

Winning Space Race with Data Science

Takdanai Yodyoi 9 Jan 2022

Outline

Executive Summary

Introduction

Methodology

Results

Conclusion

Appendix

Executive Summary

Summary of methodologies

- Data Collection with Web Scaping
- Data Wrangling
- EDA with Data Visualization
- EDA with SQL
- Interactive Visualization with Folium
- Dashboard with Plotly Dash

Summary of all results

- Data Analysis
- Prediction by Machine learning

Introduction

Project background and context

- SpaceY company is one the most successful firms trying to make space travel affordable for everybody. During launch process, there are 2 stages of a rockets involved. Both stages cost highly expensive to manufacture. Therefore, an idea of reuse comes to minimize expenses.
- As a data scientist, we are tasked to an estimate price for each rocket launch for SpaceY. All related parameters of the first stage are considered to formulate suitable models to predict.

Problems you want to find answers

- A study on rates of successful landing of Falcon 9 are considered.
- To achieve that, relation of selected parameters of the first stage is calculated to see how each parameter has an effect on the success percentage.
- Consequently, minimized cost of a rocket launch can be determined

Methodology

Data collection methodology:

 Web-scraping via BeautifulSoup & REST API from Falcon 9 were extracted and analyzed from Wikipedia data source

Perform data wrangling

 Data were transformed into suitable formats, i.e. one-hot-encoding method, statistical method such as standardize of data were complied to get analytic results

Perform exploratory data analysis (EDA) using visualization and SQL

• Graph plots including scatter, and bar charts showing relationship between independent and dependent valuables.

Perform interactive visual analytics using Folium and Plotly Dash

Perform predictive analysis using classification models

 Performed analytics on Logistic Regression, Classification tree, and SVM and find accuracy of models by verification on test data

Data Collection

Data were collected via REST API of SpaceX information (utilization of BeautifulSoup package)

The information consists of

- Rocket basic information: Flight Number, Booster Version, Payload, Orbit
- Rocket launch: Date, Orbit, Location of launch site, etc
- Stage one reuse success results

Data Collection – SpaceX API

#1 Get response from REST API

#2 Transform data using Pandas package

#3 Call relevant function & Create Data frame

#4 Filter needed data to further analysis

```
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)
```

Use json_normalize meethod to convert the json result into a dataframe
data = pd.json_normalize(response.json())

```
# Call getBoosterVersion
                                                         launch dict = {'FlightNumber': list(data['flight number']),
getBoosterVersion(data)
                                                         'Date': list(data['date']),
                                                          'BoosterVersion':BoosterVersion,
                                                          'PayloadMass':PayloadMass,
                                                          'Orbit':Orbit,
# Call getLaunchSite
                                                          'LaunchSite':LaunchSite,
getLaunchSite(data)
                                                          'Outcome':Outcome,
                                                         'Flights':Flights,
                                                          'GridFins':GridFins,
                                                          'Reused':Reused,
# Call getPayloadData
                                                          'Legs':Legs,
getPayloadData(data)
                                                          'LandingPad':LandingPad,
                                                          'Block':Block,
                                                          ReusedCount':ReusedCount,
                                                          'Serial':Serial,
# Call getCoreData
                                                          'Longitude': Longitude,
getCoreData(data)
                                                          'Latitude': Latitude}
```


Data Collection - Scraping

#1 Get response from HTML

#2 Create BeautifulSoup object & Get columns

#3 Make dictionary for data frame

#4 Append data and define data frame

```
static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"
soup = BeautifulSoup(response.content, 'html5lib')
```

```
response = requests.get(static_url)

# Iterate each th element and apply the provided extract_column_from_header() to get a column name
for column_name in first_launch_table.find_all('th'):
    if column_name != "" and len(column_name) >0:
        column_names.append(column_name.text.strip())
    else:
        pass
```

```
# Remove an irrelvant column
del launch_dict['Date andtime (UTC)']

# Let's initial the launch_dict with each value to be an empty list
launch_dict['Flight No.'] = []
launch_dict['Payload'] = []
launch_dict['Payload'] = []
launch_dict['Payload mass'] = []
launch_dict['Orbit'] = []
launch_dict['Customer'] = []
launch_dict['Customer'] = []
# Added some new columns
launch_dict['Version Booster']=[]
launch_dict['Yersion Booster']=[]
launch_dict['Time']=[]
```

```
extracted_row = 0
#Extract each table
for table_number,table in enumerate(soup.find_all('table',"wikitable plainrowheaders collapsible"));
# get table row
for rows in table.find_all("tr");
#check to see if first table heading is as number corresponding to launch a number
if rows.th:
    if rows.th.string;
        flag=flight_number=rows.th.string.strip()
        flag=flight_number.isdigit()
    else:
        flag=False

# df=pd.DataFrame(launch_dict, orient='column')
df = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in launch_dict.items() ] ))
```


Data Wrangling

Introduction

Data shows details of parameter resulting in both successful and failed landing of each launch. True oceans mission is an example of successful landing on the ocean while False oceans mission resulted otherwise.

Furthermore, there are some terms used to describe specific events as below

True RTLS: successful landing on a ground pad

False RTLS: unsuccessful landing on a ground pad

True ASDS: successful landing on a drone ship

False ASDS: unsuccessful landing on a drone ship

Data would be transformed into binary system i.e., 0 and 1 to represent unsuccessful and successful landing respectively

#1 Calculate no. of launch #2 Calculate no. of occurrence of each orbit #4 Create label columns and calculate average landing success rate

```
# Apply value counts() on column LaunchSite
df['LaunchSite'].value counts()
# Apply value counts on Orbit column
df['Orbit'].value counts()
: # Landing outcomes = values on Outcome column
  landing outcomes = df['Outcome'].value counts()
   landing class = []
  list = df['Outcome'].to list()
   for i in list :
       if i in bad outcomes :
            landing class.append(0)
       else:
            landing class.append(1)
    df["Class"].mean()
```

EDA with Data Visualization

Scatter plot:

- Flight number vs. Payload mass
- Flight number vs. Launch site
- Payload vs. Launch site
- Orbit vs. Flight number
- Payload mass vs. Orbit type
- Orbit vs. Payload mass

Bar chart

Mean vs. Orbit

Line graph

Success rate by year

Scatter plot: show effect of one variable by another. It is suitable for large dataset

Bar chart: easy to compare values by category or continuous dependent variable

Line graph: visualize trend data and make predictions

EDA with SQL

SQL queries to respond to below questions

- 1. Display the names of the unique launch sites in the space mission
- 2. Display 5 records where launch sites begin with the string 'CCA'
- 3. Display the total payload mass carried by boosters launched by NASA (CRS)
- 4. Display average payload mass carried by booster version F9 v1.1
- 5. List the date when the first successful landing outcome in ground pad was acheived.
- 6. List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- 7. List the total number of successful and failure mission outcomes
- 8. List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- 9. List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- 10. Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Build an Interactive Map with Folium

Objects created for a Folium map

- Markers show all sites
- Markers show success/failed launches
- Distance line show

Also, an outcome of each launch is named as binary 0 and 1 representing failure and success landing respectively.

Distance was then calculated

Some findings:

Q: Are launch sites in close proximity to railways? **A**: No.

Q: Are launch sites in close proximity to highways? **A:** No.

Q: Do launch sites keep certain distance away from cities ? **A**: Yes.

Build a Dashboard with Plotly Dash

Dashboard was created by Dash and contains

Charts

- Pie chart
 - Total launches for each site
 - Relative of multiple classes of data
 - Quantity shown as size of each circle
- Scatter plot
 - Outcome vs Payload mass by booster version

Predictive Analysis (Classification)

Build Model

- Load & Transform data by Pandas , Numpy packages
- Split train and test data using Scikit-learn package
- Implement algorithm for each classification model

Evaluation

• Verify accuracy of each model using f1 score, jaccard score, and confusion matrix.

Improvement

Tuning related parameters

Model with best fit

• Employ the best model to predict data

Results

Exploratory data analysis results

Interactive analytics demo in screenshots

Predictive analysis results

Flight Number vs. Launch Site

With higher launches, successful rate is higher it would get

Payload vs. Launch Site

Higher payload shows the most success rate compared to lower ones.

Payload Vs. Launch Site scatter point chart you will find for the VAFB-SLC launch site there are no rockets launched for heavy payload mass(greater than 10000).

Success Rate vs. Orbit Type

Most success rate comes from orbit

- ES-L1
- GEO
- HEO
- SSO

Flight Number vs. Orbit Type

LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

With heavy payloads the successful landing or positive landing rate are more for Polar,

LEO and ISS.

However for GTO we cannot distinguish this well as both positive landing rate and negative landing (unsuccessful mission) are both there here.

Launch Success Yearly Trend

We can see as years went by, the higher success rate it would get by average.

All Launch Site Names

%%sql
select unique(launch_site) from SPACEXTBL2;

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Explanation

Apply "Unique" command to get distinct list from column "launch_site" in table SPACEXTBL2

Launch Site Names Begin with 'CCA'


```
%%sql
select * from SPACEXTBL2
where launch_site like '%CCA%'
;
```

timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-	500	LEO (ISS)	NASA (CRS)	Success	No attempt
15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS- 2	677	LEO (ISS)	NASA (CRS)	Success	No attempt
	18:45:00 15:43:00 07:44:00 00:35:00	18:45:00 F9 v1.0 B0003 15:43:00 F9 v1.0 B0004 07:44:00 F9 v1.0 B0005 00:35:00 F9 v1.0 B0006	18:45:00 F9 v1.0 B0003 CCAFS LC-40 15:43:00 F9 v1.0 B0004 CCAFS LC-40 07:44:00 F9 v1.0 B0005 CCAFS LC-40 00:35:00 F9 v1.0 B0006 CCAFS LC-40 15:10:00 F9 v1.0 B0007 CCAFS LC-	18:45:00 F9 v1.0 B0003 CCAFS LC-40 Dragon Spacecraft Qualification Unit 15:43:00 F9 v1.0 B0004 CCAFS LC-40 Dragon demo flight C1, two CubeSats, barrel of Brouere cheese 07:44:00 F9 v1.0 B0005 CCAFS LC-40 Dragon demo flight C2 00:35:00 F9 v1.0 B0006 CCAFS LC-40 SpaceX CRS-1 15:10:00 F9 v1.0 B0007 CCAFS LC-5 SpaceX CRS-1	18:45:00 F9 v1.0 B0003 CCAFS LC- 40 Dragon Spacecraft Qualification Unit Dragon demo flight C1, two CubeSats, barrel of Brouere cheese 07:44:00 F9 v1.0 B0005 CCAFS LC- 40 Dragon demo flight C2 Dragon demo flight C2 Dragon demo flight C2 SpaceX CRS- 1 525 500 15:10:00 F9 v1.0 B0007 CCAFS LC- SpaceX CRS- 677	18:45:00 F9 v1.0 B0003 CCAFS LC-40 Dragon Spacecraft Qualification Unit 0 LEO 15:43:00 F9 v1.0 B0004 CCAFS LC-40 Dragon demo flight C1, two CubeSats, barrel of Brouere cheese 0 LEO (ISS) 07:44:00 F9 v1.0 B0005 CCAFS LC-40 Dragon demo flight C2 525 LEO (ISS) 00:35:00 F9 v1.0 B0006 CCAFS LC-40 SpaceX CRS-1 500 LEO (ISS) 15:10:00 F9 v1.0 B0007 CCAFS LC-50 SpaceX CRS-677 LEO	18:45:00 F9 v1.0 B0003 CCAFS LC-40 Dragon Spacecraft Qualification Unit 0 LEO SpaceX 15:43:00 F9 v1.0 B0004 CCAFS LC-40 Dragon demo flight C1, two CubeSats, barrel of Brouere cheese 0 LEO (ISS) NASA (COTS) NRO 07:44:00 F9 v1.0 B0005 CCAFS LC-40 Dragon demo flight C2 525 LEO (ISS) NASA (COTS) 00:35:00 F9 v1.0 B0006 CCAFS LC-40 SpaceX CRS-1 500 LEO (ISS) NASA (CRS) 15:10:00 F9 v1.0 B0007 CCAFS LC-50 SpaceX CRS-677 LEO (NASA (CRS))	18:45:00 F9 v1.0 B0003 CCAFS LC-40 Dragon Spacecraft Qualification Unit 0 LEO SpaceX Success 15:43:00 F9 v1.0 B0004 CCAFS LC-40 Dragon demo flight C1, two CubeSats, barrel of Brouere cheese 0 LEO (ISS) NASA (COTS) NRO Success 07:44:00 F9 v1.0 B0005 CCAFS LC-40 Dragon demo flight C2 525 LEO (ISS) NASA (COTS) Success 00:35:00 F9 v1.0 B0006 CCAFS LC-40 SpaceX CRS-1 500 LEO (ISS) NASA (CRS) Success 15:10:00 F9 v1.0 B0007 CCAFS LC-50 SpaceX CRS-677 LEO (NASA (CRS)) Success

Explanation

Apply condition **like '%CCA%'** to get all rows that has a word "CCA" containing in column "launch_site" from **SPACEXTBL2** table

Total Payload Mass

Explanation

Calculate total payload mass for NASA (CBS)

```
%%sql
select sum(payload_mass__kg_) as "Total Payload Mass (kg)" from SPACEXTBL2
where customer = 'NASA (CRS)'
;
```

Total Payload Mass (kg)

45596

Average Payload Mass by F9 v1.1


```
%%sql
select sum(payload_mass__kg_) as "Total Payload Mass (kg)" from SPACEXTBL2
where booster_version = 'F9 v1.1'
;
```

Total Payload Mass (kg)

14642

Explanation

Calculate total payload mass for **booster version F9 v1.1**

First Successful Ground Landing Date

%%sql

```
select min(DATE) as "First date to achieve landing on ground" from SPACEXTBL2
where landing_outcome = 'Success (ground pad)'
;
```

First date to achieve landing on ground

2015-12-22

Explanation

Apply min(Date) to get the first success date with condition set as 'landing_outcome = 'Success (ground pad)'

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
select unique(booster_version), payload_mass__kg_ from SPACEXTBL2
where landing__outcome = 'Success (drone ship)'
and payload_mass__kg_ > 4000
and payload_mass__kg_ < 6000
order by payload_mass__kg_ DESC
;</pre>
```

booster_version	payload_masskg_		
F9 FT B1021.2	5300		
F9 FT B1031.2	5200		
F9 FT B1022	4696		
F9 FT B1026	4600		

Explanation

Set condition with payload for selected range, Extract desired columns from database and order from **highest payload** shown in table

Total Number of Successful and Failure Mission Outcomes

%%sql select mission_outcome, count(mission_outcome) as "Count" from SPACEXTBL2 group by mission_outcome ;

mission_outcomeCountFailure (in flight)1Success99Success (payload status unclear)1

Explanation

Get total success/failure by applying 'count' command. Also, group data by outcome to see total number of each.

Boosters Carried Maximum Payload

%%sql

select unique(booster_version), payload_mass__kg_ from SPACEXTBL2
where payload_mass__kg_ = (select max(payload_mass__kg_) from SPACEXTBL2)
order by booster_version ASC
;

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1048.5	15600
F9 B5 B1049.4	15600
F9 B5 B1049.5	15600
F9 B5 B1049.7	15600
F9 B5 B1051.3	15600
F9 B5 B1051.4	15600
F9 B5 B1051.6	15600
F9 B5 B1056.4	15600
F9 B5 B1058.3	15600
F9 B5 B1060.2	15600
F9 B5 B1060.3	15600

Explanation

Get maximum payload mass by adding subquery into condition 'where'. We can then extract from the table.

2015 Launch Records


```
select landing__outcome, booster_version, launch_site, Year(Date) as "Year" from SPACEXTBL2
where Year(Date) = 2015
and landing__outcome LIKE '%Failure%'
;
```

landing_outcome	booster_version	launch_site	Year
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40	2015
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40	2015

Explanation

When **set condition year = 2015**, we can also set landing out **contains 'failure'** by using "**like**" syntax to find data in the columns and show in table


```
%%sql
select landing__outcome, count(landing__outcome) as "Count" from SPACEXTBL2
where Date >= '2010-06-04'
and Date <= '2017-03-20'
group by landing__outcome
;</pre>
```

landing_outcome	Count
Controlled (ocean)	3
Failure (drone ship)	5
Failure (parachute)	2
No attempt	10
Precluded (drone ship)	1
Success (drone ship)	5
Success (ground pad)	3
Uncontrolled (ocean)	2

Explanation

Select 'count' syntax to get total landing outcomes

When set condition to **desired years**, then **grouping** by the outcome to see results in table shown

Launch sites of rocket

Success landing of each site (Green = success)

Distance from site to nearest coast

Total launches by sites

Explanation

Site KSC LC-39A showed the most success percentage.

Launch site with highest success

Explanation

Site KSC LC-39A showed the most success at 76.9%

Payload vs. Launch Outcome

Classification Accuracy

KNN, Logistic Regression, and Tree classification model were employed. After tuned, we found the best model to present is

Tree algorithm

(see code as below)

```
algorithms = {'KNN':knn_cv.best_score_,'Tree':tree_cv.best_score_,'LogisticRegression':logreg_cv.best_score_}
bestalgorithm = max(algorithms, key=algorithms.get)
print('Best Algorithm is',bestalgorithm,'with a score of',algorithms[bestalgorithm])
if bestalgorithm == 'Tree':
    print('Best Params is :',tree_cv.best_params_)
if bestalgorithm == 'KNN':
    print('Best Params is :',knn_cv.best_params_)
if bestalgorithm == 'LogisticRegression':
    print('Best Params is :',logreg_cv.best_params_)

Best Algorithm is Tree with a score of 0.8767857142857143
Best Params is : {'criterion': 'gini', 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter': 'random'}
```


Confusion Matrix

Explanation

Tree confusion matrix

Confusion matrix shows major false prediction is "true positive" where the model predicts failure landings to be successful.

Conclusions

Successful rate go higher as time go by and number of rocket launches

Lower payload mass & specific orbit type show the better success rate of an outcome

Launch site: KSC LC-39A performs the best succuss rate of landing

Tree Classifier is considered as the best algorithm to predict the outcomes with accuracy around 84%

