

Data Warehousing & Mining Techniques

Wolf-Tilo Balke Mayukh Das

Institut für Informationssysteme Technische Universität Braunschweig https://www.tu-braunschweig.de/ifis

- Association Rule Mining
 - Apriori algorithm, support, confidence, downward closure property
 - Multiple minimum supports solve the "rare-item" problem
 - Head-item problem

10. Data Mining

10. Data Mining

- 10.1 Mining Sequence Patterns
- 10.2 Mining Time-Series Data

- Sequential pattern mining
 - Mining of frequently occurring ordered events or subsequences as patterns
 - Example
 - Customers who buy helicopter models in some on-line store receive e-mail promotions
 - Regarding batteries

- Then after a while regarding rotor wings, since most of them will

break

- Sequential pattern mining
 - Applications
 - Customer retention, targeted marketing

Ranging from disasters (e.g. earthquakes, wars) to

market prediction

- Mining sequence patterns, vocabulary
 - Let $I=\{I_1, I_2, ..., I_p\}$ be the set of all items
 - An **itemset** is a nonempty set of items from I
 - A sequence S is an ordered list of events
 - Denoted <e₁e₂e₃...e_k>, where event e₁ occurs before e₂ etc.
 - An event is an itemset, i.e. an unordered list of items
 - E.g., $(I_2I_1I_3)$, where $I_1, I_2, I_3 \in I$

- E.g., a customer bought items (abc) at a store. This is an event e₁. Now if later he buys another itemset (ade), representing a second event e₂, we obtain a shopping sequence s
 - $e_1 = (abc), e_2 = (ade)$
 - $s = \langle e_1 e_2 \rangle = \langle (abc)(ade) \rangle$
- The number of instances of items in a sequence is called the length of the sequence
 - Length of s is 6
- A sequence with length k is called a k-sequence

- Subsequence & supersequence

• A sequence $\alpha = \langle a_1 a_2 ... a_n \rangle$ is called a **subsequence** of another sequence $\beta = \langle b_1 b_2 ... b_m \rangle$ denoted $\alpha \sqsubseteq \beta$ (β is called **supersequence** of α)

if there exist integers $1 \le j_1 < j_2 < ... < j_n \le m$ such that $a_1 \subseteq b_{j1}$, $a_2 \subseteq b_{j2}$, ..., $a_n \subseteq b_{jn}$

• E.g., if $\alpha = <(ab)d>$ and $\beta = <(abc)(de)>$ then $\alpha \sqsubseteq \beta$

Sequence database

- A sequence database S is a set of tuples <SID, s>
- E.g., contains the sequences for all customers of the store

- Support of a sequence in a sequence database
 - The support of α in S is the number of tuples in S, containing α
 - $\sup_{S}(\alpha) = |\{\langle SID, s \rangle | (\langle SID, s \rangle \in S) \land (\alpha \sqsubseteq s)\}|$
- Frequent sequence
 - α is a frequent sequence if $\sup_{S}(\alpha) \ge \min_{S}(\alpha)$ where $\min_{S}(\alpha)$ is the **minimum support threshold**
- A frequent sequence is called a sequence pattern
 - A sequence pattern of length k is called an k-pattern

- Sequence patterns, example
 - Given
 - I={a, b, c, d, e, f, g}, min_sup=2 and the sequence table

SID	Sequence
1	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
2	<(ad)c(bc)(ae)>
3	<(ef)(ab)(df)cb>
4	<eg(af)cbc></eg(af)cbc>

- Length of $\langle a(abc)(ac)d(cf) \rangle$ is 9 and although there are 3 'a' items in the first 3 events from record 1, it contributes to the sup(a) with just 1

- Sequence patterns, example
 - < a(bc)df > is a subsequence of the first record

•
$$\langle a(bc)df \rangle \sqsubseteq \langle a(abc)(ac)d(cf) \rangle$$

$$-\sup(<(ab)c>)=2$$

•	$\langle (ab)c \rangle \sqsubseteq \langle a(abc)(ac)d(cf) \rangle$ and
	$<$ (ab)c $> \sqsubseteq <$ (ef)(ab)(df)cb $>$

SID	Sequence
1	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
2	<(ad)c(bc)(ae)>
3	<(ef)(ab)(df)cb>
4	<eg(af)cbc></eg(af)cbc>

- If min_sup = 50%, <(ab)c> is a sequential pattern or a **3-pattern** (i.e. it has length 3)

- Challenges of sequence pattern mining
 - A huge number of possible sequential patterns are hidden in databases
 - A mining algorithm should
 - Find the **complete set of patterns**, when possible, satisfying the minimum support threshold
 - Be highly efficient, scalable, involving only a small number of database scans
 - Be able to incorporate various kinds of user-specific constraints

Algorithms

- Apriori-based method
 - Generalized Sequential Patterns (GSP)
- Pattern-growth methods
 - FreeSpan & PrefixSpan
- Vertical format-based mining
 - Sequential Pattern Discovery using Equivalent classes (SPADE)
- Mining closed sequential patterns
 - CloSpan

- Generalized Sequential Patterns (GSP)
 - Based on the Apriori property of sequential patterns
 - Downward closure: If a sequence s is not frequent then none of its super-sequences can be frequent
 - E.g., let min_sup=2; if <hb> is infrequent then <hab> and <(ah)b> are also infrequent!

<hb> is a subset of only record 3

SID	Sequence
1	<(bd)cb(ac)>
2	<(bf)(ce)b(fg)>
3	<(ah)(bf)abf>
4	<(be)(ce)d>
5	<a(bd)bcb(ade)></a(bd)bcb(ade)>

- GSP algorithm, 2 step description
 - Initial step
 - Every item in the sequence database is a candidate of length 1

- Generalization

- Scan database to collect support count for each k length, candidate sequence, and establish the k-patterns
- Generate candidate sequences of length (k+1) from k-patterns using the Apriori property
- Repeat this generalization step until no more candidates can be found e.g., there are no more k length frequent sequences

min_	sup	= 2	
------	-----	-----	--

Initial step

All singleton sequences are <a>, ,, <c>, <d>, <e>, <f>, <g>, <h>

SID	Sequence				
1	<(bd)cb(ac)>				
2	<(bf)(ce)b(fg)>				
3	<(ah)(bf)abf>				
4	<(be)(ce)d>				
5	<a(bd)bcb(ade)></a(bd)bcb(ade)>				

- General step, k = 1
 - Scan database once, count support for candidates
 - <g> and <h> are not 1-patterns since sup(<g>) = 1 < min_sup = 2 sup(<h>) = 1 < min_sup = 2
 - According to the Apriori property: since <g> and <h> are not 1-patterns, they can't form any 2-patterns. So they can be removed!

Cand	Support
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
<g></g>	1
<h>></h>	1

- General step, k = 1, generate length 2 candidates
 - First generate 2 event candidates

$$-6*6 = 36$$
 candidates

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

- Then generate I event candidates, each with 2 items
 - -6*5/2 = 15 candidates

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

-k = 2, we have 51 2-length candidates

- After the second table scan we remain with 19 2-patterns
- Then we generate candidates for length 3, and so on...
- <(bd)cba> is a 5-pattern, meaning that events (bd), c, b and a were frequent in the table, in this order

5th scan: 1 cand. 1 5-pattern

4th scan: 8 cand. 6 4-patterns

3rd scan: 47 cand. 19 3-patterns, 20 cand. not in DB at all

2nd scan: 51 cand. 19 2-patterns 10 cand. not in DB at all

1st scan: 8 cand. 6 1-patterns

Join and Prune

- Analogous to Apriori we can use join and prune to reduce the number of candidates C_k
 - Less candidates mean less minimum supports to compute
- Prune works the same way as in the Apriori algorithm
- For join we have to account for the order of the events since they are not simply ordered lexicographically
 - Example: how to join <ab> and <ac>? In Apriori it would be "<abc>" but here we are stuck with <abc> and <acb>

Joining sequences

- Idea: From the sequences s_1 and s_2 remove the first item from s_1 and the last item from s_2 . If the remaining subsequences are identical you can join s_1 and s_2 .
- Examples:
 - <bc> and <ca> can be joined to <bca>
 - <abc> and <cbe> can not be joined

- Drawbacks of GSP
 - A huge set of candidate sequences generated
 - Especially 2-item candidate sequence
 - Multiple scans of database needed
 - The length of each candidate grows by one for each database scan
 - Inefficient for mining long sequential patterns
 - Long patterns grow from short patterns
 - The number of short patterns is exponential in the length of mined patterns

- Sequence patterns mining
 - Are ordered events
 - No concrete notion of time

 Combining sequences of events with repeated measurements of time (at equal time intervals) we obtain time-series data

Time-series databases

- Time series reveal temporal behavior of the underlying mechanism that produced the data
- Consists of sequences of values or events
 changing with time
- Data is recorded at regular intervals

Applications

- Financial
 - Stock market, sales forecasting, inflation

Industry

- Power consumption, workload projections, process and quality control
- Meteorological

• Observation of natural phenomena such as precipitation, temperature, wind, earthquakes

- Goals of time-series data analysis
 - Modeling time-series
 - Get insight into the mechanisms or underlying forces that generate the time series
 - Forecasting time-series
 - Predict the future values
 of the time-series variables
- Methods
 - Trend analysis
 - Similarity search

Trend analysis

- Application of statistical techniques e.g., regression analysis, to make and justify statements about trends in the data
- Construct a model, independent of anything known about the physics of the process, to explain the behavior of the measurement
 - E.g., increasing or decreasing trend, that can be statistically distinguished from random behavior: take daily average temperatures at a given location, from winter to summer

- Regression analysis (RA)
 - Popular tool for modeling time series, finding trends and outliers in data sets
 - Analysis of numerical data consisting of values of a dependent variable (also called a response variable) and of one or more independent variables
 - The dependent variable in the regression equation is modeled as a function of the independent variables, corresponding parameters ("constants") and an error term

- RA, example: determine appropriate levels of advertising for a particular market segment
 - Consider the problem of managing sales of beer at large college campuses
 - Sales over one semester might be influenced by ads in the college paper, ads on the campus radio station, sponsorship of sports-related events, sponsorship of contests, etc.
 - Use data on advertising and promotional expenditures at many different campuses to extract the marginal value of dollars spent in each category

- Set up a model of the following type:
 - sales = $b_0 + b_1$ (print budget) + b_2 (radio budget) + b_3 (sports promo budget) + b_4 (other promo) + error
- This model is called linear regression analysis
 - $Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_n X_n$
 - Y = predicted score
 - b₀ = intercept/origin of regression line
 - b_i = regression coefficient representing unit of change in dependent variable with the increase in I unit on X variable

- Correlation (noted R)
 - Refers to the interdependence or co-relationship of variables
 - Reflects the accuracy of the linear relationship between X and Y
 - Lies between -I and I with:
 - I is anti-correlated
 - 0 is independent
 - I is linearly correlated

Regression trend channels (RTC)

- Very useful in defining and containing the trend of the

market

When the prices break a well established trend channel, the market usually changes trend

Upper & Lower trendline?

What is RTC?

- The mathematical standard deviation of the linear regression
- Basically it is made up of three parallel lines
 - The center line is the linear regression line
 - This center line is bracketed by two additional lines that represent the +/- standard deviation of the linear regression data

- The linear regression model is the most simple model, but there are others
 - Nonlinear regression (the model function is not linear in the parameters), Bayesian methods, etc.
- Regression analysis can't capture all trend movements that occur in real-world applications
 - The solution is to decompose time-series into basic movements

- Basic movements are characteristic time-series movements (often called components)
 - Trend (T)
 - Reflects the long term progression of the series
 - Seasonal (S)
 - Seasonal fluctuations i.e., almost identical patterns that a time series appears to follow during corresponding months of successive years
 - Cycle (C)
 - Describes regular fluctuations caused by the economic cycle e.g., business cycles
 - Irregular (I)
 - Describes random, irregular influences

- Time-series decomposition
 - Additive Model
 - Time-series = T + C + S + I
 - Multiplicative Model
 - Time-series = T × C × S × I
- To perform decomposition we must identify each of the 4 movements in the time-series

Trend analysis (T), methods

- The **freehand** method
 - Fit the curve by looking at the graph
 - Costly and barely reliable for large-scaled data mining
- The least-square method
 - Find the curve minimizing the sum of the squares of the deviation of points on the curve from the corresponding data points
- The moving-average method
 - Eliminates cyclic, seasonal and irregular patterns
 - Loss of end data
 - Sensitive to outliers

- Moving average (MA) of order n

$$\frac{y_1 + y_2 + \dots + y_n}{n}$$
, $\frac{y_2 + y_3 + \dots + y_{n+1}}{n}$, $\frac{y_3 + y_4 + \dots + y_{n+2}}{n}$, ...

• E.g.,

10.2 Moving Average

- Influence of extreme values can be reduced with weighted moving average (WMA)
 - WMA is MA with weights e.g., WMA(3) with (1,4,1) as weights

10.2 Moving Average

- Other forms of MA
 - Cumulative moving average (CA), also called long running average $CA_i = \frac{x_1 + \dots + x_i}{i}.$

$$CA_{i+1} = CA_i + \frac{x_{i+1} - CA_i}{i+1}$$
.

- Exponential weighted moving average (EWMA), applies weighting factors which decrease exponentially
 - Gives much more importance to recent observations while still not discarding older observations entirely

Estimation of seasonal variations (S)

- Seasonal index
 - Set of numbers showing the relative values of a variable during the months of the year
 - E.g., if the sales during October, November, and December are 80%, 120%, and 140% of the average monthly sales for the whole year, respectively, then 80, 120, and 140 are seasonal index numbers for these months
- Deseasonalized data
 - Data adjusted for seasonal variations
 - E.g. divide or subtract the original monthly data by the seasonal index numbers for the corresponding months

Estimation of seasonal variations (S)

- Estimation of cyclic variations (C)
 - If (approximate) periodicity of cycles occurs, cyclic index can be constructed in much the same manner as seasonal indexes
- Estimation of irregular variations (I)
 - By adjusting the data for trend, seasonal and cyclic variations
- With the systematic analysis of the trend, cyclic, seasonal, and irregular components, it is possible to make long- or short-term predictions (timeseries forecasting) with reasonable quality

- Time-series forecasting
 - Finds a mathematical formula that will approximately generate the historical patterns
 - Forecasting models: most popular is auto-regressive integrated moving average (ARIMA)
 - ARIMA can be applied in cases where data shows evidence of non-stationarity

- Applications of trend analysis: large
 corporations selling their products world-wide
 - Products are sold in different countries with different currencies
 - Currency has to be exchanged back and forth
 - The cost of the currency exchange has to be kept under control!
 - Timing is everything in foreign exchange

- Foreign exchange market (FOREX)
 - High data volume

e.g., 4 hours a candle for FOREX

- Granularity change
 - Use Japanese candlesticks (developed in the 16th century by Japanese rice traders) for data charting

- When trading the goal is to buy low and sell high!
 - Use trends to trade!

- Why do we need trends? Once we have found a trend, we can:
 - Open position when in the trend (buy if it will go up, or sell if it will go down)
 - Close the position on the trend turns

- Perform smoothing with simple moving average
 - E.g., SMA with window size of 21 bars
- **Trend:** *k* consecutive points on the SMA show constant increase or decrease on Y-axis

- Detect turns using for example Bollinger bands
 - Calculated based on the moving average
 - N standard deviations up, N down
 - Useful for detection of over-buy and over-sell

- Transactions...
 - between the lower band and the SMA show signs of over-sell and transactions
 - between SMA and upper band over-buy
 - outside the Bollinger bands trend turn

- Psychological pressure of the market
 - Resistance lines are determined by the reaction of the market participants to the previous evolution of the data

- And there are many more indicators for in the trend and on trend turns
 - E.g., momentum analysis
 - high momentum shows a powerful trend

Similarity search

- Normal database queries find exact matches
- Similarity search finds data
 sequences that differ only slightly
 from the given query sequence
- Problem: given a time-series database, identify all the sequences that are **similar** to one another

Typical applications

- Financial market
 - Finding stock items with similar trends
- Market basket
 - Finding products with similar sales trends
- Scientific databases
 - Finding periods with similar temperature patterns, finding persons with similar voice clips

- E.g., financial market applications
 - Evolution of VW has implications over all its suppliers
 - If we find similarities between the evolution of VW

and Bosch, and if I know VW stock prices will drop due to car sales drops, then I should not buy any Bosch stocks!

- What is similarity?
 - Similarity is some degree of symmetry in either analogy and resemblance between two or more concepts or objects

Similarity measure

A distance functiond(X,Y) e.g., Euclideandistance

- Issues encountered in similarity search
 - False alarms
 - (Sub)sequences returned as candidates, but **not similar** to the query sequence
 - False dismissals
 - (Sub)sequences that are similar to the query sequence, but not returned as the query result
 - Goal
 - Avoids false dismissals for correctness
 - Minimizes false alarms for efficiency

Reduction

- Due to large size and high-dimensionality of timeseries analysis, reduction is usually the first step
 - Reduction leads not only to smaller storage space but also to faster processing
- E.g., Discrete Fourier Transform (DFT)
 - Concentrates energy in the first few coefficients
 - Keep the first few coefficients as representative of the sequence (feature extraction)
 - Based on them, we can compute the lower bounds of the actual distance

- Two categories of similarity queries
 - Whole matching
 - Find a set of **sequences** that is similar to the query sequence
 - Subsequence matching
 - Find all sequences that **contain subsequences** that are similar to a given query sequence

- Whole matching, basic idea
 - Uses the Euclidean distance as the similarity measure
 - Employs a multi-dimensional index for efficient search
 - Using the first few Fourier coefficients
 - R-trees, R*-trees can be used as multidimensional indexes
 - Uses a dimensionality-reduction technique for avoiding the curse of dimensionality
 - Data-independent: DFT, DCT, Wavelet transform
 - Guarantees no false dismissal thanks to Parseval's theorem
 - The distance between two signals in the time domain is the same as their distance in the frequency domain

10.2 Whole matching

Method

- Index building
 - Obtain the DFT coefficients of each sequence in the database
 - Build a 2k-dimensional index using the first k Fourier coefficients (2k-dimensions are needed because Fourier coefficients are complex numbers)
- Query processing
 - Obtain the DFT coefficients of the query sequence
 - Use the 2k-dimensional index to filter out such sequences that are at most ε distance away from the query sequence
 - Discards false alarms by computing the actual distance between two sequences

10.2 Whole matching

• Sequences in multidimensional space

- Subsequence matching, basic idea
 - Use the concept of windows
 - Extract a set of sliding windows from each sequence
 - Map a window into a point in multi-dimensional space
 - Represent a sequence as a trail
 - Divide the trail of each sequence into subtrails
 - Represent each subtrail by its minimum bounding rectangle (MBR)

10.2 Subsequence matching

Sliding window

Window matching

10.2 Subsequence matching

Trails and their subtrails for sequences

10.2 Subsequence matching

Method

- Index building
 - Extract sliding windows from each sequence in the database
 - Obtain the DFT coefficients of each window
 - Divide the trail corresponding to a sequence into subtrails
 - Build a multi-dimensional index by using the MBRs that cover subtrails (R-Tree)
- Query processing
 - Extract **p disjoint windows** from a query sequence
 - Obtain the DFT coefficients of each window
 - For each window, use the multi-dimensional index to filter out such sliding windows that are at most ϵ/\sqrt{p} distance away from the window
 - Discard false alarms by computing the actual distance between the candidate subsequence and query sequence

- But what if the two time-series being compared have different baselines or scaling?
 - E.g., one stock's value can have a baseline of 20€ and fluctuate with a relatively large amplitude (between 15 € and 25 €), while another stock with a baseline of 90 € can fluctuate wit a relatively small amplitude (between 90 € and 110 €)
- What if there are gaps?
- The solution is to apply transformations

Transformation

- Provides various similarity models to satisfy specific

application needs

- Classified into:
 - Shifting
 - Scaling
 - Normalization
 - Moving average
 - (Dynamic) Time warping

- Enhanced Similarity Search Methods
 - Allow for gaps within a sequence or differences in offsets or amplitudes
 - Normalize sequences with amplitude scaling and offset translation
 - Two subsequences are considered similar, if one lies within one envelope of ε width around the other, ignoring outliers
 - Two sequences are said to be similar if they have enough non-overlapping, time-ordered pairs of similar subsequences
 - Parameters specified by a user or expert
 - Sliding window size, width of an envelope for similarity, maximum gap, and matching fraction

Similarity model (subsequence)

• Enhanced subsequence matching, method

- Index building
 - Extract sliding windows of length w from each sequence in the database
 - Build a w-dimensional index on those windows
- Query processing
 - Atomic matching
 - Find all pairs of gap-free windows that are similar
 - Window stitching
 - Stitch similar windows to form pairs of longer similar subsequences allowing gaps between window matches
 - Subsequence ordering
 - Linearly order the subsequence matches to determine whether enough similar pieces exist

Enhanced whole matching

- Two sequences X and Y are considered similar, if $D(X, aY+b) \le \varepsilon$ (after normalization), where a is the scaling constant and b is the shifting constant
- Query languages? Still a research question
 - Such a time-series query language should be able to:
 - Specify sophisticated queries like:
 - Find all of the sequences that are similar to some sequence in class
 A, but not similar to any sequence in class
 - Support range queries, all-pair queries, and nearest neighbor queries

- Sequence Patterns
 - GSP, based on the Apriori property
- Time-Series
 - Trend Analysis:
 - Basic movements: Trend, Seasonal, Cycle, Irregular
 - Methods: Regression Analysis, Moving Averages, etc.
 - Similarity Search
 - Whole Matching
 - Subsequence Matching

Next lecture

- Data Mining
 - Classification
 - Decision Tree Induction
 - Bayesian Classification
 - Rule-Based Classification

