JC17 Rec'd PCT/PTO 16 JUN 2005

Claim 1. (Original): A compound of formula

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

wherein

n is 0 or 1;

A-B is -CH=CH- or -CH₂-CH₂-;

 R_1 is C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl or C_2 - C_{12} -alkenyl;

is C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl, C_2 - C_{12} -alkinyl; or C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl or R_2 C₂-C₁₂-alkinyl, which are substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C₁-C₆-alkyl-groups, C₃-C₆-cycloalkenyl which is optionally substituted with one to three C_1 - C_6 -alkyl-groups, norbornylenyl-, C_3 - C_8 -halocycloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy, C₃-C₈-cycloalkoxy, C₁-C₁₂-haloalkoxy, C₁-C₁₂-alkylthio, C₃-C₈-cycloalkylthio, C₁-C₁₂-haloalkylthio, C₁-C₁₂-alkylsulfinyl, C₃-C₈-cycloalkylsulfinyl, C₁-C₁₂-haloalkylsulfinyl, C₃-C₈-halocycloalkylsulfinyl, C_1 - C_{12} -alkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_{12} -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, $-NR_4R_6$, $-X-C(=Y)-R_4$, $-X-C(=Y)-Z-R_4$, $-P(=O)(OC_1-C_6-alkyl)_2$, aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy groups are optionally - depending on the substitution possibilities on the ring - substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C₁-C₁₂-alkyl, C₃-C₈-Cycloalkyl, C₁-C₁₂-Haloalkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-Haloalkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-haloalkylthio, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, $Si(C_1$ - C_{12} -alkyl)₃, -X-C(=Y)- R_4 , -X-C(=Y)-Z-R₄, aryl, aryloxy, heterocyclyl and heterocyclyloxy; or

 R_2 is aryl, heterocyclyl C_3 - C_8 -Cycloalkyl, C_3 - C_8 -Cycloalkenyl; or aryl, heterocyclyl C_3 - C_8 -Cycloalkyl or C_3 - C_8 -Cycloalkenyl, which are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected from the group consisting

of OH, halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkylthio, C_1 - C_1 -alkoxy, C_1 - C_1 -alkoxy, C_1 - C_1 -alkoxy, C_2 - C_3 -alkenyl, C_2 - C_3 -alkinyl, methylendioxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

 R_3 is H, C_1 - C_{12} -alkyl or C_1 - C_{12} -alkyl which is substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-Cycloalkyl which is optionally substituted with one to three C_1 - C_6 -alkyl groups, norbornylenyl-, C_3 - C_8 -Cycloalkenyl which is optionally substituted with one to three methyl groups; C_3 - C_8 -halocycloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkoxy, C_1 - C_{12} -haloalkylthio, C_3 - C_8 -cycloalkylthio, C_1 - C_{12} -haloalkylthio, C_1 - C_{12} -haloalkylsulfinyl, C_3 - C_8 -cycloalkylsulfinyl, C_1 - C_1 -haloalkylsulfinyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_1 - C_1 -alkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_1 - C_1 -alkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -aloalkylsulfonyl, C_1 - C_1 -aloalkylsulfonyl, aryloxy, arylthio and heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy groups are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO_2 , C_1 - C_1 -alkyl, C_3 - C_8 -Cycloalkyl, C_1 - C_1 -Haloalkyl, C_1 - C_1 -alkoxy, C_1 - C_1 -Haloalkoxy, C_1 - C_1 -alkoxy, C_1 - C_1 -haloalkylthio, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, C_1 - C_1 -haloalkylthio, C_1 - C_1

 R_2 and R_3 together are a three- to seven-membered alkylen- or a four - to seven-membered alkenylenbridge, wherein one or two CH_2 -groups may independently of each other be replaced by a group -C(=O)-, -C(=S)-, O, S, -NR₅, -OC(=O)-O, -OC(=O)S-, -OC(=O)N(R₅)-, -C(=O)O-, -C(=O)S, -C(=O)N(R₅)-, -N(R₅)C(=O)S-, -N(R₅)C(=O)N(R₅)-, and wherein the alkylene or alkenylenbridge may be independently of each other substituted with one or two substituents selected from the group consisting of C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and C_1 - C_4 -halogenalkyl;

Xis O, NR₅ or a bond;

Yis O or S;

Zis O, S or NR₅

 R_4 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl or heterocyclyl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl;

 R_5 is H, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, benzyl or -C(=O)- C_1 - C_{12} -alkyl;

 R_6 is H, C_1 - C_{12} -alkyl which is optionally substituted with halogen, C_1 - C_6 -alkoxy, CN, C_2 - C_8 -alkenyl, C_2 - C_8 -haloalkenyl, C_2 - C_8 -alkinyl, C_1 - C_{12} -Haloalkenyl, -X-C(=Y)- R_9 , -X-C(=Y)-Z- R_9 , aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl or heterocyclyl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl or C_1 - C_6 - C_6 -haloalkyl or C_1 - C_6 - C_6 -haloalkyl or C_1 - C_6

R₄ and R₆ together are a three- to five membered alkylene bridge, wherein one of the methylene groups may be replaced by O, S or SO₂; and

 R_9 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_1 -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl;

and, where applicable, to E/Z isomers, mixtures of E/Z isomers and/or tautomers, in each case in free form or in salt form;

with the proviso, that the compound is not an Avermectin B1a or B1b derivative when n is 1, R_3 is H, and R_2 is $-CH_2$ - CH_2 - OCH_3 or $-CH_2$ - OCH_3 or $-CH_2$ - OCH_3 is not the B1a or B1b derivative when n is 2, R_3 is H, and R_2 is $-CH_2$ - OCH_2 - OCH_3 -is not the B1a or B1b derivative when n is 1, and R_2 and R_3 together are usubstituted $-CH_2$ - CH_2 - CH_2 -; and is not the B2a or B2b derivative when n is 1, R_3 is H, and R_2 is $-CH_2$ - $-CH_2$ - $-OCH_3$.

Claim 2. (Original): A compound according to claim 1 of the formula (I) in the free form.

Claim 3. (Currently Amended): A compound according to any one of claims 1 or 2 claim 1 of the formula (I), wherein $\frac{1}{2}$ is methyl.

Claim 4. (Currently Amended): A compound according to any-one-of-claims 1-or-2 claim 1 of the formula (I), wherein R_3 is C_3 - C_6 -alkyl.

Claim 5. (Currently Amended): A compound according to any one of claims 1 or 2 claim 1 of the formula (I), wherein wherein R_3 is C_1 - C_8 -alkyl which is substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C_1 - C_6 -alkyl groups, norbornylenyl-, C_3 - C_8 -Cycloalkenyl which is optionally substituted with one to three methyl groups; C_3 - C_8 -halocycloalkyl, C_3 - C_8 -cycloalkoxy, C_1 - C_{12} -alkylthio, aryl, heterocyclyl, arylthio or heterocyclyloxy; wherein the aryl, heterocyclyl, arylthio and heterocyclyloxy groups are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkylthio, C_1 - C_1 -haloalkylthio, C_1 - C_1 -alkylthio, C_1 - C_1 -haloalkylthio, C_1 - C_1 -alkylthio, C_1

Claim 6. (Original): A pesticide which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.

Claim 7. (Original): A method for controlling pests wherein a composition as described in claim 6 is applied to the pests or their habitat.