Instituto Politécnico Nacional Escuela Superior de Cómputo Secretaría Académica Departamento de Ingeniería en Sistemas Computacionales

> Minería de datos (*Data Mining*) ejemplo Pizzería "Polito" Regresión lineal

> > Profesora: Dra. Fabiola Ocampo Botello

Ejemplo adaptado de Anderson, Sweeney & Williams (2008).

Se tienen los datos de 10 pizzerías (Pizzerías "Polito") ubicadas cerca de los campus universitarios. Tanto la cantidad de alumnos y las ganancias se expresan en miles, como se muestra en la siguiente tabla.

Fuente de la imagen: La Cocinika de Ana https://ana-lacocinikadeana.blogspot.com/2012/10/dominos-pizza.html

Data Mining. ESCOM-IPN. Dra. Fabiola Ocampo Botello

Tabla No. 1. Ventas de la pizzería "Polito"

		NoEstud	Ventas
	No	x	У
	1	2	58
	2	6	105
	3	8	88
	4	8	118
	5	12	11 <i>7</i>
	6	16	137
	7	20	157
/	8	20	169
	9	22	149
	10	26	202

Fuente de la imagen: Pizzeria 5 tapas. https://pizzeria5tapas.blogspot.com/

3

La pizzería número 1: $x_1 = 2$ y $y_1 = 58$ (2, 58) significa que está cerca de un campus con 2,000 estudiantes y reporta ventas de 58,000 pesos.

La pizzería número 2: $x_2 = 6$ y $y_2 = 105$ (6, 105) significa que está cerca de un campus con 6,000 estudiantes y reporta ventas de 105,000 pesos.

Data Mining. ESCOM-IPN. Dra. Fabiola Ocampo Botello

La variable independiente se coloca en el eje horizontal x (número de estudiantes).

La variable dependiente se coloca en el eje vertical y (ganancia).

Data Mining. ESCOM-IPN. Dra. Fabiola Ocampo Botello

PENDIENTE E INTERSECCIÓN CON EL EJE y DE LA ECUACIÓN DE REGRESIÓN ESTIMADA*

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 (14.6)

$$b_0 = \bar{y} - b_1 \bar{x} \tag{14.7}$$

donde

 x_i = valor de la variable independiente en la observación i

 y_i = valor de la variable dependiente en la observación i

 \bar{x} = media de la variable independiente

 \bar{y} = media de la variable dependiente

n = número total de observaciones

Imagen tomada de Anderson, Sweeney & Williams (2008)

Data Mining. ESCOM-IPN. Dra. Fabiola Ocampo Botello

$\bar{x} = \frac{\sum x_i}{n} =$	$\frac{140}{10} = 14$
$\bar{y} = \frac{\sum y_i}{n} =$	$\frac{1300}{10} = 130$

Imágenes tomadas de Anderson, Sweeney & Williams (2008)

Restaurante i	x_i	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
1	2	58	-12	-72	864	144
2	6	105	-8	-25	200	64
3	8	88	-8 -6 -6 -2	-25 -42 -12	252	36
4	8	118	-6	-12	72	36
5	12	117	-2	-13	26	4
6	16	137	2	7	14	4
7	20	157	6	27	162	36
8	20	169	6	39	234	36
9	22	149	8	19	152	64
10	26	202	12	72	864	<u>144</u>
Totales	140	1300			2840	568
	$\sum x_i$	Σy_i			$\Sigma(x_i - \bar{x})(y_i - \bar{y})$	$\Sigma (x_i - \bar{x})^2$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$= \frac{2840}{568}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$= 130 - 5(14)$$

$$= 60$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

= 130 - 5(14)
= 60

$$\hat{y} = 60 + 5x$$

Ecuación de regresión

Data Mining. ESCOM-IPN. Dra. Fabiola Ocampo Botello

Verificación de la ecuación de estimación

Levin, et. al (2004) establecen que un método para verificar la ecuación de estimación se fundamenta en una de las propiedades de la recta ajustada por el método de mínimos cuadrados, esto es, los errores individuales positivos y negativos deben sumar cero.

Imagen tomada de Anderson, Sweeney & Williams (2008)

9

Restaurante i	x_i	y_i
1	2	58
2	6	105
3	8	88
4	8	118
5	12	117
6	16	137
7	20	157
8	20	169
9	22	149
10	26	202
Totales	140	1300
	$\sum x_i$	Σy_i

Del ejemplo de la pizzería "Polito". La suma de errores sería:

$$\hat{y} = 60 + 5x$$

			· · ·	
Row ID	NoEstud	Ventas	D calculo	D new column
1.0	2	58	-12	0
2.0	6	105	15	0
3.0	8	88	-12	0
4.0	8	118	18	0
5.0	12	117	-3	0
6.0	16	137	-3	0
7.0	20	157	-3	0
8.0	20	169	9	0
9.0	22	149	-21	0
10.0	26	202	12	0

Data Mining. ESCOM-IPN. Dra. Fabiola Ocampo Botello

10

Referencias bibliográficas

Anderson, Sweeney & Williams. (2008). Estadística para administración y economía, 10^a edición. Cengage Learning.

Bennet, Briggs & Triola (2011). Razonamiento estadístico. Pearson. México.

Carollo Limeres, M. Carmen. (2012). Regresión lineal simple. Apuntes del departamento de estadística e investigación operativa . Disponible en:

http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOS-PHPDPTO/MATERIALES/Mat 50140116 Regr %20simple 2011 12.pdf

Kerlinger, F. N. & Lee, H. B. (2002). Investigación del comportamiento. Métodos de investigación en ciencias sociales. 4ª ed. México: Mc. Graw Hill.

Levín, Rubín, Balderas, Del Valle y Gómez. (2004). Estadística para administración y economía. Séptima Edición. Prentice-Hall.

Mason, Lind & Marshal. (2000). Estadística para administración y economía. Alfaomega. 10ª edición.

Dra. Fabiola Ocampo Botello