DM3-IMPUTE EPCV

Mohamed Moukhtar / KHALIL

2023-04-22

Exploring the Data

```
library(tidyverse)
## Warning in Sys.timezone(): unable to identify current timezone 'C':
## please set environment variable 'TZ'
## — Attaching core tidyverse packages —
                                                             ----- tidyverse 2.0.0 --
## √ dplyr 1.1.1
                        √ readr
                                       2.1.4
## √ forcats 1.0.0

√ stringr 1.5.0

## \checkmark ggplot2 3.4.2 \checkmark tibble 3.2.1
                       √ tidyr
## ✓ lubridate 1.9.2
                                       1.3.0
## √ purrr
               1.0.1
## — Conflicts -
                                                           – tidyverse_conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to
become errors
library(haven)
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
##
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/iss
ues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
       sleep
library(mice)
```

```
##
## Attaching package: 'mice'
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following objects are masked from 'package:base':
##
## cbind, rbind
```

```
df = read_sav("C:/Users/USER/Desktop/Base_EPCV2019-2020/Base_EPCV2019-2020/menage_2019.sa
v")
head(df)
```

```
## # A tibble: 6 × 150
     US ORDRE
                   Α7
                         A41
                               A42 A1
                                                    A1 1 A2
                                                                     A2 1 A3
         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+lbl>
##
                                                    <chr> <dbl+lb> <chr> <dbl+lbl> <chr>
                                  ...عدل" ...al [Ade... "1102 أمر... 11 [Amo... "1102 أمر...
             1
                           3
## 1
                    1
                                  ...عدل" ...Ade] أمر... 1102" .... [Amo... "1102] الح... 11 [ Ade...
## 2
             1
                    2
                           3
                                  ...عدل" ...عال [Ade... 1102 أمر... 1102 أمر... 11 [Hodh char... "11 الح...
                           3
## 3
             1
                    3
                                  ...عدل" ...Ade] أمر... 1102 ".... 11 [Amo... "1102] الح... 1 1 [Hodh char...
             1
                    4
## 4
                           3
             1
                    5
                                  ...عدل" ...Ade] أمر... 1102" .... [Amo... "1102] الح... 11 [ Ade...
## 5
                           3
             1
                                  ...عدل" ...Ade] أمر... 1102" .... [Amo... "1102] الح... 11 [ Hodh char...
## 6
                           3
     i 140 more variables: A5 <dbl+lbl>, A6_1 <chr>, A6_2 <dbl>, A8 <chr>,
## #
        A8A <dbl+lbl>, A8B <dbl+lbl>, A9 <dbl+lbl>, A91 <dbl+lbl>, A10J <dbl>,
## #
## #
        A10M <dbl>, A10A <dbl>, A11H <dbl>, A11M <dbl>, A12 <dbl>, A14 <dbl>,
        A15 <dbl+lbl>, A16H <dbl>, A16M <dbl>, A17H <dbl>, A17M <dbl>,
## #
        EL_TR <dbl+lbl>, EL_TE <dbl+lbl>, F1 <dbl+lbl>, F2 <dbl>, F2_1 <dbl+lbl>,
## #
        F2_2 <dbl>, F3 <dbl>, F4 <dbl+lbl>, F5 <dbl+lbl>, F6 <dbl>, F7 <dbl+lbl>,
## #
## #
        F8 <dbl>, F9 <dbl+lbl>, F10 <dbl>, F11 <dbl+lbl>, F12 <dbl>, ...
```

The dataframe contains variables with missing values.

```
na_df = df %>%
  summarise_all(~sum(is.na(.))) %>% # count NAs for each column
  gather() %>% # convert to long format
  arrange(value)
#drop(na_df[,c('G11B1','G11B2')])
na_df = as.data.frame(na_df)
na_df
```

##	key	value
## 1	US_ORDRE	0
## 2	_ A7	0
## 3	A41	0
## 4	A42	0
## 5	A1	0
## 6	A1_1	0
## 7	A1_1 A2	0
## 8		0
## 9	A2_1 A3	0
## 10	A3_1	0
## 11	A5	0
## 12	A6_1	0
## 13	A6_2	0
## 14	A8	0
## 15	A8A	0
## 16	A8B	0
## 17	A9	0
## 18	A91	0
## 19	A10J	0
## 20	A10M	0
## 21	A10A	0
## 22	A11H	0
## 23	A11M	0
## 24	A15	0
## 25	G14A	0
## 26	I1A	0
## 27	I1B	0
## 28	I1C	0
## 29	I1D	0
## 30	I1E	0
## 31	I1F	0
## 32	I1G	0
## 33	I1H	0
## 34	I1I	0
## 35	I1J	0
## 36	I3BA	0
## 37	I3BB	0
## 38	I3BC	0
## 39	I3BD	0
## 40	I3BE	0
## 41	I3BF	0
## 42	I3BG	0
## 43	I3BH	0
## 44	idmen	0
## 45	wilaya	0
## 46	moughataa	0
## 47	commune	0
## 48	milieu	0
## 49	hid	0
## 50	A17H	56
## 51	A17M	56
## 52	A12	253
## 53	A14	253

##	54	EL_TR	257
##	55	EL_TE	259
##	56	SA1	261
##	57	SA2_A	261
##	58	SA2_B	261
##	59	SA2_C	261
##	60	SA2_D	261
##	61	SA2_E	261
##	62	SA3_A	261
##	63	F1	262
	64	SA4	262
##	65	SA7	262
##		SA 8	262
##		SA9	262
##		SA10	262
##		SA11	262
	70	SA12	262
##		SA12	262
	72	SA15	262
##		F2	
			263
##		F2_1	263
##		F2_2	263
##		F3	263
##		F4	265
##		F5	265
##		F8	266
##		F9	266
##	81	F10	267
##	82	F11	267
##	83	F12	267
##	84	F13	267
##	85	F14	267
##	86	F15	267
##	87	F17	267
##	88	F18	267
##	89	F19	267
##	90	F20	267
##	91	F21	267
##	92	GØ	274
##	93	G1	274
##	94	G2	274
	95	G3	274
	96	G10	274
##	97	G5	274
	98	G4	274
	99	G4 1	274
	100	G12_Q	274
	101	G12_Q G12 U	274
##	102	G12_0 G12 F	274
	103	G12_F G13	274
	104	G15	274
	105	G16	274
	106	G6	274
	107	A16H	275
##	108	A16M	275

```
## 109
             G7
                  275
## 110
           G11A
                  275
## 111
             12
                  275
## 112
             Ι3
                  275
## 113
             14
                  275
                  275
## 114
            I11
## 115
            I12
                  275
## 116
            I13
                  275
## 117
           G12A 1431
## 118
           I3A1 2998
## 119
           I3A2 2998
## 120
           I3A3 3634
           G5A 3982
## 121
            G5B 3982
## 122
            G5C 3982
## 123
## 124
            G5D 3982
          SA3_B 4803
## 125
          SA5 1 5924
## 126
          SA5_2 5924
## 127
          SA5_3 5924
## 128
          SA5_4 5924
## 129
          SA5_5 5924
## 130
          SA5_6 5924
## 131
## 132
          SA5_7 5924
          SA5_8 5924
## 133
          SA5_9 5924
## 134
## 135
         SA5_10 5924
## 136
         SA5_11 5924
## 137
         SA5_12 5924
          SA6_A 5924
## 138
## 139
          SA6_B 5924
## 140
           G14 6206
## 141
        SA6_C 6503
## 142
          SA14 8304
## 143
           G12B 9064
## 144
           SA16 9298
## 145
           G5E 9317
## 146
           G5F 9317
## 147
             F7 9532
## 148
             F6 9534
          G11B1 10109
## 149
## 150
          G11B2 10109
```

```
ggplot(na_df[3:10,], aes(x = key, y = value)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  xlab("Variable") +
  ylab("Number of missing values") +
  ggtitle("Number of missing values per variable")
```


We can see that the number of missing values for each variable is significant.

Begin Imputation We have selected 5 quantitative variables: F2, F6, I12, I13, and SA6 C.

Impute F2 - How many rooms are there in your accommodation?

Create a sub-dataframe without missing values of F2 and create new arbitrary missing values.

```
df_notna <- df[!is.na(df$F2), ]
set.seed(123)
sample_indices <- sample(1:nrow(df_notna), round(0.4*nrow(df_notna)), replace=FALSE)
F2_na = df_notna['F2']
F2_na = data.frame(F2_na)
F2_na[sample_indices,] = NA
df_notna = data.frame(df_notna)
df_notna['F2'] = F2_na</pre>
```

Imputation evaluation using mice:

```
df_mice <- mice(df_notna[,c(34,35,36,37)], m=3,method = "pmm")</pre>
```

```
##
##
    iter imp variable
##
             F2
##
             F2
             F2
##
     1
            F2
##
     2
         1
     2
         2
            F2
     2
         3
            F2
     3
         1
            F2
##
     3
         2
            F2
##
     3
         3
            F2
         1
            F2
     4
##
     4
         2
            F2
##
         3
##
     4
            F2
            F2
         1
##
     5
         2
            F2
##
##
     5
         3 F2
```

Evaluate:

```
plot(density(df[!is.na(df$F2), ]$F2,bw=2), main = "Density Comparison of mice", col = "blu
e", lwd = 2, ylim = c(0, 1))

# Add a density plot for F6_na
lines(density(as.numeric(unlist(df_mice$imp$F2)),bw=2), col = "red", lwd = 2)
```

Density Comparison of mice

Imputation d'evaluation par : k-nn

```
df_knn=kNN(df_notna,variable = 'F2',k=3)
```

Evaluate

```
plot(density(df[!is.na(df$F2), ]$F2), main = "Density Comparison of K-nn", col = "blue", l
wd = 2, ylim = c(0, 1))

# Add a density plot for F6_na
lines(density(df_knn$F2), col = "red", lwd = 2)
```

Density Comparison of K-nn

Imputation evaluation using hotdeck:

```
df_hd = hotdeck(df_notna)
```

Evaluate:

```
plot(density(df[!is.na(df$F2), ]$F2), main = "Density Comparison of hotdeck", col = "blu
e", lwd = 2, ylim = c(0, 1))

# Add a density plot for F6_na
lines(density(df_hd$F2), col = "red", lwd = 2)
```

Density Comparison of hotdeck

Imputer F6 - Combien d'hectares de terres agricoles le ménage utilise qui ne lui appartiennent pas ?

Creer un sous-dataframe sans les valeurs manquantes de F6 et creer des nouvelles valeurs manquantes arbitraire de F6

```
df_notna <- df[!is.na(df$F6), ]
set.seed(123)
sample_indices <- sample(1:nrow(df_notna), round(0.4*nrow(df_notna)), replace=FALSE)
F6_na = df_notna['F6']
F6_na = data.frame(F6_na)
F6_na[sample_indices,] = NA
df_notna = data.frame(df_notna)
df_notna['F6'] = F6_na</pre>
```

Imputation d'evaluation par : mice

```
df_mice <- mice(df_notna[,c(39,40)], m=3,method = "pmm")</pre>
```

```
##
##
    iter imp variable
##
          1
              F6
##
      1
          2
              F6
          3
              F6
##
      1
      2
             F6
##
          1
##
      2
          2
             F6
      2
          3
##
             F6
      3
          1
             F6
##
      3
          2
             F6
##
      3
          3
             F6
##
          1
##
      4
             F6
      4
          2
             F6
##
          3
##
      4
             F6
          1
             F6
##
      5
          2
             F6
##
##
      5
          3
             F6
```

Evaluer:

```
plot(density(df[!is.na(df$F6), ]$F6), main = "Density Comparison of mice", col = "blue", l
wd = 2, ylim = c(0, 1))

# Add a density plot for F6_na
lines(density(as.numeric(unlist(df_mice$imp$F6))), col = "red", lwd = 2)
```

Density Comparison of mice

Imputation d'evaluation par : k-nn

```
df_knn=kNN(df_notna,variable = 'F6',k=3)
```

Evaluer

```
plot(density(df[!is.na(df$F6), ]$F6), main = "Density Comparison of knn", col = "blue", lw
d = 2, ylim = c(0, 1))

# Add a density plot for F6_na
lines(density(df_knn$F6), col = "red", lwd = 2)
```

Density Comparison of knn

Imputation d'evaluation par : hotdeck

```
df_hd = hotdeck(df_notna)
```

Evaluer

```
plot(density(df[!is.na(df$F6), ]$F6), main = "Density Comparison of hotdeck", col = "blu
e", lwd = 2, ylim = c(0, 1))

# Add a density plot for F6_na
lines(density(df_hd$F6), col = "red", lwd = 2)
```

Density Comparison of hotdeck

