Interim Design Report

Micro-mouse X Sensing Subsystem

Prepared by:

Mitra Ramchuran (RMCMIT001)

Prepared for:

EEE3088F

Department of Electrical Engineering University of Cape Town

Declaration

- 1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend that it is one's own.
- 2. I have used the IEEE convention for citation and referencing. Each contribution to, and quotation in, this report from the work(s) of other people has been attributed, and has been cited and referenced.
- 3. This report is my own work.
- 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as their own work or part thereof.

Contents

	0.1	Problem Description	1
	0.2	Scope and Limitations	1
	0.3	GitHub Link	1
	0.4	Requirements	2
	0.5	Specifications	2
	0.6	Testing Procedures	2
	0.7	Traceability Analysis	3
	0.8	Design Decisions	5
	0.9	Failure Management	9
	0.10	System Integration and Interfacing	10
	0.11	Tests	11
Bi	ibliog	raphy	13

Introduction

0.1 Problem Description

The context of this report shows the design of a sensing PCB subsystem that takes in an input power

signal to output a signal t at intervals. The output wave will send back an input Infra-red signal

to indicate the presence of nearby objects in the testing rig developed. This signal will be sent to a

processor to feedback instructions to avoid the nearby objects.

This sensing PCB subsystem will be connected to a motherboard along with a processor and power

PCB subsystem that will function together as a simple maze-solving micro-mouse.

The sensing subsystem will be required to detect the walls of the maze as the micro-mouse nav-

igates its way through. The sensing subsystem should detect the walls in-front of or to the sides and

be able to navigate away from the maze walls towards the end point without turning into the walls of

the maze or running out of battery.

0.2Scope and Limitations

The project entails designing and manufacturing the sensor module for the micro-mouse using infra-red

sensors. Coding is required to provide information to the processor of a detected obstruction and how to avoid the walls of a maze testing rig. A switching means is needed when the micro-mouse is not in

operation.

The subsystem is limited to be an appropriate size to avoid collisions during rotation and to fit onto

the pin-headers of the motherboard.[1] This project is developed by https://jlcpcb.com/ and is limited

by a budget of 30 dollars. The board is developed soldered and therefore the project is limited to use

available and well-stocked components of appropriate size, ordered from JLCPCB's website and does

not entail previously used or elsewhere components.

This project does not entail the design and development of the motherboard, processor and power

subsystems integrated in the greater project. It does not require the construction of the micro-mouse

or the testing rig of the micro-mouse maze.

0.3 GitHub Link

GitHub Link: https://github.com/jameschloe810/EEE3088F.git

1

Requirements Analysis

0.4 Requirements

The requirements for a micro-mouse sensing module are described in Table 1.

Table 1: Requirements of the sensing subsystem.

Requirement ID	Description
R01	Take in Infrared light as input.
R02	Produce signal-based outputs.
R03	Little difference between small offset angle to the wall.
R04	System powered by a battery.
R05	Have switching means to save power when not in operation [?]
R06	Battery power can withstand time it takes to solve the maze.
R07	Project is within budget.
R08	Appropriate sensor PCB size.
R09	Provide data to the processor for navigation and obstacle avoid-
1009	ance.

0.5 Specifications

The specifications, refined from the requirements in Table 1, for the micro-mouse sensing module are described in Table 2.

Table 2: Specifications of the sensing subsystem.

Specification ID	Description
SP01	The subsystem must be powered by 3.3V power supply.
SP02	Output signal must be a signal between 0V and 2.5V
SP03	The sensor must not be sensitive to small changes in angle.
SP04	The output should show detection when there is a large change in
51 04	angle.
SP05	The system should implement BJT's to allow for switching when
51 05	not in system not in operation.
SP06	Little power and current should be used/drawn.
SP07	Project board has a total cost of 30 dollars between two boards.
SP08	Board must not interfere with maze walls during rotation and
D1 00	pin-headers of board must fit into sensor board.
SP09	Code must be written to inform processor during obstacle detection.

0.6 Testing Procedures

A summary of the testing procedures detailed in the Acceptance Testing Chapter (04) is given in Table 3.

Table 3: Testing Procedures of the sensing subsystem

Acceptance Test ID	Description with brief explanation	
AT01	Power on.	
AIUI	Tested by ensuring the power subsystem and measuring the power from battery is 3.3V	
	Output voltage test.	
AT02	Applying a test point to the output of the circuit to see if 0V-2.5V range is produced. As	
11102	well as applying jumper points to allow different resistor values to be tested in order to	
	produce the required output voltage.	
	Switching mechanism test.	
AT03	Applying a test points to the Bipolar Junction Transistor (BJT) within the circuit to test	
	the voltage required for it to turn ON and switch OFF.	
AT04	Current value test.	
71104	Test points at photo-diodes to ensure little current is drawn to save battery power.	
	Budget test.	
AT05	JLCPB's Website provides budget breakdown for circuit board to ensure budget criteria is	
	met.	
	Board measure test.	
AT06	Measured values of micro-mouse with wheels included to ensure appropriate size and	
	placement of pin-headers.	
AT07	Processor test.	
AIUI	Writing code and testing that the necessary LED's light up during object detection.[2]	

0.7 Traceability Analysis

Table 4: Requirements Traceability Matrix

#	Requirements	Specifications	Acceptance Test
1	R01	SP01	AT01
2	R02	SP02	AT02
3	R03	SP02, SP03, SP04	AT02
4	R04	SP01	AT01
5	R05	SP01, SP05	AT03
6	R06	SP05, SP06	AT03, AT04
7	R07	SP07	AT05
8	R08	SP08	AT06
9	R09	SP09	AT07

Table 5: Traceability Analysis

Traceability Analysis	Reasoning
	From R01, SP01 can be derived due to both highlighting on input signals.
	To test this, AT01 is suggested because the power supply generated from
4	the power subsystem and battery will enable the necessary infrared output
1	and reflected infrared input waveform strength to be produced/received.
	It is the basis voltage from which all other necessary voltages are needed
	for other input and output signals.
	From R02, SP02 can be derived because this relates output signals. These
	can be tested through AT02 which tests the output voltage value to be
2	within a certain range that will allow for the detection of obstructions
	in-front of and at the sides of the micro-mouse.
	SP02,SP03 and SP04 can be derived from R03 due to the fact that in
	order for little difference to be detected in small angle changes, AT02 is
	required to test the output to not be interfered when the micro-mouse
3	rotates slightly, the obstruction before rotation must still be recognised
	to be avoided. However when a large angle is detected, this means the
	micro-mouse has successfully rotated away from the obstruction.
	SP01 can be derived from R04 with the test of AT01 because by testing
4	the power subsystem, this will ensure the battery is charged and can be
	implemented as the power supply for the sensor subsystem.
	SP01, SP05 can be derived from R05 and tested with AT03 due the the
	fact that the power supply will be the input to the switching system that
5	is the Bipolar Junction Transistor (BJT) component of the circuit. A
	test point is required to ensure the BJT is in saturation to turn ON and
	operate the system.
	R06 derives SP05 and SP06 an is tested with AT03, AT04. Using a BJT
6	to act as a switch will avoid consistent operation of the micro-mouse and
0	will in turn decrease battery usage. Current test points are used (AT04)
	to ensure little current is being drawn in order to avoid battery drainage.
	From R07, SP07 can be specified with the test of AT05 which is using
7	the JLCBCP's website to not only order the sensing PCB but to ensure
	that the required & 30 budget for two boards is met.
	SP08 can be derived from R08 and tested with AT06. By measuring
	the micro-mouse upon which the sensing subsystem will be integrated
8	into will avoid collisions during rotation and ensure precise component
	placement such as the pin-headers for the other PCB boards in the
	greater project environment.
9	From R09, SP09 can be derived with AT07. The Sensor board needs to
9	integrate with the other boards for communication and data transfer.

Subsystem Design

placeins

0.8 Design Decisions

Considered Design Decisions

Figure 1: Circuit Designs Considered

These figures show the circuit schematic for only one sensor. This circuit will be multiplied to have a total of three sensor circuits strategically places on the sensor board to detect obstructions in-front of and to the sides of the micro-mouse.

Table 6: Design Decisions and Comparison

Design	Description	Implementation Decision	Pros and Cons
1	This design builds	This was not implemented as	Pros: This circuit has been imple-
	on the previous	the final design due to the fact	mented before and verified in how it
	project of the	that a capacitor was not im-	functions.
	breadboard as-	plemented for output voltage	Cons: Components used (QRD1114)
	signment adding	control which will provide for	are extended parts on JLCPCB and
	a BJT to allow	a more efficient circuit.	are too expensive.No capacitor is im-
	for switching		plemented to regulate voltage and
	operations.		noise at the output.
2	This design is	This circuit was not imple-	Pros: This circuit is able to filter un-
	more complex	mented as the final design be-	wanted noise as the capacitor with
	than design 1 and	cause if the voltage at the ca-	the resistor in parallel creates a high
	allows for cheaper	pacitor is too high, the circuit	pass filter and provides a stable out-
	components. A	does not work and will be lim-	put voltage. Photo-diode receiver is
	capacitor is now	ited to 1V.	cheaper than Design 1.
	placed on the line		Cons: Output voltage is limited with
	of the output.		capacitor at that position.

3	This design is	This design was implemented	Pros: The circuit is cheaper than De-
	more complex	as the final design due to bet-	sign 1 and Design 2. The circuit im-
	than design 1 and	ter efficiency and cheaper com-	plements a more efficient way to filter
	allows for cheaper	ponent costs.	out unwanted noise and get a stable
	components. A		output voltage due to the capacitor
	capacitor is now		placement. Cons: resistor values are
	placed in parallel		of E12 components and not exactly
	with the output		the calculated values therefore out-
	voltage.		puts can differ slightly but are still
			within requirements.

Calculations

Calculations for Design 1:

 $Voltage\ source\ -Vmax\ of\ TSAL6100\ =Voltage\ through\ R1,R2\ and\ R3$

$$3.7 - 1.6 = 2.1V \tag{1}$$

$$R1, R2, R3 = \frac{V}{I} = \frac{2.1}{0.02} = 105\Omega \tag{2}$$

 $E12\ component = 100\Omega$

R4 needs to be a very large value because the voltage across the resistor is directly proportional to the amount of Infrared waves on the photo-diode.

A $3.3k\Omega$ resistor is chosen.

$$I = \frac{V}{R} = \frac{3.7 - 1.7}{3300} = 0.6mA \tag{3}$$

This makes sense because the current in the emitter from the datasheet is 1mA.

$$Vout = I \text{ of } photodiode \times R \tag{4}$$

Calculations for Design 2:

 $Voltage\ source\ -Vmax\ of\ TSAL6100\ =Voltage\ through\ R1,R2\ and\ R3$

$$3.3 - 1.5 = 1.8V \tag{5}$$

$$R1, R2, R3 = \frac{V}{I} = \frac{1.8}{0.018} = 100\Omega \tag{6}$$

$$Ic = 18mA \ \beta = 100 \ therefore \ I\beta = \frac{Ic}{\beta} = \frac{18mA}{100} = 0.18mA \tag{7}$$

Vbe is approx. 0.7V

$$Ratbase of transistor = \frac{(Vcc - Vbe)}{I\beta} = \frac{(3.3 - 0.7)}{0.18mA} = 14.44k\Omega \tag{8}$$

E12 components allow for $15k\Omega$ or $12k\Omega$. $15k\Omega$ chosen.

Looking at capacitor and resistor as high pass filter therefore low frequencies attenuated. A 5nF capacitor chosen with a 66k ohm resistor for the photo-diode receiver.

Calculations for Design 3:

 $Voltage\ source\ -Vmax\ of\ TSAL6100\ =Voltage\ through\ R1,R2\ and\ R3$

$$3.3 - 1.6 = 1.7V \tag{9}$$

$$R1, R2, R3 = \frac{V}{I} = \frac{1.7}{0.02} = 85\Omega \tag{10}$$

E12 component 100 ohm was chosen.

$$Ic = 10mA \ \beta = 100 \ therefore \ I\beta = \frac{Ic}{\beta} = \frac{10mA}{100} = 0.1mA \tag{11}$$

Vbe is approx. 0.7V

$$Ratbase of transistor = \frac{(Vcc - Vbe)}{I\beta} = \frac{(3.3 - 0.7)}{0.1mA} = 26k\Omega$$
 (12)

E12 components allow for $27k\Omega$.

A capacitor of 10nF was chosen with a resistance of 100k ohms for the photo-diode receiver.

Component Selection

Table 7: Components Considered

Component	Suitability	Pros and Cons
TSAL6200	The parameters of the component looking at its data sheet is perfectly suited for the design requirements. Forward voltage of 1.6V and reverse current of 10 micro Amps.	Cons: Components with footprint was not available on JLCPCB therefore was unable to be used,
SFH205	The parameters of the component looking at its data sheet is perfectly suited for the design requirements. Dark current of 2 nano Amps and forward voltage of 1.3 V.	Cons: Component was not available on JLCPCB therefore was unable to be used.

BPW34	The parameters of the component looking at its data sheet is perfectly suited for the design requirements. Open circuit voltage of 320mV and reverse dark current of 30 nano Amps.	Pros: Available component when ordering from JLCPCB. Meets the requirements for the design.
MMBT3904	The parameters of the component looking at its data sheet is perfectly suited for the design requirements. collector current of 200mA, Vbe at 0.65V.	Pros: Available component when ordering from JLCPCB. Meets the requirements for the design.

E12 components were considered for this project only, by using E24 components this would effect the outcome of the considered designs as E12 components have a greater number of resistor values available, however it has a lower tolerance at 5%.

Final Design

The following design shows the final schematic of the sensing subsystem. This schematic integrates 3 sensing circuits that are strategically place around the arc of the PCB board to detect obstructions in-font of and to the side of the micro-mouse.

The schematic includes the use of a TSAL6200 photo-diode emitter, that will allow for the 3.3V current to be taken and produce a small current so as to not drain the battery. Three resistors are connected to the emitter with jumpers. This will enable testing to see which resistor value gives rise to the best results. A test point is also included to ensure the circuit is working as expected.

The photo-diode emitter configuration uses an MMBT3904 Bipolar Junction Transistor that will input a pulse width modulator enabling switching for the subsystem when not in operation and hence, will save battery power.

The schematic includes the use of a BPW34 photo-diode receiver configuration with jumpers used for the resistors to allow for correct testing of the output value. A capacitor of 10nF is connected to the configuration as well to get rid of potential noise and stabilise the output signal. The output will be sent to an analogue to digital converter, interfacing with the external environment of the micro-mouse.

Figure 2: Schematic

Figure 3: PCB

0.9 Failure Management

Table 8: Failure Management Descriptions

Name	Description
	Trace issues were mitigated by applying vias to make traces on the back-
	side of the board. Therefore, traces will not overlap and connections
Trace Issues	can be made where necessary. A Trace fast track software was also
	used to apply traces where necessary and this helped to make sure all
	components were connected properly [3] [4].
	KiCad version 8 Software has Electrical Rule Checkers (ERC) as well as
	Design Rule Checkers (DRC) that were ran and warnings as well as errors
	were ran through to mitigate any potential electrical or design faults.
ERCs an DRCs	In the design above, power flags were added, components were placed
	strategically to not get cut off the board and all traces were connected
	to their necessary components. Footprints were also assigned to each
	component so no component is left out of the board [3].

	Alternative JLCPCB components were considered if desired components
Components and Availability	were not in stock. Multiple different resistors were used with jumpers to
	test for best possible outputs.
	Budget issues were mitigated by avoiding the use of extended parts
Budget Issues	and using basic parts which are a lot cheaper and are not priced more
Budget Issues	due to extended parts needing to be outsourced. Alternative JLCPCB
	components were also considered if desired components were not in stock.
Errors in Circuit Design	The use of test points and jumpers were used in the circuit to test and
Errors in Circuit Design	ensure circuit functionality. If one part failed, the other could be used.

0.10 System Integration and Interfacing

Figure 4: Interfacing Diagram

Table 9: Interfacing specifications

Interface	Description	Pins/Output
I001	Sensing system to STM for data transfer to computer	PA3-PA7 Pins and Analogue Pin
		PC4, PC5 Pins and Analog Pin
		AB0 Pin and Analog Pin
I002		• RES3V3 Pin and PC2 Pin for sensor board.
	Reserve voltage Pins going	• RESV2 Pin and PE1 Pin for sensor board.
	from Processor to Power Sub-	• RESV1 Pin and PB11 Pin for sensor board.
	system and Sensing Subsystem	PD7 Pin and RESV Pin for power board.
		BATTERY CONN.
I003	Processor to computer for data	Assuming the Processor is connected to a Micro B USB
	transfer from STM	port, output via cable [1]
I004	Pulse Width Modulator Con-	• PE8-PE15 Pin and PWM Pin for sensor board.
	nection of Processor	• PC6-9 Pin and PWM1-PWM4 Pin for power board.

Acceptance Testing

0.11 Tests

Table 10: Subsystem acceptance tests

Test ID	Description	Testing Procedure	Pass/Fail Criteria
AT01	Powers on	 Use a multi-meter to measure the voltage coming into the sensing subsystem. This is the voltage that is used in the power subsystem to charge the battery. Use a multi-meter to measure at the test point at the input of the sensing subsystem to verify required voltage. 	 Pass: The voltage measured at the test point or at the output of the power system is 3.3V. This is the voltage chosen to power the sensing subsystem. Fail: The voltage is 0V, less than 3.2V or higher than 3.3V. This will give unwanted variations in output signals and the micro-mouse will not function as required.
AT02	Output voltage test	 Applying a test point to the output of the circuit to see if 0V-2.5V range is produced. Applying jumpers in the PCB board to test certain resistor values for an accurate output signal 	 Pass: Correct resistor value is found and output is within range of intended output signal that can be detected by the processor. Fail: None of the resistor values are usable and give the correct output.
AT03	Switching mechanism test	• Applying a test-points to the Bipolar Junction Transis- tor (BJT) within the circuit to test the voltage required for it to turn ON and switch OFF.	 Pass: If the BJT is in saturation at 0.7V, the 'switch' will close and be on and the sensing sub-system will detect obstructions. If the BJT is 0V, the BJT is in cut-off and is an open 'switch' Fail: incorrect BJT component was chosen that did not have the correct parameters for current and voltage values needed or voltage specifications mentioned were not met.

AT04	Current value test	Test points at photo-	Pass: Current is extremely
		diodes to ensure little cur-	low (18mA) at emitter and there-
		rent is drawn to save battery	fore takes up less power and avoids
		power.	battery drainage.
		• Current test points to en-	• Fail: No current at all of large
		sure there are no breaks in the	current that will drain the battery
		circuit and traces were made	and or damage the circuit.
		correctly.	
AT05	Budget test	• JLCPB's Website provides	• Pass: Total price of two boards is
		budget breakdown for circuit	below \$30 .
		board to ensure budget criteria	• Fail: The subsystem board is
		is met.	not ordered and cannot be further
			tested.
AT06	Board measure	• Measurements take of	• Pass: Micro-mouse is able to fit
	test	micro-mouse to ensure appro-	through maze during rotation and
		priate size and placement of	easily connected to pin-headers.
		pin-headers.	• Fail: Pin placement incorrect an
			board cannot be used. The micro-
			mouse gets stuck and cannot move
			through maze.
AT07	Processor test	• Writing code and testing	Pass: Code can be understood
		that the necessary LED's light	by processor and detect obstruction
		up during object detection.	at certain side of micro-mouse with
			an LED lighting up for indication
			purposes.
			• Fail: Code is not understood and
			obstruction cannot be avoided.

Bibliography

- [1] U. of Cape Town, "Micr0mouse project brief," 2024. [Online]. Available: https://amathuba.uct.ac.za/d2l/le/lessons/48483/topics/2299211
- [2] Appendix below.
- [3] DigiKey, "An intro to kicad part 6: Place parts and define outline | digikey," 2019. [Online]. Available: https://www.youtube.com/watch?v=dM5b_s2ysVk
- [4] —, "An intro to kicad part 7: Board layout | digikey," 2019. [Online]. Available: https://www.youtube.com/watch?v=jaQPr7PgImk

Appendix

```
# Pseudo-code for interfacing sensor with processor
# Define GPIO pins for sensor inputs
LEFT_SENSOR_PIN = 1
RIGHT_SENSOR_PIN = 2
# Initialize GPIO pins
initialize_gpio_pins()
# Function to read sensor data
def read_sensor(sensor_pin):
   # Read sensor value (1 for obstacle detected, 0 for no obstacle)
    return read_gpio_pin(sensor_pin)
# Main loop
   # Read sensor data
   left_obstacle = read_sensor(LEFT_SENSOR_PIN)
   right_obstacle = read_sensor(RIGHT_SENSOR_PIN)
    # Check if obstacles detected
   if left_obstacle:
       turn_on_left_led()
        turn_off_left_led()
    if right_obstacle:
        # Turn on right LED to indicate obstacle on the right
        turn_on_right_led()
        # Turn off right LED
        turn_off_right_led()
```

Figure 5: Code