

UNCLASSIFIED

AD NUMBER

**ADB014360**

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution  
unlimited**

FROM

**Distribution authorized to U.S. Gov't.  
agencies only; Test and Evaluation; OCT  
1976. Other requests shall be referred to  
Air Force Armament Laboratory, Attn: DLJC,  
Eglin AFB, FL 32542.**

AUTHORITY

**USADTC ltr, 2 Apr 1980**

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED  
AND CLEARED FOR PUBLIC RELEASE  
UNDER DOD DIRECTIVE 5200.20 AND  
NO RESTRICTIONS ARE IMPOSED UPON  
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;  
DISTRIBUTION UNLIMITED.



AEDC-TR-76-147  
AFATL-TR-76-113

(2)

**AERODYNAMIC LOADS AND SEPARATION  
CHARACTERISTICS OF THE BLU-27B/B,  
MK-82SE, AND GBU-8 WEAPONS IN THE  
F-16 AIRCRAFT FLOW FIELD AT  
MACH NUMBERS FROM 0.4 TO 1.2**

PROPULSION WIND TUNNEL FACILITY  
ARNOLD ENGINEERING DEVELOPMENT CENTER  
AIR FORCE SYSTEMS COMMAND  
ARNOLD AIR FORCE STATION, TENNESSEE 37389

AD E 014360

October 1976

Final Report for the Period May 10-14, 1976

Distribution limited to U.S. Government agencies only; this report contains information on test and evaluation of military hardware; October 1976; other requests for this document must be referred to Air Force Armament Laboratory (AFATL/DLJC), Eglin Air Force Base, Florida 32542.

DDC FILE COPY

Prepared for

AIR FORCE ARMAMENT LABORATORY (AFATL/DLJC)  
EGLIN AIR FORCE BASE, FLORIDA 32542

47 DDC  
NOV 1 1976  
REF ID: A20  
B

### NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

|                                |                                                  |
|--------------------------------|--------------------------------------------------|
| ACCESSION FOR                  |                                                  |
| NTIS                           | White Section <input type="checkbox"/>           |
| D.D.C.                         | Buff Section <input checked="" type="checkbox"/> |
| UNCLASSIFIED                   |                                                  |
| JUSTIFICATION                  |                                                  |
| BY                             |                                                  |
| DISTRIBUTION/AVAILABILITY GOES |                                                  |
| Dist.                          | Avail. and/or Special                            |
| B                              |                                                  |

### APPROVAL STATEMENT

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER



JOHN C. CARDOSI  
Lt Colonel, USAF  
Chief Air Force Test Director, PWT  
Directorate of Test



ALAN L. DEVEREAUX  
Colonel, USAF  
Director of Test

## UNCLASSIFIED

| REPORT DOCUMENTATION PAGE                                                                                                                                                              |                                                                                                                                                                                                                                                    | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEDC-TR-76-147<br>AFATL-TR-76-113                                                                                                                                                      | 1. GOVT ACCESSION NO.<br><br>⑥                                                                                                                                                                                                                     | 1. RECIPIENT'S CATALOG NUMBER<br><br>⑨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. TITLE (and Subtitle) AERODYNAMIC LOADS AND SEPARATION CHARACTERISTICS OF THE BLU-27B/B, MK-82SE, AND GBU-8 WEAPONS IN THE F-16 AIRCRAFT FLOW FIELD AT MACH NUMBERS FROM 0.4 TO 1.2. |                                                                                                                                                                                                                                                    | 5. SPONSORING ORGANIZATION PERIOD COVERED<br>Final Report, May 10 -<br>14, 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E. G. Allee, Jr., ARO, Inc.                                                                                                                                                            | 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                                                                                                   | 7. CONTRACT OR GRANT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Arnold Engineering Development Center (XO)<br>Air Force Systems Command<br>Arnold Air Force Station, Tennessee 37389                    | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>Program Element 62602F<br>Project 2567, Task 01                                                                                                                                     | 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Air Force Armament Laboratory (AFATL/DLJC)<br>Eglin Air Force Base, Florida 32542                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br>⑫ 156P.                                                                                                 | 13. REPORT DATE<br>Oct 1976                                                                                                                                                                                                                        | 14. NUMBER OF PAGES<br>153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED                                                                                                                                   | 16. DECLASSIFICATION DOWNGRADING SCHEDULE<br>N/A                                                                                                                                                                                                   | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br>⑯ AF-2567<br>ARO-P41C-C6A                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18. SUPPLEMENTARY NOTES<br>Available in DDC<br>⑯ AFATL                                                                                                                                 | 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>F-16 aircraft<br>flow fields<br>aerodynamic loading<br>external stores<br>captive tests<br>trajectories<br>separation<br>transonic flow<br>wind tunnel tests | 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>A wind tunnel test was conducted in the Aerodynamic Wind Tunnel (4T) to investigate the flow-field characteristics in the vicinity of the midwing and inboard weapon stations of the F-16 aircraft. Aerodynamic coefficients were measured on the BLU-27B/B, GBU-8, and MK-82SE stores placed at various locations in the aircraft flow field. Captive-separation trajectory data were obtained on the GBU-8 and MK-82SE stores. Data were acquired at Mach numbers from |

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

042550  
LB

**UNCLASSIFIED**

20. ABSTRACT (Continued)

0.4 to 1.2 for various weapons loading configurations of the F-16. Other variables included aircraft angles of attack from 0 to 10 deg and wing leading-edge-flap deflection angles of 0, 4, and 15 deg.



## PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), at the request of the Air Force Armament Laboratory (AFATL/DLJC), under Program Element 62602F, Project 2567, Task 01. The AFATL project monitor was Mr. Al Marrin. The test results were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project No. P41C-C6A. The author of the report was E. G. Allee, Jr., ARO, Inc. Testing was accomplished during the period May 10 through 14, 1976, and the data reduction was completed on June 10, 1976. The manuscript (ARO Control No. ARO-PWT-TR-76-96) was submitted for publication on August 23, 1976.

## CONTENTS

|                                         | <u>Page</u> |
|-----------------------------------------|-------------|
| 1.0 INTRODUCTION . . . . .              | 7           |
| 2.0 APPARATUS                           |             |
| 2.1 Test Facility . . . . .             | 7           |
| 2.2 Test Articles . . . . .             | 8           |
| 2.3 Instrumentation . . . . .           | 9           |
| 3.0 TEST DESCRIPTION                    |             |
| 3.1 Test Conditions . . . . .           | 9           |
| 3.2 Data Acquisition . . . . .          | 10          |
| 3.3 Corrections . . . . .               | 11          |
| 3.4 Precision of Data . . . . .         | 12          |
| 4.0 RESULTS AND DISCUSSION              |             |
| 4.1 Trajectory Data . . . . .           | 13          |
| 4.2 Free-Stream Data . . . . .          | 13          |
| 4.3 Aerodynamic Loads Surveys . . . . . | 13          |

## ILLUSTRATIONS

Figure

|                                                                                                                            |    |
|----------------------------------------------------------------------------------------------------------------------------|----|
| 1. Isometric Drawing of a Typical Store Separation Installation and a Block Diagram of the Computer Control Loop . . . . . | 15 |
| 2. Schematics of Test Installations . . . . .                                                                              | 16 |
| 3. Dimensional Sketch of the F-16 Parent Model . . . . .                                                                   | 18 |
| 4. Dimensional Sketches of the Store Models . . . . .                                                                      | 19 |
| 5. F-16 Model Pylons and Racks . . . . .                                                                                   | 25 |
| 6. Installation Photographs . . . . .                                                                                      | 30 |
| 7. Store Orientation . . . . .                                                                                             | 33 |
| 8. Configuration Identification . . . . .                                                                                  | 34 |
| 9. Trajectories Obtained with the GBU-8 . . . . .                                                                          | 35 |
| 10. Trajectories Obtained with the MK-82SE . . . . .                                                                       | 39 |

| <u>Figure</u>                                                                                                | <u>Page</u> |
|--------------------------------------------------------------------------------------------------------------|-------------|
| 11. Free-stream Aerodynamic Coefficients . . . . .                                                           | 41          |
| 12. Aerodynamic Characteristics of the BLU-27B/B,<br>Configuration 1 . . . . .                               | 46          |
| 13. BLU-27B/B Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 1 . . . . .              | 51          |
| 14. Effect of an Adjacent Store on the BLU-27B/B,<br>Configurations 1 and 2 . . . . .                        | 54          |
| 15. Aerodynamic Characteristics of the BLU-27B/B,<br>Configuration 3 . . . . .                               | 59          |
| 16. BLU-27B/B Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 3 . . . . .              | 64          |
| 17. Effect of an Adjacent Store on the BLU-27B/B,<br>Configurations 3 and 4 . . . . .                        | 68          |
| 18. Aerodynamic Characteristics of the BLU-27B/B,<br>Configuration 5 . . . . .                               | 73          |
| 19. Aerodynamic Characteristics of the BLU-27B/B,<br>Configuration 6 . . . . .                               | 74          |
| 20. Aerodynamic Characteristics of the GBU-8,<br>Configuration 7 . . . . .                                   | 75          |
| 21. GBU-8 Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 7 . . . . .                  | 76          |
| 22. Effect of the Addition of an Inboard 370-gal Fuel<br>Tank on the GBU-8, Configurations 7 and 9 . . . . . | 77          |
| 23. Aerodynamic Characteristics of the GBU-8,<br>Configuration 8 . . . . .                                   | 78          |
| 24. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 10 . . . . .                                | 79          |
| 25. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 10 . . . . .               | 80          |
| 26. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 11 . . . . .                                | 82          |

| <u>Figure</u>                                                                                   | <u>Page</u> |
|-------------------------------------------------------------------------------------------------|-------------|
| 27. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 11 . . . . .  | 87          |
| 28. Effect of an Adjacent Store on the MK-82SE,<br>Configurations 11 and 13 . . . . .           | 89          |
| 29. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 12 . . . . .                   | 94          |
| 30. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 12 . . . . .  | 99          |
| 31. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 14 . . . . .                   | 104         |
| 32. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 14 . . . . .  | 109         |
| 33. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 15 . . . . .                   | 111         |
| 34. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 15 . . . . .  | 116         |
| 35. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 16 . . . . .                   | 119         |
| 36. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 16 . . . . .  | 120         |
| 37. Aerodynamic Characteristics of the MK-82SE,<br>Configuration 17 . . . . .                   | 121         |
| 38. MK-82SE Coefficient Variation with Aircraft Angle<br>of Attack, Configuration 17 . . . . .  | 122         |
| 39. Coefficient with Wing Leading-Edge-Flap Deflection,<br>Configuration 10 . . . . .           | 123         |
| 40. Coefficient Variation with Wing Leading-Edge-Flap<br>Deflection, Configuration 11 . . . . . | 124         |
| 41. Coefficient Variation with Wing Leading-Edge-Flap<br>Deflection, Configuration 12 . . . . . | 128         |
| 42. Coefficient Variation with Wing Leading-Edge-Flap<br>Deflection, Configuration 13 . . . . . | 130         |

| <u>Figure</u>                                                                                |     | <u>Page</u> |
|----------------------------------------------------------------------------------------------|-----|-------------|
| 43. Coefficient Variation with Wing Leading-Edge-Flap Deflection, Configuration 14 . . . . . | 133 |             |
| 44. Coefficient Variation with Wing Leading-Edge-Flap Deflection, Configuration 15 . . . . . | 136 |             |
| 45. Coefficient Variation with Wing Leading-Edge-Flap Deflection, Configuration 16 . . . . . | 140 |             |
| 46. Coefficient Variation with Wing Leading-Edge-Flap Deflection, Configuration 17 . . . . . | 141 |             |

## TABLES

|                                         |     |
|-----------------------------------------|-----|
| 1. Metric Model Parameters . . . . .    | 142 |
| 2. Run Compendium . . . . .             | 143 |
| 3. Typical Data Uncertainties . . . . . | 148 |
| NOMENCLATURE . . . . .                  | 149 |

## 1.0 INTRODUCTION

An investigation of the flow-field characteristics in the vicinity of the midwing and inboard weapons stations (wing stations 7 and 6) of the F-16 aircraft was conducted in the Aerodynamic Wind Tunnel (AT) of the Propulsion Wind Tunnel Facility. Aerodynamic loads on the BLU-27B/B, the GBU-8, and the MK-82SE stores positioned at various locations in the aircraft flow field were determined for different combinations of pylons, racks, and weapons. Loads data were also obtained on the MK-82SE with the F-16 wing leading-edge-flaps deflected 0, 4, and 15 deg. A limited number of captive separation trajectories was acquired with the MK-82SE and GBU-8 released from both the midwing and inboard weapons pylons at a simulated altitude of 5,000 ft. Test parameters included Mach numbers from 0.4 to 1.2 and aircraft angles of attack from 0 to 10 deg.

## 2.0 APPARATUS

### 2.1 TEST FACILITY

The Aerodynamic Wind Tunnel (AT) is a closed-loop, continuous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3 and can be set at 1.6 and 2.0 by placing nozzle inserts over the permanent sonic nozzle. At all Mach numbers, the stagnation pressure can be varied from 300 to 3,700 psfa. The test section is a ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely enclosed in a plenum chamber from which the air can be evacuated, allowing part of the tunnel airflow to be removed through the perforated walls of the test section.

Two separate and independent support systems were used to support the models. The parent aircraft model was inverted in the test section and supported by an offset sting attached to the main pitch sector. The store model was supported by the captive trajectory support (CTS)

which extends down from the tunnel top wall and provides store movement (six degrees of freedom) independent of the parent-aircraft model. An isometric drawing of a typical installation is shown in Fig. 1.

Also shown in Fig. 1 is a block diagram of the computer control loop used during testing. The analog system and the digital computer work as an integrated unit and, utilizing required input information, control the store movement. Positioning is accomplished by use of six individual d-c electric motors. Maximum translational travel of the CTS is  $\pm 5$  in. from the tunnel centerline in the lateral and vertical directions and 36 in. in the axial direction. Maximum angular displacements are  $\pm 5$  deg in pitch and yaw and  $\pm 360$  deg in roll. A more complete description of the test facility can be found in the Test Facilities Handbook.<sup>1</sup> A schematic showing the test section details and the location of the models in the tunnel is shown in Fig. 2.

## 2.2 TEST ARTICLES

Models used during this test were 0.0667-scale replicas of the F-16 aircraft and associated pylons, triple (TER) and multiple (MER) ejection racks, the MK-82SE, BLU-27B/B, and GBU-8 munitions, the AIM-9J missile and wingtip launcher rail, the 370-gal fuel tank, and the ALQ-119-12 ECM pod. Details of these models are presented in Figs. 3, 4, and 5. The leading-edge flaps of the F-16 model could be set at angles of 0, 4, and 15 deg. During the test, the horizontal stabilizers of the F-16 model were removed to avoid interference with the store-model sting support.

---

<sup>1</sup> Test Facilities Handbook (Tenth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, May 1974.

Store parameters used in the calculation of the aerodynamic loads and trajectories are included in Table 1. Typical tunnel installation photographs showing the aircraft model, stores, and CTS are shown in Fig. 6. Store orientation and station numbering sequence on the MER and TER are included in Fig. 7. A summary of the various configurations tested is presented in Fig. 8.

### 2.3 INSTRUMENTATION

A six-component internal strain-gage balance was used to obtain store aerodynamic force and moment data. Translational and angular positions of the store were obtained from CTS analog inputs during separation trajectories and from digital computer commands during aerodynamic testing.

A touch-wire system was used to accurately position the store model with respect to the aircraft model. The system was also electrically wired to automatically stop the CTS motion and give visual indication should the store or its sting support make contact with any surface other than the touch wire.

## 3.0 TEST DESCRIPTION

### 3.1 TEST CONDITIONS

A complete test summary and the wind tunnel test conditions are given in Table 2. Aerodynamic loads data were obtained at Mach numbers from 0.4 to 1.2. Separation trajectory data were obtained at Mach numbers from 0.6 to 1.2. Tunnel conditions were held constant at the desired Mach number while the data were obtained. The trajectories were terminated when the store or its sting contacted the aircraft model or when a CTS limit was reached.

### 3.2 DATA ACQUISITION

#### 3.2.1 Aerodynamic Loads Data

Store aerodynamic data in the free stream and in the aircraft model flow field were obtained in the following manner. After tunnel conditions were established and the aircraft model angle of attack was set (when applicable), the store was set at  $\alpha_s = 0$  (free-stream data) or at the carriage position ( $X_p = Y_p = Z_p = 0$  for aerodynamic loads data). Operational control of the CTS was then switched to the digital computer, which positioned the store at previously selected locations related to its initial position by commands to the CTS (see block diagram, Fig. 1). At each position set, the wind tunnel operating conditions and the store model forces and moments were measured and recorded. The model aerodynamic loads were then reduced to coefficient form and tabulated point by point by the digital computer.

#### 3.2.2 Trajectory Data

To obtain a trajectory, test conditions were established in the tunnel and the aircraft model was positioned at the desired angle of attack. Operational control of the CTS was then switched to the digital computer which automatically oriented the store model at a position corresponding to the carriage location and then controlled the store movement during the trajectory through commands to the CTS analog system (see block diagram, Fig. 1). Data from the wind tunnel, consisting of measured model forces and moments, wind tunnel operating conditions, and CTS rig positions, were input to the digital computer for use in the full-scale trajectory calculations.

The digital computer was programmed to solve the six-degree-of-freedom equations to calculate the angular and linear displacements of the store relative to the aircraft pylon. In general, the program involves using

the last two successively measured values of each static aerodynamic coefficient to predict the magnitude of the coefficients over the next time interval of the trajectory. These predicted values are used to calculate the new position and attitude of the store at the end of the time interval. The CTS is then commanded to move the store model to this new position, and the aerodynamic loads are measured. If these new measurements agree with the predicted values, the process is continued over another time interval of the same magnitude. If the measured and predicted values do not agree within the desired precision, the calculation is repeated over a time interval one-half the previous value. This process is repeated until a complete trajectory has been obtained.

In applying the wind tunnel data to the calculations of the full-scale store trajectories, the measured forces and moments are reduced to coefficient form and then applied with proper full-scale store dimensions and flight dynamic pressure. Dynamic pressure was calculated using a flight velocity equal to the free-stream velocity component plus the components of store velocity relative to the aircraft, and a density corresponding to the simulated altitude.

The initial portion of each launch trajectory incorporated simulated ejector forces in addition to the measured aerodynamic forces acting on the store. The ejector force was considered to act perpendicularly to the pylon or rack mounting surface. The ejector forces and locations, along with other full-scale store parameters used in the trajectory calculations, are included in Table 1.

### 3.3 CORRECTIONS

Balance, sting, and support deflections caused by the aerodynamic loads on the store models were accounted for in the data reduction program to calculate the true store-model angles. Corrections were also

made for model weight tares to calculate the net aerodynamic forces on the store model. No correction was made to account for angular deflections of the aircraft model.

### 3.4 PRECISION OF DATA

Data obtained using the CTS are subject to error from several sources including tunnel conditions, balance measurements, extrapolation tolerances allowed in predicting coefficients (for trajectory data), and CTS positioning control. The maximum error in CTS position control was  $\pm 0.05$  in. (0.06 ft full scale) in translational settings,  $\pm 0.15$  deg for angular displacement settings in pitch and yaw, and  $\pm 1.0$  deg in roll. Extrapolation tolerances were  $\pm 0.10$  for each of the aerodynamic coefficients. Typical uncertainties in the full-scale position data resulting from balance precision limitations are presented in Table 3. These values are conservative in that they were determined by assuming that balance measurement errors accumulate as a bias uncertainty in the trajectory calculations. Uncertainties in the aerodynamic coefficients obtained during the flow-field surveys are also included in this table. All calculated coefficient uncertainties are based on a 95-percent confidence level. The uncertainty in determining the aircraft model angle of attack is estimated to be no larger than  $\pm 0.10$  deg.

### 4.0 RESULTS AND DISCUSSION

Selected aerodynamic free-stream data, aerodynamic loads (grid) data, and separation trajectory data are included in this report. The data included were chosen to show the basic aerodynamic characteristics of each store in the various configurations or to indicate the effect on the store of changing a particular parameter. The configurations for which data were acquired are shown in Fig. 8. Although only a portion of the total data obtained is presented, a complete summary of the test is included in Table 2. Model parameters used in the data calculations are detailed in Table 1.

#### 4.1 TRAJECTORY DATA

Separation trajectory data were obtained on the GBU-8 and MK-82SE stores only. These data are presented in Figs. 9 and 10 in the flight-axis coordinate system with the origin at the carriage position of the respective store. Upon release, the GBU-8 exhibited slight pitch and yaw oscillations, the magnitude of which varied with Mach number. The MK-82SE exhibited a much larger initial pitch rate. At Mach numbers of 0.9 and 0.95, the initial pitch motion was so rapid that CTS travel limits were encountered before the store reached the maximum nose-down pitch attitude.

#### 4.2 FREE-STREAM DATA

Summaries of the aerodynamic coefficients obtained in the free stream with the three store models are included in Fig. 11. The data are presented as store body-axis coefficients and were acquired with the F-16 aircraft model removed from the wind tunnel.

#### 4.3 AERODYNAMIC LOADS SURVEYS

Aerodynamic body-axis coefficients obtained from the surveys made in the influence of the F-16 flow field are presented in Figs. 12 through 19 for the BLU-27B/B, in Figs. 20 through 23 for the GBU-8, and in Figs. 24 through 46 for the MK-82SE. The data are plotted as functions of the pylon-axis spatial coordinates at which the data were acquired. The indicated aircraft configurations are defined in Fig. 8. All surveys were initiated with the store in the carriage position at the pylon and rack location given in the figure heading. Rack stations are numbered as shown in Fig. 7.

In general, flow-field effects on the aerodynamic coefficients of the BLU-27B/B had dissipated at a vertical separation of 16 ft or greater, regardless of the aircraft configuration. The actual distance at which the effects were no longer significant did vary slightly with configuration and with the aerodynamic coefficient under consideration.

Aircraft flow-field effects noted on the GBU-8 were considerably more pronounced than those on the BLU-27B/B and persisted to distances beyond 18 ft (especially at supersonic Mach numbers). The variation in coefficients resulting from the addition of a 370-gal fuel tank to the inboard pylon was most evident at  $M_\infty = 1.2$  and also continued beyond 18 ft vertically from the aircraft.

Data acquired with the MK-82SE indicated that the aerodynamic coefficients were approaching free-stream values at separations of 16 ft when the aircraft angle of attack was 6 deg or less. At an angle of attack of 10 deg, the effect of the F-16 flow field was still evident at 18 ft, which was the maximum vertical separation obtained with the MK-82SE.

The change in aerodynamic coefficients caused by deflecting the F-16 wing-leading-edge flaps 4 deg and 15 deg was investigated using the MK-82SE. The variation caused by placing the flaps in the 4-deg position was very small and had dissipated within 1 ft of the carriage position. The effects with the 15-deg flap deflection were of greater magnitude and extended beyond 14 ft separation in some instances. The actual distance at which the flap effects ceased to be significant was configuration dependent.



**Figure 1. Isometric drawing of a typical store separation installation and a block diagram of the computer control loop.**



Figure 2. Schematics of test installations.  
a. MK-82SE



Figure 2. Concluded.



Figure 3. Dimensional sketch of the F-16 parent model.



a. BLU-27/B/B  
Figure 4. Dimensional sketches of the store models.



b. MK-82SE metric model

## BODY GEOMETRY

| STA         | DIAM  |
|-------------|-------|
| 0           | 0     |
| 0.080       | 0.096 |
| 0.240       | 0.224 |
| 0.587       | 0.416 |
| 1.068       | 0.566 |
| 1.611       | 0.666 |
| 2.157       | 0.716 |
| CONST DIAM  |       |
| 3.045       | 0.716 |
| 3.592       | 0.692 |
| 4.054       | 0.630 |
| CONST SLOPE |       |
| 5.501       | 0.300 |
| CONST DIAM  |       |
| 6.156       | 0.300 |



d. GBU-8 metric model



- AIM-9J dummy model
- Figure 4. Continued.



| X, in. | R, in. | X, in. | R, in. |
|--------|--------|--------|--------|
| 0      | 0      | 4.520  | 0.983  |
| 0.053  | 0.038  | 4.520  | 0.577  |
| 0.120  | 0.100  | 10.830 | 0.561  |
| 0.186  | 0.131  | C.863  | 0.565  |
| 0.320  | 0.168  | CONST  | 0.565  |
| 0.453  | 0.242  | CONST  | 0.565  |
| 0.587  | 0.291  | 16.520 | 0.242  |
| 0.720  | 0.336  | SLOPE  | 0.242  |
| 0.854  | 0.377  | 12.270 | 0.757  |
| 0.951  | 0.416  | 12.336 | 0.752  |
|        |        | 12.670 | 0.724  |
|        |        | 16.787 | 0.192  |
|        |        | 16.920 | 0.156  |
|        |        | 17.054 | 0.097  |
|        |        | 17.120 | 0      |
|        |        | 13.337 | 0.653  |
|        |        | 13.387 | 0.799  |
|        |        | 13.670 | 0.616  |
|        |        |        | 0      |



9. 370-gal fuel tank dummy model  
Figure 4. Concluded.



AIM-9J wing tip launcher

Figure 5. F-16 model pylons and racks.



b. Midwing and inboard pylons  
Figure 5. Continued.



c. Centerline ECM pylon  
Figure 5. Continued.



d. Triple ejection rack  
Figure 5. Continued.



DIMENSIONS IN INCHES

- Multiple ejection rack  
Figure 5. Concluded.



a. BLU-27B/B, configuration 4  
Figure 6. Installation photographs.



b. GBU-8, configuration 7  
Figure 6, Continued.



c. MK-82SE, configuration 17  
Figure 6. Concluded.



**NOTE:** The square indicates the orientation of the suspension lugs

| TYPE<br>RACK | STATION | ROLL<br>ORIENTATION, deg |
|--------------|---------|--------------------------|
| MER          | 1       | 0                        |
|              | 2       | 0                        |
|              | 3       | 45                       |
|              | 4       | 45                       |
|              | 5       | -45                      |
|              | 6       | -45                      |
| TER          | 1       | 0                        |
|              | 2       | 45                       |
|              | 3       | -45                      |

Figure 7. Store orientation.

AEDC-TR-76-147



Figure 8. Configuration identification.



a. Configuration 7,  $M_\infty = 0.6$  to 0.95  
**Figure 9. Trajectories obtained with the GBU-8.**



b. Configuration 7,  $M_\infty = 1.05$  and 1.20  
Figure 9. Continued.



c. Configuration 8,  $M_\infty = 0.6$  to 0.95  
Figure 9. Continued.

AEDC-TR-76-147

| SYMBOL | CONFIG | $M_\infty$ | STORE | PYLON |
|--------|--------|------------|-------|-------|
| ○      | 8      | 0          | 1.05  | GBU-8 |
| □      | 8      | 0          | 1.20  | GBU-8 |



d. Configuration 8,  $M_\infty = 1.05$  and 1.20

Figure 9. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON |
|--------|--------|----------|------------|---------|-------|
| O      | 16     | 2        | 0.60       | MK-82SE | ?     |
| □      | 16     | 2        | 0.80       | MK-82SE | ?     |
| △      | 16     | 2        | 0.90       | MK-82SE | ?     |
| ▽      | 16     | 2        | 0.95       | MK-82SE | ?     |



a. Configuration 16  
Figure 10. Trajectories obtained with the MK-82SE.

| SYMBOL | CONFIG | * | M <sub>∞</sub> | STORE   | PYLON |
|--------|--------|---|----------------|---------|-------|
| ○      | 17     | 2 | 0.60           | MK-82SE | 6     |
| □      | 17     | 2 | 0.80           | MK-82SE | 6     |
| △      | 17     | 2 | 0.90           | MK-82SE | 6     |
| ▽      | 17     | 2 | 0.95           | MK-82SE | 6     |



b. Configuration 17  
Figure 10. Concluded.



a. BLU-27B/B

Figure 11. Free-stream aerodynamic coefficients.

| SYMBOL | CONFIG     | $M_\infty$ | STORE |
|--------|------------|------------|-------|
| ○      | FREESTREAM | 0.60       | GBU-8 |
| □      | FREESTREAM | 0.80       | GBU-8 |
| △      | FREESTREAM | 0.90       | GBU-8 |



b. GBU-8  
Figure 11. Continued.

| SYMBOL | CONFIG     | $M_\infty$ | STONE |
|--------|------------|------------|-------|
| ▷      | FREESTREAM | 0.95       | CBU-8 |
| ○      | FREESTREAM | 1.05       | CBU-8 |
| ▽      | FREESTREAM | 1.20       | CBU-8 |



b. Concluded  
Figure 11. Continued.

| SYMBOL | CONFIG     | $M_\infty$ | STORE   |
|--------|------------|------------|---------|
| ○      | FREESTREAM | 0.40       | MK-82SE |
| □      | FREESTREAM | 0.60       | MK-82SE |
| △      | FREESTREAM | 0.80       | MK-82SE |
| ▷      | FREESTREAM | 0.90       | MK-82SE |



c. MK-82SE  
Figure 11. Continued.

| SYMBOL | CONFIG     | $M_\infty$ | STORE   |
|--------|------------|------------|---------|
| ◊      | FREESTREAM | 0.95       | MK-82SE |
| ▽      | FREESTREAM | 1.05       | MK-82SE |
| △      | FREESTREAM | 1.20       | MK-82SE |



c. Concluded  
Figure 11. Concluded.



a. Normal-force coefficient

Figure 12. Aerodynamic characteristics of the BLU-278/B, configuration 1.



b. Pitching-moment coefficient  
Figure 12. Continued.



c. Axial-force coefficient  
Figure 12. Continued.

| SYMBOL | CONFIG | $M_\infty$ | STORE | PYLON     | RACK |
|--------|--------|------------|-------|-----------|------|
| ○      | 1      | 2          | 0.60  | BLU-270/0 | 7    |
| □      | 1      | 2          | 0.80  | BLU-270/0 | 7    |
| △      | 1      | 2          | 0.90  | BLU-270/0 | 7    |
| ▽      | 1      | 2          | 0.95  | BLU-270/0 | 7    |



d. Side-force coefficient  
Figure 12. Continued.



e. Yawing-moment coefficient  
Figure 12. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 1      | 0        | 0.95       | BLU-27B/B | 7     | T-2  |
| □      | 1      | 2        | 0.95       | BLU-27B/B | 7     | T-2  |



a. Axial-force coefficient

Figure 13. BLU-27B/B coefficient variation with aircraft angle of attack, configuration 1.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 1      | 0        | 0.95       | BLU-27B/B | 7     | T-2  |
| □      | 1      | 2        | 0.95       | BLU-27B/B | 7     | T-2  |



b. Side-force coefficient  
Figure 13. Continued.

| SYMBOL | CONFIG | $M_e$ | STORE | PYLON     | RACK |     |
|--------|--------|-------|-------|-----------|------|-----|
| 0      | 1      | 0     | 0.95  | BLU-27B/B | 7    | T-2 |
| 0      | 1      | 2     | 0.95  | BLU-27B/B | 7    | T-2 |



c. Yawing-moment coefficient  
Figure 13. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 1      | 2        | 0.95       | BLU-27B/B | 7     | 1-2  |
| □      | 2      | 2        | 0.95       | BLU-27B/B | 7     | 1-2  |



a. Normal-force coefficient

Figure 14. Effect of an adjacent store on the BLU-27B/B,  
configurations 1 and 2.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 1      | 2        | 0.95       | BLU-27B/B | 7     | T-2  |
| □      | 2      | 2        | 0.95       | BLU-27B/B | 7     | T-2  |



b. Pitching-moment coefficient  
Figure 14. Continued.

| SYMBOL | CONFIG | $\infty$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 1      | 2        | 0.95       | BLU-278/B | 7     | T-2  |
| □      | 2      | 2        | 0.95       | BLU-278/B | 7     | T-2  |



c. Axial-force coefficient  
Figure 14. Continued.

| SYMBOL | CONFIG | $M_\infty$ | STORE | PYLON     | RACK |     |
|--------|--------|------------|-------|-----------|------|-----|
| ○      | 1      | 2          | 0.95  | BLU-27B/B | 7    | T-2 |
| □      | 2      | 2          | 0.95  | BLU-27B/B | 7    | T-2 |



d. Side-force coefficient  
Figure 14. Continued.

| SYMBOL | CONFIG | $M_e$ | STORE | PYLON     | RACK |
|--------|--------|-------|-------|-----------|------|
| ○      | 1      | 2     | 0.95  | BLU-278/B | 7    |
| □      | 2      | 2     | 0.95  | BLU-278/B | 7    |



e. Yawing-moment coefficient  
Figure 14. Concluded.



a. Normal-force coefficient

Figure 15. Aerodynamic characteristics of the BLU-27B/B, configuration 3.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 2        | 0.60       | BLU-27B/0 | 7     | 1-3  |
| □      | 3      | 2        | 0.80       | BLU-27B/8 | 7     | 1-3  |
| △      | 3      | 2        | 0.90       | BLU-27B/0 | 7     | 1-3  |
| ▽      | 3      | 2        | 0.95       | BLU-27B/8 | 7     | 1-3  |



b. Pitching-moment coefficient  
Figure 15. Continued.

| SYMBOL | CONFIG | $\alpha$ | M <sub>∞</sub> | STORE     | PYLON | RACK |
|--------|--------|----------|----------------|-----------|-------|------|
| ○      | 3      | 2        | 0.60           | BLU-278/B | 7     | T-3  |
| □      | 3      | 2        | 0.80           | BLU-278/B | 7     | T-3  |
| △      | 3      | 2        | 0.90           | BLU-278/B | 7     | T-3  |
| ▽      | 3      | 2        | 0.95           | BLU-278/B | 7     | T-3  |



c. Axial-force coefficient  
Figure 15. Continued.

| SYMBOL | CONFIG | * $M_a$ | STORE | PYLON     | RACK |     |
|--------|--------|---------|-------|-----------|------|-----|
| ○      | 3      | 2       | 0.60  | BLU-27B/B | 7    | 1-3 |
| □      | 3      | 2       | 0.80  | BLU-27B/B | 7    | 1-3 |
| △      | 3      | 2       | 0.90  | BLU-27B/B | 7    | 1-3 |
| ▽      | 3      | 2       | 0.95  | BLU-27D/B | 7    | 1-3 |



d. Side-force coefficient  
Figure 15. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 2        | 0.60       | BLU-270/0 | 7     | T-3  |
| □      | 3      | 2        | 0.00       | BLU-270/0 | 7     | T-3  |
| △      | 3      | 2        | 0.90       | BLU-270/0 | 7     | T-3  |
| ▽      | 3      | 2        | 0.95       | BLU-270/0 | 7     | T-3  |



e. Yawing-moment coefficient  
Figure 15. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 0        | 0.90       | BLU-27B/B | 7     | T-3  |
| □      | 3      | 2        | 0.90       | BLU-27B/B | 7     | T-3  |

a. Pitching-moment coefficient,  $M_\infty = 0.9$ 

Figure 16. BLU-27B/B coefficient variation with aircraft angle of attack, configuration 3.

| SYMBOL | CONFIG | $\infty$ | $M_\infty$ | STONE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 0        | 0.95       | BLU-27B/0 | 7     | T-3  |
| □      | 3      | 2        | 0.95       | BLU-27B/0 | 7     | T-3  |



b. Axial-force coefficient,  $M_\infty = 0.95$   
 Figure 16. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | PACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 0        | 0.90       | BLU-278/B | 7     | 1-3  |
| □      | 3      | 2        | 0.90       | BLU-278/B | 7     | 1-3  |



c. Side-force coefficient  
Figure 16. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_a$ | STORE     | PYLON | RACK |
|--------|--------|----------|-------|-----------|-------|------|
| ○      | 3      | 0        | 0.90  | BLU-278/8 | 7     | 1-3  |
| □      | 3      | 2        | 0.90  | BLU-278/8 | 7     | 1-3  |



d. Yawing-moment coefficient  
Figure 16. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 2        | 0.90       | BLU-27B/B | 7     | T-3  |
| □      | 4      | 2        | 0.90       | BLU-27B/B | 7     | T-3  |



a. Normal-force coefficient,  $M_\infty = 0.9$   
**Figure 17. Effect of an adjacent store on the BLU-27B/B,  
 configurations 3 and 4.**

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 2        | 0.90       | BLU-27B/8 | 7     | T-3  |
| □      | 4      | 2        | 0.90       | BLU-27B/8 | 7     | T-3  |



b. Pitching-moment coefficient,  $M_\infty = 0.9$   
Figure 17. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 2        | 0.95       | BLU-27B/B | 7     | 1-3  |
| □      | 4      | 2        | 0.95       | BLU-27B/B | 7     | 1-3  |



c. Axial-force coefficient,  $M_\infty = 0.95$   
Figure 17. Continued.

| SYMBOL | CONFIG | $M_\infty$ | STORE | PYLON     | NACK |     |
|--------|--------|------------|-------|-----------|------|-----|
| ○      | 3      | 2          | 0.95  | BLU-270/B | 7    | 1-3 |
| □      | 4      | 2          | 0.95  | BLU-270/B | 7    | 1-3 |



d. Side-force coefficient,  $M_\infty = 0.95$   
Figure 17. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE     | PYLON | RACK |
|--------|--------|----------|------------|-----------|-------|------|
| ○      | 3      | 2        | 0.95       | BLU-27B/8 | 7     | T-3  |
| □      | 4      | 2        | 0.95       | BLU-27B/8 | 7     | T-3  |



e. Yawing-moment coefficient,  $M_\infty = 0.95$   
Figure 17. Concluded.

| SYMBOL | CONFIG | $M_\infty$ | STORE     | PYLON |
|--------|--------|------------|-----------|-------|
| ○      | 5      | 2 0.60     | BLU-27B/B | 7     |
| □      | 5      | 2 0.80     | BLU-27B/B | 7     |
| △      | 5      | 2 0.90     | BLU-27B/B | 7     |
| ▽      | 5      | 2 0.95     | BLU-27B/B | 7     |



Figure 18. Aerodynamic characteristics of the BLU-27B/B, configuration 5.



Figure 19. Aerodynamic characteristics of the BLU-27B/B, configuration 6.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STONE | PYLON |
|--------|--------|----------|------------|-------|-------|
| ○      | 7      | 0        | 0.80       | GBU-8 | 7     |
| □      | 7      | 0        | 0.90       | GBU-8 | 7     |
| △      | 7      | 0        | 0.95       | GBU-8 | 7     |
| ▽      | 7      | 0        | 1.05       | GBU-8 | 7     |
| ▷      | 7      | 0        | 1.20       | GBU-8 | 7     |



Figure 20. Aerodynamic characteristics of the GBU-8, configuration 7.



Figure 21. GBU-8 coefficient variation with aircraft angle of attack, configuration 7.



Figure 22. Effect of the addition of an inboard 370-gal fuel tank on the GBU-8, configurations 7 and 9.



Figure 23. Aerodynamic characteristics of the GBU-8, configuration 8.

| SYMBOL   | CONF 10 | $\alpha$ | $M_\infty$ | STOKE   | PYLON | BACK |
|----------|---------|----------|------------|---------|-------|------|
| O        | 10      | 2        | 0.60       | MK-82SE | 2     | 1-1  |
| O        | 10      | 2        | 0.80       | MK-82SE | 2     | 1-1  |
| $\Delta$ | 10      | 2        | 0.90       | MK-82SE | 2     | 1-1  |
| $\nabla$ | 10      | 2        | 0.95       | MK-82SE | 2     | 1-1  |



Figure 24. Aerodynamic characteristics of the MK-82SE, configuration 10.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| C      | 10     | 2        | 0.60       | MK-82SE | 7     | 1-1  |
|        |        | 4        | 0.00       | MK-82SE | 7     | 1-1  |
|        |        | 6        | 0.00       | MK-82SE | 7     | 1-1  |
| V      | 10     | 10       | 0.00       | MK-82SE | 7     | 1-1  |

a.  $M_\infty = 0.6$ 

Figure 25. MK-82SE coefficient variation with aircraft angle of attack, configuration 10.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 10     | 0        | 0.95       | MR-82SE | 7     | T-1  |
| □      | 10     | 2        | 0.95       | MR-82SE | 7     | T-1  |



b.  $M_\infty = 0.95$   
Figure 25. Concluded.



a. Normal-force coefficient  
 Figure 26. Aerodynamic characteristics of the MK-82SE,  
 configuration 11.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | II     | 2        | 0.60       | MK-82SE | 7     | T-3  |
| □      | II     | 2        | 0.80       | MK-82SE | 7     | T-3  |
| △      | II     | 2        | 0.90       | MK-82SE | 7     | T-3  |
| ▽      | II     | 2        | 0.95       | MK-82SE | 7     | T-3  |



b. Pitching-moment coefficient  
Figure 26. Continued.



c. Axial-force coefficient  
Figure 26. Continued.



d. Side-force coefficient  
Figure 26. Continued.



e. Yawing-moment coefficient  
Figure 26. Concluded.



Figure 27. MK-82SE coefficient variation with aircraft angle of attack, configuration 11.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 11     | 2        | 0.60       | MK-82SE | 7     | T-3  |
| □      | 11     | 4        | 0.60       | MK-82SE | 7     | T-3  |
| △      | 11     | 6        | 0.60       | MK-82SE | 7     | T-3  |
| ◊      | 11     | 10       | 0.60       | MK-82SE | 7     | T-3  |



b. Yawing-moment coefficient  
Figure 27. Concluded.

| SYMBOL | CONFIG | $M_\infty$ | STORE | PYLON   | RACK |     |
|--------|--------|------------|-------|---------|------|-----|
| ○      | 11     | 2          | 0.90  | MK-82SE | ?    | 1-3 |
| □      | 13     | 2          | 0.90  | MK-82SE | ?    | 1-3 |



a. Normal-force coefficient,  $M_\infty = 0.9$   
**Figure 28. Effect of an adjacent store on the MK-82SE, configurations 11 and 13.**

| SYMBOL | CONFIG | $M_\infty$ | STORE | PYLON   | RACK |     |
|--------|--------|------------|-------|---------|------|-----|
| ○      | 11     | 2          | 0.90  | MM-82SE | 7    | 1-3 |
| □      | 13     | 2          | 0.90  | MM-82SE | 7    | 1-3 |



b. Pitching-moment coefficient,  $M_\infty = 0.9$   
Figure 28. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 11     | 2        | 0.95       | MK-82SE | 7     | T-3  |
| □      | 13     | 2        | 0.95       | MK-82SE | 7     | T-3  |

c. Axial-force coefficient,  $M_\infty = 0.95$ 

Figure 28. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 11     | 2        | 0.95       | MK-82SE | 7     | T-3  |
| □      | 13     | 2        | 0.95       | MK-82SE | 7     | T-3  |



d. Side-force coefficient,  $M_\infty = 0.95$   
Figure 28. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 11     | 2        | 0.95       | MK-82SE | 7     | T-3  |
| □      | 13     | 2        | 0.95       | MK-82SE | 7     | T-3  |



e. Yawing-moment coefficient,  $M_\infty = 0.95$   
Figure 28. Concluded.



a. Normal-force coefficient

Figure 29. Aerodynamic characteristics of the MK-82SE, configuration 12.

| SYMBOL | CONFIG | $\alpha$ | M    | STORE   | PYLON | RACK |
|--------|--------|----------|------|---------|-------|------|
| ○      | 12     | 2        | 0.60 | MK-82SE | 6     | T-2  |
| □      | 12     | 2        | 0.80 | MK-82SE | 6     | T-2  |
| △      | 12     | 2        | 0.90 | MK-82SE | 6     | T-2  |
| ◊      | 12     | 2        | 0.95 | MK-82SE | 6     | T-2  |



b. Pitching-moment coefficient  
Figure 29. Continued.



c. Axial-force coefficient  
Figure 29. Continued.

| SYMBOL | CONFIG | $\alpha$ | M <sub>∞</sub> | STORE   | PYLON | RACK |
|--------|--------|----------|----------------|---------|-------|------|
| ○      | 12     | 2        | 0.60           | MK-82SE | 6     | T-2  |
| □      | 12     | 2        | 0.00           | MK-82SE | 6     | T-2  |
| △      | 12     | 2        | 0.90           | MK-82SE | 6     | T-2  |
| ◊      | 12     | 2        | 0.95           | MK-82SE | 6     | T-2  |



d. Side-force coefficient

Figure 29. Continued.



e. Yawing-moment coefficient  
Figure 29. Concluded.



a. Normal-force coefficient

Figure 30. MK-82SE coefficient variation with aircraft angle of attack, configuration 12.

| SYMBOL | CONFIG | $\bullet$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|-----------|------------|---------|-------|------|
| ○      | 12     | 2         | 0.60       | MK-82SE | 7     | 1-2  |
| □      | 12     | 4         | 0.60       | MK-62SE | 7     | 1-2  |
| △      | 12     | 6         | 0.60       | MK-82SE | 7     | 1-2  |
| ▽      | 12     | 10        | 0.60       | MK-82SE | 7     | 1-2  |



b. Pitching-moment coefficient  
Figure 30. Continued.

| SYMBOL | CONFIG | $M_\infty$ | STORE | PTLN    | RACK |     |
|--------|--------|------------|-------|---------|------|-----|
| O      | 12     | 2          | 0.60  | MK-02SE | 7    | T-2 |
| □      | 12     | 4          | 0.60  | MK-02SE | 7    | T-2 |
| △      | 12     | 6          | 0.60  | MK-02SE | 7    | T-2 |
| ▽      | 12     | 10         | 0.60  | MK-02SE | 7    | T-2 |



c. Axial-force coefficient  
Figure 30. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | ROCK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 12     | 2        | 0.60       | MK-82SE | 7     | T-2  |
| □      | 12     | 4        | 0.60       | MK-82SE | 7     | T-2  |
| △      | 12     | 6        | 0.60       | MK-82SE | 7     | T-2  |
| ▽      | 12     | 10       | 0.60       | MK-82SE | 7     | T-2  |



d. Side-force coefficient  
Figure 30. Continued.

| SYMBOL | CONFIG | #  | M <sub>0</sub> | STORE   | PYLON | RACK |
|--------|--------|----|----------------|---------|-------|------|
| ○      | 12     | 2  | 0.60           | MM-B2SE | 7     | T-2  |
| □      | 12     | 4  | 0.60           | MR-B2SE | 7     | T-2  |
| △      | 12     | 6  | 0.60           | MR-B2SE | 7     | T-2  |
| ▽      | 12     | 10 | 0.60           | MR-B2SE | 7     | T-2  |



e. Yawing-moment coefficient  
Figure 30. Concluded.

| SYMBOL | CONFIG | $\mu$ | STORE | PTL ON  | BACK |
|--------|--------|-------|-------|---------|------|
| O      | 14     | 2     | 0.60  | MK-82SE | 6    |
| O      | 14     | 2     | 0.80  | MK-82SE | 6    |
| A      | 14     | 2     | 0.90  | MK-82SE | 6    |
| V      | 14     | 2     | 0.95  | MK-82SE | 6    |



a. Normal-force coefficient

Figure 31. Aerodynamic characteristics of the MK-82SE,  
configuration 14.

| SYMBOL | CONFIG | $\alpha$ | $H_L$ | STONE   | PYLON | RACK |
|--------|--------|----------|-------|---------|-------|------|
| O      | 14     | 2        | 0.60  | MK-02SE | 6     | M-G  |
| O      | 14     | 2        | 0.80  | MK-02SE | 6     | M-G  |
| △      | 14     | 2        | 0.90  | MK-02SE | 6     | M-G  |
| ▽      | 14     | 2        | 0.95  | MK-02SE | 6     | M-G  |



b. Pitching-moment coefficient

Figure 31. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 14     | 2        | 0.60       | MR-82SE | 6     | M-G  |
| □      | 14     | 2        | 0.80       | MR-82SE | 6     | M-G  |
| △      | 14     | 2        | 0.90       | MR-82SE | 6     | M-G  |
| ▽      | 14     | 2        | 0.95       | MR-82SE | 6     | M-G  |



c. Axial-force coefficient

Figure 31. Continued.



d. Side-force coefficient  
Figure 31. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M$  | STORE   | PTYLON | RACK |
|--------|--------|----------|------|---------|--------|------|
| ○      | 14     | 2        | 0.60 | MK-B2SE | 6      | M-6  |
| □      | 14     | 2        | 0.80 | MK-B2SE | 6      | M-6  |
| △      | 14     | 2        | 0.90 | MK-B2SE | 6      | M-6  |
| ▽      | 14     | 2        | 0.95 | MK-B2SE | 6      | M-6  |



e. Yawing-moment coefficient

Figure 31. Concluded.



a. Side-force coefficient

Figure 32. MK-82SE coefficient variation with aircraft angle of attack, configuration 14.

| SYMBOL | CONFIG | $M_e$ | STORE | PYLON   | RACK |     |
|--------|--------|-------|-------|---------|------|-----|
| ○      | 14     | 2     | 0.60  | MK-82SE | 6    | M-6 |
| □      | 14     | 4     | 0.60  | MK-82SE | 6    | M-6 |
| △      | 14     | 6     | 0.60  | MK-82SE | 6    | M-6 |
| ▽      | 14     | 10    | 0.60  | MK-82SE | 6    | M-6 |



b. Yawing-moment coefficient  
Figure 32. Concluded.



a. Normal-force coefficient  
**Figure 33.** Aerodynamic characteristics of the MK-82SE, configuration 15.

| SYMBOL | CONFIG | $\alpha$ | $M_e$ | STORE   | PYLON | RACK |
|--------|--------|----------|-------|---------|-------|------|
| ○      | 15     | 2        | 0.60  | MK-82SE | 6     | M-4  |
| □      | 15     | 2        | 0.80  | MK-82SE | 6     | M-4  |
| △      | 15     | 2        | 0.90  | MK-82SE | 5     | M-4  |
| ▽      | 15     | 2        | 0.95  | MK-82SE | 6     | M-4  |



b. Pitching-moment coefficient  
Figure 33. Continued.



c. Axial-force coefficient  
Figure 33. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 15     | 2        | 0.60       | MK-02SE | 6     | M-4  |
| ◐      | 15     | 2        | 0.80       | MK-02SE | 6     | M-4  |
| △      | 15     | 2        | 0.90       | MK-02SE | 6     | M-4  |
| ▽      | 15     | 2        | 0.95       | MK-02SE | 6     | M-4  |



d. Side-force coefficient  
Figure 33. Continued.

| SYMBOL | CONFIG | $M_e$ | STORE | PYLON   | RACK |     |
|--------|--------|-------|-------|---------|------|-----|
| ○      | 15     | 2     | 0.60  | MK-02SE | 6    | M-4 |
| □      | 15     | 2     | 0.80  | MK-02SE | 6    | M-4 |
| △      | 15     | 2     | 0.90  | MK-02SE | 6    | M-4 |
| ▽      | 15     | 2     | 0.95  | MK-02SE | 6    | M-4 |



e. Yawing-moment coefficient  
Figure 33. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STONE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 15     | 0        | 0.95       | MK-82SE | 6     | M-4  |
| ○      | 15     | 2        | 0.95       | MK-82SE | 6     | M-4  |



a. Axial-force coefficient

Figure 34. MK-82SE coefficient variation with aircraft angle of attack, configuration 15.

| SYMBOL | CONFIG | $\alpha$ | $M_a$ | STONE   | PYLON | RACK |
|--------|--------|----------|-------|---------|-------|------|
| ○      | 15     | 0        | 0.95  | MK-82SE | 6     | M-4  |
| □      | 15     | 2        | 0.95  | MK-82SE | 6     | M-4  |



b. Side-force coefficient  
Figure 34. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK |
|--------|--------|----------|------------|---------|-------|------|
| ○      | 15     | 0        | 0.95       | MK-02SE | 6     | M-4  |
| □      | 15     | 2        | 0.95       | MK-02SE | 6     | M-4  |



c. Yawing-force coefficient  
Figure 34. Concluded.

| SYMBOL | CONFIG | $R_e$ | STORE | PYLON   |
|--------|--------|-------|-------|---------|
| ○      | 16     | 2     | 0.60  | MK-82SE |
| □      | 16     | 2     | 0.80  | MK-82SE |
| △      | 16     | 2     | 0.90  | MK-82SE |
| ▽      | 16     | 2     | 0.95  | MK-82SE |



Figure 35. Aerodynamic characteristics of the MK-82SE, configuration 16.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON |
|--------|--------|----------|------------|---------|-------|
| ○      | 16     | 2        | 0.60       | MK-82SE | ?     |
| □      | 16     | 4        | 0.60       | MK-82SE | ?     |
| △      | 16     | 6        | 0.60       | MK-82SE | ?     |
| ▽      | 16     | 10       | 0.60       | MK-82SE | ?     |



Figure 36. MK-82SE coefficient variation with aircraft angle of attack, configuration 16.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON |
|--------|--------|----------|------------|---------|-------|
| ○      | 17     | 2        | 0.60       | MK-82SE | 6     |
| □      | 17     | 2        | 0.80       | MK-82SE | 6     |
| △      | 17     | 2        | 0.90       | MK-82SE | 6     |
| ▽      | 17     | 2        | 0.95       | MK-82SE | 6     |



Figure 37. Aerodynamic characteristics of the MK-82SE, configuration 17.

| SYMBOL | CONFIG | $M_\infty$ | STOKE | PYLON   |
|--------|--------|------------|-------|---------|
| ○      | 17     | 2          | 0.60  | MK-82SE |
| □      | 17     | 4          | 0.60  | MK-82SE |
| △      | 17     | 6          | 0.60  | MK-82SE |
| ▽      | 17     | 10         | 0.60  | MK-82SE |



Figure 38. MK-82SE coefficient variation with aircraft angle of attack, configuration 17.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PILEON | RACK | $\delta_{LE}$ |
|--------|--------|----------|------------|---------|--------|------|---------------|
| ○      | 10     | 10       | 0.60       | MM-B2SE | 7      | 7-1  | 0             |
| □      | 10     | 10       | 0.60       | MM-B2SE | 7      | 7-1  | 15            |



Figure 39. Coefficient w/ wing leading-edge-flap deflection, configuration 10.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $q_e$ |
|--------|--------|----------|------------|---------|-------|------|-------|
| ○      | 11     | 10       | 0.60       | MK-82SE | 7     | T-3  | 0     |
| □      | 11     | 10       | 0.60       | MK-82SE | 7     | T-3  | 15    |



a. Pitching-moment coefficient

Figure 40. Coefficient variation with wing leading-edge-flap deflection, configuration 11.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $t_c$ |
|--------|--------|----------|------------|---------|-------|------|-------|
| ○      | II     | 10       | 0.60       | MK-82SE | 7     | T-3  | 0     |
| □      | II     | 10       | 0.60       | MK-82SE | 7     | T-3  | 15    |



b. Axial-force coefficient  
Figure 40. Continued.

| SYMBOL | CONFIG | *  | M <sub>0</sub> | STORE   | PYLON | RACK | $\alpha_e$ |
|--------|--------|----|----------------|---------|-------|------|------------|
| ○      | II     | 10 | 0.60           | MM-82SE | 7     | 1-3  | 0          |
| □      | II     | 10 | 0.60           | MM-82SE | 7     | 1-3  | 15         |



c. Yawing-moment coefficient  
Figure 40. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_0$ | STORE   | PYLON | RACK | $\delta_{LE}$ |
|--------|--------|----------|-------|---------|-------|------|---------------|
| ○      | II     | 10       | 0.60  | MM-82SE | 7     | T-3  | 0             |
| □      | II     | 10       | 0.60  | MM-82SE | 7     | T-3  | 15            |



d. Rolling-moment coefficient  
Figure 40. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $\delta_{LE}$ |
|--------|--------|----------|------------|---------|-------|------|---------------|
| O      | 12     | 10       | 0.60       | MK-82SE | 7     | 1-2  | 0             |
| D      | 12     | 10       | 0.60       | MK-82SE | 7     | 1-2  | 15            |



a. Normal-force coefficient

Figure 41. Coefficient variation with wing leading-edge-flap deflection, configuration 12.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | SLE |
|--------|--------|----------|------------|---------|-------|------|-----|
| ○      | 12     | 10       | 0.60       | MK-82SE | 7     | T-2  | 0   |
| □      | 12     | 10       | 0.60       | MK-82SE | 7     | T-2  | 15  |



b. Pitching-moment coefficient  
Figure 41. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $\delta_{LE}$ |
|--------|--------|----------|------------|---------|-------|------|---------------|
| ○      | 13     | 10       | 0.60       | MK-82SE | ?     | 1-3  | 0             |
| □      | 13     | 10       | 0.60       | MK-82SE | ?     | 1-3  | 15            |



a. Normal-force coefficient

Figure 42. Coefficient variation with wing leading-edge-flap deflection, configuration 13.

| SYMBOL. | CONFIG | $\alpha$ | $M_\infty$ | STONE   | PYLON | RACK | $\alpha_s$ |
|---------|--------|----------|------------|---------|-------|------|------------|
| ○       | 13     | 10       | 0.60       | MM-82SE | 7     | T-3  | 0          |
| □       | 13     | 10       | 0.60       | MM-82SE | 7     | T-3  | 15         |



b. Pitching-moment coefficient  
Figure 42. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_c$ | STORE   | PYLON | MACK | $q_e$ |
|--------|--------|----------|-------|---------|-------|------|-------|
| ○      | 13     | 10       | 0.60  | MM-82SE | 7     | 1-3  | 0     |
| □      | 13     | 10       | 0.60  | MM-82SE | 7     | 1-3  | 15    |



c. Yawing-moment coefficient  
Figure 42. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STONE   | PTYLON | RACK | $\delta_{LE}$ |
|--------|--------|----------|------------|---------|--------|------|---------------|
| ○      | 14     | 10       | 0.60       | MK-02SE | 6      | M-6  | 0             |
| □      | 14     | 10       | 0.60       | MK-02SC | 6      | M-6  | 15            |



a. Normal-force coefficient

Figure 43. Coefficient variation with wing leading-edge-flap deflection, configuration 14.

|    | SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $\beta_c$ |
|----|--------|--------|----------|------------|---------|-------|------|-----------|
| 1. | ○      | 14     | 10       | 0.60       | MK-82SE | 6     | M-6  | 0         |
| 2. | □      | 14     | 10       | 0.60       | MK-82SE | 6     | M-6  | 15        |



b. Pitching-moment coefficient  
Figure 43. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_a$ | STORE   | PYLON | RACK | $\Delta c$ |
|--------|--------|----------|-------|---------|-------|------|------------|
| ○      | 14     | 10       | 0.60  | MM-82SE | 6     | M-6  | 0          |
| □      | 14     | 10       | 0.60  | MM-82SE | 6     | M-6  | 15         |



c. Yawing-moment coefficient  
Figure 43. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $q_e$ |
|--------|--------|----------|------------|---------|-------|------|-------|
| ○      | 15     | 10       | 0.60       | MM-82SE | 6     | M-4  | 0     |
| □      | 15     | 10       | 0.60       | MM-82SE | 6     | M-4  | 15    |



a. Normal-force coefficient

Figure 44. Coefficient variation with wing leading-edge-flap deflection, configuration 15.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $\alpha_x$ |
|--------|--------|----------|------------|---------|-------|------|------------|
| ○      | 15     | 10       | 0.60       | MK-82SE | 6     | M-4  | 0          |
| □      | 15     | 10       | 0.60       | MK-82SE | 6     | M-4  | 15         |



b. Pitching-moment coefficient  
Figure 44. Continued.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $q_{re}$ |
|--------|--------|----------|------------|---------|-------|------|----------|
| ○      | 15     | 10       | 0.60       | MM-82SE | 6     | M-4  | 0        |
| □      | 15     | 10       | 0.60       | MM-82SE | 6     | M-4  | 15       |



c. Side-force coefficient  
Figure 44. Continued.

| SYMBOL | CONFIG | $\alpha$ | M <sub>0</sub> | STORE   | PYLON | PACK | $\alpha_c$ |
|--------|--------|----------|----------------|---------|-------|------|------------|
| ○      | 15     | 10       | 0.60           | MN-82SE | 6     | M-4  | 0          |
| □      | 15     | 10       | 0.60           | MK-82SE | 6     | M-4  | 15         |



d. Yawing-moment coefficient  
Figure 44. Concluded.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $q_e$ |
|--------|--------|----------|------------|---------|-------|------|-------|
| ○      | 16     | 10       | 0.60       | MM-82SE | 7     | NA   | 0     |
| □      | 16     | 10       | 0.60       | MM-82SE | 7     | NA   | 15    |



Figure 45. Coefficient variation with wing leading-edge-flap deflection, configuration 16.

| SYMBOL | CONFIG | $\alpha$ | $M_\infty$ | STORE   | PYLON | RACK | $\delta_{LE}$ |
|--------|--------|----------|------------|---------|-------|------|---------------|
| ○      | 17     | 10       | 0.60       | MK-82SE | 6     | NA   | 0             |
| □      | 17     | 10       | 0.60       | MK-82SE | 6     | NA   | 15            |



Figure 46. Coefficient variation with wing leading-edge-flap deflection, configuration 17.

**Table 1. Metric Model Parameters**

|              | <b>BLU-27 B/B</b> | <b>GBU-8</b> | <b>MK-82SE</b>    |
|--------------|-------------------|--------------|-------------------|
| b            | <b>1.563</b>      | <b>1.5</b>   | <b>0.896</b>      |
| $C_{\ell_p}$ | NA                | -18.048      | -5.0              |
| $C_{m_q}$    | NA                | -180.48      | -53.0             |
| $C_{n_r}$    | NA                | -180.48      | -53.0             |
| $F_{z_1}$    | NA                | 2030.0       | 1680.0<br>1113.0* |
| $F_{z_2}$    | NA                | 1780.0       | 1333.3<br>1900.0* |
| h            | NA                | 5,000        | 5,000             |
| $I_{xx}$     | NA                | 24.7         | 2.1               |
| $I_{yy}$     | NA                | 524.2        | 53.0              |
| $I_{zz}$     | NA                | 524.2        | 53.0              |
| $\bar{m}$    | NA                | 70.243       | 17.1              |
| S            | 1.917             | 1.767        | 0.630             |
| $X_{cg}$     | 5.358             | 6.608        | 3.375             |
| $X_{L_1}$    | NA                | 0.817        | 1.000             |
| $X_{L_2}$    | NA                | -0.850       | -0.667            |
| $Z_E$        | NA                | 0.343        | 0.343             |

**\*Selected Runs**

**Table 2. Run Compendium**

| Conf. | M <sub>x</sub> | Store  | P.Iom | Rock | Station | Aerodynamic Loads Summary |   |    |   |   |   |   |    |   |  |
|-------|----------------|--------|-------|------|---------|---------------------------|---|----|---|---|---|---|----|---|--|
|       |                |        |       |      |         | 0                         | 1 | 15 | 0 | 2 | 4 | 6 | 10 |   |  |
| 1     | 0.6            | BLU-27 | 7     | IFR  | 2       | x                         |   |    |   | x | x | x | x  |   |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
| 2     | 0.6            |        |       |      |         |                           | x |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
| 3     | 0.6            |        |       |      |         | 3                         | x |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
| 4     | 0.6            |        |       |      |         |                           | x |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
| 5     | 0.6            |        |       |      | NA      | NA                        | x |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
| 6     | 0.6            |        | 6     |      |         |                           | x |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
| 7     | 0.6            | GBU-8  | 7     | NA   | NA      | x                         |   |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 0.95           |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |
|       | 1.05           |        |       |      |         |                           | x |    |   | x |   |   |    |   |  |
|       | 1.2            |        |       |      |         |                           | x |    |   | x |   |   |    |   |  |
| 8     | 0.6            |        | 6     |      |         |                           | x |    |   | x | x | x | x  | x |  |
|       | 0.8            |        |       |      |         |                           | x |    |   | x | x | x |    |   |  |
|       | 0.9            |        |       |      |         |                           | x |    |   | x | x |   |    |   |  |

Table 2. Continued

| Cont.  | M    | Score   | MSlow | Block | Station | $\delta_{14}$ | Aerodynamic Loads Summary |   |   |   |   |
|--------|------|---------|-------|-------|---------|---------------|---------------------------|---|---|---|---|
|        |      |         |       |       |         |               | 0                         | 1 | 2 | 3 | 4 |
| 8      | 0.95 | 1.00    | S     | 6     | NN      | NN            | S                         |   | X | X |   |
| HC und | 1.05 |         |       |       |         |               | S                         |   | X |   |   |
|        | 1.2  |         |       |       |         |               | S                         |   | X |   |   |
| 9      | 0.6  |         |       | 7     |         |               | S                         |   | X | X | X |
|        | 0.8  |         |       |       |         |               | S                         |   | X | X | X |
|        | 0.9  |         |       |       |         |               | S                         |   | X | X |   |
|        | 0.95 |         |       |       |         |               | S                         |   | X | X |   |
|        | 1.05 |         |       |       |         |               | S                         |   | X |   |   |
|        | 1.20 |         |       |       |         |               | S                         |   | X |   |   |
| 10     | 0.4  | MK-S2SF | 7     | 1ER   | 1       | K             |                           |   | X |   |   |
|        | 0.6  |         |       |       |         |               | S                         |   |   |   | X |
|        | 0.8  |         |       |       |         |               | X                         |   | X | X | X |
|        | 0.9  |         |       |       |         |               | X                         |   | X |   |   |
|        | 0.95 |         |       |       |         |               | S                         |   | X | X |   |
| 11     | 0.4  |         |       |       | 3       | X             |                           |   | X |   |   |
|        | 0.6  |         |       |       |         | X             |                           |   | X | X | X |
|        | 0.8  |         |       |       |         | X             |                           |   | X |   |   |
|        | 0.9  |         |       |       |         | X             |                           |   | X | X |   |
|        | 0.95 |         |       |       |         | X             |                           |   | X | X |   |
| 12     | 0.4  |         |       |       | 2       | X             |                           |   | X |   |   |
|        | 0.6  |         |       |       |         | X             |                           |   | X | X | X |
|        | 0.8  |         |       |       |         | X             |                           |   | X | X | X |
|        | 0.9  |         |       |       |         | X             |                           |   | X | X |   |
|        | 0.95 |         |       |       |         | X             |                           |   | X | X |   |

Table 2. Continued

| Conf. | $M_\infty$ | Store   | Pylon | Rack | Station | $\delta_{1E}$ |   |    | $\delta_0$ |   |   |   |    |
|-------|------------|---------|-------|------|---------|---------------|---|----|------------|---|---|---|----|
|       |            |         |       |      |         | 0             | 4 | 15 | 0          | 2 | 4 | 6 | 10 |
| 13    | 0.4        | MK 92SF | 7     | MER  | 1       | x             |   |    |            | x |   |   |    |
|       | 0.6        |         |       |      |         |               | x |    |            | x | x | x | x  |
|       | 0.8        |         |       |      |         |               | x |    | x          | x | x |   | x  |
|       | 0.9        |         |       |      |         |               | x |    | x          | x |   |   |    |
|       | 0.95       |         |       |      |         |               | x |    | x          | x |   |   |    |
| 14    | 0.4        |         | 6     | MER  | 6       | x             |   |    | x          |   |   |   |    |
|       | 0.6        |         |       |      |         |               | x |    |            | x | x | x | x  |
|       | 0.8        |         |       |      |         |               | x |    | x          | x | x |   | x  |
|       | 0.9        |         |       |      |         |               | x |    | x          | x |   |   |    |
|       | 0.95       |         |       |      |         |               | x |    | x          | x |   |   |    |
| 15    | 0.4        |         | 7     | NA   | NA      | x             |   |    | x          |   |   |   |    |
|       | 0.6        |         |       |      |         |               | x |    |            | x | x | x | x  |
|       | 0.8        |         |       |      |         |               | x |    | x          | x | x |   |    |
|       | 0.9        |         |       |      |         |               | x |    | x          | x |   |   |    |
|       | 0.95       |         |       |      |         |               | x |    | x          | x |   |   |    |
| 16    | 0.4        |         | 7     | NA   | NA      | x             |   |    | x          |   |   |   |    |
|       | 0.6        |         |       |      |         |               | x |    |            | x | x | x | x  |
|       | 0.8        |         |       |      |         |               | x |    | x          | x | x |   | x  |
|       | 0.9        |         |       |      |         |               | x |    | x          | x |   |   |    |
|       | 0.95       |         |       |      |         |               | x |    | x          | x |   |   |    |

Table 2. Continued

| Cont. | M    | Store   | Pylon | Back | Station | Aerodynamic Loads Summary |   |    |   |   |
|-------|------|---------|-------|------|---------|---------------------------|---|----|---|---|
|       |      |         |       |      |         | 0                         | 1 | 15 | 0 | 2 |
| 15    | 0.6  | MK 82SE | 7     | NA   | NA      | X                         |   |    | X |   |
|       | 0.8  |         |       |      |         |                           |   |    |   | X |
|       | 0.9  |         |       |      |         |                           |   |    |   |   |
|       | 0.95 |         |       |      |         |                           |   |    |   |   |
|       | 1.0  |         |       |      |         |                           |   |    |   |   |
|       | 1.2  |         |       |      |         |                           |   |    |   |   |

| Cont. | M    | Store   | Pylon | Back | Station | Trajectory Summary |   |    |   |   |
|-------|------|---------|-------|------|---------|--------------------|---|----|---|---|
|       |      |         |       |      |         | 0                  | 1 | 15 | 0 | 2 |
| 7     | 0.6  | GBU     | 7     | NA   | NA      | X                  |   |    | X |   |
|       | 0.8  |         |       |      |         |                    |   |    |   | X |
|       | 0.9  |         |       |      |         |                    |   |    |   | X |
|       | 0.95 |         |       |      |         |                    |   |    |   | X |
|       | 1.0  |         |       |      |         |                    |   |    |   |   |
|       | 1.2  |         |       |      |         |                    |   |    |   |   |
| R     | 0.6  |         | 6     |      |         | X                  |   |    | X |   |
|       | 0.8  |         |       |      |         |                    |   |    |   | X |
|       | 0.9  |         |       |      |         |                    |   |    |   | X |
|       | 0.95 |         |       |      |         |                    |   |    |   | X |
|       | 1.05 |         |       |      |         |                    |   |    |   | X |
|       | 1.2  |         |       |      |         |                    |   |    |   |   |
| 16    | 0.6  | MK 82SE | 7     | NA   | NA      | X                  |   |    | X |   |
|       | 0.8  |         |       |      |         |                    |   |    |   | X |
|       | 0.9  |         |       |      |         |                    |   |    |   | X |
|       | 0.95 |         |       |      |         |                    |   |    |   | X |
| 17    | 0.6  |         | 6     |      |         | X                  |   |    | X |   |
|       | 0.8  |         |       |      |         |                    |   |    |   | X |
|       | 0.9  |         |       |      |         |                    |   |    |   | X |
|       | 0.95 |         |       |      |         |                    |   |    |   | X |

Table 2. Concluded

| Freestream Summary |            |            |
|--------------------|------------|------------|
| Store              | $M_\infty$ | $\alpha_S$ |
| BLU-27             | 0.6        | Schedule D |
|                    | 0.8        |            |
|                    | 0.9        |            |
|                    | 0.95       |            |
| GBU-8              | 0.6        | Schedule B |
|                    | 0.8        | Schedule C |
|                    | 0.9        | Schedule C |
|                    | 0.95       | Schedule B |
|                    | 1.05       | Schedule A |
|                    | 1.20       | Schedule A |
| MK-82SF            | 0.4        | Schedule D |
|                    | 0.6        |            |
|                    | 0.8        |            |
|                    | 0.9        |            |
|                    | 0.95       |            |
|                    | 1.05       |            |
|                    | 1.2        | Schedule C |

**Schedule A:**  $\alpha_S = -4, -2, 0, 2, 4, 6, 8, 10, 12, 16, 20$

**Schedule B:**  $\alpha_S = -4, -2, 0, 2, 4, 6, 8, 10, 12, 16, 20, 24$

**Schedule C:**  $\alpha_S = -4, -2, 0, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28$

**Schedule D:**  $\alpha_S = -4, -2, 0, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32$

Table 3. Typical Data Uncertainties

| Trajectory Data |            |            |            |            |            |                 |               |               |
|-----------------|------------|------------|------------|------------|------------|-----------------|---------------|---------------|
| Store           | $M_\infty$ | $\Delta t$ | $\Delta X$ | $\Delta Y$ | $\Delta Z$ | $\Delta \theta$ | $\Delta \psi$ | $\Delta \phi$ |
| MK-82SF         | 0.6        | 0.21       | 0.008      | 0.007      | 0.007      | 0.12            | 0.12          | NA            |
| MK-82SE         | 0.95       | 0.21       | 0.019      | 0.015      | 0.015      | 0.28            | 0.28          | NA            |
| GBU-8           | 0.6        | 0.31       | 0.004      | 0.005      | 0.006      | 0.32            | 0.08          | 1.2           |
| GBU-8           | 1.2        | 0.31       | 0.012      | 0.017      | 0.018      | 0.07            | 0.25          | 3.7           |

| Aerodynamic Loads Data |            |              |              |              |              |              |              |              |                 |
|------------------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|
| Store                  | $M_\infty$ | $\Delta C_N$ | $\Delta C_Y$ | $\Delta C_A$ | $\Delta C_f$ | $\Delta C_m$ | $\Delta C_M$ | $\Delta M_m$ | $\Delta q_\phi$ |
| BLU-27                 | 0.6        | 0.010        | 0.009        | 0.007        | 0.003        | 0.013        | 0.008        | 0.005        | 4.6             |
|                        | 0.8        | 0.011        | 0.010        | 0.007        | 0.003        | 0.013        | 0.010        | 0.006        | 2.8             |
|                        | 0.95       | 0.009        | 0.009        | 0.006        | 0.003        | 0.011        | 0.007        | 0.005        | 2.4             |
| GBU-8                  | 0.6        | 0.014        | 0.010        | 0.007        | 0.004        | 0.026        | 0.020        | 0.005        | 4.6             |
|                        | 0.9        | 0.012        | 0.010        | 0.007        | 0.003        | 0.024        | 0.019        | 0.006        | 2.8             |
|                        | 1.2        | 0.009        | 0.008        | 0.007        | 0.003        | 0.018        | 0.015        | 0.010        | 2.4             |
| MK 82SE                | 0.4        | 0.030        | 0.030        | 0.034        | 0.033        | 0.047        | 0.047        | 0.005        | 5.4             |
|                        | 0.8        | 0.020        | 0.020        | 0.025        | 0.023        | 0.032        | 0.032        | 0.005        | 2.8             |
|                        | 0.95       | 0.017        | 0.017        | 0.021        | 0.019        | 0.027        | 0.027        | 0.005        | 2.4             |

## NOMENCLATURE

|                 |                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------|
| BL              | Aircraft buttock line from plane of symmetry, in., model scale                                   |
| b               | Store reference dimension, ft, full scale                                                        |
| $C_A$           | Store measured axial-force coefficient, axial force/ $q_\infty S$                                |
| $C_\lambda$     | Store rolling-moment coefficient, rolling moment/ $q_\infty Sb$                                  |
| $C_{\lambda_p}$ | Store roll-damping derivative, $dC_\lambda/d(pb/2V_\infty)$                                      |
| $C_m$           | Store pitching-moment coefficient, referenced to the store cg,<br>pitching moment/ $q_\infty Sb$ |
| $C_{m_q}$       | Store pitch-damping derivative, $dC_m/d(qb/2V_\infty)$                                           |
| $C_N$           | Store normal-force coefficient, normal force/ $q_\infty S$                                       |
| $C_n$           | Store yawing-moment coefficient, referenced to the store cg,<br>yawing moment/ $q_\infty Sb$     |
| $C_{n_r}$       | Store yaw-damping derivative, $dC_n/d(rb/2V_\infty)$                                             |
| $C_Y$           | Store side-force coefficient, side force/ $q_\infty S$                                           |
| FS              | Aircraft fuselage station, in., model scale                                                      |
| $F_{z_1}$       | Forward ejector force, lb                                                                        |
| $F_{z_2}$       | Aft ejector force, lb                                                                            |
| h               | Simulated pressure altitude, ft                                                                  |

|            |                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_{xx}$   | Full-scale moment of inertia about the store $X_B$ axis,<br>slug-ft <sup>2</sup>                                                                  |
| $I_{yy}$   | Full-scale moment of inertia about the store $Y_B$ axis<br>slug-ft <sup>2</sup>                                                                   |
| $I_{zz}$   | Full-scale moment of inertia about the store $Z_B$ axis,<br>slug-ft <sup>2</sup>                                                                  |
| $M_\infty$ | Free-stream Mach number                                                                                                                           |
| $\bar{m}$  | Full-scale store mass, slugs                                                                                                                      |
| $p_t$      | Free-stream total pressure, psfa                                                                                                                  |
| $p_\infty$ | Free-stream static pressure, psfa                                                                                                                 |
| $q_\infty$ | Free-stream dynamic pressure, psf                                                                                                                 |
| $S$        | Store reference area, ft <sup>2</sup> , full scale                                                                                                |
| $t$        | Real trajectory time from initiation of trajectory, sec                                                                                           |
| $V_\infty$ | Free-stream velocity, ft/sec                                                                                                                      |
| WL         | Aircraft waterline from reference horizontal plane, in.,<br>model scale                                                                           |
| $X$        | Separation distance of the store cg parallel to the flight<br>axis system $X_p$ direction, ft, full scale measured from the<br>prelaunch position |
| $X_{cg}$   | Full-scale cg location, ft, from nose of store                                                                                                    |

|            |                                                                                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $x_{L_1}$  | Forward ejector location relative to the store cg, positive forward to store cg, ft, full scale                                             |
| $x_{L_2}$  | Aft ejector piston location relative to the store cg, positive forward of store cg, ft, full scale                                          |
| $x_p$      | Separation distance of the store cg parallel to the pylon axis system $X_p$ direction, ft, full scale measured from the prelaunch position  |
| $y$        | Separation distance of the store cg parallel to the flight axis system $Y_f$ direction, ft, full scale measured from the prelaunch position |
| $y_p$      | Separation distance of the store cg parallel to the pylon axis system $Y_p$ direction, ft, full scale measured from the prelaunch position  |
| $z$        | Separation distance of the store cg parallel to the flight axis system $Z_f$ direction, ft, full scale measured from the prelaunch position |
| $z_E$      | Ejector piston stroke length, ft, full scale                                                                                                |
| $z_p$      | Separation distance of the store cg parallel to the pylon axis system $Z_p$ direction, ft, full scale measured from the prelaunch position  |
| $\alpha$   | Aircraft model angle of attack relative to the free-stream wind vector, deg                                                                 |
| $\alpha_s$ | Store model angle of attack relative to the free-stream wind vector, deg                                                                    |

- 0 Angle between the store longitudinal axis and its projection in the  $X_F - Y_F$  plane, deg
- $\phi$  Angle between the projection of the store lateral axis in the  $Y_F - Z_F$  plane and the  $Y_F$  axis, deg
- $\psi$  Angle between the projection of the store longitudinal axis in the  $X_F - Y_F$  plane and the  $X_F$  axis, deg

## FLIGHT-AXIS SYSTEM COORDINATES

### Directions

- $X_F$  Parallel to the free-stream wind vector, positive direction is forward as seen by the pilot
- $Y_F$  Perpendicular to the  $X_F$  and  $Z_F$  directions, positive direction is to the right as seen by the pilot
- $Z_F$  In the aircraft plane of symmetry, perpendicular to the free-stream wind vector, positive direction is downward

The flight-axis system origin is coincident with the aircraft cg and remains fixed with respect to the parent aircraft during store separation. The  $X_F$ ,  $Y_F$ , and  $Z_F$  coordinate axes do not rotate with respect to the initial flight direction and attitude.

## STORE BODY-AXIS SYSTEM COORDINATES

### Directions

- $X_B$  Parallel to the store longitudinal axis, positive direction is upstream in the prelaunch position

- $y_B$  Perpendicular to the store longitudinal axis, and parallel to the flight-axis system  $X_F-Y_F$  plane when the store is at zero roll angle, positive direction is to the right looking upstream when the store is at zero yaw and roll angles
- $z_B$  Perpendicular to both the  $x_B$  and  $y_B$  axes, positive direction is downward as seen by the pilot when the store is at zero pitch and roll angles

The store body-axis system origin is coincident with the store cg and moves with the store during separation from the parent airplane. The  $x_B$ ,  $y_B$ , and  $z_B$  coordinate axes rotate with the store in pitch, yaw, and roll so that mass moments of inertia about the three axes are not time-varying quantities.

### PYLON-AXIS SYSTEM COORDINATES

#### Directions

- $x_p$  Parallel to the aircraft longitudinal axis, positive direction is forward as seen by the pilot
- $y_p$  Perpendicular to the  $x_p$  axis and parallel to the flight-axis system  $X_F-Y_F$  plane, positive direction is to the right as seen by the pilot
- $z_p$  Perpendicular to both the  $x_p$  and  $y_p$  axes, positive direction is downward

The pylon-axis system origin is coincident with the store cg in the prelaunch carriage position. The axes are rotated with respect to the flight-axis system by the pitch angles of the aircraft. Both the origin and the direction of the coordinate axes remain fixed with respect to the flight-axis system throughout the trajectory.

# **SUPPLEMENTARY**

# **INFORMATION**

AD-B014360 L

## ERRATA

AEDC-TR-76-147 (AFATL-TR-76-113) October 1976  
(UNCLASSIFIED REPORT)

### AERODYNAMIC LOADS AND SEPARATION CHARACTERISTICS OF THE BLU-27B/B, MK-82SE, AND GBU-8 WEAPONS IN THE F-16 AIRCRAFT FLOW FIELD AT MACH NUMBERS FROM 0.4 TO 1.2

E. G. Allee, Jr., ARO, Inc.

Arnold Engineering Development Center  
Air Force Systems Command  
Arnold Air Force Station, Tennessee

The  $X_{cg}$  value of 6.608 quoted for the GBU-8 store in  
Table 1 should have been 5.135.

Please substitute the corrected table in your copy of  
the report.

Table 1. Metric Model Parameters

|           | BLU-27 B/B | GBU-8             | MK-82SE           |
|-----------|------------|-------------------|-------------------|
| $b$       | 1.563      | 1.5               | 0.896             |
| $C_{l_p}$ | NA         | -18.048           | -5.0              |
| $C_{m_q}$ | NA         | -180.48           | -53.0             |
| $C_{n_r}$ | NA         | -180.48           | -53.0             |
| $F_{z_1}$ | NA         | 2030.0<br>1113.0* | 1680.0<br>1900.0* |
| $F_{z_2}$ | NA         | 1780.0            | 1333.3<br>1900.0* |
| $h$       | NA         | 5,000             | 5,000             |
| $I_{xx}$  | NA         | 24.7              | 2.1               |
| $I_{yy}$  | NA         | 524.2             | 53.0              |
| $I_{zz}$  | NA         | 524.2             | 53.0              |
| $m$       | NA         | 70.243            | 17.1              |
| $s$       | 1.917      | 1.767             | 0.630             |
| $X_{cg}$  | 5.358      | 5.135             | 3.375             |
| $X_{L_1}$ | NA         | 0.817             | 1.000             |
| $X_{L_2}$ | NA         | -0.850            | -0.667            |
| $Z_E$     | NA         | 0.343             | 0.343             |

\*Selected Runs