VigenereSolver-ng~ How it works

VigenereSolver-ng

VigenereSolver-ng is an advanced toolkit for analyzing and breaking Vigenère ciphers, designed for cryptanalysis research and educational purposes. It combines classical statistical attacks with modern, language-model-based techniques to robustly estimate key length and recover the key, even on challenging ciphertexts.

Table of Contents

- VigenereSolver-ng
 - Table of Contents
 - Key features and novel techniques
 - How to use
 - Solve ciphertexts (the usual thing)
 - · Generate test data
 - Encrypt a plaintext file
 - Practical tuning knobs
 - Troubleshooting quick refs
 - 1) Model of the cipher and the text
 - 2) Coincidence, the periodogram, and key-length detection
 - 2.1 Coincidence probability at lag ell
 - 2.2 Windowed periodogram and variance reduction
 - 2.3 Peakiness and stability objective for wt
 - 3) Friedman estimate and candidate key lengths
 - 4) Initial key by coset correlation (per m)
 - 5) Language model and the decryption objective

- 5.1 Interpolated Kneser–Ney (KN) probabilities
- 5.2 Per-character negative log-likelihood (NLL)
- 5.3 Legacy fitness and blended score
- 6) Coordinate-wise optimization over the key
 - 6.1 Decomposition of local influence
 - 6.2 Monotone descent and convergence
- 7) Effectiveness guarantees
 - 7.1 Consistency of key-length detection
 - 7.2 Correctness of coset shifts (initial key)
 - 7.3 Optimality of the LM objective at the true key
 - 7.4 Convergence of the key optimizer
- 8) Auto-tuned window/step with LM tie-break
- 9) Readability segmentation (post-processing)
- 10) Summary of guarantees

Key features and novel techniques

- Language Model Integration: Uses high-order n-gram language models (up to 5-gram) for scoring candidate plaintexts and keys, providing much greater accuracy than traditional frequency analysis.
- Windowed Coincidence Periodogram: Introduces a windowed version of the coincidence periodogram, which computes coincidence rates over sliding windows to localize and stabilize key-length signals, especially on heterogeneous or short texts.
- Key-Length Voting and Non-Maximum Suppression: Implements a voting mechanism across windows and applies non-maximum suppression to robustly select likely key lengths, reducing false positives from harmonics and noise.
- Jensen-Shannon Divergence Scoring: Uses JS divergence between observed and English letter distributions to weight key character votes, improving key recovery in the presence of uneven letter frequencies.
- Kasiski Examination with Factor Analysis: Augments classical Kasiski examination by aggregating factors of repeatedsequence spacings, then ranks candidate key lengths by their frequency as divisors.

 Plaintext Generator for Testing: Includes a generator for English-like plaintexts using real language data, enabling realistic benchmarking of attacks.

These innovations make VigenereSolver-ng more effective and reliable than standard Vigenère solvers, especially on real-world ciphertexts with non-uniform content or formatting.

How to use

Requires Python 3.11+ and the project's requirements.txt.

Solve ciphertexts (the usual thing)

1. Install & activate env

```
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
```

2. Put your ciphertext in a file using triple quotes (you can have multiple blocks):

```
PXWZB ... ZQL
"""

ANOTHER CIPHERTEXT BLOCK ...
```

3. Run the solver

```
python SolverSite/solver.py --input ciphertexts/tests.txt --passes 6 --decoder lm
```

- The solver auto-tunes the window/step, tests several key lengths in parallel, and prints the best key with IoC and score.
- Output includes a readable plaintext (with optional word segmentation when the original had no spaces).

Speed tip: Add --workers <N> to control parallelism across candidate key lengths (defaults to CPU count).

Determinism tip: For reproducible generation experiments, use --seed <int>; solving itself is mostly deterministic aside from small randomization in sweeps.

Generate test data

Create realistic test ciphertexts (plus sidecar keys JSON):

```
python SolverSite/solver.py --generate 5 --words 200 --out generated_ciphertexts.txt
# → ciphertexts in triple-quoted blocks
# → keys in generated_ciphertexts.txt.keys.json
```

Tweak key-length range with --min-key / --max-key.

Encrypt a plaintext file

Turn a plaintext into Vigenère ciphertext while preserving original layout (spacing, punctuation, case):

```
python SolverSite/solver.py --encrypt-file raw_text/kafka.txt --key SECRET --out ciphertexts/kafka_ct.txt # If --key is omitted, a random key length [3..50] is chosen.
```

Practical tuning knobs

- Decoder: --decoder lm (default, KN 3-5-gram LM) or --decoder legacy (x²/JSD/ngram blend).
- Optimization budget: --passes 4..8 more passes = more key refinement (diminishing returns beyond ~6–8).
- Auto window/step: on by default; to fix them:

```
--no-auto-ws --window 600 --step 150
```

- Annealing (escape plateaus): --anneal 0.05 (small positive) occasionally accepts worse local moves to avoid shallow minima.
- LM blend weight: --lm-weight 0.65 mixes LM NLL with legacy fitness for final ranking.
- Segmentation off: if you prefer raw, unsegmented output: --no-seg.

Troubleshooting quick refs

- "No ciphertext found" → Ensure blocks are wrapped in """ ... """ or pass raw text as a single block.
- Slow on huge inputs → Lower --passes, use --workers, or temporarily --no-auto-ws.
- Weird characters → Save files as UTF-8. Only A–Z are analyzed; other chars are preserved in-place when formatting.

1) Model of the cipher and the text

Let the plaintext be a sequence of random variables P_1, P_2, \dots, P_N taking values in $\mathcal{A} = \{0, \dots, 25\}$ (A=0,...,Z=25). A fixed Vigenère key $K = (K_0, \dots, K_{m-1}) \in \mathcal{A}^m$ produces ciphertext

$$C_i \equiv P_i + K_{i \bmod m} \pmod{26} \qquad (1 \leq i \leq N).$$

We assume the letter process $\{P_i\}$ is stationary and ergodic with marginal $p(a) = \mathbb{P}\{P_i = a\}$ and higher-order statistics captured by an n-gram distribution (language model).

All non-alphabetic characters of the original message are carried through as fixed tokens; only the projected A–Z stream is transformed algebraically. This projection/reinjection step is a bijection between \mathcal{A}^N and the subset of strings with the same tokenization metadata, hence layout is exactly preserved.

2) Coincidence, the periodogram, and key-length detection

2.1 Coincidence probability at lag ℓ

Define the coincidence rate at lag ℓ :

$$R_\ell riangleq rac{1}{N-\ell} \sum_{i=1}^{N-\ell} \mathbf{1}\{C_i = C_{i+\ell}\}.$$

Under (1),

$$C_i = C_{i+\ell} \iff P_i + K_{i \bmod m} \equiv P_{i+\ell} + K_{(i+\ell) \bmod m} \pmod{26}.$$

• If $\ell \equiv 0 \pmod{m}$, the key offsets cancel, so

$$\mathbb{P}\{C_i = C_{i+\ell}\} = \mathbb{P}\{P_i = P_{i+\ell}\}.$$

Under an i.i.d. approximation $P_i \sim p$, the RHS equals the index of coincidence

$$I_c(p) riangleq \sum_{a \in A} p(a)^2.$$

For English, $I_c(p) \approx 0.066$.

• If $\ell \not\equiv 0 \pmod m$, let $d \equiv K_{i \bmod m} - K_{(i+\ell) \bmod m} \not\equiv 0$. Then

$$C_i = C_{i+\ell} \iff P_{i+\ell} \equiv P_i + d \ (\mathrm{mod} \ 26),$$

so (under i.i.d.)

$$\mathbb{P}\{C_i=C_{i+\ell}\}=\sum_a p(a)\,p(a+d)\ riangleq\ S_d(p).$$

For typical language p, $S_d(p)$ is close to the random baseline $1/26 \approx 0.0385$ and strictly less than $I_c(p)$ unless p is uniform or pathologically symmetric.

Separation. For every ℓ with $\ell \equiv 0 \pmod{m}$,

$$\mathbb{E}[R_\ell] = I_c(p), \qquad ext{whereas for $\ell
ot\equiv 0 \ (ext{mod } m), } \quad \mathbb{E}[R_\ell] = S_d(p) < I_c(p).$$

By the strong law of large numbers (SLLN), $R_\ell \to \mathbb{E}[R_\ell]$ almost surely as $N \to \infty$. Hence the periodogram $\ell \mapsto R_\ell$ exhibits peaks at $\ell \in m\mathbb{Z}_+$.

2.2 Windowed periodogram and variance reduction

Let $\{(s_j, s_j + w - 1)\}$ be sliding windows of length w and stride t. Define the windowed coincidence:

$$R_\ell^{(j)} riangleq rac{1}{w-\ell} \sum_{i=s_j}^{s_j+w-\ell-1} \mathbf{1}\{C_i = C_{i+\ell}\}.$$

The window-averaged periodogram is

$$\overline{R}_{\ell} riangleq rac{1}{J} \sum_{j=1}^{J} R_{\ell}^{(j)}.$$

Assuming stationarity within windows, $\mathbb{E}[\overline{R}_\ell] = \mathbb{E}[R_\ell]$, and

$$\operatorname{Var}(\overline{R}_\ell) = rac{1}{J^2} \sum_{j=1}^J \operatorname{Var}ig(R_\ell^{(j)}ig) + rac{2}{J^2} \sum_{j < k} \operatorname{Cov}ig(R_\ell^{(j)}, R_\ell^{(k)}ig).$$

For modest overlap (stride t not too small), the covariance terms are bounded and $\operatorname{Var}(\overline{R}_{\ell}) = O(1/J)$. Thus window averaging lowers estimator variance and stabilizes peak detection under topic/style drift.

2.3 Peakiness and stability objective for w, t

Let $\Phi(\overline{R})$ denote a peakiness statistic, e.g.

$$\Phi(\overline{R}) riangleq rac{rac{1}{k} \sum_{r=1}^{k} \overline{R}_{\ell_{(r)}} - \operatorname{median}_{\ell} \overline{R}_{\ell}}{\sqrt{\operatorname{Var}_{\ell}(\overline{R}_{\ell})} + arepsilon},$$

where $\ell_{(1)}, \ldots, \ell_{(k)}$ are the top k lags.

Partition the ciphertext into thirds and compute the top-k lag sets T_1, T_2, T_3 . Define stability

$$\Psi riangleq rac{1}{3} \sum_{1 \leq u < v \leq 3} rac{|T_u \cap T_v|}{|T_u \cup T_v|}.$$

Add a weak prior Υ encouraging $\arg\max_{\ell}\overline{R}_{\ell}$ to be near a multiple of the Friedman guess \tilde{m} , e.g.

$$\Upsilon riangleq rac{1}{1+\min_{k \in \mathbb{N}} |\hat{\ell}-k ilde{m}|}, \qquad \hat{\ell} \in rg \max_{\ell} \overline{R}_{\ell},$$

and a utility term U penalizing degenerate windows (too short/long for N). The tuning objective is

$$J(w,t) riangleq lpha \, \Phi(\overline{R}) + eta \, \Psi + \gamma \, \Upsilon + \eta \, U, \qquad lpha, eta, \gamma, \eta > 0.$$

Maximizing J(w,t) increases the signal-to-noise of the key-period peaks and their reproducibility across segments. A tie-break among top (w,t) uses the language-model score defined in §4 to prefer pairs that make subsequent decryption "look" more like the target language.

3) Friedman estimate and candidate key lengths

Let $I_c(obs)$ be the observed IoC of the cleaned ciphertext and let $I_r = 1/26$ be the random baseline. With $I_e = I_c(p)$ the English IoC, the (classical) Friedman estimate is

$$\widehat{m}_{ ext{Friedman}} \, pprox \, rac{I_e - I_r}{I_c (ext{obs}) - I_r}.$$

Rounding and taking the neighborhood $\{\widehat{m}_F - 2, \dots, \widehat{m}_F + 2\}$, then uniting with the top lags of \overline{R}_ℓ and the small-factor set from Kasiski's test yields a finite candidate set $\mathcal{M} \subset \{2, \dots, 50\}$.

By §2.1–2.2 and LLN, if N is large enough, the true m appears among the top lags with probability $\to 1$, and thus in \mathcal{M} .

4) Initial key by coset correlation (per m)

Fix $m \in \mathcal{M}$. Split the cleaned ciphertext into cosets

$$C^{(r)} riangleq (C_r, C_{r+m}, C_{r+2m}, \ldots), \qquad r=0,\ldots,m-1.$$

Within a sliding window W of length w, let $\hat{f}^{(r)} \in \Delta^{25}$ be the empirical histogram of $C^{(r)}$ letters (as \mathcal{A} values). For a Caesar shift $s \in \mathcal{A}$, define the shifted histogram $\hat{f}^{(r)}_{-s}$ by $(\hat{f}^{(r)}_{-s})_a = \hat{f}^{(r)}_{a+s}$. With a reference English distribution $q \in \Delta^{25}$, consider

$$s^\star \in rg \max_{s \in \mathcal{A}} \ \langle \hat{f}_{-s}^{(r)}, \, q
angle \ = \ rg \min_{s \in \mathcal{A}} \ H(\hat{f}_{-s}^{(r)}, \, q),$$

where $H(p,q) = -\sum_a p(a) \log q(a)$ is cross-entropy.

Claim (MLE for a Caesar coset). If the plaintext letters in coset r are i.i.d. $\sim q$, then s^* maximizes the log-likelihood of the observed coset under a Caesar model.

Proof. The log-likelihood for shift s is $\sum_a n_a^{(r)} \log q(a-s)$, which equals $n \langle \hat{f}_{-s}^{(r)}, \log q \rangle$. Maximizing this is equivalent to minimizing $H(\hat{f}_{-s}^{(r)}, q)$. \square

Windows whose letter distribution deviates from English are down-weighted using a divergence D (here Jensen–Shannon): with weights $w_W \propto 1/D(\hat{f}_W,q)$, the final per-coset shift is the weighted mode over windows. This reduces variance by emphasizing windows closer to the stationary regime.

5) Language model and the decryption objective

5.1 Interpolated Kneser-Ney (KN) probabilities

Let $c_n(\cdot)$ be counts for n-grams over \mathcal{A} , and $\operatorname{cont}_n(h)$ the number of unique continuations of a context h (order n-1). With absolute discount $D \in (0,1)$, the KN conditional probability for a next symbol w given context h of length n-1 is

$$p_{ ext{KN}}(w\mid h) = rac{\max\{c_n(hw) - D, 0\}}{c_{n-1}(h\cdot)} + \ \lambda(h)\, p_{ ext{KN}}(w\mid h'), \qquad \lambda(h) riangleq rac{D\, ext{cont}_n(h)}{c_{n-1}(h\cdot)},$$

with backoff to h' the suffix of h. For the base case n=1, the continuation probability can be taken as

$$p_{ ext{cont}}(w) riangleq rac{N_{1+}(*,w)}{N_{1+}(*,*)}, \qquad N_{1+}(*,w) = ig|\{\, x \in \mathcal{A}: \ c_2(xw) > 0\,\}ig|, \quad N_{1+}(*,*) = ig|\{\, (x,y) \in \mathcal{A}^{\,2}: \ c_2(xy) > 0\,\}ig|.$$

5.2 Per-character negative log-likelihood (NLL)

For a cleaned candidate plaintext $x_1^N \in \mathcal{A}^N$ and maximum order $n_{\max} = 5$,

$$\mathcal{L}(x_1^N) riangleq rac{1}{N} \sum_{i=1}^N -\log p_{ ext{KN}}ig(x_i \,ig|\, x_{i-k}^{i-1}ig), \qquad k = \min\{n_{ ext{max}}-1, \; i-1\}.$$

Given a key $K\in \mathcal{A}^m$, define the decryption mapping $\mathrm{Dec}_K(C)_i\equiv C_i-K_{i\bmod m}\pmod {26}$ and the LM objective

$$F(K) \triangleq \mathcal{L}(\mathrm{Dec}_K(C)).$$

5.3 Legacy fitness and blended score

Let $fit(x_1^N)$ be a convex combination of reduced χ^2 , Jensen–Shannon divergence, and n-gram surprisals (3–4 grams) on x_1^N . The selection score is

$$S(K) \triangleq w F(K) + (1-w) \operatorname{fit}(\operatorname{Dec}_K(C)), \qquad w \in (0,1].$$

6) Coordinate-wise optimization over the key

6.1 Decomposition of local influence

Let m = |K|. For a residue class (coset) $r \in \{0, \dots, m-1\}$, write $\mathcal{I}_r = \{i : i \equiv r \pmod m\}$. Consider modifying only K_r to $s \in \mathcal{A}$. Let $x^{(s)}$ be the plaintext after this modification. For a fixed n_{\max} , the change in F obeys

$$F\!ig(K_{[r \leftarrow s]}ig) - F(K) = rac{1}{N} \sum_{i \in \mathcal{N}_r} \left[-\log p_{ ext{KN}}ig(x_i^{(s)} \mid x_{i-k}^{(s)}^{i-1}ig) + \log p_{ ext{KN}}ig(x_i \mid x_{i-k}^{i-1}ig)
ight],$$

where \mathcal{N}_r is the set of indices whose n_{\max} -gram window touches any position in \mathcal{I}_r . Thus only those local windows need to be rescored when optimizing K_r .

6.2 Monotone descent and convergence

Define one coordinate update at residue r by

$$K_r \leftarrow rg \min_{s \in \mathcal{A}} Fig(K_{[r \leftarrow s]}ig).$$

(This is the anneal=0 case.) Since the minimizer is selected exactly over a finite set,

$$F(K^{(t+1)}) \le F(K^{(t)})$$
 at every step,

hence $\{F(K^{(t)})\}$ is a bounded, monotonically non-increasing sequence and converges. Because there are only 26^m keys, and strict decreases can occur only finitely many times, the process terminates at a **coordinate-wise minimum** K^* (a fixed point of all residue-wise updates).

When a small simulated annealing acceptance is used, monotonicity is relaxed to escape plateaus; nonetheless the state space is finite, and with a standard cooling schedule the process converges almost surely to a local minimum.

7) Effectiveness guarantees

We state assumptions explicitly:

- A1 (Language). The true plaintext P_1^N is generated by a stationary ergodic process whose n-gram statistics are well-approximated by the KN model used to score text.
- A2 (Key). The Vigenère key $K \in \mathcal{A}^m$ is fixed and unknown; m is bounded (e.g., ≤ 50).
- A3 (Non-degenerate alphabetics). The cleaned text length $N \to \infty$ and letter frequency vector is non-uniform (true for English).

7.1 Consistency of key-length detection

Theorem 1 (Periodogram consistency). Under A1–A3, the set of top lags of \overline{R}_ℓ contains m and its multiples with probability $\to 1$ as $N \to \infty$. Consequently, the candidate pool $\mathcal M$ includes m with probability $\to 1$.

Sketch. §2.1 showed $\mathbb{E}[\overline{R}_\ell] = I_c(p)$ for $\ell \in m\mathbb{Z}_+$ and $S_d(p)$ otherwise with strict separation. By SLLN, $\overline{R}_\ell \to \mathbb{E}[\overline{R}_\ell]$ uniformly over a finite set of lags. Therefore the top lags converge to the maximizers, which include multiples of m. \square

7.2 Correctness of coset shifts (initial key)

Proposition 2 (Coset MLE). Within a coset r, the shift

$$\hat{s}_r \in rg \min_s extit{H}ig(\hat{f}_{-s}^{(r)}, qig)$$

is the maximum-likelihood estimate of the Caesar offset assuming the coset plaintext is i.i.d. $\sim q$.

Proof. Already given in §4. □

Variance reduction. If $D(\hat{f}_W, q)$ is a proper divergence and $\mathbb{E}[D(\hat{f}_W, q)]$ increases with departure from stationarity, then weighting windows by $w_W \propto 1/D(\hat{f}_W, q)$ yields a minimum variance unbiased estimator among the class of linear unbiased combinations of $\hat{s}_{r,W}$ under a heteroskedastic model of window quality. (This follows from generalized least squares: inverse-variance weights are optimal; here D is used as a monotone proxy for variance.)

7.3 Optimality of the LM objective at the true key

Let P denote the distribution of true plaintext strings, Q_K the distribution induced by decrypting with key K (wrong alignment mixes cosets and introduces Caesar-shifted contexts). Let M denote the KN model used for scoring. The per-character cross-

entropy under M is

$$H(P;M) riangleq \lim_{N o \infty} \mathbb{E}ig[\mathcal{L}(P_1^N)ig], \qquad H(Q_K;M) riangleq \lim_{N o \infty} \mathbb{E}ig[\mathcal{L}(ilde{P}_1^N)ig],$$

where $\tilde{P} = \operatorname{Dec}_K(C)$.

Theorem 3 (Asymptotic separation). If M=P (oracle LM), then for every $K \neq K_{\rm true}$,

$$H(Q_K;M)-H(P;M)=\mathrm{KL}(P\|Q_K)~>~0.$$

Proof. By the information inequality,

$$\mathbb{E}_P[-\log P(X)] \leq \mathbb{E}_P[-\log Q_K(X)],$$

with equality iff $Q_K = P$. But $Q_K = P$ only when $K = K_{\text{true}}$ up to inconsequential Caesar offsets that are already absorbed in K; otherwise different cosets and contexts are mismatched and the equality fails. \square

Corollary 4 (Consistency with approximate LM). If M is a consistent estimator of P in the sense that $H(P;M) \to H(P;P)$ and, uniformly over wrong keys K, $H(Q_K;M) \to H(Q_K;P)$, then there exists $\delta > 0$ such that for all large N,

$$\mathbb{E}ig[F(K_{ ext{true}})ig] + o(1) \ \le \ \mathbb{E}ig[F(K)ig] - \delta \quad ext{for all } K
eq K_{ ext{true}}.$$

Hence the LM part of the selection prefers the true key with probability $\rightarrow 1$.

Blended score. Because $S(K) = wF(K) + (1-w)\mathrm{fit}(\cdot)$ with w > 0, the separation provided by F dominates for large N, so the blended score also correctly ranks the true key with probability $\to 1$.

7.4 Convergence of the key optimizer

Proposition 5 (Finite convergence to a coordinate-wise minimum). The coordinate-wise minimization of F(K) over residues $r = 0, \dots, m-1$ with exact per-residue minimizers terminates in finitely many steps at a key K^* such that for each residue r,

$$K_r^\star \in rg \min_{s \in \mathcal{A}} Fig(K_{[r \leftarrow s]}^\starig).$$

Proof. Each successful update strictly decreases F by at least a positive amount (finite score space due to finite data and finite alphabet), and there are finitely many keys 26^m . Hence only finitely many strict decreases occur; the process halts when no per-

residue improvement exists. □

Locality correctness. The update uses exactly the set \mathcal{N}_r of windows affected by residue r (see §6.1). Therefore each residue update is an exact coordinate minimization of F, not a heuristic.

8) Auto-tuned window/step with LM tie-break

Given the objective J(w,t) from §2.3, select the top few (w,t) pairs by J. For each, take the best 1–2 candidate key lengths m by \overline{R}_{ℓ} , form initial keys (§4), decrypt, and measure -F(K) (i.e., LM likelihood). The final choice is

$$(w^\star, t^\star) \in rg\max_{(w, t) \in ext{beam}} \ \Big(lpha' \, J(w, t) + eta' \, \max_{m \in \mathcal{M}(w, t)} \max_{K \in \mathcal{K}_{ ext{init}}(m)} - F(K)\Big),$$

with $\alpha', \beta' > 0$. Under Theorem 3/Corollary 4, the LM tie-break favors (w, t) that sharpen the m proposals and produce plaintext closer to P, improving the probability that the downstream key optimization starts in the basin of attraction of K_{true} .

9) Readability segmentation (post-processing)

When the recovered clean plaintext x_1^N lacks spaces, a dictionary-rank cost $c(w) \propto \log \mathrm{rank}(w)$ and a length penalty $\lambda |w|$ define the segmentation objective

$$\min_{x_1^N=w_1\cdots w_T} \; \sum_{t=1}^T ig(c(w_t)+\lambda |w_t|ig),$$

solved by standard dynamic programming. This does not affect correctness; it only improves human readability.

10) Summary of guarantees

- Key length: \overline{R}_{ℓ} consistently peaks at multiples of m (§2), so $m \in \mathcal{M}$ w.h.p. for large N (Theorem 1).
- Initial key: per-coset Caesar shifts via cross-entropy minimization are MLEs (Proposition 2); divergence-weighted voting reduces variance.
- **Key optimization**: exact coordinate updates monotonically decrease *F* and converge to a coordinate-wise optimum (Proposition 5); only locally affected LM windows are rescored (§6.1).
- Selection: if the LM matches the plaintext process, the true decryption minimizes the expected NLL; any wrong key incurs a strictly larger cross-entropy (Theorem 3), and this separation persists (Corollary 4). With w > 0, the blended score inherits this separation.

Under these conditions, the pipeline is asymptotically effective: as $N \to \infty$, it recovers the correct key length with probability $\to 1$, and among candidate keys, the LM objective (and thus the blended score) is uniquely minimized at the true key.