Overview of hash-based digital signature schemes

Gustavo Zambonin

Federal University of Santa Catarina Department of Informatics and Statistics

gustavo.zambonin@grad.ufsc.br

Motivation

- ► Independent from number theory or algebraic problems
 - ► Possibly ''post-quantum secure''
- ► For every digital signature scheme, one can use any hash function available
 - ► Chosen according to specific needs (hardware, software)
- One-way functions are necessary and sufficient for secure signatures [Rom90, KK05]

Foundations

Hash functions

- ► RIPEMD: $n \in \{128, 160, 256, 320\}$
- ► SHA-2, SHA-3, BLAKE: $n \in \{224, 256, 384, 512\}$
- ► Keccak: any *n*

Foundations

Digital signatures

- ► Provide authentication, integrity and non-repudiation
- ► Based on public-key cryptography
- ► Triple of probabilistic polynomial time algorithms [Gol04]
 - \blacktriangleright Key generation (\mathcal{G}), signing (\mathcal{S}), verifying (\mathcal{V})
- ► There should exist a way to bind a signer to its key

Timeline

Outline of the most important moments in hash-based digital signature schemes research, starting in 1979 with Lamport's one-time scheme, and shortly after with the work of Merkle, allowing many-time schemes through the use of hash trees.

The years marked as productive for "theoretical results" consist primarily of research about optimal one-time signature schemes and creation of variants.

One-time signature schemes

- ► Key pair shall be used only once
- ► Lamport-Diffie (LD-OTS)
 - ► First hash-based scheme
 - Arbitrary-length messages can be signed, one bit at a time
- ► Winternitz (WOTS)
 - ► Multiple bits are signed simultaneously
 - ► Generalization of LD-OTS
 - ► Tradeoff between performance and signature size
- ► HORS
 - ► Few-time scheme, security decreases with each signature
 - ► HORST HORS with trees

Key generation step

Let $w \in \mathbb{N}$, w > 1 be the Winternitz tradeoff parameter. Then,

$$t_1 = \left\lceil rac{n}{w}
ight
ceil$$
 $t_2 = \left\lceil rac{\lfloor log_2 t_1
floor + 1 + w}{w}
ight
ceil$ $t = t_1 + t_2$

The private and public keys are, respectively,

$$S_k = (y_{t-1}, \dots, y_0) \stackrel{\$}{\longleftarrow} \{0, 1\}^n$$

 $P_k = (\mathcal{H}^{2^w - 1}(y_{t-1}), \dots, \mathcal{H}^{2^w - 1}(y_0))$

Signing step

The hash chain exponents $\epsilon_i \in \{0,1\}^w$ are generated as follows:

$$\mathcal{H}(m) = (\epsilon_{t-1}, \dots, \epsilon_{t-t_1})$$

$$c = \sum_{i=t-t_1}^{t-1} (2^w - 1 - \epsilon_i)$$
$$= (\epsilon_{t_2-1}, \dots, \epsilon_0)$$

Finally, the one-time signature is constructed.

$$\sigma = (\mathcal{H}^{\epsilon_{t-1}}(y_{t-1}), \dots, \mathcal{H}^{\epsilon_0}(y_0))$$

Verification step

Recall that

$$P_k = (\mathcal{H}^{2^w-1}(y_{t-1}), \dots, \mathcal{H}^{2^w-1}(y_0))$$
 and $\sigma = (\mathcal{H}^{\epsilon_{t-1}}(y_{t-1}), \dots, \mathcal{H}^{\epsilon_0}(y_0))$

To verify σ , all ϵ_i are calculated and the hash chains are finished:

$$\forall \sigma_i \in \sigma, \mathcal{H}^{2^w-1-\epsilon_i}(\sigma_i) = P_{k_i}$$

Improvements

- ► Shorter signature sizes in all improvements
- ightharpoonup Eliminate the need for a collision resistant ${\cal H}$
 - \blacktriangleright Use of a non-compressing function family F_n
 - ightharpoonup Random walk through F_n instead of simple iterations
- ▶ Round-specific bitmasks on each hash iteration $i \in \mathbb{N}$

$$(b_0,\ldots,b_j)\in\{0,1\}^{n\times j}, j\geq i$$

 $c^0(x)=x$
 $c^i(x)=\mathcal{H}(c^{i-1}(x)\oplus b_i)$

Many-time signature schemes (Merkle)

- One-time signatures on each leaf, tree built from public keys
- Size and traversal of the tree are common issues
- ► Clever ways to store the key pair (e.g. seed of pseudorandom generator)
- Generally stateful schemes, i.e. track which OTS pairs were used

Take \mathcal{D}_n as any data block. A Merkle tree can be constructed recursively through the concatenation of hashes of a node's children.

CMSS, GMSS

- ► Main idea: Merkle trees with layers
- Root of a child tree is signed with an OTS private key corresponding to a leaf of its parent
- ► CMSS as a special case of GMSS
- ► Simple Winternitz as chosen OTS scheme
- ► Amortized cost of key pair generation, competitive with classical schemes such as RSA, ECDSA

XMSS, XMSS^{MT}

- ► Bitmasks between levels of the tree
- ► Sub-tree on each leaf called L-tree
 - ► Stores each element of a WOTS public key in a balanced way
 - ▶ Bitmasks are the same for all L-trees
 - ightharpoonup Only a second preimage resistant ${\cal H}$ is needed

Bibliography

Oded Goldreich.

Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY, USA, 2004.

Jonathan Katz and Chiu-Yuen Koo.

On constructing universal one-way hash functions from arbitrary one-way functions.

Cryptology ePrint Archive, Report 2005/328, 2005. http://eprint.iacr.org/2005/328.

J. Rompel.

One-way functions are necessary and sufficient for secure signatures.

In *Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing*, STOC '90, pages 387–394, New York, NY, USA, 1990. ACM.