# Celularni avtomati (Game of Life)

Matej Kristan in Tadej Hiti

### Motivacija:

Izvor motivacije za izbiro igre "Game of Life" ter celularnih avtomatov splošneje kot projekt pri predmetu Paralelni sistemi izhaja iz zanimivih ter abstraktnih konceptov, ki se jih teoretično ozadje igre dotika. Zanimivo je, da kljub znanim pravilom obstoja celic skozi generacije ne obstaja algoritem, ki bi mu za vhod podali vhodno (začetna generacija) in poljubno (poljubna generacija) stanje, ta pa bi izračunal ali bo do tega poljubnega stanja oziroma generacije sploh prišlo. Prav tako naju je navdihnilo spoznanje, da v naravi obstajajo biološki procesi oziroma vzorci, ki se jih da dobro simulirati s pomočjo celularnih avtomatov.

### Opis:

Povod nastanka igre Game of Life prihaja iz prejšnjega stoletja, ko je britanski matematik John Horton Conway želel rešiti zastavljeni problem matematika John von Neumann-a, ki je želel odkriti ali obstaja hipotetični stroj, ki bi bil zmožen na podlagi zbranih surovin zgraditi kopije sebe ter tako pospešiti iskanje možnosti obstoja življenja ter kolonizacije onkraj našega planeta.

Game of Life je celularni avtomat, je igra brez igralca, kar pomeni da je evolucija odvisna od nič drugega kot začetnega podanega stanja ter vnaprej specificiranih nespreminjajočih pravil, ki opisujejo spreminjanje kvadaratnih celic na dvo-dimenzinalni neskončni ortogonalni mreži.

Vsaka celica na mreži drži eno izmed dveh stanj: živo ali mrtvo. Vsaka celica je s pomočjo vnaprej definiranih pravil v interakciji z sosednjimi celicami, ki držijo usodo trenutne celice ali bo ta skozi naslednjo generacijo obstala ali ne.

Najina realizacija problema bo priredba, kar pomeni da se bova osredotočila tudi na druge celularne avtomate in ne samo celularnega avtomata znanega kot "igra življenja", kar pa pomeni da sva definirala več možnih soseščin, ki vplivajo na obstoj celice skozi generacijo.

Med slednjimi sva trenutno implementirala sledeči soseščini celic, kjer je z modro ponazorjena opazovana celica in z rdečo sosednje celice, ki vplivajo na opazovano.



Moorova soseščina



von Neumannova soseščina

#### Pravila:

- Vsaka živa celica z manj kot dvema živima sosedoma umre kot posledica premajhne populacije.
- Vsaka živa celica z dvema ali tremi živimi sosedi preživi skozi naslednjo generacijo.
- Vsaka živa celica z več kot tremi živimi sosedi umre kot posledica prevelike populacije.
- Vsaka mrtva celica z natančno tremi živimi sosedi se spremeni v živo celico, kot posledica reprodukcije

#### Pseudokoda:

```
1
       foreach (cell in grid) {
2
           neighbours = 0;
3
           foreach (neighbour in neighborhood) {
4
                if (isAlive(neighbour))
5
                    neighbours++;
6
           }
7
           if (cell is alive) {
8
                if !((neighbours == 2) || (neighbours == 3) )
                    kill cell;
9
10
           }
11
           else {
12
                if (neighbours == 3)
13
                    revive square;
14
           }
15
```

# Ocenitev zahtevnosti algoritma:

Časovna zahtevnost:  $f(n,s) = O(n^2 * s)$ Prostorska zahtevnost:  $g(n,m) = O(n^2)$ 

n = velikost horizontalnega polja m = velikost vertikalnega polja s = število vplivnih okrožnih sosedov

#### Reference:

- <a href="https://en.wikipedia.org/wiki/Cellular\_automaton">https://en.wikipedia.org/wiki/Cellular\_automaton</a>
- https://en.wikipedia.org/wiki/Conway%27s\_Game\_of\_Life
- https://www.youtube.com/watch?v=R9Plq-D1gEk