UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE LABORATÓRIO DE ENGENHARIA E EXPLORAÇÃO DE PETRÓLEO

CENTRO DE CIÊNCIA E TECNOLOGIA

Desafio Tecnológico Ferramenta para Geração da Curva de Fluxo Fracionário

AUTORES Fabiane da Silva Barros Universidade Estadual Norte Fluminense Darcy Ribeiro

13 de setembro de 2025

MACAÉ - RJ

Sumário

1	Desc	crição da Proposta	1
	1.1	Título da proposta	1
	1.2	Convocação	1
	1.3	Atendimento obrigação?	1
	1.4	Área, tema e sub-tema	1
	1.5	Descrição do desafio tecnológico	2
	1.6	Objetivo geral	2
	1.7	Solução esperada - Tipo	2
	1.8	Solução esperada - Descrição	2
	1.9	TRL pretendido	3
	1.10	CRL pretendido	3
	1.11	Informações básicas complementares	3
	1.12	Prazo máximo para desenvolvimento da solução	4
	1.13	Referências bibliográficas complementares	4

Capítulo 1

Descrição da Proposta

Apresenta-se aqui a proposta de desenvolvimento de um projeto de engenharia que visa a criação de uma Ferramenta para Geração da Curva de Fluxo Fracionário. Esta ferramenta computacional é essencial para a análise de processos de deslocamento bifásico em meios porosos, como a injeção de água em reservatórios de petróleo para recuperação secundária. Baseada na teoria clássica de Buckley-Leverett [Buckley and Leverett, 1942], a solução irá modelar a interação entre as propriedades da rocha (permeabilidade relativa) e dos fluidos (viscosidades) para calcular a fração do fluido injetado no escoamento total. O projeto será implementado na linguagem C++ sob o paradigma da orientação a objetos, resultando em um software robusto e didático que fornece dados críticos para a avaliação da eficiência de deslocamento e otimização da produção de hidrocarbonetos.

1.1 Título da proposta

• Título: Ferramenta para Geração da Curva de Fluxo Fracionário

1.2 Convocação

• [X] Projeto do LENEP : Fabiane da Silva Barros

1.3 Atendimento obrigação?

• [X] sim disciplinas modelagem computacional: Introdução ao Projeto de Engenharia, Programação Orientada a Objeto em C++ e Projeto de Software Aplicado à Engenharia (antiga programação prática).

1.4 Área, tema e sub-tema

• Título da área do conhecimento: Engenharias.

- Título do tema específico: Ferramenta para Geração da Curva de Fluxo Fracionário.
- Título do sub-tema: Teoria de Buckley-Leverett.

1.5 Descrição do desafio tecnológico

O desafio tecnológico deste projeto é desenvolver um modelo computacional que represente a complexa interação física entre dois fluidos imiscíveis (óleo e água) e a rocha do reservatório durante um processo de deslocamento. O desafio central reside em traduzir a equação do fluxo fracionário, que é altamente não-linear devido à sua dependência das curvas de permeabilidade relativa, em um algoritmo computacional preciso e eficiente. O software deverá ser projetado de forma flexível, utilizando orientação a objetos, para permitir que os dados de entrada, especialmente as curvas de permeabilidade relativa, possam ser fornecidos de diferentes formas (ex: tabelas de dados que exigem interpolação, ou funções analíticas como correlações). A validação dos resultados contra exemplos de livros-texto será um passo crucial para garantir a correta implementação do modelo físico-matemático.

1.6 Objetivo geral

O objetivo é resolver o problema de engenharia de quantificar a eficiência de deslocamento de óleo por água em um nível fundamental. A curva de fluxo fracionário é a peça central da teoria de Buckley-Leverett, o principal modelo analítico usado para prever o avanço de uma frente de injeção e estimar o fator de recuperação em processos de recuperação secundária. Este projeto visa criar um modelo computacional que permita a engenheiros e estudantes gerar esta curva de forma rápida e precisa, possibilitando a análise de sensibilidade de parâmetros chave (como a razão de mobilidade e os expoentes das curvas de permeabilidade) e aprofundando a compreensão sobre como eles impactam a eficiência do deslocamento.

1.7 Solução esperada - Tipo

Software (Ferramenta de Engenharia / Algoritmo Computacional).

1.8 Solução esperada - Descrição

A solução será uma ferramenta de engenharia, de caráter didático e analítico, que implementa o modelo matemático do fluxo fracionário. O software funcionará como um solucionador específico para esta finalidade.

O produto final será um programa executável de linha de comando. Ele lerá um arquivo de entrada simples, em formato de texto, contendo os parâmetros necessários: viscosidades do óleo e da água, e os dados das curvas de permeabilidade relativa (seja como uma tabela de pontos S_w , k_{rw} , k_{ro} ou como parâmetros para um modelo analítico). Após processar os dados, o programa irá calcular os valores do fluxo fracionário (f_w) para um intervalo de saturações de água (S_w) e escreverá os pares de dados (S_w, f_w) resultantes em um arquivo de saída formatado. Este arquivo poderá ser importado para o software de plotagem Gnuplot para a visualização e análise da curva "S" característica.

1.9 TRL pretendido

• TRL = 4 (Validação de componentes e/ou arranjo em ambiente de laboratório).

1.10 CRL pretendido

• CRL = 2 (Formulação da aplicação do negócio).

1.11 Informações básicas complementares

O fluxo fracionário (f_w) representa a fração da vazão total de fluido, em uma determinada posição do reservatório, que corresponde à água. A sua equação, desprezando efeitos capilares e gravitacionais, é dada por:

$$f_w = \frac{1}{1 + \frac{k_{ro}(S_w)}{\mu_o} \cdot \frac{\mu_w}{k_{rw}(S_w)}}$$

Onde:

- k_{ro} é a permeabilidade relativa ao óleo (função da saturação de água, S_w).
- k_{rw} é a permeabilidade relativa à água (função da saturação de água, S_w).
- μ_o é a viscosidade do óleo.
- μ_w é a viscosidade da água.

O principal desafio computacional está no fato de que k_{ro} e k_{rw} não são valores constantes, mas sim funções da própria saturação. O software deverá ser capaz de obter estes valores para cada passo de saturação para construir a curva completa.

1.12 Prazo máximo para desenvolvimento da solução

- Varia de 18 a 36 meses.
 - O projeto de software é desenvolvido ao longo do 5/6 e 8 períodos do curso.
 Veja grade do curso.
 - Se o projeto for estendido pode se transformar no TCC na forma de projeto de engenharia, nestes casos prever 6-12 meses a mais.

Nota: Note que é um projeto de longo prazo e que requer muita dedicação ao longo de todos os semestres envolvidos, não deixe para depois imaginando que terá condições de fazer "rápido", projetos de engenharia por definição são demorados.

Segundo

Nota: Os modelos de software a serem desenvolvidos utilizam o paradigma da orientação a objetos, [?, ?, ?], e a linguagem de programação C++ em função do baixo consumo de memória e alto desempenho.

1.13 Referências bibliográficas complementares

- Ahmed, Tarek. Reservoir Engineering Handbook. Gulf Publishing Company, 2010.
- Lake, Larry W., et al. Fundamentals of Enhanced Oil Recovery. SPE, 2010.

Desenvolvimento do Projeto de Engenharia -	- Descrição do Desafio tecnológico - Propostã

Referências Bibliográficas

[Buckley and Leverett, 1942] Buckley, S. E. and Leverett, M. C. (1942). Mechanism of Fluid Displacement in Sands. *Transactions of the AIME*, 146:107–116. 1