HLSVD

Woo Min Kim

4/16/2018

Hierarchical Latent SVD Model

As an extended idea of latent distance models (LDM), the latent eigenmodel was introduced to capture both homophily and stochastic equivalence among nodes. The main difference between LDMs and eigenmodels is the choice of the function dependent on the latent space. More specifically, eigenmodels use $a(u_i, u_j) = u_i^T \Lambda u_j$ instead of mere physical distance function. Besides, all latent class, distance and eigenmodels only deal with the symmetric function d or a. However; the function also can be asymmetric if there exist sender and receiver effects are different. It is so-called SVD model, and the model specification is as follows:

$$logitP(Y_{ij} = 1) = \beta^T X_{ij} + a_i + b_j + u_i^T v_j + \epsilon_{ij}$$

where u and v are vectors of latent nodal attributes, and a_i and b_i are terms for nodal heterogeneity.

MCMC Derivation

$$\mathbf{Y}_{ijk} = \mathbb{1}_{[\mathbf{Z}_{ijk}>0]}$$

$$\mathbf{Z}_{ijk} = \sum_{p=0}^{P} \beta_{pk}^{T} \mathbf{X}_{ijpk} + a_{ik} + b_{jk} + u_{ik}^{T} v_{jk} + \epsilon_{ijk}$$

$$(a_{ik}, b_{ik}) \stackrel{iid}{\sim} MVN_2((0, 0), \mathbf{\Sigma}_{ab})$$

$$(u_{ik}, v_{ik}) \stackrel{iid}{\sim} MVN_4((0, 0, 0, 0), \mathbf{\Sigma}_{uv})$$

$$(\epsilon_{ijk}, \epsilon_{jik}) \stackrel{iid}{\sim} MVN_2\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho_k\\ \rho_k & 1 \end{pmatrix}\right)$$

$$\beta_p \sim N(\mu_p, \sigma_p^2)$$

$$\mu_p \sim N(\lambda, \tau^2)$$

$$\sigma_p^2 \sim IG(\nu_0, S_0)$$

$$\mathbf{\Sigma}_{ab} \sim IWishart(\nu_{ab}, S_{ab}^{-1})$$

$$\mathbf{\Sigma}_{uv} \sim IWishart(\nu_{uv}, S_{uv}^{-1})$$

Update Z_{ijk}, Z_{jik} :

$$(\mathbf{Z}_{ijk}, \mathbf{Z}_{jik}) \overset{iid}{\sim} MVN_2 \left(\begin{pmatrix} \sum_{p=0}^{P} \mathbf{X}_{ijpk} \beta_{pk} + a_{ik} + b_{jk} + u_{ik}^T v_{jk} \\ \sum_{p=0}^{P} \mathbf{X}_{ijpk} \beta_{pk} + a_{jk} + b_{ik} + u_{jk}^T v_{ik} \end{pmatrix}, \begin{pmatrix} 1 & \rho_k \\ \rho_k & 1 \end{pmatrix} \right)$$

Let
$$\eta_{ijk} = \sum_{p=0}^{P} \mathbf{X}_{ijpk} \beta_{pk} + a_{ik} + b_{jk} + u_{ik}^{T} v_{jk}$$

$$\mathbf{Z}_{ijk}|\mathbf{Z}_{jik} \sim N(\eta_{ijk} + \rho_k \cdot (\mathbf{Z}_{jik} - \eta_{jik}), 1 - \rho_k^2)$$

$$\Pr(\mathbf{Z}_{ijk}|\mathbf{Z}_{jik},\mathbf{Y}_{ijk}=1,\cdots) \propto \Pr(\mathbf{Y}_{ijk}=1|\cdots) \cdot \Pr(\mathbf{Z}_{ijk}|\mathbf{Z}_{jik})$$

$$= \begin{cases} \mathbb{1}_{[\mathbf{Z}_{ijk}>1]} \cdot dN(\mathbf{Z}_{ijk};\eta_{ijk}+\rho_k \cdot (\mathbf{Z}_{jik}-\eta_{jik}),1-\rho_k^2) \text{ if } Y_{ijk}=1 \\ \mathbb{1}_{[\mathbf{Z}_{ijk}<1]} \cdot dN(\mathbf{Z}_{ijk};\eta_{ijk}+\rho_k \cdot (\mathbf{Z}_{jik}-\eta_{jik}),1-\rho_k^2) \text{ if } Y_{ijk}=0 \end{cases}$$

Update β_k :

Let
$$\bar{\mathbf{Z}}_{ijk} = \mathbf{Z}_{ijk} - a_{ik} - b_{jk} - u_{ik}^T v_{jk}$$

$$\Pr(\bar{\mathbf{Z}}_{ijk}) \propto \prod_{i \neq j}^{n_k} \exp\left(-\frac{1}{2} \left(\bar{\mathbf{Z}}_{ijk} - \sum_{p} \mathbf{X}_{ijpk} \beta_{pk} \right)^{T} \mathbf{\Sigma}_{p}^{-1} \left(\bar{\mathbf{Z}}_{ijk} - \sum_{p} \mathbf{X}_{ijpk} \beta_{pk} \right) \right)$$

$$\therefore \Pr(\bar{\mathbf{Z}}_{ijk} | \bar{\mathbf{Z}}_{jik}) \sim N(\sum_{p} \mathbf{X}_{ijpk} \beta_{pk} + \rho_{k} (\bar{\mathbf{Z}}_{jik} - \sum_{p} \mathbf{X}_{jipk} \beta_{pk}), 1 - \rho_{k}^{2})$$

$$\propto \prod_{i \neq j} \exp\left(-\frac{1}{2} \left(\bar{Z}_{ijk} - \rho_{k} \sum_{p} \mathbf{X}_{jipk} \right) \beta_{pk} - \rho_{k} (\bar{Z}_{jik} - X_{jik} \beta_{k}) \right)^{2} \cdot (1 - \rho_{k}^{2})^{-1} \right)$$

$$\therefore \Pr(\beta_{k} | \mathbf{Z}_{k}) \propto \prod_{i \neq j} \exp\left(-\frac{1}{2} \left((X_{ijk} - \rho_{k} \sum_{p} \mathbf{X}_{jipk}) \beta_{pk} - \bar{Z}_{ijk} - \rho_{k} \bar{Z}_{jik} \right)^{2} \cdot (1 - \rho_{k}^{2})^{-1} \right) \cdot dN(\beta_{k}; \mu, \mathbf{\Sigma}_{\beta})$$

$$\propto \exp\left(-\frac{1}{2} (1 - \rho_{k}^{2})^{-1} \left(\mathbf{\Theta}_{\beta} \vec{\beta}_{k} - \operatorname{vec}(\mathbf{Z}_{k}) + \rho_{k} \operatorname{vec}(\mathbf{Z}_{k}^{T}) \right)^{T} \left(\mathbf{\Theta}_{\beta} \vec{\beta}_{k} - \operatorname{vec}(\mathbf{Z}_{k}) + \rho_{k} \operatorname{vec}(\mathbf{Z}_{k}^{T}) \right)$$

$$\times \exp\left(-\frac{1}{2} (\vec{\beta}_{k} - \vec{\mu})^{T} \mathbf{\Sigma}_{\beta}^{-1} (\vec{\beta}_{k} - \vec{\mu}) \right)$$

where Θ_{β} is a vector length of n(n-1), and,

$$\mathbf{\Theta}_{\beta} = \left(\begin{pmatrix} | & \cdots & | \\ \operatorname{vec}(\mathbf{X}_{1k}) & \cdots & \operatorname{vec}(\mathbf{X}_{Pk}) \\ | & \cdots & | \end{pmatrix} - \rho_k \begin{pmatrix} | & \cdots & | \\ \operatorname{vec}(\mathbf{X}_{1k}^T) & \cdots & \operatorname{vec}(\mathbf{X}_{Pk}^T) \\ | & \cdots & | \end{pmatrix} \right)$$

Thus, we have $\mathbf{V}_n = \mathbf{A}_n^{-1}$ where $\mathbf{A}_n = \mathbf{A}_0 + \mathbf{A}_1$, and $\mathbf{A}_0 = \mathbf{\Sigma}_{\beta}^{-1}$, $\mathbf{A}_1 = (1 - \rho_k^2)^{-1} \mathbf{\Theta}_{\beta}^T \mathbf{\Theta}_{\beta}$

$$\mu_n = \mathbf{V}_n m_n$$
 where $m_n = m_0 + m_1$, and $m_0 = \mathbf{\Sigma}_{\beta}^{-1} \mu$ and $m_1 = (1 - \rho_k^2)^{-1} \mathbf{\Theta}_{\beta}^T \left(\text{vec}(\mathbf{Z}_k) - \rho_k \text{vec}(\mathbf{Z}_k^T) \right)$

Update a_i, b_i :

Let
$$\hat{\mathbf{Z}}_{ijk} = \mathbf{Z}_{ijk} - \sum_{p} \mathbf{X}_{ijpk} \beta_{pk} - u_{ik}^T v_{jk}$$

$$\Pr\left(\begin{pmatrix} a_{ik} \\ b_{ik} \end{pmatrix} | \begin{pmatrix} \hat{Z}_{ijk} \\ \hat{Z}_{jik} \end{pmatrix}, \dots \right) \propto$$

$$\prod_{i \neq j}^{n_k} \exp\left(-\frac{1}{2} \begin{pmatrix} \hat{Z}_{ijk} - a_{ik} - b_{jk} \\ \hat{Z}_{jik} - a_{jk} - b_{ik} \end{pmatrix}^T \Sigma_{\rho}^{-1} \begin{pmatrix} \hat{Z}_{ijk} - a_{ik} - b_{jk} \\ \hat{Z}_{jik} - a_{jk} - b_{ik} \end{pmatrix} \right) \cdot \operatorname{dMVN}_{2}\left(\begin{pmatrix} a_{ik} \\ b_{ik} \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_{ab} \right)$$

$$\therefore \Pr(\hat{\mathbf{Z}}_{ijk} | \hat{\mathbf{Z}}_{jik}) \sim N(a_{ik} - (-b_{jk} - \rho_{k}(\hat{\mathbf{Z}}_{jik} - a_{jk} - b_{ik})), 1 - \rho_{k}^{2})$$

$$\therefore \Pr(a_{ik} | \mathbf{Z}_{k}) \propto \prod_{j \neq i} \exp\left(-\frac{1}{2}(1 - \rho_{k}^{2})^{-1}(\hat{\mathbf{Z}}_{ijk} - a_{ik} - b_{jk} - \rho_{k}(\hat{\mathbf{Z}}_{jik} - a_{jk} - b_{ik}))^{2}\right)$$

$$\cdot \operatorname{dN}(a_{ik} | b_{ik} ; \mu_{a|b} = \mathbf{\Sigma}_{ab[1,2]} \mathbf{\Sigma}_{ab[2,2]}^{-1} b_{ik}, \sigma_{a|b}^{2} = \mathbf{\Sigma}_{ab[1,1]} - \mathbf{\Sigma}_{ab[1,2]} \mathbf{\Sigma}_{ab[2,1]}^{-1} \sum_{ab[2,2]} \mathbf{\Sigma}_{ab[2,1]}$$

$$\propto \exp\left(-\frac{1}{2}(1 - \rho_{k})^{-1} \sum_{j \neq i} (a_{ik} - \theta_{j})^{T} (a_{ik} - \theta_{j})\right) \cdot \exp\left(-\frac{1}{2}(a_{ik} - \mu_{a|b})^{2} \sigma_{a|b}^{-2}\right)$$

where $\theta_j = -b_{jk} - \rho_k(\hat{\mathbf{Z}}_{jik} - a_{jk} - b_{ik}) + \hat{\mathbf{Z}}_{ijk}$ and i is fixed. Then, we can easily figure out its posterior mean and variance.

$$\mathbf{V}_n = \mathbf{A}_n^{-1}$$
 where $\mathbf{A}_n = \mathbf{A}_0 + \mathbf{A}_1$, and $\mathbf{A}_0 = \sigma_{a|b}^{-2}, \mathbf{A}_1 = (n_k - 1)(1 - \rho_k^2)^{-1}$

$$\mu_n = \mathbf{V}_n m_n$$
 where $m_n = m_0 + m_1$, and $m_0 = \sigma_{a|b}^{-2} \mu_{a|b}$ and $m_1 = (1 - \rho_k^2)^{-1} \sum_{j \neq i} \theta_j$

Likewise, we can update b_{ik} .

Update u_i, v_i :

Let
$$\tilde{Z}_{ijk} = Z_{ijk} - X_{ijk}\beta_k - a_{ik} - b_{jk}$$

$$\begin{split} p\bigg(\begin{pmatrix} u_{ik} \\ v_{ik} \end{pmatrix} | \begin{pmatrix} \tilde{Z}_{ijk} \\ \tilde{Z}_{jik} \end{pmatrix}, \dots \bigg) &\propto \\ &\prod_{i \neq j} \exp\bigg(-\frac{1}{2} \begin{pmatrix} \tilde{Z}_{ijk} - u_{ik}^T v_{jk} \\ \tilde{Z}_{jik} - u_{ik}^T v_{jk} \end{pmatrix}^T \Sigma_{\rho}^{-1} \begin{pmatrix} \tilde{Z}_{ijk} - u_{ik}^T v_{jk} \\ \tilde{Z}_{jik} - u_{ik}^T v_{jk} \end{pmatrix} \bigg) \cdot \mathrm{dMVN_4} \bigg(\begin{pmatrix} u_{ik} \\ v_{ik} \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \Sigma_{uvk} \bigg) \\ &\therefore \Pr(\tilde{Z}_{ijk} | \tilde{Z}_{jik}) &\sim \mathrm{N}(u_{ik}^T v_{jk} + \rho_k (\tilde{Z}_{jik} - u_{jk}^T v_{ik}), 1 - \rho_k^2) \\ &\therefore \Pr(u_{ik} | \tilde{Z}_k) &\propto \prod_{j \neq i} \exp\bigg(-\frac{1}{2} (1 - \rho_k^2)^{-1} (\tilde{Z}_{ijk} - u_{ik}^T v_{jk} - \rho_k (\tilde{Z}_{jik} - u_{jk}^T v_{ik}))^2 \bigg) \\ &\mathrm{dMVN_2}(u_{ik} | v_{ik} ; \ \mu_{u|v} = \Sigma_{uv[1,2]} \Sigma_{uv[2,2]}^{-1} v_{ik}, \ \Sigma_{u|v} = \Sigma_{uv[1,1]} - \Sigma_{uv[1,2]} \Sigma_{uv[2,2]}^{-1} \Sigma_{uv[2,2]} \Sigma_{uv[2,1]}) \\ &\propto \exp\bigg(-\frac{1}{2} (1 - \rho_k^2)^{-1} (\Theta_V u_{ik} - \vec{\mu}_u)^T (\Theta_v u_{ik} - \vec{\mu}_u) \bigg) \cdot \exp\bigg(-\frac{1}{2} (u_{ik} - \mu_{u|v})^T \Sigma_{u|v} (u_{ik} - \mu_{u|v}) \bigg) \\ &\text{Where } \Theta_V = \begin{pmatrix} \vec{v}_{jk[-i,1]} & \vec{v}_{jk[-i,2]} \\ | & & \end{pmatrix}, \text{ and } \vec{\mu}_u = \begin{pmatrix} \tilde{Z}_{i,\cdot,k} - \rho_k (\tilde{Z}_{\cdot,i,k} - u_{\cdot}^T v_i) \\ | & & \end{pmatrix}, \\ &\text{, and dimensions are } (n_k - 1) \times 2 \text{ and } (n_k - 1) \times 1, \text{ respectively.} \end{split}$$

Then, we have $\mathbf{V}_n = \mathbf{A}_n^{-1}$ where $\mathbf{A}_n = \mathbf{A}_0 + \mathbf{A}_1$, and $\mathbf{A}_0 = \Sigma_{u|v}^{-1}, \mathbf{A}_1 = (1 - \rho_k^2)^{-1} \mathbf{\Theta}_V^T \mathbf{\Theta}_V$

 $\mu_n = \mathbf{V}_n m_n$ where $m_n = m_0 + m_1$, and $m_0 = \sum_{u|v}^{-1} \mu_{u|v}$ and $m_1 = (1 - \rho_k^2)^{-1} \mathbf{\Theta}_V^T \vec{\mu}_u$. Update ρ_k : Let $\tilde{\epsilon}_{ijk} = Z_{ijk} - X_{ijk} \beta_k - a_{ik} - b_{jk} - u_{ik}^T v_{jk}$

$$p\left(\rho_{k} \middle| \begin{pmatrix} \tilde{\epsilon}_{ijk} \\ \tilde{\epsilon}_{jik} \end{pmatrix}, \dots \right) \propto \prod_{i \neq j}^{n_{k}} \exp\left(-\frac{1}{2} \begin{pmatrix} \tilde{\epsilon}_{ijk} \\ \tilde{\epsilon}_{jik} \end{pmatrix}^{T} \Sigma_{\rho}^{-1} \begin{pmatrix} \tilde{\epsilon}_{ijk} \\ \tilde{\epsilon}_{jik} \end{pmatrix}\right) \cdot \operatorname{dUnif}(\rho_{k}; -1, 1)$$

To update ρ_k , Metropolis-Hastings is needed due to non-conjugacy.

Update μ :

$$p(\mu|\vec{Y},\dots) \propto \prod_{k=1}^{K} dNorm(\beta_k;\mu,\sigma) \cdot dNorm(\mu;\lambda,\tau)$$
$$\sim N(\mu; \frac{\lambda/\tau + \sum_{k} \beta_k/\sigma^2}{(1\tau + K/\sigma^2)}, (1/\tau + K/\sigma^2)^{-1})$$

Update σ^2 :

$$p(\sigma^2 | \vec{Y}, \dots) \propto \prod_{k=1}^K \text{dNorm}(\beta_k; \mu, \sigma) \cdot \text{dIG}(\sigma^2; \nu_0, S_0)$$
$$\sim \text{IG}(\sigma^2; \frac{\nu_0 + K}{2}, \frac{\nu_0 \cdot S_0 + \sum_k (\beta_k - \mu)^2}{2})$$

Update Σ_{ab} :

$$p(\Sigma_{abk}|\vec{Y},\dots) \propto \prod_{i=1}^{n_k} \text{dMVN}\left(\begin{pmatrix} a_{ik} \\ b_{ik} \end{pmatrix}; \vec{0}, \Sigma_{ab} \right) \cdot \text{dIWishart}(\Sigma_{ab}; \nu_{ab}, S_{abk}^{-1})$$
$$\sim \text{IWishart}(\Sigma_{abk}; \nu_{ab} + n_k, [S_{ab} + \sum_{i=1}^{n_k} \begin{pmatrix} a_{ik} \\ b_{ik} \end{pmatrix} \begin{pmatrix} a_{ik} \\ b_{ik} \end{pmatrix}^T]^{-1})$$

Update Σ_{uv} :

$$p(\Sigma_{uvk}|\vec{Y},\dots) \propto \prod_{i=1}^{n_k} \text{dMVN}\left(\begin{pmatrix} u_{ik} \\ v_{ik} \end{pmatrix}; \vec{0}, \Sigma_{uv} \right) \cdot \text{dIWishart}(\Sigma_{uvk}; \nu_{uv}, S_{uv}^{-1})$$

$$\sim \text{IWishart}(\Sigma_{uvk}; \nu_{uv} + n_k, [S_{uv} + \sum_{i=1}^{n_k} \begin{pmatrix} u_{ik} \\ v_{ik} \end{pmatrix} \begin{pmatrix} u_{ik} \\ v_{ik} \end{pmatrix}^T]^{-1})$$

Coding (Temporary)

For the following function, two main arguments are required: data and edge_covariate. Both arguments should follow a list format. For now, the argument, edge covariate, takes only one edge-specific covariate.

```
hsvd = function(data, edge_covariate, dyad_dep = T, num_iter = 1000, verbose = T){
  suppressMessages(require(tmvtnorm))
  suppressMessages(require(mvtnorm))
  suppressMessages(require(truncnorm))
  suppressMessages(require(MCMCpack))
  iternum = num iter
 Y = data
 COV = edge_covariate
  K = length(Y)
  nk = unlist(lapply(Y, nrow))
   # Create a list to collect MCMC samples
   Chain = list("beta" = list(),
                 "rho" = matrix(nrow=iternum, ncol=K),
                 "sigma_ab" = list(), "sigma_uv" = list(),
                 "U" = list(), "V" = list(),
                 "a" = list(), "b" = list(),
                 "z" = list(), "mu" = matrix(nrow=iternum, ncol=2))
   for (i in 1:K){
      Chain$U[[i]] = Chain$V[[i]] = list()
      for (j in 1:iternum){
        Chain$U[[i]][[j]] = Chain$V[[i]][[j]] = list()
      Chain$beta[[i]] = matrix(nrow=iternum,ncol=2)
      Chain$a[[i]] = Chain$b[[i]] = matrix(nrow=iternum, ncol=nk[i])
    # Initial points for parameters
     beta0 = rep(0,K)
      beta1 = rep(0,K)
      beta = cbind(beta0,beta1)
     mu0 = mu = 0
     s02 = s2 = 1
      # siqma_uv
      sigma_uv = matrix(0.5,4,4)
      diag(sigma_uv) = 1
      # Random Initial points for U and V
     U = V = list()
      for (i in 1:K){
       U[[i]] = as.matrix(rmvnorm(nk[i],c(0,0),sigma_uv[1:2,1:2]),ncol=2)
       V[[i]] = as.matrix(rmvnorm(nk[i],c(0,0),sigma_uv[3:4,3:4]),ncol=2)
     }
      # Create Starting points for z, a, b
     z = a = b = list()
      # siqma_ab
```

```
sigma_ab = matrix(c(1,0.5,0.5,1),2,2)
    # fill in z,a,b with random numbers
    for (k in 1:K){
      z[[k]] = matrix(rnorm(nk[k]*nk[k]), ncol=nk[k],nrow=nk[k])
      diag(z[[k]]) = NA
     a[[k]] = b[[k]] = numeric(nk[k])
    #initial for rho, beta0, beta1
    if (dyad_dep == T){
     rho = rep(0.5, K)
    } else rho = rep(0,K)
#MCMC
ptm <- proc.time()</pre>
 for (k in 1:K){
   diag(Y[[k]]) = 0
   diag(Cov1[[k]]) = 0
   diag(z[[k]]) = 0
 }
 for (sim in (1):(iternum)){
   for (k in 1:K){
      index = which(diag(nk[k]) == 1)
      ### Update Z ###
      etas = matrix(cbind(1,c(Cov1[[k]])) %*% beta[k,] +
                      rowSums(U[[k]][rep(seq_len(nrow(U[[k]])), nk[k]),] *
                                V[[k]][rep(seq_len(nrow(V[[k]])), each=nk[k]),]) +
                      rep(a[[k]], nk[k]) +
                      rep(b[[k]], each=nk[k]),
                    nk[k],nk[k])
     diag(etas) = 0
     m = c(etas) + rho[k]*(c(t(z[[k]])) - c(t(etas)))
      z[[k]] = matrix(rtruncnorm(1,
                                 a = ifelse(c(Y[[k]]), 0, -Inf),
                                 b = ifelse(c(Y[[k]]), Inf, 0),
                                 mean = m, sd = sqrt(1-rho[k]^2),
                      nrow = nk[k], ncol = nk[k])
      ### Update beta0, beta1 ###
      sigma_beta = matrix(c(s02,0,0,s2),2,2)
     zbar = matrix(
       c(z[[k]])-
```

```
rep(a[[k]], nk[k]) -
    rep(b[[k]], each=nk[k]) -
    rowSums(U[[k]][rep(seq_len(nrow(U[[k]])), nk[k]),] *
              V[[k]][rep(seq_len(nrow(V[[k]])), each=nk[k]),]),
  nk[k],nk[k])
diag(zbar) = 0
rp = 1 / (1-rho[k]^2)
X = (cbind(1, c(Cov1[[k]])) - rho[k]*(cbind(1, c(t(Cov1[[k]])))))[-index,]
V_beta = solve( solve(sigma_beta) + rp*crossprod(X))
mu_beta = V_beta %*% ( solve(sigma_beta) %*% c(mu0,mu)
                        + rp * crossprod(X, c(zbar)[-index] - rho[k] * c(t(zbar))[-index]))
beta[k,] = rmvnorm(1, mu_beta, V_beta)
### Update a, b ###
zhat = matrix( c(z[[k]]) -
                  c(cbind(1, c(Cov1[[k]]))%*%beta[k,]) -
                  rowSums(U[[k]][rep(seq_len(nrow(U[[k]])), nk[k]),] *
                            V[[k]][rep(seq_len(nrow(V[[k]])), each=nk[k]),]),
                nk[k], nk[k])
S11 = sigma_ab[1,1]; S22 = sigma_ab[2,2]; S12 = S21 = sigma_ab[1,2]
sigma2 a = S11 - S12\%*\% solve(S22) \%*\% S21
sigma2_b = S22 - S21%*% solve(S11) %*% S12
for (i in sample(1:nk[k])){
  \label{eq:chat_ai} theta_ai = \\ sum(zhat[i,-i] - rho[k]*(zhat[-i,i] - a[[k]][-i] - b[[k]][i]) - b[[k]][-i])
  m_ab = S12%*%solve(S22)%*%b[[k]][i]
  A0 = \frac{1}{\text{sigma2}_a}; A1 = (nk[k]-1) * rp
  m0 = 1/sigma2_a*m_ab; m1 = rp * theta_ai
  mu_ai = 1/(A0+A1)*(m0+m1)
  s2_ai = 1/(A0+A1)
  a[[k]][i] = rnorm(1, mu_ai, sqrt(s2_ai))
  theta_bi = sum(zhat[-i,i] - rho[k]*(zhat[i,-i] - b[[k]][-i] - a[[k]][i]) - a[[k]][-i])
  m_ba = S21%*%solve(S11)%*%a[[k]][i]
  A0 = \frac{1}{\text{sigma2}_b}; A1 = (nk[k]-1) * rp
  m0 = 1/sigma2_b*m_ba; m1 = rp * theta_bi
  mu_bi = 1/(A0+A1)*(m0+m1)
  s2_bi = 1/(A0+A1)
  b[[k]][i] = rnorm(1, mu_bi, sqrt(s2_bi))
```

```
### Update U, V ###
ztilde = matrix( c(z[[k]]) -
                   cbind(1, c(Cov1[[k]]))%*%beta[k,] -
                   rep(a[[k]], nk[k]) - rep(b[[k]], each=nk[k]),
                 nk[k], nk[k])
diag(ztilde) = 0
S11 = sigma_uv[1:2,1:2]; S22 = sigma_uv[3:4,3:4]; S12 = sigma_uv[1:2,3:4]; S21 = sigma_uv[3:4,1:4];
sigma2_u = S11 - S12\%*\% solve(S22) \%*\% S21
sigma2_v = S22 - S21%*% solve(S11) %*% S12
for (i in sample(1:nk[k])){
  Theta_V = V[[k]][-i,]
  mu_u = ztilde[i,-i] - c(rho[k]*(ztilde[-i,i] - U[[k]][-i,] %*% V[[k]][i,]))
 mu_uv = S12%*%solve(S22)%*%V[[k]][i,]
  A0 = solve(sigma2_u); A1 = rp*crossprod(Theta_V)
  m0 = solve(sigma2_u)%*%mu_uv; m1 = rp*crossprod(Theta_V,mu_u)
  mu_ui = solve(A0+A1)%*%(m0+m1)
  U[[k]][i,] = mvrnorm(1,mu_ui,solve(A0+A1))
  Theta_U = U[[k]][-i,]
  mu_v = ztilde[-i,i] - c(rho[k]*(ztilde[i,-i] - V[[k]][-i,] %*% U[[k]][i,]))
  mu_vu = S21%*%solve(S11)%*%U[[k]][i,]
  A0 = solve(sigma2_v); A1 = rp*crossprod(Theta_U)
  m0 = solve(sigma2_v)%*%mu_vu; m1 = rp*crossprod(Theta_U,mu_v)
  mu_vi = solve(A0+A1)%*%(m0+m1)
  V[[k]][i,] = mvrnorm(1,mu_vi,solve(A0+A1))
}
### Update rho ###
if (dyad_dep == T){
etilde = matrix(c(z[[k]]) -
                  cbind(1, c(Cov1[[k]]))%*%beta[k,] -
                  rep(a[[k]], nk[k]) - rep(b[[k]], each=nk[k]) -
                  rowSums(U[[k]][rep(seq_len(nrow(U[[k]])), nk[k]),] *
                          V[[k]][rep(seq_len(nrow(V[[k]])), each=nk[k]),]),
                nk[k],nk[k])
diag(etilde) = 0
EM<-cbind(etilde[upper.tri(etilde)],t(etilde)[upper.tri(etilde)] )</pre>
emcp < -sum(EM[,1]*EM[,2])
```

```
emss<-sum(EM<sup>2</sup>)
  m<- nrow(EM)
  sr = 2 * (1-cor(etilde)[1,2]^2)/sqrt(m)
 rho_p = rho[k] + sr * qnorm( runif(1,pnorm( (-1-rho[k])/sr), pnorm( (1-rho[k])/sr)))
  rd < (-.5*(m*log(1-rho p^2)+(emss-2*rho p*emcp)/(1-rho p^2)))-
    (-.5*(m*log(1-rho[k]^2)+(emss-2*rho[k]*emcp)/(1-rho[k]^2)))+
    ((-.5*log(1-rho_p^2)) - (-.5*log(1-rho[k]^2)))
  if (log(runif(1)) < rd) rho[k] = rho p</pre>
  Chain$rho[sim,k] = rho[k]
  Chain$beta[[k]][sim,] = beta[k,]
  Chain U[[k]][[sim]] = U[[k]]
  Chain$V[[k]][[sim]] = V[[k]]
  Chain$a[[k]][sim,] = a[[k]]
  Chain$b[[k]][sim,] = b[[k]]
### Update Sigma_ab ###
Sab0 = matrix(c(1,0,0,1),ncol=2); nuab0 = 2+2
S_theta_ab = matrix(rowSums(apply(do.call(rbind,Map(cbind,a,b)),1,tcrossprod)),2,2)
sigma_ab = riwish(v = nuab0 + sum(nk) , S = Sab0 + S_theta_ab)
### Update Sigma_uv ###
Suv0 = matrix(c(rep(5,16)),ncol=4); diag(Suv0) = 10; nuuv0 = 4+2
S_theta_uv = matrix(rowSums(apply(do.call(rbind,Map(cbind,U,V)),1,tcrossprod)),4,4)
sigma_uv = riwish(v =nuuv0 + sum(nk), S= Suv0 + S_theta_uv)
### Update mu0 (mean of beta0) ###
s00 = 1; mu00 = 0
s02_n = (1/s00 + (K / s02))^(-1)
mu0_n = (mu00 / s00 + sum(beta[,1]) / s02) * s02_n
mu0 = rnorm(1, mu0_n, sqrt(s02_n))
### Update mu (mean of beta1) ###
s10 = 1; mu10 = 0
s2_n = (1/s10 + (K / s2))^(-1)
mu_n = (mu10 / s10 + sum(beta[,2]) / s2) * s2_n
mu = rnorm(1, mu_n, sqrt(s2_n))
### Update SO (var of beta0) ###
c = 200; d = 1.5 # Hyperparameters
nu0_n = c + K
ss0_n = 1/nu0_n * (c * d + (K-1)*var(beta[,1]) + K/(K+1)*(mean(beta[,1])-mu0)^2)
s02 = 1/ rgamma(1, nu0_n/2, nu0_n*ss0_n/2)
### Update S1 (var of beta1) ###
```

Testing (with simulated data)

```
# 2 networks with sizes of 20 and 40.
suppressMessages(library(mvtnorm))
K = 2
Cov1 = list()
nk = c(20, 60)
set.seed(1)
for (i in 1:K){
  Cov1[[i]] = matrix(rnorm(nk[i]^2),nk[i],nk[i])
  diag(Cov1[[i]]) = NA
rho_sim = runif(K,0,0.5)
s2_sim = 0.5^2; s02_sim = 0.5^2
mu0_sim = -2; mu_sim = 1
beta0_sim = rnorm(K,mu0_sim,sqrt(s02_sim))
beta1_sim = rnorm(K,mu_sim,sqrt(s2_sim))
sigma_ab_sim = matrix(c(1,0.3,0.3,1),2,2)
sigma_uv_sim = matrix(c(1,0.7,0.1,0.1,0.7,1,0.1,0.1,0.1,0.1,0.45,0.1,0.1,0.45,1),4,4)
a_sim = b_sim = z = list()
for (k in 1:K){
  z[[k]] = matrix(0, ncol=nk[k],nrow=nk[k])
  diag(z[[k]]) = NA
  a_{sim}[[k]] = b_{sim}[[k]] = numeric(nk[k])
  for (i in 1:nk[k]){
    ab0 = rmvnorm(1,c(0,0),sigma_ab_sim)
```

```
a_{sim}[[k]][i] = ab0[1]
             b_sim[[k]][i] = ab0[2]
      }
}
U_sim = V_sim = list()
for (i in 1:K){
      U_sim[[i]] = as.matrix(rmvnorm(nk[i],c(0,0),sigma_uv_sim[1:2,1:2]),ncol=2)
      V_{sim[[i]]} = as.matrix(rmvnorm(nk[i],c(0,0),sigma_uv_sim[3:4,3:4]),ncol=2)
Z = Ysim= list()
for (k in 1:K){
      Z[[k]] = matrix(0, ncol=nk[k], nrow=nk[k])
      for (i in 1:nk[k]){
             for (j in 1:nk[k]){
                    if (i == j) next
                   Z[[k]][i,j] = beta0\_sim[k] + beta1\_sim[k] * Cov1[[k]][i,j] + t(U_sim[[k]][i,j)%*%V_sim[[k]][j,j] + t(U_sim[[k])[i,j])%*%V_sim[[k]][i,j] + t(U_sim[[k])[i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j] + t(U_sim[[k])[i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j] + t(U_sim[[k])[i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j] + t(U_sim[[k])[i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%*%V_sim[[k]][i,j])%V_sim[[k]][i,j])%V_sim[[k]][i,j])%V_sim[[
            }
      }
      w1 = sqrt((1 + sqrt(1-rho_sim^2))/2)
      w2 = sign(rho_sim)*sqrt(1-w1^2)
      EC = matrix(rnorm(length(Z[[k]])),nrow(Z[[k]]),nrow(Z[[k]]))
      EC = (w1*EC + w2*t(EC))
      ZS = Z[[k]] + EC
      YS < -1 * (ZS > 0)
      diag(YS) <- NA</pre>
      Ysim[[k]] =YS
}
# Simulated Adjacency Matrices
# Diagonals are NAs
# red pixels are Os, yellows are 1s
par(mfrow = c(1,2))
image(t(Ysim[[1]])[ncol(Ysim[[1]]):1,])
image(t(Ysim[[2]])[ncol(Ysim[[2]]):1,])
```


results = hsvd(data = Ysim, edge_covariate = Cov1, dyad_dep = T, num_iter = 3000, verbose = F)
load("hsvd.rdata") # loading 30,000 posterior samples

```
burnin = 5000
K=2
{par(mfrow=c(2,2))
  for (i in 1:K){
    stat = results$beta[[i]][-(1:burnin),1]
    lab = "beta0"
    if (NA %in% stat) stat = stat[-which(is.na(stat))]
    plot(stat, type="l", main=paste0(lab," (NW",i,")",sep = ""))
    abline(h = beta0_sim[i], col="red")
  for (i in 1:K){
    stat = results$beta[[i]][-(1:burnin),2]
    lab = "beta1"
    if (NA %in% stat) stat = stat[-which(is.na(stat))]
    plot(stat, type="l", main=paste0(lab," (NW",i,")",sep = ""))
    abline(h = beta1_sim[i], col="red")
  }
  par(mfrow=c(1,1))
}
```


30,000 posterior samples were gathered and trace plots are provided above. As can be seen, the trace plots well captures the true values (red horizontal line). In order to check the shrinkage effects from hierarchical modeling, comparison with AMEN package with real data will follow.

```
suppressMessages(library(HLSM))
# DATA from HLSM package
# Networks for advice-seeking activities among instructors in 15 different school.
# Edge-specific covariate is 1 if instructor i and j teach the same grade, 0 if otherwise.
Cov1 = Y = list()
for (i in 1:K){
  Cov1[[i]] = ps.edge.vars.mat[[i]][,,3]
  diag(Cov1[[i]]) = NA
  Y[[i]] = ps.advice.mat[[i]]
nk = unlist(lapply(Y, nrow))
Chain = hsvd(data = Y, edge_covariate = Cov1, num_iter = 2000, verbose = F)
suppressMessages(library(amen))
AME_FIT = list()
for (k in 1:K){
y.array = array(Y[[k]], dim = c(nk[k],nk[k],1))
x.array = array(Cov1[[k]], dim = c(nk[k],nk[k],1,1))
AME_FIT[[k]] = amen::ame_rep(y.array, x.array,
                         dcor = T, intercept = T,
                         symmetric = F, model="bin",
```

```
nscan = 5000, plot = F, print = F)
}
#beta1
par(mfrow=c(1,2))
par(mfrow=c(1,1))
chain_b1a = chain_b1b = matrix(nrow=15,ncol=3)
for (k in 1:15){
  cc = Chain$beta[[k]][1000:2000,2]
  chain_b1b[k,1] = mean(cc)
  chain_b1b[k,2:3] = quantile(cc, c(0.025,0.975))
  aa = AME FIT[[k]]$BETA[,2]
  chain b1a[k,1] = mean(aa)
  chain_b1a[k,2:3] = quantile(aa, c(0.025,0.975))
}
lb = min(c(chain_b1a,chain_b1b))
ub = max(c(chain_b1a,chain_b1b))
plot(chain_b1a[,1],ylim=c(lb,ub), main="BETA1", ylab = "Beta 1", xlab= "School #")
legend("bottomleft", legend=c("Individual", "Hierarchical"), col=c("black", "red"), lty=c(1,1))
points(seq(1,15)+0.3,chain_b1b[,1],col="red")
segments(seq(1,15),chain_b1a[,2],seq(1,15),chain_b1a[,3])
segments(seq(1,15)+0.3,chain_b1b[,2],seq(1,15)+0.3,chain_b1b[,3], col="red")
}
```

BETA1

In the data, school 11 has small sample size and its estimation of covariate effect has large variability. However, with shrinkage effect by hierarchical structure, the variability of the estimate decreased notably.