Data Warehouse Concepts

Example Data Warehouse Architecture

Data Warehouse Development Methodologies

Methodology	Main Advantage	Main Disadvantage
Inmon's Corporate Information	Potential to provide a consistent	Large complex project that may
Factory	and comprehensive view of the	fail to deliver value within an
	enterprise data.	allotted time period or budget.
Kimball's Business Dimensional	Scaled down project means that	As data marts can potentially be
Lifecycle	ability to demonstrate value is	developed in sequence by different
	more achievable within an allotted	development teams using different
	time period or budget.	systems; the ultimate goal of
		providing a consistent and
		comprehensive view of corporate
		data may never be easily achieved.

Modeling

- Inmon's Methodology
 - Traditional database techniques
 - ER Modeling
 - 3rd Normal Form
- Kimball's Methodology
 - Dimensionality Modeling
 - Dimensional Model
 - Star
 - Snowflake

Star Schema

Dimensional Data Model with Denormalized Dimension Tables

- Group related dimensions into dimension tables
- Group related measures into fact tables
- Relate fact tables to dimension tables by using foreign keys

Snowflake Schema

Dimensional Data Model with Normalized Dimension Tables

- Normalized dimension tables
- Consider when:
 - A subdimension can be shared between multiple dimensions
 - A well-understood hierarchy exists, and the dimension table contains a large amount of duplicated data
 - A sparse dimension has several different subtypes
 - Multiple fact tables of varying grain reference different levels in the dimension hierarchy

