Multidimensional Design

Knowledge Objectives

- 1. Justify the usefulness of multidimensional analysis against operational databases and spreadsheets
- 2. Define OLAP (On-Line Analytical Processing)
- 3. Describe a data cube
- Describe the most typical multidimensional operations over the cube
- Distinguish the main kinds of multidimensional tools (ROLAP, MOLAP and HOLAP)

Understanding Objectives

- Explain the meaning of a star (or its variants snowflake and galaxy) shape multidimensional schema
- Translate a multidimensional UML diagram into a relational star-join schema
- 3. Elaborate on the advantages and disadvantages of ROLAP in front of MOLAP

MOTIVATION AND DEFINITION

Spreadsheet (I)

	Α	В	С	D	Е	F	G	Н	
1									
2		X							
3		У							
4		Z							
5									
6									

Spreadsheets (II)

- Absence of metadata
 - Rows and columns without associated meaning
 - Difficult query and interpretations
- Limited amount of data
 - M\$Excel (65,000*256=16,000,000 cells)
- The position limits operations
- Aggregation hierarchies are not managed

FASMI test

- □ Fast
- Analysis
- of Shared
- Multidimensional
- Information

Nigel Pendse, 1995

Spreadsheet -> FAMSI

Operational DB -> SIFAM

Cube (Hyperprism)

Reference architecture

REAL WORLD VIEW

Three worlds

Cross-tab view

		Q1	Q2	Q3	Q4
	Beverages	21	10	18	35
Paris	Produce	27	14	11	30
Palis	Condiments	26	12	35	32
	Seafood	14	20	47	31
	Beverages	12	20	24	33
Lyon	Produce				
Lyon	Condiments				
	Seafood				
	Beverages	33	25	23	25
Berlin	Produce				
Вени	Condiments				
	Seafood				
	Beverages	24	18	28	14
Köln	Produce				
KUIII	Condiments				
	Seafood				

Slice

Dice

Sort

Pivot (I)

Pivot (II)

		Q1	Q2	Q3	Q4
	Beverages	21	10	18	35
Paris	Produce	27	14	11	30
Palis	Condiments	26	12	35	32
	Seafood	14	20	47	31
	Beverages	12	20	24	33
Lyon	Produce				
Lyon	Condiments				
	Seafood				
	Beverages	33	25	23	25
Berlin	Produce				
Beriiii	Condiments				
	Seafood				
	Beverages	24	18	28	14
Köln	Produce				
KUIII	Condiments				
	Seafood				

		Paris	Lyon	Berlin	Köln
	Q1	21	27	26	14
Povoragos	Q2	12	14	11	12
Beverages	Q3	33	28	35	32
	Q4	24	23	25	18
	Q1	10	14	12	20
Produce	Q2				
Produce	Q3				
	Q4				
	Q1	18	11	35	47
Condiments	Q2				
Condinients	Q3				
	Q4				
	Q1	35	30	32	31
Seafood	Q2				
Sealoud	Q3				·
	Q4				

Roll-up (I)

Roll-up (II)

Drill-down

Drill-across

A. Vaisman & E.Zimanyi

Union

Custon	န ် Lyo Paris	erlin	öln /- 33 12 1	20 [.	24/	28 12 7 25 14 33 25 7 33 18
_	Q1	21	10	18	35	35 14 23 17
luart	Q2	27	14	11	30	30 12 20 18
Time (Quarter)	Q3	26	12	35	32	32 10 33
Ė	Q4	14	20	47	31	31
		Р	roduc	e S	eafoc	od

Beverages Condiments

Product (Category)

customer	Bilb Madrid	_	24 2 27	18/	28 3 15	14
_	Q1	22	27	23	15	15 14
ùart	Q2	33	22	18	23	23 17
Time (Quarter)	Q3	14	13	25	17	17 17
Ë	Q4	20	18	23	17	11
		F	roduc	e S	Seafo	od
	Beverages Condiments					

Product (Category)

c	Lyo	Bil Köl erlin n	33 12 .	24 24 2 25 20 .	24/	28 14 14 23 33 25 14 23
	Paris	/27	/ 10	/ 18	35	
er)	Q1	21	10	18	35	35 14 23 17 17 17
uart	Q2	27	14	11	30	30 12 20 18 17
Time (Quarter)	Q3	26	12	35	32	32 10 33
Ë	Q4	14	20	47	31	31
		Р	roduc		eafo	od
	D					

Beverages Condiments

Product (Category)

A. Vaisman & E.Zimanyi

Difference

A. Vaisman & E.Zimanyi

CONCEPTUAL WORLD VIEW

Three worlds

Example of transactional modeling (UML)

Star schema (I)

Example of transactional modeling (UML)

(https://www.essi.upc.edu/dtim)

Star schema (II)

Star schema (III)

Star schema (IV)

Snowflake

Galaxy or Constellation

Database Technologies and Information Management (https://www.essi.upc.edu/dtim)

REPRESENTATION WORLD VIEW

Three worlds

MOLAP: Multidimensional matrix

Ballpoint Pencil Pen Rubber A4 paper A3 paper Dash Eraser

3-1-2006

Granada

ROLAP: Characteristics

- Relational DBMS with multidimensional views
 - Two levels: Storage and Translation
- Use standard SQL
 - Easy to obtain
 - Independent of the DBMS
- Performance problems
 - Relational DBMS conceived for OLTP
 - OLAP operations are missing
 - Generate too many joins
- Used in huge Data Marts

ROLAP: Star-join schema

ROLAP: Cube-Query

```
SELECT d_1.attr, ..., d_n.attr, F(f.Measure_1), ...

FROM Fact f, Dimension<sub>1</sub> d_1, ..., Dimension<sub>n</sub> d_n

WHERE f.key_1 = d_1.ID AND ... AND f.key_n = d_n.ID

GROUP BY d_1.attr, ..., d_n.attr

ORDER BY d_1.attr, ..., d_n.attr
```

ROLAP: Results table

Hospital	Month	Average Cost
Duran i Reinals	January'06	3300
Duran i Reinals	February'06	4500
Duran i Reinals		
Duran i Reinals	All	4300
Bellvitge	January'06	180
Bellvitge	February'06	300
Bellvitge	• • •	
Bellvitge	All	200

Comparison of design steps

Reasons for ROLAP

- Integrates existing technology
- Does not show scalability problems
- Query tools are independent from the DBMS
- Improves efficiency by codifying and compressing
- Allows using parallelism
- MOLAP does not allow ad-hoc queries
- MOLAP makes data actualization difficult

Reasons for MOLAP

- Matrixes are really efficient
- Relational tables are unnatural
- Multidimensionality and SQL do not fit each other
- ROLAP gains efficiency with MOLAP techniques

HOLAP

- a) Store dense chunks in MOLAP and sparse chunks in ROLAP
- b) Store atomic data in ROLAP and aggregates in MOLAP
- c) Store frequently accessed data in MOLAP and the remaining data in ROLAP

CLOSING

Summary

- OLAP definition
- Cube
- Multidimensional schemas
 - Star
 - Snowflake
 - Galaxy or Constellation
- Kinds of multidimensional tools
 - ROLAP
 - MOLAP
 - HOLAP
- □ Star-join schema
- □ Cube-Query

Bibliography

- E. F. Codd, S. B. Codd and C. T. Salley. *Providing OLAP to user-analysts: An IT mandate.* Technical report, E. F. Codd & Associates, 1993
- R. Kimball, L. Reeves, M. Ross and W. Thornthwaite. *The Data Warehouse lifecycle toolkit*. John Wiley & Sons, 1998
- E. Malinowski and E. Zimányi. Advanced Data Warehouse Design. Springer, 2008
- A. Abelló and O. Romero. *On-Line Analytical Processing*. In Encyclopedia of Database Systems. Springer, 2009
- M. Golfarelli and S. Rizzi. Data Warehouse Design.
 McGrau-Hill, 2009
- □ BI-verdict. www.bi-verdict.com, June 2010
- A. Vaisman and E. Zimányi. Data Warehouse Systems.
 Springer, 2014