Week 9 - Quiz

Problem 1

If my null hypothesis is "Dutch people do not differ from English people in height", what is my alternative hypothesis?

- A. All of the statements are plausible alternative hypotheses.
- B. Dutch people are taller than English people.
- C. English people are taller than Dutch people.
- D. Dutch people differ in height from English people.

Correct Answer: D

Problem 2

If my experimental hypothesis were "Eating cheese before bed affects the number of nightmares you have", what would the null hypothesis (Ho) be?

- A. Eating cheese before bed gives you more nightmares.
- B. Eating cheese before bed gives you fewer nightmares.
- C. Eating cheese is linearly related to the number of nightmares you have.
- D. The number of nightmares you have is not affected by eating cheese before bed.

Correct Answer: D

In hypothesis testing, the hypothesis which is tentatively assumed to be true is called the

- A. correct hypothesis
- B. null hypothesis
- C. alternative hypothesis
- D. level of significance

Correct Answer: B

Problem 4

A researcher claims that 62% of voters favor gun control. Determine the null and alternative hypotheses.

A Ho: $p \neq 0.62$ vs. Ha: p = 0.62

B Ho: $p \ge 0.62$ vs. Ha: p < 0.62

C Ho: p < 0.62 vs. Ha: p ≥ 0.62

D Ho: p \geq 0.62 vs. Ha: p<0.62

E Ho: p = 0.62 vs. Ha: $p \neq 0.62$

Correct Answer: E

Claim: \$ = 0.62 does have an equal sign,

Ho: \$p = 0.62 vs. Ha: \$p \ \delta = 62

Problem 5

Nestor Milk Powder is sold in packets with an advertised mean weight of 1.5kgs. The standard deviation is known to be 184 grams. A consumer group wishes to check the accuracy of the advertised mean and takes a sample of 52 packets finding an average weight of 1.49kgs. What is the set of hypotheses that should be used to test the accuracy of advertised weight?

A Ho: $\mu = 1.5$ vs Ha: $\mu \neq 1.5$

B Ho: $\mu = 1.5$ vs Ha: $\mu < 1.5$

C Ho: x = 1.49 vs Ha: $x \ne 1.49$

D Ho: x = 1.5 vs Ha: x < 1.5

Correct Answer: A

Problem 6

Mr. Rumpole *believes that* the mean income of lawyers is now *more than* \$65000 thousand per year. Which is the correct set of hypotheses to test this belief?

A Ho: $\mu \ge 65000$ vs Ha: $\mu < 65000$ B Ho: $\mu \le 65000$ vs Ha: $\mu > 65000$ C Ho: $\mu = 65000$ vs Ha: $\mu \ne 65000$ D Ho: $\mu < 65000$ vs Ha: $\mu \ge 65000$

Correct Answer: B

claim: M > 65000 >> Ho: M € 65000 VS. Ha: U> 65000

Problem 7

Suppose a businessperson wishes to open a store in a local shopping center only if there is strong evidence that the average number of people in the center *is greater than* 5000 per day. The null hypothesis will be

A H0: $\mu \le 5000$ B H0: $\mu > 5000$ C H0: $\mu \ge 5000$ D H0: $\mu < 5000$

Correct Answer: A

Claim: M > 5000

⇒ Ho: M ≤ 5000

Problem 8

A manufacturer of chocolate toppings uses machines to dispense liquid ingredients into bottles that move along a filling line. The machine that dispenses toppings is working properly when 8 grams are dispensed. The standard deviation of the process is 0.15 grams. A sample of 50 bottles is selected periodically and the filling line is stopped *if there is evidence that the average amount dispensed is less than* 8 grams. Suppose that the average amount dispensed in a sample of 50 bottles is 7.983 grams. What is the null hypothesis (Ho)?

A. μ < 8

B. μ≥8

C. $\mu > 8$

D. $\mu \leq 8$

E. $\mu = 8$

Correct Answer: B

claim: M<8

=> Ho: MZ8 VS Ha: M<8

Problem 9

The standard deviation of a large population is 20. To test

 $H_o: \mu \leq 4$ vs. $H_a: \mu > 4$

at a level of significance of .05, a sample of size 100 will be taken. You will reject H_0 if the test statistic

A. TS ≥ 1.96

B. $TS \ge 0.95 \text{ or } TS \le -1.96$

C. TS ≥ 1.645

D. $TS \ge 1.645 \text{ or } TS \le -1.645$

E. TS > 1.285

Correct Answer: C

M=100 >30

CV= 1.645 Z

Problem 10

We are interested in conducting a test with the following hypothesis Ho: μ = 20 vs. Ha: μ > 20. If the sample size is 36, s = 12, the *population is normal*, and the level of significance is 0.05, what is the rejection region for this test? Reject H₀ if

A TS < 1.753

B TS > 2.575

C TS > 1.96

D TS > 1.645

n

Correct Answer: D

Ha: M720

Problem 11.

The null hypothesis is rejected if

- A. The null hypothesis is true.
- B. The alternative hypothesis is true.
- C. The p-value is less or equal to the significance level.
- D. The p-value is larger than the significance level.

Answer: C.

Problem 12.

For a two-tailed normal test, the p-value is defined to be

- A). The area to the right of the test statistic of the normal density curve.
- B). The area to the left of the test statistic of the normal density curve.
- C). The area between the two critical values in the normal density curve.
- D). Two times of the smaller tail area.

Answer D.

Problem 13.

Given H0: μ = 25, Ha: $\mu \neq$ 25, and P-value = 0.041. Do you reject or fail to reject H0 at the 0.01 level of significance?

- A) fail to reject Ho
- B) not sufficient information to decide
- C) reject Ho

Answer: A.

Problem 14.

The area to the left of the test statistic is 0.375. What is P- the value if this is a right tail test?

- A) 0.625
- B) 0.1885
- C) 0.750
- D) 0.375

Answer: A. 1 - 0.375 = 0.625

Problem 15

The area to the left of the test statistic is 0.375. What is the P-value if this is a two-tail test?

- A) 0.625
- B) 0.750
- C) 0.375
- D) 0.1885

Answer: B. Double the smaller tail area.

Summary of Weekly Quiz #9

1. Five Number Summary:

The five-number summary is use used to describe the shape of the distribution of a given numerical data. It consists of five numbers: minimum data value, first quartile, median, the third quartile, and the maximum data value.

The five-number summary of this given data set is:

stats	value		
Min.	5.00		
1st Qu.	8.00		
Median	8.50		
3rd Qu.	8.50		
Max.	10.00		

2. Boxplot:

The boxplot is a geometric representation of the five-number summary. The boxplot of the given data set is given below.

Probability Distribution Histogram

The class boundary is: 4.9,5.9,6.9,7.9,8.9,10

cut.data.freq	Freq	midpts	rel.freq	cum.freq	rel.cum.freq
[4.9,5.9]	1	5.40	0.02	1	0.02
(5.9,6.9]	3	6.40	0.07	4	0.10
(6.9,7.9]	5	7.40	0.12	9	0.22
(7.9,8.9]	24	8.40	0.58	33	0.81
(8.9,10]	8	9.45	0.20	41	1.00