M2 Training Problems

Ted Szylowiec

tedszy@gmail.com

1 Functions, identity, inverses and plots

- **1.** Let f(x) = 2x + 1. Find...
 - (a) Find f(f(x)).
 - (b) Find f(f(f(x))).
 - (c) Find f(f(f(f(x)))).
- **2.** Let $f(x) = 3x^2 + 1$ and g(x) = 2x 3.
 - (a) Find f(g(x)).
 - (b) Find g(f(x)).

Are they the same?

- **3.** Let f(x) = ax + b.
 - (a) Find f(f(x)).
 - (b) Find f(f(f(x))).
- **4.** Let f(x) = ax + b and g(x) = cx + d.
 - (a) Find f(g(x)).
 - (b) Find g(f(x)).

Are they the same?

- **5.** Sketch y = x and y = -x. Put them on the same axes. Label everything.
- **6.** Sketch y = 2x and y = -2x. Put them on the same axes.
- 7. Sketch these lines on the same axes.

$$y=\frac{x}{2}, \quad y=-\frac{x}{2}.$$

- **8.** Make an exact plot of y = 3x + 2 by finding the *x*-intercept and *y*-intercept.
- 9. Make an exact plot of

$$y=-\frac{x}{2}-1.$$

1

- **10.** If f(x) and g(x) are linear, show that
 - (a) f(g(x)) is linear.
 - (b) g(f(x)) is linear.
- **11.** Let f(x) = 3x + 2. Find $f^{-1}(x)$. Do it two ways:

2 Logarithms

- (a) By $f(f^{-1}(x)) = I(x)$.
- (b) And by $f^{-1}(f(x)) = I(x)$.
- **12.** Let f(x) = ax + b. Find $f^{-1}(x)$. Do it two ways:
 - (a) By $f(f^{-1}(x)) = I(x)$.
 - (b) And by $f^{-1}(f(x)) = I(x)$.
- **13.** Let f(x) = 2x + 1. Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.
- **14.** Let f(x) = -2x + 3. Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.
- 15. Consider the function

$$f(x) = -\frac{x}{2} + 3.$$

Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.

- **16.** Sketch the curve $y = x^2$. Use the unit square idea.
- **17.** Let $f(x) = x^2$. Sketch f, I and f^{-1} on the same axes.
- **18.** Let $f(x) = x^2 + 1$. Sketch f, I and f^{-1} on the same axes.
- **19.** Are there functions that are inverses of themselves? Does there exist any functions with the property $f(x) = f^{-1}(x)$? In other words, f is its own inverse.
 - (a) Find one such self-inverse function f.
 - (b) Try to find more, as many as you can.

2 Logarithms

- **20.** Draw the fastest-growing function f that you can imagine. Draw I(x) and use it to find the inverse f^{-1} .
- **21.** Draw the slowest-growing function f that you can imagine. Draw the identity I(x) and use it to find the inverse f^{-1} .
- **22.** Given f, tell me about the inverse f^{-1} . Does it grow fast, slowly, very fast etc.?
 - (a) f is a fast-growing function.
 - (b) f does not grow at all.
 - (c) f is a slow-growing function.
 - (d) f is a very slow-growing function.
 - (e) f is a very fast-growing function.
- **23.** Fill in this table about the behavior of $f(x) = 2^x$ for different values of x.

Logarithms 3

$$x = 0$$

$$x = 0$$

$$x > 0$$

$$x < 0$$

$$x > 1$$

$$x \to \infty$$

$$x \to -\infty$$

- **24.** Plot 2^x , 3^x and 5^x all on the same axes.
- 25. Consider the function

$$f(n) = \left(1 + \frac{1}{n}\right)^n.$$

Use a calculator. Fill in this table and notice how f(n) becomes closer and closer to the magic number e as $n \to \infty$.

$$\begin{array}{c|cc}
x & f(x) \\
\hline
1 & 2 \\
2 & 5 \\
10 & 100 \\
1000 & 1000
\end{array}$$

- **26.** Plot 2^x , e^x and 10^x all on the same axes.
- **27.** Plot $f(x) = 2^x$ and the identity line I(x). Use the identity line to draw the inverse $f^{-1}(x) = \log_2 x$.
- **28.** Plot $f(x) = 3^x$, I(x) and $f^{-1}(x) = \log_3 x$ all on the same axes.
- **29.** Fill in this table about the behavior of $g(x) = \log_2 x$ for different values of x.

$$x \qquad g(x)$$

$$x = 1 \qquad g = 0$$

$$x > 1$$

$$x < 1$$

$$x = 2$$

$$x \to \infty$$

$$x \to 0$$

4 Logarithms

30. Does 2^x ever touch the *x*-axis? Does $\log_2 x$ ever touch the *y*-axis?

31. Fill in the table.

$$\begin{array}{c|cccc}
x & 3^x & & x & \log_3 x \\
1 & & 1 & & \\
2 & & 9 & & \\
3 & & 27 & & \\
4 & & 243 & & \\
5 & & 59049 & & \\
\end{array}$$

32. Fill in the table.

$$\begin{array}{c|cccc}
x & 10^{x} & & x & \log_{10} x \\
1 & & 1 & \\
2 & & 10 & \\
3 & & 1000 & \\
4 & & 100,000 & \\
5 & & 10,000,000 & \\
\end{array}$$

33. Plot $\log_2 x$, $\log_3 x$ and $\log_5 x$ all on the same axes. Label all the important points.

34. Plot $\log_2 x$, $\log_e x$ and $\log_{10} x$ all on the same axes. Label all the important points.

35. The formulas relating f, f^{-1} and I establish the two most important properties of logarithms and exponentials. Use $f(x) = a^x$ and $f^{-1}(x) = \log_a x$ and tell me what these formulas imply:

(a)
$$f(f^{-1}(x)) = I(x)$$
.
(b) $f^{-1}(f(x)) = I(x)$.

(b)
$$f^{-1}(f(x)) = I(x)$$