Motifs and bipartite networks

S. Robin

Sorbonne université

Ecole EcoNet, April 2024, Montpellier

Outline

Bipartite networks and motifs

A null model

Motif distribution

Goodness-of-fit and network comparison

Network embedding

Outline

Bipartite networks and motifs

A null model

Motif distribution

Goodness-of-fit and network comparison

Network embedding

Bipartite network

Two types of actors.

► Mutualistic: plant-pollinator

Antagonistic: host-parasite

Topological analysis:

understanding the network organisation

Local: node or edge properties (degree, betweenness)

Global: density, connected components, nestedness

Zackenberg network: [SROB16]

Bipartite network: notations

Species.

- $i = 1, \dots m$ pollinators = rows = bottom nodes
- $ightharpoonup j=1,\dots n$ plants = columns = top nodes

Bipartite network: notations

Species.

- $i = 1, \dots m$ pollinators = rows = bottom nodes
- $ightharpoonup j=1,\ldots n$ plants = columns = top nodes

Interactions.

 A_{ij} = 1 if pollinator i interacts with plant j, 0 otherwise

$$A_{ij} = 1 \Leftrightarrow i \sim j$$

▶ adjacency matrix : m × n

$$A = [A_{ij}]_{1 < i < m, 1 < j < n}$$

Bipartite motifs

'Meso-scale' analysis. [SCB+19]

- ► Motifs = 'building-blocks'
- between local (several nodes) and global (sub-graph)

Bipartite motifs

'Meso-scale' analysis. [SCB⁺19]

- ► Motifs = 'building-blocks'
- between local (several nodes) and global (sub-graph)

Interest.

- Generic description of a network
- Enables network comparison
- ▶ Even when the nodes are different

(+ 'species-role': out of the scope here)

Bipartite motifs

'Meso-scale' analysis. [SCB⁺19]

- ► Motifs = 'building-blocks'
- between local (several nodes) and global (sub-graph)

Interest.

- ► Generic description of a network
- Enables network comparison
- ► Even when the nodes are different

(+ 'species-role': out of the scope here)

Existing tool. bmotif package [SSS⁺19]: counts motif occurrences

Example

Plant-pollinator network [SROB16]

Motif counts.

Example

Plant-pollinator network [SROB16]

Motif counts.

bottom 'stars' (pollinators)

Outline

Bipartite networks and motifs

A null model

Motif distribution

Goodness-of-fit and network comparison

Network embedding

Need for a null model

Motif counts obviously depend on

- ▶ the size of the network: $n \times m$
- ▶ the density of the network
- ▶ the imbalance between bottom-node degrees (specialist vs generalist pollinators)
- ▶ the imbalance between top-node degrees (specialist vs generalist plants)

Need for a null model

Motif counts obviously depend on

- ▶ the size of the network: $n \times m$
- the density of the network
- ▶ the imbalance between bottom-node degrees (specialist vs generalist pollinators)
- ▶ the imbalance between top-node degrees (specialist vs generalist plants)

Bipartite expected degree distribution (BEDD) model: (in words)

- Consider m pollinators (i = 1, ... m): each plant i has a specific propensity to interact (degree of generalism)
- ▶ Consider n plants (j = 1, ...n): each plant j has a specific propensity to interact (idem)
- ▶ The probability for pollinator *i* and plant *j* to interact is proportional to the product of their respective propensities.

BEDD model

Bipartite expected degree distribution (BEDD) model: (formaly)

- ho = network density
- $g = \text{top node degree imbalance } (\int g = 1)$
- ▶ $h = \text{bottom node degree imbalance } (\int h = 1)$

$$\{U_i\}_{i=1,...m}$$
 iid $\sim \mathcal{U}[0,1]$ $\{V_j\}_{j=1,...n}$ iid $\sim \mathcal{U}[0,1]$
$$\mathbb{P}\{i\sim j\mid U_i,V_j\} = \rho \ g(U_i) \ h(V_j)$$

(Bipartite version of the EDD model [CL02])

BEDD model

Bipartite expected degree distribution (BEDD) model: (formaly)

- ho = network density
- $g = \text{top node degree imbalance } (\int g = 1)$
- ▶ $h = \text{bottom node degree imbalance } (\int h = 1)$

$$\{U_i\}_{i=1,\dots m}$$
 iid $\sim \mathcal{U}[0,1]$ $\{V_j\}_{j=1,\dots n}$ iid $\sim \mathcal{U}[0,1]$
$$\mathbb{P}\{i \sim j \mid U_i, V_i\} = \rho \ g(U_i) \ h(V_i)$$

(Bipartite version of the EDD model [CL02])

Model parameters:

$$\theta = (\rho, g, h).$$

BEDD model

$$p_{\{i \sim j \mid U_i, V_j\}} = \rho g(U_i) h(V_j)$$

$$p_{\{i \sim j \mid U_i, V_j\}} = n \rho g(U_i)$$

$$p_{\{i \sim j \mid U_i\}} = n \rho g(V_i)$$

$$p_{\{i \sim j \mid U_i\}} = m \rho g(V_i)$$

$$p_{\{i \sim j \mid U_i\}} = m \rho g(V_i)$$

$$p_{\{i \sim j \mid U_i, V_j\}} = m \rho g(V_i)$$

Properties of the BEDD model

Assumptions.

- ▶ No preferred or avoided specific connexion
- ► Graph-exchangeable model: pollinators can be permuted and plants can be permuted

Properties of the BEDD model

Assumptions.

- ► No preferred or avoided specific connexion
- ► Graph-exchangeable model: pollinators can be permuted and plants can be permuted

Properties.

- Expected degree for pollinator i given U_i : $n \rho g(U_i)$.
- **Expected degree for plant** j given V_i : $m \rho h(V_i)$.
- 'Nested' structure by construction

Properties of the BEDD model

Assumptions.

- No preferred or avoided specific connexion
- ► Graph-exchangeable model: pollinators can be permuted and plants can be permuted

Properties.

- Expected degree for pollinator i given U_i : $n \rho g(U_i)$.
- **Expected degree for plant** j given V_j : $m \rho h(V_j)$.
- 'Nested' structure by construction

Sufficient statistics to fit BEDD:

- ▶ Pollinator degrees + plant degrees
- or, equivalently, star (single edge, top, bottom) frequencies

Outline

Bipartite networks and motif

A null model

Motif distribution

Goodness-of-fit and network comparison

Network embedding

Counting motifs

Number of 'positions'.

- ightharpoonup Choose p nodes among m
- ightharpoonup Choose q nodes among n
- ► Try all automorphisms

$$c_{s} := \left(\begin{array}{c} m \\ p \end{array}\right) \times \left(\begin{array}{c} n \\ q \end{array}\right) \times r_{s}$$

Counting motifs

Number of 'positions'.

- ightharpoonup Choose p nodes among m
- ightharpoonup Choose q nodes among n
- ► Try all automorphisms

$$c_{s} := \left(\begin{array}{c} m \\ p \end{array} \right) \times \left(\begin{array}{c} n \\ q \end{array} \right) \times r_{s}$$

Automorphisms= non-redundant permutations

Counting motifs

Number of 'positions'.

- Choose p nodes among m
- ightharpoonup Choose q nodes among n
- ► Try all automorphisms

$$c_s := \left(\begin{array}{c} m \\ p \end{array} \right) \times \left(\begin{array}{c} n \\ q \end{array} \right) \times r_s$$

Automorphisms= non-redundant permutations

$$Y_{s\alpha} = 1$$
 if match, 0 otherwise,

then count the number of matches:

$$N_s = \sum_{\alpha} Y_{s\alpha}$$

 \rightarrow Motif frequency: $F_s := N_s/c_s$

$$\overline{\phi}_s = \mathbb{P}_{BEDD} \begin{pmatrix} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ \square \end{pmatrix} = \frac{\left(\phi_1^2 \phi_2\right) \left(\phi_1 \phi_4\right)}{\left(\phi_1\right)^4} = \frac{\phi_2 \phi_4}{\phi_1}$$

Occurrence probability $\overline{\phi}_s = \mathbb{P}\{Y_{s\alpha} = 1\}$. Under the B-EDD model [OLR22]:

Estimated probability \overline{F}_s .

$$\overline{\phi}_s := \frac{\phi_2 \phi_4}{\phi_1} \longrightarrow \overline{F}_s := \frac{F_2 F_4}{F_1}$$

where F_1 , F_2 , F_4 = observed frequencies of edges, top stars and bottom stars.

Moments of the count

- ► Number of positions: c_s
- $lackbox{\sf Mean:}\; \mathbb{E}_{BEDD}(\mathit{N}_{\mathit{s}}) = \mathit{c}_{\mathit{s}} imes \overline{\phi}_{\mathit{s}}$

Moments of the count

- Number of positions: c_s
- ▶ Mean: $\mathbb{E}_{BEDD}(N_s) = c_s \times \overline{\phi}_s$
- ▶ Variance: Same game, requires to evaluate $\mathbb{E}_{BEDD}(N_s^2) = \mathbb{E}_{BEDD}\left(\sum_{\alpha} Y_{s\alpha}\right)^2$
 - \rightarrow Need to account for overlap between positions (super-motifs: [PDK $^+$ 08])

→ Compute the respective expected count in the way as for regular motifs

Moments of the count

- Number of positions: c_s
- ightharpoonup Mean: $\mathbb{E}_{BEDD}(N_s) = c_s imes \overline{\phi}_s$
- ▶ Variance: Same game, requires to evaluate $\mathbb{E}_{BEDD}(N_s^2) = \mathbb{E}_{BEDD}\left(\sum_{\alpha} Y_{s\alpha}\right)^2$
 - \rightarrow Need to account for overlap between positions (super-motifs: [PDK $^+$ 08])

- → Compute the respective expected count in the way as for regular motifs
- ► Covariance: Same game to compute $\mathbb{C}ov(N_s, N_{s'})$

Distribution of the count

Asymptotic normality for non-star motifs. Under BEDD (and sparsity conditions):

$$(F_s - \overline{F}_s) \left/ \sqrt{\widehat{\mathbb{V}}(F_s)} \right. \stackrel{m,n \to \infty}{\longrightarrow} \quad \mathcal{N}(0,1)$$

Proof [OLR22]:

decompose
$$F_s - \overline{F}_s = \underbrace{(F_s - \phi_s)}_{\text{random fluctuations}} + \underbrace{(\phi_s - \overline{\phi}_s)}_{\text{null under BEDD}} + \underbrace{(\overline{\phi}_s - \overline{F}_s)}_{\text{estimation error } \to 0}$$
,

+ construct a counting martingale for $F_s - \phi_s$ [GL17].

Distribution of the count

Asymptotic normality for non-star motifs. Under BEDD (and sparsity conditions):

$$(F_s - \overline{F}_s) / \sqrt{\widehat{\mathbb{V}}(F_s)} \stackrel{m,n \to \infty}{\longrightarrow} \mathcal{N}(0,1)$$

Proof [OLR22]:

decompose
$$F_s - \overline{F}_s = \underbrace{(F_s - \phi_s)}_{\text{random fluctuations}} + \underbrace{(\phi_s - \overline{\phi}_s)}_{\text{null under BEDD}} + \underbrace{(\overline{\phi}_s - \overline{F}_s)}_{\text{estimation error } \to 0}$$
,

+ construct a counting martingale for $F_s - \phi_s$ [GL17].

Consequence. We know

- the expected behavior (mean, variance, distribution) of any motif count
- ▶ under the BEDD model (= 'null model').

Outline

Bipartite networks and motif

A null mode

Motif distribution

Goodness-of-fit and network comparison

Network embedding

Goodness-of-fit (GOF)

Aim of GOF tests. Test if the observed data arise from a given model.

More cautious: 'if the model fits the data reasonably well'

Goodness-of-fit (GOF)

Aim of GOF tests. Test if the observed data arise from a given model.

More cautious: 'if the model fits the data reasonably well'

Typical approach.

- 1. Define some statistic (= function of the data) T,
- 2. Establish the distribution of T under the model,
- 3. Compare the observed value of T with its distribution under the model.

Goodness-of-fit (GOF)

Aim of GOF tests. Test if the observed data arise from a given model.

More cautious: 'if the model fits the data reasonably well'

Typical approach.

- 1. Define some statistic (= function of the data) T,
- 2. Establish the distribution of T under the model,
- 3. Compare the observed value of T with its distribution under the model.

Example.

- 1. Data = observed plant-pollinator network
- 2. Statistic $T = \text{motif count } N_s$
- 3 Model = BFDD

Goodness-of-fit (GOF) of the BEDD model

Raw statistic:

$$T_s = \frac{N_s - \mathbb{E} N_s}{\sqrt{\widehat{\mathbb{V}} N_s}}$$

Zackenberg network.

Goodness-of-fit (GOF) of the BEDD model

Zackenberg network.

Raw statistic:

$$T_s = \frac{N_s - \widehat{\mathbb{E}} N_s}{\sqrt{\widehat{\mathbb{V}} N_s}}$$

Corrected stat.: accounts for the estimation error in $\widehat{\mathbb{E}}N$

$$T_s' = \frac{N_s - (\widehat{\mathbb{E}}N_s - \widehat{\mathbb{B}}(\widehat{\mathbb{E}}N_s))}{\sqrt{\widehat{\mathbb{V}}(N_s - \widehat{\mathbb{E}}N_s)}}$$

Testing degree imbalance

Question. Is there some degree imbalance between plants?

Testing degree imbalance

Question. Is there some degree imbalance between plants?

Statistical test.

▶ Assume $A \sim BEDD(\rho, g, h)$,

$$H_0 = \{h = 1\}$$

For motif s, evaluate $\widehat{\mathbb{E}}_0(N_s)$ and $\widehat{\mathbb{V}}_0(N_s)$ and compare

$$W_s = (N_s - \widehat{\mathbb{E}}_0(N_s))/\sqrt{\widehat{\mathbb{V}}_0(N_s)}$$

with $\mathcal{N}(0,1)$

Testing degree imbalance

Question. Is there some degree imbalance between plants?

Statistical test.

▶ Assume $A \sim BEDD(\rho, g, h)$,

$$H_0 = \{h = 1\}$$

For motif s, evaluate $\widehat{\mathbb{E}}_0(N_s)$ and $\widehat{\mathbb{V}}_0(N_s)$ and compare

$$W_s = (N_s - \widehat{\mathbb{E}}_0(N_s))/\sqrt{\widehat{\mathbb{V}}_0(N_s)}$$

with $\mathcal{N}(0,1)$

Example. (only one significant difference)

plant-pollinator

plant polinator						
S	5	6	10	15	16	
$\overline{W_s}$	$-6.45 \ 10^{-2}$	$9.96 \ 10^{-1}$	$-6.63 \ 10^{-2}$	$7.52 \ 10^{-1}$	2.43	

seed dispersal

S	5	15	16		
W_s	$-2.14\ 10^{-1}$	$-2.14\ 10^{-1}$	$-2.93 \ 10^{-1}$	$-2.95 \ 10^{-1}$	$-3.56\ 10^{-1}$

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?

Statistical test.

▶ Assume $A \sim BEDD(\rho^A, g^A, h^A)$ and $B \sim BEDD(\rho^B, g^B, h^B)$

$$H_0 = \{g^A = g^B\}$$

▶ For motif s, evaluate $\widehat{\mathbb{E}}_{\widehat{\rho}^A,\widehat{g}^B,\widehat{g}^A}(N_s^A)$ and $\widehat{\mathbb{E}}_{\widehat{\rho}^B,\widehat{g}^A,\widehat{g}^B}(N_s^B)$ and compare

$$W_s = \frac{(N_s^A - \widehat{\mathbb{E}}_0(N_s^A)) - (N_s^B - \widehat{\mathbb{E}}_0(N_s^B))}{\sqrt{\widehat{\mathbb{V}}_0(N_s^A) + \widehat{\mathbb{V}}_0(N_s^B)}}$$

with $\mathcal{N}(0,1)$

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?

Statistical test.

▶ Assume $A \sim BEDD(\rho^A, g^A, h^A)$ and $B \sim BEDD(\rho^B, g^B, h^B)$

$$H_0 = \{g^A = g^B\}$$

▶ For motif s, evaluate $\widehat{\mathbb{E}}_{\widehat{\rho}^A,\widehat{g}^B,\widehat{g}^A}(N_s^A)$ and $\widehat{\mathbb{E}}_{\widehat{\rho}^B,\widehat{g}^A,\widehat{g}^B}(N_s^B)$ and compare

$$W_s = \frac{(N_s^A - \widehat{\mathbb{E}}_0(N_s^A)) - (N_s^B - \widehat{\mathbb{E}}_0(N_s^B))}{\sqrt{\widehat{\mathbb{V}}_0(N_s^A) + \widehat{\mathbb{V}}_0(N_s^B)}}$$

with $\mathcal{N}(0,1)$

Example. (no significant difference)

S	5	6	10	15	16
F_s^A	$9.21\ 10^{-5}$	$1.00\ 10^{-5}$	$8.12 \ 10^{-6}$	$3.32\ 10^{-7}$	$4.47 \ 10^{-8}$
$\widehat{\mathbb{E}}_0 F_s^A$	$1.96 \ 10^{-4}$	$3.75 \ 10^{-5}$	$1.74 \ 10^{-5}$	$4.25 \ 10^{-6}$	$1.33 \ 10^{-6}$
F_s^B	$5.13 \cdot 10^{-4}$	$1.15 \ 10^{-4}$	$5.07 \ 10^{-5}$	$1.79 \ 10^{-5}$	$5.96 \ 10^{-6}$
$\widehat{\mathbb{E}}_0 F_s^B$	$2.66 \ 10^{-4}$	$2.92\ 10^{-5}$	$2.85 \ 10^{-5}$	$1.50\ 10^{-6}$	$1.69 \ 10^{-7}$
W_s	-1.56	-1.56	-0.97	-1.28	-0.96

Outline

Bipartite networks and motif

A null mode

Motif distribution

Goodness-of-fit and network comparison

Network embedding

Network embedding: Multivariate analysis

Analysing multiple networks. Principle

- ightharpoonup 'Embed' each network into a convenient space (e.g. \mathbb{R}^d)
- ▶ Use standard multivariate analysis (clustering, PCA, MDS, ...)

Network embedding: Multivariate analysis

Analysing multiple networks. Principle

- ightharpoonup 'Embed' each network into a convenient space (e.g. \mathbb{R}^d)
- ▶ Use standard multivariate analysis (clustering, PCA, MDS, ...)

Using motifs. K networks

$$(\mathsf{Network})_k \quad o \quad (N_1^k, \dots, N_S^k) \in \mathbb{R}^S$$

but need to correct for: network sizes, correlation between motif frequencies, etc...

Network embedding: Multivariate analysis

Analysing multiple networks. Principle

- ightharpoonup 'Embed' each network into a convenient space (e.g. \mathbb{R}^d)
- ▶ Use standard multivariate analysis (clustering, PCA, MDS, ...)

Using motifs. K networks

$$(\mathsf{Network})_k \quad o \quad (\mathsf{N}_1^k, \dots, \mathsf{N}_S^k) \in \mathbb{R}^S$$

but need to correct for: network sizes, correlation between motif frequencies, etc...

Zackenberg dataset. K = 46 networks

100

- 2 years
- ▶ 1 network observed every few days

Choleski transform

Aim: 'Remove' correlation and variance heterogeneity

Covariance matrix of (X_1, X_2) :

$$\Sigma_{X_1,X_2} = \left[\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array} \right]$$

Diagonalization: $\Sigma = \dot{P} \Lambda P^{-1}$

Choleski matrix: $\Sigma^{-1/2} = P \Lambda^{-1/2} P^{-1}$

Choleski transform

Aim: 'Remove' correlation and variance heterogeneity

Covariance matrix of (X_1, X_2) :

$$\Sigma_{X_1,X_2} = \left[egin{array}{cc} \sigma_1^2 & \sigma_{12} \ \sigma_{12} & \sigma_2^2 \end{array}
ight]$$

Diagonalization: $\Sigma = \stackrel{\downarrow}{P} \Lambda P^{-1}$

Choleski matrix: $\Sigma^{-1/2} = P \Lambda^{-1/2} P^{-1}$

Choleski transform:

$$\left[\begin{array}{c}X_1'\\X_2'\end{array}\right] = \Sigma^{-1/2}\left[\begin{array}{c}X_1\\X_2\end{array}\right]$$

References I

ao and J. Lafferty. Testing for global network structure using small subgraph statistics. Technical Report 1704.06742, arXiv, 2017.

Acard, J.-J. Daudin, M. Koskas, S. Schbath, and S. Robin. Assessing the exceptionality of network motifs,. J. Comp. Biol., 15(1):1-20, 2008.

immons, A. Cirtwill, N. Baker, L.V. Dicks, D.B. Stouffer, and W.J. Sutherland. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos. 128(2):154–170. 2019.

Savedra, R. P Rohr, J. M Olesen, and J. Bascompte. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecology and evolution, 6(4):997–1007, 2016.

Emimmons, M. JM Sweering, M. Schillinger, L. V Dicks, W. J Sutherland, and R. Di Clemente. bmotif: A package for motif analyses of bipartite networks. Methods in Ecology and Evolution. 10(5):695–701. 2019.

D. Stark. Compound Poisson approximations of subgraph counts in random graphs. Random Structures & Algorithms, 18(1):39-60, 2001.

Super-motifs

Motif:

Variance:

$$\begin{array}{lcl} \mathcal{N}_s^2 & = & \left(\sum_{\alpha} Y_{s\alpha}\right)^2 \\ & = & \sum_{\alpha,\beta:\alpha\cap\beta=\emptyset} Y_{s\alpha} Y_{s\beta} \\ & + & \sum_{\alpha,\beta:\alpha\cap\beta\neq\emptyset} & \underbrace{Y_{s\alpha} Y_{s\beta}}_{\text{occurrence of a super-motif}} \end{array}$$

Some super-motifs:

...396 super-motifs

Covariance: same game, for $Y_{s\alpha}Y_{s'\beta}$ with $s \neq s'$

Asymptotic distribution of the count

Estimated probability.

$$\overline{\phi}_s := \phi_2 \phi_4 / \phi_1 \qquad \rightarrow \qquad \overline{F}_s := F_2 F_4 / F_1$$

where F_1 , F_2 , F_4 = observed frequencies of top stars, bottom stars and edges.

Asymptotic distribution of the count

Estimated probability.

$$\overline{\phi}_s := \phi_2 \phi_4 / \phi_1 \qquad \rightarrow \qquad \overline{F}_s := F_2 F_4 / F_1$$

where F_1 , F_2 , F_4 = observed frequencies of top stars, bottom stars and edges.

Asymptotic normality for non-star motifs. Under BEDD (and sparsity conditions):

$$(F_s - \overline{F}_s) / \sqrt{\widehat{\mathbb{V}}(F_s)} \stackrel{m,n \to \infty}{\longrightarrow} \mathcal{N}(0,1)$$

Proof:

decompose

$$F_s - \overline{F}_s = (F_s - \phi_s) + (\phi_s - \overline{\phi}_s) + (\overline{\phi}_s - \overline{F}_s)$$
,

ightharpoonup construct a counting martingale [GL17] for $F_s-\phi_s$

Asymptotic distribution of the count

Estimated probability.

$$\overline{\phi}_s := \phi_2 \phi_4 / \phi_1 \qquad \rightarrow \qquad \overline{F}_s := F_2 F_4 / F_1$$

where F_1 , F_2 , F_4 = observed frequencies of top stars, bottom stars and edges.

Asymptotic normality for non-star motifs. Under BEDD (and sparsity conditions):

$$(F_s - \overline{F}_s) \left/ \sqrt{\widehat{\mathbb{V}}(F_s)} \right. \stackrel{m,n \to \infty}{\longrightarrow} \quad \mathcal{N}(0,1)$$

Proof.

decompose

$$F_s - \overline{F}_s = (F_s - \phi_s) + (\phi_s - \overline{\phi}_s) + (\overline{\phi}_s - \overline{F}_s)$$
,
random fluctuations null under BEDD estimation error $\to 0$

ightharpoonup construct a counting martingale [GL17] for $F_s - \phi_s$

Test statistic. Under BEDD:

$$N_s \approx \mathcal{N}\left(\widehat{\mathbb{E}}(N_s), \widehat{\mathbb{V}}(N_s)\right) \qquad \Leftrightarrow \qquad \left(N_s - \widehat{\mathbb{E}}(N_s)\right) \left/\sqrt{\widehat{\mathbb{V}}(N_s)} \right. \approx \mathcal{N}\left(0, 1\right)$$

In practice: Asymptotic normality

Normal distribution, Poisson-geometric distribution with same mean and variance [Sta01,PDK⁺08]

In practice: Test statistic

Need to account for the estimation error of $\widehat{\mathbb{E}}N$

m = 50

Regular stat.: $N - \widehat{\mathbb{E}}N$

$$\frac{\mathsf{V} - \widehat{\mathbb{E}} \mathsf{N}}{\sqrt{\widehat{\mathbb{V}} \mathsf{N}}}$$

In practice: Test statistic

Need to account for the estimation error of $\widehat{\mathbb{E}}N$

Regular stat.:

$$\frac{\textit{N}-\widehat{\mathbb{E}}\textit{N}}{\sqrt{\widehat{\mathbb{V}}\textit{N}}}$$

$$m = 100$$

$$m = 200$$

Correction:

$$\frac{N - (\widehat{\mathbb{E}}N - \widehat{\mathbb{B}}(\widehat{\mathbb{E}}N))}{\sqrt{\widehat{\mathbb{V}}(N - \widehat{\mathbb{E}}N)}}$$

Need to evaluate $\mathbb{V}(N - \widehat{\mathbb{E}}(N))$ and $\mathbb{B}(\widehat{\mathbb{E}}N)$: resort to Taylor expansion (Δ -method)