##importing the dataset
import pandas as pd
df=pd.read_csv(r"C:\Users\USER\OneDrive\Data Science books\datasets\
Wine dataset\wine-clustering.csv")

df							
	Alcohol	Malic_Acid	Ash	Ash_Alcan	ity	Magnesium	Total_Phenols
0	14.23	1.71	2.43	1	.5.6	127	2.80
1	13.20	1.78	2.14	1	1.2	100	2.65
2	13.16	2.36	2.67	1	.8.6	101	2.80
3	14.37	1.95	2.50	1	.6.8	113	3.85
4	13.24	2.59	2.87	2	1.0	118	2.80
173	13.71	5.65	2.45	2	0.5	95	1.68
174	13.40	3.91	2.48	2	3.0	102	1.80
175	13.27	4.28	2.26	2	0.0	120	1.59
176	13.17	2.59	2.37	2	0.0	120	1.65
177	14.13	4.10	2.74	2	4.5	96	2.05
Color 0 5.64 1 4.38 2 5.68	Flavanoid 2_Intensit 3.0 1.04 2.7 1.05 3.2	ty Hue \ 06 76 24	noid_P	0.28 0.26 0.30	oantl	2.29 1.28 2.81	
3 7.80	3.4 0.86	49		0.24		2.18	
4	2.6 1.04	69		0.39		1.82	
173	0.6	61		0.52		1.06	
7.30 175	0.75	75		0.43		1.41	
	0.70 0.6 0.59	69		0.43		1.35	

```
176
            0.68
                                    0.53
                                                      1.46
9.30
      0.60
177
            0.76
                                    0.56
                                                      1.35
9.20
      0.61
     0D280
             Proline
0
      3.92
                1065
1
      3.40
                1050
2
      3.17
                1185
3
      3.45
                1480
4
      2.93
                 735
                 . . .
173
      1.74
                 740
174
      1.56
                 750
175
      1.56
                 835
176
      1.62
                 840
177
      1.60
                 560
[178 rows x 13 columns]
##data exploration
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 13 columns):
#
     Column
                             Non-Null Count
                                              Dtype
     _ _ _ _ _ _
                             _ _ _ _ _ _ _ _ _ _ _ _ .
- - -
0
     Alcohol
                             178 non-null
                                               float64
1
     Malic Acid
                             178 non-null
                                               float64
 2
                             178 non-null
                                               float64
     Ash
 3
     Ash Alcanity
                             178 non-null
                                               float64
4
     Magnesium
                             178 non-null
                                               int64
 5
     Total Phenols
                             178 non-null
                                              float64
 6
     Flavanoids
                             178 non-null
                                              float64
 7
     Nonflavanoid Phenols
                             178 non-null
                                              float64
 8
     Proanthocyanins
                             178 non-null
                                               float64
                             178 non-null
9
     Color_Intensity
                                               float64
10
                             178 non-null
                                              float64
     Hue
     0D280
                             178 non-null
                                              float64
 11
12
     Proline
                             178 non-null
                                              int64
dtypes: float64(11), int64(2)
memory usage: 18.2 KB
##summary statistics
df.describe()
                                              Ash Alcanity
           Alcohol
                    Malic Acid
                                                               Magnesium \
                                         Ash
       178.000000
                    178.000000
                                 178.000000
                                                 178.000000
                                                              178.000000
count
mean
        13.000618
                      2.336348
                                   2.366517
                                                  19.494944
                                                               99.741573
```

25% 50% 75%	0.811827 11.030000 12.362500 13.050000 13.677500 14.830000	1.117146 0.740000 1.602500 1.865000 3.082500 5.800000	0.274344 1.360000 2.210000 2.360000 2.557500 3.230000	3.339564 10.600006 17.200006 19.500006 21.500006	70.000000 88.000000 98.000000 107.000000)))
т	otal Phenols	Flavanoids	Nonflavan	oid Phenols		
	cyanins \	i cavanorus	Noill Cavail	ora_r nenocs		
count	178.000000	178.000000		178.000000		
178.0000	00 2.295112	2.029270		0.361854		
mean 1.590899		2.029270		0.301034		
std	0.625851	0.998859		0.124453		
0.572359		0.240000		0 120000		
min 0.410000	0.980000	0.340000		0.130000		
25%	1.742500	1.205000		0.270000		
1.250000		2 125000		0. 240000		
50% 1.555000	2.355000	2.135000		0.340000		
75%	2.800000	2.875000		0.437500		
1.950000		5 000000		0.660000		
max 3.580000	3.880000	5.080000		0.660000		
C count	olor_Intensi 178.0000				oline	
mean	5.0580					
std	2.3182					
min	1.2800					
25% 50%	3.2200 4.6900					
75%	6.2000					
max	13.0000	90 1.7100	90 4.000	000 1680.00	00000	
##correl df.corr(ation matrix)					
		Alcohol	Malic_Acid	Ash A	Ash_Alcanity	
Magnesiu	m \	1 000000	0 004207	0 211545	0 210225	
Alcohol 0.270798		1.000000	0.094397	0.211545	-0.310235	
Malic_Ac		0.094397	1.000000	0.164045	0.288500	-
0.054575		0 011545	0 164045	1 000000	0 442267	
Ash 0.286587		0.211545	0.164045	1.000000	0.443367	
Ash_Alca		-0.310235	0.288500	0.443367	1.000000	-
0.083333	-	0 272722	0 05 45 55	0.00000		
Magnesiu	m	0.270798	-0.054575	0.286587	-0.083333	

1.000000	0. 200101	0 225167	0 120000	0 221112
Total_Phenols 0.214401	0.289101	-0.335167	0.128980	-0.321113
Flavanoids	0.236815	-0.411007	0.115077	-0.351370
0.195784				
Nonflavanoid_Phenols	-0.155929	0.292977	0.186230	0.361922 -
0.256294	0 126600	0 220746	0.000653	0 107227
Proanthocyanins 0.236441	0.136698	-0.220746	0.009652	-0.197327
Color Intensity	0.546364	0.248985	0.258887	0.018732
$0.199\overline{9}50$				
Hue	-0.071747	-0.561296	-0.074667	-0.273955
0.055398	0 072242	0. 200710	0 002011	0 276760
0D280 0.066004	0.072343	-0.368710	0.003911	-0.276769
Proline	0.643720	-0.192011	0.223626	-0.440597
0.393351	01043720	0.152011	0.225020	01440557
,	Total_Pheno	ls Flavan	oids Nonfla	avanoid_Phenols
\ Alcohol	0.2891	0.23	6015	-0.155929
Acconoc	0.2091	01 0.23	0013	-0.133929
Malic_Acid	-0.3351	67 -0.41	1007	0.292977
Ash	0.1289	80 0.11	5077	0.186230
Ash_Alcanity	-0.3211	13 -0.35	1370	0.361922
Magnesium	0.2144	0.19	5784	-0.256294
Total_Phenols	1.0000	00 0.86	4564	-0.449935
Flavanoids	0.8645	64 1.00	0000	-0.537900
Nonflavanoid Phenols	-0.4499	35 -0.53	7900	1.000000
Proanthocyanins	0.6124			-0.365845
•				
Color_Intensity	-0.0551	36 -0.17	2379	0.139057
Hue	0.4336	81 0.54	3479	-0.262640
0D280	0.6999	49 0.78	7194	-0.503270
Proline	0.4981	15 0.49	4193	-0.311385
00200 \	Proanthocya	nins Colo	r_Intensity	Hue
OD280 \ Alcohol 0.072343	0.13	6698	0.546364	-0.071747
0.0/2343				

```
Malic Acid
                             -0.220746
                                               0.248985 -0.561296 -
0.368710
Ash
                             0.009652
                                               0.258887 -0.074667
0.003911
Ash Alcanity
                             -0.197327
                                               0.018732 -0.273955 -
0.276769
                                               0.199950 0.055398
Magnesium
                              0.236441
0.066004
Total Phenols
                                              -0.055136 0.433681
                             0.612413
0.699949
Flavanoids
                             0.652692
                                              -0.172379 0.543479
0.787194
Nonflavanoid Phenols
                                               0.139057 -0.262640 -
                             -0.365845
0.503270
Proanthocyanins
                              1.000000
                                              -0.025250 0.295544
0.519067
Color Intensity
                             -0.025250
                                               1.000000 -0.521813 -
0.428815
                             0.295544
                                              -0.521813 1.000000
Hue
0.565468
                                              -0.428815 0.565468
0D280
                             0.519067
1.000000
                              0.330417
                                               0.316100 0.236183
Proline
0.312761
                       Proline
Alcohol
                      0.643720
Malic Acid
                     -0.192011
Ash
                      0.223626
Ash Alcanity
                     -0.440597
Magnesium
                      0.393351
Total Phenols
                      0.498115
Flavanoids
                      0.494193
Nonflavanoid Phenols -0.311385
Proanthocyanins
                      0.330417
Color Intensity
                      0.316100
Hue
                      0.236183
0D280
                      0.312761
Proline
                      1.000000
##visualization of individual features
import matplotlib.pyplot as plt
import seaborn as sns
fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(12, 12))
variables = df.columns
axes = axes.flatten()
# Loop through each variable and create subplots
for i, variable in enumerate(variables):
    ax = axes[i]
    sns.histplot(df[variable], ax=ax, kde=True, bins=20)
```

```
ax.set_title(f'Distribution of {variable}')
      ax.set xlabel(variable)
      ax.set ylabel('Frequency')
for j in range(i + 1, len(axes)):
      fig.delaxes(axes[j])
plt.subplots adjust(wspace=0.4, hspace=0.8)
            Distribution of Alcohol
                                                    Distribution of Malic Acid
                                                                                                Distribution of Ash
                                                                                       30
                                              40
     15
                                            Frequency N
   Frequency
                                                                                     Frequency
                                                                                       20
     10
                                                                                       10
      5
      0
                                                                                             1.5
         11
                12
                       13
                              14
                                                                                                    2.0
                                                                                                           2.5
                                                                                                                  3.0
                    Alcohol
                                                            Malic_Acid
                                                                                                        Ash
          Distribution of Ash_Alcanity
                                                   Distribution of Magnesium
                                                                                           Distribution of Total Phenols
   Frequency
10
                                            Freduency
20
10
                                                                                       15
                                                                                     Frequency
                                                                                       10
      0
        10
               15
                     20
                            25
                                                   75
                                                          100
                                                                 125
                                                                         150
                                   30
                                                                                            1
                                                                                                              3
                  Ash_Alcanity
                                                            Magnesium
                                                                                                    Total_Phenols
          Distribution of Flavanoids
                                              Distribution of Nonflavanoid Phenols
                                                                                          Distribution of Proanthocyanins
     20
                                            Frequency
10
                                                                                     Frequency
   Frequency
     10
                                                                                       10
                                                0
                                                               0.4
                                                                         0.6
                                                                                                  Proanthocyanins
                   Flavanoids
                                                       Nonflavanoid_Phenols
        Distribution of Color Intensity
                                                       Distribution of Hue
                                                                                              Distribution of OD280
20
                                            Frequency
10
                                                                                     Frequency
                                                                                       10
      0
                                                  0.5
                                                             1.0
                                                                        1.5
                             10
                 Color_Intensity
                                                               Hue
                                                                                                      OD280
             Distribution of Proline
Frequency 50
      0
```

##scaling the dats
from sklearn.preprocessing import StandardScaler

1500

500

1000

Proline

```
scaler = StandardScaler()
scaled data = scaler.fit transform(df)
scaled data
array([[ 1.51861254, -0.5622498 , 0.23205254, ..., 1.84791957,
         1.01300893, 1.1928401 ],
       [\ 0.24628963,\ -0.49941338,\ -0.82799632,\ \ldots,\ 1.1134493\ ,
         0.96524152, 1.1928401 ],
       [ 0.19687903, 0.02123125, 1.10933436, ..., 0.78858745, ]
         1.39514818, 1.1928401 ],
       [0.33275817, 1.74474449, -0.38935541, ..., -1.48544548,
         0.28057537, -1.33484488],
       [0.20923168, 0.22769377, 0.01273209, ..., -1.40069891,
         0.29649784, -1.33484488],
       [\ 1.39508604,\ 1.58316512,\ 1.36520822,\ \ldots,\ -1.42894777,
        -0.59516041, -1.33484488]])
##performing k-means clustering
from sklearn.cluster import KMeans
x=scaled data
##elbow method to calculate the optimal number of clusters
sse = [] # Initialize the list to store SSE values
k range = range(1, 11) # Define the range of K values
for k in k range:
    kmeans = KMeans(n clusters=k, init='k-means++', random state=1)
    kmeans.fit(x)
    sse.append(kmeans.inertia )
plt.figure(figsize=(8, 6))
plt.plot(k range, sse, marker='o', linestyle='-', color='b')
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
```

```
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
_kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
```

```
warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
[<matplotlib.lines.Line2D at 0x23ae54a5810>]
```



```
##converting scaled data into a dataframe and appendinf the cluster
label
df scaled = pd.DataFrame(data=scaled data, columns=df.columns)
labels=df_scaled['cluster_label'] = kmeans.fit_predict(x)
labels
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:870: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\USER\anaconda3\lib\site-packages\sklearn\cluster\
kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP_NUM_THREADS=1.
 warnings.warn(
2,
```

```
2,
     1,
     1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1,
     1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,
     1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0,
     0,
     0,
     0, 0])
##visualizing the cluster for alcohol against color intensity
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df_scaled, x='Alcohol', y='Color Intensity',
hue='cluster_label', palette='viridis', s=100)
plt.title('K-means Clustering of Alcohol against Color Intensity')
plt.xlabel('Alcohol Content')
plt.ylabel('Color Intensity')
plt.legend(title='Cluster label')
plt.show()
```

K-means Clustering of Alcohol against Color Intensity


```
##visualizing the cluster for alcohol against color intensity
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df_scaled, x='Flavanoids', y='Proanthocyanins',
hue='cluster_label', palette='viridis', s=100)
plt.title('K-means Clustering of Flavinoids against Proanthocyanins')
plt.xlabel('Flavanoids')
plt.ylabel('Proanthocyanins')
plt.legend(title='Cluster_label')
plt.show()
```



```
#dropping the cluster label
data=df_scaled.drop('cluster_label',axis=1)
data
      Alcohol
               Malic Acid
                                 Ash Ash Alcanity
                                                    Magnesium
Total Phenols
     1.518613
                -0.562250
                           0.232053
                                         -1.169593
                                                     1.913905
0.808997
                -0.499413 -0.827996
     0.246290
                                         -2.490847
                                                     0.018145
0.568648
     0.196879
                 0.021231 1.109334
                                         -0.268738
                                                     0.088358
0.808997
                                         -0.809251
                                                     0.930918
     1.691550
                -0.346811
                           0.487926
2.491446
     0.295700
                 0.227694 1.840403
                                          0.451946
                                                     1.281985
```

0.808997					
 173 0.876275	2 074542	0.305159	0.301803	-0.332922	
0.985614	2.9/4343	0.303139	0.301803	-0.332922	-
174 0.493343	1.412609	0.414820	1.052516	0.158572	-
0.793334 175 0.332758	1.744744	-0.389355	0.151661	1.422412	_
1.129824					
176 0.209232 1.033684	0.227694	0.012732	0.151661	1.422412	-
177 1.395086	1.583165	1.365208	1.502943	-0.262708	-
0.392751					
Flavanoids		noid_Phenols	Proanthocyar	nins	
Color_Intensity 0 1.034819	\	0 650563	1 22	1001	
0.251717		-0.659563	1.224	1004	
1 0.733629		-0.820719	-0.544	4721	-
0.293321 2 1.215533		-0.498407	2.135	5968	
0.269020		0 001075			
3 1.466525 1.186068		-0.981875	1.032	2155	
4 0.663351		0.226796	0.40	1404	-
0.319276					
		• • • •			• •
173 -1.424900 1.142811		1.274310	-0.930	9179	
174 -1.284344		0.549108	-0.316	5950	
0.969783 175 -1.344582		0.549108	-0.422	0075	
2.224236		0.549100	-0.422	2075	
176 -1.354622		1.354888	-0.229346		
1.834923 177 -1.274305		1.596623	-0.422	2075	
1.791666					
Hue	0D280	Proline			
0 0.362177 1	.847920	L.013009			
	.113449 6 .788587 1	0.965242 1.395148			
	.184071 2	2.334574			
4 0.362177 0 	.449601 -6	0.037874			
173 -1.392758 -1.231206 -0.021952					
174 -1.129518 -1 175 -1.612125 -1		0.009893 0.280575			
1/3 -1.012123 -1	03443	7.2003/3			

```
176 -1.568252 -1.400699 0.296498
177 -1.524378 -1.428948 -0.595160

[178 rows x 13 columns]

##performing statistical tests to measure quality of the clusters
##silhouette test
from sklearn.metrics import silhouette_score

silhouette_avg = silhouette_score(data, labels)
silhouette_avg

0.28594199657074876

#The silhouette score is near 0, therefore indicates the clusters are
overlapping, as shown in the visualizations.

#davies_bouldin_score
from sklearn.metrics import davies_bouldin_score
db_index = davies_bouldin_score(data, labels)
db_index
```

1.391793832317738

##The DBI is rather high and also indicates that the clusters are not distinct and overlap.