

Matrices

CHEAT SHEET
RAGHAVENDRA BAZARI

Contents

	(
latrices	,
	_
Definition	
Types of Matrices	3
Operations	

Matrices

Definition

Rectangular table of elements arranged in rows & columns

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \qquad \text{number of rows } (n)$$
number of columns (m)

Each element of a matrix is often denoted by a variable with two subscripts. For example, a_{21} represents the element at the second row and first column of the matrix.

Dimension of a matrix A are the n rows (horizontal) and the m columns (vertical), represented by $n \times m$.

If n == m then matrix is called *Square Matrix* with dimension n.

If n! = m then matrix is called *Rectangular Matrix*.

Types of Matrices

	Definition/Prerequisite	Example/Properties
Null or Zero Matrix (O_n)	All entries of the matrix are zero. Represented by \mathcal{O}_n where n is dimension of square matrix. (It can be rectangle as well but most generally used with Square matrices)	$O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Identity or Unit Matrix (I_n)	A Diagonal matrix with each $d_i=1.$ Represented by ${\it I}_n$ where n is dimension of square matrix.	$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Diagonal Matrix (D_n)	A Square matrix with all elements is zero except diagonal. Diagonal elements can be either zero or non-zero. Represented by \mathcal{D}_n where n is dimension of square matrix.	$D_3 = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$
Positive (Semi) Definite Matrix	Any of below condition is fulfilled. $\vec{v}^T A \vec{v} \geq 0 \ for \ all \ \vec{v} \\ \lambda_i \geq 0$ All the principal minors of A are ≥ 0 . i.e., All the upper left (or lower right) submatrices A_k have nonnegative determinants.	
Idempotent matrix	$A^n = A$	Eigen values of idempotent matrices are either 0 or 1
Diagonalizable	If such decomposition of A exists: $A = V \Lambda V^{-1}$ $where \ V \ is \ eigen \ matrix = \ [\overrightarrow{v_0}, \overrightarrow{v_1},, \overrightarrow{v_n}]$ $\Lambda \ is \ diagonal \ matrix \ whose$ $diagonals \ are \ eigen \ values$	
Symmetric matrix	$A^T = A$	
Skew Symmetric Matrix	$A^T = -A$	
Orthogonal Matrix	$A^{-1} = A^T$	

Operations

	Result (R)	Prerequisite	dim (R)	$r_{ij} =$	Properties
Rank of Matrix, $\rho(A)$	$ ho(A)$: The number of linearly independent rows or columns in the matrix. $ ho(A)$ is used to denote the rank of matrix A. (i.e., number of non-zero rows after doing any number of row operations $r_j ightharpoonup r_j + lpha r_k$ for any j and k).	NA	NA	For example: $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \rho(A) = 1$	 A matrix whose rank is equal to its dimensions is called a full rank matrix. When the rank of a matrix is smaller than its dimensions, the matrix is called rank-deficient, singular, or multicollinear. Only full rank matrices have an inverse. Only O (Zero) matrix can have zero rank.
Determinant		# of cols(A) == # of rows(A)	NA	$if A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ $then A $ $= a_{11}a_{22} - a_{12}a_{21}$ $if A$ $= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ $then A = a_{11}(a_{22}a_{33} - a_{23}a_{31}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$	$ cA ^n=c^n A ^n for\ any\ constant\ c$ $ A^T = A $ $ A^{-1} =\frac{1}{ A }$ $ AB = A B $ A matrix with determinant value of zero is called Singular Matrix. Consequently, a matrix with non-zero determinant value is called non-singular matrix or invertible matrix.

Trace	Tr(A) = sum of diagonal elements of matrix A	A is Square matrix	NA	$\sum_{i=0}^{n-1} a_{ii}$	Tr(A) = Sum of eigen values of a matrix
Addition or Subtract	A + B or $A - B$	dim(A) == dim(B)	dim(A) or dim(B)	$a_{ij} + b_{ij}$	$A + O_n = O_n + A = A$ $A + B = B + A$
Multiplication	A × B or AB	# of cols(A) == # of rows(B)	(# of rows(A) , # of cols(B))	$\sum_{k=0}^{m} a_{ik} \times b_{kj}$	$A\times I_n=I_n\times A=A$ $A\times O_n=O_n\times A=O_n$ $A\times (B+C)=AB+AC \text{ or } (B+C)A=BA+CA$ For a Square matrix A, its self-multiplication n times is represented by A^n .
Equality	A == B	$dim(A) == dim(B)$ $a_{ij} == b_{ij}$ for all i & j	NA	NA	NA
Transpose	A^T	NA	(# of cols(A), # of rows(A))	a_{ji}	$(A^{T})^{T} = A$ $(A \pm B)^{T} = A^{T} \pm B^{T}$ $(cA)^{T} = cA^{T} \text{ for any constant } c$ $(AB)^{T} = B^{T}A^{T}$

Inverse	A^{-1}	A is Square matrix & A is not zero	dim(A)	$A^{-1} = \frac{1}{ A }adj(A)$ Special case: $if \ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ $then$ $adj(A)$ $= \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$ More info on how to compute inverse can be found here	$(A^{-1})^{-1} = A$ $A A^{-1} = I_n$ $(A^T)^{-1} = (A^{-1})^T$ $(cA)^{-1} = \frac{1}{c} A^{-1} \text{ for any constant } c$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^{-1})^n = A^{-n}$
Differentiation	$\frac{\partial A}{\partial B}$	A and B both are column matrices i.e. $\dim(A) = n \times 1$ $\dim(B) = m \times 1$	$n \times m$	$rac{\partial a_{i0}}{\partial b_{j0}}$	If $n=1$ then $\frac{\partial A}{\partial B} = \frac{\partial (A^T)}{\partial B}$ Transpose: $\frac{\partial (A^T)}{\partial B} = \left(\frac{\partial A}{\partial B}\right)^T$ Constant Multiplier: $\frac{\partial (CA)}{\partial B} = C\frac{\partial A}{\partial B}$ with dimension $k \times m$, for any constant matrix C with dimension, $k \times n$ Product Rule: $\frac{\partial (DA)}{\partial B} = D\frac{\partial A}{\partial B} + A^T\frac{\partial D^T}{\partial B}$ for any non-constant matrix D with dimension, $1 \times n$

	Eigen Vector: \vec{v} is a vector	A is Square	NA		1. $tr(A) = \sum \lambda_i$
	which even after applying	matrix	INA	Solve $ A - \lambda I = 0$	$ \begin{array}{ccc} 1. & U(A) = \sum \lambda_i \\ 2. & A = \prod \lambda_i \end{array} $
	linear transformation(A), at	IIIatiix		to get n eigenvalues	3. Rank(A) = number of non-zero eigen values of A.
	I				3. Rank(A) - number of non-zero eigen values of A.
	most gets scaled by λ			λ_i .	4. If Eigenvalue(A) = λ_i , then
	(called eigen value) i.e.,			Then for each λ_i solve	
	$A\vec{v} = \lambda \vec{v} \text{ or } (A - \lambda I)\vec{v} = 0$			$A\overrightarrow{v_l} = \lambda_1 \overrightarrow{v_l}$	• Eigenvalue(A^k) = λ_i^k & Eigenvector(A^k) = Eigenvector(A)
	$ec{v}$ is only eigen vector for A,				• Eigenvalue(A ⁻¹) = λ_i^{-1} & Eigenvector(A ⁻¹) =
	other transformation might				Eigenvector(A) provided no eigen value is zero
	change its				• Eigenvalue(A + cI) = $\lambda_i + c$
Vector	direction/magnitude.				Eigen Values of upper/lower triangular matrix is its
/ec					diagonal elements.
	Hence given a matrix A				ŭ
Eigen	$(n \times n)$ we can have n				5. If a matrix A is symmetric matrix then
vs E	eigen vectors, whose				All eigen vectors are orthogonal, i.e., $\overrightarrow{v_0} \cdot \overrightarrow{v_1} = 0$.
	values will only affect by at-				Eigen matrix, $[\overrightarrow{v_0}, \overrightarrow{v_1},, \overrightarrow{v_n}]$ of this matrix project the
-alr	most scaling them by λ .				correlation in n orthogonal dimension of most variance: it is
Eigen Value	g : ., .				eigenvectors and eigenvalues who are behind all the magic
ige					explained above, because the eigenvectors of the Covariance
ш					matrix are the directions of the axes where there is the most
					variance (most information) and that we call Principal
					Components. And eigenvalues are simply the coefficients
					attached to eigenvectors, which give the amount of variance
					carried in each Principal Component.
					In general, to compute principal vectors, first they are
					normalized (scaled such that length becomes 1) and
					corresponding eigen values are adjusted accordingly.
					Sorted in order of eigen values.

	A 17 A17-1	A in Causana	NIA	NIA	NA
	$A = V \Lambda V^{-1}$	A is Square	NA	NA	NA
	where V is eigen matrix	matrix			
ı.E	$= [\overrightarrow{v_0}, \overrightarrow{v_1}, \dots, \overrightarrow{v_n}]$				
/lat	Λ is diagonal matrix whose				
fΣ	diagonals are eigen values				
٥ ر	5				
Į.					
Sit					
Jbc					
οπ					
Eigen decomposition of Matrix					
n c					
ge					
□					
		A is	NA	NA	All correlation matrices are Cholesky decomposable.
<u>_</u>		Square			
tio	$A = LL^T$	Symmetric			
osi	11 22	Positive semi			
up	Where L is lower triangular	definite			
0.00	villere L is lower triangular	dennite			
De	matrix & L^T is its transpose.				
>					
esl					
Cholesky Decomposition					
-					

LU Decomposition	A=LU Where L is lower triangular matrix & U is upper triangular matrix.	NA	NA	NA	NA NA
QR	In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product $A = QR$ of an orthogonal matrix Q and an upper triangular matrix R.	NA	NA	NA	NA NA

	Singular value	NA	NA	NA	NA
	decomposition takes a				
	rectangular matrix (defined				
	as A, where A				
	is a n x p matrix)				
	A = USV				
	Where,				
SVD	$U^TU = I_n$				
0,	$V^TV = I_p$				
	i.e., U and V are				
	orthogonal				
	& S is rectangular diagonal				
	_				
	values)				
	& S is rectangular diagonal matrix with non-negative real numbers on the diagonal (called singular values)				