

18	2 Helium 4.0026	$\stackrel{10}{\mathrm{Neon}}$	18 $^{A}\Gamma$ argon $^{39.8775}$	$\sum_{\substack{Krypton\\83.798}}$	$ \sum_{\text{xenon}\atop{131.29}} $	$\mathop{Rn}\limits_{\tiny{\text{radon}}\atop(222)}$	$\underset{(294)}{\underset{\text{oganesson}}{\bigcap}}g$
	17	9 Huorine 18.998	17 CI chlorine 35.4515	$\underset{\text{bromine}}{\text{Br}}$	53 Iodine 126.9	$\mathop{\mathrm{At}}_{\substack{\text{astatine}\\(210)}}$	$\prod_{\substack{\text{tennessine}\\(294)}}$
	16	8 Oxygen 15.9995	$\overset{16}{\mathrm{S}}$	$^{34}_{\mathrm{Selenium}}$	$\begin{array}{c} 52\\ Te\\ tellurium\\ 127.6 \end{array}$	PO polonium (209)	$\sum_{\substack{\text{livermorium}\\(293)}}$
	15	N nitrogen 14.007	$\Pr_{\text{phosphorus}}$	33 $^{ m AS}$ arsenic $^{74.922}$	Sb antimony 121.76	$\underset{\text{208.98}}{\text{Bismuth}}$	$M_{\rm constant}^{115}$
	14	6 Carbon 12.0105	Silicon	32 Germanium 72.63	$\mathop{Sn}_{\text{tin}}^{\text{fin}}$	PD lead 207.2	114 F1 flerovium (289)
	13	5 Boron 10.8135	$\underset{26.982}{A1}$	$\mathop{\text{Gallium}}_{\text{(99.723)}}$	49 In indium	$\prod_{\substack{\text{thallium}\\204.385}}$	$\mathop{Nh}_{\text{nihonium}}$
	'		12	30 Zn zinc 65.38	$\overset{48}{\text{Cd}}$	$\mathop{Hg}_{{\scriptscriptstyle{mercury}}\atop{\scriptscriptstyle{200.59}}}$	$\displaystyle \mathop{Ch}_{(285)}^{112}$
			11	$\mathop{\mathrm{Copper}}_{\text{copper}}^{29}$	$\mathop{\mathrm{Ag}}_{\substack{\text{silver} \\ \text{silver} \\ 107.87}}$	$\mathop{\mathrm{Au}}\limits_{\stackrel{pold}{bo}}^{79}$	$\underset{\text{roentgenium}}{\text{Rg}}$
			10	$\sum_{\substack{\text{nickel}\\58.693}}^{28}$	$\overset{46}{Pd}$	$\Pr_{\substack{\text{platinum}\\195.08}}$	$ \bigcup_{\text{darmstadtium}}^{110} S $
			6	27 CO cobalt 58.933	$\mathop{Rh}\limits_{\text{rhodium}\atop 102.91}$	$\prod_{\substack{\text{iridium}\\192.22}}$	$\underset{(278)}{\text{Mf}}t$
			8	26 FO iron 55.845	$\mathop{Ru}_{\text{ruthenium}}^{44}$	OS Osmium 190.23	$\mathop{\rm HS}_{{\sf hassium}}^{108}$
		Z: atomic number Sy: symbol element: element name saw: standard atomic weight	7	$\underset{\text{54.938}}{\overset{25}{\text{Mn}}}$	$\prod_{\substack{\text{technetium}\\(97)}}^{43}$	$\mathop{Re}_{\tiny{\text{rhenium}}\atop{186.21}}$	$\underset{\text{(270)}}{\text{Bh}}$
		Z: atomic number Sy: symbol element: element name saw: standard atomic w	9	$\displaystyle \bigcup_{\substack{\text{chromium} \\ 51.996}}^{24}$	$\stackrel{42}{\mathrm{MO}}$ molybdenum $^{95.95}$	$\overset{74}{\text{W}}$ tungsten $^{183.84}$	$\mathop{\rm Sg}_{\text{seaborgium}}$
		$\sum_{\substack{\text{element}\\\text{saw}}}^Z$	5	$\sum_{\text{vanadium}}^{23}$	ND niobium	$\prod_{\substack{tantalum\\180.95}}^{73}$	$\mathop{\textstyle \bigcup_{\text{dubnium}}}_{\text{(268)}}$
			4	$\prod_{\substack{\text{titanium}\\47.867}}^{22}$	$\underset{\text{zirconium}}{Z_{r}}$	Hf hafnium 178.49	$\Pr_{\text{rutherfordium}\atop{(267)}}$
			က	$\mathop{\mathrm{Sc}}_{\text{scandium}}^{21}$	$\sum_{\substack{\text{yttrium}\\88.906}}^{39}$	* Ianthanides	** actinides
	2	$\mathop{\mathrm{Beryllium}}_{9.0122}^{4}$	$\underset{\text{24.3055}}{Mg}$	$\mathop{\mathrm{Cal}}_{calcium}^{20}$	$\mathop{Sr}_{\text{strontium}}^{38}$	$\mathop{\mathrm{Ba}}_{barium}^{56}$	$\mathop{Ra}\limits_{\tiny{\begin{array}{c}\text{radium}\\(226)\end{array}}}}^{88}$
Group 1	1 H hydrogen 1.008	$\sum_{\substack{i \text{lithium} 6.9675}}^{3}$	$\mathop{\mathrm{Na}}_{22.99}^{11}$	$\underset{39.098}{K}$	RD rubidium 85.468	$\displaystyle \mathop{CS}_{\text{caesium}}_{132.91}$	$\underset{\text{francium}}{\overline{\text{Fr}}}$
	I	2	3	4	2	9	

$\sum_{\substack{\text{lutetium}\\174.97}}^{71}$	$\frac{103}{L\Gamma}$ lawrencium (266)
$\sum_{\text{ytterbium}\atop{173.05}}^{70}$	$\sum_{\substack{\text{nobelium}\\(259)}}^{102}$
$\prod_{\substack{\text{thulium}\\168.93}}$	$\underset{(258)}{\overset{101}{\mathrm{Md}}}$
$\stackrel{68}{ ext{ET}}$ erbium $^{167.26}$	$\overset{100}{Fm}$ fermium $\overset{(257)}{}$
HO holmium 164.93	$\begin{array}{c} 99 \\ \overline{E}S \\ \text{einsteinium} \\ (252) \end{array}$
$\mathop{\textstyle \bigcap_{\text{dysprosium}}^{66}}_{162.5}$	$\bigcap_{\text{californium}\atop{(251)}}^{98}$
$\begin{array}{c} \text{65} \\ \prod D \\ \text{terbium} \\ 158.93 \end{array}$	$\underset{berkelium}{Bk}$
$\mathop{Cd}\limits_{\text{gadolinium}}^{64}$	$\mathop{Cm}\limits^{96}_{\text{curium}}_{\text{(247)}}$
$\underset{\text{europium}}{Eu}$	$\mathop{Am}\limits_{\substack{\text{americium}\\(243)}}$
$\mathop{Sm}\limits_{\substack{\text{samarium}\\150.36}}$	$\underset{\text{(244)}}{Pu}$
$\underset{\text{promethium}}{Pm}$	$\mathop{N}_{\text{neptunium}}^{93}$
$\mathop{\mathrm{Nd}}_{\text{neodymium}}^{60}$	92 U uranium 238.03
$\underset{\text{praseodymium}}{P_{\Gamma}}$	$\underset{\text{protactinium}}{Pa}$
$\bigoplus_{\substack{\text{cerium}\\140.12}}^{58}$	$\prod_{\substack{\text{thorium}\\232.04}}$
$\mathop{La}\limits_{\substack{lanthanum\\138.91}}$	$\mathop{Ac}\limits_{{\tt actinium}\atop (227)}^{89}$
*	* *

Standard atomic weights (average terrestrial atomic weight) taken from the Commission on Isotopic Abundances and Atomic Weights (http://www.ciaaw.org/abridged-atomic-weights.htm). If CIAAW indicates a range for the standard atomic weight of an element, I used the arithmetic mean of the boundaries of the range. Elements with atomic weight in parentheses (e.g., Francium (223)) have no known stable isotopes and it is therefore impossible to provide a standard atomic weight. For these elements, the mass of a representative isotope is provided.

Inspired by Van Griffin's #JEX Periodic Table. Is FigExOcale in released under the MIT open source license.

Final product (this Table) is released under creative commons attribution/share-alike copyright terms. ©00 2022. Paul N. Danese

Abbreviations:

- atm: atmosphere
- g, mg: gram, milligram
- K: Kelvin
- \bullet L, mL: liter, milliliter
- M: Molar / molarity
- mmHg: millimeters of mercury
- mol: mole

Concentration equations:

- $\%(m/m) = \frac{mass \text{ of solute}}{mass \text{ of solution}} \times 100$
- $\%(v/v) = \frac{\text{volume of solute}}{\text{volume of solution}} \times 100$
- %(m/v) = $\frac{\text{mass of solute in grams}}{\text{volume of solution in mL}} \times 100$
- Molarity = $\frac{\text{number of moles of solute}}{\text{number of Liters of solution}}$

Moles, conversion, pH, and other stuff:

- 1 mole = 6.0221×10^{23} things
- Kelvin = $^{\circ}$ C + 273.15
- $^{\circ}F = 1.8 \times ^{\circ}C + 32$
- $^{\circ}C = \frac{(^{\circ}F 32)}{1.8}$
- $pH = -1 \times \log[H_3O^+]$
- $1000 \,\mathrm{mL} = 1 \,\mathrm{L}$
- 1000 g = 1 kg
- $1 \,\mathrm{mL} = 1 \,\mathrm{cm}^3$
- $1000 \operatorname{cal} = 1 \operatorname{kcal}$
- density = $\frac{\text{mass}}{\text{volume}}$

Gas equations:

- Boyle's Law: $P_1V_1 = P_2V_2$
- Charles's Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
- Gay-Lussac's Law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$
- Combined gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
- Avogadro's Law: $\frac{V_1}{n_1} = \frac{V_2}{n_2}$
- Universal gas constant: $R = \frac{0.0821 L atm}{mol K}$
- Ideal gas Law: PV = nRT

Mole Conversions:

- number of grams \Rightarrow number of moles: take number of grams \div molar mass
- number of moles \Rightarrow number of grams: take number of moles \times molar mass
- number of moles \Rightarrow number of atoms (or molecules): take number of moles \times 6.0221 \times 10²³
- number of atoms (or molecules) \Rightarrow number of moles: take number of atoms (or molecules) \div (6.0221×10^{23})

Organic:

- 1. meth
- 2. eth
- 3. prop
- 4. but
- 5. pent

- 6. hex
- 7. hept
- 8. oct
- 9. non
- 10. dec