In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as tic

In [2]: df=pd.read_csv("cleaned_rainfall")
 df

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост
0	0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4

4116 rows × 20 columns

In [3]:	<pre>df["SUBDIVISION"].value_counts()</pre>	
Out[3]:	KERALA	115
	NORTH INTERIOR KARNATAKA	115
	TELANGANA	115
	GANGETIC WEST BENGAL	115
	COASTAL KARNATAKA	115
	EAST MADHYA PRADESH	115
	UTTARAKHAND	115
	VIDARBHA	115
	KONKAN & GOA	115
	COASTAL ANDHRA PRADESH	115
	JHARKHAND	115
	ORISSA	115
	WEST MADHYA PRADESH	115
	MADHYA MAHARASHTRA	115
	RAYALSEEMA	115
	WEST UTTAR PRADESH	115
	ASSAM & MEGHALAYA	115
	SOUTH INTERIOR KARNATAKA	115
	HARYANA DELHI & CHANDIGARH	115
	JAMMU & KASHMIR	115
	EAST RAJASTHAN	115
	MATATHWADA	115
	NAGA MANI MIZO TRIPURA	115
	SUB HIMALAYAN WEST BENGAL & SIKKIM	115
	PUNJAB	115
	HIMACHAL PRADESH	115
	BIHAR	115
	SAURASHTRA & KUTCH	115
	EAST UTTAR PRADESH	115
	CHHATTISGARH	115
	TAMIL NADU	115
	GUJARAT REGION	115
	WEST RAJASTHAN	115
	LAKSHADWEEP	114
	ANDAMAN & NICOBAR ISLANDS	110
	ARUNACHAL PRADESH	97
	Name: SUBDIVISION, dtype: int64	

UTTARAKHAND

In [4]: dat1=df[df["SUBDIVISION"]=="UTTARAKHAND"]
 dat1

Out[4]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
1242	1242	UTTARAKHAND	1901	134.5	81.4	44.5	5.9	60.8	33.6	381.1	612.3	167.1	16.3
1243	1243	UTTARAKHAND	1902	0.0	17.0	52.2	63.7	52.1	113.1	444.1	327.5	220.4	31.9
1244	1244	UTTARAKHAND	1903	68.0	7.9	87.6	10.3	37.5	83.0	251.6	442.7	249.3	57.5
1245	1245	UTTARAKHAND	1904	40.0	5.2	78.3	13.6	61.1	180.1	449.6	417.2	174.1	6.3
1246	1246	UTTARAKHAND	1905	115.4	80.7	99.8	26.1	70.3	111.5	299.9	349.5	129.5	0.0
1352	1352	UTTARAKHAND	2011	30.9	65.2	18.0	30.9	84.2	223.1	433.3	523.7	148.4	3.4
1353	1353	UTTARAKHAND	2012	38.8	11.9	28.1	39.2	9.1	46.0	387.1	419.5	220.6	4.7
1354	1354	UTTARAKHAND	2013	73.0	188.3	22.0	24.7	18.2	488.9	413.4	359.4	111.3	29.1
1355	1355	UTTARAKHAND	2014	45.9	99.9	68.4	37.6	52.9	62.9	462.7	264.2	107.9	40.8
1356	1356	UTTARAKHAND	2015	54.5	62.6	127.3	57.3	38.0	186.6	337.0	305.3	52.6	16.8

115 rows × 20 columns

```
In [5]: dat1.plot.bar("YEAR","MAY")
        plt.xlim(0,20)
        plt.figure(figsize=(60,30))
        plt.show()
        dat1.plot.box()
        plt.xlim(2,14)
        plt.ylim(0,2000)
        plt.show()
        dat1.plot.area()
        dat1.plot.scatter("YEAR", "MAY")
        sns.stripplot(x=dat1["MAY"],y=dat1["YEAR"],jitter=True)
        plt.ylim(1900,2010)
        plt.xlim(0,145)
        plt.xticks(dat1["MAY"],rotation="vertical")
        plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=10))
        plt.show()
        dat1.plot.hist()
```


<Figure size 4320x2160 with 0 Axes>

Out[5]: <AxesSubplot:ylabel='Frequency'>

In [6]: sns.lineplot(x=dat1["JAN"],y=dat1["YEAR"])
plt.show()

ASSAM & MEGHALAYA

Out[7]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NC
207	207	ASSAM & MEGHALAYA	1901	27.1	19.5	30.6	223.0	207.0	524.9	430.6	464.1	291.4	163.7	115
208	208	ASSAM & MEGHALAYA	1902	9.3	10.2	105.6	350.0	262.1	620.7	510.8	536.0	441.3	97.0	7
209	209	ASSAM & MEGHALAYA	1903	19.9	25.4	103.6	140.6	206.6	607.4	362.7	551.9	306.4	159.5	59
210	210	ASSAM & MEGHALAYA	1904	11.1	56.1	51.9	457.1	375.2	385.7	477.6	438.8	245.9	115.9	4€
211	211	ASSAM & MEGHALAYA	1905	19.9	16.9	137.9	213.0	275.5	521.7	439.1	649.1	276.0	200.0	16
317	317	ASSAM & MEGHALAYA	2011	11.1	11.4	109.0	92.1	238.3	316.0	395.8	302.6	221.6	30.2	11
318	318	ASSAM & MEGHALAYA	2012	15.2	6.9	28.8	279.1	185.8	729.7	444.3	289.2	411.6	199.4	17
319	319	ASSAM & MEGHALAYA	2013	1.1	9.6	44.0	112.8	346.7	286.2	367.8	289.7	229.3	126.3	1
320	320	ASSAM & MEGHALAYA	2014	2.0	28.3	29.3	51.5	351.1	426.4	374.4	484.6	420.2	35.0	3
321	321	ASSAM & MEGHALAYA	2015	13.4	15.5	37.5	250.9	332.5	558.5	300.1	590.9	279.9	62.6	14

115 rows × 20 columns

```
In [8]:
        dat2.plot.bar("YEAR", "MAY")
        plt.xlim(0,20)
        plt.figure(figsize=(60,30))
        plt.show()
        dat2.plot.box()
        plt.xlim(2,14)
        plt.ylim(0,2000)
        plt.show()
        dat2.plot.area()
        dat2.plot.scatter("YEAR","MAY")
        sns.stripplot(x=dat2["MAY"],y=dat2["YEAR"],jitter=True)
        plt.ylim(1900,2010)
        plt.xlim(0,145)
        plt.xticks(dat2["MAY"],rotation="vertical")
        plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=20))
        plt.show()
        dat2.plot.hist()
        plt.show()
```


<Figure size 4320x2160 with 0 Axes>

In [9]: sns.lineplot(x=dat2["MAY"],y=dat2["YEAR"])
plt.show()

