Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SW \$9, 0(\$1) LW \$1, 7(\$9) SUB \$9, \$1, \$8 SW \$3, 73(\$9) SUBI \$9, \$3, 9 SW \$7, 78(\$9) LW \$9, A(\$7) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di dataforwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
SW \$9, 0(\$1)	IF	ID	EXE	MEM	WB												
LW \$1, 7(\$9)		IF	ID	EXE	MEM	WB	MEM	/WB.l	MD_l	lw->E)	KE_To	pALU_	_sub	-	-		
SUB \$9, \$1, \$8			IF	ID	ID	EXE	MEM	WB	EXE/I	MEM.	ALUO	utput_	_sub->	EXE_	ГорАL	.U_sw	
SW \$3, 73(\$9)				IF	IF	ID	EXE	MEM	WB								
SUBI \$9, \$3, 9						IF	ID	EXE	MEM	WB	EXE/I	MEM.	ALUO	utput_	_subi-	>EXE_TopALU	_sw
SW \$7, 78(\$9)							IF	ID	EXE	MEM	WB						
LW \$9, A(\$7)								IF	ID	EXE	MEM	WB					

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SW \$1, A4(\$2) LW \$2, 90(\$1) SUB \$1, \$2, \$8 SW \$3, 4(\$2) ADDI \$1, \$3, 4 ADDI \$2, \$3, 8 LW \$2, 15(\$1) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di dataforwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
SW \$1, A4(\$2)	IF	ID	EXE	MEM	WB												
LW \$2, 90(\$1)		IF	ID	EXE	MEM	WB	MEM	/W B.I	LMD_I	lw->E	KE_To	pALU_	_sub				
SUB \$1, \$2, \$8			IF	ID	ID	EXE	MEM	WB									
SW \$3, 4(\$2)				IF	IF	ID	EXE	MEM	WB								
ADDI \$1, \$3, 4						IF	ID	EXE	MEM	WB	MEM	/WB.	ALUO	utput_	_addi-	>EXE_Top	ALU_lw
ADDI \$2, \$3, 8							IF	ID	EXE	MEM	WB						
LW \$2, 15(\$1)								IF	ID	EXE	MEM	WB					

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SUB \$5, \$1, \$4 LW \$1, 7(\$5) ADD \$5, \$1, \$8 LW \$3, 73(\$5) ADDI \$5, \$5, 3 SW \$7, 78(\$3) LW \$5, A(\$7) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di dataforwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
SUB \$5, \$1, \$4	IF	ID	EXE	MEM	WB	EXE/I	MEM.	ALUO	utput_	_sub -	> EXE.	Top_A	ALU_iı	nput_l	w			
LW \$1, 7(\$5)		IF	ID	EXE	MEM	WB	MEM	/WB.I	_MD_l	lw -> [EXE.To	p_AL	U_inp	ut_ad	d			
ADD \$5, \$8, \$1			IF	ID	ID	EXE	MEM		1) EXE/MEM.ALUOutput_add -> EXE.Top_ALU_input_ladd -> EXE.Top_ALU_input_a									
LW \$3, 73(\$5)				IF	IF	ID	¥XE	МЕМ	WB MEM/WB.LMD_lw -> EXE.Top_ALU_input_sw									
ADDI \$5, \$5, 3						IF	ID	¥ XE	MEM	WB								
SW \$7, 78(\$3)							IF	ID	EXE	MEM	WB							
LW \$5, A(\$7)								IF	ID	EXE	MEM	WB						