

Trabajo Práctico 1 Cálculo de isotermas en sectores circulares

Jueves 3 de septiembre de 2015

Métodos Numéricos

Integrante	LU	Correo electrónico
Nahuel Lascano	476/11	laski.nahuel@gmail.com
XXXX	XXXX	XXXX
XXXX	XXXX	XXXX

En este trabajo aplicamos dos métodos de resolución de sistemas de ecuaciones lineales (factorización LU y eliminación gaussiana) para el cálculo de isotermas de sectores circulares, dadas las temperaturas de las circunferencias interior y exterior.

Palabras clave: factorización LU, eliminación gaussiana, sistemas de ecuaciones lineales, matriz banda

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires Ciudad Universitaria - (Pabellon I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autonoma de Buenos Aires - Rep. Argentina Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

${\bf \acute{I}ndice}$

1.	Introducción teórica	2
2.	Desarrollo	3
3.	Resultados	5
4.	Discusión	6
5.	Conclusiones	7
6.	Apéndice	7
	6.1. Apéndice A: Enunciado	7
	6.2. Apéndice B: Elección del orden de las incógintas para obtener una matriz banda	7
7.	Referencias	7

1. Introducción teórica

2. Desarrollo

De la discretización de la ecuación del calor provista por el informe resulta una nueva ecuación que nos va a servir para armar nuestro sistema discreto:

$$\frac{t_{j-1,k} - 2t_{jk} + t_{j+1,k}}{(\Delta r)^2} + \frac{1}{r} \frac{t_{j,k} - t_{j-1,k}}{\Delta r} + \frac{1}{r^2} \frac{t_{j,k-1} - 2t_{jk} + t_{j,k+1}}{(\Delta \theta)^2} = 0$$
 (1)

Para poder armar el sistema Ax = b equivalente, es necesario:

■ Extraer los factores que multiplican a cada una de las cinco incógnitas: $t_{j-1,k}$; $t_{j,k}$; $t_{j+1,k}$; $t_{j,k-1}$ y $t_{j,k+1}$.

Estos se obtienen de la ecuación 1.

$$\begin{split} t_{j-1,k} * & (\frac{1}{(\Delta r)^2} - \frac{1}{r_j \Delta r}) \\ & t_{j,k} * (\frac{-2}{(\Delta r)^2} + \frac{1}{r_j \Delta r} - \frac{2}{r_j^2 (\Delta r)^2}) \\ & t_{j+1,k} * (\frac{1}{(\Delta r)^2}) \\ & t_{j,k-1} * (\frac{1}{r_j^2 (\Delta \theta)^2}) \\ & t_{j,k+1} * (\frac{1}{r_j^2 (\Delta \theta)^2}) \end{split}$$

Para simplificar, en adelante llamaremos $F_{j,k}$ al factor que multiplica a la incógnita $t_{j,k}$ y $Ft_{j,k}$ a $F_{j,k} * t_{j,k}$.

 \blacksquare Analizar los "casos borde": aquellos puntos donde la ecuación 1 no vale.

Para evitar confusiones de variables, tomaremos $\theta_0 = 0$ como el menor valor posible de θ y θ_{n-1} como el mayor, pues vale $(r_j, \theta_n) = (r_j, \theta_0)$ para cualquier j.

Los casos interesantes para valores de j, k entonces son:

- 1. La pared interior del horno $(j=0;\,k=0,...,n-1).$ La ecuación en esos casos es $t_{0,k}=T_i(\theta_k).$
- 2. La pared exterior del horno $(j=m;\,k=0,...,n-1).$ La ecuación en esos casos es $t_{m,k}=T_e(\theta_k).$
- 3. El valor mínimo de θ (j = 0, ..., m; k = 0). Se debe reemplazar $t_{j,k-1}$ por $t_{j,n-1}$ en todas las ecuaciones correspondientes.
- 4. El valor máximo de θ (j = 0, ..., m; k = n 1). Se debe reemplazar $t_{j,k+1}$ por $t_{j,0}$ en todas las ecuaciones correspondientes.

Estos últimos reemplazos se pueden resumir en

$$(j,k) \Rightarrow (j,k \mod n)$$

■ Combinar los puntos anteriores para plantear sistema de ecuaciones a resolver:

$$\begin{array}{lll} t_{0,k} = T_i(\theta_k) & \forall k = 0, ..., n-1 \\ t_{m,k} = T_e(\theta_k) & \forall k = 0, ..., n-1 \\ Ft_{j-1,k} + Ft_{j,k} + Ft_{j+1,k} + Ft_{j,k-1} + Ft_{j,k+1} = 0 & \forall j = 1, ..., m-1; k = 1, ..., n-2 \\ Ft_{j-1,0} + Ft_{j,0} + Ft_{j+1,0} + Ft_{j,n-1} + Ft_{j,1} = 0 & \forall j = 1, ..., m-1 \\ Ft_{j-1,n-1} + Ft_{j,n-1} + Ft_{j+1,n-1} + Ft_{j,n-2} + Ft_{j,0} = 0 & \forall j = 1, ..., m-1 \end{array}$$

Del mismo podemos obtener fácilmente la matriz A (que tendrá 5 valores no nulos por fila a lo sumo) y el vector b (que será nulo en todas sus componentes salvo aquellas correspondientes a j=0 y j=m).

• Resta pensar un orden para las incógnitas que permita asegurar que la matriz resultante sea banda. El mismo es:

$$(0,0);(0,1);...;(j,n-1);(j+1,0);(j,1);...;(m,n-1)$$

Sobre el proceso llevado adelante para su elección hablaremos en la sección 6.2.

3. Resultados

4. Discusión

5. Conclusiones

- 6. Apéndice
- 6.1. Apéndice A: Enunciado
- 6.2. Apéndice B: Elección del orden de las incógintas para obtener una matriz banda
- 7. Referencias