as in (3.1) but with [n(1-b)] in place of [n/2]. In this case, the maximum finite sample breakdown point would be attained in $b = 0.5 - k_n/n$ which is very close to our choice of b = 0.5 when k_n/n is small.

4 Influence function

Consider an estimate $\widehat{\boldsymbol{\theta}}_n$ depending on a sample $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ of i.i.d. variables in \mathbb{R}^k with distribution $H_{\boldsymbol{\theta}}$, where $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^m$. Let T be an estimating functional of $\boldsymbol{\theta}$ such that $\mathbf{T}(H_n) = \widehat{\boldsymbol{\theta}}_n$, where H_n is the corresponding empirical distribution. Suppose that \mathbf{T} is Fisher consistent, i.e. $\mathbf{T}(H_{\boldsymbol{\theta}}) = \boldsymbol{\theta}$. The *influence function* of \mathbf{T} , introduced by Hampel [9], measures the effect on the functional of a small fraction of point mass contamination. If $\delta_{\mathbf{z}}$ denotes the probability distribution that assigns mass 1 to \mathbf{x} , then the influence function is defined by

$$IF(\mathbf{z}, \mathbf{T}, \boldsymbol{\theta}) = \lim_{\varepsilon \to 0} \frac{\mathbf{T}((1 - \varepsilon)H_{\boldsymbol{\theta}} + \varepsilon\delta_{\mathbf{z}}) - \mathbf{T}(H_{\boldsymbol{\theta}})}{\varepsilon} = \left. \frac{\partial \mathbf{T}((1 - \varepsilon)H_{\boldsymbol{\theta}} + \varepsilon\delta_{\mathbf{z}})}{\partial \varepsilon} \right|_{\varepsilon = 0},$$

In our case, $\mathbf{z} = (\mathbf{y}', \mathbf{x}')'$ satisfy the linear model (1.1), $\boldsymbol{\theta} = (\mathbf{B}_0, \boldsymbol{\Sigma}_0)$ and $H_{\boldsymbol{\theta}} = H_0$. Let $\mathbf{T}_{0,1}$, $\mathbf{T}_{0,2}$ be the functional estimates associated to the inicial estimates $\widetilde{\mathbf{B}}_n$ and $\widetilde{\boldsymbol{\Sigma}}_n$, and \mathbf{T}_1 , \mathbf{T}_2 the functional estimates corresponding to the MM-estimates $\widehat{\mathbf{B}}_n$ and $\widehat{\boldsymbol{\Sigma}}_n$. Then, according to (2.10) and (2.11), given a distribution function H of $(\mathbf{y}', \mathbf{x}')'$, the pair $(\mathbf{T}_1(H), \mathbf{T}_2(H))$ is the value of $(\mathbf{B}, \boldsymbol{\Sigma})$ satisfying

$$E_H W(d(\mathbf{B}, \Sigma)) \, \widehat{\mathbf{u}}(\mathbf{B}) \mathbf{x}' = \mathbf{0},$$

$$\Sigma = q \frac{E_H W (d(\mathbf{B}, \Sigma)) \, \widehat{\mathbf{u}}(\mathbf{B}) \widehat{\mathbf{u}}(\mathbf{B})'}{E_{H_0} \psi_1 (d(\mathbf{B}, \Sigma)) \, d(\mathbf{B}, \Sigma)},$$

and

$$\Sigma = S(H)^2 \Gamma$$
, with $|\Gamma| = 1$,