Architectures de réseaux de traitement

d'images

Objectifs

 Comprendre l'architecture des réseaux les plus efficaces de la littérature

AlexNet

- Réseau qui a révélé le Deep Learning [?]
- Vainqueur d'ILSVRC (ImageNet Large Scale Visual Recognition Challenge) en 2012
- ullet Taux d'erreur : 25.8% en 2011 ightarrow 16.4% en 2012
- Entraîné sur deux GPUs
- Connections entre couches compliquées en conséquence

AlexNet

Туре	Nombre	Taille	Stride	Padding
Input	_	_	_	_
Convolution	96	11×11	4	0
Max Pooling	—	3×3	2	
Normalisation	_	_	_	_
Convolution	256	5×5	1	2
Max Pooling				
Normalisation	_	_	_	_
Convolution	384	3×3	1	1
Convolution	384	3×3	1	1
Convolution	256	3×3	1	1
Max Pooling				
Linear	4096	_	_	_
Linear	4096	_	_	_
Linear	1000	_	_	_

https://www.eni-service.fr/

Exercice

Туре	Nombre	Taille	Stride	Padding
Input	_	_	_	_
Convolution	96	11×11	4	0
Max Pooling	—	3×3	2	
Normalisation	_	_	_	_
Convolution	256	5 × 5	1	2
Max Pooling	—	3×3	2	
Normalisation	_	_	_	_
Convolution	384	3 × 3	1	1
Convolution	384	3×3	1	1
Convolution	256	3×3	1	1
Max Pooling	—	3×3	2	
Linear	4096	_	_	_
Linear	4096	_	_	_
Linear	1000	_	_	_

Solution

Les couches linéaires. Les couches de convolutions nécessitent peu de paramètres mais plus d'opérations par paramètre.

VGG

- Vainqueur d'ILSVRC 2014 (localisation) [?]
- Plus profond
- Filtres plus petits
- ightarrow Calculs plus simples, plus hiérarchisés

Туре	Nombre	Taille	Stride	Padding
Input	_	_	_	
Convolution * 2	64	3×3	1	1
Max Pooling	—	2×2	2	0
Convolution * 2	128	3 × 3	1	1
Max Pooling	—	2×2	2	0
Convolution * 2	256	3 × 3	1	1
Max Pooling				0
Convolution * 3	512	3 × 3	1	1
Max Pooling				0
Convolution * 3	512	3 × 3	1	1
Max Pooling	—	2×2	2	0
Linear	4096	_	_	_
Linear	4096	_	_	_
Linear	1000	_	_	_

GoogleNet

- Vainqueur d'ILSVRC 2014 (classification) [?]
- Plus profond
- Introduction d'un bloc astucieux

Bloc Inception

Exercice

Quels paddings pour les différents blocs?

Solution

Quels paddings pour les différents blocs?

Il faut maintenir des dimensions stables pour pouvoir concaténer :

$$1\times 1\ \to 0$$

$$3 \times 3 \rightarrow 1$$

$$5 \times 5 \rightarrow 2$$

Problème du bloc Inception

Les profondeurs deviennent prohibitives avec le nombre de couches

Bloc Inception « Bottleneck »

Rajouter des convolutions 1×1 pour contrôler la profondeur.

Exercice

Donner un exemple de contrôle de la profondeur par convolutions 1×1

Architecture complète

- Principalement 9 blocs Inception empilés
- Un « petit » réseau classique pour l'input
- 3 « petits » réseaux de prédiction aux blocs 3, 6 et 9

Architecture complète

- Principalement 9 blocs Inception empilés
- Un « petit » réseau classique pour l'input
- 3 « petits » réseaux de prédiction aux blocs 3, 6 et 9
 Pourquoi pas seulement en couche finale?

ResNet

- Microsoft Research [?]
- Vainqueur d'ILSVRC 2015
- Beaucoup, beaucoup plus profond (jusqu'à 1000 couches)
- Utilisation de connections résiduelles
- Très peu de pooling

Bloc résiduel

Intuition : le problème d'optimisation classique est trop dur à résoudre quand il y a beaucoup de couches.

Bloc résiduel

Existe aussi avec un « bottleneck » pour améliorer les performances des réseaux les plus profonds.

Comparaison des différentes architectures

Comparaison précise des temps de calculs, performance dans l'étude [?].

