Auswertung

Ergebnisse

Windungszahl
$$N = (1020.0 \pm 1e - 08)\,1$$

Durchmesser
$$d = (233.0 \pm 1e - 08) \,\mathrm{mm}$$

Widerstand Spule
$$R_S = (64.1 \pm 0.05)$$
 ohm

ohmscher Widerstand $R_o = (10.1 \pm 0.05)$ ohm

Kapazität Kondensator $C = (0.001817 \pm 6e - 07)\,\mathrm{F}$

Widerstand Amperemeter $R_A = (10.4 \pm 0.05) \, \mathrm{ohm}$

Gesamtwiderstand $R_g = (84.6 \pm 0.09)$ 3
ohm

Frequenz f_S	Phasenverschiebung phi_S	$\operatorname{Strom} I_S$	Spannung U_S	Impedanz Z_{0S}
$(60.0 \pm 0.5) \mathrm{Hz}$	$(88.0 \pm 10.0) 1$	$(3.33 \pm 0.005) \mathrm{mA}$	$(4.47 \pm 0.005) \mathrm{V}$	$(1.3423 \pm 0.0026) 1000$ ohm
$(100.0 \pm 0.5) \mathrm{Hz}$	$(80.0 \pm 10.0) 1$	$(6.84 \pm 0.005) \mathrm{mA}$	$(4.46 \pm 0.005) \mathrm{V}$	$(0.652 \pm 0.0009) 1000$ ohm
$(130.0 \pm 0.5) \mathrm{Hz}$	$(77.0 \pm 10.0) 1$	$(11.8 \pm 0.005) \mathrm{mA}$	$(4.45 \pm 0.005) \mathrm{V}$	$(0.3771 \pm 0.0005) 1000$ ohm
$(150.0 \pm 0.5) \mathrm{Hz}$	$(69.0 \pm 10.0) 1$	$(18.2 \pm 0.005) \mathrm{mA}$	$(4.43 \pm 0.005) \mathrm{V}$	$(0.24341 \pm 0.00029) 1000$ ohm
$(170.0 \pm 0.5) \mathrm{Hz}$	$(51.0 \pm 10.0) 1$	$(30.9 \pm 0.005) \mathrm{mA}$	$(4.37 \pm 0.005) \mathrm{V}$	$(0.14142 \pm 0.00017) 1000$ ohm
$(180.0 \pm 0.5) \mathrm{Hz}$	$(34.0 \pm 10.0) 1$	$(39.9 \pm 0.005) \mathrm{mA}$	$(4.3 \pm 0.005) \mathrm{V}$	$(0.10777 \pm 0.00013) 1000$ ohm
$(185.0 \pm 0.5) \mathrm{Hz}$	$(19.0 \pm 10.0) 1$	$(44.1 \pm 0.005) \mathrm{mA}$	$(4.26 \pm 0.005) \mathrm{V}$	$(0.0966 \pm 0.00012) 1000$ ohm
$(190.0 \pm 0.5) \mathrm{Hz}$	$(4.0 \pm 10.0) 1$	$(46.3 \pm 0.005) \mathrm{mA}$	$(4.24 \pm 0.005) \mathrm{V}$	$(0.09158 \pm 0.00011) 1000 \text{ohm}$
$(195.0 \pm 0.5) \mathrm{Hz}$	$(-11.0 \pm 10.0) 1$	$(45.5 \pm 0.005) \mathrm{mA}$	$(4.24 \pm 0.005) \mathrm{V}$	$(0.09319 \pm 0.00012) 1000$ ohm
$(200.0 \pm 0.5) \mathrm{Hz}$	$(-23.0 \pm 10.0) 1$	$(42.3 \pm 0.005) \mathrm{mA}$	$(4.27 \pm 0.005) \mathrm{V}$	$(0.10095 \pm 0.00012) 1000$ ohm
$(210.0 \pm 0.5) \mathrm{Hz}$	$(-42.0 \pm 10.0) 1$	$(34.65 \pm 0.005) \mathrm{mA}$	$(4.34 \pm 0.005) \mathrm{V}$	$(0.12525 \pm 0.00015) 1000$ ohm
$(230.0 \pm 0.5) \mathrm{Hz}$	$(-61.0 \pm 10.0) 1$	$(22.7 \pm 0.005) \mathrm{mA}$	$(4.4 \pm 0.005) \mathrm{V}$	$(0.19383 \pm 0.00023) 1000$ ohm
$(260.0 \pm 0.5) \mathrm{Hz}$	$(-71.0 \pm 10.0) 1$	$(14.42 \pm 0.005) \mathrm{mA}$	$(4.43 \pm 0.005) \mathrm{V}$	$(0.3072 \pm 0.0004) 1000$ ohm
$(300.0 \pm 0.5) \mathrm{Hz}$	$(-74.0 \pm 10.0) 1$	$(10.04 \pm 0.005) \mathrm{mA}$	$(4.44 \pm 0.005) \mathrm{V}$	$(0.4422 \pm 0.0006) 1000$ ohm
$(350.0 \pm 0.5) \mathrm{Hz}$	$(-81.0 \pm 10.0) 1$	$(7.33 \pm 0.005) \mathrm{mA}$	$(4.43 \pm 0.005) \mathrm{V}$	$(0.6044 \pm 0.0008) 1000$ ohm
$(400.0 \pm 0.5) \mathrm{Hz}$	$(-83.0 \pm 10.0) 1$	$(5.84 \pm 0.005) \mathrm{mA}$	$(4.43 \pm 0.005) \mathrm{V}$	$(0.7586 \pm 0.0011) 1000$ ohm
$(460.0 \pm 0.5) \mathrm{Hz}$	$(-80.0 \pm 10.0) 1$	$(4.72 \pm 0.005) \mathrm{mA}$	$(4.42 \pm 0.005) \mathrm{V}$	$(0.9364 \pm 0.0015) 1000$ ohm

T	C4 I	C T7	T 7
Frequenz f_I	$\operatorname{Strom} I_I$	Spannung U_I	Impedanz Z_{0I}
$(60.0 \pm 0.5) \mathrm{Hz}$	$(30.08 \pm 0.005) \mathrm{mA}$	$(5.08 \pm 0.005) \mathrm{V}$	$(0.16888 \pm 0.00017) 1000 \text{ohm}$
$(100.0 \pm 0.5) \mathrm{Hz}$	$(19.83 \pm 0.005) \mathrm{mA}$	$(5.12 \pm 0.005) \mathrm{V}$	$(0.25819 \pm 0.00027) 1000$ ohm
$(140.0 \pm 0.5) \mathrm{Hz}$	$(14.59 \pm 0.005) \mathrm{mA}$	$(5.13 \pm 0.005) \mathrm{V}$	$(0.3516 \pm 0.0004) 1000$ ohm
$(180.0 \pm 0.5) \mathrm{Hz}$	$(11.48 \pm 0.005) \mathrm{mA}$	$(5.13 \pm 0.005) \mathrm{V}$	$(0.4469 \pm 0.0005) 1000$ ohm
$(220.0 \pm 0.5) \mathrm{Hz}$	$(9.44 \pm 0.005) \mathrm{mA}$	$(5.13 \pm 0.005) \mathrm{V}$	$(0.5434 \pm 0.0007) 1000$ ohm
$(260.0 \pm 0.5) \mathrm{Hz}$	$(8.0 \pm 0.005) \mathrm{mA}$	$(5.13 \pm 0.005) \mathrm{V}$	$(0.6413 \pm 0.0008) 1000$ ohm
$(300.0 \pm 0.5) \mathrm{Hz}$	$(6.94 \pm 0.005) \mathrm{mA}$	$(5.12 \pm 0.005) \mathrm{V}$	$(0.7378 \pm 0.0009) 1000$ ohm
$(340.0 \pm 0.5) \mathrm{Hz}$	$(6.12 \pm 0.005) \mathrm{mA}$	$(5.12 \pm 0.005) \mathrm{V}$	$(0.8366 \pm 0.0011) 1000$ ohm
$(380.0 \pm 0.5) \mathrm{Hz}$	$(5.47 \pm 0.005) \mathrm{mA}$	$(5.11 \pm 0.005) \mathrm{V}$	$(0.9342 \pm 0.0013) 1000$ ohm
$(420.0 \pm 0.5) \mathrm{Hz}$	$(4.94 \pm 0.005) \mathrm{mA}$	$(5.1 \pm 0.005) \mathrm{V}$	$(1.0324 \pm 0.0015) 1000$ ohm
$(460.0 \pm 0.5) \mathrm{Hz}$	$(4.5 \pm 0.005) \mathrm{mA}$	$(5.1 \pm 0.005) \mathrm{V}$	$(1.1333 \pm 0.0017) 1000$ ohm

Fehlerformeln

$$\sigma_{R_g} = \sqrt{\sigma_{RA}^2 + \sigma_{RS}^2 + \sigma_{Ro}^2}$$

$$\sigma_{Z_{0I}} = \sqrt{\frac{{\sigma_{UI}}^2}{{I_I}^2} + \frac{{U_I}^2}{{I_I}^4} {\sigma_{II}}^2}$$

$$\sigma_{Z_{0S}} = \sqrt{\frac{{\sigma_{US}}^2}{{I_S}^2} + \frac{{U_S}^2}{{I_S}^4} {\sigma_{IS}}^2}$$