Trigger Studies for $\eta' \to e^+e^-\gamma$

Michael C. Kunkel / Daniel R. Lersch / James Ritman

21.09.2017

Overview

- Trigger proposed for the upcoming CLAS12 spring run (20 days):
 - i) NPHE(HTCC) > 5...10
 - ii) $\Delta E(PCAL + ECAL) \ge 150 \,\mathrm{MeV}$
- This configuration would suppress e^- with: $p \lesssim 0.7 \,\mathrm{GeV/c}$
 - ⇒ Implemented in the actual CLAS12 PID-algorithm
 - ⇒ We can do better than that
- Idea:
 - Momenta of dilepton-pair are predominantly distributed such that:
 one low momentum lepton + one high momentum positron
 - Look at p(e⁺) vs p(e⁻) for different cuts on both lepton momenta (corresponding to the trigger)
 - ⇒ Determine ratio of rejected / accepted events
 - Also look at NPHE(LTCC), NPHE(HTCC) and ΔE(PCAL + ECAL) for those different momentum cuts
- Look at different torus-settings: -100% and -75%, Solenoid: 60%

$p(e^+)$ vs. $p(e^-)$ for Torus: $-100\% \mid\mid -75\%$ and Solenoid: 60%

reaction $ep o pe'e^+e^-\gamma$ was simulated e^\pm PID based on TOF

- Left: not cut
- Centre: $p(e^+) \le 0.5 \,\mathrm{GeV/c}$ and $p(e^-) \le 0.5 \,\mathrm{GeV/c}$
- Right: $!(p(e^+) \le 0.5 \, \mathrm{GeV/c}$ and $p(e^-) \le 0.5 \, \mathrm{GeV/c})$

(IKP1 - Juelich)

$p(e^+)$ vs. $p(e^-)$ for Torus: $-100\% \mid\mid -75\%$ and Solenoid: 60%

- Left: not cut
- Centre: $p(e^+) \le 0.7 \,\mathrm{GeV/c}$ and $p(e^-) \le 0.7 \,\mathrm{GeV/c}$
- Right: $!(p(e^+) \le 0.7 \,\text{GeV/c} \text{ and } p(e^-) \le 0.7 \,\text{GeV/c})$
- Top: Torus: -100% / Bottom: -75%

No cut on $p(e^+)$ and $p(e^-)$

Top: Torus: -100% / Bottom: Torus: -75%

5 / 14

 $p(e^+) \text{ AND } p(e^-) \le 0.5 \,\text{GeV/c}$

Top: Torus: -100% / Bottom: Torus: -75%

 $p(e^+) \text{ OR } p(e^-) \le 0.5 \, \text{GeV/c}$

Top: Torus: -100% / Bottom: Torus: -75%

 $p(e^+)$ AND $p(e^-) \le 0.7 \,\mathrm{GeV/c}$

Top: Torus: -100% / Bottom: Torus: -75%

 $p(e^+) \text{ OR } p(e^-) \le 0.7 \,\text{GeV/c}$

Top: Torus: -100% / Bottom: Torus: -75%

9 / 14

$\Delta E(PCAL + ECAL)$ vs. Momentum

- Left: not cut
- Centre: $p(e^+) \le 0.5 \,\mathrm{GeV/c}$ and $p(e^-) \le 0.5 \,\mathrm{GeV/c}$
- Right: $!(p(e^+) \le 0.5 \,\mathrm{GeV/c})$ and $p(e^-) \le 0.5 \,\mathrm{GeV/c})$
- Top: Torus: -100% / Bottom: -75%

- Left: not cut
- Centre: $p(e^+) \le 0.7 \,\mathrm{GeV/c}$ and $p(e^-) \le 0.7 \,\mathrm{GeV/c}$
- Right: $!(p(e^+) \le 0.7 \, \text{GeV/c} \text{ and } p(e^-) \le 0.7 \, \text{GeV/c})$
- Top: Torus: −100% / Bottom: −75%

Summary

Torus [%]	Cut:	Momentum Range	[%] inside cut	[%] outside cut
-100	$p(e^+)~\&~p(e^-)\lesssim 0.5{ m GeV/c}$	$p(e^+), p(e^-) \in [0, 5] \mathrm{GeV/c}$	1%	99%
-100	$p(e^+) \& p(e^-) \lesssim 0.5 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 4] \mathrm{GeV/c}$	2%	98%
-100	$p(e^+) \& p(e^-) \lesssim 0.5 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 3] \text{GeV/c}$	2%	98%
-100	$p(e^+) \& p(e^-) \lesssim 0.5 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 2] \mathrm{GeV/c}$	4%	96%
-100	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 5] \mathrm{GeV/c}$	2%	98%
-100	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 4] \mathrm{GeV/c}$	3%	97%
-100	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 3] \mathrm{GeV/c}$	5%	95%
-100	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 2] \mathrm{GeV/c}$	8%	92%

Percentage inside cut: #Events inside the cut #Events within Momentum Range = Percentage of rejected events

Percentage outside cut: #Events outside the cut #Events within Momentum Range ≡ Percentage of accepted events

Torus [%]	Cut:	Momentum Range	[%] inside cut	[%] outside cut
-75	$p(e^+) \ \& \ p(e^-) \lesssim 0.5 {\rm GeV/c}$	$p(e^+), p(e^-) \in [0, 5] \mathrm{GeV/c}$	1%	99%
-75	$p(e^+) \& p(e^-) \lesssim 0.5 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 4] \mathrm{GeV/c}$	2%	98%
-75	$p(e^+) \& p(e^-) \lesssim 0.5 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 3] \mathrm{GeV/c}$	3%	97%
-75	$p(e^+) \& p(e^-) \lesssim 0.5 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 2] \mathrm{GeV/c}$	5%	95%
-75	$p(e^+) \ \& \ p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 5] \mathrm{GeV/c}$	2%	98%
-75	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 4] \mathrm{GeV/c}$	5%	95%
-75	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 3] \mathrm{GeV/c}$	7%	93%
-75	$p(e^+) \& p(e^-) \lesssim 0.7 { m GeV/c}$	$p(e^+), p(e^-) \in [0, 2] \mathrm{GeV/c}$	12%	88%

• Percentage inside cut: $\frac{\# \text{Events inside the cut}}{\# \text{Events within Momentum Range}} \equiv \text{Percentage of rejected events}$

Percentage outside cut: #Events outside the cut #Events within Momentum Range = Percentage of accepted events

IKP Trigger Request for η' Dalitz channel

- HTCC NPE > 5
- PCAL + EC sum > 150MeV
- This would be a 12% loss of signal for dilepton pairs that correspond to momentum of 0.7GeV/c each in the momentum range 0-2 GeV/c.