Coordinate Geometry and Lines

1. Distance Formula

The distance between point $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

2. The **slope** of non-vertical line that passes through points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$
. The slope of vertical line is not defined.

3. Point-slope form of line equation

The equation of line passing through the point $P_1(x_1, y_1)$ and having slope k is $y-y_1 = k \cdot (x - x_1)$.

4. Slope-intercept form of a line equation

The line equation with slope k and y-intercept b is $y=k \cdot x+b$

5. Alternate form of line equation

$$A \cdot x + B \cdot y + C = 0$$

- 6. Parallel and Perpendicular Lines
 - a) Two nonvertical lines are parallel iff they have same slope.
 - b) Two lines with slopes k_1 and k_2 are **perpendicular** iff $k_1 \cdot k_2 = -1 \Rightarrow k_2 = -\frac{1}{k_1}$

7. Alternative forms of line that passes through points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$:

$$k = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1} = \frac{y - y_2}{x - x_2} \Rightarrow \frac{x - x_1}{x - x_2} = \frac{y - y_1}{y - y_2}$$

In determinant form:

$$\begin{bmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ y_2 & y_2 & 1 \end{bmatrix} = 0$$

8. Line Equation in Segments

Given 2 points: A(0, b) and B(a, 0) liying at y-axis and x-axis correspondingly.

$$\frac{x}{a} + \frac{y}{b} = 1$$

Analysis of Line Equation

$$A \cdot x + B \cdot y + C = 0$$

If 1 or 2 coefficients are 0, this equation is incomplete. Here are possible cases:

- 1. C=0; $\Rightarrow A \cdot x + B \cdot y = 0$ line through origin (0,0)
- 2. B=0 (A \neq 0) => $A \cdot x + C = 0 < \equiv > x = -\frac{C}{A} = a$; line \perp x-axis, can be written as x=a.
- 3. B=0, C=0 (A \neq 0) <=> x=0 y-axis itself
- 4. A=0 (B \neq 0) \Rightarrow B·y + C = 0 <=> y= $\frac{C}{B}$ = b; line \pm y-axis, can be written as y=b.
- 5. A=0, C=0 (B \neq 0) \Rightarrow $B \cdot y = 0 < \equiv >$ y=0 x-axis itself
- 6. If $A\neq 0$ and $B\neq 0$ and $C\neq 0$, line equation can be written in this form:

$$\frac{x}{a} + \frac{y}{b} = 1$$
 This is line equation in segments.

where a=
$$-\frac{C}{A}$$
, $b = -\frac{C}{B}$

Analysis of Lines Intersection

If 2 lines have the following equations $A_1 \cdot x + B_1 \cdot y + C_1 = 0$ and $A_2 \cdot x + B_2 \cdot y + C_2 = 0$ 4 cases are possible:

a.
$$\frac{A_1}{A_2} \neq \frac{B_1}{B_2} \Rightarrow 2$$
 lines have 1 common point

b.
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2} \Rightarrow \text{lines are parallel (||)}$$

c.
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$
 \Rightarrow lines are the same, i.e. 2 equation define the same line.

d.
$$\frac{A_1}{B_2} = -\frac{B_1}{A_2} < \equiv > A_1 \cdot A_2 + B_1 \cdot B_2 = 0 \Rightarrow \text{ lines are perpendicular } (\bot)$$

To see if 3 lines with given equations of $A \cdot x + B \cdot y + C = 0$, $A_1 \cdot x + B_1 \cdot y + C_1 = 0$ and $A_2 \cdot x + B_2 \cdot y + C_2 = 0$

intersect, check if d=
$$\begin{bmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ y_2 & y_2 & 1 \end{bmatrix} = 0.$$
 If d=0, these 3 lines intersect.

Alternative view at the same question is to solve the system below for x, y, and z:

$$\begin{cases} & \text{Ax+By+C=0} \\ & \text{A}_1 \text{x+B}_1 \text{y+C}_1 = 0 \\ & \text{A}_2 \text{x+B}_2 \text{y+C}_2 = 0 \end{cases}$$