《概率论与数理统计》

第一章 概率论的基本概念

§ 2. 样本空间、随机事件

1. 事件间的关系 $A \subset B$ 则称事件 B 包含事件 A, 指事件 A 发生必然导致事件 B 发生

 $A \cup B = \{x \mid x \in A$ 或 $x \in B\}$ 称为事件 A 与事件 B 的和事件,指当且仅当 A,B 中至少有一个发生时,事件 $A \cup B$ 发生

 $A \cap B = \{x \mid x \in A \coprod x \in B\}$ 称为事件 A 与事件 B 的积事件,指当 A,B 同时发生时,事件 $A \cap B$ 发生

 $A \longrightarrow B = \{x \mid x \in A \coprod x \notin B\}$ 称为事件 A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 $A \longrightarrow B$ 发生

 $A \cap B = \phi$,则称事件 $A \subseteq B$ 是互不相容的,或互斥的,指事件 $A \subseteq B$ 件 B 不能同时发生,基本事件是两两互不相容的

 $A \cup B = \mathbf{S} \sqsubseteq A \cap B = \phi$,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为对立事件

2. 运算规则 交换律 $A \cup B = B \cup A$ $A \cap B = B \cap A$

结合律
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 $(A \cap B)C = A(B \cap C)$

分配律
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B)(A \cap C)$$

徳摩根律 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A \cup B}$

§ 3. 频率与概率

定义 在相同的条件下,进行了 n 次试验,在这 n 次试验中,事件 A 发生的次数 n_A 称为事

件 A 发生的**频数**,比值 n_A/n 称为事件 A 发生的**频率**

概率: 设 E 是随机试验, S 是它的样本空间, 对于 E 的每一事件 A 赋予一个实数, 记为 P(A), 称为事件的概率

- 1. 概率P(A)满足下列条件:
- (1) **非负性**: 对于每一个事件 A $(\le PA) \le 1$
- (2) **规范性**:对于必然事件 S P S=1

(3) **可列可加性**: 设 A_1, A_2, \dots, A_n 是两两互不相容的事件,有**?**($\bigcup_{k=1}^n A_k$) $= \sum_{k=1}^n P(A_k)$ (n 可以取 ∞)

- 2. 概率的一些重要性质:
- (i) $P(\phi) = 0$
- (ii) 若 A_1,A_2,\cdots,A_n 是两两互不相容的事件,则有 $(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k)$ (n 可以取 ∞)
- (iii) 设A,B是两个事件若 $A \subset B$,则P(B-A) = P(B) P(A), $P(B) \ge P(A)$
- (iv) 对于任意事件 A, $P(A) \le 1$
- (v) $P(\overline{A}) = 1 P(A)$ (逆事件的概率)
- (vi) 对于任意事件 A, B 有 $P(A \cup B) = P(A) + P(B) P(AB)$

§4等可能概型(古典概型)

等可能概型: 试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若 事 件 A 包 含 k 个 基 本 事 件 , 即 =A $_{_{1}}^{e}$ { $}$ $\}$ \cup \cup \bullet _{_{i_{k}}} , 里 \bullet _{_{1}} \bullet _{_{2}} \bullet _{_{3}} \bullet _{_{4}} \bullet _{_{5}} \bullet _{_{6}}

$$P(A) = \sum_{j=1}^{k} P(\{e_{ij}\}) = \frac{k}{n} = \frac{A 包含的基本事件数}{S中基本事件的总数}$$

§ 5. 条件概率

- (1) 定义:设 A,B 是两个事件,且 P(A) > 0,称 $P(B|A) = \frac{P(AB)}{P(A)}$ 为事件 A 发生的条件下事件 B 发生的**条件概率**
- (2) 条件概率符合概率定义中的三个条件
 - 1° 非负性:对于某一事件 B,有 $P(B|A) \ge 0$
 - 2° 规范性:对于必然事件 S, $P(S \mid A) = 1$
 - 3 可列可加性: 设 B_1, B_2, \cdots 是两两互不相容的事件,则有

$$P(\bigcup_{i=1}^{\infty} B_i | A) = \sum_{i=1}^{\infty} P(B_i | A)$$

(3) 乘法定理 设P(A) > 0,则有 $P(AB) = P(B)P(A \mid B)$ 称为乘法公式

(4) 全概率公式:
$$P(A) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)$$

贝叶斯公式:
$$P(B_k \mid A) = \frac{P(B_k)P(A \mid B_k)}{\sum_{i=1}^{n} P(B_i)P(A \mid B_i)}$$

§ 6. 独立性

定义 设 A, B 是两事件,如果满足等式 P(AB) = P(A)P(B),则称事件 A,B 相互独立

定理一 设A,B是两事件,且P(A) > 0,若A,B相互独立,则P(B|A) = P(B)

定理二 若事件 A 和 B 相互独立,则下列各对事件也相互独立:A 与 B, A 与 B

第二章 随机变量及其分布

§1 随机变量

定义 设随机试验的样本空间为 $S = \{e\}$. X = X(e) 是定义在样本空间 S 上的实值单值函

数, 称X = X(e)为随机变量

§2离散性随机变量及其分布律

1. 离散随机变量:有些随机变量,它全部可能取到的值是有限个或可列无限多个,这种随机变量称为离散型随机变量

$$P(X = x_k) = p_k$$
满足如下两个条件(1) $p_k \ge 0$,(2) $\sum_{k=1}^{\infty} P_k = 1$

- 2. 三种重要的离散型随机变量
- (1) (0-1)分布

设 随 机 变 量 X 只 能 取 0 与 1 两 个 值 , 它 的 分 布 律 是 $P(X=k)=p^k(1-p)^{1-k}$,k=0,1 (0 ,则称 <math>X 服从以 p 为参数的(0-1)分布或两点分布。

(2) 伯努利实验、二项分布

$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$
, $k = 0,1,2,\cdots n$ 满足条件(1) $p_k \ge 0$,(2) $\sum_{k=1}^{\infty} P_k = 1$ 注意

到 $\binom{n}{k} p^k q^{n-k}$ 是二项式 $(p+q)^n$ 的展开式中出现 p^k 的那一项,我们称随机变量 X 服从参数

为 n, p 的二项分布。

(3) 泊松分布

设随机变量 X 所有可能取的值为 0,1,2 …, 而取各个值的概率为

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} k$$
 , $Q2\cdots$,其中 $\lambda > 0$ 是常数,则称 X 服从参数为 λ 的泊松分布记为

 $X \sim \pi (\lambda)$

§3随机变量的分布函数

定义 设 X 是一个随机变量,x 是任意实数,函数 $F(x) = P\{X \le x\}$, $-\infty < x < \infty$ 称为 X 的分布函数

分布函数 $F(x) = P(X \le x)$, 具有以下性质(1) F(x)是一个不减函数 (2)

$$0 \le F(x) \le 1$$
,且 $F(-\infty) = 0$, $F(\infty) = 1$ (3) $F(x+0) = F(x)$,即 $F(x)$ 是右连续的

§4 连续性随机变量及其概率密度

连续随机变量: 如果对于随机变量 X 的分布函数 F(x),存在非负可积函数 f(x),使对于任意函数 x 有 $F(x) = \int_{-\infty}^{x} f(t) dt$, 则称 x 为连续性随机变量,其中函数 f(x)称为 X 的概率密度函数,简称概率密度

1 概率密度 f(x) 具有以下性质,满足 (1) $f(x) \ge 0$, (2) $\int_{-\infty}^{+\infty} f(x) dx = 1$;

(3)
$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f(x) dx$$
; (4) 若 $f(x)$ 在点 x 处连续,则有 $F'(x) = f(x)$ 2,三种重要的连续型随机变量

(1)均匀分布

若连续性随机变量 X 具有概率密度 $f(x) = \begin{cases} \frac{1}{\mathsf{b-a}} &, \ \mathsf{a} < x < b \\ 0 &, \ \mathsf{其他} \end{cases}$,则成 X 在区间(a,b)上服从

均匀分布.记为**X~**U(**a**, **b**) (2)指数分布

若连续性随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} &, x. > 0 \\ 0 &, 其他 \end{cases}$ 其中 $\theta > 0$ 为常数,则称 X

服从参数为 θ 的指数分布。

(3) 正态分布

若连续型随机变量 X 的概率密度为 $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, $-\infty < x < \infty$,

其中 μ , σ (σ > 0)为常数,则称X服从参数为 μ , σ 的正态分布或高斯分布,记为 X ~ N (μ , σ ²)

特别, 当 $\mu = 0$, $\sigma = 1$ 时称随机变量 X 服从标准正态分布

§ 5 随机变量的函数的分布

定理 设随机变量 X 具有概率密度 $f_x(x)$, $-\infty < x < \infty$, 又设函数 g(x) 处处可导且恒有 $g'(x) > 0 \quad , \quad \text{则} \quad Y = g(X) \quad \text{是 连 续 型 随 机 变 量 , } \quad \text{其 概 率 密 度 为}$ $f_Y(y) = \begin{cases} f_X \left[h(y) \left| h'(y) \right|, & \alpha < y < \beta \\ 0 & , \text{ 其他} \end{cases} \end{cases}$

第三章 多维随机变量

§1二维随机变量

定义 设 E 是一个随机试验,它的样本空间是 $S=\{e\}$. X=X(e)和 Y=Y(e) 是定义在 S 上的随机变量,称 X=X(e) 为随机变量,由它们构成的一个向量(X,Y)叫做二维随机变量设(X,Y)是 二维随机变量,对于任意实数 x,y,二元函数 $F(x,y)=P\{(X\leq x)\cap (Y\leq y)\}$ 记成 $P\{X\leq x,Y\leq y\}$ 称为二维随机变量(X,Y)的分布函数

如果二维随机变量(X, Y)全部可能取到的值是有限对或可列无限多对,则称(X, Y)是离散型的随机变量。

我们称 $P(X=x_i, Y=y_j)=p_{ij}$, i, $j=1,2,\cdots$ 为二维离散型随机变量(X,Y)的分布律。

对于二维随机变量 (X,Y) 的分布函数 F(x,y),如果存在非负可积函数 f(x,y),使对于任意 x,y 有 $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) dudv$,则称 (X,Y) 是连续性的随机变量,函数 f(x,y) 称为随机变量 (X,Y) 的概率密度,或称为随机变量 X 和 Y 的**联合概率密度**。

§ 2 边缘分布

二维随机变量(X,Y)作为一个整体,具有分布函数F(x,y).而X和Y都是随机变量,各自也有分布函数,将他们分别记为 $F_{x}(x)$, $F_{y}(y)$,依次称为二维随机变量(X,Y)

关于 X 和关于 Y 的边缘分布函数。

$$p_{i\bullet} = \sum_{i=1}^{\infty} p_{ij} = P\{X = X_i\}, \quad i = 1, 2, \cdots$$

$$p_{\bullet j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = Y_i\}, \quad j = 1, 2, \cdots$$

分别称 $p_{i\bullet}$ $p_{\bullet i}$ 为 (X, Y) 关于 X 和关于 Y 的**边缘分布律。**

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \, \mathcal{H} \mathcal{H} \mathcal{H} f_X(x) \,,$$

 $f_{v}(y)$ 为 X, Y 关于 X 和关于 Y 的**边缘概率密度**。

§3条件分布

定义 设 (X, Y) 是二维离散型随机变量,对于固定的 j,若 $P\{Y = y_i\} > 0$,

则称
$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$
 为在 $Y = y_j$ 条件下

随机变量
$$X$$
 的条件分布律,同样 $P\{Y=y_j | X=X_i\} = \frac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}} = \frac{p_{ij}}{p_{i\bullet}}, j=1,2,\cdots$

为在X = x,条件下随机变量X的条件分布律。

设二维离散型随机变量(X,Y)的概率密度为 f(x,y),(X,Y)关于 Y 的边缘概率密度为 $f_Y(y)$,若对于固定的 y, $f_Y(y)$ 〉 0,则称 $\frac{f(x,y)}{f_Y(y)}$ 为在 Y=y 的条件下 X 的条件

概率密度,记为
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

§4相互独立的随机变量

定义 设 F(x, y) 及 $F_{x}(x)$, $F_{y}(y)$ 分别是二维离散型随机变量(X,Y)的分布函数及边缘分布函数.若对于所有 x,y 有 $P\{X=x,Y=y\}=P\{X\leq x\}P\{Y\leq y\}$,即 $F\{x,y\}=F_{x}(x)F_{y}(y)$,则称随机变量 X 和 Y 是相互独立的。

对于二维正态随机变量 (X, Y), X 和 Y 相互独立的充要条件是参数 $\rho = 0$

§ 5 两个随机变量的函数的分布

1, Z=X+Y 的分布

设(X,Y)是二维连续型随机变量,它具有概率密度 f(x,y).则 Z=X+Y 仍为连续性 随机变量,其概率密度为 $f_{X+Y}(z)=\int_{-\pi}^{\infty}f(z-y,y)\ dy$ 或 $f_{X+Y}(z)=\int_{-\pi}^{\infty}f(x,z-x)\ dx$

又若 X 和 Y 相互独立,设(X, Y) 关于 X, Y 的边缘密度分别为 $f_X(x)$, $f_Y(y)$ 则

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(z-y) \ f_Y(y) dy$$
 和 $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) \ f_Y(z-x) dx$ 这两个公式称为 f_X, f_Y 的**卷积公式**

有限个相互独立的正态随机变量的线性组合仍然服从正态分布

2,
$$Z = \frac{Y}{X}$$
的分布、 $Z = XY$ 的分布

设(X,Y)是二维连续型随机变量,它具有概率密度 f(x,y),则 $Z = \frac{Y}{X}$, Z = XY

仍为连续性随机变量其概率密度分别为 $f_{Y/X}(z) = \int_{-\infty}^{\infty} |x| f(x,xz) dx$

$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} f(x, \frac{z}{x}) dx$$
 又若 X 和 Y 相互独立,设(X, Y)关于 X, Y 的边缘密度分别

为
$$f_X(x)$$
, $f_Y(y)$ 则可化为 $f_{Y/X}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(xz) dx$

$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} f_X(x) f_Y(\frac{z}{x}) dx$$

 $3M = \max\{X, Y\}$ 及 $N = \min\{X,Y\}$ 的分布

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$, $F_Y(y)$ 由于

 $M = \max\{X, Y\}$ 不大于 z 等价于 X 和 Y 都不大于 z 故有 $P\{M \le z\} = P\{X \le z, Y \le z\}$ 又

由于 X 和 Y 相互独立,得到 $M=\max\{X,Y\}$ 的分布函数为 $F_{\max}(z)=F_X(z)F_Y(z)$

 $N = \min\{X,Y\}$ 的分布函数为 $F_{\min}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$

第四章 随机变量的数字特征

§1. 数学期望

定义 设**离散型随机变量** X 的分布律为 $P\{X=x_k\}=p_k$, k=1,2, ···若级数 $\sum_{k=1}^{\infty}x_kp_k$ 绝对

收敛,则称级数 $\sum_{k=1}^{\infty} x_k p_k$ 的和为随机变量 X 的数学期望,记为 E(X),即 $E(X) = \sum_i x_k p_k$

设**连续型随机变量 X** 的概率密度为 f(x),若积分 $\int_{-\infty}^{\infty} x f(x) dx$ 绝对收敛,则称积分

 $\int_{-\infty}^{\infty} x f(x) dx$ 的值为随机变量 X 的数学期望,记为 E(X) ,即 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ 定理 设 Y 是随机变量 X 的函数 Y = g(X) (g 是连续函数)

(i) 如果 X 是**离散型随机变量**,它的分布律为 $P\{X=\mathbf{x}_k\}=p_k$, k=1,2,···若 $\sum_{k=1}^{\infty}g(x_k)p_k$

绝对收敛则有
$$E(Y) = E(g(X)) = \sum_{k=1}^{\infty} g(x_k) p_k$$

(ii) 如果 X 是**连续型随机变量**,它的分概率密度为 f(x),若 $\int_{-\infty}^{\infty} g(x)f(x)dx$ 绝对收敛则

有
$$E(Y) = E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

数学期望的几个重要性质

- 1设C是常数,则有E(C)=C
- 2 设 X 是随机变量, C 是常数,则有 E(CX) = CE(X)
- 3 设 X,Y 是两个随机变量,则有 E(X + Y) = E(X) + E(Y);
- 4 设 X, Y 是相互独立的随机变量,则有 E(XY) = E(X)E(Y)

§ 2 方差

定义 设 X 是一个随机变量,若 $E\{[X - E(X)]^2\}$ 存在,则称 $E\{[X - E(X)]^2\}$ 为 X 的方差,记为 D (x) 即 D $(x) = E\{[X - E(X)]^2\}$,在应用上还引入量 $\sqrt{D(x)}$,记为 $\sigma(x)$,称为标准差或均方差。

$$D(X) = E(X - E(X))^{2} = E(X^{2}) - (EX)^{2}$$

方差的几个重要性质

1 设 C 是常数,则有 D(C) = 0,

2 设 X 是随机变量, C 是常数,则有 $D(CX) = C^2D(X)$, D(X + C) = D(X)

3 设 X,Y 是两个随机变量,则有 $D(X+Y) = D(X) + D(Y) + 2E\{(X - E(X))(Y - E(Y))\}$ 特

别, 若 X,Y 相互独立, 则有 D(X + Y) = D(X) + D(Y)

4D(X) = 0的充要条件是 X 以概率 1 取常数 E(X), 即 $P\{X = E(X)\} = 1$

切比雪夫不等式: 设随机变量 X 具有数学期望 $E(X) = \sigma^2$,则对于任意正数 ε ,不等式

$$P\{|X - \mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$
成立

§3 协方差及相关系数

定义 量 $E\{[X-E(X)][Y-E(Y)]\}$ 称为随机变量 X 与 Y 的协方差为Cov(X,Y),即

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

而
$$\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{D(X)\sqrt{D(Y)}}}$$
 称为随机变量 X 和 Y 的相关系数

对于任意两个随机变量 X 和 Y, $D(X^+Y) = D(X) + D(Y) + 2Cov(X,Y)$

协方差具有下述性质

$$1 Cov(X,Y) = Cov(Y,X), Cov(aX,bY) = abCov(X,Y)$$

$$2 Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

定理 $1 |\rho_{XY}| \le 1$

2
$$|\rho_{XY}| = 1$$
的充要条件是,存在常数 a,b 使 $P\{Y = a + bx\} = 1$

当 $\rho_{XY} = 0$ 时,称 X 和 Y 不相关

附:几种常用的概率分布表

图: 7011 ID/ID/IM/T/2017 ID/I							
分布	参数	分布律或概率密度	数学 期望	方差			
两点分 布	0 < p < 1	$P{X = k} = p^{k} (1-p)^{1-k}, k = 0,1,$	p	p(1-p)			
二项式 分布	$n \ge 1$ 0	$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots n,$	np	<i>np</i> (1- <i>p</i>)			
泊松分 布	$\lambda > 0$	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0,1,2,\dots$	λ	λ			
几何分 布	0 < p < 1	$P(X = k) = (1 - p)^{k-1} p, k = 1, 2, \cdots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$			
均匀分布	a < b	$f(x) = \begin{cases} \frac{1}{b-a} & , a < x < b \\ 0 & , \# \#$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$			

指数分布	$\theta > 0$	$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} &, x > 0\\ 0 &, 其他 \end{cases}$	θ	$ heta^2$
正态分	μ $\sigma > 0$	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	$\sigma^{^2}$

第五章 大数定律与中心极限定理

§1. 大数定律

弱大数定理(辛欣大数定理) 设 X_1 . X_2 ····是相互独立,服从统一分布的随机变量序列,并具有数学期望 $E(X_k)=\mu(k=1,2,\cdots)$.作前 n 个变量的算术平均 $\frac{1}{n}\sum_{k=1}^n X_k$,则对于任意

$$\varepsilon > 0$$
, $\exists \lim_{n \to \infty} P\{\left|\frac{1}{n}\sum_{k=1}^{n}X_{k} - \mu\right| < \varepsilon\} = 1$

定义 设 $Y_1,Y_2,\cdots Y_n$ … 是一个随机变量序列,a 是一个常数,若对于任意正数 ε ,有 $\lim_{n\to\infty}P\{|Y_n-a|<\varepsilon\}=1,则称序列<math>Y_1,Y_2,\cdots Y_n$ … 依概率收敛于 a,记为 Y_n — $\stackrel{p}{\longrightarrow}$ a

伯努利大数定理 设 f_A 是 n 次独立重复试验中事件 A 发生的次数,p 是事件 A 在每次试验 中 发 生 的 概 率 , 则 对 于 任 意 正 数 ε 〉 0 , 有 $\lim_{n \to \infty} P\{\left|\frac{f_n}{n} - p\right| < \varepsilon \} = 1$ 或

$$\lim_{n\to\infty} P\{\left|\frac{f_n}{n}-p\right|\geq \varepsilon\}=0$$

§ 2 中心极限定理

定理一(**独立同分布的中心极限定理**) 设随机变量 X_1, X_2, \cdots, X_n 相互独立,服从同一分布,且具有数学期望和方差 $E(X_i) = \mu, \ D(X_k) = \sigma^2$ $(k=1,2,\cdots)$,则随机变量之和

$$\sum_{i=1}^n X_k 标准化变量, \quad Y_n = \frac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{\sqrt{D(\sum_{k=1}^n X_k)}} = \frac{\sum_{i=1}^n X_k - n\mu}{\sqrt{n}\sigma},$$

定理二(**李雅普诺夫定理**) 设随机变量 X_1 , X_2 , \cdots 相互独立,它们具有数学期望

和方差
$$E(X_k) = \mu_k$$
, $D(X_k) = \sigma_k^2 > 0, k = 1, 2 \cdots$ 记 $B_n^2 = \sum_{k=1}^n \varepsilon_k^2$

定理三 (**棣莫弗-拉普拉斯定理**) 设随机变量 $\eta_n(n=1,2,\cdots)$ 服从参数为n,p(0 的

二项分布,则对任意
$$x$$
,有 $\lim_{n\to\infty} P\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \le x\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \Phi(x)$