LESSONS FROM NEANDERTAL MICROBIOTA:
WORKING TOWARD ACCURATE METAGENOMIC
ANALYSIS FROM LOW-BIOMASS SAMPLES.

EVOLUTIONARY HISTORY OF THE HOMINID MICROBIOTA

Li et al. BMC Microbiology 2013

Moeller, et al. PNAS, 2014.

ANCIENT DENTAL CALCULUS IS A FOSSILISED BACTERIAL RECORD

WHY ARE ANCIENT SAMPLES PROBLEMATIC?

Fragmented and damaged DNA crosslinking/hydrolysis/oxidation

Low 'endogenous' DNA yield

Willerslev and Cooper. Proc Biol Sci. 2005 Jan 7; 272(1558): 3-16

Contamination (modern or environmental) sample collection/handling & lab or reagent contamination

Modern samples can also be similarly problematic

Skin swabs
Placenta and Pre-term infants
Respiratory biopsies
Blue Ice
Ancient/Historic Specimens
and more...

CONCEPTS IN CONTAMINATION

- 1. Dedicated DNA extraction/processing facilities
- 2. Decontamination, if possible
- 3. Monitoring laboratory & environmental contamination
- 4. Efficient DNA extractions and library preparation
- 5. Accurate analysis and verification tools

1. REDUCING CONTAMINATION WITH CLEAN FACILITIES

Isolated pre-PCR facility Isolated ventilation Glove boxes Nightly UV irradiation Clean -> Dirty workflow Bleach treatment of stock Reagents tested for DNA Appropriate dress

2. DECONTAMINATION MATTERS!

Decontamination Procedures

- A. Remove surface
- B. Decontaminate sample
 - -UV or washing, if able
- C. Include controls every time
 - -PCR negatives
 - -Extraction blank controls
- D. Duplicate samples
- E. Remove contaminants with bioinformatic methods

DNA Contamination

A. Farrer, in prep. Check out the kitome: Salter, et al., 2014, BMC Biology, 12, 87.

3. DNA EXTRACTION BIASES AND EFFICIENCY MUST BE CONSIDERED

1800 1600 1400 1200 1000 800 400 200 QG - Silica Kit

Mackenzie, et al. Front Microbiol. 2015; 6: 130.

Extraction methods bias can results, and limit downstream comparisons.

QIITA!

Extraction efficiency matters!

3. LIBRARY PREPARATION ALSO MATTERS

16S rRNA gene seq will likely not work for highly degraded samples.

Filtering helps (sometimes!)

4. BIOINFORMATIC METHODS TO IDENTIFY SPECIES FROM SAMPLES

Satisfies input requirements; accurate; rapid nucleotide vs protein

Current methods applied: DIAMOND, MALTX

4. BIOINFORMATIC METHODS TO ACCOUNT FOR CONTAMINATION

1. Decontam

https://github.com/benjjneb/decontam

2. MEGAN6CE

https://github.com/husonlab/megan-ce

3. Direct Filtering

QIIME2, etc.

4. ContaminantAssessment

Comparison to known lists in: Salter, et al., *BMC Biol*, 2014 or Weyrich, et al., MER, 2019

RIDE CHECKLIST FOR PERFORMING/REVIEWING LOW MICROBIAL BIOMASS MICROBIOME STUDIES

Report the experimental design and approaches used to reduce and assess the contributions of contamination.

Include controls to assess contaminant DNA. One of each type of negative control (sampling blanks, DNA extraction blanks, and no-template amplification) must be included per sampling, extraction, or amplification batch.

Determine the level of contamination by comparing biological samples to controls.

Explore contaminant taxa within each study and report their impact on the interpretation of biological samples.

WHAT FACTORS SHOULD BE CONSIDERED BEFORE WORKING WITH LOW BIOMASS SAMPLES?

Before you start...

Consider your working environment.

Assess contamination.

Decide on the best extraction method.

During analysis...

Use clean environments for processing.

Include extraction blank and PCR controls.

Don't let bioinformatics be a black box.

Scrutinise and test your results!

And enjoy!