Standardizing Nature-Inspired Optimization Algorithms

--- A Unified Framework *UNIOA* for Seven Selected Algorithms

Huilin Li(2556057)|supervised by Anna, Carola, Diederick|16-May-2022

Agenda

- 1. Motivation
- 2. Outline of research
- 3. Steps of research
 - 3.1 Theoretical Analysis
 - ✓ Unified Terminologies
 - ✓ Unified Procedure
 - ✓ **Unified Framework --- Unified framework for NIOA --- UNIOA**
 - 3.2 Practical Analysis
 - ✓ Experimental Setup
 - ✓ Experimental Results
- 4. Conclusion

1. Motivation

2. Outline of research

- 7 **SA**
 - □ Old classical SA
 - ✓ PSO
 - ☐ New modern SA
 - ✓ BA, GOA, CSA, MFO, MBO, BOA
- Theoretical Analysis
 - ☐ Unified terminologies
 - ☐ Unified Procedure
 - ☐ Unified Framework --- UNIOA
- Practical Analysis
 - **□** Experiments

3.1 Theoretical Analysis Information Function **Unified Terminologies** Function UNIOA **Unified Framework Unified Procedure**

✓ Unified Terminologies

- > Categorize various terminologies
- > The information is the principle

✓ Unified Procedure

- > Assign the same position, after categorizing unified terminolgies
- > The function is the principle

- 8-tuple
- $NIOA = (f, Init_x, Opt_x, C, T, S, Init_\Delta, Opt_\Delta)$
- 8 tuples can be at the same position when modeling 7 SA

Algorithm 1 Unified Proceed	dure for seven selected algorithms (the unified positions of
eight tuples in Table 3.1)	
1: <i>t</i> ← 0	⊳ iteration counter
2: Tuple.2 Init _x	▷ initialize population
3: Tuple.1 f	▷ evaluation
 Tuple.3 Init_{Δ:w,z,x,y} 	\triangleright initialize w -relative, z -relative, \mathbf{x} -relative and \mathbf{y} -relative
step-size Δ	
5: while Tuple.8 T do	⊳ stop strategy
6: Tuple.5 Opt _{Δ:y} ⊳ upo	late y -relative step-size Δ , if y -relative step-size exsit in the
initialization process	
7: Tuple.4 $Opt_{\mathbf{x}}$	□ update population
8: Tuple.6 C	
9: Tuple.1 f	▷ evaluation
10: Tuple.7 S	▷ selection
11: Tuple.5 $Opt_{\Delta:z,x}$	\triangleright update z -relative and ${f x}$ -relative step-size Δ
12: $t \leftarrow t + 1$	
13: end while	

✓ Unified Framework

 $UNIOA = (f, Init_x, Opt_x, C, T, S, Init_\Delta, Opt_\Delta)$

Unified framework *UNIOA* is constructed well

$UNIOA = (f, Init_x, Opt_x, C, T, S, Init_\Delta, Opt_\Delta)$

Algorithm 9 Unified Nature-Inspired Optimization Algorithm — UNIOA

```
1: t \leftarrow 0
 2: \mathbf{X}(t) \leftarrow Init_{\mathbf{x}}(n, M, [lb_{\mathbf{x}}, ub_{\mathbf{x}}])
                                                                                                                    ▷ initialize initial pop
 3: F(t) \leftarrow f(\mathbf{X}(t))
                                                                                                                                       ▷ evaluate
 4: \Delta_{w,z,\mathbf{y},\mathbf{x}}(t) \leftarrow Init_{\Delta:w,z,\mathbf{y},\mathbf{x}}(\mathbf{X}(t),w,z^0,[lb_{\mathbf{y}},ub_{\mathbf{y}}],t)
                                                                                                                       ▷ initialize step-size
 5: while T do
             if \mathbf{y} \in \Delta(t=0) then
                  \mathbf{Y}(t+1) \leftarrow Opt_{\Delta:\mathbf{v}}(\mathbf{Y}(t), w)

    □ update y-relative step-size

                   \hat{\mathbf{X}}(t+1) \leftarrow Opt_{\mathbf{x}}(\mathbf{X}(t), \mathbf{Y}(t+1), \Delta_{w,z,\mathbf{x}}(t))

    b temporarily updated pop

                   \hat{\mathbf{X}}(t+1) \leftarrow C(\hat{\mathbf{X}}(t+1))
                                                                                                                      > outliers treatment
                  F(t+1) \leftarrow f(\hat{\mathbf{X}}(t+1))
10:
                                                                                                                                       ▷ evaluate
                   \mathbf{X}(t+1) \leftarrow S(\mathbf{X}(t), \mathbf{\hat{X}}(t+1), \Delta_{w,z}(t)) \triangleright select and generate finally updated
11:
      pop
                   \Delta_{z,\mathbf{x}}(t+1) \leftarrow Opt_{\Delta;z,\mathbf{x}}(\mathbf{X}(t),\mathbf{X}(t+1),z(t),t+1) \quad \triangleright \text{ update } z,\mathbf{x}\text{-relative}
12:
      step-size
13:
             else
                   \hat{\mathbf{X}}(t+1) \leftarrow Opt_{\mathbf{x}}(\mathbf{X}(t), \Delta(t))

    b temporarily updated pop

14:
                  \hat{\mathbf{X}}(t+1) \leftarrow C(\hat{\mathbf{X}}(t+1))
15:
                                                                                                                      ▷ outliers treatment
                  F(t+1) \leftarrow f(\hat{\mathbf{X}}(t+1))
16:
                                                                                                                                       ▷ evaluate
                   \mathbf{X}(t+1) \leftarrow S(\mathbf{X}(t), \hat{\mathbf{X}}(t+1), \Delta_{w,z}(t)) \triangleright select and generate finally updated
17:
      pop
                   \Delta(t+1) \leftarrow Opt_{\Lambda}(\mathbf{X}(t),\mathbf{X}(t+1),\Delta(t),t+1)

    □ update step-size

18:
             end if
19:
            t \leftarrow t + 1
20:
```

21: end while

3.2 Practical Analysis

3.2 Practical Analysis

ERT plot

- ☐ Output:
 - ✓ Two lines are close. (e.g. MFO)
- ☐ Conclusion:
 - ✓ At least in these seven algorithms, UNIOA performs same as ORIGINAL in the view of ERT plot.

☐ Output:

- ✓ Two boxes are close.
- ✓ Accept Ho.
- ☐ Conclusion:
 - ✓ At least in these seven algorithms, UNIOA performs same as ORIGINAL also in the view of AUC values.

ERT plot

- ☐ Output:
 - ✓ ERT lines over 7 algorithms in UNIOA
- ☐ Conclusion:
 - ✓ CSA

AUC values

☐ Output:

- ✓ AUC boxes over 7 algorithms in UNIOA
- ☐ Conclusion:
 - ✓ PSO, when Dim=5
 - ✓ MBO, when Dim=20

4. Conclusion

4. Conclusion

- □ https://github.com/Huilin-Li/ThesisProject Huilin
- □ https://github.com/Huilin-Li/UNIOA

Thanks!

