CS 5/7320 Artificial Intelligence

Constraint
Satisfaction
Problems
AIMA Chapter 6

Slides by Michael Hahsler based on Slides by Svetlana Lazepnik with figures from the AIMA textbook

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

Constraint satisfaction problems (CSPs)

Definition:

- State is defined by a set of variables X_i (= factored state description)
 - Each variable can have a value from domain D_i or be unassigned (partial solution).
- Constraints are a set of rules specifying allowable combinations of values for subsets of variables (e.g., $X_1 \neq X_7$ or $X_2 > X_9 + 3$)
- Solution: a state that is a
 - a) Consistent assignment: satisfies all constraints
 - b) Complete assignment: assigns value to each variable

This makes the problem different from the "generic" tree search formulation where we have:

- Atomic states
- States are always compete assignments.
- Constrains are implicit in the transition function.

General-purpose algorithms for CSP with more power than standard search algorithms exit.

Example: Map Coloring (Graph coloring)

- Variables representing state: WA, NT, Q, NSW, V, SA, T
- Variable Domains: {red, green, blue}
- Constraints: adjacent regions must have different colors e.g.,

WA ≠ NT ⇔ (WA, NT) in {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

Solutions are complete and consistent assignments, e.g.,

WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

Example: N-Queens

- Variables: X_{ij} for $i, j \in \{1, 2, ..., N\}$
- **Domains:** {0, 1} # Queen: no/yes

Constraints:

$$\Sigma_{i,j} X_{ij} = N$$
 $(X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be in same col.}$
 $(X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be in same row.}$
 $(X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be diagonal}$
 $(X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be diagonal}$

for
$$i, j, k \in \{1, 2, ..., N\}$$

N-Queens: Alternative formulation

- Variables: Q_1 , Q_2 , ..., Q_N
- **Domains:** {1, 2, ..., *N*} # row for each col.

Constraints:

 $\forall i, j \text{ non-threatening } (Q_i, Q_j)$

Example:

Example: Cryptarithmetic Puzzle

- Variables: T, W, O, F, U, R
 X₁, X₂
- **Domains**: {0, 1, 2, ..., 9}
- Constraints:

Alldiff(T, W, O, F, U, R)

$$O + O = R + 10 * X_1$$

 $W + W + X_1 = U + 10 * X_2$
 $T + T + X_2 = O + 10 * F$
 $T \neq 0, F \neq 0$

Given Puzzle:

Find values for the letters. Each letter stands for a

different digit.

X₂ X₁
T W O

Example: Sudoku

• Variables: X_{ij}

• **Domains:** {1, 2, ..., 9}

Constraints:

Alldiff(X_{ij} in the same unit)

Alldiff(X_{ij} in the same row)

Alldiff(X_{ij} in the same *column*)

					8			4
	8	4		1	6			
		1 17	5			1	96 61	
1		3	8			9	/-	
6		8		X_{ij}		4		3
	3	2		30 2	9	5	8	1
		7	Г		2			
			7	8		2	6	
2		2	3					

NP-complete

Some Popular Types of CSPs

Boolean Satisfiability Problem (SAT)

Find variable assignments that makes a Boolean expression (often expressed in conjunctive normal form) evaluate as true.

$$(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 = True$$

Integer Programming

Variables are restricted to integers. Find a feasible solution that satisfies all constraints. The traveling salesman problem can be expressed as an integer program.

Linear Programming

Variables are continuous and constraints are linear (in)equalities. Find a feasible solution using, e.g., the simplex algorithm.

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class for a fixed schedule. Teacher cannot be in two classes at the same time!
- Timetable problems
 - e.g., which class is offered when and where? No two classes in the same room at the same problem.
- Scheduling in transportation and production (e.g., order of production steps).
- Many problems can naturally also be formulated as CSPs.
- More examples of CSPs: http://www.csplib.org/

CSP as a Standard Search Formulation

State:

Values assigned so far

Initial state:

The empty assignment { } (all variables are unassigned)

Successor function:

- Choose an unassigned variable and assign it a value that does not violate any constraints
- Fail if no legal assignment is found

Goal state:

Any complete and consistent assignment.

Backtracking search

In CSP's, variable assignments are commutative
 For example,
 [WA = red then NT = green] is the same as
 [NT = green then WA = red]. → Order is not important

- We can build a search tree that assigns the value to one variable per level.
 - Tree depth n (number of variables)
 - Number of leaves: d^n (d is the number of values per variable)
- Depth-first search for CSPs with single-variable assignments is called backtracking search

Example: Backtracking search (DFS)

Backtracking search algorithm

```
function Recursive-Backtracking(assignment, csp)
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp)
       if value is consistent with assignment given CONSTRAINTS[csp]
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
Call: Recursive-Backtracking({}, csp)
```

Improving backtracking efficiency:

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Which variable should be assigned next? In which order should its values be tried?

Most constrained variable:

- Keep track of remaining legal values for unassigned variables (using constraints)
- Choose the variable with the fewest legal values left
- A.k.a. minimum remaining values (MRV) heuristic

• Choose the **least constraining value**:

• The value that rules out the fewest values in the remaining variables

Early detection of failure – Forward checking Node consistency

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values (i.e., minimum remaining values = 0)

NT and SA cannot both be blue! This violates the constraint.

Early detection of failure – Forward checking Arc consistency

- X is arc consistent wrt Y iff for every value of X there is some allowed value of Y.
- Make X arc consistent wrt Y by throwing out any values of X for which there is no allowed value of Y.

- NWS cannot be blue because SA has to be blue.
- 2. V cannot be red because NSW has to be red.
- 3. SA cannot be blue because NT is blue.
- 4. Fail and backtrack
- Arc consistency detects failure earlier than node consistency
- There are more consistency checks (path consistency, K-consistency)

Backtracking search with inference

```
function Recursive-Backtracking(assignment, csp)
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp)
       if value is consistent with assignment given CONSTRAINTS[csp]
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
   return failure
Call: Recursive-Backtracking({}, csp)
```

Local search for CSPs

CSP algorithms allow incomplete states, but only if they satisfy all constraints.

Local Search (e.g., Hill-climbing and simulated annealing) works only with "complete" states, i.e., all variables assigned, but we can allow states with unsatisfied constraints.

Attempt to improve states by the min-conflicts heuristic:

- 1. Select a conflicted variable and
- 2. Choose a new value that produces violates the fewest constraints (local improvement step)
- 3. Repeat till all constraints are met.

Local search is often very effective for CSPs.

Summary

- CSPs are a special type of search problem:
 - States are structured and defined by a set of variables and values assignments
 - Variables can be unassigned
 - Goal test defined by
 - Consistency with constraints
 - Completeness of assignment
- Backtracking search = depth-first search where a successor state is generated by a consistent value assignment to a single unassigned variable
 - Starts with {} and only considers consistent assignments.
 - Variable ordering and value selection heuristics can help significantly
 - Forward checking prevents assignments that guarantee later failure
- Local search can be used to search the space of all complete assignments for consistent assignments = min-conflicts heuristic.