1 Probit Regression

Situation: We have n data points (x_i, y_i) , i = 1, ..., n with $x_i \in \mathbb{R}^d$ and $y \in \{-1, 1\}$.

Probit Model: y_i is a realization of the random variable Y_i . $Y_1, ..., Y_n$ are independent. The distribution of Y_i is as follows:

$$P(Y_i = 1 | x_i; \beta) = \Phi(x_i^T \beta) P(Y_i = -1 | x_i; \beta) = 1 - \Phi(x_i^T \beta) = \Phi(-x_i^T \beta)$$

where $\beta \in \mathbb{R}^d$. It follows that

$$P(Y_i = y_i | x_i; \beta) = \Phi(y_i x_i^T \beta)$$

Likelihood: The likelihood of a parameter vector β is given as follows:

$$L(\beta) = \prod_{i=1}^{n} P(Y_i = y_i | x_i; \beta) = \prod_{i=1}^{n} \Phi(y_i x_i^T \beta)$$

The negative log-likelihood that we wish to minimize is:

$$\mathcal{L}(\beta) = -\sum_{i=1}^{n} \log \Phi(y_i x_i^T \beta)$$

The weighted case: We introduce sample weights $w_i \in \mathbb{R}_{>0}$ comprising a weight vector $w \in \mathbb{R}_{>0}^n$. Further, let $g(z) = -\log \Phi(-z)$. The objective function now becomes:

$$f_w(\beta) = \sum_{i=1}^n w_i g(-y_i x_i^T \beta)$$

To make the notation easier, we define $z_i = -y_i x_i^T$ and introduce the matrix $Z \in \mathbb{R}^{n \times d}$ with row vectors $Z_i = z_i$. This gives us:

$$f_w(\beta) = \sum_{i=1}^n w_i g(z_i \beta)$$

Gradient: The gradient of the objective function is needed during optimization. To derive it, we first need the derivative of q(z):

$$g'(z) = \frac{d}{dz} - \log \Phi(-z) = \frac{\phi(z)}{\Phi(-z)}$$

Now we can calculate the gradient of the objective function as follows:

$$\frac{\partial f_w(\beta)}{\partial \beta} = \sum_{i=1}^n w_i \frac{\partial g(z_i \beta)}{\partial \beta} = \sum_{i=1}^n w_i z_i g'(z_i \beta)$$

Lemma 1. Let $g(z) = -\log \Phi(-z)$. Then it holds for all $z \ge 0$ that:

$$\frac{1}{2}z^2 \le g(z)$$

Proof. The following relationship holds for all $z \geq 1$:

$$\Phi(-z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-z} \exp\left(-\frac{1}{2}x^2\right) dx$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-z} -x \exp\left(-\frac{1}{2}x^2\right) dx$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$$

$$\leq \exp\left(-\frac{1}{2}z^2\right)$$

We therefore have for $z \geq 1$:

$$e^{g(z)} = e^{-\log \Phi(-z)} = \frac{1}{\Phi(-z)} \ge e^{\frac{1}{2}z^2}$$

Since $\exp(\cdot)$ is a monotonically increasing function, it follows that $g(z) \geq \frac{1}{2}z^2$ for all z > 1.

Let us now turn to the case when $0 \le z \le 1$. Both g(z) and $\frac{1}{2}z^2$ are monotonically increasing and continuous functions for $0 \le z \le 1$. Together with the fact that $g(0) > \frac{1}{2}$ it follows for all $0 \le z \le 1$ that

$$g(z) \ge g(0) > \frac{1}{2} = \max_{0 \le z \le 1} \frac{1}{2}z^2 \ge \frac{1}{2}z^2$$

which concludes the proof.

Lemma 2. Let $g(z) = -\log \Phi(-z)$. Then it holds for all $z \ge 2$ that:

$$g(z) \le z^2$$

Proof. We first show that $\Phi(-z) \geq \frac{1}{\sqrt{2\pi}} \frac{z}{z^2+1} e^{-\frac{1}{2}z^2}$ for all $z \geq 0$. In order to prove this lower bound, we define $h(z) = \Phi(-z) - \frac{1}{\sqrt{2\pi}} \frac{z}{z^2+1} e^{-\frac{1}{2}z^2}$ and show that h(z) is positive for all $z \geq 0$. The derivative $h'(z) = -\sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}z^2}}{(z^2+1)^2}$ is negative for all z, so h(z) is a monotonically decreasing function. Also, it clearly holds that h(0) > 0 and $\lim_{z \to \infty} h(z) = 0$. It follows that $h(z) \geq 0$ for all z > 0 which proves the lower bound.

In the next step, we use this result to show that $e^{z^2} \cdot \Phi(-z) \ge 1$ for all $z \ge 2$:

$$e^{z^{2}} \cdot \Phi(-z) \ge e^{z^{2}} \frac{1}{\sqrt{2\pi}} \frac{z}{z^{2} + 1} e^{-\frac{1}{2}z^{2}}$$

$$= e^{\frac{1}{2}z^{2}} \frac{1}{\sqrt{2\pi}} \frac{z}{z^{2} + 1}$$

$$= e^{\frac{1}{2}z^{2}} \frac{1}{\frac{4}{3}(z^{2} + 1)} \frac{\frac{4}{3}z}{\sqrt{2\pi}}$$

$$\ge \frac{e^{\frac{1}{2}z^{2}}}{\frac{4}{3}(z^{2} + 1)}$$

$$\ge \frac{e^{\frac{1}{2}z^{2}}}{e^{\frac{1}{2}z^{2}}}$$

$$= 1$$

From this it follows directly that $\frac{1}{\Phi(-z)} \le e^{z^2}$ and thus we have for all $z \ge 2$:

$$e^{g(z)} = e^{-\log \Phi(-z)} = \frac{1}{\Phi(-z)} \le e^{z^2}$$

Since $\exp(\cdot)$ is monotonically increasing, the claim that $g(z) \leq z^2$ for all $z \geq 2$ follows as a direct consequence.

The ideas for these proofs are based on the work in [2].

2 Sampling Based on Sensitivities

Definition 1. Let $Z \in \mathbb{R}^{n \times d}$. Then we define

$$\mu_w(Z) = \sup_{\beta \in \mathbb{R}^d \setminus \{0\}} \frac{\left\| (\sqrt{D_w} Z \beta)^+ \right\|_2^2}{\left\| (\sqrt{D_w} Z \beta)^- \right\|_2^2} = \sup_{\beta \in \mathbb{R}^d \setminus \{0\}} \frac{\left\| (\sqrt{D_w} Z \beta)^- \right\|_2^2}{\left\| (\sqrt{D_w} Z \beta)^+ \right\|_2^2}$$

Z weighted by w is called μ -complex if $\mu_w(Z) \leq \mu$.

Lemma 3. Let $Z \in \mathbb{R}^{n \times d}$ weighted by $w \in \mathbb{R}^n_{>0}$ be μ -complex. Let U be an orthonormal basis for the columnspace of $\sqrt{D_w}Z$. If for index i, the supreme β in (TODO) satisfies $2 \leq z_i\beta$, then $w_ig(z_i\beta) \leq 2||U_i||_2^2(1+\mu)f_w(\beta)$.

Proof. Let $\sqrt{D_w}Z = UR$, where U is an orthonormal basis for the columnspace of

 $\sqrt{D_w}Z$. It follows from $2 \leq z_i\beta$ and from the monotonicity of g that

$$w_{i}g(z_{i}\beta) = w_{i}g\left(\frac{\sqrt{w_{i}}z_{i}\beta}{\sqrt{w_{i}}}\right) = w_{i}g\left(\frac{U_{i}R\beta}{\sqrt{w_{i}}}\right) \leq w_{i}g\left(\frac{\|U_{i}\|_{2}\|R\beta\|_{2}}{\sqrt{w_{i}}}\right)$$

$$= w_{i}g\left(\frac{\|U_{i}\|_{2}\|UR\beta\|_{2}}{\sqrt{w_{i}}}\right) = w_{i}g\left(\frac{\|U_{i}\|_{2}\|\sqrt{D_{w}}Z\beta\|_{2}}{\sqrt{w_{i}}}\right)$$

$$\leq \|U_{i}\|_{2}^{2}\|\sqrt{D_{w}}Z\beta\|_{2}^{2} \leq \|U_{i}\|_{2}^{2}(1+\mu)\|(\sqrt{D_{w}}Z\beta)^{+}\|_{2}^{2}$$

$$= \|U_{i}\|_{2}^{2}(1+\mu)\sum_{j:\sqrt{w_{j}}z_{j}\beta\geq0}w_{j}(z_{j}\beta)^{2}$$

$$\leq 2\|U_{i}\|_{2}^{2}(1+\mu)\sum_{j:\sqrt{w_{j}}z_{j}\beta\geq0}w_{j}g(z_{j}\beta)$$

$$\leq 2\|U_{i}\|_{2}^{2}(1+\mu)\sum_{j=1}^{n}w_{j}g(z_{j}\beta)$$

$$= 2\|U_{i}\|_{2}^{2}(1+\mu)f_{w}(\beta)$$

Lemma 4. Let $Z \in \mathbb{R}^{n \times d}$ weighted by $w \in \mathbb{R}^n_{>0}$ be μ -complex. If for index i, the supreme β in (TODO) satisfies $z_i\beta \leq 2$, then $w_ig(z_i\beta) \leq \frac{w_i}{W}(80 + 16\mu)f_w(\beta)$.

Proof. Let $K^- = \{j \in [n] \mid z_j \beta \le -1\}$ and $K^+ = \{j \in [n] \mid z_j \beta > -1\}$. Note that $g(-1) > \frac{1}{10}$ and $g(z_i \beta) \le g(2) < 4$. Also, $\sum_{j \in K^+} w_j + \sum_{j \in K^-} w_j = \mathcal{W}$. Thus, if $\sum_{j \in K^+} w_j \ge \frac{1}{2}\mathcal{W}$ then

$$f_w(\beta) = \sum_{j=1}^n w_j g(z_j \beta) \ge \sum_{j \in K^+} w_j g(z_j \beta) \ge \frac{\sum_{j \in K^+} w_j}{10} \ge \frac{\mathcal{W}}{20} = \frac{\mathcal{W}}{20w_i} w_i \ge \frac{\mathcal{W}}{80w_i} w_i g(z_i \beta)$$

If on the other hand $\sum_{j \in K^+} w_j < \frac{1}{2} \mathcal{W}$, then $\sum_{j \in K^-} w_j \geq \frac{1}{2} \mathcal{W}$. Thus

$$f_{w}(\beta) = \sum_{j=1}^{n} w_{j} g(z_{j}\beta) \geq \sum_{j: z_{j}\beta>0} w_{j} g(z_{j}\beta) \geq \frac{1}{2} \sum_{j: z_{j}\beta>0} w_{j} (z_{j}\beta)^{2}$$

$$= \frac{1}{2} \| (\sqrt{D_{w}} Z \beta)^{+} \|_{2}^{2} \geq \frac{1}{2\mu} \| (\sqrt{D_{w}} Z \beta)^{-} \|_{2}^{2}$$

$$= \frac{1}{2\mu} \sum_{j: z_{j}\beta<0} w_{j} (z_{j}\beta)^{2}$$

$$\geq \frac{1}{2\mu} \sum_{j \in K^{-}} w_{j} (z_{j}\beta)^{2}$$

$$\geq \frac{1}{2\mu} \sum_{j \in K^{-}} w_{j}$$

$$\geq \frac{\mathcal{W}}{4\mu}$$

$$\geq \frac{\mathcal{W}}{16\mu w_{i}} w_{i} g(z_{i}\beta)$$

Adding both bounds, we get that for $z_i\beta \leq 2$:

$$w_i g(z_i \beta) \le f_w(\beta) \frac{80w_i}{\mathcal{W}} + f_w(\beta) \frac{16\mu w_i}{\mathcal{W}} = \frac{w_i}{\mathcal{W}} (80 + 16\mu) f_w(\beta)$$

Lemma 5. Let $Z \in \mathbb{R}^{n \times d}$ weighted by $w \in \mathbb{R}^n_{>0}$ be μ -complex. Let U be an orthonormal basis for the columnspace of $\sqrt{D_w}Z$. For each $i \in [n]$, the sensitivity of $g_i(\beta) = g(z_i\beta)$ is bounded by $\varsigma_i \leq s_i = (80 + 16\mu)(\|U_i\|_2^2 + \frac{w_i}{W})$. The total sensitivity is bounded by $\mathfrak{S} \leq 192\mu d$.

Proof.

$$\varsigma_{i} = \sup_{\beta} \frac{w_{i}g(z_{i}\beta)}{f_{w}(\beta)} \leq \sup_{\beta} \frac{2\|U_{i}\|_{2}^{2}(1+\mu)f_{w}(\beta) + \frac{w_{i}}{\mathcal{W}}(80+16\mu)f_{w}(\beta)}{f_{w}(\beta)}
= 2\|U_{i}\|_{2}^{2}(1+\mu) + \frac{w_{i}}{\mathcal{W}}(80+16\mu)
\leq \|U_{i}\|_{2}^{2}(80+16\mu) + \frac{w_{i}}{\mathcal{W}}(80+16\mu)
= (80+16\mu)(\|U_{i}\|_{2}^{2} + \frac{w_{i}}{\mathcal{W}})$$

$$\mathfrak{S} = \sum_{i=1}^{n} \varsigma_{i} \le (80 + 16\mu) \sum_{i=1}^{n} ||U_{i}||_{2}^{2} + \frac{w_{i}}{\mathcal{W}}$$

$$= (80 + 16\mu)(||U||_{F}^{2} + 1)$$

$$= (80 + 16\mu)(d + 1)$$

$$\le 96\mu(d + 1)$$

$$\le 192\mu d$$

Lemma 6. Let $U \in \mathbb{R}^{n \times d}$ be an orthonormal matrix. Then $||U||_F^2 = d$. Proof.

$$||U||_F^2 = \sum_{i=1}^n \sum_{j=1}^d |u_{ij}|^2$$

$$= \sum_{j=1}^d \sum_{i=1}^n |u_{ij}|^2$$

$$\stackrel{\text{(1)}}{=} \sum_{j=1}^d 1$$

$$= d$$

(1) follows from the fact that the columns of U have unit norm due to its orthonormality.

3 Notes

References

- [1] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constantsize coresets for k-means, pca, and projective clustering. SIAM Journal on Computing, 49(3):601–657, 2020.
- [2] R. D. Gordon. Values of mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. *The Annals of Mathematical Statistics*, 12(3):364–366, 1941.
- [3] M. Langberg and L. J. Schulman. Universal ϵ -approximators for integrals. In *Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '10, pages 598–607, 2010.
- [4] A. Munteanu, C. Schwiegelshohn, C. Sohler, and D. P. Woodruff. On coresets for logistic regression. In *Advances in Neural Information Processing Systems 31*, (NeurIPS), pages 6562–6571, 2018.