# Ovládací zařízení

#### Klávesnice

- Základní rozhraní pro komunikaci mezi počítačem a uživatelem
- Základ rozložení kláves odvozen od psacího stroje
- Většina znaků je stejná pro všechny klávesnice, různé jazyky mají doplněné svoje znaky
- Na klávesy F a J se umisťují pomocné rysky
- Zařízení, jiná než PC, mívají často klávesnici zjednodušenou či upravenou pro potřeby daného zařízení

#### Rozdělení klávesnic

- Podle technologie (přepínače, membrána, ...)
- Podle standardů použití (PC/XT, PC/AT)
- Podle typu připojení (USB, PS/2)
- Podle způsobu komunikace (SCAN kód, ASCII kód, ...)

#### Princip činnosti klávesnice

- Pole spínačů jsou zapojena do matice
- Řadič rozezná stisknutou klávesu, pošle do počítače scan-kód klávesy
- Počítač převede scan kód na písmena pomocí aktivní mapy kláves (QWERTZ, QWERTY, atd.)
- Mapy kláves lze obvykle přepínat určitou kombinací kláves
- Mřížka kláves:



#### Technologie klávesnic

- Mechanická klávesnice
  - o Technologie na bázi tlačítka
  - o Lze vyměňovat spínače po jednom
  - Horší těsnění voda, prach
  - Ne tolik běžné, dražší
  - Odolné a vyšší životnost
- Membránová klávesnice
  - Základ klávesnice je kontaktní pole, přes pole je vložena silikonová membrána s výstupky tam, kde přijdou klávesy
  - Výstupky mají na spodní straně vodivý materiál, po stisku klávesy se sepne elektrický obvod a je jasné, která klávesa byla stlačena



- Membrána je celý kus = větší prachu a voděodolnost
- Levnější, horší zpětná odezva





- Klávesnice s nůžkovým mechanismen
  - Hlavní důvod je snížení hloubky klávesnic
- Kapacitní klávesnice
  - Princip elektrické kapacity
  - Při přiblížení elektrické součástky vodivé součástky dojde ke zvýšení kapacity



- Klávesnice na principu Hallova efektu
  - Permanentní magnet v klávese mění snímané magnetické pole snímačem

#### Rozdělení PC/XT a PC/AT

- PC/XT
  - Starší typ rozložení klávesnice
  - Využíval centrální procesor základní desky počítače
  - o Abecední znaky, funkční klávesy f1-f10, kurzorové klávesy
- PC/AT
  - o Dnešní typ
  - o 101/102 kláves
  - Speciální klávesy (shift, ctrl, alt) funkční klávesy f1-f12
  - Kurzorové klávesy (pgup, pgdown, insert,home,..)
  - Možnost numerické klávesnice
  - Možnosti rozšiřujících kláves (např. Windows tlačítko)
  - Rozšířená AT multimediální další klávesy na například ovládání zvuku

#### Bezpečnostní klávesnice

- Klávesnice se zabudovaným autorizačním systémem
  - Čtečka smart karet, otisky prstů, ...

#### Ergonomická klávesnice

- Tvarována pro pohodlí rukou
- Omezuje únavu z nepřirozeného držení rukou
- Pro psaní dlouhých textů

### Počítačová myš

#### Principy snímání pohybu

- Elektromechanické
  - o V myši je těžká gumová kulička, kterou snímají dvě navzájem kolmé hřídele
  - Každá osa má kotouček s dírkami, kterými prochází světlo
  - Dva lehce posunuté fototranzistory snímají světlo
  - o Díky pořadí signálů se dá určit směr otáčení



- Signál je posílán a dekódován, poté rekonstruován na monitor (v osách x,y)
- Optomechanická
  - o Snímání kuličky bylo nahrazeno optickým snímáním
- Optická myš
  - o Pro detekci pohybu slouží světlo odražené od povrchu, po kterém myš jezdí
  - o Podložka je osvícená LED diodou a snímána miniaturní kamerou s nízkým rozlišením



Podložka musí být nehomogenní, proto nefunguje na skle

# Alternativy myši

0

#### Trackball

- Myš je v podstatě otočená
- Kulička vyčnívá na povrch na horní straně myši

#### Trackpoint

- Jde o malý joystick, vložený mezi klávesy
- Většinou mezi klávesami G, H, B
- Nakláněním na stranu se pohybuje kurzor

#### Touchpad

- Běžně používaný u notebooků
- Snímá elektrickou kapacitu prstu a senzorů
- Jsou zde i 2 tlačítka jako u myši

#### **Joystick**

- Páka kterou nakláníme na různé strany
- Využití především ve videohrách





### Grafický tablet

- Pro práci s grafikou
- Připomíná kreslení tužkou na papír
- Odolnější a přesnější než Touchpad
- Využívá speciální tužky

# Dotyková obrazovka

- Display, který dokáže detekovat dotyk
- Největší použití u mobilních telefonů
- Reaguje na prst nebo stylus
- První pokusy se světelným perem se neuchytily

#### Kapacitní technologie

- Na povrchu obrazovky se vytváří elektrostatické pole
- Vodivý lidský prst ji naruší a změní kapacitní odpor
- Nelze ovládat nevodivým prvkem
- Vodivá vrstva integrována do displaye
- Hlavní i boční odpory určí přesné místo dotyku

