Variation analysis of leak value in the engine cylinder head sub-assembly.

By:

Himanshu Saxena - 001278141

BACKGROUND OF THE PROBLEM

PURPOSE

- In order to meet the market standards we need to produce best quality motorcycles which is possible only with setting appropriate specifications in the machines.

SCOPE

- Our project focuses on proving the R&R value for the leak testing machine in Cell1 and Cell2 in machine shop as well as in Engine Assembly. It also deals with setting the specification in leak testing machines through various experiments.

OBJECTIVE

- Proving the R&R of the leak testing machines.
- Set a standard value for the leak testing machine which at present is set by trial and error method in machine shop.
- Identifying the root cause for the failure of cylinder heads in engine assembly after getting passed from the machine shop.

LEAK TESTING MACHINES AND CYLINDER HEAD

Leak Testing Machinesa- Cell 1 Machine Shopb- Cell 2 Machine Shop

C- Engine Assembly

Cylinder Head

d- bottom view

e- top view

f- side view

COMPARISON OF LEAK TESTING PARAMETERS

		Engine sub assembly leak testing	Machine shop leak testing			
<u>Sl.no</u>	Setting parameter	Combustion chamber test	Cell 1	Cell 2		
1	Leak checking machine	ATEQ leak testing	cosmo	cosmo		
2	Leak checking method	Flow rate decay	Pressure decay	Pressure decay		
3	Leak checking unit	ml/min	ml/min	ml/min		
5	Air pressure unit	ml bar	ml bar	ml bar		
6	Air filling time	7 secs	10 secs	10 secs		
7	Stabilisation time	5 secs	5 secs	5 secs		
8	Testing time	3 secs	10 secs	10 secs		
9	Maximum set bar	350 mbar	300 mbar	300 mbar		
10	Minimum set bar (drop)	255 mbar	30 mbar	30 mbar		
12	Maximum permissible leak	20 ml/min	20 ml/min	20 ml/min		
13	Minimum permissible leak	-10	-10 ml/min	-10 ml/min		
14	Clamping pads	Brass tip	Brass tip	Brass tip		
15	Clamping area	Stud holes	Stud holes	Stud holes		
16	Leak sealing material	O ring	silicon rubber pad	silicon rubber pad		

Process Flow Diagram

DATA COLLECTION

Data was collected in orderly manner through the following tests:

- 1. R & R Proving of leak testing machines.
- 2. Temperature variation in readings
 - a. 10 cylinder heads were leak tested at different temperature after a fixed duration of time.
- 3. 100 Components comparison between Machine Shop(Cell 1 & Cell 2) and Engine Assembly
 - a. 2 sets of 100 cylinder heads were leak tested in each leak testing machine
 - b. Variation in leakage value was calculated.
- 4. Bias analysis
- 5. Rejected parts analysis from Engine Assembly to Machine shop.
 - a. Rejected Cylinder heads in Engine Assembly were leak tested again in Machine Shop after disassembling the child parts.
- 6. Valve inspection and analysis
- 7. Cylinder head profile check.

Cell 1 Machine Shop – Engine Assembly

		Leakage				Leakage			Leakage			Leakage
		J				Ü	Part		Ŭ	Part		Ü
Part No.	Cell 1 MS	Engine Assembly		Part No.	Cell 1 MS	Engine Assembly	No.	Cell 1 MS	Engine Assembly	Number	Cell 1 MS	Engine Assembly
C32	4.80	9	0.1	C52	4.643	0.3	A36	3.529	2.8	A107	2.5	0.8
C108	3.43	9	1.6	C46	4.168	0.7	A46	0.994	1.6	C66	13.948	0
C95	7.76	9	0.9	C96	4.26	3	A14	0.712	0.8	B25	14.645	2.3
C29	3.26	4	0.2	C98	5.917	18.2	A38	4.333	0.8	C84	5.629	1.6
C85	9.7	3	5.2	C65	4.032	0.7	A47	2.599	6.1	A118	4.9	0.8
C105	2.6	7	4.5	C99	4.349	4.4	A33	4.909	1.2	A52	2.7	1.8
A10	3.62	5	3.2	C97	3.904	2.8	A56	1.709	2.2	A24	2.235	0.2
A29	7.09	8	1.1	C49	7.114	0.3	C69	1.903	0.7	C79	15.298	0.6
A78	0.48	3	2.5	C28	6.435	0.3	C53	0.774	1	C18	2.2	0.9
B111	1.	9	0.1	C103	3.038	2.8	C58	1.58	3.1	A06	3.315	0.3
A74	1.	9	0.1	C10	3.39	4.2	C87	1.113	0.5	B64	1.269	0.2
A68	5.	5	4.5	C93	6.751	8.5	A81	2.72	2 3	B37	11.126	7.7
C11	2.25	3	0.4	C101	5.862	3.3	A03	6.07	0.2	A08	0.426	0.4
A81	4.	4	0.9	C100	4.134	4.2	C77	1.924	5.4	A108	13.343	1.2
A72	4.91	9	7.3	C106	4.491	1.2	A53	3.584	0.2	B87	7.3	1.2
A3	2.31	8	1.4	A35	5.042	7.2	A96	7.313	0.8	B114	4.8	1.1
A58	0.25	8	4.8	A40	4.683	2.1	B46	3.616	1.2	A92	2.5	0.2
A59	1.85	2	0.8	A34	3.473	3.6	C107	10.157	2.7	C141	2.65	0.2
B42	0.	7	2.6	A23	1.821	8.8	A51	1.762	2. 0.3	B04	2.8	0.6
A15	2.43	9	2.2	A44	0.919	1.8	A57	14.677	4.1	A83	3	0.3
A52	0.84	6	3.2	A49	3.785	3.5	A82	2.256	0.6	A90	8.1	0.7
C21	3.97	2	1	A39	3.757	0.1	C49	14.036	11.6	A71	3.8	0.6
C47	3.90	3	1	A6	4.182	2.1	B127	3.802	1.7			
A41	0.91	1	4.3	A39	4.75	2.1	C68	14.695	3.1			
C45	5.26	4	2.2	A45	4.395	6	B98	8.177	1.2			
C55	2.02	4	2.7	A42	3.807	0.9	A92	0.994	9.9			

Cell 2 Machine Shop – Engine Assembly

		Leakage			Leakage				Leakage			Leakage
										Part		
Part No.	Cell 2 MS	Engine Assembly	Part No.	Cell 2 MS	Engine Assembly		Part No.	Cell 2 MS	Engine Assembly	Number	Cell 2 MS	Engine Assembly
C54	7.884	1 0	C102	5.139		2	B13	17.9	0.9	A92	3.6	0.2
C61	8.006	5 1.1	A002	3.548		7.9	B54	5.652	0.4	A52	2.2	2.2
A15	1.435	5 10.2	C105	4.947		1.9	A93	4.3	3.9	A49	3.6	0.1
A26	10.429	5.2	A003	3.769		4.2	B068	4.15	13	A04	9.5	5 1
A16	6.513	5.2	C106	3.612		2.7	B106	3.722	C	C130	5.2	2.3
A29	8.994	3.9	C104	6.209		4.7	A82	5.4		C128	1.3	0.3
A13	1.546	0.5	A010	6.614		3.1	A89	3.8	4.2	B43	19.19	14.6
A21	9.679	9 4.5	B046	18.919		4.7	C58	2.85	3.3	C92	3.042	0.8
A25	4.688	3 4.4	C70	5.147		0.3	C95	5.15	0.1	. C44	10.447	5.6
A23	9.142	2 3.7	C97	16.4		3.3	A103	4.625	4.1	B138	11.192	4.7
A14	2.904	2.1	B108	7.4		0.6	A94	5.2	3	C98	8.44	4.8
A24	8.253	3 1.9	B74	9.3		1.2	A110	3.97	2.2	C107	7.23	7.2
C69	5.966	5 0	B02	8.9		0.1	A086	11.819	2.6	A72	2.6	2.6
A60	14.325	5 15.7	B40	8.5		0.6	B97	1.939	C	A24	2.6	1.6
C95	2.945	0.6	B63	0.1		0.1	B84	4.72	0.7	C112	2.9	4.1
C103	4.949	0.5	B88	10.1		3	C134	4.541	0.3	A87	3.5	2.3
C63	4.204	1.4	A35	2.3		1.2	A91	13.421	6.5	B80	4.445	0.6
C29	4.198	3.6	A66	5.2		0.5	A83	10.483	0.6	A092	2.565	2
B140	8.246	6.3	A002	7.58		1.2	A95	5.399	2.7	A74	17.4	
C107	4.878	3 1.2	A010	4.33		1.2	B22	4.174	0.1	. C89	0.012	0.1
C93	6.438	3 10.2	A44	9.973		7.3	A52	6.274	9.6	A55	5.5	0.2
C102	5.37	7 0	B102	1.614		0.1	C134	2.3	0.2	B51	6.424	1.1
C99	6.48	0	B60	7.818		0.9	A98	13.091	4.5			
C35	10.814	1 0.3	A20	2.4		0.9	A54	3	5.7			
C119	7.78	0	B22	4.1		2	A28	2.6	6.2			
C97	10.392	2.1	A21	3.5		2.5	A64	3.53	3.1			

Engine Assembly Cell 1

Summary Report for E_Cell2

Anderson-Darling	Normality Test
A-Squared	5.10
P-Value	< 0.005
Mean	2.8420
StDev	3.1453
Variance	9.8930
Skewness	1.93156
Kurtosis	4.44590
N	100
Minimum	0.0000
1st Quartile	0.5250
Median	2.0000
3rd Quartile	4.1750
Maximum	15.7000
95% Confidence Int	terval for Mean
2.2179	3.4661
95% Confidence Inte	erval for Median
1.2000	2.6258
95% Confidence Int	terval for StDev
2.7616	3.6538

95% Confidence Intervals Mean 1.0 1.5 2.0 2.5 3.0 3.5

Engine Assembly Cell 2

Machine Shop Cell 1

Anderson-Darling Normality Test								
A-Squared	5.25							
P-Value	< 0.005							
Mean	4.4977							
StDev	3.4812							
Variance	12.1185							
Skewness	1.63412							
Kurtosis	2.45076							
N	100							
Minimum	0.2580							
1st Quartile	2.2395							
Median	3.7925							
3rd Quartile	5.2085							
Maximum	15.2980							
95% Confidence In	terval for Mean							
3.8070	5.1884							
95% Confidence Interval for Median								
3.3019 4.2021								
95% Confidence Interval for StDev								
3.0565	4.0440							

Summary Report for M-Cell2

Anderson-Darling	Normality Test
A-Squared	2.94
P-Value	< 0.005
Mean	6.3077
StDev	4.0424
Variance	16.3410
Skewness	1.28241
Kurtosis	1.65715
N	100
Minimum	0.0120
1st Quartile	3.5610
Median	
3rd Quartile	8.3933
Maximum	19.1900
95% Confidence Int	erval for Mean
5.5056	7.1098
95% Confidence Inte	rval for Median
4.5163	6.2258
95% Confidence Int	erval for StDev
3.5493	4.6960

Machine Shop Cell 2

ANOVA Cell 1 Machine Shop Engine Assembly

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Location	1	215.0	215.01	21.33	0.000
Error	198	1995.9	10.08		
Total	199	2210.9			

Model Summary

S R-sq R-sq(adj) R-sq(pred) 3.17494 9.73% 9.27% 7.89%

ANOVA Cell 2 Machine Shop Engine Assembly

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Location	1	600.6	600.57	45.79	0.000
Error	198	2597.2	13.12		
Total	199	3197.7			

Model Summary

S R-sq R-sq(adj) R-sq(pred) 3.62174 18.78% 18.37% 17.13%

Interval Plots

After conducting the One-Way ANOVA for the cell data using Minitab, we find that the p value is very small, almost approximating to 0. Since 0<0.05 (α value), we reject the null hypothesis and accept the alternate hypothesis that states that at least one mean is different.

After conducting One-Way ANOVA test for the cell 2, we find the same that the p value is very small, approximating to 0. Since 0<0.05 (α value), we reject the null hypothesis and accept the alternate hypothesis that states that at least one mean is different.

Results

This means that a lot of variability is present in the system due to presence of noise factors.