

Machine Learning Model Validation

Risk Americas Workshop New York, NY

Agus Sudjianto and Vijay Nair Corporate Model Risk, Wells Fargo May 9, 2022

Agenda

- 9:00 9:30: Introduction Agus Sudjianto
- 9:30-10:45: Machine Learning and Explainability
 - Vijay Nair and Sri Krishnamurthy
- 10:45-11:00: **Break**
- 10:45-11:45: Unwrapping ReLU Networks
 - Agus Sudjianto
- 11:45-12:45 Inherently Interpretable Models
 - Vijay Nair and Sri Krishnamurthy
- 12:45-1:15: Lunch Break

- 1:15-2:15: Outcome Testing
 - Agus Sudjianto
- 2:15-3:15 Hands-on Exercises
 - Sri Krishnamurthy
- 3:15-3:30: Break
- 3:30-4:30 Bias and Fairness
 - Nick Schimdt

- 4:30-5:00: ModelOp Presentation
 - Jim Olsen

Overview

1. Introduction: Risk Dynamics, Conceptual Soundness and Outcome Testing

- 2. Supervised Machine Learning: Algorithms and Explainability
- 3. Deep ReLU Networks and Inherent Interpretation
- 4. Inherently Interpretable Models
- 5. Outcome Testing

Risk Dynamics and Machine Learning

Your AutoML is WRONG!

- Unsound models can have very good performance
 - Don't chase the leaderboard of your AutoML
- Model explainability can uncover and spot trouble; but explainers for ML can be easily wrong
- Inherently interpretable ML models provide benefit beyond explainability
- Validate models to ensure conceptual soundness and consistent outcome (accuracy, robustness, reliability, resiliency)

Don't just trust your AutoML

- Various choices of hyper-parameter tuning can give similar prediction performance
 - Does the model make sense?
- Shift happens in real world
 - Will the performance stand in production
 - Are you overly optimistic?
 - Model with best performance based on testing data may not be the best model under dynamically changing environment
- → outcome testing alone is not sufficient

Example: Taiwan Credit Dataset

 Default of credit card clients in Taiwan from 200504 to 200509.

It includes 23 variables:

- demographic (Gender, Education, Marital status, Age)
- credit limit (Limit_Bal)
- bill statement (Bill_AMT1~6)
- payment history (Pay1~6 status, Pay_AMT1~6) from
 200509 back to 200504.
- **Response:** indicator of default payment in next month.

Typical analysis

- Data preprocessing
- 2. Try various ML algorithms
- 3. Perform AutoML, HyperOpt, Fine Tuning
- 4. Pick model with highest AUC or Accuracy

The best performer (with testing AUC 0.7727) happens to be a ReLU DNN with hidden layer sizes [40, 40, 40, 40].

Spot Problems with Explainers: Models w and w/o Regularization

Inherent Interpretability

- Post-hoc explainability tools are not exact and can produce misleading information
- Unlike post-hoc explainability, we focus on the **inherent interpretability** that is intrinsic to a model itself.
- An inherently interpretable model facilitates gist and intuitiveness for human insightful interpretation.
- However, model interpretability is a loosely defined concept and does not have a common quantitative measure. Instead, we propose a **qualitative measure** based on model characteristics enforced by interpretability constraints.
 - https://arxiv.org/abs/2111.01743: Sudjianto and Zhang, Designing Inherently Interpretable
 Machine Learning Models

Transparency of ReLU DNN: Data Segmentation and LLMs

- ReLU DNN with 4 hidden layers (each 40 nodes) leads to **high performance** (AUC ~0.93) upon SGD training.
- Unwrapped Transparency: it generates 530 regions/LLMs; ~85% LLMs have only a single instance per region.
- Transparency ≠ Interpretability/Robustness: raw DNNs are overparameterized with lots of unreliable LLMs.

Exact vs. Auxiliary Post-hoc Explainers

- Aletheia (Sudjianto, et al. 2020) generates local exact and consistent interpretability for ReLU DNNs.
- **LIME** (Ribeiro, et al. 2016) generates **approximate** but **inconsistent** local interpretations (due to perturbation resampling in local surrogate modeling);
- **SHAP** (Lundberg et al. 2017) provides **very different** local interpretations, which may be **misinterpreted**. Note that KernelSHAP and DeepSHAP are computationally demanding (thus, approximation are applied), and their results do not match.

Taxonomy of Explainable Machine Learning

Designing Interpretable ML Models

Model Simplification to Enhance Interpretability

- Simplify the model by L1-regularized ReLU DNN with bill statement and payment history variables:
 - Hidden_layer_sizes: [40]*4
 - L1reg = 0.003
 - Competitive performance with testing AUC 0.7656 (vs. the highest 0.7727).

Simpler more Interpretable Models are More Robust

- Real world: "Shift happens"
- Often fail to detect overfitting
- Model performance can be very fragile
- Regularized—simpler and interpretable—models often perform better in production

Taiwan Credit Data Example: Complex vs. Simpler Model Performance

Key Elements of ML Model Validation

Conceptual Soundness

Explainability

Causality

Interpretability

Outcome Analysis

Robustness

Resiliency: Distribution Shift

We will use a low-code Python package called "PiML" to demonstrate these elements in model validation.