§4.4 矩阵的奇异值分解

(Singular Value Decomposition SVD)

奇异值分解在信号处理、统计学、最佳逼近问题、 实验数据处理、数字图像存储中具有广泛的应用.

一、非零矩阵的奇异值及其性质

1. 矩阵 A^HA, AA^H 的性质

定理 $\diamondsuit A \in C^{m \times n}$,则 $A^H A$ 和 AA^H 均为 Hermite 矩阵,且

- (1) $rank(A) = rank(A^H A) = rank(AA^H);$
- $(2) A^H A$ 和 AA^H 的非零特征值相等;
- (3) $A^H A$ 和 AA^H 均半正定, 且当它们为满秩时正定.

Tips: (1) AX = 0 和 $A^H AX = 0$ 同解;

(2) $A^H A X = \lambda X \neq 0 \Rightarrow A A^H (A X) = \lambda (A X) \neq 0$;

(3) $X^H A^H A X = (AX, AX)_{C^m} \ge 0$, $X^H A^H A X = 0 \Leftrightarrow AX = 0 \Leftrightarrow X = 0$.

注: 半正定(正定) Hermite 矩阵的特征值非负(大于0).

一、非零矩阵的奇异值及其性质

定义 对 $A \in C^{m \times n}$,若 $\operatorname{rank}(A) = r > 0$ 且 $A^H A$ 的特征值 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$, $\lambda_{r+1} = \cdots = \lambda_n = 0$,则正数 $\sigma_i = \sqrt{\lambda_i}$, $1 \leq i \leq r$,称为 A 的奇异值或奇值.

注:由于 $\operatorname{rank}(A^H A) = \operatorname{rank}(A) = r \operatorname{ll} A^H A = U \Lambda U^H,$ $A^H A$ 必有 r 个正特征值,即 A 必有 r 个奇异值.

定理

设 $A \in C^{m \times n}$, r(A) = r, A 的奇异值 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$. 则存在酉矩阵 $U \in C^{m \times m}$ 和 $V \in C^{n \times n}$,使得

$$A = U\Sigma V^H$$
, (酉等价到 Σ: $U^HAV = \Sigma$)

其中,
$$\Sigma = \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix}_{m \times n}$$
, $\Delta = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$.

证明 由条件, A^HA 是非负Hermite矩阵, 故可酉相似对角化

$$V^{H}A^{H}AV = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{r}; 0, \dots, 0) = \begin{bmatrix} \Delta^{2} & 0 \\ 0 & 0 \end{bmatrix}_{n \times n} = \Sigma^{2},$$

其中 $\lambda_i = \sigma_i^2$, $i \leq r$, 为 $A^H A$ 的前 r 个特征值, 且 V 的列向量 $\{v_1, v_2, \dots, v_n\}$ 为 $A^H A$ 对应于特征值的标准正交特征向量.

考察AV. 由
$$(Av_i, Av_j) = v_j^H A^H A v_i = v_j^H \lambda_i v_i = 0, i \neq j \leq r,$$
 且 $\|Av_i\|^2 = (Av_i, Av_i) = v_i^H \lambda_i v_i = \lambda_i = \sigma_i^2, i \leq r,$ 令 $u_i = \frac{Av_i}{\sigma_i}$, 则 $\{u_1, u_2, \cdots, u_r\}$ 标准正交.

定理

设 $A \in C^{m \times n}$, r(A) = r, A 的奇异值 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. 则存在酉矩阵 $U \in C^{m \times m}$ 和 $V \in C^{n \times n}$, 使得

$$A = U \Sigma V^H$$
, (酉等价到 Σ: $U^H A V = \Sigma$)

其中,
$$\Sigma = \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix}_{m \times n}$$
, $\Delta = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$.

证明 将其扩充为 C^m 的标准正交基 $\{u_1, u_2, \cdots, u_r; u_{r+1}, \cdots, u_m\}$. 则获得酉矩阵 $U = (u_1, u_2, \dots, u_m), u_i = \frac{Av_i}{\sigma_i}, i \leq r.$ 由于 $Av_i = \sigma_i u_i$, $i \leq r$; $Av_i = 0$, i > r, 有 $AV = (Av_1, \dots, Av_r; 0) = (\sigma_1 u_1, \dots, \sigma_r u_r; 0)$ $= (u_1, \dots, u_r; u_{r+1}, \dots, u_m) \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} = U\Sigma.$ 故 $A = U\Sigma V^H$. ■

定理

设 $A \in C^{m \times n}$, r(A) = r, A 的奇异值 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$. 则存在酉矩阵 $U \in C^{m \times m}$ 和 $V \in C^{n \times n}$,使得

$$A = U \Sigma V^H$$
, (酉等价到 Σ: $U^H A V = \Sigma$)

其中,
$$\Sigma = \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix}_{m \times n}$$
, $\Delta = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$.

总结 (SVD的构造过程)

- (1) 求 $A^H A$ 的特征值 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > \lambda_{r+1} = 0$, 即得 A 的奇异值 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ 和 Σ ;
- (2) $A^H A$ 的对应于特征值的线性无关特征向量标准正 交化后排成 V;
- (3) $U = (u_1, u_2, \dots u_r; u_{r+1}, \dots, u_m), u_i = \frac{Av_i}{\sigma_i}, i \leq r,$ 后面 u_{r+1}, \dots, u_m 为任意补齐的标准正交向量组. 则 $A = U \Sigma V^H$.

例1 求矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 的奇异值分解.

- (1) 求 $A^H A$ 的特征值, 按大小排列 $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda_3 = 0$;
 - (2) 求一组对应于 λ_i 的特征向量(已正交), 标准化后得 V:

$$V = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \end{bmatrix} = (v_1, v_2, v_3);$$
(3) 构造 U :
$$u_1 = \frac{Av_i}{\sigma_i}$$

$$u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, u_3 ?$$

(3) 构造
$$U$$
:
$$u_i = \frac{Av_i}{\sigma_i}$$
 $u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_5 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ u_{10} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \$

取 $u_3 = (0,0,1)$, 则 u_3 为单位向量且正交于 u_1, u_2 $\diamondsuit U = (u_1, u_2, u_3),$ 则有 $A = U \Sigma V^H$.

例1 求矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 的奇异值分解.

- (1) 求 $B^H B$ 的特征值, 按大小排列 $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = 0$;
 - (2) 求一组对应于 λ_i 的特征向量(已正交), 标准化后得 V

$$v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix};$$

(3) 构造 *U*:

$$u_1 = \frac{Bv_1}{\sigma_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad u_2 = \frac{Bv_2}{\sigma_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \text{ewhere}$$

令 $U = (u_1, u_2)$,则有 $B = U\Sigma V^H$. ■

求 BB^H 的特征值更方便,有相同非零特征值

奇异值展开式

对于矩阵
$$A \in C^{m \times n}$$
, $r(A) = r$, 设有奇异值分解
$$A = U\Sigma V^H = (u_1, \cdots, u_r; u_{r+1}, \cdots, u_m) \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1^H \\ v_2^H \\ \vdots \\ v_n^H \end{bmatrix}$$
$$= \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H + \cdots + \sigma_r u_r v_r^H.$$

设 $A \in C^{m \times n}$, A 的奇异值 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, 定理 则 A 有奇异值展开式

$$A = \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H + \dots + \sigma_r u_r v_r^H.$$

r 个秩为 1 的矩阵之和

例 图像的数字化技术与矩阵的奇异值分解

1) 计算机处理图像技术的第一步是图像的数字化存储技术,即将图像 转换成矩阵来存储.

转换的原理是将图形分解成像素(pixels)的一个矩形的数阵, 其中的信息就可以用一个矩阵 $A = (a_{ij})_{m \times n}$ 来存储. 矩阵 A 的元素 a_{ij} 是一个正的数, 它相应于像素的灰度水平(gray level) 的度量值.

2) 压缩数字化图形存储量的方法主要是应用矩阵的奇异值分解和矩阵 范数下的逼近.

若图像矩阵 A 的奇异值展开式为 $A = \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H + \dots + \sigma_r u_r v_r^H$, 取 $A_k = \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H + \dots + \sigma_k u_k v_k^H, \qquad k \leq r,$

则在所有秩不超过 k 的矩阵中, A_k 与 A 的 Frobenius 距离最小.

3) 压缩效果.

存储 A_k 只需要存储 k 个奇异值, k 个 m 维向量 u_i 和 k 个 n 维向量 v_i , 共 k + km + kn 个数值, 相比原来 mn 个数值要少得多. 例如 m = n = 1000, k = 100 时, A_k 的数据存储量仅为 200100, 减少 80%.

Singular Value Decomposition in Image Processing

图像数据的奇异值分解压缩: 秩从4到128

U,V 的空间性质

设 $r(A_{m\times n}) = r$, A 有SVD分解 $U^HAV = \Sigma$. 由于 $U_{m\times m}$, $V_{n\times n}$ 为酉阵,其列向量分别构成 C^m , C^n 的标准正交基. 将 U,V 按前 r 列分块,有

$$AV = U\Sigma \Rightarrow A(V_1, V_2) = (U_1, U_2) \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} = (U_1\Delta, 0),$$
从而

 $AV_1 = U_1 \Delta = (\sigma_1 u_1, \sigma_2 u_2, \cdots, \sigma_r u_r), \qquad AV_2 = 0.$ 由此,

- (1) U_1 的列向量构成 R(A) 的一组标准正交基;
- (2) U_2 的列向量构成 $R^{\perp}(A)$ 的一组标准正交基;
- (3) V_2 的列向量构成 N(A) 的一组标准正交基;
- (4) V_1 的列向量构成 $N^{\perp}(A)$ 的一组标准正交基.

对 $A \in C^{m \times n}$, 可定义线性变换 T_A : $C^n \to C^m$, $T_A(X) = AX$. 若有奇异值分解 $A = U\Sigma V^H$, 有

 $T_A(v_1, v_2, \dots, v_n) = A(v_1, v_2, \dots, v_n) = (u_1, u_2, \dots, u_m) \Sigma$. 将 V 和 U 的列分别视作 C^n, C^m 的基, 则 T_A 的变换矩阵为 Σ . 故若 $\alpha \in C^n$ 在基 $\{v_1, \dots, v_n\}$ 下的坐标 $X = (x_1, \dots, x_n)^{\mathsf{T}}$, 则 $T_A(\alpha)$ 在基 $\{u_1, \dots, u_m\}$ 下坐标 $Y = \Sigma X = (\sigma_1 x_1, \dots, \sigma_r x_r; \mathbf{0})^{\mathsf{T}}$.

总之, $r(A_{m\times n}) = r \Rightarrow T_A: C^n \to C^m$ 满足

原像 α 在基 $\{v_1, \dots, v_n\}$ 下的坐标 像 $T\alpha$ 在基 $\{u_1, \dots, u_m\}$ 下的坐标

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{bmatrix} \xrightarrow{T_A} T_A(X) = \begin{bmatrix} \sigma_1 x_1 \\ \vdots \\ \sigma_r x_r \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

例如,如果 α 来自 R^n 的单位球面: 在基 $\{v_1,\dots,v_n\}$ 下的坐标

$$\sum_{1 \le i \le n} x_i^2 = 1,$$

则像 $T\alpha$ 在 C^m 的基 $\{u_1, \dots, u_m\}$ 下的坐标满足

$$\left(\frac{y_1}{\sigma_1}\right)^2 + \left(\frac{y_2}{\sigma_2}\right)^2 + \dots + \left(\frac{y_r}{\sigma_r}\right)^2 \le 1, \quad r \le n,$$

且当 r = n 时, 等号成立.

定理 设 $A \in \mathbb{R}^{m \times n}$, r(A) = r, 则 \mathbb{R}^n 中的单位球面在 T_A 下的像是 (1) \mathbb{R}^m 中的 n 维椭球面, 如果 r = n; (2) \mathbb{R}^m 中的 r 维椭球体, 如果 r < n.

注: 图形的形状不依赖于标准正交基的选取!

例2 设
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, 求 R^3 的单位球面在 T_A 下的像的图形.

解
$$A$$
 有奇异值 $\sigma_1 = \sqrt{3}$, $\sigma_2 = 1$, 且有 SVD $A = U\Sigma V^H$.

故单位球面在 T_A 下的像在基 $\{u_1, u_2, u_3\}$ 下的坐标满足

$$\left(\frac{y_1}{\sqrt{3}}\right)^2 + \left(\frac{y_2}{1}\right)^2 \le 1,$$

即单位球面的像为 R^3 中 $L\{u_1,u_2\}$ 平面上的2维的实心椭圆. \blacksquare

设 $A \in C^{n \times n}$, r(A) = r. 则 A 有极分解 定理

$$A = P_{n \times n} Q_{n \times n}$$
, 拉伸 o

其中, P半正定Hermite阵且 r = n 时正定; Q酉矩阵.

设 A 的奇异值分解 $A = U\Sigma V^H = (U\Sigma U^H)(UV^H)$. 令

$$P = U\Sigma U^H, \qquad Q = UV^H.$$

则 $P \in Hermite 阵, 且相似于 <math>\Sigma$, 故以 A 的奇异值 或 0 为特征值, 非负, 从而 P 半正定.

当 r = n 时, $A \in \mathbb{R}$ 个正的奇异值.

故 P 特征值全为正, 正定.

Q 为酉矩阵之积, 为酉矩阵. ■

例 3 求
$$A = \begin{bmatrix} \sqrt{3} & 2 \\ 0 & \sqrt{3} \end{bmatrix}$$
的极分解,并分析 T_A 的几何意义.

解 易求得 A 的奇异值为 $\sigma_1 = 3$, $\sigma_2 = 1$, 及奇异值分解

$$A = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}.$$

今

$$P = U\Sigma U^{H} = \begin{bmatrix} \frac{5}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{5}{2} \end{bmatrix}, \quad Q = UV^{H} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

得极分解 A = PQ, 且

$$T_A(X) = AX = P(QX) = T_P \circ T_Q(X).$$

例 3 求
$$A = \begin{bmatrix} \sqrt{3} & 2 \\ 0 & \sqrt{3} \end{bmatrix}$$
的极分解,并分析 T_A 的几何意义.

解

$$P = U\Sigma U^{H} = \begin{bmatrix} \frac{5}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{5}{2} \end{bmatrix}, \quad Q = UV^{H} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

考察 T_0 ,由于

$$Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} \\ -\sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix},$$

故 T_Q 为绕原点顺时针旋转 $\frac{\pi}{6}$ 的变换;

例 3 求
$$A = \begin{bmatrix} \sqrt{3} & 2 \\ 0 & \sqrt{3} \end{bmatrix}$$
的极分解,并分析 T_A 的几何意义.

解

而
$$P = U\Sigma U^H = \begin{bmatrix} \frac{5}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{5}{2} \end{bmatrix}$$
的特征值为 3 和 1,

其对应的标准正交的特征向量为

$$u_1 = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)^{\mathsf{T}}, \ u_2 = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^{\mathsf{T}}.$$

故对任意 $X \in \mathbb{R}^2$, $X = k_1 u_1 + k_2 u_2$, 有

$$T_P(X) = PX = k_1 P u_1 + k_2 P u_2$$

= $3k_1 u_1 + k_2 u_2$,

即 T_P 是一个拉伸变换: 将 X 沿 u_1 方向拉伸 3 倍, u_2 方向保持不变.

