Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

BON COURAGE!

1. Soient $A, B \in M_n(\mathbb{R})$. $(A+B)^2$ est ...

- (1) egal à $A^2 + AB + BA + B^2$
- $_{(3)}\square$ égal à $A^2 + B^2$
- $_{(4)}\square$ est une matrice nilpotente.
- aucune des réponses précédentes n'est correcte.
- 2. Soient $P = (X+1)^3(X^2+2X+2)$ et Q = (X+1)(X-2) les décompositions en facteurs irréductibles de $P, Q \in \mathbb{R}[X]$. Cocher les affirmations correctes.

$$(1) \Box P \lor Q = (X+1)^3 (X^2 + 2X + 2)(X-2) \qquad (2) \Box ppcm(P,Q) = 1 \qquad (3) \Box ppcm(P,Q) = (X+1)^3$$

$$(4) \Box P \lor Q = (X+1)(X^2 + 2X + 2)(X-2) \qquad (5) \Box \text{ aucune des réponses précédentes n'est correcte.}$$

3. Pour les polynômes P,Q de la question précédente, cocher les affirmations correctes.

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ (3) \square & & P \wedge Q = (X+1)(X^2+2X+2)(X-2) & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

4. On considère la matrice A suivante : $\begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix}$. Cocher la(es) affirmation(s) correcte(s).									
$_{(1)}\Box$ A est symétrique.									
$_{(2)}\square$ A est anti-symétrique. $_{(3)}\square$ AA^T est symétrique									
(4) \Box $\operatorname{tr}(A) = 4$									
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
5. Quelles sont les affirmations vraies? (1) $ = 2X^2 + 3X + 1 $ est irréductible sur $ \mathbb{Q} $									
(2) \square $2X^2 - 3X + 2$ est irréductible sur \mathbb{R}									
(3) \square $2X^2 - X + 3$ est irréductible sur \mathbb{C} (4) \square $X^3 + X^2 + X + 4$ est irréductible sur \mathbb{R}									
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
6. Soient $A \in M_n(\mathbb{R}), B \in M_{n,q}(\mathbb{R}), C \in M_q(\mathbb{R})$. Parmi les affirmations suivantes, lesquelles sont vraies?									
(1) \square $ABC = CBA$ (2) \square $A(BC) = (AB)C$ (3) \square $CBA \in M_{q,n}(\mathbb{R})$ (4) \square $ABC \in M_{n,q}(\mathbb{R})$ (5) \square aucune des réponses précédentes n'est correcte.									
$_{(4)}\square$ $ABC\in M_{n,q}(\mathbb{R})$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
7. Quelles sont les affirmations vraies?									
(1) Les éléments simples sur $\mathbb C$ peuvent être de la forme $\frac{a}{Y-\alpha}, a, \alpha \in \mathbb C$									
(2) Les éléments simples sur $\mathbb R$ peuvent être de la forme $\dfrac{aX+b}{X-lpha},a,b,lpha\in\mathbb R$									
(3) Les éléments simples sur $\mathbb C$ peuvent être de la forme $\dfrac{X}{(X-\alpha)^k}, a, \alpha \in \mathbb R, k \in \mathbb N^*$									
Les éléments simples sur $\mathbb R$ peuvent être de la forme $\frac{a}{(X-\alpha)^k}, a, \alpha \in \mathbb R, k \in \mathbb N^*$									
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
8. Le produit : $\begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$									
(1) n'est pas possible. (2) une matrice de taille 3.									
$_{(3)}\sqcup - \operatorname{est} 5$									
$_{(4)}\square$ est -1 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
9. Soient $P(X) = X^6 + 4X^5 + X^4 - 10X^3 - 4X^2 + 8X$.									
$_{(1)}\square$ 1 est une racine double $_{(2)}\square$ -2 est une racine double $_{(3)}\square$ -1 est une racine double									
$_{(4)}\square$ 0 est une racine double $_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
$\begin{bmatrix} 1 & 0 & -2 \end{bmatrix}$									
10. On considère la matrice A suivante : $\begin{bmatrix} 1 & 0 & -2 \\ 5 & -1 & 3 \\ 2 & 4 & -3 \end{bmatrix}$ Cocher la(es) affirmation(s) correcte(s).									
$a_{13} = -2$ $a_{20} \square a_{32} = 3$ $a_{30} \square tr(A) = 3$ $a_{40} \square tr(A) = -3$									
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.									

11. Soit $P \in \mathbb{R}[X]$ défini par $P = (X-1)^3(X^2+\frac{1}{3})(X^2+2X+15)$. Parmi les affirmations suivantes lesquelles sont vraies?											
(1) \square 1 est une racine d'ordre de multiplicité 3 (2) \square $\deg P = 6$ (3) \square P est irréductible dans \mathbb{R} (4) \square P est scindé sur \mathbb{R} aucune des réponses précédentes n'est correcte.											
12. Soient $A \in M_n(\mathbb{R})$ de terme général a_{ij} et I_n de terme général δ_{ij} , alors le terme général de la matrice produit $A \cdot I_n$ est											
$ (1)^{\square} \sum_{k=1}^{n} a_{ik} \ \delta_{jk} = \delta_{ij} \qquad (2)^{\square} \sum_{k=1}^{n} a_{ik} \ \delta_{kj} = a_{ij} \qquad (3)^{\square} \sum_{k=1}^{n} a_{ik} \ \delta_{jk} = a_{ji} $ $ (4)^{\square} \sum_{k=1}^{n} a_{ik} \ \delta_{jk} = \delta_{ji} \qquad (5)^{\square} \text{aucune des réponses précédentes n'est correcte.} $											
$a_{(4)}\square$ $\sum_{k=1}^{\infty}a_{ik}\;\delta_{jk}=\delta_{ji}$ aucune des réponses précédentes n'est correcte.											
13. Soit $P \in \mathbb{C}[X]$ défini par $P = X^7 - 1$. Parmi les affirmations suivantes lesquelles sont vraies?											
$\begin{array}{ll} \text{(1)} \square & P = \prod_{k=0}^{6} (X - e^{\frac{2ik\pi}{7}}) \\ \text{(2)} \square & P \text{ est factoris\'e sur } \mathbb{C} \\ \text{(3)} \square & P \text{ est irr\'eductible sur } \mathbb{C} \\ \text{(4)} \square & 1 \text{ est une racine d'ordre de multiplicit\'e 7} \\ \text{(5)} \square & \text{aucune des r\'eponses pr\'ec\'edentes n'est correcte.} \end{array}$											
14. Soit I_n une matrice identité et $A \in M_{n,p}(\mathbb{R})$. Parmi les affirmations suivantes lesquelles sont vraies :											
$I_n = egin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} \qquad \begin{minipage}{0.25\textwidth} (2) & \square & I_n = egin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$											
I_n est l'élément neutre pour la somme des matrices. $I_n = A$											
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.											
15. Soit A une matrice de taille $n \times p$ et B une matrice de taille $p \times q$. Le matrice produit $C = A \cdot B$											
$c_{(1)}\square$ a pour coefficients $c_{ij} = \sum_{k=1}^{q} a_{ik}b_{kj}$ a pour coefficients $c_{ij} = \sum_{k=1}^{p} a_{ik}b_{kj}$											
est de taille $n \times q$. (4) \square n'existe pas. (5) \square aucune des réponses précédentes n'est correcte.											
16. Soient $F = \frac{X}{X^2 - 9}$. La décomposition en éléments simples de F											
$_{(1)}\Box$ possède une partie entière $_{(2)}\Box$ est composée d'une partie entière et une fraction											
$_{(3)}\square$ est composée de deux fractions $_{(4)}\square$ est composée de trois fractions											
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.											
17. Pour la fraction F de la question précédente, cocher les affirmations correctes.											
$\begin{array}{ll} {}_{(1)}\Box & F = \frac{2X}{X-3} + \frac{2X}{X+3} & {}_{(2)}\Box & F = \frac{1}{2(X-3)} + \frac{1}{2(X+3)} & {}_{(3)}\Box & F = 3 + \frac{2}{X-9} \\ {}_{(4)}\Box & \frac{1}{X-3} + \frac{1}{X+3} + \frac{2}{X^2-9} & {}_{(5)}\Box & \text{aucune des réponses précédentes n'est correcte.} \end{array}$											

18	Scient A	et B	deux	matrices	réelles	Parmi	les	affirmations	suivantes	lesquelles	sont	vraies ·
10.	DOIGHT 1	$\mathbf{L} \subset \mathbf{L} \cup \mathbf{L}$	ucua	maurices	recires.	1 amm	100	ammanons	Survanies.	resorrencs	SOTI	viaics.

- si AB = 0, alors A = 0 ou B = 0(1)
- (2) Si A et B sont de même taille, tr(AB) = tr(BA)
- \square (3) on peut avoir $A \cdot B = \alpha$, avec $\alpha \in \mathbb{R}$
- (4) $A\cdot B$ est défini si et seulement si le nombre de lignes de A est égal au nombre de colonnes de B
- aucune des réponses précédentes n'est correcte. (5)

19. Soient $A, B, C \in M_3(\mathbb{R})$. Parmi les affirmations suivantes, lesquelles sont vraies?

- AB = BA(1)
- (2)
- $$\begin{split} A(B+C) &= AB + AC \\ ((CB)A^T)^T &= (AB^T)C^T \end{split}$$
 (3)
- (4) [] Si AB = AC, alors B = C
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

20. Soient A et B deux matrices. Si le produit AB est défini, alors ...

- $_{(1)}\square$ le produit BA est défini.
- le produit B^TA^T est défini. (2)
- (3)
- la somme A+B est définie. la somme A^TA+BB^T est définie. (4)
- aucune des réponses précédentes n'est correcte. (5)