Package 'MFASTR'

June 11, 2017

Title The Multiple Filter Automatic Shear Wave Splitting Technique in R

Version 1.2.1
Date 2017-04-23
Description This is a port of the MFAST codes into R. The main functions do_station_simple and do_station_complex replicate MFAST's usability. Other functions in this package are documented to give advanced users more fexability.
URL http://mfast-package.geo.vuw.ac.nz/
BugReports https://github.com/shearwavesplitter/MFASTR/issues
Depends R (>= 2.14), RSEIS, TauP.R, circular
Imports signal, parallel
SystemRequirements GNU make, Linux
License
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1.9000
R topics documented:
ak135_alp
ak135_taupo
angine
checkcomp
checkspick
createini
cut_simple
do_all_complex
do_all_simple
do_station_complex
do_station_simple
dt.weighted
fast.weighted

2	ak135_alp
---	-----------

ζ.		2:	5
,	vrite_sample		1
,	vritetessa		1
,	vritesac_filtsmp		3
,	vritesac_filt		2
5	umm.null		2
5	umm.cz		1
9	umm.ab		1
5	tde.weighted)
1	un_mfast)
1	eadtvel		3
1	eadtriplet		7
1	eadmfast		7
]	perani		5
1	nean.weighted		5
1	nclapply2		5
]	ogfiles		4
	grade		3
,	getevents		3
1	ilter_spread		2

ak135_alp

The ak135_alp velocity model

Description

The ak135_alp velocity model

Usage

ak135_alp

Format

A TauP.R compatible velocity model

ak135_taupo 3

ak135_taupo

The ak135_taupo velocity model

Description

The ak135_taupo velocity model

Usage

```
ak135_taupo
```

Format

A TauP.R compatible velocity model

anginc

Angle of incidence

Description

Determines the angle of incidence for an event

Usage

```
anginc(tvel, trip)
```

Arguments

tvel Veloctity model read in by readtvel or a stored model (ak135_alp, ak135_taupo)

trip Seismogram triplet (output of readtriplet)

Value

The angle of incidence at the surface (degrees) and the ray parameter

```
# Determine the angle of incidence for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
a <- anginc(ak135_alp,triplet)</pre>
```

4 checkspick

|--|

Description

Checks a folder to make sure all three components are present and moves those with missing components to a subdirectory

Usage

```
checkcomp(path, E = ".e", N = ".n", Z = ".z")
```

Arguments

path	Path to folder
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component

checkspick Check S-wave picks

Description

Checks a folder to make sure all events have S-wave picks and moves those with missing picks to a subdirectory

Usage

```
checkspick(path, suffix = "E", header = "t0", E = ".e", N = ".n", Z = ".z")
```

path	Path to folder
suffix	Which component to look for the S-pick in (E, N, or Z)
header	Header name of where the S-pick is stored
E	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component

createini 5

Description

Creates an MFAST .ini (paramter) file

Usage

```
createini(path, trip, filts, name, number = 3, E = ".e", N = ".n",
  Z = ".z", nwbeg = 5, fdmin = 0.3, fdmax = 8, t_win_freq = 3,
  tlagmax = 1, Ncmin = 5, Mmax = 15, zerophase = FALSE)
```

Arguments

path	Path to folder
trip	Seismogram triplet (output of readtriplet)
name	Event name (without suffix)
number	Number of best filters to use
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency
fdmax	Maximum allowed dominant frequency
t_win_freq	Window to calculate the dominant frequency
tlagmax	Maximum allowed time delay (s)
Ncmin	Minimum number of points in an acceptable cluster
Mmax	maximum number ofclusters
Α	dataframe of the best filters (output of filter_spread)
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component
snrmax	Minimum snr allowed for a good filter
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)

Value

A vector of dominant frequency in the S-wave (maxfreq) for each filter

6 do_all_complex

Examples

```
# Create .ini file for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)</pre>
```

cut_simple

Simple cut

Description

A simple routine to cuts out portion of a vector signal

Usage

```
cut\_simple(x, dt, t1, t2, b = 0)
```

Arguments

X	vector signal
dt	sample interval
t1	Begin cut time
t2	End cut time

Value

A cut vector signal

do_all_complex

Run MFAST on multiple stations with more options

Description

Run shear wave splitting measurements on multiple folders/stations

Usage

```
do_all_complex(path, sheader = "t0", nwbeg = 5, fdmin = 0.3, fdmax = 8,
   t_win_freq = 3, tlagmax = 1, Ncmin = 5, Mmax = 15, snrmax = 3,
   t_win_snr = 3, t_err = 0.02, filtnum = 3, type = "normal",
   filter = NULL, tvelpath = NULL, tvel = ak135_alp, suffe = ".e",
   suffn = ".n", suffz = ".z", zerophase = FALSE, no_threads = NULL)
```

do_all_complex 7

Arguments

path Path to folder containing folders with events sheader SAC header the S-wave pick is stored in

nwbeg number of start times tested

fdmin Minimum allowed dominant frequency
fdmax Maximum allowed dominant frequency

t_win_freq Window to calculate the dominant frequency (s)

tlagmax Maximum allowed time delay (s)

Ncmin Minimum number of points in an acceptable cluster

Mmax maximum number of clusters

snrmax Minimum snr allowed for a good filter

t_win_snr Window for SNR (s)

t_err Modification to t_win_snr to account for error in S-pick (s)

filtnum Number of filters to test

type Which of the MFAST default settings and filters to use. If a P-wave pick is

present, type="verylocal" uses it to set t_win_snr

filter User defined set of filters (this overrides the filter selected with type).

tvelpath Path to a .tvel file containing the velocity model (overrides tvel)

tvel A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

suffe Suffix of east component
suffn Suffix of north component
suffz Suffix of vertical component

no_threads Number of threads to run measurements on. Set to 1 for verbose mode. Defaults

to the number of cores

Value

A dataframe containing a summary of all the stations

```
# Run on measurements three folders of the normal sample data
write_sample("~/mfast/sample_data/raw_data")
write_sample("~/mfast/sample_data/raw_data2")
write_sample("~/mfast/sample_data/raw_data3")
do_all_complex(path="~/mfast/sample_data")
```

8 do_all_simple

.i.	- 1.1		_
uo	all	simpl	е

Run MFAST on multiple folders

Description

Run shear wave splitting measurements on more than one folder/station

Usage

```
do_all_simple(path, sheader = "t0", type = "normal", filtnum = 3,
  tvelpath = NULL, tvel = ak135_alp, zerophase = FALSE,
  no_threads = NULL)
```

Arguments

path Path to folder containing folders with events sheader SAC header the S-wave pick is stored in

type Which of the MFAST default settings and filters to use

filtnum Number of filters to test

tvelpath Path to a .tvel file containing the velocity model (overrides tvel)

tvel A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

no_threads Number of threads to run measurements on. Set to 1 for verbose mode. Defaults

to the number of cores

Details

Component suffixes are determined automatically

Value

A dataframe containing a summary of all the stations

```
# Run on measurements three folders of the normal sample data
write_sample("~/mfast/sample_data/raw_data")
write_sample("~/mfast/sample_data/raw_data2")
write_sample("~/mfast/sample_data/raw_data3")
do_all_simple(path="~/mfast/sample_data")
```

do_station_complex 9

do_station_complex	Run MFAST with more options
--------------------	-----------------------------

Description

Run shear wave splitting measurements on a folder of events with more options

Usage

```
do_station_complex(path, sheader = "t0", nwbeg = 5, fdmin = 0.3,
  fdmax = 8, t_win_freq = 3, tlagmax = 1, Ncmin = 5, Mmax = 15,
  snrmax = 3, t_win_snr = 3, t_err = 0.02, filtnum = 3,
  type = "normal", filter = NULL, tvelpath = NULL, tvel = ak135_alp,
  suffe = ".e", suffn = ".n", suffz = ".z", zerophase = FALSE,
  no_threads = NULL, mc.preschedule = TRUE)
```

path	Path to folder
sheader	SAC header the S-wave pick is stored in
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency
fdmax	Maximum allowed dominant frequency
t_win_freq	Window to calculate the dominant frequency (s)
tlagmax	Maximum allowed time delay (s)
Ncmin	Minimum number of points in an acceptable cluster
Mmax	maximum number of clusters
snrmax	Minimum snr allowed for a good filter
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)
filtnum	Number of filters to test
type	Which of the MFAST default settings and filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined set of filters (this overrides the filter selected with type).
tvelpath	Path to a .tvel file containing the velocity model (overrides tvel)
tvel	A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component
no_threads	Number of threads to run measurements on. Set to 1 for verbose mode. Defaults to the number of cores

do_station_simple

Value

A dataframe containing the summary file

Examples

```
# Run on measurements the normal sample data with defaults
write_sample("~/mfast/sample_data/raw_data")
do_station_complex(path="~/mfast/sample_data/raw_data")

# Run measurements with your own defined filters
filt_low <- c(0.1,0.2,0.5)
filt_high <- c(1,2,3)
filts <- cbind(filt_low,filt_high)
write_sample("~/mfast/sample_data/raw_data")
do_station_complex(path="~/mfast/sample_data/raw_data",filter=filts)</pre>
```

do_station_simple

Run MFAST

Description

Run shear wave splitting measurements on a folder of events

Usage

```
do_station_simple(path, sheader = "t0", type = "normal", filtnum = 3,
  tvelpath = NULL, tvel = ak135_alp, zerophase = FALSE,
  no_threads = NULL, mc.preschedule = TRUE)
```

Arguments

path Path to folder

sheader SAC header the S-wave pick is stored in

type Which of the MFAST default settings and filters to use

filtnum Number of filters to test

tvelpath Path to a .tvel file containing the velocity model (overrides tvel)

tvel A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

no_threads Number of threads to run measurements on. Set to 1 for verbose mode. Defaults

to the number of cores

Details

Component suffixes are determined automatically

Value

A dataframe containing the summary file

dt.weighted 11

Examples

```
# Run on measurements the normal sample data
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data")

# Run on measurements the verylocal sample data where the S-pick is stored in the t5 header
write_sample("~/mfast/sample_data/raw_data",type="verylocal")
do_station_simple(path="~/mfast/sample_data/raw_data",type="verylocal",sheader="t5")
```

dt.weighted

Mean delay time

Description

Determine the mean weighted delay time

Usage

```
dt.weighted(summ, weights = c(1, 2, 3))
```

Arguments

summ Dataframe containing Castelazzi graded events (CZ_*.summ)

weights A vector containing the weights with length equal to the number of filters used

(usually 3) in order with the first corresponding to F1

Value

A list containing the weighted mean delay time, and mean delay time per kilometre (straightline) path length as well as their respective standard deviations and standard errors.

fast.weighted

Mean fast polarisation

Description

Determine the mean weighted fast polarisation

Usage

```
fast.weighted(summ, weights = c(1, 2, 3))
```

12 filter_spread

Arguments

summ Dataframe containing Castelazzi graded events (CZ_*.summ)

weights A vector containing the weights with length equal to the number of filters used

(usually 3) in order with the first corresponding to F1 or a weight for each mea-

surement

Value

A list containing the weighted mean polarisation, its pythagorean length, and the (weighted) p-value from the Rayleigh test

filter_spread

Find best filters

Description

Determines the best filters for an event

Usage

```
filter_spread(trip, type = "normal", filter = NULL, t_win_snr = 3,
    t_err = 0.05, snrmax = 3, zerophase = FALSE)
```

Arguments

trip	Seismogram triplet (output of readtriplet)
type	Which of the default filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined filters. Overrides filters selected by type (for "verylocal" the P-pick is still used)
t_win_snr	Window for SNR
t_err	Modification to t_win_snr to account for error in S-pick
snrmax	Minimum snr allowed for a good filter

Value

A dataframe of the filters sorted by SNR*bandwidth

```
# Define your own set of filters
filt_low <- c(0.1,0.2,0.5)
filt_high <- c(1,2,3)
filts <- cbind(filt_low,filt_high)
write_sample("~/mfast/sample_data/raw_data")
triplet <- readtriplet("2002.054.09.47.lhor2",path="~/mfast/sample_data/raw_data")
bestfilt <- filter_spread(triplet,filter=filts)</pre>
```

getevents 13

getevents	Get events		
-----------	------------	--	--

Description

A handy function to retrieve specific events from a summary dataframe

Usage

```
getevents(summ, events, station = NULL)
```

Arguments

summ	Dataframe containing the summary file
events	A vector containing the rquired event names
station	Defaults to events on all stations

grade Grade .summ file	
------------------------	--

Description

Grades a .summ file (do_station automatically grades)

Usage

```
grade(path, minsnr = 3, tlagmax = 1, minl = 0, mfast = FALSE)
```

Arguments

path	Path to .summ file to be graded
minsnr	Minimum SNR allowed for an AB+ grade
tlagmax	Maximum time delay allowed for an AB+ grade
minl	Minimum lambdamax allowed for a AB+ grade
mfast	Set to TRUE to grade a .summ file produced by the original MFAST

```
# (Re)grade LHOR2.75.summ
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data")
pathto <- "~/mfast/sample_data/raw_data/LHOR2.summ_files/LHOR2.75.summ"
grade(pathto)</pre>
```

14 logfiles

logfiles Parse results

Description

Parses output of shear wave splitting measurement for a set of filters (used to build .summ files)

Usage

```
logfiles(path, name, trip, filtlist, maxfreqv, comment = "MFASTR", anginc)
```

Arguments

path	Path to folder
name	Name of event
trip	Seismogram triplet (output of readtriplet)
filtlist	Dataframe of the best filters to be used (output of writesac_filt)
maxfreqv	Vector of dominant frequency in the S-wave (maxfreq) for each filter(output of create_ini)
comment	Optional comment
anginc	Angle of indidence (output of anginc)

Value

A dataframe containing the results for that event

```
# Run shear wave splitting measurement on event 2002.054.09.47.lhor2 and parse the results
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
a <- anginc(ak135_alp,triplet)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)
f <- writesac_filt(pathto,triplet,event,bestfilt)
run_mfast(pathto,event,f)
res <- logfiles(pathto,event,triplet,f,maxfreq,anginc=a)</pre>
```

mclapply2

mc1	an	n1	v2

Wrapper around mclapply to track progress

Description

Based on http://stackoverflow.com/questions/10984556

Usage

```
mclapply2(X, FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE,
    mc.silent = FALSE, mc.cores = getOption("mc.cores", 2L),
    mc.cleanup = TRUE, mc.allow.recursive = TRUE, mc.progress = TRUE,
    mc.style = 3)
```

Arguments

```
Χ
                  a vector (atomic or list) or an expressions vector. Other objects (including
                  classed objects) will be coerced by 'as.list'
FUN
                  the function to be applied to
                  optional arguments to 'FUN'
mc.preschedule see mclapply
mc.set.seed
                  see mclapply
mc.silent
                  see mclapply
                  see mclapply
mc.cores
mc.cleanup
                  see mclapply
mc.allow.recursive
                  see mclapply
mc.progress
                  track progress?
                  style of progress bar (see txtProgressBar)
mc.style
```

```
x \leftarrow mclapply2(1:1000, function(i, y) Sys.sleep(0.01))
 x \leftarrow mclapply2(1:3, function(i, y) Sys.sleep(1), mc.cores=1)
```

16 perani

mean.weighted

Weighted axial mean

Description

The mean of a weighted axial variable

Usage

```
## S3 method for class 'weighted'
mean(vec, weights = NULL)
```

Arguments

vec A vector of axis (degrees)

weights A vector of weights of the same length as vec

Value

The mean axis (degrees) and the Pythagorean length

perani

Weighted percentage anisotropy

Description

Determine the weighted percentage anisotropy and shear wave anisotropy for each stations in a summary file

Usage

```
perani(summ, weights = NULL)
```

Arguments

summ Dataframe containing MFAST summary file weights A vector containing the desired weights

Value

A dataframe containing each station and their corresponding percentage anistropy and shear wave anisotropy. As well as average values for all stations

readmfast 17

readmfast	
readilli ast	

Read MFAST .summ file

Description

Reads a .summ output from the original MFAST codes

Usage

```
readmfast(path)
```

Arguments

path

The path the summary file

Details

This function is used with grade() to grade .summ files produced using the original MFAST codes (by setting mfast=TRUE).

Value

A dataframe containing the summary file

readtriplet

Read a SAC format siesmogram triplet

Description

Reads, cuts, and loads S-wave pick into the t5 header using RSEIS/JSAC.seis as a workhorse

Usage

```
readtriplet(event, path = ".", E = ".e", N = ".n", Z = ".z",
header = "t0", pheader = "a")
```

event	Event name
path	Path to folder
header	Name of header containing the S-wave pick
pheader	Name of header containing the P-wave pick
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component

18 readtvel

Details

The S-wave pick must be stored on at least the east component and the P-wave pick (if present) must be stored on the vertical component

Value

A list containing dataframes for each of the three components with signal and header information

Examples

```
# Read in 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)</pre>
```

readtvel

Read .tvel

Description

Reads a .tvel file and saves it in an RSEIS compatible format

Usage

```
readtvel(name)
```

Arguments

name

Name and path of .tvel file

Value

RSEIS compatible dataframe containing the velocity model

```
path <- "~/mfast/velocity/ak135_taupo.tvel"
model <- readtvel(path)
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data",tvel=model)</pre>
```

rms 19

rms

Root mean square

Description

Simple routine to determine root mean square value of a signal

Usage

rms(x)

Arguments

х

Vector signal

Value

RMS value

run_mfast

Run splitting measurement

Description

Runs shearwave splitting measurements on a set of filtered SAC files

Usage

```
run_mfast(path, name, filtlist)
```

Arguments

path Path to folder name Name of event

filtlist A dataframe of the best filters to be used (output of writesac_filt)

```
# Run shear wave splitting measurements on event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)
f <- writesac_filt(pathto,triplet,event,bestfilt)
run_mfast(pathto,event,f)</pre>
```

20 stde.weighted

S-wave	SNR
	S-wave

Description

Determine the signal to noise ratio around the S-wave pick (workhorse of filter_spread)

Usage

```
snr(E, N, s, p = -12345, dt, t_win_snr = 3, t_err = 0.05, b = 0, type = "normal")
```

Arguments

Е	Vector signal of the east component	
N	Vector signal of the north component	
S	S-wave pick time	
р	P-wave pick time	
dt	Sample interval	
t_win_snr	Window for SNR (s)	
t_err	t_err Modification to t_win_snr to account for error in S-pick (s)	
type	If type is set to "verylocal" then the P-wave pick (if present) is used to set t_win_snr	

Value

Signal to noise ratio around the S-wave pick

Description

A bootstrapped weighted standard error for fast polarisations

Usage

```
stde.weighted(summ, weights = c(1, 2, 3), seed = NULL, iter = 9999)
```

summ.ab

Arguments

summ Dataframe containing Castelazzi graded events (CZ_*.summ)

weights A vector containing the weights with length equal to the number of filters used

(usually 3) in order with the first corresponding to F1

seed A random number seed iter Number of iterations

Value

The circular standard error in degrees

summ.ab

Read AB

Description

Reads in multiple AB graded .summ files

Usage

```
summ.ab(path)
```

Arguments

path

The path to the folder containing the .summ files

Value

A dataframe containing all the .summ files

 $\verb"summ.cz"$

Read cz

Description

Reads in multiple CZ graded .summ files

Usage

```
summ.cz(path)
```

Arguments

path

The path to the folder containing the .summ files

Value

A dataframe containing all the .summ files

22 writesac_filt

Description

Reads in multiple null graded .summ files

Usage

```
summ.null(path)
```

Arguments

path

The path to the folder containing the .summ files

Value

A dataframe containing all the .summ files

writesac_filt

Write filtered SAC files

Description

Writes out filtered waveforms ready to have shear wave splitting measured

Usage

```
writesac_filt(path, trip, name, filtlist, number = 3, E = ".e", N = ".n",
    Z = ".z", zerophase = FALSE)
```

path	Path to folder
trip	Event triplet (output of readtriplet)
name	Name of the event
filtlist	Dataframe of the best filters (output of filter_spread)
number	Number of best filters to use
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component #return A dataframe of the filters that have been written

writesac_filtsmp 23

Examples

```
# Write out three best filters for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
event <- "2002.054.09.47.lhor2"
write_sample(pathto)
triplet <- readtriplet(event)
bestfilt <- filter_spread(triplet)
f <- writesac_filt(pathto,triplet,event,bestfilt)</pre>
```

writesac_filtsmp

Simple write

Description

Write out an event with a chosen filter

Usage

```
writesac_filtsmp(path, trip, name, low, high, E = ".e", N = ".n", Z = ".z", n = 1, zerophase = FALSE)
```

path	Path to folder
trip	Event triplet (output of readtriplet)
name	Name of the event
low	Low frequency cut-off
high	High frequency cut-off
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component
n	Number for suffix .fbn (e.g .fb2)

24 write_sample

writetessa

Write TESSA .summ file

Description

Writes out a .summ file in the format required for TESSA

Usage

```
writetessa(summ, name)
```

Arguments

summ Dataframe containing the summary file of measurements to be run in TESSA

name Name of the file including path and .summ suffix (defaults to current working

directory)

Examples

```
# Create a .summ file for TESSA from all F1, F2 and F3 graded measurements
cz <- summ.cz("~/path/to/summfiles")
writetessa(cz,"~/TESSA/summfiles/cz.summ")</pre>
```

write_sample

Sample data

Description

Writes out MFAST sample data

Usage

```
write_sample(path, type = "normal")
```

Arguments

path Path to folder

type "normal" or "verylocal" sample data

```
# Write out MFAST sample events
write_sample("~/mfast/sample_data/raw_data")

# Write out MFAST verylocal sample events
write_sample("~/mfast/sample_data/raw_data",type="verylocal")
```

Index

```
*Topic datasets
     ak135_alp, 2
     ak135_taupo, 3
ak135_alp, 2
ak135_taupo, 3
anginc, 3
checkcomp, 4
checkspick, 4
createini, 5
cut_simple, 6
do_all_complex, 6
do_all_simple, 8
do_station_complex, 9
{\tt do\_station\_simple,}\ 10
{\tt dt.weighted}, {\color{red}11}
fast.weighted, 11
filter_spread, 12
getevents, 13
grade, 13
logfiles, 14
mclapply2, 15
{\tt mean.weighted}, {\tt 16}
perani, 16
readmfast, 17
readtriplet, 17
readtvel, 18
rms, 19
run_mfast, 19
snr, 20
\verb|stde.weighted|, 20|
summ.ab, 21
```

summ.cz, 21
summ.null, 22
write_sample, 24
writesac_filt, 22
writesac_filtsmp, 23
writetessa, 24