Motor selection final session

Exercise – Winder/Unwinder

One of the industrial applications is to use a continuous rotation servomotor to follow a specific speed profile and wind or unwind certain materials on a webroll.

In this case, the axis configuration considers to include a DC brushed servomotor, a gear reducer, a cylinder load and a webroll to wind or unwind aluminium of 2720 kg/m³ and a thickness of 1 mm. The profile is connected downstream the last mechanical component. The full axis can be seen in Figure 1.

Figure 1 Axis configuration for winder unwinder exercise

The following information gathers the specifications of all the participating elements, even considering the profile.

The servomotor

Use model R88M-KH1K520(F/C)-E from Omron G5 High inertia family. Figure 2 to Figure 4 show the main specification for the specific servomotor and other ones from the same family.

Assume a thermal constant of 40 s. Also consider: ke= $0.54 \text{ V} \cdot \text{s/rad}$, R= 0.88Ω and L= 9.2 mH and number of poles 10.

 ${\it Figure~2~Servomotor~designation~for~Omron~G5~High~inertia~family}$

Torque-speed characteristics

R88M-K1K020H/T (230V, 1 kW) R88M-K1K520H/T (230V, 1.5 kW) (N-M) 15-14.3 14.3(2200) 20 Power supply voltage dropped by 10% Momentary operation range 10.0 10 7.16 7.16 6.0 4.77 6.0 4.0 Continuous operation range Continuous operation range 3.2 0 1000 2000 3000 (r/min) 1000 3000 (r/min). 0 2000

Figure 3 Servomotor torque-speed characteristics for Omron G5 High inertia family

Standard servo motors 2000 r/min, 230 V/400 V

Ratings and specifications

Voltage		230 V		400 V								
Servo motor model R88M-K□	20-bit incremental encoder	1K020H-	1K520H-	40020F-	60020F-	1K020F-	1K520F-	2K020F-	3K020F-	4K020F-	5K020F-	
	17-bit absolute encoder	1K020T-	1K520T-	40020C-	60020C-	1K020C-	1K520C-	2K020C-	3K020C-	4K020C-	5K020C-	
Rated output	W	1000	1500	400	600	1000	1500	2000	3000	4000	5000	
Rated torque	N·m	4.77	7.16	1.91	2.86	4.77	7.16	9.55	14.3	19.1	23.9	
Instantaneous peak torque	N·m	14.3	21.5	5.73	8.59	14.3	21.5	28.7	43	57.3	71.6	
Rated current	A (rms)	5.7	9.4	1.2	1.5	2.8	4.7	5.9	8.7	10.6	13	
Instantaneous max. current	A (rms)	24	40	4.9	6.5	12	20	25	37	45	55	
Rated speed	min ⁻¹	2000										
Max. speed	min ⁻¹	3000										
Torque constant	N·m/A	0.63	0.58	1.27	1.38	1.27	1.16	1.27	1.18	1.40	1.46	
Rotor moment of inertia (JM)	kg·m ² ×10 ⁻⁴ (without brake)	4.60	6.70	1.61	2.03	4.60	6.70	8.72	12.9	37.6	48	
	kg·m ² ×10 ⁻⁴ (with brake)	5.90	7.99	1.90	2.35	5.90	7.99	10	14.2	38.6	48.8	
Max. load moment of inertia (JL)	Multiple of (JM)					1	0"1					
Rated power rate	kW/s (without brake)	49.5	76.5	22.7	40.3	49.5	76.5	105	159	97.1	119	
	kW/s (with brake)	38.6	64.2	19.2	34.8	38.6	64.2	91.2	144	94.5	117	
Allowable radial load	N				490					784		
Allowable thrust load	N	196							343			
Approx. mass	kg (without brake)	5.2	6.7	3.1	3.5	5.2	6.7	8	11	15.5	18.6	
	kg (with brake)	6.7	8.2	4.1	4.5	6.7	8.2	9.5	12.6	18.7	21.8	
Rated voltage		24VDC ±1	0%									
6 Holding brake moment inertia	(J) kg·m ² ×10 ⁻⁴	4			1	.35				- 4	1.7	
Power consumption (20°C)	W	14	19		17	14		19	22		31	
Current consumption (20°C)	A	0.59±10%	0.79±10%	0.70	±10%	0.59±10%	0.79	±10%	0.90±10%	1.3±10%	1.3 ±-10%	
Static friction torque	N.m (minimum)	4.9	13.7	2.5		4.9	13.7		16.2	24.5		
Rise time for holding torque	ms (max.)	80	100	50		80	100		110	80		
Release time	ms (max)	70	50	15		70	50			25		
Time Rating		Continuou	IS									
g Insulation class	and the Park Commence	Type F										
Ambient operating/ storage	temperature	0 to +40°C	C/-20 to 65	°C								
Ambient operating/ storage	humidity	20% to 85	% (non-cor	ndensing)								
Nibration class		V-15										
Insulation resistance		20 MΩ mi	n. at 500 V	DC betwee	n the pow	er terminals	and FG te	erminal				
Enclosure		Totally-en	closed, sell	f-cooling, I	P67 (exclu	ding shaft o	pening)					
河 Enclosure Vibration resistance		Vibration acceleration 49 m/s ²										
Mounting		Flange-me	ounted									

^{*1.} Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Figure 4 Servomotor rates and specifications for Omron G5 High inertia family

The gear reducer

Use model PLF090 Series Standard & High Precision Planetary Gear Reducers from ZionKaifull Automation. In this case, choose a gear reducer that provides a reduction ratio of 4.

Figure 5 Gear reducer mechanical dimensions

Technical Specifications Stage 2 (Contains the sceed ratio 12 16 20 25 28 35 40 39 70 100) (Contains the speed ratio at 100 125 44 175 20 25 364 40 300 700 1000) Stage B Length(mm) 3500 Rated input speed(rpm) 3500 3500 6000 6000 6000 Maximum input speed(rpm) 1020 1420 The maximum radial force(N) 850 1100 1250 The maximum axial force(N) About 0. 8 About 0, 4 About 0. 4 No load torque(Nm) Efficiency withfull load(%) 96 94 90 <5 Standard: <12 Back lash(arcmin) ≤62 ≤62 Noise(dB) 3.4 Weight(Kg) >20000 Average lifetime(h) 7.5 Torsional rigidity(Nm/arcmin) Effective lubrication The input and output to the same direction of rotation 1P65 Installation Ratio(1) 12 10 20 39.5 71.5 60.0 86.0 94.5 64.0 96.0 96.0 96.0 105.5 96.0 105.5 96.0 105.5 120.0 172.0 189.0 128.0 79.0 192.0 192.0 192.0 211.0 192.0 211.0 192.0 211.0 143.0

Figure 6 Gear reducer technical specifications

0.4 0.309 0.291 0.285 0.283 0.4 0.309 0.291 0.285 0.285 0.283 0.283 0.283

Cylinder load

For this component is complicated to find a datasheet that describes technically it. In this case, simply assume an inertia of 0.03 [kg·m²].

Winder

The empty core is solid, has a diameter of $0.02 \, [m]$, a length of $0.2 \, [m]$ and is made from a steel of 7850 [kg/m³]. The web roll is considered full assuming a diameter of $0.2 \, [m]$.

The profile

A symmetrical trapezoidal profile in speed is desired. The profile is defined by

1. Increment of position: 20 [m]

2. Time to position: 10 [s]

Moment of inertia(Kacm²)

3. Dwell time: 0 [s]

4. External torque: 0 [N·m]

Results

Fill and draw according to next and select

All in units of the international system. In case of absence of information assume null value for that missing data except for efficiencies that are assumed as 100%.

- 1. Draw the profile kinematics.
- 2. Draw the radius of the winded or unwinded material over time
- 3. Draw the inertia of the winder/unwinder component over time
- 4. Draw the kinematics (position, speed and acceleration) and dynamics (torque and power) that finally requires the servomotor.
- 5. Considering non-safety margin and a safety margin of 10%, fill the next table seen from the motor perspective

		Ratios [%]					
		Without	safety margin	With safety margin			
		[%]	[ad]	[%]	[ad]		
Motor max speed [rad/s]							
Motor effective speed [rad/s]							
Motor max torque [N·m]							
Motor effective torque [N·m]							
Motor inertia capability [ad]							

6. Provide a final judgment for the goodness of use of the servomotor proposed from results obtained in sections 1 to 5.