МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Параллельная обработка данных»

Сортировка чисел на GPU. Свертка, сканирование, гистограмма.

Выполнил: О.А. Мезенин

Группа: 8О-406Б

Преподаватель: А.Ю. Морозов

Условие

Цель работы: Ознакомление с фундаментальными алгоритмами GPU: свертка (reduce), сканирование (blelloch scan) и гистограмма (histogram). Реализация одной из сортировок на CUDA. Использование разделяемой и других видов памяти. Исследование производительности программы с помощью утилиты ncu.

Вариант 4. Сортировка чет-нечет.

Bce входные-выходные данные являются бинарными и считываются из stdin и выводятся в stdout.

Входные данные. В первых четырех байтах записывается целое число n -- длина массива чисел, далее следуют n чисел типа заданного вариантом.

Выходные данные. В бинарном виде записывают п отсортированных по возрастанию чисел.

Требуется реализовать блочную сортировку чет-нечет для чисел типа int. Должны быть реализованы:

- Алгоритм чет-нечет сортировки для предварительной сортировки блоков.
- Алгоритм битонического слияния, с использованием разделяемой памяти.

Ограничения: n ≤ 16 * 106

Программное и аппаратное обеспечение

Характеристики графического процессора:

Compute capability: 8.9

Name: NVIDIA GeForce RTX 4070 SUPER

Total Global Memory: 12584550400Shared memory per block: 49152

Registers per block: 65536

Warp size: 32

Max threads per block: (1024, 1024, 64)Max block: (2147483647, 65535, 65535)

Total constant memory: 65536Multiprocessors count: 56

Характеристики центрального процессора:

Version: AMD Ryzen 7 7700

Max Speed: 5389 MHz

Core Count: 8Thread Count: 16

Характеристики оперативной памяти:

Size: 2x16 GBType: DDR5Speed: 4800 MT/s

Характеристики жесткого диска:

Device Model: ADATA SU635

User Capacity: 480 103 981 056 bytes [480 GB]

Sector Size: 512 bytes logical/physical

- SATA Version is: SATA 3.2, 6.0 Gb/s (current: 6.0 Gb/s)

Программное обеспечение:

OS: Linux

Kernel: 6.10.13-3-MANJAROТекстовый редактор: Kate

- Компилятор: nvcc V12.4.131

Метод решения

Для начала считываем данные. Размер массива, с которым будем работать, округляем до ближайшего большего числа, кратного BLOCK_SIZE — размер блока (настраиваемый параметр). По необходимости заполняем массив фиктивными элементами.

Запускаем предварительную сортировку с конфигурацией <<<data_dev_size / BLOCK_SIZE, BLOCK_SIZE>>>, где data_dev_size — размер массива, с которым ведется работа. Если data_dev_size == BLOCK_SIZE, значит, предварительная сортировка отсортировала все данные. Иначе запускаем цикл чет-нечет сортировки, который запускает ядра с четными и нечетными блоками, применяя алгоритм битонического слияния.

Описание программы

Вся программа описана в одном файле main.cu. Есть следующие функции:

- int main() входная точка программы, которая считывает данные, инициализирует рабочий массив, после чего запускает предварительную сортировку и основную сортировку с битоническим слиянием;
- void readData(int& n, int** data) считывает данные из stdin в data и их размер в
 n.
- void writeData(int n, int* data) выводит data размера n в stdout;
- __device__ void swap(int* data, int first_index, int second_index) переставляет данные в массиве data.
- __global__ void fillFictitious(int fictive_n, int* fictive_data) заполняет данные фиктивными — INT_MAX.
- __global__ void preSort(int* data) предварительная сортировка чет-нечет.
- __global__ void bitonicMerge(int* data) битоническое слияние.

Результаты

Будет 3 теста со следующими n: 100, 10000, 1000000. Все элементы матрицы являются числами типа int. Будет изменяться параметр BLOCK_SIZE.

Далее приведены замеры времени работы ядер с четырьмя конфигурациями, а также замеры работы без использования технологий CUDA (на CPU):

1. Конфигурация BLOCK_SIZE=32

n	Время (в мс)
100	0.192512
10000	8.42134

	1000000	16677.4
2.	Конфигурация BLOCK_SIZE=64	
	n	Время (в мс)
	100	0.22016
	10000	4.92749
	1000000	5012.71
3.	Конфигурация BLOCK_SIZE=256	
	n	Время (в мс)
	100	0.491296
	10000	2.07053
	1000000	971.804
4.	Конфигурация BLOCK_SIZE=1024	
	n	Время (в мс)
	100	1.89232
	10000	3.07405
	1000000	379.405
5.	CPU	
	n	Время (в мс)
	100	0.038
	10000	332.96
	1000000	Не дождался

Исследование производительности

Исследование производительности производилось с помощью утилиты ncu.

Запуск:

m > ~/st/MAI-PGP-PDP/lab5 © P main ?1 > sudo /usr/local/NVIDIA-Nsight-Compute/ncu --metrics l1tex_t_sectors_pipe_lsu_mem_global_op_ld,l1tex_t_sectors_pipe_lsu_mem_global_op_st,smsp__branch_targets_threads_divergent,sm_sass_inst_executed_op_local,l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_ld,l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_st --print-summary per-gpu -metrics_l1tex_targets_lsu_mem_shared_op_ld,l1tex_targets_lsu_mem_shared_op_st --print-summary per-gpu -metrics_l1tex_targets_lsu_mem_shared_op_ld,l1tex_targets_lsu_mem_shared_op_st --print-summary per-gpu -metrics_l1tex_targets_lsu_mem_shared_op_ld,l1tex_targets_lsu_mem_sh

Вывод:

bitonicMerge(int *) (10, 1, 1)x(512, 1, 1), Invocations 10 Section: Command line profiler metrics Metric Name Metric Unit Minimum Maximum Average litex_data_bank_conflicts_pipe_lsu_mem_shared_op_ld.awg litex_data_bank_conflicts_pipe_lsu_mem_shared_op_ld.max litex_data_bank_conflicts_pipe_lsu_mem_shared_op_ld.max litex_data_bank_conflicts_pipe_lsu_mem_shared_op_ld.max litex_data_bank_conflicts_pipe_lsu_mem_shared_op_ld.sum litex_data_bank_conflicts_pipe_lsu_mem_shared_op_st.awg litex_data_bank_conflicts_pipe_lsu_mem_shared_op_st.max litex_data_bank_conflicts_pipe_lsu_mem_shared_op_st.max litex_data_bank_conflicts_pipe_lsu_mem_shared_op_st.max litex_data_bank_conflicts_pipe_lsu_mem_shared_op_st.min litex_data_bank_conflicts_pipe_lsu_mem_shared_op_st.min litex_t_sectors_pipe_lsu_mem_global_op_ld.awg sector 22,86 22,86 litex_t_sectors_pipe_lsu_mem_global_op_ld.max sector 128,00 128,00 128,00 litex_t_sectors_pipe_lsu_mem_global_op_ld.sum sector 0,00 0,00 0,00 litex_t_sectors_pipe_lsu_mem_global_op_ld.sum sector 1 280,00 1 280,00 1 280,00 litex_t_sectors_pipe_lsu_mem_global_op_st.max sector 1 28,00 128,00 128,00 litex_t_sectors_pipe_lsu_mem_global_op_st.max sector 1 28,00 0 0,00 0,00 sm_sass_inst_executed_op_local.max inst 0,00 0,00 0,00 sm_sass_inst_executed_op_local.max inst 0,00 0,00 0,00 sm_sass_inst_executed_op_local.max inst 0,00 0,00 0,00 sm_sass_inst_executed_op_local.sum inst 0,00 0,00 0,00 sm_sass_inst_executed_op_local.sum inst 0,00 0,00 0,00

smspbranch_targets_threads_divergent	branches	8,0		00 330,80
fillFictitious(int, int *) (32, 1, 1)x(32, 1, 1), Invocation Section: Command line profiler metrics	ons 1			
Metric Name	Metric Unit	Minimum	Maximum	Average
litexdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.awx litexdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.max litexdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.min litexdata_bank_conflicts_pipe_lsu_mem_shared_op_st.awy litexdata_bank_conflicts_pipe_lsu_mem_shared_op_st.awx litexdata_bank_conflicts_pipe_lsu_mem_shared_op_st.max litexdata_bank_conflicts_pipe_lsu_mem_shared_op_st.min litexdata_bank_conflicts_pipe_lsu_mem_shared_op_st.sum litext_sectors_pipe_lsu_mem_global_op_ld.avx litext_sectors_pipe_lsu_mem_global_op_ld.max litext_sectors_pipe_lsu_mem_global_op_ld.sum litext_sectors_pipe_lsu_mem_global_op_st.avy litext_sectors_pipe_lsu_mem_global_op_st.max litext_sectors_pipe_lsu_mem_global_op_st.min litext_sectors_pipe_lsu_mem_global_op_st.min litext_sectors_pipe_lsu_mem_global_op_st.sum smsass_inst_executed_op_local.avg smsass_inst_executed_op_local.max smsass_inst_executed_op_local.min	sector sector sector sector sector sector inst inst	0,00 0,00 0,00 0,54 4,00 0,00 30,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
smsass_inst_executed_op_local.sum smspbranch_targets_threads_divergent	inst branches	0,00 1,00		0,00

Metric Name	Metric Unit				Maximum		Average
lltexdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.avg			0,00		0,00		0,00
l1texdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.max			0,00				0,0
l1texdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.min							
.1texdata_bank_conflicts_pipe_lsu_mem_shared_op_ld.sum							0,00
<pre>1texdata_bank_conflicts_pipe_lsu_mem_shared_op_st.avg</pre>			0,00		0,00		0,00
<pre>1texdata_bank_conflicts_pipe_lsu_mem_shared_op_st.max</pre>			0,00		0,00		0,0
<pre>1texdata_bank_conflicts_pipe_lsu_mem_shared_op_st.min</pre>			0,00		0,00		
<pre>1texdata_bank_conflicts_pipe_lsu_mem_shared_op_st.sum</pre>			0,00		0,00		
<pre>1text_sectors_pipe_lsu_mem_global_op_ld.avg</pre>	sector		22,86		22,86		22,8
<pre>1text_sectors_pipe_lsu_mem_global_op_ld.max</pre>	sector		128,00		128,00		128,0
<pre>1text_sectors_pipe_lsu_mem_global_op_ld.min</pre>	sector		0,00		0,00		
<pre>1text_sectors_pipe_lsu_mem_global_op_ld.sum</pre>	sector		280,00		280,00		280,0
<pre>1text_sectors_pipe_lsu_mem_global_op_st.avg</pre>	sector		22,86		22,86		22,8
<pre>1text_sectors_pipe_lsu_mem_global_op_st.max</pre>	sector		128,00		128,00		128,0
<pre>1text_sectors_pipe_lsu_mem_global_op_st.min</pre>	sector		0,00		0,00		0,0
<pre>1text_sectors_pipe_lsu_mem_global_op_st.sum</pre>	sector		280,00		280,00		280,0
msass_inst_executed_op_local.avg	inst		0,00		0,00		0,0
msass_inst_executed_op_local.max	inst		0,00		0,00		
msass_inst_executed_op_local.min			0,00		0,00		
msass_inst_executed_op_local.sum			0,00		0,00		
mspbranch_targets_threads_divergent	branches	1 541	167,00	1 541	167,00	1 541	167,0

Выводы

В ходе лабораторной работы ознакомился с фундаментальными алгоритмами GPU: свертка, сканирование и гистограмма. Узнал про четно-нечетную сортировку и битоническое слияние. Реализовал блочную четно-нечетную сортировку с использованием битонического слияния.

Четно-нечетная сортировка является модификацией пузырьковой сортировки. Хотя алгоритмическая сложность сортировки оставляет желать лучшего, зато эту сортировку можно выполнять параллельно.

Судя по профилировщику, с реализациями ядер fillFictitious и bitonicMerge всё хорошо, чего нельзя сказать о ядре preSort: очень много дивергенций. Вероятно, это из-за ветвлений: в коде каждая итерация цикла вызывает два условия для четных и нечетных потоков — это приводит к тому, что некоторые потоки выполняют одну ветку, в то время как другие останавливаются и ждут. Надо переделывать реализацию preSort. Из результатов сравнения можно увидеть, что CPU выигрывает по времени только на первом тесте. Также стоит отметить, что, например, с первым тестом на GPU справляется лучше всех первая конфигурация, а у остальных конфигураций время выполнения уже выше. Аналогично со вторым тестом. Это наглядный пример того, что выбор конфигурации зависит от входных данных.