§1.2 线性变换及其矩阵表示

定义: T 称为由 V^n 到 V^m 的变换 (映射), 如果 T 将 V^n 中的向量映射到 V^m 中的向量, 写作

$$T: \alpha \in V^n \to \beta = T\alpha \in V^m$$

其中 β 为 α 在 T 下的<mark>像</mark>, α 称为 β 的原像.

变换的例子

- $T: \alpha = (x_1, x_2)^T \in \mathbb{R}^2 \to \beta = (0, x_2)^T \in \mathbb{R}^2$
- $T: \alpha = (x_1, x_2)^T \in \mathbb{R}^2 \to \beta = (2x_1, 2x_2)^T \in \mathbb{R}^2$
- $T: \alpha = p(t) \in \mathbf{P}(t) \rightarrow \beta = (p(t))^2 \in \mathbf{P}(t)$

线性变换

定义: T 为由 V^n 到 V^m 的变换, 如果对于任意的 $k \in F$, $\alpha, \beta \in V^n$, 都有

$$T(\alpha + \beta) = T\alpha + T\beta, \quad T(k\alpha) = kT\alpha,$$

即变换 T 与线性运算可交换, 则 T 是线性变换.

特别的,当 $T \in V^n$ 到自身的一个线性变换,则称 $T \in V^n$ 的线性变换.

例 1. 给定 $A \in F^{m \times n}$, 定义由 V^n 到 V^m 的变换 T 为

$$T: x \in F^n \to y = Ax \in F^m$$
.

由矩阵运算的性质得知, 易证 T是一个线性变换.

例 2. 给定 $P \in F^{m \times m}$ 和 $Q \in F^{n \times n}$, 定义由 V^n 到 V^m 的变换 T 为

$$T: X \in F^{m \times n} \rightarrow Y = PXQ \in F^{m \times n}$$
.

由矩阵运算的性质得知, 易证 T 是一个线性变换.

例 3. 对于 $\mathbf{P}_n(t)$ 中的多项式求导运算 $\frac{d}{dt}$, 记为 D, 即

$$Dp(t) = \frac{d}{dt}p(t), \quad p(t) \in \mathbf{P}_n(t)$$

因求导运算和线性运算可以交换顺序, 可知 D 是 $\mathbf{P}_n(t)$ 的一个线性变换.

例 4. V的

- 恒等变换 $I: I\alpha = \alpha \forall \alpha \in V$
- 零变换 $O: O\alpha = 0, \forall \alpha \in V$

都是 V 的线性变换.

线性变换的一些简单性质:

- (1). $O\alpha = 0, \forall \alpha \in V$. $T0 = 0, T(-\alpha) = -T\alpha, \forall \alpha \in V$.
- (2). $T(\sum_{i=1}^{r} k_i \alpha_i) = \sum_{i=1}^{r} k_i T \alpha_i$, 即任意一组 向量的线性组合的像,等于它们的像的线性组合.
- (3). 一组线性相关的向量 α₁, α₂, ..., α_r, 它们在 T下的像 Tα₁, Tα₂, ..., Tα_r 也线性相关.
 注意: 线性无关的一组向量在 T下的像可能是线性相关的, 例如零变换把线性无关的向量都映射为零向量.

线性变换的矩阵表示

设 T 是 V^n 到 V^m 的线性变换, 在 V^n 和 V^m 中分别取基 $\mathcal{B}_{\alpha} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ 和 $\mathcal{B}_{\beta} = \{\beta_1, \beta_2, ..., \beta_m\}$, 则 α_j 的像 $T\alpha_j$ $(1 \leq j \leq n)$ 可由基 \mathcal{B}_{β} 唯一线性表出:

$$T\alpha_{j} = \sum_{i=1}^{m} \beta_{i} a_{ij} = (\beta_{1}, \beta_{2}, ..., \beta_{m}) \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}.$$

将 $T\alpha_i$ 按 j = 1, 2, ..., n 的顺序排列, 则有

$$(T\alpha_1,..,T\alpha_n) = (\beta_1,..,\beta_m) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

令 $T\mathcal{B}_{\alpha} := (T\alpha_1, T\alpha_2, ..., T\alpha_n)$, 则上式可简写为

$$T\mathcal{B}_{\alpha} = \mathcal{B}_{\beta}A$$

则这称为<mark>线性变换 T 的矩阵表示</mark>, 其中 A 称为 T 在基偶 $\{\mathcal{B}_{\alpha}, \mathcal{B}_{\beta}\}$ 下的矩阵.

特别的, 若 $V^n = V^m$ 且 $\mathcal{B}_{\alpha} = \mathcal{B}_{\beta}$, 则 $T\mathcal{B}_{\alpha} = \mathcal{B}_{\alpha}A$, 此时称 n 阶方阵 A 为 T 在基 \mathcal{B}_{α} 下的矩阵.

例 6. 求 $P_n(t)$ 的线性变换 $D = \frac{d}{dt}$ 在基 $\mathcal{B} = \{1, t, ..., t^n\}$ 下的矩阵.

解: 由
$$D\mathcal{B} = \mathcal{B}A$$
, 其中 $D\mathcal{B} = (0, 1, 2t, ..., nt^{n-1})$, 即 $D\mathcal{B} = (0, 1, 2t, ..., nt^{n-1}) = (1, t, t^2, ..., t^n)A$, 由 $jt^{j-1} = \sum_{i=1}^n a_{ij}t^i$, 知 $a_{j-1,j} = j$ 而其他 a_{ij} 为零.

可得
$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

例 7 求 $P_2(t)$ 到 $P_3(t)$ 的线性变换 J

$$J(p(t)) = \int_0^t p(t)dt$$

基偶 $\{\mathcal{B}_1 = \{1, t, t^2\}, \mathcal{B}_2 = \{1, t, \frac{t^2}{2}, \frac{t^3}{3}\}\}$ 下的矩阵.

解: 由
$$J\mathcal{B}_1 = \mathcal{B}_2 A$$
, 其中 $J\mathcal{B}_1 = (t, \frac{t^2}{2}, \frac{t^3}{3})$, 即 $J\mathcal{B}_1 = (t, \frac{t^2}{2}, \frac{t^3}{3}) = (1, t, \frac{t^2}{2}, \frac{t^3}{3}) A$,

可得
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

由 T 的矩阵表示,确定 T 的像的坐标.

设 $\alpha \in V^n$, 则可由 \mathcal{B}_{α} 线性表出,

$$\alpha = \sum_{i=1}^{n} x_i \alpha_i = \mathcal{B}_{\alpha} x$$

即 α 在 \mathcal{B}_{α} 下的坐标为 x 对于线性变换 T,

$$T\alpha = \sum_{i=1}^{n} x_i T\alpha_i = T\mathcal{B}_{\alpha} x$$

将 $T\mathcal{B}_{\alpha}$ 用 V^m 的基 \mathcal{B}_{β} 表出, 若 $T\mathcal{B}_{\alpha} = \mathcal{B}_{\beta}A$, 则

$$T\alpha = \mathcal{B}_{\beta}Ax$$

即 $T\alpha$ 在 B_{β} 下的坐标为 Ax.

定理: 设 $\mathcal{B}_{\alpha} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ 和 $\mathcal{B}_{\beta} = \{\beta_1, \beta_2, ..., \beta_n\}$ 分别是 V^n 和 V^m 的基, 对于 给定的 $m \times n$ 矩阵 $A = [a_{ij}]$, 则存在唯一的从 V^n 到 V^m 的线性变换 T, 使得它在 $\{\mathcal{B}_{\alpha}, \mathcal{B}_{\beta}\}$ 下的矩 阵是 A, 即 $T\mathcal{B}_{\alpha} = \mathcal{B}_{\beta}A$.

证明: 先证明线性变换 T 的存在性. 对于任意 $\alpha \in V^n$, 设其在基 \mathcal{B}_{α} 下的坐标为 x, 即 $\alpha = \mathcal{B}_{\alpha}x$. 现定义变换 T 将 α 映为 $\mathcal{B}_{\beta}Ax$, 即

$$T: \alpha = \mathcal{B}_{\alpha} \mathbf{x} \to \beta = \mathcal{B}_{\beta} A \mathbf{x}$$

我们仍需验证 T 是线性变换.

证明 (续):验证 T 是线性变换.

设 V^n 中的 $\alpha = \mathcal{B}_{\alpha} x$ 和 $\gamma = \mathcal{B}_{\alpha} z$, 而 $k, l \in F$, 则

$$T(k\alpha + l\gamma) = T(k\mathcal{B}_{\alpha}x + l\mathcal{B}_{\alpha}z)$$

$$= T(\mathcal{B}_{\alpha}(kx + lz))$$

$$= \mathcal{B}_{\beta}A(kx + lz)$$

$$= k\mathcal{B}_{\beta}Ax + l\mathcal{B}_{\beta}Az$$

$$= kT(\mathcal{B}_{\beta}x) + lT(\mathcal{B}_{\beta}z)$$

$$= kT\alpha + lT\gamma$$

则 T 是线性变换, 且由 T 定义易得 $T\mathcal{B}_{\alpha} = \mathcal{B}_{\beta}A$.

证明 (续): 再证明线性变换 T 的唯一性. 如果存在两个线性变换 T_1 和 T_2 , 满足

$$T_1\mathcal{B}_{\alpha}=T_2\mathcal{B}_{\alpha}=\mathcal{B}_{\beta}A.$$

那么线性变换 $\tilde{T} = T_1 - T_2$ 满足对于某个 \tilde{A} 有

$$\tilde{T}\mathcal{B}_{\alpha} = \{0, 0, ..., 0\} = \mathcal{B}_{\beta}\tilde{A}$$

这里 \tilde{A} 只能为零, 即 \tilde{T} 将任何向量映为 0. 从而

$$T_1\alpha = (T_2 + \tilde{T})\alpha = T_2\alpha + \tilde{T}\alpha = T_2\alpha$$

对于任意 α 成立, 因此映射唯一.

 V^n 到 V^m 的线性变换 T, 在给定的基偶 $\{\mathcal{B}_{\alpha}, \mathcal{B}_{\beta}\}$ 下, 对应一个矩阵 A. 反之, 对于同样的空间和基偶, 如果给定矩阵 A, 则对应一个线性变换 T.

接下来的问题:

- 如果取 Vⁿ 和 V^m 的另一组基 {B_{α'}, B_{β'}}, 那
 么 T 对应另外一个矩阵 B, 那么矩阵 A 和 B 之间有什么关系?
- 怎样选取 V" 和 V" 的基, 使得 T 的矩阵表示尽可能简单?

设 n 阶方阵 P 是基 \mathcal{B}_{α} 到 $\mathcal{B}_{\alpha'}$ 的变换矩阵, 而 n 阶方阵 Q 是基 \mathcal{B}_{β} 到 $\mathcal{B}_{\beta'}$ 的变换矩阵, $m \times n$ 矩阵 A, B 分别是 T 在基偶 $\{\mathcal{B}_{\alpha}, \mathcal{B}_{\beta}\}$ 和 $\{\mathcal{B}_{\alpha'}, \mathcal{B}_{\beta'}\}$ 下的矩阵, 那么由关系式

$$\mathcal{B}_{lpha'} = \mathcal{B}_{lpha} P, \quad \mathcal{B}_{eta'} = \mathcal{B}_{eta} Q, \ T\mathcal{B}_{lpha} = \mathcal{B}_{eta} A, \quad T\mathcal{B}_{lpha'} = \mathcal{B}_{eta'} B$$

可以推出 $\mathcal{B}_{\beta}AP = T\mathcal{B}_{\alpha}P = T\mathcal{B}_{\alpha'} = \mathcal{B}_{\beta'}B = \mathcal{B}_{\beta}QB$

$$\mathcal{B}_{\beta}(AP - QB) = 0$$

因 \mathcal{B}_{β} 是基, 则 $AP = QB, A = QBP^{-1}, B = Q^{-1}AP$

如果 $A = QBP^{-1}$ 或 $B = Q^{-1}AP$, 其中 P, Q 为可逆方阵, 那么称 A 和 B 是相抵 (或等价)的. 如上证明了, 一个 V^n 到 V^m 的线性变换在不同基偶下的矩阵是相抵的.

假如 $V^m = V^n$, $\mathcal{B}_{\alpha} = \mathcal{B}_{\beta}$, $\mathcal{B}_{\alpha'} = \mathcal{B}_{\beta'}$, 那么 Q = P, 则有 $A = PBP^{-1}$. 此时方阵 A = B = B 是相似的. 即一个 V^n 到自身的线性变换在不同基偶下的矩阵是相似的.

之前的第二个问题等价于: 与 A 相抵 (或相似) 的最简单的矩阵是什么?

定义: 设 T 是从 V^n 到 V^m 的线性变换, 则

$$N(T) := \{ \alpha \in V^n | T\alpha = 0 \}$$

$$R(T) := \{ \beta \in V^m | \beta = T\alpha, \alpha \in V^n \}$$

分别称为T的核和T的值域.

- N(T) 是 Vⁿ 的一个子空间,也被称为 T 的零空间,其维数称为 T 的零度,记作null T;
- R(T) 是 V^m 的一个子空间,也被称为 T 的值 空间,其维数称为 T 的秩,记作rank T.

一个线性变换 T 将 V^n 中的任一向量 α 映射为 V^m 的向量 $T\alpha$. V^n 的每一个向量都有在 T 下的像,但未必 V^m 的每一个向量都有原像. 这发生在rank T < m的时候,例如:

- $T: \alpha = (x_1, x_2)^T \in \mathbb{R}^2 \to \beta = (0, x_2)^T \in \mathbb{R}^2$
- $T: \alpha = p(t) \in \mathbf{P}_n(t) \to \beta = \frac{d}{dt}p(t) \in \mathbf{P}_n(t)$

但可以通过重新定义合适的空间 $T: V^n \to R(T)$,使 R(T) 中每一个向量都有原像

- $T: \alpha = (\mathbf{x}_1, \mathbf{x}_2)^T \in \mathbb{R}^2 \to \beta = (0, \mathbf{x}_2)^T \in \{0\} \times \mathbb{R}$
- $T: \alpha = p(t) \in \mathbf{P}_n(t) \to \beta = \frac{d}{dt}p(t) \in \mathbf{P}_{n-1}(t)$

定理 设 T 是从 V^n 到 V^m 的线性变换, 则

null T + rank T = n

证明: 若 null T = k, 并设 $\mathcal{B}_0 = \{\alpha_1, \alpha_2, ..., \alpha_k\}$ 是 N(T) 的一组基. 因为 $N(T) \subset V^n$, 所以可以把这 k 个向量扩充为 V^n 的基 $\mathcal{B}_1 = \{\alpha_1, \alpha_2, ..., \alpha_k, \alpha_{k+1}, ..., \alpha_n\}$. 我们将证明 $\{T\alpha_{k+1}, T\alpha_{k_2}, ..., T\alpha_n\}$ 是 R(T) 的一组基. 从而得到 rank T = n - k.

证明 (续): 任取 $\alpha \in V^n$, 则 α 可由 \mathcal{B}_1 线性表出: $\alpha = \sum_{i=1}^n b_i \alpha_i$. 又因为 $\alpha_i \in N(T)$ $(1 \le i \le k)$, 则

$$T\alpha = \sum_{i=1}^{n} b_i T\alpha_i = \sum_{i=k+1}^{n} b_i T\alpha_i.$$

即 R(T) 中的向量 $T\alpha$ 可由 $\{T\alpha_{k+1}, T\alpha_{k_2}, ..., T\alpha_n\}$ 线性表出.

仍需证明 $\{T\alpha_{k+1}, T\alpha_{k_2}, ..., T\alpha_n\}$ 线性无关.

证明 (续): 假如存在 $c_{k+1}, c_{k_2}, ..., c_n \in F$ 使得

$$\sum_{i=k+1}^{n} c_i T \alpha_i = 0.$$

则有 $T(\sum_{i=k+1}^{n} c_i \alpha_i) = 0$, 从而 $\sum_{i=k+1}^{n} c_i \alpha_i \in N(T)$.

于是 $\sum_{i=k+1}^{n} c_i \alpha_i$ 可由 \mathcal{B}_0 线性表出, 同时也由 $\alpha_{k+1},...,\alpha_n$ 线性表出. 但 \mathcal{B}_0 与 $\alpha_{k+1},...,\alpha_n$ 线性 无关, 故 $\sum_{i=k+1}^{n} c_i \alpha_i = 0$, 即 $c_{k+1} = ... = c_n = 0$. 于是 $\{T\alpha_{k+1}, T\alpha_{k_2},..., T\alpha_n\}$ 线性无关. 综上, 这是 R(T) 的一组基, 则定理得证.

注:

若 $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ 是 N(T) 的一组基, 并被扩充为 V^n 的基 $\mathcal{B}_{\alpha} = \{\alpha_{k+1}, \alpha_{k+2}, ..., \alpha_n, \alpha_1, \alpha_2, ..., \alpha_k, \}$. 由定理知 $\{T\alpha_{k+1}, T\alpha_{k+2}, ..., T\alpha_n\}$ 是 R(T) 的一组基, 也可以被扩充为 V^m 中的一组基 $\mathcal{B}_{\beta} = \{T\alpha_{k+1}, T\alpha_{k+2}, ..., T\alpha_n, \beta_1, \beta_2, ..., \beta_{k+m-n}\}$.

则 T 在基偶 $\{\mathcal{B}_{\alpha},\mathcal{B}_{\beta}\}$ 下的矩阵是

$$\left(\begin{array}{cc}I_{(n-k)}&O_{(n-k)\times k}\\O_{(m+k-n)\times (n-k)}&O_{(m+k-n)\times k}\end{array}\right).$$

其中 I_{n-k} 为 (n-k) 阶单位阵, O 为零矩阵.

再次回顾例子

- $T: \alpha = (x_1, x_2)^T \in \mathbb{R}^2 \to \beta = (0, x_2)^T \in \mathbb{R}^2$
- $T: \alpha = p(t) \in \mathbf{P}_n(t) \to \beta = \frac{d}{dt}p(t) \in \mathbf{P}_n(t)$

第一个例子中 $N(T) = \text{span}\{(1,0)^T\}$, null T = 1. 对应的 rank T = 2 - 1 = 1 < 2.

第二个例子中 $N(T) = \text{span}\{1\}$, null T = 1. 对应的 rank T = (n+1) - 1 = n < n+1.

另, 虽 dimN(T) + dimR(T) = nullT + rankT = n 但 N(T) + R(T) 不一定等于 V^n .