

Use Cases

Goals

Methodology

Classification Algorithms

Project Results

Acceptance Criteria Review

Background

Twitter has become an important communication channel in times of emergency. The ubiquitousness of smartphones enables people to announce an emergency they' re observing in real-time. Because of this, more agencies are interested in programatically monitoring Twitter (i.e. disaster relief organizations and news agencies). But, it's not always clear whether a person's words are actually announcing a disaster.

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

12:43 AM · Aug 6, 2015 · Twitter for Android

Uses Cases Review

UI Design

0 0 0	tweets-traning-data	
	tweets-training-data	
Input tweet: Twelve feared killed in Pakistani air ambulance helicopter crash http://t.co/zdsug0UJS7		
Choose Model:	Random Forest Classifier	
Random Forest Classifier:	Num of trees: 10 Maxdepth of trees: 30 Random Seed: 5	
Naive Bayesian Classifier:	Smoothing: 0 💸	
SVM:	Max iterations: 20 Segularization parameter: 0.0 C	
Start Prediction		
Result: True		
ATTACK STORM DISASTER FIRE POLICE AMP SUCCES DEAD SUCCES TRAIN MIN	CALIFORNIA BOMBER CLASH CHASTER MH ONE CAR CHASTER CHASTER	

Create a reactive page to detect fake news on twitter.

Create a reactive page to analyze the characteristics of fake tweets.

Get a well trained model for fake tweets prediction.

Methodology

Methodology

- ➤ Used Zeppelin for running code line by line
- Extracted features of tweets (nature language) by TF-IDF
- >Implemented 3 classification algorithms:
 - Random Forest Classifier
 - Naive Bayesian Classifier
 - Linear Support Vector Classifier
- > Applied functions from Spark MLlib, Spark SQL, Spark RDD
- ➤ Designed and implemented UI by Scala Swing
- ➤ Visualized data by Vegas

Data Sources

Data come form
Kaggle competition

Data magnitude is more than 10,000 rows

Used to extract features and find keywords

- >TF(t,d) is the number of times that term t appears in document d
- >DF(t,D) is the number of documents that contains term t
- > |D| is the total number of documents in the corpus

$$IDF(t,D) = \log \frac{|D|+1}{DF(t,D)+1},$$

$$TFIDF(t, d, D) = TF(t, d) \cdot IDF(t, D).$$

- Use Tokenizer to tokenize the tweets
- Use StopWordsRemover to remove the stop words Such as "I, am, what, have, is, are...."
- Use HashingTF and IDF to vectorize the words
- Then we got featured data from nature language

Classification Algorithm

In order to classify the tweets according to if it is a real disaster tweets, we implemented three different classification algorithms:

- Random Forest Classifier
- Naive Bayesian Classifier
- Linear Support Vector Classifier

Random Forest Classifier

- A large number of relatively uncorrelated models (trees) operating as a committee will outperform any of the individual constituent models.
- Given a training set X = x1, ..., xn with responses Y = y1, ..., yn, bagging repeatedly (B times) selects a random sample with replacement of the training set and fits trees to these samples
- \triangleright For b = 1, ..., B:
 - Sample, with replacement, n training examples from X, Y; call these Xb, Yb.
 - Train a classification or regression tree fb on Xb, Yb.

$$\hat{f} = rac{1}{B}\sum_{b=1}^B f_b(x')$$

$$\hat{f} = rac{1}{B} \sum_{b=1}^{B} f_b(x') \hspace{1cm} \sigma = \sqrt{rac{\sum_{b=1}^{B} (f_b(x') - \hat{f}\,)^2}{B-1}}.$$

Naive Bayesian Classifier

- Another assumption made here is that all the predictors have an equal effect on the outcome.
- X represents the features, y represents the label

$$X = (x_1, x_2, x_3,, x_n)$$

According to Bayesian Theory

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$

$$P(y|x_1,...,x_n) \propto P(y) \prod_{i=1}^n P(x_i|y)$$

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

Linear Support Vector Classifier

➤ The objective of the support vector machine algorithm is to find a hyperplane in an N-dimensional space(N — the number of features) that distinctly classifies the data points.

Linear Support Vector Classifier

In the SVM algorithm, we are looking to maximize the margin between the data points and the hyperplane. The loss function that helps maximize the margin is hinge loss.

$$c(x, y, f(x)) = \begin{cases} 0, & \text{if } y * f(x) \ge 1\\ 1 - y * f(x), & \text{else} \end{cases}$$

$$\min_{w} \lambda \| w \|^2 + \sum_{i=1}^{n} (1 - y_i \langle x_i, w \rangle)_+$$

- Take partial derivatives with respect to the weights to find the gradients
- Update gradient (no misclassification)
- Update gradient (with misclassification)

$$\frac{\delta}{\delta w_k} \left(1 - y_i \langle x_i, w \rangle \right)_+ = \begin{cases} 0, & \text{if } y_i \langle x_i, w \rangle \ge 1 \\ -y_i x_{ik}, & \text{else} \end{cases}$$

$$w=w-lpha\cdot(2\lambda w)$$

$$w = w + lpha \cdot (y_i \cdot x_i - 2\lambda w)$$

Visualization of Keyword Extraction

Real Disaster Tweets

Fake Disaster Tweets

Evaluation of models

+ Model +	+ Accuracy
•	0.7456170505328291 0.8380480905233381 0.8553220806062694

As a user, I am able to input Disaster Tweet content, location and keyword to get the prediction if the tweet is fake:

- The prediction accuracy for complete input data should be over 70%
- The time to respond should be under 5 seconds

As a user, I am able to show the visualization of data analysis:

The time to respond should be under 5 seconds

