Generalized Multi-Step Methods

Mathematical Problem:

$$\frac{dy}{dt} = f(y,t) y(t_0) = y_0 t \ge 0$$

All the multi-step (explicit and implicit) and BDF formulae derived so far can be expressed in a general form as follows:

$$\sum_{i=0}^{n+1} \alpha_i \, y_i = h \sum_{i=0}^{n+1} \beta_i \, f_i$$

This will require a set of initial conditions $\{y_0, y_1, y_2, \dots y_n\}$

Next, we shall derive a group of methods that deviate from this general framework!

This is a group of Explicit methods that evaluates f at intermediate points within a time step h, i.e., between n and (n + 1). In generalized form, the method may be expressed as:

$$\int_{y_n}^{y_{n+1}} dy = \int_{t_n}^{t_{n+1}} f(y, t) dt \implies y_{n+1} = y_n + h \sum_{i=0}^{p} \omega_i \phi_i$$

where,

$$\begin{aligned} \phi_0 &= f(y_n, t_n) \\ \phi_1 &= f(y_n + h\alpha_0^1 \phi_0, t_n + \beta_1 h) \\ \phi_2 &= f(y_n + h\alpha_0^2 \phi_0 + h\alpha_1^2 \phi_1, t_n + \beta_2 h) \\ \phi_3 &= f(y_n + h\alpha_0^3 \phi_0 + h\alpha_1^3 \phi_1 + h\alpha_2^3 \phi_2, t_n + \beta_3 h) \end{aligned}$$

• • • • • • • •

$$\phi_i = f\left(y_n + h\sum_{j=1}^{i-1} \alpha_j^i \phi_j, t_n + \beta_i h\right)$$

Example: p = 1

$$y_{n+1} = y_n + \omega_0 h \phi_0 + \omega_1 h \phi_1$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f(y_n + h\alpha_0 \phi_0, t_n + \beta_1 h)$$

Objective: estimate ω_0 , ω_1 , α_0 and β_1 to achieve maximum accuracy, i.e., highest possible order of truncation error

$$\frac{dy}{dt} = f(y,t) \implies \frac{d^2y}{dt^2} = \frac{df}{dt} = \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial t} = f\frac{\partial f}{\partial y} + \frac{\partial f}{\partial t}$$

$$LHS = y_{n+1} = y_n + h \frac{dy_n}{dt} + \frac{h^2}{2!} \frac{d^2y_n}{dt^2} + \frac{h^3}{3!} \frac{d^3y_n}{dt^3} + o(h^4)$$

$$= y_n + hf_n + \frac{h^2}{2!} \left(f_n \frac{\partial f}{\partial y} \Big|_n + \frac{\partial f}{\partial t} \Big|_n \right) + \frac{h^3}{3!} \frac{d^3y_n}{dt^3} + o(h^4)$$

$$y_{n+1} = y_n + \omega_0 h \phi_0 + \omega_1 h \phi_1$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f(y_n + h\alpha_0 \phi_0, t_n + \beta_1 h)$$

$$\begin{split} &\phi_{0}=f(y_{n},t_{n})=f_{n}\\ &\phi_{1}\\ &=f_{n}+\left(\alpha_{0}hf_{n}\frac{\partial f}{\partial y}\Big|_{n}+\beta_{1}h\frac{\partial f}{\partial t}\Big|_{n}\right)\\ &+\left(\alpha_{0}^{2}h^{2}f_{n}^{2}\frac{\partial^{2}f}{\partial y^{2}}\Big|_{n}+2\alpha_{0}\beta_{1}h^{2}f_{n}\frac{\partial f}{\partial y}\Big|_{n}\frac{\partial f}{\partial t}\Big|_{n}+\beta_{1}^{2}h^{2}\frac{\partial^{2}f}{\partial t^{2}}\Big|_{n}\right)+o(h^{3})\\ &RHS\\ &=y_{n}+(\omega_{0}+\omega_{1})hf_{n}+\omega_{1}h^{2}\left(\alpha_{0}f_{n}\frac{\partial f}{\partial y}\Big|_{n}+\beta_{1}\frac{\partial f}{\partial t}\Big|_{n}\right)+\omega_{1}h^{3}\left(\alpha_{0}f_{n}^{2}\frac{\partial^{2}f}{\partial y^{2}}\Big|_{n}\\ &+2\alpha_{0}\beta_{1}f_{n}\frac{\partial f}{\partial y}\Big|_{n}\frac{\partial f}{\partial t}\Big|_{n}+\beta_{1}^{2}\frac{\partial^{2}f}{\partial t^{2}}\Big|_{n}\right)+o(h^{4}) \end{split}$$

$$y_{n+1} = y_n + \omega_0 h \phi_0 + \omega_1 h \phi_1$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f(y_n + h \alpha_0 \phi_0, t_n + \beta_1 h)$$

$$LHS = y_n + hf_n + \frac{h^2}{2!} \left(f_n \frac{\partial f}{\partial y} \Big|_n + \frac{\partial f}{\partial t} \Big|_n \right) + \frac{h^3}{3!} \frac{d^3 y_n}{dt^3} + o(h^4)$$

$$\begin{aligned} & = y_n + (\omega_0 + \omega_1)hf_n + \omega_1 h^2 \left(\alpha_0 f_n \frac{\partial f}{\partial y} \bigg|_n + \beta_1 \frac{\partial f}{\partial t} \bigg|_n \right) + \omega_1 h^3 \left(\alpha_0 f_n^2 \frac{\partial^2 f}{\partial y^2} \bigg|_n \right) \\ & + 2\alpha_0 \beta_1 f_n \frac{\partial f}{\partial y} \bigg|_n \frac{\partial f}{\partial t} \bigg|_n + \beta_1^2 \frac{\partial^2 f}{\partial t^2} \bigg|_n \right) + o(h^4) \\ & \omega_0 + \omega_1 = 1 \qquad \omega_1 \alpha_0 = \frac{1}{2} \qquad \omega_1 \beta_1 = \frac{1}{2} \\ & \beta_1 = \alpha_0, \ \omega_0 = 1 - \frac{1}{2\alpha_0}, \qquad \omega_1 = \frac{1}{2\alpha_0} \rightarrow \quad \text{multiple 2}^{\text{nd}} \text{ order R} - \text{K} \end{aligned}$$

$$y_{n+1} = y_n + \omega_0 h \phi_0 + \omega_1 h \phi_1$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f(y_n + h \alpha_0 \phi_0, t_n + \beta_1 h)$$

$$\beta_1 = \alpha_0, \ \omega_0 = 1 - \frac{1}{2\alpha_0}, \qquad \omega_1 = \frac{1}{2\alpha_0}$$

Therefore, one can derive infinitely many 2nd order R-K method.

Most commonly used are the following three:

✓ 2nd Order Runge-Kutta (aka *Modified Euler*, *Midpoint* method):

$$\alpha_{0} = \frac{1}{2} = \beta_{1}, \qquad \omega_{0} = 0, \qquad \omega_{1} = 1$$

$$y_{n+1} = y_{n} + h\phi_{1}$$

$$\phi_{0} = f(y_{n}, t_{n}) \qquad \phi_{1} = f\left(y_{n} + \frac{1}{2}h\phi_{0}, t_{n} + \frac{1}{2}h\right)$$

✓ 2nd Order Runge-Kutta (aka *Ralston's* method):

$$\alpha_0 = \frac{3}{4} = \beta_1, \qquad \omega_0 = \frac{1}{3}, \qquad \omega_1 = \frac{2}{3}$$

$$y_{n+1} = y_n + h\left(\frac{\phi_0}{3} + \frac{2\phi_1}{3}\right)$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f\left(y_n + \frac{3}{4}h\phi_0, t_n + \frac{3}{4}h\right)$$

✓ 2nd Order Runge-Kutta (aka *Improved Euler*, *Heun's* method):

$$\alpha_0 = 1 = \beta_1,$$
 $\omega_0 = \frac{1}{2},$ $\omega_1 = \frac{1}{2}$

$$y_{n+1} = y_n + h\left(\frac{\phi_0}{2} + \frac{\phi_1}{2}\right)$$

$$\phi_0 = f(y_n, t_n)$$
 $\phi_1 = f(y_n + h\phi_0, t_n + h)$

Similarly, one can derive multiple 3rd and 4th order R-K methods. Two typically used algorithms for the 3rd and 4th order methods are as follow:

✓ A 3rd Order Runge-Kutta Method:

$$y_{n+1} = y_n + h\left(\frac{1}{6}\phi_0 + \frac{2}{3}\phi_1 + \frac{1}{6}\phi_2\right)$$

$$\phi_0 = f(y_n, t_n)$$

$$\phi_1 = f\left(y_n + \frac{1}{2}h\phi_0, t_n + \frac{1}{2}h\right)$$

$$\phi_2 = f(y_n - h\phi_0 + 2h\phi_1, t_n + h)$$

✓ A 4th Order Runge-Kutta Method:

$$y_{n+1} = y_n + h\left(\frac{1}{6}\phi_0 + \frac{1}{3}(\phi_1 + \phi_2) + \frac{1}{6}\phi_3\right)$$

$$\phi_0 = f(y_n, t_n)$$

$$\phi_1 = f\left(y_n + \frac{1}{2}h\phi_0, t_n + \frac{1}{2}h\right)$$

$$\phi_2 = f\left(y_n + \frac{1}{2}h\phi_1, t_n + \frac{1}{2}h\right)$$

$$\phi_3 = f(y_n + h\phi_2, t_n + h)$$

Let us now see applications of all the methods!

ESO 208A: Computational Methods in Engineering

Ordinary Differential Equation: Application, Startup, Predictor-Corrector

Saumyen Guha

Department of Civil Engineering IIT Kanpur

Ordinary Differential Equation

- ✓ The methods for Initial Value Problems (IVPs):
 - ✓ Multi-step Methods
 - ✓ Explicit: Euler Forward, Adams-Bashforth
 - ✓ Implicit: Euler Backward, Trapezoidal and Adams-Moulton
 - ✓ Backward Difference Formulae (BDF)
 - ✓ Runge-Kutta Methods
- ✓ Applications, Startup, Combination Methods (Predictor-Corrector)
 - ✓ Tools: IVP methods, Richardson's extrapolation, judicious choice!
- ✓ Consistency, Stability, Convergence
- ✓ Application to Systems of ODE
- ✓ Boundary Value Problems (BVPs)
 - ✓ Shooting Method
 - ✓ Direct Methods

The Problem

✓ Let us apply all the methods to the following IVP:

$$\frac{dy}{dt} = -2y + \sin t \qquad y(0) = 1$$

✓ Analytical Solution

$$y = \frac{6}{5}e^{-2t} + \frac{1}{5}(2\sin t - \cos t)$$

Application: Multi-Step Methods (explicit)

$$y_{n+1} = y_n + h \sum_{i=0}^{k} \alpha_i f_{n-i}$$

Some commonly used explicit methods:

Name	k	Method	GTE Order
Euler Forward	0	$y_{n+1} = y_n + hf_n$	h
	1	$y_{n+1} = y_n + h\left(\frac{3}{2}f_n - \frac{1}{2}f_{n-1}\right)$	h^2
Adams- Bashforth	2	$y_{n+1} = y_n + h\left(\frac{23}{12}f_n - \frac{4}{3}f_{n-1} + \frac{5}{12}f_{n-2}\right)$	h^3
	3	$y_{n+1} = y_n + h\left(\frac{55}{24}f_n - \frac{59}{24}f_{n-1} + \frac{37}{24}f_{n-2} - \frac{3}{8}f_{n-3}\right)$	h^4

Euler Forward

$$\frac{dy}{dt} = -2y + \sin t$$

$$y(0) = 1$$

$$y_{n+1} = y_n + h(-2y_n + \sin t_n)$$

$$= y_n(1 - 2h) + h \sin t_n$$

$$y_0 = y(0) = 1; \quad h = 0.4$$

$$y_1 = y(0.4)$$

= 1(1 - 2 × 0.4) + 0.4 sin 0
= 0.2

$$y_2 = y(0.8)$$

= 0.2(1 - 2 × 0.4) + 0.4 sin 0.4
= 0.1958

$$y_3 = y(1.2)$$

= 0.1958(1 - 2 × 0.4)
+ 0.4 sin 0.8 = 0.3261

Continuing like this for 25 time steps to t = 10

Adams-Bashforth (2nd Order)

$$y_0 = y(0) = 1; h = 0.4;$$

From Euler Forward:

$$y_1 = y(0.4) = 0.2$$

$$y_2 = y(0.8)$$
= 0.2
+ 0.4 $\left[\frac{3}{2}(-2 \times 0.2 + \sin 0.4)\right]$
 $\left[-\frac{1}{2}(-2 \times 1 + \sin 0)\right] = 0.5937$

$$y_3 = y(1.2)$$
= 0.5937
+ 0.4 $\left[\frac{3}{2} (-2 \times 0.5937 + \sin 0.8) - \frac{1}{2} (-2 \times 0.2 + \sin 0.4) \right]$
= 0.3138

$$\frac{dy}{dt} = -2y + \sin t \qquad y(0) = 1$$
$$y_{n+1} = y_n + h \left[\frac{3}{2} (-2y_n + \sin t_n) - \frac{1}{2} (-2y_{n-1} + \sin t_{n-1}) \right]$$

Adams-Bashforth (3rd Order)

$$y_0 = y(0) = 1; h = 0.4;$$

 $y_1 = y(0.4) = 0.2 (EF)$
 $y_2 = y(0.8) = 0.5937 (AB2)$

$$y_3 = y(1.2)$$
= 0.5937
+ 0.4 $\left[\frac{23}{12} (-2 \times 0.5937 + \sin 0.8) - \frac{4}{3} (-2 \times 0.2 + \sin 0.4) + \frac{5}{12} (-2 \times 1 + \sin 0) \right]$

 $= -0.9433 \times 10^{-1}$

$$y_4 = y(1.6)$$
= -0.9433 × 10⁻¹
+ 0.4 $\left[\frac{23}{12} (-2 \times -0.9433 \times 10^{-1} + \sin 1.2) - \frac{4}{3} (-2 \times 0.5937 + \sin 0.8) + \frac{5}{12} (-2 \times 0.2 + \sin 0.4) \right] = 1.014$

$$y_{n+1} = y_n$$

$$+ h \left[\frac{23}{12} (-2y_n + \sin t_n) - \frac{4}{3} (-2y_{n-1} + \sin t_{n-1}) + \frac{5}{12} (-2y_{n-2} + \sin t_{n-2}) \right]$$

Adams-Bashforth (4th Order)

$$y_0 = y(0) = 1; h = 0.4;$$

 $y_1 = y(0.4) = 0.2 (EF)$
 $y_2 = y(0.8) = 0.5937 (AB2)$
 $y_3 = y(1.2) = -0.09433 (AB3)$

$$\begin{aligned} y_{n+1} &= y_n \\ &+ h \left[\frac{55}{24} (-2y_n + \sin t_n) - \frac{59}{24} (-2y_{n-1} + \sin t_{n-1}) \right. \\ &+ \left. \frac{37}{24} (-2y_{n-2} + \sin t_{n-2}) - \frac{3}{8} (-2y_{n-3} + \sin t_{n-3}) \right] \end{aligned}$$

Euler Forward, Adams-Bashforth (2nd, 3rd and 4th Order)

Observations: explicit multi-step methods

A few things to note for multi-step explicit methods: Euler Forward, Adams-Bashforth

- ✓ All methods above the **first** order cannot start by themselves:
 - ✓ how to solve the start-up problem?
- ✓ Some strange oscillation showing up in some of the methods (uncontrolled growth, instability):
 - ✓ Is there a system to this?
 - ✓ Can it be predicted? How to know when this will happen?
 - ✓ Can it be avoided? If yes, then how?

Application: Multi-Step Methods (implicit)

$$y_{n+1} \approx \tilde{y}_{n+1} = y_n + h \sum_{i=0}^{k} \beta_i f_{n+1-i}$$

Some commonly used implicit methods:

Name	k	Method	GTE Order
Euler Backward	0	$y_{n+1} = y_n + h f_{n+1}$	h
Trapezoidal	1	$y_{n+1} = y_n + h\left(\frac{1}{2}f_{n+1} + \frac{1}{2}f_n\right)$	h^2
Adams- Moulton	2	$y_{n+1} = y_n + h\left(\frac{5}{12}f_{n+1} + \frac{2}{3}f_n - \frac{1}{12}f_{n-1}\right)$	h^3
	3	$y_{n+1} = y_n + h\left(\frac{3}{8}f_{n+1} + \frac{19}{24}f_n - \frac{5}{24}f_{n-1} + \frac{1}{24}f_{n-2}\right)$	h^4

Euler Backward

$$y_0 = y(0) = 1; \quad h = 0.4$$

$$y_1 = y(0.4) = \frac{1 + 0.4 \sin 0.4}{(1 + 2 \times 0.4)}$$
$$= 0.6421$$

$$y_2 = y(0.8)$$

$$= \frac{0.6421 + 0.4 \sin 0.8}{(1 + 2 \times 0.4)} = 0.5161$$

$$y_3 = y(1.2)$$

$$= \frac{0.5161 + 0.4 \sin 1.2}{(1 + 2 \times 0.4)} = 0.4939$$

$$\frac{dy}{dt} = -2y + \sin t \qquad y(0) = 1$$

$$y_{n+1} = y_n + h(-2y_{n+1} + \sin t_{n+1})$$

$$y_{n+1} = \frac{y_n + h \sin t_{n+1}}{(1+2h)}$$

Continuing like this for 25 time steps to t = 10

Trapezoidal Method

$$y_0 = y(0) = 1; \quad h = 0.4$$

$$y_1 = y(0.4)$$
=
$$\frac{1(1 - 0.4) + 0.2(\sin 0 + \sin 0.4)}{(1 + 0.4)}$$
=
$$0.4842$$

$$y_2 = y(0.8)$$
=
$$\frac{0.4842(1 - 0.4) + 0.2(\sin 0.4 + \sin 0.8)}{(1 + 0.4)}$$
=
$$0.3656$$

$$y_3 = y(1.2)$$
=
$$\frac{0.3656(1 - 0.4) + 0.2(\sin 0.8 + \sin 1.2)}{(1 + 0.4)}$$
=
$$0.3923$$

$$y_{n+1} = y_n + \frac{h}{2} [(-2y_{n+1} + \sin t_{n+1}) + (-2y_n + \sin t_n)]$$

$$y_{n+1} = \frac{y_n (1 - h) + \frac{h}{2} (\sin t_{n+1} + \sin t_n)}{(1 + h)}$$

Adams-Moulton (3rd Order)

$$y_{n+1} = y_n + h \left[\frac{5}{12} (-2y_{n+1} + \sin t_{n+1}) + \frac{2}{3} (-2y_n + \sin t_n) - \frac{1}{12} (-2y_{n-1} + \sin t_{n-1}) \right]$$

$$y_{n+1} = \frac{y_n + h \left[\frac{5}{12} \sin t_{n+1} + \frac{2}{3} (-2y_n + \sin t_n) - \frac{1}{12} (-2y_{n-1} + \sin t_{n-1}) \right]}{\left(1 + \frac{5}{6} h \right)}$$

$$y_0 = y(0) = 1;$$
 $y_1 = y(0.4) = 0.6421 (EB);$ $h = 0.4$

$$y_2 = y(0.8) = \frac{0.6421 + 0.4 \left[\frac{5}{12} \sin 0.8 + \frac{2}{3} (-2 \times 0.6421 + \sin 0.4) - \frac{1}{12} (-2 \times 1 + \sin 0) \right]}{\left(1 + \frac{5}{6} \times 0.4 \right)}$$

$$= 0.4423$$

$$y_3 = y(1.2) = \frac{0.4423 + 0.4 \left[\frac{5}{12} \sin 1.2 + \frac{2}{3} (-2 \times 0.4423 + \sin 0.8) - \frac{1}{12} (-2 \times 0.6421 + \sin 0.4) \right]}{\left(1 + \frac{5}{6} \times 0.4 \right)}$$

= 0.4371

Adams-Moulton (4th Order)

$$\begin{aligned} y_{n+1} &= y_n \\ &+ h \left[\frac{3}{8} (-2y_{n+1} + \sin t_{n+1}) + \frac{19}{24} (-2y_n + \sin t_n) - \frac{5}{24} (-2y_{n-1} + \sin t_{n-1}) + \frac{1}{24} (-2y_{n-2} + \sin t_{n-2}) \right] \\ y_{n+1} &= \frac{y_n + h \left[\frac{3}{8} \sin t_{n+1} + \frac{19}{24} (-2y_n + \sin t_n) - \frac{5}{24} (-2y_{n-1} + \sin t_{n-1}) + \frac{1}{24} (-2y_{n-2} + \sin t_{n-2}) \right]}{\left(1 + \frac{3}{4} h \right)} \\ y_0 &= y(0) = 1; \quad y_1 = y(0.4) = 0.6421 \, (EB); \quad y_2 = y(0.8) = 0.4423 \, (AM3); \quad h = 0.4 \\ y_3 &= y(1.2) \\ &= \frac{1}{\left(1 + \frac{3}{4} \times 0.4 \right)} \left\{ 0.4423 \\ &+ 0.4 \left[\frac{3}{8} \sin 1.2 + \frac{19}{24} (-2 \times 0.4423 + \sin 0.8) - \frac{5}{24} (-2 \times 0.6421 + \sin 0.4) \\ &- \frac{5}{24} (-2 \times 1 + \sin 0) \right] \right\} = 0.4387 \end{aligned}$$

Euler Backward, Trapezoidal, Adams-Moulton (3rd and 4th Order)

Observations: implicit multi-step methods

A few things to note for multi-step implicit methods: Euler Backward, Trapezoidal, Adams-Moulton

- ✓ All methods above the **second** order cannot start by themselves. Accuracy of the higher order method is affected if the starting values are used from the lower order methods.
 - ✓ how to solve the start-up problem?
- \checkmark All implicit multi-step methods may involve solution of non-linear equations (if f contains a non-linear function of the dependent variable y)
 - ✓ Is there a way to avoid this solution of non-linear equations?
- ✓ No numerical oscillations (instability) observed in any of the implicit methods:
 - ✓ Why the same order explicit multi-step methods show oscillation but implicit ones don't?
 - ✓ Do they show oscillation under any conditions or are they oscillationproof under all conditions?

Application: Backward Difference Formulae (BDF)

$$\sum_{i=0}^{k} \gamma_{i} \, y_{n+1-i} = h f_{n+1}$$

1st Order BDF is Euler Backward. Let's apply the rest.

k	Method	GTE Order
1	$y_{n+1} - y_n = h f_{n+1}$	h
2	$\frac{3}{2}y_{n+1} - 2y_n + \frac{1}{2}y_{n-1} = hf_{n+1}$	h^2
3	$\frac{11}{6}y_{n+1} - 3y_n + \frac{3}{2}y_{n-1} - \frac{1}{3}y_{n-2} = hf_{n+1}$	h^3
4	$\frac{25}{12}y_{n+1} - 4y_n + 3y_{n-1} - \frac{4}{3}y_{n-2} + \frac{1}{4}y_{n-3} = hf_{n+1}$	h^4
5	$\frac{137}{60}y_{n+1} - 5y_n + 5y_{n-1} - \frac{10}{3}y_{n-2} + \frac{5}{4}y_{n-3} - \frac{1}{5}y_{n-4} = hf_{n+1}$	h^5
6	$\frac{49}{20}y_{n+1} - 6y_n + \frac{15}{2}y_{n-1} - \frac{20}{3}y_{n-2} + \frac{15}{4}y_{n-3} - \frac{6}{5}y_{n-4} + \frac{1}{6}y_{n-5} = hf_{n+1}$	h^6

BDF (1st and 2nd Order)

$$\frac{dy}{dt} = -2y + \sin t \qquad y(0) = 1$$

✓ 1st Order (Euler Backward)

$$y_{n+1} - y_n = h(-2y_{n+1} + \sin t_{n+1}) y_{n+1} = \frac{y_n + h \sin t_{n+1}}{(1+2h)}$$

✓ 2nd Order

$$\frac{3}{2}y_{n+1} - 2y_n + \frac{1}{2}y_{n-1} = h(-2y_{n+1} + \sin t_{n+1}) \implies y_{n+1} = \frac{2y_n - \frac{1}{2}y_{n-1} + h\sin t_{n+1}}{\left(\frac{3}{2} + 2h\right)}$$

$$h = 0.4; \quad y_0 = y(0) = 1; \quad y_1 = y(0.4) = 0.6421 (EB)$$

$$y_2 = y(0.8) = \frac{2 \times 0.6421 - \frac{1}{2} \times 1 + 0.4 \sin 0.8}{\left(\frac{3}{2} + 2 \times 0.4\right)} = 0.4657$$

$$y_3 = y(1.2) = \frac{2 \times 0.4657 - \frac{1}{2} \times 0.6421 + 0.4 \sin 1.2}{\left(\frac{3}{2} + 2 \times 0.4\right)} = 0.4275$$

BDF (3rd and 4th Order)

$\frac{11}{6}y_{n+1} - 3y_n + \frac{3}{2}y_{n-1} - \frac{1}{3}y_{n-2} = h(-2y_{n+1} + \sin t_{n+1})$ $y_{n+1} = \frac{3y_n - \frac{3}{2}y_{n-1} + \frac{1}{3}y_{n-2} + h\sin t_{n+1}}{\left(\frac{11}{6} + 2h\right)}$ $h = 0.4; \quad y_0 = y(0) = 1; \quad y_1 = y(0.4) = 0.6421 (EB); \quad y_2 = y(0.8) = 0.4657 (BDF2)$ $y_3 = y(1.2) = \frac{3 \times 0.4657 - \frac{3}{2} \times 0.6421 + \frac{1}{3} \times 1 + 0.4 \sin 1.2}{\left(\frac{11}{6} + 2 \times 0.4\right)} = 0.4330$

$$y_{n+1} = \frac{4y_n - 3y_{n-1} + \frac{4}{3}y_{n-2} - \frac{1}{4}y_{n-3} + h\sin t_{n+1}}{\left(\frac{25}{12} + 2h\right)}$$

$$h = 0.4; \quad y_0 = y(0) = 1; \quad y_1 = y(0.4) = 0.6421 (EB);$$

$$y_2 = y(0.8) = 0.4657 (BDF2); \quad y_3 = y(1.2) = 0.4330 (BDF3)$$

$$y_4 = y(1.6) = \frac{4 \times 0.4330 - 3 \times 0.4657 + \frac{4}{3} \times 0.6421 - \frac{1}{4} \times 1 + 0.4 \sin 1.6}{\left(\frac{25}{12} + 2 \times 0.4\right)} = 0.4650$$

BDF (5th and 6th Order)

✓ 5th Order

$$y_{n+1} = \frac{5y_n - 5y_{n-1} + \frac{10}{3}y_{n-2} - \frac{5}{4}y_{n-3} + \frac{1}{5}y_{n-4} + h\sin t_{n+1}}{\left(\frac{137}{60} + 2h\right)}$$

$$h = 0.4; y_0 = y(0) = 1; y_1 = y(0.4) = 0.6421 (EB);$$

$$y_2 = y(0.8) = 0.4657 (BDF2); y_3 = y(1.2) = 0.4330 (BDF3); y_4 = y(1.6) = 0.4650 (BDF4)$$

$$y_5 = y(2.0) = \frac{5 \times 0.4650 - 5 \times 0.4330 + \frac{10}{3} \times 0.4657 - \frac{5}{4} \times 0.6421 + \frac{1}{5} \times 1 + 0.4 \sin 2}{\left(\frac{137}{60} + 2 \times 0.4\right)} = 0.4779$$

✓ 6th Order

$$y_{n+1} = \frac{6y_n - \frac{15}{2}y_{n-1} + \frac{20}{3}y_{n-2} - \frac{15}{4}y_{n-3} + \frac{6}{5}y_{n-4} - \frac{1}{6}y_{n-5} + h\sin t_{n+1}}{\left(\frac{49}{20} + 2h\right)}$$

$$h = 0.4; \quad y_0 = y(0) = 1; \quad y_1 = y(0.4) = 0.6421 \ (EB); \quad y_2 = y(0.8) = 0.4657 \ (BDF2);$$

$$y_3 = y(1.2) = 0.4330 \ (BDF3); \quad y_4 = y(1.6) = 0.4650 \ (BDF4); \quad y_5 = y(2.0) = 0.4779 \ (BDF5)$$

$$y_5 = y(2.4)$$

$$= \frac{6 \times 0.4779 - \frac{15}{2} \times 0.4650 + \frac{20}{3} \times 0.4330 - \frac{15}{4} \times 0.4657 + \frac{6}{5} \times 0.6421 - \frac{1}{6} \times 1 + 0.4 \sin 2.4}{\left(\frac{49}{20} + 2 \times 0.4\right)}$$

$$= 0.4290$$

BDF (1st to 6th Order)

Observations: BDF methods

A few things to note for the BDF:

- ✓ All methods above the **first** order cannot start by themselves. Accuracy of the higher order method is affected if the starting values are used from the lower order methods.
 - ✓ how to solve the start-up problem?
- ✓ All BDF may involve solution of non-linear equations (if f contains a non-linear function of the dependent variable y)
 - ✓ Is there a way to avoid this solution of non-linear equations?
- ✓ No numerical oscillations (instability) observed in any of the BDFs:
 - ✓ Why the same order explicit multi-step methods show oscillation but BDFs do not?
 - ✓ Do they show oscillation under any conditions or are they oscillation-proof under all conditions?

Applications: Runge-Kutta (R-K) Methods

✓2nd Order Runge-Kutta (aka *Ralston's* method):

$$y_{n+1} = y_n + h\left(\frac{\phi_0}{3} + \frac{2\phi_1}{3}\right)$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f\left(y_n + \frac{3}{4}h\phi_0, t_n + \frac{3}{4}h\right)$$

✓ A 4th Order Runge-Kutta Method:

$$y_{n+1} = y_n + h\left(\frac{1}{6}\phi_0 + \frac{1}{3}(\phi_1 + \phi_2) + \frac{1}{6}\phi_3\right)$$

$$\phi_0 = f(y_n, t_n) \qquad \phi_1 = f\left(y_n + \frac{1}{2}h\phi_0, t_n + \frac{1}{2}h\right)$$

$$\phi_2 = f\left(y_n + \frac{1}{2}h\phi_1, t_n + \frac{1}{2}h\right) \qquad \phi_3 = f(y_n + h\phi_2, t_n + h)$$

Runge-Kutta (R-K) Method (2nd Order)

$$\frac{dy}{dt} = -2y + \sin t \qquad y(0) = 1$$

$$y_{n+1} = y_n + h\left(\frac{\phi_0}{3} + \frac{2\phi_1}{3}\right); \ \phi_0 = f(y_n, t_n); \ \phi_1 = f\left(y_n + \frac{3}{4}h\phi_0, t_n + \frac{3}{4}h\right)$$

$$\phi_0 = -2y_n + \sin t_n; \ \phi_1 = -2\left(y_n + \frac{3}{4}h\phi_0\right) + \sin\left(t_n + \frac{3}{4}h\right)$$

$$h = 0.4; \qquad y_0 = y(0) = 1$$

$$\phi_0 = -2 \times 1 + \sin 0 = -2; \phi_1 = -2\left(1 + \frac{3}{4} \times 0.4(-2)\right) + \sin\left(0 + \frac{3}{4} \times 0.4\right)$$
$$= -0.5045; \qquad y_1 = 1 + 0.4\left(\frac{-2}{3} + \frac{2(-0.5045)}{3}\right) = 0.5988$$

$$\phi_0 = -2 \times 0.5988 + \sin 0.4 = -0.8082$$

$$\phi_1 = -2\left(0.5988 + \frac{3}{4} \times 0.4(-0.8082)\right) + \sin\left(0.4 + \frac{3}{4} \times 0.4\right) = -0.06848$$

$$y_2 = 0.5988 + 0.4\left(\frac{-0.8082}{3} + \frac{2(-0.06848)}{3}\right) = 0.4728$$

Runge-Kutta (R-K) Method (4th Order)

$$\begin{aligned} \frac{dy}{dt} &= -2y + \sin t & y(0) &= 1 \\ y_{n+1} &= y_n + h\left(\frac{1}{6}\phi_0 + \frac{1}{3}(\phi_1 + \phi_2) + \frac{1}{6}\phi_3\right) & \phi_0 &= f(y_n, t_n) \\ \phi_1 &= f\left(y_n + \frac{1}{2}h\phi_0, t_n + \frac{1}{2}h\right); & \phi_2 &= f\left(y_n + \frac{1}{2}h\phi_1, t_n + \frac{1}{2}h\right); & \phi_3 &= f(y_n + h\phi_2, t_n + h) \\ \phi_0 &= -2y_n + \sin t_n; & \phi_1 &= -2\left(y_n + \frac{1}{2}h\phi_0\right) + \sin\left(t_n + \frac{h}{2}\right) \\ \phi_2 &= -2\left(y_n + \frac{1}{2}h\phi_1\right) + \sin\left(t_n + \frac{h}{2}\right); & \phi_3 &= -2(y_n + h\phi_2) + \sin(t_n + h) \\ h &= 0.4; & y_0 &= y(0) &= 1 \\ \phi_0 &= -2 \times 1 + \sin 0 &= -2; & \phi_1 &= -2\left(1 + \frac{0.4}{2}(-2)\right) + \sin\left(0 + \frac{0.4}{2}\right) &= -1.10013 \\ \phi_2 &= -2\left(1 + \frac{0.4}{2}(-1.10013)\right) + \sin\left(0 + \frac{0.4}{2}\right) &= -1.4008 \\ \phi_3 &= -2(1 + 0.4(-1.4008)) + \sin(0 + 0.4) &= -0.4899 \\ y_1 &= y(0.4) &= 1 + 0.4\left(\frac{-2}{6} + \frac{(-1.10013 - 1.4008)}{3} + \frac{-0.4899}{6}\right) &= 0.5137 \end{aligned}$$

Runge-Kutta (R-K) Method (4th Order)

$$h = 0.4;$$
 $y_1 = y(0.4) = 0.5137$

$$\phi_0 = -2 \times 0.5137 + \sin 0.4 = -0.6380$$

$$\phi_1 = -2\left(0.5137 + \frac{0.4}{2}(-0.6380)\right) + \sin\left(0.4 + \frac{0.4}{2}\right) = -0.2076$$

$$\phi_2 = -2\left(0.5137 + \frac{0.4}{2}(-0.2076)\right) + \sin\left(0.4 + \frac{0.4}{2}\right) = -0.3798$$

$$\phi_3 = -2\left(0.5137 + 0.4(-0.3798)\right) + \sin(0.4 + 0.4) = -0.00627$$

$$y_3 = y(0.8) = 1 + 0.4 \left(\frac{-0.6380}{6} + \frac{(-0.2076 - 0.3798)}{3} + \frac{-0.00627}{6} \right) = 0.3925$$

Runge-Kutta Methods (2nd and 4th Order)

A few things to note for the R-K:

- ✓ All order methods are explicit!
- ✓ None of them involve solution of non-linear equations
- ✓ None of them have start-up problems!
- ✓ At every time steps, number of FLOPs are larger for the R-K methods!
- ✓ No numerical oscillations (instability) observed in any of the R-Ks:
 - ✓ Why the same order explicit multistep methods show oscillation but R-Ks do not?
 - ✓ Do they show oscillation under any conditions or are they oscillation-proof under all conditions?

Applications: Summary of Concerns

- ✓ Accuracy of the higher order multi-step and BDF methods are affected if the starting values are used from the lower order methods.
 - ✓ How to start these non-self starting algorithms?
- ✓ All implicit methods (multi-step and BDF) may involve solution of non-linear equations (if *f* contains a non-linear function of the dependent variable *y*)
 - ✓ Is there a way to avoid this solution of non-linear equations?
- ✓ Numerical oscillations (instability) observed in some methods and not in some!
 - ✓ Is there a way to predict and therefore, choose correct parameters for algorithm so that the numerical oscillations can be avoided?

How to start the non-self starting algorithms?

Three commonly used options:

- ✓ Passive Richardson's Extrapolation
- ✓ Active Richardson's Extrapolation
 - ✓ With same lower order method
 - ✓ With progressively higher order methods
- ✓ Using the same order Runge-Kutta method!

Active vs. Passive Richardson's Extrapolation

Application: Passive Richardson's extrapolation

Let us apply passive Richardson's extrapolation with Euler-Forward method for starting 4th order Adams-Bashforth, Adams-Moulton and BDF methods for the same problem:

$$\frac{dy}{dt} = -2y + \sin t \qquad \qquad y(0) = 1$$

Euler Forward:

$$y_{n+1} = y_n + h(-2y_n + \sin t_n) = y_n(1-2h) + h\sin t_n$$

For startup, we require the following:

- 4th order Adams-Bashforth: y(0), y(0.4), y(0.8) and y(1.2)
- 4th order Adams-Moulton: y(0), y(0.4) and y(0.8)
- 4th order BDF: y(0), y(0.4), y(0.8) and y(1.2)

We shall apply the Euler Forward method with h = 0.4, 0.2, 0.1 and 0.05 between t = 0 - 1.2

Time	EF(h = 0.4)	Time	EF(h = 0.2)	Time	EF(h = 0.1)	Time	EF(h = 0.05)
0	1	0	1	0	1	0	1
0.4	0.2	0.2	0.6	0.1	0.8	0.05	0.9
0.8	0.195767	0.4	0.399734	0.2	0.649983	0.1	0.812499
1.2	0.326096	0.6	0.317724	0.3	0.539854	0.15	0.736241
		0.8	0.303563	0.4	0.461435	0.2	0.670089
		1	0.325609	0.5	0.40809	0.25	0.613013
		1.2	0.36366	0.6	0.374414	0.3	0.564082
				0.7	0.355996	0.35	0.52245
				0.8	0.349218	0.4	0.48735
				0.9	0.35111	0.45	0.458086
				1	0.359221	0.5	0.434025
				1.1	0.371524	0.55	0.414594
				1.2	0.38634	0.6	0.399269
						0.65	0.387574
						0.7	0.379076
						0.75	0.373379
						0.8	0.370123
						0.85	0.368979
						0.9	0.369645
						0.95	0.371847
						1	0.375333
						1.05	0.379873
						1.1	0.385257
						1.15	0.391292
						1.2	0.397801

Passive Richardson's Extrapolation with Euler Forward: 4th order method start-up

t	EF(0.4)	EF(0.2)	EF(0.1)	EF(0.05)
0	1	1	1	1
0.4	0.2	0.399734	0.4614349	0.487349766
0.8	0.195767	0.303563	0.3492184	0.370123455
1.2	0.326096	0.36366	0.3863398	0.397800748

t	EF(0.4,0.2)	EF(0.2,0.1)	EF(0.1,0.05)	EF(0.4,0.2,0.1)	EF(0.2,0.1,0.05)	EF(h^4)
0	1	1	1	1	1	1
0.4	0.599468	0.523136	0.513265	0.497692	0.509974186	0.511729
0.8	0.411358	0.394874	0.391029	0.389379	0.389746793	0.389799
1.2	0.401223	0.40902	0.409262	0.411619	0.409342235	0.409017

With these four initial values, any 4th order multi-step or BDF methods can start!