MVA - Probabilistic Graphical Models DM1

Ariane ALIX, Sacha BOZOU

November 22nd, 2019

1 Learning in discrete graphical models

Consider the following model: z and x are discrete variables taking respectively M and K different values with $p(z=m)=\pi_m$ and $p(x=k|z=m)=\theta_{mk}$.

Let $\{(z_1, x_1)..., (z_n, x_n)\}$ be a sample of n observations. Since they are i.i.d, we have the likelihood function :

$$\begin{split} L(\pi,\theta) &= \prod_{i=1}^n p(z_i,x_i|\pi;\theta) \\ &= \prod_{i=1}^n p(x_i|z_i;\pi;\theta) p(z_i|\pi) \text{ using Bayes' rule} \\ &= \prod_{i=1}^n \theta_{z_ix_i}\pi_{z_i} \\ &= \prod_{i=1}^n (\prod_{m=1}^M \prod_{k=1}^K \theta_{mk}^{\mathbbm{1}\{z_i=m\}} \mathbbm{1}\{x_i=k\}}) (\prod_{m=1}^M \pi_m^{\mathbbm{1}\{z_i=m\}}) \end{split}$$

We intoduce the variables $z_{im} = \mathbb{1}_{\{z_i = m\}}$ and $x_{ik} = \mathbb{1}_{\{x_i = k\}}$ to simplify the notations. When passing to the log, we then get the following log-likelihood function:

$$l(\pi, \theta) = \sum_{i=1}^{n} \left(\sum_{m=1}^{M} \sum_{k=1}^{K} \log(\theta_{mk}^{z_{im}x_{ik}}) + \sum_{m=1}^{M} \log(\pi_{m}^{z_{im}}) \right)$$
$$= \sum_{m=1}^{M} \sum_{k=1}^{K} \left(\sum_{i=1}^{n} z_{im}x_{ik} \right) \log(\theta_{mk}) + \sum_{m=1}^{M} \left(\sum_{i=1}^{n} z_{im} \right) \log(\pi_{m})$$

Our goal is to maximize this function $l(\pi, \theta)$ while respecting the constraints on the probabilities :

•
$$\sum_{m=1}^{M} \pi_m = 1$$

•
$$\forall m \in \{1, ..., M\}$$
 $\sum_{k=1}^{K} \theta_{mk} = 1$

The two terms of the sum in $l(\pi, \theta)$ are independent, therefore we can maximize them separately.

MLE for π

We consider the problem:

$$\min_{\pi} - \sum_{m=1}^{M} (\sum_{i=1}^{n} z_{im}) \log(\pi_m)$$
s.t
$$\sum_{m=1}^{M} \pi_m = 1$$

The Langrangian of the problem is:

$$\mathcal{L}(\pi, \lambda) = -\sum_{m=1}^{M} (\sum_{i=1}^{n} z_{im}) \log(\pi_m) + \lambda (\sum_{m=1}^{M} \pi_m - 1)$$

And the dual function is:

$$g(\lambda) = \min_{\pi} \mathcal{L}(\pi, \lambda)$$

Since $\mathcal{L}(\pi, \lambda)$ is convex in π , we can find its minimum with respect to π by looking at the gradients with respect to the components of π :

$$\frac{\partial \mathcal{L}}{\partial \pi_m} = -\frac{\sum_{i=1}^n z_{im}}{\pi_m} + \lambda$$

Which is equal to 0 for $\pi_m = \frac{\sum_{i=1}^n z_{im}}{\lambda}$. To find λ , we look at the constraint that gives us :

$$\sum_{m=1}^{M} \frac{\sum_{i=1}^{n} z_{im}}{\lambda} = 1$$

Hence $\lambda = n$ and the solution is $\pi_m = \frac{\sum_{i=1}^n z_{im}}{n}$ with $\sum_{i=1}^n z_{im}$ the number of observations of z that are equal to m.

MLE for θ

We consider the problem:

$$\begin{aligned} & \min_{\theta} - \sum_{m=1}^{M} \sum_{k=1}^{K} (\sum_{i=1}^{n} z_{im} x_{ik}) \log(\theta_{mk}) \\ \text{s.t} & \forall m \in \{1,...,M\} \quad \sum_{k=1}^{K} \theta_{mk} = 1 \end{aligned}$$

The Langrangian of the problem is:

$$\mathcal{L}(\theta, \lambda) = -\sum_{m=1}^{M} \sum_{k=1}^{K} (\sum_{i=1}^{n} z_{im} x_{ik}) \log(\theta_{mk}) + \sum_{m=1}^{M} \lambda_{m} (\sum_{m=1}^{M} \theta_{mk} - 1)$$

And the dual function is:

$$g(\lambda) = \min_{\theta} \mathcal{L}(\theta, \lambda)$$

Since $\mathcal{L}(\pi, \lambda)$ is convex in θ , we can find its minimum with respect to θ by looking at the gradients with respect to the components of θ :

$$\frac{\partial \mathcal{L}}{\partial \theta_{mk}} = -\frac{\sum_{i=1}^{n} z_{im} x_{ik}}{\theta_{mk}} + \lambda_{m}.$$

Which is equal to 0 for $\theta_{mk} = \frac{\sum_{i=1}^{n} z_{im} x_{ik}}{\lambda_m}$.

To find the λ_m , we look at the constraints that give us :

$$\sum_{k=1}^{K} \frac{\sum_{i=1}^{n} z_{im} x_{ik}}{\lambda_m} = 1$$

Hence $\lambda_m = \sum_{i=1}^n z_{im}$ and the solution is $\theta_{mk} = \frac{\sum_{i=1}^n z_{im} x_{ik}}{\sum_{i=1}^n z_{im}}$ with $\sum_{i=1}^n z_{im}$ the number of observations of z that are equal to m and $\sum_{i=1}^n z_{im} x_{ik}$ the number of observations where z is equal to m and x is equal to k simulatenously.

2 Linear classification

2.1 Generative model (LDA)

a. Let $\{(x_1, y_1)..., (x_n, y_n)\}$ be a sample of n observations with the x_i in \mathbb{R}^2 and the y_i in $\{0, 1\}$. Since they are i.i.d, we have the likelihood function :

$$\begin{split} L(\pi, \mu_0, \mu_1, \Sigma) &= \prod_{i=1}^n p(x_i, y_i | \pi, \mu_0, \mu_1, \Sigma) \\ &= \prod_{i=1}^n p(x_i | y_i; \pi, \mu_0, \mu_1, \Sigma) p(y_i | \pi) \text{ using Bayes' rule} \\ &= \prod_{i=1}^n \pi^{y_i} (1 - \pi)^{1 - y_i} f_{\mu_{y_i}}(x_i) \end{split}$$

Where $f_{\mu_{y_i}}(x_i) = \frac{1}{2\Pi\sqrt{\det\Sigma}}\exp(-\frac{1}{2}(x-\mu_{y_i})^T\Sigma^{-1}(x-\mu_{y_i}))$. To simplify we can write :

$$L(\pi, \mu_0, \mu_1, \Sigma) = \prod_{i=1}^n \pi^{y_i} (1 - \pi)^{1 - y_i} f_{\mu_0}(x_i)^{1 - y_i} f_{\mu_1}(x_i)^{y_i}$$

And we get the log-likelihood:

$$l(\pi, \mu_0, \mu_1, \Sigma) = \sum_{i=1}^{n} (y_i \log \pi + (1 - y_i) \log(1 - \pi) + (1 - y_i)(f_{\mu_0}(x_i)) + y_i(f_{\mu_1}(x_i))$$

$$l(\pi, \mu_0, \mu_1, \Sigma) = \sum_{i=1}^n (y_i \log \pi + (1 - y_i) \log(1 - \pi)$$

$$+ (1 - y_i)(-\log(2\Pi) - \frac{1}{2} \log(\det \Sigma) - \frac{1}{2}(x_i - \mu_0)^T \Sigma^{-1}(x_i - \mu_0))$$

$$+ y_i(-\log(2\Pi) - \frac{1}{2} \log(\det \Sigma) - \frac{1}{2}(x_i - \mu_1)^T \Sigma^{-1}(x_i - \mu_1))$$

Our goal is to maximize this function, so we look at the gradients with respect to the parameters to find for which they are equal to 0:

For π .

$$\frac{\partial l}{\partial \pi}(\pi, \mu_0, \mu_1, \Sigma) = 0$$

$$\Leftrightarrow \sum_{i=1}^n \frac{y_i}{\pi} - \frac{1 - y_i}{1 - \pi} = 0$$

$$\Leftrightarrow \frac{1}{\pi} \sum_{i=1}^n y_i = \frac{1}{1 - \pi} \sum_{i=1}^n 1 - y_i$$

$$\Leftrightarrow (\frac{1}{\pi} + \frac{1}{1 - \pi}) \sum_{i=1}^n y_i = \frac{n}{1 - \pi}$$

$$\Leftrightarrow (\frac{1 - \pi}{\pi} + 1) \sum_{i=1}^n y_i = n$$

$$\Leftrightarrow \boxed{\hat{\pi} = \frac{\sum_{i=1}^n y_i}{n}}$$

For μ_0 .

$$\frac{\partial l}{\partial \mu_0}(\pi, \mu_0, \mu_1, \Sigma) = 0$$

$$\Leftrightarrow -(\sum_{i=1}^n (1 - y_i) \Sigma^{-1}(x_i - \mu_0)) = 0$$

$$\Leftrightarrow \sum_{i=1}^n x_i (1 - y_i) - \mu_0 (1 - y_i) = 0$$

$$\Leftrightarrow \left[\hat{\mu_0} = \frac{\sum_{i=1}^n x_i (1 - y_i)}{\sum_{i=1}^n (1 - y_i)} \right]$$

For μ_1 .

$$\frac{\partial l}{\partial \mu_1}(\pi, \mu_0, \mu_1, \Sigma) = 0$$

$$\Leftrightarrow -(\sum_{i=1}^n (y_i) \Sigma^{-1}(x_i - \mu_1)) = 0$$

$$\Leftrightarrow \sum_{i=1}^n x_i y_i - \mu_1 y_i = 0$$

$$\Leftrightarrow \left[\hat{\mu_1} = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n y_i} \right]$$

For Σ .

$$\frac{\partial l}{\partial \Sigma^{-1}}(\pi, \mu_0, \mu_1, \Sigma) = 0$$

$$\Leftrightarrow \frac{\partial}{\partial \Sigma^{-1}} \left(\sum_{i=1}^n \frac{(1 - y_i)}{2} (\log(\det \Sigma^{-1}) - Tr((x_i - \mu_0)^T \Sigma^{-1}(x_i - \mu_0))) \right)$$

$$+ \frac{y_i}{2} (\log \det \Sigma^{-1} - Tr((x_i - \mu_1)^T \Sigma^{-1}(x_i - \mu_1)))) = 0$$

$$\Leftrightarrow \sum_{i=1}^n \frac{1 - y_i}{2} (\Sigma - (x_i - \mu_0)(x_i - \mu_0)^T) + \frac{y_i}{2} (\Sigma - (x_i - \mu_1)(x_i - \mu_1)^T) = 0$$

$$\Leftrightarrow \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n (1 - y_i)(x_i - \mu_0)(x_i - \mu_0)^T + y_i(x_i - \mu_1)(x_i - \mu_1)^T$$

b. We aim to determine the form of p(y=1|x). By applying Bayes' rule, we have :

$$\begin{split} \mathbb{P}(Y=1|X=x) &= \frac{\mathbb{P}(Y=1,X=x)}{\mathbb{P}(X=x)} \\ &= \frac{\mathbb{P}(X=x|Y=1)\mathbb{P}(Y=1)}{\mathbb{P}(X=x)} \\ &= \frac{\mathbb{P}(X=x|Y=1)\mathbb{P}(Y=1)}{\mathbb{P}(X=x|Y=1)\mathbb{P}(Y=1)} \\ &= \frac{f(X=x|Y=1)\mathbb{P}(Y=1) + \mathbb{P}(X=x|Y=0)\mathbb{P}(Y=0)}{f(X=x|Y=1)\mathbb{P}(X=x|Y=0)\mathbb{P}(X=0)} \\ &= \frac{f(X=x|Y=1)\mathbb{P}(X=1) + \mathbb{P}(X=1)\mathbb{P}(X=1)}{f(X=1)\mathbb{P}(X=1)} \\ &= \frac{f(X=x|Y=1)\mathbb{P}(X=1)}{f(X=1)\mathbb{P}(X=1)} \\ &= \frac{f(X=x|Y=1)\mathbb{P}(X=1)}{f(X=1)\mathbb{P}(X=1)} \end{split}$$

Let's look at $\frac{f_{\mu_0}(x)(1-\pi)}{f_{\mu_1}(x)\pi}$.

$$\begin{split} \frac{f_{\mu_0}(x)(1-\pi)}{f_{\mu_1}(x)\pi} &= \frac{1-\pi}{\pi} \frac{\frac{1}{2\Pi\sqrt{\det\Sigma}} \exp(-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0))}{\frac{1}{2\Pi\sqrt{\det\Sigma}} \exp(-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1))} \\ &= \frac{1-\pi}{\pi} \exp(-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0) + \frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)) \\ &= \frac{1-\pi}{\pi} \exp(-\frac{1}{2}(x^T \Sigma^{-1}x + \mu_0^T \Sigma^{-1}\mu_0) + \mu_0^T \Sigma^{-1}x + \frac{1}{2}(x^T \Sigma^{-1}x + \mu_1^T \Sigma^{-1}\mu_1) - \mu_1^T \Sigma^{-1}x) \\ &= \frac{1-\pi}{\pi} \exp((\mu_0 - \mu_1)^T \Sigma^{-1}x + \frac{1}{2}(\mu_1^T \Sigma^{-1}\mu_1 - \mu_0^T \Sigma^{-1}\mu_0)) \\ &= \exp((\mu_0 - \mu_1)^T \Sigma^{-1}x + \frac{1}{2}(\mu_1^T \Sigma^{-1}\mu_1 - \mu_0^T \Sigma^{-1}\mu_0) + \log(\frac{1-\pi}{\pi})) \\ &= \exp(-(\omega^T x + b)) \end{split}$$

Where
$$\omega = \Sigma^{-1}(\mu_1 - \mu_0)$$

And $b = -\frac{1}{2}(\mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0) - \log(\frac{1-\pi}{\pi})$

Therefore we have :

$$\mathbb{P}(Y = 1|X = x) = \frac{1}{1 + \frac{f_{\mu_0}(x)(1-\pi)}{f_{\mu_1}(x)\pi}}$$
$$= \frac{1}{1 + \exp(-(\omega^T x + b))}$$
$$= \sigma(\omega^T x + b)$$

Which is similar to the form of the logistic regression.

c. The MLE has been implemented (cf. the Jupyter Notebook file MVA DM1 Ariane ALIX Sacha BOZOU.ipynb), applied to the datasets, and used to plot a decision boundary corresponding to p(y=1|x)=0.5:

Figure 1 – Point cloud and decision boundary for the LDA

2.2 Logistic regression

In both logistic and linear regressions, we will use offest reparametrization.

a. For the logistic regression, we assume that :

$$ln(\frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=0|X=x)}) = \omega^T x$$

Equivalently:

$$\mathbb{P}(Y = 1 | X = x) = \sigma(\omega^T x)$$

with σ the sigmoid function

We iterate on the training data and we follow:

$$\boldsymbol{\omega}^{new} = \boldsymbol{\omega}^{old} + (\boldsymbol{X}^T \boldsymbol{D}_{\boldsymbol{\eta}^{old} \boldsymbol{X}}^{-1} \boldsymbol{X}^T (\boldsymbol{Y} - \boldsymbol{\eta}^{old})$$

 $\begin{aligned} \text{where} : \eta_i &= \sigma(\omega^T x_i) \\ \text{and} : D_{\eta} &= Diag(\eta_i(1-\eta_i)) \end{aligned}$

The decision boundary is defined by $\omega^T x = 0$

We give here after the numerical values for the parameters w and b learnt by the model on the different datasets.

• for trainA : w : 14.97 , -59.05 ; b : 339.41

• for train B : w : 1.84 , -3.71 ; b : 13.43

• for train C: w: -0.28, -1.91; b: 18.81

b. The model has been implemented (cf. the Jupyter Notebook), applied to the datasets, and used to plot a decision boundary corresponding to p(y=1|x)=0.5:

Figure 2 – Point cloud and decision boundary for the Logistic regression

2.3 Linear Regression

a. The probabilistic linear regression can be written with a noise ϵ as:

$$Y = w^T X + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, \sigma^2)$

And we have the probability law:

$$p(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(y - w^T x)^2}{2\sigma^2})$$

The normal equation aims to minimize the cost defined by $\frac{1}{2\sigma^2}\|Xw-y\|_2^2=(Xw-y)^T(Xw-y)$ with regard to w. Looking at its derivative in w, we have :

$$\begin{split} \frac{\partial \mathrm{cost}}{\partial w}(w) &= 0 \Leftrightarrow 2X^TXw - 2X^Ty = 0 \\ &\Leftrightarrow X^TXw = X^Ty \\ &\Leftrightarrow (X^TX)^{-1}X^TXw = (X^TX)^{-1}X^Ty \\ &\Leftrightarrow w = (X^TX)^{-1}X^Ty \end{split}$$

Therefore $\hat{w}_{MLE} = (X^T X)^{-1} X^T y$.

Moreover, $\hat{\sigma}_{MLE}^2$ should minimize the log-likelihood defined by :

$$\frac{1}{2}n\log(2\pi\sigma^2) + \frac{1}{2}\sum_{i=1}^{n} \frac{(y_i - w^T x_i)^2}{\sigma^2}$$

Hence,
$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{w}_{MLE}^T x_i)^2$$

For the decision boundary, we have:

$$\begin{split} p(y=1|x) &= 0.5 \Leftrightarrow \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(1-w^Tx)^2}{2\sigma^2}) = 0.5 \\ &\Leftrightarrow -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(1-w^Tx)^2}{2\sigma^2} = \log(\frac{1}{2}) \\ &\Leftrightarrow \frac{(1-w^Tx)^2}{2\sigma^2} = \frac{1}{2} \log(\frac{2}{\pi\sigma^2}) \\ &\Leftrightarrow (1-w^Tx) = \sqrt{\sigma^2 \log(\frac{2}{\pi\sigma^2})} \\ &\Leftrightarrow w^Tx - 1 + \sqrt{\sigma^2 \log(\frac{2}{\pi\sigma^2})} = 0 \end{split}$$

We give here after the numerical values for the parameters w, b and σ^2 (the variance of the noise) learnt by the model on the different datasets.

• for trainA : w : 0.06 , -0.18 ; b : 1.38 ; σ^2 =0.03

• for train B : w : 0.08 , -0.15 ; b : 0.88 ; σ^2 =0.05

• for train C : w : 0.02 , -0.16 ; b : 1.64 ; σ^2 =0.06

b. The model has been implemented (cf. the Jupyter Notebook), applied to the datasets, and used to plot a decision boundary corresponding to p(y=1|x)=0.5:

Figure 3 – Point cloud and decision boundary for the Linear regression

2.4 Application

- **a.** We have (cf computation on Jupyter notebook)
 - MLE on Generative Model LDA
 Error of classification for dataset trainA: 0.00%
 Error of classification for dataset testA: 1.00%

Error of classification for dataset trainB : 2.00% Error of classification for dataset testB : 4.00%

Error of classification for dataset trainC: 6.33% Error of classification for dataset testC: 7.33%

• Logistic Regression

Error of classification for dataset trainA : 0.00% Error of classification for dataset testA : 1.00%

Error of classification for dataset trainB : 1.00% Error of classification for dataset testB : 3.50%

Error of classification for dataset trainC : 3.00% Error of classification for dataset testC : 4.67%

• Linear Regression

2.5 Generative model (LDA)

The Maximum Likelihood Estimators for the parameters are the same as in the LDA, except for Σ . We now have this log-likelihood:

$$l(\pi, \mu_0, \mu_1, \Sigma_0, \Sigma_1) = \sum_{i=1}^n (y_i \log \pi + (1 - y_i) \log(1 - \pi) + (1 - y_i)(f_{\mu_0}(x_i)) + y_i(f_{\mu_1}(x_i))$$

Where
$$f_{\mu_{y_i}}(x_i) = \frac{1}{2\Pi\sqrt{\det \Sigma_{y_i}}} \exp(-\frac{1}{2}(x - \mu_{y_i})^T \Sigma_{y_i}^{-1}(x - \mu_{y_i})).$$

And we already have the MLEs:

$$\hat{\pi} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\hat{\mu}_0 = \frac{\sum_{i=1}^n x_i (1 - y_i)}{\sum_{i=1}^n (1 - y_i)}$$

$$\hat{\mu}_1 = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n y_i}$$

We now have to find $\hat{\Sigma_0}$ and $\hat{\Sigma_1}$.

$$\frac{\partial l}{\partial \Sigma_0^{-1}}(\pi, \mu_0, \mu_1, \Sigma_0, \Sigma_1) = 0$$

$$\Leftrightarrow \frac{\partial}{\partial \Sigma_0^{-1}} \left(\sum_{i=1}^n \frac{(1 - y_i)}{2} (\log(\det \Sigma_0^{-1}) - Tr((x_i - \mu_0)^T \Sigma_0^{-1} (x_i - \mu_0))) \right) = 0$$

$$\Leftrightarrow \sum_{i=1}^n \frac{1 - y_i}{2} (\Sigma_0 - (x_i - \mu_0)(x_i - \mu_0)^T) = 0$$

$$\Leftrightarrow \sum_{i=1}^n (1 - y_i) \Sigma_0 = \sum_{i=1}^n (1 - y_i)(x_i - \mu_0)(x_i - \mu_0)^T$$

$$\Leftrightarrow \left[\hat{\Sigma}_0 = \frac{1}{\sum_{i=1}^n (1 - y_i)} \sum_{i=1}^n (1 - y_i)(x_i - \mu_0)(x_i - \mu_0)^T \right]$$

And with the same reasoning we get :

$$\hat{\Sigma}_1 = \frac{1}{\sum_{i=1}^n y_i} \sum_{i=1}^n y_i (x_i - \mu_1) (x_i - \mu_1)^T$$

Follwing the same logic as for the boundary of the LDA:

$$\mathbb{P}(Y=1|X=x) = \frac{1}{1 + \frac{f_{\mu_0}(x)(1-\pi)}{f_{\mu_1}(x)\pi}}$$

With:

$$\begin{split} \frac{f_{\mu_0}(x)(1-\pi)}{f_{\mu_1}(x)\pi} &= \frac{1-\pi}{\pi} \frac{\frac{1}{2\Pi\sqrt{\det\Sigma_0}} \exp(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0))}{\frac{1}{2\Pi\sqrt{\det\Sigma_1}} \exp(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1))} \\ &= \frac{(1-\pi)\sqrt{\det\Sigma_1}}{\pi\sqrt{\det\Sigma_0}} \exp(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0) + \frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)) \\ &= \exp(-(x^T K x + \omega^T x + b)) \end{split}$$

Where :
$$\omega = \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0$$

And $b = -\frac{1}{2} (\mu_1^T \Sigma_1^{-1} \mu_1 - \mu_0^T \Sigma_0^{-1} \mu_0) - \log(\frac{(1-\pi)\sqrt{det}\Sigma_1}{\pi\sqrt{det}\Sigma_0})$
And $K = \frac{1}{2}\Sigma_0^{-1} - \frac{1}{2}\Sigma_1^{-1}$

The decision boundary is defined by:

$$x^T K x + \omega^T x + b = 0$$

a. We implemented the new model in the Jupyter Noteboook.

We give here after the numerical values for the parameters w, b and K learnt by the model on the different datasets.

- for train A : w : -9.38 , -5.91 ; b : 79.95 ; $K = \begin{vmatrix} 0.51 & -0.07 \\ -0.07 & 0.33 \end{vmatrix}$ for train B : w : -5.07 , -3.97 ; b : 46.86 ; $K = \begin{vmatrix} 0.25 & -0.01 \\ -0.01 & 0.18 \end{vmatrix}$
- for train C : w : -5.07 , -4.01 ; b : 46.38 ; $K = \begin{vmatrix} 0.19 & 0.05 \\ 0.05 & 0.13 \end{vmatrix}$

c. We observe:

Figure 3 – Point cloud and decision boundary for the Linear regression

c. We get the following missclassification errors :

Error of classification for dataset trainA: 0.00%

Error of classification for dataset testA: 2.00%

Error of classification for dataset trainB: 5.50%

Error of classification for dataset testB: 7.00%

Error of classification for dataset trainC: 14.00%

Error of classification for dataset testC: 16.67%

d.