Dark Matter Particle in QCD

Zihui Wang (New York University) APS April Meeting 2020

Based on 1805.03723 G. Farrar 20xx.xxxxx G. Farrar, ZW, X. Xu 20xx.xxxxx G. Farrar, ZW

uuddss sexaquark (S)

- Color-spin-flavor singlet: strong attraction between quarks
- Mass of S may be below 2 GeV
- Size of S may be much smaller than protons due to non-coupling to pions

$$r_{proton} = 0.87 \, \mathrm{fm}$$

$$r_S = 0.1 \text{-} 0.3 \text{ fm}$$

SDM abundance

S forms at QGP-hadron transition (T = 140-170 MeV). Abundance determined by stat mech, and quark masses.

Durability of SDM

Can the correct SDM abundance at QCD phase transition (T ~ 150 MeV) persist to later time? Questioned by Gross et al, 1803.10242

Kolb, Turner, 1809.06003

These arguments overlooked dissociation amplitude $ilde{g}$ is small

Requirement $H > n_K \langle \sigma v \rangle$ at T ~ 150 MeV

In this talk, I address the feasibility of a small \tilde{g} . Theoretical calculation & experimental constraints

Theory of \tilde{g}

 \hat{g} is the dissociation amplitude of S into two baryons (e.g. $\Lambda\Lambda$)

$$\tilde{g} = \langle BB' | H_{QCD} | S \rangle$$

Two contributions

- Tunneling suppression from short-distance BB' repulsion
- Spatial redistribution of six quarks in S to BB'

Two parameters

- S radius $\,r_S=0.1$ - $0.3\,$ fm Hardcore radius of baryons $\,r_c=0.3$ - $0.5\,$ fm

$$egin{aligned} ilde{g} &= (0.05 \text{-} 10^{-4}) imes \left(rac{r_S}{r_B}
ight)^{10 \text{-} 18} \ &= 10^{-4} \text{-} 10^{-18} \end{aligned}$$

BB' hardcore repulsion ignored by Gross et al, 1803.10242 McDermott et al, 1809.06765

They got very large \tilde{g}

Farrar, Zaharijas, 0308137 Farrar, ZW, to appear Farrar, ZW, Xu, to appear

Farrar, ZW, Xu, to appear

6

Prediction and constraints on $ilde{g}$

Sudbury Neutrino Detector (SNO)

SNO has recorded *e* and *n* events produced by solar neutrinos.

$$u_e + {
m D}
ightarrow 2p + e^- \qquad { ext{(detection equally sensitive to } e^+)}
onumber

 $u + {
m D}
ightarrow n + p +
u$$$

We use the data released by SNO to constrain $ilde{m{q}}$.

Deuteron stability from SNO

If S lighter than deuteron, D can decay to $S+\overline{e^+}+
u$

SNO contains 10^6 kg $\mathrm{D}_2\mathrm{O}$

Observed e spectrum sno, 1602.02469 Expected e spectrum from D decay

 $au_{
m D} \geq 10^{32}$

S stability from SNO

If S heavier than two neutrons, S can decay to nn

We derive limit on $S \rightarrow nn$ lifetime from SNO:

$$au_{S
ightarrow nn} \geq 10^{19} \ \mathrm{yr}$$

Theoretical $S\rightarrow nn$ decay rate

$$\Gamma = \frac{\tilde{g}^2 G_F^4 \, p_q^8 \, \sin^4 \theta_c \cos^4 \theta_c \, m_S}{640\pi} \left(1 - \frac{4m_n^2}{m_S^2} \right)^{3/2}$$

Observed *n* spectrum SNO, 1602.02469

Supernova cooling

Processes like $\Lambda\Lambda \to S\gamma$ can accelerate the cooling of SN1987a.

McDermott, Reddy, Sen, 1809.06765

Constrained by observed cooling time \sim 10 s. Not problematic with our prediction of \tilde{g} . (Contrary to the conclusion of McDermott et al)

(However, the 10 s cooling time has been put into debate. So this bound may not exist.)

Bar, Blum, D'Amico, 1907.05020

See Blum's talk in session J03

Summary

Derived constraints on \tilde{g} from durability of SDM, and SNO data.

Compatible with theory values.

For direct detection constraints on SDM, see Xingchen Xu's talk in session Q10.

Thank you!

