

Introduction to Recommendation Systems: From Basics to Advanced Techniques

Explore the world of recommendation systems that power personalized experiences across digital platforms.

MUKESH KUMAR

What are Recommendation Systems?

Definition

Algorithms that suggest relevant items to users based on their behavior or preferences.

Why We Need Them

They help users navigate overwhelming choices in the digital world.

Key Benefits

- Enhanced personalization
- Increased user engagement
- Higher conversion rates

Real-World Applications

Entertainment

Netflix suggests movies based on viewing history and preferences.

E-Commerce

Amazon recommends products based on browsing and purchase patterns.

Music

Spotify creates personalized playlists reflecting your listening habits.

Content

YouTube and news sites customize content feeds to match interests.

Recommended for you

Rassed for you

Reseed for you

Bassed on you

Baseed for you

Personalized vs. Non-Personalized Systems

Non-Personalized

- Same for all users
- "Top Trending" items
- Simple implementation
- No user data required

Personalized

- Tailored to individuals
- Based on user history
- Enhances relevance
- Requires data collection

Types of Recommendation Systems

Hybrid Systems

Combines multiple approaches for better accuracy

Collaborative Filtering

Based on user similarity and behavior patterns

Content-Based Filtering

Recommends similar items based on features

Collaborative Filtering: The Concept

Suggest items liked by similar users

User-Based vs. Item-Based Approaches

User-Based

Find similar users and recommend what they liked

- Creates user-user similarity matrix
- Works well with stable preferences

Item-Based

Find similar items to what users already liked

- Creates item-item similarity matrix
- More stable with large item catalogs

How Collaborative Filtering Works: An Example

1 2 3

User A likes Movies X, Y

These preferences create a user profile.

User B likes X, Y, Z

System identifies B as similar to A.

Recommend Z to A

A hasn't seen Z but will likely enjoy it.

Algorithms Behind Collaborative Filtering

Cosine Similarity

Measures angle between user vectors in multidimensional space.

Pearson Correlation

Evaluates linear relationships between user preferences.

k-Nearest Neighbors

Finds k most similar users or items.

Matrix Factorization

Reduces dimensionality to uncover hidden features.

Home

Explore

Settings

as

Help

Welcome! We're stille learning your prefereces - discover something new.

The Cold Start Problem

S+ — User Cold Start

New users have no preference history to base recommendations on.

Item Cold Start

New items have no ratings or interaction data available.

Solution: Hybrid Approaches

Combine collaborative filtering with content-based methods.

Solution: Onboarding Questionnaires

Collect initial preferences to kickstart the recommendation process.