Mathematics CS1001

Meriel Huggard

Room 110 Lloyd Institute
School of Computer Science and Statistics
Trinity College Dublin, IRELAND
http://mymodule.tcd.ie
Meriel.Huggard@tcd.ie

17 October 2012

Integration by Parts I

- We have seen how integration by substitution corresponds to the chain rule for differentiation.
- REASONABLE Q: Is there a rule of integration corresponding to the product rule?
- A: Yes! INTEGRATION BY PARTS is useful for calculating the integrals of products.

INTEGRATION BY PARTS FORMULA

$$\int u \, dv = uv - \int v \, du \qquad \text{(IBP)}$$

EXAMPLE 1: Find

$$\int xe^{2x} dx$$
.

Integration by Parts II

SOLUTION:

• We will **choose** u = x, $dv = e^{2x} dx$ so that

$$\int xe^{2x} dx = \int u dv \quad \text{gives L.H.S of (IBP)}.$$

• Find terms on R.H.S of (IBP). **Need:** du and v

$$u = x$$
, so $\frac{du}{dx} = 1$, hence $du = dx$

DIFFERENTIATE *u* to GET *du*.

$$dv = e^{2x} dx$$
, so $v = \int e^{2x} dx = \frac{1}{2} e^{2x}$.

INTEGRATE dv to GET v.

• Substitute u, v, du, dv into (IBP):

$$\int xe^{2x} dx = \int u dv = uv - \int v du$$

$$= x \cdot \frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x} dx = \frac{1}{2}xe^{2x} - \frac{1}{2} \cdot \frac{1}{2}e^{2x}.$$

Integration by Parts III

EXAMPLE 2: Find $\int x \cos x \, dx$.

SOLUTION:

• Choose u = x, $dv = \cos x \, dx$, so

$$\int x \cos x \, dx = \int u \, dv \quad \text{gives L.H.S of (IBP)}.$$

• Find terms on R.H.S of (IBP). **Need:** *du* and *v*

$$u=x$$
 gives $\frac{du}{dx}=1$, hence $du=dx$ $dv=\cos x \, dx$ gives $v=\int \cos x \, dx=\sin x$.

• Substitute *u*, *v*, *du*, *dv* into (IBP):

$$\int x \cos x \, dx = \int u \, dv = uv - \int v \, du$$
$$= x \cdot \sin x - \int \sin x \, dx = x \sin x + \cos x.$$

EXERCISE: Check by differentiating the answer.

Integration by Parts IV

CHOOSING u AND dv

EXAMPLE 3: Find

$$\int x^2 \log x \, dx.$$

SOLUTION: In this question, we could choose

$$u = x^2$$
 or $u = \log x$.

Which should one try?

$$\underline{u = x^2}$$
: Then $dv = \log x \, dx$, so

$$v = \int \log x \, dx.$$

This isn't in the tables book. Abandon this line.

$$u = \log x$$
: Then $dv = x^2 dx$, so

$$v = \int x^2 dx = \frac{1}{3}x^3$$
, and $\frac{du}{dx} = \frac{1}{x}$, so $du = \frac{1}{x}dx$.

Integration by Parts V

Substitute into the (IBP) formula:

$$\int x^2 \log x \, dx = \int u \, dv = uv - \int v \, du$$

$$= \log x \cdot \frac{1}{3} x^3 - \int \frac{1}{3} x^3 \cdot \frac{1}{x} \, dx$$

$$= \frac{1}{3} x^3 \log x - \frac{1}{3} \int x^2 \, dx = \frac{1}{3} x^3 \log x - \frac{1}{9} x^3.$$

EXERCISE: Check this by differentiating.

• QUESTION: How should u be chosen in general?

GUIDELINE: Choose u in the order

L – logarithm

A – algebraic: powers of x, e.g. x, x^3

T - trigonometric

E - exponential

Integration by Parts VI

The guideline has been used in all the **EXAMPLES**:

1.
$$\int xe^{2x} dx \quad x - A, \ e^{2x} - E$$

LATE: u = x (A), so $dv = e^{2x} dx$.

$$2. \quad \int x \cos x \, dx \quad x - \mathbf{A}, \ \cos x - \mathbf{T}$$

LATE: u = x (**A**), so $dv = \cos x dx$.

3.
$$\int x^2 \log x \, dx \quad x^2 - \mathbf{A}, \ \log x - \mathbf{L}$$

LATE: $u = \log x$ (**L**), so $dv = x^2 dx$.

This rule gives **very reliable** guidance, but occasionally doesn't work.

Integration by Parts VII

Sometimes we must integrate by parts **successively** to get an answer:

EXAMPLE 4: Find

$$\int x^2 \cos x \, dx.$$

SOLUTION:

- LATE: $u = x^2$ (A), so $dv = \cos x \, dx$ (T).
- Differentiate u, integrate dv:

$$\frac{du}{dx} = 2x, \quad v = \int \cos x \, dx = \sin x.$$

• Substitute u, v, du, dv into (IBP):

$$\int x^2 \cos x \, dx = \int u \, dv = uv - \int v \, du$$

$$= x^2 \cdot \sin x - \int \sin x \cdot 2x \, dx = x^2 \sin x - 2 \int x \sin x \, dx.$$

(1)

- Can't calculate the last integral directly: use IBP again.
- For

$$\int x \sin x \, dx$$
 LATE: $u = x(\mathbf{A})$, so $dv = \sin x \, dx$ (**T**).

Integration by Parts VIII

• Differentiate *u*, integrate *dv*:

$$\frac{du}{dx} = 1$$
, $v = \int \sin x \, dx = -\cos x$.

• Substituting into (IBP):

$$\int x \sin x \, dx = -x \cos x - \int -\cos x \, dx = -x \cos x + \sin x.$$

• Replacing this in (1) gives

$$\int x^2 \cos x \, dx = x^2 \sin x - 2(-x \cos x + \sin x)$$
$$= x^2 \sin x + 2x \cos x - 2 \sin x.$$

Integration by Parts IX

EXAMPLE 5: Find

$$\int e^{2x} \cos x \, dx.$$

SOLUTION:

• e^{2x} – **E**, $\cos x$ – **T**, so by LATE $u = \cos x$, so $dv = e^{2x} dx$. Thus

$$\frac{du}{dx} = -\sin x, \quad v = \int e^{2x} dx = \frac{1}{2}e^{2x}.$$

• Substitute *u*, *v*, *du*, *dv* into (IBP):

$$\int e^{2x} \cos x \, dx = \int u \, dv = uv - \int v \, du$$

$$= \cos x \cdot \frac{1}{2} e^{2z} - \int \frac{1}{2} e^{2x} \cdot -\sin x \, dx$$

$$= \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx. \quad (2)$$

• No improvement: the last integral looks as hard as the first one. Try **integrating by parts** again, and see what happens.

Integration by Parts X

• Use LATE again: $u = \sin x$, $dv = e^{2x} dx$

$$\frac{du}{dx} = \cos x, \quad v = \int e^{2x} dx = \frac{1}{2}e^{2x}.$$

• Using (IBP) gives

$$\int e^{2x} \sin x \, dx = \sin x \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \cos x \, dx$$
$$= \frac{1}{2} e^{2x} \sin x - \frac{1}{2} \int e^{2x} \cos x \, dx. \quad (*)$$

Call the desired integral *I*, and **substitute** back into (2) ...

$$I = \frac{1}{2}e^{2x}\cos x + \frac{1}{2}\underbrace{\left(\frac{1}{2}e^{2x}\sin x - \frac{1}{2}I\right)}_{=(*)}$$

... and now tidy up and solve for I:

I =
$$\frac{1}{2}e^{2x}\cos x + \frac{1}{4}e^{2x}\sin x - \frac{1}{4}I$$

$$I = \frac{2}{5}e^{2x}\cos x + \frac{1}{5}e^{2x}\sin x.$$

EXERCISE: Check this by differentiating.