带传动概述

1. 带传动的组成

固联于主动轴上的带轮1(主动轮); 固联于从动轴上的带轮3(从动轮); 紧套在两轮上的传动带2。

摩擦传动: 当主动轮转动时,由带和带轮间的摩擦力,拖动从动轮一起转动,并传递动力(平带和V带传动)。 **廖溪** *

啮合传动: 当主动轮转动时, 由带和带轮间的啮合, 拖动从动轮一起转动, 并传递动力(同步带传动)。 齿形等

3. 带传动的特点

结构简单、传动平稳、造价低廉以及缓冲减振; 摩擦式带传动有弹性滑动和打滑的现象, 传动比不稳定。

4. 传动带的类型

同步带

4.带传动的类型

平带传动,结构简单,带轮也容易制造,在传动中心距较大的场合应用较多。

在一般机械传动中,应用最广的带传动是V带传动,在同样的张紧力下,V带传动较平带传动能产生更大的摩擦力。

弯曲应力小

多楔带传动兼有平带传动和V带传动的优点,柔韧性好、 摩擦力大,主要用于传递大功率而结构要求紧凑的场合。

同步带传动是一种啮合传动,具有的优点是: 无滑动, 能保证固定的传动比; 带的柔韧性好, 所用带轮直径可较小。

普通V带

V带采用基准宽度 制,即用带的基准线的 位置和基准宽度来确定 带在轮槽中的位置和轮 槽的尺寸。

普通V带的截面尺寸:

Z

B

5. 带传动的应用

在各类机械中应用广泛,但摩擦式带传动不适用于对传动比有精确要求的场合。

汽车发动机(同步带)

汽车发动机(多楔带)

拖拉机(普通V带)

工业机器人关节(同步带)

大理石切割机(平带)

带传动的工作情况分析

带传动的工作情况分析是指带传动的受力分析、应力分析、运动分析。带传动是一种挠性传动,其工作情况具有一定的特点。

带传动尚未工作时,传动带中的预紧力为F0。

带传动工作时,一边拉紧,一边放松,记紧边拉力为F1和松边拉力为F2。

设带的总长度不变,根据线弹性假设: $F_1-F_0=F_0-F_2$;

或: $F_1 + F_2 = 2F_0$;

记传动带与小带轮或大带轮间总摩擦力为Ff,其值由带传动的功率P和带速v决定。

定义由负载所决定的传动带的有效拉力为 $F_e = P/v$,则显然有 $F_e = F_f$ 。

取绕在主动轮或从动轮上的传动带为研究对象,有: $F_e = F_f = F_1 - F_2$;

因此有:
$$F_1 = F_0 + F_e / 2$$
; $F_2 = F_0 - F_e / 2$;

带传动的最大有效拉力Fec 由欧拉公式确定,即:

$$F_1 = F_2 e^{f\alpha} \qquad F_{ec} = 2F_0 \frac{e^{f\alpha} - 1}{e^{f\alpha} + 1}$$

欧拉公式给出的是带传动在极限状态下各力之间的关系,或者说是给出了一个 具体的带传动所能提供的最大有效拉力 F_{cc} 。

由欧拉公式可知:

- ①预紧力 F_0 ↑→最大有效拉力 F_{ec} ↑
- ❷包角α↑→最大有效拉力F_{ec}↑
- 3摩擦系数 ƒ↑→最大有效拉力F_{ec}↑

当已知带传递的载荷时,可根据欧拉公式确定应保证的最小初拉力 F_0 。

切记: 欧拉公式不可用于非极限状态下的受力分析!

二、带传动的应力分析

疲劳

6 ◆拉应力: 紧边拉应力、松边拉应力;

6 ◆ 离心应力: 带沿轮缘圆周运动时的离心力在带中产生的离心拉应力;

66◆弯曲应力: 带绕在带轮上时产生的弯曲应力。

 $\sigma_{\max} = \sigma_c + \sigma_1 + \sigma_{b1}$

$$\sigma_{\min} = \sigma_c + \sigma_2$$

图心拉应力:
$$\sigma_c = \rho v^2$$

• 紧边拉应力: $\sigma_1 = \frac{F_1}{A}$

• 松边拉应力: $\sigma_2 = \frac{F_2}{A}$

• 小轮处弯曲应力: $\sigma_{b1} = \frac{2Ey}{d_{d1}}$

• 大轮处弯曲应力: $\sigma_{b2} = \frac{2Ey}{d_{d2}}$

三、带传动的运动分析

带传动在工作时,从紧边到松边,传动带所受的拉力是变化的,因此带的弹性变 形也是变化的。 应力与应支

带传动中因带的弹性变形变化所导致的带与带轮之间的相对运动,称为弹性滑动。

弹性滑动导致:从动轮的圆周速度v2<主动轮的圆周速度v1,速度降低的程度可 用滑动率ε来表示: 不能避免弹性滑动

$$\varepsilon = \frac{v_1 - v_2}{v_1} \times 100\% \qquad \text{gr} \qquad v_2 = (1 - \varepsilon)v_1$$

因此,传动比为:
$$i = \frac{n_1}{n_2} = \frac{d_{d2}}{(1-\varepsilon)d_{d1}}$$

若带的工作载荷进一步加大,有效圆周力达到临界值Fec后,则带与带轮间会发 生显著的相对滑动,即产生打滑。打滑将使带的磨损加剧,从动轮转速急速降低,带 传动失效,这种情况应当避免。

V带传动的设计计算

1. V带传动的设计准则

带传动的主要失效形式是打滑和传动带的疲劳破坏。

带传动的设计准则: 在不打滑的条件下, 具有一定的疲劳强度和寿命。

2. 单根V带的基本额定功率

带传动的承载能力取决于传动带的材质、结构、长度,带传动的转速、包角和载 荷特性等因素。

单根V带的基本额定功率Po是根据特定的实验和分析确定的。

实验条件: 传动比i=1、包角a=180°、特定长度、平稳的工作载荷。

实际工作条件下单根V带的功率 (P_c) : $(P_c) = (P_0 + \Delta P_0) K_\alpha K_I$

3. V带传动的设计

设计的原始数据为:功率P,转速 n_1 、 n_2 (或传动比i),传动位置要求及工作条件等。

设计内容: 确定带的类型和截型、长度L、根数Z、传动中心距a、带轮基准直径及其它结构尺寸等。

由于单根V带基本额定功率 P_0 是在特定条件下经实验获得的,因此,在针对某一具体条件进行带传动设计时,应根据这一具体的条件对所选定的V带的基本额定功率 P_0 进行修正,以满足设计要求。

4. V带传动的参数选择

- 1) 中心距 a
 - 一般初选 $0.7(d_1+d_2) \le a \le 2(d_1+d_2)$
- 2) 传动比i
 - i ≤7, 一般 i = 2 5
- 3) 带轮直径d₁、d₂
- 4) 带速V

推荐 V = 5 - 25 m/s

V3

5. V带传动的设计步骤

- 功率
- ① 按工作情况确定工作情况系数 K_A 后计算 $P_{ca}=K_A\times P$
- ②根据Pca和ni从选型图中确定V带的截型
- ③根据带的截型选dai,检验带速v后确定da2=idai
- ④ 根据空间限制初选中心距 ao, 由ao、dai、da2估算带长Ld'
- ⑤ 根据估计的带长Ld'和带的截型选定带长Ld,并验算小轮包角 α1
- ⑥ 根据带速、带轮直径、传动比、包角、带长等确定 额定功率 P_0 以及系数 K_{α} 、 K_{L} 、 ΔP_0 等
- ⑦ 计算所需带的根数 $Z = \frac{P_{\text{ca}}}{(P_0 + \Delta P)K_{\text{L}}K_{\alpha}}$ 取 整

V带轮结构设计

1. V带轮设计的要求

各轮槽的尺寸和角度应保持一定的精度,以使带的载荷分布较为均匀。 结构工艺性好、无过大的铸造内应力、质量分布均匀。 轮槽工作面要精细加工,以减少带的磨损。

2. 带轮的材料

通常采用铸铁,常用材料的牌号为HT150和HT200。 转速较高时宜采用铸钢或用钢板冲压后焊接而成。 小功率时可用铸铝或塑料。

3. 结构与尺寸

V带轮的典型结构有:实心式、腹板式、孔板式和 轮辐式。带轮的结构设计,主要是根据带轮的基准直径选择结构形式。根据带的截型确定轮槽尺寸。***
带轮的其它结构尺寸通常按经验公式计算确定。

带轮基准直径dd≤2.5d (d为轴的直径,单位为mm) 时,可采用实心式结构。

当2.5d≤dd≤300mm时,带轮常采用腹板式带轮结构。

当D₁-d₁≥100mm时,带轮通常采用孔板式结构。

带传动的张紧装置

张紧的目的

- ▶ 根据带的摩擦传动原理,带必须在预张紧后才能正常工作;
- ▶ 运转一定时间后,带会松弛,为了保证带传动的能力,必须重新张紧,才能 正常工作。

常见的张紧装置有定期张紧装置、自动张紧装置、张紧轮张紧装置。

一、定期张紧装置

二、自动张紧装置

三、采用张紧轮张紧装置

张紧轮一般应放在松边的内侧,使带只受单向弯曲。同时张紧轮应尽量靠近大轮,以免过分影响在小带轮上的包角。张紧轮的轮槽尺寸与带轮的相同。