Aeroelastic Simulations of Wind Turbines

Tower design and **Modal analysis**

Tech 100 1 100 2 1

Prof. Dr. M. Kühn Bernd Kuhnle,

ForWind – Wind Energy Systems

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 1

CARL OSSIETZKY Universität OLDENBURG

Repetition -Section I: turbine

Dynamics of a wind

Topics

- Repetition Dynamics of a wind turbine
- Tower design
- Modal analysis

material is authorized, except with written consent of the No reproduction, publication or dissemination of this author.

Oldenburg, May 2016

Prof. Dr. Martin Kühn

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 2

OSSIETZKY UNIVERSITÄT OLDENBURG

Load transformation from the rotating into the fixed coordination system: Unbalance

stationary axial force in blade rotating (blade) system: unbalance results in $\Delta F = \Delta m \text{ rs } \Omega 2$

rotating excitation, so called fixed (nacelle) system: unbalance results in 1P-excitation

Fhorz = $\Delta m \text{ rs } \Omega 2 \sin \Omega t$

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 3

CARL VON OSSIETZRY Universität OLDENBURG

Load transformation from the fixed into the rotating coordination system: Gravitational load

tower-nacelle-system and blade – drive train system Campbell diagram with eigenfrequencies of the

Eigenmodes coupled/uncoupled

Tower Side-to-side

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 6

OSSIETZKY UNIVERSITÄT OLDENBURG

Campbell diagram (upper fig.) and tower amplitude (lower fig.) Tower resonances (3-bladed rotor) illustrated at

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 8

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 7

CARL OSSIETZAY UNIVERSITÄT OLDENBURG

Variations of the dynamic design of the rotor nacelle system of a variable rotor speed turbine (1) (2) (3) (4)

Design ranges:

- Very soft, hardly possible due to strength requirements and excessive dynamic wave excitation (unless a compliant design with an eigenfrequency below the wave excitation is chosen)
 - window for stationary operation of the rotor speed, soft-soft design with quite significant wave Soft-soft design range in the resonance range of the rotor speed, requires an exclusion 3
 - excitation
- Classical soft-stiff design range, already resulting in significant wave excitation Blade resonance range with excessive excitation from cyclic aerodynamic loading, design $\odot 4$
 - impossible without a large exclusion window of the rotor speed Stiff-stiff, uneconomical design due to too high stiffness requirements

9

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 9

CARL VON OSSIETZKY Universität OLDENBURG

Mode shapes of the

coupled blade - drive train - nacelle - tower system

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 11

CARL OSSIETZRY Universität OLDENBURG

Hawc2

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 10

OSSIETZKY UNIVERSITÄT OLDENBURG

Section II:

ower Geometry

Tower design

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 12

UNIVERSITÄR OLDENBURG

Tower design

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 13

CARL OSSIETZKY Universität OLDENBURG

Tower design

- Mass
- Important in terms of economy
- Transport
- Dissipation of loads
- Buckling forces Extreme Loads
- Fatigue loads
- Natural frequency

[University of Western Australia]

Example for buckling

Transport:

Tower design

[alpha ventus]

[windsordi@flickr]

Producibility

[Bilfinger Berger]

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 14

CARL OSSIETZKY Universität OLDENBURG

Remark

- Tower design very simplified
- Cylindrical tower
- Normally: Conical with more stations (hybrid)
- No preliminary load calculation done
 Buckling
- Extreme loads
- Fatigue loads
- No material selection
- No producibility check
- No transportability check

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 16

CARL OSSIETZKY Universität OLDENBURG

Tower design

- Eigenfrequency
- Influenced by modal mass and stiffness

$$oldsymbol{\omega}_0 = \sqrt{rac{k}{m_{
m modal}}} = f_0 \cdot 2\pi$$

Modal mass is approximated by swinging part of the tower + tower head mass

$$m_{\rm modal} = m_{\rm lowertop} + 0.25 \cdot m_{\rm lowermass}$$

Stiffness and mass are depending on the wall thickness

$$k = \frac{3EI}{I^3} \qquad I = \frac{\pi D^3 t}{8} \qquad \text{where} \\ \text{where} \qquad \text{where} \qquad \text{p = Material density} \\ k = \text{Suffness} \qquad I = \text{Moment of inertia} \qquad D = \text{Tower diameter} \\ E = E - \text{modulus} \qquad D = \text{Tower diameter} \qquad t = \text{Wall thickness} \\ I = \text{Moment of inertia} \qquad t = \text{Wall thickness} \qquad I = \text{Tower height} \\ \end{cases}$$

Eigenfrequency = Maximum rotor speed + 10%

CARL OSSIETZKY Universität OLDENBURG

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 17

Excurse: Modal analysis (ii)

OSSIETZKY Universität OLDENBURG

Modal analysis Section III:

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 18

OSSIETZKY UNIVERSITÄT OLDENBURG

Campbell diagram of a typical 1.5 MW turbine

Aeroelastic Simulation of Wind Turbines 05 Steady calculations / page 20

OSSIGNARY OLDENBURG