Character Tables for Representations of Finite Groups

Jared Stewart

April 2, 2016

Jared Stewar

Character Tables for Representations of Finite

April 2, 2016

Table of contents

- Introduction
- 2 Section no.1
 - Subsection no.1.1
- 3 Section no. 2
 - Lists I
 - Lists II
- 4 Section no.3
 - Tables
- Section no. 4
 - blocs
- 6 Section no. 5
 - split screen

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016 2 / 14

Group Representations

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- **1** The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- ② The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

In these two examples, S_n acts on the set $\{1,\ldots,n\}$ and D_n acts on the regular n-gon in a natural manner. One may wonder more generally: Given an abstract group G, which objects X does G act on? This is the basic question of representation theory, which attempts to classify all such X up to isomorphism.

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016

Group Actions

Definition

A **group action** of a group G on a set X is a map $\rho \colon G \times X \to X$ (written as $g \cdot x$, for all $g \in G$ and $x \in X$) that satisfies the following two axoims:

$$1 \cdot x = x \qquad \forall x \in X \tag{1}$$

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 $\forall g, h \in G, x \in X$ (2)

Proposition

Any homomorphism ψ from the group G into the symmetric group S_X on a set X gives rise to an action of G on X, defined by taking $g \cdot x = \psi(g)(x)$.

Jared Stewar

Character Tables for Representations of Finite

April 2, 2016

could likewise define the concept of a right group action, where the set elements would be multiplied by group elements on the right instead of on the left. Throughout we shall use the term group action to mean a left group action.

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016 5 / 14

The Definition of a Representation

Definition

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is an action of G on V that preserves the linear structure of V, i.e. an action of G on V such that

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \qquad \forall g \in G, v_1, v_2 \in V$$
 (3)

$$g \cdot (kv) = k(g \cdot v)$$
 $\forall g \in G, v \in V, k \in F$ (4)

Definition (Alternative definition)

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of ${\sf G}$ is any group homomorphism

$$\rho \colon G \to GL(V)$$
.

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016

Title

Each frame should have a title.

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016 6 / 14

- point 1 ljkflasjkssdf
- point 2

unnumbered lists

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX
- Beamer class

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016

lists with pause

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX
- Beamer class

Character Tables for Representations of Finite

April 2, 2016 8 / 14

numbered lists

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX
- Beamer class

Character Tables for Representations of Finite

April 2, 2016 9 / 14

numbered lists with pause

- Introduction to LATEX
- Course 2
- Termpapers and presentations with LATEX
- Beamer class

Jared Stewar

Character Tables for Representations of Finite

April 2, 2016

Tables

Date	Instructor	Title
WS 04/05	Sascha Frank	First steps with LATEX
SS 05	Sascha Frank	LATEX Course serial

Tables with pause

A B C 1 2 3 A B C

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016

blocs

title of the bloc

bloc text

title of the bloc

bloc text

title of the bloc

bloc text

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016 13 / 14

splitting screen

- Beamer
- Beamer Class
- Beamer Class Latex

Instructor	Title
Sascha Frank	LATEX Course 1
Sascha Frank	Course serial

Jared Stewart

Character Tables for Representations of Finite

April 2, 2016 14 / 14