

Generated by elijahsheridan on 12 September 2020, 14:48:55

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology,

Comput. Phys. Commun. 184 (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents

1	\mathbf{Set}	up	2
	1.1	Command history	2
	1.2	Configuration	Ę
2		tasets	6
	2.1	signal_1pt8tevl	6
	2.2	signal_2tevl	6
	2.3	signal_2pt2tevl	6
	2.4	signal_2pt4tevl	7
	2.5	bg_dip_0_100	7
	2.6	bg_dip_100_200	8
	2.7	bg_dip_200_400	8
	2.8	bg_dip_400_600	S. C.
	2.9	bg_dip_600_800	g.
	2.10	bg_dip_800_1200	g.
	2.11	bg_dip_1200_1600	10
	2.12	S	10
		bg_vbf_0_100	11
	2.14	9	11
	2.15	<u> </u>	11
		bg_vbf_400_600	12
		bg_vbf_600_800	12
		bg_vbf_800_1200	13
		bg_vbf_1200_1600	13
	2.20	bg_vbf_1600_inf	13
3		tos and cuts	15
	3.1	Cut 1	15
	3.2	Histogram 1	16
	3.3	Histogram 2	17
	3.4	Histogram 3	18
	3.5	Histogram 4	19
	3.6	Histogram 5	20
	3.7	Histogram 6	21
	3.8	Histogram 7	23
	3.9	Histogram 8	24
	3.10	Histogram 9	25
	3.11	Histogram 10	26
	3.12	Histogram 11	27
	3.13	Histogram 12	28
	3.14	Histogram 13	29
	3.15	Histogram 14	30
	3.16	Histogram 15	31

4	Sur	nmary	32
	4.1	Cut-flow charts	32

1 Setup

1.1 Command history

```
ma5># set directory where running "./bin/ma5"; set lumi; define the signal significance
ma5>set main.currentdir = /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data
# need to change this directory path -> exit and type "pwd" to get the path
ma5>set main.lumi = 40
ma5>set main.fom.formula = 5
ma5>set main.fom.x = 0.25
ma5># import samples -> change the path to the LHE file
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/axion_signal/-
on_discovery_contour/ma100MeV_L1pt8TeV_deta2.lhe.gz as signal_1pt8TeVL
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/axion_signal/-
on_discovery_contour/ma100MeV_L2TeV_deta2.lhe as signal_2TeVL
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/axion_signal/-
on_discovery_contour/ma100MeV_L2pt2TeV_deta2.lhe.gz as signal_2pt2TeVL
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/axion_signal/-
on_discovery_contour/ma100MeV_L2pt4TeV_deta2.lhe.gz as signal_2pt4TeVL
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_0_100_merged.lhe.gz as bg_dip_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_100_200_merged.lhe.gz as bg_dip_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_200_400_merged.lhe.gz as bg_dip_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_400_600_merged.lhe.gz as bg_dip_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_600_800_merged.lhe.gz as bg_dip_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_800_1200_merged.lhe.gz as bg_dip_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_1200_1600_merged.lhe.gz as bg_dip_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_1600_inf_merged.lhe.gz as bg_dip_1600_inf
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_0_100_merged.lhe.gz as bg_vbf_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_100_200_merged.lhe.gz as bg_vbf_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_200_400_merged.lhe.gz as bg_vbf_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_400_600_merged.lhe.gz as bg_vbf_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_600_800_merged.lhe.gz as bg_vbf_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_800_1200_merged.lhe.gz as bg_vbf_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_1200_1600_merged.lhe.gz as bg_vbf_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
```

```
merged_lhe/vbf_diphoton_background_ht_1600_inf_merged.lhe.gz as bg_vbf_1600_inf
ma5># define bg and signal samples
ma5>set signal_1pt8TeVL.type = signal
ma5>set signal_2TeVL.type = signal
ma5>set signal_2pt2TeVL.type = signal
ma5>set signal_2pt4TeVL.type = signal
ma5>set bg_vbf_0_100.type = background
ma5>set bg_vbf_100_200.type = background
ma5>set bg_vbf_200_400.type = background
ma5>set bg_vbf_400_600.type = background
ma5>set bg_vbf_600_800.type = background
ma5>set bg_vbf_800_1200.type = background
ma5>set bg_vbf_1200_1600.type = background
ma5>set bg_vbf_1600_inf.type = background
ma5>set bg_dip_0_100.type = background
ma5>set bg_dip_100_200.type = background
ma5>set bg_dip_200_400.type = background
ma5>set bg_dip_400_600.type = background
ma5>set bg_dip_600_800.type = background
ma5>set bg_dip_800_1200.type = background
ma5>set bg_dip_1200_1600.type = background
ma5>set bg_dip_1600_inf.type = background
ma5># a jet can be from a light quark or b quark
ma5>define jets = j
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>define ta = ta+ ta-
ma5>define lept = e mu ta
ma5>define ax = 9000005
ma5># cuts
ma5>select ((sdETA(jets[1] jets[2]) > 2 or sdETA(jets[1] jets[2]) < -2) and M(jets[1] jets[2]) < -2)
jets[2]) > 750) and (PT(a[1]) > 300 and M(a[1] a[2]) > 500)
ma5># define which plots to make
ma5>plot PT(jets[1])
ma5>plot ETA(jets[1])
ma5>plot PHI(jets[1])
ma5>plot PT(jets[2])
ma5>plot ETA(jets[2])
ma5>plot PHI(jets[2])
ma5>plot DELTAR(jets[1], jets[2])
ma5>plot M(jets[1] jets[2])
ma5>plot sdETA(jets[1] jets[2])
ma5>plot M(a[1] a[2])
ma5>plot PT(a[1])
ma5>plot PT(a[2])
ma5>plot THT
ma5>plot MET
ma5>plot TET
ma5>#set the plot/graph parameters
```

```
ma5>set selection[2].xmin = 0
ma5>set selection[2].xmax = 2000
ma5>set selection[2].nbins = 200
ma5>set selection[2].rank = PTordering
ma5>set selection[2].titleX = "p_{T}[j_{1}] (GeV)"
ma5>set selection[3].xmin = -8
ma5>set selection[3].xmax = 8
ma5>set selection[3].nbins = 160
ma5>set selection[3].rank = PTordering
ma5>set selection[3].titleX = "#eta[j_{1}]"
ma5>set selection[4].xmin = -3.2
ma5>set selection[4].xmax = 3.2
ma5>set selection[4].nbins = 64
ma5>set selection[4].rank = PTordering
ma5>set selection[4].titleX = "#phi[j_{1}]"
ma5>set selection[5].xmin = 0
ma5>set selection[5].xmax = 1000
ma5>set selection[5].nbins = 100
ma5>set selection[5].rank = PTordering
ma5>set selection[5].titleX = "p_{T}[j_{2}] (GeV)"
ma5>set selection[6].xmin = -8
ma5>set selection[6].xmax = 8
ma5>set selection[6].nbins = 160
ma5>set selection[6].rank = PTordering
ma5>set selection[6].titleX = "#eta[j_{2}]"
ma5>set selection[7].xmin = -3.2
ma5>set selection[7].xmax = 3.2
ma5>set selection[7].nbins = 64
ma5>set selection[7].rank = PTordering
ma5>set selection[7].titleX = "#phi[j_{2}]"
ma5>set selection[8].xmin = 0
ma5>set selection[8].xmax = 15
ma5>set selection[8].nbins = 75
ma5>set selection[8].rank = PTordering
ma5>set selection[8].titleX = "#DeltaR[j_{1},j_{2}]"
ma5>set selection[9].xmin = 750
ma5>set selection[9].xmax = 8000
ma5>set selection[9].nbins = 160
ma5>set selection[9].rank = PTordering
ma5>set selection[9].titleX = "M[j_{1},j_{2}] (GeV)"
ma5>set selection[10].xmin = 2
ma5>set selection[10].xmax = 15
\verb|ma5>set selection[10].titleX = "#Delta#eta(j_{1},j_{2})"|
ma5>set selection[11].xmin = 500
ma5>set selection[11].xmax = 4000
ma5>set selection[11].nbins = 400
ma5>set selection[11].rank = PTordering
ma5>set selection[11].titleX = "M[a_{1},a_{2}] (GeV)"
ma5>set selection[12].xmin = 300
```

```
ma5>set selection[12].xmax = 2000
ma5>set selection[12].nbins = 80
ma5>set selection[12].rank = PTordering
ma5>set selection[12].titleX = "p_{T}[a_{1}]"
ma5>set selection[13].xmin = 0
ma5>set selection[13].xmax = 2000
ma5>set selection[13].nbins = 400
ma5>set selection[13].rank = PTordering
ma5>set selection[13].titleX = "p_{T}[a_{2}] (GeV)"
ma5>set selection[14].xmin = 0
ma5>set selection[14].xmax = 4000
ma5>set selection[14].nbins = 80
ma5>set selection[14].rank = PTordering
ma5>set selection[14].titleX = "THT"
ma5>set selection[15].xmin = 0
ma5>set selection[15].xmax = 1000
ma5>set selection[15].nbins = 200
ma5>set selection[15].rank = PTordering
ma5>set selection[15].titleX = "MET"
ma5>set selection[16].xmin = 0
ma5>set selection[16].xmax = 8000
ma5>set selection[16].nbins = 80
ma5>set selection[16].rank = PTordering
ma5>set selection[16].titleX = "TET"
ma5>submit ma100MeV_L1pt8-2pt4TeV_deta2
```

1.2 Configuration

- MadAnalysis version 1.6.33 (2017/11/20).
- Histograms given for an integrated luminosity of 40.0fb⁻¹.

2 Datasets

2.1 signal 1pt8tevl

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: signal events.

• Generated events: 100000 events.

• Normalization to the luminosity: 176+/- 1 events.

• Ratio (event weight): 0.0018.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5 aMC v2 6 5/-			
axion_pheno/-	100000	0.00449 @ 0.00597	0.0
$madgraph_data/axion_signal/-$	100000	0.00442 @ 0.095%	0.0
on_discovery_contour/-			
$ma100 MeV_L1pt8 TeV_deta2.lhe.gz$			

2.2 signal 2tevl

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: signal events.

• Generated events: 100000 events.

 \bullet Normalization to the luminosity: 106+/- 1 $\,$ events.

• Ratio (event weight): 0.0011 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_pheno/-	100000	0.00267 @ 0.14%	0.0
$madgraph_data/axion_signal/-$	100000	0.00207 @ 0.1470	0.0
on_discovery_contour/-			
$ma100 MeV _L2 TeV _deta 2.lhe$			

${\bf 2.3} \quad {\bf signal_2pt2tevl}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

 $\bullet\,$ Sample consisting of: signal events.

 \bullet Generated events: 100000 events.

• Normalization to the luminosity: 69+/-1 events.

• Ratio (event weight): 0.00069.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_pheno/-	100000	0.00174 @ 0.094%	0.0
$madgraph_data/axion_signal/-$	100000	0.00174 @ 0.09470	0.0
on_discovery_contour/-			
$ma100 MeV_L2pt2 TeV_deta2.lhe.gz$			

2.4 signal 2pt4tevl

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: signal events.

• Generated events: 100000 events.

• Normalization to the luminosity: 47+/-1 events.

• Ratio (event weight): 0.00047.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_pheno/-	100000	0.00119 @ 0.097%	0.0
$madgraph_data/axion_signal/-$	100000	0.00119 @ 0.09770	0.0
on_discovery_contour/-			
$ma100 MeV _L2pt4 TeV _deta2.lhe.gz$			

$\mathbf{2.5} \quad \mathbf{bg_dip_0_100}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 2710847+/- 4614 events.

• Ratio (event weight): 2.6 - warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_h	1040000	67.8 @ 0.17%	0.0

$2.6 \quad \mathrm{bg_dip_100_200}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 1095362+/- 1528 events.
- Ratio (event weight): 1.1 warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_h	1040000	27.4 @ 0.14%	0.0

$2.7 \quad \mathrm{bg_dip_200_400}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .
- Sample consisting of: background events.
- \bullet Generated events: 1040000 events.
- Normalization to the luminosity: 239548+/- 414 events.
- \bullet Ratio (event weight): 0.23.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	5.99 @ 0.17%	0.0
diphoton_double_isr_background_d	1040000	5.99 @ 0.1770	0.0
merged_lhe/-			
$_diphoton_double_isr_background_l$			

$2.8 \quad bg_dip_400_600$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 28798+/- 53 events.

• Ratio (event weight): 0.028 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	0.72 @ 0.18%	0.0
diphoton_double_isr_background_o	1040000	0.72 @ 0.1670	0.0
$merged_lhe/-$			
diphoton_double_isr_background_l			

2.9 bg dip 600 800

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

 \bullet Generated events: 662009 events.

• Normalization to the luminosity: 6674+/- 28 events.

• Ratio (event weight): 0.01 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/- axion pheno/madgraph data/-			
diphoton double isr background of	662009	0.167 @ 0.41%	0.0
merged_lhe/-			
diphoton_double_isr_background_l			

2.10 bg dip 800 1200

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 2942+/- 6 events.

• Ratio (event weight): 0.0028 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_h	1040000	0.0736 @ 0.17%	0.0

2.11 bg dip 1200 1600

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 337115 events.

• Normalization to the luminosity: 513+/-3 events.

• Ratio (event weight): 0.0015.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	337115	0.0128 @ 0.51%	0.0
diphoton_double_isr_background_o	337113	0.0126 @ 0.5176	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_l			

$2.12 \quad \ \, \mathrm{bg_dip_1600_inf}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 187+/- 1 events.

• Ratio (event weight): 0.00018 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	0.00469 @ 0.15%	0.0
diphoton_double_isr_background_d	1040000	0.00409 @ 0.15/0	0.0
$\mathrm{merged_lhe/-}$			
diphoton double isr background h			

$\mathbf{2.13} \quad \mathbf{bg_vbf_0_100}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 12150+/- 24 events.

• Ratio (event weight): 0.012 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/-	100000	0.004.0.0.4074	
vbf_diphoton_background_data/-	1000000	0.304 @ 0.19%	0.0
merged_lhe/-			
vbf_diphoton_background_ht_0_1			

$\mathbf{2.14} \quad \mathbf{bg_vbf_100_200}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

 \bullet Generated events: 965662 events.

• Normalization to the luminosity: 9695+/- 17 events.

• Ratio (event weight): 0.01 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	965662	0.242 @ 0.17%	0.0
$vbf_diphoton_background_data/-$	900002	0.242 @ 0.1770	0.0
$\mathrm{merged_lhe/-}$			
vbf_diphoton_background_ht_100_			

2.15 bg vbf 200 400

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 984165 events.

• Ratio (event weight): 0.0055.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht_200_	984165	0.135 @ 0.2%	0.0

2.16 bg vbf 400 600

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 986+/- 2 events.

 \bullet Ratio (event weight): 0.00099.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1000000	0.0247 @ 0.14%	0.0
vbf_diphoton_background_data/-	1000000	0.0247 @ 0.1470	0.0
$\mathrm{merged_lhe/-}$			
vbf_diphoton_background_ht_400_			

$2.17 \quad bg_vbf_600_800$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 252+/-1 events.

• Ratio (event weight): 0.00025.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1000000	0.0063 @ 0.13%	0.0
vbf_diphoton_background_data/-	1000000	0.0003 @ 0.13%	0.0
merged_lhe/-			
vbf_diphoton_background_ht_600_			

$2.18 \quad \ \, bg_vbf_800_1200$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 400839 events.

• Normalization to the luminosity: 114+/- 1 events.

• Ratio (event weight): 0.00028.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_pheno/madgraph_data/-	400839	0.00287 @ 0.16%	0.0
vbf_diphoton_background_data/-	400039	0.00267 @ 0.1070	0.0
merged_lhe/-			
vbf_diphoton_background_ht_800_			

$2.19 ext{ bg_vbf_} 1200_1600$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

 \bullet Generated events: 953803 $\,$ events.

• Normalization to the luminosity: 20+/- 1 events.

• Ratio (event weight): 2.1e-05 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht 1200	953803	0.000515 @ 0.16%	0.0

2.20 bg vbf 1600 inf

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 270148 events.

• Normalization to the luminosity: 7+/-1 events.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5 aMC v2 6 5/-			
axion_pheno/madgraph_data/- vbf_diphoton_background_data/-	270148	0.000191 @ 0.11%	0.0
merged_lhe/- vbf_diphoton_background_ht_1600			

3 Histos and cuts

3.1 Cut 1

* Cut: select ((sdETA (jets[1] jets[2]) > 2.0 or sdETA (jets[1] jets[2]) < -2.0) and M (jets[1] jets[2]) > 750.0) and (PT (a[1]) > 300.0 and M (a[1] a[2]) > 500.0)

Dataset	Events kept: K	Rejected events:	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial
signal 1pt8tev	87.67 +/- 6.65	89.23 +/- 6.65	0.4956 + / - 0.0376	0.4956 +/- 0.0376
signal 2tevl	52.67 +/- 5.17	54.19 +/- 5.17	0.4929 +/- 0.0484	0.4929 +/- 0.0484
signal_2pt2tev	33.95 +/- 4.17	35.49 +/- 4.17	0.49 +/- 0.06	0.49 +/- 0.06
signal_2pt4tev	23.08 +/- 3.44	24.33 +/- 3.44	0.4869 + / - 0.0726	0.4869 + / - 0.0726
bg_dip_0_10	0.0 +/- 0.0	2710847 +/- 4613	0.0 +/- 0.0	0.0 +/- 0.0
bg_dip_100_	3.16 +/- 1.78	1095359 +/- 1527	2.89e-06 +/- 1.62e-06	2.89e-06 +/- 1.62e-06
bg_dip_200_	25.80 +/- 5.08	239523 +/- 413	1.08e-04 +/- 2.12e-05	$egin{array}{cccccccccccccccccccccccccccccccccccc$
bg_dip_400_	34.8 +/- 5.9	28763.9 +/- 52.5	0.001209 +/- 0.000205	0.001209 +/- 0.000205
bg_dip_600_	18.83 +/- 4.33	6655.5 +/- 27.9	0.002822 +/- 0.000649	0.002822 +/- 0.000649
bg_dip_800_	11.44 +/- 3.38	2930.90 +/- 6.06	0.00389 + / - 0.00115	0.00389 + / - 0.00115
bg_dip_1200	1.92 + / - 1.38	511.59 + / - 2.96	0.00374 + / - 0.00269	0.00374 + / - 0.00269
bg_dip_1600	0.492 + / - 0.700	187.292 + / -0.754	0.00262 + / - 0.00373	0.00262 + / - 0.00373
bg_vbf_0_10	0.0486 + / - 0.2204	12150.3 +/- 23.1	4.00e-06 +/- 1.81e-05	$egin{array}{cccccccccccccccccccccccccccccccccccc$
bg vbf 100	1.16 + / 1.08	9694.2 +/- 16.6	0.000120 +/-	0.000120 +/-
bg_vbi_100_	1.10 / - 1.00	3034.2 /- 10.0	0.000111	0.000111
bg_vbf_200_	6.68 + / - 2.58	5406.6 +/- 11.2	$egin{array}{ccc} 0.001235 & +/- \ 0.000477 & & & \end{array}$	0.001235 +/- 0.000477
bg vbf 400	7.09 +/- 2.65	979.76 +/- 2.98	0.00719 +/- 0.00269	0.00719 +/- 0.00269
bg_vbf_600_	3.7 +/- 1.9	248.42 +/- 1.92	0.01452 +/- 0.00753	0.01452 + / - 0.00753
bg_vbf_800_	2.15 +/- 1.45	112.61 +/- 1.46	0.0187 +/- 0.0127	0.0187 +/- 0.0127
bg_vbf_1200	0.384 +/- 0.614	20.212 +/- 0.615	0.0187 +/- 0.0298	0.0187 +/- 0.0298
bg_vbf_1600_	0.0963 + / - 0.3084	7.562 + / - 0.309	0.0126 +/- 0.0403	0.0126 +/ -0.0403

3.2 Histogram 1

* Plot: PT (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	459.228	334.9	0.0	0.2134
signal_2tevl	52.9	1.0	437.038	323.1	0.0	0.1455
signal_2pt2tevl	34.1	1.0	423.006	318.2	0.0	0.1769
signal_2pt4tevl	23.3	1.0	413.537	314.0	0.0	0.1711
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	98.8303	32.52	0.0	0.0
bg_dip_200_40	25.8	1.0	242.467	53.8	0.0	0.0
bg_dip_400_60	34.8	1.0	377.137	78.1	0.0	0.0
bg_dip_600_80	18.8	1.0	523.022	98.22	0.0	0.0
bg_dip_800_12	11.4	1.0	711.008	150.7	0.0	0.0
bg_dip_1200_1	1.92	1.0	967.95	209.5	0.0	0.0
bg_dip_1600_i	0.492	1.0	1226.56	278.3	0.0	1.541
bg_vbf_0_100	0.0486	1.0	42.7818	7.815	0.0	0.0
bg_vbf_100_20	1.16	1.0	109.408	25.35	0.0	0.0
bg_vbf_200_40	6.68	1.0	216.071	56.72	0.0	0.0
bg_vbf_400_60	7.09	1.0	355.753	73.24	0.0	0.0
bg_vbf_600_80	3.66	1.0	499.763	93.4	0.0	0.0
bg_vbf_800_12	2.15	1.0	685.828	142.7	0.0	0.0
bg_vbf_1200_1	0.385	1.0	954.553	196.9	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	1260.94	294.5	0.0	1.844

Figure 1.

3.3 Histogram 2

* Plot: ETA (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	-0.00254091	1.838	0.0	0.0
signal_2tevl	52.9	1.0	-0.00747599	1.887	0.0	0.0
signal_2pt2tevl	34.1	1.0	-0.0166818	1.931	0.0	0.0
signal_2pt4tevl	23.3	1.0	-0.00644786	1.949	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	1.65038	2.73	0.0	0.0
bg_dip_200_40	25.8	1.0	0.0327822	1.622	0.0	0.0
bg_dip_400_60	34.8	1.0	0.0508046	1.367	0.0	0.0
bg_dip_600_80	18.8	1.0	-0.0541901	1.213	0.0	0.0
bg_dip_800_12	11.4	1.0	0.00988796	1.116	0.0	0.0
bg_dip_1200_1	1.92	1.0	-0.041622	1.098	0.0	0.0
bg_dip_1600_i	0.492	1.0	0.0236354	1.091	0.0	0.0
bg_vbf_0_100	0.0486	1.0	0.873486	2.934	0.0	0.0
bg_vbf_100_20	1.16	1.0	0.133336	2.773	0.0	0.0
bg_vbf_200_40	6.68	1.0	0.0158882	2.195	0.0	0.0
bg_vbf_400_60	7.09	1.0	-0.0150998	1.768	0.0	0.0
bg_vbf_600_80	3.66	1.0	-9.49209e-06	1.521	0.0	0.0
bg_vbf_800_12	2.15	1.0	-0.0314427	1.333	0.0	0.0
bg_vbf_1200_1	0.385	1.0	-0.015205	1.192	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	0.026085	1.094	0.0	0.0

Figure 2.

3.4 Histogram 3

* Plot: PHI (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	-0.00146326	1.815	0.0	0.0
signal_2tevl	52.9	1.0	0.00275702	1.825	0.0	0.0
signal_2pt2tevl	34.1	1.0	0.0146937	1.817	0.0	0.0
signal_2pt4tevl	23.3	1.0	-0.0175723	1.819	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	0.466209	0.3607	0.0	0.0
bg_dip_200_40	25.8	1.0	-0.0184691	1.809	0.0	0.0
bg_dip_400_60	34.8	1.0	-0.032295	1.807	0.0	0.0
bg_dip_600_80	18.8	1.0	0.0217009	1.85	0.0	0.0
bg_dip_800_12	11.4	1.0	-0.0214499	1.813	0.0	0.0
bg_dip_1200_1	1.92	1.0	-0.0349831	1.831	0.0	0.0
bg_dip_1600_i	0.492	1.0	-0.0245294	1.837	0.0	0.0
bg_vbf_0_100	0.0486	1.0	-0.168141	1.997	0.0	0.0
bg_vbf_100_20	1.16	1.0	-0.0767497	1.778	0.0	0.0
bg_vbf_200_40	6.68	1.0	-0.0861787	1.817	0.0	0.0
bg_vbf_400_60	7.09	1.0	0.0245695	1.804	0.0	0.0
bg_vbf_600_80	3.66	1.0	0.0164854	1.806	0.0	0.0
bg_vbf_800_12	2.15	1.0	0.0186246	1.811	0.0	0.0
bg_vbf_1200_1	0.385	1.0	0.0173015	1.812	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	0.0489667	1.807	0.0	0.0

Figure 3.

3.5 Histogram 4

* Plot: PT (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	160.614	138.8	0.0	0.09261
signal_2tevl	52.9	1.0	149.999	130.2	0.0	0.05862
signal_2pt2tevl	34.1	1.0	142.228	123.0	0.0	0.04474
signal_2pt4tevl	23.3	1.0	137.861	118.9	0.0	0.03055
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	49.3379	16.83	0.0	0.0
bg_dip_200_40	25.8	1.0	80.1038	38.82	0.0	0.0
bg_dip_400_60	34.8	1.0	120.487	64.78	0.0	0.0
bg_dip_600_80	18.8	1.0	164.154	90.7	0.0	0.0
bg_dip_800_12	11.4	1.0	229.974	135.8	0.0	0.0
bg_dip_1200_1	1.92	1.0	373.02	205.5	0.0	0.0
bg_dip_1600_i	0.492	1.0	650.81	284.8	0.0	7.302
bg_vbf_0_100	0.0486	1.0	31.916	8.29	0.0	0.0
bg_vbf_100_20	1.16	1.0	53.936	17.53	0.0	0.0
bg_vbf_200_40	6.68	1.0	94.1307	38.71	0.0	0.0
bg_vbf_400_60	7.09	1.0	136.14	60.57	0.0	0.0
bg_vbf_600_80	3.66	1.0	186.868	85.24	0.0	0.0
bg_vbf_800_12	2.15	1.0	257.298	127.5	0.0	0.0
bg_vbf_1200_1	0.385	1.0	392.815	188.0	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	599.859	284.3	0.0	5.572

Figure 4.

3.6 Histogram 5

* Plot: ETA (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	-0.0050495	2.647	0.0	0.0
signal_2tevl	52.9	1.0	-0.00789021	2.717	0.0	0.0
signal_2pt2tevl	34.1	1.0	0.0177358	2.76	0.0	0.0
signal_2pt4tevl	23.3	1.0	0.00963265	2.787	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	0.140052	2.918	0.0	0.0
bg_dip_200_40	25.8	1.0	0.341283	2.913	0.0	0.0
bg_dip_400_60	34.8	1.0	-0.046237	2.471	0.0	0.0
bg_dip_600_80	18.8	1.0	0.0328972	2.251	0.0	0.0
bg_dip_800_12	11.4	1.0	-0.0295072	2.126	0.0	0.0
bg_dip_1200_1	1.92	1.0	-0.00220058	1.896	0.0	0.0
bg_dip_1600_i	0.492	1.0	-0.0593366	1.605	0.0	0.0
bg_vbf_0_100	0.0486	1.0	1.04772	3.507	0.0	0.0
bg_vbf_100_20	1.16	1.0	-0.324417	3.174	0.0	0.0
bg_vbf_200_40	6.68	1.0	0.0369757	2.866	0.0	0.0
bg_vbf_400_60	7.09	1.0	0.0457121	2.548	0.0	0.0
bg_vbf_600_80	3.66	1.0	0.00762408	2.33	0.0	0.0
bg_vbf_800_12	2.15	1.0	0.0416591	2.175	0.0	0.0
bg_vbf_1200_1	0.385	1.0	0.0257553	1.974	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	-0.0204758	1.781	0.0	0.0

Figure 5.

3.7 Histogram 6

* Plot: PHI (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	-0.00626596	1.813	0.0	0.0
signal_2tevl	52.9	1.0	-0.00536837	1.814	0.0	0.0
signal_2pt2tevl	34.1	1.0	-0.00066877	1.812	0.0	0.0
signal_2pt4tevl	23.3	1.0	-0.00301238	1.81	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	1.00733	1.634	0.0	0.0
bg_dip_200_40	25.8	1.0	-0.0150701	1.924	0.0	0.0
bg_dip_400_60	34.8	1.0	-0.0100722	1.806	0.0	0.0
bg_dip_600_80	18.8	1.0	0.0584177	1.785	0.0	0.0
bg_dip_800_12	11.4	1.0	0.0255093	1.793	0.0	0.0
bg_dip_1200_1	1.92	1.0	- 0.000600709	1.8	0.0	0.0
bg_dip_1600_i	0.492	1.0	-0.0251717	1.798	0.0	0.0
bg_vbf_0_100	0.0486	1.0	0.0859607	1.498	0.0	0.0
bg_vbf_100_20	1.16	1.0	0.17327	1.879	0.0	0.0
bg_vbf_200_40	6.68	1.0	-0.0623337	1.832	0.0	0.0
bg_vbf_400_60	7.09	1.0	-0.0408524	1.826	0.0	0.0
bg_vbf_600_80	3.66	1.0	-0.0166052	1.814	0.0	0.0
bg_vbf_800_12	2.15	1.0	-0.0206916	1.807	0.0	0.0
bg_vbf_1200_1	0.385	1.0	-0.0182899	1.813	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	0.00781695	1.811	0.0	0.0

Figure 6.

3.8 Histogram 7

* Plot: DELTAR (jets[1] , jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	4.45862	1.354	0.0	0.0
signal_2tevl	52.9	1.0	4.56273	1.361	0.0	0.0
signal_2pt2tevl	34.1	1.0	4.64599	1.362	0.0	0.0
signal_2pt4tevl	23.3	1.0	4.68411	1.359	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	5.99929	0.4811	0.0	0.0
bg_dip_200_40	25.8	1.0	4.61504	0.7198	0.0	0.0
bg_dip_400_60	34.8	1.0	3.97985	0.723	0.0	0.0
bg_dip_600_80	18.8	1.0	3.73769	0.6876	0.0	0.0
bg_dip_800_12	11.4	1.0	3.67888	0.627	0.0	0.0
bg_dip_1200_1	1.92	1.0	3.64813	0.5268	0.0	0.0
bg_dip_1600_i	0.492	1.0	3.64692	0.4106	0.0	0.0
bg_vbf_0_100	0.0486	1.0	6.62263	0.3293	0.0	0.0
bg_vbf_100_20	1.16	1.0	5.99091	0.8146	0.0	0.0
bg_vbf_200_40	6.68	1.0	5.10685	0.9126	0.0	0.0
bg_vbf_400_60	7.09	1.0	4.47075	0.8988	0.0	0.0
bg_vbf_600_80	3.66	1.0	4.15115	0.8308	0.0	0.0
bg_vbf_800_12	2.15	1.0	3.9473	0.727	0.0	0.0
bg_vbf_1200_1	0.385	1.0	3.79885	0.606	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	3.70894	0.5026	0.0	0.0

Figure 7.

3.9 Histogram 8

* Plot: M (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	1653.97	769.6	0.0	0.0
signal_2tevl	52.9	1.0	1665.19	783.1	0.0	0.002023
signal_2pt2tevl	34.1	1.0	1676.35	790.7	0.0	0.0
signal_2pt4tevl	23.3	1.0	1672.7	788.9	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	1172.68	166.8	0.0	0.0
bg_dip_200_40	25.8	1.0	1086.69	339.7	0.0	0.0
bg_dip_400_60	34.8	1.0	1108.51	363.5	0.0	0.0
bg_dip_600_80	18.8	1.0	1260.28	434.4	0.0	0.0
bg_dip_800_12	11.4	1.0	1581.5	568.2	0.0	0.0
bg_dip_1200_1	1.92	1.0	2160.02	744.2	0.0	0.0
bg_dip_1600_i	0.492	1.0	3060.71	890.4	0.0	0.0
bg_vbf_0_100	0.0486	1.0	886.102	84.95	0.0	0.0
bg_vbf_100_20	1.16	1.0	1373.99	562.4	0.0	0.0
bg_vbf_200_40	6.68	1.0	1609.96	785.9	0.0	0.0
bg_vbf_400_60	7.09	1.0	1683.8	828.2	0.0	0.0
bg_vbf_600_80	3.66	1.0	1843.6	850.5	0.0	0.0
bg_vbf_800_12	2.15	1.0	2099.49	865.8	0.0	0.0
bg_vbf_1200_1	0.385	1.0	2594.53	883.7	0.0	0.005615
bg_vbf_1600_i	0.0982	1.0	3248.25	956.8	0.0	0.02892

Figure 8.

3.10 Histogram 9

* Plot: sdETA (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	0.00250859	4.288	49.97	0.0
signal_2tevl	52.9	1.0	0.000414212	4.407	49.99	0.0
signal_2pt2tevl	34.1	1.0	-0.0344177	4.495	50.32	0.0
signal_2pt4tevl	23.3	1.0	-0.0160805	4.539	50.31	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	1.51032	5.585	33.38	0.0
bg_dip_200_40	25.8	1.0	-0.308501	4.231	54.46	0.0
bg_dip_400_60	34.8	1.0	0.0970417	3.473	48.45	0.0
bg_dip_600_80	18.8	1.0	-0.0870872	3.076	51.5	0.0
bg_dip_800_12	11.4	1.0	0.0393952	2.891	49.24	0.0
bg_dip_1200_1	1.92	1.0	-0.0394215	2.694	50.67	0.0
bg_dip_1600_i	0.492	1.0	0.082972	2.48	48.4	0.0
bg_vbf_0_100	0.0486	1.0	-0.174236	6.403	50.0	0.0
bg_vbf_100_20	1.16	1.0	0.457753	5.752	46.55	0.0
bg_vbf_200_40	6.68	1.0	-0.0210876	4.873	50.04	0.0
bg_vbf_400_60	7.09	1.0	-0.0608118	4.106	50.68	0.0
bg_vbf_600_80	3.66	1.0	-0.00763357	3.637	50.18	0.0
bg_vbf_800_12	2.15	1.0	-0.0731017	3.293	51.18	0.0
bg_vbf_1200_1	0.385	1.0	-0.0409604	2.969	50.52	0.0
bg_vbf_1600_i	0.0982	1.0	0.0465608	2.701	49.38	0.0

Figure 9.

3.11 Histogram 10

* Plot: M (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	1412.27	788.0	0.0	1.176
signal_2tevl	52.9	1.0	1430.57	799.7	0.0	1.182
signal_2pt2tevl	34.1	1.0	1445.5	809.8	0.0	1.312
signal_2pt4tevl	23.3	1.0	1455.61	814.9	0.0	1.369
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	674.287	36.08	0.0	0.0
bg_dip_200_40	25.8	1.0	806.444	369.4	0.0	0.0
bg_dip_400_60	34.8	1.0	756.124	297.2	0.0	0.0
bg_dip_600_80	18.8	1.0	781.031	322.1	0.0	0.0
bg_dip_800_12	11.4	1.0	814.453	348.2	0.0	0.0
bg_dip_1200_1	1.92	1.0	844.472	365.4	0.0	0.0
bg_dip_1600_i	0.492	1.0	872.363	403.7	0.0	0.0
bg_vbf_0_100	0.0486	1.0	999.408	375.3	0.0	0.0
bg_vbf_100_20	1.16	1.0	847.835	279.9	0.0	0.0
bg_vbf_200_40	6.68	1.0	801.713	329.2	0.0	0.0
bg_vbf_400_60	7.09	1.0	750.135	282.4	0.0	0.0
bg_vbf_600_80	3.66	1.0	761.9	286.2	0.0	0.0
bg_vbf_800_12	2.15	1.0	780.346	299.0	0.0	0.0
bg_vbf_1200_1	0.385	1.0	798.746	322.8	0.0	0.02242
bg_vbf_1600_i	0.0982	1.0	824.802	350.7	0.0	0.02892

Figure 10.

3.12 Histogram 11

* Plot: PT (a[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	778.04	381.3	0.0	1.144
signal_2tevl	52.9	1.0	775.56	380.5	0.0	1.059
signal_2pt2tevl	34.1	1.0	774.183	385.1	0.0	1.173
signal_2pt4tevl	23.3	1.0	772.799	387.2	0.0	1.208
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	327.174	7.434	0.0	0.0
bg_dip_200_40	25.8	1.0	400.151	82.89	0.0	0.0
bg_dip_400_60	34.8	1.0	445.165	113.4	0.0	0.0
bg_dip_600_80	18.8	1.0	529.399	160.6	0.0	0.0
bg_dip_800_12	11.4	1.0	638.285	244.3	0.0	0.02474
bg_dip_1200_1	1.92	1.0	750.786	377.2	0.0	0.0
bg_dip_1600_i	0.492	1.0	746.417	471.4	0.0	1.725
bg_vbf_0_100	0.0486	1.0	379.899	64.59	0.0	0.0
bg_vbf_100_20	1.16	1.0	373.902	77.67	0.0	0.0
bg_vbf_200_40	6.68	1.0	392.202	92.25	0.0	0.0
bg_vbf_400_60	7.09	1.0	436.628	112.8	0.0	0.0
bg_vbf_600_80	3.66	1.0	508.867	149.0	0.0	0.0
bg_vbf_800_12	2.15	1.0	620.887	223.3	0.0	0.0
bg_vbf_1200_1	0.385	1.0	762.723	338.6	0.0	0.028
bg_vbf_1600_i	0.0982	1.0	874.736	484.8	0.0	1.73

Figure 11.

3.13 Histogram 12

* Plot: PT (a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	500.035	339.0	0.0	0.4087
signal_2tevl	52.9	1.0	507.74	344.5	0.0	0.3779
signal_2pt2tevl	34.1	1.0	512.612	348.0	0.0	0.3966
signal_2pt4tevl	23.3	1.0	515.284	350.3	0.0	0.44
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	253.391	44.39	0.0	0.0
bg_dip_200_40	25.8	1.0	191.937	101.6	0.0	0.0
bg_dip_400_60	34.8	1.0	143.019	101.1	0.0	0.0
bg_dip_600_80	18.8	1.0	139.123	105.0	0.0	0.0
bg_dip_800_12	11.4	1.0	138.571	114.8	0.0	0.0
bg_dip_1200_1	1.92	1.0	131.66	116.5	0.0	0.0
bg_dip_1600_i	0.492	1.0	138.93	127.7	0.0	0.0
bg_vbf_0_100	0.0486	1.0	359.837	74.21	0.0	0.0
bg_vbf_100_20	1.16	1.0	285.217	94.57	0.0	0.0
bg_vbf_200_40	6.68	1.0	209.279	119.1	0.0	0.0
bg_vbf_400_60	7.09	1.0	164.173	118.0	0.0	0.0
bg_vbf_600_80	3.66	1.0	162.598	113.4	0.0	0.0
bg_vbf_800_12	2.15	1.0	169.681	124.3	0.0	0.0
bg_vbf_1200_1	0.385	1.0	175.082	135.1	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	183.775	152.5	0.0	0.0

Figure 12.

3.14 Histogram 13

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	619.842	410.8	0.0	0.0
signal_2tevl	52.9	1.0	587.037	392.4	0.0	0.0
signal_2pt2tevl	34.1	1.0	565.234	381.6	0.0	0.0
signal_2pt4tevl	23.3	1.0	551.398	374.7	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	148.168	37.58	0.0	0.0
bg_dip_200_40	25.8	1.0	322.57	51.94	0.0	0.0
bg_dip_400_60	34.8	1.0	497.625	57.16	0.0	0.0
bg_dip_600_80	18.8	1.0	687.176	55.95	0.0	0.0
bg_dip_800_12	11.4	1.0	940.982	106.9	0.0	0.0
bg_dip_1200_1	1.92	1.0	1340.97	107.2	0.0	0.0
bg_dip_1600_i	0.492	1.0	1877.37	276.5	0.0	0.0
bg_vbf_0_100	0.0486	1.0	74.6978	15.53	0.0	0.0
bg_vbf_100_20	1.16	1.0	163.344	25.73	0.0	0.0
bg_vbf_200_40	6.68	1.0	310.201	55.23	0.0	0.0
bg_vbf_400_60	7.09	1.0	491.892	56.3	0.0	0.0
bg_vbf_600_80	3.66	1.0	686.63	56.67	0.0	0.0
bg_vbf_800_12	2.15	1.0	943.126	106.9	0.0	0.0
bg_vbf_1200_1	0.385	1.0	1347.37	108.8	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	1860.8	269.2	0.0	0.02892

Figure 13.

3.15 Histogram 14

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	1.06554e-08	1.36e-08	0.0	0.0
signal_2tevl	52.9	1.0	1.05124e-08	1.342e-08	0.0	0.0
signal_2pt2tevl	34.1	1.0	1.05618e-08	1.358e-08	0.0	0.0
signal_2pt4tevl	23.3	1.0	1.05069e-08	1.353e-08	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	2.6048e-09	5.584e-10	0.0	0.0
bg_dip_200_40	25.8	1.0	5.18557e-09	2.976e-09	0.0	0.0
bg_dip_400_60	34.8	1.0	5.50193e-09	3.048e-09	0.0	0.0
bg_dip_600_80	18.8	1.0	5.57689e-09	3.42e-09	0.0	0.0
bg_dip_800_12	11.4	1.0	6.63131e-09	6.456e-09	0.0	0.0
bg_dip_1200_1	1.92	1.0	1.29426e-08	1.548e-08	0.0	0.0
bg_dip_1600_i	0.492	1.0	2.00468e-08	1.843e-08	0.0	0.0
bg_vbf_0_100	0.0486	1.0	2.92664e-09	2.061e-09	0.0	0.0
bg_vbf_100_20	1.16	1.0	4.59216e-09	2.634e-09	0.0	0.0
bg_vbf_200_40	6.68	1.0	5.34226e-09	3.094e-09	0.0	0.0
bg_vbf_400_60	7.09	1.0	5.62969e-09	3.683e-09	0.0	0.0
bg_vbf_600_80	3.66	1.0	5.77165e-09	3.524e-09	0.0	0.0
bg_vbf_800_12	2.15	1.0	6.6188e-09	5.623e-09	0.0	0.0
bg_vbf_1200_1	0.385	1.0	1.30944e-08	1.537e-08	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	2.22335e-08	2.038e-08	0.0	0.0

Figure 14.

3.16 Histogram 15

* Plot: TET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal_1pt8tevl	87.9	1.0	1897.92	834.6	0.0	0.0
signal_2tevl	52.9	1.0	1870.34	827.6	0.0	0.004039
signal_2pt2tevl	34.1	1.0	1852.03	835.8	0.0	0.002034
signal_2pt4tevl	23.3	1.0	1839.48	838.9	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	3.16	1.0	728.733	80.65	0.0	0.0
bg_dip_200_40	25.8	1.0	914.659	167.9	0.0	0.0
bg_dip_400_60	34.8	1.0	1085.81	190.6	0.0	0.0
bg_dip_600_80	18.8	1.0	1355.7	222.6	0.0	0.0
bg_dip_800_12	11.4	1.0	1717.84	310.2	0.0	0.0
bg_dip_1200_1	1.92	1.0	2223.42	420.2	0.0	0.0
bg_dip_1600_i	0.492	1.0	2762.71	554.7	0.0	0.0
bg_vbf_0_100	0.0486	1.0	814.434	141.3	0.0	0.0
bg_vbf_100_20	1.16	1.0	822.463	164.7	0.0	0.0
bg_vbf_200_40	6.68	1.0	911.682	196.9	0.0	0.0
bg_vbf_400_60	7.09	1.0	1092.69	207.8	0.0	0.0
bg_vbf_600_80	3.66	1.0	1358.1	214.6	0.0	0.0
bg_vbf_800_12	2.15	1.0	1733.69	293.4	0.0	0.0
bg_vbf_1200_1	0.385	1.0	2285.17	379.1	0.0	0.0
bg_vbf_1600_i	0.0982	1.0	2919.31	576.8	0.0	0.0

Figure 15.

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B+(xB)**2) .
- \bullet Object definition selections are indicated in cyan.
- $\bullet\,$ Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	400.622 +/- 0.237	4113516 +/- 4877	3.90e-04 +/- 2.58e-07
SEL: (($sdETA$ ($jets[1]$ $jets[2]$) > 2.0 or $sdETA$	197.4 +/- 10.0	117.7 +/- 10.8	5.743 +/- 0.318