Recitation 12 - Homework 5

John Chilton

June 8, 2007

- ► Homework 5 Problems
- ► Reduction

Section 5.1 informal reductions. The book shows many problems are undecidable using the same method. If being able to decide some set A lets you decide A_{TM} . Then A must not be decidable, because A_{TM} is not.

Some undecidable problems:

A_{TM}, HALT_{TM}, E_{TM}, REGULAR_{TM}, EQ_{TM}, E_{LBA}, ALL_{CFG}.

Section 5.3 introduces a mathematical formalism for this concept.

Mapping reducibility: Given two languages A and B, A is mapping reducible to B ($A \leq_M B$) if there is a *computable* function f such that:

$$w \in A \iff f(w) \in B$$

Computable function f means some Turing machine can take in w and leave f(w) on the tape for all w.

$$A = \{ w \in \Sigma^* \mid w \text{ contains an even number of 0s} \}$$

 $B = \{ w \in 0^* \mid w \text{ contains an even number of 0s} \}$

Describe a mapping reduction.

$$A = \{ w \in \Sigma^* \mid w \text{ contains an even number of 0s} \}$$

$$B = \{ w \in 0^* \mid w \text{ contains an } odd \text{ number of 0s} \}$$

Describe a mapping reduction.

Housekeeping Reducibility

Consider a reduction from ALL_{DFA} to E_{DFA} .

 $ALL_{DFA} \leq_M E_{DFA}$ and E_{DFA} is Turing decidable, so ALL_{DFA} is Turing decidable. In general $A \leq_M B$ and B decidable implies A is decidable. What can we conclude if $A \leq_M B$:

- ightharpoonup A is decidable \implies ?
- \triangleright B is undecidable \Longrightarrow ?
- ightharpoonup A is undecidable \implies ?

If $A \leq_M B$, then

- ightharpoonup A is decidable \implies nothing about B
- ightharpoonup B is decidable \implies A is decidable
- ightharpoonup A is undecidable $\implies B$ is undecidable
- ightharpoonup B is undecidable \implies nothing about A

Housekeeping Reducibility

Describe a mapping reduction from A_{TM} to E_{TM} .

Need to describe a computable process, f, such that:

$$(M, w) \in A_{TM} \iff f((M, w)) \in E_{TM}$$

Need to describe a computable process, f, such that:

$$(M, w) \in A_{TM} \iff f((M, w)) \in E_{TM}$$

 E_{TM} expects as input a Turing machine, so we must describe how to construct a new Turing machine M' from (M, w) such that:

$$(M, w) \in A_{TM} \iff M' \in E_{TM}$$

The following Turing machine takes in (M, w) and converts it a suitable M'.

- T = On input (M, w).
 - 1. Construct the following Turing machine:
 - S= On input x:
 - 1. If $x \neq w$, reject.
 - 2. Else, run M and w and accept if it does.

The following Turing machine takes in (M, w) and converts it a suitable M'.

- T= On input (M, w).
 - 1. Construct the following Turing machine:
 - S = On input x:
 - 1. If $x \neq w$, reject.
 - 2. Else, run *M* and *w* and accept if it does.

If we could decide E_{TM} , then we could decide A_{TM} by taking its input and constructing S and then running our decider for E_{TM} on S. A_{TM} cannot be decided though, so a decider for E_{TM} cannot exist. E_{TM} is undecidable.

The following Turing machine takes in (M, w) and converts it a suitable M'.

T = On input (M, w).

1. Construct the following Turing machine:

S = On input x:

- 1. If $x \neq w$, reject.
- 2. Else, run *M* and *w* and accept if it does.

If we could decide E_{TM} , then we could decide A_{TM} by taking its input and constructing S and then running our decider for E_{TM} on S. A_{TM} cannot be decided though, so a decider for E_{TM} cannot exist. E_{TM} is undecidable.

or $A_{TM} \leq_M E_{TM}$ and A_{TM} is undecidable so E_{TM} is undecidable.

