

Vishay Siliconix

N-Channel JFETs

2N4856JAN	2N4856JANTX	2N4856JANTXV
2N4857JAN	2N4857JANTX	2N4857JANTXV
2N4858JAN	2N4858JANTX	2N4858JANTXV
2N4859JAN	2N4859JANTX	2N4859JANTXV
2N4860JAN	2N4860JANTX	2N4860JANTXV
2N4861JAN	2N4861JANTX	2N4861JANTXV

PRODUCT SUMMARY								
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	$r_{DS(on)}$ Max (Ω)	I _{D(off)} Max (pA)	t _{ON} Typ (ns)			
2N4856	−4 to −10	-40	25	250	9			
2N4857	−2 to −6	-40	40	250	10			
2N4858	−0.8 to −4	-40	60	250	20			
2N4859	−4 to −10	-30	25	250	9			
2N4860	−2 to −6	-30	40	250	10			
2N4861	−0.8 to −4	-30	60	250	20			

FEATURES

• Low On-Resistance: 2N4856 <25 Ω

Fast Switching—t_{ON}: 4 ns
 High Off-Isolation—I_{D(off)}: 5 pA

Low Capacitance: 3 pF
Low Insertion Loss

N-Channel Majority Carrier FET

BENEFITS

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering
- High Radiation Tolerance

APPLICATIONS

- Analog Switches
- Choppers
- Sample-and-Hold
- Normally "On" Switches
- Current Limiters

DESCRIPTION

The 2N4856JAN/JANTX/JANTXV all-purpose JFET analog switches offer low on-resistance, low capacitance, good isolation, and fast switching.

Hermetically-sealed TO-206AA (TO-18) packaging allows full military processing (see Military Information). For similar products in TO-226AA (TO-92) and TO-236 (SOT-23) packages, see the J/SST111 series data sheet. For similar duals, see the 2N5564/5565/5566 data sheet.

2N4856JAN/JANTX/JANTXV Series

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage :	Operating Junction Temperature
(2N4856-58)	Power Dissipation ^a
Gate Current	Notes
Lead Temperature (1/16" from case for 10 seconds)	a. Derate 10.3 mW/ $^{\circ}$ C to T _C > 25 $^{\circ}$ C
Storage Temperature	

				Limits							
		Test Conditions			2N4856		2N4857		2N4858		
Parameter	Symbol			Тура	Min	Max	Min	Max	Min	Max	Unit
Static											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, V _{DS} = 0 V	-55	-40		-40		-40		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V,	I _D = 0.5 nA		-4	-10	-2	-6	-0.8	-4	1
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 V,	V _{GS} = 0 V		50	175	20	100	8	80	mA
Gate Reverse Current	lasa	V _{GS} = -20 V, V _{DS} = 0 V		- 5		-250		-250		-250	pА
Gale Neverse Current	I _{GSS}		T _A = 150°C	-13		-500		-500		-500	nA
Gate Operating Current ^c	I _G	$V_{DG} = 15 V$,		- 5							рA
Drain Cutoff Current	1	$V_{DS} = 15 \text{ V}, V_{GS} = -10 \text{ V}$		5		250		250		250	PΑ
Drain Culoii Current	I _{D(off)}		T _A = 150°C	13		500		500		500	nA
Drain-Source On-Voltage		V _{GS} = 0 V	$I_D = 5 \text{ mA}$	0.25						0.5	
	V _{DS(on)}		I _D = 10 mA	0.35				0.5			٧
			I _D = 20 mA	0.5		0.75					
Drain-Source On-Resistance ^c	r _{DS(on)}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$				25		40		60	Ω
Gate-Source Forward Voltage ^c	V _{GS(F)}	I _G = 1 mA , V _{DS} = 0 V		0.7							V
Dynamic											
Common-Source Forward Transconductance ^c	9 _{fs}	V _{DG} = 20 V, I _D = 1 mA		6							mS
Common-Source Output Conductance ^c	9 _{os}	f = 1	kHz	25							μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 0 V, V _{GS} = -10 V f = 1 MHz		7		18		18		18	pF
Common-Source Reverse Transfer Capacitance	C _{rss}			3		8		8		8	- рг
Equivalent Input Noise Voltage ^c	e _n	$V_{DG} = 10 \text{ V}, I_{D} = 10 \text{ mA}$ f = 1 kHz		3							nV∕ √Hz
Switching											
Turn-On Time	t _{d(on)}			2		6		6		10	
rum-on time	t _r	V _{DD} = 10 V, V _{GS(H)} = 0 V See Switching Circuit		2		3		4		10	ns
Turn-Off Time	t _{OFF}			13		25		50		100	1

2N4856JAN/JANTX/JANTXV Series Vishay Siliconix

					Limits						
		nbol Test Conditions T			2N4859		2N4860		2N4861		1
Parameter	Symbol			Тура	Min	Max	Min	Max	Min	Max	Unit
Static						•				•	
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$		-55	-30		-30		-30		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V,	I _D = 0.5 nA		-4	-10	-2	-6	-0.8	-4	
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 V ₂	, V _{GS} = 0 V		50	175	20	100	8	80	mA
Gate Reverse Current		$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$		-5		-250		-250		-250	pA
Gale Reverse Current	I _{GSS}		T _A = 150°C	-13		-500		-500		-500	nA
Gate Operating Current ^c	I _G	V _{DG} = 15 V,	I _D = 10 mA	- 5							1
Drain Cutoff Current		V _{DS} = 15 V,	V _{GS} = -10 V	5		250		250		250	pА
Drain Cutoff Current	I _{D(off)}		T _A = 150°C	13		500		500		500	nA
Drain-Source On-Voltage	V _{DS(on)}	V _{GS} = 0 V	$I_D = 5 \text{ mA}$	0.25						0.5	V
			I _D = 10 mA	0.35				0.5			
			I _D = 20 mA	0.5		0.75					
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$				25		40		60	Ω
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 1 \text{ mA}$, $V_{DS} = 0 \text{ V}$		0.7							V
Dynamic											
Common-Source Forward Transconductance ^c	9fs	$V_{DG} = 20 \text{ V, } I_{D} = 1 \text{ mA}$ f = 1 kHz		6							mS
Common-Source Output Conductance ^c	9os			25							μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 0 V, V _{GS} = -10 V f = 1 MHz		7		18		18		18	pF
Common-Source Reverse Transfer Capacitance	C _{rss}			3		8		8		8	ρ.
Equivalent Input Noise Voltage ^c	\overline{e}_{n}	$V_{DG} = 10 \text{ V, } I_D = 10 \text{ mA}$ f = 1 kHz		3							nV∕ √Hz
Switching											
Turn-On Time	t _{d(on)}			2		6		6		10	
Tuni-On Tillie	t _r	V _{DD} = 10 V, ' See Switch	V _{GS(H)} = 0 V ning Circuit	2		3		4		10	ns
Turn-Off Time	t _{OFF}	J		19		25		50		100	

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW $\leq 100~\mu s$ duty cycle $\leq 10\%$. c. This parameter not registered with JEDEC.

NCB

Vishay Siliconix

SWITCHING TIME TEST CIRCUIT									
	4856/4859	4858/4861							
V _{GS(L)}	–10 V	−6 V	-4 V						
R _L *	464 Ω	953 Ω	1910 Ω						
I _{D(on)}	20 mA	10 mA	5 mA						

*Non-inductive

INPUT PULSE

SAMPLING SCOPE

Rise Time < 1 ns Fall Time < 1 ns Pulse Width 100 ns PRF 1 MHz

Rise Time 0.4 ns Input Resistance 10 M Ω Input Capacitance 1.5 pF

