

Driftwood Self-Regulating Access to Natural Resources

Modeling and Simulation of Complex Systems

Lecturer: Prof Alexis Drogoul, Arnaud Grinard, Athur Bulgiere

By: Phạm Gia Phúc

Contents

- 1. Introduction
- 2. Mechanisms Environment
- 3. Extension 1 Self-Regulation and Pile Ownership
- 4. Extension 2 External Enforcement
- 5. Extension 3 Group Dynamics
- 6. Conclusion

Introduction

Problem Statement

- Resource competition for driftwood collection on coastal shores
- Ownership marked by stone placement
- Theft possible when unobserved
- Need for effective self-regulation

Key Research Question

- Is it possible to achieve a stable resource management system through:
 - Peer pressure regulation
 - External enforcement
 - Group dynamics

Mechanisms - Environment

Spatial Organization

- Deep Sea Zone (20% width)
- Tidal Zone (20-65%)
- Sandy Beach Zone (65-100%)

Dynamic Systems

- 24-hour day/night cycle
- Synchronized tidal system
 - Rising: 0:00–6:00 and 12:00–18:00
 - Falling: 6:00–12:00 and 18:00–24:00
- Wave dynamics with parametric control
- Water depth calculations and beach topography

Mechanisms - Environment

Driftwood

• 3 sizes:

• Large: 5

• Medium: 3

• Small: 1

• Tide influenced movement

• Wave influenced movement

Extension 1: Self-Regulation and Pile Ownership

Collector Behavior

• Speed: 0-8 km/h

• Carrying capacity: 10 units

• Field of view: 100 degrees, 10m range

Greediness factor: 0.3-0.8

Theft Mechanics

Initial steal chance: 10%

Maximum: 20%

• Success-based increase: 1%

Ext1: Self-Regulation and Pile Ownership – Analysis

Ext1: Self-Regulation and Pile Ownership – Analysis

Extension 2: External Enforcement

Enforcement Mechanisms

- Authority agents with enhanced FOV
- Security cameras
- Active pursuit system
- Punishment mechanics

Impact Analysis

- Catch rates
- System stability
- Resource security
- Theft deterrence

Ext2: External Enforcement – Analysis

Secured Resources = 0 (0%)

Ext2: External Enforcement – Analysis

- Average Carried Value - Maximum Pile Value - Average Pile Value

Extension 3: Group Dynamics

Group Formation

• Size: 2-4 members

Formation chance: 30%

• Breakup chance: 10%

• Cooperation bonus: 20%

System Resilience

- Regular system disruptions (every 500 cycles)
- 20% impact strength
- Recovery period: 500 cycles
- Affects speed, capacity, and efficiency

Ext3: Group Dynamics – Analysis

1,200

1,400

Grouped Collectors = 6 (55%)

Ext3: Group Dynamics – Analysis

January 25

System Stability

Conclusion

System Stability Achieved Through:

- Peer pressure mechanisms
- External enforcement
- Group cooperation

Key Contributions

- Demonstrated emergence of stable resource management
- Identified optimal enforcement strategies
- Validated group-based resilience

Thank you!