Dynamic sampling pointnet notes

xyz

Feb 2018

Contents

Ĺ	Qui	ck notes for important events while using one file to test	1
	1.1	over fitting	1
	1.2	Theory	2
		1.2.1 bidxmap	2
		1.2.2 Sparse voxel 3DCNN	3
	1.3	batch size	4
		1.3.1 bs=27 vs bs=81	4
	1.4	feed elements	5
	1.5	model	7
	1.6	integration: matterport3d	7
	1.7	multi scales & mat 1083	10
	1.8	multi scales & mat 21826	11
	1.9	multi scales & scannet 12887	12
	1.10	integration: scannet	12
	1.11	Semantic segmentation expamples	14
			14
		1.11.2 bad: 18737,eval 0.071	16
	1.12		17
		-	17
	1.13	<u> </u>	18
		<u> </u>	

1 Quick notes for important events while using one file to test

1.1 over fitting

- data augmentation: rotation, different resolution together, different size scale
- combine ShapeNet data
- more powerful network to learn more systematic information:
 - 1. use large global block size
 - 2. dynamic sampling
- smaller net

1.2 Theory

1.2.1 bidxmap

1.2.2 Sparse voxel 3DCNN

Sparse voxel 3D CNN

Two main obstacles for performing 3D convolution on point cloud are: (1) there are too many vacant points, (2) the position of points are not aligned. The key idea of sparse voxel is to perform 3DCONV on cascades from the second. Because the positions are actually almost aligned. At the same time, the vacant rate within a small block is acceptably large. Above all, it may be possible to do apply 3D-CONV within a small block.

Centres of blocks in cascades other than first one are actually aligned to the grid. So it is possible to perform 3d convolution directly. However, the average position of points inside these blocks are not aligned. Thus it is also maybe beneficial to utilise a transform net to align them.

On the other hand, there are many vacant points in the block. I am wondering if it is beneficial to set the features of vacant points by a T-net from around existing points.

Purpose of T-Net: fix number + align + till There are some interesting problems for Transform net:

- Only depend on position or feature.
- Should be resolution invariant.
- If it should be constant for all channels.
- If it should be constant for all local aim blocks.

Reasons that we do not need the T-Net:

- 3d-conv can till features of the vacant points.
- If the base-points are not strictly aligned, add the position to feature map. Or get a special feature of positions within the block and then add of the main feature map.

Transform net:

$$/ \qquad (b, n, g_m, 3)$$

$$(b, n, g_m, c_1)$$

$$(b, n, g_m, c_2)$$

$$/$$
 (b, n, g_m, g_i) $/$

1.3 batch size

1.3.1 bs=27 vs bs=81

batch size: 9,27,81

data: xyz-color_1norm

model: 1AG

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_2048_0d5_1_fmn1-160_32-32_12-0d2_0d6-0d2_0d6

Figure 1: bs=9

Figure 2: bs=27

1.4 feed elements

 $\begin{array}{l} {\rm epoch~num} = 100 \\ {\rm stride_0d1_step_0d1_bmap_nh5_2048_0d5_1_fmn1-160_32-32_12-0d2_0d6-0d2_0d6} \end{array}$

Figure 3: bs=81

model	batch size	data elements	acc	loss
1AG	9	xyz color	0.890	0.356
1AG	27	xyz color	0.920	0.240
3AG	27	xyz color	0.912	0.273
2A	27	xyz color	0.908	0.294
2AG	27	xyz color	0.902	0.293
1A	27	xyz color	0.883	0.351
1AG	81	xyz color	0.978	0.072
1AG	9	xyz	0.861	0.427
1AG	27	xyz	0.907	0.257
1AG	81	xyz	0.975	0.078
1A	27	xyzmid color	0.889	0.357
3AG	27	xyzmid color	0.933	0.193
2A	27	xyzmid color	0.939	0.177
2AG	27	xyzmid color	0.929	0.208
3AG	27	xyz xyzmid color	0.924	0.230
2A	27	xyz xyzmid color	0.898	0.317
2AG	27	xyz xyzmid color	0.908	0.280
1A	27	xyz xyzmid color	0.910	0.281
1AG	27	xyz xyzmid color	0.944	0.163
1AG	81	xyz xyzmid color	0.976	0.078
2A	81	xyz xyzmid color	0.942	0.173
3AG	81	xyz xyzmid color	0.949	0.147

- 1. large batch size is better
- 2. 1AG(0.92) > 3AG(0.912) > 2A(0.908) > 2AG(0.902) > 1A(883)

1AG is much better than 1A

1AG is a bit better than 3AG???

- 3. xyz-color is only a bit better than xyz
- 4. xyzmid-color is much better than xyz-color
- $5.\,$ xyzmid-color is normally much better than xyz-xyzmid-color $\ref{eq:color}$

1.5 model

batch size: 50

data: xyz_midnorm_block-color_1norm

 $epoch_num = 600$

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-600_64_24-60_16_12-0d2_0d6_1d2-0d2_0d6_1d2

model	acc	loss
3A	0.909	0.248
3AG	0.913	0.231
4AG	0.912	0.232

batch size: 32

data: xyz_midnorm_block-color_1norm

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn6-2048_256_64-32_32_16-0d2_0d6_1d2-0d1_0d3_0d6

matterport3d

feed_data_elements:['xyz_midnorm_block', 'color_1norm']

feed_label_elements:['label_category', 'label_instance']

train data shape: [362 12800 6] test data shape: [384 12800 6]

 $\max \text{ epoch} = 500$

model	acc	loss
1AG	0.944/0.431	0.161/4.633
4AG	0.835/0.401	0.520/3.644

1.6 integration: matterport3d

stride_0	$stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_0d2_0d6_0d2-0d2_0d6_0d2-0d2_0d2_0d6_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2$					
	$17D_1LX_1pX_29h_2az$					
model	batch size batch num shuffle	lr ds	data elements	epoch-acc mean-std train/eval		

1aG	30/60	0.005	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	250-0.981
1DSaG	30/60	0.001-40	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.914-0.775
1DSaG	30/60	0.001-40	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.914-0.775
1DSaG kp0.5	30/60	0.001-80 300-3e-4	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.942-0.842
1DSaG kp0.2	30/60	0.001-80 300-3e-4	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.928-0.797
1DSaG kp0.5	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.970-0.916
1DSaG kp0.2	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.966-0.924
1DSaG kp0.8	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.976-0.933 500-0.984-0.954
1aG	30/1083	0.003	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.947
1aG	30/1083	0.01	'xyz_midnorm_block', 'color_1norm'	200-0.783 500-0.791
1aG	30/1083	0.003/30 300-0.00012	'xyz_midnorm_block', 'color_1norm'	200-0.903 300-0.921
1bG	25/1083	0.001-30 100-3e-4 300-4e-5	'xyz_midnorm_block'	100-0.854 200-0.918 300-0.936
1bG	25/1083	0.001-30 100-3e-4 300-4e-5	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	100-0.914 200-0.957 300-0.966
1bG	25/1083	0.02	'xyz_midnorm_block', 'color_1norm'	200-0.655 300-0.718
1bG	25/1083	0.02	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.772 300-0.823
1bG	25/1083	0.001	'xyz'	200-0.772 90-0.553-0.210

4bG	25/1083	0.001-30 100-3e-4 200-1e-4 300-4e-5	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	100-0.752 200-0.816 300-0.832
2 1DSaG	30/1083	0.002-80	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.930-0.830/0.450 460-0.952-0.881/0.471
1aG	30/19755	0.001-30 50-7e-4 100-3e-4	'xyz_midnorm_block', 'color_1norm','nxnynz'	50-0.752/0.580 100-0.843/0.574 (NoShuf) 102-0.806/0.570 (Shufle)
1bG	25/19755	0.001-30	'xyz_midnorm_block', 'color_1norm','nxnynz'	38-0.719/0.587 80-0.823/0.583 (NoShuf) 81-0.782/0.587 (Shufle)
1aG	30/19755	0.02	'xyz_midnorm_block', 'color_1norm'	56-0.562
1aG	30/19755	0.02 127-0.00483	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	87-0.616 127-0.686
1bG	25/18737	0.001 N	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.682/0.509 70-0.858/0.509
1bG	25/18737	0.001 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.738/0.573 70-0.876/0.563 90-0.897 /0.561
4bG	25/18737	0.001 Y	'xyz_midnorm_block', 'nxnynz'	24-0.576/0.545
4bG	25/18737	0.001 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.594/0.569
1DSaG	30/18737	0.002-80 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	20-0.688-0.394/0.428-0.224 36-0.742/0.395
1DSaG	30/18737	0.007-80 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	20-0.725-0.453/0.435-0.206 38-0.783/0.396

- Conclusion:
 1: nxnynz helps a lot
 2: 1bG is much deeper than 1aG, why worse than 1aG
 3: learning rate is important, cannot be too large

1.7 multi scales & mat 1083

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/17D_1LX_1pX_29h_2az $stride_0d1_step_0d1_bxmh5-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_24-80_20_10-12800_24-80_20_10-12800_24-80_20_10-12800_24-80_20_10-12800_24-80_24-80_20_24-80_24$ bxmh5: $0d2_0d6_1d2-0d2_0d6_1d2-3A1$ model bs/bn lrelements loss epoch-pacc-cacc train/eval decay weight indrop4bG_111 20/1083 2-40 xyz_midnorm_blEck-110-0.898-0.763 color_1norm-160-0.931-0.827 nxnynz 300-0.967-0.915 4bG_444 15/1083 3-40 xyz_midnorm_blEck-60-0.729-0.614 color_1norm-100-0.857-0.721 nxnynz 160-0.920-0.834 260-0.952-0.890 300-0.958-0.913 4bG_444 15/1083 2-40 xyz_midnorm_blEck-60-0.778-0.608 color_1norm-100-0.878-0.758 nxnynz 160-0.930-0.838 260-0.957-0.901 300-0.964-0.912 4bG_144 18/1083 2-40 xyz_midnorm_blEck-60-0.786-0.637 color_1norm-100-0.876-0.767 nxnynz $160 \hbox{-} 0.926 \hbox{-} 0.820$ 260-0.959-0.885 300-0.962-0.906 20/1083 4bG_114 2-40 xyz_midnorm_blEck-60-0.772-0.611 color_1norm-100-0.874-0.764 nxnynz 160-0.926-0.851 260-0.958-0.893 /par 300-0.963-0.904 3aG_444 45/1083 2-40 xyz_midnorm_blEck-60-0.893-0.737 color_1norm-100-0.908-0.786 /par 160-0.934-0.833 nxnynz 260-0.950-0.868 /par 300-0.952-0.8822aG_144 30/1083 2-40 xyz_midnorm_blEck-60-0.890-0.754 color_1norm-100-0.922-0.820 /par 160-0.942-0.858: nxnynz 260-0.957-0.897 /par 300-0.960-0.911

1.8 multi scales & mat 21826

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

 $0d2_0d6_1d2-0d2_0d6_1d2-3A1$ eval: $17D_1LX_1pX_29h_2az$

		alama amta	1 1	and all made and their formal
bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval
	decay		weight	
			in drop	
20/1080	1-30	xyz midnorm	Е	40-0.784-0.545/0.579-0.451
		color	N	80-0.883-0.699/0.584-0.439
		nxnynz		140-0.925-0.795/0.575-0.429
20/1080	2-30	xyz midnorm	Е	40-0.737-0.489/0.587-0.412
		color	N	80-0.836-0.614/0.582-0.411
		nxnynz		95-0.867/0.588
20/1200	2-30	xyz midnorm	Е	40-0.761-0.543/0.601-0.416
		color	N	80-0.864-0.693/0.602-0.426
		nxnynz		95-0.888/0.597
	20/1080	20/1080 1-30 20/1080 2-30	decay	decay weight in drop

Conclusion:

⁽¹⁾ Nein 114 is better than 111

1.9 multi scales & scannet 12887

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

 $0d2_0d6_1d2-0d2_0d6_1d2-3A1$

eval: test

e rear cose					
model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval
		decay		weight	
				in	
				drop	
2aG_144	30/420	2-30	xyz midnorm	Е	40-0.833-0.546/0.686-0.89
				N	100-0.926-0.727/0.683-0.326
3aG_144	48/260	2-30	xyz midnorm	Е	40-0.841-0.530/0.668-0.346
				N	100-0.924-0.709/0.673-0.327
					200-0.949-0.782/0.673-0.332
					$300 \hbox{-} 0.955 \hbox{-} 0.802/0.671 \hbox{-} 0.330$
4bG_111	22-580	2-30	xyz midnorm	Е	60-0.738-0.434/0.706-0.344
				N	100 - 0.796 - 0.506 / 0.699 - 0.315
					180-0.863-0.589/0.695-0.308
4bG_111	22-580	7-30	xyz midnorm	Е	60-0.705-0.378/0.684-0.362
				N	
4bG_144	18-700	2-30	xyz midnorm	Е	40-0.714-0.470/0.6910.433
				N	100-0.794-0.481/0.682-0.393
					160-0.849-0.582/0.676-0.362
4aG_1a4	55-220	2-30	xyz midnorm	CN	40-0.775-0.482/0.654-0.304
				N	100-0.877-0.637/0.661-0.298
					160-0.901-0.690/0.660-0.311
					220-0.908-0.707/0.655-0.334
4aG_1a4	55-220	2-30	xyz midnorm	Е	40-0.819-0.527/0.684-0.333
				N	100-0.923-0.706/0.681-0.304

Conclusion:

- (1) 3aG is much better than 4bG. Potential reasons:(a) 4bG is too wide and deep, so that needs more time to train. (b) The batch size of 4bG is too small
- (2) nein 144 seems is not better than 111
- (3)Learning rate 0.002 is better than 0.007
- (4)Loss weight CN does not help

1.10 integration: scannet

str	ide_0d1_st	ep_0d1_bmap_	nh5_12800_1d6_2	_fmn3-256_48_16-5	66_8_8-0d2_0d6_1d2-0d2_0d6_1d2
			scai	nnet train	
model	loss: E,N,C input drop (No)	batch size batch num shuffle	lr ds	data elements	epoch-point ac-class ac train/eval
1bG	E	25/12887 test Y	0.001 40	xyzmid	23-0.732-0.326/0.664-0.260 25-0.746-0.340/0.669-0.273
1bG	N	25/12887 Y	0.001 40	xyzmid	25-0.733-0.390/0.666-0.252
1bG	С	25/12887 Y	0.001 40	xyzmid	25-0.703-0.356/0.655-0.252
1bG	CN	25/12887 Y	0.001 40	xyzmid	25-0.681-0.366/0.611-0.237
1DSaG	E idp9	30/12887 Y	0.003 80	xyzmid	40-0.738-0.376/0.513-0.228 90-0.832/0.496
1bG	Е	25/13091 train_300 Y	0.002 80	xyzmid	60-0.765-0.389/0.700-0.252
1bG	Е	25/13091 Y	0.003 80	xyzmid	10-0.646/0.689 60-0.753-0.349/0.691-0.234 100-0.833-0.480/0.672-0.261
1bG	CN	25/13091 Y	0.002 80	xyzmid	60-0.738-0.409/0.670-0.237
1bG	E idp9	25/13091 Y	0.003 80	xyzmid	10-0.641/0.585 16-0.646/0.633
1DSaG	Е	30/13091 Y	0.003 80	xyzmid	40-0.794-0.456/0.420-0.154 100-0.872-0.602/0.417-0.153
Conclusi	ion:				
4bG	CN	25/2998- 3521 Y	0.001 40	xyzmid	142-0.726-0.445/0.625-0.242
4bG	Е	25/2998- 3521 Y	0.001 40	xyzmid	145-0.792-0.506/0.656-0.257

1.11 Semantic segmentation expamples

1.11.1 good: 1083, train, 0.946

```
log: log-model_1bG-gsbb_3B1-bs25-lr1-ds_30-xyz_midnorm_block-color_1norm-nxnynz-12800-mat_1083
    model: 1bG
    sampling & grouping:
    stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2
    batch size: 25
    learning rate: 0.001000
    decay_epoch_step: 30
    matterport3d
    feed_data_elements:['xyz_midnorm_block', 'color_1norm', 'nxnynz']
    feed_label_elements:['label_category', 'label_instance']
    train data shape: [ 1083 12800 9]
```


 $Figure~4:~17DRP5sb8fy_1_2_a946$

Figure 5: $17DRP5sb8fy_0_25_a946$

1.11.2 bad: 18737,eval 0.071

model: 1bG

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2

batch size: 25

learning rate: 0.001000 decay_epoch_step: 50

epoch 0 train IsShuffleIdx: True

epoch 0 train IsShuffleIdx: True matterport3d feed_data_elements:['xyz_midnorm_block', 'color_1norm', 'nxnynz'] feed_label_elements:['label_category', 'label_instance'] train data shape: [18737 12800 9] test data shape: [4172 12800 9]

 $Figure \ 6: \ qoi_r1Q_r47_rPc_rqf_2_3_a0d071 \ (raw,gt,pred,err,crt)$

1.12 point++

1.12.1 scannet seg

	each room as a block, total 40 block						
batch size batch num	lr ds	data elements	epoch-point ac-class ac train/eval/eval whole scene				
30/40	0.001	xyzmid	200-0.675/0.757-0.54/0.799-0.52				
25	0.001	xyzmid	200-0.689/0.787-0.556/0.815-0.517i				

1.13 $\,$ whole room global block & multi scales & scan 305

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

0d2_0d6_1d2-0d2_0d6_1d2-3A1 eval: 17D 1LX 1pX 29h 2az

model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval
		decay		weight	
				in drop	
5bG_114	6/40	2-30	xyz midnorm	Е	100-0.805-0.645
			color	N	200-0.865-0.708
					300-0.880-0.773
5aG_114	2/140	2-30	xyz midnorm	Е	100-0.802-0.619
			color	N	200-0.873-0.694
					300-0.895-0.784
5aG_114	2/140	2-30	xyz midnorm	Е	100-0.807-0.687
			color	idp5	200-0.877-0.729
					300-0.895-0.778

Conclusion:

⁽¹⁾ Nein 114 is better than 111