

Exponentiallyweighted forecasts

Rob Hyndman

Simple exponential smoothing

Forecasting Notation:

 $\hat{y}_{t+h|t}$ = point forecast of y_{t+h} given data $y_1, ..., y_t$

Forecast Equation:

$$\hat{y}_{t+h|t} = \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \alpha (1 - \alpha)^2 y_{t-2} + \dots$$
 where $0 \le \alpha \le 1$

Observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
Уt	0.2	0.4	0.6	0.8
y_{t-1}	0.16	0.24	0.24	0.16
y_{t-2}	0.128	0.144	0.096	0.032
y_{t-3}	0.1024	0.0864	0.0384	0.0064
y_{t-4}	(0.2)(0.8)4	(0.4)(0.6)4	(0.6)(0.4)4	(0.8)(0.2)4
y_{t-5}	(o.2)(o.8) ⁵	(0.4)(0.6)5	(0.6)(0.4)5	(o.8)(o.2) ⁵

Simple exponential smoothing

Component form		
Forecast equation	$\hat{y}_{t+h t} = \ell_t$	
Smoothing equation	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

- ℓ_t is the level (or the smoothed value) of the series at time t
- We choose α and ℓ_0 by minimizing SSE:

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$

Example: oil production

```
> oildata <- window(oil, start = 1996) # Oil Data</pre>
> fc <- ses(oildata, h = 5)</pre>
                                              # Simple Exponential Smoothing
> summary(fc)
Forecast method: Simple exponential smoothing
Model Information:
Simple exponential smoothing
Call:
 ses(y = oildata, h = 5)
  Smoothing parameters:
    alpha = 0.8339
  Initial states:
    l = 446.5759
  sigma: 28.12
*** Truncated due to space
```


Example: oil production

```
> autoplot(fc) +
   ylab("Oil (millions of tonnes)") + xlab("Year")
```

Forecasts from Simple exponential smoothing

Let's practice!

Exponential smoothing methods with trend

Holt's linear trend

Simple exponential smoothing			
Forecast	$\hat{y}_{t+h t} = \ell_t$		
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$		

Holt's linear trend			
Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t$		
Level	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$		
Trend	$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1}$		

- Two smoothing parameters α and β^* ($0 \le \alpha, \beta^* \le 1$)
- Choose α , β^* , ℓ_0 , b_0 to minimize SSE

Holt's method in R

> airpassengers %>% holt(h = 5) %>% autoplot

Forecasts from Holt's method

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$$

- Damping parameter $0 < \phi < 1$
- If $\phi=1$, identical to Holt's linear trend
- Short-run forecasts trended, long-run forecasts constant

Example: Air passengers

```
> fc1 <- holt(airpassengers, h = 15, PI = FALSE)
> fc2 <- holt(airpassengers, damped = TRUE, h = 15, PI = FALSE)
> autoplot(airpassengers) + xlab("Year") + ylab("millions") +
        autolayer(fc1, series="Linear trend") +
        autolayer(fc2, series="Damped trend")
```


Let's practice!

Exponential smoothing methods with trend and seasonality

Holt-Winters' additive method

Holt-Winters additive method
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$

$$\ell_t = \alpha(y_t - s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}$$

$$s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m}$$

- $s_{t-m+h_m^+}$ = seasonal component from final year of data
- Smoothing parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$
- m = period of seasonality (e.g. <math>m = 4 for quarterly data)
- seasonal component averages zero

Holt-Winters' multiplicative method

Holt-Winters multiplicative method

$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t-m+h_m^+}$$

$$\ell_t = \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1 - \gamma)s_{t-m}$$

- $s_{t-m+h_m^+}$ = seasonal component from final year of data
- Smoothing parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$
- m = period of seasonality (e.g. m = 4 for quarterly data)
- seasonal component averages one

Example: Visitor Nights

```
> aust <- window(austourists, start = 2005)
> fc1 <- hw(aust, seasonal = "additive")
> fc2 <- hw(aust, seasonal = "multiplicative")</pre>
```

International visitor night in Australia

Taxonomy of exponential smoothing methods

	Seasonal Component		
Trend Component	N (None)	A (Additive)	M (Multiplicative)
N (None)	(N, N)	(N, A)	(N, M)
A (Additive)	(A, N)	(A, A)	(A, M)
A _d (Additive Damped)	(A _d , N)	(A _d , N)	(A _d , N)

(N, N)	Simple exponential smoothing	ses()
(A, N)	Holt's linear method	holt()
(A _d , N)	Additive damped trend method	hw()
(A, A)	Additive Holt-Winter's method	hw()
(A, M)	Multiplicative Holt-Winter's method	hw()
(A _d , M)	Damped multiplicative Holt-Winter's method	hw()

Let's practice!

State space models for exponential smoothing

Innovations state space models

 Each exponential smoothing method can be written as an "innovations state space model"

• ETS models: Error, Trend, Seasonal

ETS models

- Parameters: estimated using the "likelihood", the probability of the data arising from the specified model
- For models with additive errors, this is equivalent to minimizing SSE
- Choose the best model by minimizing a corrected version of Akaike's Information Criterion (AIC_c)

Example: Australian air traffic

```
> ets(ausair)
ETS(M,A,N)
Call:
ets(y = ausair)
  Smoothing parameters:
    alpha = 0.9999
    beta = 0.0176
  Initial states:
    l = 6.5242
    b = 0.7584
 sigma:
         0.0729
    AIC
          AICc
                 BIC
234.5273 236.0273 243.6705
```

Example: Australian air traffic

> ausair %>% ets() %>% forecast() %>% autoplot()

Forecasts from ETS(M,A,N)

DataCamp

Example: Monthly cortecosteroid drug sales

```
> ets(h02)
ETS(M,Ad,M)
Call:
ets(y = h02)
 Smoothing parameters:
   alpha = 0.2173
   beta = 2e-04
   gamma = 1e-04
   phi = 0.9756
 Initial states:
    l = 0.3996
   b = 0.0098
   s=0.8675 0.8259 0.7591 0.7748 0.6945 1.2838
          1.3366 1.1753 1.1545 1.0968 1.0482 0.983
  sigma: 0.0647
      AIC
          AICc
                           BIC
-123.21905 -119.52175 -63.49289
```

Example: Monthly cortecosteroid drug sales

> h02 %>% ets() %>% forecast() %>% autoplot()

Forecasts from ETS(M,Ad,M)

Let's practice!