IS 7033: Artificial Intelligence and Machine Learning

Dr. Peyman Najafirad (Paul Rad)
Associate Professor
Cyber Analytics and AI
210.872.7259

https://github.com/paulNrad/ProbabilisticGraphModels

Outline

- Time series
- Markov Chain
- Hidden Markov Model

Markov Chain

• A Markov chain describes a discrete stochastic process at successive times. The transitions from one state to any of all states including itself, are governed by a **probability distribution**.

$$P(X_t \mid X_1 ... X_{t-1}) = P(X_i \mid T_{t-m} ... X_{t-1})$$

 $X_t = F(X_{t-1}, ... X_{t-m})$ m-order Markov Chain

 A chain of random variables in which the next one depends (only) on the current one

$$P(X_t | X_1 ... X_{t-1}) = P(X_i | X_{t-1})$$

Transition Probability

Transition Probabilities

	N	M	V	End
Start	3/4	1/4	0	0
N	1/9	1/3	1/9	4/9
M	1/4	0	3/4	0
V	1	0	0	0

Hidden Markov Model (HMM)

- In addition to State <u>Transition Probability</u>, each state of HMM has a probability distribution over the possible output tokens <u>(Emission Probability)</u>.
- Thus, a HMM is consist of two strings of information.
 - The state path is not directly visible
 - <u>The token path</u> (emitted sequence). Infer state path based on the observable token path.

Hidden Markov Model Example

	X ₁	X	2		K ₃
Out	Trans	Out	Trans	Out	Trans
а	0.8	а	0.2	a	0.7
b	0.1	b	0.6	b	0.3
С	0.1	С	0.2	С	0.1

What us probability of HMM producing "a,a,b,c"?

Given a HMM, a sequence of tokens could be generated as following:

- When we "visit" a state, we emit a token from the state's emission probability distribution.
- Then we choose which state to visit next, according to the state's transition probability distribution.

```
\begin{array}{l} P(a,a,b,c) \ \ via\ 1,1,2,3=0.8\ x\ 0.5\ x\ 0.8\ x\ 0.3\ x\ 0.6\ x\ 0.5\ x\ 0.1=0.004068 \\ P(a,a,b,c) \ via\ 1,2,3,3=0.8\ x\ 0.3\ x\ 0.2\ x\ 0.5\ x\ 0.3\ x\ 1\ x\ 0.1=0.00072 \\ P(a,a,b,c) \ via\ 1,3,3,3=0.8\ x\ 0.2\ x\ 0.7\ x\ 1.0\ x\ 0.3\ x\ 1.0\ x\ 0.1=0.00336 \end{array}
```

Example: Part of Speech Tagging

Mary had a little lamb.

Noun

(M) Modal verb

Jan can run

(M) Verb

Look up Table

Example: Part of Speech Tagging

Transition Probabilities

	N	M	V	End
Start	3/4	1/4	0	0
N	1/9	1/3	1/9	4/9
M	1/4	0	3/4	0
V	1	0	0	0

Mary Jane Can see Will.

Spot will see Mary.

Will Jane spot Mary?

(N)	(V)
\bigcup	\bigcup
Mary will	pat Spot.

Emission Probabilities

	ETTIISSIOTI PTODADIIILIES				
		N	M	V	
	Mary	4/9	0	0	
	Jane	2/9	0	0	
•	will	1/9	3/4	0	
_	Spot	2/9	0	1/4	
	Can	0	1/4	0	
	See	0	0	2/4	
	Pat	0	0	1/4	

Given Data

Example: Hidden Markov Model (HMM) Transition Probabilities

	N	M	V	End
Start	3/4	1/4	0	0
N	1/9	1/3	1/9	4/9
М	1/4	0	3/4	0
V	1	0	0	0

Emission Probabilities

	N	M	V
Mary	4/9	0	0
Jane	2/9	0	0
will	1/9	3/4	0
Spot	2/9	0	1/4
Can	0	1/4	0
See	0	0	2/4
Pat	0	0	1/4

Assignment

use the **Pomegranate** library or PyMC3 to build a hidden Markov model for part of speech tagging with a universal tagset library:

thttp://www.petrovi.de/data/universal.pdf