第4回. 平均値の定理と関数の極限値計算 (三宅先生の本, 2.2の内容)

岩井雅崇 2021/05/11

1 関数の極値

定義 1 (極値). f(x) を区間 I 上の関数とする.

- $\underline{f(x)}$ が $c \in I$ で極大であるとは、c を含む開区間 J があって、 $x \in J$ かつ $x \neq c$ ならば $\underline{f(x)} < \underline{f(c)}$ となること、このとき、 $\underline{f(x)}$ は \underline{c} で極大であるといい、 $\underline{f(c)}$ の値を極大値 という。
- $\underline{f(x)}$ が $c \in I$ で極小であるとは, c を含む開区間 J があって, $x \in J$ かつ $x \neq c$ ならば $\underline{f(x)} > f(c)$ となること. このとき, $\underline{f(x)}$ は c で極小であるといい, $\underline{f(c)}$ の値を極小値という.
- 極大値, 極小値の二つ合わせて極値という.

定理 **2.** f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする. f(x) が $c \in (a,b)$ で極値を持てば, f'(c) = 0 である.

2 平均値の定理とその応用

定理 3. f(x), g(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする.

- (ロルの定理) f(a) = f(b) ならば, f'(c) = 0 となる $c \in (a,b)$ がある.
- (平均値の定理)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

となる $c \in (a,b)$ が存在する.

• (コーシーの平均値の定理) $g(a) \neq g(b)$ かつ任意の $x \in (a,b)$ について $g'(x) \neq 0$ ならば

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

となる $c \in (a,b)$ が存在する.

定理 4. f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする.

- 任意の $x \in (a,b)$ について f'(x) = 0 ならば f は [a,b] 上で定数関数.
- 任意の $x \in (a,b)$ について f'(x) > 0 ならば f は [a,b] 上で単調増加関数.

例 5. $(\sin x)' = \cos x$ より, $\sin x$ は $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上単調増加.

定理 6 (ロピタルの定理)。 f(x),g(x) を点 a の近くで定義された微分可能な関数とする. $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ かつ $\lim_{x\to a}\frac{f'(x)}{g'(x)}$ が存在するならば, $\lim_{x\to a}\frac{f(x)}{g(x)}$ も存在して

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

例 7.

$$\lim_{x \to 0} \frac{e^{2x} - \cos x}{x}$$
 を求めよ.

(答.) $\lim_{x\to 0} e^{2x} - \cos x = 1 - 1 = 0$ かつ $\lim_{x\to 0} x = 0$ であり

$$\lim_{x \to 0} \frac{(e^{2x} - \cos x)'}{(x)'} = \lim_{x \to 0} \frac{2e^{2x} - \sin x}{1} = 2$$

であるため、ロピタルの定理から

$$\lim_{x \to 0} \frac{e^{2x} - \cos x}{x} = \lim_{x \to 0} \frac{(e^{2x} - \cos x)'}{(x)'} = 2$$

3 演習問題

演習問題の解答は授業の黒板にあります.

1.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$
 を求めよ.