

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, 2018-2019

Ejercicios 53 a 56

53. Dado $a \in \mathbb{R}$, considérese la función

$$f\,:\,\mathbb{R}^2\times\mathbb{R}\longrightarrow\mathbb{R}^2$$

definida

$$f(x,y) = (x_1^3 + x_2^3 - 3 a x_1 x_2, y x_1 - x_2), \qquad x = (x_1, x_2) \in \mathbb{R}^2, y \in \mathbb{R}.$$

1. Hallar un abierto $A\subset \mathbb{R}$ y una función $g\,:\,A\subset \mathbb{R}\longrightarrow \mathbb{R}^2$ tal que

$$f(g(y), y) = 0, \quad y \in A.$$

2. Determinar los $(x,y) \in \mathbb{R}^3$ para los que

$$\mathbf{M}(x,y) = \left[\frac{\partial f(x,y)}{\partial x}\right]$$
 no es invertible.

Confrontar esta situación con las hipótesis del Teorema de la Función Implícita.

3. Hallar un abierto $B\subset\mathbb{R}$ y una función $h:B\subset\mathbb{R}\longrightarrow\mathbb{R}^2$ tales que $\begin{cases} \det\mathbf{M}\big(h(y)\,,y\big)=0\,,\\ y\,h_1(y)-h_2(y)=0\,. \end{cases}$

$$\begin{cases} \det \mathbf{M}(h(y), y) = 0 \\ y h_1(y) - h_2(y) = 0 \end{cases}$$

Calcular $f_1(h(y), y)$ para los $y \in B$.

Utilizar coordenadas polares para representar gráficamente en \mathbb{R}^2 las curvas dadas por g y h.

$$(12) x = y_1 + y_2 \sin x,$$

entendiendo x como incógnita e $y=(y_1\,,y_2)$ como parámetro. En la descripción del movimiento planetario, x representa la anomalía excéntrica, y_1 es proporcional al tiempo e y_2 es la excentricidad de la elipse. En consecuencia, tomamos $\Omega = \{ y \in \mathbb{R}^2 : |y_2| < 1 \}$ como espacio de parámetros.

Α.

- 1. Demostrar que (12) tiene una solución única x=g(y) cuando $y\in\Omega$. Demostrar que la función $g:\Omega\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ es $C^\infty(\Omega)$.
- 2. Comprobar que

$$g(\pi, y_2) = \pi, \quad g(y_1 + 2\pi, y_2) = g(y) + 2\pi, \qquad y \in \Omega$$

3. Comprobar que

$$g(-y_1, y_2) = -g(y_1, y_2), \quad g(0, y_2) = 0, \qquad |y_2| < 1.$$

También

$$\frac{\partial^{2k} g(0, y_2)}{\partial y_2^{2k}} = 0, \quad |y_2| < 1, \ k \in \mathbb{N}$$

4. Calcular

$$\frac{\partial g(y)}{\partial u_1}$$

para cada $y \in \Omega$.

B. Consideremos ahora el caso $y_2 = 1$. Demostrar que existe una única función

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$

tal que $x = h(y_1)$ es solución de (12). Demostrar que h(0) = 0 y que h es continua.

Demostrar que

$$y_1 = \frac{x^3}{6} \left(1 + \mathcal{O}(x^2) \right), \quad \text{cuando} \quad x \to 0,$$

y deducir que se verifica

$$\lim_{y_1 \to 0} \frac{h(y_1)}{(6y_1)^{1/3}} = 1.$$

En particular, obtener que h no es diferenciable en $y_1=0$.

55. Dados b>0 y una función $f\,:\,\mathbb{R}\longrightarrow\mathbb{R}$ continua tales que

$$f(0) \neq -1, \qquad \int_0^b f(t) dt = 0,$$

demostrar que la ecuación

$$x = \int_{x}^{a} f(t) dt$$

tiene, para a suficientemente próximo a b, solución única x=g(a) con g(a) próximo a 0. Demostrar que g es una función C^1 y calcular g'(b).

¿Cómo cambia lo anterior cuando b=1 yf(t)=-1+2t?

56. Considérese la ecuación

(13)
$$x^3 y_1 + x^2 y_1 y_2 + x + y_1^2 y_2 = 0,$$

donde $x \in \mathbb{R}$ e $y = (y_1, y_2) \in \mathbb{R}^2$.

- 1. Demostrar que existen abiertos Ω en \mathbb{R}^2 , con $y_0=(-1\,,1)\in\Omega$ y U en \mathbb{R} con $x_0=1\in U$, tales que para cada $y\in\Omega$ la ecuación (13) tiene una única solución $x=g(y)\in U$. Demostrar que la función $g:\Omega\subset\mathbb{R}^2\longrightarrow U\subset\mathbb{R}$ es de clase C^∞ en Ω .
- 2. Calcular

$$\nabla g(y_0), \qquad \frac{\partial^2 g(y_0)}{\partial y_1 y_2}$$

3. Demostrar que no existen abiertos $\Omega' \subset \mathbb{R}^2$ con $y_0 \in \Omega'$ y $U' \subset \mathbb{R}$ con $-1 \in U'$, tales que para cada $y \in \Omega'$ la ecuación (13) tiene solución única en U'.

