Non-Extremal Triple Arrays and Near-Triple Arrays

Alexey Gordeev

Umeå University

Based on joint work with Lars-Daniel Öhman

November 27, 2024

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e times
- ullet 2 rows, 2 columns, row and column: λ_{rr} , λ_{cc} , λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e times
- ullet 2 rows, 2 columns, row and column: λ_{rr} , λ_{cc} , λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e times
- 2 rows, 2 columns, row and column: λ_{rr} , λ_{cc} , λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e times
- 2 rows, 2 columns, row and column: λ_{rr} , λ_{cc} , λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e times
- 2 rows, 2 columns, *row and column*: λ_{rr} , λ_{cc} , λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e times
- 2 rows, 2 columns, row and column: λ_{rr} , λ_{cc} , λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

Why triple arrays?

- Great experimental designs
- Rich combinatorial structure; generalize latin squares, Youden rectangles

$$\diamond \ (r \times c, rc)\text{-TA}$$

 \diamond $(n \times n, n)$ -TA: latin square

 $\diamond (n \times k, n)$ -TA: Youden rectangle

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

1	2	3	4	5
	1	4	5	3
3	4	5	1	2
4		2	3	1
5	3	1	2	4
	1 2 3 4 5	3 4 4 5	2 1 4 3 4 5 4 5 2	2 1 4 5 3 4 5 1 4 5 2 3

	1	2	3	4	5	6	7
	2	3	4	5	6	7	1
ĺ	4	5	6	7	1	2	3

$$\diamond \ (r \times c, rc)\text{-TA}$$

$$\diamond (n \times n, n)$$
-TA: latin square

$\diamond (n \times k, n)$ -TA:	Youden rectangle
---------------------------------	------------------

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
		•			

ı	21	44	' 4	-0	4-1
	1	2	3	4	5
	2	1	4	5	3
	3	4	5	1	2
	4	5	2	3	1
	5	3	1	2	4

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

$$\diamond \ e = \lambda_{rc} = rc/v, \ \lambda_{rr} = c(e-1)/(r-1), \ \lambda_{cc} = r(e-1)/(c-1)$$

$$\diamond \ (r \times c, rc) \text{-TA}$$

\Diamond	(n)	$\times n$,	n)-TA:	latin	square
------------	-----	--------------	--------	-------	--------

\Diamond	$(n \times$	k, n)-TA:	Youden	rectangle
------------	-------------	-----------	--------	-----------

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

1	2	3	4	5
2	1	4	5	3
3	4	5	1	2
4	5	2	3	1
5	3	1	2	4

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

$$\diamond e = \lambda_{rc} = rc/v$$
, $\lambda_{rr} = c(e-1)/(r-1)$, $\lambda_{cc} = r(e-1)/(c-1)$

- admissible $(r \times c, v)$: $e, \lambda_{rr}, \lambda_{cc}, \lambda_{rc} \in \mathbb{Z}$, $\max(r, c) < v < rc$
- \diamond Ex.: $(3 \times 4, 6)$: no TA, $(5 \times 6, 10)$, $(4 \times 9, 12)$

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

 $(5\times 6,10)\text{-TA}$

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5\times 6,10)\text{-TA}$$

1

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

 $(5 \times 6, 10)$ -TA

 $\begin{array}{c|c} 1 & & \\ 2 & & \end{array}$

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

 $(5\times 6,10)\text{-TA}$

Column design

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5\times 6,10)\text{-TA}$$

Column design

Row design

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5 \times 6, 10)$$
-TA

Column design

2- (v,k,λ) design: family of blocks (k-sets) on v points, any 2 points lie in λ blocks

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5 \times 6, 10)$$
-TA

Column design

2- (v, k, λ) *design*: family of *blocks* (k-sets) on v points, any 2 points lie in λ blocks

 $(r \times c, v)$ -TA:

- \diamond row design = 2- (r, e, λ_{rr}) design
- \diamond column design = 2- (c, e, λ_{cc}) design

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

• extremal $(r \times c, v)$ -TA: v = r + c - 1

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- symmetric 2-design: # blocks = # points
- \diamond symmetric 2-design $\xrightarrow[problem]{assignment}$ extremal TA

Agrawal, 1966

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- symmetric 2-design: # blocks = # points

symmetric 2-de	sign assignmen	ightarrow extremal	TA	Agra	awal, 1966
0,3,5,6,8,9					
0,1,4,5,7,8					
0,2,4,6,7,9					
0,1,2,5,9,10					
0,1,3,6,7,10					
0,2,3,4,8,10					
1,2,3,4,5,6					
1,2,3,7,8,9					
1,4,6,8,9,10					
2,5,6,7,8,10					
3,4,5,7,9,10					

$$\diamond v \ge r + c - 1$$

2,5,6,7,8,103,4,5,7,9,10 Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- symmetric 2-design: # blocks = # points
- $\begin{array}{c|c} \text{symmetric 2-design} \xrightarrow{\text{assignment}} \text{problem} \end{array} \text{ extremal TA} \qquad \begin{array}{c} \text{Agrawal, 1966} \\ \hline \textbf{0,3,5,6,8,9} \\ 0,1,4,5,7,8 \\ 0,2,4,6,7,9 \\ 0,1,2,5,9,10 \\ 0,1,3,6,7,10 \\ 0,2,3,4,8,10 \\ 1,2,3,4,5,6 \\ 1,2,3,7,8,9 \\ 1,4,6,8,9,10 \\ \end{array}$

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- symmetric 2-design: # blocks = # points
- ♦ symmetric 2-design $\xrightarrow[\text{problem}]{\text{assignment}}$ extremal TA

Agrawal, 1966

```
0,3,5,6,8,9

0,1,4,5,7,8

0,2,4,6,7,9

0,1,2,5,9,10

0,1,3,6,7,10

0,2,3,4,8,10

1,2,3,4,5,6

1,2,3,7,8,9

1,4,6,8,9,10

2,5,6,7,8,10

3,4,5,7,9,10
```

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- symmetric 2-design: # blocks = # points

symmetric 2-d	esign ——	$\xrightarrow{\text{snment}} \text{ext}$	remal TA	Agrawal, 1966				
0,3,5,6,8,9								
0,1,4,5,7,8								
0,2,4,6,7,9								
0,1,2,5,9,10								
0,1,3,6,7,10								
0,2,3,4,8,10	1,2,4,7,10	2,3,6,9,10	1,3,5,8,10	3,4,6,7,8	2,4,5,8,9	1,5,6,7,9		
1,2,3,4,5,6								
1,2,3,7,8,9								
1,4,6,8,9,10								
2,5,6,7,8,10								
3,4,5,7,9,10								

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- symmetric 2-design: # blocks = # points

$$\diamond v \ge r + c - 1$$

Bayley-Heidtmann, 1994; Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005

- extremal $(r \times c, v)$ -TA: v = r + c 1
- *symmetric 2-design*: # blocks = # points

$$\begin{array}{c} \text{symmetric 2-design} \xrightarrow{\text{assignment}} \text{problem} \end{array} \text{ extremal TA} \qquad \begin{array}{c} \text{Agrawal, 1966} \\ \\ 0.3.5, 6, 8, 9 \\ 0.1, 4, 5, 7, 8 \\ 0.2, 4, 6, 7, 9 \\ 0.1, 2, 5, 9, 10 \\ 0.1, 3, 6, 7, 10 \\ 0.2.3, 4, 8, 10 \\ 1.2.3, 4, 5, 6 \\ 1.2.3, 7, 8, 9 \\ 2 \\ 3 \\ 1.4, 6, 8, 9, 10 \\ 2.5, 6, 7, 8, 10 \\ \end{array} \begin{array}{c} \text{Agrawal, 1966} \\ \text{Agrawal, 1966}$$

5

3

9

♦ extremal TA → symmetric 2-design

10

3,4,5,7,9,10

BH, 1994; MPWY, 2005

		C_1	C_2	C_3	C_4	C_5	C_6
		1,2,4,7,10	$2,\!3,\!6,\!9,\!10$	$1,\!3,\!5,\!8,\!10$	3,4,6,7,8	$2,\!4,\!5,\!8,\!9$	$1,\!5,\!6,\!7,\!9$
R_1	1,2,3,4,5,6						
R_2	1,2,3,7,8,9						
R_3	1,4,6,8,9,10						
R_4	2,5,6,7,8,10						
R_5	3,4,5,7,9,10						

		C_1	C_2	C_3	C_4	C_5	C_6
		1,2,4,7,10	2,3,6,9,10	$1,\!3,\!5,\!8,\!10$	3,4,6,7,8	2,4,5,8,9	1,5,6,7,9
R_1	1,2,3,4,5,6	1, 2, 4	2, 3, 6	1, 3, 5	3, 4, 6	2, 4, 5	1, 5, 6
R_2	1,2,3,7,8,9	1, 2, 7	2, 3, 9	1, 3, 8	3, 7, 8	2, 8, 9	1, 7, 9
R_3	1,4,6,8,9,10	1, 4, 10	6, 9, 10	1, 8, 10	4, 6, 8	4, 8, 9	1, 6, 9
R_4	2,5,6,7,8,10	2, 7, 10	2, 6, 10	5, 8, 10	6, 7, 8	2, 5, 8	5, 6, 7
R_5	3,4,5,7,9,10	4, 7, 10	3, 9, 10	3, 5, 10	3, 4, 7	4, 5, 9	5, 7, 9

• find $a_{ij} \in R_i \cap C_j$: $a_{ij} \neq a_{kj}$, $a_{ij} \neq a_{il}$

		C_1	C_2	C_3	C_4	C_5	C_6
		1,2,4,7,10	2,3,6,9,10	$1,\!3,\!5,\!8,\!10$	3,4,6,7,8	2,4,5,8,9	$1,\!5,\!6,\!7,\!9$
R_1	1,2,3,4,5,6	1, 2, 4	2, 3, 6	1, 3, 5	3, 4, 6	2, 4, 5	1, 5, 6
R_2	1,2,3,7,8,9	1, 2, 7	2, 3, 9	1, 3, 8	3, 7, 8	2, 8, 9	1, 7, 9
R_3	1,4,6,8,9,10	1, 4, 10	6, 9, 10	1, 8, 10	4, 6, 8	4, 8, 9	1, 6, 9
R_4	2,5,6,7,8,10	2, 7, 10	2, 6, 10	5, 8, 10	6, 7, 8	2, 5, 8	5, 6, 7
R_5	3,4,5,7,9,10	4, 7, 10	3, 9, 10	3, 5, 10	3, 4, 7	4, 5, 9	5, 7, 9

- find $a_{ij} \in R_i \cap C_j$: $a_{ij} \neq a_{kj}$, $a_{ij} \neq a_{il}$
- \diamond NP-complete for arbitrary R_i , C_j

Fon-Der-Flaass, 1997

		C_1	C_2	C_3	C_4	C_5	C_6
		1,2,4,7,10	2,3,6,9,10	$1,\!3,\!5,\!8,\!10$	3,4,6,7,8	2,4,5,8,9	$1,\!5,\!6,\!7,\!9$
R_1	1,2,3,4,5,6	1, 2, 4	2, 3, 6	1, 3, 5	3, 4, 6	2, 4, 5	1, 5, 6
R_2	1,2,3,7,8,9	1, 2, 7	2, 3, 9	1, 3, 8	3, 7, 8	2, 8, 9	1, 7, 9
R_3	1,4,6,8,9,10	1, 4, 10	6, 9, 10	1, 8, 10	4, 6, 8	4, 8, 9	1, 6, 9
R_4	2,5,6,7,8,10	2, 7, 10	2, 6, 10	5, 8, 10	6, 7, 8	2, 5, 8	5, 6, 7
R_5	3,4,5,7,9,10	4, 7, 10	3, 9, 10	3, 5, 10	3, 4, 7	4, 5, 9	5, 7, 9

- find $a_{ij} \in R_i \cap C_j$: $a_{ij} \neq a_{kj}$, $a_{ij} \neq a_{il}$
- \diamond NP-complete for arbitrary R_i , C_j

Fon-Der-Flaass, 1997

 \diamond **Conjecture:** in Agrawal's constr. solution exists if $|R_i \cap C_j| = \lambda_{rc} > 2$

- Extremal TA
 - ♦ from Hadamard matrices
 - from Youden rectangles
 - ♦ from difference sets

Preece-Wallis-Yucas, 2005 Nilson-Öhman, 2014 Nilson-Cameron, 2017

- Extremal TA
 - ⋄ from Hadamard matrices
 - from Youden rectangles
 - ⋄ from difference sets

Preece-Wallis-Yucas, 2005 Nilson-Öhman, 2014 Nilson-Cameron, 2017

- Non-extremal TA?
 - \diamond "Small" admissible $(r \times c, v)$: $(7 \times 15, 35)$, $(11 \times 45, 99)$, $(15 \times 21, 63)$, $(16 \times 21, 56)$, $(16 \times 25, 100)$, $(13 \times 40, 130)$
- \diamond Is there a $(7 \times 15, 35)$ -triple array?

Preece, 1970s

- Extremal TA
 - ♦ from Hadamard matrices
 - ♦ from Youden rectangles
 - from difference sets

Preece-Wallis-Yucas, 2005 Nilson-Öhman, 2014 Nilson-Cameron, 2017

- Non-extremal TA?
 - \diamond "Small" admissible $(r \times c, v)$: $(7 \times 15, 35)$, $(11 \times 45, 99)$, $(15 \times 21, 63)$, $(16 \times 21, 56)$, $(16 \times 25, 100)$, $(13 \times 40, 130)$
- \diamond Is there a $(7 \times 15, 35)$ -triple array?

Preece, 1970s

♦ There is!

MPWY, 2005; Yucas, 2002

31	1	18	16	7	10	5	3	4	2	33	14	19	15	12
26	32	1	2	29	30	28	20	27	11	5	34	3	8	4
1	17	13	9	3	4	21	22	6	35	25	5	24	2	23
6	27	33	28	16	13	35	30	15	10	9	26	12	17	29
16	12	23	32	34	21	15	33	24	22	11	10	8	25	20
21	22	28	24	25	19	7	14	18	29	27	23	26	30	31
11	7	8	14	13	32	20	6	34	18	19	17	35	31	9

The only example known so far!

- Extremal TA
 - ♦ from Hadamard matrices
 - ♦ from Youden rectangles
 - from difference sets

Preece-Wallis-Yucas, 2005 Nilson-Öhman, 2014 Nilson-Cameron, 2017

- Non-extremal TA?
 - \diamond "Small" admissible $(r \times c, v)$: $(7 \times 15, 35)$, $(11 \times 45, 99)$, $(15 \times 21, 63)$, $(16 \times 21, 56)$, $(16 \times 25, 100)$, $(13 \times 40, 130)$
- \diamond Is there a $(7 \times 15, 35)$ -triple array?

Preece, 1970s

♦ There is!

MPWY, 2005; Yucas, 2002

31	1	18	16	7	10	5	3	4	2	33	14	19	15	12
26	32	1	2	29	30	28	20	27	11	5	34	3	8	4
1	17	13	9	3	4	21	22	6	35	25	5	24	2	23
6	27	33	28	16	13	35	30	15	10	9	26	12	17	29
16	12	23	32	34	21	15	33	24	22	11	10	8	25	20
21	22	28	24	25	19	7	14	18	29	27	23	26	30	31
11	7	8	14	13	32	20	6	34	18	19	17	35	31	9

The only example known so far!

Non-extremal $(7 \times 15, 35)$ -TA

Row design: $5 \times PG(2,2)$

Column design: resolution of PG(3, 2)

- parallel class: partition of all points into blocks
- resolution: partition of all blocks into parallel classes

New TA construction

G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := e(e-1)/(r-1) \in \mathbb{Z}$, $k := c/e \in \mathbb{Z}$
- $\textbf{1} \ \, \text{row design} = k \times \, \text{symmetric 2-} (r,e,a) \, \, \text{design}$
- 2 column design = resolution of 2- (c, e, λ_{cc}) design
- **3** blocks of $1 \Leftrightarrow \text{parallel classes of } 2$
- 4 assignment problem

New TA construction

G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := e(e-1)/(r-1) \in \mathbb{Z}$, $k := c/e \in \mathbb{Z}$
- $\textbf{1} \ \, \text{row design} = k \times \, \text{symmetric 2-} (r,e,a) \, \, \text{design}$
- 2 column design = resolution of 2- (c, e, λ_{cc}) design
- **3** blocks of $1 \Leftrightarrow \text{parallel classes of } 2$
- 4 assignment problem
- First general construction for non-extremal TA

New TA construction

G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := e(e-1)/(r-1) \in \mathbb{Z}$, $k := c/e \in \mathbb{Z}$
- $\textbf{1} \ \, \text{row design} = k \times \, \text{symmetric 2-}(r,e,a) \, \, \text{design}$
- 2 column design = resolution of 2- (c, e, λ_{cc}) design
- **3** blocks of $1 \Leftrightarrow \text{parallel classes of } 2$
- 4 assignment problem
- First general construction for non-extremal TA
- \diamond In constructed TA every two rows and column have a common symbols

New TA construction

G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := e(e-1)/(r-1) \in \mathbb{Z}$, $k := c/e \in \mathbb{Z}$
- 1 row design = $k \times$ symmetric 2-(r, e, a) design
- 2 column design = resolution of 2- (c, e, λ_{cc}) design
- 3 blocks of $1 \Leftrightarrow \text{parallel classes of } 2$
- assignment problem
- ♦ First general construction for non-extremal TA
- \diamond In constructed TA every two rows and column have a common symbols
- Can give extremal TA:

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

New non-extremal TA

• Only one was known before!

New non-extremal TA

Only one was known before!

New $(7 \times 15, 35)$ -TA

- ullet 7 resolutions of 2-(15, 3, 1) designs (Kirkman parades)
- Knuth's Dancing Links algorithm
- \diamond 85 non-isotopic $(7 \times 15, 35)$ -TA

G.-Öhman, 2023+

# of parade	1	2	3	4	5	6	7
Aut	168	168	24	24	12	12	21
TA found	0	3	24	4	21	21	12

New non-extremal TA

Only one was known before!

New $(7 \times 15, 35)$ -TA

- 7 resolutions of 2-(15,3,1) designs (Kirkman parades)
- Knuth's Dancing Links algorithm
- \diamond 85 non-isotopic $(7 \times 15, 35)$ -TA

G.-Öhman, 2023+

# of parade	1	2	3	4	5	6	7
Aut	168	168	24	24	12	12	21
TA found	0	3	24	4	21	21	12

First $(21 \times 15, 63)$ -TA

• 149+ resolutions of 2-(15, 5, 6) designs

Mathon-Rosa, 1989

- Exhaustive search out of the question
- Randomization + nonexhaustive techniques

$(21 \times 15, 63)$ -TA

2	25	46	19	54	4	37	23	55	8	31	58	15	12	18	36	41	44	28	51	62
45	35	41	1	33	6	27	20	58	9	28	62	13	10	55	38	16	52	24	46	50
15	1	42	30	55	54	5	31	35	11	7	39	58	43	16	47	50	19	22	26	63
14	24	61	3	32	16	10	5	40	51	9	43	59	36	26	19	37	53	55	48	28
6	34	10	17	1	8	29	21	42	55	14	37	60	31	63	46	49	43	23	27	53
13	9	47	58	2	5	28	63	34	12	42	44	53	17	25	39	24	20	56	32	49
1	36	63	16	52	7	11	33	4	20	29	59	23	44	56	14	38	42	48	25	51
51	22	62	2	56	47	30	6	36	19	8	38	11	32	17	13	40	27	43	60	52
50	27	3	29	37	18	6	32	59	56	41	7	10	34	15	20	22	54	44	47	61
49	2	11	59	38	46	4	24	56	21	40	9	54	35	61	15	17	26	45	31	29
44	26	1	21	39	53	12	61	6	57	33	8	22	18	13	48	51	40	29	58	35
5	7	2	60	53	48	38	19	41	49	15	61	12	16	27	34	23	45	57	33	30
43	23	40	20	3	9	39	4	57	10	30	60	14	33	62	35	18	25	47	49	54
3	8	48	18	31	52	25	62	5	50	13	45	24	11	57	37	42	21	30	59	34
4	3	12	28	57	17	26	22	60	7	32	63	52	45	14	21	39	41	46	50	36

$(21 \times 15, 63)$ -TA

2	25	46	19	54	4	37	23	55	8	31	58	15	12	18	36	41	44	28	51	62
45	35	41	1	33	6	27	20	58	9	28	62	13	10	55	38	16	52	24	46	50
15	1	42	30	55	54	5	31	35	11	7	39	58	43	16	47	50	19	22	26	63
14	24	61	3	32	16	10	5	40	51	9	43	59	36	26	19	37	53	55	48	28
6	34	10	17	1	8	29	21	42	55	14	37	60	31	63	46	49	43	23	27	53
13	9	47	58	2	5	28	63	34	12	42	44	53	17	25	39	24	20	56	32	49
1	36	63	16	52	7	11	33	4	20	29	59	23	44	56	14	38	42	48	25	51
51	22	62	2	56	47	30	6	36	19	8	38	11	32	17	13	40	27	43	60	52
50	27	3	29	37	18	6	32	59	56	41	7	10	34	15	20	22	54	44	47	61
49	2	11	59	38	46	4	24	56	21	40	9	54	35	61	15	17	26	45	31	29
44	26	1	21	39	53	12	61	6	57	33	8	22	18	13	48	51	40	29	58	35
5	7	2	60	53	48	38	19	41	49	15	61	12	16	27	34	23	45	57	33	30
43	23	40	20	3	9	39	4	57	10	30	60	14	33	62	35	18	25	47	49	54
3	8	48	18	31	52	25	62	5	50	13	45	24	11	57	37	42	21	30	59	34
4	3	12	28	57	17	26	22	60	7	32	63	52	45	14	21	39	41	46	50	36

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- $\bullet \ \ {\rm each \ symbol \ appears} \ e \ {\rm or} \ e+1 \ {\rm times}$
- 2 rows: λ_{rr} or $\lambda_{rr}+1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc}+1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc} + 1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e or e+1 times
- 2 rows: λ_{rr} or $\lambda_{rr}+1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc}+1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc}+1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- $\bullet \ \ {\rm each \ symbol \ appears} \ e \ {\rm or} \ e+1 \ {\rm times}$
- 2 rows: λ_{rr} or $\lambda_{rr} + 1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc}+1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc}+1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- $\bullet \ \ {\rm each \ symbol \ appears} \ e \ {\rm or} \ e+1 \ {\rm times}$
- 2 rows: λ_{rr} or $\lambda_{rr}+1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc} + 1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc}+1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- $\bullet \ \ {\rm each \ symbol \ appears} \ e \ {\rm or} \ e+1 \ {\rm times}$
- 2 rows: λ_{rr} or $\lambda_{rr}+1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc} + 1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc} + 1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- ullet r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e or e+1 times
- 2 rows: λ_{rr} or $\lambda_{rr}+1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc} + 1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc} + 1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- r rows, c columns, v symbols
- no repetitions in rows or columns
- ullet each symbol appears e or e+1 times
- 2 rows: λ_{rr} or $\lambda_{rr} + 1$ common symbols
- 2 columns: λ_{cc} or $\lambda_{cc} + 1$ c.s.
- row and column: λ_{rc} or $\lambda_{rc}+1$ c.s.

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

Why near-triple arrays?

- ♦ (Hopefully) still great experimental designs
- Exist for wider range of parameters; easier to construct
- \diamond for TA-admissible $(r \times c, v)$, TA = NTA

Existence of NTA

1	3	4	5	6	7 8	8 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
3 × 3	31+	+	+1	-1-	+1+	-1+	Ī	Ť	Ī	T	Ī	Ī	ī	Ī	T	T	T	ī	T	Ī	T	Ī				T	T	Ī	T		T	Ī	T	Ť	T	T	ī			T	Ħ		T	T	ヿ	三	≒
3 × 4	1	Ŧ	+	-	F I +	+	+	+	+			т			\neg	\neg	\neg		\neg		\neg						\neg		\neg		\neg		\neg	ヿ	\neg		\neg			$\overline{}$			\neg		\neg	\neg	\neg
3 × 5	5	П	+	+ -	FI-	+	+	+	+	+	+	+			\neg		\neg		\neg		\neg						\neg		\neg		\neg		\neg	T	\neg		\neg			$\overline{}$			\neg	T	\neg	\neg	\neg
3 × 6	3	П	T	+ -	+ +	+	+	+	+	+	+	+	+	+	+	T	\neg		\neg		\neg						\neg		\neg		\neg		\neg	T	\neg		\neg			$\overline{}$			\neg	T	\neg	\neg	\neg
3 × 7	7	П		1	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+															\neg		\neg					П					\neg	П	\neg
3 × 8	3	П		\neg	1+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+												\neg		\neg					$\overline{}$					\neg	\neg	\neg
3 × 9	9			\neg	\top	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+																					\neg	\neg	\neg
3×10		П		\neg	\top	Т	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+						\neg		\neg					П			\neg		\neg	\neg	\neg
3×11	ı	П	T	\neg	Т	Т	Т	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			\neg		\neg					П			\neg		П	П	П
3×12	2	П		\neg	Т	Т	Т	Т	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		\neg					П			\neg		П	П	П
3×13	3	П	\neg	T	Т	Т	П	Т	П	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+							\neg		П	П	П
3×14	1	П	T	\neg	Т	Т					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	П			\neg		\neg	П	П
3×15	5	П	П	Т	Т	Т	П	П	П	П	П	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	П	П	П	. \neg	
4 × 4	1	+	+	+ -	+ +	-	+	+	+	+	+	+	+				П																П		П					П			П		П	П	
4 × 5	5		+	+	- 1+	+	-	+	+	+	+	+	+	+	+	+	+																П		П					П			П		П	П	П
4 × 6				+ -	+ -	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+																								\Box	П	
4 × 7				I	+ +	-	+		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+																				\Box	J	
4 × 8				\perp	+				+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+																\Box	J	
4 × 9				\Box	\perp	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+												\Box	J	
4×10							+		-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+									J	
4×11								+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+						
4×12									+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
5 × 5		Ш	+		+ -	+			+		+	+	+	+	+	+	+	+	+	+	+	+					_		_				_		_												
5 × 6		Ш			+ -	+			+		+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+						\perp		\perp												
5 × 7		Ш	_		+ +		+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_		_								_		_	_	
5 × 8		Ш	_	_	+			1=	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					Ш	_	\Box	_	_	
5 × 9		Ш	_	_	\perp	+	+	<u> </u>	_	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_		_	\Box	
5×10^{-1}					\perp	\perp	+		-	-	+	+	?	_	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6×6				+ -	+ +	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+														
6 × 7		Ш			+ +			1-	+	+	-	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+							Ш	
6 × 8		Ш	\Box	4	+			1-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
7×7		Ш		<u>_</u>	+ +	+	1-	?	?	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

Existence of NTA

 \diamond $(3 \times c, v)$ -NTA exist for all $c \geq 6$

Existence of NTA

- \diamond $(3 \times c, v)$ -NTA exist for all $c \ge 6$
- \diamond -,? \Rightarrow + with just one intersection condition relaxed to x, x+1 or x+2

Enumeration of TA

	v	10	12	14	15	20
	$r \times c$	5×6	4×9	7×8	6×10	5×16
То	tal #	7	1	684782	270119	26804
Aut	1			682054	263790	26714
İ	2			1266	5280	
	3	2	1	1277	260	90
	4	1		98	579	
	5				1	
	6	1		48	69	
	7			2		
	8			12	88	
	10				2	
	12	2		9	17	
	16				11	
	18				1	
	20				4	
	21			8		
	24			7	9	
	36				2	
	48				4	
	60	1				
	120				1	
	168			1		
	720				1	

- More non-extremal TA:
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...

- More non-extremal TA:
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$, . . . : no resolvable 2-designs known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: construction not applicable

- More non-extremal TA:
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$, ...: no resolvable 2-designs known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: construction not applicable
- Conjecture: in Agrawal's constr. solution exists if $|R_i \cap C_j| = \lambda_{rc} > 2$

- More non-extremal TA:
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$, ...: no resolvable 2-designs known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: construction not applicable
- Conjecture: in Agrawal's constr. solution exists if $|R_i \cap C_j| = \lambda_{rc} > 2$
- Statistical analysis of NTA

- More non-extremal TA:
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$, ...: no resolvable 2-designs known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: construction not applicable
- Conjecture: in Agrawal's constr. solution exists if $|R_i \cap C_j| = \lambda_{rc} > 2$
- Statistical analysis of NTA
- \diamond Are there $r, c, v \in \mathbb{N}$, $\max(r, c) < v < r + c 1$:

$$\frac{rc}{v} \in \mathbb{N}, \ \frac{c(e-1)}{r-1} \in \mathbb{N}, \ \frac{r(e-1)}{c-1} \in \mathbb{N}?$$