Übung 9 - Gruppe 5

Aufgabe 1

Definition:

Menge aller Knoten = n

Maximale Anzahl an Kanten in einem gerichteten Graphen = n*(n-1)

(wenn Kanten auf sich selbst ausgeschlossen sind)

Maximaler Grad eines Punktes = 2*(n-1)

Mapreduce:

Der Mapper gruppiert alle Kanten nach Knoten und gibt diese an den Reducer weiter. Pro Eingabe werden dadurch zwei Ausgaben generiert. Zur Bestimmung aller Pfade der Länge 2 eines Punktes muss der Reducer alle Eingangs- und Ausgangskanten übergeben bekommen. Die Kombinationen dieser Kanten ergibt dann die Anzahl an Pfaden für diesen Punkt als Mittelpunkt. Für jeden Punkt kann dabei ein Reducer verwendet werden.

Bestimmung der Replikationsrate:

1. Wie oben beschrieben ergibt sich für die maximale Eingabe q an den Reducer: q = 2*(n-1)

Eine maximale Anzahl an Ausgabewerten, die ein Reducer mit q Eingaben überdecken kann, ergibt sich aus allen Kombinationsmöglichkeiten der Eingangs- und Ausgangskanten.

Maximale Menge an Eingangs- bzw Ausgangskanten = $\frac{q}{2}$ (bei maximaler Eingabe/Grad)

Daraus ergibt sich die Menge aller Kombinationen $g(q) = \frac{q^2}{4}$

2. Die maximale Anzahl an Ausgaben kann anhand 1. bestimmt werden.

$$m = n * \frac{q^2}{4} = n * \frac{(2 * (n-1))^2}{4} = n * (n-1)^2$$

3.

$$\sum_{i} g(q_i) \ge m \to \sum_{i} \frac{{q_i}^2}{4} \ge n * (n-1)^2 \to \sum_{i} q_i * q_i \ge 4n * (n-1)^2$$

4.

$$q \sum_{i} q_{i} \ge 4n * (n-1)^{2} \to \sum_{i} q_{i} \ge \frac{4n * (n-1)^{2}}{q}$$

5. Die maximale Menge aller Eingaben ist die oben beschriebene maximale Kantenmenge n*(n-1)

$$\frac{1}{n*(n-1)} \sum_{i} q_i = r \ge \frac{4*(n-1)}{q}$$