

# Portable Divergence Unraveling

## The Case of Hindi



Nitin Madnani, Necip Fazil Ayan, Bonnie Dorr, Nizar Habash & Christof Monz

#### What is DUSTer?

- Structural differences divergences occur frequently between language pairs (1 out of every 3 sentences).
- Dealing with these divergences is a challenging task for existing statistical word-alignment tools.
- DUSTer (Divergence Unraveling for Statistical Translation) a rule based framework systematically identifies and "unravels" common divergence types between a given language pair.
- Achieved by transforming the English sentence into a pseudo-English form (E') which matches the physical form of the foreign language more closely.
- This increases the likelihood of one-to-one correspondences between the words and, hence, achieves improved word alignment between the two languages.
- Improved alignments can be used for projection of dependency trees in another language to serve as input for training parsers for that language especially useful if the language is resource-poor.

Figure 1. Examples of Divergences between English and Hindi

| <b>Divergence Type</b> | English               | E'                      | Hindi              |
|------------------------|-----------------------|-------------------------|--------------------|
| Light Verb             | make cuttings         | wound                   | काटा               |
| Manner                 | The land mourns       | The land stays mourning | धरती रोती रहती है  |
| Structural             | envy <b>him</b>       | envy PREP him           | उस से जलता हूँ     |
| Categorial             | I am <b>afraid</b>    | to-me <b>fear</b> be    | मुझे डर है         |
| Head-Swapping          | is valued at 4 rupees | value be 4 rupees       | मूल्य चार रुपये है |
| Thematic               | I am <b>pained</b>    | to-me pain they         | मुझे दुःख देते हैं |

Figure 2. Examples of DUSTer Universal Transformation Rules

#### Light Verb :

A. Expansion:  $[V_i(PsychV) Arg_j] \rightarrow [V(LightVB) Arg_j N_i]$ 

Example: "I fear"  $\rightarrow$  "I have fear"

B. Contraction:  $[V(LightVB) Arg_i Adj_i] \rightarrow [V_i(DirectionV) Arg_i]$ 

Example: "our hand is high" → "our hand heightened"

Manner:

C. Expansion:  $[V_i Arg_i] \rightarrow [V(MotionV) Arg_i Modifier_i]$ 

Example: "I teach" → "I walk teaching"

D. Contraction: [V(ChangeOfStateV) Arg, Modifier]  $\rightarrow$  [V]

(DirectionV) Arg<sub>i</sub>]

Example: "he turns again" → "He returns"

Structural:

E. Expansion:  $[V_i Arg_i Arg_k] \rightarrow [V_i Arg_i P(Oblique) Arg_k]$ 

Example: "I forsake thee" → "I forsake of thee"

F. Contraction:  $[V_i \text{ Arg}_i \text{ P(Oblique) Arg}_k] \rightarrow [V_i \text{ Arg}_k \text{ Arg}_k]$ 

Example: "I search for him" → "I search him"

### Figure 3. DUSTer System Architecture



#### **Adapting DUSTer to Hindi**

- DUSTer ported to Hindi during the DARPA TIDES-2003 Surprise Language Exercise 2003.
- Divergences categories based on large-scale multilingual analysis (Spanish, Arabic, and then Hindi)
- Divergence types filled with Hindi examples using surprise-language data (BBC, EMILE and the electronic Bible) [Figure 1]
- Hindi divergences accommodated by 21 existing rules. No new rules added [Figure 2].
- For each rule, LHS represents English and RHS represents Hindi.
- Each rule lexically parameterized with a set of pre-specified lexical items, serving as lexical triggers for rule applicability. For example, V(LightVB) in rule B can only instantiate as one of do, be, take, give, have and put.
- Parameters set rapidly involved human translation of 16 English parameter settings to their Hindi counterparts.
- Entire porting process well under 3 person days [Figure 4].
- •Time trade off exhibited due to morphological richness (Arabic High, Hindi Low, Chinese Negligible).

Figure 4. Times for human porting of DUSTer to Hindi
[Arabic and Chinese times provided for comparison]

| Task                | Hindi                  | Arabic                 | Chinese                  |
|---------------------|------------------------|------------------------|--------------------------|
| Parameter Setting   | 3.7  hours = 0.5  days | 3.3  hours = 0.4  days | 17.15  hours = 2.1  days |
| Morph Specification | 8 hours = 1 day        | 16 hours = 2 days      | 0  hours = 0  days       |
| Total time          | 1.5 days               | 2.4 days               | 2.1 days                 |