

Mahindra University Hyderabad

École Centrale School of Engineering Mid-Semester exam

Branch: <u>CSE</u> Year: <u>I</u> Semester: II Program: B. Tech. Subject: Discrete Mathematics (CS1202)

Date: 20-4-2022

Time Duration: 1.5 Hours

Start Time: 9.00 AM

Max. Marks: 40

Instructions:

1) I)Attempting all the questions is mandatory.

2) Each question carries different marks as shown beside the respective question.

1. Answer the following questions:

(8 Marks)

- a. Using the standard rules of inference, Write the series of steps to show that the premises $r \to s$, $p \to q$, and $r \vee p$, will lead to conclusion $s \vee q$.
- b. Let p, q and r be the propositions; p : Candidate is known to be corrupt, q: Candidate is elected, r: Candidate is kind. Express the following statements 'S1' and 'S2' using propositions p, q and r. Determine whether statement 'C' logically follows from 'S1' and 'S2' as per inference rules of logic.

S1: If a candidate is known to be corrupt, then he will not be elected.

S2: If a candidate is kind, he will be elected.

C: If a candidate is kind, he is not known to be corrupt.

2. Answer the following questions:

(8 Marks)

- a. Obtain the principal disjunctive normal form and principal conjunctive normal form of biconditional formula P<->Q considering its truth table.
- b. Let S = { 1, 2, 3, { a }, { b }, { a, b, c }, ∅ }. Answer in True or False

 $\{a\}\subseteq S$ i.

ii. $\emptyset \in S$

ø⊆S iii.

 $\{\{\}\}\subseteq \{\}$

3. Answer the following questions

(8 Marks)

- a. For the poset ({3, 5, 9, 15, 24, 45}, |).
 - Find all upper bounds of {3, 5}.
 - Find the least upper bound of {3, 5}, if it exists. ii.
 - iii. Find all lower bounds of {15, 45},

- iv. Find the greatest lower bound of {15, 45}, if it exists.
- b. Write any two compatible total orderings for the poset ({1, 2, 4, 5, 12, 20}, |}
- 4. How many vertices and how many edges (in terms of m & n) do the following graphs have?
 (6 Marks)
 - a) K_n (Complete graph)
 - b) C_n (Cycle graph)
 - c) $K_{m,n}$ (Complete bipartite graph)
- 5. Answer the following questions

(10 Marks)

- a) What is the chromatic number of an n-vertex simple connected graph which does not contain any odd length cycle? Assume $n \ge 2$.
- $(A)_2$
- (B) 3
- (C) n-1
- (D) n
- b) Consider a simple undirected graph of 10 vertices. If the graph is disconnected, What is the maximum number of edges it can have?

