Modélisation rigoureuse en SPEM de procédé de développement

« LMO 2006 »

Benoît Combemale^{1,2}, Xavier Crégut¹, Alain Caplain² et Bernard Coulette²

¹Laboratoire IRIT-LYRE 2, rue Charles Camichel - BP 7122 F-31071 Toulouse Cedex 7 {benoit.combemale, xavier.cregut}@enseeiht.fr

²Laboratoire GRIMM-ISYCOM 5, allée Antonio Machado F-31058 Toulouse Cedex 9 {alain.caplain, bernard.coulette}@univ-tlse2.fr

23 mars 2006

Contexte

- Spécification et vérification formelle de procédés de développement,
- Utilisation des techniques de l'Ingénierie Dirigée par les Modèles,
- Retour d'expériences sur l'utilisation du méta-modèle SPEM de l'OMG.

MDA et Ingénierie des Procédés

Sommaire

- Contexte
- Présentation du méta-modèle SPEM
- Méta-modélisation rigoureuse pour les procédés
 - Ambiguïtés de SPEM
 - Spécialisation du méta-modèle SPEM
 - Précisions sémantiques à l'aide d'OCL
- Application à la modélisation d'un procédé
 - Présentation de MACAO
 - Démarche suivie pour la formalisation de MACAO
 - Modélisation avec SPEM et OCL
- Bilan & Perspectives

Sommaire

- Contexte
- Présentation du méta-modèle SPEM
- Méta-modélisation rigoureuse pour les procédés
 - Ambiguïtés de SPEM
 - Spécialisation du méta-modèle SPEM
 - Précisions sémantiques à l'aide d'OCL
- Application à la modélisation d'un procédé
 - Présentation de MACAO
 - Démarche suivie pour la formalisation de MACAO
 - Modélisation avec SPEM et OCL
- Bilan & Perspectives

Software Process Engineering Metamodel

Modèle conceptuel

OMG SPEM v1.1 formal/05-01-06

5 / 28

Software Process Engineering Metamodel

Extrait du méta-modèle - Paquetage Process_Structure

6 / 28

Software Process Engineering Metamodel

Extrait du méta-modèle - Paquetage Process_Structure

Sommaire

- Méta-modélisation rigoureuse pour les procédés
 - Ambiguïtés de SPEM
 - Spécialisation du méta-modèle SPEM
 - Précisions sémantiques à l'aide d'OCL
- - Présentation de MACAO
 - Démarche suivie pour la formalisation de MACAO
 - Modélisation avec SPEM et OCL

Ambiguïtés de SPEM

Exemple 1

- Un *Process* est composé de *Discipline* ou l'inverse?
- Cette composition héritée d'UML doit-elle être prise en compte?

9 / 28

Ambiguïtés de SPEM

Exemple 2

- Comment utiliser le concept de *ProcessPerformer*?
 - Comme un conteneur de WorkDefinition ou comme un rôle, responsable d'activités spécifique?
 - Dans le deuxième cas, quelle est alors la différence avec ProcessRole?

Itération 1 - méta-modèle de base

Itération 2 - fusion des concepts ambigus

Itération 2 - fusion des concepts ambigus

Itération 3 - redéfinitions des relations UML

Itération 4 - restrictions

Précisions sémantiques à l'aide d'OCL

Les contraintes OCL au niveau du méta-modèle limitent les instances valides et précisent ainsi la sémantique (axiomatique).

Exemples de contraintes :

• « Une Iteration est uniquement "composée" d'Iteration et d'Activity »

```
context Iteration inv :

self.subWork→ forAll( wd : WorkDefinition |

wd.ocllsTypeOf(Iteration) or wd.ocllsTypeOf(Activity))
```

 « Un Rôle doit être responsable des produits réalisés par les activités dont il a la charge »

```
context ProcessRole inv:

let productsActivities: Set{WorkProduct} =

self.work→ select(a: WorkDefinition |

a.ocllsTypeOf(Activity).oclAsType(Activity).output→ asSet()

in

self.workProduct = productsActivities
```

Sommaire

- Contexte
- 2 Présentation du méta-modèle SPEM
- 3 Méta-modélisation rigoureuse pour les procédés
 - Ambiguïtés de SPEM
 - Spécialisation du méta-modèle SPEM
 - Précisions sémantiques à l'aide d'OCL
- 4 Application à la modélisation d'un procédé
 - Présentation de MACAO
 - Démarche suivie pour la formalisation de MACAO
 - Modélisation avec SPEM et OCL
- Bilan & Perspectives

Présentation de MACAO

- Méthode d'Analyse et de Conception d'Applications orientées-Objet [Crampes02]
- Méthode itérative, basée sur le prototypage et qui s'appuie sur UML
- Insiste sur la spécification des IHM en proposant trois modèles à différents niveaux d'abstraction :
 - SNI : Schéma Navigationnel d'Interface
 - SEF : Schéma d'Enchainement des Fenêtres
 - SEP : Schéma d'Enchainement des Pages

Présentation de MACAO

Démarche suivie pour la formalisation de MACAO Modélisation avec SPEM et OCL

Cycle de vie de MACAO

Démarche suivie pour la formalisation de MACAO

Modélisation de MACAO

Précision sémantique avec OCL - Expression des contraintes

- Expression des contraintes spécifiques à un procédé particulier
- Identification de limites dans l'expressivité d'OCL :
 - fermeture transitive,
 - logique temporelle,
 - effets de bord...
- Un besoin supplémentaire : propriétés au niveau du modèle mais qui s'expriment plus naturellement au niveau du méta-modèle.

Ex : « les activités qui composent une phase (directement ou à travers des itérations) doivent être classées dans la discipline de même nom »

Modélisation de MACAO

Précision sémantique avec OCL - Vérification des contraintes

Il est important de valider les contraintes :

- Au niveau du modèle : vérification statique (nombreux checkers OCL)
- Au niveau de l'exécution du modèle :
 - Simulation : définition de scénarios et vérification du respect des propriétés tout au long de l'exécution (outils tels que USE).
 - Remarque : dans le cas d'un procédé, toutes les vérifications ne peuvent pas être faites avant l'exécution.

Ex : « Garantir a priori qu'une étape ne dépassera pas un certain délai alors que sa réalisation dépend d'intervenants humains »

Sommaire

- Contexte
- Présentation du méta-modèle SPEM
- Méta-modélisation rigoureuse pour les procédés
 - Ambiguïtés de SPEM
 - Spécialisation du méta-modèle SPEM
 - Précisions sémantiques à l'aide d'OCL
- 4 Application à la modélisation d'un procédé
 - Présentation de MACAO
 - Démarche suivie pour la formalisation de MACAO
 - Modélisation avec SPEM et OCL
- Bilan & Perspectives

Bilan

- Formalisation de MACAO en SPEM
- SPEM : spécification très générale et pas assez directive
 - ⇒ Proposition d'une spécialisation (restriction du méta-modèle et ajout de w.f.r.)
 - ⇒ Moins de flexibilité mais plus de rigueur dans la modélisation des procédés,
- W.F.R.: limites dans l'expressivité d'OCL,
- Un premier pas vers une sémantique forte des méta-modèles (sémantique de type axiomatique).

Perspectives

- Définition d'une sémantique pour les langages de modélisation :
 - « (Méta)Modélisation et sémantique des applications mobiles et réparties »
 - « Ingénierie Dirigée par les Modèles et sémantique opérationnelle : application à l'ingénierie des procédés »
- Approches actuellement étudiées :
 - Sémantique opérationnelle :
 - Langages de méta-programmation : Kermeta, xOCL, etc.
 - * Transformations de modèle endogènes : ATL, Tiger/AGG, etc.

Modélisation rigoureuse en SPEM

- Sémantique dénotationnelle.
- Intégration des travaux dans le projet Topcased¹.

27 / 28

Merci de votre attention...

des questions?

