

PRÉSENTATION DU CLUSTER MUSE

CYCLE DE FORMATION MESO@LR 7 NOVEMBRE 2019

Baptiste CHAPUISAT

QU'EST CE QU'UN CLUSTER HPC

Une machine unique pour l'utilisateur

LE CLUSTER MUSE

- 308 nœuds de calcul Dell PowerEdge C6320
 - bi processeurs Intel Xeon E5-2680 v4 2,4 Ghz (broadwell)
 - 8624 cœurs
 - 128 Go RAM par nœuds
 - 280 Tflops Linpack
- 1 Po de stockage rapide
- 350 To de stockage pérenne
- Réseau d'interconnexion Intel OmniPath 100 Gb/s
- Pas d'accélérateur
- 2 nœuds épais : 80 cœurs, 1To de RAM

HÉBERGEMENT CINES

https://my.matterport.com/show/?m=zaXMRypj7Hw

CONNEXION AU SERVEUR FRONTAL

- Depuis Linux
 - [chapuis@local ~]\$ ssh -X chapuis@muse-login.hpc-lr.univ-montp2.fr
- Depuis MacOS X
 Pas d'interface X11 par défaut

http://xquartz.macosforge.org/landing/

CONNEXION SSH DEPUIS WINDOWS

PuTTY

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

CONNEXION SSH DEPUIS WINDOWS

ming http://www.straightrunning.com/XmingNotes/

ENVIRONNEMENT UTILISATEUR

- Deux serveurs en frontal (muse-login[01-02])
 - Linux CentOS 7.2
- Espace de stockage pérenne avec quota de groupe
 - /home/\$USER (espace utilisateur)
 - /work/\$GROUP (espace groupe)

Attention au groupe multiple!

- Espace de calcul sans quota (durée de validité)
 - /scratch/\$USER (espace utilisateur)

ENVIRONMENT MODULE

- Environment module permet de configurer l'environnement utilisateur.
- Adapté aux environnements multiutilisateur.
- Modifie les variables d'environnement.
- Permet de faire cohabiter plusieurs versions d'un même logiciel.

ENVIRONMENT MODULES

- Format de la commande:
 - module [paramètre] < nom_du_module>
 - avail : liste des modules disponibles
 - show: affiche les informations d'un module
 - add / load : charge un module
 - rm / unload : décharge un module
 - switch / swap : remplace un module
 - list : liste des modules chargés
 - purge : décharge tous les modules
 - help
- https://modules.readthedocs.io/en/latest/

ENVIRONMENT MODULES

Structure arborescente des modules sur muse.

```
chapuis@muse-login01:~
                                                                                                                                                                                 chapuis@muse-login01 ~]$ module av
                                                                         -- /usr/share/Modules/modulefiles --
           module-git module-info modules
                                                            use.own
                                                                       /trinity/shared/modulefiles/modulegroups
           cv-advanced cv-local
                                                                        /trinity/shared/modulefiles/cv-standard --
R/3.3.1
                                    gcc/6.1.0
                                                                         hdf5/openmpi/icc16/1.8.17
                                                                                                             intel/mpi/64/2016.3.210
                                                                                                                                                  mvapich2/psm2/icc16/2.2rc2
blas/3.6.0
                                    gdb/7.11
                                                                         hwloc/1.11.2
                                                                                                             intel/runtime/32/2016.3.210
                                                                                                                                                  numpy/py27/1.11.2
coost/1.61.0 (default)
                                                                                                             intel/runtime/64/2016.3.210
                                                                                                                                                  openblas/0.2.18 (default)
                                    git/2.9.3
                                                                         intel/advisor/32/2016.3.210
oost/icc16/1.61.0
                                    hdf5/1.8.17
                                                                         intel/advisor/64/2016.3.210
                                                                                                             intel/tbb/32/2016.3.210
                                                                                                                                                  openmpi/2.0.1
poost/impi/icc16/1.61.0
                                    hdf5/gcc49/1.8.17 (default)
                                                                         intel/clck/64/2016.3.210
                                                                                                             intel/tbb/64/2016.3.210
                                                                                                                                                  openmpi/icc16/2.0.1
boost/mvapich2/1.61.0
                                    hdf5/gcc53/1.8.17
                                                                         intel/clck/mic/2016.3.210
                                                                                                             intel/vtune/32/2016.3.210
                                                                                                                                                  openmpi/psm2/2.0.1
boost/mvapich2/icc16/1.61.0
                                    hdf5/gcc61/1.8.17
                                                                         intel/compiler/32/2016.3.210
                                                                                                             intel/vtune/64/2016.3.210
                                                                                                                                                  openmpi/psm2/gcc49/2.0.1(default)
boost/openmpi/1.61.0
                                    hdf5/icc16/1.8.17
                                                                         intel/compiler/64/2016.3.210
                                                                                                             lapack/3.6.1
                                                                                                                                                  openmpi/psm2/gcc53/2.0.1
boost/openmpi/icc16/1.61.0
                                    hdf5/impi/icc16/1.8.17
                                                                         intel/daal/32/2016.3.210
                                                                                                                                                  openmpi/psm2/gcc61/2.0.1
make/3.6.0(default)
                                    hdf5/mvapich2/1.8.17
                                                                         intel/daal/64/2016.3.210
                                                                                                             mellanox/fca/2.5
                                                                                                                                                  openmpi/psm2/icc16/2.0.1
                                                                                                                                                  python/2.7.12 (default)
fftw2/2.1.5(default)
                                    hdf5/mvapich2/gcc49/1.8.17
                                                                         intel/inspector/32/2016.3.210
fftw3/3.3.5(default)
                                    hdf5/mvapich2/gcc53/1.8.17
                                                                         intel/inspector/64/2016.3.210
                                                                                                             mellanox/mxm/3.4
                                                                                                                                                  qt/gcc/4.8.6
fftw3/mvapich2/3.3.5
                                    hdf5/mvapich2/gcc61/1.8.17
                                                                         intel/ipp/32/2016.3.210
                                                                                                             mvapich2/2.2rc2
                                                                                                                                                  scalapack/mvapich2/2.0.2
Eftw3/openmpi/3.3.5
                                    hdf5/mvapich2/icc16/1.8.17
                                                                         intel/ipp/64/2016.3.210
                                                                                                             mvapich2/icc16/2.2rc2
                                                                                                                                                  scalapack/openmpi/2.0.2
fftw3-mvapich2/mvapich2/3.3.5
                                    hdf5/openmpi/1.8.17
                                                                         intel/itac/64/2016.3.210
                                                                                                             myapich2/psm2/2.2rc2
                                                                                                                                                  scilab/5.5.2
                                    hdf5/openmpi/gcc49/1.8.17
                                                                         intel/mkl/32/2016.3.210
fftw3-openmpi/openmpi/3.3.5
                                                                                                             mvapich2/psm2/gcc49/2.2rc2(default) scipy/py27/0.18.1
gcc/4.9.3(default)
                                    hdf5/openmpi/gcc53/1.8.17
                                                                         intel/mk1/64/2016.3.210
                                                                                                             mvapich2/psm2/gcc53/2.2rc2
                                                                                                                                                  valgrind/3.11.0
                                                                         intel/mkl/mic/2016.3.210
cc/5.3.0
                                    hdf5/openmpi/gcc61/1.8.17
                                                                                                             mvapich2/psm2/gcc61/2.2rc2
chapuis@muse-login01 ~]$
```

[chapuis@muse-login ~]\$ echo \$MODULEPATH /usr/share/Modules/modulefiles:/etc/modulefiles:/trinity/shared/modulefiles/modulegroups:/trinity/shared/modulefiles/

UNIVERSITÉ DE MONTPELLIER

ENVIRONMENT MODULES

Structure arborescente

- > cv-standard
 - La majorité des compilateurs et bibliothèques standards
- > cv-advanced
 - Logiciels plus spécifiques à certaines spécialités
- > local
 - Logiciel installé par muse@lr
- > modulefiles
 - Modules spéciaux

LES MODULES INTEL

- intel/advisor : Intel Advisor https://software.intel.com/en-us/intel-advisor-xe
 Vectorization Optimization and Thread Prototyping
- intel/clck: Intel Cilk Plus https://www.cilkplus.org/
 Intel Cilk Plus is an extension to the C and C++ languages to support data and task parallelism.
- intel/compiler: Intel C/C++/Fortran compilers https://software.intel.com/en-us/intel-compilers
- intel/daal: Intel Data Analytics Acceleration Library https://software.intel.com/en-us/articles/opendaal
 Intel DAAL helps accelerate big data analytics by providing highly optimized algorithmic building blocks for all data analysis stages [...].
- intel/inspector : Intel Inspector https://software.intel.com/en-us/intel-inspector-xe
 Memory and Thread Debugger
- intel/ipp: Intel Integrated Performance Primitives https://software.intel.com/en-us/intel-ipp
 Intel® IPP offers developers high-quality, production-ready, low-level building blocks for image processing, signal processing, and data processing (data compression/decompression and cryptography) applications.
- intel/itac: Intel Trace Analyzer and Collector https://software.intel.com/en-us/intel-trace-analyzer
 Understand MPI application behavior, quickly find bottlenecks, and achieve high performance for parallel cluster applications
- intel/mkl: Intel Math Kernel Library https://software.intel.com/en-us/intel-mkl
 Fastest and most used math library for Intel and compatible processors.
- intel/mpi : Intel MPI library https://software.intel.com/en-us/intel-mpi-library
 Making applications perform better on Intel® architecture-based clusters with multiple fabric flexibility
- intel/runtime : Intel runtime libs
- intel/tbb: Intel Threading Building Blocks https://software.intel.com/en-us/intel-tbb
 Intel® Threading Building Blocks (Intel® TBB) is a widely used C++ library for shared-memory parallel programming and heterogeneous computing (intra-node distributed memory programming). The library provides a wide range of features for parallel programming, including generic parallel algorithms, concurrent containers, a scalable memory allocator, work-stealing task scheduler, and low-level synchronization primitives. Intel TBB is a library only solution for task-based parallelism and does not require any special compiler support. It ports to multiple architectures including Intel® architectures, ARM*, and POWER*.
- intel/vtune: Intel VTune Amplifier https://software.intel.com/en-us/intel-vtune-amplifier-xe
 Performance Profiler

LES MODULEFILES

```
#%Module
# @name: monprog
# @version: 1.0
# @packaging: Baptiste Chapuisat
# Definie les variables internes au module
#-----
set name monprog
set version 1.0
set prefix $::env(HOME)/F_HPC@LR
# S'affiche avec l'option help
#-----
proc ModulesHelp { } {
 puts stderr "\tExemple de documentation"
 puts stderr "\tpour le module [module-info name]"
 puts stderr ""
```

```
# Test le repertoire
# ------
if {![file exists $prefix]} {
 puts stderr "\t Load Error: $prefix does not exist"
 break
 exit 1
# Dependance
# prereq python/3.7.2
module load python/3.7.2
# Update common variables in the environment
# -----
prepend-path PATH
                              $prefix/bin
prepend-path LD_LIBRARY_PATH $prefix/lib
                              $version
           MP_HOME
setenv
```

UNIVERSITÉ DE MONTPELLIER

20/11/2019

INSTALLATION DE LOGICIEL

- Compilation depuis les sources
- Les systèmes "packagés" : Nix, Miniconda
 - inconvénients : espace disque important
- Système de conteneur Singularity

LE GESTIONNAIRE SLURM

Simple Linux Utility for Resource Management

- gestionnaire de cluster sous Linux
- Les +
 - Open source
 - Très répandu
 - Tout en un

- Configuration des grappes de nœuds (droit d'accès, quotas, ...)
- Accès aux ressources par les utilisateurs
- Ordonnancement de tâches dans les files d'attentes (arbitrage)
- Accounting

LE GESTIONNAIRE SLURM

SLURM	LoadLeveler	PBS / Torque
sbatch	llsubmit	qsub
squeue	llq	qstat
scancel	llcancel	qdel

VOCABULAIRE

- Des utilisateurs appartenant à des accounts exécutent des jobs sur des partitions
- account = groupe (commande id)
- partition = un ensemble de nœuds
- Chaque nœud est composé de 28 cœurs
- Un cœur est un unité de traitement physique
- Une tache (ou processus, ou thread) est une unité de traitement logique

LA COMMANDE SRUN

La commande srun permet d'exécuter plusieurs jobs en parallèles sur les nœuds de calcul

UNIVERSITÉ DE MONTPELLIER

SCHEDULER MODE

UNIVERSITÉ DE MONTPELLIER

07/11/2019

SCHEDULER MODE

FIFO Scheduler

Node

BackFill Scheduler

Node

20/11/2019

SBATCH

- La commande sbatch permet de spécifier via un fichier de script les caractéristiques d'un job (ressources, programme à exécuter, ...).
- Bien que l'on retrouve des paramètres semblables pour les deux commandes, srun n'est pas la version en ligne de commande de sbatch.
- Les paramètres relatifs aux ressources sont :
 - des paramètres d'exécution pour srun.
 - des paramètres de réservation pour sbatch.

SBATCH

```
#!/bin/bash
#
#SBATCH -N 2
#SBATCH -n 4
#SBATCH --ntasks-per-node=2
#SBATCH --partition=fmuse1
srun hostname

#!/bin/bash
#
script de
soumission du job
#SBATCH --partition=fmuse1
```

- \$ sbatch fichier.sh
- \$ sbatch -n4 -N2 -p fmuse1 fichier.sh

UNIVERSITÉ DE MONTPELLIER

PRINCIPALES OPTIONS SBATCH

```
-A, --account=<account>
-p, --partition=<partition_names>
-J, --job-name=<jobname>
-o, --output=<filename pattern>
-e, --error=<filename pattern>
      --mail-type=<type>
      --mail-user=<user>
-d, --dependency=<dependency_list>
• -t, --time=<time>
-b, --begin=<time>
                                 # Format time/date:
      --deadline=<date>
                                 [YYYY-MM-DDT]HH:MM:SS
```

PRINCIPALES OPTIONS SBATCH

```
-n, --ntasks=<number>
-N, --nodes=<minnodes[-maxnodes]>
      --ntasks-per-node=<ntasks>
      --ntasks-per-core=<ntasks>
      --ntasks-per-socket=<ntasks>
  -c, --cpus-per-task=<ncpus>
      --cores-per-socket=<cores>
      --mem=<size[units]>
      --mem-per-cpu=<size[units]>
      --exclusive[=user|mcs]
 -w, --nodelist=<node name list>
-x, --exclude=<node name list>
```

OPTIONS COMMUNES

 Les options ne sont pas utilisables avec toutes les commandes mais lorsqu'elles le sont, on retrouvera (presque) toujours la même syntaxe.

```
-A, --account=<account>
```

SCANCEL, SQUEUE ET SINFO

scancel permet de tuer un job

```
$ scancel <num_job>
$ scancel -u <uid>
$ scancel -t PENDING
```

- squeue affiche l'état des jobs
- \$ squeue -u <uid>
 - Principaux états :
 - RUNNING (R): En cours d'exécution
 - PENDING (PD): En attente de ressource
 - COMPLETED (CD): Terminé
 - CANCELED (CA): Tué
 - FAILED (F): Echec
- sinfo affiche l'état des partitions
- \$ sinfo -p <nom_partition>

SALLOC

 La commande salloc permet de réserver des ressources auxquelles ont peut ensuite accéder en ssh.

```
$ ssh muse078
$ salloc -w muse078 -p fmuse1 -t 1:30:00
$ ssh muse078
```

 L'utilisation des ressources allouées ne se limitent pas à ssh. Elles peuvent être utilisées par l'utilisateur pour lancer des jobs.

LES VARIABLES D'ENVIRONNEMENT

- SLURM_JOB_ID : Numéro du job
- SLURM_NODELIST : Nœuds alloués au job
- SLURM_JOB_NAME : Nom du job
- SLURM_SUBMIT_DIR : Répertoire courant
- SLURM_SUBMIT_HOST : Machine d'où est lancé le job
- SLURM_JOB_NUM_NODES: Nombre de nœuds
- SLURM_CPUS_PER_TASK: Nombre de CPU par tache
- SLURM_NTASKS : Nombre de taches
- SLURM_JOB_PARTITION : Partition utilisée

LES DIFFÉRENTS TYPES DE CALCUL

- Calcul en mémoire distribué (MPI)
- Calcul en mémoire partagée (Multi-thread, OpenMP)
- Calcul réparti (multi séquentiel)

- Historiquement C, C++, Fortran
- Aujourd'hui Python, R, Matlab

MODÈLE DE PROGRAMMATION EN MÉMOIRE DISTRIBUÉE

EXEMPLE DE FICHIER SBATCH

```
#!/bin/sh
#SBATCH -N 2
#SBATCH -n 56
#SBATCH --partition=fmuse1
module load cv-standard openmpi python
mpiexec -n 56 python prog.py
```

MODÈLE DE PROGRAMMATION MULTITHREAD

EXEMPLE DE FICHIER SBATCH

\$ gcc -fopenmp -o prog.exe prog.c

```
#!/bin/sh
#SBATCH -n 1
#SBATCH -c 4
#SBATCH --partition=fmuse1

export OMP_NUM_THREADS=4
./prog.exe
```

LE CALCUL RÉPARTI AVEC SLURM

• Exécuter un programme séquentiel plusieurs fois sur des jeux de données différents => Les processus sont indépendants.

L'option job array : -a, --array

Exemple: --array=0-27

--array=0-59%28

--array=1,2,5-10

--array=0-99:4

Variables d'environnements : SLURM_JOB_ID, SLURM_ARRAY_JOB_ID, SLURM_ARRAY_TASK_ID

Nombre de job limité à 5000 sur le cluster muse

LE CALCUL RÉPARTI AVEC SLURM

```
#!/bin/bash
#
#SBATCH --job-name=test array
#SBATCH -N 2
#SBATCH --array=1-56
#SBATCH -o array-%a.out
#SBATCH --partition=fmuse1
module purge
module load cv-standard R
echo $SLURM NODELIST
R CMD BATCH --no-save prog.R
```

LES COMMANDES D'ACCOUNTING

- Plusieurs commandes SLURM permettent d'afficher des informations sur les jobs et sur l'utilisation du cluster. Les deux principales sont sreport et sacct.
- Un utilisateur peut voir les informations sur les jobs des partitions et des groupes auquel il appartient.
- Il existe beaucoup d'option pour chacune des deux commandes.
- Le problème est dans l'interprétation des résultats.

LES COMMANDES D'ACCOUNTING

Nombre d'heures par partition sur une période pour un utilisateur

```
$ sreport cluster UserUtilizationByAccount
user=chapuis start=2019-10-01 end=2019-10-
16T23:59:59 -t hours
```

Liste des jobs sur une période pour un utilisateur

```
$ sacct --
format="JobID, CPUTime, User, Account, JobName, Star
t, End, Node" -u chapuis -X -S 2019-10-15 -E
2019-10-16T23:59:59
```

LES COMMANDES D'ACCOUNTING

Afficher les informations sur un job

```
$ sacct --
format="JobID,CPUTime,AllocCPUS,User,Account,JobName
,Start,End,State%20,Node,ExitCode" -j 1080739
```

Afficher les informations sur un job actif

```
$ scontrol show jobid <job id>
```