LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

- $|t_{\hat{ heta}_j}| = \left| rac{\hat{ heta}_j}{SE(\hat{ heta}_j)}
 ight|$
- p-value: probability of obtaining a more extreme test statistic assuming H₀ is correct (here: θ_j = 0) i.e., feat. j not significant)

High t-values ⇒ important (significant) feat.

 \rightsquigarrow High $|t| \Rightarrow$ small p-val. (speak against H_0)

EXAMPLE: LINEAR REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \, \mathbb{1}_{x_{\text{season}} = SPRING} + \\ & \hat{\theta}_2 \, \mathbb{1}_{x_{\text{season}} = SUMMER} \, + \\ & \hat{\theta}_3 \, \mathbb{1}_{x_{\text{season}} = FALL} + \hat{\theta}_4 x_{\text{femp}} + \\ & \hat{\theta}_5 x_{\text{hum}} + \hat{\theta}_6 x_{\text{windspeed}} + \\ & \hat{\theta}_7 x_{\text{days_since_2011}} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

Intercept: If all feature values are 0 (and season is WINTER reference cat.),e
the expected number of bike rentals is θ₀3≥23229.3

EXAMPLE: LINEAR REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \, \mathbb{1}_{x_{\text{season}} = SPRING} + \\ & \hat{\theta}_2 \, \mathbb{1}_{x_{\text{season}} = SUMMER} \, + \\ & \hat{\theta}_3 \, \mathbb{1}_{x_{\text{season}} = FALL} + \hat{\theta}_4 x_{\text{femp}} + \\ & \hat{\theta}_5 x_{\text{hum}} + \hat{\theta}_6 x_{\text{windspeed}} + \\ & \hat{\theta}_7 x_{\text{days_since_2011}} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER reference cat.),e
 the expected number of bike rentals is θ₀3≥23229.3
- Categorical: Rentals in SPRING are by θ₁ = 862 higher tham in WINTER, c.p.

EXAMPLE: LINEAR REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \, \mathbb{1}_{x_{\text{season}} = SPRING} + \\ & \hat{\theta}_2 \, \mathbb{1}_{x_{\text{season}} = SUMMER} \, + \\ & \hat{\theta}_3 \, \mathbb{1}_{x_{\text{season}} = FALL} \, + \hat{\theta}_4 x_{\text{femp}} + \\ & \hat{\theta}_5 x_{\text{hum}} \, + \hat{\theta}_6 x_{\text{windspeed}} + \\ & \hat{\theta}_7 x_{\text{days_since_2011}} \end{split}$$

	Weights	SE	t-stat.	p-val
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER reference cat.),e
 the expected number of bike rentals is θ₀3≥23229.3
- Categorical: Rentals in SPRINGrare)bŷ θ̂_T=8/862ihigher thamin WINTER, c.p.
- Numerical: Rentals increase by \(\hat{\theta}_4 = 120.5\) if temp increases by 1 °C, c.p.