Classical Probability Theory

QWORLD STUDYGROUP #4
Session 3
By Abdul Moiz Mehmood

Necessary Set Theory Concepts:

Why do we need set theory?

What is the link with OQS?

Why is your voice Weird today?

What is probability?

A way to measure uncertainty.

Whats a set?

- A collection of objects
- E.g, A = {a,b,c,d....z}
- s ε A means s is an element of A
- Sets can be countable as A or uncountable

Countable sets

- Sets such as A = {a,b,c...z} are finitely countable.
- While D = {1,2,3.....} are infinitely countable.

Null set

- Null or empty set contains no elements.
- Notations: {} , Ø
- Is a subset of all sets

Subset

```
If B=\{a,b,c,d,e\}
and C=\{b,c,d\}
then, C \subseteq B
```

Subsets of $C = \{b\} \{c\} \{d\} \{bc\} \{bd\} \{cd\} \{bcd\} \{bcd$

Equal sets

Equal sets: A subset of B and B subset of A, A={1,2,3} B={1,2,3}

Intersection of sets

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{1, 5, 6, 7, 8\}$$

A intersection $B = A \cap B = \{1, 5\}$

Two sets such as $C = \{1, 2\}$, $D = \{3, 4\}$ disjoint sets if,

 $C \cap D = \{\emptyset\} = \text{empty/null set.}$

Union of sets

A={1,2,3} B={4,5,6}

A Union B = $A \cup B = \{1,2,3,4,5,6\}$

What is union symbol? - Definiti... whatis.techtarget.com

Complement Set

F', Complement set of F, is the set of all elements in universal set

U that are not in F.

$$\mathsf{F'} = \{ \mathsf{x} \in \mathsf{U} : \mathsf{x} \notin \mathsf{F} \}.$$

 $U = \{a,b,c,d,e,f\}$ and $F = \{a,b,d\}$. Then $F' = \{c,e,f\}$.

The shaded region represents F'.

U' = \varnothing Complement of the universal set is the empty set.

∅' = U and vice versa

Set Difference

A – B, the relative complement or set difference, is the set of all elements in A that are not in B.

$$A - B = \{x \in U : x \in A \text{ and } x \notin B\} = A \cap B'.$$

Let A = {a, b, c, d} and B = {b, c, d, e}.

Then $A - B = \{a\} \text{ and } B - A = \{e\}.$

Let $C = \{m,o,i,z\}$ and $D = \{z,i,o,m\}$. Then $C - D = \emptyset$.

The shaded region represents A – B

Probability Spaces

The constituents:

- 1. Sample space Ω a (set) place where (all possible) things can happen
- 2. Event space \mathcal{A} (a place within the sample space set of sets from Ω)
- 3. Probability Measure (assigns those events a specific number from 0-1)

Sample space example

Finite and Countable - vertices on the shapes, {4,3,4}

Infinite Uncountable - edge points around the circle

Event space (Sigma Algebra)

For an space to be called a sigma algebra it must adhere to the following:

- Has Ω and Null set.
- All other sets must be closed under complement for all F ∈ A , F' ∈ A.
- If $C \subseteq A$ and $C \subseteq A$ then $C \cup D \subseteq A$.
- C ∩ D = (C' U D')'

Event Space Example

Suppose we have the sample space $\Omega = \{00, 01, 10, 11\}$ from that $A = \{\Omega, \phi\}$.

Now, to add B = $\{00, 01\}$ into A as per our closure properties we must also include B' = $\{10, 11\}$, hence: A = $\{\Omega, \phi, B, B'\}$.

Adding C = {00} to A, then gives us: A = { Ω , ϕ , B, B', C, C'} while C' = {01,10,11}.

Now we must account for different unions b/w both B and C.

$$B \cup C = B$$
; $C \cup B' = \{00, 10, 11\}$; $C \cup B' = \{01\}$

Hence, $A = \{ \Omega, \phi, B, B', CUB', (CUB)' \}$

Outcomes of the Event space

After translation on a number line if Omega contains all required intervals then we can use the Boreal sigma algebra..

1.1.1 DONE

Probability Measure and KAxis

Member of A to [0,1] given following conditions are met:

- $0 \le P(n) \le 1$ For all $n \in A$.
- $P(\Omega) = 1$.
- $P(\emptyset) = 0$.
- If, $C \cap D = \{\emptyset\}$; $P(C \cup D) = P(C) + P(D)$

These give rise to a consistent probability theory such that probabilities for events gained via logical operations on other events can be calculated: e.g. one finds $P(C \cup D) = P(C) + P(D) - P(C \cap D)$

1.1.2 DONE

Conditional probabilities and independence

- $P(A|B) = P(A \cap B) / P(B)$; $P(B|A) = P(B \cap A) / P(A)$
- E.g P(A1|B1) for $0.5 (|00\rangle + |11\rangle) = 0.5$
- If A & B are statistically independent, P(A|B) = P(A) . P(B) = P(A)

Bayes's Theorem

$$P(A|B) = P(A \cap B) / P(B)$$
 ; $P(B|A) = P(B \cap A) / P(A)$

$$P(A \cap B) = P(B \cap A)$$

So,

$$P(A|B) = P(B|A) P(A) / P(B)$$

1.1.3 DONE

Random Variables

```
Maps Ω to T
Ω = {00, 01, 10, 11}
```

$$X(00) = 0$$
 ; $X(01) = 1$; $X(10) = 1$; $X(11) = 2$
 $T = \{0,1,2\}$

x = X(w)

Why do this?

Elements of Ω are abstract objects.

To deal with numbers (real or complex), we assign numbers to these elements.

This gives rise to the idea of such functions (RV)

How to assign numbers to elements?

How to assign numbers to elements?

Defining random variable

$$X: \Omega \mapsto \mathbb{R},$$

 $R = X^{-1}(U)$ is well defined.

Hence, the probability distribution

$$P_X(B) = \mu\left(X^{-1}(B)\right)$$

¹The σ -algebra of Borel sets of \mathbb{R} is the smallest σ -algebra which contains all subsets of the form $(-\infty, x)$, $x \in \mathbb{R}$. In particular, it contains all open and closed intervals of the real axis.

Probability distribution from RV X

$$A_x \equiv \{\omega \in \Omega | X(\omega) \le x\}$$

Hence we can write:

$$F_X(x) \equiv \mu(A_x) = \mu\left(\{\omega \in \Omega | X(\omega) \le x\}\right)$$

This is the Cumulative Dist. Ftn. of X.

Properties of CDF

1. $F_X(x)$ increases monotonically,

$$F_X(x_1) \le F_X(x_2)$$
, for $x_1 < x_2$.

2. $F_X(x)$ is continuous from the right,

$$\lim_{\varepsilon \to +0} F_X(x+\varepsilon) = F_X(x).$$

3. $F_X(x)$ has the following limits,

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to +\infty} F_X(x) = 1.$$

 $F_x(x) = P(X \le x)$ (shorthand notation)

Where X is the probability that takes a value less than or equal to x and that lies in the semi-closed interval (a,b], where a < b.

Therefore the probability within the interval is written as

$$P(a < X \le b) = F_x(b) - F_x(a)$$

The CDF defined for a continuous RB is given as:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$