Report for Project 2 (NCS and OLMP)

Zhaowei Zhong 11611722

1. Algorithm description

Main Idea of NCS	 Search with a population of individuals ←→ a population of search agents (processes). 		
	NCS aims to control each search agent to search the part		
	of the search space that other search agents will not		
	search		
	 NCS first calculates the negative correlation (i.e. 		
	search behavior diversity) between different search		
	agents		
	 Then, selects the search agents that have higher 		
	negative correlation with other search agents.		
Applications of NCS	Minimizing the Symbol-Error-Rate (SER) for Amplify-and-		
	Forward Relaying Systems is nontrivial since the SER surface		
	is non-convex and has multiple minima.		
Main Idea of OLMP	The idea is to transform the threshold tuning problem into a		
	constrained optimization problem (i.e., minimizing the size of		
	the pruned model subject to a constraint on the accuracy		
	loss), and then use powerful derivative-free optimization		
	algorithms to solve it.		
Applications of OLMP	OLMP		
	LMP		
	DNN compression		
	DNN		
	ANN		
	Handwritten character recognition		

2. Parameter description

Parameters	Your final values and results			
	F6	F12	OLMP	
lambda	0.942	0.944	0.000000001	
r	0.99	1	100	
epoch	3	5	1	
n	1	8	92	
Final Result	390.01148260552054	683.2432304597523	0.9889914106747684	
Running Time	48.58	75.34	59.89	

Parameters Summary:

1. epoch

epoch controls the iteration times for each period.

- (1) For F6, the best range is [1,30], when larger than 30, it has approximately no effects on result, and the results are very large.
- (2) For F12, the best range is [1,6], when larger than 20, it has approximately no effects on result, and the results are very large.
- (3) For OLMP, epoch has no relation to the result.

2. lambda

lambda can affect the search process and consequently the performance of NCS.

- (1) For F6, there is no certain range for it, I chose the smallest value in my tests, which is 0.942.
- (2) For F12, the best range is [0.3,1.7], and the results of them are equal, so I chose 0.944.
- (3) For OLMP, lambda has no relation to the result.

3. r

r is a parameter that is suggested to be set beneath 1.

- (1) For F6, there is no certain range for it, I chose the smallest value in my tests, which is 0.99.
- (2) For F12, the best range is [0.0,1.0], when larger than 1.0, the results become very large and changes irregularly.
- (3) For OLMP, r has no relation to the result.

4. n

n controls the initially generated population.

- (1) For F6, the best range is [1,6], when larger than 9, the results become very large and changes irregularly.
- (2) For F12, the best range is [1,11], when larger than 11, the results become very large and changes irregularly.
- (3) For OLMP, it is irregular in any range of n, so I test all ns, and chose the smallest one.

3. Tuning procedure

I wrote a program to test the parameters with input or randomly generated values. At first, I test them separately. For integer parameters, such as epoch and n, I tested them with all possible values, and then chose a value with the smallest result. For float number values, firstly I tested them with random numbers, and then find out the best range to be tested next, and then do these steps cyclically.