7.4 Addition and Multiplication Rules of Probability – Overview

Addition Rules

Addition Rule for Probability: Consider two events A and B. The probability of A or B occurring is

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

P(king or spade) = P(king) + P(spade) - P(king and spade)

$$= (\kappa_{-})s) + (\kappa_{-})s - (\kappa_{-})s$$

(double counted)

Mutually Exclusive Events: Two events are considered to be mutually exclusive if they have no outcomes in common.

Addition Rule for Mutually Exclusive Events:

$$P(A \text{ or } B) = P(A) + P(B)$$

P(Club or Heart) = P(Club) + P(Heart)

Example 1: Suppose we collected data from MATH 125 students about their major and attendance record. Then we randomly selecting a single student. Assume no double majors.

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

a) Find the probability the student is a Statistics major.

b) Find the probability the student has Good attendance.

c) Find the probability the student is a Statistics major and has Good attendance.

d) Find the probability the student is a Statistics major or has Good attendance.

e) Find the probability the student is a Chemistry major or has Poor attendance.

f) Find the probability the student is an Art major or a Chemistry major.

$$P(Art \ or \ Chim) = \frac{105 + 180 - 0}{435} = \frac{285}{435}$$
No overlap (mutually exclusive)

Conditional Probability

The conditional probability of Event B, given that Event A has already occurred is written as P(B | A)

• Event A is the "additional information" that we know, so we can restrict what we are looking at if we have a table. Then we are interested in Event B..

Example 2:

-	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

> goes sclond

goes first

's given A

a) Given the student has Perfect attendance, find the probability they are a Chemistry major.

b) Find the probability the student has Perfect attendance given they are a Chemistry major.

c) Given the student is an Art major, find the probability they have Poor attendance.

Example 3: A swim team consists of 6 boys and 4 girls. A relay team of 4 swimmers is chosen at random from the team members. What is the probability that 2 boys are selected for the relay team given that the first two selections were girls?

Conditional () additional into

$$\frac{6}{6} \frac{(\text{Remaining})}{(\text{Spots})} \frac{8}{68.75} + 68.75}$$

$$\frac{6}{3} \frac{(\text{Next 2 Boys})}{(\text{Next 2 Boys})} = ??$$
Direct way

$$\frac{6}{8} \times \frac{5}{7} = \frac{30}{56} = \frac{15}{28}$$

P No impact

- with replacement - unrelated

Independent Events: The result of one event <u>does not influence</u> the probability of the other.

experiments

Dependent Events: The result of one event <u>does influence</u> the probability of the other.

Multiplication Rule for Independent Events: Consider two independent events A and B. The probability of A and B occurring is:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Example 2: Three cards are drawn with replacement from a standard deck of 52 cards. Find the probability that the first card will be a diamond, the second card will be a red card, and the third card will be a queen. Q

$$P(D \text{ and } R \text{ and } Q) = \frac{13}{52} \times \frac{26}{52} \times \frac{4}{52} = \frac{4}{916} = \frac{1}{104}$$

$$P(D) \times P(R) \times P(Q)$$

Multiplication Rule for Dependent Events: Consider two dependent events A and B. The probability of A and B occurring is:

$$P(A \text{ and } B) = P(A) \times P(B \mid A)$$
"Both events occurred" = "A occurred, then B occurred later"

Dopendent Example 3: If you are dealt two cards from a standard 52 card deck without replacement. Find the probability of getting a 10 of hearts and then a red card.

$$p(10H) \times p(Red | 10H)$$
 $p(10H) \times p(Red | 10H)$
 $p(10H) \times p(Red | 10H)$
 $\frac{1}{57} \times \frac{25}{51} = \frac{25}{3652}$

Bayes Theorem: Useful for converting from one conditional probability to another (Example 10 in Learn)

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)},$$
 when P(B) > 0.