Fast 3D Viscous Calculation Methods

Mark Drela MIT Aero & Astro

Boeing/MIT Strategic Research Review 6 May 14

Motivation

2D Inviscid+Integral-BL (IBL) methods have proven very effective

- Enormously faster than alternative Navier-Stokes for similar accuracy
- Can exploit any inviscid flow solver
- Compatible with inverse design methods
- Compatible with virtual displacements for linearized aeroelasticity

Navier Stokes

 \sim 500 000 variables

 ~ 1 hr. runtime

Potential+BL (MSIS, TRANAIR-2D)

 $\sim 5\,000$ variables

 ~ 1 sec. runtime

⇒ Present goal is to extend inviscid+integral-BL methods to 3D

EIF/Defect Formulation

- ullet Real flow decomposed into irrotational Equivalent Inviscid Flow ${f q}_i$ and rotational Viscous Defect $\Delta {f q}$, with . . .
 - $\mathbf{q}_i = \mathbf{q}$ outside the rotational viscous layers
 - $\mathbf{q}_i \cdot \hat{\mathbf{n}} \neq 0$ on solid walls, accounts for presence of viscous layer $(\mathbf{q}_i \text{ is } \mathbf{not} \text{ the solution to the inviscid problem!})$

Originally employed by LeBalleur with boundary layer methods,
 but EIF/Defect formulation does not depend on BL approximations

EIF/Defect Formulation

• Governing conservation laws for fluxes f split into EIF and Defect parts

- Inviscid-equation solutions are economical, well automated
- Defect solutions needed only on compact viscous-region domain

EIF/Defect Formulation

Defect conservation law on differential volume spanning viscous layer

$$\iiint \nabla \cdot (\mathbf{f_i} - \mathbf{f}) \, d\mathcal{V} = \iiint \nabla \cdot \left[\int_{y_w}^{y_e} \left(\tilde{\mathbf{f}}_i - \tilde{\mathbf{f}} \right) \, dy \right] \, dx \, dz$$

$$+ \frac{\iiint (\mathbf{f_i} - \mathbf{f})_e \cdot \hat{\mathbf{n}}_e \, dA_e}{- \iiint (\mathbf{f_i} - \mathbf{f})_w \cdot \hat{\mathbf{n}}_w \, dA_w} = 0$$

$$\text{where} \qquad \tilde{\mathbf{f}} = f_x \, \hat{\mathbf{x}} + f_z \, \hat{\mathbf{z}} \qquad \text{(in-plane flux)}$$

$$\tilde{\nabla}() = \frac{\partial()}{\partial x} \, \hat{\mathbf{x}} + \frac{\partial()}{\partial z} \, \hat{\mathbf{z}} \qquad \text{(in-plane gradient)}$$

Differential Defect Control Volume

Defect Equations

Defect equations on differential volumes spanning viscous layer

$$\begin{split} &\int (\mathsf{mass}_{\,\mathrm{i}} - \mathsf{mass}) \, \mathrm{d}y & \to \quad \widetilde{\nabla} \cdot \mathbf{M} - \rho_{\mathrm{i}_{\mathrm{W}}} \mathbf{q}_{\mathrm{i}_{\mathrm{W}}} \cdot \hat{\mathbf{n}}_{\mathrm{W}} = 0 \\ &\int (\mathsf{mom}_{\mathrm{i}} - \mathsf{mom}) \, \mathrm{d}y & \to \quad \widetilde{\nabla} \cdot \mathbf{\bar{J}} - \widetilde{\nabla} \cdot \mathbf{M} \, \mathbf{q}_{\mathrm{i}_{\mathrm{W}}} - \boldsymbol{\tau}_{\mathrm{w}} - (p_{\mathrm{i}_{\mathrm{w}}} - p_{\mathrm{w}}) \hat{\mathbf{n}}_{\mathrm{w}} + \widetilde{\nabla} \boldsymbol{\Pi} = \mathbf{0} \\ &\int (\mathbf{q}_{\mathrm{i}} \cdot \mathsf{mom}_{\mathrm{i}} - \mathbf{q} \cdot \mathsf{mom}) \, \mathrm{d}y & \to \quad \widetilde{\nabla} \cdot \mathbf{E} - \widetilde{\nabla} \cdot \mathbf{M} \, q_{\mathrm{i}_{\mathrm{w}}}^2 - \rho_{\mathrm{i}} \mathbf{Q} \cdot \widetilde{\nabla} q_{\mathrm{i}}^2 - 2\mathcal{D} = 0 \\ &\int (\mathbf{q}_{\mathrm{i}} \times \mathsf{mom}_{\mathrm{i}} - \mathbf{q} \times \mathsf{mom}) \cdot \hat{\mathbf{y}} \, \mathrm{d}y \to \quad \widetilde{\nabla} \cdot \mathbf{E}^{\circ} - \widetilde{\nabla} \cdot \mathbf{M} \, q_{\mathrm{i}_{\mathrm{w}}}^2 \psi_{\mathrm{i}_{\mathrm{w}}} - \rho_{\mathrm{i}} \mathbf{Q}^{\circ} \cdot \widetilde{\nabla} q_{\mathrm{i}}^2 \dots - 2\mathcal{D}^{\circ} = 0 \end{split}$$

Conserved integral defects (fluxes), source terms

$$\begin{array}{lll} \mathbf{M} \equiv \int (\rho_i \mathbf{q}_i - \rho \mathbf{q}) \, \mathrm{d}y & \text{Mass flux defect} \\ \mathbf{\bar{J}} \equiv \int (\rho_i \mathbf{q}_i \, \mathbf{q}_i^T - \rho \mathbf{q} \, \mathbf{q}^T) \, \mathrm{d}y & \text{Momentum flux defect} \\ \mathbf{E} \equiv \int (\rho_i \mathbf{q}_i \, q_i^2 - \rho \mathbf{q} \, q^2) \, \mathrm{d}y & \text{K.E. flux defect} \\ \mathbf{E}^\circ \equiv \int (\rho_i \mathbf{q}_i \, q_i^2 \psi_i - \rho \mathbf{q} \, q^2 \psi) \, \mathrm{d}y & \text{Curvature flux defect} \\ \mathbf{Q} \equiv \int (\mathbf{q}_i - \mathbf{q}) \, \mathrm{d}y & \text{Volume flux defect} \\ \Pi \equiv \int (p_i - p) \, \mathrm{d}y & \text{Pressure defect} \\ \mathcal{D} \equiv \int (\bar{\boldsymbol{\tau}} \cdot \nabla) \cdot \mathbf{q} \, \mathrm{d}y & \text{Dissipation integral} \end{array}$$

 $\rho_{i_{w}} \mathbf{q}_{i_{w}} \cdot \hat{\mathbf{n}}_{w}$ $\mathbf{m}, \bar{\mathbf{J}}, \mathbf{E}, \mathbf{E}^{\circ}...$

In-plane flow angle variable: $\psi(y) \equiv \arctan(w/u)$

Attractive Features of Defect Formulation

- Viscous defect equations are 2D (only on surfaces, wakes)
- Fully exploits any inviscid solver
- Can represent small geometry changes, steady or unsteady
 - Inverse or optimization design change without regridding
 - Linearized aeroelasticity static, forced dynamic, flutter

Central Ideas of Present Work

- Assume EIF is represented by any fast inviscid formulation . . .
 - Vortex Lattice (AVL)
 - Panel (PANAIR, PMARC, QUADPAN, etc.)
 - Transonic Small Disturbance Potential
 - Full Potential (TRANAIR)
 - Euler (CART-3D, etc.)
- Develop complementary "surface-only" method (IBL3) to represent Viscous Defect for any EIF formulation
- Use modern sparse-matrix methods (ILU, GMRES . . .) to solve overall EIF+Defect problem

IBL3 Formulation

• Viscous defects represented by assumed profiles, parameterized by

 δ \mathcal{A} \mathcal{B} Ψ (roughly equivalent to δ_1^* θ_{11} δ_2^* θ_{12})

- TS, CF-wave amplitudes and Reynolds stresses parameterized by $G_C \quad \psi_C \quad \left(\text{equivalent to} \quad \ln \left\lceil \overline{u_1'^{\,2} + u_2'^{\,2}} \right\rceil \right., \, \arctan \left\lceil \|u_2'\| / \|u_1'\| \right\rceil \right)$
- Enormous reduction in number of unknowns from RANS

0 0013

IBL3 Equation Discretization

- Surface finite element discretization allows arbitrary geometry
- ullet Geometry ${f r}$, velocities ${f q}$, defects ${f M}, \bar{f J}$... computed in global basis XYZ
- ullet Defects put into local surface cartesian basis xyz for residual construction

$$\begin{array}{rclcrcl} u &=& \mathbf{q} \cdot \hat{\mathbf{x}} &, & w &=& \mathbf{q} \cdot \hat{\mathbf{z}} \\ \mathbf{M}_{x} &=& \mathbf{M} \cdot \hat{\mathbf{x}} &, & \mathbf{M}_{z} &=& \mathbf{M} \cdot \hat{\mathbf{z}} \\ \mathbf{J}_{x}^{x} &=& \hat{\mathbf{x}} \cdot \bar{\bar{\mathbf{J}}} \cdot \hat{\mathbf{x}} &, & \mathbf{J}_{z}^{x} &=& \hat{\mathbf{x}} \cdot \bar{\bar{\mathbf{J}}} \cdot \hat{\mathbf{z}} \\ \mathbf{J}_{x}^{z} &=& \hat{\mathbf{z}} \cdot \bar{\bar{\mathbf{J}}} \cdot \hat{\mathbf{x}} &, & \mathbf{J}_{z}^{z} &=& \hat{\mathbf{z}} \cdot \bar{\bar{\mathbf{J}}} \cdot \hat{\mathbf{z}} \end{array}$$

IBL3 Solution Approach

Finite-element discretization in local surface xyz basis

- Greatly simplified solution logic no need to identify attachment lines, stagnation points
- Simple Dirichlet, Neumann PCs no edge stencils needed
- Compatible with simultaneous solution with inviscid flow

- 41×12 surface paneling
- 9×12 wake paneling (not shown)

- Coupled viscous/inviscid problem with 6528 DOFs
 - 5280 viscous DOFs: δ \mathcal{A} \mathcal{B} Ψ $G_{\!\scriptscriptstyle C}$ $\psi_{\scriptscriptstyle C}$ at each node
 - 1000 inviscid DOFs: λ (panel source strength) on each panel
- Zero-flux viscous BCs on symmetry plane (equivalent to inviscid wall)

EIF and wall streamlines for laminar flow at $Re=40\,000$

 \Rightarrow Separation lines are naturally captured within IBL3 surface grid

Comparison of IBL3+panel solution at 57% span with 2D (XFOIL) solution (2D α set to match local c_{ℓ})

 \Rightarrow 3D and 2D separation locations match reasonably well (76% vs 79%)

Wall streamlines in leading edge region

 \Rightarrow Attachment lines are naturally captured in IBL3 surface grid

Combined transition-prediction / turbulence-lag treatment

Reynolds shear stress coefficients:

$$C_{ au_1} \equiv rac{-\overline{u_1'v'}}{q_{
m i}} \quad , \qquad C_{ au_2} \equiv rac{-\overline{u_2'v'}}{q_{
m i}}$$

Reynolds stress magnitude, angle variables:

$$G_C \equiv \ln C_{\tau} = \ln \left(C_{\tau_1}^2 + C_{\tau_2}^2 \right)^{1/2}$$

$$\psi_C \equiv \arctan \frac{C_{\tau_2}}{C_{\tau_1}}$$

Governing equations:

$$\frac{\partial G_C}{\partial t} + \mathbf{q}_c \cdot \widetilde{\nabla} G_C = f_G$$

$$\frac{\partial \psi_C}{\partial t} + \mathbf{q}_c \cdot \widetilde{\nabla} \psi_C = f_{\psi}$$

Source functions f_G , f_{ψ} model:

- laminar TS,CF wave growth for $C_{ au} < C_{ au_{
 m crit}}$
- turbulence evolution, lags for $C_{ au} > C_{ au_{
 m crit}}$

Torpedo Test Case

"Torpedo" over a wall boundary layer

Torpedo Test Case

Unsteady Extension

General IBL3 formulation includes . . .

- Unsteady terms, allowing . . .
 - Robust time-marching startup, $\Delta t \to \infty$ recovers steady solution
 - Time-domain unsteady (nonlinear)
 - Frequency-domain unsteady (linearized)
- Artificial dissipation
 - Necessary to stabilize FEM discretization of hyperbolic IBL equations
 - Captures converging-characteristic "shocks" (separation lines)
 - Conservative can only <u>redistribute</u> momentum defect (drag)

$$\frac{\partial \mathbf{M}}{\partial t} - \mathbf{q}_{i_{w}} \frac{\partial m}{\partial t} + \widetilde{\nabla} \cdot \left[\overline{\overline{\mathbf{J}}} - V_{\epsilon} \overline{\overline{\mathbf{h}}} \cdot \widetilde{\nabla} \mathbf{M} \right] - \mathbf{q}_{i_{w}} \widetilde{\nabla} \cdot \mathbf{M} - \boldsymbol{\tau}_{w} = \mathbf{0}$$

Torpedo Over Wall – Time-Ramp Test Case

Streamwise shape parameter

Time-Ramp Test Case – Torpedo Over Wall

Streamwise momentum thickness

IBL3 Work Done to Date

- Development of FE discretization on general surface grids
- Full unsteady implementation
- Laminar closure method
- ullet Envelope- e^N 3D transition prediction method
- Development of turbulent closure method
- Combined laminar/transition/turbulent method
- IBL3 1.01 Routine Package, Documentation
- Strong coupling with simple inviscid solver (done)
- Paper: "Three-Dimensional Integral Boundary Layer Formulation for General Configurations", 21st AIAA CFD Conference, San Diego, June 2013.

IBL3 Work Underway or Planned

- Continue testing, calibration
- Better wake treatment
- Implementation into TSD code (Drela, Sato)
- Implementation into TRANAIR (by Boeing)

People

• MIT:

- Mark Drela (IBL3, EIF coupling)
- PhD student David Moro (VGNS)
- Bob Haimes (geometry)

• Boeing:

- Dave Young & TRANAIR group
- Sho Sato (TSD code)