Exercises

Compute the following (if they exist):

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix}^{-1} \text{ and } \begin{bmatrix} 1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3 \end{bmatrix}^{-1}$$

Results

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 3/2 & 1/2 & -3/2 \\ -1 & 0 & 1 \end{bmatrix}$$

Results

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 3/2 & 1/2 & -3/2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3 \end{bmatrix}$$
 is singular $(2r_1 + 3r_2 = r_3)$.

What are Column Operations?

So far (because you have been reading the textbook) you have probably though "what is so special about rows?"

What are Column Operations?

So far (because you have been reading the textbook) you have probably though "what is so special about rows?" Nothing:

Definition

The elementary column operations are

- 1. You can swap any two columns of a matrix.
- 2. You can multiply any column of a matrix by a scalar.
- You can add any two columns together and replace one of them.

What are Column Operations?

So far (because you have been reading the textbook) you have probably though "what is so special about rows?" Nothing:

Definition

The elementary column operations are

- 1. You can swap any two columns of a matrix.
- 2. You can multiply any column of a matrix by a scalar.
- You can add any two columns together and replace one of them.

Question: how are these related to row operations?

Row operations can be realized as (left) multiplication of elementary matrices.

- Row operations can be realized as (left) multiplication of elementary matrices.
- ► Row operations are invertible and the corresponding elementary matrices are non-singular.

- Row operations can be realized as (left) multiplication of elementary matrices.
- ► Row operations are invertible and the corresponding elementary matrices are non-singular.
- Non-singular matrices can be written as a product of elementary matrices.

- Row operations can be realized as (left) multiplication of elementary matrices.
- ► Row operations are invertible and the corresponding elementary matrices are non-singular.
- Non-singular matrices can be written as a product of elementary matrices.

Can we reinterpret these properties with column operations?

- Row operations can be realized as (left) multiplication of elementary matrices.
- ► Row operations are invertible and the corresponding elementary matrices are non-singular.
- Non-singular matrices can be written as a product of elementary matrices.

Can we reinterpret these properties with column operations? What (matrix) operations makes rows into columns and vice versa?

How to swap columns:

▶ Let A be an $n \times m$ matrix.

- ▶ Let A be an $n \times m$ matrix.
- ▶ Suppose we wish to swap columns *i* and *j*.

- Let A be an $n \times m$ matrix.
- ▶ Suppose we wish to swap columns *i* and *j*.
- ▶ This is the same as swapping rows 3 and 5 for the matrix A^T !

- Let A be an $n \times m$ matrix.
- Suppose we wish to swap columns i and j.
- ▶ This is the same as swapping rows 3 and 5 for the matrix A^T !
- ▶ Let E be the $m \times m$ matrix which swaps rows i and j.

- Let A be an $n \times m$ matrix.
- Suppose we wish to swap columns i and j.
- ▶ This is the same as swapping rows 3 and 5 for the matrix A^T !
- ▶ Let E be the $m \times m$ matrix which swaps rows i and j.
- ▶ Then EA^T has swapped rows i and j.

- ▶ Let A be an $n \times m$ matrix.
- ▶ Suppose we wish to swap columns *i* and *j*.
- ▶ This is the same as swapping rows 3 and 5 for the matrix A^T !
- ▶ Let E be the $m \times m$ matrix which swaps rows i and j.
- ▶ Then EA^T has swapped rows i and j.
- ▶ So $(EA^T)^T = AE^T$ will have swapped the columns i and j!

How to swap columns:

- Let A be an $n \times m$ matrix.
- ▶ Suppose we wish to swap columns *i* and *j*.
- ► This is the same as swapping rows 3 and 5 for the matrix A^T!
- ▶ Let E be the $m \times m$ matrix which swaps rows i and j.
- ▶ Then EA^T has swapped rows i and j.
- ▶ So $(EA^T)^T = AE^T$ will have swapped the columns *i* and *j*!

Summary: Column operations on an $n \times m$ matrix can be realized by *right* multiplication by an $m \times m$ matrix!

How to swap columns:

- Let A be an $n \times m$ matrix.
- Suppose we wish to swap columns i and j.
- ▶ This is the same as swapping rows 3 and 5 for the matrix A^T !
- ▶ Let E be the $m \times m$ matrix which swaps rows i and j.
- ▶ Then EA^T has swapped rows i and j.
- ▶ So $(EA^T)^T = AE^T$ will have swapped the columns i and j!

Summary: Column operations on an $n \times m$ matrix can be realized by *right* multiplication by an $m \times m$ matrix!

Moreover:

▶ The transpose of an elementary matrix is also elementary!

How to swap columns:

- Let A be an $n \times m$ matrix.
- ▶ Suppose we wish to swap columns *i* and *j*.
- ▶ This is the same as swapping rows 3 and 5 for the matrix A^T !
- ▶ Let E be the $m \times m$ matrix which swaps rows i and j.
- ▶ Then EA^T has swapped rows i and j.
- ▶ So $(EA^T)^T = AE^T$ will have swapped the columns i and j!

Summary: Column operations on an $n \times m$ matrix can be realized by *right* multiplication by an $m \times m$ matrix!

Moreover:

▶ The transpose of an elementary matrix is also elementary!

So: Column operations on an $n \times m$ matrix can be realized by right multiplication by an $m \times m$ elementary matrix!

Exercise

Let

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 7 & -3 \end{bmatrix}$$

Find matrices E_1 , E_2 , and E_3 so that:

- 1. E_1 swaps columns 2 and 3 of A.
- 2. E_2 multiplies column 2 by 4.
- 3. E_3 adds column 1 to 3 and places the sum in column 3.

Exercise

Let

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 7 & -3 \end{bmatrix}$$

Find matrices E_1 , E_2 , and E_3 so that:

- 1. E_1 swaps columns 2 and 3 of A.
- 2. E_2 multiplies column 2 by 4.
- 3. E_3 adds column 1 to 3 and places the sum in column 3.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Exercise

Let

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 7 & -3 \end{bmatrix}$$

Find matrices E_1 , E_2 , and E_3 so that:

- 1. E_1 swaps columns 2 and 3 of A.
- 2. E_2 multiplies column 2 by 4.
- 3. E_3 adds column 1 to 3 and places the sum in column 3.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: each of these matrices are invertible.

Summary

Moral: Column operations can be interpreted as **right** multiplication by elementary matrices.

Summary

Moral: Column operations can be interpreted as **right** multiplication by elementary matrices.

Definition

Let A and B be matrices. A and B are **equivalent** if there exist two (finite) sets of elementary matrices: $\{E_i\}_{i=1}^k$ and $\{F_i\}_{i=1}^\ell$ so that:

$$A = \underbrace{E_1 E_2 \cdots E_k}_{\text{Row Ops}} B \underbrace{F_1 F_2 \cdots F_\ell}_{\text{Col Ops}}$$

Summary

Moral: Column operations can be interpreted as **right** multiplication by elementary matrices.

Definition

Let A and B be matrices. A and B are **equivalent** if there exist two (finite) sets of elementary matrices: $\{E_i\}_{i=1}^k$ and $\{F_i\}_{i=1}^\ell$ so that:

$$A = \underbrace{E_1 E_2 \cdots E_k}_{\text{Row Ops}} B \underbrace{F_1 F_2 \cdots F_\ell}_{\text{Col Ops}}$$

Matrices are equivalent if they can be changed from one to the other by a sequence of row and/or column operations.

Row Operations make A equivalent to a matrix in reduced row echelon form.

Row Operations make A equivalent to a matrix in reduced row echelon form.

Column Operations make A equivalent to a matrix in reduced *column* echelon form.

Row Operations make A equivalent to a matrix in reduced row echelon form.

Column Operations make A equivalent to a matrix in reduced column echelon form.

Together we get the following result:

Theorem

Every non-zero $n \times m$ matrix is equivalent to a matrix in the following form:

$$P_r = \begin{bmatrix} I_r & 0_{r,m-r} \\ 0_{n-r,r} & 0_{n-r,m-r} \end{bmatrix}.$$

Where I_r is the $r \times r$ identity matrix and the others are all zeros.

Row Operations make A equivalent to a matrix in reduced row echelon form.

Column Operations make A equivalent to a matrix in reduced *column* echelon form.

Together we get the following result:

Theorem

Every non-zero $n \times m$ matrix is equivalent to a matrix in the following form:

$$P_r = \begin{bmatrix} I_r & 0_{r,m-r} \\ 0_{n-r,r} & 0_{n-r,m-r} \end{bmatrix}.$$

Where I_r is the $r \times r$ identity matrix and the others are all zeros.

Corollary

Every nonsingular matrix is equivalent to an identity matrix.

Every matrix A is equivalent to a matrix P which is all zero but perhaps some ones on its main diagonal:

Every matrix A is equivalent to a matrix P which is all zero but perhaps some ones on its main diagonal:

$$A = E_1 E_2 \cdots E_k B F_1 F_2 \cdots F_\ell$$

Every matrix A is equivalent to a matrix P which is all zero but perhaps some ones on its main diagonal:

$$A = E_1 E_2 \cdots E_k B F_1 F_2 \cdots F_\ell$$

Such a representation is called a factorization of A.

Every matrix A is equivalent to a matrix P which is all zero but perhaps some ones on its main diagonal:

$$A = E_1 E_2 \cdots E_k B F_1 F_2 \cdots F_\ell$$

Such a representation is called a *factorization* of *A*. Let's follow a factorization of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 1 & -1 \end{bmatrix}$$

based on elementary row operation steps.

Example

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_1} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 1 & -1 \end{bmatrix}}_{A} \ = \ \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 3 & 1 & -1 \end{bmatrix}}_{U_1}$$

Example

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{1}} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 1 & -1 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 3 & 1 & -1 \end{bmatrix}}_{U_{1}}$$

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}}_{E_{2}} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 3 & 1 & -1 \end{bmatrix}}_{U_{1}} = \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & -5 & -10 \end{bmatrix}}_{U_{2}}$$

Example

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{1}} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 1 & -1 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 3 & 1 & -1 \end{bmatrix}}_{U_{1}}$$

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}}_{E_{2}} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 3 & 1 & -1 \end{bmatrix}}_{U_{1}} = \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & -5 & -10 \end{bmatrix}}_{U_{2}}$$

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}}_{E_{3}} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & -5 & -10 \end{bmatrix}}_{U_{2}} = \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}}_{U}$$

So

$$E_3E_2E_1A=U.$$

$$A = (E_1)^{-1}(E_2)^{-1}(E_3)^{-1}U$$

$$A = (E_1)^{-1}(E_2)^{-1}(E_3)^{-1}U$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = (E_{1})^{-1}(E_{2})^{-1}(E_{3})^{-1}U$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = (E_{1})^{-1}(E_{2})^{-1}(E_{3})^{-1}U$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 5 & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}}_{U}$$

$$A = (E_{1})^{-1}(E_{2})^{-1}(E_{3})^{-1}U$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 5 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 10 \end{bmatrix}}_{U}$$

$$A = IU$$

This is an example of an **LU-Factorization** for the matrix *A*.

"Stores" necessary operations for solving systems of equations in an efficient way.

- "Stores" necessary operations for solving systems of equations in an efficient way.
- Separates Gaussian elimination into the two "phases": Forward elimination and back substitution:

- "Stores" necessary operations for solving systems of equations in an efficient way.
- ► Separates Gaussian elimination into the two "phases": Forward elimination and back substitution:

$$AX = b$$

- "Stores" necessary operations for solving systems of equations in an efficient way.
- Separates Gaussian elimination into the two "phases": Forward elimination and back substitution:

$$AX = b$$

 $LUx = b$ (factoring)

- "Stores" necessary operations for solving systems of equations in an efficient way.
- Separates Gaussian elimination into the two "phases": Forward elimination and back substitution:

```
AX = b

LUx = b (factoring)

Ux = L^{-1}b (forward elimination)
```

- "Stores" necessary operations for solving systems of equations in an efficient way.
- ► Separates Gaussian elimination into the two "phases": Forward elimination and back substitution:

$$AX = b$$
 $LUx = b$ (factoring)
 $Ux = L^{-1}b$ (forward elimination)
 $x = U^{-1}(L^{-1}b)$ (back substitution)

This is an example of an **LU-Factorization** for the matrix A.

- "Stores" necessary operations for solving systems of equations in an efficient way.
- Separates Gaussian elimination into the two "phases": Forward elimination and back substitution:

$$AX = b$$
 $LUx = b$ (factoring)
 $Ux = L^{-1}b$ (forward elimination)
 $x = U^{-1}(L^{-1}b)$ (back substitution)

▶ Variation on this idea is how Gaussian elimination is coded efficiently in computer algorithms.