Explorando la Segmentación de Tumores Cerebrales con U-Net

autor

Carrera: Ingeniería Biomédica

Materia: Procesamiento Digital de Señales Institución: TecNM – Campus Hermosillo

Resumen

Resumen

Se presenta una experiencia práctica empleando la arquitectura U-Net para la segmentación de tumores cerebrales, contrastando un tutorial básico, un ejemplo oficial de MATLAB 3-D U-Net y el artículo de referencia de Isensee et al. (2018).

Palabras clave: segmentación, U-Net, MRI, Dice, Deep Learning.

Abstract

This report summarises hands-on work with a basic U-Net tutorial, MATLAB's 3-D U-Net example and the BRATS 2017 contribution by Isensee *et al.* (2018).

Keywords: segmentation, U-Net, MRI, Dice, Deep Learning.

Índice general

1	Introducción y Justificación	2
2	Metodología y Desarrollo	3
	2.1 Datos y preprocesamiento	3
	2.2 Arquitectura U-Net básica	3
	2.3 Función de pérdida	3
	2.4 Aumento de datos	3
	2.5 Entrenamiento	3
3	Resultados y Comparación	4
	3.1 Métricas	4
	3.2 Discusión	4
4	Conclusiones y Trabajo Futuro	5
\mathbf{R}	Referencies	5

Introducción y Justificación

La segmentación precisa y automática de tumores cerebrales es crucial para la planeación quirúrgica, la radioterapia y el seguimiento de la enfermedad. Las redes neuronales convolucionales, y en particular la arquitectura U-Net [1], han mostrado un desempeño sobresaliente.

Objetivo general

Analizar y documentar el proceso de segmentación de tumores cerebrales con U-Net, contrastando distintas implementaciones y buenas prácticas.

Objetivos específicos

- a) Implementar una U-Net 2-D/3-D básica y evaluar su rendimiento.
- b) Replicar el ejemplo 3-D U-Net de MATLAB y comparar resultados.
- c) Estudiar las modificaciones y la pérdida Dice multiclase de [2].

Metodología y Desarrollo

2.1 Datos y preprocesamiento

Se utilizaron subconjuntos de BRATS 2017 en formato NIfTI. Se aplicó:

- Corte al cerebro y normalización z-score por modalidad.
- División en bloques 128³ con blockedImage de MATLAB.

2.2 Arquitectura U-Net básica

Ruta de contracción y expansión con **skip connections**. Función de activación ReLU; se evaluó Leaky ReLU.

2.3 Función de pérdida

Entropía cruzada vs. Dice generalizada [3]. Próxima a implementarse: Dice multiclase [2].

2.4 Aumento de datos

Rotaciones, flips y deformaciones elásticas 3-D.

2.5 Entrenamiento

200 épocas, lote 2, Adam (10^{-4}) , early stopping.

Resultados y Comparación

3.1 Métricas

Dice

Cuadro 3.1: Rendimiento preliminar (validación)

Modelo	Dice WT	Dice TC	HD95
U-Net 2-D básica	0.78	0.72	$6.4\mathrm{mm}$
MATLAB 3-D U-Net	0.82	0.77	$5.1\mathrm{mm}$
Isensee et al.	0.90	0.85	$3.6\mathrm{mm}$

3.2 Discusión

El ejemplo MATLAB supera al tutorial; la solución de Isensee sigue siendo el estado del arte gracias a normalización por instancia y supervisión profunda.

Conclusiones y Trabajo Futuro

U-Net es base sólida, pero el rendimiento depende de la pérdida, aumento de datos y ajustes arquitectónicos.

- Implementar Dice multiclase.
- Añadir bloques residuales y normalización de instancia.
- Evaluar en BRATS 2020 para validar generalización.

Bibliografía

- [1] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in *MICCAI*, 2015, pp. 234–241.
- [2] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, "Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge," *Lecture Notes in Computer Science*, vol. 10670, pp. 287–297, 2018.
- [3] C. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, "Generalised dice overlap as a deep learning loss function," *DLMIA*, pp. 240–248, 2017.