Logic and Sets: Entry Test MCQs

Multiple-Choice Questions

1.	What is a	a proposition?	

- (A) A question that requires an answer
- (B) A statement that is either true or false, but not both
- (C) A command or instruction
- (D) A statement that is always true
- 2. Which symbol represents the logical operation "and"?
 - $(A) \vee$
 - $(B) \rightarrow$
 - (C) \(\times \)
 - (D) \sim
- **3.** What is the union of sets $A = \{1, 2\}$ and $B = \{2, 3\}$?
 - $(A) \{1, 2, 3\}$
 - (B) $\{2\}$
 - $(C) \{1,3\}$
 - (D) $\{1, 2, 2, 3\}$
- 4. Which of the following is an example of deductive logic?
 - (A) Observing that the sun rises daily and concluding it always rises
 - (B) All birds have wings; a sparrow is a bird, so a sparrow has wings
 - (C) Testing a few cases and generalizing a rule
 - (D) Assuming a statement is true without evidence
- **5.** What is the truth value of $p \wedge q$ when p is true and q is false?
 - (A) True
 - (B) False
 - (C) Depends on the context
 - (D) Neither true nor false
- **6.** What is the converse of the conditional $p \to q$?
 - (A) $\sim p \rightarrow \sim q$
 - (B) $q \to p$
 - (C) $\sim q \rightarrow \sim p$
 - (D) $p \leftrightarrow q$
- **7.** Which of the following is always false for all truth values of p?
 - (A) $p \lor \sim p$
 - (B) $p \wedge \sim p$
 - (C) $p \to p$

- (D) $p \leftrightarrow p$
- **8.** What is the complement of set $A = \{1, 3\}$ in the universal set $U = \{1, 2, 3, 4\}$?
 - $(A) \{1,3\}$
 - (B) $\{2,4\}$
 - (C) $\{1, 2, 3, 4\}$
 - (D) $\{2,3,4\}$
- 9. Which statement best describes non-Aristotelian logic?
 - (A) Every statement is either true or false
 - (B) Allows for possibilities beyond true or false, like "maybe"
 - (C) Only applies to mathematical statements
 - (D) Based on specific observations
- **10.** What is the truth value of $p \to q$ when p is false and q is true?
 - (A) True
 - (B) False
 - (C) Depends on p
 - (D) Neither true nor false
- 11. What is the contrapositive of $\sim p \rightarrow q$?
 - (A) $q \rightarrow \sim p$
 - (B) $\sim q \rightarrow p$
 - (C) $p \rightarrow \sim q$
 - (D) $\sim p \rightarrow \sim q$
- **12.** Which of the following is a tautology?
 - (A) $p \wedge \sim p$
 - (B) $p \to (p \lor q)$
 - (C) $p \wedge q$
 - (D) $\sim p \wedge q$
- 13. What is the logical form of the set theorem $(A \cap B)' = A' \cup B'$?
 - (A) $\sim (p \lor q) = \sim p \land \sim q$
 - (B) $\sim (p \land q) = \sim p \lor \sim q$
 - (C) $p \wedge q = \sim p \vee \sim q$
 - (D) $\sim p \to q$
- **14.** For the statement $p \leftrightarrow q$, when is it false?
 - (A) When both p and q are true
 - (B) When p is true and q is false
 - (C) When both p and q are false
 - (D) When p is false and q is false
- **15.** Which statement is logically equivalent to $\sim (p \to q)$?
 - (A) $p \wedge \sim q$
 - (B) $\sim p \vee q$
 - (C) $p \lor \sim q$
 - (D) $\sim p \wedge q$
- **16.** Construct the truth table for $(p \to \sim p) \lor (p \to q)$. What is its truth value when p is true and q is false?

- (A) True
- (B) False
- (C) Depends on other values
- (D) Neither true nor false
- 17. Which of the following is a contingency?
 - (A) $p \lor \sim p$
 - (B) $p \wedge \sim p$
 - (C) $p \wedge q$
 - (D) $p \to p$
- **18.** Given the set identity $A \cup B = A \cup (A' \cap B)$, what is the logical equivalent?
 - (A) $p \lor q = p \lor (\sim p \land q)$
 - (B) $p \wedge q = p \wedge (\sim p \vee q)$
 - (C) $\sim (p \lor q) = \sim p \land \sim q$
 - (D) $p \to q = \sim p \lor q$
- **19.** What is the truth value of $\sim q \land (p \rightarrow q) \rightarrow \sim p$ when p is true and q is true?
 - (A) True
 - (B) False
 - (C) Depends on other values
 - (D) Neither true nor false
- **20.** Which of the following proves that $p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$?
 - (A) The truth tables have identical columns for both expressions
 - (B) The expressions are both tautologies
 - (C) The expressions are both contingencies
 - (D) The converse of one implies the other

Answers and Explanations

1. B

Explanation: A proposition is a declarative statement that is either true or false, but not both (e.g., "2 + 2 = 4" is true). Questions (A), commands (C), or statements that are always true (D, tautologies) are not propositions.

2. C

Explanation: The symbol \wedge represents conjunction ("and") in symbolic logic. \vee is disjunction ("or"), \rightarrow is conditional ("if...then"), and \sim is negation ("not").

3. A

Explanation: The union $A \cup B$ includes all elements in $A = \{1, 2\}$ or $B = \{2, 3\}$, which is $\{1, 2, 3\}$. Option B is the intersection, and D includes duplicates, which sets do not allow.

4. B

Explanation: Deductive logic draws specific conclusions from general facts (e.g., "All birds have wings; a sparrow is a bird, so it has wings"). A and C describe inductive logic, and D is not a valid reasoning method.

5 B

Explanation: For $p \wedge q$, both p and q must be true for the conjunction to be true. If p is true and q is false, then $p \wedge q$ is false.

6. B

Explanation: The converse of $p \to q$ is $q \to p$. The inverse is $\sim p \to \sim q$, contrapositive is $\sim q \to \sim p$, and biconditional is $p \leftrightarrow q$.

7. B

Explanation: $p \land \sim p$ is an absurdity, always false, as p and $\sim p$ cannot both be true. $p \lor \sim p$, $p \to p$, and $p \leftrightarrow p$ are tautologies (always true).

8. B

Explanation: The complement A' includes all elements in $U = \{1, 2, 3, 4\}$ not in $A = \{1, 3\}$, which is $\{2, 4\}$. Option C is the universal set, and D is incorrect.

9. B

Explanation: Non-Aristotelian logic allows for truth values beyond true/false, like "maybe" in fuzzy logic. Aristotelian logic (A) is binary, C is too specific, and D describes induction.

10. A

Explanation: For $p \to q$, if p is false, the conditional is true regardless of q. Here, p is false, q is true, so $p \to q$ is true.

11. B

Explanation: For $\sim p \to q$, the contrapositive is $\sim q \to p$. The converse is $q \to \sim p$, inverse is $p \to \sim q$, and D is unrelated.

12. B

Explanation: From Exercise 2.4, Q.3, $p \to (p \lor q)$ is a tautology (always true). $p \land \sim p$ is an absurdity, and C, D are contingencies (true or false depending on values).

13. B

Explanation: From Exercise 2.5, Q.1, the set theorem $(A \cap B)' = A' \cup B'$ translates to $\sim (p \land q) = \sim p \lor \sim q$, which is De Morgan's law.

14. B

Explanation: The biconditional $p \leftrightarrow q$ is false when p and q have different truth values (e.g., p true, q false). It is true when both are true (A) or both false (C, D).

15. A

Explanation: From Exercise 2.4, Q.2 iii, $\sim (p \to q)$ is equivalent to $p \wedge \sim q$. Truth table: when $p \to q$ is false $(p \text{ true}, q \text{ false}), \sim (p \to q)$ is true, and so is $p \wedge \sim q$.

16. B

Explanation: From Exercise 2.4, Q.2 i, truth table for $(p \to \sim p) \lor (p \to q)$:

p	q	$\sim p$	$p\to\sim p$	$p \rightarrow q$	$(p \to \sim p) \lor (p \to q)$
Т	F	F	\mathbf{F}	\mathbf{F}	F

When p is true, q is false, the result is false.

17. C

Explanation: A contingency is true or false depending on values. $p \land q$ is true (T, T) and false otherwise. $p \lor \sim p$ and $p \to p$ are tautologies, $p \land \sim p$ is an absurdity.

18. A

Explanation: The set identity $A \cup B = A \cup (A' \cap B)$ translates to $p \vee q = p \vee (\sim p \wedge q)$, as shown in the document. Other options are unrelated.

19. A

Explanation: From Exercise 2.4, Q.3 iv, for $\sim q \land (p \rightarrow q) \rightarrow \sim p$, when p is true, q is true:

- $\sim q = \sim T = F, p \rightarrow q = T \rightarrow T = T$
- $\sim q \land (p \rightarrow q) = F \land T = F$
- $\bullet \quad F \to \sim p = F \to F = T$

The result is true.

20. A

Explanation: From Exercise 2.4, Q.5, the truth tables for $p \lor (\sim p \land \sim q) \lor (p \land q)$ and $p \lor (\sim p \land \sim q)$ have identical columns, proving equivalence.

4