1 – Approssimazione e formule di Taylor

Definizione 1.1.1. Date due funzioni f(x) e g(x) definite in un intorno di x_0 , si dice che

$$f(x) = o(g(x))$$
 per $x \to x_0$

(e si legge che f è "o piccolo" di g per $x \to x_0$) se accade che

$$\frac{f(x)}{g(x)} \to 0 \quad \text{per } x \to x_0.$$

Osservazione 1.1.3. Attenzione: la proprietà di una funzione di essere "o piccolo" di un'altra funzione è una proprietà *locale* cioè dipende *fortemente* da dove si fa il limite (che va sempre specificato!). Infatti si ha che

$$\sin x = o(x)$$
 per $x \to \infty$

infatti dal teorema del confronto

$$\frac{\sin x}{x} \to 0 \quad \text{per } x \to \infty$$

perché $\sin x$ è una quantità limitata mentre 1/x è una quantità infinitesima. Invece dall'esempio precedente abbiamo visto che

$$\sin x \neq o(x)$$
 per $x \to 0$.

Osservazione 1.1.4. o(1) è semplicemente una quantità infinitesima, indipendentemente da dove si fa il limite, perché dalla definizione si ha che

$$\frac{o(1)}{1} \to 0 \quad \text{per } x \to x_0$$

qualunque sia x_0 .

Teorema 1.2.1. Vale la seguente equivalenza: per $x \to x_0$

$$f(x) \sim g(x) \Leftrightarrow f(x) = g(x) + o(g(x))$$

DIMOSTRAZIONE Discende immediatamente dalle rispettive definizioni osservando che valgono le seguenti equivalenze per $x \to x_0$

$$f(x) \sim g(x) \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \Leftrightarrow f(x) - g(x) = o(g(x))$$
$$\Leftrightarrow f(x) = g(x) + o(g(x))$$

Teorema 1.4.1. (FORMULA DI TAYLOR CON RESTO DI PEANO) Sia $f:(a,b) \to \mathbb{R}$ e sia $x_0 \in (a,b)$. Supponiamo che la funzione f sia derivabile n volte nel punto x_0 ed n-1 volte nel resto dell'intervallo (a,b). Posto

$$\begin{split} P_{n,x_0}(x) &= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k \\ &= f(x_0) + \frac{f'(x_0)}{1!} (x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 + \frac{f'''(x_0)}{3!} (x-x_0)^3 + \dots + \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \\ si \ ha \ per \ ogni \ x_0 \in (a,b) \end{split}$$

 $f(x) = P_{n,x_0}(x) + o((x - x_0)^n).$

Definizione 1.4.1. Si definisce POLINOMIO DI TAYLOR DI ORDINE n ASSOCIATO ALLA FUNZIONE f E CENTRATO IN x_0 un polinomio P_{n,x_0} di ordine n tale che

$$f(x) - P_{n,x_0}(x) = o((x - x_0)^n).$$

Il Teorema precedente ci assicura l'esistenza di un tale polinomio, supponendo che la funzione f sia sufficientemente regolare. Vale anche un teorema di unicità (che si trova nella sezione 1.6).

Nel caso particolare $x_0 = 0$ la formula di Taylor viene spesso chiamata FORMULA DI MAC LAURIN e prende la forma

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n).$$

I risultati precedenti si possono riassumere dicendo che la funzione da approssimare è uguale al polinomio approssimante più l'errore di approssimazione che è un infinitesimo di ordine superiore a $(x-x_0)^n$. La quantità $o((x-x_0)^n)$ si dice RESTO SECONDO PEANO e se $x \to x_0$ il resto secondo Peano è tanto più piccolo quanto maggiore è n.

2 – Numeri complessi

Teorema 2.5.1. Sia $w \in \mathbb{C}$, $w \neq 0$ e $n \geq 1$ intero. Allora esistono esattamente n radici ennesime complesse $z_0, z_1, \ldots, z_{n-1}$ di w, cioè tali che $z_k^n = w$ per $k = 0, \ldots, n-1$. Inoltre posto $w = r(\cos \phi + i \sin \phi)$, si ha che $z_k = \rho_k(\cos \theta_k + i \sin \theta_k)$ dove

$$\begin{cases} \rho_k = r^{1/n} \\ \theta_k = \frac{\phi + 2\pi k}{n}, \quad k = 0, 1, \dots, n - 1. \end{cases}$$

DIMOSTRAZIONE: Se z è una radice ennesima di w, allora per definizione $z^n = w$ pertanto anche $|z^n| = |w|$. Dalla formula delle potenze ennesime, sappiamo che $|z^n| = |z|^n$ pertanto $|z|^n = |w|$. Dato che quest'ultima è un'uguaglianza tra numeri reali, ne deduciamo che

$$|z| = \sqrt[n]{|w|}.$$

In particolare, se w = 0, l'unica radice ennesima di w è zero (come detto l'unico numero di modulo 0). Se invece $w \neq 0$, scriviamo z e w in forma trigonometrica come

$$z = \rho(\cos\theta + i\sin\theta)$$
 $w = r(\cos\phi + i\sin\phi)$

così che dalla formula di De Moivre ricaviamo

$$\rho^{n}(\cos(n\theta) + i\sin(n\theta)) = r(\cos\phi + i\sin\phi)$$

che equivale alle due equazioni reali

$$cos(n\theta) = cos \phi$$
 $sin(n\theta) = sin \phi$.

Dunque gli angoli $n\theta$ e ϕ hanno lo stesso seno e lo stesso coseno, pertanto differiscono per un multiplo intero di 2π

$$n\theta = \phi + 2m\pi$$

da cui ricaviamo

$$\theta = \frac{\phi}{n} + \frac{2\pi m}{n}.$$

Quindi possiamo porre

$$\begin{cases} \theta_0 = \frac{\phi}{n} \\ \theta_1 = \frac{\phi}{n} + \frac{2\pi}{n} \\ \theta_2 = \frac{\phi}{n} + \frac{4\pi}{n} \\ \vdots \\ \theta_{n-1} = \frac{\phi}{n} + \frac{2(n-1)\pi}{n} \end{cases}$$

e per ogni $k=0,\ldots n-1$

$$z_k = \sqrt[n]{r}(\cos\theta_k + i\sin\theta_k).$$

Questi n numeri hanno argomenti diversi e compresi tra 0 e 2π , quindi sono numeri tutti distinti e abbiamo dimostrato che sono le uniche possibili radici di w. Poiché si verifica facilmente che la loro potenza n—esima è effettivamente w, il teorema è dimostrato. \square

In conclusione, se $w = r(\cos \phi + i \sin \phi) \neq 0$, allora le sue n radici ennesime sono date dalla formula

 $z_k = \sqrt[n]{r} \left[\cos \left(\frac{\phi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\phi}{n} + \frac{2k\pi}{n} \right) \right]$ $k = 0, \dots, n - 1.$

Dunque il simbolo $\sqrt[n]{z}$ non indica un numero complesso ma un insieme di numeri complessi, quindi la radice ennesima non è una **funzione** da \mathbb{C} a \mathbb{C} (semmai una funzione da \mathbb{C} in $\mathcal{P}(\mathbb{C})$). C'è pertanto una differenza significativa tra trovare le radici ennesime in campo reale e in campo complesso: per esempio in \mathbb{R} si ha $\sqrt{4} = 2$ mentre in \mathbb{C} si ha $\sqrt{4} = \pm 2$.

- **Teorema 3.1.1.** (TEOREMA DI ESISTENZA DEGLI ZERI) Se $f \in C^0([a,b])$ e f(a) ha segno diverso da f(b) allora esiste un punto $\xi \in [a,b]$ tale che $f(\xi) = 0$.
- DIMOSTRAZIONE. Osserviamo che dall'ipotesi sul segno di f(a) e f(b) segue che

$$f(a)f(b) \le 0.$$

Procediamo seguendo il cosiddetto metodo di bisezione. Poniamo

$$a_0 = a,$$
 $b_0 = b,$ $m_0 = \frac{a_0 + b_0}{2}.$

Dato che $[f(m_0)]^2 \ge 0$, allora anche $[f(a_0)f(m_0)][f(m_0)f(b_0)] \le 0$. Allora i due prodotti tra parentesi quadre non possono essere entrambi positivi: se il primo è minore o uguale a zero poniamo $a_1 = a_0$ e $b_1 = m_0$, mentre se il primo è positivo poniamo $a_1 = m_0$ e $b_1 = b_0$. In ogni caso abbiamo

$$\begin{cases} a_0 \le a_1 < b_1 \le b_0 \\ b_1 - a_1 = \frac{b - a}{2} \\ f(a_0)f(b_0) \le 0 \qquad f(a_1)f(b_1) \le 0. \end{cases}$$

Poniamo

$$m_1 = \frac{a_1 + b_1}{2}.$$

Procedendo per induzione in maniera del tutto simile alla dimostrazione del Teorema di Bolzano-Weierstrass si trova che esistono due successioni monotone $\{a_n\}_n$ debolmente crescente e $\{b_n\}_n$ debolmente decrescente, che tendono allo stesso limite ξ e tali che, $\forall n$

$$f(a_n)f(b_n) \le 0. \tag{3.1.1}$$

Dato che $a \le a_n \le b$, passando al limite abbiamo anche che $\xi \in [a, b]$, dunque f è continua nel punto ξ . Poiché $a_n \to \xi$ e $b_n \to \xi$, passando al limite in (3.1.1) si ottiene, per la continuità di f

$$[f(\xi)]^2 \le 0,$$

 $\operatorname{cioè} f(\xi) = 0. \square$

- Osservazione 3.1.1. Se una delle ipotesi del teorema viene a mancare, allora la tesi non sussiste più, come mostrano i seguenti esempi.
- Esempio 3.1.2. La funzione f(x) = 1/x è ben definita e continua nell'insieme $[-1,1] \setminus \{0\}$ e f(-1) ha segno opposto a f(1), però f non si annulla mai. Per altro l'insieme $[-1,1] \setminus \{0\}$ non è un intervallo (e non è nemmeno chiuso).

Esempio 3.1.3. Sull'intervallo [-1, 1] la funzione

$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

assume valori di segno opposto agli estremi ma non si annulla mai. Peraltro la funzione non è continua in 0.

- Esempio 3.1.4. Sull'intervallo di numeri razionali $\mathbb{Q} \cap [1,2]$ la funzione continua $f(x) = x \sqrt{2}$ assume valori di segno opposto agli estremi, ma non si annulla mai. Questo dimostra che il teorema precedente si basa sulle proprietà di \mathbb{R} .
- **Teorema 3.2.1.** (TEOREMA DEI VALORI INTERMEDI) Se $f \in C^0(I)$ allora la sua immagine f(I) è un intervallo che ha per estremi inf f e sup f.
 - **Teorema 3.3.1.** Una funzione $f: D \subseteq \mathbb{R} \to \mathbb{R}$ strettamente monotona in D è invertibile in D. Inoltre la sua inversa è ancora strettamente monotona.
- DIMOSTRAZIONE. Supponiamo che f sia strettamente crescente. Allora presi $x_1, x_2 \in D$ dobbiamo provare che $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. Se $x_1 \neq x_2$ allora possono accadere solo due casi: $x_1 < x_2$ oppure $x_1 > x_2$. Allora, dalla crescenza (stretta!) di f si ha

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$
 oppure $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$.

In entrambi i casi si ottiene $f(x_1) \neq f(x_2)$ da cui la tesi. Il caso in cui f è strettamente decrescente si tratta in modo analogo.

Ora proviamo che f^{-1} è strettamente crescente se f lo è. Sia $y_1 < y_2$; dobbiamo far vedere che $x_1 < x_2$, dove $x_i = f^{-1}(y_i)$, i = 1, 2. Supponiamo per assurdo che sia $x_1 \ge x_2$; allora visto che f è strettamente crescente, si ha $f(x_1) \ge f(x_2)$ cioè $y_1 \ge y_2$, il che è assurdo, da cui la tesi. \square

- **Teorema 3.3.2.** Sia $f: I \to \mathbb{R}$ con I intervallo, una funzione continua su I. Allora f è invertibile in I se e soltanto se è strettamente monotona.
- ➤ Teorema 3.3.3. Una funzione continua e invertibile su un intervallo ha inversa continua.

Teorema 3.4.1. (TEOREMA DI WEIERSTRASS) Sia $f:[a,b] \to \mathbb{R}$ una funzione continua (quindi le ipotesi del teorema sono: funzione continua su un intervallo chiuso e limitato). Allora f assume massimo e minimo in [a,b] ossia esistono x_m e x_M appartenenti ad [a,b] tali che

$$f(x_m) \le f(x) \le f(x_M) \quad \forall x \in [a, b].$$

DIMOSTRAZIONE. Dimostriamo che f ha massimo, poi basterà applicare il teorema a -f e ricordare che sup $A = -\inf(-A)$ e inf $A = -\sup(-A)$. Sia dunque $M = \sup f$ quindi $M > -\infty$. Ricordiamo che l'estremo superiore per definizione è il minimo dei maggioranti, mentre il massimo è un maggiorante che appartiene all'insieme. Quindi per dimostrare che $M = \max f$ occorre trovare un elemento $x_0 \in [a,b]$ tale che $f(x_0) = M$ (l'estremo superiore viene raggiunto da qualche elemento appartenente all'insieme delle immagini di f, perché stiamo facendo il sup di f, cioè stiamo prendendo l'estremo superiore delle immagini di f).

Se $M \in \mathbb{R}$ allora poniamo $y_n = M - \frac{1}{n}$ per ogni $n \in \mathbb{N} \setminus \{0\}$ mentre se $M = +\infty$ poniamo $y_n = n$. In ogni caso $\{y_n\}_n$ è una successione che cresce a M. Dato che $y_n < M = \sup f$, per definizione di estremo superiore esiste qualche valore di f (ovvero qualche punto dell'immagine di f) maggiore di y_n : indichiamo tale valore con $f(x_n)$. Abbiamo dunque per ogni n

$$y_n < f(x_n) \le M$$
 $a < x_n \le b$.

Per il Teorema dei Carabinieri essendo $M = \lim_{n \to \infty} y_n$ si ha $f(x_n) \to M$. Applicando alla successione $\{x_n\}_n$ il Teorema di Bolzano-Weierstrass, (qui abbiamo sfruttato il fatto che [a,b] è limitato), ne possiamo estrarre una sottosuccessione convergente $x_{k_n} \to x_0$. Dato che $a \le x_{k_n} \le b$ per ogni n, anche $x_0 \in [a,b]$ (qui abbiamo sfruttato il fatto che [a,b] è chiuso). Allora dal fatto che $x_{k_n} \to x_0$ otteniamo che $f(x_{k_n}) \to f(x_0)$ (qui abbiamo sfruttato il fatto che f è continua). Ma $\{f(x_{k_n}\}_n$ è un'estratta di $\{f(x_n)\}_n$, quindi $f(x_{k_n}) \to M$ e per l'unicità del limite abbiamo trovato un punto x_0 in cui $f(x_0) = M = \sup f$, cioè l'estremo superiore è anche il massimo (dell'insieme delle immagini di f su [a,b]). \square

- ➤ Corollario 3.4.1. (TEOREMA DI LIMITATEZZA) Se $f \in C^0([a,b])$ allora $f \ \grave{e} \ limitata$.
- Osservazione 3.4.2. Ovviamente il viceversa non vale, controesempio

$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0. \end{cases}$$

Osservazione 3.4.3. Osserviamo che le ipotesi del teorema sono tutte necessarie, nel senso che se si rimuove anche una sola delle ipotesi il teorema fallisce e si possono trovare opportuni controesempi. Infatti la funzione f(x) = x sull'intervallo aperto (0,1) non ha massimo né minimo (sarebbero 0 e 1 che sono rispettivamente estremo inferiore e superiore ma non sono raggiunti, non essendo f definita in quei punti). Per altro la funzione è continua su (0,1) però (0,1) è limitato ma non chiuso.

D'altra parte, la funzione f(x)=x definita su tutto $\mathbb R$ non ha ovviamente né massimo né minimo; per altro essa è continua ma l'insieme di definizione non è limitato.

Infine la funzione f(x)=x per $x\in(0,1)$ e f(x)=1/2 per x=0 e x=1 è la funzione del primo esempio definita anche negli estremi dell'intervallo; per cui ora è una funzione definita su un intervallo chiuso e limitato ma non è continua. Infatti non ha massimo e minimo (di nuovo 0 è estremo inferiore e 1 estremo superiore ma non sono raggiunti).

Definizione 4.1.1. Si dice che M è MASSIMO di f in [a,b] e $x_M \in [a,b]$ è PUNTO DI MASSIMO per f in [a,b] se $f(x_M) = M \ge f(x)$, per ogni $x \in [a,b]$.

Analogamente si dice che m è MINIMO di f in [a,b] e $x_m \in [a,b]$ è PUNTO DI MINIMO per f in [a,b] se $f(x_m)=m \leq f(x)$, per ogni $x \in [a,b]$.

Si dice che M è MASSIMO LOCALE per f e che $x_M \in [a,b]$ è PUNTO DI MASSIMO LOCALE per f se esiste un intervallo $(x_M-\delta,x_M+\delta)$ tale che $M=f(x_M)\geq f(x)$ per ogni $x\in (x_M-\delta,x_M+\delta)\cap [a,b]$.

Analogamente si dice che m è MINIMO LOCALE per f e che $x_m \in [a,b]$ è PUNTO DI MINIMO LOCALE per f se esiste un intervallo $(x_m - \delta, x_m + \delta)$ tale che $m = f(x_m) \leq f(x)$ per ogni $x \in (x_m - \delta, x_m + \delta) \cap [a,b]$.

Si dice infine che M è MASSIMO LOCALE STRETTO per f e che $x_M \in [a,b]$ è PUNTO DI MASSIMO LOCALE STRETTO per f se esiste un intervallo $(x_M - \delta, x_M + \delta)$ tale che $M = f(x_M) > f(x)$ per ogni $x \in ((x_M - \delta, x_M + \delta) \cap [a,b]) \setminus \{x_M\}$.

Analogamente si dice che m è MINIMO LOCALE STRETTO per f e che $x_m \in [a,b]$ è PUNTO DI MINIMO LOCALE STRETTO per f se esiste un intervallo $(x_m-\delta,x_m+\delta)$ tale che $m=f(x_m)< f(x)$ per ogni $x\in ((x_m-\delta,x_m+\delta)\cap [a,b])\setminus \{x_m\}$.

Definizione 4.1.2. I punti di massimo e/o minimo (locale, stretto e/o globale) si dicono PUNTI DI ESTREMO.

Teorema 4.1.1. (FERMAT) Sia $f:[a,b] \to \mathbb{R}$ derivabile in $x_0 \in (a,b)$. Se x_0 è punto di estremo locale allora $f'(x_0) = 0$.

DIMOSTRAZIONE. Sostituendo eventualmente f con -f possiamo supporre che x_0 sia di minimo locale. Allora esiste un opportuno intorno U di x_0 tale che

$$f(x_0) \le f(x) \quad \forall x \in U.$$

Quindi se $x < x_0$ allora $\frac{f(x) - f(x_0)}{x - x_0} \le 0$ mentre $x > x_0$ allora $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$ da cui si ottiene $f'_-(x_0) \le 0$ e $f'_+(x_0) \ge 0$. Dal fatto che f è derivabile in x_0 segue che $f'(x_0) = 0$. \square

Definizione **4.1.9.** I punti in cui f' si annulla si dicono PUNTI STAZIONARI per f.

- Osservazione 4.1.10. 1) || Teorema di Fermat non si può invertire, cioè se $f'(x_0) = 0$ non è detto che x_0 sia punto di estremo locale. Controesempio $f(x) = x^3$.
- 2) Il Teorema di Fermat ci dice che se f è derivabile in x_0 e x_0 è punto di estremo locale appartenente all'intervallo aperto (a,b) allora è stazionario. Tuttavia può anche accadere che x_0 sia punto di estremo locale senza che f sia derivabile, ad esempio come già osservato f(x)=|x| ha un punto di minimo globale in $x_0=0$ ma non è derivabile in $x_0=0$
- 3) Un'altra ipotesi che va sottolineata è il fatto di aver supposto x_0 interno al dominio di f. Il risultato sarebbe infatti falso altrimenti. Controesempio: $f:[0,1]\to\mathbb{R}$ definita da f(x)=x. In questo caso $x_0=1$ è punto di massimo globale ma $f'(x_0)=1$.
- **Teorema 4.2.1.** (TEOREMA DI ROLLE) Sia $f:[a,b] \to \mathbb{R}$ tale che
- 1) $f \in continua \ in \ [a, b];$
- 2) f è derivabile in (a, b);
- 3) f(a) = f(b).

Allora esiste $c \in (a,b)$ tale che f'(c) = 0.

DIMOSTRAZIONE. Essendo [a,b] chiuso e limitato e f continua, dall' ipotesi 1) si può applicare il Teorema di Weierstrass, per cui esistono x_m e x_M punti di minimo e massimo rispettivamente per f, cioè tali che

$$m = f(x_m) \le f(x) \le f(x_M) = M \qquad \forall x \in [a, b].$$

Se $x_m = a$ e $x_M = b$ (o viceversa) allora si avrebbe $f(x_m) = m = M = f(x_M)$ (dall' ipotesi 3) quindi la funzione f sarebbe costante e pertanto la sua derivata nulla, cioè f'(c) = 0 per ogni $c \in (a, b)$.

Supponiamo dunque che almeno uno tra x_m e x_M sia interno all'intervallo (a,b), per esempio x_m . Essendo f una funzione derivabile (per l'ipotesi 2) e x_m un punto di estremo locale interno all'intervallo, per il Teorema di Fermat $f'(x_m) = 0$ che è quello che volevamo dimostrare. \square

- Osservazione 4.2.1. Le ipotesi del Teorema di Rolle sono tutte necessarie, nel senso che se ne rimuoviamo una, il teorema cessa di essere valido, come mostrano i seguenti esempi.
- Esempio 4.2.2. Consideriamo la funzione

$$f(x) = \begin{cases} x & x \in [0, 1) \\ 0 & x = 1. \end{cases}$$

Allora f è derivabile in (0,1) (quindi vale l'ipotesi 2)), inoltre f(0) = f(1) (quindi vale l'ipotesi 3)) ma non vale l'ipotesi 1), perché la funzione f non è continua. Si vede peraltro che non esistono punti stazionari, cioè punti in cui la derivata di f si annulla.

- Esempio 4.2.3. Consideriamo la funzione f(x) = x su [0,1]. Allora f è continua in [0,1] (quindi vale l'ipotesi 1)), f risulta derivabile in (0,1) (quindi vale l'ipotesi 2)) ma naturalmente $f(0) \neq f(1)$ (cioè non vale l'ipotesi 3)), per altro anche in questo caso non esistono punti stazionari (in cui la derivata si annulla e la retta tangente nel punto è orizzontale).
- Esempio 4.2.4. Consideriamo la funzione f(x) = |x| su [-1, 1]. Allora f è continua su [-1, 1] (quindi vale l'ipotesi 1)), inoltre f(-1) = f(1) (quindi l'ipotesi 3) vale) ma non vale l'ipotesi 2), perché la funzione f non è derivabile. Si vede peraltro che non esistono punti stazionari, cioè punti in cui la derivata di f si annulla.
- **Teorema 4.2.2.** (TEOREMA DI CAUCHY) Siano $f, g : [a, b] \to \mathbb{R}$ tale che:
- 1) f, g sono continue in [a, b];
- 2) f, g sono derivabili in (a, b).

Allora esiste $c \in (a, b)$ tale che

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Quando $g(x) \neq 0$ per $x \in (a,b)$ allora la tesi del teorema si riscrive come

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

DIMOSTRAZIONE. Definiamo

$$w(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x).$$

Allora w è continua in [a, b] (visto che, per l' $[ipotesi\ 1)$), f, g sono continue in [a, b]); w è anche derivabile in (a, b) (visto che, per l' $[ipotesi\ 2)$), f, g sono derivabili in (a, b)). Inoltre

$$w(a) = [f(b) - f(a)]g(a) - [g(b) - g(a)]f(a) = f(b)g(a) - g(b)f(a)$$

$$w(b) = [f(b) - f(a)]g(b) - [g(b) - g(a)]f(b) = -f(a)g(b) + g(a)f(b),$$

quindi w(a) = w(b). Applicando quindi il Teorema di Rolle alla funzione w(x) si ottiene che esiste $c \in (a,b)$ tale che w'(c) = 0 cioè quello che volevamo dimostrare. \square Scegliendo una funzione w in maniera opportuna abbiamo il seguente teorema.

Teorema 4.2.3. (Teorema del valor medio o di Lagrange) Sia f continua in [a,b] e derivabile in (a,b). Allora esiste $c \in (a,b)$ tale che

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

DIMOSTRAZIONE. Si dimostra banalmente dal Teorema di Cauchy prendendo g(x) = x. Alternativamente si può considerare la funzione

$$r(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

Si tratta di una retta (quindi una funzione continua e derivabile in ogni punto) che congiunge i due punti (a, f(a)) e (b, f(b)) appartenenti al grafico di f. La funzione h(x) = r(x) - f(x) è tale che h(a) = h(b) = 0. La funzione h è continua su [a, b] e derivabile in (a, b) perché lo sono sia r (perché è una retta) che f (per ipotesi). Quindi possiamo applicare direttamente il Teorema di Rolle e ottenere l'esistenza di un punto $c \in (a, b)$ tale che h'(c) = 0. \square

Teorema 4.3.1. (TEST DI MONOTONIA) Sia $f:(a,b) \to \mathbb{R}$ derivabile. Allora $\forall x \in (a,b)$:

 $f \ crescente \Leftrightarrow f'(x) \ge 0$ $f \ decrescente \Leftrightarrow f'(x) \le 0.$

 \triangleright Per semplicità dimostriamo solo la prima implicazione, potendo dedurre la seconda dalla prima considerando -f.

 \implies Sia f debolmente crescente. Dimostriamo che $f'(x) \geq 0$. Per la monotonia di f si ha

$$x > x_0 \Rightarrow f(x) \ge f(x_0) \Rightarrow \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Inoltre essendo f derivabile, $f'(x_0) = f'_+(x_0)$ (a meno che x_0 non sia l'estremo destro del dominio di f, nel qual caso si lavora con la derivata sinistra). Dunque

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

 \subseteq Sia ora $f'(x) \geq 0$. Utilizzando il Teorema di Lagrange mostriamo che f è debolmente crescente. Siano $x_1, x_2 \in (a, b)$ con $x_1 < x_2$. Per il Teorema di Lagrange esiste $z \in (x_1, x_2)$ tale che

$$f(x_2) - f(x_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x_2 - x_1) = f'(z)(x_2 - x_1) \ge 0.$$

Quindi abbiamo dimostrato che

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

cioè f monotona debolmente crescente. \square

Con la stessa dimostrazione si arriva al seguente risultato.

Teorema 4.3.2. (Caratterizzazione delle funzioni a derivata nulla) Sia $f:(a,b) \to \mathbb{R}.$ Allora

$$f' = 0$$
 in $(a, b) \Leftrightarrow f$ è costante in (a, b) .

Proposizione 4.3.3. Sia f continua su (a,b) e tale che f'(x) > 0 (rispettivamente f'(x) < 0) per ogni x interno ad (a,b). Allora f risulta strettamente crescente (rispettivamente strettamente decrescente) su (a,b).

Questa proposizione ci fornisce <u>il più importante criterio di iniettività</u> disponibile. Questo vale purché f sia continua e definita su un intervallo.

Teorema 4.5.1. (TEOREMA DI DE L'HÔPITAL) Siano $f,g:(a,b)\to\mathbb{R}$ derivabili con $-\infty \le a \le b \le +\infty$ e sia $g'(x)\ne 0$ per ogni $x\in (a,b)$. Se

Allora

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L.$$

La dimostrazione dovrebbe distinguere vari casi. Diamo solo un'idea di come si procede lavorando solo nel caso di forma di indecisione $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ e solo nel caso L finito. Gli altri casi si ottengono operando le opportune modifiche.

Dall'ipotesi (ii), fissato $\varepsilon > 0$, esiste t_0 tale che se $t \in (a, t_0)$ allora

$$L - \varepsilon < \frac{f'(t)}{g'(t)} < L + \varepsilon.$$
 (4.5.1)

Sia ora $a < y < x < t_0$. Nell'intervallo [y, x] f e g verificano le ipotesi del Teorema di Cauchy e quindi esiste $c \in (y, x)$ tale che

$$\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(c)}{g'(c)}.$$

Quindi siccome $c \in (a, t_0)$, dalla (4.5.1) si ha

$$L - \varepsilon < \frac{f(x) - f(y)}{g(x) - g(y)} < L + \varepsilon.$$

Passiamo ora al limite per $y \to a^+$. Allora dalla (i) si ricava che, per ogni $x \in (a, t_0)$

$$L - \varepsilon < \frac{f(x)}{g(x)} < L + \varepsilon$$

e la tesi viene applicando la definizione di limite. 🗆

Proposizione 4.5.7. (LIMITE DESTRO (SINISTRO) DELLA DERIVATA E DERIVATA DESTRA (SINISTRA)) Sia f una funzione definita in un intorno di x_0 e ivi continua, e inoltre derivabile per $x \neq x_0$. Supponiamo che esista (finito o infinito)

$$\lim_{x \to x_0^-} f'(x) = \alpha_- \qquad \lim_{x \to x_0^+} f'(x) = \alpha_+$$

Allora esistono

$$f'_{-}(x_0) = \alpha_{-}$$
 $f'_{+}(x_0) = \alpha_{+}$.

In particolare f risulta derivabile in x_0 se e solo se $\alpha_- = \alpha_+$.

DIMOSTRAZIONE. Applichiamo il Teorema di de l'Hôpital al limite del rapporto incrementale

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

che si presenta nella forma di indecisione $\left[\frac{0}{0}\right]$ (perché f è continua quindi $f(x) \to f(x_0)$ per $x \to x_0$. Allora si ottiene

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \stackrel{H}{=} \lim_{x \to x_0} f'(x) = \alpha_{-}$$

e analogamente da destra. L'ultima affermazione segue dal fatto che la derivata, se esiste, è il limite sia da sinistra che da destra del rapporto incrementale. □

- **Definizione** 4.6.1. Una figura F si dice CONVESSA se per ogni $P_1, P_2 \in F$, tutto il segmento congiungente i due punti è tutto contenuto in F.
- **Definizione** 4.6.2. Sia $f: I \to \mathbb{R}$, I intervallo. Si chiama EPIGRAFICO di f l'insieme

$$epi(f) = \{(x, y) \in \mathbb{R}^2 : x \in I \text{ e } y \ge f(x)\}.$$

Si dice che f è CONVESSA se il suo epigrafico è un insieme convesso. Si dice che f è CONCAVA se -f è convessa.

Si dimostra che la definizione precedente è equivalente alla seguente.

Definizione 4.6.3. Se $f: I \to \mathbb{R}$ con I intervallo. Allora si dice che f è CONVESSA (rispettivamente CONCAVA) in I se per ogni coppia di punti $x_1, x_2 \in I$ il segmento di estremi $(x_1, f(x_1))$ e $(x_2, f(x_2))$ non ha punti sotto (rispettivamente sopra) il grafico di f.

Alternativamente questa ultima condizione si scrive

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2)$$
 $t \in [0,1]$

Se le disuguaglianze sono strette si dice che f è STRETTAMENTE CONVESSA (CONCAVA).

Definizione 4.6.9. Sia $f:(a,b)\to\mathbb{R}$ una funzione e $x_0\in(a,b)$ un punto di derivabilità o un punto per cui $f'(x_0)=\pm\infty$. Allora x_0 si dice PUNTO DI FLESSO per f se esiste un intorno destro di x_0 , per esempio del tipo (x_0,x_0+h) con h>0 in cui f è convessa e un intorno sinistro di x_0 , per esempio del tipo (x_0-h,x_0) , h>0 in cui f è concava; e/o viceversa.

Significato geometrico del flesso: attraversa la propria retta tangente.

6 – Calcolo Integrale

Definizione 6.1.1. Chiameremo SUDDIVISIONE O PARTIZIONE di [a,b] ogni insieme finito

$$\mathscr{A} = \{x_0, x_1, \dots, x_n\}$$

con
$$a = x_0 < x_1 < \dots < x_n = b$$
.

Presenteremo due definizioni equivalenti della nozione di integrabilità.

PRIMO MODO: SOMME DI CAUCHY-RIEMANN

Per semplicità (comunque senza perdita di generalità) in questa prima parte considereremo solo suddivisioni equispaziate, cioè tali che

$$x_j = a + jh$$
 $h = \frac{b-a}{n}$ $j = 0, \dots, n.$

In ciascuno degli intervalli $[x_{j-1}, x_j]$ scegliamo un punto arbitrario ξ_j (per j = 1, 2, ...n). Consideriamo la seguente somma (detta somma di Cauchy-Riemann)

$$S_n = \sum_{j=1}^n f(\xi_j) (x_j - x_{j-1}) = \frac{b-a}{n} \sum_{j=1}^n f(\xi_j).$$

L'idea è quella di passare al limite per $n \to \infty$.

Si arriva così alla seguente definizione.

Definizione 6.1.2. Diciamo che la funzione limitata $f:[a,b] \to \mathbb{R}$ è INTEGRABILE se detta S_n una qualsiasi successione di somme di Cauchy-Riemann, al variare di $n \in \mathbb{N}$ esiste finito

$$\lim_{n\to\infty} S_n$$

e tale limite non dipende da come abbiamo scelto i punti ξ_j . In tal caso si pone

$$\lim_{n\to\infty} S_n = \int_a^b f(x) dx.$$

Il simbolo di integrale ricorda l'idea di "somma"; il "dx" ricorda la lunghezza di un piccolo intervallo della suddivisione lungo x.

SECONDO MODO: SOMME SUPERIORI E SOMME INFERIORI

V Definizione 6.1.5. Per ogni suddivisione $\mathscr A$ di [a,b], le quantità

$$s(f, \mathscr{A}) = \sum_{i=1}^{n} (x_i - x_{i-1}) \inf_{[x_{i-1}, x_i]} f(x)$$

$$S(f, \mathscr{A}) = \sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{[x_{i-1}, x_i]} f(x)$$

verranno rispettivamente chiamate SOMMA INFERIORE E SOMMA SUPERIORE di f rispetto alla suddivisione \mathscr{A} . Infine, le quantità

$$s(f) = \sup\{s(f, \mathcal{A}) : \mathcal{A} \text{ suddivisione di } [a, b]\}$$

$$S(f) = \inf\{S(f, \mathcal{A}) : \mathcal{A} \text{ suddivisione di } [a, b]\}$$

verranno rispettivamente chiamate integrale inferiore e integrale superiore (secondo Riemann) di f su [a,b].

INTERPRETAZIONE GEOMETRICA: se f è una funzione positiva, integrabile su [a,b], allora $s(f,\mathscr{A})$ rappresenta l'area del plurirettangolo inscritto nel sottografi ∞ di f mentre $S(f,\mathscr{A})$ rappresenta l'area del plurirettangolo circoscritto al sottografi ∞ di f

Definizione 6.1.6. Una funzione limitata f si dice integrabile (secondo Riemann) su [a,b] se si ha

$$s(f) = S(f),$$

ed in tal caso il comune valore di s(f) ed S(f) viene detto INTEGRALE DI f SU [a,b] e viene indicato con il simbolo

$$\int_{a}^{b} f(x) dx.$$

Teorema 6.2.1. Ogni funzione monotona $f:[a,b] \to \mathbb{R}$ (limitata) è integrabile.

DIMOSTRAZIONE Supponiamo per semplicità f debolmente crescente (l'altro caso si tratta in maniera analoga). Fissato $n \in \mathbb{N}$ sia \mathscr{A}_n la suddivisione in n intervalli di uguale ampiezza

$$x_i = a + i \frac{b-a}{n}$$
.

Allora per l'ipotesi di monotonia di f si ha

$$\inf_{[x_{i-1},x_i]} f = f(x_{i-1}) \qquad \sup_{[x_{i-1},x_i]} f = f(x_i).$$

Allora

$$s(f, \mathcal{A}_n) = \frac{b-a}{n} \sum_{i=1}^n f(x_{i-1}) = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i) = \frac{b-a}{n} \left(f(a) + \sum_{i=1}^{n-1} f(x_i) \right)$$

$$S(f, \mathcal{A}_n) = \frac{b-a}{n} \sum_{i=1}^n f(x_i) = \frac{b-a}{n} \left(f(b) + \sum_{i=1}^{n-1} f(x_i) \right).$$

Dunque

$$\triangle S(f, \mathcal{A}_n) = S(f, \mathcal{A}) - s(f, \mathcal{A}) = \frac{b-a}{n} (f(b) - f(a))$$

e l'integrabilità segue dal teorema precedente. 🗆

Teorema 6.2.2.

Se $f:[a,b]\to\mathbb{R}$ è continua, allora è integrabile. Se $f_1:[a,b]\to\mathbb{R}$ e $f_2:[b,c]\to\mathbb{R}$ sono integrabili, allora la funzione

$$f(x) = \begin{cases} f_1(x) & x \in [a, b) \\ f_2(x) & x \in (b, c] \\ k & x = b \end{cases}$$

(dove k è un qualunque numero reale) è integrabile in [a, c].

✓ Esempio 6.2.4. Sia $f:[0,1] \to \mathbb{R}$ la funzione di Dirichlet definita come

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

➤ Proposizione 6.2.6. Se f è una funzione continua e non negativa su un intervallo [a, b] non ridotto a un punto, allora

$$\int_{a}^{b} f(x) dx = 0 \Rightarrow f(x) = 0 \ \forall x \in [a, b].$$

DIMOSTRAZIONE. Supponiamo per assurdo che esista $x_0 \in [a,b]$ tale che $f(x_0) = \kappa > 0$. Per il teorema di permanenza del segno, esiste $[a',b'] \subset [a,b]$ anch'esso non ridotto a un punto che contiene x_0 e tale che $f(x) \ge \frac{\kappa}{2}$ per ogni $x \in [a',b']$.

Consideriamo la suddivisione che contiene solo i punti a, a', b', b. Dato che f è integrabile, si ha

$$\int_{a}^{b} f(x) dx = s(f) \ge s(f, \mathscr{A}) = (a' - a) \inf_{[a,a']} f + (b' - a') \inf_{[a',b']} f + (b - b') \inf_{[b,b']} f \ge (b' - a') \frac{\kappa}{2} > 0,$$

perché f è non negativa e $f(x) \ge \frac{\kappa}{2}$ se $x \in [a', b']$. Da cui l'assurdo. \square

 $ightharpoonup \mathbf{Osservazione}$ 6.3.3. Da quanto visto finora, si ha che, fissato l'intervallo [a,b], l'applicazione

$$f \mapsto \mathscr{I}(f) = \int_{a}^{b} f(x) \, dx,$$

che ad ogni funzione integrabile f associa il suo integrale, è un'applicazione lineare non decrescente, cio è verifica le ipotesi:

- a) $\mathscr{I}(\alpha f + \beta g) = \alpha \mathscr{I}(f) + \beta \mathscr{I}(g)$, per ogni $\alpha, \beta \in \mathbb{R}$ ed ognif, g
- b) $\mathscr{I}(f) \leq \mathscr{I}(g)$ per ogni $f \leq g$.
- **Definizione 6.3.4.** Data una funzione integrabile $f:[a,b]\to\mathbb{R}$, chiameremo *media di f su* [a,b] la quantità $\frac{1}{b-a}\int_a^b f(x)\,dx$.

Teorema 6.3.1. (TEOREMA DELLA MEDIA INTEGRALE) Sia $f:[a,b] \to \mathbb{R}$ una funzione integrabile. Allora si ha

$$\inf_{[a,b]} f \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \sup_{[a,b]} f.$$

Nel caso in cui la funzione f sia continua, esiste $z \in [a,b]$ tale che

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx = f(z). \tag{6.3.1}$$

$$\inf_{[a,b]} f \le f(x) \le \sup_{[a,b]} f,$$

dalle proprietà dell'integrale appena enunciate si ottiene la prima parte.

Per quanto riguarda la seconda parte, essendo f continua per il Teorema di Weierstrass ha massimo M e minimo m rispettivamente. Dalle proprietà di monotonia si ottiene

$$m = \frac{1}{b-a} \int_a^b m \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{1}{b-a} \int_a^b M dx = M$$

quindi il valore $\int_a^b f(x) dx$ sta tra m e M. Per la proprietà dei valori intermedi esiste z tale che

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx = f(z)$$

per qualche $z \in [a, b]$

- **Definizione 6.4.1.** Se f è una funzione definita su un intervallo [a,b], si dice che $G:[a,b] \to \mathbb{R}$ è UNA PRIMITIVA DI f se G è derivabile su [a,b] e si ha G'(x)=f(x) per ogni $x\in [a,b]$.
- ➤ Proposizione 6.4.2. Due primitive di una stessa funzione sullo stesso intervallo differiscono per una costante.
- DIMOSTRAZIONE. Siano G_1 e G_2 due primitive di una funzione f in [a,b]. Allora si ha per definizione che $G'_1 G'_2 = 0$ in [a,b] cioè $(G_1 G_2)' = 0$ dunque $G_1 G_2 = C$ con C costante reale (che era quello che volevamo dimostrare).
- Osservazione 6.4.4. Esistono funzioni che non hanno primitive. Ad esempio la funzione definita su tutto $\mathbb R$ da

$$f(x) = \begin{cases} 0 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0, \end{cases}$$

è una di queste. Infatti, se per assurdo F fosse una primitiva di f su tutto $\mathbb R$ si avrebbe

$$F'(x) = 0 \ \forall x < 0, \qquad F'(x) = 0 \ \forall x > 0,$$

per cui esisterebbero due costanti c_1 e c_2 tali che

$$F(x) = c_1 \ \forall x < 0, \qquad F(x) = c_2 \ \forall x > 0.$$

Ma dovendo essere F derivabile (e quindi continua) su tutto \mathbb{R} , deve essere $c_1 = c_2 = F(0)$ e quindi $F(x) = c_1$ for all $x \in \mathbb{R}$. In particolare $F' \equiv 0$ ma ciò contraddice il fatto che per definizione di primitiva dovrebbe essere F'(0) = f(0) = 1.

Definizione 6.4.5. Si dice INTEGRALE INDEFINITO DI f, e si indica con il simbolo

$$\int f(x) dx$$

l'insieme di tutte le primitive di una funzione f rispetto alal variabile x, cioè tutte le funzioni F(x) tali che $F'(x) = \frac{d}{dx}F(x) = f(x)$.

Teorema 6.5.1. (Teorema fondamentale del calcolo integrale) Sia f una funzione continua su [a,b] e sia G una sua primitiva. Allora

$$\int_{a}^{b} f(x) dx = G(b) - G(a) = [G(x)]_{a}^{b} = G(x) \Big|_{a}^{b}.$$

DIMOSTRAZIONE. Si consideri una partizione di [a,b] e sia $a=x_0$ e $b=x_n$. Allora si ha

$$G(b) - G(a) = G(x_n) - G(x_0) = [G(x_n) - G(x_{n-1})] + [G(x_{n-1}) - G(x_{n-2})] + \dots + [G(x_2) - G(x_1)] + [G(x_1) - G(x_0)] = \sum_{i=1}^{n} [G(x_i) - G(x_{j-1})]$$

Applichiamo il Teorema di Lagrange alla funzione G(x) su ciascuno degli intervalli $[x_{j-1}, x_j]$; allora esiste $\xi_j \in (x_{j-1}, x_j)$ tale che

$$G(x_j) - G(x_{j-1}) = (x_j - x_{j-1}) G'(\xi_j) = (x_j - x_{j-1}) f(\xi_j)$$

perché per ipotesi G è una primitiva di f e dunque $G'(\xi_j) = f(\xi_j)$. Allora

$$G(b) - G(a) = \sum_{j=1}^{n} (x_j - x_{j-1}) f(\xi_j) = S_n$$

dove S_n è una somma n—esima di Cauchy-Riemann per f. Questo vale per ogni n, quindi passando al limite si ottiene

$$G(b) - G(a) = \int_a^b f(x) dx.$$

Siccome f è integrabile perché continua, allora questo procedimento va bene per ogni S_n . \square

Definizione 6.5.1. La quantità $\int_a^b f(x) \, dx$ è detta INTEGRALE DEFINITO di f da a a b.

Definizione 7.1.1. Se esiste finito il limite

$$\lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x) dx \qquad (7.1.1)$$

diremo che f è integrabile (in senso generalizzato o improprio) su [a,b) ed il limite (7.1.1) verrà indicato con la scrittura

$$\int_{a}^{b} f(x) dx \tag{7.1.2}$$

e diremo che l'integrale (7.1.2) è CONVERGENTE. Se invece il limite (7.1.1) esiste ed è uguale a $+\infty$ [$-\infty$] diremo che l'integrale improprio è DIVERGENTE POSITIVAMENTE [NEGATIVAMENTE] e scriveremo

$$\int_{a}^{b} f(x) dx = +\infty \quad [-\infty].$$

Infine se il limite (7.1.1) non esiste, diremo che l'integrale $\int_a^b f(x) dx$ NON HA SENSO (O NON ESISTE).

In modo analogo si definisce l'integrabilità generalizzata per le funzioni $f:(a,b]\to\mathbb{R}$ continue (che quindi sono integrabili sugli intervalli del tipo $[\alpha,b]$ per ogni $\alpha>a$), e tali per cui si abbia $\lim_{x\to a^+}f(x)=\pm\infty$, ponendo

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx \qquad (7.1.3)$$

Definizione 7.1.2. Se f è definita su (a,b) ed è integrabile su $[\alpha,\beta]$ per ogni $a < \alpha < \beta < b$, scelto un punto $c \in (a,b)$, diremo che f è INTEGRABILE (IN SENSO GENERALIZZATO) su (a,b) se essa è integrabile su (a,c] e su [c,b) nel senso delle (7.1.1) e (7.1.3), ed in tal caso porremo

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{a}^{b} f(x) \, dx.$$

Se uno solo degli integrali $\int_a^c f(x) \, dx$ o $\int_c^b f(x) \, dx$ è divergente positivamente [negativamente], o se sono entrambi divergenti positivamente [entrambi divergenti negativamente], diremo che $\int_a^b f(x) \, dx$ diverge positivamente [negativamente]. In tutti gli altri casi, diremo che $\int_a^b f(x) \, dx$ non ha senso (o non esiste).

Esempio 7.1.7. Consideriamo la funzione $\frac{1}{x^{\alpha}}$ definita in (0,1]: dato che è positiva, l'integrale $\int_0^1 \frac{1}{x^{\alpha}} dx$ ha sempre senso. Se $\alpha \leq 0$ la funzione risulta integrabile nel senso di Riemann (non serve quello generalizzato); se invece $\alpha > 0$ si ha, per ogni $\varepsilon > 0$

$$\int_{\varepsilon}^{1} \frac{1}{x^{\alpha}} dx = \begin{cases} -\log \varepsilon & \text{se } \alpha = 1\\ \frac{1 - \varepsilon^{1 - \alpha}}{1 - \alpha} & \text{se } \alpha \neq 1 \end{cases}$$

per cui passando al limite per $\varepsilon \to 0^+$, si ottiene che

$$\int_0^1 \frac{1}{x^{\alpha}} \, dx < +\infty \Leftrightarrow \alpha < 1$$

e che se $\alpha < 1$ l'integrale (generalizzato se $\alpha > 0$) vale $\frac{1}{1-\alpha}$.

Teorema 7.2.1. Criterio del confronto $Se\ 0 \le f(x) \le g(x)$ in [a,b) allora

 $g \ integrabile \Rightarrow f \ integrabile$ $f \ non \ integrabile \Rightarrow g \ non \ integrabile$

Teorema 7.2.2. Criterio del confronto asintotico $Se\ f>0\ e\ g>0\ e\ f\sim g$ per $x\to b^-$ allora

f integrabile $\Leftrightarrow g$ integrabile

➤ Teorema 7.2.3. CRITERIO DELLA CONVERGENZA ASSOLUTA

$$\int_{a}^{b} |f(x)| dx < +\infty \implies \int_{a}^{b} f(x) < +\infty$$

Definizione 7.3.1. Se il limite precedente esiste finito, allora f si dice integrabile in $[a, +\infty)$ oppure si dice che l'integrale $\int_0^{+\infty} f(x) \, dx$ è convergente. Se il precedente limite è uguale a $+\infty$ [$-\infty$]diremo che l'integrale improprio è divergente positivamente [NEGATIVAMENTE]. Infine in tutti gli altri casi diremo che l'integrale generalizzato non esiste.

Analogamente se $f:(-\infty,b]\to\mathbb{R}$ è continua si pone

$$\int_{-\infty}^{b} f(x) dx = \lim_{\omega \to -\infty} \int_{\omega}^{b} f(x) dx$$

ed infine se $f: \mathbb{R} \to \mathbb{R}$ è continua si pone

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

Esempio 7.3.2. La funzione $f(x) = \frac{1}{x^{\alpha}}$, definita in $[1, +\infty)$, ha evidentemente integrale divergente positivamente se $\alpha \leq 0$ (infatti avremmo $f(x) \geq 1$ per ogni x); se invece è $\alpha > 0$, si ha per ogni y > 1

$$\int_{1}^{y} \frac{1}{x^{\alpha}} dx = \begin{cases} \log y & \text{se } \alpha = 1\\ \frac{y^{1-\alpha} - 1}{1 - \alpha} & \text{se } \alpha \neq 1, \end{cases}$$

per cui, passando al limite per $y \to +\infty$, si ottiene che

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx < +\infty \Leftrightarrow \alpha > 1,$$

e che se $\alpha > 1$, l'integrale generalizzato vale $\frac{1}{\alpha - 1}$.

Teorema 7.4.1. (Criterio del Confronto) Se $0 \le f(x) \le g(x)$ in $[a, +\infty)$ allora

 $g integrabile \Rightarrow f integrabile$

f non integrabile \Rightarrow g non integrabile

Teorema 7.4.2. (Criterio del Confronto Asintotico) Se f>0 e g>0 e $f\sim g$ per $x\to +\infty$ allora

f integrabile $\Leftrightarrow g$ integrabile

➤ Teorema 7.4.3. (CRITERIO DELLA CONVERGENZA ASSOLUTA)

$$\int_{a}^{+\infty} |f(x)| \, dx < +\infty \ \Rightarrow \ \int_{a}^{+\infty} f(x) < +\infty$$

Esempio 7.4.1. Se consideriamo la funzione $f(x) = 1/(x \log^{\beta} x)$, definita in $[e, +\infty)$ (con $\beta > 0$), si ha che f è positiva, e per ogni y > e

$$\int_e^y f(x) \, dx = \begin{cases} \log \log y & \text{se } \beta = 1 \\ \frac{(\log y)^{1-\beta} - 1}{1 - \beta} & \text{se } \beta \neq 1, \end{cases}$$

per cui, passando al limite per $y \to +\infty$, si ottiene che

$$\int_{e}^{+\infty} \frac{1}{x \log^{\beta} x} dx < +\infty \Leftrightarrow \beta > 1,$$

e che se $\beta > 1$ l'integrale generalizzato vale $1/(\beta - 1)$.