Robot Adoption and Labor Market Dynamics: Matlab Codebook

Anders Humlum

July 15, 2021

 Table 1: Model environment (env structure)

Substructure	Variable	Description
	nYears	Number of simulation years
	nSector	Number of sectors of the economy
	nOcc	Number of occupations
wrk	nAge	Working life span
wrk	cTen	Max value for tenure

Table 2: Initial values and data (init structure)

Substructure	Variable	Description	
	wages	Used for initialization of GE solver (wages0)	
frm	density	Used for initialization of GE solver (frm.density0)	
wrk	density	Used for initialization of GE solver (wrk.density0)	
wrk	distEnter	Skill distribution of entering cohort	
wrk	mass	Mass of workers	

 Table 3: Counterfactual Experiments (exper structure)

Substructure	Variable	Description
	nCost	Number of counterfactual experiments
	cRobot	Adoption cost schedules for different counterfactuals
	surprise	Indicator for whether counterfactual is based on a surprise
	tSurprise	Time of shock

Table 4: Solver Parameters (sol structure)

Substructure	Variable	Description
tol.ge	densityFrm	Tolerance level for firm densities in GE solver
tol.ge	supplySkills	Tolerance level for worker densities in GE
iter	ge	Maximum iterations in GE shooting algorithm
iter	frm	Maximum iterations in firm DP
lambda	wages	GS-weight used for wages in solver.m
lambda	frm	GS-weight used for firm densities in solver.m
lambda	wrk	GS-weight used for worker densities in solver.m

Table 5: Model Parameters (par structure)

Substructure	Variable	Description			
		Firms (Manufacturing)			
frm	sigma	Task substitution elasticity (σ)			
frm	zPoints	Grid points of discretized firm productivity space			
frm	zMu	Mean of productivity process (normalized by par.costAdj)			
frm	zSigma	SD of productivity process			
frm	zRho	Persistence of productivity process			
frm	zGrid	Productivity grid. Defined internally with Tauchen procedure (based			
		on frm.zMu, frm.zRho, par.frm.zSigma, par.frm.zPoints)			
frm	theta	Robot depreciation rate			
frm	nu	Adoption cost shock dispersion			
frm	phiOcc	Factor-augmenting productivities			
frm	gammaProd	Robot hicks-neutral. This is time-varying to ensure constant adoption			
		treatment effects (despite non-stationary wages and thus cost savings			
		for robot adoption)			
frm	epsilon	Elasticity of demand			
frm	gammaOcc	Factor-axugmenting robot technology			
		Workers			
wrk	swCost	Occupational switching cost matrix			
wrk	swAge	Switching cost in age			
wrk	amenity	Amenities in occupation-sectors			
wrk	hcap	Human capital function			
wrk	rho	Dispersion of occupational preference shocks (ρ)			
	General Production				
	alpha	Factor bill shares in sectors (cobb-douglas share in services, α_{St})			
	costAdj	Normalization factor for sector price indices. This is the z_t trends that			
		generate growth in wages			
	markup	Markup in sector. Based on par.frm.epsilon			
	Common Parameters				
	beta	Discount Factor (β)			
	mu	Manufacturing share in final consumption (μ)			