Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $z = (1 i\sqrt{2})(1 + i\sqrt{2})$ este natural, unde $i^2 = -1$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + a, unde a este număr real. Determinați numărul real a, știind că f(x) + f(1-x) = 7, pentru orice număr real x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^x + 5^{-x} = 2$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, 4, 5\}$. Determinați numărul submulțimilor cu trei elemente ale lui A, care îl conțin pe 1.
- 5p 5. În reperul cartezian xOy se consideră punctul M(-4,4). Determinați ecuația dreptei d care trece prin punctul M și este perpendiculară pe dreapta OM.
- **5p** | **6.** Triunghiul *ABC* este dreptunghic în *A* și $\sin B = \cos B$. Arătați că triunghiul *ABC* este isoscel.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & a+1 & a+2 \\ a^2+1 & a^2+2 & a^2+3 \\ 1 & 2 & 4 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(0)) = -1$.
- **5p b**) Demonstrați că, pentru orice număr real a, matricea A(a) este inversabilă.
- **5p** c) Determinați numerele întregi a pentru care inversa matricei A(a) are toate elementele numere întregi.
 - **2.** Pe mulțimea $A = [1, +\infty)$ se definește legea de compoziție $x * y = \frac{1}{2} \sqrt[3]{x^3 y^3 x^3 y^3 + 9}$.
- **5p a)** Arătați că 1 * 2020 = 1.
- **5p b**) Demonstrați că $x * y = \sqrt[3]{\frac{1}{8}(x^3 1)(y^3 1) + 1}$, pentru orice $x, y \in A$.
- **5p** | **c**) Determinați $x \in A$ pentru care x * x = x.

- **1.** Se consideră funcția $f:(2,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x-2} + \ln \frac{x-1}{x}$.
- **5p a)** Arătați că $f'(x) = \frac{-3x+4}{x(x-1)(x-2)^2}, x \in (2,+\infty).$
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $\frac{1}{x-2} > \ln \frac{x}{x-1}$, pentru orice $x \in (2, +\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^3 + 1}}$.
- **5p a)** Arătați că $\int_{0}^{1} (x^3 + 1) f^2(x) dx = \frac{1}{3}$.

5p b) Arătați că
$$\int_{0}^{1} f^{2}(x) dx = \frac{1}{3} \ln 2$$
.

5p c) Pentru fiecare număr natural nenul
$$n$$
, se consideră numărul $I_n = \int_0^1 f(x^n) dx$. Demonstrați că $\lim_{n \to +\infty} I_n = 0$.

Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z=1-(i\sqrt{2})^2=1-2i^2=1-2(-1)=$	3 p
	=1+2=3, care este număr natural	2 p
2.	f(x)+f(1-x)=3x+a+3(1-x)+a=2a+3, pentru orice număr real x	3 p
	$2a+3=7 \Rightarrow a=2$	2p
3.	$5^{x} + 5^{-x} - 2 = 0 \Leftrightarrow (5^{x} - 1)^{2} = 0$	3 p
	$5^{x} = 1$, deci $x = 0$	2 p
4.	Numărul submulțimilor cu trei elemente ale lui A , care îl conțin pe 1, este egal cu numărul submulțimilor cu două elemente ale mulțimii $\{2,3,4,5\}$, deci este egal cu C_4^2 =	3p
	$=\frac{4!}{2!(4-2)!}=6$	2p
5.	$m_{OM} = -1$ şi, cum $m_{OM} \cdot m_d = -1$, obţinem $m_d = 1$	2p
	Ecuația dreptei d este $y - y_M = m_d (x - x_M)$, deci $y = x + 8$	3 p
6.	$\sin B = \frac{AC}{BC}$	2p
	$\cos B = \frac{AB}{BC} \Rightarrow AB = AC$, deci triunghiul ABC este isoscel	3 p

1.a)	$A(0) = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{vmatrix} =$	2p
	=0+4+3-4-0-4=-1	3 p
b)	$\det(A(a)) = -(a^2 - a + 1)$, pentru orice număr real a	3p
	$a^2 - a + 1 \neq 0$, pentru orice număr real $a \Rightarrow \det(A(a)) \neq 0$, deci matricea $A(a)$ este inversabilă, pentru orice număr real a	2 p
c)	Cum $a \in \mathbb{Z}$, inversa matricei $A(a)$ are toate elementele numere întregi dacă $\det(A(a))$ este divizor al lui 1 și, cum $\det(A(a)) < 0$, pentru orice număr real a , obținem că $\det(A(a)) = -1$	3 p
	a=0 sau $a=1$, care convin	2p
2.a)	$1 * 2020 = \frac{1}{2} \sqrt[3]{1^3 \cdot 2020^3 - 1^3 - 2020^3 + 9} =$	3p
	$= \frac{1}{2}\sqrt[3]{-1+9} = \frac{1}{2}\sqrt[3]{8} = 1$	2p

b)	$x * y = \frac{1}{2} \sqrt[3]{x^3 y^3 - x^3 - y^3 + 1 + 8} = \frac{1}{2} \sqrt[3]{x^3 (y^3 - 1) - (y^3 - 1) + 8} =$	3p
	$= \sqrt[3]{\frac{1}{8}(x^3 - 1)(y^3 - 1) + \frac{1}{8} \cdot 8} = \sqrt[3]{\frac{1}{8}(x^3 - 1)(y^3 - 1) + 1}, \text{ pentru orice } x, y \in A$	2p
c)	$x * x = \sqrt[3]{\frac{1}{8}(x^3 - 1)^2 + 1}$, pentru orice $x \in A$, deci $\frac{1}{8}(x^3 - 1)^2 + 1 = x^3$	2p
	$(x^3 - 1)^2 = 8(x^3 - 1)$, deci $x^3 - 1 = 0$ sau $x^3 - 1 = 8$, de unde $x = 1$ sau $x = \sqrt[3]{9}$, care convin	3р

		1
1.a)	$f'(x) = \frac{-1}{(x-2)^2} + \frac{x}{x-1} \cdot \frac{x - (x-1)}{x^2} = \frac{-x(x-1) + (x-2)^2}{x(x-1)(x-2)^2} = \frac{-x(x-1) + (x-2)^2}{x(x-1)(x-1)^2} = \frac{-x(x-1) + (x-2)^2}{x(x-1)^2} = \frac{-x(x-1)^2}{x(x-1)^2} = \frac{-x(x-1) + (x-1)^2}{x(x-1)^2} = \frac{-x(x-1)^2}{x(x-1)^2} = -x(x$	3 p
	$= \frac{-x^2 + x + x^2 - 4x + 4}{x(x-1)(x-2)^2} = \frac{-3x+4}{x(x-1)(x-2)^2}, \ x \in (2, +\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{x-2} + \ln \frac{x-1}{x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x-2} + \ln \left(1 - \frac{1}{x} \right) \right) = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$x \in (2,+\infty) \Rightarrow f'(x) < 0$, deci f strict descrescătoare pe $(2,+\infty)$ și, cum $\lim_{x \to +\infty} f(x) = 0$, obținem că $f(x) > 0$, pentru orice $x \in (2,+\infty)$	3p
	$\frac{1}{x-2} + \ln \frac{x-1}{x} > 0, \text{ deci } \frac{1}{x-2} > -\ln \frac{x-1}{x}, \text{ de unde obținem că } \frac{1}{x-2} > \ln \frac{x}{x-1}, \text{ pentru orice } x \in (2,+\infty)$	2p
2.a)	$\int_{0}^{1} (x^{3} + 1) f^{2}(x) dx = \int_{0}^{1} (x^{3} + 1) \left(\frac{x}{\sqrt{x^{3} + 1}} \right)^{2} dx = \int_{0}^{1} x^{2} dx =$	3p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	2p
b)	$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} \frac{x^{2}}{x^{3} + 1} dx = \frac{1}{3} \int_{0}^{1} \frac{\left(x^{3} + 1\right)'}{x^{3} + 1} dx =$	3 p
	$= \frac{1}{3} \ln \left(x^3 + 1 \right) \Big _0^1 = \frac{1}{3} \ln 2$	2p
c)	$I_n = \int_0^1 f\left(x^n\right) dx = \int_0^1 \frac{x^n}{\sqrt{x^{3n} + 1}} dx \text{ si, cum } 0 \le \frac{x^n}{\sqrt{x^{3n} + 1}} \le x^n \text{, pentru } x \in [0, 1] \text{ si, pentru fiecare}$ $\text{număr natural nenul } n, \text{ obținem că } 0 \le I_n \le \int_0^1 x^n dx$	3 p
	0	
	$0 \le I_n \le \frac{1}{n+1}$, pentru fiecare număr natural nenul n și, cum $\lim_{n \to +\infty} \frac{1}{n+1} = 0$, obținem $\lim_{n \to +\infty} I_n = 0$	2 p

Examenul de bacalaureat național 2019 Proba E. c)

Matematică *M_mate-info*

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $n = (3 i\sqrt{2})(3 + i\sqrt{2})$ este întreg, unde $i^2 = -1$.
- **5p 2.** Determinați numărul real a, știind că punctul A(a,3) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + a.
- **5p** 3. Rezolvați în multimea numerelor reale ecuația $2019^x + 2019^{-x} = 2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra unităților impară.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,-3) și B(2,-2). Determinați ecuația dreptei d care trece prin A și este perpendiculară pe AB.
- **5p 6.** Arătați că $\sin(a-b)\sin(a+b) = (\sin a \sin b)(\sin a + \sin b)$, pentru orice numere reale a și b.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & 0 & -a \\ 0 & 2 & 0 \\ -a & 0 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(a)) = 0$, pentru orice număr real a.
- **5p b**) Demonstrați că A(a)A(b) = 2A(ab), pentru orice numere reale a și b.
- **5p** c) Demonstrați că matricea $B = A(\log_2 3) \cdot A(\log_3 4) \cdot A(\log_4 5) \cdot \dots \cdot A(\log_{15} 16)$ are toate elementele numere întregi.
 - **2.** Se consideră polinomul $f = X^3 + X^2 + mX + n$, unde m și n sunt numere reale.
- **5p** a) Arătați că f(-1)-2f(0)+f(1)=2, pentru orice numere reale m și n.
- **5p b**) Determinați numerele reale m și n, știind că polinomul f este divizibil cu polinomul $X^2 1$.
- **5p** c) Demonstrați că $3(x_1x_2 + x_1x_3 + x_2x_3 + x_1x_2x_3) (x_1^3 + x_2^3 + x_3^3) = 1$, pentru orice numere reale m și n, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 e^{-x}$.
- **5p a**) Arătați că $f'(x) = x(2-x)e^{-x}, x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că, pentru orice $a \in (0, 4e^{-2})$, ecuația f(x) = a are exact trei soluții reale.
 - **2.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=x^2+\ln x$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) \ln x) dx = \frac{7}{3}.$

- **5p b**) Demonstrați că suprafața plană delimitată de graficul funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = 2x x^2 + f(x)$, axa Ox și dreptele de ecuații x = 1 și x = e are aria egală cu e^2 .
- **5p** c) Demonstrați că $\lim_{n \to +\infty} \int_{e^{-1}}^{1} x^n (f(x) x^2) dx = 0$.

Examenul de bacalaureat național 2019 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n=3^2-\left(i\sqrt{2}\right)^2=$	2p
	$=9-2i^2=11\in\mathbb{Z}$	3 p
2.	$f(a) = 3 \Rightarrow 2a + a = 3$	3 p
	a=1	2 p
3.	$2019^{x} + 2019^{-x} - 2 = 0 \Leftrightarrow (2019^{x} - 1)^{2} = 0$	3p
	$2019^x = 1$, deci $x = 0$	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre care au cifra unităților impară are 45 de elemente, deci sunt 45 de cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	1p
5.	$m_{AB} = -1 \Rightarrow m_d = 1$	2p
	Ecuația dreptei d este $y - y_A = m_d(x - x_A)$, deci $y = x - 6$	3 p
6.	$\sin(a-b)\sin(a+b) = \sin^2 a \cdot \cos^2 b - \sin^2 b \cdot \cos^2 a =$	2p
	$= \sin^2 a \left(1 - \sin^2 b\right) - \sin^2 b \left(1 - \sin^2 a\right) = \sin^2 a - \sin^2 b = \left(\sin a - \sin b\right) \left(\sin a + \sin b\right), \text{ pentru}$ orice numere reale a şi b	3 p

1.a)	$\det(A(a)) = \begin{vmatrix} a & 0 & -a \\ 0 & 2 & 0 \\ -a & 0 & a \end{vmatrix} =$	2p
	$=2a^{2}+0+0-2a^{2}-0-0=0$, pentru orice număr real <i>a</i>	3 p
b)	$A(a)A(b) = \begin{pmatrix} 2ab & 0 & -2ab \\ 0 & 4 & 0 \\ -2ab & 0 & 2ab \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} ab & 0 & -ab \\ 0 & 2 & 0 \\ -ab & 0 & ab \end{pmatrix} = 2A(ab), \text{ pentru orice numere reale } a \text{ şi } b$	2 p
c)	$B = 2^{13} A (\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \dots \cdot \log_{15} 16) = 2^{13} A (\log_2 16) =$	3p
	$=2^{13}A(4)$, care are toate elementele numere întregi	2 p

2.a)	$f(-1) = -m + n, \ f(0) = n$	2p
	$f(1) = 2 + m + n \Rightarrow f(-1) - 2f(0) + f(1) = -m + n - 2n + 2 + m + n = 2$, pentru orice	3p
	numere reale m și n	
b)	f este divizibil cu $X^2 - 1 \Leftrightarrow f(-1) = 0$ și $f(1) = 0$	3 p
	m = -1, n = -1	2p
c)	$x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_1x_3 + x_2x_3 = m$, $x_1x_2x_3 = -n$, $x_1^3 + x_2^3 + x_3^3 = -1 + 3m - 3n$	3p
	$3(x_1x_2 + x_1x_3 + x_2x_3 + x_1x_2x_3) - (x_1^3 + x_2^3 + x_3^3) = 3(m-n) - (-1 + 3m - 3n) = 1$	2 p

		/
1.a)	$f'(x) = 2xe^{-x} - x^2e^{-x} =$	3 p
	$= (2x - x^2)e^{-x} = x(2 - x)e^{-x}, x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 0 \text{ sau } x = 2$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe $(-\infty, 0]$, $f'(x) \ge 0$	
	pentru orice $x \in [0,2]$, deci f este crescătoare pe $[0,2]$ și $f'(x) \le 0$, pentru orice	3 p
	$x \in [2, +\infty)$, deci f este descrescătoare pe $[2, +\infty)$	
c)	$f(0) = 0 < a, f(2) = 4e^{-2} > a $ și $\lim_{x \to +\infty} f(x) = 0 < a, $ pentru orice $a \in (0, 4e^{-2})$	3p
	Cum $\lim_{x\to-\infty} f(x) = +\infty$, f este continuă pe \mathbb{R} și f este strict monotonă pe $(-\infty,0)$, pe	2p
	$(0,2)$ și pe $(2,+\infty)$, ecuația $f(x)=a$ are exact trei soluții reale	-P
2.a)	$\int_{1}^{2} (f(x) - \ln x) dx = \int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{2} =$	3 p
	$=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$	2p
b)	$g(x) = 2x + \ln x \Rightarrow \mathcal{A} = \int_{1}^{e} g(x) dx = \int_{1}^{e} (2x + \ln x) dx = x^{2} \Big _{1}^{e} + x \ln x \Big _{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx =$	3 p
	$=e^2-1+e-0-(e-1)=e^2$	2 p
c)	$\int_{e^{-1}}^{1} x^{n} (f(x) - x^{2}) dx = \int_{e^{-1}}^{1} x^{n} \ln x dx = \left(\frac{x^{n+1}}{n+1} \ln x - \frac{x^{n+1}}{(n+1)^{2}} \right) \Big _{e^{-1}}^{1} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)^{2}} + \frac{1}{(n+1)^{2}e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}$	3p
	$\lim_{n \to +\infty} \int_{e^{-1}}^{1} x^{n} (f(x) - x^{2}) dx = \lim_{n \to +\infty} \left(\frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)^{2}} + \frac{1}{(n+1)^{2} e^{n+1}} \right) = 0$	2p

Examenul de bacalaureat național 2018 Proba E. c)

Matematică M_mate-info

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul complex z, știind că $2\overline{z} z = 1 3i$, unde \overline{z} este conjugatul lui z.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 1$, unde m este număr real. Determinați numerele reale m, știind că vârful parabolei asociate funcției f se află pe axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\frac{\lg x}{\lg (x+2)} = \frac{1}{2}$.
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele distincte și impare.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(-5,2) și dreapta d de ecuație y = x + 1. Determinați ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d.
- **5p 6.** Arătați că $\sin\left(\frac{\pi}{4} + x\right) \cos\left(\frac{\pi}{4} x\right) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $M(m) = \begin{pmatrix} 2m & 1 & 1 \\ 1 & 2m & 1 \\ 1 & 1 & 2m \end{pmatrix}$ și sistemul de ecuații $\begin{cases} 2mx + y + z = -1 \\ x + 2my + z = 0 \end{cases}$, unde x + y + 2mz = 1

m este număr real.

- **5p** a) Arătați că $\det(M(0)) = 2$.
- **5p b**) Determinați numerele reale m, știind că $\det(M(m)) = 0$.
- **5p** c) Pentru m = -1, demonstrați că, dacă (a,b,c) este o soluție a sistemului, cel mult unul dintre numerele a, b și c este întreg.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = 4xy + 3x + 3y + \frac{3}{2}$.
- **5p** a) Demonstrați că $x * y = 4\left(x + \frac{3}{4}\right)\left(y + \frac{3}{4}\right) \frac{3}{4}$, pentru orice numere reale x și y.
- **5p b**) Determinați numărul real x pentru care $x * x * x = -\frac{1}{2}$.
- **5p** c) Determinați numerele reale a, știind că f(x)*f(y) = f(x+y), pentru orice numere reale x și y, unde $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ae^x \frac{3}{4}$.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $\overline{f(x)=8x^2-\ln x}$.
- **5p** a) Arătați că $f'(x) = \frac{(4x-1)(4x+1)}{x}, x \in (0,+\infty).$
- **5p b)** Demonstrați că punctul $A\left(\frac{2}{3},3\right)$ aparține tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f\left(\frac{1}{3}\right) < f\left(\frac{1}{\sqrt{7}}\right) < f\left(\frac{1}{2}\right)$.

- **2.** Se consideră funcția $f:(-3,+\infty) \to \mathbb{R}$, $f(x) = \frac{2x+3}{x+3}$.
- **a)** Arătați că $\int_{0}^{1} (x+3) f(x) dx = 4$. **b)** Arătați că $\int_{0}^{1} f(x) dx = 2 3 \ln \frac{4}{3}$.
- c) Pentru fiecare număr natural n, se consideră numărul $I_n = \int_0^1 e^x (x+3)^n (f(x))^n dx$. Demonstrați că $I_n + 2nI_{n-1} = e \cdot 5^n - 3^n$, pentru orice număr natural $n, n \ge 1$.

Examenul de bacalaureat național 2018 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = a + bi$, $\overline{z} = a - bi \Rightarrow 2\overline{z} - z = a - 3bi$, unde $a \neq b$ sunt numere reale	3 p
	$a-3bi=1-3i \Rightarrow a=1$ și $b=1$, deci $z=1+i$	2p
2.	$y_V = 0 \Leftrightarrow \Delta = 0$	3p
	Cum $\Delta = m^2 - 4$, obținem $m^2 - 4 = 0$, deci $m = -2$ sau $m = 2$	2p
3.	$2\lg x = \lg(x+2) \Rightarrow x^2 - x - 2 = 0$	3 p
	x = -1, care nu convine, $x = 2$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	Mulțimea numerelor naturale de două cifre, care au cifrele distincte și impare are 20 de elemente, deci sunt 20 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{20}{90} = \frac{2}{9}$	2p
5.	Panta dreptei d este $m_d = 1 \Rightarrow$ panta unei drepte perpendiculare pe dreapta d este $m = -1$	3p
	Ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d este $y = -x - 3$	2 p
6.	$\sin\left(\frac{\pi}{4} + x\right) - \cos\left(\frac{\pi}{4} - x\right) = \sin\frac{\pi}{4}\cos x + \cos\frac{\pi}{4}\sin x - \left(\cos\frac{\pi}{4}\cos x + \sin\frac{\pi}{4}\sin x\right) =$	2p
	$= \frac{\sqrt{2}}{2} (\cos x + \sin x - \cos x - \sin x) = 0, \text{ pentru orice număr real } x$	3 p

1.a)	$M(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	
	$M(0) = \begin{vmatrix} 1 & 0 & 1 \end{vmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 1 & 0 & 1 \end{vmatrix} =$	2p
	$(1 \ 1 \ 0)$ $ 1 \ 1 \ 0 $	
	=0+1+1-0-0-0=2	3 p
b)	$\begin{vmatrix} 2m & 1 & 1 \end{vmatrix}$	
	$\det(M(m)) = \begin{vmatrix} 2m & 1 \\ 1 & 2m & 1 \\ 1 & 1 & 2m \end{vmatrix} = 2(m+1)(2m-1)^2, \text{ pentru orice număr real } m$	3 p
	$\begin{vmatrix} 1 & 1 & 2m \end{vmatrix}$	
	$m=-1$ sau $m=\frac{1}{-1}$	2p
	2	
c)	$a-b=\frac{1}{3}$, $b-c=\frac{1}{3}$ și $a-c=\frac{2}{3}$	3р
	Deoarece $a-b\notin\mathbb{Z}$, $b-c\notin\mathbb{Z}$ şi $a-c\notin\mathbb{Z}$ \Rightarrow cel mult unul dintre numerele a , b şi c este	2
	întreg	2p
2.a)	$x * y = 4xy + 3x + 3y + \frac{9}{4} - \frac{3}{4} =$	2p
	$= 4x \left(y + \frac{3}{4} \right) + 3 \left(y + \frac{3}{4} \right) - \frac{3}{4} = 4 \left(x + \frac{3}{4} \right) \left(y + \frac{3}{4} \right) - \frac{3}{4}, \text{ pentru orice numere reale } x \text{ și } y$	3 p

b)	$x*x = 4\left(x + \frac{3}{4}\right)^2 - \frac{3}{4}$, $x*x*x = 16\left(x + \frac{3}{4}\right)^3 - \frac{3}{4}$, pentru orice număr real x	2p
	$16\left(x+\frac{3}{4}\right)^3 - \frac{3}{4} = -\frac{1}{2} \Leftrightarrow \left(x+\frac{3}{4}\right)^3 = \frac{1}{64}, \text{ de unde obținem } x = -\frac{1}{2}$	3 p
c)	$4\left(ae^{x} - \frac{3}{4} + \frac{3}{4}\right) \cdot \left(ae^{y} - \frac{3}{4} + \frac{3}{4}\right) - \frac{3}{4} = ae^{x+y} - \frac{3}{4}$, pentru orice numere reale x și y	2p
	$4a^2 = a$, deci $a = 0$ sau $a = \frac{1}{4}$	3р

SODII	COUL al III-lea (50 de pl	uncte)
1.a)	$f'(x) = 16x - \frac{1}{x} =$	3p
	$f'(x) = 16x - \frac{1}{x} = \frac{16x^2 - 1}{x} = \frac{(4x - 1)(4x + 1)}{x}, \ x \in (0, +\infty)$	2p
b)	$f(1) = 8$, $f'(1) = 15$, deci ecuația tangentei este $y - f(1) = f'(1)(x-1) \Leftrightarrow y = 15x - 7$	3 p
	$15 \cdot \frac{2}{3} - 7 = 3$, deci punctul $A\left(\frac{2}{3}, 3\right)$ aparține tangentei la graficul funcției f în punctul de	2 p
	abscisă $x=1$, situat pe graficul funcției f	
c)	$x \in \left(\frac{1}{4}, +\infty\right) \Rightarrow f'(x) > 0$, deci f este strict crescătoare pe $\left(\frac{1}{4}, +\infty\right)$	2p
	Cum $\frac{1}{4} < \frac{1}{3} < \frac{1}{\sqrt{7}} < \frac{1}{2}$, obţinem $f\left(\frac{1}{3}\right) < f\left(\frac{1}{\sqrt{7}}\right) < f\left(\frac{1}{2}\right)$	3 p
2.a)	$\int_{0}^{1} (x+3) f(x) dx = \int_{0}^{1} (2x+3) dx = (x^{2}+3x) \Big _{0}^{1} =$	3 p
	=1+3-0=4	2p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{2x+3}{x+3} dx = \int_{0}^{1} \left(2 - \frac{3}{x+3}\right) dx = 2x \left \frac{1}{0} - 3\ln(x+3) \right _{0}^{1} =$	3p
	$=2-3(\ln 4 - \ln 3) = 2-3\ln\frac{4}{3}$	2p
c)	$I_n = \int_0^1 e^x (2x+3)^n dx = e^x (2x+3)^n \left \int_0^1 -2n \int_0^1 e^x (2x+3)^{n-1} dx \right $	3 p
	$=e\cdot 5^n-3^n-2nI_{n-1}$, deci $I_n+2nI_{n-1}=e\cdot 5^n-3^n$, pentru orice număr natural n , $n\geq 1$	2 p

Examenul de bacalaureat național 2017 Proba E. c)

Matematică M_mate-info

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **5p** 1. Se consideră numărul complex z = 2 + i. Arătați că $z + \overline{z} + z\overline{z} = 9$, unde \overline{z} este conjugatul lui z.
- **5p** 2. Determinați numărul real m, știind că punctul A(1,m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 3$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $(1 \log_2 x)(2 \log_2 x) = 0$.
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor strict mai mică decât cifra unităților.
- **5.** În reperul cartezian xOy se consideră punctele A(3,1), B(3,3) și C(0,2). Determinați lungimea medianei din C a triunghiului ABC.
- **5p 6.** Arătați că $\left(1 + tg^2 x\right)\cos^2 x \left(1 + ctg^2 x\right)\sin^2 x = 0$, pentru orice $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea

(30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ -2 & -1 & 3 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x+y+2z=0 \\ x+2y+az=0 \end{cases}$, unde a este -2x-y+3z=0

număr real.

- **5p** a) Arătați că $\det(A(9)) = 0$.
- **5p b**) Determinați valorile reale ale lui *a* pentru care sistemul are soluție unică.
- **5p** c) Demonstrați că, dacă sistemul are soluția (x_0, y_0, z_0) , cu x_0 , y_0 și z_0 numere reale nenule, atunci $-x_0 + y_0 + z_0 = 11(x_0 + y_0 + z_0)$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 7x + 7y + 42$.
- **5p** a) Arătați că $x \circ y = (x+7)(y+7)-7$, pentru orice numere reale $x \neq y$.
- **5p b**) Determinați numerele reale x, știind că $x \circ x = x$.
- **5p** c) Determinați numărul real a, știind că $2017^a \circ (-6) = 1$.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{\ln x}{1-x}$
- **5p** a) Arătați că $f'(x) = \frac{1 x + x \ln x}{x(1 x)^2}, x \in (1, +\infty).$
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** | **c**) Demonstrați că $x \ln x > x 1$, pentru orice $x \in (1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 3x^2$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) 3x^{2}) dx = e 1$.
- **5p b)** Arătați că $\int_{0}^{1} x f(x) dx = \frac{7}{4}$.
- **5p** c) Determinați numărul natural nenul n, pentru care suprafața plană delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) e^x$, axa Ox și dreptele de ecuații x = 0 și x = n are aria egală cu $n^2 n + 1$.

Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z + \overline{z} + z\overline{z} = 2 + i + 2 - i + (2 + i)(2 - i) =$	3 p
	$=4+4-i^2=9$	2 p
2.	$f(1) = m \Rightarrow 1 + 2 - 3 = m$	3 p
	m = 0	2p
3.	$1 - \log_2 x = 0 \text{ sau } 2 - \log_2 x = 0$	3p
	x = 2 sau $x = 4$, care convin	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre, care au cifra zecilor strict mai mică decât cifra unităților are 36 de elemente, deci sunt 36 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{36}{90} = \frac{2}{5}$	1p
5.	M(3,2), unde punctul M este mijlocul segmentului AB	3 p
	CM = 3	2 p
6.	$ (1 + tg^2x)\cos^2 x - (1 + ctg^2x)\sin^2 x = \left(1 + \frac{\sin^2 x}{\cos^2 x}\right)\cos^2 x - \left(1 + \frac{\cos^2 x}{\sin^2 x}\right)\sin^2 x = $	3p
	$=\cos^2 x + \sin^2 x - \left(\sin^2 x + \cos^2 x\right) = 0, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(9) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 9 \\ -2 & -1 & 3 \end{pmatrix} \Rightarrow \det(A(9)) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 9 \\ -2 & -1 & 3 \end{vmatrix} = $ $= 6 + (-2) + (-18) - (-8) - (-9) - 3 = 0$	2p 3p
b)		r
b)	$\det(A(a)) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ -2 & -1 & 3 \end{vmatrix} = 9 - a$	3 p
	Sistemul are soluție unică $\Leftrightarrow \det(A(a)) \neq 0$, deci $a \in \mathbb{R} \setminus \{9\}$	2 p
c)	Sistemul are soluția (x_0, y_0, z_0) , cu x_0 , y_0 și z_0 numere reale nenule, deci $a = 9$ și soluția sistemului este de forma $(5\alpha, -7\alpha, \alpha)$, $\alpha \in \mathbb{R}$	3 p
	$-x_0 + y_0 + z_0 = -5\alpha + (-7\alpha) + \alpha = -11\alpha = 11(5\alpha + (-7\alpha) + \alpha) = 11(x_0 + y_0 + z_0)$	2p
2.a)	$x \circ y = xy + 7x + 7y + 49 - 7 =$	2 p
	=x(y+7)+7(y+7)-7=(x+7)(y+7)-7, pentru orice numere reale x și y	3 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

b)	$x \circ x = (x+7)^2 - 7$, deci $(x+7)^2 - 7 = x$	2p
	$(x+7)(x+6) = 0 \Leftrightarrow x = -7 \text{ sau } x = -6$	3 p
c)	$(2017^{a} + 7)(-6 + 7) - 7 = 1 \Leftrightarrow 2017^{a} + 7 - 7 = 1$	3 p
	$2017^a = 1 \Leftrightarrow a = 0$	2p

1.a)	$f'(x) = \frac{\frac{1}{x} \cdot (1 - x) - \ln x \cdot (-1)}{(1 - x)^2} =$	3p
	$= \frac{\frac{1-x}{x} + \ln x}{(1-x)^2} = \frac{1-x + x \ln x}{x(1-x)^2}, \ x \in (1, +\infty)$	2 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{1 - x} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{-1} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$g:(1,+\infty) \to \mathbb{R}$, $g(x) = x \ln x - x + 1 \Rightarrow g'(x) = \ln x$, deci $g'(x) > 0$ pentru orice $x \in (1,+\infty)$	3 p
	Funcția g este strict crescătoare pe $(1,+\infty)$ și, cum $\lim_{x\to 1} g(x) = 0$, obținem $g(x) > 0$, deci $x = x + 1$, pentru orice $x \in (1,+\infty)$	2 p
2.a)	$\int_{0}^{1} \left(f(x) - 3x^{2} \right) dx = \int_{0}^{1} \left(e^{x} + 3x^{2} - 3x^{2} \right) dx = \int_{0}^{1} e^{x} dx =$	2p
	$=e^{x}\begin{vmatrix}1\\0=e-1\end{vmatrix}$	3 p
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(x e^{x} + 3x^{3} \right) dx = (x - 1) e^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} + \frac{3x^{4}}{4} \begin{vmatrix} 1 \\ 0 \end{vmatrix} =$	3 p
	$=1 \cdot e^0 + \frac{3}{4} = \frac{7}{4}$	2p
c)	$g(x) = 3x^2 \Rightarrow \mathcal{A} = \int_0^n g(x) dx = \int_0^n 3x^2 dx = x^3 \Big _0^n = n^3$	3 p
	$n^{3} = n^{2} - n + 1 \Leftrightarrow (n-1)(n^{2} + 1) = 0 \Leftrightarrow n = 1$	2p

Examenul de bacalaureat național 2016 Proba E. c)

Matematică M_mate-info

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{2}-3)^2 + (\sqrt{2}+3)^2 = 22$.
- **5p** 2. Calculați produsul f(-1)f(0)f(1), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 6x + 6) = \log_3 1$.
- **5p 4.** Determinați câte numere naturale pare, de trei cifre distincte, se pot forma cu cifrele 5, 7, 8 și 9.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,0) și B(1,2). Determinați ecuația dreptei d care trece prin punctul O și este paralelă cu dreapta AB.
- **5p** 6. Arătați că $\sin\left(\frac{3\pi}{2} + x\right) \sin\left(\frac{3\pi}{2} x\right) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & x & x^2 + x \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 1$.
- **5p b**) Demonstrați că A(x)A(y) = A(x+y), pentru orice numere reale x și y.
- **5p** c) Determinați numărul real a, $a \neq -1$, știind că $A\left(\frac{1}{1 \cdot 2}\right)A\left(\frac{1}{2 \cdot 3}\right) \cdot \dots \cdot A\left(\frac{1}{2016 \cdot 2017}\right) = A\left(\frac{a}{a+1}\right)$.
 - **2.** Se consideră polinomul $f = X^4 + mX^2 + 2$, unde m este număr real.
- **5p** a) Determinați numărul real m, știind că f(1) = 0.
- **5p b)** Demonstrați că $x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2(x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4) = 0$, pentru orice număr real m, unde x_1, x_2, x_3 și x_4 sunt rădăcinile polinomului f.
- **5p** c) Pentru m = 3, descompuneți polinomul f în factori ireductibili în $\mathbb{R}[X]$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.
- **5p** a) Arătați că $f'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că, pentru orice număr real a, $a \in (-1,1)$, ecuația f(x) = a are soluție unică.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x(x-1)$.
- **5p a)** Arătați că $\int_{0}^{2} f(x)e^{-x}dx = 0$.

- **5p b)** Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x=1 și x=2 are aria egală cu e.
- **5p** c) Demonstrați că $\lim_{n \to +\infty} \int_{-n}^{1} (f(x) + e^x) dx = 0$.

Examenul de bacalaureat național 2016 Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

	(ev de pe	,
1.	$\left(\sqrt{2}-3\right)^2 = 11-6\sqrt{2}$	2p
	$(\sqrt{2}+3)^2 = 11 + 6\sqrt{2} \Rightarrow (\sqrt{2}-3)^2 + (\sqrt{2}+3)^2 = 11 - 6\sqrt{2} + 11 + 6\sqrt{2} = 22$	3 p
2.	f(-1)=0	3p
	f(-1)f(0)f(1) = 0	2p
3.	$x^2 - 6x + 6 = 1 \Rightarrow x^2 - 6x + 5 = 0$	2p
	x=1 sau $x=5$, care verifică ecuația dată	3 p
4.	Cifra unităților este 8	2p
	Cum cifrele sunt distincte, cifra zecilor poate fi aleasă în 3 moduri și, pentru fiecare alegere a acesteia, cifra sutelor poate fi aleasă în câte 2 moduri, deci se pot forma $3 \cdot 2 \cdot 1 = 6$ astfel de numere	3p
5.	$m_{AB} = 1$ și $m_d = m_{AB} \Rightarrow m_d = 1$	3 p
	Ecuația dreptei d este $y = x$	2 p
6.	$\sin\left(\frac{3\pi}{2} - x\right) = \sin\left(3\pi - \frac{3\pi}{2} - x\right) = \sin\left(3\pi - \left(\frac{3\pi}{2} + x\right)\right) = \sin\left(\pi - \left(\frac{3\pi}{2} + x\right)\right) = \sin\left(\frac{3\pi}{2} + x\right)$	3 p
	$\sin\left(\frac{3\pi}{2} + x\right) - \sin\left(\frac{3\pi}{2} - x\right) = \sin\left(\frac{3\pi}{2} + x\right) - \sin\left(\frac{3\pi}{2} + x\right) = 0, \text{ pentru orice număr real } x$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$ $\begin{vmatrix} 1 & 1 & 2 \end{vmatrix}$	
	$A(1) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = $	2p
	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	
	=1+0+0-0-0-0=1	3p
b)	$A(x)A(y) = \begin{pmatrix} 1 & x & x^2 + x \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y & y^2 + y \\ 0 & 1 & 2y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x & y^2 + y + 2xy + x^2 + x \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x & y^2 + y + 2xy + x^2 + x \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x & y^2 + y + 2xy + x^2 + x \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix}$	3 p
	$= \begin{pmatrix} 1 & x+y & (x+y)^2 + (x+y) \\ 0 & 1 & 2(x+y) \\ 0 & 0 & 1 \end{pmatrix} = A(x+y), \text{ pentru orice numere reale } x \text{ şi } y$	2p
c)	$A\left(\frac{1}{1\cdot 2}\right)A\left(\frac{1}{2\cdot 3}\right)\cdot \dots \cdot A\left(\frac{1}{2016\cdot 2017}\right) = A\left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{2016\cdot 2017}\right) =$ $= A\left(\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{2016} - \frac{1}{2017}\right) = A\left(\frac{2016}{2017}\right)$	3 p
	$A\left(\frac{2016}{2017}\right) = A\left(\frac{a}{a+1}\right) \Leftrightarrow a = 2016$	2 p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare si de notare

2.a)	$f(1) = 0 \Leftrightarrow 1^4 + m \cdot 1^2 + 2 = 0$	2p
	m = -3	3 p
b)	$x_1 + x_2 + x_3 + x_4 = 0$	2p
	$x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_2 + 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4 = (x_1 + x_2 + x_3 + x_4)^2 = 0,$ pentru orice număr real m	3 p
c)	$f = X^4 + 3X^2 + 2 = (X^2 + 1)(X^2 + 2)$	3 p
	Polinoamele $X^2 + 1$ și $X^2 + 2$ au coeficienți reali, au gradul 2 și nu au rădăcini reale, deci sunt ireductibile în $\mathbb{R}[X]$	2 p

SUBII	ECTUL al III-lea (30 de pu	uncte)
1.a)	$f'(x) = \frac{\sqrt{x^2 + 1} - \frac{x \cdot 2x}{2\sqrt{x^2 + 1}}}{x^2 + 1} =$	3p
	$= \frac{x^2 + 1 - x^2}{\left(x^2 + 1\right)\sqrt{x^2 + 1}} = \frac{1}{\left(x^2 + 1\right)\sqrt{x^2 + 1}}, \ x \in \mathbb{R}$	2 p
b)	f(0) = 0, f'(0) = 1	2 p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = x$	3 p
c)	$f'(x) > 0$ pentru orice $x \in \mathbb{R}$, deci f este strict crescătoare pe \mathbb{R}	2p
	Cum $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{-x\sqrt{1 + \frac{1}{x^2}}} = -1$, $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{x\sqrt{1 + \frac{1}{x^2}}} = 1$ și funcția f este continuă, atunci pentru orice $a \in (-1,1)$, ecuația $f(x) = a$ are soluție unică	3 p
2.a)	$\int_{0}^{2} f(x)e^{-x}dx = \int_{0}^{2} e^{x}(x-1)e^{-x}dx = \int_{0}^{2} (x-1)dx = \left(\frac{x^{2}}{2} - x\right)\Big _{0}^{2} =$	3 p
	$=\frac{4}{2}-2=0$	2p
b)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} (x-1)e^{x} dx = (x-2)e^{x} \Big _{1}^{2} =$	3 p
	=0-(-1)e=e	2 p
c)	$\int_{-n}^{1} \left(f(x) + e^{x} \right) dx = \int_{-n}^{1} x e^{x} dx = (x - 1)e^{x} \Big _{-n}^{1} = (n + 1)e^{-n}$	3 p
	$\lim_{n \to +\infty} \int_{-n}^{1} \left(f(x) + e^x \right) dx = \lim_{n \to +\infty} \frac{n+1}{e^n} = 0$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M mate-info*

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{5}+1)^2 + (\sqrt{5}-1)^2 = 12$.
- **5p** 2. Calculați produsul f(1) f(2) f(3) f(4), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2 4x + 4) = 0$.
- **5p 4.** Determinați câte numere naturale impare, de trei cifre distincte, se pot forma cu cifrele 2, 3 și 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2) și B(2,3). Determinați ecuația dreptei d care trece prin punctul A și este perpendiculară pe dreapta AB.
- **5p 6.** Arătați că $\sin(\pi x) + \sin(\pi + x) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $B(x) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(B(0))=1$.
- **5p b)** Arătați că $B(x) + B(y) = 2B\left(\frac{x+y}{2}\right)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale x pentru care $B(x^2 + 1)B(x) = B(x^2 + x + 1)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = \frac{1}{2}(x-3)(y-3)+3$.
- **5p a)** Arătați că $(-3) \circ 3 = 3$.
- **5p b**) Determinați numerele naturale n pentru care $n \circ n = 11$.
- **5p** c) Calculati $1 \circ 2 \circ 3 \circ \dots \circ 2015$.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+2}{x-1}$
- **5p** a) Arătați că $f'(x) = -\frac{3}{(x-1)^2}, x \in (1,+\infty).$
- **5p b**) Arătați că funcția f este convexă pe intervalul $(1,+\infty)$.
- **5p** c) Determinați coordonatele punctului situat pe graficul funcției f, în care tangenta la graficul funcției f este paralelă cu dreapta de ecuație y = -3x.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p a)** Arătați că $\int_{1}^{2} \frac{1}{x} f(x) dx = e(e-1)$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 0.
- **5p** c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 x^n f(x) dx$. Arătați că $I_n + (n+1)I_{n-1} = e$, pentru orice număr natural n, $n \ge 2$.

Examenul de bacalaureat național 2015

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE SI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\sqrt{5}+1\right)^2 = 6+2\sqrt{5}$	2p
	$\left(\sqrt{5} - 1\right)^2 = 6 - 2\sqrt{5} \Rightarrow \left(6 + 2\sqrt{5}\right) + \left(6 - 2\sqrt{5}\right) = 12$	3 p
2.	f(3) = 0	3p
	f(1) f(2) f(3) f(4) = 0	2p
3.	$x^2 - 4x + 4 = 1 \Leftrightarrow x^2 - 4x + 3 = 0$	2p
	$x_1 = 1$ și $x_2 = 3$, care verifică ecuația dată	3 p
4.	Cifra unităților este 3	2p
	Numerele sunt 243 și 423, deci se pot forma două astfel de numere	3 p
5.	$m_{AB} = 1$ și $m_d \cdot m_{AB} = -1 \Rightarrow m_d = -1$	3 p
	Ecuația dreptei d este $y = -x + 3$	2p
6.	$\sin(\pi - x) = \sin x$	2p
	$\sin(\pi + x) = -\sin x \Rightarrow \sin(\pi - x) + \sin(\pi + x) = \sin x - \sin x = 0$, pentru orice număr real x	3 p

1.a)	$B(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(B(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2 p
	=1+0+0-0-0-0=1	3р
b)	$B(x)+B(y) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & 0 \\ 3y & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & x+y \\ 0 & 2 & 0 \\ 3x+3y & 0 & 2 \end{pmatrix} =$	3p
		2 p
	$B(x^{2}+1)B(x) = \begin{pmatrix} 3x^{3}+3x+1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 3x^{3}+3x+1 \end{pmatrix}, B(x^{2}+x+1) = \begin{pmatrix} 1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 1 \end{pmatrix}$	3р
	$3x^3 + 3x + 1 = 1 \Leftrightarrow x = 0$	2p

2.a)	$(-3) \circ 3 = \frac{1}{2}(-3-3)(3-3) + 3 =$	3 p
	=0+3=3	2 p
b)	$n \circ n = \frac{1}{2}(n-3)^2 + 3$	2p
	$(n-3)^2 = 16 \Leftrightarrow n_1 = -1$, care nu convine, și $n_2 = 7$, care convine	3 p
c)	$x \circ 3 = 3$ și $3 \circ y = 3$, pentru x și y numere reale	2p
	$1 \circ 2 \circ 3 \circ \dots \circ 2015 = (1 \circ 2) \circ 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3$	3 p

1.a)	$f'(x) = \frac{1 \cdot (x-1) - (x+2) \cdot 1}{(x-1)^2} =$	3p
	$=\frac{x-1-x-2}{(x-1)^2} = -\frac{3}{(x-1)^2}, \ x \in (1,+\infty)$	2p
b)	$f''(x) = \frac{6}{(x-1)^3}, \ x \in (1,+\infty)$	3p
	$f''(x) > 0$, pentru orice $x \in (1, +\infty)$, deci funcția f este convexă pe intervalul $(1, +\infty)$	2p
c)	$f'(x) = -3 \Leftrightarrow (x-1)^2 = 1$	3p
	Cum $x \in (1, +\infty)$, coordonatele punctului sunt $x = 2$ și $y = 4$	2p
2.a)	$\int_{1}^{2} \frac{1}{x} f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3p
	$=e^2-e=e(e-1)$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-1)e^x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 0 \Rightarrow c = 0$, deci $F(x) = (x-1)e^x$	2p
c)	$I_n = \int_0^1 x^{n+1} e^x dx = \left(x^{n+1} e^x\right) \Big _0^1 - (n+1) \int_0^1 x^n e^x dx =$	3p
	$=e-(n+1)I_{n-1}$, deci $I_n+(n+1)I_{n-1}=e$, pentru orice număr natural $n, n \ge 2$	2p