Here is my super-secret and extremely confidential collection of problems that I think would be good for oral exams. It would be so bad if this super-secret and extremely confidential list were to accidentally leak to students, because then students may be well-prepared to answer one or more of these basic yet revealing problems about group theory during their comprehensive conversations! Also, it would be *extra* bad if a github link were to leak, because then students would even be able to see if I added more stuff to the list!!

Define and prove things

Problem 1. Suppose G is a group, and let H be a subset of G.

- (a) Write a careful definition of what it means for H to be a sub**group** of G.
- (b) Prove the "one-step subgroup test:" If $xy^{-1} \in H$ for all $x, y \in H$, then H is a subgroup of G.

Problem 2. Let *H* and *K* be subgroups of a group *G*, with $K \le H \le G$.

- (a) Define [G:H], the "index of H in G."
- (b) State and prove Lagrange's theorem.
- (c) Use Lagrange's theorem to prove the "tower law:" $[G:K] = [G:H] \cdot [H:K]$.

Problem 3. Let G be a group, N a normal subgroup, and $G/N = \{gN \mid g \in G\}$ be the set of left cosets of N.

- (a) Write careful definitions for "coset" and "normal subgroup."
- (b) Explain why G/N is equivalent to $N \setminus G = \{Ng \mid g \in G\}$, the set of right cosets of N.
- (c) Prove that the binary operation on G/N defined by

$$aN \cdot bN := (ab)N$$

is "well-defined;" that is, it does not depend on choice of coset representative.

(d) Prove that G/N with this binary operation is a group.

Problem 4. Suppose that $\phi: G \to H$ is a homomorphism.

- (a) Write down a careful definition of a homomorphism.
- (b) Prove that $\phi(1_G) = 1_H$.
- (c) Use this result to prove that $\phi(g^{-1}) = \phi(g)^{-1}$.
- (d) Now you can show that $Im(\phi) := \{\phi(g) \mid g \in G\}$ is a subgroup of ___,
- (e) and also that $Ker(\phi) := \{g \in G \mid \phi(g) = 1\}$ is a subgroup of .
- (f) Indeed, you can prove that $Ker(\phi)$ is a *normal* subgroup.

Calculate things

Problem 5. A Cayley graph of a mystery group G of order 12 is shown below; let 1 (not e) denote the identity element.

(a) Write the order of each element in the nodes of the blank Cayley graph on the right.

(b) The subgroup $H = \langle a, b \rangle \cong$ ______, and $K = \langle d \rangle \cong$ _____.

(c) The subgroup $\langle a, d \rangle$ has order ______, and is isomorphic to ______.

(d) The subgroup $\langle b, d \rangle$ has order _____, and is isomorphic to _____.

(e) The center of this group is Z(G) = . [Write it in terms of generator(s).]

(f) Find all left cosets of $H = \langle a, b \rangle$. Then find all right cosets. Write your answers as subsets of G, or describe them in words (e.g., "the rows" or "the columns").

(g) Find all left cosets of $K = \langle d \rangle$. Then find all right cosets. Write your answers as subsets of G, or describe them in words.

(h) The normalizers are $N_G(H) = \langle \rangle$ and $N_G(K) = \langle \rangle$.

(i) Find all conjugate subgroups to H and to K. Write each subgroup only once.

(j) Is *H* normal? Is *K* normal?

(k) Draw the subgroup lattice of G.

Problem 6. Answer questions about the following group, whose subgroup lattice is shown below.

Order = 24 Index

(a)	Determine	the orde	er and the	e index	of each	row of	subgroups	in the	lattice.
1	/									

(b)	G has	subgroup, which fall into	conjugacy classes.
(c)	G has exactly		normal subgroups.
(d)	G has	subgroup(s) of order 2 and	element(s) of order 2.
(e)	G has	subgroup(s) of order 3 and	element(s) of order 3.
(f)	G has	subgroup(s) of order 4, of which	are cyclic.

- (g) Find a normal subgroup $N \leq G$ such that $G/N \cong V_4$.
- (h) Each non-normal order-2 subgroup has a normalizer isomorphic to . .
- (i) Each D_3 subgroup has a normalizer isomorphic to ______.
- (j) This group has a quotient G/C_4 isomorphic to _____. [*Hint*: Determine the order, then count the index-2 subgroups.]
- (k) This group has a quotient G/C_2 isomorphic to _____. [Hint: Same as above.]
- (l) The quotient G/C_3 is isomorphic to _____. [*Hint*: Determine the order. Which lattice do you see?]
- (m) There are $n_2 =$ _____ Sylow 2-subgroups, which are isomorphic to _____.
- (n) There are $n_3 =$ _____ Sylow 3-subgroups, which are isomorphic to _____.
- (o) The largest order of an element in G is _____, and there are _____ element(s) of that order.

Problem 7. The subgroup diagram of a group G is shown below.

(1) (10)	~ 1	•	1 1 1 0 11 1 .	1

(a) Determine the order and the index of each row of subgroups in the lattice.

- (b) The group G has _____ subgroups, which fall into _____ conjugacy classes.
- (c) The quotient of G by its unique normal subgroup N of order 3 has order _____, and G/N is isomorphic to the familiar group _____.
- (d) There are $n_2 =$ _____ Sylow 2-subgroup(s), isomorphic to _____, and $n_3 =$ _____ Sylow 3-subgroup(s), isomorphic to _____.
- (e) Find all distinct ways that G can be written as a direct or semidirect product of two of its proper subgroups.
- (f) Find the center Z(G), and justify your answer. Though this cannot always be done by inspection, it can in this case, using a result from the previous part.
- (g) Let *G* act on its subgroups by conjugation. This action has ______ orbit(s) and fixed point(s).
- (h) Let *G* act on itself by multiplication. This action has _____ orbit(s) and fixed point(s).
- (i) Let H be a subgroup of order 9, and let G act on the right cosets of H by right multiplication. This action has _____ orbit(s) and _____ fixed point(s).
- (j) Still assuming that |H| = 9, let G act on the *left* cosets of H by *left* multiplication. This action has ______ orbit(s) and ______ fixed point(s).
- (k) Let $g \in G$ be an element of order 2. Then g commutes with exactly _____ element(s), and the centralizer of $\langle g \rangle$ is isomorphic to _____ . The centralizer of g is (bigger than)(smaller than)(equal to) [\longleftarrow circle one] its normalizer.

Problem 8. Consider the following set of "binary rectangles":

$$S = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right., \quad \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \quad \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right], \quad \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right], \quad \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right], \quad \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right]$$

The Klein-4 group $V = \{1, v, h, vh\}$ acts on S via $\phi: V \to \text{Perm}(S)$, where

- $\phi(v)$ = flips each tile vertically
- $\phi(h)$ = flips each tile horizontally
- $\phi(vh)$ = rotates each tile by 180°
- (a) Pick a minimal generating set and then draw the *action graph*. (Feel free to label the rectangles above A,B,C,D,E,F,G to save time.)

(b) Find the following:

• stab
$$\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix}\right) =$$

• stab
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 =

• stab
$$\left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\right) =$$

• stab
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} =$$

•
$$fix(1) =$$

•
$$fix(h) =$$

•
$$fix(v) =$$

•
$$fix(vh) =$$

• This action has _____ orbits, which by the orbit-counting theorem, is also equal to the average _____

•
$$Fix(\phi) =$$

•
$$Ker(\phi) =$$