

Learnable Histogram: Statistical Context Features for Deep Neural Networks

Zhe Wang, Hongsheng Li, Wanli Ouyang, Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong {zwang, hsli, wlouyang, xgwang}@ee.cuhk.edu.hk

♦ Motivation

- > Statistical context features are useful in classification problems, but currently can not be jointly optimized with the deep model.
- > We propose a learnable histogram layer which can be trained within a deep model in an end-to-end manner.

♦ Combining histogram features and deep models

> We designed two networks combined with the proposed histogram features for semantic segmentation and object detection, respectively.

(a) HistNet-SS: the proposed network for semantic segmentation.

(b) HistNet-OD: the proposed network for object detection.

♦ Learnable histogram layer

 \succ The bth bin of class k in the learnable histogram is modeled by a piecewise linear basis function:

$$\psi_{k,b}(x_k) = \max\{0, 1 - |x_k - \mu_{k,b}| \times w_{k,b}\}\$$

> The bin centers and widths can be updated by stochastic gradient descent:

> The proposed learnable histogram layer can be modeled by stacking existing CNN layers.

where $H_{k,b}^{\mathrm{I}}(c)$ and $H_{k,b}^{\mathrm{II}}(c)$ are kernels for Convolution I and II.

♦ Experiments

> Datasets

Semantic segmentation

Object detection PASCAL VOC 2007 detection

SIFTFlow

Stanford Background

PASCAL VOC 2012 segmentation

> Base models

> Our learnable histogram layer can be flexibly integrated into various network structures. The Base models are selected as follows:

Datasets	Base model
SIFTFlow	VGG-FCN [1]
Stanford Background	VGG-FCN [1]
PASCAL VOC 2012 segmentation	Deeplab [2]
PASCAL VOC 2007 detection	Faster-RCNN [3]

> Results

SIFTFlow and Stanford Background

Methods	Per-pixel	Per-class
Tighe et al. [32]	0.769	0.294
Liu et al. [25]	0.748	n/a
Farabet et al. [12]	0.785	0.296
Pinheiho et al. [18]	0.777	0.298
Sharma et al. [29]	0.796	0.336
Yang et al. [1]	0.798	0.487
Eigen et al. [31]	0.868	0.464
FCN [19]	0.851	0.517
FCN (our implement)	0.860	0.457
FCN+FC-CRF	0.865	0.468
HistNet-SS stage-1	0.876	0.505
HistNet-SS	0.879	0.5
HistNet-SS+FC-CRF	0.879	0.512
(a) SIETELO	rr dataget	

(a)	SIFTFlow	dataset
-----	----------	---------

Method	Per-pixel	Per-class
Gould et al. [2]	0.764	n/a
Tighe et al. [32]	0.775	n/a
Socher et al. [28]	0.781	n/a
Lempitzky et al. [33]	0.819	0.724
Farabet et al. [12]	0.814	0.76
Pinheiho et al. [18]	0.802	0.699
Sharma et al. [29]	0.823	0.791
FCN (our implement)	0.851	0.811
FCN+FC-CRF	0.862	0.82
FCN+MOPCNN [17]	0.863	0.811
HistNet-SS stage-1	0.871	0.838
HistNet-SS	0.871	0.837
HistNet-SS+FC-CRF	0.881	0.837
(1-) C4f1 11	1 _11	1 1

(b) Stanford background dataset

> PASCAL VOC 2012 segmentation

Ours achieved a mean IOU of 67.5% while the Base model is 64.2%.

PASCAL VOC 2007 detection

Methods	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	
RCNN [11]	73.4	77.0	63.4	45.4	44.6	75.1	78.1	79.8	40.5	73.7	
fast RCNN [36]	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	
faster RCNN [23]	69.1	78.3	68.9	55.7	49.8	77.6	79.7	85.0	51.0	76.1	
HistNet-OD stage-1	68	80.3	74.1	55.7	53.3	83.6	80.2	85.1	53.7	74.2	
HistNet-OD	67.6	80.3	74.1	55.6	53.2	83.4	80.2	85.1	53.6	74	
	•										
	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
RCNN [11]				mbike 73.1			sheep 66.8				
RCNN [11] fast RCNN [36]	62.2	79.4						67.2	70.4	71.1	66.0
	62.2 67.9	79.4 79.6	78.1	73.1 73.0	64.2 69.0	35.6 30.1	66.8	67.2 70.2	70.4 75.8	71.1 65.8	66.0 66.9
fast RCNN [36]	62.2 67.9 64.2	79.4 79.6 82.0	78.1 79.2	73.1 73.0 76.2	64.2 69.0	35.6 30.1	66.8 65.4	67.2 70.2 65.4	70.4 75.8 77.8	$71.1 \\ 65.8 \\ 66.1$	66.0 66.9 69.5

> Ablation study

- > Learnable histogram v.s. fix-bin histogram v.s. unlocked histogram.
- > Statistical context v.s. non-statistical context.

Methods	SIFT	Flow	Stanford	background	
Wiethods	per-pixel	per-class	per-pixel	per-class	(SIFTFlow/Stanford)
FCN baseline	0.860	0.450	0.851	0.811	0
FCN-fix-hist	0.872	0.481	0.860	0.829	$\sim 190,000 / 36,000$
FCN-free-all	0.870	0.489	0.862	0.824	$\sim 190,000 / 36,000$
FCN-fc7-global	0.870	0.462	-	_	$\sim 960,000 / 23,000$
FCN-score-global	0.873	0.480	0.863	0.825	$\sim 150,000 / 35,000$
R-HistNet-SS	0.880	0.486	0.872	0.845	$\sim 380,000 / 72,000$
HistNet-SS (ours)	0.879	0.5	0.871	0.837	$\sim 190,000 / 36,000$

> Example results on semantic segmentation on SIFTFlow dataset

- 1. Long, J., E.Shelhamer, Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proc. CVPR. (2014)
- 2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs. In:Proc. ICLR. (2015)
- 3. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proc. NIPS. (2015)