Algorithmic Paradigms

- Incremental method
- Divide-and-conquer
- Randomization
- Space partitioning/bucketing (hashing)
- Data structure augmentation
- Space sweep
- · Locus method
- Geometric transform (duality)

new/

Design Methodology

- 1. Understand the geometry of the *general case*, ignoring "degenerate" cases. Identify useful primitives (both data and functionality)
- 2. Design algorithm for the general case
- 3. Extend the algorithm to handle degenerate cases
- 4. Provide a *robust* implementation of your algorithm, including required primitives and predicates
- A set of geometric objects is in *general position* (i.e., generic position) if it avoids troublesome or degenerate configurations, such as three collinear points, points with the same *x*-coordinate, four cocircular points, etc.

Incremental Approach

Given a set $G = \{g_1, ..., g_n\}$ of geometric objects, let $G_i = \{g_1, ..., g_i\}$ and let A_i denote the solution to instance G_i

- 1. Compute A_c , the solution to G_c , for small constant c
- 2. **for** $i \leftarrow c + 1$ **to** n **do**Compute A_i from g_i and A_{i-1}

For the convex hull of a set *P* of points:

- 1. Let $H_3 := \text{conv}(P_3)$, i.e., the triangle $p_1 p_2 p_3$
- 2. **for** $i \leftarrow 4$ **to** n **do** $H_i \leftarrow \text{conv}(H_{i-1} \cup \{p_i\})$

General position assumption: no three points are collinear

3

Polygon Tangents

- Let P be a convex polygon and q a point on the boundary of P. A line ℓ through q supports P at q if all of P lies on the same side of P. Line ℓ is a tangent to P at q and q is a tangency point
- When processing p_i , in an incremental step, our algorithm will need to find two tangency points in H_{i-1} which admit tangent lines through p_i

Polygon Tangents...

- Let *P* be a convex polygon given in CCW order and *p* a point exterior to *P*
- Each edge of *P* is either visible to *p* or invisible to *p*
- Let q be a vertex with incident edges e and f. Then q is a tangency point if exactly one of e and f is visible
 - How do you implement this efficiently and robustly?

5

Convex Hull: Algorithm 2

- 1) $H \leftarrow \operatorname{conv}(p_1, p_2, p_3)$
- 2) **for** $i \leftarrow 4$ **to** n **do** {Assume $H = \langle q_1, \dots, q_{h_{i-1}} \rangle$ }
- 3) if $p_i \notin H$ then
- 4) **for** $j \leftarrow 1$ **to** n_{h-1} **do** {find tangency points}
- 5) **if** $turn(p_i, q_j, q_{j-1}) = turn(p_i, q_j, q_{j+1})$ **then**
- 6) q_i is a tangency point $\{q_l \text{ for right, } q_r \text{ for left}\}$
- 7) replace $\langle q_{r+1}, ..., q_{l-1} \rangle$ in H by p_i

Time: $\Theta(n^2)$

Exercise

• In Algorithm 2, find each tangency point in $O(\log m)$ time, where m is the size of H

• *Hint*: use binary or exponential search!

Improving Algorithm 2

- Can simplify the code by making sure the new point p_i is always outside H_{i-1} . How?
 - Sort the input points by x-coordinate
- p_{i-1} is always visible from p_i
- Walk CCW (resp. CW) from p_{i-1} until right (resp. left) tangent is found, eliminate interior points

Time?

Graham Scan: Algorithm 3

Algorithm UpperHull(*P*)

- 1) Find the left and right extremes p_l and p_r
- 2) Find the points $P_U \subset P$ above support $(p_l p_r)$
- 3) Sort P_U by x coordinate resulting in $\langle p_1, \dots, p_m \rangle$
- 4) $L = \langle p_1, p_2 \rangle$
- 5) for $i \leftarrow 3$ to m do
- 6) append p_i to L
- 7) while $|\hat{L}| > 2$ and turn of last 3 points \neq right do
- 8) delete the middle of last 3 points from L

Time : $O(n \log n)$

Convex Hull: Algorithm 3 Degeneracies and Robustness

- Several points with the same *x*-coordinate? *Sort lexicographically*
- Three or more points lie on a straight line? Test returns "no turn"
- Rounding errors in floating point arithmetic? *Algorithm computes a closed polygonal chain*

11

Convex Hull: A Lower Bound

- Sorting requires $\Omega(n \log n)$ time
- Sorting can be done in O(n+f(n)) time where f(n) is the time to compute convex hull
- Convex hull requires $\Omega(n \log n)$ time

Divide-and-Conquer (DAC)

Given a problem of size *n*:

- 1) *Divide* the problem into *k* sub-problems of size *n/k* each
- 2) *Conquer* by solving each sub-problem independently
- 3) *Combine* the *k* solutions to sub-problems into a solution to the original problem

Time:
$$T(n) = \sum_{i=1}^{k} T(n_i) + d(n) + c(n)$$

 $T(n) = k \cdot T(n/k) + d(n) + c(n)$

Example: Closest Pair

- Given a set $S = \{p_1, ..., p_n\}$ of points in the plane, find two closest, i.e., a and b such that $\operatorname{dist}(p_a, p_b) \le \operatorname{dist}(p_i, p_j), \forall 1 \le i, j \le n$
- Brute force takes $\Theta(n^2)$ time
- Can we do better?

1:

A Lower Bound

- Element Uniqueness: given a set {x₁, ..., x_n} of numbers, determine if there are duplicates, i.e., find i ≠ j such that x_i = x_j
- Element Uniqueness requires $\Omega(n \log n)$ time
- Use same transformation as in convex hull $x_i = x_j \Leftrightarrow \operatorname{dist}((x_i, x_i^2), (x_j, x_j^2)) = 0$
- Closest Pair is at least as hard as Element
 Uniqueness $\Rightarrow T(n) = \Omega(n \log n)$

A Divide and Conquer Solution

To compute CP(S):

- 1. Sort S lexicographically, i.e., such that
 - $x_i < x_{i+1} \lor x_i = x_{i+1} \land y_i \le y_{i+1}$
- 2. <u>Divide</u>: $S_1 = \{p_1, ..., p_{n/2}\}$ and $S_2 = \{p_{n/2+1}, ..., p_n\}$
- 3. Conquer: let $\delta_1 = CP(S_1)$ and $\delta_2 = CP(S_2)$
- 4. Combine: how? is $\delta = \min(\delta_1, \delta_2)$ the answer?

17

Closest Pair: Combine Step

How many points can you have in the box?

• Examine the points within δ of ℓ by ascending *y*-coordinate and consider for each those that are up to δ units above

21

Analysis

- Presorting by x- and y-coordinates: $O(n \log n)$
- Divide-and-conquer proper:

$$T(n) = 2T(n/2) + cn = \Theta(n\log n)$$

3D Case

- Can the algorithm be generalized to higher dimensions?
- The combine step derives its efficiency from a *sparsity* condition:
 - A set S of points in R^d is *sparse* if there are positive δ and c such that every hypercube of side length δ contains at most c points
- Does sparsity hold in 3D? Does it help? Is it even needed?

23

DAC for Convex Hull

- Given a set $S = \{p_1, ..., p_n\}$ of points on the plane find conv(S)
 - 1. Sort S lexicographically
 - 2. <u>Divide</u>: $S_1 = \{p_1, ..., p_{n/2}\}$ and $S_2 = \{p_{n/2+1}, ..., p_n\}$
 - 3. Conquer: let $P_1 = \text{conv}(S_1)$ and $P_2 = \text{conv}(S_2)$
- 4. Combine: $P = conv(P_1, P_2)$, but how?

Convex Hull: Combine Step

- There are four tangents
- Need to find *upper* and *lower* tangents

Finding the Lower Tangent

A

26

Finding the Lower Tangent

- 1. $a \leftarrow \text{rightmost point of left polygon } A$
- 2. $b \leftarrow \text{leftmost point of right polygon } B$
- 3. **while** T = ab not lower tangent to A and B **do**
- 4. **while** *T* not lower tangent to *B* **do**
- 5. $b \leftarrow b + 1 // \text{move CCW}$
- **6. while** T not lower tangent to A **do**
- 7. $a \leftarrow a 1$ // move CW

2

Quickhull

- Start by finding two extreme points of S, e.g., p and q
- Generate subproblems on each side of pq

Quickhull

QuickHull(a, b, S)

- 1. if S is empty return $\langle \rangle$
- 2. $c \leftarrow \text{point of } S \text{ farthest from } ab$
- 3. $A \leftarrow \text{points of } S \text{ strictly to the right of } ac$
- 4. $B \leftarrow \text{points of } S \text{ strictly to the right of } cb$
- 5. **return** Quickhull $(a, c, A) + \langle c \rangle + \text{Quickhull}(c, b, B)$

$$conv(S) = \langle p \rangle + Quickhull(p, q, P) + \langle q \rangle + Quickhull(q, p, Q)$$
 where

P = points of S above pq, Q = points of S below pq, and '+' means concatenation

29

Output-Sensitive Algorithms

- Running time is a function of both *input size* (n) and *output size* (h)
 - Example: fixed distance neighbors ran in O(n + h) time
- Potentially very fast convex hull algorithm when *h* is small
- Simplest approach is *gift wrapping*:
 - Let a string hang from the lowest input point and "wrap it around" the set
 - Finds the extreme points in order

Jarvis March

- A greedy algorithm
- Find the next edge of conv(S) by brute force: If p_{k-1} and p_k are the last two vertices added to the hull, then p_{k+1} is the point $q \in S$ that maximizes the angle $\angle p_{k-1}p_kq$
- Takes linear time per vertex of conv(S)
- Initial edge is p_0p_1 where $p_0 = (-\infty, y_1)$, and $p_1 = (x_1, y_1)$ is the lowest point of S
- Runs in O(nh) time, where h is the output size (good when h is small!)

3

Jarvis March...

Chan's Algorithm (1996)

- Runs in $O(n \log h)$ time
- Combines two algorithms: Graham scan (or any other optimal algorithm) and Jarvis march
- Wrapping can be performed faster if we preprocess the points

Partition points into subsets and use the convex hull of each subset

Computing the Next Edge

- The supporting line of each edge of conv(S) is tangent to the convex hull of one of the subsets
- There are fewer subsets than points!

35

General Idea

- Choose parameter $1 \le m \le n$
- Partition *S* into $r = \lceil n / m \rceil$ subsets of size *m* each
- Compute the convex hull of each subset independently using an optimal algorithm
- Find the global convex hull by performing a Jarvis march on the polygons

Hull Check

HullCheck(S, m, H)

- 1. Partition S into disjoint subsets $S_1, ..., S_r$ of size m
- 2. **for** $i \leftarrow 1$ **to** r **do**
- 3. Find $conv(S_i)$ using Graham scan
- 4. Find the lowest point p_1 of S and let $p_0 = (-\infty, y_1)$
- 5. for $k \leftarrow 1$ to H do
- 6. **for** $i \leftarrow 1$ **to** r **do**
- 7. find q_i in S_i that maximizes $\angle p_{k-1}p_kq_i$
- 8. $p_{k+1} \leftarrow q_j$, where q_j maximizes $\angle p_{k-1} p_k q_j$
- 9. **if** $p_{k+1} = p_1$ **then return** $\langle p_1, \dots, p_k \rangle$
- 10. return 'incomplete'

Runs in $O(n \log m + H(n/m) \log m) = O(n(1 + H/m) \log m)$

Properties of Hull Check

- Returns conv(S) when $H \ge h$
- Runs in $O(n(1 + H/m)\log m)$
- What happens if we choose m = H? Algorithm runs in $O(n \log H)$
- Need a scheme to "guess" h using few attempts

Full Algorithm

- 1. Set $t \leftarrow 1$
- 2. repeat
- 3. $m \leftarrow H \leftarrow \min\{n, 2^{2^t}\}$
- 4. $L \leftarrow \text{HullCheck}(S, m, H)$
- 5. $t \leftarrow t + 1$
- 6. **until** $L \neq$ 'incomplete'
- 7. return L

$$m = 4, 16, 256, \dots, 2^{2^t} > h$$

$$\sum_{t=1}^{\log\log h} n \log H = \sum_{t=1}^{\log\log h} n 2^t = n \sum_{t=1}^{\log\log h} 2^t < n 2^{1 + \log\log h} = 2n \log h$$

Problem: Segment Intersection

- Given a set S of closed segments report all pairs of segments that intersect
- Many applications: architectural databases, map overlay in GIS

Motivation: Line Sweep

- Given *n* integers, in no particular order, how do you find out if they are all distinct?
- One possibility is two sort and then "sweep" the real line from smallest to largest, stopping at each integer and asking if it is equal to its predecessor
- The stopping points are the only points of interest or *events* on the real line, i.e., the places where you can gather useful information
- The sorting step collects the events in an *schedule*

Plane Sweep

- Sweep a line ℓ over the plane keeping track of objects from S intersected by ℓ as it moves
- The *active* objects are stored in a *status* data structure
- The status changes at locations called *events*
- Two data structures:
 - Schedule: ordered sequence of events
 - Status: subset of S currently intersected by ℓ

43

Orthogonal Segment Intersection

- All segments are horizontal or vertical
- Status *T* stores *active* horizontal segments
- Status changes at segment endpoints only
- Vertical segments used for reporting

47

Updating the Status

Types of events:

- Left endpoint of horizontal segment s: store
 s into T using y(s)
- Right endpoint of horizontal segment s: delete s from T
- Vertical segment s: report all horizontal segments t such that $y_1(s) \le y(t) \le y_2(s)$

Time: $O(n \log n + k)$

Variant: Rectangle Intersection

- Report all pairs of rectangles that intersect
- Events: left or right sides of rectangles
- Status stores (y-span) of active rectangles
- Problem reduced to interval intersection search

49

Variant: Segment Intersection

- Report all pairs of segments that intersect
- Status stores active segments sorted by *y*-coordinate
- Events: left or right endpoints of segments plus all intersection points

Segments in General Position

- A set of segments is in general position if:
 - No two endpoints with same x-coordinate
 - Any two segments intersect in at most one point
 - No three segments intersect in a common point
- Intersecting segments change relative order at the intersection point
- *Key insight*: Intersecting segments must be neighbors in the status prior to the intersection point

51

Event Handling (General Position)

- Left endpoint of s: test s for intersection against its two new neighbors
- Right endpoint of s: delete s and test for intersection the former two neighbors of s
- Intersection point: "swap" intersecting segments and test each against former neighbor of other
- Time: $O((n+k)\log n)$

Segment Intersection Algorithm

Input: A set S of segments in the plane

Output: all intersection points with segments involved

- 1. Create event queue Q with segment endpoints (left endpoints include a list of corresponding segments)
- 2. Initialize an empty status structure T
- while $Q \neq \emptyset$ do 3.
- 4. Extract from Q the next event p
- 5. Handle event point p

53

Handling Degenerate Cases

Segments that contain event p:

$$L(p) = \{c\}$$
$$C(p) = \{a, e\}$$

$$R(p) = \{m, n\}$$

Handling an Event p

- 1. Search T for set S(p) of segments containing p
- 2. Partition $S(p)=C(p)\cup R(p)$
- 3. if $|C(p) \cup R(p) \cup L(p)| > 1$ then report p as well as $C(p) \cup R(p) \cup L(p)$
- 4. delete $R(p) \cup C(p)$ and insert $L(p) \cup C(p)$ in T
- 5. **if** $C(p) \cup L(p) = \emptyset$ **then** find event of new neighbors s and q of p **else** find events of new neighbors of $L(p) \cup C(p)$
- How about vertical segments?

_

Locus Method

- Pre-compute the answer to *all* possible queries and store results to facilitate look ups
- Each query is mapped to a point in a query space
- The query space is partitioned into regions (loci) within which the answer does not vary.
- Store partition in a data structure D(S)

Example: Range Searching

Given a set of points $S = \{p_1, ..., p_n\}$ on the plane determine how many lie inside a given upright rectangle Q(a,b,c,d) (a rectangle with sides parallel to the coordinate axes)

57

A Simpler Variant: Dominance

- A point u dominates v iff $u_i \ge v_i$, $1 \le i \le d$
- Report N(a,b), the number of points in S dominated by (a, b)

Range Searching

$$Q(a,b,c,d) = N(b,d) - N(a,d) - N(b,c) + N(a,c)$$

59

A Locus Approach to Dominance

A Locus Approach to Dominance

61

Range Searching: Complexity

Method	T(n)	M(n)	P(n)
One shot	O(n)	O(n)	-
Locus	$O(\log n)$	$O(n^2)$	$O(n^2)$
Range tree	$O(\log^2 n)$	$O(n\log n)$	$O(n\log n)$

Example: Nearest Neighbor

Given a set *P* of *n* points in the plane:

- Store P in a data structure D(P)
- Given a query point q, use D(P) to find the point in P that is closest to q

Example: London Cholera outbreak (1854). Given a patient q, which water pump is closest to q's home

Notation

- For points p and q the perpendicular bisector of segment pq splits the plane into two half-planes. The open halfplane that contains p is denoted by h(p,q)
- The points in h(p,q) are strictly closer to p than to q

Voronoi Diagram

- Vor(P) is a subdivision of the plane into n cells $V(p_1),...,V(p_n)$, one for each site in P
- The Voronoi cell $V(p_i)$ is the locus of points closer to p_i than to any other site in P:

$$q \in V(p_i) \Leftrightarrow \operatorname{dist}(q, p_i) < \operatorname{dist}(q, p_j), \forall p_j \neq p_i$$

•
$$V(p_i) = \bigcap_{i \neq j} h(p_i, p_j)$$

65

Voronoi Diagram: Example

Voronoi Diagram: Complexity

Theorem. The number of vertices in the Voronoi diagram of n points in the plane is at most 2n - 5 and the number of edges is at most 3n - 6.

67

Geometric Transform (Duality)

- Lines and points may each be specified by two numbers: *m* and *b* or *x* and *y*, respectively
 - What if we transform one to the other while preserving some spatial relations in the process?
- Consider the mapping ℓ : $y = mx b \leftrightarrow p$: (m, b)
- Denote by $D(\ell) = \ell^* = p$ and $D(p) = p^* = \ell$
- One-to-one mapping between all non-vertical lines and all points in the plane

Duality Properties

- Involution: $p^{\star\star} = (p^{\star})^{\star} = p$ and $\ell^{\star\star} = \ell$
- Incidence preserving: $p \in \ell$ iff $\ell^* \in p^*$
- Order preserving: p is above ℓ iff ℓ^* is above p^*

69

Duality Properties

• Distance preserving: the vertical distance between p and ℓ is the same as that between ℓ^* and p^*

Exercise. What can you say about the distance between parallel lines ℓ : y = ax + b and g: y = ax + c?

Segment Duals

- The dual of a segment s from p to q is the union of the duals of points on s
- The dual of *s* is a *double wedge*, bounded by the duals of *p* and *q*

7

Example: Line Stabbing

Given a set of segments $S = \{s_1, ..., s_n\}$:

- Find a transversal (a line ℓ that stabs all segments of S)
- Construct a representation of all transversals of S
- Determine if a query line ℓ is a transversal

Stabbing Regions

- $R(S) = \bigcap_{s \in S} D(s)$ is the stabbing region of S
- A line ℓ is a transversal of S iff $D(\ell) \in R(S)$

73

Vertical Segments

• For a set S of vertical segments, R(S) is a convex polygon with at most 2n edges.

Arbitrary Segments

• For arbitrary segments, R(S) is the union of at most n+1 convex polygons such that any two of them intersect in at most one point and there is a vertical line that separates them.

Combinatorial Analysis

What is the combinatorial complexity of R(S)?

Notation:

z(S) = number of edges in boundary of R(S)

 $z(n) = \max\{z(T) \mid T \text{ a set of } n \text{ segments}\}\$

Construction of R(S): General Case

• A divide-and-conquer solution:

if
$$|S| = 1$$
 then $R(S) = D(s)$, where $S = \{s\}$ else $S_1 = \{s_1, \dots, s_{\lfloor n/2 \rfloor}\}$ and $S_2 = \{s_{\lfloor n/2+1 \rfloor}, \dots, s_n\}$ Construct $R(S_1)$ and $R(S_2)$ recursively Construct $R(S) = R(S_1) \cap R(S_2)$

Time:
$$T(n) = 2T(n/2) + O(n) = O(n \log n)$$

7

Building R(S): Vertical Segments

• An incremental solution:

Preprocess: so that no two segments

lie on a common vertical line

Initial Step: compute initial quad

$$R(S_2) \leftarrow D(S_1) \cap D(S_2)$$

Iteration: Update the stabbing region

for
$$i \leftarrow 3$$
 to n do

$$R(S_i) \leftarrow R(S_{i-1}) \cap D(s_i)$$

Theorem: It takes O(n) time to compute R(S) of a presorted list of vertical segments.

Updating the Upper Chain of R(S)

- Use a dequeue Q to store the edges of upper chain of $R(S_{i-1})$
- Each node of Q is contained in the line dual to the lower endpoint of a segment s_i , $j \le i-1$
- the slope of the lines of $D(s_i)$ is greater than the slopes of lines containing edges of $R(S_{i-1})$

79

Adding a Vertical Segment

```
Let s_i = [p_b, p_t] and set \ell_b = D(p_t), \ell_t = D(p_b)

Case 1: v_t is below \ell_b or v_t is below \ell_t
```

return $R(S) \leftarrow \emptyset$

Case 2: $D(S_i) \cap R(S_{i-1}) \neq \emptyset$

Update the left end of Q

case 2.1: $v_l \in D(s_i)$

left end does not need to be updated

case 2.2 : v_l lies above line ℓ_t

while $line(e) \cap line(e')$ is above/on ℓ_t remove $e, e \leftarrow e', e' \leftarrow succ(e)$

create new node e" with $\operatorname{succ}(e^{"}) = e$, $\operatorname{pred}(e) = e^{"}$, $\operatorname{line}(e^{"}) = \ell$,

Update the right end symmetrically

Randomized Algorithms

- Use randomness as an algorithm design tool
 - Controlled randomness ⇒ fast expected behavior
- Traditional probabilistic analysis
 - Makes assumption about distribution of inputs
 Example: What is the expected running time of quicksort if all n! permutations of the input are equally likely?
- New approach
 - If you don't know input distribution then force one that makes analysis possible ⇒ average behavior independent of input
 - Analysis with respect to random choices made by algorithm for a fixed input, not with respect to possible inputs
 - No bad inputs, results apply to all inputs

Types of Randomized Algorithms

- Montecarlo: correctness is random
 - Probably correct, provably fast

Example: randomized primality test

- Las Vegas: performance is random
 - Probably fast, provably correct

Example: randomized quicksort

- Transformations
 - − Las Vegas *B* to Montecarlo *B*′
 - Stop *B* if it is taking too long. Since *B* runs fast with high probability then *B'* is correct with high probability
 - Montecarlo A to Las Vegas A'
 - Run A until a correct answer is found

Indicator Variables

• An *indicator variable* is a random variable with sample space {0,1}

Notation. For event A, define

$$I_A = I(A) = \begin{cases} 1, & \text{if } A \text{ occurs} \\ 0, & \text{if } A \text{ does not} \end{cases}$$

• What is the expected value of an indicator variable?

$$E(I_A) = 1 \cdot \Pr(A) + 0 \cdot \Pr(\neg A) = \Pr(A)$$

Example

Algorithm Max(A, n)

Input. An array of integers *Output.* The largest value in *A*

- 1. Randomly permute A
- 2. $\max \leftarrow -\infty$
- 3. **for** $i \leftarrow 1$ **to** n **do**
- 4. **if** $A[i] > \max$
- 5. **then** $\max \leftarrow A[i]$
- 6. return max

- How many times *X* is line 5 executed?
- X is a random variable!
- $X_i = I(\text{line 5 is executed in } i\text{-th iteration})$
- $X = \sum_{i=1}^{n} X_i$

 $E(X_i) = Pr(\text{line 5 is executed in } i\text{-th iteration}) = ?$

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \frac{1}{i} = H_i < 1 + \ln n$$

Incremental Construction

- The most common design technique for Las Vegas geometric algorithms
- Add the *n* input objects in random order, assessing the effect of each object on the solution so far
- Resulting algorithm is usually simple to program and matches complexity of optimal deterministic algorithm

85

Closest Pair

<u>Input</u>: set *S* of points in 2D

Output: distance between two closest points in S

- Deterministic algorithms take $\Theta(n \log n)$ (lower bound from *Element Uniqueness*)
- Can do better with randomized algorithm
 - Incremental, with O(n) expected time
 - -d(p,q): Euclidean distance between p and q
 - $-\delta^*$: actual CP distance
 - $-\delta$: upper bound estimate on CP distance

General Idea

- Randomly permute the points: $p_1, p_2, ..., p_n$ (Let $\delta_i :=$ closest pair distance for $p_1, p_2, ..., p_i$)
- Initially, $\delta := d(p_1, p_2) = \delta_2$
- For i = 3 to n, update $\delta := \delta_i$

Key Problem: How do we know if p_i updates δ ?

- Keep a partition of the plane into $\delta/2 \times \delta/2$ cells
 - Neighborhood of *p* is 5×5 sub-grid centered at *p*'s cell

Properties

- No two points lie in same cell
 - If points p and q lie in the same cell then $d(p,q) < \delta$
- If $d(p,q) < \delta$ then q is in p's neighborhood
- Enough to check neighborhood of p_i
 - 1. Neighborhood not empy \Rightarrow for each point p_j present (j < i) check $d(p_i, p_j)$, update δ , and regrid with new δ if necessary
 - 2. Neighborhood empty $\Rightarrow \delta_i = \delta_{i-1}$

Managing the Grid

- Operations: create, insert, lookup
- Use a "dictionary", e.g., a hash table *H*
- *H* stores non-empty grid cells
- Cells have integer coordinates (s,t)

$$S_{st} = \{(x, y) : s\delta/2 \le x < (s+1)\delta/2; t\delta/2 \le y < (t+1)\delta/2\}$$

$$p = (x, y) \rightarrow \underbrace{\left(\left\lfloor \frac{x}{\delta/2} \right\rfloor, \left\lfloor \frac{y}{\delta/2} \right\rfloor \right)}_{\text{key for } (x, y)}$$

89

A Las Vegas Algorithm

```
Order the points in a random sequence p_1, p_2, \ldots, p_n
Let \delta denote the minimum distance found so far
Initialize \delta = d(p_1, p_2)
Invoke MakeDictionary for storing subsquares of side length \delta/2
For i = 1, 2, ..., n:
 Determine the subsquare S_{st} containing p_i
 Look up the 25 subsquares close to p_i
  Compute the distance from p_i to any points found in these subsquares
  If there is a point p_i (j < i) such that \delta' = d(p_i, p_i) < \delta then
    Delete the current dictionary
    Invoke MakeDictionary for storing subsquares of side length \delta'/2
    For each of the points p_1, p_2, \ldots, p_i:
      Determine the subsquare of side length \delta'/2 that contains it
      Insert this subsquare into the new dictionary
    Endfor
  Else
    Insert p_i into the current dictionary
  Endif
Endfor
```

Analysis

- What is the cost of the *i*-th iteration?
 - -O(1) if δ does not change
 - -O(i) if δ changes

$$X_i = I\{p_i \text{ changes } \delta\} = \begin{cases} 0 & \text{if } \delta \text{ does not change} \\ 1 & \text{if } \delta \text{ changes} \end{cases}$$

$$E[X_i] = \Pr\{p_i \text{ changes } \delta\} \le 2/i$$

$$E[T(n)] = n + \sum_{i=1}^{n} E(X_i)O(i) = O(n)$$

91

A Randomized Convex Hull Algorithm

- Will describe a Las Vegas Algorithm
 - Provably correct, probably fast
- *Idea*: randomized incremental algorithm
- The expected running time depends on the random order of insertion but is independent of the input data
- The method generalizes to higher dimensions

Let T be a set of points and q a point outside conv(T). An edge e of conv(T) is visible from q if the supporting line of e separates conv(T) from q

Note: The edges of conv(T) visible from q

- Are not part of $conv(T \cup \{q\})$
- Form a contiguous chain

93

A Randomized Algorithm

• Randomly permute the input points $P = \langle p_1, p_2, ..., p_n \rangle$ and let $P_i = \langle p_1, p_2, ..., p_i \rangle$

Algorithm ConvexHull(P, n)

Input. An array *P* of points in the plane

Output. The convex hull of P

- 1. Randomly permute *P*
- 2. $\operatorname{conv}(P_3) \leftarrow \Delta(p_1, p_2, p_3)$
- 3. **for** $i \leftarrow 4$ **to** n **do**
- 4. **if** p_i not in conv (P_{i-1}) **then**
- 5. $e \leftarrow \text{any edge of } \text{conv}(P_{i-1}) \text{ visible from } p_i$
- 6. $C \leftarrow \text{chain } \langle q_i, ..., q_k \rangle \text{ of edges of conv}(P_{i-1}) \text{ visible from } p_i$
- 7. conv(P_i) is obtained by replacing C with chain $\langle q_i, p_i, q_k \rangle$
- Ignoring the cost of lines 4 and 5, algorithm runs in O(n) time!

- A *conflict edge* for p, denoted e_p , is any edge visible from p. If p is interior then it has no conflict edge.
- Every point p outside the convex hull keeps a conflict edge e_p . Conversely, every edge e keeps the list L_e of points that list e as their conflict edge.
 - How do we compute it and maintain conflict information?

Updating Conflict Information

- Whenever an edge e is deleted we need to update the conflict information for all points p such that $e_p = e$.
- Each affected point either becomes an interior point or its conflict edge changes.
- What should we do in each case?
 - Interior points can be deleted now or later
 - Updating e_p takes constant time per exterior point as only 2 candidate edges need to be considered \Rightarrow cost proportional to number of points updated.

Analysis

- There are three tasks the algorithm performs in each iteration
 - 1. Creation of two new edges
 - 2. Destruction of a variable number of old edges
 - 3. Reclassification of points whose conflict edge was removed
- How much time do you spend in each?
 - Creation and destruction of edges takes O(n) time
 - Reclassification time is a random variable whose expected value is computed by *backward analysis*

97

Backwards Analysis

- Pretend to run the algorithm backwards
 - running time same as running forward
 - Easier to estimate probability of reclassification
- What is the probability that e_p changes while "deconstructing" conv(P), i.e., while computing $conv(P_{i-1})$ from $conv(P_i)$?
 - If a segment is removed from $conv(P_i)$ we must update all the pointers in its conflict list
 - An edge is removed only iff one of its endpoints is p_i
 - Since each of the remaining i points is equally likely to be chosen for removal, each edge of $conv(P_i)$ is removed with probability 2/i

Backwards Analysis...

• Let $X_i = \#$ of pointers updated in the *i*th iteration, then:

$$E[X_i] = \sum_{e \in \text{conv}(P_i)} \left((\text{size of } e' \text{s conflict list}) \cdot (\text{Pr}(e \text{ is removed})) \right)$$

$$= \text{Pr}(e \text{ is removed}) \cdot \left(\sum_{e \in \text{conv}(P_i)} \text{size of } e' \text{s conflict list} \right)$$

$$= 2/i \cdot O(n) = O(n/i)$$

• Total expected time, adding across all iterations is

$$E[\text{#pointer updates}] = \sum_{i=4}^{n} O(n/i) = O(n \log n)$$

99

Convex Hulls in \mathbb{R}^d

- The *convex hull* of a set of points P in \mathbb{R}^d , denoted conv(P), is the intersection of all convex sets containing P
- Goal: design an efficient algorithm that computes conv(P) from P for $d \ge 2$
 - The vertices of conv(P) are the extreme points of P.
 - Output is a complete specification of the boundary, including all *i*-dimensional faces (i = 0, ...d 1), plus their adjacencies

A Preview of 3D Convex Hull

• In 3D, conv(*P*) is a convex polyhedron

• It consists of *vertices*, *edges*, *facets*, and their incidences

101

Issues

- If |P| = n, how big is conv(P)?
 - How many vertices, edges, faces

Example: n = 758, e = 2268, f = 1512

- What is a good data structure to store conv(*P*)?
 - Space should be linear in |conv(P)| = n + e + f
 - Retrieve all adjacencies efficiently
- Does the randomized incremental approach generalize?