1/23

Lecture 5

Linear stability of parallel shear flows II

AE209 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline

2/23

- 1. Linear stability analysis of inviscid mixing layer
- 2. Linearised equation for viscous parallel flows
- 3. Normal mode solution
- 4. Squire's transformation

Lecture outline

3/23

1. Linear stability analysis of inviscid mixing layer

3

Piecewise mixing layer 5/23

Jump condition 1: Continuity of displacement =
$$\eta'$$
 must be the same at $y = 0$.

$$\frac{\tilde{v}}{U-c} \quad \text{at } y = 0$$

$$\mathcal{E} \mathcal{V}'(x,y,\pm)|_{y=0} = \left[\frac{\partial}{\partial t} + (U+\mathcal{E} u'(x,y,\pm))\frac{\partial}{\partial x}\right] \mathcal{E} \eta'$$

$$A \pm O(\mathcal{E})$$

$$\mathcal{V}'(x,y,\pm) = \left[\frac{\partial}{\partial t} + U\frac{\partial}{\partial x}\right] \eta'$$

$$\mathcal{V}'(x,y,\pm) = \left[\frac{\partial}{$$

6/23

Jump condition 2: Continuity of pressure (force)

$$\widetilde{p} = \frac{i}{\alpha} \left[DU \widetilde{v} - (U - c)D\widetilde{v} \right] \text{ at } y = 0$$

Jump condition 2: Continuity of pressure (force)

$$\widetilde{p} = \frac{i}{\alpha} \left[DU \widetilde{v} - (U - c)D\widetilde{v} \right] \text{ at } y = 0$$

$$\widetilde{\partial u} + \widetilde{\partial v} = 0. \quad \widetilde{\partial u} + U \underbrace{\partial u}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\underbrace{\partial p}_{\partial t}$$

$$\widetilde{\partial u} = -\underbrace{\partial v}_{\partial t} + U \underbrace{\partial u}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t}$$

$$\widetilde{\partial u} = -\widetilde{\lambda} v \underbrace{\partial u}_{\partial t} + \widetilde{\lambda} v \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial u}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t} = -\widetilde{\lambda} v \underbrace{\partial v}_{\partial t} + v' \underbrace{\partial v}_{\partial t}$$

$$\Rightarrow \alpha = \frac{D^{\infty}}{\Delta}$$

6

7/23

Summary:

Rayleigh equation

$$(U-c)(D^2-\alpha^2)\widetilde{v}-D^2U\widetilde{v}=0 \Rightarrow (D^2-\alpha^2)\widetilde{v}=0. \quad \text{(for } y \neq 0)$$

$$(U-c)(D^2-\alpha^2)\widetilde{v}-D^2U\widetilde{v}=0 \Rightarrow (D^2-\alpha^2)\widetilde{v}=0. \quad \text{(for } y \neq 0)$$

$$= 0. \quad \text{(for } y \neq 0)$$

$$\widetilde{v}=0. \quad \text{(for } y \neq 0)$$

$$\widetilde{v}=$$

$$\widetilde{v}(y=\infty) = \widetilde{v}(y=-\infty) = 0$$

$$(U-c)D\widetilde{v}-DU\widetilde{v}$$
 and $\frac{\widetilde{v}}{U-c}$ are continuous at $y=0$

Use to find C, and Cx

(U-c) Dã - DUÃ

8/23

Solution

1) Rayleigh equation and the boundary condition gives

$$\widetilde{v}(y) = \begin{cases} Ae^{-\alpha y} & \text{for } y > 0 \\ C & \text{for } y > 0 \end{cases}$$

with
$$\alpha > 0$$

2) Apply the jump conditions

$$\frac{\partial}{\partial x} \frac{-\alpha(U_1 - c)A}{\partial x} = \frac{\alpha(U_2 - c)B}{\partial x}$$

i)
$$\frac{A}{(U-a)} = \frac{A}{(U-a)}$$

ii) $\frac{A}{(U_1-c)} = \frac{B}{(U_2-c)}$

i)
$$(U_1-c)A+(U_2-c)B=0$$

Ti) $(U_2-c)A-(U_1-c)B=0$

Let $L=0$
 $L=0$

$$\Rightarrow \det L = 0$$

$$\Rightarrow C = \frac{U_1 + U_2}{2} \pm \sqrt{\frac{U_1 - U_2}{2}}$$

9/23

3) Solve the eigenvalue problem and obtain dispersion relation

$$c = \overline{U} \pm \frac{i\Delta U}{2}$$

OI

$$\omega = \alpha \overline{U} \pm i\alpha R \overline{U}$$

Lecture outline		11/23
	quation for viscous	

Linearised equation for viscous parallel flow

12/23

Navier-Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Consider
$$\mathbf{u}(x, y, z, t) = (U(y), 0, 0) + \varepsilon \mathbf{u}'(x, y, z, t),$$

 $p(x, y, z, t) = P(x, y) + \varepsilon p'(x, y, z, t)$

and neglect the terms at $O(arepsilon^2)$. Then,

$$\frac{\partial f}{\partial n_i} + (\vec{n} \cdot \Delta) \vec{n}_i + (\vec{n} \cdot \Delta) \vec{n} = -\Delta b_i + \frac{d\sigma}{d\sigma} \Delta_i \vec{n}_i$$

Linearised equation for viscous parallel flow

13/23

Linearised Navier-Stokes equation around parallel base flow

$$\frac{\partial u'}{\partial t} + U \frac{\partial u'}{\partial x} + v' \frac{dU}{dy} = -\frac{\partial p'}{\partial x} + \frac{1}{\text{Re}} \left(\frac{\partial^2 u'}{\partial x^2} + \frac{\partial^2 u'}{\partial y^2} + \frac{\partial^2 u'}{\partial z^2} \right)$$

$$\frac{\partial v'}{\partial t} + U \frac{\partial v'}{\partial x} = -\frac{\partial p'}{\partial y} + \frac{1}{\text{Re}} \left(\frac{\partial^2 v'}{\partial x^2} + \frac{\partial^2 v'}{\partial y^2} + \frac{\partial^2 v'}{\partial z^2} \right)$$

$$= -\frac{\partial p'}{\partial z} + \frac{1}{\text{Re}} \left(\frac{\partial^2 w'}{\partial x^2} + \frac{\partial^2 w'}{\partial y^2} + \frac{\partial^2 w'}{\partial z^2} \right)$$

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = 0$$

Linearised equation for viscous parallel flow

14/23

Velocity and vorticity form of linearised Navier-Stokes equation

$$\left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \nabla^2 - \frac{d^2 U}{dy^2} \frac{\partial}{\partial x} - \frac{1}{\text{Re}} \nabla^4 \right] v' = 0$$

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} - \frac{1}{|\operatorname{Re} \nabla^2|} \right) \eta' + \frac{dU}{dy} \frac{\partial v'}{\partial z} = 0$$

with the boundary condition, (no - slip)

$$v' = \frac{\partial v'}{\partial n} = \eta' = 0$$
 at solid boundary and/or the far field

and the initial condition,

$$v'(x, y, z, t = 0) = v'_0(x, y, z)$$

$$\eta'(x, y, z, t = 0) = \eta'_0(x, y, z)$$

Lecture outline	15/23
3. Normal mode solution	

Normal mode solution

16/23

Consider full three-dimensional case such that

$$\left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \nabla^2 - \frac{d^2 U}{dy^2} \frac{\partial}{\partial x} - \frac{1}{\text{Re}} \nabla^4 \right] v' = 0$$

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} - \frac{1}{\text{Re}} \nabla^2 \right) \eta' + \frac{dU}{dy} \frac{\partial v'}{\partial z} = 0$$

Then, the normal mode solution takes the following form:

$$v'(x, y, z, t) = \widetilde{v}(y)e^{i(\alpha x + \beta z - \omega t)} + c.c$$

$$\eta'(x, y, z, t) = \widetilde{\eta}(y)e^{i(\alpha x + \beta z - \omega t)} + c.c$$

where $\alpha, \beta \in R$ and $\omega \in C$.

Orr-Sommerfeld and Squire equations

17/23

Orr-Sommerfeld equation (for wall-normal velocity):

$$\left[\left(-i\omega + i\alpha U \right) - \frac{1}{\text{Re}} \left(D^2 - k^2 \right) \right] \widetilde{\eta} = -i\beta D U \widetilde{\nu}$$

where $k^2 = \alpha^2 + \beta^2$ with boundary conditions:

$$\widetilde{\nu} = D\widetilde{\nu} = \widetilde{\eta} = 0 \quad \text{ at a solid wall and in the far field.}$$

Remark

If $\alpha,\beta\in R$ are given, then $\omega\in C$ becomes unknown with \widetilde{v} and $\widetilde{\eta}$ Resulting in an eigenvalue problem as in Rayleigh equation.

Squire transformation

19/23

Theorem: Damped Squire modes

The solutions to the Squire equation are always damped, i.e. $\omega_i < 0$ for all α, β and Re. (Andrew's leave note)

Remark

Instability comes from Orr-Sommerfeld equation.

Squire transformation

20/23

Consider the Orr-Sommerfeld equation for $\beta=0$ in the following form:

$$\left[(U-c)(D^2 - \alpha_{2D}^2) - D^2 U - \frac{1}{i\alpha_{2D}} \left(D^2 - \alpha_{2D}^2 \right)^2 \right] \widetilde{v} = 0$$

$$\text{Now, consider the Orr-Sommerfeld for } \beta \neq 0 \text{ by setting } \left(\text{Re}_{3D} = \frac{\alpha}{k} \text{Re} \right)$$

$$\left[(U-c)(D^2 - k^2) - D^2 U - \frac{1}{ik \cdot Re} \left(D^2 - k^2 \right)^2 \right] \widetilde{v} = 0$$

$$\text{Calcoleted}$$

$$\begin{bmatrix}
(U-c)(D^2-\underline{k}^2)-D^2U-\frac{1}{ik\operatorname{Re}_{3D}}(D^2-k^2)^2\\
= \mathcal{K} + \mathcal{G}^2
\end{bmatrix} \widetilde{v} = 0$$

It follows that the critical Reynolds numbers for the onset of an instability

should be

$$Re_{2D,c} = Re_{3D,c} = \frac{\alpha}{k} Re_c$$

indicating that

$$Re_{2D,c} < Re_c$$

Squire's theorem

21/23

Theorem: Squire

Given Re_L as the critical Reynolds number for the onset of linear inst ability for a given $\, lpha \,$ and $\, eta \,$, the Reynolds number $\, \, \mathrm{Re}_{c} \,$ below which no exponential instabilities exist for any wave numbers satisfies

$$Re_e \equiv \min_{\alpha,\beta} Re_L(\alpha,\beta) = \min_{\alpha} Re_L(\alpha,0)$$

Remark

The most unstable linear instability is always two dimensional.

Summary 22/23

- 1. Linear stability analysis of inviscid mixing layer
- 2. Linearised equation for viscous parallel flows
- 3. Orr-Sommefed and Squire equation
- 4. Squire's transformation and theorem