PATENT ABSTRACTS OF JAPAN

(11) Publication number:

04-048832

(43) Date of publication of application: 18,02,1992

(51)Int.Cl.

H04B 10/00

H04B 7/26

(21)Application number : 02-158956

(71)Applicant: A T R KOUDENPA TSUSHIN

KENKYUSHO:KK

(22)Date of filing:

18,06,1990

(72)Inventor: OGAWA HIROTSUGU

(54) OPTICAL LINK RADIO COMMUNICATION SYSTEM

PURPOSE: To utilize a radio wave effectively and to

(57) Abstract:

improve the reception sensitivity by employing an optical fiber for a feeding system between a main base station and a slave base station so as to avoid interference between feeding systems and setting a radio frequency used for each slave base station optionally. CONSTITUTION: Each input signal is converted into plural optical waves with a different wavelength in a main base station 50 and the optical wave is subjected to wavelength multiplex and the result is propagated through an optical fiber 60. The optical wave on the optical fiber is demultiplexed for each wavelength by a wavelength selection means, the demultiplexed optical wave is converted into a radio frequency signal at each of slave base stations 150-152 and sent to a terminal equipment 96. On the other hand, the radio frequency signal sent from the terminal equipment is received by a slave base station, where the signal is converted into the optical wave having a wavelength specific to the base

station and propagated through the optical fiber 60. The optical wave is demultiplexed for each wavelength at the main base station and then converted into an electric signal to detect a signal from each terminal equipment.

19日本国特許庁(JP)

① 特 許 出 願 公 閉

平4-48832 四 公 開 特 許 公 報 (A)

@Int. Cl. 5 H 04 B 10/00 識別記号

厅内整理番号

@公開 平成 4年(1992) 2月18日

7/26

104 A

8523-5K 8426-5K

9/00 H 04 B

審査請求 未請求 請求項の数 4 (全12頁)

会発明の名称 光リンク無線通信方式

> ②特 頭 平2-158956

②出 願 平2(1990)6月18日

@発 明 者 Ш 小

博 # 京都府相楽郡精華町大字乾谷小字三平谷5番地 株式会社

エイ・テイ・アール光電波通信研究所内

勿出 願 人 株式会社エイ・テイ・ 京都府相楽郡精華町大字乾谷小字三平谷5番地

アール光電波通信研究

所

個代 理 人 弁理士 青 山 葆 外1名

1. 発明の名称

光リンク無線通信方式

- 2. 特許請求の範囲
- (1) 光ファイバーおよび無線を用いて一方向ま たは双方向通信を行うシステムにおいて、主基地 局において、信号速度で変調した波長の異なる複 数の光波を波長多重して光ファイバーにより伝搬 させ、該光ファイバーの複数の箇所にて前記光波 を波長選択手段にて波長毎に分離し、波長分離し た各光波を、各従基地局にて無線周波信号に周波 数変換した後に端末に対して送信し、更に、上記 と同一又は異なる信号速度で変調した端末からの 無線周波信号を各従基地局で受信し、受信した各 無線周波信号を固有の波長を有する光波にそれぞ れ周波数変換した後、各光合成手段を介して光ファ イバーにより伝搬させ、前記光ファイバーを伝わ る光波を主基地局で波長毎に分離、検波すること により通信を行うことを特徴とする光リンク無線 通信方式。
- (2) 光ファイバーおよび無線を用いて一方向ま たは双方向通信を行うシステムにおいて、主基地 局において、信号速度で変調した複数の無線周波 信号を周波数多重した後、光波に周波数変換して 光ファイバーにより伝搬させ、該光ファイバーの 複数の箇所にて光波分岐手段により前記光波を分 岐し、分岐した各光波を、各従親局にて無線周波 数に周波数変換し、変換した無線周波数の内、所 望の周波数のみを端末に対して送信し、更に、上 記と同一又は異なる信号速度で変調した端末から の無線周波信号を各従基地で受信し、受信した各 無線周波信号を光波にそれぞれ周波数変換した後、 光波結合手段を介して光ファイバーにより伝搬さ せ、前記光ファイバーを伝わる光波を主基地局に て無線周波信号に周波数変換し、更に周波数分波 回路で周波数毎に分離し復調することにより通信 を行うことを特徴とする光リンク無線通信方式。 (3) 請求項2記載の主基地局にて周波数多重し
- た複数の光波を波長多重化し、各従基地局にて複 数の無線周波数を放射、受信して1ゾーンで複数

の端末と通信可能としたことを特徴とする光リンク無線通信方式。

(4)請求項1ないし3の各従基地局における周 波数変換器の局部発信器の発信周波数を制御する 信号を、主基地局から各従基地局に伝送するため に伝送手段を備えたことを特徴とする光リンク無 線通信方式。

3. 発明の詳細な説明

【産業上の利用分野】

本発明は、多数の無線局(従基地局)を必要とするパーソナル通信等の移動体システムへの利用に適した、光ファイパーリンクと無線リンクを組み合わせた通信方式に関する。

【従来の技術】

従来の移動体通信では、主基地局から送信されるベースパンド帯の信号を従基地局にて処理するため従基地局の装置構成が複雑で大型化し、多数の従基地局を必要とするソーン半径の小さなマイクロセルゾーンまたはピコセルゾーンの設置が困難になる。これを解決する手段として、このよう

れたものであり、電波を有効利用でき、かつ干渉をなくし、又、光ファイバーケーブルを用いた場合の無線周波数の上限をなくすと共に受信感度の低下を抑えた光リンク無線通信方式を提供することを目的とする。

【課題を解決するための手段】

第1の発明では、光ファイバーおよび無線を用いて一方向または双方向通信を行うシステムにおいて、主基地局において、信号速度で変調した波長の異なる複数の光液を波長多重して光ファイバーの複数の光液を波長多重して光ファイバーの複数の治療を波長の異なる複数の光液を波長の異になりにない。 にて前記光液を波長遅択手段にて波長毎に分離し、波長分離した各光波を、各従基地局にて送信のにの対離した。 では、上記と同一又は異なる信号速度で変調した。 と同一というの無線周波信号を各位基地局で受信した。 というの無線周波信号を各位基地局で受信した。 というの無線周波信号を固有の波長を有する光波にそれぞれ周波数変換した後、各光合成手段を がにそれぞれ周波数変換した後、各光合成手段を かして光ファイバーにより伝搬させ、前記光ファイバーを伝わる光波を主基地局で波長毎に分離、 な従基地局には、ベースバンド帯の信号処理機能を持たせずにアナログ信号処理のみの機能を付加する方法がある。具体的には、主基地局においてベースバンド信号を多重化してキャリアを変調し無線伝送路またはケーブルを用いて従基地局に信号を供給し、従来基地局においてキャリアを無線周波数に変換して通信を行う。

【発明が解決しようとする課題】

ところが、無線伝送路を用いた場合、多数の周 放数が必要となるため電波の有効利用、干渉に問題があり、又、同軸ケーブルを用いた場合、線路 損失のためキャリアの周波数には上限があること、 又、主基地局と従基地局との間の距離に制限があ ることの問題があった。尚、同軸ケーブルの代わりに光ファイバーケーブルを用いることが考えられるが、アナログ信号による光の強度変調を用いているため伝送できる無線周波数の上限があること、受信感度の低下により伝送特性が劣化すること等の問題があった。

本発明は、上述した課題を解決するためになさ

検波することにより通信を行うことを特徴とする。

第2の発明では、光ファイバーおよび無線を用 いて一方向または双方向通信を行うシステムにお いて、主基地局において、信号速度で変調した複 数の無線周波信号を周波数多重した後、光波に周 波数変換して光ファイバーにより伝搬させ、該光 ファイバーの複数の箇所にて光波分岐手段により 前記光波を分岐し、分岐した各光波を、各従親局 にて無線周波数に周波数変換し、変換した無線周 波数の内、所望の周波数のみを端末に対して送信 し、更に、上記と同一又は異なる信号速度で変調 した端末からの無線周波信号を各従基地で受信し、 受信した各無線周波信号を光波にそれぞれ周波数 変換した後、光波結合手段を介して光ファイバー により伝搬させ、前記光ファイバーを伝わる光波 を主基地局にて無線周波信号に周波数変換し、更 に周波数分波回路で周波数毎に分離し復調するこ とにより通信を行うことを特徴とする。

【作用】

請求項1の光リンク無線通信方式では、主基地

局において、それぞれの入力信号が波長の異なる 複数の光波に変換され、それらの光波を波長多重 して光ファイバーにより伝搬される。光ファイバ - 上の光波は、波長選択手段により波長毎に分離 され、各従基地局において、分離された光波から 無線周波信号に変換され端末に送信される。一方、 この端末から送信した無線周波信号は従基地局で 受信され、当該基地局固有の波長を有する光波に 変換された後、前記光ファイパーもしくは別に数 けた光ファイバーにより伝搬される。他の従基地 局からもそれぞれ固有の波長を有する光波が光ファ イパーに伝搬されるのでこの光ファイバーには波 長多重された光波が伝搬することになる。この光 波は、主基地局で波長毎に分離され、その後、電 気信号に変換されることにより、各端末よりの信 号が検出される。

請求項2の方式では、周波数多重された無線周波信号が光波に周波数変換されて光ファイバーにより伝搬される。この光波はそれぞれの従基地局に分岐され、各従基地局では、分岐された光波は

択された一つの光波から複数の周波数を含む無線 周波信号に変換されて複数の端末にそれぞれ送信 される。

複数の端末からそれぞれ異なった周波数で送信された無線周液信号は、従基地局にて周波数多重の無線周液信号が固有の液長を有する光液に変換されて光ファイバーにより伝搬される。他の従基地局からも周波数多重された無線周波数信号がそれぞれ固有の液長を有する光波として光ファイバーには、周波数多重されかつ液長多重された光波が伝搬することになる。この光波は、主基地局において、液長毎に分離され、更に無線周波信号に変換された後、周波数毎に分離されるので、各従基地局における複数の端末よりの信号が検出される。

請求項4の方式では、各従基地局における局部 発信器の発信周波数を制御するための信号が伝送 手段により主基地局から送信されるので、各従基 地局の発信周波数の精度が向上するとともに、可 変なことも可能である。 無線周波数信号に変換され、変換された無線周波数信号の内、当該從基地局固有の周波数の信号のみが端末に送信される。一方、この端末から送信した無線周波信号は從基地局で受信され、光波に変換された後、前記光ファイバーもしくは別に設けた光ファイバーにより伝搬される。他の従基地局からもそれぞれ固有の無線周波数の信号から変換された光波が光ファイバーにより伝搬されるのでこの光ファイバーには周波数多重された光波が伝搬することになる。この光波は、主基地局で無線周波信号に変換され、その後、各周波数毎に分離され、復興処理等により、各端末よりの信号が検出される。

請求項3の方式では、複数の入力信号が周波数 多重化されて固有の波長を有する光波に周波数変 換され、更に別の周波数多重化された信号もそれ ぞれ固有の波長を有する光波に周波数変換され、 これらの異なった波長を有する光波が波長多重化 され光ファイバーにより伝搬される。各従基地局 では該当する波長の光波が選択され、そして、選

【実施例】

第1図に、第1の発明による通信方式を適用した通信システムの一実施例を示している。

主基地局50において、1ないし3は、それぞれ入力ポートであり、7ないし9は、前記入出力ポート1ないし3に入力された信号をそれぞれ異なった波長の光波に変換する電気光変換器である。13は、電気光変換器7ないし9で出力される光波を波長多重化する光合成器であ。15は、光送受分離回路であり、送信時、光合成器13で波長多重化された光波を光ファイバー60に導くと共に、受信時には光ファイバー60よりの光波を、光分波器14に導く。この光分波器14は、波長多重された光波を波長毎に分離する。10ないし12は、光分波器14で波長毎に分離された光波を電気信号に変換する電気光変換器であり、4ないし6は、各光電気変換器10ないし12の出力ポートである。

61ないし63は、光ファイバー60の経路途中に設けられ、それぞれ固有の波長の光波を選択

して従基地局150ないし152に導くとともに、各従基地局150ないし152より出力されるそれぞれ固有の波長を育する光波を光ファイバー60に導く。

従基地局150において、101は、波長選択 合成回路61より入力される光波を受波すると共 に、当該従基地局41より送波する光波を波長選 択合成回路61に送出する光送受分離回路である。 102は、周波数変換器であり、光送受分離回路 101よりの光波に、レーザ103よりの局部発 信光を混合して、それらの周波数差に相当する中 間周波数を作成する。104は、周波数変換器1 02で作成された信号を所定のレベルに増幅する 高周波増幅器である。105は、無線送受分離回 路であり、高周波増幅器104よりの信号をアン テナ90に導くと共に、アンテナ90で受信した、 端末95よりの信号を高周波数増幅器106に導 く。107は、周波数変換器であり、高周波増幅 器106で増幅された受信信号に、レーザ108 よりの局部発信光を混合して光波に変換する。変

レベルまで増幅された後、無線送受分離回路10 5によりアンテナ90に導かれ、同アンテナ90 より電波として端末95に送信されることにより、 主基地局50側から端末95への通信が行われる。

一方、この端末95から送信した電波は、従基 地局150のアンテナ90で受信され、この受信 された信号は、無線送受分離回路105を経て高 周波増幅器 106に供給され、ここで所定のレベ ルまで増幅された後、周波数変換器107に供給 される。この周波数変換器107では、レーザ1 08より出力される局部発信光が加えられること により、固有の波長を有する光波に変換され、そ の光波は、前記光合成分波回路101および波長 選択合成回路61を経て光ファイバー60により 伝送される。伝送された光波は、主墓地局50の 光送受分離回路15により光分波器14に供給さ れ、ここで波長毎に分離されてそれぞれ光電気変 換器10ないし12に供給され、光波から電気信 号に変換されて出力ポート4ないし6に出力され S.

換された光液は前記光送受分離回路 101に供給 される。

以下に上記システムの動作を説明する。

主基地局50と従基地局150の端末95と交 信するときについて説明する。例えば、入力ポー ト1への入力信号(信号速度は数MHzないし数G Hz)は、電気光変換器7において、固有の波長を 有する光波に変換され、変換された光波は、光合 成器13にて他の電気光変換器8および9よりの 光波と合成され、波長多重化される。その合成さ れた光波は、光送受分離回路15を介して光ファ イバー60により伝送される。この光ファイバー 60に伝わる波長多重の光波の内、従基地局41 に固有の波長のものが波長選択合成回路 6 1で選 択されて従基地局150に導かれる。入力された 光波は、光送受分離回路101を経て周波数変換 器102に入力され、ここでレーザ103よりの 局部発信光と混合され、それらの周波数差に相当 する中間周波数の信号が出力される。出力された 中間周波数の信号は高周波増幅器104で適当な

このように液長多重化技術および光コヒーレント技術を用いて主基地局50と端末95との間で 双方向の通信が行われる。

第2図は、第1発明の別の実施例を示しており、 第1図と同一の部分については同一の符号を付し ている。

第2図のシステムにおいては、光ファイバー6 0を主基地局51からの送波用とし、受波用とし、 で別の光ファイバー61を備えており、従って、 主基地局51においては、第1図図示の光送受ける を選択するための波長選択するための波長選択の 61ないし63が設けられ、光波を光ファイバー6 1においては、固有の波長の光波を光ファイバー6 1においては、固有の波長の光波を光ファイバー6 1においては、固有の波長の光波を光ファイバー6 1においては、固有の波長の光波を光ファイバー6 1においては、固有の波長の光波を光ファイバー6 1においては、固有の波長の光波を光ファイバー6 2は時の大波を成回路67ないし69が と波長合成回路67ないし69の間にそれぞれ を満地局153ないし155においては、 第1図示の光送受分離回路101が不要となり、 かつ、信号を一方向に処理するよう構成要素10 2ないし107が接続構成される。

第3図は第2の発明を適用したシステムの一実 施例を示している。主基地局52において、16 ないし18は、入力ポート1ないし3に入力され たベースバンド信号をそれぞれ異なったサブキャ リアに変換する変調器であり、22は、作成され たサブキャリアを周波数多重化する周波数多重回 路である。24は、周波数変換器であり、レーザ 24Xよりの局部発振信光が加えられることによ り、周波数多重化信号は光波に変換される。変換 された光波は光送受分離回路 1.5に供給される。 25は、周波数変換器であり、光送受分離回路1 5よりの光波に対してレーザ26よりの局部発信 光が加えられることにより無線周波信号に変換さ れる。23は、得られた無線周波信号を周波数毎 に分離する周波数分波器であり、19ないし21 は、分離された各無線周波数信号を復調する復調 器である。

光ファイバー60には、光ファイバー内の光波

様、端末95に送信される。

一方、端末95よりの送信信号は、第1図と同様、固有の波長を有する光液に変換され、その変換された光液は光波分岐結合回路70を介して光ファイバー60により伝送される。この伝送された光液は、主基地局52の光送受分離回路15を経て周波数変換回路25にてレーザ26よりの局部発信光が加えられることにより、サブキャリアに変換され、次の周波数分波器23にて周波数毎に分離され、そして復調器19ないし21で元の信号に復調される。このように周波数多重化および光コヒーレント技術により主義地局52と従基地虚156ないし158を介して端末95との間の通信が行われる。

第4図は第2の発明の別の実施例を示しており、別の実施例として述べた第2図のシステムと同様、第3図のシステムに対して、光波の送受用として 光ファイバー60.61を設けたものである。従って、主基地局53では光送受分離回路15が不要となり、光ファイバー60には、光波を分岐させ を分岐すると共にこの光ファイバー60に光波を 結合する光波分岐結合回路70ないし72が設け られる。

従基地局156ないし158は、第1図の従基 地局150の周波数変換器102と増幅器104 との間に所望の周波数の信号を通過させるフィル ク110を設けたものである。

動作としては、各変調器16ないし18で作成された複数のサブキャリアが周波数多重回路22にて周波数多重化され、その後に周波数変換回路24にてレーザ24米よりの局部発振光が加えられることにより、光波に変換され、光ファイバー60により伝送される。この伝送された光波は、光波分岐結合回路70ないし72により分岐されてそれぞれ従基地局156ないし158に導かれる。従基地局156においては、第1図と同様、光送受分離回路101を経て周波数変換器102で無線周波信号に変換され、その後にフィルタ110にて所望の周波数の信号のみが選択され、増幅器104に供給されることにより、第1図と同

るための光波分岐回路73ないし75が設けられ、 光ファイバー61には光波を結合させるための光 波結合回路が設けられ、従基地局従基地局159 ないし161内においても一方向に処理できるよ うに接続構成される。

第5図は、第3の発明を適用した一実施例であり、第1図の波長多重化方式と第3図の周波数多重化方式とを組み合わせることにより、各アンテナ90のゾーン内で複数の端末90と個別に通信可能としたものである。

即ち、入力ポート1ないし3、変調器16ない し18、各変調出力を周波数多重化する周波数多 重回路22および多重化した信号を光波に変換す る周波数変換器24,レーザ24Xよりなる系統 と同じ構成になる別の複数の系統(1'ないし3'、 16'ないし18'、22'、24',24X')が設 けられ、周波数光変換器24および24'よりの 波長の異なる光信号が光合成器13で波長多重化 され、光送受分離回路15よりの波長多重化され た光波は、光分波器14にて波長毎に分離され、 その分離された光波に対してそれぞれ処理するために、周波数変換器 25、レーザ 26、周波数分波器 23、復調器 19ないし21および出力ポート4ないし6よりなる系統と同じ構成になる別の複数の系統(25'、26'、23'、19'ないし21'および4'ないし6')を備える。

動作としては、液長選択合成回路61で例えば 周波数変換器24よりの固有の波長を有する光波 が選択されたとき、従基地局162のアンテナ9 0から変調器16ないし18で変調された複数の 異なった周波数のサブキャリアが送信され、それ ぞれ受信周波数の対応する端末95で受信される。 これらの各端末95から送信した無線周波信号は、 当該従基地局161で周波数多重化した後、固有 の波長を有する光波として光ファイバー60に伝 送される。主基地局54においては、光送受分離 回路15を経て光分波器14で波長多重化された 光波が波長毎に分離され、例えば、周波数分 波器23にて用波数毎に分離され、そして、それ

の電気信号は、各従基地局150ないし152のレーザ103および108の局部発信周波数を制御するための信号として供給される。このように、局部発信周波数を制御するための信号を送出する伝送手段を設け、各従基地局150ないし152の局部発信器を集中的に制御することにより、従基地局150ないし152での周波数安定度が高まり、各端末95と安定した通信が行えるとともに、周波数を可変したシステムの構成も可能となる。このような伝送手段は、第2図ないし第6図のいずれのシステムに対しも適用できる。

【発明の効果】

以上説明したように、本発明は、主基地局と従 基地局との間の給電系に光ファイバーを用いたた め、給電系相互間の干渉をなくすことができ、さ らに各従基地局で用いる無線周波数を任意に設定 できるため、電波の有効利用を図れことができる とともに、受信感度の改善も図れる。又、電波の 干渉がないことから、従基地局の設置場所に対す る制約が解消され、従って多数の従基地局を設置 ぞれ対応する復調器19ないし21で復調される ことにより、前記の各端末95よりの送信信号が 各出力ポート4ないし6に出力される。

第6図は第3の発明の別の実施例を示すものであり、第5図の光ファイバー60を送受用として二つの光ファイバー60および61を設けたものであり、これに伴う主基地局55および従基地局165ないし167の構成は、第2図および第4図で述べたのと同じように変形される。

第7図は、第4の発明を適用した一実施例を示すものであり、第1図のシステムに対して、主基地局56においては、入力ポート27よりの電気信号を光波に変換する電気光変換器28が設けられ、そして、電気光変換器28よりの光波を伝送するための光ファイバー79には波長選択回路80ないし82が設けられ、これらの各波長選択回路80ないし82で選択された各波長の光波を電気信号に変換する光電気変換器83ないし85が設けられる。各光電気変換器83ないし85より

できる。更に、液長多重化技術、周波数多重化技術、光コヒーレント技術、光ファイバー技術、無線技術を用いることにより、一つの従基地局に対して多数の端末をカバーすることができる。

4. 図面の簡単な説明

第1図は、本発明の第1の発明になる光リンク 無線通信方式を適用した一実施例を示す通信システムのプロック区、

第2図は、第1の発明になる光リンク無線通信 方式を適用した別の実施例を示す通信システムの ブロック図、

第3図は、本発明の第2の発明になる光リンク 無線通信方式を適用した一実施例を示す通信システムのブロック図、

第4図は、第2の発明になる光リンク無線通信 方式を適用した別の実施例を示す通信システムの ブロック図、

第5図は、本発明の第3の発明になる光リンク 無線通信方式を適用した一実施例を示す通信シス テムのブロック図、

特開平4-48832 (7)

第6図は、第3の発明になる光リンク無線通信 方式を適用した別の実施例を示す通信システムの ブロック図、

第7図は、本発明の第4の発明になる光リンク 無線通信方式を適用した一実施例を示す通信シス テムのブロック図である。

1~6,1'~6'…入出力ポート、

7~9,27…電気光変換器、

10~12,83~85…光電気変換器、

13…光合成器、

14…光分波器、

15…光送受分離回路、

16~18,16'~18'…変調器、

19~21,19'~21'…復網器

22.22'…周波数多重回路、

23,23'…周波数分波回路、

24,24',25,25'…周波数変換器、

24X,24X',26,26'...レーザ、

27…電気光変換器、

50~56…主基地局、

60.61,79…光ファイバー、

61~63…波長選択合成回路、

64~66,80~82…波長選択回路、

67~69…波長合成回路、

70~72…光波分岐結合回路、

73~75…光波分岐回路、

76~78…光波結合回路、

90…アンテナ、

95…端末、

101…光送受分離回路、

102.107…周波数変換器、

103.108…レーザ、

104,106…增幅器、

105…無線送受分離回路、

105~111…主基地局、

150~166…從基地局。

特許出願人 株式会社 エィ・ティ・アール 光電波通信研究所

代理人 弁理士 青 山 葆 外1名

第 4 図

手統補正書

平成 2年 7月20日

特許庁長官殿

1.事件の表示

平成 2年 特許順 第158956号

2. 発明の名称

光リンク無線通信方式

3. 補正をする者

事件との関係 特許出顧人

名称 株式会社 エイ・ティ・アール光電波遠信研究所

4. 代理人

住所 〒540 大阪府大阪市中央区域見2丁目1番61号 ツイン21 MIDタワー内 電話(05)949-1251

氏名 弁理士 (6214) 青 山

5. 補正命令の日付

自 発

6. 補正の対象

国面

第3図及び第7図を別紙の通り補正する。

