ALL PAIRS SHORTEST PATHS

Presentation Outline

LIST OF TOPICS

- What is All Pairs Shortest
 Path Problem?
- Floyd-Warshall Algorithm

WHAT IS ALL PAIRS SHORTEST PATH PROBLEM?

- The all-pairs shortest path problem is the determination of the shortest graph distances between every pair of vertices in a given graph.
- We have to calculate the minimum cost to find the shortest path.

THE ALL PAIR
SHORTEST PATH
ALGORITHM IS
ALSO KNOWN AS
FLOYD - WARSHALL
ALGORITHM

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of vertices in a weighted graph.

- This algorithm follows the dynamic programming approach to find the shortest paths.
- This algorithm works for both the directed and undirected weighted graphs. But, it does not work for the graphs with negative cycles (where the sum of the edges in a cycle is negative).

FLOYD-WARSHALL ALGORITHM

PSEUDOCODE

FLOYD - WARSHALL (W)

- 1. $n \leftarrow rows [W]$.
- 2. D0 ← W
- 3. for $k \leftarrow 1$ to n
- 4. do for $i \leftarrow 1$ to n
- 5. do for $j \leftarrow 1$ to n
- 6. do dij(k) \leftarrow min (dij(k-1), dik(k-1)+dkj(k-1))
- 7. return D(n)

Let the given graph be:

Follow the steps below to find the shortest path between all the pairs of vertices.

EXAMPLE

CREATE A
MATRIX AO OF DIMENSION N*N,
WHERE 'N' IS THE NO. OF
VERTICES.

Each cell A[i][j] is filled with the distance from the ith vertex to the jth vertex. If there is no path from ith vertex to jth vertex, the cell is left as infinity.

Now, create a matrix A1 using matrix A0.

$$A^{1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & \infty & 5 \\ 2 & 2 & 0 & & & \\ 3 & \infty & 0 & & & \\ 4 & \infty & & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & \infty & 5 \\ 2 & 2 & 0 & 9 & 4 \\ \infty & 1 & 0 & 8 \\ \infty & 1 & 0 & 8 \\ \infty & 2 & 0 \end{bmatrix}$$

The elements
in the first column
and row are left as
they are.

$$A^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & & \\ 2 & 2 & 0 & 9 & 4 \\ 3 & 1 & 0 & & \\ 4 & \infty & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 9 & 5 \\ 2 & 2 & 0 & 9 & 4 \\ 3 & 3 & 1 & 0 & 5 \\ \infty & \infty & 2 & 0 \end{bmatrix}$$

In a similar way, A2 is created using A3.

The elements in the second column and the second row are left as they are.

SIMILARLY, A3 AND A4 IS ALSO CREATED.

$$A^{3} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & \infty & \\ & & & \\$$

4 GIVES THE SHORTEST PATH BETWEEN EACH PAIR OF VERTICES.

Time Complexity

There are three loops. Each loop has constant complexities. So, the time complexity of the Floyd-Warshall algorithm is O(n3).

Space Complexity

The space complexity of the Floyd-Warshall algorithm is O(n2).

Floyd Warshall Algorithm Applications

- To find the shortest path is a directed graph
- To find the transitive closure of directed graphs
- To find the Inversion of real matrices
- For testing whether an undirected graph is bipartite