Программа спецкурса "Теория сложности алгоритмов"

(зима 2006/7 г., лектор Э.А.Гирш)

- 1. Массовая задача. Классы $\widetilde{\mathbf{P}}$, $\widetilde{\mathbf{NP}}$, \mathbf{P} , \mathbf{NP} . Три определения недетерминированной машины Тьюринга. Сведения по Левину, Карпу и Тьюрингу, полные и трудные языки. Задача об ограниченной остановке ($\widetilde{\mathbf{BH}}$), ее $\widetilde{\mathbf{NP}}$ -полнота. Задачи SAT, $\widetilde{\mathbf{SAT}}$.
- 2. Сведение задачи поиска к задаче распознавания для **NP**-полных языков. Оптимальный алгоритм Левина. Теорема о существовании **NP**-полного языка, не принадлежащего **P**.
- 3. Редкие и унарные языки. Теоремы об NP-трудности унарных и со-NP-трудности редких языков по Карпу.
- 4. Вычисления с оракулами. Операторы Шонинга. Классы языков $\oplus P$, UP, PP, BPP, RP, $\Sigma^k P$, $\Delta^k P$, PSPACE, со-классы. Пример языка из RP, для которого неизвестен алгоритм из P. Уменьшение вероятности ошибки в RP и BPP. Три определения полиномиальной иерархии и необходимое и достаточное условие ее коллапса.
- 5. Определение языка QBF и его **PSPACE**-полнота.
- 6. Определения классов $\mathbf{DSpace}[f]$, $\mathbf{NSpace}[f]$, теоремы о замкнутости относительно дополнения и о моделировании $\mathbf{NSpace}[f]$ при помощи $\mathbf{DSpace}[f]$.
- 7. Определение классов $\mathbf{DTime}[f]$ и $\mathbf{NTime}[f]$. Теоремы об иерархии для них и для $\mathbf{DSpace}[f]$.
- 8. Эвристические классы, доказательство теоремы об иерархии по времени для $\mathbf{heur}_{\delta}\mathbf{-BPTime}[n^k].$
- 9. Булевы схемы и неравномерные вычисления. Теоремы $\mathbf{BPP} \subseteq \mathbf{P/poly}$ и $\mathbf{NP} \subseteq \mathbf{P/poly} \Rightarrow \mathbf{PH} = \Sigma^2 \mathbf{P}$.
- 10. Интерактивные доказательства (**IP**, **MA**, **AM**). Примеры. Доказательство **MA** \subseteq **AM**, **MA** \subseteq **PP**.
- 11. Три определения класса **ZPP**. Доказательство **BPP** $\subseteq \exists \bullet BPP \subseteq NP^{BPP} \subseteq MA_2 = MA \subseteq ZPP^{NP} \subseteq \Sigma^2P \cap \Pi^2P$.
- 12. $\mathbf{NP} \subseteq \mathbf{BPP} \Rightarrow \Sigma^2 \mathbf{P} \subseteq \mathbf{BPP}$.
- 13. Теорема Шамира: IP = PSPACE.
- 14. Теорема Тода: $\mathbf{PH} \subset \mathbf{P}^{\#\mathbf{P}} = \mathbf{P^{PP}}$.
- 15. Класс #Р. Протокол LFKN. Доказательство **РР** $\not\subseteq$ **Size** $[n^k]$, Σ^2 **Р** \cap Π^2 **Р** $\not\subseteq$ **Size** $[n^k]$. Теорема Нечипорука.