Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faux .
 - ☐ Le travail d'une force est toujours positif.
 - ☐ Le travail d'une force est un scalaire.
 - ☐ La puissance mécanique s'exprime en joule .
 - ☐ Lors d'un déplacement horizontal le poids du corps n'a pas de travail .
 - ☐ Les frottements possèdent un travail résistant .
 - ☐ Le travail d'une force de moment constant dépend de la position de l'action de rotation .
 - ☐ Deux forces forment un couple capable de tourner le solide dans le même sens s'elles possèdent la même direction ,même sens et même intensité
 - ☐ La réaction du plan n'a pas de travail si les frottements son nuls .

Exercice 2

1 Calculer le travail de la force \vec{F} lors du déplacement AB dans chacun des cas suivants :

Données: F = 20N; AB = 80cm

Exercice 2

On soulève un seau d'eau du fond d'un puits en enroulant la corde qui le soutient autour d'un cylindre d'axe horizontal (Δ) et de rayon R = 30cm. Il suffit pour cela d'exercer à l'extrémité A de la manivelle, une force \vec{F} perpendiculaire à OA et d'intensité constante F = 23,5 N.

- Ocombien de tours la manivelle doit elle effectuer par seconde pour que le seau d'eau se déplace à la vitesse v = 2m, s^{-1} ?
- 2 Sachant que la longueur de la manivelle est 0A = 50 cm. Calculer le travail $W(\vec{F})$ que l'opérateur doit fournir pour remonter le seau de masse m = 12 kg du fond du puits, de profondeur h = 40 m.
- Seau Puits

© Calculer la puissance mécanique P fournit par l'opérateur. On donne : $g = 10N.Kg^{-1}$. Les frottements sont négligeables

Série d'exercices

Exercice 4

Un skieur et son équipement, de masse m=80 kg, remonte une pente rectiligne, inclinée d'un angle $\alpha=20^{\circ}$ par rapport à l'horizontal, grâce à un téléski. On modélise les frottements de la neige par une force constante d'intensité constant f=30N. Le téléski tire le skieur et son équipement à vitesse constante sur un distance AB=1500m.

- Faire l'inventaire des forces qui s'appliquent au système {skieur + équipement} et les représenter sur le schéma sans souci d'échelle.
- 2 Déterminer le travail du poids du système lors de ce déplacement.
- 1 Déterminer le travail de la force de frottement lors de ce déplacement.
- ② La tension du câble qui tire le système fait un angle $\beta=60^\circ$ avec la ligne de plus grande pente. Calculer la valeur du travail de la tension du câble et celle de sa puissance sachant que ce déplacement dure dix minutes

Exercice 5

Un corps solide de masse m = 300g considéré comme ponctuel se déplace le long d'une glissière ABCD située dans un plan vertical. La piste ABCD comprend trois parties :

- Une partie circulaire AB de rayon R = 40cm tel que $\alpha = 40^{\circ}$
- Une partie BC rectiligne de longueur L inclinée d'un angle $\beta = 60^{\circ}$ par rapport à l'horizontal.
- Une partie CD rectiligne et horizontale.
- Calculer le travail du poids \overrightarrow{P} du mobile pour chacun des déplacements AB, BC et CD.
- Sur la piste BC, le mobile est soumis à des forces de frottement représentées par une force \vec{f} parallèle au plan incliné et de sens contraire au déplacement et d'intensité f. Aussi la vitesse du mobile demeure constante et a pour valeur : v = 7m. s^{-1}
 - a Calculer le travail et la puissance de la force de frottement sur la partie BC.
 - **b** –Déterminer la valeur de l'intensité de \overline{f} et celle de la réaction \overline{R} du plan BC

Données: L'intensité de pesanteur: g = 10N. Kg^{-1} ; La distance HG = 1, 4m

