

10/520435

S70209

Rec'd PCTPO 05 JAN 2004

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
11. März 2004 (11.03.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/020072 A1(51) Internationale Patentklassifikation⁷: B01D 29/56,
46/24

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): DIEL, Bernhard
[DE/DE]; Sohnreystrasse 8, 37124 Rosdorf (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/006563

(81) Bestimmungsstaaten (national): CN, US.

(22) Internationales Anmeldedatum:
21. Juni 2003 (21.06.2003)(84) Bestimmungsstaaten (regional): europäisches Patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR,
HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(25) Einreichungssprache: Deutsch

Veröffentlicht:

— mit internationalem Recherchenbericht

(26) Veröffentlichungssprache: Deutsch

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(30) Angaben zur Priorität:
102 39 241.2 27. August 2002 (27.08.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SARTORIUS AG [DE/DE]; Weender Landstrasse 94-108, 37075 Göttingen (DE).

(54) Title: FILTER ELEMENT, PARTICULARLY FOR THE STATIC OR DEAD-END FILTRATION OF FLUIDS, AND CORRESPONDING FILTER DEVICE

(54) Bezeichnung: FILTERELEMENT, INSbesondere ZUR STATISCHEN BZW. DEAD-END-FILTRATION VON FLUIDEN, SOWIE FILTERVORRICHTUNG

(57) Abstract: The invention relates to a filter element (F), particularly for the static or dead-end filtration of fluids, comprising an inner, essentially hollow supporting core (10) and at least one filter layer (12-14) placed thereon. The inner supporting core (10) is formed as a single piece together with a first end plate (20) and with a second end plate (30). The first end plate (20) comprises a connecting piece (22), which is provided therewith as a single piece and which is fluid-connected to the supporting core (10). The second end plate (30) has a seat (32), which is formed therein, is fluid-connected to the supporting core (10) and is adapted to the shape of the connecting piece (22) whereby enabling a connecting piece (22) of a second structurally identical filter element (F) to be at least partially inserted into the seat (32) in order to establish a fluid connection between the supporting cores (10) of the filter elements (F). The invention also relates to a filter device for fluids comprising a housing, which has an inlet for the fluid to be filtered and an outlet for the filtrate, and comprising two or more inventive filter elements (F) that are interconnected via the respective connecting piece (22) and the respective seat (32). The outlet is fluid-connected to a housing-side seat into which the connecting piece (22) of one of the at least two filter elements (F) can be at least partially inserted in order to establish a fluid connection between the outlet and the supporting cores (10) of the two or more filter elements (F).

[Fortsetzung auf der nächsten Seite]

BEST AVAILABLE COPY

WO 2004/020072 A1

(57) **Zusammenfassung:** Die vorliegende Erfindung betrifft ein Filterelement (F), insbesondere zur statischen bzw. dead-end-Filtration von Fluiden, mit einem inneren, im wesentlichen hohlen Stützkern (10) und zumindest einer daran angeordneten Filterschicht (12-14), wobei der innere Stützkern (10) einstückig mit einer ersten Endplatte (20) und einer zweiten Endplatte (30) ausgebildet ist, wobei die erste Endplatte (20) einen damit einstückig ausgebildeten Anschlussstutzen (22) aufweist, der mit dem Stützkern (10) fluidverbunden ist, und wobei die zweite Endplatte (30) eine Aufnahme (32) darin ausgebildet aufweist, die mit dem Stützkern (10) fluidverbunden und der Form des Anschlussstutzens (22) derart angepasst ist, dass ein Anschlussstutzen (22) eines zweiten baugleichen Filterelements (F) in die Aufnahme (32) zumindest teilweise eingesetzt werden kann, um eine Fluidverbindung zwischen den Stützkernen (10) der Filtervorrichtung für Fluide, welche ein Gehäuse, das einen Zulauf für das zu filtrierende Fluid und einen Auslass für das Filtrat aufweist, und zwei oder mehrere Filterelemente (F) gemäss der Erfindung aufweist, die über den jeweiligen Anschlussstutzen (22) und die jeweilige Aufnahme (32) miteinander verbunden sind, wobei der Auslass mit einer gehäuseseitigen Aufnahme fluidverbunden ist, in die der Anschlussstutzen (22) eines der zumindest zwei Filterelemente (F) zumindest teilweise einsetzbar ist, um eine Fluidverbindung zwischen Auslass und den Stützkernen (10) der zwei oder mehreren Filterelemente (F) herzustellen.

Filterelement, insbesondere zur statischen bzw. dead-end-Filtration von Fluiden, sowie Filtervorrichtung

Die vorliegende Erfindung betrifft ein Filterelement, insbesondere zur statischen bzw. dead-end-Filtration von Fluiden; sowie eine Filtervorrichtung, die mit einer Vielzahl von Filterelementen versehen ist.

5 Filterelemente zur statischen bzw. dead-end Filtration sind z.B. aus WO 01/26774 A1 bekannt und werden in einer Vielzahl von Anwendungsbereichen eingesetzt, z.B. zur Prefiltration von Suspensionen, Produkt-Endklärung, Fraktionierung von Suspensionen, Biolast-Reduktion (bioburden reduction), sterilen Filtration und Retention von Partikeln.

10 Insbesondere bei der Sterilfiltration in der Getränkeindustrie bzw. pharmazeutischen Industrie kommen bevorzugt besonders große Filterelemente, sog. "Jumbo-Filterkerzen", zum Einsatz, die überwiegend eine Bauhöhe von 40" (101,6 cm) und mehr aufweisen. Weiterhin kommen ebenfalls Integralfilter zum Einsatz, wie sie aus DE 38 05 361 bekannt sind, die eine Vielzahl von ineinander geschachtelten Filterelementen aufweisen. Die großen Filterelemente haben eine große Trübaufnahmekapazität und werden in Einzel- oder Mehrfachgehäusen überwiegend in Applikationen verwendet, in denen die Partikelfiltration im Vordergrund steht. Aufgrund der hohen Mengen an Filtermaterial, die in solchen großen Filterelementen eingebaut sind, und aufgrund der großen Bauhöhe von mehr als 1 m, wird das Ein- und Ausbauen des Filterelements in ein bzw. aus einem Gehäuse, insbesondere durch das hohe Eigengewicht (besonders im nassen Zustand), äußerst schwierig.

15 20 25 Es ist daher Aufgabe der vorliegenden Erfindung eine bessere Handhabbarkeit eines Filterelements zu gewährleisten.

Diese Aufgabe wird erfindungsgemäß durch ein Filterelement gemäß Anspruch 1 sowie durch eine Filtervorrichtung gemäß Anspruch 11 gelöst. Bevorzugte Ausführungsformen der vorliegenden Erfindung sind Gegenstand der Unteransprüche.

5

Gemäß der Erfindung, ist ein Filterelement bzw. eine Filterkerze für Fluide, insbesondere zur statischen bzw. dead-end-Filtration von Fluiden, bereitgestellt, mit einem inneren im wesentlichen hohlen Stützkern bzw. rohrförmigen Stützkörper und zumindest einer daran angeordneten Filterschicht,

10 wobei der innere Stützkern einstückig mit einer ersten Endplatte bzw. Kerzenunterteil und einer zweiten Endplatte bzw. Kerzenoberteil ausgebildet ist,

wobei die erste Endplatte einen damit einstückig ausgebildeten Anschlußstutzen aufweist, der mit dem Stützkern fluidverbunden ist, und

15 wobei die zweite Endplatte eine Aufnahme bzw. einen Anschluß darin bzw. daran ausgebildet aufweist, die mit dem Stützkern fluidverbunden und der Form des Anschlußstutzens derart angepaßt ist, daß ein Anschlußstutzen eines zweiten baugleichen Filterelements in die Aufnahme zumindest teilweise eingesetzt werden kann, um eine Fluidverbindung zwischen den Stützkernen der Filterelemente zu ermöglichen.

20

Das Filterelement gemäß der Erfindung eignet sich für die Filtration der verschiedensten Fluide: Flüssigkeiten und/oder Gase mit diversen Inhaltsstoffen, von der echten über die kolloidale Lösung, über die Suspension, die Emulsion, das Aerosol, den Rauch usw. bis hin zum Flüssigkeits- und/oder Gasgemisch.

Somit ist vorteilhaft ein modularer Aufbau eines großen Filterelements durch zwei oder mehrere (kleine) Filterelemente möglich, d.h. die Erfindung ermöglicht es, mehrere Filterelemente miteinander über den jeweiligen 30 Anschlußstutzen und die entsprechende Aufnahme zu verbinden, so daß die zwei oder mehreren Stützkerne, die bevorzugt das Permeat bzw. Filtrat der Filtration aufnehmen, miteinander fluidverbunden sind, und das Fluid, bevorzugt

das Permeat bzw. Filtrat, in dem Stützkern eines Filterelements gegebenenfalls durch den Stützkern eines damit verbundenen Filterelements ab- bzw. zugeleitet werden kann. "Modularer Aufbau" bedeutet insbesondere, daß jedes Filterelement wie ein eigenständiges Filterelement bzw. Filterkerze mit einem 5 Anschlußstutzen an der ersten Endplatte ausgestattet ist, der einen Anschluß z.B. mit einem Gehäuse einer Filtervorrichtung ermöglicht, wobei die Aufnahme der zweiten Endplatte bevorzugt einer gehäuseseitigen Aufnahme entspricht bzw. im wesentlichen mit dieser gleich ist und somit mit einem Anschlußstutzen gepaßt werden kann.

10

Ist ein größeres Filterelement notwendig, können zwei oder mehrere kleinere Filterelemente miteinander verbunden werden, indem der Anschlußstutzen der ersten Endplatte eines Filterelements zumindest teilweise in die Aufnahme der zweiten Endplatte eines weiteren Filterelements eingesetzt wird. So kann z.B. 15 eine 40" Jumbo-Filterkerze modular durch vier miteinander verbundene 10" Filterkerzen aufgebaut bzw. ausgebildet werden. Aufgrund der Verbindung von Anschlußstutzen und Aufnahme ist es ebenfalls vorteilhaft möglich, die Unfiltration von der Filtratseite abzutrennen. Es ist somit eine flexible Baugrößen- bzw. Bauhöhengestaltung vorteilhaft bereitgestellt, die es dem Anwender ermöglicht, 20 auf seine spezifischen Kapazitätsanforderungen zu reagieren, indem er sich insbesondere das modular zusammengesetzte Filterelement unterschiedlich groß zusammenbauen kann.

Durch einstückiges Ausbilden der zweiten Endplatte mit einer Aufnahme wird 25 gewährleistet, daß das Filterelement ohne zusätzliche Adapter mit dem Anschlußstutzen eines weiteren Filterelements verbunden werden kann, so daß die Handhabbarkeit weiterhin verbessert ist.

Bei dem Ausbau eines solchen modular aufgebauten Groß-Filterelements 30 können die einzelnen kleinen Filterelemente voneinander getrennt werden. Dementsprechend ist es nicht mehr notwendig, das gesamte, im nassen Zustand sehr schwere Filterelement zu manipulieren, sondern es können die

einzelnen kleinen Filterelement-Module ausgebaut werden. Auch können einzelne Filterelement-Module des Groß-Filterelements, die defekt sind, einzeln bzw. gesondert ausgetauscht werden, so daß der Ausschuß verringert und die Gesamtnutzungsdauer verbessert werden kann.

5

Weiterhin ergibt sich ebenfalls ein produktionstechnischer Vorteil dadurch, daß es gemäß der Erfindung vorteilhaft möglich ist, nunmehr ein einziges Standard-Filterelement (z.B. ein 10" Filterelement) zu fertigen und die größeren Filterelemente (z.B. ein 20" oder ein 40" Filterelement) modular aus einer Vielzahl von Standard-Filterelementen, insbesondere ohne zusätzliche Adapter oder dgl., herzustellen, was sowohl logistische als auch die Fertigungstechnologie betreffende Erleichterungen mit sich bringt und dadurch Kosten-senkende Effekte hat.

10 15 Gemäß einer bevorzugten Ausführungsform der Erfindung ist eine Verrasteinrichtung vorgesehen, die zwei über den Anschlußstutzen und die Aufnahme miteinander verbundene Filterelemente lösbar verrastet.

Daher ist vorteilhaft gewährleistet, daß zwei Filterelemente sich nicht ungewollt
20 voneinander, insbesondere in Axial- und/oder Radialrichtung, lösen.

Bevorzugt weist die Verrasteinrichtung zumindest einen Bajonetschlüssel und zumindest ein damit verbindbares Bajonetschloß auf.

25 Dementsprechend ist eine konstruktiv einfache, widerstandskräftige Verrastung von zwei miteinander verbundenen Filterelementen möglich, indem der Bajonetschlüssel in Dreh- bzw. Azimuthal-Richtung ineinandergreifen und somit eine Sicherung in Axialrichtung bereitstellen.

30 Weiterhin bevorzugt weist die Verrasteinrichtung einen deartigen Lösemoment-Verlauf auf, daß das Lösemoment in Azimuthal-Richtung ein Maximum aufweist.

Daher kann die Gefahr eines ungewollten Lösens der Verrasteinrichtung verringert werden. Zudem kann das Lösen einzelner Filterelemente aus einer Vielzahl von miteinander verbundenen und verrasteten Filterelementen erleichtert werden.

5

Weiterhin bevorzugt weist das Bajonettschloß insbesondere an ihrem distalen Ende einen Vorsprung auf, der in eine im wesentlichen entsprechende Ausnehmung des Bajonettschlüssels einsetzbar ist, um das Maximum des Lösemoments zu definieren.

10

Somit ist in konstruktiv einfacher Weise ein Maximum des Lösemoments mit o.g. Vorteilen bereitgestellt.

15

Am bevorzugtesten wird der Wert des Lösemoment-Maximums durch eine auf das Filterelement wirkende Schwerkraft erhöht. Dies wird bevorzugt durch den Vorsprung an dem Bajonettschloß und durch die Ausnehmung des Bajonettschlüssels erreicht.

20

Dementsprechend wird gewährleistet, daß wenn ein Großfilterelement mit einer Vielzahl von einzelnen Filterelementen auseinander gebaut werden soll, durch das erhöhte Lösemoment der unteren Filterelemente durch Drehen des obersten Filterelements lediglich dieses obere Filterelement gelöst wird, während die anderen Filterelemente miteinander verbunden bleiben. Es ist daher vorteilhaft möglich, die Filterelemente nach und nach zu entfernen, ohne die jeweils unteren Filterelemente halten oder fixieren zu müssen, was die gesamte Handhabbarkeit verbessert.

30

Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist der Anschlußstutzen und/oder die Aufnahme mit einer Abdichteinrichtung versehen, welche bevorzugt eine oder mehrere umlaufende Dichtungen (z.B. einen oder mehrere O-Ringe) aufweist.

Es kann somit eine sichere Abdichtung von Filtrat- und Unfiltratseite

gewährleistet werden. Im Falle, daß die Abdichtung an dem Anschlußstutzen mit der Abdichteinrichtung versehen ist, kann weiterhin vorteilhaft eine Abdichtung zwischen dem Abschlußstutzen und einem Filtergehäuse erzielt werden, wenn das Filterelement in das Filtergehäuse entsprechend montiert
5 wird.

Bevorzugt ist eine Verschlußkappe in die Aufnahme zum Verschließen der Aufnahme zumindest teilweise einsetzbar.

10 Daher kann ein oberstes Filterelement eines modular aus einer Vielzahl von einzelnen Filterelementen modular aufgebauten Großfilterelements vorteilhaft abgeschlossen werden, um die Filtrat- von der Unfiltratseite zu trennen.

Weiterhin bevorzugt weist die Verschlußkappe ein der Verrasteinrichtung
15 angepaßtes Verrastelement zum Verrasten mit dem Filterelement auf.

Dementsprechend kann die Verschlußkappe sicher verrastet werden.

Am bevorzugtesten weist die Filterschicht zumindest eine plissierte Membran
20 oder ein aus Fasern aufgebautes Tiefenfilter auf.

Gemäß der Erfindung wird weiterhin eine Filtervorrichtung für Fluide bereitgestellt, welche aufweist:

ein Gehäuse, das einen Zulauf für das zu filtrierende Fluid und einen
25 Auslaß für das Filtrat aufweist, und wenigstens eine Einheit aus mindestens zwei Filterelementen gemäß der Erfindung oder einer bevorzugten Ausführungsform hiervon, die über den jeweiligen Anschlußstutzen und die jeweilige Aufnahme miteinander verbunden sind,

wobei der Auslaß mit einer gehäuseseitigen Aufnahme fluidverbunden
30 ist, in die der Anschlußstutzen eines der zumindest zwei Filterelemente einer jeden Einheit zumindest teilweise einsetzbar ist, um eine Fluidverbindung zwischen Auslaß und den Stützkernen der zwei oder mehreren Filterelemente

herzustellen.

Es ist daher gemäß der Erfindung vorteilhaft möglich, Filtervorrichtungen mit flexibel anpaßbaren Filtereigenschaften bereitzustellen, die modular aufgebaute
5 bzw. miteinander verbundene Filterelemente aufweisen.

Weitere Merkmale, Aufgaben und Vorteile der vorliegenden Erfindung werden aus der nachfolgenden beispielhaften Beschreibung bevorzugter Ausführungsformen der Erfindung mit Bezug auf die Zeichnung ersichtlich
10 werden. Diesbezüglich können einzelne Merkmale oder Merkmalsgruppen einzelner nachfolgend getrennt beschriebener Ausführungsformen beliebig zu weiteren Ausführungsformen der Erfindung kombiniert werden.

FIG. 1 ist eine teilweise explodierte Ansicht eines Filterelements gemäß einer
15 bevorzugten Ausführungsform der Erfindung;

FIG. 2 ist eine Seitenansicht eines aus zwei Filterelementen modular zusammenfügbarer größeren Filterelements gemäß einer weiteren bevorzugten Ausführungsform der Erfindung;

20 FIG. 3 ist eine Schnittansicht einer ersten bzw. einer zweiten Endplatte eines Filterelements gemäß einer weiteren bevorzugten Ausführungsform der Erfindung;

25 FIG. 4 ist eine Seitenansicht, die drei miteinander modular verbundene Filterelemente gemäß einer bevorzugten Ausführungsform der Erfindung zeigt;

FIG. 5 ist eine Seitenansicht eines Filterelements mit eingesetzter Verschlußkappe gemäß einer bevorzugten Ausführungsform der Erfindung;

30 FIG. 6 ist eine Draufsicht auf eine zweite bzw. obere Endplatte eines Filterelements gemäß einer bevorzugten Ausführungsform der Erfindung;

FIG. 7 ist eine Draufsicht auf eine erste bzw. untere Endplatte eines Filterelements gemäß einer bevorzugten Ausführungsform der Erfindung; und

FIG. 8 ist eine Seitenansicht einer Verschlußkappe.

5

Nachfolgend wird ein Filterelement F für Fluide (d.h. Flüssigkeiten und/oder Gase mit diversen Inhaltsstoffen, echte oder kolloidale Lösungen, Suspensionen, Emulsionen, Aerosol, Rauch, Flüssigkeits- und/oder Gasgemisch, usw.) gemäß einer bevorzugten Ausführungsform der Erfindung

10 beschrieben. Das Filterelement F weist einen hohlen bzw. rohrförmigen Stützkern bzw. Stützkörper 10 mit einem Filtratrohr mit Durchgangsöffnungen für Fluide auf dem Mantel des Rohres 11, einer ersten Endplatte 20 und einer zweiten Endplatte 30, welche mit dem Stützkern 10 einstückig bzw. einheitlich ausgebildet sind, und einen äußeren Träger 16 mit Durchgangsöffnungen 16A

15 auf. Das Filterelement F weist weiterhin zwischen dem Stützkern 10 und dem äußeren Träger 16 zumindest eine Filterschicht 12-14 als ein Filtermedium auf, welche in der gezeigten Ausführungsform eine innere Drainage- bzw. Stützschicht 12, eine Membrane und/oder ein aus Fasern aufgebautes Tiefenfilter 13 und eine äußere Drainage- bzw. Stütz-Schicht 14 aufweist. Die

20 Membrane 12 zur Mikrofiltration kann eine Vielzahl von Polymermaterialien (z.B. Zellulosehydrat, Zelluloseacetat (CA), Polyacrylnitril, Polysulfon (PSU), Polyethersulfon (PESU), Polyamid (PA), Polyvinylidenfluorid (PVDF), Polytetrafluorethylen (PTFE), Polycarbonat (PC) und Polyakylen, wie Polypropylen (PP)) auch in modifizierter Form, z. B. als Membranadsorber

25 aufweisen, die poröse Hohlräume umgeben. Die Porengröße kann zwischen etwa 0,05 bis 5 µm in Abhängigkeit von der konkreten Anwendung liegen. Die Dicke der Membrane 12 zur Mikrofiltration kann zwischen etwa 15 µm bis etwa 250 µm liegen. Das dargestellte Filterelement F kommt insbesondere für die statische bzw. dead-end Filtration zum Einsatz. Es ist jedoch ebenfalls denkbar,

30 daß ein modular aufgebautes Filterelement gemäß der vorliegenden Erfindung auch bei einer cross-flow Filtration zum Einsatz kommt.

Der hohle Stützkern 10 dient der Abstützung der Filterschicht 12-14, um

insbesondere den Druckkräften in Filtrationsrichtung standzuhalten. Der Stützkern 10 definiert in seinem Inneren einen hohlen Raum bzw. ein Rohr 11 (Filtratrohr 11), in dem das Filtrat bzw. Permeat durch entsprechend darin vorgesehene Ausnehmungen 10A eintreten kann. Das Filtrat kann dann durch 5 das Rohr 11 zu einem nachfolgend näher beschriebenen Anschlußstutzen 22 geleitet werden. Der Stützkern 10 ist bevorzugt aus thermoplastischen Polymermaterial hergestellt.

Der Stützkern 10 weist damit einstückig ausgebildete erste und zweite 10 Endplatten 20 bzw. 30 auf, welche bevorzugt gleichzeitig mit dem Stützrohr 10 geformt bzw. gegossen werden bzw. mit diesem einstückig verbunden sind, z.B. durch Schweißen, thermoplastisches Verformen, usw. Die Endplatten 20, 30 können ebenfalls mit der Filterschicht 12-14 gebondet bzw. befestigt werden. Die Verbindung der Endplatten 20, 30 mit dem Stützrohr 10 und/oder 15 der Filterschicht 12-14 kann z.B. mit einem Harzbinder (z.B. Harze, wie Epoxyharze oder Polyurethan), zusätzlichen Polymerschmelzen (z.B. Polypropylen, Polyethylen, Polysulfon, Polyester, usw.) und/oder durch ein direktes thermisches Schmelzen der Endplatten 20, 30 und/oder des Stützrohrs 10 bzw. der Filterschichten 12-14 erzielt werden.

20 Die erste bzw. untere Endplatte 20 weist einen Anschlußstutzen 22 auf. Dieser Anschlußstutzen 22 dient zur Verbindung mit einer gehäuseseitigen Aufnahme (nicht gezeigt) oder mit einer nachfolgend näher beschriebenen Aufnahme 32 der zweiten Endplatte 30, über die das Filtrat nach außen bzw. von dem 25 Filterelement F weg abgeleitet wird. Zu diesem Zweck weist der Anschlußstutzen 22 eine Durchgangsoffnung 10C (FIG. 7) auf, welche mit dem Rohr 11 des Stützkerns 10 fluidverbunden ist. Daher kann das in den hohen Bereich (Rohr 11) des hohen Stützkerns 10 gelangte Filtrat über die Durchgangsoffnung 10C des Anschlußstutzens 22 abgeleitet werden. Der 30 Anschlußstutzen 22 weist weiterhin zur dichtenden Anlage mit einem Gegenstück (sei es die gehäuseseitige Aufnahme oder die nachfolgend näher beschriebene Aufnahme 32 der zweiten Endplatte 30) eine Dichteinrichtung auf,

welche bevorzugt eine oder mehrere O-Ringe 26 (in den FIGUREN 1-5 sind zwei O-Ringe 26 gezeigt) bevorzugt aus Kautschuk umfaßt. Bei Einsatz in das Gegenstück werden die O-Ringe 26 zwischen dem Stutzen 22 und dem Gegenstück (z.B. die Aufnahme 32) gepreßt und dichten somit die Filtratseite
5 innerhalb des Stützkörpers 10 bzw. des Anschlußstutzens 22 von der Unfiltrat- bzw. Konzentratseite außerhalb der Filterschicht 12-14 bzw. der Endplatten 20, 30 ab.

Die zweite bzw. obere Endplatte 30 weist eine Aufnahme bzw. einen Anschluß 10 auf, welche(r) eine Form aufweist, die jener von dem Anschlußstutzen 22 entspricht bzw. zu dieser komplementär ist. Daher kann der Anschlußstutzen 22 eines Filterelements F zumindest teilweise in die Aufnahme 32 eines zweiten Filterelements F eingesetzt werden (siehe FIG. 2). Die Aufnahme 32 steht mit einer Öffnung 10B des Stützkerns 10 bzw. des Rohres 11 in fluidverbindung, so
15 daß Fluid aus dem einen Filterelement F in das benachbarte Filterelement F über den Anschlußstutzen 22, die Aufnahme 32 und die Öffnung 10B fließen bzw. strömen kann. Dementsprechend sind die Hohlräume (Rohre 11) der Stützkerne 10 der beiden Filterelemente F miteinander fluidverbunden bzw. fluidverbindbar. Die Aufnahme 32 der zweiten Endplatte 30 weist somit
20 bevorzugt eine gleiche oder ähnliche Form bzw. Ausgestaltung wie jene der gehäuseseitigen Aufnahme auf. Weiterhin kann eine Endkappe bzw. ein Verschlußadapter 40 in die Aufnahme 32 eingesetzt werden, um den Stützkörper 10 bevorzugt über entsprechende O-Ringe 26' dichtend abzuschließen. Es ist daher möglich, z.B. das oberste Filterelement F einer
25 Reihe von ineinander gesteckten bzw. miteinander verbundenen Filterelementen F zu verschließen, so daß in den Hohlraum (Rohr 11) des Stützkerns 10 bzw. der Stützkerne 10 tretendes Fluid durch den untersten Anschlußstutzen 22 zu einem Auslaß abgeführt werden kann, indem dieser Anschlußstutzen 22 in die gehäuseseitige Aufnahme eingesetzt wird. Die
30 Verschlußkappe 40 weist bevorzugt einen Zentriervorsprung 42 (FIG. 2) an seiner Außenseite auf, um das bzw. die Filterelement(e) F bezüglich des Gehäuses zu zentrieren.

Weiterhin weist die zweite Endplatte 30 eine Verriegelungs- bzw. Verrasteinrichtung 25, bevorzugt in Form eines Bajonettschlüssels 25, auf. Die Verrasteinrichtung an der zweiten Endplatte 30 kann mit einer passenden Verrasteinrichtung 24, bevorzugt in Form eines Bajonettschlosses 24, an dem 5 Anschlußstutzen 22 zusammenwirken, um zwei Filterelemente F gegeneinander in Axialrichtung zu verrasten bzw. zu sichern. Daher ist eine Verdrehung der beiden Filterelemente F bezüglich zueinander notwendig (d.h. eine relative Versetzung eines Filterelements F um die Längsachse herum gegenüber dem zweiten Filterelement F), so daß das Bajonettschloß 24 und der 10 Bajonettschlüssel 25 sich entlang einer Verdrehrichtung VR gegeneinander linear verschieben. Alternativ oder zusätzlich kann die Verrasteinrichtung eine oder mehrere (bevorzugt im wesentlichen U-förmige) Verrastlaschen aufweisen, die z.B. an dem äußeren Träger 16 z.B. im unteren Bereich angebracht sind und mit einem oder mehreren entsprechenden Vorsprüngen an dem äußeren 15 Träger 16 z.B. im oberen Bereich wechselwirken bzw. verrasten können, so daß zwei miteinander verbundene Filterelemente F sowohl in Axial- als auch in Radialrichtung gegen relative Verschiebung gesichert sind.

Gemäß der in FIG. 4 bis 6 dargestellten bevorzugten Ausführungsform weist die 20 zweite Endplatte 30 weiterhin einen oder mehrere Stützvorsprünge 27 auf, die ein daran angeordnetes benachbartes Filterelement F abstützen, so daß insbesondere bei vertikaler Anordnung von zwei Filterelementen F übereinander, das Gewicht des oberen Filterelements F besser abgestützt werden kann.

Gemäß der in FIG. 3 gezeigten bevorzugten Ausführungsform weist das 25 Bajonettschloß 24, bevorzugt an seinem distalen Ende, eine punktförmige Verdickung bzw. einen Vorsprung bzw. eine Nase 24A auf, der bzw. die in eine entsprechende bzw. passgenaue Ausnehmung bzw. Vertiefung 25A des 30 Bajonettschlüssels 25 eingreift. Der Vorsprung 24A und die Ausnehmung 25A bewirken, daß das Lösemoment der Verrasteinrichtung 24, 25 in einer azimuthalen Position (oder in einer Drehposition bzw. -ausrichtung entlang der

Verdrehrichtung VR) bevorzugt einen Maximalwert einnimmt. Um den Vorsprung 24A zum Öffnen bzw. Lösen der Verbindung zweier Filterelemente F wieder aus der entsprechenden Ausnehmung 25A zu bewegen, muß eine größere Reibungskraft (entsprechend dem Maximum in dem Lösemoment) 5 überwunden werden, die mit zunehmenden Gewicht der gesamten darüber angeordneten bzw. darauf lastenden Filterelementen-Konstruktion steigt. Dementsprechend ist bei einer Verbindung mehrerer Filterelemente F die Reibungskraft an der untersten Verbindung (d.h. zwischen den untersten zwei Filterelementen F) am größten und an der obersten Verbindung am kleinsten.

10 Dadurch öffnet sich bei einer Drehung bevorzugt die oben liegende Verbindung, und zwar insbesondere ohne das eine weitere Person benötigt wird, die durch Festhalten der unteren Elemente, ein ungewolltes Öffnen einer weiter unten gelegenen Verbindung(en) sicherstellt. Das in FIG. 7 dargestellte Bajonettschloß 24 weist im Unterschied zu FIG. 3 keinen Vorsprung 24A auf.

15 Der Bajonettschlüssel 25 kann entweder vorspringend auf der zweiten Endplatte vorgesehen sein (FIG. 3, 4) und/oder als Rücksprung bzw. Ausnehmung innerhalb der Aufnahme 32 (siehe FIG. 6). Weiterhin können gemäß einer bevorzugten Ausführungsform der Erfindung entweder nur ein Bajonettschloß 24-Bajonettschlüssel 25 Paar oder eine Vielzahl von 20 Bajonettschloß 24-Bajonettschlüssel 25 Paaren umfänglich voneinander beabstandet vorgesehen sein (in FIG. 6 und 7 sind drei Paare beispielhaft dargestellt).

Der äußere Träger 16 ist mit Durchgangsöffnungen 16A versehen, um ein Durchströmen bzw. -fließen des zu filternden Fluids (Konzentrat) von Außen zu 25 der Filterschicht 12-14 zu ermöglichen. Der äußere Träger 16 erhöht vorteilhaft die mechanische und/oder thermische Stabilität des Filterelements F ohne die Flußrate (d.h. die effektive Filterfläche) signifikant zu verringern. Weiterhin erleichtert der äußere Träger 16 die Handhabung des Filterelements F während 30 der Installation und Deinstallation. Bevorzugt haben der Stützkern 10, die Filterschicht 12-14 und der äußere Träger 16 im wesentlichen den gleichen thermischen Expansionskoeffizienten, so daß das Filterelement F möglichst gering durch thermische Veränderungen (z.B. bei einer Dampfsterilisation)

verbogen bzw. gekrümmmt wird.

Dementsprechend können, wie in FIG. 4 exemplarisch gezeigt, eine Vielzahl von Filtermodulen F zu einem größeren modularen Filtermodul 5 zusammengefügt werden, wobei die Handhabbarkeit durch die trennbare Verbindung zwischen den einzelnen Filterelementen F gewährleistet ist.

Ein z.B. für den Einsatz in der Getränkeindustrie unter Verwendung des erfindungsgemäßen Filterelements F geeignete Filtervorrichtung gemäß einer bevorzugten Ausführungsform der Erfindung, weist (nicht gezeigt) ein Gehäuse aus Edelstahl auf, das eine Gehäusebasis mit Anschlüssen für die Versorgung und Entsorgung des auf Gehäusebeinen abgestützten Gehäuses umfaßt. Ein glockenförmiges Gehäuseoberteil mit einem Verstärkungskranz ist unter Zwischenlage von elastischen O-Ringdichtungen mit Hilfe von über den Umfang 10 verteilt angeordneten Spannelementen dichtend mit der Gehäusebasis verbunden. Das Gehäuseoberteil hat an seiner höchsten Stelle einen Entlüftungsstutzen mit einer Ventilanordnung. Das Gehäuseoberteil kann mit Hilfe von Handgriffen nach Lösen der Spannelemente ganz von der Gehäusebasis entfernt werden, so daß für die Bestückung und Entfernung des 15 Filterelements F oder der Filterelemente F die Gehäusebasis auch von innen her frei zugänglich ist. Der zentral angeordnete Anschluß geht in eine Gehäusedurchbrechung über, die den eigentlichen Sterilraum bildet und das Filterelement F ist über den untersten Anschlußstutzen 22 mittels der O-Ringdichtungen 26 in diese Gehäusedurchbrechung (d.h. gehäuseseitigen 20 Anschluß) zumindest teilweise einsetzbar. Mehrere über den Umfang der Gehäusebasis angeordnete Verriegelungselemente können mit Verriegelungsnasen bzw. dem Bajonettsschloß 24 am Filterelement F in Eingriff 25 gebracht werden, so daß das Filterelement F bzw. die Filterelemente F insgesamt in axialer Richtung verriegelt ist/sind und gegen einen Rückstau aus 30 den Anschlüssen gesichert ist/sind. Das Gehäuse hat z. B. eine Innenhöhe von etwa 1300 mm, so daß ein modular aufgebautes Filterelement mit 1050 mm Länge im Gehäuse positioniert werden kann.

Bezugszeichenliste

5 F Filtermodul
10 Stützkern
10A Ausnehmung
10B, 10C Öffnung
11 Filtratrohr
10 12 innere Drainage- bzw. Stützschicht
13 Membrane
14 äußere Drainage- bzw. Stützschicht
16 äußerer Träger
16A Durchgangsöffnung
15 20 erste (untere) Endplatte
22 Anschlußstützen
24, 24' Bajonettschlüssel
24A Vorsprung
25, 25' Bajonettschloß
20 25A Ausnehmung
26 O-Ring
27 Stützvorsprung
30 zweite (obere) Endplatte
32 Ausnehmung
25 40 Verschlußkappe
42 Zentriervorsprung

Ansprüche

1. Filterelement (F) für Fluide, mit einem inneren im wesentlichen hohlen Stützkern (10) und zumindest einer daran angeordneten Filterschicht (12-14), wobei der innere Stützkern (10) einstückig mit einer ersten Endplatte (20) und einer zweiten Endplatte (30) ausgebildet ist,
 - 5 wobei die erste Endplatte (20) einen damit einstückig ausgebildeten Anschlußstutzen (22) aufweist, der mit dem Stützkern (10) fluidverbunden ist, und wobei die zweite Endplatte (30) eine Aufnahme (32) darin ausgebildet aufweist, die mit dem Stützkern (10) fluidverbunden und der Form des Anschlußstutzens (22) derart angepaßt ist, daß ein Anschlußstutzen (22) eines 10 zweiten baugleichen Filterelements (F) in die Aufnahme (32) zumindest teilweise eingesetzt werden kann, um eine Fluidverbindung zwischen den Stützkernen (10) der Filterelemente (F) zu ermöglichen.
- 15 2. Filterelement nach Anspruch 1, wobei eine Verrasteinrichtung (24, 25) vorgesehen ist, die zwei über den Anschlußstutzen (22) und die Aufnahme (32) miteinander verbundene Filterelemente (F) lösbar verrastet.
3. Filterelement nach Anspruch 2, wobei die Verrasteinrichtung (24, 25) 20 zumindest einen Bajonettschlüssel (25) und ein damit verbindbares Bajonettschloß (24) aufweist.
4. Filterelement nach Anspruch 2 oder 3, wobei die Verrasteinrichtung (24, 25) einen deartigen Lösemoment-Verlauf aufweist, daß das Lösemoment in 25 Azimuthal-Richtung ein Maximum aufweist.
5. Filterelement nach Anspruch 3 und 4, wobei das Bajonettschloß (24) an ihrem distalen Ende einen Vorsprung (24A) aufweist, der in eine im

wesentlichen entsprechende Ausnehmung (25A) des Bajonettschlüssels (25) einsetzbar ist, um das Maximum des Lösemoments zu definieren.

6. Filterelement nach Anspruch 4 oder 5, wobei der Wert des Lösemoment-
- 5 Maximums durch eine auf das Filterelement (F) wirkende Schwerkraft erhöht wird.

7. Filterelement nach einem der vorangehenden Ansprüche, wobei der Anschlußstutzen (22) und/oder die Aufnahme (32) mit einer Abdichteinrichtung
- 10 (26) versehen ist, welche bevorzugt eine oder mehrere umlaufende Dichtungen (26) aufweist.

8. Filterelement nach einem der vorangehenden Ansprüche, wobei eine Verschlußkappe (40) in die Aufnahme (32) zum Verschließen der Aufnahme
- 15 (32) zumindest teilweise einsetzbar ist.

9. Filterelement nach Anspruch 8 und Anspruch 2, wobei die Verschlußkappe (40) ein der Verrasteinrichtung (24, 25) angepaßtes Verrastelement (24') zum Verrasten mit dem Filterelement (F) aufweist.

- 20 10. Filterelement nach einem der vorangehenden Ansprüche, wobei die Filterschicht (12-14) zumindest eine plissierte Membran (13) aufweist.

11. Filterelement nach einem der vorangehenden Ansprüche, wobei die
- 25 Filterschicht (12-14) ein aus Fasern bestehendes Tiefenfilter (13) aufweist.

12. Filtrvorrichtung für Fluide, welche aufweist:
ein Gehäuse, das einen Zulauf für das zu filtrierende Fluid und einen Auslaß für das Filtrat aufweist, und
- 30 wenigstens eine Einheit aus mindestens zwei Filterelementen (F) nach einem der vorangehenden Ansprüche, die über den jeweiligen Anschlußstutzen (22) und die jeweilige Aufnahme (32) miteinander verbunden sind,

wobei der Auslaß mit einer gehäuseseitigen Aufnahme fluidverbunden ist, in die der Anschlußstutzen (22) eines der zumindest zwei Filterelemente (F) einer jeden Einheit zumindest teilweise einsetzbar ist, um eine Fluidverbindung zwischen Auslaß und den Stützkernen (10) der Einheiten aus mindestens zwei
5 Filterelementen (F) herzustellen.

Fig. 1

Fig. 2

3/8

Fig. 3

10/520435

WO 2004/020072

PCT/EP2003/006563

4/8

Fig. 4

Fig. 5

Fig. 6

7/8

Fig. 7

10/520435

WO 2004/020072

PCT/EP2003/006563

8/8

Fig. 8

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.