Скінченний автомат $M = \langle Q, \Sigma, \Delta, I, F \rangle$ називається детермінованцм (deterministic), якщо

- 1. Множина I містить рівно один елемент;
- 2. Для кожного переходу $(p, x, q) \in \Delta$ виконується рівність |x| = 1, тобто мітки переходів автомата є однобуквеними;
 - 3. Автомат не містить дуг з пустими λ мітками;
- 4. Для кожного символу $a \in \Sigma$ і для довільного стану $p \in Q$ існує тільки один стан $q \in Q$ такий, що $\langle p, a, q \rangle \in \Delta$, тобто перехід зі стану p у стан q по дузі з міткою a повинен бути єдиним для кожної букви алфавіту.

Детермінізація

Вважаємо, що автомат, який підлягає процедурі власне детермінізації, вже не містить λ переходів.

Спочатку зауважимо, що автоматна граматика (надалі А-граматика) відповідає детермінованому автомату тоді і тільки тоді, коли за кожним її правилом вигляду

$$A \rightarrow a_1 A_1 | ... | a_n A_n$$
 and $A \rightarrow a_1 A_1 | ... | a_n A_n | \mathcal{E}$

виконується умова: $a_i \neq a_j$ при $i \neq j$.

Для кожного правила, ліві частини яких є нетерміналами з множини $\{A_1,...,A_n\}$, а праві частини цих правил розпочинаються однаковими термінальними символами, введемо новий нетермінальний символ, який позначимо як $[A_1 \ldots A_n]$ і визначимо для нього правило граматики так, щоб його права частина складалася з *правих частин правил для кожного* A_i , що входить в множину $\{A_1,...,A_n\}$, тобто задамо правило

$$[A_1 \dots A_n] \rightarrow r_1 | \dots | r_n,$$

де r_i — права частина правила для A_i , тобто $A_i \rightarrow r_i$.

Тепер побудуємо граматику G' = (N', T, P', S), де N' отримується з N додаванням визначених вище нових нетермінальних символів, а P' отримано додаванням до P правил для нових нетермінальних символів: в кожному правилі всі члени вигляду aA_1 , ..., aA_n з одним і тим же терміналом $a \in T$ заміняються одним правилом $a[A_1,...,A_n]$.

Таким правилам відповідає детермінований автомат, еквівалентний недетермінованому, оскільки $a[A_1,...,A_n]=aA_1|...|aA_n$.

Оскільки не всі нетермінальні символи $[A_1,...,A_n]$ досяжні з S, то для побудови P' достатньо використовувати тільки необхідні правила, починаючи з правила для S.

Отриманий детермінований скінченний автомат повинен далі обов'язково пройти процедуру видалення непродуктивних та недосяжних станів.