11. 실천 방법론

인공지능학과 2021084348 서하은

실천 방법론이란?

앞서 배웠던 심층 학습기법을 적용하려면 알고리즘의 종류를 알고 어떤 원리인지 알아야 함.

알고리즘을 실전에 제대로 적용하기 위한 방법들을 다룸.

심층 학습 시스템 설계 과정

1. 목표 결정 : 오차 측정법과 목표 오차 측도 설정 (문제에 기초)

- 2. 처음부터 끝까지의 모든 요소를 갖춘 시스템 확립 EX) 성과 추정 방법
- 3. 나쁜 성과의 원인(요소) 파악
- 4. 이러한 과정을 통해 새로운 자료 수집, 매개변수 조정, 알고리즘 개선 등의 변화를 시스템에 점진적으로 적용

11.1 성과 측정

- 오차 측정법과 목표 오차를 결정-> 개발 목표를 정의해야 함.
- 베이즈 오차 = 달성 가능한 최소 오류율
 - -> 베이즈 오차보다 작은 오차는 불가능
- 적절한 목표 성과 수준 결정하려면
 - 1. 학술연구는 이전에 공개된 벤치마크 결과들에 기초
 - 2. 실제 응용에서는 프로그램의 안정성과 효율성 + 소비자 고려

11.1 성과 측정

성과 측정 방법

- 일반적인 경우
 시스템의 정확도와 오류율 (동등한 정보를 제공함)
- 2. 특수한 경우 각각의 경우에 따라 정밀도, 재현율, 포괄도, 클릭도, 만족도 등의

다양한 측도들을 유연하게 사용

11.1 성과 측정(예시)

희귀병 진단의 경우 정확도를 성과 측도로 사용하는 건 유용하지 않음.

->정밀도와 재현율를 측도로 사용해야 함. 정밀도= 검출한 사건 중 실제로 발생한 사건의 비율 재현율 = 실제로 발생한 사건 중 검출한 사건의 비율

정밀도와 재현율을 함께 측도로 사용하는 경우

- -> 정밀도 Y축, 재현율 X축으로 하는 PR 곡선
- -값을 조정함으로써 정밀도와 재현율의 적절한 균형점 찾기
- -곡선보다는 수치로 표현하는 게 바람직함 -> f 점수로 변환

11.2 기준 모형

 앞 절에서 성과 측도와 목표를 설정한 후 종단간 시스템을 최대한 일찍 확립하는 것.

-입출력 자료의 구조(종류)에 기초해 더 넓은 범위의 모형을 선택하는 것.

-지도학습 수행 시에는 순방향 신경망, 위상구조 존재하면 합성곱 신경망, 순차열이면 게이트 제어 순환망이 적합함.

11.2 기준 모형

Sgd(확률적 경사 하강법) 학습 속도가 감소 & 운동량이 적용된 최적화 알고리즘

배치 정규화 최적화에 문제가 있다고 판단될 때 적용 합성곱 신경망과 S자형 함수를 사용하는 신경망에서 큰 영향

드롭아웃 구현이 쉽고 다양한 모형과 알고리즘에 적용 가능한 정칙화 수단

종단간 시스템이 확립된 경우

- -> 알고리즘의 성과 측정 및 개선방안 탐색
- -> 알고리즘 자체의 개선보다는 추가 자료 수집이 더 유용

 훈련 데이터에 대한 성과가 나쁘면 현재 훈련 자료도 충분히 사용하지 못한 것

Sol1) 자료 수집 필요 X , 층을 추가, 각 층에 은닉을 추가해 모형을 키우기

Sol2) 모형 키워도 성과가 나아지지 않는 경우

- ->훈련 자료의 품질 검토
- ->자료에 잡음, 적절한 입력들이 미포함
- ->자료 재수집, 다채로운 특징을 가진 자료 수집

2. 훈련 집합에 대해 성과가 괜찮은 수준일 때 => '시험' 집합에 대해 성과 측정

a. 시험 성과도 좋은 경우 => 더 이상 수정 필요 X

- b. 시험집합에 대한 성과가 훈련집합에 못 미치는 경우
- -> 가장 효과적인 방법은 자료를 더 수집하는 것
- -> 이때 실현가능성과 비용 , 추가 자료의 양 고려

- 추가자료 수집 어려운 경우
- -> 모형의 크기 줄이거나 정칙화 개선 정칙화 개선하고도 성과의 차이가 크다면 추가 자료 수집

11.4 초매개변수 선택

초매개변수는 알고리즘의 여러 측면을 제어

1. 수동 선택 -> 사람이 직접 선택 ->초매개변수 작용과 일반화에 대한 이해 필요

2. 자동 선택 -> 알고리즘을 통해 선택 ->이해 필요성 감소, 계산 비용이 커짐

11.4.1 수동 초매개변수 조율

일정한 실행시간과 예산 안에서 일반화 오차가 최소가 되는 값 ->모형의 유효 수용력을 과제의 복잡도에 부합하는 수준으로 설정

유효 수용력 제한요인

1. 모형의 표현 수용력 2. 비용함수 최소화 능력 3. 정칙화 정도

11.4.1 수동 초매개변수 조율(예시)

초매개변수에 대한 일반화 오차가 U자 곡선인 경우

- -한쪽 끝에서는 낮은 수용력에 대응,
- -다른 한쪽 끝에서는 높은 수용력에 대응
- -두 지점 모두 일반화 오차가 큼
- ->최적의 모형 수용력은 이 극단 사이에 존재
- ->일반화 오차가 최소가 되는 지점

11.4.1 수동 초매개변수 조율(예시)

가장 중요한 초매개변수 -> 학습 속도

- ->학습속도가 너무 크면 훈련오차를 오히려 증가시킴
- ->학습속도가 너무 작으면 훈련속도가 느려짐.

11.4.1 수동 초매개변수 조율(예시)

학습 속도 이외의 초매개변수 조율 시

- 1. 훈련 집합에 대한 오차가 목표 오차율보다 클 경우
- 신경망 층이나 은닉 단위를 추가하여 수용력을 높여야 함.
- 2. 시험 집합에 대한 오차가 목표 오차율보다 클 경우
- 정칙화 변수들을 변경해서 수용력을 낮춰야 함.

11.4.2 자동 초매개변수 최적화 알고리즘

- 조율할 초매개변수의 개수가 적을때
- 같은 종류의 기존 연구나 경험에서 이미 얻어진 좋은 값이 있을때

좋은 초매개변수 찾기

-> 어떤 목적함수를 최적화하는 초매개변수 찾기

- 초매개변수 최적화 알고리즘 개발

11.4.3 격자 검색

조율할 초매개변수가 셋 이상일때 사용하는 방법

1. 초매개변수들에 대해 각각이 가질 수 있는 값들의 집합 지정

2. 집합들의 곱집합에 속하는 모든 값들의 조합에 대해 모형 훈련 ->검증 집합 오차가 최소가 되는 조합의 값이 최선의 초매개변수

계산 비용이 초매개변수 개수에 대해 지수적으로 증가한다는 문제점

11.4.4 무작위 검색

격자 검색보다 쉽고 빨리 수렴하는 방법

- 1. 각 초매개변수에 대해 하나의 주변 분포를 정의 Ex) 이진이나 이산의 경우 베르누이나 멀티누이 분포
- 2. 격자 검색처럼 검증 집합 오차 계산하여 최선의 값 선택
- 초매개변수의 값을 이산화 하지 않음(정숫값으로 변환)
- -> 추가적인 계산 비용 절감

격자 검색 VS 무작위 검색

한 초매개변수의 두 값을 시험할 때

- -격자 검색에서는 두 시행에서 다른 초매개변수의 값이 동일
- -무작위 검색에서는 다른 초매개변수의 값이 다름.
- => 같은 결과일 경우 격자 검색은 같은 시도를 두번 한것.

11.4.5 모형 기반 초매개변수 최적화

검증 집합에 대해 오차 측도의 기울기를 구할 수 있는 경우 -> 기울기를 따라 초매개변수 최적화 진행

기울기 구하지 못하는 상황

->검증 집합 오차 모형을 만들고 그 안에서 최적화 수행해서 초매개변수 값들을 추정

베이즈 회귀 모형을 이용해 기댓값과 불확실도 추청 흔히 쓰이는 최적화 접근 방식: Spearmint, TPE, SMAC 등

디버깅=> 모든 소프트웨어에서 소스 코드의 오류 또는 버그를 찾아서 수정하는 것

기계 학습 시스템의 성과가 나쁠 때 알고리즘 결함인지 알고리즘 구현에 버그가 있는 것인지 파악해야 함.

1. 모형의 작동을 시각화

- 기계학습모형이 과제 처리하는 걸 직접 관찰/표시 Ex) 이미지 물체 인식 -> 처리중인 이미지에 외곽선 표시
 - ->실무에서 성과 수치만 보고 다른 정보 간과하는 실수 방지

2. 최악의 실수를 시각화(수치화)

- Ex) 스트리트 뷰 전사 시스템에서 이미지 절단 과정에서의 누락
- -> 신경망은 해당 이미지에 정답에 낮은 확률 배정
- -> 문제가 발생한 부분을 시각화
- -> 이미지를 더 크게 절단하도록 시스템을 수정

3. 훈련 및 시험 오차를 이용해서 소프트웨어의 행동 추론

- -훈련오차 낮고 시험 오차 높은 경우
- -> 훈련 절차는 제대로 작동하지만 알고리즘에 문제 또는 훈련 이후 저장된 모형을 불러오는 코드에 문제

- -훈련 오차와 시험 오차가 모두 높은 경우
- -> 소프트웨어 결함인지 알고리즘 문제인지 알기 어려움

- 4. 작은 자료에 적합시키기
 - -충분히 작은 자료 집합에 적합시켜보기
 - ->견본 하나도 제대로 분류하지 못하는 경우
 - -> 소프트웨어의 결함

- 5. 역전파 미분들을 수치적으로 계산한 미분들과 비교
 - -기울기 공식을 잘못 구현해서 소프트웨어적 결함이 생기는 경우가 많음
 - -자동으로 구현된 미분을 유한차분을 이용한 미분들과 비교

- 6. 활성화 값들과 기울기들의 히스토그램을 확인
- -활성화 값들을 통해 단위의 포화 여부와 빈도 확인
- -> 자주 꺼지거나 항상 꺼지는 은닉 단위들 확인 가능
- -활성 함수 기울기의 증가, 소멸속도가 너무 빠르면 최적화가 어려움
- -매개변수 기울기를 매개변수 값과 비교
- -> 기울기/매개변수 값의 비율이 1% 정도가 되는 것이 바람직함

11.6 예제: 여러 자리 수의 인식

스트리트 뷰 전사 시스템의 개발 과정

- 1. 자료의 수집
- -차량으로부터 건물 원본 이미지 자료 수집
- -기계 학습을 이용해 이미지에서 번지수에 해당하는 부분 검출

- 2.성과측정 방법과 바람직한 측정 수치 선택
- -> 업무 목표에 맞추는 것이 가장 중요
- -> 지도(목적)는 정확도가 중요
- ->정확도를 고정하고 포괄도를 최적화 하는 것을 목표

11.6 예제: 여러 자리 수의 인식

- 3. 적절한 종단간 기준 시스템 확립
 - 선형 단위를 사용하는 합성곱 신경망

- 4. 기준 모형을 정련 -> 성과 개선 여부 확인
 - -이론적인 로그 가능도를 실제로 계산하도록 출력층과 비용함수 구체화
 - -번지수 검출 시스템의 절단 영역을 넓힘
 - -초매개변수 조정 -> 모형의 크기 키움

=>정확도는 98%로 유지하면서 포괄도를 95%까지 올림

감사합니다

Q & A