MA 3140: Statistical Inference

Dr. Sameen Naqvi
Department of Mathematics, IIT Hyderabad
Email id: sameen@math.iith.ac.in

A method to find UEs

Solve directly the equation

$$E[T(X)] = g(\theta), \forall \theta \in \Theta.$$

Example:

Let X be a truncated Poisson r.v. with zero missing

$$P(X = x) = \frac{1}{e^{\lambda} - 1} \frac{\lambda^{x}}{x!}, \quad x = 1, 2, ...$$

What will an UE of λ ?

A method to find UEs cont'd

$$E[T(X)] = \lambda, \ \forall \ \lambda > 0$$

$$\sum_{x=1}^{\infty} T(x) \frac{1}{e^{\lambda} - 1} \frac{\lambda^{x}}{x!} = \lambda, \ \forall \ \lambda > 0$$

$$T(1)\lambda + \frac{T(2)}{2!} \lambda^{2} + \dots = \lambda (e^{\lambda} - 1)$$

$$= \lambda \left[\lambda + \frac{\lambda^{2}}{2!} + \dots \right], \ \forall \ \lambda > 0$$

Since the two power series can be identical on an open interval iff all their coefficients match, we get

A method to find UEs cont'd

$$T(1) = 0,$$

 $T(2) = 2! = 2,$
 $T(3) = 3!/2! = 3,$
 \vdots
 $T(r) = r!/(r-1)! = r$

So the UE is

$$T(X) = \begin{cases} 0, & \text{if } X = 1 \\ X, & \text{if } X = 2, 3, \dots \end{cases}$$

Remark

(i) UEs may not exist.

Example: Let $X \sim Bin(n, p)$ and $g(p) = p^{n+1}$.

$$E[T(X)] = p^{n+1}, \ \forall \ 0 \le p \le 1$$
$$\Longrightarrow \sum_{x=0}^{n} T(x) \binom{n}{x} p^{x} (1-p)^{n-x} = p^{n+1}, \ \forall \ 0 \le p \le 1$$

Since the LHS is a polynomial of degree atmost n, it cannot be equal to the RHS which has a power n+1. Thus the above equation has no solution and UE of p^{n+1} does not exist.

(ii) UEs may not be reasonable.

Example 1:

Consider Example 4 where we were interested to find the probability of no occurrence and $g(p) = e^{-\lambda} \in (0,1)$. However, the UE we obtained was:

$$I(X) = \begin{cases} 1, & \text{if } X = 0 \\ 0, & \text{if } X \neq 0. \end{cases}$$

So, this is not a very proper estimator.

Example 2:

Consider $X \sim P(\lambda)$ and $g(\lambda) = e^{-3\lambda}$.

$$\Rightarrow \sum_{x=0}^{\infty} T(x) \frac{e^{-\lambda} \lambda^x}{x!} = e^{-3\lambda}, \ \forall \ \lambda > 0$$

$$\Rightarrow \sum_{x=0}^{\infty} T(x) \frac{\lambda^x}{x!} = \frac{e^{-3\lambda}}{e^{-\lambda}} = e^{-2\lambda}$$

$$\Rightarrow \frac{T(0)\lambda^0}{0!} + \frac{T(1)\lambda^1}{1!} + \frac{T(2)\lambda^2}{2!} + \dots = 1 - 2\lambda + \frac{(2\lambda)^2}{2!} - \frac{(2\lambda)^3}{3!}$$

 $E[T(X)] = e^{-3\lambda}, \forall \lambda > 0$

Comparing the coefficients, we get

$$T(0) = 1,$$

 $T(1) = -2,$
 $T(2) = 4,$
 $T(3) = -8,$
 \vdots

So the UE is $T(X) = (-2)^X$.

Here, it can be noted that the estimator is taking absurdly different values from that of the parametric function $g(\lambda) = e^{-3\lambda}$.

(iii) MME and MLE may not be unbiased

Example:

Let $X \sim U(0, \theta)$, where $\theta \in \Theta = (0, \infty)$ is unknown, and let the estimand be $g(\theta) = \sqrt{\theta}$. It can be shown that MME and MLE of $g(\theta)$ is $\sqrt{2X}$ and \sqrt{X} , respectively. Check whether these estimators are unbiased.

$$E[\sqrt{X}] = \int_{0}^{\theta} \frac{\sqrt{x}}{\theta} dx = \frac{2}{3} \sqrt{\theta} \neq \theta.$$

$$E[\sqrt{2X}] = \sqrt{2}E[\sqrt{X}] = \frac{2\sqrt{2}}{3}\sqrt{\theta} \neq \theta.$$

Thus, none of these estimators is unbiased.

(iv) Typically, there are many UEs for a given estimand.

Example:

Let X_1, \ldots, X_n be a r.s. from a $N(\theta, 1)$ distribution, where $\theta \in \Theta = (-\infty, \infty)$ is unknown, and let the estimand be $g(\theta) = \theta$.

Then, \overline{X} , X_i , $\frac{X_i+X_j}{2}$, $X_i+X_j-X_k$, and so on, are all unbiased for estimating $g(\theta)$.

Remark:

Given any UE T, which is not based on the MLE, there exists an UE based on the MLE, say T_M , and that estimator is a better UE.

Therefore, in finding a sensible UE for an estimand $g(\theta)$, we typically start with the MLE of $g(\theta)$.

If it is unbiased, then we have found the estimator we want. If it is not unbiased, we modify it to make it unbiased.

Example 1: Let X_1, \ldots, X_n be a r.s. from a $Poisson(\theta)$ distribution, where $\theta \in \Theta = (-\infty, \infty)$ is unknown, and let the estimand be $g(\theta) = P_{\theta}(X = 0) = e^{-\theta}$. Find the UE of $g(\theta)$.

Solution: We know that MLE of $g(\theta)$ is $e^{-\overline{X}}$.

Let $Z = \sum_{i=1}^{n} X_i$ so that $Z \sim Poisson(n\theta)$ and $\overline{X} = \frac{Z}{n}$.

We want the estimator $T(\overline{X}) = T(\frac{Z}{n})$ s.t.

$$E_{\theta}(T(\overline{X})) = e^{-\theta}, \ \forall \ \theta > 0$$

$$\Leftrightarrow \sum_{i=0}^{\infty} T\left(\frac{j}{n}\right) \frac{e^{-n\theta}(n\theta)^{j}}{j!} = e^{-\theta}, \ \forall \ \theta > 0$$

$$\Leftrightarrow \sum_{j=0}^{\infty} T\left(\frac{j}{n}\right) \frac{n^{j}}{j!} \theta^{j} = e^{(n-1)\theta}, \ \forall \ \theta > 0$$

$$\Leftrightarrow \sum_{j=0}^{\infty} T\left(\frac{j}{n}\right) \frac{n^{j}}{j!} \theta^{j} = \sum_{j=0}^{\infty} \frac{(n-1)^{j}}{j!} \theta^{j}, \ \forall \ \theta > 0$$

$$\Leftrightarrow T\left(\frac{j}{n}\right) = \left(1 - \frac{1}{n}\right)^{j}, \ j = 0, 1, \dots$$

Thus, it follows that the unbiased estimator based on the MLE is $\left(1-\frac{1}{n}\right)^{n\overline{X}}$.

Example 2: Let X_1, \ldots, X_n be a r.s. from a $U(0, \theta)$ distribution, where $\theta \in \Theta = (0, \infty)$ is unknown, and let the estimand be $g(\theta) = \theta^r$, for some positive integer r. Find the the UE of $g(\theta)$ based on the MLE.

Solution:

As we know that MLE of θ is $X_{(n)}$, MLE of $g(\theta)$ is $X_{(n)}^r$. The distribution function of $X_{(n)}$ is

$$F_{X_{(n)}}(x) = P(X_{(n)} \le x)$$

$$= P(X_1 \le x, \dots, X_n \le x)$$

$$= [P(X_1 \le x)]^n = \begin{cases} 0, & x < 0 \\ (\frac{x}{\theta})^n, & 0 \le x \le \theta \\ 1, & x > \theta. \end{cases}$$

So the pdf of $X_{(n)}$ is:

$$\therefore f_{X_{(n)}}(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \le x \le \theta \\ 0, & \text{otherwise.} \end{cases}$$

Now,

$$E(X_{(n)}^r) = \int_0^\theta x^r f_{X_{(n)}}(x) dx = \int_0^\theta x^r \frac{nx^{n-1}}{\theta^n} dx = \frac{n}{n+r} \theta^r$$
$$\implies E\left[\frac{n+r}{n} X_{(n)}^r\right] = \theta^r$$

Thus, $\frac{n+r}{n} X_{(n)}^r$ is an UE of $g(\theta) = \theta^r$.

Consistency

An estimator $T_n = T(X_1, ..., X_n)$ is said to be consistent for estimating $g(\theta)$ if for each $\epsilon > 0$

$$P(|T_n - g(\theta)| > \epsilon) \longrightarrow 0,$$

as $n \longrightarrow \infty$, $\forall \theta \in \Theta$.

Equivalently,

$$T_n \stackrel{p}{\longrightarrow} g(\theta).$$

Unbiasedness vs Consistency

Consistency

- It is a finite-sample argument which says that the average (expected) result of an estimator is equal to the true parameter.
- Consistency says that an estimator will converge to the true parameter as $n \longrightarrow \infty$.

Example 1

Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 .

$$P(|\overline{X} - \mu| > \epsilon) \le \frac{Var(\overline{X})}{\epsilon^2}$$
 (by Chebyshev inequality)
= $\frac{\sigma^2}{n\epsilon^2}$
 $\longrightarrow 0$ as $n \longrightarrow \infty$

Thus, sample mean \overline{X} is a consistent estimator of population mean μ .

Chebyshev inequality

Suppose that a random variable X has finite mean μ and variance σ^2 . Then for any k>0,

$$P(\{|X-\mu| \ge k\}) \le \frac{\sigma^2}{k^2}.$$

In other words, if the variance is small, then X is unlikely to be too far from the mean.

For $k = c\sigma$, we get

$$P(\{|X-\mu|\geq c\sigma\})\leq \frac{\sigma^2}{c^2\sigma^2}=\frac{1}{c^2},$$

and for c = 3, we get

$$P(\{|X-\mu|\geq 3\sigma\})\leq \frac{1}{9}.$$

Example 2

Let X_1,\ldots,X_n be a sequence of i.i.d. r.v.s from a population with mean μ , then by Weak Law of Large Numbers,

$$\overline{X} \stackrel{p}{\longrightarrow} \mu$$

In general, whenever the population mean exists, the sample mean is consistent for it.

In case of Cauchy distribution, E(X) does not exist. In fact, distribution of \overline{X} is same as that of X_1 .

Invariance Property

▶ If T_n is consistent for θ and h is a continuous function, then $h(T_n)$ is consistent estimator for $h(\theta)$.

Example: If T is consistent for θ , then T^2 is consistent for θ^2 .

Such a property does not hold in Unbiasedness. If T is UE for p, then $\frac{1}{T}$ is not an UE for $\frac{1}{p}$.

Important results

- ▶ If $E(T_n) = \theta_n \longrightarrow \theta$ and $V(T_n) = \sigma_n^2 \longrightarrow 0$, then T_n is consistent for θ .
- ▶ If T_n is consistent for θ and $a_n \to 1$, $b_n \to 0$, then $a_n T_n + b_n$ is also consistent for θ .

Examples:

$$\frac{n}{n+1}T_n + \frac{1}{n+1}, \qquad \frac{n+2}{n+4}T_n + \frac{1}{n}$$

Example 3: Shifted Exponential Distribution

Let X_1, \ldots, X_n be a random sample from an exponential distribution with a location parameter μ . The pdf is

$$f_{X_i}(x) = \begin{cases} e^{-(x-\mu)}, & x > \mu \\ 0, & \text{otherwise.} \end{cases}$$

In general, the pdf of Shifted Exponential Distribution is:

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{-\frac{(x-\mu)}{\lambda}}, & x > \mu, \lambda > 0 \\ 0, & \text{otherwise.} \end{cases}$$

Here,
$$E(X) = \lambda + \mu$$
, and $Var(X) = \lambda^2$.

Example 3 cont'd

In this example, $E(X_i) = \mu + 1$, and so, $E(\overline{X}) = \mu + 1$.

By WLLN, we get \overline{X} as a consistent estimator of $\mu + 1$.

Thus, $T_1 = \overline{X} - 1$ is unbiased and consistent for estimating μ .

Example 3 cont'd

► Consider $X_{(1)} = \min\{X_1, \dots, X_n\}$. The distribution function is

$$F_{X_{(1)}}(x) = P(X_{(1)} \le x)$$

$$= 1 - P(X_{(1)} > x)$$

$$= 1 - P(X_1 > x, \dots, X_n > x)$$

$$= 1 - P(X_1 > x) \dots P(X_n > x)$$

$$= 1 - [P(X_1 > x)]^n$$

$$= 1 - [1 - F_{X_1}(x)]^n$$

$$= 1 - e^{n(\mu - x)}, x > \mu$$

$$\therefore F_{X_i}(x) = \int_{\mu}^{x} e^{\mu - t} dt = 1 - e^{\mu - x}.$$

Example 3 cont'd

So the pdf of $X_{(1)}$ is

$$f_{X_{(1)}}(x) = ne^{n(\mu - x)}, \ x > \mu.$$

Here,
$$E(X_{(1)}) = \mu + \frac{1}{n}$$
 and $Var(X_{(1)}) = \frac{1}{n^2}$.

Consider $T_2 = X_{(1)} - \frac{1}{n}$. Then T_2 is unbiased for μ .

$$Var(T_2) = \frac{1}{n^2} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Thus, T_2 is also unbiased and consistent for estimating μ .

Thanks for your patience!