

WEBENCH® Design Report

Design: 3514097/27 TPS54332DDAR TPS54332DDAR 12.0V-12.0V to 7.20V @ 3.0A VinMin = 12.0V VinMax = 12.0V Vout = 7.2V Iout = 3.0A Device = TPS54332DDAR Topology = Buck Created = 5/22/15 4:56:22 AM BOM Cost = \$2.08 Footprint = 198.0 mm² BOM Count = 13 Total Pd = 1.49W

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	TDK	C1005X5R1A104K Series= X5R	Cap= 100.0 nF ESR= 20.413 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
2.	Ccomp	Samsung Electro- Mechanics	CL21C431JBANNNC Series= C0G/NP0	Cap= 430.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3.	Ccomp2	Yageo America	CC0805DRNP09BN9R0 Series= C0G/NP0	Cap= 9.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Cin	MuRata	GRM32ER61E226KE15L Series= X5R	Cap= 22.0 uF ESR= 2.0 mOhm VDC= 25.0 V IRMS= 3.67 A	1	\$0.16	1210 15 mm ²
5.	Cout	MuRata	GRM32ER61C226KE20L Series= X5R	Cap= 22.0 uF ESR= 2.0 mOhm VDC= 16.0 V IRMS= 3.68 A	2	\$0.16	1210 15 mm ²
6.	Css	MuRata	GRM033R61A822KA01D Series= X5R	Cap= 8.2 nF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
7.	D1	Diodes Inc.	B220-13-F	VF@Io= 500.0 mV VRRM= 20.0 V	1	\$0.08	SMB 44 mm ²
8.	L1	Coilcraft	XAL4030-332MEB	L= 3.3 μH DCR= 26.0 mOhm	1	\$0.72	XAL4030 25 mm ²
9.	Rcomp	Vishay-Dale	CRCW040278K7FKED Series= CRCWe3	Res= 78.7 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
10	. Rfbb	Vishay-Dale	CRCW04021K27FKED Series= CRCWe3	Res= 1.27 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
11.	. Rfbt	Vishay-Dale	CRCW040210K2FKED Series= CRCWe3	Res= 10.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

Name Manufacturer Part Number Properties Qty Price Footprint

12. U1 Texas Instruments TPS54332DDAR Switcher 1 \$0.73

-Vin=12.0 V

-Vin=12.0 V

Operating Values

Ope	Operating values								
#	Name	Value	Category	Description					
1.	Cin IRMS	1.456 A	Current	Input capacitor RMS ripple current					
2.	Cout IRMS	260.593 mA	Current	Output capacitor RMS ripple current					
3.	IC lpk	3.451 A	Current	Peak switch current in IC					
4.	lin Avg	1.924 A	Current	Average input current					
5.	L lpp	902.72 mA	Current	Peak-to-peak inductor ripple current					
6.	M1 Irms	2.363 A	Current	Q lavg					
7.	BOM Count	13	General	Total Design BOM count					
8.	FootPrint	198.0 mm ²	General	Total Foot Print Area of BOM components					
9.	Frequency	1000.0 kHz	General	Switching frequency					
10.	M Vds Act	151.614 mV	General	Voltage drop across the MosFET					
11.	Pout	21.6 W	General	Total output power					
12.	Total BOM	\$2.08	General	Total BOM Cost					
13.	D1 Tj	41.502 degC	Op_Point	D1 junction temperature					
14.	Vout OP	7.2 V	Op_Point	Operational Output Voltage					
15.	Cross Freq	33.662 kHz	Op_point	Bode plot crossover frequency					
16.	Duty Cycle	62.062 %	Op_point	Duty cycle					
17.	Efficiency	93.549 %	Op_point	Steady state efficiency					
18.	Gain Marg	-16.422 dB	Op_point	Bode Plot Gain Margin					
19.	IC Tj	68.382 degC	Op_point	IC junction temperature					
20.	ICThetaJA	50.0 degC/W	Op_point	IC junction-to-ambient thermal resistance					
21.	IOUT_OP	3.0 A	Op_point	lout operating point					
22.	Phase Marg	57.26 deg	Op_point	Bode Plot Phase Margin					
23.	VIN_OP	12.0 V	Op_point	Vin operating point					
24.	Vout p-p	2.904 mV	Op_point	Peak-to-peak output ripple voltage					
25.	Cin Pd	4.238 mW	Power	Input capacitor power dissipation					
26.	Cout Pd	67.909 μW	Power	Output capacitor power dissipation					
27.	Diode Pd	460.092 mW	Power	Diode power dissipation					
28.	IC Pd	767.642 mW	Power	IC power dissipation					
29.	L Pd	257.4 mW	Power	Inductor power dissipation					
30.	Total Pd	1.489 W	Power	Total Power Dissipation					
31.	Low Freq Gain	61.605 dB	Unknown	Gain at 10Hz					

Design Inputs

#	Name	Value	Description
1.	lout	3.0	Maximum Output Current
2.	lout1	3.0	Output Current #1
3.	VinMax	12.0	Maximum input voltage
4.	VinMin	12.0	Minimum input voltage
5.	Vout	7.2	Output Voltage
6.	Vout1	7.2	Output Voltage #1
7.	base_pn	TPS54332	Base Product Number
8.	source	DC	Input Source Type
9.	Та	30.0	Ambient temperature

Design Assistance

1. TPS54332 Product Folder: http://www.ti.com/product/tps54332: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.