Prueba low

Tesista: David Gustavo Merinos Sosa Directora de tesis: María Dolores Lara Cuevas

Teorema 1. Para n > 4, $at(K_n) > 2$.

Demostración. Supongamos at $(K_n) = 2$ con n > 4. Esto implica que existen dos thrackles T_1, T_2 tales que $|T_1 \cup T_2| \ge \binom{n}{2}$. En el mejor caso T_1 y T_2 son thrackles maximos y solo comparten una arista a pares. Entonces $|T_1 \cup T_2| \le 2n - 1$, luego para n > 4 tenemos que $\binom{n}{2} > 6$.

$$2n-1 \ge 6$$

$$2n \ge 7$$

$$n \ge 3.5 < 4 \ 4$$

De esta contradicción decimos que para K_n con n>4 su antithickness es mayor a 2.

1. Encontrar el anti-thickness geométrico de K_n

Sea K_n^i el dibujo de K_n equivalente al tipo de orden i para n puntos. Supongamos que $\operatorname{at}(K_n^i) = \lambda_i$. Y que para este tipo de orden existen M thrackles máximos. Sea Λ_j con $j = 1 \dots {M \choose \lambda}$ una conjunto de tamaño λ de thrackles máximos. Definimos $m_i = |\bigcup \Lambda_j|$

Si sucede que $m_i > \binom{n}{2}$, podemos decir que el tipo de orden i tiene anti-thickness a lo sumo λ . El anti-thickness del tipo de orden i es el λ más pequeño para el cual se cumple la condición anterior.

Si repetimos este análisis para cada dibujo de K_n , es decir, para cada tipo de orden, podemos decir que el anti-thickness geométrico de K_n es el λ más pequeño resultante de todos los tipos de orden.

2. Saber si $at(K_n) > k$ para n > 6

Supongamos $\mathsf{at}(K_n) = k \ \mathsf{con} \ n > 6$. Esto implica que existen k thrackles $T_1, T_2, \ldots T_k$ tales que $|T_1 \cup T_2 \cup \ldots T_k| \ge \binom{n}{2}$. En general, $|T_1 \cup T_2 \cup \ldots T_k| \le \binom{n}{2}$

kn-m donde m es el total de aristas repetidas entre thrackles. Luego para $n>6, \binom{n}{2}>15$ tenemos que $\binom{n}{2}>6$. Esto nos da la siguiente desigualdad:

$$kn - m \ge 15$$

Lo que implica que $at(K_n) = k$ cuando $m \le kn - 15$ para n > 6.

Por ejemplo, digamos que k=3, n=7 la anterior condición nos dice que el anti-thickness de K_7 será 3 si $m \le 6$. Basta con examinar cada pareja de thrackles cuya intersección es de tamaño 1, y compararla con cada uno de los otros thrackles de su complemento, contar las aristas repetidas y observar que en todos los casos se repiten mas de 6 aristas, es decir m>6. Por lo que podemos decir que $\mathsf{atg}(K_7)>3$. Y luego, como $\mathsf{cat}(K_7)=4$, $\mathsf{atg}(K_7)=4$.

3. Estadísticas de repeticiones

n	ОТ	Dec. size	$\boxed{min_rep}$	max_rep
6	0	3	3	3
7	0	4	7	7
8	0	5	10	12
8	12	5	12	12
8	54	5	12	12
9	12	6	15	18
9	52	6	17	17
9	54	6	16	18
9	80	6	14	14
9	696	6	18	18
9	1080	6	16	16
9	1287	6	15	17

4. Lema

Teorema 2. Dados dos thrackles máximos T_1 y T_2 , su intersección en aristas es no vacía.

Demostración. Sea T_1 un thrackle máximo con $C_1 = V(C(T_1))$, seleccionamos k vértices tales que no estén en C_1 y con k impar para formar un ciclo impar C_2 , cuyas cuñas contengan a $P - \{C_2\} = C_1$ y que además $C_1 \cap C_2 = \emptyset$. Necesariamente todo $v \in C_2$ es un vértice de grado 1 de T_1 .

Entonces existen aristas de T_1 tales que inciden en vértices de C_2 , o lo que es igual, aristas salientes de C_1 que acaban en C_2 . Como las cuñas generadas por vértices de C_2 contienen a todo C_1 y las cuñas generadas por vértices de C_1 contienen a todo C_2 , entonces existe una arista $e \in T_1$ tal que $e \in W_{T_1}(u) \cap W_{T_2}(v)$ con $u \in C_1, v \in C_2$. Notese que esta arista equivalentemente sale de algún vértice $v \in C_2$ y acaba en algún vértice $v \in C_2$.

Finalmente si decimos que $T_2 = C_2$ y luego agregamos todas las aristas que salgan de cuñas generadas por vértices de C_2 y acaban en vértices de C_1 , lo cual es posible por construcción, tenemos que

$$T_2 \ni e, \Rightarrow T_2 \cap T_1 \ni e \Rightarrow T_2 \cap T_1 \neq \emptyset$$

5. Doble contención

Caso en el que C_2 está contenido en la unión de exactamente 2 cuñas de $C_1.$

Sean u, u' vértices de C_1 cuyos ápices cubren a todo C_2 :

 $\exists ! v \in C_2 : v \text{ ve a } u$

 $\exists!v' \in C_2 : v' \text{ ve a } u'$

Si v=v' entonces v ve a u y v ve a u', luego u ve a v o u' ve a v y hay doble contención.

Si $v \neq v$ entonces u ve a v' y u' ve a v, obviando la doble contención tenemos que suponer además que u no ve a v y u' no ve a v'.

