텍스트 감성분석과 이미지 데이터 기반의 이모티콘 추천 시스템

권정혁, 김수연, 노명은, 문지원, 윤성준

Table of contents

01 연구 배경

카카오톡 이모티콘 플러스, 사용자 경험, Content-based Filtering, Service Model

O2 OIDIXI EIIOIEI

Style Transfer, CLIP 으로 그림체 유사도 계산하기

03 텍스트 데이터

KoBERT로 다중 분류 모델 만들기

04 결론

이모티콘 추천 시스템 결과

연구 배경

카카오톡 이모티콘 플러스, 사용자 경험, Content-based Filtering, Service Model

카카오톡 이모티콘

이모티콘은?

- ✔ 중요한 감정표현의 수단
- ✔ 수많은 이모티콘이 존재
- ✔ 역설적으로 이모티콘 선택 과정에 어려움 발생

카카오톡 이모티콘 플러스 🤒

이모티콘 플러스 사용자 경험

표 1. 자주 사용하는 이모티콘 선호 이유

순위	응답	비율
1	감성이 좋아서	39%
2	답변 대신	15%
3	감정 전달	12.9%
4	범용성	10.8%
5	대화 분위기 조성	10.8%
6	아이덴티티	6.4%
7	기타	4.3%

표 2. 이모티콘 플러스 내 검색 방식

순위	응답	비율
1	채팅창에 키워드 입력 후 추천 창에서 선택.	60%
2	서비스 페이지에서 검색한다.	20%
3	즐겨찿기에 저장해 두고 사용한다.	6.6%
4	채팅 치다가 추천 받으면 즉흥적으로.	13.3%

A씨의 실제 이모티콘 보유창

✔ 사용자의 취향과 상황에 맞는 이모티콘을 추천하는 것이 중요

Content-based Filtering

사용자가 소비한 아이템에 대해 아이템의 내용(content)이 비슷하거나 특별한 관계가 있는 다른 아이템을 추천하는 방법

Embedding 방법 사용

Service Model - Intro

사용자가 기존에 자주 사용한 이모티콘을 이용해 그림체가 유사한 이모티콘을 선별

Service Model

OIDIZI GIOIEI

Style Transfer, CLIP으로 그림체 유사도 계산하기

방법 1. Style Transfer의 Gram Matrix

- ✔ 스타일(Style)은 서로 다른 특징(feature)간의 상관관계(correlation)를 의미
- ✔ G_{ij} = 특징 i와 특징 j의 상관관계(correlation)

Gram Matrix (= Style Representation)

G_{11}	G_{12}	G_{13}	G_{14}
G_{21}	G_{22}	G_{23}	G_{24}
G_{31}	G_{32}	G_{33}	G_{34}
G_{41}	G_{42}	G_{43}	G_{44}

$$G_{ij} = \sum_{k} F_{ik} F_{jk}$$
 (feature i와 feature j의 내적) k는 활성화 값 위치

Gram Matrix

Code

```
class GramMatrix(nn.Module):
    def forward(self, input):
        b,c,h,w = input.size()
        F = input.view(b, c, h*w)
        G = torch.bmm(F, F.transpose(1,2))
        return G
```

parameters

✓ b : batch size

✓ c : channel

✓ h : height

✓ w : weight

✔ pre-trained된 ResNet 사용

```
def style extract(data):
                                                                                 ResNet(Residual neural network)?
    total arr = []
                                                                                 Skip connection 방식 사용
    label arr = []
                                                                                 => 깊이(layer)가 깊어졌을 때 발생하는 문제 해결
    resnet=Resnet().cuda()
    for idx, (image, label) in enumerate(data):
        i = image.cuda()
        i = i.view(-1,i.size()[0],i.size()[1],i.size()[2])
                                                                       ✓ 각 layer로 부터 feature map을 추출하여 Gram Matrix 계산
        style_target = list(GramMatrix().cuda()(i) for i in resnet(i))
✔ shape 조절 후 list에 array 저장
        arr = torch.cat([style_target[0].view(-1),style_target[1].view(-1),style_target[2].view(-1),style_target[3].view(-1)],0)
        gram = arr.cpu().data.numpy().reshape(1,-1)
        total arr.append(gram.reshape(-1))
        label arr.append(label)
        if idx % 50 == 0 and idx != 0:
          print(f'{idx} images style feature extracted..[{round(idx / len(data), 2) * 100}%]')
    print("\nImage style feature extraction done.\n")
    return total arr, label arr
```

```
def main():
✓ configuration & data load
    config = configInfo('config.json')
    data = WebtoonLoader().data
    img list, img list2 = imgList(data)
✔ pre-trained된 모델을 가져와 feature 정보 추출
    resnet = Resnet().cuda()
    for param in resnet.parameters():
        param.requires grad = False # 파라미터 업데이트 안 하도록 설정
    total arr, label arr = style extract(data)
✔ feature 행렬 차원 축소 (고차원 -> 2차원 => 시각화 가능)
    result = tsne(total arr, 2, 100)
                                                                               t-SNE?
    for i in range(len(result)):
                                                                               차원 축소 및 시각화에 널리 쓰이는 방법
        result[i,0],result[i,1]= np.atleast 1d(result[i,0], result[i,1])
```


✔ 가장 가까운 이웃 3개 계산

```
NN=NearestNeighbors(n_neighbors=4)
NN.fit(result)
distance, emoticon=NN.kneighbors([result[0]])
for idx in emoticon[0].tolist() :
    if idx != 0 :
        idx-=1
        print(config["idx_to_class"][str(idx)])
```


Test image

출력 결과

왼쪽 이모티콘 이미지(잔망루피 6)를 넣었을 때 가장 가까운 이웃 3개 출력

> 잔망 루피 5 잔망 루피 4 잔망 루피

✔ 시각화

```
for i in range(len(result)):
    img_path = img_list[i]
    imscatter(result[i, 0], result[i, 1], image=img_path, zoom=0.1) # zoom= 0.2 였음
    plt.savefig(config["visualization"]["title"])

if __name__ == '__main__':
    main()
```


결과

RGB Scale

- ✓ 색깔이 더 중요하게 반영되는 경향이 있음.
- ✓ 비슷한 그림체이지만 색깔이 다르면 잡아내지 못함.
- ✔ 직관적으로 납득이 가지 않는 부분이 존재함.

결과

Gray Scale

- ✔ 색깔을 더 중요하게 반영하는 문제를 해결함.
- ✔ 하지만, 그림체의 특징을 추출하는 성능이 저하함.
- ✔ 여전히 직관적으로 납득이 가지 않는 부분이 존재함.

방법 2. CLIP openai

CLIP

- ✔ 4억개의 **(이미지, 텍스트)** 쌍으로 학습한 모델
- ✓ Natural Language Supervision
- ✔ labeling 작업이 필요 없음.

CLIP

CLIP

- ✓ 4억개의 (이미지, 텍스트) 쌍으로 학습한 모델
- ✓ Natural Language Supervision
- ✔ labeling 작업이 필요 없음.
- ✔ CLIP 모델의 성능이 가장 높음.

CLIP

CLIP_Image Encoder

VIT(Vision Transformer)?

NLP 분야에서 사용하는 Transformer를 Image Classification 분야에 맞게 약간 변형

인코딩 결과 = 512차원 벡터

이미지를 Patch로 분할 후 Sequence로 입력 -> NLP에서 단어가 입력되는 방식과 동일함.

✓ load model

```
# 모델 불러오기 : Vision Transformer
model, preprocess = clip.load("ViT-B/32")
```

✔ 기존 이미지 특징 추출

```
image_input = torch.tensor(np.stack(images)).cuda()
with torch.no_grad():
    image_features = model.encode_image(image_input).float()
```

✔ 테스트 이미지 특징 추출

```
test_image_input = torch.tensor(np.stack(test_images)).cuda()
with torch.no_grad():
    test_image_features = model.encode_image(test_image_input).float()
```

✔ 코사인 유사도 계산

```
image_features /= image_features.norm(dim=-1, keepdim=True)
similarity = test_image_features.cpu().numpy() @ image_features.cpu().numpy().T
```


결과

Cosine Similarity between image feature

+ 투표 시스템

Code 및 결과

```
#투표용 리스트 생성
vote_list=[0] +50
# 각 사진에 대하며 유사도 값이 가장 높은 이모티콘 종류 K개 추출
                                                                      # 각 사진에서 가장 많은 표를 받은 미모티콘 선별
for i in range(similarity.shape[0]):
                                                                      result_list=[]
 max_list = []
                                                                      max_vote=max(vote_list)
 thumnails_list = []
                                                                      boundary=0
  similarity_list = similarity[i].reshape(-1).tolist()
                                                                      ✔ 3개보다 적으면 추가
  maxidx_list = heapq.nlargest(5, similarity_list)
                                                                      while len(result_list)< 3:
                                                                        limit=max(vote_list)-boundary
  for k in maxidx_list:
                                                                        for i in range(50):
   max_list.append(similaritv_list.index(k))
                                                                          if vote_list[i] == max_vote - boundary :
                                                                            result_list.append(thumnails_name[i])
  for i in max_list:
                                                                        boundary+=1
   vote_list[j]+=1
   thumnails_list.append(thumnails_name[j])
                                                                      print(result_list)
  print("추천", i+1, ":", thumnails_list)
```

[Output]

추천 1: ['문상훈 짤 모음', '문상훈 짤 모음 2', '곽튜브 짤 종합선물세트', '으른의 삶 늬에시', '베고미의 사회생활'] 추천 2: ['문상훈 짤 모음', '문상훈 짤 모음 2', '꾸버는 열일중', '으른의 삶 늬에시', '해피 댕댕이 커플 (몰티즈)'] 추천 3: ['문상훈 짤 모음', '문상훈 짤 모음 2', '곽튜브 짤 종합선물세트', '유용한 긍정멘트 32톡', '으른의 삶 늬에시'] ['문상훈 짤 모음', '문상훈 짤 모음 2', '으른의 삶 늬에시']

이미지 테이터 : 제언

- ✔ 방법 1 : t-SNE 차원 축소 전에 **고차원** feature map에서 유사도 계산하기
- ✔ 방법 1 : 유사도 계산 방식을 유클리드에서 코사인으로 계산하기
- ✔ 유사도 기반으로 이모티콘을 선별할 때 반영했으면 좋았을 것들
 - 사용자의 이모티콘 **데이터 기록 세분화** (얼마나 자주 사용 -> 가중치 적용 가능)
 - 이모티콘의 유사도 가중치 반영 (유사도에 따라 추천 투표에 어떤 가중치로 반영할지)
- ✔ 다른 방법 시도

: EfficientNetV2와 같은 ImageNet 데이터의 카테고리 분류를 위해 미리 학습된 모델을 바탕으로 실제 사용할 데이터에 대해 **파라미터 미세 조정(Fine Tuning)**하여 수행한 다음, **분류 레이어의 입력**으로 들어가는 보틀넥 피처를 이미지 임베딩으로 사용하는 방법

텍스트 데이터

KoBERT로 다중 분류 모델 만들기

감성분석 (Sentiment analysis)

- ✔ 감정에 맞게 이모티콘을 추천해주는 것이 주제이므로 <u>다중 분류 모델</u>로 학습
- ✔ 충분한 대화 데이터 셋 확보가 어려워 **사전 훈련이 된 모델** 사용
- ✔ 사전 학습 모델 중 한국어로 학습한 koBERT 모델이 성능이 가장 좋다.

표 1. NSMC를 활용한 성능비교

Table 1. Performance comparison using NSMC

Model	Test
Model	Acc(%)
LSTM(128 Layer)	85.79
Bidirectional LSTM(128 Layer)	84.67
1D-CNN(128 Layer)	84.72
BERT(Multilingul-cased)	87.00
KoBERT(SKTBrain)	89.59

데이터 수집(AI HUB)

- ✔ 1. 한국어 감정 정보가 포함된 단발성 대화 데이터셋
 - (https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100)
- ✔ 2. 한국어 감정 정보가 포함된 연속적 대화 데이터셋
 - (https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100)
- ✔ 3. 감성대화 말뭉치
 - (https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100)
- ✔ 4. 온라인 구어체 말뭉치 데이터
 - (https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=625)
- => **총 84MB 가량의 데이터**를 확보

데이터 전처리

```
# "놀람"에 해당하는 텍스트들이 "중립","혐오","당황" 등을 넘나들기 때문에 "놀람"에 해당하는 데이터들을 삭제한다.
```

```
keti_single=keti_single[keti_single["감정"]!="놀람"]
```

- ✔ 중복되는 감정 통합
- ✔ Json 파일에서 필요한 내용만 추출하여 정리
- ✔ 필요없는 column은 제거

데이터 증강

✔ 라벨링이 되지 않은 데이터를 ChatGPT API를 통해 라벨링 진행

"I want you to classify this text to '불안, 당황, 분노, 슬픔, 중립, 행복, 혐오', the text is '%sentence_input

=> **1.1MB**의 데이터 추가 확보

학습과정 - code

✔ pre-trained된 KoBERT + Fine tuning

☐ SKTBrain / KoBERT Public

#깃허브에서 KoBERT 파일 로드 !pip install git+https://git@github.com/SKTBrain/KoBERT.git@master

✔ kobert 학습모델 만들기

```
class BERTClassifier(nn.Module):
   def __init__(self,
                bert,
                hidden size = 768,
                                     ✔ 분류하려는 감정 갯수: 6개 => 6개 클래스로 분류
                num classes=6,
                dr rate=None,
                params=None):
       super(BERTClassifier, self). init ()
       self.bert = bert
       self.dr rate = dr rate
       self.classifier = nn.Linear(hidden size , num classes)
       if dr rate:
           self.dropout = nn.Dropout(p=dr rate)
```


학습 과정 및 결과 - 1

- ✔ 매 epoch마다 모델 학습 결과를 저장함.
- ✔ Epoch 3 이후 test acc 감소 -> 학습 중단

학습 결과 - 1

✔ 저장된 모델로 추론하는 것 결과 도출

→ 가장 acc가 높게 나온 epoch3의 모델 활용

하고싶은 말을 입력해주세요 : 피곤해 →> 입력하신 내용에서 슬픔이 느껴집니다.

하고싶은 말을 입력해주세요 : 학습이 잘된 것 같아 >> 입력하신 내용에서 행복이 느껴집니다.

하고싶은 말을 입력해주세요 : 이 카페의 노래가 좋아 >>> 입력하신 내용에서 행복이 느껴집니다.

하고싶은 말을 입력해주세요 : 난 더운게 싫어 >> 입력하신 내용에서 중립이 느껴집니다.

하고싶은 말을 입력해주세요 : 난 모기가 싫어 >>> 입력하신 내용에서 <mark>중립이</mark> 느껴집니다.

하고싶은 말을 입력해주세요 : 쓰레기 치우는 건 귀찮아 >> 입력하신 내용에서 분노가 느껴집니다.

학습 방법 보안

- ✔ '혐오'의 경우 잘 드러나지 않았다. -> 분노에 통합
- ✔ test acc가 0.7정도로 train acc에 비해 낮았다
- ✔ 행복데이터를 기준으로 데이터 비율 재수정 후 2차학습 진행

1차 학습 데이터

중립 48616 슬픔 27517 분노 19710 불안 15999 당황 14670 행복 14406 혐오 5649

Name: 감정, dtype:

int64

중립 25000 분노 15332 불안 15000 슬픔 15000 당황 14667 행복 14098

Name: 감정,dtype:

int64

학습 과정 및 결과 - 2

- ✔ Epoch 3이후 test acc 감소
- ✔ 매 Epoch마다 모델 학습 결과를 저장함

```
Epoch 1 test acc 0.7000545662416852
```

Epoch 2 test acc 0.7397681451612903

Epoch 3 test acc 0.7405745967741936

Epoch 4 test acc 0.7316853005865103

Epoch 5 test acc 0.7306525301023401

Epoch 6 test acc 0.7171611696230599

Epoch 7 test acc 0.7202965631929047

Epoch 8 test acc 0.7160660338137472

Epoch 9 test acc 0.7051041089246121

학습 결과 - 2

- ✔ 저장된 모델로 추론하는 것 결과 보이기
 - -> 가장 acc가 높게 나온 epoch3의 모델 활용

하고싶은 말을 입력해주세요 : 머제 저녁에 먹은 치킨 e o 개맛있었음 존맛탱행복

한고싶은 말을 입력해주세요 : 과제 증발해버림;;; 내 학점도 같이 증발할 듯
한고싶은 말을 입력해주세요 : 미친 교수님이 과제를 또 주셨어 개오바

한고싶은 말을 입력해주세요 : 어제 부모님과 싸웠어.. 너무 속상하다슬픔

하고싶은 말을 입력해주세요 : 밥 먹었어?

한계점

- ✔ 데이터 비율이 고르지 못했다.
- ✔ ChatGPT로 데이터 증강을 시도했으나, 과연 잘 된 것인지 검증을 하지 못했던 점.
- ✔ 이모티콘 라벨링 과정에서 부정적인 감정이 별로 없었다.

이모티콘 추천 시스템 결과

결론: OI모EI콘 추천 결과 예시1

사용자의 이모티콘 사용 경향 : 실사 인물 형태의 이모티콘

1. 그림체 기반 필터링

추천 1 : ['문상훈 짤 모음', '문상훈 짤 모음 2', '곽튜브 짤 종합선물세트', '으른의 삶 늬에시', '베고미의 사회생활'] 추천 2 : ['문상훈 짤 모음', '문상훈 짤 모음 2', '꾸버는 열일중', '으른의 삶 늬에시', '해피 댕댕이 커플 (몰티즈)'] 추천 3 : ['문상훈 짤 모음', '문상훈 짤 모음 2', '곽튜브 짤 종합선물세트', '유용한 긍정멘트 32톡', '으른의 삶 늬에시'] ['문상훈 짤 모음', '문상훈 짤 모음 2', '으른의 삶 늬에시']

결론: OI모EI콘 추천 결과 예시1

input : "너 너무 사람 킹받게 하는 것 같아."

```
sentence = input("하고싶은 말을 입력해주세요 : ")
sentiment=predict(sentence)
print(sentiment)
sentiment_filtering=style_filtering[style_filtering['감정']==sentiment]
```

하고싶은 말을 입력해주세요 : 너 너무 사람 킹받게 하는 것 같아 분노

output:

결론 : OI모EI콘 추천 결과 예시2

사용자의 이모티콘 사용 경향 : 실사 인물 형태의 이모티콘

1. 그림체 기반 필터링

추천 1 : ['으른의 삶 늬에시', 'GO라니', 'GO라니 2', '먼작귀2탄~먼가작고귀여운녀석~(치이카와)', '업티콘 존댓말로 업업업!'] 추천 2 : ['으른의 삶 늬에시', 'GO라니 2', '해피 댕댕이 커플 (몰티즈)', 'GO라니', '꾸버는 열일중'] 추천 3 : ['오늘의 짤 #희노애짤', '으른의 삶 늬에시', 'GO라니 2', '꾸버는 열일중', 'GO라니'] ['GO라니', '으른의 삶 늬에시', 'GO라니 2']

결론 : OI모EI콘 추천 결과 예시2

input: "ㅋㅋㅋ 문상훈 폼 미쳤다"

하고싶은 말을 입력해주세요 : ㅋㅋㅋ 문상훈 폼 미쳤다 /usr/local/lib/python3.9/dist-packages/torch/utils/data/dataloader.py:55 assert self._num_workers == 0 행복

output:

<u>결론</u>: 01모EI콘 추천 결과 예시3

사용자의 이모티콘 사용 경향 : 동물 형태의 이모티콘

1. 그림체 기반 필터링

추천 1 : ['자신감 급상승 ! 냠냠이의 하루!', '꼬물꼬물 따랑해 2 (곰식이 ver)', '망그러진 곰 5', '안녕! 나는 익명이고 쪼금 쭈글해', '해피 댕댕이 커플 (리트리버)']

추천 2 : ['안녕! 나는 익명이고 쪼금 쭈글해', '망그러진 곰 5', '시고르 리트리버 댕댕라이프', '빈티지 고양이 3', '꾸버는 열일중'] 추천 3 : ['댕잘어울리는 댕댕이 (분댕이 ver)', '깜자라고해', '망그러진 곰 5', '댕잘어울리는 댕댕이 (파댕이 ver)', '자신감 급상승 ! 냠냠이의 하루!'] ['망그러진 곰 5', '안녕! 나는 익명이고 쪼금 쭈글해', '자신감 급상승 ! 냠냠이의 하루!']

결론 : OI모EI콘 추천 결과 예시3

input : "나 오늘 남자친구한테 차였어. 나는 아직 사랑하는데 내가 싫대. 눈물이 안멈춰"

하고싶은 말을 입력해주세요 : 나 오늘 남자친구한테 차였어. 나는 아직 사랑하는데 내가 싫대. 눈물이 안 멈춰 슬픔

output:

감사합니다