Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Presented by Fangcheng Fu 2019/03/07

Generic Adaptive Method

Algorithm 1 Generic Adaptive Method Setup

Input:
$$x_1 \in \mathcal{F}$$
, step size $\{\alpha_t > 0\}_{t=1}^T$, sequence of functions $\{\phi_t, \psi_t\}_{t=1}^T$ for $t=1$ to T do $g_t = \nabla f_t(x_t)$ $m_t = \phi_t(g_1, \ldots, g_t)$ and $V_t = \psi_t(g_1, \ldots, g_t)$ $\hat{x}_{t+1} = x_t - \alpha_t m_t / \sqrt{V_t}$ $x_{t+1} = \Pi_{\mathcal{F}, \sqrt{V_t}}(\hat{x}_{t+1})$ end for

	SGD	SGDM	AdaGrad	RMSPROP	ADAM
ϕ_t	g_t	$\sum_{i=1}^{t} \gamma^{t-i} g_i$	g_t	g_t	$(1 - \beta_1) \sum_{i=1}^{t} \beta_1^{t-i} g_i$
ψ_t	I	\mathbb{I}	$\operatorname{diag}(\sum_{i=1}^{t} g_i^2)/t$	$(1-\beta_2)\operatorname{diag}(\sum_{i=1}^t \beta_2^{t-i}g_i^2)$	$(1-\beta_2)\operatorname{diag}(\sum_{i=1}^t \beta_2^{t-i}g_i^2)$

Adam has attracted a surge of research interests due to its fast speed

Dissecting Adam

$$\tilde{m}_t = \beta_1 \tilde{m}_{t-1} + (1 - \beta_1) g_t, \quad m_t = \frac{\tilde{m}_t}{1 - \beta_1^{t+1}},$$

$$\tilde{v}_t = \beta_2 \tilde{v}_{t-1} + (1 - \beta_2) g_t^2, \quad v_t = \frac{\tilde{v}_t}{1 - \beta_2^{t+1}},$$

with $\beta_1, \beta_2 \in (0, 1)$ and updates

$$\theta_{t+1} = \theta_t - \alpha \frac{m_t}{\sqrt{v_t} + \varepsilon}$$

$$\frac{m_t}{\sqrt{v_t}} = \frac{\operatorname{sign}(m_t)}{\sqrt{\frac{v_t}{m_t^2}}} = \sqrt{\frac{1}{1 + \frac{v_t - m_t^2}{m_t^2}}} \odot \operatorname{sign}(m_t),$$

- \rightarrow Update direction is given by the sign $m_{t,i}$
- → Update magnitude is determined by relative variance $\hat{\eta}_{t,i}^2 := \frac{v_{t,i} m_{t,i}^2}{m_{t,i}^2} \approx \frac{\sigma_{t,i}^2}{\nabla \mathcal{L}_{t,i}^2} =: \eta_{t,i}^2$

Dissecting Adam

The Sign

What is the success probability of the direction?

$$\rho_i := \mathbf{P}\left[s_i = \operatorname{sign}(\nabla \mathcal{L}_i)\right] \text{ where } s = \operatorname{sign}(g)$$

By Central Limit Theorem, we can assume $g_i \sim N(0,1)$, then we have

$$\rho_i = \frac{1}{2} + \frac{1}{2} \operatorname{erf} \left(\frac{|\nabla \mathcal{L}_i|}{\sqrt{2}\sigma_i} \right)$$

The Sign

Get some intuition from a simple but insightful problem:

Model Problem (Stochastic Quadratic Problem, sQP). Consider the loss function $\ell(\theta; x) = 0.5 (\theta - x)^T Q(\theta - x)$ with a symmetric positive definite matrix $Q \in \mathbb{R}^{d \times d}$ and 'data" coming from the distribution $x \sim \mathcal{N}(x^*, \nu^2 I)$ with $\nu \in \mathbb{R}_+$. The objective $\mathcal{L}(\theta) = \mathbf{E}_x[\ell(\theta; x)]$ evaluates to

$$\mathcal{L}(\theta) = \frac{1}{2} (\theta - x^*)^T Q(\theta - x^*) + \frac{\nu^2}{2} \operatorname{tr}(Q),$$
 (11)

with $\nabla \mathcal{L}(\theta) = Q(\theta - x^*)$. Stochastic gradients are given by $g(\theta) = Q(\theta - x) \sim \mathcal{N}(\nabla \mathcal{L}(\theta), \nu^2 QQ)$.

Conclusion drawn from theoretical analysis:

- 1) sign-based: noisy, ill-conditioned problems with diagonally dominant Hessians
- 2) non-sign-based: low-noise, arbitrarily-rotated eigenbases

The Sign

Variance Adaptation

Assume we want to update a direction p, but only know \hat{p} s. t. $\mathbf{E}[\hat{p}] = p$ How to update?

Lemma 1. Let $\hat{p} \in \mathbb{R}^d$ be a random variable with $\mathbf{E}[\hat{p}] = p$ and $\mathbf{var}[p_i] = \sigma_i^2$. Then $\mathbf{E}[\|\gamma \odot \hat{p} - p\|_2^2]$ is minimized by

$$\gamma_i = \frac{\mathbf{E}[\hat{p}_i]^2}{\mathbf{E}[\hat{p}_i^2]} = \frac{p_i^2}{p_i^2 + \sigma_i^2} = \frac{1}{1 + \sigma_i^2/p_i^2}$$
(15)

and $\mathbf{E}[\|\gamma \odot \operatorname{sign}(\hat{p}) - \operatorname{sign}(p)\|_2^2]$ is minimized by

$$\gamma_i = (2\rho_i - 1), \tag{16}$$

where
$$\rho_i := \mathbf{P}[\operatorname{sign}(\hat{p}_i) = \operatorname{sign}(p_i)].$$
 (Proof in §B.3)

Variance Adaptation

Adam as a Variance-Adapted Sign Descent

Optimal:
$$\gamma_i = 2\rho_i - 1 = \text{erf}[(\sqrt{2}\eta_i)^{-1}]$$

Actual:
$$\gamma_{t,i} := \sqrt{\frac{1}{1 + \hat{\eta}_{t,i}^2}},$$

$$\hat{\eta}_{t,i}^2 := \frac{v_{t,i} - m_{t,i}^2}{m_{t,i}^2} \approx \frac{\sigma_{t,i}^2}{\nabla \mathcal{L}_{t,i}^2} =: \eta_t^2,$$

Adam is a realization of optimal variance adaptation regarding m instead of g

Variance Adaptation

Stochastic Variance-Adapted Gradient (SVAG)

Optimal: Let
$$\hat{p} = g$$
, we have $\gamma_i^g = \frac{\nabla \mathcal{L}_i^2}{\nabla \mathcal{L}_i^2 + \sigma_i^2} = \frac{1}{1 + \sigma_i^2 / \nabla \mathcal{L}_i^2} = \frac{1}{1 + \eta_i^2}$

Shorten the axis with higher variance Provably O(1/t) convergence rate

$$\mathbf{E}[f(\theta_t) - f_*] \in \mathcal{O}\left(\frac{1}{t}\right)$$

We skip the extension from SVAG to M-SVAG. Please refer to the paper for more details.

Algorithms: M-SGD, Adam, M-SSD, M-SVAG

Algorithm 1 M-SVAG

Input:
$$\theta_0 \in \mathbb{R}^d$$
, $\alpha > 0$, $\beta \in [0,1]$, $T \in \mathbb{N}$
Initialize $\theta \leftarrow \theta_0$, $\tilde{m} \leftarrow 0$, $\tilde{v} \leftarrow 0$
for $t = 0, \dots, T - 1$ do
 $\tilde{m} \leftarrow \beta \tilde{m} + (1 - \beta)g(\theta)$, $\tilde{v} \leftarrow \beta \tilde{v} + (1 - \beta)g(\theta)^2$
 $m \leftarrow (1 - \beta^{t+1})^{-1} \tilde{m}$, $v \leftarrow (1 - \beta^{t+1})^{-1} \tilde{v}$
 $s \leftarrow (1 - \rho(\beta, t))^{-1} (v - m^2)$
 $\gamma \leftarrow m^2/(m^2 + \rho(\beta, t)s)$
 $\theta \leftarrow \theta - \alpha(\gamma \odot m)$
end for

Note: M-SVAG exposes two hyperparameters, α and β .

Algorithm 2 M-SGD and M-SSD

Input:
$$\theta_0 \in \mathbb{R}^d$$
, $\alpha > 0$, $\beta \in [0, 1]$, $T \in \mathbb{N}$
Initialize $\theta \leftarrow \theta_0$, $\tilde{m} \leftarrow 0$
for $t = 0, \dots, T - 1$ do
 $\tilde{m} \leftarrow \beta \tilde{m} + (1 - \beta)g(\theta)$
 $m \leftarrow (1 - \beta^{t+1})^{-1}\tilde{m}$
 $\theta \leftarrow \theta - \alpha m$ $\theta \leftarrow \theta - \alpha \operatorname{sign}(\tilde{m})$
end for

- Laperinients
- 1) Sign aspect dominates
- 2) Usefulness of sign is problem-dependent
- 3) Variance adaption helps
- 4) Generalization effect are caused by the sign

Additional question: signed-based methods require small learning rate?

Problem 1: Fashion-MNIST

M-SGD:

$$3, 1, 6 \cdot 10^{-1}, 3 \cdot 10^{-1}, \mathbf{1} \cdot \mathbf{10^{-1}}, 6 \cdot 10^{-2}, 3 \cdot 10^{-2}, 1 \cdot 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}$$

ADAM:

$$3 \cdot 10^{-2}, 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}, \mathbf{1} \cdot \mathbf{10^{-3}}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-4}$$

M-SSD:

$$10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}, 1 \cdot 10^{-3}, 6 \cdot 10^{-4}, \mathbf{3} \cdot \mathbf{10^{-4}}, 1 \cdot 10^{-4}$$

M-SVAG:

$$3, 1, 6 \cdot 10^{-1}, \mathbf{3} \cdot \mathbf{10^{-1}}, 1 \cdot 10^{-1}, 6 \cdot 10^{-2}, 3 \cdot 10^{-2}, 1 \cdot 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}$$

Problem 2: CIFAR-10

M-SGD:

$$6 \cdot 10^{-1}, 3 \cdot 10^{-1}, 1 \cdot 10^{-1}, 6 \cdot 10^{-2}, 3 \cdot 10^{-2}, 1 \cdot 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}$$

ADAM:

$$6 \cdot 10^{-3}, 3 \cdot 10^{-3}, 1 \cdot 10^{-3}, \mathbf{6} \cdot \mathbf{10^{-4}}, 3 \cdot 10^{-4}, 1 \cdot 10^{-4}, 6 \cdot 10^{-5}$$

M-SSD:

$$6 \cdot 10^{-3}, 3 \cdot 10^{-3}, 1 \cdot 10^{-3}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, \mathbf{1} \cdot \mathbf{10^{-4}}, 6 \cdot 10^{-5}, 3 \cdot 10^{-5}$$

M-SVAG:

$$1, 6 \cdot 10^{-1}, 3 \cdot 10^{-1}, 1 \cdot 10^{-1}, \mathbf{6} \cdot \mathbf{10^{-2}}, 3 \cdot 10^{-2}, 1 \cdot 10^{-2}, 6 \cdot 10^{-3}$$

Additional question: signed-based methods require small learning rate?

Problem 3: CIFAR-100

M-SGD:

$$6, \boldsymbol{3}, 1, 6 \cdot 10^{-1}, 3 \cdot 10^{-1}, 1 \cdot 10^{-1}, 6 \cdot 10^{-2}, \boldsymbol{3} \cdot \boldsymbol{10^{-2}}, 1 \cdot 10^{-2}$$

ADAM:

$$\begin{array}{l} 1 \cdot 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}, 1 \cdot 10^{-3}, 6 \cdot 10^{-4}, \mathbf{3} \cdot \mathbf{10^{-4}}, 1 \cdot \\ 10^{-4}, 6 \cdot 10^{-5}, 3 \cdot 10^{-5} \end{array}, \mathbf{3} \cdot \mathbf{10^{-3}}, 1 \cdot 10^{-3}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot \\ 10^{-4}, 6 \cdot 10^{-5}, 3 \cdot 10^{-5} \end{array}$$

M-SSD:

$$\begin{array}{c} \text{M-SSD.} \\ 1 \cdot 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}, 1 \cdot 10^{-3}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, 3 \cdot 10^{-3}, 3 \cdot 10^{-3}, 3 \cdot 10^{-3}, 3 \cdot 10^{-3}, 1 \cdot \mathbf{10^{-3}}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-4}, 6 \cdot 10^{-5}, 3 \cdot 10^{-5} \end{array}$$

M-SVAG:

$$6, \boldsymbol{3}, 1, 6 \cdot 10^{-1}, 3 \cdot 10^{-1}, 1 \cdot 10^{-1}, 6 \cdot 10^{-2}, \boldsymbol{3} \cdot \boldsymbol{10^{-2}}, 1 \cdot 10^{-2}$$

Problem 4: War and Peace

M-SGD:

$$10, 6, \mathbf{3}, 1, 6 \cdot 10^{-1}, 3 \cdot 10^{-1}, 1 \cdot 10^{-1}, 6 \cdot 10^{-2}$$

ADAM:

$$1 \cdot 10^{-2}, 6 \cdot 10^{-3}, \mathbf{3} \cdot \mathbf{10^{-3}}, 1 \cdot 10^{-3}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-4}, 6 \cdot 10^{-5}$$

$$1 \cdot 10^{-2}, 6 \cdot 10^{-3}, 3 \cdot 10^{-3}, \mathbf{1} \cdot \mathbf{10^{-3}}, 6 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-4}, 6 \cdot 10^{-5}$$

M-SVAG:

$$30, \mathbf{10}, 6, 3, 1, 6 \cdot 10^{-1}, 3 \cdot 10^{-1}, 1 \cdot 10^{-1}$$

Thank you