QM6:

Schätzgenauigkeit:

Punktschätzer, Standardfehler (SE) und Konfidenzintervall

Die Differenz als Schätzfehler

je größer die Stichprobe, desto näher sind die Stichprobenmittelwerte am wahren Populationsmittelwert

Beobachtung:

- Kennzahlen ,in der Mitte' unserer Stichprobe sind bei kleineren Stichproben bessere Schätzer (Median, igr)
- Aggregierende Kennzahlen haben die Tendenz zur Mitte, der MW (mean) ist deshalb der häufigste Schätzer

Die Differenz als Schätzfehler

je größer die Stichprobe, desto näher sind die Stichprobenmittelwerte am wahren Populationsmittelwert

Fig.: Verteilung der Differenz zwischen population_mean und Stichprobenmittelwerte

Verteilung von Stichprobenmittelwerten

z.B. ,flights'

- Wir können nie wissen wie nah unser MW aus dem sample am wahren μ liegt, da μ in der Regel gesucht wird.
- Je größer die Stichprobe, desto schmaler ist die Verteilung der Stichprobenmittelwerte. Dadurch wird der Populationsmittelwert präziser geschätzt. Die Breite der Stichprobenverteilung wird durch die Streuung/sd bestimmt.

(z.B. wie in flights)

Verteilung von Stichprobenmittelwerten

z.B. ,flights'

- Wir benötigen demnach nur die sd der Stichprobenmittelwerte um die Genauigkeit unserer Punktschätzung anzugeben
- Vorgehen:
- 1) Standardfehler berechnen (theoretisch oder praktisch)
- 2) 95%- Intervall berechnen

Punktschätzer und Konfidenzintervall

- Die Schätzgenauigkeit kann man oft besser durch eine untere und eine obere Grenze einordnen.
- Der Stichprobenmittelwert gilt dabei als Punktschätzer.
- Das Intervall nennt sich Vertrauensintervall, oder häufiger: Konfidenzintervall.

Punktschätzer und Konfidenzintervall

- Die Schätzgenauigkeit kann man oft besser durch eine untere und eine obere Grenze einordnen.
- Der Stichprobenmittelwert gilt dabei als Punktschätzer.
- Das Intervall nennt sich Vertrauensintervall, oder häufiger: **Konfidenzintervall**.

$$x_u = ar{x} - z \cdot rac{\sigma}{\sqrt{n}}$$
 $x_o = ar{x} + z \cdot rac{\sigma}{\sqrt{n}}$

Herangehensweise: empirische oder theoretische Berechnung des Standardfehlers (standard error: SE)

Praktische Berechnung:

ziehe samples berechne means berechne sd dieser means (=Standardfehler) Herangehensweise: empirische oder theoretische Berechnung des Standardfehlers (standard error: SE)

Praktische Berechnung:

ziehe samples berechne means berechne sd dieser means (=Standardfehler)

Theoretische Berechnung:

ziehe ein sample berechne sd teile sd durch Wurzel aus n (=Standardfehler)

$$SE_{\bar{x}} = \frac{S}{\sqrt{N}}$$

Kleine(re) Stichprobe (n=100)

Kleine(re) Stichprobe (n=100)

Große Stichprobe (n=10.000)

Große Stichprobe (n=10.000)

QM7

Einführung simulationsbasierte Inferenz (SBI):

Bootstrap (resample) Konfidenzintervall Schätzen vs. Hypothesen testen

Ein Ausreißertest

Herangehensweise: empirische oder theoretische Berechnung des Standardfehlers (standard error: SE)

Praktische Berechnung:

ziehe samples berechne means berechne sd dieser means (=Standardfehler)

Theoretische Berechnung:

ziehe ein sample berechne sd teile sd durch Wurzel aus n (=Standardfehler)

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

<- QM7: Resampling

samplen vs. resamplen

Ziehen ohne Zurücklegen (samplen)

Ziehen mit Zurücklegen (resamplen)

Wiederholtes resamplen (bootstrap)

Wiederholtes resamplen (bootstrap)

Wiederholtes resamplen (bootstrap)

Schätzen vs. Hypothesen prüfen

- Estimation (Schätzung)-> Confidence interval
 - In welchem Intervall liegt der unbekannte Wert?

Decision (Entscheidung) -> Hypothesis test

Forschungsfragen beantworten (z.B.): Haben die Flüge am JFK eine größere Verspätung? (angenommen die Gesamtpopulation würde nicht vorliegen)

Hypothesenpaar formulieren

H₁: Die Flüge am JFK haben eine größere Verspätung

H₀: Die Flüge am JFK haben **k**eine größere Verspätung (in der Nullhypothese wird von Gleichheit ausgegangen)

Ein Ausreißertest

Ausreißertest nach IQR

Ausreißertest nach IQR

Simulationsbasierte Inferenz (SBI): ein Hypothesentest

Schätzen vs. Hypothesen prüfen

- Estimation (Schätzung)-> Confidence interval
 - In welchem Intervall liegt der unbekannte Wert?

Decision (Entscheidung) -> Hypothesis test

Forschungsfragen beantworten (z.B.): Haben die Flüge am JFK eine *kleinere* Verspätung? (angenommen die Gesamtpopulation würde nicht vorliegen)

Hypothesenpaar formulieren

H₁: Die Flüge am JFK haben eine kleinere Verspätung H₀: Die Flüge am JFK haben **k**eine kleinere Verspätung (in der Nullhypothese wird von Gleichheit/ keine Auffälligkeit ausgegangen)

Prof. Dr. rer. nat. T. Wiebringhaus

Hypothesen testen: formaler Aufbau

 H_1 : Es gibt einen Unterschied (etwas ist größer/kleiner etc.) H_0 : Es gibt **keinen** Unterschied

Beispiele:

Frage: Sind die Ankünfte am JFK pünktlicher?

H₁: Die Flüge am JFK haben weniger Verspätung

H₀: Die Flüge am JFK haben **nicht weniger/ gleiche** Verspätung

Frage: Hilft der Impfstoff?

H₁: Der Impfstoff erhöht die Immunität

H₀: Der Impfstoff erhöht **nicht** die Immunität

Hilft: Ist die Münze fair?

H₁: Die Münze ist gezinkt

H₀: Die Münze ist **nicht** gezinkt

 μ : unbekannter **Mittelwert** in der Gesamtheit(Population) (π : unbekannter **Anteil** in der Gesamtheit(Population))

$$H_1$$
: $\mu_{JFK} < \mu_{non_JFK}$

$$H_0$$
: $\mu_{JFK} \ge \mu_{non_JFK}$

$$H_1$$
: $\mu_{impf} > \mu_{non_impf}$

$$H_0$$
: $\mu_{impf} \le \mu_{non_impf}$

$$H_1$$
: $\mu_{Kopf} \neq \mu_{Zahl}$

$$H_0$$
: $\mu_{Kopf} = \mu_{Zahl}$

nerichte

gerichtete (einseitige) vs. ungerichtete (zweiseitige) Hypothesen

Ein Hypothesentest hat das Ziel eine wissenschaftliche Forschungsfrage mit empirischen Methoden zu beantworten. Dazu benötigen wir Stichproben, die mit Unsicherheit behaftet sind (z.B. durch einen zu kleinen Stichprobenumfang oder fehlender Repräsentativität).

Wir prüfen z.B. ob ein Mittelwert noch mit der Schwankung des Zufallsprozesses (Streuung) zu erklären ist oder nicht. Die Verteilung und Streuung der Stichprobenmittelwerte (Standardfehler) zeigt welche Werte unter der Nullhypothese (kein Unterschied) am Wahrscheinlichsten sind (basierend auf den vorliegenden Daten).

Die Übergänge zu den weniger wahrscheinlichen Beobachtungen sind fließend sodass eine Regel für die Entscheidung festgelegt werden muss: typischerweise sagen wir dass wenn eine Beobachtung eine Wahrscheinlichkeit von < 5% hat, dieses Ergebnis selten ist. In diesem Fall wird die Grundannahme (dass es keine Auffälligkeit gibt: die Nullhypothese) verworfen (falsifiziert). Andernfalls, wenn das Ergebnis nicht selten ist unter der Grundannahme (> 5%), können wir die Nullhypothese nicht verwerfen. In diesem Fall wird sie bestätigt (verifiziert).

Beispiel Hypothesentest Frage: Sind die Ankünfte am JFK weniger verspätet als an non_JFK?

H₁: Die Flüge am JFK haben weniger Verspätung (Ankunft) ← gilt wenn < 5%

 H_0 : Die Flüge am JFK haben **nicht weniger** Verspätung (Ankunft) \leftarrow bleibt bei \geq 5%

 $H_1: \mu_{JFK} < \mu_{non_JFK} \leftarrow \text{gilt wenn} < 5\%$

 $H_0: \mu_{JFK} \ge \mu_{non_JFK} \leftarrow \text{bleibt bei } \ge 5\%$

 $\alpha = 5\%$ (auch 1% oder 0,1%) Signifikanzniveau/Irrtumswahrscheinlichkeit

Beispiel Hypothesentest

Frage: Sind die Ankünfte am JFK weniger verspätet als an non_JFK?

JFK- Daten von den beiden anderen Flughäfen trennen (non jfk)

kontrollieren

Ein sample aus jfk ziehen

Ein sample aus non_jfk ziehen

Beispiel Hypothesentest Frage: Sind die Ankünfte am JFK weniger verspätet als an non_JFK?

unwahrscheinlich!

Aber wie unwahrscheinlich?

→ p-Wert gibt genau diese

Das Ergebnis ist < 0.05 und somit signifikant ("überzufällig") -> die Nullhypothese wird abgelehnt. Es gilt die H₁

H₁: Die Flüge am JFK haben weniger Verspätung (Ankunft)

H₀: Die Flüge am JFK haben **nicht weniger** Verspätung (Ankunft)

← gilt wenn < 5%

← bleibt bei \geq 5%

Korrigierte Stichprobenvarianz

Varianz = Streuung um den arithmetischen Mittelwert

Erwartungstreue der Varianz

Jungen	x_i	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$
	3,2	0,2	0,04
	3,5	0,5	0,25
	2,9	-0,1	0,01
	3,3	0,3	0,09
	3,4	0,4	0,16
	2,5	-0,5	0,25
	2,7	-0,3	0,09
	2,8	-0,2	0,04
	3,1	0,1	0,01
	2,6	-0,4	0,16
Summe	30	0	1.1
	$1,1/10 \neq 0,11$		

Mädchen	x_i	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$
	1	-2	4
	1	-2	4
	2	-1	1
	2,5	-0,5	0,25
	3,2	0,2	0,04
	2,8	-0,2	0,04
	3,5	0,5	0,25
	2	-1	1
	6	3	9
	6	3	9
Summe	<i>30</i>	0	28,58
	28,5	8/ 10 =	2,858

Import "Schule"
Delimiter: tab
Decimal Mark: Comma
Data type: double

default ist die sample variance, nicht die population variance

Sample Variance =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
Sample Correction

Population Variance =
$$\frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2$$

oder nur über die Nennen korrigieren mit *(n-1)/n

#von der built-in sample variance zur population variance: $var_pop \leftarrow function(x)\{var(x)*(length(x)-1)/(length(x))\}$

QM9

Testauswahl Prüfen auf Normalverteilung Ein Beispiel

Hypothesentest: Beispiel jfk vs non_jfk

- H₁: Die Flüge am JFK haben weniger Verspätung (Ankunft)
 H₀: Die Flüge am JFK haben nicht weniger Verspätung (Ankunft)
- 2) Stichproben an den Flughäfen vornehmen

Übersicht Hypothesentest

Hypothesenpaar aufstellen

2) Daten generieren

1)

- 3) Explorative Analyse: z.B. Daten normalverteilt?
- 4) Testauswahl und durchführung

3) Prüfen ob die Daten normalverteilt sind: QQ-plot und Shapiro-Wilk Test

Testauswahl

- Wenn Daten einer Normalverteilung (NV) folgen, wendet man in der Praxis sog. parametrische Hypothesentests an
- Parametrisch weil die NV durch 2 Parameter (Mittelwert und Standardabweichung) bestimmt wird
- Eine weit verbreitete Klasse von parametrischen Tests sind t-Tests (bei z.B. höchstens 2 Gruppen)
- Wir unterscheiden allgemein einseitige (gerichtete) von zweiseitigen (ungerichteten) Tests,

- sowie **abhängige** (vorher-nachher, dieselbe Gruppe) von **unabhängigen** (2 unterschiedliche Gruppen, z.B. geimpft vs. ungeimpft) Tests
- Die Kenntnis ob Daten normalverteilt sind, ist wichtig für die richtige Testauswahl (siehe Schaubild nächste Folie)

Beispiele: Parametrische (NV) und nicht-parametrische Testverfahren

QQ-plot prüft visuell auf Normalverteilung

Beispiel: Gausssche Glockenkurve bei normalverteilten Daten

Beispiel: Diagonale im QQ-plot bei normalverteilten Daten

Beispiel: keine Gausssche Glockenkurve bei nicht-normalverteilten Daten

Beispiel: keine Diagonale im QQ-plot bei nicht-normalverteilten Daten

Beispiel: Shapiro- Wilk Test testet auf Normalverteilung

Beispiel: jfk und non_jfk auf Normalverteilung prüfen

Beispiel: jfk ist linkssteil

Beispiel: jfk ist eher nicht NV

Beispiel: non-jfk ist linkssteil

Beispiel: non_jfk ist eher nicht NV

Beispiel: Shapiro- Wilk Test lehnt NV ab

Hilfestellung: Parametrische (NV) und nicht-parametrische Testverfahren

Ablauf Hypothesentest

- l) Hypothesenpaar aufstellen
- 2) Daten generieren
- 3) Explorative Analyse: z.B. Daten normalverteilt?
- 4) Testauswahl und durchführung

Hypothesentest: Beispiel jfk vs non_jfk

1) H₁: Die Flüge am JFK haben weniger Verspätung (Ankunft)
 H₀: Die Flüge am JFK haben nicht weniger Verspätung (Ankunft)

$$H_1$$
: $\mu_{JFK} < \mu_{non_JFK}$

$$H_0$$
: $\mu_{JFK} \ge \mu_{non_JFK}$

- 2) Stichproben an den Flughäfen vornehmen
- 3) Prüfen ob die Daten normalverteilt sind: QQ-plot und Shapiro-Wilk Test
- 4) 2 unabhängige nicht-normalverteilte Gruppen:

 Mann-Whitney U Test (auch Wilcoxon Test genannt)

Ablauf Hypothesentest

- Hypothesenpaar aufstellen
- 2) Daten generieren
- 3) Explorative Analyse: z.B. Daten normalverteilt?
- 4) Testentscheidung und durchführung

Beispiel: Wilcoxon Test ist signifikant. Die Nullhypothese (nicht weniger Verspätung) wird abgelehnt

Ende