CSE 250A. Principles of Al

Probabilistic Reasoning and Decision-Making

Lecture 12 - Latent variable models

Lawrence Saul Department of Computer Science and Engineering University of California, San Diego

Fall 2021

Outline

- Review
- 2 Example
- 3 Application
- Preview

ML estimation for complete data

Notation

Nodes
$$X_1, X_2, ..., X_n$$

Examples $t = 1, 2, ..., T$
Complete data $\{(x_{1t}, x_{2t}, ..., x_{nt})\}_{t=1}^T$

ML estimates for CPTs

root nodes
$$P_{\mathrm{ML}}(X_{i} = x) = \frac{\mathrm{count}(X_{i} = x)}{T}$$
$$= \frac{1}{T} \sum_{t} I(x_{it}, x)$$
nodes
$$\mathrm{count}(X_{i} = x, x)$$

$$P_{\text{ML}}(X_i = x | \text{pa}_i = \pi) = \frac{\text{count}(X_i = x, \text{pa}_i = \pi)}{\text{count}(\text{pa}_i = \pi)}$$
$$= \frac{\sum_t I(x_{it}, x) I(\text{pa}_{it}, \pi)}{\sum_t I(\text{pa}_{it}, \pi)}$$

ML estimation for incomplete data

Notation

```
Nodes X_1, X_2, ..., X_n
Examples t = 1, 2, ..., T
Visible nodes V_t = v_t for t^{\text{th}} example
```

EM algorithm

Initialize CPTs to nonzero values.

Repeat until convergence:

E-step — compute posterior probabilities.

M-step — update CPTs:

root nodes
$$P(X_i = x) \leftarrow \frac{1}{T} \sum_t P(X_i = x | V_t = v_t)$$
nodes with parents
$$P(X_i = x | \text{pa}_i = \pi) \leftarrow \frac{\sum_t P(X_i = x, \text{pa}_i = \pi | V_t = v_t)}{\sum_t P(\text{pa}_i = \pi | V_t = v_t)}$$

28 / 189

Complete versus incomplete data

Complete data

root nodes

$$P_{\mathrm{ML}}(X_i = x) = \frac{1}{T} \sum_t I(x_{it}, x)$$

nodes with parents

$$P_{\mathrm{ML}}(X_i = x | \mathrm{pa}_i = \pi) = \frac{\sum_t I(x_{it}, x) I(\mathrm{pa}_{it}, \pi)}{\sum_t I(\mathrm{pa}_{it}, \pi)}$$

Incomplete data

root nodes

$$P(X_i = x) \leftarrow \frac{1}{T} \sum_t P(X_i = x | V_t = v_t)$$

nodes with parents

$$P(X_i = x | \text{pa}_i = \pi) \quad \longleftarrow \quad \frac{\sum_{t=1}^{T} P(X_i = x, \text{pa}_i = \pi | V_t = v_t)}{\sum_{t=1}^{T} P(\text{pa}_i = \pi | V_t = v_t)}$$

Key properties of EM

No learning rate

The updates do not require the tuning of a learning rate $(\eta > 0)$, as in purely gradient-based methods.

Monotonic convergence

Changes to CPTs from the EM updates always increase the incomplete-data log-likelihood $\mathcal{L} = \sum_t \log P(V_t = v_t)$.

Outline

- Review
- Example
- Application
- Preview

Example

Suppose that A and C are observed and B is hidden.

Inference

$$P(B=b|A=a,C=c) = \frac{P(C=c|B=b,A=a) P(B=b|A=a)}{P(C=c|A=a)}$$

$$= \frac{P(C=c|B=b) P(B=b|A=a)}{P(C=c|A=a)}$$

$$= \frac{P(C=c|B=b) P(B=b|A=a)}{\sum_{b'} P(C=c|B=b') P(B=b'|A=a)}$$
normalized

This is the only non-trivial posterior probability that we'll need for the EM updates in this example.

BR

Log-likelihood

Incomplete data set

t	A	В	С
1	a_1	?	<i>c</i> ₁
2	a ₂	?	c ₂
:	:	:	:
Т	a _T	?	c_T

How to choose the CPTs to maximize the log-likelihood of this (incomplete) data?

Log-likelihood

$$\mathcal{L} = \sum_{t} \log P(a_{t}, c_{t})$$

$$= \sum_{t} \log \sum_{b} P(a_{t}, b, c_{t})$$
 marginalization
$$= \sum_{t} \log \sum_{b} P(a_{t}) P(b|a_{t}) P(c_{t}|a_{t}, b)$$
 product rule
$$= \sum_{t} \log \sum_{b} P(a_{t}) P(b|a_{t}) P(c_{t}|b)$$
 conditional independence

EM update for P(B|A)

General form

$$P(X_i = x | \text{pa}_i = \pi) \leftarrow \frac{\sum_t P(X_i = x, \text{pa}_i = \pi | V_t = v_t)}{\sum_t P(\text{pa}_i = \pi | V_t = v_t)}$$

Update for this CPT

$$P(B=b|A=a) \leftarrow \frac{\sum_{t} P(B=b, A=a|A=a_{t}, C=c_{t})}{\sum_{t} P(A=a|A=a_{t}, C=c_{t})}$$

Simplify:

computed from Bayes rule

$$P(B=b|A=a) \leftarrow \frac{\sum_{t} I(a,a_{t}) P(B=b|A=a_{t},C=c_{t})}{\sum_{t} I(a,a_{t})}$$

EM update for P(C|B)

General form

$$P(X_i = x | \text{pa}_i = \pi) \leftarrow \frac{\sum_t P(X_i = x, \text{pa}_i = \pi | V_t = v_t)}{\sum_t P(\text{pa}_i = \pi | V_t = v_t)}$$

Update for this CPT

$$P(C=c|B=b) \leftarrow \frac{\sum_{t} P(C=c, B=b|A=a_{t}, C=c_{t})}{\sum_{t} P(B=b|A=a_{t}, C=c_{t})}$$

Simplify:

$$P(C=c|B=b) \leftarrow \frac{\sum_{t} I(c,c_{t}) P(B=b|A=a_{t},C=c_{t})}{\sum_{t} P(B=b|A=a_{t},C=c_{t})}$$

EM update for P(A)

General form

$$P(X_i = x) \leftarrow \frac{1}{T} \sum_t P(X_i = x | V_t = v_t)$$
 root node

Update for this CPT

$$P(A=a) \leftarrow \frac{1}{T} \sum_{t} P(A=a|A=a_t, C=c_t)$$

Simplify:

$$P(A=a) \leftarrow \frac{1}{T} \sum_{i} I(a, a_t) = \frac{1}{T} \operatorname{count}(A=a)$$

The update reduces to the ML estimate for complete data—as it must, because A is observed and has no unobserved parents.

Summary of EM algorithm

• E-step (Inference)

$$\frac{P(b|a_t,c_t)}{\sum_{b'}P(c_t|b')P(b'|a_t)} \qquad \bigcirc \bigcirc \bigcirc \bigcirc$$

M-step (Learning)

$$P(a) = \frac{1}{T} \operatorname{count}(A=a)$$

$$P(b|a) \leftarrow \frac{\sum_{t} I(a, a_{t}) P(b|a_{t}, c_{t})}{\sum_{t} I(a, a_{t})}$$

$$P(c|b) \leftarrow \frac{\sum_{t} I(c, c_{t}) P(b|a_{t}, c_{t})}{\sum_{t} P(b|a_{t}, c_{t})}$$

Convergence

There are no learning rates to tune.

Each update increases the incomplete data log-likelihood:

$$\mathcal{L} = \sum_{t} \log \sum_{b} P(a_t) P(b|a_t) P(c_t|b)$$

Outline

- Review
- 2 Example
- **3** Application
- Preview

Application

Statistical language modeling

Let w_{ℓ} denote the $\ell^{\rm th}$ word in a corpus of text. How to model $P(w_1, w_2, \ldots, w_L)$?

Markov models

model	$P(w_1, w_2, \ldots, w_L)$	ML estimate	DAG
unigram	$\prod_{\ell} P_1(w_{\ell})$	$P_1(w) = \frac{\operatorname{count}(w)}{L}$	w_1 w_2 \cdots w_L
bigram	$\prod_{\ell} P_2(w_{\ell} w_{\ell-1})$	$P_2(w' w) = \frac{\operatorname{count}(w \to w')}{\operatorname{count}(w)}$	$w_1 \rightarrow w_2 \rightarrow \cdots \rightarrow w_L$
trigram	$\prod_{\ell} P_3(w_{\ell} w_{\ell-1},w_{\ell-2})$	i i	:

Evaluating n-gram models

Train on corpus
$$\mathcal{A} \implies P_1(\mathcal{A}) \leq P_2(\mathcal{A}) \leq P_3(\mathcal{A}) \dots$$

Test on corpus $\mathcal{B} \implies P_2(\mathcal{B}) = 0$ if \mathcal{B} has unseen bigrams.

Word clustering

Alternative to bigram model

Insert a hidden node $Z \in \{1, 2, ..., C\}$ between the previous and next words $W, W' \in \{1, 2, ..., V\}$.

Words W and W' are observed (as before). The node Z is a latent variable to detect word clusters.

Conditional probability tables

P(z|w) is the probability that word w is mapped into cluster z. P(w|z) is the probability that word w' follows any word in cluster z.

Computing P(w'|w)

Inference

$$P(w'|w) = \sum_{z} P(w', z|w)$$
 marginalization
$$= \sum_{z} P(w'|z, w) P(z|w)$$
 product rule
$$= \sum_{z} P(w'|z) P(z|w)$$
 conditional independence

Matrix factorization

The above expresses the matrix P(w'|w) as the product of the two smaller matrices P(w'|z) and P(z|w).

Model complexity

Parameter count

Compact representations of complex worlds (lecture 1)

Setting C=1, we recover the unigram model. Setting C=V, we recover the bigram model. In between, we are exploring a range of different models.

EM algorithm

The model is the same as our previous example. Only the variable names have changed!

• E-step - Inference

$$P(z|w_{\ell}, w_{\ell+1}) = \frac{P(w_{\ell+1}|z) P(z|w_{\ell})}{\sum_{z'} P(w_{\ell+1}|z') P(z'|w_{\ell})}$$

M-step – Learning

$$P(z|w) \leftarrow \frac{\sum_{\ell} I(w, w_{\ell}) P(z|w_{\ell}, w_{\ell+1})}{\sum_{\ell} I(w, w_{\ell})}$$

$$P(w'|z) \leftarrow \frac{\sum_{\ell} I(w', w_{\ell+1}) P(z|w_{\ell}, w_{\ell+1})}{\sum_{\ell} P(z|w_{\ell}, w_{\ell+1})}$$

Experimental results

Data set

60K-word vocabulary 80M-word corpus of news articles $\operatorname{count}(w \to w')$ is 99% sparse.

Model

The goal is to estimate P(z|w) and P(w'|z). For C = 32 clusters, these CPTs have 3.84M entries. EM converges in 30 iterations.

Results

The model has no prior knowledge of word meanings. Which words does it cluster? Look at $\underset{z \in \mathbb{Z}}{\operatorname{argmax}} P(z|w)$.

Word clusters

1	as cents made make take	19		
	ago day earlier Friday Monday month quarter reported said Thursday trading Tuesday		did (") (')	
2			but called San (:) (start-of-sentence)	
_	Wednesday ()		bank board chairman end group members	
3	3 even get to		number office out part percent price prices rate	
4	based days down home months up work years		sales shares use	
* (%)		23	a an another any dollar each first good her his its	
	those $\langle , \rangle \langle - \rangle$		my old our their this	
6	⟨.⟩ ⟨?⟩	24	long Mr. year	
, eig	eighty fifty forty ninety seventy sixty thirty eventy $\langle () \langle \cdot \rangle$		business California case companies corporation	
· ·			dollars incorporated industry law money	
8	can could may should to will would	-	thousand time today war week ()) (unknown)	
9	about at just only or than $\langle \& \rangle \langle ; \rangle$	26	also government he it market she that there which who	
10	economic high interest much no such tax united well	27	A. B. C. D. E. F. G. I. L. M. N. P. R. S. T. U.	
11	president		both foreign international major many new oil other some Soviet stock these west world	
12	because do how if most say so then think very what when where		after all among and before between by during for from in including into like of off on over since	
13	according back expected going him plan used way		through told under until while with	
15	don't I people they we you		eight fifteen five four half last next nine oh one	
16	Bush company court department more officials		second seven several six ten third three twelve two zero \land -\rangle	
-	police retort spokesman	\vdash	17	
17	former the	31	are be been being had has have is it's not still was were	
18	American big city federal general house military national party political state union York	32	chief exchange news public service trade	

The table shows the most likely cluster assignments $\underset{z}{\operatorname{argmax}} P(z|w)$ for the 300 most common tokens in the corpus.

Outline

- Review
- 2 Example
- Application
- Preview

Preview

Many more examples of EM to come

- Linearly interpolated Markov models
- Noisy-OR models for medical diagnosis
- Naive Bayes models of recommender systems
- Hidden Markov models for sequence analysis