Statistics for Social Sciences

-Change in gor't

- Better economics
- Technology
- Prevention programs
- Better law enforcement Cameras
- Tougher penalties

Treakonemics, Steven Roe v. Wade (1972) Legalization of abortion

Descriptive statistics vs. Inferential statistics

Descriptive statistics
Describing data
Averages mean, "center",
Variation, deviation.
Leg how would you
describe your classmates?
Therential statistics
Relationship between
two variables

Data / Observations Variables

Observations - are items that are observed.

- People L Atoms, planets - Countries L Nouns

L People at specific times

Variables - descriptors of the observations.

- People in class

557 are Grender - Income*

- Race - Job

- Education - Neighborhood

- Major - Height*

- Weight* I Age *

- Marriyd, divorce single

- Parental Education

Types of variables

L Continuous (e.g. numeric)

- Integers, numbers, ... Le.g. Age, weight, height, income, Years of education L Categorical (Discrete) · Categorical descriptors Le.g race/ethnicity, gender highest level of education -Binary variable L Either for - Two options Dummy variables

- Excel

- SPSS

L Grand View

Mathematical Notation

i.e., observation -> Prof. Schenk

Average (mean)
$$X_1 = 27, \quad X_2 = 20, \quad X_3 = 33$$
Average age =
$$\frac{27 + 20 + 33}{3}$$

$$= 263/3 = 26.66$$

$$\frac{X_1 + X_2 + X_3}{1}$$

$$\frac{1}{1}$$

$$\chi_1 = 27, \chi_2 = 20, \chi_3 = 33$$

$$\sum_{i=1}^{3} \chi_i = 27 + 20 + 33$$

$$\sum_{i=1}^{3} \chi_i^2 = 27^3 + 20^3 + 33^2$$

$$= 27 \times 27 + 20 \times 20 + 33 \times 33$$

$$(\sum_{i=1}^{3} \chi_i)^2 = (27 + 20 + 33)^2$$
Square of the sum of χ_i

Descriptive Statistics

- Measures of centrality
- Measures of variability

> Mean, median, 3 mode

· Baverage: A, B, C · Baverage: B, B, B