

智能无人机技术设计实践 --课程介绍

朱小亮

联系方式: zhuxiaoliang@tsinghua.edu.cn

时间: 2019年11月3日

目录

- ▶ 1 课程背景
- ▶ 2 课程简介
- ▶ 3 课程硬件配置

1课程背景

▶ 商业上,涌现了一大批创业公司,四旋翼飞行器已经逐渐在各个领域中投入使用:商演、无人机植保、搜索救援、物联网。

商演

无人机植保

无人机派送

1课程背景

无人机编队演示

视频来源: https://haokan.baidu.com/

1课程背景

- > 军事上, 无人作战平台在未来作战模式中占据主导地位。
- 科研上,无人机本身的控制、通信、定位等问题有着较高的研究价值。

无人作战平台

图片来源: http://www.wedefence.com/?p=12088 http://www.pashu.org/kejiyuan/2019/0508/050851259.html https://anh135689999.violet.vn/entry/may-bay-quan-su-nhai-dieu-hau-va-con-trung-10881873.html

集群打击

搜索救援

◆课程信息

- 课程号: 01510412

▶ 课序号: 90

▶ 学分: 2

➤ 主讲教师:

• 汪玉 (yu-wang@tsinghua.edu.cn)

• 沈渊 (shenyuan_ee@tsinghua.edu.cn)

• 鄂炎雄 (eyx@tsinghua.edu.cn)

• 朱小亮 (zhuxiaoliang@tsinghua.edu.cn)

▶ 助教:

- 余金城 (yjc16@mails.tsinghua.edu.cn)
- 于超 (yc19@mails.tsinghua.edu.cn)
- ➤ 课程成绩记 P/F
- 考核方式:不设置考试环节,选课的同学只需参加所有的理论课学习并完成预设的实验任务,即视为通过。
- > 课件及公告在网络学堂及清华网盘进行发布。

◆ 课程负责人

汪玉,清华大学电子工程系长聘教授,从事高能效电路与系统研究。发表高水平论文200余篇,包括IEEE/ACM杂志文章近50篇,谷歌学术引用4400余次。担任ACM SIGDA E-news主编,Microelectronics Journal Special Issue Editor, IEEE TCAD、IEEE TCSVT、JCSC编委,CCF体系结构、计算机工程工艺、容错专委会委员,DAC等国际会议技术委员会委员,ACM杰出演讲者。

沈渊,清华大学电子工程系长聘副教授,从事网络定位与导航、网络信息安全等方向研究,发表高水平论文100余篇,主持并参与科研项目10余项,申请发明专利20余项。担任IEEE会员、TPC成员、马可尼协会青年会员。2010年获马可尼协会青年学者奖,2014年入选国家青年千人计划,2015年获求是杰出青年学者奖,2018年获IEEE通信协会亚太区杰出青年研究者。曾获2012年IEEE通信协会年度最佳期刊论文奖以及IEEE通信协会多个会议最佳论文奖。

◆课程负责人

鄂炎雄,博士,讲师,清华大学团委副书记,分管学生创新创业工作,负责学生创业指导,创新创业平台建设等工作, 长期担任创新创业团队指导教师。

EE学士 (2001年)、博士 (2016年)

朱小亮,博士,讲师,清华大学团委科创中心主任、创业指导中心主任,负责学生科技创新,学生创业指导工作。

DHE学士 (2013年)、博士 (2018年)

◆课表安排

周次	时间	地点	内容	比赛
第1周	9.14 第6大节	6C102	赛事宣讲+初赛题目发布	
第2周	9.21 8:00-12:00	李兆基B643	第0讲:课程介绍+大疆讲座 实验0:课程准备	
第3周	9.28 8:00-12:00	李兆基B643	第1讲:ROS基础+坐标转换 实验1:坐标转换	ROS基础
第4周			国庆放假	
第5周	10.12 8:00-12:00	李兆基B570	第2讲:ROS通信+传统图像识别 实验2:二维码识别	ROS控制Tello
第6周	10.19 8:00-12:00	李兆基B643	第3讲:深度学习基础+图像识别 实验3:YOLO_V3	相机标定
第7周	10.26 8:00-12:00	李兆基B643	第4讲:决策+路径规划 实验4:路径规划仿真	ROS通信
第8周	11.2 8:00-12:00	李兆基B643	第5讲:系统集成 实验5:完成连贯任务	
第9周	11.9 8:00-12:00	李兆基B643	复赛	
第10周	11.16 8:00-12:00	李兆基B643	决赛赛题+答疑+调试备赛	
第11周	11.23 8:00-12:00	李兆基B643	答疑+调试备赛	
第12周	11.30 8:00-12:00	李兆基B643	答疑+调试备赛	
第13周	待定	罗姆楼11层 报告厅	决赛	

◆ 分组安排

- > 课前签到。
- ▶ 推荐2人一组,先自由组队,在网络学堂上提交组队成员的**学号和姓名**。 若1人成队,在网络学堂上进行说明。未组队成功的同学由助教随机分配。
- ➤ 每队一台Tello无人机,编号唯一,实验课前分发,课后回收。
- ▶ 注意实验安全!!!
 - ➤ 无人机只能在规定区域内飞行,不得随意起飞,以免伤人。
 - > 电池充电时保证现场有人,不得无人充电。
- 实验原则上是周六上午完成,如果有同学存在问题,周六全天可以进行答疑。
- > 比赛筹备阶段,调试时间另行安排,需提前分配好给每组的调试时间段。

Tello

◆ Tello无人机: https://www.ryzerobotics.com/cn/tello

重量:约80克(含桨叶和电池)

尺寸: 98×92.5×41 mm

桨叶: 3 英寸

内置功能: 红外定高,气压计定高,LED指示 灯,下视视觉,WiFi连接,高清720P图传

接口: Micro USB充电接口

最大飞行距离: 100米 最大飞行速度: 8m/s 最大飞行时间: 13分钟 最大飞行高度: 30米

照片: 500万像素

FOV: 82.6°

视频: HD720P30

格式: JPG (照片) , MP4 (视频)

电子防抖: 支持

Tello EDU

无人驾驶飞机 (Unmanned Aerial Vehicle) 具有灵活的运动能力,可以进入人类不便到达的区域执行任务,其上搭载各种传感器,将其它形式的信息转化为电信号存储、处理和传输,是人类感官的延伸,因此在军事、救援、航拍等领域都有重要应用。

- **图像传感器**如CCD、CMOS等是摄像头的重要组成部分,利用感光器件将光信号转化为电信号,获取视觉信息;
- 惯性测量单元简称惯导,通常含有加速度计与陀螺仪,前者用于检测物体在XYZ三轴方向的加速度,后者用于检测物体在导航坐标系中的角速度信号。

◆ 无人机定位: 定位毯

- 生成 marker 数据库[1];
- 在定位毯上放置若干 marker;
- 获取其在世界坐标系中的三维坐标。

- 无人机摄像头拍摄图片;
- 提取 marker 特征点,获取特征点二维坐标;
- 在数据库中寻找匹配 marker;
- 根据 marker 在像素坐标系中的二维坐标 与世界坐标系中的三维坐标的对应关系, 利用 PnP 算法解算相机三维坐标。

◆ 无人机定位: 定位毯

10m*10m定位毯示意图

正在用的4块毯子

◆无人机定位: Opti-track

- Opti-track即光学运动捕捉系统,可实现对运动物体高速、高精度、鲁 棒的运动捕捉,因此在生物力学研究、影视动画制作、机器人/无人机 定位追踪、虚拟现实等领域成功应用;
- 其基本原理为多台摄像机同步发射红外光线,在目标物体表面固定特制的标记点,标记点在红外光线下强烈反光,通过融合多个摄像机的信息确定标记点的三维空间位置信息。

2 无人机简介

控制计算机通过WIFI等无线传输模块输出飞行控制指令给无人机,无人机自主飞行过程中,控制计算机利用Motive运动捕捉软件,根据无人机的飞行轨迹,并结合运动捕捉系统获得的六自由度信息,不断修正飞行参数,从而控制无人机高精度、平稳、无偏差的飞行。

决赛会采用的opti-track系统

相机

• 无人机比赛视频

大疆讲座

- 周谷越,大疆创新科技有限公司产品经理,教育产品线负责人。
- 2014年获得香港科技大学电子计算机工程系博士学位,研究方向为机器人视觉,发表国际高水平论文近20篇,拥有国际发明专利100余项,其中题为"三维环境智能感知系统研发及应用"的研究成果获深圳市科学进步一等奖。博士期间曾获IEEE Embedded Vision Workshop Best Poster Award,应MIT Technology Reivew邀请在Innovators Under 35大会上介绍无人机前沿技术。

• 2012年起加入大疆创新,先后负责视觉研发,感知系统,智能制造和教育技术等研发部门并担任多款创新型产品的产品经理,其中视觉导航模组Guidance为全球首款量产视觉导航产品,无人机Spark入选2017年《时代周刊》全球十大电子产品(排名第四),无人机Tello入选2018年Google全球最具影响力的10大节日玩具(排名第五)。所负责产品在全球累计销售约300万台,累计销售额约50亿元。

谢谢!