

Νευρωνικά Δίκτυα 2016-2017

3η εργαστηριακή άσκηση: Αυτο-οργανούμενοι Χάρτες (Self Organizing Maps – SOMs)

Μη - Επιβλεπόμενη μάθηση

Το πρόβλημα του διαχωρισμού των φρούτων

Δύο βασικά χαρακτηριστικά : σχήμα και χρώμα

Τι είναι SOM;

□ Self-Organizing Map (SOM) ή Αυτοοργανούμενοι Χάρτες ή Kohonen Map

Teuvo Kohonen

- Ένα μοντέλο μη-επιβλεπόμενης μάθησης με χρήσεις στην :
 - Ομαδοποίηση δεδομένων
 - Οπτικοποίηση δεδομένων
 - Μείωση διάστασης δεδομένων

Το νευρωνικό δίκτυο δε μαθαίνει μέσω παραδειγμάτων (όπως στην επιβλεπόμενη μάθηση) αλλά έχοντας όλα τα δεδομένα εισόδου αποφασίζει μόνο TOU

Αρχιτεκτονική SOM

- □ Νευρωνικό Δίκτυο Ανταγωνιστικής Μάθησης
- Στρώμα Εισόδου : Πρότυπα που περιγράφονται από ένα διάνυσμα χαρακτηριστικών

$$x_i = [x_1, x_2, ..., x_D]^T$$

Στρώμα Εξόδου: Πλέγμα νευρώνων που περιγράφονται από ένα διάνυσμα βαρών (ίδιο με αυτό των προτύπων) και από τη θέση τους στο πλέγμα

$$\mathbf{w_j} = [w_{j1}, w_{j2}, \dots, w_{jD}]^T$$

Διαδικασία Εκπαίδευσης (1)

Ανταγωνισμός

Για κάθε πρότυπο Ρ
στην είσοδο βρίσκω
ποιος νευρώνας το
"περιγράφει" καλύτερα

$$x_i = [x_1, x_2, ..., x_D]^T$$

$$\mathbf{w}_{j} = [\mathbf{w}_{j1}, \mathbf{w}_{j2}, \dots, \mathbf{w}_{jD}]^{T}$$

Nευρώνας-νικητής:

$$j^* = arg min_j || \mathbf{x}_i - \mathbf{w}_j ||$$

Διαδικασία Εκπαίδευσης (2)

Συνεργασία:

 Εκτός από το νευρώνα νικητή ενδιαφέρομαι και για τους νευρώνες της γειτονιάς του στο πλέγμα

α(j)* → Συντελεστής καθορισμού της γειτονιάς του νευρώνα-νικητή *j**βάσει της απόστασης των νευρώνων στο πλέγμα

Διαδικασία Εκπαίδευσης (3)

Ανταμοιβή/Ανανέωση:

Ανανεώνω τα βάρη του νευρώνα-νικητή και των νευρώνων της γειτονιάς του, ώστε να "πλησιάζουν" περισσότερο το πρότυπο χί.

$$w_{j,k} = w_{j,k} + \eta \cdot \alpha(j^*) \cdot (x_{i,k} - w_{j,k})$$
η: ρυθμός μάθησης
κ:1..D (πλήθος χαρακτηριστικών)
j:1..N (πλήθος νευρώνων)

- Επαναλαμβάνω:
 - για όλα τα πρότυπα εισόδου (i : 1..P),
 - για κάποιον αριθμό εποχών

Παράδειγμα

- Πρότυπα διάστασης 2.
- Πλέγμα νευρώνων 5x5 με διάνυσμα βαρών διάστασης
 2.

Σχόλια

βεβαιωθείτε πως κατανοείτε πλήρως τις παρακάτω προτάσεις

Οι νευρώνες εκπαιδεύονται ώστε να "αποκρίνονται" επιλεκτικά σε κάποια από τα πρότυπα της εισόδου Η εκπαίδευση γίνεται ώστε οι γειτονικοί νευρώνες στο πλέγμα να αποκρίνονται σε παρόμοια πρότυπα της εισόδου Επιτυγχάνεται μέσω της ανανέωσης βαρών του νευρώνα-νικητή για κάθε πρότυπο και της "γειτονιάς" του στο πλέγμα Φανταστείτε το πλέγμα νευρώνων στην έξοδο ως ένα "ελαστικό" δίκτυο που προσπαθεί να "μοιάσει" στα πρότυπα εισόδου □ Έτσι, ο χάρτης στην έξοδο, διατηρεί τις τοπολογικές σχέσεις των προτύπων εισόδου

Τι πετυχαίνω : 1)Ομαδοποίηση

Τι πετυχαίνω : 2) Μείωση διάστασης

Φανταστείτε στην είσοδο 500πρότυπα με 1000 χαρακτηριστικά το καθένα

$\int x_{1,1}$	$x_{1,2}$	• • •	$x_{1,1000}$
$x_{2,1}$	$X_{2,2}$	• • •	$x_{2,1000}$
•••	• • •	• • •	• • •
$x_{500,1}$	$x_{500,2}$	• • •	<i>x</i> _{500,1000} _

Χρησιμοποιώντας ένα SOM 6x6 καταφέρνουμε να αναπαραστήσουμε 500 πρότυπα στον 1000-διάστατο χώρο με 36 νευρώνες στον 2-διάστατο χώρο

Παραδείγματα οπτικοποίησης

 Υπάρχουν διάφορες τεχνικές οπτικοποίησης του πλέγματος ανάλογα με τις τιμές των βαρών των διαφόρων χαρακτηριστικών των νευρώνων

Απεικόνιση αριθμού προτύπων ανά νευρώνα

Μπλε -> Χαμηλή Τιμή Κόκκινο → Υψηλή Τιμή

Οπτικοποίηση με τον U-matrix

<u>Unified Distance Matrix</u>, <u>U-matrix</u>

□ Για κάθε νευρώνα υπολογίζω το μέσο όρο των αποστάσεών του από τους γειτονικούς του και τον χρωματίζω ανάλογα με το μέγεθος της τιμής αυτής

Μπλε -> Χαμηλή Τιμή Κόκκινο → Υψηλή Τιμή

Οπτικοποίηση πραγματικών δεδομένων : Κατάταξη των χωρών ανάλογα με το επίπεδο φτώχειας

Poverty map

Άλλες χρήσεις των δισδιάστατων Αυτοοργανούμενων Χαρτών

Πρόβλημα περιοδεύοντος πωλητή

Εισαγωγή στην άσκηση

- Υλοποίηση ενός απλού μοντέλου SOM.
- Μελέτη και ανάλυση ιδιοτήτων, δυνατοτήτων και επιδόσεων SOM σε διάφορα σύνολα δεδομένων.

1. Κατασκευή SOM

SomCreate: Δημιουργία πλέγματος (αριθμός νευρώνων, τοπολογία) και αρχικοποίηση των βαρών σε τυχαίες (όχι εντελώς) τιμές

SomTrainParameters: Καθορισμός των παραμέτρων της εκπαίδευσης (ρυθμός μάθησης, αριθμός εποχών)

SomOutput: Εντοπίζεται ο νευρώνας-νικητής

SomActivation: Καθορίζεται η γειτονιά του νευρώνανικητή

SomUpdate: Ανανεώνει (σε κάθε εποχή) τα βάρη των χαρακτηριστικών των προτύπων εισόδου

SomTrain: Βασική συνάρτηση εκπαίδευσης του SOM

ΠΡΟΣΟΧΗ στις μεταβλητές που πρέπει να δηλωθούν global

1. Κατασκευή SOM... αναλυτικά

```
load ClusterPatterns;
minMax = ...; gridSize = [10 10];
SomCreate(minMax, gridSize);
orderLR = 0.9; orderEpochs = 250; tuneLR = 0.1;
SomTrainParameters(...);
SomTrain(Patterns);
    ➡Υπολογισμός βήματος LR, γειτονιάς;
      Για όλες τις εποχές (orderEpochs)
        Για όλα τα πρότυπα
               SomUpdate (...)
                      SomActivation (...)
                            SomOutput (...)
%Οπτικοποίηση για δεδομένα 2-διαστάσεων
figure; plot2DSomData(Patterns);
%Οπτικοποίηση για δεδομένα διάστασης > 2
figure; somShow (IW, gridSize); %IW πίνακας βαρών νευρώνων
```

2. Εφαρμογή σε απλά σύνολα δεδομένων

- Σύνολα δεδομένων
 - EightData,
 - QuestionData,
 - Cities,
 - GroupData
- □ Πειραματισμός με παραμέτρους του SOM.
- □ Απεικόνιση (plot2DSomData / U-matrix).
- □ Επιβεβαίωση ιδιοτήτων του SOM.

3. Εφαρμογή σε δεδομένα κειμένου

- □Εξαιρετικά δύσκολη η αποδοτική αναπαράσταση κειμένων (διάσταση,αραιότητα).
- □ Χρησιμοποιείται το μοντέλο Bag-Of-Words (αγνοείται η σειρά των λέξεων και με ενδιαφέρει μόνο η συχνότητα εμφάνισής τους).
- Προεπεξεργασία : Αφαίρεση κοινών-λέξεων (stopwords), αφαίρεση καταλήξεων κλπ.
- □ Υπολογισμός συχνοτήτων εμφάνισης κάθε λέξης σε κάθε κείμενο.

Αναπαράσταση εγγράφων

- Μία συλλογή από Νέγγραφα μπορεί να αναπαρασταθεί από έναν πίνακα που γραμμές έχει τα έγγραφα και στήλες τους όρους/λέξεις (Vector Space Model, Salton).
- □ Κάθε όρος του πίνακα δείχνει το "βάρος" του όρου στο έγγραφο. (Το 0 σημαίνει πως ο όρος δεν υπάρχει στο συγκεκριμένο έγγραφο).

Υπολογισμός βαρών όρων – Term Frequency (TF)

- □ Οι πιο συχνοί όροι (λέξεις) ενός εγγράφου είναι και πιο σημαντικοί:

	service	photography	utility	fun	software	art	imported	list	apple	resource
doc1	2	0	1	0	1	0	2	5	0	4
doc2	1	2	0	1	4	1	1	7	1	1
doc3	0	4	2	0	0	0	0	3	1	1

 Κανονικοποιώ τη συχνότητα του όρου διαιρώντας με το άθροισμα όλων των συχνοτήτων

$$tf_{i,j} = \frac{f_{i,j}}{\sum_{i} f_{i,j}}$$

Υπολογισμός βαρών όρων – Inverse Document Frequency (IDF)

- Όροι (λέξεις) που εμφανίζονται σε πολλά διαφορετικά έγγραφα είναι λιγότερο ενδεικτικοί (και σημαντικοί)
 - $df_i → αριθμός των εγγράφων που περιέχουν τον όρο$ *i*.

$$idf_i = \log\left(\frac{N}{df_i}\right)$$

 $idf_i = log\left(\frac{N}{df_i}\right)$ $N \rightarrow συνολικός αριθμός εγγράφων$

- Ο λογάριθμος χρησιμοποιείται για να υπολογιστεί τιμή ανάλογη με τις τιμές του tf.
- □ Η τιμή idf ενός όρου δείχνει τη "διακριτική" ικανότητα του όρου

•	service	photography	utility	fun	software	art	imported	list	apple	resource
tf(doc1)	0.133	0.000	0.067	0.000	0.067	0.000	0.133	0.333	0.000	0.267
tf(doc2)	0.053	0.105	0.000	0.053	0.211	0.053	0.053	0.368	0.053	0.053
tf(doc3)	0.000	0.364	0.182	0.000	0.000	0.000	0.000	0.273	0.091	0.091
idf	0.176	0.176	0.176	0.477	0.176	0.477	0.176	0	0.176	0

Υπολογισμός βαρών TF-IDF

□ Τα βάρη των όρων στα έγγραφα υπολογίζονται ως το γινόμενο *tf-idf*.

$$w_{i,j} = tf_{i,j} \times idf_i$$

□Έτσι, όροι που εμφανίζονται συχνά σε ένα έγγραφο αλλά όχι τόσο στα υπόλοιπα, θα έχουν μεγάλο βάρος.

	service	photography	utility	fun	software	art	imported	list	apple	resource
w(doc1)	0.023	0.000	0.012	0.000	0.012	0.000	0.023	0.000	0.000	0.000
w(doc2)	0.009	0.019	0.000	0.025	0.037	0.025	0.009	0.000	0.009	0.000
w(doc3)	0.000	0.064	0.032	0.000	0.000	0.000	0.000	0.000	0.016	0.000

Εφαρμογή στο σύνολο δεδομένων NIPS500

- Δίνονται 500 έγγραφα.
 Δίνεται το πλήθος των εμφανίσεων κάθε όρου (σύνολο 8096) σε κάθε ένα από τα 500 έγγραφα.
- □ Πίνακας *terms* : περιέχει τα ονόματα των 8096 όρων.
- □ Πίνακας *titles*: περιέχει τους τίτλους των 500 εγγράφων.
- □ Απαιτείται προεπεξεργασία για την κατασκευή του πίνακα *tf-idf*.
- Δεν απαιτείται άλλη προεπεξεργασία.

Ζητούμενα

- □Εκπαίδευση αυτο-οργανούμενου χάρτη για το NIPS500 για:
 - Πλέγμα → εξαγωνικό
 - Ρυθμός μάθησης → Από 0.9 έως 0.1,
 - Εποχές → 500-1000,
 - Γειτονιά → όπως στα προηγούμενα.
- □Ενδεικτική ομαδοποίηση νευρώνων με χρήση του πίνακα U-matrix.
- □Εντοπισμός των πιο σημαντικών όρων ανά νευρώνα.

Παραδοτέα

- **ENA** αρχείο συμπιεσμένης μορφής (.zip, .rar, .gz, .tar κλπ) με:
 - τον κώδικα σας (τα δικά σας m-files και ό,τι άλλο χρειάζεται για να τρέξει η άσκησή σας),
 - μία αναφορά στην οποία θα περιγράφετε πως δουλέψατε σε κάθε βήμα. Αναλυτικότερα:
 - για το α' μέρος : οποιαδήποτε σχόλια θεωρείτε χρήσιμα για την κατασκευή των συναρτήσεων του SOM, πως επιλέξατε κάθε πλέγμα και τις παραμέτρους, κατάλληλα σχήματα που να φαίνεται πως αποδίδει το SOM στα απλά σύνολα δεδομένων EightData, QuestionData,
 - για το β' μέρος : την plot2DSomData για το σύνολο Cities και τις παρατηρήσεις που περιγράφονται στην εκφώνηση,
 - για το γ' μέρος : U-matrix για το σύνολο GroupData και πως αποδείξατε την ιδιότητα του SOM που περιγράφεται στην εκφώνηση,
 - για το δ' μέρος : πως καταλήξατε στην επιλογή παραμέτρων (πλέγμα κλπ) για το NIPS500 και πλήρεις απαντήσεις στις ερωτήσεις,
 - οποιοδήποτε άλλο σχόλιο (ή παρατήρηση) θεωρείτε σημαντικό.