1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = 6x^4 - 8x^3 - 5x^2 - 3x + 7$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(-x) •	$-6x^4 - 8x^3 + 5x^2 - 3x - 7$
f(-x) •	$-6x^4 + 8x^3 + 5x^2 + 3x - 7$
-f(x) ●	$6x^4 + 8x^3 - 5x^2 + 3x + 7$

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\overline{x}	f(x)	g(x)	h(x)
1	7	5	6
2	4	7	2
3	2	9	5
4	6	3	9
5	1	6	7
6	8	2	4
7	9	4	3
8	3	8	1
9	5	1	8

3. (worth 3 points) Evaluate h(6).

$$h(6) = 4$$

4. (worth 3 points) Evaluate $f^{-1}(2)$.

$$f^{-1}(2) = 3$$

5. (worth 3 points) Assuming h is an **odd** function, evaluate h(-7).

If function h is odd, then

$$h(-7) = -3$$

6. (worth 3 points) Assuming g is an **even** function, evaluate g(-5).

If function g is even, then

$$g(-5) = 6$$

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} + (-x)$$
$$p(-x) = -x^{2} - x$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 - x)$$
$$-p(-x) = x^2 + x$$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = \frac{x-4}{5}$$

a. Evaluate f(64).

step 1: subtract 4 step 2: divide by 5

$$f(64) = \frac{(64) - 4}{5}$$
$$f(64) = 12$$

b. Evaluate $f^{-1}(9)$.

step 1: multiply by 5 step 2: add 4

$$f^{-1}(x) = 5x + 4$$
$$f^{-1}(9) = 5(9) + 4$$
$$f^{-1}(9) = 49$$

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(6).

$$b(6) = 2$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 4$$

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-9	9	-9	9
-1	6	-6	6	-6
0	0	0	0	0
1	6	-6	6	-6
2	-9	9	-9	9

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.