Frequently Asked Questions about the Final Exam

When is the final exam?

The exam is on **Tuesday**, **December 9**, **2008**. The exam starts at **4:00pm**, and ends at **6:00pm**, providing for **120 minutes** of examination.

Where is the exam?

The exam will be in the usual lecture location, namely **Kent 101**.

What are some questions that will be on the final exam?

These questions will absolutely appear on the exam. $\square \text{ What is the definition of the limit of a sequence, } \lim_{n \to \infty} a_n = L?$ $\square \text{ What is the definition of the limit of a series, } \sum_{n=1}^{\infty} a_n = L?$ $\square \text{ Use an } \epsilon\text{-}K \text{ argument to prove that the sequence} \qquad \text{converges.}$ $\square \text{ What letter grade do you believe you have earned this quarter?}$

What do these boxes mean?

I have drawn boxes next to everything you should know, so you can easily check things off when you believe you know it.

How ought I to write down my answers?

There will, as usual, be extra credit questions at the end.

You must not merely write down the answer; you must give the whole story, showing all the steps you took to arrive at your answer. You must **justify the arguments** you make in order to receive full credit.

What definitions must I know?

You may be asked to give definitions of the following terms:

\square bounded below,	\square non-increasing,	\square Taylor's theorem,
$\hfill\Box$ bounded above,	\square non-decreasing,	☐ Lagrange's theorem.
\Box increasing,	$\hfill\Box$ conditional convergence,	
\square decreasing,	$\hfill\Box$ absolute convergence,	

What convergence tests must I know?

You must be	e able to both a	pply and stat	e precise	desci	riptions of	f the following	tests:	
\Box the n^{t}	h term test,			\Box harmonic series test,				
□ compa	rison test,			\Box the ratio test,				
□ limit c	comparison test,	arison test, \Box alte			ernating series test,			
\square p-serie	es test,			\Box the root test,				
\square geome	tric series test,			□ the	integral te	st.		
Use the lim	it comparison	test to determ	nine wheth	\sum	polynomia polynomia	al converges.		
What m	ust I detern	nine about	sequen	ces c	on the ex	kam?		
You must be	e able to determ	nine whether a	sequence i	.S				
\square bound	\square bounded, and			\square monotone.				
How will	I evaluate	limits on t	he exar	n?				
In addition	to giving an ϵ - K	X proof in certa	in cases, y	you mı	ust be able	to evaluate lin	nits by using	
\Box algebraic manipulation,				\Box squeezing,				
_	composition with continuous functions— i.e., $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n)$, \square l'Hôpital's rule.							
In particular	r, you must be a	able to evaluate	e limits ha	ving t	he following	g indeterminat	e forms:	
$\square \ \frac{0}{0},$	$\Box \ \frac{\infty}{\infty},$	$\Box \ 0\cdot\infty,$	$\Box 0^0$,		$\Box 1^{\infty},$	$\square \infty^0$,	$\square \infty - \infty$	
What m	ust I do wit	h <i>series</i> or	the ex	am?				
Given a seri	es you must be	able to do the	following:					
□ Deterr	nine whether th	e series converg	ges absolu	tely,				
□ Deterr	nine whether th	e series converg	ges conditi	ionally	7,			
□ Evalua	ate the series in	certain cases, l	ike $\sum_{n=0}^{\infty} x^n$	$=\frac{1}{1-}$	$\frac{1}{x}$ provide	d x < 1.		
Given a pow	ver series, you m	nust be able to:						
☐ Find t	he interval on w	which the power	series con	nverge	s,			
□ Differe	entiate and integ	rrate the nower	series ter	m-bv-	term			

With Taylor series, what must I be able to do?

Given a function $f: \mathbb{R} \to \mathbb{R}$, you must be able to:
\square Write down the first few terms of the Taylor series for f around 0,
\square Write down the first few terms of the Taylor series for f around $a \neq 0$,
$\hfill\Box$ Find terms in a Taylor series using tricks like substitution,
\square Find the Taylor series for f —i.e., if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, find a formula for a_n ,
$\hfill\Box$ Use the Taylor series to find the values of derivatives of the function.
There may be problems about approximation.
$\hfill\Box$ Given an alternating series, find an approximate value and estimate the error.
\Box Given a Taylor series, find an approximate value and estimate the error.
What sorts of integration must I perform?
There will be integrals and differential equations on the final exam. You must:
\square Evaluate improper integrals,
\Box Compute $\int \sin(ax) \cos(bx) dx$ by using integration by parts,
\square Compute $\int \sin^n(x) \cos^m(x) dx$ for natural numbers n and m ,
\square Use partial fractions to compute $\int \frac{\text{polynomial}}{\text{polynomial}}$,
\square Solve inhomogeneous first-order linear differential equations by using an integrating factor
□ Solve homogeneous second-order linear differential equations by factoring the derivative.

Frequently Asked Questions on the Final Exam

Question 1. Give an ϵ -K argument to prove that $\lim_{n\to\infty}\frac{4}{n}=0$.

Question 2. Give an ϵ -K argument to prove that $\lim_{n\to\infty} \frac{4}{n^2} = 0$.

Question 3. Give an ϵ -K argument to prove that $\lim_{n\to\infty}\frac{(-1)^n}{n^2}=0$.

Question 4. Give an ϵ -K argument to prove that $\lim_{n\to\infty} \frac{4+2n^2}{n^2} = 2$.

Question 5. Give an ϵ -K argument to prove that $\lim_{n\to\infty} \frac{1+2n+3n^2}{n^2} = 3$.

Question 6. Is the sequence $a_n = n^2$ bounded? Is the sequence monotone?

Question 7. Is the sequence $a_n = n \cos n$ bounded? Is the sequence monotone?

Question 8. Is the sequence $a_n = \cos(\pi n)$ bounded? Is the sequence monotone?

Question 9. Is the sequence $a_n = n\cos^2 n + n\sin^2 n$ bounded? Is the sequence monotone?

Question 10. Is the sequence $a_n = \sin(\pi n)$ bounded? Is the sequence monotone?

Question 11. Is the sequence $a_n = \sin(\pi n)$ bounded? Is the sequence monotone?

Question 12. Is the sequence $a_n = \sin\left(\frac{1}{n}\right)$ bounded? Is the sequence monotone?

Question 13. Suppose a_n and b_n are bounded sequences. Is the sequence $c_n = a_n + b_n$ necessarily bounded?

Question 14. Suppose a_n and b_n are bounded sequences. Is the sequence $c_n = a_n \cdot b_n$ necessarily bounded?

Question 15. Suppose a_n and b_n are monotone sequences. Is the sequence $c_n = a_n + b_n$ necessarily monotone?

Question 16. Evaluate $\lim_{n\to\infty} \frac{n+\sqrt{n}}{1+n^2}$.

Question 17. Evaluate $\lim_{n\to\infty} \frac{n^2 + \sin n + n \cos n}{(1+n)^3 - n^3}$.

Question 18. Evaluate $\lim_{n\to\infty} \cos(\sin(1/n^n))$.

Question 19. Evaluate $\lim_{n\to\infty}\cos\left(\left(1+\frac{1}{n}\right)^n\right)$.

Question 20. Evaluate $\lim_{n\to\infty} (\pi/4)^{1/n}$.

Question 21. Evaluate $\lim_{n\to\infty} (1/2)^n$.

Question 22. Evaluate $\lim_{n\to\infty} (\sin(1/n))^n$.

Question 23. Evaluate $\lim_{n\to\infty} (\sin(1/n) + 1)^n$.

Question 24. Evaluate $\lim_{n\to\infty} (\sin^2(1/n) + 1)^n$.

Question 25. Evaluate $\lim_{n\to\infty} \left(\sin^2(1/n) + 2\sin(1/n) + 1\right)^n$.

Question 26. Evaluate $\lim_{n\to\infty} \left(1 + \frac{\log 123456789}{n}\right)^n$.

Question 27. Search for the value of $\lim_{n\to\infty} \left(1 + \frac{50 \log 10}{n}\right)^{2n}$ on the Internet.

Question 28. Evaluate $\lim_{n\to\infty} \frac{1}{\sqrt{n}}$.

Question 29. Evaluate $\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{n} + \sqrt[3]{n}}$.

Question 30. Evaluate $\lim_{n\to\infty} \frac{\left(10^{\left(10^{\left(10^{10}\right)}\right)}\right)^n}{n!}$.

Question 31. Evaluate $\lim_{n\to\infty} \frac{\left(100^{\left(100^{\left(100^{100}\right)}\right)}\right)^n}{\sqrt{n!}}$.

Question 32. Evaluate $\lim_{n\to\infty} \frac{\log n}{n}$.

Question 33. Evaluate $\lim_{n\to\infty} (2n)^{3/n}$.

Question 34. For each of the seven indeterminate forms:

$$\frac{0}{0}, \ \frac{\infty}{\infty}, \ 0 \cdot \infty, \ 0^0, \ 1^{\infty}, \ \infty^0, \ \infty - \infty$$

find a limit exhibiting the form.

Question 35. Evaluate $\lim_{n\to\infty} \left(\frac{\cos n + \sin n + \sin^2 n}{4}\right)^n$.

Question 36. By Taylor's theorem,

$$\sin\frac{1}{2} = (1/2) - \frac{(1/2)^3}{3!} + R_3(1/2) = \frac{23}{48} + R_3(1/2)$$

I have built a right triangle, having a hypotenuse $48 \,\mathrm{cm}$, and height $23 \,\mathrm{cm}$. Use Lagrange's theorem to bound $R_3(1/2)$, and thereby justify that this is a good way to build a triangle having an angle of 1/2 radians.

Question 37. Use Taylor's theorem to show that $\log 2 \approx 7/12$ and estimate the error.

Question 38. Recall that (as you should have memorized for the exam)

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}.$$

Musically, an important fact is that $2^{19} \approx 3^{12}$. Let's see if we can show this using Taylor series. Taking logarithms, we find

$$19 \cdot \log 2 \approx 12 \cdot \log 3$$

But $\log 3 = \log 1.5 + \log 2$, so

$$19 \cdot \log 2 \approx 12 \cdot (\log 1.5 + \log 2)$$

which means that

$$7 \cdot \log 2 \approx 12 \cdot \log 1.5$$

or by the Taylor series above

$$7(1-1/2+1/3+R_3(1)) \approx 12((1/2)-(1/2)^2/2+(1/2)^2/3+R_3(1/2))$$
.

Use a theorem on alternating series to bound $R_3(1)$ and $R_3(1/2)$ to show that this is possible.

Question 39. Does the series $\sum_{n=1}^{\infty} n^4/4^n$ converge?

Question 40. Does the series $\sum_{n=1}^{\infty} n!$ converge?

Question 41. Does the series $\sum_{n=1}^{\infty} (n+1)/(n)$ converge?

Question 42. Does the series $\sum_{n=1}^{\infty} (n!+1)/(n!)$ converge?

Question 43. Does the series $\sum_{n=1}^{\infty} (1/3)^n$ converge?

Question 44. Does the series $\sum_{n=1}^{\infty} ((1/3)^n + (1/4)^n)$ converge?

Question 45. Does the series $\sum_{n=1}^{\infty} ((1/3)^n + (1/3)^{n-1} (n/4) + (1/4)^n)$ converge? For a very different method, try comparison with $((1/3) + (1/4))^n$.

Question 46. Does the series $\sum_{n=1}^{\infty} (n(1/3)^n)$ converge? Did you do it without using the ratio test? Can you estimate its limit?

Question 47. Does the series $\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n^3 + n + 1}$ converge?

Question 48. Does the series $\sum_{n=1}^{\infty} \frac{4 n^{10} + n + 1}{(n^2 + 1)^6}$ converge?

Question 49. Does the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+10} \right)^n$ converge?

Question 50. Does the series $\sum_{n=1}^{\infty} \frac{n+1}{n!}$ converge?

Question 51. Does the series $\sum_{n=1}^{\infty} \frac{3 n^6 + n^4}{(n!)^2}$ converge?

Question 52. Does the series $\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)!}$ converge?

Question 53. Does the series $\sum_{n=1}^{\infty} \frac{(2n)! + 13}{(3n)! + 12}$ converge?

Question 54. Does the series $\sum_{n=1}^{\infty} \frac{(2n)! - 13}{(3n)! + 12}$ converge?

Question 55. Does the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?

Question 56. Does the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?

Question 57. If a_n converges absolutely, does a_n converge?

Question 58. Does the series $\sum_{n=1}^{\infty} (1/n! - 1/n)$ converge absolutely? Converge conditionally?

Question 59. Does the series $\sum_{n=1}^{\infty} 2^{-n}$ converge absolutely? Converge conditionally?

Question 60. Does the series $\sum_{n=1}^{\infty} (-2)^{-n}$ converge absolutely? Converge conditionally?

Question 61. Does the series $\sum_{n=1}^{\infty} (-1)^n/n$ converge absolutely? Converge conditionally?

Question 62. Does the series $\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}$ converge absolutely? Converge conditionally?

Question 63. Does the series $\sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ converge absolutely? Converge conditionally?

Question 64. Does the series $\sum_{n=1}^{\infty} (-1)^n/n^2$ converge absolutely? Converge conditionally?

Question 65. Does the series $\sum_{n=1}^{\infty} (\sin n) / n^2$ converge absolutely? Converge conditionally?

Question 66. What are the first five terms of the Taylor series for $f(x) = \sin x \cos x$ around zero?

Question 67. What are the first four terms of the Taylor series for $f(x) = e^{\sin x}$ around zero?

Question 68. What are the first five terms of the Taylor series for $f(x) = \cos^2 x$ around π ?

Question 69. Find the Taylor series for $f(x) = e^{3x}$ around x = 0.

Question 70. Find the Taylor series for $f(x) = e^x - e^{-x}$ around x = 0.

Question 71. Find the Taylor series for $f(x) = e^x - e^{-x}$ around x = 0.

Question 72. Find the Taylor series for $f(x) = (1+x)^2$ around x = 0.

Question 73. Find the Taylor series for $f(x) = (1+x)^{100}$ around x=0.

Question 74. Find the Taylor series for $f(x) = -x \cos x + \sin x$ around x = 0.

Question 75. Find the Taylor series for $f(x) = -x \cos x + \sin x$ around x = 0.

Question 76. Find the Taylor series for $f(x) = \cos^2 x \sin^3 x$ around x = 0.

Question 77. What are the first five terms of the Taylor series for $f(x) = \sin x \cos x$ around π ?

Question 78. Evaluate the integral

$$\int_3^\infty \frac{dx}{(1-x)^2}$$

Question 79. Evaluate the integral

$$\int \frac{1}{x^2 - 9x + 20} \, dx$$

Question 80. Evaluate the integral

$$\int \frac{x^3 - 1}{1 + x + x^2} \, dx$$

Question 81. Evaluate the integral

$$\int \frac{x^3 - 2}{1 + x + x^2} \, dx$$

Question 82. Evaluate the integral

$$\int \sin(3x) \, \cos(3x) \, dx.$$

Question 83. Evaluate the integral

$$\int \sin^3 x \, \cos^{10} x \, dx.$$

Question 84. Evaluate the integral

$$\int \sin^5 x \, \cos^5 x \, dx.$$

Question 85. Find a two nonconstant polynomials p(x) and q(x) so that

$$\int_0^1 p(x) (1+x^2) dx = 0 \text{ and } \int_0^1 q(x) (1+x^2) dx = 0$$

and p(x) is not a multiple of q(x).

Question 86. Find the general solution to the differential equation

$$f'(x) + \frac{1}{x}f(x) = \sin x$$

Question 87. Find the general solution to the differential equation

$$f'(x) - \tan x f(x) = \sin x$$

9