複素トーラスと複素射影直線

***しば としひる 大柴 寿浩

受験番号:241002

February 9, 2023

楕円関数 ○○ ○ 分岐指数と被覆次数 ○○ 主定理

発表内容

基本的な概念

リーマン面の定義と例 リーマン面 複素射影直線 複素トーラス

精円関数 楕円関数の例 分岐指数と被覆次数 主定理 参考文献

複素数空間

 \mathbf{C}^n での座標が $z=(z^1,\ldots,z^n)$ であるとき、複素数空間 \mathbf{C}^n を

$$\mathbf{C}_z^n$$
とか $\mathbf{C}_{(z^1,...,z^n)}^n$

とかく.

U を \mathbb{C}^n の空でない開集合とする. このとき, U で定義された複素数値関数 f は $f(z) = f(z^1, \ldots, z^n)$ とかける.

正則関数と有理型関数

f を \mathbb{C}^n の開集合上で定義された複素数値関数とする.

Definition (正則関数)

f が正則であるとは,各成分 z^1, \ldots, z^n について正則,すなわち,複素微分可能であることをいう.

Definition (有理型関数)

f が有理型であるとは、f の定義域の各点で高々極しか持たず、極を除き正則であることをいう。

複素多様体

Definition (複素多様体)

X: 位相空間, $(\varphi_i: U_i \to U_i)_{i \in I}$:写像の族. 対 $(X, (\varphi_i: U_i \to U_i)_{i \in I})$ が次の条件 (1)–(4) をみたすとき,n 次元複素多様体という.

- 1. $X \neq \emptyset$, 第2可算, 連結, ハウスドルフ.
- 2. $U_i \subset_{\text{open}} X$, $U_i \neq \emptyset$ for all $i \in I$, $X = \bigcup_{i \in I} U_i$.
- 3. For all $i \in I$, $\mathcal{U}_i \subset \mathbf{C}_z^n$, $\mathcal{U}_i \neq \emptyset$, $\varphi_i \colon U_i \to \mathcal{U}_i$: homeo.
- 4. 任意の $i \neq j \in I$ $(U_i \cap U_j \neq \varnothing)$ に対して $\mathcal{U}_{ij} \coloneqq \varphi_j(U_i \cap U_j) \subset \mathcal{U}_j$ とおくとき, $\varphi_{ij} \coloneqq \varphi_i \circ \varphi_j^{-1}\big|_{\mathcal{U}_{ii}} : \mathcal{U}_{ij} \to \mathcal{U}_{ji}$: holomorphic.

リーマン面

Definition (リーマン面)

1次元複素多様体をリーマン面という.

Example

C の開集合 U に対し、 $(U,(\mathrm{id}_U))$ はリーマン面.

複素射影直線

 $\mathbf{C}^2 - \{(0,0)\}$ の点 x, y に対して,同値関係 \sim を

$$x \sim y \stackrel{\text{def}}{\Longleftrightarrow} x = cy$$
 をみたす複素数 $c \neq 0$ が存在する

で定める.このとき \sim に関する (x,y) の同値類を [x:y] とかき

$$\mathbf{P}^1 \coloneqq \left(\mathbf{C}^2 - \{(0,0)\}\right)/\sim$$

の複素構造を次で定めたものはリーマン面である. \mathbf{P}^1 を複素射影直線という.

000

複素射影直線の複素構造

 \mathbf{P}^1 の開集合 U_0 , U_1 を次で定める.

$$U_0 := \{(z, w) \in \mathbf{C}^2; w \neq 0\},\$$

 $U_1 := \{(z, w) \in \mathbf{C}^2; z \neq 0\}.$

 U_0 , U_1 の間の座標変換を次で定める.

$$w=rac{1}{z}$$

$$([z:1] = [1:w] \in U_0 \cap U_1)$$

周期格子

 ω_0 , ω_1 を \mathbf{R} 上一次独立な 0 でない 複素数とする.このとき, \mathbf{C} の部分 加群 $\Omega \subset \mathbf{C}$ を

$$\Omega := \{ n_0 \omega_0 + n_1 \omega_1; n_0, n_1 \in \mathbf{Z} \}$$

で定める. Ω を周期格子といい,

$$S := \{a\omega_0 + b\omega_1; 0 \leq a, b < 1\}$$

を周期平行四辺形という.

複素トーラス

 $E := \mathbf{C}/\Omega$ を複素トーラスという. $S \succeq E$ の点は一対一に対応する. 標準射影 $p: \mathbf{C} \to E$ による $z \in \mathbf{C}$ の像を [z] とかく.

000

複素トーラスの複素構造

各点 $P \in E$ の十分小さい開近傍 $U_P \subset E$ に対し, $U_P = p(\mathcal{U}_x)$ となる開集合 $\mathcal{U}_x \subset S$ をとる. $p^{-1}(U_P) = \bigcup \mathcal{U}_x + \omega$ である.

 $\omega \in \Omega$ を一つ取って同相 $\varphi_{P,x+\omega} \coloneqq \left(p|_{\mathcal{U}_x+\omega} \right)^{-1} : \mathcal{U}_P \to \mathcal{U}_{x+\omega}$ を考える. 座標変換は平行移動 $z \mapsto z + \omega$.

00

楕円関数

Definition

 ω_0, ω_1 に対し,**C** 上の有理型関数 f で

$$f(z + \omega_0) = f(z), \quad f(z + \omega_1) = f(z)$$

を満たすものを、 ω_0 , ω_1 を周期とする楕円関数という.

 Ω を周期とする楕円関数ともいう.

楕円関数はトーラス上の関数と見做せる

Lemma

商写像 $p: \mathbf{C} \to E$ の引き戻し $p^*: f \mapsto f \circ p$ は $\{E \perp D$ 有理型関数 $\}$ から $\{\Omega$ を周期とする $\mathbf{C} \perp D$ 作円関数 $\}$ への 1 対 1 対応を定める.

Weierstrass の \wp 関数

Definition (Weierstrass の p 関数)

$$\wp(u) := \sum_{\substack{\omega \in \Omega, \\ \omega \neq 0}} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega} \right)$$

は Ω にのみ 2 位の極を持つ楕円関数である. \emptyset を Weierstrass の \emptyset 関数という.

分岐指数

Fact

X と Y をリーマン面とする. $f: X \to Y$ を定値でないリーマン面の射とする. $P \in X$, $Q = f(P) \in Y$ とおく. このとき, P のまわりの局所座標 t と Q のまわりの局所座標 s と正の整数 $n \ge 1$ で, f の局所座標表示が $s = t^n$ となるものが存在する. また, この n は座標の取り方によらない.

Definition

上の事実における n を P における f の分岐指数といい, e_P とかく. $e_P > 1$ のとき,P を f の分岐点という.

写像度

Fact

 $X \ge Y$ をコンパクトリーマン面とする. $f: X \to Y$ を定値でない射とする. このとき,次が成り立つ.

- 1. 任意の $Q \in Y$ に対し $f^{-1}(Q) \neq \emptyset$ かつ $\#f^{-1}(Q) < \infty$ である.
- 2. f の分岐点は高々有限個である.
- 3. Q を Y の点とする.このとき, $d(Q)\coloneqq \sum_{P\in f^{-1}(Q)}e_P$ は一定である.これを $\deg f$ とかく.
- 4. 分岐点でない点 $Q \in Y$ に対し $\#f^{-1}(Q) = \deg f$ である. 分岐点 $Q \in Y$ に対し, $\#f^{-1}(Q) < \deg f$ である.

Definition

 $d = \deg f \ \delta f \ \sigma$ 写像度といい, $f \ \delta d \ \equiv$ 被覆写像という.

主定理

Theorem (複素トーラスから射影直線への2重被覆)

E から **P**¹ への正則射

$$\wp \colon E \to \mathbf{P}^1; \quad [z] \mapsto [\wp(z); 1]$$

は4点

$$[0], \left[\frac{\omega_0}{2}\right], \left[\frac{\omega_1}{2}\right], \left[\frac{\omega_0 + \omega_1}{2}\right]$$

で分岐する2重被覆写像である.

定理の言い換え

 $P \in \mathbf{P}^1$ に対し、

#
$$\wp^{-1}(P) = egin{cases} 1 & ([0], \left[rac{\omega_0}{2}
ight], \left[rac{\omega_1}{2}
ight], \left[rac{\omega_0+\omega_1}{2}
ight] \mapsto P$$
 のとき), 2 $& (それ以外) \end{cases}$

ということ.

証明 (1/2)

 \wp は Ω にのみ 2 位の極をもつ楕円関数であったから,[0] のみに 2 位の極をもつ E 上の有理型関数というのと同じである.したがって, $\wp^{-1}(\infty) = \{[0]\}$ であり,写像度に関する事実より, $\deg \wp = 2$ である.いま, \wp は偶関数なので, $[a] \in E$ に対し, $\wp([a]) = \wp([-a])$ が成り立つ.[a] が E の 2 分点でなければ, $[a] \neq [-a]$ である. $\deg \wp = 2$ なので,このとき, $\wp^{-1}(\wp([a])) = \{[a], [-a]\}$ と確定する.

証明 (2/2)

 $[\omega_1/2]$ の近傍で \wp を局所座標表示する. \wp は ω_1 を周期にもつ偶関数なので $\wp(-z)=\wp(z)=\wp(z+\omega_1)$ をみたす. 両辺を微分して, $-\wp'(-z)=\wp'(z+\omega_1)$ となるが, $z=-\omega_1/2$ のとき, $-\wp'(\omega_1/2)=\wp'(\omega_1/2)$ となる. したがって, $\wp'(\omega_1/2)=0$ となる. よって, $\wp(z)$ の $\omega_1/2$ のまわりでの展開における 1 次の項の係数は 0 である. したがって, $e_{[\omega_1/2]}>1$ であり, $[\omega_1/2]$ は \wp の分岐点である.

 $[\omega_2/2]$ と $[(\omega_1 + \omega_2)/2]$ についても同様に, $e_{[\omega_2/2]} > 1$, $e_{[(\omega_1 + \omega_2)/2]} > 1$ となるので, \wp は E の 2 分点で分岐する 2 重被覆であることが示せた.

参考文献 I

[Og02] 小木曽啓示, 『代数曲線論』, 朝倉書店, 2002.