S1 Appendix

Instructions for the Reproduction of the Results in the Paper

First, go to https://github.com/millanp95/DeLUCS and clone the repository. Then run the series of commands for each test.

Test #1:

- python build_dp.py --data_path='../data/Vertebrata/Test Files'
- 2. python get_pairs.py --data_path='../data/Vertebrata/Test Files/train.p' --k=6 --modify='mutation' --output='../data/Vertebrata/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Vertebrata/Test Files' -out_dir='../data/Vertebrata/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Vertebrata/Test Files/testing_data.p' --method='Supervised' --k=6
- python EvaluateComparison.py --data_path='../data/Vertebrata/Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Vertebrata/Test Files/train.p' --method='GMM' --k=6 --k=6

Test #2:

- python build_dp.py --data_path='../data/Fish/Test Files/Actinopterygii'
 python get_pairs.py --data_path='../data/Fish/Test Files/Actinopterygii/train.p' --k=6 --n_mimics=8 --modify='mutation' -output=../data/Fish/Test Files/Actinopterygii/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Actinopterygii' --out_dir='../data/Fish/Test Files/Actinopterygii'

<u>Comparison Models:</u>

- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Actinopterygii/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='.../data/Fish/Test Files/Actinopterygii/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Actinopterygii/train.p' --method='GMM' --k=6

Test #3:

- 1. python build_dp.py --data_path='../data/Fish/Test Files/Neopterygii'
- 2. python get_pairs.py --data_path='../data/Fish/Test Files/Neopterygii/train.p' --k=6 --modify='mutation' --output=../data/Fish/Test Files/Neopterygii/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Neopterygii' -out_dir='../data/Fish/Test Files/Neopterygii'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Neopterygii/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Neopterygii/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Neopterygii/train.p' --method='GMM' --k=6

Test #4:

- 1. python build_dp.py --data_path='../data/Fish/Test Files/Ostariophysi'
- 2. python get_pairs.py --data_path='../data/Fish/Test Files/Ostariophysi/train.p' --k=6 --n_mimics=8 --modify='mutation' -output=../data/Fish/Test Files/Ostariophysi/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Ostariophysi' --out_dir='../data/Fish/Test Files/Ostariophysi'

Comparison Models:

- python EvaluateComparison.py --data_path='./data/Fish/Test Files/Ostariophysi/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Ostariophysi/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Ostariophysi/train.p' --method='GMM' --k=6

Test #5:

- python build_dp.py --data_path='../data/Fish/Test Files/Cypriniformes'
 python get_pairs.py --data_path='../data/Fish/Test Files/Cypriniformes/train.p' --k=6 --n_mimics=8 --modify='mutation' -output=../data/Fish/Test Files/Cypriniformes/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Cypriniformes' --out_dir='../data/Fish/Test Files/Cypriniformes'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cypriniformes/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cypriniformes/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cypriniformes/train.p' --method='GMM' --k=6

Test #6:

- 1. python build_dp.py --data_path='../data/Fish/Test Files/Cyprinidae'
- 2. python get_pairs.py --data_path='../data/Fish/Test Files/Cyprinidae/train.p'
 --k=6 --n_mimics=8 --modify='mutation' --output=../data/Fish/Test
 Files/Cyprinidae/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Cyprinidae' -out_dir='../data/Fish/Test Files/Cyprinidae'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cyprinidae/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cyprinidae/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cyprinidae/train.p' --method='GMM' --k=6

Test #7:

- python build_dp.py --data_path='../data/Bacteria/Test_Files'
- python get_pairs.py --data_path='../data/Bacteria/Test_Files/train.p' --k=6
 --modify='mutation' --output='../data/Bacteria/Test_Files/testing_data.p'
- python EvaluateDeLUCS.py --data_dir='../data/Bacteria/Test_Files' -- out_dir='../data/Bacteria/Test Files'

Comparison Models:

- python EvaluateComparison.py

 -data_path='../data/Bacteria/Test_Files/testing_data.p'
 method='Supervised'
 --k
- python EvaluateComparison.py
- --data_path='../data/Bacteria/Test_Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py
- --data_path='../data/Bacteria/Test_Files/train.p' --method='GMM' --k=6

Test #8:

- 1. python build_dp.py --data_path='../data/Bacteria/Proteo_Test_Files'
- 2. python get_pairs.py --data_path='../data/Bacteria/Proteo_Test_Files/train.p' --k=6 --modify='mutation'
 - --output='../data/Bacteria/Proteo_Test_Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Bacteria/Proteo_Test_Files' -out dir='../data/ProteoBacteria/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Bacteria/Proteo_Test _Files/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Bacteria/Proteo_Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py

 -data_path='../data/Bacteria/Proteo_Test_Files/train.p' --method='GMM' --k=6

Test #9:

- python build_dp.py --data_path='../data/Influenza-A/Test Files'
 python get_pairs.py --data_path='../data/Influenza-A/Test Files/train.p' -k=6 --modify='mutation' --output='../data/Influenza-A/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Influenza-A/Test Files' -out_dir='../data/Influenza-A/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Influenza-A/Test Files/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Influenza-A/Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path=../data/Influenza-A/Test Files/train.p' --method='GMM' --k=6

Test #10:

- python build_dp.py --data_path='../data/Dengue/Test Files'
 python get_pairs.py --data_path='../data/Dengue/Test Files/train.p' --k=6 -modify='mutation' --output='../data/Dengue/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Dengue/Test Files' -out_dir='../data/Dengue/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Dengue/Test Files/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Dengue/Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Dengue/Test Files/train.p' --method='GMM' --k=6

Test #11:

- python build_dp.py --data_path='../data/HBV/Test Files'
 python get_pairs.py --data_path='../data/HBV/Test Files/train.p' --k=6 --modify='mutation' --output='../data/HBV/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/HBV/Test Files' --out_dir='../data/HBV/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/HBV/Test Files/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/HBV/Test Files/train.p' --method='k-means++' --k=6
- 3. python EvaluateComparison.py --data_path='../data/HBV/Test Files/train.p' -method='GMM' --k=6

DeLUCS computational pipeline for running your own dataset:

1. Build the dataset:

```
python build_dp.py --data_path=<PATH_sequence_folder>
```

- Input: Folders with the sequences in FASTA format
- Output : file in the form (label, sequence, accession)

If the true label is unknown then place ALL the sequences in the same folder

2. Compute the mimics.

```
python get_pairs.py --data_path=<PATH_dataset> --k=6 --modify='mutation' --
output=<PATH_output_file>
```

- Input: file in the form (label, sequence, accession)
- Output : file in the form of (pairs, x_test, y_test).
- 3. Train the model.

If the true labels are unknown for your dataset and you want to use DeLUCS as a clustering tool without the assessment by means of the Hungarian algorithm, run:

```
\label{local_potential} python\ TrainDeLUCS.py\ --data\_dir=<PATH\_of\_computed\_mimics>\ --out\_dir=<OUTPURDIR>\ --n\_clusters=<expected\_number\_of\_clusters>
```

- Input: file in the form of (pairs, x_test).
- Output : Cluster assignment for each sequence in x_test.

If the "ground truth" is known for your dataset and you want to train DeLUCS and then evaluate its performance by means of the Hungarian algorithm, run:

python EvaluateDeLUCS.py --data_dir=<PATH_computed_mimics> --out_dir=<OUTPURDIR>

- Input: file in the form of (pairs, x_test, y_test).
- Output: Image with the confusion matrix.