T1 - ENERGIA DAS ORBITAIS π DE POLIENOS CONJUGADOS

Objetivo:

Aplicar modelo da partícula numa caixa de potencial nulo a 1D

e o tratamento dual onda-corpúsculo (quantização E)

para prever transições eletrónicas

de eletrões deslocalizados em polienos conjugados

Polienos: hidrocarbonetos com diversas ligações C=C (insaturados)

Conjugados: C=C alternam com C-C

1,3-hexadieno (trans)

Dualidade onda-corpúsculo

Modelo do partícula livre numa caixa 1D

e⁻ pode comportar-se como onda

Soluções da Eq. Schrödinger

Energia

Função de onda

TOM-CLOA

$Transição\ Eni ightarrow Enf$

Transição HOMO → LUMO (menor energia)

$$\Delta E = h v = h \frac{c}{\lambda}$$

$$\Delta E_{min} \Rightarrow \lambda_{max}$$

n-hexano + composto

$$T = \frac{I_0}{I}$$

$$A = \log 10 \, \frac{1}{T}$$

1,3-hexadieno (trans)

λ_{max} teórico

4 OA p_z
$$\Rightarrow$$
 4 OM π (2 lig e 2 anti lig)

141 pm

Transição
$$n = 2 \rightarrow n = 3$$
 L = (3+1) d_{cc}

$$L = (3+1) d_{cc}$$

$$E_{m} = \frac{m^{2}h^{2}}{8mL^{2}}$$

$$\Delta E_{ni \to nf} = (nf^2 - ni^2) \frac{h^2}{8 \times m \times L^2}$$

$$\Delta E_{2\to 3} = (3^2 - 2^2) \frac{(6,626 \times 10_34)^2}{8 \times 9.109 \times 10_31 \times (4 \times 1.41 \times 10_10)^2} = 9.47 \times 10_19J$$

$$\Delta E = h \frac{c}{\lambda} \qquad 9.47 \times 10_19 = 6,626 \times 10_34 \frac{2.998 \times 108}{\lambda}$$

 λ_{max} = 2,097 x10⁻⁷ m \in 209,7 nm

λ_{max} experimental

λ_{max} teórico

10 OA p_z \Rightarrow 10 OM π (5 lig e 5 anti lig) 141 *pm*

Transição
$$n = 5 \rightarrow n = 6$$
 L = (9+1) d_{cc}

$$\Delta E_{ni \to nf} = (nf^2 - ni^2) \frac{h^2}{8 \times m \times L^2}$$

$$\Delta E_{5\to 6} = 3.33x \ 10_19J$$

$$\Delta E = h \frac{c}{\lambda}$$
 $\lambda_{max} = 5,95 \text{ x} 10^{-7} \text{ m} = 595,9 \text{ nm}$

λ_{max} experimental

Diversas bandas

Estado excitado: diferentes estados vibracionais/rotacionais

Estado fundamental: a molécula está no modo de vibração de menor E

$$H_3C$$
 CH_3
 CH_3

λ_{max} teórico

141 pm

22 OA p $_z \ \Rightarrow \$ 22 OM π (11 lig e 11 anti lig)

Transição n =
$$11 \rightarrow$$
 n = 12 L = (21+1) d_{cc}

$$L = (21+1) d_{cc}$$

$$\Delta E_{ni \to nf} = (nf^2 - ni^2) \frac{h^2}{8 \times m \times L^2}$$

$$\Delta E_{11\to 12} = 1,440x \ 10_19J$$

$$\Delta E = h \frac{c}{\lambda}$$
 $\lambda_{max} = 1,3795 \text{ x} 10^{-6} \text{ m} = 1379,5 \text{ nm}$

λ_{max} experimental

•
$$E_{min \neq 0} = E_1 = \frac{h^2}{8 \, x \, m \, xL^2}$$
 $E = E_{cin} + Ep = E_{cin} \neq 0$ $\Rightarrow v \neq 0$ Partícula em Não é possív

•
$$\downarrow m \ e \downarrow L$$
 \Rightarrow $\Delta E_{ni \rightarrow nf} = (nf^2 - ni^2) \frac{h^2}{8 \ x \ m \ xL^2}$

Maior a separação de níveis de Energia (ΔE)

 $\uparrow m \ e \uparrow L$ Partículas macroscópicas ⇒ níveis de E próximos (contínuo de E)

Composto	λ _{máx} teórico	λ _{máx} exp	IDifl (%)
1,3, hexadieno	209,7	237	13.0
retinol	595,9	341	42.8
β-caroteno	1379,5	479	65.3

Não é possível saber simultâneamente x e p

(Princ. Incert. Heisenberg)

Partícula em movimento

Assumimos modelo do e- livre (Ep=0)

Eq. Schrödinger monoeletrónica

Não considera Repulsões e⁻ - e⁻ Atração e⁻- Núcleo