Implementation of Decision Tree Classifiers ID3 versus C4.5

Depuydt Antoine Dansy Efila Mudura Mircea

May, 2017

Introduction

- ▶ Data mining: compress, understand and predict
 - Clustering
 - Classification
 - Regression
 - **.**..
- ► Techniques to find links
 - ► Linear Regression
 - Decision Trees
 - Neural Networks
 - **...**

Classification

- Classical example: play tennis today?
 - ► Features:
 - ► Outlook: sunny, overcast, rainy
 - ► Temperature: hot, cool, cold
 - ▶ Wind: high, weak
 - ► Humidity: high, normal
 - Class labels:
 - Yes
 - ► No

Decision Tree

- Visual model, easily understandable
- ► Model: tree with decision and leaf nodes

Premise

- Given a training data-set
- Recursively split on a node:
- ▶ If node is pure return leaf (class value)
- ► Else compute entropy & info gain:
 - Shannon's entropy: $E(S) = \sum_{i} -p_{i}log_{2}(p_{i})$
 - Subtree gain: Gain(T, X) = E(T) E(T, X)

ID3 versus C4.5

▶ Goal: implement ID3 and C4.5 algorithms

Objectives: compare ID3 and C4.5 output

► Compare ID3 and C4.5

 Create an application that classifies any data using both algorithms ID3

- ▶ Initial implementation of decision trees
- ► Top down approach
- ▶ Split current node based on information gain:

Improvements?

► Entropy & information gain not sufficient metrics

Missing data has to be handled

 Numerical values could provide order or dimension to a problem set

Tree can be simplified

Missing data I

```
2,*,*,*,*,*,2
1,2,*,*,*,*,1
1.1.2.*.*.*.1
1.1.1.*.*.*.1
1.1.3.2.2.*.1
1,*,*,*,*,4,1
2,1,4,*,*,1,1
2.1.4.*.*.2.1
2.1.4.*.*.3.1
2,1,3,1,1,1,1
2,1,3,1,1,2,1
2,1,3,1,2,1,1
2,1,3,1,2,2,1
1,1,3,1,1,3,1
2,1,3,1,2,3,1
```

Missing data II

- Dataypes can co-exist (eg. strings, integer/float)
- Solutions
 - ▶ Replace missing values in column with most frequent
 - ► For numerical values replace with mean/mode/median
- ► Column 2:
 - ▶ No instances = 15
 - ► Card(2) = 1
 - Card(1) = 12
 - lacktriangledown ightarrow safest choice replace missing values with 1
- Column 3:
 - ▶ No instances = 15 (of course)
 - ► Card(2) = 1
 - ightharpoonup Card(1) = 1
 - Card(3) = 7
 - ► Card(4) = 3
 - ► Missing = 3
 - ightharpoonup ightharpoonup replace missing values with 3

K-fold cross validation

Demonstration