Lecture Notes for Machine Learning in Python

Professor Eric Larson
Visualization and Dimensionality Reduction

Class Logistics and Agenda

- Finish Visualization Demo
- Dimensionality Reduction
 - PCA
 - Sampling
 - Kernel Methods

Demo

Visualization

Matplotlib

Seaborn

Plotly

03.Data Visualization.ipynb
Other Tutorials:

https://t.co/zNzD8Q8w5E

http://stanford.edu/~mwaskom/software/seaborn/index.html

http://pandas.pydata.org/pandas-docs/stable/visualization.html

http://matplotlib.org/examples/index.html

http://nbviewer.ipython.org/github/mwaskom/seaborn/blob/master/examples/plotting_distributions.ipynb

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized

May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Discriminant Analysis
- Others: supervised and non-linear techniques

 Goal is to find a projection that captures the largest amount of variation in data

- Find the eigenvectors of the covariance matrix
- keep the "k" largest eigenvectors

E1	E2
0.85	0.85
0.52	-0.52

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

covariance

37.1	-6.7
-6.7	43.9

	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

attribute₂

This projection is called a "Transform" known as the **Karhunen-Loève Transform**

Explained Variance

- Each principle component explains a certain amount of variation in the data.
- This explained variation is embedded in the eigenvalues for each eigenvector

Genetic profiles distilled to 2 components

- Need more help with the PCA algorithm (and python)?
 - check out Sebastian Raschka's notebooks:

http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb

Or check out PCA for dummies:

https://georgemdallas.wordpress.com/ 2013/10/30/principal-componentanalysis-4-dummies-eigenvectorseigenvalues-and-dimension-reduction/

Explained variance by different principal components

04. Dimension Reduction and Images. ipynb

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

For Next Lecture

- Next Lecture:
 - Kernel Methods
 - Dimension Reduction Demo
 - Crash-course Image Feature Extraction

Lecture Notes for Machine Learning in Python

Professor Eric Larson

Dimensionality and Images

Class Logistics and Agenda

Logistics:

- Next lab due in ~1.5 weeks
- Accessing Videos from Canvas

Agenda

- Randomized
- Kernel Methods
- Common Feature Extraction Methods for Images

Last time it was so linear...

E1	E2
0.85	0.85
0.52	-0.52

37.1	-6.7
-6.7	43.9

	A1	A2	
1	66	33.6	
2	54	26.6	
3	69	23.3	
4	73	28.1	
5	61	43.1	
ô	62	25.6	

	A7	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

04.Dimension Reduction and Images.ipynb

Dimension Reduction

PCA

biplots

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/ Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

- A. True
- B. False
- C. It doesn't but people do it anyway

Dimensionality Reduction: Randomized PCA

- Problem: PCA on all that data can take a while to compute
 - What if the number of instances is gigantic?
 - What if the number of dimensions is gigantic?
- What if we partially construct the covariance matrix with a lower rank matrix?
 - By randomly sampling from the dataset and projecting, we can get something representative of covariance matrix, but with lower rank
 - Gives a matrix with typically good enough precision of actual eigenvectors

$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \le \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

source: Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. https://arxiv.org/pdf/0909.4061.pdf

Non-linear Dimensionality Reduction

Dimensionality Reduction: non-linear

- Sometimes a linear transform is not enough
- A powerful non-linear transform has seen a resurgence in past decade: kernel PCA

- Estimate Covariance in higher dimensional space
- Get eigen vectors from nonlinear dot product
- Projecting onto these can be understood as principle components from a higher dimensional space

kernel: defines what the dot product is in higher dimensional space

$$\kappa(A1,A2) = \varphi(A1) \cdot \varphi(A2)$$

some kernels have corresponding transformations with **infinite**

			-			
M I	m	en	121		nc	11
u		CII	J)	V	113	•

 Key insight: don't need to know the actual principle components, just the projections

•	Never need eigen vectors of
	full covariance matrix, just
	how much the vectors co-vary
	in higher space!

$\mathbf{O}(A2)\cdot\mathbf{\Phi}(A1)$		$\Phi(A2)\cdot\Phi(A$		
ed to		A1	A2	
iple	1	66	33.6	
	2	54	26.6	
	3	69	23.3	
ors of	4	73	28.1	
ust	5	61	43.1	
301				

 $\phi(A1)\cdot\phi(A1)$ $\phi(A2)\cdot\phi(A1)$

25.6

kernel: defines what the dot product is in higher dimensional space

 $\phi(A1)\cdot\phi(A1)$ $\phi(A2)\cdot\phi(A1)$ $\phi(A2)\cdot\phi(A1)$ $\phi(A2)\cdot\phi(A2)$

some kernels have corresponding transformations with **infinite** dimensions!!

$$A_1 = [a_1 \ a_2]^T$$

$$\Phi(A_1) = [a_1 \ a_2 \ a_1*a_2 \ a_1^2 \ a_1*a_2^3 \dots]^T$$

$$\mathbf{k}(A_1, A_2) = \exp(-\gamma \|A_1 - A_2\|^2)$$

kernel: radial basis function (rbf)

dot product in higher dimensional space

attribute₁

A2

33.6

26.6

23.3

28.1

43.1

25.6

66

Image Processing and Representation

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels

used for capture and display

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix image[rows, cols]

	<u> 1 (</u>								
ı	G $[$	1	4	2	5	6	9		
\mathbb{B}	1	4	2	5	6	9	9		
1	4	2	5	6	9	9	7		
1	4	2	5	5	9	7	8		
1	4	2	8	8	7	8	9		
3	4	3	9	9	8	9	6		
1	0	2	7	7	9	6	9		
1	4	3	9	8	6	9	T		
2	4	2	8	7	9		_		

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

Solution: row concatenation (also, vectorizing)

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Self test: 3a-1

- When vectorizing images into table data, each "feature column" corresponds to:
 - a. the value (color) of pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Demo

Dimension Reduction with Images Images Representation Randomized PCA Kernel PCA

04. Dimension Reduction and Images. ipynb

Features of Images

Image Representation

need a compact representation

hsv

- what we perceive as color (ish)
 - •hue: the color value
 - saturation: the richness of the color relative to brightness
 - value: the gray level intensity

Common operations

images: Jianbo Shi, Upenn

Common operations: DAISY

take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \dots, \mathbf{G}_{H}^{\Sigma}(u,v)\right]^{\top}$$

$$\mathcal{D}(u_0, v_0) =$$
 $\sim +$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \ldots, \mathbf{G}_{H}^{\Sigma}(u,v)\right]^{\top}$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

 $\mathcal{D}(u_0, v_0) =$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

Common operations: DAISY

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: DAISY

Bag of Features Image Representation

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: Gabor filter Banks (if time)

common used for texture classification

Demo

More Image Processing

Gradients

DAISY

Gabor Filter Banks

Other Tutorials:

http://scikit-image.org/docs/dev/auto_examples/

For Next Lecture

- Work on your text datasets!
- Quiz is now live: Image Processing
- Next Time: In-Class Assignment One!!!
- Next Week: Project Questions Lecture

Supplemental Slides

- Peruse these at your own leisure!
- These slides might assist you as additional visual aides
- Slides courtesy of Tan, Steinbach, Kumar
 - Introduction to Data Mining

Dimensionality Reduction: LDA

- PCA tell us variance explained by the data in different directions, but it ignores class labels
- Is there a way to find "components" that will help with discriminate between the classes?

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{differences between classes}}{\sum \text{variance within classes}}$$

- called Fisher's discriminant
- ...but we need to solve this using using Lagrange multipliers and gradient-based optimization
- which we haven't covered yet

I invented Lagrange multipliers... and ...nothing impresses me...

Dimensionality Reduction: LDA versus QDA

Feature 1

Dimensionality Reduction: LDA versus QDA

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{differences between classes}}{\sum \text{variance within classes}}$$

- "differences between classes" is calculated by trying to separate the mean value of each feature in each class
- Linear discriminant analysis:
 - assume the covariance in each class is the same
- Quadrature discriminant analysis:
 - estimate the covariance for each class

Self Test ML2b.2

LDA only allows as many components as there are unique classes in a dataset.

- A. True
- B. False