Polytech Marseille, Département Informatique

TD d'analyse de données. 3

1. Pour un tableau N de contingence comportant m_1 lignes et m_2 colonnes, formé de valeurs entières : $N = [n^{(1)} \ n^{(2)} \ n^{(m_2)}] = {}^t [n_1 \ n_2 \ n_{m_1}]$, on note n_i , a somme des éléments de la i-ème ligne n_i , et $n_{\circ,j}$ la somme des éléments de la j-ème colonne $n^{(j)}$ du tableau. On note n la somme de tous les éléments de N, et D_1 désigne la matrice diagonale d'éléments $n_1, n_2, \ldots, n_{m_1}$. Indiquez la forme du profil D_1^{-1} N, et du centre de gravité $g = \frac{1}{n} {}^t (D_1^{-1} \ N) D_1 {}^t 1_{m_1}$. On définit la distance d du Khi deux entre deux lignes i et i de N par :

$$d^{2}(i, i') = \sum_{j=1}^{m_{2}} \frac{n}{n_{oj}} \left(\frac{n_{ij}}{n_{io}} - \frac{n_{iij}}{n_{i'o}} \right)^{2}$$

- i) Vérifiez que d est bien une distance sur N^{m_2}
- ii) Vérifiez que dans l'écriture de d^2 on peut remplacer les valeurs n_c par les fréquences $f_c = \frac{n_c}{n}$
- $\it iii)$ Qu'obtient-on si on échange les rôles des lignes et des colonnes de N ?
- 2. Si d est une application de $E \times E$ dans R qui vérifie $d(x, y) = d(y, x) \ge 0$, $\forall (x, y) \in E^2$, d est appelée dissimilarité si $\forall x \in E$, d(x, x) = 0, et similarité si $\forall (x, y) \in E^2$, $d(x, x) \ge d(x, y)$. Une similarité peut-elle être une distance ? Donnez des exemples de similarités et de dissimilarités (autres que des distances).
- 3. Indiquez la forme du produit (est-ce un produit scalaire ?) en dimension 2, associé à la matrice $M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Quelle est la condition pour que la 'distance' entre deux points soit nulle ?
- 4. Comment peut s'écrire l'inertie d'un nuage de M points ? Comment définir une inertie intra classe et une inertie inter classes ? Quelles sont les relations qui relient ces valeurs ?
- 5. On souhaite comparer le fonctionnement d'une classification hiérarchique et celui d'une méthode k-means. Observez le comportement de ces deux algorithmes en dimension 1 on pourra prendre des valeurs entières, comme les n premiers entiers, ou leurs carrés. Considérez des exemples en dimension 2, en proposant des critères d'agrégation des classes, pour la distance euclidienne dans le plan.
- 6. Soit un nuage de 10 points : (0, 0); (2,0); (4, 0); (8, 0); (0, 1); (0, 6); (8, 2); (3, 3); (6, 5); (2, 8) En utilisant la distance euclidienne du plan, écrivez une Classification Ascendante Hiérarchique jusqu'à obtenir 3 classes exactement. Ecrivez pour l'ensemble des étapes (agrégation de classes) la valeur de l'inertie intra classe totale. Comparez avec une approche par moyennes mobiles pour 3 classes, en prenant des centres initiaux dans des classes distinctes de la CAH.
- 7. Soit $A = (a_{ij})$ une matrice d'appartenance, ie une matrice binaire, pour laquelle $a_{ij} = 1$ signifie que le *i*-ème individu (ligne *i*) appartient à la classe no *j*. Comment peuvent être écrits les effectifs des différentes classes? Quelle est la condition pour qu'un individu appartienne à au plus une classe (respectivement exactement une classe)? Peut-on représenter cette situation par un graphe? Peut-on utiliser une matrice d'appartenance non déterministe, dont les éléments sont des nombres compris entre 0 et 1?

Analyse da données: TD3

d: ExE -xR+

1) d(x,y) = d(y,x)

11) d(x,y) < d(x,x) -> scm

 $||^{\circ}$) d(x,x)=0 - disin

11) d(x,y)=0=> x=y rdissin d(x,x)=0 et d(x,x) majore -> forion nulle

Si on grand à la fois

siner dissin on a que

III) d(x,3) & d(x,y) , d(y,3) -, recessaire pour une sirance

distance = cas particulier de dissim

Exemple de sin

 $\begin{cases}
d(x,x)=1 \\
d(x,y)=0 & \text{si } x\neq y
\end{cases}$

. d(x,y) = min (1x1, 1y1)

· Cx,y = cov(x,y) , cov(x,y) = E([X-E(X)].[Y-E(X)])

L> -1 (Cx, y 61 => d(x, y) = |Cx, y| Cxx = 1 car cor (xx) = V(x)

Exemple dissim

· d(x,y) = (x-y)2 -> inegalité plus vraise

. Faire une composition avec une distance ne donne pas une distance mais une similarité en général

