

Estrutura de dados: Árvores

Professor: Me. Felipe Borges

Prof. Felipe Borges

Doutorando em Sistemas de Potência — UFMA — Brasil Mestre em Sistemas de Potência — UFMA — Brasil MBA em Qualidade e Produtividade — FAENE — Brasil Graduado em Engenharia Elétrica — IFMA — Brasil Graduado em Engenharia Elétrica — Fontys — Holanda Técnico em Eletrotécnica — IFMA — Brasil

Projetos e Instalações Elétricas — Engenharia — Banco do Brasil Desenvolvimento e Gestão de Projetos — Frencken Engineering BV

Estrutura de Dados (ED)

Definição: organização de dados e operações (algoritmos) que podem ser aplicados sobres esses dados como forma de apoio à solução de problemas. Podem ser utilizadas para representar tipos abstratos de dados em alguma linguagem de programação.

Exemplos de EDs:

Pilhas

Filas

Listas lineares

Árvores

• • •

Árvores

Estruturas não-lineares:

Estrutura em grafos

Estrutura em árvores

Estrutura em árvore: organização dos dados de forma não-linear, mantendo um relacionamento hierárquico entre os elementos.

Árvore genealógica

Fonte> https://usefulcharts.com/blogs/charts/game-of-thrones-family-tree

Organização de um livro

Organograma de um instituto acadêmico

Estrutura de um documento HTML

Árvores: vantagens

Conceitual: representa relacionamentos entre os dados

Indica como os dados estão associados

Computacional: favorece a manipulação dos dados

- Facilita a extração de informação na estrutura
- Enfoque apenas nas regiões de interesse da estrutrura, ignorando as demais.

Árvores: definição

Uma **árvore enraizada T**, ou simplesmente árvore, é um conjunto finito de elementos denominados nós ou vértices tais que:

- T = Ø, quando a árvore é dita vazia, ou
- $T = \{r\} \cup \{T_1\} \cup \{T_2\} \cup \{T_3\} \cup ... \cup \{T_n\}, \text{ com } n>0$

Nesta definição

- r é um nó especial chamado raiz
- •Os demais nós são um conjunto vazio ou são conjuntos disjuntos não vazios $T_1, T_2, T_3, ..., T_n$, chamados de subárvores de r, cada qual uma árvore.

Note a recursividade da definição.

Textualmente, uma sequência aninhada de "{" e "}" pode ser utilizada para representar uma árvore.

As sequências de chaves representam as relações entre os nós da estutura; o rótulo de cada nó é inserido imediatamente à direita do "{" correspondente.

Exemplos:

$$\begin{split} & T_a &= \{A\} \\ & T_b &= \{B,\!\{A\}\!\} \\ & T_c &= \{D,\!\{E,\!\{F\}\!\},\!\{G,\!\{H,\!\{I\}\!\},\!\{J,\!\{K\},\!\{L\}\!\},\!\{M\}\!\}\} \end{split}$$

Graficamente, árvores podem ser representadas por:

- Conjuntos aninhados
- Identação
- Grafos

Conjuntos aninhados $T_c = \{D, \{E, \{F\}\}, \{G, \{H, \{I\}\}, \{J, \{K\}, \{L\}\}, \{M\}\}\}\}$

Identação $T_c = \{D, \{E, \{F\}\}, \{G, \{H, \{I\}\}, \{J, \{K\}, \{L\}\}, \{M\}\}\}$

	_)																
2						E												
•				•			-		•		•	•	-			•	.F	
		67				(3	ì										
	•					•	•	•		•	•	•	•			•	.H	
	•		•	•	•	•			•					•	•		I	
																	.J	
	7-		•			-	•			-		_			-	-	k	
																	L	
•			•	•	•	•		•	•		•	•	•			-	.M	

Grafo

 $Tc = \{D, \{E, \{F\}\}, \{G, \{H, \{I\}\}, \{J, \{K\}, \{L\}\}, \{M\}\}\}\}$

Dada uma árvore T com raiz r, tem-se as seguintes relações genealógicas:

- Os nós w_1 , w_2 ,..., w_i das subárvores de r são chamados de **filhos** de r.
- O nó r é chamado de pai de w₁, w₂,..., w_i
- Os nós w₁, w₂,..., w_i são ditos irmãos
- Se o nó z é filho de w_1 , então w_2 é **tio** de z e r é **avô** de z e z é **neto** de r.

Considerando a árvore T_c anteriormente definida:

Grau de saída, folha, descendente e ancestral

O número de filhos de um nó é chamado de grau desse nó

- O grau de uma árvore é o máximo entre os graus de seus nós
- Nós com grau zero são ditos folhas

Se o nó x pertence à subárvore do nó v, então x é descendente de v e v é ancestral de x

Considerando a árvore T_c anteriormente definida:

Caminho e comprimento do caminho

- •Uma sequência de nós distintos $w_1, w_2, ..., w_j$, tal que existe sempre entre nós consecutivos a relação "é filho de" ou é "pai de", é denominada um **caminho** na árvore: diz-se que w_1 alcança w_2 e que w_3 é alcançado por w_3 .
- Um caminho de k vértices é obtido pela sequência de k-1 pares; o valor k-1 é o comprimento do caminho

Considerando a árvore T_c anteriormente definida:

Nível (ou profundidade) e altura de um nó e da árvore

O nível de um nó é o tamanho do caminho entre a raiz da árvore até esse nó

A raiz tem nivel 0

A **altura** de um nó é o tamanho do maior caminho entre este nó e uma folha descendente desse nó

- As folhas tem altura 0
- A altura da raiz equivale à altura da árvore

Considerando a árvore T_c anteriormente definida:

Árvores: exercícios

Considere as seguintes árvores:

```
T_1 = \{a,\{b,\{c,\{d\}\},\{e,\{f\},\{g\}\}\},\{h,\{i\}\}\}\}
T_2 = \{2,\{1\},\{3\}\}\}
T_3 = \{4,\{2,\{1\},\{3\}\},\{6,\{5\},\{7\}\}\}\}
```

Pede-se que:

- Obtenha as representações por conjunto, identação e grafos das estruturas
- Encontre grau, altura e profundidade de cada nó
- Exercite os conceitos vistos na Seção Terminologia

