

Додаток

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Українська академія друкарства Кафедра комп'ютерних наук та інформаційних технологій

Звіт до лабораторної роботи №4

«Комп'ютерна Графіка»

Виконав: Зінченко Максим

KH-21.

Виконання

Приклад 4.1

Кодер

Декодер

Стиснення зображення

Питання для самоконтролю

- **1.** Алгоритм JPEG (Joint Photographic Experts Group) це стандарт стиснення зображень з втратами, який використовується для зменшення об'єму зображення зі збереженням практично незмінної якості. Він базується на використанні косинусного перетворення, квантуванні, зигзаг-скануванні та кодуванні за допомогою кодування довжин серій (RLE) та кодуванні Хаффмана.
- **2.** Основні кроки алгоритму JPEG:
 - а. Перетворення в простір YCbCr.

- **b.** Розділення зображення на блоки 8х8 пікселів.
- с. Застосування косинусного перетворення до кожного блоку.
- **d.** Квантування коефіцієнтів.
- е. Зигзаг-сканування та стиснення RLE.
- **f.** Кодування Хаффмана.
- 3. Ідея ентропійного кодування полягає в тому, щоб використовувати короткі коди для часто зустрічаються символів та довгі коди для менш часто зустрічаються символів, що дозволяє зменшити середню довжину коду та зменшити об'єм інформації.
- **4.** Спрощена структура кодера JPEG включає в себе стадії YCbCr-перетворення, поділу на блоки, косинусного перетворення, квантування, зигзаг-сканування та кодування Хаффмана.
- **5.** Спрощена структура декодера JPEG включає в себе стадії розкодування Хаффмана, розширення зигзаг-сканування, деквантування та оберненого косинусного перетворення.
- **6.** Структура програми кодека JPEG в MATLAB включає в себе функції для виконання кожної зі стадій алгоритму, такі як перетворення в YCbCr, косинусне перетворення, квантування, зигзаг-сканування, кодування Хаффмана тощо.
- **7.** Завдання функції quantization полягає в квантуванні коефіцієнтів, що отримані після косинусного перетворення.
- **8.** Завдання функції dequantization полягає в розкодуванні квантованих коефіцієнтів.
- **9.** Критерії оцінювання якості реконструйованого зображення включають в себе середньоквадратичну похибку (MSE), піковий сигнал-шум (PSNR) та інші метрики якості.

10. Для оцінювання якості реконструйованого зображення можна використовувати вбудовані функції MATLAB, які рахують MSE, PSNR та інші метрики на основі порівняння оригінального та реконструйованого зображення.