Package 'RPMG'

August 19, 2023

Title Graphical User Interface (GUI) for Interactive R Analysis

Type Package

Sessions	
Version 2.2-7	
Date 2023-07-22	
Author Jonathan M. Lees [aut, cre], Jake Anderson [ctb]	
Maintainer Jonathan M. Lees <jonathan.lees@unc.edu></jonathan.lees@unc.edu>	
Description Really Poor Man's Graphical User Interface, used to create interactive R analysis sions with simple R commands.	ses-
License GPL (>= 2)	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2023-08-19 12:22:31 UTC	
R topics documented:	
RPMG-package	
aGETXprofile	
breakline.index	
butdoc	
chooser	
ColorScale	
colwheel	
cprint	
endSCALE	
fmod	
Gcols	
getmem	21
helpcolors	
HOZscale	

2 RPMG-package

RPMG-	-package	Really Poor Man's GUI: sets up buttons for a graphical user interin R	rface
Index			56
	ymaigimo		34
	•		53
			52
	XSECDEM		51
	XPAND		50
	writeCOMMENT .		49
	whichbutt		40
	wheelrgb		47
	textrect		43
			43
			42
			42
			41
			39
	1		39
	rowBUTTONS		37
	RESCALE		36
			36
	pickcolors		35
	pastel.colors		34
	OPTREPLOT		32
	meshgrid		31
	local.file		30
	J1 1		30
			28
	•		27
	ilocator		25
	HOZtics		24

Description

Really Poor Man's Graphical User Interface, used to create interactive R analysis sessions with simple R commands.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

rowBUTTONS, whichbutt

aGETXprofile 3

Examples

```
### get sample image data set.
data(volcano)
##### set sample interval unit
attr(volcano, 'dx') =10
attr(volcano, 'dy') =10
### create the list of labels
### Actions for these buttons are described in the calling program XSECDEM
mybutts = c("DONE", "REFRESH", "rainbow", "topo", "terrain", "CONT", "XSEC", "PS")
XSECDEM(volcano, mybutts)
############# CODE STUB
## Not run: ### Example code chunk:
### general set up of RPGM usage:
###### make a plot
###### set buttons
buttons = rowBUTTONS(c("BUT1", "BUT2") , col=c(1,1), pch=c(1,1))
###### after plotting, locate in plot....
zloc = locator()
Nclick = length(zloc$x)
######### the last click on the screen before stopping (middle
############
                  mouse click) is used to set the action
K = whichbutt(zloc , buttons)
while(TRUE)
if(K[Nclick] == match("BUT1", labs, nomatch = NOLAB))
              do what ever button 1 is supposed to do
if(K[Nclick] == match("BUT2", labs, nomatch = NOLAB))
          ### do what ever button 2 is supposed to do
         }
} ## end while loop
## End(Not run)
```

aGETXprofile

Cross sectional profile through a digital elevation map

Description

Example of how to use RPMG button functions. This example shows how to plot a DEM and interactively change the plot and find projected cross-sections through a surface.

Usage

```
aGETXprofile(jx, jy, jz, LAB = "A", myloc = NULL, PLOT = FALSE, asp=1)
```

4 aGETXprofile

Arguments

jx, jy	locations of grid lines at which the values in 'jz' are measured.
jz	a matrix containing the values to be plotted
LAB	Alphanumeric (A-Z) for labeling a cross section
myloc	Out put of Locator function
PLOT	logical. Plot is created if TRUE
asp	aspect ration, see par

Details

The program uses a similar input format as image or contour, with structure from the locator() function of x and y coordinates that determine where the cross section is to be extracted.

Value

Returns a list of x,z values representing the projected values along the cross section.

RX distance along cross section

RZ values extracted from the elevation map

Note

The program is an auxiliary program provided to illustrate the RPMG interactive R analysis.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

locator, image

```
## Not run:
####### get data
    data(volcano)
#### extract dimensions of image
    nx = dim(volcano)[1]
    ny = dim(volcano)[2]

### establish units of image
    jx = 10*seq(from=0, to=nx-1)
    jy = 10*seq(from=0, to=ny-1)

#### set a letter for the cross section
    LAB = LETTERS[1]

### coordinates of cross section on image
```

breakline.index 5

```
### this is normally set by using the locator() function
    x1 = 76.47351
    y1 = 231.89055
    x2 = 739.99746
    y2 = 464.08185

## extract and plot cross section

aGETXprofile(jx, jy, volcano, myloc=list(x=c(x1, x2), y=c(y1, y2)), LAB=LAB, PLOT=TRUE)
## End(Not run)
```

breakline.index

Break a vector into segments

Description

Break a vector into segments

Usage

```
breakline.index(Z, ww)
```

Arguments

Z vector

ww indices where the breaks should occur. if a matrix is provided the start and end

indices are given, else the breaks are provded.

Details

Codes used for maps to break map segments along boundaries. But this is more general, nd can be used to break any vector according to given indices. See examples.

Value

List of indices that are segments.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

6 breakline.index

```
example with a vector of breaks
h = 1:20
k = breakline.index(h, c(8, 14))
####### select with a matrix of start-ends
r1 = rbind(c(3,10), c(14, 18))
k = breakline.index(h, r1)
j1 = seq(from=3, to=17, by=3)
j2 = j1+5
######## overlapping sequences
r1 = cbind(j1, j2)
k = breakline.index(h, r1)
##### example with coordinates
#### some data:
uu$x=c(136.66,136.34,136.07,136.07,135.62,135.03,134.98,
134.98,135.07,135.25,135.75,137.07,137.35,137.44,138.07,
138.07,137.80,137.75,137.25)
uu$y=c(39.878,39.749,39.490,39.296,39.200,39.135,38.909,
38.618,38.327,38.004,37.875,37.875,38.327,38.489,
38.812,39.006,39.232,39.587,39.943)
### plot raw data
plot(uu$x, uu$y, type="1")
#### cutoff:
z1 = 39
h = 1:length(uu$x)
w1 = which(uu$y>z1)
g1 = list(x=uu$x[w1], y=uu$y[w1])
lines(g1, col='red')
######### notice the connecting line.
####### how can we avoid this?
w2 = which(diff(w1)!=1)
k = breakline.index(w1, w2)
for(i in 1:length(k)) lines(uux[k[[i]]], uuy[k[[i]]], col='blue')
###### see, line is broken correctly
```

butdoc 7

butdoc

Button Documentation for RPMG codes

Description

Interactive Button Documentation for RPMG codes

Usage

```
butdoc(tag, doc, NEW = FALSE)
```

Arguments

tag character vector of tags

doc character vector of (short) explanations

NEW logical, TRUE = open new device

Details

This is used in conjunction with interactive codes that employ RPMG

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

chooser

8 chooser

```
DOC[5] = "Decimate the traces"
DOC[6] = "Make a map with great circles"
DOC[7] = "Draw a set of surface wave arrivals"
DOC[8] = "Toggle drawing of traces"
DOC[9] = "Travel Time Curves"
DOC[10] = "put random cities on X-axis"
DOC[11] = "toggle plotting traces with colors"
DOC[12] = "put station names on X-axis"
DOC[13] = "Pick arrivals on one trace"
DOC[14] = "Zoom display (need two clicks on screen)"
DOC[15] = "unzoom to original display"
DOC[16] = "Identify traces"
DOC[17] = "Fitler traces with a set of filters provided"
DOC[18] = "Unfilter traces to original display"
DOC[19] = "Run PICK.GEN on selected traces: select on the tags at X-axis"
  butdoc(ALLLABS, DOC, NEW=FALSE)
```

chooser

Iteractive Selection Winder

Description

Choose an option from a selection

Usage

```
chooser(opts=c(1, 2, 5, 10, 15, 20) , ncol=5, nsel=NA,
    newdev=TRUE, STAY=FALSE,
    cols="red", main="", newplot=TRUE,
    xlim=c(0,1), ylim=c(0,1),
    just="CEN", ...)
```

list of ontions

Arguments

onte

opts	nst of options
ncol	number of columns
nsel	number of selections
newdev	logical, TRUE=start new device, default=TRUE
STAY	logical, TRUE=keep same device when done, default=FALSE
cols	colors for buttons, $default = pastel.col(N)$
main	title for screen (maybe instructions for picking)
newplot	logical, TRUE means start a new plot
xlim	xlim on the plot

chooser 9

```
ylim ylim on the plot
just character, justification in box, one of CEN, LEFT, RIGHT
... additional parameters from par, used for font, cex, etc...
```

Details

Used for interactive selections of numeric or other options. If the input vector is all numeric, a numeric value is returned. If, on the other hand, the input is mixed or character, a character vector is returned. If the selection number nsel is left blank, it is set at 1. If it is specified, selection can be truncated by clicking the right mouse.

Value

vector of selections.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

locator

10 circle

circle

circle coordinates

Description

generate circle coordinates for plotting

Usage

```
circle(n = 1, ang1=0)
```

Arguments

n number of points ang1 starting angle (degrees)

Value

List

x coordinatesy coordinates

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

Examples

```
j = circle(26)
plot(j)
```

ColorScale

Color Scale

Description

Graded Color Scale position by locator

Usage

```
ColorScale(z, loc = list(x = 0, y = 0), thick=1, len=1, offset=.2, col = rainbow(100),border='black', gradcol='black',numbcol='black', unitscol='black', units = "", SIDE = 1, font = 1, fontindex =1, cex=1)
```

Arguments

z	values to be scaled
loc	x-y location boundary of plotting area, user coordinates
thick	width of scale bar in inches
len	length of scale bar in inches
offset	offset from border, in inches
col	color palette
border	color for border of scale, NA=do not plot
gradcol	color for gradiation marks of scale, NA=do not plot
numbcol	color for number values of scale, NA=do not plot
unitscol	color for units character string, NA=do not plot
units	character, units for values
SIDE	side, 1,2,3,4 as in axis
font	vfont number
fontindex	font index number
cex	character expansion, see par for details

Details

Locations (loc) are given in User coordinates. The scale is plotted relative to the location provided in user coordinates and offset by so many inches outside that unit. to get a scale plotted on the interior of a plot, send ColorScale a rectangular box inside the plotting region and give it a 0 offset. All other measures are given in inches. To suppress the plotting of a particular item, indicate NA for its color.

Since the list of the bounding box is returned, this can be used to modify the text, e.g. change the way the units are displayed.

Value

list Graphical Side effects and list of bounding box for color scale:

```
x x coordinates of box
y y coordinates of box
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

HOZscale

```
col = rainbow(100), units = "Elev:m", font = 1, SIDE = 4)
plot(range(x), range(y), type='n', asp=1, ann=FALSE, axes=FALSE)
    image(x=x, y=y, z=volcano, col = rainbow(100), add=TRUE)
XAX = pretty(x)
XAX = XAX[XAX >= min(x) & XAX <= max(x)]
axis(1, at=XAX, pos=y[1])
YAX = pretty(y)
YAX = YAX[YAX >= min(y) & YAX <= max(y)]
axis(2, at=YAX, pos=x[1])
rect(x[1], y[1], max(x), max(y))
ColorScale(volcano, loc=list(x=range(x), y=range(y)) ,offset=.8,
     col = rainbow(100), units = "Elev:m", font = 2, SIDE = 1)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.8 ,
     col = rainbow(100), units = "Elev:m", font = 1, fontindex = 2,SIDE = 2)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2 ,
     col = rainbow(100), units = "Elev:m", font = 1, fontindex = 3, SIDE = 3)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2 ,
     col = rainbow(100), units = "Elev:m", font = 2, fontindex = 3, SIDE = 4)
plot(range(x), range(y), type='n', asp=1, ann=FALSE, axes=FALSE)
   image(x=x, y=y, z=volcano, col = rainbow(100), add=TRUE)
XAX = pretty(x)
XAX = XAX[XAX >= min(x) & XAX <= max(x)]
axis(1, at=XAX, pos=y[1])
YAX = pretty(y)
YAX = YAX[YAX >= min(y) & YAX <= max(y)]
axis(2, at=YAX, pos=x[1])
rect(x[1], y[1], max(x), max(y))
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.8, gradcol= NA,\\
     col = rainbow(100), units = "Elev:m", font = 2, SIDE = 1)
```

```
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.8 ,numbcol
= NA,
    col = rainbow(100), units = "Elev:m", font = 1, fontindex = 2,SIDE = 2)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2
,unitscol = NA,
     col = rainbow(100), units = "Elev:m", font = 1, fontindex = 3, SIDE = 3)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2 ,border
= NA, gradcol = 'black', numbcol = 'blue', unitscol = 'purple',
     col = rainbow(100), units = "Elev:m", font = 2, fontindex = 3, SIDE
= 4)
plot(range(x), range(y), type='n', asp=1, ann=FALSE, axes=FALSE)
    image(x=x, y=y, z=volcano, col = rainbow(100), add=TRUE)
XAX = pretty(x)
XAX = XAX[XAX >= min(x) & XAX <= max(x)]
axis(1, at=XAX, pos=y[1])
YAX = pretty(y)
YAX = YAX[YAX >= min(y) & YAX <= max(y)]
axis(2, at=YAX, pos=x[1])
rect(x[1], y[1], max(x), max(y))
B = ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2 ,border
= NA, gradcol = NA, numbcol = NA, unitscol = NA,
     col = rainbow(100), units = "Elev:m", font = 2, fontindex = 3, SIDE = 3)
text(mean(B$x), B$y[2], "scaled data", pos=3, xpd=TRUE)
text(B$x[1], mean(B$y), min(volcano), pos=2, xpd=TRUE)
text(B$x[2], mean(B$y), max(volcano), pos=4, xpd=TRUE)
#################### dark background
par(fg="white")
par(bg="black")
par(col.axis="white", col.lab="white", col.main="white", col.sub="white")
plot(range(x), range(y), type='n', asp=1, ann=FALSE, axes=FALSE,
fg='white')
image(x=x, y=y, z=volcano, col = rainbow(100), add=TRUE)
```

```
XAX = pretty(x)
XAX = XAX[XAX >= min(x) & XAX <= max(x)]
axis(1, at=XAX, pos=y[1])
YAX = pretty(y)
YAX = YAX[YAX >= min(y) & YAX <= max(y)]
axis(2, at=YAX, pos=x[1])
rect(x[1], y[1], max(x), max(y), border='white')
ColorScale(volcano, loc=list(x=range(x), y=range(y)) ,offset=.6,
gradcol= 'black', unitscol =rgb(.9, .9, 1) , numbcol =rgb(.9, 1, .9) , border="white",
     col = rainbow(100), units = "Elev:m", font = 2, fontindex = 3, SIDE = 1)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.8
, numbcol = rgb(1, .85, .85) ,
     col = rainbow(100), units = "Elev:m", font = 1, fontindex = 2,SIDE = 2)
ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2,unitscol = NA,
     col = rainbow(100), units = "Elev:m", font = 1, fontindex = 3, SIDE = 3)
\label{locale} ColorScale(volcano, loc=list(x=range(x), y=range(y)), offset=.2 ,border
= NA, gradcol = 'white', numbcol = 'blue', unitscol = 'purple',
     col = rainbow(100), units = "Elev:m", font = 2, fontindex = 3, SIDE = 4)
plot(range(x), range(y), type='n', asp=1, ann=FALSE, axes=FALSE,
fg='white' )
XAX = pretty(x)
XAX = XAX[XAX >= min(x) & XAX <= max(x)]
axis(1, at=XAX, pos=y[1])
YAX = pretty(y)
YAX = YAX[YAX >= min(y) & YAX <= max(y)]
axis(2, at=YAX, pos=x[1])
rect(x[1], y[1], max(x), max(y), border='black')
ColorScale(volcano, loc=list(x=c(20, 40), y=c(10, 40)), thick=.2, offset=0,
     col = rainbow(100), units = "Elev:m", font = 1, fontindex = 2,SIDE
= 2, cex=.5)
```

16 colwheel

colwheel

Choose rgb from a color rectangle

Description

Shows and image of colors and allows one to choose a color and see what it looks like in swath with different backgrounds.

Usage

```
colwheel(v = 1, BACK = "black")
```

Arguments

v v, from hsv color scheme
BACK starting background color

Value

vector of RGB colors in hex format.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

hsv, VVwheel, wheelrgb, SHOWPAL.A

```
## Not run:
colwheel(v = 1, BACK = "black")
colwheel(v = 1, BACK = "white")
## End(Not run)
```

cprint 17

cprint

dump assignment

Description

dump out an R assignemnt statement to the screen

Usage

```
cprint(a)
```

Arguments

а

R object

Value

side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
x = 10 cprint(x)
```

endSCALE

Plot nice scale at end of trace.

Description

Calculate nice scale to use at the end of a plot. Use as an alternative to magicaxis.

Usage

```
endSCALE(arange, digits = 3)
```

Arguments

arange 2-vector of bounds digits number of digits to use

18 endSCALE

Details

The function returns information for plotting a nice bounds axis similar to MATLAB plotting style.

Value

```
character vector: min, max, exponent
```

Note

If the bounds span multiple orders of magnitude, may want to make adjustments (like setting a negative exponent bound to zero)

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

plotwlet

```
M = 1e-19
m = M
for(i in 1:10) {
  z = c(rnorm(1)*m, rnorm(1)*M)
  print(z)
  print( endSCALE(z) )
######## use in plotting:
x = seq(from=0, by=0.01, length=200)
a = 10000 \times rnorm(length(x))
old.par <- par(no.readonly = TRUE)</pre>
######## make room on the right margin
MAI = par("mai")
MAI[4] = MAI[2]
par(mfrow=c(2,1))
par(mai=MAI)
par(xaxs='i', yaxs='i')
plot(x,a, type='1')
  axtrace = range(a)
   Elabs = endSCALE(axtrace)
    exp = parse(text = Elabs[3])
axis(4, at=axtrace , labels=Elabs[1:2] , pos=max(x), tick=TRUE , line=0.5, cex.axis=0.8,las=2)
       mtext(exp, side = 3, at = max(x), line=0.5, adj=-1, cex=0.8)
   mtext("m/s", side = 4, at =mean(axtrace) , line=0.5 , cex=0.8 ,las=1 )
a = rnorm(length(x))/100000
```

fmod 19

```
plot(x,a, type='1')
  axtrace = range(a)
    Elabs = endSCALE(axtrace)
    exp = parse(text = Elabs[3])
  axis(4, at=axtrace, labels=Elabs[1:2], pos=max(x), tick=TRUE, line=0.5, cex.axis=0.8,las=2)
        mtext(exp, side = 3, at = max(x), line=0.5, adj=-1 , cex=0.8)
    mtext("m/s", side = 4, at =mean(axtrace) , line=0.5 , cex=0.8 ,las=1 )

par(old.par)
}
```

fmod

Floating point remainer function

Description

extract remainder for floating point numbers

Usage

```
fmod(k, m)
```

Arguments

k floating point number
m divisor number

Value

```
returns remainder after dividing out the divisor part:
j = floor(k/m)
a = k-m*j
return(a)
```

Author(s)

Jonathan M. Lees < jonathan.lees@unc.edu>

20 Gcols

Examples

```
### degrees after removing extraneous 2*pi
j = 540.23
fmod(j, 360)
```

Gcols

Get Color Palette

Description

Get Color Palette

Usage

```
Gcols(plow = 10, phi = 10, N = 100, pal = "rainbow", mingray = 0.5)
```

Arguments

plow lowest number for color selection
phi highest number for color selection

N number of colors pal color palette name

mingray lower end is blanked out and replaced by gray

Value

```
c(LOW, Z, HI) color palette
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

tomo.colors, shade.col

```
TPALS = c("rainbow", "topo.colors", "terrain.colors", "heat.colors", "tomo.col")
pal = Gcols(plow=5, phi=0, N=100, pal=TPALS[3])
```

getmem 21

getmem

Get Member

Description

Get a member of a list

Usage

```
getmem(v, mem = 1)
```

Arguments

v vector

mem element in vector

Details

Used in conjunction with apply

Value

vector of members of a list

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
z = list()
for(i in 1:10)
{
z[[i]] = round(10*runif(10))
}
y = as.vector(unlist(lapply(z, getmem, 6)))
```

22 HOZscale

helpcolors

Help on Personal Color Palettes

Description

Give information on how to set up Personal Color Palettes

Usage

```
helpcolors()
```

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

palette

Examples

helpcolors()

HOZscale

add horizontal color scale

Description

Add horizontal color scale to existing plot.

Usage

```
HOZscale(z, col, units="", SIDE=1, s1=.6, s2=0.95,
    format=1, digits=3, cex=1, cex.units=1)
```

HOZscale 23

Arguments

z	image matrix
col	color palette
units	character string, units
SIDE	Side of the plot
s1	percent of margin for bottom
s2	percent of margin for top
format	Format: 1 for normal number, 2 for exponential notation
digits	Significant digits
cex	Character expansion for the numeric values.
cex.units	Character expansion for the units.

Value

Vector of rectangle coordinates and z-values: c(xmin,ymin, xmax, ymax, Z-min, Z-max)

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

24 HOZtics

HOZtics

Add tics to Horizontal Scale

Description

Add tics and levels to color scale for am image plot.

Usage

```
HOZtics(HOZ, side = 1)
```

Arguments

HOZ	Output coordinates of HOZscale
side	1=above, 2=below

Details

The levels are determined via the pretty function.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

ColorScale

```
pal1 = terrain.colors(100)
Z = c(1,40)
plot(c(0,1), c(0,1) )
hs = HOZscale(Z, col=pal1)
HOZtics(hs, side=1)
```

ilocator 25

	-						
7		\sim	_	1	t	\sim	r
	1	v	L	а	L	v	

Specialized Locator function

Description

Locator function with set parameters

Usage

```
ilocator(N=1, COL=1, NUM=FALSE, YN=NULL, style=0)
```

Arguments

N	number of points to locate
---	----------------------------

COL color

NUM number of points

YN number of windows to span for lines

style 0,1,2 for differnt style of plotting vertical lines

Details

if the window is divided into YN horizontal regions, style =2 will plot segments only within regions based on y-value of locator().

Value

list:

```
x x-locationsy y-locationsn number of points
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

locator

```
plot(c(0,1), c(0,1), type='n')
for(i in 1:5) { abline(h=i/6) }

ilocator(N=3, COL = 1, NUM = 4, YN = 6, style = 2)
```

26 itoxyz

itoxyz

Vector Index to Matrix Index

Description

Given I index get ix,iy, iz for three dimensional grids.

Usage

```
itoxyz(i, nx, ny, nz)
```

Arguments

i	index to long vector
nx	number of blocks in x axis
ny	number of blocks in y axis
nz	number of blocks in z axis (layers)

Value

```
ix Index of X-arrayiy Index of Y-arrayiz Index of Z-array (layer)
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

xyztoi

```
itoxyz(24, 6, 6, 1)
kpos = itoxyz(2443:2500 , 20, 20, 13)
```

jpng 27

jpng png or pdf output

Description

Get file name and recreate plot on a png or pdf device. This program makes an attempt to keep the same size plot as viewed in the screen.

Usage

```
jpng(file='tmp', width = 8, height = 8,P = NULL, bg = "white")
jpdf(file='tmp', width = 8, height = 8,P = NULL)
```

Arguments

file png or pdf: will be added as a suffix, if need	file	png or pdf	: will be	added as	a suffix,	if neede	d
---	------	------------	-----------	----------	-----------	----------	---

width width, inches height height, inches

P vector to fix the size, c(width, height)
bg background color (default="transparent")

Details

If P=c(10,12) is missing or NULL, program will attempt to use current plotting region via par to duplicated the size of the postscript device. Must close this device with dev.off() to finish. If either w or h are provided they will override the values in vector P.

If the standard suffix (png or pdf) are provided the file will be set. If these are omitted, they will be added to the given name according to the local file function.

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
par, postscript, device
```

28 jpostscript

Examples

```
## Not run:
jjj = local.file('hi', 'png')
x = rnorm(10)
y= rnorm(10)
plot(x,y)
print('resize the current plot')
jpng(jjj, width = 8, height = 8)
plot(x,y)
dev.off()
jpdf("HiThere.pdf", width = 8, height = 8 )
plot(x,y)
dev.off()
jpng("HiThere.png", width = 8, height = 8 , bg='red' )
plot(x,y)
dev.off()
## End(Not run)
```

jpostscript

Postscript Output

Description

Get file name and recreate plot on a postsctipt device. This program makes an attempt to keep the same size plot as viewed in the screen.

Usage

```
jpostscript(file=NULL, P=NULL, w=NULL, h=NULL)
```

Arguments

file	Postscript file name, eps will be added as a suffix
Р	vector to fix the size, c(width, height)
W	width, inches
h	height, inches

jpostscript 29

Details

If P=c(10,12) is missing or NULL, program will attempt to use current plotting region via par to duplicated the size of the postscript device. Must close this device with dev.off() to finish. If either w or h are provided they will override the values in vector P.

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

par, postscript, device

```
## Not run:
jjj = local.file('hi', 'eps')
x = rnorm(10)
y= rnorm(10)
plot(x,y)
print('resize the current plot')
jpostscript(jjj)
plot(x,y)
dev.off()
jpostscript("HiThere", P=c(7,7) )
plot(x,y)
dev.off()
jpostscript("HiThere", P=c(7,7), w=10 )
plot(x,y)
dev.off()
## End(Not run)
```

30 local.file

label.it

Labels on Plots

Description

Put Labels (A,B, C...) on corners of figures

Usage

```
label.it(a = "", corn = 1, ...)
```

Arguments

```
a letters
corn corner
```

... graphical parameters passed from par

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
par(mfrow=c(2,2))
for(i in 1:4)
{
plot(rnorm(5), rnorm(5))
label.it(letters[i],1)
}
```

local.file

Get name for a Local file

Description

Get a name for a local file for writing ascii files or postscript output. This code checks to see if file exists and if so it increments a counter int he name.

Usage

```
local.file(pref, suf)
```

meshgrid 31

Arguments

pref prefix for file name suf suffix for file name

Details

File name is located in the current directory.

Value

character string for new file name

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
psfile = local.file("JML", "eps")
```

meshgrid

Create a mesh grid like in Matlab

Description

Creates 2D matrices for accessing images and 2D matrices

Usage

```
meshgrid(a, b)
```

Arguments

a x vector componentsb y vector components

Details

returns outer product of x-compnents and y-components for use as index arrays

Value

x length(y) by length(x) matrix of x indicies y length(y) by length(x) matrix of y indicies OPTREPLOT

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
meshgrid(1:5, 1:3)
```

OPTREPLOT

Replot Function for SELBUT

Description

Replot Function for SELBUT

Usage

```
OPTREPLOT(opts , ncol=5, sel=1, HOZ=TRUE, TOP=TRUE,
cols="white", scol="black", bcol="white" , tcol="black",
slwd=1, blwd=3, main="", xlim=c(0,1), ylim=c(0,1),
cex=1, mpct = 0.1, newplot=TRUE)
```

Arguments

opts	character list of options
ncol	number of columns
sel	vector of selected options
HOZ	logical, TRUE=plot horizontally
TOP	logical, TRUE=plot top-down
cols	colors
scol	select box color
bcol	default box color
tcol	box text color
slwd	select box line width
blwd	default box line width
main	character title
xlim	x-limits in plotting region (user coordinates)
ylim	y-limits in plotting region (user coordinates)
cex	character expansion for text in boxes
mpct	percentage margin to leave between option boxes
newplot	logical, TRUE=new plot

OPTREPLOT 33

Details

Used internally in SELBUT as a replotting function

Value

list М x,y matrix of grid delta x dx delta y dy range of x rx range of y

Author(s)

ry

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

SELBUT, swig

```
STDLAB=c("DONE", "QUIT", "zoom.out", "zoom.in", "SELBUT", "FILT",
"UNFILT", "PSEL", "SGRAM", "WLET", "SPEC", "XTR")
OPTREPLOT(STDLAB)
XMCOL = setXMCOL()
YN = OPTREPLOT(XMCOL, cols =XMCOL, tcol=grey(.8) ,
scol= "transparent", bcol= "transparent", mpct=0.05
                                                              )
YN = OPTREPLOT(XMCOL, cols =XMCOL, tcol=grey(.8)
scol= "transparent", bcol= "black", mpct=0.05
```

pastel.colors

pastel.colors

pastel colors

Description

vector of pastel colors

Usage

```
pastel.colors(num, seed=0)
```

Arguments

num number of colors seed random number seed

Details

The seed is a value given so that the same pastel colors can be extracted with each subsequent call to the code.

Value

vector of RGB hex colors

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

rainbow

```
pastel.colors(12)
pastel.colors(12, seed=1 )
```

pickcolors 35

pickcolors

Pick a SYSTEM color

Description

Pick a SYSTEM color

Usage

```
pickcolors(COLLIST = colors(), BACK = "white")
```

Arguments

COLLIST system colors

BACK background for colors

Value

List of colors

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

syscolors

```
## Not run:
######## see named colors, excluding grey
SYSCOL = colors()
greys = grep('grey', SYSCOL)
grays = grep('gray', SYSCOL)

kolz = SYSCOL[-c(greys, grays)]
pickcolors(COLLIST = kolz, BACK = "white")

### or just one type
SYSCOL = colors()
blues = SYSCOL[grep('blue', SYSCOL)]
pickcolors(COLLIST = blues, BACK = "white")

## End(Not run)
```

36 RESCALE

rainbow.colors

rainbow.colors

Description

Color palette of n rainbow colors

Usage

```
rainbow.colors(n)
```

Arguments

n

Nmber of colors desired

Details

rainbow.colors is set to match other color palette selections like topo.colors, terrain.colors

Value

Character vector of n colors from the default rainbow palette.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

topo.colors, terrain.colors, palette

Examples

```
rainbow.colors(100)
```

RESCALE

Rescale a vector to fit in a certain range

Description

Rescale a vector to fit in a certain range

Usage

```
RESCALE(x, nx1=0, nx2=1, minx=0, maxx=1)
```

rowBUTTONS 37

Arguments

X	vector
nx1	new minimum
nx2	new maximum
minx	old min
maxx	old max

Details

Rescaling a vector, mostly used for graphics. If x does not vary, i.e. it is constant or minx and max are identical, the mean value of nx1 and nx2 is returned.

Value

Scale version of x vector is returned.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
x = rnorm(10)
RESCALE(x, 3, 9, min(x), max(x) )
```

rowBUTTONS

Geometry for the Really Poor Man's GUI

Description

Create a set of buttons and associated geometry for RPMG

Usage

```
rowBUTTONS(labs, col = 6, pch = 4, cex=1, boxsize = -1)
```

Arguments

labs	Vector of labels for the buttons running across the top and bottom of the plot
col	Optional vector of colors for the buttons
pch	Optional vector of symbols to be plotted in the center of the buttons
cex	optional character expansion for text
boxsize	optional box size for the buttons, default=-1 where the size is adjusted for string size

38 rowBUTTONS

Details

rowBUTTONS is called after the R graphic has been created so the geometry of the buttons can be set. Subsequent calls to whichbutt use the geometry to determine which button has been selected. Some of the parameters chosen here are controlled by par-like parameters.

Value

The function returns a list of buttons and the associated geometry.

N	Number of Buttons
labs	Names of the Buttons
x1	vector of left x-coordinates for the buttons
x2	vector of right x-coordinates for the buttons
y1	vector of top y-coordinates for the buttons
y2	vector of bottom y-coordinates for the buttons

Note

rowBUTTONS uses the current plotting parameters from par() to set the geometry. If the window is resized, rowBUTTONS should be reset to extract correct button position. In interactive mode this is done each time the plot is refreshed.

Author(s)

Jake Anderson and Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

whichbutt, par

```
######## create a plot
plot(c(0,1), c(0,1))
######## set the character vector of button labels
mybutts = c("DONE", "REFRESH", "rainbow", "topo", "terrain", "CONT",
"XSEC","PS")
######## set colors and plotting chars for buttons
colabs = rep(1, length=length(mybutts))
pchlabs = rep(0,length(mybutts))
######## create and set geometry for buttons:
buttons = rowBUTTONS(mybutts, col=colabs, pch=pchlabs)
```

see.pal 39

see.pal

plot a rectangular palette

Description

the function adds to an existing plot in the lower left corner

Usage

```
see.pal(col)
```

Arguments

col

vector of colors

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

see.pals

Examples

```
plot(c(0,1), c(0,1), type='n')
see.pal(rainbow(100))
```

SELOPT

Select Options

Description

Select buttons interactively.

40 SELOPT

Arguments

OPTS	character list of buttons
onoff	which buttons are active, onoff=-1 turns all buttons off, onoff=0 turns all buttons on, any other vector is an index vector to selected options
ncol	number of columns, default = 5
ocols	colors for plotting option boxes
cex	character expansion for text in boxes
default	default vector of options

Details

Used in swig. OPtions can be added, subtracted, deleted, or completely filled out based on interactive choice.

Value

character list of selected options

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

OPTREPLOT, chooser

```
## Not run:
STDLAB=c("DONE", "QUIT", "zoom.out", "zoom.in", "SELOPT",
"FILT","UNFILT",
   "PSEL", "SGRAM", "WLET", "SPEC", "XTR" )
onoff = rep(0, length(STDLAB))
onoff[1:5] = 1
SELOPT(STDLAB, onoff=onoff)

### second option for selecting colors
###dev.new(width=12, height=12)

scol = SELOPT(colors(), onoff=-1, ncol=15, ocols =colors(), cex=.6 )

### old program
SHOWPAL(scol, NAME=TRUE)

### show the options chosen from top to bottom
OPTREPLOT(scol, cols=scol, scol="green", bcol="blue", slwd=15 )
```

sepia.colors 41

```
## End(Not run)
```

sepia.colors

Sepia Color Palette

Description

Sepia Color Palette

Usage

```
sepia.colors(n, k = 1)
myhcl.colors(n, k = 260)
```

Arguments

n Number of colors

k Sepia starting color, hcl ending number

Details

There are two version of sepia in the code, each has a slightly different sepia end member.

Value

vector of Octal color codes

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

tomo.colors, pastel.colors, syscolors, helpcolors

```
scol = sepia.colors(100)
SHOWPAL(scol)
see.pal(scol)
```

42 shade.col

setXMCOL

Set up color map from Geotouch

Description

Uses colors predefined in geotouch

Usage

```
setXMCOL()
```

Value

Vector of named colors

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
XMCOL=setXMCOL()
```

shade.col

Shaded Color Palette

Description

Create a color palette with two end member colors

Usage

```
shade.col(n, acol = c(1, 0, 0), bcol = c(1, 1, 1))
```

Arguments

n number of desired colorsacol rgb, starting colorbcol rgb, ending color

Details

Linear interpolation from color1 to color 2.

Value

color vector

SHOWPAL 43

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

rainbow, tomo.col

Examples

```
## color palette from red to white shade.col(100, acol = c(1, 0, 0), bcol = c(1, 1, 1))
```

SHOWPAL

Show a palette of colors as a bar

Description

Show a palette of colors as a bar

Usage

```
SHOWPAL( COLLIST , NAME = FALSE, NUM=FALSE, ncol = 5, BACK="transparent")
```

Arguments

COLLIST vector of colors

NAME name of palette

NUM logical, TRUE=show index number

ncol number of colors

BACK Background color, default=NULL

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
see.pals, help.pal, plotpal, helpcolors
```

44 slideshow

Examples

```
######## make a large screen for a lot of colors
### dev.new(width=12, height=12)
SHOWPAL(colors(), ncol=15, NAME=FALSE)
gcol = setXMCOL()
SHOWPAL(gcol, ncol=10, NAME=TRUE)
#### show index:
SHOWPAL(gcol, ncol=10, NAME=TRUE, NUM=TRUE)
  pl = c("grey", "lightblue1", "pink", "darkseagreen2", "gold1",
      "chartreuse1", "aquamarine", "plum1", "goldenrod", "maroon1",
      "deepskyblue", "palegreen2", "salmon")
SHOWPAL(pl, NAME=TRUE, NUM=TRUE)
SYSCOL = pastel.colors(100)
SHOWPAL(SYSCOL, ncol=10)
SYSCOL = sepia.colors(100)
SHOWPAL(SYSCOL, ncol=10)
SYSCOL = hcl(h=seq(from=0, to=260, length=100))
SHOWPAL(SYSCOL, ncol=10)
```

slideshow

SlideShow

Description

MAke a slide show similar to Powerpoint presentations

```
slideshow(P = c("hi", "there", "sugar pie"),
dy = 0.2, EX = 0.1, ht = 3, font = 2, anim = FALSE)
```

textrect 45

Arguments

Р	vector of character strings to display
dy	vertical spacing, percentage
EX	horizontal offset, percentage
ht	Character expansion, see par
font	Font choice, see par
anim	logical, Animation, TRUE=means animate the input line-by-line

Details

The function is meant to be used in presentations when R is running a script and text needs to be displayed to explain the talk. The animation is controlled by clicking on the screen using locator(1) function.

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
Ptext1 = c("New Package: Rquake", "Earthquake Location",
   "Inverse Theory",
   "Graphics",
   "Statistical Analysis")
slideshow(Ptext1, ht=3, anim=FALSE)
```

textrect

Text labels with border

Description

Plot Text labels with border and background color

```
textrect(x, y, lab, textcol = "black", col = "white",
  border = "black", off = 0.06, brd = 0.06, pos = 1, log="" ,
  add=TRUE, ...)
```

46 textrect

Arguments

X	x-location, user coordinates
У	y-location, user coordinates
lab	character for label
textcol	color for labels
col	color for background
border	color for border, NA=do not plot
off	Offset from point, inches, default=0.06
brd	Border around text, inches, default=0.06
pos	numeric, position=one of (0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5), as in the normal text call with pos=1,2,3,4, however, here I allow half way between points. 0 indicates no offset and label is placed centered on the point.
log	character, as in plot
add	add to existing plot (FALSE returns plotting rectangles)
	additional parameters from par, used for font, cex, etc

Details

textrect plots a label on an existing plot at the location designated. The text is surrounded by a rectangular box with color inside and a border. The box can be placed around the designated point at 9 positions. Positions 1,2,3,4 are the same as text parameter pos. Position 0 is centered, i.e. no offset. Positions, 1.5, 2.5, 3.5, 4.5 are at an angle 45 degrees clockwise from the integer values.

Value

graphical side effects.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
thepos = c(0, seq(from=1, to=4.5, by=.5))
lab="the string"

x = 1:9
y = 1:9
plot(x,y, asp=1)
for(i in 1:length(thepos))
{
textrect(x[i], y[i], lab, col=i , border='green' ,
textcol="gold", off=.06, brd=.06 , pos=thepos[i], font=1, cex=.8 )
}
```

VVwheel 47

```
x = runif(10)
y = runif(10)
lab = floor( 1000*runif(10) )
i=sample(thepos, 10, replace = TRUE)
col = sample(rainbow(100) , 10, replace = TRUE)
plot(x,y, asp=1)
textrect(x, y, lab, pos=i , textcol="black", col=col)
```

VVwheel

Make a color rectangle (wheel)

Description

Make a color rectangle (wheel)

Usage

```
VVwheel(BIGMESH = NULL, v = 1)
```

Arguments

V	v, from hsv color scheme
BIGMESH	color mesh

Value

M	meshgrid:	
	x x - location	
	y y - location	
ARE	Radii	
pANG	angle	
dx	delta x	
dy	delta y	
RY	range x	
RX	range y	

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

48 wheelrgb

See Also

```
hsv, VVwheel, wheelrgb
```

Examples

```
## Not run:
BIGMESH = VVwheel( v=1)
## End(Not run)
```

wheelrgb

Plot a large color rectangle for color selection

Description

Plot a large color rectangle for color selection

Usage

```
wheelrgb(wloc, v, RY)
```

Arguments

wloc output of locator

v v, from hsv color scheme

RY coordinates of meshgrid, output of VVwheel

Value

vector of colors

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

colwheel, VVwheel

whichbutt 49

whichbutt

Determines which button was selected in RPGM

Description

Function to determine which button of the RPMG was selected during a graphics session.

Usage

```
whichbutt(v, buttons)
```

Arguments

list of x,y coordinates obtained from the locator() function

buttons list of buttons set by the function rowBUTTONS

Details

whichbutt uses the geometry determined by rowButtons and a list of locator() points to return the buttons clicked on or, if none, 0.

Value

Returns a vector of indexes to buttons selected by the user. Buttons are numebred 1-N so if a click is not on a button, zero is returned.

Note

This function can be used to get interaction with predined buttons and non-button clicks using locator().

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

```
rowBUTTONS, locator
```

50 writeCOMMENT

```
###### set button geometry
buttons = rowBUTTONS(mybutts, col=colabs, pch=pchlabs)
######## user clicks on plot. When locator finishes, whichbutt
######## determines which buttons were selected and returns the vector
L = locator()

K = whichbutt(L, buttons)
print(K)
```

writeCOMMENT

write Code Comments

Description

Create a print out of comments for insertion in computer code. Used for separating important blocks of code with helpful, easy to find comments.

Usage

```
writeCOMMENT(temp, space = " ", letspace = "", MSUB = "0", prefix = "", suffix = "")
```

Arguments

temp text string

space space between words letspace space between letters

MSUB text, substitute character, if this is "ALL", then each letter is substituted. de-

fault=NULL

prefix prefix before the letters suffix suffix after the letters

Details

This is a function used for creating comments in computer code. Letters are a fixed height of 7 lines

Value

List 26 letters

Note

Code dumps to the screen, then you must paste in code. If sent in an email, spaces are not preserved. The letters are stored in the routine, these can be changed, but the constant (7 lines) common height should be preserved. Each letter should be one block.

XPAND 51

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
", letspace = "", MSUB="ALL", prefix="/*", suffix="*/")
writeCOMMENT("GO TARHEELS", space="
                                     ", letspace = "", MSUB="ALL", prefix="######")
  writeCOMMENT("START", space="
                                      ", letspace = "", MSUB="0")
writeCOMMENT("J M lees", space="
writeCOMMENT("J. M. Lees", space="
                                        ", letspace = "", MSUB="0")
                                        ", letspace = "", MSUB=".")
writeCOMMENT("J. M. Lees", space="
writeCOMMENT("J. M. Lees", space="
                                       ", letspace = "" )
writeCOMMENT("J. M. Lees", space="----", letspace = "" )
                                     ", letspace = "", MSUB="ALL")
writeCOMMENT("J. M. Lees", space="
                                   ", letspace = "", MSUB="ALL")
writeCOMMENT("J_M_Lees", space="
 writeCOMMENT("abcdefghi")
writeCOMMENT("jklmnop")
writeCOMMENT("grstuvwxyz")
writeCOMMENT("1234567890")
writeCOMMENT("WHY?!.-+=_")
writeCOMMENT("2+2=4")
writeCOMMENT("e*exp(pi*i)=-1")
```

XPAND

Expand Bounds

Description

Calculate an expanded bounding region based on a percent of the existing boundaries

```
XPAND(g, pct = 0.1)
```

52 XSECDEM

Arguments

g vector of values

pct fractional percent to expand

Details

uses the range of the exising vector to estimate the expanded bound

Value

```
vector, new range
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
i = 5:10
exi = XPAND(i, pct = 0.1)
range(i)
range(exi)
```

XSECDEM

Cross Sections Using RPMG

Description

This function Takes a Digital Elevation Map (or any surface) and illustrates how to take interactive cross sections with RPMG through the surface.

Usage

```
XSECDEM(Data, labs, demo=FALSE)
```

Arguments

Data	Structure with x, y, z components, typical of contoured surfaces or digital images
labs	Vector of labels for Buttons used in the RPMG
demo	Argument used to turn off interactive part. Default is FALSE, but for package construction is set to TRUE so no interaction is required.
	construction is set to TROL so no interaction is required.

xyztoi 53

Details

XSECDEM is an example stub illustrating the use of RPMG. The idea is to set up a while() loop that uses input from the locator() function to execute or analyze data depending on user defined buttons. Actions are executed when the button clicked matches the list of names provided by the user.

Value

No return values

Note

This code is designed as an example of how to set up a Really Poor Man's GUI. The demo argument is supplied so that this code will run without user input, as when creating a checks for package construction.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

whichbutt, rowBUTTONS

Examples

```
data(volcano)
attr(volcano, 'dx') =10
attr(volcano, 'dy') =10
mybutts = c("DONE", "REFRESH", "rainbow", "topo", "terrain", "CONT",
"XSEC","PS")
### in the following change demo=FALSE to get interactive behavior
XSECDEM(volcano, mybutts, demo=TRUE)
```

xyztoi

Matrix Index to Vector index

Description

Given ix, iy, iz index get I.

```
xyztoi(ix, iy,iz,nx, ny, nz)
```

54 ymarginfo

Arguments

ix	index to col vector
iy	index to row vector
iz	index to (depth) layer vector
nx	number of blocks in x axis
ny	number of blocks in y axis
nz	number of blocks in z axis (layers)

Value

i Index of matrix

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

itoxyz

Examples

```
k = itoxyz(24, 6, 6, 1)
xyztoi(k$ix, k$iy, k$iz, 6, 6, 1)

nx = 20
ny = 20
nz = 40

k = itoxyz(2440, nx, ny, nz)
xyztoi(k$ix, k$iy, k$iz, nx, ny, nz )
```

ymarginfo

Get information on Y-margin for plotting

Description

Get information on Y-margin for plotting

```
ymarginfo(SIDE = 1, s1 = 0.1, s2 = 0.8)
```

ymarginfo 55

Arguments

SIDE	plotting side 1,2,3,4
s1	lower percent of margin to return
s2	upper percent of margin to return

Details

Function uses par to help determine how to plot objects in the margins.

Value

vector c(a, b) giving coordinates in margin worth plotting.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

par

```
plot(c(0,1), c(0,1), type='n')
s1=0.4
s2=0.95
ym = ymarginfo(SIDE=1, s1=s1, s2=s2)
```

Index

* aplot	setXMCOL, 42
circle, 10	shade.col, 42
ColorScale, 11	slideshow, 44
label.it, 30	textrect, 45
rainbow.colors, 36	VVwheel, 47
see.pal, 39	wheelrgb, 48
* hplot	writeCOMMENT, 50
HOZscale, 22	XPAND, 51
SHOWPAL, 43	xyztoi, 53
VVwheel, 47	ymarginfo, <mark>54</mark>
* iplot	* package
aGETXprofile, 3	RPMG-package, 2
chooser, 8	-CETV
ilocator, 25	aGETXprofile, 3
rowBUTTONS, 37	breakline.index, 5
whichbutt, 49	butdoc, 7
XSECDEM, 52	bacace, 7
* misc	chooser, 8
breakline.index,5	circle, 10
butdoc, 7	ColorScale, 11
colwheel, 16	colwheel, 16
cprint, 17	cprint, 17
endSCALE, 17	
fmod, 19	endSCALE, 17
Gcols, 20	0 1 10
getmem, 21	fmod, 19
helpcolors, 22	Gcols, 20
HOZtics, 24	getmem, 21
itoxyz, 26	getillelli, 21
jpng, 27	helpcolors, 22
jpostscript, 28	HOZscale, 22
local.file, 30	HOZtics, 24
meshgrid, 31	,
OPTREPLOT, 32	ilocator, 25
pastel.colors, 34	itoxyz, <mark>26</mark>
pickcolors, 35	
RESCALE, 36	jpdf (jpng), 27
SELOPT, 39	jpng, 27
sepia.colors,41	jpostscript, 28

INDEX 57

```
label.it, 30
local.file, 30
meshgrid, 31
myhcl.colors(sepia.colors), 41
OPTREPLOT, 32
pastel.colors, 34
pickcolors, 35
rainbow.colors, 36
RESCALE, 36
rowBUTTONS, 37
RPMG (RPMG-package), 2
RPMG-package, 2
see.pal, 39
SELOPT, 39
sepia.colors, 41
setXMCOL, 42
shade.col, 42
SHOWPAL, 43
showtopopal (SHOWPAL), 43
slideshow, 44
textrect, 45
VVwheel, 47
wheelrgb, 48
whichbutt, 49
writeCOMMENT, 50
writeCOMMENT2 (writeCOMMENT), 50
XPAND, 51
XSECDEM, 52
xyztoi, 53
ymarginfo, 54
```