	<pre>import numpy as np import cv2 import matplotlib.pyplot as plt</pre>
	<pre>from skimage import filters from collections import deque import copy from itertools import product import cv2 import random as rng import math from scipy.spatial import distance</pre>
	Question 1 Find tightest bounding circles for the objects present in the given image.[3 Marks] Expected O/Ps: centers & radiuses of those circles, and a visualization showing both the objects and the circles in a single image. [0.25] marks for the center. [0.15] andthe radius. [0.1] for any object. [0.75] marks for the is ualization. Loading the RBG Project1.png image to work upon of shape (639,960,3)
[2]:	
	200 - 300 - 400 - 500 - 600 - 0 200 400 600 800
	Connected Components The first part of drawing the bounding circles, is to detect the total number of connected components(objects). Algorithm: Convert the RBG image into a grayscale image. Apply otsu on the grayscale image and segment it into a binary image, where 1 is foreground and 0 is background.
[3]:	 Apply district the grayscale image and segment it into a binary image, where it is long round and this background. A counter that maintains the number of connected components found. Iterate through the rows and columns of the binary image and for every not visited pixel in the image mark it visited and interate through the connected neighbours that are marked as 1 and not visited, and increment the counter. Save the pixels for each connected component separately and return it along with the max number that the counter achieved. def get_components(image): """ To get all the connected components of the RGB image.
	Arguments imaage: 3D numpy array, RGB image. Returns max_: total number of connected components. centers: dictionary containing the points of each connected component. boundary_pixels: dictionary containing the boundary points of each connected component. """
	<pre>gray_img = np.mean(image,2) val = filters.threshold_otsu(gray_img) gray_img[gray_img >= val] = 1 gray_img[gray_img < val] = 0 rows, cols = gray_img.shape[0], gray_img.shape[1] visited = np.zeros((rows,cols)) answer = np.zeros((rows,cols)) centers = {}</pre>
	<pre>boundary_pixels = {} c = 1 for i in range(rows): for j in range(cols): if(gray_img[i][j] == 0.0): visited[i,j] = 1 elif(visited[i,j]): continue else: stack = deque()</pre>
	<pre>stack.append((i,j)) centers[c] = [] boundary_pixels[c] = [] while(len(stack)!=0): curr = stack.pop() if(visited[curr[0], curr[1]] == 0): visited[curr[0], curr[1]] = 1 m,n = curr[0], curr[1] answer[m,n] = c list_ = [] for x in range(m-1, m+2):</pre>
	<pre>for y in range(n-1, n+2): if(x == m and y == n): continue else: if(x <0 or x > rows -1): continue if(y <0 or y > cols -1): continue if(gray_img[x,y] == 1.0): centers[c].append((x,y))</pre>
	<pre>stack.append((x,y)) elif(gray_img[x,y] == 0.0):</pre>
	The next part of is to compute the radius and the center of all the connected components, from the pixels of each component recieved from the above function. For each connected component we calculate the following metrics to get the centre and the radius of the bounding circles. We use a optimised brute force method to calculate the optimal radius by iterating through every boundary point one and finding the furthest point the centre to select it as the radius. $x_0, y_0 = min(x_i), min(y_i)$
	$x_1,y_1=max(x_i), max(y_i)$ $bb_x,bb_y=Sequence(x_0\to x_1), Sequence(y_0\to y_1)$ $Radius=min(min_{x\in bb_x,y\in bb_y}(max(\sqrt{(x_i-x)^2+(y_i-y)^2})), min_{x\in obj_x,y\in obj_y}(max(\sqrt{(x_i-x)^2+(y_i-y)^2})))$ where (x_i,y_i) is the i^{th} boundary pixel coordinates of the current connected component. Once we get the radius we need to now calculate the center of the circle. The center would be argmin of the radius given by :
	Case 1: $Radius \in max(\sqrt{(x_i-x)^2+(y_i-y)^2}), x \in bb_x, y \in bb_y$ $Center(x,y) = argmin(max(\sqrt{(x_i-x)^2+(y_i-y)^2}), x \in bb_x, y \in bb_y)$ Case 2: $Radius \in max(\sqrt{(x_i-x)^2+(y_i-y)^2}), x \in obj_x, y \in obj_y$
	$Center(x,y)=argmin(max(\sqrt{(x_i-x)^2+(y_i-y)^2}), x\in obj_x, y\in obj_y)$ Why does this work ?
	Since we are calculating the the optimal radius and center by manually interating through every possible center coordinate, the cannot be any case where we do not get the tighest bounding circle. CASE 1: When optimal center in inside the object (x0,y0) Enclosing Box
	Boundary Optimal center (x1,y1)
	obj_x : X-coordinate of the object. obj_y : Y-coordinate of the object. (x_i,y_i) : Boundary pixels of the object. $Radius = min_{x \in obj_x, y \in obj_y}(max(\sqrt{(x_i-x)^2+(y_i-y)^2}))$ $Center(x,y) = argmin(max(\sqrt{(x_i-x)^2+(y_i-y)^2}), x \in obj_x, y \in obj_y)$
	CASE 2 : When optimal center in outside the object (x0,y0)
	Boundary Optimal center (x1,y1) Mro
	bb_x : X-coordinate of the points inside the Enclosing Box . bb_y : Y-coordinate of the points inside the Enclosing Box . (x_i,y_i) : Boundary pixels of the object. Since the optimal center lies outside the object but it will always lie inside the Enclosing box , thus if we check for the optimal center inst the Enclosing Box then we would for surely get the optimal center and the radius for the tighest bounding Circle. $Radius = min_{x \in bb_x, y \in bb_y} (max(\sqrt{(x_i-x)^2+(y_i-y)^2}))$
[4]:	$Center(x,y) = argmin(max(\sqrt{(x_i-x)^2+(y_i-y)^2}), x \in bb_x, y \in bb_y)$ $ extbf{def}$ get_bounding_circles(image):
	<pre>Returns centers_radius : dictonary containing the circle centers and radius for each connected component """ n, centers, boundary_pixels = get_components(image) centers_radius = {} for key in list(centers.keys()): arr = np.array(centers[key])</pre>
	<pre>bound_arr = np.array(boundary_pixels[key]) height = np.max(arr[:,1]) - np.min(arr[:,1]) width = np.max(arr[:,0]) - np.min(arr[:,0]) x0,y0 = np.min(arr[:,1]), np.min(arr[:,0]) x1,y1 = np.max(arr[:,1]), np.max(arr[:,0]) center_x,center_y = int((x0+x1)/2), int((y0+y1)/2) arr1 = np.array([i for i in range(x0,x1)]) arr2 = np.array([i for i in range(y0,y1)]) center_patch = np.array(np.meshgrid(arr2,arr1)).T.reshape(-1, 2) distances_bb = distance.cdist(center_patch, bound_arr)</pre>
	<pre>pixel_radius_bb = distances_bb.max(axis = 1) radius_bb = min(pixel_radius_bb) circle_center_y_bb,circle_center_x_bb = center_patch[np.argmin(pixel_radius_bb, axis = 0)] distances_obj = distance.cdist(arr, bound_arr) pixel_radius_obj = distances_obj.max(axis = 1) radius_obj = min(pixel_radius_obj) circle_center_y_obj,circle_center_x_obj = arr[np.argmin(pixel_radius_obj, axis = 0)] if(radius_bb < radius_obj): circle_center_y ,circle_center_x = circle_center_y_bb,circle_center_x_bb</pre>
	<pre>radius = radius_bb else:</pre>
	<pre>for key in list(centers_radius.keys()):</pre>
[5]:	<pre>cv2.imwrite("bounding_image.jpg", curr_image) fig = plt.figure(figsize = (10,10)) plt.imshow(curr_image) plt.show() return centers_radius center_radius = get_bounding_circles(image) centre coordinates for object 1 : (783 68) radius : 68</pre>
	centre coordinates for object 2 : (153 101) radius : 92 centre coordinates for object 3 : (468 130) radius : 101 centre coordinates for object 4 : (135 331) radius : 101 centre coordinates for object 5 : (473 348) radius : 110 centre coordinates for object 6 : (793 346) radius : 141 centre coordinates for object 7 : (469 535) radius : 102 centre coordinates for object 8 : (158 521) radius : 119 centre coordinates for object 9 : (795 561) radius : 129
	100 - 2 200 - 300 - 4 5 6
	400 - 500 - 8
	Question 2 Find Jaccard Similarity scores for each of the objects in the image given with respect to their corresponding circular regions obtained in [2 Marks] [0.65] marks for implementing the Jaccard Similarity module that takes two binary masks as inputs and outputs the required score. [0.15] marks for Jaccard Similarity score for any object.
[6]:	"""
	Returns the jaccard similarity score for 2 binary masks. Arguments binary_mask1 : list of all the points in mask A. binary_mask2 : list of all the points in mask B. Returns IOU : Jaccard Similarity of the two masks. """
[7]:	<pre>intersection = len(list(set(binary_mask1).intersection(set(binary_mask2)))) union = len(set(binary_mask1).union(set(binary_mask2))) return float(intersection) / union gray_img = np.mean(image,2) val = filters.threshold_otsu(gray_img) gray_img[gray_img >= val] = 1 gray_img[gray_img < val] = 0 plt.imshow(gray img, cmap = 'gray')</pre>
	plt.title("Original Image mask") plt.show() Original Image mask 100 - 200 - 300 -
[8]:	400 - 500 - 600 - 0 200 400 600 800 circles = {} for key in list(center radius.keys()):
	<pre>for key in list(center_radius.keys()): curr_image = copy.deepcopy(image) curr_image = np.zeros(curr_image.shape) color = (255, 255, 255) thickness = -1 y,x = center_radius[key]["center_coordinates"] radius = center_radius[key]["radius"] curr_image = cv2.circle(curr_image, center_radius[key]["center_coordinates"], center_radius[key] adius"], color, thickness) circles[key] = curr_image fig, (ax1, ax2) = plt.subplots(1, 2) fig.suptitle("Bounding circles for object " + str(key) + " Binary Mask")</pre>
	ax1.imshow(curr_image) ax2.imshow(image[x - radius : x + radius , y - radius : y + radius]) Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers).
	Clipping input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers). Clipping input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers in the valid range for imshow with RGB data ($[01]$ for floats $[0255]$ for integers in the valid range for imshow
	tegers). Clipping input data to the valid range for imshow with RGB data ($[01]$ for floats or $[0255]$ for integers).
	Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers).
	Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Bounding circles for object 1 Binary Mask 0 20 40 40 60 80 100
	Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Bounding circles for object 1 Binary Mask O 20 40 60 80 100 Bounding circles for object 2 Binary Mask
	Clipping input data to the valid range for imshow with RCB data ([01] for floats or [0255] for itagers). Clipping input data to the valid range for imshow with RCB data ([01] for floats or [0255] for itagers). Bounding circles for object 1 Binary Mask O 20 40 40 60 80 100 100 50 100 100 100 100 100 100 100
	Clipping anguet data to the valid range for inshow with RGB data ([01] for floats or [0255] for itagers). Clipping anguet data to the valid range for inshow with RGB data ([01] for floats or [0255] for itagers). Bounding circles for object 1 Binary Mask O 20 40 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 60 20 40 60 60 20 40 60 60 60 60 60 60 60 60 6
	Clipping input data to the valid range for imshow with RGE data ([01] for floats or [0255] for itagers). Clipping input data to the valid range for imshow with RGE data ([01] for floats or [0255] for itagers). Bounding circles for object 1 Binary Mask O D D D D D D D D D D D D
	Caliparing impact date to the valid range for impline with ALB date (101) for closure or 10255° for integers. Caliparing Input date to the valid range for impline with ALB date (101) for closure or 10255° for integers. Executed input, date to the valid range for impline with ALB date (101) for closure or 10255° for integers. Bounding circles for object 1 Binary Mask Output Bounding circles for object 2 Binary Mask Output Bounding circles for object 3 Binary Mask Output Bounding circles for object 4 Binary Mask Output Bounding circles for object 5 Binary Mask Output Bounding circles for object 5 Binary Mask
	0 15gn yr ropes date to the walld caree for landow with 76% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent of the walld caree for landow with 66% date (IC1) for floating or [3289] for a consequent or [3289] for a consequent or [3289] for a cons
	Exception appears about the total valued strates as a tension with REE cata (10.1), for tipasts or (10.1), tor tipas
	digitally show that all to make which engine farm rations and 100 cm for the Country of the Coun
	del gating impair table in the world decoge for intered with two date. (Co. 1) for float or (20.25%) for its control c
[9]:	Supplier
[9]:	Stage of the control
	Stage from control to the low of the receiver for the control to t
	Carrent and what is the value and so a process of the first of the county of the count
	Extraction counts are in the Construction Service was another what SER dates (10%-cell and colored in 150-25% and 150-25%) are in the Construction of the Construction
10]:	Stage of the control