标准模型的拉氏量和 Feynman 规则

余钊焕

中山大学物理学院

https://yzhxxzxy.github.io

2024年4月24日

目 录

1	约定	2				
2	标准模型概述					
3	量子色动力学	3				
4	电弱规范理论 4.1 Brout-Englert-Higgs 机制	16				
5	R_{ξ} 规范下电弱拉氏量和 $\mathrm{Feynman}$ 规则	24				
6	内外线一般 Feynman 规则	38				
7	常用单位和标准模型参数	40				

1 约定

本文采用有理化的自然单位制,推导过程参考文献 [1, 2, 3, 4],协变导数的约定与 Review of $Particle\ Physics\ [5]$ 第 9 、10 、11 章一致。

Minkowski 度规张量

$$g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}. \tag{1}$$

Pauli 矩阵

$$\sigma^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} -i \\ i \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$
 (2)

$$\sigma^{\mu} \equiv (1, \boldsymbol{\sigma}), \quad \bar{\sigma}^{\mu} \equiv (1, -\boldsymbol{\sigma}).$$
 (3)

Weyl 表象中的 Dirac 矩阵

$$\gamma^{\mu} = \begin{pmatrix} \sigma^{\mu} \\ \bar{\sigma}^{\mu} \end{pmatrix}, \quad \gamma^{5} = \begin{pmatrix} -\mathbf{1} \\ \mathbf{1} \end{pmatrix}. \tag{4}$$

左右手投影算符

$$P_{\rm L} \equiv \frac{1}{2}(1 - \gamma^5) = \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix}, \quad P_{\rm R} \equiv \frac{1}{2}(1 + \gamma^5) = \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \end{pmatrix}$$
 (5)

用于定义左手旋量场 $\psi_{\rm L} \equiv P_{\rm L} \psi$ 和右手旋量场 $\psi_{\rm R} \equiv P_{\rm R} \psi$ 。Levi-Civita 符号的约定取

$$\varepsilon^{0123} = \varepsilon^{123} = +1. \tag{6}$$

Feynman 规则约定如下。

- 对于指向相互作用顶点的动量 p , 时空导数 ∂_{μ} 在动量空间 Feynman 规则里贡献一个 $-\mathrm{i}p_{\mu}$ 因子。
- 实线表示费米子, 实线上的箭头表示费米子数流动的方向。
- 虚线表示标量玻色子, 虚线上的箭头表示玻色子数流动的方向。
- 螺旋线表示胶子; 波浪线表示其它规范玻色子, 波浪线上的箭头表示玻色子数流动的方向。
- 点线表示鬼粒子, 点线上的箭头表示鬼粒子数流动的方向。
- 如果没有额外箭头标记, 动量方向与粒子线上的箭头方向一致; 否则与额外箭头方向一致。

2 标准模型概述

粒子物理标准模型是一个 $SU(3)_C \times SU(2)_L \times U(1)_Y$ 规范理论。模型中有三代费米子,包括三代中微子 $\nu_i = \nu_e, \nu_\mu, \nu_\tau$,三代带电轻子 $\ell_i = e, \mu, \tau$,三代上型夸克 $u_i = u, c, t$ 和三代下型夸克 $d_i = d, s, b$ (i = 1, 2, 3)。规范玻色子传递费米子之间的规范相互作用。

 $SU(3)_C$ 部分描述夸克的强相互作用,称为量子色动力学 (Quantum Chromodynamics, QCD),相应的规范玻色子是胶子。 $SU(2)_L \times U(1)_Y$ 部分统一描述夸克和轻子的电磁和弱相互作用,称为电弱规范理论。理论中有一个 Higgs 二重态,通过 Brout–Englert–Higgs (BEH) 机制引发规范群的自发对称性破缺,使 $SU(2)_L \times U(1)_Y$ 群破缺为 $U(1)_{EM}$ 群。 $U(1)_{EM}$ 规范理论称为量子电动力学 (Quantum Electrodynamics, QED)。

破缺前,理论中存在 4 个无质量的规范玻色子和 4 个 Higgs 自由度; 左手费米子和右手费米子都没有质量,具有不同的量子数。

破缺后, 3 个规范玻色子与 3 个 Higgs 自由度结合,从而获得质量,成为 W^{\pm} 和 Z^{0} 玻色子,传递弱相互作用。剩下的 1 个无质量规范玻色子是光子,即是 $U(1)_{EM}$ 群的规范玻色子,传递电磁相互作用。剩下的 1 个中性 Higgs 自由度称为 Higgs 玻色子。费米子与 Higgs 二重态的 Yukawa 耦合导致左手费米子和右手费米子获得质量,组合成 Dirac 费米子。

理论中的中微子没有右手分量,因而没有获得质量。1998年实验发现中微子振荡,证明中微子具有质量,所以需要扩充标准模型才能正确描述中微子物理。

3 量子色动力学

QCD 的拉氏量表达为

$$\mathcal{L}_{QCD} = \sum_{q} \bar{q} (i\gamma^{\mu} D_{\mu} - m_{q}) q - \frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu}, \quad q = u, d, s, c, b, t, \quad a = 1, \dots, 8,$$
 (7)

其中

$$D_{\mu} = \partial_{\mu} + ig_{\rm s}G^a_{\mu}t^a, \quad G^a_{\mu\nu} \equiv \partial_{\mu}G^a_{\nu} - \partial_{\nu}G^a_{\mu} - g_{\rm s}f^{abc}G^b_{\mu}G^c_{\nu}.$$
 (8)

q 为夸克旋量场 $SU(3)_C$ 三重态, $SU(3)_C$ 规范场 G^a_μ 对应于胶子 g , g_s 是 $SU(3)_C$ 规范耦合常数。 $t^a=\lambda^a/2$ 是 $SU(3)_C$ 群基础表示的生成元,其中 λ^a 为 Gell-Mann 矩阵。 $SU(3)_C$ 生成元对 易关系为 $[t^a,t^b]=if^{abc}t^c$,结构常数 f^{abc} 是全反对称的,非零分量为

$$f^{123} = 1$$
, $f^{147} = f^{246} = f^{257} = f^{345} = f^{516} = f^{637} = \frac{1}{2}$, $f^{458} = f^{678} = \frac{\sqrt{3}}{2}$. (9)

由

$$-\frac{1}{4}G^{a}_{\mu\nu}G^{a,\mu\nu} = -\frac{1}{4}(\partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + g_{\rm s}f^{abc}G^{b}_{\mu}G^{c}_{\nu})(\partial^{\mu}G^{a,\nu} - \partial^{\nu}G^{a,\mu} + g_{\rm s}f^{ade}G^{d,\mu}G^{e,\nu})$$

$$= -\frac{1}{2} [(\partial_{\mu} G_{\nu}^{a})(\partial^{\mu} G^{a,\nu}) - (\partial_{\mu} G_{\nu}^{a})(\partial^{\nu} G^{a,\mu})] + g_{s} f^{abc} (\partial_{\mu} G_{\nu}^{a}) G^{b,\mu} G^{c,\nu}$$

$$-\frac{g_{s}^{2}}{4} f^{abc} f^{ade} G_{\mu}^{b} G_{\nu}^{c} G^{d,\mu} G^{e,\nu},$$
(10)

推出

$$\mathcal{L}_{QCD} = \sum_{q} [\bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{q})q - g_{s}G_{\mu}^{a}\bar{q}\gamma^{\mu}t^{a}q] + \frac{1}{2}[(\partial_{\mu}G_{\nu}^{a})(\partial^{\nu}G^{a,\mu}) - (\partial_{\mu}G_{\nu}^{a})(\partial^{\mu}G^{a,\nu})]
+ g_{s}f^{abc}(\partial_{\mu}G_{\nu}^{a})G^{b,\mu}G^{c,\nu} - \frac{g_{s}^{2}}{4}f^{abc}f^{ade}G_{\mu}^{b}G_{\nu}^{c}G^{d,\mu}G^{e,\nu}.$$
(11)

设用于固定胶子场规范的函数 $G^a(x)=\partial^\mu G^a_\mu(x)-\omega^a(x)$,其中 $\omega^a(x)$ 是某个任意函数,规范固定条件是 $G^a(x)=0$ 。这是 Lorenz 规范的推广, $\omega^a(x)=0$ 对应于 Lorenz 规范。在路径积分量子化中,以中心为 $\omega^a(x)=0$ 的 Gauss 权重对 $\omega^a(x)$ 作泛函积分,有

$$\int \mathcal{D}\omega^a \exp\left[-i\int d^4x \, \frac{1}{2\xi} (\omega^a)^2\right] \delta(G^a) = \exp\left[-i\int d^4x \, \frac{1}{2\xi} (\partial^\mu G^a_\mu)^2\right]. \tag{12}$$

可见, 拉氏量中的规范固定项为

$$\mathcal{L}_{\text{QCD,GF}} = -\frac{1}{2\xi} (\partial^{\mu} G_{\mu}^{a})^{2}. \tag{13}$$

 ξ 的任何一个取值对应于一种规范。 $\xi=1$ 称为 Feynman-'t Hooft 规范, $\xi=0$ 称为 Landau 规范。于是,胶子传播子相关拉氏量为

$$\mathcal{L}_{\text{QCD,prop}} = \frac{1}{2} \left[(\partial_{\mu} G_{\nu}^{a}) (\partial^{\nu} G^{a,\mu}) - (\partial_{\mu} G_{\nu}^{a}) (\partial^{\mu} G^{a,\nu}) - \frac{1}{\xi} (\partial^{\mu} G_{\mu}^{a})^{2} \right]
\rightarrow \frac{1}{2} G_{\mu}^{a} \left[g^{\mu\nu} \partial^{2} - \left(1 - \frac{1}{\xi} \right) \partial^{\mu} \partial^{\nu} \right] G_{\nu}^{a}.$$
(14)

这里 → 代表丢弃一些全散度项。变换到动量空间,得

$$-g^{\mu\nu}p^2 + \left(1 - \frac{1}{\xi}\right)p^{\mu}p^{\nu},\tag{15}$$

它的逆矩阵是

$$-\frac{1}{p^2} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} (1 - \xi) \right], \tag{16}$$

这是因为

$$-\frac{1}{p^2} \left[g_{\rho\mu} - \frac{p_{\rho}p_{\mu}}{p^2} (1 - \xi) \right] \left[-g^{\mu\nu}p^2 + \left(1 - \frac{1}{\xi} \right) p^{\mu}p^{\nu} \right]$$

$$= \delta_{\rho}^{\nu} - \frac{p_{\rho}p^{\nu}}{p^2} \left(1 - \frac{1}{\xi} \right) - \frac{p_{\rho}p^{\nu}}{p^2} (1 - \xi) + \frac{p_{\rho}p^{\nu}}{p^2} (1 - \xi) \left(1 - \frac{1}{\xi} \right) = \delta_{\rho}^{\nu}. \tag{17}$$

从而胶子传播子的形式为

$$\frac{-\mathrm{i}\delta^{ab}}{p^2 + \mathrm{i}\epsilon} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} (1 - \xi) \right]. \tag{18}$$

SU(3)c 规范变换为

$$q' = Uq, \quad (G^a_\mu t^a)' = UG^a_\mu t^a U^\dagger - \frac{\mathrm{i}}{g_s} U \partial_\mu U^\dagger, \tag{19}$$

其中 $U(x) = \exp[i\alpha^a(x)t^a]$ 。 胶子场的无穷小规范变换形式是

$$(G_{\mu}^{a}t^{a})' = (1 + i\alpha^{a}t^{a})G_{\mu}^{b}t^{b}(1 - i\alpha^{c}t^{c}) - \frac{i}{g_{s}}(1 + i\alpha^{a}t^{a})\partial_{\mu}(1 - i\alpha^{c}t^{c})$$

$$= G_{\mu}^{b}t^{b} + i\alpha^{c}G_{\mu}^{b}[t^{c}, t^{b}] - \frac{1}{g_{s}}(\partial_{\mu}\alpha^{c})t^{c} + \mathcal{O}(\alpha^{a}\alpha^{b})$$

$$= G_{\mu}^{a}t^{a} - f^{cba}\alpha^{c}G_{\mu}^{b}t^{a} - \frac{1}{g_{s}}(\partial_{\mu}\alpha^{a})t^{a} + \mathcal{O}(\alpha^{a}\alpha^{b})$$

$$= \left(G_{\mu}^{a} + f^{abc}G_{\mu}^{b}\alpha^{c} - \frac{1}{g_{s}}\partial_{\mu}\alpha^{a}\right)t^{a} + \mathcal{O}(\alpha^{a}\alpha^{b}), \tag{20}$$

即 G_{μ}^{a} 的无穷小变化为

$$\delta G_{\mu}^{a} = (G_{\mu}^{a})' - G_{\mu}^{a} = -\frac{1}{g_{s}} \partial_{\mu} \alpha^{a} + f^{abc} G_{\mu}^{b} \alpha^{c} = -\frac{1}{g_{s}} (D_{\mu} \alpha)^{a} = -\frac{1}{g_{s}} D_{\mu}^{ac} \alpha^{c}, \tag{21}$$

其中 $(D_{\mu}\alpha)^a = \partial_{\mu}\alpha^a - g_s f^{abc} G^b_{\mu}\alpha^c$ 是 $SU(3)_C$ 伴随表示中的协变导数,而

$$D_{\mu}^{ac} = \delta^{ac} \partial_{\mu} - g_{\rm s} f^{abc} G_{\mu}^{b}. \tag{22}$$

因此,规范固定函数 G^a 的无穷小变化为

$$\delta G^a = \partial^\mu \delta G^a_\mu = -\frac{1}{g_s} \partial^\mu D^{ac}_\mu \alpha^c, \tag{23}$$

故

$$\frac{\delta G^a}{\delta \alpha^c} = -\frac{1}{q_{\rm s}} \, \partial^\mu D_\mu^{ac} = -\frac{1}{q_{\rm s}} \, \delta^{ac} \partial^2 + f^{abc} \partial^\mu G_\mu^b. \tag{24}$$

根据 Grassmann 数的积分式

$$\left(\prod_{i} \int d\theta_{i}^{*} d\theta_{i}\right) \exp(-\theta_{i}^{*} B_{ij} \theta_{j}) = \det(B), \tag{25}$$

 $\delta G^a/\delta \alpha^c$ 的行列式可用 Faddeev-Popov 鬼场 η_g^a 和 $\bar{\eta}_g^a$ 表达为

$$\det\left(\frac{\delta G^a}{\delta \alpha^c}\right) = \det\left(-\frac{1}{g_s} \partial^{\mu} D_{\mu}^{ac}\right) = \int \mathcal{D}\eta_g^a \mathcal{D}\bar{\eta}_g^c \exp\left[i \int d^4 x \,\bar{\eta}_g^a (-\partial^{\mu} D_{\mu}^{ac}) \eta_g^c\right],\tag{26}$$

这里 $-1/g_{
m s}$ 因子被吸收到鬼场 η_g^a 和 $\bar{\eta}_g^a$ 的归一化中。注意到

$$-\partial^{\mu}D_{\mu}^{ac} = g_{\rm s} \frac{\delta G^a}{\delta \alpha^c} = -\delta^{ac}\partial^2 + g_{\rm s} f^{abc}\partial^{\mu}G_{\mu}^b, \tag{27}$$

Faddeev-Popov 鬼场在拉氏量中的贡献是

$$\mathcal{L}_{\text{QCD,FP}} = \bar{\eta}_g^a (-\partial^{\mu} D_{\mu}^{ac}) \eta_g^c = \bar{\eta}_g^a \left(g_s \frac{\delta G^a}{\delta \alpha^c} \right) \eta_g^c = \bar{\eta}_g^a (-\delta^{ac} \partial^2 + g_s f^{abc} \partial^{\mu} G_{\mu}^b) \eta_g^c$$

$$\rightarrow -\bar{\eta}_q^a \delta^{ab} \partial^2 \eta_q^b - g_s f^{abc} (\partial^{\mu} \bar{\eta}_q^a) G_{\mu}^b \eta_q^c.$$
(28)

下面列出 QCDFeynman 规则。

QCD 耦合顶点:

$$g; a, \mu$$

$$= -ig_s \gamma^{\mu} t^a \tag{29}$$

$$g; a, \mu$$

$$p$$

$$g; b, \nu$$

$$g; b, \nu$$

$$g; b, \nu$$

$$g; c, \rho$$

$$g; a, \mu$$

$$= -ig_s^2 [f^{abe} f^{cde} (g^{\mu\rho} g^{\nu\sigma} - g^{\mu\sigma} g^{\nu\rho})$$

$$+ f^{ace} f^{bde} (g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho})$$

$$+ f^{ade} f^{bce} (g^{\mu\nu} g^{\rho\sigma} - g^{\mu\rho} g^{\nu\sigma})]$$

$$g; c, \rho$$

$$g; d, \sigma$$

$$(31)$$

$$g; b, \mu$$

$$g; b, \mu$$

$$p$$

$$\eta_g; c$$

$$\eta_g; a$$

$$(32)$$

胶子传播子:

$$b, \nu \bullet ooooooooo \bullet a, \mu = \frac{-\mathrm{i}\delta^{ab}}{p^2 + \mathrm{i}\epsilon} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} (1 - \xi) \right]$$

$$(33)$$

鬼粒子传播子:

$$b \bullet \cdots \bullet a = \frac{\mathrm{i}\delta^{ab}}{p^2 + \mathrm{i}\epsilon}$$
 (34)

4 电弱规范理论 - 7 -

4 电弱规范理论

电弱规范理论的规范群是 $SU(2)_L \times U(1)_Y$,每一代左手旋量场构成 2 个 $SU(2)_L$ 二重态

$$L_{iL} = \begin{pmatrix} P_{L}\nu_{i} \\ P_{L}\ell_{i} \end{pmatrix} = \begin{pmatrix} \nu_{iL} \\ \ell_{iL} \end{pmatrix}, \quad Q_{iL} = \begin{pmatrix} P_{L}u'_{i} \\ P_{L}d'_{i} \end{pmatrix} = \begin{pmatrix} u'_{iL} \\ d'_{iL} \end{pmatrix}, \quad i = 1, 2, 3.$$
 (35)

它们的协变导数是

$$D_{\mu} = \partial_{\mu} + igW_{\mu}^{a}\tau^{a} + ig'B_{\mu}Y, \tag{36}$$

其中 $W^a_\mu(x)$ (a=1,2,3) 是 $SU(2)_L$ 规范场, $B_\mu(x)$ 是 $U(1)_Y$ 规范场,g 和 g' 分别是 $SU(2)_L$ 和 $U(1)_Y$ 的规范耦合常数,取 g>0 且 g'>0。

$$\tau^a = \frac{\sigma^a}{2} \tag{37}$$

是 SU(2)_L 群 2 维表示的生成元,对应于弱同位旋。生成元 τ^3 的本征值是弱同位旋第 3 分量,记为 T^3 。Y 是弱超荷。各代右手旋量场 $\ell_{iR}=P_R\ell_i$ 、 $u'_{iR}=P_Ru'_i$ 和 $d'_{iR}=P_Rd'_i$ 是 SU(2)_L 单态,协变导数为

$$D_{\mu} = \partial_{\mu} + ig'B_{\mu}Y. \tag{38}$$

表 1 列出费米子场的电荷 Q、弱同位旋第 3 分量 T^3 、弱超荷 Y、重子数 B 和轻子数 $L_e/L_\mu/L_\tau$,其中电荷 Q 由 T^3 和 Y 定义,

$$Q \equiv T^3 + Y. \tag{39}$$

表 1: 标准模型费米子场的量子数。

	第一代	第二代	第三代	Q	T^3	Y	В	$L_e/L_{\mu}/L_{ au}$
$ \left(\nu_{i\mathrm{L}}\right) $	$\left(u_{e\mathrm{L}} ight)$	$\left(u_{\mu m L} ight)$	$\left(\nu_{ au \mathrm{L}}\right)$	0	1/2	-1/2	0	1
$L_{i\mathrm{L}} = egin{pmatrix} u_{i\mathrm{L}} \\ \ell_{i\mathrm{L}} \end{pmatrix}$	$\left\langle e_{ m L} \right angle$	$\left(\mu_{ m L} ight)$	$\left(au_{ m L} ight)$	-1	-1/2	-1/2	0	1
$Q_{i\mathrm{L}} = \begin{pmatrix} u_{i\mathrm{L}}' \\ d_{i\mathrm{L}}' \end{pmatrix}$	$\left(u_{ m L}'\right)$	$\left(c_{ m L}' ight)$	$\left(t_{ m L}^{\prime} ight)$	2/3	1/2	1/6	1/3	0
$Q_{i\mathrm{L}} = \left(d_{i\mathrm{L}}'\right)$	$\left\langle d_{ m L}' ight angle$	$\left\langle s_{ m L}' ight angle$	$\left\langle b_{ m L}' ight angle$	-1/3	-1/2	1/6	1/3	0
$\ell_{i\mathrm{R}}$	$e_{ m R}$	$\mu_{ m R}$	$ au_{ m R}$	-1	0	-1	0	1
$u_{i\mathrm{R}}'$	$u_{ m R}'$	$c_{ m R}'$	$t_{ m R}'$	2/3	0	2/3	1/3	0
$d'_{i\mathrm{R}}$	$d_{ m R}'$	$s_{ m R}'$	$b_{ m R}'$	-1/3	0	-1/3	1/3	0

4.1 Brout-Englert-Higgs 机制

由于左手费米子和右手费米子参与不同的 $SU(2)_L \times U(1)_Y$ 规范相互作用,耦合左右手费米子场的质量项会破坏规范对称性。另一方面,规范对称性也禁止规范玻色子具有质量。为了让费米子和弱规范玻色子获得质量,需要引入 BEH 机制,使 $SU(2)_L \times U(1)_Y$ 规范对称性自发破缺。因此,引入 Higgs 标量场

$$\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix}, \tag{40}$$

其中 ϕ^+ 和 ϕ^0 都是复标量场。 Φ 是 $SU(2)_L$ 二重态,弱超荷是

$$Y_H = \frac{1}{2}. (41)$$

Higgs 场的协变动能项和势能项为

$$\mathcal{L}_{H} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - V_{H}(\Phi), \quad V_{H}(\Phi) = -\mu^{2}\Phi^{\dagger}\Phi + \lambda(\Phi^{\dagger}\Phi)^{2},$$
(42)

其中协变导数为

$$D_{\mu}\Phi = (\partial_{\mu} + ig'B_{\mu}Y_{H} + igW_{\mu}^{a}\tau^{a})\Phi. \tag{43}$$

当 $\lambda > 0$ 且 $\mu^2 > 0$ 时,Higgs 场势能 $V_{\rm H}(\Phi)$ 呈现出图 1 所示墨西哥草帽状的形式,势能最小值位于方程

$$\Phi^{\dagger}\Phi = [\text{Re}(\phi^{+})]^{2} + [\text{Im}(\phi^{+})]^{2} + [\text{Re}(\phi^{0})]^{2} + [\text{Im}(\phi^{0})]^{2} = \frac{v^{2}}{2}$$
(44)

对应的 3 维球面上, 其中 $v \equiv \sqrt{\mu^2/\lambda}$, 满足

$$\mu^2 = \lambda v^2. \tag{45}$$

Higgs 场的真空期待值位于这个3维球面上的某一点,不失一般性,可将它取为

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}. \tag{46}$$

其它真空期待值可通过 SU(2)L × U(1)Y 整体变换

$$\langle \Phi \rangle \to \exp(i\alpha^a \tau^a) \exp(i\alpha^Y Y_H) \langle \Phi \rangle$$
 (47)

图 1: Higgs 场势能示意图。这里压缩掉 $Re(\phi^+)$ 和 $Im(\phi^+)$ 两个维度。

得到,因为 $\langle \Phi^{\dagger}\Phi \rangle$ 在这样的变换下保持不变。若 $\alpha^1 = \alpha^2 = 0$ 且 $\alpha^3 = \alpha^Y$,则

$$\exp(\mathrm{i}\alpha^a \tau^a) \exp(\mathrm{i}\alpha^Y Y_H) = \exp[\mathrm{i}\alpha^3 (\sigma^3 + \mathbf{1})/2] = \exp\left[\mathrm{i}\alpha^3 \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right] = \begin{pmatrix} \mathrm{e}^{\mathrm{i}\alpha^3} \\ 1 \end{pmatrix}, \quad (48)$$

而 $\langle \Phi \rangle$ 在此变换下不变。因此,有 1 个方向的规范对称性没有受到破坏,只有 3 个方向的规范对称性发生自发破缺。根据 Goldstone 定理,破缺后存在 3 个无质量的 Nambu-Goldstone 玻色子。最终,有 3 个规范玻色子结合 Nambu-Goldstone 玻色子,通过 BEH 机制获得质量。

以 ⟨Φ⟩ 为基础,将 Higgs 场参数化为

$$\Phi(x) = \exp\left[-i\frac{\chi^a(x)}{v}\tau^a\right] \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix},\tag{49}$$

其中 $\chi^a(x)$ 和 H(x) 都是实标量场。 $\exp[-\mathrm{i}\chi^a(x)\tau^a/v]$ 因子能够通过 $\mathrm{SU}(2)_\mathrm{L}$ 规范变换消去,因而可将 $\Phi(x)$ 直接取为

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}, \quad \Phi^{\dagger} \Phi = \frac{1}{2} (v + H)^2.$$
(50)

此时 Higgs 场只剩下一个物理自由度 H(x),对应于 Higgs 玻色子,这种取法称为**幺正规范**。 在幺正规范下,势能项化为

$$\begin{split} -V_{H}(\Phi) &= \mu^{2} \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^{2} = \frac{\mu^{2}}{2} (v + H)^{2} - \frac{\lambda}{4} (v + H)^{4} \\ &= \frac{\mu^{2}}{2} (v^{2} + H^{2} + 2vH) - \frac{\lambda}{4} (v^{4} + 4v^{2}H^{2} + H^{4} + 4v^{3}H + 2v^{2}H^{2} + 4vH^{3}) \\ &= \frac{1}{4} \mu^{2} v^{2} + \frac{1}{4} (\mu^{2} - \lambda v^{2}) v^{2} + (\mu^{2} - \lambda v^{2}) vH + \frac{1}{2} (\mu^{2} - \lambda v^{2}) H^{2} - \lambda v^{2} H^{2} - \lambda vH^{3} - \frac{\lambda}{4} H^{4} \end{split}$$

$$= \frac{1}{8} m_H^2 v^2 - \frac{1}{2} m_H^2 H^2 - \frac{1}{2} \frac{m_H^2}{v} H^3 - \frac{1}{8} \frac{m_H^2}{v^2} H^4,$$
 (51)

其中 Higgs 玻色子的质量为

$$m_H \equiv \sqrt{2}\mu, \quad m_H^2 = 2\mu^2 = 2\lambda v^2.$$
 (52)

由于

$$g'B_{\mu}Y_{H} + gW_{\mu}^{a}\tau^{a} = \frac{1}{2} \begin{pmatrix} g'B_{\mu} + gW_{\mu}^{3} & g(W_{\mu}^{1} - iW_{\mu}^{2}) \\ g(W_{\mu}^{1} + iW_{\mu}^{2}) & g'B_{\mu} - gW_{\mu}^{3} \end{pmatrix},$$
 (53)

Higgs 场真空期待值 v 对协变导数 $D_{\mu}\Phi$ 的贡献为

$$D_{\mu}\Phi \supset i(g'B_{\mu}Y_{H} + gW_{\mu}^{a}\tau^{a})\frac{1}{\sqrt{2}}\begin{pmatrix}0\\v\end{pmatrix}$$

$$= \frac{iv}{2\sqrt{2}}\begin{pmatrix}g'B_{\mu} + gW_{\mu}^{3} & g(W_{\mu}^{1} - iW_{\mu}^{2})\\g(W_{\mu}^{1} + iW_{\mu}^{2}) & g'B_{\mu} - gW_{\mu}^{3}\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix} \supset \frac{iv}{2\sqrt{2}}\begin{pmatrix}g(W_{\mu}^{1} - iW_{\mu}^{2})\\g'B_{\mu} - gW_{\mu}^{3}\end{pmatrix}, (54)$$

故协变动能项 $(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$ 中正比于 v^2 的项是

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) \supset \frac{v^{2}}{8}[g^{2}|W_{\mu}^{1} - iW_{\mu}^{2}|^{2} + (g'B_{\mu} - gW_{\mu}^{3})^{2}] = \frac{v^{2}}{8}(g^{2}W^{a,\mu}W_{\mu}^{a} + g'^{2}B^{\mu}B_{\mu} - 2gg'B^{\mu}W_{\mu}^{3}).$$
(55)

这些项是规范玻色子的质量项, 重新表达为

$$\mathcal{L}_{\text{GBM}} = \frac{1}{2} m_W^2 (W^{1,\mu} W_{\mu}^1 + W^{2,\mu} W_{\mu}^2) + \frac{1}{2} \begin{pmatrix} W^{3,\mu} & B^{\mu} \end{pmatrix} M_{W^3 B}^2 \begin{pmatrix} W_{\mu}^3 \\ B_{\mu} \end{pmatrix}, \tag{56}$$

其中

$$m_W \equiv \frac{1}{2} gv \tag{57}$$

是 W^1_μ 和 W^2_μ 获得的质量,而 $W^{3\mu}$ 和 B^μ 的质量平方矩阵为

$$M_{W^3B}^2 \equiv \frac{v^2}{4} \begin{pmatrix} g^2 & -gg' \\ -gg' & g'^2 \end{pmatrix}.$$
 (58)

为了使 $M_{W^3B}^2$ 矩阵对角化,定义

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} \equiv \begin{pmatrix} c_{W} & -s_{W} \\ s_{W} & c_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}, \tag{59}$$

4 电弱规范理论 – 11 –

其中

$$s_{\rm W} \equiv \sin \theta_{\rm W} = \frac{g'}{\sqrt{g^2 + g'^2}}, \quad c_{\rm W} \equiv \cos \theta_{\rm W} = \frac{g}{\sqrt{g^2 + g'^2}},$$
 (60)

 $\theta_{\rm W}$ 称为 Weinberg 角,也称为弱混合角。从后面的讨论可以看出 $A_{\mu}(x)$ 就是电磁场,对应于光子。 $Z_{\mu}(x)$ 对应于矢量玻色子 Z。反过来,有

$$\begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix} = \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}. \tag{61}$$

由

$$M_{W^{3}B}^{2} \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix} = \frac{(g^{2} + g'^{2})v^{2}}{4} \begin{pmatrix} c_{W}^{2} & -s_{W}c_{W} \\ -s_{W}c_{W} & s_{W}^{2} \end{pmatrix} \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix}$$
$$= \frac{(g^{2} + g'^{2})v^{2}}{4} \begin{pmatrix} c_{W} & 0 \\ -s_{W} & 0 \end{pmatrix}$$
(62)

得

$$\begin{pmatrix} c_{W} & -s_{W} \\ s_{W} & c_{W} \end{pmatrix} M_{W^{3}B}^{2} \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix} = \frac{(g^{2} + g'^{2})v^{2}}{4} \begin{pmatrix} c_{W} & -s_{W} \\ s_{W} & c_{W} \end{pmatrix} \begin{pmatrix} c_{W} & 0 \\ -s_{W} & 0 \end{pmatrix}$$
$$= \frac{(g^{2} + g'^{2})v^{2}}{4} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{63}$$

因此

$$\frac{1}{2} \begin{pmatrix} W^{3,\mu} & B^{\mu} \end{pmatrix} M_{W^{3}B}^{2} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} Z^{\mu} & A^{\mu} \end{pmatrix} \begin{pmatrix} c_{W} & -s_{W} \\ s_{W} & c_{W} \end{pmatrix} M_{W^{3}B}^{2} \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}
= \frac{(g^{2} + g'^{2})v^{2}}{8} \begin{pmatrix} Z^{\mu} & A^{\mu} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \frac{1}{2} m_{Z}^{2} Z^{\mu} Z_{\mu}, \quad (64)$$

其中

$$m_Z \equiv \frac{1}{2} \sqrt{g^2 + g'^2} \, v = \frac{gv}{2c_W} = \frac{m_W}{c_W}$$
 (65)

是 Z 玻色子的质量,而光子没有质量。另一方面,用质量相同的实矢量场 W^1_μ 和 W^2_μ 线性组合 出复矢量场

$$W_{\mu}^{+} \equiv \frac{1}{\sqrt{2}} (W_{\mu}^{1} - iW_{\mu}^{2}), \tag{66}$$

图 2: $g \setminus g' \setminus e$ 和 θ_W 的关系。

它的厄米共轭为

$$W_{\mu}^{-} \equiv (W_{\mu}^{+})^{\dagger} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} + iW_{\mu}^{2}),$$
 (67)

则

$$W_{\mu}^{1} = \frac{1}{\sqrt{2}}(W_{\mu}^{+} + W_{\mu}^{-}), \quad W_{\mu}^{2} = \frac{\mathrm{i}}{\sqrt{2}}(W_{\mu}^{+} - W_{\mu}^{-}).$$
 (68)

从而

$$\frac{1}{2}(W^{1,\mu}W_{\mu}^{1} + W^{2,\mu}W_{\mu}^{2}) = \frac{1}{4}[(W^{+,\mu} + W^{-,\mu})(W_{\mu}^{+} + W_{\mu}^{-}) - (W^{+,\mu} - W^{-,\mu})(W_{\mu}^{+} - W_{\mu}^{-})]
= W^{+,\mu}W_{\mu}^{-},$$
(69)

(56) 式化为

$$\mathcal{L}_{\text{GBM}} = m_W^2 W^{+,\mu} W_{\mu}^- + \frac{1}{2} m_Z^2 Z^{\mu} Z_{\mu}. \tag{70}$$

复矢量场 W_{μ}^{+} 描述一对正反矢量玻色子 W^{\pm} ,质量为 m_{W} 。可见,BEH 机制使传递弱相互作用的规范玻色子 W^{\pm} 和 Z 获得了质量。

接下来用质量本征态 W_μ^\pm 和 Z_μ 表达协变动能项 $(D^\mu\Phi)^\dagger(D_\mu\Phi)$ 。注意到

$$A_{\mu} = s_{\rm W} W_{\mu}^3 + c_{\rm W} B_{\mu}, \quad Z_{\mu} = c_{\rm W} W_{\mu}^3 - s_{\rm W} B_{\mu},$$
 (71)

$$B_{\mu} = c_{\rm W} A_{\mu} - s_{\rm W} Z_{\mu}, \quad W_{\mu}^3 = s_{\rm W} A_{\mu} + c_{\rm W} Z_{\mu},$$
 (72)

有

$$g'B_{\mu} + gW_{\mu}^{3} = g'(c_{W}A_{\mu} - s_{W}Z_{\mu}) + g(s_{W}A_{\mu} + c_{W}Z_{\mu}) = \frac{2gg'}{\sqrt{g^{2} + g'^{2}}}A_{\mu} + \frac{g^{2} - g'^{2}}{\sqrt{g^{2} + g'^{2}}}Z_{\mu}$$

$$= 2eA_{\mu} + \frac{g}{c_{W}}(c_{W}^{2} - s_{W}^{2})Z_{\mu},$$
(73)

其中

$$e \equiv \frac{gg'}{\sqrt{g^2 + g'^2}} = gs_{W} = g'c_{W}.$$
 (74)

4 电弱规范理论 – 13 –

后面的讨论将表明 e 就是单位电荷量。 $g \, {\ \ } \, g' \, {\ \ } \, e$ 和 $\theta_{\rm W}$ 的关系如图 2 所示。再利用

$$g'B_{\mu} - gW_{\mu}^{3} = g'(c_{W}A_{\mu} - s_{W}Z_{\mu}) - g(s_{W}A_{\mu} + c_{W}Z_{\mu}) = -\left(\frac{gs_{W}^{2}}{c_{W}} + gc_{W}\right)Z_{\mu} = -\frac{g}{c_{W}}Z_{\mu}, \quad (75)$$

得

$$g'B_{\mu}Y_{H} + gW_{\mu}^{a}\tau^{a} = \frac{1}{2} \begin{pmatrix} g'B_{\mu} + gW_{\mu}^{3} & g(W_{\mu}^{1} - iW_{\mu}^{2}) \\ g(W_{\mu}^{1} + iW_{\mu}^{2}) & g'B_{\mu} - gW_{\mu}^{3} \end{pmatrix}$$

$$= \begin{pmatrix} eA_{\mu} + \frac{g}{2c_{W}}(c_{W}^{2} - s_{W}^{2})Z_{\mu} & \frac{g}{\sqrt{2}}W_{\mu}^{+} \\ \frac{g}{\sqrt{2}}W_{\mu}^{-} & -\frac{g}{2c_{W}}Z_{\mu} \end{pmatrix}.$$
(76)

在幺正规范下,

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \left| \begin{pmatrix} \partial_{\mu} + ieA_{\mu} + \frac{ig}{2c_{W}}(c_{W}^{2} - s_{W}^{2})Z_{\mu} & \frac{ig}{\sqrt{2}}W_{\mu}^{+} \\ \frac{ig}{\sqrt{2}}W_{\mu}^{-} & \partial_{\mu} - \frac{ig}{2c_{W}}Z_{\mu} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} \right|^{2}$$

$$= \frac{1}{2} \left(-\frac{ig}{\sqrt{2}}W^{-,\mu}(v+H) \quad \partial^{\mu}H + \frac{ig}{2c_{W}}Z^{\mu}(v+H) \right) \begin{pmatrix} \frac{ig}{\sqrt{2}}W_{\mu}^{+}(v+H) \\ \partial_{\mu}H - \frac{ig}{2c_{W}}Z_{\mu}(v+H) \end{pmatrix}$$

$$= \frac{1}{2} (\partial^{\mu}H)(\partial_{\mu}H) + (v+H)^{2} \left(\frac{g^{2}}{4}W_{\mu}^{+}W^{-,\mu} + \frac{g^{2}}{8c_{W}^{2}}Z_{\mu}Z^{\mu} \right)$$

$$= \frac{1}{2} (\partial^{\mu}H)(\partial_{\mu}H) + m_{W}^{2}W_{\mu}^{+}W^{-,\mu} + \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu}$$

$$+ gm_{W}HW_{\mu}^{+}W^{-,\mu} + \frac{gm_{Z}}{2c_{W}}HZ_{\mu}Z^{\mu} + \frac{g^{2}}{4}H^{2}W_{\mu}^{+}W^{-,\mu} + \frac{g^{2}}{8c_{W}^{2}}H^{2}Z_{\mu}Z^{\mu}. \tag{77}$$

除了 W^{\pm} 和 Z 玻色子的质量项之外,还出现了 Higgs 玻色子 H 与 W^{\pm} 、Z 的三线性和四线性耦合项。

Higgs 场 $\Phi(x)$ 的弱超荷为 +1/2。引入 $\Phi(x)$ 的共轭态

$$\tilde{\Phi}(x) = i\sigma^2 \Phi^*(x) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} \phi^-(x) \\ \phi^{0*}(x) \end{pmatrix} = \begin{pmatrix} \phi^{0*}(x) \\ -\phi^-(x) \end{pmatrix},$$
 (78)

其中 $\phi^- \equiv (\phi^+)^*$,则 $\tilde{\Phi}(x)$ 是弱超荷为 -1/2 的 ${\rm SU}(2)_{\rm L}$ 二重态。在幺正规范下, $\tilde{\Phi}(x)$ 化为

$$\tilde{\Phi}(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} v + H(x)\\ 0 \end{pmatrix}. \tag{79}$$

4 电弱规范理论 – 14 –

用 $\Phi(x)$ 、 $\tilde{\Phi}(x)$ 和费米子场组成满足 $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ 规范对称性的 Yukawa 相互作用拉氏

$$\mathcal{L}_{Y} = -\tilde{y}_{d,ij}\bar{Q}_{iL}d'_{jR}\Phi - \tilde{y}_{u,ij}\bar{Q}_{iL}u'_{jR}\tilde{\Phi} - y_{\ell_i}\bar{L}_{iL}\ell_{iR}\Phi + \text{H.c.},$$
(80)

其中 H.c. 表示厄米共轭,Yukawa 耦合常数 $\tilde{y}_{d,ij}$ 和 $\tilde{y}_{u,ij}$ 联系着不同代的夸克场,而 y_{ℓ_i} 只联系同一代的轻子场。在幺正规范下,利用

$$\bar{Q}_{iL}\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{u}'_{iL} & \bar{d}'_{iL} \end{pmatrix} \begin{pmatrix} 0 \\ v+H \end{pmatrix} = \frac{1}{\sqrt{2}} (v+H) \bar{d}'_{iL}, \tag{81}$$

$$\bar{Q}_{iL}\tilde{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{u}'_{iL} & \bar{d}'_{iL} \end{pmatrix} \begin{pmatrix} v+H\\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} (v+H)\bar{u}'_{iL}, \tag{82}$$

$$\bar{L}_{iL}\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{\nu}_{iL} & \bar{\ell}_{iL} \end{pmatrix} \begin{pmatrix} 0 \\ v+H \end{pmatrix} = \frac{1}{\sqrt{2}} (v+H)\bar{\ell}_{iL}, \tag{83}$$

推出

量

$$\mathcal{L}_{Y} = -\frac{1}{\sqrt{2}}(v+H)(\tilde{y}_{d,ij}\bar{d}'_{iL}d'_{jR} + \tilde{y}_{u,ij}\bar{u}'_{iL}u'_{jR} + y_{\ell_i}\bar{\ell}_{iL}\ell_{iR} + \text{H.c.}).$$
(84)

 $\tilde{y}_{d,ij}$ 和 $\tilde{y}_{u,ij}$ 可看作 3×3 矩阵 \tilde{y}_d 和 \tilde{y}_u 的元素。 $\tilde{y}_d\tilde{y}_d^{\dagger}$ 和 $\tilde{y}_u\tilde{y}_u^{\dagger}$ 是厄米矩阵,必定可以分别 通过幺正矩阵 U_d 和 U_u 对角化成 y_D^2 和 y_U^2 两个对角元为实数的对角矩阵,满足 $U_d^{\dagger}\tilde{y}_d\tilde{y}_d^{\dagger}U_d=y_D^2$ 和 $U_u^{\dagger}\tilde{y}_u\tilde{y}_u^{\dagger}U_u=y_U^2$,即

$$\tilde{y}_d \tilde{y}_d^{\dagger} = U_d y_{\mathrm{D}}^2 U_d^{\dagger}, \quad \tilde{y}_u \tilde{y}_u^{\dagger} = U_u y_{\mathrm{U}}^2 U_u^{\dagger}.$$
 (85)

符合这两条式子的 \tilde{y}_d 和 \tilde{y}_u 可以表达为

$$\tilde{y}_d = U_d y_{\rm D} K_d^{\dagger}, \quad \tilde{y}_u = U_u y_{\rm U} K_u^{\dagger}, \tag{86}$$

其中对角矩阵 y_D 和 y_U 满足 $y_D y_D = y_D^2$ 和 $y_U y_U = y_U^2$,而 K_d^\dagger 和 K_u^\dagger 是两个幺正矩阵。 将 y_D 和 y_U 表示成

$$y_{D} = \begin{pmatrix} y_{d_{1}} & & & \\ & y_{d_{2}} & & \\ & & y_{d_{3}} \end{pmatrix} = \begin{pmatrix} y_{d} & & \\ & y_{s} & \\ & & y_{b} \end{pmatrix}, \quad y_{U} = \begin{pmatrix} y_{u_{1}} & & \\ & y_{u_{2}} & \\ & & y_{u_{3}} \end{pmatrix} = \begin{pmatrix} y_{u} & & \\ & y_{c} & \\ & & y_{t} \end{pmatrix}. \quad (87)$$

通过幺正变换定义

$$d_{iL} \equiv (U_d^{\dagger})_{ij} d'_{iL}, \quad d_{iR} \equiv (K_d^{\dagger})_{ij} d'_{iR}, \quad u_{iL} \equiv (U_u^{\dagger})_{ij} u'_{iL}, \quad u_{iR} \equiv (K_u^{\dagger})_{ij} u'_{iR}, \tag{88}$$

则 $\bar{d}_{i\mathrm{L}} = \bar{d}'_{j\mathrm{L}} U_{d,ji}$, $\bar{u}_{i\mathrm{L}} = \bar{u}'_{j\mathrm{L}} U_{u,ji}$, 从而

$$\tilde{y}_{d,ij}\bar{d}'_{iL}d'_{jR} = \bar{d}'_{iL}(U_d y_d K_d^{\dagger})_{ij}d'_{jR} = \bar{d}'_{iL}U_{d,ik}y_{d_k}(K_d^{\dagger})_{kj}d'_{jR} = y_{d_k}\bar{d}_{kL}d_{kR} = y_{d_i}\bar{d}_{iL}d_{iR},$$
(89)

4 电弱规范理论 - - 15 -

$$\tilde{y}_{u,ij}\bar{u}'_{iL}u'_{jR} = \bar{u}'_{iL}(U_u y_u K_u^{\dagger})_{ij}u'_{jR} = y_{u_i}\bar{u}_{iL}u_{iR}, \tag{90}$$

故

$$\mathcal{L}_{Y} = -\frac{1}{\sqrt{2}}(v+H)(y_{d_{i}}\bar{d}_{iL}d_{iR} + y_{u_{i}}\bar{u}_{iL}u_{iR} + y_{\ell_{i}}\bar{\ell}_{iL}\ell_{iR} + \text{H.c.})$$

$$= -m_{d_{i}}\bar{d}_{i}d_{i} - m_{u_{i}}\bar{u}_{i}u_{i} - m_{\ell_{i}}\bar{\ell}_{i}\ell_{i} - \frac{m_{d_{i}}}{v}H\bar{d}_{i}d_{i} - \frac{m_{u_{i}}}{v}H\bar{u}_{i}u_{i} - \frac{m_{\ell_{i}}}{v}H\bar{\ell}_{i}\ell_{i},$$
(91)

其中前三项是费米子质量项,后三项是 Higgs 玻色子与费米子的 Yukawa 耦合项。于是,三代夸克和带电轻子获得了质量

$$m_{d_i} \equiv \frac{1}{\sqrt{2}} y_{d_i} v, \quad m_{u_i} \equiv \frac{1}{\sqrt{2}} y_{u_i} v, \quad m_{\ell_i} \equiv \frac{1}{\sqrt{2}} y_{\ell_i} v.$$
 (92)

 d'_{iL} 、 d'_{iR} 、 u'_{iL} 和 u'_{iR} 称为规范本征态(也称为味本征态), d_{iL} 、 d_{iR} 、 u_{iL} 和 u_{iR} 称为质量本征态。 下面给出幺正规范下 Higgs 场的顶点 Feynman 规则。

Higgs 玻色子自耦合:

$$H \qquad H \qquad H$$

$$= -\frac{3im_H^2}{v} \qquad = -\frac{3im_H^2}{v^2} \qquad (93)$$

$$= -6i\lambda v \qquad H \qquad H$$

Higgs 玻色子与电弱规范玻色子的耦合:

$$H = igm_W g^{\mu\nu}$$

$$W; \mu = \frac{ig^2 v}{2} g^{\mu\nu}$$

$$W; \mu = \frac{ig^2 v}{2} g^{\mu\nu}$$

$$W; \mu = \frac{ig^2 v}{2} g^{\mu\nu}$$

$$Z; \mu = \frac{ig^2 v}{2c_W^2} g^{\mu\nu}$$

$$W; \mu = \frac{ig^2}{2c_W^2} g^{\mu\nu}$$

$$Z; \mu = \frac{ig^2}{2c_W^2} g^{\mu\nu}$$

4 电弱规范理论 – 16 –

Higgs 玻色子与费米子 $f = d_i, u_i, \ell_i$ 的耦合:

$$\begin{array}{c}
H \\
\vdots \\
= -\frac{\mathrm{i}m_f}{v} \\
= -\frac{\mathrm{i}y_f}{\sqrt{2}}
\end{array} \tag{96}$$

4.2 费米子电弱规范相互作用

(88) 式意味着

$$d'_{iL} = U_{d,ij}d_{jL}, \quad d'_{iR} = K_{d,ij}d_{jR}, \quad u'_{iL} = U_{u,ij}u_{jL}, \quad u'_{iR} = K_{u,ij}u_{jR}, \tag{97}$$

从而

$$\bar{d}'_{iL}\gamma^{\mu}d'_{iL} = \bar{d}_{jL}(U_d^{\dagger})_{ji}\gamma^{\mu}U_{d,ik}d_{kL} = \bar{d}_{jL}\delta_{jk}\gamma^{\mu}d_{kL} = \bar{d}_{iL}\gamma^{\mu}d_{iL}$$
(98)

同理有

$$\bar{u}'_{iL}\gamma^{\mu}u'_{iL} = \bar{u}_{iL}\gamma^{\mu}u_{iL}, \quad \bar{d}'_{iR}\gamma^{\mu}d'_{iR} = \bar{d}_{iR}\gamma^{\mu}d_{iR}, \quad \bar{u}'_{iR}\gamma^{\mu}u'_{iR} = \bar{u}_{iR}\gamma^{\mu}u_{iR}.$$
 (99)

另一方面,

$$\bar{u}'_{iL}\gamma^{\mu}d'_{iL} = \bar{u}_{jL}(U_u^{\dagger})_{ji}\gamma^{\mu}U_{d,ik}d_{kL} = \bar{u}_{iL}\gamma^{\mu}V_{ij}d_{jL}$$

$$\tag{100}$$

$$\bar{d}'_{iL}\gamma^{\mu}u'_{iL} = \bar{d}_{jL}(U_d^{\dagger})_{ji}\gamma^{\mu}U_{u,ik}u_{kL} = \bar{d}_{jL}V_{ji}^{\dagger}\gamma^{\mu}u_{iL}$$
(101)

其中

$$V \equiv U_u^{\dagger} U_d \tag{102}$$

称为 Cabibbo-Kobayashi-Maskawa (CKM) 矩阵,其厄米共轭矩阵为 $V^{\dagger}=U_d^{\dagger}U_u$ 。 $SU(2)_L\times U(1)_Y$ 规范不变的费米子协变动能项为

$$\mathcal{L}_{EWF} = \bar{Q}_{iL} i \not\!\!D Q_{iL} + \bar{u}'_{iR} i \not\!\!D u'_{iR} + \bar{d}'_{iR} i \not\!\!D d'_{iR} + \bar{L}_{iL} i \not\!\!D L_{iL} + \bar{\ell}_{iR} i \not\!\!D \ell_{iR}.$$
(103)

根据 Q 的定义 (39), 有

$$g'YB_{\mu} + gT^{3}W_{\mu}^{3} = g'Y(c_{W}A_{\mu} - s_{W}Z_{\mu}) + gT^{3}(s_{W}A_{\mu} + c_{W}Z_{\mu})$$

$$= e(Y + T^{3})A_{\mu} + \left(gc_{W}T^{3} - \frac{gs_{W}}{c_{W}}s_{W}Y\right)Z_{\mu} = QeA_{\mu} + \frac{g}{c_{W}}(T^{3}c_{W}^{2} - Ys_{W}^{2})Z_{\mu}$$

$$= QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})Z_{\mu},$$
(104)

故

$$D_{\mu}Q_{iL} = (\partial_{\mu} + ig'B_{\mu}Y + igW_{\mu}^{a}\tau^{a})Q_{iL}$$

$$= \partial_{\mu}Q_{iL} + i \begin{pmatrix} g'YB_{\mu} + gT^{3}W_{\mu}^{3} & \frac{g}{2}(W_{\mu}^{1} - iW_{\mu}^{2}) \\ \frac{g}{2}(W_{\mu}^{1} + iW_{\mu}^{2}) & g'YB_{\mu} + gT^{3}W_{\mu}^{3} \end{pmatrix} Q_{iL}$$

$$= \partial_{\mu}Q_{iL} + i \begin{pmatrix} QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})Z_{\mu} & \frac{g}{\sqrt{2}}W_{\mu}^{+} \\ \frac{g}{\sqrt{2}}W_{\mu}^{-} & QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})Z_{\mu} \end{pmatrix} \begin{pmatrix} u'_{iL} \\ d'_{iL} \end{pmatrix}$$

$$= \partial_{\mu}Q_{iL} + i \begin{pmatrix} QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})Z_{\mu} & u'_{iL} + \frac{g}{\sqrt{2}}W_{\mu}^{+}d'_{iL} \\ \frac{g}{\sqrt{2}}W_{\mu}^{-}u'_{iL} + \left[QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})\right]d'_{iL} \end{pmatrix}. \tag{105}$$

于是

$$\bar{Q}_{iL}iD\!\!\!/ Q_{iL} \supset -\left[QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})Z_{\mu}\right] \bar{u}_{iL}'\gamma^{\mu}u_{iL}' - \left[QeA_{\mu} + \frac{g}{c_{W}}(T^{3} - Qs_{W}^{2})Z_{\mu}\right] \bar{d}_{iL}'\gamma^{\mu}d_{iL}'
- \frac{g}{\sqrt{2}}W_{\mu}^{+}\bar{u}_{iL}'\gamma^{\mu}d_{iL}' - \frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{d}_{iL}'\gamma^{\mu}u_{iL}'
= -\left(QeA_{\mu} + \frac{g}{c_{W}}g_{L}Z_{\mu}\right)\bar{u}_{i}\gamma^{\mu}\frac{1-\gamma^{5}}{2}u_{i} - \left(QeA_{\mu} + \frac{g}{c_{W}}g_{L}Z_{\mu}\right)\bar{d}_{i}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d_{i}
- \frac{g}{\sqrt{2}}W_{\mu}^{+}\bar{u}_{i}\gamma^{\mu}P_{L}V_{ij}d_{j} - \frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{d}_{j}V_{ji}^{\dagger}\gamma^{\mu}P_{L}u_{i},$$
(106)

其中左手耦合系数

$$g_{\rm L} \equiv T^3 - Qs_{\rm W}^2. \tag{107}$$

另一方面,

$$D_{\mu}d'_{iR} = (\partial_{\mu} + ig'B_{\mu}Y)d'_{iR} = \partial_{\mu}d'_{iR} + ig'Q(c_{W}A_{\mu} - s_{W}Z_{\mu})d'_{iR}$$
$$= \partial_{\mu}d'_{iR} + iQeA_{\mu}d'_{iR} - \frac{ig}{c_{W}}Qs_{W}^{2}Z_{\mu}d'_{iR},$$
(108)

则

$$\bar{u}'_{iR} i \not\!\!{D} u'_{iR} + \bar{d}'_{iR} i \not\!{D} d'_{iR}
\supset -\left(QeA_{\mu} - \frac{g}{c_{W}}Qs_{W}^{2}Z_{\mu}\right) \bar{u}'_{iR}\gamma^{\mu}u'_{iR} - \left(QeA_{\mu} - \frac{g}{c_{W}}Qs_{W}^{2}Z_{\mu}\right) \bar{d}'_{iR}\gamma^{\mu}d'_{iR}
= -\left(QeA_{\mu} + \frac{g}{c_{W}}g_{R}Z_{\mu}\right) \bar{u}_{i}\gamma^{\mu} \frac{1+\gamma^{5}}{2}u_{i} - \left(QeA_{\mu} + \frac{g}{c_{W}}g_{R}Z_{\mu}\right) \bar{d}_{i}\gamma^{\mu} \frac{1+\gamma^{5}}{2}d_{i},$$
(109)

其中右手耦合系数

$$g_{\rm R} \equiv -Qs_{\rm W}^2. \tag{110}$$

引入矢量流和轴矢量流耦合系数

$$g_{\rm V} \equiv g_{\rm L} + g_{\rm R} = T^3 - 2Qs_{\rm W}^2, \quad g_{\rm A} \equiv g_{\rm L} - g_{\rm R} = T^3,$$
 (111)

得

$$\bar{Q}_{iL}i \not D Q_{iL} + \bar{u}'_{iR}i \not D u'_{iR} + \bar{d}'_{iR}i \not D d'_{iR}$$

$$\supset -Qe\bar{u}_{i}\gamma^{\mu}u_{i}A_{\mu} - Qe\bar{d}_{i}\gamma^{\mu}d_{i}A_{\mu} - \frac{g}{2c_{W}}\bar{u}_{i}\gamma^{\mu}(g_{V} - g_{A}\gamma^{5})u_{i}Z_{\mu} - \frac{g}{2c_{W}}\bar{d}_{i}\gamma^{\mu}(g_{V} - g_{A}\gamma^{5})d_{i}Z_{\mu}$$

$$-\frac{g}{\sqrt{2}}W_{\mu}^{+}\bar{u}_{i}\gamma^{\mu}P_{L}V_{ij}d_{j} - \frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{d}_{j}V_{ji}^{\dagger}\gamma^{\mu}P_{L}u_{i}.$$
(112)

同理,有

$$\bar{L}_{iL}i\not\!D L_{iL} + \bar{\ell}_{iR}i\not\!D \ell_{iR} \supset -Qe\bar{\ell}_{i}\gamma^{\mu}\ell_{i}A_{\mu} - \frac{g}{2c_{W}}\bar{\ell}_{i}\gamma^{\mu}(g_{V} - g_{A}\gamma^{5})\ell_{i}Z_{\mu} - \frac{g}{2c_{W}}\bar{\nu}_{i}\gamma^{\mu}(g_{V} - g_{A}\gamma^{5})\nu_{i}Z_{\mu}
- \frac{g}{\sqrt{2}}W_{\mu}^{+}\bar{\nu}_{i}\gamma^{\mu}P_{L}\ell_{i} - \frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{\ell}_{i}\gamma^{\mu}P_{L}\nu_{i}.$$
(113)

总结起来, 将费米子电弱规范相互作用写成流耦合的形式,

$$\mathcal{L}_{\text{EWF}} \supset -A_{\mu} J_{\text{EM}}^{\mu} - Z_{\mu} J_{Z}^{\mu} - W_{\mu}^{+} J_{W}^{+,\mu} - W_{\mu}^{-} J_{W}^{-,\mu}, \tag{114}$$

其中 f 代表任意费米子场, 电磁流

$$J_{\rm EM}^{\mu} \equiv \sum_{f} Q_f e \bar{f} \gamma^{\mu} f, \qquad (115)$$

弱中性流

$$J_Z^{\mu} \equiv \frac{g}{2c_{\rm W}} \sum_f \bar{f} \gamma^{\mu} (g_{\rm V}^f - g_{\rm A}^f \gamma^5) f = \frac{g}{c_{\rm W}} \sum_f (g_{\rm L}^f \bar{f}_{\rm L} \gamma^{\mu} f_{\rm L} + g_{\rm R}^f \bar{f}_{\rm R} \gamma^{\mu} f_{\rm R}),$$
(116)

弱带电流

$$J_W^{+,\mu} \equiv \frac{g}{\sqrt{2}} (\bar{u}_i \gamma^{\mu} V_{ij} P_{\mathcal{L}} d_j + \bar{\nu}_i \gamma^{\mu} P_{\mathcal{L}} \ell_i), \quad J_W^{-,\mu} \equiv (J_W^{+\mu})^{\dagger} = \frac{g}{\sqrt{2}} (\bar{d}_j V_{ji}^{\dagger} \gamma^{\mu} P_{\mathcal{L}} u_i + \bar{\ell}_i \gamma^{\mu} P_{\mathcal{L}} \nu_i).$$

$$(117)$$

电弱规范理论 -19-

对于各种费米子,相关的系数如下,

$$Q_{u_i} = \frac{2}{3},$$
 $Q_{d_i} = -\frac{1}{3},$ $Q_{\nu_i} = 0,$ $Q_{\ell_i} = -1;$ (118)

$$Q_{u_{i}} = \frac{2}{3}, \qquad Q_{d_{i}} = -\frac{1}{3}, \qquad Q_{\nu_{i}} = 0, \qquad Q_{\ell_{i}} = -1; \qquad (118)$$

$$g_{V}^{u_{i}} = \frac{1}{2} - \frac{4}{3}s_{W}^{2}, \qquad g_{A}^{u_{i}} = \frac{1}{2}; \qquad g_{V}^{d_{i}} = -\frac{1}{2} + \frac{2}{3}s_{W}^{2}, \qquad g_{A}^{d_{i}} = -\frac{1}{2}; \qquad (119)$$

$$g_{V}^{\nu_{i}} = \frac{1}{2}, \qquad g_{A}^{\nu_{i}} = \frac{1}{2}; \qquad g_{V}^{\ell_{i}} = -\frac{1}{2} + 2s_{W}^{2}, \qquad g_{A}^{\ell_{i}} = -\frac{1}{2}; \qquad (120)$$

$$g_{L}^{u_{i}} = \frac{1}{2} - \frac{2}{3}s_{W}^{2}, \qquad g_{R}^{u_{i}} = -\frac{2}{3}s_{W}^{2}; \qquad g_{L}^{d_{i}} = -\frac{1}{2} + \frac{1}{3}s_{W}^{2}, \qquad g_{R}^{d_{i}} = \frac{1}{3}s_{W}^{2}; \qquad (121)$$

$$g_{\mathcal{V}}^{\nu_i} = \frac{1}{2}, \qquad g_{\mathcal{A}}^{\nu_i} = \frac{1}{2}; \qquad g_{\mathcal{V}}^{\ell_i} = -\frac{1}{2} + 2s_{\mathcal{W}}^2, \quad g_{\mathcal{A}}^{\ell_i} = -\frac{1}{2};$$
 (120)

$$g_{\rm L}^{u_i} = \frac{1}{2} - \frac{2}{3}s_{\rm W}^2, \quad g_{\rm R}^{u_i} = -\frac{2}{3}s_{\rm W}^2; \quad g_{\rm L}^{d_i} = -\frac{1}{2} + \frac{1}{3}s_{\rm W}^2, \quad g_{\rm R}^{d_i} = \frac{1}{3}s_{\rm W}^2;$$
 (121)

$$g_{\rm L}^{\nu_i} = \frac{1}{2},$$
 $g_{\rm R}^{\nu_i} = 0;$ $g_{\rm L}^{\ell_i} = -\frac{1}{2} + s_{\rm W}^2,$ $g_{\rm R}^{\ell_i} = s_{\rm W}^2.$ (122)

可以看到, 电磁流耦合与 QED 耦合完全相同, 由此辩认出 A_{μ} 是电磁场, e 是单位电荷量, 由 $Q=T^3+Y$ 定义的 Q 确实是电荷。为了保持电荷守恒,指定复矢量场 $W_\mu^+(x)$ 携带 Q=+1的电荷,从而 W^{\pm} 玻色子的电荷为 ± 1 。不同代夸克之间的相互作用只发生在弱带电流耦合中, 源自 CKM 矩阵 V 的非对角元,这是夸克味混合现象。

由于标准模型中没有引入右手中微子场 ν_{iR} ,不能在 (80) 式中写出 $\bar{L}_{iL}\nu_{iR}\tilde{\Phi}$ 形式的相互作 用项、因此中微子没有通过 BEH 机制获得质量。这意味着我们可以让带电轻子和中微子的质 量本征态同时等于它们的规范本征态,从而不会出现轻子味混合。这是我们可以在 (80) 式中让 Yukawa 耦合 y_{ℓ} 只联系同一代轻子场的原因。不过,中微子振荡实验表明中微子具有微小质量, 而且存在味混合,这是超出标准模型的新物理;仿照夸克味混合的讨论,需要引入类似于 CKM 矩阵的 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) 矩阵来描述轻子味混合。

下面给出费米子电弱规范相互作用顶点的 Feynman 规则。

QED 耦合:

$$\begin{array}{c}
\gamma; \mu \\
\\
f
\end{array} = -\mathrm{i}Q_f e \gamma^{\mu} \tag{123}$$

费米子与 Z 玻色子的耦合:

$$\begin{array}{c}
Z; \mu \\
f & = -\frac{\mathrm{i}g}{2c_{\mathrm{W}}} \gamma^{\mu} (g_{\mathrm{V}}^{f} - g_{\mathrm{A}}^{f} \gamma^{5}) \\
f & & (124)
\end{array}$$

费米子与 W[±] 玻色子的耦合:

考虑 μ 子衰变的最主要过程 $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$,相应的领头阶不变振幅为

$$i\mathcal{M} = \mu^{-} \underbrace{\frac{p_{3}}{W^{-}}}_{p_{2}} e^{-}$$

$$= \left(\frac{-ig}{\sqrt{2}}\right)^{2} \bar{u}(p_{3})\gamma^{\mu}P_{L}u(k) \frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/m_{W}^{2})}{q^{2} - m_{W}^{2}} \bar{u}(p_{1})\gamma^{\nu}P_{L}v(p_{2})$$

$$= \frac{ig^{2}(g_{\mu\nu} - q_{\mu}q_{\nu}/m_{W}^{2})}{8(q^{2} - m_{W}^{2})} \bar{u}(p_{3})\gamma^{\mu}(1 - \gamma^{5})u(k)\bar{u}(p_{1})\gamma^{\nu}(1 - \gamma^{5})v(p_{2})$$
(127)

由于 $m_\mu \ll m_W$,W 传播子的四维动量 q^μ 满足 $q^2 \ll m_W^2$ 。因此,可在低能近似下忽略 q^μ 和 q^2 ,将不变振幅化为

$$i\mathcal{M} \simeq -\frac{ig^2}{8m_W^2} \bar{u}(p_3)\gamma^{\mu}(1-\gamma^5)u(k)\bar{u}(p_1)\gamma_{\mu}(1-\gamma^5)v(p_2).$$
 (128)

可以将这样的振幅看作有效拉氏量

$$\mathcal{L}_{\text{eff}} = -\frac{G_{\text{F}}}{\sqrt{2}} \bar{\nu}_{\mu} \gamma^{\mu} (1 - \gamma^{5}) \mu \, \bar{e} \gamma_{\mu} (1 - \gamma^{5}) \nu_{e} + \text{H.c.}$$
 (129)

的结果,其中 Fermi 常数 $G_{\rm F}$ 定义为

$$\frac{G_{\rm F}}{\sqrt{2}} \equiv \frac{g^2}{8m_W^2}.\tag{130}$$

可以进一步将 \mathcal{L}_{eff} 推广到其它参与弱相互作用的标准模型费米子,而耦合常数 G_F 是普适的,对所有费米子都适用,这样得到的理论称为四费米子相互作用理论。为了解释 β 衰变,Enrico Fermi 于 1933 年首次提出这个理论。现在认为它是标准模型弱相互作用的低能有效理论。

忽略电子质量,由以上振幅推出 μ 子寿命为

$$\tau_{\mu} = \frac{1}{\Gamma_{\mu}} \simeq \frac{192\pi^3}{G_{\rm F}^2 m_{\mu}^5}.$$
 (131)

于是,通过测量 μ 子寿命可以得到 Fermi 常数的观测值。根据 (57) 式,Fermi 常数 G_F 与 Higgs 场真空期待值 v 的关系为

$$G_{\rm F} = \frac{\sqrt{2}g^2}{8m_W^2} = \frac{\sqrt{2}g^2}{2g^2v^2} = \frac{1}{\sqrt{2}v^2}, \quad v = (\sqrt{2}G_{\rm F})^{-1/2}.$$
 (132)

4.3 电弱规范场的自相互作用

电弱规范场自相互作用的拉氏量是

$$\mathcal{L}_{EWG} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}, \qquad (133)$$

其中

$$W_{\mu\nu}^{a} \equiv \partial_{\mu}W_{\nu}^{a} - \partial_{\nu}W_{\mu}^{a} - g\varepsilon^{abc}W_{\mu}^{b}W_{\nu}^{c}, \quad B_{\mu\nu} \equiv \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}. \tag{134}$$

利用 (68) 和 (72) 式, 推出

$$W_{\mu}^{2}W_{\nu}^{3} - W_{\mu}^{3}W_{\nu}^{2} = \frac{i}{\sqrt{2}}[(W_{\mu}^{+} - W_{\mu}^{-})(s_{W}A_{\nu} + c_{W}Z_{\nu}) - (s_{W}A_{\mu} + c_{W}Z_{\mu})(W_{\nu}^{+} - W_{\nu}^{-})]$$

$$= \frac{i}{\sqrt{2}}[s_{W}(W_{\mu}^{+}A_{\nu} - A_{\mu}W_{\nu}^{+}) + c_{W}(W_{\mu}^{+}Z_{\nu} - Z_{\mu}W_{\nu}^{+})$$

$$-s_{W}(W_{\mu}^{-}A_{\nu} - A_{\mu}W_{\nu}^{-}) - c_{W}(W_{\mu}^{-}Z_{\nu} - Z_{\mu}W_{\nu}^{-})], \qquad (135)$$

$$W_{\mu}^{3}W_{\nu}^{1} - W_{\mu}^{1}W_{\nu}^{3} = \frac{1}{\sqrt{2}}[(s_{W}A_{\mu} + c_{W}Z_{\mu})(W_{\nu}^{+} + W_{\nu}^{-}) - (W_{\mu}^{+} + W_{\mu}^{-})(s_{W}A_{\nu} + c_{W}Z_{\nu})]$$

$$= -\frac{1}{\sqrt{2}}[s_{W}(W_{\mu}^{+}A_{\nu} - A_{\mu}W_{\nu}^{+}) + c_{W}(W_{\mu}^{+}Z_{\nu} - Z_{\mu}W_{\nu}^{+})$$

$$+s_{W}(W_{\mu}^{-}A_{\nu} - A_{\mu}W_{\nu}^{-}) + c_{W}(W_{\mu}^{-}Z_{\nu} - Z_{\mu}W_{\nu}^{-})]. \qquad (136)$$

从而

$$\begin{split} W_{\mu\nu}^{1} &= \partial_{\mu}W_{\nu}^{1} - \partial_{\nu}W_{\mu}^{1} - g\varepsilon^{1bc}W_{\mu}^{b}W_{\nu}^{c} = \partial_{\mu}W_{\nu}^{1} - \partial_{\nu}W_{\mu}^{1} - g(W_{\mu}^{2}W_{\nu}^{3} - W_{\mu}^{3}W_{\nu}^{2}) \\ &= \frac{1}{\sqrt{2}}(\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+}) + \frac{1}{\sqrt{2}}(\partial_{\mu}W_{\nu}^{-} - \partial_{\nu}W_{\mu}^{-}) - g(W_{\mu}^{2}W_{\nu}^{3} - gW_{\mu}^{3}W_{\nu}^{2}) \\ &= \frac{1}{\sqrt{2}}\{\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+} - ig[s_{W}(W_{\mu}^{+}A_{\nu} - A_{\mu}W_{\nu}^{+}) + c_{W}(W_{\mu}^{+}Z_{\nu} - Z_{\mu}W_{\nu}^{+})]\} \end{split}$$

$$+\frac{1}{\sqrt{2}} \{ \partial_{\mu} W_{\nu}^{-} - \partial_{\nu} W_{\mu}^{-} + ig[s_{W}(W_{\mu}^{-} A_{\nu} - A_{\mu} W_{\nu}^{-}) + c_{W}(W_{\mu}^{-} Z_{\nu} - Z_{\mu} W_{\nu}^{-})] \}$$

$$= \frac{1}{\sqrt{2}} (F_{\mu\nu}^{+} + F_{\mu\nu}^{-}), \qquad (137)$$

其中,

$$F_{\mu\nu}^{+} \equiv \partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+} - ie(W_{\mu}^{+}A_{\nu} - A_{\mu}W_{\nu}^{+}) - igc_{W}(W_{\mu}^{+}Z_{\nu} - Z_{\mu}W_{\nu}^{+}), \tag{138}$$

$$F_{\mu\nu}^{-} \equiv \partial_{\mu}W_{\nu}^{-} - \partial_{\nu}W_{\mu}^{-} + ie(W_{\mu}^{-}A_{\nu} - A_{\mu}W_{\nu}^{-}) + igc_{W}(W_{\mu}^{-}Z_{\nu} - Z_{\mu}W_{\nu}^{-}).$$
 (139)

另一方面,

$$\begin{split} W_{\mu\nu}^{2} &= \partial_{\mu}W_{\nu}^{2} - \partial_{\nu}W_{\mu}^{2} - g\varepsilon^{2bc}W_{\mu}^{b}W_{\nu}^{c} = \partial_{\mu}W_{\nu}^{2} - \partial_{\nu}W_{\mu}^{2} - g(W_{\mu}^{3}W_{\nu}^{1} - W_{\mu}^{1}W_{\nu}^{3}) \\ &= \frac{\mathrm{i}}{\sqrt{2}}(\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+}) - \frac{\mathrm{i}}{\sqrt{2}}(\partial_{\mu}W_{\nu}^{-} - \partial_{\nu}W_{\mu}^{-}) - g(W_{\mu}^{3}W_{\nu}^{1} - W_{\mu}^{1}W_{\nu}^{3}) \\ &= \frac{\mathrm{i}}{\sqrt{2}}\{\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+} - \mathrm{i}g[s_{W}(W_{\mu}^{+}A_{\nu} - A_{\mu}W_{\nu}^{+}) + c_{W}(W_{\mu}^{+}Z_{\nu} - Z_{\mu}W_{\nu}^{+})]\} \\ &- \frac{\mathrm{i}}{\sqrt{2}}\{\partial_{\mu}W_{\nu}^{-} - \partial_{\nu}W_{\mu}^{-} + \mathrm{i}g[s_{W}(W_{\mu}^{-}A_{\nu} - A_{\mu}W_{\nu}^{-}) + c_{W}(W_{\mu}^{-}Z_{\nu} - Z_{\mu}W_{\nu}^{-})]\} \\ &= \frac{\mathrm{i}}{\sqrt{2}}(F_{\mu\nu}^{+} - F_{\mu\nu}^{-}). \end{split} \tag{140}$$

因此

$$-\frac{1}{4}W_{\mu\nu}^{1}W^{1,\mu\nu} - \frac{1}{4}W_{\mu\nu}^{2}W^{2,\mu\nu}$$

$$= -\frac{1}{8}(F_{\mu\nu}^{+} + F_{\mu\nu}^{-})(F^{+,\mu\nu} + F^{-,\mu\nu}) + \frac{1}{8}(F_{\mu\nu}^{+} - F_{\mu\nu}^{-})(F^{+,\mu\nu} - F^{-,\mu\nu}) = -\frac{1}{2}F_{\mu\nu}^{+}F^{-,\mu\nu}$$

$$= -\frac{1}{2}[\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+} - ie(W_{\mu}^{+}A_{\nu} - A_{\mu}W_{\nu}^{+}) - igc_{W}(W_{\mu}^{+}Z_{\nu} - Z_{\mu}W_{\nu}^{+})]$$

$$\times [\partial^{\mu}W^{-,\nu} - \partial^{\nu}W^{-,\mu} + ie(W^{-,\mu}A^{\nu} - A^{\mu}W^{-,\nu}) + igc_{W}(W^{-,\mu}Z^{\nu} - Z^{\mu}W^{-,\nu})]$$

$$= -(\partial_{\mu}W_{\nu}^{+})(\partial^{\mu}W^{-,\nu}) + (\partial_{\mu}W_{\nu}^{+})(\partial^{\nu}W^{-,\mu})$$

$$-ie[(\partial_{\mu}W_{\nu}^{+})W^{-,\mu}A^{\nu} - (\partial_{\mu}W_{\nu}^{+})W^{-,\nu}A^{\mu} - W_{\mu}^{+}(\partial^{\mu}W^{-,\nu})A_{\nu} + W_{\nu}^{+}(\partial^{\mu}W^{-,\nu})A_{\mu}]$$

$$-igc_{W}[(\partial_{\mu}W_{\nu}^{+})W^{-,\mu}Z^{\nu} - (\partial_{\mu}W_{\nu}^{+})W^{-,\nu}Z^{\mu} - W_{\mu}^{+}(\partial^{\mu}W^{-,\nu})Z_{\nu} + W_{\nu}^{+}(\partial^{\mu}W^{-,\nu})Z_{\mu}]$$

$$+e^{2}(W_{\mu}^{+}W^{-,\nu}A_{\nu}A^{\mu} - W_{\mu}^{+}W^{-,\mu}A_{\nu}A^{\nu}) + g^{2}c_{W}^{2}(W_{\mu}^{+}W^{-,\nu}Z_{\nu}Z^{\mu} - W_{\mu}^{+}W^{-,\mu}Z_{\nu}Z^{\nu})$$

$$+egc_{W}(W_{\mu}^{+}W^{-,\nu}A_{\nu}Z^{\mu} + W_{\mu}^{+}W^{-,\nu}A^{\mu}Z_{\nu} - 2W_{\mu}^{+}W^{-,\mu}A_{\nu}Z^{\nu}). \tag{141}$$

由

$$W_{\mu}^{1}W_{\nu}^{2} - W_{\mu}^{2}W_{\nu}^{1} = \frac{\mathrm{i}}{2}(W_{\mu}^{+} + W_{\mu}^{-})(W_{\nu}^{+} - W_{\nu}^{-}) - \frac{\mathrm{i}}{2}(W_{\mu}^{+} - W_{\mu}^{-})(W_{\nu}^{+} + W_{\nu}^{-})$$
$$= -\mathrm{i}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}W_{\nu}^{+}), \tag{142}$$

4 电弱规范理论 – 23 –

得到

$$W_{\mu\nu}^{3} = \partial_{\mu}W_{\nu}^{3} - \partial_{\nu}W_{\mu}^{3} - g\varepsilon^{3bc}W_{\mu}^{b}W_{\nu}^{c} = \partial_{\mu}W_{\nu}^{3} - \partial_{\nu}W_{\mu}^{3} - g(W_{\mu}^{1}W_{\nu}^{2} - W_{\mu}^{2}W_{\nu}^{1})$$

$$= s_{W}\partial_{\mu}A_{\nu} + c_{W}\partial_{\mu}Z_{\nu} - s_{W}\partial_{\nu}A_{\mu} + c_{W}\partial_{\nu}Z_{\mu} - g(W_{\mu}^{1}W_{\nu}^{2} - W_{\mu}^{2}W_{\nu}^{1})$$

$$= s_{W}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) + c_{W}(\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}) + ig(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}W_{\nu}^{+}), \qquad (143)$$

$$B_{\mu\nu} = \partial_{\mu}(c_{W}A_{\nu} - s_{W}Z_{\nu}) - \partial_{\nu}(c_{W}A_{\mu} - s_{W}Z_{\mu})$$

$$= c_{W}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) - s_{W}(\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}). \qquad (144)$$

于是

$$-\frac{1}{4}W_{\mu\nu}^{3}W^{3,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

$$= -\frac{1}{2}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) - (\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})] - \frac{1}{2}[(\partial_{\mu}Z_{\nu})(\partial^{\mu}Z^{\nu}) - (\partial_{\mu}Z_{\nu})(\partial^{\nu}Z^{\mu})]$$

$$-ie[W^{+,\mu}W^{-,\nu}(\partial_{\mu}A_{\nu}) - W^{+,\nu}W^{-,\mu}(\partial_{\mu}A_{\nu})] - igc_{\mathbf{W}}[W^{+,\mu}W^{-,\nu}(\partial_{\mu}Z_{\nu}) - W^{+,\nu}W^{-,\mu}(\partial_{\mu}Z_{\nu})]$$

$$+\frac{g^{2}}{2}(W_{\mu}^{+}W^{+,\mu}W_{\nu}^{-}W^{-,\nu} - W_{\mu}^{+}W^{+,\nu}W_{\nu}^{-}W^{-,\mu}). \tag{145}$$

综合起来,有

$$\mathcal{L}_{EWG} = \frac{1}{2} [(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu}) - (\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})] + \frac{1}{2} [(\partial_{\mu}Z_{\nu})(\partial^{\nu}Z^{\mu}) - (\partial_{\mu}Z_{\nu})(\partial^{\mu}Z^{\nu})] \\
+ (\partial_{\mu}W_{\nu}^{+})(\partial^{\nu}W^{-,\mu}) - (\partial_{\mu}W_{\nu}^{+})(\partial^{\mu}W^{-,\nu}) + \frac{g^{2}}{2} (W_{\mu}^{+}W^{+,\mu}W_{\nu}^{-}W^{-,\nu} - W_{\mu}^{+}W^{+,\nu}W_{\nu}^{-}W^{-,\mu}) \\
- ie[(\partial_{\mu}W_{\nu}^{+})W^{-,\mu}A^{\nu} - (\partial_{\mu}W_{\nu}^{+})W^{-,\nu}A^{\mu} - W^{+,\mu}(\partial_{\mu}W_{\nu}^{-})A^{\nu} + W^{+,\nu}(\partial_{\mu}W_{\nu}^{-})A^{\mu} \\
+ W^{+,\mu}W^{-,\nu}(\partial_{\mu}A_{\nu}) - W^{+,\nu}W^{-,\mu}(\partial_{\mu}A_{\nu})] \\
- igc_{W}[(\partial_{\mu}W_{\nu}^{+})W^{-,\mu}Z^{\nu} - (\partial_{\mu}W_{\nu}^{+})W^{-,\nu}Z^{\mu} - W^{+,\mu}(\partial_{\mu}W_{\nu}^{-})Z^{\nu} + W^{+,\nu}(\partial_{\mu}W_{\nu}^{-})Z^{\mu} \\
+ W^{+,\mu}W^{-,\nu}(\partial_{\mu}Z_{\nu}) - W^{+,\nu}W^{-,\mu}(\partial_{\mu}Z_{\nu})] \\
+ e^{2}(W_{\mu}^{+}W^{-,\nu}A_{\nu}A^{\mu} - W_{\mu}^{+}W^{-,\mu}A_{\nu}A^{\nu}) + g^{2}c_{W}^{2}(W_{\mu}^{+}W^{-,\nu}Z_{\nu}Z^{\mu} - W_{\mu}^{+}W^{-,\mu}Z_{\nu}Z^{\nu}) \\
+ egc_{W}(W_{\mu}^{+}W^{-,\nu}A_{\nu}Z^{\mu} + W_{\mu}^{+}W^{-,\nu}A^{\mu}Z_{\nu} - 2W_{\mu}^{+}W^{-,\mu}A_{\nu}Z^{\nu}). \tag{146}$$

下面是电弱规范玻色子自耦合的 Feynman 规则:

$$\gamma; \rho \\
\downarrow k \\
W; \mu \\
W; \nu$$

$$= ie[g^{\mu\nu}(p-q)^{\rho} + g^{\nu\rho}(q-k)^{\mu} + g^{\rho\mu}(k-p)^{\nu}]$$
(147)

$\mathbf{5}$ R_{ξ} 规范下电弱拉氏量和 $\mathbf{Feynman}$ 规则

在 \mathbf{R}_{ξ} 规范下,将 Higgs 场参数化为

$$\Phi(x) = \begin{pmatrix} \phi^{+}(x) \\ \frac{1}{\sqrt{2}} [v + H(x) + i\chi(x)] \end{pmatrix}, \tag{153}$$

其中 ϕ^+ 和 χ 是 Nambu-Goldstone 标量场。那么, $\tilde{\Phi}(x)$ 的形式是

$$\tilde{\Phi}(x) = \begin{pmatrix} \phi^{0*}(x) \\ -\phi^{-}(x) \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} [v + H(x) - i\chi(x)] \\ -\phi^{-}(x) \end{pmatrix}.$$
(154)

利用

$$\Phi^{\dagger}\Phi = \frac{1}{2}(v^2 + H^2 + 2vH + \chi^2) + |\phi^+|^2, \tag{155}$$

$$(\Phi^{\dagger}\Phi)^{2} = \frac{1}{4}(v^{2} + H^{2} + 2vH + \chi^{2})^{2} + |\phi^{+}|^{4} + |\phi^{+}|^{2}(v^{2} + H^{2} + 2vH + \chi^{2}), \tag{156}$$

推出 Higgs 场势能项

$$\begin{split} -V_{H}(\Phi) &= \mu^{2} \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^{2} \\ &= \frac{\mu^{2}}{2} (v^{2} + H^{2} + 2vH + \chi^{2}) + \mu^{2} |\phi^{+}|^{2} - \frac{\lambda}{4} (v^{2} + H^{2} + 2vH + \chi^{2})^{2} - \lambda |\phi^{+}|^{4} \\ &- \lambda |\phi^{+}|^{2} (v^{2} + H^{2} + 2vH + \chi^{2}) \\ &= \frac{1}{2} \left(\mu^{2} - \frac{\lambda}{2} v^{2} \right) v^{2} + \frac{1}{2} (\mu^{2} - 3\lambda v^{2}) H^{2} + (\mu^{2} - \lambda v^{2}) vH + \frac{1}{2} (\mu^{2} - \lambda v^{2}) \chi^{2} - \frac{\lambda}{4} H^{4} - \frac{\lambda}{4} \chi^{4} \\ &- \lambda vH^{3} - \frac{\lambda}{2} H^{2} \chi^{2} - \lambda vH \chi^{2} + (\mu^{2} - \lambda v^{2}) |\phi^{+}|^{2} - \lambda |\phi^{+}|^{4} - \lambda |\phi^{+}|^{2} (H^{2} + 2vH + \chi^{2}) \\ &= \frac{\lambda}{4} v^{4} - \lambda v^{2} H^{2} - \frac{\lambda}{4} H^{4} - \frac{\lambda}{4} \chi^{4} - \lambda vH^{3} - \frac{\lambda}{2} H^{2} \chi^{2} - \lambda vH \chi^{2} \\ &- \lambda \phi^{+} \phi^{-} (\phi^{+} \phi^{-} + H^{2} + 2vH + \chi^{2}) \\ &= \frac{1}{8} m_{H}^{2} v^{2} - \frac{1}{2} m_{H}^{2} H^{2} - \frac{m_{H}^{2}}{2v} H^{3} - \frac{m_{H}^{2}}{8v^{2}} H^{4} - \frac{m_{H}^{2}}{2v} H \chi^{2} - \frac{m_{H}^{2}}{4v^{2}} H^{2} \chi^{2} - \frac{m_{H}^{2}}{8v^{2}} \chi^{4} \\ &- \frac{m_{H}^{2}}{2v^{2}} \phi^{+} \phi^{-} (\phi^{+} \phi^{-} + H^{2} + 2vH + \chi^{2}). \end{split}$$

$$(157)$$

由 $V=U_u^\dagger U_d$ 得到 $V^\dagger=U_d^\dagger U_u$ 和 $U_d=U_u V$, $U_u=U_d V^\dagger$, 则

$$\tilde{y}_d = U_d y_{\mathcal{D}} K_d^{\dagger} = U_u V y_{\mathcal{D}} K_d^{\dagger}, \quad \tilde{y}_u = U_u y_{\mathcal{U}} K_u^{\dagger} = U_d V^{\dagger} y_{\mathcal{U}} K_u^{\dagger}, \tag{158}$$

故

$$\tilde{y}_{d,ij}\bar{u}'_{iL}d'_{iR} = \bar{u}'_{iL}(U_uVy_DK_d^{\dagger})_{ij}d'_{iR} = \bar{u}'_{iL}U_{u,ik}V_{kl}y_{d_l}(K_d^{\dagger})_{lj}d'_{mR} = y_{d_i}\bar{u}_{iL}V_{ij}d_{jR},$$
(159)

$$\tilde{y}_{u,ij}\bar{d}'_{iL}u'_{iR} = \bar{d}'_{iL}(U_dV^{\dagger}y_UK_u^{\dagger})_{ij}u'_{iR} = \bar{d}'_{iL}U_{d,ik}V_{kl}^{\dagger}y_{u_l}(K_u^{\dagger})_{lj}u'_{iR} = y_{u_i}\bar{d}_{jL}V_{ii}^{\dagger}u_{iR}.$$
(160)

结合 (89) 和 (90) 式, 得

$$\tilde{y}_{d,ij}\bar{Q}_{iL}d'_{jR}\Phi = \tilde{y}_{d,ij}\left[\bar{u}'_{iL}d'_{jR}\phi^{+} + \frac{1}{\sqrt{2}}\bar{d}'_{iL}d'_{jR}(v+H+i\chi)\right]
= y_{d_{j}}\bar{u}_{iL}V_{ij}d_{jR}\phi^{+} + \frac{y_{d_{i}}}{\sqrt{2}}\bar{d}_{iL}d_{iR}(v+H+i\chi),$$
(161)

$$\tilde{y}_{u,ij}\bar{Q}_{iL}u'_{jR}\tilde{\Phi} = \tilde{y}_{u,ij} \left[\frac{1}{\sqrt{2}} \bar{u}'_{iL}u'_{jR}(v + H - i\chi) - \bar{d}'_{iL}u'_{jR}\phi^{-} \right]
= \frac{y_{u_i}}{\sqrt{2}} \bar{u}_{iL}u_{jR}(v + H - i\chi) - y_{u_i}\bar{d}_{jL}V^{\dagger}_{ji}u_{iR}\phi^{-}.$$
(162)

从而, Yukawa 相互作用拉氏量化为

$$\mathcal{L}_{Y} = -\tilde{y}_{d,ij}\bar{Q}_{iL}d'_{jR}\Phi - \tilde{y}_{u,ij}\bar{Q}_{iL}u'_{jR}\tilde{\Phi} - y_{\ell_{i}}\bar{L}_{iL}\ell_{iR}\Phi + \text{H.c.}$$

$$= -y_{d_{j}}\bar{u}_{iL}V_{ij}d_{jR}\phi^{+} - \frac{y_{d_{i}}}{\sqrt{2}}\bar{d}_{iL}d_{iR}(v + H + i\chi) - \frac{y_{u_{i}}}{\sqrt{2}}\bar{u}_{iL}u_{iR}(v + H - i\chi) + y_{u_{i}}\bar{d}_{jL}V_{ji}^{\dagger}u_{iR}\phi^{-} - y_{\ell_{i}}\bar{\nu}_{iL}\ell_{iR}\phi^{+} - \frac{y_{\ell_{i}}}{\sqrt{2}}\bar{\ell}_{iL}\ell_{iR}(v + H + i\chi) + \text{H.c.}$$

$$= -m_{d_{i}}\bar{d}_{iL}d_{iR} - m_{u_{i}}\bar{u}_{iL}u_{iR} - m_{\ell_{i}}\bar{\ell}_{iL}\ell_{iR} - \frac{m_{d_{i}}}{v}\bar{d}_{iL}d_{iR}(H + i\chi) - \frac{m_{u_{i}}}{v}\bar{u}_{iL}u_{iR}(H - i\chi)$$

$$-\frac{m_{\ell_{i}}}{v}\bar{\ell}_{iL}\ell_{iR}(H + i\chi) - \frac{\sqrt{2}m_{d_{j}}}{v}\bar{u}_{iL}V_{ij}d_{jR}\phi^{+} + \frac{\sqrt{2}m_{u_{i}}}{v}\bar{d}_{jL}V_{ji}^{\dagger}u_{iR}\phi^{-} - \frac{\sqrt{2}m_{\ell_{i}}}{v}\bar{\nu}_{iL}\ell_{iR}\phi^{+} + \text{H.c.}$$

$$= -m_{d_{i}}\bar{d}_{i}d_{i} - m_{u_{i}}\bar{u}_{i}u_{i} - m_{\ell_{i}}\bar{\ell}_{i}\ell_{i} - \frac{m_{d_{i}}}{v}H\bar{d}_{i}d_{i} - \frac{m_{u_{i}}}{v}H\bar{u}_{i}u_{i} - \frac{m_{\ell_{i}}}{v}H\bar{\ell}_{i}\ell_{i}$$

$$-\frac{m_{d_{i}}}{v}\chi\bar{d}_{i}i\gamma^{5}d_{i} + \frac{m_{u_{i}}}{v}\chi\bar{u}_{i}i\gamma^{5}u_{i} - \frac{m_{\ell_{i}}}{v}\chi\bar{\ell}_{i}i\gamma^{5}\ell_{i} + \frac{\sqrt{2}V_{ij}}{v}\phi^{+}\bar{u}_{i}(m_{u_{i}}P_{L} - m_{d_{j}}P_{R})d_{j}$$

$$-\frac{\sqrt{2}V_{ji}^{\dagger}}{v}\phi^{-}\bar{d}_{j}(m_{d_{j}}P_{L} - m_{u_{i}}P_{R})u_{i} - \frac{\sqrt{2}m_{\ell_{i}}}{v}(\phi^{+}\bar{\nu}_{i}P_{R}\ell_{i} + \phi^{-}\bar{\ell}_{i}P_{L}\nu_{i}).$$
(163)

利用

$$D_{\mu}\Phi = \begin{pmatrix} \partial_{\mu} + ieA_{\mu} + \frac{ig}{2c_{W}}(c_{W}^{2} - s_{W}^{2})Z_{\mu} & \frac{ig}{\sqrt{2}}W_{\mu}^{+} \\ \frac{ig}{\sqrt{2}}W_{\mu}^{-} & \partial_{\mu} - \frac{ig}{2c_{W}}Z_{\mu} \end{pmatrix} \begin{pmatrix} \phi^{+} \\ \frac{1}{\sqrt{2}}(v + H + i\chi) \end{pmatrix}$$

$$= \begin{pmatrix} \partial_{\mu}\phi^{+} + i\left[eA_{\mu} + \frac{g(c_{W}^{2} - s_{W}^{2})}{2c_{W}}Z_{\mu}\right]\phi^{+} + \frac{ig}{2}W_{\mu}^{+}(H + i\chi) + im_{W}W_{\mu}^{+} \\ \frac{1}{\sqrt{2}}\left[\partial_{\mu}(H + i\chi) + igW_{\mu}^{-}\phi^{+} - \frac{ig}{2c_{W}}Z_{\mu}(H + i\chi) - im_{Z}Z_{\mu}\right] \end{pmatrix}, \quad (164)$$

将 Higgs 场协变动能项化为

$$\begin{split} &(D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi\\ &=\left|\partial_{\mu}\phi^{+}+\mathrm{i}\left[eA_{\mu}+\frac{g(c_{\mathrm{W}}^{2}-s_{\mathrm{W}}^{2})}{2c_{\mathrm{W}}}Z_{\mu}\right]\phi^{+}+\frac{\mathrm{i}g}{2}\,W_{\mu}^{+}(H+\mathrm{i}\chi)+\mathrm{i}m_{W}W_{\mu}^{+}\right|^{2}\\ &+\frac{1}{2}\left|\partial_{\mu}(H+\mathrm{i}\chi)+\mathrm{i}gW_{\mu}^{-}\phi^{+}-\frac{\mathrm{i}g}{2c_{\mathrm{W}}}\,Z_{\mu}(H+\mathrm{i}\chi)-\mathrm{i}m_{Z}Z_{\mu}\right|^{2}\\ &=(\partial^{\mu}\phi^{+})(\partial_{\mu}\phi^{-})+\frac{1}{2}(\partial^{\mu}H)(\partial_{\mu}H)+\frac{1}{2}(\partial^{\mu}\chi)(\partial_{\mu}\chi)\\ &+\left(\mathrm{i}\partial^{\mu}\phi^{-}\left\{\left[eA_{\mu}+\frac{g(c_{\mathrm{W}}^{2}-s_{\mathrm{W}}^{2})}{2c_{\mathrm{W}}}Z_{\mu}\right]\phi^{+}+\frac{g}{2}\,W_{\mu}^{+}(H+\mathrm{i}\chi)+m_{W}W_{\mu}^{+}\right\}+\mathrm{H.c.}\right)\\ &+\left\{\frac{\mathrm{i}}{2}\,\partial^{\mu}(H-\mathrm{i}\chi)\left[gW_{\mu}^{-}\phi^{+}-\frac{g}{2c_{\mathrm{W}}}\,Z_{\mu}(H+\mathrm{i}\chi)-m_{Z}Z_{\mu}\right]+\mathrm{H.c.}\right\}\\ &+\left|\left[eA_{\mu}+\frac{g(c_{\mathrm{W}}^{2}-s_{\mathrm{W}}^{2})}{2c_{\mathrm{W}}}Z_{\mu}\right]\phi^{+}+\frac{g}{2}\,W_{\mu}^{+}(H+\mathrm{i}\chi)+m_{W}W_{\mu}^{+}\right|^{2}\end{split}$$

$$\frac{1}{2} \left| gW_{\mu}^{-} \phi^{+} - \frac{g}{2c_{W}} Z_{\mu}(H + i\chi) - m_{Z} Z_{\mu} \right|^{2} \\
= (\partial^{\mu} \phi^{+})(\partial_{\mu} \phi^{-}) + \frac{1}{2} (\partial^{\mu} H)(\partial_{\mu} H) + \frac{1}{2} (\partial^{\mu} \chi)(\partial_{\mu} \chi) \\
+ m_{W}^{2} W_{\mu}^{+} W^{-,\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} + g m_{W} H W_{\mu}^{+} W^{-,\mu} + \frac{g m_{Z}}{2c_{W}} H Z_{\mu} Z^{\mu} \\
- \frac{g}{2} [iW_{\mu}^{+} \phi^{-} \overleftrightarrow{\partial^{\mu}} (H + i\chi) + \text{H.c.}] - ieA_{\mu} \phi^{-} \overleftrightarrow{\partial^{\mu}} \phi^{+} - \frac{g}{2c_{W}} Z_{\mu} [-\chi \overleftrightarrow{\partial^{\mu}} H + i(c_{W}^{2} - s_{W}^{2}) \phi^{-} \overleftrightarrow{\partial^{\mu}} \phi^{+}] \\
+ \frac{g^{2}}{4} W_{\mu}^{+} W^{-,\mu} (2\phi^{+} \phi^{-} + H^{2} + \chi^{2}) + e^{2} A_{\mu} A^{\mu} \phi^{+} \phi^{-} \\
+ \frac{g^{2}}{4c_{W}^{2}} Z_{\mu} Z^{\mu} \left[(c_{W}^{2} - s_{W}^{2})^{2} \phi^{+} \phi^{-} + \frac{1}{2} H^{2} + \frac{1}{2} \chi^{2} \right] \\
+ \left[\frac{eg}{2} W_{\mu}^{+} A^{\mu} \phi^{-} (H + i\chi) - \frac{g^{2} s_{W}^{2}}{2c_{W}} W_{\mu}^{+} Z^{\mu} \phi^{-} (H + i\chi) + \text{H.c.} \right] + \frac{eg(c_{W}^{2} - s_{W}^{2})}{c_{W}} A_{\mu} Z^{\mu} \phi^{+} \phi^{-} \\
+ (em_{W} A^{\mu} \phi^{+} W_{\mu}^{-} - g s_{W}^{2} m_{Z} Z^{\mu} \phi^{+} W_{\mu}^{-} + \text{H.c.}) + \mathcal{L}_{b1}, \tag{165}$$

其中

$$\mathcal{L}_{b1} = i m_W (\partial^{\mu} \phi^{-}) W_{\mu}^{+} - i m_W (\partial^{\mu} \phi^{+}) W_{\mu}^{-} - m_Z (\partial^{\mu} \chi) Z_{\mu}.$$
 (166)

在 R_ε 规范下,将规范固定函数设为

$$G^{\pm} = \frac{1}{\sqrt{\xi_W}} (\partial^{\mu} W_{\mu}^{\pm} \pm i \xi_W m_W \phi^{\pm}), \quad G^Z = \frac{1}{\sqrt{\xi_Z}} (\partial^{\mu} Z_{\mu} + \xi_Z m_Z \chi), \quad G^{\gamma} = \frac{1}{\sqrt{\xi_{\gamma}}} \partial^{\mu} A_{\mu}, \quad (167)$$

它们在路径积分量子化中的泛函积分形式为

$$\int \mathcal{D}\omega^{+} \int \mathcal{D}\omega^{-} \int \mathcal{D}\omega^{Z} \int \mathcal{D}\omega^{\gamma} \exp\left[-i \int d^{4}x \left(\omega^{+}\omega^{-} + \frac{1}{2}\omega^{Z}\omega^{Z} + \frac{1}{2}\omega^{\gamma}\omega^{\gamma}\right)\right]
\times \delta(G^{+} - \omega^{+})\delta(G^{-} - \omega^{-})\delta(G^{Z} - \omega^{Z})\delta(G^{\gamma} - \omega^{\gamma})$$

$$= \exp\left[-i \int d^{4}x \left(G^{+}G^{-} + \frac{1}{2}G^{Z}G^{Z} + \frac{1}{2}G^{\gamma}G^{\gamma}\right)\right].$$
(168)

由此得到拉氏量中的规范固定项

$$\mathcal{L}_{\text{EW,GF}} = -G^{+}G^{-} - \frac{1}{2}(G^{Z})^{2} - \frac{1}{2}(G^{\gamma})^{2}
= -\frac{1}{\xi_{W}}(\partial^{\mu}W_{\mu}^{+} + i\xi_{W}m_{W}\phi^{+})(\partial^{\nu}W_{\nu}^{-} - i\xi_{W}m_{W}\phi^{-}) - \frac{1}{2\xi_{Z}}(\partial^{\mu}Z_{\mu} + \xi_{Z}m_{Z}\chi)^{2} - \frac{1}{2\xi_{\gamma}}(\partial^{\mu}A_{\mu})^{2}
= -\frac{1}{\xi_{W}}(\partial^{\mu}W_{\mu}^{+})(\partial^{\nu}W_{\nu}^{-}) - \frac{1}{2\xi_{Z}}(\partial^{\mu}Z_{\mu})^{2} - \frac{1}{2\xi_{\gamma}}(\partial^{\mu}A_{\mu})^{2} - \xi_{W}m_{W}^{2}\phi^{+}\phi^{-} - \frac{1}{2}\xi_{Z}m_{Z}^{2}\chi^{2} + \mathcal{L}_{b2}. (169)$$

可见, Nambu-Goldstone 玻色子 ϕ^{\pm} 和 χ 在 R_{ξ} 规范下具有依赖于 ξ_W 和 ξ_Z 的非物理质量,

$$m_{\phi} = \sqrt{\xi_W} \, m_W, \quad m_{\chi} = \sqrt{\xi_Z} \, m_Z. \tag{170}$$

这里

$$\mathcal{L}_{b2} = i m_W \phi^- (\partial^\mu W_\mu^+) - i m_W \phi^+ \partial^\mu W_\mu^- - m_Z \chi \partial^\mu Z_\mu.$$
 (171)

 \mathcal{L}_{b1} 与 \mathcal{L}_{b2} 之和

$$\mathcal{L}_{b1} + \mathcal{L}_{b2} = i m_W \partial^{\mu} (\phi^- W_{\mu}^+) - i m_W \partial^{\mu} (\phi^+ W_{\mu}^-) - m_Z \partial^{\mu} (\chi Z_{\mu})$$
 (172)

是全散度,不会有物理效应。可见,协变动能项中规范场与 Nambu-Goldstone 标量场之间的双线性耦合项 \mathcal{L}_{b1} 被规范固定项中的 \mathcal{L}_{b2} 抵消掉,这就是如此选取规范固定函数的目的。

这样一来, 电弱规范场传播子相关拉氏量变成

$$\mathcal{L}_{\text{EW,prop}} = (\partial_{\mu} W_{\nu}^{+})(\partial^{\nu} W^{-,\mu}) - (\partial_{\mu} W_{\nu}^{+})(\partial^{\mu} W^{-,\nu}) - \frac{1}{\xi_{W}} (\partial^{\mu} W_{\mu}^{+})(\partial^{\nu} W_{\nu}^{-}) + m_{W}^{2} W_{\mu}^{+} W^{-,\mu}
+ \frac{1}{2} \left[(\partial_{\mu} Z_{\nu})(\partial^{\nu} Z^{\mu}) - (\partial_{\mu} Z_{\nu})(\partial^{\mu} Z^{\nu}) - \frac{1}{\xi_{Z}} (\partial^{\mu} Z_{\mu})^{2} + m_{Z}^{2} Z_{\mu} Z^{\mu} \right]
+ \frac{1}{2} \left[(\partial_{\mu} A_{\nu})(\partial^{\nu} A^{\mu}) - (\partial_{\mu} A_{\nu})(\partial^{\mu} A^{\nu}) - \frac{1}{\xi_{\gamma}} (\partial^{\mu} A_{\mu})^{2} \right]
\rightarrow W_{\mu}^{+} \left[g^{\mu\nu} (\partial^{2} + m_{W}^{2}) - \left(1 - \frac{1}{\xi_{W}} \right) \partial^{\mu} \partial^{\nu} \right] W_{\nu}^{-}
+ \frac{1}{2} Z_{\mu} \left[g^{\mu\nu} (\partial^{2} + m_{Z}^{2}) - \left(1 - \frac{1}{\xi_{Z}} \right) \partial^{\mu} \partial^{\nu} \right] Z_{\nu}
+ \frac{1}{2} A_{\mu} \left[g^{\mu\nu} \partial^{2} - \left(1 - \frac{1}{\xi_{\gamma}} \right) \partial^{\mu} \partial^{\nu} \right] A_{\nu}.$$
(173)

于是, 光子的传播子与胶子形式类似, 为

$$\frac{-i}{p^2 + i\epsilon} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} (1 - \xi_{\gamma}) \right]. \tag{174}$$

将 W + 传播子相关拉氏量变换到动量空间,得

$$-g^{\mu\nu}(p^2 - m_W^2) + \left(1 - \frac{1}{\xi_W}\right)p^{\mu}p^{\nu} = -\left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right)(p^2 - m_W^2) - \frac{p^{\mu}p^{\nu}}{p^2}\frac{p^2 - \xi_W m_W^2}{\xi_W}, \quad (175)$$

它的逆矩阵是

$$-\frac{1}{p^2 - m_W^2} \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) - \frac{\xi_W}{p^2 - \xi_W m_W^2} \frac{p_\mu p_\nu}{p^2} = -\frac{1}{p^2 - m_W^2} \left[g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2 - \xi_W m_W^2} (1 - \xi_W) \right], \tag{176}$$

这是因为由

$$\left(g_{\rho\mu} - \frac{p_{\rho}p_{\mu}}{p^2}\right)\frac{p^{\mu}p^{\nu}}{p^2} = \frac{p_{\rho}p^{\nu}}{p^2} - \frac{p_{\rho}p^{\nu}}{p^2} = 0, \quad \left(g_{\rho\mu} - \frac{p_{\rho}p_{\mu}}{p^2}\right)\left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right) = \delta_{\rho}^{\nu} - \frac{p_{\rho}p^{\nu}}{p^2} \tag{177}$$

得

$$\left[-\frac{1}{p^2 - m_W^2} \left(g_{\rho\mu} - \frac{p_{\rho}p_{\mu}}{p^2} \right) - \frac{\xi_W}{p^2 - \xi_W m_W^2} \frac{p_{\rho}p_{\mu}}{p^2} \right] \times \left[-\left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2} \right) (p^2 - m_W^2) - \frac{p^{\mu}p^{\nu}}{p^2} \frac{p^2 - \xi_W m_W^2}{\xi} \right] \\
= \delta_{\rho}^{\ \nu} - \frac{p_{\rho}p^{\nu}}{p^2} + \frac{p_{\rho}p^{\nu}}{p^2} = \delta_{\rho}^{\ \nu}.$$
(178)

从而, W[±] 传播子的形式为

$$\frac{-\mathrm{i}}{p^2 - m_W^2 + \mathrm{i}\epsilon} \left[g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2 - \xi_W m_W^2} (1 - \xi_W) \right]. \tag{179}$$

同理, Z 传播子的形式为

$$\frac{-\mathrm{i}}{p^2 - m_Z^2 + \mathrm{i}\epsilon} \left[g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2 - \xi_Z m_Z^2} (1 - \xi_Z) \right]. \tag{180}$$

电弱规范场的无穷小规范变换形式是

$$\delta W^a_\mu = -\frac{1}{g} \,\partial_\mu \alpha^a + \varepsilon^{abc} W^b_\mu \alpha^c, \quad \delta B_\mu = -\frac{1}{g'} \,\partial_\mu \alpha^Y. \tag{181}$$

定义

$$\alpha^{\pm} \equiv \frac{1}{\sqrt{2}} (\alpha^1 \mp i\alpha^2), \quad \alpha^Z \equiv \alpha^3 - \alpha^Y, \quad \alpha^{\gamma} \equiv s_W^2 \alpha^3 + c_W^2 \alpha^Y,$$
 (182)

利用

$$\varepsilon^{1bc} W_{\mu}^{b} \alpha^{c} = W_{\mu}^{2} \alpha^{3} - W_{\mu}^{3} \alpha^{2}, \quad \varepsilon^{2bc} W_{\mu}^{b} \alpha^{c} = -W_{\mu}^{1} \alpha^{3} + W_{\mu}^{3} \alpha^{1}, \tag{183}$$

$$\pm i\sqrt{2}\alpha^{\pm} = \pm i\alpha^{1} + \alpha^{2}, \qquad \pm i\sqrt{2}W_{\mu}^{\pm} = \pm iW_{\mu}^{1} + W_{\mu}^{2},$$
 (184)

有

$$\varepsilon^{1bc} W_{\mu}^{b} \alpha^{c} \mp i \varepsilon^{2bc} W_{\mu}^{b} \alpha^{c} = (W_{\mu}^{2} \alpha^{3} - W_{\mu}^{3} \alpha^{2}) \mp i (-W_{\mu}^{1} \alpha^{3} + W_{\mu}^{3} \alpha^{1})
= (W_{\mu}^{2} \pm i W_{\mu}^{1}) \alpha^{3} - W_{\mu}^{3} (\alpha^{2} \pm i \alpha^{1})
= \pm i \sqrt{2} W_{\mu}^{\pm} (c_{W}^{2} \alpha^{Z} + \alpha^{\gamma}) \mp i \sqrt{2} (s_{W} A_{\mu} + c_{W} Z_{\mu}) \alpha^{\pm},$$
(185)

$$\varepsilon^{3bc} W_{\mu}^{b} \alpha^{c} = W_{\mu}^{1} \alpha^{2} - W_{\mu}^{2} \alpha^{1} = \frac{1}{\sqrt{2}} (W_{\mu}^{+} + W_{\mu}^{-}) \frac{i}{\sqrt{2}} (\alpha^{+} - \alpha^{-}) - \frac{i}{\sqrt{2}} (W_{\mu}^{+} - W_{\mu}^{-}) \frac{1}{\sqrt{2}} (\alpha^{+} + \alpha^{-}) \\
= -i (W_{\mu}^{+} \alpha^{-} - W_{\mu}^{-} \alpha^{+}). \tag{186}$$

因此,

$$\delta W_{\mu}^{+} = \frac{1}{\sqrt{2}} (\delta W_{\mu}^{1} - i\delta W_{\mu}^{2}) = -\frac{1}{\sqrt{2}g} \partial_{\mu} (\alpha^{1} - i\alpha^{2}) + \frac{1}{\sqrt{2}} (\varepsilon^{1bc} W_{\mu}^{b} \alpha^{c} - i\varepsilon^{2bc} W_{\mu}^{b} \alpha^{c})
= -\frac{1}{g} \partial_{\mu} \alpha^{+} - i(s_{W} A_{\mu} + c_{W} Z_{\mu}) \alpha^{+} + iW_{\mu}^{+} (c_{W}^{2} \alpha^{Z} + \alpha^{\gamma}),$$
(187)

$$\delta W_{\mu}^{-} = (\delta W_{\mu}^{+})^{\dagger} = -\frac{1}{g} \partial_{\mu} \alpha^{-} + i(s_{W} A_{\mu} + c_{W} Z_{\mu}) \alpha^{-} - i W_{\mu}^{-} (c_{W}^{2} \alpha^{Z} + \alpha^{\gamma}), \tag{188}$$

$$\delta Z_{\mu}^{a} = c_{W} \delta W_{\mu}^{3} - s_{W} \delta B_{\mu} = -\frac{c_{W}}{g} \partial_{\mu} \alpha^{3} + c_{W} \varepsilon^{3bc} W_{\mu}^{b} \alpha^{c} + \frac{s_{W}}{g'} \partial_{\mu} \alpha^{Y}$$

$$= -\frac{c_{W}}{g} \partial_{\mu} \alpha^{Z} - i c_{W} (W_{\mu}^{+} \alpha^{-} - W_{\mu}^{-} \alpha^{+}), \qquad (189)$$

$$\delta A_{\mu} = s_{\mathcal{W}} \delta W_{\mu}^{3} + c_{\mathcal{W}} \delta B_{\mu} = -\frac{s_{\mathcal{W}}}{g} \partial_{\mu} \alpha^{3} + s_{\mathcal{W}} \varepsilon^{3bc} W_{\mu}^{b} \alpha^{c} - \frac{c_{\mathcal{W}}}{g'} \partial_{\mu} \alpha^{Y}$$

$$= -\frac{1}{e} \partial_{\mu} \alpha^{\gamma} - i s_{\mathcal{W}} (W_{\mu}^{+} \alpha^{-} - W_{\mu}^{-} \alpha^{+}). \tag{190}$$

另一方面, 根据

$$\alpha^{a}T^{a} + \alpha^{Y}Y_{H} = \frac{1}{2}(\alpha^{a}\sigma^{a} + \alpha^{Y}) = \frac{1}{2} \begin{pmatrix} \alpha^{3} + \alpha^{Y} & \alpha^{1} - i\alpha^{2} \\ \alpha^{1} + i\alpha^{2} & -\alpha^{3} + \alpha^{Y} \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 2\alpha^{\gamma} + (c_{W}^{2} - s_{W}^{2})\alpha^{Z} & \sqrt{2}\alpha^{+} \\ \sqrt{2}\alpha^{-} & -\alpha^{Z} \end{pmatrix}, \tag{191}$$

可知 Higgs 场的无穷小规范变换形式为

$$\delta\Phi = i(\alpha^{a}T^{a} + \alpha^{Y}Y_{H})\Phi = \frac{i}{2} \begin{pmatrix} 2\alpha^{\gamma} + (c_{W}^{2} - s_{W}^{2})\alpha^{Z} & \sqrt{2}\alpha^{+} \\ \sqrt{2}\alpha^{-} & -\alpha^{Z} \end{pmatrix} \begin{pmatrix} \phi^{+} \\ \frac{1}{\sqrt{2}}(v + H + i\chi) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{i}{2} \{\phi^{+}[2\alpha^{\gamma} + (c_{W}^{2} - s_{W}^{2})\alpha^{Z}] + (v + H + i\chi)\alpha^{+} \} \\ \frac{1}{\sqrt{2}} \left[i\phi^{+}\alpha^{-} - \frac{1}{2}(iv + iH - \chi)\alpha^{Z} \right] \end{pmatrix} = \begin{pmatrix} \delta\phi^{+} \\ \frac{1}{\sqrt{2}}(\delta H + i\delta\chi) \end{pmatrix}. \tag{192}$$

利用

$$Re(\phi^{+}\alpha^{-}) = \frac{1}{2}(\phi^{+}\alpha^{-} + \phi^{-}\alpha^{+}), \quad Im(\phi^{+}\alpha^{-}) = -\frac{i}{2}(\phi^{+}\alpha^{-} - \phi^{-}\alpha^{+}), \tag{193}$$

推出

$$\delta\phi^{+} = \frac{i}{2} \{ \phi^{+} [2\alpha^{\gamma} + (c_{W}^{2} - s_{W}^{2})\alpha^{Z}] + (v + H + i\chi)\alpha^{+} \},$$
(194)

$$\delta\phi^{-} = -\frac{\mathrm{i}}{2} \{ \phi^{-} [2\alpha^{\gamma} + (c_{\mathrm{W}}^{2} - s_{\mathrm{W}}^{2})\alpha^{Z}] + (v + H - \mathrm{i}\chi)\alpha^{-} \},$$
(195)

$$\delta H = \frac{1}{2} [i(\phi^{+}\alpha^{-} - \phi^{-}\alpha^{+}) + \chi \alpha^{Z}], \quad \delta \chi = \frac{1}{2} [\phi^{+}\alpha^{-} + \phi^{-}\alpha^{+} - (v + H)\alpha^{Z}].$$
 (196)

(199)

于是,规范固定函数的无穷小规范变换为

$$\sqrt{\xi_{W}} \, \delta G^{+} = \partial^{\mu} \delta W_{\mu}^{+} + i \xi_{W} m_{W} \delta \phi^{+}
= \partial^{\mu} \left[-\frac{1}{g} \partial_{\mu} \alpha^{+} - i (s_{W} A_{\mu} + c_{W} Z_{\mu}) \alpha^{+} + i W_{\mu}^{+} (c_{W}^{2} \alpha^{Z} + \alpha^{\gamma}) \right]
- \frac{1}{2} \xi_{W} m_{W} \left\{ \phi^{+} [2\alpha^{\gamma} + (c_{W}^{2} - s_{W}^{2}) \alpha^{Z}] + (v + H + i\chi) \alpha^{+} \right\}, \qquad (197)
\sqrt{\xi_{W}} \, \delta G^{-} = \partial^{\mu} \delta W_{\mu}^{-} - i \xi_{W} m_{W} \delta \phi^{-}
= \partial^{\mu} \left[-\frac{1}{g} \partial_{\mu} \alpha^{-} + i (s_{W} A_{\mu} + c_{W} Z_{\mu}) \alpha^{-} - i W_{\mu}^{-} (c_{W}^{2} \alpha^{Z} + \alpha^{\gamma}) \right]
- \frac{1}{2} \xi_{W} m_{W} \left\{ \phi^{-} [2\alpha^{\gamma} + (c_{W}^{2} - s_{W}^{2}) \alpha^{Z}] + (v + H - i\chi) \alpha^{-} \right\}, \qquad (198)
\sqrt{\xi_{Z}} \, \delta G^{Z} = \partial^{\mu} \delta Z_{\mu} + \xi_{Z} m_{Z} \delta \chi
= \partial^{\mu} \left[-\frac{c_{W}}{g} \partial_{\mu} \alpha^{Z} - i c_{W} (W_{\mu}^{+} \alpha^{-} - W_{\mu}^{-} \alpha^{+}) \right]
+ \frac{1}{2} \xi_{Z} m_{Z} \left[\phi^{+} \alpha^{-} + \phi^{-} \alpha^{+} - (v + H) \alpha^{Z} \right], \qquad (199)$$

$$\sqrt{\xi_{\gamma}} \, \delta G^{\gamma} = \partial^{\mu} \delta A_{\mu} = \partial^{\mu} \left[-\frac{1}{e} \, \partial_{\mu} \alpha^{\gamma} - \mathrm{i} s_{\mathrm{W}} (W_{\mu}^{+} \alpha^{-} - W_{\mu}^{-} \alpha^{+}) \right]. \tag{200}$$

因此,

$$\sqrt{\xi_W}g\frac{\delta G^+}{\delta \alpha^+} = -\partial^2 - \xi_W m_W^2 - ie\partial^\mu A_\mu - igc_W \partial^\mu Z_\mu - \frac{1}{2}g\xi_W m_W (H + i\chi), \tag{201}$$

$$\frac{\sqrt{\xi_W}g}{c_W} \frac{\delta G^+}{\delta \alpha^Z} = igc_W \partial^{\mu} W_{\mu}^+ - \frac{g(c_W^2 - s_W^2)\xi_W m_W}{2c_W} \phi^+,$$
 (202)

$$\sqrt{\xi_W} e^{\frac{\delta G^+}{\delta \alpha^{\gamma}}} = ie\partial^{\mu} W_{\mu}^+ - e\xi_W m_W \phi^+, \tag{203}$$

$$\sqrt{\xi_W}g\frac{\delta G^-}{\delta \alpha^-} = -\partial^2 - \xi_W m_W^2 + ie\partial^\mu A_\mu + igc_W \partial^\mu Z_\mu - \frac{1}{2}g\xi_W m_W (H - i\chi), \tag{204}$$

$$\frac{\sqrt{\xi_W}g}{c_W}\frac{\delta G^-}{\delta \alpha^Z} = -igc_W \partial^{\mu}W_{\mu}^- - \frac{g(c_W^2 - s_W^2)\xi_W m_W}{2c_W}\phi^-,$$
 (205)

$$\sqrt{\xi_W} e^{\frac{\delta G^-}{\delta \alpha^{\gamma}}} = -ie\partial^{\mu} W_{\mu}^- - e\xi_W m_W \phi^-, \tag{206}$$

$$\sqrt{\xi_Z}g\frac{\delta G^Z}{\delta \alpha^+} = igc_W \partial^\mu W^-_\mu + \frac{1}{2}g\xi_Z m_Z \phi^-, \tag{207}$$

$$\sqrt{\xi_Z}g\frac{\delta G^Z}{\delta \alpha^-} = -igc_W \partial^\mu W^+_\mu + \frac{1}{2}g\xi_Z m_Z \phi^+, \tag{208}$$

$$\frac{\sqrt{\xi_Z}g}{c_W}\frac{\delta G^Z}{\delta \alpha^Z} = -\partial^2 - \xi_Z m_Z^2 - \frac{g\xi_Z m_Z}{2c_W}H,\tag{209}$$

$$\sqrt{\xi_{\gamma}}g\frac{\delta G^{\gamma}}{\delta \alpha^{+}} = ie\partial^{\mu}W_{\mu}^{-}, \quad \sqrt{\xi_{\gamma}}g\frac{\delta G^{\gamma}}{\delta \alpha^{-}} = -ie\partial^{\mu}W_{\mu}^{+}, \quad \sqrt{\xi_{\gamma}}e\frac{\delta G^{\gamma}}{\delta \alpha^{\gamma}} = -\partial^{2}.$$
 (210)

最后,得到以下 Faddeev-Popov 鬼场拉氏量,

$$\mathcal{L}_{\text{EWG,FP}} = \bar{\eta}^{+} \left(\sqrt{\xi_W} g \frac{\delta G^{+}}{\delta \alpha^{+}} \right) \eta^{+} + \bar{\eta}^{Z} \left(\sqrt{\xi_Z} g \frac{\delta G^{Z}}{\delta \alpha^{+}} \right) \eta^{+} + \bar{\eta}^{\gamma} \left(\sqrt{\xi_{\gamma}} g \frac{\delta G^{\gamma}}{\delta \alpha^{+}} \right) \eta^{+}$$

$$+ \bar{\eta}^{-} \left(\sqrt{\xi_W} g \frac{\delta G^{-}}{\delta \alpha^{-}} \right) \eta^{-} + \bar{\eta}^{Z} \left(\sqrt{\xi_Z} g \frac{\delta G^{Z}}{\delta \alpha^{-}} \right) \eta^{-} + \bar{\eta}^{\gamma} \left(\sqrt{\xi_{\gamma}} g \frac{\delta G^{\gamma}}{\delta \alpha^{-}} \right) \eta^{-}$$

$$+ \bar{\eta}^{Z} \left(\frac{\sqrt{\xi_Z} g}{c_W} \frac{\delta G^{Z}}{\delta \alpha^{Z}} \right) \eta^{Z} + \bar{\eta}^{+} \left(\frac{\sqrt{\xi_W} g}{c_W} \frac{\delta G^{+}}{\delta \alpha^{Z}} \right) \eta^{Z} + \bar{\eta}^{-} \left(\sqrt{\xi_W} g \frac{\delta G^{-}}{\delta \alpha^{\gamma}} \right) \eta^{Z}$$

$$+ \bar{\eta}^{\gamma} \left(\sqrt{\xi_{\gamma}} e \frac{\delta G^{\gamma}}{\delta \alpha^{\gamma}} \right) \eta^{\gamma} + \bar{\eta}^{+} \left(\sqrt{\xi_W} e \frac{\delta G^{+}}{\delta \alpha^{\gamma}} \right) \eta^{\gamma} + \bar{\eta}^{-} \left(\sqrt{\xi_W} e \frac{\delta G^{-}}{\delta \alpha^{\gamma}} \right) \eta^{\gamma}$$

$$\to \bar{\eta}^{+} \left[-\partial^{2} - \xi_{W} m_{W}^{2} + ie \overleftarrow{\partial^{\mu}} A_{\mu} + igc_{W} \overleftarrow{\partial^{\mu}} Z_{\mu} - \frac{1}{2} g \xi_{W} m_{W} (H + i\chi) \right] \eta^{+}$$

$$+ \bar{\eta}^{Z} \left(-igc_{W} \overleftarrow{\partial^{\mu}} W_{\mu}^{-} + \frac{1}{2} g \xi_{Z} m_{Z} \phi^{-} \right) \eta^{+} - ie(\partial^{\mu} \bar{\eta}^{\gamma}) W_{\mu}^{-} \eta^{+}$$

$$+ \bar{\eta}^{Z} \left(igc_{W} \overleftarrow{\partial^{\mu}} W_{\mu}^{+} + \frac{1}{2} g \xi_{Z} m_{Z} \phi^{+} \right) \eta^{-} + ie(\partial^{\mu} \bar{\eta}^{\gamma}) W_{\mu}^{+} \eta^{-}$$

$$+ \bar{\eta}^{Z} \left(-\partial^{2} - \xi_{Z} m_{Z}^{2} - \frac{g \xi_{Z} m_{Z}}{2c_{W}} H \right) \eta^{Z}$$

$$+ \bar{\eta}^{+} \left(-igc_{W} \overleftarrow{\partial^{\mu}} W_{\mu}^{+} - \frac{g(c_{W}^{2} - s_{W}^{2}) \xi_{W} m_{W}}{2c_{W}} \phi^{+} \right) \eta^{Z}$$

$$+ \bar{\eta}^{-} \left(igc_{W} \overleftarrow{\partial^{\mu}} W_{\mu}^{-} - \frac{g(c_{W}^{2} - s_{W}^{2}) \xi_{W} m_{W}}{2c_{W}} \phi^{-} \right) \eta^{Z}$$

$$- \bar{\eta}^{\gamma} \partial^{2} \eta^{\gamma} + \bar{\eta}^{+} (-ie\overleftarrow{\partial^{\mu}} W_{\mu}^{+} - e\xi_{W} m_{W} \phi^{+}) \eta^{\gamma} + \bar{\eta}^{-} (ie\overleftarrow{\partial^{\mu}} W_{\mu}^{-} - e\xi_{W} m_{W} \phi^{-}) \eta^{\gamma}.$$
 (211)

可以认为这里通过鬼场 η^{\pm} 、 η^{Z} 、 η^{γ} 的归一化吸收了 -1/g、 $-c_{W}/g$ 、-1/e 因子,通过鬼场 $\bar{\eta}^{\pm}$ 、 $\bar{\eta}^{Z}$ 、 $\bar{\eta}^{\gamma}$ 的归一化吸收了 $1/\sqrt{\xi_{W}}$ 、 $1/\sqrt{\xi_{Z}}$ 、 $1/\sqrt{\xi_{\gamma}}$ 因子。鬼粒子的质量为

$$m_{\eta^+} = m_{\eta^-} = \sqrt{\xi_W} \, m_W, \quad m_{\eta^Z} = \sqrt{\xi_Z} \, m_Z, \quad m_{\eta^{\gamma}} = 0.$$
 (212)

下面给出 R_{ξ} 规范下的 Feynman 规则。 $\xi_i=1$ 对应 Feynman-'t Hooft 规范, $\xi_i=0$ 对应 Landau 规范, $\xi_W, \xi_Z \to \infty$ 对应幺正规范。在树图计算中,常取 $\xi_{\gamma}=1$ 和 $\xi_W, \xi_Z \to \infty$ 。在圈图计算中,常取 $\xi_{\gamma}=\xi_W=\xi_Z=1$ 。

传播子:

$$\bullet - - \stackrel{p}{\underset{H}{\longrightarrow}} - - \bullet = \frac{\mathrm{i}}{p^2 - m_H^2 + \mathrm{i}\epsilon}$$
 (213)

$$\bullet - - \xrightarrow{p} - - \bullet = \frac{i}{p^2 - \xi_Z m_Z^2 + i\epsilon}$$
 (214)

$$\bullet - - - \stackrel{p}{\bullet} - - - \bullet = \frac{\mathrm{i}}{p^2 - \xi_W m_W^2 + \mathrm{i}\epsilon} \tag{215}$$

$$\nu \bullet \longrightarrow \stackrel{p}{\gamma} \bullet \mu = \frac{-i}{p^2 + i\epsilon} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} (1 - \xi_{\gamma}) \right]$$
 (216)

$$\nu \bullet \sim \stackrel{p}{\longrightarrow} \mu = \frac{-i}{p^2 - m_Z^2 + i\epsilon} \left[g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2 - \xi_Z m_Z^2} (1 - \xi_Z) \right]$$
 (217)

$$\nu - \frac{p}{W} \mu = \frac{-i}{p^2 - m_W^2 + i\epsilon} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2 - \xi_W m_W^2} (1 - \xi_W) \right]$$
 (218)

$$\begin{array}{ccc}
& & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

$$\bullet \qquad \stackrel{p}{\longrightarrow} \qquad = \frac{\mathrm{i}}{p^2 - \xi_Z m_Z^2 + \mathrm{i}\epsilon} \tag{220}$$

$$\begin{array}{ccc}
& & & p \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

标量玻色子三线性耦合:

标量玻色子四线性耦合:

$$H \qquad H \qquad H \qquad H \qquad \chi \qquad \chi \qquad \chi$$

$$= -\frac{3im_H^2}{v^2} \qquad = -6i\lambda \qquad = -2i\lambda \qquad = -6i\lambda$$

$$H \qquad X \qquad \chi \qquad \chi \qquad \chi \qquad \chi$$

$$= -\frac{im_H^2}{v^2} \qquad = -\frac{2im_H^2}{v^2} \qquad = -2i\lambda$$

$$= -2i\lambda \qquad \phi \qquad \phi \qquad \phi$$

$$= -\frac{2im_H^2}{v^2} \qquad = -4i\lambda$$

Yukawa 耦合:

$$\begin{array}{c}
\phi \\
= \frac{i\sqrt{2}V_{ij}}{v}(m_{u_i}P_{L} - m_{d_j}P_{R}) \\
= iV_{ij}(y_{u_i}P_{L} - y_{d_j}P_{R})
\end{array}$$

$$\begin{array}{c}
\phi \\
= -\frac{i\sqrt{2}V_{ji}^{\dagger}}{v}(m_{d_j}P_{L} - m_{u_i}P_{R}) \\
= -iV_{ji}^{\dagger}(y_{d_j}P_{L} - y_{u_i}P_{R}) \\
d_j
\end{array}$$
(228)

标量玻色子与电弱规范玻色子的三线性耦合:

标量玻色子与电弱规范玻色子的四线性耦合:

$$H \qquad H \qquad H \qquad H \qquad H \qquad H \qquad \qquad H$$

鬼粒子与标量玻色子的耦合:

$$\frac{H}{1} = -\frac{ig\xi_Z m_Z}{2c_W}$$

$$\frac{1}{\eta^Z} = -\frac{ig^2 \xi_Z v}{4c_W^2}$$
(244)

鬼粒子与电弱规范玻色子的耦合:

6 内外线一般 Feynman 规则

本节列出一些通用的内外线 Feynman 规则。 内线 Feynman 规则如下。

• 实标量玻色子传播子:
$$\bullet - - \stackrel{p}{---} - \bullet = \frac{\mathrm{i}}{p^2 - m^2 + \mathrm{i}\epsilon}$$

• 复标量玻色子传播子:
$$lacktriangledown - lacktriangledown - lacktrian$$

• Dirac 费米子传播子: •
$$\stackrel{p}{\longrightarrow}$$
 = $\frac{\mathrm{i}(\not p+m)}{p^2-m^2+\mathrm{i}\epsilon}$

• 无质量实矢量玻色子传播子:

$$\nu \bullet \longrightarrow \mu = \frac{-ig^{\mu\nu}}{p^2 + i\epsilon} \quad (Feynman 规范)$$

$$\nu \bullet \longrightarrow \mu = \frac{-i(g^{\mu\nu} - p^{\mu}p^{\nu}/p^2)}{p^2 + i\epsilon} \quad (Landau 规范)$$

• 有质量实矢量玻色子传播子:

$$\nu$$
 $\mu = \frac{-\mathrm{i}g^{\mu\nu}}{p^2 - m^2 + \mathrm{i}\epsilon}$ (Feynman 规范)

有质量复矢量玻色子传播子:

$$\nu \longrightarrow \mu = \frac{-\mathrm{i}(g^{\mu\nu} - p^{\mu}p^{\nu}/m^2)}{p^2 - m^2 + \mathrm{i}\epsilon} \quad (幺正规范)$$

$$\nu$$
 $\mu = \frac{-\mathrm{i}g^{\mu\nu}}{p^2 - m^2 + \mathrm{i}\epsilon}$ (Feynman 规范)

实标量场外线 Feynman 规则如下。

• 实标量玻色子入射外线: -----=1

• 实标量玻色子出射外线:
$$\bullet - \stackrel{p}{\longrightarrow} = 1$$

复标量场外线 Feynman 规则如下。

p• 正标量玻色子入射外线: **---** = 1

以 λ 代表自旋极化指标 (如螺旋度), Dirac 旋量场外线 Feynman 规则如下。

• Dirac 正费米子入射外线: $\lambda \longrightarrow p = u(\mathbf{p}, \lambda)$

• Dirac 反费米子入射外线: $\lambda \xrightarrow{p} = \bar{v}(\mathbf{p}, \lambda)$

• Dirac 反费米子出射外线: \bullet $\lambda = v(\mathbf{p}, \lambda)$

在计算非极化振幅模方时,可利用自旋求和关系

$$\sum_{\lambda} u(\mathbf{p}, \lambda) \bar{u}(\mathbf{p}, \lambda) = \not p + m, \quad \sum_{\lambda} v(\mathbf{p}, \lambda) \bar{v}(\mathbf{p}, \lambda) = \not p - m.$$
 (256)

以 λ 代表自旋极化指标,实矢量场外线 Feynman 规则如下。

• 实矢量玻色子入射外线: $\lambda; \mu \longrightarrow p = \varepsilon^{\mu}(\mathbf{p}, \lambda)$

复矢量场外线 Feynman 规则如下。

- 正矢量玻色子入射外线: $\lambda;\mu$ ~ \blacktriangleright $= \varepsilon^{\mu}(\mathbf{p},\lambda)$
- 反矢量玻色子入射外线: $\lambda;\mu$ \longrightarrow $= \varepsilon^{\mu}(\mathbf{p},\lambda)$
- 正矢量玻色子出射外线: $\bullet \sim \longrightarrow \lambda; \mu = \varepsilon^{\mu*}(\mathbf{p}, \lambda)$
- 反矢量玻色子出射外线: $\lambda; \mu = \varepsilon^{\mu*}(\mathbf{p}, \lambda)$

在计算非极化振幅模方时, 若包含无质量矢量玻色子外线, 可利用极化求和替换关系

$$\sum_{\lambda} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) \to -g_{\mu\nu}; \qquad (257)$$

若包含有质量矢量玻色子外线,可利用极化求和关系

$$\sum_{\lambda} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) = -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m^{2}}.$$
 (258)

7 常用单位和标准模型参数

本节数据来自 Particle Data Group 发布的 2022 版 Review of Particle Physics [5]。

在有理化的自然单位制中,光速、约化 Planck 常数和真空介电常数均取为 1,即 $c = \hbar =$ $\varepsilon_0 = 1$ 。从而,速度没有量纲 (dimension);长度量纲与时间量纲相同,是能量量纲的倒数;能量、质量和动量具有相同的量纲;精细结构常数表达为

$$\alpha = \frac{e^2}{4\pi},\tag{259}$$

而单位电荷量 $e = \sqrt{4\pi\alpha}$ 是没有量纲的。可以将能量单位电子伏特 (eV) 视作上述有量纲物理量的基本单位。

单位间转换关系为

$$1 = c = 2.99792458 \times 10^{10} \text{ cm} \cdot \text{s}^{-1}, \tag{260}$$

$$1 = \hbar = 6.582119569 \times 10^{-25} \text{ GeV} \cdot \text{s}, \tag{261}$$

$$1 = \hbar c = 1.973269804 \times 10^{-14} \text{ GeV} \cdot \text{cm}, \tag{262}$$

$$1 = (\hbar c)^2 = 3.893793721 \times 10^8 \text{ GeV}^2 \cdot \text{pb}, \tag{263}$$

由此得到

$$1 \text{ s} = 2.997925 \times 10^{10} \text{ cm}, \qquad 1 \text{ cm} = 3.335641 \times 10^{-11} \text{ s}, \qquad (264)$$

$$1 \text{ s} = 1.519267 \times 10^{24} \text{ GeV}^{-1}, \quad 1 \text{ GeV}^{-1} = 6.582120 \times 10^{-25} \text{ s},$$
 (265)

$$1 \text{ cm} = 5.067731 \times 10^{13} \text{ GeV}^{-1}, \quad 1 \text{ GeV}^{-1} = 1.973270 \times 10^{-14} \text{ cm},$$
 (266)

$$1 \text{ cm}^2 = 2.568189 \times 10^{27} \text{ GeV}^{-2}, \quad 1 \text{ GeV}^{-2} = 3.893794 \times 10^{-28} \text{ cm}^2,$$
 (267)

$$1 \text{ cm}^3 \cdot \text{s}^{-1} = 8.566558 \times 10^{16} \text{ GeV}^{-2}, \quad 1 \text{ GeV}^{-2} = 1.167330 \times 10^{-17} \text{ cm}^3 \cdot \text{s}^{-1}.$$
 (268)

靶 (barn) 是散射截面的常用单位,记作 b,满足

$$1 \text{ b} = 10^{-24} \text{ cm}^2 = 10^9 \text{ nb} = 10^{12} \text{ pb} = 10^{15} \text{ fb} = 10^{18} \text{ ab},$$
 (269)

$$1 \text{ pb} = 10^{-36} \text{ cm}^2 = 2.568189 \times 10^{-9} \text{ GeV}^{-2}, \quad 1 \text{ GeV}^{-2} = 3.893794 \times 10^8 \text{ pb.}$$
 (270)

Fermi 耦合常数是

$$G_{\rm F} = 1.1663788(6) \times 10^{-5} \text{ GeV}^{-2},$$
 (271)

括号内数字代表测量值的 1σ 不确定度, 由树图阶关系式

$$\frac{G_{\rm F}}{\sqrt{2}} = \frac{1}{2v^2} = \frac{g^2}{8m_{\rm W}^2},\tag{272}$$

得到 Higgs 场真空期待值为

$$v = (\sqrt{2}G_{\rm F})^{-1/2} = 246.2196 \text{ GeV}.$$
 (273)

在低能标(Thomson 极限)处,精细结构常数为

$$\alpha = \frac{1}{137.035999180(10)};\tag{274}$$

在 $\overline{\rm MS}$ 重整化方案 (以 ^ 为标志) 中, α^{-1} 跑动到 $\mu=m_Z$ 能标处的数值是

$$\hat{\alpha}^{-1}(m_Z) = 127.951 \pm 0.009 \,.$$
 (275)

在 $\overline{\rm MS}$ 方案中, $\mu=m_Z$ 能标处强耦合常数 $\alpha_{\rm s}=g_{\rm s}^2/(4\pi)$ 的数值为

$$\hat{\alpha}_{\rm s}(m_Z) = 0.1179 \pm 0.0009,$$
(276)

Weinberg 角 θ_W 的数值对应于

$$\hat{s}_{W}^{2} = \sin^{2} \hat{\theta}_{W}(m_{Z}) = 0.23122 \pm 0.00004$$
. (277)

在标准模型中, 光子、胶子和中微子没有质量, 其它基本粒子的质量为

$$m_W = 80.377 \pm 0.012 \text{ GeV}, \qquad m_Z = 91.1876 \pm 0.0021 \text{ GeV},$$
 (278)

$$m_H = 125.25 \pm 0.17 \text{ GeV}, \qquad m_e = 0.51099895000(15) \text{ MeV},$$
 (279)

$$m_{\mu} = 105.6583755(23) \text{ MeV}, \quad m_{\tau} = 1776.86 \pm 0.12 \text{ MeV},$$
 (280)

$$m_u = 2.16^{+0.49}_{-0.26} \text{ MeV}, \qquad m_d = 4.67^{+0.48}_{-0.17} \text{ MeV},$$
 (281)

$$m_s = 93.4^{+8.6}_{-3.4} \text{ MeV}, \qquad m_c = 1.27 \pm 0.02 \text{ GeV},$$
 (282)

$$m_b = 4.18^{+0.03}_{-0.02} \text{ GeV}, \qquad m_t = 172.69 \pm 0.30 \text{ GeV}.$$
 (283)

这里, $u \, \cdot \, d \, \cdot \, s$ 夸克的质量是 $\mu = 2$ GeV 能标处的 $\overline{\text{MS}}$ 质量, c 和 b 夸克的质量分别是 $\mu = m_c$ 和 $\mu = m_b$ 能标处的 $\overline{\text{MS}}$ 质量,其余粒子的质量均为极点质量 (pole mass) 。相应地,计算出来的 $c \, \cdot \, b$ 夸克极点质量为

$$m_c^{\text{pole}} = 1.67 \pm 0.07 \text{ GeV}, \quad m_b^{\text{pole}} = 4.78 \pm 0.06 \text{ GeV}.$$
 (284)

质子和中子的质量为

$$m_p = 938.27208816(29) \text{ MeV}, \quad m_n = 939.56542052(54) \text{ MeV}.$$
 (285)

在电弱能标附近作领头阶计算时, 可将单位电荷量取为

$$e = \sqrt{4\pi\hat{\alpha}(m_Z)} = 0.3133885,$$
 (286)

将强耦合常数取为

$$g_{\rm s} = \sqrt{4\pi \hat{\alpha}_{\rm s}(m_Z)} = 1.217200 \,.$$
 (287)

从树图阶关系计算 Higgs 场四线性耦合常数 λ 和 Yukawa 耦合常数 y_t 、 y_b 、 y_τ 、 y_c , 得

$$\lambda = \frac{m_H^2}{2v^2} = 0.1293839, \quad y_t = \frac{\sqrt{2}m_t}{v} = 0.9918808, \quad y_b = \frac{\sqrt{2}m_b}{v} = 2.400870 \times 10^{-2}, \quad (288)$$

$$y_{\tau} = \frac{\sqrt{2}m_{\tau}}{v} = 1.020576 \times 10^{-2}, \quad y_{c} = \frac{\sqrt{2}m_{c}}{v} = 7.294508 \times 10^{-3}.$$
 (289)

耦合常数 q 和 q' 有以下两种取值方式。

1. 根据树图阶关系 $\sin^2\theta_{\rm W}=1-m_W^2/m_Z^2$ 计算 Weinberg 角,得

$$s_{\rm W}^2 = 1 - \frac{m_W^2}{m_Z^2} = 0.2230519, \quad c_{\rm W}^2 = 1 - s_{\rm W}^2 = 0.7769481,$$
 (290)

$$s_{\rm W} = \sqrt{s_{\rm W}^2} = 0.4722837, \qquad c_{\rm W} = \sqrt{c_{\rm W}^2} = 0.8814466,$$
 (291)

故

$$g = \frac{e}{s_W} = 0.6635599, \quad g' = \frac{e}{c_W} = 0.3555389.$$
 (292)

2. 根据 $\overline{\text{MS}}$ 方案中 Weinberg 角的数值 (277) 计算 g 和 g', 得

$$c_{\rm W}^2 = 1 - \hat{s}_{\rm W}^2 = 0.76878, \quad s_{\rm W} = \sqrt{\hat{s}_{\rm W}^2} = 0.4808534, \quad c_{\rm W} = \sqrt{c_{\rm W}^2} = 0.8768010, \quad (293)$$

$$g = \frac{e}{s_{\rm W}} = 0.6517340, \quad g' = \frac{e}{c_{\rm W}} = 0.3574226. \quad (294)$$

将 CKM 矩阵参数化为

$$V = \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & \\ -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & & 1 \end{pmatrix}, \tag{295}$$

其中 $s_{ij} \equiv \sin \theta_{ij}$, $c_{ij} \equiv \cos \theta_{ij}$ 。 实验拟合值为

$$s_{12} = 0.22500 \pm 0.00067, \qquad s_{13} = 0.00369 \pm 0.00011,$$
 (296)

$$s_{23} = 0.04182^{+0.00085}_{-0.00074}, \qquad \delta = 1.144 \pm 0.027.$$
 (297)

如果只讨论第一、二代夸克的混合,可利用 Cabibbo 转动角 $\theta_{\rm C}$ 将 CKM 矩阵近似地表达为

$$V \simeq \begin{pmatrix} \cos \theta_{\rm C} & \sin \theta_{\rm C} \\ -\sin \theta_{\rm C} & \cos \theta_{\rm C} \\ & 1 \end{pmatrix}, \quad \sin \theta_{\rm C} = s_{12} = 0.225. \tag{298}$$

参考文献

- [1] M. E. Peskin and D. V. Schroeder, "An Introduction to Quantum Field Theory," Reading, USA: Addison-Wesley (1995), 842 pages.
- [2] T. P. Cheng and L. F. Li, "Gauge Theory of Elementary Particle Physics," Oxford, UK: Clarendon (1984), 536 pages.
- [3] A. Denner, "Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200," Fortsch. Phys. 41, 307 (1993) [arXiv:0709.1075 [hep-ph]].
- [4] 杜东生,杨茂志,《粒子物理导论》,中国北京:科学出版社(2014),402页。
- [5] R. L. Workman [Particle Data Group], "Review of Particle Physics," PTEP 2022, 083C01 (2022)