5주차 강의내용 정리

분산과 편차에 따른 모델 복잡도

1. 정의

- 분산: 예측치가 예측된 값들의 평균에서 얼마나 떨어져 있는지를 나타내는 정도, 분산이 클수록 정답이 불안정해지는 경우가 많다
- 편차: 예측치가 실제값과 얼마나 떨어져 있는지를 나타내는 정도, 높은 편차는 떨어지는 정확도를 의미

2. 수학적으로 바라보았을 때

$$Err(x_0) = Bias^2(\hat{F}(x_0)) + Var(\hat{F}(x_0)) + \sigma^2$$

실제 값을 예측하기위해 모델 \hat{F} 를 만들고, 생성된 모델이 실제 값을 얼마나 잘예측하는지를 확인하기 위함.

3. 모델 복잡도

bias가 크고 variance 가 작다면, 첫번 째 사진처럼 단순한 형태의 모델일 것이고, bias 가작고 variance가 크다면, 3번째 그림처럼 복잡한 모델을 가질것입니다.

첫번째 그림처럼 모델이 너무 단순하다면, underfitting이 일어날 것이고,

세번째 그림처러 모델이 너무 단순하다면, overfitting이 일어날 것입니다.

앙상블

1. 배깅

- 원래 데이터셋에서 복원추출(Boostrapping)을 통해서 데이터셋을 여러개 만들고, 생성 된 여러개의 데이터셋을 이용하여 모델 구축.
- 배깅은 여러번 데이터를 활용하므로, 낮은 편차, 높은 분산(낮은 모델 복잡도)를 보여준 다
- Training set, 복원추출을 통해 여러개의 데이터셋 그룹을 만들고, 각각의 예측치를 Ensemble하여 최종 예측값 도출
- 부트스트랩 할 경우, 뽑히지 않는 약 1/3개의 데이터를 통해 검증을 진행
- 대표적인 예로 랜덤 포레스트가 존재
- 단점:
 - 복원추출의 한계 → 독립이라는 보장이 없음
 - 。 비슷한 Tree 가 부트스트래핑을 해도 비슷한 트리가 만들어질 확률이 높음

2. 부스팅

- 특정 데이터 셋에 대한 학습, 모델링을 진행한 후, 잘못 classify된 데이터를 찾고, 해당 데이터를 다음에는 잘 하게 할 수 있도록 sampling 진행
- 대표적으로 GBM, XGboost 등이 존대
- 가장 높은 성능,속도과 뛰어난 해석력
- Overfitting에 강함

5주차 강의내용 정리 2

단점

○ 결측치, 이상치에 취약, 사전에 이상치를 처리해줘야함

5주차_강의내용 정리 3