Selección de Instancias en BigData

Victor Martinez Santiago^a, Dr. Alejandro Rosales Pérez^b, Dr. Edgar Jiménez Peña^b

^b Profesor Investigador, Centro de Investigación en Matemáticas, Unidad Monterrey

Introducción

"El objetivo de un método de selección de instancias es obtener un subconjunto $S \in T$ tal que S no contenga instancias superfluas y $Acc(S) \cong Acc(T)$ donde Acc(X) es la exactitud de clasificación obtenida usando X como conjunto de entrenamiento"[1]

Nosotros abordaremos el problema pensando en la tarea de clasificación y la suposición de que trabajaremos con datos tabulados.

Distancias

Una métrica debe cumplir con los siguientes criterios (donde d(x, y) se refiere a la distancia entre dos objetos x e y

- $d(x, y) \ge 0$ No negativa
- d(x, y) = d(y, x) Simetrica
- $d(x,z) \ge d(x,y) + d(y,z)$ Designaldad del triangulo

Distancia euclidiana

$$d(x, y) = ||x - y||$$

Distancia en el espacio kernel

$$d^{2}(\phi(x), \phi(y)) = \|\phi(x) - \phi(y)\|^{2}$$
$$= K(x, x) - 2K(x, y) + K(y, y)$$

Motivación

Datos mas fáciles de manipular

- 1. Mejorar tiempos de ejecución en clasificadores
- 2. Eliminar instancias ruidosas
- 3. Optimización en el almacenamiento de la información

FCNN

- Algoritmo de Selección de instancias propuesto por Angulli [2]
- Es probable que seleccione puntos cercanos al limite de decisión
- El algoritmo finaliza cuando el conjunto T es clasificado correctamente por S.

Algoritmo 1 FCNN (Fast Condensed Nearest Neighbour)

Entrada: Conjunto de entrenamiento $T = \{(x_1, y_1), ..., (x_n, y_n)\}$

Salida: Conjunto consistente *S* de *T*

- 1: $S = \emptyset$; S = centroides(T)
- 2: Mientras $\Delta S \neq \emptyset$ hacer:
- $S: S = S \cup \Delta S$
- 4: $\Delta S = \emptyset$
- Para cada $x \in S$ hacer:
- $\Delta S = \Delta S \cup \{rep(x, Voren(p, S, T))\}$
- : Fin Para cada
- 8: Fin Mientras

endimien	to del co	njunto	5		
Datos	Metodologia	KNN (K = 3)	MLP	SVM (<i>Kernel</i> = <i>RBF</i>)	RF
Airlines	FCNN_MR FCNN KFCNN KPCAFCNN T	0.88638 0.88993 0.90571 0.89291 0.90737	0.92891 0.93087 0.93886 0.92940 0.93906	0.93011 0.93171 0.93410 0.92012 0.93478	0.88130 0.88390 0.89009 0.88556 0.89060
BGN Australian	FCNN_MR FCNN KFCNN KPCAFCNN T	0.78106 0.83234 0.82489 0.83203	0.85676 0.86448 0.86412 0.86480		0.86257 0.86819 0.86243 0.85796
CovType	FCNN_MR FCNN KFCNN KPCAFCNN T	0.91101 0.93067 0.94382 0.94792	0.85590 0.88871 0.90009 0.89891	0.87814 0.91909 0.92374 0.92573	0.76216 0.76672 0.76814 0.76175

Conclusiones

- La mayor compresión y aceleración se obtiene utilizando el algoritmo FCNN_MR, y la perdida de rendimiento no supera las 5 centésimas de la linea base en nuestra métrica de interés.
- La metodología *FCNN* muestra resultados ligeramente mejores a *FCNN_MR* en la métrica de interés, no obtiene la mayor compresión y en contraparte el tiempo de ejecución es menor al empleado por *FCNN_MR*.
- KFCNN, muestra el mejor rendimiento, la velocidad de ejecución supera a FCNN_MR pero no logra una gran aceleración y la compresión mínima es de alrededor del 10%.
- ..

Bibliografia

- [1] J. Olvera-López, J. Carrasco-Ochoa, J. F. Martínez-Trinidad u.a., "A review of instance selection methods," *Artif. Intell. Rev.*, Jg. 34, S. 133–143, Aug. 2010. DOI: 10.1007/s10462-010-9165-y.
- [2] F. Angiulli, "Fast condensed nearest neighbor rule," in *Proceedings of the 22nd international conference on Machine learning*, 2005, S. 25–32.
- [3] I. Triguero, D. Peralta, J. Bacardit u.a., "MRPR: A MapReduce solution for prototype reduction in big data classification,"

 Neurocomputing In 150 S 331–345 2015 ISSN: 0925-2312
- Neurocomputing, Jg. 150, S. 331–345, 2015, ISSN: 0925-2312.

 [4] L. Si, J. Yu, S. Li u.a., "FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule,"

Journal of information and communication convergence engineering, Jg. 11, S. 855-861, 2017.