Gaya Math

SoG

Juillet 2025

Table des matières

1 Espaces Vectoriels

1

Chapitre 1

Espaces Vectoriels

Contents

\boldsymbol{I}	Com	$pl\'ements$ de $cours$	1
	I.1	Supplémentaires d'un sous-espace	1

I Compléments de cours

I.1 Supplémentaires d'un sous-espace

I.1.1 Théorème de la base incomplète

Théorème

Soient L une famille libre et G une famille génératrice de E, espace vectoriel de dimension finie.

Alors il existe une base \mathcal{B} de E telle que : $L \subset \mathcal{B} \subset L \cup G$ (autrement dit, on peut compléter L à l'aide de vecteurs de G pour obtenir une base).

On en déduit que tout espace vectoriel de dimension finie E possède (au moins) une base (dans le cas où $E = \{0\}$, on peut convenir qu'une base de E est \emptyset).

Les vecteurs complétant L en base génère un espace supplémentaire à L. Il est important de noter qu'un supplémentaire d'un sous-espace vectoriel n'est pas unique en général. Le résultat ci-dessous est une version forte dy théorème de la base incomplète qui prouve qu'on peut au moins compléter L de deux façons.

Résultat Important

Soit V un espace vectoriel de dimension n, et F, G deux sous-espaces vectoriels de V de même dimension q. Alors F et G ont un supplémentaire commun.

Solution

— Premier cas : $F \cap G = \{0\}$

Dans ce cas, on a

$$F+G=F\oplus G$$
.

Soient

$$(a_1, a_2, \ldots, a_q)$$
 une base de F ,

$$(b_1, b_2, \ldots, b_a)$$
 une base de G .

Alors

$$\mathcal{B} = (a_1, \dots, a_q, b_1, \dots, b_q)$$

est une base de $F \oplus G$.

Posons

$$c_k = a_k + b_k, \quad 1 \le k \le q,$$

et définissons

$$W_3 = \operatorname{Vect}(c_1, c_2, \dots, c_q).$$

Considérons la matrice de passage par rapport à la base \mathcal{B} :

$$\operatorname{mat}_{\mathcal{B}}(a_1,\ldots,a_q,c_1,\ldots,c_q) = \begin{pmatrix} I_q & I_q \\ 0 & I_q \end{pmatrix} \in GL_{2q}(K).$$

Cela montre que

$$\mathcal{B}' = (a_1, \dots, a_q, c_1, \dots, c_q)$$

est une base de $F \oplus W_3$, et donc

$$F \oplus G = F \oplus W_3$$
.

De manière similaire,

$$\operatorname{mat}_{\mathcal{B}}(b_1,\ldots,b_q,c_1,\ldots,c_q) = \begin{pmatrix} 0 & I_q \\ I_q & I_q \end{pmatrix} \in GL_{2q}(K),$$

donc

$$\mathcal{B}'' = (b_1, \dots, b_q, c_1, \dots, c_q)$$

est une base de $G \oplus W_3$, et

$$F \oplus G = G \oplus W_3$$
.

Ainsi, W_3 est un supplémentaire commun de F et G dans $F \oplus G$. En introduisant un supplémentaire W_4 de $F \oplus G$ dans V, on a

$$V = F \oplus G \oplus W_4$$
,

et donc

$$V = F \oplus (W_3 \oplus W_4) = G \oplus (W_3 \oplus W_4).$$

Solution (suite)

— Second cas : $F \cap G \neq \{0\}$

On peut écrire

$$F = (F \cap G) \oplus F'_1$$

$$G = (F \cap G) \oplus G'_2.$$

On a alors

$$F_1' \cap G_2' = \{0\}.$$

D'après le premier cas, il existe un sous-espace W_3' tel que

$$F_1' \oplus G_2' = F_1' \oplus W_3' = G_2' \oplus W_3'.$$

On en déduit que :

$$F + G = (F \cap G) \oplus F_1' \oplus G_2',$$

$$F + G = (F \cap G) \oplus F_1' \oplus W_3' = F \oplus W_3',$$

$$F + G = (F \cap G) \oplus G_2' \oplus W_3' = G \oplus W_3'.$$

Enfin, si W_4 est un supplémentaire de F+G dans V, on a comme dans le premier cas :

$$V = F \oplus (W_3' \oplus W_4) = G \oplus (W_3' \oplus W_4).$$

Cela conclut la démonstration.