Bank Marketing Campaign Analysis

BA820 Team 4

Ziyan Pei, Youming Qiu, Xiaoyang Xu, Dongzhe Zhang (David), Peng Yuan

Agenda for Today

1 2 3 4 5

Dataset Overview

&

Business

Problems

Exploratory

Data

Analysis

Unsupervised

Machine

Learning

Supervised

Machine

Learning

Conclusions

&

Recommendations

Dataset Overview & Business Problems

Dataset Summary

- "Bank Marketing Dataset"
- We have **11,162 rows, 17 columns**
 - 10 categorical variables
 - 7 numerical variables
- There is **NO** missing data!
- We only have two data types in this dataset
 - factors and integers

Business Problems & Goals

- How can the financial institution have greater effectiveness for future marketing campaigns of term deposits?
- Our project goals:
 - Build clusters and models that will find a specific cluster of customers who will be most likely to open the term deposit.
 - Recommend the bank about which part of the customers should most likely be sent the message of the next marketing campaign.

Exploratory Data Analysis

Overview of

Categorical

Variables

Distributions of "deposit" in numbers and percentages

Deposit Subscriptions Based on Education Level & Marital Status

Deposit
Subscriptions
Based on Jobs

Deposit Subscriptions Based on Last Contact Duration vs. Age vs. Personal Loans

Some Assumptions from EDA process

- The decision of opening a term deposit might be related to these factors:
 - Education level (Secondary and tertiary)
 - Marital Status (Married)
 - Job Type (Management level, Students, Retired)
 - Age (Ranges from 25 to 50 years old)
 - People who spent less time on calls are <u>less likely</u> to open a term deposit
 - People who have **personal loans** are <u>less likely</u> to open a term deposit

Unsupervised Machine Learning

Data Cleaning Process

- Convert all categorical variables into dummy variables
- Rename some columns to a more standardized format
- **Delete** unnecessary columns
 - "month" and "day" => "pdays"
- Now we have 11,090 rows and27 variables

```
> glimpse(bank_clean)
Observations: 11,090
Variables: 27
$ age
                     <int> 59, 56, 41, 55, 54, 42, 56, 60, 37, 28,
$ balance
                     <int> 2343, 45, 1270, 2476, 184, 0, 830, 545,
$ duration
                     <int> 1042, 1467, 1389, 579, 673, 562, 1201,
$ campaign
                     <int> 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 4,
                     <int> -1, -1, -1, -1, -1, -1, -1, -1, -1
$ pdays
$ previous
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ job_blue_collar
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ job_entrepreneur
$ job_housemaid
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ job_management
                     <int> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
$ job_retired
                     <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
$ job_self_employed
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                     <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
$ job_services
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ job_student
                     <int> 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
$ job_technician
$ job_unemployed
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ marital_married
                     <int> 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1,
$ marital_single
                     <int> 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
$ education_secondary <int> 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,
$ education_tertiary
                     <int> 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,
$ education_unknown
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ default_yes
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ housing_yes
                     $ loan_yes
                     <int> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
$ contact_telephone
                     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$ contact_unknown
                     $ deposit_yes
                     <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
```

Dimensionality Reduction: PCA & EFA

Hierarchical Clustering

Cluster Characteristics

Supervised Machine Learning

Logistic Regression

	Est.	S.E.	z val.	р
(Intercept)	0.56	0.16	3.50	0.00
age	0.07	0.04	1.57	0.12
balance	0.06	0.03	2.06	0.04
duration	1.82	0.05	36.64	0.00
campaign	-0.40	0.04	-9.17	0.00
pdays	0.22	0.03	6.43	0.00
previous	0.24	0.04	6.14	0.00
job_blue_collar	-0.56	0.12	-4.82	0.00
job_entrepreneur	-0.57	0.20	-2.91	0.00
job_housemaid	-0.59	0.21	-2.89	0.00
job_management	-0.38	0.12	-3.26	0.00
job_retired _	0.21	0.16	1.31	0.19
job_self_employed	-0.53	0.18	-2.99	0.00
job_services	-0.50	0.14	-3.74	0.00
job_student	0.47	0.19	2.43	0.02
job_technician	-0.24	0.11	-2.18	0.03
job_unemployed	-0.13	0.19	-0.69	0.49
marital_married	0.01	0.10	0.08	0.94
marital_single	0.31	0.11	2.77	0.01
education_secondary	0.31	0.10	2.95	0.00
education_tertiary	0.62	0.12	5.03	0.00
education_unknown	0.35	0.17	2.06	0.04
default_yes	-0.27	0.25	-1.05	0.29
housing_yes	-0.88	0.06	-13.56	0.00
loan_yes	-0.73	0.09	-7.77	0.00
contact_telephone	-0.08	0.12	-0.67	0.50
contact_unknown	-1.34	0.09	-14.42	0.00

Continuous predictors are mean-centered and scaled by 1 s.d.

Lasso Regression

(Intercept)	-1.0225185862255
age	
balance	0.0000006825567
duration	0.0042975890944
campaign	-0.0860905747594
pdays	0.0016527179663
previous	0.0715021021798
job_blue_collar	-0.2291130619449
job_entrepreneur	•
job_housemaid	•
job_management	. 2700040407152
job_retired	0.2708840407153
job_self_employed	0 0240262012041
job_services	-0.0240362812941
job_student	0.3894146975155
job_technician	
job_unemployed	•
marital_married	0.1629271476710
marital_single education_secondary	
education_tertiary	0.1252117759733
education_unknown	0.123211//39/33
default_yes	•
housing_yes	-0.7252610490219
loan_yes	-0.4975236045817
contact_telephone	0.43/323004361/
contact_unknown	-1.1111908731681
COLLEGE C_GLINTIONII	T. TTTTOO, 0100T

Random Forest

Ntrees - 500

Boosting

Feature <chr></chr>	Gain <dbl></dbl>	Cover <dbl></dbl>	Frequency <dbl></dbl>
duration	0.4911812335	0.322859511	0.239474988
pdays	0.1220835553	0.132937802	0.108249408
contact_unknown	0.1009319300	0.052992731	0.023884211
balance	0.0753869197	0.140630183	0.192256893
age	0.0681678834	0.092486277	0.151037367
housing_yes	0.0440847417	0.029051951	0.035055858
campaign	0.0302851328	0.064903846	0.067882890
loan_yes	0.0140503916	0.022057848	0.017197733
job_blue_collar	0.0092682186	0.015865050	0.010153541
previous	0.0062205090	0.017441911	0.023719113
education_tertiary	0.0054996245	0.024802358	0.018298388
marital_single	0.0051730615	0.004694015	0.012905179
marital_married	0.0048564684	0.005602240	0.018408453
contact_telephone	0.0043780592	0.011136414	0.014280997
education_secondary	0.0039976699	0.006118441	0.015244070
job_services	0.0025589436	0.005144349	0.007952232
job_technician	0.0019661613	0.001545940	0.006301249
job_student	0.0018686572	0.004822256	0.004870398
job_self_employed	0.0017088203	0.011226249	0.006879093
education_unknown	0.0014385862	0.003337817	0.004237521
job_management	0.0012926053	0.002141573	0.006053602
job_housemaid	0.0012208947	0.012847137	0.006301249
default_yes	0.0007354041	0.004969440	0.002669088
job_unemployed	0.0006335633	0.000819868	0.002228826
job_entrepreneur	0.0006268113	0.005021223	0.002091244
job_retired	0.0003841535	0.004543569	0.002366408

Learning rate 0.01

Support Vector Machines & Naive Bayes Model

Models Comparison

- Model Measurement:
 - Tuning to optimal parameters
 - **AUC** (The area under the curve)

- Performance:
 - Best model: Boosting 0.8915

Trade-off between Precision and Recall

As precision gets higher, recall gets lower;

- Here we want to cover most "actual" customers with affordable extra efforts.
 - Threshold: 0.447
 - Cover 86.3% term deposit customers
 with a 23.5% false-positive rate.

Conclusions & Recommendations

Conclusions

- Based on our models, the following variables are the most important factors for the decision of opening a term deposit:
 - Last Contact Duration
 - Balance
 - Age
 - Education Level
 - Number of Previous Contacts

Recommendations

- (\$)
- Use our classification model to contact clients with "deposit" label.
- Keep in contact with clients (especially Cluster 1).
- Take clients' balance, age and job information into consideration for future marketing campaign.
- Customer-relationship managers could try to talk about term deposit opportunities when clients with these characteristics come into bank

THANKS!

Any questions?

