Mathématiques Préparatoires II

Les charmes enchanteurs de cette sublime science ne se décèlent dans toute leur beauté qu'à ceux qui ont le courage de l'approfondir

> Carl Friedrich Gauss Quelques années plus tôt

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Merci à Kellian pour les heures de discussion et pour sa relecture attentive.

Merci à mes professeurs Laurent Germa et Jean-François Mallordy pour leur enseignement et leur soutient.

mile and

Chapitres

1	Suites et séries	5
2	Limites et continuité	17
3	Dérivation et intégration	35
4	Suites de fonctions	47
5	Intégrales généralisées	55
6	Intégrales paramétrées	63
7	Séries entières	67
8	Algèbre	75

Chapitre 1

Suites et séries

On considèrera comme acquis en sup les cas réel et complexe : Notament :

-> Théorème des gendarmes

-> Théorème de la limite monotone

Contenu

Contena		
1.1	Norme	
	1.1.1 Généralités	
	Norme	
	Distance	
	Boule ouverte et fermée 6	
	Segment et ensemble convexe	
	1.1.2 Normes euclidiennes	
	1.1.3 Exemple de normes	
	Norme N_{∞} :	
	Norme $N_1:\ldots$ 7	
	Norme <i>N</i> ₂ :	
1.2	Suites	
	Suite convergente	
	Suite bornée	
	Suite extraite	
	Valeur d'adhérence	
1.3	Normes équivalentes	
	1.3.1 Définition	
	1.3.2 Cas de espaces de dimension fini	
1.4	Comparaisons asymptotiques	
	Négligeabilité	
	Domination	
	Équivalence	
1.5	Séries dans un K espace vectoriel de dimension finie	
	Sommes partielles	
	Série convergente	
	Divergence grossière	
	Convergence absolue	
1.6	Complément sur les séries numériques	
	1.6.1 Règle de <u>Dalembert</u>	

	1.6.2	Séries alternées	14
		Défnition	14
	1.6.3	Sommation des relations de comparaisons	14
1.7	Produ	tit de deux séries absolument convergentes	15
		Produit de Cauchy	15
1.8	Duali	té série-suite	15

1.1 Norme

1.1.1 Généralités

Norme Une norme sur *E* est une application $N : E \to \mathbf{R}$ vérifiant :

- $\forall x \in E, \overline{N(x)} = 0_{\mathbf{R}} \Leftrightarrow x = 0_{E}$
- $\forall x \in E, \ \forall \lambda \in \mathbf{K}, \ N(\lambda.x) = |\lambda| \ N(x)$
- $\forall x, y \in E$, $N(x+y) \leq N(x) + N(y)$

Lemme 1.1.1.

```
Soit (E, N) un espace vectoriel normé,
On a N \ge 0 (i.e. \forall x \in E, N(x - y) \ge 0)
```

Distance Une distance sur X est une application $d: X^2 \to \mathbb{R}$ vérifiant :

- $-\forall x,y \in E, d(x,y) = 0 \Leftrightarrow x = y$
- $\forall x, y \in E, \ d(x,y) = d(y,x)$
- $\forall x, y, z \in E, \ d(x, z) \le d(x, y) + d(y, z)$

Lemme 1.1.2.

```
Soit (E, N) un espace vectoriel normé.
Si \forall (x,y) \in E^2, d(x,y) = N(x-y) alors d est une distance sur E.
```

Boule ouverte et fermée Soient $a \in E$, $r \in \mathbf{R}$ On pose

$$B(a,r) = \{x \in E \mid d(x,a) < r\}$$
 $B_f(a,r) = \{x \in E \mid d(x,a) \le r\}$

Les boules ouverte et fermée de centre a et de rayon r.

1.1. NORME

Segment et ensemble convexe Soit *E* un **K** espace vectoriel quelconque

-> Pour
$$(a,b)$$
 ∈ E^2 on défini le segment : $[a,b] = \{(1-t)a + tb \mid t \in [0,1]\}$
-> $C \subset E$ est dit convexe si $\forall (a,b) \in C^2$, $[a,b] \subset C$

Lemme 1.1.3.

Dans E un EVN quelconque les boules sont convexes

1.1.2 Normes euclidiennes

Ici *E* est un **R** espace vectoriel muni d'un produit scalaire¹

$$\Phi: \left(\begin{array}{ccc} E^2 & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & \langle x \rangle y \end{array}\right)$$

On a alors par théorème 2 , $x\mapsto\sqrt{\langle x\rangle\,x}$ est une norme sur E. On notera

$$||x||_2 = N_2(x) = \sqrt{\langle x \rangle x}$$

Note. L'inégalité triangulaire pour $\|.\|_2$ est dite inégalité de Minkovsky

Si
$$E = \mathbf{C}^n$$
, $z = (z_1, \dots, z_n)$, $N(z) = \sqrt{\sum_{k=1}^n |z_k|^2}$ est une norme

$$\begin{vmatrix} E = \mathcal{C}^0([a,b],\mathbf{C}) \text{ Soit } f \in E \text{ on pose} \\ N(f) = \sqrt{\int_a^b |f(x)|^2 dx} \qquad \text{alors } N \text{ est une norme sur } E \end{vmatrix}$$

1.1.3 Exemple de normes

Norme N_{∞} :

Dans
$$E = K^n$$
 soit $x = (x_1, ..., x_n)$, $N_{\infty}(x) = \max_{i \in [\![1,n]\!]} |x_i|$
Dans $E = \mathcal{C}^0([a,b],K)$ soit $f \in E$, $N_{\infty}(f) = \sup_{x \in [a,b]} |f(x)|$

Norme N_1 :

Dans
$$E = K^n$$
 soit $x = (x_1, ..., x_n)$, $N_1(x) = \sum_{i=1}^n |x_i|$
Dans $E = C^0([a, b], K)$ soit $f \in E$, $N_1(f) = \int_a^b |f(x)| dx$

^{1.} Un produit scalaire est une forme bilinéaire symétrique définie positive

^{2.} Voir cours de sup

Norme N_2 :

Dans
$$E = K^n$$
 soit $x = (x_1, ..., x_n)$, $N_2(x) = \sqrt{\sum_{i=1}^n x_i^2}$
Dans $E = \mathcal{C}^0([a, b], K)$ soit $f \in E$, $N_2(f) = \sqrt{\int_a^b (f(x))^2 dx}$

1.2 Suites

Suite convergente Soit $u = (u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ et $\ell \in E$. On dit que u converge vers ℓ et on note

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \text{ ssi } \forall \varepsilon > 0, \ \exists n_0 \in \mathbf{N} \ : \ \forall n \geq n_0, \ d(u_n, \ell) < \varepsilon$$

Si
$$u_n \to \ell_1 \in E$$
 $u_n \to \ell_2 \in E$ Alors $\ell_1 = \ell_2$

Démonstration. Par l'absurde, on suppose
$$\ell_1 \neq \ell_2$$
. Soit $\varepsilon = \frac{1}{2}d(\ell_1,\ell_2) > 0$ On a alors $\begin{array}{l} n_1 \in \mathbf{N} \ : \ \forall n \geq n_1, \ d(u_n,\ell_1) < \varepsilon \\ n_2 \in \mathbf{N} \ : \ \forall n \geq n_2, \ d(u_n,\ell_2) < \varepsilon \end{array}$ et soit $p = \max(n_1,n_2)$

$$d(\ell_1, \ell_2) \le d(\ell_1, u_p) + d(\ell_2, u_p) < 2\varepsilon = d(\ell_1, \ell_2) \text{ impossible}$$

Soit
$$(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$$
, $\ell\in E$ Alors $u_n\to \ell \Leftrightarrow \|u_n-\ell\|\to 0$

Démonstration. Notons $v_n = \|u_n - \ell\|$ et $\lambda = 0$ Alors $d(u_n, \ell) = \|u_n - \ell\| = v_n = 0$ $||v_n - \lambda|| = d(v_n, \lambda)$

or
$$u_n \to \ell \text{ } \underbrace{ssi}_{n} : \forall \varepsilon > 0, \ \exists n_0 \in \mathbf{N} : \ \forall n \geq n_0, \ d(u_n, \ell) < \varepsilon \ \Rightarrow \ d(v_n, \lambda) < \varepsilon \ \Rightarrow \ v_n \to 0$$

Soient
$$u_n$$
, $v_n \in E^{\mathbf{N}}$ et $\lambda \in K$ si on a $u_n \xrightarrow{n} \alpha$ et $v_n \xrightarrow{n} \beta$
Alors $\lambda u_n + v_n \xrightarrow{n} \lambda \alpha + \beta$

Lemme : Inégalité triangulaire renversée.

| Soit
$$x, y \in E$$
 alors $|N(x) - N(y)| \le N(x - y)$

Démonstration.
$$N(x) \le N(x-y) + N(y) \Rightarrow \underbrace{N(x) - N(y)}_{t \in \mathbf{R}} \le N(x-y)$$

On conclut alors par agument de symétrie.

Soit
$$u_n \in E^{\mathbf{N}}$$
, $\alpha \in K$ on a $u_n \to \alpha \Rightarrow ||u_n|| \to ||\alpha||$

Attention! La réciproque est fausse!

1.2. SUITES 9

Suite bornée Soit $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ on dit que (u_n) est bornée si $\exists M\in\mathbb{R}: \forall n\in\mathbb{N}, \|u_n\|\leq M$.

Lemme 1.2.4.

Toute suite $(u_n)_{n>0} \in E^{\mathbf{N}}$ convergente est bornée

Lemme 1.2.5.

On suppose
$$\begin{cases} \lambda_n \to \mu \in K \\ u_n \to v \in E \end{cases}$$
 Alors $\lambda_n u_n \to \mu v$

Suite extraite Soit $u \in E^{\mathbf{N}}$ on appelle <u>suite extraite</u> (ou sous-suite) de u toute suite $\left(u_{\varphi(n)}\right)_{n\in\mathbf{N}}$ où $\varphi:\mathbf{N}\to\mathbf{N}$ est une extractrice (injection croissante)

$$NB : en \ fait \ (v_n)_{n \ge 0} = \left(u_{\varphi(n)}\right)_{n > 0} \Leftrightarrow v = u \circ \varphi$$

Valeur d'adhérence $\ell \in E$ est une valeur d'adhérence de u s'il existe une suite extraite de u qui converge vers ℓ . On notera \mathcal{V}_u l'ensemble des valeurs d'adhérence de u.

Théorème 1.2.6.

Soit $u \in E^N$ si u converge vers $\ell \in K$ alors toute suite extraite de u converge vers ℓ

Démonstration. Soit $\varphi: \mathbf{N} \to \mathbf{N}$ une extractrice et $(v_n)_{n\geq 0} = \left(u_{\varphi(n)}\right)_{n\geq 0}$ Soit $\varepsilon > 0$ et $n_0 \in \mathbf{N}: \forall n \geq n_0, \ d(u_n, \ell) < \varepsilon$ donc $\varphi(n) \geq n_0$ et ainsi $d\left(u_{\varphi(n)}, \ell\right) < \varepsilon$ et $v_n \underset{n}{\to} \ell$

Corollaire.

Toute suite admettant au moins 2 valeurs d'adhérence est divergente

1.3 Normes équivalentes

1.3.1 Définition

Soit *E* un *K* espace vectoriel, *N* et *N'* deux normes sur *E*. *N* et *N'* sont dites équivalentes ($N \sim N'$) si $\exists \alpha, \beta \in \mathbf{R} : \alpha N \leq N' \leq \beta N$

Note. On peut aussi l'écrire $N' \leq \beta N$ et $N \leq \frac{1}{\alpha} N'$

Lemme 1.3.1.

```
Soit N, N' des normes équivalentes sur E, u \in E^{\mathbf{N}}, \ \ell \in E alors 1) u_n \underset{n}{\to} \ell dans (E, N) \Leftrightarrow u_n \underset{n}{\to} \ell dans (E, N') 2) u est bornée dans (E, N) \Leftrightarrow u est bornée dans (E, N')
```

Lemme 1.3.2.

```
Sur K^n, N_1, N_2 et N_\infty sont équivalentes et plus précisément N_\infty \le N_1 \le \sqrt{n}N_2 \le nN_\infty
```

1.3.2 Cas de espaces de dimension fini

Rappel. Un espace vectoriel *E* est de dimension finie s'il existe une famille d'éléments de *E* libre et génératrice, c'est alors une base de *E*.

Théorème 1.3.3.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Sera démontré ultérieurement.

Corollaire.

Dans un K espace vectoriel de dimension finie, la notion de convergence ne dépend pas de la norme.

Attention! C'est faux en dimension quelconque!

Lemme 1.3.4.

Soit E de dimension finie et
$$e = (e_1, ..., e_p)$$
 une base de E.
Soit $(x_n)_{n \ge 0} \in E^{\mathbf{N}}$ et $\alpha \in E$. On écrit
$$\begin{cases} x_n = x_{1,n}e_1 + \dots + x_{p,n}e_p \\ \alpha = \alpha_1e_1 + \dots + \alpha_pe_p \end{cases}$$
On a alors $x_n \xrightarrow{n} \alpha \Leftrightarrow \forall k \in [1, p], \ x_{k,n} \xrightarrow{n} \alpha_k$

Théorème 1.3.5.

Soient
$$p,q,r \in \mathbf{N}^*$$

$$\begin{cases}
A_n \xrightarrow{n} A & dans \, \mathcal{M}_{p,q}(\mathbf{R}) \\
B_n \xrightarrow{n} B & dans \, \mathcal{M}_{q,r}(\mathbf{R})
\end{cases}$$
Alors

Démonstration. Soit
$$(i,j) \in [1,p] \times [1,r]$$

 $(A_nB_n)_{i,j} = \sum_{k=1}^q \underbrace{(A_n)_{i,k}}_{\rightarrow a_{i,k}} \underbrace{(B_n)_{k,j}}_{\rightarrow b_{k,j}} \xrightarrow{n} \sum_{k=1}^q a_{i,k}b_{k,j} = (AB)_{i,j} \operatorname{donc} A_nB_n \xrightarrow{n} AB$

1.4 Comparaisons asymptotiques

Soient
$$(u_n)_{n\geq n_0}$$
, $(v_n)_{n\geq n_0}\in \mathbf{C}^{\mathbf{N}}$

Négligeabilité On dit que u_n est négligeable devant v_n quand $n \to +\infty$ noté $u_n = o(v_n)$ s'il existe $n_0 \in \mathbb{N}$ et $(\delta_n)_{n \ge n_0}$ tel que

$$- \forall n \geq n_0, \ u_n = \delta_n v_n$$

$$-\delta_n \xrightarrow[n \to +\infty]{} 0$$

Domination On dit que u_n est dominée par v_n quand $n \to +\infty$ noté $u_n = \bigcap_{n \to +\infty} \bigcap (v_n)$ s'il existe $n_0 \in \mathbf{N}$ et $(B_n)_{n \ge n_0}$ tel que

$$\forall n \geq n_0, \ u_n = B_n v_n$$

—
$$(B_n)_{n\geq n_0}$$
 est bornée

Équivalence On dit que u_n est équivalent à v_n , noté $u_n \sim v_n$ si :

$$u_n - v_n = \circ(v_n)$$

Note. $u_n \sim v_n \iff u_n = v_n + \circ(v_n)$

1.5 Séries dans un K espace vectoriel de dimension finie

Note. On note par abus " $dimE < \infty$ "

Le cas scalaire est abordé en MPSI.

Soit
$$u = (u_n) \in E^{\mathbf{N}}$$
; pour $n \in \mathbf{N}$ on pose $U_n = \sum_{k=1}^n u_k$.

Sommes partielles La suite (U_n) est dite suite des sommes partielles associée à u.

Série convergente On dit que la <u>série de terme général u_n converge si (U_n) converge.</u>

Dans ce cas on pose
$$\sum_{0}^{+\infty} = \lim_{n \to +\infty} U_n \in E$$

Lemme 1.5.1.
$$\left(\sum u_n \text{converge}\right) \Rightarrow \left(u_n \xrightarrow{n} 0\right)$$

Attention! La réciproque est fausse! (ex : (H_n))

Divergence grossière Lorsque $u_n \not\to 0$, la série $\sum u_n$ est dite grossièrement divergente " $\sum u_n$ DVG" ainsi : ($\sum u_n$ DVG $\Rightarrow \sum u_n$ DV)

Théorème : Reste d'une série convergente.

On suppose
$$\sum u_n$$
 converge, on note $S = \sum_{n=0}^{\infty} u_n$ la "limite de la somme" et $R_n = \sum_{k=n+1}^{+\infty} u_k$ le "reste d'ordre n".

Alors $\begin{vmatrix} \forall n \in \mathbf{N}, S = U_n + R_n \\ R_n \to 0 \end{vmatrix}$

Démonstration. bien-fondé?

Soit
$$n \in \mathbb{N}$$
 pour $m \ge n+1$, $\sum_{k=n+1}^m u_k = U_m - U_n \xrightarrow[m]{} S - U_n$ donc R_n existe avec $R_n = S - U_n$ d'où $S = U_n + R_n$ puis $R_n = S - U_n \to S - S = 0$

Lemme 1.5.2.

Soit
$$(u_n)$$
, $(v_n) \in E^{\mathbf{N}}$ et $\lambda \in K$
On suppose que $\sum u_n$ et $\sum v_n$ convergent alors:
 $-> \sum \lambda u_n + v_n$ converge
 $-> \sum_{n=0}^{\infty} \lambda u_n + v_n = \lambda \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$

Convergence absolue Soit $(u_n) \in E^{\mathbb{N}}$ on dit que $\sum u_n$ <u>converge absolument</u> si $\sum ||u_n||$ converge.

Note. Vu $dimE < \infty$, ceci ne dépend pas du choix de la norme

Théorème 1.5.3.

Dans un K espace vectoriel de dimension finie, toute série absolument convergente est convergente " $\overline{CVA} \Rightarrow CV$ "

Sera démontré ultérieurement. ¹

Attention! Faux dans un EVN quelconque!

Lemme 1.5.4.

Soit
$$(E, N)$$
 un K espace vectoriel normé de dimension finie
On supposons que $\sum u_n$ CVA. Alors $\|\sum_{n=0}^{\infty} u_n\| \leq \sum_{n=0}^{\infty} \|u_n\|$

Complément sur les séries numériques 1.6

Rappel. Soit $z \in \mathbf{C}$ alors $\sum z^n \text{ CV} \Rightarrow |z| < 1$

-> Lorsque
$$|z| < 1$$
 on a $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$
-> On définie $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Règle de Dalembert 1.6.1

Théorème : Règle de Dalembert.

orème : Règle de Dalembert.

| Soit
$$(u_n) \in (\mathbf{C}^*)^{\overline{\mathbf{N}}}$$
| On suppose l'existence de $\ell \in \mathbf{R} \cup \{+\infty\}$ tel que $\left| \frac{u_{u+1}}{u_n} \right| \to \ell$
| \underline{Alors} : 1) $\ell < 1 \Rightarrow \sum u_n \ CVA$
| 2) $\ell > 1 \Rightarrow \sum u_n \ DVG$

Démonstration. 1) On suppose $\ell < 1$ et on note $r_n = \left| \frac{u_{u+1}}{u_n} \right|$. On pose $\theta \in [\ell, 1]$ et $\varepsilon = \theta - \ell$

 $\exists n_0 \in \mathbf{N} : \forall n \geq n_0, \ |r_n - \ell| < \varepsilon \text{ soit en particulier } r_n < \ell + \varepsilon = \theta \text{ Ainsi } \forall n \geq n_0, \ |u_{n+1}| < \varepsilon$

et
$$|u_n| \le \theta^{n-n_0} |u_{n_0}|$$
 (REC) On a alors $\forall n \ge n_0$, $|u_n| \le \underbrace{\theta^{-n_0} |u_{n_0}|}_{\text{etc}} \theta^n$ or $\sum \theta^n$ converge car

donc par théorème de comparaison $\sum |u_n|$ converge.

2) On suppose
$$\ell > 1$$
 et on fixe $\theta \in \mathbf{R}$ tel que $1 < \theta < \ell$, on a alors $\exists n_0 \in \mathbf{N} : \forall n \ge n_0, r_n > \theta$ (...) on obtient $|u_n| \to +\infty$ donc $u_n \xrightarrow[n]{} 0$ donc $\sum u_n$ DVG

^{1.} TODO: add ref

1.6.2 Séries alternées

Défnition La série réelle $\sum u_n$ est dite <u>alternée</u> si $\begin{cases} \forall n \in \mathbf{N}, \ u_n = (-1)^n |u_n| \\ \forall n \in \mathbf{N}, \ u_n = (-1)^{n+1} |u_n| \end{cases}$

Théorème : Critère spécial des série alternées.

Soit
$$(u_n)$$
 une suite, on suppose
1) $\sum u_n$ est alternée
2) $u_n \to 0$
3) $(|u_n|)_{n\geq 0}$ décroit.
alors $\sum u_n$ converge et de plus, $\forall n \in \mathbb{N}$
-> $|R_n| \leq |u_{n+1}|$
-> R_n et u_{n+1} ont le même signe
-> S est compris entre U_n et U_{n+1}

Sommation des relations de comparaisons

Théorème : Cas convergent.

Foreme: Cas convergent.

| Soit
$$(u_n)$$
, $(v_n) \in \mathbb{R}^{\mathbb{N}}$ et $v_n \geq 0$, $\forall n \geq n_0$. On suppose que $\sum u_n$ et $\sum v_n$ converge et on pose $R_n = \sum_{k=n+1}^{+\infty} u_n$ et $R'_n = \sum_{k=n+1}^{+\infty} v_n$
| Alors:
| 1) $u_n = o_{n \to +\infty}(v_n) \Rightarrow R_n = o_{n \to +\infty}(R'_n)$
| 2) $u_n = \bigcap_{n \to +\infty}(v_n) \Rightarrow R_n = \bigcap_{n \to +\infty}(R'_n)$
| 3) $u_n \sim v_n \Rightarrow R_n \sim R'_n$

Théorème : Cas divergent.

Soit
$$(u_n)$$
, $(v_n) \in \mathbf{R^N}$ et $v_n \ge 0$, $\forall n \ge n_0$. On suppose que $\sum u_n$ et $\sum v_n$ diverge et on note $U_n = \sum_{k=0}^n u_n$ et $V_n = \sum_{k=0}^n v_n$ Alors:

1) $u_n = \circ_{n \to +\infty}(v_n) \Rightarrow U_n = \circ_{n \to +\infty}(V_n)$
2) $u_n = \bigcirc_{n \to +\infty}(v_n) \Rightarrow U_n = \bigcirc_{n \to +\infty}(V_n)$
3) $u_n \underset{n \to +\infty}{\sim} v_n \Rightarrow U_n \underset{n \to +\infty}{\sim} V_n$

Théorème de Cesàro.

Soit
$$(u_n)$$
 $\in \mathbb{R}^{\mathbb{N}}$
1) Si $u_n \to \lambda$ avec $\lambda \in \mathbb{R}$, alors $\frac{1}{n+1} \sum_{k=0}^{n} u_k \to \lambda$
2) Si $u_n \to +\infty$ alors $\frac{1}{n+1} \sum_{k=0}^{n} u_k \to +\infty$

Démonstration. 1) Supposons $u_n \to \lambda$ alors $u_n - \lambda = o(1)$, on pose ensuite $v_n = 1$ alors $\sum v_n$ diverge et d'après le théorème de sommation en cas divergent $\sum_{k=0}^n u_k - \lambda = \circ(\sum_{k=0}^n 1) \Rightarrow \frac{1}{n+1}(\sum_{k=0}^n u_k) - \lambda \to 0$ 2) Supposons $u_n \to +\infty$ et posons $a_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ Soit $A \in \mathbf{R}$ et A' = A + 1Soit $n_0 \in \mathbb{N}$: $\forall n \geq n_0, u_n > A'$, puis pour $n \geq n_0$ avec $C = \sum_{k=0}^{n_0-1} u_k$:

$$a_n = \frac{1}{n+1}(C + \sum_{k=n_0}^n u_k) \text{ donc } a_n > \frac{C}{n+1} + A' \frac{n+1-n_0}{n+1} = A' + \frac{C-n_0A'}{n+1}$$

Soit $n_1 \ge n_0$ tel que $\forall n \ge n_1$, $\left| \frac{C-A'n_0}{n+1} \right| < 1$ alors $\forall n \ge n_1$, $a_n > A$ d'où $a_n \to +\infty$

1.7 Produit de deux séries absolument convergentes

Produit de <u>Cauchy</u> Soient $\sum u_n$ et $\sum v_n$ des séries quelconques (convergentes ou non) de nombres complexes.

On pose
$$\forall n \in \mathbf{N}$$
: $w_n = \sum_{i+j=n} u_i v_j = \sum_{k=0}^n u_k v_{n-k}$ (somme finie!)

La série $\sum w_n$ est appelée produit de Cauchy de $\sum u_n$ et $\sum v_n$.

Attention!

Lorsque $\sum u_n$ et $\sum v_n$ convergent on a pas forcément $(\sum u_n) \times (\sum v_n) = \sum w_n$

Théorème 1.7.1.

Si
$$\sum u_n$$
 et $\sum v_n$ convergent absolument alors :
1) $\sum w_n$ CVA
2) $(\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n$

Signalé :

Théorème de Mertens.

$$Si \left\{ \begin{array}{l} \sum u_n \text{ CVA} \\ \sum v_n \text{ converge} \\ alors \sum w_n \text{ converge et } (\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n \end{array} \right.$$

1.8 Dualité série-suite

Toute suite peut-être envisagée comme une série Ici (E, N) est un EVN de dimension finie.

On pose
$$\forall n \in \mathbf{N}^*$$
 $\begin{cases} b_0 = a_0 \\ b_n = a_n - a_{n-1} \end{cases}$ On a alors pour $n \in \mathbf{N}$
$$\sum_{k=0}^n b_k = b_0 + \sum_{k=1}^n (a_k - a_{k-1}) = a_0 + a_n - a_0 = a_n \quad \text{soit} \quad a_n = \sum_{k=0}^n b_k$$

On sait ensuite que (a_n) converge si et seulement si $\sum b_k$ converge donc

$$(a_n)$$
 converge $\Leftrightarrow \sum a_n - a_{n-1}$ converge

Chapitre 2

Limites et continuité

Cadre:(E,N) est un espace vectoriel normé quelconque et $A\subset E$

Contenu			
2.1	Ouve	rts et fermés	
	2.1.1	Intérieurs	
		Point intérieur	
		Intérieur	
	2.1.2	Ouverts	
		Définition	
	2.1.3	Fermés	
		Lois de <u>Morgan</u> :	
		Définition	
	2.1.4	Adhérence	
		Point adhérent	
		Adhérence	
		Frontière	
		Densité	
		Exemple	
2.2	Limit	es	
	2.2.1	Cas général	
		Définition	
		Limite en $\pm \infty$	
		Limite infinie	
		Voisinage	
	2.2.2	Produit fini d'espaces vectoriels normés	
		Norme produit	
2.3	Conti	nuité	
	2.3.1	Cas général	
		Continuité en un point	
		Continuité	
		Fonction lipschitzienne	
		Distance à un ensemble	
	2.3.2	Cas des applications linéaires	
		Norme subordonnée	

2.4	Image réciproque et continuité	8
	Voisinage relatif	8
	Ouvert relatif	8
	Fermé relatif	8
2.5	Compacité	9
	2.5.1 Compacité dans un espace vectoriel normé quelconque 29	9
	Partie compacte	9
	Continuité uniforme	0
	2.5.2 Compacité en dimension finie	1
	2.5.3 Applications aux séries en dimension finie	2
	Séries de matrices	2
2.6	Connexité par arcs	2
	Chemin	2
	Composantes connexes	3
	Connexité par arcs	3
	Partie étoilée	

2.1 Ouverts et fermés

On considère ici $A \subset E$ et $\alpha \in E$

2.1.1 Intérieurs

Point intérieur

-> α est un dit un point intérieur à A s'il existe un réel r > 0 tel que $B(\alpha, r) \subset A$

Intérieur

-> On pose $Å = \{x \in E \mid x \text{ est intérieur à } A\}$ dit intérieur de A

Lemme 2.1.1.

Soit $A \subset E$ alors $\mathring{A} \subset A$

Lemme : Croissance de l'intérieur.

| Soit $A, B \in E$ alors $A \subset b \Rightarrow \mathring{A} \subset \mathring{B}$

2.1.2 Ouverts

Définition Dans (E, N) on appelle <u>ouvert</u> (ou <u>partie ouverte</u>) **toute** réunion de boules ouvertes.

Théorème: Caractérisation des ouverts.

| Soit
$$U \subset E$$
 alors
| $(U \text{ ouvert}) \Leftrightarrow (\forall x \in U, \exists r > 0 : B(x,r) \subset U)$

Démonstration.

 \sqsubseteq Pour chaque $x \in U$, on choisit r_x tel que $B(x, r_x) \subset U$ alors $U = \bigcup_{x \in U} B(x, r_x)$ donc par définition, U est un ouvert.

⇒ On note
$$U = \bigcup B(x_i, r_i)$$
, soit $x \in U$ et $i_0 \in I$ tel que $x \in B(x_{i_0}, r_{i_0})$
Soit $r = r_{i_0} - d(x, x_{i_0}) > 0$ alors $B(x, r) \subset B(x_{i_0}, r_{i_0})$
| Soit $y \in B(x, r)$ c'est-à-dire $d(x, y) < r$ alors
| $d(y, x_{i_0}) \le d(y, x) + d(x, x_{i_0}) < r_{i_0}$
Ainsi $\forall x \in U$, $\exists r > 0 : B(x, r) \subset U$

Corollaire.

Soit
$$U \subset E$$
 alors U ouvert $\Leftrightarrow U \subset \mathring{U} \Leftrightarrow U = \mathring{U}$

Note. $T = \{U \subset E \mid U \text{ est ouvert}\}\ \text{est appelé } \underline{\text{Topologie}}\ \text{de } (E, N)$

Théorème 2.1.2.

- 1) Toute réunion d'ouvert est un ouvert.
- 2) Toute intersection finie d'ouvert est un ouvert.

Démonstration. On démontre la deuxième assertion

- -> Cas de l'intersection vide : $\bigcap_{\emptyset} = E$
- -> Cas de 2 ouverts : Soit A, B deux ouverts de E, soit $x \in A \cap B$, on a $\exists r_1, r_2 > 0$ tels que $B(x, r_1) \subset A$ et $B(x, r_2) \subset B$ alors soit $r = \min(r_1, r_2)$, $B(x, r) \subset A \cap B$ et par le théorème de caractérisation des ouverts, $A \cap B$ est un ouvert
- -> Cas de p ouverts, $p \in \mathbb{N}^*$: par récurrence sur p avec le cas p=2

2.1.3 Fermés

Lois de Morgan :
$${}^{c}\left(\bigcap_{i\in I}A_{i}\right) = \bigcup_{i\in I}{}^{c}A_{i}$$
 et ${}^{c}\left(\bigcup_{i\in I}A_{i}\right) = \bigcap_{i\in I}{}^{c}A_{i}$

Définition On appelle fermé tout complémentaire d'un ouvert de *E*

Ainsi
$$A$$
 est fermé $\Leftrightarrow {}^{c}A$ est ouvert $A = C_{E}A$

Théorème 2.1.3.

- 1) Toute intersection de fermés est fermée.
- 2) Toute réunion finie de fermés est fermée.

Démonstration. 1) Soit $(\Phi_i)_{i \in I}$ une famille de fermés de E on a $^c(\bigcap_I \Phi_i) = \bigcup_I {^c\Phi_i}$ est un ouvert donc l'intersection des Φ_i est fermée.

2.1.4 Adhérence

Point adhérent α est dit adhérent à A si $\forall r > 0$, $B(\alpha, r) \cap A \neq \emptyset$

Adhérence On pose $\overline{A} = \{x \in E \mid x \text{ est adhérent à } A\}$ dit adhérence de A.

Lemme : Croissance de l'adhérence.

Soit
$$A, B \in E$$
 alors $A \subset b \Rightarrow \overline{A} \subset \overline{B}$

Théorème 2.1.4.

Soit
$$\alpha \in E$$
 alors $\alpha \in \overline{A} \Leftrightarrow \exists (a_n) \in A^{\mathbf{N}} : a_n \xrightarrow[n]{} \alpha$

Démonstration.

Soit
$$r > 0$$
 et $n_0 \in \mathbb{N}$ tels que $\forall n \ge n_0$, $d(a_n, \alpha) < r$ alors $B(\alpha, r) \cap A \ne \emptyset$ donc $\alpha \in \overline{A}$
Soit $n \in \mathbb{N}$, $\exists a_n \in B(\alpha, \frac{1}{n+1}) \cap A$ d'où $(a_n) \in A^{\mathbb{N}}$ vérifie $a_n \xrightarrow[n]{} \alpha$

Théorème: Caractérisation des fermés.

Soit $A \subset E$, A est fermé si et seulement si A est stable par passage à la limite.

Démonstration. \Longrightarrow Soit $B = {}^{c}A$ et $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \underset{n}{\to} \alpha \in E$

Si $\alpha \in B$, $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0$, $a_n \in B(\alpha, r)$ soit $a_{n_0} \in B(\alpha, r) \Rightarrow a_{n_0} \notin A$ (impossible !) d'où $\alpha \in A$

E Par contraposée, on suppose que $B = {}^c A$ n'est pas un ouvert donc $\exists \alpha \in B : \forall r > 0$, $\exists x \in B(\alpha, r)$ tel que $x \notin B$. On a alors $\alpha \in \overline{A}$ et $\alpha \in B$ soit $\alpha \notin A$ d'où $\exists (a_n) \in A^{\mathbf{N}}$ avec $a_n \to \alpha$. On a donc trouvé une suite convergente d'éléments de A dont la limite n'est pas dan A.

Corollaire.

Soit
$$A \subset E$$
, on $a : A$ femré $\Leftrightarrow \overline{A} \subset A \Leftrightarrow \overline{A} = A$

Lemme 2.1.5.

Soit
$$A \subset E$$
 alors ${}^{c}(\overline{A}) = {}^{c}\widehat{A}$ et ${}^{c}(\mathring{A}) = {}^{\overline{c}}A$

Lemme 2.1.6.

- 1) Å est un ouvert
- 2) Å est le plus grand ouvert de E inclu dans A

Lemme 2.1.7.

- 1) \overline{A} est un fermé
- 2) \overline{A} est le plus petit fermé de E contenant A

Théorème 2.1.8.

Les notions suivantes, (notions topologiques) :

- point intérieur
- ouvert
- point adhérent
- fermé

sont invariants par passage à une norme équivalente.

Démonstration. On sait que la convergence d'une suite est invariante par norme équivalente (Page 10) donc on a l'invariance des notions "point adhérent" et "adhérence" ainsi que "point intérieur" par le complémentaire de l'adhérence (Page 20) puis par caractérisation séquentielle des fermés on a l'invariance de la notion "fermé" ainsi que "ouvert" par le complémentaire.

Lemme 2.1.9.

- 1) Toute boule fermée est fermée
- 2) Toute sphère est fermée

Frontière Soit $A \subset E$ on définie sa <u>frontière</u> comme $F_r(A) = \overline{A} \setminus \mathring{A}$

Lemme 2.1.10.
$$\forall A \subset E \text{ , } F_r(A) \text{ est fermée et } F_r(A) = \overline{A} \cap \overline{{}^c A}$$

Densité Soit $D \subset A \subset E$ on dit que D est <u>dense</u> dans A si tout élément de A est limite d'une suite d'éléments de D soit

$$\forall a \in A, \ \exists \ (d_n) \in D^{\mathbf{N}} : \ d_n \xrightarrow{n} a$$

Lemme 2.1.11.

Soit $D \subset A$ *alors on a* : D *dense dans* $A \Leftrightarrow A \subset \overline{D}$

Exemple Soit $n \in \mathbb{N}^*$ alors $GL_n(K)$ dense dans $\mathcal{M}_n(K)$

Démonstration. Soit $M \in \mathcal{M}_n(K)$ et $r = \operatorname{rg}(M) \in \llbracket 1, n \rrbracket$ Par théorème $^1 \exists U, V \in GL_n(K) : M = UJ_rV$ posons alors pour $p \in \mathbf{N}^*$ $J_r(\frac{1}{p}) = \operatorname{Diag}(\underbrace{1, \dots, 1}_r, \frac{1}{p}, \dots, \frac{1}{p})$ puis $M_p = UJ_r(\frac{1}{p})V$ alors $M_p \in GL_n(K) \xrightarrow[p \to +\infty]{} M$

^{1.} Voir cours de sup

2.2 Limites

2.2.1 Cas général

Dans toute cette partie, F est un K espace vectoriel et $f: A(\subset E) \to F$

Définition Soit $\alpha \in \overline{A}$, $b \in F$. On dit que f admet b comme limite au point α , noté $f(x) \xrightarrow[x \to \alpha]{} b$ si

 $\forall \varepsilon > 0$, $\exists \delta > 0$ tel que $\forall x \in A$, $d(x, \alpha) < \delta \Rightarrow d(f(x), b) < \varepsilon$

Lemme 2.2.1.

Soit
$$A(\subset E) \xrightarrow{f} B(\subset F) \xrightarrow{g} G$$
 et $\alpha \in \overline{A}$, $\beta \in \overline{B}$, $c \in G$
Si on a $f(x) \xrightarrow[x \to \alpha]{} \beta$ et $g(y) \xrightarrow[y \to \beta]{} c$ alors $g(f(x)) \xrightarrow[x \to \alpha]{} c$

Lemme 2.2.2.

Soit
$$\alpha \in \overline{A}$$
, $b \in F$, $(a_n) \in A^{\mathbb{N}}$ avec
$$\begin{cases} f(x) \xrightarrow{x \to \alpha} b \\ a_n \xrightarrow{n} \alpha \end{cases}$$

Théorème: Caractérisation séquentielle d'une limite.

Soit
$$\alpha \in \overline{A}$$
, $b \in F$
 $Alors\left(f(x) \xrightarrow[x \to \alpha]{} b\right) \Leftrightarrow \left(\forall (a_n) \in A^{\mathbb{N}}, (a_n \xrightarrow[n]{} \alpha) \Rightarrow (f(a_n) \xrightarrow[n]{} b)\right)$

Démonstration. \Rightarrow Lemme

Par contraposée on fixe
$$\varepsilon_0 > 0$$
 tel que $\forall n \in \mathbb{N}$, $\exists a_n$ tel que $\begin{cases} d(a_n, \alpha) < \frac{1}{n+1} \\ d(f(a_n), b) \ge \varepsilon_0 \end{cases}$
D'où $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \xrightarrow[n]{} \alpha$ **et** $f(a_n) \xrightarrow[n]{} b$

Lemme : Unicité de la limite.

Soit
$$\alpha \in \overline{A}$$
, $b_1 \in F$, $b_2 \in F$
Si $f(x) \xrightarrow[x \to \alpha]{} b_1$ et $f(x) \xrightarrow[x \to \alpha]{} b_2$ alors $b_1 = b_2$

Soit $\alpha \in \overline{A}$ *et* $b \in F$

On suppose que $f(x) \underset{x \to \alpha}{\longrightarrow} b$ alors ceci reste vrai si

• On remplace $\|\cdot\|_E$ par une une norme équivalente

- On remplace $\|\dot{\|}_F$ par une une norme équivalente

Limite en $\pm \infty$ On dit que $f(x) \xrightarrow[\|x\| \to +\infty]{} b$ si $\forall \varepsilon > 0$, $\exists M \in \mathbb{R}$ tel que $\|x\| > M \Rightarrow$ $d(f(x),b) < \varepsilon$

2.2. LIMITES 23

Limite infinie Ici
$$f: A(\subset E) \to \mathbb{R}$$
 et $\alpha \in \overline{A}$
On dit que $f(x) \xrightarrow[x \to \alpha]{} +\infty$ si $\forall M \in \mathbb{R}, \ \exists \delta > 0$ tel que $\forall x \in A, \ d(x,\alpha) < \delta \Rightarrow f(x) > M$

Voisinage Soit (E, N) un espace vectoriel normé quelconque et $\alpha \in E$ Soit $V \subset E$ alors V est un <u>voisinage de</u> α si $\exists r > 0$ tel que $B(\alpha, r) \subset V$ On peut noter $\mathcal{V}_{\alpha} = \{V \subset E \mid V \text{ est } v(\alpha)\}$

Note. $V \in \mathcal{V}_{\alpha} \iff \alpha \in \mathring{V}$

Lemme 2.2.4.

On suppose que $f(x) \xrightarrow[x \to \alpha]{} b \in F$ Alors f est bornée localement au voisinage de α (noté v(a))

2.2.2 Produit fini d'espaces vectoriels normés

Norme produit Soient $(E_1, N_1), \dots, (E_r, N_R)$ des K espaces vectoriels normés. On note $W = \prod_{i=1}^r E_i = E_1 \times \dots \times E_r$ et $x = (x_1, \dots, x_r) \in W$ On pose $\forall x \in W$, $N(x) = \max_{1 \le i \le r} \{N_i(x_i)\}$ alors $\begin{cases} N \text{ est dite } \frac{\text{norme produit}}{\text{dit } \underline{EVN produit}} \end{cases}$

Lemme 2.2.5.

Soient
$$U_1$$
 ouvert de (E_1, N_1)
 \vdots
 U_r ouvert de (E_r, N_r)
alors $U_1 \times \cdots \times U_r$ est un ouvert de W
 U_1 produit fini d'ouvert est un ouvert

Lemme 2.2.6.

Un produit fini de fermé est un fermé

Lemme 2.2.7.

Soit
$$u = (u_n) \in W^{\mathbb{N}}$$
, $b \in W$ où $W = \prod_{i=1}^r E_i$
On note $u_n = (u_{1,n}, \dots, u_{r,n})$ et $b = (b_1, \dots, b_r)$
 $\underline{alors} \ u_n \xrightarrow{n} b \Leftrightarrow \forall i \in [1,r], \ u_{i,n} \xrightarrow{n} b_i$

Lemme 2.2.8.

Soit
$$f: A(\subset E) \to W = \prod_{i=1}^r E_i$$
, $\alpha \in \overline{A}$ et $b = (b_1, \dots, b_r) \in W$
On note $\forall x \in A$, $f(x) = (f_1(x), \dots, f_r(x))$
 $\underline{alors}\left(f(x) \underset{x \to \alpha}{\longrightarrow} b\right) \Leftrightarrow \left(\forall i \in [1, r], f_i(x) \underset{x \to \alpha}{\longrightarrow} b_i\right)$

$$f_1: A \to F f_2: A \to F , \alpha \in \overline{A}, \lambda \in K \ et \ b_1, b_2 \in F$$

$$On \ suppose \ que \left\{ \begin{array}{l} f_1(x) \xrightarrow[x \to \alpha]{} b_1 \\ f_2(x) \xrightarrow[x \to \alpha]{} b_2 \end{array} \right. \ \underline{alors} \ (\lambda f_1 + f_2)(x) \xrightarrow[x \to \alpha]{} (\lambda b_1 + b_2)$$

Lemme 2.2.10.

Soit
$$f: A(\subset E) \to F$$
 avec $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de F
On écrit $f(x) = \sum_{i=1}^p f_i(x)\varepsilon_i$ et $b = \sum_{i=1}^p b_i\varepsilon_i$
 $\underline{alors} \ f(x) \xrightarrow[x \to \alpha]{} b \Leftrightarrow \forall i \in [\![1,p]\!], \ f_i(x) \xrightarrow[x \to \alpha]{} b_i$

2.3 Continuité

2.3.1 Cas général

Continuité en un point Soit $f:A(\subset E)\to F$ et $a\in A$ alors f est dite \mathcal{C}^0 en a si $\forall \varepsilon>0$, $\exists \delta>0$: $\forall x\in A$, $d(a,x)<\delta \Rightarrow d(f(x),f(a))<\varepsilon$

Lemme 2.3.1.

$$\int f\mathcal{C}^0 \ en \ a \Leftrightarrow f(x) \xrightarrow[x \to a]{} f(a)$$

Lemme 2.3.2.

 $\int f C^0$ en $a \Leftrightarrow (f \text{ admet une limite finie ai point en } a)$

Théorème : Caractérisation séquentielle de la continuité.

Soit
$$f: A(\subset E) \to F$$
 et $a \in A$ alors
 f est continue au point a si et seulement si
 $\left(\forall (a_n) \in A^{\mathbb{N}}, \ a_n \xrightarrow[n]{} a \Rightarrow f(a_n \xrightarrow[n]{} f(a)\right)$

Démonstration. Caractérisation séquentielle d'une limite Page 22 et Lemme.

Continuité f est dite continue si $\forall a \in A$, f est continue au point a.

2.3. CONTINUITÉ 25

Fonction lipschitzienne Soit $f : A(\subset E) \to F$ et $k \in \mathbb{R}^+$

- • f est dite $\underline{k$ -lipschitzienne si $\forall (x,y) \in A^2$, $d(f(x),f(y)) \leq k.d(x,y)$
- • f est dite lipschitzienne s'il existe $k \in \mathbb{R}^+$ tel que f est k-lipschitzienne.

Lemme 2.3.3.

| f est lipschitzienne $\Rightarrow f$ est continue

Attention! La réciproque est fausse!

Lemme 2.3.4.

A(
$$\subset$$
 E) $\stackrel{f_1}{\to}$ B(\subset F) $\stackrel{f_2}{\to}$ G.
On suppose f_1 k_1 -lipschitzienne et f_2 k_2 -lipschitzienne alors $f_2 \circ f_1$ est $k_1 \times k_2$ -lipschitzienne

Distance à un ensemble Soit $A \subset E$, $a \neq \emptyset$ et $x \in E$

$$d(x,A) = \inf\{d(x,\alpha) \mid \alpha \in A\}$$

Théorème 2.3.5.

| Toute partie de $\mathbb R$ non vide et minorée admet une borne inférieure

Soit
$$A \subset E$$
, $A \neq \emptyset$ alors δ : $E \to \mathbb{R}$ $x \mapsto d(x,A)$ est 1-lipschitzienne

 $D\'{e}monstration. \ \ Soit \ (x,y) \in E^2 \ Soit \ \alpha \in A \ , \ d(x,\alpha) \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d(y,\alpha) \ ainsi \ \forall \alpha \in A, \underbrace{d(x,A) - d(x,y)}_{\mu} \leq d(x,y) + d($

$$d(y, \alpha)$$
 donc μ est un minorant de $\{d(y, \alpha) \mid \alpha \in A\}$ donc $\mu \le d(y, A)$ d'où $\underbrace{d(x, A) - d(y, A)}_{\alpha}^{\mu} \le d(y, A)$

$$d(x,y)$$
 et on a de même pour le couple (y,x) , $-\theta \leq d(y,x) = d(x,y)$ En bref : $|d(x,A) - d(y,A)| \leq d(x,y)$

Lemme 2.3.7.

La composée de deux applications continues est continue

Lemme 2.3.8.

Pour
$$f: A(\subset E) \to F$$
 et $B \subset F$ on note $f|_B$ la restriction $B \to F$ $x \mapsto f(x)$ Alors f continue $\Rightarrow f|_B$ continue

Lemme 2.3.9.

• Une combinaison linéaire d'applications continues est continue
• Soit
$$a \subset E$$
 et $\begin{cases} f: A \to F \ \mathcal{C}^0 \\ \lambda: A \to K \ \mathcal{C}^0 \end{cases}$ Alors $\begin{cases} A \to F \\ x \mapsto \lambda(x) f(x) \end{cases}$ est \mathcal{C}^0

Lemme 2.3.10.

Soit
$$f,g \in C^0(A,F)$$
, E, F des espaces vectoriels normés
Soit $D \subset A$ dense dans A et $f|_D = g|_D$ alors $f = g$

2.3.2 Cas des applications linéaires

Soit
$$u \in \mathcal{L}(E, F)$$
 alors $u \in \mathcal{C}^0(E, F) \Leftrightarrow \exists C \in \mathbb{R}^+ : \forall x \in E$, $||u(x)|| \le C||x|| \Leftrightarrow u$ est lipschitzienne.

Démonstration. (1) \Rightarrow (2) : Si $u \in \mathcal{C}^0(E, F)$ alors u est \mathcal{C}^0 en 0 et avec $\varepsilon = 1$, soit $\delta > 0$ tel que $\forall x \in E$, $||x|| < \delta \implies ||u(x)|| < 1$. Soit alors $x \in E \setminus \{0\}$, on pose $x' = \frac{\delta}{2} \frac{x}{||x||}$ donc ||u(x')|| < 1 et ainsi $||u(x)|| \le \frac{2}{\delta} ||x||$

(2)
$$\Rightarrow$$
 (3) : On suppose $\forall x \in E$, $||u(x)|| \le C||x||$ puis soit $(x,y) \in E^2$ on a $||u(x-y)|| \le C||x-y||$ donc u est C -lipschitzienne

Notation On note $\mathcal{L}_c(E,F) = \{u \in \mathcal{L}(E,F) \mid u \text{ est continue } \}$

Norme subordonnée

- Soit (E, N) et (F, N') des K espaces vectoriels normés et $u \in \mathcal{L}_c(E, F)$ on pose $|||u||| = \sup\{N'(u(x)) \mid x \in E \text{ et } N(x) \le 1\} = \sup_{N(x) \le 1} N'(u(x))$
- $\mathcal{L}_c(E,F)$ est un K espace vectoriel et |||.||| est une norme sur $\mathcal{L}_c(E,F)$. On l'appelle <u>nome subordonnée</u> à N et N' ou encore <u>norme d'opérateur</u> notée $\|.\|_{op}$

Démonstration.

- Si u=0 alors |||u|||=0, réciproquement si |||u|||=0, $\forall x \in B_f(0,1), u(x)=0$ Soit $x \in E \setminus \{0\}$ en posant $x' = \frac{x}{\|x\|}$ on a $\frac{1}{\|x\|}u(x) = 0$ donc u(x) = 0 — $\forall u \in \mathcal{L}_c(E, F), \ \forall k \in K \text{ on a } |||\lambda u||| = |\lambda| |||u|||$
- Soit $(u,v) \in \mathcal{L}_c(E,F)$ on pose w = u + v, soit $x \in B_f(0,1)$ on a $||w(x)|| \le ||u(x)|| + v$ $||v(x)|| \le |||u||| + |||v|||$ et ainsi |||u||| + |||v||| est un majorant de $X = \{||w(x)|| \mid x \in V\}$ $B_f(0,1)$ or |||w||| est le plus petit majorant de X donc $|||w||| \le |||u||| + |||v|||$

2.3. CONTINUITÉ 27

Lemme 2.3.12.

```
\{(E,N), (F,N') \text{ des espaces vectoriels normés et } E \neq \{0\}

Soit \ u \in \mathcal{L}_c(E,F) \ Alors \ ||u||| = \sup_{\|x\| \le 1} \|u(x)\| = \sup_{\|x\| = 1} \|u(x)\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}
```

Note. Soit $u \in \mathcal{L}_c(E, F)$ Si $E \neq \{0\}$, |||u||| est le plus petit $k \in \mathbb{R}^+$ tel que $\forall x \in E$, $||u(x)|| \le k ||x||$ (c'est vrai même si $E = \{0\}$) ainsi |||u||| est la plus petite constante de Lipschitz de u On a donc $\forall u \in \mathcal{L}_c(E, F)$, $\forall x \in E$, $||u(x)|| \le |||u||| ||x||$

Théorème 2.3.13.

$$(E, N)$$
, (F, N') , (G, n'') des espaces vectoriels normés quelconques avec $E \stackrel{u}{\to} F \stackrel{v}{\to} G$ et $u \in \mathcal{L}_c(E, F)$, $v \in \mathcal{L}_c(F, G)$
Alors $v \circ u \in \mathcal{L}_c(E, G)$ et $|||v \circ u||| \le |||u|||.|||v|||$

Démonstration. $v \circ u \in \mathcal{L}_c(E,G)$ car linéaire et continue puis u est |||u|||-lipschitzienne et v est |||v|||-lipschitzienne donc $v \circ u$ est |||u|||.|||v|||-lipschitzienne du coup $|||v \circ u||| \le |||u|||.|||v|||$

Note. $\forall u, v \in \mathcal{L}_c(E)$, $v \circ u \in \mathcal{L}_c(E)$ et $|||v \circ u||| \le |||u||| \times |||v|||$ On dit aussi que |||.||| est une norme sous-multiplicative ou une norme d'algèbre

Lemme 2.3.14.

Lorsque
$$E \neq \{0\}$$
, $\forall u \in \mathcal{L}_c(E,F)$
 $u \in \mathcal{C}^0(E,F) \Leftrightarrow u \text{ born\'ee sur } B_f(0,1)$
 $\Leftrightarrow u \text{ est born\'ee sur } S(0,1)$

Lemme 2.3.15.

Soit $X \subset \mathbb{R}$ non vide et majorée et $\mu \in \mathbb{R}^+$ Alors $\sup(\mu X) = \mu(\sup X)$

Théorème 2.3.16.

```
E_1, \ldots, E_n des espaces vectoriels normés \varphi: E_1 \times \cdots \times E_n \to F une application n-linéaire, W = E_1 \times \cdots \times E_n muni de la norme produit Alors (\varphi \text{ est continue}) \Leftrightarrow (\exists M \in \mathbb{R}^+ : \forall (x_1, \ldots, x_n)) \in W, \|\varphi(x_1, \ldots, x_n)\| \leq M \times \|x_1\| \times \cdots \times \|x_n\|)
```

Démonstration. \sqsubseteq On fixe $M \ge 0$ vérifiant la propriété.

Soit
$$x = (x_1, ..., x_n) \in W$$
 et $y \in W \cap B_f(x, 1)$

$$\varphi(y) - \varphi(x) = \varphi(y_1, ..., y_n) - \varphi(x_1, ..., x_n)$$

$$= \varphi(y_1, y_2, ..., y_n) - \varphi(x_1, y_2, ..., y_n) + \varphi(x_1, y_2, ..., y_n)$$

$$-\varphi(x_1, x_2, y_3, ..., y_n) +$$

$$\vdots$$

$$+\varphi(x_1, ..., x_{n-1}, y_n) - \varphi(x_1, ..., x_n)$$

$$= \sum_{i=1}^n \varphi(x_1, ..., x_{i-1}, y_i - x_i, y_{i+1}, ..., y_n)$$

ainsi
$$\|\varphi(y) - \varphi(x)\| \le \sum_{i=1}^n M \|x_1\| \cdots \|x_{i-1}\| \cdot \|y_i - x_i\| \cdot \|y_{i+1}\| \cdots \|y_n\|$$
 or $\forall i \in [\![1,n]\!], \|y_i - x_i\| \le \|y - x\|$ et $\forall j, \|y_j\| \le \|x_j\| + \|y_j - x_j\| \le \|x\| + 1$ donc $\|\varphi(y) - \varphi(x)\| \le nM(\|x\| + 1)^{n-1} \cdot \|y - x\|$ du coup $\varphi(y) \xrightarrow{y \to x} \varphi(x)$ donc φ est continue \Longrightarrow Si $\varphi \in \mathcal{C}^0(W,F)$ alors φ est \mathcal{C}^0 en 0 donc soit $\delta > 0$ tel que $\forall x \in B(0,\delta), \|\varphi(x)\| < 1$ Soit $x \in W$

• Si $\forall i, x_i \ne 0$, posons $x_i' = \frac{x_i}{\|x_i\|} \frac{\delta}{2}$ et $x' = (x_1', \dots, x_n')$ donc $\|\varphi(x')\| < 1$ or $\varphi(x') = \frac{\delta^n}{2^n} \frac{1}{\|x_1\| \cdots \|x_n\|} \varphi(x)$ donc $\|\varphi(x)\| \le \left(\frac{2}{\delta}\right)^n \prod_{i=1}^n \|x_i\| = M \prod_{i=1}^n \|x_i\|$

• Si $\exists i_0$ tel que $x_{i_0} = 0$ alors $\varphi(x) = 0$ donc $\|\varphi(x)\| \le M \prod_{i=1}^n \|x_i\|$

2.4 Image réciproque et continuité

L'idée générale est ici de travailler dans A munie de la distance induite par la norme de E.

Note. Soit $a \in A$ et $r \in \mathbb{R}+$ alors on note $B^A(a,r) = \{x \in A, d(x,a) < r\} = A \cap B(a,r)$

Voisinage relatif Soit $a \in A$ et $V \subset A$ alors V est dit voisinage relatif de a s'il existe r > 0 tel que $B^A(a,r) \subset V$

Ouvert relatif Soit $U \subset A$ alors U est dit ouvert relatif de A s'il est voisinage relatif de chacun de ses points. i.e. $\forall x \in U, \exists r > 0 : B^A(x,r) \subset U$

Théorème: Caractérisation des ouverts relatifs.

```
| Soit U \subset A alors :
| U ouvert relatif de A \Leftrightarrow \exists U' ouvert de E tel que U = A \cap U'
```

Fermé relatif Soit $\Phi \subset A$ alors Φ est dit fermé relatif de A si $A \setminus \Phi$ est un ouvert relatif de A.

2.5. COMPACITÉ 29

Théorème: Caractérisation des fermés relatifs.

```
Soit \Phi \subset A alors :

\Phi fermé relatif de A \Leftrightarrow \exists \Phi' fermé de e tel que \Phi = A \cap \Phi'
```

Démonstration. Clair en considérant $U = A \setminus \Phi$

Théorème 2.4.1.

Soit $X \subset A$ alors X est un fermé relatif de $A \Leftrightarrow$ Pour toute suite $(x_n) \in X^{\mathbf{N}}$ qui converge vers $a \in A$ on $a \in X$

Démonstration. \Longrightarrow Soit $(x_n) \in X^{\mathbf{N}}$ avec $x_n \underset{n}{\rightarrow} a \in A$

Si $a \in A \setminus X$ alors $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall \geq n_0, x_n \in B(x_n, a) \cap A$ du coup $x_{n_0} \in A \setminus X$ (impossble !) donc $a \in X$.

Théorème 2.4.2.

Soit
$$A \subset E$$
 et E, F des espaces vectoriels normés $f \in \mathcal{C}^0(A, F)$ et $Y \subset F$ alors

1) Y fermé $\Rightarrow f^{-1}(Y)$ fermé relatif de A
2) Y ouvert $\Rightarrow f^{-1}(Y)$ ouvert relatif de A

Démonstration.

1) Soit $f^{-1}(Y) = \{x \in A , f(x) \in Y\}$ et soit $(x_n) \in (f^{-1}(Y))^{\mathbf{N}}$ tel que $x_n \underset{n}{\to} a \in A$ Comme f est C^0 on a $f(x_n) \underset{n}{\to} f(a) \in A$ car $a \in f^{-1}(Y)$ donc par théorème $f^{-1}(Y)$ est un fermé relatif.

2) Clair avec
$$F \setminus Y$$
 ouvert de F

<u>Cas particulier</u> Lorsque A = E alors $\forall Y \subset F$, $\begin{cases} Y \text{ ferm\'e} \Rightarrow f^{-1}(Y) \text{ ferm\'e} \\ Y \text{ ouvert} \Rightarrow f^{-1}(Y) \text{ ouvert} \end{cases}$

2.5 Compacité

2.5.1 Compacité dans un espace vectoriel normé quelconque

Partie compacte On dit que *A* est une partie compacte de *E* (ou compact de *E*) si toute suite d'éléments de *A* admet une sous-suite qui converge vers un élément de *A*.

Lemme 2.5.1.

| A est compacte \Rightarrow A est fermée et bornée

Lemme 2.5.2.

| Soit A un compact et X fermé alors $A \cap X$ est compact

Théorème 2.5.3.

Soit A un compact et $(a_n) \in A^{\mathbf{N}}$ alors : (a_n) converge $\Leftrightarrow (a_n)$ admet au plus une valeur d'adhérence

 $\textit{D\'{e}monstration.} \ \ \fbox{\Leftarrow} \ \ \text{Vu A compact, } \ \exists \left(a_{\varphi(n)}\right)_{n\geq 0} \ \text{qui converge vers } \alpha \in A.$

Supposons $\exists \varepsilon_0 > 0 : \forall n \in \mathbb{N}, \ \exists n \geq n_0 : d(a_n, \alpha) \geq \varepsilon_0 \text{ ainsi } \{n \in \mathbb{N} | | d(a_n, \alpha) \geq \varepsilon_0 \}$ est infini donc $\exists \varphi' : \mathbb{N} \to \mathbb{N}$ telle que $\forall k \in \mathbb{N}, \ d(a_{\varphi'(k)}, \alpha) \geq \varepsilon_0$ donc par compacité $\exists \psi : \mathbb{N} \to \mathbb{N}$ telle que $a_{\varphi'(\psi(n))} \xrightarrow[n]{} \beta \in A$ et comme (a_n) admet au plus une valeur d'adhérence, $\beta = \alpha$ impossible !

Donc
$$a_n \to \alpha$$

Théorème 2.5.4.

Soit $E_1, ..., E_r$ des espaces vectoriels normés et $A_1 \subset E_1, ..., A_r \subset E_r$ des compacts Alors $A_1 \times \cdots \times A_r$ est un compact de $E_1 \times \cdots \times E_r$

Continuité uniforme Si E,F est un espace vectoriel normé et $f:A\to F$ alors f est dite uniformément continue si $\forall \varepsilon>0,\ \exists \delta>0\ :\ \forall (x,y)\in A^2,\ d(x,y)<\delta\ \Rightarrow\ d(f(x),f(y))<\varepsilon$

Théorème 2.5.5.

Soit $f \in C^0(A, F)$ alors si A est compact f(A) est compact. "L'image continue d'un compact est un compact."

Démonstration. Soit
$$a_{\varphi(n)} \xrightarrow{n} \alpha \in A$$
 alors $f(a_{\varphi(n)}) \xrightarrow{n} f(\alpha) \in f(A)$

Théorème de Heine.

Toute application continue sur un compact est uniformément continue

Démonstration. Par l'absurde :

On suppose $\exists \varepsilon_0 > 0 : \forall \delta > 0, \exists (x,y) \in A^2 : d(x,y) < \delta \text{ et } d(f(x),f(y)) \ge \varepsilon_0$ On pose alors (x_n) et (y_n) vérifiant ces propriétés avec $\delta_n = \frac{1}{n+1}$ et $x_{\varphi(n)} \xrightarrow[n]{} \alpha \in A$ puis on a $||f(x_n) - f(y_n)|| \xrightarrow[n]{} 0$ d'où la contradiction.

Lemme 2.5.6.

Soit $X \subset \mathbb{R}$ non vide et majoré alors $\sup(X) \in \overline{X}$

Théorème 2.5.7.

Soit $f \in C^0(A, \mathbb{R})$ Si A est un compact non vide alors f admet un maximum sur A 2.5. COMPACITÉ 31

Note. PG -> On dit que "f est bornée et atteind ses bornes"

Démonstration. Soit $B = f(A) \neq \emptyset$, B est borné comme image continue d'un compact. Soit alors $\beta = \sup(B)$. On a donc $\beta \in \overline{B} = B$ donc $\begin{cases} \beta \text{ majore } B \\ \beta \in B \end{cases}$ d'où $\beta = \max(B)$

2.5.2 Compacité en dimension finie

Rappel:

Théorème de Bolzano-Weierstrass.

Dans \mathbb{R} , tout segment [a,b] est compact.

Corollaire.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Démonstration. Voir la fin du chapitre.

Théorème 2.5.8.

Soit E un espace vectoriel normé de dimension finie et $A \subset E$ alors A compact $\Leftrightarrow A$ fermé et borné

Démonstration. On démontre le cas où $K = \mathbb{R}$ avec N_{∞} pour se ramener à [-M, M] puis on en déduit le cas où $K = \mathbb{C}$ □

Théorème 2.5.9.

Soit E un espace vectoriel normé quelconque si $F \subset E$ est un sousespace vectoriel avec $\dim F < \infty$ alors F est fermé

Démonstration. On montre la stabilité par passage à la limite en considérant M un majorant des x_n et le compact Bf(0, M)

Théorème 2.5.10.

Soit E, F des espaces vectoriels normé avec E de dimension finie, si $u \in \mathcal{L}(E, F)$ alors u est continue.

Démonstration. Soit $e=(e_1,\ldots,e_p)$ base de E, on choisit $\|x\|=\max_{1\leq k\leq p}|x_k|$ où $x=\sum_{k=1}^p x_ke_k$. Soit $x\in E$, $\|u(x)\|=\left\|\sum_{k=1}^p x_ku(e_k)\right\|\leq \sum_{k=1}^p|x_k|\|u(e_k)\|$ Posons alors $C=\sum_{k=1}^p\|u(e_k)\|$ alors $\|u(x)\|\leq C\|x\|$ et comme u est linéaire, $u\in C^0(E,F)$

Corollaire.

E est un K espace vectoriel de dimension $p \in \mathbb{N}^*$ et $e = (e_1, \dots, e_p)$ une base de E. Pour $i \in [1, p]$ on pose $e_i^* : E \to K \atop x \mapsto x_i$ alors e_i^* est linéaire donc C^0

Théorème 2.5.11.

 E_1, \ldots, E_r , F des espaces vectoriels de dimensions finies et $\varphi: E_1 \times \cdots \times E_r \to F$ r-linéaire alors $\varphi \in \mathcal{C}^0(E_1 \times \cdots \times E_r, F)$

2.5.3 Applications aux séries en dimension finie

Théorème 2.5.12.

En dimension finie, la convergence absolue entraine la convergence

Démonstration. Soit E un K espace vectoriel normé de dimension finie et $(u_n) \in E^{\mathbb{N}}$. On note $U_n = \sum_{k=0}^n u_k$ et $a_n = ||u_n||$. On suppose alors que $\sum a_n$ converge en on note $\alpha = \sum_{n=0}^{\infty} a_n$

- $\bullet \forall n \in \mathbb{N}, \|U_n\| \leq \sum_{k=0}^n a_k \leq \alpha \text{ donc } U_n \in Bf(0,\alpha) \text{ compact}$
- $\bullet(U_n)$ admet au plus 1 valeur d'adhérence car $\forall (n,p) \in \mathbb{N}^2$,

$$\|\dot{U}_p - U_n\| \le |A_p - A_n| \text{ donc } \|U_{\varphi(n)} - U_{\psi(n)}\| \le |A_{\varphi(n)} - A_{\psi(n)}| \to 0$$

Séries de matrices Soit $E = \mathcal{M}_p(K)$ muni d'une <u>norme d'algèbre</u> (tq $\forall (A, B) \in E^2$, $||AB|| \le ||A|| . ||B||$)

- Si $A \in E$ alors $\sum \frac{1}{n!} A^n$ converge et on pose $\exp(A) = e^A = \sum_{n=0}^{+\infty} \frac{1}{n!} A^n$
- Si $A \in E$ telle que ||A|| < 1 alors $\sum A^n$ converge et $\sum_{n=0}^{+\infty} A^n = (I_p A)^{-1}$

2.6 Connexité par arcs

Chemin Pour $A \subset E$,

- Soit $x, y \in A$ on appelle <u>chemin</u> (ou chemin continu) de x à y <u>dans A</u> toute application $\gamma \in \mathcal{C}^0([u,v],A)$ où u < v réels tels que $\gamma(u) = x$ et $\gamma(v) = y$.
- On définit une relation binaire \mathcal{R} sur A par $\forall (x,y) \in A^2 : x\mathcal{R}y \Leftrightarrow \text{il existe un}$ chemin de x à y.

Lemme 2.6.1.

R est une relation d'équivalence sur A

Composantes connexes On appelle <u>composante connexes par arcs</u> les classes d'équivalences dans A par \mathcal{R} .

Rappel.
$$\forall x \in A$$
, $Cl\{x\} = \{y \in A \mid x\mathcal{R}y\}$

Connexité par arcs A est dite <u>connexe par arcs</u> si $\forall (x,y) \in A^2$, $x \mathcal{R} y$ A est connexe par arcs si pour tout $x, y \in A$ il existe un chemin de x à y dans A.

Lemme 2.6.2.

 $A convexe \Rightarrow A connexe par arcs$

Partie étoilée $A \subset E$ est dite étoilée s'il existe $\alpha \in A$ tel que $\forall b \in A$, $[\alpha, b] \subset A$

Lemme 2.6.3.

| A étoilée $\Rightarrow A$ connexe par arcs

Cas de \mathbb{R} : $\forall A \subset \mathbb{R}$, A convexe $\Leftrightarrow A$ intervalle

Théorème 2.6.4.

Dans \mathbb{R} , les parties connexes par arcs sont exactement les intervalles.

Démonstration. \implies Soient $a,b \in A$ avec $a \le b$ et $c \in [a,b]$ alors par TVI $\exists \theta \in [0,1]$ et $\gamma \in C^0([0,1],A)$ tels que $c = \gamma(\theta)$ donc $c \in A$. □

Théorème 2.6.5.

L'image continue d'un connexe par arcs est connexe par arcs Autrement dit soit $f \in C^0(A, F)$ avec F un espace vectoriel normé alors A connexe par arcs $\Rightarrow f(A)$ connexe par arcs

Démonstration. Soit $x,y \in f(A)$ avec $x' \in A$ tel que x = f(x') on pose $\tilde{\gamma} = f \circ \gamma$: $[0,1] \to f(a)$ alors $\tilde{\gamma}$ est \mathcal{C}^0 et $\tilde{\gamma}(0) = x$ et $\tilde{\gamma}(1) = y$ donc par définition f(A) est connexe par arcs. \square

Chapitre 3

Dérivation et intégration

<u>Cadre</u>: Soit $f: I \to E$ une fonction à valeur dans E un K espace vectoriel de dimension finie et I un intervalle réel non trivial (i.r.n.t.)

Contenu

Dérivée	36
Défnition	36
Fonction dérivable	36
Fonction continuement dérivable	36
Dérivées successives	38
Classe \mathcal{C}^k	38
Classe \mathcal{C}^{∞}	38
Fonctions convexes	38
Barycentre	38
Fonction convexe	39
Épigraphe	39
Fonction concave	40
Intégration sur un segment	40
3.4.1 Fonctions continues par morceaux	40
Subdivision	40
Intégrale	41
3.4.2 Propriétés de l'intégrale	41
Notations	42
3.4.3 Inégalités	42
Théorème fondamental	43
Formules de <u>Taylor</u>	44
Négligeabilité	44
	$\begin{array}{c} \text{D\'efnition} \\ \text{Fonction d\'erivable} \\ \text{Fonction continuement d\'erivable} \\ \\ \textbf{D\'eriv\'ees successives}. \\ & Classe \mathcal{C}^k \\ & Classe \mathcal{C}^{\infty}. \\ \\ \textbf{Fonctions convexes}. \\ & Barycentre \\ & Fonction convexe \\ & \'epigraphe \\ & Fonction concave \\ \\ \textbf{Int\'egration sur un segment} \\ 3.4.1 & Fonctions continues par morceaux \\ & Subdivision \\ & Int\'egrale \\ \\ 3.4.2 & Propri\'et\'es de l'int\'egrale \\ & Notations \\ 3.4.3 & In\'egalit\'es \\ \\ \textbf{Th\'eor\`eme fondamental} \\ \textbf{Formules de } \underline{\textbf{Taylor}}. \\ \end{array}$

Dérivée 3.1

Défnition Soit $a \in I$, f est <u>dérivable</u> en a s'il existe $\ell \in E$ tel que $\frac{f(x)-f(a)}{x-a} \underset{x \to a; x \le a}{\longrightarrow} \ell$. On pose alors

$$f'(x) = \lim_{x \to a; x \leqslant a} \frac{f(x) - f(a)}{x - a}$$

Note. On note $\mathcal{T}_f(x,a) = \frac{f(x) - f(a)}{x - a}$ le "taux d'acroissement"

$$\operatorname{Rq}: \mathcal{T}_f(x,a) = \mathcal{T}_f(a,x)$$

Lemme 3.1.1.

| Soit $a \in I$, (f dérivable au point a) \Rightarrow (f continue au point a)

Fonction dérivable $f: I \to E$ est dite dérivable (sur I) si $\forall a \in I$, f est dérivable au point

Dans ce cas on pose $f': \begin{array}{c} I \to E \\ a \mapsto f'(a) \end{array}$ la <u>dérivée de f</u>.

Fonction continuement dérivable $f:I\to E$ est dite continuement dérivable ou de classe C^1 si f est dérivable et $f' \in C^0(I, E)$. On note $C^1(I, E)$ l'ensemble de ces fonctions.

Lemme 3.1.2.

Foit deux fonctions $f,g:I\to E,\ \lambda\in K,\ a\in I.$ Si f et g sont dérivables au point a <u>alors</u>
(1) $\lambda f + g$ est dérivable au point a
(2) $(\lambda f + g)'(a) = \lambda f'(a) + g'(a)$

$$(2) (\lambda f + g)'(a) = \lambda f'(a) + g'(a)$$

Lemme 3.1.3.

On considère la composition $I \xrightarrow{f} E \xrightarrow{u} F$ et $a \in I$ avec E et Fdes espaces vectoriels normés de dimensions finies. On suppose $u \in$ $\mathcal{L}(E,F)$ et f dérivable au point a <u>alors</u>
(1) $u \circ f$ est dérivable au point a
(2) $(u \circ f)'(a) = u(f'(a))$

(2)
$$(u \circ f)'(a) = u(f'(a))$$

3.1. DÉRIVÉE 37

Lemme 3.1.4.

Soit
$$a \in I$$
 et $\varepsilon = (\varepsilon_1, ..., \varepsilon_p)$ une base de E. Notons $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$. On a alors f est dérivable en $a \Leftrightarrow \forall k \in [1, p], f_k$ est dérivable en a Dans ce cas $f'(a) = \sum_{k=1}^p f_k'(a)\varepsilon_k$

Lemme 3.1.5.

 $C^1(I, E)$ est un K espace vectoriel comme sous-espace vectoriel de E^I

Théorème 3.1.6.

Soit
$$\Phi: E_1 \times \cdots \times E_p \to F$$
 p-linéaire avec E_1, \ldots, E_p de dimensions finies et $a \in I$. Soit $f_1: I \to E_1, \ldots, f_p: I \to E_p$ dérivables au point a

On pose $g: I \to F$

(1) g dérivable au point a
(2) $g'(a) = \sum_{i=1}^p \Phi(f_1(x), \ldots, f'_i(x), \ldots, f_p(x))$

Démonstration. Cas p = 2 scalaire : Soit $x \in I \setminus \{a\}$

$$\mathcal{T}_g(x,a) = \frac{1}{x-a} \left[B(f_1(x), f_2(x)) - B(f_1(a), f_2(a)) \right]$$
$$= B(\mathcal{T}_{f_1}(x,a), f_2(x)) + B(f_1(a), \mathcal{T}_{f_2}(x,a))$$

Puis comme B est bilinéaire, B est C^0 donc $\mathcal{T}_g(x,a) \underset{x \to a: x \leq a}{\longrightarrow} B(f_1'(a), f_2(a)) + B(f_1(a), f_2'(a))$ donc g est dérivable au point a

On a ensuite le résultat pour une application p-linéaire par récurrence puis dans le cas vectoriel en décomposant selon toute les bases.

Théorème 3.1.7.

Soit la composition $I \stackrel{u}{\to} J \stackrel{v}{\to} \mathbf{K}$ avec I, J des i.r.n.t. et $a \in I, b =$ $u(a) \in J$. Si u dérivable au point a et v dérivable au point b alors $v \circ u$ est dérivable au point a $v \circ u'(a) = v'(u(a)) \times u'(a)$

Composition vers un espace vectoriel de dimension finie :

Corollaire.

Soit $I \xrightarrow{\varphi} J \xrightarrow{f} E$ avec I, J des i.r.n.t. et E un K espace vectoriel de dimension finie, $a \in I$, $b = \varphi(a) \in J$. Si φ dérivable au point a et fdérivable au point b alors

(1) $f \circ \varphi$ est dérivable au point a
(2) $(f \circ \varphi)'(a) = f'(\varphi(a)) \times \varphi'(a)$

3.2 Dérivées successives

- On définit $f^{(0)} = f$
- Si f' est dérivable sur I on pose $f^{(1)} = f'$
- Pour $k \in \mathbb{N}$, si $f^{(k)}$ est bien définie et dérivable sur I on pose $f^{(k+1)} = (f^{(k)})'$

Classe C^k Soit $k \in \mathbb{N}$, f est dite k fois dérivable si $f^{(k)}$ existe.

Dans ce cas f est dite de <u>classe</u> \mathcal{C}^k si $\begin{cases} f^{(k)} \text{ existe} \\ f^{(k)} \in \mathcal{C}^0(I, E) \end{cases}$

Classe \mathcal{C}^{∞} f est dite de classe \mathcal{C}^{∞} si $\forall k \in \mathbb{N}$ on a f est de classe \mathcal{C}^k

Lemme 3.2.1.

| Soit
$$f: I \to E$$
 alors $f \in \mathcal{C}^{\infty} \Leftrightarrow \forall k \in \mathbb{N}$, f est k fois dérivable

Théorème: Formule de Leibniz.

Soit
$$f, g: I \to E$$
 de classe C^n
alors fg est de classe C^n et $(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$

Démonstration. Rappel : voir cours de sup

Plus généralement, si $B: E_1 \times E_2 \to F$ est bilinéaire avec E_1, E_2, F de dimensions finies et $(f,g) \in C^n(I,E_1) \times C^n(I,E_2)$ alors la formule à l'ordre n avec B reste vraie.

Lemme 3.2.2.

Soit
$$f: I \to E$$
 et $e = (e_1, ..., e_n)$ une base de E
Soit $f(x) = f_1(x)e_1 + \cdots + f_n(x)e_n$, $\forall x \in I$
alors $f \in C^k(I, E) \Leftrightarrow \forall j \in [1, p], f_j \in C^k(I, E)$

Lemme 3.2.3.

Soit
$$I \xrightarrow{\varphi} J \xrightarrow{f} F$$
, I, J i.r.n.t.
Si φ et f sont de classe C^k alors $\varphi \circ f \in C^k(I, F)$

3.3 Fonctions convexes

Barycentre Soit E un espace vectoriel et $x_1, \ldots, x_p \in E$ Soit $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$ tels que $\sum_{k=1}^p \alpha_k \leq 0$. On note $S = \sum_{k=1}^p \alpha_k$ On appelle <u>barycentre du système</u> $((x_1, \alpha_1), \ldots, (x_p, \alpha_p))$ le point $\sum_{k=1}^p \frac{\alpha_k}{S} x_k$ On parle d'isobarycentre si $\alpha_1 = \cdots = \alpha_k$ *Note.* On peut se ramener à $\sum_{k=1}^{p} \alpha_k = 1$ en posant $\alpha_k' = \frac{\alpha_k}{S}$

Théorème 3.3.1.

Tout ensemble convexe est stable par barycentration à <u>coefficients</u> positifs

Démonstration. Soit $X \subset E$ convexe. On démontre la propriété par récurrence avec $\mathcal{A}(n)$ le prédicat correspondant à la propriété pour n vecteurs de X.

On a A(1) et A(2). On suppose A(n) et on considére n+1 vecteurs de X et n+1 scalaires quelconques. On pose x le barycentre du système.

• Si $S = \sum_{k=1}^{n} \alpha_k \le 0$ alors on pose y le barycentre du système composé des n premiers termes et on a $x = \text{Bar}((y, S), (x_{n+1}, \alpha_{n+1})) \in X$ d'après $\mathcal{A}(2)$

• Si
$$S=0$$
 alors $\alpha_{n+1}=1$ et $x=x_{n+1}\in X$
D'où $\mathcal{A}(n+1)$

Fonction convexe Soit $f: I \to \mathbb{R}$ avec I i.r.n.t. alors f est dites convexe si

$$\forall (x,y) \in I^2, \forall \lambda \in [0,1] f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$$

Interprétation géométrique : "L'arc reste sous la corde"

Épigraphe Soit $f: I \to \mathbb{R}$ on appelle épigraphe de f l'ensemble

$$E(f) = \{(x, y) \in I \times \mathbb{R} ; f(x) \leqslant y\}$$

Théorème 3.3.2.

Soit $f: I \to \mathbb{R}$ alors f est convexe $\Leftrightarrow E(f)$ est convexe

Démonstration.

Si f est convexe, on vérifie avec la définition que E(f) l'est aussi.

Réciproquement, si E(f) est convexe, alors pour $x, y \in I$ et $\lambda \in [0,1]$ avec $x \leq y$ on pose $z = (1 - \lambda)x + \lambda y \in [x,y]$ et on a $(x, f(x)), (y, f'y)) \in E(f)$ donc $c = (z, (1 - \lambda)f(x) + \lambda f(y)) \in E(f)$ ainsi $f(z) \leq (1 - \lambda)f(x) + \lambda f(y)$

Théorème : Inégalité de Jensen.

$$Si\ f: I \to \mathbb{R}$$
 est convexe alors pour $x_1, \ldots, x_n \in I$ et $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$ tels que $\sum_{i=1}^n \lambda_i = 1$ on a $f(\sum_{i=1}^n \lambda_i x_i) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$

Démonstration. On pose $a_i = (x_i, f(x_i)) \in E(f)$ donc $\sum_{i=1}^n \lambda a_i \in E(f)$ car E(f) est stable par barycentration donc $\sum_{i=1}^n \lambda_i x_i \in I$ et finallement $f(\sum_{i=1}^n \lambda_i x_i) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$

Lemme des pentes.

Soit
$$f: I \to \mathbb{R}$$
 une application alors avec $p(a,b) = \frac{f(a) - f(b)}{a - b}$
 $f \text{ convexe} \Leftrightarrow (\forall (a,b,c) \in I^3 \text{ tels que } a < b < c \text{ , } p(a,b) \leqslant p(a,c) \leqslant p(b,c))$

Théorème 3.3.3.

Soit $f: I \to \mathbb{R}$ dérivable sur I alors f est convexe sur I si et seulement si f' est croissante sur I

Démonstration. \implies Si f est convexe, soient $x,y \in I$ alors $\forall t \in]x,y[$, $p(x,t) \leqslant p(x,y)$ puis en passant à la limite $f'(x) \leqslant p(x,y)$ d'où $f'(x) \leqslant f'(y)$ par symétrie \implies On suppose f' croissante et $a < b < c \in I$. Par le théorème des accroissements finis on a p(a,b) = f'(x) et p(b,c) = f'(y) avec x et y dans les segments respectifs]a,b[et]b,c[ainsi $f'(x) \leqslant f'(y)$ d'où f est convexe avec le Lemme des pentes. □

Corollaire.

Soit
$$f \in \mathcal{D}^2(I, \mathbb{R})$$
 alors f est convexe $\Leftrightarrow f'' \geqslant 0$

Fonction concave Soit $f: I \to \mathbb{R}$ avec I un i.r.n.t. alors f est dite <u>concave</u> si -f est convexe.

Théorème 3.3.4.

Soit
$$f: I \to \mathbb{R}$$
 dérivable et convexe alors $\forall x_0, x \in I$, $f(x) \ge f(x_0) + (x - x_0)f'(x_0)$

"Le graphe de f est au dessus de ses tangentes"

Démonstration. Soit $x, x_0 \in I$

- Si $x = x_0$ on a bien le résultat.
- Si $x > x_0$ alors $p(x, x_0) = f'(\theta)$ où $\theta \in]x, x_0[$ donc $f'(\theta) \ge f'(x_0)$
- Si $x < x_0$ même raisonnement.

3.4 Intégration sur un segment

<u>Cadre</u>: $f: I \to E$ avec I intervalle réel non trivial et E de dimension finie.

3.4.1 Fonctions continues par morceaux

Subdivision Soit a < b réels et $f : [a,b] \to E$ On appelle subdivision de [a,b] toute suite finie $(\alpha_0,\ldots,\alpha_n) = \sigma$ telle que $a = \alpha_0 < \cdots < \alpha_n = b$ **Continuité par morceaux** Soit a < b réels et $f : [a, b] \rightarrow E$

f est dite continue par morceaux si il existe une subdivision $\sigma = (\alpha_0, \dots, \alpha_n)$ de [a, b] telle que $\forall k \in [0, n-1]$ la restriction $f|_{]\alpha_k,\alpha_{k+1}[}$ est prolongeable en une fonction continue sur le segment $[\alpha_k, \alpha_{k+1}]$

Définition bis Soit *I* i.r.n.t. et $f: I \rightarrow E$

On dit que f est continue par morceaux (\mathcal{C}_{pm}^0) si sa restriction à tout segment de I est continue par morceaux

$$C_{pm}^{0}([a,b],E)$$
 et $C_{pm}^{0}(I,E)$ sont des K espaces vectoriels

Soit
$$\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$$
 une base de E. On note $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$ alors f est continue par moreceaux $\Leftrightarrow \forall k \in [1, p], f_k \in \mathcal{C}^0_{pm}(I, K)$

Intégrale Soit a < b réels et $f \in C^0_{pm}([a, b], E)$

On fixe $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de E et on note $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$, $\forall x \in [a,b]$ On a alors

$$\int_{a}^{b} f = \sum_{k=1}^{p} \left(\int_{a}^{b} f_{k} \right) \varepsilon_{k}$$

Propriétés de l'intégrale

Démonstration. On se ramène au cas scalaire en écrivant $f(x) = \sum_{k=1}^{p} f_k(x) \varepsilon_k$

Lemme 3.4.4.

Soit
$$a < b$$
 réels et $f, g \in C^0_{pm}([a,b], E)$ tels que $\{x \in [a,b] \mid f(x) \leq g(x)\}$ est \underline{fini} alors $\int_a^b f = \int_a^b g$

Notations Soit *I* i.r.n.t. , $f \in C_{vm}^0(I, E)$ et $(a, b) \in I^2$

- Si a < b on a $\int_a^b f(t)dt \in E$
- Si a > b on pose $\int_a^b f(t)dt = -\int_b^a f(t)dt$
- Si a = b on pose $\int_a^b f(t)dt = 0$

Théorème : Relation de Chasles.

Soit
$$f \in C^0_{pm}(I, E)$$
 $(a, b, c) \in I^3$ alors
$$\int_a^b f(t)dt + \int_b^c f(t)dt = \int_a^c f(t)dt$$

Démonstration. Connu sur les coordonnées.

3.4.3 Inégalités

Théorème 3.4.5.

Soit
$$a \leqslant b$$
, $f \in \mathcal{C}^0_{pm} \big([a,b], E \big)$ avec E un espace vectoriel normé de dimension finie alors $\left\| \int_a^b f(x) dx \right\| \leqslant \int_a^b \|f(x)\| dx$

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \ \text{Vu} \ \left\| \sum_{k=0}^{n-1} \frac{b-a}{n} f(a+k\frac{b-a}{n}) \right\| \ \leqslant \ \sum_{k=0}^{n-1} \frac{b-a}{n} \left\| f(a+k\frac{b-a}{n}) \right\|, \ \text{d'après les r\'esultats sur les sommes de } \underline{\text{Riemann}} \ \text{comme les inegalit\'es larges passent à la limite on a} \\ \left\| \int_a^b f \right\| \leqslant \int_a^b \|f\| \end{array}$

Théorème de positivité amélioré.

Soit
$$f:[a,b] \to \mathbb{R}$$
 telle que $f \in C^0([a,b],E), f \geqslant 0$ sur $[a,b]$ et $a < b$
Alors $\int_a^b f(x) dx = 0 \iff \forall x \in [a,b], f(x) = 0$

Corollaire.

Sous les même hypothèse on a si f n'est pas identiquement nulle sur [a,b] alors $\int_a^b f(x)dx > 0$

3.5 Théorème fondamental

Théorème fondamental de l'analyse.

Soit I i.r.n.t.,
$$a \in I$$
 et $f \in C^0(I, E)$ on pose $\forall x \in I$, $F(x) = \int_a^b f(t)dt$
Alors $F \in C^1(I, \mathbb{R})$ et $\forall x \in I$, $F'(x) = f(x)$

Démonstration. Soit $x_0 \in I$ et $x \in I \setminus \{x_0\}$

Posons
$$\Delta(x) = \frac{1}{x-x_0} \left(F(x) - F(x_0) \right)$$
 alors si $x_0 < x$, $\|\Delta(x) - f(x_0)\| \le \frac{1}{|x-x_0|} \int_{x_0}^x \|f(t) - f(x_0)\|$
Soit $\varepsilon > 0$, soit $\delta > 0$ tel que $\forall x \in I$, $|x-x_0| < \delta \Rightarrow \|f(x) - f(x_0)\| < \varepsilon$ alors $\|\Delta(x) - f(x_0)\| \le \frac{1}{x-x_0} \int_{x_0}^x \varepsilon dt = \varepsilon$
On a de même pour $x_0 > x$

Ainsi
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ tel que $\forall x \in I \setminus \{x_0\}$, $|x - x_0| < \delta \Rightarrow ||f(x) - f(x_0)|| \leqslant \varepsilon$ c'est à dire $\delta(x) \underset{x \to x_0, x \leqslant x_0}{\longrightarrow} f(x_0)$ donc F est dérivable au point x_0 avec $F'(x_0) = f(x_0)$

Corollaire.

Soit
$$h \in C^1(I, E)$$
 et $(a, b) \in I^2$ Alors $\int_a^b h'(x) dx = [h]_a^b$

Note. Si $f \in \mathcal{C}^0_{vm}(I, E)$, $a \in I$ alors $F(x) = \int_a^x f(t)dt$ bien définie $\forall x \in I$ et $F \in \mathcal{C}^0(I, E)$

Théorème : Inégalité des accroissements finis.

Soit
$$f \in C^1([a,b],E)$$
, $a < b$ et $M \in \mathbb{R}^+$, on suppose $\forall x \in [a,b]$, $||f'(x)|| \leq M$
Alors $||f(b) - f(a)|| \leq M |b-a|$

Démonstration.
$$f(b) - f(a) = \int_a^b f'(t)dt$$
 car f est \mathcal{C}^1 donc $||f(b) - f(a)|| \le \int_a^b ||f'(t)|| dt \le M(b-a)$

Théorème 3.5.1.

Soit
$$a < b$$
 réels et $f \in C^0_{pm}([a,b],E)$
Soit $u \in \mathcal{L}(E,F)$ avec E,F de dimension finie. Alors $\int_a^b u \circ f = u \left(\int_a^b f \right)$

$$\begin{array}{l} \textit{D\'{e}monstration.} & \underline{\text{Cas } 1 : \text{soit } f \in \mathcal{C}^0\big([a,b], E\big)} \text{ Posons } \forall [a,b] \\ G(x) = \int_a^x u \circ f \text{ , } \Phi(x) = \int_a^x f \text{ et } \Delta(x) = G(x) - u(\Phi(x)) \\ \Delta \text{ est d\'{e}rivable et } \forall x \in [a,b], \ \Delta'(x) = (u \circ f)(x) - u(\Phi'(x)) = 0 \text{ donc } \Delta(x) = \text{cte} = \Delta(a) = 0 \\ \underline{\text{Cas } 2 : \text{soit } f \in \mathcal{C}^0_{pm}\big([a,b], E\big)} \text{ Soit } \sigma = (\alpha_0, \dots, \alpha_p) \text{ une subdivision adapt\'{e}} \\ \forall i \in [0,p-1], f|_{]\alpha_i,\alpha_{i+1}[} = \varphi_i|_{]\alpha_i,\alpha_{i+1}[} \text{ où } \varphi_i \in \mathcal{C}^0\big([\alpha_i,\alpha_{i+1}], E\big) \\ \text{alors } u\left(\int_a^b f\right) = \sum_{k=0}^{p-1} u\left(\int_{\alpha_i}^{\alpha_{i+1}} \varphi_i\right) = \sum_{k=0} p-1 \int_{\alpha_i}^{\alpha_{i+1}} u \circ \varphi_i = \sum_{k=0}^{p-1} \int_{\alpha_i}^{\alpha_{i+1}} u \circ f = \int_a^b u \circ f d' \text{ où le r\'{e}sultat.} \end{array}$$

Formules de Taylor 3.6

Théorème : Formule de Taylor avec reste intégral.

Soit
$$n \in \mathbb{N}$$
, $f \in \mathcal{C}^{n+1}(I, E)$ et $(a, x) \in I^2$ avec I i.r.n.t. et dim $E < \infty$
Alors $f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \mathcal{R}_n(a, x)$
où $\mathcal{R}_n(a, x) = \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) dt$

Démonstration. On montre T(n) le théorème au rang n par récurrence :

•
$$T(0)$$
 : Soit $f \in C^1(I, E)$ alors $f(x) = f(a) + \int_a^x f'(t)dt$
• Soit $n \in \mathbb{N}$ On suppose $T(n)$ et on considère $f \in C^{n+2}(I, E)$
d'après $T(n)$: $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \mathcal{R}_n(a, x)$
avec $R_n(a, x) = \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_a^x + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a)$ d'où $T(n+1)$

Corollaire : Inégalité de Taylor-Lagrange.

Sous les mêmes hypothèses on a
$$f(x) \le \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \frac{|x-a|^{n+1}}{(n+1)!} \sup_{x \in [x,a]} \left\| f^{(n+1)}(x) \right\|$$

Négligeabilité Soit $f: I \to E$; $\varphi: I \to \mathbb{R}$; $a \in \overline{I}$, on dit que $f(x) = \circ_{x \to a}(\varphi(x))$ s'il existe r > 0 et $\delta : V = I \cap]a - r, a + R[\setminus \{a\} \rightarrow \mathbb{R}$ tels que

$$\forall x \in V, \ \|f(x)\| = \delta(x) \times \varphi(x) \text{ et } \delta(x) \xrightarrow[r \to a]{} 0$$

Théorème d'intégration des DL.

Soit
$$f \in C^0(I, E)$$
; $x_0 \in I$; I i.r.n.t.
 E un EVN de dimension finie. On suppose que f admet un DL en x_0
 $f(x) = a_0 + (x - x_0)a_1 + \dots + (x - x_0)^n a_n + \circ_{x \to x_0} ((x - x_0)^n)$
Soit g une primitive de f sur I . Alors
 $g(x) = g(x_0) + (x - x_0)a_0 + \frac{(x - x_0)^2}{2}a_1 + \dots + \frac{(x - x_0^{n+1})^n}{n+1}a_n + \circ_{x \to x_0} ((x - x_0)^{n+1})$
où $a_0, a_1, \dots, a_n \in E$

$$\begin{array}{l} \textit{D\'{e}monstration.} \ \ \text{On note} \ r(x) = f(x) - \sum_{k=0}^n (x-x_0)^k a_k \left(\in \mathcal{C}^0(I,E) \right) \\ g(x) - g(x_0) = \int_{x_0}^x f(t) dt = \sum_{k=0}^n \frac{(x-x_0)^{k+1}}{k+1} a_k + R(x) \ \text{où} \ R(x) = \int_{x_0}^x r(t) dt \\ \text{Soit} \ \varepsilon > 0 \ ; \text{soit} \ \delta > 0 \ \text{tel que} \ \forall t \in I, \ |t-x_0| < \delta \Rightarrow \|r(t)\| \leqslant \varepsilon |t-x_0|^n \\ \text{Soit} \ x \in I, \text{ on suppose} \ |x-x_0| < \delta \ \text{et} \ x \leqslant x_0 \ \text{alors} \ \|R(x)\| \leqslant \int_{x_0}^x \varepsilon (t-x_0)^n dt = \varepsilon \frac{(x-x_0)^{n+1}}{n+1} \leqslant \varepsilon (x-x_0)^{n+1} \\ \text{Ainsi} \ \forall x \in I \backslash \{x_0\}, \ |x-x_0| < \delta \Rightarrow \frac{\|R(x)\|}{|-x_0|^{n+1}} \leqslant \varepsilon \ \text{donc} \ R(x) = \circ_{x \to x_0} \left((x-x_0)^{n+1} \right) \end{array}$$

Théorème : Développement limité de Taylor-Young.

Soit
$$f \in C^n(I, E)$$
; $x_0 \in I$ alors
$$f(x) = \sum_{k=0}^n \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) + \circ_{x \to x_0} ((x - x_0)^n)$$

Démonstration. On démontre T(n) le théorème au rang n par récurrence :

on a
$$f'(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} (f')^{(k)}(x_0) + \circ_{x \to x_0} ((x-x_0)^n)$$

Demonstration. On demontre
$$I(n)$$
 le theoreme au rang n par recurrence :

• $T(0): \forall f \in \mathcal{C}^0(I, E), \ f(x) = f(x_0) + \circ_{x \to x_0}(1)$

• : Soit $n \in \mathbb{N}$, on suppose $T(n)$ et on considère $f \in \mathcal{C}^{n=1}(I, E)$ on a $f'(x) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} (f')^{(k)}(x_0) + \circ_{x \to x_0} ((x-x_0)^n)$ On applique alors le théorème précédent à f' qui est bien continue sur I $f(x) = f(x_0) + \sum_{k=0}^n \frac{(x-x_0)^{k+1}}{(k+1)!} f^{(k+1)}(x_0) + \circ_{x \to x_0} ((x-x_0)^{n+1})$ □

Chapitre 4

Suites de fonctions

Cadre : *E*, *F des espaces vectoriels normés de dimensions finies* ; $A \subset E$.

 $et f_n : A \longrightarrow F ; f : A \longrightarrow F$

Contenu

0011101101		
4.1	Convergences	47
	Convergence simple	47
	Convergence uniforme	47
	Norme infinie	49
4.2	Série de fonctions	49
	Convergence normale	50
4.3	Intégration et dérivation	51
	4.3.1 Cas général	51
	4.3.2 Application aux matrices	53
4.4	Approximations uniformes	53

4.1 Convergences

Convergence simple Soit $f \in (F^A)$ et $(f_n) \in (F^A)^{\mathbb{N}}$ On dit que (f_n) converge simplement vers f sur A si $\forall x \in A$ $f_n(x) \longrightarrow f(x)$

$$\forall x \in A, \ f_n(x) \underset{n \to +\infty}{\longrightarrow} f(x)$$

Convergence uniforme

Soit $f \in (F^A)$ et $(f_n) \in (F^A)^{\mathbb{N}}$ On dit que (f_n) converge uniformément vers f sur A si $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0$; $\forall x \in A$; $||f_n(x) - f(x)|| \leqslant \varepsilon$

Lemme 4.1.1.

La convergence uniforme entraine la convergence simple.

Attention! La convergence simple ne préserve pas la continuité!

Théorème 4.1.2.

- On suppose $a \in A$; $f: A \to F$; $\forall n \in \mathbb{N}$, $f_n: A \to F$ et

 $\forall n \in \mathbb{N}$, f_n est C^0 au point a

 (f_n) CVU sur A vers f

Démonstration. Soit $\varepsilon > 0$

Vu la CVU, soit $n_0 \in \mathbb{N}$ tel que $\forall x \in A$, $||f_n(x) - f(x)|| \leq \frac{\varepsilon}{3}$ Vu f_{n_0} est \mathcal{C}^0 au point a, soit $\delta > 0$ tel que $\forall x \in A$, $||x - a|| < \delta \Rightarrow ||f_{n_0}(x) - f_{n_0}(a)|| < \frac{\varepsilon}{3}$ On a alors $d(f(x), f(a)) \leq d(f(x), f_{n_0}(x)) + d(f_{n_0}(x), f_{n_0}(a)) + d(f_{n_0}(a), f(a)) < \varepsilon$ Ainsi f est C^0 au point a

Corollaire.

Toute limite uniforme sur A d'une suite de fonctions continues sur A est continue sur A.

Corollaire.

- Soit $f: A \to F$; $f_n: A \to F$, $\forall n \in \mathbb{N}$. Soit $a \in A$ On suppose que $\bullet \ \forall n \in \mathbb{N}$, f_n est \mathcal{C}^0 au point a $\bullet \ (f_n)$ converge uniformément vers f sur un voisinage relatif de a dans A Alors f est \mathcal{C}^0 au point a

Le Lemme suivant permet d'établir l'absence de convergence uniforme

Lemme 4.1.3.

Théorème de la double limite.

- Soit $f, f_n : A \to F$; $a \in A$ On suppose que $\forall n \in \mathbb{N}$, $\exists b_n \in F$ tel que $f_n(x) \underset{x \to a}{\longrightarrow} b_n$ (f_n) converge uniformément sur A vers fAlors $\exists \beta \in F$ tel que $b_n \underset{n}{\longrightarrow} \beta$ avec $f(x) \underset{x \to a}{\longrightarrow} \beta$

Note. En particulier, on a $\lim_{x\to a} \left(\lim_{n\to +\infty} f_n(x)\right) = \lim_{n\to +\infty} \left(\lim_{x\to a} f_n(x)\right)$

Attention! C'est faux sans la convergence uniforme!

Démonstration. On suppose tout d'abord que $b_n \to \beta$. Soit alors $\varepsilon > 0$ puis $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, \ d(f(x), f_n(x)) < \frac{1}{3}\varepsilon$ et $d(b_n, \beta) < \frac{1}{3}\varepsilon$

On peut alors considérer $\delta > 0$ tel que $\forall x \in B(a, \delta)$, on a $d(f_{n_0}(x), b_{n_0}) < \frac{1}{3}\varepsilon$. Ainsi, pour un tel x on a $d(f(x), \beta) < \varepsilon$ donc $f(x) \xrightarrow[r \to a]{} \beta$

Avec la convergence uniforme on a $p \in \mathbb{N}$ tel que $\forall n \geqslant p, \ \forall x \in A, \ \|f_n(x) - f(x)\| \leqslant 1$ ainsi $\|f_n(x) - f_p(x)\| \leqslant 2$ et par passage à la limite $b_n \in B(b_p,2)$ est compact car F est de dimension finie. Il suffit alors de montrer que (b_n) admet au plus une valeur d'adhérence :

Si $b_{\varphi(n)} \xrightarrow{n} \beta_1$ et $b_{\psi(n)} \xrightarrow{n} \beta_2$ pour φ et ψ deux extractrices, alors en appliquant le début de la démo on a $f(x) \xrightarrow[x \to a]{} \beta_1$ et $f(x) \xrightarrow[x \to a]{} \beta_2$ donc $\beta_1 = \beta_2$ et par théorème $b_n \xrightarrow{n} \beta$.

Norme infinie Soit φ : $A(\subset E) \to F$, $a \neq \emptyset$ et φ bornée alors on pose

$$\|\varphi\|_{\infty} = \sup_{x \in A} \|\varphi(x)\|$$

Lemme 4.1.4.

Soit
$$f, f_n : A \to F$$
 alors
$$(f_n) \ CVU \ sur \ A \ vers \ f \Leftrightarrow \begin{cases} \|f_n - f\|_{\infty} \ est \ bien \ définie \ APCR \\ \|f_n - f\|_{\infty} \xrightarrow[x \to +\infty]{} 0 \end{cases}$$

Cas des fonctions bornées :

Soit
$$\mathscr{B}(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$$
 alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$ alors $(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$

Note. On dit que $\|.\|_{\infty}$ est la norme de la convergence uniforme.

4.2 Série de fonctions

Soit
$$(g_n) \in (F^A)^{\mathbb{N}}$$
 on pose $f_n = g_0 + g_1 + \cdots + g_n (: A \to F)$

Étudier la série de fonction $\sum_{n\geqslant 0} g_n$ revient à étudier la suite de fonction (f_n) .

On dit alors que $\sum g_n$ converge simplement (resp. uniformément) sur A si (f_n) converge simplement (resp. uniformément) sur A.

Lorsque $\sum g_n$ converge simplement sur A, on peut considérer les résultats suivants :

$$\forall x \in A, \ f_n(x) = \sum_{k=k}^n g_k(x) \underset{n}{\to} f(x) \text{ ainsi } \sum g_n(x) \text{ converge et } \sum_{n=0}^\infty g_k(x) = f(x)$$
On pose
$$\sum_{n=0}^\infty g_k : \begin{array}{c} A \to F \\ x \mapsto \infty g_k(x) \end{array} \text{ et on pose } R_n = \sum_{k=n+1}^{+\infty} g_k$$

Lemme 4.2.1.

 $\sum g_n$ converge uniformément sur A $\Leftrightarrow \sum g_n$ converge simplement sur A et (R_n) converge uniformément sur A

Convergence normale Soit $g_n : A \to F$, $\forall n \in \mathbb{N}$ $\sum g_n$ est dite normalement convergente sur A si

- 1) $||g_n||_{\infty}$ existe à partir d'un certain rang n_0
- 2) $\sum \|g_n\|_{\infty}$ converge

Théorème : Caractérisation de la convergence normale.

 $\sum_{n} converge \ normalement \ sur \ A$ $\Leftrightarrow Il \ existe \ n_0 \in \mathbb{N} \ et \ (\alpha_n) \ une \ suite \ r\'eelle \ tels \ que$ $\stackrel{\text{(1)}}{\Rightarrow} \forall n \geqslant n_0, \ \forall x \in A, \ \|g_n(x)\| \leqslant \alpha_n$ $\stackrel{\text{(2)}}{\Rightarrow} \sum_{n \geqslant n_0} \alpha_n \ converge$

Démonstration. \Longrightarrow Clair en posant $\forall n \geqslant n_0$, $\alpha_n = \|g_n\|_{\infty}$ \leftrightarrows On suppose que (α_n) vérifie (1) et (2); soit $n \geqslant n_0$ alors $\forall x \in A$, $\|g_n(x)\| \leqslant \alpha_n$ Donc $0 \leqslant \|g_n\|_{\infty} \leqslant \alpha_n$ et vu (2) par comparaison de série à terme général positif $\sum \|g_n\|_{\infty}$ converge

Théorème 4.2.2.

La convergence normale entraine la convergence uniforme et la convergence absolue en tout point.

Démonstration. Soient n_0 et (a_n) qui vérifient la caractérisation de la convergence normale . Soit $x \in A$

 $|\forall n \ge n_0, \ 0 \le ||g_n(x)|| \le a_n \text{ or } \sum a_n \text{ converge donc } \sum ||g_n(x)|| \text{ converge }$ Donc $\sum g_n(x)$ converge absolument et vu la dimension finie de F, $\sum g_n(x)$ converge Ainsi $\sum g_n$ converge simplement.

Soit
$$n \ge n_0$$
; soit $x \in A$, on a $R_n(x) = \sum_{k=n+1}^{+\infty} g_k(x)$ donc $||R_n(x) - 0|| \le \sum_{k=n+1}^{+\infty} ||g_k(x)||$ leq $\underbrace{\sum_{k=n+1}^{+\infty} a_k}_{= \rho_n}$

Or $\rho_n \underset{n}{\to} 0$ donc $\|R_n - 0\|_{\infty} \underset{n}{\to} 0$ ainsi par théorème (R_n) converge uniformément sur A vers 0

On a alors $\sum g_n$ converge uniformément sur A.

Théorème 4.2.3.

Soit
$$g_n: A \to F$$
, $\forall n \in N$; $a \in A$ On suppose que $\bullet \forall n \in N$, g_n est C^0 en a $\bullet \sum g_n$ converge uniformément sur A $alors \sum_{n=0}^{\infty} g_k$ est C^0 au point a

Démonstration. $f_n = \sum_{k=0}^n g_k$ est \mathcal{C}^0 au point a et $f_n \xrightarrow[n]{} f$ uniformément sur A où f = $\sum_{n=0}^{\infty} g_k$ Alors par théorème , f est \mathcal{C}^0 au point a.

Théorème de la double limite (Séries).

Soit
$$g_n: A \to F$$
, $\forall n \in \mathbb{N}$; $a \in \overline{A}$
On suppose que $\forall n \in \mathbb{N}$, $g_n(x) \xrightarrow[x \to a]{} c_n \in F$ et $\sum g_n$ converge uniformément sur A

$$\underbrace{alors}_{(2)} \sum_{n=0}^{\infty} g_n(x) \xrightarrow[x \to a]{} \sum_{n=0}^{\infty} c_n$$

En particulier $\lim_{x\to a} \sum_{n=0}^{\infty} g_k(x) = \sum_{n=0}^{\infty} \lim_{x\to a} f_n(x)$

Démonstration. On pose $f_n = \sum_{k=0}^n g_k$ et $f = \sum_{n=0}^\infty g_k$ Ainsi $f_n \underset{n}{\to} f$ uniformément sur A et $\forall n \in \mathbb{N}$, $f_n \underset{x \to a}{\xrightarrow{}} \sum_{k=0}^n c_k = b_n$ Par théorème de la double limite pour les suites $(1) \exists \beta \in F : b_n \underset{n}{\to} \beta$

(1) donc
$$\sum c_k$$
 converge et $\beta = \sum_{n=0}^{\infty} c_k$
(2) donc $\sum_{n=0}^{\infty} g_k(x) \xrightarrow{r \to a} \sum_{n=0}^{\infty} c_k$

Intégration et dérivation

4.3.1 Cas général

Question: Si $\forall t \in [a,b], f_n(t) \xrightarrow{n} f(t), \text{ a-t-on } \int_a^b f_n(t) dt \xrightarrow{n} \int_a^b f(t) dt$? non! Exemple: $\overline{f_n:\mathbb{R}^+}\to\mathbb{R}$ telle que si $0\leqslant x\leqslant \frac{1}{n}$, $f_n(x)=n^2x$; si $\frac{1}{n}\leqslant x\leqslant \frac{2}{n}$, $f_n(x)=2n-n^2x$; si $x\geqslant \frac{2}{n}$, $f_n(x)=0$

Théorème 4.3.1.

Soit
$$a < b$$
 réels; $dimF < \infty$. On suppose $\forall n \in \mathbb{N}^*$, $f_n \in \mathcal{C}^0([a,b],F)$ et (f_n) converge uniformément sur $[a,b]$ vers f

a) $f \in \mathcal{C}^0([a,b],F)$
Alors
$$(a) \int_a^b f_n(x) dx \xrightarrow{n} \int_a^b f(x) dx$$

Formellement $\lim_{n \to +\infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to +\infty} f_n(x) dx$

Démonstration. (1) Connu.

Demonstration. (a) Control.

(a) On note
$$u_n = \int_a^b f_n \in F$$
 et $l = \int_a^b f \in F$

Alors $||u_n - l|| ||leq \int_a^b ||f_n(x) - f(x)|| dx \le \int_a^b ||f_n - f||_{\infty} dx = (b - a) ||f_n - f||_{\infty} \xrightarrow{n} 0$

Par théorème des gendarmes $||u_n - l|| \xrightarrow{n} 0$ soit $u_n \xrightarrow{n} l$

Corollaire.

Soit
$$a < b$$
 réels; $dimF < \infty$. On suppose $\forall n \in \mathbb{N}, \ g_n \in \mathcal{C}^0([a,b],F)$ et $\sum g_n$ converge uniformément sur $[a,b]$
Alors
$$\sum_{n=0}^{\infty} g_k \in \mathcal{C}^0([a,b],F)$$

Lemme 4.3.2.

Soit
$$\varphi_n \in \mathcal{C}^0(I,F)$$
, $\forall n \in \mathbb{N}$; I i.r.n.t.; $dimF < \infty$; $a \in I$
On suppose que $\varphi_n \xrightarrow{n} \varphi$ uniformément sur tout segment de I et on pose
$$\Phi_n(x) = \int_a^x \varphi_n(t) dt ; \Phi(x) = \int_a^x \varphi(t) dt$$
Alors $\Phi_n \xrightarrow{n} \Phi$ uniformément sur tout segment de I .

Poreme 4.3.3.

or
$$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^1(I, F)$$

or (f_n) converge simplement sur I vers f

or (f'_n) converge vers h uniformément sur tout segment de I

Alors

or (f_n) converge vers f uniformément sur tout segment de I
 (f_n) converge f uniformément sur tout segment de f

Démonstration. Soit $a \in I$, $\forall x \in I$, $f_n(x) - f_n(a) = \int_a^x f_n'(t)dt = \Phi_n(x)$, $\forall n \in \mathbb{N}$ D'où $f(x) - f(a) = \int_a^x h dt = \Phi(x)$ vu la CVU sur [a,x] (éventuellement [x,a]) et Φ est \mathcal{C}^1 avec $\Phi' = h$ donc $f = f(a) + \Phi$ est C^1 et f' = h

Soit S un segment inclu dans I, vu (Φ_n) converge vers Φ uniformément sur tout segment

$$\forall n \in \mathbb{N}, \ 0 \leqslant \|f_n - f\|_{\infty, S} \leqslant \|f_n(a) - f(a)\| + \|\Phi_n - \Phi\|_{\infty, S} \xrightarrow[n]{} 0$$

Attention : La convergence uniforme ne conserve pas la dérivabilité!

4.3.2 Application aux matrices

Lemme 4.3.4.

Soit
$$A \in \mathcal{M}_n(K)$$
, on pose ϕ $\begin{pmatrix} \mathbb{R} & \longrightarrow & \mathcal{M}_p(K) \\ t & \longmapsto & \exp(At) \end{pmatrix}$
Alors $\phi \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_p(K))$ et $\forall t \in \mathbb{R}$, $\phi'(t) = A.e^{tA} = e^{tA}.A$

Lemme 4.3.5.

On suppose
$$\begin{cases} \sum U_n \text{ converge dans } \mathcal{M}_p(K) \\ M \in \mathcal{M}_p(K) \end{cases}$$
Alors $\sum M.U_n \text{ converge et } \sum_{n=0}^{\infty} M.U_n = M. \sum_{n=0}^{\infty} U_n$

Lemme 4.3.6.

$$\phi: t \to e^{tA} \ est \ \mathcal{C}^{\infty} \ sur \ \mathbb{R}$$

Corollaire.

Soit
$$u \in \mathcal{L}(E)$$
 avec $\dim(E) < \infty$, on pose $\varphi \left(\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathcal{L}(E) \\ t & \longmapsto & \exp(tu) \end{array} \right)$
Alors $\varphi \in \mathcal{C}^1(\mathbb{R}, \mathcal{L}(E))$ et $\forall t \in \mathbb{R}$, $\varphi'(t) = u \circ e^{tu} = e^{tu} \circ u$

4.4 Approximations uniformes

Théorème de Weierstrass.

Toute fonction $f \in C^0([a,b],K)$ <u>continue</u> sur un <u>segment</u> y est limite uniforme d'une suite de fonctions polynomiales.

Démonstration. Sera vu dans le cours de probabilité

On note $\mathcal{E}([a,b],\mathbb{R})([a,b],F)$ l'ensemble des fonctions en escalier sur [a,b].

Lemme 4.4.1.

|
$$f$$
 est limite uniforme d'une suite de fonctions en escalier \Leftrightarrow $\forall \varepsilon > 0, \ \exists \varphi \in \mathcal{E}([a,b],\mathbb{R}) \ telle que $\|\varphi - f\|_{\infty} \leqslant \varepsilon$$

Théorème 4.4.2.

Toute fonction continue par morceaux sur un segment y est limite uniforme d'une suite de fonctions en escalier.

Démonstration. Soit a < b des réels.

 $\underline{1^{\circ} \text{ cas}}$: Soit $f \in \mathcal{C}^{0}([a,b],F)$; soit $\varepsilon > 0$, on sait que f est uniformément continue sur [a,b], soit donc $\delta > 0$ tel que $\forall (x,y) \in [a,b]^{2}$, $|x-y| < \delta \Rightarrow ||f(x)-f(y)|| < \varepsilon$. Soit $n \in \mathbb{N}$ tel que $\frac{b-a}{n} < \delta$.

Posons alors
$$x_k = a + k \frac{b-a}{n}$$
, $k \in [0, n-1]$ et φ $\begin{pmatrix} [a,b] & \longrightarrow & F \\ x & \longmapsto & \begin{cases} f(x_k) \text{ si } x \in [x_k, x_{k+1}] \\ f(b) & \text{ si } x = b \end{cases}$

Ainsi $\varphi \in \mathcal{E}([a,b],\mathbb{R})$ et $\|\varphi - f\|_{\infty} \leqslant \varepsilon$ d'où cqfd

<u>Cas général</u> : Soit $f \in \mathcal{C}^0_{pm}([a,b],F)$; soit donc (a_0,\ldots,a_p) une subdivision de [a,b] telle que $\forall i \in [0,p-1]$, $f|_{]a_i,a_{i+1}[} = f_i|_{]a_i,a_{i+1}[}$ où $f_i \in \mathcal{C}^0([a,b],F)$.
On a alors le résultat en itérant le cas précédant.

 $\mathcal{E}([a,b],\mathbb{R})([a,b],F)$ est dense dans $\mathcal{C}^0_{pm}([a,b],F)$

Chapitre 5

Intégrales généralisées

Contenu		
5.1	Intégrale convergente	55
	Définition	55
	Exemples de référence	56
	Intégrale généralise sur un intervalle ouvert	57
5.2	Convergence absolue	58
	Définition	58
5.3	Espace des fonctions intégrables sur <i>I</i>	58
	Notation	59
5.4	Calculs	59
5.5	Comparaison série-intégrale	60
5.6	Intégration des relations de comparaison	60

5.1 Intégrale convergente

Définition Soit $f \in C^0_{pm}([a,b[,K), l'intégrale <math>\underline{\int_a^b f(t)dt}$ est dite convergente s'il existe $\lambda \in K$ tel que

$$\int_{a}^{x} f(t)dt \xrightarrow[x \to b^{-}]{} \lambda$$

La définition est analogue pour $f \in \mathcal{C}^0_{pm}(]a,b],K)$

<u>Dans ce cas</u> on a $\int_a^b f(t)dt = \lim_{x \to b^-} \int_a^x f(t)dt$, <u>dans le cas contraire</u> on dit que l'intégrale est divergente.

Exemples de référence

- Soit $\alpha \in \mathbb{R}$, alors $\left| \int_0^1 \frac{dt}{t^{\alpha}} \text{ converge} \Leftrightarrow \alpha < 1 \right| \text{ et } \left| \int_1^{+\infty} \frac{dt}{t^{\alpha}} \text{ converge} \Leftrightarrow \alpha > 1 \right| \heartsuit \heartsuit$
- On a $\int_0^1 \ln t dt$ converge et $\int_0^1 \ln t dt = -1 \, \heartsuit$
- Soit $\alpha \in \mathbb{R}$, alors $\int_0^{+\infty} e^{-\alpha t}$ converge $\Leftrightarrow \alpha > 0$

Lemme 5.1.1.

Soit
$$f \in C^0_{pm}([a,b[,\mathbb{R}^+]))$$
 on note $F(x) = \int_a^x f(t)dt$, alors

— F est croissante.

— $\int_a^{\underline{b}} f(t)dt$ converge $\Leftrightarrow F$ est majorée.

— Lorsque $\int_a^{\underline{b}} f(t)dt$ diverge on a $F(x) \xrightarrow[x \to b]{} +\infty$.

Lemme 5.1.2.

Soit
$$f \in \mathcal{C}^0_{pm}(]a,b], \mathbb{R}^+)$$
 on note $F(x) = \int_x^b f(t)dt$, alors

— F est décroissante.

— $\int_{\underline{a}}^b f(t)dt$ converge $\Leftrightarrow F$ est majorée.

— Lorsque $\int_{\underline{a}}^b f(t)dt$ diverge on a $F(x) \xrightarrow[x \to b]{} +\infty$. 1

Théorème de comparaison des fonctions positives.

Soient
$$f,g \in \mathcal{C}^0_{pm}[a,b[,\mathbb{R}^+)]$$
, on suppose que $0 \le f \le g$, on a alors
$$\int_a^b g \ converge \ \Rightarrow \ \int_a^b f \ converge$$

Démonstration. On note
$$\forall x \in [a,b[,\ F(x)=\int_a^x f(t)dt\ \text{et}\ G(x)=\int_a^x g(t)dt$$

$$\left|\begin{array}{c} \text{Supposons}\ \int_a^b g\ \text{converge},\ \text{soit}\ \text{donc}\ \mu \in \mathbb{R}\ \text{tel}\ \text{que}\ G \leq \mu\\ \hline \text{Alors}\ \forall x \in [a,b[,\ F(x)=\int_a^x f(t)dt \leq \int_a^x g(t)dt = G(x) \leq \mu \end{array}\right|$$
Ainsi F est majorée et par le Lemme 5.1.2 $\int_a^b f$ converge

Théorème 5.1.3.

Soient
$$f, g \in C^0_{pm}([a, b[, \mathbb{R}^+). Si \ f(x) = \mathcal{O}_{x \to b}(g(x)), alors$$

$$\int_a^{\underline{b}} g \ converge \ \Rightarrow \ \int_a^{\underline{b}} f \ converge$$

^{1.} On écrira dans ce cas $\int_a^b f(t)dt = +\infty$

Théorème 5.1.4.

Soient
$$f, g \in C^0_{pm}([a, b[, \mathbb{R}^+]). Si f(x) \underset{x \to b}{\sim} g(x) alors$$

$$\int_a^{\underline{b}} f converge \iff \int_a^{\underline{b}} g converge$$

Démonstration. Si
$$f(x) \underset{x \to b}{\sim} g(x)$$
 alors $f(x) = \mathcal{O}_{x \to b}(g(x))$ et $g(x) = \mathcal{O}_{x \to b}(f(x))$

Lemme d'indépendance de la borne fixe.

Soit
$$f \in \mathcal{C}^{\mathbf{0}}_{pm}([a,b[,\mathbb{K}) \ et \ c \in [a,b[\ alors \ - \int_a^{\underline{b}} f \ converge \Leftrightarrow \int_c^{\underline{b}} f \ converge \ - Dans \ ce \ cas \int_a^{\underline{b}} f = \int_a^c f + \int_c^{\underline{b}} f$$

Corollaire.

Soit
$$f \in \mathcal{C}^0_{pm}([a,b[,\mathbb{K}) \ telle \ que \ \int_a^{\underline{b}} f \ converge.$$
 On a alors
$$\int_x^{\underline{b}} f \xrightarrow[x \to b]{} 0$$

Lemme 5.1.5.

Pour
$$f, g \in C^0_{pm}([a, b[, \mathbb{K}) \text{ et } \lambda \in K \text{ avec } \int_a \underline{b} f \text{ et } \int_a^{\underline{b}} g \text{ convergentes,}$$

$$- \int_a^{\underline{b}} \lambda f + g \text{ converge}$$

$$- \int_a^{\underline{b}} \lambda f + g = \lambda \int_a^{\underline{b}} f + \int_a^{\underline{b}} g$$

Lemme 5.1.6.

$$Si f \in C^0_{pm}([a,b[,\mathbb{C}) \ alors \\ - \int_a^{\underline{b}} f \ converge \Leftrightarrow \int_a^{\underline{b}} \Re(f) \ et \int_a^{\underline{b}} \Im(f) \ convergent. \\ - \int_a^{\underline{b}} f = \int_a^{\underline{b}} \Re(f) + i \int_a^{\underline{b}} \Im(f)$$

Lemme 5.1.7.

Soit
$$f \in C^0([a,b[,\mathbb{K}) \text{ telle que } \int_a^{\underline{b}} \text{ converge})$$

$$Pour \ x \in [a,b[,\text{ on pose } G(x) = \int_x^{\underline{b}} f, \text{ alors } \\ -G \in C^1([a,b[,K) \\ -G' = -f$$

Intégrale généralise sur un intervalle ouvert Soit $f \in C^0_{pm}(]a,b[,K)$; $c \in]a,b[$

- On dit que $\int_{\underline{a}}^{\underline{b}} f$ converge si $\int_{\underline{a}}^{\underline{c}} f$ et $\int_{\underline{c}}^{\underline{b}} f$ converge.
- Dans ce cas on pose $\int_{\underline{a}}^{\underline{b}} f = \int_{\underline{a}}^{\underline{c}} f + \int_{\underline{c}}^{\underline{b}} f$

$$\rightarrow \underline{\mathrm{ex}}: \int_{-\infty}^{+\infty} e^{-t^2} dt \text{ converge et } \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

5.2 Convergence absolue

Définition Soit
$$f \in C^0_{pm}[a,b[,K] \ a < b \text{ on dit que}$$

$$\begin{cases} \int_a^{\underline{b}} f & \text{converge absolument} \\ \underline{f} & \text{est intégrablle sur } [a,b[& \text{si} \end{bmatrix} \end{cases} \text{ si } \int_a^{\underline{b}} |f| \text{ converge.}$$

Formule importante :
$$\max(\alpha, \beta) = \frac{\alpha + \beta}{2} + \frac{|\alpha - \beta|}{2}$$

Théorème 5.2.1.

La convergence absolue implique la convergence.

$$\begin{array}{ll} \textit{D\'{e}monstration.} & \boxed{\text{Cas r\'{e}el}} \; \text{Soit} \; f \in \mathcal{C}^0_{pm_b} ig([a,b[,\mathbb{R}) \; \text{telle que} \; \int_a^{\underline{b}} |f| \; \text{converge on a} \\ 0 \leq f^+ \leq |f| \; \text{donc} \; \int_a^{\underline{b}} f^+ \; \text{converge} \; \left(\text{de m\'{e}me} \; \int_a^{\underline{b}} f^- \; \text{converge} \; \right) \\ \text{Donc} \; \int_a^{\underline{b}} f^+ - f^- = \int_a^{\underline{b}} f \; \text{converge}. \\ \boxed{\text{Cas complexe}} \; \text{Soit} \; f \in \mathcal{C}^0_{pm} \big([a,b],\mathbb{C} \big) \; \text{telle que} \; \int_a^{\underline{b}} |f| \; \text{converge avec} \; f = u + \imath v \; \text{alors} \\ \text{On a} \; 0 \leq |u| \leq |f| \; \text{donc} \; \int_a^{\underline{b}} |u| \; \text{converge et d'après le cas r\'{e}el} \; \int_a^{\underline{b}} u \; \text{converge}. \\ \text{De m\'{e}me} \; \int_a^{\underline{b}} v \; \text{converge} \; \text{et avec le Lemme 5.1.6 on a} \; \int_a^{\underline{b}} f \; \text{converge} \end{array} \qquad \Box$$

5.3 Espace des fonctions intégrables sur *I*

Soit I un i.r.n.t avec a < b ses bornes, on pose

$$L^1(I,K) = \{ f \in \mathcal{C}^0_{pm}(I,K) ; f \text{ est intégrable sur } I \}$$

Théorème 5.3.1.

$$\begin{array}{cccc} L^1(I,K) \ est \ un \ K \ espace \ vectoriel \ et \\ \Delta \left(\begin{array}{ccc} L^1(I,K) & \longrightarrow & K \\ f & \longmapsto & \int_I f \end{array} \right) \ est \ \ linéaire \end{array}$$

Démonstration. Soit I = [a, b]

 $L^1(I,K)$ est un sev de $\mathcal{C}^0_{pm}(I,K)$:

- $0 \in L^1(I, K)$ Soient $f, g \in L^1(I, K)$ et $\lambda \in K$ on pose $h = \lambda f + g$ avec $|h| \le |\lambda| |f| |g| = w$ Comme $\int_a^b w$ cv, par théorème de comparaison (??) on a $h \in L^1(I, K)$

La linéarité de Δ est connue.

Théorème 5.3.2.

Soit
$$f \in \mathcal{C}^0_{pm}(I,\mathbb{C})$$
 alors $f \in L^1(I,\mathbb{C}) \Leftrightarrow (\Re(f),\Im(f)) \in (L^1(I,\mathbb{R}))^2$

59 5.4. CALCULS

Lemme 5.3.3.

Soit
$$f \in L^1(I, K)$$
, alors $f \ge 0 \implies \int_I f \ge 0$

Théorème: Inégalité triangluaire.

Soit
$$f \in L^1(I, K)$$
 alors $\left| \int_I f \right| \le \int_I |f|$

Démonstration. Soit I = [a,b[; soient $f ∈ L^1(I,K)$ et x ∈ [a,b[On a $\left|\int_a^x f\right| \leq \int_a^x |f|$ puis en passant à la limite on a le résultat vu l'intégrabilité de f. \square

Théorème de positivité amélioré.

Soit I un intervalle réel non trivial et
$$f \in L^1(I, \mathbb{R}^+) \cap \underline{C^0(I, K)}$$

Alors $\int_I f = 0 \implies \forall x \in I, f = 0$

Démonstration. Avec I = [a,b[on note $\forall x \in I, F(x) = \int_a^x f \text{ donc } F(x) \xrightarrow[x \to b]{} \int_a^{\underline{b}} f \text{ et } F \text{ est}$ croissante par le Lemme 5.1.1 donc $F(x) \le \int_I f = 0$ or $F(x) \ge 0$ donc $\forall x \in [a, b[, F(x) = 0$ donc F' = f = 0

Notation Si $f \in \mathcal{C}^0_{pm}(I,K)$ avec $\int_I f$ converge et $\int_I |f|$ diverge alors on dit que *f* est semi-convergente

5.4 **Calculs**

Théorème : Changement de variable.

Soit $]\alpha,\beta[\stackrel{\varphi}{\to}]a,b[\stackrel{f}{\to}K$ On suppose que f est \mathcal{C}^0 et φ est \mathcal{C}^1 avec φ bijective de $]\alpha,\beta[$ sur]a,b[et strictement croissante alors : $-\int_a^b f(t)dt \ et \int_\alpha^\beta f(\varphi(u)) \times \varphi'(u)du \ ont \ la \ m\hat{e}me \ nature.$ - Elles sont égales en cas de convergence.

Démonstration. On a $\lim_{u \to \alpha} \varphi(u) = a$ et $\lim_{u \to \beta} \varphi(u) = b$. Soit $\gamma \in]\alpha, \beta[$ et $c = \varphi(\gamma)$. On pose $G(x) = \int_{\gamma}^{x} g(u) du$ et $F(y) = \int_{c}^{y} f(t) dt$, alors $\forall x \in]\alpha, \beta[$, on a $G(x) = F(\varphi(x))(*)$

• On suppose $\int_c^b f$ converge, alors par passage à la limite dans (*) on a la convergence et l'égalité.

• La réciproque est clair en considérant φ^{-1}

On a de même $\int_{\alpha}^{\gamma} g$ converge $\Leftrightarrow \int_{a}^{c} f$ converge. D'où cQFD

Théorème : Intégration par parties.

Soit
$$f,g \in C^1(]a,b[,K)$$
 alors la formule
$$\int_a^b f' \times g = [f \times g]_a^b - \int_a^b f \times g'$$
 est légitime dès que • $f \times g$ admet des limites finies en a et en b • L'une des deux intégrales est convergente

Démonstration. On suppose $\int_a^b f' \times g$ converge. Si on pose A et B les limites respectives du produit en a et en b puis c un point de l'intervalle ouvert alors $\forall x \in]a,b[$ on a $\int_c^x fg' = [fg]_c^x - \int_c^x f'g$ puis $\int_c^b fg' = -(fg)(c) + B - \int_c^b f'g$ On a alors alors de même le résultat en a puis f et g jouent un rôle symétrique d'où

5.5 Comparaison série-intégrale

Le théorème suivant ne figure plus au programme. (2023-2024)

Théorème 5.5.1.

Soit
$$f \in C^0_{pm}(\mathbb{R}^+, \mathbb{R})$$
 avec $f \ge 0$ décroissante, on pose $\forall n \in \mathbb{N}^*$, $w_n = \int_n^{n+1} f(t) dt - f(n)$. On a alors $\sum_{n \ge 1} w_n$ converge.

Démonstration. Soit $n \in \mathbb{N}^*$, vu la décroissance on a $f(n) \leq f(t) \leq f(n-1)$ pour $n-1 \leq n$ $t \le n \text{ donc } 0 \le w_n \le f(n-1) - f(n)$ Ainsi pour tout $N \in \mathbb{N}^*$ on a $\sum_{k=1}^N w_k \le \sum_{k=1}^N f(n-1) - f(n) \le f(0)$ d'où la convergence vu la positivité.

Corollaire.

Sous les mêmes hypothèses,
$$\sum_{n>1} f(n) \text{ converge } \Leftrightarrow \int_0^{+\infty} f(t)dt \text{ converge}$$

Intégration des relations de comparaison 5.6

Théorème 5.6.1.

Soit
$$f, g \in C^0_{pm}([a, b[, \mathbb{R}), g \ge 0 \text{ avec } \int_a^b f \text{ et } \int_a^b g \text{ convergent.}$$

$$| 1) f(x) = \circ_{x \to b}(g(x)) \Rightarrow \int_x^b f = \circ_{x \to b}(\int_x^b g)$$

$$| 2) f(x) = \mathcal{O}_{x \to b}(g(x)) \Rightarrow \int_x^b f = \mathcal{O}_{x \to b}(\int_x^b g)$$

$$| 3) f(x) \sim_b g(x) \Rightarrow \int_x^b f \sim_b \int_x^b g$$

Démonstration. On notera $F(x) = \int_x^b f$ et $G(x) = \int_x^b g$, on considère alors $\varepsilon > 0$ et un voisinage de b sur lequel $|f(x)| \le \varepsilon g(x)$, on a alors $|F(x)| \le \varepsilon G(x)$. La domination se démontre selon le même principe.

Théorème 5.6.2.

Soit
$$f, g \in C^0_{pm}([a, b[, \mathbb{R}), g \ge 0 \text{ avec } \int_a^b f \text{ et } \int_a^b g \text{ divergent.}$$

$$| 1) f(x) = \circ_{x \to b}(g(x)) \Rightarrow \int_a^x f = \circ_{x \to b}(\int_a^x g)$$

$$| 2) f(x) = \mathcal{O}_{x \to b}(g(x)) \Rightarrow \int_a^x f = \mathcal{O}_{x \to b}(\int_a^x g)$$

$$| 3) f(x) \sim_b g(x) \Rightarrow \int_a^x f \sim_b \int_a^x g$$

Démonstration. En notant, $F(x) = \int_a^x f$ et $G(x) = \int_a^x g$, le reésultat se démontre en séparant l'intégrale : $\left|\frac{F(x)}{G(x)}\right| = \frac{|F(x)|}{G(x)} \le \frac{C}{G(x)} + \frac{\varepsilon}{2} \xrightarrow[x \to b]{} 0$; $C = \left|\int_a^\beta f\right|$

Exercices

Comparaison

— **5C1**: Donner les natures de $\left| \int_0^1 \frac{1+t^3}{\sqrt{1-t^3}} dt \right|$ et de $\left| \int_0^{\frac{\pi}{2}} \frac{t}{\cos t} dt \right|$.

Convergence absolue

- $\underline{5C2}$: Montrer que $\left| \int_{\pi}^{+\infty} \frac{\sin t}{t} dt \right|$. CVA?
- <u>5C3</u>: Étudier la nature des intégrales de Bertrand $\left| \left(\int_2^{+\infty} \frac{dt}{t^{\alpha} (\ln t)^{\beta}} \right) \right|$
- **5C4**: Connaissant le **5C3**, avec $(\alpha, \beta) \in \mathbb{R}^2$, quelle est la nature de $\left| \int_0^{\frac{1}{2}} \frac{dt}{t^{\alpha}(\ln t)^{\beta}} \right|$?

Calculs

- 5C5 : Calculer $|\lambda = \int_{\mathbb{R}} f|$ où $|f : t \mapsto \frac{1}{1+t+t^2}|$ et $|I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt|$. 5C6 : Montrer l'existence de γ la constante d'EULER.
- 5C7 : Trouver un équivalent de $\left| R_n = \sum_{n=1}^{+\infty} \frac{1}{k^2} \right|$.

Intégration des relations de comparaisons

— 5C8 : Trouver un équivalent de
$$\left| F(x) = \int_2^x \frac{e^{-1/t}}{\sqrt{t(t+\cos t)}} \right|$$
.

Chapitre 6

Intégrales paramétrées

Contenu		
6.1	Théorème de convergence dominée	63
6.2	Intégration terme à terme	64
	6.2.1 Cas positif	64
	6.2.2 Cas réel ou complexe	64
6.3	Continuité et dérivation d'une intégrale paramétrée	64
	Fonction Γ d'EULER	65

6.1 Théorème de convergence dominée

Théorème 6.1.1.

Ce théorème est admis.

Corollaire.

$$\begin{array}{l} \textit{Soient I, J des i.r.n.t. et } (f_{\lambda})_{\lambda \in J} \textit{ une famille de fonctions.} \\ \textit{Soit } \lambda_0 \in \overline{J} \textit{ ou } \lambda \textit{ est une borne infinie de J avec} \\ & \quad - \forall \lambda \in J, \ f_{\lambda} \in \mathcal{C}^0_{pm}(I, \mathbb{K}) \\ & \quad - \forall t \in I, \ f_{\lambda}(t) \underset{\lambda \to \lambda_0}{\longrightarrow} f(t) \\ & \quad - f \in \mathcal{C}^0_{pm}(I, \mathbb{K}) \\ & \quad - \exists \phi \in L^1(I, \mathbb{K}) \textit{ telle que } \forall \lambda \in J, \ |f_{\lambda}| \leq \phi \\ & \quad Alors & \begin{cases} \text{(i) Les } f_{\lambda} \textit{ et } f \textit{ sont intégrables sur I} \\ \text{(ii) } \int_I f_{\lambda} \underset{\lambda \to \lambda_0}{\longrightarrow} \int_I f \end{cases} \end{aligned}$$

6.2 Intégration terme à terme

6.2.1 Cas positif

Théorème 6.2.1.

Ce théorème est admis.

6.2.2 Cas réel ou complexe

Théorème 6.2.2.

Soit I un intervalle réelle non trivial, on suppose
$$- \forall n \in \mathbb{N}, \ g_n \in L^1(I,\mathbb{R})$$

$$- \sum g_n \ converge \ simplement \ sur \ I$$

$$- \sum_{n=0}^{\infty} g_n \in C^0_{pm}(I,\mathbb{R})$$

$$- La \ série \left[\sum_{n\geq 0} \int_I |g_n| \right] \ converge \ \heartsuit$$

$$\left\{ \begin{array}{l} \text{(i)} \sum_{n=0}^{\infty} g_n \in L^1(I,K) \\ \text{(ii)} \sum_{n\geq 0} \int_I g_n \ converge \end{array} \right.$$

$$\left\{ \begin{array}{l} \text{(ii)} \sum_{n=0}^{\infty} g_n \in L^1(I,K) \\ \text{(iii)} \int_I \sum_{n=0}^{\infty} g_n = \sum_{n=0}^{\infty} \int_I g_n \end{array} \right.$$

Ce théorème est admis.

6.3 Continuité et dérivation d'une intégrale paramétrée

Position du problème : on s'intéresse à des fonctions du type $\Phi: x \mapsto \int_a^b f(x,t)dt$ dont on veut étudier la continuité et la dérivabilité.

Théorème 1 ♡.

Soit I un i.r.n.t. avec a < b ses bornes et $A \subset E$ une partie quelconque de E un espace vectoriel normé de dimension finie.

Conque de E un espace vectoriel normé de dimension finie.

On considère
$$f\left(\begin{array}{ccc} A \times I & \longrightarrow & \mathbb{K} \\ (x,t) & \longmapsto & f(x,t) \end{array} \right)$$
 avec
$$- \forall x \in A, \ f(x,\cdot) \in \mathcal{C}^0_{pm}(I,\mathbb{K})$$

$$- \forall t \in I, \ f(\cdot,x) \in \mathcal{C}^0(A,\mathbb{K})$$

$$- \underbrace{Hypothèse}_{\exists \varphi \in L^1(I,\mathbb{K})} \text{ telle que } \forall (x,t) \in I \times A, \ |f(x,t)| \leq \varphi(t)$$

$$Alors \Phi \left(\begin{array}{ccc} A & \longrightarrow & \mathbb{K} \\ x & \longmapsto & \int_a^b f(x,t) dt \end{array} \right) \text{ est continue.}$$

Démonstration. On a $f(x,\cdot) \in L^1(I,\mathbb{K})$ donc l'application est bien définie. Soit $\alpha \in A$, on considère (x_n) telle que $x_n \xrightarrow{n} \alpha$ et on a alors $\Phi(x_n) \xrightarrow{n} \Phi(\alpha)$ par le théorème de convergence dominée puis par caractérisation séquentielle de la continuité (2.3.1) Φ est continue en α d'où CQFD

Théorème 2 ♡.

Soit I un i.r.n.t. avec a < b ses bornes et A un i.r.n.t. quelconque. Soit $f: A \times I \to K$, on suppose — $\forall x \in A, \ f(x,\cdot) \in L^1(I,\mathbb{K})$ — $\frac{\partial f}{\partial x}$ est bien définie sur $A \times I$ et vérifie les hypothèses du Théorème 1. Alors Φ est bien définie sur $A, \Phi \in \mathcal{C}^1(A,K)$ et $\forall x \in A, \ \Phi'(x) = \int_a^b \frac{\partial f}{\partial x}(x,t)dt$

Cette égalité est dite "formule de Leibniz"

Démonstration. On a l'existence de $\Phi: A \to K$ en tant qu'application. On considère alors $\alpha \in A$ et on note $T(x) = \frac{\Phi(x) - \Phi(\alpha)}{x - \alpha}$, $\forall \alpha \in A \setminus \{\alpha\}$. On applique alors le théorème de convergence dominée à $T(x_n)$ où $(x_n) \in A^{\mathbb{N}}$ converge vers α . Par caractérisation séquentielle d'une limite on a $\Phi'(x) = \int_a^b \frac{\partial f}{\partial x}(x,t)dt$ et vu la formule pour $\Phi'(x)$ et le théorème 1; $\Phi' \in \mathcal{C}^1(A,K)$

Fonction Γ d'Euler On pose $\Gamma(x)=\int_0^\infty t^{x-1}e^{-t}dt$, $x\in\mathbb{R}$ la fonction Γ d'Euler. Cette fonction est définie sur \mathbb{R}_+^* .

On a $\Gamma(x+1)=\int_a^b t^x e^{-t} dt=[-e^{-t}t^x]_0^{+\infty}-\int_0^{+\infty}-e^{-t}xt^{x-1} dt=x\Gamma(x)$ donc $\Gamma(n)=(n-1)!$, $\forall n\in\mathbb{N}$. On en déduit $\Gamma\sim \frac{1}{x}$ et on peut montrer par le théorème 2 que $\Gamma\in\mathcal{C}^\infty(\mathbb{R}_+^*,\mathbb{R})$

Chapitre 7

Séries entières

Contenu			
7.1	Rayor	n de convergence	67
	7.1.1	Définition	67
		Série entière	67
		Rayon de convergence \heartsuit	68
		Critères de détermination de R	68
	7.1.2	Continuité de la somme	68
	7.1.3	Utilisation de la règle de d'Alembert	69
	7.1.4	Rayon de convergence d'une somme, d'un produit de CAUCHY	69
		Produit de Cauchy	70
		Dérivée	70
	7.1.5	Coefficients comparables	71
7.2	Série	entière de la variable réelle	71
	7.2.1	Dérivation et intégration	71
	7.2.2	Développement en série entière	72
		Fonction développable \heartsuit	72
		Série de Taylor	72
		Fonction complexe développable	73
	7.2.3	Développements en série entière de référence	73

7.1 Rayon de convergence

7.1.1 Définition

Série entière Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$, on appelle <u>série entière associée à cette suite</u> la série de fonctions

$$\sum_{n\geq 0} a_n z^n$$

Lemme d'Abel

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$ et $z_0 \in \mathbb{C}$ tel que $(a_n z_0^n)_{n \geq 0}$ soit bornée, Alors $\forall z \in \mathbb{C}$, $|z| < |z_0| \Rightarrow \sum_{n \geq 0} a_n z^n$ converge absolument.

Rayon de convergence ♡

Soit une série entière $\sum_{n\geq 0}a_nz^n$, on note $\mathscr{B}=\{r\in\mathbb{R}^+:\,(a_nr^n)\text{ est bornée }\}$

- Si \mathscr{B} est majorée on pose $R = \sup \mathscr{B}$
- Sinon on pose $R = +\infty$

R est dit rayon de convergence de la série entière

Théorème 7.1.1.

Soit une série entière
$$\sum_{n\geq 0} a_n z^n$$
 et R son rayon de convergence alors pour $z\in \mathbb{C}$, $-|z|< R \Rightarrow \sum_{n\geq 0} a_n z^n$ converge absolument. $-|z|> R \Rightarrow \sum_{n\geq 0} a_n z^n$ diverge grossièrement.

Démonstration. On suppose |z| < R alors |z| n'est pas un majorant de \mathscr{B} et par le Lemme d'Abel on a le résultat.

Si |z| > R alors $|z| \notin \mathcal{B}$ donc $(a_n z^n)$ n'est pas bornée et a fortiori ne tends pas vers $0 \square$

Critères de détermination de R Soit $r \in \mathbb{R}^+$

- $\sum_{n\geq 0} a_n r^n$ converge $\Rightarrow r < R$ et $\sum_{n\geq 0} a_n r^n$ diverge $\Rightarrow r > R$
- $(a_n r^n)$ bornée $\Rightarrow r < R$ et $(a_n r^n)$ non bornée $\Rightarrow r > R$.

7.1.2 Continuité de la somme

Théorème 7.1.2.

Soit $\sum_{n\geq 0} a_n z^n$ une série entière et R son rayon de convergence, Alors $\sum_{n\geq 0} a_n z^n$ converge normalement sur tout disque fermé $D_f(0,r)$ où r< R

Démonstration. On considère r < R et on pose pour $n \in \mathbb{N}$, $\alpha_n = |a_n| r^n$. On a alors sur D(0,r), $\sum_{n\geq 0} a_n z^n$ converge normalement.

Corollaire.

La fonction $S: z \mapsto \sum_{n=0}^{\infty} a_n z^n$ est bien définie et continue sur le disque ouvert de convergence D(0,R)

Lemme : Cas de la variable réelle.

$$(a_n) \in \mathbb{C}^{\mathbb{N}}$$
, R le rayon de convergence de la série entière
— $\sum a_n x^n$ converge normalement sur tout $[a,b] \subset]-R$, $R[$
— $x \mapsto \sum_{n=0}^{\infty} a_n x^n$ est C^0 sur $]-R$, $R[$

7.1.3 Utilisation de la règle de d'Alembert

Lemme de suppression des termes nuls.

Soit E un espace vectoriel normé quelconque,
$$(a_n) \in E^{\mathbb{N}}$$
 et φ une extractrice. On suppose $\forall k \in \mathbb{N} \setminus \varphi(\mathbb{N})$ on a $a_k = 0$ alors
$$-\sum_{k \geq 0} a_k \text{ converge} \Leftrightarrow \sum_{n \geq 0} a_{\varphi(n)} \text{ converge}.$$
$$- Dans ce cas \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_{\varphi(n)}$$

Lemme 7.1.3.

Soit une série entière
$$\sum a_n z^n$$
 et R son rayon de convergence
Soit $\mu \in \mathbb{R}^+$, on suppose $\forall r \in [0, \mu[$, $\sum a_n z^n$ converge
Alors $R \ge \mu$

Théorème : Règle de d'Alembert pour les séries entières.

Soit une série entière
$$\sum_{n\geq 0} a_n z^n$$
 avec $a_n \neq 0$, $\forall n \geq n_0$
On suppose l'existence de $\lambda \in [0,\infty]$ tel que $\frac{|a_{n+1}|}{|a_n|} \xrightarrow[n]{} \lambda$
Alors $R = \frac{1}{\lambda}$

Démonstration. Soit $r \in \mathbb{R}_+^*$ et $u_n = a_n r^n$ alors u_n est positif à partir d'un certain rang et $\frac{|u_{n+1}|}{|u_n|} = r \frac{|a_{n+1}|}{|a_n|} \xrightarrow{n} l$

On utilise ensuite le critère 2 de détermination de R et on a le résultat par disjonction de cas.

Rayon de convergence d'une somme, d'un produit de Cauchy

Soit les séries entières
$$\left\{\begin{array}{l} \sum_{n\geq 0}a_nz^n \ de\ rayon\ de\ convergence\ R_1 \\ \sum_{n\geq 0}b_nz^n \ de\ rayon\ de\ convergence\ R_2 \\ On\ note\ R\ le\ rayon\ de\ convergence\ de\ \sum_{n\geq 0}(a_n+b_n)z^n,\ on\ a\ alors \\ -R\geq \min\{R_1,R_2\} \\ -R_1\neq R_2\Rightarrow R=\min\{R_1,R_2\} \right\}$$

Démonstration. On suppose $R_1 \geq R_2$ et on note $c_n = a_n + b_n$ Soit $r \in \mathbb{R}_+$, on suppose $r < R_1$, alors $\sum_{n>0} c_n r^n$ converge, donc $R \ge R_1 = \min\{R_1, R_2\}$ On suppose maintenant $R_1 \neq R_2$ et $R > R_1$, on a alors l'existence de $r_0 \in]R_1$, min $\{R, R_2\}$ tel que $\sum_{n>0} a_n r_0^n$ converge or $r_0 > R_1$ donc par l'absurde $R = \min\{R_1, R_2\}$

Produit de Cauchy Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ des séries entières quelconques, on appelle produit de Cauchy de ces deux séries entières la série entière

$$\sum_{n\geq 0} c_n z^n \text{ où } c_n = \sum_{k=0}^n a_k b_{n-k}$$

Lemme 7.1.5.

Soient les <u>séries entières</u> $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$. On note $\sum_{n\geq 0} c_n z^n$ leur produit de CAUCHY. On a alors $\forall z\in \mathbb{C}$ La <u>série</u> $\sum c_n z^n$ est aussi le produit des <u>séries</u> $\sum a_n z^n$ et $\sum b_n z^n$

Théorème 7.1.6.

Soient deux séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ de rayons de convergence respectifs R_1 et R_2 . On note $\sum_{n\geq 0} c_n z^n$ leur produit de CAUCHY, de rayon de convergence R, alors

— Pour tout
$$z \in \mathbb{C}$$
 tel que $|z| < \min\{R_1, R_2\}$ on a
$$\left(\sum_{n=0}^{\infty} a_n z^n\right) \times \left(\sum_{n=0}^{\infty} b_n z^n\right) = \left(\sum_{n=0}^{\infty} c_n z^n\right)$$
— $R \ge \min\{R_1, R_2\}$

Démonstration. Soit $z \in \mathbb{C}$, on suppose $|z| < \min\{R_1, R_2\}$ alors on a la convergence absolue des deux séries puis par théorème de leur produit de CAUCHY.

La propriété (2) se déduit clairement du Lemme de minoration de *R* (7.1.3)

Dérivée Soit une série entière $\sum_{n\geq 0} a_n z^n$ on appelle série entière dérivée de $\sum_{n\geq 0} a_n z^n$ la série entière

$$\sum_{n\geq 0} (n+1)a_{n+1}z^n$$

Théorème 7.1.7.

Une série entière et sa dérivée on le même rayon de convergence.

Démonstration. Soit $\sum_{n\geq 0} a_n z^n$ un série entière, R son rayon de convergence et $\sum_{n\geq 0} b_n z^n$ sa dérivée. On a $\forall n\in\mathbb{N},\ b_n=(n+1)a_{n+1}$.

Ainsi pour
$$r \in \mathbb{R}_{+}^{*}$$
, $|b_n r^n| = \frac{1}{r} |a_{n_1} r^{n_1}| (n+1) \ge \frac{1}{r} |a_k r^k|$ où $k = n+1$

- Si r > R, alors $(a_n r^n)$ n'est pas bornée et $(b_n r^n)$ non plus.
- Si r < R on fixe $\rho \in]r, R[$ et $|b_n r^n| = \frac{1}{r} |\underbrace{a_{n+1}}_{\text{bornée}} \rho^{n+1} | (n+1) \left(\frac{r}{\rho}\right)^{n+1} \xrightarrow{n} 0$

On a alors la résultat par le critère 2.

Lemme 7.1.8.

Pour toute série entière $\sum_{n\geq 0} a_n z^n$, $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} n a_n z^n$ ont le même rayon de convergence.

7.1.5 Coefficients comparables

Lemme 7.1.9.

Soient les séries entière
$$\begin{cases} \sum_{n\geq 0} a_n z^n & \text{de rayon de convergence } R_a \\ \sum_{n\geq 0} b_n z^n & \text{de rayon de convergence } R_b \end{cases}$$
$$- a_n = \bigcirc_{n \to +\infty} (b_n) \Rightarrow R - a \geq R_b$$
$$- a_n \approx b_n \Rightarrow R_a = R_b$$

Série entière de la variable réelle 7.2

On considère ici $S: x \in \mathbb{R} \mapsto S(x) = \sum_{n=0}^{\infty} a_n x^n$ avec $(a_n) \in \mathbb{C}^{\mathbb{N}}$

Dérivation et intégration 7.2.1

Théorème 7.2.1.

Soit une série entière
$$\sum_{n\geq 0} a_n z^n$$
 de rayon de convergence $R>0$, On définie S sur $]-R$, $R[$, alors S est dérivable sur $]-R$, $R[$ avec $\forall x\in]-R$, $R[$, $S'(x)=\sum_{n=1}^{+\infty}na_{n-1}x^{n-1}$

Démonstration. C'est une conséquence du théorème (4.3.1) de dérivation des séries de fonctions.

Corollaire.

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0, on note I =]-R, R[, alors
• $S \in \mathcal{C}^{\infty}(I, \mathbb{R})$ et $\forall k \in \mathbb{N}$, $S^{(k)}$ s'obtient par dérivation terme à terme.
• Une primitive de S sur]-R, R[est $T: x \mapsto \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$

Lemme 7.2.2.

Soit
$$\delta > 0$$
 et $(a_n) \in \mathbb{C}^{\mathbb{N}}$, on suppose que $\forall x \in]-\delta, \delta[$, $f(x) = \sum_{n=0}^{\infty} a_n x^n$, alors $f|_{]-\delta,\delta[}$ est \mathcal{C}^{∞} et $\forall n \in \mathbb{N}$, $a_n = \frac{f^{(n)}(0)}{n!}$

Corollaire $\heartsuit \heartsuit$.

On suppose que
$$\sum_{n\geq 0} a_n z^n = \sum_{n\geq 0} b_n x^n$$
 pour tout x dans \underline{un} voisinage de 0 , alors $\forall n \in \mathbb{N}$, $a_n = b_n$

Lemme 7.2.3.

Soit
$$\delta > 0$$
, $(a_n), (b_n) \in \mathbb{C}^{\mathbb{N}}$ on suppose que $\forall x \in [0, \delta[, \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n, \text{ alors } \forall n \in \mathbb{N}, a_n = b_n]$

Théorème d'Abel radial.

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence $R\in \mathbb{R}_+^*$ On suppose que $\sum a_n R^n$ converge Alors $\sum_{n=0}^{\infty} a_n x^n \xrightarrow[x \to R]{} \sum_{n=0}^{\infty} a_n R^n$

Démonstration. (HP)

On note $S(x) = \sum_{n=0}^{\infty} a_n x^n$, $\forall x \in]-R$, R[, on suppose R=1 (sans perte de généralité) Notons $S = \sum_{n=0}^{\infty} a_n$ (convergente) et $R_n = \sum_{k=n+1}^{+\infty} a_k$ Pour tout $x \in [0, R[$ on a par transformation d'Abel $S = \sum_{n=0}^{+\infty} R_n(x^n - x^{n+1})$

Soit $\varepsilon > 0$; soit $N \in \mathbb{N}$ tel que $\forall m \geq N$, $|R - n| < \frac{\varepsilon}{2}$, alors $\forall x \in [0, R[$

$$|S - S(x)| \le |Q(x)| + \sum_{n=N}^{+\infty} \frac{\varepsilon}{2} (x^n - x^{n+1}) = |Q(x)| + \frac{\varepsilon}{2} x^N$$

où $Q(x) = \sum_{n=0}^{n-1} R_n(x^n - x^{n+1})$, avec $Q(x) \xrightarrow[x \to 1]{} 0$ (somme finie)

Soit alors $\theta \in [0,1[$ tel que $\forall x \in]\theta,1[$, $|Q(x)| < \frac{\varepsilon}{2}$. Alors $\forall x \in]\theta,1[$, $|S-S(x)| < \varepsilon$

D'où
$$S(x) \xrightarrow[x \to 1]{} S$$

Développement en série entière

Fonction développable \heartsuit Une fonction f de la variable réelle est dite développable en série entière en x_0 (DSE_0) s'il existe $\delta > 0$ et $(a_n) \in \mathbb{C}^{\mathbb{N}}$ tels que

$$\forall x \in]x_0 - \delta, x_0 + \delta[, f(x)] = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Note. Quitte à considérer $t \mapsto f(x_0 + t)$, il suffit de traiter le cas $x_0 = 0$

Note. f est $DSE_0 \Rightarrow f$ est C^{∞} sur un voisinage de 0

ATTENTION! La réciproque est fausse!!

Série de Taylor Lorsque f est \mathcal{C}^{∞} sur un voisinage de 0, la série entière $\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!}$ est dite série de Taylor en 0

Attention! Elle ne coïncide pas toujours avec f sur un voisinage de 0!!

Fonction complexe développable Soit $z_0 \in \mathbb{C}$. Une fonction f de la variable complexe est dite développable en série entière en z_0 s'il existe $\delta > 0$ et $(a_n) \in \mathbb{C}^{\mathbb{N}}$ tels que

$$\forall z \in D(z_0, \delta), \ f(z) = \sum_{n=0}^{\infty} a_n z^n$$

7.2.3 Développements en série entière de référence

On pose d'autorité $\forall z \in \mathbb{C}$, $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ avec $R = +\infty$

Lemme 7.2.4.

$$\begin{array}{l} \text{Si } \delta > 0 \text{ et } \forall x \in] - \delta, \delta[, \ f(x) = \sum_{n \geq 0} a_n x^n, \text{ alors} \\ - f \text{ est paire (sur }] - \delta, \delta[) \Leftrightarrow \forall k \in \mathbb{N}, \ a_{2k+1} = 0 \\ - f \text{ est impaire (sur }] - \delta, \delta[) \Leftrightarrow \forall k \in \mathbb{N}, \ a_{2k} = 0 \end{array}$$

Théorème 7.2.5.

$$\forall x \in \mathbb{R}, \\ \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots \quad R = +\infty \\ \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \dots \quad R = +\infty$$

Démonstration. Soit
$$x \in \mathbb{R}$$
 (c'est en fait vrai sur C) $\rightarrow \cos(x) = \frac{1}{2}(e^{\imath x} + e^{-\imath x}) = \sum_{n=0}^{\infty} \frac{1}{2}\imath^n (1 + (-1)^n) \frac{x^n}{n!} = \sum_{n=0}^{\infty} (\imath^2)^n \frac{x^{2n}}{(2n)!}$ On a de même pour le sinus.

Théorème 7.2.6.

$$\forall x \in \mathbb{R}, on peut définir avec des séries entières -- \cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} -- \sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} Avec dans les deux cas $R = +\infty$$$

Théorème 7.2.7.

$$\forall x \in]-1,1], \ \ln(1+x) \sum_{n=1}^{+\infty} (-1)^n \frac{x^n}{n} \ avec \ R = 1 \ \heartsuit$$

Démonstration. On pose $h(x) = \ln(1+x)$, $\forall x > -1$, on a alors $h'(x) = \frac{1}{1+x}$ est bien définie $\forall x > -1$. Par théorème, on a en posant $T(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{x^{n+1}}{(n+1)!}$, (T-h)' = 0 et vu T(0) = 0 = h(0) alors T(x) = h(x) d'où le résultat.

Théorème 7.2.8.

Soit
$$\alpha \in \mathbb{R}$$
 alors

Soit
$$\alpha \in \mathbb{R}$$
 alors
$$\forall x \in]-1,1[,\ (1+x)^{\alpha}=1+\sum_{n=1}^{+\infty}\alpha(\alpha-1)\cdots(\alpha-n+1)\frac{x^n}{n!}]$$
 Notons R son rayon de convergence alors :
• $si\ \alpha \in \mathbb{N}$ on a $R=+\infty$ (binôme de Newton)
• $si\ \alpha \in \mathbb{R} \setminus \mathbb{N}$ on a $R=1$

Démonstration. À compléter.

Chapitre 8

Algèbre

Contenu			
8.1	Grou	pe	75
	8.1.1	Définitions	75
		Groupe	75
		Groupe abélien	76
		Groupe produit	76
		Itérés	76
	8.1.2	Sous-groupe	76
		Définition	76
	8.1.3	Morphismes de groupes	78
		Morphisme	78
		Isomorphisme	78
	8.1.4	Quotient et loi quotient	79
		Compatibilité	79
	8.1.5	Le groupe $(\mathbb{Z}/n\mathbb{Z})$	79

8.1 Groupe

8.1.1 Définitions

Groupe Le couple (G, *) est dit groupe si G est un ensemble et

- * est une loi de composition interne sur G (i.e. une application de $G \times G$ dans G)
- * est associative (i.e. $\forall (x,y,z) \in G^3$, (x*y)*z = x*(y*z))
- Il existe dans G un élément neutre pour la loi * (i.e. $\exists e \in G$ tq $\forall x \in G$, x * e = e * x = x)
- Tout élément de G admet un symétrique pour la loi * (i.e. $\forall x \in G$, $\exists x' \in G$ tq x * x' = x' * x = e)

Groupe abélien Le groupe (G,*) est dit <u>abélien</u> ou <u>commutatif</u> si * est commutative, i.e. si $\forall (x,y) \in G^2$, x*y=y*x

Lemme 8.1.1.

Soit (G,*) un groupe, — Le neutre est unique. — $\forall x \in G$, x admet un unique élément neutre dans G. On le note x^{-1} . — $\forall (x,y) \in G^2$, $(x*y)^{-1} = y^{-1}*x^{-1}$

Groupe produit Soient $r \in \mathbb{N}^*$, $(G_1, *_1), \ldots, (G_r, *_r)$ des groupes. Soit $G = G_1 \times \cdots \times G_r$ On pose * $\begin{pmatrix} G \times G & \longrightarrow & G \\ ((x_1, \ldots, x_r), (y_1, \ldots, y_r)) & \longmapsto & (x_1 *_1 y_1, \ldots, x_r *_r y_r) \end{pmatrix}$ Alors (G, *) est un groupe dit groupe produit des G_i

Itérés (G,*) un groupe quelconque et $x \in G$, on définit les <u>itérés de x pour la loi *</u>

- $\forall n \in \mathbb{N}^*$, on pose $x^n = \underbrace{x * \cdots * x}_{n \text{ fois}}$
- Pour n = 0, on pose $x^0 = e$ neutre par convention.
- Pour n = -m avec $m \in \mathbb{N}^*$ on pose $x^n = \underbrace{(x^{-1}) * \cdots * (x^{-1})}_{m \text{ fois}}$

8.1.2 Sous-groupe

Définition Soit (G,*) un groupe et $H \subset G$ une partie quelconque de G. On dit que H est un sous-groupe de (G,*) si

- *H* est stable par *.
- *H* est un groupe pour la loi induite par *.

Théorème : CNS1 de sous-groupe.

Soit (G,*) un groupe et $H \subset G$ Alors H est un sous-groupe de (G,*) si et seulement si — $e \in G$ — $\forall x \in H, x^{-1} \in H$ — $\forall (x,y) \in H^2, x * y \in H$ 8.1. GROUPE 77

Démonstration. Vu en MPSI

Théorème : CNS2 de sous-groupe.

Soit
$$(G,*)$$
 un groupe et $H \subset G$
Alors H est un sous-groupe de $(G,*)$ si et seulement si
— $e \in H$
— $\forall (x,y) \in H, \ x * y^{-1} \in H$

Démonstration. Vu en MPSI

ATTENTION : Dans certains groupes abéliens, on note + la loi *. Ainsi x * y devient x + y, e devient 0 et x^{-1} devient -x.

La CNS2 devient
$$H$$
 sous-groupe $\Leftrightarrow \left\{ \begin{array}{l} 0 \in H \\ x - y \in H \end{array} \right.$

Note. En notation additive, l'itéré n-ième de x se note nx.

Théorème 8.1.2.

Les sous-groupes de \mathbb{Z} sont exactement les $n\mathbb{Z}$, où $n \in \mathbb{N}$

Démonstration.

- $\forall n \in \mathbb{N}$, $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$ (CNS)
- Soit H un sous-groupe de \mathbb{Z} , $0 \in H$
- \star Si $H = \{0\}$ alors $H = 0\mathbb{Z}$
- \star Sinon on considère $n = \min(H \cap \mathbb{Z}_+^*)$ partie ≠ Ø de \mathbb{N} .

On a alors $n\mathbb{Z} \subset H$ et inversement $H \subset n\mathbb{Z}$ par division euclidienne et caractère minimal de n.

Lemme 8.1.3.

Toute intersection de sous-groupes de G (même infinie) est un sousgroupe de G.

ATTENTION! C'est faux avec une "réunion"!!

Théorème : Sous-groupe engendré.

Soit (G,*) un groupe quelconque et $A \subset G$ une partie quelconque. Il existe un plus petit sous-groupe de G contenant A On l'appelle sous-groupe engendré par A, noté A > B

Démonstration. En notant \mathcal{F} l'ensemble des sous-groupes de G contenants A, on peut vérifier que $H_0 = \bigcap_{H \in \mathcal{F}} H$ est un sous-groupe de G convenant à la définition.

8.1.3 Morphismes de groupes

Morphisme Soient (G, *) et (H, \cdot) des groupes.

On appelle morphisme de groupe de G dans H toute application $f:G\to H$ telle que

$$\forall (x,y) \in G^2, f(x*y) = f(x) \cdot f(y)$$

Lemme 8.1.4.

La composée de 2 morphismes de groupes est un morphisme de groupe.

Lemme 8.1.5.

Soit $f: G \to H$ un morphisme de groupes. On note e l'élément neutre de G et ε celui de H alors $-f(e)=\varepsilon$ $-\forall x\in G,\ f(x^{-1})=(f(x))^{-1}$ $-\forall x\in G,\ \forall n\in \mathbb{Z},\ f(x^n)=(f(x))^n$

Lemme 8.1.6.

Soit $f: G \to H$ un morphisme de groupes alors — $\forall S$ un sous-groupe de G, f(S) est un sous-groupe de H— $\forall S$ sous-groupe de H, $f^{-1}(S)$ est un sous-groupe de G

Note. En particulier, si $f: G \to H$ est un morphisme, im f et ker f sont des sous-groupes respectifs de H et G.

Théorème 8.1.7.

Soit $f: G \to H$ un morphisme de groupes, alors f est injectif \Leftrightarrow $\ker f = \{e\} \ (\Leftrightarrow \ker f \subset \{e\})$

Démonstration.

 \Rightarrow Supposons f injectif, soit $x \in \ker f$ alors $f(x) = \varepsilon = f(e)$ donc x = e \rightleftharpoons Si $\ker f \subset \{e\}$, soit $x, y \in G$ tels que f(x) = f(y) alors $f(x)(f(y))^{-1} = \varepsilon = f(xy^{-1})$ donc $xy^{-1} = e$ puis $xy^{-1}y = ey$ soit x = y ainsi f est injectif.

Isomorphisme Un isomorphisme de groupe est un morphisme de groupes bijectif.

Lemme 8.1.8.

La réciproque d'un isomorphisme est un isomorphisme.

8.1. GROUPE 79

8.1.4 Quotient et loi quotient

On considère *E* un ensemble.

Soit \mathcal{R} une relation d'équivalence sur E et * une loi de composition interne sur E.

Pour $x \in E$, on note $cl(x) = \{y \in E : x\mathcal{R}y\}$ notée aussi \tilde{x} la classe d'équivalence de x, qui est dit représentant de sa classe. On note alors $E/\mathcal{R} = \{\tilde{x} : x \in E\}$ l'ensemble quotient de E par \mathcal{R} .

On aimerait définir une loi interne \circledast sur E/R de telle sorte que $\forall (x,y) \in E^2$, $\tilde{x} \circledast \tilde{y} \Rightarrow \tilde{x} * \tilde{y}$. On est alors tentés de poser

$$\circledast \left(\begin{array}{ccc} E/\mathcal{R} \times E/\mathcal{R} & \longrightarrow & E/\mathcal{R} \\ (X,Y) & \longmapsto & \widehat{x*y} \end{array} \right)$$

où $\tilde{x} = X$ et $\tilde{y} = Y$.

On a alors un problème de **bien-fondé**, en effet : si $\tilde{x} = X = \tilde{x'}$ et $\tilde{y} = Y = \tilde{y'}$ on a en général $\widetilde{x*y} \neq \widetilde{x'*y'}$.

Compatibilité La relation d'équivalence $\mathcal R$ est dite compatible avec la loi * si

$$\forall x, x', y, y' \in E, (x\mathcal{R}x' \text{ et } y\mathcal{R}y') \Rightarrow x * y\mathcal{R}x' * y'$$

On a dans ce cas bien l'application souhaitée, \circledast est alors une loi interne sur E/\mathcal{R} , dite loi quotient.

8.1.5 Le groupe $(\mathbb{Z}/n\mathbb{Z})$

Soit $n \in \mathbb{Z}$, on considère sur \mathbb{Z} la relation \mathcal{R} de congruence modulo n

Table des matières - Première année

Table des matières - Deuxième année

1	Suit	Suites et séries				
	1.1	Norm	e	6		
		1.1.1	Généralités	6		
		1.1.2	Normes euclidiennes	7		
		1.1.3	Exemple de normes	7		
	1.2	Suites		8		
	1.3	Norm	es équivalentes	10		
		1.3.1	Définition	10		
		1.3.2	Cas de espaces de dimension fini	10		
	1.4		araisons asymptotiques	11		
	1.5	Séries	dans un K espace vectoriel de dimension finie	11		
	1.6	Comp	lément sur les séries numériques	13		
		1.6.1	Règle de Dalembert	13		
		1.6.2	Séries alternées	14		
		1.6.3	Sommation des relations de comparaisons	14		
	1.7	Produ	it de deux séries absolument convergentes	15		
	1.8	Dualit	té série-suite	15		
2	Lim	ites et	continuité	17		
	2.1	Ouver	ts et fermés	18		
		2.1.1	Intérieurs	18		
		2.1.2	Ouverts	18		
		2.1.3	Fermés	19		
		2.1.4	Adhérence	20		
	2.2	Limite	es	22		
		2.2.1	Cas général	22		
		2.2.2	Produit fini d'espaces vectoriels normés	23		
	2.3	Conti	nuité	24		
		2.3.1	Cas général	24		
		2.3.2	Cas des applications linéaires	26		
	2.4	Image	réciproque et continuité	28		
	2.5	Comp	acité	29		
		2.5.1	Compacité dans un espace vectoriel normé quelconque	29		
		2.5.2	Compacité en dimension finie	31		
		2.5.3	Applications aux séries en dimension finie	32		
	2.6		exité par arcs			

3	Dér	vation et intégration	35			
	3.1	Dérivée	36			
	3.2	Dérivées successives	38			
	3.3	Fonctions convexes	38			
	3.4	Intégration sur un segment	40			
		3.4.1 Fonctions continues par morceaux	40			
		3.4.2 Propriétés de l'intégrale	41			
			12			
	3.5	Théorème fondamental	43			
	3.6		14			
4	Suites de fonctions 47					
	4.1	Convergences	17			
	4.2	Série de fonctions	19			
	4.3	Intégration et dérivation	51			
		4.3.1 Cas général	51			
		4.3.2 Application aux matrices	53			
	4.4	Approximations uniformes	53			
5	Inté	, 0	55			
	5.1	Intégrale convergente	55			
	5.2	Convergence absolue	58			
	5.3	Espace des fonctions intégrables sur I	58			
	5.4	Calculs	59			
	5.5	Comparaison série-intégrale	60			
	5.6	Intégration des relations de comparaison	50			
6	Inté	grales paramétrées	63			
	6.1	Théorème de convergence dominée				
	6.2	Intégration terme à terme	54			
		6.2.1 Cas positif	54			
		6.2.2 Cas réel ou complexe	54			
	6.3	Continuité et dérivation d'une intégrale paramétrée 6	54			
7	Séri	es entières 6	67			
	7.1	Rayon de convergence	67			
		7.1.1 Définition	67			
		7.1.2 Continuité de la somme	68			
		7.1.3 Utilisation de la règle de d'Alembert	59			
		7.1.4 Rayon de convergence d'une somme, d'un produit de CAUCHY 6	59			
		7.1.5 Coefficients comparables	71			
	7.2	Série entière de la variable réelle	71			
		7.2.1 Dérivation et intégration	71			
		7.2.2 Développement en série entière	72			
		7.2.3 Développements en série entière de référence	73			

8 Algèbre				75	
	8.1	Group	be	75	
		8.1.1	Définitions	75	
		8.1.2	Sous-groupe	76	
		8.1.3	Morphismes de groupes	78	
			Quotient et loi quotient		
		8.1.5	Le groupe $(\mathbb{Z}/n\mathbb{Z})$	79	