Séries de Fonctions

Pour tous ce qui suit, D désigne un domaine non vide de \mathbb{R} .

1 Convergence simple

Définition 1.1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions réelles définies sur D. Soit f une fonction réelle définie sur D. On dit que la série de fonctions $\sum f_n$ converge simplement sur D vers la fonction f, si pour chaque $x \in D$, la série $num\'erique \sum f_n(x)$ converge vers le réel f(x).

On dit dans ce cas que f est la somme sur D de la série de fonctions $\sum f_n$ et on écrit :

$$\forall x \in D, \ f(x) = \sum_{n=0}^{+\infty} f_n(x).$$

Exemples 1.2.

1. Pour $n \in \mathbb{N}$ et $x \in]0, +\infty[$, on pose $f_n(x) = \frac{(-1)^n}{n+x}$.

Fixons x > 0.

Alors $\forall n \in \mathbb{N}, \frac{1}{n+x} > 0.$ $Donc \sum \frac{(-1)^n}{n+x} \ est \ une \ série \ alternée.$ $Puisque \ (\frac{1}{n+x})_n \ tend \ vers \ 0 \ en \ décroissant.$

Alors la série $\sum \frac{(-1)^n}{n+x}$ converge. D'où la série de fonctions $\sum f_n$ converge simplement sur $]0,+\infty[$ vers sa somme.

2. Pour $n \in \mathbb{N}^*$ et $x \in]1, +\infty[$, on pose $f_n(x) = \frac{1}{n^x}$.

Pour chaque $x \in]1, +\infty[$ la série numérique $\sum_{n=1}^{n} \frac{1}{n^{x}}$ converge (une série de Riemann). Donc la série de fonction $\sum_{n=1}^{\infty} \frac{1}{n^{x}}$ converge simplement sur $]1, +\infty[$.

3. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{x^n}{n!}$.

On sait que pour tout $x \in \mathbb{R}$, $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = \exp(x)$.

Donc la série de fonctions $\sum \frac{x^n}{n!}$ converge simplement sur \mathbb{R} vers la fonction exp.

Remarque 1.3. Soit $\sum f_n$ une série de fonctions définies sur D. On note $S_n = \sum_{k=0}^n f_k$. Alors la série de fonctions $\sum f_n$ converge simplement sur D vers une fonction f si et seulement si la suite de fonctions $(S_n)_n$ converge simplement sur D vers f.

2 Convergence absolue

Définition 2.1. On dit qu'une série de fonctions $\sum f_n$ de terme général f_n converge absolument sur D si pour chaque $x \in D$ la série numérique $\sum f_n(x)$ converge absolument.

Remarque 2.2. La série de fonctions $\sum f_n$ converge absolument sur D si et seulement si la série de fonctions $\sum |f_n|$ $converge \ simplement \ sur \ D.$

Exemple 2.3. Pour
$$n \in \mathbb{N}$$
 et $x \in]-1,1[$, on pose $f_n(x) = x^n$. $\forall x \in]-1,1[$, $\sum_{n=0}^{+\infty}|f_n(x)| = \sum_{n=0}^{+\infty}|x^n| = \sum_{n=0}^{+\infty}|x|^n = \frac{1}{1-|x|}$.

Donc la série de fonctions $\sum x^n$ converge absolument sur]-1,1[.

Exercice 2.4. Montrer que la série de fonctions $\sum \frac{(-1)^n}{(n+x)^2}$ converge absolument sur $]0,+\infty[$.

Théorème 2.5. Si une série de fonctions $\sum f_n$ converge absolument sur D, alors elle converge simplement sur D.

 $D\'{e}monstration.$

Soit $\sum f_n$ une série de fonctions converge absolument sur D.

Alors pour tout $x \in D$, la série numérique $\sum |f_n(x)|$ converge. Donc pour tout $x \in D$, la série numérique $\sum f_n(x)$ converge absolument. D'où pour tout $x \in D$, la série numérique $\sum f_n(x)$ converge.

On conclut que la série de fonctions $\sum f_n$ converge simplement sur D.

Remarque 2.6. La réciproque du théorème 2.5 est fausse. Une série de fonctions peut converger simplement sans qu'elle être absolument convergente.

Exemple 2.7. On a vu dans l'exemples 1.2 que la série de fonctions $\sum \frac{(-1)^n}{n+r}$ converge simplement sur $]0,+\infty[$.

 $\begin{array}{l} \textit{Pour chaque x fix\'e dans }]0, +\infty[\ \textit{on a} \ \sum \mid \frac{(-1)^n}{n+x} \mid = \sum \frac{1}{n+x}. \\ \textit{Puisque} \ \frac{1}{n+x} \ \underset{+\infty}{\sim} \ \frac{1}{n} \ \textit{et la s\'erie harmonique} \ \sum \frac{1}{n} \ \textit{diverge}. \end{array}$

Alors pour chaque x fixé dans $]0,+\infty[$ la série numérique $\sum |\frac{(-1)^n}{n+x}|$ diverge.

On déduit que la série de fonctions $\sum \frac{(-1)^n}{n+x}$ est non absolument convergente.

3 Convergence uniforme

Définition 3.1. On dit qu'une série de fonctions $\sum f_n$ de terme général f_n converge uniformément sur D, si la suite de fonctions $(S_n)_n$ avec $S_n = \sum_{k=0}^n f_k$ converge uniformément sur D.

Pour montrer la convergence uniforme d'une série de fonctions $\sum f_n$ sur le domaine D, il faut d'abord vérifier la convergence simple de la suite de fonctions $(S_n)_n$. On note S la somme, puis on vérifie que le reste $(R_n)_n$ définie sur D par : $\forall x \in D, R_n(x) = S(x) - S_n(x) = \sum_{k=n+1}^{+\infty} f_n(x)$ converge uniformément sur D vers 0. i.e

$$\lim_{n \to +\infty} \sup_{x \in D} |R_n(x)| = 0.$$

Exemple 3.2. D'après l'exemples 1.2, la série de fonctions $\sum \frac{(-1)^n}{n+x}$ converge simplement sur $]0,+\infty[$ vers sa somme S

définie par : $S(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+x}$ pour tout $x \in]0, +\infty[$. $\forall x \in]0, +\infty[, |R_n(x)| = |\sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k+x}| \le |\frac{(-1)^{n+1}}{n+1+x}| \le \frac{1}{n+1+x} \le \frac{1}{n+1}$ et on a $\frac{1}{n+1} \longrightarrow 0$. Alors la série de fonctions $\sum \frac{(-1)^n}{n+x}$ converge uniformément sur $]0, +\infty[$ vers sa somme S.

Remarque 3.3. D'après les exemples (2.7) et (3.2) on déduit que la convergence uniforme n'entraîne pas la convergence absolue.

Théorème 3.4. Si une série de fonctions $\sum f_n$ converge uniformément sur D, alors elle converge simplement sur D.

Proposition 3.5. Si une série de fonctions $\sum f_n$ de terme général f_n converge uniformément sur D, alors la suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur D.

Exercice 3.6. Démontrer cette proposition.

Proposition 3.7 (Critère de la convergence uniforme pour les séries de fonctions alternées).

Soit $(f_n)_n$ une suite de fonctions positives définies sur D. On suppose que

i. la suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur D,

ii. pour tout $x \in D$, la suite numérique $(f_n(x))_n$ est décroissante, i.e $f_{n+1}(x) \leq f_n(x)$ pour tout $n \in \mathbb{N}$.

Alors la série de fonctions $\sum (-1)^n f_n$ converge uniformément sur D.

Théorème 3.8 (Critère de Cauchy de la convergence uniforme pour les séries de fonctions). Une série de fonctions $\sum f_n$ de terme général f_n converge uniformément sur D si et seulement si

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall (n,m) \in \mathbb{N}^2 : (n > m > N \Longrightarrow \forall x \in D, \quad |\sum_{k=m+1}^n f_k(x)| < \epsilon).$$

4 Convergence normale

Définition 4.1. On dit qu'une série de fonctions $\sum f_n$ de terme général f_n converge normalement sur D, si la série $num\'erique \sum \sup |f_n(x)| \ converge \ dans \ \mathbb{R}.$

Exemples 4.2.

1. Montrons que la série de fonctions $\sum (\frac{\sin nx}{n!})$ converge normalement sur \mathbb{R} .

C'est clair que $\sup_{x \in \mathbb{R}} \left| \frac{\sin nx}{n!} \right| = \frac{1}{n!}$.

D'après la règle d'Alembert la série numérique $\sum \frac{1}{n!}$ converge.

Donc la série numérique $\sum \sup_{x \in \mathbb{R}} \left| \frac{\sin nx}{n!} \right|$ converge.

D'où la série de fonctions $\sum (\frac{\sin nx}{n!})$ converge normalement sur \mathbb{R} .

2. $\sum \frac{1}{x^2 + n^2}, x \in \mathbb{R}$.

On a pour tout $x \in \mathbb{R}$, $\left| \frac{1}{x^2 + n^2} \right| \le \frac{1}{n^2}$ avec égalité effectivement pour x = 0.

 $Donc \sup_{x \in \mathbb{R}} \left| \frac{1}{x^2 + n^2} \right| = \frac{1}{n^2}.$

Puisque la série numérique $\sum \frac{1}{n^2}$ est convergente. Alors la série numérique $\sum \sup_{x \in \mathbb{R}} |\frac{1}{x^2 + n^2}|$ converge dans \mathbb{R} .

On conclut que la série de fonctions $\sum \frac{1}{r^2+n^2}$ converge normalement sur \mathbb{R} .

Remarque 4.3. Pour démontrer la convergence normale d'une série de fonctions $\sum f_n$ sur le domaine D, on majore $|f_n(x)|, x \in D$ ou $\sup |f_n(x)|$ par un réel positif a_n , indépendant de x, telle que la série numérique à termes positifs $\sum a_n$ converge.

Théorème 4.4. Si une série de fonctions $\sum f_n$ converge normalement sur D, alors elle converge uniformément sur D.

Remarque 4.5. La réciproque du théorème4.4 est fausse.

Exemple 4.6. Represents l'exemple $\sum f_n$ avec $f_n(x) = \frac{(-1)^n}{x+n}$ pour $n \in \mathbb{N}$ et $x \in]0, +\infty[$.

On a vu dans l'exemple 3.2 que cette série de fonctions converge uniformément sur $]0, +\infty[$. Pour tout $x \in]0, +\infty[$, $\sup_{x>0} |f_n(x)| = \sup_{x>0} \frac{1}{x+n} \ge \frac{1}{x+n}$.

Faisons x tend vers 0, $alors \sup_{x>0} |f_n(x)| \ge \frac{1}{n}$. Puisque la série numérique $\sum \frac{1}{n}$ diverge, alors la série numérique $\sum \sup_{x>0} |f_n(x)|$ l'est aussi.

Donc la série de fonctions $\sum f_n$ ne converge pas normalement sur $]0,+\infty[$.

Théorème 4.7. Si une série de fonctions $\sum f_n$ converge normalement sur D, alors elle converge absolument sur D.

En résumé, on a les implications suivantes

$$\sum f_n \text{ C.U}$$

$$\sum f_n \text{ C.N}$$

$$\sum f_n \text{ C.A}$$

5 Transmission des propriétés de la régularité

Théorème 5.1 (Double limites).

Soit $\sum f_n$ une série de fonctions définie sur D et $a \in D$. On suppose que les deux conditions suivantes sont satisfaites :

- Pour tout $n \in \mathbb{N}$, f_n admet une limite b_n en a.
- La série $\sum f_n$ converge uniformément sur D vers sa somme $S = \sum_{n=0}^{+\infty} f_n$.

Alors

- La série numérique $\sum b_n$ converge,
- La somme S admet une limite en a, de plus $\lim_{x\to a} S(x) = \sum_{n=0}^{+\infty} b_n$ i.e $\lim_{x\to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x\to a} f_n$.

Remarque 5.2. Le théorème 5.1 valable si $a = \pm \infty$, $a = a^+$ et $a = a^-$

Exemple 5.3. On a vu précédemment que la série de fonctions $\sum \frac{(-1)^n}{x+n}$ converge uniformément sur $]0,+\infty[$ vers la fonction $f: x \longmapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{x+n}$

1. On
$$a \lim_{x \to +\infty} \frac{(-1)^n}{x+n} = 0$$
.

Alors
$$\lim_{x \to +\infty} f(x) = \sum_{n=0}^{+\infty} \lim_{x \to +\infty} \frac{(-1)^n}{x+n} = 0.$$

2. Puisque
$$\lim_{x \to 0^+} \frac{(-1)^n}{x+n} = \frac{(-1)^n}{n}$$
.

Alors la série numérique
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 converge, et $\lim_{x \to 0^+} \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n} = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln 2$.

Donc
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[\frac{1}{x} + \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n} \right] = +\infty.$$

Exemple 5.4. $\sum_{n>0} \frac{(-1)^n}{n^x}$ avec $x \in]0, +\infty[$. Il s'agit d'une série alternée pour chaque x dans $]0, +\infty[$.

Puisque $\frac{1}{n^{T}}$ tend vers 0 en décroissante.

Alors la série $\sum_{n>0} \frac{(-1)^n}{n^x}$ converge pour chaque x dans $]0,+\infty[$.

Donc la série de fonctions $\sum_{n>0} \frac{(-1)^n}{n^x}$ converge simplement sur $]0,+\infty[$ vers la fonction $S:x\longmapsto\sum_{n=1}^{+\infty}\frac{(-1)^n}{n^x}$.

On
$$a: \forall n \in \mathbb{N}^*$$
, $\lim_{x \to 0^+} \frac{(-1)^n}{n^x} = \lim_{x \to 0^+} \frac{(-1)^n}{e^{x \ln n}} = (-1)^n$.
Or $a: \forall n \in \mathbb{N}^*$, $\lim_{x \to 0^+} \frac{(-1)^n}{n^x} = \lim_{x \to 0^+} \frac{(-1)^n}{e^{x \ln n}} = (-1)^n$.

Donc la série de fonctions $\sum_{n>0} \frac{(-1)^n}{n^x}$ ne converge pas uniformément sur $]0,+\infty[$.

Théorème 5.5 (Convergence uniforme et continuité).

Soit $\sum f_n$ une série de fonctions définies sur D. On suppose que les deux conditions suivantes sont satisfaites :

- Chaque fonction f_n est continue sur D.
- La série de fonctions $\sum f_n$ converge uniformément sur tout segment de D vers la fonction $S = \sum_{n=0}^{+\infty} f_n$.

Alors la fonction S est continue sur D.

Exemple 5.6. $\sum_{n\geq 0} \frac{(-1)^n}{x+n}$ avec $x \in]0,+\infty[$.

On a vu que la série de fonctions $\sum_{n\geq 0} \frac{(-1)^n}{x+n}$ converge uniformément sur $]0,+\infty[$.

Puisque pour chaque n la fonction $x \mapsto \frac{(-1)^n}{x+n}$ est continue sur $]0,+\infty[$.

Alors la fonction $x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+n}$ est continue sur $]0,+\infty[$.

Théorème 5.7 (Dérivation terme à terme).

Soit $\sum f_n$ une série de fonctions définies sur D. On suppose que les trois conditions suivantes sont satisfaites :

- La série de fonctions $\sum f_n$ converge simplement sur D vers la fonction f.
- Chaque fonction f_n est dérivable sur D.
- La série de fonctions $\sum f'_n$ converge uniformément sur tout segment de D vers la fonction g.

Alors la fonction f est dérivable sur D et on a f'=g i.e $(\sum_{n=0}^{+\infty} f_n)'=\sum_{n=0}^{+\infty} f_n'$

Exemple 5.8. Soit a > 1. Pour $n \in \mathbb{N}^*$ et $x \in [a, +\infty[$ on pose $f_n(x) = \frac{1}{n^x}$.

C'est clair que la série de fonctions $\sum f_n$ converge simplement sur $[a, +\infty]$

Pour chaque $n \in \mathbb{N}^*$ f_n est dérivable sur $[a, +\infty[$, et on $a : \forall x \geq a, \quad f'_n(x) = -\frac{\ln n}{n^x}$

Donc
$$\forall x \ge a$$
, $|f'_n(x)| = \frac{\ln n}{n^x} \le \frac{\ln n}{n^a}$

$$Donc \sup_{x \ge a} |f_n'(x)| \le \frac{\ln n}{n^a}.$$

$$\lim n^{\frac{a+1}{2}} \frac{\ln n}{n^a} = \lim \frac{\ln n}{n^{\frac{a-1}{2}}} = 0 \Longrightarrow \frac{\ln n}{n^a} = o(\frac{1}{n^{\frac{a+1}{2}}}).$$

Puisque la série numérique $\sum \frac{1}{n^{\frac{a+1}{2}}}$ converge (car $\frac{a+1}{2} > 1$).

Alors la série numérique $\sum \frac{\ln n}{n^x}$ converge.

D'où la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$. Donc converge uniformément.

On conclut que $\forall x \geq a$, $(\sum_{n=1}^{+\infty} \frac{1}{n^x})' = \sum_{n=1}^{+\infty} (\frac{1}{n^x})' = \sum_{n=1}^{+\infty} -\frac{\ln n}{n^x}$.

Corollaire 5.9 (Généralisation du théorème de dérivation terme à terme).

Soit $\sum f_n$ une série de fonctions définies sur D. On suppose que les trois conditions suivantes sont satisfaites :

- La série de fonctions $\sum f_n$ converge simplement sur D vers la fonction f.
- Chaque fonction f_n est de classe C^p $(p \in \mathbb{N}^*)$ sur D.
- Pour tout $k \in \{1, 2, 3, ..., p\}$ la série de fonctions $\sum f_n^{(k)}$ converge uniformément sur tout segment de D vers la fonction g_k .

Alors la fonction f est de classe C^p sur D et pour tout $k \in \{1, 2, 3, \dots, p\}$ $f^{(k)} = g_k$ i.e $(\sum_{n=0}^{+\infty} f_n)^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.

Exemple 5.10. $f_n(x) = \frac{1}{n^x}$, pour $n \in \mathbb{N}^*$ et $x \in [a, +\infty[$ avec a > 1.

Théorème 5.11 (Convergence uniforme et dérivation).

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I de $\mathbb R$ non vide et non réduit à un point. On suppose que les trois conditions suivantes sont satisfaites :

- La série de fonctions $\sum f_n$ converge simplement sur I vers la fonction f.
- Chaque fonction f_n est de classe C^1 sur I.
- La série de fonctions $\sum f'_n$ converge uniformément sur tout segment de I.

Alors

- La série de fonctions $\sum f_n$ converge uniformément sur tout segment de I.
- La somme $S = \sum_{n=0}^{+\infty} f_n$ est de classe C^1 sur I, et $S' = \sum_{n=0}^{+\infty} f'_n$.

Corollaire 5.12 (Convergence uniforme et dérivation successive).

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I de $\mathbb R$ non vide et non réduit à un point et $p \in \mathbb N^*$. On suppose que les trois conditions suivantes sont satisfaites :

- Chaque fonction f_n est de classe C^p sur I.
- Pour tout $k \in \{1, 2, 3, ..., p\}$, la série de fonctions $\sum f_n^{(k)}$ converge simplement sur I.
- La série de fonctions $\sum f_n^p$ converge uniformément sur tout segment de I.

Alors

- Pour tout $k \in \{1, 2, 3, ..., p\}$, la série de fonctions $\sum f_n^{(k)}$ converge uniformément sur tout segment de I.
- La somme $S = \sum_{n=0}^{+\infty} f_n$ est de classe C^p sur I, et pour tout $k \in \{1, 2, 3, ..., p\}$ $S^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.

Théorème 5.13 (Intégration terme à terme sur un segment).

Soit $(a,b) \in \mathbb{R}^2$ tel que a < b. Soit $\sum f_n$ une série de fonctions définies sur [a,b]. On suppose que les trois conditions suivantes sont satisfaites :

- La série de fonctions $\sum f_n$ converge uniformément sur [a,b] vers la fonction f.
- Chaque fonction f_n est continue sur [a,b].

Alors

- f est continue sur [a,b].
- La série numérique $\sum (\int_a^b f_n(x)dx)$ converge.
- $\int_a^b f(x)dx = \sum_{n=0}^{+\infty} \int_a^b f_n(x)dx \ i.e \int_a^b (\sum_{n=0}^{+\infty} \int_a^b f_n(x))dx = \sum_{n=0}^{+\infty} (\int_a^b f_n(x)dx).$

Exemple 5.14. Pour $x \in [0, \frac{1}{2}]$ et $n \in \mathbb{N}$, $f_n(x) = x^n$.

C'est clair que la série de fonctions $\sum f_n$ converge simplement sur $[0,\frac{1}{2}]$ vers la fonction $f:x\longmapsto \frac{1}{1-x}$.

Montrons d'abord que la série $\sum f_n$ converge normalement sur $[0, \frac{1}{2}]$

$$\sup_{x \in [0, \frac{1}{2}]} |f_n(x)| = \sup_{x \in [0, \frac{1}{2}]} |x^n| = \frac{1}{2^n}$$

Puisque la série numérique $\sum \frac{1}{2^n}$ converge.

Alors la série de fonctions $\sum f_n$ converge normalement sur $[0,\frac{1}{2}]$, donc converge uniformément sur $[0,\frac{1}{2}]$.

Or, pour chaque $n \in \mathbb{N}$ la fonction f_n est continue sur $[0, \frac{1}{2}]$.

Donc $\int_0^{\frac{1}{2}} f(x)dx = \sum_{n=1}^{+\infty} \int_0^{\frac{1}{2}} f_n(x)dx$.

$$\int_{0}^{\frac{1}{2}} f(x)dx = \sum_{n=0}^{+\infty} \int_{0}^{\frac{1}{2}} f_{n}(x)dx \implies \int_{0}^{\frac{1}{2}} \frac{1}{1-x} dx = \sum_{n=0}^{+\infty} \int_{0}^{\frac{1}{2}} x^{n} dx$$

$$\implies \left[-\ln(1(-x)) \right]_{0}^{\frac{1}{2}} = \sum_{n=0}^{+\infty} \left[\frac{x^{n+1}}{n+1} \right]_{0}^{\frac{1}{2}}$$

$$\implies \ln 2 = \sum_{n=0}^{+\infty} \frac{1}{n+1} \frac{1}{2^{n+1}}$$

$$\implies \ln 2 = \sum_{n=0}^{+\infty} \frac{1}{n} \frac{1}{2^{n}}.$$