MRP y HMM

Andrea Fernández, Liliana Millán

27/05/2015

Aplicación 1: Modelo de reconocimiento de vocales

Problema

Supongamos que somos alienígenas de Las Pléyades y que no tenemos ni idea de cómo se 'lee' un lenguaje de la tierra, no sabemos de los idiomas pero como somos seres superiores sabemos de Hidden Markov Models!

Objetivo:

Queremos establecer ciertas propiedades de este lenguaje que no conocemos, veremos que al identificar estas propiedades, de manera *natural* identificaremos las vocales de las consonantes.

Especificación del modelo

- Utilizamos HMM con el algoritmo Baum-Welch para estimar los parámetros:
- 1. las probabilidades inciales de los estados
- 2. las probabilidades de transición entre estados
- las probabilidades de cada símbolo de pertenecer a uno de los estados
- Únicamente con la evidencia que tienen los datos (nuestras observaciones)

Baum-Welch

► Este algoritmo es una variante del EM visto en clase. Iniciamos con un modelo sin 'conocimiento'

 $\pi=$ probabilidades de inciar en cada estado

A= matriz de transición de estados

B= matriz de emisiones

$$\lambda = (A, B, \pi)$$

- ▶ En cada iteración los valores de π , A y B se van actualizando hasta convergencia*.
- ▶ El algoritmo puede ocupar el forward procedure —probabilidad de ver esta secuencia parcial y terminar en el estado i en el tiempo t— o bien el backward procedure —probabilidad de terminar en la esta secuencia parcial dado que empezamos en el estado i en el tiempo t—

^{*} Explicación en el trabajo escrito

Datos

► Tomamos el corpus de

Suposiciones iniciales del modelo

- Nuestra base será suponer que existen 2 estados: Consonante y Vocal
- No conocemos con qué probabilidad de inicio estamos en Constante o en Vocal
- ▶ No conocemos las probabilidades de transición entre estados
- No conocemos las probabilidades de que cada símbolo del lenguaje pertenezca a uno de los estados

Paquetes utlizadas

- ► Paquete HMM de R
- Algoritmo de Baum-Welch para estimación de parámetros de una HMM

Resultados

Aplicación 2: Modelos jerárquicos y postestratificación

Problema

¿Cómo realizar inferencia sobre la población objetivo con datos de encuesta recabados con un diseño no probabilístico basado en cuotas y sin marco muestral?

Objetivo

- Generar estimaciones precisas y confiables
- Controlar por sesgo de selección

Un poco de teoría de encuestas

Tipos de errores de encuestas

- Error de cobertura
- Error de muestreo
- Errores por no respuesta
- Errores de medición

Tipos de muestreo

- Probabilístico
- ▶ No probabilístico

No probabilístico por cuotas

Problema principal: sesgo de selección.

⇒ Para hacer inferencias acerca de la población a partir de una muestra de este tipo es necesario suponer que las personas que fueron seleccionadas son similares a las que no lo fueron...

Soluciones posibles:

- Sample matching
- Máximo entropía
- MRP

Especificación del modelo: pre MR

Se denotará al estimador por este método como $\tilde{\theta}$ y se obtiene con el siguiente proceso:

 Identificación de una o más variables que pueden ser responsables del sesgo de selección. SPG, la cuadrícula completa de clasificación se trata como una única variable categórica G.

Limitación: Con los datos de INEGI a nivel manzana solo podemos especificar 5 modelos

- Edad x colonia
- Condición de ocupación x colonia
- Escolaridad x colonia
- Género x edad x colonia
- ► Condición de ocupación x género x colonia

¿Cómo se ven los datos?

Datos del censo

Cuadricula: colonia x genero x edad

▶ Dimensiones: $63 \times 2 \times 4 = 504$

idcolonia	genero	edad	value
46241	mujer	e12a17	38
46284	mujer	e12a17	0
46385	mujer	e12a17	171
46388	mujer	e12a17	124
46408	mujer	e12a17	74
46409	mujer	e12a17	108

¿Cómo se ven los datos?

Datos de encuestas

- Datos individuales con las respuestas a los cuestionarios.
- \blacktriangleright Las variables elegidas para G se recodifican *igualito* al censo.
- La variable de interés en 0 y 1.
- ► Morelos 2013: 5862
- Morelos 2014: 10365

idcolonia	genero	edad	victimizacion
46548	mujer	e18a29	0
46548	mujer	e12a17	1
46548	mujer	e30a49	1
46284	hombre	e30a49	0

Especificación del modelo: el MR

- 2. Se define un nuevo estimador $\gamma \equiv E(Y|D=d,G=g), d=1,...,J,g=1,...,G.$
- 3. Se utiliza un modelo de regresión multinivel apropiadamente especificado para estimar γ .

Especificación del modelo: el P

4. El paso de postestratificación utiliza el modelo generado en el paso 3. Se computa el estimador MRP para cada elemento θ_d de θ como la suma ponderada del subconjunto apropiado de $\hat{\gamma}$.

$$\tilde{\theta_d} = \sum_{g=1}^G \gamma_{\hat{d},g} w_{g|d}$$

donde $w_{g|d} = \frac{N_{g,d}}{N_d}$. El numerador es el número de miembros de la población objetivo que pertenecen simultáneamente a la categoría g y d. El denominador es el número de miembros en la población objetivo que pertenecen a la categoría d.

Resultados

Muestras no comparables, ¡ahora lo son!

	e12a17	e18a29	e30a49	e50omas
Hombres.14	17.8684843	21.9930360	23.452651	20.998060
Hombres.13	18.4638051	21.4389763	27.861405	22.353171
Diferencia	-0.5953207	0.5540598	-4.408754	-1.355112
Mujeres.14	14.9715021	18.4999490	19.796484	17.682535
Mujeres.13	17.1969776	19.9538614	26.118268	20.920638
Diferencia	-2.2254755	-1.4539125	-6.321784	-3.238104

MRP

Resuelve: small area estimation y/o selection bias

Ventajas del método

- El uso de la regresión multinivel incrementa la precisión del estimador.
- Si G se define adecuadamente, la postestratificación ayuda a decrecer el error por sesgo de selección.
- ▶ MRP es un estimador relativamente preciso para θ .

Desventajas del método

- ► Se necesitan datos poblacionales para toda la clasificación DxG lo cuál limita la definición de G.
- Para obtener buenos estimadores de γ , el modelo de regresión multinivel debe ser especificado con mucho cuidado. Sin embargo, esta limitación aplica para cualquier modelo.