Soal dan Solusi UTS Analisis Real 2023

Wildan Bagus Wicaksono

Mатематіка 2022

Question 1

Misalkan himpunan A terbilang dan B himpunan bagian sejati tak berhingga dari A. Buktikan bahwa himpunan B ekuivalen dengan himpunan A.

Penyelesaian.

Karena B himpunan bagian sejati tak berhingga dari himpunan terbilang A, maka B juga terbilang. Akibatnya, ada fungsi bijektif $f:A\to\mathbb{N}$ dan $g:\mathbb{N}\to B$ dan diperoleh juga $g\circ f:A\to B$ merupakan fungsi bijektif. Jadi, B ekuivalen dengan himpunan A.

Question 2

Jika E suatu himpunan bagian dari \mathbb{R} yang tidak kosong dan terbatas ke bawah dan $-E = \{y \mid y = -x, x \in E\}$, buktikan bahwa inf $E = -\sup(-E)$.

Penyelesaian.

Karena E terbatas, maka terdapat bilangan real positif M yang memenuhi $|x| \leq M$ untuk setiap $x \in E$. Tinjau bahwa untuk sebarang $y \in (-E)$ berlaku $-y \in E$ sehingga berakibat $|-y| \leq M$. Namun, ini berakibat $|y| \leq M$ untuk setiap $y \in (-E)$ yang menunjukkan -E juga terbatas.

Karena E dan (-E) terbatas, menurut aksioma kelengkapan berlaku inf E dan $\sup(-E)$ ada. Misalkan $\sup(-E) = a$. Ambil sebarang $p \in E$, maka $-p \in (-E)$ yang berarti $-p \le a$ yang berakibat $p \ge -a$. Ini berarti -a merupakan batas bawah untuk E yang berarti inf $E \ge -a$. Perhatikan pula untuk setiap $\varepsilon > 0$, terdapat $q \in (-E)$ yang memenuhi $a - \varepsilon < q$. Dari sini diperoleh $-q - \varepsilon < -a$. Karena $-q \in E$, maka $-q \ge \inf(E)$ yang berakibat

$$-a > -q - \varepsilon \ge \inf(E) - \varepsilon \implies -a > \inf(E) - \varepsilon.$$

Karena berlaku untuk sebarang $\varepsilon > 0$, dapat disimpulkan bahwa $-a \ge \inf(E)$. Mengingat juga harus berlaku inf $E \ge -a$, dapat disimpulkan bahwa inf E = -a.

Question 3

Diketahui himpunan $E \subset \mathbb{R}^2$ dan $E = \{(x,y) \mid (x,y) = (2,1) \lor x^2 + y^2 \le 1\}$. Tentukan

- (a) Himpunan semua titik limit E.
- (b) Himpunan semua titik interior E.
- (c) Apakah E tertutup? Apakah E terbuka?

Penyelesaian.

(b) Misalkan $(a,b) \in E$ dan $s = \sqrt{a^2 + b^2}$, yaitu menyatakan jarak titik (0,0) dengan (a,b). Definisikan pula $N_{\varepsilon}(a,b) = \{(x,y) \mid (x-a)^2 + (y-b)^2 < \varepsilon^2\}$ sebagai persekitaran dari (a,b) dan $\varepsilon > 0$.

Kasus 1. Jika $(a, b) \in E$ memenuhi $a^2 + b^2 < 1$.

Jika (a,b)=(0,0), perhatikan bahwa untuk $\varepsilon=\frac{1}{2}$, maka untuk setiap $(x,y)\in N_{\frac{1}{2}}(0,0)$ berlaku

$$x^{2} + y^{2} < \frac{1}{4} < 1 \implies x^{2} + y^{2} < 1 \implies (x, y) \in E.$$

Jadi, $N_{\frac{1}{2}}(0,0) \subseteq E$ yang berarti $(0,0) \in int(E)$. Sekarang, akan ditinjau apabila $(a,b) \in E \setminus \{(0,0)\}$ yang memenuhi $a^2 + b^2 < 1$, jelas bahwa 0 < s < 1. Perhatikan bahwa untuk $\varepsilon = \frac{1}{2} \min\{s, 1-s\}$, maka untuk setiap $(x,y) \in N_{\varepsilon}(E)$ berlaku

$$x^{2} + y^{2} < \varepsilon^{2} = \left(\frac{\min\{s, 1 - s\}}{2}\right)^{2} < \frac{1}{4} < 1 \implies x^{2} + y^{2} < 1.$$

Jadi, $N_{\varepsilon}(a,b) \subseteq E$ yang menunjukkan $(a,b) \in int(E)$.

Kasus 2. Akan ditinjau untuk $(a,b) \in E$ yang memenuhi $a^2 + b^2 = 1$, akan dibuktikan bahwa yang demikian bukan titik interior. Ambil sebarang $\varepsilon > 0$.

• Untuk (a,b)=(0,1), tinjau $(0,1+\frac{\varepsilon}{2})\in N_{\varepsilon}(0,1)$ namun $(0,1+\frac{\varepsilon}{2})\not\in E$ karena

$$0^{2} + \left(1 + \frac{\varepsilon}{2}\right)^{2} = 1 + \varepsilon + \frac{\varepsilon^{2}}{4} > 1$$

yang berarti $N_{\varepsilon}(0,1) \not\subseteq E$. Secara analog, untuk (a,b)=(0,-1) berlaku $N_{\varepsilon}(0,-1) \not\subseteq E$ karena $\left(0,-1-\frac{\varepsilon}{2}\right) \in N_{\varepsilon}(0,-1)$ namun $\left(0,-1-\frac{\varepsilon}{2}\right) \not\in E$.

• Untuk $(a, b) \neq (0, \pm 1)$. Tinjau titik $\left(a + \frac{\varepsilon}{2}, b\right)$ dan $\left(a - \frac{\varepsilon}{2}, b\right)$ masing-masing anggota $N_{\varepsilon}(a, b)$. Jika a > 0, maka

$$\left(a+\frac{\varepsilon}{2}\right)^2+b^2=a^2+a\varepsilon+\frac{\varepsilon^2}{4}+b^2>a^2+b^2=1 \implies \left(a+\frac{\varepsilon}{2},b\right)\not\in E$$

yang menunjukkan bahwa $N_{\varepsilon}(a,b) \not\subseteq E$. Jadi, (a,b) bukan titik interior.

Jika a < 0, misalkan a = -a' dengan a' > 0, maka

$$\left(a - \frac{\varepsilon}{2}\right)^2 + b^2 = \left(-a' - \frac{\varepsilon}{2}\right) + b^2 = \left(a' + \frac{\varepsilon}{2}\right)^2 + b^2 > (a')^2 + b^2 = a^2 + b^2 = 1$$

sehingga $\left(a - \frac{\varepsilon}{2}, b\right) \notin E$ yang berakibat $N_{\varepsilon}(a, b) \not\subseteq E$.

Jadi, terbukti bahwa setiap titik yang memenuhi $a^2 + b^2 = 1$ bukan titik interior.

Kasus 3. Tinjau titik (a,b)=(2,1) dan akan dibuktikan juga bukan titik interior. Ambil sebarang $\varepsilon>0$, jelas bahwa $\left(2+\frac{\varepsilon}{2},1\right)\neq (2,1)$ dan $\left(2+\frac{\varepsilon}{2},1\right)\in N_{\varepsilon}(a,b)$. Kemudian,

$$\left(2 + \frac{\varepsilon}{2}\right)^2 + 1^2 > 2^2 + 1^2 = 5 > 1 \implies \left(2 + \frac{\varepsilon}{2}, 1\right) \not\in E$$

yang berarti $N_{\varepsilon}(a,b) \not\subseteq E$.

Dari semua kemungkinan, himpunan semua titik interior E adalah $int(E) = \{(x, y) \mid x^2 + y^2 < 1\}.$

(a) **Kasus 1.** Perhatikan bahwa (a,b)=(2,1) bukan titik limit karena untuk $\varepsilon=2$, titik $(3,1)\in N_{\varepsilon}(2,1)$ berlaku $(3,1)\notin E$.

Kasus 2. Akan dibuktikan bahwa setiap titik (a, b) yang memenuhi $a^2 + b^2 = 1$ merupakan titik limit. Ambil sebarang $\varepsilon > 0$.

• Untuk (a,b)=(0,1), perhatikan bahwa jika $\varepsilon<1$, maka $(0,1-\varepsilon)\in N_{\varepsilon}(0,1)$ berlaku $(0,1-\varepsilon)\in E$ karena

$$0^{2} + (1 - \varepsilon)^{2} < 0 + 1^{2} = 1 \implies 0^{2} + (1 - \varepsilon)^{2} < 1.$$

Jelas bahwa $(0,1-\varepsilon) \neq (0,1)$, ini berarti $(0,1-\varepsilon) \in N_{\varepsilon}(0,1) \cap E \setminus \{(0,1)\}$ sehingga $N_{\varepsilon}(0,1) \cap E \setminus \{(0,1)\}$ tak kosong. Jika $\varepsilon \geq 1$, tinjau $(0,\frac{1}{2}) \in N_{\varepsilon}(0,1) \cap E \setminus \{(0,1)\}$ sehingga $N_{\varepsilon}(0,1) \cap E \setminus \{(0,1)\}$ tak kosong. Jadi, (0,1) merupakan titik limit.

- Untuk (a,b) = (0,-1) dapat dilakukan secara analog. Untuk $\varepsilon < 1$, maka $(0,-1+\varepsilon) \in N_{\varepsilon}(0,-1) \setminus \{(0,-1)\}$ sehingga $N_{\varepsilon}(0,-1) \cap E \setminus \{(0,-1)\}$ tak kosong. Untuk $\varepsilon \geq 1$, tinjau $(0,-\frac{1}{2}) \in N_{\varepsilon}(0,-1) \cap E \setminus \{(0,-1)\}$ sehingga $N_{\varepsilon}(0,-1) \cap E \setminus \{(0,-1)\}$ tak kosong. Jadi, (0,-1) merupakan titik limit.
- Untuk $(a,b) \neq (0,\pm 1)$. Akan ditinjau apabila a>0. Untuk $\varepsilon<2a$ tinjau $\left(a-\frac{\varepsilon}{2},b\right)\in N_{\varepsilon}(a,b)$ berlaku

$$\left(a-\frac{\varepsilon}{2}\right)^2+b^2=a^2-a\varepsilon+\frac{\varepsilon^2}{4}+b^2=1+\varepsilon\left(\frac{\varepsilon}{4}-a\right)<1+2a\left(\frac{2a}{4}-a\right)=1-a^2<1$$

yang menunjukkan $(a - \frac{\varepsilon}{2}, b) \in E$. Jelas bahwa $(a - \frac{\varepsilon}{2}, b) \neq (a, b)$, maka $N_{\varepsilon}(a, b) \cap E \setminus \{(a, b)\}$ tak kosong. Apabila $\varepsilon \geq 2a$, perhatikan bahwa $(0, b) \in N_{\varepsilon}(a, b)$ karena memenuhi $(0 - a)^2 + (b - b)^2 = a^2 < 4a^2 < \varepsilon^2$ yang berakibat pula $N_{\varepsilon}(a, b) \cap E \setminus \{(a, b)\}$ tak kosong.. Ini menunjukkan (a, b) titik limit.

Akan ditinjau apabila a<0 yang dapat dilakukan secara analog. Misalkan a=-a' di mana a'>0. Untuk $\varepsilon<-2a=2a'$ tinjau $\left(a+\frac{\varepsilon}{2},b\right)\in N_{\varepsilon}(a,b)$ berlaku

$$\left(a + \frac{\varepsilon}{2}\right)^2 + b^2 = \left(-a' + \frac{\varepsilon}{2}\right)^2 + b^2 = \left(a' - \frac{\varepsilon}{2}\right)^2 + b^2 < 1$$

sebagaimana subkasus sebelumnya, berakibat $N_{\varepsilon}(a,b) \cap E \setminus \{(a,b)\}$ tak kosong. Jika $\varepsilon \ge -2a = 2a'$, tinjau $(0,b) \in N_{\varepsilon}(a,b)$ yang berakibat pula $N_{\varepsilon}(a,b) \cap E \setminus \{(a,b)\}$ tak kosong. Ini menunjukkan (a,b) titik limit.

Dari semua subkasus yang mungkin membuktikan bahwa (a, b) titik limit untuk setiap (a, b) yang memenuhi $a^2 + b^2 = 1$.

Kasus 3. Akan dibuktikan bahwa semua titik $(a,b) \in Int(E)$ titik limit. Perhatikan bahwa terdapat $\varepsilon > 0$ yang memenuhi $N_{\varepsilon}(a,b) \subseteq E$. Ambil sebarang $\varepsilon' > 0$. Jika $\varepsilon' > \varepsilon$, tinjau titik $\left(a + \frac{\varepsilon}{2}, b\right) \neq (a,b)$ yang mana $\left(a + \frac{\varepsilon}{2}, b\right) \in N_{\varepsilon}(a,b) \implies \left(a + \frac{\varepsilon}{2}, b\right) \in E$. Karena

$$\left(a + \frac{\varepsilon}{2} - a\right)^2 + (b - b)^2 = \frac{\varepsilon^2}{4} < (\varepsilon')^2 \implies \left(a + \frac{\varepsilon}{2} - a\right)^2 + (b - b)^2 < (\varepsilon')^2$$

yang berarti $(a + \frac{\varepsilon}{2}, b) \in N_{\varepsilon'}(a, b)$, ini menunjukkan bahwa

$$\left(a+\frac{\varepsilon}{2},b\right)\in N_{\varepsilon'}(a,b)\cap E\setminus \{(a,b)\} \implies N_{\varepsilon'}(a,b)\cap E\setminus \{(a,b)\} \text{ tak kosong.}$$

Jika $0 < \varepsilon' < \varepsilon$. Tinjau bahwa $\left(a + \frac{\varepsilon'}{2}, b\right) \in N_{\varepsilon'}(a, b)$ berlaku

$$\left(a + \frac{\varepsilon'}{2} - a\right)^2 + (b - b)^2 = \frac{(\varepsilon')^2}{4} < \varepsilon^2 < 1 \implies \left(a + \frac{\varepsilon'}{2} - a\right)^2 + (b - b)^2 < 1$$

yang berarti $\left(a+\frac{\varepsilon'}{2},b\right)\in E$. Karena $\left(a+\frac{\varepsilon'}{2},b\right)\neq (a,b)$, maka

$$\left(a+\frac{\varepsilon}{2},b\right)\in N_{\varepsilon'}(a,b)\cap E\setminus \{(a,b)\} \implies N_{\varepsilon'}(a,b)\cap E\setminus \{(a,b)\} \text{ tak kosong.}$$

Jadi, terbukti bahwa setiap titik (a, b) yang memenuhi $(a, b) \in Int(E)$ merupakan titik limit.

Kasus 4. Akan dibuktikan bahwa semua titik-titik di E^c bukan titik limit. Misalkan $(a,b) \in E^c$, maka $s=a^2+b^2>1$ dan $(a,b)\neq (2,1)$. Jelas bahwa $s-1=\sqrt{a^2+b^2}-1>0$, pilih

$$\varepsilon = \frac{1}{2}\min\left\{s - 1, \sqrt{(a-2)^2 + (b-1)^2}\right\}.$$

Tinjau bahwa $(2,1) \not\in N_{\varepsilon}(a,b)$ karena jika $(2,1) \in N_{\varepsilon}(a,b)$ berakibat

$$(2-a)^2 + (1-b)^2 = (a-2)^2 + (b-1)^2 < \varepsilon^2 \le \frac{(a-2)^2 + (b-1)^2}{4} \implies (a-2)^2 + (b-1)^2 \le \frac{(a-2)^2 + (b-1)^2}{4}$$

yang mana suatu kontradiksi karena $(a-2)^2 + (b-1)^2 > 0$. Akan ditinjau untuk setiap (p,q) yang memenuhi $p^2 + q^2 \le 1$. Dari Minkowksi Inequality berlaku

$$\sqrt{(p-a)^2 + (q-b)^2} + \sqrt{p^2 + q^2} = \sqrt{(a-p)^2 + (b-q)^2} + \sqrt{p^2 + q^2}$$

$$\geq \sqrt{(a-p+p)^2 + (b-q+q)^2}$$

$$= \sqrt{a^2 + b^2} = s$$

$$> \frac{1}{2}(s-1) \geq \frac{1}{2}\varepsilon$$

mengingat

$$s - \frac{1}{2}(s - 1) = \frac{2s - (s - 1)}{2} = \frac{s + 1}{2} > 0.$$

Ini menunjukkan

$$(p-q)^2 + (q-b)^2 > \frac{1}{4}\varepsilon^2 \implies (p,q) \notin N_{\varepsilon}(a,b).$$

Karena juga berlaku $(2,1)\not\in N_\varepsilon(a,b),$ ini menunjukkan bahwa

$$\{(p,q) \mid p^2 + q^2 \le 1\} \cup \{(2,1)\}$$

saling lepas dengan $N_{\varepsilon}(a,b).$ Ini menunjukkan bahwa

$$(N_{\varepsilon}(a,b)\cap E)\setminus\{(a,b)\}=\varnothing$$

yang berarti (a, b) bukan titik limit.

Jadi, himpunan semua titik limit Eadalah $\{(x,y)\mid x^2+y^2\leq 1\}.$

(c) E tidak terbuka karena $(2,1) \not\in int(E)$, kemudian E juga tidak tertutup karena (2,1) bukan titik limit E.

 \blacktriangledown

Question 4

Misalkan (X, d) ruang metrik dan A, B himpunan bagian dari X. Buktikan bahwa

$$\overline{A \cup B} = \overline{A} \cup \overline{B}.$$

Penyelesaian.

Definisikan K' sebagai himpunan titik limit K di X. Akan dibuktikan bahwa $(A \cup B)' = A' \cup B'$. Ambil sebarang $x \in (A \cup B)'$, maka untuk setiap $\varepsilon > 0$ terdapat $p \in N_{\varepsilon}(x) \cap (A \cup B)$ dengan $p \neq x$. Tinjau bahwa

$$N_{\varepsilon}(x) \cap (A \cup B) = (N_{\varepsilon}(x) \cap A) \cup (N_{\varepsilon}(x) \cap B) \implies p \in N_{\varepsilon}(x) \cap A \lor p \in N_{\varepsilon}(x) \cap B.$$

Tanpa mengurangi keumuman, misalkan $p \in N_{\varepsilon}(x) \cap A$. Karena $p \neq x$ dan berlaku untuk sebarang $\varepsilon > 0$, maka $x \in A'$. Ini berarti $x \in A' \cup B'$ yang membuktikan $(A \cup B)' \subseteq A' \cup B'$. Ambil sebarang $y \in A' \cup B'$, maka $y \in A'$ atau $y \in B'$. Tanpa mengurangi keumuman misalkan $y \in A'$. Untuk setiap $\varepsilon > 0$ terdapat $q \in N_{\varepsilon}(y) \cap A'$ dengan $q \neq y$. Diperoleh

$$q \in (N_{\varepsilon}(y) \cap A) \cup (N_{\varepsilon}(y) \cap B) = N_{\varepsilon}(y) \cap (A \cup B) \implies q \in N_{\varepsilon}(y) \cap (A \cup B).$$

Karena berlaku untuk sebarang $\varepsilon > 0$ dan $q \neq y$, maka $q \in (A \cup B)'$ yang membuktikan $A' \cup B' \subseteq (A \cup B)'$. Terbukti.

Diperoleh

$$\overline{A \cup B} = (A \cup B) \cup (A \cup B)'$$

$$= (A \cup B) \cup (A' \cup B')$$

$$= (A \cup A') \cup (B \cup B')$$

$$= \overline{A} \cup \overline{B}$$

seperti yang ingin dibuktikan.