Foundations of Computing Lecture 5

Arkady Yerukhimovich

January 31, 2023

Outline

- 1 Lecture 4 Review
- 2 Regular Expressions
- 3 Regular Expressions == Regular Languages
- 4 Properties of Regular Expressions

Lecture 4 Review

- Equivalence of NFAs and DFAs
- NFAs for union, composition, and star closure of regular languages
- Regular expressions

Outline

- Lecture 4 Review
- Regular Expressions
- Regular Expressions == Regular Languages
- 4 Properties of Regular Expressions

• Strings that describe a language

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ullet U representing union
 - * representing repetition 0 or more times

ab

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w | w \text{ has exactly one } 1\}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w|w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w|w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w|w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$

You've seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

R is a regular expression if R is

1 a for some a in the alphabet Σ (or Σ)

- **1** a for some a in the alphabet Σ (or Σ)
- \bullet the empty string

- **1** a for some a in the alphabet Σ (or Σ)
- ② ϵ the empty string \sim $\xi \in \mathcal{I}$
- **③** \emptyset − the empty set Σ \emptyset

- **1** a for some a in the alphabet Σ (or Σ)
- \bullet the empty string
- $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions

- **1** a for some a in the alphabet Σ (or Σ)
- ∅ the empty set
- **1** $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions
- ($R_1 \circ R_2$) R_1 concatenated with R_2 where R_1 and R_2 are regular expressions

- **1** a for some a in the alphabet Σ (or Σ)

- $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions
- **⑤** $(R_1 \circ R_2) R_1$ concatenated with R_2 where R_1 and R_2 are regular expressions
- **6** (R_1^*) 0 or more repetitions of R_1 where R_1 is a regular expression

•
$$(\Sigma\Sigma)^* =$$

- $(\Sigma\Sigma)^* = \{w|w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{0, 0 \in \mathbb{R} \mid \epsilon \in \mathbb{R} \}$

- $(\Sigma\Sigma)^* = \{w|w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- 1*0 = (€ V | V | V | | | . _) Ø = Ø

- $(\Sigma\Sigma)^* = \{w|w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* =$

- $(\Sigma\Sigma)^* = \{w|w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$
- $\bullet \ 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 =$

- $(\Sigma\Sigma)^* = \{w|w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$
- $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w|w \text{ starts and ends with the same symbol}\}$

- $(\Sigma\Sigma)^* = \{w|w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$
- $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w|w \text{ starts and ends with the same symbol}\}$

Languages to Regular Expressions Examples

Consider languages over the alphabet $\{0, 1, 2\}$

- - 8 00 5
- ② $L_2 = \{w | w \text{ has a substring } 101 \text{ and ends in } 22\}$

3 $L_3 = \{w | w \in L_1 \text{ or } w \in L_2\}$

Languages to Regular Expressions Examples

Consider languages over the alphabet $\{0, 1, 2\}$

• $L_1 = \{w | w \text{ has 2 consecutive 0's}\}$

2 $L_2 = \{w | w \text{ has a substring } 101 \text{ and ends in } 22\}$

Question:

What does this have to do with FAs and regular languages?

Outline

- 1 Lecture 4 Review
- 2 Regular Expressions
- Regular Expressions == Regular Languages
- Properties of Regular Expressions

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 1): If L is described a regular expression then it is regular. Enough to show how to construct NFA to recognize L

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 1): If L is described a regular expression then it is regular. Enough to show how to construct NFA to recognize L

$$R = \epsilon$$

$$R = R_1 \circ R_2$$

An Example

Problem: Convert $(ab \cup a)^*$ to an NFA In English: Either "ab" or "a" repeated 0 or more times

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular expression.

Enough to show how to build regular expression corresponding to a NFA

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular expression.

Enough to show how to build regular expression corresponding to a NFA

Question

How do we represent L by a regular expression?

Step 1: NFA \rightarrow generalized NFA

A generalized NFA has 3 important properties:

- Start state has no incoming edges
- Only one accept state, and it has no outgoing edges
- Second Second

Step 2: Node Elimination – Remove Node 1

Remove nodes one-by-one (in any order) until only start and accept states left:

• Need to update reg. exp.'s for all paths through removed nodes

Step 2: Node Elimination – Remove Node 2

Remove nodes one-by-one (in any order) until only start and accept states left:

Need to update reg. exp.'s for all paths through removed nodes

We are Done

Output label of final edge from start to accept state.

Generalized Node Elimination

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Base Case: For |G| = 2, G consists of start and accept states and arrow between them. The label on this arrow exactly describes the language of strings accepted by G.

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G|=k-1, prove true for |G|=k. (i.e., prove that G'=G)

$$q_{start}, q_1, q_2, \dots, q_{accept}$$

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G|=k-1, prove true for |G|=k. (i.e., prove that G'=G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

$$q_{start}, q_1, q_2, \dots, q_{accept}$$

ullet If $q_{\it rip}$ is not on this path, clearly G'(w)=1

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G|=k-1, prove true for |G|=k. (i.e., prove that G'=G)

$$q_{start}, q_1, q_2, \dots, q_{accept}$$

- ullet If q_{rip} is not on this path, clearly G'(w)=1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G|=k-1, prove true for |G|=k. (i.e., prove that G'=G)

$$q_{start}, q_1, q_2, \dots, q_{accept}$$

- If q_{rip} is not on this path, clearly G'(w) = 1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}
- Assume some w s.t. G'(w) = 1, then G'(w) stops in q_{accept} .

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G|=k-1, prove true for |G|=k. (i.e., prove that G'=G)

$$q_{start}, q_1, q_2, \dots, q_{accept}$$

- If q_{rip} is not on this path, clearly G'(w) = 1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}
- Assume some w s.t. G'(w) = 1, then G'(w) stops in q_{accept} .
 - If it would have gone through q_{rip} then the modified edge accepts w, so there is a path through q_{rip} in G that accepts w.

Theorem

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G|=k-1, prove true for |G|=k. (i.e., prove that G'=G)

$$q_{start}, q_1, q_2, \dots, q_{accept}$$

- ullet If $q_{\it rip}$ is not on this path, clearly G'(w)=1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}
- Assume some w s.t. G'(w) = 1, then G'(w) stops in q_{accept} .
 - If it would have gone through q_{rip} then the modified edge accepts w, so there is a path through q_{rip} in G that accepts w.
 - If the accepting path would not have gone through q_{rip} , then G must also have the same path to accept w

Outline

- 1 Lecture 4 Review
- 2 Regular Expressions
- 3 Regular Expressions == Regular Languages
- Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:

- Regular expressions are closed under complement
- Regualr expressions are closed under union
- Regular expressions are closed under star
- 4 ...

By equivalence between regular expressions and NFAs, we have:

- Regular expressions are closed under complement
- Regualr expressions are closed under union
- 3 Regular expressions are closed under star
- 4 ...

Proof:

By equivalence between regular expressions and NFAs, we have:

- Regular expressions are closed under complement
- Regualr expressions are closed under union
- Regular expressions are closed under star
- 4 ...

Proof:

Build NFA M corresponding to each clause

By equivalence between regular expressions and NFAs, we have:

- Regular expressions are closed under complement
- Regualr expressions are closed under union
- Regular expressions are closed under star
- 4 . . .

Proof:

- Build NFA M corresponding to each clause
- Since we already showed how to build NFA to show closure, can convert that to regular expression to prove the claim.