Decisions and randomness

Christos Dimitrakakis

April 3, 2025

Outline

Statistical Decision Theory
Elementary Decision Theory
Statistical Decision Theory

Gradient methods
Gradients for optimisation

Statistical Decision Theory Elementary Decision Theory

Statistical Decision Theory

Gradient methods

Gradients for optimisation

Preferences

Types of rewards

- For e.g. a student: Tickets to concerts.
- ► For e.g. an investor: A basket of stocks, bonds and currency.
- ► For everybody: Money.

Preferences among rewards

For any rewards $x, y \in R$, we either

- ▶ (a) Prefer x at least as much as y and write $x \leq^* y$.
- ▶ (b) Prefer x not more than y and write $x \succeq^* y$.
- ▶ (c) Prefer x about the same as y and write x = x y.
- \blacktriangleright (d) Similarly define \succ^* and \prec^*

Utility and Cost

Utility and Cost

Utility function

To make it easy, assign a utility U(x) to every reward through a utility function $U: R \to \mathbb{R}$.

Utility-derived preferences

We prefer items with higher utility, i.e.

- ▶ (a) $U(x) \ge U(y) \Leftrightarrow x \succeq^* y$
- \blacktriangleright (b) $U(x) \le U(y) \Leftrightarrow y \succeq^* x$

Utility and Cost

Utility function

To make it easy, assign a utility U(x) to every reward through a utility function $U: R \to \mathbb{R}$.

Utility-derived preferences

We prefer items with higher utility, i.e.

- ▶ (a) $U(x) \ge U(y) \Leftrightarrow x \succeq^* y$
- ▶ (b) $U(x) \le U(y) \Leftrightarrow y \succeq^* x$

Cost

It is sometimes more convenient to define a cost function $C: R \to \mathbb{R}$ so that we prefer items with lower cost, i.e.

$$ightharpoonup C(x) \ge C(y) \Leftrightarrow y \succeq^* x$$

Random outcomes

Choosing among rewards: Roulette

- ► [A] Bet 10 CHF on black
- ► [B] Bet 10 CHF on 0
- ► [C] Bet nothing
- ► What is the reward here?
- ► What is the outcome?

Uncertain outcomes

- ► [A] Taking the car to Zurich (50'-80' with delays)
- ▶ [B] Taking the train to Zurich (60' without delays)

What is the reward here?

Independent outcomes

Graphical model

Random rewards

- ► We select our action.
- lacktriangle Outcomes are random, with $\omega \sim P$, but independent of our action
- We then obtain a random utility with distribution depending on a.

$$\mathbb{P}(U = u \mid a) = P(\{\omega : U(a, \omega) = u\})$$

General case

Graphical model

Random rewards

- ► We select our action.
- ► The action determines the outcome distribution.
- ▶ The utility may depend on both the outcome and reward.

Route selection

Example (Utility)

$U(a,\omega)$	30'	40'	50'	60'	70'	80'	90'
Train	-1	-2	-5	-10	-15	-20	-30
Car	-10	-20	-30	-40	-50	-60	-70

Example (Probability)

$P(\omega \mid a)$							
Train	0%	0%	50%	45%	4%	1%	0%
Car	0	40%	30%	15%	10%	3%	2%

Statistical Decision Theory Elementary Decision Theory Statistical Decision Theory

Gradient methods Gradients for optimisation

Expected utility

Actions, outcomes and utility

In this setting, we obtain random outcomes that depend on our actions.

- ▶ Actions $a \in A$
- ightharpoonup Outcomes $\omega \in \Omega$.
- ▶ Probability of outcomes $P(\omega \mid a)$
- ▶ Utility $U: \Omega \times A \rightarrow \mathbb{R}$

Expected utility

The expected utility of an action is:

$$\mathbb{E}_{P}[U \mid a] = \sum_{\omega \in \Omega} U(\omega, a) P(\omega \mid a).$$

The expected utility hypothesis

We prefer a to a' if and only if

$$\mathbb{E}_P[U \mid a] \geq \mathbb{E}_P[U \mid a']$$

Example: Betting

In this example, probabilities reflect actual randomness

Choice	Win Probability <i>p</i>	Payout w	Expected gain
Don't play	0	0	0
Black	18/37	2	
Red	18/37	2	
0	1/37	36	
1	1/37	36	

What are the expected gains for these bets?

The St-Petersburg Paradox

The game

If you give me x CHF, then I promise to:

- ▶ (a) Throw a fair coin until it comes heads.
- \triangleright (b) If it does so after T throws, then I will give you 2^T CHF.

The question

- How much x are you willing to pay to play?
- ► Given that the expected amount of money is infinite, why are you only willing to pay a small x?

Example: Route selection

▶ In this example, probabilities reflect subjective beliefs

Choice	Best time	Chance of delay	Delay amount	Expected time
Train	80	5%	5	
Car, route A	60	50%	30	
Car, route B	70	10%	10	

Example: Noisy optimisation

Simple maximisation

For a function $f: \mathbb{R} \to \mathbb{R}$, find a maximum x^* i.e. $f(x^*) \ge f(x) \forall x$.

Example: Noisy optimisation

Simple maximisation

For a function $f: \mathbb{R} \to \mathbb{R}$, find a maximum x^* i.e. $f(x^*) \ge f(x) \forall x$.

Theorem (Necessary conditions)

If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, a maximum point x^* satisfies:

$$\frac{d}{dx}f(x^*)=0, \qquad \frac{d}{dx^2}f(x^*)<0.$$

Example: Noisy optimisation

Simple maximisation

For a function $f: \mathbb{R} \to \mathbb{R}$, find a maximum x^* i.e. $f(x^*) \ge f(x) \forall x$.

Theorem (Necessary conditions)

If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, a maximum point x^* satisfies:

$$\frac{d}{dx}f(x^*)=0, \qquad \frac{d}{dx^2}f(x^*)<0.$$

Noisy optimisation

- \blacktriangleright We select x but do not observe f(x).
- We observe a random g with $\mathbb{E}[g|x] = f(x)$.

$$f(x) \triangleq \mathbb{E}[g|x], \qquad \qquad \mathbb{E}[g|x] = \int_{-\infty}^{\infty} g(\omega, x) p(\omega) d\omega$$
 (1)

Mean-squared error cost function

$$g(\omega, x) = (\omega - x)^2.$$

This example is for a quadratic loss:

Example: Estimation

- \triangleright θ : parameter (random)
- \triangleright $\hat{\theta}$: estimate (our action)
- $\blacktriangleright (\theta \hat{\theta})^2$: cost function

Example: Estimation

- \triangleright θ : parameter (random)
- \triangleright $\hat{\theta}$: estimate (our action)
- $\blacktriangleright (\theta \hat{\theta})^2$: cost function

Mean-squared error minimiser

If we want to guess $\hat{\theta}$, and we knew that $\theta \sim P$, then the guess

$$\hat{ heta} = \mathbb{E}_P(heta) = rg\min_{\hat{ heta}} \mathbb{E}_P[(heta - \hat{ heta})^2]$$

minimises the squared error.

Example: Estimation

- \triangleright θ : parameter (random)
- \triangleright $\hat{\theta}$: estimate (our action)
- $\triangleright (\theta \hat{\theta})^2$: cost function

Mean-squared error minimiser

If we want to guess $\hat{\theta}$, and we knew that $\theta \sim P$, then the guess

$$\hat{ heta} = \mathbb{E}_P(heta) = rg\min_{\hat{ heta}} \mathbb{E}_P[(heta - \hat{ heta})^2]$$

minimises the squared error. This is because

$$\frac{d}{d\hat{\theta}} \mathbb{E}_{P}[(\theta - \hat{\theta})^{2}] = \frac{d}{d\hat{\theta}} \sum_{\omega} [\theta(\omega) - \hat{\theta}]^{2} P(\omega)$$
 (2)

$$=\sum_{\omega}\frac{d}{d\hat{\theta}}[\theta(\omega)-\hat{\theta}]^2P(\omega) \tag{3}$$

$$= \sum_{\omega} 2[\theta(\omega) - \hat{\theta}](-1)P(\omega) = 2(\hat{\theta} - \mathbb{E}_{P}[\theta]). \quad (4)$$

Setting this to 0 gives $\hat{\theta} = \mathbb{E}_P[\theta]$

Statistical Decision Theory

Elementary Decision Theory Statistical Decision Theory

Gradient methods
Gradients for optimisation

The gradient descent method: one dimension

- ▶ Function to minimise $f : \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\theta}f(\theta)$

The gradient descent method: one dimension

- ▶ Function to minimise $f : \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\theta}f(\theta)$

Gradient descent algorithm

- ▶ Input: initial value θ^0 , learning rate schedule α_t
- For $t = 1, \ldots, T$
- ightharpoonup Return θ^T

The gradient descent method: one dimension

- ▶ Function to minimise $f: \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\theta}f(\theta)$

Gradient descent algorithm

- ▶ Input: initial value θ^0 , learning rate schedule α_t
- For $t = 1, \dots, T$
- ightharpoonup Return θ^T

Properties

▶ If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum θ^T , i.e. there is $\epsilon > 0$ so that

$$f(\theta^T) < f(\theta), \forall \theta : \|\theta^T - \theta\| < \epsilon.$$

Gradient methods for expected value

Estimate the expected value $x_t \sim P$ with $\mathbb{E}_P[x_t] = \mu$.

Gradient methods for expected value

Estimate the expected value

$$x_t \sim P$$
 with $\mathbb{E}_P[x_t] = \mu$.

Objective: mean squared error

Here
$$\ell(x,\theta) = (x-\theta)^2$$
.

$$\min_{\theta} \mathbb{E}_{P}[(x_{t} - \theta)^{2}].$$

Gradient methods for expected value

Estimate the expected value

 $x_t \sim P$ with $\mathbb{E}_P[x_t] = \mu$.

Objective: mean squared error

Here $\ell(x,\theta) = (x-\theta)^2$.

$$\min_{\theta} \mathbb{E}_{P}[(x_{t} - \theta)^{2}].$$

Exact derivative update

If we know P, then we can calculate

$$\theta^{t+1} = \theta^t - \alpha_t \frac{d}{d\theta} \mathbb{E}_P[(x - \theta^t)^2]$$
 (5)

$$\frac{d}{d\theta} \mathbb{E}_{P}[(x - \theta^{t})^{2}] = 2(\mathbb{E}_{P}[x] - \theta^{t}) \tag{6}$$

Stochastic derivative

- ▶ Function to minimise $f : \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\theta}f(\theta)$
- $f(\theta) = \mathbb{E}[g|\theta]$

Stochastic derivative

- ▶ Function to minimise $f : \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\theta}f(\theta)$
- $f(\theta) = \mathbb{E}[g|\theta]$

Stochastic derivative algorithm

- lnput: initial value θ^0 , learning rate schedule α_t
- ▶ For t = 1, ..., T
 - ▶ Observe $g(\omega_t, \theta^t)$, where $\omega_t \sim P$.
 - $\theta^{t+1} = \theta^t \alpha_t \frac{d}{d\theta} g(\omega_t, \theta^t)$
- ightharpoonup Return θ^T

Stochastic gradient for mean estimation

Theorem (Sampling)

For any bounded random variable f,

$$\mathbb{E}_{P}[f] = \int_{X} dP(x)f(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(x_t) = \mathbb{E}_{P} \left[\frac{1}{T} \sum_{t=1}^{T} f(x_t) \right], \qquad x_t \sim P$$

Example (Derivative ampling)

We can also approximate the gradient through sampling:

$$\frac{d}{d\theta} \mathbb{E}_{P}[(x-\theta)^{2}] = \int_{-\infty}^{\infty} dP(x) \frac{d}{d\theta} (x-\theta)^{2}$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} \frac{d}{d\theta} (x_{t}-\theta)^{2} = \frac{1}{T} \sum_{t=1}^{T} 2(x_{t}-\theta)^{2}$$

Stochastic gradient for mean estimation

Theorem (Sampling)

For any bounded random variable f,

$$\mathbb{E}_{P}[f] = \int_{X} dP(x)f(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(x_t) = \mathbb{E}_{P} \left[\frac{1}{T} \sum_{t=1}^{T} f(x_t) \right], \qquad x_t \sim P$$

Example (Derivative ampling)

We can also approximate the gradient through sampling:

$$\frac{d}{d\theta} \mathbb{E}_{P}[(x-\theta)^{2}] = \int_{-\infty}^{\infty} dP(x) \frac{d}{d\theta} (x-\theta)^{2}$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} \frac{d}{d\theta} (x_{t}-\theta)^{2} = \frac{1}{T} \sum_{t=1}^{T} 2(x_{t}-\theta)^{2}$$

 \blacktriangleright Wen can even update θ after each sample x_t :

$$\theta^{t+1} = \theta^t + 2\alpha_t(x_t - \theta^t)$$

The gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ Gradient $\nabla_{\theta} f(\theta) = \left(\frac{\partial f(\theta)}{\partial \theta_1}, \dots, \frac{\partial f(\theta)}{\partial \theta_n}\right)$,
- ▶ Partial derivative $\frac{\partial f}{\partial \theta_n}$

The gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ Gradient $\nabla_{\theta} f(\theta) = \left(\frac{\partial f(\theta)}{\partial \theta_1}, \dots, \frac{\partial f(\theta)}{\partial \theta_n}\right)$,
- **Partial** derivative $\frac{\partial f}{\partial \theta_n}$

Gradient descent algorithm

- ▶ Input: initial value θ^0 , learning rate schedule α_t
- For t = 1, ..., T $\theta^{t+1} = \theta^t \alpha_t \nabla_{\theta} f(\theta^t)$
- ightharpoonup Return θ^T

The gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ Gradient $\nabla_{\theta} f(\theta) = \left(\frac{\partial f(\theta)}{\partial \theta_1}, \dots, \frac{\partial f(\theta)}{\partial \theta_n}\right)$,
- **Partial** derivative $\frac{\partial f}{\partial \theta_n}$

Gradient descent algorithm

- ▶ Input: initial value θ^0 , learning rate schedule α_t
- For t = 1, ..., T $\theta^{t+1} = \theta^t \alpha_t \nabla_{\theta} f(\theta^t)$
- \triangleright Return θ^T

Properties

If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum θ^T , i.e. there is $\epsilon > 0$ so that

$$f(\theta^T) < f(\theta), \forall \theta : \|\theta^T - \theta\| < \epsilon.$$

When the cost is an expectation

In machine learning, we sometimes want to minimise the expectation of a cost ℓ ,

$$f(\theta) \triangleq \mathbb{E}[\ell|\theta] = \int_{\Omega} dP(\omega)\ell(\omega,\theta)$$

This can be approwith a sample

$$f(\theta) pprox rac{1}{T} \sum_t \ell(\omega_t, \theta)$$

The same holds for the gradient:

$$\nabla_{\theta} f(\theta) = \int_{d} P(\omega) \nabla_{\theta} \ell(\omega, \theta) \approx \frac{1}{T} \sum_{t} \nabla_{\theta} \ell(\omega_{t}, \theta)$$

Stochastic gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ Gradient $\nabla f(\theta)$
- $f(\theta) = \mathbb{E}[\ell|\theta]$

Stochastic gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ Gradient $\nabla f(\theta)$
- $ightharpoonup f(\theta) = \mathbb{E}[\ell|\theta]$

Algorithm

- lacktriangle Input: initial value $heta^0$, learning rate schedule $lpha_t$
- ▶ For t = 1, ..., T
 - ▶ Observe $\ell(\omega_t, \theta^t)$, where $\omega_t \sim P$.
 - $\theta^{t+1} = \theta^t \alpha_t \nabla_{\theta} g(\omega_t, \theta^t)$
- ightharpoonup Return θ^T

Alternative view: Noisy gradients

- $ightharpoonup \mathbb{E}[\epsilon_t] = 0$ is sufficient for convergence.

Stochastic gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ Gradient $\nabla f(\theta)$
- $ightharpoonup f(\theta) = \mathbb{E}[\ell|\theta]$

Algorithm

- lacktriangle Input: initial value $heta^0$, learning rate schedule $lpha_t$
- ▶ For t = 1, ..., T
 - ▶ Observe $\ell(\omega_t, \theta^t)$, where $\omega_t \sim P$.
 - $\theta^{t+1} = \theta^t \alpha_t \nabla_{\theta} g(\omega_t, \theta^t)$
- ightharpoonup Return θ^T

Alternative view: Noisy gradients

- $ightharpoonup \mathbb{E}[\epsilon_t] = 0$ is sufficient for convergence.