

**NASA CENTER UPDATE
JET PROPULSION LABORATORY**

PRESENTED BY
Sal Di Stefano

1992 NASA AEROSPACE BATTERY WORKSHOP
November 17-19, 1992
U. S. Space and Rocket Center
Huntsville, Al

AGENDA

- FLIGHT PROJECT SUPPORT ACTIVITIES
 - TOPEX
 - MARS OBSERVER
- RESEARCH / DEVELOPMENT AND ENGINEERING ACTIVITIES
 - NiCd MODEL DEVELOPMENT
 - SECONDARY LITHIUM BATTERY DEVELOPMENT
 - SODIUM - NiCl_2 MODERATE TEMPERATURE BATTERY
 - Li- SOCl_2 BATTERIES FOR CENTAUR LAUNCH VEHICLE
 - DIRECT HYDROCARBON / METHANOL FUEL CELLS

TOPEX MISSION / BATTERY DEFINITION

- PRIME CONTRACTOR - FAIRCHILD / McDONNELL DOUGLAS MPS (BATT)
- BATTERY DESIGN
 - MODULAR POWER SUBSYSTEM (3 x 22 CELL 50 Amp-Hr BATT)
 - CELL DESIGN
 - GATES AEROSPACE - NASA STANDARD
 - 16 POS / 17 NEG
 - PELLON 2505 SEPARATOR
 - NONPASSIVATED POS / TEFLONATED NEG
- BATTERY CYCLE REGIME
 - MEDIUM ALTITUDE ORBIT - VARIABLE OCCULTATIONS AND SOME FULL SUN PERIODS

JPL

TOPEX STATUS

- LAUNCH AUGUST 10, 1992
- BATTERY OPERATIONAL STRATEGY
 - LIMIT PEAK CHARGE CURRENTS TO 20 AMPS (OFFSET ARRAY)
 - LIMIT OVERCHARGE BY MAINTAINING RECHARGE RATIO (C/D) TO 103% @ 0°C (OPERATE AT LOWER V/T LEVELS)
 - AVOID HIGH CHARGE CURRENTS DURING FULL SUN PERIODS (OPERATE AT LOWER V/T LEVELS)
- CURRENT STATUS - NOMINAL OPERATION

MARS OBSERVER MISSION / BATTERY DEFINITION

- PRIME CONTRACTOR - GE ASTROSPACE
- BATTERY DESIGN
 - TWO 17 CELL / 42 Amp-Hr BATTERIES
 - CELL DESIGN
 - GATES AEROSPACE
 - 13 POS / 14 NEG
 - PELLON 2505 ML
 - NONPASSIVATED POS / TEFLONATED NEG
- BATTERY CYCLE REGIME
 - 11 MONTH CRUISE
 - ~ 120 Min ORBIT 41 Min ECLIPSE (max)
 - REQUIRE 9000 CYCLES

MARS OBSERVER STATUS

- LAUNCH - SEPTEMBER 25, 1992
- BATTERY OPERATIONAL STRATEGY
 - DEVELOP METHOD FOR MINIMIZING EFFECT OF 850 mA TRICKLE CHARGE DURING CRUISE
- MINIMIZE TRICKLE CHARGE BY BATTERY SWITCHING -
SWITCH ONE BATTERY OFF LINE FOR 12 HOURS AND THEN
REVERSE
- CURRENT STATUS - NOMINAL PERFORMANCE

NiCd MODEL DEVELOPMENT

OBJECTIVE: TO DEVELOP A NiCd BATTERY PERFORMANCE MODEL BASED ON FUNDAMENTAL ELECTROCHEMICAL PRINCIPLES AND CAPABLE OF PREDICTING BATTERY VOLTAGE UNDER SPACECRAFT OPERATING CONDITIONS OVER MISSION LIFE

STATUS: BEGINNING OF LIFE BATTERY LEVEL PREDICTION MODEL IS OPERATIONAL - CELL DESIGN ENGINEERING DATABASE DEVELOPED ALLOWING FOR COMPREHENSIVE CELL SPECIFICATION

PLANS: INCORPORATION AND VERIFICATION OF DEGRADATION FEATURES - FINALIZE DOCUMENTATION - SUBMIT FOR FIELD EVALUATION

SECONDARY LITHIUM CELLS

OBJECTIVE: TO DEVELOP AND DEMONSTRATE A 100 WH/Kg
Li₁TiS₂ RECHARGEABLE CELL CAPABLE OF 1000 CYCLES AT 50
% DEPTH OF DISCHARGE AND A 5 YEAR STORAGE LIFE

STATUS: 965 CYCLES AT 50 % DEPTH OF DISCHARGE IN 1
AH 'AA' SIZE Li₁TiS₂ CELLS AT 50% DOD - DEMONSTRATED 125
WH/Kg

PLAN: DEMONSTRATE 1000 CYCLES IN 5 AH PRISMATIC
CELLS - VERIFY OVERCHARGE MECHANISM - COMPLETE
SAFETY TESTING - DETERMINE OPERATING LIMITS

NPL

PERFORMANCE OF A TYPICAL 1 AH-R (AA) LITHIUM TITANIUM DISULFIDE CELL

CYCLE LIFE PERFORMANCE OF A 1 AMPERE-HOUR AA LITHIUM-TITANIUM DISULFIDE
CELL

COX881 - 19/

SODIUM METAL HALIDE CELLS

OBJECTIVE: TO DEVELOP A HIGH SPECIFIC ENERGY (> 150 WH/Kg) BATTERY FOR FUTURE NASA SPACE MISSIONS

STATUS: NiCl_2 SELECTED FROM SEVERAL METAL CHLORIDES - EXPERIMENTAL CELL TESTS REVEAL OPTIMAL OPERATION AT 275°C - LONG CYCLE LIFE IN LEO CYCLING INDEPENDENTLY VERIFIED AT IN ESA SPONSORED TESTS

PLANS: FABRICATE LABORATORY CELLS AND INVESTIGATE LIFE LIMITING MODES

ADVANCED BATTERY CONCEPTS SODIUM-METAL HALIDE CELLS

JPL

SODIUM-METAL HALIDE CELL PROGRAM

ACTIVITY	88 SCREENING STUDIES	89 ELECTROCHEMICAL CHARACTERIZATION OF MC12	90 91 92 93 94 95 96 97 98 99 2000 COMPONENT DEVELOPMENT	IDENTIFY SYSTEM CAPABLE OF PROVIDING > 1000 CYCLES AND 150 Wh/Kg	ESTABLISH MECHANISMS DETERMINE REACTION KINETICS AND IDENTIFY RATE LIMITING PROCESSES	DEFINE DESIGN REQUIREMENTS FOR 20-25 Ah CELLS	DEMONSTRATE CYCLE LIFE AND PERFORMANCE IN OPTIMIZED 20-25 Ah CELL	FINAL DEMONSTRATION
	Evaluate organic and inorganic cathodes Down select to Na/MCl ₂	Short term studies performance and reversibility Identify suitable materials Identify and overcome rate limiting processes Down select to Na/NiCl ₂						
			Develop 5 Ah TEST CELL Study of performing enhancing additives Develop cathode fabrication process Identify cell failure mechanism Charge methods Optimize and improve design			Develop performance data base Evaluate safety and environmental effects Identify failure modes		Develop eng model cell Demo 1000 cycles and 150 Wh/Kg

250 AH Li - SOCl₂ BATTERY FOR THE CENTAUR LAUNCH VEHICLE

OBJECTIVE: TRANSFER JPL DEVELOPED Li-SOCl₂ BATTERY TECHNOLOGY TO 2 CONTRACTORS, FABRICATE CELLS AND BATTERIES AND DEMONSTRATE CAPABILITY FOR MEETING CENTAUR QUALIFICATION REQUIREMENTS

STATUS: DOWN SELECTED TO YARDNEY TECHNICAL PRODUCTS - 5 BATTERIES READY FOR QUALIFICATION - 48 CELLS SUBJECTED TO CHARACTERIZATION TESTS (TEMP, RATE) AND PERFORMED WELL - PDR's. CDR's, AND MRR's COMPLETED

PLANS: COMPLETE CELL / BATTERY TESTS PER CENTAUR REQUIREMENTS - COMPLETE DOCUMENTATION AND DELIVER MCD TO AIR FORCE

CAENITIUM Li-SOCl₂ BATTERY

ALL-VANDEY VERSION		VARDNEY VERSION	
FEATURES			
C. WEIGHT 7.5lb 3400g	C. 1/2 OF EXISTING SILVER-ZINC BATTERY	C. LOW TEMPERATURE LIFE 10% @ -40°F	C. AMBIENT TEMPERATURE LIFE 10% @ 40°F
C. 60 TIMES EXISTING SILVER-ZINC BATTERY	CURRENT	C. CONTINUOUS > 40A	C. SHORT TERM > 75A
250 AH CELL		34 V - 250 AH CELL	
STATUS			
QUALIFICATION OF DESIGN AND MANUFACTURE		25 V - 250 AH BATTERY	

DIRECT HYDROCARBON / METHANOL FUEL CELLS

OBJECTIVE: TO DEVELOP A FUEL CELL SYSTEM CAPABLE OF THE DIRECT OXIDATION OF METHANOL, METHANE OR OTHER HYDROCARBON

STATUS: NEW CONCEPT IN FUEL CELLS (LIQUID FEED FUEL CELL) HAS BEEN DEMONSTRATED AND ACHIEVED 80 mA/cm² AT 0.5 VOLTS

PLANS: CONTINUE THE DEVELOPMENT AND EVALUATION OF LIQUID FEED FUEL CELL - EVALUATE NEW CATALYSTS - FAB DEMONSTRATION UNIT

JPL DARPA DIRECT METHANOL FUEL CELL TASK

OBJECTIVE

DEVELOP DIRECT METHANOL FUEL CELL TECHNOLOGY (DMFC) AT THE CELL LEVEL WITH TARGET PERFORMANCE LEVELS BY 1994

TARGETS (CELL LEVEL)

CURRENT DENSITY > 150 mA/cm²
CELL VOLTAGES > 0.6 VOLTS
LIFE > 1000 HOURS
TEMPERATURE < 200°C

ACCOMPLISHMENTS

- SELECTED CATALYSTS AND ELECTROLYTES WITH INPUTS FROM UNIVERSITIES FOR THE INTERIM METHANOL/O₂ SYSTEM DEMONSTRATION
 - PT/RU
 - NAFION MEMBRANE
 - C8 ACID
- IDENTIFIED LIQUID FEED DESIGN AS ATTRACTIVE FOR LOW TO MEDIUM POWER APPLICATIONS
- DEMONSTRATED FEASIBILITY OF LIQUID FEED DESIGN WITH SUPPORT FROM GINGER 0.54V AT 100 mA/cm²
- EVALUATION OF ALTERNATIVE FUELS IN PROGRESS
 - TRIMETHOXYMETHANE
 - DIMETHOXYMETHANE

HIGHLIGHTS OF THE

ADVANCES IN DIRECT METHANOL FUEL CELLS

