Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: CM303 - Introdução à Geometria Analítica e Álgebra Linear Primeiro Semestre 2024

Lista de Exercícios – Semana 3

- 1. Encontre o vetor \vec{v} paralelo ao vetor $\vec{u} = (2, -1, 3)$ tal que $\vec{v} \cdot \vec{u} = -42$.
- **2.** Dados A(-1,0,2), B(-4,1,1), C(0,1,3), encontre o vetor \vec{x} tal que $2\vec{x} \overrightarrow{AB} = \vec{x} + (\overrightarrow{BC} \cdot \overrightarrow{AB})\overrightarrow{AC}$.
- **3.** Dados $\vec{u} = (1, a, -2a 1), \ \vec{v} = (a, a 1, 1) \ \text{e} \ \vec{w} = (a, -1, 1), \ \text{encontre} \ a \ \text{tal que} \ \vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot \vec{w}$
- **4.** Sejam \vec{v} e \vec{w} tais que $||\vec{v}|| = 5$, $||\vec{w}|| = 2$ e o ângulo entre \vec{v} e \vec{w} é igual a $\pi/3$. Encontre um vetor \vec{u} na forma $\vec{u} = a\vec{v} + b\vec{w}$ tal que $\vec{u} \cdot \vec{v} = 20$ $\vec{u} \cdot \vec{w} = 5$.
- 5. Determine x de modo que $\vec{u} = (x+1,1,2)$ e $\vec{v} = (x-1,-1,-2)$ sejam ortogonais.
- **6.** Encontre um vetor unitário \vec{w} que seja ortogonal tanto a $\vec{u} = (1,0,1)$ quanto a $\vec{v} = (0,1,1)$.
- 7. Em cada item, decomponha o vetor \vec{v} como a soma de dois vetores \vec{v}_1 e \vec{v}_2 , de forma que \vec{v}_1 seja paralelo ao vetor \vec{u} e \vec{v}_2 seja ortogonal a \vec{u} .
 - (a) $\vec{v} = (-1, 3) \ e \ \vec{u} = (2, 2);$
 - (b) $\vec{v} = (2, -1) \text{ e } \vec{u} = (1, 1);$
 - (c) $\vec{v} = (-2, -1) \text{ e } \vec{u} = (3, 1).$
- **8.** Escreva o vetor $\vec{u} = (1, 1, 1)$ na forma $\vec{u} = \vec{u}_1 + \vec{u}_2$ com $\vec{u}_1 / / \vec{v}$ e $\vec{u}_2 \perp \vec{v}$, sendo $\vec{v} = (0, 2, -1)$

Respostas:

- 1. $\vec{v} = (-6, 3, -9)$.
- **2.** $\vec{x} = (-17, -13, -15).$
- **3.** a = 2.
- **4.** $\vec{u} = \frac{11}{15}\vec{v} + \frac{1}{3}\vec{w}$
- **5.** $x = \pm \sqrt{6}$
- **6.** $\vec{w} = (1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3})$ ou $\vec{w} = (-1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3})$
- 7. (a) $\vec{v_1} = (1,1), \vec{v_2} = (-2,2)$
 - (b) $\vec{v_1} = (1/2, 1/2), \ \vec{v_2} = (3/2, -3/2);$
 - (c) $\vec{v_1} = (-21/10, -7/10), \ \vec{v_2} = (1/10, -3/10).$
- **8.** $\vec{u}_1 = (0, 2/5, -1/5) \text{ e } \vec{u}_1 = (1, 3/5, 6/5).$