Matemática Discreta Lista de Exercícios 01

Técnicas de Demonstração (parte I)

- Use uma demonstração direta para mostrar que a soma de dois números inteiros ímpares é par.
- Mostre que o quadrado de um número par é um número par, usando a demonstração direta.
- 3. Demonstre que se m+n e n+p são números inteiros pares, em que m,n e p são números inteiros, então m+p é par. Que tipo de demonstração você utilizou?
- Use uma demonstração direta para mostrar que todo número inteiro ímpar é a diferença de dois quadrados.
- Use uma demonstração por contradição para provar que a soma de um número irracional e um racional é irracional.
- 6. Demonstre ou contrarie que o produto de dois números irracionais é irracional.
- 7. Demonstre que se x é irracional, então 1/x é irracional.
- 8. Use uma demonstração por contraposição para mostrar que se $x+y\geq 2$, em que x e y são números reais, então $x\geq 1$ ou $y\geq 1$.
- 9. Mostre que se n é um número inteiro e n^3+5 é impar, então n é par, usando:
 - (a) uma demonstração por contraposição.
 - (b) uma demonstração por contradição.
- 10. Demonstre a proposição P(0), em que P(n) é a proposição "Se n é um número inteiro positivo maior que 1, então $n^2 > n$ ". Qual tipo de demonstração você utilizou?
- 11. Assuma P(n) como a proposição "Se a e b são números reais positivos, então $(a+b)^n \geq a^n + b^n$ ". Comprove que P(1) é verdadeira. Qual tipo de demonstração você utilizou?
- 12. Mostre que pelo menos 10 de quaisquer 64 dias escolhidos devem cair no mesmo dia da semana.
- 13. Use uma demonstração por contradição para mostrar que não há um número racional r para que $r^3+r+1=0$. [Dica: Assuma que r=a/b seja uma raiz, em que a e b são números inteiros e a/b é o menor termo. Obtenha uma equação que envolva números inteiros, multiplicando-os por b^3 . Então, veja se a e b são pares ou ímpares.]
- 14. Demonstre que se n é um número inteiro positivo, então n é ímpar se e somente se 5n+6 for ímpar.
- 15. Demonstre ou contrarie que se m e n são números inteiros, tal que mn=1, então ou m=1 e n=1 ou m=-1 e n=-1.
- 16. Mostre que essas proposições sobre o número inteiro x são equivalentes: (i) 3x+2 é par, (ii) x+5 é ímpar, (iii) x^2 é par.
- 17. Mostre que essas proposições sobre o número real x são equivalentes: (i) x é irracional, (ii) 3x+2 é irracional, e (iii) x/2 é irracional.
- 18. Os passos abaixo para encontrar as soluções de $\sqrt{x+3}=3$ x são corretos?
 - (1) $\sqrt{x+3} = 3 x \text{ \'e dado};$
 - (2) $x + 3 = x^2 6x + 9$, obtido tirando a raiz quadrada dos dois lados de (1);
 - (3) $0=x^2-7x+6$, obtido pela subtração de x+3 dos dois lados de (2);
 - (4) 0 = (x-1)(x-6), obtido pela fatoração do lado direito de (3);
 - (5) x = 1 ou x = 6, tirado de (4) porque ab=0 implica que a=0 ou b=0.
- 19. Comprove que pelo menos um dos números reais $a_1, a_2,..., a_n$ é maior que ou igual ao valor da média desses números. Que tipo de demonstração você utilizou?
- 20. Comprove que se n é um número inteiro, estas quatro proposições são equivalentes: (i) n é par, (ii) n+1 é ímpar, (iii) 3n+1 é ímpar, (iv) 3n é par.

Questões adicionais:

- 1. Use uma demonstração direta para mostrar que a soma de dois números inteiros pares é par.
- Mostre que o inverso aditivo, ou negativo, de um número par é um número par, usando a demonstração direta.
- 3. Use uma demonstração direta para mostrar que o produto de dois números ímpares é ímpar.
- 4. Demonstre que se n é um quadrado perfeirto, então n+2 não é um quadrado perfeito.
- Use uma demonstração direta para mostrar que o produto de dois números racionais é racional.
- Demonstre ou contrarie que o produto de um número racional diferente de zero e um número irracional é irracional.
- 7. Demonstre que se x é racional e $x \neq 0$, então 1/x é racional.
- 8. Demonstre que se m e n são números inteiros e mn é par, então m é par ou n é par.
- 9. Demonstre que se n é um número inteiro e 3n+2 é par, então n é par, usando:
 - (a) uma demonstração por contraposição.
 - (b) uma demonstração por contradição.

- 10. Demonstre a proposição P(1), em que P(n) é a proposição "Se n é um número inteiro positivo, então $n^2 \geq n$ ". Qual tipo de demonstração você utilizou?
- 11. Mostre que se você pegar 3 meias de uma gaveta, com apenas meias azuis e pretas, você deve pegar ou um par de meias azuis ou um par de meias pretas.
- 12. Mostre que pelo menos 3 de quaisquer 25 dias escolhidos devem cair no mesmo mês do ano.
 13. Demonstre que se n é um número inteiro positivo, então n é par se e somente se
- 7n+4 for par. 14. Demonstre que se $m^2=n^2$ se e somente se m=n ou m=-n.
- 15. Mostre que essas três proposições são equivalentes , em que a e b são números reais:(i) a é menor que (b), (ii) a média de a e b é maior que a, e (iii) a média de
- 16. Mostre que essas proposições sobre o número real x são equivalentes: (i) x é racional, (ii) x/2 é racional, e (iii) 3x-1 é racional.
- 17. Esta é a razão para encontrar as soluções da equação $\sqrt{2x^2-1}=x$ correta? (1) $\sqrt{2x^2-1}=x$ é dado; (2) $2x^2-1=x^2$, obtido pelo quadrado dos dois lados de (1); (3) $x^2-1=0$, obtido pela subtração de x^2 dos dois lados de (2); (4) (x-1)(x+1)=0, obtido pela fatoração do lado esquerdo de x^2-1 ; (5) x=1 ou x=-1, confirmado, pois ab=0 implica que a=0 ou b=0.
- 18. Comprove que as proposições P_1 , P_2 , P_3 e P_4 podem ser equivalentes mostrando que $P_1\leftrightarrow P_4$, $P_2\leftrightarrow P_3$ e $P_1\leftrightarrow P_3$.
- Encontre um contra-exemplo para a proposição: todo número inteiro positivo pode ser escrito como a soma dos quadrados de três números inteiros.
- 20. Comprove que estas quatro proposições sobre o número inteiro n são equivalentes: $(i) \ n^2$ é ímpar, $(ii) \ 1-n$ é par, $(iii) \ n^3$ é ímpar, $(iv) \ n^2+1$ é par.