MATB42: Assignment #8

- 1. A surface S is obtained by rotation the given figure in the xy-plane about the z-axis. (The arc is part of a circle of radius 1 centered at (2,0).)
 - (a) Paratemetrize S (in pieces) and compute the surface area.

We have that the upper line when rotated, can be parametrized by a restricted cone and similarly for the bottom. The top and bottom respectively can be written as

$$\begin{aligned} & \Phi(u,\theta) = ((1-u)3\cos\theta, (1-u)3\sin\theta, 3u), \ 0 \le u \le 1, \ 0 \le \theta \le 2\pi \\ & \Phi(u,\theta) = ((1+u)3\cos\theta, (1+u)3\sin\theta, -3u), \ -1 \le u \le 0, \ 0 \le \theta \le 2\pi \end{aligned}$$

For the circular portion to the left, when rotated around, it will be the inner half of a torus, so the equation will be

(b) Use a computer algebra system to sketch S.

- 2. Let S be the cone with vertex (2,3,3) and base the circle $x^2 + y^2 = 1$ in the xy-plane.
 - (a) Paratemetrize S

Starting with a base of a circle, we get $(\cos \theta, \sin \theta, 1)$ with $0 \le \theta \le 2\pi$. To change into a cone multiply x and y by (1-u) with $0 \le u \le 1$ and finally to shift the vertex, add (2u, 3u, 2u) where z = 2u since the base equation already has a 1, so $1 + ku <= 3 \implies k \le 2$.

$$\Rightarrow$$
 $\Phi(u,\theta) = ((1-u)\cos\theta + 2u, (1-u)\sin\theta + 3u, 1+2u)$

- (b) Use a computer algebra system to sketch S.
- (c) Write down the integral that would give the surface area of S. (You are not expected to evaluate the integral.)

$$\begin{split} \phi_{\theta} &= (-(1-u)\sin\theta,\, (1-u)\cos\theta,\, 0) \\ \phi_{u} &= (-\cos\theta+2,\, -\sin\theta+3,\, 2) \\ \phi_{\theta} \times \phi_{u} &= ((2(1-u)\cos\theta), (2(1-u)\sin\theta),\\ &\quad (-(1-u)\sin\theta)(-\sin\theta+3) - ((1-u)\cos\theta)(-\cos\theta+2)) \\ &= ((2-2u)\cos\theta, (2-2u)\sin\theta, (1-u)\sin^{2}\theta - (3-3u)\sin\theta + (1-u)\cos^{2}\theta - (2-2u)\cos\theta) \\ &= ((2-2u)\cos\theta, (2-2u)\sin\theta, (1-u) - (3-3u)\sin\theta - (2-2u)\cos\theta) \\ \|\phi_{\theta} \times \phi_{u}\| &= \sqrt{(2-2u)^{2}\cos^{2}\theta + (2-2u)^{2}\sin^{2}\theta + ((1-u) - (3-3u)\sin\theta - (2-2u)\cos\theta)^{2}} \\ &= \sqrt{(2-2u) + ((1-u) - (3-3u)\sin\theta - (2-2u)\cos\theta)^{2}} \\ \Longrightarrow \mathcal{A}(S) &= \int_{0}^{1} \int_{0}^{2\pi} \sqrt{(2-2u) + ((1-u) - (3-3u)\sin\theta - (2-2u)\cos\theta)^{2}} \, d\theta \, du \end{split}$$