

INTRODUCTION

Earthquake also known as quake, tremor or temblor is the phenomenon where there is a sudden release of extreme energy from the earth crust resulting in shaking and displacement of the ground along with the creation of sesmic waves.

 If the Epicenter of a larger earthquake is situated in the offsore (sea/ocean) seabed may be displaced sufficiently to

cause Tsunami.

 It also triggers land slides and occassionally volcanic eruptions.

Contd.....

- Earthquake shaking may cause loss of life and destruction of property.
- In a strong earthquake the ground shakes violently.
- Buildings may fall or sink into the soil.
 Rocks and soil may move downhill at a rapid rate.
- Such landslides can bury houses and people.

Definitions

- <u>Earthquake</u> = Vibration of the Earth produced by the rapid release of energy
- <u>Seismic waves</u> = Energy moving outward from the focus of an earthquake
- Focus = location of initial slip on the fault; where the earthquake origins
- Epicenter = spot on Earth's surface directly above the focus

Why do Earthquakes Occur????

- Geological Faults.
- Volcanic Eruptions.
- Mine Blasts.
- Nuclear Tests.

Geological Faults

 A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement.

There are three main types of faults, namely

a) Normal Fault.

b)Thrust Fault.

c)Strike Slip Fault.

Normal Fault

 A normal fault occurs when the crust is extended. The hanging wall moves downward relative to the footwall

Normal fault

Thrust Fault

 A thrust fault occurs when the crust is compressed. The hanging wall moves upward relative to the forces footwall

Thrust fault

Compression

Strike Slip Fault

 The fault surface is usually near vertical and motion results from shearing forces

Strike-slip fault

Shearing forces

Classification of Earthquakes.

Based on Magnitude:

MAGNITUDE	CLASSIFICATION
M ≥ 8.0	Great Earthquake
$7.0 \ge M < 8.0$	Major / Large Earthquake
5.0 ≥ M < 7.0	Moderate Earthquake
$3.0 \ge M < 5.0$	Small Earthquake
$1.0 \ge M < 3.0$	Microearthquake
M < 1.0	Ultra Microearthquake

Based on Distance

CLASSIFICATION	DISTANCE
Teleseismic Earthquake	> 1000 km
Regional Earthquake	> 500 km
Local Earthquake	< 500 km

Effects of Earthquakes

Primary Earthquake Hazards: Rapid Ground Shaking

Structural Damage

Buckled roads and rail tracks

Secondary Earthquake Hazards:

Landslides Avalanches

Secondary Earthquake Hazards:

November 14, 2000

Alterations to Water Courses

Fire resulting from an earthquake

Tsunamis

Seismic sea waves; "tidal" waves - can grow up to 65 m.

Chedi Resort in Phuket, Thailand

Hide 2004 Indian Ocean Tsunami & Damage

Tsunami inundating the Chedi Resort in Phuket, Thailand on December 26, 2004 (JOANNE DAVIS/AFP/Getty Images)

Measuring earthquakes

 Seismometers: instruments that detect seismic waves.

 Seismographs:Record intensity, height and amplitude of seismic waves

Measuring the Size of Earthquake.

1. Magnitude: Richter Scale

- a) Measures the energy released by fault movement.
- b) Logarithmic-scale; quantitative measure.

Measuring the Size of Earthquake.

2) Intensity: Mercalli Scale:

What did you feel?

- Assigns an intensity or rating to measure an earthquake at a particular location (qualitative)
- Measures the destructive effect
- Intensity is a function of:
- Energy released by fault
- Geology of the location
- Surface substrate: can magnify shock waves

Identification of Faultlines:

New Madrid, Tennessee

San Andreas Faultline

Remote Seismograph Positioning.

Scientists consider seismic activity as it is registered on a seismometer.

A volcano will usually register some small earthquakes as the magma pushes its way up through cracks and vents in rocks.

> As a volcano gets closer to

erupting, the pressure builds up in the earth under the volcano and the earthquake activity becomes more and more frequent

Analog Image:

This is an image of an analog recording of an earthquake. The relatively flat lines are periods of quiescence and the large and squiggly line is an earthquake.

Digital Seismogram.

Below is a digital seismogram. The data is stored electronically, easy to access and manipulate, and much more accurate and detailed than the analog recordings.

Tiltmeter:

- Tilt meters attached to the sides of a volcano detect small changes in the slope of a volcano.
- When a volcano is about to erupt, the earth may bulge or swell up a bit.

Installing a tiltmeter

Changes in Groundwater Levels.

- Hydro geological responses to large distant earthquakes have important scientific implications with regard to our earth's intricate plumbing system.
- Improves our insights into the responsible mechanisms, and may improve our frustratingly imprecise ability to forecast the timing, magnitude, and impact of earthquakes.

Observations of Strange Behaviors in Animals.

The cause of unusual animal behavior seconds before humans feel an earthquake can be easily explain-ed.

- Very few humans notice the smaller P wave that travels the fastest from the earthquake source and arrives before the larger S wave.
- But many animals with more keen senses are able to feel the P wave seconds before the S wave arrives.

indeed it's possible that some animals could sense these signals and connect the perception with an impending earthquake.

Seismic Waves

Primary Waves:

- called compressional, or push-pull waves.
- Propagate parralel to the direction in which the wave is moving.
- Move through solids, liquids

- Secondary Waves (S);
 - Called shear waves.
 - Propagate the movement perpendicular to the direction in which the wave is moving.

Surface Waves:

- Complex motion.
- Up-and-down and side-to-side.
- Slowest.
- Most damage to structures, buildings.

Impacts of Earthquake Prediction

India, Gujarat earthquake Jan 26, 2001

