## Week 9 - Lecture 43

$$R(x,a) = \langle Y(x,a), 0^* \rangle$$

unknown

known

 $0^* \in \mathbb{R}^d$ 
 $Y(x,a) \in \mathbb{R}^d$ 
 $Y(x,a) \in \mathbb{R}^d$ 

Example: Recommendation Engine [Product: arm]

Products can be categorized: Sports,

daily use, movie etc.

Users can be categorized: Sex, Age, location

young User: Girl

Product: DVD, tennis

(sex, Age, logation)

(Sport, movie, joy)

(1, 1, 0)

(0,1,1)

Depending on user 4 product feature map can be formed.

Such feature maps can be created.

These feature maps can be in millions, but these are generated offline.

Thus the problem is to find 0\*, with interaction

O\* is a const., doesn't depend on context 4 action. Fixed for an env., changes with change in env.

Assume dinension of 0\* is known, also assume norm is bounded.

110\*112 < L > L is known

So,

|R(x,a) - R(x',a')| $\leq \|\theta^*\|, \|\Psi(x,a) - \Psi(x',a')\|$ 

Lipschitz function:  $|f(x) - J(x')| \leq L ||x - x'||$ 

Thus |R(x,a) - R(x',a') | is Lipschitz with Const. L.

This limits 0\* to a bounded space.

Thus, amoning that:

Rewards are linear a parametrized by 0\*.

Thus in the game:

K

$$R(\gamma, \alpha) = \langle Y(\gamma, \alpha), 0^* \rangle$$
  
here we need to maximize this

where we need to maximize this over the feature vectors.

Thus this can be seen as linear optimization foroblem over a feature set

After making the assumtion that rewards are linearly barametrized by  $0^*$ : arms have no real significance, but we need to maximize the features.

choose de s.t.

$$d_t^* = \operatorname{argmax} \langle d, 0^* \rangle$$
 $d \in D_t$ 

$$d_t \in D_t$$
 in round  $t$ ,  
 $r_t = \langle d_t, 0^* \rangle + \eta_t$ 

Regret:

$$\hat{R}_{T} = \mathbb{E}\left[\sum_{t=1}^{T} \max_{d_{t} \in D_{t}} \langle d, \theta^{*} \rangle - \sum_{t=1}^{T} \langle d_{t}, \theta^{*} \rangle\right]$$

If Dt is a set of unit vectors

$$D_t = \{e_1, e_2, e_3, \dots e_d\}$$

where 
$$e_1 = \{1,0,0...0\}$$
 $e_2 = \{0,1,0...0\}$ 
 $e_3 = \{0,0,0...1\}$ 

Assume 0\* is a vector with each component being the mean of each arm.

$$\therefore e_i^{\tau} o^* = o_i$$

Thus the stochastic Linear Bandits captures the Stochastic D-armed Bandits.

(if 0\* has D-dimension)

But De need not be unit vectors

