script in CsCI/	Explanation	# Plots
AutoCCA_84-run_v5.py	Calculate the Auto-Correlations with 'Loki' and plot,	-plot 'single' :
	including the mean intensity pattern, Fourier-	17
	coefficients, detector masks AC, subplot of; mean	-plot 'subplot' :
	intensity patter, detector mask's AC and AC of polar	1 1
	images. Data loaded from CXI-file.	-plot 'all' : 18
CCA_RadProf_84-run_v2.py	Calculate the Radial Profile, from CXI-file, with 'Loki' and the Auto-Correlation. Plot the result including	subplots : 2
CCA_RadF101_04-1d11_v2.py	som e of the diffraction patterns.	Subplots . 2
	Calculate and plot the Cross-Correlations from CXI-	
CrossCA 84-run v7.py	file. Plots of Fourier Coefficients for selected q_2	5
CrossCA_84-run_v7.py	values (from command line) and CC of detector mask	5
	and cos(psi) with psi as the reciprocal space angle.	
fix_all_pdb_for_condor.py	Add the missing columns 77-78 in the PDB-files.	
	Condor requires these columns.	
Plot_diffraction.py	Plots 3 diffraction patterns from CXI-file.	subplot : 1
	Load one CXI-file and calculate the Radial profile. plot together with with the mean intensity pattern.	
RadProf_84-run_v2.py	There are multiple options for the subplots, e.g. 2	subplot : 1
	radial profile plots; one of the second half of the	ouspiot :
	profile and one of the entire profile.	
run-CsCl-w-condor-in-terminal.py	Python script for Command Line Arguments to pass	
run-csci-w-condor-in-terminal.py	to 'simulate_CsCl_84-X.py'	
simulate_CsCl_84-X.py	Simulate diffraction experiment with Condor .	
test_gnoise_asics.py	Load the detector mask and then locate the ASICs or	
	Tiles. Generate normal distributed noise per ASIC (or	subplot : 1
	Tile) and plot.	
CrossCA_84-run_qvsq.py	Read in 42 (current Davinci cluster limit) cross- correlations from 'Segments' files generated by	
	CrossCA_84-run_v7.py and plot 2D maps of the	
	correlations for 3 different Fourier coefficients and	
	stores the summed correlations in a hdf5-file.	subplot : 1
	CrossCA_84-run_qvsq-fqc.py reads sets of 42	
	summed correlations and calculates the FQC	
	[Kurta2017].	
run_CCA_slurm.sh	Slurm script for the Davinci-cluster: runs RadProf_84-run_v2.py	
	Slurm script for the Davinci-cluster:	
	runs the Condor simulation script,	
run_sim_slurm_new.sh	simulate_CsCl_84-X.py, for each PDB-file in	
	designated folder (in parallell).	
run plot diff slurm.sh	Slurm script for the Davinci-cluster: runs	
run_piot_uin_siurin.sii	Plot_diffraction.py	
run_2loop_loki_slurm.sh	Slurm script for the Davinci-cluster:	
	runs AutoCCA_84-run_v5.py or	
	CrossCA_84-run_v7.py for each CXI file in designated folder. Runs all calculation in parallel, one	
	job for each CXI-file. After no more jobs are queued,	
	runs the plot version of the script which reads all the	
	separate calculations (storesd in HDF5-files), sum	
	and plot the result.	
script in CsCl/test_result		
	Load a CXI-file. Plot some the diffraction patterns in a	
	subplot (intensity, amplitude and pattersson),	
CCA_cxi_84-X_v3.py	calculate CCA with 'Loki' or 'CXILT14' and plot the	1-14
	results. Option to make one quadrant noisy (3	
	options /implementations of noise).	
	Python script for Command Line Arguments to pass	
run_CCA_84_script.py	to 'CCA_cxil_84-X_v3.py'.	
read_CXI_84-119_v3.py	Load a CXI-file and plot. Several plotting options.	6