Al Agent Documentation Storage Architecture

Overview

This document outlines the comprehensive storage and repository architecture for managing documentation, code, and data for 20+ Al agents in a production environment.

1. Primary Storage Locations

1.1 Git Repository (GitLab/GitHub Enterprise)

Purpose: Version control for code, configurations, and documentation Location:

(https://git.company.com/ai-platform/agents)

ai-agents-platform/
—— documentation/
architecture/
system-design.md
—— data-flow-diagrams/
Lagricular api-specifications/
development/
—— getting-started.md
best-practices.md
L coding-standards.md
operations/
deployment-guide.md
monitoring-setup.md
incident-response.md
agents/
customer-support-agent/
 tests/
L—— README.md
├── code-review-agent/
[17 more agents]
shared-libraries/
evaluation-framework/
infrastructure-as-code/

1.2 Confluence/SharePoint

Purpose: Business documentation, runbooks, and team collaboration **Location**:

(https://confluence.company.com/display/AIAGENTS)

- Spaces Structure:
 - Al Agents Overview
 - Agent Catalog
 - User Guides
 - Training Materials
 - Meeting Notes
 - Roadmaps
 - Post-mortems

1.3 AWS S3 / Azure Blob Storage

Purpose: Large datasets, model artifacts, logs, and backups Buckets Structure:

```
s3://ai-agents-prod/
---- models/
    — customer-support-agent/
     ---- v1.0.0/
  v1.1.0/
     ---- latest/
     - [other agents...]
    - datasets/
     - training/
      evaluation/
     — feedback/
    logs/
      - performance/
      errors/
     interactions/
   - backups/
     - daily/
     - weekly/
     - monthly/
```

1.4 Vector Database (Pinecone/Weaviate)

Purpose: Agent knowledge bases and semantic search Collections:

- (agent-knowledge-base)
- (user-feedback-embeddings)
- documentation-search
- (conversation-history)

1.5 PostgreSQL/MongoDB

Purpose: Structured data, metadata, and configurations Schemas:

- (agents_metadata)
- (performance_metrics)
- user_feedback
- (deployment_history)
- (evaluation_results)

2. Documentation Types and Storage Mapping

Documentation Type	Primary Storage	Secondary Storage	Access Method	
Source Code	Git Repository	S3 (backups)	Git CLI, IDE	
API Documentation	Git + Swagger	Confluence	Web Portal	
User Guides	Confluence	S3 (PDFs)	Web Browser	
Training Data	S3	Git (samples)	SDK/API	
Model Artifacts	S3	Model Registry	MLOps Platform	
Logs & Metrics	CloudWatch/ELK	S3 (archives)	Monitoring Dashboard	
Secrets & Configs	AWS Secrets Manager	HashiCorp Vault	API/CLI	

3. Integration Architecture

3.1 CI/CD Pipeline Integration

yaml			

.gitlab-ci.yml example

stages:

- validate
- test
- build
- deploy
- document

update-documentation:

stage: document

script

- python scripts/generate_docs.py
- aws s3 sync ./docs s3://ai-agents-docs/
- curl -X POST \$CONFLUENCE_API/update

3.2 Documentation Generation Pipeline

- 1. **Code Changes** → Git commit triggers pipeline
- 2. **Auto-generate Docs** → Extract docstrings, generate API docs
- 3. **Sync to Storage** → Update S3, Confluence, and search index
- 4. **Notify Teams** → Slack/Teams notification of updates

3.3 Access Control Matrix

Role	Git	Confluence	S3	Database	Vector DB
Developer	Read/Write	Read/Write	Read	Read/Write	Read
Data Scientist	Read	Read/Write	Read/Write	Read	Read/Write
Operations	Read	Read	Read/Write	Read	Read
Business User	None	Read	None	None	None

4. Backup and Disaster Recovery

4.1 Backup Schedule

- **Git Repository**: Real-time replication to secondary region
- Confluence: Daily exports to S3
- S3 Buckets: Cross-region replication enabled
- Databases: Daily snapshots, point-in-time recovery enabled
- Vector DB: Weekly full backups, daily incremental

4.2 Recovery Time Objectives (RTO)

- Critical Documentation: < 1 hour
- Model Artifacts: < 2 hours
- Historical Data: < 24 hours

5. Search and Discovery

5.1 Unified Search Platform

- Elasticsearch Index aggregating:
 - Git repository content
 - Confluence pages
 - S3 object metadata
 - · Database records
 - · Vector similarity search

5.2 Documentation Portal

URL: (https://ai-docs.company.com)

- Single sign-on (SSO) enabled
- Role-based access control
- Full-text search across all sources
- Version history and change tracking

6. Monitoring and Compliance

6.1 Documentation Metrics

- Coverage: % of agents with complete documentation
- Freshness: Days since last update
- Quality: Automated quality checks
- **Usage**: Page views and search queries

6.2 Compliance Requirements

- GDPR: Personal data handling documentation
- **SOC2**: Security and access controls
- ISO 27001: Information security management

• Industry-specific: Healthcare (HIPAA), Finance (PCI-DSS)

7. Implementation Roadmap

Phase 1: Foundation (Months 1-2)

- Set up Git repository structure
- Configure S3 buckets and policies
- Establish Confluence spaces
- Implement basic CI/CD

Phase 2: Integration (Months 3-4)

- Deploy unified search
- Automate documentation generation
- Set up monitoring dashboards
- Implement backup procedures

Phase 3: Optimization (Months 5-6)

- Machine learning for documentation quality
- Advanced search with NLP
- Automated compliance checking
- Performance optimization

8. Best Practices

8.1 Documentation Standards

- Use Markdown for technical docs
- · Follow semantic versioning
- Include examples and diagrams
- Maintain changelog for each agent

8.2 Version Control

- Feature branches for major changes
- Code reviews for documentation
- Automated testing of examples
- Tag releases appropriately

8.3 Access Management

- Principle of least privilege
- Regular access reviews
- Audit logging enabled
- Secret rotation policies

Conclusion

This storage architecture provides a robust, scalable foundation for managing documentation and artifacts for 20+ Al agents. The distributed approach ensures high availability, efficient collaboration, and comprehensive tracking of all agent-related information throughout their lifecycle.