Neural Snowball for Few-Shot Relation Learning

清华大学 高天宇

Background

- Relation Extraction (RE): extracting relational facts from text
 - E.g., Bill Gates founded Microsoft -> (Bill Gates, founder, Microsoft)
- Most RE systems target pre-defined relations
- However, our world undergos open-ended growth of relations

Background

Supervised RE

Large-scale labeled data -> pre-defined relations

Semi-supervised RE

Medium-scale labeled data + large-scale unlabeled data -> pre-defined relations

Few-shot RE

Large-scale labeled data + few-shot labeled data -> new relations

Bootstrapping RE

Few-shot labeled data + large-scale unlabeled data -> new relations

Utilizing All the Data We Have

- Ours
 - Utilizing all three kinds of data
 - Large-scale labeled data
 - Learning good relational metrics
 - Few-shot labeled data
 - As golden instances
 - Large-scale unlabeled data
 - Mining useful instances

Pipeline

- Inputs: A few annotated instances for the new relation (seed)
- Target: Learn a (binary) classifier for the new relation
- How to: Mine instances of the target relation from unlabeled data

Pipeline

- Extract Entity Pairs (Steve Jobs, Apple)
- Step 1: Use distant supervision to get candidates
- Step 2: Use the new relation classifier to get candidates

Pipeline

Filtered by the Relational Siamese Network (RSN)

- Step 1: Use distant supervision to get candidates
- Step 2: Use the new relation classifier to get candidates

Relational Siamese Network

- Learn generalizable relational metrics
 - Pre-trained on large-scale data of existing relations
 - Experiment shows good transfer learning abilities

Relation Set	P@5	P@10	P@20	P@50
Train	83.60	80.66	76.03	61.98
Train Test	82.15	78.64	72.57	55.10

What is our edge

- Neural methods bring good generalizability
- RSN makes sure we have good precision

Experiment

Model	5 Seed Instances		10 Seed Instances		15 Seed Instances				
	P	R	F1	P	R	F1	P	R	F1
BREDS	33.71	11.89	17.58	28.29	17.02	21.25	25.24	17.96	20.99
Fine-tuning (CNN)	46.90	9.08	15.22	47.58	38.36	42.48	74.70	48.03	58.46
Relational Siamese Network (CNN)	45.00	31.37	36.96	46.42	30.68	36.94	49.32	30.46	37.66
Distant Supervision (CNN)	44.99	31.06	36.75	42.48	48.64	45.35	43.70	54.76	48.60
Neural Snowball (CNN)	48.07	36.21	41.30	47.28	51.49	49.30	68.25	58.90	63.23
Fine-tuning (BERT)	50.85	16.66	25.10	59.87	55.19	57.43	81.60	58.92	68.43
Relational Siamese Network (BERT)	39.07	51.39	44.47	42.42	54.93	47.87	44.10	52.73	48.03
Distant Supervision (BERT)	38.06	51.18	43.66	38.45	76.12	51.09	35.48	80.33	49.22
Neural Snowball (BERT)	56.87	40.43	47.26	60.50	62.20	61.34	78.13	66.87	72.06

Case Study

- By using RSN, we have achieved high precision
- However, neural snowball is stuck in the comfort zone

