

Overview: Reinforcement Learning in Crowdsourcing and Crowdsensing

Oct. 28, 2020

- Problem introduction
- Recent work
- Typical models
- 4 Personal research
- 5 Summary

- 1 Problem introduction
- 2 Recent work
- Typical models
- 4 Personal research
- 5 Summary

Problem Introduction

• Motivation:

- Proposal of novel reinforcement learning (RL) methods
- Effective and efficient approximations are hard to design
- Task assignment and worker arrangement can be modeled as MDP

Difficulties:

- Deep learning, especially Deep RL, has much higher computation costs than simple heuristic algorithms
- It's hard to achieve significant improvements on the state-of-the-art models using approximation algorithms
- The design and training of networks can be really tricky

- 1 Problem introduction
- 2 Recent work
- 3 Typical models
- 4 Personal research
- 5 Summary

Recent Work

• 2020 ICDE:

- Curiosity-Driven Energy-Efficient Worker Scheduling in Vehicular Crowdsourcing: A Deep Reinforcement Learning Approach
- An End-to-End Deep RL Framework for Task Arrangement in Crowdsourcing Platforms

• 2020 CIKM:

 Auxiliary-task Based Deep Reinforcement Learning for Participant Selection Problem in Mobile Crowdsensing

• 2020 PerCom:

 Participants Selection for From-Scratch Mobile Crowdsensing via Reinforcement Learning

Recent Work

- 2020 IEEE Internet Things of Journal:
 - Energy-Efficient Mobile Crowdsensing by Unmanned Vehicles: A Sequential Deep Reinforcement Learning Approach
- 2019 DASFAA:
 - Reinforced Reliable Worker Selection for Spatial Crowdsensing Network
- 2019 Computer Networks:
 - Reinforcement Learning-Based Cell Selection in Sparse Mobile Crowdsensing (From ICDCS 2018)

Recent Work

- Common RL methods:
 - Multi-Arm Bandit (MAB)
 - Deep Q Network (DQN)
 - Proximal Policy Optimization (PPO)
- Deep RL is utilized in almost every work
- Most works use RNN and attention transformer
- Sometimes the real world is formulated as rectangular grids and CNN is used to extract spatial patterns

- 1 Problem introduction
- 2 Recent work
- Typical models
- 4 Personal research
- 5 Summary

Typical Model I

- Title: An End-to-End Deep RL Framework for Task Arrangement in Crowdsourcing Platforms
- Conference: ICDE, 2020
- RL Algorithm: Double Deep Q Network (Double DQN)
- Network Kernel: Attention transformer

Model Overview

- At timestamp i, a worker w_i comes and there is an available task set $\{T_i\}$. (So a timestamp is triggered by a coming worker)
- w_i has a feature f_{w_i} (completion history) and a quality q_{w_i}
- The model contains two different Q networks to optimize MDP (w) and MDP (r)

Flow Chart of Model

MDP for Workers

- MDP (w):
 - State $s_i = f_{w_i}$
 - Action $a_i = t_{ij}$ or $a_i = \sigma(T_i) = \{t_{i1}, t_{i2}, \dots\}$
 - Reward $r_i = \begin{cases} 1, & if \ w_i \ completes \ t_{ij} \\ 0, & otherwise \end{cases}$
 - Future state s_{i+1} happens when w_i comes again
- From the definition of MDP (w), the objective is to optimize the cumulative completion rate of workers in the long run.

Problem in MDP (w)

- We need to predict s_{i+1} so that we can update immediately

Parameters in Q-network(w) are shared by all workers

- Learn the distribution $\phi(g)$ for Time_{i+1}
- Check for expired tasks and compute r_{i+1}
- Use expectation to update the parameters

Distribution $\phi(g)$ in History

MDP for Requesters

- MDP (r):
 - State $s_i = [f_{w_i}, f_{T_i}, q_{w_i}, q_{T_i}]$
 - Action $a_i = t_{ij}$ or $a_i = \sigma(T_i) = \{t_{i1}, t_{i2}, \dots\}$
 - Reward $r_i = \Delta q_i$ (quality gain)
 - Future state s_{i+1} happens when the next worker w_{i+1} comes
- From the definition of MDP (r), the objective is to optimize the cumulative quality gain of tasks in the long run.

Problem in MDP (r)

• There are too many possibilities for $(w_i, s_i, w_{i+1}, s_{i+1})$

- Similar to MDP (w), learn $\varphi(g)$ from history
- Learn the rate of new workers p_{new}
- Obtain the probability for a coming worker *w*:

$$\Pr(w_{i+1} = w) = \begin{cases} (1 - p_{new}) \frac{\phi(g_w)}{\sum_{w' \in W_{old}} \phi(g_{w'})}, & w \in W_{old} \\ p_{new}, & w \text{ is new} \end{cases}$$

• Use summation over *g* and *w* to update the parameters

Q Networks

• Network structure:

- Challenges:
 - The number of tasks (input size) are not fixed
 - The order of tasks should not affect the output
 - The value of a task is influenced by others

Q Networks

- Solutions:
 - Set maximum number of available tasks & Use zero padding
 - Use multi-head self-attention layer
 - Structures to enhance the stability and learning ability

Typical Models II

- Title: Energy-Efficient Mobile Crowdsensing by Unmanned
 Vehicles: A Sequential Deep Reinforcement Learning Approach
- Journal: IEEE Int. Things of Journal, 2020
- RL Algorithm: PPO + Actor-Critic
- Network Kernel: CNN + LSTM

Optimization Object

• Energy efficiency of the entire system at timestamp *t* as

$$\alpha_t = \frac{\beta_t f_t}{e_t}$$

- β_t : Data collection ratio
- f_t : Jane's fairness index
- e_t : Energy consumption ratio

POMDP Formulation

- Observation: o_t is a 3-D vector in size $m \times n \times 3$
 - The real-world 2-D positions are mapped to $m \times n$ grids
 - Channel 1 contains obstacles (-1) and sensor nodes (data)
 - Channel 2 contains UVs (energy) and charging stations (-1)
 - Channel 3 contains sensor nodes (visit times till timeslot t)
 - Other positions are filled with 0

POMDP Formulation

- Action: $a_t = [a_t^1, a_t^2, \dots, a_t^V]$, where $a_t^v \in \mathbb{R}^3$
 - $a_t^v(0)$ and $a_t^v(1)$ denotes moving distance and direction of v
 - $a_t^v(2)$ denotes charging (> 0) or collecting data (< 0)
- Reward: $r_t = \frac{1}{V} \sum_{v} (r_t^v + p_t^v)$
 - $v \text{ gets reward } r_t^v = f_t \frac{\Delta d_t^v}{\eta_l \Delta d_t^v + \eta_d \Delta l_t^v}$
 - v gets penalty p_t^v when it hits obstacles or runs out of energy

Policy Network

- Use CNN structure to extract spatial patterns
- Flatten and linearly map 3-D features to 1-D features
- LSTM generates h_t and c_t with historical h_{t-1} and c_{t-1}
- Obtain $\pi_{\theta}(a_t|h_t)$ and $V_{\theta}(h_t)$

Loss function: $L_t(\theta) = E_t[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](h_t)]$

Training Process

- In each iteration (episode), we collect N pieces of transition which have a length T and split them into pieces of length k.
- With smaller pieces, we optimize
 the loss function in minibatch
 manners and update parameters
 of the network.

Algorithm 1: Proposed Algorithm: PPO+LSTM

```
1 for iteration=1,2,... do
       for i=1,2,...,N do
            for t=1,2,...,T do
                 Get an observation o_{t,i} from environment i;
                Use Eqns. (12a, 12b, 12c) to acquire the
                action distribution \pi_{\theta_{old}}(a_{t,i}|h_{t,i});
                 Sample an action a_{t,i} using above
                 distributions:
                Take action a_{t,i} in environment i and get
                reward r_{t,i};
            Use Eqns. (13d, 13e, 12d) to compute advantage
            estimates A_{1:T}^h;
            Collect trajectory \tau_{1:T,i};
       Split trajectories \tau_{1:T,1:N} as
10
       \mathcal{T} = \{\tau_{1:k,1:N}, \tau_{2:(k+1),1:N}, \dots, \tau_{(T-k):T,1:N}\};
       Optimize surrogate J_t^{CLIP+VF+S}(\theta) in Eqn. (13) with
11
       respect to \theta, with K epochs with random minibatch
        size
       M < N(T-k);
       \theta_{old} \leftarrow \theta:
```

PPO Network Optimization

- 1 Problem introduction
- 2 Recent work
- Typical models
- 4 Personal research
- 5 Summary

Personal Research

- Some previous work have paid attention to the fairness of data collection at all PoIs in crowdsensing space.
- My recent focus is to build an RL framework, which can effectively optimize an objective in crowdsensing system while keeping the load of all sensing devices balanced.
- At present I am to formulate a valuable and available problem.
- Co-workers are very welcome !!!

Another Direction

- Up till now, little focus on Multi-Agent RL approaches
- On behalf of the platform, MARL looks suitable
- Local observation indicates better privacy protection?
- "Cooperation" between workers leads to better solution?
- I might look into this type of model in a short time.

- 1 Problem introduction
- 2 Recent work
- Typical models
- 4 Personal research
- 5 Summary

Summary

- The introduction of applying (Deep) RL in scheduling problem of crowdsourcing and crowdsensing
- Recent work and approaches on this topic
- Two representative models proposed this year
- Progress of my own research

Thanks!

