

Diese Übung ist Teil der Vorlesung Hacking Exposed an der Juventus Technikerschule HF in Zürich.

1 Warm-Up

Aussage	Wahr	Falsch
IT-Security ist kein Zustand der erreicht werden kann, sondern ist als Prozess zu verstehen, an dem man kontinuierlich arbeitet.		
Ein Apache2 Webserver hört auf der IP/Port Kombination 127.0.0.1/80,443. Es kann ohne weiteres eine weitere Apache2 Instanz gestartet werden, die auf der IP/Port Kombination 127.0.0.2/80,443 hört.		
Ein modernes Unternehmensnetzwerk ist wie eine mittelalterliche Burg in mehrere Sicherheitszonen unterteilt.		
Ein NAT-Router ist eine Firewall.		
Ein Reverse Web Proxy, auch WAF genannt, soll primär eigene Server Infrastruktur schützen.		
Eine Server-Applikation kann auf mehreren Ports und IP-Adressen lauschen.		
Die Firewall Aktionen Block, Deny und Reject machen dasselbe, sind einfach andere Bezeichnungen.		
Ein TCP 3-Way Handshake besteht aus den Teilen SYN, SYN/ACK, ACK		
Wenn Nmap nur SYN-Pakete zum scannen verschickt spricht man von einem TCP Connect scan.		
Nmap unterstützt verschiedene Scan-Methoden um herauszufinden, ob ein Port offen ist.		

2 Perimeter Security

1.	Auf welcher Schicht des OSI-Referenzmodells arbeitet eine Netzwerk Firewall hauptsächlich und was ist ihre Aufgabe?
2.	Beschreiben Sie die Funktion einer DMZ und was sich darin befindet.
3.	Nennen Sie Gründe, die für einen Reverse Web Proxy sprechen.

3 Iptables

Sie haben folgendes Iptables Regelset:

```
# iptables -L -n
Chain INPUT (policy DROP)
                                          destination
target
           prot opt source
REJECT
           tcp
                    0.0.0.0/0
                                          0.0.0.0/0
                                                                tcp dpt:80
                                                                tcp dpt:443
ACCEPT
           tcp
                    0.0.0.0/0
                                          0.0.0.0/0
ACCEPT
           tcp
                    0.0.0.0/0
                                          5.6.7.8/0
                                                                tcp dpt:25
ACCEPT
                    0.0.0.0/0
                                          0.0.0.0/0
                                                                tcp dpt:587
           tcp
                - -
DR0P
                    1.2.3.4/0
                                          0.0.0.0/0
                                                                tcp dpt:143
           tcp
                - -
Chain OUTPUT (policy ACCEPT)
target
           prot opt source
                                          destination
REJECT
           all
                - -
                    1.3.5.7/0
                                          8.8.8.80
```

1. Vervollständigen Sie das tabellarische Regelset anhand des Iptables-Regelset.

				<u> </u>	
Interface	INPUT / OUTPUT / FORWARD	Source	Destination	Port	Action
	INPUPT	Any	Any	80	
eth0		Any	Any		ALLOW
eth0	INPUT				
eth0	INPUT	Any		587	ACCEPT
eth0	INPUT	1.2.3.4	Any		
		Any	Any	Any	DROP
eth0	OUTPUT			Any	
eth0		Any	Any	Any	ACCEPT

4 Nmap

Nmap unterstützt verschiedene Ausgabedarstellungen (OUTPUT). Verschaffen Sie sich einen Überblick und beschreiben Sie die Eigenschaften und mögliche Verwendungszwecke.

Tipp: Verwenden Sie die Manual Page (\$ man nmap).

- oN	
-oX	
-oS	
- oG	

4.1 Nmap Scan-Analyse

Gegeben ist folgende Nmap Scan Ausgabe:

```
$ nmap scanme.nmap.org
Starting Nmap 7.70 ( https://nmap.org ) at 2019-09-04 13:00 CEST
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.17s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 996 closed ports
PORT
         STATE SERVICE
22/tcp
         open
               ssh
         open
80/tcp
               http
9929/tcp open
               nping-echo
31337/tcp open
               Elite
Nmap done: 1 IP address (1 host up) scanned in 17.88 seconds
```

1.	Wie viele Ports sind offen?	
2.	Wie viele Ports sind geschlossen?	
3.	Wie viele Ports wurden gescannt?	
4.	Wie viele IPv4 Adressen wurden gescannt?	
5.	Wie viele IPv6 Adressen wurden gescannt?	

4.2 Wireshark Scan Analyse

Gegeben ist folgende vollständige Wireshark Ausgabe (siehe auch Übung-Wireshark-Scan-Analyse.pcapng):

No.	Time	Source	Destination	Protocol Length	Info
	1 0.000000	192.168.100.218	37.120.160.86	TCP 74	1 54484 → 80 [SYN] Seq=0 V
	2 0.000012	192.168.100.218	37.120.160.86	TCP 74	1 52754 → 443 [SYN] Seq=0
	3 0.024782	37.120.160.86	192.168.100.218		1 80 → 54484 [SYN, ACK] Se
	4 0.000025	192.168.100.218	37.120.160.86	TCP 66	5 54484 → 80 [ACK] Seq=1 <i>l</i>
	5 0.000008	37.120.160.86	192.168.100.218	TCP 74	4 443 → 52754 [SYN, ACK] S
	6 0.000004	192.168.100.218	37.120.160.86	TCP 66	5 52754 → 443 [ACK] Seq=1
	7 0.000050	192.168.100.218	37.120.160.86	TCP 66	5 54484 → 80 [RST, ACK] Se
	8 0.000016	192.168.100.218	37.120.160.86	TCP 66	5 52754 → 443 [RST, ACK] §
	9 0.001537	192.168.100.218	37.120.160.86	TCP 74	4 52756 → 443 [SYN] Seq=0
	10 0.000022	192.168.100.218	37.120.160.86	TCP 74	4 37618 → 25 [SYN] Seq=0 V
	11 0.000008	192.168.100.218	37.120.160.86	TCP 74	1 45634 → 22 [SYN] Seq=0 V
	12 0.000008	192.168.100.218	37.120.160.86	TCP 74	1 54494 → 80 [SYN] Seq=0 V
	13 0.000007	192.168.100.218	37.120.160.86	TCP 74	1 35672 → 53 [SYN] Seq=0 V
	14 0.024026	37.120.160.86	192.168.100.218		1 53 → 35672 [SYN, ACK] Se
	15 0.000102	192.168.100.218	37.120.160.86	TCP 66	6 35672 → 53 [ACK] Seq=1 <i>l</i>
	16 0.000043	37.120.160.86	192.168.100.218	TCP 74	1 443 → 52756 [SYN, ACK] S
	17 0.000032	192.168.100.218	37.120.160.86	TCP 66	5 52756 → 443 [ACK] Seq=1
	18 0.000022	192.168.100.218	37.120.160.86	TCP 66	3 35672 → 53 [RST, ACK] Se
	19 0.000063	192.168.100.218	37.120.160.86	TCP 66	5 52756 → 443 [RST, ACK] S
	20 0.000058	37.120.160.86	192.168.100.218	TCP 74	1 80 → 54494 [SYN, ACK] Se
	21 0.000053	192.168.100.218	37.120.160.86	TCP 66	5 54494 → 80 [ACK] Seq=1 <i>k</i>
	22 0.000066	192.168.100.218	37.120.160.86		6 54494 → 80 [RST, ACK] Se
	23 1.075843	192.168.100.218	37.120.160.86	TCP 74	4 45640 → 22 [SYN] Seq=0 V
	24 0.000080	192.168.100.218	37.120.160.86	TCP 74	1 37628 → 25 [SYN] Seq=0 V

1. Welche IP Adresse wurde gescannt?

2.	Welche Ports wurden gescannt?	
3.	Welche Ports sind offen?	
4.	Welche Ports sind geschlossen?	
5.	Welche Ports sind gefiltert?	
6.	Vermuten Sie, dass eine Firewall im Einsatz ist?	Begründen Sie:
7.	Wie lautet der mögliche Nmap Befehl um diese	e Ausgabe zu erhalten?

4.3 Nmap Scan-Methode Analyse

Gegeben ist folgende vollständige Wireshark Ausgabe (siehe auch Übung-Nmap-Scan-Methode-Analyse.pcapng):

No.	Time	Source	Destination	Protocol	Length	Info
	9 0.231157	192.168.100.218	37.120.160.86	TCP	58	61114 → 80 [SYN] Seq=0 Win=1024 Ler
	LO 0.000066	192.168.100.218	37.120.160.86	TCP	58	61114 → 10 [SYN] Seq=0 Win=1024 Ler
1	L1 0.000017	192.168.100.218	37.120.160.86	TCP	58	61114 → 160 [SYN] Seq=0 Win=1024 Le
1	L2 0.000017	192.168.100.218	37.120.160.86	TCP	58	61114 → 40 [SYN] Seq=0 Win=1024 Ler
1	L3 0.000014	192.168.100.218	37.120.160.86	TCP	58	61114 → 20 [SYN] Seq=0 Win=1024 Ler
	L4 0.024131	37.120.160.86	192.168.100.218	TCP	58	80 → 61114 [SYN, ACK] Seq=0 Ack=1 V
	L5 0.000053	192.168.100.218	37.120.160.86	TCP	54	61114 → 80 [RST] Seq=1 Win=0 Len=0
1	L6 1.101958	192.168.100.218	37.120.160.86	TCP	58	61115 → 20 [SYN] Seq=0 Win=1024 Ler
1	L7 0.000021	192.168.100.218	37.120.160.86	TCP	58	61115 → 40 [SYN] Seq=0 Win=1024 Ler
1	L8 0.000005	192.168.100.218	37.120.160.86	TCP	58	61115 → 160 [SYN] Seq=0 Win=1024 Le
	L9 0.000003	192.168.100.218	37.120.160.86	TCP	58	61115 → 10 [SYN] Seq=0 Win=1024 Ler

1.	Wurde in diesem Scan ein TCP SYN scan oder ein TCP connect scan ausgeführt? Begründen Sie.