Московский физико-технический институт

Лабораторная работа

Закон Кюри-Вейсса

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри

2 В работе используются:

- катушка самоиндукции с образуом из гадолиния
- термостат
- частотомер
- цифровой вольтметр
- LC-автогенератор
- термопара медь-константан

3 Теоретические положения

При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость ферромагнетиков убывает по закону Кюри-Вейсса

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p - парамагнитная точка Кюри исследуемого вещества. При $T<\Theta_p$ образец обладает ферромагнитными свойствами и может сохранять намагниченность, при $T>\Theta_p$ образец ведёт себя как парамагнетик, для которого связь B и H однозначная: $I=\chi H,\ B=\mu H.$ Для исследования выбран гадолиний, так как его точка Кюри лежит в интервале комнатных температур.

4 Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Схема установки изображена на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Катушка с образцом помещена в стеклянный сосуд, залитый трансформаторным маслом. Температура образца регулируется с помощью термостата.

При изменении температуры по закону Кюри-Вейсса изменяется магнитная восприимчивость образца в катушке и, следовательно, изменяется самоиндуктивность этой катушки. При этом изменяется период колебаний автогенератора. Поэтому получаем, что

$$\frac{1}{\chi} \left(T - \Theta_p \right) \frac{1}{\left(\tau^2 - \tau_0^2 \right)},\tag{2}$$

где τ и τ_0 - период колебаний в цепи с сердечником в катушке и без него соответственно. Измерения проводятся в интервале температур от 14 °C до 40 °C

5 Ход работы

- 1. Подготовим приборы к работе. Оценим допустимую ЭДС термопары: $dV=k*\Delta T=12$ мВ, где k=24град/мВ и $\Delta T=0.5$ °С. Зафиксируем период колебаний контура без сердечника в катушке: $\tau_0=9.05$ мкс
- 2. Исследуем зависимость периода колебания генератора от темературы образца, отмечая период колебаний τ по частотомеру, а температуру T по показаниям дисплея и цифровому вольтметру. Занесём в таблицу измеренные и рассчитанные значения, погрешность определения температуры по дисплею термостата ± 0.5 °C, погрешность термопары составляет 12 единиц последнего разряда, получаем, что погрешность определения температуры по ней также ± 0.5 °C.

Таблица 1: Зависимость периода колебаний в генераторе от температуры образца

T , $^{\circ}$ C	15.5	16.01	18.01	20	22	24	26
τ , MKC	10.724	10.703	10.570	10.320	9.972	9.611	9.432
dV, мВ	-0.002	-0.008	-0.019	-0.022	-0.022	-0.021	-0.021
$T_{real}, ^{\circ}\mathrm{C}$	15.417	15.677	17.218	19.083	21.083	23.125	25.125
$\frac{1}{(\tau^2 - \tau_0^2)}$, MKC ⁻²	0.030	0.031	0.034	0.041	0.057	0.096	0.142
$T,^{\circ}\mathrm{C}$	28	30	32	34	36	38	40
$T,^{\circ}C$ τ, MKC	28 9.342	30 9.288	32 9.252	34 9.226	36 9.206	38 9.190	40 9.178
			_				_
τ , MKC	9.342 -0.020 27.167	9.288	9.252	9.226	9.206	9.190	9.178

3. Построим график зависимости $\frac{1}{(\tau^2 - \tau_0^2)} = f(T)$. Прямую ферромагнитного участка экстраполируем к оси абсцисс, полученное значение - экспериментальное значение точки Кюри для исследуемого образца.

Рис. 2: Зависимость $\frac{1}{(\tau^2 - \tau_0^2)} = f(T)$

4. Получаем значение точки Кюри гадолиния $\Theta_p = 18.6 \pm 0.7$ °C. Табличное значение этой величины составляет 19° по данным ru.wikipedia.org/wiki/Точка Кюри и megabook.ru/article/Гадолиний.

6 Вывод

В ходе работы была экспериментально определена парамагнитная точка Кюри для гадолиния, исследован переход его от ферромагнитного к парамагнитному состоянию. Значение точки Кюри совпало со справочным значением:

$$\Theta_{th} = 19^{\circ} \text{C}$$
 $\Theta_{ex} = 18.6 \pm 0.7^{\circ} \text{C}$

Можно сделать вывод, что данный метод можно использовать для веществ, у которых точка Кюри находится в интервале комнатных температур. Для других веществ можно, например, в качестве среды в термостате использовать нагретый до нужных температур пар.