# **EXPLORATORY DATA ANALYSIS**



### **Track Monthly Delay Trends**

Visualize how average delays change over time.



### **Identify Top Airlines & Airports**

Pinpoint carriers and airports most affected by delays.



### **Understand Seasonal Impact**

Assess how seasonal changes influence delay frequency.



### **Conduct Root Cause Analysis**

Examine specific delay types: carrier, weather, NAS, security, and late aircraft.











# Advanced Delay Insights



### **Average Delay by Cause:**

Bar chart showing mean delay contributions



### **Correlation Heatmap:**

Reveals interrelationships among different delay factors.



### **Delay Rate Distribution:**

Histogram showing how delay rates vary across all flights.



### **Summary Statistics:**

Displayed key metrics like mean, median, min, max, and standard deviation of delay rates.











### SEASONAL PATTERNS:

- Month with highest average delay: July (0.22%)
- Month with lowest average delay: September (0.15%)

### OVERALL STATS:

Total flights analyzed: 58,676,070.0 Delayed flights: 10,494,073.0 Overall delay rate: 17.88%

#### CARRIER PERFORMANCE:

- Most delay-prone carrier: Peninsula Airways Inc. (0.32%)
- Most reliable carrier: Cape Air (0.08%)



## **Feature Engineering**

# 1. Core Performance Metrics

- `delay\_rate`: Proportion of delayed flights
- `avg\_delay`: Average delay per flight (in minutes)

# 2. Delay Cause Proportions

- `carrier\_prop`: Delay share due to airline
- `weather\_prop`: Delay share due to weather

# 3. Target Variables

- `is\_delayed`: Binary label for delay presence
- `target\_delay`: Average delay for regression

# 4. Historical Reliability Features

- `carrier\_his`: Historical delay rate per airline
- `airport\_his`: Historical delay rate per airport

# 5. Encoded Categorical Variables

- `carrier\_encoded`: Encoded airline names
- `airport\_encoded`: Encoded airport names

## **Cleaning & Filtering:**



Removed rows with missing values in key delayrelated columns.



Excluded records where arr\_flights = 0 to avoid invalid calculations.



Outliers in continuous variables such as avg\_delay and delay\_rate were treated using the IQR (Interquartile Range) method, ensuring robust model performance without removing valid extreme delay instances.

### Operational Adjustability Index (OAI)



#### What is OAI?

A custom metric to measure how much of the delay is operationally controllable.



#### Formula

OAI = (carrier\_delay + late\_aircraft\_delay) / total\_delay



It helps airline ops teams prioritize improvements on controllable delays.

 $\mbox{High OAI} \rightarrow \mbox{Focus on scheduling, fleet readiness,} \\ \mbox{crew management}$ 

Low OAI → Indicates external issues like weather/NAS delays

# Classification model for Flight Delays

• For the classification problem, Random Forest classifier is used after balancing data using SMOTE



## Predicting Arrival Delays with different Models

## **Linear regression model**

- Mean Absolute Error (MAE):7.20
- Mean Squared Error (MSE): 236.01

## **XG BOOST Regression model**

Mean Absolute Error (MAE): 67.65 minutes

Root Mean Squared Error (RMSE): 91.80 minutes

R2 Score: 0.71





## **Actionable Recommendations & Consulting Insights**

1

# Improve Ground Operations for Controllable Delays

- Focus on reducing carrierrelated and late aircraft delays, as these are the most controllable and contribute significantly to total delay time.
- Implement tighter turnaround management and buffer times in scheduling.

2

## Schedule Adjustments and Network Planning

- Reschedule flights during peak congestion hours or airports with historically high delays.
- Use insights from seasonal features (e.g., more delays during summer) to plan better staffing and resource deployment.

3

### Prioritize Airports and Carriers with High Delay Rates

- Use the carrier\_historical\_performance and airport\_historical\_performance metrics to identify consistently underperforming segments.
- Initiate targeted interventions like performance audits or collaborative improvement initiatives.

4

### Enhance Real-Time Communication & Customer Engagement

- •Improve proactive communication with passengers during expected NAS/weatherrelated delays.
- Deploy digital tools (SMS/Email/Apps) for early alerts and rebooking options.

5

## **Data-Driven Resource Allocation**

- Allocate more operational resources (staffing, gates, crew) during holiday/winter peaks or high OAI score periods.
- Monitor OAI-weighted duration to dynamically adjust schedules.