USN					

			USN								
Department of Computer Science and Engineering M.Tech in Computer Science and Engineering (CSE) Continuous Internal Evaluation (CIE-II) Question Paper											
Cour	Advanced Data Structures and Algorithms Course Code: 22MCE12TL Semesters:									ester: 01	
26.04	1.2023	Duration: 90 minutes	Max Maı	rks:	50				St	taff	: RS
S1. No.		Answer all dilections									M,*L1- L6,CO
la.	Solve by applying the Shortest Path algorithm for Directed Acyclic Graph given below. Compute the time complexity for the same. $ \begin{array}{cccccccccccccccccccccccccccccccccc$									en	6,L3, CO1
1b.	Find the Topological Sort of the given graph. Calculate the Time and Space Complexity for the algorithm.									ce	4,L3, CO1
2a.	Solve using Bellman-Ford Algorithm. Calculate the time complexity for the algorithm.									ne	6,L4, CO2
2b.	Solve algorith	using Dijkstra's Algorithm. Calculate nm.	the time	e co	omţ	olex	ity	for	th	ne	4,L4, CO2

0

14

10

26

0

0

12

14

12

	Solve the below given problem by applying Prim's Algorithm to find the Minimum	6,L4,
	Cost Spanning Tree. Calculate the time complexity for the algorithm.	CO4
3a.	$ \begin{array}{c} $	
		410
3b	Compare the working of Bellman Ford algorithm with Dijkstra's algorithm.	4,L2, CO2
	Solve the below given problem by applying Kruskal's Algorithm to find the	6,L4,
	Minimum Spanning Tree. Calculate the time complexity for the algorithm.	CO4
4a.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Fill up the flow values in the graph given below:	4,L3,
4b.	3/4	CO3
5a.	For the Graph given below, find the Residual Graph	2,L2,
	$ \begin{array}{cccc} $	CO1
5b.	Calculate the max flow for the following network	8, L5,
	0/7 A $0/5$ B $0/8$ $0/3$ $0/3$ $0/3$ $0/5$ $0/5$ $0/5$	CO3
**Cou	rse Outcome and Marks Distribution *(L1-L6)	
CO1:	Analyze the efficiency of programs based on time complexity.	
	Critically think and apply appropriate design paradigm and algorithm for a specific problem.	
	Apply knowledge of computing and mathematics to algorithm design.	
CO4:	Design, implement and evaluate algorithms to solve real world problems. L2 L3 L4 L5 L6 CO1 CO2 CO3	CO4
		12

12

	Department of Computer Sciend M.Tech in Computer Science an Continuous Internal Evaluation (CIE-	d Engineering (CSE)	n	
Course:	Advanced Data Structures and Algorithms	Course Code: 22MCE12TL	Semeste	er: 01
26.04.2023	Duration: 90 minutes	Max Marks: 50	Staff: R	S
Comp	by applying the Shortest Path algorithm for Directive the time complexity for the same. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	ecteu Acyclic Grapii giv	en below.	5+1
for the	the Topological Sort of the given graph. Calculate the algorithm. Topolog Complexity: $O(V+E)$	e the Time and Space Crical Ordering:	Complexity	3+0.5+0.5
	e Complexity: O(V)			

	Bellman Ford's Algorithm	Dijkstra's Algorithm	
	Bellman Ford's Algorithm works when there is negative weight edge, it also detects the negative weight cycle.	Dijkstra's Algorithm may or may not work when there is negative weight edge. But will definitely not work when there is a negative weight cycle.	
	The result contains the vertices which contains the information about the other vertices they are connected to.	The result contains the vertices containing whole information about the network, not only the vertices they are connected to.	
	It can easily be implemented in a distributed way.	It can not be implemented easily in a distributed way.	
	It is more time consuming than Dijkstra's algorithm. Its time complexity is O(VE).	It is less time consuming. The time complexity is O(E logV).	
	Dynamic Programming approach is taken to implement the algorithm.	Greedy approach is taken to implement the algorithm.	
	Bellman Ford's Algorithm have more overheads than Dijkstra's Algorithm.	Dijkstra's Algorithm have less overheads than Bellman Ford's Algorithm.	
	Bellman Ford's Algorithm have less scalability than Dijkstra's Algorithm.	Dijkstra's Algorithm have more scalability than Bellman Ford's Algorithm.	
	5 5 5	d 5	
	f e Undirected Graph Kruskal Algorithm	n Min Weight Kruskal 3	
1 a.	5 4 5 5 6 f		
1 a.	5 b c 4	Min Weight Kruskal 3	
1 a.	Min Weight Kruskal 1	Min Weight Kruskal 3	
Kri	Min Weight Kruskal 1 Min Weight Kruskal 2	Min Weight Kruskal 3 Min Weight Kruskal 4 Min Weight Kruskal 4 of minimum weight until a minimum spanning	

**Course Outcome

CO2: Critically think and apply appropriate design paradigm and algorithm for a specific problem.

CO3: Apply knowledge of computing and mathematics to algorithm design

CO4: Design, implement and evaluate algorithms to solve real world problems

Marks Distribution *(L1-L6)									
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4
0	8	18	24	0	0	10	20	10	10