软件工程基础

第五章 软件配置管理

苏生 83201311(Tel) susheng@uestc.edu.cn

信息与软件工程学院电子科技大学

本章学习目标

第五章 软件配置管理

- 5.1 软件配置管理的缘由
- 5.2 软件配置管理中心存储库
- 5.3 软件配置管理过程

程序员的问题

- 无法找到最新的源程序文件
- 无法找到源文件的历史修改信息
- 多个人修改同一个源文件,有些人的修改被冲掉了
- 程序被误删了,尝试恢复失败,只能重写

项目经理的问题

- 为在项目组成员中共享和隔离资料烦恼
- 无法有效掌握项目过程产生的文件、代码和工作成果
- 调试过程中,项目成员经常为一些问题扯皮,搞不清楚到底是谁产生的错误

产品经理的问题

- 交付给用户的软件"缺斤少两",在安装时出现问题
- 用户使用时发现的问题不能得到及时有效解决

- 软件开发过程中的其他问题
 - 。已经发现的BUG又重新出现
 - o 已经发布的软件不能够再次构建(Build)
 - o 丢失软件版本对应的源代码
 - 。 丢失关键文件
 - o 文件被"神秘"地修改了
 - o多人协助开发难以继续

• Netscape软件开发人员的困扰

• 一个包含4个源代码文件的软件产品

- 软件配置管理好处
 - o源代码、文档管理将更为可靠和有序
 - o 多人协作并行开发简单了
 - o 系统可以自动构建并且更加快速
 - o 已经解决的BUG将不会再骚扰程序员
 - o 保证软件正确的配置,如兼容性配置

软件配置管理

- 软件配置的定义1:
 - o一套应用技术上和管理上的指导和监督方法。
- 该方法用于:
 - o识别和记录配置项的功能特征和物理特征。
 - o控制这些特征的变更。
 - o记录和报告变更的处理和执行的状态。
 - o 验证其是否符合特定的需求。

软件配置管理

• 定义2

。是用来建立和维护软件项目产品的完整性,并贯穿于 软件生命周期的始终,包括确认软件配置项、控制变 更、记录和报告变更实现的状态。

(来自: IEEE Standard Glossary of Software Engineering Terminology)

o 关键词: 软件配置项、变更、软件生命周期

软件配置管理

软件配置项: 配置管理的对象称为软件配置项

分 类	特征	举 例
环境类	软件开发环境及 软件维护环境	编译器、操作系统、编辑器、数据库管理 系统、开发工具(如测试工具)、项目管 理工具、文档编辑工具
定义类	需求分析及定义阶段完成后 得到的工作产品	需求规格说明书、项目开发计划、设计标 准或设计准则、验收测试计划
设计类	设计阶段结束后得到的产品	系统设计规格说明、程序规格说明、数据 库设计、编码标准、用户界面标准、测试 标准、系统测试计划、用户手册
编码类	编码及单元测试后得到的工 作产品	源代码、目标码、单元测试数据及单元测 试结果
测试类	系统测试完成后的工作产品	系统测试数据、系统测试结果、操作手册、 安装手册
维护类	进入维护阶段以后产生的工 作产品	以上任何需要变更的软件配置项

第五章 软件配置管理

- 5.1 软件配置管理的缘由
- 5.2 软件配置管理中心存储库
- 5.3 软件配置管理过程

简单版本控制

- 简单版本控制方式(ctrl+s)
 - o 定期保存内容,将失误造成的损失降到最小。
 - o 作大的修改前备份,修改不成功时可以退回。
 - o以时间和修改内容命名源代码
- 简单版本控制的不足
 - o 适合单个开发人员,对与多开发人员不适合。
 - o 如果开发时间周期长,版本的修改自己要糊涂的!如:拷贝保存源代码目录为:2009.1.20_sort,1个月之后自己还记得具体作了什么内容?
 - o 是全备份模式, 浪费空间
 - o 可靠性,存储设备失效如何处理?

简单版本控制

- 🖃 🧰 messenger_dev
 - 🖃 🚞 messenger
 - 🧀 binaries
 - 🚞 documents
 - 🧀 includes
 - a source
 - 🖃 🧰 messenger. 0823. to_add_icon
 - 🧰 binaries
 - 🛅 documents
 - includes
 - a source
 - 🖪 🚞 messenger. 0829. to_add_popup
 - 🖪 📋 messenger. v0. 8

- 多开发人员的软件开发模式:
 - o每个程序员负责一个专门的模块。
 - 修改自己的代码,假设不存在多个程序员修改同一处源代码的问题。
 - o 各个程序员相互传送代码
- 问题:
 - o 修改之前从哪里获得新版本?
 - 。修改后的结果提交到哪里?

- 问题一造成的结果:
 - o 某程序包括A,B,C三个模块。
 - o 张三负责A,王二负责B,李四负责C。
 - o A对外提供了一个Time函数,该函数提供定时功能,传入 参数为需要定时的时间值,单位为毫秒。
 - o 张三将Time的参数单位改为秒。
 - o 王二的A模块是在张三修改之前拷贝过来的,模块A的 Time函数参数还是毫秒。王二将参数设置为5000
 - o 张三接收王二的模块B,集成测试并等待5000秒。
- 问题原因? 版本不一致了!!

- 问题二造成的结果:
 - o程序员A修改Bug1并提交给用户。
 - o程序员B修改Bug2并提交给用户。
 - o Bug1再次出现。
- 解决办法:
 - o避免相互拷贝代码。
 - 海源代码流转的渠道从网状改为心型结构。即设立一个软件配置管理(SCM)中心存储库。

- 对于问题一,如果王二是从SCM中心存储库获得 代码,则他会知道参数为秒。
- 对于问题二,程序员修改完代码后,并不是提交给客户而是提交到SCM中心存储库,在SCM中心存储库编译成可运行程序后再交给客户。
- 不足之处:
 - 多个程序员不修改同一源文件的假设不成立,会导致 更为复杂的问题!

防止版本覆盖

- 版本覆盖问题:
 - o SCM中心存储库有A,B,C三模块。
 - o 张三要修改A,B。同时王二要修改B,C。
 - o 张三先修改完成并提交到SCM中心存储库。
 - o王二完成后提交。
 - o 张三的修改内容被覆盖。

防止版本覆盖

• 解决办法:

- o串行方法
 - 修改前先上锁,修改完成后 提交并解锁。
 - 锁的粒度越小越好,因为可以提高并行度。

0 并行方法

记录每个人修改前的版本和 修改后的版本,在将来的某 一个时刻把他们合并。

专业术语

- 版本库: 软件配置管理中心存储库
- 增量存储: 在版本库中只存储的源代码的各个版本差异部分
- 工作空间:每个程序员工作的地方。程序员从版本库中取出源代码放到工作空间,在这里查看,修改,编译,运行和调试。完成后再把新版本的代码放回版本库中。

专业术语

• 检出: 在修改代码之前, 告知版本控制工具的操作过程。

专业术语

- 检入:
 - 修改完成后,告知版本控制工具的操作过程。
- 软件配置管理(CM):
 - o 版本控制管理工具的选择,安装,设置,培训,疑难解答等一系列工作

常用版本控制软件

Tortoise SVN:

o 支持串行,并行修改方法,对分支、标签、版本保存、配置变更都有较好的支持,是比较受欢迎的一款软件,并且开源,支持二次开发。

Git

免费、开源的分布式版本控制系统,用于敏捷高效地 处理任何或小或大的项目。

ClearCase:

- o IBM公司收购的大型商用软件配置管理工具,功能强大,非常适用于大型软件系统开发,但配置管理复杂,使用成本较高
- 其它工具:
 - o Cvs等

第五章 软件配置管理

- 5.1 软件配置管理的缘由
- 5.2 软件配置管理中心存储库
- 5.3 软件配置管理过程

软件配置管理过程

认识到有变更的必要 来自用户的变更请求 开发人员评估 生成变更报告 变更主管作出决策 变更请求被付诸行动 拒绝变更请求 为配置对象分配人员 通知用户 检出配置对象(配置项) 实施变更 评审(审核)变更 检入变更后的配置项

变更控制过程

Question?