

(51)

Int. Cl. 2:

(19) BUNDESREPUBLIK DEUTSCHLAND

C 07 D 249/08

C 08 K 5/34

FR  
70311



DE 28 12 252 A 1

(11)  
(21)  
(22)  
(43)

## Offenlegungsschrift

28 12 252

Aktenzeichen: P 28 12 252.3  
Anmeldetag: 21. 3. 78  
Offenlegungstag: 4. 10. 79

(30)

Unionspriorität:

(32) (33) (34) —

(54)

Bezeichnung: 1,2,4-Triazol-blockierte Polyisocyanate als Vernetzer für Lackbindemittel

(71)

Anmelder: Bayer AG, 5090 Leverkusen

(72)

Erfinder: Wegner, Christian, Dr., 5000 Köln; Müller, Hanns-Peter, Dr., 5090 Leverkusen; Kreuder, Hans-Joachim, Dr., 4150 Krefeld

2812252

Patentansprüche

- 1 ✓ Verbindungen mit 2 bis 4 1,2,4-Triazol-blockierten Isocyanatgruppen, vorzugsweise mit einem Schmelzpunkt von 50 bis 220°C, dadurch gekennzeichnet, daß sie ein mittleres Molekulargewicht von 306 bis ca. 1000 aufweisen.
2. Lackbindemittel, insbesondere Pulverlackbindemittel, auf Basis von Polyhydroxylverbindungen, dadurch gekennzeichnet, daß sie die Verbindungen nach Anspruch 1 als Vernetzer enthalten.

10

ORIGINAL INSPECTED

Le A 18 668

909840 / 0071

2812252

. 2.

BAYER AKTIENGESELLSCHAFT  
Zentralbereich  
Patente, Marken und Lizenzen

5090 Leverkusen, Bayerwerk  
Pv-by

20. März 1978

1,2,4-Triazol-blockierte Polyisocyanate als Vernetzer  
für Lackbindemittel

Die vorliegende Erfindung betrifft neue blockierte Polyisocyanate sowie Lackbindemittel, insbesondere Pulverlackbindemittel, welche diese blockierten Polyisocyanate als Vernetzer enthalten.

- 5 Die Herstellung von blockierten Polyisocyanaten ist bekannt (vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, Band XIV/2, 4. Auflage, Georg Thieme Verlag, Stuttgart 1963, Seiten 61-70). Von den zahlreichen in der Literatur beschriebenen Blockierungsmitteln für
- 10 organische Polyisocyanate haben nur wenige technische Bedeutung erlangt. Für lösungsmittelhaltige Einbrennlacke ist die Verkappung mit Malonsäure- und Acetessigsäureestern gebräuchlich (z.B. DE-PS 756 058), während Pulverlackvernetzer nach den Verfahren des Standes der
- 15 Technik im allgemeinen mit Lactamen oder Phenolen blockiert werden (z.B. DE-AS 1 957 483 und DD-PS 55 820).

Le A 18 668

909840/0071

2812252

- 2 -

. 3.

Keine dieser Verbindungen erfüllt jedoch die an Verkappungsmittel gestellten Forderungen in idealer Weise.  
Bei Malon- und Acetessigestern ist zwar die Rück-  
5 spalttemperatur niedrig ( $120-130^{\circ}\text{C}$ /30 Minuten); aufgrund ihrer relativ hohen Molekulargewichte werden jedoch große Gewichtsmengen dieser Substanzen benötigt, oder - anders ausgedrückt - der Gewichtsanteil der verkappten NCO-Gruppen wird deutlich herabgesetzt. Außerdem ist die  
10 Vergilbungsresistenz beim Einbrennen bei solchen Systemen oft nicht gegeben. Der Einsatz von Phenolen als Blockierungsmittel ist aufgrund der physiologischen Eigenschaften und der Geruchsbelästigung dieser Verbindungen begrenzt, während bei Anwendung von  $\epsilon$ -Caprolactam als  
15 Blockierungsmittel zur vollständigen Vernetzung hohe Einbrenntemperaturen (mindestens ca.  $160^{\circ}\text{C}$ /30 Minuten) angewandt werden müssen.

Eine Eigenart des elektrostatischen Pulversprühverfahrens ist es, daß an einigen Stellen (auf horizontalen  
20 Flächen, in Ecken und Winkeln) dickere Schichten als auf dem restlichen Substrat gebildet werden. Sobald die Schichtdicke aber einen Grenzwert - im allgemeinen  $120-150 \mu$  - überschreitet, stellen sich beim Einbrennen an diesen Stellen leicht Oberflächenstörungen ein. Man trifft  
25 deshalb häufig die Erscheinung an, daß ein im großen und ganzen ausgezeichnet beschichteter Gegenstand an einigen Stellen eine - meist durch Blasenbildung - verunstaltete Lackierung aufweist.

Le A 18 668

909840/0071

- 5 -

. 4 .

Es wurde nun überraschenderweise gefunden, daß die Eigenschaften der Pulverlackbindemittel des Standes der Technik noch weiter verbessert werden, wenn als Vernetzer Verbindungen enthaltend 2 bis 4 1,2,4-Triazol-blockierten Isocyanatgruppen, vorzugsweise mit einem Schmelzpunkt zwischen 50 und 220°C, und einem mittleren Molekulargewicht von 306 bis 1000 eingesetzt werden.

Außerdem wurde gefunden, daß sich diese Bindemittel auch in hervorragender Weise zur Herstellung lösungsmittelhaltiger Einbrennlacke eignen.

In der US-PS 3 248 398 wird die Blockierung von Monoisocyanaten mit H-N-Gruppierungen aufweisenden heterocyclischen Verbindungen beschrieben, wobei die blockierten Monoisocyanate zur Imprägnierung von Textilien und Papier empfohlen werden. Unter der langen Liste der aufgezählten heterocyclischen Verbindungen findet sich auch 1,2,4-Triazol. Hieraus kann jedoch keine Anregung hergeleitet werden, daß mit diesem speziellen Triazol blockierte Polyisocyanate besonderer Eigenschaften aufweisen, aufgrund derer sie insbesondere als Vernetzer für Polyurethan-Pulverlacke geeignet sind.

Gemäß der US-PS 3 721 645 können NCO-Gruppen aufweisende Präpolymere, die mit Triazolen, z.B. 1,2,4-Triazol, umgesetzt worden sind, als Überzugsmittel, Spritzgußharze, PVC-Zusätze, Rotationsgußharze und Wirbelsinterpulver (Sp. 3, Z. 63-67; Sp. 4, Z. 3) eingesetzt werden. Sie weisen den Vorteil auf, bei relativ hohen Temperaturen

Le A 18 668

909840/0071

## • 5.

zu schmelzen, aber bereits bei relativ niedrigen Temperaturen auszuhärten (Sp. 4, z. 5-9, 30-35). Besonders geeignete Ausgangsverbindungen sollen Wasserstoff-aktive Verbindungen mit einem Molekulargewicht von 1000 aufwärts sein (Sp. 3, z. 59-63). Die Umsetzung von Polyisocyanat, Wasserstoff-aktiver Verbindung und Triazol kann nach der Präpolymer-Methode oder im Eintopfverfahren erfolgen (Sp. 2, z. 38-44).

Sollen die Produkte der US-PS 3 721 645 als Pulverlackbindemittel eingesetzt werden, so ist aufgrund des relativ hohen Molekulargewichts und der damit verbundenen hohen Schmelzviskosität mit Verlaufsschwierigkeiten beim Einbrennen zu rechnen.

Gegenstand der Erfindung sind daher Verbindungen mit 2 bis 4 1,2,4-Triazol-blockierten Isocyanatgruppen, vorzugsweise mit einem Schmelzpunkt von 50 bis 220°C, insbesondere 70 bis 200°C, dadurch gekennzeichnet, daß sie ein mittleres Molekulargewicht von 306 bis ca. 1000 aufweisen.

Das mittlere Molekulargewicht wird dampfdruckosmometrisch in Aceton als Lösungsmittel bestimmt.

Weiterer Gegenstand der Erfindung sind Lackbindemittel, insbesondere Pulverlackbindemittel, auf Basis von Polyhydroxylverbindungen, wobei diese Lackbindemittel die 1,2,4-Triazol-blockierten Verbindungen als Vernetzer enthalten.

Als Ausgangsmaterialien zur Herstellung der erfindungsmaßen blockierten Polyisocyanate können die an sich bekannten Polyisocyanate der Polyurethanchemie dienen. Diese bekannten Polyisocyanate weisen im allgemeinen 2-4 Iso-

- 5 -

. 6 .

cyanatgruppen und ein Molekulargewicht im Bereich von 168 bis ca. 850 auf. Es handelt sich hierbei entweder um einfache Polyisocyanate, wie z.B. Hexamethylendiisocyanat, 2,4-Diisocyanatotoluol, 2,6-Diisocyanatotoluol,  
5 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (= Isophorondiisocyanat = IPDI), 4,4'-Diisocyanatodiphenylmethan, 2,4'-Diisocyanatodiphenylmethan oder um Biuretgruppen oder Urethangruppen aufweisende Derivate derartiger Diisocyanate. Zu den in diesem Zusammenhang  
10 in erster Linie interessanten Biuretgruppen aufweisenden Derivaten gehören vor allem Polyisocyanate der in der US-PS 3 124 605 beschriebenen Art, d.h. Homologengemische, wie sie bei der Biuretisierung von Hexamethylen-diisocyanat anfallen und aus Tris-(isocyanatoethyl)-  
15 biuret und höheren Homologen dieses Polyisocyanats bestehen. Auch diese Biuretpolyisocyanate weisen eine mittlere NCO-Funktionalität zwischen 3 und 4 und ein mittleres unter 850 liegendes Molekulargewicht auf. Zu den geeigneten Urethangruppen aufweisenden Derivaten  
20 der oben beispielhaft genannten Diisocyanate gehören insbesondere deren Umsetzungsprodukte mit unterschüssigen Mengen an aliphatischen Diolen oder Triolen des Molekulargewichtsbereichs 62-200, wie z.B. Äthylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,2-Butandiol, Tetra-  
25 methylenglykol, Hexamethylenglykol, Diäthylenglykol, Trimethylolpropan oder Glycerin. Bei der Herstellung dieser Urethan-modifizierten Derivate der obengenannten Diisocyanate werden die Diisocyanate mit den beispielhaft genannten mehrwertigen Alkoholen in Mengenverhältnissen zur  
30 Reaktion gebracht, die einem NCO/OH-Äquivalentverhältnis

2012252

- 8 -

. 7.

von mindestens 2:1, vorzugsweise 2:1 bis 20:1 entsprechen.  
Auch die so erhältlichen Urethan-modifizierten Polyisocyanate weisen NCO-Funktionalitäten von 2 bis 4, vorzugsweise 2 bis 3, und (mittlere) Molekulargewichte von unter  
5 850 auf.

Reaktionspartner für die beispielhaft genannten Polyisocyanate zur Herstellung der erfindungsgemäß blockierten Polyisocyanate ist das erfindungswesentliche Blockierungsmittel 1,2,4-Triazol. Das erfindungswesentliche Blockierungsmittel wird vorzugsweise als alleiniges Blockierungsmittel verwendet. Denkbar ist jedoch auch die gleichzeitige Mitverwendung anderer an sich bekannter Blockierungsmittel, wie z.B.  $\epsilon$ -Caprolactam oder beliebiger Phenole.

Die Umsetzung der Ausgangspolyisocyanate mit dem Blockierungsmittel kann in Gegenwart aprotischer, d.h. gegenüber Isocyanatgruppen, inerter Lösungsmittel oder in der Schmelze erfolgen. Geeignete Lösungsmittel sind z.B. Äthylacetat, Butylacetat, Aceton, Methyläthylketon, Methylisobutylketon, Tetrahydrofuran oder Dioxan. Die Blockierungsreaktion erfolgt im allgemeinen im Temperaturbereich von 40 bis 160, vorzugsweise 60 bis 130 °C. Bei Reaktionstemperaturen oberhalb 60°C kann die Umsetzung in Abwesenheit von Katalysatoren durchgeführt werden und ist in den meisten Fällen bereits nach 30-60 Minuten beendet. Das Blockierungsmittel wird vorzugsweise in mindestens äquivalenter Menge eingesetzt. Oft empfiehlt sich zur vollständigen Verkappung eingeringer Überschuß. Bei der erwähnten, jedoch nicht bevorzugten Mitverwendung anderer Blockierungsmittel wird das 1,2,4-

Le A 18 668

909840/0071

- 1 -  
- 8 -

Triazol auf jeden Fall in solchen Mengen mitverwendet, daß in den erfindungsgemäßen blockierten Polyisocyanaten pro Molekül mindestens zwei 1,2,4-Triazol-blockierte Isocyanatgruppen vorliegen.

5 Bei Verwendung der beispielhaft genannten Urethan-modifizierten Polyisocyanate als Ausgangsmaterial kann deren Herstellung sowie deren Blockierung in einer einstufigen Reaktion erfolgen und zwar dergestalt, daß man das nicht urethanmodifizierte Diisocyanat mit einem Gemisch aus  
10 Blockierungsmittel und einem oder mehreren der beispielhaft genannten Polyole zur Reaktion bringt. Auch bei dieser Ausführungsform der Herstellung der erfindungsgemäßen blockierten Polyisocyanate gelten die oben gemachten Ausführungen bezüglich der Mengenverhältnisse der Reaktionspartner, wobei die Angaben bezüglich des Verhältnisses  
15 zwischen NCO-Gruppen und NH-Gruppen sich selbstverständlich nur auf diejenigen NCO-Gruppen beziehen, die nicht für die Reaktion mit den Hydroxylgruppen benötigt werden.

Bei der Herstellung der erfindungsgemäßen Produkte kann  
20 sowohl das Blockierungsmittel vorgelegt und das zu blockierende Polyisocyanat in das vorgelegte Blockierungsmittel gegeben als auch umgekehrt verfahren werden, dergestalt, daß das Blockierungsmittel gegebenenfalls zusammen mit dem Alkohol zur Modifizierung des Ausgangsisocyanats dem vorgelegten Ausgangsisocyanat zudosiert wird. Bei Verwendung als Gemisch aus Polyol und Triazol  
25 zur Herstellung der erfindungsgemäßen Verbindungen ist es besonders vorteilhaft, dieses Gemisch durch Erwärmen in eine klare Schmelze umzuwandeln, die dann mittels eines dampfbeheizten Tropftrichters zu dem Isocyanat  
30 dosiert wird.

- 8 -

. 9.

Bei der Herstellung der erfindungsgemäßen Verbindungen in Gegenwart eines Lösungsmittels für die Ausgangsmaterialien kristallisieren die blockierten Polyisocyanate oft aus und können durch einfaches Filtrieren als Festsubstanz gewonnen werden.

5 Im allgemeinen weisen aus definierten Ausgangsmaterialien hergestellte erfindungsgemäße Verbindungen ein genau definiertes Molekulargewicht und einen scharfen Schmelzpunkt auf. Bei Verwendung von Polyisocyanatgemischen 10 und/oder von Gemischen aus verschiedenen Blockierungsmitteln, insbesondere bei Verwendung der beispielhaft genannten Biuret- oder Urethan-modifizierten Ausgangsisocyanate zur Herstellung der erfindungsgemäßen blockierten Polyisocyanate handelt es sich bei letzteren 15 um Gemische verschiedener Verbindungen des angegebenen mittleren Molekulargewichts.

Die erfindungsgemäßen blockierten Polyisocyanate stellen wertvolle Vernetzer für Polyhydroxylverbindungen dar und eignen sich insbesondere in Kombination mit Polyhydroxyl- 20 verbindungen eines über 50°C, vorzugsweise zwischen 60 und 120°C, liegenden Erweichungspunkts als Hitze-vernetzbares

- 9 -

• 10 •

Zweikomponenten-Bindemittel für Pulverlacke. Hierbei ergeben sich bei Verwendung der erfindungsgemäßen blockierten Polyisocyanate insbesondere folgende Vorteile:

1. Wegen des niederen Molekulargewichts des 1,2,4-Triazol werden nur relativ geringe Mengen des Blockierungsmittels zur Blockierung der Isocyanatgruppen benötigt, so daß der Gewichtsanteil des bei der Vernetzung abspaltenden Blockierungsmittels relativ gering bleibt.
2. Das erfindungswesentlich Blockierungsmittel ist physiologisch weit weniger bedenklich als andere Blockierungsmittel des Standes der Technik.
3. Der vergleichsweise hohe Schmelzpunkt der erfindungsgemäßen blockierten Polyisocyanate macht sie insbesondere für Überzüge geeignet, die nach dem Wirbelsinter- oder elektrostatischen Pulversprüh-Verfahren (EPS-Verfahren) appliziert und anschließend einer thermischen Behandlung unterworfen werden. So ist es beispielsweise bei Einsatz des Isophorondiisocyanats als Isocyanatkomponente nicht notwendig, dieses, wie beispielsweise in der DE-AS 2 215 080 beschrieben, unter Verlust von etwa der Hälfte der Isocyanatgruppen zu modifizieren, es genügt vielmehr, nur etwa 15 % der Isocyanatgruppen des IPDI durch mehrwertige Alkohole zu verlängern, um eine ausreichende Rieselfähigkeit der Pulver zu gewährleisten.

. 11.

4. Vorteilhaft ist ferner die vergleichsweise niedrige Einbrenntemperatur von ca. 150°C beim Verarbeiten der, erfindungsgemäß blockierte Polyisocyanate als Vernetzer enthaltenden, Pulverlacke.
- 5 Bei der Verwendung der erfindungsgemäßen blockierten Polyisocyanate kommen diese im allgemeinen in solchen Mengen zum Einsatz, daß für jede gegenüber Isocyanatgruppen reaktionsfähige Gruppe des Bindemittels 0,8 bis 1,2, vorzugsweise ca. 1, blockierte Isocyanatgruppe der erfindungsgemäßen blockierten Polyisocyanate zur Verfügung steht.
- 10

Darüber hinaus wird die Art der erfindungsgemäßen blockierten Polyisocyanate und/oder die Art der Komponente mit gegenüber Isocyanatgruppen reaktionsfähigen Gruppen bei

- 15 der erfindungsgemäßen Verwendung so gewählt, daß das gebrauchsfertige Bindemittel einen oberhalb 40°C, vorzugsweise zwischen 40 und 100°C, liegenden Schmelzpunkt bzw. -bereich aufweist, d.h. innerhalb dieses Temperaturbereichs zu einer filmbildenden Flüssigkeit schmilzt.
- 20 Reaktionspartner für die erfindungsgemäßen blockierten Polyisocyanate bei deren erfindungsgemäßen Verwendung sind insbesondere beliebige organische Polyhydroxylverbindungen des bereits obengenannten Schmelz- bzw. Erweichungspunktes. Vorzugsweise werden höhermolekulare
- 25 Polyhydroxylverbindungen mit Hydroxylzahlen zwischen 40 und 250, vorzugsweise 40 und 150, eingesetzt. Beispiele derartiger Verbindungen sind hydroxylgruppenhaltige Poly-

- 11 -

. 12.

ester, hydroxylgruppenhaltige Polyäther, hydroxylgruppenhaltige Polyurethane, hydroxylgruppenhaltige Polyesterurethane, hydroxylgruppenhaltige Urethanalkydhärze, hydroxylgruppenhaltige Acrylhärze, hydroxylgruppenhaltige Epoxidhärze sowie deren Gemische. Polyesterpolyole sind bevorzugt. Diese Polyesterpolyole lassen sich nach bekannten Verfahren, vorzugsweise aus cyclischen Polycarbonsäuren, wie Phthalsäure, Isophthalsäure, Terephthalsäure, Benzol-1.2.4-tricarbonsäure, 3,6-Dichlorphthal-säure, Tetrachlorphthalsäure, Tetrahydronphthalsäure, Hexahydronphthalsäure, Endomethylentetrahydronphthalsäure bzw. - soweit zugänglich - deren Anhydriden oder niederen Alkylestern, und Trimellithsäureanhydrid, sowie Diolen, wie Äthylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,2-Butandiol, 1,4-Butandiol, 2,2-Dimethylpropandiol, Hexandiol-2,5, Hexandiol-1,6, 4,4'-Dihydroxydicyclohexylpropan-2,2, Cyclohexandiol, Dimethylolcyclohexan, Diäthylenglykol und 2,2-Bis-[4-( $\beta$ -hydroxy-äthoxy)-phenyl]-propan und Polyolen, wie Glycerin, Hexantriol, Pentaerythrit, Sorbit, Trimethyloläthan, Trimethylolpropan und Tris-( $\beta$ -hydroxyäthyl)-isocyanurat, herstellen.

In geringen Mengen können Monocarbonsäuren, z.B. Benzoësäure, tert.-Butylbenzoësäure, Hexahydrobenzoësäure, gesättigte und/oder ungesättigte Fettsäuren, sowie acyclische Polycarbonsäuren, wie Adipinsäure, Maleinsäure und Bernstein-säure, einkondensiert werden.

Ebenfalls geeignet, jedoch weniger bevorzugt, sind Polyvinylhärze des genannten Hydroxylzahlbereichs, wie sie in an sich bekannter Weise durch Mischpolymerisation ge-

2812252

- 12 -

. 13 .

eigneter Monomeren, wie z.B. Hydroxypropyl-(meth)-acrylsäure-  
ester, Hydroxy-äthyl-(meth)-acrylsäureester, Äthylacrylat,  
Butylacrylat, 2-Äthylhexylacrylat, Methylmethacrylat, Äthyl-  
methacrylat, Butyl-methacrylat, Laurylmethacrylat, Styrol,  
5  $\alpha$ -Methylstyrol, Vinyltoluol, Acrylnitril, Acrylamid,  
Vinylacetat, Acrylsäure und Methacrylsäure, in Gegenwart  
von Initiatoren und Reglern hergestellt werden können.

Ebenfalls geeignet, jedoch weniger bevorzugt, sind die  
an sich bekannten Polyätherpolyole, falls sie den ge-  
10 nannten Bedingungen bezüglich des Schmelz- bzw. Erweichungs-  
punkts entsprechen.

Auch Polyepoxidharze, beispielsweise Umsetzungsprodukte  
von Bisphenol A mit Epichlorhydrin, können in den Pulver-  
lackbindemitteln mitverwendet werden.

15 Auch übliche Zusatzstoffe wie Pigmente, Verlaufshilfs-  
mittel, Füllstoffe und Katalysatoren, wie sie z.B. in  
der Deutschen Patentschrift 946 173 genannt sind, können  
zugesetzt werden.

Die Herstellung der Filme erfolgt in der üblichen Weise.  
20 Beide Komponenten sowie die Hilfsstoffe werden beispiels-  
weise auf einem Kollergang innig vermischt und anschließend  
in einem Extruder bei 90-120°C homogenisiert. Nach Er-  
kalten wird die Masse auf eine Kornfeinheit von unter  
100  $\mu\text{m}$  gemahlen, das Pulver auf einer Pulversprühlanlage  
25 auf das Substrat aufgetragen und anschließend eingearbeitet.

Le A 18 668

909840/0071

2812252

- 13 -

. 14 .

Die mit 1,2,4-Triazol-verkappten Isocyanaten gehärteten  
Filme zeigen neben guten Oberflächeneigenschaften sehr  
gute Lösungsmittelbeständigkeit, Elastizität, Ver-  
bilbungsresistenz und Wetterbeständigkeit.

Le A 18 668

909840/0071

2812252

- 14 -

. 15.

Beispiel 1

Herstellung eines 1,2,4-Triazol-blockierten Isocyanats

Zu 84 g Hexamethylenendiisocyanat, welches in 750 ml  
Essigsäureäthylester gelöst ist, werden bei Raumtemperatur  
5 portionsweise 73 g 1,2,4-Triazol gegeben. Nachdem die  
Hälfte des Triazols zugesetzt ist, beginnt die Abscheidung  
eines Niederschlages. Ist die gesamte Menge des 1,2,4-  
Triazols zugegeben worden, kocht man das Gemisch noch  
30 Minuten unter Rückfluß. Man kühlt ab und filtriert  
10 das in quantitativer Ausbeute erhaltene Reaktionsprodukt  
ab.

Schmp.: 175°C

Beispiel 2

Herstellung eines 1,2,4-Triazol-blockierten Isocyanats

15 In einem mit Stickstoff gespülten Kolben werden 52 g  
2,4-Toluylendiisocyanat in 1000 ml Aceton vorgelegt.  
Bei Raumtemperatur werden unter Röhren portionsweise  
44 g 1,2,4-Triazol zugegeben. Nachdem die Hälfte des  
1,2,4-Triazols zugegeben ist, beginnt die Abscheidung  
20 eines Niederschlages. Nach Beendigung der Triazolzu-  
gabe wird das Gemisch noch 30 Minuten unter Rückfluß  
gekocht. Man kühlt ab und filtriert das in quantitativer  
Ausbeute erhaltene Reaktionsprodukt ab.

Schmp.: 206°C

Le A 18 668

909840/0071

- 15 -

. 16.

Beispiel 3

Herstellung eines 1,2,4-Triazol-blockierten Isocyanats

250 g 4,4'-Diisocyanatodiphenylmethan werden in 3000 ml  
Essigester bei 60°C gelöst. 145 g 1,2,4-Triazol werden  
5 portionsweise zugegeben. Man kocht 1 Stunde unter Rück-  
fluß, kühlt ab und saugt den Niederschlag ab.

Ausbeute: 372,2 g

Schmp.: 212°C

NCO (verkappt): 21,3 %

10 Beispiel 4

Herstellung eines 1,2,4-Triazol-blockierten Biuretgruppen-  
haltigen Isocyanats

Zu 400 g eines Biuretpolyisocyanats, hergestellt durch  
an sich bekannte Biuretisierung von Hexamethylendiiso-  
cyanat, mit einem NCO-Gehalt von 21,9 Gew.-% gibt man bei  
15 100°C unter Röhren portionsweise 151 g 1,2,4-Triazol, so  
daß die Temperatur nicht über 120°C ansteigt. Nach 3-  
stündigem Röhren ist kein freies Isocyanat mehr vor-  
handen. Die Masse erstarrt bei Raumtemperatur zu einem  
20 klaren hellgelben, zähen Harz. NCO (verkappt): 15,9 %;  
mittlere Funktionalität: 3.

| Einbrennbedin-<br>gungen              | Min/ <sup>o</sup> C                   | 7    | 30/140 | 30/160 | 7/200 |     |
|---------------------------------------|---------------------------------------|------|--------|--------|-------|-----|
| Dicke                                 | mm                                    | 7    | 62-74  | 60-65  | 49-58 | at  |
| Glanz<br>5 DIN 67 530                 | [nach Gard-<br>ner 60 <sup>o</sup> C] | 89   | 88     | 88     |       |     |
| Gitterschnitt<br>DIN 53 151           |                                       | 0    | 0      | 0      |       |     |
| Reverse<br>impact                     | (inch x lbs)                          | >100 | >100   | >100   |       |     |
|                                       |                                       |      |        |        |       | 21- |
| 10 Erichsen-<br>tiefung<br>DIN 53 156 | mm                                    | 7    | 8      | 8      | 8     |     |

Beispiel 13Herstellung einer Beschichtung nach dem EPS-Verfahren

15 47,3 Teile des in Beispiel 12 beschriebenen Polyesters,  
 12,2 Teile des nach Beispiel 6 hergestellten 1,2,4-Triazol-verkappten Isocyanats, 39,9 Teile Titan-Weißpigment (Rutil) und 0,6 Teile eines handelsüblichen Verlaufmittels werden gemäß der in Beispiel 12 beschriebenen Weise appliziert. Man erhält lösungsmittelbeständige, elastische und lichtechte Filme mit folgenden Werten:

20

Le A 18 668

909840/0071

2812252

- 21 -

- 22.

Einbrennbe-  
dingungen

[Min/ $^{\circ}\text{C}$ ]

30/150

30/160

15/180

Dicke

[ $\text{mm}$ ]

62-64

52-54

58-61

5 Glanz  
DIN 67 530

[nach Gard-]  
ner 60 $^{\circ}\text{C}$  ]

92

98

93

Gitter-

schnitt

DIN 53 151

0

0

0

Reverse

10 impact

[inch x lbs]

> 100

> 100

Erichsen-

tiefung

DIN 53 156

[ $\text{mm}$ ]

> 10

> 10

> 10

Le A 18 668

909840/0071

**THIS PAGE BLANK (USPTO)**