DMA 2016

-Ugeopgave 5 -

- Hele ugeopgaven skal besvares.
- Ugeopgaven skal afleveres mandag den 10. oktober klokken 23:59 på Absalon.
- Ugeopgaven skal laves i **grupper** af 3-4 personer.
- Besvarelsen skal udarbejdes i LATEX.
- Del 1 Når vi benytter Euklids algoritme på to tal a,b for at bestemme $\operatorname{GCD}(a,b)$ foretager vi et antal divisioner med rest indtil vi opnår resten 0 og dermed har bestemt den største fælles divisor som den næstsidste beregnede rest. Vi vil sige at antallet af **trin** der skal benyttes er antallet af divisioner. Således er antallet af trin der skal benyttes for at bestemme $\operatorname{GCD}(273,98)$ netop 5, jf. gennemregningen i KBR Example 1.4.5 (side 23). Antallet af trin for alle valg af a,b med $15 \geq a \geq b > 0$ på nær to sådanne valg er illustreret i figur 1.
 - (1) Beregn GCD(8,5) samt GCD(13,8) og bestem de to manglende tal i figur 1.
 - (2) Lad t_n være det højeste (worst-case) antal trin der skal benyttes til at bestemme GCD(a, b) når $n \ge a \ge b > 0$. Benyt figur 1 til at bestemme t_1, t_2, \ldots, t_{15} .
 - (3) Vis at t_n er O(n).
 - (4) Giv en begrundelse for at t_n ikke er O(1).
 - (5) Grafen for t_n for n mellem 1 og 200 er illustreret på figur 2. Ser det ud som om t_n er $\Theta(n)$?
- Del 2 Benyt følgende opskrift til at give et induktionsbevis for at $6^n 5n + 4$ er deleligt med 5 for ethvert helt tal n > 0.
 - (1) Bestem det relevante udsagn P(n).
 - (2) Kontrollér at P(n) er et sandt udsagn for alle k mellem 1 og 5.
 - (3) Indfør en følge $b_n = 6^n 5n + 4$, og lav en formel der sammenknytter b_{n+1} og b_n
 - (4) Antag nu at P(n) er sand for en eller anden bestemt værdi af n. Gør rede for at så er P(n+1) også sand.
 - (5) Opstil en konklusion ved hjælp af induktionsprincippet.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2		1	2	1	2	1	2	1	2	1	2	1	2	1	2
3			1	2	3	1	2	3	1	2	3	1	2	3	1
4				1	2	2	3	1	2	2	3	1	2	2	3
5					1	2	3		3	1	2	3	4	3	1
6						1	2	2	2	3	3	1	2	2	2
7							1	2	3	3	4	4	3	1	2
8								1	2	2	4	2		3	3
9									1	2	3	2	3	4	3
10										1	2	2	3	3	2
11											1	2	3	4	4
12												1	2	2	2
13													1	2	3
14														1	2
15															1

Figur 1: Antal trin i beregningen af $\mathrm{GCD}(a,b)$

Figur 2: Grafen for t_n