Sistemas Multiagentes

Andrés Díaz Pace

1 & 2 / Nov / 2024

<u>andres.diazpace@isistan.unicen.edu.ar</u> <u>andres.diazpace@globant.com</u>

Agenda

- LLMs y Desarrollo de Aplicaciones
- Patrones basados en LLMs
- Agents & Agentic workflows
 - Memoria, tools, razonamiento
 - Agente ReAct
 - Orquestación de agentes
- Niveles de autonomía
- Lecciones aprendidas y desafíos a futuro

GEERS.AI 2023 → 2024

- Seguir motorizando la iniciativa (ex-SofIA)
- Introducción a LLMs y posibles aplicaciones
- Diferencias con AI/ML "tradicional"
- Recuperación con búsqueda semántica (embeddings)
- Retrieval Augmented Generation (RAG)

Agentes en las Noticias

Contexto: LLMs en breve

- Un Large Language Model puede verse como un modelo probabilístico sofisticado
 - Dada una entrada, un LLM genera salidas, en base a patrones que aprende de sus datos de entrenamiento
- El prompting es un mecanismo para condicionar las salidas del modelo probabilístico, ya sea mediante instrucciones/contexto que hacen que se generen salidas alternativas

Probability Distribution

Contexto: Prompting

```
# Prompt 1
Tell me about: Apple

# Prompt 2
Tell me about: Apple fruit

# Prompt 3
Tell me about: Apple of my eye
```


Prompt 4

You are a preschool teacher. Explain how attention in LLMs works.

Prompt 5

You are an NLP professor. Explain how attention in LLMs works.

Contexto: Ingeniería de LLMs

• El objetivo es construir aplicaciones de software soportadas/potenciadas por LLMs (por ej., chatbots, copilots, etc.)

Architecting LLM applications

The language model is just one part of the technical architecture

https://martinfowler.com/articles/engineering-practices-llm.html

Algunos patrones basados en LLMs

- 1. Prompting
- 2. Fine-tuning
- 3. RAG (Retrieval Augmented Generation)
- 4. Agentic workflow y Agentes

Volviendo a la base: Prompting

- Conjunto de instrucciones que le dicen a un LLM cómo proceder
- **Variantes**: zero-shot, few-shot, etc.
- Más o menos sofisticado respecto a la estrategia de razonamiento
 - CoT, etc.
- Útil, pero limitado como patrón (desde un punto de vista ingenieril)
- <u>Nota</u>: Algunas técnicas de prompting requieren mecanismos adicionales
 <u>memoria</u>

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Especialización: Fine-tuning

- Se busca entrenar/especializar a un LLM para realizar tareas específicas (por ej., en un dominio determinado)
- Requiere contar con datos! (pares pregunta-respuesta)
- Pueden funcionar bien, si se cuenta con datos adecuados, si bien hay que tener cuidado de no sobre-especializar el LLM
- Técnicas más sofisticadas, que permiten
 "direccionar" el LLM en base a feedback

Agregando conocimiento: RAG

- Puede verse como una alternativa al fine-tuning
- El componente de recuperación a menudo involucra una base de datos vectorial
- Provee un "esquema" para gestionar la interacción (por ej., generación) con el LLM
- El RAG (naive) puede adaptarse y complejizarse para resolver otros escenarios

Un punto de quiebre

- Un super-prompt no siempre es efectivo para resolver una tarea
- A medida que se desarrollan flujos con múltiples invocaciones a un LLM, el proceso constructivo se vuelve más complejo para implementar/evaluar/ajustar
- El uso de memoria y herramientas (tools) combinadas con un LLM se vuelve una necesidad

Idea: Divide y Conquista ... + Autonomía?

Ejemplo: VacAlgent

https://github.com/tonykipkemboi/trip_planner_agent?tab=readme-ov-file

Definición de Agente

 El concepto de agente viene desde hace mundo tiempo

• El LLM (+ prompting) actúa ahora como el cerebro del agente

- Entidad (de software) autónoma y modular
- Conducida por objetivos, a menudo en función de ciertas tareas
- Que se encuentra situada en un ambiente, y puede percibir señales de dicho ambiente (por ej., a través de sensores)
- Que puede ejecutar acciones sobre dicho ambiente
- Que tiene capacidad de razonamiento, y puede planificar "combinaciones" de acciones para lograr sus objetivos
- Puede comunicarse con otros agentes

Memoria

- Un repositorio donde se almacenan distintas actividades realizadas por un agente, así como también interacciones con el usuario
- Distintos criterios para procesar la memoria:
 - Últimas entradas
 - Resumen
 - •
- Corto-plazo versus largo-plazo

I'm interested in integrating LLMs with external knowledge.

LLMs are great at generating human-like text. Yet, integrating external knowledge can enhance their capabilities even more.

What are the different possible methods for doing this?

You could use pre-existing knowledge graphs, allow LLMs access to tools like APIs, or retrieval augmentation with vector DBs!

····· Conversation History ·

Interesting! What was it I wanted to know about again?

You were interested in integrating LLMs with external knowledge.

Tools (function calling)

- Permiten realizar operaciones/acciones más allá del conocimiento del agente (o LLM) e interactuar con su ambiente
 - Acceder a información, realizar cálculos, invocar a otros sistemas, ejecutar código, etc.
 - Normalmente se expresan como funciones con parámetros de entrada y de salida
 - A menudo implementado como function calling en el LLM

Planificación (razonamiento)

- Abordar una pregunta (del usuario), objetivo o tarea mediante la descomposición de la misma en pasos que pueden resolverse individualmente y luego combinarse
- Distintas técnicas
 - Question decomposition
 - CoT, ToT
 - ReAct
 - Self-critic
 - ...

• Suele requerir memoria, y puede integrar tools

(existe un debate si LLM planning es realmente (AI) planning)

Ejemplo: ReAct = Reasoning + Action

Estructura interna de un agente ReAct

Sistemas Multiagentes ...

Definiendo Sistemas Multiagentes

 Un sistema que aprovecha las capacidades de razonamiento (potenciadas por un LLM) de distintos agentes independientes para tomar decisiones en un flujo de aplicación

Volviendo a VacAlgent

City Selection Expert

Objetivo: Seleccionar la mejor ciudad en base a meteorología, estación, y precios

Local Expert

Objetivo: Dar los puntos principales de una ciudad dada

Travel Concierge

<u>Objetivo</u>: Crear itinerarios de viaje, incluyendo sugerencias de viajes

Seleccionar ciudades en base a un punto de partida e intereses del viajero

> Compilar información detallada en forma de guía

Expandir la guía en un itinerario, detallando un plan de actividades y lugares especiales

Agentic Workflows

- Descomposición en funciones, comportamiento conducido por estados
- Diseño flexible de flujos, pero reteniendo un control programático
 - Ruteo, orquestación, coreografía.

Distintos patrones multi-agente

Algunos frameworks

Noción de agente: Múltiples opiniones

- Un agente es una abstracción o patrón
 - Funcionalidad e interfaz bien definida
 - Criterios de cohesión y acoplamiento
 - Sin embargo, la interpretación de autonomía puede tener variaciones de una aplicación a otra
- La abstracción/patrón que se necesita para una aplicación puede coincidir o no con las clases provistas por un framework/biblioteca

Niveles de autonomía en una aplicación con LLMs

Lecciones aprendidas

- La modularidad (divide y conquista) es algo beneficioso en el proceso de desarrollo
 - Los agentes/workflows pueden correrse en paralelo si hace falta
 - Los workflows basados en estado tienden a inducir acoplamientos de datos entre los pasos del mismo

Tradeoffs

- Entre mantener un control (programático) sobre los agentes (por ej., a través de un grafo) y permitir que el mismo mecanismo del agente decida qué hacer de forma autónoma
- El agregado de pasos en un agente tiende a incrementar la latencia del flujo, pero puede mejorar la calidad de su respuesta

Casos de Uso para Agentes

- Según Gartner, para 2028 al menos el 15% de las decisiones de trabajo relacionadas con el día a día serán realizadas en forma autónoma por una IA con agentes
- No solo chatbots
- Herramientas low-code y no-code
- Plugins para aplicaciones existentes
- Generadores de contenidos (por ej., para profesionales)
- Asistentes para servicio al cliente (por ej., triage)
- Personalización para self-service (por ej., consultas, reportes, analítica)
- Tutoring y educación
- Desarrollo de software
- Entretenimiento

cool but scary

Desafíos

- Testing y reproducibilidad/observabilidad de flujos /comportamientos es importante en aplicaciones productivas
 - Asegurar que cambios en prompts (por ej., en un paso de un workflow) o en la versión del LLM no degradan comportamientos previamente chequeados es un reto
 - Se recomienda definir benchmarks (como tests de regresión), y planificar el logging de la aplicación desde el principio
- Gestión de distintos tipos de LLMs → LLMOps (en la misma aplicación)

Más sobre Agentes

Custom Agents (GPTs)

Gracias!

Y los esperamos mañana!

Andrés Díaz Pace

1 & 2 / Nov / 2024

<u>andres.diazpace@isistan.unicen.edu.ar</u> <u>andres.diazpace@globant.com</u>

