© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°12

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – CCP MP 2019 Maths 1

Dans ce sujet, une série de fonctions L_a est une série de fonction s $\sum_{n\in\mathbb{N}^*} \frac{a_n x^n}{1-x^n}$ où $(a_n)_{n\in\mathbb{N}^*}$ est une suite de réels telle que la série entière $\sum_{n\in\mathbb{N}^*} a_n x^n$ soit de rayon de convergence égal à 1.

1 Propriétés

Soit une série de fonctions $L_a: \sum_{n\in\mathbb{N}^*} \frac{a_n x^n}{1-x^n}$.

- **1 1.a** Si $x \in]-1,1[$, donner un équivalent de $1-x^n$ pour n au voisinage de $+\infty$.
 - **1.b** Démontrer que pour tout $x \in]-1,1[$, la série $\sum \frac{a_n x^n}{1-x^n}$ converge absolument.
 - **1.c** La série L_a peut parfois converger en dehors de l'intervalle]-1,1[. Donner un exemple de suite (a_n) telle que la série L_a converge au moins en un x_0 n'appartenant pas à l'intervalle]-1,1[.
- 2 Démontrer que la série de fonctions $\sum_{n \in \mathbb{N}^*} \frac{a_n x^n}{1 x^n}$ converge uniformément sur tout segment [-b, b] inclus dans l'intervalle]-1,1[.
- 3 On pose pour tout $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} \frac{a_n x^n}{1-x^n}.$
 - **3.a** Justifier que la fonction f est continue sur l'intervalle]-1,1[.
 - **3.b** Démontrer ensuite que la fonction f est de classe \mathcal{C}^1 sur l'intervalle]-1,1[. Donner la valeur de f'(0).

4 Expression sous forme de série entière.

On note $A = \mathbb{N}^* \times \mathbb{N}^*$.

4.a Lorsque $(u_{n,p})_{(n,p)\in A}$ est une famille sommable de réels, justifier que

$$\sum_{n=1}^{+\infty} \left(\sum_{p=1}^{+\infty} u_{n,p} \right) = \sum_{n=1}^{+\infty} \left(\sum_{(k,p) \in I_n} \right) \text{ où } I_n = \{ (k,p) \in A, \ kp = n \}$$

- **4.b** Démontrer que pour tout $x \in]-1,1[$, la famille $(a_n x^{np})_{(n,p \in A)}$ est sommable.
- **4.c** En déduire que pour tout $x \in]-1,1[$,

$$\sum_{n=1}^{+\infty} \frac{a_n x^n}{1 - x^n} = \sum_{n=1}^{+\infty} b_n x^n \text{ où } b_n = \sum_{d \mid n} a_d$$

où la dernière somme porte sur les diviseurs positifs de *n*.

© Laurent Garcin MP Dumont d'Urville

2 Exemples

5 Dans cette question, pour $n \in \mathbb{N}^*$, $a_n = 1$ et on note d_n le nombre de diviseurs de n. Exprimer, pour tout $x \in]-1,1[$, $f(x)=\sum_{n=1}^{+\infty}\frac{a_nx^n}{1-x^n}$ comme la somme d'une série entière.

- **6** Dans cette question, pour $n \in \mathbb{N}^*$, $a_n = \varphi(n)$ où φ est l'indicatrice d'Euler.
 - **6.a** Justifier que la série entière $\sum_{n \in \mathbb{N}^*}$ est de rayon de convergence égal à 1.
 - **6.b** Excirce une fonction pgcd(a,b) d'arguments deux entiers naturels a et b et renvoyant le pgcd de a et b. En déduire une fonction indicatrice(n) d'argument un entier naturel non nul n et renvoyant $\varphi(n)$ puis une fonction somme(n) d'argument un entier naturel non nul n et renvoyant $\sum_{n=1}^{\infty} \varphi(n)$.
 - **6.c** On admet que pour $n \in \mathbb{N}^*$, $n = \sum_{d \mid n} \varphi(d)$. Vérifier ce résultat pour n = 12.
 - **6.d** Pour $x \in]-1,1[$, exprimer $\sum_{n=1}^{+\infty} \frac{\varphi(n)x^n}{1-x^n}$ sous la forme d'un quotient de deux polynômes.
- 7 En utilisant le théorème de la double limite, établir à l'aide du développement en série entière de $x \mapsto \ln(1+x)$ sur l'intervalle]-1,1[la valeur de la somme $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.
- 8 Dans cette question et la suivante, pour $n \in \mathbb{N}^*$, $a_n = (-1)^n$ et pour tout $x \in]-1,1[$, $f(x) = \sum_{n=1}^{+\infty} \frac{a_n x^n}{1-x^n}$. En utilisant le théorème de la double limite, calculer $\lim_{x\to 0} \frac{f(x)}{x}$ et donner un équivalent de f(x) au voisinage de 0. Retrouver alors le résultat de la question 3.b.
- **9** Démontrer qu'au voisinage de 1, $f(x) \sim -\frac{\ln(2)}{1-x}$. On pourra remarquer que pour $x \in]0,1[$,

$$\frac{1-x}{1-x^n} = \frac{1}{1+x+x^2+\dots+x^{n-1}}$$