STAT 4410/8416 Homework 5

Danuwar Ramesh

Due on Nov 28, 2020

- 1. Working with databases: Please follow the instruction below before answering the questions:
- Install the package sqldf using install.packages('sqldf')
- Import the library using library('sqldf')
- Read the file https://raw.githubusercontent.com/dsindy/kaggle-titanic/master/data/train.csv and store it in titanic

We can now start writing SQL Script using SQLDF library right inside R. See example below:

```
library(sqldf)
sqldf("SELECT passengerid, name, sex
    FROM titanic
    limit 5", drv="SQLite")
```

##		PassengerId	Name	Sex
##	1	1	Braund, Mr. Owen Harris	${\tt male}$
##	2	2	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female
##	3	3	Heikkinen, Miss. Laina	female
##	4	4	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female
##	5	5	Allen, Mr. William Henry	male

Answer the following questions. Write SQL Script where applicable.

- a. What is a Database Management System? Name few types of Database Management System. Answer: Database management system is the system that allows to store, modify, and extract information from a database. The different types of database management system are: mysql, oracle, ms sql, db2, ms access etc
- b. Provide 3 verbs of SQL? Please write what they do Answer: Select:The SELECT statement is used to select data from a database. Update:The SQL UPDATE Query is used to modify the existing records in a table Delete:To remove one or more rows from a table completely, you use the DELETE statement INSERT:used to add new rows of data to a table in the database
- c. What does the following command do in MySQL?
 - i. 'show databases; Answer: To display the available databases the command is show.
 - ii. show tables; Answer:It helps to list the tables for the current/specified database or schema or accross the entire account.
- d. Write SQL script to answer the following questions based on titanic data. Display the results of your script.
 - iii. What is the average age of passengers who survived? Group the data by Sex. Display only the column Sex, AverageAge

Sex	AverageAge
female	28.84772
male	27.27602

iv. What is the percentage of passengers who survived in each Passenger Class or `Pclass`? Group the da

```
total_rows_survived 891
```

```
sqldf("SELECT pclass,
    sex, cast(sum(survived) as real) / count(survived) * 100 as avg_survived_percent
    FROM titanic
    GROUP BY pclass, sex;"
    , drv="SQLite")
```

```
Pclass
              Sex avg_survived_percent
## 1
         1 female
                             96.80851
## 2
         1 male
                            36.88525
## 3
         2 female
                            92.10526
                             15.74074
## 4
         2 male
## 5
         3 female
                             50.00000
                             13.54467
## 6
         3 male
```

v. What is the average age of all the passenger (survived and not survived)? Group the data by `Pclass`

Pclass	Sex	Survived	AverageAge
1	female	0	25.66667
1	female	1	34.93902

Pclass	Sex	Survived	AverageAge
1	male	0	44.58197
1	male	1	36.24800
2	female	0	36.00000
2	female	1	28.08088
2	male	0	33.36905
2	male	1	16.02200
3	female	0	23.81818
3	female	1	19.32979
3	male	0	27.25581
3	male	1	22.27421

```
library(ggplot2)
ggplot(data=q1_iii, aes(x=AverageAge, y=Pclass, color=Survived, group=Survived))+
   geom_line()+
   geom_point()+
   facet_grid(~Sex)+
   xlab("Average Age")+
   ylab("Passenger Class")+
   labs(color='Survived')
```


vi. What is the name, age, sex and pclass of the 5 oldest and 5 youngest persons who died?

Name	Age	Sex	Pclass
Thomas, Master. Assad Alexander	0.42	male	3
Hamalainen, Master. Viljo	0.67	male	2
Baclini, Miss. Helene Barbara	0.75	female	3
Baclini, Miss. Eugenie	0.75	female	3
Caldwell, Master. Alden Gates	0.83	$_{\mathrm{male}}$	2

Name	Age	Sex	Pclass
Barkworth, Mr. Algernon Henry Wilson	80.0	male	1
Svensson, Mr. Johan	74.0	$_{\mathrm{male}}$	3
Goldschmidt, Mr. George B	71.0	$_{\mathrm{male}}$	1
Artagaveytia, Mr. Ramon	71.0	male	1
Connors, Mr. Patrick	70.5	$_{\mathrm{male}}$	3

vii. On average which Passenger Class is more expensive?

```
kable(sqldf(" SELECT Pclass, avg(Fare) as AverageFare
         FROM titanic
          GROUP BY Pclass", drv="SQLite"))
```

Pclass	AverageFare
1	84.15469
2	20.66218
3	13.67555

2. Extracting twitter data; In this problem we would like to extract data from twitter. For this refer to the documentation in the following link.

https://github.com/geoffjentry/twitteR/

a. **Twitter API set up** Set up twitter API using any of the following methods. Make sure you installed all the packages as mentioned in the class.

Method 1: Read Getting Started section of the above link and create a twitter application by going to the link https://apps.twitter.com/. Once you created your application connect twitter from R using the secrets and keys obtained from your twitter application.

```
library(twitteR)
api_key <- "your api key"</pre>
```

Method 2: If you don't like creating an account with twitter and going through all the trouble, you can use my keys (ssh, don't tell anyone). For this download the hw5-twitter-auth file from blackboard and load it as follows.

- ## [1] "Using direct authentication"
 - b. Now search twitter messages for "data science job". Display few job informations.

```
datascience_jobs_tweets <- twitteR::searchTwitter("data science job")
head(datascience_jobs_tweets)</pre>
```

```
## [[1]]
## [1] "DJKatie888: RT @TennConserv: ...this was never about science or data; it's about control and pla
##
## [[2]]
## [1] "epuujee: RT @tmj_inh_it: Nervous to apply for a job like \"HCaaS- Data Science- Research and Sen
##
## [[3]]
## [1] "tmj_inh_it: Nervous to apply for a job like \"HCaaS- Data Science- Research and Sensing- Hyderal
##
## [[4]]
## [1] "Sad_Little_King: RT @TennConserv: ...this was never about science or data; it's about control as
##
## [[5]]
## [1] "hbbtruth: RT @TennConserv: ...this was never about science or data; it's about control and place
##
## [[6]]
```

[1] "mrjuoss: RT @freeCodeCamp: Spreadsheet software like Microsoft Excel is used in office work, da

c. Search 300 tweets using the hash tag #chess and save them in an object called rTweets. Show the top 7 sources of tweets (such as android or iphone) in a ordered bar plot.

```
# Search 300 tweets with (#chees)
rTweets <- twitteR::searchTwitter("#chess", n=300)

# Get the source from where the tweet came from
tweet_sources_raw <- sapply(rTweets, function(x) x$getStatusSource())</pre>
```

```
# Remove html tags that is on the sources and only get the value between the tags
# This is the source
library(stringr)
regex pattern <- '[^">]+\\</a>'
tweet_sources_text <- gsub("</a>","", unlist(str_extract(tweet_sources_raw, regex_pattern)))
# Display few sources
head(tweet sources text)
## [1] "Cheap Bots, Done Quick!" "Instagram"
## [3] "Merchant Media Bot"
                                 "Twitter Web App"
## [5] "TweetDeck"
                                 "The Tweeted Times"
# We now have the source from which the 300 tweets were being sent
# Now lets get the frequency count of the sources of distict 300 tweets
tweet_sources_text_FreqDist <- table(tweet_sources_text)</pre>
# Display few tweets with Frequenct Distribution
head(tweet_sources_text_FreqDist)
## tweet_sources_text
       @100DaysOfCode_ 1 2 Chess! Tweetbot
##
                                                  3dRenderBot
##
                                                      BirdSite
##
        AdeptLibrarium
                              BGA Curator
##
library(ggplot2)
# Convert the Frequency Distirbution data into ta nice Data Frame
# Also sort the frequency data in decreasing order at the same time
library(dplyr)
rTweetsDF_sources <- data.frame(tweet_sources_text_FreqDist) %>% arrange(desc(Freq))
# Display few data
kable(head(rTweetsDF_sources))
```

tweet_sources_text	Freq
Twitter Web App	77
Twitter for iPhone	73
Twitter for Android	56
1 2 Chess! Tweetbot	10
Cheap Bots, Done Quick!	10
Instagram	10

```
# We only want the top 7 data
# Now lets subset the data
rTweetsDF_sources_top7 <- head(rTweetsDF_sources, 7)
# Display top 7 data
rTweetsDF_sources_top7</pre>
```

```
##
          tweet_sources_text Freq
## 1
             Twitter Web App
                                 77
## 2
          Twitter for iPhone
## 3
         Twitter for Android
                                56
         1 2 Chess! Tweetbot
## 5 Cheap Bots, Done Quick!
                                10
## 6
                    Instagram
                                 10
## 7
            Twitter for iPad
                                  6
```

```
# Use ggplot to plot the ordered bar plot
ggplot(rTweetsDF_sources_top7, aes(x=reorder(tweet_sources_text, Freq), y =Freq ))+
   geom_bar(stat="identity")+
   xlab("Sources of Tweet")+
   ylab("Total Frequency")+
   coord_flip()
```


d. Notice that the object rTweets is a list. Convert it into a data frame using function twListToDF and store it in an object called dTweets. Display some data from dTweets.

```
dTweets <- twListToDF(rTweets)
head(dTweets)</pre>
```

```
##
## 1 Chessbot Results: Black to win in 4 turns\n\u2b1b\u2b1c\u2b1b\u2b1c\u2b1b
                                                                                                \u2b1b\u2
## 2
## 3
## 4
## 5
## 6
     favorited favoriteCount replyToSN
                                                    created truncated
                           0
## 1
         FALSE
                                  <NA> 2020-11-29 04:29:01
                                                                 TRUE
## 2
         FALSE
                           1
                                  <NA> 2020-11-29 04:21:23
                                                                 TRUE
                           0
## 3
         FALSE
                                  <NA> 2020-11-29 04:17:18
                                                                FALSE
## 4
         FALSE
                           0
                                  <NA> 2020-11-29 04:15:04
                                                                FALSE
```

FALSE

<NA> 2020-11-29 04:12:39

0

5

FALSE

```
## 6
         FALSE
                                   <NA> 2020-11-29 04:07:02
                                                                 FALSE
##
     replyToSID
                                  id replyToUID
## 1
           <NA> 1332904375736471554
                                            <NA>
## 2
           <NA> 1332902453126238211
                                            <NA>
## 3
           <NA> 1332901424594903041
                                            <NA>
           <NA> 1332900862428147712
## 4
                                            <NA>
           <NA> 1332900252882386952
## 5
                                            <NA>
## 6
           <NA> 1332898841532788741
                                            <NA>
##
                                                                               statusSource
## 1 <a href="https://cheapbotsdonequick.com" rel="nofollow">Cheap Bots, Done Quick!</a>
                              <a href="http://instagram.com" rel="nofollow">Instagram</a>
## 3
             <a href="https://merchant.media/home" rel="nofollow">Merchant Media Bot</a>
## 4
                 <a href="https://mobile.twitter.com" rel="nofollow">Twitter Web App</a>
## 5 <a href="https://about.twitter.com/products/tweetdeck" rel="nofollow">TweetDeck</a>
             <a href="https://www.tweetedtimes.com" rel="nofollow">The Tweeted Times</a>
## 6
##
          screenName retweetCount isRetweet retweeted longitude latitude
## 1
      ChessScenarios
                                       FALSE
                                 0
                                                  FALSE
                                                             <NA>
                                                                       <NA>
## 2
          GashPhotos
                                 0
                                       FALSE
                                                  FALSE
                                                           -79.65
                                                                       43.6
## 3 MerchantMediaCo
                                 3
                                        TRUE
                                                  FALSE
                                                             <NA>
                                                                       <NA>
## 4 CodyReedTerry1
                                 0
                                       FALSE
                                                  FALSE
                                                             <NA>
                                                                       <NA>
## 5 NewIndianXpress
                                 1
                                        TRUE
                                                  FALSE
                                                             <NA>
                                                                       <NA>
       ChessIndiaNet
                                 0
                                       FALSE
                                                  FALSE
                                                             <NA>
                                                                       <NA>
```

e. dTweets has a column showing the time the tweet was created. Generate a plot showing number of tweets on each of the hours. Add a smooth line overlaid on your plot.

```
library(lubridate)

# convert the time into the format ymd_hms()
hour <- data.frame(hour(ymd_hms(dTweets$created)))

# add a new column in the dTweet with hour value
dTweets <- data.frame(hour, dTweets)

# rename the newly added hour column
colnames(dTweets)[1] <-"hourValue"

# filter NA values if any
dTweetsHourCount <- dTweets %>%
filter(!is.na(hourValue)) %>%
group_by(hourValue) %>%
tally()

# Display Tweets per hour table
kable(dTweetsHourCount)
```

hourValue	n
0	11
1	30
2	40
3	28
4	8
18	17

hourVa	alue	n
	19	39
	20	40
	21	41
	22	22
	23	24

```
# Generate a plot showing number of tweets on each of the hours
# Add a smooth line overlaid on your plot
ggplot(dTweetsHourCount, aes(x=hourValue, y=n))+
    geom_smooth(method = 'loess')+
    geom_point()+
    xlab("Hour Value")+
    ylab("Total tweets per hour")
```


f. Arrange the dataframe dTweets based on the retweetCount. While doing this select only columns text, screenName, retweetCount. Store the data in a object called mostTweets. Display five texts that are most retweeted.

```
#Arrange the dataframe `dTweets` based on the `retweetCount`
# While doing this select only columns `text, screenName, retweetCount`
mostTweets <- dTweets %>%
   select(text, screenName, retweetCount) %>%
   arrange(desc(retweetCount))
head(mostTweets$text,5)
```

- ## [1] "RT @KhushnumaKashm1: #Chess is the gymnasium of the mind.\nA Chess and carrom competition was of the mind.\nA Chess and carrom competition was of ## [2] "RT @KhushnumaKashm1: Breaking the monotonous rountine in view of COVID-19 restrictions, #Indian ## [3] "RT @MikeMavo: unprecedented levels of IQ on display #chess https://t.co/fBalNcdaNf"
- ## [4] "RT @dgriffinchess: NEWS: My translation of Levenfish's memoir, 'Selected Games & Deminiscen ## [5] "RT @Amb_Salukvadze: The real-life Queen's Gambit: how \nNona Gaprindashvili, world's first fema
- g. Generate a bar chart showing top 15 screen names and count of retweets from mostTweets. Order the

bars based on the retweet counts.

```
top15_mostTweets <- head(mostTweets, 15)

ggplot(top15_mostTweets, aes(x = reorder(screenName, retweetCount), y = retweetCount)) +
    geom_bar(stat= "Identity") +
    xlab("Twitter Screen Name") +
    ylab("Total retweet count") +
    coord_flip() +
    theme(plot.title = element_text(hjust = 0.5))</pre>
```

