PIZZO

Pierwsza lista zadań

Zadania ćwiczące materiał z wykładu

Zadanie 1. Skonstruuj automat rozpoznający język tych słów nad alfabetem $\Sigma = \{0, 1\}$, w których po każdym 1 są co najmniej trzy litery 0.

Zadanie 2. Skonstruuj automat rozpoznający język tych słów nad alfabetem $\Sigma = \{0, 1, \dots, 9\}$, które sa zapisem dziesiętnym liczby podzielnej przez 4.

Zadanie 3. Skonstruuj automat rozpoznający przecięcie języków z powyższych zadań.

Zadanie 4. Skonstruuj automat rozpoznający dopełnienie języka z zadania 2.

W poniższych zadaniach możesz korzystać z faktu, że język $L = \{a^n b^n \mid n \in \mathbb{N}\}$ nie jest regularny.

Zadanie 5. Dla danego języka L nad alfabetem $\{a,b,c\}$ oraz funkcji $h: \Sigma \to \Sigma$, niech $h(L) = \{h(a_1) \dots h(a_k) \mid a_1 \dots a_k \in L\}$ będzie językiem powstałym przez zaaplikowanie funkcji h do każdej litery.

- Czy h(L) jest regularny jeśli L jest regularny?
- Czy L jest regularny jeśli h(L) jest regularny?

Zadanie 6. Dla danego języka L, niech L^R oznacza zbiór słów będących odwróceniami słów z L, np. dla $L = \{a, to, kanapa, pana, kota\}$ mamy $L^R = \{a, ot, apanak, anap, atok\}$. Czy dla każdego języka regularnego L język L^R jest regularny?

Zadanie 7. Udowodnij, że dla każdego nieskończonego języka regularnego nad alfabetem jednoliterowym istnieje liczba c taka, dla każdego i język zawiera jakieś słowo o długości między i a i+c.

Zadanie 8. Czy zbiór zapisów unarnych potęg dwójki jest językiem regularnym?

Zadanie przygotowujące do kolejnych wykładów

Niech Σ będzie alfabetem i niech $L \subseteq \Sigma^*$. Relację $\sim_L \subseteq \Sigma^* \times \Sigma^*$ definiujemy w następujący sposób: $w \sim_L w'$ w.t.w., gdy $\forall v \in \Sigma^*$ ($wv \in L \Leftrightarrow w'v \in L$).

Zadanie 9. Pokaż, że \sim_L jest relacją równoważności.

Zadanie 10. Pokaż, że jeśli w pewnym automacie skończonym A rozpoznającym pewien język L po przeczytaniu słów w i v znajdujemy się w tym samym stanie, to $w \sim_L v$.