- 1. 实验目的
 - (1) 学习多级放大电路静态工作点的调试方法。
 - (2) 掌握测试多级和负反馈放大电路性能指标的基本方法。
 - (3) 加深了解负反馈对放大电路性能的影响。
- 2. 实验设备和器材
 - (1) 直流电源 (2) 万用表 (3) 信号发生器
 - (4) 交流毫伏表 (5) 示波器
 - (6) 面包板 (7) 三极管、电阻、电容、电位器

图6.3.1 两级负反馈放大电路

图4-7 两级负反馈放大电路

4. 实验内容和步骤

预习:请根据实验步骤搭建仿真电路,熟悉实验内容步骤与测量结果

- 4. 实验内容和步骤
 - (4.1) 调整和测试两级放大电路的静态工作点
- ①按实验线路图接线,检查接线正确无误后,方可接通电源 $(V_{CC}=12V)$ 。 **拍照**: 拍下实际电路搭建图插入实验报告。
- ②调节电位器 R_W ,使晶体管 T_i 的集电极电位 U_{Ci} =10V,然后测量晶体管各电极的电压,所测量的值计入下表1中。

表1 晶体管 T_1 和 T_2 的各极电位

	$U_{{\scriptscriptstyle B1}}$	$U_{\it E1}$	U_{c_1}	$U_{{\scriptscriptstyle B2}}$	$U_{\it E2}$	U_{C2}
测量值			10V			

(4.2) 测量无反馈时,两级放大电路的电压放大倍数 A_{ι} 和通频带 f_{BW} 。

A、测量两级放大电路的开环放大倍数 A₁₁

条件: 令 R_s =0, R_L = ∞ , 考虑反馈支路的负载效应把 R_F 的下端F点接地。

在输入端 \mathbf{u}_s 加入 $\mathbf{1}$ kHz, $\mathbf{2}$ mV(有效值)的正弦电压信号,用示波器监视输出电压的波形,在输出波形不失真的条件下,用交流毫伏表测量 u_i 和 \mathbf{u}_o ,并计算 \mathbf{A}_u 。

拍照:交流毫伏表测量 u_i 和 u_o 的结果界面,示波器的显示界面档位信息需要拍到

B、测量两级放大电路的通频带

令 $R_s=0$, $R_L=\infty$, u_s 为2mV(有效值)的正弦电压信号,首先测出中频1kHz时的输出电压值,然后分别提高和降低信号源 u_s 的频率(注意保持 u_s 的有效值为2mV不变),使输出电压下降为中频时的输出电压值的0.707倍,则所对应的频率分别为上限截止频率 f_H 和下限截止频率 f_L 。

计算放大电路的通频带 $f_{BW} = f_H - f_L$ 。

(4.3) 测量负反馈放大电路的 $A_{ m uf}$ 和通频带 $f_{ m RWf}$ 。

将接成电压串联负反馈(即F点接E点),正弦信号源 U。变为1kHz, 5mV (有效值), 重复实验步骤4.2的全部内容, 并将数据填入表 2中。

两级放大电路的开环和闭环的动态指标比较

	测量	计算值			
无反馈	U_s	U_o	$f_{\scriptscriptstyle H}$	$f_{\scriptscriptstyle L}$	A_u
有反馈	$U_{\it sf}$	$U_{\it of}$	$f_{{\scriptscriptstyle H}\!{\scriptscriptstyle f}}$	$f_{{\scriptscriptstyle L}\!f}$	A_{uf}

五. 实验要求

- (1) 实验必须认真预习,完成表格中要求得理论值的计算。
- (2) 实验完成后必须写出实验报告,实验报告为电子版,在乐学平台上提交。 对结果进行比较得出结论。内容要求参见第一节课ppt的要求。
 - 一定要进行预习,否则实验没有任何效果

实验报告只提交电子版文档,在乐学平台上提交;

- ▶ 文档格式为 ".pdf", 文件命名为 "编号-姓名-实验 x 实验报告.pdf"; 请注意报告格式要符合规范。
- ▶公式书写要求用公式编辑器录入, word有自带或者mathtype;
- ▶实验原理图用绘图软件 (建议Multisim或者Altium Designer) 或手绘图片;
- >数据波形要求用绘图软件或手绘图片。**表格请自行绘制,不能用手画后的截图,可以**word

六. 思考题

(1) 分析电压串联负反馈对电路性能的影响。

1、实验结束后,**请老师、助教老师检查数据是否都填写完毕,确认实验都完成后**

方能拆掉电路离开实验室, 报编号;

2、小面包板、灰色杜邦线盒请放在原位。

3、实验结束清单 交回讲台。

4、元器件请放回元器件袋中,编号与桌号对应, 元器件袋放到原位即可,不要交回,方便下一组 同学使用。如有多余的仍放回袋中,不要放到蓝 盒子中。元器件袋中应包含: (1个小改锥 1个电 位器 11个电阻 5个电解电容 1个独石电容 2个 三极管)

5、不要随意拿周边桌的元件与工具,借用要还回原位置。

序号	名称/型号	件数	
1	S9013	2	
2	RW 2M	1	
3	100	1	
4	2k	5	
5	4.7k	1	
6	5.1k	1	
7	10k	1	
8	15k	1	
9	1M	1	
10	100pF	1	
11	10uF/35V	3	
12	100uF/35V	2	
13	小蓝一字	1	
0			