Density

Kai Prince SFHEA

2025-08-03

Table of contents

Definition 0.1. For $A\subseteq G$ and Følner sequence $\Phi=(\Phi_N)_{n=1}^\infty,$ we write

$$\begin{split} \overline{d}_{\Phi}(A) &= \limsup_{N \to \infty} \frac{|\cdot|A \cap \Phi_N}{|\cdot|\Phi_N} \\ \underline{d}_{\Phi}(A) &= \liminf_{N \to \infty} \frac{|\cdot|A \cap \Phi_N}{|\cdot|\Phi_N} \end{split}$$

to be the upper and lower densities of A with respect to Φ , respectively. If these agree, then we can write

$$d_{\Phi}(A) = \lim_{N \to \infty} \frac{|\cdot|A \cap \Phi_N}{|\cdot|\Phi_N}$$

to be the density of A with respect to Φ . We also define the upper Banach density of A by

 $\overline{d}(A) = \sup \{ d_\Phi(A) : \text{for F\"olner sequences } \Phi \text{ where } d_\Phi(A) \text{ exists} \}.$