工科数学分析期末试题(A卷)

			1134	ו עי גע ו	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
班级			学号				姓名			
<u>(</u> 本试卷	共6页,	九个大	、题,试	卷后面空	空白纸排	斯下做喜	草稿纸)			
题号	_		111	四	五	六	七	八	九	总分
得分										
签名										
一. 填空	ヹ (毎	小题 4	分, 共 2	28 分)						
1. 设 <i>e^y</i>	$= xy + \epsilon$	$e, \mathbb{M}\frac{dy}{dx}$; ==		<u>,</u>	$\frac{d^2y}{dx^2}\Big $	x=0 =		·	
2. $I_1 = \int_{e}^{+\infty} \frac{\ln^2 x}{x} dx$ 与 $I_2 = \int_{e}^{+\infty} \frac{dx}{x \ln^3 x}$ 中收敛的为										
3. $\int_{-1}^{1} 3\sqrt{1}$	$\sqrt{1-x^2}dx$	x =			$\int_{-1}^{1} x \sqrt{1-x}$	$-x^2 dx =$	=			
4. 变量	代换		能丬	身微分プ	方程 $\frac{dy}{dx}$	$=\frac{xy-x}{x^2+3}$	y ² ßxy 化成	可分离	万变量的	微分方程, 所
得可	分离变	量的微	分方程	内				•		
5. 曲线	xy = a	(a > 0)	与直线	x = a,	x = 2a	及 <i>x</i> 轴 角	 「围成图	用形绕 x	轴旋转	一周所得旋转
体的	体积 <i>V</i> ₁	=		_, 绕 y	,轴旋转	一周所	得旋转	体的体	积 $V_2 =$	
6. 函数	f(x) = 3	$xe^x - co$	s <i>x</i> 的带	佩亚诺	余项的。	4 阶麦豆	克劳林2	公式为		
f(x)) =									·
7. 己知	$y = \frac{x^3}{2}$	是微分え	方程 $\frac{dy}{dx}$	+P(x)y	$y = x^2$ 的	解,则	P(x) =		,]	比微分方程的
通解	!为 y = _			·						

二. (9 分) 求极限 $\lim_{x\to 0} \frac{(x-2)e^x + x + 2}{\sin^3 x}$.

三. (9 分) 求不定积分 $\int x \ln(1+x) dx$.

四. (9分) 当船的速度为6m/sec 时,船的推进器停止工作, 5秒后船的速度减至一半,已 知船所受到的阻力与船的速度成正比,求船的速度随时间的变化规律.

六. (13 分) 设函数 f(x) 连续,且满足 $f(x) = e^{-x} + \int_0^x (t-x)f(t)dt$,求 f(x) 的表达式.

七. (8 分) 一贮水池的上部是高h=2 m, 半径R=1 m 的圆柱体, 下部是半径R=1 m 的半球体, 已知半球体部分装满了水, 圆柱体部分没有水, 如果将水从池中全部抽出, 求所作的功(水的密度 $\mu=1000$ kg/m³).

八. (8 分) 设函数 f(x) 在[0,3]上可导,且 f(3) = -1, $\int_{1}^{2} f(x) dx = 1$,证明在(0,3)内存在 ξ , 使 $\xi f'(\xi) + f(\xi) = 0$.

九. (8 分) 设 f(x) 有连续导数,且 $\lim_{x\to 0} \frac{f(x)+f'(x)}{e^x-1}=2$, f(0)=0,证明 x=0 是 f(x) 的驻点,并判断 f(0) 是否为 f(x) 的极值,若是极值,指出是极大值还是极小值.