

中国科学技术大学

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

2013 — 2014 学年第一学期 《单变量微积分》期终考试试卷

题号	_	=	Ξ	四	. T ī.	六	七	八	总分
得分									
批改人									

注意事项:

- 1. 答卷前,请考生务必检查考卷是否完整无缺。
- 2. 答卷前,请考生务必将所在系、姓名、学号等在左侧密封线内填写清楚。
- 3. 请考生在答卷纸左侧留出装订区域。
- 4. 本试卷为闭卷考试。共8道试题,满分100分,考试时间120分钟。
- 5. 本试卷第8题为单项选择题。

,	得分	评卷人
1.		

计算题(给出必要的计算步骤,每小题6分,共30分):

$$(1) \int \frac{1}{1-x^4} dx.$$

得分 |

(2)
$$\int_0^4 \frac{1}{1+\sqrt{x}} dx$$
.

得分

(3)
$$\int_0^{+\infty} x^3 e^{-x^2} dx$$
.

得分

$$(4) \int \max\{x^2, x^4\} dx.$$

得分

(5)
$$\lim_{n\to\infty} \left(\frac{\ln(1+\frac{1}{n})}{n+1} + \frac{\ln(1+\frac{2}{n})}{n+2} + \dots + \frac{\ln(1+\frac{n}{n})}{n+n} \right).$$

得分

2. 得分 评卷人 (本题满分10分)

求方程 $y'' - 2y' + y = xe^x$ 的通解.

3. 得分 评卷人 (本题满分10分)

设函数f(x)可微,且 $\int x^3 f'(x) dx = x^2 \cos x - 4x \sin x - 6 \cos x + C$,求f(x).

计算定积分
$$I = \int_0^1 \left(\int_x^1 \arctan(t^2) dt \right) dx.$$

5.	得分	评卷人	(本題满分10分)
			(个魁)两刀10万

- (1) 写出由方程 $|\ln x| + |\ln y| = 1$ 所表示的四条平面曲线;
- (2) 求由方程 $|\ln x| + |\ln y| = 1$ 所表示的平面曲线所围成的平面图形的面积.

设f(x)是 $(-\infty, +\infty)$ 上的可微函数且有反函数,已知F(x)是f(x)的一个原函数,求 $\int f^{-1}(x)dx$.

7. 得分 评卷人 (本题满分6分)

设f(x)是[0,1]上的连续函数,且满足 $\int_0^1 f(x)dx = 1$, $\int_0^1 x f(x)dx = \alpha$, $\int_0^1 x^2 f(x)dx = \alpha^2$, 其中 α 为一常数,证明存在[0,1]中的点 x_0 ,使得 $f(x_0) = 0$.

(1) 下列等式正确的是

(A)
$$\frac{d}{dx} \int_{a}^{b} f(x)dx = f(x)$$
 (B) $\frac{d}{dx} \int f(x)dx = f(x)$ (C) $\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x) - f(a)$ (D) $\int f'(x)dx = f(x)$

(2) 设f(x)在[a,b]上黎曼可积,则_

- (A) $\int_a^x f(t)dt$ 在[a,b]上不一定连续 (B) $\int_a^x f(t)dt$ 在[a,b]上可微 (C) $\int_a^x f(t)dt$ 在[a,b]上不一定可微

(3) 设F(x)是f(x)在[a, b]上的一个原函数,则____

- (A) f(x)在[a, b]上黎曼可积
 (B) f(x)在[a, b]上不一定黎曼可积

 (C) f(x)在[a, b]上可微
 (D) f(x)在[a, b]上不可微

(4) 设 $y_1(x)$, $y_2(x)$, $y_3(x)$ 是二阶线性非齐次方程y'' + p(x)y' + q(x)y = f(x)的 三个不同的非零解. 则

(A) $c_1(y_2(x) - y_1(x)) + c_2(y_3(x) - y_1(x)) + y_1(x)(c_1, c_2$ 是任意常数)是该方 程的通解

(B) $c_1(y_2(x) - y_1(x)) + c_2(y_3(x) - y_1(x)) + y_1(x)(c_1, c_2$ 是任意常数)不是该 方程的通解

(C) $c_1(y_2(x) - y_1(x)) + c_2(y_3(x) - y_1(x)) + y_1(x)(c_1, c_2$ 是任意常数)是该方 程的解

(D) $c_1(y_2(x) - y_1(x)) + c_2(y_3(x) - y_1(x)) + y_1(x)(c_1, c_2$ 是任意常数)不是该 方程的解