Algorithm Design and Analysis Assignment 5

Deadline: Jun 2, 2023

- 1. (35 points) [Common System of Distinct Representatives] Given a ground set $U = \{1, ..., n\}$ and a collection of k subsets $\mathcal{A} = \{A_1, ..., A_k\}$, a system of distinct representatives of \mathcal{A} is a "representative" collection T of distinct elements from the sets in \mathcal{A} . Specifically, we have |T| = k, and the k distinct elements in T can be ordered as $u_1, ..., u_k$ such that $u_i \in A_i$ for each i = 1, ..., k. For example, $\{A_1 = \{2, 8\}, A_2 = \{8\}, A_3 = \{4, 5\}, A_4 = \{2, 4, 8\}\}$ has a system of distinct representatives $\{2, 4, 5, 8\}$ where $2 \in A_1, 4 \in A_4, 5 \in A_3, 8 \in A_2$, while $\{A_1 = \{2, 8\}, A_2 = \{8\}, A_3 = \{4, 8\}, A_4 = \{2, 4, 8\}\}$ does not have a system of distinct representatives.
 - (a) (15 points) Design a polynomial time algorithm to decide if \mathcal{A} has a system of distinct representatives.
 - (b) (20 points) Given a ground set $U = \{1, ..., n\}$ and two collections of k subsets $\mathcal{A} = \{A_1, ..., A_k\}$ and $\mathcal{B} = \{B_1, ..., B_k\}$, a common system of distinct representatives is a collection T of k elements that is a system of distinct representatives of both \mathcal{A} and \mathcal{B} . Design a polynomial time algorithm to decide if \mathcal{A} and \mathcal{B} have a common system of distinct representatives.

For each part, prove the correctness of your algorithm, and analyze its time complexity.

- 2. (35 points) Consider the maximum flow problem (G = (V, E), s, t, c) on graphs where the capacities for all edges are 1: c(e) = 1 for each $e \in E$. You can assume there is no pair of anti-parallel edges: for each pair of vertices $u, v \in V$, we cannot have both $(u, v) \in E$ and $(v, u) \in E$. You can also assume every vertex is reachable from s.
 - (a) (20 points) Prove that Dinic's algorithm runs in $O(|E|^{3/2})$ time.
 - (b) (15 points) Prove that Dinic's algorithm runs in $O(|V|^{2/3} \cdot |E|)$ time. (Hint: Let f be the flow after $2|V|^{2/3}$ iterations of the algorithm. Let D_i be the set of vertices at distance i from s in the residual network G^f . Prove that there exists i such that $|D_i \cup D_{i+1}| \leq |V|^{1/3}$.)

- 3. (35 points) In this question, we will prove König-Egerváry Theorem, which states that, in any bipartite graph, the size of the maximum matching equals to the size of the minimum vertex cover. Let G = (V, E) be a bipartite graph.
 - (a) (5 points) Explain that the following is an LP-relaxation for the maximum matching problem.

maximize
$$\sum_{e \in E} x_e$$

subject to $\sum_{e:e=(u,v)} x_e \le 1$ $(\forall v \in V)$
 $x_e \ge 0$ $(\forall e \in E)$

- (b) (5 points) Write down the dual of the above linear program, and justify that the dual program is an LP-relaxation to the minimum vertex cover problem.
- (c) (10 points) Show by induction that the *incident matrix* of a bipartite graph is totally unimodular. (Given an undirected graph G = (V, E), the incident matrix A is a $|V| \times |E|$ zero-one matrix where $a_{ij} = 1$ if and only if the *i*-th vertex and the *j*-th edge are incident.)
- (d) (10 points) Use results in (a), (b) and (c) to prove König-Egerváry Theorem.
- (e) (5 points) Give a counterexample to show that the claim in König-Egerváry Theorem fails if the graph is not bipartite.
- 4. (35 points) The network flow problem only restricts the capacity of each edge. Consider the following variant, each edge e does not only have a capacity c_e , but also a demand d_e . Finally, the edge should have flow $d_e \leq f_e \leq c_e$. Please find out how to solve the following problems by reducing them to the original max flow problem.
 - (a) (20 points) In the original network flow problem, finding a feasible flow is easy. (a zero flow is surely feasible.) However, whether there exists a feasible flow is not straightforward in this new variant. How to determine the existence of a feasible flow by using the original max flow algorithm? (i.e., each f_e should satisfy $d_e \leq f_e \leq c_e$ and the flow conservation constraint should hold at all vertices other than s and t.)
 - (b) (15 points) Based on the previous part, can we further find a maximum feasible flow? Please also use the original max flow algorithm.
- 5. How long does it take you to finish the assignment (including thinking and discussing)? Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Write down their names here.