Homework 2

Student: Torekhan Erdauit

Chapter 3.8 p.58-61: ex. 1, 4, 5, 11

Exercise 1:

Exercise 4:

Exercise 5:

Exercise 11 (Comp experiment):

```
y <- sample(c(-1, 1), size = 10000, replace=TRUE)
x <- cumsum(y)
n <- seq(1, 10000)
plot(n, x, main="The Function", type="l", col="red")</pre>
```

The Function

Explanation: cumsum() is used to evaluate the cumulative sum of vector (0, 10000), in this case we can see that all values between std deviation

Exercise 2:

(2) 2 ~ Poisson (2)	
$P(X \ge 22) \le \frac{1}{2}$	
Chebysher inequality:	
P((x - E[x]/ 3 k) = Var(
in the Poisson Distribution.	
EEX7=1	
$V(X) = \mathcal{I}$ $D(I = 2I) = I$	
$P(X-A \ge k) \le \frac{3}{k^2}.$	
$P((X \ge 22)) \le \frac{2}{2^2}$	
$P(X \ge 22) \le \frac{1}{2}$	

Chapter 5.8 p.82-84: ex. 6, 8

Exercise 6:

Exercise 8:

8) h=100	
Ki Poisson (1).	
$Y = \sum_{i \in I} \chi_i$	
P(Y < 90)	
Mean = Poisson (1). 100 = 100	
Var (Y) = Var (Y,) + Var (Y,) +	
21+1+1+,=100.	
0 2 V100 2 Vor (Y) 2 10	
Using Central Limit Theorem:	
$p(X_n - M < go - 100) = p(X < -10)$	
z kinda small	