M1C03 Lecture 8 Conditional statements

Jeremy Lane

Sept 23, 2021

Announcement(s)

- Assignment 1 due Friday
- Quiz 2 due Friday

Overview

- Finishing from last lecture
- Conditional statements
- Converse, contrapositive, and biconditional
- Tautology and contradiction
- Modus ponens (?)

Reference: Lakins, pp. 6-9.

Last time

The four basic connectives are defined by their truth tables:

P	Q	$P \wedge Q$			$P \lor Q$			P	Q	$P \Longrightarrow Q$
\overline{T}	T	T	1		T	P	$\neg P$	\overline{T}	T	T
T	F	F	T	F		T	-	T	F	F
F	T	F	\overline{F}	T	T	F	T	F	T	T
F	F	F	\overline{F}	F	F	,		F	F	T

Two expressions involving statements and connectives are *logically equivalent* if they have the same meaning (i.e. they have the same truth table).

Theorem (DeMorgan's Law)

- $\neg (P \lor Q)$ is logically equivalent to $\neg P \land \neg Q$.
- $@ \neg (P \wedge Q) \text{ is logically equivalent to } \neg P \vee \neg Q.$

Theorem

 $P \implies Q$ is logically equivalent to $Q \vee \neg P$.

Sometimes it is helpful to clarify the meaning of an expression by adding brackets. For example $\neg P \land \neg Q$ above is better written as $(\neg P) \land (\neg Q)$.

Exercise

Show that:

- $\neg(P \implies Q)$ is logically equivalent to $\neg Q \land P$.
- \bullet $P \implies Q$ is logically equivalent to $\neg (\neg Q \land P)$

Implication

P	Q	$P \implies Q$	$\neg P \lor Q$
T	T	T	T
T	F	F	F
F	F T F	T	T
F	F	T	T

Example: If a person is in outer space without a space suit for longer than a minute, then they will be dead.

Converse

Complete the following truth table.

$$\begin{array}{c|cccc} P & Q & P \implies Q & Q \implies P \\ \hline T & T & T & & \\ T & F & F & & \\ F & T & T & & \\ F & F & T & & \\ \end{array}$$

Example: If the Blue Jays win a game, then Jeremy is happy.

Contrapositive

Complete the following truth table.

P	Q	$\neg P$	$\neg Q$	P	\Longrightarrow	Q	$\neg Q$	\Longrightarrow	$\neg P$
T	T	$\mid F \mid$	F						
T	F	$\mid F \mid$	T						
F	T	$\mid T \mid$	F						
F	F	$\mid T \mid$	T						

Example: If the Blue Jays win a game, then Jeremy is happy.

Biconditional

The *biconditional* is the expression $(P \implies Q) \land (Q \implies P)$. We write $P \iff Q$.

P	Q	$P \implies Q$	$Q \implies P$	$P \iff Q$
\overline{T}	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	$\mid T \mid$	$\mid T \mid$

Example: The Blue Jays win a game if and only if Jeremy is happy.

Tautology

P	$\neg P$	$P \vee \neg P$
\overline{T}	F	
T	F	
F	T	
F	T	

SOUNDS LIKE I

COULD SAVE TIME

Contradiction

Complete the following truth table.

$$\begin{array}{c|c} P & \neg P & P \land \neg P \\ \hline T & F & \\ T & F & \\ F & T & \\ F & T & \\ \end{array}$$

Example: 1 = 2.

Example: Two distinct lines are parallel and they intersect.

Principle of Explosion

$$\begin{array}{c|cccc} P \land \neg P & Q & (P \land \neg P) \implies Q \\ \hline F & T & \\ F & F & \end{array}$$

Modus Ponens

Modus ponens is the latin name for the type of deductive argument we use over and over in direct proofs.

Theorem (Modus Ponens)

If P is true and we know that $P \implies Q$, then Q is true.

P	Q	P	P	\Longrightarrow	Q	Q
\overline{T}	T					
T	F					
F	T					
F	F					