附件 2 参数及说明

耐低温防护服具体结构示意图如下:

图 1 低温防护复合材料的结构示意图

AC = 144 104 mm 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4						
三层标识	厚度 mm 毫米	比热 J/Kg·K 焦耳/千克.开 尔文	导热系数 W/m·K 瓦特/米.开尔文	密度 Kg/m³ 千克/立方米	价格	
最外层(隔热层)	0.3	5463.2	0.0527	300	150 元/500g	
内层 (织物层)	0.7	4803.8	0.068	208	500 元/500g	
中间层 (功能层)	0.4	2400	0.06	552.3	$10 \overline{\pi}/m^2$	

表 1 耐低温防护服相关参数

备注:

- 1、中间层是由多种材料混合而成,可以释放热量,释放能力见附录1。
- 2、测试时,假设人体的温度为37℃。
- 3、中间层厚度最大厚度 0.45mm, 因为太厚, 衣物硬度就大, 人根本就无法工作。后期增加厚度只调整最外层厚度(最外层涂层每层厚度规定固定 0.3mm)
- 4、服装系统与外界低温环境的对流热量公式如下(本文不考虑服装面积因子和服装有效对流面积系数):

$$\Delta C = h_c A_b \left(T_1 - T_2 \right)$$

其中, T_1 为服装表面温度, T_2 为外部环境温度, A_b 为人体有效表面积, h_c 为对流换热系数。 h_c 的公式如下:

$$h_c = 2.38 \left(T_1 - T_2 \right)^{0.25}$$

5、对流换热系数 h_c 的值如下表:

人体状态	对流换热系数 h_c
静止站立	3.0
轻微运动	4.0

6、人体表面积计算公式为 Stevenson 公式

$$S = 0.0061h + 0.0128w - 0.1529$$

其中, h为身高, w为体重。