笔记

张孝谦 3140104302

1 基础知识

def. 温度 T

- 某一时刻,各点温度分布
- 稳态、非稳态

def. 等温面

• $\nabla T = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial x}, \frac{\partial T}{\partial x}\right)$

def . 热通量 \vec{q}

• 沿 - 市 方向单位时间内通过单位面积的热量

thm. Fourier 定理: \vec{q} 与温度梯度 ∇U 成正比,方向相反

- $\vec{q} = -k\nabla U$
- 其中 k 为导热系数

thm. 热力学第一定律:不同形式的能量在传递和转换中,总值保持不变

- $Q = \Delta U + W (Q \text{ W热正放热负})$
- 假设:
 - 各向同性的连续介质
 - 热导率、比热和密度均为已知常数
 - $-W \equiv 0$

2 传热微分方程

考虑一个传热微元体

$$\delta Q = \delta Q^x + \delta Q^y + \delta Q^z$$

$$\delta Q^x = Q_x - Q_{x+dx}$$
$$= -\frac{\partial q^x}{\partial x} dx dy dz d\tau$$

$$\delta Q^{x} = -\frac{\partial q^{x}}{\partial x} dx dy dz d\tau$$
$$\delta Q^{y} = -\frac{\partial q^{y}}{\partial y} dx dy dz d\tau$$
$$\delta Q^{z} = -\frac{\partial q^{z}}{\partial z} dx dy dz d\tau$$

$$\delta Q = -\left(\frac{\partial q^x}{\partial x} + \frac{\partial q^y}{\partial y} + \frac{\partial q^z}{\partial z}\right) dx dy dz d\tau$$

$$= \left[\frac{\partial}{\partial x} \left(k\frac{\partial U}{\partial x}\right) + \frac{\partial}{\partial y} \left(k\frac{\partial U}{\partial y}\right) + \frac{\partial}{\partial z} \left(k\frac{\partial U}{\partial z}\right)\right] dx x dy dz d\tau$$

$$= k\Delta U$$

其中,
$$\Delta = \nabla \cdot (\nabla) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$
 $d\tau$ 时间内

$$\delta Q = \rho C \frac{\partial U}{\partial t} dx dy dz d\tau$$

其中 C 为比热, ρ 为密度, 则

$$\frac{\partial U}{\partial t} = \frac{k}{\rho C} \Delta U = a^2 \Delta U$$

内部热源 $qdxdydzd\tau$

- 非稳态,无内部热源. $\frac{\partial U}{\partial t} = a^2 \Delta U$ 抛物型 PDE
- 稳态,有内部热源. $\Delta U + f = 0$ 椭圆型 PDE

3 Google PageRank

3.1 基本信息

- 1998年, Page, Bin
- 优点
 - 完全由"网络结构"决定
 - 无广告
 - 速度快
 - 检索结果比较全面

3.2 PageRank

Definition 1 (PageRank). 基于"从许多优秀的网页链接过来的网页必是优秀网页"

回归的定义

Remark:

- 网页链接结构定义
- A → B, 投票
- 权重

3.3 图论

Definition 2. W 是所有网页的集合, N = |W| = 网页的个数

Definition 3 (关联矩阵). 网页 j 链向网页 i, 则 $G_{ij}=1$, 否则 $G_{ij}=0$.

Remark:

- ① N 大,G 高度稀疏
- ② 方阵, NonSymmetric
- ③ 第 i 行: 很多非零元素, $\rightarrow i$, 向内链接 第 j 列: 很多非零元素, $j \rightarrow$, 向外链接

Remark:

- ⇒ PR 依赖于进向链接数
- ⇒ PR 依赖于进向链接中的优质网页
- ⇒ PR 依赖于进向链接源向外链接数

Definition 4 (PR 计算). 每条向外链接的值是该链接源的 PR 值除以链接源向外链接数, 网页 PR 是所有进向链接值总和

$$x_1 = \frac{1}{1}x_2 + \frac{1}{2}x_3 + \frac{1}{4}x_5 + \frac{1}{2}x_6$$

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$

$$A\vec{x} = \vec{x}$$