Introduction to Quantum Key Distribution

Matthias Christandl

Fakultät für Physik Ludwig-Maximilians-Universität München

January 2010

Overview

- Introduction
- Quantum Key Distribution
- Security Proof

- What is information?
 - A mathematical concept describing "knowledge". Basic unit is the bit $0 \ / \ 1$.

• A physical concept 0 $\hat{=}$

and 1ê

- What is information?
 - A mathematical concept describing "knowledge".
 Basic unit is the bit 0 / 1.

and 1ê

- A physical concept 0^ˆ=
- The world is not made up of light switches, the world is made up of atoms and photons
- Atoms and photons are described by quantum mechanics
- The spin of an atom describes the information we have

about it

• spin- $\frac{1}{2}$ system: points on the sphere

• unit of information is the quantum bit or "qubit"

• spin- $\frac{1}{2}$ system: points on the sphere

- unit of information is the quantum bit or "qubit"
- we can manipulate and transmit qubits

ion trap

optical fibre

Quantum Information Science

 Alice und Bob want to communicate in secrecy, but their phone is tapped.

 Alice und Bob want to communicate in secrecy, but their phone is tapped.

• If they share key (string of secret random numbers),

• cipher is random and message secure (Vernam, 1926)

 Alice und Bob want to communicate in secrecy, but their phone is tapped.

• If they share key (string of secret random numbers),

• cipher is random and message secure (Vernam, 1926)

key is as long as the message
 Shannon (1949): this is optimal ©
 secret communication \(\hat{=}\) key distribution

- key is as long as the message
 Shannon (1949): this is optimal ⊕
 secret communication ⊕ key distribution
- possible key distribution schemes:

- key is as long as the message
 Shannon (1949): this is optimal ©
 secret communication \(\hat{=}\) key distribution
- possible key distribution schemes:
 - Alice and Bob meet ⇒ impractical

- key is as long as the message
 Shannon (1949): this is optimal ⊕
 secret communication ⊕ key distribution
- possible key distribution schemes:
 - Alice and Bob meet ⇒ impractical
 - Weaker level of security
 - assumptions on speed of Eve's computer (public key cryptography)
 - assumptions on size of Eve's harddrive (bounded storage model)

- key is as long as the message
 Shannon (1949): this is optimal ⊕
 secret communication ⊕ key distribution
- possible key distribution schemes:
 - Alice and Bob meet ⇒ impractical
 - Weaker level of security
 - assumptions on speed of Eve's computer (public key cryptography)
 - assumptions on size of Eve's harddrive (bounded storage model)
 - Use quantum mechanical effects (Bennett & Brassard 1984, Ekert 1991)

prepare & measure (Wiesner 1970's, Bennett & Brassard 1984)

Eve

Alice

Bob

prepare & measure (Wiesner 1970's, Bennett & Brassard 1984)

Security guaranteed by uncertainty principle

- Alice sends eigenstates of σ_z or σ_x .
- Bob measures observable σ_z or σ_x .
- They tell each other the observable, but not the result.
- They should obtain the same result when they used the same observable ⇒ key
- If Eve measures in the wrong observable, they have an error with probability $\frac{1}{2}$, since $[\sigma_z, \sigma_x] \neq 0$.

Security guaranteed by monogamy of entanglement

• Alice and Bob check (Bell inequality):

$$|\psi\rangle_{ABE} \stackrel{?}{=} \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B) |\phi\rangle_E.$$

- If YES: Eve does not know their measurement results.
 Results are random ⇒ key
- If NO: they abort the protocol.

ullet Entangled state of two qubits $rac{1}{\sqrt{2}}(|0
angle_A|0
angle_B+|1
angle_A|1
angle_B)$

- Entangled state of two qubits $\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$
- New basis

$$|+
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle) \quad |-
angle = rac{1}{\sqrt{2}}(|0
angle - |1
angle)$$

easy calculation

$$\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B+|1\rangle_A|1\rangle_B)=\frac{1}{\sqrt{2}}(|+\rangle_A|+\rangle_B+|-\rangle_A|-\rangle_B)$$

- Entangled state of two qubits $\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$
- New basis

$$|+
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle) \quad |-
angle = rac{1}{\sqrt{2}}(|0
angle - |1
angle)$$

easy calculation

$$\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B) = \frac{1}{\sqrt{2}}(|+\rangle_A|+\rangle_B + |-\rangle_A|-\rangle_B)$$

- If Alice and Bob measure observable $\sigma_z \Rightarrow$ same result
- If Alice and Bob measure observable $\sigma_x \Rightarrow$ same result

- Entangled state of two qubits $\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$
- New basis

$$|+
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle) \quad |-
angle = rac{1}{\sqrt{2}}(|0
angle - |1
angle)$$

easy calculation

$$rac{1}{\sqrt{2}}(|0
angle_A|0
angle_B+|1
angle_A|1
angle_B)=rac{1}{\sqrt{2}}(|+
angle_A|+
angle_B+|-
angle_A|-
angle_B)$$

- If Alice and Bob measure observable $\sigma_z \Rightarrow$ same result
- If Alice and Bob measure observable $\sigma_x \Rightarrow$ same result
- Converse is true, too:
 - same measurement result \Rightarrow they have state $\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$
 - Alice and Bob can test whether or not they have the state $\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)!$

- Assume that Alice and Bob have the state $|\phi\rangle_{AB}=\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B+|1\rangle_A|1\rangle_B)$ and measure in the same basis.
- Can someone else guess the result?

- Assume that Alice and Bob have the state $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$ and measure in the same basis.
- Can someone else guess the result?
- No! The measurement result is secure!
 - Total state of Alice, Bob and Eve

$$|\psi\rangle_{ABE} = |\phi\rangle_{AB} \otimes |\phi\rangle_{E},$$

- because Alice and Bob have a pure state
- Eve is not at all correlated with Alice and Bob!
- Monogamy of entanglement
- Try: $|\psi\rangle_{ABE} = \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B|0\rangle_E + |1\rangle_A|1\rangle_B|1\rangle_E)$ $\rho_{AB} = \frac{1}{2}(|0\rangle_A|0\rangle_B\langle 0|_A\langle 0|_B + |1\rangle_A|1\rangle_B\langle 1|_A\langle 1|_B)$ different from $|\phi\rangle\langle\phi|_{AB} = \frac{1}{2}(|0\rangle_A|0\rangle_B\langle 0|_A\langle 0|_B + |1\rangle_A|1\rangle_B\langle 0|_A\langle 0|_B + |1\rangle_A|1\rangle_B\langle 0|_A\langle 0|_B + |0\rangle_A|0\rangle_B\langle 1|_A\langle 1|_B + |1\rangle_A|1\rangle_B\langle 1|_A\langle 1|_B)$

The Quantum Key Distribution Protocol Distribution Alice **① ② ── ○ ←** Measurement with σ_x or σ_z

The Quantum Key Distribution Protocol

Distribution

Measurement with σ_x or σ_z

Error-free? $|\phi\rangle_{AB}\stackrel{?}{=} rac{1}{\sqrt{2}} (|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$

The Quantum Key Distribution Protocol

Distribution

Measurement with σ_x or σ_z

Error-free? $|\phi\rangle_{AB}\stackrel{?}{=} \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$

If YES: key. If NO: no key

- entanglement ⇒ key
- key ⇒ perfectly secure communication
- not possible with classical physics
- future (quantum) technology!

The Quantum Key Distribution Protocol

Distribution

Measurement with σ_x or σ_z

Error-free? $|\phi\rangle_{AB}\stackrel{?}{=} rac{1}{\sqrt{2}} (|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$

If YES: key. If NO: no key

Honest Eve would distribute

$$\begin{split} |\Psi\rangle_{ABC}^n &= |\psi\rangle_{ABE}^{\otimes n} \quad \text{bits are independent} \\ |\psi\rangle_{ABE} &= |\phi\rangle_{AB} \otimes |\phi\rangle_E \quad \text{Eve knows nothing} \\ |\phi\rangle_{AB} &= \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B) \quad \text{bits are random} \end{split}$$

Alice and Bob need to test whether Eve is honest or not.

- If Eve sends states of the form $|\Psi\rangle^n_{ABC} = |\psi\rangle^{\otimes n}_{ABE}$
- Alice and Bob test (on a subset): Are the pairs are of the form $|\phi\rangle_{AB}=\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B+|1\rangle_A|1\rangle_B)$ i.e. is the data error-free ?
- If YES, standard statistical analysis implies
 - (almost) all remaining triples are of the form $|\phi\rangle_{AB}\otimes|\phi\rangle_{E}$
 - ⇒ resulting bits are (almost) identical and random
 - ⇒ Eve has (almost) no information about bits
 - Alice and Bob perform error correction
 - Alice and Bob delete a few random bits ⇒
 Eve has no information about remaining bits
 (privacy amplification)
 - \Rightarrow key
- If NO, abort the protocol

The Protocol

Measurement

Error Estimation

 $|\phi\rangle_{AB}\stackrel{?}{=} \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$

NO: Abort protocol

compare subset

• Proof works as long as $|\Psi\rangle_{ABC}^n = |\psi\rangle_{ABE}^{\otimes n}$.

But why should Eve prepare such a state? Why not the following?

De Finetti Theorem (Diaconis and Freedman, 1980)

Drawing balls from an urn with or without replacement results in almost the same probability distribution.

If k are drawn out of n, then

$$||P^k - \sum_i p_i Q_i^{\times k}||_1 \leq const \frac{k}{n}.$$

Quantum generalisations have been obtained by Størmer, Hudson & Moody, and Werner et al.. $(n = \infty)$

Quantum De Finetti Theorem

Ch., König, Mitchison, Renner, Comm. Math. Phys. 273, 473498 (2007)

Let ρ^n be a permutation-invariant state $\pi \rho \pi^{-1} = \rho$, then

$$||\rho^k - \sum_i p_i \sigma_i^{\otimes k}||_1 \leq const \frac{k}{n}$$

- $const = 4d^2$
- d dependence is necessary
- classically, k^2/n bound exists

Proof sketch

- reduce problem to the Bosonic case $\pi \rho = \rho$, for all $\pi \in S_n$
- ρ lives on $\operatorname{Sym}^n(\mathbb{C}^d) \subset \operatorname{Sym}^k(\mathbb{C}^d) \otimes \operatorname{Sym}^{n-k}(\mathbb{C}^d)$
- measurement with SU(d) coherent states $|\phi\rangle^{\otimes n} = |\phi\rangle^{\otimes k} \otimes |\phi\rangle^{\otimes n-k}$
- post-measurement on k particles: $\rho_{post}^k = \int \mu(\phi) |\phi\rangle \langle \phi|^{\otimes k}$
- gentle measurement $\rho^k \approx \rho_{post}^k$ (error k/n).

generalises to arbitrary irreducible representations of SU(d).

 Alice and Bob select a random sample of pairs (after pairs have been distributed!)

- ⇒ can use proof from before (tensor product)
- ⇒ proof of the security of Quantum Key Distribution!

 Closer look: deviation from perfect key (due to quantum de Finetti theorem)

$$\epsilon \approx k/n$$

- n: number of pairs that Eve distributed
- k: number of bits of key

 Closer look: deviation from perfect key (due to quantum de Finetti theorem)

$$\epsilon \approx k/n$$

- n: number of pairs that Eve distributed
- k: number of bits of key
- key rate $r \approx k/n \approx \epsilon \approx 0 \Rightarrow$ not good enough
- need replacement for de Finetti theorem
- Renner's exp. de Finetti theorem, involved, non-optimal

Post-selection Technique

Ch., König, Renner, Phys. Rev. Lett. 102, 020504 (2009)

- Idea: Compare actual protocol with an ideal protocol (which produces perfect key)
- Theorem about permutation-covariant maps, rather than permutation-invariant states.

Post-selection Technique

Ch., König, Renner, Phys. Rev. Lett. 102, 020504 (2009)

- Idea: Compare actual protocol with an ideal protocol (which produces perfect key)
- Theorem about permutation-covariant maps, rather than permutation-invariant states.
- In QKD:
 - $r \approx k/n \approx 1 \delta$ and $\epsilon \approx \exp(-\delta^2 n)$
 - optimal parameters
 - relevant in current experiments (since $n \approx 10^5$)
 - Eve's best attack $|\Psi^n_{ABE}\rangle = |\psi_{ABE}\rangle^{\otimes n}$
 - conceptual and technical simplification of security proofs
- Other applications: Quantum Reverse Shannon Theorem

