Department of Computer Science & Engineering, National Institute of Technology Rourkela

End-Semester Examination (Autumn), 2019

Subject:Digital System Design

Subject Code: CS-2001
Duration: 3 Hours

Full Marks:**50**

Answer all questions.

Figures at the right margin indicate marks. All parts of a question must be answered at one place.

1.	(a)	Implement a full subtractor using two 4:1 multiplexers.	[3]	
	(b)	Design a Mod-8 ripple counter using T flip-flops.	[3]	
	(c)	Implement a full subtractor using two 4:1 multiplexers.	[3]	
	(d)	State the difference between a Mealy and Moore machine.	[1]	
2.	(a)	Design a synchronous counter using JK flip-flops that goes through states 3, 4, 6, 7, and 3 Check whether the counter is self starting? Modify the circuit such that whenever it goes to invistate, it comes back to state 3.	[5] valid	
	(b)	Draw the sequence table, state diagram and logic diagram of a 4 bit twisted ring counter using D flip-flop.	[3]	
	(c)	Explain how the race around condition can be avoided in J-K Flip Flops.	[2]	
3.	(a)	(a) Design a 4-bit shift register with parallel load using D flip-flops. These are two control inputs: shift and load. When shift $= 1$, the content of the register is shifted by one position. New data is transferred into the register when load $= 1$ and shift $= 0$. If both control inputs are equal to 0, the content of the register does not change.		
	(b)	Design a POS circuit that will generate an even parity for a 4 bit input .	[3]	
	(c)	Draw and explain the logic diagram of 2's complement 4 bit binary subtraction.	[3]	
4.	(a)	Design a sequence detector using D flip-flop to detect the sequence 1011. One bit overlapping is permitted.	[5]	
	(b)	Design a 5 to 32 line decoder using 3 to 8 line decoders and 2 to 4 line decoders.	[3]	
	(c)	Let $f(A,B)=A^{\prime}+B.$ Find the Simplified expression for function $f(f(x+y,y),z).$	[2]	
5.	(a)	Carry out the following flip-flop conversions.	[4]	
		i. D to SR ii. JK to D.		
	(b)	Synthesize a serial binary adder.	[4]	
	(c)	Draw the timing diagram for a 4 bit SISO shift register for an input string of 1101.	[2]	

---- x -----