Lay 4.4

Question 1 True/False: The standard basis for $\mathbf{R^2}$ is $\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$.

Multiple Choice:

- (a) True ✓
- (b) False

Question 2 True/False: Let \vec{x} be in some vector space V and let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for V. Then \vec{x} can be written in two different ways:

$$\vec{x} = c_1 \vec{b}_1 + \dots + c_n \vec{b}_n$$
 and $\vec{x} = d_1 \vec{b}_1 + \dots + d_n \vec{b}_n$

where not all of the c_i 's are equal to the corresponding d_i 's.

Multiple Choice:

- (a) True
- (b) False ✓

Hint: Check out the unique representation theorem.

Question 3 Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ is a basis for some vector space V and $\vec{x} = 3\vec{b}_1 - 2\vec{b}_2 + 8\vec{b}_3$ is a vector in V. What is $[\vec{x}]_{\mathcal{B}}$?

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -2 \\ 8 \end{bmatrix}$$

Question 4 $\mathcal{B} = \left\{ \begin{bmatrix} 4\\2 \end{bmatrix}, \begin{bmatrix} -2\\2 \end{bmatrix} \right\}$ is a basis for $\mathbf{R^2}$ and $\vec{x} = \begin{bmatrix} 8\\10 \end{bmatrix}$ is a vector in $\mathbf{R^2}$. Find the coordinate vector of \vec{x} relative to \mathcal{B}

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} \boxed{3} \\ \boxed{2} \end{bmatrix}$$

Lay 4.4

Question 5 $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \end{bmatrix} \right\}$ is a basis for $\mathbf{R^2}$ and $\vec{x} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ is a vector in $\mathbf{R^2}$. Find the coordinate vector of \vec{x} relative to \mathcal{B}

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} \boxed{31} \\ \boxed{15} \\ -\boxed{13} \\ \boxed{15} \end{bmatrix}$$

Question 6 Let
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-2 \end{bmatrix} \right\}$$
 be a basis for \mathbf{R}^3 . If $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 1\\3\\5 \end{bmatrix}$,

what is \vec{x} , that is the same vector in \mathbb{R}^3 , but written in terms of the standard basis of \mathbb{R}^3 ?

$$\vec{x} = \begin{bmatrix} 12 \\ 2 \\ -7 \end{bmatrix}$$

Hint: $\vec{x} = P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}$

Question 7 Let \mathcal{B} be a basis for \mathbf{R}^2 . If $\vec{x} = \begin{bmatrix} -17 \\ 5 \end{bmatrix}$ and $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$, then which of the following is the basis \mathcal{B} ?

Multiple Choice:

(a)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} -17\\5 \end{bmatrix}, \begin{bmatrix} 3\\-4 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 5\\1 \end{bmatrix} \right\} \checkmark$$

Hint: $\vec{x} = P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}$

Math 2210Q