Machine Learning and Data Analytics ME 5013- Fall 2019

Lecture 05

- Cost Function
- Gradient Descent

The University of Texas at San Antonio™

Adel Alaeddini, PhD
Associate Professor of Mechanical Engineering
Advanced Data Engineering Lab
adel.alaeddini@utsa.edu

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real--valued output

Training Set

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

 β_i 's: Parameters

How to choose β_i 's ?

Idea: Choose β_0 , β_1 so that $h_{\beta}(x)$ is close to y for our (x, y) training examples

Cost function I:
$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

$$RSS = (y_1 - \widehat{\beta}_0 - \widehat{\beta}_1 x_1)^2 + \dots + (y_n - \widehat{\beta}_0 - \widehat{\beta}_1 x_n)^2$$

$$RSS = \sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$
Closed formed formula:
$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

Cost function II:

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

$$\min_{\beta_0, \beta_1} J(\beta_0, \beta_1) = \frac{1}{2n} \sum_{i=1}^{n} (y_n - \beta_0 - \beta_1 x_i)^2$$

• Let $\beta_0 \equiv 0$

$$h_{\beta_1}(x)$$

For fixed β_1 this is a function of x)

$J(\beta_1)$ (function of the parameter β_1)

For fixed β_0 , β_1 this is a function of x)

$$h_{\beta_0,\beta_1}(x) = 50 + 0.06x$$

Have some function $J(\beta_0, \beta_1)$

Want
$$\min_{\beta_0,\beta_1} J(\beta_0,\beta_1)$$

Outline:

- Start with some β_0 , β_1
- Keep changing β_0 , β_1 to reduce $J(\beta_0, \beta_1)$
 - Until we hopefully end up at a minimum

Gradient descent algorithm

```
repeat until convergence {  \beta_j \coloneqq \beta_j - \alpha \, \frac{\partial}{\partial \, \beta_j} J(\beta_0, \beta_1) \, \, (\text{for} \, j = 0 \, \text{and} \, j = 1)  }
```

Correct: Simultaneous update

$$temp0 := \beta_0 - \alpha \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$$

$$temp1 := \beta_1 - \alpha \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$$

$$\beta_0 := temp0$$

$$\beta_1 := temp1$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := & \beta_0 - \alpha \frac{\delta}{\partial \beta_0} J(\beta_0, \beta_1) \\ \beta_0 := \operatorname{temp0} \\ \operatorname{temp1} := & \beta_1 - \alpha \frac{\delta}{\partial \beta_1} J(\beta_0, \beta_1) \\ \beta_1 := \operatorname{temp1} \end{array}$$

$$\beta_1 - \alpha \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\beta_1 \coloneqq \beta_1 - \alpha \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over 6me.

Gradient descent algorithm

repeat until convergence {
$$\beta_{j} \coloneqq \beta_{j} - \alpha \frac{\partial}{\partial \beta_{j}} J(\beta_{0}, \beta_{1})$$
 (for $j = 0$ and $j = 1$) }

Hypothesis:
$$h_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\min_{\beta_0, \beta_1} J(\beta_0, \beta_1)$$

$$= \frac{1}{2n} \sum_{i=1}^{n} (y_n - \beta_0 - \beta_1 x_i)^2$$

repeat until convergence {

$$\beta_{0} \coloneqq \beta_{0} + \alpha \frac{1}{n} \sum_{i=1}^{n} (y_{n} - \beta_{0} - \beta_{1} x_{i})$$
$$\beta_{1} \coloneqq \beta_{1} + \alpha \frac{1}{n} \sum_{i=1}^{n} (y_{n} - \beta_{0} - \beta_{1} x_{i}) x_{i}$$

update β_0 and β_1 simultaneously

$$h_{\beta_0,\beta_1}(x)$$

$$h_{\beta_0,\beta_1}(x)$$

$$h_{\beta_0,\beta_1}(x)$$

$$h_{\beta_0,\beta_1}(x)$$

For fixed β_0 , β_1 this is a function of x)

$$h_{\beta_0,\beta_1}(x)$$

$$h_{\beta_0,\beta_1}(x)$$

$$h_{\beta_0,\beta_1}(x)$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.