PROTON INDUCED GAIN IN A PORTABLE FARADAY CUP

Shaun Marshall and Blake Currier

Department of Physics Worcester Polytechnic Institute 100 Institute Rd, Worcester, MA 01609

Andrew D Hodgdon, CHP

Radsim, LLC 584 Grove St, Newton, MA 02462 adhodgdon@radsim.org

ABSTRACT

A Faraday Cup (FC) is being designed to calibrate therapy-range proton accelerators, i.e., 50 to 250 MeV. The FC must be accurate to 1% as well as portable, hence vacuum-less and low mass. The FC is a copper cylinder coated with kapton insulation and silver ground. The Monte Carlo method (MCNP6 and Geant4) was used to simulate the radiation cascade and predict gain versus height (H), diameter (D) and insulator thickness (K). H and D were mostly functions of proton range. Increasing either increases mass, reducing either increases proton leakage, hence decreases accuracy. Kapton functions to capture backscattered electrons, the function of the fields in a standard FC. Greater K increases capture but increases secondary electron in-leakage. Determining optimal K was made difficult by the lack of low energy proton, electron cross-sections. A secondary electron model was programmed with the SDEF command for the MCNP model based on recently published cross-section approximations. This secondary electron source method was benchmarked against a series of experimental measurements (by others) of protons on copper and on water. Three FCs were built, each with different values of K. They are currently being tested.

Key Words: Monte Carlo, Geant, MCNP, Faraday Cup

1 INTRODUCTION

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum.

Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

2 METHODOLOGY

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

2.1 Proton-Beam Measurement

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

2.2 MCNP6

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

2.3 Geant4

Geant4 is an object-oriented C++ toolkit for developing applications which simulate the passage of particles through matter. Libraries of cross-section tables, elemental/molecular properties, and pre-defined stochastic physics processes allow for rapid, intuitive invocation of necessary system setup commands. Once initialized, "Manager" modules cooperate to organize and accumulate dynamic information which is organized in the following chronology:

- 1. The **DetectorConstruction** class is called to verify, store and lock the predefined geometry.
- 2. The **G4UIManager** initializes upon successful compilation and execution of the *main()* routine. If a visualizer is selected, **G4VisManager** is also invoked.
- 3. The user issues the command to execute a macro file of *runs*; each run is characterized by the defined beam particle type, the beam energy, and the number of *events*, or number of such isolated simulations. If multithreading is available, **G4RunManager** allocates the events to the available worker threads on a rolling basis.
- 4. For each event, the simulation of the *primary* (beam) particle proceeds, constructing a new *track*, or well-defined trajectory for every particle not at rest.
- 5. The behavior of every track is determined dynamically, with each *step*, or stochastically occurring physical process (collisions, absorbtions, etc) of the particle in some medium.

A useful feature of Geant4 is the ability to create user-defined actions (methods) throughout each module, which allows for a very fine-tuned analysis throughout the entire simulation.

2.3.1 DetectorConstruction.cc

2.3.2 RunAction.cc

2.3.3 EventAction.cc

2.3.4 SteppingAction.cc

3 RESULTS

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Table I. Measured and Predicted Gain from 250 MeV Protons

Model	Energy (MeV)	HIT	MCNP6	Geant4
S59	70.03	0.9750	0	0.953 588
	100.46	0.9850	0	0.967417
	130.52	0.9925	0	0.975593
	160.09	1.0000	0	0.981094
	190.48	1.0075	0	0.985111
	221.06	1.0125	0	0.988 151
S100	70.03	0.9385	0	0.953827
	100.46	0.9500	0	0.966795
	130.52	0.9580	0	0.975725
	160.09	0.9635	0	0.981055
	190.48	0.9715	0	0.985189
	221.06	0.9800	0	0.988 149
S200	70.03	0.9350	0	0.954372
	100.46	0.9475	0	0.966915
	130.52	0.9525	0	0.975377
	160.09	0.9590	0	0.980998
	190.48	0.9650	0	0.985217
	221.06	0.9770	0	0.988 312

4 CONCLUSIONS

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

5 ACKNOWLEDGMENTS

We would like to express our sincerest gratitude to Paul Romano and Tom Sutton, who provided the template for this paper.

APPENDIX A

Code bits?