

Pilani Campus

Compiler Construction

Vinti Agarwal April 2021

CS F363, Compiler Construction

Lecture topic: Register Allocation

In previous lectures:

We have seen two kinds of analysis:

- Constant propagation is a forward analysis
 - information is pushed from inputs to outputs
- Liveness is backward analysis
 - information is pushed from outputs back towards inputs

- Intermediate code uses unlimited number of temporaries
 - simplifies code generation and optimization
 - complicates final translation to assembly
- Typical intermediate code uses too many temporaries

The problem

rewrite intermediate code to use o more temporaries than there are machine registers

The method

- assign multiple temporaries to each register
- but without changing the program behavior

Example

$$a := c + d$$

 $e := a + b$
 $f := e - 1$

- F
- assume a and e are dead after use
 - a dead temporary can be reused
- can allocate a, e and f all to one register (r₁):

$$r_1 := r_2 + r_3$$

 $r_1 := r_1 + r_4$
 $r_1 := r_1 - 1$

- Register allocation is as old as compilers
 - register allocation was used in the original FORTRAN compiler in the 50's
 - very crude algorithm
- A breakthrough came in 1980s
 - register allocation scheme based on graph coloring
 - relatively simple, global and works well in practise

temporaries t₁ and t₂ can share the same register if at any point in the program at most one of the t₁ or t₂ is live.

or

if t₁ and t₂ are live at the same time, they can not share a register.

Example

Compute live variables at each point of the program.

lead

Live variables

- Construct an undirected graph
 - a node for each temporary
 - an edge between t1 and t2 if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them

For our example:

- E.g., b and c cannot be in the same register
- E.g., b and d could be in the same register

- Extracts exactly the information needed to characterize lega/register assignments
- Gives a global (i.e. over the entire flow graph (picture of the register requirements.
- After RIG construction the register allocation algorithm is architecture independent

- A coloring of a graph is an assignment of colors to the nodes, such that nodes connected by an edge have different colors
- A graph is k-colorable if it has a coloring with k colors.

- In our problem, colors = registers
 - we need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- if the RIG is k-colorable, then there is a register assignment that uses no more than k registers.

Dept of CSIS, BITS Pilani, Pilani Campus

consider the example RIG

- There is no coloring with less than 4 colors.
- There are 4-colorings of this graph

lead

Graph coloring

How do we compute graph coloring?

- it isn't easy:
 - This is NP-hard problem. No efficient algorithms are know.
 - One possible solution: use heuristics

- A coloring might not exist for a given number of registers
 - Solution will be discussed later.

Graph coloring Heuristic

Observation:

- pick a node t with fewer than k neighbors in RIG
- eliminate t and its edges from RIG
- if resulting graph is k-colorable, then so is the original

Why?

- let c₁, c₂,...c_n be the colors assigned to the neighbors of tin the reduced graph
- since n < k we can pick some color for t that is different from those of its neighbors

Graph coloring Procedure

- The following works well in practice:
 - pick a node t with fewer than k neighbors
 - put t on the stack and remove it from RIG
 - repeat until the graph is empty
 - Assign colors to nodes on the stack
 - start with the last node added
 - at each step pick a color different from those assigned to already colored neighbors

Start with the RIG and with k = 4:

Stack: { a }

Start with the RIG and with k = 4:

Start with the RIG and with k = 4:

Staell: {d, a}

Start with the RIG and with k = 4:

 $(C_i \alpha, \alpha)$

$$\begin{array}{c}
f \\
e \\
\end{array}$$

$$\begin{array}{c}
(b, c, d, a) \\
e \\
\end{array}$$

$$\begin{array}{c}
(f, e, b, c, d, a) \Rightarrow \text{Stach}.
\end{array}$$

Empty graph- done with the first part!

Now start assigning colors to the nodes, starting with the top of the stack

Thank You!