Министерство образования и науки Российской Федерации Федеральное государственное автономного образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт Энергетики Высшая школа энергетического машиностроения

Лабораторная работа №6
"Определение собственных частот поперечных колебаний рабочей лопатки, расположенной на вращающемся диске"

Студент гр. 3231303/81001 _____ Степанов С.С. Преподаватель _____ Курнухин А.А.

Санкт-Петербург 2021

СОДЕРЖАНИЕ

1	Исходные данные	2
2	Определение собственной частоты поперечных колебаний рабочей лопат-	
	ки, расположенной на вращающемся диске	3
3	Данные для построения вибрационной диаграммы	4
4	Вибрационная диаграмма	5

1 Исходные данные

Растояние	межлу	лопатками,	ГмΊ	ı
1 ac ioniiiic	можду	JIOIIGI Kawiii,	TAT	

l = 1, 24.

Ширина профиля, [мм]

$$b = 122.$$

Угол установки, [град]

$$\beta_y = 90^{\circ}$$
.

Толщина профиля, [мм]

$$h = 36.$$

Плотность стали, $[кг/м^3]$

$$\rho = 7800.$$

Модуль упругости, [МПа]

$$E = 20000.$$

Какая-то дельта, [мм]

$$\delta = 32$$
.

Какие то коэффициенты

$$k_1 l = 1,98,$$

$$k_2 l = 4,674,$$

$$k_3 l = 7,91.$$

Отношение диаметра к длине

$$\frac{d}{l} = 3, 7.$$

Частота вращения, [Гц]

$$n = 50.$$

2 Определение собственной частоты поперечных колебаний рабочей лопатки, расположенной на вращающемся диске

Эмпирические формулы:

$$F = 0.69 \cdot b \cdot \delta = 0.69 \cdot 122 \cdot 32 = 2693.8 \text{ mm}^2$$

$$Y_{\min} = 0,041 \cdot b \cdot \delta \cdot \left(h^2 + \delta^2
ight) = 0,041 \cdot 122 \cdot 32 \left(36^2 + 32^2
ight) = 371348 \; ext{mm}^4.$$

Собственные частоты, [Гц]

$$p_k = (b_k \cdot l)^2 \cdot \sqrt{\frac{E \cdot Y}{\rho \cdot F \cdot l^4}};$$

$$p_1 = (1,98)^2 \cdot \sqrt{\frac{2 \cdot 10^{11} \cdot 371348 \cdot 10^{-6}}{7800 \cdot 2693, 8 \cdot 1, 24^4}} = 151, 59;$$

$$p_2 = 844, 73;$$

$$p_3 = 2419, 32.$$

Поправка на ужесточение лопатки:

$$B = 0,786 \left(rac{d}{l}
ight) + 0,407 - \cos^2eta_y = 0,786 \cdot 3,7 + 0,407 - \cos^2 90 = 3,315,$$

Собственные частоты с учетом поправки, [Гц]

$$p_{1\omega} = \sqrt{p_1^2 + B \cdot n^2} = \sqrt{151, 59^2 + 3, 315 \cdot 50^2} = 176, 8;$$

$$p_{2\omega} = 849, 6;$$

$$p_{3\omega} = 2421, 3.$$

3 Данные для построения вибрационной диаграммы

$$p_{\mathbf{k}\mathbf{\omega}} = \sqrt{p_k^2 + Bn^2}$$
 $p = k rac{n}{60}$

			k					
n	$p_{1\omega}$	$p_2\omega$	1	2	3	4	5	6
0	151,59	844,73	0	0	0	0	0	0
500	152,34	844,87	8,33	16,67	25	33,33	41,67	50
1000	154,61	845,28	16,67	33,33	50	66,67	83,33	100
1500	158,28	845,96	25	50	75	100	125	150
2000	163,27	846,9	33,33	66,67	100	133,33	166,67	200
2500	169,54	848,14	41,67	83,33	125	166,67	208,33	250
3000	176,82	849,62	50	100	150	200	250	300
3500	185,06	851,37	58,33	116,67	175	233,33	291,67	350
4000	194,24	853,41	66,67	133,33	200	266,67	333,33	400
4500	204,03	855,7	75	150	225	300	375	450
5000	214,43	858,24	83,33	166,67	250	333,33	416,67	500
6000	236,92	864,13	100	200	300	400	500	600
7000	261,01	871,04	116,67	233,33	350	466,67	583,33	700
8000	286,15	878,9	133,33	266,67	400	533,33	666,67	800
9000	312,36	887,78	150	300	450	600	750	900
10000	339,26	897,6	166,67	333,33	500	666,67	833,33	1000

4 Вибрационная диаграмма

Вывод: лопатка вибронадёжна.