Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2009/2010 AL2 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 7 - 25 Novembre 2009 Matteo Acclavio, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

Si considerino in $(\mathbb{Z}, +, \cdot)$ gli insiemi $(3) := \{3z \mid z \in \mathbb{Z}\}, (7) := \{7h \mid h \in \mathbb{Z}\}, (9) := \{9l \mid l \in \mathbb{Z}\}, (21) := \{21f \mid f \in \mathbb{Z}\}.$

- ullet Verificare che gli insiemi descritti sono ideali di $\mathbb Z$
- Stabilire quali di essi sono ideali primi
- Stabilire quali di essi sono ideali massimali
- Determinare $(21) \cap (9)$, $(3) \cap (7)$, (3) + (9), (3) + (7)
- Descrivere i relativi quozienti determinandone le proprietà (i.e. se sono domini, campi...), calcolare la caratteristica di ogni anello quoziente e descriverne gli ideali

Esercizio 2.

Si consideri l'applicazione $\varphi : \mathbb{Z} \longrightarrow \mathbb{Z}_7 \times \mathbb{Z}_5 =: B$, definito come $\varphi(x) := ([x]_7, [x]_5)$. Dimostrare che φ è un omomorfismo di anelli. Dire se è iniettivo e/o suriettivo e descriverne il nucleo e l'immagine. Dimostrare inoltre che tutti e soli gli ideali primi di B sono $I := \{[0]_7\} \times \mathbb{Z}_5$ e $J := \mathbb{Z}_7 \times \{[0]_5\}$. Determinare gli ideali primi $P := \varphi^{-1}(I)$ e $Q := \varphi^{-1}(J)$. Descrivere infine $\varphi^{-1}(([5]_7, [2]_5))$

Esercizio 3.

Sia $A = \{ \frac{m}{10^t} \in \mathbb{Q} \mid m, t \in \mathbb{Z}, \ t \geq 0 \}.$

- Verificare che A è un sottoanello di $\mathbb Q$
- \bullet Determinare gli elementi invertibili di A
- Se I è un ideale di A provare che $I \cap \mathbb{Z}$ è un ideale di \mathbb{Z}
- Provare che se $I \neq J$ sono ideali di A allora $I \cap \mathbb{Z} \neq J \cap \mathbb{Z}$
- Provare che se I è primo o massimale allora $I \cap \mathbb{Z}$ è primo o massimale
- Provare che per ogni $p \neq 2, 5$, con p primo, pA è un ideale massimale in A e $(p) \cap \mathbb{Z}$ è un ideale primo di \mathbb{Z}

Esercizio 4.

Sia A un anello commutativo unitario e siano I, J ideali di A.

- Si dimostri che $IJ:=\{\sum_{i=1}^n a_ib_i\mid a_i\in I,\ b_i\in J\}$ è un ideale di A contenuto in $I\cap J$
- Dimostrare che se I e J sono ideali primi allora IJ è primo se e solo se IJ=I oppure IJ=J

Esercizio 5.

Sia

$$A := \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}.$$

- \bullet Si dimostri che A è un sottoanello delle matrici quadrate 2×2 a coefficienti in $\mathbb Z$
- Dato $n \ge 2$ e

$$I := \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in n\mathbb{Z} \right\},\,$$

dimostrare che I è un ideale bilatero di A e trovare un omomorfismo di anelli $\varphi:A\longrightarrow \mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ tale che $Ker(\varphi)=I$

 $\bullet\,$ Descrivere gli ideali di A/I