Online Sinkhorn: Optimal Transport Distances from Sample Streams

Yue Xiang

2021.2.5

Outlines

- 1 Introduction
- 2 Sinkhorn Algorithm
- 3 Online Sinkhorn
- 4 Numerical Experiments

- Introduction
- 2 Sinkhorn Algorithm
- 3 Online Sinkhorn
- 4 Numerical Experiments

OT Distance

(X, d): a complete metric space

 $C: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$: cost function

 α, β : probability distributions over the space X

Find a plan $\pi \in \mathcal{P}(X \times X)$ to minimize the cost of moving α to β :

$$W(\alpha, \beta) \triangleq \min_{\pi \in \mathcal{P}(X \times X)} \left\{ \langle C, \pi \rangle : \pi_1 = \alpha, \pi_2 = \beta \right\}$$
 (1)

- $\langle C, \pi \rangle \triangleq \int C(x, y) d\pi(x, y)$
- $\bullet \ \pi_1 = \int_{y \in \mathcal{X}} \mathrm{d}\pi(\cdot, y)$
- $\bullet \ \pi_2 = \int_{x \in \mathcal{X}} \mathrm{d}\pi(x, \cdot)$

Wasserstein(OT) distance allows to compare distributions with disjoint supports.

Challenges in Estimating OT Distance

- Yet OT algorithms handles discrete distributions only.
- Computing OT distances: sample once from α , $\beta \to \text{get } \hat{\alpha}$, $\hat{\beta}$ discrete realizations \to solve a discrete linear program (LP).
 - numerically costly and statistically inefficient
 - can't adapt to ml settings where data is resampled continuously or accessed in an online manner

Entropy Penalty for Easy Computation

$$W(\alpha, \beta) \triangleq \min_{\substack{\pi \in \mathcal{P}(X \times X) \\ \pi_1 = \alpha, \pi_2 = \beta}} \langle C, \pi \rangle + \varepsilon \text{KL}(\pi \mid \alpha \otimes \beta) \tag{2}$$

where $KL(\pi \mid \alpha \otimes \beta) \triangleq \int \log \left(\frac{d\pi}{d\alpha d\beta}\right) d\pi$.

- Introduction
- 2 Sinkhorn Algorithm
- 3 Online Sinkhorn
- 4 Numerical Experiments

Primal and Dual Problems

Primal problem on measures

$$W(\alpha, \beta) \triangleq \min_{\pi \in \mathcal{U}(\alpha, \beta)} \left\{ \int_{x, y} C(x, y) d\pi(x, y) + \int_{x, y} \log \frac{d\pi}{d\alpha d\beta}(x, y) d\pi(x, y) \right\}$$
(3)

Dual problem on functions

$$\mathcal{W}(\alpha,\beta) = \max_{f,g \in C(\mathcal{X})} \left\{ \langle \alpha, f \rangle + \langle \beta, g \rangle - \langle \alpha \otimes \beta, \exp(f \oplus g - C) \rangle + 1 \right\} \tag{4}$$

- $\langle \alpha, f \rangle \triangleq \int f(x) d\alpha(x)$
- $(f \oplus g C)(x, y) \triangleq f(x) + g(y) C(x, y)$

Simultaneous Updates of f_t and g_t

Problem (4) can be solved by closed-form alternated maximization, which corresponds to Sinkhorn's algorithm.

At iteration t, the updates are

$$f_{t+1}(\cdot) = T_{\beta}(g_t), \quad g_{t+1}(\cdot) = T_{\alpha}(f_{t+1})$$
 (5)

where $T_{\mu}(h) \triangleq -\log \int_{y \in X} \exp(h(y) - C(\cdot, y)) d\mu(y)$.

Sinkhorn Algorithm

When the input distributions are discrete, the function f_t and g_t need only to be evaluated on $(x_i)_t$ and $(y_i)_t$.

Let $\mathbf{u}_t \triangleq \left(e^{-f_t(x_i)}\right)_{i=1}^n$, $\mathbf{v}_t \triangleq \left(e^{-g_t(y_i)}\right)_{i=1}^n$, the iteration (5) becomes:

$$\mathbf{u}_{t+1} = \mathbf{K} \frac{1}{n\mathbf{v}_t}$$
 and $\mathbf{v}_{t+1} = \mathbf{K}^{\mathsf{T}} \frac{1}{n\mathbf{u}_t}$ (6)

where $\boldsymbol{K} = \left(e^{-C(x_i,y_i)}\right)_{i,j=1}^n \in \mathbb{R}^{n \times n}.$

Complexity of Sinkhorn Algorithm

The Sinkhorn algorithm for OT operates in 2 phases:

- 1. Compute the kernel matrix K with a cost in $O(n^2d)(d$: dimension of X).
- 2. Each iterate of (6) costs $O(n^2)$.

Consistency and Bias

- Consistency Let $\hat{\alpha} = \frac{1}{n} \sum_{i} \delta_{x_{i}}$, $\hat{\beta} = \frac{1}{n} \sum_{i} \delta_{y_{i}}$. Consistency holds as $\mathcal{W}(\hat{\alpha}_{n}, \hat{\beta}_{n}) \to \mathcal{W}(\alpha, \beta)$.
- Bias
 The distance $W(\hat{\alpha}, \hat{\beta})$ and optimal functions $f^*(\hat{\alpha}, \hat{\beta})$ are biased estimations.

- Introduction
- 2 Sinkhorn Algorithm
- 3 Online Sinkhorn
- 4 Numerical Experiments

Notations

- $n_0 \triangleq 0$
- \bullet $n_{t+1} \triangleq n_t + n$
- n: size of mini-batch
- $\hat{\alpha}_t \triangleq \frac{1}{n} \sum_{i=n_t+1}^{n_{t+1}} \delta_{x_i}$
- $u_t \triangleq \exp(-f_t), v_t \triangleq \exp(-g_t)$
- $\kappa_y(\cdot) \triangleq \exp(-C(\cdot, y)), \ \kappa_x(\cdot) \triangleq \exp(-C(x, \cdot))$
- $||f||_{\text{var}} \triangleq \max_{x} f(x) \min_{x} f(x)$: variation norm

Stochastic Approximation(SA)

Using principles from SA, we cast the regularized OT problem as a root-finding problem of a function-valued operator

 $\mathcal{F}: C_+(X) \times C_+(X) \to C(X) \times C(X)$, for which we can obtained unbiased estimates. Optimal potentials are indeed exactly the roots of

$$\mathcal{F}: (u, v) \to \left(u(\cdot) - \int_{y \in \mathcal{X}} \frac{1}{v(y)} \kappa_y(\cdot) d\beta(y), \quad v(\cdot) - \int_{x \in \mathcal{X}} \frac{1}{u(x)} \kappa_x(\cdot) d\alpha(x)\right)$$
(7)

Using two empirical measures $\hat{\alpha}$ and $\hat{\beta}$ to estimate \mathcal{F} :

$$\hat{\mathcal{F}}_{\hat{\alpha},\hat{\beta}}(u,v) \triangleq \left(u(\cdot) - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{v(y_i)} \kappa_{y_i}(\cdot) \quad v(\cdot) - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{u(x_i)} \kappa_{x_i}(\cdot) \right)$$
(8)

Online Sinkhorn Iteration

Introduce a learning rate η_t in Sinkhorn iterations for finding roots of vector-valued functions:

$$(\hat{u}_{t+1}, \hat{v}_{t+1}) \triangleq (1 - \eta_t)(\hat{u}_t, \hat{v}_t) - \eta_t \hat{\mathcal{F}}_{\hat{a}_t, \hat{\beta}_t}(\hat{u}_t, \hat{v}_t), \quad \text{i.e.}$$

$$e^{-\hat{f}_{t+1}} = (1 - \eta_t) e^{-\hat{f}_t} + \eta_t e_t^{-T_{\hat{\beta}}}(\hat{g}_t)$$
(9)

The estimates \hat{u}_t and \hat{v}_t are defined by weights $(p_{i,t}, q_{i,t})_{i \leq n_t}$ and positions $(x_i, y_i)_{i \leq n_t} \subseteq X^2$:

$$e^{-\hat{f}_{t}(\cdot)} = \hat{u}_{t}(\cdot) \triangleq \sum_{i=1}^{n_{t}} \exp\left(q_{i,t} - C(\cdot, y_{i})\right) e^{-\hat{g}_{t}(\cdot)} = \hat{v}_{t}(\cdot) \triangleq \sum_{i=1}^{n_{t}} \exp\left(p_{i,t} - C(x_{i}, \cdot)\right).$$
 (10)

 p_i and q_i are updated in SA (9).

Online Sinkhorn Algorithm

Algorithm 1 Online Sinkhorn

```
Input: Dist. \alpha and \beta, learning weights (\eta_t)_t, batch sizes (n(t))_t Set p_i = q_i = 0 for i \in (0, n_1] for t = 0, \dots, T-1 do Sample (x_i)_{(n_t, n_{t+1}]} \sim \alpha, (y_j)_{(n_t, n_{t+1}]} \sim \beta. Evaluate (\hat{f}_t(x_i))_{i=(n_t, n_{t+1}]}, (\hat{g}_t(y_i))_{i=(n_t, n_{t+1}]} using (q_{i,t}, p_{i,t}, x_i, y_i)_{i=(0, n_t]} in (7). q_{(n_t, n_{t+1}], t+1} \leftarrow \log \frac{\eta_t}{t} + (\hat{g}_t(y_i))_{(n_t, n_{t+1}]}, \quad p_{(n_t, n_{t+1}], t+1} \leftarrow \log \frac{\eta_t}{t} + (\hat{f}_t(x_i))_{(n_t, n_{t+1}]}. q_{(0, n_t], t+1} \leftarrow q_{(0, n_t], t} + \log(1 - \eta_t), \quad p_{(0, n_t], t+1} \leftarrow p_{(0, n_t], t} + \log(1 - \eta_t). Returns: \hat{f}_T : (q_{i,T}, y_i)_{(0, n_T)} and \hat{g}_T : (p_{i,T}, x_i)_{(0, n_T)}
```

Complexity: Each iteration:

- Computation cost: $O(n_t^2)$
- Memory cost: $O(n_t)$

Convergence

Assumption 1. The cost $C: X \times X \to \mathbb{R}$ is L-Lipschitz, and X is compact.

Assumption 2. $(\eta_t)_t$ is such that $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty, 0 \le \eta_t \le 1$ for all t > 0. Assumption 3. For all t > 0, $n(t) = \frac{B}{w^2} \in \mathbb{N}$ and $0 \le \eta_t \le 1$. $\sum w_t \eta_t < \infty$ and

 $\sum \eta_t = \infty$.

Proposition 1: Under Assumption 1 and 3, the online Sinkhorn algorithm converges almost surely:

$$\left\| \hat{f}_t - f^* \right\|_{\text{var}} + \left\| \hat{g}_t - g^* \right\|_{\text{var}} \to 0 \tag{11}$$

(The online Sinkhorn algorithm converges almost surely with slightly increasing batch-size n(t).)

Proposition 2. Under Assumption 1 and 2, the online Sinkhorn algorithm (Algorithm 1) yields a sequence (f_t, g_t) that reaches a ball centered around f^* , g^* for the variational norm $\|\cdot\|_{\text{var}}$. Namely, there exists T>0, A>0 such that for all t>T, almost surely

$$||f_t - f^*||_{\text{var}} + ||g_t - g^*||_{\text{var}} \leqslant \frac{A}{\sqrt{n}}.$$

- Introduction
- 2 Sinkhorn Algorithm
- 3 Online Sinkhorn
- 4 Numerical Experiments

Faster Estimation of OT Distances for a Given Budget

Figure 1: Online Sinkhorn consistently estimate the true regularized OT potentials. Convergence here is measured in term of distance with potentials evaluated on a "test" grid of size $n=10^4$. Online-Sinkhorn can estimate potentials faster than sampling then scaling the cost matrix.

Consistent Estimation of Continuous OT Distances

Figure 2: Online Sinhkorn finds the correct potentials over all space, unlike SGD over a RKHS parametrization of the potentials. The plan is therefore correctly estimated everywhere.

Consistent estimation of f^* and g^* : for $N_t \to_{t\to\infty} +\infty$,

$$||f_t - f^*||_{\infty} \to 0, \quad ||g_t - g^*||_{\infty} \to 0, \quad w_t \to \mathcal{W}(\alpha, \beta)$$

Efficient Warmup of Discrete Sinkhorn

Instead of computing the matrix $\left(\exp\left(-C(x_i, y_j)\right)\right)_{i,j}$ then scale it. fill the matrix while updating sketch potentials with online Sinkhorn.

Figure 3: Online Sinkhorn allows to warmup Sinkhorn during the evaluation of the cost matrix, and to speed discrete optimal transport. Table 1: Speed-ups provided by OS vs S to reach a 10^{-3} precision.