Лабораторная работа 2.2.3

"Определение теплопроводности газов при атмосферном давлении"

Белов Михаил Б01-302

21 марта 2024 г.

Аннотация:

Цель лабораторной работы:

Определение коэффициента теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилинлрическом сосуде.

В работе используются:

прибор для определения теплопроводности газов, форвакуумный насос, гагольдер с углекислым газом, манометр, магазин сопротивлений, цифровой вольтметр, источник питания.

Теоретические сведения:

Теплопроводность – процесс, приводящий к выравниванию температуры в сосуде, где температура заключённого газа зависит от координат. Теплопроводность связана с тепловым движением молекул и не сопровождается макроскопическими перемещениями газа.

Коэффициент теплопроводности – это коэффициент пропорциональности между плотностью потока тепла q и градиентом температуры dT/dr в направлении этого потока:

$$q = -\kappa \frac{dT}{dr}$$

В цилиндрически симметричной установке, в которой тепловой поток направлен к стенкам цилиндра от нити, полный поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен в пространстве и во времени. Тогда:

$$Q = -2\pi r L \kappa \frac{dT}{dr} = const$$

откуда получаем:

$$T_1 - T_2 = \frac{Q}{2\pi L \kappa} ln \frac{R}{r}$$

В нашем эксперименте необходимо найти

$$\kappa = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} \ln \frac{r^2}{r^1}$$

В лаюораторной устанвоке тонкая молибденовая проволока натянута по оси вертикально стоящей медной трубки. Через штуцер трубка заполняется исследуемым газом. Нить нагревается электрическим током, ее температура T_1 определяется по изменению электрического сопротивления. Трубка находится в кожухе, через который пропускается вода из термостата. Температура воды T_2 измеряется термометром, помещенным в термостат. Количество теплоты, протекающей через газ, равно (если пренебречь утечками тепла через торцы) количеству теплоты, выделяемому током в нити, и может быть найдено по закону Джоуля—Ленца. При этом ток в нити определяется по напряжению на включенном последовательно с ней эталонном сопротивлении 10 Ом. Таким образом, все величины, входящие в правую часть формулы (1), поддаются непосредственному измерению.

Электрическая часть схемы состоит из источника питания и под- ключенных к нему последовательно соединенных нити, эталонного сопротивления 10 Ом и магазина сопротивлений R_M , служащего для точной установки тока через нить. Цифровой вольтметр может под- ключаться как к нити, так и к эталонному сопротивлению, измеряя таким образом напряжение на нити и ток через нее.

Схема установки

Результаты измерений:

При различных значениях темепературы получим значения сопротивления нити и выделяемой мощности при различных значениях банка сопротивлений:

		t = 23 C					t = 40 C					t = 50 C		
Ивольтм , м	Іамперм, г	Rm, кОм	Q	Rн	Ивольтм ,	Памперм, г	Rm, кОм	Q	Rн	Ивольтм , <i>п</i>	Іамперм, п	Rm, кОм	Q	Rн
0.685	0.0331	90	0.000245	20.12898	0.723	0.0331	90	0.000259	21.34171	0.776	0.0331	90	0.00026	22.06075
0.761	0.0372	80	0.000934	20.12507	0.813	0.0372	80	0.000986	21.34397	0.872	0.0372	80	0.000961	22.06328
0.87	0.0425	70	0.0034	20.14748	0.928	0.0425	70	0.003573	21.35805	0.994	0.0425	70	0.003674	22.07298
1.014	0.0499	60	0.011403	20.19358	1.082	0.0499	60	0.011896	21.40212	1.157	0.0499	60	0.012177	22.11535
1.217	0.0595	50	0.016412	20.22184	1.296	0.0595	50	0.017065	21.43341	1.386	0.0595	50	0.017437	22.14181
1.519	0.0745	40	0.025605	20.27266	1.617	0.0745	40	0.02649	21.48113	1.729	0.0745	40	0.02699	22.19301
2.027	0.0989	30	0.039952	20.35802	2.153	0.0989	30	0.041073	21.55864	2.301	0.0989	30	0.041698	22.26477
3.035	0.1481	20	0.060352	20.46668	3.223	0.1481	20	0.06164	21.66576	3.442	0.1481	20	0.062337	22.37061
6.059	0.2971	10	0.101389	20.69503	6.426	0.2971	10	0.102382	21.87622	6.857	0.2971	10	0.102906	22.5747

Для каждой температуры термостата постром график зависимости сопротивления нити от мощности R(Q):

Проведём наилучшие прямые и определим точки их пересечения с осью ординат R_0 и угловые коэффициенты наклона $\frac{dR}{dQ}$. Оценим погрешности по MHK:

T, K	296	313	323
$\frac{dR}{dQ}$	5.62	5.25	5.03
$\delta \frac{dR}{dQ}$	0.04	0.02	0.02
R_0	20.128	21.134	22.056
δR_0	0.002	0.001	0.001

Пользуясь значениями R_0 построим график зависимости сопротивления нити от её температуры R(T):

Построим наилучшую прямую и определите её наклон $\frac{dR}{dQ}$. Оценим погрешности по MHK:

$$\frac{dR}{dQ} = 0.07$$

$$\delta \frac{dR}{dQ} = 0.01$$

Используя угловой коэффициент температурной зависимости сопротивления и угловые коэффициенты нагрузочных прямых вычислим наклон зависимости выделяющейся на нити мощности Q от её перегрева ΔT относительно стенок:

$$\frac{dQ}{d(\Delta T)} = \frac{dR}{dT} \setminus \frac{dR}{dT}$$

T, K	296	313	323
$\frac{dQ}{d(\Delta T)}$	0.0125	0.0134	0.0139
$\delta \frac{dQ}{d(\Delta T)}$	0.0017	0.0017	0.0018

Где погрешность считается по формуле:

$$\delta \frac{dQ}{d(\Delta T)} = \frac{dQ}{d(\Delta T)} \cdot \sqrt{\big(\frac{\delta \frac{dR}{dQ}}{\frac{dR}{dQ}}\big)^2 + \big(\frac{\delta \frac{dR}{dT}}{\frac{dR}{dT}}\big)^2}$$

Отсюда найдём коэффициенты теплопроводности газа κ для каждой температуры термостата T_0 .

$$\kappa = \frac{dQ}{d(\Delta T)} \cdot \frac{\ln \frac{r_0}{r_1}}{2\pi L}$$

$$\delta\kappa = \kappa \cdot \sqrt{(\frac{\delta \frac{dQ}{d(\Delta T)}}{\frac{dQ}{d(\Delta T)}})^2 + 2 \cdot (\frac{\delta r}{r})^2 + \cdot (\frac{\delta L}{L})^2}$$

T, K	296	313	323
$\kappa, \frac{mBt}{m \cdot K}$	25.43	26.97	27.94
$\delta \kappa, \frac{mBt}{m \cdot K}$	2.4	0.8	0.09

Построим график зависимости теплопроводности воздуха от температуры газа $\kappa(T)$:

Предполагая, что κ степенным образом зависит от абсолютной температуры Т: $\kappa \propto T$, построимграфик в двойном логарифмическом масштабе и определим из него показатель степени β :

Откуда $\beta = 1.07 \pm 0.02$.

Обсуждение результатов и вывод:

Таким образом мы определили коэффициент теплопроводности воздуха при атмосферном давлении при разных температурах по теплоотдаче нагреваемой током нити в цилинлрическом сосуде. Изходя из измеренных значений, температурный коэффициент сопротивления материала нити α получился равным $3.3\frac{1}{K}$ при табличном $3.4\frac{1}{K}$. Средний показатель теплопроводности воздуха получился $\kappa=26\pm1\frac{mBt}{m\cdot K}$. Можно сказать, что значения получены с хорошей точностью.