Please check the examination details below before	e entering your candidate information	
Candidate surname	Other names	
Centre Number Candidate Number		
Pearson Edexcel Internati	onal Advanced Level	
Wednesday 18 October	2023	
Morning (Time: 1 hour 30 minutes) Paper refer	WMA13/01	
Mathematics		
International Advanced Level Pure Mathematics P3		
You must have: Mathematical Formulae and Statistical Tables	Total Marks (Yellow), calculator	

Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

1. A curve has equation y = f(x) where

$$f(x) = x^2 - 5x + e^x \qquad x \in \mathbb{R}$$

(a) Show that the equation f(x) = 0 has a root, α , in the interval [1, 2]

(2)

The iterative formula

$$x_{n+1} = \sqrt{5x_n - e^{x_n}}$$

with $x_1 = 1$ is used to find an approximate value for the root α .

- (b) (i) Find the value of x_2 to 4 decimal places.
 - (ii) Find, by repeated iteration, the value of α , giving your answer to 4 decimal places.

(3)

Question 1 continued
(Total for Question 1 is 5 marks)
(10tai 101 Question 1 is 5 marks)

2. The function f is defined by

$$f(x) = \frac{x+3}{x-4} \qquad x \in \mathbb{R}, x \neq 4$$

(a) Find ff(6)

(2)

(b) Find f^{-1}

(3)

The function g is defined by

$$g(x) = x^2 + 5 \qquad x \in \mathbb{R}, x > 0$$

$$x \in \mathbb{R}, x > 0$$

(c) Find the exact value of a for which

$$gf(a) = 7$$

(3)

Question 2 continued

Question 2 continued		

Question 2 continued	
/T	otal for Question 2 is 8 marks)
	otal for Question 2 is 6 marks)

3. (a) Using the identity for cos(A + B), prove that

$$\cos 2A \equiv 2\cos^2 A - 1$$

(2)

(b) Hence, using algebraic integration, find the exact value of

$$\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} (5 - 4\cos^2 3x) \, \mathrm{d}x$$

(4)

Question 3 continued	
(Total for Question 3 is 6 marks)	

4. A new mobile phone is released for sale.

The total sales N of this phone, in **thousands**, is modelled by the equation

$$N = 125 - Ae^{-0.109t}$$

$$t \geqslant 0$$

where A is a constant and t is the time in months after the phone was released for sale.

Given that when t = 0, N = 32

(a) state the value of A.

(1)

Given that when t = T the total sales of the phone was 100 000

(b) find, according to the model, the value of T. Give your answer to 2 decimal places.

(3)

(c) Find, according to the model, the rate of increase in total sales when t = 7, giving your answer to 3 significant figures.

(Solutions relying entirely on calculator technology are not acceptable.)

(2)

The total sales of the mobile phone is expected to reach 150 000

Using this information,

(d) give a reason why the given equation is not suitable for modelling the total sales of the phone.

(1)

Question 4 continued

Question 4 continued		

Question 4 continued	
(Tot	al for Question 4 is 7 marks)

5. The curve C has equation

$$y = \frac{\ln(x^2 + k)}{x^2 + k} \qquad x \in \mathbb{R}$$

where k is a positive constant.

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Ax(B - \ln(x^2 + k))}{(x^2 + k)^2}$$

where A and B are constants to be found.

(3)

Given that C has exactly three turning points,

(b) find the x coordinate of each of these points. Give your answer in terms of k where appropriate.

(3)

(c) find the upper limit to the value for k.

(1)

Question 5 continued
(Total for Question 5 is 7 marks)

6. An area of sea floor is being monitored.

The area of the sea floor, $S \, \mathrm{km}^2$, covered by coral reefs is modelled by the equation

$$S = pq^t$$

where p and q are constants and t is the number of years after monitoring began.

Given that

$$\log_{10} S = 4.5 - 0.006t$$

- (a) find, according to the model, the area of sea floor covered by coral reefs when t=2 (2)
- (b) find a complete equation for the model in the form

$$S = pq^t$$

giving the value of p and the value of q each to 3 significant figures.

(3)

(c) With reference to the model, interpret the value of the constant q

(1)

Question 6 continued	
(Ta	tal for Augstion (is 6 marks)
(10	tal for Question 6 is 6 marks)

Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x) where

$$f(x) = e^{-x^2} (2x^2 - 3)^2$$

(a) Find the range of f

(2)

(b) Show that

$$f'(x) = 2x(2x^2 - 3)e^{-x^2}(A - Bx^2)$$

where *A* and *B* are constants to be found.

(4)

Given that the line y = k, where k is a constant, k > 0, intersects the curve at exactly two distinct points,

(c) find the exact range of values of k

(4)

Question 7 continued

Question 7 continued

Question 7 continued
(Total for Question 7 is 10 marks)

O	(-)	Prove	414
Α.	(a)	Prove	าทฆา

$$2\csc^2 2\theta (1-\cos 2\theta) \equiv 1 + \tan^2 \theta$$

(4)

(b) Hence solve for $0 < x < 360^{\circ}$, where $x \neq (90n)^{\circ}$, $n \in \mathbb{N}$, the equation

$$2\csc^2 2x(1-\cos 2x) = 4 + 3\sec x$$

giving your answers to one decimal place.

(Solutions relying entirely on calculator technology are not acceptable.)

(4)

Question 8 continued

Question 8 continued

Question 8 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 8 is 8 marks)	_

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Figure 2

Figure 2 shows a sketch of the curve with equation

$$y = |2 - 4\ln(x + 1)|$$
 $x > k$

where k is a constant.

9.

Given that the curve

- has an asymptote at x = k
- cuts the y-axis at point A
- meets the x-axis at point B

as shown in Figure 2,

(a) state the value of k

(1)

- (b) (i) find the y coordinate of A
 - (ii) find the exact x coordinate of B

(3)

(c) Using algebra and showing your working, find the set of values of x such that

$$\left|2 - 4\ln(x+1)\right| > 3$$

(5)

Question 9 continued

Question 9 continued

Question 9 continued	
(To	tal for Question 9 is 9 marks)

A curve C has equation

$$x = \sin^2 4y \qquad 0 \leqslant y \leqslant \frac{\pi}{8} \qquad 0 \leqslant x \leqslant 1$$

The point P with x coordinate $\frac{1}{4}$ lies on C

(a) Find the exact y coordinate of P

(2)

DO NOT WRITE IN THIS AREA

(b) Find $\frac{dx}{dy}$

(2)

(c) Hence show that $\frac{dy}{dx}$ can be written in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{q + r(x+s)^2}}$$

where q, r and s are constants to be found.

(3)

Using the answer to part (c),

- (d) (i) state the x coordinate of the point where the value of $\frac{dy}{dx}$ is a minimum,
 - (ii) state the value of $\frac{dy}{dx}$ at this point.

(2)

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 9 marks)
	TOTAL FOR PAPER IS 75 MARKS

