© by Oldenbourg Wissenschaftsverlag, München

Refinement of the crystal structure of digallium trisulfide, Ga₂S₃

C. Y. Jones*1, J. C. Bryan^{II}, K. Kirschbaum^{III} and J. G. Edwards^{III}

Received February 21, 2001, CSD-No. 409550

Ga

Abstract

 Ga_2S_3 , monoclinic, C1c1 (No. 9), a = 11.107(2) Å, $b = 6.395(1) \text{ Å}, c = 7.021(1) \text{ Å}, \beta = 121.17(3)^{\circ}, V = 426.7 \text{ Å}^3,$ Z = 4, $R_{gt}(F) = 0.035$, $wR_{ref}(F^2) = 0.084$, T = 294 K.

Source of material

A pale, yellow crystal of Ga₂S₃ was selected from crystals grown by vapor deposition from Ga₂S₃ powder in an effusion cell [1]. The selected crystal had smooth, uniformly-reflecting facet surfaces.

Experimental details

The unit cell parameters and atomic coordinates from this determination agree with the previously published structure [2], but are systematically smaller, possibly because of a difference in the temperature. An extinction coefficient, 0.142, is reported here for the first time.

Discussion

Gallium sulfide, Ga₂S₃, is a III-VI semiconductor whose monoclinic phase possesses at room-temperature a blue-green luminescence [3-5]. Often referred to as α-Ga₂S₃, the monoclinic Ga₂S₃ crystallizes in space group Cc and contains ordered vacancies [2]. In addition to its luminescence properties, Ga₂S₃ also exhibits partial vapor pressures of Ga₂S(g) that increase with decreasing temperature and decrease with increasing temperature in the range 1230 K < T < 1260 K, where a phase transformation was postulated [6]. Its anomalous vapor-pressure behavior has made Ga₂S₃ a model system for the study of a class of high-temperature condensed-phase transformations in it and other sulfides and chalcogenides exhibiting anomalous temperature dependence of vapor pressure. Recent data, from the first time-of-flight neutron powder diffraction experiments performed on samples undergoing effusion [1], revealed a disordering, monoclinic-to-hexagonal phase transformation in the same temperature range as the anomalous vapor pressure, 1240 K – 1260 K [7]. For the monoclinic phase of Ga₂S₃, four single-crystal structures have been published [2,8,9,10]. Work on the high-temperature structures of Ga₂S₃ determined by neutron scattering has made it desirable to reanalyze its single-crystal structure at a specified temperature. The figure shows the corner-sharing GaS4 tetrahedra of the structure as viewed along the [001] direction and the channels created by the ordered vacancies.

Table 1. Data collection and handling.

yellow, irregular, size $0.30 \times 0.30 \times 0.40$ mm Crystal: Wavelength: Mo K_{α} radiation (0.71073 Å) 13.87 cm

Diffractometer, scan mode:

N(hkl)measured, N(hkl)unique:

Criterion for Iobs, N(hkl)gt: N(param)refined:

Programs:

Enraf-Nonius CAD4, ω/2θ

436, 436

 $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 432$

SHEXTL [11], SHELXL-97 [12], PLATON [13]

Table 2. Atomic coordinates and displacement parameters (in \mathbb{A}^2).

Atom	Site	x	у	z	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Ga(1)	4 <i>a</i>	0.04213(8)	0.4023(2)	0.1251(1)	0.0068(7)	0.0130(6)	0.0096(7)	0.0007(4)	0.0042(5)	0.0005(4)
Ga(2)	4 <i>a</i>	0.20026(9)	0.9321(2)	0.1156(1)	0.0065(7)	0.0133(6)	0.0102(7)	-0.0003(4)	0.0045(5)	-0.0012(4)
S(1)	4a	-0.0050(3)	1.0861(4)	-0.0162(6)	0.007(1)	0.016(1)	0.018(1)	-0.0001(8)	0.004(1)	-0.0048(9)
S(2)	4a	0.3378(3)	0.9075(3)	0.4999(4)	0.004(1)	0.015(1)	0.010(2)	-0.0009(8)	0.004(1)	-0.0019(8)
S(3)	4a	0.1741(3)	0.5840(3)	0.0084(4)	0.008(1)	0.012(1)	0.010(1)	-0.0017(8)	0.006(1)	-0.0010(8)

^{*} Correspondence author (e-mail: jonescy@ornl.gov)

Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, TN 37831, USA

Oak Ridge National Laboratory, Chemical and Analytical Sciences Division, Oak Ridge, TN 37831, USA

University of Toledo, Department of Chemistry, Toledo, OH 43606, USA

Acknowledgment. We thank the College of Arts and Sciences of the University of Toledo for use of the X-ray diffractometer and computer facilities in the Arts and Sciences Instrumentation Center.

References

- Jones, C. Y.; Edwards, J. G.: Observation of a Phase Transformation in Ga₂S₃ in an Quartz Effusion Cell above 1230 K by means of Neutron Scattering. J. Phys. Chem. B 105 (2001) 2718-2724.
- Goodyear, J.; Steigmann, G. A.: The Crystal Structure of α-Ga₂S₃. Acta Crystallogr. 16 (1963) 946-949.
- Lee, J.-S.; Won, Y.-H.; Kim, H.-N.; Kim, C.-D.; Kim, W.-T.: Photoluminescence of Ga₂S₃ and Ga₂S₃: Mn Single Crystals. Sol. State. Commun. 97 (1996) 1101-1104.
- Márquez, F.; Fornés, V.: Synthesis and characterization of Ga₂S₃ semiconductor included in zeolite Y. Sol. State Commun. 112 (1999) 17-20.
- Kadono, K.; Higuchi, H.; Takahashi, M.; Kawamoto, Y.; Tanaka, H.: Upconversion luminescence of Ga₂S₃-based sulfide glasses containing Er³⁺ ions. J. Noncryst. Solids 184 (1995) 309-313.
- Roberts, J. A.; Searcy, A.: Anomalous Temperature Dependence for a Partial Vapor Pressure. J. Phys. Chem. B 99 (1995) 525-527.
- Edwards, J. G.; Uram, R. S.: Multiple Equilibrium States in Effusion Cells: Catastrophic Phase Transitions. J. Phys. Chem. B 96 (1992) 8561-8568.

- Goodyear, J.; Duffin, W. A.; Steigmann, G. A.: <u>The Unit Cell of α-Ga</u>₂S₃. Acta Crystallogr. 14 (1961) 1168-1170.
- Hahn, H.; Frank, G.: Zur Struktur des Ga₂S₃. Z. Anorg. Allgem. Chem. 278 (1955) 333-339.
- 10. Tomas, A.; Pardo, M. P.; Guittard, M.: Structural Determination of α and β -Ga₂S₃. Mat. Res. Bull. 22 (1987) 1549-1554.
- SHELXTL 5.10/IRIX. Bruker Analytical X-ray Instruments Inc. Madison, Wisconsin, USA 1997.
- Sheldrick, G. M.: SHELXL-97. Program for Crystal Structure Refinement. Universität Göttingen, Germany 1997.
- Spek, A. L.: PLATON. A Multi-Purpose Crystallographic Tool, Universiteit Utrecht. The Netherlands 2000.