Chapt 5 - property of a Random sample.

Def: The R.V. $X_1 \dots X_n$ are called a random sample of size n if they are iid.

Example 0.1. Suppose x is a Random draw from a population and x has density

if $x_i, i = 1, 2 \cdots n$ are iid and. $x_i z_i x$, then.

$$f(x, \dots x_n) = \prod_{i=1}^{n} f(x_i)$$

Comment: In most case we don't use joint density of the sample, but rather use the iid Property directly

Example 0.2. X_i are ind, $X_i \sim \text{Exp}(rate = \lambda), y = \min(x_i)$

$$F_y(y)=P(Y\leq y)=1-P(Y>y)=1-\prod_{i=1}^n P\left(x_i>y\right)\quad x's$$
 are iid $=1-e^{-\lambda ny},$ cdt of $\exp(\lambda n)$

$$f_y(y) = \frac{d}{dx}F_y(y)$$

Definition 0.3. Sampling w/o replacement from a finite population is called simple random sampling.

• In most Cases, Samples are not independent.

Definition 0.4. Suppose x_1, x_n is random sample, Arr r. V. Y of the form Y = $T(X_1, X_n)$ is coiled a statistic. The dist of Y is called. its sampling distribution. The dist of Y is called. its Sampling distribution.

Comment: the supply dit con be found anally tally for unity a few statistics. and a few populations (eg. exponential, normal.)

Theorem 0.5. Suppose $x_i, 1 \le i \le n$, are iid $\omega \mid E(x_i) = \mu, v(x_i) = \sigma^2$.

- (a) $E[\bar{x}] = \mu$.
- (b). $V(\bar{x}) = \sigma^2/n$ (c) $E(S_n^2) = \sigma^2$.

Proof. Define $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$, $\S_n^2 = \frac{n}{n-1} \hat{\sigma}^2$

$$E(\hat{\sigma}^2) = \frac{1}{n} E\left(\sum_{i=1}^n (x_i - \bar{x})^2\right) = \frac{1}{n} E\left[\sum_{i=1}^n x_i^2 - n(\bar{x})^2\right]$$
$$= \frac{1}{n} \left[\sum_{i=1}^n (\sigma^2 + \mu^2) - n\left(\frac{\sigma^2}{n} + \mu^2\right)\right]$$
$$= \frac{n-1}{n} \bar{\sigma}^2$$

5.4 Order statistic

Definition 0.6. The order statistics of a random sample X_1mX_n core the sample values placed in ascending order and are denoted $X_{(1)}, X_{(2)} \sim X_{(n)}$ $X_{(n)} \leq X_{(2)} \leq m \leq X_{(n)}$

In Particular, $X_{(1)} = minX_i$ $X_{(n)} = max X_i$. The Sample range is defined $R = x_{(n)} - x_{(1)}$

The sample median, denoted M, is defined. $M = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{if n is odd} \\ (x_{\frac{n}{2}} + x_{\frac{n}{2}+1})/2 & \text{if n i even} \end{cases}$

The notation $\{b\}$ in a subscript is defined to be number b rounded, to the nearest number

Example 0.7. $\{b\} = i \text{ where } i - 0.5 \le b < i + 0.5.$

Example 0.8. uniform (0,1) order statistics. wish to find $(a)f_{u(k)}, (b)f_{u(k),u(i)}$

(a). Let
$$1_A(t) = \begin{cases} 1 & \text{if } t \in A \\ 0 & \text{ow.} \end{cases}$$

$$1_{[0,t]}(u_k) \sim \text{Ber}(t)$$

Define $B_n(t) = \sum_{i=1}^n 1_{[0,t]}(U_i) = \text{Binomial}(n,t)$. Event identify $\left[u_{(k)}>t\right] = \left[B_n(t) < k\right]$

$$F_{u(k)}(t) = P\left(u_{(k)} \le t\right) = P\left(B_n(t) \ge k\right) = \sum_{i=1}^n \binom{n}{1} t^i (1-t)^{n-i},$$

$$f_{u(k)}(t) = \frac{d}{dt} F_{u(k)}(t)$$

$$= \sum_{i=1}^n \frac{n!}{(n-i)!i!} i t^{i-1} (1-t)^{k-i} - \sum_{i=1}^n \frac{n!}{(n-i)!i!} (n-i) t^i (1-t)^{n-i-1}$$

$$= \frac{n!}{(n-k)!(1k-1)!} t^{k-1} (1-t)^{n-k}, 0 < t < 1$$

However, we can obtain $f_{u(k)}$ by a more important and elementary "think method" argnmen t.

 $f_{u(k)}(t) \leftarrow \text{prob density of having } u_k = t$. Then having $u_1 \dots u_{k-1}$ all < t and $u_{k+1}mu_n$ all < t

$$f_{n(k)}(t) = \binom{n}{k-1, 1, n-k} f_u(t) \cdot (F_n(t))^{k-1} \cdot (1 - F_n(t))^{n-k}.$$

$$\downarrow \frac{n!}{(k-1)! 1! (n-k)!}$$

(b)
$$f_{u(k),u_{(i)}}(s,t) = \binom{n}{k-1,1,,i-k,1,n-i} s^{k-1} \cdot (t-s)^{i-1-k} (1-t)^{n-i}, 0 \le s \le t \le 1$$