Dirk Bernhardt-Walther, January 2022: dirk.

import os
import pandas as pd
from google.colab import drive
drive.mount("/content/drive", force_remount=True)
os.chdir('/content/drive/MyDrive/Colab Notebooks/PSY3100')
allData = pd.read_csv('fMRI_Scenes/S01_PPA.csv',sep=r',',skipinitialspace = True,index_col='type');
allData

Mounted at /content/drive

	category	run	vox1	vox2	vox3	vox4	vox5	vox6	vox7	8xov	vox!
type											
lineDrawings	forests	1	-4.463114	3.385811	2.000706	-6.156020	4.001413	6.156020	-1.077303	-0.307801	-1.23120
lineDrawings	forests	1	-5.432294	-0.814844	4.345835	1.629688	5.160679	2.716147	2.987762	-5.975523	-3.259370
lineDrawings	forests	1	-0.543229	2.444532	8.691670	-3.259376	3.530991	1.086459	9.234900	1.901303	3.53099
lineDrawings	forests	1	-2.172918	7.061982	-4.074221	-0.271615	6.518753	10.321359	8.691670	5.160679	-0.81484
lineDrawings	forests	1	-1.358073	1.358073	13.580735	1.358073	7.061982	5.160679	5.432294	0.814844	3.25937
•••											••
original	mountains	14	-3.396710	1.940977	-6.955168	0.646992	2.426222	1.779229	2.911466	2.749718	-4.52894 ⁻
original	mountains	14	7.558376	0.419910	11.757474	2.519459	1.889594	0.839820	6.088692	-4.409053	3.77918
original	mountains	14	0.000000	1.358073	11.679432	2.444532	5.703909	8.148441	4.889065	-1.629688	-0.54322
original	mountains	14	0.543229	1.901303	-6.247138	-2.172918	4.617450	2.716147	5.432294	5.432294	-0.54322
original	mountains	14	-1.477095	-0.134281	0.939970	-0.805688	2.014221	3.088472	2.819909	5.371256	-5.90838;

672 rows × 345 columns

Split data into training and test

```
photoData = allData.loc['lineDrawings']
leftOutRun = photoData['run'][0]
naturalCategories = ['beaches', 'forests', 'mountains']
manmadeCategories = ['city', 'highways', 'offices']
testData = photoData.loc[photoData['run'] == leftOutRun]
testLabels = testData['category']
binaryTestLabels = testLabels.replace(to_replace = naturalCategories,value = 'natural')\
                             .replace(to replace = manmadeCategories, value = 'manmade').to numpy()
testLabels = testLabels.to numpy()
testSamples = testData.iloc[:,2:].to_numpy()
trainData = photoData.loc[photoData['run'] != leftOutRun]
trainLabels = trainData['category']
binaryTrainLabels = trainLabels.replace(to replace = naturalCategories, value = 'natural')\
                                .replace(to replace = manmadeCategories, value = 'manmade').to numpy()
trainLabels = trainLabels.to numpy()
trainSamples = trainData.iloc[:,2:].to numpy()
```

Train the SVM classifier

```
from sklearn import svm

clf = svm.SVC(kernel='linear')

clf.fit(trainSamples, binaryTrainLabels)
binaryPredictLabels = clf.predict(testSamples)
```

Check the prediction

```
print('Predicted binary labels:')
print(binaryPredictLabels)
```

```
print('True binary labels:')
print(binaryTestLabels)
    Predicted binary labels:
    ['manmade' 'manmade' 'manmade' 'manmade' 'manmade' 'natural'
     'natural' 'manmade' 'manmade' 'manmade' 'manmade' 'manmade'
     'manmade' 'manmade' 'manmade' 'natural' 'natural' 'manmade' 'manmade'
     'natural' 'natural' 'natural' 'manmade' 'natural' 'natural'
     'manmade' 'manmade' 'manmade'
                                           'manmade' 'manmade' 'natural'
     'natural' 'natural' 'natural' 'manmade' 'natural' 'natural' 'natural'
     'natural' 'manmade' 'manmade' 'natural' 'natural' 'natural']
    True binary labels:
    ['natural' 'natural' 'natural' 'natural' 'natural' 'natural'
     'natural' 'manmade'
                        'manmade' 'manmade'
                                           'manmade' 'manmade'
                                                              'manmade'
     'manmade' 'manmade' 'natural' 'natural'
                                            'natural' 'natural' 'natural'
     'natural' 'natural' 'natural' 'natural' 'natural' 'natural' 'natural'
     'natural' 'natural' 'natural' 'natural' 'manmade' 'manmade'
     'manmade' 'manmade'
                        'manmade' 'manmade'
                                           'manmade' 'manmade' 'manmade'
     'manmade' 'manmade' 'manmade'
                                           'manmade' 'manmade']
```

Classification Report

```
import sklearn.metrics as sm
print(sm.classification_report(binaryTestLabels,binaryPredictLabels))

# make binary labels for precision-recall and ROC curves
y_true = []; y_pred = []
for i in range(testLabels.size):
    y_true.append(binaryTestLabels[i] == 'manmade')
    y_pred.append(binaryPredictLabels[i] == 'manmade')

sm.PrecisionRecallDisplay.from_predictions(y_true,y_pred)
sm.RocCurveDisplay.from predictions(y true,y pred)
```

	precision	recall	f1-score	support
manmade	0.48	0.54	0.51	24
natural	0.48	0.42	0.44	24
accuracy			0.48	48
macro avg	0.48	0.48	0.48	48
weighted avg	0.48	0.48	0.48	48

<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7f1cf8639dd0>

Now let's try multi-class, one-versus-one

clf.fit(trainSamples,trainLabels) # this is doing one-versus-one
multiPredictLabels = clf.predict(testSamples)
print('Predicted labels:')

```
print(multiPredictLabels)
print('True labels:')
print(testLabels)
    Predicted labels:
    ['offices' 'offices' 'beaches' 'offices' 'highways' 'highways' 'beaches'
     'highways' 'offices' 'offices' 'offices' 'offices' 'offices'
     'offices' 'offices' 'mountains' 'beaches' 'beaches' 'highways' 'city'
     'forests' 'beaches' 'mountains' 'mountains' 'highways' 'forests'
     'forests' 'beaches' 'highways' 'offices' 'highways' 'forests' 'city'
     'mountains' 'city' 'forests' 'forests' 'highways' 'beaches' 'city' 'city'
     'city' 'city' 'highways' 'beaches' 'forests' 'beaches']
    True labels:
    ['forests' 'forests' 'forests' 'forests' 'forests' 'forests'
     'forests' 'offices' 'offices' 'offices' 'offices' 'offices'
     'offices' 'offices' 'mountains' 'mountains' 'mountains' 'mountains'
     'mountains' 'mountains' 'mountains' 'beaches' 'beaches'
     'beaches' 'beaches' 'beaches' 'beaches' 'beaches' 'highways'
     'highways' 'highways' 'highways' 'highways' 'highways'
     'highways' 'city' 'city' 'city' 'city' 'city' 'city' 'city' |
```

Classification Report

```
print(sm.classification_report(testLabels,multiPredictLabels))
sm.ConfusionMatrixDisplay.from predictions(testLabels,multiPredictLabels)
```

	precision	recall	f1-score	support
beaches	0.11	0.12	0.12	8
city	0.11	0.50	0.12	8
forests	0.00	0.00	0.00	8
highways	0.11	0.12	0.12	8
mountains	0.50	0.25	0.33	8
offices	0.67	1.00	0.80	8
accuracy			0.33	48
macro avg	0.33	0.33	0.32	48
weighted avg	0.33	0.33	0.32	48

<sklearn.metrics. plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1cf85138d0>

Trying one-versus-rest

lin_clf = svm.LinearSVC() # this is doing one-versus-rest
lin_clf.fit(trainSamples,trainLabels)

linPredictLabels = lin_clf.predict(testSamples)

print(sm.classification_report(testLabels,linPredictLabels))
sm.ConfusionMatrixDisplay.from predictions(testLabels,linPredictLabels)

	precision	recall	f1-score	support
beaches	0.14	0.12	0.13	8
city	0.67	0.75	0.71	8
forests	0.12	0.12	0.12	8
highways	0.11	0.12	0.12	8
mountains	0.33	0.12	0.18	8
offices	0.33	0.50	0.40	8
accuracy			0.29	48
macro avg	0.29	0.29	0.28	48
weighted avg	0.29	0.29	0.28	48

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1cf7fbb990>

Using Feature scaling

```
from sklearn.pipeline import make pipeline
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
scaled clf = make pipeline(StandardScaler(),svm.SVC(kernel='linear'))
scaled clf.fit(trainSamples,trainLabels)
scaledPredictLabels = scaled clf.predict(testSamples)
print('Predicted labels:')
print(scaledPredictLabels)
print('True labels:')
print(testLabels)
    Predicted labels:
    ['offices' 'offices' 'highways' 'offices' 'highways' 'forests' 'beaches'
     'offices' 'mountains' 'offices' 'offices' 'offices' 'offices'
     'offices' 'offices' 'highways' 'beaches' 'beaches' 'highways' 'city'
      'forests' 'beaches' 'mountains' 'mountains' 'highways' 'forests'
     'forests' 'beaches' 'highways' 'offices' 'highways' 'forests' 'highways'
     'beaches' 'beaches' 'city' 'forests' 'highways' 'beaches' 'city' 'city'
     'city' 'city' 'highways' 'mountains' 'forests' 'beaches']
    True labels:
     ['forests' 'forests' 'forests' 'forests' 'forests' 'forests'
     'forests' 'offices' 'offices' 'offices' 'offices' 'offices'
     'offices' 'offices' 'mountains' 'mountains' 'mountains' 'mountains'
```

```
'mountains' 'mountains' 'mountains' 'beaches' 'beaches'
'beaches' 'beaches' 'beaches' 'beaches' 'highways'
'highways' 'highways' 'highways' 'highways' 'highways'
'highways' 'city' 'city' 'city' 'city' 'city' 'city' 'city']
```

Classification Report

print(sm.classification_report(testLabels,scaledPredictLabels))
sm.ConfusionMatrixDisplay.from_predictions(testLabels,scaledPredictLabels)

8

```
Explore PCA
```

beaches

```
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(trainSamples)
    PCA()
        accuracy
                                          U.33
                                                      40
Determine the cumulative amount of variance explained
import numpy as np
explainedVar = np.cumsum(pca.explained variance ratio * 100)
print(explainedVar)
expl80idx = np.argwhere(explainedVar >= 80)[0][0]
expl80var = explainedVar[expl80idx]
expl90idx = np.argwhere(explainedVar >= 90)[0][0]
expl90var = explainedVar[expl90idx]
    20.63513646 24.11125507 26.96805791
      28.90242354
                   30.4263271
                               31.8746449
                                            33.11155483 34.19474503
                   36.2474679
      35.25082679
                               37.19901505 38.12666263 38.98815656
      39.83606987
                  40.6750485
                                41.49579877
                                            42.2785026
                                                         43.0489144
      43.79873112
                   44.53582629
                               45.25971007 45.97963202 46.6942942
      47.40200349
                   48.09656647
                               48.78390422 49.45894608 50.12293259
                   51.42614329
      50.77674125
                               52.06589827
                                            52.69133563 53.30682821
      53.91741965
                   54.52430121
                               55.12714594
                                            55.71929126 56.30153028
      56.8768468
                   57.44220791
                               57.99929078 58.55103877 59.0982878
      59.63973793
                   60.17419475
                               60.70045509 61.22560504 61.7418741
      62.25334354
                   62.7589599
                                63.25380247 63.74345486 64.22881735
      64.70262702
                  65.17382087
                               65.63685421 66.09704821 66.54953716
      66.99967377
                   67.44812581
                               67.88857409 68.3237616
                                                         68.75562446
      69.18314828
                   69.60375141
                               70.02101053 70.43614258 70.84133108
      71.24574854
                  71.64203318 72.03486749 72.42451227 72.8113924
      73.19055002
                  73.56695667 73.9407792
                                            74.30282014 74.66332303
```

0.12

0.12

0.11

75.02040164	75.37632852	75.72361149	76.06991536	76.41399907
76.75685574	77.09932356	77.4286384	77.75659071	78.0817858
78.40219495	78.72061854	79.02972996	79.33776728	79.64058445
79.94189708	80.24062191	80.53569014	80.83035795	81.12229969
81.41319119	81.69880597	81.98072447	82.25815426	82.52960266
82.79900615	83.06364944	83.32601276	83.58804686	83.8465868
84.10177201	84.35198917	84.59992805	84.84551571	85.08729151
85.3278448	85.56486181	85.8003929	86.03265659	86.26107345
86.48848092	86.71503891	86.93739713	87.15829286	87.37641153
87.59100704	87.80447431	88.01639815	88.22412562	88.42850499
88.62942657	88.8277084	89.02409073	89.21642325	89.40849048
89.59689614	89.78423025	89.9691553	90.15338035	90.332625
90.50933106	90.68528385	90.85819337	91.03067299	91.19834403
91.36461917	91.5298651	91.69187477	91.85360805	92.0090925
92.16413912	92.31475687	92.46510063	92.61380836	92.76117074
92.90507627	93.04677436	93.1879659	93.3260791	93.46149808
93.59520747	93.72852951	93.86020202	93.9875366	94.11404621
94.24008657	94.3636304	94.4862647	94.6080818	94.72593762
94.84251446	94.95675518	95.06792478	95.17716416	95.28542024
95.39297401	95.50049552	95.6045959	95.70800542	95.81003067
95.911494	96.0089594	96.1059645	96.20144186	96.29484866
96.38627152	96.47542894	96.56203112	96.6483684	96.73369421
96.81896034	96.90145545	96.98357113	97.06247438	97.14069252
97.21818847	97.2929185	97.36701858	97.43915694	97.50987531
97.5798327	97.64907244	97.71721993	97.78411826	97.85038552
97.91604173	97.97918377	98.04126179	98.10039513	98.15747139
98.21434451	98.26882209	98.32260006	98.37480256	98.42651907
98.47811175	98.52894591	98.57768251	98.62514816	98.67202274
98.71820259	98.76365873	98.80749301	98.84973644	98.89181928
98.93155649	98.97046831	99.00851625	99.0458596	99.08243139
99.11805376	99.15345891	99.18798506	99.22154696	99.25286198
99.28338936	99.31318811	99.34242241	99.3709743	99.39847496
99.4255309	99.4518263	99.47733258	99.50202216	99.52547145
99.54805303	99.57000129	99.59129275	99.6119466	99.63204931
99.65104938	99.66945628	99.68732642	99.70454417	99.72146427
99.73797707	99.75377211	99.7692679	99.7838176	99.79827791
99.81176412	99.82516724	99.83754119	99.84935299	99.86090638
99.87202002	99.8823301	99.89223332	99.90189233	99.91101784
99.91995835	99.92842079	99.93675547	99.94443638	99.95110936
99.95736821	99.96331867	99.9687872	99.97408601	99.97880292
99.98311718	99.9864675	99.9894966	99.99247537	99.99519159
99.99766578	100.	100.	JJ • JJ <u>2</u> 1 1 J J 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
J9 • J9 1 UUJ 1 O	100.	100.		

Plot explained Variance

```
import matplotlib.pyplot as plt

plt.plot(range(len(explainedVar)), explainedVar, linewidth=2)

plt.plot([0,expl80idx],[expl80var,expl80var], color='black', linestyle='--')
plt.plot([expl80idx,expl80idx],[0,expl80var], color='black', linestyle='--')
plt.text(0,expl80var,'80%')
plt.text(expl80idx,0,str(expl80idx))

plt.plot([0,expl90idx],[expl90var,expl90var], color='black', linestyle='--')
plt.plot([expl90idx,expl90idx],[0,expl90var], color='black', linestyle='--')
plt.text(0,expl90var,'90%')
plt.text(expl90idx,0,str(expl90idx))

plt.xlabel('Principal Components')
plt.ylabel('Percent explained variance')
plt.xlim([0,len(explainedVar)])
plt.ylim([0,100])
```


Now use PCA in the classification

```
pca80clf = make_pipeline(StandardScaler(),PCA(n_components=expl80idx+1), svm.SVC(kernel='linear'))
pca80clf.fit(trainSamples,trainLabels)
pca80predictLabels = pca80clf.predict(testSamples)
print(sm.classification_report(testLabels,pca80predictLabels))
sm.ConfusionMatrixDisplay.from predictions(testLabels,pca80predictLabels)
```

	precision	recall	f1-score	support
				_
beaches	0.20	0.25	0.22	8
city	0.83	0.62	0.71	8
forests	0.18	0.25	0.21	8
highways	0.33	0.25	0.29	8
mountains	0.33	0.12	0.18	8
offices	0.50	0.75	0.60	8
accuracy			0.38	48
macro avg	0.40	0.38	0.37	48
weighted avg	0.40	0.38	0.37	48

<sklearn.metrics. plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1cf7ca4f90>


```
pca90clf = make_pipeline(StandardScaler(),PCA(n_components=expl90idx+1), svm.SVC(kernel='linear'))
pca90clf.fit(trainSamples,trainLabels)
pca90predictLabels = pca90clf.predict(testSamples)
print(sm.classification_report(testLabels,pca90predictLabels))
sm.ConfusionMatrixDisplay.from predictions(testLabels,pca90predictLabels)
```

	precision	recall	f1-score	support
beaches	0.25	0.25	0.25	8
city	0.62	0.62	0.62	8
forests	0.22	0.25	0.24	8
highways	0.20	0.12	0.15	8
mountains	0.25	0.12	0.17	8
offices	0.43	0.75	0.55	8
accuracy			0.35	48
macro avg	0.33	0.35	0.33	48
weighted avg	0.33	0.35	0.33	48

<sklearn.metrics. plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1cf7d5ecd0>

Try feature selection based on L1 regularization

from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectFromModel

	precision	recall	f1-score	support
beaches	0.18	0.25	0.21	8
city	1.00	0.50	0.67	8
forests	0.11	0.12	0.12	8
highways	0.25	0.25	0.25	8
mountains	0.33	0.12	0.18	8
offices	0.54	0.88	0.67	8
accuracy			0.35	48
macro avg	0.40	0.35	0.35	48
weighted avg	0.40	0.35	0.35	48
weighted avg	0.40	0.35	0.35	48

<sklearn.metrics. plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1ced23ebd0>

Try feature selection based on F-statistic

from sklearn.feature_selection import SelectPercentile, f_classif

featSelectF_clf.fit(trainSamples,trainLabels)

featSelectF_PredictLabels = featSelectF_clf.predict(testSamples)

print(sm.classification_report(testLabels,featSelectF_PredictLabels))

sm.ConfusionMatrixDisplay.from predictions(testLabels,featSelectF_PredictLabels)

svm.SVC(kernel='linear'))

precision	recall	f1-score	support
0.33	0.50	0.40	8
0.58	0.88	0.70	8
0.00	0.00	0.00	8
0.10	0.12	0.11	8
1.00	0.62	0.77	8
0.33	0.25	0.29	8
		0.40	48
0.39	0.40	0.38	48
0.39	0.40	0.38	48
	0.33 0.58 0.00 0.10 1.00 0.33	0.33	0.33

<sklearn.metrics. plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1cf5b6ed50>

Leave-one-run-out cross-validation

```
from sklearn.model selection import GroupKFold
allLabels = photoData['category'].to numpy()
allSamples = photoData.iloc[:,2:].to numpy()
runIdx = photoData['run'].to numpy()
numSplits = len(np.unique(runIdx))
gkf = GroupKFold(n_splits=numSplits)
clf = make pipeline(StandardScaler(),svm.SVC(kernel='linear')) # one-versus-one
allAcc = 0
foldNum = 1
allPredLabels = [''] * len(allLabels)
for train,test in gkf.split(allSamples,allLabels,groups=runIdx):
  clf.fit(allSamples[train,:],allLabels[train])
  predLabels = clf.predict(allSamples[test,:])
  for i in range(len(test)):
    allPredLabels[test[i]] = predLabels[i]
  acc = sm.accuracy score(allLabels[test],predLabels)
  print('Fold ' + str(foldNum) + ': Accuracy = ' + str(acc))
  allAcc += acc
  foldNum +=1
meanAcc = allAcc/numSplits
print('Mean accuracy across all folds: ' + str(meanAcc))
print(sm.classification report(allLabels,allPredLabels))
sm.ConfusionMatrixDisplay.from predictions(allLabels,allPredLabels,normalize='true')
```

```
Fold 1: Accuracy = 0.2291666666666666
```

Fold 2: Accuracy = 0.333333333333333

Fold 3: Accuracy = 0.1875

Fold 4: Accuracy = 0.2083333333333333

Fold 5: Accuracy = 0.3958333333333333

Fold 6: Accuracy = 0.22916666666666666

Fold 7: Accuracy = 0.333333333333333

Mean accuracy across all folds: 0.27380952380952384

noun accuracy	GOLODD GIL	TOTOD: 0:	_,000,55_00	332001
	precision	recall	f1-score	support
beaches	0.16	0.21	0.18	56
		*		
city	0.27	0.27	0.27	56
forests	0.23	0.20	0.21	56
highways	0.12	0.11	0.11	56
mountains	0.52	0.46	0.49	56
offices	0.41	0.39	0.40	56
accuracy			0.27	336
macro avg	0.28	0.27	0.28	336
weighted avg	0.28	0.27	0.28	336

<sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x7f1cf8d79150>

