

Gray Level Histograms

Gray Level Histograms

- ✓ To measure a histogram:
 - For B-bit image (2^B intensity values), initialize 2^B counters with 0
 - Loop over all pixels x, y
 - When encountering gray level f[x, y] = i, increment counter # i.

Gray Level Histograms

- ✓ To measure a histogram:
 - For B-bit image (2^B intensity values), initialize 2^B counters with 0
 - Loop over all pixels x, y
 - When encountering gray level f[x, y] = i, increment counter # i.
- ✓ Normalized histogram can be thought of as an estimate of the probability distribution of the continuous signal amplitude

Histogram ignores spatial information

Histogram Equalization

Increases local contrast by spreading out the intensity histogram

Idea: Find a non-linear transformation s = T(r) that is applied to each pixel of the input image f[x,y], such that a uniform distribution of gray levels results for the output image g[x,y].

Histogram Equalization

Continuous case first ...

Assume

- ✓ Normalized input values $0 \le r \le 1$ and output values $0 \le s \le 1$
- $\checkmark T(r)$ is differentiable, increasing, and invertible, i.e., there exists

$$r = T^{-1}(s)$$

Goal: pdf $p_s(s) = 1$ over the entire range $0 \le s \le 1$

Histogram Equalization for continuous case

✓ From basic probability theory

$$p_r(r) = 1$$
 \xrightarrow{r} $T(r)$ \xrightarrow{s} $p_s(s) = \left[p(r)\frac{dr}{ds}\right]_{r=T^{-1}(s)}$

✓ Consider the transformation function

$$s = T(r) = \int_0^r p_r(\alpha) d\alpha$$
 $0 \le r \le 1$

$$p_{s}(s) = \left[p_{r}(r)\frac{dr}{ds}\right]_{r=T^{-1}(s)} = \left[p_{r}(r)\frac{1}{p_{r}(r)}\right]_{r=T^{-1}(s)} = 1 \qquad 0 \le s \le 1$$

$$\frac{ds}{dr} = p_{r}(r)$$
ital length Processing: Maria Parenta and Ahmed Chassenia

Histogram Equalization for discrete case

 \checkmark Now, r only assumes discrete amplitude values $r_0, r_1, ..., r_{L-1}$ with empirical probabilities

$$p_r(r_0) = \frac{n_0}{MN}$$
, $p_r(r_1) = \frac{n_1}{MN}$, ..., $p_r(r_{L-1}) = \frac{n_{L-1}}{MN}$ # pixels within bin i

✓ Discrete approximation of $s = T(r) = \int_0^r p_r(\alpha) d\alpha$

$$s_k = T(r_k) = \sum_{i=0}^k p_r(r_i)$$
 for $k = 0, 1, ..., L - 1$

 \checkmark The resulting values s_k are in the range [0,1] and might have to be scaled and rounded appropriately

Histogram Equalization

If input values r and output values s are not normalized. They are in L intensity levels.

$$s = T(r) = (L - 1) \int_0^r p_r(\alpha) d\alpha$$

$$s_k = T(r_k) = (L - 1) \sum_{i=0}^k p_r(r_i) = (L - 1) \sum_{i=0}^k \frac{n_i}{MN}$$

Example: Histogram Equalization

Original histogram of a 3bit ($2^3=8$ intensity levels) image, 64×64 digital

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Intensity distribution and histogram values

Example: Histogram Equalization

$$s_k = T(r_k) = (L - 1) \sum_{i=0}^k \frac{n_i}{MN} = 7 \sum_{i=0}^7 \frac{n_i}{64 \times 64}$$

r_k	n_k	$p_r(r_k) = n_k/MN$	s_k	$p_s(s_k)$
$r_0 = 0$ $r_1 = 1$ $r_2 = 2$ $r_3 = 3$ $r_4 = 4$ $r_5 = 5$ $r_6 = 6$	790 1023 850 656 329 245 122	0.19 0.25 0.21 0.16 0.08 0.06 0.03	7.0 5.6 4.2 2.8 1.4 r_k	.25 — .20 — .15 — .10 — .05 —
$r_7 = 7$	81	0.02	0 1 2 3 4 5 6 7 Transformation Function	0 1 2 3 4 5 6 7 Equalized Histogram

Original image

After histogram equalization

After histogram equalization

Original image

After histogram equalization

3.5 2.5 #pixels 0.5 gray level

After histogram equalization

Histogram Equalization vs Specification

- ✓ Large concentration of dark pixels
- ✓ Want to make dark pixels more visible (object in the background not visible now)

Original image

Histogram

Histogram Equalization vs Specification

- \checkmark Manually specified T
- ✓ Preserves general shape of histogram but smoother transition of levels in dark region
- ✓ Tonality of image more even and noise level reduced
- ✓ Less saturation

Histogram Specification

$$s = T(r) = ?$$

Solving two equalization problems

Equalize input r to z

$$z = T_1(r)$$

Equalize output s to z' $z' = T_2(s)$

It must be that: z = z'

$$s = T_2^{-1}(T_1(r))$$

1D convolution and Correlation

$$g(x) = \sum_{s=-a}^{a} w(s)f(x+s)$$

- ✓ 1D correlation and convolution of kernel w with function f.
- ✓ They are function of variable x, which acts to displace one function with respect to other.

Correlation result

Extended (full) correlation result

(h) 0 0 0 8 2 4 2 1 0 0 0 0

Convolution

Convolution result

(p)

Extended (full) convolution result

$$g(x) = \sum_{s=-a}^{a} w(s)f(x-s)$$

- (g) or (o): center of w visited every pixel in f
- (h) or (p): every element of w visited every pixel in f (need to start with last element of w coinciding with first of f and end with last of w to last of f

Linear Spatial Filtering

$$g(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x+i,y+j)$$

w(0,0) aligns with f(x,y)

m = 2a + 1 and n = 2b + 1 are odd integers

Convolution and Correlation

- Correlation:
 - 1. Move the filter mask to a location
 - 2. Compute the sum of products
 - 3. Go to 1.

$$w(x,y) \approx f(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x+i,y+j)$$

- Convolution:
 - 1. Rotate the filter mask by 180 degrees
 - 2. Correlation

$$w(x,y) \star f(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x-i,y-j)$$

\sim Rotated w							Full convolution result										
9	8	7	0	0	()	()	0	()	0	0	()	0	0	0	0	0	0
6	5	4	0	()	0	0	0	0	0	0	0	0	0	()	0	0	0
3	2	1	0	0	0	0	0	()	0	0	0	0	0	0	0	0	0
()	0	0	0	0	0	0	0	0	0	0	0	1	2	3	0	0	0
()	0	0	0	1	0	0	0	0	0	0	0	4	5	6	0	0	0
()	0	0	0	0	0	0	0	()	0	0	()	7	8	9	0	0	()
0	()	0	0	0	0	()	0	()	()	0	0	0	0	0	0	0	0
()	0	0	0	0	0	0	0	()	()	0	0	0	0	()	0	0	0
0	()	0	0	()	0	()	0	0	0	0	0	0	0	0	0	0	0
				(f)									(g)				

Cropped correlation result

- 0 0 0 0 0
- 0 9 8 7 0
- 0 6 5 4 0
- 0 3 2 1 0
- 0 0 0 0 0

Cropped convolution result

- 0 0 0 0 0
- 0 1 2 3 0
- 0 4 5 6 0
- 0 7 8 9 0
- 0 0 0 0 0

Quiz (time: 2 min)

- 1. DPI is defined as
 - a) Number of gray levels per image
 - b) Number of pixels per image
 - c) Number of pixels per inch
 - d) Number of gray levels per image

- 2. How many bits do we need for 16 gray level images:
 - a) 16 b) 8

- c) 4 d) 2

QUESTIONS & ANSWERS

