计算机组成原理-复习 Principle of Computer Organization

示例

• The delays of circuit elements are given as follows:

Stage	IF	ID	EX	MEM	WB
Delay	200ps	200ps	400ps	200ps	100ps

<1>Mark the stages the following instructions use and calculate the time to execute

Instruction	IF	ID	EX	MEM	WB	Total
ADD						
LDUR						
STUR						
XOR						
CBZ						

<2> Which instruction(s) exercises the critical path?

<3> What is the fastest you could clock this single-cycle datapath? (1 ps = 10^{-12} s)

示例

<1>Mark the stages the following instructions use and calculate the time to execute

Instruction	IF	ID	EX	MEM	WB	Total
ADD	X	X	X		X	900ps
LDUR	X	X	X	X	X	1100ps
STUR	X	X	X	X		1000ps
XOR	X	X	X		X	900ps
CBZ	X	X	X			800ps

<2> Which instruction(s) exercises the critical path?

Load word (lw), as it both reads from memory and writes to register, which most instructions don't use both memory and writing to register.

<3> What is the fastest you could clock this single-cycle datapath? (1 ps = 10-12 s)

1/(1100 ps) = 1/(800 * 10-12s) = 1012 / 1100 = 909090909 = 909MHz

• Put the corresponding letters for each 32-bit value in order from least to greatest. (Hint: the question isn't asking you to write down what each one is, it only asks for the relative order!)

A: 0xFF000000 (IEEE754 single precision)

B: 0xFF000000 (2's complement)

C: 0xFF000000 (sign-magnitude)

D: 0xFF000000 (biased notation移码)

E: 0xF0000000 (2's complement)

F: 0xF0000000 (1's complement)

|--|

- Convert -ABCD_{hex} into:
 - Sign and magnitude
 - 2'complement
 - Biased notation
 - IEEE754 Single Precision(Hex)
 - IEEE754 Double Precision(Hex)

 1G main memory, byte-addressing, 128KB Cache. Now a data locate at 0x123456(byte-addressing), will mapping towhich cache unit in different situation below, and how about its TAG and Total cache size?

0x123456	The data will	TAG		Tatal Size
	Mapping to (block(s))	TAG for the data(Hex)	bits	
Direct-mapped, 16 bytes/block				
Direct-mapped, 64 bytes/block				
2-Way set associative 16 bytes/block				
4-Way set associative 32 bytes/block				

示例

0x123456	The data	TA	Tatal Size	
	will	TAG for the	bits	
	Mapping to	data(Hex)		
	(block(s))			
Direct-	0x345	0 x 9	15	(15+1) *8K/8+
mapped,				128K=144KB
16				
bytes/block				
Direct-	0xD1	0 x 9	15	(15+1) *2K/8+
mapped,				128K=132
64				
bytes/block				
2-Way set	0x345	0x12	16	(16+1) *8K/8+
associative	*2+0,+1			128K=145KB
16				
bytes/block				
4-Way set	0x1A2	0x24	17	(17+1) *4K/8+
associative	*4+0,+1,+2,+			128K=137K
32	3			
bytes/block				