Concurrent VHDL

Announcements

- Homework #2 due Wednesday
- Reading Assignment
 - Ch. 3 section 6, Ch. 5 sections I-4
- Free homework grade for critical thinking lecture
 - Don't forget to scan in

2019 Fram Signature Lecture

"POWERFUL STUFF: An Entrepreneurial Mindset Built Upon Critical Thinking" with Doug Melton of KEEN

Date: Tuesday, September 17, 2019

Time: 3:30 pm - 4:45 pm Place: Ingle Auditorium

(Reception immediately following in Fireside Lounge)

Access Services will be providing interpreters

Proudly cosponsored by:

RIT Engineering Technology

RIT | Kate Gleason College of Engineering

A Note about Libraries

- We will learn more about libraries later
- For now we will use the following Libraries
 - library IEEE;
 - use IEEE.STD_LOGIC_I 164.ALL;
 - use IEEE.NUMERIC STD.ALL;
 - use IEEE.STD_LOGIC_UNSIGNED.ALL
- These libraries permit use of predefined logic values, logic operations like AND, OR, and arithmetic operations like + (add) etc.

Things to know

- Comments
 - --this is a comment
 - Use lots of comments good habit to get into
 - Use descriptive signal and port names
- Indenting
 - Use indenting to make code more 'readable'
 - SPACES (2, 3 or 4) not TABS
- Editor
 - I recommend Notepad++
 - Free online
 - Recognizes VHDL and formats accordingly
 - Color codes comments, reserved words, etc...

Port and Signal Types

- STD_LOGIC
 - Represents a single wire
 - Can have 9 values
 - 'U': uninitialized. This signal hasn't been set yet.
 - 'X': unknown. Impossible to determine this value/result.
 - '0' : logic 0
 - · 'I' : logic I
 - · 'Z': High Impedance
 - 'W': Weak signal, can't tell if it should be 0 or 1.
 - 'L' :Weak signal that should probably go to 0
 - 'H' :Weak signal that should probably go to I
 - · '-' : Don't care
 - Useful in simulation
 - We will use STD_LOGIC in DSD

Port and Signal Types

- Bit
 - Also represents a single wire
 - Can only have a value of 0 or 1
 - Not as useful as STD LOGIC
 - In the real world there are many more possible values on a wire than 0 and 1

Port and Signal Types (con't)

- STD_LOGIC_VECTOR
 - Represents a bus or bundle of wires
 - Must include a range
 - Ex:
 - port (a : STD_LOGIC_VECTOR(7 DOWNTO 0);
 - This is an 8 bit bus
 - It could also be specified with STD_LOGIC_VECTOR(0 TO 7)
 - 'DOWNTO' is more common and preferred in DSD

Port and Signal Types (con't)

- STD_LOGIC vs. STD_LOGIC_VECTOR
 - When assigning a value to STD_LOGIC, use single quotes
 - Ex
 - Var I <= '0'; tri_state <= 'Z';</pre>
 - When assigning a value to
 STD_LOGIC_VECTOR use double quotes
 - Ex
 - a <= "|||10000"
 - The value on the right must contain the same number of elements as the width of the vector

Selected Signal Assignment

- Describing schematic with gates and wires is not very efficient
- Still have to design schematic first
- In a selected signal assignment you work from the truth table, not the schematic

X	Y	Cin	S	Cout
0	0	0	0	0
0	0	I	1	0
0	1	0	1	0
0	1	I	0	I
I	0	0	1	0
ı	0	1	0	I
I	1	0	0	1
I	1	1	1	I

Selected Signal Assignment

```
ENTITY fulladd IS
  PORT( Cin, X,Y : IN STD_LOGIC;
         S, Cout : OUT STD LOGIC);
  END fulladd;
ARCHITECTURE behavioral OF fulladd IS
  SIGNAL inputs: STD LOGIC VECTOR(2 DOWNTO 0);
  BEGIN
        inputs \leq X & Y & Cin;
        WITH inputs SELECT
                 S <= 'I'WHEN "001"| "010" | "100" | "111",
                      '0' WHEN OTHERS:
        WITH inputs SELECT
                 Cout <= 'I'WHEN "011" | "101" | "110" | "111",
                         '0' WHEN OTHERS:
 END behavioral;
```

Selected Signal Assignment

```
ARCHITECTURE behavioral OF fulladd IS

SIGNAL inputs: STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN

inputs <= X & Y & Cin;

WITH inputs SELECT

S <= 'I' WHEN "001"| "010" | "100" | "111",

'0' WHEN OTHERS;

WITH inputs SELECT

Cout <= 'I' WHEN "011" | "101" | "110" | "111",

'0' WHEN OTHERS;

END behavioral;
```

Concatenation: takes three separate wires and combines them into 3-bit Bus. **Order is important.** (X,Y,Cin)

Selected Signal Assignment (con't)

```
WITH expression SELECT
```

```
signal_name <= signal_value WHEN choices, signal_value WHEN choices,
```

•

•

signal_value WHEN OTHERS;

Conditional Signal Assignment

Target <= value_expression1 WHEN condition1 ELSE value_expression2 WHEN condition2 ELSE value_expression3 WHEN condition3 ELSE value_expression;

Condition must evaluate to true or false

```
ARCHITECTURE behavioral OF fulladd IS signal inputs: STD_LOGIC_VECTOR(2 DOWNTO 0);
BEGIN

inputs <= X &Y & Cin;
S <= 'I'WHEN inputs = "001" or inputs = "010" or inputs = "100" or inputs = "111" else '0';

Cout <= 'I'WHEN inputs = "011" or inputs = "101" or inputs = "110" or inputs = "111" else '0';

END behavioral;
```

Example: Mux

Consider the following Mux

- Write the architecture
 - Using selected signal assignment
 - Using conditional signal assignment

Concurrent Statements

- Concurrent Statements include
 - Simple assignment statements
 - a <= 'l';
 - b <= "|100|100";</pre>
 - c <= not (a AND d);</p>
 - Selected assignment statements
 - Conditional assignment statements
- Describe COMBINATORIAL logic
- They all evaluate at the same time