

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Electrónicos de Processamento de Sinal

Introdução ao Processamento Digital de Sinal & BPSK Modem

Maria Margarida Dias dos Reis n.º 73099 David Gonçalo C. C. de Deus Oliveira n.º 73722 Nuno Miguel Rodrigues Machado n.º 74236

$\acute{\mathbf{I}}\mathbf{ndice}$

1	Introdução	1
2	Projecto #1 - NCO	1
	2.1	1
	2.2	1
	2.3	1
	2.4	1
	2.5	2
	2.6	2
	2.7	3
	2.8	3
3	Projecto #2 - Transmissor BPSK	3
	3.1	3
	3.2	3
	3.3	3
4	Conclusões	3

1 Introdução

2 Projecto #1 - NCO

intro margarida

2.1

margarida

2.2

david

2.3

david

2.4

Foram criadas duas variáveis com o objectivo de controlar a amplitude e frequência do sinal sinusoidal. A variável delta representa o controlo da frequência, já a variável amp representa o controlo da amplitude. Como se pode identificar no código abaixo:

```
AIC_buffer.channel[LEFT] = y;
}
}
```

Como foi referido anteriormente na questão 2.1, a partir da rampa de integração pode-se calcular o valor de delta usando a seguinte relação:

$$\triangle = \frac{f_0}{f_s} 2^{16},\tag{2.1}$$

Como o NCO tem como característica uma a frequência f_0 que varia entre 2kHz e 6kHz. Estes valores são controlados a partir da amplitude do sinal de entrada. Quando esta for minima, a frequência f_0 é de 2kHz e quando for máxima, a frequência f_0 é de 6kHz. Com estas especificações pode-se calcular o valor de delta, todos os valores referidos na tabela seguinte estão no formato Q_{15} :

$f_0 \text{ kHz}$	<u>delta</u>
2	8192
4	16384
6	24576

Analisando este resultado verificou-se que o valor de delta oscila com uma amplitude de 8192 em torno de 16384. Ou seja, f_0 têm uma frequência central em 4 kHz oscilando com uma amplitude de 2 kHz. Com esta conclusão, teve-se de garantir que o valor da amplitude do sinal de entrada não ultrapasse os 8192, mantendo a relação entre cada amostra. Optou-se por dividir o valor de cada amostra por 4, deslocamento de 2 bits para a direita, pois a amplitude máxima é de 32768. Em baixo está o código referente ao calculo para obter o delta delta, todos as variáveis definidas neste excerto são de 16 bits, short, em formato Q_{15} :

```
//Obtencao do valor para a frequencia
delta = 16384 + (inbuf>>2);
```

2.5

teddy

2.6

teddy

4 Conclusões