Definitions

March 15, 2021

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

March 15, 2021

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

└─TLDR...

- 2 The consensus problem
 - ullet Time-invariance of χ
 - ullet Convergence of χ
- Mechanism design problem

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

—Outline

2021-03-15

2021-03-15

Definitions

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

Definitions

Definitions

93

Definition 1 (Agents)

 $\Gamma = 1, ..., n$ is a set of agents/players/nodes/vertices and $G = (\Gamma, E)$ is a fixed (in time) undirected, connected, network describing the connections between vertices $i \in \Gamma$, where $E \subset \Gamma \times \Gamma$ is the edge set.

describing the connections between vertices $i \in \Gamma$, where

Definition 2 (Neighborhood)

A *neighborhood* of a vertex *i* is the set of all vertices *j* for which there is a single edge connecting i, j, that is to say $N_i := \{j \mid (i,j) \in E\}.$

Non-linear protocols for optimal distributed consensus in networks of dynamic agents 93 Definitions

2021-03-15

Non-linear protocols for optimal distributed consensus

in networks of dynamic agents

-Definitions

Figure: Neighborhoods

93

Non-linear protocols for optimal distributed consensus

in networks of dynamic agents

Definitions

Definition 3 (Control policy)

Definitions

Let $x_i(t)$ be the state of the agent i at time t, then x_i evolves according to a distributed and stationary control policy u_i , if $\dot{x}_i = u_i(x_i, \mathbf{x}_{N_i})$, where \mathbf{x}_{N_i} are the states of x_i 's neighbors.

 $\vec{u}(\vec{x}) := (u_i(x_i, \mathbf{x}_{N_i})) \text{ for all } i \in \Gamma.$

イロト 4回ト 4 三ト 4 三ト 夕(で

93

Non-linear protocols for optimal distributed consensus

in networks of dynamic agents

Definitions

Definition 3 (Control policy)

Definitions

Let $x_i(t)$ be the state of the agent i at time t, then x_i evolves according to a *distributed* and *stationary* control policy u_i , if $\dot{x}_i = u_i(x_i, \mathbf{x}_{N_i})$, where \mathbf{x}_{N_i} are the states of x_i 's neighbors.

Definition 4 (Protocol)

The *protocol* of the network is the collection of controls $\vec{u}(\vec{x}) := (u_i(x_i, \mathbf{x}_{N_i}))$ for all $i \in \Gamma$.

Definition 5 (Agreement function)

The agreement function $\chi: \mathbb{R}^n \to \mathbb{R}$ is any continuous, differentiable function which is permutation invariant, i.e.

$$\chi(x_1,\ldots,x_n)=\chi(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

To reach consensus on consensus value $\chi(\mathbf{x}(0))$ means

$$\lim_{t\to\infty}\mathbf{x}(t)=\chi(\mathbf{x}(0))\mathbf{1}$$

where
$$1 := (1, 1, ..., 1)$$

イロト 4回ト 4 三ト 4 三ト 夕(で

Non-linear protocols for optimal distributed consensus in networks of dynamic agents Definitions

 $\chi(x_1, ..., x_n) = \chi(x_{r(1)}, ..., x_{r(n)})$

$$\chi(x_1,\ldots,x_n)=\chi(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

Definition 6 (Consensus)

To reach consensus on consensus value $\chi(\mathbf{x}(0))$ means

$$\lim_{t\to\infty}\mathbf{x}(t)=\chi(\mathbf{x}(0))\mathbf{1}$$

where
$$\mathbf{1} := (1, 1, \dots, 1)$$
.

イロト 4回ト 4 三ト 4 三ト 夕(で

Non-linear protocols for optimal distributed consensus in networks of dynamic agents -03 Definitions

 $\chi(x_1, ..., x_n) = \chi(x_{r(1)}, ..., x_{r(n)})$ $\lim_{t \to \infty} \mathbf{x}(t) = \chi(\mathbf{x}(0))\mathbf{1}$

where 1 := (1, 1, ..., 1).

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

The consensus problem

consensus problem

Non-linear protocols for optimal distributed consensus

in networks of dynamic agents

The consensus problem

Consensus problem

Given a network G of agents and agreement function χ , the consensus problem is to design a protocol \mathbf{u} such that consensus is reached for any consensus value $\chi(\mathbf{x}(0))$.

Definition 7 (Consensus protocol

A protocol is a *consensus protocol* if it is the solution to a consensus problem.

4□ > 4률 > 4를 > 4를 > 분|도 90.0

Non-linear protocols for optimal distributed consensus

in networks of dynamic agents

The consensus problem

Consensus problem

Given a network G of agents and agreement function χ , the consensus problem is to design a protocol \mathbf{u} such that consensus is reached for any consensus value $\chi(\mathbf{x}(0))$.

Definition 7 (Consensus protocol)

A protocol is a *consensus protocol* if it is the solution to a consensus problem.

Time-invariance of χ

Let **u** be a stationary consensus protocol. Then $\chi(\mathbf{x}(t))$ is stationary, i.e. $\chi(\mathbf{x}(t)) = \chi(\mathbf{x}(0))$ for all t > 0.

Proof

By assumption $\mathbf{x}(t) \to \chi(\mathbf{x}(0))\mathbf{1}$. Stationary \mathbf{u} is equivalent to autonomous and therefore, if $\mathbf{x}(t)$ is a solution, then $\mathbf{y}_s(t) := \mathbf{x}(t+s)$ (with $\mathbf{y}_s(0) := \mathbf{x}(s)$) is also a solution. For such \mathbf{y}_s we also have $\mathbf{y}_s(t) \to \chi(\mathbf{y}_s(0))\mathbf{1}$ i.e.

$$\lim_{t\to\infty}\mathbf{y}_s(t)=\chi(\mathbf{y}_s(0)\mathbf{1})=\chi(\mathbf{x}(s))$$

But since both \mathbf{y}_s , \mathbf{x} converge to the same limit we must have $\chi(\mathbf{x}(s)) = \chi(\mathbf{x}(0))$ for all s.

4 D > 4 A > 4 B > 4 B > B | B | 9 Q (P)

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

The consensus problem

Time-invariance of χ

Let \mathbf{u} be a stationary consensus protocol. Then $\chi(\mathbf{x}(t))$ is stationary, i.e. $\chi(\mathbf{x}(t)) = \chi(\mathbf{x}(0))$ for all t > 0.

The expression $x \in \chi(x(t)) \to \chi(x(0))$ is an t > 0. By assumption $x(t) \to \chi(x(0))$. So that is any $x \in X_0$ in the expression of $X_0 \to X_0$ is a solution, then $\chi(x(t) \to \chi(x(t))) \to \chi(x(t))$. By also a solution. For our $\chi(x(t) \to \chi(x(t))) \to \chi(x(t))$ is also a solution. For our $\chi(x(t) \to \chi(x(t))) \to \chi(x(t))$ is also a solution. For our $\chi(x(t) \to \chi(x(t))) \to \chi(x(t))$ is also a solution.

Lemma 8 (Time invariancy)

Let **u** be a stationary consensus protocol. Then $\chi(\mathbf{x}(t))$ is stationary, i.e. $\chi(\mathbf{x}(t)) = \chi(\mathbf{x}(0))$ for all t > 0.

Proof.

By assumption $\mathbf{x}(t) \to \chi(\mathbf{x}(0))\mathbf{1}$. Stationary \mathbf{u} is equivalent to autonomous and therefore, if $\mathbf{x}(t)$ is a solution, then $\mathbf{y}_s(t) := \mathbf{x}(t+s)$ (with $\mathbf{y}_s(0) := \mathbf{x}(s)$) is also a solution. For such \mathbf{y}_s we also have $\mathbf{y}_s(t) \to \chi(\mathbf{y}_s(0))\mathbf{1}$ i.e.

$$\lim_{t\to\infty} \mathbf{y}_s(t) = \chi(\mathbf{y}_s(0)\mathbf{1}) = \chi(\mathbf{x}(s))$$

But since both \mathbf{y}_s , \mathbf{x} converge to the same limit we must have $\chi(\mathbf{x}(s)) = \chi(\mathbf{x}(0))$ for all s.

Let u be a stationary consensus protocol. Then $\chi(\mathbf{x}(t))$ is stationary, i.e. $\chi(\mathbf{x}(t)) = \chi(\mathbf{x}(0))$ for all t > 0.

By assumption $\mathbf{x}(t) \to \chi(\mathbf{x}(0))\mathbf{1}$. Stationary \mathbf{u} is equivalent to autonomous and therefore, if $\mathbf{x}(t)$ is a solution, then $\mathbf{y}_{\tau}(t) := \mathbf{x}(t+s)$ (with $\mathbf{y}_{\tau}(t) := \mathbf{x}(t+s)$ (with $\mathbf{y}_{\tau}(t) := \mathbf{x}(s)$) is also a solution. For sur \mathbf{y}_{τ} we also have $\mathbf{y}_{\tau}(t) \to \chi(\mathbf{y}_{\tau}(0))\mathbf{1}$ i.e.

 $\lim_{t\to\infty}\mathbf{y}_{\epsilon}(t)=\chi(\mathbf{y}_{\epsilon}(0)\mathbf{1})=\chi(\mathbf{x}(s))$

But since both y_s , x converge to the same limit we must have $\chi(x(s)) = \chi(x(0))$ for all s.

Note

$$\frac{\mathrm{d}\chi(\mathbf{x}(t))}{\mathrm{d}t} = \sum_{i \in \Gamma} \frac{\partial \chi}{\partial x_i} \dot{x}_i = \sum_{i \in \Gamma} \frac{\partial \chi}{\partial x_i} u_i = 0$$

Thus, a consensus protocol must satisfy $\nabla \chi \cdot \mathbf{u} = 0$.

Example 9

For $\chi(\mathbf{x}) = \min_{i \in \Gamma} (x_i)$, a suitable **u** is

$$u_i = h\left(x_i, \min_{j \in N_i} x_j\right)$$

where h(x, y) = 0 when x = y.

Definitions

$$\chi(\mathbf{x}) := f\left(\sum_{i \in \Gamma} g(x_i)\right) \tag{1}$$

with $f, g : \mathbb{R} \to \mathbb{R}$ and $g' \neq 0$.

Fact 10

Means of order psatisfy the assumptions

Mean	$\chi(\mathbf{x})$	f(y)	g(z)
Arithmetic	$\frac{1}{ \Gamma }\sum_{i\in\Gamma} x_i$	$\frac{y}{ \Gamma }$	Z
Geometric	$\left(\prod_{i\in\Gamma}^{r-1}x_i\right)^{1/ \Gamma }$	$e^{y/ \Gamma }$	$\log(z)$
Harmonic	$\frac{ \Gamma }{\sum_{i\in\Gamma}x_i^{-1}}$	$\frac{ \Gamma }{y}$	$\frac{1}{z}$
p—mean	$\left(\frac{1}{ \Gamma }\sum_{i\in\Gamma}x_i^p\right)^{1/p}$	$\left(\frac{y}{ \Gamma }\right)^{1/p}$	z ^p

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

The consensus problem

Time-invariance of χ

Theorem 11 (Protocol design rule)

The following protocol

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{1}{g'} \sum_{i \in N_i} \phi(x_i, x_i)$$
 (2)

with $g' \neq 0$, induces time-invariance in χ if ϕ is antisymmetric, i.e.

$$\phi(x_i, x_i) = -\phi(x_i, x_i)$$

Proof.

 χ is time-invariant iff

$$\frac{\mathrm{d}}{\mathrm{d}t}\sum_{i\in\Gamma}g(x_i)=\sum_{i\in\Gamma}\frac{\mathrm{d}g(x_i(t))}{\mathrm{d}t}=\sum_{i\in\Gamma}\frac{\mathrm{d}g(x_i)}{\mathrm{d}x_i}\dot{x}_i=\sum_{i\in\Gamma}g'u_i=0$$

Finally, since ϕ is antisymmetric and the graph defining the network is undirected, we have that

$$\sum_{i\in\Gamma} g'u_i = \frac{1}{g'}\sum_{i\in\Gamma} g'\sum_{j\in\mathcal{N}_i} \phi(x_j,x_i) = 0$$

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

The consensus problem

Time-invariance of χ

roof it time-showthast iff $\frac{d}{dt}\sum_{j,j}g(x_j)-\sum_{i,j}\frac{dg(x_i)}{dt}-\sum_{j,j}\frac{dg(x_j)}{dx_j}x_i-\sum_{j,j}g(x_i-0)$ where t_j is a sum of the sum of th

Example 12

Consider $\phi(x_j, x_i) := \alpha \cdot (x_j - x_i)$. Then the p-mean is time invariant under protocol

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{x_i^{1-p}}{p} \sum_{j \in N_i} \phi(x_j, x_i) = \alpha \cdot \frac{x_i^{1-p}}{p} \sum_{j \in N_i} (x_j - x_i)$$

onvergence of χ

Owing to time-invariance of χ , if the system converges, it will converge to $\chi(\mathbf{x}(0))\mathbf{1}$. But it does not necessarily converge. when g is strictly increasing and the function ϕ is defined

$$\phi(x_i, x_i) := \alpha \phi(\theta(x_i) - \theta(x_i))$$

where $\alpha>0$ and ϕ is continuous, locally Lipschitz, odd and strictly increasing, and $\theta:\mathbb{R}\to\mathbb{R}$ is differentiable with θ' locally Lipschitz and strictly positive. Thus, the protocol (2) becomes

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{\alpha}{g'} \sum_{j \in N_i} \phi\left(\theta(x_j) - \theta(x_i)\right)$$
 (3)

First we study the equilibria of the system.

Owing to time-invariance of χ , if the system converges, it will converge to $\chi(\mathbf{x}(0))\mathbf{1}$. But it does not necessarily converge, when g is strictly increasing and the function ϕ is defined

 $\phi(x_j, x_i) := \alpha \phi(\theta(x_j) - \theta(x_i))$

where $\alpha > 0$ and ϕ is continuous, locally Lipschitz, odd and strictly increasing, and $\theta : \mathbb{R} \to \mathbb{R}$ is differentiable with θ' locally Lipschitz

$$u_i(x_i, \mathbf{x}_{ik}) := \frac{\alpha}{\beta^d} \sum_{i=k} \phi(\theta(x_i) - \theta(x_i))$$

First we study the equilibria of the system

Lemma 13

Let G be a network and **u** be a protocol with components defined by eqn. (3). Then all equilibria \mathbf{x}^* of the network have the following properties:

- **1** $\mathbf{x}^* = \lambda \mathbf{1}$ for some λ
- ② if $\mathbf{x}(t)$ converges to the equilibrium $\lambda_0 \mathbf{1}$, then $\lambda_0 = \chi(\mathbf{x}(0))$, for any initial state $\mathbf{x}(0)$

Necessity 1 $\mathbf{x}^* \neq \lambda$, then there exists $u_i < 0$ (contradicts

Convergence if $\lambda \neq \chi(\mathbf{x}(0))$ then χ is not time-invariant.

Non-linear protocols for optimal distributed consensus in networks of dynamic agents The consensus problem -Convergence of χ

by eqn. (3). Then all equilibria x* of the network have the

 $\mathbf{a} \mathbf{x}^* = \lambda \mathbf{1}$ for some λ α if x(t) converges to the equilibrium $\lambda_0 1$, then $\lambda_0 = \gamma (x(0))$

Lemma 13

Let G be a network and \mathbf{u} be a protocol with components defined by eqn. (3). Then all equilibria \mathbf{x}^* of the network have the following properties:

- **1** $\mathbf{x}^* = \lambda \mathbf{1}$ for some λ
- ② if $\mathbf{x}(t)$ converges to the equilibrium $\lambda_0 \mathbf{1}$, then $\lambda_0 = \chi(\mathbf{x}(0))$, for any initial state $\mathbf{x}(0)$

Proof (sketch).

Sufficiency 1 $x_i = \lambda$, then $\phi(\theta(\lambda) - \theta(\lambda)) = 0$ since ϕ is odd and continuous.

Necessity 1 $\mathbf{x}^* \neq \lambda$, then there exists $u_i < 0$ (contradicts equilibrium).

Convergence if $\lambda \neq \chi(\mathbf{x}(0))$ then χ is not time-invariant.

Non-linear protocols for optimal distributed consensus in networks of dynamic agents $\$ The consensus problem $\$ Convergence of χ

Let G be a network and u be a protocol with components define by eqn. (3). Then all equilibria x* of the network have the following properties:

- following properties: $\mathbf{o} \ \mathbf{x}^* = \lambda \mathbf{1}$ for some λ
- ϕ if $\mathbf{x}(t)$ converges to the equilibrium $\lambda_0 \mathbf{1}$, then $\lambda_0 = \chi \left(\mathbf{x}(0)\right)$ for any initial state $\mathbf{x}(0)$

Proof (sketch): Sufficiency 1 $x_i = \lambda$, then $\phi(\theta(\lambda) - \theta(\lambda)) = 0$ since ϕ is od continuous.

continuous. Necessity 1 $\mathbf{x}^* \neq \lambda$, then there exists $u_i < 0$ (contradicts equilibrium).

equinorism). convergence if $\lambda \neq \chi(\mathbf{x}(0))$ then χ is not time-invarian

Theorem 14

Let G be a network of agents that implement a distributed and stationary protocol

$$u_i(x_i, \mathbf{x}_{N_i}) := \frac{\alpha}{g'} \sum_{i \in N_i} \phi \left(\theta(x_i) - \theta(x_i) \right)$$

against agreement function of the form (1) with g' > 0. Then the agents asymptotically reach consensus on $\chi(\mathbf{x}(0))$ for any initial state $\mathbf{x}(0)$.

Non-linear protocols for optimal distributed consensus in networks of dynamic agents The consensus problem Convergence of χ

 $u_i(\mathbf{x}_i, \mathbf{x}_{N_i}) := \frac{\alpha}{\sigma'} \sum \phi(\theta(\mathbf{x}_i) - \theta(\mathbf{x}_i))$ against agreement function of the form (1) with g' > 0. Then the

Define

$$\eta_i := g(x_i) - g(\chi(\mathbf{x}(0)))$$

and note that, since η is strictly increasing (since g is) and $\eta = 0$ iff $\mathbf{x} = \chi(\mathbf{x}(0))$, consensus corresponds to asymptotic stability of η around 0. Introduce a candidate Lyapunov function

$$V(\eta) := \frac{1}{2} \sum_{i \in \Gamma} \eta_i^2$$

Then $V(\eta) = 0$ iff $\eta = 0$, $V(\eta) > 0$ if $\eta \neq 0$, and $\dot{V}(\eta) < 0$ if $\eta \neq 0$ proves stability.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のQ○

Non-linear protocols for optimal distributed consensus in networks of dynamic agents The consensus problem \Box Convergence of χ

Non-linear protocols for optimal distributed consensus in networks of dynamic agents

Mechanism design problem

Mechanism design problem

Non-linear protocols for optimal distributed consensus

in networks of dynamic agents

Mechanism design problem

Definition 15 (Individual objective function)

Define an individual objective function for an agent i

$$J_i(x_i, \mathbf{x}_{N_i}, u_i) := \lim_{T \to \infty} \int_0^T \left(F(x_i, \mathbf{x}_{N_i}) + \rho u_i^2 \right) dt$$

where $\rho > 0$ and $F : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is a non-negative *penalty* function that measures the deviation of agent i's state x_i from its neighbors' states. A protocol is optimal if each u_i optimizes an agent's corresponding individual objective.

Definition 15 (Individual objective function)

Define an individual objective function for an agent i

$$J_i(x_i, \mathbf{x}_{N_i}, u_i) := \lim_{T \to \infty} \int_0^T \left(F(x_i, \mathbf{x}_{N_i}) + \rho u_i^2 \right) dt$$

where $\rho > 0$ and $F : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is a non-negative *penalty* function that measures the deviation of agent i's state x_i from its neighbors' states. A protocol is optimal if each u_i optimizes an agent's corresponding individual objective.

Mechanism design problem

Consider a network of agents. The mechanism design problem is, for any agreement function χ , determine a penalty F such that there exists an optimal consensus protocol **u** with respect to $\chi(\mathbf{x}(0))$ for any initial state $\chi(0)$.

Non-linear protocols for optimal distributed consensus in networks of dynamic agents $\begin{array}{c} \text{CO}_{-100} \\ \text{C$

A. Author.

Handbook of Everything.

Some Press, 1990.

On this and that.

Journal on This and That. 2(1):50-100, 2000.