multiplicações e três adições. Uma maneira de reduzir o erro de arredondamento é reduzir o número de operações que produzem erro.

EXERCÍCIOS 1.2

1. Calcule o erro absoluto e o erro relativo na aproximação de p por p^* . **a.** $p = \pi, p^* = 22/7$ **b.** $p = \pi, p^* = 3,1416$ **c.** $p = e, p^* = 2,718$ **d.** $p = \sqrt{2}, p^* = 1,414$ **e.** $p = e^{10}, p^* = 22\,000$ **g.** $p = 8!, p^* = 39\,900$ **h.** $p = 9!, p^* = \sqrt{18\pi}(9/e)^9$

2. Determine o maior intervalo no qual p^* deve estar contido a fim de aproximar p com erro relativo de no máximo 10^{-4} para cada valor de p. **b.** *e* **c.** $\sqrt{2}$ **d.** $\sqrt[3]{7}$

3. Suponha que p^* deva aproximar p como erro relativo de no máximo 10^{-3} . Determine o maior intervalo no qual p^* deve estar contido para cada valor de p.

a. 150 **b.** 900

c. 1 500

d. 90

4. Efetue os seguintes cálculos (i) exatamente, (ii) usando aritmética de truncamento, com três algarismos, e (iii) usando aritmética de arredondamento, com três algarismos. (iv) Calcule os erros relativos nas partes

a. $\frac{4}{5} + \frac{1}{3}$ **b.** $\frac{4}{5} \cdot \frac{1}{3}$ **c.** $\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$ **d.** $\left(\frac{1}{3} + \frac{3}{11}\right) - \frac{3}{20}$

5. Use a aritmética de arredondamento, com três algarismos, para efetuar os seguintes cálculos. Calcule o erro absoluto e o erro relativo com o valor exato determinado com pelo menos cinco algarismos.

a. 133 + 0.921

b. 133 - 0,499

c. (121 - 0.327) - 119

d. (121 - 119) - 0.327

e. $\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5,4}$ f. $-10\pi + 6e - \frac{3}{62}$

 $\mathbf{g} \cdot \left(\frac{2}{9}\right) \cdot \left(\frac{9}{7}\right)$

h. $\frac{\pi - \frac{22}{7}}{\frac{1}{1}}$

- Repita o Exercício 5 usando a aritmética de arredondamento, com quatro algarismos.
- Repita o Exercício 5 usando a aritmética de truncamento, com três algarismos.
- Repita o Exercício 5 usando a aritmética de truncamento, com quatro algarismos.
- Os primeiros três termos diferentes de zero na série de Maclaurin para a função arco-tangente são x - $(1/3)x^3 + (1/5)x^5$. Calcule o erro absoluto e o erro relativo nas seguintes aproximações de π usando o polinômio em vez do arco-tangente:

a. $4\left[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right]$

b. 16 arctg $\left(\frac{1}{5}\right)$ + 4 arctg $\left(\frac{1}{239}\right)$

10. O número e pode ser definido por $e = \sum_{n=0}^{\infty} (1/n!)$. Calcule o erro absoluto e o erro relativo nas seguintes aproximações de e:

a. $\sum_{n=0}^{3} \frac{1}{n!}$

b. $\sum_{n=0}^{10} \frac{1}{n!}$

11. Seja

$$f(x) = \frac{x \cos x - \sin x}{x - \sin x}$$

b. Use a aritmética de arredondamento, com quatro algarismos, para calcular f(0,1).

c. Substitua cada função trigonométrica por seu polinômio de Maclaurin de grau três e repita o item (b). d. O valor real é f(0,1) = -1,99899998. Determine o erro relativo para os valores obtidos nos itens (b) e (c).

12. Seja

Fórmula de Bhaskara (com ou sem racionalização)

a. Determine $\lim_{x\to 0} (e^x - e^{-x})/x$.

(0,1). b. Use a aritmética de arredondamento, com c. Substitua cada função exponencial por seu polinômio de Maclaurin de grau três e repita o item (b).

d. O valor real é f(0,1) = 2,003335000. Determine o erro relativo para os valores obtidos nos itens (b) e (c).

13. Use a aritmética de arredondamento, com quatro algarismos, e as fórmulas do Exemplo 5 para determinar a aproximação mais precisa para as raízes das seguintes equações quadráticas. Calcule os erros absolutos

a.
$$\frac{1}{3}x^2 - \frac{123}{4}x + \frac{1}{6} = 0$$

a.
$$\frac{1}{3}x^2 - \frac{123}{4}x + \frac{1}{6} = 0$$
 b. $\frac{1}{3}x^2 + \frac{123}{4}x - \frac{1}{6} = 0$

c.
$$1,002x^2 - 11,01x + 0,01265 = 0$$

d.
$$1,002x^2 + 11,01x + 0,01265 = 0$$

14. Repita o Exercício 13 usando a aritmética de truncamento, com quatro algarismos.

15. Use o formato real longo de 64 bits para determinar o equivalente decimal dos seguintes números de máquina em ponto flutuante.

a. 0	10000001010	1001001100000000000000000000	000000000000000000000000000000000000000
b. 1 c. 0	10000001010	100100110000000000000000000 01010011000000	000000000000000000000000000000000000000
d. 0	01111111111		
-			000000000000000000000000000000000000000

16. Determine os próximos maior e menor números de máquina na forma decimal para os números forneci-

17. Suponha que dois pontos (x_0, y_0) e (x_1, y_1) estejam em uma reta, com $y_1 \neq y_0$. Há duas fórmulas disponíveis para determinar a intersecção da reta com o eixo x:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0} e x = x_0 - \frac{(x_1 - x_0) y_0}{y_1 - y_0}$$

a. Mostre que ambas as fórmulas são algebricamente corretas.

b. Use os dados $(x_0, y_0) = (1,31, 3,24)$ e $(x_1, y_1) = (1,93, 4,76)$ e a aritmética de arredondamento, com três algarismos, para calcular a intersecção com o eixo x das duas maneiras. Qual método é melhor e

18. O polinômio de Taylor de grau n para $f(x) = e^x \notin \sum_{i=0}^n (x^i/i!)$. Use o polinômio de grau nove e a aritmética de truncamento, com três algarismos, para determinar uma aproximação de e^{-5} por cada um dos seguintes

a.
$$e^{-5} \approx \sum_{i=0}^{9} \frac{(-5)^i}{i!} = \sum_{i=0}^{9} \frac{(-1)^i 5^i}{i!}$$

b.
$$e^{-5} = \frac{1}{e^5} \approx \frac{1}{\sum_{i=0}^{9} \frac{5^i}{i!}}$$
.