[프로젝트 목적] Cold Brew Coffee Automation System

주 목적

1 Auto Valve Control <---- Coffee Ground Analysis

Image processing

optional

mandatory

How 1 : Solenoid Valve

How 2 : Valve with Motor

on/off control (<100ms)

Motor – Water drop: P control

water drop volume calculation at different height

Water drop volume calculation at different height

2 Estimated Time Display

Estimated Time = interval * (current water volume / water drop volume)

water drop volume calculation at different height

Current water volume calculation

How 1 : Distance sensor How 2 : weight sensor

[프로젝트 구성도] Cold Brew Coffee Automation System

[전체 H/W 개략도]

프로젝트 1차

프로젝트 2차

[MCU Peripheral]

[프로그램 구성]

[WIRE , PCB 구성]

프로젝트 1차

프로젝트 2차

[프로젝트 일정]

방향설정, 자료 조사 부품 선정 및 구매 Peripheral 제어 코드 수정 Water Valve 기구 설계 Ethernet + freeRTOS 코딩

3/26 ~ 4/26

Mon	Tue	Wed	Thu	Fri
25	26	27	28	29
1	2	3	4	5
				\Longrightarrow
8	9	10	11	12
15	16	17	18	19
22	23	24	25	26

[WEEK 2 : 진행 상황]

	프로젝트 2 차 : 기구	Hide completed items	Delete		
83%	<u>밸브 스텝모터: 사이 샤프트 구매 > 3D 프린팅</u> You have unsaved edits on this field. <u>View edits</u> - <u>Discard</u>				
~	<u> </u>				
~	<u> 봳브 스텝모터 : 모터 위치 선정 : 축변경없이 다이렉트로 물림</u>				
	밸브 : 정밀 밸브 회전 반경 확인(1초 1드랍 ~ 6초 1드랍 까지) : 몇 바퀴도나 (밸브 하단부 모양에 따라 드랍 차이나기때문에 6mm 튜브 끼고 테스트) 최대 회전반경은 11바퀴				
	기판 위치 선정				
~	<i>케이블 연결 통로 구성 방법 찾기(전기 설계) : 사각 몰드 (덕트</i>) 구매 완료 15x11mm				
~	<i>로드셀 위치 선정 : 막대모양사용, 물통 지지대 밑에 위치함.</i>				
~	로드셀: 마대모양으로할지 체중계에들어가는형태로할지: 마대모양으로선정 함(추정 무게 차이 때문. 체중계모델은 최소단위40g정도이고 단독으로쓰기에 는 기구설계에대함)				
	드랍 카운트 센서 위치 선정 + 고정 기구 찾기				
~	물통: 기구 바깥에서 물 넣을 수 있게 + 단열 구조 어떻게 할 것인지 : 기구바 깔으로 물통 뺀다.				
~	도어: 한지 위치 선정: 2개 사용, 기존과 같은 위치				
~	도어: 도어스위치 위치 개수 및 위치 선정: 도어 맨 위에 1개 위치하여 배선 용 이하게 함				
~	<i>도어 : 도어스위치 배선 방법 : 덕트 사용</i>				
~	UV LED : 위치 선정 : 윈두컵 고정판 밑으로?				
~	UV LED : 베선 방법 : 사각 덕트 15x11로 정리				
~	LCD : 도어 내부 배선 공간 확보 문제 : 도어 최상단에 위치시켜 위로 뺀다.				
~	<u>실리콘 마개 : 물 새는지 확인 : 누수없음</u>				
. /	오드세서 : 의치 서저 배서 : 배서던트 사츠티에 의치				

\subseteq	프로젝트 2차 : 프리페럴	Hide completed items	Delete	
71%				
~	<u>스텝모터 : 구동 최소 각도 값 확인 : 28BYJ 48</u> 있다. 기어드모터이다.)스펙상 32스텝/1회전(32*64 - 2048스텝.(1회전당) 임. 즉 0.176도/80	이나, 기어드모터라서 이론성		
~	<u>스텝모터 : 드라이브없이 직접 구동으로 할 수</u> ULN2003 필요. < <u>달링턴IC(up to 500mA,</u> wit		l .	
~	로드셀: HX711 드라이버 코드 짜서 구동 확인	2/		
✓	UV LEC : 구동 회로 따로 필요할지 확인. < =	소모전류. 30mA. 필요없음		
	IR : 리모콘 버튼 인식 코드 수정 : 리모콘 시그 트화 하면서 어떤키눌럿는지를 저장	1널 비트화 & 저장 -> 시그널	비	
~	로드셀: HX711에 2CH 연결해서 각각 값 받을 수 있는지 확인: PD_SCK에 주 는 필스 수로 제어가능하다. PULSE 25: CH1(gain 128), PULSE 26: CH2, PULSE 27(gain 32) : CH1(gain 64)			
	로드셀 무게0~1kg 저울 구매하여 측정값과 비	교, 측정 신뢰 최소 단위 확	인.	
	Add an item			

기구 : 연결부 3D 프린팅

로드셀: 캐패시터 달아 전원 안정화, 저울 측정,

무게 최소 단위 선정

[WEEK 2]

발생문제1

발생문제2

구매 마개 누수 발생 → 타 업체 재구매

Fig.2 Data output, input and gain selection timing and control IC HX711 프로토콜

nx711 adc result = 7671475 x711 adc result = 7671399 nx711 adc result = 7671440 1x711 adc result = 7671367 x711 adc result = 7671401 nx711 adc result = 7671377 x711 adc result = 7671402 nx711 adc result = 7671433 nx711 adc result = 7671481 1x711 adc result = 7671428 nx711 adc result = 7671373 nx711 adc result = 7671366 nx711 adc result = 7671355 nx711 adc result = 7671254 nx711 adc result = 7671286 nx711 adc result = 7671340 nx711 adc result = 7671298 nx711 adc result = 7671351 nx711 adc result = 7671323

결과값 출력

[week 2]

발생문제3

기본값 계속 상승 : 전원부 캐패시터 장착

```
x711 adc result = 7671475
hx711 adc result = 7671399
hx711 adc result = 7671440
hx711 adc result = 7671367
hx711 adc result = 7671401
hx711 adc result = 7671377
hx711 adc result = 7671402
hx711 adc result = 7671337
hx711 adc result = 7671433
hx711 adc result = 7671481
hx711 adc result = 7671428
hx711 adc result = 7671373
hx711 adc result = 7671383
hx711 adc result = 7671353
hx711 adc result = 7671366
hx711 adc result = 7671355
hx711 adc result = 7671286
hx711 adc result = 7671359
hx711 adc result = 7671331
hx711 adc result = 7671340
hx711 adc result = 7671351
hx711 adc result = 7671323
```

기본 무게 시

발생문제4

값이 계속 변동됨
-> 신뢰 최소 단위 선정.
(저울 측정값과 비교, 값 선형 확인)

```
hx711 adc result = 9101302
hx711 adc result = 9100346
hx711 adc result = 9096285
hx711 adc result = 9095673
hx711 adc result = 9105018
hx711 adc result = 9115846
hx711 adc result = 9118722
hx711 adc result = 9119426
hx711 adc result = 9119616
hx711 adc result = 9118513
hx711 adc result = 9124651
hx711 adc result = 9123899
hx711 adc result = 9128105
hx711 adc result = 9132453
hx711 adc result = 9136970
hx711 adc result = 9132552
hx711 adc result = 9131279
hx711 adc result = 9129141
hx711 adc result = 9128277
hx711 adc result = 9124517
hx711 adc result = 91173
```

물통 올릴 시

[week 2]

계획: TO-DO'S

- < 커피 원두 관련 >
- * 색 판별 기계, 농도 측정 기계 구비
- *로스팅 색 관계
- * 로스팅색 분말 두께 추출농도 관계 실험 방법

< 기구 관련 >

Water Valve 부 : 모터, shaft, Drop sensor, valve 를 분리할 박스 제작

< 부품 관련 >

TEC 모듈 필요 전력 테스트. 10분 내에 20도 -> 10도 쿨링. 12V 0.8A부터.

<회로>

(차후 넣는다면..) 220VAC 회로 + 보호 회로

< MCU >

- freeRTOS 로 변경
- ETHERNET LWIP
- IR SENSING: 전방일치 검토하기 -> 일부 검토 + 조건문 (SWITCH 문)으로 어떤 버튼인지 확인