Artificial Intelligence I 2023/2024 Week 3 Tutorial and Additional Exercises

Linear Regression & Gradient Descent

School of Computer Science

February 13, 2024

In this tutorial...

In this tutorial we will be covering

- Univariate and multivariate linear regression.
- Exercises on gradient descent.
- Exercises on geometric concepts.
- Advanced theoretical exercises.

Univariate Linear Regression

Recall the formal statement of univariate linear regression:

- Given a training set $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$, train weights w_0, w_1 that minimise a loss function.
- Given this training set, and weights w_0 , w_1 , the square loss (or L_2 loss) function is given as

$$g(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)})^2.$$

ullet Informally, we need w_0, w_1 such that for all $i=1,\ldots,n$

$$w_0+w_1x^{(i)}\approx y^{(i)}.$$

Multivariate Linear Regression

Recall the formal statement of multivariate linear regression:

- Given a training set $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})\}$, train a weight vector \mathbf{w} that minimises a loss function.
- If we have d variables, then for all i = 1, ..., n, we write

$$\mathbf{x}^{(i)} = (1, x_1^{(i)}, x_2^{(i)}, \dots, x_d^{(i)})$$
 and $\mathbf{w} = (w_0, w_1, w_2, \dots, w_d)$.

• Given this training set and a weight vector \mathbf{w} , the square loss (or L_2 loss) function is given as

$$g(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}.$$

• Informally, we need **w** such that for all i = 1, ..., n

$$\mathbf{w}^T \mathbf{x}^{(i)} \approx \mathbf{y}^{(i)}.$$

Exercise 1

Consider a univariate linear regression problem with the square loss:

$$g(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

 We have this training set of size n = 4:

i	<i>x</i> ^(<i>i</i>)	$y^{(i)}$
1	1	3
2	0	2
3	2	5
4	-1	0

• Fill in the table to the right for each choice of weights.

Weights w_0, w_1	Loss $g(w_0, w_1)$	
$w_0 = 2, w_1 = 3$?	
$w_0 = 3$, $w_1 = 1$?	
$w_0 = 2$, $w_1 = 2$?	
$w_0 = 0$, $w_1 = 2$?	

• Which of these weights yield the minimum loss?

Exercise 1: Solution

• The table is filled as follows:

Weights w_0, w_1	Loss $g(w_0, w_1)$	
$w_0 = 2, \ w_1 = 3$	3.5	
$w_0 = 3$, $w_1 = 1$	1.5	
$w_0 = 2$, $w_1 = 2$	0.5	
$w_0 = 0$, $w_1 = 2$	2.5	

• The optimal weights out of these are $w_0 = 2$, $w_1 = 2$.

Exercise 2

Consider the following algorithm.

Algorithm 1: Single iteration of Gradient Descent for Univariate Linear Regression.

```
Input: Training set: \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}, learning rate: \alpha

Output: Cost C; weights w_0, w_1.

1 C \leftarrow 0;

2 w_0 \leftarrow 0;

3 w_1 \leftarrow 0;

4 for i = 1, \dots, n do

5 f \leftarrow w_0 + w_1 x^{(i)};

6 C \leftarrow C + (f - y^{(i)})^2;

7 w_0 \leftarrow w_0 - \alpha \cdot (f - y^{(i)});

8 w_1 \leftarrow w_1 - \alpha \cdot (f - y^{(i)}) x^{(i)}.

9 return C, w_0, w_1.
```

• What are the numerical values of C, w_0 , w_1 at the end of algorithm 1 for $\alpha=1$ and the following training set of size n=3:

i	$\chi^{(i)}$	$y^{(i)}$
1	1	1
2	2	5
3	3	11

Exercise 2: Solution

• For each i = 0, 1, 2, 3, we write the values of C, w_0, w_1 :

i	С	w_0	w_1
0	0	0	0
1	1	1	1
2	5	3	5
3	54	-4	-16

- Therefore, at the end of algorithm 1, we will have: C = 54, $w_0 = -4$, $w_1 = -16$.
- Draw this table for the same training set and $\alpha=2$. Then, for $\alpha=0.5$.

Exercise 3

Consider the following pairs of points in the form (x, y). In each case, find the equation of the line that passes between the two given points in the form y = ax + b. Also, find its slope.

- \bullet (1,2) and (-1,-4).
- (-1,3) and (3,-5).
- (-2, -3) and (1, 0).
- (3,5) and (0,5).

Hint: You should find the values of a and b. The slope equals a.

Exercise 3: Solution

The line equations are (in the same order):

- y = 3x 1; slope is 3.
- 2 y = -2x + 1; slope is -2.
- **3** y = x 1; slope is 1.
- **4** y = 5; slope is 0.

Exercise 4

In each case, find the point of intersection of the two given lines.

- y = x + 1 and y = 4x 2.
- ② y = 5x and y = -3x.
- **3** y = -2x + 3 and y = 4x 6.
- y = 5 and y = -x 10.

Hint: In each case, equate the two right-hand-sides to find x. Then solve for y.

Exercise 4: Solution

The points of intersection are (in the same order):

- **1** (1, 2).
- **2** (0,0).
- **3** (1.5, 0).
- (-15,5).

Up next...

Advanced Material

(OPTIONAL) Advanced Exercise 1

 Assume that we have trained a multi-variable regression model such that given an instance x, it predicts its y value to be

$$\hat{y} := \mathbf{w}^T \mathbf{x}.$$

• If the model predicts the same value \hat{y} for two different instances \mathbf{x}_1 and \mathbf{x}_2 , then, for any real value t, which can generate a new instance \mathbf{x}_0 , where

$$\mathbf{x}_0 = t\mathbf{x}_1 + (1-t)\mathbf{x}_2$$

prove that \mathbf{x}_0 is also predicted as \hat{y} by the model.

Hint: Start with w^Tx₀ and expand x₀ according to its formula.
 Geometrically, x₀ lies in the line that passes from x₁ and x₂.

(OPTIONAL) Advanced Exercise 1: Solution

• The prediction for \mathbf{x}_0 is

$$\mathbf{w}^{T}\mathbf{x}_{0} = \mathbf{w}^{T}(t\mathbf{x}_{1} + (1-t)\mathbf{x}_{2})$$

$$= t\mathbf{w}^{T}\mathbf{x}_{1} + (1-t)\mathbf{w}^{T}\mathbf{x}_{2}$$

$$= t\hat{y} + (1-t)\hat{y}$$

$$= \hat{y}.$$

• Therefore the same value \hat{y} is predicted by the model for \mathbf{x}_0 .

Advanced Exercise 2

 Let (x, y) be a data point and w be the weight vector to be optimised in a multivariate linear regression model with d variables. Assume that x and w are of the form¹

$$\mathbf{x} = (x_0, x_1, \dots, x_d)$$
 and $\mathbf{w} = (w_0, w_1, \dots, w_d)$.

Let g be a square loss function of the form

$$g(\mathbf{w}) = (\mathbf{w}^T \mathbf{x} - y)^2.$$

• Use the derivative rules to prove that

$$\nabla g(\mathbf{w}) = 2(\mathbf{w}^T \mathbf{x} - y)\mathbf{x}.$$

• Hint: Find each partial derivative separately, then factor.

¹We usually take $x_0 = 1$, but we leave it as x_0 here.

Advanced Exercise 2: Solution

We first write the loss function g as

$$g(w_0, w_1, \ldots, w_d) = (w_0x_0 + w_1x_1 + \cdots + w_dx_d - y)^2.$$

• The partial derivative of g, with respect to w_i , $0 \le i \le d$, is

$$\frac{\partial g}{\partial w_i}(w_0, w_1, \dots, w_d) = 2(w_0 x_0 + w_1 x_1 + \dots + w_d x_d - y) x_i$$
$$= 2(\mathbf{w}^T \mathbf{x} - y) x_i.$$

Therefore, the gradient vector of g is

$$\nabla g(\mathbf{w}) = (2(\mathbf{w}^T \mathbf{x} - y)x_0, 2(\mathbf{w}^T \mathbf{x} - y)x_1, \dots, 2(\mathbf{w}^T \mathbf{x} - y)x_d)$$

$$= 2(\mathbf{w}^T \mathbf{x} - y)(x_0, x_1, \dots, x_d)$$

$$= 2(\mathbf{w}^T \mathbf{x} - y)\mathbf{x}.$$

(OPTIONAL) Advanced Exercise 3

• A multi-variable function g is called *convex* if and only if for all \mathbf{w}_1 and \mathbf{w}_2 and for all $0 \le t \le 1$ we have

$$g(t\mathbf{w}_1 + (1-t)\mathbf{w}_2) \le tg(\mathbf{w}_1) + (1-t)g(\mathbf{w}_2).$$

- Convex functions are easy to minimise, and are common choices for loss functions, due to their property that any local minimum is also a global minimum (Try to prove this also!).
- Prove that given a data point (x, y) and a weight vector w, the following square loss function g is convex:

$$g(\mathbf{w}) = (\mathbf{w}^T \mathbf{x} - y)^2.$$

• Hint: Use the fact that for all real numbers a, b and for all $0 \le t \le 1$, we have $(ta + (1 - t)b)^2 \le ta^2 + (1 - t)b^2$.

(OPTIONAL) Advanced Exercise 3: Solution

• Let $\mathbf{w}_1, \mathbf{w}_2$ be any weight vectors and $0 \le t \le 1$. We have

$$g(t\mathbf{w}_{1} + (1-t)\mathbf{w}_{2}) = ((t\mathbf{w}_{1} + (1-t)\mathbf{w}_{2})^{T}\mathbf{x} - y)^{2}$$

$$= (t\mathbf{w}_{1}^{T}\mathbf{x} - ty + (1-t)\mathbf{w}_{2}^{T}\mathbf{x} - (1-t)y)^{2}$$

$$= (t(\mathbf{w}_{1}^{T}\mathbf{x} - y) + (1-t)(\mathbf{w}_{2}^{T}\mathbf{x} - y))^{2}$$

$$\leq t(\mathbf{w}_{1}^{T}\mathbf{x} - y)^{2} + (1-t)(\mathbf{w}_{2}^{T}\mathbf{x} - y)^{2}$$

$$= tg(\mathbf{w}_{1}) + (1-t)g(\mathbf{w}_{2}).$$

- We used the hint to obtain the inequality, since $(\mathbf{w}_1^T \mathbf{x} y)$ and $(\mathbf{w}_2^T \mathbf{x} y)$ are real numbers and $0 \le t \le 1$.
- Therefore, g is convex.

Any questions?

Until the next time...

Thank you for your attention!