

Report

1 Introduction

Project Overview

- Objective: The goal of this project is to classify phishing emails using machine learning algorithms and compare the performance of Logistic Regression and Random Forest Classifier.
- **Dataset**: A dataset containing labeled emails (phishing or non-phishing) with various features was used for training and testing.

2 Data Preprocessing

Feature Engineering

- **Feature Extraction**: Text features such as subject and body content were transformed into numerical data using TF-IDF vectorization.
- Additional Features: Features like the number of URLs, sentiment scores, email domain types, etc., were also included.

3 Machine Learning Models

Model Architecture

- Logistic Regression: A linear model that estimates the probability that a given input belongs to a certain class (phishing or non-phishing). It assumes a linear relationship between features.
- Random Forest Classifier: An ensemble learning method that constructs multiple decision trees and aggregates their results to improve accuracy and reduce overfitting.

4 Model Training and Evaluation

Evaluation Framework

- Training: Both models were trained on the preprocessed data.
- Evaluation Metrics:
 - Accuracy: The percentage of correctly classified emails.
 - **Precision**: The proportion of phishing emails correctly identified among all predicted phishing emails.
 - Recall: The proportion of actual phishing emails that were correctly classified.
 - **F1-Score**: The harmonic mean of precision and recall.

5 Results Comparison

Metric	Logistic Regression	Random Forest Classifier
Accuracy	0.9938	0.9942
Precision	0.99	1.00
Recall	1.00	0.99
F1-Score	0.99	0.99

Table 1: Performance Comparison of Models

5.1 Logistic Regression Results

Confusion Matrix

[[5157 41] [32 6517]]

Classification Report						
	precision	recall	f1-score	support		
0	0.99	0.99	0.99	5198		
1	0.99	1.00	0.99	6549		
accuracy			0.99	11747		
macro avg	0.99	0.99	0.99	11747		
weighted avg	0.99	0.99	0.99	11747		

5.2 Random Forest Classifier Results

Confusion Matrix

[[5167 31] [37 6512]]

Classification Report					
	precision	recall	f1-score	support	
0	0.99	0.99	0.99	5198	
1	1.00	0.99	0.99	6549	
accuracy			0.99	11747	
macro avg	0.99	0.99	0.99	11747	
weighted avg	0.99	0.99	0.99	11747	

Analysis

Both models performed comparably in terms of accuracy, with Random Forest showing a slight edge due to its ability to model non-linear relationships. Random Forest generally performs better in precision, indicating a lower false positive rate, while both models achieved similar F1-scores, effectively balancing precision and recall.

6 Conclusion

Key Findings

- Logistic Regression: The model is simple, interpretable, and performs well on linearly separable data but struggles with complex feature interactions.
- Random Forest: It outperforms Logistic Regression in this context by handling non-linear relationships and reducing overfitting through ensemble learning. Thus, it is a better choice for phishing detection in this project.

7 Future Work

Next Steps

- Tuning hyperparameters (e.g., regularization for Logistic Regression, tree depth for Random Forest).
- Experimenting with more advanced models like **XGBoost** or **Neural Networks** for further performance improvements.
- Incorporating real-time phishing detection mechanisms.