Additives modell:

Lineares Modell:

Verally lineares Modell:

Wdh. Sdialzer:

$$(Y_1, X_1), (Y_n, X_n)$$
 iid $-=>$ $\frac{2}{6}$ (wird gestratet)

$$T:=g(X_1,Y_1,X_2,Y_2,...,X_n,Y_n):(\mathcal{A},\mathcal{F},\mathcal{P})\to\mathcal{R}$$

$Y = 60 + 61 \times + 2 (E(\epsilon)$	=0, X, & lendoh.
LQ Shaitzer: 6 = \frac{r_{xy}}{s_y}	- , 54
1 = 7 - 6	
E(6) = 6 $E(6) = 6$	
$E(\hat{b}_{0}) = b_{0}$ $E(\hat{b}_{1}) = b_{1}$ $Var(\hat{b}_{1}) = \frac{\sigma^{2}}{E(X_{i} - X_{i})^{2}}$	
Multivariale lineare Regression:	
Y = 60 + 6, X, +6, X, +E	
É-brene V	
Vur (b) = 0 1 2 1 1 (X: -X)2 mit P Bestimm heitsmaß
$2 - \text{ breme } V$ $Vur (b_1) = \frac{\sigma^2}{(1 - Q^2) \cdot \cancel{Z}(X_i - X_i)}$	ans $X_1 = 60 + 62 \times 2 + E$
Felver grellen;	
Einschluss von Noise	Aussilduss Von
	Priede Horen
Vous Bias	

BSp.: Modellieung einer Noise-Var. In Gin. Regr. Model 1

- · dalengen. Modell: 7= 5,X1+E= 5,X1+0:Xz+E
- · Analyse model : Y= 6, X, + 6, X2+E
- · Bias: $\overline{F}(G_1) = G_1$ · Variant: $\overline{Var}(G_1) = \frac{\partial^2}{(1-R^2)E_1(X_1 \overline{X})^2} = \frac{\partial^2}{(X_1 \overline{X})^2}$

- bsp: Fehlende Einfluss kniable

 · dakngen. Modell $Y=6, X_1+6_2X_2+\epsilon=6_1X_1+\tilde{\epsilon}$
 - · Analyse model 4= 5, X, +E

a) unabh. Prindiktoren

$$\chi_1$$
 χ_2 χ_2 χ_2

bias:
$$E(b_1) = b_1$$

 $Vor: Var(b_1) = \sum_{i=1}^{3} (x_i - \bar{x})^2 = \sum_{i=1}^{3} (x_i - \bar{x})^2$ mit $\sigma^2 = Var(E)$

X11..., Xn iid. ZV, Xi slehig, Xmed = Medien von Xi Ho & Xmed = So 3 Vs H1: EXmed 75.3, Sigh niveau X Unter to gilt: ((X, LS))=P(X, 2S)=0.5 Yi := \(\frac{4}{2} \) \(\frac{1}{1} \) \(\frac{1}{2} \) \(\frac{5}{0} \) \(\frac{1}{1} \) \(\frac{1}{2} \) \(\frac{1}{0} \) \(\fr $T := \underbrace{\tilde{E}}_{i=1} Y_i \xrightarrow{H_0} B(n_i 0.5)$ Wilcoxon - Vorzeiden-Rang-Test: X11..., Xn iid. ZV, skelig, symmentrisch, Xmed = Median der Xi No: E Xmed = 503 vs. 47: { Xmed \$ 503 $Q_{\lambda} := \chi_{\lambda} - S_{0}$ bilde lange der [Dil 1 rg ([Dil) 191 192 $W^{\dagger} := \underbrace{\mathcal{E}}_{i,D_{i}} \operatorname{rg} (|D_{i}|) \qquad W^{\dagger} := \underbrace{\mathcal{E}}_{\tilde{v},D_{i}} \operatorname{co} \operatorname{rg} (|D_{i}|)$ Eg gilt: $W^{\dagger} + W = \frac{n(n+1)}{2}$. Under $H_0 E(W^{\dagger}) = \frac{n(n+1)}{4}$. T=min (w+,w-)

Penun labon stesks:

$$T = \int_{X_{i=1}}^{A} \int_{X_{i}}^{X_{i}} = \int_{X_{i}}^{A} \int_{X_{i}}^{X_{i}} (X_{i} - Y_{i}) \wedge \int_{X_{i}}^{A} \left(\underbrace{\xi}_{i} (X_{i} - Y_{i}) + \underbrace{\xi}_{i} (Y_{i} - X_{i}) \right) = T_{M}$$

$$Z := (X_1, X_n, Y_1, ..., Y_m) = (Z_1, ..., Z_{n+m})$$

$$T := \begin{cases} 1 & 2 \\ 1 & 2 \end{cases} \times$$

p= Po(Tz+)=																													
									6 1	Υ.	T	, >	L	3 1															
_	- F) (T	7	4) -	-	(2 1	ì	' N	_		7 1															
P-	= \	0	١ ر	_		<i>J</i> –	-	-			/ n	tm	$\overline{}$			-													
												'n)																