

Section	Description												
	Dimension: 614 rows × 13 columns Descriptive statistics:												
	6049	2009- 01-01	Cobar	17.9	35.2	0.0	12.0	12.3	SSW	48.0	ENE	SW	6.0
	6050	2009- 01-02	Cobar	18.4	28.9	0.0	14.8	13.0	S	37.0	SSE	SSE	19.0
	6052	2009- 01-04	Cobar	19.4	37.6	0.0	10.8	10.6	NNE	46.0	NNE	NNW	30.0
Data Overview	6053	2009- 01-05	Cobar	21.9	38.4	0.0	11.4	12.2	WNW	31.0	WNW	WSW	6.0
	6054	2009- 01-06	Cobar	24.2	41.0	0.0	11.2	8.4	WNW	35.0	NW	WNW	17.0
	•••												
	142298	2017- 06-20	Darwin	19.3	33.4	0.0	6.0	11.0	ENE	35.0	SE	NE	9.0
	142299	2017- 06-21	Darwin	21.2	32.6	0.0	7.6	8.6	E	37.0	SE	SE	13.0
	142300	2017- 06-22	Darwin	20.7	32.8	0.0	5.6	11.0	E	33.0	Е	W	17.0

	142301	2017- 06-23	Darwin	19.5	31.8	0.0	6.2	10.6	ESE	26.0	SE	NNW	9.0
Univariate Analysis													

Data Collection and Preprocessing Phase

Date	20 June 2024
Team ID	739819
Project Title	Rain fall prediction using ml
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Data exploration involved identifying patterns and outliers. Preprocessing included normalization, handling missing values, and feature engineering. These steps ensured high-quality data for accurate modeling and insightful predictions.

	_
	- I
	-
	-
Diveriete Analysis	
Bivariate Analysis	

Multivariate Analysis	-								
Outliers and Anomalies	-								
Data Preprocessing Code Sci	reen	ıshots							
		= pd.read_			in csv file taset/loan_p	rediction.csv	<u>'</u> ')		
		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
Loading Data	0	LP001002	Male	No	0	Graduate	No	5849	0.0
Loading Data	1	LP001003		Yes	1	Graduate	No	4583	1508.0
	2	LP001005 LP001006	Male Male	Yes	0	Graduate Not Graduate	Yes	3000 2583	0.0
	3	LP001008	Male	No	0	Graduate	No	6000	2358.0

	<pre>data['Gender'] = data['Gender'].fillna(data['Gender'].mode()[0]) data['Married'] = data['Married'].fillna(data['Married'].mode()[0]) #replacing + with space for filling the nan values</pre>							
	<pre>#replacing + with space for filling the nan values data['Dependents']=data['Dependents'].str.replace('+','') <ipython-input-71-6ac39c248773>:2: FutureWarning: The default value of regex will change from ' data['Dependents']=data['Dependents'].str.replace('+','')</ipython-input-71-6ac39c248773></pre>							
Handling Missing Data	<pre>data['Dependents'] = data['Dependents'].fillna(data['Dependents'].mode()[0])</pre>							
	<pre>data['Self_Employed'] = data['Self_Employed'].fillna(data['Self_Employed'].mode()[0])</pre>							
	<pre>data['LoanAmount'] = data['LoanAmount'].fillna(data['LoanAmount'].mode()[0])</pre>							
	<pre>data['Loan_Amount_Term'] = data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mode()[0])</pre>							
	<pre>data['Credit_History'] = data['Credit_History'].fillna(data['Credit_History'].mode()[0])</pre>							
Data Transformation	<pre>data['Gender']=data['Gender'].map({'Female':1,'Male':0}) data['Property_Area']=data['Property_Area'].map({'Urban':2,'Semiurban': 1,'Rural':0}) data['Married']=data['Married'].map({'Yes':1,'No':0}) data['Education']=data['Education'].map({'Graduate':1,'Not Graduate':0}) data['Loan_Status']=data['Loan_Status'].map({'Y':1,'N':0})</pre> # perfroming feature Scaling op[eration using standard scaller on X part of the dataset because							
	<pre># there different type of values in the columns sc=StandardScaler() x_bal=sc.fit_transform(x_bal)</pre>							
Feature Engineering	Attached the codes in final submission.							
Save Processed Data	-							