

Reminder

Text Generation

Machine Translation Example

RNN Encoder-Decoder Model:

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation (2014, Cho et al.)

RNN Encoder-Decoder Model:

Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation (2014, Cho et al.)

$$p(y_1, \dots, y_{T'}|x_1, \dots, x_T)$$

given input sequence x, model computes output sequence y's conditional distribution.

T!= T'

$$h_{< t>} = f(h_{< t-1>}, y_{t-1}, c)$$

h_<t> = decoder hidden state at time t
c = encoders' summary vector

$$P(y_t|y_{t-1},y_{t-2},\ldots,y_1,c) = g(h_{< t>},y_{t-1},c)$$

f and g is activation function. g must produce probabilities.

RNN Encoder-Decoder Model:

Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation (2014, Cho et al.)

$$\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y_n | x_n)$$

two components of the proposed model are jointly trained to maximize the conditional log-likelihood

RNN Encoder-Decoder

nice to meet you

만나서 반갑습니다

Sequence to Sequence Learning with Neural Networks (2014, Sutskever et al.)

input sequence: ABC -> encoder

(objective) output sequence: WXYZ -> decoder

Sequence to Sequence Learning with Neural Networks (2014, Sutskever et al.)

difficult to train the RNN (due to long term dependency) → **LSTM**

<EOS> symbol enables the model to define a distribution over *sequences* of all possible lengths

$$p(y_1, \dots, y_{T'} | x_1, \dots, x_T) = \prod_{t=1}^{T'} p(y_t | v, y_1, \dots, y_{t-1})$$

seq2seq

we want *conditional probability* of output sequence by given input sequence

Text Generation

Teacher Forcing

With Teacher Forcing

Code Review

seq2seq

seq2seq

Attention Visualizations

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Neural Machine Translation by Jointly Learning to Align and Translate (2014, Bahdanau et al.)

$$p(y_i|y_1,...,y_{i-1},x) = g(y_{i-1},s_i,c_i)$$

each conditional probability at decoder rnn cell

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

s_i is an RNN hidden state for time i

$$(h_1, \ldots, h_{T_x})$$

encoder maps the input sentence into a sequence of annotations context vector c_i depends on this.

★ each annotation h_i contains information about the whole input sequence with a strong focus on the parts surrounding the i_th word of the input sequence.

Neural Machine Translation by Jointly Learning to Align and Translate (2014, Bahdanau et al.)

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

$$(h_1, \dots, h_{T_x})$$

$$(h_1, \dots, h_{T_x})$$

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

context vector c_i can be described as weighted sum of annotaions hi.

$$\alpha_{ij} = \frac{exp(e_{ij})}{\sum_{k=1}^{T_x} exp(e_{ik})} \qquad \text{i = decoder i-th time step} \\ \text{j = input sequences' j-th annotation}$$

$$e_{ij} = a(s_{i-1}, h_j)$$

a is an alignment model.

scores how well the inputs around position j and the output at position i match.

Neural Machine Translation by Jointly Learning to Align and Translate (2014, Bahdanau et al.)

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

alignment model a

$$e_{ij} = a(s_{i-1}, h_j)$$

feed-forward neural network!

Neural Machine Translation by Jointly Learning to Align and Translate (2014, Bahdanau et al.)

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

bi-directional RNN

→ not only the proceding words, but also the following words.

$$(\overrightarrow{h}_1,\cdots,\overrightarrow{h}_{T_x})$$

$$(\overleftarrow{h}_1,\cdots,\overleftarrow{h}_{T_x})$$

forward hidden state

backward hidden state

$$h_j = \left[\overrightarrow{h}_j^ op; \overleftarrow{h}_j^ op
ight]^ op$$

concatenation

$$e_{ij} = a(s_{i-1}, h_j)$$

dot-product attention score

$$a(s_{i-1}, h_j) = s_{i-1}^T h_j$$

$$\widetilde{s_t} = tanh(W_c v_t + b_c)$$

$$\widehat{y_t} = Softmax(W_y \widetilde{s_t} + b_y)$$

Attention Score function

이름	스코어 함수	Defined by
dot	$score(s_t,\ h_i) = s_t^T h_i$	Luong et al. (2015)
$scaled\ dot$	$score(s_t,\ h_i) = rac{s_t^T h_i}{\sqrt{n}}$	Vaswani et al. (2017)
general	$score(s_t,\ h_i) = s_t^T W_a h_i$ // 단, W_a 는 학습 가능한 가중치 행렬	Luong et al. (2015)
concat	$score(s_t,\ h_i) = W_a^T\ tanh(W_b[s_t;h_i])score(s_t,\ h_i) = W_a^T\ tanh(W_bs_t + W_ch_i)$	Bahdanau et al. (2015)
location-base	$lpha_t = softmax(W_a s_t)$ // $lpha_t$ 산출 시에 s_t 만 사용하는 방법.	Luong et al. (2015)

Scaled Dot-Product Attention

Query: decoder hidden state at time step t

Keys: (all) encoder cells' hidden state

Values: (all) encoder cells' hidden state

$$score(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{n}}$$

$$\alpha_{ij} = \frac{score(s_t, h_i)}{\sum_{k=1}^{T_x} score(s_t, h_k)} \qquad c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

Scaled Dot-Product Attention

Query: decoder hidden state at time step t

Keys: (all) encoder cells' hidden state

Values: (all) encoder cells' hidden state

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$Multihead(Q,K,V) = Concat(head_1, \dots, head_h)W^0$$

where
$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

$$W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$$

$$W^O \in \mathbb{R}^{hd_v \times d_{\mathrm{model}}}$$

$$d_k = d_v = d_{model}/h = 64$$

$$\begin{split} QW_i^Q &= [d_Q \mathsf{x} d_{model}] \mathsf{x} [d_{model} \mathsf{x} d_k] = [d_Q \mathsf{x} d_k] \\ KW_i^K &= [d_K \mathsf{x} d_{model}] \mathsf{x} [d_{model} \mathsf{x} d_k] = [d_K \mathsf{x} d_k] \\ VW_i^V &= [d_V \mathsf{x} d_{model}] \mathsf{x} [d_{model} \mathsf{x} d_v] = [d_V \mathsf{x} d_v] \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ Attention(QW_i^Q, KW_i^K, VW_i^V) &= [d_V \mathsf{x} d_v] \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \qquad \\ Concat(QW_i^Q, KW_i^K, VW_i^V)W^O &= [d_V \mathsf{x} h d_v] \mathsf{x} [h d_v \mathsf{x} d_{model}] = [d_V \mathsf{x} d_{model}] \end{split}$$

Position-wise Feed-Forward Metworks

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

positional encoding

$$PE_{(pos_2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

- > allow the model to easily learn to attend by relative positions.
- > PE_pos+k can be represented as a linear function of PE_pos.
- > sinusoidal version allow the model to extraploate to sequence lengths longer than the ones encountered when training.

- no more long time dependency
- can emphasize values which are "close" to query
- parallelization (multi-head attention)

과제

- 예시 코드에서 데이터, rnn cell, attention 바꿔 가며 학습해 보기 (nmae score 비교하기)
- 다른 데이터 써도 됨
- scaled dot attention 구현