Aufgabe 1 (Verbände)

$$[(2+1+1)+4 = 8 \text{ Punkte}]$$

- 1. Sei $M = \{1, 2, 3\}$.
 - (a) Zeichnen Sie das Hasse-Diagramm der Menge aller Partitionen Part(M) über M mit der partielle Ordnung \leq definiert durch:

$$P \preceq Q \Leftrightarrow_{df} \sim_P \subseteq \sim_Q$$
.

Dabei bezeichnet \sim_P wie üblich die zur Partition P assozierte Äquivalenzrelation.

Lösung:

(b) Ist Part(M) ein Verband? Begründen oder widerlegen Sie.

 ${\it L\"osung}$: Es ist offensichtlich ein Verband, da Infima und Suprema für je 2 Elemente existieren.

(c) Ist Part(M) sogar distributiver Verband? Begründen oder widerlegen Sie.

Lösung: Es ist kein distributiver Verband. Es liegt ein typisches Pattern für Nichtdistributivität vor. Benennt man nämlich im Hassediagramm das kleinste und größte
Element mit 0 und 1 und die Elemente der mittleren Schicht von links nach rechts mit
a,b,c, so gilt:

$$a \curlywedge (b \curlyvee c) = a \curlywedge 1 = a \neq 0 = 0 \curlyvee 0 = (a \curlywedge b) \curlyvee (a \curlywedge c)$$

2. $(V, \preceq) =_{df} (\mathfrak{P}(\mathbb{N}), \subseteq)$ der bekannte Potenzmengenverband natürlicher Zahlen und $A \subseteq \mathbb{N}$ beliebig. Wir betrachten die Abbildung:

$$h_A: V \to V$$
$$h_A(X) = X \cap A$$

Zeigen oder widerlegen Sie:

- (a) h_A ist ein \land -Homomorphismus.
- (b) h_A ist ein Υ -Homomorphismus.
- (c) h_A ist ein Ordnungshomomorphismus.

Lösung:

(a) h ist ein λ -Homomorphismus, denn es gilt für beliebige $X, Y \in \mathfrak{P}(\mathbb{N})$:

$$h_A(X \land Y) = (X \cap Y) \cap A$$

$$= (X \cap Y) \cap (A \cap A)$$

$$= (X \cap A) \cap (Y \cap A)$$

$$= h_A(X) \cap h_A(Y)$$

$$= h_A(X) \land h_A(Y)$$

(b) h_A ist auch ein Υ -Homomorphismus, denn es gilt

$$h_A(X \land Y) = (X \cup Y) \cap A$$
$$= (X \cap A) \cup (Y \cap A)$$
$$= h_A(X) \cup h_A(Y)$$
$$= h_A(X) \land h_A(Y)$$

(c) h_A ist ein Ordnungshomomorphismus. Dieses folgt gemäß Satz 7.19 direkt aus Teil (b) oder (c).

Aufgabe 2 (Algebraische Strukturen)

$$[3+2+2+(3+2)) = 12$$
 Punkte]

1. Die Menge GL(n,K) der invertierbaren $n \times n$ -Matrizen über einem Körper K ist gemäß Vorlesung bezüglich der Matrixmultiplikation eine Gruppe. Geben Sie explizit alle Elemente von $GL(2,\mathbb{Z}_2)$ an.

Hinweis: Hilfreich sind Überlegungen zur Invertierbarkeit anhand von Kriterien wie Nullzeilen, Nullspalten, identischen Zeilen bzw. Spalten oder der Determinante.

Lösung: Dem Hinweis folgend sind es genau die folgenden sechs 2×2 -Matrizen über \mathbb{Z}_2 :

$$\begin{pmatrix}1&0\\0&1\end{pmatrix},\;\begin{pmatrix}1&0\\1&1\end{pmatrix},\;\begin{pmatrix}1&1\\0&1\end{pmatrix},\;\begin{pmatrix}1&1\\1&0\end{pmatrix},\;\begin{pmatrix}0&1\\1&0\end{pmatrix},\;\begin{pmatrix}0&1\\1&1\end{pmatrix}$$

2. Geben Sie ein Beispiel einer nicht kommutativen Gruppe an und zeigen Sie die Nichtkommutativität anhand eines Beispiels.

Lösung:

Ein einfaches Beispiel ist die S_3 . Hier gilt z.B. $(1\ 3)\circ(1\ 2)=(1\ 2\ 3)$ und $(1\ 2)\circ(1\ 3)=(1\ 3\ 2)$. Weitere Beispiele wären etwa GL(n,K) mit $n\geq 2$.

Name, Vorname, Matrikelnummer	Bitte unbedingt leserlich ausfüllen
Traine, vortaine, travitaement	Divide unbedange telepinen waaranen

3. Bestimmen Sie in Zykelschreibweise das Resultat von

$$((2\ 5\ 3)\circ(1\ 4\ 3\ 2))^{-1}.$$

Lösung: Es gilt:

$$((2 5 3) \circ (1 4 3 2))^{-1}$$

$$=((1 4 2) \circ (3 5))^{-1}$$

$$=(1 4 2)^{-1} \circ (3 5)^{-1}$$

$$=(1 2 4) \circ (3 5)$$

- 4. Seien $\langle R, +_R, \cdot_R \rangle$ und $\langle S, +_S, \cdot_S \rangle$ Ringe, $\varphi : R \to S$ ein surjektiver Ringhomomorphismus und $I \subseteq R$ ein Ideal.
 - (a) Zeigen Sie, dass dann auch $\varphi(I) \subseteq S$ Ideal ist.

Hinweis: Dass $\varphi(I)$ Untergruppe von S ist, darf ohne Beweis benutzt werden.

Lösung: Sei $I \subseteq R$ Ideal und φ surjektiv. Nach Voraussetzung ist $\varphi(I)$ Untergruppe von S. Wir haben dann noch die Rechts- und Linksidealeigenschaft von $\varphi(I)$ nachzuweisen. Sei $s \in \varphi(I)$ und $s' \in S$. Dann ist zu zeigen:

i)
$$s \cdot s' \in \varphi(I)$$
 und

ii)
$$s' \cdot s \in \varphi(I)$$

Wir beweisen exemplarisch nur i), da ii) völlig analog ist. Offensichtlich existiert ein $r \in I$ mit $\varphi(r) = s$ und wegen der Surjektivität von φ auch ein $r' \in R$ mit $\varphi(r') = s'$. Dann gilt:

$$\begin{array}{rcl} s \cdot s' & = & \varphi(r) \cdot \varphi(r') \\ & = & \varphi(r' \cdot r) \in \varphi(I) \text{ ,da } I \text{ Ideal} \end{array}$$

(b) Zeigen Sie, dass auf die Voraussetzung der Surjektivität von φ im Allgemeinen nicht verzichtet werden kann, indem Sie R, S, φ und I so wählen, dass φ nicht surjektiv und $\varphi(I)$ kein Ideal ist.

Lösung: Wir wählen R als Ring der ganzen Zahlen und S als Körper der rationalen Zahlen mit der kanonischen Einbettung $\varphi(z) = z$ für alle $z \in \mathbb{Z}$. Betrachten wir nun das Ideal $2\mathbb{Z} \subseteq \mathbb{Z}$, dann ist dieses nicht Ideal von \mathbb{Q} , denn $\frac{1}{2} \cdot 2 \notin 2\mathbb{Z}$.

Name, Vorname, Matrikelnummer	Bitte unbedingt leserlich ausfüllen
Name, volname, Matrixemummer	Ditte unbedingt iesernen austunen

Aufgabe 3 (Vektorräume, Untervektorräume)

[2+2+2+2=8 Punkte]

Welche der folgenden Mengen sind Untervektorräume der angegebenen Vektorräume? Begründen Sie Ihre Antwort durch einen Beweis.

- 1. $U_1 =_{df} \{(x, y, z)^t \mid x = y = 2z\} \subseteq \mathbb{R}^3$.
- 2. $U_2 =_{df} \{(x,y)^t \mid x^2 = y^4 = 0\} \subseteq \mathbb{R}^2$.
- 3. $U_3 =_{df} \left\{ \left(a + b, b^2 \right)^t \mid a, b \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$.
- 4. $U_4 =_{df} \{ A \in \mathbb{R}^{3 \times 3} \mid A = A^t \} \subseteq \mathbb{R}^{3 \times 3}$

$L\ddot{o}sung$:

1. U_1 ist ein Untervektorraum: Seien $\vec{v}, \vec{w} \in U_1$ und $s \in \mathbb{R}$, dann gilt:

(a)

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$$

mit

$$v_1 + w_1 = (2v_3 + 2w_3)$$

= $2(v_3 + w_3)$
und
 $v_2 + w_2 = (2v_3 + 2w_3)$
= $2(v_3 + w_3)$

(b)

$$s \cdot \vec{v} = \begin{pmatrix} sv_1 \\ sv_2 \\ sv_3 \end{pmatrix}$$

mit

$$sv_1 = s(2v_3)$$

$$= 2(sv_3)$$
und
$$sv_2 = s(2v_3)$$

$$= 2(sv_3)$$

2. U_2 ist ein Unterverktorraum. Da der angegebene Körper \mathbb{R} ist folgt aus $x^2 = y^4 = 0$ dass x = y = 0 gilt. U_2 ist also der Vektorraum $\{(0,0)^t\}$

3. Mit U_3 liegt kein Untervektorraum vor:

Es ist
$$(0,1)^t = ((-1)+1,1^2)^t \in U_2$$
, aber $(-1)\cdot (0,1)^t = (0,-1)^t \notin U_2$.

4. U_4 ist ein Untervektorraum: Seien $A, B \in \mathbb{R}^{3 \times 3}$ und $s \in \mathbb{R}$, dann gilt

(a)

$$A + B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{12} & b_{22} & b_{23} \\ b_{13} & b_{23} & b_{33} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix}$$
$$= (A + B)^{T}$$

(b)

$$s \cdot A = \begin{pmatrix} sa_{11} & sa_{12} & sa_{13} \\ sa_{12} & sa_{22} & sa_{23} \\ sa_{13} & sa_{23} & sa_{33} \end{pmatrix}$$
$$= (s \cdot A)^{T}$$