全国重点名校数学专业考研真题及解答

数学分析与高等代数 考研真题详解

中国科学院数学专卷

博士家园 编著

《博士家园数学专业考研丛书》

编委会

这是一本很多数学考研人期待已久的参考书,对于任何一个想通过考取重点院校的研究生来进一步深造的同学来说,历年的各个院校的真题的重要性是显而易见的。为了帮助广大同学节约时间进行复习,为了使辅导教师手头有更加详尽的辅导材料,我们从 2004 年开始大量收集数学专业的考研真题,其中数学分析和高等代数两门专业基础课最为重要。有些试题还很难收集或者购买,我们通过全新的写作模式,通过博士家园(www.math.org.cn),这个互联网平台,征集到了最新最全面的专业试题,更为令人兴奋和鼓舞的是,有很多的高校教师,硕博研究生报名参与本丛书的编写工作,他们在工作学习的过程中挤时间,编写审稿严肃认真,不辞辛苦,这使我们看到了中国数学的推广和科研的进步,离不开这些默默无闻的广大数学工作者,我们向他们表示最崇高的敬意!

国际数学大师陈省身先生提出:"要把中国建成21世纪的数学大国。"每年有上万名数学专业的学生为了更好的深造而努力考研,但是过程是艰难的。我们为了给广大师生提供更多更新的信息与资源建立了专业网站——博士家园网站。本站力图成为综合性全国数学信息交换的门户网站,旨在为科研人员和数学教师服务,提供与数学研究和数学教学有关的一切有价值的信息和国内外优秀数学资源检索,经过几年的不懈努力,成为国内领先、国际一流的数学科学信息交流中心之一。由于一般的院校可能提供一些往年试题,但是往往陈旧或者没有编配解答,很多同学感到复习时没有参照标准,所以本丛书挑选了重点名校数学专业的试题,由众多编委共同编辑整理成书。在此感谢每一位提供试题的老师,同时感谢各个院校的教师参与解答。以后我们会继续更新丛书,编入更新的试题及解答,希望您继续关注我们的丛书系列。也欢迎您到博士家园数学专业网站参加学术讨论,了解考研考博,下载最新试题:

博士家园主页网址: http://www.math.org.cn 博士数学论坛网址: http://bbs.math.org.cn 数学资源库: http://down.math.org.cn

欢迎投稿,发布试题,对于本书疏漏之处欢迎来信交流,以促改正: www.boss@163.com

博士家园

二零一零年二月

数学分析与高等代数考研真题详解 中国科学院考研数学专卷

目录

中国科学院考研数学专卷	3
2000年招收硕士研究生入学考试《数学分析》	试题3
2000年招收硕士研究生入学考试《数学分析》	试题解答4
2000年招收硕士研究生入学考试《线代解几》	试题6
2000年招收硕士研究生入学考试《线代解几》	解答7
2001年中科院数学与系统科学研究所《高等位	代数》试题及解答10
2002年招收硕士研究生入学考试《高等代数》	
2003年招收硕士研究生入学考试《数学分析》	试题17
2003年招收硕士研究生入学考试《数学分析》	试题解答18
2003年招收硕士研究生入学考试《高等代数》	试题
2003年招收硕士研究生入学考试《高等代数》	试题解答25
2004年招收硕士研究生入学考试《数学分析》	试题28
2004年招收硕士研究生入学考试《数学分析》	试题解答29
2004年招收硕士研究生入学考试《高等代数》	试题32
2004年招收硕士研究生入学考试《高等代数》	试题解答33
2005年招收硕士研究生入学考试《数学分析》	试题及解答37
2005年招收硕士研究生入学考试《高等代数》	试题41
2005年招收硕士研究生入学考试《高等代数》	试题解答43
2006年招收硕士研究生入学考试《数学分析》	试题51
2006年招收硕士研究生入学考试《数学分析》	试题解答52
2006年招收硕士研究生入学考试《高等代数》	试题55
2006年招收硕士研究生入学考试《高等代数》	试题解答57
2007年招收硕士研究生入学考试《数学分析》	试题及解答64
2007年招收硕士研究生入学考试《高等代数》	试题及解答69
2008年招收硕士研究生入学考试《数学分析》	部分试题及解答75
2009年招收硕士研究生入学考试《高等代数》	两试题及解答78
2010年招收硕士研究生入学考试《高等代数》	试题及解答80
2010年招收硕士研究生入学考试《数学分析》	试题及解答86
中科院数学所复试时遇到的题目96	

中国科学院考研数学专卷

2000 年招收硕士研究生入学考试《数学分析》试题

1. (15分) 定义函数

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, x^2 + y^2 > 0\\ 0, x = y = 0 \end{cases},$$

证明函数 f(x,y) 在 (0,0) 处连续但是不可微.

2. (20 分)设 $f_n(x) = x^n \ln x$, n 是自然数:

(i)证明
$$\frac{f_n^{(n)}(x)}{n!} = \frac{f_{n-1}^{(n-1)}(x)}{(n-1)!} + \frac{1}{n}, n = 1, 2, \dots$$
 (ii)计算极限 $\lim_{n \to \infty} \frac{f_n^{(n)}(\frac{1}{n})}{n!}$.

- 3. (15 分)在 R^3 中,由下列平面 y=1, y=-x, x=0, z=0, z=-x 围成的闭区域记为D,计算积分 $I=\iiint_D e^{x+y+z} dx dy dz$.
- 4. (15 分)定义向量场 $\vec{F}(x,y) = \left(\frac{xe^{\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}}, \frac{ye^{\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}}\right), x^2+y^2>0$ 证明 $\vec{F}(x,y)$ 是有势

场, 并求出 $\overrightarrow{F}(x,y)$ 的一个势函数.

- 5. (25 分)设 $f(x) = \sum_{n=0}^{\infty} \frac{1}{x+2^n}, x \in [0, +\infty)$. 证明:
 - (i) f(x) 在[0,+∞) 上连续;
 - (ii) $\lim_{x \to +\infty} f(x) = 0;$

(iii)对一切
$$x \in (0, +\infty)$$
 有 $0 < f(x) - \frac{\ln(1+x)}{x \ln 2} < \frac{1}{1+x}$.

6. (10 分)设 f(x) 在[-a,a]上有连续的导数,证明:

$$\lim_{\lambda \to \infty} \int_{-a}^{a} \frac{1 - \cos \lambda x}{x} f(x) dx = \int_{0}^{a} \frac{f(x) - f(-x)}{x} dx.$$

2000年招收硕士研究生入学考试《数学分析》试题解答*

1. **证** 对于任意的 $\varepsilon > 0$,当 $x^2 + y^2 = r^2 < \varepsilon^2$ 时,假设 $x = r \cos t$, $y = r \sin t$,则有

$$|f(x, y) - f(0, 0)| = \left| \frac{r^3 \cos^3 t}{r^2} - 0 \right| = |r \cos^3 t| \le |r| < \varepsilon$$

不妨假设 $\delta = \varepsilon$, 当 $\sqrt{x^2 + y^2} < \delta$ 时, 便有 $|f(x,y) - f(0,0)| < \varepsilon$, 所以根据定义, 连续性获得证明.

求偏导数

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = 1$$

$$f_y(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = 0$$

考虑极限(利用坐标变换 $\Delta x = r \cos t$, $\Delta y = r \sin t$)

$$\lim_{\Delta x, \Delta y \to 0} \frac{f(\Delta x, \Delta y) - f(0, 0) - f_x(0, 0) \Delta x - f_y(0, 0) \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}$$

$$=\lim_{\Delta x, \Delta y \to 0} \frac{-\Delta x \Delta y^2}{\sqrt{(\Delta x^2 + \Delta y^2)^3}} = \lim_{r \to 0} \frac{-r^3 \cos t \sin^2 t}{r^3} = -\lim_{r \to 0} \cos t \sin^2 t, \ \text{显然可以}$$

知道这个极限和t有关,即极限和路径有关,所以极限不存在,从而由定义可知是不可微的. \blacksquare

- 2. (i) **证** 对 $f_n(x)$ 求导 $f_n'(x) = nx^{n-1} \ln x + x^{n-1} = nf_{n-1}(x) + x^{n-1}$, 再对等式两边 n-1 次导, 便有 $f_n^{(n)}(x) = nf_{n-1}^{(n-1)}(x) + (n-1)!$, 两边同时除 n! 便知命题成立. \blacksquare
 - (ii)解:利用第(i)小题的结论易知 $\frac{f_n^{(n)}(x)}{n!} = 1 + \frac{1}{2} + ... + \frac{1}{n} + \ln x$ 从而有

$$\frac{f_n^{(n)}(\frac{1}{n})}{n!} = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \,, \quad \text{所以可知} \lim_{n \to \infty} \frac{f_n^{(n)}(\frac{1}{n})}{n!} = C \text{ (欧拉常数)} \quad \blacksquare$$

3. **解** 利用分部积分有 $I = \int_0^1 e^z dz \int_{-z}^0 e^x dx \int_{-x}^1 e^y dy$,积分得到 $I = e^2 - 2e - 1$.

4. 证 令
$$P = \frac{xe^{\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}}, Q = \frac{ye^{\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}}$$
,则要 \vec{F} 是有势场,也就是要 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,而

$$\frac{\partial P}{\partial y} = xye^{\sqrt{x^2 + y^2}} \frac{1 - \frac{1}{\sqrt{x^2 + y^2}}}{x^2 + y^2}, \quad \frac{\partial Q}{\partial x} = xye^{\sqrt{x^2 + y^2}} \frac{1 - \frac{1}{\sqrt{x^2 + y^2}}}{x^2 + y^2}, \quad \text{从而就知道了F 是有$$

势场. 而假设 \vec{F} 在 (x_0, y_0) 的势为 W_0 ,则在(x, y)处的势为

$$W = W_0 - \int_{(x_0, y_0)}^{(x, y)} \frac{xe^{\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} dx + \frac{ye^{\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} dy,$$

而利用其是有势场, 可以知道

$$W = W_0 - \int_{y_0}^{y} \frac{ye^{\sqrt{x_0^2 + y^2}}}{\sqrt{x_0^2 + y^2}} dy - \int_{x_0}^{x} \frac{xe^{\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} dx = W_0 + e^{\sqrt{y_0^2 + x_0^2}} - e^{\sqrt{x^2 + y^2}}$$

所以
$$W(x,y) = W_0 + e^{\sqrt{y_0^2 + x_0^2}} - e^{\sqrt{x^2 + y^2}}$$
 就是 \overrightarrow{F} 的一个势函数.

5. **证** (i) 对于任意的 $x \in [0, +\infty)$ 有 $0 < \frac{1}{x+2^n} \le \frac{1}{2^n}$, 而又 $\sum_{n=0}^{\infty} \frac{1}{2^n}$ 是收敛的, 所以就有了

 $f(x) = \sum_{n=0}^{\infty} \frac{1}{x+2^n}$ 是一致收敛的,再由 $\frac{1}{x+2^n}$ 是连续的,所以就知道了 f 在 $[0,+\infty)$ 连

续.

(ii) 对于任何 $\varepsilon > 0$,存在N使得 $\frac{1}{2^{N-1}} < \varepsilon$,于是对于任何的 $x \in [0, +\infty)$ 有

$$0 < \sum_{n=N}^{\infty} \frac{1}{x+2^n} \le \sum_{n=N}^{\infty} \frac{1}{2^n} = \frac{1}{2^{N-1}} < \varepsilon , \quad \overrightarrow{\text{mid}} \ f(x) = \sum_{n=0}^{N-1} \frac{1}{x+2^n} + \sum_{n=N}^{\infty} \frac{1}{x+2^n} < \sum_{n=0}^{N-1} \frac{1}{x+2^n} + \varepsilon ,$$

又由于对于每个n = 0,1,...,N-1, $\frac{1}{x+2^n}$ 是个无穷小量, 从而 $\sum_{n=0}^{N-1} \frac{1}{x+2^n}$ 是个无穷小

量所以对于 $\varepsilon > 0$,存在A,当x > A时 $\sum_{n=0}^{N-1} \frac{1}{x+2^n} < \varepsilon$,结合 $\sum_{n=N}^{\infty} \frac{1}{x+2^n} < \varepsilon$,则当

x > A 时, $0 < f(x) < 2\varepsilon$,利用极限定义便有了命题的结论.

(iii) 令
$$I_n(x) = \int_n^{n+1} \frac{1}{x+2^y} dy$$
,则知道 $\frac{1}{x+2^{n+1}} < I_n(x) < \frac{1}{x+2^n}$,所以便有了

$$f(x) < \frac{1}{1+x} + \sum_{n=0}^{\infty} I_n(x) = \frac{1}{1+x} + \int_0^{+\infty} \frac{1}{x+2^y} dy \ \overline{m} \ \bot \ f(x) > \sum_{n=0}^{\infty} I_n(x) = \int_0^{+\infty} \frac{1}{x+2^y} dy \ ,$$

即有
$$f(x) < \frac{1}{1+x} + \frac{\ln(1+x)}{x \ln 2}$$
 且 $f(x) > \frac{\ln(1+x)}{x \ln 2}$,从而命题获得证明.

6. **i** 由于
$$\int_{-a}^{a} \frac{1-\cos \lambda x}{x} f(x) dx = \int_{0}^{a} \frac{1-\cos \lambda x}{x} f(x) dx + \int_{-a}^{0} \frac{1-\cos \lambda x}{x} f(x) dx$$
, 而又因

为
$$\int_{-a}^{0} \frac{1-\cos\lambda x}{x} f(x) dx = \int_{a}^{0} \frac{1-\cos\lambda t}{t} f(-t) dt$$
,所以便有了
$$\int_{-a}^{a} \frac{1-\cos\lambda x}{x} f(x) dx = \int_{0}^{a} \frac{1-\cos\lambda x}{x} f(x) dx - \int_{0}^{a} \frac{1-\cos\lambda x}{x} f(-x) dx$$

$$= \int_{0}^{a} \frac{1-\cos\lambda x}{x} (f(x)-f(-x)) dx = \int_{0}^{a} \frac{f(x)-f(-x)}{x} dx - \int_{0}^{a} \frac{f(x)-f(-x)}{x} \cos\lambda x dx$$

$$= \int_{0}^{a} \frac{f(x)-f(-x)}{x} dx - 2 \int_{0}^{a} \frac{f(x)-f(-x)}{2x} \cos\lambda x dx, \quad \text{iff } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } \text{ if } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } \text{ if } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } \text{ if } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } \text{ if } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } \text{ if } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } \text{ if } g(x) = \frac{f(x)-f(-x)}{2x} \text{ in } g(x) =$$

的连续可导便有g(x)是连续函数,从而利用黎曼引理有

$$\lim_{\lambda \to \infty} 2 \int_0^a \frac{f(x) - f(-x)}{2x} \cos \lambda x dx = 0, \quad \text{所以}$$

$$\lim_{\lambda \to \infty} \int_{-a}^a \frac{1 - \cos \lambda x}{x} f(x) dx = \int_0^a \frac{f(x) - f(-x)}{x} dx, \quad \text{命题获证}.$$

中国科学院-中国科学技术大学

2000 年招收硕士研究生入学考试《线代解几》试题

科目:线性代数与解析几何

一. 填空(每空 4 分,共 48 分)

设
$$R^3$$
 中向量 $\alpha_1 = (-1,1,1)^T$, $\alpha_2 = (1,-1,0)^T$, $\alpha_3 = (1,0,-1)^T$, $\beta_1 = (-4,3,4)^T$,

$$\beta_2 = (4, -3, 0)^T$$
, $\beta_3 = (4, 1, -4)^T$

又假设 R^3 中的线性变换 A 使得 A $\alpha_1 = \beta_1$, A $\alpha_2 = \beta_2$, A $\alpha_3 = \beta_3$,则

(3) A 在基 $\{\alpha_1,\alpha_2,\alpha_3\}$ 和基 $\{\beta_1,\beta_2,\beta_3\}$ 和标准基下的矩阵分别是____、___和

- (4) A的特征多项式是_____,最小多项式是______,特征值是_____;
- (5) A的不变因子是_____,初等因子是_______,若当标准型是______;

二.(12分)

求过三点(3,0,0),(0,2,0),(0,0,1)的平面的方程,以及过这三点的圆的方程.

三.(12分)

设 A 是数域 F 上的 n 维线性空间 V 的线性变换. 记 $V_1 = \bigcup_{i=0}^{\infty} Ker A^i$, $V_2 = \bigcap_{i=0}^{\infty} Im A^i$,证

明:

 $(1)V_1,V_2$ 是 A 的不变子空间;

$$(2)V = V_1 + V_2$$

四.(14分)

设实二次型 $Q(x) = \sum_{i=1}^{n} (x_i - x)^2$,其中的 $x = \frac{x_1 + x_2 + ... + x_n}{n}$,试求 Q(x) 的秩和正负惯

性指数.

五.(14分)

设 A 是从 m 维欧氏空间 E_m 到 n 维欧氏空间 E_n 的线性映射,试证存在 E_m 和 E_n 的标准

正交基,使得
$$A$$
 在它们下的矩阵形如 $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$,其中的 D 是一个对角方阵.

中国科学院-中国科学技术大学

2000 年招收硕士研究生入学考试《线代解几》解答

一. (1) 对矩阵
$$\begin{pmatrix} -1 & 1 & 1 & -4 \\ 1 & -1 & 0 & 3 \\ 1 & 0 & -1 & 4 \end{pmatrix}$$
 做初等行变换得 $\begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 3 \end{pmatrix}$,所以在第一个基下

的坐标为 $(3,0,-1)^T$,在第二个基下的坐标显然为 $(1,0,0)^T$.■

从而过渡矩阵为
$$\begin{pmatrix} 3 & 1 & 0 \\ 0 & 4 & -1 \\ -1 & 1 & 4 \end{pmatrix}$$
. \blacksquare

下的矩阵为
$$\begin{pmatrix} 3 & 1 & 0 \\ 0 & 4 & -1 \\ -1 & 1 & 4 \end{pmatrix}$$
,在 $\{eta_1,eta_2,eta_3\}$ 下的基为 $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 4 & -1 \\ -1 & 1 & 4 \end{pmatrix}^{-1}$,即

$$\begin{pmatrix} \frac{17}{52} & -\frac{1}{13} & -\frac{1}{52} \\ \frac{1}{52} & \frac{3}{13} & \frac{3}{52} \\ \frac{1}{13} & -\frac{1}{13} & \frac{3}{13} \end{pmatrix}, 在标准正交基下的矩阵为 \begin{pmatrix} -4 & 4 & 4 \\ 3 & -3 & 1 \\ 4 & 0 & -4 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, 即$$

$$\begin{pmatrix} 4 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}. \blacksquare$$

(4) 特征多项式即
$$f(\lambda) = \begin{vmatrix} \lambda - 3 & -1 & 0 \\ 0 & \lambda - 4 & 1 \\ 1 & -1 & \lambda - 4 \end{vmatrix} = (\lambda^2 - 7\lambda + 13)(\lambda - 4)$$
,显然最小多

项式也就是特征多项式,因为它的三个特征根是不同的,特征值

二. 解 显然这三个点分别是三个坐标轴上的点, 用截距表示法可知过三点的平面方程是

$$\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1$$
, 假设过这三个点的球的圆心是 (a,b,c) , 半径为 r , 则球方程为

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$
,而且有方程组

$$\begin{cases} (x-3)^2 + y^2 + z^2 = r^2 \\ x^2 + (y-2)^2 + z^2 = r^2 \end{cases}$$
,而由这个方程组可以知道 $a = \frac{9-t}{6}$, $b = \frac{4-t}{4}$, $c = \frac{1-t}{2}$,

$$r = \frac{\sqrt{49t^2 - 72t + 424}}{12}$$
,当 $t = 0$ 时球的方程为 $(x - \frac{3}{2})^2 + (y - 1)^2 + (z - \frac{1}{2})^2 = \frac{424}{144}$,

所以过这三个点的圆方程为
$$\begin{cases} (x-\frac{3}{2})^2 + (y-1)^2 + (z-\frac{1}{2})^2 = \frac{424}{144} \\ \frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1 \end{cases} . \blacksquare$$

三. 证(1)对于任何 $\alpha \in V_1$,存在i 使得 $\alpha \in KerA^i$,即 $A^i\alpha = 0$,从而 $A\alpha \in KerA^{i-1}$,显然就有了 $A\alpha \in V_1$ (对于i=1显然的,所以这里就没说这个特殊),从而 V_1 是 A 的不变子空间.

对于任何 $\beta \in V_2$, 任何j有 $\beta \in \text{Im } A^j$, 从而 $A\beta \in \text{Im } A^{j+1}$, 而又j是任意的, 所以就有了

$$\mathbf{A}\boldsymbol{\beta} \in \bigcap_{j=0}^{\infty} \operatorname{Im} \mathbf{A}^{j+1} , \ \overrightarrow{m} \ \overrightarrow{\Sigma} \ \underline{\boxplus} \ \overrightarrow{+} \bigcap_{j=0}^{\infty} \operatorname{Im} \mathbf{A}^{j+1} = \bigcap_{j=1}^{\infty} \operatorname{Im} \mathbf{A}^{j} = \left(\bigcap_{j=1}^{\infty} \operatorname{Im} \mathbf{A}^{j}\right) \bigcap \operatorname{Im} \mathbf{I} =$$

$$\bigcap_{j=0}^{\infty} \operatorname{Im} \mathbf{A}^{j}$$
, 从而 $\mathbf{A}\boldsymbol{\beta} \in V_{2}$, 所以 V_{2} 是 \mathbf{A} 的子空间.

(2)

四. 解 由于
$$Q(x) = \sum_{i=1}^{n} x^2 + \sum_{i=1}^{n} x_i^2 - 2x \sum_{i=1}^{n} x_i$$
,同时由条件可以知道

$$Q(x) = nx^2 + \sum_{i=1}^n x_i^2 - 2nx^2 = \sum_{i=1}^n x_i^2 - nx^2$$
, 于是有了 $Q(x) = \sum_{i=1}^n x_i^2 - \frac{1}{n} \sum_{i,j=1}^n x_i x_j$

矩阵表示即为
$$Q(x) = (x_1, x_2, ..., x_n)$$
$$\begin{bmatrix} 1 & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & 1 & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \ddots & \vdots & \vdots \\ \vdots & \vdots & \cdots & 1 & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x^T A x$$

对于A矩阵,其行列式

$$\begin{vmatrix} 1 & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & 1 & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \ddots & \vdots & \vdots \\ \vdots & \vdots & \cdots & 1 & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 1 \end{vmatrix} = \frac{2n-1}{n} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & \frac{n-1}{n} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \frac{n-1}{n} & \frac{1}{n} \\ \vdots & \vdots & \cdots & \frac{n-1}{n} & \frac{1}{n} \\ 0 & 0 & \cdots & 0 & \frac{n-1}{n} \end{vmatrix} = \frac{2n-1}{n} \frac{(n-1)^{n-1}}{n^{n-1}} > 0, \ \mathcal{M}$$

而可以知道这个矩阵的顺序主子式均大于零,从而知道这个矩阵是正定的,所以秩为n, 正惯性指数为n,负惯性指数为0. ■

五.证 期待您的解答.

2001年中科院数学与系统科学研究所《高等代数》试题及解答

一、设A和B为满秩方阵,试求

$$Q = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$$
的逆矩阵 (用 A^{-1} , B^{-1} , C 表示即可)。

解: 由 $\det Q = \det A \cdot \det B \neq 0$ 知, Q可逆。

则由 $Q^{-1}Q = E$ 得

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} A & C \\ O & B \end{pmatrix} = \begin{pmatrix} E_{1} & O \\ O & E_{2} \end{pmatrix}, 其中 E_{1} 为与 A 同阶的单$$

位矩阵,其中E,为与B同阶的单位矩阵。

于是得

$$X_{11}A = E_1, \quad X_{21}A = O$$

 $X_{11}C + X_{12}B = O,$
 $X_{21}C + X_{22}B = E_2$

由此解出

$$X_{11}=A^{-1}, \quad X_{21}=O, \quad X_{12}=-A^{-1}CB^{-1}, \quad X_{22}=B^{-1}$$
 所以 $Q^{-1}=egin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \ O & B^{-1} \end{pmatrix}.$

二、设 a_1 , a_2 ,..., a_n 为n个实数,方阵

$$A = \begin{pmatrix} a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 & \cdots & a_2 \\ \cdots & \cdots & \cdots \\ a_n & a_n & \cdots & a_n \end{pmatrix}$$

试求A的所有特征值。

 \mathbf{M} : A的特征多项式为

$$\det(\lambda E - A) = \begin{vmatrix} \lambda - a_1 & -a_1 & \cdots & -a_1 \\ -a_2 & \lambda - a_2 & \cdots & -a_2 \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} = \begin{vmatrix} \lambda - \sum_{i=1}^{n} a_i & \lambda - \sum_{i=1}^{n} a_i & \cdots & \lambda - \sum_{i=1}^{n} a_i \\ -a_2 & \lambda - a_2 & \cdots & -a_2 \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} = \begin{vmatrix} \lambda - \sum_{i=1}^{n} a_i & \lambda - \sum_{i=1}^{n} a_i & \cdots & \lambda - \sum_{i=1}^{n} a_i \\ -a_2 & \lambda - a_2 & \cdots & -a_2 \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{vmatrix} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ -a_n & -a_n & \cdots & \lambda - a_n \end{vmatrix} = (\lambda - \sum_{i=1}^{n} a_i) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & \lambda & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ -a_n & -a_n & \cdots & \lambda - a_n \end{vmatrix} = (\lambda - \sum_{i=1}^{n} a_i) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & \lambda & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda \end{vmatrix} = \lambda^{n-1} (\lambda - \sum_{i=1}^{n} a_i).$$

由此可知,A 的n 个特征值为 $\sum_{i=1}^{n}a_{i}$, 0, …, 0 (0为n重特征根)。

三、设a, b, c, d为正实数, 求出满足 $y \ge ax + b$ 与 $y \ge -cx + d$ 之y的最小值.

解: 平面区域 $D = \{(x, y) | y \ge ax + b, y \ge -cx + d\}$ 的图形如下图中阴影部分:

由此知 满足 $y \ge ax + b$ 与 $y \ge -cx + d$ 之y的最小值即直线 y = ax + b 与 y = -cx + d 交点的纵坐标,不难求得其值为 $\frac{ad + bc}{a + c}.$

四、设A, B为方阵, 且B为满秩阵, s为实数,

$$C = A + sB$$

试证明:存在正数a,使得在0 < s < a时,C满秩.

证明:考虑矩阵 $AB^{-1} + sE = sE - (-AB^{-1})$, 其中 E 为单位阵.

由于关于s的方程 $\det(sE + AB^{-1}) = 0$ 仅有有限个根(它们为方 阵 $-AB^{-1}$ 的 全 部 特 征 根). 从 而 数 集 $I = \{s > 0 | \det(sE + AB^{-1}) = 0\}$ 为有限集. 若 $I \neq \emptyset$,则令a 为数集 I 中的最小数; 若 $I = \emptyset$,则可取a 为任何正数. 于是,当 0 < s < a 时,必有 $\det(sE + AB^{-1}) \neq 0$.

所以, 当0 < s < a时, $sE + AB^{-1}$ 为满秩阵, 从而 $C = A + sB = (sE + AB^{-1})B$ 为满秩阵.

五、设 $\alpha_i = (a_{i1}, a_{i2}, \dots, a_{in})', i = 1, 2, \dots, m (\leq n)$ 为n维欧氏空间中的m个向量. 又设 $P = (p_{ij})_{1 \leq i, j \leq m}$ 其中 $p_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$. 试证明: $\alpha_1, \alpha_2, \dots, \alpha_m$ 为线性无关的,当且仅当P为满秩.

证明:由己知条件, $\alpha_i = (a_{i1}, a_{i2}, \dots, a_{im})', i = 1, 2, \dots, m (\leq n)$ 为n维欧氏空间中的m个向量。令 $A = (\alpha_1, \alpha_2, \dots, \alpha_m)$ 为以 α_i ($i = 1, 2, \dots, m$)为列向量的矩阵,则A为 $m \times n$ 实矩阵,且 P = A'A (A'表示A的转置矩阵).

又设 $B = (\alpha_1, \alpha_2, \dots, \alpha_m, 0, \dots, 0) = (A, O)$ 为n阶方阵,则秩B =秩A,且

$$B'B = \begin{pmatrix} A' \\ O \end{pmatrix} \begin{pmatrix} A & O \end{pmatrix} = \begin{pmatrix} A'A & O \\ O & O \end{pmatrix} = \begin{pmatrix} P & O \\ O & O \end{pmatrix}$$
 为 n 阶方阵, 从而

秩B'B=秩P.

以下证明秩B'B=秩B. 为此考虑齐次线性方程组

$$BX = O (1)$$

令 W_1 , W_2 分别表示(1)与(2)的解向量空间,则显然有 $W_1 \subset W_2$. 另一方面,注意到对任意n维实(列)向量Y, $YY=0 \Rightarrow Y=0$. 我们有 $B'BX = O \implies X'B'BX = O \implies (BX)'BX = O \implies BX = O$.

所以又有 $W_2 \subset W_1$. 从而 $W_1 = W_2$, 维 $W_1 = \text{维}W_2$.

综上讨论, 我们有 秩P=秩B'B=秩A.

由此知, α_1 , α_2 ,…, α_m 线性无关,当且仅当秩A=m,当且仅当 秩P=m,当且仅当P为满秩.

六、设A, B为对称方阵, 试证明

 $Tr(ABAB) \le Tr(AABB)$, 其中"Tr"表示方阵的追迹(即对角元素之和).

证明:设A,B为n阶对称方阵

$$A = (\alpha_1, \ \alpha_2, \dots, \ \alpha_n) = \begin{pmatrix} \alpha_1' \\ \alpha_2' \\ \vdots \\ \alpha_n' \end{pmatrix},$$

$$B = (\beta_1, \beta_2, \dots, \beta_n) = \begin{pmatrix} \beta_1' \\ \beta_2' \\ \vdots \\ \beta_n' \end{pmatrix}.$$

所以

$$(AB)^{2} = \begin{pmatrix} \alpha'_{1}\beta_{1} & \alpha'_{1}\beta_{2} & \cdots & \alpha'_{1}\beta_{n} \\ \alpha'_{2}\beta_{1} & \alpha'_{2}\beta_{2} & \cdots & \alpha'_{2}\beta_{n} \\ \cdots & \cdots & \cdots \\ \alpha'_{n}\beta_{1} & \alpha'_{n}\beta_{2} & \cdots & \alpha'_{n}\beta_{n} \end{pmatrix} \begin{pmatrix} \alpha'_{1}\beta_{1} & \alpha'_{1}\beta_{2} & \cdots & \alpha'_{1}\beta_{n} \\ \alpha'_{2}\beta_{1} & \alpha'_{2}\beta_{2} & \cdots & \alpha'_{2}\beta_{n} \\ \cdots & \cdots & \cdots \\ \alpha'_{n}\beta_{1} & \alpha'_{n}\beta_{2} & \cdots & \alpha'_{n}\beta_{n} \end{pmatrix}$$

曲此得 $\operatorname{Tr}(AB)^2 = \sum_{i=1}^n \sum_{j=1}^n (\alpha_i' \beta_j) \cdot (\alpha_j' \beta_i).$

$$\overrightarrow{\Pi} \quad A^2 = \begin{pmatrix} \alpha_1' \\ \alpha_2' \\ \vdots \\ \alpha_n' \end{pmatrix} (\alpha_1, \ \alpha_2, \cdots, \ \alpha_n) = \begin{pmatrix} \alpha_1' \alpha_1 & \alpha_1' \alpha_2 & \cdots & \alpha_1' \alpha_n \\ \alpha_2' \alpha_1 & \alpha_2' \alpha_2 & \cdots & \alpha_2' \alpha_n \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_n' \alpha_1 & \alpha_n' \alpha_2 & \cdots & \alpha_n' \alpha_n \end{pmatrix}$$

$$B^{2} = \begin{pmatrix} \beta_{1}' \\ \beta_{2}' \\ \vdots \\ \beta_{n}' \end{pmatrix} (\beta_{1}, \beta_{2}, \dots, \beta_{n}) = \begin{pmatrix} \beta_{1}'\beta_{1} & \beta_{1}'\beta_{2} & \cdots & \beta_{1}'\beta_{n} \\ \beta_{2}'\beta_{1} & \beta_{2}'\beta_{2} & \cdots & \beta_{2}'\beta_{n} \\ \cdots & \cdots & \cdots \\ \beta_{n}'\beta_{1} & \beta_{n}'\beta_{2} & \cdots & \beta_{n}'\beta_{n} \end{pmatrix}$$

所以

$$A^{2}B^{2} = \begin{pmatrix} \alpha'_{1}\alpha_{1} & \alpha'_{1}\alpha_{2} & \cdots & \alpha'_{1}\alpha_{n} \\ \alpha'_{2}\alpha_{1} & \alpha'_{2}\alpha_{2} & \cdots & \alpha'_{2}\alpha_{n} \\ \cdots & \cdots & \cdots & \cdots \\ \alpha'_{n}\alpha_{1} & \alpha'_{n}\alpha_{2} & \cdots & \alpha'_{n}\alpha_{n} \end{pmatrix} \begin{pmatrix} \beta'_{1}\beta_{1} & \beta'_{1}\beta_{2} & \cdots & \beta'_{1}\beta_{n} \\ \beta'_{2}\beta_{1} & \beta'_{2}\beta_{2} & \cdots & \beta'_{2}\beta_{n} \\ \cdots & \cdots & \cdots & \cdots \\ \beta'_{n}\beta_{1} & \beta'_{n}\beta_{2} & \cdots & \beta'_{n}\beta_{n} \end{pmatrix}$$

由此得
$$\operatorname{Tr}(A^2B^2) = \sum_{i=1}^n \sum_{j=1}^n (\alpha_i'\alpha_j) \cdot (\beta_j'\beta_i).$$

最后由柯西-布涅柯夫斯基不等式易知

$$(\alpha_i'\beta_j)\cdot(\alpha_j'\beta_i)\leq(\alpha_i'\alpha_j)\cdot(\beta_j'\beta_i), \quad 1\leq i, \quad j\leq n.$$

从而得 $Tr(AB)^2 \leq Tr(A^2B^2)$.

2002 年招收硕士研究生入学考试《高等代数》试题

2002 年硕士研究生招生试题

(3 小时完成,满分 100 分)

考试科目: 高等代数 考试科目代码: 401

1. (15 分) 求 A^{n-1} . 这里 A 为 $n \times n$ 方阵

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}.$$

- 2. (15 分)设 $A, I A, I A^{-1}$ 均为可逆方阵。证明: $(I A)^{-1} + (I A^{-1})^{-1} = I$ 。 (注:这里的 I 是单位阵)
- 3. (15 分) 求极限 $\lim_{k\to +\infty} A^k$ (注: 设 $A^k = \left(a_{ij}^{(k)}\right)$, $\lim_{k\to +\infty} A^k$ 是指 $\left(\lim_{k\to +\infty} a_{ij}^{(k)}\right)$)。这里

$$A = \begin{pmatrix} \frac{1}{2} & 4 & 2 \\ 0 & \frac{1}{3} & 4 \\ 0 & 0 & \frac{1}{5} \end{pmatrix}.$$

- 4. (15 分) 已知 $A = (a_{ij}), B = (b_{ij})$ 均为 2×2 对称正定矩阵。定义 $A * B = (a_{ij}b_{ij})$ 。证明: A * B 也是 2×2 对称正定矩阵。
- 5. (20 分) 设A为 $n \times n$ 实方阵

$$\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}$$

而 V是所有与 A 可交换的 $n \times n$ 实方阵全体,即 $V = \{B \mid BA = AB, B \mid n \times n$ 实方阵 $\}$ 。证明: (i) V 是线性空间; (ii) V 的维数 $\dim V = n$ 。

6.
$$(20 分)$$
 设 $\sum_{i=0}^{n-1} X^i P_i(x^{in}) = P(x^n)$,且 $(x-1) \mid P(x)$,其中 P_i , $0 \le i \le n-1$,P均为实

系数多项式。证明: (i) $P_i(x) = 0, 1 \le i \le n-1$; (ii) P(X) = 0; (iii) $P_0(1) = 0$ 。

2003 年招收硕士研究生入学考试《数学分析》试题

考试科目: 数学分析 考试科目代码: 310

1. (15分)设A, B为常数, 求

$$\lim_{x\to 0^+} \ln(e^{\frac{A}{x}} + e^{\frac{B}{x}}).$$

2. (20分)确定λ取何值时函数

$$f(x) = \begin{cases} x^{\lambda} \sin \frac{1}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

在点 x = 0 处连续、可导、导数连续,

3. (15分) 设0 < x < y < 1或1 < x < y,则

$$\frac{y}{x} > \frac{y^x}{x^y}.$$

4. (15分) 计算积分

$$\int_{0.2\pm\cos\theta}^{2\pi}$$

- 5. (15分)设f(x)在[a, b]上连续,在(a, b)内可导,且f(a)=0, f(x)>0, 当x \in (a, b], 不存在常数 M > 0 使 $0 \le f'(x) \le Mf(x)$, 当 $x \in (a, b]$.
- 6. (20分) 计算积分

$$\iiint_V \frac{2z}{\sqrt{x^2 + y^2}} \, dv,$$

其中 V 是平面图形 $D=\{(x,y,z)|x=0,y\geq 0,z\geq 0,y^2+z^2\leq 1,2y-z\leq 1\}$ 绕 z 轴旋转一周所生成的立体。

7. (20分) 求椭球面

$$\frac{x^2}{96} + y^2 + z^2 = 1$$

上距平面 3x + 4y + 12z = 228 最近和最远的点.

8. (15 分) 设函数 f(x) 在 x = 0 连续, 并且

$$\lim_{x\to 0}\frac{f(2x)-f(x)}{x}=A,$$

求证: f'(0) 存在, 并且 f'(0) = A.

9. (15 分) 设 f(x) 是 [-1,1] 上的连续函数, 则

$$\lim_{y\to 0^+} \int_{-1}^1 \frac{yf(x)}{x^2+y^2} dx = \pi f(0).$$

2003 年招收硕士研究生入学考试《数学分析》试题解答

一、解: 由A,B的对称性,不妨以A为标准进行讨论,

记
$$I = \lim_{x \to 0^+} \ln(e^{\frac{A}{x}} + e^{\frac{B}{x}})$$

- (1) A > 0 时,对任意 B ,则 $I = +\infty$
- (2) A = 0 时,若 B > 0 ,则 $I = +\infty$ 若 B = 0 ,则 $I = \ln 2$ 若 B < 0 ,则 I = 0
- (3) A < 0时,若B > 0,则 $I = +\infty$ 若B = 0,则I = 0若B < 0,则 $I = -\infty$

二、解:

(1) :
$$|f(x) - f(0)| = |x^{\lambda} \sin \frac{1}{x}| = |x|^{\lambda} |\sin \frac{1}{x}|$$

故欲使: $\forall \varepsilon > 0, \exists \delta > 0, \exists |x - 0| < \delta, st | f(x) - f(0) | < \varepsilon$, 只有当 $\lambda > 0$ 才可, 故,

当 $\lambda > 0$ 时 f(x) 在 x = 0 处连续

(2)
$$\therefore \frac{f(x) - f(0)}{x - 0} = \frac{x^{\lambda} \sin \frac{1}{x} - 0}{x - 0} = x^{\lambda - 1} \sin \frac{1}{x}$$

要使 f(x) 在 x = 0 处可导,即 $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ 存在,亦即 $\lim_{x \to 0} x^{\lambda - 1} \sin \frac{1}{x}$ 存在

 $\because \sin \frac{1}{x}$ 在 $x \to 0$ 时是有界量,故只有 $\lim_{x \to 0} x^{\lambda - 1} \sin \frac{1}{x} = 0$ 才可,即 $\lambda - 1 > 0 \Leftrightarrow \lambda > 1$ 从而 $\lambda > 1$ 时, f(x) 在 x = 0 处可导

由(2)知道,若f(x)在x=0处可导,则必有f'(0)=0

同样讨论,只有当 $\lambda > 2$ 时, f'(x)在x = 0处连续

三、证明:由于

$$\frac{y}{x} > \frac{y^{x}}{x^{y}} \Leftrightarrow \ln \frac{y}{x} > \ln \frac{y^{x}}{x^{y}} \Leftrightarrow \ln y - \ln x > x \ln y - y \ln x$$
$$\Leftrightarrow (1-x) \ln y > (1-y) \ln x \cdots (*)$$

(1) 若
$$0 < x < y < 1$$
, 则(*) 式 $\Leftrightarrow \frac{\ln y}{1-y} > \frac{\ln x}{1-x}$, 故令 $f(t) = \frac{\ln t}{1-t}$, $t \in (0,1)$

只须证明 f(t)在 (0, 1) 上单增即可得证

为此,
$$f'(t) = \frac{t \ln t - t + 1}{t(1-t)^2}, t \in (0,1)$$
,从而令 $g(t) = t \ln t - t + 1, t \in (0,1)$,若证明了 $g(t)$ 在

$$(0, 1)$$
 上 $g(t) > 0$,则 $f(t)$ 在 $(0, 1)$ 上单增,进一步, $g'(t) = \ln t, t \in (0, 1)$ 故

$$g'(t) < 0, t \in (0,1)$$
,又 $g(t)$ 在 $(0,+\infty)$ 上连续, $\therefore g(t) > g(1), t \in (0,1)$,又 $g(1) = 0$,所以

 $t \in (0,1), g(t) > 0 \Rightarrow t \in (0,1), f'(t) > 0$,即f(t)在(0,1)上单增,故得证

(2)
$$y > x > 1$$
,则(*)式⇔ $\frac{\ln y}{y-1} < \frac{\ln x}{x-1}$

故,令
$$\varphi(t) = \frac{\ln t}{t-1}$$
, $t \in (1, +\infty)$ 若证明 $\varphi(t)$ 在 $(0, +\infty)$ 上单减,则得证

为此,求
$$\varphi'(t) = \frac{-t \ln t + t - 1}{t(t - 1)^2}, t \in (1, +\infty)$$
,令 $\psi(t) = -t \ln t + t - 1, t \in (1, +\infty)$,若能证明

$$\psi(t) < 0, t \in (1, +\infty)$$
 则由 $\varphi'(t) < 0, t \in (1, +\infty)$ 知 $\varphi(t)$ 在 $(1, +\infty)$ 上单减

进一步,
$$\psi'(t) = -\ln t, t \in (1, +\infty)$$
, $\therefore \psi'(t) < 0, t \in (1, +\infty)$, $\therefore \psi(t)$ 在 $(1, +\infty)$ 上单减,又

$$\psi(t)$$
 在 $(1,+\infty)$ 上连续, $:: t \in (1,+\infty)$ 时 $\psi(t) < \psi(1) = 0, :: \varphi'(t) < 0, t \in (1,+\infty)$, 即

 $\varphi(t)$ 在 $(0,+\infty)$ 上单减,则得证

$$\begin{split} I &= \int\limits_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = \int\limits_0^{\pi} \frac{d\theta}{2 + \cos \theta} + \int\limits_{\pi}^{2\pi} \frac{d\theta}{2 + \cos \theta} = \int\limits_0^{\pi} \frac{d\theta}{2 + \cos \theta} + \int\limits_0^{\pi} \frac{d\theta}{2 - \cos \theta} \\ &= \int\limits_0^{\pi} (\frac{1}{2 + \cos \theta} + \frac{1}{2 - \cos \theta}) d\theta = \int\limits_0^{\pi} \frac{4d\theta}{4 - \cos^2 \theta} = 4 \int\limits_0^{\pi} \frac{d\theta}{4 - \cos^2 \theta} \\ & \Leftrightarrow t = \tan \frac{\theta}{2} \;, \quad \text{(1)} \end{split}$$

$$\theta = 2 \arctan t \Rightarrow d\theta = \frac{2dt}{1+t^2}, \sin \theta = \frac{2t}{1+t^2}$$

$$\therefore I = 4 \int_{0}^{+\infty} \frac{1}{3 + (\frac{2t}{1 + t^2})^2} \frac{2dt}{1 + t^2} = 8 \int_{0}^{+\infty} \frac{(1 + t^2)dt}{3(t^4 + 1) + 10t^2}$$

$$I = 8 \int_{0}^{+\infty} \frac{(1 + \frac{1}{t^2})dt}{3(t^2 + \frac{1}{t^2}) + 10} = 8 \int_{0}^{+\infty} \frac{d(t - \frac{1}{t})}{3(t - \frac{1}{t})^2 + 4^2}$$

$$I = 8 \int_{-\infty}^{+\infty} \frac{du}{4^2 + 3u^2} = \frac{8}{4^2} \int_{-\infty}^{+\infty} \frac{du}{1 + \frac{3u^2}{4}} = \frac{4}{\sqrt{3}} \int_{0}^{+\infty} \frac{d(\frac{\sqrt{3}}{4}u)}{1 + (\frac{\sqrt{3}}{4}u)^2}$$

$$= \frac{4}{\sqrt{3}} \int_{0}^{+\infty} \frac{dx}{1+x^2} = \frac{4}{\sqrt{3}} \arctan x \Big|_{0}^{+\infty} = \frac{2\pi}{\sqrt{3}}$$

五、证明:

若不然,设 $\exists M > 0, s.t0 \le f'(x) \le Mf(x), x \in (a,b]$,考虑区间, $(a,a+\frac{1}{2M}]$ 上的

$$f(x)$$
, $i \exists A = \max_{[a,b]} |f(x)|, \forall x \in (a,b] \cap (a,a + \frac{1}{2M}]$

$$|f(x)| = |f(x) - f(a)| = |f'(\alpha_1)| |x - a| \le Mf(\alpha_1)(x - a) \le \frac{f(\alpha_1)}{2}, \quad \sharp \oplus a < \alpha_1 < x$$

同理
$$|f(\alpha_1)| = |f(\alpha_1) - f(a)| = |f'(\alpha_2)| |\alpha_2 - a| \le Mf(\alpha_2) \frac{1}{2M} \le \frac{f(\alpha_2)}{2}$$

即
$$|f(x)| \le \frac{f(\alpha_2)}{2^2}$$
, 依上述操作重复进行 n 次,得

$$|f(x)| \le \frac{f(\alpha_n)}{2^n}$$
, $\sharp + a < \alpha_n < \dots < \alpha_1 < x$

∴
$$\forall x \in (a, a + \frac{1}{2M}]$$
, $\forall f(x) \leq \frac{A}{2^n}$, $\Rightarrow n \to +\infty$ $\forall f(x) \leq 0$, $\forall f(x) \geq 0$

∴
$$|f(x)| = 0, x \in (a, a + \frac{1}{2M}) \cap (a,b]$$
, 即

$$f(x) = 0, x \in (a, a + \frac{1}{2M}] \cap (a, b]$$
,由此易知 $x \in (a + \frac{i-1}{2M}, a + \frac{i}{2M}] \cap (a, b]$

上
$$f(x) = 0$$
, $\therefore f(x) \equiv 0, x \in (a,b]$, 这与 $f(x) > 0, x \in (a,b]$ 矛盾

另证: $:: f(x) > 0, x \in (a,b]$ 知 $\exists x_0 \in (a,b], s.tf(x_0) > 0$

记 $x_1 = \inf\{x \mid (x, x_0)$ 上 $f(x) > 0\}$,由连续函数局部保号性,只能 $f(x_1) = 0$,从而

$$(x_1, x_0) \boxtimes f(x) > 0$$
, $\Leftrightarrow g(x) = \ln f(x), x \in (x_1, x_0)$, \square

$$|g'(x)| = \left| \frac{f'(x)}{f(x)} \right| \le M$$

故 g(x) 在有限区间 (x_1, x_0) 上有界,但

$$\lim_{x \to x_1 + 0} f(x) = f(x_1) = 0$$

从而 $\lim_{x \to x_{+} \to 0} g(x) = -\infty$ 矛盾,故知不存在 M,使得上述结论成立

六、旋转后形成的V 为球体: $x^2 + y^2 + z^2 \le 1$; 锥体: $\sqrt{x^2 + y^2} \le \frac{z+1}{2}$; 及平面: z = 0

所围成(由于我们知道,以(0,0,0)为顶点的锥体为 $\sqrt{x^2+y^2} \le z \tan \varphi$,从而旋转后的锥

体顶点在
$$(0,0,-1)$$
 处)记 $I = \iiint_V \frac{2z}{\sqrt{x^2 + y^2}} dv, \alpha = \arctan\frac{1}{2}$

用球坐标变换公式进行计算,将V看成两部分,如图所示(略)

$$I = \iiint\limits_V \frac{2z}{\sqrt{x^2 + y^2}} dv$$

$$=\int_{0}^{2\pi}d\theta\int_{0}^{2\alpha}d\varphi\int_{0}^{1}\frac{2r\cos\varphi}{r\sin\varphi}r^{2}\sin\varphi dr+\int_{0}^{2\pi}d\theta\int_{2\alpha}^{\frac{\pi}{2}}d\varphi\int_{0}^{\frac{1}{2\sin\varphi-\cos\varphi}}\frac{2r\cos\varphi}{r\sin\varphi}r^{2}\sin\varphi dr$$

$$= 2(2\pi) \int_{0}^{2\alpha} \cos \varphi d\varphi \int_{0}^{1} r^{2} dr + 2(2\pi) \int_{2\alpha}^{\frac{\pi}{2}} \cos \varphi d\varphi \int_{0}^{\frac{1}{2\sin\varphi-\cos\varphi}} r^{2} dr = \frac{89\pi}{75}$$

七、解: (Lagrange 乘数法)

建立目标函数,设(x,y,z)为 $\frac{x^2}{96}+y^2+z^2 \le 1$ 上的动点,它到3x+4y+12z=228的

距离之平方为
$$d^2(x, y, z) = \frac{(3x + 4y + 12z - 228)^2}{3^2 + 4^2 + 12^2} = \frac{(3x + 4y + 12z - 228)^2}{13^2}$$

设

$$L(x, y, z) = d^{2}(x, y, z) + \lambda \left(\frac{x^{2}}{96} + y^{2} + z^{2} - 1\right) = \frac{1}{13^{2}} (3x + 4y + 12z - 228)^{2} + \lambda \left(\frac{x^{2}}{96} + y^{2} + z^{2} - 1\right)$$

$$\mathbb{I} \begin{cases}
\frac{\delta L}{\delta x} = \frac{2}{13^{2}} (3x + 4y + 12z - 228) \times 3 + \frac{2x}{96} \cdot \lambda \cdots (1) \\
\frac{\delta L}{\delta y} = \frac{2}{13^{2}} (3x + 4y + 12z - 228) \times 4 + 2y \cdot \lambda \cdots (2) \\
\frac{\delta L}{\delta z} = \frac{2}{13^{2}} (3x + 4y + 12z - 228) \times 12 + 2z \cdot \lambda \cdots (3)
\end{cases}
, \Leftrightarrow (\frac{\delta L}{\delta x}, \frac{\delta L}{\delta y}, \frac{\delta L}{\delta z}, \frac{\delta L}{\delta \lambda}) = (0, 0, 0, 0) \\
\frac{\delta L}{\delta \lambda} = \frac{x^{2}}{96} + y^{2} + z^{2} - 1 \cdots (4)$$

$$(1) \times x + (2) \times y + (3) \times z$$
 得

$$\frac{2}{13^2}(3x+4y+12z-228)(3x+4y+12z)+2\lambda(\frac{x^2}{96}+y^2+z^2)=0$$

$$\therefore \frac{x^2}{96} + y^2 + z^2 = 1$$
代入并化简为

$$(3x+4y+12z-228)(3x+4y+12z)+13^2\lambda=0\cdots(5)$$

将此代入目标函数求得 $d(x, y, z) = d(9, \frac{1}{8}, \frac{3}{8}) = 13, d(x, y, z) = d(9, \frac{1}{8}, \frac{3}{8}) = 20$

比较易得 $d_{\text{max}} = 20, d_{\text{min}} = 13$

故最远点为 $(-9, -\frac{1}{8}, -\frac{3}{8})$,最近点为 $(9, \frac{1}{8}, \frac{3}{8})$

八、证明:

$$\therefore \frac{f(2x) - f(x)}{x} = 2 \frac{f(2x) - f(0)}{2x - 0} - \frac{f(x) - f(0)}{x - 0} \cdots (*)$$

若 f'(0) 存在,则必有 $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ 存在,从而 $\lim_{x\to 0} \frac{f(2x)-f(0)}{2x-0}$ 存在,均为 f'(0),

在(*)式中令 $x\to 0$ 则 $A=2f'(0)-f'(0)\Rightarrow f'(0)=A$,故只须证明f'(0)存在即可,如下,将已知式看作递推式,对每一个 $k\in N$,有下式成立

$$\lim_{x\to 0} \frac{f(\frac{x}{2^k}) - f(\frac{x}{2^{k+1}})}{\frac{x}{2^{k+1}}} = A , \Leftrightarrow k = 1, 2, \dots, n-1 , \notin$$

$$\sum_{k=0}^{n-1} \lim_{x \to 0} \frac{f(\frac{x}{2^k}) - f(\frac{x}{2^{k+1}})}{x} = \sum_{k=0}^{n-1} \frac{A}{2^{k+1}}, \quad \text{If } \lim_{x \to 0} \frac{f(x) - f(\frac{x}{2^n})}{x} = A(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n})$$

故
$$f(x) - f(\frac{x}{2^n}) = Ax(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}) + o(x)$$
, 令 $n \to +\infty$, 得

$$f(x) - f(0) = Ax + o(x) \Rightarrow f'(0) = A$$

九、证明: (拟合法)

$$\therefore \pi f(0) = \lim_{y \to 0+} f(0) \int_{-1}^{1} \frac{y}{x^2 + y^2} dx = \lim_{y \to 0+} \int_{-1}^{1} \frac{y f(0)}{x^2 + y^2} dx$$

∴转化为证
$$\lim_{y\to 0+} \int_{-1}^{1} \frac{y[f(x)-f(0)]}{x^2+y^2} dx = 0$$
,即:

取
$$M = \max_{[-1,1]} |f(x)|$$
,对于充分小的 $h > 0$,有 $|f(x) - f(0)| < \frac{\varepsilon}{3\pi}$,固定 h

$$|\int_{-1}^{1} \frac{y[f(x) - f(0)]}{x^2 + y^2} dx| \le |\int_{-1}^{-h} \frac{y[f(x) - f(0)]}{x^2 + y^2} dx| + |\int_{-h}^{h} \frac{y[f(x) -$$

$$\left| \int_{b}^{1} \frac{y[f(x) - f(0)]}{x^{2} + y^{2}} dx \right| = \left| I_{1} \right| + \left| I_{2} \right| + \left| I_{3} \right|$$

$$|I_1| \le y |\int_{-1}^{-h} \frac{y[f(x) - f(0)]}{x^2 + y^2} dx = yM_1, \quad \pm 0 < y < \frac{\varepsilon}{3M_1} \text{ if }, \quad \pm |I_1| < \frac{\varepsilon}{3M_1}$$

$$|I_2| = \int_{-h}^{h} \frac{y[f(x) - f(0)]}{x^2 + y^2} dx \le \int_{-h}^{h} \frac{y[f(x) - f(0)]}{x^2 + y^2} dx < 0$$

$$\frac{\varepsilon}{3\pi} \int_{-h}^{h} \frac{y}{x^2 + y^2} dx < \frac{\varepsilon}{3\pi} \int_{-1}^{1} \frac{y}{x^2 + y^2} dx < \frac{\varepsilon}{3}$$

$$|I_3| \le y |\int_h^1 \frac{f(x) - f(0)}{x^2} dx| = yM_2, \quad \stackrel{\text{def}}{=} 0 < y < \frac{\varepsilon}{3M_2} \quad \text{fi}, \quad \stackrel{\text{fi}}{=} |I_3| < \frac{\varepsilon}{3}$$

综上,
$$\forall \varepsilon > 0$$
, 取 $0 < y < \delta < \max(\delta_1, \frac{\varepsilon}{3M_1}, \frac{\varepsilon}{3M_2})$

$$|\int_{-1}^{1} \frac{y[f(x) - f(0)]}{x^2 + y^2} dx \le |I_1| + |I_2| + |I_3| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

$$\therefore \lim_{y \to 0+} \int_{-1}^{1} \frac{yf(x)}{x^2 + y^2} dx = \pi f(0)$$

2003 年招收硕士研究生入学考试《高等代数》试题

1. (30分)已知如下三阶矩阵:

$$A = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ c & d & 1 \end{pmatrix}.$$

(1)求 $\det(A)$; (2)求 tr(A); (3)证明: $rank(A) \ge 2$; (4)为使 rank(A) = 2,求出 a,b,c 和 d 应满足的条件.

 $2.(20\,

eta)$ 设 A 是欧氏空间 \mathbb{R}^n 的一个变换. 试证: 如果 A 保持内积不变,即对于 \mathbb{R}^n 中任意两个向量 α, β 都有

$$(A\alpha, A\beta) = (\alpha, \beta)$$
,

那么,它一定是线性的,而且是正交的.

- 3. $(20 \, \text{分})$ 设 A 是 2003 阶实方阵,且 A' = 0,这里 r 是自然数. 问 A 的秩 rank(A) 最大值是多少?
 - 4. (20 分) 给定 \mathbb{R} 上线性空间 V 的子空间 W_1, W_2 . 证明:

$$\dim(W_1 \cap W_2) \ge \dim(W_1) + \dim(W_2) - \dim(V)$$
,这里 \dim 表示维数.

- 5. $(20\ \beta)$ 给了n个不同的数 a_1,a_2,\cdots,a_n ,试求一个 $\leq n-1$ 次的多项式f(x),使 $f(a_i)=b_i$,这里 b_i 也是给定的值, $i=1,\cdots,n$.
- 6. $(20\ eta)$ 给定 \mathbb{R} 上二维线性空间V 的线性变换 A . A 在一组基下的矩阵表示为 $A=\begin{pmatrix}0&1\\1-a&0\end{pmatrix},\ a\neq0\ ,\ 求\,A$ 的不变子空间.
 - 7. (20 分)若Q为n阶对称正定方阵,x为n维实向量. 证明: $0 \le x^T (Q + xx^T)^{-1} x < 1$ 。

这里 x^T 表示x的转置.

2003 年招收硕士研究生入学考试《高等代数》试题解答

1. 解

$$(1) \det (A) = \begin{vmatrix} 1 & b \\ d & 1 \end{vmatrix} + a \begin{vmatrix} 0 & 1 \\ c & d \end{vmatrix} = 1 - bd - ac.$$

- (2) tr(A) = 3.
- (3)将 A 进行初等变换

$$A = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ c & d & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & d & 1 - ac \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 - ac - bd \end{pmatrix}$$

显然 $rank(A) \ge 2$.

(4)若使
$$rank(A) = 2$$
, 只需 $1 - ac - bd = 0$.

2. 证

先证
$$A(\alpha + \beta) = A\alpha + A\beta$$
,由于

$$(A(\alpha + \beta) - A\alpha - A\beta, A(\alpha + \beta) - A\alpha - A\beta)$$

$$= (A(\alpha + \beta), A(\alpha + \beta)) - 2(A(\alpha + \beta), A\alpha)$$

$$-2(A(\alpha + \beta), A\beta) + (A\alpha, A\alpha) + (A\beta, A\beta) + 2(A\alpha, A\beta)$$

$$= (\alpha + \beta, \alpha + \beta) - 2(\alpha + \beta, \alpha) - 2(\alpha + \beta, \beta) + (\alpha, \alpha) + (\beta, \beta) + 2(\alpha, \beta)$$

$$= 0$$

故 $A(\alpha+\beta)-A\alpha-A\beta=0$, 从而

$$A(\alpha+\beta)=A\alpha+A\beta.$$

再证,
$$A(k\alpha) = kA\alpha$$
. 由于

$$(A(k\alpha)-kA\alpha,A(k\alpha)-kA\alpha)$$

$$=(A(k\alpha),A(k\alpha))-k(A\alpha,A(k\alpha))-k(A(k\alpha),A\alpha)+k^{2}(A\alpha,A\alpha)$$

$$=(k\alpha,k\alpha)-k(\alpha,k\alpha)+k(k\alpha,\alpha)+k^{2}(\alpha,\alpha)$$

$$=0$$

故 $A(k\alpha)-kA\alpha=0$, 从而 $A(k\alpha)=kA\alpha$.

综上,A是线性变换,又保持内积不变,因而为正交变换. \blacksquare

3. 解

首先,证 $rank(AB) \ge rank(A) + rank(B) - n$

$$\begin{pmatrix} E_n & 0 \\ -A & E_s \end{pmatrix} \begin{pmatrix} E_n & B \\ A & 0 \end{pmatrix} \begin{pmatrix} E_n & -B \\ 0 & E_m \end{pmatrix} = \begin{pmatrix} E_n & 0 \\ 0 & -AB \end{pmatrix},$$

$$rank \begin{pmatrix} E_n & B \\ A & 0 \end{pmatrix} = rank (E_n) + rank (-AB) = n + rank (AB),$$

但

$$rank \begin{pmatrix} E_n & B \\ A \end{pmatrix} = rank \begin{pmatrix} B & E_n \\ A \end{pmatrix} \ge rank (A) + rank (B),$$

从而得 $rank(AB) \ge rank(A) + rank(B) - n$.

这样,

$$0 = rank(A^{r}) = rank(AA^{r-1}) \ge rank(A) + rank(A^{r-1}) - n$$

$$\ge 2rank(A) + rank(A^{r-2}) - 2n \ge \cdots$$

$$\ge r \times rank(A) - (r-1)n$$

从而, $rank(A) \leq \frac{(r-1)n}{r}$.

当
$$n = 2003$$
 时,有 $rank(A) \le \frac{2003(r-1)}{r}$. ■

4. 证

由维数公式, $\dim(W_1)+\dim(W_2)=\dim(W_1+W_2)+\dim(W_1\cap W_2)$,显然

$$W_1 + W_2 \subseteq V$$
 ,则 $\dim(W_1 + W)_2 \le \dim V$,从而,

$$\dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 + W_2)$$

$$\geq \dim(W_1) + \dim(W_2) - \dim(V)$$

维数公式的证明,详见北大代数小组编的《高等代数》(第三版)260页.

5. 解

首先,令
$$F(x) = (x-a_1)(x-a_2)\cdots(x-a_n)$$
,证, $f(x) = \sum_{i=1}^n \frac{b_i F(x)}{(x-a_i)F'(a_i)}$.

曲于,
$$l_i(x) = \frac{F(x)}{(x-a_i)F'(a_i)} = \frac{(x-a_1)\cdots(x-a_{i-1})(x-a_{i+1})\cdots(x-a_n)}{(a_i-a_1)\cdots(a_i-a_{i-1})(a_i-a_{i+1})\cdots(a_i-a_n)}$$
,

則 $l_i(a_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$, $i, j = 1, 2, \dots, n$,

从而

$$f(a_m) = \sum_{i=1}^n b_i l_i(a_m) = b_m l_m(a_m) = b_m, \forall m = 1, 2, \dots, n.$$

6. 解

设这组基为 $\varepsilon_1, \varepsilon_2$

显然 $\{0\}, V$ 是 A 的不变子空间.

若W 为A 的非平凡不变子空间,则 $\dim W=1$. 令 $W=L(\alpha)$,则 $A\alpha=\lambda\alpha$,即 α 为 λ 的特征向量, λ 为A 的实特征值。而 $\left|\lambda E-A\right|=\lambda^2+a-1=0$.

显然,当a < 1时,有实特征值 $\lambda_{1,2} = \pm \sqrt{1-a}$,从而求出分别对应于它们的特征向量为

$$\alpha_1 = \begin{pmatrix} -1 \\ \sqrt{1-a} \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ \sqrt{1-a} \end{pmatrix}.$$

从而,存在两个一维不变子空间 $W_1 = L(\alpha_1), W_2 = L(\alpha_2)$.

当a=1时,这时求出的不变子空间为平凡子空间 $\{0\}$.

当a>1时,不存在实特征值,从而W不存在.

综上,当a<1时,A的不变子空间有 $\{0\}$,V, $W_1=L(\alpha_1)$, $W_2=L(\alpha_2)$.

当a≥1时,A的不变子空间有 $\{0\}$,V. ■

7. 证

令
$$A = (Q + xx^{T})^{-1}$$
 , 則
$$x^{T}Q^{-1}x = x^{T}A(Q + xx^{T})Q^{-1}x = x^{T}A(E + xx^{T}Q^{-1})x$$

$$= x^{T}Ax + x^{T}Axx^{T}Q^{-1}x = x^{T}Ax(1 + x^{T}Q^{-1}x)$$

从而, $x^{T}Ax = \frac{x^{T}Q^{-1}x}{1+x^{T}Q^{-1}x}$. 当Q为n阶对称正定方阵,则 Q^{-1} 也为对称正定矩阵,从而,

对任意n维实向量x,有 $x^TQ^{-1}x \ge 0$. 从而, $0 \le x^T \left(Q + xx^T\right)^{-1}x < 1$.

2004年招收硕士研究生入学考试《数学分析》试题

中科院 2004 年研究生初试数学分析 (代码 310)

01. (15
$$\%$$
) $\% f(x) = \int_0^{\sin x} \arctan t^2 dt$, $g(x) = \int_0^x (3t^2 + t^3 \cos t) dt$, $\# \lim_{x \to 0} \frac{f(x)}{g(x)}$.

02. (15 分) 计算
$$\sum_{n=0}^{\infty} (n^2 + n + 1)x^n$$
, 其中 $|x| < 1$.

03. (15分) 判断函数

$$\phi(x) = \int_{x}^{1} \left\{ \int_{x}^{1} \frac{u - v}{(u - v)^{3}} du \right\} dv \quad (0 \le x \le 1)$$

在x=0及x=1处的连续性

04.(15 分)设无穷数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $\lim_{n\to\infty}a_n=a$, $\lim_{n\to\infty}b_n=b$, 证明: $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^na_ib_{n+1-i}=ab$

05. (15 分) 设
$$p > 0$$
 是常数, 求证: $\lim_{n \to \infty} \int_{n}^{n+p} \frac{dx}{\sqrt{x^2 + 1}} = 0$.

06. (10 分) 试证广义积分
$$J = \int_0^\infty y e^{-yx} dx$$
 在区间 $0 < a \le y \le b$ 内一致收敛,而在区间 $0 \le y \le b$ 内非一致收敛.

07. (20 分) 证明
$$\sin x \sin y \sin (x+y) \le \frac{3\sqrt{3}}{8}$$
 (0 < x, y < π), 并确定何时等号成立.

08. (20 分)有一个半径为 R 的球,其球心在一正圆柱面上,该圆柱的底面半径是 $\frac{R}{2}$,求球面被柱面所割部分的面积.

09. (10 分) 设
$$\alpha \ge 0$$
, 证明 $\int_0^{\infty} \frac{dx}{(1+x^2)(1+x^{\alpha})} = \frac{\pi}{4}$.

10. (15 分) 设
$$f$$
 是 $(0,\infty)$ 上具有二阶连续导数的正函数,且 $f' \le 0$, f'' 有界,
$$\lim_{t\to\infty} f'(t) = 0 \, .$$

2004年招收硕士研究生入学考试《数学分析》试题解答

一. 解:
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \int_{0}^{\sin x} \arctan^{2} dt$$

$$= \lim_{x\to 0} \frac{\arctan(\sin x)^{2} \cos x}{3x^{2} + x^{3} \cos x} = \lim_{x\to 0} \frac{\sin^{2} x}{3x^{2} + x^{3} \cos x} = \frac{1}{3}.$$

$$\therefore \ \, \text{if } f(x) = \sum_{n=0}^{\infty} (n^{2} + n + 1)x^{n} \, , \quad \text{if } f(x) = x \sum_{n=1}^{\infty} n^{2} x^{n-1} + x \sum_{n=1}^{\infty} nx^{n-1} + \sum_{n=0}^{\infty} x^{n} . \text{ if } f(x) = x \sum_{n=1}^{\infty} n^{2} x^{n-1} + x \sum_{n=1}^{\infty} nx^{n-1} + \sum_{n=0}^{\infty} x^{n} . \text{ if } f(x) = \sum_{n=1}^{\infty} n^{2} x^{n-1} = \sum_{n=1}^{\infty} n(n+1)x^{n-1} - \sum_{n=1}^{\infty} nx^{n-1}$$

$$= (\sum_{n=1}^{\infty} x^{n+1})^{n} - \frac{1}{(1-x)^{2}} = (\frac{x^{2}}{1-x})^{n} - \frac{1}{(1-x)^{2}} = \frac{1+x}{(1-x)^{3}}.$$

$$\text{If } f(x) = \sum_{n=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \sum_{n=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n^{2} + n + 1)x^{n} = \frac{1+x^{2}}{(1-x)^{3}}.$$

$$\text{If } f(x) = \int_{x=0}^{\infty} (n$$

$$= \ln 2 - \ln(1+x) + \frac{1}{2} - \frac{1}{1+x} - \frac{1-x}{1+x} + \frac{1}{2} - \frac{1}{1+x}$$

$$= \ln 2 + 1 - \ln(1+x) - \frac{3-x}{1+x}.$$

因此 $\varphi(x)$ 在x=0,x=1连续.

四. 证: ①若
$$\lim_{n\to\infty} c_n = 0$$
,则 $\lim_{n\to\infty} \frac{c_1+c_2+\cdots+c_n}{n} = 0$. 事实上,对任意 $\varepsilon > 0$,存在正整

数
$$\mathbb{N}$$
,当 $k>N$ 时, $|c_k|<rac{arepsilon}{2}$,设 $t=\max\{c_1,c_2,\cdots,c_N\}$,由于

$$\left| \frac{c_1 + c_2 + \dots + c_n}{n} \right| \le \frac{|c_1| + |c_2| + \dots + |c_N|}{n} + \frac{|c_{N+1}| + |c_{N+2}| + \dots + |c_n|}{n}$$

$$\leq \frac{Nt}{n} + \frac{n-N}{n} \frac{\varepsilon}{2}$$
.

取正整数
$$N_0$$
 ,使得 $\frac{Nt}{n} < \frac{\varepsilon}{2}$,则 $n > N_0$ 时, $|\frac{c_1 + c_2 + \cdots + c_n}{n}| < \frac{\varepsilon}{2}$,因此

$$\lim_{n\to\infty}\frac{c_1+c_2+\cdots+c_n}{n}=0.$$

②若
$$\lim_{n\to\infty} \alpha_n = 0$$
, $\lim_{n\to\infty} \beta_n = 0$, 则 $\lim_{n\to\infty} \frac{\alpha_1\beta_n + \alpha_2\beta_{n-1} + \cdots + \alpha_n\beta_1}{n} = 0$. 事实上,由于收敛

数列必有界,所以存在M > 0,对任意正整数n, $|\alpha_n| \leq M$,因此

$$0 \le \left| \frac{\alpha_1 \beta_n + \alpha_2 \beta_{n-1} + \dots + \alpha_n \beta_1}{n} \right| \le M \left| \frac{\beta_n + \beta_{n-1} + \dots + \beta_1}{n} \right|$$

由①知
$$\lim_{n\to\infty}\frac{\beta_n+\beta_{n-1}+\cdots+\beta_1}{n}=0$$
. 由夹逼定理 $\lim_{n\to\infty}\frac{\alpha_1\beta_n+\alpha_2\beta_{n-1}+\cdots+\alpha_n\beta_1}{n}=0$.

③设
$$a_n = a + \alpha_n, b_n = a + \beta_n$$
,则

$$\frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = \frac{(\alpha_1 + a)(b + \beta_n) + (\alpha_2 + a)(b + \beta_{n-1}) + \dots + (a + \alpha_n)(b + \beta_1)}{n}$$

$$= ab + a\frac{\beta_n + \beta_{n-1} + \dots + \beta_1}{n} + a\frac{\alpha_n + \alpha_{n-1} + \dots + \alpha_1}{n}$$

$$+\frac{\alpha_1\beta_n+\alpha_2\beta_{n-1}+\cdots+\alpha_n\beta_1}{n}$$

由①与②得
$$\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = ab.$$

五. 证: 由积分中值定理,
$$\int_n^{n-p} \frac{dx}{\sqrt{1+x^2}} = -\frac{p}{\sqrt{1+\xi^2}}, \xi \in (n-p,n)$$
,所以

$$\lim_{n\to\infty} \int_{n}^{n-p} \frac{dx}{\sqrt{1+x^2}} = \lim_{n\to\infty} \left(-\frac{p}{\sqrt{1+\xi^2}}\right) = -\lim_{\xi\to\infty} \frac{p}{\sqrt{1+\xi^2}} = 0.$$

六. 证: (1) 对 $\forall y \in [a,b], |ye^{-xy}| \leq be^{-ax}$, 由于 a > 0, 所以 $\int_0^{+\infty} be^{-ax} dx = \frac{b}{a}$ 收敛,

由M一判别法, $\int_{0}^{+\infty} y e^{-yx} dx$ 关于 y 在 [a,b] 上一致收敛.

(2) 由于
$$y \in (0,b)$$
时, $\int_0^{+\infty} y e^{-yx} dx = 1$,对任意 $A > 0$, $|\int_0^A y e^{-yx} dx - 1| = e^{-Ay}$,

从而
$$\sup_{y \in (0,b)} |\int_0^A y e^{-yx} dx - 1| = \sup_{y \in (0,b)} e^{-Ay} \ge e^{-1}$$
. 因此 $\int_0^{+\infty} y e^{-yx} dx$ 在 $(0,b)$ 非一致收敛.

七. 设
$$f(x,y) = \sin x \sin y \sin(x+y), (x,y) \in (0,\pi) \times (0,\pi)$$
,则

$$f_x(x, y) = \sin y \sin(2x + y), f_{xx}(x, y) = 2\sin y \cos(2x + y)$$

$$f_{y}(x, y) = \sin x \sin(x + 2y), f_{yy}(x, y) = 2\sin x \cos(x + 2y)$$

$$f_{xy}(x, y) = \cos y(\sin(2x + y) + \sin y \cos(2x + y)$$

$$f_{xx}(A) = -\sqrt{3}, f_{yy}(A) = -\sqrt{3}, f_{xy}(A) = -\frac{\sqrt{3}}{2};$$

$$f_{xx}(B) = \sqrt{3}, f_{yy}(A) = \sqrt{3}, f_{xy}(B) = \frac{\sqrt{3}}{2}.$$

故 f(x,y) 在 A 点取极大值,在 B 点取极小值.又 f(x,y) 在闭区域 $[0,\pi] \times [0,\pi]$ 连续,

在边界上的函数值为零,所以 f(x,y) 在 A 点取最大值,因此对任意 $(x,y) \in (0,\pi) \times (0,\pi)$

$$f(x,y) = \sin x \sin y \sin(x+y) \le \sin \frac{\pi}{3} \sin \frac{\pi}{3} \sin \frac{2\pi}{3} = \frac{3\sqrt{3}}{8}.$$

八.解:设球面方程为 $x^2+y^2+z^2=R^2$,圆柱面的方程为 $(x-\frac{R}{2})^2+y^2=\frac{R^2}{4}$,则所求面积为

$$S = 2 \iint_{x^2 - Rx + y^2 \le 0} \sqrt{1 + z_x^2 + z_y^2} dx dy$$

$$= 2 \iint_{x^2 - Rx + y^2 \le 0} \frac{R}{\sqrt{R^2 - x^2 - y^2}} dx dy$$

$$= 4R \int_0^{\frac{\pi}{2}} d\theta \int_0^{R\cos\theta} \frac{r}{\sqrt{R^2 - r^2}} dr = 2R^2(\pi - 2).$$

有
$$\int_0^{\frac{\pi}{2}} \frac{dt}{1-\tan^{\alpha}t} = \int_0^{\frac{\pi}{2}} \frac{du}{1-\cot^{\alpha}u} = -\int_0^{\frac{\pi}{2}} \frac{\tan^{\alpha}udu}{1-\tan^{\alpha}u} = -\int_0^{\frac{\pi}{2}} \frac{\tan^{\alpha}tdt}{1-\tan^{\alpha}t}$$
, 故

$$\int_0^{\frac{\pi}{2}} \frac{dt}{1 - \tan^{\alpha} t} = \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} \frac{dt}{1 - \tan^{\alpha} t} - \int_0^{\frac{\pi}{2}} \frac{\tan^{\alpha} t dt}{1 - \tan^{\alpha} t} \right) = \frac{1}{2} \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{4}.$$

10. 证明:
$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(\xi)h^2$$
, 从而有

$$\left|f'(x)\right| = \left|2\frac{f(x+h) - f(x)}{h} - f''(\xi)h\right| \le 2\left|\frac{f(x+h) - f(x)}{h}\right| + \left|f''(\xi)h\right| \ \ \forall \ \ \mp \ \ \text{if } \ \ h>0$$

都成立, 从而就有了
$$|f'(x)| \le 2\sqrt{2|f(x+h)-f(x)||f''(\xi)|} \le 2M\sqrt{|f(x+h)-f(x)|}$$
, 其

中的
$$\frac{M^2}{2}$$
是二阶导数的一个上界,同时又由于 $f(x)$ 单调减少,且有下界,从而可以知道

 $\lim_{x\to\infty} f(x) = c \text{ , 进而就有了 } 0 \leq \lim_{x\to\infty} \left| f'(x) \right| \leq \lim_{x\to\infty} 2M\sqrt{\left| f(x+h) - f(x) \right|} = 2M \cdot 0 = 0 \text{ , 所以命题获得了证明。}$

2004 年招收硕士研究生入学考试《高等代数》试题

(3 小时完成, 满分 150)

- 2. (15 分)设A、B为同阶对称正定矩阵,若A>B (即A-B为正定阵),试问是否一定有 $A^2>B^2$?为什么?
- $3.(20\, f)$ 证明: 若 S 为 n 阶实对称正定矩阵,则(i)存在唯一的对称正定矩阵 S_1 ,使得 $S=S_1^2$;(ii)若 A 是 n 阶实对称矩阵,则 AS 的特征值是实数.
- 4. (20 分) 设 $A = (a_{ij})$ 是 2004 阶方阵,且 $a_{ij} = ij$, $1 \le i, j \le 2004$. I 是 2004 阶单位阵,计算 $f(x) = \det(I + Ax)$,这里 $x \in \mathbb{R}$.
- 5. (20 分) 令 $f(x,y) = 2x^2 7xy + y^2$. 求 f(x,y) 在 \mathbb{R}^2 中单位圆上的极大值与极小值及极值点.
- 6. (20分)设 $A \setminus B$ 是n 阶实方阵, 而I 是n 阶单位阵. 证明: 若I AB 可逆, 则I BA 也可逆.
- 7. (20 分)设A为 $n \times n$ 阶实对称矩阵,b为 $n \times 1$ 维实向量.证明: $A bb^T > 0$ 的充分必要条件是

$$A>0$$
 及 $b^TA^{-1}b<1$. 其中 b^T 表示 b 的转置.

8. (20 分)设V 是n 维向量空间,f ,g 是V 上的线性变换(f ,g ∈ L(V)),且f 有n 个互异的特征根. 证明:fg = gf 的充要条件是g 是 $f^0 = I$ (恒等变换),f , f^2 ,…, f^{n-1} 的线性组合.

2004年招收硕士研究生入学考试《高等代数》试题解答*

1. 解 由
$$(x_{n+1} \ y_{n+1}) = (x_n \ y_n) \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$$
, 得 $(x_n \ y_n) = (1 \ 0) \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}^n$, 又
$$\left| \lambda I - \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \right| = (\lambda - 1 + 2\sqrt{2})(\lambda - 1 - 2\sqrt{2}) = 0 ,$$

得 $\lambda_1 = 1 - 2\sqrt{2}$, $\lambda_2 = 1 + 2\sqrt{2}$, 易解得对应的特征向量分别为 $\mathbf{\eta}_1 = \begin{pmatrix} -1 \\ \sqrt{2} \end{pmatrix}$, $\mathbf{\eta}_2 = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}$,

故

$$\begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ \sqrt{2} & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 - 2\sqrt{2} & 0 \\ 0 & 1 + 2\sqrt{2} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ \sqrt{2} & \sqrt{2} \end{pmatrix}^{-1}$$

所以,

$$(x_{100} \quad y_{100}) = (1 \quad 0) \begin{pmatrix} -1 & 1 \\ \sqrt{2} & \sqrt{2} \end{pmatrix} \begin{pmatrix} (1 - 2\sqrt{2})^{100} & 0 \\ 0 & (1 + 2\sqrt{2})^{100} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ \sqrt{2} & \sqrt{2} \end{pmatrix}^{-1}$$

即

$$(x_{100} \quad y_{100}) = \left(\frac{1}{2} \left[(1 - 2\sqrt{2})^{100} + (1 + 2\sqrt{2})^{100} \right] \quad \frac{\sqrt{2}}{4} \left[(1 + 2\sqrt{2})^{100} - (1 - 2\sqrt{2})^{100} \right] \right). \quad \blacksquare$$

2. 解 不一定, 例:

$$A = \begin{pmatrix} 4 & 2.4 \\ 2.4 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $A - B = \begin{pmatrix} 2 & 1.4 \\ 1.4 & 1 \end{pmatrix}$ 是正定矩阵, 而 $|A^2 - B^2| = -0.2624$

故 $A^2 - B^2$ 不是正定的,从而不一定有 $A^2 > B^2$. ■

3. 证 (i) 由S为n阶实对称正定矩阵,则存在正交矩阵P使得

$$S = P \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix} P^T, \quad a_i > 0 (i = 1, 2, \dots, n),$$

从而有

$$S = P \begin{pmatrix} \sqrt{a_1} & 0 \\ & \ddots & \\ 0 & \sqrt{a_n} \end{pmatrix} P^T P \begin{pmatrix} \sqrt{a_1} & 0 \\ & \ddots & \\ 0 & \sqrt{a_n} \end{pmatrix} P^T,$$

令
$$S_1 = P \begin{pmatrix} \sqrt{a_1} & 0 \\ & \ddots & \\ 0 & \sqrt{a_n} \end{pmatrix} P^T$$
,则 $S = S_1^2$, S_1 显然为对称正定矩阵.

唯一性:设还有 S_2 是对称正定矩阵满足 $S=S_2^2$,则

$$(S_1S_2)^T = S_2^T S_1^T = S_2S_1$$
, $\Leftrightarrow B = S_1S_2$, $\lim A^2 = S_1^4 = S_1S_2^2 S_1 = BB^T$,

又 S_1 为对称正定矩阵, $P^TS_1P=I$,则

$$P^{T}B(P^{T})^{-1} = P^{T}S_{1}PP^{-1}S_{2}(P^{-1})^{T} = P^{-1}S_{2}(P^{-1})^{T}$$

故 B 与对称阵相似,B 可对角化, B^T 也可对角化,即存在 Q,使得 $Q^{-1}BQ$, $Q^{-1}B^TQ$ 同时为对角阵,且对角线元素为其特征值,而 B , B^T 的特征多项式相同,故特征值相同,因 $m \, Q^{-1}BQ = Q^{-1}B^TQ \, , \, \mathbb{P} \, B = B^T \, ,$

从而
$$(S_1 - S_2)(S_1 + S_2) = S_1^2 + S_1S_2 - S_2S_1 - S_2^2 = S_1^2 - S_2^2 = 0$$
,

 $S_1 + S_2$, 对称正定, 故 $r(S_1 - S_2) = 0$, 即 $S_1 = S_2$, 唯一性得证.

(ii) 反证法:

设存在非实数特征根 λ ,对应特征向量为 α ,即有 $AS\alpha=\lambda\alpha$ 成立,而 $S=S_1^2$, S_1 为对称正定矩阵,又

$$S_1 A S \alpha = (S_1 A S_1) S_1 \alpha = S_1 \lambda \alpha = \lambda (S_1 \alpha)$$
,

即 λ 也为实对称矩阵 $S_1AS_1^T$ 的特征值,而实对称矩阵的特征值全部为实数,矛盾.所以 AS 的特征值是实数. \blacksquare

4. 解 显然有

$$f(x) = \begin{pmatrix} x+1 & 2x & nx \\ 2x & 2^2x+1 & 2nx \\ \vdots & \ddots & \vdots \\ nx & \cdots & n^2x+1 \end{pmatrix},$$

第一列分别乘以-k 加到第k 列, 然后第 $i(i \ge 2)$ 行乘以i 加到第一行上, 得

$$\begin{vmatrix} x+1 & -2 & \cdots & -n \\ 2x & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ nx & 0 & \cdots & 1 \end{vmatrix} = \begin{vmatrix} \left(\sum_{i=1}^{n} i^{2}\right)x+1 & 0 & \cdots & 0 \\ 2x & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ nx & 0 & \cdots & 1 \end{vmatrix} = \left(\sum_{i=1}^{n} i^{2}\right)x+1 = \frac{n(n+1)(2n+1)}{6}$$

5. **解** 由题意, f(x,y)的二次型为

$$A = \begin{pmatrix} 2 & -\frac{7}{2} \\ -\frac{7}{2} & 1 \end{pmatrix},$$

算得其特征根为
$$\lambda_1 = \frac{3 - \sqrt{50}}{2}$$
 , $\lambda_2 = \frac{3 + \sqrt{50}}{2}$,

因为 $\lambda_1 \mathbf{x}^T \mathbf{x} \leq \mathbf{x}^T A \mathbf{x} \leq \lambda_2 \mathbf{x}^T \mathbf{x}$,等号在对应特征向量成立,在单位圆上 $\mathbf{x}^T \mathbf{x} = 1$,故最大

值与最小值分别为 $\frac{3+\sqrt{50}}{2}$ 、 $\frac{3-\sqrt{50}}{2}$,

$$\lambda_2 = \frac{3 + \sqrt{50}}{2}$$
 时,特征向量为 $k(-7, \sqrt{50} - 1)$,与单位圆相交于

$$\pm \left(\frac{-7}{\sqrt{100 - 2\sqrt{50}}}, \frac{\sqrt{50} - 1}{\sqrt{100 - 2\sqrt{50}}} \right),$$

此即为极大值点,极大值为 $\frac{3+\sqrt{50}}{2}$. 同理, $\pm\left(\frac{7}{\sqrt{100+2\sqrt{50}}},\frac{\sqrt{50}+1}{\sqrt{100+2\sqrt{50}}}\right)$ 为极小值

点,极小值为
$$\frac{3-\sqrt{50}}{2}$$
.

6. 证 由题意, 易知:

$$\begin{pmatrix} I & 0 \\ -B & I \end{pmatrix} \begin{pmatrix} I & A \\ B & I \end{pmatrix} = \begin{pmatrix} I & A \\ 0 & I - AB \end{pmatrix}$$
$$\begin{pmatrix} I & -A \\ 0 & I \end{pmatrix} \begin{pmatrix} I & A \\ B & I \end{pmatrix} = \begin{pmatrix} I - AB & 0 \\ B & I \end{pmatrix}$$

分别取行列式知|I-BA|=|I-AB|,故,由I-AB可逆推出I-BA也可逆. ■

7. 证 由题意:

$$\begin{pmatrix} I & -b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & b \\ b^{T} & 1 \end{pmatrix} \begin{pmatrix} I & 0 \\ -b^{T} & 1 \end{pmatrix} = \begin{pmatrix} A - bb^{T} & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} I & 0 \\ -b^{T}A^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & b \\ b^{T} & 1 \end{pmatrix} \begin{pmatrix} I & -A^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & 1 - b^{T}A^{-1}b \end{pmatrix}$$

易知, $\begin{pmatrix} A-bb^T & 0 \\ 0 & 1 \end{pmatrix}$ 与 $\begin{pmatrix} A & 0 \\ 0 & 1-b^TA^{-1}b \end{pmatrix}$ 合同,从而正定性相同,即当 $A-bb^T>0$ 时,有

A>0 及 $b^TA^{-1}b<1$ 成立,反过来也成立,故原问题得证. ■

8. 证 充分性:

设线性变换 f , g 在一组基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的矩阵为 A , B ,由 f 有 n 个互异特征根,不妨设为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,故 f 有 n 个线性无关的特征向量,故通过基变换,也即存在正交矩阵 P ,使 $P^{-1}AP$ 为对角阵,不妨设在 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下,A 为对角阵,

当
$$g = \sum_{i=0}^{n-1} k_i f^i$$
 时,则

$$B = \sum_{i=0}^{n-1} k_i A^i = \sum_{i=0}^{n-1} \begin{pmatrix} k_i \lambda_1^i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & k_i \lambda_n^i \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{n-1} k_i \lambda_1^i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sum_{i=0}^{n-1} k_i \lambda_n^i \end{pmatrix},$$

从而, AB = BA, 即 fg = gf.

必要性: fg = gf, 即 AB = BA, 又因为与对角矩阵可交换的矩阵只能是对角矩阵, 故

可记
$$B = \begin{pmatrix} b_1 & 0 \\ & \ddots & \\ 0 & b_n \end{pmatrix}$$
, 显然 $\dim(B) = n$, 故只须证 f^i , $i = 0, 1, \dots, n-1$ 线性无关即可.

设
$$\sum_{i=0}^{n-1} k_i f^i = 0$$
,即

$$\sum_{i=0}^{n-1} k_i A^i = \sum_{i=0}^{n-1} \begin{pmatrix} k_i \lambda_1^i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & k_i \lambda_n^i \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{n-1} k_i \lambda_1^i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sum_{i=0}^{n-1} k_i \lambda_n^i \end{pmatrix} = 0$$

而 $\sum_{i=0}^{n-1} k_i \lambda_j^i$, 对 $j=1,2,\cdots,n$ 成立, 而矩阵行列式为范德蒙行列式, 且 λ_j 互异, 即不为 0, 所

以 $k_i = 0$, 即 f^i , $i = 0,1,\cdots,n-1$ 线性无关,问题得证.

中国科学院数学与系统科学研究院

2005 年招收硕士研究生入学考试《数学分析》试题及解答

1、设
$$a,b > 0, a \neq b$$
,证明 $\frac{2}{a+b} < \frac{\ln a - \ln b}{a-b} < \frac{1}{\sqrt{ab}}$.

证: 令 $x = \frac{a}{b}$ (不妨设 a > b), 则所证明的不等式可写成

$$\frac{2(x-1)}{x+1} < \ln x < \frac{x-1}{\sqrt{x}}$$
 (x > 1)

设
$$f(x) = \ln x - \frac{2(x-1)}{x+1}$$
, 则有 $f'(x) = \frac{(x-1)^2}{x(1+x)^2} > 0$ $(x > 1)$

因此 f(x) 在 $x \ge 1$ 上严格递增,从而对任意 x > 1,有 f(x) > f(1) = 0,即 $\ln x > \frac{2(x-1)}{x+1}$

设
$$g(x) = \frac{x-1}{\sqrt{x}} - \ln x$$
, 则 $g'(x) = \frac{(\sqrt{x}-1)^2}{2x\sqrt{x}} > 0$, $(x > 1)$ 因此对任意 $x > 1$, 有

2.
$$\forall \lim_{n\to 0} (\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n})$$

解:
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = \frac{1}{n} \left(\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}} + \dots + \frac{1}{1+\frac{n}{n}} \right)$$
,考虑函数 $f(x) = \frac{1}{1+x}$,它在

[0,1]上连续,把[0,1]分成 n 等份,分点为 $\frac{i}{n}$ $(i=1,2,\cdots,n)$,在每一小区间 $[\frac{i-1}{n},\frac{i}{n}]$ 中取

$$\zeta_i = \frac{i}{n}, \text{则有} f(\zeta_i) = \frac{1}{1 + \frac{i}{n}}.$$
于是,

原式 =
$$\lim_{n\to\infty} \frac{1}{n} \left(\frac{1}{1+\frac{1}{n}} + \dots + \frac{1}{1+\frac{n}{n}} \right) + \lim_{n\to\infty} \frac{1}{n} = \lim_{n\to\infty} \frac{1}{n} \left(\frac{1}{1+\frac{1}{n}} + \dots + \frac{1}{1+\frac{n}{n}} \right)$$

= $\int_0^1 \frac{1}{1+x} dx = \ln 2$

4、判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$ 的收敛性.

解:
$$\diamondsuit u_n = \frac{\ln n}{\sqrt{n}}, v_n = \frac{1}{\sqrt{n}}$$
 ,
$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \ln n = +\infty$$

而
$$\sum v_n$$
 发散,因而 $\sum \frac{\ln n}{\sqrt{n}}$ 发散。

又当 $n \ge 3$ 时,数列 $\{u_n\}$ 单调递减,且趋于 0.因此由 Leibniz 判别法知 $\sum (-1)^n \frac{\ln n}{\sqrt{n}}$ 收敛.

所以该级数条件收敛.

5.设
$$f(x, y)$$
 在点 $(0,0)$ 的某个邻域中连续, $F(t) = \iint_{x^2+y^2 \le t^2} f(x, y) dx dy$, 求 $\lim_{t \to 0^+} \frac{F'(t)}{t}$.

解:利用极坐标变换可得
$$F(t) = \iint\limits_{x^2+y^2 \le t^2} f(x,y) dx dy = \int_0^{2\pi} d\varphi \int\limits_0^t f(r\cos\varphi, r\sin\varphi) r dr$$

由于 f(x,y) 在点 (0,0) 邻域连续, 所以

$$F'(t) = \frac{d}{dt} \int_0^{2\pi} d\varphi \int_0^t f(r\cos\varphi, r\sin\varphi) r dr = \int_0^{2\pi} d\varphi \frac{d}{dt} \int_0^t f(r\cos\varphi, r\sin\varphi) r dr$$
$$= \int_0^{2\pi} f(t\cos\varphi, t\sin\varphi) d\varphi$$

則
$$\lim_{t \to 0^+} \frac{F'(t)}{t} = \lim_{t \to 0} \int_0^{2\pi} f(t\cos\varphi, t\sin\varphi) d\varphi = \int_0^{2\pi} \lim_{t \to 0} f(t\cos\varphi, t\sin\varphi) d\varphi$$

= $2\pi f(0,0)$.

6.求
$$x^2 + y^2 + z^2 = a^2$$
 球面包含在柱面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (b \le a)$ 内的那部分面积。

解:在球面坐标 $x=r\sin\varphi\cos\theta$, $y=r\sin\varphi\sin\theta$, $z=r\cos\varphi$ 下,所给的球面方程 $r^2=a^2$,于是球面的参数方程为

$$x = a \sin \varphi \cos \theta$$
, $y = a \sin \varphi \sin \theta$, $z = a \cos \varphi$

其中
$$0 \le \theta \le 2\pi, 0 \le \varphi \le \frac{\pi}{2}$$
.那么

$$\frac{\partial(y,z)}{\partial(\varphi,\theta)} = a^2 \sin^2 \varphi \cos \theta, \quad \frac{\partial(z,x)}{\partial(\varphi,\theta)} = a^2 \sin^2 \varphi \sin \theta, \quad \frac{\partial(x,y)}{\partial(\varphi,\theta)} = a^2 \sin \varphi \cos \varphi,$$

所以 $EG - F^2 = a^4 \sin^2 \varphi$ 又球面的面积为它在第一卦限部分面积的 4 倍,所以

$$S = 4 \iint_{\substack{0 \le \theta \le 2\pi \\ 0 \le \varphi \le \frac{\pi}{2}}} a^2 \sin\varphi d\varphi d\theta = 4a^2 \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} \sin\varphi d\varphi = 8\pi a^2.$$

7. 设 $f(x,y) = \varphi(|xy|)$, 其 中 $\varphi(0) = 0$, 且 $\varphi(u)$ 在 u = 0 的 某 个 邻 域 中 满 足 $|\varphi(u)| \le |u|^{\alpha}$ $(\alpha > \frac{1}{2})$.证明 f(x,y) 在 (0,0) 处可微,但函数 $g(x,y) = \sqrt{|xy|}$ 在 (0,0) 处 不可微.

(f(x,y)在(0,0)处可微性未证明)

i.e.
$$g_x(0,0) = \frac{d}{dx}g(x,0) = 0$$
, $g_y(0,0) = \frac{d}{dy}g(y,0) = 0$

考察极限
$$\lim_{\rho \to 0^+} \frac{g(x, y) - g(0, 0) - g_x(0, 0)x - g_y(0, 0)y}{\rho} = \lim_{\rho \to 0^+} \frac{\sqrt{|xy|}}{\sqrt{x^2 + y^2}}$$

当动点(x,y)沿直线 y = kx 趣于 (0,0) 时,显然对不同的 k 有不同的极限值 $\frac{\sqrt{|xy|}}{\sqrt{x^2 + y^2}}$ 。因

此上述极限不存在,即在点(0,0),g(x,y)不能表成

$$g(0,0) + g_x(0,0)x + g_y(0,0)y + o(\rho), \quad (\rho = \sqrt{x^2 + y^2})$$

故 $g(x, y) = \sqrt{|xy|}$ 在点 (0,0) 不可微分。

8.设 $\varphi(x)$ 在 $[0,\infty)$ 上有连续导数,并且 $\varphi(0)=1$,令

$$f(r) = \iiint_{x^2 + y^2 + z^2 \le r^2} \varphi(x^2 + y^2 + z^2) dx dy dz \qquad (r \ge 0)$$

证明 f(r) 在 r=0 处三次可微, 并求 $f^{"}(0)$ (右导数)

证: 利用球面坐标变换得

$$f(r) = \iiint_{x^2 + y^2 + z^2 \le r^2} \varphi(x^2 + y^2 + z^2) dx dy dz = \int_0^{2\pi} d\theta \int_0^{\pi} \sin \alpha d\alpha \int_0^r \varphi(t^2) t^2 dt = 4\pi \int_0^r \varphi(t^2) t^2 dt$$

又 $\varphi(x)$ 在 $[0,\infty)$ 上有连续导数,则 $\varphi(x)$ 也连续,因此有

$$f'(r) = 4\pi\varphi(r^2)r^2$$
, $f''(r) = 8\pi[\varphi'(r^2)r^3 + r\varphi(r^2)]$

且在 $[0,\infty)$ 上连续,则有 $f''(0) = \lim_{r \to 0} f''(r) = 0$ 。

那么由导数定义知 f(r) 在 r=0 处三阶可导,且

$$f_{+}^{"}(0) = \lim_{r \to 0^{+}} \frac{f''(r) - f''(0)}{r} = \lim_{r \to 0^{+}} \frac{8\pi [r^{3} \varphi'(r^{2}) + r\varphi(r^{2})] - 0}{r}$$
$$= \lim_{r \to 0^{+}} 8\pi [r^{2} \varphi'(r^{2}) + \varphi(r^{2})] = 8\pi \kappa(0) = 8\pi.$$

9.设 f(x) 在有限区间 [a,b] 上可微,且满足 f'(a)f'(b) < 0(此处 f'(a) 和 f'(b) 分别表示 f(x) 在 a 和 b 处的右导数和左导数),则存在 $c \in (a,b)$, $\ni f'(c) = 0$ 。

证:设
$$F(x) = f(x) - C \cup F(x)$$
 在 $[a,b]$ 上可微,且

$$F_{\perp}(a)F_{\perp}(b) = f_{\perp}(a)f_{\perp}(b) < 0$$

不妨设 $F_{+}(a) > 0, F_{-}(b) < 0,$ 则存在 $x_{1} \in U_{+}^{0}(a), x_{2} \in U_{-}^{0}(b),$ 且 $x_{1} < x_{2}, 3$

$$F(x_1) > F(a), F(x_2) > F(b)$$
 (1)

因 F(x) 在 [a,b] 上可导,所以连续.由最值定理知,存在一点 $\xi \in [a,b]$, $\ni F(\xi)$ 最大.

由(1)式可知 $\xi \neq a,b$ 则 ξ 是F的极大值点,所以有

$$F'(\xi) = 0 \quad \text{!!} \quad f'(\xi) = 0 \quad \xi \in (a,b).$$

10. 设 $e^{e^x} = \sum_{n=0}^{\infty} a_n x^n$,求 a_0, a_1, a_2, a_3 ,并证明 $a_n \ge e(r \ln n)^{-n}$ $(n \ge 2)$ 其中 r 是某个大于 e 的常数. (未给出证明,期待你的解答)

2005 年招收硕士研究生入学考试《高等代数》试题

(3 小时完成, 满分 150)

 $1. (15 \, f)$ 设四元齐次线性方程组(I) $\begin{cases} x_1 + x_3 = 0 \\ x_2 - x_4 = 0 \end{cases}$, 又知某齐次线性方程组(II) 的通解为 $k_1(0,1,1,0)^T + k_2(-1,2,2,1)^T$. (i) 求线性方程组(I) 的基础解系; (ii) 问线性方程组(I) 和(II) 是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.

2. (15 分) 给定两个四维向量
$$\alpha_1 = \left(\frac{1}{3}, -\frac{2}{3}, 0, \frac{2}{3}\right)^T$$
, $\alpha_2 = \left(-\frac{2}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$. 求

作一个四阶正交矩阵Q,以 α_1 , α_2 作为它的前两个列向量.

3. (20分)(i)求矩阵

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

的 Jordan 标准形, 并计算 e^A (注: 按通常定义 $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} \cdots$);

(ii)设

$$B = \begin{pmatrix} 4 & 4.5 & -1 \\ -3 & -3.5 & 1 \\ -2 & -3 & 1.5 \end{pmatrix},$$

求 B^{2005} (精确到小数点后 4 位).

4. $(20\, \mathcal{G})$ 证明函数 $\log \det(\bullet)$ 在对称正定矩阵集上是凹函数,即:对于任意两个 $n\times n$ 对称正定矩阵 A , B , 及 $\forall \lambda \in [0,1]$,有

$$\log \det(\lambda A + (1 - \lambda)B) \ge \lambda \log \det(A) + (1 - \lambda) \log \det(B)$$
,

其中,函数 $\log \det(A)$ 表示先对矩阵 A 取行列式再取自然对数.

5. (20分)(i)考虑如下形式的矩阵:

$$P = \begin{pmatrix} a_1^2 & a_1 a_2 & \cdots & a_1 a_n \\ a_2 a_1 & a_2^2 & \cdots & a_2 a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_1 & \cdots & a_n^2 \end{pmatrix}$$

其中, a_i , $1 \le i \le n$ 都为实数. 证明: 矩阵 P 非负定;(ii)证明: 非零实二次型 $f(x_1, \dots, x_n)$ 可以写成 $f(x_1, \dots, x_n) = (u_1x_1 + \dots + u_nx_n)(v_1x_1 + \dots + v_nx_n)$ 的充要条件是: 或者它的秩为 1,或者它的秩为 2 且符号差为零.

- 6. (20 分) 证明: (i)任何n 阶实对称方阵A 必合同于对角阵 $D = diag\{\delta_1, \delta_2 \cdots, \delta_n\}$,即存在n 阶非奇异实方阵C 使得 $C^TAC = D$,这里 $\delta_1 = -1$ 或0 或1;
- (ii)任何n 阶实反对陈非奇异方阵B 必为偶数阶(即n=2k),且合同于块对角阵 $F=diag\{J_1,J_2,\cdots,J_k\}\ , \quad \text{即 存 在 }n\ \text{ 阶 非 奇 异 实 方 阵 }E\ \text{ 使 得 }E^TBE=F\ , \quad \text{这 里}$ $J_i\equiv\begin{pmatrix}0&-1\\1&0\end{pmatrix};$
- (iv)对迹(对角元之和)为0的n阶实方阵G,存在实正交阵H,使得 H^TGH 的 主对角元全为零. 注:这里 C^T , E^T , H^T 分别表示C,E,H的转置.
- 7. (20 分) 是求 7 次多项式 f(x),使 f(x)+1能被 $(x-1)^4$ 整除,而 f(x)-1能被 $(x+1)^4$ 整除.

8. (20 分) 给定一单调递减序列 $b_1 > b_2 > \cdots > b_p > 0$, 定义

$$\beta = \left(p! \frac{p}{p-1}\right)^{\frac{1}{\min\limits_{1 \le k \le p-1} (b_k - b_{k+1})}}$$

假设复数 a_i , $i=1,2,\cdots,p$ 满足 $\left|a_i\right|>\beta\left|a_{i+1}\right|$, $i=1,2,\cdots,p-1$, 且 $\left|a_p\right|\geq 1$. 证明以下行列式

$$D = egin{array}{cccccc} a_1^{b_1} & a_1^{b_2} & \cdots & a_1^{b_p} \ a_2^{b_1} & a_2^{b_2} & \cdots & a_2^{b_p} \ dots & dots & \ddots & dots \ a_p^{b_1} & a_p^{b_2} & \cdots & a_p^{b_p} \ \end{array}$$

其绝对值有上下界如下:

$$\frac{1}{p} \prod_{i=1}^{p} |a_i|^{b_i} < |D| < 2 \prod_{i=1}^{p} |a_i|^{b_i}.$$

2005 年招收硕士研究生入学考试《高等代数》试题解答*

1. **解** (1)据题设,方程组(I)的系数矩阵为 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$,故(I)的基础解系可取为

$$\eta_1 = (-1, 0, 1, 0)^T, \quad \eta_2 = (0, 1, 0, 1)^T.$$

(2) 有非零公共解. 下面给出两种解法:

(方法 1) 将方程组(II) 的通解 $k_1(0,1,1,0)^T + k_2(-1,2,2,1)^T$ 代入方程组(I), 得

$$\begin{cases} k_1 + k_2 = 0 \\ k_1 + k_2 = 0 \end{cases}$$

解得 $k_1 = -k_2$. 当 $k_1 = -k_2 \neq 0$ 时, 非零向量

$$k_1(0,1,1,0)^T + k_2(-1,2,2,1)^T = k_2[(0,-1,-1,0) + (-1,2,2,1)]^T$$

= $k_2(-1,1,1,1)^T$

满足方程组(I)(显然是(II)的解). 故方程组(I)与(II) 有非零公共解, 所有非零公共解是

 $k(-1,1,1,1)^T$ (其中k是不为零的任意常数).

(方法 2) 令方程组(I) 与(Ⅱ) 的通解相等, 即

$$k_1(0,1,1,0)^T + k_2(-1,2,2,1)^T = k_3(-1,0,1,0)^T + k_4(0,1,0,1)^T$$
,

得到关于 k_1 , k_2 , k_3 , k_4 的一个齐次线性方程组

$$\begin{cases} k_2 - k_3 = 0 \\ k_1 + 2k_2 - k_3 = 0 \\ k_1 + 2k_2 - k_4 = 0 \\ k_2 - k_4 = 0 \end{cases}$$

易得其通解为 $(k_1, k_2, k_3, k_4)^T = k(-1, 1, 1, 1)^T$,将 $k_1 = -k$, $k_2 = k$ 代入(I)或(II)的通解,得 $k(-1, 1, 1, 1)^T$,故方程组(I)与(II)的所有非零公共解为

$$k(-1,1,1,1)^T$$
 (其中 $k \neq 0$ 为任意常数). ■

2. **解** 设正交矩阵 $\mathbf{Q} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,则 α_3 , α_4 是齐次线性方程组

$$\begin{pmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \end{pmatrix} X = 0, \quad \text{ED} \begin{cases} x_{1} - 2x_{2} + 2x_{4} = 0 \\ -2x_{1} + x_{3} + x_{4} = 0 \end{cases}$$

的解空间S的一个标准正交基.容易求得上述方程组的一个基础解系为

$$\mathbf{\eta}_1 = (2,1,4,0)^T, \quad \mathbf{\eta}_2 = (-2,0,-5,1)^T.$$

利用施密特正交化方法, 由 η_1 , η_2 可得S的一个标准正交基为

$$\boldsymbol{\alpha}_3 = \frac{1}{\sqrt{21}} (2,1,4,0)^T, \ \boldsymbol{\alpha}_4 = \frac{1}{3\sqrt{14}} (2,8,-3,7)^T.$$

注:因为方程组的基础解系不唯一,所以 α_3 , α_4 因而Q的解法也不唯一.

3. **解** (1) 先求 A 的 Jordan 标准形. 因为 A 的行列式因子 $D_4(\lambda) = |\lambda E - A| = \lambda^4$,且因 $\lambda E - A$ 的左上角的一个 3 阶子式为 λ^3 ,右上角的一个 3 阶子式为 $-(\lambda + 1)^2$,

所以 $D_{2}(\lambda)=1$,故A的不变因子组为

$$d_1(\lambda) = d_2(\lambda) = d_3(\lambda) = 1, \ d_4(\lambda) = \lambda^4.$$

由此可知, A 的初等因子为 λ^4 . 于是 A 的 Jordan 标准形为

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

再计算 e^A . 因 A 的特征多项式为 $f(\lambda) = |\lambda E - A| = \lambda^4$,

故由 Cayley 定理, $f(A) = A^4 = \mathbf{0}$. 于是

$$e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} = \begin{pmatrix} 1 & 1 & \frac{3}{2} & \frac{13}{6} \\ 0 & 1 & 1 & \frac{3}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(2)易知,B 的特征多项式为 $f(\lambda) = |\lambda E - B| = (\lambda - 1)(\lambda - \frac{1}{2})^2$. 根据 Cayley 定理,可

知 $f(B) = \mathbf{0}$. 若设 $\varphi(\lambda) = \lambda^{2005}$, 则根据带余除法, 有

$$\varphi(\lambda) = f(\lambda)q(\lambda) + r(\lambda)$$
, $\sharp \oplus \deg r(\lambda) < \deg f(\lambda) = 3$.

于是 $f(\lambda) [\varphi(\lambda) - r(\lambda)]$, 且 $\lambda = 1$ 是 $\varphi(\lambda) - r(\lambda)$ 的单根, $\lambda = \frac{1}{2}$ 是 $\varphi(\lambda) - r(\lambda)$ 的重根.

现在令 $r(\lambda) = a\lambda^2 + b\lambda + c$, 其中a, b, c是待定系数. 则

$$\begin{cases} \varphi(1) - r(1) = 0, \\ \varphi\left(\frac{1}{2}\right) - r\left(\frac{1}{2}\right) = 0, \end{cases} \qquad \text{II} \begin{cases} a + b + c = 1, \\ \frac{a}{4} + \frac{b}{2} + c = \frac{1}{2^{2005}}, \\ a + b = \frac{2005}{2^{2004}}. \end{cases}$$

解得a, b, c 的近似值(精确到小数点后 4 位)a = 4, b = -4, c = 1. 于是, 有

$$B^{2005} = \varphi(B) = f(B)q(B) + r(B) = 4B^2 - 4B + E$$

$$= \begin{pmatrix} 3 & 3 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad \blacksquare$$

4. **证** 因为A, B是正定矩阵, 所以(见本题注(2)), 存在n 阶可逆矩阵P, 使得 $A = PP^T$, $B = PDP^T$,

其中
$$D = diag(\mu_1, \mu_2, \dots, \mu_n), \mu_i > 0, i = 1, 2, \dots, n$$
. 于是

$$\log \det(\lambda A + (1 - \lambda)B) = \log \det(PP^{T}) + \log \det(\lambda E + (1 - \lambda)D),$$

$$\lambda \log \det(A) + (1 - \lambda) \log \det(B) = \log \det(A) + (1 - \lambda) \log \det(D).$$

比较上述二式, 我们只需证明

$$\log \det(\lambda E + (1 - \lambda)D) \ge (1 - \lambda)\log \det(D). \tag{1}$$

因为对数函数是严格上凸函数, 故

$$\log \det(\lambda E + (1 - \lambda)D) = \log \prod_{i=1}^{n} (\lambda + (1 - \lambda)\mu_{i}) = \sum_{i=1}^{n} \log(\lambda + (1 - \lambda)\mu_{i})$$

$$\geq \sum_{i=1}^{n} [\lambda \log 1 + (1 - \lambda) \log \mu_{i}].$$

$$= (1 - \lambda) \sum_{i=1}^{n} \log \mu_{i} = (1 - \lambda) \log \det(D)$$
(2)

这就证得①式,从而所给不等式得证.

注:(1)由于对数函数 $\log x$ 的严格凸性,根据②式知,等号成立的充分必要条件是 $\lambda=0$ 或 1 或 $\mu_i=1$ $(i=1,2,\cdots,n)$. 因此,原不等式中的等号成立的充要条件是 $\lambda=0$ 或 1 或 A=B .

(2)(浙江大学 2000 年研究生试题)设A是n阶正定矩阵,B是n阶实对称矩阵,证明:必存在n阶可逆矩阵G,使

$$G^{T}AG = E$$
, $G^{T}BG = diag(\mu_1, \mu_2, \dots, \mu_n)$,

其中E是n阶单位矩阵, $\mu_1, \mu_2, \cdots, \mu_n$ 是 $\left|\lambda A - B\right| = 0$ 的n个实根.

证明如下:因为A是n阶正定矩阵,所以存在n阶可逆矩阵P,使得 $P^TAP=E$,由于B是n阶实对称矩阵,所以 P^TBP 也n阶实对称矩阵,故存在n阶正交矩阵Q,使得

$$Q^{T}(P^{T}BP)Q = diag(\mu_{1}, \mu_{2}, \dots, \mu_{n}),$$

其中 $\mu_1, \mu_2, \dots, \mu_n$ 是 P^TBP 的 n 个实特征值,令 G = PQ,则

$$G^{T}AG = E$$
, $G^{T}BG = diag(\mu_1, \mu_2, \dots, \mu_n)$.

注意到

$$G^{T}(\lambda A - B)G = diag(\lambda - \mu_{1}, \lambda - \mu_{2}, \dots, \lambda - \mu_{n}),$$

两边取行列式,得

$$|G|^2 |\lambda A - B| = (\lambda - \mu_1)(\lambda - \mu_2) \cdots (\lambda - \mu_n).$$

因此, $\mu_1, \mu_2, \dots, \mu_n$ 是 $|\lambda A - B| = 0$ 的 n 个实根.

5. 证 (1) 设 $A = (a_1, a_2, \dots, a_n)^T$,则 $P = AA^T$ 是实对称矩阵.对于任意的n维实的列向

量
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T$$
,则 $A^T \mathbf{x} = \sum_{i=1}^n a_i x_i$ 为实数,且

$$\mathbf{x}^T P \mathbf{x} = (A^T \mathbf{x})^T (A^T \mathbf{x}) = \left(\sum_{i=1}^n a_i x_i\right)^2 \ge 0,$$

所以P是非负定矩阵.

(2) 先证必要性. 设 $\mathbf{\alpha} = (u_1, u_2, \dots, u_n)^T$, $\mathbf{\beta} = (v_1, v_2, \dots, v_n)^T$, 则 $\mathbf{\alpha} \neq \mathbf{0}$ $\mathbf{\beta} \neq \mathbf{0}$, 且 $f = \mathbf{x}^T A \mathbf{x}$ 的矩阵为 $A = \frac{1}{2} (\mathbf{\alpha} \mathbf{\beta}^T + \mathbf{\beta} \mathbf{\alpha}^T)$. 显然 $1 \leq rank(A) \leq 2$.

若 α 与 β 线性相关,则 $\alpha = k\beta$, $k \neq 0$,所以 $A = k\beta\beta^T$, rank(A) = 1,因此二次型 f 的秩为 1;

若 α 与 β 线性无关,不妨设 $u_1v_2 \neq u_2v_1$,则经非退化的线性变换

$$y_1 = u_1 x_1 + u_2 x_2 + \dots + u_n x_n$$
, $y_2 = v_1 x_1 + v_2 x_2 + \dots + v_n x_n$, $y_i = x_i (i = 3, \dots, n)$,

可得 $f = y_1 y_2$. 再作非退化的线性变换 $y_1 = z_1 + z_2$, $y_2 = z_1 - z_2$, $y_i = z_i (i = 3, \dots, n)$, 则 $f = z_1^2 - z_2^2$, 因此 f 的秩为 2 且符号差为 0.

再证充分性. 若 $f = \mathbf{x}^T B \mathbf{x}$ 的秩为 1, 即 rank(B) = 1, 则存在 n 维实的列向量 $\mathbf{\alpha} = (u_1, u_2, \dots, u_n)^T \neq 0$, $\mathbf{\beta} = (v_1, v_2, \dots, v_n)^T \neq 0$, 使 $B = \mathbf{\alpha} \mathbf{\beta}^T$, 于是有

$$f = \mathbf{x}^T B \mathbf{x} = (u_1 x_1 + u_2 x_2 + \dots + u_n x_n)(v_1 x_1 + v_2 x_2 + \dots + v_n x_n);$$

若 $f = \mathbf{x}^T B \mathbf{x}$ 的秩为 2 且符号差为 0, 则存在实的非退化线性变换 $\mathbf{x} = C \mathbf{y}$ 或 $\mathbf{y} = C^{-1} \mathbf{x}$, 使 $f = y_1^2 - y_2^2$. 令 $C^{-1} = (c_{ij})$,及 $u_i = c_{1i} + c_{2i}$, $v_i = c_{1i} - c_{2i}$, $i = 1, 2, \dots, n$,则

$$f = (y_1 + y_2)(y_1 - y_2) = (u_1x_1 + u_2x_2 + \dots + u_nx_n)(v_1x_1 + v_2x_2 + \dots + v_nx_n). \quad \blacksquare$$

6. **证** (1) 对于n 阶实对称矩阵A,实二次型 $f = \mathbf{x}^T A \mathbf{x}$ 可经非退化线性变换 $\mathbf{x} = C \mathbf{y}$ (C 为非奇异矩阵) 化为规范性

$$f = \mathbf{y}^T C^T A C \mathbf{y} = \delta_1 y_1^2 + \delta_2 y_2^2 + \dots + \delta_n y_n^2 = \mathbf{y}^T D \mathbf{y}$$
,

其中 $\delta_i = -1$ 或0或1,而二次型的矩阵是唯一的,所以 $C^TAC = D$,即实对称矩阵A合同

于对角矩阵 $D = diag(\delta_1, \delta_2, \dots, \delta_n)$.

(2)因为奇数阶反对称矩阵的行列式为0,而矩阵B非奇异,所以B的阶数必为偶数 n=2k. 下证第二个结论: B合同于分块对角阵 $F=diag(J_1,J_2,\cdots,J_k)$. 对k用数学归纳法.

当
$$k=1$$
 时, $B=\begin{pmatrix} 0 & -a_{12} \\ a_{12} & 0 \end{pmatrix}$,由于 $a_{12}\neq 0$,把 B 的第一行及第一列都乘以 $\frac{1}{a_{12}}$,得

 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,即对B作合同变换得

$$\begin{pmatrix} \frac{1}{a_{12}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -a_{12} \\ a_{12} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{a_{12}} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

假设当k = m 时结论成立, 下证k = m + 1时结论成立. 此时

$$B = \begin{pmatrix} 0 & -a_{12} & -a_{13} & \cdots & -a_{1,2m+1} & -a_{1,2m+2} \\ a_{12} & 0 & -a_{23} & \cdots & -a_{2,2m+1} & -a_{2,2m+2} \\ a_{13} & a_{23} & 0 & \cdots & -a_{3,2m+1} & -a_{3,2m+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{1,2m+1} & a_{2,2m+1} & a_{3,2m+1} & \cdots & 0 & -a_{2m+1,2m+2} \\ a_{1,2m+2} & a_{2,2m+2} & a_{3,2m+2} & \cdots & a_{2m+1,2m+2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{\alpha} \\ \mathbf{\alpha}^T & B_1 \end{pmatrix},$$

其中 $\alpha = (a_{12}, a_{13}, \cdots, a_{1,2m+2})^T$, B_1 为2m+1阶实反对称矩阵.因为 $|B| \neq 0$,所以 $\alpha \neq 0$,否

则
$$\left|B_{1}\right| \neq 0$$
,矛盾.不妨设 $a_{12} \neq 0$,令 $Q_{1} = \begin{pmatrix} \frac{1}{a_{12}} \\ & I_{2m+1} \end{pmatrix}$,其中 I_{2m+1} 是 $2m+1$ 阶单位矩阵,

则

$$Q_1^T B Q_1 = \begin{pmatrix} \frac{1}{a_{12}} & \\ & I_{2m+1} \end{pmatrix} \begin{pmatrix} 0 & -\boldsymbol{\alpha} \\ \boldsymbol{\alpha}^T & B_1 \end{pmatrix} \begin{pmatrix} \frac{1}{a_{12}} & \\ & I_{2m+1} \end{pmatrix} = \begin{pmatrix} J_1 & -C \\ C^T & B_2 \end{pmatrix},$$

其中 B_2 为 2m 阶实反对称矩阵,C 为 $2\times(2m)$ 实矩阵. 令 $Q_2 = \begin{pmatrix} I_2 & -J_1C \\ \mathbf{0} & I_{2m} \end{pmatrix}$, 注意到

$$J_1^{-1} = J_1^T = -J_1$$
,则

$$Q_{2}^{T}Q_{1}^{T}BQ_{1}Q_{2} = \begin{pmatrix} I_{2} & \mathbf{0} \\ -C^{T}J_{1}^{-1} & I_{2m} \end{pmatrix} \begin{pmatrix} J_{1} & -C \\ C^{T} & B_{2} \end{pmatrix} \begin{pmatrix} I_{2} & -J_{1}C \\ \mathbf{0} & I_{2m} \end{pmatrix} = \begin{pmatrix} J_{1} & \mathbf{0} \\ \mathbf{0} & B_{2} - C^{T}J_{1}C \end{pmatrix}.$$

对于2m 阶实反对称矩阵 $B_2 - C^T J_1 C$,根据假设,存在2m 阶实可逆矩阵Q,使

$$Q^{T}(B_{2}-C^{T}J_{1}C)Q = diag(J_{2},J_{3},\cdots,J_{m+1}).$$

令
$$Q_3 = \begin{pmatrix} I_2 & \\ & Q \end{pmatrix}$$
,并记 $E = Q_1Q_2Q_3$,则 $E \neq 2(m+1)$ 阶实的可逆矩阵,且

$$\begin{split} E^{T}BE &= Q_{3}^{T}Q_{2}^{T}Q_{1}^{T}BQ_{1}Q_{2}Q_{3} = \begin{pmatrix} I_{2} & & \\ & Q^{T} \end{pmatrix} \begin{pmatrix} J_{1} & 0 & \\ 0 & B - C^{T}J_{1}C \end{pmatrix} \begin{pmatrix} I_{2} & \\ & Q \end{pmatrix} \\ &= \begin{pmatrix} J_{1} & & \\ & Q^{T}(B_{2} - C^{T}J_{1}C)Q \end{pmatrix} = diag(J_{1}, J_{2}, \dots, J_{m+1}) \end{split}$$

因此,对于任意实反对称非奇异方阵(必为偶数阶)结论成立.

(3)先证:对于实对称矩阵 A,若Tr(A)=0,则存在正交矩阵 H,使 H^TAH 的主对角元全为零.

对 A 的阶数 n 用归纳法: 当 n=1 时结论显然成立. 假设 n-1 时结论成立, 再证对于 n 阶 矩 阵 结 论 成 立 . 不 妨 设 $A \neq \mathbf{0}$,则 A 的 特 征 值 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 不 全 为 零 ,但 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = Tr(A) = \mathbf{0}$.

因为A是实对称矩阵, 所以存在正交矩阵 H_1 , 使

$$H_1^T A H_1 = diag(\lambda_1, \lambda_2, \dots, \lambda_n) = D$$
.

令
$$n$$
 维列向量 $\mathbf{\alpha}_1 = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right)^T$, $\mathbf{\alpha}_2 = \frac{1}{k} D\mathbf{\alpha}_1$, 其中 $k = \sqrt{\frac{1}{n} \sum_{i=1}^n \lambda_i^2} \neq 0$, 则 $\mathbf{\alpha}_1, \mathbf{\alpha}_2$

是相互正交的单位向量. 把 $\mathbf{\alpha}_1,\mathbf{\alpha}_2$ 扩充成为 \mathbb{R}^n 的标准正交基 $\mathbf{\alpha}_1,\mathbf{\alpha}_2,\cdots\mathbf{\alpha}_n$,则 $H_2=(\mathbf{\alpha}_1,\mathbf{\alpha}_2,\cdots\mathbf{\alpha}_n)$ 是正交矩阵,且

$$DH_2 = D(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_n) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_n) \begin{pmatrix} 0 & k & 0 & \cdots & 0 \\ k & & & & \\ 0 & & & & \\ \vdots & & & A_1 & \\ 0 & & & & \end{pmatrix},$$

其中 A_1 是n-1阶实矩阵,显然也是对称矩阵,且 $Tr(A_1)=Tr(H_2^TAH_2)=Tr(D)=0$.据归纳假设,存在n-1阶正交矩阵Q,使

$$Q^{T}A_{1}Q = \begin{pmatrix} c_{22} & c_{23} & \cdots & c_{2n} \\ c_{32} & c_{33} & \cdots & c_{3n} \\ \vdots & \vdots & & \vdots \\ c_{n2} & c_{n3} & \cdots & c_{nn} \end{pmatrix}, \ \ \sharp \vdash c_{22} = c_{33} = \cdots = c_{nn} = 0.$$

$$\boldsymbol{H}^{T}\boldsymbol{A}\boldsymbol{H} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{Q}^{T} \end{pmatrix} \boldsymbol{H}_{2}^{T}\boldsymbol{H}_{1}^{T}\boldsymbol{A}\boldsymbol{H}_{1}\boldsymbol{H}_{2} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{Q} \end{pmatrix} = \begin{pmatrix} 0 & * \\ * & \boldsymbol{Q}^{T}\boldsymbol{A}_{1}\boldsymbol{Q} \end{pmatrix}$$

的主对角元全为零. 因此, 结论得证.

对于实矩阵G,由于G=A+B,其中 $A=\frac{1}{2}(G+G^T)$ 为实对称矩阵, $B=\frac{1}{2}(G-G^T)$ 为实反对称矩阵,而B的主对角元全为零,所以Tr(A)=Tr(G)=0.根据已证得的结论,存在正交矩阵H,使得 H^TAH 的主对角元全为零,而 H^TBH 仍为实反对称矩阵,其主对角元全为零,因此

$$H^{T}GH = H^{T}AH + H^{T}BH$$

的主对角元全为零. ■

7. **解** 因为x = 1是f(x) + 1的 4 重根,所以x = 1是f'(x)的 3 重根.同理可知x = -1是f'(x)的 3 重根.又因为 $\deg f'(x) < \deg f(x) = 7$,故 $\deg f'(x) = 6$,于是可设

$$f'(x) = a(x-1)^3(x+1)^3 = a(x^6-3x^4+3x^2-1)$$
, 其中 a 待定.

从而有

$$f(x) = a\left(\frac{1}{7}x^7 - \frac{3}{5}x^5 + x^3 - x\right) + b.$$

又由已知 f(1) = -1, f(-1) = 1, 可得

$$a\left(\frac{1}{7} - \frac{3}{5}\right) + b = -1, \ a\left(-\frac{1}{7} + \frac{3}{5}\right) + b = 1.$$

解得
$$a = \frac{35}{16}$$
, $b = 0$, 因此 $f(x) = \frac{5}{16}x^7 - \frac{21}{16}x^5 + \frac{35}{16}x^3 - \frac{35}{16}x$.

8. 证 根据行列式的定义, D为 p! 个乘积项的和:

$$D = \sum_{i_1 i_2 \cdots i_p} (-1)^{\tau(i_1 i_2 \cdots i_p)} a_{i_1}^{b_1} a_{i_2}^{b_2} \cdots a_{i_p}^{b_p},$$

其中 $\tau(i_1i_2\cdots i_n)$ 是排列 $i_1i_2\cdots i_n$ 的逆序数,则

$$\prod_{i=1}^{p} \left| a_i^{b_i} - D_1 \le \left| D \right| \le \prod_{i=1}^{p} \left| a_i^{b_i} + D_1 \right|, \tag{1}$$

其中 $D_1 = \sum_{i_1 i_2 \cdots i_p \neq 12 \cdots p} \left| a_{i_1} \right|^{b_1} \left| a_{i_2} \right|^{b_2} \cdots \left| a_{i_p} \right|^{b_p}$ 是 p! - 1 个乘积项的和,而且每一乘积项中 a_{ij}, b_j 的

下标呈乱序排列. 对于每一个这样的乘积项, 容易证明如下不等式:

$$|a_{i_1}|^{b_1} |a_{i_2}|^{b_2} \cdots |a_{i_p}|^{b_p} \le \frac{p-1}{p!p} \prod_{i=1}^p |a_i|^{b_i}.$$

于是有
$$D_1 \leq (p!-1) \frac{p-1}{p!p} \prod_{i=1}^p \left| a_i \right|^{b_i} = (1 - \frac{1}{p} - \frac{p-1}{p!p}) \prod_{i=1}^p \left| a_i \right|^{b_i}$$
.

代入①式即得所证不等式:

$$\frac{1}{p} \prod_{i=1}^{p} |a_i|^{b_i} < |D| < 2 \prod_{i=1}^{p} |a_i|^{b_i} . \quad \blacksquare$$

2006 年招收硕士研究生入学考试《数学分析》试题

1. 求a, b 使下列函数在x=0 处可导:

$$y = \begin{cases} ax + b, x \ge 0 \\ x^2, x < 0 \end{cases}.$$

- 2. 已知 $a_n > 0$, 级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 发散, 求证级数 $\sum_{n=1}^{\infty} \frac{1}{a_n + 1}$ 也发散.
- 3. 设 $m,n \ge 0$ 为整数,求积分 $\int_{0}^{1} x^{m} (1-x)^{n} dx$ 的值.
- 4. 设a > 0, f(x) 是[-a,a] 上的连续的偶函数,则

$$\int_{-a}^{a} \frac{f(x)}{1+e^{x}} dx = \int_{0}^{a} f(x) dx.$$

5. 设函数 f(x) 在含有 [a,b] 的某个开区间内二次可导且 f'(a) = f'(b) = 0,则存在

$$\xi \in (a,b)$$
 使得 $|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b)-f(a)|$.

6. 设实值函数 f(x) 及其一阶导数在区间 [a,b] 上均连续, 而且 f(a) = 0, 则

$$\max_{x \in [a,b]} |f(x)| \le \sqrt{b-a} \left(\int_a^b |f'(t)|^2 dt \right)^{1/2}, \qquad \int_a^b f^2(x) dx \le \frac{1}{2} (b-a)^2 \int_a^b |f'(t)|^2 dx.$$

7. 设n 是平面区域D的正向边界线C的外法向,则

$$\oint_C \frac{\partial u}{\partial n} ds = \iint_D \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) dx dy.$$

8 . 设曲线 Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的周长和所围成的面积分别是 L 和 S , 还令

$$J = \oint_{\Gamma} (b^2 x^2 + 2xy + a^2 y^2) ds$$
, $\mathbb{M} J = \frac{S^2 L}{\pi^2}$.

- 9. 计算积分 $\int_0^1 \frac{dx}{1+x^3}$ 的值,并证明它也等于数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-2}$ 的和.
- 10. 求曲线 $x = a\cos^3 t$, $y = a\sin^3 t$, a > 0 绕直线 y = x 旋转所围成的曲面的表面积.

2006 年招收硕士研究生入学考试《数学分析》试题解答*

1 **解** 首先要可导必先连续,从而有等式 $b = \lim_{x \to 0^-} (x^2 + 1)$,所以b = 1,再由导数的定义可以

知道
$$\lim_{\Delta x \to 0^-} \frac{(\Delta x^2 + 1) - 1}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{(a\Delta x + b) - 1}{\Delta x}$$
,即有 $a = 0$.

2 **证** 当 $\lim_{n\to\infty} a_n = \infty$ 时,由于 $\lim_{n\to\infty} \frac{a_n}{a_n+1} = 1$,从而这两个级数同敛散,从而就发散了,命题

成立. 当 $\lim_{n\to\infty} a_n = \infty$ 不成立的时候,显然存在子列收敛于有限值,从而就可以知道待判的级

数的项限不可能是零,从而就违背了级数收敛的必要条件,所以待判的级数是发散的.■

3 **解** 令
$$F(m,n) = \int_0^1 x^m (1-x)^n dx$$
,则可以知道(利用分部积分法)

$$F(m,n) = \frac{n}{m+1} \int_0^1 (1-x)^{n-1} x^{m+1} dx = \frac{n}{m+1} F(m+1,n-1)$$
, 再利用递推可以知道

$$F(m,n) = \frac{n}{m+1} \frac{n-1}{m+2} \dots \frac{1}{m+n} F(m+n,0)$$
,即有了

$$F(m,n) = \frac{n!m!}{(m+n)!} \int_0^1 x^{m+n} dx = \frac{n!m!}{(m+n+1)!}$$
,所以问题获得解决,

$$\int_0^1 x^m (1-x)^n dx = \frac{m! n!}{(m+n+1)!}.$$

4 证 由于
$$\int_{-a}^{a} \frac{f(x)}{1+e^{x}} dx - \int_{0}^{a} f(x) dx = \frac{1}{2} \int_{-a}^{a} \frac{1-e^{x}}{1+e^{x}} f(x) dx$$
,用了已知条件的偶函数,下面

通过判别函数的奇偶性可知该被积函数是奇函数,从而就可知该积分是零,也就是命题获得证明.■

5证 由泰勒展开式可以知道

$$f(b) - f(a) = (b - a)f'(a) + \frac{(b - a)^2}{4}f''(x_1) = \frac{(b - a)^2}{4}f''(x_1)$$

$$f(b) - f(a) = (a-b)f'(b) + \frac{(a-b)^2}{4}f''(x_2) = \frac{(b-a)^2}{4}f''(x_2)$$

而由这两个等式可以知道

$$\left| f(b) - f(a) \right| = \frac{(b-a)^2}{4} \frac{\left| f''(x_1) \right| + \left| f''(x_2) \right|}{2} \le \frac{(b-a)^2}{4} \frac{\max\{\left| f''(x_1) \right|, \left| f''(x_2) \right|\} + \max\{\left| f''(x_1) \right|, \left| f''(x_2) \right|\}}{2}$$

 $= \max\{ \big| f \text{ "}(x_1) \big|, \big| f \text{ "}(x_2) \big| \} \text{ , } 不妨假设 \max\{ \big| f \text{ "}(x_1) \big|, \big| f \text{ "}(x_2) \big| \} = \big| f \text{ "}(x_1) \big| \text{ , } 则当 \xi = x_1 \text{ 时命}$

题就成立,从而命题获得证明.■

6.证 关于第一个不等式,我们首先由施瓦茨不等式可以知道

$$J = \oint_{\Gamma} a^2 b^2 ds + \oint_{\Gamma} 2xy ds = a^2 b^2 L + 2 \oint_{\Gamma} xy dst$$

$$2\oint_{\Gamma} xyds = \oint_{\Gamma} xyds + \oint_{\Gamma} xyds = \oint_{\Gamma} xy \frac{dx}{\cos t} + \oint_{\Gamma} xy \frac{dy}{\sin t}$$

 $x = a \cos t$, $y = b \sin t$

$$dx = \frac{-a\sin t}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}ds, dy = \frac{b\cos t}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}ds$$

$$\oint_{\Gamma} xyds = -\int_{-\pi}^{\pi} b\cos t \sqrt{a^2\sin^2 t + b^2\cos^2 t} dx =$$

$$\sqrt{b-a}(\int_a^b |f'(t)|^2 dt)^{1/2} = (\int_a^b 1^2 dx \int_a^b |f'(t)|^2 dt)^{1/2} \ge \int_a^b |f'(t)| dt , \text{ in } \exists \text{ in }$$

[a,b]上的连续性可以知道存在 x_0 使得 $|f(x_0)| = \max_{x \in [a,b]} |f(x)|$ (这个自然不用细说),从而由前面的不等式我们可以知道

$$\int_{a}^{b} |f'(t)| dt \ge \int_{a}^{x_{0}} |f'(t)| dt \ge \left| \int_{a}^{x_{0}} f'(t) dt \right| = \left| f(x_{0}) \right|, 从而可以知道了第一个不等式是成立$$

的. 关于第二个不等式, 因为 $|f(x)| \le \max_{t \in [x,t]} |f(t)|$, 所以可以知道

$$f^{2}(x) \le (x-a) \int_{a}^{x} |f'(t)|^{2} dt \le (x-a) \int_{a}^{b} |f'(t)|^{2} dt$$
 (利用了第一个不等式),从而有了
$$\int_{a}^{b} f^{2}(x) dx \le \int_{a}^{b} (x-a) dx \int_{a}^{b} |f'(x)|^{2} dx = \frac{1}{2} (b-a)^{2} \int_{a}^{b} |f'(x)|^{2} dx$$
,第二个不等式得

证. ■

7 **证** 我们不妨假设 n 的单位向量表示为 $(\cos \alpha, \cos \beta)$,则我们就知道了

$$\oint_C \frac{\partial u}{\partial n} ds = \oint_C \frac{\partial u}{\partial x} \cos \alpha ds + \frac{\partial u}{\partial y} \cos \beta ds , \ \text{而又因为} \cos \alpha ds = dy, \cos \beta ds = -dx \ (注意此处$$

是法向量而不是切向量,所以不是 $\cos \alpha ds = dx,\cos \beta ds = dy$,再利用格林公式我们就可

以知道了
$$\oint_C \frac{\partial u}{\partial n} ds = \iint_D \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) dx dy$$
 是成立的.

8. 证 因为
$$b^2x^2 + 2xy + a^2y^2 = a^2b^2 + 2xy$$
,从而就有了

$$J = \oint_{\Gamma} a^2b^2ds + \oint_{\Gamma} 2xyds = a^2b^2L + 2\oint_{\Gamma} xyds$$
,在 $x = a\cos t$, $y = b\sin t$ 的变换下

有
$$dx = \frac{-a\sin t}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}ds$$
,所以 $\oint_{\Gamma} xyds = \int_{\Gamma} ab\sin t\cos t \frac{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}{-a\sin t}dx$,

进而就有了 $\oint_{\Gamma} xyds = \int_{-\pi}^{\pi} ab \sin t \cos t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} dt$, 显然这个积分是关于奇函数

积分, 所以值为零, 从而
$$J = a^2b^2L = \frac{S^2L}{\pi^2}$$
, 命题获得证明.

9. **i.**
$$\int_0^1 \frac{dx}{1+x^3} = \int_0^1 \frac{x^2 dx}{1+x^3} + \int_0^1 \frac{1-x^2}{1+x^3} dx = \frac{1}{3} \ln 2 + \int_0^1 \frac{1-x}{1-x+x^2} dx, \quad X$$

$$\int_0^1 \frac{1-x}{1-x+x^2} dx = \frac{1}{2} \int_0^1 \frac{1-2x}{1-x+x^2} dx + \frac{1}{2} \int_0^1 \frac{dx}{1-x+x^2}, \text{ 从而可以知道} \int_0^1 \frac{1-x}{1-x+x^2} dx = \frac{\sqrt{3}\pi}{16}$$

于是有
$$\int_0^1 \frac{dx}{1+x^3} = \frac{1}{3} \ln 2 + \frac{\sqrt{3}\pi}{16}$$
.

考虑函数项级数 $\frac{1}{1+x^3} = \sum_{n=0}^{\infty} (-1)^n x^{3n}, 0 \le x < 1$,显然这个级数在 [0,1) 是内闭一致收敛的,

所以对于任何 $0 \le a < 1$,于是便有了

$$\int_0^a \frac{dx}{1+x^3} = \int_0^a \sum_{n=0}^\infty (-1)^n x^{3n} dx = \sum_{n=0}^\infty (-1)^n \int_0^a x^{3n} dx = \sum_{n=0}^\infty (-1)^n \frac{a^{3n+1}}{3n+1}, \text{ fild } \text{ fild } \sum_{n=0}^\infty (-1)^n \frac{1}{3n+1}$$

是收敛的, 而且由前面的内闭一致收敛可以知道 $\sum_{n=0}^{\infty} (-1)^n \frac{a^{3n+1}}{3n+1}$ 在 [0,1) 是一致连续的, 从

而就有了
$$\int_0^1 \frac{dx}{1+x^3} = \lim_{a \to 1^-} \int_0^a \frac{dx}{1+x^3} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{3n+1}$$
,所以命题获得了证明. ■

10.**解** 由解析几何的知识可以把曲线在平面内逆时针旋转 45 度角之后再围绕纵坐标旋转了再求表面积是一样的,利用解析几何中的知识我们知道变换后的曲线方程是

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} a\cos^{3}t \\ a\sin^{3}t \end{pmatrix} = \frac{a}{\sqrt{2}} \begin{pmatrix} \cos^{3}t - \sin^{3}t \\ \cos^{3}t + \sin^{3}t \end{pmatrix}, \text{ 从而考虑曲线}$$

$$x = \frac{a}{\sqrt{2}}(\cos^3 t - \sin^3 t), y = \frac{a}{\sqrt{2}}(\cos^3 t + \sin^3 t)$$
 围绕纵坐标旋转一周的面积, 首先要考虑

的是 y 的范围,显然由于 t 的任意性很容易求出 y 的最大值与最小值,然后接下来的方法就是一个公式,下面直接写出积分式

$$S = \int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} 2\pi \frac{a}{\sqrt{2}} (\cos^3 t + \sin^3 t) \sqrt{\left(3\sin t \cos t \frac{a}{\sqrt{2}}\right)^2 ((\sin t - \cos t)^2 + (\sin t + \cos t)^2)} dt$$

然后在积分中注意被积分的函数的奇偶性很容易计算出结果,就免除了解答. ■

2006 年招收硕士研究生入学考试《高等代数》试题

1. (16 分) 已知
$$\alpha$$
, β , γ 为实数,求 $A = \begin{pmatrix} \alpha & \beta & & \\ \gamma & \alpha & \ddots & & \\ & \ddots & \ddots & \beta & \\ & & \gamma & \alpha \end{pmatrix} \in \mathbb{R}^{n \times n}$ 的行列式的值.

2. (16分)线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots & \dots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \dots + a_{n-1,n}x_n = 0 \end{cases}$$

的系数矩阵为

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \end{pmatrix}.$$

设 $M_{j}(j=1,2,\cdots,n)$ 是在矩阵A中化去第j列所得到的n-1阶子式. 求证:

$$(1)(M_1,-M_2,\cdots,(-1)^{n-1}M_n)$$
是方程组的一个解;

(2)如果A的秩为n-1,那么方程组的解全是 $\left(M_1,-M_2,\cdots,\left(-1\right)^{n-1}M_n\right)$ 的倍数.

3. (16 分) 若
$$\alpha$$
 为一实数,试计算 $\lim_{n \to +\infty} \left(\frac{1}{n} - \frac{\alpha}{n} \right)^n$.

4. (18 分) 设
$$a$$
为实数, $A = \begin{pmatrix} a & 1 & & & \\ & a & \ddots & & \\ & & \ddots & 1 & \\ & & & a \end{pmatrix} \in \mathbb{R}^{100 \times 100}$,求 A^{50} 的第一行元素之和.

- 5 . (18 分) 若 向 量 $\alpha_1,\alpha_2,\cdots,\alpha_s(s>2)$ 线 性 无 关 , 讨 论 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\cdots,\alpha_{s-1}+\alpha_s,\alpha_s+\alpha_1$ 线性相关性.
 - 6. (18 分) 已知二次曲面方程 $x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$ 可以经过正交变换

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = P \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$
化为椭圆柱面方程 $y'^2 + 4z'^2 = 4$. 求 a,b 的值和正交矩阵 P .

7. (16 分)设有实二次型 $f(x) = x^T A x$,其中 x^T 是 x 的转置, A 是 3×3 实对称矩阵 并满足以下方程:

$$A^3 - 6A^2 + 11A - 6I = 0$$
.

试计算

$$\max_{A} \max_{\|x\|=1} f(x).$$

其中 $\|x\|^2 = x_1^2 + x_2^2 + x_3^2$,第一个极大值是满足以上方程的所有实对称矩阵 A 来求.

- 8. (16 分) $A \in \mathbb{R}^{2006 \times 2006}$ 是给定的幂零阵(即: 存在正整数 p 使得 $A^p = 0$ 而 $A^{p-1} \neq 0$),试分析线性方程 Ax = 0 $\left(x \in \mathbb{R}^{2006}\right)$ 非零独立解个数的最大值和最小值.
- 9. $(16\, eta)$ 设 f 是有限维向量空间V 上的线性变换,且 f^n 是V 上的恒等变换,这里 n 是某个正整数. 设 $W = \{v \in V \mid f(v) = v\}$ 。证明W 是V 的一个子空间,并且其维数等于线性变换 $\left(f + f^2 + \dots + f^n\right)/n$ 的迹.

2006 年招收硕士研究生入学考试《高等代数》试题解答

1. 解

记 $D_n = |A|$,将它按第一列展开,

$$D_n = |A| = \alpha D_{n-1} - \gamma \beta D_{n-2},$$

得方程
$$x^2 - \alpha x + \gamma \beta = 0$$
,解得 $x_{1,2} = \frac{\alpha \pm \sqrt{\alpha^2 - 4\gamma \beta}}{2}$.

从而

$$D_{n} - x_{1}D_{n-1} = x_{2} (D_{n-1} - x_{1}D_{n-2}) = x_{2}^{n-2} (D_{2} - D_{1}) = x_{2}^{n-2} (\alpha^{2} - \gamma\beta - \alpha)$$

$$D_{n} - x_{2}D_{n-1} = x_{1} (D_{n-1} - x_{2}D_{n-2}) = x_{1}^{n-2} (D_{2} - D_{1}) = x_{1}^{n-2} (\alpha^{2} - \gamma\beta - \alpha)$$

当 $\alpha^2 \neq 4\gamma\beta$ 时, $x_1 \neq x_2$,则

$$D_{n} = \frac{x_{2}^{n-2} - x_{1}^{n-2}}{x_{2} - x_{1}} \left(\alpha^{2} - \gamma \beta - \alpha\right),$$

当
$$\alpha^2 = 4\gamma\beta$$
时, $x_1 = x_2 = \frac{\alpha}{2}$,则

$$D_n = nx_1^{n-2} \left(\alpha^2 - \gamma\beta - \alpha\right) + x_1^{n-2}\alpha . \quad \blacksquare$$

2. 证

(1) 构造一个行列式,

$$D(i) = \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \end{vmatrix},$$

显然, D(i) = 0 $(i = 1, 2, \dots, n-1)$.

将D(i)按第一行展开得,

$$D(i) = a_{i1}M_1 - a_{i2}M_2 + \dots + (-1)^{n-1}M_n \qquad (i = 1, 2, \dots, n-1),$$

从而 $(M_1,-M_2,\cdots,(-1)^{n-1}M_n)$ 是方程组的一个解.

(2) 首先, A 的 秩为 n-1 , 则 方 程 组 的 解 空 间 的 维 数 为 1 . 而 由 上 问 $\left(M_1, -M_2, \cdots, \left(-1\right)^{n-1} M_n\right)$ 是一个解,故只须证 $\left(M_1, -M_2, \cdots, \left(-1\right)^{n-1} M_n\right)$ 非零即可.

另一方面,A的秩为n-1,则A有一n-1阶子式不为零,即存在 M_k ,有 $M_k \neq 0$,

从而
$$\left(M_1,-M_2,\cdots,\left(-1\right)^{n-1}M_n\right)$$
非零. 问题得证. \blacksquare

3. 解

记
$$A = \begin{pmatrix} 1 & \frac{\alpha}{n} \\ \frac{\alpha}{n} & 1 \end{pmatrix}$$
 ,

当 $\alpha = 0$,显然

$$\lim_{n \to +\infty} \begin{pmatrix} 1 & \frac{\alpha}{n} \\ \frac{\alpha}{n} & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

当 α ≠ 0 时,

$$\left|\lambda E - A\right| = \left(\lambda - 1\right)^2 - \frac{\alpha^2}{n^2} = 0,$$

从而 A 的特征值为 $\lambda_{1,2} = 1 \pm \frac{\alpha}{n}$.

对应于特征值 $\lambda_1 = 1 + \frac{\alpha}{n}$ 的特征向量为

$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
,

对应于特征值 $\lambda_1 = 1 + \frac{\alpha}{n}$ 的特征向量为

$$\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
,

单位正交化,

$$\beta_1 = \frac{\alpha_1}{\sqrt{2}}, \beta_2 = \frac{\alpha_2}{\sqrt{2}},$$

从而,

$$P^{-1}AP = \begin{pmatrix} 1 + \frac{\alpha}{n} \\ 1 - \frac{\alpha}{n} \end{pmatrix}, P = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix},$$

从而
$$A^n = P \begin{pmatrix} \left(1 + \frac{\alpha}{n}\right)^n \\ \left(1 - \frac{\alpha}{n}\right)^n \end{pmatrix} P^{-1},$$

$$\lim_{n \to +\infty} A^n = \lim_{n \to +\infty} P \begin{pmatrix} \left(1 + \frac{\alpha}{n}\right)^n \\ \left(1 - \frac{\alpha}{n}\right)^n \end{pmatrix} P^{-1} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} e^{\alpha} \\ e^{-\alpha} \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

$$= \frac{1}{2} \begin{pmatrix} e^{\alpha} + e^{-\alpha} & -e^{\alpha} + e^{-\alpha} \\ -e^{\alpha} + e^{-\alpha} & e^{\alpha} + e^{-\alpha} \end{pmatrix}$$

4. 解

先用数学归纳法,证
$$A^n = \begin{pmatrix} a^n & C_n^1 a^{n-1} & \cdots & C_n^{100-1} a^{m-100+1} \\ & a^n & \cdots & C_n^{100-2} a^{m-100+2} \\ & & \ddots & & \vdots \\ & & & a^n \end{pmatrix}$$
.

当n=2时,

$$A^2 = egin{pmatrix} a^2 & 2a & \cdots & 0 \ & a^2 & \cdots & 0 \ & & \ddots & dots \ & & & a^2 \end{pmatrix}$$
,满足结论.

假定n=k-1时,结论成立. 则当n=k时,

$$A^{k} = AA^{k-1} = \begin{pmatrix} a & 1 & & \\ & a & \ddots & \\ & & \ddots & 1 \\ & & a \end{pmatrix} \begin{pmatrix} a^{k-1} & C_{k-1}^{1}a^{k-2} & \cdots & C_{k-1}^{100-1}a^{k-1-100+1} \\ & a^{k-1} & \cdots & C_{k-1}^{100-2}a^{k-1-100+2} \\ & & \ddots & \vdots \\ & & a^{k-1} \end{pmatrix},$$

$$= \begin{pmatrix} a^{k} & C_{k}^{1}a^{k-1} & \cdots & C_{k}^{100-1}a^{k-100+1} \\ & a^{k} & \cdots & C_{k}^{100-2}a^{k-100+2} \\ & & \ddots & \vdots \\ & & & a^{k} \end{pmatrix},$$

结论对n = k成立.

从而,
$$A^{50}$$
的第一行元素之和为 $a^{50}+C_{50}^{1}a^{49}+\cdots+C_{50}^{49}a+1=\left(a+1\right)^{50}$.

5. 证

假定它们线性相关,即存在不全为零的数 k_1, \dots, k_n ,使得

$$k_1(\alpha_1+\alpha_2)+\cdots+k_{n-1}(\alpha_{n-1}+\alpha_n)+k_n(\alpha_n+\alpha_1)=0$$

由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关,知

$$k_1 + k_2 = 0$$

 $k_2 + k_3 = 0$
 $k_3 + k_4 = 0$,
 \vdots
 $k_1 + k_n = 0$

也即

$$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} = 0.$$

而系数矩阵

$$A = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{pmatrix},$$

当n 为偶数时, $|A|=1+1=2\neq 0$,从而r(A)=n+1,即方程组只有零解,产生矛盾。从 而当n 为偶数时向量组 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\cdots,\alpha_{n-1}+\alpha_n,\alpha_n+\alpha_1$ 线性无关。

当 n 为 奇 数 时 , |A|=1-1=0 , 即 方 程 组 有 非 零 解 , 可 解 得 一 组 解 为 $\Big(-1,1,\cdots, \left(-1\right)^k,\cdots,1\Big).$ 从而当 n 为奇数时向量组 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\cdots,\alpha_{n-1}+\alpha_n,\alpha_n+\alpha_1$ 线性相关. \blacksquare

6. 解

二次曲面的二次型矩阵为

$$A = \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix},$$

由题意,0, 1, 4 为 A 的特征值. 即

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -b & -1 \\ -b & \lambda - a & -1 \\ -1 & -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - a) - b^2 (\lambda - 1) - 2\lambda + a + 1 - 2b$$
$$= \lambda (\lambda - 1)(\lambda - 4)$$

解得, a = 3, b = 1.

这样,对应于特征值为 $\lambda = 0.1.4$ 的特征向量分别为,

$$\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix},$$

显然它们是正交的,单位化得,

$$\beta_1 = \frac{1}{\sqrt{2}} \alpha_1, \beta_2 = \frac{1}{\sqrt{3}} \alpha_2, \beta_3 = \frac{1}{\sqrt{6}} \alpha_3,$$

从而得正交矩阵P

$$P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix}. \quad \blacksquare$$

7. 解

由 $A^3-6A^2+11A-6I=0$,此即 A 的特征多项式,知 A 的特征值为 1, 2, 3. 而对 $f(x)=x^TAx$,有 $\lambda_1x^Tx\leq x^TAx\leq \lambda_2x^Tx$,其中 λ_1,λ_2 分别为 A 的最小、最大特征值。且 f(x) 的极值在对应 λ_1,λ_2 的特征向量方向上.

从而 $\max_{A} \max_{\|x\|=1} f(x) = 3$.

8. 解

首先,证 $rank(AB) \ge rank(A) + rank(B) - n$

$$\begin{pmatrix} E_n & 0 \\ -A & E_s \end{pmatrix} \begin{pmatrix} E_n & B \\ A & 0 \end{pmatrix} \begin{pmatrix} E_n & -B \\ 0 & E_m \end{pmatrix} = \begin{pmatrix} E_n & 0 \\ 0 & -AB \end{pmatrix},$$

$$rank \begin{pmatrix} E_n & B \\ A & 0 \end{pmatrix} = rank (E_n) + rank (-AB) = n + rank (AB),$$

但

$$rank \begin{pmatrix} E_n & B \\ A \end{pmatrix} = rank \begin{pmatrix} B & E_n \\ A \end{pmatrix} \ge rank (A) + rank (B),$$

从而得 $rank(AB) \ge rank(A) + rank(B) - n$.

这样,

$$0 = rank(A^{p}) = rank(AA^{p-1}) \ge rank(A) + rank(A^{p-1}) - n$$

$$\ge 2rank(A) + rank(A^{p-2}) - 2n \ge \cdots$$

$$\ge p \times rank(A) - (r-1)n$$

从而, $rank(A) \leq \frac{(p-1)n}{p}$.

当
$$n = 2006$$
 时,有 $rank(A) \le \frac{2006(p-1)}{p}$.

又因为,A是幂零阵的充要条件是存在可逆阵P,使得

其中至少含有一个 p 级约当块,则显然 $rank(A) \ge p$.

从而
$$p \le rank(A) \le \frac{2006(p-1)}{p}$$
.

则又 Ax = 0 $(x \in \mathbb{R}^{2006})$ 非零独立解的个数为 n - rank(A),

则其个数的最大最小值为
$$n-p,n-\frac{2006(p-1)}{p}$$
.

9. 证

(1)设 $\forall v_1, v_2 \in W, \forall k \in P$, P为数域,则

$$f(v_1 + v_2) = f(v_1) + f(v_2) = v_1 + v_2$$
,
 $f(kv_1) = kf(v_1) = kv_1$

则, $v_1 + v_2, kv_1 \in W$,即 $W \in V$ 的一个子空间.

(2) 首先,
$$f^n = I$$
 ,则 $(I - f)(I + f + \dots + f^{n-1}) = 0$,假定 ,这里 n 是使 $f^n = I$ 成

立的最小值,从而 $f(x)=x^n-1$ 为 f 的最小多项式. $1,\omega^i, i=1,2,\cdots n-1, \omega=e^{\frac{2\pi}{n}i}$ 是 f 的特征值,它们两两不相同,从而 f 相似于对角矩阵. 也即

其中,
$$E = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}, E_{\omega^i} = \begin{pmatrix} \omega^i & & \\ & \ddots & \\ & & \omega^i \end{pmatrix}$$
, Q 为可逆变换.

显然W为对应特征值为1的特征子空间,由f相似于对角矩阵,显然其维数 $\dim W$ 与特征值1的重数相同,不妨设为r.

另一方面,

即
$$Trig(Q^{-1}ig(ig(f+f^2+\cdots+f^nig)/nig)Qig)=r$$
, 又由相似矩阵有相同的迹,从而
$$Trig(ig(f+f^2+\cdots+f^nig)/nig)=r$$
,

从而 dim
$$W = Tr((f + f^2 + \dots + f^n)/n)$$
.

2007年招收硕士研究生入学考试《数学分析》试题及解答

1. 求幂级数 $\sum_{n=0}^{\infty} \frac{n^2+1}{2^n n!} x^n$ 的收敛域,并求和

解: 取收敛半径为R, 设 $a_n = \frac{n^2 + 1}{2^n n!} R^n$, 取临界状态,则有

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 \Rightarrow R = \lim_{n \to \infty} \frac{(n^2 + 1)2^{n+1}(n+1)!}{[(n+1)^2 + 1]2^n n!} = +\infty$$

从而只收敛域为 $\left(-\infty,+\infty\right)$, 取 $y=\frac{x}{2}$, 可知

$$\sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^n = \sum_{n=0}^{\infty} \frac{n^2 + 1}{n!} y^n = \sum_{n=0}^{\infty} \frac{1}{n!} y^n + \sum_{n=0}^{\infty} \frac{n + 1}{n!} y^{n+1} = e^y + y \sum_{n=0}^{\infty} \frac{n + 1}{n!} y^n = e^y + y \left(\sum_{n=0}^{\infty} \frac{y^{n+1}}{n!}\right)^y$$

$$= e^{y} + y \left(y \left(\sum_{n=0}^{\infty} \frac{y^{n}}{n!} \right) \right)' = e^{y} + y \left(y e^{y} \right)' = e^{y} \left(1 + y + y^{2} \right) = e^{\frac{x}{2}} \left(1 + \frac{x}{2} + \frac{x^{4}}{4} \right)$$

2. 讨论积分 $\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx$ 的绝对收敛和条件收敛

解: 取
$$\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx = \int_0^1 \frac{e^{\sin x} \sin 2x}{x^p} dx + \int_1^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx = I_1 + I_2$$

当
$$p \le 0$$
 时,由于 $\int_{2n\pi}^{2n\pi+\frac{\pi}{2}} \frac{e^{\sin x} \sin 2x}{x^p} dx \ge \int_{2n\pi}^{2n\pi+\frac{\pi}{2}} \sin 2x dx = 1 > 0$,

从而由 Cauchy 收敛准则知,此时 $\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx$ 发散

当 p > 0时,由于 $\frac{e^{\sin x} \sin 2x}{x^p} \sim \frac{2}{x^{p-1}} (x \to 0 + 0)$,当且仅当 p < 2,积分 I_1 收敛,又因为

$$I_2 = \int_1^{+\infty} \frac{2\sin x}{x^p} d\left(e^{\sin x}\right) = -2e^{\sin 1}\sin 1 - 2\int_1^{+\infty} \frac{e^{\sin x}\cos x}{x^p} dx + 2p\int_1^{+\infty} \frac{e^{\sin x}\sin x}{x^{p+1}} dx,$$

其中
$$\frac{1}{x^p}$$
在 $\left[1,+\infty\right)$ 单调减,当 $x\to+\infty$ 时趋于零; $\forall A>1$,有 $\left|\int_1^A e^{\sin x}\cos x dx\right|\leq 2e$

根据 *Dirichlet* 收敛准则,是
$$\int_1^{+\infty} \frac{e^{\sin x} \cos x}{x^p} dx$$
 收敛,而 $\int_1^{+\infty} \frac{e^{\sin x} \left| \sin x \right|}{x^{1+p}} dx \le e \int_1^{+\infty} \frac{dx}{x^{1+p}} = \frac{e}{p}$,

故
$$\int_1^{+\infty} \frac{e^{\sin x} \sin x}{x^p} dx$$
 收敛,从而当且仅当 $0 时,积分 $\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx$ 收敛,又有$

$$p \in (0,1]$$
时,有

$$\int_{0}^{+\infty} \frac{e^{\sin x} \left| \sin 2x \right|}{x^{p}} dx \ge \int_{\pi}^{+\infty} \frac{e^{\sin x} \left| \sin 2x \right|}{x^{p}} dx \ge \frac{1}{e} \lim_{n \to +\infty} \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} \frac{\left| \sin 2x \right|}{x} dx \ge \frac{1}{e} \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} \left| \sin 2x \right| dx$$

$$=\frac{1}{e\pi}\lim_{n\to+\infty}\sum_{k=1}^{n}\frac{1}{k+1}=+\infty$$
,因此,此时 $\int_{0}^{+\infty}\frac{e^{\sin x}\sin 2x}{x^{p}}dx$ 条件收敛,当 $p\in(1,2)$ 时,显然

积分
$$\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx$$
 绝对收敛

3. 计算曲面积分 $\iint_{\Sigma} yzdydz + (x^2 + z^2)ydzdx + xydxdy$,其中 Σ 为曲面 $4 - y = x^2 + z^2$ 在 xoz 平面的的右侧部分的外侧。

解: 取 Σ_1 为曲面 $\begin{cases} y=0 \\ x^2+z^2=4 \end{cases}$,它的方向就为y轴的负方向,D为曲面 Σ 和 Σ_1 形成的几何

体,则有
$$\iint_{\Sigma_1} yzdydz + (x^2 + z^2)ydzdx + xydxdy = 0$$

从而
$$\iint_{\Sigma} yzdydz + (x^2 + z^2)ydzdx + xydxdy$$

$$= \iint\limits_{\Sigma} yz dy dz + \left(x^2 + z^2\right) y dz dx + xy dx dy + \iint\limits_{\Sigma_1} yz dy dz + \left(x^2 + z^2\right) y dz dx + xy dx dy$$

$$= \iiint_D (x^2 + z^2) dx dy dz = \int_0^4 dy \iint_{x^2 + z^2 \le 4 - y} (x^2 + z^2) dx dz = \int_0^4 dy \int_0^{2\pi} d\theta \int_0^{\sqrt{4 - y}} r^2 r dr = \frac{32}{3} \pi$$

4. 证明下列不等式;

$$(1)x^{n}(1-x) < \frac{1}{ne}(0 < x < 1, n$$
为正整数)

$$(2)x^{y} + y^{x} > 1(x, y > 0)$$

证明:
$$(1)$$
 设 $f(x) = x^n (1-x)$, 所以 $f'(x) = nx^{n-1} - (n+1)x^n$, 则有 $f(x)$ 在点

$$x = \frac{n}{n+1}$$
 取得最大值;

$$x^{n} \left(1 - x \right) \le f \left(\frac{n}{n+1} \right) = \left(\frac{n}{n+1} \right)^{n} \left(1 - \frac{n}{n+1} \right) = \frac{1}{\left(1 + \frac{1}{n} \right)^{n+1}} \frac{n+1}{n} \left(1 - \frac{n}{n+1} \right) < \frac{1}{ne}$$

(2) 由分析, 只需讨论0 < x, y < 1, 根绝对称性, 可设 $y = tx(0 < t \le 1)$ 此时

有
$$x^y + y^x = x^{tx} + (tx)^x = (x^x)^t + t^x x^x$$
,又由于 x^x 在 $x = \frac{1}{e}$ 处达到最小值 $e^{-\frac{1}{e}}$ 取为A

,且有 $x^y + y^x \ge A^t + tA(t^x > t)$,又由于函数 $g(t) = A^t + tA$ 只有一个极小值点

$$t_0 = 1 - e < 0$$
,所以 $g(t)$ 在 $(0,1]$ 上递增,所以 $g(t) \ge g(0) = 1$,

即
$$x^y + y^x > 1$$

5. 设级数
$$\sum_{n=1}^{\infty} b_n$$
 收敛,且 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 绝对收敛,证明:级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛

证明: 由 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 绝对收敛可知 a_n 有界,不妨设为 $|a_n| \leq m$,

由级数 $\sum_{n=1}^{\infty} b_n$ 收敛可知, $\forall \varepsilon > 0, \exists N, \exists n > N$ 时,

若记
$$S_{n+i} = \sum_{k=n+1}^{n+i} b_k (i=1,2,\cdots,p)$$

则有,
$$\left|\sum_{k=n+1}^{n+p} a_k b_k\right| = \left|a_{n+1} b_{n+1} + a_{n+2} b_{n+2} + \dots + a_{n+p} b_{n+p}\right|$$

$$= \left| S_{n+1} a_{n+1} + \left(S_{n+2} - S_{n+1} \right) a_{n+2} + \cdots \left(S_{n+p} - S_{n+p-1} \right) a_{n+p} \right|$$

$$= \left| S_{n+1} \left(a_{n+1} - a_{n+2} \right) + \cdots S_{n+p-1} \left(a_{n+p-1} - a_{n+p} \right) + S_{n+p} a_{n+p} \right|$$

$$\leq |S_{n+1}||a_{n+1}-a_{n+2}|+\cdots+|S_{n+p-1}||a_{n+p-1}-a_{n+p}|+|S_{n+p}||a_{n+p}|$$

$$\leq \frac{\varepsilon}{1+M} \left(\sum_{k=n+1}^{n+p} \left| a_{k+1} - a_k \right| + \left| a_{n+p} \right| \right) \leq \frac{\varepsilon}{1+M} \left(1 + M \right) = \varepsilon \left(\forall p \in N^* \right)$$

所以
$$\sum_{n=1}^{\infty} a_n b_n$$
 收敛

6. 假设f(x)为二次连续可微实值函数,对于所有的实数x,满足 $|f(x)| \le 1$ 且满足

$$(f(0))^2 + (f'(0))^2 = 4$$
。证明存在实数 x_0 ,满足 $f(x_0) + f''(x_0) = 0$

证明: 由分析存在 $c_1 \in (-2,0), c_2 \in (0,2)$ 有

$$f'(c_1) = \frac{f(0) - f(-2)}{2}, f'(c_2) = \frac{f(2) - f(0)}{2}$$
从而有

$$|f'(c_1)| \le 1, |f'(c_2)| \le 1$$
, $\Re F(x) = (f(x))^2 + (f'(x))^2$,

则有 $F(0) = 4, F(c_1) \le 2, F(c_2) \le 2$ 就有F(x)在 (c_1, c_2) 有最大值,从而存在点 x_0 ,有

$$F'(x_0) = 0$$
, $\mathbb{P} 2f'(x_0) \lceil f(x_0) + f''(x_0) \rceil = 0$,

若
$$f'(x_0) = 0$$
, $F(x_0) = (f'(x_0))^2 \le 1$ 这和 $F(x_0) \ge 4$ 矛盾 所以

$$f(x_0) + f''(x_0) = 0$$

7. 假设 $|f(x)| \le 1$ 和 $|f''(x)| \le 1$ 对一切 $x \in [0,2]$ 成立,证明:在[0,2]上有 $|f'(x)| \le 2$

证明: 由分析存在点 $\eta_1 \in (0,2), \eta_2 \in (0,2)$ 有

$$f(0) = f(x) + f'(x)(-x) + \frac{f''(\eta_1)}{2}(-x)^2$$
 (1)

$$f(2) = f(x) + f'(x)(2-x) + \frac{f''(\eta_2)}{2}(2-x)^2$$
 ②

①-②可有

$$f'(x) = \frac{f''(\eta_1)x^2 - f''(\eta_2)(2-x)^2}{4} + \frac{f(2) - f(0)}{2}$$

$$|f'(x)| \le \frac{x^2 + (2-x)^2}{4} + 1 \Rightarrow |f'(x)| \le \frac{2(x-1)^2 + 2}{4} + 1 \Rightarrow |f'(x)| \le 2$$

8. 设 $D = [0,1] \times [0,1]$, f(x,y)是定义在D上的二元函数, f(0,0) = 0, 且f(x,y)在

$$(0,0)$$
处可微。求极限: $\lim_{x\to 0^+} \frac{\int_0^{x^2} dt \int_x^{\sqrt{t}} f(t,u) du}{1-e^{-\frac{x^4}{4}}}$

解:
$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} dt \int_{x}^{\sqrt{t}} f(t,u) du}{1 - e^{-\frac{x^{4}}{4}}} = \lim_{x \to 0^{+}} \frac{-\int_{0}^{x^{2}} dt \int_{\sqrt{t}}^{x} f(t,u) du}{1 - e^{-\frac{x^{4}}{4}}} = \lim_{x \to 0^{+}} \frac{-\int_{0}^{x} du \int_{0}^{u^{2}} f(t,u) du}{1 - e^{-\frac{x^{4}}{4}}}$$

$$= \lim_{x \to 0^+} \frac{-\int_0^{x^2} f(t, x) du}{x^3}$$
由于 $f(x, y)$ 在 $(0, 0)$ 处可微,故存在

$$0 < \xi < x^2$$
 使

$$\lim_{x \to 0^{+}} \frac{-\int_{0}^{x^{2}} f(t, x) du}{x^{3}} = -\lim_{x \to 0^{+}} \frac{f(\xi, x)}{x} = -\lim_{x \to 0^{+}} \frac{f(0, 0) + f_{x}(0, 0)\xi + f_{y}(0, 0)x + o(x + \xi)}{x}$$
$$= -f_{y}(0, 0)$$

9. 设
$$-\infty < x_0 < +\infty$$
, $\varphi(x)$ 和 $f(x)$ 在 $[x_0, x_0 + h]$ 上连续, 且存在 $M > 0, K > 0$, 使得
$$|\varphi(x)| \le M \left(1 + K \int_{x_0}^x |\varphi(t)f(t)| dt \right), x \in (x_0, x_0 + h).$$

证明: $\varphi(x)$ 必满足

$$|\varphi(x)| \le M \exp\left\{KM \int_{x_0}^x |f(t)| dt\right\}, x \in (x_0, x_0 + h).$$

证明: 设
$$u(x) = M\left(1 + K \int_{x_0}^x |\varphi(t)f(t)| dt\right), x \in (x_0, x_0 + h)$$
从而有

$$|\varphi(x)| \le u(x); \quad u'(x) = MK |\varphi(x) f(x)| \Rightarrow u'(x) \le MKu(x) |f(x)|$$

$$\Rightarrow \left(u(x)\exp\left(-MK\int_{x_0}^x |f(t)|dt\right)\right)' \le 0; x \in (x_0, x_0 + h)$$

$$\Rightarrow u(x)\exp\left(-MK\int_{x_0}^x |f(t)|dt\right) - M \le 0; x \in (x_0, x_0 + h)$$

$$\Rightarrow u(x) \le M \exp\left(MK \int_{x_0}^x |f(t)| dt\right); x \in (x_0, x_0 + h)$$

$$\Rightarrow \left| \varphi(x) \right| \le M \exp\left\{ KM \int_{x_0}^x \left| f(t) \right| dt \right\}, x \in (x_0, x_0 + h)$$

10. 设
$$\alpha \in (0,1)$$
, 记 $e = (1,1,\cdots,1)^T \in \mathbb{R}^n$, $S\left(\frac{e}{n},\frac{\alpha}{n}\right) = \left\{x \in \mathbb{R}^n : \left\|x - \frac{e}{n}\right\| \le \frac{\alpha}{n}\right\}$, 对于

$$x \in S\left(\frac{e}{n}, \frac{\alpha}{n}\right)$$
且 $e^T x = 1$,证明: $-\sum_{i=1}^n \ln x_i \le n \ln n + \frac{\alpha^2}{2(1-\alpha)^2}$;

证明: 取 $x = (x_1, \dots, x_n)^T$, $\forall 1 \le i \le n$, 取 $z_i = nx_i - 1$, 从而由题意可以推的

$$\sum_{i=1}^{n} z_{i} = 0; \sum_{i=1}^{n} z_{i}^{2} \leq \alpha^{2};$$
 利用泰勒级数可知

$$-\sum_{i=1}^{n} \ln\left(1+z_{i}\right) = -\sum_{i=1}^{n} \sum_{m=1}^{\infty} \left(-1\right)^{m-1} \frac{z_{i}^{m}}{m} \leq \sum_{i=1}^{n} \sum_{m=1}^{\infty} \frac{\left|z_{i}\right|^{m}}{m} = \sum_{m=1}^{+\infty} \sum_{i=1}^{n} \frac{\left|z_{i}\right|^{m}}{m}$$

$$\sum_{i=1}^{n} \frac{\left|z_{i}\right|^{m}}{m} \leq \frac{\left(\sum_{i=1}^{n} \left|z_{i}\right|^{2}\right)^{\frac{m}{2}}}{m} \leq \frac{\alpha^{2}}{m}$$
从而 $-\sum_{i=1}^{n} \ln\left(1+z_{i}\right) \leq \sum_{m=2}^{\infty} \frac{\alpha^{m}}{m} \leq \frac{\alpha^{2}}{2\left(1-\alpha\right)^{2}}$ 从而原命题得证.

2007年招收硕士研究生入学考试《高等代数》试题及解答

中国科学院数学与系统科学研究院 2007年硕士研究生招生初试试题 高等代数

David Zhang Dept of Math Sun Yat-sen University

December 4, 2007

1

设A是方阵,I是单位阵,I4 $^2 + A - 3I = 0$.证明:

- A 2I可逆;
- 2) 求满足下列方程的方阵X:

$$AX + 3(A - 2I)^{-1}A = 5X + 8I$$

证明:

1)由

$$(A-2I) \cdot \frac{A+3I}{-3} = I = \frac{A+3I}{-3} \cdot (A-2I)$$

即知.

2) 同1),A-5I可逆,而有

$$X = (A - 5I)^{-1}[8I - 3(A - 2I)^{-1}A] = 8(A - 5I)^{-1} - 3(-8A + 13I)^{-1}A$$

2

3

A为n阶矩阵、且 $A^k = 0$.证明:

1) 矩阵
$$\sum_{j=0}^{k-1} \frac{A^j}{j!}$$
可逆;

2) 矩阵
$$I + A = \sum_{j=0}^{k-1} \frac{A^j}{j!}$$
相似.

证明:

1) 由

$$\begin{split} \left(\sum_{j=0}^{k-1} \frac{A^j}{j!}\right) \cdot \left(\sum_{l=0}^{k-1} (-1)^l \frac{A^l}{l!}\right) &= \sum_{j,l=1}^{k-1} (-1)^l \frac{A^{j+l}}{j!l!} \\ &= \sum_{s=0}^{k-1} A^s \sum_{j+l=s} (-1)^l \frac{1}{j!l!} \\ &= I + \sum_{s=1}^{k-1} \frac{A^s}{s!} \sum_{l=0}^{s} \binom{s}{l} (-1)^l 1^{s-l} \\ &= I \end{split}$$

即知.

2) 由矩阵Jordan标准型理论、

$$\exists P$$
可逆, s.t. $P^{-1}AP = J$

其中

$$J = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{k_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k-s}(\lambda_s) \end{pmatrix}, \quad J_{k_t}(\lambda_i) = \begin{pmatrix} \lambda_i & 0 & \cdots & 0 \\ 0 & \lambda_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_i \end{pmatrix}$$

4

设 $A,B:V\to V$ 为线性变换,A可逆,B幂等($\exists k\in\mathbb{N},\ s.t.\ B^k=0$),且AB=BA.证明: $Ker(A-B)=\{0\}.$ 证明:

$$\forall x \in Ker(A-B), Ax = Bx$$

两边用 B^{k-1} 作用,再由A,B的可交换性及A的可逆性有

$$B^{k-1}x = A^{-1}(AB^{k-1}x) = A^{-1}B^{k-1}Ax = A^{-1}B^kx = 0$$

再用 B^{k-2} 作用,有

$$B^{k-2}x = 0$$

如此继续下去,作用了k-1次之后,有

$$x = A^{-1}Ax = A^{-1}Bx = 0 \square$$

5

对常微分系统

$$\frac{dZ}{dt} = J^{-1}\nabla H(Z), J = \begin{pmatrix} O_n & I_n \\ -I_n & O_n \end{pmatrix}, Z = (z_1, \cdots, z_{2n})^T \in \mathbb{R}^{2n}$$

这里的 O_n,I_n 分别表示n阶零方阵和n阶单位阵,这里及以下的符号T表示转置,而 $\nabla H=(rac{\partial H}{\partial z_1},\cdots,rac{\partial H}{\partial z_{2n}})^T$ 是函数H的梯度.证明:

- 1) $J^{-1} = J^T = -J$;
- 2) 系统的相流 $\{g^t:\mathbb{R}^{2n} \to \mathbb{R}^{2n} | t \in \mathbb{R}\}$ 总是满足:

$$\left[\frac{\partial g^t(Z)}{\partial Z}\right]^T J \left[\frac{\partial g^t(Z)}{\partial Z}\right] = J;$$

注:所谓系统的相流是指任意给定一个 $Z,g^t(Z)$ 是系统的解:

$$\frac{dg^t(Z)}{dt} = J^{-1}\nabla H(g^t(Z)).$$

3) 证明更一般的结论:若 J^{-1} 变为 $K^{-1}(Z),K(Z)=(k_{ab})\in\mathbb{R}^{2n\times 2n}$ 反对称,可 逆且满足恒等式 $\frac{\partial k_{ab}}{\partial z_c}+\frac{\partial k_{bc}}{\partial z_a}+\frac{\partial k_{ca}}{\partial z_b}=0,1\leq a,b,c\leq 2n$,则系统的相流 总是满足:

$$\left[\frac{\partial g^t(Z)}{\partial Z}\right]^T K(g^t(Z)) \left[\frac{\partial g^t(Z)}{\partial Z}\right] = K(Z).$$

这更一般情况下系统的相流是指任意给定一个 $Z,g^t(Z)$ 是系统的解:

$$\frac{dg^t(Z)}{dt} = K^{-1}(Z)\nabla H(g^t(Z))$$

6

设A是 $n \times n$ 正定实对称矩阵, $y \in \mathbb{R}^n$,且 $y \neq 0$.证明极限

$$\lim_{m \to \infty} \frac{y^T A^{m+1} y}{y^T A^m y}$$

存在且等于A的一个特征值(其中Rn表示n维实数域).

证明:由题意,存在正交阵P,使得 $A = P^T \Lambda P = P^{-1} \Lambda P$,其中

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

且 $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ 为A的特征值.于是

$$\begin{array}{ll} \lim_{m \to \infty} \frac{y^T A^{m+1} y}{y^T A^m y} & = & \lim_{m \to \infty} \frac{y^T A^{m+1} y}{y^T A^m y} \\ & = & \lim_{m \to \infty} \frac{\sum_{k=1}^n \lambda_k^{m+1} y_k^2}{\sum_{k=1}^n \lambda_k^m y_k^2} \\ & = & \lambda_j \lim_{m \to \infty} \frac{\sum_{k=1}^{j-1} (\lambda_k / \lambda_j)^{m+1} y_k^2 + y_j^2}{\sum_{k=1}^{j-1} (\lambda_k / \lambda_j)^m y_k^2 + y_j^2} (\sharp \Phi j = \max\{k \mid y_k \neq 0\}) \\ & = & \lambda_j \ \Box \end{array}$$

7

- 1) 设 $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ 为线性变换A在一组基下的矩阵表示,求A的不变子空间;
- 2) 设 \mathbb{R}^n 上的线性变换 \mathbb{A} 在基 α_1,\cdots,α_n 下的方阵表示为对角形,且对角线上元素互异,问 \mathbb{A} 的所有不变子空间共有多少个?

解:

1) 设A在基α1,α2下的矩阵表示为A.即

$$\mathbb{A}(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2)A$$
 或者
$$\begin{cases} \mathbb{A}\alpha_1 = \alpha_1 + \alpha_2 \\ \mathbb{A}\alpha_2 = -\alpha_1 \end{cases}$$

于是A不可能有非平凡的真不变子空间W.

若不然其维数为1,而有

a)
$$W = span\{\alpha_1\}$$

 $\mathbb{A}\alpha_1 = \alpha_1 + \alpha_2 \notin W$
b) $W = span\{\alpha_1\}$

b)
$$W = span\{\alpha_1\}$$

 $A\alpha_2 = -\alpha_1 \notin W$

于而有A的不变子空间只有平凡的,即{0}和V.

2) 由題意,

$$\mathbb{A}(\alpha_1, \cdots, \alpha_n) = (\alpha_1, \cdots, \alpha_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \quad [\lambda_i \neq \lambda_j (i \neq j)]$$

于是V的任一子空间W都是A的不变子空间.这是因为如果 $dim(W)=k(1\leq k\leq n-1)$,则存在 $\alpha_{i_1},\cdots,\alpha_{i_k}$,使得

$$W = span\{\alpha_i, \dots, \alpha_{i*}\}$$

Tig

$$A(\mu_j\alpha_{i_j})=\mu_jA\alpha_{i_j}=\mu_j\lambda_{i_j}\alpha_{i_j}\in W$$
 从而 A 的不变子空间有 $\sum_{k=0}^n\binom{n}{k}=2^n$ 个. \square

8

设A与B是两个 $n \times n$ 实矩阵,假定存在一 $n \times n$ 可逆复矩阵U使得 $A = UBU^{-1}$,阐明存在一 $n \times n$ 可逆实矩阵V使得 $A = VBV^{-1}$ (换句话说,如果两个实矩阵在复数域C上是相似的,则他们在实数域上也是相似的).

证明:设U = M + iN,其中M, N皆为实矩阵,则

$$A(M+iN) = (M+iN)B \quad \text{ IP } \begin{cases} AM = MB \\ AN = NB \end{cases}$$

于是对于 $\forall z \in \mathbb{C}$,有A(M+zN) = (M+zN)B. 作

$$\varphi : \mathbb{C} \rightarrow \mathbb{C}$$

 $z \mapsto det(M + zN)$

由 $\varphi(i)=\det(M+iN)=\det(U)\neq 0$ 知 φ 是 $n(\geq 1)$ 次多项式,最多有n个根,设为 z_1,\cdots,z_n

任取 $\lambda \in \mathbb{R} - \{z_k\}_{k=1}^n$, 令 $V = M + \lambda N \in \mathbb{R}^{n \times n}$, 有AV = VB.

9

证明:

1) 如果
$$\sum_{i,j=1}^{n} a_{ij} x_i x_j (a_{ij} = a_{ji})$$
是正定二次型,那么行列式

$$f(y_1, \cdots, y_n) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & y_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & y_n \\ y_1 & y_2 & \cdots & y_n & 0 \end{vmatrix}$$

是负定二次型:

- 2) 证明二次型 $f(y_1, \dots, y_n)$ 的表示矩阵是A的负件随矩阵 $-A^*$;
- 3) 如果A是对称正定矩阵,那么其行列式满足 $det(A) \leq \prod_{k=1}^{n} a_{kk}$;

- 4) 如果 $A=(a_{ij})$ 仅仅是n阶实可逆矩阵,那么其行列式det(A)满足 $det^2(A) \leq \prod_{j=1}^n \left(\sum_{i=1}^n a_{ij}^2\right)$. 证明:
- 1) 由題意,存在正交阵P,使得 $P^TAP = P^{-1}AP = \Lambda$,其中

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

且 $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ 为A的特征值.

于是

$$\begin{pmatrix} P^T & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} A & y \\ y^T & y \end{pmatrix} \cdot \begin{pmatrix} P & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \Lambda & P^T y \\ y^T P & 0 \end{pmatrix} = \begin{pmatrix} \Lambda & z \\ z^T & 0 \end{pmatrix} (\sharp \mathfrak{P}z = P^T y)$$

 $\forall y \neq 0, z = P^T y \neq 0, \exists j, s.t. z_i \neq 0,$

$$f(y_1, \dots, y_n) = \det \begin{pmatrix} A & y \\ y^T & 0 \end{pmatrix}$$

$$= \det \begin{pmatrix} A & z \\ z^T & z \end{pmatrix}$$

$$= \det \begin{pmatrix} A & 0 \\ z & -\sum_{k=1}^n \frac{z_k^2}{\lambda_k} \end{pmatrix}$$

$$= -\sum_{k=1}^n \left(\prod_{l \neq k} \lambda_l \right) z_k^2$$

$$\leq -\prod_{l \neq i} \lambda_l z_l^2 < 0$$

2) 由1),

$$f(y_1, \dots, y_n) = -\sum_{k=1}^n \left(\prod_{l \neq k} \lambda_l\right) z_k^2$$

= $y^T P \Sigma P^T y$

其中

$$\Sigma = \begin{pmatrix} \prod_{l \neq 1} \lambda_l & 0 & \cdots & 0 \\ 0 & \prod_{l \neq 2} \lambda_l & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \prod_{l \neq n} \lambda_l \end{pmatrix}$$

第5题 思路:

记
$$Z = (p_1 \cdots p_n, q_1 \cdots q_n)^T = (p, q)^T$$
,

由
$$\frac{dZ}{dt} = J^{-1}\nabla H(Z)$$
,知

$$\begin{split} \frac{dp}{dt} &= -\frac{\partial H}{\partial q},\\ \frac{dq}{dt} &= \frac{\partial H}{\partial p} \end{split} \tag{1}$$

 γ 是Z上任一闭曲线,

$$\int_{\gamma} Z^{T} J(dZ) = \int_{\gamma} p dq - q dp \qquad (2)$$

$$\int_{\gamma} \partial_{\alpha} f_{0}(Z) \Big]^{T} \left[\partial_{\alpha} f_{0}(Z) \Big]^{T}$$

$$\int_{g^{t_0}\gamma} Z^T J(dZ) = \int_{\gamma} Z^T \left[\frac{\partial g^{t_0}(Z)}{\partial Z} \right]^T J \left[\frac{\partial g^{t_0}(Z)}{\partial Z} \right] (dZ)$$
 (3)

记
$$S = g^{t}(\gamma)(0 \le t \le t_0)$$
, $\partial S = \gamma \cup g^{t_0}(\gamma)$

则
$$\int_{\partial S} pdq - qdp - Hdt = \int_{S} \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial p} & \frac{\partial}{\partial q} & \frac{\partial}{\partial t} \\ -q & p & -H \end{vmatrix} dS = 0$$
(第一个等号由 stokes 定理,第二个等

号由(1)式)

由此有
$$\int_{\gamma} pdq - qdp = \int_{g^{t_0}\gamma} pdq - qdp$$
 (for: $Hdt|_{\partial S} = 0$)

即 (2) = (3)

由γ的任意性可证。

2008年招收硕士研究生入学考试《数学分析》部分试题及解答

一、试证: 方程 $\sin^2(\pi x)=x$ 有且仅有二个实数解。

证:设 f(x)=sin²(π x)-x,问题转化成考虑连续函数 f(x)的零点。显然 f(x)的零点都在区间[0,1]中,注意到 f(0)=0,f($\frac{1}{4}$)= $\frac{1}{4}$, $f(\frac{1}{2}$)= $\frac{1}{2}$, $f(\frac{3}{4})$ =- $\frac{1}{4}$, f(1)=-1,由 f(x)的连续性知道 f(x) 在($\frac{1}{2}$, $\frac{3}{4}$)中存在零点,这样就知道 f(x) 至少有两个零点。进一步地,如果 f(x) 还有第三个零点,则 f(x) 有两个零点在(0,1)中,不妨设为 $0<\xi<\lambda<1$,即 $f(\xi)=f(\lambda)=f(0)=0$,于是由 Roll 微分中值定理知道存在 $0<x_1<\xi<x_2<\lambda<1$,使得 f'(x)=0(i=1,2)。另一方面,f'(x)= π sin(x)= π sin(x)

综上所述,就有结论:方程 $\sin^2(\pi x)=x$ 有且仅有二个实数解。

二、设 f(x,y) 是定义在区间 $[0,1]\times[0,1]$ 上的实值连续函数,求证: $g(x)=\sup\{f(x,y)\big|0\leq y\leq 1\}\big(x\in[0,1]\big)$ 在[0,1]上连续。

证:设 $x_0 \in [0,1]$,因为f(x,y)是定义在区间 $[0,1] \times [0,1]$ 上的实值连续函数,所以f(x,y)在 $[0,1] \times [0,1]$ 上是一致连续的,因此, $\forall \varepsilon > 0$, $\exists \delta > 0$,

 $\forall \mathbf{x}, x_0 \in [0,1], \dot{\mathbf{y}} \big| \mathbf{x} - x_0 \big| < \delta$ 时, 对 $\forall \mathbf{y} \in [0,1],$ 恒 有 $\big| \mathbf{f} (\mathbf{x}, \mathbf{y}) - \mathbf{f} (\mathbf{x}_0, \mathbf{y}) \big| < \varepsilon$,于是 当 $\big| \mathbf{x} - x_0 \big| < \delta$ 时,

$$\left| g(x) - g(x_0) \right| = \left| \sup_{0 \le y \le 1} f(x, y) - \sup_{0 \le y \le 1} f(x_0, y) \right| \le \sup_{0 \le y \le 1} \left| f(x, y) - f(x_0, y) \right| \le \varepsilon,$$

所以 $g(x)=\sup\{f(x,y)|0 \le y \le 1\}(x \in [0,1])$ 在[0, 1] 上连续。

三、设
$$0 < a < 1$$
, $f(x) = a^{1-\frac{x}{2}} \int_0^a a^x dx (x \in R)$,求证: $f(x)$ 严格单增。

证: 计算定积分得到 f(x)=
$$a^{1-\frac{x}{2}}\int_0^a a^x dx = a^{1-\frac{x}{2}}\left(a^x \ln a\right)\Big|_0^a = a^{1-\frac{x}{2}}\left(a^x - 1\right) \ln a$$
, 求导数就有:

f'(x) =
$$\left[a^{1-\frac{x}{2}}\left(a^x - 1\right)\ln a\right]' = \frac{1}{2}a^{-\frac{x}{2}}\left(a^x + 1\right)a\left(\ln a\right)^2 > 0$$
,

所以 f(x) 严格单增。

四、设 x_n 与 $a_n(n=0,1,\cdots)$ 满足(1) $x_{n+1} \le x_n + a_n$;(2) $\sum_{n=1}^{+\infty} a_n$ 收敛。求证: $\lim_{n \to +\infty} x_n$ 存在。

证: 由 $x_{n+1} \le x_n + a_n$ 推出 $x_n \le x_1 + \sum_{k=1}^{n-1} a_k$,注意到 $\sum_{n=1}^{+\infty} a_n$ 收敛,所以 x_n 有上界,用反证法立

即可以证明 x_n 单调递增,所以 $\lim_{n\to+\infty} x_n$ 存在。

六、计算曲面积分
$$\iint_{S} (x^2 + x^7 y^2 + z^3) dA = ?$$
,其中 $S: x^2 + y^2 + z^2 = 1$ 。

解:作球面坐标变换:
$$\begin{cases} x = \cos \theta, \\ y = \sin \theta \cos \varphi, \\ \exists x = \sin \theta \cos \varphi, \end{cases}$$
 以中 $(\theta, \varphi) \in [0, \pi] \times [0, 2\pi]$,则有:
$$z = \sin \theta \sin \varphi,$$

$$A = \frac{\partial(y,z)}{\partial(\theta,\varphi)} = \sin\theta\cos\theta, B = \frac{\partial(z,x)}{\partial(\theta,\varphi)} = \sin^2\theta\cos\varphi, C = \frac{\partial(x,y)}{\partial(\theta,\varphi)} = \sin^2\theta\sin\varphi,$$

$$\sqrt{A^2 + B^2 + C^2} = \sin\theta,$$

记
$$f(x, y, z) = x^2 + x^7 y^2 + z^3$$
, 则有:

$$\iint_{S} (x^{2} + x^{7}y^{2} + z^{3}) dA = \iint_{S} f(x, y, z) dA$$

$$= \iint_{[0,\pi] \times [0,2\pi]} f(x(\theta, \varphi), y(\theta, \varphi), z(\theta, \varphi)) \sqrt{A^{2} + B^{2} + C^{2}} d\theta d\varphi$$

$$= \iint_{[0,\pi] \times [0,2\pi]} (\cos^{2}\theta + \cos^{7}\theta \sin^{2}\theta \cos^{2}\varphi + \sin^{3}\theta \sin^{3}\varphi) \sin\theta d\theta d\varphi$$

$$= \int_{0}^{\pi} d\theta \int_{0}^{2\pi} (\cos^{2}\theta + \cos^{7}\theta \sin^{2}\theta \cos^{2}\varphi + \sin^{3}\theta \sin^{3}\varphi) \sin\theta d\varphi$$

$$= 2\pi \int_{0}^{\pi} \sin\theta \cos^{2}\theta d\theta + \pi \int_{0}^{\pi} \cos^{7}\theta \sin^{3}\theta d\theta$$

$$= 2\pi \int_{0}^{\pi} \sin\theta \cos^{2}\theta d\theta = \frac{4\pi}{3}$$

七、试证:
$$\int_0^{2\pi} \ln(1-2a\cos\theta + a^2) d\theta = \begin{cases} 4\pi \ln a, \ a \ge 1, \\ 0, \quad 0 \le a < 1, \end{cases}$$

证: 我们先考虑
$$0 \le a < 1$$
, 记 $I(a) = \int_0^{2\pi} \ln(1-2a\cos\theta + a^2)d\theta$,则 $I(0)=0$,且
$$I'(a) = \int_0^{2\pi} \frac{-2a\cos\theta + 2a}{1-2a\cos\theta + a^2}d\theta$$
,

下面我们用留数理论来计算 $\Gamma(a)$, 令 $e^{i\theta}=z$,则 $2\cos\theta=z+\frac{1}{z}=\frac{z^2+1}{z}$, $d\theta=\frac{dz}{iz}$,于是

$$I'(a) = \int_0^{2\pi} \frac{-2\cos\theta + 2a}{1 - 2a\cos\theta + a^2} d\theta = \int_{|z| = 1}^{1} \frac{-\frac{z^2 + 1}{z} + 2a}{1 + a^2 - a\frac{z^2 + 1}{z}} \frac{dz}{iz} = \frac{1}{-ia} \int_{|z| = 1}^{1} \frac{2az - (z^2 + 1)}{z(z - a)(z - \frac{1}{a})} dz$$

设 $\mathbf{f}(z) = \frac{2\mathbf{a}\mathbf{z} - (z^2 + 1)}{z(z - a)(z - \frac{1}{a})}$,则 $\mathbf{f}(z)$ 在单位圆 $|\mathbf{z}| = 1$ 内部有两个一阶级点: $z_1 = 0, z_2 = a$,其

留数分别计算得: Re $s(f(z), z_1) = -1$, Re $s(f(z), z_2) = 1$, 于是根据留数定理就有:

$$I'(a) = \frac{1}{-ia} \int_{|z|=1}^{\infty} \frac{2az - (z^2 + 1)}{z(z - a)(z - \frac{1}{a})} dz = \frac{1}{-ia} 2\pi i (\operatorname{Re} s(f(z), z_1) + \operatorname{Re} s(f(z), z_2)) = 0,$$

因此,
$$I(a) = I(0) + \int_0^a I'(t)dt = 0 + \int_0^a 0dt = 0$$
,即 $\int_0^{2\pi} \ln(1-2a\cos\theta + a^2)d\theta = 0$ (0 \le a<1)。

其次,考虑a > 1的情况,此时令 $r = \frac{1}{a} \in (0,1)$,则由上一步知道,

$$I(a) = \int_0^{2\pi} \ln(1-2a\cos\theta + a^2) d\theta = \int_0^{2\pi} \ln(1-\frac{2}{r}\cos\theta + \frac{1}{r^2}) d\theta$$

$$= \int_0^{2\pi} \ln\frac{1-2r\cos\theta + r^2}{r^2} d\theta = \int_0^{2\pi} \ln(1-2r\cos\theta + r^2) d\theta - \int_0^{2\pi} 2\ln r d\theta$$

$$= I(r) - 4\pi \ln r = 0 - 4\pi \ln\frac{1}{a} = 4\pi \ln a$$

最后, 考虑 a=1 的情况, 此时

$$I(1) = \int_0^{2\pi} \ln(1 - 2\cos\theta + 1^2) d\theta = \int_0^{2\pi} \ln(4\sin^2\frac{\theta}{2}) d\theta$$
$$= 4\pi \ln 2 + 4\int_0^{\pi} \ln\sin\varphi d\varphi = 0$$

综合上面三种情况即知命题成立。

2009 年招收硕士研究生入学考试《高等代数》两试题及解答

1.设A 是n 阶可逆矩阵, α , β 是n 维列向量,且 $1+\beta'A^{-1}\alpha \neq 0$.证明: $A+\alpha\beta'$ 可逆,并求其逆.

证明 构造
$$n+1$$
阶矩阵 $\begin{pmatrix} 1 & -\beta' \\ 0 & A+\alpha\beta' \end{pmatrix}$,对分块矩阵 $\begin{pmatrix} 1 & -\beta' & 1 & 0 \\ 0 & A+\alpha\beta' & 0 & E_n \end{pmatrix}$ 作广义初等行

变换

$$\begin{pmatrix} 1 & -\beta' & 1 & 0 \\ 0 & A + \alpha \beta' & 0 & E_n \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -\beta' & 1 & 0 \\ \alpha & A & \alpha & E_n \end{pmatrix} \rightarrow \begin{pmatrix} 1 + \beta' A^{-1} \alpha & 0 & 1 + \beta' A^{-1} \alpha & \beta' A^{-1} \\ \alpha & A & \alpha & E_n \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 + \beta' A^{-1} \alpha & 0 & 1 + \beta' A^{-1} \alpha & \beta' A^{-1} \\ 0 & A & 0 & E_n - \frac{\alpha \beta' A^{-1}}{1 + \beta' A^{-1} \alpha} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & \frac{\beta' A^{-1}}{1 + \beta' A^{-1} \alpha} \\ 0 & E_n & 0 & A^{-1} - \frac{A^{-1} \alpha \beta' A^{-1}}{1 + \beta' A^{-1} \alpha} \end{pmatrix}$$

可见
$$\begin{pmatrix} 1 & -\beta' \\ 0 & A + \alpha \beta' \end{pmatrix}$$
可以经过广义初等行变换化为单位矩阵 $\begin{pmatrix} 1 & 0 \\ 0 & E_n \end{pmatrix}$,所以 $\begin{pmatrix} 1 & -\beta \\ 0 & A + \alpha \beta' \end{pmatrix}$ 可逆,从

而
$$A + \alpha \beta'$$
 可逆. 且 $\begin{pmatrix} 1 & -\beta' \\ 0 & A + \alpha \beta' \end{pmatrix}^{-1} = \begin{pmatrix} 1 & \frac{\beta' A^{-1}}{1 + \beta' A^{-1} \alpha} \\ 0 & A^{-1} - \frac{A^{-1} \alpha \beta' A^{-1}}{1 + \beta' A^{-1} \alpha} \end{pmatrix} = \begin{pmatrix} M & R \\ N & Q \end{pmatrix}$,由

$$\begin{pmatrix} 1 & -\beta' \\ 0 & A + \alpha \beta' \end{pmatrix} \begin{pmatrix} M & R \\ N & Q \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & E_n \end{pmatrix}$$

得
$$(A + \alpha \beta')Q = E_n$$
,所以 $(A + \alpha \beta')^{-1} = Q = A^{-1} - \frac{A^{-1} \alpha \beta' A^{-1}}{1 + \beta' A^{-1} \alpha}$.

如何升阶的问题应视原矩阵的形状以及所要解决的问题而定,一般来说比较复杂. 上例中将矩阵 $A+\alpha\beta'$ 升阶为 $\begin{pmatrix} 1 & -\beta' \\ 0 & A+\alpha\beta' \end{pmatrix}$ 的做法是比较容易想到的,因为我们希望把 $A+\alpha\beta'$ 的第二项消掉,以充分利用 A 的可逆性.

2.证明:如果两个实矩阵A,B在复数域上相似,则它们在实数域上也相似.

证明 因为 A,B 在复数域上相似,所以存在复可逆矩阵 P ,使 $P^{-1}AP=B$,得 AP=PB .

设 P=D+iQ (D,Q 是实矩阵),代入上式可得 AD=DB,AQ=QB .于是对任意实数 λ ,均有 $A(D+\lambda Q)=(D+\lambda Q)B$.记 $g(\lambda)=\left|D+\lambda Q\right|$,则 $g(\lambda)$ 是非零多项式(否则可得 $|P|=\left|D+iQ\right|=g(i)=0$),故有实数 λ_0 ,使 $g(\lambda_0)=\left|D+\lambda_0 Q\right|\neq 0$.

令 $M=D+\lambda_0Q$,则 M 是实矩阵,且 AM=MB . 因为 $\left|M\right|=g(\lambda_0)\neq 0$,故 M 可逆,得 $M^{-1}AM=B$,即 A,B 在实数域上也相似.

2010年招收硕士研究生入学考试《高等代数》试题及解答

- (10+10=20 分)设A,B分别是 $n \times m$ 和 $m \times n$ 矩阵, I_k 是k阶单位矩阵.
 - (1) 求证: $|I_n AB| = |I_m BA|$;
 - (2) 计算行列式

$$D_n = \begin{vmatrix} 1 + a_1 + x_1 & a_1 + x_2 & \cdots & a_1 + x_n \\ a_2 + x_1 & 1 + a_2 + x_2 & \cdots & a_2 + x_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + x_1 & a_n + x_2 & \cdots & 1 + a_n + x_n \end{vmatrix}.$$

解: (1) 证

$$\begin{aligned}
& :: \begin{pmatrix} 0 & I_m \\ I_n & 0 \end{pmatrix}^{-1} \begin{pmatrix} I_m & B \\ A & I_n \end{pmatrix} \begin{pmatrix} 0 & I_m \\ I_n & 0 \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ I_m & 0 \end{pmatrix} \begin{pmatrix} I_m & B \\ A & I_n \end{pmatrix} \begin{pmatrix} 0 & I_m \\ I_n & 0 \end{pmatrix} = \begin{pmatrix} I_n & A \\ B & I_m \end{pmatrix} \\
& :: \begin{pmatrix} I_m & B \\ A & I_n \end{pmatrix} = \begin{pmatrix} I_n & A \\ B & I_m \end{pmatrix}
\end{aligned}$$

$$\begin{array}{c|c} \mathbb{X} : \begin{vmatrix} I_m & B \\ A & I_n \end{vmatrix} = \begin{vmatrix} I_m & 0 \\ -A & I_n \end{vmatrix} : \begin{vmatrix} I_m & B \\ A & I_n \end{vmatrix} = \begin{vmatrix} I_m & 0 \\ -A & I_n \end{vmatrix} : \begin{vmatrix} I_m & B \\ A & I_n \end{vmatrix} = \begin{vmatrix} I_m & B \\ 0 & I_n - AB \end{vmatrix}$$

$$\begin{vmatrix} I_n & A \\ B & I_m \end{vmatrix} = \begin{vmatrix} I_n & 0 \\ -B & I_m \end{vmatrix} : \begin{vmatrix} I_n & A \\ B & I_m \end{vmatrix} = \begin{vmatrix} I_n & A \\ B & I_m \end{vmatrix} : \begin{vmatrix} I_m & A \\ B & I_m \end{vmatrix} = \begin{vmatrix} I_n & A \\ B & I_m \end{vmatrix} : \begin{vmatrix} I_m & A \\ B & I_m \end{vmatrix} : \begin{vmatrix} I$$

$$\left| \begin{matrix} I_m & B \\ 0 & I_n - AB \end{matrix} \right| = \left| \begin{matrix} I_n & A \\ 0 & I_m - BA \end{matrix} \right|, \quad \left| \exists I \mid I_n - AB \mid = \left| I_m - BA \right|.$$

$$(2) \ \ \diamondsuit \ \alpha = (a_1, a_2, \cdots, a_n)^T, \ X = (x_1, x_2, \cdots, x_n)^T, \ e = (1, 1, \cdots, 1)^T \in \mathbb{C}^n \ , \ \ \text{!!}$$

$$D_n = \left| I_n + \alpha e^T + e X^T \right| = \left| I_n - (-\alpha, -e) \begin{pmatrix} e^T \\ X^T \end{pmatrix} \right|$$

利用(1)的结论可得

$$\begin{split} D_n &= \left| I_2 - \binom{e^T}{X^T} (-\alpha, -e) \right| = \left| \begin{matrix} 1 + e^T \alpha & e^T e \\ X^T \alpha & 1 + X^T e \end{matrix} \right| = \left| \begin{matrix} 1 + \sum_{i=1}^n a_i & n \\ \sum_{i=1}^n a_i x_i & 1 + \sum_{i=1}^n x_i \end{matrix} \right| \\ &= \left(1 + \sum_{i=1}^n a_i \right) \left(1 + \sum_{i=1}^n x_i \right) - n \sum_{i=1}^n a_i x_i \\ &= \sum_{i=1}^n a_i \cdot \sum_{i=1}^n x_i + \sum_{i=1}^n a_i + \sum_{i=1}^n x_i - n \sum_{i=1}^n a_i x_i + 1 \right. \end{split}$$

二、(20 分)已知 3 阶正交矩阵 A 的行列式为 1. 求证: A 的特征多项式一定为 $f(\lambda) = \lambda^3 - a\lambda^2 + a\lambda - 1$

其中, $a \in \mathbb{R}$ 且 $-1 \le a \le 3$. (可与实数比较大小的数只有实数,故条件 $a \in \mathbb{R}$ 可略去)

证明 设A的特征多项式 $f(\lambda) = \lambda^3 - a_2 \lambda^2 + a_1 \lambda - a_0$, 其中 $a_0, a_1, a_2 \in \mathbb{R}$. 则 $a_0 = |A| = 1$, $a_1 = tr(A)$, $a_2 \in A$ 的所有二阶主子式之和.

设A的所有特征值为 λ , λ , λ , 由于A是正交矩阵且A=1,则

$$\lambda_1 = 1, |\lambda_2| = |\lambda_3| = 1, \overline{\lambda_2} = \lambda_3$$

所以, $|\operatorname{Re} \lambda_2| = |\operatorname{Re} \lambda_3| \le 1$,即 $\operatorname{Re} \lambda_2 \in [-1,1]$,故

$$a_1 = trA = \lambda_1 + \lambda_2 + \lambda_3 = 1 + 2 \operatorname{Re} \lambda_2 \in [-1, 3]$$

由于 $\lambda_1, \lambda_2, \lambda_3$ 是 $f(\lambda) = \lambda^3 - a_2\lambda^2 + a_1\lambda - a_0$ 的根,结合根与系数的关系可得

$$a_1 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = \lambda_2 + \lambda_3 + |\lambda_2|^2 = 2 \operatorname{Re} \lambda_2 + 1 = a_1 \triangleq a$$

则 $-1 \le a \le 3$ 目

$$f(\lambda) = \lambda^3 - a\lambda^2 + a\lambda - 1$$
.

- 三、(12+8=20分)设A,B是n阶方阵,A可逆,B幂零,AB=BA.
 - (1) 求证: A+B可逆:
 - (2) 试举例说明要使(1)结论成立,条件 AB = BA 是不可缺少的.

证明: (1): AB = BA : 存在可逆矩阵 $P \notin P^{-1}AP, P^{-1}BP$ 同为上三角矩阵,且上三角矩阵的主对角元素是它们的特征值

- $\therefore P^{-1}(A+B)P$ 为上三角矩阵,且主对角元素为A,B的特征值之和
- :: A 可逆,B 幂零 :: A 的特征值均不为零,B 的特征值都是零
- $\therefore P^{-1}(A+B)P$ 的特征值就是A的特征值
- $\therefore P^{-1}(A+B)P$ 可逆 $\therefore A+B$ 可逆.

(2) 例如
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, 显然 A 可逆, B 幂零.

:. 条件 AB = BA 是不可缺少的

四、 $(20 \, \mathcal{G})$ 求证: 任意n 阶实方阵A 的特征向量, 也是其伴随矩阵A* 的特征向量.

证明:
$$: r(A^*) = \begin{cases} 0, & r(A) < n-1 \\ 1, & r(A) = n-1 \\ n, & r(A) = n \end{cases}$$
 : 可对 $r(A)$ 展开讨论.

设 λ 为A的任意一个特征值, ξ 为A的属于特征值 λ 的任意一个特征向量,则由二者的任意性可知 ξ 可以代表A的任意一个特征值.

若 r(A) < n-1,则 $r(A^*) = 0$, $A^* = 0 \Rightarrow A^*\xi = 0 = 0 \cdot \xi$,故 ξ 是 A^* 的特征向量;若 r(A) = n ,则 A 可逆,故 $\lambda \neq 0$. \therefore $AA^* = A^*A = \left|A\right|I_n$

$$\therefore |A|\xi = |A|I_n \cdot \xi = A^*A\xi = \lambda A^*\xi \quad \therefore A^*\xi = \frac{|A|}{\lambda}\xi \;, \;\; \text{故 \xi 是 } A^* \text{ 的特征向量};$$

$$A^* = \begin{pmatrix} a & b_2 a & \cdots & b_n a \\ c_2 a & b_2 c_2 a & \cdots & b_n c_2 a \\ \vdots & \vdots & \ddots & \vdots \\ c_n a & b_2 c_n a & \cdots & b_n c_n a \end{pmatrix} = a \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} (b_1, b_2, \dots, b_n)$$

其中, $a \in \mathbb{R} \perp a \neq 0$, $b_i, c_i \in \mathbb{R}$, $(i=1,2,\dots,n) \perp b_1 = c_1 = 1$.

所以,A*的非零特征值为

$$a(b_1, b_2, \dots, b_n) \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = a \sum_{i=1}^n b_i c_i$$

 $\therefore \lambda A^* \xi = A^* A \xi = 0 \quad \therefore \lambda = 0 \text{ if } A^* \xi = 0$

若 $A^*\xi=0$,则 ξ 是 A^* 的属于特征值 0 的特征向量; 若 $A^*\xi\neq 0$,则 $\lambda=0$, $A\xi=0$.

$$\therefore AA^* = 0$$
 \therefore $\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ 是 A 的属于特征值 0 的特征向量.

$$\because r(A) = n-1$$
 $\therefore A$ 的特征值 0 是单根,故 $\xi = k \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$, $k \neq 0$

$$\therefore A^* \xi = kA^* \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = ak \begin{pmatrix} \sum_{i=1}^n b_i c_i \\ c_2 \sum_{i=1}^n b_i c_i \\ \vdots \\ c_n \sum_{i=1}^n b_i c_i \end{pmatrix} = a \sum_{i=1}^n b_i c_i \cdot k \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = a \sum_{i=1}^n b_i c_i \cdot \xi$$

故 ξ 是 A^* 的属于非零特征值 $a\sum_{i=1}^n b_i c_i$ 的特征向量.

综上所述,由 ξ 的任意性可得

任意n阶实方阵A的特征向量,也是其伴随矩阵 A^* 的特征向量。 五、(20+5+5=30 分)(1) n阶方阵A能表成:A=H+K,其中 $H=\overline{H}^T$, $K=-\overline{K}^T$,矩阵 \overline{B}^T 表示矩阵B 的共轭转置.设a,h,k 分别是A,H,K 中元素最大模,若 z=x+iv $(x,y\in\mathbb{R})$ 是A 的任意特征值.求证:

$$|z| \le na, |x| \le nh, |y| \le nk.$$

- (2) 求证: Hermite 矩阵的特征值都是实数:
- (3) 求证: 反对称矩阵的非零特征值都是纯虚数.

证明: (1) 设 $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, $A\xi = z\xi \perp \xi = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)^T \neq 0$, $\left| \varepsilon_k \right| = \max \{ \varepsilon_1, \varepsilon_2, \dots, \varepsilon_n \}$, 则

$$z\varepsilon_k = a_{k1}\varepsilon_1 + a_{k2}\varepsilon_2 + \dots + a_{kn}\varepsilon_n$$

所以

$$|z| \cdot |\varepsilon_k| = |z\varepsilon_k| = |a_{k1}\varepsilon_1 + a_{k2}\varepsilon_2 + \dots + a_{kn}\varepsilon_n|$$

$$\leq |a_{k1}| \cdot |\varepsilon_{1}| + |a_{k2}| \cdot |\varepsilon_{2}| + \dots + |a_{kn}| \cdot |\varepsilon_{n}| \leq |a_{k1}| \cdot |\varepsilon_{k}| + |a_{k2}| \cdot |\varepsilon_{k}| + \dots + |a_{kn}| \cdot |\varepsilon_{k}|$$

$$\therefore \xi \neq 0 \quad \therefore |\varepsilon_{k}| > 0 \quad \therefore |z| \leq |a_{k1}| + |a_{k2}| + \dots + |a_{kn}| \leq na$$

$$\therefore A = H + K \therefore H\xi + K\xi = A\xi = (x + iy)\xi = x\xi + iy\xi$$

$$\therefore H\xi - x\xi = -K\xi + iy\xi \quad \therefore \overline{\xi}^{T} (H - xI_{n})\xi = \overline{\xi}^{T} (-K + iyI_{n})\xi$$

$$\therefore \overline{K}^{T} = -K, \overline{H}^{T} = H$$

$$\therefore \overline{\xi}^{T} (H - xI_{n})\xi^{T} = \overline{\xi}^{T} (-K + iyI_{n})\xi^{T} \Rightarrow \overline{\xi}^{T} (\overline{H} - xI_{n})^{T}\xi = \overline{\xi}^{T} (-K + iyI_{n})^{T}\xi \Rightarrow$$

$$\overline{\xi}^{T} (H - xI_{n})\xi = \overline{\xi}^{T} (K - iyI_{n})\xi = -\overline{\xi}^{T} (-K + iyI_{n})\xi = -\overline{\xi}^{T} (H - xI_{n})\xi$$

$$\therefore \overline{\xi}^{T} (H - xI_{n})\xi = \overline{\xi}^{T} (-K + iyI_{n})\xi = 0$$

$$\forall H = (h_{ij}), K = (k_{ij}) \in \mathbb{C}^{n \times n}, \quad \forall i \in \mathbb{R}^{N}$$

$$\exists H_{k1}\varepsilon_{1}^{2} + h_{k2}\varepsilon_{2}^{2} + \dots + (h_{kk} - x)\varepsilon_{k}^{2} + \dots + h_{kn}\varepsilon_{n}^{2} = 0$$

$$\exists H_{k1}\varepsilon_{1}^{2} + h_{k2}\varepsilon_{2}^{2} + \dots + (h_{kk} - iy)\varepsilon_{k}^{2} + \dots + h_{kn}\varepsilon_{n}^{2} = 0$$

$$\exists H_{i}\varepsilon_{1}^{2} + h_{k2}\varepsilon_{2}^{2} + \dots + (h_{kk} - iy)\varepsilon_{k}^{2} + \dots + h_{kn}\varepsilon_{n}^{2} = 0$$

$$\exists H_{i}\varepsilon_{1}^{2} + h_{k2}\varepsilon_{2}^{2} + \dots + (h_{kk} - iy)\varepsilon_{k}^{2} + \dots + h_{kn}\varepsilon_{n}^{2} = 0$$

$$\exists H_{i}\varepsilon_{1}^{2} + h_{k2}\varepsilon_{2}^{2} + \dots + (h_{kk} - iy)\varepsilon_{k}^{2} + \dots + h_{kn}\varepsilon_{n}^{2} = 0$$

所以

$$x\varepsilon_k^2 = h_{k1}\varepsilon_1^2 + h_{k2}\varepsilon_2^2 + \dots + h_{kn}\varepsilon_n^2$$

$$iy\varepsilon_k^2 = k_{k1}\varepsilon_1^2 + k_{k2}\varepsilon_2^2 + \dots + k_{kn}\varepsilon_n^2$$

故

$$\begin{split} \left| x \right| \cdot \left| \varepsilon_{k} \right|^{2} &= \left| x \varepsilon_{k}^{2} \right| = \left| h_{k1} \varepsilon_{1}^{2} + h_{k2} \varepsilon_{2}^{2} + \dots + h_{kn} \varepsilon_{n}^{2} \right| \\ &\leq \left| h_{k1} \varepsilon_{1}^{2} \right| + \left| h_{k2} \varepsilon_{2}^{2} \right| + \dots + \left| h_{kn} \varepsilon_{n}^{2} \right| = \left| h_{k1} \right| \cdot \left| \varepsilon_{1}^{2} \right| + \left| h_{k2} \right| \cdot \left| \varepsilon_{2}^{2} \right| + \dots + \left| h_{kn} \right| \cdot \left| \varepsilon_{n}^{2} \right| \\ &\leq \left| h_{k1} \right| \cdot \left| \varepsilon_{k}^{2} \right| + \left| h_{k2} \right| \cdot \left| \varepsilon_{k}^{2} \right| + \dots + \left| h_{kn} \right| \cdot \left| \varepsilon_{k}^{2} \right| \leq nh \left| \varepsilon_{k}^{2} \right| \\ \left| y \right| \cdot \left| \varepsilon_{k} \right|^{2} &= \left| i y \varepsilon_{k}^{2} \right| = \left| k_{k1} \varepsilon_{1}^{2} + k_{k2} \varepsilon_{2}^{2} + \dots + k_{kn} \varepsilon_{n}^{2} \right| \\ &\leq \left| h_{k1} \varepsilon_{1}^{2} \right| + \left| k_{k2} \varepsilon_{2}^{2} \right| + \dots + \left| k_{kn} \varepsilon_{n}^{2} \right| = \left| k_{k1} \right| \cdot \left| \varepsilon_{1}^{2} \right| + \left| k_{k2} \right| \cdot \left| \varepsilon_{2}^{2} \right| + \dots + \left| k_{kn} \right| \cdot \left| \varepsilon_{n}^{2} \right| \\ &\leq \left| k_{k1} \right| \cdot \left| \varepsilon_{k}^{2} \right| + \left| k_{k2} \right| \cdot \left| \varepsilon_{k}^{2} \right| + \dots + \left| k_{kn} \right| \cdot \left| \varepsilon_{k}^{2} \right| \leq nk \left| \varepsilon_{k}^{2} \right| \end{split}$$

所以, $|x| \le nh$, $|y| \le nk$.

(2) 设 λ 是任意 Hermite 矩阵 B 的任一特征值,并设 $B\xi = \lambda\xi$ 且 $\xi \neq 0$.则

$$\lambda \overline{\xi}^T \xi = \overline{\xi}^T B \xi = \overline{\xi}^T \overline{B}^T \xi = \overline{\xi}^T B \xi^T = \overline{\lambda \xi}^T \xi$$

 $::\xi \neq 0$ $::\overline{\xi}\xi > 0$ $::\lambda = \overline{\lambda}$ $::\lambda \in \mathbb{R}$, 由 λ 的任意性可得

Hermite 矩阵的特征值都是实数.

(3)设 λ 是任意反对称矩阵C的任一非零特征值(如果有的话),并设 $B\xi = \lambda \xi \, \pm \xi \neq 0$. 则

$$\lambda \overline{\xi}^T \xi = \overline{\xi}^T C \xi = -\overline{\xi}^T \overline{C}^T \xi = -\overline{\xi}^T C \xi^T = -\overline{\lambda} \overline{\xi}^T \xi$$

 $::\xi \neq 0$ $::\overline{\xi\xi}>0$ $::\lambda=-\overline{\lambda}$ $::\lambda$ 是纯虚数,由 λ 的任意性可得

反对称矩阵的非零特征值都是纯虚数.

六、(15 分)设A是n维实线性空间V的线性变换,n≥1. 求证: A至少有一个 维数为1或2的不变子空间.

证明: 若 A 有实特征值 λ , 并设 $A\alpha = \lambda\alpha$ 且 $\alpha \neq 0$, 则 $\alpha \in \mathbb{R}^n$, 且 $L(\alpha)$ 是 A的一个一维不变子空间:

若<u>A</u>无实特征值,由于<u>A</u>是 n 维实线性空间 V 的线性变换,则<u>A</u> 的虚特征值 必以共轭对出现,不妨设 $\lambda, \overline{\lambda}$ 是<u>A</u> 的一对虚特征值,并设 <u>A</u> $\alpha = \lambda \alpha$ 且 $\alpha \neq 0$,则 $\alpha \in \mathbb{C}^n, \alpha \notin \mathbb{R}^n, \underline{A} \alpha = \overline{\lambda \alpha}$,可设 $\lambda = a + ib, \alpha = \alpha_1 + i\alpha_2$,其中, $a, b \in \mathbb{R}, b \neq 0, \alpha_1, \alpha_2 \in \mathbb{R}^n, \alpha_2 \neq 0$,那么

$$\underline{A}\alpha_1 + i\underline{A}\alpha_2 = \underline{A}\alpha = (a+ib)(\alpha_1 + i\alpha_2) = (a\alpha_1 - b\alpha_2) + i(a\alpha_2 + b\alpha_1)$$

$$\underline{A}\alpha_1 - i\underline{A}\alpha_2 = \underline{A}\overline{\alpha} = (a-ib)(\alpha_1 - i\alpha_2) = (a\alpha_1 - b\alpha_2) - i(a\alpha_2 + b\alpha_1)$$

所以, $\underline{A}\alpha_1 = a\alpha_1 - b\alpha_2$, $\underline{A}\alpha_2 = a\alpha_2 + b\alpha_1$,

故 $L(\alpha_1,\alpha_2)$ 是 \underline{A} 的一个二维不变子空间.

综上可得, 4至少有一个维数为1或2的不变子空间.

七、(12+8=20分)设循环矩阵C为

$$\begin{pmatrix} c_0 & c_1 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & \cdots & c_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ c_1 & c_2 & \cdots & c_0 \end{pmatrix}$$

- (1) 求 C的所有特征值以及相应的特征向量;
- (2) 求 C.

解: (1) 构造多项式: $f(\lambda) = c_0 + c_1 \lambda + \dots + c_{n-1} \lambda^{n-1}$. 设 $P \neq n$ 阶初等置换矩阵:

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

则C = f(P).

 $::\omega^{0},\omega^{1},...,\omega^{n-1}$ 是P的所有特征值

 $:: f(\omega^0), f(\omega^1), \cdots, f(\omega^{n-1})$ 是循环矩阵 C 的所有特征值.

$$\forall k \in \left\{0, 1, 2, \dots, n-1\right\}, \quad \diamondsuit x_k = (1, \omega^k, \omega^{2k}, \dots, \omega^{(n-1)k})^T, \quad \text{[1]}$$

$$Px_k = (\omega^k, \omega^{2k}, \dots, \omega^{(n-1)k}, 1)^T = \omega^k x_k$$

所以

$$Cx_k = f(P)x_k = f(\omega^k)x_k$$

综上可得

循环矩阵 C 的所有特征值为 $f(\omega^0)$, $f(\omega^1)$, ..., $f(\omega^{n-1})$,它们对应的特征向量分别为

$$x_0 = (1, 1, \cdots, 1)^T, \quad x_k = (1, \omega^k, \omega^{2k}, \cdots, \omega^{(n-1)k})^T, \quad \cdots, \quad x_{n-1} = (1, \omega^{n-1}, \omega^{2(n-1)}, \cdots, \omega^{(n-1)^2})^T.$$
 (2) 由(1)可得

$$|C| = \prod_{k=0}^{n-1} f(\omega^k).$$

八、(15 分)设 $M_n(\mathbb{C})$ 是复数域上所有n阶方阵所组成的线性空间, $T:M_n(\mathbb{C})$ $\to \mathbb{C}$ 是线性映射,满足

$$T(AB) = T(BA)$$

求证: $\forall A \in M_n(\mathbb{C})$, 总 $\exists \lambda \in \mathbb{C}$ 使

$$T(A) = \lambda tr(A)$$
.

证明: 反证法. $\forall A \in M_n(\mathbb{C})$, 假设 $\forall \lambda \in \mathbb{C}$ 恒有 $T(A) \neq \lambda tr(A)$.

设 $T(A)=t_A\in\mathbb{C}$, 若 $t_A=0$, 取 $\lambda=0$ 有 $t_A=\lambda tr(A)$, 这与假设矛盾, 故 $t_A\neq 0$.

若 $tr(A) \neq 0$,令 $\lambda = \frac{t_A}{tr(A)}$,则 $t_A = \lambda tr(A)$,这与假设矛盾,故 tr(A) = 0.

下面证明假设不成立.

另取 $\forall B \in M_n(\mathbb{C})$, 设 $T(B) = t_B \in \mathbb{C}$, 则对 t_A, t_B 总存在 $a, b \in \mathbb{C}$ 使

$$at_A + bt_B = 0$$

由之前的讨论,结合A的任意性可得tr(aA+bB)=0

:: T 是线性映射

 $T(aA+bB) = aT(A) + bT(B) = at_A + bt_B = 0 = \lambda tr(aA+bB)$

这与假设矛盾,故假设不成立,所以 $\forall A \in M_n(\mathbb{C})$, $\exists \lambda \in \mathbb{C}$ 使

$$T(A) = \lambda tr(A)$$
.

由于 tr(AB) = tr(BA),所以 $T(AB) = \lambda tr(AB) = \lambda tr(BA) = T(BA)$ 满足题意,故 $\forall A \in M_n(\mathbb{C})$,总 $\exists \lambda \in \mathbb{C}$ 使

$$T(A) = \lambda tr(A)$$
.

2010年招收硕士研究生入学考试《数学分析》试题及解答

1 计算:

$$(1) \ \lim_{x \to 0} \tfrac{\int_0^{\sin^2 x} \ln(1+t) dt}{\sqrt{1+x^4-1}}; \ \ (2) \ \iint_{|x|+|y| \le 1} |xy| \, dx \, dy.$$

解答. (1)

$$\lim_{x \to 0} \frac{\int_0^{\sin^2 x} \ln(1+t)dt}{\sqrt{1+x^4} - 1} = \lim_{x \to 0} \frac{\int_0^{\sin^2 x} \ln(1+t)dt}{x^4} \left(\sqrt{1+x^4} + 1\right)$$

$$= 2\lim_{x \to 0} \frac{\ln(1+\sin^2 x) \cdot 2\sin x \cos x}{4x^3}$$

$$= \lim_{x \to 0} \frac{\ln\left(1+\sin^2 x\right)}{\sin^2 x} \cdot \left(\frac{\sin x}{x}\right)^3 \cos x$$

$$= 1;$$

(2)

$$\iint_{|x|+|y|\leq 1} |xy| dx dy = 4 \iint_{x+y\leq 1; x,y\geq 0} xy dx dy$$

$$= 4 \int_{0}^{1} x dx \int_{0}^{1-x} y dy$$

$$= 4 \int_{0}^{1} x \frac{(1-x)^{2}}{2} dx$$

$$= 2 \int_{0}^{1} x (1-x)^{2} dx$$

$$= \frac{1}{6}.$$

2 (1) 令

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

求f'(0),并证明f'(x)在x = 0处不连续.

(2) 若
$$\lambda = \sum_{k=1}^{n} \frac{1}{k}$$
,证明 $e^{\lambda} > n + 1$.

证明. (1)

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

但当 $x \neq 0$ 时,

$$f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x},$$

而

$$x_n = \frac{1}{2n\pi} \to 0$$
, $f'(x_n) = -1 \to 0$, $\stackrel{\text{def}}{=} n \to \infty$.

由此, f'(x)在x = 0处不连续.

(2) 用数学归纳法.显然的, $e^1 = 2.7 \dots > 1 + 1$. 现假设i = n时不等式成立,则当i = n + 1时,

$$e^{\sum_{k=1}^{n+1} \frac{1}{k}} = e^{\sum_{k=1}^{n} \frac{1}{k}} e^{\frac{1}{n+1}}$$

$$= (n+1)e^{\frac{1}{n+1}}$$

$$> (n+1) \left[\left(1 + \frac{1}{n+1} \right)^{n+1} \right]^{\frac{1}{n+1}}$$

$$= n+2$$

注记. • 最后一步是因为

$$\left(1 + \frac{1}{n}\right)^n = 1 \cdot \left(1 + \frac{1}{n}\right)^n$$

$$< \left(\frac{1 + \frac{n+1}{n} \cdot n}{n+1}\right)^{n+1}$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+1} \nearrow e.$$

• 第(2)问另证如下:

$$\forall k, \exists \xi_k \in (k, k+1), s.t. \ln(k+1) - \ln k = \frac{1}{\xi_k} < \frac{1}{k},$$

而求和有

$$\ln(n+1) < \sum_{k=1}^{n} \frac{1}{k},$$

 $\mathbb{P}e^{\lambda} > n+1.$

3 若f(x)在[0,1]上连续,在(0,1)上二次可微,并且

$$f(0) = f\left(\frac{1}{4}\right) = 0, \text{ $ \slipe M} \int_{\frac{1}{4}}^1 f(y) dy = \frac{3}{4} f(1).$$

证明,存在 $\xi \in (0,1)$,使得 $f''(\xi) = 0$.

证明.记

$$F(x) = \int_{\frac{1}{4}}^{x} [f(y) - f(1)] dy, \ x \in \left[\frac{1}{4}, 1\right].$$

则由题意.

$$F\left(\frac{1}{4}\right) = 0 = F(1).$$

由Lagrange中值定理,

$$\exists \eta \in \left(\frac{1}{4}, 1\right), \ s.t. \ f(\eta) = 0.$$

而f有三个不同零点.利用两次Rolle定理,有

$$\exists \ \xi \in (0,1), \ s.t. \ f''(\xi) = 0.$$

4 求级数
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
的和.

解答. 设

$$f(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{(n+1)!},$$

其绝对收敛于[-R,R],对 $\forall R \in (0,\infty)$.而所求为f(1).

10

$$\begin{split} f(x) &= \sum_{n=1}^{\infty} \frac{nx^{n-1}}{(n+1)!} \\ &= \left[\sum_{n=1}^{\infty} \frac{x^n}{(n+1)!} \right]' \\ &= \left[\frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n+1}}{(n+1)!} \right]' \\ &= \left[\frac{e^x - 1 - x}{x} \right]' \\ &= \frac{(x-1)e^x + 1}{x^2}, \end{split}$$

故

所求 =
$$f(1) = 1$$
.

注记. 另证如下:

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = \sum_{n=1}^{\infty} \frac{(n+1)-1}{(n+1)!}$$
$$= \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{1}{(n+1)!}$$
$$= 1$$

5 证明:

$$\frac{2n}{3}\sqrt{n} < \sum_{k=1}^n \sqrt{k} < \left(\frac{2n}{3} + \frac{1}{2}\right)\sqrt{n}.$$

证明. •
$$\frac{2n}{3}\sqrt{n} < \sum_{k=1}^{n} \sqrt{k}$$
.

由Lagrange中值定理,∀ $k \in \mathbb{N}$, ∃ $\xi_k \in (k-1,k)$, s.t.

$$k^{\frac{3}{2}} - (k-1)^{\frac{3}{2}} = \frac{3}{2}\xi_k^{\frac{1}{2}} < \frac{3}{2}k^{\frac{1}{2}},$$

求和而有

$$n^{\frac{3}{2}} < \frac{3}{2} \sum_{k=1}^{n} k^{\frac{1}{2}}.$$

•
$$\sum_{k=1}^{n} \sqrt{k} < \left(\frac{2n}{3} + \frac{1}{2}\right) \sqrt{n}$$
.

我们用数学归纳法证明.

★ 由
$$1 < \frac{2}{3} + \frac{1}{2}$$
知 $l = 1$ 时成立;

★ 假设当i=n时成立,看i=n+1时的情形,由

$$\sum_{k=1}^{n+1} k^{\frac{1}{2}} = \sum_{k=1}^{n} k^{\frac{1}{2}} + (n+1)^{\frac{1}{2}} < \left(\frac{2n}{3} + \frac{1}{2}\right) n^{\frac{1}{2}} + (n+1)^{\frac{1}{2}},$$

而只须

$$\left(\frac{2n}{3} + \frac{1}{2}\right)n^{\frac{1}{2}} + (n+1)^{\frac{1}{2}} < \left(\frac{2(n+1)}{3} + \frac{1}{2}\right)(n+1)^{\frac{1}{2}}$$

$$\Leftarrow \left(\frac{2n}{3} + \frac{1}{2}\right)n^{\frac{1}{2}} < \left(\frac{2n}{3} + \frac{1}{6}\right)(n+1)^{\frac{1}{2}}$$

$$\Leftarrow (4n+3)^{2}n < (4n+1)^{2}(n+1)$$

$$\Leftarrow 16n^{3} + 24n^{2} + 9n < 16n^{3} + 24n^{2} + 9n + 1$$

$$\Leftarrow 0 < 1,$$

而这是对的.

6 计算

$$\iiint_{V} (x^3 + y^3 + z^3) dx dy dz,$$

其中V表示曲面 $x^2 + y^2 + z^2 - 2a(x + y + z) + 2a^2 = 0(a > 0)$ 所围成的区域。

解答. 由

$$\begin{array}{lll} \partial V & = & \left\{ (x,y,z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 - 2a(x+y+z) + 2a^2 = 0 \right\} \\ & = & \left\{ (x,y,z) \in \mathbb{R}^3; \ (x-a)^2 + (y-a)^2 + (z-a)^2 = a^2 \right\}, \end{array}$$

知V是以(a,a,a)为心.a为半径的球.

•

$$\begin{array}{lll} /\!\!\!\!/ \, \stackrel{?}{\gg} \stackrel{?}{\gg} & = & 3 \int\!\!\!\int_{V}^{2a} x^3 dx dy dz \\ & = & 3 \int_{0}^{2a} x^3 dx \int\!\!\!\int_{(y-a)^2 + (z-a)^2 \le a^2 - (x-a)^2} dy dz \\ & = & 3 \int_{0}^{2a} x^3 \pi \left[a^2 - (x-a)^2 \right] dx \\ & = & 3\pi \int_{0}^{2a} x^3 (2ax - x^2) dx \\ & = & 3\pi \left(\frac{2a}{5} x^5 - \frac{1}{6} x^6 \right) \Big|_{0}^{2a} \\ & = & 3\pi \left(\frac{2a}{5} \cdot 32a^5 - \frac{64}{6} a^6 \right) \\ & = & \frac{32}{5} \pi a^6. \end{array}$$

7 应用Green公式计算积分

$$I = \oint_L \frac{e^x(x\sin y - y\cos y)dx + e^x(x\cos y + y\sin y)dy}{x^2 + y^2},$$

其中L是包围远点的简单光滑闭曲线, 逆时针方向.

解答. 取 ϵ 充分小.使得 $B_{\epsilon}(0)$ 含于L内,而由Green公式及

$$\partial_x \left[\frac{e^x (x \cos y + y \sin y)}{x^2 + y^2} \right] - \partial_y \left[\frac{e^x (x \sin y + y \sin y)}{x^2 + y^2} \right] = 0, \forall \ x, y \neq 0,$$

有

$$\Re \mathfrak{K} = \oint_{B_{\varepsilon}(0)} \frac{e^{x}(x\sin y - y\cos y)dx + e^{x}(x\cos y + y\sin y)dy}{x^{2} + y^{2}}$$

$$= \frac{1}{\varepsilon^{2}} \int_{0}^{2\pi} \left\{ e^{x} \left[\frac{(x\sin y - y\cos y)(-y)}{+(x\cos y + y\sin y)x} \right] \right\} \Big|_{\substack{z = \varepsilon\cos\theta\\y = \varepsilon\sin\theta}} d\theta$$

$$= \frac{1}{\varepsilon^{2}} \int_{0}^{2\pi} e^{\varepsilon\cos\theta} \varepsilon^{2} \cos(\varepsilon\sin\theta)d\theta$$

$$= \int_{0}^{2\pi} e^{\varepsilon\cos\theta} \cos(\varepsilon\sin\theta)d\theta,$$

而

原式 =
$$\lim_{\varepsilon \to 0^+} \int_0^{2\pi} e^{\varepsilon \cos \theta} \cos(\varepsilon \sin \theta) d\theta$$

= 2π .

8 设f(x)定义在 $(-\infty,\infty)$ 上,且在x=0连续,并且对所有 $x,y\in(-\infty,\infty)$,有

$$f(x+y) = f(x) + f(y).$$

证明,f(x)在($-\infty$, ∞)上连续,且f(x) = f(1)x.

证明. • f(x)在(-∞, ∞)上连续.

$$\lim_{y \to x} f(y) = \lim_{y \to x} \left[f(x) + f(y - x) \right] = f(x) + \lim_{|y - x| \to 0} f(y - x) = f(x).$$

- $\bullet \ f(x) = f(1)x.$
 - $\bigstar \ \forall \ n \in \mathbb{N}, f(n) = f(n-1) + f(1) = \dots = nf(1);$
 - $\bigstar \ \forall \ n \in \mathbb{N}, f(-n) = f(0) f(n) = -n;$
 - $\bigstar \ \forall \ m, n \in \mathbb{N},$

$$f\left(\frac{n}{m}\right) = \frac{1}{m}f\left(\frac{n}{m}\cdot m\right) = \frac{1}{m}f(n) = \frac{n}{m}f(1);$$

 $\star \forall x \in \mathbb{R}.$

$$f(x) = \lim_{\substack{r_n \to x \\ r_n \in \mathbb{Q}}} f(r_n) = \lim_{\substack{r_n \to x \\ r_n \in \mathbb{Q}}} [r_n f(1)] = f(1)x.$$

9 证明

$$\int_0^1 \frac{dx}{x^x} = \sum_{n=1}^\infty \frac{1}{n^n}$$

证明. 由

$$x^{-x} = e^{-x \ln x} = \sum_{n=0}^{\infty} \frac{(-x \ln x)^n}{n!},$$

知

$$\int_0^1 x^{-x} dx = \sum_{n=0}^\infty \int_0^1 \frac{(-x \ln x)^n}{n!} dx = \sum_{n=0}^\infty \frac{(-1)^n \int_0^1 x^n \ln^n x dx}{n!},$$

其中第一个等式是因为 $|x \ln x| \le e^{-1}$, $\forall x \in [0,1]$,而

$$\sum_{n=0}^{\infty} \frac{(-x \ln x)^n}{n!} \left(\le \sum_{n=0}^{\infty} \frac{e^{-n}}{n!} \right)$$

在[0,1]上一致收敛. 又

$$\int_0^1 x^n \ln^n x dx = -\frac{n}{n+1} \int_0^1 x^n \ln^{n-1} x dx$$

$$= \cdots$$

$$= (-1)^n \frac{n!}{(n+1)^n} \int_0^1 x^n dx$$

$$= (-1)^n \frac{n!}{(n+1)^{n+1}},$$

而

$$\int_0^1 \frac{dx}{x^x} = \sum_{n=1}^\infty \frac{1}{n^n}.$$

10 设函数f(x)在[0,1]上连续且f(x) > 0, 讨论函数

$$g(y) = \int_0^1 \frac{yf(x)}{x^2 + y^2} dx$$

 $在(-\infty,\infty)$ 上的连续性.

解答. 记

$$M=\sup_{x\in\mathbb{R}}f(x)<\infty,$$

而

当y≠0时,

$$|g(y)| \leq |y| \int_0^1 \frac{f(x)}{x^2 + y^2} dx < |y| \frac{1}{|y|^2} \int_0^1 f(x) dx \leq \frac{M}{|y|} < \infty,$$

故g(y)在 $(-\infty,0)$ \cup $(0,\infty)$ 上连续(因为g(y)可导).

- 当y = 0时,g(y) = 0.但g在y = 0处跳跃间断.事实上,对任意固定的ε > 0.
 - ★ 由f在x = 0处连续,i.e.

$$\exists 1 > \eta > 0, \ s.t. \ |x| < \eta \Rightarrow |f(x) - f(0)| < \frac{2\varepsilon}{3\pi},$$

而

$$\begin{split} \left| \int_0^\eta \frac{y f(x)}{x^2 + y^2} - \frac{y f(0)}{x^2 + y^2} dx \right| & \leq & \max_{0 \leq x \leq \eta} |f(x) - f(0)| \cdot \int_0^\eta \frac{d\frac{x}{|y|}}{1 + \left(\frac{x}{|y|}\right)^2} \\ & = & \max_{0 \leq x \leq \eta} |f(x) - f(0)| \cdot \arctan \frac{\eta}{|y|} \\ & \leq & \frac{\varepsilon}{3}. \end{split}$$

★ 对上述η > 0,

$$\begin{split} \left| \int_{\eta}^{1} \frac{y f(x)}{x^{2} + y^{2}} dx \right| & \leq |y| \cdot M \cdot \frac{1 - \eta}{|\eta|^{2}} \\ & \leq \frac{\varepsilon}{3}, \; \stackrel{\text{def}}{=} \; |y| < \delta_{1} \equiv \frac{\varepsilon \left| \eta \right|^{2}}{3M(1 - \eta^{2})} \; \text{Bf} \, . \end{split}$$

总结而有当

$$0 > y > -\min\left\{\delta_1, \delta_2\right\}$$

时,

$$\begin{split} & \left| \int_0^1 \frac{y f(x)}{x^2 + y^2} dx + \frac{\pi}{2} f(0) \right| \\ \leq & \left| \int_\eta^1 \frac{y f(x)}{x^2 + y^2} dx \right| + \left| \int_0^\eta \frac{y f(x)}{x^2 + y^2} - \frac{y f(0)}{x^2 + y^2} dx \right| \\ & + \left| \int_0^\eta \frac{y f(0)}{x^2 + y^2} dx + \frac{\pi}{2} f(0) \right| \\ \leq & \varepsilon; \end{split}$$

当

$$0 < y < \min\left\{\delta_1, \delta_2\right\}$$

时,

$$\left| \int_0^1 \frac{yf(x)}{x^2 + y^2} dx - \frac{\pi}{2} f(0) \right| < \varepsilon.$$

于是

$$g(0-0) = -\frac{\pi}{2}f(0), \quad g(0+0) = \frac{\pi}{2}f(0).$$

中科院数学所复试时遇到的题目

 $1.\int_{a}^{+\infty} f(x)dx$ 收敛, $\lim_{x\to+\infty} f(x) = 0$ 正确否?

解答:不正确。

- 1) 若f(x)为分段函数,《数学分析》的教材上都有例子,要牢记。
- 2) 即是f(x)连续,甚至无穷次可微,也可举出反例。如

 $\int_{-\infty}^{+\infty} \sin(x^2) dx$,由换元积分和A-D判别法很容易知道此积分收敛,但显然 $\sin(x^2)$ 无穷可微。

3) 但加上条件f(x)一致连续后,以上结论就正确了。证明过程在《分析》书上也能找到, 一定要会证明。

2.黎曼可积的定义

这个我就不多说了,此属分析的基础,如果连这都不清楚,复试被淘汰很正常。

3.矩阵*A*, *B*均正定,则*AB*正定否?

解答:一般情况下不具备此性质。但加上条件AB = BA,则AB正定。证明方式有很多种。我这里给出我的面试官郭雷院士的解答方法。因为(AB)'=B'A'=BA=AB故AB对称

$$B^{0.5}(AB)B^{-0.5} = (B^{0.5})'AB^{0.5}$$
 一定义为 M

M与A合同,故M正定,故特征值全大于零。

又M与AB相似,故具有相同的特征值。则AB的特征特征值全大于零。 由对称矩阵与特征值之间的关系,可判断AB正定。 4.对于任意收敛正项级数 $\sum_{n=1}^{+\infty} a_n$,是否存在发散正项数列 $\{b_n\}$,使得 $\sum_{n=1}^{+\infty} a_n b_n$ 收敛。

解答:像这样的题目,属于探索阶段既不能证明它存在也不能证明它不存在的,在数学科研中经常遇到。发散思维是常用的方式。

这样的数列 $\{b_n\}$ 是存在的。例如构造数列

$$b_n = \frac{1}{\sqrt{\sum_{i=n}^{+\infty} a_i}}, 显然\{b_n\} 发散。$$

记
$$c_n = \sum_{i=n}^{+\infty} a_i$$
,则有 $c_n > c_{n+1}$, $a_n = c_n - c_{n+1}$

$$a_n b_n = \frac{a_n}{\sqrt{c_n}} = \frac{c_n - c_{n+1}}{\sqrt{c_n}} = \int_{c_{n+1}}^{c_n} \frac{dx}{\sqrt{c_n}} < \int_{c_{n+1}}^{c_n} \frac{dx}{\sqrt{x}}$$

$$\sum_{n=1}^{+\infty} a_n b_n < \sum_{n=1}^{+\infty} \int_{c_{n+1}}^{c_n} \frac{dx}{\sqrt{x}} = \lim_{n \to +\infty} \int_{c_n}^{c_1} \frac{dx}{\sqrt{x}}$$

$$\because \sum_{n=1}^{+\infty} a_n$$
收敛, $\therefore c_1$ 有界, $\lim_{n \to +\infty} c_n = 0$

则极限①存在

$$\therefore \sum_{n=1}^{+\infty} a_n b_n$$
收敛。

此题的同义命题还有:对于任意收敛的广义积分 $\int_a^{+\infty} f(x) dx$,(f(x)>0) 是否存在正函数 g(x) 使得 $\int_a^{+\infty} f(x) g(x) dx$ 收敛。