0.1 Séries de Taylor et de Riemann

On peut fabriquer des séries à partir des formules de Taylor.

Exemple 0.1. La série $(\sum_{n=0}^{+\infty} \frac{1}{n!})$ converge et $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.

On écrit la formule de Taylor Lagrange entre 0 et 1 à l'ordre $n \in \mathbb{N}$ pour la fonction $x \mapsto e^x$:

$$e^{1} = \sum_{k=0}^{n} \frac{e^{0}}{k!} (1-0)^{k} + \frac{e^{c}}{(n+1)!} (1-0)^{n+1}$$
$$= \sum_{k=0}^{n} \frac{1}{k!} + \frac{e^{c}}{(n+1)!}$$

 $\begin{array}{l} o\grave{u}\ c\in]0,1[\ et\ |e-\sum\limits_{k=0}^{n}\frac{1}{k!}|=\frac{e^{c}}{(n+1)!}\leq \frac{e}{(n+1)!}\rightarrow 0\ Donc\ par\ le\ th\acute{e}or\grave{e}me\\ des\ gendarmes\ e-\sum\limits_{k=0}^{n}\frac{1}{k!}\rightarrow 0 \implies \sum\limits_{k=0}^{n}\frac{1}{k!}\rightarrow e. \end{array}$

Définition 0.1. Série de Riemann

Pour $\alpha \in \mathbb{R}$, on appelle **série de Riemann** la série $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$.

Proposition 0.1: Convergence des séries de Riemann

La série de Riemann converge si et seulement si $\alpha > 1$.

Démonstration 0.1.

Pour $\alpha \geq 2$ c'est déjà fait.

Pour $\alpha \in]1,2[$, poseons $f_{\alpha}: x \mapsto \frac{x^{1-\alpha}}{1-\alpha} \ (donc \ f_{\alpha}'(x) = \frac{1}{x^{\alpha}}).$

En utilisant le théorème des accroissements finis sur [n, n+1].

$$\exists c_n \in]n, n+1[, f_{\alpha}(n+1) - f_{\alpha}(n) = f'_{\alpha}(c_n)(n+1-n) = \frac{1}{c_n^{\alpha}}$$

Comme $c_n < n+1 \implies c_n^{\alpha} < (n+1)^{\alpha}$ et que la fonction $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante sur \mathbb{R}_+^* , on a:

$$f_{\alpha}(n+1) - f_{\alpha}(n) = \frac{1}{c_n^{\alpha}} > \frac{1}{(n+1)^{\alpha}}$$

En sommant pour n allant de 1 à N:

$$\sum_{n=1}^{N} \frac{1}{(n+1)^{\alpha}} < \sum_{n=1}^{N} \left(f_{\alpha}(n+1) - f_{\alpha}(n) \right)$$
$$= f_{\alpha}(N+1) - f_{\alpha}(1) \text{ (par t\'elescopage)}$$

Autrement dit:

$$\sum_{n=2}^{N+1} \frac{1}{n^{\alpha}} < \frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

$$< \frac{1}{\alpha-1} \left(1 - \frac{1}{(N+1)^{\alpha-1}} \right)$$

On décale l'indice de sommation:

$$S_N = \sum_{n=1}^N \frac{1}{n^{\alpha}} = 1 + \sum_{n=2}^N \frac{1}{n^{\alpha}}$$
$$= 1 + \sum_{n=1}^{N-1} \frac{1}{(n+1)^{\alpha}}$$
$$< 1 + \sum_{n=1}^N \frac{1}{(n+1)^{\alpha}}$$

Ainsi

$$S_N < 1 + \sum_{n=1}^N \frac{1}{(n+1)^{\alpha}}$$

$$< 1 + \frac{1}{\alpha - 1} \left(1 - \frac{1}{(N+1)^{\alpha - 1}} \right)$$

$$< 1 + \frac{1}{\alpha - 1}$$

la suite (S_N) est croissante et majorée donc elle converge.

Définition 0.2.

On définit la somme de deux séries $(\sum_{n=0}^{+\infty} u_n)$ et $(\sum_{n=0}^{+\infty} v_n)$ par:

$$\left(\sum_{n=0}^{+\infty} u_n\right) + \left(\sum_{n=0}^{+\infty} v_n\right) = \left(\sum_{n=0}^{+\infty} (u_n + v_n)\right)$$

On définit la multiplication par un scalaire $\lambda \in \mathbb{K}$ par:

$$\lambda \left(\sum_{n=0}^{+\infty} u_n \right) = \left(\sum_{n=0}^{+\infty} \lambda u_n \right)$$

Proposition 0.2: Espace vectoriel des séries numériques convergentes

Soit $E = \left\{ \left(\sum_{n=0}^{+\infty} u_n \right) | u_n \in \mathbb{K}, \left(\sum_{n=0}^{+\infty} u_n \right) \text{ converge} \right\}.$ alors E est un \mathbb{K} -espace vectoriel (pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et

$$L: E \to \mathbb{K}, \left(\sum_{n=0}^{+\infty} u_n\right) \mapsto \sum_{n=0}^{+\infty} u_n$$

est linéaire.

Démonstration à faire, mais c'est facile.