Where Have All the Green Patents Gone? The Patents Break Detection Project

Laura Menicacci (PIK), Patrick Klösel (PIK/MCC), Nils Rochowicz (Oxford/TU Chemnitz)

POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH

November 13, 2023 First WP2 CERES Retreat

Puzzle and Research Question

Green patents over time

Acemoglu et al. 2019, Popp 2002, Popp et al., 2020 All environmental-related patents vs climate-mitigation ones (levels)

Background

Popp 2019, Aghion et al. 2016, Noailly 2012, Johnstone et al. 2010

- Environmental innovation suffers from multiple market failures:
 - Environmental externality → can be addressed by environmental policy, a.k.a. demand-pull policies
 - ► Knowledge as a public good → can be addressed by science and technology policy a.k.a technology-push policies
 - More distinctions possible: technology-neutral policies (carbon-tax, RPS, cap-and-trade, ...) vs technology-specific policies (FiT, ren. auctions, investment subsidies, ...)
- What does the evidence tell us?
 - ▶ Higher energy prices encourage innovation (Aghion et al. 2016)
 - In some cases, prices alone are not enough (Noailly et al. 2012)
 - ► Effects of specific policies vary by technology (Johnstone et al. 2010)

Let's Look at Four Key Sectors

Let's Look at Regional Variation

Geographical distribution of climate-change mitigation technologies (CCMT)

What We Have (Done So Far)

- We have explored the OECD Patent dataset
- ► We have done a thorough literature review (included in Laura's master thesis)
- We have drawn on expert domain knowledge (Nils R. many thanks!)
- ► We have run the break detection for the case of US states (Laura's master thesis)
 - → Very similar problems occur on the global level!

The OECD Patent Database

Haščič, 2015

- Already aggregated patent counts by country fractional value
- ▶ Family size $\geq 2^{1}$
- Measure of technology development
- ▶ 200+ countries
- ▶ 1960-2020 (not for all countries)
- ► Can be filtered for climate change mitigation technologies
 - Possibility to scale down to specific technology class (e.g. Solar PV) according to IPC/CPC code classification

NB: Increased scaling down leads to greater data incompleteness, as the panel is not balanced across all countries for the whole time series. The extent of disaggregation chosen determines this outcome.

 $^{^1}$ A family size is the number of countries where the same invention has been filed.

The Identification Strategy: BD Panel w/ Controls + FEs

What We Need (To Do)

- Operationalize Y: Patent count growth rates?
 - ➤ Sectors: Y02 sub-sectors: energy, buildings, transport, CCS, ... (see figure above)
 - ► Technologies: Solar PV, Wind turbines, batteries, hydrogen, ... (see figure below)
- ▶ List of Controls: GDP, Population, ... what else? NB: R&D policy should not be part of the controls, but what about other policies? There we need domain knowledge.
- Decide on Patent Data Set: OECD Patent or PATSTAT or ...
- Decide on Policy Data Set
- Sample: Threshold to exclude ultra-low-patenting countries?
- Explore how "phasing-out" of policies can be operationalized within the context of the break detection method (talk to Felix/Moritz?)

Let's Look at Four Key Technologies

(Smoothed) Growth Rates as Dependent Variable

Open Questions and Problems

Pichler et al. (2020)

- Problem: Spillovers
 - Solution 0: Accounted for by family size already?
 - Solution 1: Use growth rates
 - Solution 2: Nils R.'s spatial regression idea
- Problem: Patents are very concentrated in very few countries
 - suitable control group?
 - Solution 1: Subset the sample
 - Solution 2: Use (smoothed) growth rates of patent count instead of patent count?
- Problem: Convincing economists (Anwesha): Higher frequency, more granularity, ...?
- Open Question: Exact research question (focus on policy!)
- Open Question: Level of granularity: sector, technology, ...

Thank you!

Laura Menicacci

Potsdam Institute for Climate Impact Research
WP2 in the FutureLab CERES

E-mail: laura.menicacci@outlook.com

Main trends (log scales)

Yoz dass — Climate change miligation echnologies related to wasteward retentient or waste management — Climate change miligation technologies related to brain potentiation of distribution — Climate change miligation technologies related to brain potentiation of distribution — Climate change miligation technologies related to brain potentiation of distribution — Climate change miligation technologies related to brain potentiation of distribution — Climate change miligation technologies related to brain potentiation of distribution of ordistribution — Climate change miligation technologies related to brain potentiation of distribution of ordistribution — Climate change miligation technologies related to brain potentiation of distribution of ordistribution of ordistribution — Climate change miligation technologies related to brain potentiation or distribution or distribution — Climate change miligation technologies related to brain potentiation or distribution or distribution — Climate change miligation technologies related to brain potentiation or distribution or distribution or distribution or distribution — Climate change miligation technologies related to brain potentiation or distribution or d

Trends for remaining Y02 sub-sectors (log scales)

- Technologies related to metal processing

Technologies relating to agriculture, livestock or agroalimentary industries Technologies in the production process for final industrial or consumer products Climate change mitibation technologies for sector-wide applications.

- Enabling technologies

Smoothed growth rates: key technologies

Smoothed growth rates: top three patenting countries

Smoothed growth rates: four key sectors

OECD Patent Datasets comparison

Name	Type of patent indicator	Disaggregation level	Time interval	Reference country, N	Other info
Technology devel-	Patent family	Lowest-level Y02 class (i.e.	1960-2020	Inventor country, 226	Possible to select gender share of in-
opment (OECD En- vironment)		specific tech- nology)			vention as count
Patent by technology (OECD STI)	Patent applications and grants to EPO, PCT, USPTO, Triadic, IP5	Y02 sub-sectors	1976-2021	Inventor/Applicant, 110	Possible to select priority, applica- tion, grant year
REGPAT	Patent applica- tions to EPO, PCT	Application ID	1977-2020	Inventor/Applicant, 36 (regional ag- gregation until NUTS3/TL3)	Possible to select priority, applica- tion year; linkable with citations, quality indicators data

Table: OECD datasets for environment-related technology patents