Worskheet #3b

Jacklord Espanola

2022-11-19

```
#1. Create a data frame using the table below.

#| a. Write the codes.

studentsData <- data.frame(

Respondents = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20),

Sex = c(2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2),

Fathers_Occupation = c(1, 3, 3, 3, 1, 2, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 3, 1, 2, 1),

Persons_at_Home = c(5, 7, 3, 8, 5, 9, 6, 7, 8, 4, 7, 5, 4, 7, 8, 8, 3, 11, 7, 6),

Siblings_at_School = c(6, 4, 4, 1, 2, 1, 5, 3, 1, 2, 3, 2, 5, 5, 2, 1, 2, 5, 3, 2),

Types_of_Houses = c(1, 2, 3, 1, 1, 3, 3, 1, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3)

studentsData

### Respondents Sex_Fathers_Occupation_Persons_at_Home_Siblings_at_School
```

500	idei	IUSData				
##		Respondents	Sex	Fathers_Occupation	Persons at Home	Siblings at School
##	1	1	2	1	5	6
##		2	2	3	7	4
##	3	3	1	3	3	4
##	4	4	2	3	8	1
##	5	5	2	1	5	2
##	6	6	2	2	9	1
##	7	7	2	3	6	5
##	8	8	2	1	7	3
##	9	9	2	1	8	1
##	10	10	2	1	4	2
##	11	11	1	3	7	3
	12	12	2	2	5	2
	13	13	2	1	4	5
##	14	14	2	3	7	5
##	15	15	2	3	8	2
	16	16	2	1	8	1
	17	17	2	3	3	2
	18	18	2	1	11	5
	19	19	1	2	7	3
	20	20	2	1	6	2
##		Types_of_Hor				
##			1			
##			2			
##			3			
##			1			
##			1			
##			3			
##			3			
##			1			
##	9		2			

```
## 10
## 11
                   2
## 12
                   3
                   2
## 13
## 14
                   2
## 15
                   3
## 16
                   3
## 17
                   3
## 18
                   3
## 19
                   3
## 20
                   2
#b. Describe the data. Get the structure or the summary of the data
#The data shows 20 data rows each columns consisting respondents, sex, father occupation,
#persons at home, siblings at home, and type of houses.
summary(studentsData)
##
    Respondents
                         Sex
                                  Fathers_Occupation Persons_at_Home
##
  Min. : 1.00
                   Min. :1.00
                                  Min. :1.00
                                                     Min. : 3.0
  1st Qu.: 5.75
                   1st Qu.:2.00
                                  1st Qu.:1.00
                                                     1st Qu.: 5.0
## Median :10.50
                  Median:2.00
                                  Median:2.00
                                                     Median: 7.0
## Mean :10.50
                   Mean :1.85
                                  Mean :1.95
                                                     Mean : 6.4
## 3rd Qu.:15.25
                                  3rd Qu.:3.00
                                                     3rd Qu.: 8.0
                   3rd Qu.:2.00
          :20.00
                          :2.00
## Max.
                   Max.
                                  Max. :3.00
                                                     Max.
                                                           :11.0
## Siblings_at_School Types_of_Houses
         :1.00
                     Min. :1.0
## Min.
                       1st Qu.:2.0
## 1st Qu.:2.00
## Median :2.50
                      Median:2.5
## Mean :2.95
                       Mean :2.3
## 3rd Qu.:4.25
                       3rd Qu.:3.0
## Max.
          :6.00
                      Max.
                              :3.0
#c. Is the mean number of siblings attending is 5?
mean(studentsData$Siblings_at_School) #Answer: No
## [1] 2.95
#d. Extract the 1st two rows and then all the columns using the subsetting functions.
#Write the codes and its output.
studData1 <- subset(studentsData[1:2, 1:6, drop = FALSE])</pre>
studData1
##
    Respondents Sex Fathers_Occupation Persons_at_Home Siblings_at_School
## 1
              1
                  2
                                     1
                                                     5
                                                                         6
## 2
               2
                   2
                                      3
                                                      7
                                                                         4
    Types_of_Houses
##
## 1
                   1
## 2
#e. Extract 3rd and 5th row with 2nd and 4th column. Write the codes and its
studData2 <- subset(studentsData[c(3,5), c(2,4)])</pre>
studData2
    Sex Persons at Home
## 3
      1
                       3
## 5
```

```
#f. Select the variable types of houses then store the vector that results as types_houses.
#Write the codes.
types houses <- subset(studentsData[1:20, 6, drop = FALSE])
types_houses
##
      Types_of_Houses
## 1
## 2
                    2
## 3
                    3
## 4
                    1
## 5
                    1
## 6
                    3
## 7
                    3
## 8
                    1
## 9
                    2
                    3
## 10
                    2
## 11
## 12
                    3
## 13
                    2
                    2
## 14
## 15
                    3
## 16
                    3
                    3
## 17
## 18
                    3
## 19
                    3
## 20
#g. Select only all Males respondent that their father occupation was farmer. Write
#the codes and its output.
studData3 <- subset(studentsData[c(1:20), c(2,3)])</pre>
boys <- studData3[studentsData$Fathers_Occupation == '1' & studentsData$Sex == '1',]
boys
## [1] Sex
                          Fathers_Occupation
## <0 rows> (or 0-length row.names)
#h. Select only all females respondent that have greater than or equal to 5 number
#of siblings attending school. Write the codes and its outputs.
studData4 <- subset(studentsData[c(1:20), c(2,5)])</pre>
girls <- studData4[studentsData$Sex =='2' & studentsData$Siblings_at_School >= '5',]
girls
      Sex Siblings_at_School
##
## 1
                           6
## 7
        2
                           5
## 13
        2
                           5
## 14
        2
                           5
## 18
#2. Write a R program to create an empty data frame. Using the following codes:
df = data.frame(Ints=integer(),
                Doubles=double(), Characters=character(),
                Logicals=logical(),
                Factors=factor(),
                stringsAsFactors=FALSE)
print("Structure of the empty dataframe:")
```

[1] "Structure of the empty dataframe:"

print(str(df))

```
## 'data.frame': 0 obs. of 5 variables:
```

\$ Ints : int
\$ Doubles : num
\$ Characters: chr
\$ Logicals : logi

\$ Factors : Factor w/ 0 levels:

NULL

#a. Describe the results

#Answer: The result of the empty data frame displays only the column names and its column data type #without rows or there are no available data in the table. The column data types were checked in the re #command when displaying the output of the data frame. Adding parameter, stringsAsFactors=FALSE, #the columns in factor data type was changed to character data type.

#3. Interpret the graph.

#Answer: The graph shows the number of sentiments of tweets per day. Based on the graph, the negative s #has the highest tweets from day July 14, 2022 up until July 21, 2022. On the other, positive sentiment #rank second while the neutral sentiments has the lowest tweets on the same days of tweets.