Exploring the Experiment's Design

In this set of exercises, we'll get our first look at the experiment we'll be analyzing in this course; curated data from the Steinmetz et al, 2019 paper.

Today's data is focused on three CSV files, each containing sessions from a different stretch of data collection. They contain trial-level data from the experiment:

- steinmetz_winter2016.csv
- steinmetz summer2017.csv
- steinmetz winter2017.csv

Table of Contents

Loading and viewing data	. 1
Experiment Description: Calculating Statistics on Continuous Data	. 3
Experiment Description: Calculating Statistics of Across Categorical Data	. 4
Visualizing the Experimental Design using Plots	7

Loading and viewing data

Let's load in some csv data with MATLAB and see what we have!

Code	Description
readtable('my_datafile.csv')	read a csv file
data(row_start:row:end, :)	select rows from row_start to row_end from data
height(my_table)	count the number of rows in my_table
width(my_table)	count the number of columns in my_table
my_table.Properties.VariableNames	get the column names of my_table

Download datafiles

```
%cwd = fileparts(matlab.desktop.editor.getActiveFilename)
%url= "https://uni-bonn.sciebo.de/s/9FxelLhARmHpw85";
%mkdir(strcat(cwd,'/data'));
%websave(strcat(cwd,'/data/testfile.csv'), strcat(url, '/download'));
```

Example:

Load in the winter 2016 dataset and view the first 5 rows of the data

```
data = readtable('data/steinmetz_winter2016.csv');
data(1:5,:)
```

ans = 5×15 table

. . .

	trial	active_trials	contrast_left	contrast_right	stim_onset
1	1	'True'	100	0	0.5000
2	2	'True'	0	50	0.5000
3	3	'True'	100	50	0.5000
4	4	'True'	0	0	0.5000
5	5	'True'	50	100	0.5000

The variable data is a MATLAB table, we can see that in the Workspace pannel on the right.

Exercises

Load in the winter 2016 dataset and view the first 10 rows of the data

```
data = readtable('data/steinmetz_winter2016_.csv');
data(1:10,:)
```

ans = 10×16 table

.

	Var1	trial	active_trials	contrast_left	contrast_right
1	0	1	'True'	100	0
2	1	2	'True'	0	50
3	2	3	'True'	100	50
4	3	4	'True'	0	0
5	4	5	'True'	50	100
6	5	6	'True'	0	0
7	6	7	'True'	0	0
8	7	8	'True'	0	0
9	8	9	'True'	0	0
10	9	10	'True'	100	50

How many rows are in the summer 2016 dataset?

```
height(data)
```

ans = 2747

How many columns are in the summer 2016 dataset?

```
width(data)
```

What are the column names in the summer 2016 dataset?

data.Properties.VariableNames

Experiment Description: Calculating Statistics on Continuous Data

Code	Description
my_table.column_A	access column_A of my_table
min(my_data)	find the minimum value of my_data
max(my_data)	find the maximum value of my_data
mean(my_data)	find the mean value of my_data
median(my_data)	find the media value of my_data
std(my_data)	find the standard deviation of my_data

Example

Find the minimum response time in the table data

```
min(data.response_time)
```

ans = 0.5682

Exercises

Find the maximum response time in the table data

```
max(data.response_time)
```

ans = 2.7136

Find the maximum gocue time in the table data

```
max(data.gocue_time)
```

ans = 1.1932

Find the minimum gocue time in the table data

```
min(data.gocue_time)
```

Find the mean response time in the table data

mean(data.response_time)

ans = 1.5735

Find the median response_time in the table data

median(data.response_time)

ans = 1.3541

Find the standard deviation of response time

std(data.response_time)

ans = 0.6402

Find the standard deviation of gocue time

std(data.gocue_time)

ans = 0.2011

Experiment Description: Calculating Statistics of Across Categorical Data

In data science we often want to perform analysis on distinct separate categories, for example, analysing trials that occured on different days. We can group the data and analyse each group separately, for example finding the mean response time for each mouse.

Code	<u>Description</u>
groupsummary(data, "column_A")	Group data according to column_A and count occurrances
groupsummary(data, "column_A", "mean", "column_B")	Group data according to column_A and calculate the mean of column_B

Example Exercise

How many trials occurred for each session date?

groupsummary(data, "session_date")

ans = 9×2 table

	session_date	GroupCount
1	14-Dec-2016	214
2	17-Dec-2016	251
3	18-Dec-2016	228
4	07-Jan-2017	444
5	08-Jan-2017	412
6	09-Jan-2017	365
7	10-Jan-2017	253
8	11-Jan-2017	142
9	12-Jan-2017	128

How many trials did each mouse participate in?

groupsummary(data, "mouse")

ans = 3×2 table

	mouse	GroupCount
1	'Cori'	693
2	'Muller'	782
3	'Radnitz'	962

What was the mean response time for each mouse?

```
groupsummary(data, "mouse", "mean", "response_time")
```

ans = 3×3 table

	mouse	GroupCount	mean_response_time
1	'Cori'	693	1.5909
2	'Muller'	782	1.5758
3	'Radnitz'	962	1.5591

What was the minimum response time for each mouse?

```
groupsummary(data, "mouse", "min", "response_time")
```

ans = 3×3 table

	mouse	GroupCount	min_response_time
1	'Cori'	693	0.5682

	mouse	GroupCount	min_response_time
2	'Muller'	782	0.5854
3	'Radnitz'	962	0.5838

What was the most common (ie. mode) reaction_type for each mouse?

```
groupsummary(data, "mouse", "mode", "reaction_type")
```

 $ans = 3 \times 3 table$

	mouse	GroupCount	mode_reaction_type
1	'Cori'	693	1
2	'Muller'	782	1
3	'Radnitz'	962	-1

What was the range of response times for each session date?

```
groupsummary(data, "session_date", "range", "response_time")
```

ans = 9×3 table

	session_date	GroupCount	range_response_time
1	14-Dec-2016	214	2.1054
2	17-Dec-2016	251	2.1227
3	18-Dec-2016	228	2.1076
4	07-Jan-2017	444	2.1245
5	08-Jan-2017	412	2.1158
6	09-Jan-2017	365	2.0917
7	10-Jan-2017	253	2.0796
8	11-Jan-2017	142	2.0306
9	12-Jan-2017	128	1.9787

Rerun the last exercise replaceing "range" with "all"

```
groupsummary(data, "session_date", "all", "response_time")
```

ans = 9×14 table

٠.

	session_date	GroupCount	mean_response_time	sum_response_time
1	14-Dec-2016	214	1.5891	340.0590
2	17-Dec-2016	251	1.6215	407.0063
3	18-Dec-2016	228	1.5588	355.4048

	session_date	GroupCount	mean_response_time	sum_response_time
4	07-Jan-2017	444	1.4704	652.8560
5	08-Jan-2017	412	1.5457	636.8091
6	09-Jan-2017	365	1.5928	581.3877
7	10-Jan-2017	253	1.5594	394.5252
8	11-Jan-2017	142	1.7116	243.0486
9	12-Jan-2017	128	1.7461	223.5022

Visualizing the Experimental Design using Plots

```
trials_by_mouse = groupsummary(data, "mouse");
bar(trials_by_mouse.mouse, trials_by_mouse.GroupCount)
```


unique(data.session_date) % Note Matlab autoconverted session_dates to
datetime!

ans = 9x1 datetime 14-Dec-2016 17-Dec-2016

```
18-Dec-2016
07-Jan-2017
08-Jan-2017
09-Jan-2017
10-Jan-2017
11-Jan-2017
12-Jan-2017
```

```
trials_by_date = groupcounts(data, "session_date")
```

 $trials_by_date = 9 \times 3 table$

	session_date	GroupCount	Percent
1	14-Dec-2016	214	8.7813
2	17-Dec-2016	251	10.2995
3	18-Dec-2016	228	9.3558
4	07-Jan-2017	444	18.2191
5	08-Jan-2017	412	16.9060
6	09-Jan-2017	365	14.9774
7	10-Jan-2017	253	10.3816
8	11-Jan-2017	142	5.8268
9	12-Jan-2017	128	5.2524

```
histogram('Categories',
unique(trials_by_date.day_session_date ),'BinCounts',
trials_by_date.GroupCount)
```

Error using .
Unrecognized table variable name 'day_session_date'.

```
ylabel('num. trials')
```

```
bar( unique(trials_by_date.day_session_date ), trials_by_date.GroupCount)
```

Error using .
Unrecognized table variable name 'day_session_date'.

