TEA-013 Matemática Aplicada II

Prof. Nelson Luís Dias (Lemma/Dep Eng Ambiental, Centro Politécnico) nldias@ufpr.br

Ensalamento e Horário 2as 4as 6as sala PM-02 07:30--09:10

Objetivos Didáticos

A Disciplina TEA013 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos analíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, espaços vetoriais normados, séries de Fourier e transformadas de Fourier, assim como diversas técnicas numéricas e analíticas de solução de equações diferenciais parciais. Essas técnicas são ilustradas com problemas em Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, enfatizando-se a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

Unidades Didáticas

1	Solução numérica de equações diferenciais parciais
2	Análise linear, sistemas lineares em Engenharia
3	Séries e Transformadas de Fourier.
4	Teoria de Distribuições. Funções de Green e Identidades de Green em Engenharia: Hidrógrafa Unitária Instanânea, Problemas de Dispersão de Poluentes.
5	Teoria de Sturm-Liouville e algumas funções especiais adicionais (Legendre, Laguerre, Hermite). Importância da teoria no método de separação de variáveis para equações diferenciais parciais.
6	Equações Diferenciais Parciais: problemas lineares e não-lineares em escoamentos na atmosfera, nos oceanos, em rios e no solo, e problemas de dispersão de poluentes. Classificação e o método das características. Solução por separação de variáveis, transformadas integrais e transformada de Boltzmann.

Programa

Aula	Data	Conteúdo	Progresso
1	2ª 31/01/2022	Diferenças finitas: método explícito para a equação de	Diferenças finitas: método explícito para a equação de
1	2 31/01/2022	advecção. Fracasso do método. Explicação: instabilidade numérica.	advecção. Fracasso do método. Explicação: instabilidade numérica.
2	4ª 02/02/2022	Análise de estabilidade de von Neumann. Método de Lax. Número de Courant, condição de Courant. Difusão Numérica. Esquemas numéricos para advecção: Upwind.	Análise de estabilidade de von Neumann. Método de Lax. Número de Courant, condição de Courant. Difusão Numérica. Esquemas numéricos para advecção: Upwind.
3	6ª 04/02/2022	Difusão pura. Esquema implícito. Condição de estabilidade. Esquema implícito: programação matricial e slicing com Numpy.	Exemplo 13.1. Difusão pura. Solução analítica. Esquema explícito. Condição de estabilidade.
4	2ª 07/02/2022	Esquema implícito: programação matricial e slicing com Numpy. Difusão pura. Crank-Nicholson. A equação de difusão-advecção.	Esquema implícito: programação matricial e slicing com Numpy. Difusão pura. Crank-Nicholson.
5	4ª 09/02/2022	A delta de Dirac. Cálculo com Distribuições.	A delta de Dirac. Cálculo com Distribuições.
6	6ª 11/02/2022	Distribuições: resultados adicionais e aplicações.	Distribuições: resultados adicionais e aplicações.
7	2ª 14/02/2022	P1A	P1A
8	4ª 16/02/2022	Espaços normados: produto interno.	Espaços normados: produto interno.
9	6ª 18/02/2022	Espaços normados: desigualdade de Schwarz e aplicações	Espaços normados: desigualdade de Schwarz e aplicações
10	2ª 21/02/2022	Espaços normados: espaços vetoriais de dimensão infinita. Séries de Fourier: Conceitos gerais e cálculo dos termos complexos.	Espaços normados: espaços vetoriais de dimensão infinita. Séries de Fourier: Conceitos gerais e cálculo dos termos complexos.
11	4ª 23/02/2022	Séries de Fourier: série real e complexa. Funções pares e ímpares.	Séries de Fourier: série real e complexa.
12	6ª 25/02/2022	P1B/Entrega da Lista 1: Todos os exercícios do Capítulo 13 (Exceto os Trabalhos Computacionais) – 3 horas-aula	
	2ª 28/02/2022	Carnaval	
	4ª 02/03/2022	Carnaval	
13	6ª 04/03/2022	Exemplos com séries de Fourier.	Funções pares e ímpares. Exemplos com séries de Fourier.
14	2ª 07/03/2022	Desigualdade de Bessel e Igualdade de Parseval.	Desigualdade de Bessel e Igualdade de Parseval. Introdução aos mínimos quadrados.
15	4ª 09/03/2022	Mínimos quadrados. Transformada de Fourier. Teorema da Inversão.	Mínimos quadrados.
16	6ª 11/03/2022	P2A	P2A
17	2ª 14/03/2022	Transformada de Fourier: Cálculo de transformadas.	Transformada de Fourier: Teorema da Inversão e Cálculo de transformadas.
18	4ª 16/03/2022	Transformada de Fourier da derivada e aplicação à solução de EDO's e EDP's. Propriedades da Transformada de Fourier: derivada, teorema da convolução. Inversa.	Propriedades da Transformada de Fourier: derivada, teorema da convolução. Inversa.
19	6ª 18/03/2022	P2B/P1B/Entrega da Lista 2: Todos os exercícios do Capítulo 14 – 3 horas-aula	P2B/P1B/Entrega da Lista 2: Todos os exercícios do Capítulo 14 – 3 horas-aula
20	2ª 21/03/2022	Operador Adjunto. Operador auto-adjunto. Matriz adjunta. Operadores diferenciais.	Transformada de Fourier da derivada e aplicação à solução de EDO's e EDP's.
		J	
21	4ª 23/03/2022	Funções de Green.	Teorema de Parseval. Operador Adjunto.
21 22	4ª 23/03/2022 6ª 25/03/2022		Teorema de Parseval. Operador Adjunto. Operador auto-adjunto. Matriz adjunta. Funções de Green.
		Funções de Green.	1 1
22	6ª 25/03/2022	Funções de Green. Teoria de Sturm-Liouville	Operador auto-adjunto. Matriz adjunta. Funções de Green.
22	6 ^a 25/03/2022 2 ^a 28/03/2022	Funções de Green. Teoria de Sturm-Liouville Teoria de Sturm-Liouville: aplicações Equações diferenciais parciais: aplicações em	Operador auto-adjunto. Matriz adjunta. Funções de Green. Funções de Green
22 23 24	6° 25/03/2022 2° 28/03/2022 4° 30/03/2022	Funções de Green. Teoria de Sturm-Liouville Teoria de Sturm-Liouville: aplicações Equações diferenciais parciais: aplicações em Engenharia. Método das características.	Operador auto-adjunto. Matriz adjunta. Funções de Green. Funções de Green Funções de Green. Teoria de Sturm-Liouville.

28	6ª 08/04/2022	P3B Entrega da Lista 3: Todos os exercícios do Capítulo 15 – 3 horas-aula	
29	2ª 11/04/2022	O método de separação de variáveis: a equação da difusão.	
30	4ª 13/04/2022	O método de separação de variáveis. A equação de Boussinesq não-linear e sua solução.	
	6ª 15/04/2022	Feriado: Paixão de Cristo	
31	2ª 18/04/2022	Difusão em coordenadas cilíndricas: uso de funções de Bessel.	
32	4ª 20/04/2022	Equação de Laplace: solução por separação de variáveis.	
33	6ª 22/04/2022	Equação de Laplace: aplicações.	
34	2ª 25/04/2022	Equação da onda: solução por separação de variáveis.	
35	4ª 27/04/2022	Método das características: solução de d'Alembert para a equação da onda. Difusão em coordenadas cilíndricas: uso de funções de Bessel.	
36	6ª 29/04/2022	P4A	
37	2ª 02/05/2022	Equação de Laplace: solução por separação de variáveis.	
38	4ª 04/05/2022	Equação da onda: solução por separação de variáveis. Método das características: solução de d'Alembert para a equação da onda.	
39	6ª 06/05/2022	P4B	
	2ª 09/05/2022	F1	
	6ª 13/05/2022	F2	

Avaliação

A disciplina é semestral. A avaliação da disciplina é contínua: haverá 8 exames parciais (P1A, P1B, P2A, P2B, P3A, P3B, P4A, P4B), seguidos de dois exames finais final FA e FB. Para efeito de cálculo de médias e aprovação, será considerada a maior nota entre as versões A e B de cada prova. Os alunos poderão solicitar revisão de prova durante 3 dias úteis após a promulgação da nota. Após esse prazo, não será concedida nenhuma revisão. As soluções são disponibilizadas eletronicamente em https://www.nldias.github.io, juntamente com as notas.

A média parcial, P, será P = (P1+P2+P3+P4). O resultado parcial é: Alunos com P < 40 estão reprovados. Alunos com P \geq 70 estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M = P. Alunos com $40 \leq P < 70$ farão o exame final F . Calcula-se a média final M = (P + F)/2. Alunos que obtiverem M \geq 50 estão aprovados. Alunos com M < 50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima.

Textos para estudo

O texto adotado para este curso é https://nldias.github.io/pdf/matappa-2ed.pdf Um bom material adicional para métodos numéricos é Versteeg e Malalasekera [2007]. O livro de Michael Greenberg [Greenberg, 1998] permanece sendo, provavelmente, um dos melhores textos de matemática aplicada existentes, e é recomendado como material adicional. Além disso, nele você encontrará uma grande quantidade de exercícios adicionais que complementam os exercícios resolvidos e propostos no livro texto.

Estudo individual

Reserve pelo menos 6 horas semanais para o estudo em casa desta disciplina. Leia a teoria no livro, evitando pular direto para exemplos e exercícios. Digite e rode os exemplos computacionais; faça os trabalhos computacionais individualmente, e não deixe para a última

hora. Entenda a teoria, principalmente as deduções. Essa é a única maneira de estudar e entender matemática. Evite estudar apenas pelo caderno. Procure depois fazer o maior número possível de problemas, mas cuidado: evite fazer problemas apenas sobre uma parte da matéria. Planeje cuidadosamente seu tempo de estudo para que você consiga fazer exercícios sobre toda a matéria.

Referências

Butkov, E. (1988). Física matemática. Guanabara Koogan, Rio de Janeiro.

Dias, N. L. (2017). Uma introdução aos métodos matemáticos para Engenharia. Edição do Autor, Curitiba, PR: https://nldias.github.io/pdf/matappa-2ed.pdf .

Greenberg, M. D. (1998). Advanced engineering mathematics. Prentice Hall, Upper Saddle River, New Jersey 07458, 2a edição.

Versteeg, H. K. e Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Prentice-Hall.