

Projet 5 Segmentez des clients d'un site e-commerce

Guille Anaïs – Parcours Data Scientist

Mentor: Ahmed Tidiane Balde

Sommaire

- I- Problématique
- II- Présentation du jeu de données
- III- Nettoyage des données et feature engineering
- IV- Elaboration d'un modèle de clustering
- V- Simulation d'évolution de la stabilité du clustering dans le temps
- VI- Conclusion

I- Problématique

• *Olist* : Entreprise brésilienne spécialisée dans la vente sur les marketplace en ligne

☐ Fournir une segmentation des clients pour leurs équipes

☐ Recommander la fréquence de mise à jour de cette segmentation pour rester pertinente

II- Présentation du jeu de données

- 9 fichiers csv
- Base de données anonymisée
- Commande de 2016 à 2018

III- Nettoyage des données

- Suppression des données dupliquées
- Suppression des colonnes inutilisées pour le projet
- Conversion des colonnes temporelles en datetime
- Conservation des commandes 'delivered' uniquement
- Agrégation et regroupement du dataframe par identifiant client unique

III- Nettoyage des données et feature engineering

#	Column	Non-Null Count
0	order_purchase_timestamp	91481 non-null
1	customer_state	91481 non-null
2	order_id	91481 non-null
3	nb_total_item	91481 non-null
4	price	91481 non-null
5	freight_value	91481 non-null
6	payment_type	91481 non-null
7	mean_payment_installments	91481 non-null
8	total_payment_value	91481 non-null
9	mean_payment_value	91481 non-null
19	mean_review_score	91481 non-null
13	1 seller_state	91481 non-null
12	2 product_category_name	91481 non-null

Répartition des notes attribuées aux commandes

III- Nettoyage des données et feature engineering

La segmentation RFM (Recency, Frequency, Monetary)

	recency	frequency	monetary	
count	91481.000000	91481.000000	91481.000000	
mean	236.108875	1.032870	173.092009	
std	152.586572	0.206215	257.592652	
min	0.000000	1.000000	10.070000	
25%	113.000000	1.000000	64.000000	
50%	217.000000	1.000000	110.170000	
75%	344.000000	1.000000	188.500000	
max	694.000000	14.000000	13664.080000	

Preprocessing

StandardScaler

Classification nonsupervisée

Kmeans
DBSCAN
Agglomerative Clustering

Choix des paramètres

Analyse des clusters

1) Kmeans

Scatterplot des variables originales avec clusters 2000 600 Nombre de clients par cluster : cluster 49264 464 36476 5277

Name: count, dtype: int64

1) Kmeans

Scatterplot des variables originales avec clusters

2) DBSCAN

3) Agglomerative Clustering

Cluster 0: 19429 points Cluster 1: 571 points

Agglomerative Clustering

4) Ajout du review score moyen

Scatterplot des variables originales avec clusters

Nombre de clients par cluster : cluster 0 51208

0 51208 1 2503 2 37770

5) Ajout des catégories de produits

Nombre de clients par cluster :

0 887

1 2699

Name: count, dtype: int64

6) Ajout des variables de paiement

7) Conclusion

- Trois cluster principaux :
 - Achat récent pour un faible montant
 - Achat ancien pour un faible montant (A REACTIVER)
 - Achat avec un montant élevé
- Ajout de variable n'affecte pas fondamentalement la segmentation des clients
- Piste pour la compréhension du comportement d'achat des clients et pour le ciblage de chaque segment

V - Simulation d'évolution de la stabilité du clustering dans le temps

- Entraîner modèle initial (Mo) jusqu'au 12/2017
- Décalage par semaine des données et réentraînement de nouveaux modèles sur ces données décalées (M1)
- Calcul du score ARI à chaque décalage

Réentraînement du modèle nécessaire toutes

les 7 semaines environ

VI- Conclusion

- Kmeans avec k = 3
- Trois cluster principaux :
 - Achat récent pour un faible montant
 - Achat ancien pour un faible montant (A REACTIVER)
 - Achat avec un montant élevé
- Variables Recency, Frequency, Monetary
- Modèle à réentraîner toutes les 7 semaines environ

Merci pour votre attention