

Painel ► SBL0059 ► 17 setembro - 23 setembro ► Teste de revisão

Iniciado em quarta, 30 Set 2020, 11:53

Estado Finalizada

Concluída em quarta, 30 Set 2020, 12:10
Tempo empregado 17 minutos 1 segundo

Avaliar 10,00 de um máximo de 10,00(100%)

Correto

Atingiu 2,00 de 2,00 Qual a parametrização do plano x+y+z=1 inclinado dentro de um cilindro $x^2+y^2=9$.

Escolha uma:

- \odot a. $ec{\mathbf{r}}(r, heta)=(r\cos\, heta)\mathbf{i}-(r\sin\, heta)\mathbf{j}+(1-r\cos\, heta-r\sin\, heta)\mathbf{k}$, com $0\leq heta\leq2\pi$ e $0\leq r\leq3$.
- $egin{aligned} egin{aligned} \mathbf{b}.\ \mathbf{ec{r}}(r, heta) &= (r\cos heta)\mathbf{i} + (r\sin heta)\mathbf{j} (1-r\cos heta-r\sin heta)\mathbf{k}$, com $0 \leq heta \leq 2\pi$ e $0 \leq r \leq 3$.
- \odot c. $\vec{\mathbf{r}}(r,\theta)=(r\cos\theta)\mathbf{i}+(r\sin\theta)\mathbf{j}+(1+r\cos\theta-r\sin\theta)\mathbf{k}$, com $0\leq\theta\leq2\pi$ e $0\leq r\leq3$.
- o d. $\vec{\mathbf{r}}(r,\theta)=(r\cos\,\theta)\mathbf{i}+(r\sin\,\theta)\mathbf{j}+(1-r\cos\,\theta-r\sin\,\theta)\mathbf{k}$, com $0\leq\theta\leq2\pi$ e $0\leq r\leq3$.

√

o e. $\vec{\mathbf{r}}(r,\theta)=(r\cos\,\theta)\mathbf{i}-(r\sin\,\theta)\mathbf{j}-(1-r\cos\,\theta-r\sin\,\theta)\mathbf{k}$, com $0\leq\theta\leq2\pi$ e $0\leq r\leq3$.

Sua resposta está correta.

Solução:

$$x + y + z = 1 \Rightarrow z = 1 - x - y$$
.

Usando coordenadas cilíndricas $x=r\cos\,\theta$ e $y=r\sin\,\theta$, substituindo em z, temos $z=1-r\cos\,\theta-r\sin\,\theta$.

Substituindo x, y e z na função de superfície, temos:

$$ec{\mathbf{r}}(r, heta)=(r\cos\, heta)\mathbf{i}+(r\sin\, heta)\mathbf{j}+(1-r\cos\, heta-r\sin\, heta)\mathbf{k}$$
 , com $0\leq heta\leq2\pi$ e $0\leq r\leq3$.

A resposta correta é: $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (1-r\cos\theta-r\sin\theta)\mathbf{k}$, com $0 \le \theta \le 2\pi$ e $0 \le r \le 3$.

Correto

Atingiu 2,00 de 2,00 Qual a parametrização de uma faixa esférica, considerando a porção da esfera $x^2+y^2+z^2=3$ entre os planos $z=rac{\sqrt{3}}{2}$ e $z=rac{-\sqrt{3}}{2}$?

Escolha uma:

$$lacktriangledown$$
 a. $ec{\mathbf{r}}(\phi, heta) = (\sqrt{3}\sin(\phi)\cos(heta))\mathbf{i} + (\sqrt{3}\sin(\phi)\sin(heta))\mathbf{j} + (\sqrt{3}\cos(\phi))\mathbf{i}$, $rac{\pi}{3} \leq \phi \leq rac{2\pi}{3}$, $0 \leq \theta \leq 2\pi$

4

$$\bigcirc$$
 b. $\vec{\mathbf{r}}(\phi, \theta) = (\sqrt{3}\sin(\phi)\cos(\theta))\mathbf{i} + (\sqrt{3}\sin(\phi)\sin(\theta))\mathbf{j} - (\sqrt{3}\cos(\phi))\mathbf{i}$, $\frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$, $0 \le \theta \le 2\pi$

$$\odot$$
 c. $\vec{\mathbf{r}}(\phi, \theta) = (\sqrt{3}\sin(\phi)\cos(\theta))\mathbf{i} - (\sqrt{3}\sin(\phi)\sin(\theta))\mathbf{j} - (\sqrt{3}\cos(\phi))\mathbf{i}$, $\frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$, $0 \le \theta \le 2\pi$

O d.
$$\vec{\mathbf{r}}(\phi,\theta) = (\sqrt{3}\sin(\phi)\cos(\theta))\mathbf{i} - (\sqrt{3}\sin(\phi)\sin(\theta))\mathbf{j} + (\sqrt{3}\cos(\phi))\mathbf{i}$$
, $\frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$, $0 \le \theta \le \pi$

$$egin{aligned} \odot & ext{e. } \vec{\mathbf{r}}(\phi, heta) = (\sqrt{3}\sin(\phi)\cos(heta))\mathbf{i} - (\sqrt{3}\sin(\phi)\sin(heta))\mathbf{j} + (\sqrt{3}\cos(\phi))\mathbf{i} \\ & frac{\pi}{3} \leq \phi \leq frac{2\pi}{3} \ , 0 \leq heta \leq 2\pi \end{aligned}$$

Sua resposta está correta.

SOLUÇÃO:

- Em coordenadas esférica:

$$x = \rho \sin(\phi) \cos(\theta)$$

$$y = \rho \sin(\phi) \sin(\theta)$$

- Sabendo que

$$ho=\sqrt{x^2+y^2+z^2}$$

- Então,

$$ho^2=3$$

$$=\sqrt{3}$$

- Logo,

$$z = \sqrt{3}\cos(\phi)$$

- Para a esfera.

$$z=rac{\sqrt{3}}{2}=\sqrt{3}\cos(\phi)$$

- Fazendo a manipulação de valores, teremos:

$$\phi = \frac{\pi}{3}$$

- Fazendo com o outro z, teremos

$$z = -\frac{\sqrt{3}}{2}$$

$$z=-rac{\sqrt{3}}{2}=\sqrt{3}\cos(\phi)$$

- Fazendo a manipulação de valores, teremos:

$$\phi = \frac{2\pi}{3}$$

- Assim, a parametrização para a superfície dada é:

 $ec{\mathbf{r}}(\phi, heta) = (\sqrt{3}\sin(\phi)\cos(heta))\mathbf{i} + (\sqrt{3}\sin(\phi)\sin(heta))\mathbf{j} + (\sqrt{3}\cos(\phi))\mathbf{i}$, $\frac{\pi}{3} \leq \phi \leq \frac{2\pi}{3}$, $0 \leq \theta \leq 2\pi$

A resposta correta é:

$$\vec{\mathbf{r}}(\phi, \theta) = (\sqrt{3}\sin(\phi)\cos(\theta))\mathbf{i} + (\sqrt{3}\sin(\phi)\sin(\theta))\mathbf{j} + (\sqrt{3}\cos(\phi))\mathbf{i}$$
, $\frac{\pi}{3} \leq \phi \leq \frac{2\pi}{3}$, $0 \leq \theta \leq 2\pi$

.

Questão **3**

Correto

Atingiu 2,00 de 2,00 Qual o plano tangente ao cilindro circular $\vec{\mathbf{r}}(\theta,z)=(3\sin\,2\theta)\mathbf{i}+(6\sin^2\,\theta)\mathbf{j}+z\mathbf{k}$, onde $0\leq\theta\leq\pi$, no ponto $P_0(\frac{3\sqrt{3}}{2},\frac{9}{2},0)$ que corresponde a $(\theta,z)=(\frac{\pi}{3},0)$?

Escolha uma:

$$\bigcirc$$
 a. $\sqrt{3}x+y=3$

$$\bigcirc$$
 b. $-\sqrt{3}x+y=9$

$$\odot$$
 c. $\sqrt{3}x+y=9$

√

$$\bigcirc$$
 d. $\sqrt{3}x-y=3$

$$\bigcirc$$
 e. $-\sqrt{3}x - y = 3$

Sua resposta está correta.

Parametrização: $\vec{\mathbf{r}}(\theta,z)=(3\,\sin\,2\theta)\mathbf{i}+(6\,\sin^2\,\theta)\mathbf{j}+z\mathbf{k}$ em $P_0=(rac{3\sqrt{3}}{2},rac{9}{2},0)\Rightarrow 0=rac{\pi}{3}$ e z=0

Então:

 $\vec{\mathbf{r}}_{ heta} = (6 \cos 2 heta)\mathbf{i} + (12 \sin heta \cos heta)\mathbf{j}$

$$=-3\mathbf{i}+3\sqrt{3}\mathbf{j}$$
 e $\mathbf{ec{r}}_{z}=\mathbf{k}$ em P_{0}

$$\Rightarrow ec{\mathbf{r}}_{ heta} imes ec{\mathbf{r}}_z = egin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ -3 & 3\sqrt{3} & 0 \ 0 & 0 & 1 \end{bmatrix} = 3\sqrt{3}\mathbf{i} + 3\mathbf{j}.$$

O plano tangente é:

$$(3\sqrt{3}i + 3\mathbf{j}) \cdot \left[\left(x - \frac{3\sqrt{3}}{2} \right) \mathbf{i} + \left(y - \frac{9}{2} \right) \mathbf{j} + (z - 0) \mathbf{k} \right] = 0$$

$$\Rightarrow \sqrt{3}x + y = 9.$$

A resposta correta é: $\sqrt{3}x+y=9$

.

Correto

Atingiu 2,00 de 2,00 Qual o fluxo $\iint\limits_{S}ec{f F}\cdotec{f n}d\sigma$ do campo $ec{f F}=z{f k}$ através da porção da esfera

 $x^2+y^2+z^2=a^2$ no primeiro octante no sentido oposto à origem?

Escolha uma:

- \bigcirc a. $\frac{\pi a^2}{6}$
- \bigcirc b. $\frac{\pi a^3}{6}$
 - **4**
- \bigcirc C. $\frac{\pi a^2}{3}$
- \bigcirc d. $\frac{\pi a^4}{5}$
- \circ e. $\frac{\pi a^4}{4}$

Sua resposta está correta.

Respostas:

Vamos iniciar fazendo a parametrização para obtermos o vetor $\vec{\mathbf{r}}(\phi,\theta)$:

 $\vec{\mathbf{r}}(\phi, \theta) = (a \sin \phi \cos \theta) \mathbf{i} + (a \sin \phi \sin \theta) + (a \cos \phi) \mathbf{k}.$

Utilizando coordenadas esféricas:

$$\rho = a \in a \geq 0$$
.

Para o primeiro octante, temos que ϕ e θ estão situados entre:

$$0 \le \phi \le \frac{\pi}{2}$$
 e $0 \le \theta \le \frac{\pi}{2}$.

Vamos derivar em relação a ϕ para obtermos o vetor $ec{\mathbf{r}}_{\phi}$, logo:

$$ec{\mathbf{r}}_\phi = (a\cos\phi\cos heta)\mathbf{i} + (a\cos\phi\sin heta)\mathbf{j} - (a\sin\phi)\mathbf{k}$$
 .

A seguir, vamos derivar em relação a θ para obtermos o vetor \vec{r}_{θ} , como foi feito na etapa anterior.

$$ec{\mathbf{r}}_{ heta} = (-a\sin\phi\sin heta)\mathbf{i} + (a\sin\phi\cos heta)\mathbf{j}$$
.

Agora vamos fazer o produto vetorial entre os vetores \vec{r}_ϕ e \vec{r}_θ que encontramos acima, logo:

$$ec{\mathbf{r}}_{\phi} imes ec{\mathbf{r}}_{ heta} = egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a\cos\phi\cos heta & a\cos\phi\sin heta & -a\sin\phi \ -a\sin\phi\sin heta & a\sin\phi\cos heta & 0 \end{array}$$

$$=(a^2\sin^2\phi\cos heta)\mathbf{i}+(a^2\sin^2\phi\sin heta)\mathbf{j}+(a^2\sin\phi\cos\phi)\mathbf{k}$$
 .

Feito isso, podemos calcular $\vec{\mathbf{F}}\cdot\vec{\mathbf{n}}d\sigma$.

Sendo,
$$\vec{\mathbf{n}} = rac{\mathbf{r}_{\phi} imes \mathbf{r}_{\theta}}{\|\mathbf{r}_{\phi} imes \mathbf{r}_{\theta}\|}$$
, temos: $\vec{\mathbf{F}} \cdot rac{\mathbf{r}_{\phi} imes \mathbf{r}_{\theta}}{\|\mathbf{r}_{\phi} imes \mathbf{r}_{\theta}\|} \|\mathbf{r}_{\phi} imes \mathbf{r}_{\theta}\| \ d\theta d\phi$.

Substituindo os valores na equação, obtemos: $a^3\cos^2\phi\sin\phi d\theta d\phi$.

Já que a questão nos dá $ec{\mathbf{F}}=z\mathbf{k}$, temos que: $(a\cos\phi)\mathbf{k}$.

O fluxo de um campo vetorial tridimensional \vec{F} através de uma superfície orientada S na direção de \vec{n} é dado por:

$$\iint\limits_{S} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} d\sigma.$$

Para concluir, vamos colocar os valores encontrados na seguinte integral dupla:

$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} a^3 \cos^2 \phi \sin \phi d\theta d\phi.$$

Que tem como resultado a parametrização: $= rac{\pi a^3}{6}$.

A resposta correta é:
$$\frac{\pi a^3}{6}$$

.

Correto

Atingiu 2,00 de 2,00 Integre G(x,y,z)=xyz sobre a superfície triangular com vértices (1,0,0), (0,2,0) e (0,1,1).

Escolha uma:

- \bigcirc a. $\frac{7}{5\sqrt{6}}$
- \bigcirc b. $\frac{2}{\sqrt{6}}$
- \bigcirc c. $\frac{7}{3\sqrt{6}}$
- \bigcirc d. $\frac{1}{5\sqrt{6}}$

√

 \bigcirc e. $\frac{5}{\sqrt{6}}$

Sua resposta está correta.

Solução:

Para uma superfície S fornecida implicitamente por F(x,y,z)=c, onde F é uma função continuamente derivável, com S acima de sua região fechada e limitada R no plano coordenado abaixo dela, a integral de superfície da função contínua G sobre S é fornecida pela integral dupla sobre R:

$$\iint_{S}G\left(x,y,z
ight) d\sigma =\iint_{R}G\left(x,y,z
ight) rac{\leftert
abla F
ightert }{\leftert
abla F\cdot ec{\mathbf{p}}
ightert }\,\,\,dA\,dA$$

onde $ec{\mathbf{p}}$ é um vetor unitário normal a R e $abla F \cdot ec{\mathbf{p}}
eq 0$

Assim, temos:

$$F\left(x,y,z
ight) =2x+y+z=2$$
 , $p=k$

E calculando o gradiente de F, temos:

$$abla F=2i+j+k$$
 , onde $|
abla F|=\sqrt{2^2+1^2+1^2}=\sqrt{6}$

е

$$|
abla F \cdot p| = 1$$
, assim como $d\sigma = rac{|
abla F|}{|
abla F \cdot p|} dA = rac{\sqrt{6}}{1} = \sqrt{6} dy dx$.

Assim, substituindo os valores na integral mostrada anteriormente e calculando esta, obtemos:

$$\Rightarrow \iint\limits_{S} G d\sigma = \int_{0}^{1} \int_{1-x}^{2-2x} \ xy \left(2-2x-y
ight) \sqrt{6} dy dx = \sqrt{6} \int_{0}^{1} \int_{1-x}^{2-2x} \left(2xy-2x^{2}y-xy^{2}
ight) dy dx \ = \sqrt{6} \int_{0}^{1} \left(rac{2}{3}x-2x^{2}+2x^{3}-rac{2}{3}x^{4}
ight) dx = \sqrt{6} \left(rac{1}{3}-rac{2}{3}+rac{1}{2}-rac{2}{15}
ight) = \sqrt{6} rac{1}{30} = rac{1}{5\sqrt{6}}$$

A resposta correta é: $\frac{1}{5\sqrt{6}}$

.

O universal pelo regional.

Mais informações

UFC - Sobral

EE-Engenharia Elétrica

EC - Engenharia da Computação

PPGEEC- Programa de Pós-graduação em Engenharia Elétrica e Computação

Contato

Rua Coronel Estanislau Frota, s/n – CEP 62.010-560 – Sobral, Ceará

■ Telefone: (88) 3613-2603

∠ E-mail:

Social

