Statistical Methods in AI (CS7.403)

Lecture-10: Feature Selection, Principal Component Analysis (PCA) - 1

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Reducing Dimensions

Feature Selection:

Choose the "best" features from your data

Feature Extraction:

 Build derived features intended to be informative and nonredundant

Feature Visualization:

— How are the 'best' features distributed in 1D/2D/3D?

Selecting and Extracting Features

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and third feature

$$\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and fourth feature

NOTE: Data samples are color-coded by their class label. But label info is <u>not used</u> for feature selection.

Selecting and Extracting Features

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.2 & 0.3 \\ 0.0 & 0.4 & 0.2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

New Features as linear combination of old Features

$$X' = AX$$

- To compress data by reducing dimensionality. E.g., representing each image in a large collection as a linear combination of a small set of "template" images
 - Also sometimes called dictionary learning (can also be used for other types of data, e.g., speech signals, text-documents, etc.)

- To compress data by reducing dimensionality. E.g., representing each image in a large collection as a linear combination of a small set of "template" images
 - Also sometimes called dictionary learning (can also be used for other types of data, e.g., speech signals, text-documents, etc.)
- Visualization (e.g., by projecting high-dim data to 2D or 3D)

- To compress data by reducing dimensionality. E.g., representing each image in a large collection as a linear combination of a small set of "template" images
 - Also sometimes called dictionary learning (can also be used for other types of data, e.g., speech signals, text-documents, etc.)
- Visualization (e.g., by projecting high-dim data to 2D or 3D)

To make learning algorithms run faster

- To compress data by reducing dimensionality. E.g., representing each image in a large collection as a linear combination of a small set of "template" images
 - Also sometimes called dictionary learning (can also be used for other types of data, e.g., speech signals, text-documents, etc.)
- Visualization (e.g., by projecting high-dim data to 2D or 3D)

- To make learning algorithms run faster
- To reduce overfitting problem caused by high-dimensional data

Visualization using dimensionality reduction

Intro to Principal Components Analysis (PCA)

Finding informative feature axes

PCA: A Toy Example

- Consider a new co-ordinate system with one axis along the line
- All co-ordinates except the first one are zeros now.

3.7	7.5	11.2	15	18.7	22.4	
0	0	0	0	0	0	
0	0	0	0	0	0	

PCA: Toy Example - 2

1 2 3.1 7.9 12 3 5.8

9

5.7 12 18 5.1

9.9 15 2.2

4.1

6.3

3.61	7.4	11.1	15.0	18.4	22.4
0.2	0.4	0.9	0.7	0.8	0.3
0.1	0.1	0.1	0.1	0.1	0.1

NOTE: These values are made up. Not exact.

PCA: Toy Example - 2

PCA strategy

• Construct new features that are **good** alternative representation of the original features

PCA strategy

- Construct new features that are good alternative representation of the original features
 - Good => Capture as much of original variation as possible

Variance

Mean = 'Average' value S.D = Average deviation of samples from mean

Histograms for IQ Test Components

Covariance: m samples, n features

Variance:

$$s^2 = \frac{\sum (\overline{X} - X_i)^2}{N}$$

Covariance:

$$\widehat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}) (\mathbf{x}_i - \widehat{\boldsymbol{\mu}})^{\mathsf{T}}$$

$$\Sigma = \frac{\sum_{i=1}^{n} x_i x_i^T}{n} - \mu \mu^T \text{ where } \mu = \frac{\sum_{i=1}^{n} x_i}{n}$$

Covariance Matrix

$$C = \begin{bmatrix} +0.95 & -0.04 \\ -0.04 & +0.87 \end{bmatrix}$$

$$C = \begin{bmatrix} +0.95 & +0.92 \\ +0.92 & +1.12 \end{bmatrix}$$

Mean Normalization

$$X' = X - \bar{x}$$

$$C = \begin{bmatrix} +0.95 & +0.92 \\ +0.92 & +1.12 \end{bmatrix}$$

$$C = \begin{bmatrix} +0.95 & +0.92 \\ +0.92 & +1.12 \end{bmatrix}$$

Covariance Matrix encodes spread and orientation of data

PCA strategy

 Construct new features that are good alternative representation of the original features

– Good => Capture as much of original variation as

possible

PCA strategy

- Construct new features that are good alternative representation of the original features
 - good => new features capture as much of original variation as possible
 - good => new features allow us to
 "reconstruct" the original features

Maximizing variance = Minimizing reprojection error

$$D_3^2 = D_1^2 + D_2^2$$

initial variance = remaining variance | lost variance | $||a_i||^2 = ||w_i||^2 + ||a_i - w_i||^2$

this is maximize or minimize this

PCA: How to find the PC?

1 2 3.1 4 7.9 12

3 5.8 9 5.7 12 18

5.19.915

2.2

4.1

6.3

3.61	7.4	11.1	15.0	18.4	22.4
0.2	0.4	0.9	0.7	0.8	0.3
0.1	0.1	0.1	0.1	0.1	0.1

NOTE: These values are made up. Not exact.

Eigen-analysis of Covariance Matrix

 v_1, v_2 : Principal Components

$$\Sigma \vec{v} = \lambda \vec{v}$$

Value of λ indicates `variance' (spread) in direction of eigenvector v associated with λ

The PCA Recipe

1. Center the data

2. Compute the covariance matrix of X'

The PCA Recipe

3. Compute Eigenvectors and Eigenvalues of Covariance Matrix Σ

4. Project data onto eigenvectors to obtain new coordinates

X

$$\left[egin{array}{c} z_1 \ z_2 \ z_3 \ z_4 \end{array}
ight] = \left[egin{array}{cccc} \cdot & \cdot & v_1^T & \cdot & \cdot \ \cdot & \cdot & v_2^T & \cdot & \cdot \ \cdot & \cdot & v_3^T & \cdot & \cdot \ \cdot & \cdot & v_4^T & \cdot & \cdot \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \ x_4 \end{array}
ight]$$

New Old coordinates coordinates

PCA: Toy Example - 2

1 2 3.1 7.9 12

3 5.8 9 5.7 12

18

9.9 15

5.1

2.2

4.1

6.3

3.61	7.4	11.1	15.0	18.4	22.4
0.2	0.4	0.9	0.7	0.8	0.3
0.1	0.1	0.1	0.1	0.1	0.1

NOTE: These values are made up. Not exact.

3D to 2D

X1, X2, X3 Z1, Z2

32

PCA: Dimensionality Reduction

PCA: Two Questions

- How many Eigen vectors to select? Eg. $\sum_{i=1}^{L} \lambda_i > 0.90$
 - Ans: Eigen Vectors corresponding to the larger Eigen values
 - Link to variance and trace

PCA: Two Questions

 How much information is lost? Can we recover the old data/information from the new?

$$\mathbf{x} = z_1 \mathbf{u_1} + z_2 \mathbf{u_2} + z_3 \mathbf{u_3} + z_4 \mathbf{u_4}$$
 $\mathbf{x} = z_1 \mathbf{u_1} + z_2 \mathbf{u_2} + z_3 \mathbf{u_3} + z_4 \mathbf{u_4}$
 $\mathbf{x}' = z_1 \mathbf{u_1} + z_2 \mathbf{u_2}$

Loss in Information = $||\mathbf{x} - \mathbf{x}'||$

Note: z_3 and z_4 are small and also λ_3 and λ_4 are small

PCA in a nutshell

3. compute covariance matrix

h u
h 2.0 0.8 cov(h,u) =
$$\frac{1}{n} \sum_{i=1}^{n} h_i u_i$$

u 0.8 0.6

4. eigenvectors + eigenvalues

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} e_h \\ e_u \end{bmatrix} = \lambda_e \begin{bmatrix} e_h \\ e_u \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} f_h \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_h \\ f_u \end{bmatrix}$$

eig(cov(data))

7. uncorrelated low-d data 6. project data points to those eigenvectors

pick m<d eigenvectors w. highest eigenvalues

- Methodology
 - Suppose $x_1, x_2, ..., x_M$ are $N \times 1$ vectors

Step 1:
$$\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$$

Step 2: subtract the mean: $\Phi_i = x_i - \bar{x}$ (i.e., center at zero)

Step 3: form the matrix $A = [\Phi_1 \ \Phi_2 \cdots \Phi_M]$ (NxM matrix), then compute:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = \frac{1}{M} A^T$$

(sample **covariance** matrix, NxN, characterizes the *scatter* of the data)

Step 4: compute the eigenvalues of $C: \lambda_1 > \lambda_2 > \cdots > \lambda_N$

Step 5: compute the eigenvectors of $C: u_1, u_2, \ldots, u_N$

- Methodology
 - Suppose $x_1, x_2, ..., x_M$ are $N \times 1$ vectors

Step 1:
$$\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$$

Step 2: subtract the mean: $\Phi_i = x_i - \bar{x}$ (i.e., center at zero)

Step 3: form the matrix $A = [\Phi_1 \ \Phi_2 \cdots \Phi_M]$ (NxM matrix), then compute:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = \frac{1}{M} A^T$$

(sample **covariance** matrix, NxN, characterizes the *scatter* of the data)

Step 4: compute the eigenvalues of $C: \lambda_1 > \lambda_2 > \cdots > \lambda_N$

Step 5: compute the eigenvectors of $C: u_1, u_2, \ldots, u_N$

- Linear transformation implied by PCA
 - The linear transformation $R^N \to R^K$ that performs the dimensionality reduction is:

$$\begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix} = \begin{bmatrix} u_1^T \\ u_2^T \\ \dots \\ u_K^T \end{bmatrix} (x - \bar{x}) = U^T (x - \bar{x})$$

(i.e., simply computing coefficients of linear expansion)

Selecting and Extracting Features

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and third feature

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.0 & 0.4 & 0.2 & 1.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

New Features as linear combination of old Features

$$X' = AX$$

For PCA: Rows are Eigen vectors of the covariance matrix.

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} \cdots & u_1^T & \cdots \\ \cdots & u_2^T & \cdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and fourth feature

PCA - a graphical/energy explanation

Case Study: PCA and Classification

- Text data with 20 classes
- Preprocessing:
 - Find the Histograms for Each Document using Bag of words
 - Apply PCA to reduce the dimensions
- Train the classifier on the reduced data
- Find the Accuracy to Evaluate the model

Effect of PCA on the Accuracy

- Change r (dimensions in projected space) to 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
- With just 3% (32) of the total dimensions (4096), comparable accuracies are obtained

Eigen-analysis of Covariance Matrix

 v_1, v_2 : Principal Components

$$\Sigma \vec{v} = \lambda \vec{v}$$

Value of λ indicates `variance' (spread) in direction of eigenvector v associated with λ

Visualizing matrices / linear transformations

Visualizing matrices / linear transformations

Eigenvectors = "Directions" of the matrix

- Lower dimensionality basis
 - Approximate vectors by finding a basis in an appropriate lower dimensional space.
 - (1) Higher-dimensional space representation:

$$x = a_1 v_1 + a_2 v_2 + \dots + a_N v_N$$

 $v_1, v_2, ..., v_N$ is a basis of the N-dimensional space

(2) Lower-dimensional space representation:

$$\hat{x} = b_1 u_1 + b_2 u_2 + \dots + b_K u_K$$

 $u_1, u_2, ..., u_K$ is a basis of the K-dimensional space

- *Note*: if both bases have the same size (N = K), then $x = \hat{x}$

PCA – Loadings and Scores

Eigenvalue	3.5476	2.1320	1.0447	0.5315	0.4112	0.1665	0.1254	0.0
Proportion	0.443	0.266	0.131	0.066	0.051	0.021	0.016	0.
Cumulative	0.443	0.710	0.841	0.907	0.958	0.979	0.995	1.
Eigenvectora	e.							
Variable	PC1	PC2	PC3	PC4	PCS	PC6	PC7	
Income	0.314	0.145	-0.676	-0.347	-0.241	0.494	0.018	
Education	0.237	0.444	-0.401	0.240	0.622	-0.357	0.103	
Age	0.484	-0.135	-0.004	-0.212	-0.175	-0.487	-0.657	-
Residence	0.466	-0.277	0.091	0.116	-0.035	-0.085	0.487	
Employ	0.459	-0.304	0,122	-0.017	-0.014	-0.023	0.368	
Savings	0.404	0.219	0.366	0.436	0.143	0.568	-0.348	-
Debt	-0.067	-0.585	-0.078	-0.281	0.681	0.245	-0.196	-
Credit cards	-0.123	-0.452	-0.468	0.703	-0.195	-0.022	-0.158	

Long-term Financial stability

Singular Value Decomposition (SVD) aka "billion-dollar algorithm"

$A = UDV^T$

- Take a single 64*64 digit and create a dataset by repeatedly
 - Move it to a 100*100 image
 - Shift by x,y and rotate by θ
- Dataset has 10,000 features but really only needs 3

"prototype" = a vector of the same dimension as the instances

 PCA: reduces each instance to a linear combination of a few "prototypes" (blue+, green-). These are the first 5:

A specific choice of prototypes are the principle components

$$M = 1$$

$$M = 10$$

$$M = 50$$

$$M = 250$$

"prototype" = a vector of the same dimension as the instances

 PCA: reduces each instance to a linear combination of a few "prototypes" (blue+, green-). These are the first 5:

https://slideplayer.com/slide/12700209/

54

PCA as matrices

Original

https://slideplayer.com/slide/12700209/

Assumptions when using PCA

- Variance is related to information content
- Data should be transformed in such a way that this variance is maximized
- High correlations between variables are a form of noise that should be minimized
- Correlations between variables are linear

References

- https://towardsdatascience.com/principal-component-analysis-3c39fbf5cb9d
- https://medium.com/swlh/interpreting-principal-components-fifa20-playersuse-case-639fde373bac
- https://jeremy9959.net/Math-3094-UConn/published_notes/notes/PCA.pdf

- Bishop PRML, 12.1, 12.2, 12.4
- https://www.cse.iitk.ac.in/users/piyush/courses/pml_winter16/slides_lec10.p
 df