Clase 5

Análisis filogenético Bayesiano

El marco Bayesiano

Análisis filogenético Bayesiano

- El análisis filogenético Bayesiano se desarolló a mediados de los 90s
- · Ahora uno de los métodos más ampliamente usados

MrBayes

BEAST 1

RevBayes

BEAST 2

Análisis filogenético Bayesiano

Probabilidad	Modelo 1			
Árbol 1		0.1		ve
Árbol 2		0.7		
Árbol 3		0.15		
Árbol 4		0.05		In
Suma		1		Ва

Máxima = Pr(D | θ)

Inferencia
Bayesiana = Pr($\theta \mid D$)

Para tener un marco estadístico formal, la inferencia Bayesiana incluye un concepto **previo** de los parámteros, el **Prior**

El paradigma Bayesiano

- Contrasta con la estadística frecuentista (verosimilitud)
- Los parametros vienen de distribuciones
- Antes de que los datos sean observados, cada parámetro tiene una distribución como prior
- Se calcula la verosimilitud de los datos
- Se combina (actualiza) la distribución del prior con la versimilitud para llegar a la distribución a posterior

Muestreo usando una cadena markoviana de monte carlo (MCMC)

Estimar el posterior

- No podemos obtener el posterior directamente
- Podemos estimarlo usando simulaciones en una cadena markoviana de monte carlo
- Esto se suele hacer usando el algorítmo
 Metropolis-Hastings

Nicholas Metropolis Los Alamos, 1953

Estimar el posterior

- No podemos obtener el posterior directamente
- Podemos estimarlo usando simulaciones en una cadena markoviana de monte carlo
- Esto se suele hacer usando el algorítmo Metropolis-Hastings

 $\frac{\Pr(\theta) \quad \Pr(D \mid \theta)}{\Pr(D)}$

Nicholas Metropolis Los Alamos, 1953

Estimar el posterior

- No podemos obtener el posterior directamente
- Podemos estimarlo usando simulaciones en una cadena markoviana de monte carlo
- Esto se suele hacer usando el algorítmo Metropolis-Hastings

 $\frac{\Pr(\theta) \quad \Pr(D \mid \theta)}{\Pr(D)}$

 $Pr(\theta) Pr(D \mid \theta)$

Pr(D)

Nicholas Metropolis Los Alamos, 1953

14

Estimar el posterior

- No podemos obtener el posterior directamente
- Podemos estimarlo usando simulaciones en una cadena markoviana de monte carlo
- Esto se suele hacer usando el algorítmo Metropolis-Hastings

 $\frac{\Pr(\theta) \quad \Pr(D \mid \theta)}{\Pr(D)}$

 $Pr(\theta) Pr(D \mid \theta)$

Pr(D)

Nicholas Metropolis Los Alamos, 1953

Muestras del MCMC

- El resultado de un análisis filogenético Bayesiano:
 - Una lista de valores de los parametros que visitamos en la cadena markoviana (archivo terminado en .p file usando MrBayes, y terminado en .log usando BEAST)
 - Una lista de árboles visitados por la cadena markoviana (terminado en .t usando *MrBayes*, y terminado en .trees cuando usasmos *BEAST*)

Muestras del MCMC

 Árbol consenso de la mayoría (Majority-rule consensus; MrBayes)

Muestra todos los nodos que tengan credibilidad a posterior >0.50

- Árbol con el posterior máximo (MAP)
 El árbol muestreado con la mayor probabilidad a posterior
- Árbol con clados en máxima credibilidad (MCC; BEAST/TreeAnnotator)

El árbol muestreado con la mayor suma o producto de las probabilidades a posterior en los nodos

Diagnósticos

1. Convergencia

¿Estamos tomando muestras de la distribución estacionaria?

2. Muestreo suficiente

¿Ya tomamos suficientes muestras para permitirnos hacer estimativos confiables del posterior?

Convergencia

- Es recomendable llevar a cabo al menos 2 análisis independientes
- Las versimilitudes deberían ser similares
- Los estimativos de los parámetros del modelo deberían ser similares

30

Muestreo suficiente

- El número efectivo de muestras (Effective sample size; ESS) ¿Ya tomamos suficientes muestras para permitirnos hacer estimativos confiables del posterior?
- El ESS debería ser preferiblemente >200 para cada parámetro
- El ESS se puede incrementar:
 - Llevando a cabo MCMC por más tiempo, sacando más muestras (y reduciendo la frecuencia con la que se guardan las muestras)
 - Modificando que se hacen en MCMC

31

Referencias útiles

