

Page de signatures électroniques / Electronic Signatures Page

Information Documentaire / Document Information

Titre / Title: SPACEBUS 4100C GENERAL DESIGN CONTROL AND INTERFACE SPEC

Auteur / Author Leportier Denis Reference \$000330 3/-

This document has been digitally signed. To verify signatures validity, please refer to procedure and tools available on web site http://www.pki.as-b2b.com/.

By default, signatures validity is unknown and the ? icon is present on each signature. When signatures are verified and valid, the ? icon disappears.

Page laissée blanche intentionnellement

Blank page intentionally left

DATE: 21/02/06

ISSUE: 03 **Page:** 1/94

General Design, Control and Interface Specification (GDCIS) electrical part applicable for Units of the repeater and the TTC-RF

<i>Written by/</i> Rédigé par	<i>Responsibility/</i> Responsabilité	
M. DE JAEGER	Standardization Manager	
JC. POURTAU	EMC Manager	
<i>Verified by/</i> Vérifié par		
JF. TINE	Standard Payload Engineering Manager	
Approved/Approbation		
M. AUZAS	Payload Product Assurance Manager	
J. BELMONT	Director Payload Engineering Department	
Po JF.TINE		
M. BEHAMOU	Spacebus Technical Manager	

Emitting entity:

The approval evidence are kept by the activity documentation manager/ Les preuves des approbations sont conservées par le gestionnaire de l'activité

DATE: 21/02/06

ISSUE: 03 **Page:** 2/94

DOCUMENT CHANGE RECORDS

Issue	Date	§ : DESCRIPTION DES EVOLUTIONS § : CHANGE RECORD	REDACTEUR AUTHOR
03	21.02.06	Updated complete after DOORS document conversion	M. DE JAEGER

DATE: 21/02/06

ISSUE: 03 **Page:** 3/94

REQUIREMENT CHANGE RECORDS

DATE:

21/02/06

ISSUE:

03

Page: 4/94

TABLE OF CONTENTS

1.	INT	RODUCTION	7
2.	APP	PLICABLE AND REFERENCE DOCUMENTS	8
	2.1	Applicable documents	8
	2.2	Reference documents	ε
	2.3	ACRONYMS, SYMBOLS AND ABBREVIATIONS	9
3.	GEN	NERAL SPECIFICATIONS	12
	3.1	Engineering specifications	12
	3.2	Lifetime	12
	3.3	Delivery	12
	3.4	Redundancy rules	12
	3.5	Single point failure	13
	3.6	Test points	13
4.	ELEC	CTRICAL ARCHITECTURE REQUIREMENTS	14
	4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Grounding Solutions	14 16 18 19
	4.2 4.2.1 4.2.2 4.2.3	O .	19
	4.3	Paints and coatings characteristics	20
	4.4 4.4.1 4.4.2 4.4.3 4.4.4	Connector characteristics	20 21 21

DATE: 21/02/06

ISSUE: 03 **Page:** 5/94

5.	POV	VER SUBSYSTEM INTERFACES REQUIREMENTS	23
	5.1	Power Bus Definition	23
	5.2	Power bus nominal voltage	23
	5.3	Power bus operational voltage	24
	5.4	Equipment operating requirements	24
	5.5 5.5.1	Distribution requirements	
	5.5.2	·	
	5.6	Load current limitation	25
	5.7	Fuses	26
6.	SIG1	NAL LINE INTERFACE REQUIREMENTS	27
	6.1	Conventions	27
	6.2	Command interface	27
	6.2.1		
	6.3 6.3.1	Telemetry interface	
	6.3.2	, ,,	
	6.3.3		
	6.3.4	Digital switch closure channel telemetry	42
	6.4 6.4.2	TCR RF interfaces TRANSCEIVER TM video signals	
	6.5	Data Bus interfaces	
		OBDH - 485	
7.	EMC	Z/ESD PERFORMANCE REQUIREMENTS	52
	7.1	Purpose	52
	7.2	E-field and H-field RE and RS requirements	52
	7.2.1		
	7.2.2	Radiated Susceptibility (RS) requirements	55
	7.3	Repeater and TTC/RF passive units sheilding efficiency	57
	7.4	Susceptibility to Electrostatic Discharges	
	7.4.1 7.4.2	9	
	7.5	Primary power lines CE and CS requirements	58

DATE:

21/02/06

ISSUE:

03

Page: 6/94

7.6 S		58
	econdary power lines CE and CS requirements	
7.6.1	Conducted Emissions on Secondary Power Bus	
7.6.2	Conducted susceptibility on Secondary lines	74
7.7 Si	gnal lines CE and CS requirements	75
7.7.1	TMTC lines	75
7.7.2	DATA HANDLING bus	79
7.8 G	eneral test conditions:	82
7.8.1	- Measurement tolerances	82
7.8.2	Ambient electromagnetic level	83
7.8.3	- Shielded enclosures	83
7.8.4	Other test sites	
7.8.5	Ground plane	
7.8.6	DUT test configurations	
7.8.7	Operation of DUT	
7.8.8	Detector	
7.8.9	Emission testing	
7.8.10	Susceptibility testing	
7.8.11	LISN specification.	
Figure 4.1.	I: Basic philosophy for Distributed Single Grounding Concept	
		1.5
	2: Grounding of a unit secondary reference point via a bonding stud	17
•	2: Grounding of a unit secondary reference point via a bonding stud	17 23
Figure 6.2-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.5-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.6-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.6- Figure 7.6-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.6- Figure 7.6- Figure 7.7-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.6- Figure 7.6- Figure 7.7- Figure 7.7-	2: Grounding of a unit secondary reference point via a bonding stud	
Figure 6.2- Figure 6.4- Figure 7.5- Figure 7.5- Figure 7.5- Figure 7.6- Figure 7.6- Figure 7.7- Figure 7.7-	2: Grounding of a unit secondary reference point via a bonding stud	

DATE: 21/02/06

ISSUE: 03 **Page:** 7/94

1. INTRODUCTION

This document establishes the general electrical design and interface requirements for equipments included in SPACEBUS 4000 repeaters to be met to ensure their correct performance during assembly, integration, testing, storage, transportation, launch and orbital operations.

This document is applicable for the units of the repeater and TTC.

DATE: 21/02/06

ISSUE: 03 **Page:** 8/94

2. APPLICABLE AND REFERENCE DOCUMENTS

2.1 Applicable documents

In case of conflict between any specification document and this applicable document, the specification document shall have precedence.

Any discrepancy shall be notified to the attention of Contractor for clarification and resolution.

Denom.	Title	Doc Ref.
AD 14	Data Bus Network Electrical and Protocol Specification	SBF 6AV2 AS SP 338
AD 15	MIL STD 1553B Protocol and Interface Requirements for DBN	SBF 6AV2 AS SP 504
AD 18	MIL STD 1553B "Aircraft Internal Time Division Command/Response Multiplex Data Bus", with Notice 4	
AD19	IDS RUBI	SBF 6AV22 DEV IS 00331
	The reduced sniff RE and snort RS EMC test procedure	SDR-ASPI-TP-0058
AD11	Instruction for preparing IDS and ICD	REF-ASPI-CN-88-E

2.2 Reference documents

The following documents listed hereinafter are for reference and information only. They have been used as basis for some requirements defined in the present specification.

AD01: Part 3 - EMC/ESD Requirements for Subsystems and Units SB4-6A-AS-SP-015

AD01: Part 4 - Subsystems and Units Requirements - Electrical Design and Interface Requirements SB4-6A-AS-SP-065

DATE: 21/02/06

ISSUE: 03 **Page:** 9/94

2.3 ACRONYMS, SYMBOLS AND ABBREVIATIONS

A/D Analog/numeric conversion
ABM Apogee Boost Motor
AC Alternating current

ADPM Antenna Deployment and Pointing Mechanism

AN TM Analog

AOCS Attitude and Orbit Control Subsystem
AOCSP Attitude and Orbit Control System PCB

AOCSP_NG Attitude and Orbit Control System PCB_ New Generation

APM Antenna Pointing Mode AWG American Wire Gauge

BAPTA Bearing and Power Transfer Assembly

BBC Bus Brick Connection

BCRB Battery Connection Relay Box

CM Common Mode

CRM Central Reconfiguration Module

DB TM Digital bi-level DC Direct current

DC/DC Direct current/Direct current

DM Differential Mode
DOCON DOwn CONverter
DR TM Digital Relay
TM Digital Social 16

DS16 TM Digital Serial 16 bit

DSPG Distributed Single Point Grounding

EED Electro-Explosive Devices

EGRN Electrical Ground Reference Network
EGRP Electrical Ground Reference Point
EGSE Electrical Ground Support Equipment
EMC Electro-Magnetic Compatibility
EPC Electrical Power Conditioning
EPS Electrical Power Subsystem
ESD Electro-Static Discharges

HLC High Level Command HPC High Priority Command

ICDInterface Control DrawingIDSInterface Data SheetITOIridium Tantale OxydIRESInfra-Red Earth Sensor

DATE: 21/02/06

ISSUE: 03 **Page:** 10/94

LLC Low Level Command

LMU Li-Ion Battery Management Unit

LNA Low Noise Amplifier
LPC Low Priority Command
LSB Least Significant Bit

MLCMemory Load CommandMLIMulti Layer InsulatorMSBMost Significant Bit

NRZ Non Return to Zero
NRZ-L Non Return to Zero Level

OBDH On Board Data Handling
OBP On Board Processor
OSR Optical Surface Radiator

PCB Printed Circuit Board
PCM Pulse Code Modulation
PCU Power Conditioning Unit

PFDIU PlatForm Distribution and Interface Unit PLDIU Payload Distribution and Interface Unit

PROP PROPulssion electronic (Chemical/Plasmic) PCB

PPS Plasmic Propulsion Subsystem

PPU Power Processing Unit

PYPGP Pyrotechnic Pcb with GP relays

RA Rotary Actuator

RUBI Remote User Brick Interface

RF Radio Frequency

RX Receiver

S/C Spacecraft S/W Software

S4DSAP SB4000 Deployment of Solar Array PCB

SA Solar Array

SADMSolar Array Drive MechanismSADPSolar Array and Deployment PCBSBDLStandard Balanced Digital SignalSDIUSatellite Distribution and Interface UnitSDMPStepper and Deployment Motor PCB

SLISingle Layer InsulatorSMUSatellite Management UnitSPFSingle Point FailureSSMSecond Surface Mirror

STR Star Tracker

S000330 REFERENCE:

21/02/06 DATE:

Page: 11/94 **ISSUE:** 03

Telecommand

TC TCR Telemetry, Command and Ranging Thermistor

TH TLM

Thermistor
Telemetry
Telemetry
Thruster Orientation Mechanism
Tracking, Telemetry and Command
Travelling Wave Tube
Travelling Wave Tube Amplifier
Transmitter TM TOM TTC

 \mathbf{TWT}

TWTA TX

UPCON UP CONverter

UPS Unified Propulsion Subsystem

w.r.t. with respect to

DATE: 21/02/06

ISSUE: 03 **Page:** 12/94

3. GENERAL SPECIFICATIONS

3.1 Engineering specifications

Reference [CU-GDCEL-REQ-001]

The metric standard (SI - International system) shall be used for design, manufacturing and testing of systems or subassemblies.

In Reference

Reference [CU-GDCEL-REQ-002]

All requirements in this document shall be applicable in all environmental conditions (mechanical, thermal, radiation,)

In Reference

3.2 Lifetime

Reference [CU-GDCEL-REQ-003]

Units and subsystems shall be designed for a 15 years lifetime after having been stored for 5 years in a protected environment and having been used for tests and integrations for 2 years.

In Reference

3.3 Delivery

Reference [CU-GDCEL-REQ-004]

All unit/subsystem shall be delivered in POWER OFF status.

In Reference

3.4 Redundancy rules

Reference [CU-GDCEL-REQ-005]

When redundancy is implemented in the design, any single failure leading to total or partial loss of the unit operational capability or mission shall be forbidden.

† In Reference

Reference [CU-GDCEL-REQ-006]

When nominal and redundant ways are designed on the same board or device, the two functions shall be separated physically in order to avoid any risk of failure propagation.

DATE:

21/02/06

ISSUE: 03 **Page:** 13/94

Reference [CU-GDCEL-REQ-007]

Nominal and redundant ways shall use separated connectors.

In Reference

3.5 Single point failure

Reference [CU-GDCEL-REQ-008]

All units, with nominal power consumption higher than 20W, shall always be able to switch-off in any case of failure (except in case of OFF command interface failure).

In Reference

3.6 Test points

Reference [CU-GDCEL-REQ-009]

The test points shall be clearly identified in the unit ICD/IDS.

In Reference

Reference [CU-GDCEL-REQ-010]

Test points on multi-pin connectors shall be designed to withstand, without causing damage to the unit, the highest voltage on that connector unit as well as short circuits

In Reference

Reference [CU-GDCEL-REQ-011]

Unit test connectors shall be provided with electrically conductive covers

In Reference

Reference [CU-GDCEL-REQ-012]

Input test points shall be connected to a referenced voltage point

DATE: 21/02/06

ISSUE: 03 **Page:** 14/94

4. ELECTRICAL ARCHITECTURE REQUIREMENTS

4.1 Grounding and isolation requirements

4.1.1 Grounding concept

The spacecraft structure constitutes a low impedance reference named Electrical Ground Reference Network (EGRN).

Reference [CU-GDCEL-REQ-013]

All metallic sub-chassis, chassis and enclosures of each unit, including all connectors' shells and other fittings, shall be considered electrically as extensions of the EGRN.

In Reference

The grounding and bonding concept is a "returns by wires" concept with a Distributed Single Point Grounding (DSPG) configuration.

Possible grounded solutions for unit secondary reference point are shown in the following figure.

DATE: 21/02/06

ISSUE: 03 **Page:** 15/94

Figure 4.1-1: Basic philosophy for Distributed Single Grounding Concept

DATE: 21/02/06

ISSUE: 03 **Page:** 16/94

4.1.2 Grounding Solutions

Reference [CU-GDCEL-REQ-014]

One of the solutions listed below shall be used for units grounding

Solution 1: The unit secondary reference point is insulated from the secondary reference point of other units (implying the use of insulated or differential interfaces between the units). In this case, the equipment shall be grounded internally to its own housing in order to ensure a low impedance ground path.

Solution 2: The unit secondary reference point is common to several units.

In this case:

the unit assembly shall be grounded at only one point,

Solution 3: Unit shall provide dedicated bounding studs so that each unit secondary reference point can be grounded externally to the equipment housing. One of the grounding stud shall be insulated from the equipment structure and connected to the unit secondary reference point; the other one shall be connected directly to the chassis ground (See the following figure).

It shall be possible to ground the unit secondary reference point by placing a bar (removable strap) between the two bounding studs.

This requirement is not mandatory for RF equipment which have an internal link.

It must be noted that the above-mentioned bounding studs is different from the bounding strap used to connect the unit case to the mechanical structure

The bar shall be supplied by the equipment manufacturer.

DATE: 21/02/06

ISSUE: 03 **Page:** 17/94

Figure 4.1-2: Grounding of a unit secondary reference point via a bonding stud

ALCATEL ALENIA SPACE

DATE:

21/02/06

ISSUE:

03

Page: 18/94

4.1.3 Grounding and isolation diagram

Reference [CU-GDCEL-REQ-015]

This diagram shall indicate any AC or DC loop, the type of isolation/insulation used, and any impedance coupling between zero volt and structure and shall be established for all Equipment and Subsystems containing electrical/electronic circuits.

In Reference

Reference [CU-GDCEL-REQ-016]

An overall zero volt and grounding diagram shall be provided in the IDS for establishing functional and electromagnetic compatibility.

In Reference

4.1.4 Power lines grounding

Reference [CU-GDCEL-REQ-017]

The grounding connection impedance between the unit electrical OV ground and its housing shall be lower than 2.5 m Ω measured under 1 Adc current and inductance shall not exceed 100 nH.

In Reference

4.1.4.1 Grounding of secondary power bus 0V

Reference [CU-GDCEL-REQ-018]

The high voltages necessary for the TWT's shall be considered as secondary power and shall be referenced at the EPC (via EPC structural part) and at the TWT side (via the TWT structural part).

In Reference

Reference [CU-GDCEL-REQ-019]

The grounding path shall be designed and sized to withstand a current equal to 1.5 times the worst case fault current as limited by the unit primary power bus protection device. The following current shall be considered:

- either a primary current due a short-circuit between the primary power supply positf line and the unit secondary reference point/mechanical ground.
- or a secondary current due to a short-circuit between a secondary power line and the secondary reference point/mechanical ground.

In Reference

Reference [CU-GDCEL-REQ-020]

All transformer screens shall be grounded to chassis.

DATE: 21/02/06

ISSUE: 03 **Page:** 19/94

4.1.5 Primary and secondary power lines insulation

Reference [CU-GDCEL-REQ-021] AD-AV4-AD01_Part4-5.8.2-001/a

The primary power lines shall be transformer insulated from all secondary power.

In Reference

Nota: During measurement rating on components must be withstood. Derating may be exceeded.

	Insulation	Isolation resistor with stray capacitance in parallel
[CU-GDCEL-REQ-022]	Between unit primary power + (positive) input lines and structure with measurement 100 Vdc	$(>1 \text{ M}\Omega) // (< 50 \text{ nF})$
[CU-GDCEL-REQ-023]	Between unit primary power - (negative) input lines and structure with mesurement 50 Vdc	$(>1 M\Omega) // (<600 nF)$
[CU-GDCEL-REQ-024]	Between primary power leads and secondary power leads with measurement 100 Vdc both polarities	$(>1 \text{ M}\Omega) // (< 50 \text{ nF})$

4.1.6 High voltage units

Reference [CU-GDCEL-REQ-025]

Isolation between the highest voltage inside the equipment and thermistor, relay coil, relay contact or heater leads shall be guaranted with 6 dB margin.

In Reference

4.2 Bonding requirements

4.2.1 General purpose

Reference ICU-GDCEL-REQ-026

To avoid surfaces discharge, each electrically conductive area larger than 5 cm² shall be connected to a referenced voltage.

DATE: 21/02/06

ISSUE: 03 **Page:** 20/94

4.2.2 Bonding characteristics at unit level

	Bonding connection	Electrical continuity
[CU-GDCEL-REQ-027]	between two adjacent parts of a metal case including the resistance between any point of the case and any point of the cover or bonding point (possibly after vibration tests)	$\leq 5 \text{ m}\Omega$ under 1Adc current
[CU-GDCEL-REQ-028]	between connector shell and unit structure	\leq 2.5 m Ω under 1Adc current
[CU-GDCEL-REQ-029]	between connector back-shell and connector body	$\leq 5 \text{ m}\Omega$ under 1Adc current

4.2.3 Thermal Part Assembly Bonding

4.3 Paints and coatings characteristics

Reference [CU-GDCEL-REQ-030]

Coatings (including paintings) on non conductive surface (not applicable on coating inside units)

Coatings applied on a dielectric or non-conductive surface shall be grounded to the ground reference network on the edges.

The coating surface resistivity applied on non conductive materials shall be less than 1 E9 $\,\Omega$ / square.

In Reference

Reference [CU-GDCEL-REQ-031]

Coatings (including paints) on conductive surface (not applicable on coating inside units)

The coating resistivity applied on a conductive surface shall be less than 1 E9 Ω .m assuming a depth $e \le 100 \, \mu m$.

In Reference

4.4 Electrical connector requirements

4.4.1 Connector types

Reference [CU-GDCEL-REQ-032]

All connectors shall be selected according to AD11.

In Reference

Reference [CU-GDCEL-REQ-033]

MDM and very high density (ex.:AMP104) connectors shall not be used.

ALCATEL ALENIA SPACE

REFERENCE: S000330

DATE: 21/02/06

ISSUE: 03 **Page:** 21/94

Reference [CU-GDCEL-REQ-034]

All connectors, not dedicated to power generation and distribution outputs, shall be pin type.

In Reference

4.4.2 Connector characteristics

4.4.2.1 Connectors mating and demating requirements

Reference [CU-GDCEL-REQ-035]

Mating and demating of each connector shall be less than 20 before unit delivery

In Reference

4.4.2.2 Connector mounting requirements

Reference [CU-GDCEL-REQ-036]

The connectors shall be placed in such a way that connection and disconnection on one connector shall be made without any specific tool and without disconnecting the other connectors.

In Reference

Reference [CU-GDCEL-REQ-037]

At least, 6mm shall be kept between two adjacent connectors.

In Reference

Reference [CU-GDCEL-REQ-038]

The connectors shall be mounted according to manufacturer connector requirements.

In Reference

4.4.2.3 Connector identification

Reference [CU-GDCEL-REQ-039]

Each unit or bracket shall be permanently marked by visible connector identification closely adjacent to the corresponding connector.

In Reference

4.4.3 Connector savers

Reference [CU-GDCEL-REQ-040]

Saver connectors shall be used during unit integration to lower number of mating and demating.

DATE: 21/02/06

ISSUE: 03 **Page:** 22/94

4.4.4 Pins characteristics

Reference [CU-GDCEL-REQ-041]

Lines which have a common return shall be placed on adjacent contacts to facilitate cable twisting and/or shielding (except for matrix concept).

In Reference

Reference [CU-GDCEL-REQ-042]

The connected contacts on each connector shall never be inferior to two third of its maximum capacity.

DATE: 21/02/06

ISSUE: 03 **Page:** 23/94

5. POWER SUBSYSTEM INTERFACES REQUIREMENTS

5.1 Power Bus Definition

Figure 5.1-1: Equipment operating range.

5.2 Power bus nominal voltage

The power conditioning subsystem provides one regulated 100 V power bus, which is distributed to the spacecraft users.

Reference [CU-GDCEL-REQ-043] AD-AV4-AD01_Part4-5.1.1.2-001/a

At the loaded input connector of user, the nominal bus voltage is defined as follows:

Maximal DC bus voltage : 102V Minimal DC bus voltage : 98V

DATE: 21/02/06

ISSUE: 03 **Page:** 24/94

5.3 Power bus operational voltage

Reference [CU-GDCEL-REQ-044]

The DC/DC of spacecraft equipment shall be able to operate according to the following voltage.

Function	DC MIN VOLTAGE (V)
High Power Payloads Units (> 20W)	95
Low Power Payloads Units (< 20W)	95
Beacons	95
TTC RF (TX , RX and transponders)	70

5.4 Equipment operating requirements

Reference [CU-GDCEL-REQ-045]

Status of the units shall not be modified (Switch off, mode, gain step...) if the power bus voltage is under their automatic switch-off voltage level during less than $10 \mu s$.

In Reference

Reference [CU-GDCEL-REQ-046]

Units shall be automatically switched off if the power bus voltage is under their automatic switch-off voltage level during more than 1 second

Function	AUTOMATIC Switch-Off Voltage (V)	AUTOMATIC RECOVERY	RECOVERY VOLTAGE(V)
High Power Payload Units (> 20 W)	94 ± 1	NO	≥ 95
Low Power Payload Units	< 95 or	NO/YES	≥ 95
(< 20W)	No automatic Switch-Off	YES	≥ 95
	voltage		
Beacons	< 95 or	NO/YES	≥ 95
	No automatic Switch-Off voltage	YES	≥ 95
TTC RF (RX,TX and transponders)	< 70	YES	72 ± 1

In Reference

5.5 Distribution requirements

The mean power demand is defined as the maximum average power drawn from its dedicated power lines in the worst conditions.

DATE: 21/02/06

ISSUE: 03 **Page:** 25/94

Specifically, the maximum average is defined as the average during a period of 5 minutes shifted to any point in time where this average will yield a maximum and does not include peak power defined hereafter.

The long peak power demand is defined as the maximum operational average power drawn from the unit dedicated power lines in the worst.

Specifically, the maximum operational average is defined as the average during a period of 50 msec shifted to any point in time where this average will yield a maximum. Operational mode change requires specification of the average power demands per mode and duration.

Reference [CU-GDCEL-REQ-047]

The unit input ON/OFF relay contact shall be sized to withstand twice the peak current corresponding to the long peak power demand.

In Reference

5.5.1 Mean power demand

Reference [CU-GDCEL-REQ-048]

The mean power demand shall be measured in voltage nominal conditions (see chapter "Power bus nominal voltage") during a period of 5 minutes.

In Reference

5.5.2 Peak power demand

Reference [CU-GDCEL-REQ-049]

The long peak power demand shall be measured in voltage nominal conditions (see chapter "Power bus nominal voltage") at worst functional case of equipment (wheel spin up, telecomand generation, etc)

In Reference

5.6 Load current limitation

Reference [CU-GDCEL-REQ-050]

For High Power Payload Units (> 20 W), the maximum current drawn by the unit from the supply lines in case of failure, shall be limited to 1.5 times the peak current value corresponding to the long peak power demand (except during the unit ON/OFF sequence).

For Low Power Payload Units (< 20W), the maximum current drawn by the unit from the supply lines in case of failure, shall be limited to 2 times the peak current value corresponding to the long peak power demand (except during the unit ON/OFF sequence).

DATE: 21/02/06

ISSUE: 03 **Page:** 26/94

5.7 Fuses

Reference [CU-GDCEL-REQ-051]

Fuses shall not be implemented inside equipments

DATE: 21/02/06

ISSUE: 03 **Page:** 27/94

6. SIGNAL LINE INTERFACE REQUIREMENTS

Reference [CU-GDCEL-REQ-052]

Signal interface shall use a return by wire concept.

In Reference

6.1 Conventions

- Time duration: The time duration is defined at 50% of the measured full amplitude.
- <u>Signal rise and fall times</u>: The rise and fall times of a signal are defined as the time between 10% and 90% of the measured voltage swing.
- Measurements: Measurements are made at the unit (or harness) connector level.

6.2 Command interface

6.2.1 Low Level and High Level Commands (LLC & HLC)

HLC and LLC commands are generated through matrix row and column drivers. One row pulled up to a positive voltage and one column pulled down to the secondary 0v in order to command only the device at the node of the activated row and column.

The command signal is a differential voltage pulse distributed to the user for :

- relay driving or general logic control application with low level commands
- payload waveguide relay driving with high level commands

6.2.1.1 Matrix command schematics

Relay interface

DATE: 21/02/06

ISSUE: 03 **Page:** 28/94

Opto coupler interface

6.2.1.2 User side requirements

Reference [CU-GDCEL-REQ-053] AD-AV4-AD01_Part4-6.1.6.1.2-001/a

all telecommand users shall provide two diodes in series with the commanded device at any matrix node.

In Reference

Reference [CU-GDCEL-REQ-054]

For user interface with relay coil, two serial free wheel diodes shall be implemented in parallel with the relay coil at user side.

When the time constant of relay (L/R) is inferior to 1ms for LLC or 5ms for HLC, the diodes could be non implemented in the receiver interface.

DATE: 21/02/06

ISSUE: 03 **Page:** 29/94

Reference [CU-GDCEL-REQ-055]

L/R time constant of the relay/RF switch shall be lower than 15 ms

In Reference

Reference [CU-GDCEL-REQ-056]

The user shall not impose any potential or grounding reference on any row or column.

In Reference

6.2.1.3 Failures management

Reference [CU-GDCEL-REQ-057]

The user interface design shall permit the unit power on/off without damage when all the electrical interface are not connected

In Reference

Reference [CU-GDCEL-REQ-058]

Unpowered equipments shall not be damaged and degraded in their performances when command signals are applied.

In Reference

Reference [CU-GDCEL-REQ-059]

Each command source failure shall not cause the loss of more than 1 command.

In Reference

6.2.1.4 Command signal characteristics

6.2.1.4.1 Command signal waveform

Signal duration (Td): time between crossing points of rise and fall time to 50% of the full

amplitude

Signal rise/fall time (Tr; Tf): maximum between 10% and 90% of the nominal voltage swing

<u>Delay between 2 signals</u>: time between the voltage crossing point at 50% of the full amplitude

level

<u>Closed time Tc:</u> Command duration with switch closed

Free wheeling time (Ti): Duration between end of pulse and switch opening

DATE: 21/02/06

ISSUE: 03 **Page:** 30/94

Figure 6.2-1: Matrix command signal waveform

6.2.1.4.2 LLC electrical parameters

Reference [CU-GDCEL-REQ-060]

The unit shall be commanded by the command signal waveform defined below:

PARAMETERS	SOURCE SIDE	
Rise Time (Tr)	50 μs ≤ Tr ≤ 500 μs	
Fall Time (Tf)	1 μs ≤ Tf ≤ 600 μs	
« On » duration (Td)	$40 \text{ ms} \leq \text{Td} \leq 50 \text{ ms}$	
Closed duration (TI)	$20 \text{ ms} \leq \text{Td} \leq 30 \text{ ms}$	

These LLC electrical characteristics are defined below:

DATE: 21/02/06

ISSUE: 03 **Page:** 31/94

	PARAMETERS	USER SIDE
	ТҮРЕ	
[CU-GDCEL-REQ-061]	Input type	Differential
	VOLTAGE	
[CU-GDCEL-REQ-062]	DM low « 0 » voltage	-29V / +4V
[CU-GDCEL-REQ-063]	DM high « 1 » voltage	26 V (+3V / -5V)
[CU-GDCEL-REQ-064]	Threshold	$7 \text{ V} \leq \text{V}_{\text{T}} \leq 19 \text{V}$
[CU-GDCEL-REQ-065]	CM Permanent Fault Voltage Emission (DM = 0)	$-5 \text{ V} \leq \text{fault } \leq 40 \text{ V}$
[CU-GDCEL-REQ-066]	DM Transient Fault Voltage Emission	± 2V / 25 ms
[CU-GDCEL-REQ-067]	DM Transient Fault Voltage Tolerance	-63 V/1 s +33V/80ms
	CURRENT	
[CU-GDCEL-REQ-068]	Load current (Considering the whole DM high level voltage range)	2,2 mA ≤ <i>load</i> ≤180 mA
	IMPEDANCE (Differential impedance excluding the two serial diodes (see figure NOTE 1))	
[CU-GDCEL-REQ-069]	Impedance under DM low voltage	R≤9kΩ
	TIME	
[CU-GDCEL-REQ-070]	Spurious Command (Period = 20 ms)	Td ≤ 0,1 ms
	MATRIX COMMAND GROUNDING AND ISOLATION (2)	
[CU-GDCEL-REQ-071]	Between matrix ground and Chassis: R equivalent	> 10 MΩ
[CU-GDCEL-REQ-072]	between one row or one column and Chassis: Equivalent Capacitance (In // R equivalent)	C_CM<500 pF (Around 10 KHz)
[CU-GDCEL-REQ-073]	between row / column lines and relay or opto- coupler at user side	galvanic isolation
	SPECIFIC REQUIREMENT	
[CU-GDCEL-REQ-074]	Transient	The input LLC shall not be activated with the following setup hereafter ⁽⁴⁾ (U=29V with tr 50 to 500 µs)

DATE: 21/02/06

ISSUE: 03 **Page:** 32/94

 Primary OV and users secondary OV grounds shall be considered connected to chassis for measurements

Note: CM: Common mode / DM: Differential Mode

Test setup⁽⁴⁾

 $^{(5)}$ 150 nF is only applicable to Payload units.

Reference [CU-GDCEL-REQ-075]

For LLC a single return shall be allowed for a maximum of 4 LLC commands.

In Reference

Reference [CU-GDCEL-REQ-076]

Each return shall be electrically insulated from any other return.

DATE: 21/02/06

ISSUE: 03 **Page:** 33/94

6.2.1.4.3 HLC electrical parameters

Reference [CU-GDCEL-REQ-077]

The unit shall be commanded by the command signal waveform defined below:

PARAMETERS	SOURCE SIDE	
Rise Time (Tr)	50 μs ≤ Tr ≤ 500 μs	
Fall Time (Tf)	1 μs ≤ Tf ≤ 600 μs	
« On » duration (Td)	500 ms ≤ Td ≤ 530 ms	
Closed duration (TI)	110 ms ≤ Td ≤ 140 ms	

In Reference

These HLC electrical characteristics are defined below:

DATE: 21/02/06

ISSUE: 03 **Page:** 34/94

	PARAMETERS	USER SIDE
	ТҮРЕ	
[CU-GDCEL-REQ-078]	Input type	Differential
	VOLTAGE	
[CU-GDCEL-REQ-079]	DM low « 0 » voltage	-29V / +4V
[CU-GDCEL-REQ-080]	DM high « 1 » voltage	26 V (+3V / -5.5V)
[CU-GDCEL-REQ-081]	Threshold	$7V \le V_T \le 20.5V$
[CU-GDCEL-REQ-082]	CM Permanent Fault Voltage Emission (DM = 0)	Not allowed
[CU-GDCEL-REQ-083]	DM Transient Fault Voltage Emission	± 2 V/ 125 ms
[CU-GDCEL-REQ-084]	DM Transient Fault Voltage Tolerance	-63 V/1 s +33V/1s
	CURRENT	
[CU-GDCEL-REQ-085]	Load current (Considering the whole DM high level voltage range)	22 mA ≤ <i>load</i> ≤500 mA
	IMPEDANCE (Differential impedance excluding the two serial diodes (see figure NOTE 1))	
[CU-GDCEL-REQ-086]	Impedance under DM low voltage	R≤9kΩ
	TIME	
[CU-GDCEL-REQ-087]	Spurious Command	Td ≤ 0,1 ms
	MATRIX COMMAND GROUNDING AND ISOLATION (2)	
[CU-GDCEL-REQ-088]	Between matrix ground and Chassis: R equivalent	> 10 MΩ
[CU-GDCEL-REQ-089]	between one row or one column and Chassis: Equivalent Capacitance (In // R equivalent)	C_CM<500 pF (Around 10 KHz)
[CU-GDCEL-REQ-090]	between row / column lines and relay or opto- coupler at user side	galvanic isolation
	SPECIFIC REQUIREMENT	
[CU-GDCEL-REQ-091]	Transient	The input HLC shall not be activated with the following setup hereafter ⁽⁴⁾ (U=29V with tr 50 to 500 µs)

DATE: 21/02/06

ISSUE: 03 **Page:** 35/94

 Primary OV and users secondary OV grounds shall be considered connected to chassis for measurements

Note: CM: Common mode / DM: Differential Mode

Note: CM: Common mode / DM: Differential Mode

Test setup⁽⁴⁾

(5) 150 nF is only applicable to Payload units.

Reference [CU-GDCEL-REQ-092]

Each return shall be electrically insulated from others returns.

In Reference

Reference [CU-GDCEL-REQ-093]

For HLC a single return shall be allowed for a maximum of 4 HLC commands.

In Reference

6.3 Telemetry interface

Reference [CU-GDCEL-REQ-094]

The Analog Channel and Digital Bi Level Channel telemetries shall be only used by the Channel Amplifier and the EPC

In Reference

6.3.1 Telemetry channel types

The telemetry channel types are:

a. Analog Channel (AN) for Camp/EPC interface

Référence Fichier : **\$000330_GDCIS_AD01-03.doc** du **02/03/2006 11:57**

ALCATEL ALENIA SPACE

DATE: 21/02/06

ISSUE: 03 **Page:** 36/94

b. Digital Bi Level Channels (DB) for Camp/EPC interface

- **c.** Digital relay channels (DR)
- **d.** Digital Serial Channel 16-bit (DS16)
- **e.** Thermistors Power Supply and Conditioning (TH)

6.3.2 Analog channels

6.3.2.1 Analog channels definition

The information is presented in the form of a voltage varying between two defined boundaries. This voltage is sampled regularly, analog to digital converted in the encoders .

For unit including RUBI device, the analog TM is coded in 10 bits.

6.3.2.2 User side (or receiver side) requirements

Reference [CU-GDCEL-REQ-095] AD-AV4-AD01 Part4-6.2.3.6-001/b

Analog channels shall be completely isolated from any other return (primary ground or mechanical ground) inside the user equipment. Differential receiver is required.

In Reference

6.3.2.3 Analog channels schematics

" standard " analog channel

Parameter definition

ISSUE: 03 **Page:** 37/94

6.3.2.4 Analog channels characteristics

- Standard analog channel:

- Parameter definition:

ISSUE: 03 **Page:** 38/94

Reference [CU-GDCEL-REQ-096] AD-AV4-AD01_Part4-6.2.3.8-001/b

The analog telemetry shall comply these analog electrical characteristics:

PARAMETERS	SOURCE SIDE EPC	USER SIDE Camp	COMMENT
	TYPE		
Output type	Single ended		-
Input type		Differential	
Transfer	DC COUPLED	DC COUPLED	
	VOLTAGE		
Range	0 V / 5 V		
Common mode		(1)	
Fault Voltage Emission	± 15 V	± 15 V	
Fault Voltage Tolerance	± 17 V	± 17 V	

(1) * The common mode voltage is related to chassis ground.

DATE: 21/02/06

ISSUE: 03 **Page:** 39/94

S000330

PARAMETERS	SOURCE SIDE EPC	USER SIDE Camp	COMMENT
C	URRENT		
Over-current	≤ 15 mA		permanent
IMI	PEDANCE		
impedance ON	$\begin{array}{ll} \text{Rs} & \leq & 5 \text{K}\Omega \text{in} \\ \text{parallel with} \\ \text{100 nF} \leq \text{C} \leq \text{1 } \mu\text{F} \\ \text{(RS x C} \geq \text{0,1 ms)} \end{array}$	≥ 50KOhms	
impedance OFF	$RP \le 100 \text{ k}\Omega$	≥ 50KOhms	
Receiver input Capacitance		100 pF Max	
DC in line series resistor		$\text{Re} \geq 3 \text{ K}\Omega$	
GROUNDING	G AND ISOLATIO	ON	
From secondary ground (0Vs)	connected	≥ 50KOhms	
From Chassis	\geq 1 M Ω // \leq 50 nF	≥ 50KOhms	the isolation at source side is valid when the stud is removed

Table 6.2.3: ANALOGIC TELEMETRY CHARACTERISTICS

In Reference

6.3.3 Digital Bi-level channel

6.3.3.1 Source side requirements

Reference [CU-GDCEL-REQ-097] AD-AV4-AD01_Part4-6.2.4.3-001/a

Digital Bilevel shall be referenced to secondary ground inside the source equipment

Other design (Primary ground reference, ...) shall be submitted to Prime approval.

In Reference

ISSUE: 03 **Page:** 40/94

6.3.3.2 User side (or receiver side) requirements

6.3.3.3 Digital Bi-Level channel telemetry schematics

Parameter definition

ISSUE: 03 **Page:** 41/94

6.3.3.4 Digital Bi-Level channel characteristics

Reference [CU-GDCEL-REQ-098] AD-AV4-AD01_Part4-6.2.4.6-001/b

The digital bi-level telemetry shall comply these digital bi-level electrical characteristics:

ISSUE: 03 **Page:** 42/94

PARAMETERS	SOURCE SIDE EPC	USER SIDE Camp	COMMENT	
T	YPE			
Output type	Single ended			
Input type		Single ended		
Transfer	DC COUPLED	DC COUPLED		
VOLTAGE				
Low level output voltage (discrete "0")	0V to 0.5V			
High level output voltage (discrete "1")	+3.5V to +5 V			
Fault Voltage Emission	± 15 V	± 15 V		
Fault Voltage Tolerance	± 17 V	± 17 V		
CURRENT				
Over-current	≤ 10 mA		permanent	

PARAMETERS	SOURCE SIDE EPC	USER SIDE Camp	COMMENT
IMI	PEDANCE		
impedance ON	$\begin{array}{ll} \text{Rs} & \leq & 5 \text{K}\Omega \text{in} \\ \text{parallel with} \\ 100 \ \text{nF} \leq \text{C} \leq 1 \ \mu\text{F} \\ \text{(RS x C} \geq \text{0,1 ms)} \end{array}$	≥ 220 kΩ	
impedance OFF	$RP \le 100 \text{ k}\Omega$	≥ 220 kΩ	
Capacitance		100 pF max	
GROUNDING AND ISOLATION			
From secondary ground (0Vs)	connected	connected	
From Chassis	connected	connected	

Table 6.2.4: DIGITAL BILEVEL TELEMETRY CHARACTERISTICS

In Reference

6.3.4 Digital switch closure channel telemetry

The Digital relay acquisition also called DR shall be used to transmit a relay or a switch status signal.

Référence Fichier : **\$000330_GDCIS_AD01-03.doc** du **02/03/2006 11:57**

ISSUE: 03 **Page:** 43/94

6.3.4.1 Matrix switch closure acquisition definition

The matrix switch closure acquisitions are performed through a matrix organisation. One row is pulled up to a positive voltage and the switch closure status is acquired on the column.

6.3.4.1.1 Source side requirements

Source side is related to the switch closure location

Reference [CU-GDCEL-REQ-099]

All sources shall provide two diodes in series with the switch closure device.

In Reference

Reference [CU-GDCEL-REQ-100]

AD-AV4-AD01_Part4-6.2.5.3.1-003/a

The source equipment shall provide a galvanic isolation between the switch closure (contact or opto-coupler transistor) lines and the source electrical circuitry

In Reference

Reference [CU-GDCEL-REQ-101]

The source equipment shall not impose any potential or grounding reference on any row or column.

In Reference

DATE: 21/02/06

ISSUE: 03 **Page:** 44/94

Reference [CU-GDCEL-REQ-102]

Closed contact shall correspond to the TM "Zero" level with the unit powered or active

In Reference

Reference [CU-GDCEL-REQ-103]

Open contact shall correspond to the TM "One" level with the unit unpowered or inactive

In Reference

6.3.4.1.2 Receiver (or user) side requirements

Receiver side correspond at one hand to the switch closure polarisation outputs and at the other hand to the switch closure acquisition input.

6.3.4.2 Digital relay channel telemetry characteristics

These Digital relay channel telemetry(DR) characteristics are defined below:

DATE: 21/02/06

ISSUE: 03 **Page:** 45/94

	PARAMETERS	SOURCE SIDE DR
	ТҮРЕ	
[CU-GDCEL-REQ-104]	Output type	Differential
	VOLTAGE	
[CU-GDCEL-REQ-105]	DM Fault Voltage Emission	Not allowed
[CU-GDCEL-REQ-106]	DM Fault Voltage Tolerance (permanent, ON or OFF)	- 17 V
[CU-GDCEL-REQ-107]	DM Fault Voltage Tolerance (permanent OFF only)	± 17 V
[CU-GDCEL-REQ-108]	CM Fault Voltage Emission	Not allowed
[CU-GDCEL-REQ-109]	Drop voltage ("ON state") - relay: 2 diodes + 1 relay contact - opto: 2 diodes + 1 transistor junction	≤ 3.7 V at 1 mA
[CU-GDCEL-REQ-110]	CM Fault Voltage Tolerance (DM=0)	± 17 V
	CURRENT	
[CU-GDCEL-REQ-111]	Contact capability "ON" (Permanent, closed contact)	I≥1 mA
[CU-GDCEL-REQ-112]	Contact capability "OFF"(leakage) (Permanent, open contact)	< 200 μA @ 17 V
	MATRIX COMMAND GROUNDING AND ISOLATION (1)	
[CU-GDCEL-REQ-113]	Between row / column lines and Chassis	≥ 1 MΩ// <50 pF for switch** <500 pF for all the other equipment**
[CU-GDCEL-REQ-114]	between switch closure lines and the electrical circuitry	galvanic isolation

• (1) Primary OV and users secondary OV shall be considered connected to chassis for measurements

In Reference

Reference [CU-GDCEL-REQ-115]

A single return isolated from ground is allowed for a maximum of 4 DR telemetry

In Reference

ISSUE: 03 **Page:** 46/94

6.4 TCR RF interfaces

6.4.1.1 SMU / Receiver interfaces

6.4.1.1.1 Tranceiver TC

Reference [CU-GDCEL-REQ-116]

Figure 6.4-1: NRZ-L TC timing

T1 : \leq 168 bits duration

1 bit duration \leq T2 \leq 128 bits duration

T3 & T4 ≤ 100ms

DATE: 21/02/06

ISSUE: 03 **Page:** 47/94

Tc1 (Bit clock period) = 1 Bit rate \pm -5%

Th3 (TC bit clock high level duration at 50% edge) : ≥60µs

TI3 (TC bit clock low level duration at 50% edge) : ≥60µs

Ts2 (Set-up time from NRZ DATA bit stable to clock falling edge (sampling edge)) : $\geq 10\mu s$

Th2 (Hold time from clock falling edge to NRZ DATA bit change) : $\geq 20\mu s$

The above described interface is used to transmit from the receiver to the SMU the following signal : SQUELCH , CLOCK , DATA

In Reference

Notes:

The bit clock is running as soon as Lock Status is 'high' and it will run until Lock Status falls to 'low'.

Reference [CU-GDCEL-REQ-117]

The receiver bit clock shall be running as soon as Lock Status is 'high'.

In Reference

Reference [CU-GDCEL-REQ-118]

Data Validation shall be performed on the falling edge of the clock signal.

In Reference

Reference [CU-GDCEL-REQ-119]

AD-AV4-AD01_Part4-6.4.1-004/a

The bit clock stability shall be better than +/-5% as soon as SQUELCH is high and until SQUELCH falls to low.

In Reference

6.4.1.1.2 SBDL Electrical Characteristics

Reference [CU-GDCEL-REQ-120]

The following electrical characteristics shall be applied to a "point to point" connection. The cross strap of two redundant transmitters (MASTER) inside the unit (the same Pcb) is allowed.

In Reference

Reference [CU-GDCEL-REQ-121]

SBDL serial link differential signals shall be identified as "non-inverted" and "inverted line".

In Reference

Reference [CU-GDCEL-REQ-122]

The status of the signal shall be defined as true (logical "1") when the non-inverted line has a positive voltage level w.r.t. the inverted line, i.e. when the non inverted line is at a high voltage level and the inverted line is at a low voltage level.

In Reference

These SBDL interfaces are defined below:

DATE: 21/02/06

ISSUE: 03 **Page:** 48/94

	PARAMETERS	SOURCE SIDE RX
	ТҮРЕ	
[CU-GDCEL-REQ-123]	Output type	Differential driver (required for ML 16 drivers)or balanced driver
	VOLTAGE	
[CU-GDCEL-REQ-124]	Low level output voltage (VOL)	0 V to 0.5 V
[CU-GDCEL-REQ-125]	High level output voltage (VOH)	4 V to 5.5 V
[CU-GDCEL-REQ-126]	Low level differential output voltage (logical 0)	- 5.5 V to -3.5 V
[CU-GDCEL-REQ-127]	High level differential output voltage (logical 1)	3.5 V to 5.5 V
[CU-GDCEL-REQ-128]	CM Permanent Fault Voltage Emission	-0.5V to +7V
[CU-GDCEL-REQ-129]	Overvoltage Tolerance (CM)	-7 Vto + 12 V
	CURRENT	
[CU-GDCEL-REQ-130]	Current capability (Differential short circuit)	20 mA min. to 100 mA max.
	IMPEDANCE	
[CU-GDCEL-REQ-131]	Power on differential Impedance (Serial resistor required)	$120\Omega\pm10~\%$
[CU-GDCEL-REQ-132]	Power off differential Impedance	4 kΩ min.
	TIME	
[CU-GDCEL-REQ-133]	Rise Time (Tr) (Measured on 120 Ω with 50pF in parallel. Only applicable to ML16/DS16)	10 ns ≤ Tr ≤ 100 ns
[CU-GDCEL-REQ-134]	Fall Time (Tf) (Measured on 120 Ω with 50pF in parallel. Only applicable to ML16/DS16)	$10 \text{ ns} \le \text{Tf} \le 100 \text{ ns}$
	GROUNDING AND ISOLATION	
[CU-GDCEL-REQ-135]	from Secondary Ground (0 Vs)	Circuit is referenced to 0 Vs
[CU-GDCEL-REQ-136]	From Primary Ground	Isolated (> 1MΩ // 50nF)
[CU-GDCEL-REQ-137]	from chassis	Connected

For information:

ISSUE: 03 **Page:** 49/94

PARAMETERS	USER SIDE
IMPEDANCE	
AC differential Impedance (Option 1)	120 Ω in series with 100 pF to 1nF max.
AC differential Impedance (Option 2)	$2~x~2.2~K\Omega$ min with 10 pF min. in parallel
DC in line series resistor (the value is related to each receiver input)	2.2 KΩ min.
DC differential Impedance	10 KΩ min.

SBDL electrical interface is according to one of these schematics (Option1 and Option2):

OPTION 1

OPTION 2

6.4.2 TRANSCEIVER TM video signals

The TM video signals are defined below:

DATE: 21/02/06

ISSUE: 03 **Page:** 50/94

	PARAMETERS	TELEMETRY
		TRANSMITTER
	ТҮРЕ	
[CU-GDCEL-REQ-138]	Input type	Differential
[CU-GDCEL-REQ-139]	Type of Modulation	NRZ-L / BPSK
[CU-GDCEL-REQ-140]	Waveform	Filtered quasi sine wave
	VOLTAGE	
[CU-GDCEL-REQ-141]	DC Fault Voltage Emission	±17V in series with >2kΩ
[CU-GDCEL-REQ-142]	DC Fault Voltage Tolerance	-1V <u<10v< th=""></u<10v<>
	IMPEDANCE	
[CU-GDCEL-REQ-143]	input impedance	>10kΩ// <500pF
	SPECIFIC REQUIREMENT	
[CU-GDCEL-REQ-144]	TM sub-carrier frequency (upgrade: 32768 Hz)	65536 Hz
[CU-GDCEL-REQ-145]	TM bit rate	4096 bit/s or 8192 bit/s
	GROUNDING AND ISOLATION	
[CU-GDCEL-REQ-146]	from Secondary Ground (0 Vs)	Grounded
[CU-GDCEL-REQ-147]	From Primary Ground	Isolation $\geq 1 \text{ M}\Omega$
[CU-GDCEL-REQ-148]	from chassis	Isolation ≥ 80 KΩ

For information:

DATE: 21/02/06

ISSUE: 03 **Page:** 51/94

PARAMETERS	SMU SIDE	
IMPEDANCE		
output impedance (1)	$< 100\Omega$ in series with > 100 nF	

6.5 Data Bus interfaces

The nominal bus is OBDH - 485.

Reference [CU-GDCEL-REQ-149]

The unit shall be able to receive telecommands and transmit telemetries through nominal and redondant OBDH buses in less than 2 seconds after ON command receipt.

In Reference

6.5.1 OBDH - 485

The "Data Bus Network Electrical and Protocol Specification" (SBF 6AV2 AS SP 338) document comprises the requirements to be satisfied by the OBDH-485. (See chapter "Applicable documents")

DATE: 21/02/06

ISSUE: 03 **Page:** 52/94

EMC/ESD PERFORMANCE REQUIREMENTS

7.1 Purpose

The purpose of this chapter is to establish the EMC / ESD management, design, performance and test method requirements for equipments .

Compliance with this specification will be demonstrated by the Co-contractor by tests, analysis or similarity.

7.2 E-field and H-field RE and RS requirements

7.2.1 Radiated emission (RE) requirements

7.2.1.1 E-field Radiated Emissions

Reference [CU-GDCEL-REQ-150]

E field radiated limit emissions shall be defined at 1 meter distance from unit under test fitted with its test harness. Intentional and unintentional radiated emissions through the test harness shall be included in the limit specifications

In Reference

Reference [CU-GDCEL-REQ-151]

SB-AD01.3-6.03-020

The requirements shall be met in the range from 1 MHz to 40 GHz.

In Reference

Reference [CU-GDCEL-REQ-152]

SB-AD01.3-6.03-021

Both horizontal and vertical polarisations of the test antenna shall be used for frequencies above 25 Mhz, except if this antenna is circularly polarized.

In Reference

Reference [CU-GDCEL-REQ-153]

SB-AD01.3-6.03-039

Upper frequency limit of RE requirements to be demonstrated is function of the equipment or subsystem operating frequency:

- for non RF/IF equipments RE tests shall be performed up to 1GHz.
- for RF/IF equipments RE tests shall be limited to the second harmonic of the payloads highest transmit frequency ranges.

In Reference

DATE: 21/02/06

ISSUE: 03 **Page:** 53/94

Reference [CU-GDCEL-REQ-154]

E-field RE limit requirements in transfer, orbit and emergency phases

Frequency assignment and range allocations are specific to each satellite program and are defined in the unit specification.

General	1 MHz to 40 GHz (out-of transmission, reception and specific frequency bands)	70 dbµV / m (r.m.s.)
Reception frequency ranges - Telecommand, - Communication	- L and S band (RX) - C, X, KU and KA band (RX)	25 dbμV / m (r.m.s.) 30 dbμV / m(r.m.s.)
Transmission frequency ranges	- L and S band (TX) - C, X, KU and KA band (TX)	90 dbμV / m (r.m.s.) 90 dbμV / m (r.m.s.)
- Telemetry - Communication	- Harmonic limit levels * second harmonic * other harmonics	* \leq 77 db μ V / m (r.m.s.) * \leq 70 db μ V / m (r.m.s.)
Specific frequency ranges	- Local oscillator (LO) band	55 dbµV / m (r.m.s.)
	- Intermediary frequency (IF) band	55 dbµV / m (r.m.s.)

In Reference

Reference [CU-GDCEL-REQ-155]

E-field RE limit requirements for launch phases

In addition to the basic requirements, no equipment operating before or during launch (until separation from the launcher) shall perturb the TC receiver of the launcher.

The narrowband limits (including ARIANE 5, ATLAS launchers, LONG MARCH and PROTON requirements) are presented in the following table.

DATE: 21/02/06

ISSUE: 03 **Page:** 54/94

Launchers frequency range

- ARIANE 5	- 420 MHz to 480 MHz - 5450 MHz to 5825 MHz	35 dBμV/ m(r.m.s.) 70 dBμV /m(r.m.s.)
- PROTON /block DM	- 771 MHz to 776 MHz	36 dBµV/m (r.m.s.)
- PROTON /Breeze M	- 1570 MHz to 1620 MHz - 2720 MHz to 2730 MHz - 5700 MHz to 5800 MHz	45 dBμV/m (r.m.s.) 60 dBμV/m (r.m.s.) 30dBμV/m (r.m.s.)
- LONG-MARCH 3B	- 560 MHz to 760 MHz - 5580 MHz to 5910 MHz	15 dBμV/m (r.m.s.) 35 dBμV/m (r.m.s.)
- SEA LAUNCH	- 762 MHz to 776 MHz	20 dBμV/m (r.m.s.)
- ATLAS	No specific range allocation	General Req : 70dBµV/m (r.m.s.)

In Reference

7.2.1.2 DC H-Field Radiated Emission

To reduce unit magnetic moment impact on the satellite attitude control, it is recommended to limit the use of magnetic material, to minimise current loops which generate magnetic fields and to arrange magnetic parts (relays, TWT etc...) in order to compensate their effects.

Reference [CU-GDCEL-REQ-156] SB-AD01.3-6.03-025

The DC H Field radiated emission shall be lower than:

IMUX, SSPA, Isolators, OMUX, TWTA: 101 dBpT

Other units: 92 dBpT

DC H field radiated limit emissions shall be defined at 1 meter distance from unit under test.

‡ In Reference

Reference [CU-GDCEL-REQ-157]

The compliance shall be demonstrated by analysis or by tests and included in the test report.

In Reference

DATE: 21/02/06

ISSUE: 03 **Page:** 55/94

Reference [CU-GDCEL-REQ-158] SB-AD01.3-6.03-048

Unit magnetic moment level shall be given by the co-contractor in the 3 axis (X,Y,Z).

In Reference

Reference [CU-GDCEL-REQ-159]

Magnetic filed measurement shall be performed in worst operational conditions.

In Reference

Reference [CU-GDCEL-REQ-160] SB-AD01.3-6.03-050

Magnetic moment payload allocation shall be lower than: 20 Am²

In Reference

7.2.2 Radiated Susceptibility (RS) requirements

7.2.2.1 E-field Radiated Susceptibility

Reference [CU-GDCEL-REQ-161] SB-AD01.3-6.03-027

Over the frequency range from 1 MHz to 40 GHz, the unit under test fitted with its test harness shall meet specifications during E-field radiated susceptibility tests.

In Reference

Reference [CU-GDCEL-REQ-162]

The sine wave signal shall be 30 % amplitude modulated by a 1 kHz square wave.

In Reference

Reference [CU-GDCEL-REQ-163] SB-AD01.3-6.03-031

In the range from 25 MHz to 40 GHz, the tests shall be performed in both horizontal and vertical polarisations if a linearly-polarised antenna is used.

In Reference

Reference [CU-GDCEL-REQ-164] SB-AD01.3-6.03-039

Upper frequency limit of RS requirements to be demonstrated is function of the equipment or subsystem operating frequency:

- for non RF/IF equipments RS tests shall be limited to the payloads highest transmit frequency ranges.
- for RF/IF equipments RS tests shall be limited to the second harmonic of the payloads highest transmit frequency ranges.

In Reference

Reference [CU-GDCEL-REQ-165]

Frequency assignment and range allocations are specific to each satellite program and are defined in the units specifications requirements.

Requirements related to RX equipment don't take into account reception through antenna path.

DATE: 21/02/06

ISSUE: 03 **Page:** 56/94

RS levels to be applied:

General requirements	1 MHz to 40 GHz (out-of transmission, reception and specific frequency bands)	1V/m (RMS)	-inside and outside the spacecraft
Transmission frequency ranges	- L and S band (TX)	10V/m (RMS)	- inside spacecraft
- Telemetry - Communication	- C, X, KU and KA band (TX)	200V/m (RMS)	- outside spacecraft
Reception frequency ranges (1)	- L and S band (RX)	1.8 mV/m (RMS)	- inside and outside
- Telecommand - Communication	- C, X, KU and KA band (RX)	5.6 mV/m (RMS)	the spacecraft
Specific frequency	-Local oscillator (LO) band	56 mV/m (RMS)	- inside and outside
range (1)	-Image and Intermediary frequency (IF) band	56 mV/m (RMS)	the spacecraft
Launcher radar and	- L, S, C and X band	10V/m (RMS)	- inside spacecraft
launcher telemetry frequency ranges (2)		100V/m (RMS)	- outside spacecraft

- (1) This requirement is only applicable to RF RX equipments
- (2) These requirements are applicable:
- to all equipments ON and OFF outside the spacecraft
- only to equipments ON inside the spacecraft

The frequency plans are specific to each satellite program and shall be defined in unit specification.

In Reference

7.2.2.2 DC H-field Radiated susceptibility

Reference [CU-GDCEL-REQ-166] SB-AD01.3-6.03-034

The unit under test fitted with its test harness shall not exhibit performances loss during and after DC H-field radiated susceptibility tests with the following level:

• 180 dBpT (1 milli-Tesla) in the 3 axis (X, Y, Z)

In Reference

DATE: 21/02/06

ISSUE: 03 **Page:** 57/94

7.3 Repeater and TTC/RF passive units sheilding efficiency

Reference [CU-GDCEL-REQ-167]

The shielding efficiency (SE), defined as the ratio of the total interfering power at unit output with respect isotropic radiated power shall not exceed -75 dBi for the units of the repeater input section (before the TWTA) and -65 dBi for the units of the repeater output section (after the TWTA) and TTCRF subsystem, at working frequency range.

In Reference

Reference [CU-GDCEL-REQ-168]

The shielding effectiveness of the unit shall be measured from the RE sniff test or RS snort test methods as describe in the document "the reduced sniff RE and snort RS EMC test procedure" or similar procedure shall be approved by the prime.

In Reference

7.4 Susceptibility to Electrostatic Discharges

Reference [CU-GDCEL-REQ-169]

The unit (or group of units) under test fitted with its test harness shall not exhibit any malfunction, degradation of performance, or deviation from specified indication beyond tolerances indicated in the corresponding unit specification when subjected to conducted discharges into unit structure and wire inside the bundle, with the discharge signal shall have the following characteristics:

• amplitude: 50 A peak min

duration: 50 nsecrise time: 10 ns

In Reference

7.4.1 Conducted discharges into unit structure:

Reference [CU-GDCEL-REQ-170]

The ESD test shall be accomplished by using diametrically opposed locations through the unit structure.

The two injection points shall be the most distant points of the unit structure where electrical connection is feasible (mounting hole, bonding point, connector, cover screw...).

In Reference

7.4.2 Conducted discharges into wire inside bundle:

Reference [CU-GDCEL-REQ-171]

The ESD test set-up for conducted discharge into wire coupled to the harness shall be as follow:

The distance of the parallel wire inside the bundle shall be 0.2 m.

ISSUE: 03 **Page:** 58/94

The component values shall be adjusted in order to get the proper current.

Test set-up component are defined in the following table:.

Test set-up components	
Rs = Decoupling resistor	4.7kΩ
C = Discharge capacitor	50pF
R = Discharge resistor	100Ω
Spark gap voltage	6kV

In Reference

7.5 Primary power lines CE and CS requirements

7.5.1 Users of Primary Power Supplies

Reference [CU-GDCEL-REQ-172]

A LISN defined in the paragraph "LISN specified" shall be used to simulate the power supplies impedance.

In Reference

Reference [CU-GDCEL-REQ-173]

CE/CS tests shall be performed under following DC supply voltage:

- CE tests: 100 V DC voltage tolerance: 2 V / + 0 V
- CS tests: lower operational voltage 98 V

Référence Fichier : **\$000330_GDCIS_AD01-03.doc** du **02/03/2006 11:57**

DATE: 21/02/06

ISSUE: 03 **Page:** 59/94

In Reference

7.5.1.1 Conducted Emission (CE)

Continuous conducted emission is specified in narrow band

Reference [CU-GDCEL-REQ-174]

In case of CE out of specification results outside TDMA operation, time domain conducted emission shall be recorded and included in the test report.

In Reference

Reference [CU-GDCEL-REQ-175]

Inside TDMA operation narrowband (frequency domain) and time domain measurements shall be performed.

In Reference

7.5.1.1.1 Differential continuous mode

• Test method

Reference [CU-GDCEL-REQ-176]

In Reference

• Required limits

DATE: 21/02/06

ISSUE: 03 **Page:** 60/94

Reference [CU-GDCEL-REQ-177]

* applicable to [2x Imd] measurement minus 6dB (-6db factor shall be included in plots provided in the test report).

In Reference

Reference [CU-GDCEL-REQ-178]

In the frequency range from 30 Hz to 50 Mhz, the conducted emission CE injected in differential mode on the main bus by the unit under test shall be within the limit levels defined in the following figure.

In Reference

7.5.1.1.2 Common continuous mode

Test method

ISSUE: 03 **Page:** 61/94

Reference [CU-GDCEL-REQ-179]

* The unit ground strap shall be as low inductive and resistive ($< 2.5~\text{m}\Omega$) as possible.

In Reference

• Required limit

DATE: 21/02/06

ISSUE: 03 **Page:** 62/94

Reference [CU-GDCEL-REQ-180]

Conducted emission which may appear in common mode shall be within the limit levels defined in the following figure and in 10 KHz to 50 MHz frequency range.

In Reference

No requirement for TDMA operation (EPC/TWTA)

7.5.1.1.3 Transient mode (Power supply voltage stabilized)

Reference [CU-GDCEL-REQ-181]

The following requirement shall be applied:

- * during switch ON and switch OFF of the unit,
- * during any change of unit configuration.

Idc = maximum DC current of the unit for power voltage supply = 100V

ISSUE: 03 **Page:** 63/94

Figure 7.5-1: UNIT INRUSH CURRENT LIMIT AND LOAD CURRENT SLEW RATE

Imax = 1A for 1dc < 0.5A

Imax = $4 \times Idc$ for $0.5A \le Idc \le 2.5A$

Imax = 10A for Idc > 2.5A

In Reference

Test method

Reference [CU-GDCEL-REQ-182]

Transient current shall be measured on the positive power line under the following conditions:

- * Power supply voltage stabilized,
- * OFF command sent several seconds after ON command.

Transient current measurements shall be recorded and included in the EMC test report.

ALCATEL ALENIA SPACE
An Alcatel/Finmeccanica company

REFERENCE: S000330

DATE: 21/02/06

ISSUE: 03 **Page:** 64/94

In Reference

7.5.1.2 Users conducted susceptibility (CS)

Reference [CU-GDCEL-REQ-183] SB-AD01.3-6.03-093

During the test, the level of the injected current and the injected voltage at unit input shall be measured and included in the test report.

In Reference

7.5.1.2.1 Differential mode

Reference [CU-GDCEL-REQ-184] SB-AD01.3-6.03-091

The unit under test fitted with its test harness shall meet specifications when subjected to the following perturbations into the positive primary power line (current injection) or between the primary positive power line and the return line (voltage injection).

In Reference

7.5.1.2.1.1 Continuous injection

• Required injection

Reference [CU-GDCEL-REQ-185] SB-AD01.3-6.03-094

The unit shall be subjected to a sine wave signal with the following characteristics:

- 2 Vr.m.s.: from 30 Hz to 1 KHz
- decreasing by 20 dB / dec between 1 KHz to 2 Khz

Référence Fichier : 5000330_GDCI5_AD01-03.doc du 02/03/2006 11:57

ALCATEL ALENIA SPACE
An Alcatel/Finmeccanica company

DATE: 21/02/06

ISSUE: 03 **Page:** 65/94

• 1Vr.m.s.: from 2 KHz to 50 MHz

In Reference

Reference [CU-GDCEL-REQ-186]

The injected current shall be limited to 1 A r.m.s and the voltage may be reduced if necessary.

In Reference

• Test methods

Reference [CU-GDCEL-REQ-187]

SB-AD01.3-6.03-122

a. continuous wave from 30 Hz to 50 KHz and long term transient single event

b. <u>continuous wave from 50 KHz to 50 MHz and short term transient single event</u>

Reference: S000330

DATE: 21/02/06

ISSUE: 03 **Page:** 66/94

^{*} an additional decoupling series inductance can be added to the LISN in order to limit the current flowing through the power supply positive output and to avoid the use of high power amplifier.

Note: capacitive injection is allowed for conducted susceptibility tests

In Reference

7.5.1.2.1.2 **Transient injection**

Reference [CU-GDCEL-REQ-188]

Short terms single events

The following transient shape shall be applied

$$E = 10 \text{ Vp}$$
 $Tau = 10 \,\mu\text{s}$ $tr = 1 \,\mu\text{s}$

DATE: 21/02/06

ISSUE: 03 **Page:** 67/94

Figure 7.5-1: CONDUCTED SUSCEPTIBILITY TRANSIENT WAVE SHAPE (short terms)

In Reference

Reference [CU-GDCEL-REQ-189]

Long terms single events

The following transient shape shall be applied

E = 4 Vp

 $Tau = 400 \mu s$

 $tr < 20 \,\mu s$

Repetition frequency 1 Hz and 10 Hz

In Reference

Reference [CU-GDCEL-REQ-190]

SB-AD01.3-6.03-096

For all transient injections the transient current injected shall be limited to 1Ap.

In Reference

DATE: 21/02/06

ISSUE: 03 **Page:** 68/94

Reference [CU-GDCEL-REQ-191] SB-AD01.3-6.03-098

Two tests shall be performed for transient injection:

- one with positive pulses at the highest supply voltage allowed by the unit performance specifications.
- the other with negative pulses and at the lowest voltage allowed by the unit performance specifications.

In Reference

7.5.1.2.1.3 Fluctuating power bus voltage

Reference [CU-GDCEL-REQ-192]

All users of these power lines shall safely survive any steady state or fluctuated voltage in the full range 0V to 102 V and recover nominal operating performances whatever the bus voltage rise time to reach its nominal range ($dV/dt < 1V/\mu sec$).

In Reference

Reference [CU-GDCEL-REQ-193]

The unit shall be initially in a configuration which maximise the risk of degradation (ex: unit in ON state)

In Reference

Reference [CU-GDCEL-REQ-194]

Users are not required to meet performance parameters under these conditions but must safely survive to this event without any overstressing or damage and must recover all their nominal operating performance.

In Reference

Reference [CU-GDCEL-REQ-195] SB-AD01.3-6.03-104

Equipment connected on DATA HANDLING bus or acting as command generator shall not send spurious commands during such power variations.

Applicability: Command Receiver, S band transponder,

In Reference

Reference [CU-GDCEL-REQ-196]

Low speed power fluctuation (integration and hardware verification).

The test shall be performed when the bus voltage starts from 0V to nominal voltage (100V) with 20V/ms < dV/dt < 10 V/s (see figure below). During such event, the bus voltage shall be within hatched areas.

The unit input current shall be recorded and included in test report.

DATE: 21/02/06

ISSUE: 03 **Page:** 69/94

Figure 7.5-2: Low speed power bus fluctuation (low dV/dt)

In Reference

Reference [CU-GDCEL-REQ-197]

High speed power fluctuation

These power fluctuation requirements are related to fuse blowing or to an instantaneous short circuit occurring on the power line. The tests conditions are given Figure: "TRANSIENTS DUE TO FUSE BLOWING" and correspond to the worst case.

The tests shall be performed for the two transients waves defined below.

The current drain when the power bus returns to its nominal voltage shall be in the limits given for switch-on current wave shape (Figure: "UNIT INRUSH CURRENT LIMIT AND LOAD CURRENT SLEW RATE") and compatible with the ratings of the protection devices.

If current amplitude is higher than the limit given Figure: "UNIT INRUSH CURRENT LIMIT AND LOAD CURRENT SLEW RATE" second criteria shall be applied:

$$\int I_1^2 dt + \int I_2^2 dt < A$$

11: transient current induced during falling voltage drop

12: transient current during rising voltage drop

ISSUE: 03 **Page:** 70/94

DC power demand of the unit	A
P< 25W	1 ^E -3
25W <p<50w< td=""><td>4 * 1^E-3</td></p<50w<>	4 * 1 ^E -3
50W <p<120w< td=""><td>2.5 * 1^E-2</td></p<120w<>	2.5 * 1 ^E -2
P>120W	1

The unit input current shall be recorded and included in the test report.

Figure 7.5-3: TRANSIENTS DUE TO FUSE BLOWING

In Reference

7.5.1.2.2 *Common mode*

Reference [CU-GDCEL-REQ-198]

The unit under test fitted with the test harness shall meet specifications when subjected to the following perturbations injected into the primary power leads in common mode.

In Reference

7.5.1.2.2.1 Continuous injection

• Required injection

ISSUE: 03 **Page:** 71/94

Reference [CU-GDCEL-REQ-199]

The unit under test shall be subjected to a 0.7 Vr.m.s. sine wave signal from 10 kHz up to 50 MHz injected between the ground plane and the primary power lines.

In Reference

Reference [CU-GDCEL-REQ-200]

The injected current shall be limited to 0.1 A r.m.s from 10kHz and 50 MHz and the voltage may be reduced if necessary.

In Reference

• Test methods

Reference [CU-GDCEL-REQ-201]

a. <u>continuous wave from 30 Hz to 50 KHz and long term transient single event injections</u>

b. <u>continuous wave from 50 KHz to 50 MHz and short term transient single event injections</u>

(Toroid current core injection)

DATE: 21/02/06

ISSUE: 03 **Page:** 72/94

- * additional series de-coupling inductances can be added to the LISN in order to limit the current flowing through the power supply outputs and to avoid the use of high power amplifier.
- continuous wave from 50 KHz to 50 MHz and short term transient single event injections (capacitive injection)

* additional series de-coupling inductances can be added to the LISN in order to limit the current flowing through the power supply outputs and to avoid the use of high power amplifier.

DATE: 21/02/06

ISSUE: 03 **Page:** 73/94

7.5.1.2.2.2 Transient injection

Reference [CU-GDCEL-REQ-202] SB-AD01.3-6.03-112

Short term single events

The unit shall be subjected to transient voltages specified below and injected between the ground plane and the primary power lines.

- The following transient shall be applied
 - E = 5 Volts (both polarities) Tau = $10 \mu s$ tr = 100 nsec
 - Repetition frequency 1 Hz and 10 Hz

In Reference

Reference [CU-GDCEL-REQ-203] SB-AD01.3-6.03-113

Fuse clearing transient

The unit under tests shall not exhibit any failure when transient voltages defined below are injected between the ground plane and the primary power lines.

- Amplitude 50V (both polarities)
- rise time tr = 100ns
- duration $tau = 10\mu s$

Users are not required to meet performance under these conditions but must safely survive to this event.

DATE: 21/02/06

ISSUE: 03 **Page:** 74/94

7.6 Secondary power lines CE and CS requirements

7.6.1 Conducted Emissions on Secondary Power Bus

Reference [CU-GDCEL-REQ-204]

Conducted Emissions on Secondary Power Bus-Source Side

The conducted differential and common modes voltage emissions on secondary power bus shall not exceed the levels defined in the following figure :

Figure 7.6-1: CE on secondary lines (source side)

This requirement is applicable only to unit which supplies other units (example : centralized DC/DC converter or EPC for CAMP)

This requirement is applicable with and without CS injection on primary power input.

In Reference

7.6.2 Conducted susceptibility on Secondary lines

Reference [CU-GDCEL-REQ-205]

Conducted Susceptibility on Secondary Power Bus-User side

The unit, connected to a secondary power bus, shall meet all performance requirements when subjected to the following signal interference.

DATE: 21/02/06

ISSUE: 03 **Page:** 75/94

Figure 7.6-2: Sinewave injection on secondary power lines (user side)

In Reference

7.7 Signal lines CE and CS requirements

7.7.1 TMTC lines

7.7.1.1 General requirement

The interface families tested are the following ones.

• Ana : Analog channel

DB: Digital Bi-level channel

• DR: Digital Relay channel

• LLC : Low Level Command

• HLC : High Level Command

Video lines

• Broadcast pulse signals (use SBDL memory load channel interface requirements)

ISSUE: 03 **Page:** 76/94

7.7.1.1.1 **Test limitation**

Reference [CU-GDCEL-REQ-206] SB-AD01.3-6.03-124

All the here under tests shall be applicable at each TM/TC lines . In case of identical circuits, 2 circuits or 10 % (whichever is more) of each TM/TC type circuits shall be tested.

In Reference

7.7.1.1.2 Test Configuration

Reference [CU-GDCEL-REQ-207]

The TM/TC lines under test shall be loaded by dummy load as shown in figure hereafter:

If the use of dummy load is not possible, the EGSE may be used for these tests. In that case, the interface schematics of EGSE shall be delivered.

ISSUE: 03 **Page:** 77/94

7.7.1.2 Conducted emission requirements

Reference [CU-GDCEL-REQ-208]

CE tests to perform (DM: differentiel mode, CM: common mode):

Input interface under test	Output (emiter)	Input (receiver)
ANA TM	DM + CM	DM
DB TM	DM + CM	DM
DR TM	DM + CM (*)	DM
LLC	CM	CM
HLC	-	-
TC video	DM	DM
TC video lock	DM	DM
TM video	DM	-

(*) except for RF switches

In Reference

Reference [CU-GDCEL-REQ-209]

Conducted emission levels shall be less than the limit specified in time domain:

Input interface under test	DM	CM
ANA TM	20 mVpp + spike 300	1 Vpp
	mVpp (*)	
DB TM	100 mVpp + spike 300	1 Vpp
	mVpp (*)	
DR TM	100 mVpp + spike 300	1 Vpp
	mVpp (*)	
LLC	-	1 Vpp
HLC	-	-
TC video	100 mVpp	-
TC video lock	100 mVpp	-
TM video	100 mVpp	-

(*) Nota : spike waveform : transient high frequency oscillator, transient duration $< 5\mu$ s, oscillation > 1 MHz

DATE: 21/02/06

ISSUE: 03 **Page:** 78/94

Reference [CU-GDCEL-REQ-210]

Both common mode (between interface links and ground plane) and differential mode (between twisted pair leads) measurements shall be performed:

in time domain with a 50 MHz min bandwidth oscilloscope measurement. If the interface is running during the test, the conducted emission levels specified shall be considered outside the signal specific operating frequency range (fundamental and harmonics).

In Reference

7.7.1.3 Conducted Susceptibility Requirements

Reference [CU-GDCEL-REQ-211]

CS tests to perform (DM: differential mode, CM: common mode)

Input interface under test	Output (emitter)	Input (receiver)
ANA TM	-	CM
DB TM	-	CM
DR TM	-	CM
LLC	-	DM pulse (cf nota 1)
HLC	-	DM pulse (cf nota 1)
TC video	-	DM
TC video lock	-	DM
TM video	-	-

(*) nota 1 : no change of performance or status shall occur when a positive pulse train is injected between any TC input and its return with the following characteristics : amplitude : 26V, duration : 100 μ s (at half amplitude), repetition rate : 2 ms

In Reference

Reference [CU-GDCEL-REQ-212] SB-AD01.3-6.03-133

The input interface selected shall not exhibit any failure, malfunction or unintended responses when subjected to differential and common modes perturbations above mentioned:

a. <u>Differential mode</u>

Differential conducted susceptibility tests shall be performed in narrow band sinus wave-form and in the frequency range from 1k Hz to 50 MHz.

b. Common mode

Common mode conducted susceptibility is specified in narrow band sinus wave-form and in a frequency range of 1MHz to 50 MHz or in square modulated sine injection with a On duration $> 5\mu$ s and a repetition frequency > 10 kHz

DATE: 21/02/06

ISSUE: 03 **Page:** 79/94

Input interface under test	DM	CM
ANA TM	-	2 Vpp
DB TM	-	2 Vpp
DR TM	-	2 Vpp
LLC	Cf nota 1	-
HLC	Cf nota 1	-
TC video	200 mVpp	-
TC video lock	200 mVpp	-
TM video	200 mVpp	-

In Reference

Reference [CU-GDCEL-REQ-213]

The injected current shall be limited to 0.1 Ar.m.s. The voltage may be reduced if necessary.

In Reference

7.7.2 DATA HANDLING bus

7.7.2.1 Driver conducted emission

Reference [CU-GDCEL-REQ-214]

The following test setup shall be used verify the OBDH485 driver common mode emission

Figure 7.7-1: Driver CE test setup

 $R1 = 60\Omega \pm 10\%$

 $R2 = R3 = 22k\Omega \pm 10\%$

DATE: 21/02/06

ISSUE: 03 **Page:** 80/94

Reference [CU-GDCEL-REQ-215]

Measure shall be performed during CS representative test on the equipment primary or secondary power supply.

In Reference

Reference [CU-GDCEL-REQ-216]

Driver differential mode emission

Temporal differential mode emitted noise measurement on inactive bus driver while at least one other interface is under activity shall not exceed 30mVpp.

Oscilloscope bandwidth shall be over 50 MHz.

In Reference

Reference [CU-GDCEL-REQ-217]

Driver common mode emission

Temporal common mode emitted noise measurement on inactive bus driver while at least one other interface is under activity shall not exceed 150mVpp.

Oscilloscope bandwidth shall be over 50 MHz.

In Reference

Reference [CU-GDCEL-REQ-218]

Oscilloscope measurement time base shall be tuned in order to:

- Identify noise envelope (large time base)
- Identify pulse characteristics (reduced time base)

These traces shall be set in the test report.

If common mode CE measurement (Vpt & Vnt) is greater than the limit required (150mVpp), complementary measurement is requested : Vpt & Vnt with R1 = 60Ω & R2 = R3 = 10Ω

ISSUE: 03 **Page:** 81/94

7.7.2.2 Receiver conducted emission

Reference [CU-GDCEL-REQ-219]

The following test setup shall be used verify the OBDH485 receiver common mode emission

Figure 7.7-2: Receiver CE test setup

 $R1 = 60\Omega \pm 10\%$

 $R2 = R3 = 22k\Omega \pm 10\%$

In Reference

Reference [CU-GDCEL-REQ-220]

Measure shall be performed during CS representative test on the equipment primary or secondary power supply.

In Reference

Reference [CU-GDCEL-REQ-221]

Receiver differential mode emission

Temporal differential mode emitted noise measurement on inactive bus receiver while at least one other interface is under activity shall not exceed 150mVpp.

Oscilloscope bandwidth shall be over 50 MHz.

In Reference

Reference [CU-GDCEL-REQ-222]

Receiver common mode emission

Temporal common mode emitted noise measurement on inactive bus receiver while at least one other interface is under activity shall not exceed 150mVpp.

Oscilloscope bandwidth shall be over 50 MHz.

DATE: 21/02/06

ISSUE: 03 **Page:** 82/94

Reference [CU-GDCEL-REQ-223]

Oscilloscope measurement time base shall be tuned in order to:

- Identify noise envelope (large time base)
- Identify pulse characteristics (reduced time base)

These traces shall be set in the test report.

If common mode CE measurement (Vpt & Vnt) is greater than the limit required (150mVpp), complementary measurement is requested: Vpt & Vnt with R1 = 60Ω & R2 = R3 = 10Ω

In Reference

7.7.2.3 Receiver Conducted Susceptibility in common mode

Reference [CU-GDCEL-REQ-224] SB-AD01.3-6.03-159

During normal operation, the interface shall not exhibit any failure, malfunction or unintended responses when a common mode sine wave of 2.8 Vpp from 500 kHz to 50 MHz is injected between the input lines and the bus reference coupler (mechanical ground).

In Reference

Reference [CU-GDCEL-REQ-225]

The injected current shall be limited to 0.1 Ar.m.s. and the voltage may be reduced if necessary.

In Reference

7.8 General test conditions:

Tests conditions are based on MIL-STD-461E general requirements.

These general requirements are modified /completed to take into account SB4000 satellite design and dedicated EMC requirements.

7.8.1 - Measurement tolerances

Reference [CU-GDCEL-REQ-226]

Unless otherwise stated for a particular measurement, the tolerance shall be as follows:

Distance: ±5%

Frequency: ±2%

• Amplitude, measurement receiver: ±2 dB

Amplitude, measurement system (includes measurement receivers, transducers, cables, and so forth):
 ±3 dB

• Time (waveforms): ±5%

Resistors: ±5%

Capacitors: ±20%

DATE: 21/02/06

ISSUE: 03 **Page:** 83/94

In Reference

7.8.2 Ambient electromagnetic level

Reference [CU-GDCEL-REQ-227]

During CE & RE testing, the ambient electromagnetic level measured with the DUT de-energized and all auxiliary equipment turned on shall be at least 6 dB below the allowable specified limits. The ambient electromagnetic level shall be recorded in the EMC test report and shall not compromise the test results.

In Reference

7.8.3 - Shielded enclosures

To prevent interaction between the DUT and the outside environment, shielded enclosures will usually be required for testing. These enclosures prevent external environment signals from contaminating emission measurements and susceptibility test signals from interfering with electrical and electronic items in the vicinity of the test facility.

Reference [CU-GDCEL-REQ-228]

Shielded enclosures must have adequate attenuation such that the ambient requirements of paragraph "Ambient electromagnetic level" are satisfied.

RF absorber material (carbon impregnated foam pyramids, ferrite tiles, and so forth) shall be used when performing electric field radiated emissions or radiated susceptibility testing inside a shielded enclosure to reduce reflections of electromagnetic energy and to improve accuracy and repeatability. Minimum performance of the material shall be as specified in table "RF material absorption at normal incidence".

In Reference

The RF absorber can be placed above, behind, and on both sides of the DUT, and behind the radiating or receiving antenna as shown in the following figure .

E: S000330

DATE:

21/02/06

ISSUE:

03

Page: 84/94

Frequency Minimum absorption

80 MHz - 250 MHz 6 dB

above 250 MHz 10 dB

Figure 7.8-1: RF material absorption at normal incidence

7.8.4 Other test sites

Reference [CU-GDCEL-REQ-229]

ALCATEL ALENIA SPACE
An Alcatel/Finmeccanica company

If other test sites are used, the ambient requirements of paragraph "Ambient electromagnetic level" shall be met.

ISSUE: 03 **Page:** 85/94

7.8.5 Ground plane

Reference [CU-GDCEL-REQ-230]

The DUT shall be installed on a metallic ground plane as shown in the figure hereafter.

In Reference

Reference [CU-GDCEL-REQ-231]

The ground plane shall have a surface resistance no greater than 0.1 milliohms per square. The DC resistance between metallic ground plane and the shielded enclosure shall be 2.5 milliohms or less.

† In Reference

Reference [CU-GDCEL-REQ-232]

The metallic ground plane shall be electrically bonded to the floor or wall of the basic shielded room structure at least once every 1 meter. The metallic bond straps shall be solid and maintain a five-to-one ratio or less in length to width.

DATE: 21/02/06

ISSUE: 03 **Page:** 86/94

7.8.6 DUT test configurations

7.8.6.1 Bonding of DUT

Reference [CU-GDCEL-REQ-233]

Only the provisions included in the design of the DUT shall be used to bond units such as equipment case and mounting bases together, or to the ground plane. When bonding straps are required, they shall be identical to those specified in the installation drawings.

• SB4000 satellite bonding requirements: DC resistance ≤ 2.5mohms, inductance ≤ 100nH.

In Reference

7.8.6.2 Orientation of DUT

Reference [CU-GDCEL-REQ-234]

DUT shall be oriented such that surfaces which produce maximum radiated emissions and respond most readily to radiate signals face the measurement antennas.

In Reference

7.8.6.3 Construction and arrangement of DUT cables

Reference [CU-GDCEL-REQ-235]

The EUT shall be set up with harness that simulates flight harness in shielding presence and terminations, twisting, ground and wiring properties as define (if no other specific definition is given) in the table here below:

Bundle Ref	Signal type	Cable definition
1A	Primary Power lines	Twisted pair
1B	Secondary Power lines	Twisted pair
2A	Low level command LLC	Twisted pair
	High level command HLC	Twisted pair
	Analog channel telemetry	Twisted pair
	Digital bi-level channel telemetry	Twisted pair
	Digital switch closure channel telemetry	Twisted pair
4B	SMU / Transmitters TM video signals	Shielded twisted pair
	Receiver / transmitters interfaces	Shielded twisted pair
4C	OBDH-485	Shielded twisted pair (gore 120Ω)

- The separation routing distance of the bundles shall be 5cm.
- Bundle average height from the ground plane shall be 5cm.
- The shield of twisted pair shall be connected to connector housing.
- The housing of connectors shall be electrically connected to the EUT unit structure.
- The shielding pigtail length shall be 3cm.

DATE: 21/02/06

ISSUE: 03 **Page:** 87/94

In Reference

Reference [CU-GDCEL-REQ-236]

Details on the test harness construction used for testing shall be included in the EMC test procedure.

In Reference

7.8.6.4 Interfaces of DUT

Reference [CU-GDCEL-REQ-237]

Loading and excitation of the test sample shall be representative of actual flight units and stimulating circuits as representative as practicable. When flight loads or sources are impractical or unavailable the impedance characteristics of such loads and sources shall be representatively simulated.

In Reference

Reference [CU-GDCEL-REQ-238]

The simulation shall consist of reactive and resistive elements as necessary to:

- Maximise the measured ripples for the Emission tests,
- Maximise the sensitivity of the DUT for Susceptibility tests.

In Reference

Reference [CU-GDCEL-REQ-239]

Antenna ports on the DUT shall be terminated with shielded, matched loads.

DATE: 21/02/06

ISSUE: 03 **Page:** 88/94

7.8.7 Operation of DUT

Reference [CU-GDCEL-REQ-240]

During emission measurements, the DUT shall be placed in an operating mode which produces maximum emissions. During susceptibility testing, the DUT shall be placed in its most susceptible operating mode. For DUT with several available modes (including software controlled operational modes), a sufficient number of modes shall be tested for emissions and susceptibility such that all circuitry is evaluated. The rationale for modes selected shall be included in the EMC test procedure.

In Reference

7.8.8 Detector

Reference [CU-GDCEL-REQ-241]

A peak detector shall be used for all frequency domain emission and susceptibility measurements. This device detects the peak value of the modulation envelope in the receiver band pass. Measurement receivers are calibrated in terms of an equivalent Root Mean Square (RMS) value of a sine wave that produces the same peak value. When other measurement devices such as oscilloscopes, non-selective voltmeters, or broadband field strength sensors are used for susceptibility testing, correction factors shall be applied for test signals to adjust the reading to equivalent RMS values under the peak of the modulation envelope.

DATE: 21/02/06

ISSUE: 03 **Page:** 89/94

7.8.9 Emission testing

7.8.9.1 Bandwidths

Reference [CU-GDCEL-REQ-242]

The measurement receiver bandwidths listed in table "Bandwidth and measurement time emissions" shall be used for emission testing. These bandwidths are specified at the 6 dB down points for the overall selectivity curve of the receivers. Video filtering shall not be used to bandwidth limit the receiver response. If a controlled video bandwidth is available on the measurement receiver, it shall be set to its greatest value. Larger receiver bandwidths may be used; however, they may result in higher measured emission levels. No bandwidth correction factors shall be applied to test data due to use of larger bandwidths.

Frequency Range	6 dB Bandwidth	Dwell Time	Minimum Measurement Time Analog Measurement Receiver
30 Hz - 1 kHz	10 Hz	0.15 sec	0.015 sec/Hz
1 kHz - 10 kHz	100 Hz	0.015 sec	0.15 sec/kHz
10 kHz - 150 kHz	1 kHz	0.015 sec	0.015 sec/kHz
150 kHz - 30 MHz	10 kHz	0.015 sec	1.5 sec/MHz
30 MHz - 1 GHz	100 kHz	0.015 sec	0.15 sec/MHz
Above 1 GHz	1 MHz	0.015 sec	15 sec/GHz

Table 7.8-1: Bandwidth and measurement time emissions

In Reference

7.8.9.2 Emission identification

Reference [CU-GDCEL-REQ-243]

Regardless of characteristics shall be measured with the measurement receiver bandwidths specified in table "Bandwidth and measurement time emissions" and compared against the applicable limits. Identification of emissions with regard to narrowband or broadband categorization is not applicable.

In Reference

7.8.9.3 Frequency scanning

Reference [CU-GDCEL-REQ-244]

For emission measurements, the entire frequency range for each applicable test shall be scanned. Minimum measurement time for analog measurement receivers during emission testing shall be as specified in table "Bandwidth and measurement time emissions". Synthesized measurement receivers shall step in one-half bandwidth increments or less, and the measurement dwell time shall be as specified in table "Bandwidth and measurement time emissions". For equipment that operates such that potential

DATE:

21/02/06

ISSUE:

03

Page: 90/94

emissions are produced at only infrequent intervals, times for frequency scanning shall be increased as necessary to capture any emissions.

In Reference

7.8.9.4 Emission data presentation

Reference [CU-GDCEL-REQ-245]

Amplitude versus frequency profiles of emission data shall be automatically generated and displayed at the time of test and shall be continuous. The displayed information shall account for all applicable correction factors (transducers, attenuators, cable loss, and the like) and shall include the applicable limit.

In Reference

7.8.9.5 Time domain measurements using oscilloscope

Reference [CU-GDCEL-REQ-246]

The minimum bandwidth required for oscilloscope and its associated probe is 50MHz. Real differential voltage probe is required for all CE voltage measurements.

If necessary, several measurements using different time base shall be performed to characterise completely the CE signal. For example, if the CE is a repetitive spike, the time base of the first plot shall be tuned to characterize the time re petition of the spike and time base of the second plot shall be tuned to characterize the spike (amplitude, duration, damped oscillation).

DATE: 21/02/06

ISSUE: 03 **Page:** 91/94

7.8.10 Susceptibility testing

7.8.10.1 Frequency scanning

Reference [CU-GDCEL-REQ-247]

For susceptibility measurements, the entire frequency range for each applicable test shall be scanned. For swept frequency susceptibility testing, frequency scan rates and frequency step sizes of signal sources shall not exceed the values listed in table "Susceptibility scanning". The rates and step sizes are specified in terms of a multiplier of the tuned frequency (fo) of the signal source. Analog scans refer to signal sources which are continuously tuned. Stepped scans refer to signal sources which are sequentially tuned to discrete frequencies. Stepped scans shall dwell at each tuned frequency for the greater of 3 seconds or the DUT response time. Scan rates and step sizes shall be decreased when necessary to permit observation of a response. The response shall be given in the test report for the entire frequency range or for at least 4 frequencies per decade (ex: 1, 3, 5 and 7).

Frequency Range	Analog Scans	Stepped Scans
	Maximum Scan Rates	Maximum Step Size
30 Hz - 1 MHz	0.0333 f _o /s	$0.05~\mathrm{f_o}$
1 MHz – 30 MHz	0.00667 fo/s	0.01 fo
30 MHz - 1 GHz	0.00333 fo/s	$0.005~\mathrm{f_o}$
1 GHz - 8 GHz	0.000667 f _o /s	0.001 fo
8 GHz - 40 GHz	0.000333 fo/s	0.0005 fo

Table 7.8-2: Susceptibility scanning

In Reference

7.8.10.2 Thresholds of susceptibility

Reference [CU-GDCEL-REQ-248]

When susceptibility indications are noted in DUT operation, a threshold level shall be determined where the susceptible condition is no longer present. Thresholds of susceptibility shall be determined as follows and described in the EMC test report:

- When a susceptibility condition is detected, reduce the interference signal until the DUT recovers.
- Reduce the interference signal by an additional 6 dB.
- Gradually increase the interference signal until the susceptibility condition reoccurs. The resulting level is the threshold of susceptibility.
- Record this level, frequency range of occurrence, frequency and level of greatest susceptibility, and other test parameters, as applicable.

DATE: 21/02/06

ISSUE: 03 **Page:** 92/94

7.8.11 LISN specification

Reference [CU-GDCEL-REQ-249]

In order to normalise the measurement conditions between the various test sites, the measurement of the interference conducted emission on the power supply leads shall be performed by standardising the source impedance, in accordance with the following figure:

In Reference

Reference [CU-GDCEL-REQ-250]

LISN shall be constitued of:

The LISN- DUT power leads defined in paragraph "Construction and arrangement of DUT cables": 2 meters of unshielded twisted pair (Cu Gauge 22 or 24).

LISN electrical diagram:

- $R = 8 \text{ m}\Omega \pm 10 \% \Rightarrow$ parasitic inductance $\leq 70 \text{ nH}$
- L = 8 μ H \pm 10 % \Rightarrow parasitic resistance \leq 1 m Ω
- Lcable = 500 nH \pm 10 % \Rightarrow 4 m Ω \leq Rparasitic \leq 6 m Ω
- C = 2.5 mF \pm 10 % \Rightarrow parasitic resistance \leq 10 m Ω and parasitic inductance \leq 100 nH
- Rd = 50 K Ω ± 20 % \Rightarrow 2.5 mF capacitance discharge resistor

DATE: 21/02/06

ISSUE: 03 **Page:** 93/94

In Reference

Reference [CU-GDCEL-REQ-251]

The power lead return line shall be connected to metallic ground plane on a single point close as possible to the capacitance C_{LISN} . Connection to mechanical ground shall be as shorter as possible.

In Reference

Reference [CU-GDCEL-REQ-252]

The length separation of positive & return power leads (for current probe insertion) shall be as shorter as possible.

In Reference

Reference [CU-GDCEL-REQ-253]

LISN installation shall be detailed in EMC test report. The actual LISN impedance shall be measured before to start the EMC tests and the diagram shall be included in the test report.

In Reference

END OF DOCUMENT

DATE: 21/02/06

ISSUE: 03 **Page:** 94/94

V ALC▲TEL