

STRUCTURE DE CHAUSSÉE Introduction

PRÉAMBULES

- o Couche de forme:
- A court terme, la couche de forme doit présenter des caractéristiques minimales :
 - de traficabilité,
 - > de nivellement,
 - > de déformabilité,
 - de protection.

- o Couche de forme:
- A court terme, la couche de forme doit présenter des caractéristiques minimales :

- o Couche de forme:
- A court terme, la couche de forme doit présenter des caractéristiques minimales :

o Couche de forme:

A long terme, Les fonctions de la couche de forme rapportent au comportement de la chaussée en service, à savoir :

- homogénéiser la portance du sol,
- > assurer le maintien dans le temps,
- améliorer la portance de la plate-forme,
- antribuer en dreinen de le electresée

- o Couche de forme:
- Les techniques pour la couche de forme :
 - G : Action sur la granularité
 - W : Action sur l'état hydrique
 - T: Traitement
 - S : Protection superficielle

o Couche de forme:

- o Couche d'assise:
- o Généralement constituée de deux couches :
 - la couche de fondation
 - la couche de base.

La terminologie de la chaussée

Arase de terrassement
Plate-forme support de chaussée
Accotement

o Couche d'assise:

- Elles apportent à la chaussée la résistance mécanique, pour résister aux charges verticales induites par le trafic.
- Elles répartissent les pressions sur la plateforme support afin de maintenir les déformations, à ce niveau, dans des limites

o Couche d'assise:

- fournissent un support bien nivelé pour la couche de surface.
- fournissent également un support de portance suffisante pour le compactage de la couche de surface.
- > nuiggant carvir provigoirament de couche de

o Couche d'assise:

→ Elle doit présenter des caractéristiques mécaniques assez élevées

- o Couche d'assise:
- o Matériaux pour couches d'assise:

Les graves non traitées (GNT)

- GNF: Grave non traitée pour couche de fondation (GNF1 GNF2 GNF3).
- GN: Grave non traitée pour couche de base (GNA GNB GNC GND).

o Couche d'assise:

o Couche d'assise:

o Couche d'assise:

o Couche d'assise:

o Couche d'assise:

o Couche d'assise:

- o Couche de surface:
- La couche de surface est constituée :
 - de la couche de roulement, qui est la couche supérieure de la structure de chaussée sur laquelle s'exercent directement les agressions conjuguées du trafic et du climat,
 - et le cas échéant d'une couche de liaison, entre les couches d'assise et la couche de roulement.

- o Couche de surface:
- o Le Premier rôle : la sécurité → de bonnes propriétés antidérapantes
- o Deuxième rôle : le confort → ne pas ressentir dans son véhicule de secousses brutales ou de vibrations excessives

o Couche de surface:

- Le Troisième rôle : la participation à la structure
 - ✓ la couche de roulement subit directement les agressions du trafic et celles liées aux conditions climatiques

- o Couche de surface:
- Matériaux pour couche de roulement :
 - RS (ES): Revêtement (Enduit) Superficiel.
 - **ECF**: Enrobé Coulé à Froid.
 - **EF**: Enrobé à Froid.
 - **EB** (BB): Enrobé (Béton) Bitumineux.
 - **BBME**: Béton Bitumineux à Module Elevé.

o Couche de surface:

o Couche de surface:

LE TRAFIC

• Le trafic est exprimé en nombre moyen journalier de poids lourds de plus de 8 tonnes en charge sur les deux sens de circulation.

Nbre. Journalier de PL > 8T	0 à 5	5 à 50	50 à 125	125 à 250	250 à 325	325 à 450
Classe	TPL1	TPL2	TPL3	TPL4	TPL5	TPL6

LE TRAFIC

- Pour son utilisation dans le catalogue, certaines hypothèses ont été utilisées concernant :
 - la largeur de la chaussée ;
 - l'agressivité du trafic ;
 - le taux d'accroissement des poids lourds;
 - le type de structure (souple et semi-rigide ou rigide).

L'ENVIRONNEMENT CLIMATIQUE

• Quatre zones sont considérées en fonction de la précipitation annuelle moyenne exprimée en mm et déterminée sur une période de récurrence longue (30 ans environ).

Code	Dénomination	Précipitation (mm/an)		
Н	Humide	600		
h	Semi humide	250 à 600		
а	Aride	50 à 250		

L'ENVIRONNEMENT CLIMATIQUE

Données géotechniques nécessaires pour les études de Projet

- oTypes de sols rencontrés:
 - Sols meubles
 - Sols rocheux évolutifs
 - Sols rocheux sains

- produit de la décomposition des roches sous l'action d'agents atmosphériques (air, eau)
- mélange en proportions

Données géotechniques nécessaires pour les études de Projet

- Sols meubles:
 - •Essais d'identification
 - · Granulométrie
 - propreté,
 - limites d'atterberg,
 - équivalent de sable.
 - Conditions de déblaiement (homogénéité des matériaux)

•Analyse granulométrique : Déterminer la répartition des grains de sol suivant leur dimension dans un échantillon.

- oLimites Atterberg :Déterminer les teneurs en eau remarquables situées à la frontière entre ces différents états sont les « Limites d'Atterberg » :
 - · Limite de Liquidité : WL
 - · Limite de Plasticité: WP

•Valeur au bleu du sol : Evaluer la richesse en argile d'un sol en mesurant sa capacité d'adsorption de molécules de bleu de méthylène.

•Equivalent de sable : Déterminer, dans un sol, la proportion de sol fin et de sol grenu

• Los Angeles : Evaluer la résistance à la fragmentation de la matrice d'une roche. Expression des résultats : LA = % éléments < 1,6 mm produits après essai

- Les essais classiques sur matériaux :
 - Micro Deval en présence d'Eau (MDE) : Evaluer la résistance à l'usure par frottement des granulats et leur sensibilité à l'eau.

Les essais classiques sur matériaux :

•Teneur en eau : Evaluer le % d'eau

- Les essais classiques sur matériaux :
 - Optimum Proctor : Appréhender l'aptitude d'un sol à se compacter et définir les objectifs de compactage à atteindre. Pour les sols sensibles à l'eau, il permet également de définir les états hydriques du sol.

LA CLASSIFICATION DES SOLS ET DES ROCHES

- Sensibilité à l'eau
 - oDéfinition : l'importance de la variation de la portance de ce sol en fonction de la variation de la teneur en eau

LA CLASSIFICATION DES SOLS ET DES ROCHES

Tableau du GTR (Français)

Tableau 1 : Tableau synoptique de classification des matériaux selon leur nature, suivant la norme NF P 11-300 :

Au niveau 1 : partie supérieure des terrassements ;

Au niveau 2 : au sommet de la couche de forme.

b) Niveau 1 : portance Sti

La portance à long terme Sti au niveau 1 est estimée à partir de la connaissance des sols, sur une hauteur h (0.50 m en remblai – 0.70 à 1.00 m en déblai) et en fonction des conditions de drainage et d'environnement.

Au niveau 1 : partie supérieure des terrassements ;

Au niveau 2 : au sommet de la couche de forme.

Pj niveau 2 _

chaussée

b) Niveau 1 : portance Sti

		Zone inondable ou nappe proche (< à 1m)	Hors zone inondable ou nappe profonde (>à 1m)				
Environnement climatique		H, h, a, d	H et h		а		d
Dispositifs de drainage			Type 2	Type 1	Type 2	Type 1	
Sols	1	St0	St0	St1 (D) St2 (R)	St1	St2 (1) St3	St3
	11	St1	St1	St2	St2	St3	St3
	III	St2	St2				

c) Niveau 2 : portance Pj

La portance Pj à long terme au niveau 2 est estimée à partir de la portance au niveau 1 (Sti) et de la nature et de l'épaisseur de la couche de forme .

<u>Au niveau 1</u> : partie supérieure des terrassements ;

Au niveau 2 : au sommet de la couche de forme.

Pj niveau 2

chaussée

c) Niveau 2 : portance Pj

La portance Pj à long terme au niveau 2 est estimée à partir de la portance au niveau 1 (Sti) et de la nature et de l'épaisseur de la couche de forme .

a) En l'absence de couche de forme

L'indice j de la plate-forme est égal à l'indice i de la partie supérieure des terrassements :

D: - D: - C4

MERCI