Introduction

- . The goal is to compare if two groups are ingrificantly different.
- · There are two options regarding "Two Sample Hypotheris Testing":
 - + Matched pairs: He two samples are 'dependent',
 - + Independent samples: equal variances

Matched Pairs

> Same number of observations ha both samples

- Data in the two samples is dependent. Some examples:
 - + Clinical bials: same participants, before/ofter. @
 - + Measurements using various instruments (for example, car speed measured using radar and speed-meter). (3)
 - + Test (blind) of various products by some customers. ©

@	Blood pressure	
	Before	After
Juan	18.4	12.2
Ramon	16.5	11.5

6 Instrument			nent
F		Radar	Speed-meter
	Cor A	120,5	119,4
1	Car B	115.2	112.7

Coca Cola	
Zero	Classic
7	9
4	. 5
	Zero 7

- . Is equivalent to make a 1 sample hypothesis test:
 - + Two sided 'equality' test.
 - + Testing against constant mean O, taking difference of samples:

No: Maiy = 0; H1: Maiy + 0

Independent Samples

~ No need to have same number of elements.

- . Data in the two samples is independent. Some examples:
 - + Clinical trials with two different medicine and with different people. @
 - + Measurement of speed of different cars in different roads. 6
 - + A/B testing for websites, users are shown a version of the website and click/no-clik behavior is measured.
- @ Drug A: [11.1, 12.2, 13.3, 18.7, etc.] (b) Road A: [100.5, 90.2, 85.7, ..., etc.]
 Drug B: [12.2, 13.5, 19.4, etc.]
 Road B: [70.4, 110.5, 95.7, ..., etc.]
 - Blood pressure

 O Version A: [1,0,0,1,0,0,1,0,0,1]

 Version B: [0,1,0,0,1,0,0,1,0] Sussibed

. There are two variants of the test:

a) Assuming 2 samples have equal variances, o can be computed pooling all samples:

$$Specked = \sqrt{\frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{n_1 + n_2 - 2}} \qquad t = \frac{\overline{X}_1 - \overline{X}_2}{Specked} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

b) Assuming 2 samples have unequal variances:

This version is called Welch's test:
$$E = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

· Equivalent to semething similar to:

Chi - squared contingency test

· Test if 2 categorical variables are independent (or not). Xi 11, pll, reject.
· Operates over a contingency matrix.

Ho, variables are related

. Widely used as feature selection algorithm (ML algorithms). The : independent / 4,: relatedy

Full example (Pokemon), finish in lab, this is just an introduction:

Leg	endary	True	False	
U	True	4	61	65
	False	108	627	735
		112	688	800

First step, compute confingency matrix, observed values

Property / Playend = Property Playend

@ Second step, compute 'expected values':

Printer n Plagent . 65 · 112 =	$\frac{65.688}{800} = 55.9$
<u>1112 · 735</u> = 1	$\frac{688 \cdot 735}{800} = 632, 1$

3 Compute Observed - Expected

- 5.1 = 4 - 9,1	5.1 = 61 - 55.9
5.1 = 108 - 102.9	- 5.1 = 627 - 632.1

(4) Compute (Observed - Expedded)2

$(-5.1)^2 = 26$. 01 5. 1	2 = 26.01
5.12 = 26.	.01 (-5.1	= 26.01

(D-E)2 E

$\frac{26.01}{9.1} = 2.858$	$\frac{26.04}{55.9} = 0.465$
$\frac{26.01}{102.9} = 0.252$	$\frac{26.01}{632.1} = 0.041$

© Compute $V_i^2 = \sum_{c \in \mathbb{N}} \frac{(0-E)^2}{E} = 2.858 + 0.465 + 0.252 + 0.041 = 3.61$

degrees of freedom = (rows-1). (colums-1)=1

p > 0.05 -> Can not reject null hypothesio. =

