Guía IV: Ajuste-Cuadrados Mínimos

Ajuste-Cuadrados Mínimos

1. Aproximar los datos con un polinomio de grado 2, por cuadrados mínimos y graficar la solución:

\boldsymbol{x}	0.00	0.25	0.50	0.75	1.00
y	1.0000	1.2840	1.6487	2.1170	2,7183

- a) Calcular los errores para cada dato de la tabla.
- b) Calcular el polinomio interpolante de Lagrange de grado 2, en los nodos 0, 0.5 y 1.
- c) Graficar la solución y calcular los errores para cada dato de la tabla.
- d) Comparar los resultados obtenidos y determinar cual solución aproxima mejor a la curva en el intervalo [0; 1].
- e) Comparar los resultados obtenidos con la función $f(x) = e^x$ en los puntos: 0.1, 0.2, 0.3, 0.6, 0.7, 0.8 y 0.9, calcular los errores y obtener conclusiones.
- 2. Determinar las líneas rectas que aproximan la curva $y = e^x$, según los siguientes métodos, comparar los resultados y calcular los errores en x = 1. Utilizar 3 decimales y redondeo.
 - a) Cuadrados mínimos sobre la siguiente tabla:

x_i	-1	-0.5	0	0.5	1
y_i	0,368	0,607	1	1,649	2,718

- b) Tomando la línea tangente a $y=e^x$ en el punto medio del intervalo [0;1], es decir, la aproximación de Taylor de primer orden.
- c) Tomando la línea tangente a $y = e^x$ en el punto medio del intervalo [-1;1], es decir, la aproximación de Taylor de primer orden.
- 3. Se tiene la siguiente tabla de datos:

		8								
y	3.8	3.7	4.0	3.9	4.3	4.2	4.2	4.4	4.5	4.5

- a) Encontrar una función lineal que aproxime estos datos por cuadrados mínimos. Utilizar esta curva para suavizar los datos.
- b) Repetir el punto anterior con una función cuadrática.
- c) Comparar los resultados.

4. Obtener una formula del tipo: $f(x) = a.e^{mx}$ a partir de los siguientes datos:

3:	x	1	2	3	4
٠.	y	7	11	17	27

5. Dada la siguiente colección de datos, elegir una curva de aproximación y analizar los errores respecto de los

valores dados:

x	1.00	1.25	1.50	1.75	2.0
y	5.10	5.79	6.53	7.45	8.46

- 6. Construir las aproximaciones indicadas, calcular los errores y obtener conclusiones:
 - a) Aproximación polinómica de grado 1.
 - b) Aproximación polinómica de grado 2.
 - c) Aproximación polinómica de grado 3.
 - d) Aproximación de la forma: $b.e^{ax}$.
 - e) Aproximación de la forma: $b.x^a$.

Para las siguientes tablas:

i)	x	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
1)	y	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

ii)	x	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
11)	y	0.050446	0.098426	0.332770	0.726600	1.097200	1.569700	1.848700	2.501500

7. Para 5 instantes de tiempo se observaron los siguientes valores de un parámetro físico:

t	-2	-1	0	1	2
u	u_{-2}	u_{-1}	u_0	u_1	u_2

Mostrar que, si los datos se ajustan por una parábola $\phi(t)$, la aproximación en t=0 es:

$$\phi(0) = \frac{1}{35}(-3u_{-2} + 12u_{-1} + 17u_0 + 12u_1 - 3u_2)$$

- 8. Hallar el polinomio aproximante de segundo grado para la función: $f(x) = sen(\pi.x)$ en el intervalo [0; 1]. Graficar la función y su aproximación.
- 9. El nivel de agua en el Mar del Norte está determinado principalmente por la marea llamada M2, cuyo período es de aproximadamente 12 horas. Se han realizado las siguientes mediciones:

t (horas)	0	2	4	6	8	10
H(t) (m)	1,0	1,6	1,4	0,6	0, 2	0,8

a) Ajustar la serie de mediciones usando el método de los cuadrados mínimos y la función:

$$H^*(t) = h_0 + a_1 sen(\frac{2.\pi.t}{12})$$

- b) Calcular errores que permitan estimar la precisión de la aproximación realizada en a).
- c) Utilizar ahora la función:

$$H^*(t) = h_0 + a_1 sen(\frac{2.\pi \cdot t}{12}) + a_2 cos(\frac{2.\pi \cdot t}{12})$$

Repetir b) para la nueva función aproximante. Comparar y obtener conclusiones.