SAR TEST REPORT

Report No.: SET2015-11063

Product: Android Mobile Data Terminal

Model No.: MX-5050-1D

Brand Name: MEXXEN

FCC ID: 2ADXO-MX-5050

Applicant: Mexxen Technology(ShangHai)INC.

Address: Unit B,12F,Building 11,No. 518,xinzhuan Rd., Songjiang

District, Shanghai, China

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan

District, Shenzhen, 518055, P. R. China

Tel: 86 755 26627338 Fax: 86 755 26627238

Mail: manager@ccic-set.comWebsite: http://www.ccic-set.com

This test report consists of 103 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product...:: Android Mobile Data Terminal Model No....: MX-5050-1D Brand Name....: **MEXXEN FCC ID**...... 2ADXO-MX-5050 Applicant....: Mexxen Technology(ShangHai)INC. Applicant Address....: Unit B,12F,Building 11,No. 518,xinzhuan Rd., Songjiang District, Shanghai, China Manufacturer....: Mexxen Technology(ShangHai)INC. Manufacturer Address....: Unit B,12F,Building 11,No. 518,xinzhuan Rd., Songjiang District, Shanghai, China Rating: AC input: AC 100~240V 50/60Hz 3.7V 5000mAh(Battery) Test Standards...... IEEE Std. 1528-2003, 47CFR § 2.1093 RSS-102 Issue 4 March 2010 Test Result..... Pass Tested by: Reviewed by.....:

Signature

Approved by.....:

Contents					
1. GENERAL CONDITIONS	4				
2. ADMINISTRATIVE DATA	5				
3. EQUIPMENT UNDER TEST (EUT)	6				
4. OPERATIONAL CONDITIONS DURING TEST	7				
4.1. Introduction	7				
4.2. SAR Definition	7				
4.3. Phantoms	8				
4.4. Device Holder	8				
4.5. Probe Specification	9 10				
5. OPERATIONAL CONDITIONS DURING TEST					
5.1.Schematic Test Configuration					
5.2. SAR Measurement System	10				
6. CHARACTERISTICS OF THE TEST	17				
7. LABORATORY ENVIRONMENT	18				
8. CONDUCTED RF OUTPUT POWER	19				
9. SAR DATA SUMMARY 20					
10. MEASUREMENT UNCERTAINTY	32				
11. MAIN TEST INSTRUMENTS	36				
This Test Report consists of the following Annexes:					
Annex A: Test Layout					
Annex B: Sample Photographs					
Annex C: System Performance Check Data					

Annex D: Calibration Certificate of Probe and Dipoles

1. GENERAL CONDITIONS
1.1 This report only refers to the item that has undergone the test.
1.2 This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.
1.3 This document is only valid if complete; no partial reproduction can be made without written approval of CCIC-SET
1.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of CCIC-SET and the Accreditation Bodies, if it applies.

2. Administrative Date

2.1. Identification of the Responsible Testing Laboratory

Company Name: CCIC-SET

Department: EMC& RF Department

Address: Electronic Testing Building, Shahe Road, Nanshan District,

ShenZhen, P. R. China

Telephone: +86-755-26629676 **Fax:** +86-755-26627238

Responsible Test Lab

Managers:

Mr. Wu Li'an

2.2. Identification of the Responsible Testing Location(s)

Company Name: CCIC-SET

Address: Electronic Testing Building, Shahe Road, Nanshan District,

Shenzhen, P. R. China

2.3. Organization Item

CCIC-SET Report No.: SET2015-11063
CCIC-SET Project Leader: Mr. Li Sixiong

CCIC-SET Responsible

Mr. Wu Li'an

for accreditation scope:

Start of Testing: 2015-08-05

End of Testing: 2015-08-07

2.4. Identification of Applicant

Company Name: Mexxen Technology(ShangHai)INC.

Address: Unit B,12F,Building 11,No. 518,xinzhuan Rd., Songjiang

District, Shanghai, China

2.5. Identification of Manufacture

Company Name: Mexxen Technology(ShangHai)INC.

Address: Unit B,12F,Building 11,No. 518,xinzhuan Rd., Songjiang

District, Shanghai, China

Notes: This data is based on the information by the applicant.

3. General Information

3.1. Description Of Equipment Under Test (EUT)

Sample Name:	Android Mobile	e Data Terminal	
Type Name:	MX-5050-1D		
Brand Name:	MEXXEN		
Dual Transfer Mode (DTM) per 3GPP 51.010	Not supported		
General description:	Support Band and Frequency Range Development Stage Accessories Battery type Battery specification	GSM 850: 824.2MHz to 848.8MHz PCS 1900: 1850.2MHz to 1909.8MHz WIFI: 2412MHz~2472MHz BT:2402MHz~2480MHz NFC:13.56MHz Identical Prototype AC input: AC 100~240V 50/60Hz BAT-5050-01A 3.7V 5000mAh	
	Antenna type	Internal Antenna	
	Modulation mode	GSM:GMSK BT: GFSK, π /4-DQPSK, 8-DPSK NFC: GMSK WIFI: BPSK/QPSK/16QAM/64QAM	

NOTE:

a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4 Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radiofield. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awarenessand ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rmselectrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typicallyapplied.

4.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

4.5 Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

DynamicRange 1.5 μ W/g to 100 mW/g;

Linearity: ± 0.5 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm (Body: 8 mm)

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

During SAR test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) was allocated to 128, 189 and 251 respectively in the case of GSM 850, to 512, 661, and 810 respectively in the case of PCS1900, to CH1,CH6 and CH11 respectively in the case of WIFI. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

5.2 SAR Measurement System

The SAR measurement system being used is the DASY4 system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

5.2.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 1: Recommended Dielectric Performance of Tissue

Ingredients	Frequency (MHz)									
(% by weight)	4	50	83	35	9′	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Table 2 Recommended Tissue Dielectric Parameters

Eroguepov (MHz)	Head	Tissue	Body ⁻	Tissue
Frequency (MHz)	€ r	σ (S/m)	€ _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

5.2.2 Simulant liquids

For body-worn measurements, the EUT was tested against flat phantom representing the user body. The EUT was put on in the belt holder. Simulant liquids that are used for testing at frequencies of GSM 850,PCS 1900,and WIFI, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

	Temperature: 23.2°C; Humidity: 64%;					
/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Target value	835MHz	41.5±5%	0.90±5%			
Validation value (Aug. 5th, 2015)	835MHz	41.18	0.88			
Target value	1900MHz	40.0±5%	1.40±5%			
Validation value (Aug. 6th, 2015)	1900MHz	39.59	1.39			
Target value	2450MHz	39.2±5%	1.80±5%			
Validation value (Aug. 7th,2015)	2450MHz	38.65	1.78			

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.2°C; Humidity: 64%;					
/	Frequency	Permittivity ε	Conductivity σ (S/m)		
Target value	835MHz	55.2±5%	0.97±5%		
Validation value	835MHz	54.68	0.95		
(Aug. 5th, 2015)	OSSIVIFIZ	54.00	0.95		
Target value	Target value 1900MHz 53.3±5%		1.52±5%		
Validation value	1900MHz	52.72	1.50		
(Aug. 6th, 2015)	1900IVITZ	52.72	1.50		
Target value	2450MHz	52.7±5%	1.95±5%		
Validation value	2450MHz	52.27	1.93		
(Aug. 7th,2015)	243UIVITZ	52.27	1.93		

For head SAR testing, the liquid height from the ear reference point(ERP) of the phantom to the liquid top surface is larger than 15cm, which is shown in Fig 1.

For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm, which is shown in Fig 2.

Fig. 1 Configuration of head tissue

Fig. 2 Configuration of body tissue

5.2.3 Results of validation testing

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the draft IEEE standard P1528. Setup according to the setup diagram below:

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMAcable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.25W (24 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power

meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom mare provided in Tables 6. 7. The humidity and ambient temperature of test facility were 64% and 23.2°C respectively. The EUT was supplied with full-charged battery for each measurement.

Tables 6 Head SAR system validation (1g)

Fraguene.	Duty ovolo	Target value	Test va	lue (W/kg)
Frequency	Duty cycle	(W/kg)	250 mW	1W
835MHz(Aug. 5th, 2015)	1:1	9.77±10%	2.40	9.60
1900MHz(Aug. 6th, 2015)	1:1	40.37±10%	9.84	39.36
2450MHz(Aug. 7th,2015)	1:1	53.60±10%	12.97	51.88

Table 7: Body SAR system validation (1g)

Fragueney	Duty ovolo	Target value	Test valu	e (W/kg)
Frequency	Duty cycle	(W/kg)	250 mW	1W
835MHz(Aug. 5th, 2015)	1:1	$10.31 \pm 10\%$	2.52	10.08
1900MHz(Aug. 6th, 2015)	1:1	40.81 ± 10%	10.06	40.24
2450MHz(Aug. 7th,2015)	1:1	52.66±10%	12.95	51.80

5.2.4 SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 8mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at

the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEE1528-2013 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

For body-worn measurement, the EUT was tested under five position: face upward $\, \cdot \,$ back upward $\, \cdot \,$ left side $\, \cdot \,$ right side and top side .

5.2.5 Transmitting antenna information

There are four antennas (GSM antenna 、BT&WIFI antenna 、GPS antenna and NFC antenna) inside the EUT, the GSM 、BT&WIFI antenna are the transmitting source, which is a type of internal antenna, the following picture shows the position of the antenna.

Note: The GPS antenna is charged for receive, the SAR result would not be affected by them.

Antennas	Wireless Interface
GSM Antenna <tx rx=""></tx>	GSM 1900/850
BT&WIFI Antenna <tx rx=""></tx>	\
NFC Antenna	\
GPS Antenna <rx></rx>	GPS receiving only

5.2.6 Exposure Conditions Analysis

antenna	Back	Front	Top side	Bottom side	Right side	Left side
GSM main	YES	YES	YES	NO	NO	YES
BT&WIFI	YES	YES	NO	NO	YES	NO

- 1. Head/Body-worn mode SAR assessments are required.
- 2. Referring to KDB 941225 D06,when the overall device and width are ≥9cm*5cm,the test distance is 10mm.SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface and edge.
- 3. For GSM antenna ,SAR measurement at Top side are not required since the nearest distance between the antenna and Bottom and Right side surface >25mm.
- 4. For BT&WIFI antenna ,SAR measurement at Top side are not required since the nearest distance between the antenna and Top . Bottom and Left side surface >25mm.
- 5. BT output power(4.847 dBm) \leq P_{Ref}(30dBm).Based on the output power, plus WLAN 2.4G operates at the same frequency where BT output power is far less than 802.11b (output power (max:15.29 dBm),therefore SAR measurements for WLAN 2.4G&BT antenna are based on WLAN 2.4G in SAR assessment.
- 6.Per KDB 865664 D01v01r03,for each frequency band,repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 7. Per KDB865664 D02v01r01, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix D for details).
- 8. Per KDB941225 D01v03, when multiple slots can be used, the GPRS/EDGE slot configuration with the highest frame—averaged output power was selected for SAR testing.
- 9. Per KDB941225 D01v03, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. 10.Per KDB 248227 D01 v02r01, 802.11g /11n-HT20/11n-HT40 is not required. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

6 CHARACTERISTICS OF THE TEST

6.1 Applicable Limit Regulations

47CFR § **2.1093**-Radiofrequency Radiation Exposure Evaluation: Portable Devices;

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz;

RSS-102–2010: Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

6.2 Applicable Measurement Standards

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this is in accordance with the following standards:

FCC 47 CFR Part2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r01

FCC KDB 447498 D01 v05r02 General RF Exposure Guidance

FCC KDB 648474 D04 v01r02 Handset SAR

FCC KDB 865664 D01 v01r03 SAR Measurement 100MHz to 6GHz

FCC KDB 865664 D02 v01r01 SAR Exposure Reporting

FCC KDB 941225 D01 v03 3G SAR Procedures

7 LABORATORY ENVIRONMENT

7.1 The Ambient Conditions during SAR Test

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

7.2 Test Configuration

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30dB smaller than output power of EUT.

Duty factor observed as below: WLAN 2.4GHz 802.11b :86%

For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide

continuous transmitting RF signal.

8.Conducted RF Output Power

8.1 GSM Conducted Power

Conducted Power (Unit: dBm)								
Band	GSM 850			PCS 1900				
Channel	128	189	251	512	661	810		
Frequency	524.2	836.5	848.8	1850.2	1880	1909.8		
GSM(GMSK, 1 Tx slot) CS1	31.52	31.54	31.53	29.72	29.70	30.24		
GPRS (GMSK, 1 Tx slot) CS1	31.52	31.54	31.52	29.73	29.72	30.26		
GPRS (GMSK, 2 Tx slot) CS1	30.70	30.73	30.72	27.97	27.90	27.87		
GPRS (GMSK, 3 Tx slot) CS1	29.33	29.38	29.37	26.56	26.43	26.42		
GPRS (GMSK, 4 Tx slot) CS1	27.73	27.79	27.78	24.38	24.20	24.20		
EGPRS (8PSK,1 Tx slot) CS1	27.94	27.87	27.99	26.12	26.03	25.94		
EGPRS (8PSK,2 Tx slot) CS1	27.24	27.36	27.18	25.03	24.92	24.87		
EGPRS (8PSK,3 Tx slot) CS1	26.09	25.88	25.94	23.57	23.44	23.29		
EGPRS (8PSK,4 Tx slot) CS1	23.17	23.04	23.11	21.25	20.98	20.97		

Timeslot consignations

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2Up3Down	3Up2Down	4Up1Down
Duty Cycle	1:8	1:4	1:2.67	1:2
Crest Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

8.2 WIFI Conducted Power

Conducted Power (Unit: dBm)								
Band	802	2.11b 11M	lbps	802.11g 54Mbps				
Channel	1	6	11	1	6	11		
Frequency	2412	2437	2462	2412	2437	2462		
Power	15.13	15.13 15.29 15.17			15.15	14.95		
Band	802.1	1n 20 65	5Mbps	802.11n 40 135Mbps				
Channel	1	6	11	3	6	9		
Frequency	2412	2437	2462	2422	2437	2452		
Power	15.06	15.25	15.13	15.72	15.89	15.63		

Per KDB 248227,11g output power is less than 1/4dB higher than 11b mode, thus the SAR can be excluded. For each frequency band, testing at higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate.

8.3 BT 2.1 Conducted Power

Conducted Power (Unit: dBm)										
Modulation Type	GFSK			П	П /4-DQPSK			8-DPSK		
Channel	0	39	78	0	39	78	0	39	78	
Frequency	2402	2441	2480	2402	2441	2480	2402	2441	2480	
Power	-0.32	0.66	0.56	0.05	0.03	0.60	0.45	0.72	1.26	

8.4 BT 4.0 Conducted Power

Conducted Power (Unit: dBm)							
Modulation Type	GFSK						
Channel	0	39	78				
Frequency	2402	2441	2480				
Power	4.85	3.92	4.58				

Note:

- 1. Per KDB941225 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. GPRS (GMSK, 3 Tx slot) and 802.11b are used for Body-worn accessory SAR measurements.

9. SAR DATASUMMARY

General Note:

- 1. Per KDB 447498 D01v05r02,the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor =tune-up limit power(mW)/EUT RF power(mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WWAN: Reported SAR(W/kg)=Measured SAR(W/kg)*Tune-up Scaling Factor
 - d. For WLAN: Reported SAR(W/kg)=Measured SAR(W/kg)*Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v05r02,for each exposure position ,if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 648474 D04v01r02,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/kg, SAR testing with a headset connected to the handset is not required.
- 4. Per KDB 865664 D01V01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg

9.1 Standalone Head Worn SAR DATA

Band	Phantom	Test Position	Gap (cm	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scalin g Facto r	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
GSM 850	Right head	Cheek	1.0	189	836.4	31.54	35	1.11	0.053	0.059
GSM 850	Right head	Tilt	1.0	189	836.4	31.54	35	1.11	0.044	0.049
GSM 850	Left head	Cheek	1.0	189	836.4	31.54	35	1.11	0.061	0.068
GSM 850	Left head	Tilt	1.0	189	836.4	31.54	35	1.11	0.050	0.056
	1	1								
Band	Phantom	Test Position	Gap (cm	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scalin g Facto r	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
Band PCS 1900	Phantom Right head			Ch. 810		Power	Limit	g Facto	1g SAR	1g SAR
PCS		Position	(cm		(MHz)	Power (dBm)	Limit (dBm)	g Facto r	1g SAR (W/kg)	1g SAR (W/kg)
PCS 1900 PCS	Right head	Position Cheek	(cm)	810	(MHz) 1909.8	Power (dBm) 30.26	Limit (dBm)	g Facto r 1.06	1g SAR (W/kg) 0.059	1g SAR (W/kg) 0.063

Ban d	Phantom	Test Positio n	Gap (cm	Ch	Freq. (MHz)	Average Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Duty Cycle %	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
11b	Right head	Cheek	1.0	6	2437	15.29	30	1.96	86	0.075	0.171
11b	Right head	Tilt	1.0	6	2437	15.29	30	1.96	86	0.029	0.066
11b	Left head	Cheek	1.0	6	2437	15.29	30	1.96	86	0.110	0.251
11b	Left head	Tilt	1.0	6	2437	15.29	30	1.96	86	0.108	0.246

NOTE: We can get that the maximum SAR summation value is 0.319W/Kg(WWAN 0.068+WLAN 0.251) according to the analysis from above data, it less than 1.6W/Kg, so simultaneous transmission SAR is compliant per KDB 447498 D01v05r01.

9.2 Standalone Body SAR DATA

Band	Mode	Test Position	Gap (cm	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scalin g Facto r	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
GPRS 850	3 Tx slot	Back	1.0	189	836.4	29.38	35	1.19	0.099	0.118
GPRS 850	3 Tx slot	Face	1.0	189	836.4	29.38	35	1.19	0.041	0.049
GPRS 850	3 Tx slot	Left Side	1.0	189	836.4	29.38	35	1.19	0.031	0.037
GPRS 850	3 Tx slot	Top side	1.0	189	836.4	29.38	35	1.19	0.035	0.042
Band	Mode	Test Position	Gap (cm	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scalin g Facto r	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
Band GPRS 1900	Mode 3 Tx slot		(cm	Ch. 512	-	Power	Limit	g Facto	1g SAR	1g SAR
GPRS		Position	(cm		(MHz)	Power (dBm)	Limit (dBm)	g Facto r	1g SAR (W/kg)	1g SAR (W/kg)
GPRS 1900 GPRS	3 Tx slot	Position Back	(cm)	512	(MHz) 1850.2	Power (dBm) 26.56	Limit (dBm)	g Facto r 1.21	1g SAR (W/kg) 0.128	1g SAR (W/kg) 0.155

Band	Phantom	Test Positio n	Gap (cm	Ch	Freq. (MHz)	Average Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Duty Cycle %	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
11b	\	Back	1.0	6	2437	15.29	30	1.96	86	0.066	0.150
11b	\	Face	1.0	6	2437	15.29	30	1.96	86	0.018	0.041
11b	\	Right Side	1.0	6	2437	15.29	30	1.96	86	0.069	0.157

Note:

- 1.When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required.(Per KDB 447498 D01 Ge neral RF Exposure Guidance v05r02)
- \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz

Report No. SET2015-11063

40.43Ma 1.41.4 1.41.4 200.181
• ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz •
2. NOTE: We can get that the maximum SAR summation value is 0.312W/Kg(WWAN 0.155+WLAN
0.157) according to the analysis from above data, it less than 1.6W/Kg, so simultaneous transmission
SAR is compliant per KDB 447498 D01v05r01.

9.3 Highest SAR Test Plots

GSM 850, Left head, Cheek , Middle

Type: Phone measurement

Date of measurement:05/08/2015

Measurement duration: 3 minutes 35 seconds

Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	GSM 850
Channels	Middle
Signal	GSM 850 (Duty cycle: 1:1)

B. SAR Measurement Results

Frequency (MHz)	836.4
Relative permittivity (real part)	41.18
Relative permittivity (imaginary part)	18.97
Conductivity (S/m)	0.88
Variation (%)	-3.72
ConvF:	5.68
Probe serial number	SN 04/13 EP166

VOLUME SAR

Maximum location: X=16.00, Y=-8.00 SAR Peak: 0.08 W/kg

51111 1 tulii 0100 11/11 5			
SAR 10g (W/Kg)	0.044		
SAR 1g (W/Kg)	0.061		

GSM 1900, Right head, Cheek ,High

Type: Phone measurement

Date of measurement: 06/08/2015

Measurement duration: 6 minutes 56 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Right head			
Device Position	Cheek			
Band	GSM 1900			
Channels	High			
Signal	GSM (Duty cycle: 1:1)			

B. SAR Measurement Results

Frequency (MHz)	1909.8		
Relative permittivity (real part)	39.59		
Relative permittivity (imaginary part)	13.17		
Conductivity (S/m)	1.39		
Variation (%)	-4.04		
ConvF:	5.25		
Probe serial number	SN 04/13 EP166		

VOLUME SAR

Maximum location: X=-25.00, Y=-6.00

SAR Peak: 0.09 W/kg

SAR 10g (W/Kg)	0.036752	
SAR 1g (W/Kg)	0.058691	

Report No. SET2015-11063

WIFI, Left head, Cheek, Middle

Type: Phone measurement

Date of measurement:07/08/2015

Measurement duration: 6minutes 52 seconds

Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm			
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm			
Phantom	Left head			
Device Position	Cheek			
Band	IEEE 802.11b			
Channels	Middle			
Signal	WIFI (Duty cycle: 1:1)			

B. SAR Measurement Results

Frequency (MHz)	2432		
Relative permittivity (real part)	38.65		
Relative permittivity (imaginary part)	13.08		
Conductivity (S/m)	1.78		
Variation (%)	-4.5		
ConvF:	4.93		
Probe serial number	SN 04/13 EP166		

Maximum location: X=-24.00, Y=-16.00

SAR Peak: 0.18 W/kg

SAR 10g (W/Kg)	0.055351
SAR 1g (W/Kg)	0.110023

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1765	0.1174	0.0672	0.0362	0.0179
	0. 18 - 0. 16 - 0. 14 - 0. 12 - 0. 10 - 0. 00		14 16 18 20 22 Z (mm)	2 24 26 28 30	

GPRS 850, Back, Middle

Type: Phone measurement

Date of measurement: 05/08/2015

Measurement duration: 6 minutes 42 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Back			
Band	GPRS850_3Tx			
Channels	Middle			
Signal	GPRS 850 (Duty cycle: 1:2.67)			

B. SAR Measurement Results

Frequency (MHz)	836.5		
Relative permittivity (real part)	54.68		
Relative permittivity (imaginary	20.48		
Conductivity (S/m)	0.95		
Variation (%)	-1.36		
ConvF:	5.84		
Probe serial number	SN 04/13 EP166		

Maximum location: X=-23.00, Y=-26.00

SAR Peak: 0.06 W/kg

SAR 10g (W/Kg)	0.026999	
SAR 1g (W/Kg)	0.041032	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0606	0.0433	0.0290	0.0209	0.0165
	0.06-				
	0.05-				
	(%) 4//® 0.04-	\longrightarrow			
	₩ 0.03-	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
	0.02-	+++	+		
	0.01- 0 2 4	6 8 10 12	14 16 18 20 2	2 24 26 28 30	
_			Z (mm)		

GPRS 1900, Back, Low

Type: Phone measurement

Date of measurement: 07/08/2015

Measurement duration: 6 minutes 42 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan dx=8mm dy=8mm ZoomScan 5x5x7,dx=8mm dy=8mm dz=5mm Phantom Validation plane Device Position Back Band GPRS 1900_3Tx Channels Low Signal GPRS 1900 (Duty cycle: 1:2.67)

B. SAR Measurement Results

Frequency (MHz)	1850.2
Relative permittivity (real part)	52.72
Relative permittivity (imaginary	14.21
Conductivity (S/m)	1.50
Variation (%)	-1.36
ConvF:	5.42

Maximum location: X=26.00, Y=38.00

SAR Peak: 0.2 W/kg

SAR 10g (W/Kg)	0.073
SAR 1g (W/Kg)	0.128

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.2001	0.1389	0.0879	0.0574	0.0396
_	0. 200 - 0. 175 - 0. 150 - 0. 150 - 0. 125 - 0. 100 - 0. 075 - 0. 050 - 0. 028 - 0 2	4 6 8 10 12	14 16 18 20 2 Z (mm)	2 24 26 28 30	

WIFI, Right side, Middle

Type: Phone measurement

Date of measurement: 07/08/2015

Measurement duration: 6 minutes 52 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm		
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm		
Phantom	Validation plane		
Device Position	Right side		
Band	802.11b		
Channels	Middle		
Signal	IEEE802.b (Duty cycle: 1:1)		

B. SAR Measurement Results

Frequency (MHz)	2437
Relative permittivity (real part)	52.27
Relative permittivity (imaginary	14.18
Conductivity (S/m)	1.93
Variation (%)	4.31
ConvF:	5.07

Maximum location: X=-26.00, Y=25.00

SAR Peak: 0.10 W/kg

SAR 10g (W/Kg)	0.042775
SAR 1g (W/Kg)	0.068563

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0995	0.0731	0.0496	0.0343	0.0245
	0.10- 0.09- 0.08- 0.08- 0.07- 0.06- 0.05- 0.04- 0.03- 0.02- 0.2 4	6 8 10 12	14 16 18 20 22 Z (mm)	2 24 26 28 30	

10 Measurement Uncertainty

Table 6:Measurement Uncertainty according to IEEE 1528

No.	UncertaintyComponent	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty(%) ui(%)	Degree of freedom Veffor vi
			Measure	ement System				
1	-Probe Calibration	В	6	N	1	1	3.5	∞
2	Axialisotropy	В	4.7	R	1.732	1	2.7	∞
3	-Hemispherical Isotropy	В	9.4	R	1.732	1	5.4	∞
4	—Boundary Effect	В	11.0	R	1.732	1	6.4	∞
5	—Linearity	В	4.7	R	1.732	1	2.7	∞
6	—System Detection Limits	В	1.0	R	1.732	1	0.6	∞
7	-Readout Electronics	В	1.0	N	1	1	1.00	∞
8	Response Time	В	0.00	R	1.732	1	0.00	∞
9	-Integration Time	В	0.00	R	1.732	1	0.00	∞
10	-RF Ambient Conditions	В	3.0	R	1.732	1	1.73	∞
11	-Probe Position Mechanical tolerance	В	0.4	R	1.732	1	0.2	∞
12	-Probe Position with respect to Phantom Shell	В	2.9	R	1.732	1	1.7	∞
13	Extrapolation,Interpolation and IntegrationAlgorithms for Max. SARevaluation	В	3.9	R	1.732	1	2.3	∞

						- 1	JOIL 140. OL 12	
			Uncertair	nties of the DU	Г			
14	-Position of the DUT	Α	4.8	N	1	1	4.8	5
15	—Holder of the DUT	А	7.1	N	1	1	7.1	5
16	-Output Power Variation -SAR drift measurement	В	5.0	R	1.732	1	2.9	∞
			Phantom and	Tissue Param	neters			
17	— PhantomUncertainty(shape and thickness tolerances)	В	1.0	R	1.732	1	0.6	∞
18	-Liquid Conductivity Target -tolerance	В	5.0	R	1.732	0.6	1.7	∞
19	- Liquid Conductivity -measurement Uncertainty)	В	0.23	N	1	1	0.23	9
20	-Liquid Permittivity Target tolerance	В	5.0	R	1.732	0.6	1.7	∞
21	- Liquid Permittivity -measurement uncertainty	В	0.46	N	1	1	0.46	∞
Cor	nbined Standard Uncertainty			RSS			12.92	35.15
((Expanded uncertainty Confidence interval of 95 %)			K=2			25.84	

Table 7:Measurement Uncertainty for Body Worn Test according to IEC 62209-2

No.	UncertaintyComponent	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty(%) ui(%)	Degree of freedom Veffor vi
			Measure	ement System				
1	-Probe Calibration	В	6	N	1	1	3.5	8
2	—Isotropy	В	14.1	R	1.732	1	4.1	∞
3	-Hemispherical Isotropy	В	9.4	R	1.732	1	5.4	∞
4	—Boundary Effect	В	11.0	R	1.732	1	6.4	∞
5	—Linearity	В	4.7	R	1.732	1	2.7	∞
6	—System Detection Limits	В	1.0	R	1.732	1	0.6	∞
7	-Readout Electronics	В	1.0	N	1	1	1.00	∞
8	Response Time	В	0.00	R	1.732	1	0.00	∞
9	-Integration Time	В	0.00	R	1.732	1	0.00	∞
10	-RF Ambient Conditions	В	3.0	R	1.732	1	1.73	8
11	-Probe Position Mechanical tolerance	В	0.4	R	1.732	1	0.2	8
12	-Probe Position with respect to Phantom Shell	В	2.9	R	1.732	1	1.7	∞
13	-Post-processing	В	5.0	R	1.732	1	2.9	8
14	Probe modulation response	В	0.4	R	1.732	1	0.2	∞

			Uncertair	nties of the DU	Т			
15	-Position of the DUT	Α	4.8	N	1	1	4.8	5
16	-Holder of the DUT	Α	7.1	N	1	1	7.1	5
17	-Power Scaling	В	1.0	R	1.732	1	0.6	∞
18	Output Power VariationSAR drift measurement	В	5.0	R	1.732	1	2.9	80
			Phantom and	Tissue Paran	neters			
19	—PhantomUncertainty(shape and thickness tolerances)	В	1.0	R	1.732	1	0.6	∞
20	-Liquid Conductivity Target	В	5.0	R	1.732	0.6	1.7	∞
21	Liquid Conductivitymeasurement Uncertainty)	В	0.23	N	1	1	0.23	9
22	Liquid Permittivity Target tolerance	В	5.0	R	1.732	0.6	1.7	8
23	Liquid Permittivitymeasurement uncertainty	В	0.46	N	1	1	0.46	8
24	-liquid temperatureuncertainty	В	1	N	1	1	1	8
Con	nbined Standard Uncertainty			RSS			13.12	44.15
(0	Expanded uncertainty Confidence interval of 95 %)			K=2			26.24	

11 MAIN TEST INSTRUMENTS

No.	EQUIPMENT	TYPE	Series No.	Due Date
1	System Simulator	E5515C	GB 47200710	2015/09/15
2	SAR Probe	SATIMO	SN_0413_EP166	2015/08/14
3	Dipole	SATIMO	SN 25/13DIP0G750-253	2015/08/16
4	Dipole	SID835	SN09/13 DIP0G835-217	2015/08/27
5	Dipole	SID1900	SN09/13 DIP1G900-218	2015/08/27
6	Dipole	SID2450	SN09/13 DIP2G450-220	2015/08/27
7	Vector Network Analyzer	ZVB8	A0802530	2016/06/08
8	Signal Generator	SMR27	A0304219	2016/06/08
9	Power Meter	NRP2	A140401673	2016/03/27
10	Power Sensor	NPR-Z11	1138.3004.02-114072-nq	2016/03/27
11	Amplifier	Nucletudes	143060	2016/03/27
12	Directional Coupler	DC6180A	305827	2016/03/27
15	Power Meter	NRVS	A0802531	2016/03/27
16	Power Sensor	NRV-Z4	100069	2016/03/27
17	Multimeter	Keithley-2000	4014020	2016/03/27

ANNEX A

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-11063

Mexxen Technology(ShangHai) INC

Android Mobile Data Terminal

Type Name: MX-5050-1D

Hardware Version: V3.0

Software Version: GST_A82_M30_3110955E_MUL_V02_20150619

TEST LAYOUT

This Annex consists of 3pages

Date of Report: 2015-08-10

Fig.3 COMO SAR Test System

Fig.4 Head Position (Left Cheek)

Fig.5 Head Position (Left Tilt)

Fig.6 Head Position (Right Cheek)

Fig.7 Head Position (Right Tilt)

Fig.8 Body Position (Top side)

Fig.9 Body Position (Back Upward)
NOTE: The gap between battery shell and phantom is 10mm

Fig.10 Body Position(Right Side)

Fig.11 Body Position(Left Side)

Fig.12 Body Position(Face Side)

ANNEX B

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-11063

Mexxen Technology(ShangHai) INC

Android Mobile Data Terminal

Hardware Version: V3.0

Software Version: GST_A82_M30_3110955E_MUL_V02_20150619

Sample Photographs

This Annex consists of 3 pages

Date of Report:2015-08-10

1. Appearance

Appearance and size (obverse)

Appearance and size (reverse)

1. Inside

2. Battery

4. Adapter

5. Position of antennas

ANNEX C

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-11063

Mexxen Technology(ShangHai) INC

Android Mobile Data Terminal

Hardware Version: V3.0

 $Software\ Version: \qquad GST_A82_M30_3110955E_MUL_V02_20150619$

This Annex consists of 4pages

Date of Report: 2015-08-10

System Performance Check (Head, 835MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement:05/08/2015

Measurement duration: 21 minutes 22 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.000000
Relative permittivity (real part)	41.18
Relative permittivity	18.97
Conductivity (S/m)	0.88
Power drift (%)	-1.32
Ambient Temperature:	23.2°C
Liquid Temperature:	23.5°C
ConvF:	5.68
Duty factor:	1:1

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.820261
SAR 1g (W/Kg)	2.404573

System Performance Check (Head, 1900MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 06/08/2015

Measurement duration: 21minutes 05 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900.000000
Relative permittivity (real part)	39.59
Relative permittivity	13.17
Conductivity (S/m)	1.39
Power drift (%)	0.34
Ambient Temperature:	22.2℃
Liquid Temperature:	22.5℃
ConvF:	5.25
Duty factor:	1:1

Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	5.124314
SAR 1g (W/Kg)	9.836842

System Performance Check (Head, 2450MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement:07/08/2015

Measurement duration: 21 minutes 12 seconds

A. Experimental conditions.

Phantom File	dx=8mm,dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450
Relative permittivity (real part)	38.65
Relative permittivity	13.08
Conductivity (S/m)	1.78
Power Drift (%)	-0.39
ConvF:	4.93
Duty factor:	0.86:1

Maximum location: X=0.00, Y=7.00

SAR 10g (W/Kg)	5.648620
SAR 1g (W/Kg)	12.970632

System Performance Check (Body, 835MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm
Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 05/08/2015

Measurement duration: 20 minutes 04 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm	
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm	
Device Position	Dipole	
Band	835MHz	
Channels		
Signal	CW	

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835	
Relative permittivity (real part)	54.68	
Relative permittivity	20.48	
Conductivity (S/m)	0.95	
Power drift (%)	-2.51	
Ambient Temperature:	22.2°C	
Liquid Temperature:	22.5°C	
ConvF:	5.84	
Duty factor:	1:1	
Probe serial number	SN 04/13 EP166	

VOLUME SAR

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.603562
SAR 1g (W/Kg)	2.523541

System Performance Check (Body, 1900MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 06/08/2015

Measurement duration: 21 minutes 10 seconds

A. Experimental conditions.

	<u></u>	
Phantom File	dx=8mm dy=8mm	
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm	
Device Position	Dipole	
Band	1900MHz	
Channels		
Signal	CW	

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900	
Relative permittivity (real part)	52.72	
Relative permittivity	14.21	
Conductivity (S/m)	1.50	
Power Drift (%)	1.02	
Ambient Temperature: 22.1°C		
Liquid Temperature:	22.6°C	
ConvF:	5.42	
Duty factor:	1:1	
Probe serial number	SN 04/13 EP166	

Maximum location: X=1.00, Y=6.00

SAR 10g (W/Kg)	5.136751
SAR 1g (W/Kg)	10.063452

System Performance Check (Body, 2450MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 07/08/2015

Measurement duration: 22 minutes 08 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Phantom File	dx=8mm,dy=8mm	
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm	
Device Position	Dipole	
Band	2450MHz	
Channels		
Signal	CW	

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450
Relative permittivity (real part)	52.27
Relative permittivity	14.18
Conductivity (S/m)	1.93
Power Drift (%)	-0.20
Ambient Temperature:	22.1°C
Liquid Temperature:	22.6°C
Duty factor:	0.86:1
ConvF:	5.07

VOLUME SAR

Maximum location: X=1.00, Y=5.00

SAR 10g (W/Kg)	6.108426
SAR 1g (W/Kg)	12.953471

ANNEX D

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-11063

Satimo

Type Name: SSE5

Calibration Certificate of Probe and Dipoles

This Annex consists of 33pages

Date of Report: 2015-08-10

Probe Calibration Ceriticate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.227.15.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 04/13 EP166

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref. ACR 227.15.14 SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/15/2014	75
Checked by:	Jérôme LUC	Product Manager	8/15/2014	25
Approved by :	Kim RUTKOWSKI	Quality Manager	8/15/2014	tum Prethoush

	Customer Name
Distribution ;	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications	
A	8/15/2014	Initial release	
3			

Page: 2/9

Ref. ACR 227.15.14.SATU.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2	Pro	duct Description4	
	2.1	General Information	4
3	Me	asurement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty5	
5	Cal	ibration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	t of Equipment 9	

Page: 3/9

Ref. ACR 227.15.14 SATU A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE5		
Serial Number	SN 04/13 EP166		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.232 MΩ		
	Dipole 2: R2=0.226 MΩ		
	Dipole 3: R3=0.228 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref. ACR 227.15.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide						
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)	
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%	
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%	
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%	
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	

Page: 5/9

Ref. ACR 227.15.14.SATU.A

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2	3	8	12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

5.1 SENSITIVITY IN AIR

		Normz dipole $3 (\mu V/(V/m)^2)$
8.57	4.83	7.15

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
92	90	95

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Dipole 1 Dipole 2 Dipole 3

Page: 6/9

Ref. ACR 227.15.14.SATU.A

5.2 LINEARITY

Linearity: I+/-1.55% (+/-0.07dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL850	835	42.81	0.89	5.68
BL850	835	53.46	0.96	5.84
HL900	900	42.47	0.96	5.34
BL900	900	56.69	1.08	5.54
HL1800	1800	41.31	1.38	4.75
BL1800	1800	53.27	1.51	4.93
HL1900	1900	41.09	1.42	5.25
BL1900	1900	54.20	1.54	5.42
HL2000	2000	39.72	1.43	4.81
BL2000	2000	53.91	1.53	4.91
HL2450	2450	39.05	1.77	4.93
BL2450	2450	52.97	1.93	5.07
HL2600	2600	38.35	1.92	5.02
BL2600	2600	51.81	2.19	5.22

LOWER DETECTION LIMIT: 7m W/kg

Page: 7/9

Ref. ACR.227.15.14.SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

Ref. ACR 227.15.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 9/9

SID835 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.1.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 09/13 DIP0G835-217

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole cafibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACE 240 L14 SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	25
Checked by :	Jérôme LUC	Product Manager	8/29/2014	25
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	New Northworth

	Customer Name	
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd	

Issue	Date	Modifications
A	8/29/2014	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

TABLE OF CONTENTS

1	Int	ntroduction4				
2	De	Device Under Test4				
3	Pro	Product Description4				
	3.1	General Information	4			
4	Me	asurement Method5				
	4.1	Return Loss Requirements	5			
	4.2	Mechanical Requirements	5			
5	Me	asurement Uncertainty				
	5.1	Return Loss	5			
	5.2	Dimension Measurement	5			
	5,3	Validation Measurement	5			
6	Ca	libration Measurement Results6				
	6.1	Return Loss and Impedance In Head Liquid	6			
	6.2	Return Loss and Impedance In Body Liquid	6			
	6.3	Mechanical Dimensions	6			
7	Va	lidation measurement				
	7.1	Head Liquid Measurement	7			
	7.2	SAR Measurement Result With Head Liquid	8			
	7.3	Body Liquid Measurement	9			
	7.4	SAR Measurement Result With Body Liquid	10			
8	Lis	t of Equipment 11				

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATEMO

Ref. ACR 240 L14 SATUA

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID835			
Serial Number	SN 09/13 DIP0G835-217			
Product Condition (new / used)	used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

This discussion shall not be reproduced, except in full or in part, without the written approint of \$411180.

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of \$417MO.

Ref. ACR.240.1.14.SATU.A.

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | 835 | -24.50 | -20 | 55.0 Ω + 3.9 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lo	Lmm Br		im	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %		250.0 ±1 %.		6.35 ±1 %	
450	290.0±1%		165.7 ±1 %		6,35±1 %.	
750	176.0 ±1 %.		100.0±1 %		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS

Page: 6/11

Thei document shall not be reproduced, except in full or in part, without the written approval of \$411100.

Ref. ACR 240.1 14 SATU A

900	149.0.11%	83.3 ±1 %.	3.6 ±1 %.
1450	89.1 ±1 %.	51.7 ±1 %	3.6 ±1 %.
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %
1750	75.2 ±1 %:	42.9 ±1 %.	3.6 ±1 %
1800	72.0 ±1%	41.7 ±1 %	3.6 ±1 %.
1900	68.0 ±1 %.	39.5 ±1 %.	1.6 ±1 %.
1950	66.3±1%.	38.5 ±1%	3.6 ±1 %.
2000	64.5 ±1.%.	37.5 ±1 %.	3.6±1%.
2100	61.0 ±1 %.	35.7 ±1 %	3.6 11 %.
2300	55.5 ±1 %.	32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %	30.4 ±1.%	3.6 ±1 %:
2600	48.5 ±1 %.	28.8 ±1 %.	3.6 ±1 %
3000	41.5 ±1 %	25.0±1%	3.6 ±1 %.
3500	37.0±1 %.	26.4 ±1 %.	3.6 ±1 %.
3700	34.7±1.%	26.4 ±1 %.	3.6±1%.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity $(x,')$		lity (a) 5/m
	required	measured	required	measured
300	45.3 ±5%		0.87±5%	
450	43.5 ±5 %		0.87±5%	
750	41.9 ±5 %		0.89±5 %	
835	41.5 ±5%	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0±5%		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

Ref: ACR.240.1.14.5ATU.A

2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1,67:15%
2450	39.2 ±5 %	1.80 25 %
2600	39.0±5%	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09-SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power.	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21.°C
Lab Humidity	45 %

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.77 (0.98)	6.22	6.30 (0.63)
900	10.9		6,99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

They document shall not be reproduced, except in full or in part, without the written approval of \$471140.

Ref. ACR 240 (.14 SATU A.

2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mitsivity (s.*)	Conductiv	ity (a) 5/m
	required	measured	required	measured
150	61.9±5%		0.80 ±5 %	
300	58.2.±5.%		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 15 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5.%		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2.15%		1.62 ±5 %	
2450	52.7.±5%		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51:3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30±10%	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of \$417MS.

Ref. ACR 240 L 14 SATUA

5500	48.6.±10 %	5.65 ±10 %	
5600	48.5±10%	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantons	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values; eps' : 54.1 sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	-dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45%

MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	10.31 (1.03)	6,74 (0.67)

Page: 10/11

This discussest shall not be reproduced, except or full or in part, without the written approval of SATTINO.

Ref. ACR 240 L14 SATUA:

8 LIST OF EQUIPMENT

Equipment	Manufacturer/	Identification No.	Current	Next Calibration
Description	Model		Calibration Date	Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 11/11

Dec document shall not be reproduced, except in full or in part, without the written approval of SATIME

SID1900 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.4.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 1900 MHZ SERIAL NO.: SN 09/13 DIP1G900-218

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref. ACR. 240.4.14. SATU.A

0	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	8/29/2014	25
Checked by:	Jérôme LUC	Product Manager	8/29/2014	28
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	Acm Richmold

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
A	8/29/2014	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in pairs, without the written approval of SATIMO

Ref. ACR 240 4.14 SATULA

TABLE OF CONTENTS

ŀ	Int	roduction4	
2	De	vice Under Test4	
3		duct Description4	
	3.1	General Information	- 4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	
	5.2	Dimension Measurement	5
	5,3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment 11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID1900
Serial Number	SN 09/13 DIP1 G900-218
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

That discusses shall not be reproduced, except to full or to part, without the written approval of SATISEO.

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

4 MEASUREMENT METHOD

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards:

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Expanded Uncertainty on Return Loss
0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This discussion shall not be reproduced, except in full or in part, without the venters approved of SETIME. The inferences contained horizo is to be used only for the purpose for which is a cuboutised and is not so the relected in while or part without writing approved of SETIME.

Ref. ACR 240 4 14 SATU A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmin		is mos		d mm	
	required	measured	required	measured	required	measured
300	420.0±1%		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %		89.8±1 %.		3.6 ±1 %.	

Page: 6-11

This discussion shall not be reproduced, except in full or in pain, without the written approved of SATIME.

The information continued herein is to be used only for the purpose for which it is submitted and is our tobe released in whole or part without written approved of SATIME.

Ref: ACR 240.4 14 SATU A

900	149.0 ±1 %		H3.3 ±1 %.		36:1%.	
1450	89.1 ±1 %.		51.7±1%.		3.6 :17.	
1500	80.5 ±1 %		50.0 ±1 %		3.6 ±1 %.	
1540	79.0 ±1.%		45.7 ±1.%		3.6 23 %	
1750	75,2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %		41,7 21 %		3.6.11%	
1900	68.0 ±1 %.	PASS.	39.5 ±1 %	PASS	3.5 ±1%	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		1631%	
2000	64.5 ±1 %.		37.5 ±1%		3.611%	
2100	61.0±1%.		35.7±1%.		3.5 ±1 %.	
2300	55.5.±1%.		32.6 11 %		3.5 ±1 %.	
2450	51.5 ±1%.		30.4 ±1.%		3.6 ±1 %	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6±1%	
3000	41.5±1%		25.0 ±1 %		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26,4 ±1 %		3.6 ±1.%	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency	Relative per	mittivity (c,')	Conductiv	ity (a) 5/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %.		0.87 ±5 %	
750	41.9 25 %		0.89 ±5 %	
835	41.5±5%		0.90 ±5 %	
900	41.5 ±5 %		0.97±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2±5%		1.31 25 %	
1750	40.1±5 %		1.37 ±5 %	
1800	40.0±5 %		1.40 ±5 %	
1900	40.0±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This discussive shall not be reproduced, except in fiell or in pair, wallout the vertice approval of \$477340. The information contained license is to be used only for the purpose for which is it calmitted and is not to be relacined in which is it calmitted and is not to be relacined in which is it without written approval of \$477840.

Ref: ACR 240 A 14 SATU A

2100	39.8 ±5.%	1,49 15:%
2300	39.5 ±5.%	1.67:15 %
2450	39.2±5 %	1.80 ±5 %
2600	39.0 ±5.%	1.96 25 %
3000	38.5 ±5 %	2,40 ±5 %
3500	37.9±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Vulues: eps": 41.1 sigma: 1.42		
Distance between dipole center and figuid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	1900 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
30000	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		15.8	
1640	34.2		38.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	40.37 (4.04)	20.5	20.62 (2.06)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	1.

Page: 8/11

They document shall not be represented, except or full or in part, without the written approxist of SATIAD. The information contained herein is to be used only for the purpose for which it is submitted and is not to be relicioud in while or part without written approxish of SATIAD.

Ref. ACR 240 4 14 SATU A

2450	52.4	24	
2600	55-3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (c,')	Conductiv	ity (a) 5/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5.%		0.97 ±5 %	
900	55.0 15 %		1.05 ±5 %	
915	55.0±5 %		1.06 15 %	
1450	54.0±5 %		1.30 ±5 %	
1610	53.8±5%		1.40 ±5 %	
1800	53.3±5%		152 +5 %	
1900	53.3 ±5 %	PASS	152±5%	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2.15 %		1.62 ±5 %	
2450	52.7±5%		1.95 ±5 %	
2600	52.5±5%		2.16:15%	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31.15%	
5200	49.0±10%		5.30 ±10 %	
5300	48.9±10 %		5.42 ±10 N	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This discurrent shall not be reproduced, except in full or in part, without the written approved at SATTAR). The information contained between is to be used only for the purpose for which it is submitted and is not in the released in whole or part without written approved of SATTAR).

Ref. ACR 240 A 14 SATUA

5500	48.6±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.2 sigma : 1.54
Distance between dipole center and liquid	10:0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	40.81 (4.08)	21.21 (2.12)

Page: 10/11

This discussion shall not be reproduced, oxegn in full or in pure, without the written approved of \$43750.

The information contained horize is to be used only for the purpose for which it is submitted and is not to be released in while or part without written approved of \$47500.

HeE ACK240 4 14 SATU A

8 LIST OF EQUIPMENT

	CAS	ipment Summary S			
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Aglient E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the writin approval of SATIMI).
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without writion approval of SATIMI.

SID2450 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.6.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 09/13 DIP2G450-220

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Refi ACR 240 6 (4.SATU, A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	Je
Checked by :	Jérôme LUC	Product Manager	8/29/2014	35
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	Min Authorite

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications
A	8/29/2014	Initial release

Page: 2/11

This document shall not be superstanced, except to full or to year, without the section approval of SATIMO.

Ref: ACR.240.6.14.SATU A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	Ibration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Filts document shall not be sepreduced, except in full or in part, without the visition approved of SATIM.

Rcf; ACR 240.6.14 SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID2450
Serial Number	SN 09/13 DIP2G450-220
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in fall or in part, without the written approval of SATSMO.

Ref: ACR.240.6.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements.

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

Our document shall not be reproduced, except in full or in pain, without the written approval of \$ATIMO

Ref: ACR 246.6.14.SATU.A:

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz		nm.	hm	ira .	d r	nm
	required	measured	required	measured	required	measured
300	420.0 :1 %.		250.0 ±1 %.		6.35 (1 %.	
450	290.0 ±1 %.		166 7 :1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100 C ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 11 %		3.6 ±1.%.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written apprecial of SATIMO.

Ref. ACR.240.6.14.SATU.A

900	149.0±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 =1 %.		51.7 ±1 %,		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45-7±1%.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 1.1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 11 %.	
1950	66.3 ±1 %.		38.5±1%.		3.6 ±1 %.	
2000	64.5 ≘1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 : 1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.5 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3,6 11 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7:1%.		26.4 ±1 %.		3.6 11 %	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,') Conductivity (o) S/r		ity (o) S/m	
	required	measured	required	measured
300	45.3.15 %		0.87 15 %	
450	43.5 ±5 %		0.87 15 %	
750	41.9±5 %		0.89±5%	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5.%		0.97±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 15 %		1.23 ±5 %	
1640	40.2 15 %		1.31 15 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 15 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Paget 7/11

This document shall not be reproduced except in full or in part, without the written approval of SATIMO

Ref: ACR 240.6.14.SATU,A

2100	39.8 ±5 %		1.49 ±5 %	
2300	35.5 ±5 %		1.67 ±5 %	
2450	36.2 -5.%	PASS	1.80 ±5 %	PASS
2600	35.0 ±5 %		1.96 ±5 %	
3000 -	38.5 ±5 %		2.40 ±5 %	
3500	37.9 -5 %		2.91.45%	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Prohe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 39.0 sigma: 1.77
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)		
17.72	required	measured	required	measured	
300	2.85		1.94		
450	4.58		3.06		
750	8.49		5.55		
935	9.56		6.22		
900	10.9		5.99		
1450	23		16		
1500	30.5		16.8		
1640	34.2		18.4		
1750	36.4		19.3		
1800	38.4		20.1		
1900	39.7		20.5		
1950	40.5		20.9		
2000	41.1		21.1		
2100	43.6		21.9		
2300	48.7		23.3		

Page: 8/11

This document shall not be reproduced, except in fidi or in part, without the written approval of \$4.7340

Roll ACR,240.6.14.5ATU.A

2450	52.4	53.60 (5,36)	24	23.77 (2.38)
2600	55.3		24.6	
3000	53.8		25.7	
3500	57.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,')	Conductivity (a) S/m		
	required	measured	required	measured	
150	61.9 ±5 %		0.80 ±5 %		
300	58.2 15 %		0.92 15 %		
450	56.7 15 %		0.94 15 %		
750	55.5 ±5 %		0.96 ±5 %		
835	55.2 15 %		0.97.15%		
900	55.0 15 %		1.05 15 %		
915	55.0 ±5 %		1.06 ±5 %		
1450	54.0 ±5 %		1.30 ±5 %		
1610	53.8 ±5 %		1.40 ±5 %		
1800	53.3 ±5 %		1.52 ±5 %		
1900	53.3 ±5 %		1.52 ±5 %		
2000	53.3 ±5 %		1.52 ±5 %		
2100	53.2 ±5 %		1.62 ±5 %		
2450	52.7 ±5 %	PASS	1.95 ±5 %	PAS5	
2600	52.5 ±5 %		2.16 ±5 %		
3000	52.0 ±5 %		2.73 ±5 %		
3500	51.3 ±5 %		3.31 ±5 %		
5200	49.0 ±10 %		5.30 ±10 %		
5300	48.9 ±10 %		5.42 ±10 %		
5400	48.7 ±10 %		5.53 ±10 %		

Page: 9/11

This document shall not be reproduced, except in fidth or in part, without the written approval of SETIMO

Ref. ACR.240.6.14.SATU.A.

5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phanton	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values; eps': 53.0 sigma: 1.93
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	52.66 (5.27)	23.73 (2.37)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

Ref: ACR 240.6 14 SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Description	Manufacturer/ Model	Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016				
Calipers	Carrera	CALIPER-01	12/2013	12/2016				
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014				
Mult meter	Keithley 2000	1188656	12/2013	12/2016				
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required				
Power Meter	HP E4418A	US38261498	12/2013	12/2016				
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required				
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015				

Page: 11/11

This document shall me be reproduced, except in full or in part, without the written approval of SATIMO.

SAR System Validation

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D 01 v01 and IEEE 1528-2003. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Freq.	Eroc				COND	PERM		CW validation		Mod	validatio	n
•	Date	probe	position			Sensitivity	Probe	Probe	Mod	Duty	PAR	
MHz			σ	٤	Sensitivity	linearity	isotropy	type	factor	FAR		
835	20140712	SN07/14 EPG211	Body	0.95	55.12	PASS	PASS	PASS	QPSK	PASS	N/A	
1900	20140824	SN09/13 EP169	Body	1.52	53.28	PASS	PASS	PASS	QPSK	PASS	N/A	

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types.SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664

End	of the	Donout-	
——Ena	or me	Report—	