Midterm Solution

November 10, 2022

Problem 1

- 1. True. Let $Ax = \lambda x$ with $\lambda \in \mathbb{C}$ and non-zero $x \in \mathbb{C}^n$. Because $A^2 = A$, $Ax = A^2x = A\lambda x = \lambda^2 x = \lambda x$, which implies that $(\lambda^2 \lambda)x = 0$. Since x contains at least one non-zero element, $\lambda^2 \lambda = 0$ must hold. It follows that $\lambda = 0$ or 1.
- 2. True. Note that the rank of a zero matrix is 0 and its dimension of kernel (null) space is n by the rank-nullity theorem. Besides, $\operatorname{Ker}(A) = \operatorname{Ker}(A^T A)$ (Since if Ax = 0, $A^T Ax = 0$. Conversely, if $A^T Ax = 0$, Ax = 0 follows from $x^T A^T Ax = 0$). Therefore, by the rank-nullity theorem, $\operatorname{rank} A = n \operatorname{dim} \operatorname{Ker}(A) = n \operatorname{dim} \operatorname{Ker}(A^T A) = 0$, which implies that A is zero matrix. (An alternative proof is that $\operatorname{tr}(A^T A) = 0$ implies $\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2 = 0$. Thus $a_{ij} = 0$ where a_{ij} denotes the element in the ith row and jth column of A)
- 3. True. Since A-B is real symmetric, there exist an orthogonal matrix O and a real diagonal matrix D with diagonal elements $\{d_1, d_2, ..., d_n\}$ such that $A B = O^T D O$. From $x^T (A B) x = 0$, $x^T O^T D O x = 0$. We can construct a series of vectors x_i such that $O x_i = e_i$ where e_i is the standard unit vector (only i th element is 1 and other elements are 0 in this vector). Since $d_i = e_i^T D e_i = 0$ for i = 1, 2, ..., n, we conclude that D = 0 and it follows that A B = 0 and A = B.

Problem 2

- 1. Let A have distinct eigenvalues $\lambda_1, ..., \lambda_n$ with corresponding eigenvectors $x_1, ..., x_n$. If follows that $Ax_i = \lambda_i x_i$ for i = 1, ...n. Since A commutes with B, $ABx_i = BAx_i = B\lambda_i x_i = \lambda_i Bx_i$ which implies that Bx_i is also an eigenvector of A with respect to eigenvalue λ_i (when $Bx_i = 0$, the following analysis still holds). Therefore, Bx_i lies in the eigenspace spanned by x_i so that there exists μ_i such that $Bx_i = \mu_i x_i$. Hence (μ_i, x_i) is an eigenvalue and eigenvector pair for B, for each i = 1, ...n. Let $O = [x_1, x_2, ..., x_n]$ and D be a diagonal matrix with diagonal elements $\{\mu_1, \mu_2, ..., \mu_n\}$, then BO = OD and $B = ODO^{-1}$. Therefore, B is diagonalizable.
- 2. Let Λ be a diagonal matrix with diagonal elements $\lambda_1,...,\lambda_n$, then $A=O\Lambda O^{-1}$. Since $B=ODO^{-1}$, it is sufficient to prove that there exist coefficients $a_0,a_1,...,a_{n-1}$ such that $D=a_{n-1}\Lambda^{n-1}+a_{n-2}\Lambda^{n-2}+...+a_1\Lambda+a_0I$. Since D and Λ are diagonal matrices, $\mu_i=a_{n-1}\lambda_i^{n-1}+a_{n-2}\lambda_i^{n-2}+...+a_1\lambda_i+a_0$ should hold for i=1,...,n. Equivalently, there should exist a solution for the linear equation

$$\begin{bmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_n & \cdots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

where the leftmost square matrix denoted as V is a Vandermonde matrix and

$$\det(V) = \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i)$$

is non-zero since A has distinct eigenvalues. Thus V is non-singular and there exists a unique solution for the linear equation, which completes the proof.

Problem 3

- 1. Characteristic polynomial of A: $A \lambda I = -\lambda^3 + 2\lambda^2 \lambda = -\lambda(\lambda 1)^2$. Therefore, eigenvalues of A: 0 or 1.
- 2. Algebraic multiplicity for $\lambda = 0$ is 1, and for $\lambda = 1$ is 2.
- 3. Geometric multiplicity for $\lambda = 0$ is 1, and for $\lambda = 1$ is 1.
- 4. A matrix is diagonalizable if and only if the algebraic multiplicity equals the geometric multiplicity of each eigenvalue. Therefore, matrix A is not diagonalizable

5. For
$$Av_1 = 0$$
, $v_1 = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, For $(A - I)v_2 = 0$, $v_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}$, For $(A - I)v_3 = v_2$, $v_3 = \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix}$

6.
$$P = \begin{pmatrix} 0 & 1 & 0 \\ -1 & -1 & 3 \\ 2 & 5 & -5 \end{pmatrix}$$
 and rank of matrix P is 3. $J = P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$