INE5403-Fundamentos de Matemática Discreta para a Computação Prof. Daniel S. Freitas

7 - ESTRUTURAS ALGÉBRICAS

7.1) Operações Binárias

7.2) Semigrupos

- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

LISTA DE EXERCÍCIOS

1. (Kolman5-seção 9.2-ex.1) Seja $A = \{a, b\}$. Qual das tabelas a seguir define um semigrupo sobre A? E qual define um monóide sobre A?

(a)
$$\begin{array}{c|ccc} * & a & b \\ \hline a & a & b \\ b & a & a \end{array}$$

2. (Kolman5-seção 9.2-ex.3) Seja $A = \{a, b\}$. Qual das tabelas a seguir define um semigrupo sobre A? E qual define um monóide sobre A?

- 3. (Kolman5-seção 9.2-exs.5-15) Em cada exercício a seguir, determine se o conjunto com a operação binária mostrada é um semigrupo, um monóide ou nenhum deles. Se for um monóide, especifique a identidade. Se for um semigrupo ou um monóide, determine se é comutativo.
 - (5) \mathbb{Z}^+ , a
onde a*b é definido como $\max\{a,b\}$
 - (7) \mathbb{Z}^+ , aonde a*b é definido como a
 - \bullet (9) P(S),a
onde S é um conjunto e * é definida como intersecção.
 - (11) $S = \{1, 2, 3, 6, 12\}$, a
onde a * b é definido como MDC(a, b)
 - (13) \mathbb{Z} , aonde a * b = a + b ab
 - (15) O conjunto das matrizes 2×1 , aonde: $\begin{bmatrix} a \\ b \end{bmatrix} * \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ b+d+1 \end{bmatrix}$

4. (Kolman5-seção 9.2-ex.17) Determine se a tabela a seguir define um semigrupo ou um monóide:

5. (Kolman5-seção 9.2-ex.19) Complete a tabela a seguir de maneira a obter um semigrupo.

- 6. (Kolman5-seção 9.2-ex.21) Seja $S=\{a,b\}$. Escreva a tabela de operações para o semigrupo S^S . Este semigrupo é comutativo?
- 7. (Kolman5-seção 9.2-ex.29) Seja $A = \{a, b\}$. Determine se existem dois semigrupos (A, *) e (A, *') que não são isomórficos.
- 8. $(Kolman5-seção\ 9.2-ex.31)$ Seja $(S_1,*_1),\ (S_2,*_2)$ e $(S_3,*_3)$ semigrupos e sejam $f:S_1\to S_2$ e $g:S_2\to S_3$ homomorfismos. Prove que $g\circ f$ é um homomorfismo de S_1 para S_3 .
- 9. $(Kolman5-seção\ 9.2-ex.35)$ Seja R^+ o conjunto de todos os números reais positivos. Mostre que a função $f:R^+\to R$ definida por f(x)=ln(x) é um isomorfismo do semigrupo (R^+,\times) para o semigrupo (R,+), aonde \times e + são a multiplicação comum e a adição comum.