En la prueba del teorema 6.1.3 se definió $\mathbf{v'}_2 = \mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1$. Pero como se ha visto, $(\mathbf{v}_2 \cdot \mathbf{u}_1)\mathbf{u}_1$ = $\text{proy}_{\mathbf{u}_1}$ \mathbf{v}_2 (ya que $|\mathbf{u}_1|^2 = 1$). Ahora se ampliará este concepto de proyección sobre un vector a proyección sobre un subespacio.

Definición 6.1.4

Proyección ortogonal

Sea H un subespacio de \mathbb{R}^n con base ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$. Si $\mathbf{v} \in \mathbb{R}^n$, entonces la **pro**yección ortogonal de v sobre H, denotada por proy $_H$ v, está dada por

$$\operatorname{proy}_{H} \mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_{1}) \, \mathbf{u}_{1} + (\mathbf{v} \cdot \mathbf{u}_{2}) \, \mathbf{u}_{2} + \dots + (\mathbf{v} \cdot \mathbf{u}_{k}) \, \mathbf{u}_{k}$$
 (6.1.19)

Observe que $proy_H \mathbf{v} \in H$.

Proyección ortogonal de un vector sobre un plano

Encuentre proy_{$$\pi$$} v, donde π es el plano $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}$, y v es vector $\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$.

SOLUCIÓN > Del ejemplo 6.1.5, una base ortonormal para
$$\pi$$
 es $\mathbf{u}_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}$ y $\mathbf{u}_2 = \begin{pmatrix} \frac{-6}{\sqrt{70}} \\ \frac{3}{\sqrt{70}} \\ \frac{5}{\sqrt{70}} \end{pmatrix}$. Entonces

$$\operatorname{proy}_{\pi} \mathbf{v} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} \frac{-6}{\sqrt{70}} \\ \frac{3}{\sqrt{70}} \\ \frac{5}{\sqrt{70}} \end{bmatrix} \begin{bmatrix} \frac{-6}{\sqrt{70}} \\ \frac{3}{\sqrt{70}} \\ \frac{5}{\sqrt{70}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ -\frac{12}{70} \\ -\frac{20}{70} \end{bmatrix} = \begin{bmatrix} \frac{1}{7} \\ -\frac{4}{7} \\ -\frac{20}{70} \end{bmatrix}$$

La notación de la proyección proporciona una forma conveniente para escribir un vector en \mathbb{R}^n en términos de una base ortonormal.

Teorema 6.1.4

Sea $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ una base ortonormal para \mathbb{R}^n y sea $\mathbf{v} \in \mathbb{R}^n$. Entonces

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{v} \cdot \mathbf{u}_k) \, \mathbf{u}_k$$
 (6.1.20)

Esto es, $\mathbf{v} = \operatorname{proy}_{\mathbb{D}} n\mathbf{v}$.