Напоминание. Мы уже выяснили две основных вещи. Преобразование координат между двумя инерциальными системами отсчёта должно быть аффинно. Аффинное преобразование $f \colon \mathbb{R}^m \to \mathbb{R}^m$ может быть записано в координатах виде $f(\vec{x}) = A \cdot \vec{x} + \vec{w_0}$, где A — матрица линейного преобразования, а $\vec{w_0}$ — некоторый вектор.

Секунда и метр. Оказывается, что время и расстояния можно точно определить независимо от системы счисления. Так секунда есть время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, а метр равен расстоянию, которое проходит свет в вакууме за промежуток времени, равный 1/299792458 секунды. Конечно, мы требуем, чтобы метр и секунда во всех системах отсчёта совпадали.

Преобразования Галилея. В классической теории мы не властны над временем. Это означает, что если f — преобразование координат между инерциальными системами отсчёта в классической теории (преобразование Γ алилея), то $f(x, y, z, t) = (*, *, *, t + t_0).$

Задача 1. (одномерный классический мир) Будем рассматривать одномерный мир: одна координата в пространстве и одна во времени. **a)** Докажите, преобразование имеет вид $f \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ t \end{pmatrix} + \begin{pmatrix} x_0 \\ t_0 \end{pmatrix}$;

б) Покажите, что число a равно либо 1, либо -1; **в)** За что «отвечают» каждое из чисел a, b, x_0 и t_0 ?

Задача 2. а) На обычной плоскости заданы два обычных вектора (x_1,y_1) и (x_2,y_2) . Докажите, что площадь параллелограмма, натянутого на эти вектора равна $x_1y_2 - x_2y_1$. Это число называется onpedeлителем матрицы $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$. Что происходит с определителем, если **б)** переставить строки или столбцы? **в)** умножить строку или столбец на число? **г)** к одной строке прибавить другую, умноженную на число?

Задача 3. (двумерный классический мир) Будем рассматривать двумерный мир: две координаты в пространстве и одна во времени. **a)** Докажите, преобразование имеет вид $f \begin{pmatrix} x \\ y \\ t \end{pmatrix} = \begin{pmatrix} a & b & \alpha \\ c & d & \beta \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ t_0 \end{pmatrix};$

- **б)** За что «отвечают» числа α и β ?
- в) Из физических соображений покажите, что $a^2 + c^2 = 1$, $b^2 + c^2 = 1$ и ab + cd = 1;
- \mathbf{r}) Докажите, что матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ имеет определитель, равный 1 или -1;
- д) Известно, что существует физический опыт, который позволяет вне зависимости от системы отсчёта определить вращение «по часовой стрелке». Покажите, что определитель из предыдущего пункта равен 1;
- е) Докажите, что матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ имеет вид $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$. Какой физический смысл числа φ ?

Гиперболические функции

Задача 4. Гиперболические функции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями. По определению ${\rm ch}\, \varphi = \frac{e^{\varphi} + e^{-\varphi}}{2}$ (гиперболический синус, чинус), $\sinh \varphi = \frac{e^{\varphi} - e^{-\varphi}}{2}$ (шинус), $\sinh \varphi = \frac{\sinh \varphi}{\cosh \varphi}$, $\coth \varphi = \frac{\cosh \varphi}{\sinh \varphi}$.

- а) Нарисуйте графики гиперболических функций.
- **б)** (Основное соотношение) Докажите, что $\cosh^2 \varphi \sinh^2 \varphi = 1$;
- **в)** (Геометрическое определение) Как связаны гиперболические функции с гиперболой?
- \mathbf{r}) (Формулы сложения) Выразите $\mathrm{sh}(x\pm y)$ и $\mathrm{ch}(x\pm y)$ через $\mathrm{sh}\,x$, $\mathrm{ch}\,x$, $\mathrm{sh}\,y$ и $\mathrm{ch}\,y$;
- д) Выразите $th(x \pm y)$ через th x и th y;
- е) (Производные) Найдите производные гиперболических функций;
- ж) (Обратные гиперболические функции) Обратные гиперболические функции обозначаются через Arsh, Arch, Arth и Arcth, и читаются как Apea-cuhyc (от area), Apea-kocuhyc и т.д. Выразите $\operatorname{Arsh} x$, $\operatorname{Arch} x$ и $\operatorname{Arth} x$ через ln и x.
- $\mathbf{3}$)** (Связь с тригонометрическими функциями) Докажите, что $\mathrm{sh}\,x = -i\sin(ix)$, $\mathrm{ch}\,x = \cos(ix)$, th x = -i tg(ix).
- **и)**** (Функция Гудермана) Функция Гудермана определяется через интеграл: $gd(x) = \int \frac{dt}{\operatorname{ch} t}$. Докажите, что gd(x) = arctg(sh(x)), sh(x) = tg(gd(x)), sin(gd(x)) = th(x).

Задача 5. Пусть преобразование координат задаётся матрицей $A = \begin{pmatrix} \cosh \varphi & - \sinh \varphi \\ - \sinh \varphi & \cosh \varphi \end{pmatrix}$. **a)** Куда это преобразование переводит прямые $y = 0, \ y = x/2, \ y = x, \ y = 2x$ и x = 0?

- **б)** Докажите, что преобразование A в области $y \geqslant x$ сохраняет *интервал* величину $\sqrt{y^2 x^2}$.

1 a	1 6	1 B	2 a	$\frac{2}{6}$	2 B	2 Г	3 a	3	3 B	3 Г	3 д	3 e	4 a	4 6	4 B	$\begin{array}{ c c }\hline 4 \\ \Gamma \end{array}$	4 д	4 e	4 ж	4 3	4 и	5 a	56