Reference: Simply-typed λ -calculus

Alex Kavvos

Figure 1: Statics of the simply-typed λ -calculus (with numbers)

Figure 2: Dynamics of the simply-typed λ -calculus

Val-Unit	Val-Pair	Val-Inl	Val-Inr	Val-Lam	
$\overline{\langle \rangle}$ val	$\overline{\langle e_1, e_2 angle}$ val	$\overline{inl(e) val}$	$\overline{inr(e)}$ val	$\overline{\lambda x: \tau. e \text{ val}}$	
$rac{N = N - N - N - N - N - N}{n - N - N}$		$\frac{1 + n_2 = n}{; \operatorname{num}[n_2]) \longmapsto \operatorname{num}[n]}$		$e_1 \longmapsto e'_1 \\ e_2) \longmapsto plus(e'_1; e_2)$	
D-Plus-2 $e_1 \text{ val} \qquad e_2 \longmapsto e_2'$		D-Let		oj-Tuple-1	
$plus(e_1; e_2) \longmapsto plus(e_1$	$;e_2')$	$let(e_1; x. e_2) \longmapsto e_2[e_1$	$ x $ $\pi_1(\langle \epsilon \rangle)$	$(e_1, e_2\rangle) \longmapsto e_1$	
D-Proj-Tuple-2		D-Proj-1 $e \longmapsto e'$	D-Proj-2 $e \longmapsto e'$		
$\overline{\pi_1(\langle e_1, e_2 \rangle) \longmapsto e_2}$		$\overline{\pi_1(e) \longmapsto \pi_1(e')}$	$\overline{\pi_2(e) \longmapsto \pi_2}$	$\overline{{}_{2}(e')}$	
D-Abort-1 $e \longmapsto e'$		D-Case-Inl			
$\overline{\operatorname{abort}(e) \longmapsto \operatorname{abort}}$	$\overline{e(e')}$	$\overline{\operatorname{case}(\operatorname{inl}(e);x}.$	$e_1; y. e_2) \longmapsto e_1[e/x]$		
D-Case-Inr		D-Case-1	$e \longmapsto e'$		
$\overline{case(inr(e); x. e_1; y. e_2)}$	$\longmapsto e_2[e/y]$	$\overline{\operatorname{case}(e; x. e_1; y. e_2) \longmapsto \operatorname{case}(e'; x. e_1; y. e_2)}$			
$\begin{array}{c} \text{D-App-1} \\ e_1 \longmapsto \end{array}$		D-Beta			
$\overline{e_1(e_2) \longmapsto e_1'(e_2)}$		$(\lambda x : \tau. e_1)(e_2) \longmapsto e_1[e_2/x]$			