Examenul de bacalaureat național 2019

Proba E. c)

Matematică *M_st-nat*

Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, litera corespunzătoare răspunsului corect. (30 de puncte)

5p 1. Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ cu $a_3=11$ și $a_4=13$. Primul termen al acestei progresii este egal cu:

A. −1

B. 3

C. 7

D. 11

5p 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 - 8x + m$, unde m este număr real. Dacă vârful parabolei asociate funcției f are coordonatele egale, atunci numărul real m este egal cu:

A. 6

B. 8

C. 10

D. 12

5p 3. Mulțimea soluțiilor ecuației $\sqrt{x+12} = x$ este:

A. $\{-3,4\}$

B. {4}

C. {-3}

D. $\{-4,3\}$

5p 4. Probabilitatea ca, alegând un număr din mulțimea $A = \{n \in \mathbb{N}^* \mid n \le 120\}$, acesta să fie multiplu de 25 este egală cu:

A. $\frac{1}{30}$

B. $\frac{4}{121}$

C. $\frac{1}{24}$

D. $\frac{29}{30}$

5p 5. În reperul cartezian xOy se consideră punctele M(3,5) și N(4,4). Punctul P, situat pe axa Ox, pentru care punctele M, N și P sunt coliniare este:

A. P(-8,0)

B. P(0,8)

C. P(0,0)

D. P(8,0)

5p 6. Se consideră expresia $E(x) = \sin x + \sin \left(x + \frac{2\pi}{3}\right) + \sin \left(x - \frac{2\pi}{3}\right)$, unde x este număr real. Pentru orice număr real x, expresia E(x) este egală cu:

A. 0

B. $\sqrt{3}\cos x$

 \mathbf{C} . $\sin x$

D. 1

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

- **1.** Se consideră determinantul $D(x) = \begin{vmatrix} 1-x & 2 & 3 \\ 1 & 2-x & 3 \\ 1 & 2 & 3-x \end{vmatrix}$, unde x este număr real.
- **5p a**) Arătați că D(1) = 5.
- **5p b**) Demonstrați că, pentru orice număr întreg p, $p \neq 6$, numărul D(p) este divizibil cu 6-p.
- $\mathbf{5p}$ c) Determinați valoarea maximă pe care o poate lua D(n), atunci când n este număr natural.
 - 2. Se consideră matricele $A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$ și $B(x) = \begin{pmatrix} 0 & x+1 \\ x-1 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că B(1) + B(3) = 2B(2).
- **5p b**) Determinați numărul real x pentru care $A \cdot B(x) = B(x) \cdot A$.
- **5p** c) Determinați numerele reale x pentru care $B(x) \cdot B(x) = B(x)$.

SUBIECTUL al III-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{(x-4)^2}{x}$.

5p a) Calculați $\lim_{x \to +\infty} \frac{f(x)}{x}$.

5p b) Calculați
$$\lim_{x \to 4} \frac{x^3 - 8x^2 + 16x}{f(x)}$$

- c) Demonstrați că pentru orice număr real a, a > 0, $\lim_{x \to +\infty} \frac{1}{a} (f(x+a) f(x))$ **nu** depinde de a. 5p
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \frac{x^2}{x-2}, & x \in (-\infty,1) \\ \ln x + m, & x \in [1,+\infty) \end{cases}$, unde m este număr real.
- a) Determinați numărul real m, pentru care funcția f este continuă pe $\mathbb R$. **5**p
- **b**) Determinați ecuația asimptotei oblice spre $-\infty$ la graficul funcției f .
- c) Pentru $m \le 0$, demonstrați că funcția f este surjectivă.