2000 -1500 -1000 -500 Time since HART (days) 1500 2000

Longitudinal Data Spring 2013 March 6

Chapter 5

Introduction to Approaches to Repeated Measures

Chapter 6

Estimation of Marginal (GEE) Models

Instructors

Alan Hubbard, Reuben Thomas

<u>GSI</u>

Katia Eliseeva

Purpose of last class's problem

- Get a first hand feel of defining and estimating variance-covariance matrices of a given data set
- Estimate the variance-covariance matrix under two given models of the data generating distribution
- Estimate the confidence intervals under each model

Data for our last in-class problem

Histogram of CD4 counts

Problem and model of the data

- Objective: Estimate the mean of the average CD4 count at the two time points of the m subjects in the study
- Simple linear model: $Y_{ij} = b_0 + Error_{ij}$ - $mean(Error_{ij}) = 0$
- $Y = Xb_0 + Error in matrix notation$

How does *Y*, *X* and *Error* look like?

What are estimates of b_0 ?

$$\widehat{b_0} = \frac{\sum_{i=1}^{m} (Y_{i1} + Y_{i2})/2}{m} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{2} Y_{ij}}{2m}$$

- $Var(\widehat{b_0}) = (X^T X)^{-1} X^T V X (X^T X)^{-1}$
- $(X^T X) = 2m$
- V is the variance co-variance matrix

The Variance-Covariance of *Y*

$$V(\mathbf{Y}) = \begin{bmatrix} V_1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & V_2 & 0 & 0 & \dots & 0 \\ 0 & 0 & V_3 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & V_m \end{bmatrix}$$

The Variance-Covariance of \mathbf{Y}_i Most General

In our case, V_i based on two observations per subject

$$V_{i} = \begin{bmatrix} var(Y_{i1}) & cov(Y_{i1}, Y_{i2}) \\ cov(Y_{i1}, Y_{i2}) & var(Y_{i2}) \end{bmatrix}$$

$$Y_{ij} = b_0 + Error_{ij}$$

 $Error_{ij} = e_{ij}$

Model I

$$Y_{ij} = b_0 + e_{ij}$$

$$e_{ij}$$
 independent, $E(e_{ij}) = 0, var(e_{ij}) = \sigma_e^2$

How would a picture of the model look like?

Model II $Y_{ij} = b_0 + Error_{ij}$ $Y_{ij} = b_0 + b_{0i} + e_{ij}$ $Error_{ij} = b_{0i} + e_{ij}$ $e_{ij} \text{ independent, } E(e_{ij}) = 0, var(e_{ij}) = \sigma_e^2$ $b_{0i} \text{ independent, } E(b_{0i}) = 0, var(b_{0i}) = \sigma_b^2$ $cov(b_{0i}, e_{ij}) = 0.$

How would a picture of the model look like?

Useful formulae

- Given two random variables A, B
- E[A + B] = E[A] + E[B]
- Var[A + B] = Var[A] + Var[B] + 2cov[A, B]
- cov[A,B] = E[AB] E[A]E[B]
- If c is a constant then E[cA] = cE[A]
- If A and B are independent then
 - E[AB] = E[A]E[B]

Under Model II, $var(Y_{i1})$

- $var(Y_{i1}) = var(b_0 + b_{0i} + e_{i1}) = \cdots$
- $var(b_0) + var(b_{0i}) + var(e_{i1}) + 2cov(b_0, b_{0i}) + 2cov(b_0, e_{i1}) + 2cov(b_{0i}, e_{i1}) = ...$

Under Model II, $cov(Y_{i1}, Y_{i2})$

- $cov(Y_{i1}, Y_{i2}) = E[Y_{i1}Y_{i2}] E[Y_{i1}]E[Y_{i2}]$
- $E[Y_{i1}] = E[b_0 + b_{0i} + e_{i1}] = E[b_0] + E[b_{0i}] + E[e_{i1}] = \dots$
- $E[Y_{i1}Y_{i2}] = E[(b_0 + b_{0i} + e_{i1})(b_0 + b_{0i} + e_{i2})] = E[b_0^2 + 2b_0b_{0i} + b_{0i}^2 + e_{i1}e_{i2} + b_{0i}e_{i1} + b_{0i}e_{i2}]$

Two V matrices under the two models would give standard error estimates

$$Var(\widehat{b_0}) = (X^T X)^{-1} X^T V X (X^T X)^{-1}$$

- Model I = $\frac{\sigma_e^2}{2m}$ Estimated from sample variance
- $Model II = \frac{\sigma_e^2 + 2\sigma_b^2}{2m}$

Estimated from sample co-variance

Results of estimates of b_0

$$\hat{b_0}$$
=300.7

$$\blacksquare$$
 SE $(\widehat{b_0})$

=15.7 Model I

= 20.2 Model II

Confidence intervals

$$= (270.0 - 331.4)$$

$$=(261.0-340.4)$$

What is a better model of the data?

So far, to compute confidence interval of statistic (eg.mean)...

- We have assumed a model that allowed us to estimate the variance-covariance matrix
- We have good reasons to assume a probability distribution (Central Limit Theorem)

What if?

- Cannot get a good estimate the variancecovariance matrix
 - Not possible
 - You are lazy to go through the algebra
- Don't have sufficient reason to assume a probability distribution of the statistic of interest

Estimate the 10th quantile of CD4 at low viral load

Histogram of CD4 counts at low viral load

What does the standard error of a statistic supposed to represent?

- The standard deviation of the estimates of this statistic in repeating experiments of the same kind
- The 10th quantile was easy enough to compute for the data from our experiments
- What if we could repeat the experiments?

Approximations to the data generating distribution, $P_{Y,\theta}$

- **E**stimate θ by $\hat{\theta}$ using the data
 - $P_{Y,\widehat{\theta}}$ approximates $P_{Y,\theta}$ (Parametric)
- The empirical distribution \widehat{P}^m of the data approximates $P_{Y,\theta}$ (Non-parametric)

Data from repeated experiments

Original experiment data

Repeated experiment data

Histogram of CD4 counts at low viral load

Non-parametric bootstrap procedure

- Given data, Y from m subjects and statistic T (eg. q₁₀) of interest
- Repeat B times
 - Generate a new data set, \(\tilde{Y} \) by drawing m subjects
 with replacement
 - Compute the statistic of interest, \tilde{T}
- Estimate the sampling distribution of T from the empirical distribution of \tilde{T}

Empirical distribution of \widehat{q}_{10} based on 1000 bootstrap experiments

Empirical distribution of q10

95% CI based on 2.5% and 97.5% quantiles of sampling distribution: (81-136)

Important consideration for longitudinal data

- Bootstrap procedure must respect the dependence relationships between observations
 - Clustering Bootstrap procedure

What is the effect of viral load on CD4 count?

Simple linear model: $Y_{ij} = b_0 + b_1(VL > 2000) + e_{ij}$

We would like to estimate $SE(b_1)$

Options to estimate a confidence interval $SE(b_1)$

- Assume a model like Model II of our in-class problem
 - Estimate V

$$- Var(\widehat{b_0}) = (X^T X)^{-1} X^T V X (X^T X)^{-1}$$

 Reduce model assumptions by not explicitly modeling the variance and covariance by a boostrapping procedure

Would you bootstrap observations?

Viral load

Standard linear regression

. regress cd4 medvl

Source	SS	df	MS		Number of obs		172
Model Residual	276080.703 6944087.97		276080.703 40847.5763		F(1, 170) Prob > F R-squared	=	6.76 0.0101 0.0382
Total	7220168.67	171	42223.2086		Adj R-squared Root MSE	=	0.0326
cd4	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
medvl _cons	-80.12791 340.7558	30.821			-140.9694 297.7344		9.28643

Linear Mixed Effects Regression

. xtmixed cd4 medvl id:

Mixed-effects ML regression Number of obs 172 Group variable: id Number of groups

Obs per group: min =

2.0 avq = max =

86

Wald chi2(1) 22.27 Log likelihood = -1128.0325Prob > chi2 0.0000

[95% Conf. Interval] P> | z | cd4 Coef. Std. Err. medvl -80.12791 16.97926 -4.720.000 -113.4066 -46.84917 _cons 340.7558 21.66677 15.73 0.000 298.2897 383.2219

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
<pre>id: Identity sd(_cons)</pre>	167.26	15.8333	138.9361	201.3582
sd(Residual)	111.3404	8.489627	95.88472	129.2875

Clustered Bootstrap of standard linear regressions

. bootstrap, saving(bootout) reps(1000) cluster(id): regress cd4 medvl
(running regress on estimation sample)

Bootstrap replications (1000) 1 2 3 4	50		
	150		
Linear regression	Number of obs	=	172
	Replications	=	1000
	Wald chi2(1)	=	21.72
	Prob > chi2	=	0.0000
	R-squared	=	0.0382
	Adj R-squared	=	0.0326
	Root MSE	=	202.1078

(Replications based on 86 clusters in id)

cd4	Observed Coef.	Bootstrap Std. Err.	z	P> z		l-based . Interval]
medvl	-80.12791	17.19242	-4.66	0.000	-113.8244	-46.43138
_cons	340.7558	22.89867	14.88		295.8752	385.6364

Sampling distribution of b₁

Quick Summary of Repeated Measures Strategies

■ <u>Transition Models</u> Relies on some assumption of conditional independence of repeated outcomes, by adjusting for previous outcome value: $E(Y_{ij}|X_{ij},Y_{i(j-1)})$.

- Mixed Effects Models explicit model of sources of random variability at cluster level, $E(Y_{ij}|X_{ij},\alpha_i)$, $\alpha_i \sim N(0,\sigma^2_{\alpha}),...$
- Generalized Estimating Equation (GEE) approach only specify relative simple parameters (e.g., E(Y_{ii}|X_{ii})).

Example: observations within subjects: The Effect of Drug and Alcohol Use on Teenage Sexual Activity

- Minnis & Padian (2001) conducted a longitudinal study of teenagers in San Rafael, California to investigate the association between drug and alcohol use and sexual activity on the same day.
- Participants were asked to keep track of their activities over approximately one month and binary indicator variables were created to show whether drug/alcohol use and/or sexual activity were 35 reported for each 24 hour period.

Example of Binary Outcome: Sex, Drugs and Teenagers

- A longitudinal study of the effects of drug-use on sexual activity.
- Let X_{ij}, the only explanatory variable of interest for now, indicate whether or not subject i reported drug-use (1=yes, 0=no) on day j.
- Let Y_{ij} denote whether subject had sex (1=yes, 0=no), i.e., Y_{ij} is a binary outcome and thus its expectation can be modeled via the logit transform.

Data

	eid	today		lay	drgalcoh	sx24hrs
1.	10122	03	Jun	98	yes	no
2.	10123	04	Jun	98	no	no
3.	10123	05	Jun	98	no	no
4.	10123	06	Jun	98	yes	no
5.	10123	07	Jun	98	no	no
6.	10123	8 0	Jun	98	no	no
7.	10123	09	Jun	98	no	no
8.	10123	12	Jun	98	no	no
9.	10123	14	Jun	98	yes	no
10.	10123	16	Jun	98	no	no
11.	10123	17	Jun	98	no	no
12.	10123	18	Jun	98	no	yes
13.	10123	19	Jun	98	no	no
14.	10123	20	Jun	98	no	no
15.	10123	21	Jun	98	no	no
16.	10123	23	Jun	98	no	no
17.	10123	25	Jun	98	no	yes
18.	10123	28	Jun	98	no	no
19.	10123	29	Jun	98	no	yes
20.	10123	01	Jul	98	no	yes
21.	10123	02	Jul	98	no	no
22.	10123	03	Jul	98	no	no
23.	10123	04	Jul	98	no	no
24.	10123	05	Jul	98	no	no
25.	10124	04	Jun	98	no	no
26.	10124	07	Jun	98	no	no
27.	10124	8 0	Jun	98	no	no

Transition Model for Teenage Sex and Drug-Use

- For time-sequenced repeated measures, build the joint distribution by specifying a sequence of distributions that are conditioned on previous measurements on the individual. These are called transition (Markov) models.
- For the study of teenage sex:

logit[
$$P(Y_{ij} = 1 \mid X_{ij} = X_{ij}, Y_{ij-1}, Y_{ij-2}, ..., Y_{il})$$
] = $\beta_0^{TM} + \beta_1^{TM} X_{ij} + \delta Y_{ij-1}$

where Y_{i1} is outcome at time t_{i1}, Y_{i2} at $t_{i2}, ...,$ and $t_{i1} < t_{i2} < ... < t_{ini}$.

Transition Model for Teenage Sex and Drug-Use

 This approach constructs the likelihood, for the case of this model

logit[
$$P(Y_{ij} = 1 \mid X_{ij} = x_{ij}, Y_{ij-1}, Y_{ij-2}, ..., Y_{i1})$$
] = $\beta_0^{\text{TM}} + \beta_1^{\text{TM}} \mathbf{x}_{ij} + \delta Y_{ij-1}$

under the assumption that:

$$Y_{ij} \perp (Y_{ij-2}, Y_{ij-3}, ..., Y_{i1}) \mid X_{ij}, Y_{ij-1}$$

Transition Models

- $exp(\delta)$ = odds ratio (OR) of among subjects who did versus did not have sex during the prior day, keeping drug status fixed.
- $\exp(\beta_1^{TM})$ = OR of drug use vs. not for either subjects who reported having sex or did not have sex the previous day.
- use generalized linear models (glm) software (e.g., linear, logistic, poisson regression).
- Most commonly used for nice, time-structured data.

Sexual Activity and drug/alcohol use among teenagers revisted

Main Variables

sex24hrs - sex in last 24 hrs. (0=no, 1=yes)

drgalcoh - drug or alcohol use in last 24 hrs.

tues-sun - dummy variables designating day of week

Results using xtgee in STATA

```
sort eid today
* This is how one puts Y_{ij-1} onto same line as Y_{ij} to be used as covariate
.by eid: gen sxyest = sx24hrs[_n-1]
.by eid: replace sxyest = . if n==1
.logistic sx24hrs drgalcoh sxyest
                                                    Number of obs = 1607
. Logit estimates
                                                  LR chi2(2) = 55.39
                                                  Prob > chi2 = 0.0000
                                                  Pseudo R2 = 0.0285
Log likelihood = -942.60915
     sx24hrs | Odds Ratio Std. Err. z  P>|z|  [95% Conf. Interval]
\exp{(\beta_1^{\text{TM}})} \\ \text{drgalcoh 1.63798} \qquad .1986677 \qquad 4.07 \qquad 0.000 \qquad 1.291421 \qquad 2.07754
\exp(\delta) sxyes 2.051903 .2478562 5.95 0.000 1.619338 2.600018
```

Random Effects Models

 Uses a random effect to model the relative similarity of observations made on same statistical unit (e.g., person)

Assumes Y_{ij} and Y_{ik} , $j\neq k$ are independent given some realized value of a random effect (β_{i0}) and the covariates.

$$Y_{ij} \perp Y_{ik} \mid X_{ij}, \beta_{0i}$$

The model assumes these random effects are randomly drawn from a known distribution.

Random Effects Model for Teenage Sex and Drug-Use

$$\log it[P(Y_{ij} = 1 \mid \beta_{0i}, X_{ij} = x_{ij})] = \log \left(\frac{P(Y_{ij} = 1 \mid \beta_{0i}, X_{ij} = x_{ij})}{P(Y_{ij} = 0 \mid \beta_{0i}, X_{ij} = x_{ij})}\right) = \beta_0^{RE} + \beta_{0i} + \beta_1^{RE} x_{ij}$$

- Assume that the repeated observations for the ith teenager are independent of one another given β_{i0} and X_{ij} .
- Must assume parametric distribution for the β_{i0} , usually $\beta_{i0} \sim N(0, \tau^2)$.
- $exp(\beta_1^{RE})$ is odds ratio for having sex when subject i reports drug-use relative to when same subject does not report drug-use.

Motivation for This Approach

Natural for modeling heterogeneity across individuals in their regression coefficients.

- This heterogeneity can be represented by a probability distribution
- Most useful when object is to make inferences about individuals rather than population averages.

Understanding sources of experimental variation in microarray measurements

Distribution of intra-class coefficients

Dose-dependent effect of benzene exposure on gene expression McHale et al 2011

Motivation for This Approach

- Also useful to estimate the contributions to variability from different sources (e.g., within and among individuals).
- Can be extended to hierarchy of units (multilevel modeling), such as repeated longitudinal measures of a person, within a household, within a community

Some available software for random effects models

Linear Models

- Proc Mixed in SAS
- xtreg in STATA (only simple random effects models)
- xtmixed in STATA 10
- Ime in R

Logistic and Poisson Models

- xtlogit and xtpoisson in STATA for simple random effects, xtmelogit and xtmepoisson for general mixed models in STATA version 10
- gllamm for general mixed models is STATA add-on

Random effects using xtlogit in STATA

```
. xtlogit sx24hrs drgalcoh, or i(eid) re
                                        Number of obs = 1708
Random-effects logit
Group variable (i) : eid
                                        Number of groups = 109
                                        Obs per group: min = 1
Random effects u i ~ Gaussian
                                                     avg = 15.7
                                                   max = 33
                                        Wald chi2(1) = 5.48
Log likelihood = -921.39213
                                        Prob > chi2 = 0.0192
    sx24hrs | OR Std. Err. z P>|z| [95% Conf. Interval]
\exp(\beta_1^{RE}) 1.447266 .2284893 2.34 0.019 1.062096 1.972119
   /lnsig2u | .5483488 .2428238
                                                .0724228 1.024275
 T sigma_u | 1.315444 .1597106
                                                1.036875 1.668854
       rho | .3446819 .0166718
                                                 .2463036 .4584528
Likelihood ratio test of rho=0: chibar2(01) = 184.17 Prob >= chibar2 = 0.000
```

Estimation of Marginal Models (GEE)

- Estimate marginal mean model.
- Marginal model is a population, not individual, model.
- The marginal $E[Y_{ij} \mid X_{ij} = x_{ij}]$ is defined as the mean value of an observation Y_{ij} in the theoretical experiment where one randomly draws an observation from a population where everyone has $X_{ii} = x_{ij}$.

Marginal Models (GEE)

For instance, if Y_{ij} is the cholesterol and X_{ij} = yes if one smokes, no otherwise. In a marginal model, $E[Y_{ij} \mid X_{ij} = yes]$ will be the mean of a randomly drawn Y_{ij} from the subpopulation where everyone smokes.

Connection between Mixed Models and GEE – Example 1 from Chapter 5

Two kinds of people in a target population whose members gets exposed to E and does not get exposed to E

$$(b_0=0,b_1=4)$$

$$\log\{\Pr(Y_{ij} = 1 | b_{0i} = -2.996, X_{ij} = x_{ij})\} = b_0 - 2.996 + b_1 x_{ij}$$
$$\log\{\Pr(Y_{ij} = 1 | b_{0i} = -1.609, X_{ij} = x_{ij})\} = b_0 - 1.609 + b_1 x_{ij}.$$

Connection between Mixed Models and GEE – Example 2 from Chapter 5

Two kinds of people in a target population whose members gets exposed to E and does not get exposed to E..

$$(b_0=0,b_1=4)$$

$$logit{Pr(Y_{ij} = 1 | b_{0i} = -1.386, X_{ij} = x_{ij})} = b_0 - 1.386 + b_1 x_{ij}$$
$$logit{Pr(Y_{ij} = 1 | b_{0i} = 0, X_{ij} = x_{ij})} = b_0 + 0 + b_1 x_{ij},$$

Parameter Interpretation in a marginal model

- Parameters in an equivalent random effects and GEE model have subtly different interpretations.
- Coefficients in a random effects model represent expected differences (odds ratios, relative risks, etc) within an individual, given a change in their X from one value to another
- Coefficients in a marginal model represent expected differences (odds ratios, relative risks, etc) within an population, given a change in everyone's X from one value to another.

Parameter Interpretation in a GEE model, cont.

In linear, log-linear models, the random effects and marginal regression parameters are the same.

In Logistic regression, they are different – more later.

Figure 5.1: Difference Between Subject-Specific Logistic Regressions and Marginal Version: the individual thin lines represent curves for different individuals - the thick black line represents the marginal probability of disease, averaged over the individual curves

Marginal Models (GEE)

- GEE software typically allows several different "working" correlation models (e.g., exchangeable, auto-regressive, unstructured, etc.).
- These correlation models are used to build weight matrices, which are used in a weighted regression.
- When deriving inferences for the coefficients, though, it calculates "robust" standard errors.

Examples of Correlation Models

$$V = \sigma^{2} \begin{bmatrix} R_{01} & 0 & 0 & \cdots & 0 \\ 0 & R_{02} & 0 & \cdots & 0 \\ 0 & 0 & R_{03} & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & R_{0n-} \end{bmatrix}$$

- Each individual is independent of all others
- Correlation within individuals across longitudinal observations has the same structure

Structure for R₀

General structure:

$$R_{0} = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \cdots & \rho_{1n} \\ \rho_{12} & 1 & \rho_{23} & \cdots & \rho_{2n} \\ \rho_{13} & \rho_{23} & 1 & \cdots & \rho_{3n} \\ \vdots & \vdots & \vdots & 1 & \vdots \\ \rho_{1n} & \rho_{2n} & \rho_{3n} & \cdots & 1 \end{bmatrix}$$

A lot of unknown parameters

Correlation Models (contd): Uniform correlation (compound symmetry or exchangeable)

$$R_0 = \begin{bmatrix} 1 & \rho & \rho & \cdots & \rho \\ \rho & 1 & \rho & \cdots & \rho \\ \rho & \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \vdots & 1 & \vdots \\ \rho & \rho & \rho & \cdots & 1 \end{bmatrix}$$

Arises from random effects model

$$Y_{ij} = \alpha + \alpha_i + \beta x_{ij} + e_{ij}$$

Errors e_{ij} uncorrelated, and independent of x_{ij} and α_i

$$\rho = \frac{Var(\alpha_i)}{Var(\alpha_i) + Var(e_{ij})}$$

Correlation Models (contd):Time-Decaying Correlations (Auto-regressive)

$$R_{0} = \begin{bmatrix} 1 & \rho & \rho^{2} & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \cdots & \rho^{n-2} \\ \rho^{2} & \rho & 1 & \cdots & \rho^{n-3} \\ \vdots & \vdots & \vdots & 1 & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1 \end{bmatrix}$$

Auto-regressive:
$$e_{ij} = \rho e_{ij-1} + \eta_{ij}$$

Not great for unequally spaced longitudinal data

Exponential correlation model generalizes this to $corr(y_{ij},y_{ik}) = \rho^{|t_j-t_k|}$ rather than $\rho^{|j-k|}$

Examples of var-cov. models

Description	Abbrev.	Var-Cov. Matrix					
		$\sigma^2 + \sigma_0^2$	${\sigma_0}^2$	$\sigma_0^{\ 2}$	$\sigma_0^{\ 2}$		
		${\sigma_0}^2$	$\sigma^2 + \sigma_0^2$	${\sigma_0}^2$	$\sigma_0^{\ 2}$		
Compound		${\sigma_0}^2$	${\sigma_0}^2$	$\sigma^2 + \sigma_0^2$	$\sigma_0^{\ 2}$		
Symmetry	CS	${\sigma_0}^2$	${\sigma_0}^2$	${\sigma_0}^2$	$\sigma^2 + \sigma_0^2$		
		$\sigma_1^{\ 2}$	σ_{12}	σ_{13}	σ_{14}		
		σ_{12}	${\sigma_2}^2$	σ_{23}	σ_{24}		
		σ_{13}	σ_{23}	${\sigma_3}^2$	σ_{34}		
Unstructured	UN	$\sigma_{14} = \sigma^2$	σ_{24}	σ_{34}	$\sigma_4^{\ 2}$		
		σ^2	σ_{24} $\rho\sigma^2$ σ^2 $\rho\sigma^2$	$ \begin{array}{c} \sigma_{34} \\ \rho^2 \sigma^2 \\ \rho \sigma^2 \\ \sigma^2 \end{array} $	$\rho^3 \sigma^2$		
		ρ σ^2 $\rho^2\sigma^2$	σ^2	$\rho\sigma^2$	$\rho^2 \sigma_2^2$		
Autorograpaiva	AD(1)	$\rho^2 \sigma^2$ $\rho^3 \sigma^2$	ρσ 2	σ² ρσ²	$ \rho^2 \sigma^2 $ $ \rho \sigma^2 $ $ \sigma^2 $		
Autoregressive	AR(1)	$\frac{\rho \sigma}{\sigma_1^2}$	<u>ρσ</u> 0	ρσ 	0		
		0	σ_2^2	0	0		
		0	0	σ_3^2	0		
 Banded Diagnonal	 	0	0	0_3	σ_4^2		
Danaca Diagnonal		σ^2	$\rho^{d12}\sigma^2$	$\rho^{d13}\sigma^2$	$\rho^{d14}\sigma^2$		
		$\rho^{d12}\sigma^2$	σ^2	$\rho^{d23}\sigma^2$	$\rho^{d24}\sigma^2$		
		$\rho^{d13}\sigma^2$	$ ho^{d23}\sigma^2$	σ^2	$\rho^{d34}\sigma^2$		
Spatial Power	SP(POW)(c)	$ ho^{d14}\sigma^2$	$ ho^{d24}\sigma^2$	$ ho^{d34}\sigma^2$	σ^2		

The GEE Algorithm

- Algorithm is similar to the one used for the non-repeated measures problems (e.g., OLS for continuous data, logistic regression for binary and Poisson regression for counts).
- Let $R(\alpha)$ be a n_i x n_i "working" correlation matrix that is fully characterized by a vector of parameters, α .
- V_i is again the variance-covariance of the observations which will be a function of the mean $(E(Y_i|X_i))$, a scale parameter, ϕ and $R(\alpha)$.

Standard Errors of Coefficients

- GEE will normally return two estimates of the variance of the coefficient estimates, 1) naive and 2) robust.
- Naive assumes that the chosen model for R(α), such as compound symmetry, is correct.
- Robust is a more nonparametric estimate that does not assume your guess for R(α) is correct. However, its variance estimates can be more variable.

GEE Marginal Model for Teenage Sex and Drug-Use

$$\log it[P(Y_{ij} = 1 \mid X_{ij} = x_{ij})] = \log \left(\frac{\mu_{ij}}{1 - \mu_{ij}}\right) = \log \left(\frac{P(Y_{ij} = 1 \mid X_{ij} = x_{ij})}{P(Y_{ij} = 0 \mid X_{ij} = x_{ij})}\right) = \beta_0^M + \beta_1^M x_{ij}$$

- $var(Y_{ij}) = \mu_{ij} (1 \mu_{ij})^*$, $corr(Y_{ij}, Y_{ik}) = \rho$ (i.e., assume compound symmetry).
- $exp(\beta_1^M)$ is a ratio of population frequencies, i.e., it is a population averaged parameter. It is the odds ratio of the probabilities (proportions) of teenagers who would engage in sexual activity in populations reporting drug use vs. populations not reporting drug-use.
- * Semi-robust inference can you tell why?

Sexual Activity and drug/alcohol use among teenagers revisted

Main Variables

sex24hrs - sex in last 24 hrs. (0=no, 1=yes)

drgalcoh - drug or alcohol use in last 24 hrs.

tues-sun - dummy variables designating day of week

Results using xtgee in STATA

robust SE

```
. xtgee sx24hrs drgalcoh, eform i(id) family(binomial) cor(ind) robust
```

```
Number of obs = 1708
GEE population-averaged model
Group variable:
                                 id Number of groups = 109
                            logit Obs per group: min = 1
Link:
                            binomial
                                                    avg = 15.7
Family:
Correlation:
                         independent
                                                               33
                                                    max =
                         (standard errors adjusted for clustering on id)
          Semi-robust
    sx24hrs | Odds Ratio Std. Err. z > |z| [95% Conf. Interval]
\exp(\beta_1^{M}) drgalcoh 1.739521 .3149874 3.06 0.002 1.219823 2.480635
non-robust (naive) SE
```

```
. xtgee sx24hrs drgalcoh, eform i(eid) family(binomial) cor(ind)
```

•		 [95% Conf. I:	
1.739521		1.384744	

xtgee Options

- family(?), link(?) -- identify that we wish linear regression with continuous outcome (as compared to, say, binary outcomes – more later)
- corr(ind) -- identify that we will assume independence for our correlation structure (some other possibilities include exchangeability and autoregressive structures)
- i(?)--identify which variable indentifies the individual (or cluster)
- ro -- identifies that we wish robust estimates of variability

Model 2 – same marginal model, different working correlation.

$$\log it[P(Y_{ij} = 1 \mid X_{ij} = x_{ij})] = \log \left(\frac{\mu_{ij}}{1 - \mu_{ij}}\right) = \log \left(\frac{P(Y_{ij} = 1 \mid X_{ij} = x_{ij})}{P(Y_{ij} = 0 \mid X_{ij} = x_{ij})}\right) = \beta_0^M + \beta_1^M x_{ij}$$

 $x_{ij} = 0$ if drug/alcohol use is no, 1 if yes $y_{ij} = 0$ if no sex in last 24 hours, 1 if yes

 $cor(Y_{ij}, Y_{ij}) = \rho$ (compound symmetry or exchangeable correlation structure)

Results of Model 2 using STATA

robust SE

. xtgee sx24hrs drgalcoh, eform i(id) family(binomial) cor(exc) robust

GEE population	n-averaged mo	odel		Number of	E obs	=	1708
Group variable	e:		id	Number of	f grou	ps =	109
Link:		logit			group:	min =	1
Family:		binor	mial			avg =	15.7
Correlation:		exchange	able			max =	33
				_			ing on id)
	 	Semi-robust					
	•	Std. Err.					
drgalcoh	1.393705	.1919735	2.41	0.016	1.06	3956	1.825653
non-robust (naive) SE . xtgee sx24hrs drgalcoh, eform i(eid) family(binomial) cor(exc)							
	Odds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]
		.1701631					

Estimated Working Correlation

. xt	corr								
	c1	с2	с3	с4	с5	сб	с7	с8	с9
r1	1.0000								
r2	0.1614	1.0000							
r3	0.1614	0.1614	1.0000						
r4	0.1614	0.1614	0.1614	1.0000					
r5	0.1614	0.1614	0.1614	0.1614	1.0000				
r6	0.1614	0.1614	0.1614	0.1614	0.1614	1.0000			
r7	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	1.0000		
r8	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	1.0000	
r9	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	1.0000
r10	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r11	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r12	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r13	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r14	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r15	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r16	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r17	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r18	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614
r19	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614	0.1614

Model 3 – adjusting for day of week

$$\log it[P(Y_{ij} = 1 \mid x_{ij}, day_{ij})] = \beta_0 + \beta_1 x_{ij} + \gamma_1 z_{1ij} + \gamma_2 z_{2ij} + \dots + \gamma_6 z_{6ij}$$

 $x_{ij} = 1$ if drug/alcohol use is yes, 0 if no

 $z_{1ij} = 1$ if interview day is Tuesday, 0 if not

 z_{2ij} = 1 if interview day is Wed., 0 if not.....

 $z_{6ij} = 1$ if interview day is Sunday, 0 if not

 $y_{ij} = 1$ if sex in last 24 hours, 0 if no

 $cor(Y_{ij}, Y_{ij}) = \rho$ (compound symmetry or exchangeable correlation structure)

Results of Model 3 using STATA

. xtgee sx24hrs drgalcoh tues wed thur fri sat sun, eform i(id) family(binomial
>) cor(exc) robust

GEE population-averaged model		Number of obs	=	1708
Group variable:	id	Number of groups	=	109
Link:	logit	Obs per group: min	=	1
Family:	binomial	avg	=	15.7
Correlation:	exchangeable	max	=	33
		Wald chi2(7)	=	11.40
Scale parameter:	1	Prob > chi2	=	0.1220

(standard errors adjusted for clustering on id)

I	Semi-robust	

		Semi-robust				
sx24hrs	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
 						
drgalcoh	1.373029	.1845197	2.36	0.018	1.055086	1.786782
tues	1.239246	.2320747	1.15	0.252	.8585234	1.788804
wed	1.234437	.2523307	1.03	0.303	.826942	1.842734
thur	1.099757	.233122	0.45	0.654	.7258761	1.666215
fri	.9833647	.1933837	-0.09	0.932	.6688388	1.445799
sat	1.277403	.2490991	1.26	0.209	.8716457	1.872043
sun	1.577958	.306514	2.35	0.019	1.078331	2.30908

Model for drug/alcohol use vs. day of week

$$\log it[P(X_{ij} = 1 \mid day_{ij})] = \gamma^*_{0} + \gamma^*_{1}z_{1ij} + \gamma^*_{2}z_{2ij} + \dots + \gamma_{6}^*z_{6ij}$$

 $X_{ij} = 1$ if drug/alcohol use is yes, 0 if no

 $z_{1ij} = 1$ if interview day is Tuesday, 0 if not

 z_{2ij} = 1 if interview day is Wed., 0 if not.....

 $z_{6ij} = 1$ if interview day is Sunday, 0 if not

 $cor(Y_{ij}, Y_{ij}) = \rho$ (compound symmetry or exchangeable correlation structure)

Results of drug/alcohol use Model using STATA

. xtgee drgalcoh tues wed thur fri sat sun, eform i(id) family(binomial) cor(ex
> c) robust

GEE population-averaged model	-	Number of obs $=$	1708
Group variable:	id	Number of groups =	109
Link:	logit	Obs per group: min =	1
Family:	binomial	avg =	15.7
Correlation:	exchangeable	max =	33
		Wald chi2(6) =	28.91
Scale parameter:	1	Prob > chi2 =	0.0001

(standard errors adjusted for clustering on id)

drgalcoh	 Odds Ratio	Semi-robust Std. Err.	Z	P> z	[95% Conf.	Interval]
tues	.7484218	.1301296	-1.67	0.096	.5322875	1.052317
wed	.7043399	.1440654	-1.71	0.087	.4717131	1.051687
thur	.9226514	.171617	-0.43	0.665	.6407825	1.328509
fri	1.197263	.2206008	0.98	0.329	.834357	1.718015
sat	1.666645	.3147173	2.71	0.007	1.151088	2.413115
sun	1.371219	.205994	2.10	0.036	1.021488	1.840688

Continuous Outcome Example (Linear Model): Respiratory Function

Random sample of 300 girls from Topeka

Measurements of fev₁, height, age (fev₁ is forced expired volume in first second after spirometry in ml)

OLS -- ignores correlation (no robust variability estimates)

```
. xtgee lnfev age, family(gaussian) link(id) corr(ind) i( childid)
GEE population-averaged model Number of obs = 1994
Group variable: childid Number of groups = 300
                identity Obs per group: min = 1
Link:
              Gaussian avg = 6.6
Family:
Correlation: independent max = 12
                     Wald chi2(1) = 6299.69
Scale parameter:
                   .0262556 Prob > chi2 = 0.0000
Pearson chi2(1994): 52.35 Deviance = 52.35
Dispersion (Pearson): .0262556 Dispersion = .0262556
```

 Infev | Coef.
 Std. Err.
 z
 P>|z|
 [95% Conf. Interval]

 age | .0866927
 .0010923
 79.37
 0.000
 .084552
 .0888335

 _cons | -.2741518
 .014197
 -19.31
 0.000
 -.3019775
 -.2463261

(Same as OLS on entire data set)

. regress lnfev age

 lnfev	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
•					.0845496 3020084	

OLS with Robust Variability Estimates

. xtgee lnfev age, family(gaussian) link(id) corr(ind) i(childid) ro

```
GEE population-averaged model Number of obs = 1994 Group variable: childid Number of groups = 300 Link: identity Obs per group: min = 1 Family: Gaussian avg = 6.6 Correlation: independent max = 12
```

(standard errors adjusted for clustering on childid)

•	Semi-robus Std. Err.	-	P> z	[95% Cont	f. Interval]
•				.0844804 3051577	

.0011288 as compared to non-robust .0010923 (and .0158 vs .0142)

Review of Modeling Longitudinal vs. X-sectional Associations

Consider the model:

$$E[Y_{ij} | X_{i1} = x_{i1}, X_{ij} = x_{ij}] = \beta_0 + \beta_C x_{i1} + \beta_L (x_{ij} - x_{i1})$$

- β_L represents the expected change in Y given a change in X_{ij} relative to the baseline value (X_{i1}) longitudinal effect.
- β_C represents the expected difference in average Y across two sub-populations that differ by their baseline values, X_{i1} - crosssectional effect.

Alternative Parameterization

An identical fit to the data would be:

$$E[Y_{ij} | X_{il} = x_{il}, X_{ij} = x_{ij}] =$$

$$\beta_0 + \beta_C^* x_{i1} + \beta_L x_{ij}$$

- β_L still represents the expected change in Y given a change in X_{ij} relative to the baseline value (X_{i1}) longitudinal effect.
- β^*_C represents the difference in the x-sectional vs. longitudinal (or $\beta^*_C = \beta_C \beta_L$).

Model for Lung Function

Consider the model:

$$E[Y_{ij} | X_{i11} = x_{i11}, X_{ij1} = x_{ij1}, X_{i12} = x_{i12}, X_{ij2} = x_{ij2}] =$$

$$\beta_{0} + \beta_{1}x_{i11} + \beta_{2}x_{ij1} + \beta_{3}x_{i12} + \beta_{3}x_{ij2}$$

with X_{ij1} height for subject i, time j, and X_{ij2} is the corresponding age.

More complicated Model -- still OLS

xtgee Infev Inheight age initInheight initage, family(gaussian) link(id) corr(ind) i(childid)

```
GEE population-averaged model Number of obs = 1994 Group variable: childid Number of groups = 300 Link: identity Obs per group: min = 1 Family: Gaussian avg = 6.6 Correlation: independent max = 12 Wald chi2(4) = 14199.25 Scale parameter: .0134473 Prob > chi2 = 0.0000
```

lnfev	Coef.	Std. Err.	Z	P> z	[95% Con:	f. Interval]
age initlnheight initage	.0284979 .4074967 016087	.0021109 .0839699 .0040224	13.50 4.85 -4.00	0.000 0.000 0.000	1.919156 .0243606 .2429187 0239708 3721947	.0326352 .5720746 0082032

More complicated Model, different parameterization

Iteration 1: tolerance = 1.427e-13

GEE population-	averaged mod	del		Number	of obs	=	1994
Group variable:		chi	ldid	Number	of group	ps =	300
Link:		iden	tity	Obs per	group:	min =	1
Family:		Gaussian				avg =	6.6
Correlation:		independent				max =	12
				Wald chi2(4) =		14199.25	
Scale parameter:		.013	.0134473		chi2	=	0.0000
Pearson chi2(1994):		2	6.81	Devianc	е	=	26.81
Dispersion (Pearson):		.013	.0134473 Di		ion	=	.0134473
lnfev	Coef.	Std. Err.	z	P> z	 [95%	Conf.	Interval]
+-							
lnheightchange	2.056183	.0699129	29.41	0.000	1.919	9156	2.19321
agechange	.0284979	.0021109	13.50	0.000	.0243	3606	.0326352
initlnheight	2.46368	.0649965	37.90	0.000	2.336	5289	2.591071
initage	.0124109	.003436	3.61	0.000	.0056	5765	.0191453
_cons	3309375	.02105	-15.72	0.000	372	1947	2896803

More complicated Model -- still OLS + Robust

xtgee Infev Inheight age initInheight initage, family(gaussian) link(id) corr(ind) i(childid) ro

```
GEE population-averaged model Number of obs = 1994 Group variable: childid Number of groups = 300 Link: identity Obs per group: min = 1 Family: Gaussian avg = 6.6 Correlation: independent max = 12
```

(standard errors adjusted for clustering on childid)

lnheight 2.056183 .0792847 25.93 0.000 1.900788 2.211578	 lnfev 		Semi-robust Std. Err.		P> z	[95% Conf.	Interval]
age .0284979 .0022755 12.52 0.000 .024038 .0329578 initlnheight .4074967 .1828943 2.23 0.026 .0490305 .7659628 initage 016087 .008835 -1.82 0.069 0334034 .0012293 _cons 3309375 .0432665 -7.65 0.000 4157383 2461367	age	.0284979	.0022755	12.52	0.000	.024038	.0329578
	initlnheight	.4074967	.1828943	2.23	0.026	.0490305	.7659628
	initage	016087	.008835	-1.82	0.069	0334034	.0012293

More complicated Model, different parameterization

. xtgee lnfev lnheightchange agechange initlnheight initage, family(gaussian) link(id) corr(ind)
i(childid) ro

Iteration 1: tolerance = 1.427e-13

GEE population-averaged model		Number of obs	=	1994
Group variable:	childid	Number of group	ps =	300
Link:	identity	Obs per group:	min =	1
Family:	Gaussian		avg =	6.6
Correlation:	independent		max =	12
		Wald chi2(4)	=	11417.58
Scale parameter:	.0134473	Prob > chi2	=	0.0000
Pearson chi2(1994):	26.81	Deviance	=	26.81
Dispersion (Pearson):	.0134473	Dispersion	=	.0134473

(standard errors adjusted for clustering on childid)

lnfev	 Coef.	Semi-robust Std. Err.	Z	P> z	[95% Conf.	Interval]
<pre>lnheightch~e agechange initlnheight initage _cons</pre>	2.056183	.0792847	25.93	0.000	1.900788	2.211578
	.0284979	.0022755	12.52	0.000	.024038	.0329578
	2.46368	.1775394	13.88	0.000	2.115709	2.811651
	.0124109	.0087532	1.42	0.156	0047451	.0295668
	3309375	.0432665	-7.65	0.000	4157383	2461367

Comparison of Standard Errors

Variable	Naïve SE	Robust SE	Naïve z	Robust z
Inheight	.0699	.0793	29.4	25.9
age	.0021	.0023	13.5	12.5
initInhei ght	.0840	.1829	4.8	2.2
initage	.0040	.0088	-4.0	-1.8
_cons	.0211	.0433	-15.7	-7.6