PROVA FINAL DE TERMODINÂMICA de 2014 (Prof. Frederico W. Tavares)

1) (40 pontos) Uma mistura entra em um trocador de calor, em estado de líquido saturado (duas fases líquidas e um infinitésimo de vapor), contendo 60 mols/min de n-hexano, 40 mols/min de n-octano e 40 mols/min de água a 1 atm. A corrente de saída do trocador de calor é tal que o sistema apresenta apenas uma gota infinitesimal de líquido. Sabe-se que a fase aquosa e a fase orgânica são completamente imiscíveis na fase líquida e que a fase gasosa se comporta como gás ideal. Fazendo-se as suposições pertinentes, calcular: a) as temperaturas das correntes de entrada e de saída e; b) a taxa de calor (aproximada) envolvida no processo.

Dados: $P^{SAT} = P_C \exp[5, 4(w+1)(1-T_C/T)]$ $\Delta S_n^{VAP}(cal/gmolK) = 8,0+1,987 \ln(T_n)$

Compostos	Tc(K)	Pc(atm)	W	$< Cp >^{V} (cal/gmolK)$	$< Cp >^{L} (cal/gmolK)$
água	647	220	0,34	28	35
n-hexano	508	30	0,30	20	25
n-octano	569	25	0,40	19	22

- 2) (30 pontos) Um tanque contém uma mistura de tetracloreto de carbono (1) e ácido acético (2) a 25 °C. A mistura na fase líquida é bem descrita com os seguintes coeficientes de atividade $RT \ln \gamma_1 = A x_2^2$ e $RT \ln \gamma_2 = A x_1^2$ (em que A é independente de T). Sabe-se que as pressões de vapor a 25 °C são $P^{SAT}(1) = 0,12bar$ e $P^{SAT}(2) = 0,016bar$. Sabe-se, também, que os coeficientes de atividade a 25 °C na diluição infinita são, respectivamente $\ln \gamma_1^{\infty} = 1,5$ e $\ln \gamma_2^{\infty} = 1,5$
- a) Calcule o calor e a entropia de mistura para uma mistura de 60% de ácido acético a 25ºC e 5 bar.
- b) Calcule a faixa de pressão que o tanque apresenta equilíbrio L-V.
- c) A mistura apresenta azeotropismos a 25 °C? Se sim, qual é a composição?
- **3)** (**30 pontos**) Uma central térmica, a vapor, opera de acordo com o ciclo de Rankine como mostrado ao lado. A turbina recebe vapor d'água a 100kPa e 700°C. A pressão de descarga desta é igual a 10kPa. Sabe-se que a **corrente 1** é líquido saturado e que a eficiência da bomba é de 100 %. A vazão volumétrica de vapor que sai da caldeira é de 200m³/h (**corrente 3**). Nestas condições operacionais, a potência elétrica produzida é igual a 21750 kJ/h.

- b) As propriedades termodinâmicas das correntes?
- c) Qual a potência térmica do ciclo?

$$\begin{split} dU &= TdS - PdV + \sum_{i} \mu_{i} dN_{i} & dH = TdS + VdP + \sum_{i} \mu_{i} dN_{i} & y_{i} P = x_{i} \gamma_{i} P_{i}^{SAT} \\ dA &= -SdT - PdV + \sum_{i} \mu_{i} dN_{i} & dG = -SdT + VdP + \sum_{i} \mu_{i} dN_{i} & \Delta S_{n}^{VAP} = 8, 0 + 1,987 \ln(T_{n}) \\ dH &= C_{p} dT + [V - T \left(\frac{\partial V}{\partial T}\right)_{p}] dP & dS = \left(\frac{C_{p}}{T}\right) dT - \left(\frac{\partial V}{\partial T}\right)_{p} dP & \hat{\mathbf{f}}_{i} = x_{i} \hat{\phi_{i}} P = x_{i} \gamma_{i} \mathbf{f}_{i}^{0} \\ K &= \exp\left(\frac{-\Delta \overline{G}}{RT}\right) = \prod_{i} \hat{\mathbf{a}}_{i}^{\nu_{i}} & \frac{\Delta H_{2}^{VAP}}{\Delta H_{1}^{VAP}} = \left(\frac{T_{2} - T_{C}}{T_{1} - T_{C}}\right)^{0,38} & \left(\frac{\partial \overline{G}}{T}\right)_{p} = -\frac{\overline{H}}{T^{2}} \end{split}$$

 $R = 1,987cal/(gmolK) = 82,05(atmcm^3)/(gmolK) = 0,082(atmL)/(gmolK) = 8,31J/(gmolK)$ $d(mU) = \frac{entradas}{2} \cdot v^2 + \frac{saidas}{2} \cdot v$

$$\frac{d(mU)_{S}}{dt} = \sum_{i}^{entradas} m_{i}(H_{i} + \frac{v_{i}^{2}}{2} + gz_{j}) - \sum_{i}^{saidas} m_{i}(H_{i} + \frac{v_{i}^{2}}{2} + gz_{i}) + Q + W_{S}$$

		Volume específico (m³/kg)		Energia interna (kJ/kg)			Entalpia (kJ/kg)			Entropia (kJ/kg K)		
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Р	Т	V _I	V_V	u _l	u _{Iv}	u _v	h _I	h _{lv}	h_{v}	s _l	s_{l_V}	s_{v}
10	45,81	0,001010	14,67355	191,79	2246,10	2437,89	191,81	2392,82	2584,63	0,6492	7,5010	8,1501
15	53,97	0,001014	10,02218	225,90	2222,83	2448,73	225,91	2373,14	2599,06	0,7548	7,2536	8,0084
20	60,06	0,001017	7,64937	251,35	2205,36	2456,71	251,38	2358,33	2609,70	0,8319	7,0766	7,9085
25	64,97	0,001020	6,20424	271,88	2191,21	2463,08	271,90	2346,29	2618,19	0,8930	6,9383	7,8313
30	69,10	0,001022	5,22918	289,18	2179,22	2468,40	289,21	2336,07	2625,28	0,9439	6,8247	7,7686
40	75,87	0,001026	3,99345	317,51	2159,49	2477,00	317,55	2319,19	2636,74	1,0258	6,6441	7,6700
50	81,33	0,001030	3,24034	340,42	2143,43	2483,85	340,47	2305,40	2645,87	1,0910	6,5029	7,5939
75	91,77	0,001037	2,21711	394,29	2112,39	2496,67	384,36	2278,59	2662,96	1,2129	6,2434	7,4563
00	99,62	0,001043	1,69400	417,33	2088,72	2506,06	417,44	2258,02	2675,46	1,3025	6,0568	7,3593
25	105,99	0,001048	1,37490	444,16	2069,32	2513,48	444,30	2241,05	2685,35	1,3739	5,9104	7,2843
50	111,37	0,001053	1,15933	466,92	2052,72	2519,64	467,08	2226,46	2693,54	1,4335	5,7897	7,2232
75	116,06	0,001057	1,00363	486,78	2038,12	2524,90	486,97	2213,57	2700,53	1,4848	5,6868	7,1717
200	120,23	0,001061	0,88573	504,47	2025,02	2529,49	504,68	2201,96	2706,63	1,5300	5,5970	7,1271
225	124,00	0,001064	0,79325	520,45	2013,10	2533,56	520,69	2191,35	2712,04	1,5705	5,5173	7,0878
250	127,43	0,001067	0,71871	535,08	2002,14	2537,21	535,34	2181,55	2716,89	1,6072	5,4455	7,0526
275	130,60	0,001070	0,65731	548,57	1991,95	2540,53	548,87	2172,42	2721,29	1,6407	5,3801	7,0208
300	133,55	0,001073	0,60582	561,13	1982,43	2543,55	561,45	2163,85	2725,30	1,6717	5,3201	6,9918
<mark>Fabela</mark> /apor d		uperaqueo	cido									

vapor d agua superaquecido													
т	V	и	h	s	V	и	h	s	V	и	h	s	
,	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	
	P = 10 kPa (45,81)					P = 50 kPa (81,33)				P = 100 kPa (99,62)			
Sat.	14,67355	2437,89	2584,63	8,1501	3,24034	2483,85	2645,87	7,5939	1,69400	2506,06	2675,46	7,3593	
50	14,86920	2443,87	2592,56	8,1749	-	-	-	-	-	-	-	-	
100	17,19561	2515,50	2687,46	8,4479	3,41833	2511,61	2682,52	7,6947	-	-	-	-	
150	19,51251	2587,86	2782,99	8,6881	3,88937	2585,61	2780,08	7,9400	1,93636	2582,75	2776,38	7,6133	
200	21,82507	2661,27	2879,52	8,9037	4,35595	2659,85	2877,64	8,1579	2,17226	2658,05	2875,27	7,8342	
250	24,13559	2735,95	2977,31	9,1002	4,82045	2734,97	2975,99	8,3555	2,40604	2733,73	2974,33	8,0332	
300	26,44508	2812,06	3076,51	9,2812	5,28391	2811,33	3075,52	8,5372	2,63876	2810,41	3074,28	8,2157	
400	31,06252	2968,89	3279,51	9,6076	6,20929	2968,43	3278,89	8,8641	3,10263	2967,85	3278,11	8,5434	
500	35,67896	3132,26	3489,05	9,8977	7,13364	3131,94	3488,62	9,1545	3,56547	3131,54	3488,09	8,8341	
600	40,29488	3302,45	3705,40	10,1608	8,05748	3302,22	3705,10	9,4177	4,02781	3301,94	3704,72	9,0975	
700	44,91052	3479,63	3928,73	10,4028	8,98104	3479,45	3928,51	9,6599	4,48986	3479,24	3928,23	9,3398	