		EXAMS OFFICE USE ONLY			
UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG					
Course or topic No(s)	APPM 2007A/APPM2020A				
Course or topic name(s) Paper Number & title		METHODS A: APPLIED ORDINARY DIFFERENTIAL AND DIFFERENCE EQUATIONS			
Examination/Test to be held during month(s) of (delete as applicable)		JUNE 2022 DEFERRED / SUPPLEMENTARY EXAMINATION			
Year of Study (Art & Science leave blank)		SECOND			
Degrees/Diplomas for which This course is prescribed (BSc (Eng) should indicate which branch)		BSc			
Faculty/ies presenting Candidates		SCIENCE			
Internal examiners(s) And telephone extension number(s)	DR I	DR I.S. OYELAKIN X76107			
External examiner(s)		DR. SICELO GOQO			
Special materials required (graph/music/drawing paper) maps, diagrams, tables computer cards, etc.		NONE			
Time allowance	Course No.(s)	APPM2007A/ APPM2020A	Hours	2 hrs	
Instructions to candidates (Examiners may wish to use this space to indicate, <i>inter alia</i> the contribution made by this examination or test towards the year mark if appropriate)	ONLY NON-P ARE PERMIT' NO CELLPHO Total Marks Av	ATTEMPT ALL QUESTIONS ONLY NON-PROGRAMMABLE CALCULATORS ARE PERMITTED NO CELLPHONES ALLOWED Total Marks Available= 54 100% = 50 marks			

School of Computer Science and Applied Mathematics

APPM2007/APPM2020A: Methods A - Applied ordinary differential and difference equations

Deferred Examination — 2022

Lecturer: Dr Ibukun Oyelakin Total Marks: 54 Time: 2hrs

- Answer all questions and show all workings.
- In all the questions below, the prime ' stands for differentiation with respect to x and overdot \dot{x} stands for differentiation with respect to t.
- This exam has 4 questions, for a total of 54 marks but 50 marks is full marks.

QUESTION ONE [10 MARKS]

(a) Consider the linear inhomogeneous first order ordinary differential equation

$$(b(x) - a(x)y)dx - dy = 0. (\dagger)$$

Show that $I = e^{\int a(x)dx}$ is an integrating factor of the ordinary differential equation given in (†).

[3 Marks]

(b) Hence or otherwise, find the general solution to the first order linear inhomogeneous ordinary differential equation

$$\left(e^{\lambda x} + 2y\right)dx - dy = 0\tag{\bullet}$$

where λ is a constant, such that $\lambda \neq 2$.

[3 Marks]

(c) Solve equation (\bullet) with $\lambda = 2$ and find the particular solution if y(1) = 2.

[4 Marks]

QUESTION TWO [10 MARKS]

(a) Evaluate and simplify as much as possible, the integral

$$\int \frac{x+1}{x^2 - 6x + 8} dx$$

[2 Marks]

(b) Find the differential equation y'' = f(x, y, y') whose general solution is

$$y = C_1 e^x + C_2 e^{-x} + x.$$

[2 Marks]

(c) Consider the first order ordinary differential equation

$$\frac{dy}{dx} = \frac{x+y+3}{2x+2y+1}.$$

- (i) Using an appropriate substitution, reduce the equation to separable form.
- [3 Marks]
- (ii) Find the solution to the reduced ordinary differential equation in (i).
- [3 Marks]

QUESTION THREE [12 MARKS]

Given the second order ordinary differential equation

$$y'' + a(x)y' + b(x)y = 0,$$

where a(x) and b(x) are continuous functions of x and $y_1(x)$ is a known solution of the differential equation.

(i) Use the substitution $y_2(x) = u(x)y_1(x)$ to show that u(x) satisfies the linear second order ordinary differential equation

$$u'' + \left(2\frac{y_1'}{y_1} + a(x)\right)u' = 0.$$

[5 Marks]

(ii) Hence, use reduction of order to find the general solution of the second order differential equation

$$x^2y'' - 3xy' + 4y = 0,$$

if $y_1(x) = x^2$ is a known solution of the differential equation.

[7 Marks]

QUESTION FOUR [22 MARKS]

(a) Find the general solution to the non-homogeneous second order difference equation

$$y_{k+2} - 2y_{k+1} + 5y_k = k$$

[6 Marks]

(b) Consider the first order system of ordinary differential equation

$$\dot{x}_1 = x_2 \qquad x_1(0) = -1$$

 $\dot{x}_2 = 2x_1 - x_2 \qquad x_2(0) = 1.$

(i) Write the system in vector-matrix form and its corresponding initial values in vector form.

[3 Marks]

(ii) Find the exponential matrix e^{At} for the system in (i).

[7 Marks]

(iii) Solve the resulting initial value problem in (i) using the exponential matrix obtained in (ii).

[4 Marks]

(iv) Hence write down a solution to the original second order ordinary differential equation.

[2 Marks]