Question 7:

Exercise 3.1.1:

- a. True.
- b. False.
- c. True.
- d. False.
- e. True.
- f. False.
- g. False.

Exercise 3.1.2:

- a. False.
- b. True.
- c. False.
- d. True.
- e. False.

Exercise 3.1.5:

b.
$$S = \{3, 6, 9, 12, ...\}$$

 $S = \{x \in \mathbb{N}: x \text{ is an integer multiple of } 3\}$

Set *S* is an infinite set.

d.
$$S = \{0, 10, 20, 30, ..., 1000\}$$

 $S = \{x \in \mathbb{N}: 0 \le x \le 1000 \text{ and an integer multiple of } 10\}$

Set *S* is a finite set.

Cardinality = |S| = 101

Exercise 3.2.1:

- a. True.
- b. True.
- c. False.
- d. False.
- e. True.
- f. True.
- g. True.
- h. False.
- i. False.
- j. False.
- k. False.

Question 8:

Exercise 3.2.4:

b. Let A = $\{1, 2, 3\}$. What is $\{x \in P(A): 2 \in x\}$?

Explanation:

$$P(A) = \{\{\emptyset\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$$

2 is not an element of P(A).

Therefore the roster notation for the expression $\{x \in P(A): 2 \in x\}$ would be \emptyset .

Question 9:

Exercise 3.3.1:

c.
$$A \cap C = \{-3, 1, 17\}$$

d.
$$A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$$

$$e. A \cap B \cap C = \{1\}$$

Exercise 3.3.3:

a.
$$A_{i} = \{i^{0}, i^{1}, i^{2}\}$$

$$\bigcap_{i=2}^{5} A_i = A_2 \cap A_3 \cap A_4 \cap A_5 = \left\{x: x \in A_i \text{ for all i such that } 2 \le x \le 5\right\}$$

b.

$$\bigcup_{i=2}^{5} A_i = A_2 \cup A_3 \cup A_4 \cup A_5 = \left\{x: \ x \in A_i \ for \ some \ i \ such \ that \ 2 \le x \le 5 \right\}$$

e.

$$\bigcap_{i=1}^{100} C_i = C_1 \cap C_2 \cap C_3 \cap \dots \cap C_{100} = \left\{ x: \ x \in C_i \ for \ all \ i \ such \ that \ \frac{-1}{i} \le x \le \frac{1}{i} \right\}$$

f.

$$\bigcup_{i=1}^{100} C_i = C_1 \cup C_2 \cup C_3 \cup \ldots \cup C_{100} = \left\{ x: \ x \in C_i \ for \ some \ i \ such \ that \ \frac{-1}{i} \leq x \leq \frac{1}{i} \right\}$$

Exercise 3.3.4:

b.
$$P(A \cup B) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$$

d.
$$P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$$

Question 10:

Exercise 3.5.1:

 $b. \in BXAXC = \{foam, tall, non - fat\}$

BXC = $\{(foam, non - fat), (foam, whole), (no - foam, non - fat), (no - foam, whole)\}$

Exercise 3.5.3:

b. True.

$$Z^2 \subseteq R^2$$

C. False.

$$Z^2 \cap Z^3 = \emptyset$$

Explanation:

$$8^2 = 4^3$$

Therefore, $Z^2 \cap Z^3 \neq \emptyset$

e. True.

For any three sets, A, B, and C, if $A \subseteq B$, then $A \times C \subseteq B \times C$.

Let
$$A = \{1, 2\}$$
 and $B = \{1, 2, 3\}$ and $C = \{1, 2, 3, 4\}$.

	1	2	3	4
1	(1,1)	(1,2)	(1,3)	(1,4)
2	(2,1)	(2,2)	(2,3)	(2,4)

	1	2	3	4
1	(1,1)	(1,2)	(1,3)	(1,4)
2	(2,1)	(2,2)	(2,3)	(2,4)
3	(3,1)	(3,2)	(3,3)	(3,4)

Exercise 3.5.6:

d.
$$S = \{xy: where x \in \{0\} \cup \{0\}^2 \ and \ y \in \{1\} \cup \{1\}^2\}$$

Solution:

Let
$$x = \{0, 00\}$$
 and $y = \{1, 11\}$

	1	11
0	(0,1)	(0,11)
00	(00,1)	(00,11)

$$S = \{0, 1, 00, 11\}$$

e. $\{xy: x \in \{aa, ab\} \ and \ y \in \{a\} \cup \{a\}^2\}$

Solution:

Let
$$x = \{aa, ab\}$$
 and $y = \{a, aa\}$

	а	aa
aa	aaa	aaaa
ab	aba	abaa

 $S = \{aaa, aba, abaa, aaaaa\}$

Exercise 3.5.7:

c.
$$(A \times B) \cup (A \times C) = \{\{aa\}, \{ab\}, \{ac\}, \{ad\}\}\}$$

f.
$$P(A \times B) = \{ \emptyset, \{ab\}, \{ac\}, \{ab, ac\} \}$$

g.
$$P(A) \times P(B) = \{(\emptyset, \emptyset), (\emptyset, \{b\}), (\emptyset, \{c\}), (\emptyset, \{b, c\}), (\{a\}, \emptyset), (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, c\})\}\}$$

Question 11:

Exercise 3.6.2:

b.
$$(B \cup A) \cap (\overline{B} \cup A) = A$$

Line Number	Symbols	Law Applied
1	$(B \cup A) \cap (\overline{B} \cup A)$	Hypothesis
2	$(A \cup B) \cap (\overline{B} \cup A)$	Commutative Law, 1
3	$A \cup (B \cap \overline{B}) \cup A$	Associative Law, 2
4	$A \cup \oslash \cup A$	Complement Law, 3
5	$A \cup A$	Identity Law, 4
6	A	Idempotent Law, 5

c.
$$\overline{A} \cap \overline{\overline{B}} = \overline{A} \cup B$$

Line Number	Symbols	Law Applied
1	$\overline{A \cap \overline{B}}$	Hypothesis
2	$\overline{\overline{A}} \cup \overline{\overline{\overline{B}}}$	DeMorgan's Law,1
3	$\overline{A} \cup B$	Double Complement Law, 2

Exercise 3.6.3:

$$b. A - (B \cap A) = A$$

Solution:

Let
$$A = \{1, 2\}$$
 and $B = \{1\}$

$$(B \cap A) = \{1\}$$

$$A - \{1\} = \{1, 2\} - \{1\} = \{2\}$$

$$A - (B \cap A) = \{2\} \neq \{1, 2\}$$

In conclusion, $\{2\} \neq A$.

$$\mathsf{d.}\;(B\;-\;A)\cup A\;=\;A$$

Solution:

Let
$$A = \{2\}$$
 and $B = \{2, 3, 4\}$

$$(B - A) = (\{2, 3, 4\} - \{2\}) = \{3, 4\}$$

$$\{3,4\} \cup A = \{3,4\} \cup \{2\}$$

$$(B - A) \cup A = \{2, 3, 4\} \neq \{2\}$$

In conclusion, $\{2, 3, 4\} \neq A$.

Exercise 3.6.4:

$$b. A \cap (B - A) = \emptyset$$

Line Number	Symbols	Law Applied
1	$A \cap (B - A)$	Hypothesis
2	$A\cap (B\cap \overline{A})$	Subtraction Law, 1
3	$A\cap (\overline{A} \cap B)$	Commutative Law, 2

4	$(A \cap \overline{A}) \cap B$	Associate Law, 3
5	⊘∩ B	Complement Law, 4
6	0	Domination Law, 5

$c. A \cup (B - A) = A \cup B$

Line Number	Symbols	Law Applied
1	$A \cup (B - A)$	Hypothesis
2	$A \cup (B \cap \overline{A})$	Subtraction Law, 1
3	$(A \cup B) \cap (A \cup \overline{A})$	Distributive Law, 2
4	$(A \cup B) \cap U$	Complement Law, 3
5	$A \cup B$	Identity Law, 4