Datenstrukturen und effiziente Algorithmen Blatt 6

Markus Vieth, David Klopp, Christian Stricker $30.\ {\rm November}\ 2015$

Aufgabe 1

Anmerkung:

Eine Rotation besteht aus einer konstanten Anzahl von Verknüpfungsänderungen angewendet auf eine konstante Anzahl von Knoten. Die Laufzeit liegt somit in O(1).

Aufgabe 2

Füge rekursive den Wurzelknoten von T_2 an den größten Knoten in T_1 . Beim wiederhochspringen der Rekursion wird die Höhe der Teilbäume verglichen (Da jeder Knoten seine Höhe kennt, reicht eine einfache Addition um die richtige Höhe des Knotens im T_1 zu bestimmen) und notfalls rotiert. Es muss nur ab dem größten Knoten des T_1 Baumes der Gesamtbaum ausgeglichen werden, da die Teilbäume des größten Knoten von T_1 schon ausgeglichen sind.

Laut Vorlesung ist der Gesamtbaum ausgeglichen, wenn der Rotier-Algorithmus rekursive einmal durchgelaufen ist.

Die Laufzeit ist $O(\log(n))$, da einmal der größte Knoten in T_1 gesucht wird.

Da $h_1 \le h_2$ gilt: $\log(m) \le \log(n) \Rightarrow O(\log(n) + \log(m)) = O(\log(n))$