

MATH-1 DR. ADEL MORAD

Outlines

- (1) FUNCTIONS, ESSENTIAL FUNCTIONS (LINEAR, POWER, POLYNOMIAL, RATIONAL, ALGEBRAIC, TRIGONOMETRIC).
- (2) NEW FUNCTIONS FROM OLD FUNCTIONS (GRAPHING, COMBINED, COMPOSITE FUNCTIONS).
- (3) EXPONENTIAL FUNCTIONS, INVERSE FUNCTIONS, LOGARITHMIC AND INVERSE TRIGONOMETRIC FUNCTIONS.

Lecture 1

ESSENTIAL FUNCTIONS
(LINEAR, POWER, POLYNOMIAL, RATIONAL, ALGEBRAIC, TRIGONOMETRIC).

· APPLICATIONS OF FUNCTION REPRESENTATION IN COMPUTER SCIENCE

Communication networks analysis, social network analysis, cartography, bioinformatics, and many more.

WHAT DOES THE FUNCTION MEAN?

A function is an equation which shows the relationship between the input x and the output y and where there is exactly one output for each input (inputs is domain and output is the range).

To say that braking distance is a function of speed we can write d = f (s). To say that the concentration of a medicine in the bloodstream is a function of time between doses we can write c = g(t).

EXAMPLE The costumer has to pay, y, which is dependent on how many kg of apples, x, that he buys: The number of kg bought is called the <u>independent</u> variable since that's what we're changing whereas the total price is called the <u>dependent</u> variable since it is dependent on how many kg we actually buy:

WHAT DOES THE FUNCTION MEAN?

We can thus write our values as ordered pairs: y = 2.50 x

•	(0,	0)	-	Origin
,				

· (2, 5)

· (3, 7.5)

Input, x (kg)	Output, y (£)
0	0
1	2.50
2	5.00
3	7.50
Input, x (kg)	Output, y (£)

These ordered pairs can then be plotted into a graph as a function y = 2.50x.

Set of Numbers:

Natural numbers	$\mathbb{N} = \{1, 2, 3, 4,\}$
Integers	$\mathbb{Z} = \{, -2, -1, 0, 1, 2,\}$
Rational numbers	$\mathbb{Q} = \left\{ \frac{p}{q} \middle p, q \in \mathbb{Z} ; q \neq 0 \right\}$
Irrational numbers	$\mathbb{Q}' = \{, \sqrt{2}, \sqrt[3]{-5}, \pi, e,\}$
Real numbers	$\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}'$

Intervals:

Notation	Set description	Picture
(a,b)	$\{x \mid a < x < b\}$	$a \xrightarrow{b}$
[a,b]	$\left\{x\mid a\leq x\leq b\right\}$	<i>a b</i>
[a,b)	$\left\{x \mid a \leq x < b\right\}$	$a \qquad b$
(a,∞)	$\{x \mid x > a\}$	→ a
$(-\infty,b]$	$\left\{x\mid x\leq b\right\}$	<i>b</i>
$(-\infty,\infty)$	$\mathbb{R} = \left\{ x \mid -\infty < x < \infty \right\}$	

PROPERTIES OF REAL NUMBERS

I. Algebraic properties of \mathbb{R} :

- 1) $a + b = b + a \forall a, b \in \mathbb{R}$ (commutative law for addition)
- 2) $(a+b)+c=a+(b+c) \ \forall \ a,b,c \in \mathbb{R}$ (associative law for addition)
- 3) $\exists \ 0 \in \mathbb{R}: \ a+0=0+a=a \ \forall \ a \in \mathbb{R}$ (existence of a zero element)
- 4) $\forall a \in \mathbb{R}, \exists (-a) \in \mathbb{R}: a + (-a) = 0$ (existence of negative elements)
- 5) $ab = ba \forall a, b \in \mathbb{R}$ (commutative law for multiplication)
- 6) $(ab)c = a(bc) \ \forall \ a,b,c \in \mathbb{R}$ (associative law for multiplication)
- 7) $\exists 1 \in \mathbb{R}, 1 \neq 0 : a \cdot 1 = a \& 1 \cdot a = a$ (existence of a unit element)
- 8) $\forall a \in \mathbb{R}, a \neq 0, \exists \left(\frac{1}{a}\right) \in \mathbb{R} : a\left(\frac{1}{a}\right) = 1 \& \left(\frac{1}{a}\right) a = 1$ (existence of negative reciprocals)
- 9) $a(b+c)=ab+ac \ \forall \ a,b,c \in \mathbb{R}$ (distributive law of multiplication over addition)

PROPERTIES OF REAL NUMBERS

II. Rules for Inequalities:

If a, b and c are real numbers, then

- (i) If a < b then $a \pm c < b \pm c$
- (ii) If a < b and c > 0 then ac < bc.
- (iii) If a < b and c < 0 then ac > bc.
- (iii) If 0 < a < b and $\frac{1}{a} > \frac{1}{b}$.

III. Absolute Value

The absolute value of a real number a, denoted by |a|, is defined by:

$$\sqrt{a^2} = |\mathbf{a}| = \begin{cases} \mathbf{a} & \text{if } \mathbf{a} \ge \mathbf{0} \\ -\mathbf{a} & \text{if } \mathbf{a} < \mathbf{0} \end{cases}$$

- 1. $|a b| = |a| |b| \forall a, b \in \mathbb{R}$.
- 2. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, \ b \neq 0 \ \forall \ a, b \in \mathbb{R}.$ 5. $|\mathbf{x}| = a \Leftrightarrow x = \pm a.$
- 3. $|a+b| \leq |a|+|b| \forall a,b \in \mathbb{R}$. 6. $|x| \leq a \Leftrightarrow -a \leq x \leq a$.
- 4. $||a|-|b|| \le |a-b| \ \forall \ a,b \in \mathbb{R}$. 7. $|x| \ge a \Leftrightarrow -a \ge x \text{ or } x \ge a$.

Functions and Their Graphs

Definition:

Let D & E be subsets of \mathbb{R} . A real valued function f on D is a rule that assigns for each value of the variable $x \in D$ exactly one real value of the variable $y \in E$ such that y = f(x).

- * The element x is called independent variable and y is called dependent variable.
- * The domain of the function is the set D of all possible input values of x.
- * The range of the function is the set of all values of y = f(x) as x varies through D.

FUNCTIONS AND THEIR GRAPHS

The graph of a function f is the graph of the equation y = f(x) for x in the domain of f.

The Vertical Line Test: The graph of a function intersects any vertical line at most once.

(a)
$$x^2 + y^2 = a^2$$

Circle
Not a function

(b)
$$y = \sqrt{a^2 - x^2}$$

Upper semi-circle
Domain [-a,a]
Range [0,a]

(c)
$$y = -\sqrt{a^2 - x^2}$$

Lower semi-circle
Domain [-a,a]
Range [-a,0]

FUNCTIONS AND THEIR GRAPHS

GRAPH OF FUNCTIONS:

If f is a function with domain \mathcal{D} , then the graph of f is the set of all points $\mathcal{P}(x, f(x))$ in the plane, where $x \in \mathcal{D}$. That is, the graph of f is the graph of the equation y = f(x):

Graph of $f = \{(x,y) : x \in \mathcal{D} \text{ and } y = f(x)\}$.

EXAMPLE:

Graph the function $f(x) = x^2$ over the interval $-2 \le x \le 2$

SOLUTION:

To graph the function, we carry out the following steps:

- 1- We make a table of input-output pairs for the function.
- 2- We plot the corresponding points to learn the shape.
- 3- We sketch the graph by connecting the point.

х	$f(x) = x^2$	$\int_{-\infty}^{\infty} f(x)$
-2.0	4.0	4 35 /
-1.75	3.0625	3 25
-1.5	2.25	2
-1.0	1.0	15
-0.5	0.25	05
0	0	4 35 3 25 2 15 1 05 05 1 15 2 25 3 35 4
0.5	0.25	-05 -1
1.0	1.0	-15
1.5	2.25	-2 + -2 5
1.75	3.0625	-3_
		-3.5
2	4	4-

Functions and Their Graphs

(a) Linear Functions:

A graph of a linear function is a straight line.

The slope intercept form of the equation of a straight line is

$$y = f(x) = mx + b,$$

where m is the slope of the line and b is the y-intercept.

х	0	-1	-2	-3	1	2	3
	3	2	1	0	4	5	6

(b) Power Functions:

A function of the form $f(x) = x^n$, where n is a constant, is called a power function.

(i)
$$n=1 \Rightarrow Domain = \mathbb{R}$$
, $Range = \mathbb{R}$

EXAMPLE

$$y = x$$
,
 $m = 1$ and $b = 0$
 $Domain = R = (-\infty, \infty)$
 $Range = R = (-\infty, \infty)$

x	0	-1	-2	-3	1	2	3
	0	-1	-2	-3	1	2	3

(ii) $n = 2, 4, 6, ... \Rightarrow Domain = \mathbb{R}, Range = [0, \infty)$

Graph the function

$$f(x) = -x^2$$

over the interval $-4 \le x \le 4$

SOLUTION:

х	$f(x) = -x^2$	f(x) 2 T
- 4.0	-16	-4 -2 0 2 4
- 3.0	-9	/-2 -
- 2.5	-6.25	_4 \
- 2.0	-4	_6
- 1.5	-2.25] / \
0	0	-8
1.5	-2.25	-10 +
2.0	-4	-12
2.5	-6.25	-14
3.0	-9	-16 _
4.0	-16	

E)	(A	M	PI	LΕ	i

Graph the function

$$f(x) = x^2 - 2x + 3$$

over the interval $-1 \le x \le 3$

SOLUTION:

EXAMPLE:

Graph the function

$$f(x) = x^2 + 3$$

over the interval $-2 \le x \le 2$

SOLUTION:

х	$f(x) = x^2 + 3$
- 2.0	7
-1.75	6.5
- 1.5	5.25
- 1.0	4
0.5	3.25
0	3
0.5	3.25
1.0	1
1.5	5.25
1.75	6.5
2.0	7

(iii) $n = 3, 5, 7, ... \Rightarrow Domain = \mathbb{R}, Range = \mathbb{R}$

(iii)
$$n = \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, ... \Rightarrow Domain = [0, \infty), Range = [0, \infty)$$

(iv)
$$n = \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, ... \Rightarrow Domain = \mathbb{R}, Range = \mathbb{R}$$

EXAMPLE:

Graph the function $f(x) = \sqrt{x}$ over the interval $0 \le x \le 4$ SOLUTION:

EXAMPLE:

Graph the function $f(x) = \sqrt{x-4}$ over the interval $-2 \le x \le 3$ SOLUTION:

EXAMPLE:

Graph the function $f(x) = \frac{1}{x}$ over the interval $-2 \le x \le 2$ SOLUTION:

x	$f(x) = \frac{1}{x}$	f(x) 35 3 25 2 2
-2	-0.5	15-
-1	-1	1 05
-0.5 -0.25	-2	x 4 3.5 3 -2.5 -2 -15 -1 -05 05 1 15 2 25 3 35 4
-0.25	-4	-0.5
0.25	4	-1 5
0.5	2	-2 -
1	1	2.5 4
2	0.5	-3 + -3 5 + -4 L

(vii)
$$n = \frac{3}{2}, \frac{2}{3}... \Rightarrow Range = [0, \infty)$$

$$Domain = [0, \infty)$$

$$Domain = \mathbb{R}$$

THANK YOU

