Assignment 3: Part 2

Sophia Lee - 1007698608

Aryaman Arora - 1007858873

Question 1: BCNF

$$R = ABCDEFG$$

$$S = \{AC \rightarrow D, BG \rightarrow E, D \rightarrow CFG, DG \rightarrow B, G \rightarrow F\}$$

(a) We can determine which FDs violate BCNF using the Closure Test. Any FD whose LHS is not a superkey violates BCNF.

FD	Closure	Superkey?
$AC \to D$	$AC^{+} = ACDFGBFE$	Yes
$BG \to E$	$BG^+ = BGEF$	No
$D \to CFG$		No
$DG \to B$	$DG^+ = DGBCFE$	No
$G \to F$	$G^+ = GF$	No

As shown in the Closure test, the following FDs violate BCNF: $BG \to E$, $D \to CFG$, $DG \to B$, $G \to F$

- (b) We now apply BCNF Decomposition algorithm on R. Loop through each FD that violates BCNF:
 - $BG \to E$ violates BCNF because BG is not a superkey. Split R along BG and project S onto the new relations
 - $R_1 = ABCDG, R_2 = BGEF$
 - Project S onto R_1 using closure test: $AC^+ = ACD$, $BG^+ = BG$, $D^+ = DCGB$, $DG^+ = DGB$ (remove trivial FDs and redundancies) $S_1 = \{AC \to D, D \to CG, DG \to B\}$
 - Project S onto R_2 using closure test: $BG^+ = BGEF$, $G^+ = GF$ (remove $G \rightarrow F$ redundancy) $S_2 = \{BG \rightarrow E, G \rightarrow F\}$

BCNF Decomposition on R_1

- $D \to CG$ violates BCNF because $D^+ = DCGB$ is not a superkey for R_1 . Split R_1 along D and project S_1 onto the new relations
- $R_3 = AD, R_4 = BCDG$
- Project S_1 onto R_3 using closure test: $A^+ = A, D^+ = D$ (remove trivial FDs) $S_3 = \{\}$
- Project S_1 onto R_4 using closure test: $D^+ = DCGB, DG^+ = DGB,$ (remove redundancy) $S_4 = \{D \to CG, DG \to B\}$
- Notice that R_3 and R_4 will not be decomposed any further. R_3 is a two attribute relation which trivially satisfies BCNF as discussed in class. R_4 's two FDs both include attribute D, which is shown to by itself be a superkey, thus all R_4 's FDs are superkeys and won't need further decomposition.

BCNF Decomposition on R_2

- $G \to F$ violates BCNF because $G^+ = GF$ is not a superkey for R_2 . Split R_2 along G and project S_2 onto the new relations
- $R_5 = BEG, R_6 = GF$
- Project S_2 onto R_5 using closure test: $BG^+ = BGE$, so $S_5 = \{BG \to E\}$
- Project S_2 onto R_6 using closure test: $G^+ = GF$, so $S_6 = \{G \to F\}$
- Notice that R_5 and R_6 will not be decomposed any further. R_6 is a two attribute relation which trivially satisfies BCNF as discussed in class. R_5 's only FD is a superkey.

Recursion has finished, BCNF Decomposition Algorithm has terminated. Final relations with FD sets:

$$R_3 = AD, S_3 = \{\}$$

 $R_4 = BCDG, S_4 = \{D \to CG, DG \to B\}$
 $R_5 = BEG, S_5 = \{BG \to E\}$
 $R_6 = FG, S_6 = \{G \to F\}$

- (c) The resulting decomposition does not preserve the original dependencies. For example, consider the original FD, $D \to CFG$ which is logically equivalent to these three FDs $D \to C, D \to F, D \to G$. Since D and F attributes are no longer ever in the same table, this functional dependency cannot be maintained. We are able to update the relations with values of D and F that do not follow this original dependency.
- (d) I will now perform the chase test to prove that the decomposition is lossless. First make an example join of tables R_3 , R_4 , R_5 , R_6 . Note the 1 values are all placeholders, assume

 $\mathbf{E} \quad \mathbf{F}$ В С \mathbf{D} G 1 d 1 1 they are all arbitrary and distinct for the chase test. 1 b \mathbf{c} d 1 1 g 1 b 1 1 1 g 1 1 1

Now restrict the values based on original FDs to see if we can get an instance of abcdefg in the join. Otherwise, this means spurious tuples were created.

	Α	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G
	a	1	c	d	1	f	g
$D \to CFG, G \to F$	1	b	\mathbf{c}	d	1	f	g
	1	b	1	1	\mathbf{e}	f	g
	1	1	1	1	1	f	g
	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G
	a	b	c	d	e	f	$\frac{\mathbf{g}}{\mathbf{g}}$
DG o B, BG o E	<mark>a</mark> 1	<mark>b</mark> b	c c	d d	e e	f f	g g
DG o B, BG o E	<mark>a</mark> 1 1	b b	<mark>с</mark> с 1	d d 1	e e	f f	_

We have shown that the tuple abcdefg needed to exist given our FDs. This means that this decomposition passes the Chase test and is lossless! (Proves that if a tuple exists in the join, then it must exist in the original.)

2

Question 2: 3NF

$$A = LMNOPQRS$$

$$B = \{N \rightarrow M, NO \rightarrow LR, NQR \rightarrow MP, P \rightarrow R, Q \rightarrow NO\}$$

- (a) Here are the steps to find a minimal basis:
 - 1. Break down the RHS: $B_1 = \{N \to M, NO \to L, NO \to R, NQR \to M, NQR \to P, P \to R, Q \to N, Q \to O\}$
 - 2. Reduce LHS (if possible) by calculating closures of multiattribute LHS: $N^+ = NM$, $O^+ = O$, $Q^+ = QNOLRM$, $R^+ = R$ This means neither N nor O by themselves can close L nor R, so the joint LHS of NO stays. Q, however is sufficient to close much of the attributes, meaning most LHS with Q can be reduced.

$$B_2 = \{N \to M, NO \to L, NO \to R, N \to M, Q \to M, Q \to P, P \to R, Q \to N, Q \to O\}$$

3. Remove unnecessary FDs (I will first remove exact repetition):

$$B_2 = \{1: N \to M, 2: NO \to L, 3: NO \to R, 4: Q \to M, 5: Q \to P, 6: P \to R, 7: Q \to N, 8: Q \to O\}$$

	Exclude these from B_2		
FD	when computing closure	Closure	Decision
1	1	$N^+ = N$	keep
2	2	$NO^+ = NOMR$	keep
3	3	$NO^+ = NOML$	keep
4	4	$Q^+ = QNOPMLR$	discard
5	4, 5	$Q^+ = QMNOMRL$	keep
6	4, 6	$P^+ = P$	keep
7	4, 7	$Q^+ = QO$	keep
8	4, 8	$Q^+ = QNMRP$	keep

4. Final minimal basis combining FDs with same LHS:

$$B_f = \{N \to M, NO \to LR, P \to R, Q \to NOP\}$$

- (b) Find all keys:
 - 1. Shortcut 1: Attribute on RHS and never on LHS is never part of a key: M, L, R are never part of any key.
 - 2. Shortcut 2: S is never part of any FD, thus it is part of every key.
 - 3. Compute single attribute closures (plus S) $NS^+ = MNS$, $OS^+ = OS$, $PS^+ = PRS$, $QS^+ = LMNOPQRS$ We have found one key: QS. This means, no other key can contain both Q and S, otherwise it won't be minimal.
 - 4. Notice that since S must be in every key, and since we can't have both Q and S in another key, Q cannot be in any other key. However, Q never appears on any RHS of the FD set, meaning we can't get to Q without Q. Thus, there are no more keys possible.

Final only key: QS

(c) Do 3NF Synthesis:

1. First construct relations that are the union of LHS and RHS for each FD:

$$R1(N, M), R2(N, O, L, R), R3(P, R), R4(Q, N, O, P)$$

- 2. Check if any of these relations contains a superkey. Since S is needed to be a minimal key, none of these relations are a superkey.
- 3. Since none of the relations contain a superkey, add a relation who's schema is a key to get the final set of relations:

$$R1(N, M), R2(N, O, L, R), R3(P, R), R4(Q, N, O, P), R5(Q, S)$$

(d) Looking at the set of minimal FDs, there is no strict subset of a relation that is part of an FD. This means that there is no FD that is not a superkey of a relation (none violate BCNF), and thus there is no redundancy. Each FD is a superkey in the relations 1-4 and each cannot be projected onto any other relation.