MAT1320 CALCULUS I ELIZABETH MALTAIS

1. Introduction & Review of Functions

Getting ready for MAT1320C, Fall 2022: MAT IS WB FALL W23

Course Syllabus – policies
Brightspace resources
Textbook
Mobius assignments (worth 10% overall) due almost every Saturday.
Test 1 (20%) during lecture on Wednesday, October 5 4
Test 2 (20%) during lecture on Wednesday, November 16 5
Final Exam (50%), to be scheduled during Exam period (Dec. 9=22)

THE BIG PICTURE

Calculus was developed in the mid seventeenth century at about the same time by two scientists: Sir Isaac Newton and Gottfried Leibniz.

The idea was to develop general solutions to two problems:

Differential Calculus (about 2/3 of MAT1320)

Goal: find the slope of a tangent at any point on a given function

Integral Calculus (about 1/3 of MAT1320)

Goal: find the area bounded by a function and the *x*-axis over a given interval

^{*} These notes are solely for the personal use of students registered in MAT1320. ©EJM All rights reserved.

	BASIC ALGEBRAIC SKILLS
	g Picture in mind, a lot of the problems you will be considering in this course to be adept with some basic algebraic tricks and rules. You need to know how
\square simplify	exponents
\square add, sub	tract, multiply, divide, and simplify fractional expressions
☐ factor or	expand algebraic expressions
□ solve eq	uations involving polynomials
\square solve eq	uations involving exponents or logarithms
\square solve eq	uations involving absolute value
\square solve ine	equalities
We're going to	quickly review functions, while highlighting some of the above skills.
	FUNCTIONS AND CONCEPTS
Function:	A FUNCTION f is a rule between two sets, called the DOMAIN and the RANGE , that assigns to each element x in the domain exactly one element, called $f(x)$, in the range.
Traditionally:	

Example 1.1. area of circle depends on its radius

Graph: The **GRAPH** of y = f(x) consists of all ordered pairs (coordinates) (x, f(x)) such

that x belongs to the domain of f.

Vertical Actually, any equation in 2 variables can be represented by some curve in the *xy*-plane, but not every 2-dimensional curve corresponds to the graph of a

function! The graph of a function must pass the Vertical Line Test.

The most important function:

SYMMETRY AND PERIODICITY OF FUNCTIONS

Even Functions:

If f(-x) = f(x) for every x in the domain of f, then f is called an ${\bf EVEN}$ function.

Odd Functions: If f(-x) = -f(x) for every x in the domain of f, then f is called an $\begin{cal}ODD\end{col}$ function.

Periodic Functions:

If there exists a positive constant p such that f(x+p)=f(x) for every x in the domain of f, then f is called a **PERIODIC** function. The smallest such constant p is called the **period**.

INCREASING/DECREASING

Let *I* be some interval of the real number line.

ne.

A function y = f(x) is called...

• **INCREASING** on the interval *I* if

• **DECREASING** on the interval *I* if

CATALOGUE OF IMPORTANT FUNCTIONS: LINEAR FUNCTIONS Linear **Functions:** Horizontal Line. Vertical Line. **Example 1.2.** What is the slope of the line passing through (4,1) and $(\sqrt{3},-1)$? Find the equation of this line.

ALGEBRAIC SKILL Rationalize the denominator of the slope you found above:

Polynomials: degree 0: (Constant Functions) degree 1: (Linear Functions) degree 2: (Quadratic Functions)

CATALOGUE OF IMPORTANT FUNCTIONS: POLYNOMIALS

Exercise 1.3. The height h(t) (in metres) of a ball t seconds after it has been thrown up from an initial height of h_0 m above the ground, with an initial velocity of v_0 m/s, is given by the equation

$$h(t) = -4.9t^2 + v_0 t + h_0$$

If the ball is dropped from an initial height of 49 m, sketch the graph of ball's height as a function of time. How many seconds does it take for the ball to reach the ground?

ALGEBRAIC SKILL Solving a nonlinear equation, factoring:

How long until the ball reaches the ground if the ball is thrown upward with an initial velocity of 8 m/s, from an initial height of 1.6 m above the ground?

The Cubic Equation for finding the roots of $f(x) = ax^3 + bx^2 + cx + d$:

Let
$$\Delta = 18abcd - 4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2$$

$$\Delta_0 = b^2 - 3ac$$

$$\Delta_1 = 2b^3 - 9abc + 27a^2d$$

$$C = \sqrt[3]{\frac{\Delta_1 \pm \sqrt{{\Delta_1}^2 - 4{\Delta_0}^3}}{2}}$$

$$\zeta = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

Then the roots of $f(x) = ax^3 + bx^2 + cx + d$ are given by

$$x_k = -\frac{1}{3a} \left(b + \zeta^k C + \frac{\Delta_0}{\zeta^k C} \right)$$
 for $k = 0, 1, 2$

In fact, if $\Delta > 0$, then f has 3 distinct real roots.

If $\Delta=0$, then f has a multiple root and all its roots are real. If $\Delta<0$, then f has 1 real root, and 2 imaginary roots (which are complex conjugates of each other).

 $\star\star\star$ Don't worry! You do not *need* to know this! $\star\star\star$

Exercise 1.4. Find the root(s) of $f(x) = x^{3} + x^{2} + \frac{5}{4}x + 3$.

hint: $(x + \frac{3}{2})$ is a factor; use long division.

ALGEBRAIC SKILL Long division of Polynomials:

CATALOGUE OF IMPORTANT FUNCTIONS: RATIONAL FUNCTIONS

Rational Functions:

Example 1.5. Find the domain of $g(x) = \frac{-x^2 - 4x + 5}{x^2 - 1}$. Does the graph of g have any holes or vertical asymptotes?

ALGEBRAIC SKILL Solving a nonlinear equation

Find all *x*-intercepts of $g(x) = \frac{-x^2 - 4x + 5}{x^2 - 1}$

CATALOGUE OF IMPORTANT FUNCTIONS: ROOT FUNCTIONS

Root **Functions:**

CATALOGUE OF IMPORTANT FUNCTIONS: ALGEBRAIC FUNCTIONS

Algebraic Functions:

Example 1.6. Find the domain of
$$g(x) = \frac{x + \sqrt{2 + x^2}}{\sqrt{3 - \frac{2}{x}}}$$

ALGEBRAIC SKILL Solving nonlinear inequalities

ALGEBRAIC SKILL

Solving a nonlinear equation

Example 1.7. Find the point(s) of intersection of f(x) = x and $g(x) = \sqrt{x+6}$ and sketch their graphs.

Example 1.8. Find the domain of $f(x) = \sqrt{1 - x^2}$.

Example 1.9. What is the domain of $G(x) = \sqrt{x^2}$? What does its graph look like?

ABSOLUTE VALUE — A PIECEWISE-DEFINED FUNCTION

Absolute Value:

Exercise 1.10. Sketch the graph of $g(x) = |x^2 - 5|$. For what values of x is g(x) = 1?

ALGEBRAIC SKILL Solving an equation involving absolute value