

BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

STYLIZED NATURAL LANGUAGE GENERATION IN DIALOGUE SYSTEMS

GENEROVÁNÍ STYLIZOVANÉHO LIDSKÉHO JAZYKA V DIALOGOVÝCH SYSTÉMECH

BACHELOR'S THESIS

BAKALÁŘSKÁ PRÁCE

AUTHOR

KSENIA BOLSHAKOVA

AUTOR PRÁCE

SUPERVISOR

Ing. MARTIN FAJČÍK

VEDOUCÍ PRÁCE

BRNO 2020

Abstract Do tohoto odstavce bude zapsán výtah (abstrakt) práce v anglickém jazyce.
Abstrakt Do tohoto odstavce bude zapsán výtah (abstrakt) práce v českém (slovenském) jazyce.
Keywords Sem budou zapsána jednotlivá klíčová slova v anglickém jazyce, oddělená čárkami.
Klíčová slova Sem budou zapsána jednotlivá klíčová slova v českém (slovenském) jazyce, oddělená čárkami.

Reference

BOLSHAKOVA, Ksenia. Stylized Natural Language Generation in Dialogue Systems. Brno, 2020. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Martin Fajčík

Stylized Natural Language Generation in Dialogue Systems

Declaration

I hereby declare that this Bachelor's thesis was prepared as an original work by the author under the supervision of Ing. Martin Fajčík. I have listed all the literary sources, publications and other sources, which were used during the preparation of this thesis.

Ksenia Bolshakova February 16, 2020

Acknowledgements

I would like to thank my supervisor Ing. Martin Fajčík for his guidance, constructive feedback and help with the thesis.

Contents

1	ntroduction	
2	NLG problems in dialogue systems 2.1 Template-based approach	
	2.3 Language Models	
3	Approaches to building NLG	8
	3.1 Neural Networks 3.2 Recurrent neural network (RNN) 3.3 Long short-term memory (LSTM) 3.4 Sequence-to-sequence model (seq2seq) 3.5 Attention 3.6 Transformer	10
4	Datasets and Evaluation methods 4.0.1 Persona-Chat	14 14 15
5	Other	18
Ri	ibliography	19

Introduction

Dialogue system (i.e. conversational agent) is a computer system which interacts with a human in natural language. These systems are used in cars (hands-free car-specific functions, Android Auto, Apple CarPlay, vendor-specific solutions), web, robots, computer games etc, because a conversation is a natural way for people to get information.

Natural Language Generation (NLG) is an important component of dialogue systems, which has a significant impact on system quality, because NLG goal is to imitate human behaviour. The conversational agent can be classified into task-oriented (i.e. goal-oriented), which focused on completing a certain tasks and adhere to a determined script for each stage of the conversation, and non-task-oriented, which do not have a stated goal to work towards. A lot of devices have incorporated goal-oriented dialogue systems, such as Yandex's Alisa, Apple's Siri, Microsoft's Cortana, Amazon Alexa, and Google Assistant. Goal-oriented dialogue acts make conversations more interpetable and controllable. On the other hand, they also hinder scaling such systems to new domains (i.e. conversation topic). To escape from the limitation, recent interest of research started moving to non-task-oriented chitchat dialogues (chatbots). Chitchat dialogues are systems designed to mimic the unstructured human-human conversation. This kind of conversational agent often have an entertainment value, such as Cleverbot, Microsoft's XiaoIce system etc. Chatbots have also been used for testing theories of psychological counseling.

The ability to communicate freely in a natural language is one of the hallmarks of human intelligence, and is likely one of the requirements for true artificial intelligence. Many researches work on open-ended (i.e. there is a huge range of appropriate outputs given the input) chitchat dialogues to explore this aspect of intelligence, because in goal-oriented dialogue systems there is a relatively narrow range of correct outputs given the input. Creating a non-task-oriented agent is a challenge for researches, because there are a lot of topics of conversations as well as user reactions and responses to them. Such bots are not able to generate meaningful conversations. Their replies are often too generic, because non-specific responses sound quite natural (e.g. "Ok, I see", "I don't know"). There are still a lot of problems in the Natural Language Generation, such as response-relatedness, semantic errors, repetition etc., which will be described in more detail in the chapture 2. In human-human conversation not only these attributes are important, but also your partner's style of communication, what phrases he is using to make your dialogue more diverse and interesting, because it is unlikely that someone will want to communicate for a long time with a person who answers the same thing all the time.

The main purpose of this thesis was to create NLG model, which will be able to generate text in different styles. //TODO

NLG problems in dialogue systems

In a book [1] Natural Language Generation is defined as "the process by which thought is rendered into language". NLG approaches can be grouped into two categories, one focuses on generating text using templates or (linguistic) rules (i.e. data-to-text generation), the other uses corpus-based statistical methods (i.e. text-to-text generation), where corpora is a collection of texts [6].

2.1 Template-based approach

Until recently Natural Language Generation component of a dialog system used primarily hand-coded generation templates, which represented model sentences in a natural language mapped to a particular semantic content. The template-based system selects a proper response for the current conversation from a repository with response selection algorithms. Templates are often designed for a specific task in a given domain [5]. Example of template-based system is shown in the Table 2.1.

Advantages of template-based approach

The output produced by this approach is likely to be grammatically correct and not contain unexpected generation errors. The process of sentence generation is fully controlled, these models are robust and reliable because they consist of clearly defined rules.

Disadvantages of template-based approach

These models require time and human resources to deploy a real dialogue system, because templates are constructed manually, and the number of templates grows quickly (using different templates for singular and plural versions). These systems are not able to handle unknown inputs. Templates often sound unnatural due to their generic structures. Template-based systems cannot make variation in output, it is just concatenation of strings. This approach is not flexible, because it has limits to use templates in other domains. Template-based model is not able to learn and is not able to adapt to the user, that's why it generates rigid and stylised responses without the natural variation of human language.

Example:
User's input:
"I'm going to travel from Moscow on April 2."
Template:
What time would you like to travel from {departure_city} on {departure_date}?
Agent's output:
"What time would you like to travel from Moscow on April 2?"

Table 2.1: The example of template-based approach.

2.2 Corpus-based approach

Corpus-based system dominates the NLG community, special in the case of open-ended tasks, where it is almost impossible to hand-craft the templates for all possible combinations of semantic units. Corpus-based systems include statistical and machine learning approaches to resolve it [7].

One of the first approaches in corpus-based methods is **Dynamic Sentence Generation**, which dynamically creates sentences from representations of the meaning to be conveyed by the sentence and/or its desired linguistic structure. It allows do not write code for every boundary case and includes aggregation, reference, ordering and connectives to optimise sentences.

Next level of corpus-based approaches is **Dynamic Document Creation**, what can produce relevant and well-structured document.

Advantages of corpus-based approach

Corpus-based models have ability to generate more proper responses that could have never appeared in the corpus; it is possible to mimick the language of a real domain expert and use this models for open-domain dialogue systems; dynamic approach is able to learn and to handle unknown inputs, it is also has a lot of possible variations of output.

Disadvantages of corpus-based approach

It is necessary to have a corpus, which contains a large amount of data and on a variety of topics to get a sensible output. Even if you have the corpus, process of text generation is not fully controlled and the output can be incorrect or does not make a sence. This approach still has a lot of problems, what will be described in more detail in //TODO.

2.3 Language Models

In corpus-based system natural language generation uses **Language Models(LMs)** to generate sequences of texts. LM is a probabilistic model which learns to predict the probability of a sequence of words. The equation 2.1 represents the language model, where W is a sequence and $w_1, w_2, ..., w_n$ are words in this sequence. The language model provides a context for distinguishing words and phrases that sound the same. For example the phrases "but her" and "butter" sound the same, but mean different things.

$$P(W) = P(w_1, w_2, ..., w_n)$$
(2.1)

Hi	1-gram
New York	2-gram
The Three Musketeers	3-gram
She is studying IT	4-gram

Table 2.2: The example of N-grams.

The **Chain rule** (equation 2.2) is used to calculate the joint probability of a sentence by using the conditional probability (equation 2.3) of a word given previous words.

$$P(w_1, w_2, ..., w_n) = \prod_{i} P(w_i | w_1, w_2, ..., w_{i-1})$$
(2.2)

$$P(A|B) = P(A \cap B)/P(B) \tag{2.3}$$

In equation 2.3 $P(A \cap B)$ is the probability that both events A and B occur.

P(S) = P(Where) * P(are I Where) * P(we I Where are) * P(going I Where are we)

Figure 2.1: Example of a word prediction by using chain rule.

An example in the Figure 2.1 shows how to predict probability of a word given previous words. A subsequence (context) may consist of a very large number of words and the likelihood that such subsequence is found in a corpus is very small. It is a main problem in language models, which is called **data sparsity**.

Data sparsity is the phenomenon of not observing enough data in a corpus to model language accurately. The solution to resolve this issue is to make the assumption that the probability of a word depends only on the previous n words and use **N-gram model** (N-gram is a sequence of N words).

The n-gram "She is studying IT" from the Table 2.2 does not occur as often in texts of corpus as n-grams "Hi", "New York" and "The Three Musketeers". Knowing a probability to the occurrence of an N-gram in a sequence of words can be useful, because it can help to decide which N-grams can be chunked together to from single entities (like "New York" chuncked together as one word). It can also help make next word predictions. For example, "tea" is more likely than "ball" in the phrase "I would like to drink".

2.4 Dialogue systems

The ability to communicate with machines in a natural language is a long-standing dream of mankind. Today's dialogue systems often encounter criticism. There are many scientific works on creating more natural dialogue systems. Markus M. Berg defines a natural dialogue system in [3] as "a form of dialogue system that tries to improve usability and user

1	More phones have games on them than this one.
2	Why a mouse when it spins?

Table 2.3: A problem of adequacy shows that a response can be grammatically and syntactically composed correctly, but this sentence does not make sense.

1	They IS going to school.
2	It depends AT you.

Table 2.4: A problem of syntactic correctness.

satisfaction by imitating human behaviour". It affects the features of human-to-human dialogue (for example, topic changes, sub-dialogues) and seeks to integrate them into dialogue systems for human interaction with the machine. Open-ended natural dialogue systems still have flaws in generating a response to the user.

As noticed in [8], the main task of NLG is to select, inflect and order words "to communicate the input meaning" as completely, clearly and fluently as possible in context. That's why it is necessary to control not only syntactic correctness of output but also if output is appropriate or felicitous in a given context. A good generator usually relies on several factors:

- adequacy (a sentence that is ambiguous or not contains communicates meaning in the input, is **not** adequate (an example in the Table 2.3))
- syntactic correctness (an example in the Table 2.4)
- **repetition** (self-repetition across utterances and with utterances, repeating the conversational partner (an example in the Table 2.5))
- response-relatedness (efficacy in context (an example in the Table 2.6))
- variation (there are 2 basic forms of variation: word choice variation and word order variation for enriching speech)

An example in the Table 2.7 shows all types of variation. Sometimes this factor can be syntactically incorrect or unclear, what you can see in the forth sentence. In fifth sentence a variation changed the meaning of part of the sentence. In addition, the variation may add or remove meaning possibilities.

The main problem in text generation is a language style, which makes a response to an user more human. Language style is defined as the choice of words used by a specific group of people when they speak. Some people use obscene speech, some use a lot of expressive means or jokes to make speech more emotional. This is what distinguishes people and makes their communication more interesting, but at the same time this is the most difficult task for NLG - the ability to generate different communication styles.

-Yes, I'm studying law at the moment.
- Good.
- I like playing the piano.
- Good.

Table 2.5: A problem of repetition makes conversation boring.

-Do you go get coffee often?
-I am a musician.

Table 2.6: A problem of response-relatedness shows that the answer to the question does not make a sense in this context and it spoils the impression of the conversation.

#	Example
1	I bought movie tickets on Tuesday.
2	I got movie tickets on Tuesday.
3	On Tuesday I bought movie tickets.
4	On movie Tuesday tickets I bought.
5	I bought tickets for the Tuesday movie.

Table 2.7: The example of sentences' variation.

Approaches to building NLG

NLG evolution from templates to dynamic generation of sentences took a lot of time and models developed along with it. Corpus-based generation uses a generative probabilistic model what can be implemented in many ways. The model focuses on response generation in the context of dialogue, where the task is to generate a response, given an utterance. Thus, these models fit well within the sequence-to-sequence (seq2seq) (i.e. encoder-decoder) models with using neural networks (NNs), which are described in more detail in section 3.4, but first a short description what neural networks are, for a better understanding seq2seq model.

3.1 Neural Networks

Artificial Neural Networks are inspired by biological neural networks that constitute animal brains. Artificial neuron (on the Figure 3.1) is a computational unit in an artificial neural network with a set of real-valued inputs $x_1, x_2...x_n$ and an output y, where each input x_i has a corresponding weight w_i . Weights determine the influence of the input on the output. The neuron's output is the weighted sum of its inputs, which are passed through a non-linear function known as an activation function or transfer function. The transfer functions usually have a sigmoid shape and model the threshold for neuron firing. Bias is an additional parameter in the Neural Network, which is used to adjust the output along with the weighted sum of the inputs to the neuron. Bias value allows to shift the activation function either right or left.

Figure 3.1: Architecture of an artificial neuron.

Neural networks are acyclic directed graphs of neurons. Neurons' outputs can be connected to inputs of other neurons and the calculation is propagated through the network.

Figure 3.2: The fully-connected neural network.

In NNs neurons are organized into layers where generally the output of the layer is the input for a next layer. The Figure 3.2 represents the most common type of layer - the fully-connected layer where all neurons between adjacent layers are connected with each other.

3.2 Recurrent neural network (RNN)

Recurrent neural networks are a special type of a neural network used in natural language processing(NLP) as they allow temporal depedencies in the data (like context) to be captured. RNNs share the same structure as NNs described in the section 3.1, except each layer also has an internal state (i.e. hidden state), which captures information about the previous layer inputs. This allows the network to keep track of past data while processing current inputs.

Figure 3.3: Architecture of a recurrent neural network, where coefficient \mathbf{h} is a hidden state, \mathbf{x} is an input and \mathbf{o} is an output. Coefficient \mathbf{w} is a weight, what is transformed to produce a sensible output.

The architecture of RNN is illustrated in the Figure 3.3. A hidden state h is realized as a vector, which calculated from the input x and the previous hidden state. An output o is calculated from this new hidden state. The equations 3.1 and 3.2 show the formulas for a traditional recurrent neural network.

$$h_t = \sigma(W_h h_{t-1} + W_x x_t) \tag{3.1}$$

$$o_t = softmax(W_o h_t) (3.2)$$

The RNN-based models have been used for NLG as a component of end-to-end trainable goal-oriented dialogue system [12] and a training model with semantic aggregation [10].

Nowadays traditional RNN networks almost are not used in NLG, because they have problems with vanishing and exploding gradients. As introduced in [2] the exploding problem refers to the large increase in the norm of the gradient during training. It happens, because long term components can grow exponentially more then short term ones. The vanishing gradients problem refers to the opposite behaviour. The long term components go exponentially fast to norm 0, which makes it impossible for the model to learn correlation between temporally distant events. This issue has motivated researchers in development of more advanced RNNs like the LSTM [4].

3.3 Long short-term memory (LSTM)

Figure 3.4: A cell in an LSTM network.

LSTM networks are a special kind of RNN, which reduce the vanishing gradient problem. It makes them much more effective on capturing long-term dependencies. All recurrent neural networks have the form of a chain of repeating modules of neural network. LSTM network also has this chain structure, but the repeating module has a different structure. The key of the solution is usage of multiple gates and a cell state, which runs through all the cells and is manipulated using these gates – parts of the state may be added or removed. Each gate is a sigmoid layer that outputs a number between 0 and 1, which represents the degree of the cell state modification.

The Figure 3.4 represents a structure of a LSTM cell. First, the network decides how much of information from previous steps to keep stored in its cell state, by using the forget gate, which consists of a sigmoid function applied to weighted sum of previous output, input and bias (equation 3.3). W are updated through the backpropagation algorithm weights, b_f is a bias, x_t is an input, h_{t-1} is a hidden state from previous step.

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f) \tag{3.3}$$

The next step is to decide how much of the inner state is going to be updated (i.e. what part of the result the cell is going to store in its state), by using input gate (equation 3.4).

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i) \tag{3.4}$$

After calculating the state modification, it is necessary to compute the new values (i.e. candidate values) which will be stored in it, by using activation function (equation 3.5).

$$\tilde{c}_t = tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c) \tag{3.5}$$

Updating the cell state is based on the previous state and the candidate values (equation 3.6).

$$c_t = \tilde{c}_t \odot i_t + c_{t-1} \odot f_t \tag{3.6}$$

Output gate is represented in equation 3.7.

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o) \tag{3.7}$$

And the final step producing the hidden state for the next timestep. It is based on the newly updated cell state, transformed by tanh function and multiplied by the output gate (equation 3.8).

$$h_t = o_t \odot tanh(c_t) \tag{3.8}$$

This model does not have a problem with vanishing gradient, but still the capacity of the LSTM memory is limited, because of inherently complex sequential words' paths from the previous unit to the current unit. The same complexity results in high computational requirements that make LSTM difficult to train.

3.4 Sequence-to-sequence model (seq2seq)

Seq2seq models were introduced by Google in 2014 [9]. This model uses an encoder-decoder architecture (the Figure 3.5). Both the encoder and the decoder are recurrent neural networks (vanilla version of RNN is rarely used, because of the problems described in the section 3.2). The role of the encoder is to encode the input, a sequence of variable length data, to a fixed length vector. Decoder based on this vector generates an output sequence of data of different length. These 2 neural networks are connected into one model to maximize the learning effect. Seq2seq model is very effective to solve NLP problems, because input and output sequences can have different lengths and recurrent neural networks can work with context. This model is often used in machine translation, text summarization, dialogue systems etc.

Figure 3.5: Architecture of sequence-to-sequence model.

The Figure 3.5 presents traditional encoder-decoder arhitecture. Encoder converts an input sequence of words to a corresponding fixed size hidden vector. Each vector represents

the current word and the context of the word. Every time step, it takes a vector that represents a word and pass its output to the next layer. The last hidden state of encoder passes its output to the first layer of the decoder. The final hidden state of the encoder is also called context vector. The decoder input is an output encoder vector and start token, which characterizes the beginning of the generated sentence. The generated word depends on the previous decoder state and the last generated word. Many optimizations have led to other seq2seq components, such as attention, beam search, bucketing.

3.5 Attention

A neural attention mechanism is based on the human visual attention mechanism. Visual attention is able to focus on a certain region of an image with "high resolution", while perceiving the surrounding image in "low resolution", and then adjusting the focal point over time.

In [11] attention is described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.

The attention mechanism provides the decoder with information from each hidden state of the encoder and it gives a model the ability to selectively focus on useful parts of the input sequence and learn the alignment between them (example in the Figure 3.6).

Figure 3.6: When we see "eating", we expect to encounter a food word very soon. The color term describes the food, but probably not so much with "eating" directly.

Self-attention is an attention mechanism, where "self" means that the inputs interact with each other and "attention" means that inputs find out who they should pay more attention. Formally, in the attention mechanism the query, keys and values are from the same sequence. The query is a single element from the sequence while the keys and values are the entire sequence. The attention output is a new representation of the element that was the query. Self-attention is used to compute a new representation of the sequence.

3.6 Transformer

Transformer introduces an architecture that is based on self-attention mechanism and does not use any recurrent networks. In each step this model applies self-attention mechanism which directly models relationships between all words in a sequence, regardless of their respective position. Transformers do not require that the sentence be processed in order, that allows process parallelization during training, unlike RNN. Due to this feature, it has enabled training on much more data.

Figure 3.7: The architecture of the Transformer [11].

The architecture of the Transformer is illustrated in the Figure 3.7. The Transformer consists of a stack of encoders (on the left) for processing inputs of any length and another set of decoders (on the right) to output the generated sentences. N_x in the Figure means that modules of encoder and decoder can be stacked on top of each other multiple times. Modules consist of multi-head attention and feed forward layers. The inputs and output are first embedded into an n-dimensional space. Words' positions are added to the embedded representation, n-dimensional vector, of each word.

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V$$
(3.9)

$$MultiHead(Q, K, V) = Concat(head_1, head_2, ..., head_h)W^O$$
 (3.10)

An equation 3.9 represents a scaled dot-product attention. The input consists of values of dimension d_v , queries and keys of dimension d_k , where queries, keys and values are matricies.

An equation 3.10 represents a **multi-head attention**, which allows the model to jointly track information from different representation subspaces at different positions. Averaging inhibits this with a single head of attention. The input also consists of queries, keys and values matricies, W^O is a parameter matrix, h is a number of parallel layers, $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$, where W_i^Q, W_i^K, W_i^V are parameter matricies.

Datasets and Evaluation methods

A good corpus is very important for successful Natural Language Generation. Dialogue systems require training data in the format of people text conversation, for example, non-fiction or movie reviews are not suitable for this. Large volumes of training data improves the decision-making ability of NLG model, so those models can use it to figure out patterns. Quality is more important for training data than the quantity of data points. Unfortunately, there are not a lot of datasets available for training NLG models, due to the high cost of creating quality datasets.

In my bachelor thesis I am using 2 different dataset (Twitter data and Persona-Chat).

4.0.1 Persona-Chat

Persona 1	Persona 2
I like to ski	I am an artist
My wife does not like me anymore	I have four children
I have went to Mexico 4 times this year	I recently got a cat
I hate Mexican food	I enjoy walking for exercise
I like to eat cheetos	I love watching Game of Thrones

```
[PERSON 1:] Hi
[PERSON 2:] Hello! How are you today?
[PERSON 1:] I am good thank you, how are you.
[PERSON 2:] Great, thanks! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.
```

Figure 4.1: Example dialogue from the Persona-Chat dataset [13]

Persona-Chat models normal conversation when 2 people meet for the first meet and try to get know each other better. The aim of the dialogue is to learn about interests of another person, find common ground and discuss their hobbies. The task involves both asking and answering questions.

Average length of your persona description:	6.331842242600462
Average length of partner's persona description:	6.321163335493196
Average length of the first person's utterances:	11.418615621053272
Average length of the second person's utter-	11.929411585690591
ances:	
Number of your persona description's sentences:	40239
Number of partner's persona description's sen-	40126
tences:	
Number of the first person's utterances:	65719
Number of the second person's utterances:	65719
Number of dialogues	8938

Table 4.1: Persona-Chat statistics

Original Persona	Revised Persona
I love the beach. My dad has a car dealership I just got my nails done I am on a diet now Horses are my favorite animal.	To me, there is nothing like a day at the seashore. My father sales vehicles for a living. I love to pamper myself on a regular basis. I need to lose weight. I am into equestrian sports.
I play a lot of fantasy videogames. I have a computer science degree. My mother is a medical doctor I am very shy. I like to build model spaceships.	RPGs are my favorite genre. I also went to school to work with technology. The woman who gave birth to me is a physician. I am not a social person. I enjoy working with my hands.

Figure 4.2: Example of original and revised personas [13]

Persona-Chat dataset consists of small conversations between 2 crowdworkers from Amazon Mechanical Turk who were randomly paired and asked to act the part of a given provided persona (randomly assigned, and created by another set of crowdworkers). The data collection consists of persona chat (each dialogue has 6-8 turns), personas (set of 1155 possible personas, each consisting of at least 5 profile sentences), revised personas to avoid word overlap, because crowdworkers sometimes could repeat profile information in a chat(example you can see in the Figure 4.2). In turn-based dialogue each message consists of a maximum of 15 words. All statistics are presented in the Table 4.1 Example of Persona-Chat dialogue you can see in Figure 4.1.

4.0.2 Twitter

Twitter dataset contains message-response pairs from Twitter. Example of these data you can see in the Table 4.2.

Figure 4.3: Histogram of your persona description lengths

	Example
Person 1	yeah i'm preparing myself to drop a lot on this
	man, but definitely need something reliable
Person 2	yeah dude i would definitely consider a daniel
	defence super reliable and they are just bad ass
Person 1	besides if trump say his condolences it won't
	sound genuine, ex: (dwayne wade cousin) it will
	sound all political and petty
Person 2	yea you right. but we do live in a world where
	republicans will harass obama about a birth cer-
	tificate but won't say

Table 4.2: The example of Twitter message-response pairs

Figure 4.4: Histogram of partner's persona description lengths

Figure 4.5: Histogram of utterances' lengths of the first person

Figure 4.6: Histogram of utterances' lengths of the second person

Other

Non-task-oriented dialogue system

The aim of task-oriented dialogue systems is to complete specific tasks fo user, non-task-oriented dialogue systems focus on conversing with human on open domains.

```
//TODO: Info about datasets
//TODO: Info about evaluation metrics
//TODO: Description of baseline
//TODO: NLP vs Computation linguistic
```

Bibliography

- [1] Alder, H. Handbook of NLP: A manual for professional communicators. Routledge, 2017.
- [2] Bengio, Y., Simard, P. and Frasconi, P. Learning long-term dependencies with gradient descent is difficult. *IEEE transactions on neural networks*. IEEE. 1994, vol. 5, no. 2, p. 157–166.
- [3] Berg, M. M. Modelling of natural dialogues in the context of speech-based information and control systems. Dissertation.
- [4] Hochreiter, S. and Schmidhuber, J. Long short-term memory. *Neural computation*. MIT Press. 1997, vol. 9, no. 8, p. 1735–1780.
- [5] Manishina, E. Data-driven natural language generation using statistical machine translation and discriminative learning. Dissertation.
- [6] OH, A. H. and RUDNICKY, A. I. Stochastic natural language generation for spoken dialog systems. *Computer Speech & Language*. Elsevier. 2002, vol. 16, 3-4, p. 387–407.
- [7] Rudnicky, A. and Oh, A. H. Dialog annotation for stochastic generation. Carnegie Mellon University. 2002.
- [8] STENT, A., MARGE, M. and SINGHAI, M. Evaluating evaluation methods for generation in the presence of variation. In: Springer. *International conference on intelligent text processing and computational linguistics*. 2005, p. 341–351.
- [9] Sutskever, I., Vinyals, O. and Le, Q. V. Sequence to sequence learning with neural networks. In: *Advances in neural information processing systems*. 2014, p. 3104–3112.
- [10] Tran, V.-K. and Nguyen, L.-M. Neural-based Natural Language Generation in Dialogue using RNN Encoder-Decoder with Semantic Aggregation. [Online; visited 24.11.2019]. Available at: https://arxiv.org/pdf/1706.06714.pdf.
- [11] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L. et al. Attention is all you need. In: Advances in neural information processing systems. 2017, p. 5998–6008.
- [12] WEN, T.-H., VANDYKE, D., MRKŠIĆ, N., GAŠIĆ, M., ROJAS BARAHONA, L. M. et al. A Network-based End-to-End Trainable Task-oriented Dialogue System. [Online; visited 24.11.2019]. Available at: https://www.aclweb.org/anthology/E17-1042.pdf.

[13] ZHANG, S., DINAN, E., URBANEK, J., SZLAM, A., KIELA, D. et al. *Personalizing Dialogue Agents: I have a dog, do you have pets too?* [Online, visited 20.01.2020]. Available at: https://arxiv.org/pdf/1801.07243.pdf.