

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

PROGRAMAÇÃO DE COMPUTADORES I BCC701 Aula Prática 13

Exercício 1

Seja o polinômio de grau n:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0$$

Codifique um programa que:

- 1. leia o grau do polinômio, n;
- 2. leia os coeficientes a_i do polinômio, onde i = 0, 1, 2, ..., n;
- calcule o valor do polinômio para x = 3.1415.
 A seguir um exemplo de execução do programa.

Exemplo

CÁLCULO DO VALOR DO POLINÔMIO DE X

QUAL É O GRAU DO POLINÔMIO (n): 3

a0= 0.2

a1= -3.8

a2= 0.56

a3= 2

P(3.1415) = 55.796

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 2

Repita o exercício anterior, agora calculado os valores do polinômio para o intervalo fechado [0; 2], com incrementos de 0.2. O programa produz a saída de acordo com o exemplo a abaixo.

Exemplo

CÁLCULO DO VALOR DO POLINÔMIO DE X				
QUAL É O 0 a0= 1 a1= 2 a2= 3 a3= 4	GRAU DO POLINÔMIO (n): 3			
0.6 0.8 1. 1.2 1.4	2.536 4.144 6.568 10. 14.632			

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 3

Neste exercício, você vai escrever um programa para calcular vários dados de um circuito elétrico, constituído de resistores em série. Um exemplo é mostrado na figura a seguir, com 3 resistores em série.

Os dados de entrada do programa são a voltagem aplicada sobre o circuito (V) e os valores das resistências dos resistores (na figura acima, R1, R2 e R3, mas o seu programa deve funcionar circuitos com número arbitrário de resistores). Considere que o circuito possui pelo menos um resistor. O programa deve imprimir: o valor da corrente total no circuito; o valor da potência total dissipada; e uma tabela com a resistência, a voltagem e a potência dissipada em cada resistor.

Os cálculos são realizados da seguinte forma:

- Resistência equivalente no circuito: $R_{eq} = \sum_{i=1}^{n} R_i$ onde n é o número de resistores
- Corrente no circuito: $I = V / R_{eq}$
- Voltagem em cada resistor $1 \le i \le n$: $V_i = R_i$. I
- Potência dissipada em cada resistor $1 \le i \le n$: $P_i = R_i \cdot I^2$
- Potência total dissipada pelo circuito: P = V . I

O programa realiza as seguintes tarefas:

- 1. lê o valor da tensão aplicada ao circuito, V;
- 2. lê os valores dos resistores, representados por um vetor coluna;
- 3. calcula e imprime a corrente total e a potência total do circuito;
- 4. gera e imprime a tabela requerida.

A seguir, um exemplo de execução do programa.

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exemplo

ANÁLISE DO CIRCUITO ELÉTRICO

INFORME A TENSÃO APLICADA AO CIRCUITO (V): 12.5

LEITURA DO VETOR DE RESISTÊNCIAS

VETOR COLUNA DAS RESISTÊNCIAS: [2.32; 3.15; 4.321; 6.3; 7.201]

CORRENTE TOTAL DO CIRCUITO: 0.536665 A POTÊNCIA TOTAL DISSIPADA: 6.70831 W

VOLTAGEM E POTÊNCIA EM CADA RESISTOR

(ohm)	(V)	(W)
2.32	1.25	0.668
3.15	1.69	0.907
4.32	2.32	1.244
6.30	3.38	1.814
7.20	3.86	2.074

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 4

Seja a matriz *M*, definida por um comando de atribuição:

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

Codifique um programa que gere um vetor onde cada elemento, na posição i, representa o produtório dos elementos da coluna i de M.

Logo, a partir de M, tem-se o vetor V.

$$V = [280 880 1944]$$