RF EXPOSURE REPORT

Report No.: 15070303-FCC-H2
Supersede Report No.: N/A

Applicant SynCrown Inc.				
Product Name	oduct Name Mobile Thermal Printer			
Model No.	SMP-M240			
Test Standard	FCC 2.1091			
Test Date	May 06, 2015			
Issue Date	May 08, 2015			
Test Result	Test Result Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
Wiky.	am Chris You			
Wiky Ja Test Engir	200 (190 (190 (190 (190 (190 (190 (190 (1			

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	15070303-FCC-H2
Page	2 of 9

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	15070303-FCC-H2
Page	3 of 9

This page has been left blank intentionally.

Test Report	15070303-FCC-H2
Page	4 of 9

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3	TEST SITE INFORMATION	5
J.	TEST SITE IN CHARTON	•••
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
E	FCC §2.1091 - RADIOFREQUENCY RADIATION EXPOSURE EVALUATION	-
ວ.	FCC 92. 1091 - RADIOFREQUENCT RADIATION EXPOSURE EVALUATION	/
5.1	APPLICABLE STANDARD	7
52	TEST RESULT	S

Test Report	15070303-FCC-H2
Page	5 of 9

1. Report Revision History

Report No.	Report Version	Description	Issue Date
15070303-FCC-H2	NONE	Original	May 08, 2015

2. Customer information

Applicant Name	SynCrown Inc.	
Applicant Add	704, EnC dream-tower, 45 Gasan Digital 1st road, GeumCheon, Seoul, Korea	
Manufacturer	Xiamen Hanin Electronic Technology Co., Ltd.	
Manufacturer Add	Room 305A, Angye Building, Pioneering Park, Torch High-tech Zone, Xiamen	
	China	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong	
	China 518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Report	15070303-FCC-H2
Page	6 of 9

4. Equipment under Test (EUT) Information

Description of EUT:	Mobile Thermal Printer

Main Model: SMP-M240

Serial Model: N/A

Date EUT received: April 28, 2015

Antenna Gain: Bluetooth/BLE: 2 dBi

Type of Modulation: Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK

RF Operating Frequency (ies):

Bluetooth: 2402-2480 MHz

BLE: 2402-2480 MHz

Bluetooth: 79CH Number of Channels:

BLE: 40CH

Port: USB Port, Power Port

Battery:

Model: L002

Spec: 7.4V 1500mAh

Input Power: Adapter:

Model: P6120050 US

Input: AC 100-240V; 50/60Hz 0.2A

Output: DC 12.0V; 0.5A

Trade Name: SYNCROWN

FCC ID: 2AEPCSMP-M240

Test Report	15070303-FCC-H2
Page	7 of 9

5. FCC §2.1091 - Radiofrequency radiation exposure evaluation

5.1 Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	*(180/f²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	1	f/1500	30			
1500-100,000	/	1	1.0	30			

f = frequency in MHz

^{* =} Plane-wave equivalent power density

Test Report	15070303-FCC-H2
Page	8 of 9

5.2 Test Result

Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Tune Up Power (dBm)
	GFSK	Low	2402	-1.632	-2±1
		Mid	2441	-2.044	-2±1
		High	2480	-2.864	-2±1
Bluetooth	π /4 DQPSK	Low	2402	-1.529	-2±1
Output		Mid	2441	-1.848	-2±1
power		High	2480	-2.693	-2±1
	8-DPSK	Low	2402	-1.220	-2±1
		Mid	2441	-1.653	-2±1
		High	2480	-2.406	-2±1
BLE	GFSK	Low	2402	-2.751	-3±1
Output		Mid	2441	-3.102	-3±1
power		High	2480	-3.893	-3±1

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For the antenna manufacturer provide only used limited to ERP/EIRP or radiated spurious emission test. The MPE evaluation as below:

Maximum output power at antenna input terminal: -1.0 (dBm)

Test Report	15070303-FCC-H2
Page	9 of 9

Maximum output power at antenna input terminal: 0.794 (mW)

Prediction distance: >20 (cm)

Predication frequency: 2402 (MHz) low frequency

Antenna Gain (typical): 2 (dBi)

Antenna Gain (typical): 1.585 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.00025(mW/cm²)

MPE limit for general population exposure at prediction frequency: 1.0 (mW/cm²)

 $0.00025(\text{mW/cm}^2) < 1.0 \text{ (mW/cm}^2)$

Result: Pass