

ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing

TSING TURK

Qifan Zhang¹ Xuesong Bai¹ Xiang Li² Haixin Duan²^{, 3, 4} Qi Li² Zhou Li¹

¹University of California, Irvine ²Tsinghua University ³Zhongguancun Laboratory ⁴Quan Cheng Laboratory

DNS Resolution

- Translate human-friendly domains into machine-friendly IP addresses.
- Recursive process. Root servers, Top-Level Domain (TLD) servers, etc.
- Multiple roles. Forwarders, recursive resolvers, nameservers (NSes).

DNS Complexity and Vulnerability

- Over **100** RFCs.
- Many use cases. Web browsing, email, zero-trust network, autonomous vehicle, etc.
- Many implementations. 20+ widely used DNS software.
- Fragmented service ecosystem. Millions of NSes, open/local resolvers, and forwarders [1].
- DNS failures and attacks happened a lot.

Figure 1. DNS RFCs (as of 2020) [6]

Challenges 1: Non-Crash Vulnerabilities

- DNS vulnerabilities does not always lead to crashes.
- Focus on categories of identified bugs via CVE study on CVEs ranging from 1999 to 2023.

Software*	# CVE							
	Non-crash				Crash			
	Cache Poisoning	Resource Consum. ¹	Others ²	Total	Non-memory	Memory	Total	Total
BIND	18	18	11	47	75	22	97	144
Unbound	4	5	4	13	5	8	13	26
Knot Resolver	6	4	0	10	2	0	2	12
PowerDNS Recursor	13	8	9	30	7	6	13	43
MaraDNS	2	3	0	5	4	7	11	16
Technitium	3	1	0	4	0	0	0	4
Total	46	39	24	109	93	43	136	245

Challenges 2: Stateful Fuzzing

Challenges 3: Fuzzing Instrumentation

Identified Vulnerabilities

- Tested on 6 mainstream DNS software.
- 23 vulnerabilities identified, 19 confirmed, 15 CVEs assigned, categorized into 3 classes.

Input Generation

• Two dimensions. Generate a pair of query and response in each round.

RC6 (6,264), RC7 (4,448), and CC1 (5).

- Grammar-based fuzzing. Generation is based on Probabilistic context-free grammar (PCFG).
- Byte-level mutation [2]. Special characters (\., \000, @, /, and \) are embedded.

Evaluation Results

(c) Throughput ("Thruput") of 4 modes with regard to the number of units. CDNS w/o f.b., CDNS w/ f.b., Recur-only and Fwd-only refers to CDNS without fallback, CDNS with fallback, Recursive-only, and Forward-only.

References

- [1] Mark Allman.
- Comments on dns robustness. In Proceedings of the Internet Measurement Conference 2018, pages 84–90, 2018.
- Philipp Joitner and Hava Shulman
- [2] Philipp Jeitner and Haya Shulman.
 - Injection attacks reloaded: Tunnelling malicious payloads over {DNS}. In 30th USENIX Security Symposium (USENIX Security 21), pages 3165-3182, 2021.
- [3] Xiang Li, Baojun Liu, Xuesong Bai, Mingming Zhang, Qifan Zhang, Zhou Li, Haixin Duan, and Qi Li. Ghost Domain Reloaded: Vulnerable Links in Domain Name Delegation and Revocation. In Proceedings of the 30th Annual Network and Distributed System Security Symposium, NDSS '23, 2023.
- [4] Xiang Li, Chaoyi Lu, Baojun Liu, Qifan Zhang, Zhou Li, Haixin Duan, and Qi Li. The Maginot Line: Attacking the Boundary of DNS Caching Protection. In Proceedings of the 32nd USENIX Security Symposium, USENIX Security '23, 2023.
- [5] Xiang Li, Wei Xu, Baojun Liu, Mingming Zhang, Zhou Li, Jia Zhang, Deliang Chang, Xiaofeng Zheng, Chuhan Wang, Jianjun Chen, Haixin Duan, and Qi Li.
- TuDoor Attack: Systematically Exploring and Exploiting Logic Vulnerabilities in DNS Response Pre-processing with Malformed Packets. In Proceedings of 2024 IEEE Symposium on Security and Privacy, Oakland S&P '24, 2024.
- [6] Takashi Takizawa.
 - {DNS RFCs} (2020-08-29).
 - https://emaillab.jp/dns/dns-rfc/, 2020.
- [7] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
 Be sensitive and collaborative: Analyzing impact of coverage metrics in greybox fuzzing.
 In 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pages 1–15, 2019.
- [8] Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li, and Zhou Li. ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing. In Proceedings of the 33rd USENIX Security Symposium, USENIX Security '24, 2024.