Empirical Distributions

15M

The *empirical distribution* is a discrete distribution based on a sample of size n that assigns probability $\frac{1}{n}$ to each data point.

Let x_1, x_2, \ldots, x_n be a sample of size n. The **empirical distribution function** is the CDF of the empirical distribution. It is calculated as the proportion of observations no more than x out of n total observations.

$$F_n(x) = rac{ ext{Number of observations} \leq x}{n}$$
 (S2.1.6.1)

Like other discrete distributions, the empirical distribution function is a step function. Here is an example:

We can calculate the *empirical* $100p^{th}$ *percentile* the same way we calculate the $100p^{th}$ percentile for discrete distributions. Because all n observations are equally likely, the empirical $100p^{th}$ percentile reduces to the $\lceil np \rceil^{th}$ order statistic of the sample, where $\lceil \cdot \rceil$ is the ceiling or round-up function.

$$\pi_p = x_{(\lceil np \rceil)}$$

Coach's Remarks

Recall that the $k^{\rm th}$ order statistic, i.e. $x_{(k)}$, is the $k^{\rm th}$ smallest observation. For example, given a sample {5, 0, 3, 2, 5}, the order statistics are

- $x_{(1)} = 0$
- $x_{(2)} = 2$
- $x_{(3)} = 3$
- $x_{(4)} = 5$
- $x_{(5)} = 5$

In general, the empirical expected value can be calculated using (S2.1.4.1).

$$\mathrm{E}[g(X)] = rac{\sum_{i=1}^n g(x_i)}{n}$$

The empirical 1st raw moment is called the *sample mean* and is denoted as \bar{x} .

$$\mathrm{E}[X] = \bar{x} = rac{\sum_{i=1}^{n} x_i}{n}$$
 (S2.1.6.2)

Then, the empirical 2nd central moment is called the *biased sample variance*.

$$Var[X] = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

$$= \frac{\sum_{i=1}^{n} x_i^2}{n} - \bar{x}^2$$
(S2.1.6.3)

The equivalence of the two forms is provided in the appendix at the end of this section.

In contrast, the *unbiased sample variance* has a divisor of (n-1) and is denoted as s^2 .

$$s^2 = rac{\sum_{i=1}^{n} (x_i - ar{x})^2}{n-1} \ = rac{n}{n-1} \cdot ext{Var}[X]$$

Coach's Remarks

Whether to use the biased or the unbiased sample variance is a big source of confusion for many students. Here is a rule of thumb:

- Use the **biased** sample variance when calculating the variance of the empirical distribution.
- Use the unbiased sample variance when estimating the population variance, particularly when the estimation method is left unspecified.

Throughout this exam, we mostly encounter the second case.

Coach's Remarks

We typically reserve σ^2 to denote the population variance. If N represents the number of observations in a population, then

$$\sigma^2 = rac{\sum_{i=1}^{N} \left(x_i - \mu
ight)^2}{N}$$

where μ is the population mean.

Note that the empirical distribution treats the sample data as though it is the entire population. Thus, the variance formula of the empirical distribution, i.e.

$$ext{Var}[X] = rac{\sum_{i=1}^{n} \left(x_i - ar{x}
ight)^2}{n}$$

closely resembles the formula for σ^2 . Despite the similarity, the biased sample variance is conceptually distinct from σ^2 .

Example S2.1.6.1

You are given a sample of size 6:

1 4 5 8 8 10

Calculate

- 1. the empirical distribution function evaluated at 6.
- 2. the empirical 75th percentile.
- 3. the skewness of the empirical distribution.
- 4. the unbiased sample variance.

Solution to (1)

Out of the 6 observations, 3 are at or below 6. Thus,

$$egin{aligned} F_6(6) &= rac{ ext{Number of observations} \leq 6}{6} \ &= rac{oldsymbol{3}}{6} \end{aligned}$$

Solution to (2)

The empirical 75th percentile is the $\lceil 6(0.75) \rceil = \lceil 4.5 \rceil = 5$ th order statistic, which is **8**.

Here is a visual representation:

Solution to (3)

The empirical distribution's mean is

$$egin{aligned} ar{x} &= rac{\sum_{i=1}^n x_i}{n} \ &= rac{1+4+5+8+8+10}{6} \ &= 6 \end{aligned}$$

The empirical distribution's variance is

$$egin{split} ext{Var}[X] &= rac{\sum_{i=1}^n x_i^2}{n} - ar{x}^2 \ &= rac{1^2 + 4^2 + 5^2 + 8^2 + 8^2 + 10^2}{6} - 6^2 \ &= 9 \end{split}$$

Using (S2.1.4.1), the 3rd central moment is

$$\mu_3 = rac{\sum_{i=1}^n (x_i - \bar{x})^3}{n}$$

$$= rac{(1-6)^3 + (4-6)^3 + (5-6)^3 + (8-6)^3 + (8-6)^3 + (10-6)^3}{6}$$

$$= -9$$

Thus, the skewness of the empirical distribution is

$$egin{aligned} rac{\mu_3}{\left(\sqrt{ ext{Var}[X]}
ight)^3} &= rac{-9}{\left(\sqrt{9}
ight)^3} \ &= -rac{1}{3} \end{aligned}$$

Solution to (4)

The unbiased sample variance is

$$s^2 = rac{\sum_{i=1}^n (x_i - ar{x})^2}{n-1} = rac{(1-6)^2 + (4-6)^2 + (5-6)^2 + (8-6)^2 + (8-6)^2 + (10-6)}{6-1} = \mathbf{10.8}$$

Alternatively, we can also calculate the unbiased sample variance by scaling the biased sample variance.

$$s^2 = rac{n}{n-1} \cdot \mathrm{Var}[X]$$
 $= rac{6}{6-1} \cdot 9$
 $= \mathbf{10.8}$