MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 4 Morning: Supplementary/Advanced Exercises

Note: the day 3 afternoon (supplementary) exercises had more exercises about light leaves. Elements of Bott-Samelson bimodules and global intersection form

1. In lectures we saw that for any expression \underline{w} , $BS(\underline{w})$ has a basis as a right R-module given by 01-sequences. It contains two canonical elements c_{bot} and c_{top} which project to elements of minimal and maximal degree in $\overline{BS(\underline{w})}$. In this exercise we find a recursive formula for

$$N_{\underline{w}}(f) := \langle f^{\ell(\underline{w})} c_{\text{bot}}, c_{\text{bot}} \rangle.$$

for any degree two element $f \in R$, acting by left multiplication on $\overline{BS(\underline{w})}$.

- a) Find a formula for $N_{\underline{w}}(f)$ in terms of $N_{\underline{w}'}(f)$, over all subexpressions \underline{w}' obtained by omitting a simple reflection from \underline{w} .
- b) Show that $N_{\underline{w}}(f) = 0$ unless \underline{w} is reduced. (*Hint:* It might help to use the light leaves description of $BS(\underline{w})$ or the decomposition of $BS(\underline{w})$ into indecomposable Soergel bimodules.) Use this to simplify your formula in part (a).
- c) Suppose that $\partial_s(f) > 0$ for all $s \in S$. Show that $N_{\underline{w}}(f) > 0$ for \underline{w} reduced. (First prove that sw > w if and only if $\partial_s(wf) > 0$.)
- d) (Only if the question makes sense to you!) What is $N_{\underline{w}}(f)$ in terms of Schubert calculus?