狱

	ı
띬	
~	
浺	

* 11.12.#1.W	0010 A	十七二十二	n #m +/.	1-D1-D24
东北师范大学	2016年	在学 字期	H	试试布

课程名称:	试卷类型:	(A 卷/ B 卷)
深作为例:	17. 赤尖边•	

考试时间: 分钟 考试方式: 卷(开卷/闭卷)

(卷面总分100分,占总成绩的%)

题 号	_	11	111	•••••	总分
得分					
评卷人					复核人

评卷人	得分

一、选择题(5小题,每小题3分,共15分)

1、随机试验 E 为:统计某路段一个月中的重大交通事故的次数,A 表示事件"无重大交通 事故": B表示事件"至少有一次重大交通事故": C表示事件"重大交通事故的次数大于 1": D表示事件"重大交通事故的次数小于 2"则互不相容的事件是()。

- A、B与C B、A与D C、B与D D、C与D
- 2、每次试验的成功率为p(0 , 进行重复独立试验,直到第 <math>10 次试验才取得 4 次试 验成功的概率为()。
- A, $C_{10}^4 p^4 (1-p)^6$ C, $C_9^3 p^4 (1-p)^6$ C, $C_9^4 p^4 (1-p)^6$ D, $C_9^3 p^3 (1-p)^6$

- 3、同时抛掷3枚匀称的硬币,则恰好有两枚正面向上的概率为(
- A, 0.75 B, 0.25 C, 0.125
- $D_{s} = 0.375$
- 4、对于任意两个事件 A 、 B P(A-B)=()。

- $A \sim P(A) P(B)$
- B, P(A) P(AB)
- $C_{\Sigma} P(A) \cdot P(\overline{B})$
- D, P(A) P(B) + P(AB)

- 5、随机试验 E 为:统计某路段一个月中的重大交通事故的次数,A表示事件"无重大交通 事故": B表示事件"至少有一次重大交通事故": C表示事件"重大交通事故的次数大干 1": D表示事件"重大交通事故的次数小于 2"则不是对立关系的事件是()。
- A、 $A \ni B$ B、 $C \ni D$ C、 $A \ni C$ D、 $(A \cup C) \ni (B \cap D)$

评卷人	得分	
		二、填

[空(5小题,每小题3分,共15分)

- 1、设n个事件 A,A,\dots,A 互相独立,且 $P\{A_{\nu}\}=p,(K=1,2,\dots,n)$,则这n个事件至少有 一件不发生的概率是 .
- 2、一只袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果从每只袋中各 摸一只球,则摸到的一只是白球,一只是黑球的事件的概率等于。。。
- 3、 已知 $P(A) = \frac{1}{3}$, $P(B|A) = \frac{3}{7}$, $P(B) = \frac{3}{4}$, 则 $P(B|\overline{A}) = \underline{\hspace{1cm}}$.
- 4、 甲乙两人独立地向目标射击一次。他们的命中率分别为 0.75 及 0.6。现已知目标被命中, 则它是甲和乙共同射中的概率是
- 5、已知 P(A) = 0.1, P(B) = 0.3, P(A|B) = 0.2,则 $P(A|\overline{B}) = 0.2$

评卷人	得分

三、计算(4小题,每小题10分,共40分)

- 1、将一颗均匀的骰子掷两次,求至少一次出现4点的概率。
- 2、设事件 A,B 的概率分别为 $\frac{1}{5}$ 与 $\frac{1}{4}$,且 $A \subset B$,试求 $P(B\overline{A})$ 的值.
- 3、设有10个分币,其中2个伍分币,3个贰分币,5个壹分币,从中任意取出五个作为一次 随机试验,试验总数n恰是把所有可能情形各取到一次所需的次数,求下列事件出现的频率, (1)5个分币总值超过1角,(2)5个分币总值等于1角,(3)5个分币总值小于1角。
- 4、设A,B是两个随机事件,且知 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{2}$, $P(A|B) = \frac{1}{4}$,试求 $P(\overline{A}|\overline{B})$ 之

值。

评卷人	得分

四、证明(1小题,每小题10分,共10分)

1、证明"确实性原则" (sure-thing),即若 1>P(C)>0,且 $P(A|C)\geq P(B|C)$, $P(A|\overline{C})\geq P(B|\overline{C})$,则 $P(A)\geq P(B)$

评卷人	得分

五、应用(2小题,每小题10分,共20分)

- 1、开关使用 1800 次以上的概率为 0.2, 求三个开关在使用 1800 次以后最多只有一个损坏的概率。
- 2、袋中有5个白球,4个黑球,3个红球,每次任取一个,取后不放回,求连续取出若干个红球后,便取得白球的概率。