

Annual Cooling: 2965.76 Annual Heating: 275.74

Total: 3241.50

Annual Cooling: 894.10 Annual Heating: 334.51

Total: 1228.61

Agnes Xi Yao Energy Simulation Results

Heating Energy for TEST_ROOM (Monthly)

Cooling Energy for TEST_ROOM

Electric Lighting Energy for TEST_ROOM (Monthly)

Philadelphia International Ap PA USA TMY3

Philadelphia International Ap PA USA TMY3

Energy Balance

1200.0 960.0 720.0 Storage (Monthly) 480.0 Cooling (Monthly) 240.0 Infiltration (Monthly) 0.0 People (Monthly) -240.0 Equipment (Monthly) -480.0 Energy (kWh) Lighting (Monthly) -720.0 Solar (Monthly) -960.0 Heating (Monthly)

Jul

Aug

Sep

Oct

Nov

Dec

Agnes Xi Yao

Energy Simulation Results

Energy Balance

Jan

Feb

Mar

Apr

May

Jun

Energy Balance

Glass Type

Annual Cooling: 894.10 Annual Heating: 334.51

Total: 1228.61

Energy Balance

Energy Balance

Decrease in Cooling load but increase in Heating Load. while the total load was not changed much. If natural ventilation could be applied during summer, the cooling load during summer is easier to be reduced

Base Line

Shaded

Reconstructed Glass

The daylighting during summer afternoon was sacrificed when the glass type was changed.