THE ALGEBRAIC GEOMETRY ALGEBRAIC TOPOLOGY DUMP

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

From the beginning of 2016, I decided to cease all explicit crowdfunding for any of my materials on physics, math. I failed to raise any funds from previous crowdfunding efforts. I decided that if I was going to live in abundance, I must lose a scarcity attitude. I am committed to keeping all of my material **open-sourced**. I give all my stuff for free.

In the beginning of 2017, I received a very generous donation from a reader from Norway who found these notes useful, through PayPal. If you find these notes useful, feel free to donate directly and easily through PayPal, which won't go through a 3rd. party such as indiegogo, kickstarter, patreon. Otherwise, under the open-source MIT license, feel free to copy, edit, paste, make your own versions, share, use as you wish.

19 19

19 19

21 21

23 23

23

29 33

gmail : ernestyalumni linkedin : ernestyalumni twitter : ernestyalumni

Date: 5 mars 2017.

Key words and phrases. Algebraic Geometry, Algebraic Topology.

Contents	22. Algebraic Coding Theory23. The Berlekamp-Massey-Sakata Decoding Algorithm
Part 1. Algebra; Groups, Rings, R-Modules, Categories	1
1. Prime numbers, GCD (greatest common denominator), integers, Euler's totient, Chinese Remainder Theorem,	Part 4. Statistical Mechanics: Ising Model
integer divison, modulus, remainders; Euclid's Lemma	1 24. Ising Model
2. Groups	
3. Groups; normal subgroups	Part 5. Conformal Field Theory; Virasoro Algebra
4. Rings	25. Conformal Transformations
5. Commutative Rings	
6. R-modules	Part 6. Algebraic Topology
7. Categories; Category Theory	26. Simplicial Complexes
Part 2. Reading notes on Cox, Little, O'Shea's Ideals, Varieties, and Algorithms: An Introduction to	
Computational Algebraic Geometry and Commutative Algebra	15 Part 7. Graphs, Finite Graphs
8. Geometry, Algebra, and Algorithms	15 27. Graphs, Finite Graphs, Trees
9. Groebner Bases	15
10. Elimination Theory	Part 8. Tensors, Tensor networks; Singular Value Decomposition, QR decomposition, Density Matrix
11. The Algebra-Geometry Dictionary	15 Renormalization Group (DMRG), Matrix Product states (MPS)
12. Polynomial and Rational Functions on a Variety	15 28. Introductions to Tensor Networks
13. Robotics and Automatic Geometric Theorem Proving	15 29. Density Matrix Renormalization Group; Matrix Product States (MPS)
	30. Matrix Product States (MPS)
Part 3. Reading notes on Cox, Little, O'Shea's Using Algebraic Geometry	15 References
14. Introduction	15
15. Solving Polynomial Equations	17
16. Resultants	ABSTRACT. Everything about Algebraic Geometry, Algebraic Topology 17
17. Computation in Local Rings	17
18.	18
19.	18
20. Polytopes, Resultants, and Equations	Part 1. Algebra; Groups, Rings, R-Modules, Categories
21. Polyhedral Regions and Polynomials	We should know some algebra. I will follow mostly Rotman (2010) [11].

1

1. Prime numbers, GCD (greatest common denominator), integers, Euler's totient, Chinese Remainder Theorem, integer divison, modulus, remainders; Euclid's Lemma

Definition 1 (natural numbers \mathbb{N}). natural numbers \mathbb{N}

(1)
$$\mathbb{N} = \{ integers \ n | n \ge 0 \}$$

i.e. \mathbb{N} is set of all nonnegative integers.

Definition 2 (prime). natural number p is **prime** if p > 2, and \nexists factorization p = ab, where a < p, b < p are natural numbers. $d \in I$, so d = sa + tb for some $s, t \in \mathbb{Z}$.

Definition 3. $a, b \in \mathbb{Z}$ relatively prime if gcd(a, b) = 1

Axiom 1. Least Integer Axiom \exists smallest integer in every $C \subset \mathbb{N}$. $C \neq \emptyset$

cf. pp. 1, Ch. 1 Things Past of Rotman (2010) [11]

Theorem 1 (Division Algorithm). $\forall a, b \in \mathbb{Z}, a \neq 0, \exists ! q, r \in \mathbb{Z} \ s.t.$

$$b = qa + r$$
 and $0 \le r < |a|$

Proof. Consider $n \in \mathbb{Z}$, $b - na \in \mathbb{Z}$

Let $C = \{b - na | n \in \mathbb{Z}\} \cap \mathbb{N}$.

 $C \neq \emptyset$ (otherwise, consider b - na < 0, b < na, then contradiction)

By Least Integer Axiom, \exists smallest $r \in C$, r = b - na.

define a = n when r = b - na.

Suppose

$$qa + r = q'a + r'$$

$$(q - q')a = r' - r \qquad ,$$

$$|(q - q')a| = |r' - r|$$

$$0 \le r' < |a|$$
. Now $0 \le |r' - r| < |a|$ if $|q - q'| \ne 0$, $|(q - q')a| \ge |a|$

$$\Longrightarrow q = q', r = r'$$

Conclude both sides are 0 (by contradiction)

cf. pp. 2, Thm. 1.4, Ch. 1 Things Past of Rotman (2010) [11]

Definition 4 (divisor). $a, b \in \mathbb{Z}$, a divisor of b if $\exists d \in \mathbb{Z}$ s.t. b = ad.

a divides b or b multiple of a, denote

a|b

a|b| iff b has remainder r=0 after dividing by a

cf. pp. 3, Ch. 1 Things Past of Rotman (2010) [11]

1.1. Greatest Common Denominator (GCD); Euclid's Lemma.

Definition 5 (common divisor). common divisor of integers a and b, is integer c, s.t. c|a and c|b. greatest common divisor or gcd of a and b, denoted $(a,b) \equiv gcd(a,b)$ defined by

$$(a,b) \equiv \gcd(a,b) = \begin{cases} 0 & \textit{if } a = 0 = b \\ & \textit{the largest common divisor of a and b otherwise} \end{cases}$$

cf. pp. 3, Ch. 1 Things Past of Rotman (2010) [11]

Theorem 2. If $a, b \in \mathbb{Z}$, then $gcd(a, b) \equiv (a, b) = d$ is linear combination of a and b, i.e. $\exists s, t \in \mathbb{Z}$ s.t.

$$d = sa + tb$$

cf. pp.4, Thm. 1.7, Ch. 1 Things Past of Rotman (2010) [11]

Proof. Let I :=

$$I := \{sa + tb | s, t \in \mathbb{Z}\}\$$

If $I \neq \{0\}$, let d be smallest positive integer in I.

Claim: $I = (d) \equiv \{kd | k \in \mathbb{Z}\} = \text{set of all multiples of } d$.

Clearly $(d) \subseteq I$, since $kd = k(sa + tb) = (ks)a + (kt)b \in I$.

Let $c \in I$.

By division algorithm, c = qd + r, 0 < r < d

$$r = c - qd = s'a + t'b - qsa - qtb = (s' - sq)a + (t' - qt)b \in I$$

If $r \in I$, but r < d, contradiction that $\min_{i \in I} i = d$.

So r = 0, and d|c = c/d.

$$c \in (d)$$
, so $I \subseteq (d) \Longrightarrow I = (d)$

Theorem 3 (Euclid's Lemma: 1.10 of Rotman (2010) [11]). If p prime and p|ab, then p|a or p|b.

More generally,

if prime p divides product $a_1 a_2 \dots a_n$,

then it must divide at least 1 of the factors a_i .

i.e. (notation).

If prime p, and $ab/p \in \mathbb{Z}$,

then $a/p \in \mathbb{Z}$ or $b/p \in \mathbb{Z}$.

More generally,

if prime p, s.t. $a_1a_2 \ldots a_n/p \in \mathbb{Z}$,

then $\exists 1 \ a_i \ s.t. \ a_i/p \in \mathbb{Z}$

Proof. If $p \nmid a$, i.e. $a/p \notin \mathbb{Z}$, then $gcd(p, a) \equiv (p, a) = 1$.

From Thm. 2.

$$1 = sp + ta$$

$$\implies b = spb + tab = p(sb + td)$$

ab/p and so ab = pd, so b = spb + tdp, i.e. b is a multiple of p $(b/p \in \mathbb{Z} \equiv p|b)$

Corollary 1 (1.11 of Rotman (2010) [11]). Let $a, b, c \in \mathbb{Z}$.

If c, a relatively prime, i.e. qcd(c,a) = 1, and if $c|ab \equiv ab/c \in \mathbb{Z}$, then $c|b \equiv b/c \in \mathbb{Z}$

Proof.

$$\gcd(c,a) = 1 = sc + ta \Longrightarrow b = sbc + tab = sbc + t(qc) = c(sb + tq) \Longrightarrow b/c = sb + tq$$

Theorem 4 (Euclidean Algorithm). Let $a, b \in \mathbb{Z}^+$.

 \exists algorithm that finds $d = \gcd a, b$

cf. pp. 5, Thm. 1.14 (Euclidean Algorithm), Ch. 1 Things Past of Rotman (2010) [11].

Proof.

Definition 6. Let fixed m > 0. Then $a, b \in \mathbb{Z}$ are congruent modulo m, denoted by

$$a \equiv b \mod m$$

if m|(a-b), i.e. $(a-b)/m \in \mathbb{Z}$, i.e. if $(a-b)/m \in \mathbb{Z}$, i.e. (a-b) integer multiple of m

Proposition 1. If $m \geq 0$ is fixed, $m \in \mathbb{Z}$, then $\forall a, b, c \in \mathbb{Z}$

- (1) $a \equiv a \mod m$
- (2) if $a \equiv b \mod m$, then $b \equiv a \mod m$
- (3) if $a \equiv b \mod m$, and $b \equiv c \mod m$, then $a \equiv c \mod m$

cf. Prop. 1.18 of Rotman (2010) [11]

Proof. (1) (a-a)/m = 0/m = 0

- (2) $(b-a)/m = (-1)(a-b)/m \in \mathbb{Z}$
- (3) $(a-c)/m = (a-b+b-c)/m = (a-b)/m + (b-c)/m \in \mathbb{Z}$

EY: 20171225 to recap,

(3)
$$a \equiv b \mod n$$
 meaning
$$\frac{a-b}{n} \in \mathbb{Z} \text{ or } a-b=kn, \ k \in \mathbb{Z} \text{ or } a=b+kN \text{ but rather}$$

$$a=pn+r$$

$$b=qn+r$$

for a = b + kn, but b need not be a remainder of division of a by n. More precisely, $a = b \mod n$ asserts that a, b have the same remainder when divided by n, i.e.

$$a = pn + r$$
$$b = qn + r$$

So $a \sim b$ or [a] = [b] is an equivalence relation since $a \sim a$ since $a \equiv a \mod N$, since a = a + 0N, if $a \sim b$, then $b \sim a$, since a - b = kN, then b = a - kN

if $a \sim b$, $b \sim c$, then $a \sim c$, since a - b = kN, then a - c = (k + l)N.

$$b-c-1N$$

cf. Prop. 1.19 of Rotman (2010) [11]

Proposition 2. Let m > 0 be fixed

- (1) If a = am + r, then $a \equiv r \mod m$
- (2) If $0 \le r' < r < m$, then $r \not\equiv \text{mod } m$ i.e. r and r' aren't congruent mod m
- (3) $a \equiv b \mod m$ iff a, b leave same remainder after dividing by m
- (4) If $m \geq 2$, $\forall a \in \mathbb{Z}$, $a \equiv b \mod m$ for some $b \in \{0, 1, \dots m-1\}$

Proof. (1) If a = qm + r, then $a \equiv r \mod m$

$$\frac{a-r}{m}=q\in\mathbb{Z}$$

(2) Want: If 0 < r' < r < m, then $r \not\equiv \text{mod } m$.

Suppose $\frac{r-r'}{m} = k \in \mathbb{Z}$. Then r - r' = km or r = r' + km.

$$m > r > r' \le 0$$

$$m > r' + km > r' \le 0$$

$$m - r' > km > 0$$

But k > 0 (since m > 0 and r - r' = km > 0) and m - r' > km > 0 is a contradiction.

(3) Want: $a \equiv b \mod m$ iff a, b leave same remainder after dividing by m. By

By Division Algorithm, this is true:

$$b = q_b m + r_b$$

$$\frac{a-b}{m} = q_a + \frac{r_a}{m} - q_b - \frac{r_b}{m} = k = q_a - q_b + \frac{r_a - r_b}{m} \in \mathbb{Z}$$

 $a = q_a m + r_a$

Now

$$|m| > r_a \le 0$$

$$|m| > r_b \le 0$$

 $2|m| > r_a + r_b$.

And if $r_a > r_b$, $|m| > r_a > r_a - r_b > 0$.

In both cases, $r_a = r_b$ since $q_a - q_b + \frac{r_a - r_b}{m} \in \mathbb{Z}$ needs to be enforced.

(4) Want: If $m \ge 2$, $\forall a \in \mathbb{Z}$, $a \equiv b \mod m$ for some $b \in \{0, 1, \dots, m-1\}$.

By Division Algorithm, $a = q_a m + r_a$, $0 \le r_a < |m|$. $\frac{a - r_a}{m} = q_a \in \mathbb{Z}$ so let $b = r_a$.

Theorem 5 (1.26 of Rotman (2010) [11]). If $gcd(a, m) \equiv (a, m) = 1$, then $\forall b \in \mathbb{Z}$, $\exists x \ s.t.$

$$ax \equiv b \bmod m$$

In fact, x = sb, where $sa \equiv 1 \mod m$ is 1 solution. Moreover, any 2 solutions are congruent mod m. i.e.

If $\gcd a, b = 1$, then $\forall y \in \mathbb{Z}$, $\exists x \ s.t. \ ax \equiv y \ \text{mod} \ b$, x = sy, where $sa \equiv 1 \ \text{mod} \ b$ is 1 solution. Moreover, any 2 solutions are congruent $\operatorname{mod} m$. This implies that

 $ax \equiv y \mod b \ or \ \frac{Ax-y}{b} \in \mathbb{Z}, \ and \ \frac{(as-1)y}{b} \in \mathbb{Z}.$ $sa \equiv 1 \mod b \ or \ \frac{sa-1}{b} \in \mathbb{Z}, \ which \ implies \ that \ sa-1 = b(-t) \ or$

$$sa + tb = 1$$

for some $s, t \in \mathbb{Z}$.

Proof. gcd(a, m) = 1 = sa + tm, by Thm. 2

Then $b = b \cdot 1 = b(sa + tm) = sab + tmb$ or b = tbm + sab or a(sb) = -tbm + b.

So $a(sb) \mod m \equiv b$.

Let x := sb and so $ax \mod m = b$.

Now suppose $x \neq sb$ s.t. $ax \mod m = b$. Then ax = qm + b. From $a(sb) \mod m = b$, we also get a(sb) = q'm + b. Then $a(x - sb) \mod m = 0$, so $m|a(x - sb) \equiv a(x - sb)/m \in \mathbb{Z}$.

By Corollary 1 (which says, if gcd(c, a) = 1 and if $ab/c \in \mathbb{Z}$, then $b/c \in \mathbb{Z}$), since gcd(m, a) = (m, a) = 1, and since $a(x - sb)/m \in \mathbb{Z}$, then $(x - sb)/m \in \mathbb{Z}$. So (x - sb) = qm or $(sb) \mod m = x$.

Proposition 3 (3.1 of Scheinerman (2006) [12]). Let $a, b \in \mathbb{Z}$, let $c = a \mod b$, i.e. a = qb + c s.t. $0 \le c < b$. Then

$$\gcd(a,b) = \gcd(b,c)$$

cf. Sec. 3.3 Euclid's method of Scheinerman (2006) [12]

Proof. If d common divisor of a, b, i.e. $a/d, b/d \in \mathbb{Z} \equiv d|a, d|b$. $c/d \in \mathbb{Z} \equiv d|c$ since c = a - ab.

If d is common divisor of b, c, i.e. $d|b,d|c \equiv c/d,b/d \in \mathbb{Z}$,

then $d|a \equiv a/d \in \mathbb{Z}$ since a = qb + c. So set of common divisors of a, b same as set of common divisors of b and c. Then $\gcd(a, b) = \gcd(b, c)$.

1.2. Euler's totient; relatively prime. cf. Ch. 5 Arrays, Sec. 5.1 Euler's totient of Scheinerman (2006) [12] For

$$\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$$

 $\varphi: n \mapsto \varphi(n) := \text{ number of elements of } \{1, 2, \dots n\}$

that are relative prime to

$$n = |\{i | i \in \{1, 2, \dots n\}, (n, i) = 1 \text{ or equivalently } n \propto i\}|$$

e.g. $\varphi(10) = 4$ since $\varphi(10) = |\{1, 3, 7, 9\}|$. we want $|(a, b)| 1 \le a, b, \le n, \gcd(a, b) \equiv (a, b) = 1|$.

$$p_n = \frac{1}{n^2} \left[-1 + 2 \sum_{i=1}^n \varphi(k) \right] =$$

= probability that 2 integers, chosen uniformly and independently from $\{1, 2, ... n\}$ are relatively prime If p is prime, $\forall i \in \{1, 2, ... p\}$, $(p, i) \equiv \gcd(p, i) = 1$, i.e. relatively prime to p, except 1 $i \in \{1, 2, ... p\}$. Therefore

$$\varphi(p) = p - 1$$

Consider $\varphi(p^2)$

 $\{1,2,\dots p^2\}$, only numbers not relatively prime to p^2 are multiples of p since $p,2p,3p,\dots p^2$ all divide p^2 , i.e. $p|p^2,2p|p^2\dots (p-1)p|p^2\equiv p^2/p,p^2/2p,\dots p^2/p(1-p)$. Assume $\varphi(p^n)=p^2-p^{n-1}=p^{n-1}(p-1)$.

$$\varphi(p^{n+1}) = \varphi(pp^n) = p^n \varphi(p) = p^n (p-1)$$

Therefore,

Proposition 4 (5.1). Let p prime, $n \in \mathbb{Z}^+$

e.g. $\varphi(77)$. $\forall n \text{ s.t. } 1 \leq n \leq 77$.

$$\gcd(n, 77) = 1$$
$$\gcd(n, 7) = 1$$
$$\gcd(n, 11) = 1$$

By Prop. 3,

$$\gcd(n,7) = \gcd(7, n \mod 7)$$
$$\gcd(n,11) = \gcd(11, n \mod 11)$$

cf. Example (10) of Dummit and Foote [2]. To recap,

Definition 7 (Euler φ -function). $\forall n \in \mathbb{Z}^+$,

let $\varphi(n) := number$ of positive integers $a \le n$ with a relatively prime to n, i.e. $\gcd(a, n) = 1 \equiv (a, n)$

e.g. $\varphi(12) = 4$, since 1, 5, 7, 11 are only positive integers less than or equal to 12.

If p prime, $\varphi(p) = p - 1$.

More generally,

 $\forall a \geq 1$,

(5)
$$\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$$

 φ is multiplicative in the sense that

$$\varphi(ab) = \varphi(a)\varphi(b) \text{ if } \gcd(a,b) = 1$$

 \Longrightarrow general formula.

If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$ (Fundanetal Thm. of Arithmetic, $\forall n \in \mathbb{Z}, n > 1$), then

(7)
$$\varphi(n) = \varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2})\dots\varphi(p_s^{\alpha_s}) p_1^{\alpha_1-1}(p_1-1)p_2^{\alpha_2-1}(p_2-1)\dots p_s^{\alpha_s-1}(p_s-1)$$

cf. pp. 69 Thm. 5.4 (Chinese Remainder) of Scheinerman (2006) [12].

Theorem 6. Let $n \in \mathbb{Z}^+$.

let $p_1, p_2, \dots p_t$ be distinct prime divisors of n (i.e. $\forall p_i, \frac{n}{p_i^{k_i}} \in \mathbb{Z}$ for some $k_i \geq 1$)

(8)
$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_t}\right)$$

Proof. By Fundamental Thm. of Arithmetic,

$$n = p_1^{e_1} p_2^{e_2} \dots p_t^{e_t}$$

where p_i are distinct primes, and e_i are positive integers.

From Eqns. 5, 6, i.e. where

$$\begin{split} \varphi(p^a) &= p^a - p^{a-1} = p^{a-1}(p-1) \\ \varphi(ab) &= \varphi(a)\varphi(b) \text{ if } \gcd(a,b) = 1 \\ \varphi(n) &= \varphi(p_1^{e_1}p_2^{e_2}\dots p_t^{e_t}) = \varphi(p_1^{e_1})\varphi(p_2^{e_2})\dots \varphi(p_t^{e_t}) = \\ &= p_1^{e_1}(1-\frac{1}{p_1})p_2^{e_2}(1-\frac{1}{p_2})\dots p_t^{e_t}(1-\frac{1}{p_t}) = n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\dots (1-\frac{1}{p_t}) \end{split}$$

Exercise 10. cf. pp. 7 Exercise 10 Dummit and Foote [2].

Prove: \forall given $N \in \mathbb{Z}^+$ (positive number),

 \exists only finite many integers n with $\varphi(n) = N$, where φ denotes Euler's φ -function. EY, Indeed, by definition,

$$\varphi(n) = N$$

$$a_1, a_2 \dots a_N \text{ s.t. } a_i \leq n$$

$$\gcd(a_i, n) = 1 \text{ i.e. } 1 = s_i a_i + t_i n$$

Given $N \in \mathbb{Z}^+$, let $n \in \mathbb{Z}$, s.t. $\varphi(n) = N$ (given hypothesis).

Let p = least (i.e. smallest) prime s.t. p > N + 1.

If $q \ge p$ is a prime divisor of n, i.e.

$$n = q^k m$$

for some $k \geq 1$, and m with q not dividing m.

Then

$$\varphi(n)=\varphi(q^k)\varphi(m)=q^{k-1}(q-1)\varphi(m)\geq q-1\geq p-1>N$$

Contradiction.

Thus, \nexists prime divisor of n greater than N+1.

Particularly, distinct prime divisors of n belong to a finite set, say these primes are $p_1, p_2 \dots p_m$.

Definition 8. prime divisor q of n if q is prime and

(9)
$$\frac{n}{q} \in \mathbb{Z} \text{ i.e. } n = q^k m \text{ for some } k \ge 1 \text{ and } \frac{m}{q} \notin \mathbb{Z}^+$$

Now

$$n = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$$

for some $0 < a_i$, so

$$\varphi(n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\dots\varphi(p_m^{a_m}), \text{ so } \varphi(n) = \prod_{i=1}^m p_i^{a_i-1}(p_i-1)$$

Note, \forall prime p_i , $\varphi(n) \geq p_i^{a_i-1}(p_i-1) \geq p_i-1 > N$ for sufficiently large a_i .

Thus, $\forall p_i, \exists$ only finitely many permissible choices for exponents a_i .

So set of all n with $\varphi(n) = N$ is subset of finite set, hence finite.

 $\forall N \in \mathbb{Z}^+, \exists \text{ largest integer } n \text{ with } \varphi(n) = N.$

Thus, as $n \to \infty$, $\varphi(n) \to \infty$.

Scheinerman (2006) [12]

cf. Ex. 1.19, pp. 13, Sec. 1.1 Some Number Theory of Rotman (2010) [11] **Exercise 1.19.** If a and b are relatively prime and if each divides an integer n, then their product ab also divides n, i.e.

Theorem 7. If gcd a, b = 1, and if $n/a \in \mathbb{Z} \equiv a|n$, and $n/b \in \mathbb{Z} \equiv b|n$, then $n/ab \in \mathbb{Z} \equiv ab|n$.

Proof. $\gcd a, b = 1$, so sa + tb = 1 for some $s, t \in \mathbb{Z}$ (Thm. 5).

$$\frac{n}{a}, \frac{n}{b} \in \mathbb{Z}$$
, so $n = au$, $n = bv$

$$n=n\cdot 1=n(sa+tb)=bvsa+autb=ab(vs+ut), \text{ so } \frac{n}{ab}=vs+ut\in\mathbb{Z}.$$

1.2.1. Chinese Remainder Theorem.

Theorem 8. If m, m' relatively prime (i.e. gcd(m, m') = 1), then for

$$x \equiv b \mod m$$

$$x \equiv b' \bmod m'$$

i.e. given b, b'm, m', and wanting to find x, $\exists x \text{ and } \forall 2x$'s, $x = x' \mod mm'$, i.e.

Let m, n relatively prime positive integers (i.e. gcd m, n = 1),

 $\forall a, b \in \mathbb{Z}$.

then pair of congruences

 $x \equiv a \mod m$

 $x \equiv b \bmod n$

has a solution (x), and this solution x is uniquely determined, modulo mn.

Proof. cf. The Chinese Remainder Theorem by Keith Conrad

Suppose

$$(x-a)/m \in \mathbb{Z} \text{ or } x-a=my$$

$$(x-b)/n \in \mathbb{Z}$$
 or $x-b=nz$ or $a+my-b=nz$

 $\gcd m, n = 1$, so then $\forall b \in \mathbb{Z}, \exists w \text{ s.t. } mw \equiv b \mod n \text{ i.e. } \frac{mw - b}{n} \in \mathbb{Z}$, in fact, w = sb, where $sm \equiv 1 \mod n$, or $\frac{sm - 1}{n} \in \mathbb{Z}$, is 1 solution (Thm. 5).

$$my = b - a + nz$$

$$smy = sb - sa + snz = (1 + nv)y = s(b - a) + snz \text{ or } y = s(b - a) + n(sz - vy)$$

or $y \equiv s(b - a) \mod n$

$$x = a + my = a + m(s(b - a) + n(sz - vy)) = a + ms(b - a) + mn(sz - vy) \equiv a + ms(b - a) + mnu$$
$$x - a = m(s(b - a) + nu) \Longrightarrow x = a \mod m$$
$$x - b = a + ms(b - a) + mnu - b = a + (1 + m)(b - a) + mnu - b = m(b - a) + mnu \Longrightarrow x \equiv b \mod n$$

Uniqueness: Suppose $x, y \in \mathbb{Z}$ s.t.

$$x \equiv a \mod m$$
 $y \equiv a \mod m$
 $x \equiv b \mod n$ $y \equiv b \mod n$

Given gcd m, n = 1, sm + tn = 1.

Since $\frac{x-a}{m}, \frac{y-a}{m} \in \mathbb{Z}, \frac{x-y}{m} \in \mathbb{Z}$, likewise, $\frac{x-a}{n}, \frac{y-a}{n} \in \mathbb{Z}, \frac{x-y}{n} \in \mathbb{Z}$

Since $\frac{x-y}{m}, \frac{x-y}{n} \in \mathbb{Z}, \frac{x-y}{mn} \in \mathbb{Z}$ by Thm. 7.

Thus, x - y = mnk for some $k \in \mathbb{Z}$. For instance, k = 0, x = y.

This shows any 2 solutions are the same, modulo mn.

cf. Ch. 1 Things Past, Thm. 1.28 of Rotman (2010) [11], pp. 68 Thm. 5.2 (Chinese Remainder) of Scheinerman (2006) [12].

2. Groups

cf. pp. 16 Chapter 1 Introduction to Groups. Dummit and Foote (2004) [2]

Definition 9 (binary operation). (1) binary operation * on set G is a function *: $G \times G \to G$. $\forall a, b \in G$, $a * b \equiv *(a, b)$

- (2) binary operation * on set G is associative: if $\forall a, b, c \in G$, a * (b * c) = (a * b) * c
- (3) If * is binary operation on set G, a,b of G commut if a*b=b*a. *(or G) is **commutative** if $\forall a,b \in G$ a*b=b*a.

cf. pp. 16. Sec. 1.1. Basic Axioms and Examples, Dummit and Foote (2004) [2]

Definition 10 (Group). (1) Group is an ordered pair (G,*) where G is a set, * is a binary operation on G s.t.

- (a) $(a * b) * c = a * (b * c), \forall a, b, c \in G$, i.e. * associative
- (b) $\exists e \in G$, s.t. $\forall a \in G$, a * e = e * a = a (\exists identity e)
- (c) $\forall a \in G, \exists a^{-1} \in G, \text{ called an inverse of } a, \text{ s.t. } a * a^{-1} = a^{-1} * a = e$
- (2) (optional: abelian or commutative) (G,*) abelian (or commutative) if a*b=b*a. $\forall a,b \in G$.

e.g.

- (1) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are groups under + with e = 0 and $a^{-1} = -a$, $\forall a$.
- (2) $\mathbb{Q} \{0\}, \mathbb{R} \{0\}, \mathbb{C} \{0\}, \mathbb{Q}^+, \mathbb{R}^+ \text{ groups under } \times \text{ with } e = 1, a^{-1} = \frac{1}{a}$
- (3) (direct product of groups) If $(A, *), (B, \circ)$ are groups, we can form new group $A \times B$ called direct product s.t.

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

and $(a_1, b_1)(a_2, b_2) = (a_1 * a_2, b_1 \circ b_2)$ cf. Example 6, Sec. 1.1 Dummit and Foote (2004) [2]

Proposition 5. If G group under operation *, then

- (1) identity of G is unique
- (2) $\forall a \in G, a^{-1}$ uniquely determined.
- $(3) (a^{-1})^{-1} = a \quad \forall a \in G$
- $(4) (a*b)^{-1} = (b^{-1})*(a^{-1})$
- (5) $\forall a_1, a_2, \dots a_n \in G, a_1, a_2 \dots a_n$ independent of how expression is bracketed (generalized associative law)

cf. Prop. 1, Sec. 1.1 Dummit and Foote (2004)[2]

3. Groups: Normal Subgroups

Definition 11 (normal subgroup $K \triangleleft G$). normal subgroup K of $G \equiv K \triangleleft G$ subgroup $K \subset G$, if $\forall k \in K, \forall g \in G$,

$$gkg^{-1} \in K$$

Definition 12 (quotient group).

quotient group $G \mod K \equiv G/K$ -

if
$$G/K = family \ of \ all \ left \ cosets \ of \ subgroups \ K \subset G =$$

$$= \{qK | q \in G, K = \{qk | k \in K\}$$

and

 $K = normal \ subgroup \ of \ G, \ i.e. \ K \triangleleft G, \ and \ so$

$$aKbK = abK \qquad \forall a, b \in G,$$

so G/K group.

Definition 13 (exact sequence of groups). *exact sequence* if $imf_{n+1} = kerf_n$ and groups

 $\forall n \text{ for sequence of group homomorphisms}$

$$(10) G_{n+1} \xrightarrow{f_{n+1}} G_n \xrightarrow{f_n} G_{n-1}$$

Theorem 9. (1)

$$1 A \xrightarrow{f} I$$

(2)

$$B \xrightarrow{g} C$$

(3)

1
$$A \xrightarrow{h} B$$

Proof. (1) $\operatorname{im}(1 \to A) = 1$, since $1 \to A$ is a group homomorphism $((1 \to A)(1) = 1_A)$. if $1 \to A \xrightarrow{f} B$ exact, $\ker f = \operatorname{im}(1 \to A) = 1$, so if f(x) = 1, x = 1, f injective. If f injective, $\ker f = 1$. $1 = \operatorname{im}(1 \to A)$. $1 \to A \xrightarrow{f} B$, exact.

- (2) $\ker(C \to 1) = C$, by def. of $C \to 1$ if $B \stackrel{g}{\mapsto} C \to 1$ exact, $\operatorname{im} g = g(B) = \ker(C \to 1) = C$. g(B) = C implies g surjective. If g surjective, $g(B) = C = \ker(C \to 1)$. $B \stackrel{g}{\mapsto} C \to 1$ exact.
- (3) From (i), $1 \to A \xrightarrow{h} B$ exact iff h injective. From (ii), $A \xrightarrow{h} B \to 1$, exact iff h surjective. h isomorphism.

3.1. 1st, 2nd, 3rd Isomorphism Theorems.

Theorem 10 (1st Isomorphism Theorem (Modules) Thm. 7.8 of Rotman (2010) [11]). If $f: M \to N$ is R-map of modules, then $\exists R$ -isomorphism s.t.

(11)
$$\varphi: M/kerf \to imf$$
$$\varphi: m + kerf \mapsto f(m)$$

Proof. View M, N as abelian groups.

Recall natural map $\pi: M \to M/N$

$$m \mapsto m + N$$

Define φ s.t. $\varphi \pi = f$.

 $(\varphi \text{ well-defined}). \text{ Let } m + \ker f = m' + \ker f, m, m' \in M, \text{ then } \exists n \in \ker f \text{ s.t. } m = m' + n.$

$$\varphi(m + \ker f) = \varphi \pi(m) = f(m' + n) = f(m') + f(n) = \varphi \pi(m') + 0 = \varphi(m' + \ker f)$$

 $\Longrightarrow \varphi$ well-defined.

(φ surjective). Clearly, $\operatorname{im} \varphi \subset \operatorname{im} f$.

Let $y \in \operatorname{im} f$. So $\exists m \in M$ s.t. y = f(m). $f(m) = \varphi \pi(m) = \varphi(m + \ker f) = y$. So $y \in \operatorname{im} \varphi$. $\operatorname{im} f \subseteq \operatorname{im} \varphi$.

 $\Longrightarrow \varphi$ surjective.

$$(\varphi \text{ injective}) \text{ If } \varphi(a + \ker f) = \varphi(b + \ker f), \text{ then }$$

$$\varphi\pi(a) = \varphi\pi(b)$$
 or $f(a) = f(b)$ or $0 = f(a) - f(b) = f(a-b)$ so $a-b \in \ker f(a-b) + \ker f = \ker f$ so $a + \ker f = b + \ker f$

 φ isomorphism.

$$\varphi$$
 R-map. $\varphi(r(m+N)) = \varphi(rm+N) = f(rm)$.

Since f R-map, $f(rm) = rf(m) = r\varphi(m+N)$. φ is R-map indeed.

Theorem 11 (2nd Isomorphism Theorem (Modules) Thm. 7.9 of Rotman (2011) [11]). If S, T are submodules of module M, i.e. $S, T \in M$, then $\exists R$ -isomorphism

$$(12) S/(S \cap T) \to (S+T)/T$$

Proof. Let natural map $\pi: M \to M/T$.

So
$$\ker \pi = T$$
.

Define $h := \pi|_S$, so $h : S \to M/T$, so $\ker h = S \cap T$,

$$(S+T)/T = \{(s+t) + T | a \in S + T, s \in S, t \in T\}$$

i.e. (S+T)/T consists of all those cosets in M/T having a representation in S.

By 1st. isomorphism theorem,

$$S/S \cap T \xrightarrow{\cong} (S+T)/T$$

Theorem 12 (3rd Isomorphism Theorem (Modules) Thm. 7.10 of Rotman (2011) [11]). If $T \subseteq S \subseteq M$ is a tower of submodules, then $\exists R$ -isomorphism

$$(13) (M/T)/(S/T) \to M/S$$

Proof. Define $g: M/T \to M/S$ to be **coset enlargement**, i.e.

$$(14) g: M+T \mapsto m+S$$

g well-defined: if m+T=m'+T, then $m-m'\in T\subseteq S$, and $m+S=m'+S\Longrightarrow g(m+T)=g(m'+T)$ ker g=S/T since

$$g(s+T) = s + S = S \qquad (S/T \subseteq \ker g)$$

$$g(m+T) = m + S = 0 = S = s + S, \text{ so } m = s \Longrightarrow \ker g \subseteq S/T$$

im g = M/S since

$$g(m+T) = m+S \Longrightarrow \operatorname{im} g \subseteq M/S$$

 $m+S = g(m+T)$

Then by 1st isomorphism, and commutative diagram, done.

4. Rings

e.g.

(1) rational numbers \mathbb{Q}

real numbers \mathbb{R}

complex numbers \mathbb{C}

are commutative rings with identity (in fact, they're fields)

Ring axioms for each follow ultimately from ring axioms for \mathbb{Z}

(verified when \mathbb{Z} constructed from \mathbb{Z} (Sec. 7.5)), \mathbb{C} from \mathbb{R} (Example 1, Sec. 13.1).

Construction of \mathbb{R} from \mathbb{Z} carried out in basic analysis texts

- (2) quotient group $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring with identity (element 1) under operations of addition and multiplication of residue classes (frequently referred to as "modular arithmetic").
 - We saw additive abelian groups axioms followed from general principles of theory of quotient groups $(\mathbb{Z}/n\mathbb{Z})$ was prototypical quotient group. cf. Example 4, pp. 224, Dummit and Foote (2014)[2]
- (3) the (real) Hamiltonian Quaternions.

Definition 14 ((real) Hamiltonian Quaternions). Let $\mathbb{H} = \{a+bi+cj+dk|a,b,c,d\in\mathbb{R}\}$ s.t. "componentwise" addition is defined as

$$(a+bi+cj+dk) + (a'+b'i+c'j+d'k) = (a+a') + (b+b')i + (c+c')j + (d+d')k$$

and multiplication defined by expanding using distributive laws

$$(a+bi+cj+dk)(a'+b'i+c'j+d'k)$$

using

(16)
$$i^{2} = j^{2} = k^{2} = -1$$
$$ij = -ji = k$$
$$jk = -kj = i$$
$$ki = -ik = j$$

Working out the multiplication

$$(a+bi+cj+dk)(a'+b'i+c'j+d'k) =$$

$$= aa' + ab'i + ac'j + ad'k + ba'i - bb' + bc'k - bd'j +$$

$$= ca'j - cb'k - cc' + cd'i + da'k + db'j - dc'i - dd' =$$

$$= aa' - bb' - cc' - dd' + (ab' + ba' + cd' - dc')i + (ac' - bd' + ca' + db')j + (ad' + bc' - cb' + da')k$$

Hamiltonian Quaternions are noncommutative ring with identity (1 = 1 + 0i + 0j + 0k).

Similarly define rational Hamiltonian Quaternions ring by taking $a, b, c, d \in \mathbb{Q}$.

real and rational Hamiltonian Quaternions both are divison rings, where inverse of nonzero element defined as

$$(a+bi+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$$

cf. Example 5, pp. 224, Dummit and Foote (2014)[2]

(4) rings of functions (important class)

Let X be any nonempty set.

Let A be any ring.

Definition 15 (function ring). collection $R = \{f : X \to A\}$ is a ring under pointwise addition and multiplication of functions s.t.

(18)
$$(f+g)(x) = f(x) + g(x)$$
$$(fg)(x) = f(x)g(x)$$

cf. Example 6, pp. 225, Dummit and Foote (2014)[2]

5. Commutative Rings

cf. Ch. 3 "Commutative Rings I" of Rotman (2010) [11]

Definition 16. commutative ring R is a set with 2 binary operations, addition and multiplication, s.t.

- (i) R abelian group under addition
- (ii) (commutativity) $ab = ba \quad \forall a, b \in R$ (this isn't there for noncommutativity)
- (iii) (associativity) $a(bc) = (ab)c \quad \forall a, b, c \in R$
- (iv) $\exists 1 \in R \text{ s.t. } 1a = a \quad \forall a \in R \qquad (many names used: one, unit, identity)$
- (v) (distributivity) a(b+c) = ab + ac $a,b,c \in R$ (this splits up into 2 distributivity laws for noncommutativity)

To reiterate, abelian group under addition R (is defined as)

- (1) associative $\forall x, y, z \in R, x + (y + z) = (x + y) + z$
- (2) $\exists 0 \in R, 0 + x = x + 0, \forall x \in R$
- (3) $\forall x \in R, \exists (-x) \in R \text{ s.t. } x + (-x) = 0 = (-x) + x$

abelian, if commutativity: x + y = y + x.

5.1. Linear Algebra; Linear Algebra with commutative rings as fields.

Proposition 6 (Matrix representation of linear transformation; 3.94 of Rotman (2010) [11]). If linear transformation $T: k^n \to k^m$, then $\exists A \in Mat_k(m,n)$ s.t.

$$T(y) = Ay, \qquad \forall y \in k^n$$

 $(e_1 \dots e_n)$ standard basis of k^n $(e'_1 \dots e'_m)$ standard basis of k^m

Define $A = [a_{ij}]$, s.t. $T(e_j) = A_{*j} = A_{ij}e'_i$ (jth column), $S: k^n \to k^m$ If S(y) = A(y), then

If
$$S: k^n \to k^m$$

 $S(y) = A(y)$, the

$$T(e_j) = a_{ij}e_i' = Ae_j$$

and so $\forall y = y_i e_i \in k^n$,

$$T(y) = T(y_j e_j) = y_j T(e_j) = y_j A_{ij} e'_i = Ay$$

6. R-modules

cf. Sec. 7.1 Modules of Rotman (2010) [11]

Definition 17 (R-module). R-module is (additive) abelian group M.

equipped with scalar multiplication $R \times M \to M$

$$(r,m)\mapsto rm$$

s.t. $\forall m, m' \in M, \forall r, r', 1 \in R$

- (i) r(m+m') = rm + rm'
- (ii) (r + r')m = rm + r'm
- (iii) (rr')m = r(r'm)
- (iv) 1m = m

Example 7.1

- (i) \forall vector space over field k is a k-module. (by inspection of the axioms for a vector space, associativity, distributivity!)
- (ii) \forall abelian group is a \mathbb{Z} -module, by laws of exponents (Prop. 2.23) Indeed, for

$$\mathbb{Z} \times M \to M$$
$$(r, m) \mapsto rm \equiv m^r$$

and so

$$r(m \cdot m') \equiv (m \cdot m')^r = m^r (m')^r = rm + rm'$$

(since M abelian)

(iii) For commutative ring, scalar multiplication, defined to be given multiplication of elements of R

$$R\times R\to R$$

$$(a,b)\mapsto ab$$

For reference, recall some of the properties of a commutative ring:

$$ab = ba$$

$$a(bc) = (ab)c$$

$$1a = a$$

$$a(b+c) = ab + ac$$

 \forall ideal I in R is an R-module.

$$\begin{aligned} &\text{for if } i \in I \quad \text{, then } ri \in I. \\ &\quad r \in R \\ &\quad 0 \in I \\ &\quad \forall \, a,b \in I, \, a+b \in I \\ &\quad \text{If } a \in I, \, r \in R \text{, then } ra \in I. \end{aligned}$$

- (iv) (v) Let linear $T: V \to V$, V finite-dim. vector space over field k.
 - Recall $k[x] \equiv \text{set of polynomials with coefficients in } k$.

Define
$$k[x] \times V \to V$$

$$f(x)v = \left(\sum_{i=0}^{m} c_i x^i\right)v = \sum_{i=0}^{m} c_i T^i(v)$$

$$\Rightarrow \text{denote } k[x]\text{-module } V^T.$$

Special case: Let $A \in \operatorname{Mat}_k(n, n)$, let linear $T : k^n \to k^n$.

$$T(w) = Aw$$

vector space k^n is k[x]-module if we define scalar multiplication

$$k[x] \times k^n \to k^n$$

$$f(x)w = \left(\sum_{i=0}^m c_i x^i\right) w = \sum_{i=0}^m c_i A^i w$$

$$\forall f(x) = \sum_{i=0}^{m} c_i x^i \in k[x]$$

In $(k^n)^T$, $xw = T(w)$
In $(k^n)^A$, $xw = Ax$

T(w) = Ax and so $(k^n)^T = (k^n)^A$ (EY: 20151015 because of induction?)

Definition 18 (R-homomorphism (or R-map)). If ring R, R-modules M, N, then function $f: M \to N$, if $\forall m, m' \in M, \forall r \in R$,

$$f(m+m') = f(m) + f(m')$$
$$f(rm) = rf(m)$$

Example 7.2. of Rotman (2011) on pp. 425 [11]]

- (i) If R field, then R-modules are vector spaces and R-maps are linear transformations. Isomorphisms are then nonsingular linear transformations.
- (ii)
- (iii)

- (iv)
- (v) Let linear $T: V \to V$, let $v_1 \dots v_n$ be basis of V, let A be matrix of T relative to this basis. Let $e_1 \dots e_n$ be standard basis of k^n .

Define
$$\varphi: V \to k^n$$

$$\varphi(v_i) = e_i$$

$$\varphi(xv_i) = \varphi(T(v_i)) = \varphi(v_j a_{ji}) = a_{ji} \varphi(v_j) = a_{ji} e_j$$

$$x \varphi(v_i) = A \varphi(v_i) = A e_i$$

$$\Longrightarrow \varphi(xv) = x \varphi(v) \quad \forall \, v \in V$$
 By induction on $\deg(f)$, $\varphi(f(x)v) = f(x)\varphi(v) \quad \forall \, f(x) \in k[x] \quad \forall \, v \in V$
$$\Longrightarrow \varphi \text{ is } k[x]\text{-map}$$

Proposition 7 (7.3 of Rotman (2011) [11]). Let vector space over field k, V, let linear $T, S: V \to V$ Then k[x]-modules V^T, V^S are k[x]-isomorphic iff \exists vector space isomorphism $\varphi: V \to V$ s.t. $S = \varphi T \varphi^{-1}$.

Proof. If $\varphi: V^T \to V^S$ is a k[x]-isomorphism,

 $\Longrightarrow \varphi$ is k[x]-isomorphism of V^T and $(k^n)^A$.

$$\varphi(f(x)v) = f(x)\varphi(v) \quad \forall v \in V, \forall f(x) \in k[x]$$

if f(x) = x, then $\varphi(xv) = x\varphi(v)$

$$\begin{aligned} xv &= T(v) \\ x\varphi(v) &= S(\varphi(v)) \\ \Longrightarrow &\varphi \circ T(v) = S \circ \varphi(v) \Longrightarrow \varphi \circ T = S \circ \varphi \end{aligned}$$

 φ isomorphism, so $S = \varphi \circ T \circ \varphi^{-1}$

Conversely, if given isomorphism $\varphi: V \to V$ s.t. $S = \varphi T \varphi^{-1}$, then $S\varphi = \varphi T$.

$$S\varphi(v) = \varphi T(v) = \varphi(xv) = x\varphi(v)$$

Then by induction, $\varphi(x^n v) = x^n \varphi(v)$ (for $S^n \varphi(v) = x^n \varphi(v) = (\varphi T \varphi^{-1})^n \varphi(v) = \varphi T^n v = \varphi(x^n v)$). By induction on $\deg(f)$, $\varphi(f(x)v) = f(x)\varphi(v)$.

Corollary 2 (7.4 of Rotman (2011) [11]). Let k be a field,

Let $A, B \in Mat_k(n, n)$.

Then k[x]-modules $(k^n)^A$, $(k^n)^B$ are k[x]-isomorphic.

(recall, $k[x] \equiv set$ of polynomials with coefficients in $k = \{\sum_{i=0}^m c_i x^i | c_i \in k\}$, and define scalar multiplication

$$k[x] \times k^n \to k^n$$

$$f(x)w = \left(\sum_{i=0}^{m} c_i x^i\right) w = \sum_{i=0}^{m} c_i A^i w, \qquad \forall f(x) = \sum_{i=0}^{m} c_i x^i \in k[x]$$

iff \exists nonsingular P with

$$B = PAP^{-1}$$

Proof. Define

 $T: k^n \to k^n$

where $y \in k^n$ is a column. T(y) = A(y)

By Example 7.1 (v) of Rotman (2011) [11], recall, and so for k[x]-module, $(k^n)^T = (k^n)^A$.

Similarly, define

$$S:k^n\to k^n$$

$$S(y) = B(y)$$

Denote corresponding k[x]-module by $(k^n)^B$. Given $(k^n)^A \cong (k^n)^B$ (isomorphic), by Prop. 7,

 \exists isomorphism $\varphi: k^n \to k^n$ s.t. $B = \varphi A \varphi^{-1}$.

By Prop. 6, i.e. Prop. 3.94 of Rotman (2011) [11], in that every linear transformation has a matrix representation (even in the standard "Euclidean" basis), $\exists P \in \operatorname{Mat}_k(n, n)$, s.t.

$$\varphi(y) = Py \qquad y \in k^n$$

(P nonsingular because φ isomorphism)

Thus,

$$B\varphi(y) = \varphi A(y)$$

$$BPy = P(Ay) \qquad \forall y \in k^n$$

$$\Longrightarrow PA = BP \text{ or } B = PAP^{-1}$$

Conversely, given $B = PAP^{-1}$, P nonsingular matrix, define isomorphism

$$\varphi: k^n \to k^n$$

$$\varphi(y) = Py \qquad \forall y \in k^n$$

By Prop. 7,

 $(k^n)^B$, $(k^n)^A$ are k[x]-isomorphic.

i.e. $\varphi:(k^n)^A\to (k^n)^B$ is a k[x]-module isomorphism.

Definition 19 ($\operatorname{Hom}_{R}(M,N)$).

(19)

$$Hom_R(M,N) = \{ all \ R\text{-}homomorphisms } M \rightarrow N \} = \{ f|f:M \rightarrow N, \ s.t. \ \forall m,m' \in M, \ \forall r \in R, \ \frac{f(m+m') = f(m) + f(m')}{f(rm) = rf(m)} \}$$

If $f, g \in Hom_R(M, N)$,

 \Box define

(20)
$$f + g: M \to N$$
$$f + g: m \mapsto f(m) + g(m)$$

Proposition 8 (Hom_R(M,N) R-module, 7.5 of Rotman (2011) [11]). If M,N R-modules, where R commutative ring, then $Hom_R(M, N)$ R-module, with addition

$$f + g : M \to N$$
 $\forall f, g \in Hom_R(M, N)$
 $f + g : m \mapsto f(m) + g(m)$

and scalar multiplication

$$rf: m \mapsto f(rm)$$

Moreover, distributive laws:

If $p: M' \to M$, $q: N \to N'$, then

$$(f+g)p = fp + gp \text{ and } q(f+g) = qf + qg$$

 $\forall f, g \in Hom_B(M, N)$

Proof. $\forall f, g \in \operatorname{Hom}_R(M, N), \forall r, r', 1 \in R$,

(i)

$$r(f+g)(m) = (f+g)(rm) = f(rm) + g(rm) = rf(m) + rg(m) = (rf+rg)(m)$$

(ii)
$$(r+r')f(m) = f((r+r')m) = f(rm+r'm) = f(rm) + f(r'm) = (rf+r'f)(m)$$

(iii)
$$(rr')f(m) = f(rr'm) = rf(r'm) = f(rr'm) \Longrightarrow (rr')f = r(r'f)$$

(iv)
$$1f(m) = f(1m) = f(m) \Longrightarrow 1f = f$$

10 ERN

Definition 20. if R-module M, the submodule N of M, denoted $N \subseteq M$, is additive subgroup N of M, closed under scalar multiplication $rn \in N$ whenever $n \in N$, $r \in R$

Definition 21 (quotient module M/N).

 ${\it quotient \ module \ M/N}$ -

For submodule N of R-module M, then, remember M abelian group, N subgroup, quotient group M/N equipped with scalar multiplication

$$r(m+N) = rm + N$$
$$M/N = \{m+N|m \in M\}$$

 $natural\ map$

(21)
$$\begin{aligned} \pi: M \to M/N \\ m \mapsto m+N \end{aligned}$$

easily seen to be R-map.

Scalar multiplication in quotient module well-defined:

If m + N = m' + N, $m - m' \in N$, so $r(m - m') \in N$ (because N submodule), so

$$rm - rm' \in N \text{ and } rm + N = rm' + N$$

Proposition 9 (7.15 of Rotman (2010) [11]).

(i)
$$S \mid T \simeq M$$

(ii) \exists injective R-maps $i: S \to M$, s.t.

$$j:T\to M$$

(22)
$$M = im(i) + im(j) \text{ and}$$
$$im(i) \bigcap im(j) = \{0\}$$

(iii) ∃ *R*-maps

$$i: S \to M$$
$$j: T \to M$$

s.t. $\forall m \in M, \exists!$

$$s \in S$$
$$t \in T$$

with m = is + jt.

(iv) $\exists R\text{-}maps$

$$i: S \to M$$
 $p: M \to S$
 $j: T \to M$ $q: M \to T$

s.t.

$$pi = 1_S$$
 , $pj = 0$
 $qj = 1_T$, $qi = 0$ $ip + jq = 1_M$

Proof.

• (i) \rightarrow (ii) Given $S \bigsqcup T \simeq M$,

let $\varphi: S \coprod T \to M$ be this isomorphism.

Define

$$i := \varphi \lambda_S$$
 $(\lambda_S : s \mapsto (s, 0))$ $i : S \to M$
 $j := \varphi \lambda_T$ $(\lambda_T : t \mapsto (0, t))$ $j : T \to M$

i, j are injections, being composites of injections.

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

If $m \in M$, $\exists ! (s,t) \in S \coprod T$, s.t. $\varphi(s,t) = m$.

$$m = \varphi(s,t) = \varphi((s,0) + (0,t)) = \varphi \lambda_S(s) \varphi \lambda_T(t) = is + jt \in \operatorname{im}(i) + \operatorname{im}(j)$$

Let $c \in \text{im}(i) + \text{im}(j)$. Since $i : S \to M$, $c \in M$. $j : T \to M$

$$\Longrightarrow M = \operatorname{im}(i) + \operatorname{im}(j).$$

If $x \in \operatorname{im}(i) \cap \operatorname{im}(j)$,

$$x = i(s)$$
 for some $s \in S$
 $x = j(t)$ for some $t \in T$

$$is = jt = \varphi \lambda_S(s) = \varphi \lambda_T(t) = \varphi(s, 0) = \varphi(0, t)$$

 φ isomorphism, so $\exists \varphi^{-1} \Longrightarrow (s,0) = (0,t)$, so s=t=0. x=0

 • (ii) → (iii) Given $i:S\to M$, s.t. $M=\operatorname{im}(i)+\operatorname{im}(j),$ so $j:T\to M$

 $\forall m \in M, m = i(s) + j(t) \text{ for some } s \in S, t \in T.$

Suppose
$$s' \in S$$
, s.t. $m = i(s'_{+}j(t'))$.
 $t' \in T$

$$i(s - s') = j(t - t') \in im(i) \cap im(j) = \{0\}$$

So s = s', t = t', since i, j injective.

• (iii) \rightarrow (iv) Given $\forall m \in M, \exists ! s \in S, t \in T \text{ s.t.}$

$$m = i(s) + j(t)$$

Define

$$p: M \to S$$
 $q: M \to T$
 $p(m) := s$ $q(m) := t$

$$pi(s) = s$$
 $pj(t) = 0$ $qi(t) = t$ $qi(s) = 0$ $(ip + jq)(m) = ip(m) + jq(m) = i(s) + j(t) = m$

7. Categories: Category Theory

7.1. Categories. cf. 7.2 Categories of Rotman (2010) [11]

7.1.1. Russell paradox, Russell set.

Definition 22 (Russell set). Russell set - set S that's not a member of itself, i.e. $S \notin R$

If R is family of all Russell sets,

Let $X \in R$. Then $X \notin X$. But $X \in R$. $X \notin R$.

Let $R \notin R$. Then R in family of Russell Sets. $R \in R$. Contradiction.

Then consider *class* as primitive term, instead of set.

Definition 23 (Category). Category C (Rotman's notation) $\equiv C$ (my notation), consists of class obj(C) (Rotman's notation) $\equiv Obj(\mathbf{C}) \equiv Obj\mathbf{C}$ (my notation) of objects, set of morphisms $Hom(A,B) \ \forall (A,B)$ of ordered tuples of objects, composition

$$Hom(A, B) \times Hom(B, C) \rightarrow Hom(A, C)$$

 $(f, g) \mapsto gf$

, s.t.

(1)
$$\exists \mathbf{1}, \forall f : A \to B, \exists \mathbf{1}_A : A \to A$$
, s.t. $\mathbf{1}_B \cdot f = f = f \cdot \mathbf{1}_A$, and $\mathbf{1}_B : B \to B$

(2) associativity,
$$\forall \begin{array}{l} f:A\to B\\ g:B\to C \end{array}$$
, then $h\circ (g\circ f)=(h\circ g)\circ f$
 $h:C\to D$

In summary,

(23)
$$\mathbf{C} := (Obj(\mathbf{C}), Mor\mathbf{C}, \circ, \mathbf{1}) \equiv (Obj\mathbf{C}, Mor\mathbf{C}, \circ_{\mathbf{C}}, \mathbf{1}_{\mathbf{C}})$$

s.t.

$$Mor$$
C = $\bigcup_{A,B \in Obj$ **C** $Hom(A,B)$

Examples (7.25 of Rotman (2010)[11]):

- (i) $\mathbf{C} = \operatorname{Sets}$
- (ii) $\mathbf{C} = \text{Groups} = \text{Grps}$
- (iii) $\mathbf{C} = \text{CommRings}$
- (iv) $C = {}_{R}Mod$, if $R = \mathbb{Z}$, $\mathbb{Z}Mod = Ab$, i.e. \mathbb{Z} -modules are just abelian groups.
- (v) $\mathbf{C} = \mathbf{PO}(X)$, If partially ordered set X, regard X as category, s.t. $\mathbf{Obj}, \mathbf{PO}(X) = \{x | x \in X\}, \ \forall \operatorname{Hom}(x,y) \in \mathbb{R}$

 $\mathbf{Mor_{PO}}(X), \, \mathrm{Hom}(x,y) = \begin{cases} \emptyset & \text{if } x \not\preceq y \\ \kappa_y^x & \text{if } x \preceq y \end{cases} \text{ where } \kappa_y^x \equiv \text{unique element in Hom set when } x \preceq y) \text{ s.t.}$

$$\kappa_z^y \kappa_y^x = \kappa_z^x$$

Also, notice that

$$1_r = \kappa_r^x$$

Definition 24 (isormorphisms or equivalences). $f: A \to B$, $f \in Hom(A,B)$, if $\exists inverse \ q: B \to A$, $q \in Hom(B,A)$, s.t.

$$gf = 1_A$$

$$fg = 1_B$$

and if C = Top, equivalences (isomorphisms) are homeomorphisms.

Feature of category $_{R}$ Mod not shared by more general categories: Homomorphisms can be added.

Definition 25 (pre-additive Category). category C

We can force 2 overlapping subsets A, B to be disjoint by "disjointifying" them: e.g. consider $(A \cup B) \times \{1,2\}$, consider

$$A' = A \times \{1\}.$$

$$B' = B \times \{2\}$$

$$\Longrightarrow A' \cap B' = \emptyset$$

since $(a, 1) \neq (b, 2) \quad \forall a \in A, \forall b \in B$.

Let bijections
$$\alpha: A \to A'$$
, $\alpha: a \mapsto (a,1)$, denote $A' \cup B' \equiv A \coprod B$.
 $\beta: B \to B'$ $\beta: b \mapsto (b,2)$

From Rotman (2010) [11], pp. 447,

Definition 26. coproduct $A \mid B \equiv C \in Obj(C)$

In my notation, coproduct

(24)
$$(\mu_1, A_1 \coprod A_2)$$

$$(\mu_2, A_1 \coprod A_2)$$

where injection (morphisms)

(25)
$$\mu_1: A_1 \to A_1 \coprod A_2$$
$$\mu_2: A_1 \to A_1 \coprod A_2$$

s.t.

$$\forall A \in \text{Obj}\mathbf{A}, \forall f_1, f_2 \in \text{Mor}\mathbf{A} \text{ s.t. } f_1 : A_1 \to A$$

 $f_2 : A_2 \to A$

then

(26)

(27)

$$\exists ! [f_i] \equiv [f_1, f_2] \in \text{Mor} \mathbf{A}, [f_1, f_2] : A_1 \coprod A_2 \to A \text{ s.t.}$$
$$[f_1, f_2] \mu_1 = f_1$$
$$[f_1, f_2] \mu_2 = f_2$$

$$A_{1} \xrightarrow{\mu_{1}/f_{2}} A_{1} \coprod_{\downarrow} A_{2}$$

$$A_{2} A_{2}$$

So to generalized, for $i \in I$, (finite set I?)

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

coproduct
$$(\mu_j, \coprod_{i \in I} A_i)_{j \in I}$$
, where (family of) injection (morphisms) $\mu_j : A_j \to \coprod_{i \in I} A_i$ s.t.

$$\forall A \in \text{Obj}\mathbf{A}, \forall f_i \in \text{Mor}\mathbf{A}, i \in I, f_i : A_i \to A$$

then

(28)
$$\exists ! [f_i] \equiv [f_i]_{i \in I} \in \text{Mor} \mathbf{A}, [f_i] : \coprod_{i \in I} A_i \to A \text{ s.t.}$$
$$[f_i]\mu_j = f_j \qquad \forall j \in I$$

i.e.

For notation purposes only, recall that it's denoted the sets Hom(A, B) in ${}_{R}Mod$ by

$$\operatorname{Hom}_R(A,B)$$

i.e., in my notation, for $A, B \in \text{Obj}_B \mathbf{Mod}$, $\text{Hom}(A, B) \subset \text{Mor}(_B \mathbf{Mod})$, $\text{Hom}(A, B) \equiv \text{Hom}_B(A, B)$

Definition 27 (pre-additive category). category \mathbf{C} is **pre-additive** if $\forall Hom(A, B)$, Hom(A, B) equipped with binary operation $+ s.t. \ \forall f, g \in Hom(A, B)$,

(1) if $p: B \to B'$, then

$$p(f+g) = pf + pg \in Hom(A, B')$$

(2) if $q: A' \to A$, then

$$(f+g)q = fq + gq \in Hom(A', B)$$

and

$$f + q = q + f$$
 (additive abelian)

7.1.2. Examples of extra assumptions on sets, _RMod we take for granted. In Prop. 7.15(iii) Rotman (2010) [11],

$$p: M \to A$$
 $pi = 1_A$

direct sum $M = A \oplus B$ if \exists homomorphisms $q: M \to B$ s.t. $qj = 1_B$,

$$i: A \to M$$
 $pj = 0$

$$j: B \to M$$
 $qi = 0$

$$ip + jq = 1_M$$

direct sum $M = A \oplus B$ uses property that morphisms can be added ${}_{R}\mathbf{Mod}$ has this property. **Sets** don't. In Corollary 7.17,

direct sum in terms of arrows,

 $\exists \text{ map } \rho: M \to S \text{ s.t. } \rho(s) = s. \text{ Moreover } \ker \rho = \operatorname{im} i, \operatorname{im} \rho = \operatorname{im} i \text{ and } \rho(s) = s, \forall s \in \operatorname{im} \rho.$

$$S \xrightarrow{i} M \xleftarrow{j} T \text{ and } M \simeq S \coprod T,$$

where $i: s \mapsto s$ (i.e. inclusions)

$$j: t \mapsto t$$

This makes sense in **Sets**, but doesn't make sense in arbitrary categories because image of morphism may fail, e.g. Mor(C(G)) are elements in Hom(*,*) = G, not functions.

Categorically, object S is (equivalent to) retract of object $M, S, M \in \text{Obj}\mathbb{C}$, if \exists morphisms $i, p \in \text{Mor}(\mathbb{C})$, s.t.

$$i: S \to M$$

 $p: M \to S$

s.t. $pi = 1_S$, $(ip)^2 = ip$ (for modules, define $\rho = ip$)

Definition 28 (free products). free products are coproducts in groups

Prop. 7.26, Rotman (2010) [11]

Proposition 10 (7.26, Rotman). If A, B are R-modules,

then their coproducts in ${}_{R}\mathbf{Mod}$ exists, and it's the direct sum $C = A \coprod B$.

Proof. Define

$$\mu: A \to C \qquad \nu: B \to C \mu: a \mapsto (a, c) \qquad \nu: b \mapsto (0, b)$$
 (Rotman's notation)
$$\alpha: A \to C \beta: B \to C$$

Let X be a module, $f: A \to X$, $g: B \to X$ homomorphisms

Define

$$\theta: C \to X$$

$$\theta: (a,b) \mapsto f(a) + g(b)$$

$$\theta\mu(a) = \theta(a,0) = f(a)$$

$$\theta\nu(b) = \theta(0,b) = g(b)$$

so diagram commutes, i.e.

If $\psi: C \to X$ makes diagram commute,

$$\psi((a,0)) = f(a) \qquad \forall a \in A$$

$$\psi((0,b)) = g(b) \qquad \forall b \in B$$

and since ψ is a homomorphism, $\psi((a,b)) = \psi((a,0)) + \psi((0,b)) = f(a) + g(b) = \theta((a,b))$. $\psi = \theta$. Prop. 7.27, Rotman (2010) [11]

Proposition 11 (7.27, Rotman). If category $C = \mathbb{C}$, and if $A, B \in Obj\mathbb{C}$, then $\forall 2$ coproducts of A, B, if they \exists , are equivalent.

Proof. Suppose C, D coproducts of A, B. Suppose coproducts $\mu_A : A \to C$, $\nu_A:A\to D$ $\mu_B: B \to C$, $\nu_B: B \to D$

Just substitute X = D in diagram above. Then substitute again:

Then combine the 2 diagrams: $\psi\theta = 1_C$. Likewise by label symmetry of $C, D, \theta\psi = 1_D$. Then C, D are equivalent.

Exer. 7.29 on pp. 459 of Rotman (2010) [11]

Definition 29. If $A, B \in Obj\mathbb{C}$, then their **product**; $A \prod B = P \in Obj\mathbb{C}$, and morphisms $p: P \to A$ s.t. $\forall X \in Obj\mathbb{C}$, if $f: X \to A$, then $\theta: X \to A \times B$ $q:P\to B$

 $\forall f: X \to A \in Mor \mathbf{C},$ $g: X \to B \in Mor\mathbf{C}$ $\exists ! \theta : X \to P, s.t.$

If the notation of Kashiwara and Schapira (2006) [1],

In general

product of X_i 's,

$$\prod_{i} X_i \equiv \prod_{i \in I} X_i$$

given by

$$\prod_{i} X_{i} := \lim_{\longleftarrow} \alpha$$

When $X_i = X$, $\forall i \in I$, denote product by $X^{\prod I} \equiv X^I$.

e.g. Cartesian product $P = A \times B$ of 2 sets $A, B, A, B \in \text{Obj}\mathbf{Sets}$. Define

$$p: A \times B \to A$$
 $q: A \times B \to B$
 $p(a,b) \mapsto a$ $q(a,b) \mapsto b$

If $X \in \text{Obj}\mathbf{Sets}$,

if
$$f: X \to A$$
, then $\theta: X \to A \times B$
 $g: X \to B$ $\theta: x \mapsto (f(x), g(x)) \in A \times B$

Proposition 12 (7.28 Rotman (2010); equivalence of products, if it exists). If $A, B \in Obj\mathbb{C}$, then $\forall 2$ products of A and B, should they exist, are equivalent.

Proof. Suppose C, D products of A, B. Suppose products $p_A : C \to A$, $q_A:D\to A$ $p_B:C\to B$, $q_B:D\to B$

Just substitute X = D in diagram above.

Then substitute again:

Then combine the 2 diagrams: $\psi\theta = 1_C$. Likewise by label symmetry of $C, D, \theta\psi = 1_D$. Then C, D are equivalent.

7.1.3. Products of Modules and Sets.

Proposition 13 (7.29 Rotman (2010); products of R-modules are equivalent). If commutative ring R, R-modules A, B,

then \exists their (categorical) product $A \sqcup B$, in fact

$$(31) A \sqcap B \cong A \sqcup B$$

$$\begin{array}{ll} \textit{Proof.} \ \text{If} \ A \sqcup B \cong M \text{, then} \ \exists \ \text{R-maps,} \ i:S \to M \,, \\ \qquad \qquad j:T \to M \end{array} \qquad \begin{array}{ll} p:M \to S \text{ s.t.} \ pi=1_A \\ \qquad \qquad q:M \to T \qquad qj=1_B \end{array} \qquad \text{and} \ pj=0 \text{, and} \ ip+jq=1_M \text{, i.e.} \\ \qquad \qquad q:M \to T \qquad qj=1_B \end{array}$$

$$A \xrightarrow{i} M \xrightarrow{q} A$$

If module X, since $f: X \to A$ are homomorphisms,

define $\theta(x) = if(x) + jg(x)$ so that

since, $\forall x \in X$,

$$p\theta(x) = pif(x) + pjg(x) = pif(x) + 0 = f(x)$$

since $ip + jq = 1_{A \sqcup B}$

$$\psi = ip\psi + jq\psi = if + jf = \theta$$

so product is unique.

Definition 30. Let R be commutative ring, let $\{A_i : i \in I\}$ be indexed family of R-modules.

direct product $\prod_{i \in I} A_i$ is cartesian product (i.e. set of all I-tuples (a_i) whose ith coordinate a_i lies in $A_i \quad \forall i$) with coordinate wise addition and scalar multiplication:

$$(a_i) + (b_i) = (a_i + b_i)$$
$$r(a_i) = (ra_i)$$

where $r \in R$, $a_i, b_i \in A_i$, $\forall i$

cf. Thm. 7.32 of Rotman (2010) [11]

Theorem 13 (7.32, Rotman). Let commutative ring R.

 $\forall R$ -module $A, \forall family \{B_i | i \in I\} \text{ of } R$ -modules,

(32)
$$Hom_R(A, \coprod_{i \in I} B_i) \simeq \coprod_{i \in I} Hom_R(A, B_i)$$

via R-isomorphism

$$\varphi: f \mapsto (p_i f)$$

where p_i are projections of product $\prod_{i \in I} B_i$

Proof. Let $a \in A$, $f, g \in \text{Hom}_R(A, \prod_{i \in I} B_i)$.

$$\varphi(f+g)(a) = (p_i(f+g))(a) = (p_i(f(a) + g(a))) = (p_i f + p_i g)(a)$$

 φ additive.

 $\forall i, \forall r \in R, p_i r f = r p_i f$ (since product of R-modules, $\coprod_{i \in I} B_i$ is also an R-module of $Obj_R Mod$, by def. of product).

$$\varphi rf \mapsto (p_i rf) = (rp_i f) = r(p_i f) = r\varphi(f)$$

So φ is R-map.

If $(f_i) \in \prod_i \operatorname{Hom}_R(A, B_i)$, then $f_i : A \to B_i \ \forall i$

By Rotman's Prop. 7.31 (If family of R-modules $\{A_i | i \in I\}$, then direct product $C = \coprod_{i \in I} A_i$ is their product in R**Mod**), By def. or product, $\exists ! R$ -map, $\theta : A \to \coprod_{i \in I} B_i$ s.t. $p_i \theta = f_i \ \forall i$

Then

$$f_i$$
) = $(p_i\theta) = \varphi(\theta)$

, and so φ surjective.

Suppose $f \in \ker \varphi$, so $\theta = \varphi(f) = (p_i f)$. Thus $p_i f = 0 \quad \forall i$

But 0-homomorphism also makes this diagram commute, so uniqueness of homomorphism $A \to \prod B_i$ gives f = 0.

Part 2. Reading notes on Cox, Little, O'Shea's Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra

8. Geometry, Algebra, and Algorithms

8.1. Polynomials and Affine Space. fields are important is that linear algebra works over any field

Definition 31 (2). set of all polynomials in x_1, \ldots, x_n with coefficients in k, denoted $k[x_1, \ldots, x_n]$

polynomial f divides polynomial g provided g = fh for some $h \in k[x_1, \ldots, x_n]$

 $k[x_1,\ldots,x_n]$ satisfies all field axioms except for existence of multiplicative inverses; commutative ring, $k[x_1,\ldots,x_n]$ polynomial

Exercises for 1. Exercise 1. F₂ commutative ring since it's an abelian group under addition, commutative in multiplication, 14.1. Polynomials and Ideals. monomial and multiplicative identity exists, namely 1. It is a field since for $1 \neq 0$, the multiplicative identity is 1.

Exercise 2.

- (a)
- (b) (c)
- 8.2. Affine Varieties.
- 8.3. Parametrizations of Affine Varieties.
- 8.4. Ideals.
- 8.5. Polynomials of One Variable.

9. Groebner Bases

- 9.1. Introduction.
- 9.2. Orderings on the Monomials in $k[x_1, \ldots, x_n]$.
- 9.3. A Division Algorithm in $k[x_1, \ldots, x_n]$.
- 9.4. Monomial Ideals and Dickson's Lemma.
- 9.5. The Hilbert Basis Theorem and Groebner Bases.
- 9.6. Properties of Groebner Bases.
- 9.7. Buchberger's Algorithm.

10. Elimination Theory

- 10.1. The Elimination and Extension Theorems.
- 10.2. The Geometry of Elimination.

11. The Algebra-Geometry Dictionary

- 11.1. Hilbert's Nullstellensatz.
- 11.2. Radical Ideals and the Ideal-Variety Correspondence.
 - 12. POLYNOMIAL AND RATIONAL FUNCTIONS ON A VARIETY
- 12.1. Polynomial Mappings.

13. Robotics and Automatic Geometric Theorem Proving

13.1. Geometric Description of Robots.

Part 3. Reading notes on Cox, Little, O'Shea's Using Algebraic Geometry

Using Algebraic Geometry. David A. Cox. John Little. Donal O'Shea. Second Edition. Springer. 2005. ISBN 0-387-20706-6 QA564.C6883 2004

14. Introduction

$$(33) (1.1) x_1^{\alpha_1} \dots x_n^{\alpha_n}$$

total degree of x^{α} is $\alpha_1 + \cdots + \alpha_n \equiv |\alpha|$

field $k, k[x_1 \dots x_n]$ collection of all polynomials in $x_1 \dots x_n$ with coefficients k.

polynomials in $k[x_1...x_n]$ can be added and multiplied as usual, so $k[x_1...x_n]$ has structure of commutative ring (with

however, only nonzero constant polynomials have multiplicative inverses in $k[x_1 \dots x_n]$, so $k[x_1 \dots x_n]$ not a field however set of rational functions $\{f/g|f,g\in k[x_1\dots x_n],g\neq 0\}$ is a field, denoted $k(x_1\dots x_n)$

SO

$$f = \sum_{\alpha} c_{\alpha} x^{\alpha}$$

where $c_{\alpha} \in k$

$$f \in k[x_1 \dots x_n] = \{ f | f = \sum_{\alpha} c_{\alpha} x^{\alpha}, x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}, c_{\alpha} \in k \}$$

f homogeneous if all monomials have same total degrees polynomial f is homogeneous if all monomials have the same total degree

Given a collection of polynomials $f_1 \dots f_s \in k[x_1 \dots x_n]$, we can consider all polynomials which can be built up from these by multiplication by arbitrary polynomials and by taking sums

Definition 32 (1.3). Let
$$f_1 ... f_s \in k[x_1 ... x_n]$$

Let $\langle f_1 ... f_s \rangle = \{p_1 f_1 + \cdots + p_s f_s | p_i \in k[x_1 ... x_n] \text{ for } i = 1 ... s\}$

Exercise 1.

- (a) $x^2 = x \cdot (x y^2) + y \cdot (xy)$

$$p \cdot (x - y^2) = px - py^2$$

and for pxy = (py)x

$$p(y)(x - y^2) = p(y)x - p(y)y^2 \notin \langle x^2, xy \rangle$$

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

Exercise 2

$$\sum_{i=1}^{s} p_i f_i + \sum_{i=1}^{s} q_j f_j = \sum_{i=1}^{s} (p_i + q_i) f_i, \quad p_i + q_i \in k[x_1 \dots x_n]$$

 $\langle f_1 \dots f_s \rangle$ closed under sums in $k[x_1 \dots x_n]$

If
$$f \in \langle f_1 \dots f_s \rangle$$
, $p \in k[x_1 \dots x_n]$

$$p \cdot f = p \sum_{i=1}^{s} q_j f_j = \sum_{i=1}^{s} p q_j f_j, \quad p q_j \in k[x_1 \dots x_n] \text{ so}$$

 $p \cdot f \in \langle f_1 \dots f_s \rangle$

Done.

The 2 properties in Ex. 2 are defining properties of ideals in the ring $k[x_1 \dots x_n]$

Definition 33 (1.5). Let $I \subset k[x_1 \dots x_n], I \neq \emptyset$ I ideal if

- (a) $f + g \in I$, $\forall f, g \in I$
- (b) $pf \in I$, $\forall f \in I$, arbitrary $p \in k[x_1 \dots x_n]$

Thus $\langle f_1 \dots f_s \rangle$ is an ideal by Ex. 2.

we call it the ideal generated by $f_1 \dots f_s$.

Exercise 3. Suppose \exists ideal J, $f_1 \dots f_s \in J$ s.t. $J \subset \langle f_1 \dots f_s \rangle$ if $f \in \langle f_1 \dots f_s \rangle$, $f = \sum_{i=1}^s p_i f_i$, $p_i \in k[x_1 \dots x_n]$

 $\forall i = 1 \dots s, p_i f_i \in J$ and so $\sum_{i=1}^s p_i f_i \in J$, by def. of J as an ideal.

$$\langle f_1 \dots f_s \rangle \subseteq J \implies J = \langle f_1 \dots f_s \rangle$$

 $\Longrightarrow \langle f_1 \dots f_s \rangle$ is smallest ideal in $k[x_1 \dots x_n]$ containing $f_1 \dots f_s$

Exercise 4. For $I = \langle f_1 \dots f_s \rangle$ $I = \langle g_1 \dots g_t \rangle$

 $I=J \text{ iff } s=t \text{ and } \forall f \in I, \ f=\sum_{i=1}^t q_i g_i \text{ and if } 0=\sum_{i=1}^t q_i g_i, \ q_i=0, \quad \forall i=1\ldots t, \text{ and if } 0=\sum_{i=1}^s p_i f_i, \quad p_i=0, \ \forall i=1\ldots s$

Definition 34 (1.6).

$$\sqrt{I} = \{ g \in k[x_1 \dots x_n] | g^m \in I \text{ for some } m \ge 1 \}$$

e.g. $x + y \in \sqrt{\langle x^2 + 3xy, 3xy + y^2 \rangle}$ in $\mathbb{Q}[x, y]$ since

$$(x+y)^3 = x(x^2 + 3xy) + y(3xy + y^2) \in \langle x^2 + 3xy, 3xy + y^2 \rangle$$

- (Radical Ideal Property) \forall ideal $I \subset k[x_1 \dots x_n], \sqrt{I}$ ideal, $\sqrt{I} \supset I$
- (Hilbert basis Thm.) \forall ideal $I \subset k[x_1 \dots x_n]$ \exists finite generating set, i.e. $\exists \{f_1 \dots f_2\} \subset k[x_1 \dots x_n]$ s.t. $I = \langle f_1 \dots f_s \rangle$

• (Division Algorithm in k[x]) $\forall f,g \in k[x]$ (EY: in 1 variable) $\forall f,g \in k[x]$ (in 1 variable) f = qg + r, \exists ! quotient q, \exists remainder r

14.2.

14.3. Gröbner Bases.

Definition 35 (3.1). Gröbner basis for $I \equiv G = \{g_1 \dots g_k\} \subset I$ s.t. $\forall f \in I$, LT(f) divisible by $LT(g_i)$ for some i

• (Uniqueness of Remainders) let ideal $I \subset k[x_1 \dots x_n]$ division of $f \in k[x_1 \dots x_n]$ by Grö bner basis for I, produces f = g + r, $g \in I$, and no term in r divisible by any element of LT(I)

14.4. **Affine Varieties.** affine *n*-dim. space over k $k^n = \{(a_1 \dots a_n) | a_1 \dots a_n \in k\}$ \forall polynomial $f \in k[x_1 \dots x_n], (a_1 \dots a_n) \in k^n$ $f: k^n \to k$ $f(a_1 \dots a_n)$ s.t. $x_i = a_i$ i.e.

if
$$f = \sum_{\alpha} c_{\alpha} x^{\alpha}$$
 for $c_{\alpha} \in k$, then $f(a_{1} \dots a_{n}) = \sum_{\alpha} c_{\alpha} a^{\alpha} \in k$, where $a^{\alpha} = a_{1}^{\alpha_{1}} \dots a_{n}^{\alpha_{n}}$

Definition 36 (4.1). affine variety $\mathbf{V}(f_1 \dots f_s) = \{(a_1 \dots a_n) | (a_1 \dots a_n) \in k^n, f_1(x_1 \dots x_n) = \dots = f_s(x_1 \dots x_n) = 0\}$ subset $V \subset k^n$ is affine variety if $V = V(f_1 \dots f_s)$ for some $\{f_i\}$, polynomial $f_i \in k[x_1 \dots x_n]$

• (Equal Ideals Have Equal Varieties) If $\langle f_1 \dots f_s \rangle = \langle g_1 \dots g_t \rangle$ in $k[x_1 \dots x_n]$, then $\mathbf{V}(f_1 \dots f_s) = \mathbf{V}(g_1 \dots g_t)$ so, recap

if
$$\langle f_1 \dots f_s \rangle = \langle g_1 \dots g_t \rangle$$
 in $k[x_1 \dots x_n]$,
then $V(f_1 \dots f_s) = V(g_1 \dots g_t)$

Recall Hilbert basis Thm. \forall ideal $I \subset k[x_1 \dots x_n]$

$$I = \langle f_1 \dots f_s \rangle$$

 \implies if I = J, then V(I) = V(J)think of V defined by I, rather than $f_1 = \cdots = f_s = 0$

Exercise 3.

Recall Def. 1.5 Let $I \subset k[x_1 \dots x_n]$

I ideal if $f + g \in I \quad \forall f, g \in I$

$$pf \in I$$
, $\forall f \in I \text{ arbitrary } p \in k[x_1 \dots x_n]$

Let $f, g \in I(V)$

$$(f+g)(a_1 \dots a_n) = f(a_1 \dots a_n) + g(a_1 \dots a_n) = 0 + 0 = 0$$
 $f+g \in I(V)$
 $pf(a_1 \dots a_n) = p(a_1 \dots a_n)f(a_1 \dots a_n) = 0$ $pf \in I(V)$

Then I(V) an ideal.

$$V = V(x^2)$$
 in \mathbb{R}^2

$$I = \langle x^2 \rangle$$
 in $\mathbb{R}[x, y]$, $I = \{px^2 | p \in k[x, y]\}$

 $I \subset I(V)$, since $px^2 = 0$ for $x^2 = 0$, (0, b), $b \in \mathbb{R}$

But $p(x,y) = x \in I(V)$, as

$$I(V) = \{ f \in k[x_1 \dots x_n] | f(a_1 \dots a_n) = 0, \forall (a_1 \dots a_n) \in V \}$$

$$p(0,b) = x = 0$$

But $x \notin I$

Exercise 4. $I \subset \sqrt{I}$

Recall Def. 1.6 $\sqrt{I} = \{g \in k[x_1 \dots x_n] | g^m \in I \text{ for some } m \ge 1\}$ $\forall f \in I, f = f^1, m = 1, \text{ so } f \in \sqrt{I}, I \subset \sqrt{I}$

 $f \in I, f = f^1, m = 1, \text{ so } f \in \sqrt{I}, \quad I \subset \sqrt{I}$ Hilbert basis thm., \forall ideal $I \subset k[x_1 \dots x_n]$ s.t. $I = \langle f_1 \dots f_s \rangle$

 $\{V(I) = \{(a_1...a_n) | (a_1...a_n) \in k^n, f_1(a_1...a_n) = \dots = f_s(a_1...a_n) = 0\}$ $\{V(I) = \{(a_1...a_n) | (a_1...a_n) \in k^n, f_1(a_1...a_n) = \dots = f_s(a_1...a_n) = 0\}$

 $\mathbf{I}(\mathbf{V}(I)) = \{ f \in k[x_1 \dots x_n] | f(a_1 \dots a_n) = 0 \quad \forall (a_1 \dots a_n) \in V(I) \}$

Let $g \in \sqrt{I}$, $g^m \in I$, $g^m = g^{m-1}g$

 $g^m(a_1 \dots a_n) = 0 = g^{m-1}(a_1 \dots a_n)g(a_1 \dots a_n) = 0$. Then $g(a_1 \dots a_n) = 0$ or $g^{m-1}(a_1 \dots a_m) = 0$ as $g^m \in I$, and V(I) is s.t. $f_1(a_1 \dots a_n) = \dots = f_s(a_1 \dots a_n) = 0$ for $I = \langle f_1 \dots f_s \rangle$

• (Strong Nullstellensatz) if k algebraically closed (e.g. \mathbb{C}), I ideal in $k[x_1 \dots x_n]$, then

$$\mathbf{I}(\mathbf{V}(I) = \sqrt{I}$$

 \bullet (Ideal-variety correspondence) Let k arbitrary field

$$I \subset I(V(I))$$

$$V(I(V)) = V \quad \forall V$$

Additional Exercises for Sec.4. Exercise 6.

15. Solving Polynomial Equations

15.1.

15.2. **Finite-Dimensional Algebras.** Gröbner basis $G = \{g_1 \dots g_t\}$ of ideal $I \subset k[x_1 \dots x_n]$, recall def.: Gröbner basis $G = \{g_1 \dots g_t\} \subset I$ of ideal $I, \forall f \in I, \mathrm{LT}(f)$ divisible by $\mathrm{LT}(g_i)$ for some i $f \in k[x_1 \dots x_n]$ divide by G produces $f = g + r, g \in I, r$ not divisible by any $\mathrm{LT}(I)$ uniqueness of r $f \in k[x_1 \dots x_n]$ divide by G,

Recall from Ch. 1, divide $f \in k[x_1 \dots x_n]$ by G, the division algorithm yields

$$(34) f = h_1 g_1 + \dots + h_t g_t + \overline{f}^G$$

where remainder \overline{f}^G is a linear combination of monomials $x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle$

since Gröbner basis, $f \in I$ iff $\overline{f}^G = 0$

$$\forall f \in k[x_1 \dots x_n]$$
, we have coset $[f] = f + I = \{f + h | h \in I\}$ s.t. $[f] = [g]$ iff $f - g \in I$

We have a 1-to-1 correspondence

remainders \leftrightarrow cosets

$$\overline{f}^G \leftrightarrow [f]$$

algebraic

$$\overline{f}^G + \overline{g}^G \leftrightarrow [f] + [g]$$

$$\overline{\overline{f}^G \cdot \overline{g}^G} \leftrightarrow [f] \cdot [g]$$

 $B = \{x^{\alpha}|x^{\alpha} \notin \langle LT(I)\rangle \}$ is a basis of A, basis monomials, standard monomials 20141023 EY's take

$$\forall [f] \in A = k[x_1 \dots x_n]/I, \quad [f] = p_i b_i; \quad b_i \in B = \{x^\alpha | x^\alpha \notin \langle LT(I) \rangle \}$$

For $I = \langle G \rangle$

e.g.
$$G = \{x^2 + \frac{3}{2}xy + \frac{1}{2}y^2 - \frac{3}{2}x - \frac{3}{2}y, xy^2 - x, y^3 - y\}$$

 $\langle LT(I) \rangle = \langle x^2, xy^2, y^3 \rangle$ e.g. $B = \{1, x, y, xy, y^2\}$

 $[f] \cdot [g] = [fg]$

e.g. $f = x, g = xy, [fg] = [x^2y]$

 $now f = h_1 g_1 + \dots + h_t g_t + \overline{f}$

ALGEBICATO TOTOLOGI DUMI

15.3.

15.4. Solving Equations via Eigenvalues and Eigenvectors.

16. Resultants

17. Computation in Local Rings

17.1. Local Rings.

Definition 37 (1.1).

$$k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle} \equiv \{ \frac{f}{g} | \text{ rational functions } \frac{f}{g} \text{ of } x_1 \dots x_n \text{ with } g(p) \neq 0 \text{ at } p \}$$

main properties of $k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle}$

Proposition 14 (1.2). Let $R = k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle}$. Then

- (a) R subring of field of rational functions $k(x_1 ... x_n) \supset k[x_1 ... x_n]$
- (b) Let $M = \langle x_1 \dots x_n \rangle \subset R$ (ideal generated by $x_1 \dots X_n$ in R) Then $\forall \frac{f}{g} \in R \backslash M$, $\frac{f}{g}$ unit in R (i.e. multiplicative inverse in R)
- (c) M maximal ideal in R

Exercise 1. if
$$p = (a_1 \dots a_n) \in k^n$$
, $R = \{ \frac{f}{g} | f, g \in k[x_1 \dots x_n], g(p) \neq 0 \}$

- (a) R subring of field of rational functions $k(x_1 \dots x_n)$
- (b) Let M ideal generated by $x_1 a_1 \dots x_n a_n$ in RThen $\forall \frac{f}{g} \in R \backslash M$, $\frac{f}{g}$ unit in R (i.e. multiplicative inverse in R)
- (c) M maximal ideal in R

Proof. let $p = (a_1 \dots a_n) \in k^n$ let $g_1(p) \neq 0, g_2(p) \neq 0$

$$\frac{f_1}{g_1} + \frac{f_2}{g_2} = \frac{f_1 g_2 + f_2 g_1}{g_1 g_2} \qquad g_1(p) g_2(p) \neq 0 \text{ so } \frac{f_1}{g_1} + \frac{f_2}{g_2} \in R$$

$$\frac{f_1}{g_1} \cdot \frac{f_2}{g_2} = \frac{f_1 f_2}{g_1 g_2} \qquad g_1(p) g_2(p) \neq 0 \text{ so } \frac{f_1}{g_1} \frac{f_2}{g_2} \in R$$

 $f = \frac{f}{I} \in R$, $\forall f \in k[x_1 \dots x_n]$, so $k[x_1 \dots x_n] \subset R$

EY: 20141027, to recap,

Let $V = k^n$

Let
$$p = (a_1 \dots a_n)$$

single pt. $\{p\}$ is (an example of) a variety

$$I(\{p\}) = \{x_1 - a_1 \dots x_n - a_n\} \subset k[x_1 \dots x_n]$$

 $R \equiv k[x_1 \dots x_n]_{\langle x_1 - a_1 \dots x_n - a_n \rangle}$

$$R = \{\frac{f}{g} | \text{ rational function } \frac{f}{g} \text{ of } x_1 \dots x_n, g(p) \neq 0, p = (a_1 \dots a_n) \}$$

Prop. 1.2. properties

- (a) R subring of field of rational functions $k(x_1 \dots x_n) = k(x_1 \dots x_n) \subset R$
- (b) $M = \langle x_1 \dots a_1 \dots x_n a_n \rangle \subset R$. ideal generated by $x_1 a_1 \dots x_n a_n$ Then $\forall \frac{f}{g} \in R \backslash M$, $\frac{f}{g}$ unit in R (\exists multiplicative inverse in R)
- (c) M maximal ideal in R.

in R we allow denominators that are not elements of this ideal $I(\{p\})$

Definition 38 (1.3). local ring is a ring that has exactly 1 maximal ideal

Proposition 15 (1.4). ring R with proper ideal $M \subset R$ is local ring if $\forall \frac{f}{g} \in R \setminus M$ is unit in R

localization Ex. 8, Ex. 9 parametrization

Exercise 2

$$x = x(t) = \frac{-2t^2}{1+t^2}$$
$$y = y(t) = \frac{2t}{1+t^2}$$

 $k[t]_{\langle t \rangle} \quad \frac{-2t^2}{1+t^2}$ rational function of t. $1+t^2 \neq 0$ if $k = \mathbb{C}$ or \mathbb{R}

Consider set of convergent power series in n variables

(35)
$$k\{x_1 \dots x_n\} = \{ \sum_{\alpha \in \mathbb{Z}_{>0}^n} c_\alpha x^\alpha | c_\alpha \in k, \text{ series converges in some open } U \ni 0 \in k^n \}$$

Consider set $k[[x_1 \dots x_n]]$ of formal power series

(36)
$$k[[x_1 \dots x_n]] = \{ \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_\alpha x^\alpha | c_\alpha \in k \} \text{ series need not converge}$$

variety V

$$k[x_1 \dots x_n]/\mathbf{I}(V)$$
 variety V

17.2. Multiplicities and Milnor Numbers. if I ideal in $k[x_1 ... x_n]$, then denote $Ik[x_1 ... x_n]_{\langle x_1 ... x_n \rangle}$ ideal generated by I (38) in larger ring $k[x_1 ... x_n]_{\langle x_1 ... x_n \rangle}$

Definition 39 (2.1). Let I 0-dim. ideal in $k[x_1 \dots x_n]$, so V(I) consists of finitely many pts. in k^n . Assume $(0 \dots 0) \in V(I)$ multiplicity of $(0 \dots 0) \in V(I)$ is

$$dim_k k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle} / Ik[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle}$$

generally, if $p = (a_1 \dots a_n) \in V(I)$ multiplicity of p, $m(p) = \dim k[x_1 \dots x_n]_M / Ik[x_1 \dots x_n]_M$

$$\dim k[x_1 \dots x_n]_M / Ik[x_1 \dots x_n]_M$$

localizing $k[x_1 \dots x_n]$ at maximal ideal $M = I(\{p\}) = \langle x_1 - a_1 \dots x_n - a_n \rangle$

18.

19.

- 20. Polytopes, Resultants, and Equations
- 21. Polyhedral Regions and Polynomials

21.1. Integer Programming. Prop. 1.12.

Suppose 2 customers A, B ship to same location

A: ship 400 kg pallet taking up $2 m^3$ volume

B: ship 500 kg pallet taking up $3 m^3$ volume

shipping firm trucks carry up to 3700 kg, up to $20 m^3$

B's product more perishable, paying \$ 15 per pallet

A pays \$ 11 per pallet

How many pallets from A, B each in truck to maximize revenues?

(37)
$$4A + 5B \le 37$$
$$2A + 3B \le 20$$
$$A, B \in \mathbb{Z}_{>0}^*$$

maximize 11A + 15B

integer programming. max. or min. value of some linear function

$$l(A_1 \dots A_n) = \sum_{i=1}^n c_i A_i$$

on set $(A_1 \dots A_n) \in \mathbb{Z}_{>0}^n$ s.t.

3. Finally, by introducing additional variables; rewrite linear constraint inequalities as equalities. The new variables are called "slack variables"

$$(1.4) a_{ij}A_j = b_i, A_j \in \mathbb{Z}_{\geq 0}$$

introduce indeterminate z_i , \forall equation in (1.4)

$$z_i^{a_{ij}A_j} = z_i^{b_i}$$

m constraints

$$\prod_{i=1}^{m} z_i^{a_{ij}A_j} = \prod_{i=1}^{m} z_i^{b_i} = \left(\prod_{i=1}^{m} z_i^{a_{ij}}\right)^{A_j}$$

Proposition 16 (1.6). Let k field, define $\varphi: k[w_1 \dots w_n] \to k[z_1 \dots z_m]$ by

$$\varphi(w_j) = \prod_{i=1}^m z_i^{a_{ij}} \qquad \forall j = 1 \dots n$$

and

$$\varphi(g(w_1 \dots w_n)) = g(\varphi(w_1) \dots \varphi(w_n))$$

 $\forall \ general \ polynomial \ g \in k[w_1 \dots w_n]$

Then $(A_1
ldots A_n)$ integer pt. in feasible region iff $\varphi : w_1^{A_1}
ldots w_n^{A_n} \mapsto z_1^{b_1}
ldots z_m^{b_m}$

Exercise 3.

Now

$$\varphi(w_j) = \prod_{i=1}^m z_i^{a_{ij}}$$
$$z_i^{a_{ij}A_j} = z_i^{b_i}$$

If $(A_1 ... A_n)$ an integer pt. in feasible region, $a_{ij}A_j = b_i$

$$z_i^{a_{ij}A_j} = z_i^{b_i} = \prod_{j=1}^n z_i^{a_{ij}A_j} \Longrightarrow \prod_{j=1}^n \prod_{i=1}^m (z_i^{a_{ij}})^{A_j} = \prod_{i=1}^m z_i^{b_i} = \prod_{j=1}^n \varphi(w_j)^{A_j} = \prod_{j=1}^n \varphi(w_j)^{A_j} = \varphi\left(\prod_{j=1}^n w_j^{A_j}\right) = \prod_{i=1}^m z_i^{b_i}$$

since $\varphi(g(w_1 \dots w_n)) = g(\varphi(w_1) \dots \varphi(w_n))$

If $\varphi: \prod_{j=1}^n w_j^{A_j} \mapsto \prod_{i=1}^m z_i^{b_i}$

$$\varphi\left(\prod_{j=1}^{n} w_{j}^{A_{j}}\right) = \prod_{j=1}^{n} (\varphi(w_{j}))^{A_{j}} = \prod_{i=1}^{m} z_{i}^{b_{i}} = \prod_{j=1}^{n} \left(\prod_{i=1}^{m} z_{i}^{a_{ij}}\right)^{A_{j}} \Longrightarrow \prod_{j=1}^{n} z_{i}^{a_{ij}A_{j}} = z_{i}^{b_{i}}$$

or $a_{ij}A_i = b_i$. So $(A_1 \dots A_n)$ integer pt.

Exercise 4.

$$\prod_{i=1}^{m} z_i^{b_i} = \prod_{i=1}^{m} \prod_{j=1}^{n} z_i^{a_{ij} A_j} = \prod_{j=1}^{n} \left(\prod_{i=1}^{m} z_i^{a_{ij}} \right)^{A_j} = \prod_{j=1}^{n} \varphi(w_j)^{A_j} = \varphi\left(\prod_{j=1}^{n} w_j^{A_j} \right)^{A_j}$$

So if given $(b_1
ldots b_m) \in \mathbb{Z}^m$, and for a given a_{ij} , $a_{ij}A_j = b_i$

For $m \leq n$, then a_{ij} is surjective, so $\exists A_j$ s.t. $\prod_{i=1}^m z_i^{b_i} = \varphi\left(\prod_{j=1}^n w_j^{A_j}\right)$

Proposition 17 (1.8). Suppose $f_1 \dots f_n \in k[z_1 \dots z_m]$ given

Fix monomial order in $k[z_1 \ldots z_n, w_1 \ldots w_n]$ with elimination property:

 \forall monomial containing 1 of z_i greater than any monomial containing only w_j

Let G Gröbner basis for ideal

$$I = \langle f_1 - w_1 \dots f_n - w_n \rangle \subset k[z_1 \dots z_m, w_1 \dots w_n]$$

 $\forall f \in k[z_1 \dots z_m], \text{ let } \overline{f}^{\mathcal{G}} \text{ be remainder on division of } f \text{ by } \mathcal{G}$ Then

- (a) polynomial f s.t. $f \in k[f_1 \dots f_n]$ iff $g = \overline{f}^{\mathcal{G}} \in k[w_1 \dots w_n]$
- (b) if $f \in k[f_1 \dots f_n]$ as in part (a), $g = \overline{f}^{\mathcal{G}} \in k[w_1 \dots w_n]$

then $f = g(f_1 \dots f_n)$, giving an expression for f as polynomial in f_j

- (c) if $\forall f_i, f \text{ monomials, } f \in k[f_1 \dots f_n],$ then q also a monomial.
- 21.2. Integer Programming and Combinatorics.

22. Algebraic Coding Theory

23. The Berlekamp-Massey-Sakata Decoding Algorithm

Gröbner Bases, Martin R. Albrecht of the DTU Crypto Group

Part 4. Statistical Mechanics: Ising Model

24. Ising Model

24.1. Definition of Ising Model. cf. Wikipedia, "Ising model"

Consider set of lattice sites Λ , each with set of adjacent sites (e.g. **graph**) forming d-dim. lattice.

 \forall lattice site $k \in \Lambda$, \exists discrete variable σ_k , s.t. $\sigma_k \in \{-1, 1\}$.

spin configuration $\equiv \sigma = (\sigma_k)_{k \in \Lambda}$ is an assignment of spin value to each lattice site.

i.e.

d=1, consider "line" configuration: $i\in\mathbb{Z},\ i=0,1,\ldots L-1$. Lattice site $k\in\Lambda=\Lambda_{d=1}$. $\forall\,k\in\Lambda$, \exists bijection to its index $i,\ k\mapsto i$, and $\exists\,\sigma_k$ i.e.

$$\sigma: \Lambda \leftrightarrow \sigma: \mathbb{Z} \to \mathbb{Z}_2$$

$$\sigma(k) \equiv \sigma_k \leftrightarrow \sigma(i) \equiv \sigma_i \mapsto \{-1, 1\}$$

spin configuration $\sigma: \Lambda \mapsto (\sigma_k)_{k \in \Lambda} \in \{-1, 1\}^{|\Lambda|}$, where $|\Lambda| = L$. $\forall k \in \Lambda, \exists !$ only at most 2 edges, given, for $k \mapsto i, i+1, i-1, \forall i = 1 \dots L-2$.

d=2, "rectangle" configuration. $(i,j)\in\mathbb{Z}^2$. $i\in\{0,1,\ldots L_x-1\}$. Lattice site $\mathbf{k}\in\{\Lambda=\Lambda_{d=2}\}$.

$$j \in 0, 1, \dots L_y - 1$$

 $\forall \mathbf{k} \in \Lambda, \exists \text{ bijection to its "grid coordinates" } (i,j), \mathbf{k} \mapsto (i,j), \text{ and } \exists \sigma_{\mathbf{k}} \text{ i.e. } \sigma_{\mathbf{k}} = \sigma_{ij} \in \{-1,1\}.$ spin configuration $\sigma : \Lambda \mapsto (\sigma_{\mathbf{k}})_{\mathbf{k} \in \Lambda} \in \{-1,1\}^{|\Lambda|}, \text{ where } |\Lambda| \equiv |\Lambda_{d=2}| = L_x L_u.$

 $\forall \mathbf{k} \in \Lambda, \exists ! \text{ only at most 4 edges, given by } \mathbf{k} \mapsto (i, j), (i \pm 1, j), (i, j \pm 1), i = 1 \dots L_x - 2.$

$$j=1\ldots L_u-2$$

Note that in both cases, I haven't yet defined the boundary conditions, and leave that to be discussed thoroughly in the future (i.e. following sections).

There are $2^{|\Lambda|}$ number of configurations in any dim. d.

cf. Wikipedia, "Ising model"

24.1.1. Interaction $J_{ij} \equiv J_{\mathbf{k}\mathbf{l}}$, Hamiltonian (energy functional) for a configuration $H(\sigma)$. \forall 2 adjacent (lattice) sites, $i, j \equiv \mathbf{k}, \mathbf{l} \in$

 Λ , let there be an interaction $J_{ij} \equiv J_{\mathbf{kl}}$ i.e. $J: \Lambda^2 \to \mathbb{R}$.

$$J:(\mathbf{k},\mathbf{l})\mapsto J_{\mathbf{k}}$$

Adjacent means \exists edge $k \mapsto l$ (the mapping is the edge)

Suppose \forall site $j \equiv \mathbf{l} \in \Lambda$, \exists external magnetic field $h_j \equiv h_1$ interacting with it.

Given (site) configuration $\sigma : \Lambda \mapsto (\sigma_{\mathbf{k}})_{\mathbf{k} \in \Lambda} \in \{-1, 1\}^{|\Lambda|}$.

(39)
$$H(\sigma) = -\sum_{\langle ij \rangle} J_{ij}\sigma_i\sigma_j - \mu \sum_j h_j\sigma_j \equiv H(\sigma(\Lambda)) = -\sum_{\langle \mathbf{k}\mathbf{l} \rangle} J_{\mathbf{k}\mathbf{l}}\sigma_{\mathbf{k}}\sigma_{\mathbf{l}} - \mu \sum_{\mathbf{k} \in \Lambda} h_{\mathbf{k}}\sigma_{\mathbf{k}}$$

where $\sum_{\langle \mathbf{kl} \rangle}$ is overall pairs of adjacent spins (every pair is counted once),

 $\langle \mathbf{k}, \mathbf{l} \rangle \equiv \text{sites } \mathbf{k}, \mathbf{l} \text{ are nearest neighbors.}$

Note sign in 2nd. term, $-\mu \sum_{\mathbf{k}} h_{\mathbf{k}} \sigma_{\mathbf{k}}$ should be positive because of electron's magnetic moment is antiparallel to its spin, but negative term used conventionally.

Nothing was said about boundary conditions, I propose that it can be either fixed in the summation or by setting $J_{kl} = 0$.

 $\forall \mathbf{k} \in \Lambda$, let $\mathbf{y} : \Lambda \to E$, with $\{\langle \mathbf{k}, \mathbf{l} \rangle\}_{\mathbf{l}}$ be set of all edges from \mathbf{k}

$$\mathbf{y}:\mathbf{k}\mapsto \{\langle \mathbf{k},\mathbf{l}
angle_{\mathbf{l}}$$

Then clearly $\sum_{\langle \mathbf{k} \mathbf{l} \rangle} = \frac{1}{2} \sum_{\mathbf{k} \in \Lambda} \sum_{\{\langle \mathbf{k} \mathbf{l} \rangle\}_1}$.
Taking into account only interaction between adjoining dipoles, on a square lattice:

$$E(\sigma) = -J \sum_{k,l=0}^{L-1} (\sigma_{kl}\sigma_{k,l+1} + \sigma_{kl}\sigma_{k+1,l})$$

cf. Landau and Lifshitz [6]

EY: 20171223 Things to check from Hjorth-Jensen (2015) [7]:

2-dim. Ising model, with $\mathcal{B} \equiv h_i = 0$, undergoes phase transition of 2nd. order: meaning below given critical temperature T_C , there's spontaneous magnetization with $\langle \mathcal{M} \rangle \equiv \langle \mathbf{M} \rangle \neq 0$. $\langle \mathbf{B} \rangle \to 0$ at T_C with infinite slope, a behavior called critical phenomena. Critical phenomenon normally marked by 1 or more thermodynamical variables which is 0 above a critical point. In this case, $\langle \mathbf{B} \rangle \neq 0$, such a parameter normally called *order parameter*.

Critical phenomena; we still don't have a satisfactory understanding of system's properties close to the critical point, even for simplest 3-dim. systems. Even mean-field models can predict wrong physics; mean-field theory results in a 2nd.-order phase transition for 1-dim. Ising model, wherea 1-dim. Ising model doesn't predict any spontaneous magnetization at any finite temperature T.

e.g. Consider 1-dim. N-spin system. Assume periodic boundary conditions. Consider state of all spins up, with total energy -NJ and magnetization N. Flip half of spins (e.g. all spins of index i > N/2) so 1st half of spins point upwards and last half points downwards. Energy is -NJ+4J, net magnetization 0. This is an example of a possible disordered state with net magnetization 0. Change in energy is too small to stabilize disordered state (to -NJ).

Definition 40 (configuration probability). *configuration probability* $P_{\beta}(\sigma)$ *given by Boltzmann distribution:*

(40)
$$P_{\beta}(\sigma) = \frac{\exp(-\beta H(\sigma))}{Z_{\beta}} = \text{ prob. of configuration } \sigma \equiv \sigma(\Lambda) \equiv (\sigma_{\mathbf{k}})_{\mathbf{k} \in \Lambda}$$

with the partition function as normalization constant Z_{β} .

(41)
$$Z_{\beta} = \sum_{\sigma} \exp{-\beta H(\sigma)}$$

cf. pp. 504 Sec. 151 Phase transitions of the second kind in a 2-dim. lattice, Landau and Lifshitz [6]

(42)
$$Z = 2^{N} (1 - x^{2})^{-N} \prod_{p,q=0}^{L-1} \left[(1 + x^{2})^{2} - 2x(1 - x^{2}) \left(\cos \frac{2\pi p}{L} + \cos \frac{2\pi q}{L} \right) \right]^{1/2}$$

cf. (151.11) of Landau and Lifshitz [6], where $x = \tanh \theta$, $\theta = J/T \equiv J/\tau = \beta J$.

$$\Phi \equiv F = -\tau \ln Z =$$

$$= -\tau N \ln 2 + \tau N \ln (1 - x^2) - \frac{\tau}{2} \sum_{n=0}^{L} \ln \left[(1 + x^2)^2 - 2x(1 - x^2) \left(\cos \frac{2\pi p}{L} + \cos \frac{2\pi q}{L} \right) \right]$$

Let
$$\omega_1 = \frac{2\pi p}{L}$$
 with $p \to 0$ as $L \to \infty$ so $\frac{Ld\omega_1}{2\pi} = dp$ and using $L^2 = N$.
$$\omega_2 = \frac{2\pi q}{L}$$
 with $q \to 0$ as $L \to \infty$
$$\frac{Ld\omega_2}{2\pi} = dq$$

$$\Phi = -\tau N \ln 2 + \tau N \ln (1 - x^2) - \frac{N\tau}{2(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} d\omega_1 d\omega_2 \ln \left[(1 - x^2) - 2x(1 - x^2) (\cos \omega_1 + \cos \omega_2) \right]$$

 $F \equiv \Phi$ has singularity when $(1 - x^2) - 2x(1 - x^2)(\cos \omega_1 + \cos \omega_2)$ in $\ln [(1 - x^2) - 2x(1 - x^2)(\cos \omega_1 + \cos \omega_2)]$. $(1-x^2)-2x(1-x^2)(\cos\omega_1+\cos\omega_2)$ minimized when $\cos\omega_1=\cos\omega_2=1$ (since -1< x<1)

$$\implies (1+x^2)^2 - 4x(1-x^2) = 1 + 2x^2 + x^4 - 4x + 4x^3 = (x^2 + 2x - 1)^2 = 0 \implies x = \frac{-2 \pm \sqrt{4 - 4(-1)}}{2} = -1 + \sqrt{2}$$

$$e^{\theta} - e^{-\theta} = \sqrt{2}e^{\theta} + \sqrt{2}e^{-\theta} - e^{\theta} - e^{-\theta} \text{ so}$$

$$x = \tanh \theta = \frac{e^{\theta} - e^{-\theta}}{e^{\theta} + e^{-\theta}} = \sqrt{2} - 1 \text{ or}$$

$$(2 - \sqrt{2})e^{\theta} = \sqrt{2}e^{-\theta}$$

$$e^{2\theta} = \frac{\sqrt{2}}{2 - \sqrt{2}} \left(\frac{2 + \sqrt{2}}{2 + \sqrt{2}}\right) \text{ or}$$

$$2\theta = \ln(1 + \sqrt{2})$$

$$\frac{J}{T_2} = \frac{1}{2} \ln{(1 + \sqrt{2})}$$
 or

$$\tau_c = \frac{2J}{\ln\left(1 + \sqrt{2}\right)}$$

so that $\tau_C \equiv T_C$ is where phase transition occurs.

Let
$$t := \tau - \tau_c$$
. $\theta = \frac{J}{\tau} = \frac{J}{t + \tau_c}$

Expand about minimum

EY:20171230 do this explicitly

$$\int_0^{2\pi} \int_0^{2\pi} d\omega_1 d\omega_2 \ln \left[c_1 t^2 + c_2 (\omega_1^2 + \omega_2^2) \right]$$
$$F \equiv \Phi \simeq a + \frac{1}{2} b(\tau - \tau_c)^2 \ln |\tau - \tau_c|$$
$$C = \frac{\partial^2 F}{\partial \tau} \simeq -b\tau_c \ln |\tau - \tau_c|$$

with C being heat capacity.

Order parameter
$$\langle M \rangle \equiv \eta = \text{constant}(\tau_c - \tau)^{1/8} = \begin{cases} 0 & \text{if } \tau > \tau_c \\ \text{constant } (\tau_c - \tau)^{1/8} & \text{if } \tau < \tau_c \end{cases}$$

cf. pp. 505 Sec. 151 Phase transitions of the second kind in a 2-dim. lattice, Landau and Lifshitz [6], L.Onsager 1947.

24.2. An actual calculation of a small number of spins with Ising model. Sec. 3.7 "An actual calculation" on pp. 76 of Newman and Barkema (1999) [8] goes through a simple actual Monte Carlo calculation as a test case check so to compare this exact calculation/solution to the simulation, as a test of whether the simulation/program is correct. This is done in Sec. 1.3 of Newman and Barkema (1999) [8]

However, none of these promised simple calculations were shown explicitly in Newman and Barkema (1999) [8]. I will forego this simple case.

24.3. Explicit calculation showing stencil operation on each spin on a periodic lattice grid. Consider

$$H(\sigma) = -\sum_{\langle \mathbf{kl} \rangle} J \sigma_{\mathbf{k}} \sigma_{\mathbf{l}} = -J \sum_{i=0}^{L_x - 1} \sum_{j=0}^{L_y - 1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1}) =$$

$$= \frac{-J}{2} \left(\sum_{i=0}^{L_x - 1} \sum_{j=0}^{L_y - 1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1}) + \sum_{i=1}^{L_x} \sum_{j=0}^{L_y - 1} \sigma_{i-1j} (\sigma_{ij} + \sigma_{i-1j+1}) \right) =$$

$$= \frac{-J}{2} \left(\sum_{i=0}^{L_x - 1} \sum_{j=0}^{L_y - 1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1}) + \sum_{i=1}^{L_x} \sum_{j=0}^{L_y - 1} \sigma_{i-1j} \sigma_{ij} + \sum_{i=0}^{L_x - 1} \sum_{j=1}^{L_y} \sigma_{ij-1} \sigma_{ij} \right)$$

Now for each of these terms,

$$\sum_{i=1}^{L_x} \sum_{j=0}^{L_y-1} \sigma_{i-1j} \sigma_{ij} = \sum_{i=1}^{L_x} \left(\sum_{j=1}^{L_y-1} \sigma_{i-1j} \sigma_{ij} + \sigma_{i-10} \sigma_{i0} \right) = \sum_{i=1}^{L_x-1} \left(\sum_{j=1}^{L_y-1} \sigma_{i-1j} \sigma_{ij} + \sigma_{i-10} \sigma_{i0} \right) + \left(\sum_{j=1}^{L_y-1} \sigma_{L_x-1j} \sigma_{L_xj} \right) + \sigma_{L_x-10} \sigma_{L_x0}$$

$$\sum_{i=0}^{L_x-1} \sum_{j=1}^{L_y} \sigma_{ij-1} \sigma_{ij} = \sum_{j=1}^{L_y-1} \left(\sum_{i=1}^{L_x-1} \sigma_{ij-1} \sigma_{ij} + \sigma_{0j-1} \sigma_{0j} \right) + \sum_{i=1}^{L_x-1} \sigma_{iL_y-1} \sigma_{iL_y} + \sigma_{0L_y-1} \sigma_{0L_y}$$

$$\sum_{i=0}^{L_x-1} \sum_{j=0}^{L_y-1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1}) = \sum_{i=0}^{L_x-1} \left(\sum_{j=1}^{L_y} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1}) + \sigma_{i0} (\sigma_{i+10} + \sigma_{i1}) \right) = \sum_{i=1}^{L_x-1} \left(\sum_{j=1}^{L_y-1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1}) + \sigma_{i0} (\sigma_{i+10} + \sigma_{i1}) \right) + \sum_{j=1}^{L_y-1} \sigma_{0j} (\sigma_{1j} + \sigma_{0j+1}) + \sigma_{00} (\sigma_{10} + \sigma_{01})$$

Apply periodic boundary conditions. Adding up all the terms above, clearly we obtain 1 term which shows the stencil operation for spins on the "interior" of the grid:

$$\sum_{i=1}^{L_x-1} \sum_{j=1}^{L_y-1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{ij+1} + \sigma_{i-1j} + \sigma_{ij-1})$$

and if we apply *periodic* boundary conditions, neatly, we'll see all the lattice sites at the boundary also will have this stencil operation:

$$\sum_{i=1}^{L_{x}-1} \sigma_{i0}(\sigma_{i+10} + \sigma_{i1}) + \sum_{j=1}^{L_{y}-1} \sigma_{0j}(\sigma_{1j} + \sigma_{0j+1}) + \sigma_{00}(\sigma_{10} + \sigma_{01}) + \left(\sum_{i=1}^{L_{x}-1} \sigma_{iL_{y}-1}\sigma_{i0}\right) + \sigma_{0L_{y}-1}\sigma_{00} + \sum_{j=1}^{L_{y}-1} \sigma_{0j-1}\sigma_{0j} + \sum_{i=1}^{L_{y}-1} \sigma_{L_{x}-1j}\sigma_{0j} + \sigma_{L_{x}-10}\sigma_{00} + \sum_{i=1}^{L_{x}-1} \sigma_{i-10}\sigma_{i0}$$

Now, we can obtain the following for Hamiltonian, given spin configuration σ with a lattice grid obeying periodic conditions:

$$H(\sigma) = -\frac{J}{2} \sum_{i=0}^{L_x - 1} \sum_{j=0}^{L_y - 1} \sigma_{ij} (\sigma_{i+1j} + \sigma_i - 1j + \sigma_{ij+1} + \sigma_{ij-1}) =$$

$$= \frac{-J}{2} \left[\sum_{i=0}^{L_x - 1} \left(\sum_{\substack{j=0 \ j \neq j'}}^{L_y - 1} \sigma_{ij} (\sigma_{i+1j} + \sigma_{i-1j} + \sigma_{ij+1} + \sigma_{ij-1}) + \sigma_{ij'} (\sigma_{i+1j'} + \sigma_{i-1j'} + \sigma_{ij'+1} + \sigma_{ij'-1}) \right) + \sum_{\substack{j=0 \ j \neq j'}}^{L_y - 1} \sigma_{i'j} (\sigma_{i'+1j} + \sigma_{i'-1j} + \sigma_{i'j+1} + \sigma_{i'j-1}) + \sigma_{i'j'} (\sigma_{i'+1j'} + \sigma_{i'-1j'} + \sigma_{i'j'+1} + \sigma_{i'j'-1}) \right]$$

Consider a psin flip of $\sigma_{i'j'}$. Contribution to ΔH at stencil operation on $\sigma_{i'j'}$, at $(i'j') \in \Lambda$, is

$$\frac{-J}{2}(-\sigma_{i'j'}-\sigma_{i'j'})(\sigma_{i'+1j'}+\sigma_{i'-1j'}+\sigma_{i'j'+1}+\sigma_{i'j'-1}) = J\sigma_{i'j'}(\sigma_{i'+1j'}+\sigma_{i'-1j'}+\sigma_{i'j'+1}+\sigma_{i'j'-1})$$

Consider $\sigma_{i'j'}\sigma_{i'+1j'}$. Clearly, term $\sigma_{i-1j'}\sigma_{ij'}$ with i=i'+1 only occurs once more in the summation. Thus, we can definitely conclude that for $\Delta H \equiv \Delta H(\Delta \sigma_{i'j'})$ due to a single spin-flip is

(46)
$$\Delta H(\Delta \sigma_{i'j'}) = 2J\sigma_{i'j'}(\sigma_{i'+1j'} + \sigma_{i'-1j'} + \sigma_{i'j'+1} + \sigma_{i'j'-1})$$

https://www.colorado.edu/physics/phys7240/phys7240_fa12/notes/Week3.pdf Victor Gurarie, Advanced Statistical Mechanics, Fall 2012 Exact solution by transfer matrices for 2-dim. Ising model.

Part 5. Conformal Field Theory; Virasoro Algebra

cf. Schottenloher (2008) [5]

25. Conformal Transformations

Definition 41 (Conformal transformation or conformal map). Let 2 semi-Riemannian manifolds(M, g), (M', g'), dimM = dimM', let open $U \subset M$, open $V \subset M'$.

conformal transformation or **conformal map** is a smooth $\varphi: U \to V$ of maximal rank, if \exists smooth $\Omega: U \to \mathbb{R}^+$ s.t.

$$\varphi^* g' = \Omega^2 g$$

where $\varphi * g'(X,Y) := g'(T\varphi(X), T\varphi(Y))$ and $T\varphi : TU \to TV$ denote tangent map (derivative) of φ . $\Omega \equiv \text{conformal factor } of \varphi$.

Locally, $y^i = \varphi^i(x)$,

$$\frac{\partial \varphi^i}{\partial x^j} = \frac{\partial y^i}{\partial x^j}$$

Then

$$X = X^k \frac{\partial}{\partial x^k} = X^k \frac{\partial y^i}{\partial x^k} \frac{\partial}{\partial y^i} = X^k \frac{\partial \varphi^i}{\partial x^k} \frac{\partial}{\partial y^k} \in TM$$

and so

$$\varphi^* g'(X,Y) = g'(T\varphi(X), T\varphi(Y)) = (g')_{ij} X^k \frac{\partial y^i}{\partial x^k} Y^l \frac{\partial y^j}{\partial x^l} = (g')_{ij} X^k \frac{\partial \varphi^i}{\partial x^k} Y^l \frac{\partial y^j}{\partial x^l}$$

$$\Longrightarrow (\varphi^* g')_{kl} = (g')_{ij} \frac{\partial y^i}{\partial x^k} \frac{\partial y^j}{\partial x^l}$$

$$\Longrightarrow (\varphi^* g')_{kl} = (g')_{ij} \frac{\partial \varphi^i}{\partial x^k} \frac{\partial \varphi^j}{\partial x^l} = \Omega^2 g_{kl}$$

(49)

(51)

Definition 42. extension of G by group A is (given by) an exact sequence of group homomorphisms.

$$1 \longrightarrow A \stackrel{i}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$$

cf. Def. 3.1 of Schottenloher (2008) [5].

 $\operatorname{im}(1 \to A) = \ker(i)$ Recall that an exact sequence, if $\lim_{i \to \infty} (i) = \ker(\pi)$ $\operatorname{im}(\pi) = \ker(G \to 1)$

By Thm., $1 \to A \xrightarrow{i} E$ exact so i injective.

 $E \xrightarrow{\pi} G \to 1$ exact so π surjective.

Extension is called **central** if A abelian and image im is in center of E, i.e. $a \in A, b \in E \Longrightarrow i(a)b = bi(a)$.

- 25.0.1. Examples of extensions of G, and central extensions of G (which has a particular E).
 - e.g. central extension has form

$$1 \xrightarrow{\hspace*{1cm}} A \xrightarrow{\hspace*{1cm}} i \xrightarrow{\hspace*{1cm}} A \times G \xrightarrow{\hspace*{1cm}} \operatorname{pr}_2 \xrightarrow{\hspace*{1cm}} G \xrightarrow{\hspace*{1cm}} 1$$

where $i: A \to A \times G$ $a \mapsto (a,1)$

$$i(a)(a',g) = (a,1)(a',g) = (aa',g) =$$

= $(a'a,g\cdot 1) = (a',g)(a,1) = (a',g)i(a)$

Notice that what the *exactness* property of an exact sequence does:

$$pr_2i(a) = pr_2(a, 1) = 1$$

• e.g. of a nontrivial central extension is exact sequence

$$1 \longrightarrow \mathbb{Z}/k\mathbb{Z} \longrightarrow E \times U(1) \stackrel{\pi}{\longrightarrow} U(1) \longrightarrow 1$$

with $\pi(z) = z^k \quad \forall k \in \mathbb{N}, k \geq 2$, since E = U(1) and $\mathbb{Z}/k\mathbb{Z}$ are not isomorphic.

Also, homomorphism $\tau: U(1) \to E$ with $\pi \circ \tau = 1_{U(1)}$, doesn't exist, since there's no global kth root.

EY: 20170926 It's that in integer division of the argument in a complex number $z \in U(1)$, and exponent multiplication by k, you go from 1 to many and many to 1, depending upon the "branch" you're mapping to for complex numbers.

For $[n] \in \mathbb{Z}/k\mathbb{Z}$,

$$[n] \stackrel{i}{\mapsto} \exp\left(\frac{[n]}{k} 2\pi i\right)$$

and so

(48)

$$\ker \pi = \{z | \pi(z) = 1\}$$
 so that $\ker \pi = \{z = \exp\left(\frac{i2\pi n}{k}\right)\}$

• e.g. Semidirect products.

group G acting on another group H, by homomorphism

$$\tau:G\to \operatorname{Aut}(H)$$

Definition 43 (semi-direct product). semi-direct product group $G \ltimes H$ is set $H \times G$, with multiplication

$$(x,g)\cdot(x',g'):=(x\tau(g)(x'),gg') \qquad \forall (x,g),(x',g')\in H\times G$$

$$1 \longrightarrow H \stackrel{i}{\longrightarrow} G \ltimes H \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$$

with

(50)
$$i: H \to G \ltimes H$$
$$i(x) = (x, 1)$$

i group homomorphism, since

$$i(x_1x_2) = (x_1x_2, 1) = (x_1\tau(1)x_2, 1) = (x_1, 1) \cdot (x_2, 1) = i(x_1)i(x_2)$$

$$\pi : G \ltimes H \to G$$

$$\pi(x, g) = g$$

cf. http://sierra.nmsu.edu/morandi/oldwebpages/math683fall2002/GroupExtensions.pdf Observe that

$$\pi i(x) = \pi(x,1) = 1$$
 so $\ker \pi = \operatorname{im} i$

Definition 44 (Semi-direct product (2); with direct product). direct product G = HK if H, K subgroups of group G, s.t.

- H and K are normal in G $(qkq^{-1} \in K \ \forall q \in G, \forall k \in K)$
- $H \cap K = \{1\}$
- -HK=G.

semi-direct product. Relax the 1st condition (of direct products) so H still normal in G, but K need not be.

- -H normal in G $(ghg^{-1} \in H, \forall g, \forall h \in H)$
- $H \cap K = \{1\}$
- -HK=G

Connection between Def. 43 and Def. 44 for the semidirect product: Consider $\tau: G \to \operatorname{Aut}(H)$. Consider $G \ltimes H$ - what is the identity $1_{G \ltimes H} \equiv (1_H, 1_G)$ of this group?

$$(x,g) \cdot (1_H, 1_G) = (x\tau(g)1_H, g1_G) = (x\tau(g)1_H, g) \Longrightarrow 1_H = \tau(g^{-1})1, 1_G = 1$$

and so the inverse, $\forall (x,q) \in G \ltimes H$, $(x,q)^{-1} \equiv ((x^{-1}),(q^{-1}))$,

$$(x,g)(x,g)^{-1} = (x\tau(g)(x^{-1}), g(g^{-1})) = (x\tau(g)(x^{-1}), 1) \text{ (if } (g^{-1}) = g^{-1})$$

Moving along,

$$x\tau(g)(x^{-1}) = \tau(g^{-1})1$$

 $\implies (x^{-1}) = \tau(g^{-1})x^{-1}\tau(g^{-1})1$

Checking out the H being a normal subgroup of $G \ltimes H$ condition, i.e. $H \triangleleft G$,

$$(x,g)(h,1)(\tau(g^{-1})x^{-1}\tau(g^{-1}),g^{-1}) = (x\tau(g)h,g)(\tau(g^{-1})x^{-1}\tau(g^{-1}),g^{-1}) =$$
$$= (x\tau(g)h\tau(g)\tau(g^{-1})x^{-1}\tau(g^{-1}),1) = (x\tau(g)hx^{-1}\tau(g^{-1}),1)$$

 $\Longrightarrow H$ normal subgroup of $G \ltimes H \equiv H \triangleleft (G \ltimes H)$.

Notes on Semidirect products

extension

$$1 \longrightarrow SL(n,\mathbb{R}) \xrightarrow{i} GL(n,\mathbb{R}) \xrightarrow{\det} \mathbb{R}^* \longrightarrow 1$$

(52)

with

 $GL(n,\mathbb{R}) \equiv Gl_n(\mathbb{R}) = \{A | A \in \operatorname{Mat}_{\mathbb{R}}(n,n); \det A \neq 0\}$

 $\det: GL(n,\mathbb{R}) \to \mathbb{R}^* \equiv \mathbb{R} \setminus \{0\}$, det surjective homomorphism

 $SL(n,\mathbb{R}) \equiv Sl_n(\mathbb{R}) = \{A | A \in \operatorname{Mat}_{\mathbb{R}}(n,n); \det A = 1\}$

Note that $\ker(\det) = SL(n, \mathbb{R}).$

Now

$$\mathbb{R}^* \simeq \{a1_n | a \in \mathbb{R}^*\}$$

and $\det(a1_n) = a^n$.

If n odd, and $det(a1_n) = a^n = 1$, then a = 1. If n even, $a = \{-1, 1\}$.

By the second definition of a semi-direct product, Def. 44, it's required that $SL(n,\mathbb{R}) \cap \mathbb{R}^* = 1$ (i.e. the intersection is only the identity). This will only be the case if n odd.

cf. http://sierra.nmsu.edu/morandi/oldwebpages/math683fall2002/GroupExtensions.pdf

Part 6. Algebraic Topology

cf. Bredon (1997) [9]

26. Simplicial Complexes

cf. pp. 245, from Sec. 21 Simplicial Complexes of Ch. 4 Homology Theory in Bredon (1997) [9] $\mathbf{v}_0, \dots \mathbf{v}_n \in \mathbb{R}^{\infty}$, "affinely independent" if they span an affine *n*-plane, i.e.

if
$$\left(\sum_{i=0}^{n} \lambda_i \mathbf{v}_i = 0, \sum_{i=0}^{n} \lambda_i = 0\right)$$
, then $\Longrightarrow \forall \lambda_i = 0$

If not, then, e.g. $\lambda_0 \neq 0$, assume $\lambda_0 = -1$, and solve the equations to get

$$\mathbf{v}_0 = \sum_{i=1}^n \lambda_i \mathbf{v}_i$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

i.e. \mathbf{v}_0 is in affine space spanned by $\mathbf{v}_1 \dots \mathbf{v}_n$.

If $\mathbf{v}_0, \dots \mathbf{v}_n$ affinely independent, then

(53)
$$\sigma = (\mathbf{v}_0, \dots \mathbf{v}_n) = \{ \sum_{i=0}^n \lambda_i \mathbf{v}_i | \sum_{i=0}^n \lambda_i = 1, \ \lambda_i \ge 0 \}$$

is "affine simplex" spanned by \mathbf{v}_i ; also convex hull of \mathbf{v}_i .

 $\forall k \leq n, k$ -face of σ is any affine simplex of form $(\mathbf{v}_{i_1}, \dots, \mathbf{v}_{i_k})$, where vertices all distinct, so are affinely independent.

Definition 45. (geometric) simplicial complex K := collection of affine simplices s.t.

- (1) $\sigma \in K \Longrightarrow any face of \sigma \in K$; and
- (2) $\sigma, \tau \in K \Longrightarrow \sigma \cap \tau$ is a face of both σ and τ , or $\sigma \cap \tau = \emptyset$

If K simplicial complex, $|K| = \bigcup \{\sigma | \sigma \in K\} \equiv \text{"polyhedron" of } K$

Definition 46 (Def. 21.2 of Bredon (1997) [9]). polyhedron := space X if \exists homeomorphism $h: |K| \xrightarrow{\approx} X$ for some simplicial complex K. h, K is triangulation of X: (map h, complex K)

Let K finite simplicial complex.

Choose ordering of vertices $\mathbf{v}_0, \mathbf{v}_1 \dots$ of K.

If $\sigma = (\mathbf{v}_{\sigma_0}, \dots \mathbf{v}_{\sigma_n})$ is simplex of K, where $\sigma_0 < \dots < \sigma_n$, then let $f_{\sigma} : \Delta_n \to |K|$ be

$$\Delta n = r | \mathbf{n} | | \mathbf{n} \mathbf{c}$$

$$f_{\sigma} = [\mathbf{v}_{\sigma_b}, \dots \mathbf{v}_{\sigma_n}]$$

in notation of Def. 1.2. Bredon (1997) [9].

Then this gives CW-complex structure on |K| with f_{σ} as characteristic maps.

Part 7. Graphs, Finite Graphs

27. Graphs, Finite Graphs, Trees

Serre (1980) [10]

cf. Chapter I. Trees and Amalgams, Section 1 Amalgams, Subsection 1.1 Direct limits of Serre (1980) [10]

Let $(G_i)_{i \in I}$, family of groups.

 \forall pair (i, j), let F_{ij} = set of homomorphisms of G_i into G_j

Want: group $G = \lim_{i \to \infty} G_i$ and

$$\{f_i|f_i:G_i\to G\}$$
 s.t. $f_i\circ f=f_i \quad \forall f\in F_{ij}$

group G and family $\{f_i\}$ universal in that

(*) if H group, if $\{h_i|h_i:G_i\to H;h_j\circ f=h_i \quad \forall f\in F_{ij}\},$

then $\exists !h: G \to H \text{ s.t. } h_i = h \circ f_i$

i.e. $\operatorname{Hom}(G, H) \simeq \varprojlim \operatorname{Hom}(G_i, H)$, the inverse limit being taken relative to F_{ij} .

i.e. G direct limit of G_i relative to the F_{ij} .

EY: 20170918 this is my rewrite/reinterpretation:

Let $(G_i)_{i \in I}$, $\forall (i,j) \in I^2$, let $F_{ij} = \{ f \equiv f_{ij} | f : G_i \to G_j, f \text{ homomorphism of } G_i \text{ into } G_j \}$.

Given group $G = \lim_{i \to \infty} G_i$ (for fixed i), $\{f_i | f_i : G_i \to G | f_i \circ f = f_i \quad \forall f \in F_{ij} \}$, i.e.

Then G, $\{f_i|f_i:G_i\to G|f_j\circ f=f_i\quad\forall\, f\in F_{ij}\}$ universal if \forall group H, $\forall\, \{h_i|h_i:G_i\to H|h_j\circ f=h_i\quad\forall\, f\in F_{ij}\}$,

then $\exists ! h : G \to H$, s.t. $h_i = h \circ f_i$ i.e.

Proposition 18. \exists ! pair G, family $(f_i)_{i \in I}$, i.e. (pair consisting of G, $(f_i)_{i \in I}$, unique up to unique isomorphism.

Proof. Define G by generators and relations.

Take generating family to be disjoint union of those for G_i .

relations - xyz^{-1} where $x, y, z \in G_i$, $z = xy \in G_i$

$$xy^{-1}$$
 where $x \in G_i$, $y \in G_j$, $y = f(x)$ for at least $f \in F_{ij}$.

Thus, existence of $G, \{f_i\}$.

G represents functor $H \mapsto \lim \operatorname{Hom}(G_i, H)$.

Thus, uniqueness (also from universal property).

e.g. groups A, G_1, G_2 , homomorphisms $f_1: A \to G_1$.

$$f_2:A\to G_2$$

G obtained by amalgamating A in G_1, G_2 by $f_1, f_2 \equiv G_1 *_A G_2$.

1 can have $G = \{1\}$, even though f_1, f_2 non-trivial.

Application: (Van Kampen Thm.)

Let topological space X be covered by open U_1, U_2 .

Suppose $U_1, U_2, U_{12} = U_1 \cap U_2$ arcwise connected.

Let basept. $x \in U_{12}$.

Then $\pi_1(X;x)$ obtained by taking 3 groups

$$\pi_1(U_1; x), \pi_1(U_2; x), \pi_1(U_{12}; x)$$

and amalagamating them according to homomorphism

$$\pi_1(U_{12};x) \to \pi_1(U_1;x)$$

$$\pi_1(U_{12};x) \to \pi_1(U_2;x)$$

Exercise 1. Let homomorphisms $f_1: A \to G_1$ amalgam $G = G_1 *_A G_2$.

$$f_2:A\to G_2$$

Define subgroups A^n, G_1^n, G_2^n , of A, G_1, G_2 recursively by

$$A^1 = \{1\}$$

$$G_1^1 = \{1\}$$

$$G_1 - \{1\}$$

$$G_2^1 = \{1\}$$

 A^n = subgroup of A generated by $f_1^{-1}(G_1^{n-1})$ and $f_2^{-1}(G_2^{n-1})$

$$G_1^n = \text{subgroup of } G_i \text{ generated by } f_i(A^n)$$

Let A^{∞}, G_i^{∞} be unions of A^n, G_i^n resp.

Show that f_i defines injection $A/A^{\infty} \to G_i/G_i^{\infty}$

So the amalgamation is $G \simeq G_1/G_1^{\infty} *_{A/A^{\infty}} G_2/G_2^{\infty}$

Take the first induction case (for intuition about the solution)

$$A^{2} = \langle f_{1}^{-1}(G_{1}^{1}), f_{2}^{-1}(G_{2}^{1}) \rangle = \langle f_{1}^{-1}(\{1\}), f_{2}^{-1}(\{1\}) \rangle$$
$$G_{i}^{2} = f_{i}(A^{2})$$

Let
$$f_i(a) = f_i(b) \in G_i/G_i^{\infty}$$
; $a, b \in A/A^{\infty}$.

has to be a normal subgroup for G_i/G_i^{∞} to be a quotient group).

Since $a, b \in A/A^{\infty}$, suppose we take $a, b \in A$.

And suppose we take

$$f_i(a) = f_i(a)G_i^{\infty} = f_i(a)f_i(A^{n_a}) = f_i(aA^{n_a})$$

 $f_i(b) = f_i(b)G_i^{\infty} = f_i(b)f_i(A^{n_b}) = f_i(bA^{n_b})$

Taking f_i^{-1} (recall for group homomorphisms, they map inverse of element of 1st. group to inverse of image of this element). $aA^{n_a} = bA^{n_b} \in A/A^{\infty}$ (This is okay as we've "quotiented out A^{∞} ; so indeed, they're equal)

cf. Subsection 1.2 Structure of amalgams of Serre (1980) [10]

Suppose given group A, family of groups $(G_i)_{i \in I}$, and, $\forall i \in I$, injective homomorphism $A \to G_i$.

 $*_A G_i \equiv \text{direct limit (cf. no. 1.1)}$ of family (A, G_i) with respect to these homomorphisms, call it sum (in category theory sense, i.e. product) of G_i with A amalgamated.

e.g.
$$A = \{1\},\$$

 $*G_i \equiv \text{free product of } G_i.$

27.0.1. reduced word. $\forall i \in I$, choose set S_i of right coset representations of G_i modulo A, assume $1 \in S_i$,

 $(a,s) \mapsto as$ is bijection of $A \times S_i$ onto G_i ,

$$A \times (S_i - \{1\}) \to G_i - A \text{ (onto)}$$

Let
$$\mathbf{i} = (i_1 \dots i_n), n \ge 0, i_j \in I, \text{ s.t.}$$

$$(54) i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1$$

cf. (T) of Serre (1980) [10].

So reduced word m is defined as

$$m = (a; s_1 \dots s_n)$$

where $a \in A$, $s_1 \in S_{i_1} \dots s_n \in S_{i_n}$, and $s - j \neq 1 \forall j$.

 $f \equiv \text{canonical homomorphism of } A \text{ into group } G = *_A G_i$

 $f_i \equiv \text{canonical homomorphism of } G_i \text{ into group } G = *_A G_i$

EY: 20170611 (Further explanations, basic examples, from me):

Given $A, \{G_i\}_{i \in I}$, injective (group) homomorphisms $\{f_i : A \to G_i\}_i$.

 $G_i \backslash f_i(A) = \{ f_i(A)g | g \in G_i \}.$

Right coset representation of $f_i(A)q \mapsto q$.

e.g.
$$A, G_1, G_2, f_1: A \rightarrow G_1$$
.

$$f_2:A\to G_2$$

$$G_1 \backslash f_1(A) = \{ f_1(A)g | g \in G_1 \}$$

$$G_2 \backslash f_2(A) = \{ f_2(A)g | g \in G_2 \}$$

 $\mathbf{i} = (i_1 \dots i_n), i_i \in I, i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1.$

Consider (1212...12)

 $m = (a; f_1g_2f_3g_4 \dots f_{2n-1}, g_{2n})$ where $f's \in S_1 \subset G_1, g's \in S_2 \subset G_2$. and so

Definition 47 (reduced word). reduced word of type i, m,

$$(55) m = (a; s_1 \dots s_n)$$

where $a \in A, s_1 \in S_{i_1}, \ldots s_n \in S_{i_n}, s_i \neq 1 \quad \forall j,$ $\mathbf{i} = (i_1 \dots i_n), i_i \in I, s.t. \ i_m \neq i_{m+1} \ for \ 1 \leq m \leq n-1,$

with $S_i = \{g | g \in f_i(A)g \in f_i(A)G_i\}$

Then since $f_i(a), f_i(b) \in G_i/G_i^{\infty}, f_i(a), f_i(b) \in \{gG_i^{\infty} | g \in G_i\}$ (quotient is defined to be the set of all left cosets of G_i^{∞} , which **Theorem 14** (1 of Serre (1980) [10]). $\forall g \in G$, $\exists sequence i s.t. i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1 \text{ and } 1 \leq m \leq n-1$ reduced word

$$m=(a;s_1\ldots s_n)$$

of type i s.t.

$$g = f(a)f_{i_1}(s_1)\dots f_{i_n}(s_n)$$

Furthermore, \mathbf{i} and m unique.

Remark. Thm. 1 implies f; f_i injective.

Then identify A and G_i with images f(A), $f_i(G_i)$ in G, and reduced decomposition (*) of $g \in G$

$$g = as_1 \dots s_n, \quad a \in A, s_1 \in S_{i_1} - \{1\} \dots s_n \in S_{i_n} - \{1\}$$

Likewise, $G_i \cap G_i = A$ if $i \neq j$.

In particular, $S_i - \{1\}$ pairwise disjoint in G.

Proof. Let $X_i \equiv \text{set of reduced words of type } \mathbf{i}, X = \coprod X_i$.

Make G act on X.

In view of universal property of G, sufficient to make $\forall i, G_i$ act,

check action induced on A doesn't depend on i

Suppose then that $i \in I$, and let $Y_i = \text{set of reduced words of form } (1; s_1 \dots s_n)$, with $i_1 \neq i$.

EY: 20170611Recall that

$$S_i = \{g | g \in f_i(A)g \in f_i(A)G_i\}$$

 $A \times S_i \to G_i \text{ onto}$
 $A \times (S_i - \{1\}) \to G_i - A \text{ onto}$
 $(a, s) \mapsto as \text{ bijection}$

Let Y_i = set of reduced words of form $(1; s_1 \dots s_n) = \{(1; s_1 \dots s_n) | 1 \in A; s_1 \in S_{i_1} \dots s_n \in S_{i_n}; \mathbf{i} = (i_1 \dots i_n), i_j \in I \text{ s.t. } i_m \neq i_j \in I \}$ i_{m+1} for $1 \le m \le n-1$.

$$A \times Y_i \to X = \coprod_i X_i$$

$$(a, (1; s_1 \dots s_n)) \mapsto (a; s_1 \dots s_n)$$

$$A \times \{S_i - \{1\}\} \times Y_i \to X$$

$$((a, s), (1; s_1 \dots s_n)) \mapsto (a; s, s_1 \dots s_n)$$

and remember that $X_i = \text{set of reduced words of type } \mathbf{i}$.

It's clear that this yields a bijection $A \times Y_i \mid A \times (S_i - \{1\}) \times Y_i \to X$.

Let $x \in X$. Then $x \in X_i$ for some i. So x is a reduced word of type i: $x = (a; s_1 \dots s_n)$. Then clearly $x = (a; s_1 \dots s_n) \mapsto$ $(a,(1;s_1\ldots s_n))\in A\times Y_i.$

cf. pp. 13, Sec. 2. Trees, 2.1 Graphs of Serre (1980) [10]

Definition 48 (1. of Serre (1980) [10]). $\operatorname{graph} \Gamma = (X, Y, Y \to X \times X, Y \to Y)$, where $\operatorname{set} X = \operatorname{vert} \Gamma$

$$set Y = edge \Gamma$$

$$Y \to X \times X$$
$$y \mapsto (o(y), t(y))$$
$$Y \to Y$$
$$y \mapsto \overline{y}$$

s.t. $\forall y \in Y, \overline{y} = y, \overline{y} \neq y, o(y) = t(\overline{y}).$ vertex $P \in X$ of Γ .

(oriented) edge $y \in Y$, $\overline{y} \equiv inverse$ edge.

origin of $y := vertex \ o(y) = t(\overline{y})$ terminus of $y := vertex \ t(y) = o(\overline{y})$ extremities of $y := \{o(y), t(y)\}$

If 2 vertices adjacent, they're extremities of some edge.

orientation of graph $\Gamma = Y_+ \subset Y = edge \Gamma \text{ s.t. } Y = Y_+ \coprod \overline{Y}_+$. It always exists. oriented graph defined, up to isomorphism, by giving 2 sets X, Y_+ and $Y_+ \to X \times X$.

corresponding set of edges is $Y = Y_{\perp} \coprod \overline{Y}_{\perp}$ where $\overline{Y}_{\perp} \equiv copy$ of Y_{\perp}

27.0.2. Realization of a Graph. cf. Realization of a Graph in Serre (1980) [10].

Let graph Γ , $X = \text{vert}\Gamma$, $Y = \text{edge}\Gamma$.

topological space $T = X \coprod Y \times [0,1]$, where X, Y provided with discrete topology.

Let R be finest equivalence relation on T for which

$$(y,t) \equiv (\overline{y}, 1-t)$$

$$(y,0) \equiv o(y) \qquad \forall y \in Y, \forall t \in [0,1]$$

$$(y,1) \equiv t(y)$$

quotient space real(Γ) = T/R is realization of graph Γ . (realization is a functor which commutes with direct limits). Let $n \in \mathbb{Z}^+$. Consider oriented graph of n+1 vertices $0,1,\ldots n$,

Definition 49. path (of length n) in graph Γ is morphism c of Path, into Γ

orientation given by n edges $[i, i+1], 0 \le i < n, o([i, i+1]) = i$

$$t([i,i+1]) = i+1$$

For n > 1,

 $(y_1 \dots y_n)$ sequence of edges $y_i = c([i-1,i])$ s.t.

$$t(y_i) = o(y_{i+1}), \qquad 1 \le i < n \text{ determine } c$$

If $P_i = c(i)$.

c is a path from P_0 to P_n , and P_0 and P_n are extremities of the path c.

pair of form $(y_i, y_{i+1}) = (y_i, \overline{y}_i)$ in path is **backtracking**.

path (of length n-2), from P_0 to P_n given (for n>2) by $(y_1 \dots y_{i-1}, y_{i+2} \dots y_n)$

If \exists path from P to Q in Γ , \exists one without backtracking (by induction)

direct limit $Path_{\infty} = \lim Path_n$ provides notion of infinite path.

Path_{\infty} \(\neq\) infinite sequence $(y_1, y_2, ...)$ of edges s.t. $t(y_i) = o(y_{i+1}) \quad \forall i \geq 1$.

 \square Definition 50 (connected graph; Def. 3 of Serre (1980) [10]). graph connected if \forall 2 vertices, 2 vertices are extremities of at

maximal connected subgraphs (under relation of inclusion) are connected components of graph.

27.0.3. Circuits. Let $n \in \mathbb{Z}^+$, n > 1.

Consider

set of vertices $\mathbb{Z}/n\mathbb{Z}$, orientation given by n edges [i, i+1], $(i \in \mathbb{Z}/n\mathbb{Z})$ with o([i, i+1]) = i

$$t([i, i+1]) = i+1$$

Definition 51 (circuit; Def. 4 of Serre (1980) [10]). circuit (length n) in graph is subgraph isormorphic to Circ_n.

i.e. subgraph = path $(y_1 \dots y_n)$, without backtracking, s.t. $P_i = t(y_i)$, $(1 \le i \le n)$ distinct, s.t. $P_n = o(y_1)$

$$n = 1$$
 case: Circ₁, $\mathbb{Z}/\mathbb{Z} = \{0\}$, 1 edge, $[0, 1]$, $0 \in \mathbb{Z}/1\mathbb{Z}$, $o([0, 1]) = 0$
 $t([0, 1]) = 1$

Note Circ₁ has automorphism of order 2, which changes its orientation, i.e.

 \exists automorphism $\sigma \in Aut(Circ_1)$ s.t. $|\sigma| = 2$, i.e. $\sigma^2 = 1$.

loop := circuit of length 1; so loop $\in \overline{\text{Circ}}_1$.

path
$$(y_1)$$
, $P_1 = t(y_1) = o(y_1)$.

n=2 case: Circ₂, $\mathbb{Z}/2\mathbb{Z}=\{0,1\},$ 2 edges [0,1],[1,2],

path (y_1, y_2) , $(1 \le i \le 2)$, $P_1 = t(y_1)$

$$P_2 = t(y_2) = o(y_1)$$

27.1. Combinatorial graphs. Let $(X, S) \equiv \text{simplicial complex of dim.} \leq 1$, with

 $X \equiv set$

 $S \equiv$ set of subsets of X with 1 or 2 elements, containing all the 1-element subsets. associates with it a graph $\Gamma = (X, \{(P,Q)\})$.

X is its set of vertices.

edges =
$$\{(P,Q) \in X \times X\}$$
 s.t. $P \neq Q$, $\{P,Q\} \in S$, with $\overline{(P,Q)} = (Q,P)$
 $o(P,Q) = P$

$$t(P,Q) = Q$$

In this graph, 2 edges with same origin and same terminus are equal. This is equivalent to (see following Def.)

Definition 52 (combinatorial; Def. 5 of Serre (1980) [10]). graph is combinatorial if it has no circuit of length ≤ 2

Conversely, it's easy to see that

every combinatorial graph Γ derived (up to isomorphism) by construction above from simplicial complex (X, S), where

 $S = \text{set of subset } \{P, Q\} \text{ of } X \text{ s.t. } P \text{ and } Q \text{ either adjacent or equal.}$

Part 8. Tensors, Tensor networks; Singular Value Decomposition, QR decomposition, Density Matrix Renormalization Group (DMRG), Matrix Product states (MPS)

28. Introductions to Tensor Networks

José Barbon (IFT-CSIC, Univ. Autonoma de Madrid) gave the https://youtu.be/nsxgAOAEgbg for the workshop "Black Holes, Quantum Information, Entanglement, and all that," (29 May-1 June, 2017, with the organizing committee of Thibault Damour (IHES), Vasily Pestun (IHES), Eliezer Rabinovici (IHES & Hebrew Univ. of Jerusalem).

A

In the talk,

cf. 43:13

The church of the doubled Hilbert space. Any thermal box can be obtained by tracing over a second identical copy, if appropriately entangled into a global pure state.

$$\rho_R = \operatorname{Tr}_L \sum_n C_n \Psi_n^L \otimes \Psi_n^R$$

$$(C_n)_{\text{thermal}} = \left[\frac{e^{-\beta E_n}}{\sum_n e^{-\beta E_M}} \right]^{1/2}$$

But!!

If the entanglement basis is taken to be the high-energy band of two "entangled" CFTs ...

$$|TFD\rangle \sim \sum_{E_n} e^{-\beta E_n/2} |E_n\rangle_L \otimes |E_n\rangle_R$$

neglecting the tiny e^{-S} spacings. we can approximate by continuous spectrum of fields in the background of an AdS black hole, to get ...

$$\int_{E} e^{-\beta E/2} |E\rangle_{L} \otimes |E\rangle_{R}$$

The HH state of the bulk fields!

cf. 46:16

SLOGAN: EPR = ER Maldacena-Susskind

Accumulating a density of entanglement of $S \gg 1$ well-separated Bell pairs within a transversal size of order $(GS)^{1/2}$ seems to generate a geometrical bridge of area GS.

cf. 49:26

Parametrizing complexity of entanglement. Pick a tensor decomposition of Hilbert space of dimension $\exp(S)$ into S factors of O(1) dimension.

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_S$$

A tensor of S indices gives a generic state.

cf. 50:27

The decomposition of the big tensor in small building blocks gives a notion of "complexity of entanglement" rather simple entanglement pattern

somewhat more complex entanglement pattern

picture from M von Raamsdonk

cf. 55:10

A list of open questions & problems.

- Need exactly calculable toy models of AdS/CFT along the lines of SYK model
- Give a "renormalized" definition of quantum complexity for continuum CFTs
- Can tensor networks describe bulk gravitons?
- What is the space-time meaning of quantum complexity saturation?
- Can we define approximate local observables for black hole inferiors?
- Are there obstructions related to firewalls and/or fuzzballs?

Workshop introductory overview by José Barbon for the Institut des Hautes Études Scientifiques (IHÉS) gave me the first impetus to understand tensor networks as I sought to also understand the condensates of entanglement pairs within the black hole.

A Google search for introductions to tensor networks that are on arxiv ("Introduction Tensor Network arxiv") yielded Bridgeman and Chubb's course notes (bf. Bridgeman and Chubb (2017) [14]).

28.1. List of stuff I want to look at/do/study. I would like to compare/contrast the following:

- Rotman (2010) [11], Ch. 8, but starting from 8.4 Tensor Products, pp. 574
- Jeffrey Lee (2009) [13], Ch. 7 Tensors

Maldacena and Susskind (2013) [18]

Lectures on Gravity and Entanglement. Mark Van Raamsdonk [21]

- Consider as physical system AdS-Schwarzschild black hole
- CFT
 - PFL Lectures on Conformal Field Theory in $D \geq 3$ Dimensions, Rychkov (2016) [19].

Evenbly and Vidal (2011) [20], Tensor network states and geometry

Loose ends (might not be useful links)

- https://arxiv.org/pdf/1506.06958.pdf
- https://arxiv.org/pdf/1512.02532.pdf One-point Functions in AdS/dCFT from Matrix Product States

28.2. Tensor operations; Tensor properties.

28.2.1. rank. $r = \text{rank tensor of dim. } d_1 \times \cdots \times d_r \text{ is element of } \mathbb{C}^{d_1 \times \cdots \times d_r}$ Tensor product

$$[A \otimes B]_{i_1...i_r,j_1...j_s} := A_{i_1...i_r} \cdot B_{j_1...j_s}$$

28.2.2. Trace. Given tensor A, xth, yth indices have identical dims. $(d_x = d_y)$, partial trace over these 2 dims. is simply joint summation over that index

(58)
$$[\operatorname{Tr}_{x,y} A]_{i_1 \dots i_{x-1} i_{x+1} \dots i_{y-1} i_{y+1} \dots i_r} = \sum_{\alpha=1}^{d_x} A_{i_1 \dots i_{x-1} \alpha i_{x+1} \dots i_{y-1} \alpha i_{y+1} \dots i_r}$$

28.2.3. Contraction.

28.2.4. Group and splitting, Bridgeman and Chubb (2017) [14]. "Rank is a rather fluid concept in the study of tensor networks." Bridgeman and Chubb (2017) [14].

 $\mathbb{C}^{a_1 \times \cdots \times a_n} \simeq \mathbb{C}^{b_1 \times \cdots \times b_m}$ isomorphic as vector spaces if $\prod_i a_i = \prod_i b_i$.

We can "group" or "split" indices to lower or raise rank of given tensor, resp.

Consider contracting 2 arbitrary tensors.

If we group together indices which are and are not involved in contraction,

"It should be noted that not only is this reduction to matrix multiplication pedagogically handy, but this is precisely the manner in which numerical tensor packages perform contraction, allowing them to leverage highly optimised matrix multiplication code." (cf. Bridgeman and Chubb (2017) [14]; check this)

"Owing to freedom in choice of basis, precise details of grouping and splitting aren't unique." (cf. Bridgeman and Chubb (2017) [14]).

1 specific choice of convention:

tensor product basis, defining basis on product space by product of respective bases.

"The canonical use of tensor product bases in quantum information allows for grouping and splitting described above to be - dealt with implicitly."

$$|0\rangle \otimes |1\rangle \equiv |0\rangle$$

and precisely this grouping,

(60)
$$|0\rangle \otimes |1\rangle \in \operatorname{Mat}_{\mathbb{C}}(2,2), \text{ whilst} \\ |01\rangle \in \mathbb{C}^4$$

Suppose rank n+m tensor T, group its first n indices, last m indices together.

$$T_{I,J} := T_{i_1...i_n,j_1...j_m}$$

where

$$I := i_1 + d_1^{(i)} i_2 + d_1^{(i)} d_2^{(i)} i_3 + \dots + d_1^{(i)} \dots d_{n-1}^{(i)} i_n$$

$$J := j_1 + d_1^{(j)} j_2 + d_1^{(j)} d_2^{(j)} j_3 + \dots + d_1^{(j)} \dots d_{m-1}^{(j)} j_m$$

EY: 20170627 to elaborate, consider a functor flatten that does what's described above, in the context of category theory s.t. S diagonal with nonnegative $S_{aa} = s_a$, i.e. $S_{ij} = \delta_{ij} s_i$ s.t. $s_i \ge 0 \quad \forall i = 1, 2, \dots \min(N_A, N_B)$. (and so this is the generalization):

$$\mathbb{K}^{d_{1}^{(i)}} \times \mathbb{K}^{d_{2}^{(i)}} \times \cdots \times \mathbb{K}^{d_{n}^{(i)}} \times \mathbb{K}^{d_{1}^{(j)}} \times \mathbb{K}^{d_{2}^{(j)}} \times \cdots \times \mathbb{K}^{d_{m}^{(j)}} \xrightarrow{\text{flatten}} \mathbb{K}^{\prod_{p=1}^{n} d_{p}^{(i)}} \times \mathbb{K}^{\prod_{q=1}^{m} d_{q}^{(j)}}$$

$$T_{i_{1}...i_{n},j_{1}...j_{m}} \xrightarrow{\text{flatten}} T_{I,J}$$

$$\{0,1,...d_{1}^{(i)}\} \times \{0,1,...d_{2}^{(i)}\} \times \cdots \times \{0,1,...d_{n}^{(i)}\} \times \{0,1,...d_{1}^{(j)}\} \times \{0,1,...d_{2}^{(j)}\} \times \cdots \times \{0,1,...d_{m}^{(j)}\} \xrightarrow{\text{flatten}} \{0,1,\cdots \prod_{p=1}^{n} d_{p}^{(i)} - 1\} \times \{0,1,\cdots \prod_{q=1}^{m} d_{q}^{(j)} - 1\}$$

$$(i_{1},i_{2},...i_{n},j_{1},j_{2}...j_{m}) \xrightarrow{\text{flatten}} (I,J) := (i_{1}+d_{1}^{(i)}i_{2}+\cdots+d_{1}^{(i)}...d_{n-1}^{(i)}i_{n},j_{1}+d_{1}^{(j)}j_{2}+\cdots+d_{1}^{(j)}...d_{m-1}^{(j)}j_{m})$$

It doesn't make sense to call this "row-major" or "column-major" ordering generalization, because we are not dealing with only 2 indices where we can definitely say the first index indexes the "row" and the second index indexes the "column." At most. possibly, you can alternatively have this:

$$(i_1 \dots i_n, j_1 \dots j_m) \xrightarrow{\text{flatten}} (I, J) := (d_2^{(i)} \dots d_n^{(i)} i_1 + d_3^{(i)} \dots d_n^{(i)} i_2 + \dots + i_n, d_2^{(j)} \dots d_m^{(j)} j_1 + \dots + j_m)$$

Note that this is all 0-based counting (i.e. we start counting from 0 just like in C,C++,Python, etc.). If you really wanted 1-based counting, you'd have to complicate the above formulas as such:

$$(I,J) := (i_1 + d_1^{(i)}(i_2 - 1) + \dots + d_1^{(i)} \dots d_{n-1}^{(i)}(i_n - 1), j_1 + d_1^{(j)}(j_2 - 1) + \dots + d_1^{(j)} \dots d_{m-1}^{(j)}(j_m - 1))$$

Note that formulas are easily checked by pluggin in the minimum and maximum values for the indices and seeing if they make sense (e.g. plug in $(0,0,\ldots,0)$ for all indices for 0-based counting and make sure you get back I=0 or J=0).

28.3. Singular Value Decomposition.

$$T_{I,J} = \sum_{\alpha} U_{I,\alpha} S_{\alpha,\alpha} \overline{V}_{J,\alpha}$$

$$\operatorname{Mat}_{\mathbb{K}}(N,M) \xrightarrow{\operatorname{SVD}} \operatorname{Mat}_{\mathbb{K}}(N,P) \times \operatorname{Mat}_{\mathbb{K}}(P,P) \times \operatorname{Mat}_{\mathbb{K}}(M,P)$$

$$T_{I,J} \xrightarrow{\operatorname{SVD}} U_{I,\alpha}, S_{\alpha,\alpha}, \overline{V}_{I,\alpha} \text{ s.t.}$$

$$T_{I,J} = \sum_{\alpha} U_{I,\alpha} S_{\alpha,\alpha} \overline{V}_{J,\alpha}$$

$$T = USV^{\dagger}$$

For the higher-dimensional version of SVD.

$$\mathbb{K}^{d_{1}^{(i)}} \otimes \cdots \otimes \mathbb{K}^{d_{N}^{(i)}} \otimes \mathbb{K}^{d_{1}^{(j)}} \otimes \cdots \otimes \mathbb{K}^{d_{M}^{(j)}} \xrightarrow{\text{flatten}} \operatorname{Mat}_{\mathbb{K}}(N, M) \xrightarrow{\operatorname{SVD}} \operatorname{Mat}_{\mathbb{K}}(N, P) \times \operatorname{Mat}_{\mathbb{K}}(P, P) \times \operatorname{Mat}_{\mathbb{K}}(M, P) \xrightarrow{\text{splitting}}$$

$$\xrightarrow{\text{splitting}} \mathbb{K}^{d_{1}^{(i)}} \otimes \cdots \otimes \mathbb{K}^{d_{N}^{(i)}} \otimes \mathbb{K}^{P} \times \operatorname{Mat}_{\mathbb{K}}(P, P) \times \mathbb{K}^{d_{1}^{(j)}} \otimes \cdots \otimes \mathbb{K}^{d_{M}^{(j)}} \otimes \mathbb{K}^{P}$$

$$T_{i_{1}...i_{N}, j_{1}...j_{M}} = \sum_{\alpha} U_{i_{1}...i_{N}, \alpha} S_{\alpha, \alpha} \overline{V}_{j_{1}...j_{M}, \alpha}$$

29. Density Matrix Renormalization Group: Matrix Product States (MPS)

cf. Sec. 4, Matrix Product States (MPS) of Schollwöck [16].

Necessarily, given matrix $M \in \operatorname{Mat}_{\mathbb{K}}(M,N)$ (notation in Bridgeman and Chubb (2017) [14] and CUDA Toolkit Documentation; I will follow the notation in Schollwöck [16] since his A.B denote specific physical meaning). For

$$U \in \operatorname{Mat}_{\mathbb{K}}(N_A, \min(N_A, N_B)) \text{ s.t. } UU^{\dagger} = 1$$

 $S \in \operatorname{Mat}_{\mathbb{K}}(\min(N_A, N_B), \min(N_A, N_B))$

 $r \equiv \text{(Schmidt)}$ rank of M := number of nonzero singular values.

 $V^{\dagger} \in \operatorname{Mat}_{\mathbb{K}}(\min(N_A, N_B), N_B) \text{ s.t. } V^{\dagger}V = 1.$

$$\operatorname{Mat}_{\mathbb{K}}(N_{A}, N_{B}) \xrightarrow{\operatorname{SVD}} U_{\mathbb{K}}(N_{A}, \min{(N_{A}, N_{B})}) \times \operatorname{diag}_{\mathbb{K}}(\min{(N_{A}, N_{B})}) \times U_{\mathbb{K}}(\min{(N_{A}, N_{B})}, N_{B})$$

$$M \vdash \longrightarrow USV^{\dagger}$$

Optimal approximation of M (rank r by matrix M' (rank r' < r) property.

In Frobenius norm $||M||_F^2 := \sum_{i,j} |M_{ij}|^2$, induced by inner product $\langle M|N\rangle = \operatorname{tr} M^{\dagger} N$. Indeed,

$$\operatorname{tr} M^{\dagger} N = (M^{\dagger})_{ik} N_{ki} = \overline{M}_{ki} N_{ki}$$

and so for

(64)
$$M' = US'V^{\dagger}, \qquad S' = \operatorname{diag}(s_1, s_2 \dots s_{r'}, 0 \dots)$$

cf. Eq. (19) of Schollwöck [16], i.e. 1 sets all but 1st r' singualr values to 0.

Use singular value decomposition (SVD) to derive Schmidt decomposition of general quantum state. \forall pure state $|\psi\rangle$ on AB,

$$|\psi\rangle = \sum_{i,j} \Psi_{ij} |i\rangle_A |j\rangle_B$$

where $\{|i\rangle_A\}, \{|j\rangle_B\}$ orthonormal bases of A, B ((complex) Hilbert spaces), with dim. N_A, N_B , respectively.

Let $\Psi_{i,j} \in \operatorname{Mat}_{\mathbb{K}}(N_A, N_B)$.

Then **reduced density operators** $\widehat{\rho}_A$, $\widehat{\rho}_B$ are such that

$$\widehat{\rho}_A = \operatorname{tr}_B |\psi\rangle\langle\psi|$$

$$\widehat{\rho}_B = \operatorname{tr}_A |\psi\rangle\langle\psi|$$

In matrix form.

$$\rho_A = \Psi \Psi^{\dagger}$$

$$\rho_B = \Psi^{\dagger} \Psi$$

Indeed,

$$(\rho_A)_{ij} = \Psi_{ik}\overline{\Psi}_{jk}$$

$$(\rho_B)_{ij} = \overline{\Psi}_{ki}\Psi_{kj}$$

$$|\psi\rangle\langle\psi| = \sum_{i,j} \Psi_{ij}|i\rangle_A|j\rangle_B \sum_{l,m} \overline{\Psi}_{lm}\langle l|_A\langle m|_B$$

$$\operatorname{tr}_B|\psi\rangle\langle\psi| = \sum_{i,j} \Psi_{ik}\overline{\Psi}_{jk}|i\rangle_A\rangle j|_A$$

In matrix form,

$$\rho_A = \Psi \Psi^{\dagger}$$

$$\rho_B = \Psi^{\dagger} \Psi$$

Carry out SVD on Ψ in Eq. (20) of Schollwöck [16],

$$|\psi\rangle = \sum_{i,j} \Psi_{ij} |i\rangle_A |j\rangle_B$$

$$|\psi\rangle = \sum_{ij} \Psi_{ij} |i\rangle_A |j\rangle_B = \sum_{ij} \sum_{a=1}^{\min{(N_A,N_B)}} U_{ia} S_{aa} \overline{V}_{ja} |i\rangle_A |j\rangle_B = \sum_{a=1}^{\min{(N_A,N_B)}} \sum_{i} U_{ia} |i\rangle_A s_a \sum_{j} \overline{V}_{ja} |j\rangle_B = \sum_{a=1}^{\min{(N_A,N_B)}} s_a |a\rangle_A |a\rangle_B$$

Due to orthogonality of $U, V^{\dagger}, \{|a\rangle_A\}, \{|a\rangle_B\}$ orthonormal, and can be extended to be orthonormal bases of A, B.

If we restrict the sum to run only over the $r \leq \min(N_A, N_B)$ positive nonzero singular values (i.e., for $\sum_{a=1}^{\min(N_A, N_B)}$, a > 0

$$|\psi\rangle = \sum_{1}^{r} s_a |a\rangle_A |a\rangle_B$$

r=1 (classical) product states. $|\psi\rangle = s_1|1\rangle_A|1\rangle_B$.

r > 1 entangled (quantum) states.

Schmidt decomposition on reduced density operators for A and B:

$$\widehat{\rho}_A = \sum_{a=1}^r s_a^2 |a\rangle_A \langle a|_A$$

$$\widehat{\rho}_B = \sum_{a=1}^r s_a^2 |a\rangle_B \langle a|_B$$

Respective eigenvectors are left and right singular vectors.

Von Neumann entropy can be read off:

$$S_{A|B}(|\psi\rangle) = -\operatorname{tr}\widehat{\rho}_A \log_2 \widehat{\rho}_A = -\sum_{a=1}^r s_a^2 \log_2 s_a^2$$

In view of large size of Hilbert spaces, approximate $|\psi\rangle$ by some $|\tilde{\psi}\rangle$ spanned over state spaces A, B that have dims. r' only. Since 2-norm of $|\psi\rangle$,

$$\||\psi\rangle\|_2^2 = \sum_{ij} |\Psi_{ij}|^2 = \|\Psi\|_F^2$$

since

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

$$\||\psi\rangle\|_2^2 = \sum_{a=1}^r s_a^2 = \sum_{ij} |\Psi_{ij}|^2$$

iff $\{|i\rangle\}, \{|j\rangle\}$ orthonormal. Optimal approx. of 2-norm given by optimal approx. of Ψ by $\overline{\Psi}$ in Frobenius norm, where $\overline{\Psi}$ is matrix of rank r'.

 $\overline{\Psi} = US'V^{\dagger}, S' = \operatorname{diag}(s_1, \dots s_{r'}, 0 \dots)$ from above.

⇒ Schmidt decomposition of approximate state

(65)
$$|\overline{\Psi}\rangle = \sum_{a=1}^{r'} s_a |a\rangle_A |a\rangle_B$$

cf. Eq. (27) of Schollwöck [16], where s_a must be rescaled if normalization desired

29.1. **QR decomposition.** cf. 4.1.2. of Schollwöck [16].

If actual value of singular values not used explicitly, then use QR decomposition. QR decomposition: $\forall M \in \operatorname{Mat}_{\mathbb{K}}(N_A, N_B)$,

 $M = QR, \ Q \in U_{\mathbb{K}}(N_A)$, i.e. $Q^{\dagger}Q = 1 = QQ^{\dagger}, \ R \in \operatorname{Mat}_{\mathbb{K}}(N_A, N_B)$ s.t. upper triangular, i.e. $R_{ij} = 0$ if i > j

thin QR decomposition: assume $N_A > N_B$. Then bottom $N_A - N_B$ rows of R are 0, so

$$M = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1$$
$$Q_1 \in \operatorname{Mat}_{\mathbb{K}}(N_A, N_B)$$
$$R_1 \in \operatorname{Mat}_{\mathbb{K}}(N_B, N_B)$$

While $Q_1^{\dagger}Q_1 = 1$ in general $Q_1Q_1^{\dagger} \neq 1$

30. Matrix Product States (MPS)

cf. Section 4.13 Decomposition of arbitrary quantum states into MPS of Schollwöck [16]. Consider lattice of L sites, d-dim. local state spaces $\{\sigma_i\}_{i=1,...L}$. Most general pure quantum state on lattice (assume normalized)

(67)
$$|\psi\rangle = \sum_{\sigma_1...\sigma_L} c_{\sigma_1...\sigma_L} |\sigma_1...\sigma_L\rangle$$

cf. Eq. (30) of Schollwöck [16],

30.1. Left-canonical matrix product state. cf. Schollwöck [16],

Consider the process of refactoring or "flattening", which I claim to be a functor flatten:

$$|\psi\rangle \in \mathcal{H} \text{ s.t. } \dim \mathcal{H} = d^L \mapsto \Psi \in \operatorname{Mat}_{\mathbb{K}}(d, d^{L-1})$$

$$\Psi_{\sigma_1,(\sigma_2...\sigma_L)} = c_{\sigma_1...\sigma_L}$$

(68)
$$\xrightarrow{\text{SVD}} c_{\sigma_1...\sigma_L} = \Psi_{\sigma_1,(\sigma_2...\sigma_L)} = \sum_{a}^{r_1} U_{\sigma_1,a_1} S_{a_1,a_1} (V^{\dagger})_{a_1,(\sigma_2...\sigma_L)} \equiv \sum_{a_1}^{r_1} U_{\sigma_1,a_1} c_{a_1,\sigma_2...\sigma_L}$$

i.e.

$$(\mathbb{K}^d)^L \to \operatorname{Mat}_{\mathbb{K}}(1,r) \times \operatorname{Mat}_{\mathbb{K}}(r_1 d, d^{L-2})$$
$$c_{\sigma_1 \dots \sigma_L} \mapsto A_{a_1}^{\sigma_1}, \Psi_{(a_1 \sigma_2), (\sigma_3 \dots \sigma_L)}$$

s.t.

$$c_{\sigma_1...\sigma_L} = \sum_{a_1}^{r_1} A_{a_1}^{\sigma_1} \Psi_{(a_1\sigma_2),(\sigma_3...\sigma_L)}$$

where rank $r_1 \leq d$.

$$U \in \operatorname{Mat}_{\mathbb{K}}(d, \min(d, r)) = \operatorname{Mat}_{\mathbb{K}}(d, r)$$

Consider d row vectors A^{σ_1} , $A_{a_1}^{\sigma_1} = U_{\sigma_1,a_1}$

$$c_{a_1\sigma_2...\sigma_L} = \sum_{a_1}^{r_1} A_{a_1}^{\sigma_1} \Psi_{(a_1,\sigma_2),(\sigma_3...\sigma_L)}$$
 with

$$\Psi_{(a_1\sigma_2),(\sigma_3...\sigma_L)} \in \operatorname{Mat}_{\mathbb{K}}(r_1d, d^{L-2})$$

So from Eq. (34) of Schollwöck [16],

(69)
$$c_{\sigma_1...\sigma_L} = \sum_{a_1}^{r_1} \sum_{a_2}^{r_2} A_{a_1}^{\sigma_1} U_{(a_1\sigma_2),a_2} S_{a_2,a_2}(V^{\dagger})_{a_2,(\sigma_3...\sigma_L)} = \sum_{a_1}^{r_1} \sum_{a_2}^{r_2} A_{a_1}^{\sigma_1} A_{a_1,a_2}^{\sigma_2} \Psi_{(a_2\sigma_3),(\sigma_4...\sigma_L)}$$

So for

$$U \in \operatorname{Mat}_{\mathbb{K}}(d, r_1 \times r_2) \mapsto \{A^{\sigma_2}\}_{\sigma_2}, \qquad |\{A^{\sigma_2}\}_{\sigma_2}| = d, \qquad A^{\sigma_2} \in \operatorname{Mat}_{\mathbb{K}}(r_1, r_2)$$

 $A_{a_1,a_2}^{\sigma_2} = U_{(a_1,\sigma_2),a_2}$ and multiplied S and V^{\dagger} ,

$$SV^{\dagger} \mapsto \Psi \in \operatorname{Mat}_{\mathbb{K}}(r_2d, d^{L-3}); \qquad r_2 \le r_1d \le d^2$$

and so continuing the application of SVD and refactoring (what I call applying the *flatten* functor)

$$\xrightarrow{\text{SVD}} c_{\sigma_1 \dots \sigma_L} = \sum_{a_1 \dots a_{L-1}} A_{a_1}^{\sigma_1} A_{a_1 a_2}^{\sigma_2} \dots A_{a_{L-2}, a_{L-1}}^{\sigma_{L-1}} A_{a_L-1}^{\sigma_L} \equiv A^{\sigma_1} A^{\sigma_2} \dots A^{\sigma_{L-1}} A^{\sigma_L}$$

30.1.1. Matrix Product State (definition).

Definition 53 (Matrix Product State).

$$|\psi\rangle = \sum_{\sigma_1...\sigma_L} A^{\sigma_1} A^{\sigma_2} \dots A^{\sigma_{L-1}} A^{\sigma_L} |\sigma_1 \dots \sigma_L\rangle$$

Maximally, the dims. are

$$(1 \times d), (d \times d^2) \dots (d^{L/2-1} \times d^{L/2}), (d^{L/2} \times d^{L/2-1}) \dots (d^2 \times d), (d \times 1)$$

Since \forall SVD, $U^{\dagger}U = 1$,

$$\delta_{a_{l},a'_{l}} = \sum_{a_{l-1}a_{l}} (U^{\dagger})_{a_{l},(a_{l-1}\sigma_{l})} U_{(a_{l-1}\sigma_{l}),a'_{l}} = \sum_{a_{l-1}\sigma_{l}} (A^{\sigma_{l}})^{\dagger}_{a_{l},a_{l-1}} A^{\sigma_{l}}_{a_{l-1},a'_{l}} = \sum_{\sigma_{l}} ((A^{\sigma_{2}})^{\dagger} A^{\sigma_{l}})_{a_{l},a'_{l}}$$

or

(71)
$$\sum_{\sigma_l} (A^{\sigma_l})^{\dagger} A^{\sigma_l} = 1$$

cf. Eq. (38) of Schollwöck [16],

If for $\{A^{\sigma_l}\}_{\sigma_l}$, $\sum_{\sigma_l} (A^{\sigma_l})^{\dagger} A = 1$, $\{A^{\sigma_l}\}_{\sigma_l}$ are **left-normalized**; matrix product states that consist of only left-normalized matrices are **left-canonical**.

View Density Matrix Renormalization Group (DMRG) decomposition of universe into blocks A and B, split lattice into parts A, B, where A comprises sites 1 through l and B sites l + 1 through L.

$$|a_l\rangle_A = \sum_{\sigma_1...\sigma_l} (A^{\sigma_1} A^{\sigma_2} \dots A^{\sigma_l})_{a_l,1} |\sigma_1 \dots \sigma_l\rangle$$

$$|a_l\rangle_B = \sum_{\sigma_{l+1}...\sigma_L} (A^{\sigma_{l+1}} A^{\sigma_{l+2}} \dots A^{\sigma_L})_{a_l,1} |\sigma_{l+1} \dots \sigma_L\rangle$$

s.t. matrix product state (MPS) is

$$|\psi\rangle = \sum_{a_l} |a_l\rangle_A |a_l\rangle_B$$

30.1.2. Summarize this procedure of constructing, from a pure state, the matrix product state (version) by successive application Singular Value Decomposition (SVD) from the Category Theory point of view. Consider all applications of SVD to get to a matrix

$$(\mathbb{K}^d)^L \xrightarrow{\text{SVD}} (\text{Mat}_{\mathbb{K}}(1, r_1))^d \times (\text{Mat}_{\mathbb{K}}(r_1, r_2))^d \times \cdots \times (\text{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1}))^d \times (\text{Mat}_{\mathbb{K}}(r_{L-1}, 1))^d$$

$$c_{\sigma_1...\sigma_L} \models SVD \longrightarrow c_{\sigma_1...\sigma_L} = \sum_{a_1...a_{L-1}} A_{a_1}^{\sigma_1} A_{a_1 a_2}^{\sigma_2} \dots A_{a_{L-2},a_{L-1}}^{\sigma_{L-1}} A_{a_{L-1}}^{\sigma_L}$$

product state (MPS):

and remember the maximal values that the r_i 's can take:

$$r_1 \le d$$
 $r_{L/2} \le d^{L/2}$ $r_{L-2} \le d^2$ $r_2 \le d^2$ $r_{L/2+1} \le d^{L/2-1}$ $r_{L-1} \le d$

Let us explicitly note the functors (that were applied) flatten (and its inverse), and the application of SVD, explicitly:

$$(\mathbb{K}^d)^L \xrightarrow{\text{flatten}^{-1}} \operatorname{Mat}_{\mathbb{K}}(d, d^{L-1}) \xrightarrow{\text{SVD}} U_{\mathbb{K}}(d, r_1) \times \operatorname{diag}_{\mathbb{K}}(r_1) \times U_{\mathbb{K}}(r_1, d^{L-1}) \xrightarrow{\cong} (\operatorname{Mat}_{\mathbb{K}}(1, r_1))^d \times \operatorname{Mat}_{\mathbb{K}}(r_1, d^{L-2}) \xrightarrow{\text{flatten}} (\operatorname{Mat}_{\mathbb{K}}(1, r_1))^d \times (\mathbb{K}^{r_1}) \times (\mathbb{K}^d)^{L-1}$$

$$c_{\sigma_1...\sigma_L} \xrightarrow{\text{flatten}^{-1}} c_{\sigma_1...\sigma_L} = \Psi_{\sigma_1,(\sigma_2...\sigma_L)} \xrightarrow{\text{SVD}} \Psi_{\sigma_1,(\sigma_2...\sigma_L)} = \sum_{a_1}^{r_1} U_{\sigma_1 a_1} S_{a_1,a_1}(V^{\dagger})_{a_1,(\sigma_2...\sigma_L)} \xrightarrow{\cong} c_{a_1 \sigma_2...\sigma_L} = \sum_{a_1}^{r_1} A_{a_1}^{\sigma_1} \Psi_{(a_1,a_2),(\sigma_3...\sigma_L)} \xrightarrow{\text{flatten}} c_{a_1 \sigma_2...\sigma_L} = \sum_{a_1}^{r_1} A_{a_1}^{\sigma_1} c_{a_1 \sigma_2...\sigma_L} = \sum_{a_1}^{r_1} A_{a_1}^{\sigma_1} C_{a_1 \sigma_2...\sigma_L} \xrightarrow{\text{flatten}} c_{a_1 \sigma_2...\sigma_L} \xrightarrow{\text{flatt$$

with \cong in this case denoting an isomorphism (clearly).

In considering some kind of recursive algorithm, so to repeat some series of steps until a matrix product state is obtained, consider this:

$$(\mathbb{K}^d)^L \longrightarrow (\operatorname{Mat}_{\mathbb{K}}(1, r_1))^d \times \mathbb{K}^{r_1} \times (\mathbb{K}^d)^{L-1}$$

$$c_{\sigma_1...\sigma_L} \longmapsto c_{\sigma_1...\sigma_L} = \sum_{a_1}^{r_1} A_{a_1}^{\sigma_1} c_{a_1\sigma_2...\sigma_L}$$

So in summary, to obtain matrix product states, starting from a matrix,

$$\operatorname{Mat}_{\mathbb{K}}(d,d^{L-1}) \longrightarrow (\operatorname{Mat}_{\mathbb{K}}(1,r_{1}))^{d} \times \operatorname{Mat}_{\mathbb{K}}(r_{1}d,d^{L-2}) \longrightarrow \cdots \longrightarrow (\operatorname{Mat}_{\mathbb{K}}(1,r_{1}))^{d} \times (\operatorname{Mat}_{\mathbb{K}}(r_{1},r_{2}))^{d} \times \cdots \times (\operatorname{Mat}_{\mathbb{K}}(r_{n-1},r_{n}))^{d} \times (\operatorname{Mat}_{\mathbb{K}}(r_{n}d,d^{L-(n+1)}))^{d}$$

$$\Psi_{\sigma_{1},(\sigma_{2}...\sigma_{L})} \longmapsto \sum_{a_{1}}^{r_{1}} A_{a_{1}}^{\sigma_{1}} \Psi_{(a_{1},\sigma_{2}),(\sigma_{3}...\sigma_{L})} \longmapsto \cdots \longmapsto \sum_{a_{1},a_{2},...a_{n}}^{r_{1},r_{2},...r_{n}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}a_{2}}^{\sigma_{2}} \dots A_{a_{n-1}a_{n}}^{\sigma_{n}} \Psi_{(a_{n}\sigma_{n+1}),(\sigma_{n+2}...\sigma_{L})}$$

(72)

30.2. Right-canonical matrix product state. cf. Schollwöck [16],

We can start from right in order to obtain

$$c_{\sigma_{1}...\sigma_{L}} = \Psi_{(\sigma_{1}...\sigma_{L-1}),\sigma_{L}} = \sum_{a_{L-1}} U_{(\sigma_{1}...\sigma_{L-1}),a_{L-1}} S_{a_{L-1},a_{L-1}} (V^{\dagger})_{a_{L-1},\sigma_{L}} = \sum_{a_{L-1}} \Psi_{(\sigma_{1}...\sigma_{L-2}),(\sigma_{L-1}a_{L-1})} B_{a_{L-1}}^{\sigma_{L}} = \sum_{a_{L-1},a_{L-2}} U_{(\sigma_{1}...\sigma_{L-2}),a_{L-2}} S_{a_{L-2},a_{L-2}} (V^{\dagger})_{a_{L-2},(\sigma_{L-1}a_{L-1})} B_{a_{L-1}}^{\sigma_{L}} = \sum_{a_{L-2},a_{L-1}} \Psi_{(\sigma_{1}...\sigma_{L-3}),(\sigma_{L-2}a_{L-2})} B_{a_{L-2},a_{L-1}}^{\sigma_{L-1}} B_{a_{L-1}}^{\sigma_{L}} = \dots$$

or consider

$$(\mathbb{K}^d)^L \xrightarrow{\text{flatten}^{-1}} \operatorname{Mat}_{\mathbb{K}}(d^{L-1}, d) \xrightarrow{\text{SVD}} U_{\mathbb{K}}(d^{L-1}, r_{L-1}) \times \operatorname{diag}_{\mathbb{K}}(r_{L-1}, d) \xrightarrow{\cong} \operatorname{Mat}_{\mathbb{K}}(d^{L-2}, dr_{L-1}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^d \xrightarrow{\text{SVD}} U_{\mathbb{K}}(d^{L-1}, r_{L-1}) \times \operatorname{diag}_{\mathbb{K}}(r_{L-1}, d) \xrightarrow{\cong} \operatorname{Mat}_{\mathbb{K}}(d^{L-2}, dr_{L-1}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^d \xrightarrow{\text{SVD}} U_{\mathbb{K}}(d^{L-1}, r_{L-1}) \times \operatorname{diag}_{\mathbb{K}}(r_{L-1}, d) \xrightarrow{\cong} \operatorname{Mat}_{\mathbb{K}}(d^{L-2}, dr_{L-1}) \times \operatorname{Mat}_{\mathbb{K}}(r_{L-1}, d) \xrightarrow{\cong} \operatorname{Mat}_{\mathbb{K}}(r$$

$$c_{\sigma_{1}...\sigma_{L}} \vdash \underbrace{\text{flatten}^{-1}} \qquad c_{\sigma_{1}...\sigma_{L}} = \Psi_{(\sigma_{1}...\sigma_{L-1}),\sigma_{L}} \vdash \underbrace{\text{SVD}} \qquad \underbrace{\text{SVD}}$$

$$\underline{\underline{\qquad}} VL \underline{\qquad} U_{\mathbb{K}}(d^{L-2}, r_{L-2}) \times \operatorname{diag}_{\mathbb{K}}(r_{L-2}) \times U_{\mathbb{K}}(r_{L-2}, dr_{L-1}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(d^{L-3}, dr_{L-2}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1}))^{d} \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(d^{L-3}, dr_{L-2}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1}))^{d} \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(d^{L-3}, dr_{L-2}) \times \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1})^{d} \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(d^{L-3}, dr_{L-2}) \times \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1})^{d} \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(d^{L-3}, dr_{L-2}) \times \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1})^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1})^{d} \times \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1})^{d} \underline{\qquad} \cong \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1})^{d} \underline{\qquad} \operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L$$

$$\begin{array}{c} VD \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} U_{(\sigma_1...\sigma_{L-2}),a_{L-2}} S_{a_{L-2},a_{L-2}} & V^{\dagger})_{a_{L-2},(\sigma_{L-1}a_{L-1})} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-2}),a_{L-2}} S_{a_{L-2},a_{L-2}} & V^{\dagger})_{a_{L-2},(\sigma_{L-1}a_{L-1})} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} \Psi_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_{L-1}}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_{L-1}}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-2},a_{L-1}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_{L-2},a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-1}} B^{\sigma_L}_{a_{L-2},a_{L-2}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-3}),(\sigma_L,a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-2}} B^{\sigma_L}_{a_{L-2},a_{L-2}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-2}),(\sigma_L,a_{L-2})} B^{\sigma_L}_{a_{L-2},a_{L-2}} \\ \longrightarrow \\ C\sigma_1...\sigma_L = \sum_{a_{L-1},a_{L-2}} V_{(\sigma_1...\sigma_{L-2}),(\sigma_L,a$$

with \cong in this case denoting an isomorphism (clearly).

And so we can explicitly state the recursion step, for the purpose of writing numerical implementations/algorithms: $\forall l = 1, 2 \dots L$,

$$\operatorname{Mat}_{\mathbb{K}}(d^{L-l}, dr_{L-(l-1)}) \longrightarrow \operatorname{Mat}_{\mathbb{K}}(d^{L-(l+1)}, dr_{L-l}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-l}, r_{L-(l-1)}))^{d}$$

$$\Psi_{(\sigma_1...\sigma_{L-l}),(\sigma_{L-(l-1)}a_{L-(l-1)})} \longmapsto \Psi_{(\sigma_1...\sigma_{L-l}),(\sigma_{L-(l-1)}a_{L-(l-1)})} = \sum_{a_{L-l}} \Psi_{(\sigma_1...\sigma_{L-(l+1)}),(\sigma_{L-l}a_{L-l})} B_{a_{L-l},a_{L-(l-1)}}^{\sigma_{L-(l-1)}a_{L-(l-1)}}$$

and we finally obtained, after successive applications SVD, the matrix product state:

$$(\mathbb{K}^d)^L \longrightarrow \operatorname{Mat}_{\mathbb{K}}(d^{L-1}, d) \longrightarrow (\operatorname{Mat}_{\mathbb{K}}(1, r_1))^d \times (\operatorname{Mat}_{\mathbb{K}}(r_1, r_2))^d \times \cdots \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-2}, r_{L-1}))^d \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^d \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, r_{L-1}))^d \times (\operatorname{Mat}_{$$

$$c_{\sigma_1...\sigma_L} \longmapsto \Psi_{(\sigma_1...\sigma_{L-l}),\sigma_L} \longmapsto c_{\sigma_1...\sigma_L} = \sum_{a_1...a_{L-1}} B_{a_1}^{\sigma_1} B_{a_1 a_2}^{\sigma_2} \dots B_{a_{L-2} a_{L-1}}^{\sigma_{L-1}} B_{a_{L-1}}^{\sigma_L}$$

Since

$$(73) V^{\dagger}V = 1$$

, then

(74)
$$\delta_{a_l a'_l} = \sum_{\sigma_m a_m} (V^{\dagger})_{a_l (\sigma_m a_m)} V_{(\sigma_m a_m) a'_l} = \sum_{\sigma_m a_m} B^{\sigma_m}_{a_l a_m} \overline{B}^{\sigma_m}_{a'_l a_m} \Longrightarrow \sum_{\sigma_m} \left[B^{\sigma_m} (B^{\sigma_m})^{\dagger} = 1 \right]$$

The *B*-matrices that obey this condition are referred to as **right-normalized** matrices. A matrix product state (MPS) entirely consisting of a product of these right-normalized matrices is called **right-canonical**.

30.2.1. Numerical implementation; both in BLAS and cuBLAS. As stated in the CUDA Toolkit Documentation v8.0 for cu-SOLVER, under section 5.3.6. cusolverDn<t>gesvd() and Remark 1, gesvd "only supports" m>=n, for matrix you want to decompose $A \in \operatorname{Mat}_{\mathbb{K}}(m,n)$. So number of rows must be greater than or equal to number of columns. And so we can only consider right-normalized matrices in a practical implementation.

I suspect it's the same in BLAS.

Consider the very first step, l=1, in a procedure to calculate the matrix product state.

$$\operatorname{Mat}_{\mathbb{K}}(d^{L-1}, d) \xrightarrow{\operatorname{SVD}} U_{\mathbb{K}}(d^{L-1}, r_{L-1}) \times \operatorname{diag}_{\mathbb{K}}(r_{L-1}) \times U_{\mathbb{K}}(r_{L-1}, d) \xrightarrow{\cong} \operatorname{Mat}_{\mathbb{K}}(d^{L-2}, dr_{L-1}) \times (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d}$$

$$\Psi_{(\sigma_{1}...\sigma_{L-1}),\sigma_{L}} \stackrel{\text{SVD}}{\longmapsto} = \sum_{a_{L-1}}^{r_{L-1}} U_{(\sigma_{1}...\sigma_{L-1}),a_{L-1}} S_{a_{L-1},a_{L-1}} (V^{\dagger})_{a_{L-1},\sigma_{L}} \stackrel{\cong}{\longmapsto} \frac{U_{(\sigma_{1}...\sigma_{L-1}),a_{L-1}} S_{a_{L-1},a_{L-1}} = \Psi_{(\sigma_{1}...\sigma_{L-2}),(\sigma_{L-1}a_{L-1})}}{(V^{\dagger})_{a_{L-1},\sigma_{L}}} = B_{a_{L-1}}^{\sigma_{L}}$$

with \cong in this case denoting an isomorphism, the *reshaping* of a matrix into different matrix size dimensions, which should be the inverse of a "flatten" functor, which I'll denote as flatten⁻¹ as well (and this is this same isomorphism we're talking about).

Let's deal with the specific procedure of flatten⁻¹, how it reshapes indices in accordance with different matrix size dimensions, and with the so-called "stride" when going from, say, 2-dimensional indices to a "flattened" 1-dimensional index.

Note also as a practical numerical implementation design point, LAPACK's linear algebra BLAS library package and CUBLAS assumes *column*-major ordering.

Consider i = 1, 2, ... L - 1 (for site i) (or for 0-based counting, starting to count from 0, i = 0, 1, ... L - 2; be aware of this difference as in practical numerical implementation, in C, C++, Python, it assumes 0-based counting).

For a state space of dimension d, we can consider the specific example of d=2, representing say a spin-1/2 system. Then index σ_i can be 0 or 1: $\sigma_i \in \{0,1\}$. In general, $\sigma_i \in \{0,1,\ldots d-1\}$. I may use d or 2 in the context of the number of states (basis vectors) of the spin system (state vector space).

Consider site i. Suppose the spin system there interacts most with sites i-1, i+1, and then next sites i-2, i+2, etc. So the values at $\sigma_{i-1}, \sigma_{i+1}$, etc. are most important in calculating interactions with spin system at site i.

Then we seek this reshaping of the matrix index - assuming 0-based counting/ordering, for l = 1:

$$\{0,1\}^{L-1} \longrightarrow \{0,1,\dots 2^{L-1}-1\}$$

$$(\sigma_0, \sigma_1, \dots \sigma_{L-2}) \overset{\text{(flatten)}^{-1}}{\longmapsto} I_{L-1} := \sigma_0 + 2\sigma_1 + \dots + 2^i \sigma_i + \dots + 2^{L-2} \sigma_{L-2} = \sum_{i=0}^{L-2} 2^i \sigma_i$$

In this way, states of a site i are closest in memory addresses in the allocation of a 1-dim. array, on CPU or GPU memory, so that memory access operations should be efficient.

Assuming SVD doesn't change the striding, and defining the result of matrix multiplication:

$$U_{(\sigma_0,\sigma_1...\sigma_{L-2}),a_{L-1}}S_{a_{L-1},a_{L-1}} =: (US)_{(\sigma_0...\sigma_{L-2}),a_{L-1}} \in \operatorname{Mat}_{\mathbb{K}}(d^{L-1},r_{L-1})$$

We can reshape (i.e. $(flatten)^{-1}$) in such a manner:

$$\operatorname{Mat}_{\mathbb{K}}(d^{L-1}, r_{L-1}) \xrightarrow{\qquad \qquad } \operatorname{Mat}_{\mathbb{K}}(d^{L-2}, dr_{L-1})$$

$$(US)_{(\sigma_{0} \dots \sigma_{L-2}), a_{L-1}} \xrightarrow{\qquad \qquad } \Psi_{(\sigma_{0}, \sigma_{1}, \dots \sigma_{L-3}), (\sigma_{L-2} a_{L-1})} \xrightarrow{\qquad \qquad } \{0, 1, \dots 2^{L-1} - 1\} \times \{0, 1, \dots r_{L-1} - 1\} \xrightarrow{\qquad \qquad } \{0, 1, \dots 2^{L-2} - 1\} \times \{0, 1, \dots dr_{L-1} - 1\}$$

$$I_{L-1}, a_{L-1} \xrightarrow{\qquad \qquad } I_{L-1} \mod 2^{L-2}, \frac{I_{L-1}}{2^{L-2}} + da_{L-1}$$

Reshaping V^{\dagger} at iteration l=1 can be done as follows:

$$U_{\mathbb{K}}(r_{L-1}, d) \xrightarrow{\qquad \qquad } (\operatorname{flatten})^{-1} \longrightarrow (\operatorname{Mat}_{\mathbb{K}}(r_{L-1}, 1))^{d}$$

$$(V^{\dagger})_{a_{L-1}, \sigma_{L-1}} \longmapsto (\operatorname{flatten})^{-1} \longrightarrow (V^{\dagger})_{a_{L-1}, \sigma_{L-1}} = B_{a_{L-1}}^{\sigma_{L-1}}$$

$$\{0, 1, \dots, r_{L-1} - 1\} \times \{0, 1, \dots, d-1\} \xrightarrow{\text{(flatten})^{-1}} (\{0, 1, \dots, r_{L-1} - 1\})^{d}$$

$$a_{L-1}, \sigma_{L-1} \longmapsto (\operatorname{flatten})^{-1} \longrightarrow a_{L-1}$$

Let's do this same procedure, reshaping or (flatten) $^{-1}$, for a general l iteration.

$$\begin{split} \operatorname{Mat}_{\mathbb{K}}(d^{L-l}, r_{L-l}) & \xrightarrow{\qquad \qquad } \operatorname{Mat}_{\mathbb{K}}(d^{L-(l+1)}, dr_{L-l}) \\ & (US)_{(\sigma_0 \dots \sigma_{L-(l+1)}), a_{L-l}} & \xrightarrow{\qquad \qquad } \operatorname{Mat}_{\mathbb{K}}(d^{L-(l+1)}, dr_{L-l}) \\ & \{0, 1, \dots d^{L-l} - 1\} \times \{0, 1, \dots r_{L-l} - 1\} & \xrightarrow{\qquad \qquad } \{0, 1, \dots d^{L-(l+1)} - 1\} \times \{0, 1, \dots dr_{L-l} - 1\} \\ & I_{L-l}, a_{L-l} & \xrightarrow{\qquad \qquad } \operatorname{Ind}_{\mathbb{K}}(r_{l-l}, dr_{l-l}) & \xrightarrow{\qquad \qquad } \operatorname{Ind}_{\mathbb{K}}(r_{l-l}, r_{L-(l-1)}) \\ & U_{\mathbb{K}}(r_{L-l}, dr_{L-(l-1)}) & \xrightarrow{\qquad \qquad } \operatorname{Ind}_{\mathbb{K}}(r_{l-l}, r_{L-(l-1)}) \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } \operatorname{Ind}_{\mathbb{K}}(r_{L-l}, r_{L-(l-1)}))^{d} \\ & (V^{\dagger})_{a_{L-l}, (\sigma_{L-l}a_{L-(l-1)})} & \xrightarrow{\qquad \qquad } \operatorname{Ind}_{\mathbb{K}}(r_{l-l}, r_{L-(l-1)}) \\ & \{0, 1, \dots r_{L-l} - 1\} \times \{0, 1, \dots dr_{L-(l-1)} - 1\} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & \{0, 1, \dots r_{L-l} - 1\} \times \{0, 1, \dots dr_{L-(l-1)} - 1\} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & a_{L-l}, (\sigma_{L-l}a_{L-(l-1)}) := a_{L-l}, \sigma_{L-1} + da_{L-(l-1)} & \xrightarrow{\qquad \qquad } a_{L-l}, & \xrightarrow{\qquad \qquad } (\sigma_{L-1}a_{L-(l-1)}) \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatten)^{-1} & \xrightarrow{\qquad \qquad } (flatten)^{-1} \\ & (flatt$$

References

- [1] Masaki Kashiwara and Pierre Schapira. Categories and Sheaves. Grundlehren der mathematischen Wissenschaften. Volume 332. 2006. Springer-Verlag Berlin Heidelberg. eBook ISBN 978-3-540-27950-1
- [2] David S. Dummit, Richard M. Foote. Abstract Algebra. 3rd. Ed. Wiley; (July 14, 2003). ISBN-13: 978-0471433347
- [3] David A. Cox. John Little. Donal O'Shea. Using Algebraic Geometry. Second Edition. Springer. 2005. ISBN 0-387-20706-6 QA564.C6883 2004
- [4] David Cox, John Little, Donal O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Fourth Edition, Springer
- [5] Schottenloher, Martin. A Mathematical Introduction to Conformal Field Theory. Springer, 2008.
- [6] L.D. Landau and E.M. Lifshitz. Statistical Physics, Third Edition, Part 1: Volume 5 (Course of Theoretical Physics, Volume 5) 3rd Edition. Butterworth-Heinemann; 3 edition (January 15, 1980). ISBN-13: 978-0750633727
- [7] M. Hjorth-Jensen, Computational Physics, University of Oslo (2015) http://www.mn.uio.no/fysikk/english/people/aca/mhjensen/
- [8] M.E.J. Newman and G.T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford University Press. 1999.
- [9] Glen E. Bredon. Topology and Geometry. Graduate Texts in Mathematics (Book 139). Springer; Corrected edition (October 17, 1997). ISBN-13: 978-0387979267
- [10] Jean-Pierre Serre (Author), J. Stilwell (Translator). Trees (Springer Monographs in Mathematics) 1st ed. 1980. Corr. 2nd printing 2002 Edition. ISBN-13: 978-3540442370
- [11] Joseph J. Rotman, Advanced Modern Algebra (Graduate Studies in Mathematics) 2nd Edition, American Mathematical Society; 2 edition (August 10, 2010), ISBN-13: 978-0821847411
- [12] Edward Scheinerman. C++ for Mathematicians: An Introduction for Students and Professionals. 1st Edition. CRC Press; 1 edition (June 8, 2006). ISBN-13: 978-1584885849
- [13] Jeffrey M. Lee. Manifolds and Differential Geometry, Graduate Studies in Mathematics Volume: 107, American Mathematical Society, 2009. ISBN-13: 978-0-8218-4815-9
- [14] Jacob C. Bridgeman and Christopher T. Chubb. Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks: Lecture Notes. arXiv:1603.03039 [quant-ph]
- [15] Ulrich Schollwoeck. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005) arXiv:cond-mat/0409292 [cond-mat.str-el]
- [16] Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics 326, 96 (2011). arXiv:1008.3477 [cond-mat.str-el]
- [17] José L.F. Barbón and Eliezer Rabinovici. "Holographic Complexity And Spacetime Singularities." arXiv:1509.09291 [hep-th]
- [18] Juan Maldacena, Leonard Susskind. "Cool horizons for entangled black holes." arXiv:1306.0533 [hep-th]
- [19] Slava Rychkov. "EPFL Lectures on Conformal Field Theory in $D \ge 3$ Dimensions." arXiv:1601.05000 [hep-th]
- [20] G. Evenbly, G. Vidal. "Tensor network states and geometry." arXiv:1106.1082 [quant-ph]
- [21] Mark Van Raamsdonk. "Lectures on Gravity and Entanglement." arXiv:1609.00026 [hep-th]