$12a_{1176} (K12a_{1176})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -49u^{23} + 263u^{22} + \dots + 4b + 236,\ 273u^{23} - 1433u^{22} + \dots + 8a - 1244,\ u^{24} - 7u^{23} + \dots - 32u + 8 \rangle \\ I_2^u &= \langle -1.44275 \times 10^{19}a^5u^7 - 5.68398 \times 10^{19}a^4u^7 + \dots - 3.60536 \times 10^{20}a + 7.51047 \times 10^{20}, \\ & 6u^7a^4 - 4u^7a^3 + \dots - 37a - 45,\ u^8 + u^7 - 5u^6 - 4u^5 + 7u^4 + 4u^3 - 2u^2 - 2u - 1 \rangle \\ I_3^u &= \langle -u^8 + 6u^6 - u^5 - 11u^4 + 3u^3 + 6u^2 + b - u, \\ & -u^{12} - u^{11} + 10u^{10} + 9u^9 - 37u^8 - 31u^7 + 61u^6 + 52u^5 - 41u^4 - 42u^3 + 5u^2 + a + 10u + 2, \\ & u^{13} - 10u^{11} + 38u^9 + u^8 - 68u^7 - 6u^6 + 57u^5 + 11u^4 - 18u^3 - 6u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 85 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -49u^{23} + 263u^{22} + \dots + 4b + 236, \ 273u^{23} - 1433u^{22} + \dots + 8a - 1244, \ u^{24} - 7u^{23} + \dots - 32u + 8 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{273}{8}u^{23} + \frac{1433}{8}u^{22} + \dots - 532u + \frac{311}{2} \\ \frac{49}{9}u^{23} - \frac{263}{4}u^{22} + \dots + \frac{403}{2}u - 59 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{303}{49}u^{23} + \frac{1559}{4}u^{22} + \dots + \frac{565u}{2}u - \frac{325}{2} \\ -\frac{239}{49}u^{23} + \frac{1559}{4}u^{22} + \dots + \frac{1791}{2}u + 259 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{303}{49}u^{23} + \frac{1559}{43}u^{22} + \dots + \frac{1791}{2}u + 259 \\ -\frac{79}{2}u^{23} + 205u^{22} + \dots + \frac{195}{2}u + 174 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 26.2500u^{23} - 135.750u^{22} + \dots + 395.500u - 113.5000 \\ -\frac{79}{2}u^{23} + 205u^{22} + \dots - \frac{120}{2}u + 174 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -15.2500u^{23} + 81.7500u^{22} + \dots - 251.500u + 73.5000 \\ 2u^{23} - \frac{25}{2}u^{22} + \dots + \frac{93}{2}u - 14 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 51u^{23} - \frac{1075}{4}u^{22} + \dots + \frac{3227}{4}u - 235 \\ -\frac{129}{4}u^{23} + \frac{685}{4}u^{22} + \dots - 518u + 152 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 81u^{23} - 432u^{22} + 8u^{21} + 3419u^{20} - 3447u^{19} - 11374u^{18} + 17236u^{17} + 18946u^{16} - 40556u^{15} - 11583u^{14} + 53859u^{13} - 14035u^{12} - 38970u^{11} + 33571u^{10} + 7682u^{9} - 25123u^{8} + 11838u^{7} + 5007u^{6} - 9421u^{5} + 3205u^{4} + 124u^{3} - 1814u^{2} + 1300u - 374$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{24} - 18u^{23} + \dots + 2816u - 256$
$c_2, c_3, c_7 \ c_9$	$u^{24} - u^{23} + \dots + u - 1$
c_4, c_8	$u^{24} - 6u^{22} + \dots - 2u + 1$
c_5, c_6, c_{10} c_{11}, c_{12}	$u^{24} - 7u^{23} + \dots - 32u + 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} - 10y^{23} + \dots + 262144y + 65536$
$c_2, c_3, c_7 \ c_9$	$y^{24} - 13y^{23} + \dots - 3y + 1$
c_4, c_8	$y^{24} - 12y^{23} + \dots - 30y + 1$
$c_5, c_6, c_{10} \\ c_{11}, c_{12}$	$y^{24} - 31y^{23} + \dots - 160y + 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.907236 + 0.435980I		
a = -1.41635 + 0.54146I	1.84093 - 5.17326I	6.63681 + 8.84471I
b = 0.86042 - 1.37712I		
u = -0.907236 - 0.435980I		
a = -1.41635 - 0.54146I	1.84093 + 5.17326I	6.63681 - 8.84471I
b = 0.86042 + 1.37712I		
u = -1.110420 + 0.108192I		
a = -0.180104 - 0.437950I	5.73283 - 1.83988I	11.28356 + 2.30712I
b = 0.385921 - 0.238265I		
u = -1.110420 - 0.108192I		
a = -0.180104 + 0.437950I	5.73283 + 1.83988I	11.28356 - 2.30712I
b = 0.385921 + 0.238265I		
u = 0.590338 + 0.652762I		
a = -1.171600 - 0.599827I	-4.24228 - 4.48435I	-0.15247 + 3.55403I
b = -0.006346 + 1.289090I		
u = 0.590338 - 0.652762I		
a = -1.171600 + 0.599827I	-4.24228 + 4.48435I	-0.15247 - 3.55403I
b = -0.006346 - 1.289090I		
u = -1.048400 + 0.428308I		
a = 1.79332 - 0.68716I	-1.26907 - 12.76890I	2.91843 + 8.75350I
b = -0.92291 + 1.62751I		
u = -1.048400 - 0.428308I		
a = 1.79332 + 0.68716I	-1.26907 + 12.76890I	2.91843 - 8.75350I
b = -0.92291 - 1.62751I		
u = 0.242387 + 0.711300I		
a = 0.388011 - 0.226722I	-5.25345 + 8.92776I	-1.31883 - 7.64206I
b = -0.46013 - 1.55775I		
u = 0.242387 - 0.711300I		
a = 0.388011 + 0.226722I	-5.25345 - 8.92776I	-1.31883 + 7.64206I
b = -0.46013 + 1.55775I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.33594		
a = 1.98547	2.74446	-2.28800
b = -1.43379		
u = -0.016484 + 0.578692I		
a = 0.554305 + 0.154675I	-0.87333 + 1.64838I	3.09303 - 4.00385I
b = 0.093232 + 1.039400I		
u = -0.016484 - 0.578692I		
a = 0.554305 - 0.154675I	-0.87333 - 1.64838I	3.09303 + 4.00385I
b = 0.093232 - 1.039400I		
u = -1.43642 + 0.29668I		
a = -1.124190 + 0.697341I	2.30586 + 0.99863I	1.91156 - 3.99663I
b = 0.437158 - 0.696629I		
u = -1.43642 - 0.29668I		
a = -1.124190 - 0.697341I	2.30586 - 0.99863I	1.91156 + 3.99663I
b = 0.437158 + 0.696629I		
u = 0.417711 + 0.252673I		
a = 0.709564 + 0.673149I	0.898603 + 0.583790I	8.28194 - 3.24260I
b = 0.223162 - 0.102887I		
u = 0.417711 - 0.252673I		
a = 0.709564 - 0.673149I	0.898603 - 0.583790I	8.28194 + 3.24260I
b = 0.223162 + 0.102887I		
u = 1.69916 + 0.12248I		
a = -1.96502 - 1.07970I	10.97660 + 7.39354I	6.46638 - 6.79577I
b = 1.40767 + 1.48523I		
u = 1.69916 - 0.12248I		
a = -1.96502 + 1.07970I	10.97660 - 7.39354I	6.46638 + 6.79577I
b = 1.40767 - 1.48523I		
u = 1.73198 + 0.11712I		
a = 2.05259 + 1.20136I	8.5296 + 15.0189I	0 7.46096I
b = -1.29425 - 1.66429I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73198 - 0.11712I		
a = 2.05259 - 1.20136I	8.5296 - 15.0189I	0. + 7.46096I
b = -1.29425 + 1.66429I		
u = 1.74907 + 0.02053I		
a = -0.329253 - 0.013460I	16.0549 + 2.3419I	10.98491 + 0.I
b = 0.383663 + 0.561786I		
u = 1.74907 - 0.02053I		
a = -0.329253 + 0.013460I	16.0549 - 2.3419I	10.98491 + 0.I
b = 0.383663 - 0.561786I		
u = 1.84069		
a = -0.608035	15.0349	0
b = 0.218649		

II.
$$I_2^u = \langle -1.44 \times 10^{19} a^5 u^7 - 5.68 \times 10^{19} a^4 u^7 + \dots - 3.61 \times 10^{20} a + 7.51 \times 10^{20}, \ 6u^7 a^4 - 4u^7 a^3 + \dots - 37a - 45, \ u^8 + u^7 + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0404307a^{5}u^{7} + 0.159284a^{4}u^{7} + \dots + 1.01034a - 2.10469 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.148451a^{5}u^{7} + 0.103349a^{4}u^{7} + \dots + 0.884112a + 0.377445 \\ 0.188881a^{5}u^{7} + 0.0559350a^{4}u^{7} + \dots + 1.12623a - 2.48213 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0237472a^{5}u^{7} - 0.301682a^{4}u^{7} + \dots + 0.187318a + 1.13432 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0237472a^{5}u^{7} - 0.461154a^{4}u^{7} + \dots + 0.187318a + 1.13432 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0788423a^{5}u^{7} + 0.0602619a^{4}u^{7} + \dots + 0.128977a - 1.90494 \\ 0.0146164a^{5}u^{7} + 0.197157a^{4}u^{7} + \dots + 1.71940a - 1.98699 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.352334a^{5}u^{7} - 0.681823a^{4}u^{7} + \dots + 0.871371a + 0.687129 \\ 0.233033a^{5}u^{7} - 0.00868867a^{4}u^{7} + \dots + 0.931401a - 2.76607 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{20156225182067388064}{50977871582846282497}u^7a^5 + \frac{29676483013256697332}{50977871582846282497}u^7a^4 + \cdots + \frac{21731100052659838880}{50977871582846282497}a + \frac{182955131839228302618}{50977871582846282497}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + u^2 - 1)^{16}$
c_2, c_3, c_7 c_9	$u^{48} + u^{47} + \dots + 628u + 199$
c_4, c_8	$u^{48} + 3u^{47} + \dots - 34u - 1$
c_5, c_6, c_{10} c_{11}, c_{12}	$(u^8 + u^7 - 5u^6 - 4u^5 + 7u^4 + 4u^3 - 2u^2 - 2u - 1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 - y^2 + 2y - 1)^{16}$
c_2, c_3, c_7 c_9	$y^{48} - 33y^{47} + \dots - 434980y + 39601$
c_4, c_8	$y^{48} + 11y^{47} + \dots - 668y + 1$
c_5, c_6, c_{10} c_{11}, c_{12}	$(y^8 - 11y^7 + 47y^6 - 98y^5 + 103y^4 - 50y^3 + 6y^2 + 1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.008780 + 0.254919I		
a = -0.166634 - 0.860931I	2.43453 + 6.46095I	5.93215 - 7.49747I
b = -0.251079 - 0.246323I		
u = 1.008780 + 0.254919I		
a = 0.980017 + 0.579991I	2.43453 + 0.80471I	5.93215 - 1.53858I
b = -0.240136 - 0.202961I		
u = 1.008780 + 0.254919I		
a = 1.271630 + 0.216056I	-1.70306 + 3.63283I	-0.59711 - 4.51802I
b = -0.266125 - 1.193000I		
u = 1.008780 + 0.254919I		
a = -0.68837 - 1.35983I	-1.70306 + 3.63283I	-0.59711 - 4.51802I
b = -0.25696 + 1.69313I		
u = 1.008780 + 0.254919I		
a = 1.86379 + 0.32622I	2.43453 + 0.80471I	5.93215 - 1.53858I
b = -1.104540 - 0.808153I		
u = 1.008780 + 0.254919I		
a = -2.23689 - 0.90869I	2.43453 + 6.46095I	5.93215 - 7.49747I
b = 1.20089 + 1.63498I		
u = 1.008780 - 0.254919I		
a = -0.166634 + 0.860931I	2.43453 - 6.46095I	5.93215 + 7.49747I
b = -0.251079 + 0.246323I		
u = 1.008780 - 0.254919I		
a = 0.980017 - 0.579991I	2.43453 - 0.80471I	5.93215 + 1.53858I
b = -0.240136 + 0.202961I		
u = 1.008780 - 0.254919I		
a = 1.271630 - 0.216056I	-1.70306 - 3.63283I	-0.59711 + 4.51802I
b = -0.266125 + 1.193000I		
u = 1.008780 - 0.254919I		
a = -0.68837 + 1.35983I	-1.70306 - 3.63283I	-0.59711 + 4.51802I
b = -0.25696 - 1.69313I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.008780 - 0.254919I		
a = 1.86379 - 0.32622I	2.43453 - 0.80471I	5.93215 + 1.53858I
b = -1.104540 + 0.808153I		
u = 1.008780 - 0.254919I		
a = -2.23689 + 0.90869I	2.43453 - 6.46095I	5.93215 + 7.49747I
b = 1.20089 - 1.63498I		
u = -0.772257		
a = -1.364720 + 0.339718I	-0.55639 - 2.82812I	2.51294 + 2.97945I
b = 0.223038 - 1.310810I		
u = -0.772257		
a = -1.364720 - 0.339718I	-0.55639 + 2.82812I	2.51294 - 2.97945I
b = 0.223038 + 1.310810I		
u = -0.772257		
a = 1.70574 + 1.73282I	-0.55639 - 2.82812I	2.51294 + 2.97945I
b = -0.72520 - 1.74104I		
u = -0.772257		
a = 1.70574 - 1.73282I	-0.55639 + 2.82812I	2.51294 - 2.97945I
b = -0.72520 + 1.74104I		
u = -0.772257		
a = -2.61907	-4.69397	-4.01630
b = 0.283127		
u = -0.772257		
a = 3.52258	-4.69397	-4.01630
b = -1.61356		
u = -0.240178 + 0.426557I		
a = -0.900832 - 0.716113I	-1.41940 - 4.10344I	0.69028 + 8.06462I
b = 0.49484 - 1.58079I		
u = -0.240178 + 0.426557I		
a = -0.757692 - 0.900356I	-5.55698 - 1.27532I	-5.83898 + 5.08518I
b = -0.585477 - 1.229040I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.240178 + 0.426557I		
a = 0.540126 - 0.065165I	-1.41940 + 1.55280I	0.69028 + 2.10573I
b = -0.772436 + 0.638956I		
u = -0.240178 + 0.426557I		
a = 1.70370 + 0.18215I	-1.41940 + 1.55280I	0.69028 + 2.10573I
b = -0.068775 + 1.092420I		
u = -0.240178 + 0.426557I		
a = -1.26218 + 1.32424I	-1.41940 - 4.10344I	0.69028 + 8.06462I
b = -0.252731 - 0.328836I		
u = -0.240178 + 0.426557I		
a = 0.86475 + 1.86092I	-5.55698 - 1.27532I	-5.83898 + 5.08518I
b = -0.208159 + 0.992906I		
u = -0.240178 - 0.426557I		
a = -0.900832 + 0.716113I	-1.41940 + 4.10344I	0.69028 - 8.06462I
b = 0.49484 + 1.58079I		
u = -0.240178 - 0.426557I		
a = -0.757692 + 0.900356I	-5.55698 + 1.27532I	-5.83898 - 5.08518I
b = -0.585477 + 1.229040I		
u = -0.240178 - 0.426557I		
a = 0.540126 + 0.065165I	-1.41940 - 1.55280I	0.69028 - 2.10573I
b = -0.772436 - 0.638956I		
u = -0.240178 - 0.426557I		
a = 1.70370 - 0.18215I	-1.41940 - 1.55280I	0.69028 - 2.10573I
b = -0.068775 - 1.092420I		
u = -0.240178 - 0.426557I		
a = -1.26218 - 1.32424I	-1.41940 + 4.10344I	0.69028 - 8.06462I
b = -0.252731 + 0.328836I		
u = -0.240178 - 0.426557I		
a = 0.86475 - 1.86092I	-5.55698 + 1.27532I	-5.83898 - 5.08518I
b = -0.208159 - 0.992906I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.67992		
a = -1.22399 + 0.97102I	8.26521 - 2.82812I	3.33185 + 2.97945I
b = 0.58572 - 1.53466I		
u = 1.67992		
a = -1.22399 - 0.97102I	8.26521 + 2.82812I	3.33185 - 2.97945I
b = 0.58572 + 1.53466I		
u = 1.67992		
a = -2.06031	4.12763	-3.19740
b = 0.835472		
u = 1.67992		
a = 1.71698 + 2.02515I	8.26521 - 2.82812I	3.33185 + 2.97945I
b = -1.19582 - 2.17322I		
u = 1.67992		
a = 1.71698 - 2.02515I	8.26521 + 2.82812I	3.33185 - 2.97945I
b = -1.19582 + 2.17322I		
u = 1.67992		
a = 3.36647	4.12763	-3.19740
b = -2.45190		
u = -1.72243 + 0.06628I		
a = 1.108900 - 0.735799I	8.02419 - 4.93524I	-0.03508 + 2.99422I
b = -0.423485 + 1.321650I		
u = -1.72243 + 0.06628I		
a = 0.564850 - 0.069165I	12.16180 - 2.10712I	6.49419 + 0.01478I
b = -0.193774 - 0.376350I		
u = -1.72243 + 0.06628I		
a = 0.091340 + 0.181993I	12.1618 - 7.7634I	6.49419 + 5.97367I
b = -0.257409 + 0.636530I		
u = -1.72243 + 0.06628I		
a = -0.62469 + 1.84935I	8.02419 - 4.93524I	-0.03508 + 2.99422I
b = 0.07951 - 2.00864I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.72243 + 0.06628I		
a = 2.17225 - 0.62127I	12.16180 - 2.10712I	6.49419 + 0.01478I
b = -1.51193 + 0.90608I		
u = -1.72243 + 0.06628I		
a = -2.46292 + 1.34903I	12.1618 - 7.7634I	6.49419 + 5.97367I
b = 1.70346 - 1.68486I		
u = -1.72243 - 0.06628I		
a = 1.108900 + 0.735799I	8.02419 + 4.93524I	-0.03508 - 2.99422I
b = -0.423485 - 1.321650I		
u = -1.72243 - 0.06628I		
a = 0.564850 + 0.069165I	12.16180 + 2.10712I	6.49419 - 0.01478I
b = -0.193774 + 0.376350I		
u = -1.72243 - 0.06628I		
a = 0.091340 - 0.181993I	12.1618 + 7.7634I	6.49419 - 5.97367I
b = -0.257409 - 0.636530I		
u = -1.72243 - 0.06628I		
a = -0.62469 - 1.84935I	8.02419 + 4.93524I	-0.03508 - 2.99422I
b = 0.07951 + 2.00864I		
u = -1.72243 - 0.06628I		
a = 2.17225 + 0.62127I	12.16180 + 2.10712I	6.49419 - 0.01478I
b = -1.51193 - 0.90608I		
u = -1.72243 - 0.06628I		
a = -2.46292 - 1.34903I	12.1618 + 7.7634I	6.49419 - 5.97367I
b = 1.70346 + 1.68486I		

III.
$$I_3^u = \langle -u^8 + 6u^6 - u^5 - 11u^4 + 3u^3 + 6u^2 + b - u, \ -u^{12} - u^{11} + \dots + a + 2, \ u^{13} - 10u^{11} + \dots - 6u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^3 + u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} + u^{11} + \dots - 10u - 2 \\ u^8 - 6u^6 + u^5 + 11u^4 - 3u^3 - 6u^2 + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{12} - 10u^{10} + \dots - 9u - 1 \\ u^{11} - 8u^9 + u^8 + 23u^7 - 5u^6 - 28u^5 + 7u^4 + 12u^3 - 2u^2 - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} + u^9 - 8u^8 - 7u^7 + 23u^6 + 18u^5 - 27u^4 - 21u^3 + 8u^2 + 10u + 3 \\ -u^{12} + 9u^{10} - u^9 - 30u^8 + 5u^7 + 45u^6 - 6u^5 - 29u^4 - u^3 + 6u^2 + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - 8u^8 - u^7 + 23u^6 + 7u^5 - 28u^4 - 15u^3 + 11u^2 + 10u + 2 \\ -u^{12} + 9u^{10} - 30u^8 - u^7 + 45u^6 + 5u^5 - 29u^4 - 7u^3 + 6u^2 + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - 8u^8 - u^7 + 23u^6 + 7u^5 - 28u^4 - 15u^3 + 11u^2 + 10u + 2 \\ -u^{12} + 9u^{10} - 30u^8 - u^7 + 45u^6 + 5u^5 - 29u^4 - 7u^3 + 6u^2 + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - u^{11} + \dots + 7u + 5 \\ -u^3 + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^3 + 2u \\ u^5 - 3u^3 + u \end{pmatrix}$$

(ii) Obstruction class = 1

$$= 4u^{12} - 38u^{10} + 131u^8 + 3u^7 - 193u^6 - 21u^5 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 13u - 8u^2 + 101u^4 + 40u^3 + 8u^2 - 101u^4 + 40u^4 + 40u^4$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{13} - 5u^{12} + \dots + 4u^2 - 1$
c_2, c_7	$u^{13} + u^{12} + \dots + u + 1$
c_3, c_9	$u^{13} - u^{12} + \dots + u - 1$
c_4, c_8	$u^{13} + u^{10} - 4u^9 + u^8 - u^7 + 3u^5 - 2u^4 + u^3 - 2u^2 + 1$
c_5, c_6	$u^{13} - 10u^{11} + 38u^9 + u^8 - 68u^7 - 6u^6 + 57u^5 + 11u^4 - 18u^3 - 6u^2 + 48u^4 - 18u^4 - 18u^$
c_{10}, c_{11}, c_{12}	$u^{13} - 10u^{11} + 38u^9 - u^8 - 68u^7 + 6u^6 + 57u^5 - 11u^4 - 18u^3 + 6u^2 - 48u^4 - 48u^$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{13} - 9y^{12} + \dots + 8y - 1$
c_2, c_3, c_7 c_9	$y^{13} - 13y^{12} + \dots + 13y - 1$
c_4, c_8	$y^{13} - 8y^{11} - 3y^{10} + 20y^9 + 9y^8 - 19y^7 - 6y^6 + 9y^5 - 7y^3 + 4y - 1$
c_5, c_6, c_{10} c_{11}, c_{12}	$y^{13} - 20y^{12} + \dots + 12y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.900642 + 0.211290I		
a = -0.806576 + 0.876637I	0.15794 - 4.22361I	4.67376 + 7.74732I
b = 0.07621 - 1.64069I		
u = -0.900642 - 0.211290I		
a = -0.806576 - 0.876637I	0.15794 + 4.22361I	4.67376 - 7.74732I
b = 0.07621 + 1.64069I		
u = 0.835287		
a = 3.11335	-4.06419	11.1840
b = -1.13883		
u = 1.349780 + 0.188354I		
a = 1.53326 + 0.73818I	3.33191 - 0.41146I	8.75330 + 4.03305I
b = -1.030280 - 0.706563I		
u = 1.349780 - 0.188354I		
a = 1.53326 - 0.73818I	3.33191 + 0.41146I	8.75330 - 4.03305I
b = -1.030280 + 0.706563I		
u = -1.48165		
a = -1.60389	0.435715	-0.725220
b = 0.723464		
u = -0.246497 + 0.330591I		
a = 2.16431 - 0.42060I	-2.02748 + 2.39614I	-5.69138 - 3.50014I
b = -0.44057 + 1.37835I		
u = -0.246497 - 0.330591I		
a = 2.16431 + 0.42060I	-2.02748 - 2.39614I	-5.69138 + 3.50014I
b = -0.44057 - 1.37835I		
u = 0.333287		
a = -4.10575	-5.76311	-9.04720
b = -0.312491		
u = -1.68760		
a = 2.68033	4.96623	8.76410
b = -1.63543		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.70777 + 0.05845I		
a = -0.84719 - 1.38187I	9.50181 + 5.30924I	6.33383 - 5.02700I
b = 0.35559 + 1.80257I		
u = 1.70777 - 0.05845I		
a = -0.84719 + 1.38187I	9.50181 - 5.30924I	6.33383 + 5.02700I
b = 0.35559 - 1.80257I		
u = -1.82016		
a = 0.828351	15.3957	16.6850
b = -0.558619		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 + u^2 - 1)^{16})(u^{13} - 5u^{12} + \dots + 4u^2 - 1)$ $\cdot (u^{24} - 18u^{23} + \dots + 2816u - 256)$
c_2, c_7	$(u^{13} + u^{12} + \dots + u + 1)(u^{24} - u^{23} + \dots + u - 1)$ $\cdot (u^{48} + u^{47} + \dots + 628u + 199)$
c_3, c_9	$(u^{13} - u^{12} + \dots + u - 1)(u^{24} - u^{23} + \dots + u - 1)$ $\cdot (u^{48} + u^{47} + \dots + 628u + 199)$
c_4, c_8	$(u^{13} + u^{10} - 4u^9 + u^8 - u^7 + 3u^5 - 2u^4 + u^3 - 2u^2 + 1)$ $\cdot (u^{24} - 6u^{22} + \dots - 2u + 1)(u^{48} + 3u^{47} + \dots - 34u - 1)$
c_5, c_6	$(u^{8} + u^{7} - 5u^{6} - 4u^{5} + 7u^{4} + 4u^{3} - 2u^{2} - 2u - 1)^{6}$ $\cdot (u^{13} - 10u^{11} + 38u^{9} + u^{8} - 68u^{7} - 6u^{6} + 57u^{5} + 11u^{4} - 18u^{3} - 6u^{2} + 1)$ $\cdot (u^{24} - 7u^{23} + \dots - 32u + 8)$
c_{10}, c_{11}, c_{12}	$(u^{8} + u^{7} - 5u^{6} - 4u^{5} + 7u^{4} + 4u^{3} - 2u^{2} - 2u - 1)^{6}$ $\cdot (u^{13} - 10u^{11} + 38u^{9} - u^{8} - 68u^{7} + 6u^{6} + 57u^{5} - 11u^{4} - 18u^{3} + 6u^{2} - 1)$ $\cdot (u^{24} - 7u^{23} + \dots - 32u + 8)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 - y^2 + 2y - 1)^{16})(y^{13} - 9y^{12} + \dots + 8y - 1)$ $\cdot (y^{24} - 10y^{23} + \dots + 262144y + 65536)$
$c_2, c_3, c_7 \ c_9$	$(y^{13} - 13y^{12} + \dots + 13y - 1)(y^{24} - 13y^{23} + \dots - 3y + 1)$ $\cdot (y^{48} - 33y^{47} + \dots - 434980y + 39601)$
c_4,c_8	$(y^{13} - 8y^{11} - 3y^{10} + 20y^9 + 9y^8 - 19y^7 - 6y^6 + 9y^5 - 7y^3 + 4y - 1)$ $\cdot (y^{24} - 12y^{23} + \dots - 30y + 1)(y^{48} + 11y^{47} + \dots - 668y + 1)$
$c_5, c_6, c_{10} \\ c_{11}, c_{12}$	$(y^8 - 11y^7 + 47y^6 - 98y^5 + 103y^4 - 50y^3 + 6y^2 + 1)^6$ $\cdot (y^{13} - 20y^{12} + \dots + 12y - 1)(y^{24} - 31y^{23} + \dots - 160y + 64)$