TRABALHO 1 - PTC 3413 - CONTROLE MULTIVARIÁVEL

O TRABALHO 1 vai considerar quatro desafios com relação ao sistema massa-mola da figura 1. Os dois primeiros se referem ao capítulo de controlabilidade e os dois últimos ao capítulo de observabilidade:

Figura 1: Sistema mecânico considerado neste capítulo.

Considere-se que

- A mola é ideal, tem comprimento nulo em repouso $(x_1 = x_2)$
- $u_1(t)$, $u_2(t)$ são entradas (forças de controle).
- $w_1(t)$ e $w_2(t)$ são nulas (perturbações).
- As massas são idênticas e iguais a M (adote um valor de M entre 1 e 10 kg).
- posições dadas por $x_1(t)$ e $x_2(t)$.
- A constante da mola é K (adote um valor de K de modo que $\sqrt{K/M}$ esteja entre 1 e 2).

Mostra-se que o modelo físico deste sistema é dado por

$$M\ddot{x}_1 + K(x_1 - x_2) = u_1 + w_1$$
 (1a)

$$M\ddot{x}_2 + K(x_2 - x_1) = u_2 + w_2$$
 (1b)

Convertendo as equações do sistema mecânico para forma de estado teremos:

$$\dot{x} = Ax + Bu
y = Cx + Du$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -K/M & 0 & K/M & 0 \\ 0 & 0 & 0 & 1 \\ K/M & 0 & -K/M & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ 1/M & 0 \\ 0 & 0 \\ 0 & 1/M \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ \dot{x}_1 \\ x_2 \\ \dot{x}_2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

PRIMEIRO DESAFIO: Determinar forças $u_1(t)$ e $u_2(t)$ no sistema mecânico de modo a levar o sistema de $x_1(0)=x_2(0)=x_0$ com velocidades iniciais nulas (repouso com mola no equilíbrio) até $x_1(T)=x_2(0)=x_f$ com velocidades finais nulas (repouso com mola no equilíbrio). Responder também à pergunta: É possível resolver este problema aplicando força só em $u_1(t)$? Para resolver o primeiro desafio faça um programa que calcule o gramiano de controlabilidade e um diagrama do simulink que implemente a teoria do Cap.3

A idéia do segundo desafio é:

- Queremos controlar apenas as coordenadas do centro de massa $z_1(t) = \frac{x_1(t) + x_2(t)}{2}$.
- Queremos que as forças de controle não influenciem a dinâmica da elongação da mola $z_2(t)=\frac{x_1(t)-x_2(t)}{2}$. Para isso faz-se uma decomposição especial em partes controlável e não controlável.

SEGUNDO DESAFIO:

- (a) Reescreva o modelo (A_1,B_1) do sistema considerando que a sua entrada será $u(t)=\mathbf{e}$ que o estado é $z(t)=(z_1(t),\dot{z}_1(t),z_2(t),\dot{z}_2(t))'$. Assuma que $u_1=u_2=u$.
- (b) Mostre que a dinâmica de (z_1,\dot{z}_1) corresponde à parte controlável e a dinâmica de (z_2,\dot{z}_2) corresponde à parte não controlável.
- (c) Construa um controle que leve o sistema de $(z_1(0),\dot{z}_1(0))$ até $(z_1(T_f),\dot{z}_1(T_f))$ arbitrários com condição inicial nula em $(z_2(0),\dot{z}_2(0))$
- (d) Simule no MATLAB o controle projetado em (c) para condição inicial nula de $(z_2(0), \dot{z}_2(0))$.
- (e) Repita a simulação anterior para condição inicial não nula de $(z_2(0),\dot{z}_2(0))$.
- (f) Nos itens (d) e (e) exiba os gráficos de $z_1(t)$ $z_2(t)$ e u(t) no intervalo $[0,3T_f/2]$, aplicando entrada nula para $t>T_f$.
- (g) Comente os resultados encontrados em (d) e (e).

ENUNCIADO FORMAL DO TERCEIRO DESAFIO:

- (a)Faça um programa de computador que determine o Gramiano de observabilidade de um sistema.
- (b) Usando este programa, faça um diagrama do simulink que estime o estado inicial. Neste diagrama deve aparecer a parte livre $y_1(t)$ da saída, lembrado que $y_1(t)$ é a diferença entre o a saída do sistema (resposta completa) menos a saída $y_f(t)$ obtida com a mesma entrada aplicada e condição inicial nula (resposta forçada).
- (c) Simule este diagrama para várias condições iniciais:

- $x_0 = (1, 0, 1, 0)'$
- $x_0 = (1, 0, 2, 0)'$.
- Uma terceira condição inicial com posições iniciais nulas com velocidades iniciais não nulas de sinais contrários.

Nas três simulações anteriores mostre o gráficos das quatro componentes de $\phi(t)=x_0-V(T)^{-1}\left\{\int_0^t e^{tA'}Cy_1(t)dt\right\}$. Comente os resultados obtidos.

(d) Repita a primeira simulação assumindo que a massa verdadeira do sistema é 10% maior isto é, $M_{real}=1.1kg$. Comente o resultado obtido.

A idéia do quarto desafio é

- Defina, como no segundo desafio, $z_2(t) = \frac{x_1(t) x_2(t)}{2}$ é a metade da elongação da mola e $z_1(t) = \frac{x_2(t) + x_2(t)}{2}$ é a posição de centro de massa.
- Queremos estimar $\dot{z}_2(t)$ conhecendo-se a entrada u(t) aplicada no sistema e $z_2(t)$.
- Derivadores não podem ser usados, somente integrações somas e produtos...

ENUNCIADO FORMAL DO QUARTO DESAFIO:

- (a) Reescreva o modelo do sistema $\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}$ considerando que que o estado é $z(t) = (z_1(t), \dot{z}_1(t), z_2(t), \dot{z}_2(t))'$ e que a saída é $y_{qd}(t) = z_2(t)$.
- (b) Mostre que a dinâmica de $w(t)=(z_2,\dot{z}_2)$ corresponde à parte observável e a dinâmica de (z_1,\dot{z}_1) corresponde à parte não observável (considerando a saída y_{ad} .
- (c) Seja (A_{22},B_{22},C_2) a parte observável do sistema. Construa um sistema que estime o estado inicial $w(0)=(z_2(0),\dot{z}_2(0))$ a partir do conhecimento da entrada e da saída $y_{qd}(t)$.
- (d) Simule o sistema e o estimador num tempo T para duas condições iniciais:
 - $z_0 = (1, 0, 2, 0)'$.
 - $z_0 = (1, 1, 2, -1)'$.

Nas duas simulações anteriores mostre o gráficos das duas componentes de $\phi(t)=w(0)-V(T)^{-1}\left\{\int_0^t e^{tA'_{22}}C_2y_\ell(t)dt\right\}$, onde y_ℓ é a parte "livre" de y_{qd} . Note $\phi(T)$ deve ser zero! Comente os resultados obtidos.

- (e) Repita as simulações do item (d) assumindo um desconhecimento da massa M de 10%.
- (f) Comente os resultados de simulação obtidos com este desconhecimento.