Lecture 2: Transformations

Adam Hawley

November 19, 2018

References: Nielsen 3.2.1 & 3.2.2

Contents

1	Cor	nventions	2
2	Transformations		
	2.1	Translation	
	2.2	Scaling	
	2.3	Rotation	
	2.4	Affine Transformations	
3	Hor	nogeneous Coordinates	
	3.1	Defining Homogenous Coordinates	
		Affine Transformations as Homogeneous Coordinates	

1 Conventions

- Matrices written in uppercase bold eg: $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- Matrices are also indexed (row, column) from top left starting at 1.
- Individual elements are written as lowercase:

$$a_{11} = 1, a_{12} = 2, a_{21} = 3, a_{22} = 4$$

• Vectors are simply matrices with a single row or column represented by a lower-case bold symbol:

$$\mathbf{a} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} OR \quad \mathbf{a} = \begin{bmatrix} x & y & z \end{bmatrix}$$

Transformations 2

Translation 2.1

Translation involves component-wise addition.

For example:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

2.2Scaling

Scaling involves multiplication by a scalar.

For example:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = s \begin{bmatrix} x \\ y \end{bmatrix}$$

 $\begin{bmatrix} x'\\y' \end{bmatrix} = s \begin{bmatrix} x\\y \end{bmatrix}$ Or to have a separate dimensional scalars:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

2.3Rotation

Rotation involves matrix multiplication. Using the formula below to give a 2D rotation counter clockwise by angle θ :

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$
 Rotation preserves distances:

$$\begin{aligned} ||\mathbf{x}|| &= ||\mathbf{R}\mathbf{x}|| \\ ||\mathbf{x}||^2 &= x_1^2 + x_2^2 + \dots + x_n^2 = \mathbf{x}^T \mathbf{x} \\ \mathbf{x}^T \mathbf{x} &= (\mathbf{R}\mathbf{x})^T (\mathbf{R}\mathbf{x}) \end{aligned}$$

$$\mathbf{x}^T \mathbf{I} \mathbf{x} = (\mathbf{x})^T (\mathbf{R}^T) (\mathbf{R} \mathbf{x}) \\ = \mathbf{x}^T (\mathbf{R}^T \mathbf{R}) \mathbf{x}$$

And hence:

$$\mathbf{R}^T \mathbf{R} = \mathbf{I}$$

$$\mathbf{R}^T \mathbf{R} \mathbf{R}^{-1} = \mathbf{I} \mathbf{R}^{-1}$$

$$\mathbf{R}^T = \mathbf{R}^{-1}$$

So to get the inverse of a rotation you only need to transpose it.

Affine Transformations 2.4

All of the previously mentioned transformations have been affine transformations. These are transformations which can be expressed as matric multiplication and addition:

$$y = Ax + b$$

For 2D, \mathbf{A} is a 2x2 matrix and \mathbf{b} a 2x1 vector.

For 3D, \mathbf{A} is a 3x3 matrix and \mathbf{b} a 3x1 vector.

3 **Homogeneous Coordinates**

3.1 **Defining Homogenous Coordinates**

Representing the affine transformations can be done by moving from Cartesian to homogeneous coordinates.

All 2D affine transformations can be then represented by a 3x3 matrix (or 4x4 for 3D)

$$\begin{bmatrix} x \\ y \end{bmatrix} becomes \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3.2Affine Transformations as Homogeneous Coordinates

The extra dimension allows uniform treatment of transformations:

Translation:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Scaling:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & 0 & s_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Rotation:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

In general, any affine transformation:

$$y = Ax + b$$

Can be expressed as:

$$\begin{bmatrix} y \\ 1 \end{bmatrix} = \begin{bmatrix} & \mathbf{A} & & \mathbf{b} \\ 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} y \\ 1 \end{bmatrix} = \begin{bmatrix} & \mathbf{A} & & | \mathbf{b} \\ 0 & \dots & 0 & | 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$ **Note:** Two homogeneous points are equal if they differ only by a scale factor.