Floating Point

https://0.30000000000000004.com

Number Representation Revisited

- What can we represent so far?
 - Signed and unsigned integers
 - Characters
 - Addresses

- How do we encode the following?
 - Real numbers (ex: 3.14159)
 - Very large numbers (ex: 6.02*10²³)
 - Very small numbers (ex: 6.26*10⁻³⁴)
 - Special cases (ex: ∞, NaN)

Floating Point Topics

- Fractional binary numbers (fixed point)
- Floating point
 - o IEEE standard
- Floating point operations and rounding

Binary Representation of Fractions

- Let's start by looking at base 10:
 - Each place represents a power of 10. Power decreases as you read left->right
 - Decimal point marks when the negative powers start

- Base 2 is similar:
 - Every place to the right of the binary point represents a negative power of 2

Ex:
$$\begin{bmatrix} 2^3 & 2^2 & 2^0 & 2^{-1} & 2^{-2} & 2^{-3} \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

= $1*2^2 + 0*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = 5.375_{10}$

Limits of Representation

- Even with an arbitrary number of bits, we can only represent numbers of the form x*2y
- Other rational numbers have infinite bit representations

Value	Binary Representation
1/3 = 0.333333 ₁₀	0.01010101[01] ₂
1/5 = 0.2 ₁₀	0.001100110011[0011]2
1/10 = 0.1 ₁₀	0.0001100110011[0011]2

Floating Point Representation

- Based on scientific notation
 - In decimal:
 - \blacksquare 12000000 -> 1.2 x 10⁷
 - \bullet 0.0000012 -> 1.2 x 10⁻⁶
 - In binary:
 - 11000.000 -> 1.1 x 2⁴
 - \bullet 0.00011 -> 1.1 x 2⁻⁴
- Divvy up the bits in our encoding
 - Sign (+/-)
 - Exponent
 - Mantissa (everything after the binary point)

Binary Scientific Notation

- Normalized form: exactly one (non-zero) bit to the left of the binary point
- Called "floating point" because the binary point "floats" to different parts of the number (as opposed to fixed)

Floating Point History

- 1914: first design by Leonardo Torres y Quevedo
- 1940: implementations by Konrad Zuse, but not exactly the same as the modern standard
- 1985: IEEE 754 standard
 - Primary architect was William Kahan, who won a Turing Award for this work
 - Standardized bit encoding, well-defined behavior for all operations
 - Still what we use today!

IEEE Floating Point

- IEEE 754 (established 1985)
 - Developed to make numerically-sensitive programs portable
 - Specifies two things: a representation scheme and the result of operations
 - Supported by all major CPUs
- Two opposing concerns:
 - Scientists numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - Who won? Mostly scientists
 - Nice standards for rounding, overflow, underflow, but complex for hardware
 - Float operations can be an order of magnitude slower than integer ops!
 - CPU speed commonly measured in FLOPS (float ops per second)

Floating Point Encoding (Review)

- Value = ±1.Mantissa * 2^{Exponent}
- Bit fields: (-1)^S * 1.M * 2^E
- Representation scheme:
 - Sign bit (S): 0 is positive, 1 is negative
 - Mantissa (a.k.a. significand): the fractional part of the number in normalized form, encoded in the bit vector M
 - Exponent: weighs the number by a (possible negative) power of 2, encoded in the bit vector E

The Exponent Field

- Use biased notation
 - Read as unsigned, but with a **bias** of 2^{w-1} -1 (127, for an 8-bit **E** field)
 - Exponent = E bias ↔ E = Exponent + bias
- Why?
 - Makes floating point arithmetic easier
 - Somewhat compatible with two's complement hardware

The Mantissa Field (Review)

- **Implicit leading 1** before the binary point
 - There's always a 1 there in normalized form, so we don't need to encode it!
 - - \blacksquare Read as $1.1_2 = 1.5_{10}$, not $0.1_2 = 0.5_{10}$
- Mantissa "limits"
 - Low values (near M = 0b00...00) are close to 2^{Exp}
 - High values (near M = 0b11...11) are close to 2^{Exp+1}

8 bits 1 bit

23 bits

Normalized Floating Point Conversions

FP -> Decimal

- Append bits of M to leading 1
- 2. Multiply by 2^{E-bias}
- 3. "Multiply out" exponent by shifting
 - a. If exp < 0, shift right (logical) by-exp
 - a. If exp > 0, shift *left* by exp
- 4. Multiply by sign (-1^s)
- 5. Convert from binary to decimal

Decimal -> FP

- 1. Convert from decimal to binary
- 2. Convert to normalized form
 - a. Shift left or right (logical) until there's a single 1 before the binary point
 - b. Multiply by 2^{exp}, where exp = number of places shifted (negative for left shift, positive for right)
- **3.** S = 0 if positive, 1 if negative
- 4. $E = \exp + \text{bias}$
- **5.** M = bits after the binary point

Practice Question

Convert the decimal number -7.375 into floating point representation.

Challenge Question:

Find the value of the following sum in normalized binary scientific notation:

$$1.01_2^*2^0 + 1.11_2^*2^2$$

Floating Point Topics

- Fractional binary numbers (fixed point)
- Floating point
 - IEEE standard
- Floating point operations and rounding
- Floating point in C

Precision and Accuracy

- Accuracy is a measure of the difference between the actual value of a number and its computer representation
- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.

```
Example: float pi = 3.14;
```

o pi will be represented with all 24 bits of mantissa (highly precise), but still an approximation

Need Greater Precision?

- 64 bits = double precision
- Exponent bias is now $2^{10}-1 = 1023$
- Advantages
 - Greater precision (larger mantissa), greater range (larger exponent field)
- Disadvantages
 - More space used, slower to manipulate

Representational Errors

- Overflow yields ±∞, underflow yields 0
- ±∞ and NaN can be used in operations
 - Result is usually still the same, but not always intuitive
- Floating point operations do not work like real math, due to rounding
 - Not associative
 - <u>Ex</u>: $(3.14 + 10^{100}) 10^{100}! = 3.14 + (10^{100} 10^{100})$
 - Not distributive
 - \blacksquare <u>Ex</u>: 100*(0.1 + 0.2) != 100*0.1 + 100*0.2
 - Not cumulative
 - Repeatedly adding a very small number to a very large one may do nothing

Why does this matter?

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1991: Patriot missile targeting error
 - Clock skew due to conversion from int to float
- 1994: Intel Pentium FDIV (float division) hardware bug (\$475 million)
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - Overflow converting 64-bit float to 16-bit int
- 1997: USS Yorktown "smart" warship stranded
 - Divide by zero

Summary

- Floating point approximates real numbers using binary scientific notation
 - Exponent in biased notation
- Standard encoding is IEEE 754
 - Defines standard bit width for fields, behavior in operations, and special cases
- Floats also suffer from having a fixed bit width
 - Can get overflow, but also underflow and rounding
- Floating point arithmetic can have unexpected results!
 - Never test floats for equality
- Conversion between float and other data types can cause errors
 - Be especially careful when converting between int and float!