Analisi matematica 2		2 maggio 2018
Cognome:	Nome:	Matricola:

- Durata della prova: 2 ore.
- Rispondere nello spazio sotto alle domande e sul retro del foglio.

1.

a) Spiegare perché la funzione

$$f(x,y) = x \cos y$$

è differenziabile in tutto \mathbb{R}^2 un numero arbitrario di volte.

Trovare tutti i punti critici di f e classificarli. Trovare i massimi e i minimi assoluti di f sul rettangolo $[0,1] \times [0,2\pi]$.

Descrivere l'insieme di definizione di \sqrt{f} . Dire se è aperto, chiuso, limitato, connesso.

b) Determinare, sulla curva di equazione

$$x^2 - xy + y^2 = c$$
 $(c > 0)$

i punti di massima e minima distanza dall'origine.

Suggerimento: cercare i punti critici vincolati della funzione $f(x,y) = x^2 + y^2$ ristretta al vincolo $x^2 - xy + y^2 - c = 0$.

2.

a)
Data l'equazione differenziale

$$y' = \frac{3}{t} \left(y - 1 \right)^{2/3}$$

- i) Stabilire in quali punti (t_0, y_0) del piano sono soddisfatte le ipotesi del teorema di esistenza e unicità locale per il problema di Cauchy $y(t_0) = y_0$ (motivare la risposta).
- ii) Trovare tutte le soluzioni dell'equazione e specificare quella che soddisfa la condizione y(-1) = 0.
- b) Scrivere l'integrale generale dell'equazione

$$y'' - y = 1 - \cos t.$$

Determinare α tale che la soluzione con dati iniziali y(0) = 0, $y'(0) = \alpha$, sia limitata su $[0, +\infty)$.

c)
i) Studiare la stabilità dell'origine per il sistema lineare :

$$\begin{cases} x' = x - 2y \\ y' = 2x - y \end{cases}$$

ii) Verificare che la funzione

$$E(x,y) = x^2 - xy + y^2$$

è un integrale primo del sistema. Spiegare perchè questo risultato conferma l'analisi della stabilità effettuata al punto i).

3. Si consideri la curva piana di equazione parametrica

$$\mathbf{r}(t) = \sin t \, \mathbf{i} + \sin(2t) \, \mathbf{j}; \qquad t \in [0, 2\pi].$$

- a) Dimostrare che la curva è chiusa, regolare, ma non semplice.
- b) Verificare che il sostegno γ della curva soddisfa l'equazione

$$4x^4 - 4x^2 + y^2 = 0.$$

Disegnare γ evidenziando il verso di percorrenza.

(Suggerimento: risolvendo l'equazione rispetto a y, γ è unione di grafici di funzioni di x.)

c) Dire cosa si intende per punto regolare di una curva definita in forma implicita. Trovare al variare di $c \in \mathbb{R}$ gli eventuali punti singolari delle curve definite implicitamente dall'equazione

$$4x^4 - 4x^2 + y^2 = c$$
.

1.

a) La funzione f è differenziabile in tutti i punti di \mathbb{R}^2 perchè le sue derivate parziali

$$\partial_x f(x, y) = \cos y, \qquad \partial_y f(x, y) = -x \sin y$$

sono funzioni continue in \mathbb{R}^2 (condizione sufficiente per la differenziabilità). Lo stesso ragionamento vale per le derivate parziali e per tutte le derivate successive, poichè le derivate di tutti gli ordini sono continue in \mathbb{R}^2 .

Punti critici: il gradiente si annulla nei punti che soddisfano il sistema

$$\begin{cases} \cos y = 0 \\ x \sin y = 0 \end{cases}$$

dunque nei punti

$$\mathbf{r}_k = \left(0, \frac{\pi}{2} + k\pi\right), \qquad k \in \mathbb{Z}.$$

Calcolando le derivate seconde

$$\partial_{xx} f(x,y) = 0,$$
 $\partial_{xy} f(x,y) = \partial_{yx} f(x,y) = -\sin y,$ $\partial_{yy} f(x,y) = -x\cos y,$

e la matrice hessiana $H_f(x,y)$, si ottiene

$$\det H_f(x,y) = -\sin^2 y$$

Nei punti critici abbiamo allora

$$\det H_f(\mathbf{r}_k) = -1$$

Si tratta dunque di punti di sella. Si osserva infatti che $f(\mathbf{r}_k) = 0$ e che in *ogni* intorno di tali punti f cambia di segno.

Poiché f non possiede estremi liberi, i punti di massimo e minimo nel rettangolo (che esistono per il teorema di Weierstrass) devono essere sulla frontiera. Consideriamo quindi le restrizioni

$$f(0,y) = 0$$
, $f(1,y) = \cos y$, $0 \le y \le 2\pi$; $f(x,0) = f(x,2\pi) = x$, $0 \le x \le 1$.

Dal confronto si ricava che il massimo assoluto è $f(1,0)=f(1,2\pi)=1$, mentre il minimo è $f(1,\pi)=-1$.

L'insieme di definizione di \sqrt{f} è l'insieme dei punti (x,y) tali che $f(x,y) \geq 0$ ovvero l'insieme

$$D \equiv \left\{ (x, y) \in \mathbb{R}^2 : x \cos y \ge 0 \right\}$$

Applicando la regola dei segni si ottiene $D = D_+ \cup D_-$, dove

$$D_{+} = \{(x,y) : x \ge 0, -\pi/2 + 2k\pi \le y \le \pi/2 + 2k\pi, \quad k \in \mathbb{Z}\},\$$

$$D_- = \left\{ (x,y) \, : \, x \le 0, -\pi/2 + (2k+1)\pi \le y \le \pi/2 + (2k+1)\pi, \quad k \in \mathbb{Z} \right\}.$$

Si tratta di un insieme chiuso, non limitato e connesso.

b) La distanza di un punto (x,y) dall'origine è $\sqrt{x^2+y^2}$; se in un punto sul vincolo la distanza dall'origine è massima (minima) sarà anche massima (minima) la funzione $f(x,y)=x^2+y^2$ (quadrato della distanza) più comoda per svolgere i calcoli. Osserviamo che per ogni c>0 i punti del vincolo sono tutti regolari; quindi, gli estremi vincolati della funzione f (che esistono per il teorema di Weierstrass) devono essere punti critici vincolati. Usando il metodo dei moltiplicatori, cerchiamo i punti critici della Lagrangiana

$$\mathcal{L}(x, y, \lambda) = x^2 + y^2 - \lambda(x^2 - xy + y^2 - c)$$
.

Si ottiene il sistema

$$2x - \lambda(2x - y) = 0$$
, $2y - \lambda(2y - x) = 0$, $x^2 - xy + y^2 - c = 0$,

Risolvendo si trovano 4 punti critici $(\pm \sqrt{c}, \pm \sqrt{c})$ e $(\pm \sqrt{c}/3, \mp \sqrt{c}/3)$). Valutando f in questi punti, si deduce che i primi due sono i punti di massimo e gli altri due punti di minimo. La distanza massima è quindi $\sqrt{2c}$ e la minima $\sqrt{2c/3}$.

2a)

i) La funzione $f(t,y) = \frac{3}{t} (y-1)^{2/3}$ è definita e continua per $t \neq 0$; la derivata parziale è definita per $y \neq 1$ ed è data da

$$\partial_y f(t,y) = \frac{2}{t} (y-1)^{-1/3},$$

dunque è continua per $t \neq 0$ e $y \neq 1$. Queste disuguaglianze dividono il piano (t, y) in 4 aperti connessi dove valgono le ipotesi del teorema di esistenza e unicità locale.

ii) Si tratta di un'equazione del primo ordine a variabili separabili. La funzione costante y=1 è soluzione dell'equazione. Le soluzioni non costanti si trovano (in forma implicita) applicando la formula risolutiva

$$\int \frac{1}{3(y-1)^{2/3}} dy = \int \frac{1}{t} dt + C, \qquad C \in \mathbb{R}$$

da cui si ricava

$$(y-1)^{1/3} = \ln|t| + C, \qquad t \neq 0.$$

Risolvendo rispetto ad y troviamo

$$y = 1 + \left(\ln|t| + C\right)^3.$$

Si osserva che per $|t| = e^{-C}$ le soluzioni hanno un raccordo C^1 con la soluzione costante y = 1. Poiché $y(-1) = 1 + C^3$, la condizione y(-1) = 0 impone C = -1. La funzione

$$\varphi(t) = 1 + \left(\ln(-t) - 1\right)^3,$$

è l'unica soluzione del problema di Cauchy nell'intervallo -e < t < 0.

L'equazione omogenea z''-z=0 ha equazione caratteristica $\lambda^2-1=0$, dalla cui soluzione si ottiene l'integrale generale

$$z(t) = c_1 e^t + c_2 e^{-t}, c_1, c_2 \in \mathbb{R}.$$

Usando il metodo di somiglianza e il principio di sovrapposizione, cerchiamo una soluzione particolare nella forma $\bar{y}(t) = A + B\cos t$ (osservare che nell'equazione manca il termine con la derivata prima). Sostituendo nell'equazione si trova A = -1 e B = 1/2. L'integrale generale dell'equazione si scrive allora

$$y(t) = c_1 e^t + c_2 e^{-t} + \frac{1}{2} \cos t - 1.$$

La soluzione con dati iniziali y(0) = 0, $y'(0) = \alpha$ si trova risolvendo il sistema

$$c_1 + c_2 - \frac{1}{2} = 0;$$
 $c_1 - c_2 = \alpha,$

da cui si ricava $c_1 = \alpha/2 + 1/4$, $c_2 = -\alpha/2 + 1/4$. Poiché le soluzioni limitate per $t \ge 0$ sono quelle con $c_1 = 0$, occorre scegliere $\alpha = -1/2$.

2c)

i) La matrice dei coefficienti del sistema è

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$$

Poiché $|A|=3\neq 0$, l'origine è l'unico punto di equilibrio. Gli autovalori di A sono le soluzioni dell'equazione

$$|A - \lambda I| = \lambda^2 + 3 = 0$$

Gli autovalori sono $\lambda_1=i\sqrt{3},\,\lambda_2=-i\sqrt{3},\,$ dunque l'origine è stabile.

ii) Lungo le soluzioni (x(t), y(t)) del sistema abbiamo

$$\frac{d}{dt}E(x(t),y(t)) = \partial_x E(x(t),y(t)) x'(t) + \partial_y E(x(t),y(t)) y'(t)$$

$$= (2x - y)(x - 2y) + (-x + 2y)(2x - y) = 0.$$

Poiché le orbite sono le curve di livello $E(x,y)=c,\ c\geq 0$, e lungo tali curve la distanza dall'origine è compresa tra $\sqrt{2c/3}$ e $\sqrt{2c}$ (vedi soluzione esercizio 1b) si conferma che l'origine è un punto di equilibrio stabile per il sistema.

- 3.
 - a) La curva è chiusa perché $\mathbf{r}(0) = \mathbf{r}(2\pi) = \mathbf{0}$, ma non è semplice, essendo pure $\mathbf{r}(\pi) = \mathbf{0}$. La curva è regolare perché $\mathbf{r}(t)$ è derivabile con derivata continua e

$$\mathbf{r}'(t) = \cos t \,\mathbf{i} + 2\cos(2t)\,\mathbf{j} \neq \mathbf{0} \qquad \forall t \in [0, 2\pi]$$

 $(\cos t, e \cos(2t) \text{ si annullano in punti diversi}).$

b) Sostituendo $x = \sin t$, $y = \sin(2t)$ nell'equazione si vede che è soddisfatta per ogni t. Risolvendo l'equazione rispetto ad y si ottengono le funzioni (continue in [-1, 1] e derivabili all'interno)

$$y = \pm 2x \sqrt{1 - x^2} \,.$$

c) I punti singolari si trovano risolvendo il sistema

$$\begin{cases} 16x^3 - 8x = 0 \\ 2y = 0 \\ 4x^4 - 4x^2 + y^2 = c \end{cases}$$

Le prime due equazioni sono risolte da $P_0(0,0),\,P_1(1\sqrt{2},0),\,P_2(-1\sqrt{2},0).$

Sostituendo i valori nell'ultima equazione, vediamo che P_0 è punto singolare della curva con c=0, mentre P_1 e P_2 stanno sull'insieme di livello c=-1 (che in effetti si riduce all'unione dei due punti). Se c<-1, l'ultima equazione non ha soluzioni (insieme di livello vuoto). In definitiva, le curve di livello sono regolari per c>-1, $c\neq 0$.