Foundations of Machine Learning CentraleSupélec — Fall 2016

3. Model evaluation & selection

Chloé-Agathe Azencott

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr

Practical matters

Scribes

- One person signed up for today. Anyone wants to assist her?
- Two people signed up for next week. Congrats!
- No one signed up after that.

Generalization error vs. model complexity

Generalization error vs. model complexity

Model selection & generalization

Well-posed problems:

- a solution exists;
- it is unique;

- Hadamard, on the mathematical modelisation of physical phenomena.
- the solution changes continuously with the initial conditions
- Learning is an ill-posed problem:

data helps carve out the hypothesis space but data is not sufficient to find a unique solution.

Need for inductive bias

assumptions about H

model selection: choose the "right" inductive bias?

How do we decide a model is good?

Learning objectives

After this lecture you should be able to

design experiments to select and evaluate supervised machine learning models.

Concepts:

- training and testing sets;
- cross-validation;
- bootstrap;
- measures of performance for classifiers and regressors;
- measures of model complexity.

Supervised learning setting

Training set:

$$\mathcal{D} = \{\boldsymbol{x}^i, y^i\}_{i=1,\dots,n}$$

- Classification: $y^i \in \{0, 1\}$
- Regression: $y^i \in \mathbb{R}$
- Goal: Find f, θ such that $f(x^i|\theta)$ approximates yi.
- Empirical error of f on the training set, given a loss:

$$E(f|\mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} L(\{y^i\}, \{f(\mathbf{x}^i|\theta)\})$$

– E.g. (classification) $^{i=1}$

$$L(\lbrace y^i \rbrace, \lbrace f(\boldsymbol{x}^i | \theta) \rbrace) = 1_{y^i \neq f(\boldsymbol{x}^i | \theta)}$$

- E.g. (regression) $L(\{y^i\},\{f(\boldsymbol{x}^i|\theta)\}) = \left(y^i - f(\boldsymbol{x}^i|\theta)\right)^2$

Validation sets

 Choose the model that performs best on a validation set separate from the training set.

Training

Validation

- Model selection: pick the best model.
- Model assessment: estimate its prediction error on new data.

Training Validation Test

- How much data should go in each of the training, validation and test sets?
- How do we know we have enough data to evaluate the prediction and generalization errors?

Sample re-use

- cross-validation
- bootstrap

Analytical tools

- Mallow's Cp, AIC, BIC
- MDL
- SRM.

Sample re-use

Cross-validation

- Cut the training set in k separate folds.
- For each fold, train on the (k-1) remaining folds.

Validation	Training		
	Validation	Training	
Training		Validation	
	Training		Validation

Cross-validated performance

Cross-validation estimate of the prediction error

$$CV(f) = \frac{1}{n} \sum_{i=1}^{n} L(y^i, f_{k(i)}(\boldsymbol{x}^i))$$

Computed with the k(i)-th part of the data removed. k(i) = fold in which i is.

Estimates the expected prediction error

$$\operatorname{Err} = \mathbb{E}[L(Y, f(X))]$$

Y, X: (independent) test sample

Issues with cross-validation

• Training set size becomes (K-1)n/K

Why is this a problem?

Issues with cross-validation

- Training set size becomes (K-1)n/K
 - small training set ⇒ biased estimator of the error
- Leave-one-out cross-validation: K = n
 - approximately unbiased estimator of the expected prediction error
 - potential high variance (the training sets are very similar to each other)
 - computation can become burdensome (n repeats)
- In practice: set **K** = **5** or **K** = **10**.

Bootstrap

- Randomly draw datasets with replacement from the training data
- Repeat B times (typically, B=100) ⇒ B models
- Leave-one-out bootstrap error:
 - For each training point i, predict with the b_i < B models that did not have i in their training set
 - Average prediction errors
- What is the size of the training sets?

Bootstrap

- Randomly draw datasets with replacement from the training data
- Repeat B times (typically, B=100) ⇒ B models
- Leave-one-out boostrap error:
 - For each training point i, predict with the b_i < B models that did not have i in their training set
 - Average prediction errors
- Each training set contains 0.632 n examples
 - ⇒ same issue as with cross-validation

$$Pr(i \in X_k) = 1 - (1 - \frac{1}{n})^n \qquad e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

$$\sim 1 - e^{-1}$$

$$= 0.632$$

Evaluating model performance

Classification model evaluation

Confusion matrix

		True	True class		
		-1	+1		
Predicted class	-1	True Negatives	False Negatives		
	+1	False Positives	True Positives		

- False positives (false alarms) are also called type I errors
- False negatives (misses) are also called type II errors

Sensitivity = Recall = True positive rate (TPR)

$$TPR = \frac{TP}{TP + FN}$$
 # positives

Specificity = True negative rate (TNR)

$$TNR = \frac{TN}{FP + TN}$$

Precision = Positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$
 # predicted positives

False discovery rate (FDR)

$$FDR = \frac{FP}{FP + TP}$$

Accuracy

$$Acc = \frac{TP + TN}{TP + FN + FP + TN}$$

 F1-score = harmonic mean of precision and sensitivity.

$$F1 = \frac{2TP}{2TP + FP + FN}$$

Example: Pap smear

- 4,000 apparently healthy women of age 40+
- Tested for cervical cancer through pap smear and histology (gold standard)

	Cancer	No cancer	Total
Positive test	190	210	400
Negative test	10	3590	3600
Total	200	3800	4000

What are the sensitivity, specificity, and PPV of the test?

• Sensitivity = Recall = True positive rate (TPR)

$$TPR = \frac{TP}{TP + FN}$$

Specificity = True negative rate (TNR)

$$TNR = \frac{TN}{FP + TN}$$

Precision = Positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

	Cancer	No cancer	Total
Positive test	190	210	400
Negative test	10	3590	3600
Total	200	3800	4000

• In this population:

	Cancer	No cancer	Total
Positive test	190	210	400
Negative test	10	3590	3600
Total	200	3800	4000

- **Prevalence** of the disease = 200/4000 = 0.05
- P(cancer | positive test) = PPV = 47.5 %
- P(no cancer | negative test) = 3590/3600 = 99.7 %
- Poor diagnosis tool
- Good screening tool

- ROC = Receiver-Operator Characteristic.
- Summarized by the area under the curve (AUROC).

- ROC = Receiver-Operator Characteristic.
- Summarized by the area under the curve (AUROC).

- ROC = Receiver-Operator Characteristic.
- Summarized by the area under the curve (AUROC).

- ROC = Receiver-Operator Characteristic.
- Summarized by the area under the curve (AUROC).

28

Predicting breast cancer risk based on mammography images, SNPs, or both.

Liu J, Page D, Nassif H, et al. (2013). **Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms.** *AMIA Annual Symposium Proceedings.* 876-885.

Sensitivity = **Recall** = True positive rate (TPR)

$$TPR = \frac{TP}{TP + FN}$$

Specificity = True negative rate (TNR)= 1 - FPR

$$TNR = \frac{TN}{FP + TN}$$

- Which method outperforms the others?
- Is a low FPR or high TPR preferable in a clinical setting?

Predicting breast cancer risk based on mammography images, SNPs, or both.

Liu J, Page D, Nassif H, et al. (2013). **Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms.** *AMIA Annual Symposium Proceedings.* 876-885.

Sensitivity = **Recall** = True positive rate (TPR)

$$TPR = \frac{TP}{TP + FN}$$

Specificity = True negative rate (TNR)= 1 - FPR

$$TNR = \frac{TN}{FP + TN}$$

High recall = fewer chances to miss a case

High specificity / low FPR = fewer false alarms

Precision-Recall curves

Predicting breast cancer risk based on mammography images, SNPs, or both.

Liu J, Page D, Nassif H, et al. (2013). **Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms.** *AMIA Annual Symposium Proceedings.* 876-885.

Sensitivity = Recall = True positive rate (TPR)

$$TPR = \frac{TP}{TP + FN}$$

Precision = Positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

- Which method has the highest area under the PR curve?
- Is a high recall or high precision preferable in a clinical setting?

Predicting breast cancer risk based on mammography images, SNPs, or both.

Liu J, Page D, Nassif H, et al. (2013). **Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms.** *AMIA Annual Symposium Proceedings.* 876-885.

PR Curve

Sensitivity = Recall = True positive rate (TPR)

$$TPR = \frac{TP}{TP + FN}$$

Precision = Positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

High recall = fewer chances to miss a case

High precision = substantially more true diagnoses than false alarms

Regression model evaluation

Root-mean squared error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y^i - f(\boldsymbol{x}^i | \boldsymbol{\theta}))^2}$$

Relative squared error

$$E_{RSE} = \frac{\sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}|\theta))^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

• Coefficient of determination $R^2 = 1 - E_{RSE}$

- Residual sum of squares $RSS = \sum_{i=1}^{n} (y^i - f(\boldsymbol{x}^i|\boldsymbol{\theta}))^2$

Analytical tools and model complexity

Penalizing model complexity

augmented error:

 $E' = empirical error + \lambda model complexity$

- If λ is small, models that fit the training data well are encouraged (risk of introducing variance).
- If λ is large, simpler models are encouraged (risk of introducing bias).
- $-\lambda$ can be set by cross-validation
- in some cases (cf Chap. 6), it is possible to estimate E' for all values of λ

Cp, AIC and BIC

augmented error:

E' = empirical error + optimism term

The optimism term estimates the discrepancy between training and test error without any need for cross-validation:

- Mallow's Cp (Linear regression + squared error)

empirical error

parameters used

estimate of the error variance

- Akaike's Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

Minimum description length (MDL)

- Shortest code to transmit a random variable z
 - log P(z) [Shannon's information theory]
- Assume receiver knows inputs X, model f.

To transmit outputs Y, need

average code length to transmit the difference between model prediction and true outputs.

Choose model with smallest length.

Structural risk minimization (SRM)

- Fit a nested sequence of models of increasing VC dimensions h1 < h2 < ...
- Pick the one with lower bound on test error

E.g. Regression: with probability at least $(1 - \eta)$,

Summary: model selection techniques

- Cross-validation: estimate generalization accuracy empirically
- Regularization: Penalize complex models

```
E' = empirical error + \lambda model complexity
Mallow's Cp, Akaike's / Bayesian Information Criteria
```

Minimum description length (MDL)

```
Kolmogorov complexity = shortest description of data [Information theory]
```

Structural risk minimization (SRM)

```
Order models by complexity polynomes of ↗ degree; ↗ values of λ
```

Bayesian model selection

ML Toolboxes

Python: scikit-learn

http://scikit-learn.org

R: Machine Learning Task View

http://cran.r-project.org/web/views/MachineLearning.html

Matlab™: Machine Learning with MATLAB

http://fr.mathworks.com/machine-learning/index.html

- Statistics and Machine Learning Toolbox
- Neural Network Toolbox

Getting started with Python

I highly recommend http://scipy-lectures.github.io/

This document

Tutorial material on the scientific Python ecosystem, a quick introduction to central tools and techniques. The different chapters each correspond to a 1 to 2 hours course with increasing level of expertise, from beginner to expert.

Authors

What's new

Scipy-Lecture-Notes

License

Download

- PDF, 2 pages per side
- PDF, 1 page per side
- HTML and example files
- Source code (github)

1. Getting started with Python for science

- ▶ 1.1. Scientific computing with tools and workflow
- ▶ 1.2. The Python language
- ▶ 1.3. NumPy: creating and manipulating numerical data
- ▶ 1.4. Matplotlib: plotting
- ▶ 1.5. Scipy: high-level scientific computing
- 1.6. Getting help and finding documentation

2. Advanced topics

- ▶ 2.1. Advanced Python Constructs
- ▶ 2.2. Advanced Numpy
- ▶ 2.3. Debugging code
- ▶ 2.4. Optimizing code
- ▶ 2.5. Sparse Matrices in SciPy
- ▶ 2.6. Image manipulation and processing using Numpy and Scipy
- ▶ 2.7. Mathematical optimization: finding minima of functions

References

• Linear algebra:

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/

- Statistics & probabilities:
 - Probability theory: A primer (Jeremy Kun)
 http://jeremykun.com/2013/01/04/probability-theory-a-primer/
 - Probability Primer (Jeffrey Miller)
 https://www.youtube.com/playlist?list=PL17567A1A3F5DB5E4
- More on entropy encoding: http://lesswrong.com/lw/o1/entropy_and_short_codes/
- Textbook:

The Elements of Statistical Learning
Hastie, Tibshirani, Friedman (2009)
http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html

Practical matters

- Make sure you have handed in HW1
- HW2 is online, due Sep. 21

Lab

https://github.com/chagaz/ma2823 2016