AVL Trees

Kuan-Yu Chen (陳冠宇)

Review

- Binary search tree is also known as ordered binary tree
 - All the nodes in the left sub-tree have a value less than that of the root node
 - All the nodes in the right sub-tree have a value either equal to or greater than the root node

AVL Trees.

- AVL tree is a self-balancing binary search tree
 - AVL tree is designed by G.M. Adelson-Velsky and E.M. Landis in 1962

- The heights of the two sub-trees of a node may differ by at most

- The structure of an AVL tree stores an additional variable called the **Balance Factor**
 - Every node has a balance factor

one

- The balance factor of a node is calculated by subtracting the height of its right sub-tree from the height of its left sub-tree
- Every node has a balance factor of -1, 0, or 1

AVL Trees..

- If the balance factor of root is 1, then it means that the left sub-tree of the tree is one level higher than that of the right sub-tree
 - Left-heavy tree
- If the balance factor of root is 0, then it means that the height of the left sub-tree is equal to the height of the right sub-tree
 - Balance tree
- If the balance factor of root is −1, then it means that the left sub-tree of the tree is one level lower than that of the right subtree
 - Right-heavy tree

Insertion

- In the AVL tree, the step of insertion is usually followed by an additional step of **rotation**
 - Rotation is done to restore the balance of the tree
- Insert a node with value 71 in a given AVL tree

LL Rotation.

- By LL Rotation
 - Node B becomes the root, with T1 and A as its left and right child
 - T2 and T3 become the left and right sub-trees of A

LL Rotation..

- Example for LL Rotation
 - Insert 18 in a given AVL tree

RR Rotation.

- In the context of RR rotation
 - Node B becomes the root, with A and T3 as its left and right child
 - T1 and T2 become the left and right sub-trees of A

RR Rotation..

- Example for RR Rotation
 - Insert 89 in a given AVL tree

LR Rotation.

- By LR rotation
 - Node C becomes the root, with B and A as its left and right children
 - Node B has T1 and T2 as its left and right sub-trees and T3 and
 T4 become the left and right sub-trees of node A

LR Rotation..

- Example for LR Rotation
 - Insert 37 in a given AVL tree

RL Rotation

- By RL rotation
 - Node C becomes the root, with A and B as its left and right children
 - Node A has T1 and T2 as its left and right sub-trees and T3 and T4 become the left and right sub-trees of node B

Example.

• Construct an AVL tree by inserting the following elements in the given order: 63, 9, 19, 27, 18, 108, 99, 81

Example..

• Construct an AVL tree by inserting the following elements in the given order: 63, 9, 19, 27, 18, 108, 99, 81

Deletion

- Deletion of a node in an AVL tree may disturb the balance of the tree
 - To rebalance the AVL tree, we need to perform rotations!
 - There are three rotation methods
 - R0 Rotation (LL Rotation or RR Rotation)
 - R1 Rotation (LL Rotation or RL Rotation)
 - R-1 Rotation (RR Rotation or LR Rotation)

Deletion – R0 Rotation

- Let B be the root of the left or right sub-tree of A (critical node)
 - R0 rotation is applied if the balance factor of B is 0
 - RR Rotation or LL Rotation

Example

• Delete 72 from a given AVL tree

Deletion – R1 Rotation

- Let B be the root of the left or right sub-tree of A (critical node)
 - R1 rotation is applied if the balance factor of B is 1
 - LL Rotation or RL Rotation

Example

• Delete 72 from a given AVL tree

Deletion – R-1 Rotation

- Let B be the root of the left or right sub-tree of A (critical node)
 - R−1 rotation is applied if the balance factor of B is −1
 - RR Rotation or LR Rotation

Examples.

• Delete 72 from a given AVL tree

Examples..

• Delete 52, 36, and 61 from a given AVL tree

Searching in an AVL Tree

• Since AVL tree is a binary search tree, it can be searched using exactly the **same algorithm** as used to search an ordinary binary search tree!

Tentative Schedule

- Midterm will be held on 2022/11/7 (Monday)
 - Please take care of yourself to avoid make-up exam!!!

Questions?

kychen@mail.ntust.edu.tw