CSIR UGC NET EXAM (June 2016), Q.118

Tanmay Garg - EE20BTECH11048

April 9, 2021

CSIR UGC NET EXAM (June 2016), Q.118

Question

Three types of components are used in electrical circuits 1, 2, 3 as shown below in the figure. Suppose that each of the three components fail with probability \boldsymbol{p} and independently of each other. Let

 $q_i = \Pr(\text{Circuit } i \text{ does not fail}); i = 1, 2, 3 \text{ For } 0$

- $q_3 > q_1$
- $q_2 = q_1$
- $q_2 > q_3$

Question

Figure Circuit 1 Circuit 2 С В Α Circuit 3 Figure: Circuits

Boolean Algebra

Boolean Expression for Series Circuit

Boolean Expression for series circuit:

Figure: Series

Boolean Algebra

Boolean Expression for Parallel Circuit

Boolean Expression for parallel circuit:

$$A + B$$

Figure: Parallel

Boolean Expression

The Boolean Algebraic expression for this circuit is:

Figure: Circuit 1

We get:

$$AB+C$$
 (3)

Probabilities

For Circuit 1 to work the truth table will be:

Α	В	С	(AB) + C	Probability
1	1	0	1	$p(1-p)^2$
1	1	1	1	$(1-p)^3$
0	1	1	1	$p(1-p)^2$
0	0	1	1	$p^2(1-p)$
1	0	1	1	$p(1-p)^2$

Table: Circuit 1 working

Adding all we get Pr (Circuit 1 works):

$$q_1 = p^3 - 2p^2 + 1 \tag{4}$$

Boolean Expression

The Boolean Algebraic expression for this circuit is:

Figure: Circuit 2

We get:

$$(A+B)C (5)$$

Probabilities

For Circuit 2 to work the truth table will be:

Α	В	С	(A+B)C	Probability
1	1	1	1	$(1-p)^3$
1	0	1	1	$p(1-p)^2$
0	1	1	1	$p(1-p)^2$

Table: Circuit 2 working

Adding all we get Pr (Circuit 2 works):

$$q_2 = p^3 - p^2 - p + 1 (6)$$

Boolean Expression

The Boolean Algebraic expression for this circuit is:

Figure: Circuit 3

We get:

$$A + B + C \tag{7}$$

Probabilities

For Circuit 3 to work the truth table will be:

Α	В	С	A+B+C	Probability
1	0	0	1	$p^2(1-p)$
0	1	0	1	$p^2(1-p)$
0	0	1	1	$p^2(1-p)$
1	1	0	1	$p(1-p)^2$
1	0	1	1	$p(1-p)^2$
0	1	1	1	$p(1-p)^2$
1	1	1	1	$(1-p)^3$

Table: Circuit 3 working

Adding all we get Pr (Circuit 3 works):

$$q_3 = 1 - p^3 (8)$$

Plotting the functions

Answer

Correct Answer

On comparing from the graph we can determine that:

$$\therefore q_3 > q_1 > q_2 \tag{9}$$

Hence **Option 1**: $q_3 > q_1$ is correct