CLAIMS

1. The use of a compound of formula (I):

5 wherein:

X is $(CH_2)_m Y(CH_2)_n$;

m and n are, independently, 1, 2, 3, 4, 5 or 6; provided that m + n is not more than 6; Y is a bond, O, $S(O)_p$, or S-S;

R¹ is CO₂R¹⁵ or a carboxylic acid isostere such as S(O)₂OH, S(O)₂NHR¹⁵,

- PO(OR¹⁵)OH, PO(OR¹⁵)NH₂, B(OR¹⁵)₂, PO(R¹⁵)OH, PO(R¹⁵)NH₂ or tetrazole;
 R², R³, R⁴, R⁵ and R⁶ are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy, cyano, SH, S(O)₃H, S(O)_q(C₁₋₆ alkyl), OC(O)(C₁₋₄ alkyl), CF₃, C₁₋₄ alkoxy, OCF₃, COOH, CONH₂, CONH(C₁₋₆ alkyl), NH₂, CNH(NH₂), or NHCNH(NH₂)), C₃₋₆ cycloalkyl(C₁₋₄)alkyl (wherein the cycloalkyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), heterocyclyl(C₁₋₄)alkyl (wherein the heterocyclyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), phenyl(C₁₋₄)alkyl (wherein the phenyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy,
- OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)) or heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂));

p and q are, independently, 0, 1 or 2;

 R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} are, independently, H or C_{1-4} alkyl;

25 R^{14} is H or C_{1-4} alkyl; and, R^{15} is H or C_{1-4} alkyl;

or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt; in a method of manufacturing a medicament for the treatment or prophylaxis of a condition wherein inhibition of carboxypeptidase U is beneficial.

5 2. A compound of formula (1):

wherein:

X is (CH₂)₄;

 R^1 is CO_2R^{15} :

R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂) or 10 NHCNH(NH₂); C₃₋₆ cycloalkyl substituted by NH₂, CNH(NH₂) or NHCNH(NH₂); heterocyclyl containing at least one nitrogen atom; non-nitrogen containing heterocyclyl substituted with NH2, CNH(NH2) or NHCNH(NH2); heteroaryl substituted with NH2, CNH(NH2) or NHCNH(NH2); phenyl substituted with NH2, 15 CNH(NH₂) or NHCNH(NH₂); heteroaryl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); phenyl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); or C₃₋₆ cycloalkyl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); all of the above rings being optionally further substituted by one or more of: halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy or OCF₃; one of R³, R⁴, R⁵ and R⁶ is independently, hydrogen, heteroaryl(C₁₋₄)alkyl (wherein 20 the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C1-4 alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); and the others are, independently, hydrogen, C1-6 alkyl (optionally substituted by halogen, hydroxy, cyano, SH, S(O)₃H, S(O)_q(C₁₋₆ alkyl), OC(O)(C₁₋₄ alkyl), CF₃, C₁₋₄ alkoxy, OCF₃, 25 COOH, CONH₂, CONH(C₁₋₆ alkyl), NH₂, CNH(NH₂), or NHCNH(NH₂)), C₃₋₆ cycloalkyl(C₁₋₄)alkyl (wherein the cycloalkyl ring is optionally substituted by halogen,

hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), heterocyclyl(C₁₋₄)alkyl (wherein the heterocyclyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), phenyl(C₁₋₄)alkyl (wherein the phenyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)) or heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); p and q are, independently, 0, 1 or 2; R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are, independently, H or C₁₋₄ alkyl; R¹⁴ is H or C₁₋₄ alkyl; and, R¹⁵ is H or C₁₋₄ alkyl;

or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt.

15 3. A compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt. as claimed in claim 2 wherein:

X is $(CH_2)_4$;

5

10

 R^1 is CO_2R^{15} ;

R is CO₂R ,

R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂) or

20 NHCNH(NH₂); C₃₋₆ cycloalkyl substituted by NH₂, CNH(NH₂) or NHCNH(NH₂);
heterocyclyl containing at least one nitrogen atom; non-nitrogen containing heterocyclyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); heteroaryl substituted with NH₂,

CNH(NH₂) or NHCNH(NH₂); phenyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂);
heteroaryl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); phenyl(C₁₋₄)alkyl

25 substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); or C₃₋₆ cycloalkyl(C₁₋₄)alkyl substituted with NH₂, CNH(NH₂) or NHCNH(NH₂); all of the above rings being optionally further substituted by one or more of: halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy or OCF₃; one of R³, R⁴, R⁵ and R⁶ is independently, hydrogen, heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄

30 alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)); and the others are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy, cyano, SH, S(O)₃H, S(O)_q(C₁₋₆ alkyl), OC(O)(C₁₋₄ alkyl), CF₃, C₁₋₄ alkoxy, OCF₃, COOH, CONH₂, CONH(C₁₋₆

alkyl), NH₂, CNH(NH₂), or NHCNH(NH₂)), C₃₋₆ cycloalkyl(C₁₋₄)alkyl (wherein the cycloalkyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), heterocyclyl(C₁₋₄)alkyl (wherein the heterocyclyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)), phenyl(C₁₋₄)alkyl (wherein the phenyl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂)) or heteroaryl(C₁₋₄)alkyl (wherein the heteroaryl ring is optionally substituted by halogen, hydroxy, cyano, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, OCF₃, NH₂, CNH(NH₂) or NHCNH(NH₂));

10 p and q are, independently, 0, 1 or 2;
R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are, independently, H or C₁₋₄ alkyl;
R¹⁴ is H or C₁₋₄ alkyl; and,
R¹⁵ is H or C₁₋₄ alkyl;
or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt.

15

4. A compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt as claimed in claim 2 or 3 wherein: R^{1} is $CO_{2}R^{15}$:

R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂) or

- NHCNH(NH₂); C₄ alkyl (such as CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂); or (aminopyridinyl)methyl (for example (6-aminopyridin-3-yl)methyl); one of R³ and R⁴ is (indol-3-yl)CH₂ optionally substituted by halo or hydroxy; and the other is benzyl (optionally substituted by halo or hydroxy) or C₄ alkyl (such as CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂);
- or R³ and R⁴ are both methyl;

 R⁵ and R⁶ are, independently, C₁₋₆ alkyl (for example CH₃, CH(CH₃)₂, CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂);

 R⁷ R⁸ R⁹ R¹¹ R¹² R¹³ A R¹⁴ A R¹⁴

 R^7 , R^8 , R^9 , R^{11} , R^{12} , R^{13} and R^{14} are H; R^{10} is C_{1-4} alkyl; and,

30 R^{15} is H or C_{1-4} alkyl.

5. A compound as claimed in any one of claims 2 to 4 wherein X is (CH₂)₄.

- 6. A compound as claimed in any one of claims 2 to 5 wherein R^1 is CO_2R^{15} in which R^{15} is H or C_{1-4} alkyl.
- 7. A compound as claimed in any one of claims 2 to 6wherein R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂) or NHCNH(NH₂); C₄ alkyl (such as CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂); or (aminopyridinyl)methyl.
- 8. A compound as claimed in any one of claims 2 to 4 wherein R² is C₁₋₆ alkyl (CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂), benzyl, or straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂), NHCNH(NH₂) or (6-aminopyridin-3-yl)methyl.

10

15

20

25

- 9. A compound as claimed in any one of claims 2 to 8 wherein R² is straight-chain C₁₋₆ alkyl substituted at its terminus by NH₂, CNH(NH₂), NHCNH(NH₂) or (6-aminopyridin-3-yl)methyl.
- 10. A compound as claimed in any one of claims 2 to wherein R³ is CH₂indolyl (wherein the indolyl is optionally substituted by one or more of: halogen or hydroxy, C₁₋₄ alkyl or benzyl (optionally substituted by halogen or hydroxy).
- 11. A compound as claimed in any one of claims 2 to 10 wherein R⁴ is CH₂indolyl (wherein the indolyl is optionally substituted by one or more of: halogen or hydroxy, C₁₋₆ alkyl (CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂) or benzyl (optionally substituted by halogen or hydroxy.
- 12. A compound as claimed in any one of claims 2 to 11 wherein R⁵ and R⁶ are, independently, C₁₋₆ alkyl (such as methyl, iso-propyl, CH(CH₃)CH₂CH₃ or CH₂CH(CH₃)₂).
- 13. A compound as claimed in any one of claims 2 to 12 wherein R⁷, R⁸, R⁹, R¹¹, R¹², R¹³ and R¹⁴ are all H.
- 14. A compound as claimed in any one of claims 2 to 4 wherein R^{10} is C_{1-4} alkyl.
- 15. A compound as claimed in claim 2 which is a compound of the following formula

in which

 R^{3a} is H, R^{3b} is H and R^{15} is H; R^{3a} is OH, R^{3b} is Cl and R^{15} is H; R^{3a} is OH, R^{3b} is Cl and R^{15} is CH₃; R^{3a} is H, R^{3b} is H and R^{15} is CH₃; R^{3a} is H, R^{3b} is Cl and R^{15} is H;

10

41 Br

НО

$$H_2N$$
 H_2N
 H_1
 H_2N
 H_1
 H_2
 H_3
 H_4
 H_1
 H_2
 H_3
 H_4
 H_4
 H_5
 H_5
 H_6
 H_7
 H_8
 H

$$H_{2}N$$
 H_{0}
 $H_{$

or a pharmaceutically acceptable salt or solvate thereof, or a solvate of a pharmaceutically acceptable salt thereof.

10

WO 2005/039617

16. The use of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt; as claimed in any one of claims 2 to 15 in a method of manufacturing a medicament for the treatment or prophylaxis of a condition wherein inhibition of carboxypeptidase U is beneficial.

5

17. The use as claimed in claim 16 for the manufacture of a medicament for the treatment or prophylaxis of thrombosis and/or hypercoagulability in blood and/or tissues; atherosclerosis; fibrotic conditions; inflammatory diseases; or a condition which benefits from maintaining or enhancing bradykinin levels in the body of a mammal (such as man).

10

15

- 18. A pharmaceutical formulation containing a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt; as claimed in any one of claims 2 to 15 as active ingredient in combination with a pharmaceutically acceptable adjuvant, diluent or carrier.
 - 19. A compound of formula

20

wherein R³ to R¹² and X are as defined in any one of claims 1 to 14

20. A process for preparing a compound as claimed in claim 19 which comprises treating a compound of formula VI in which PG1 is a suitable protecting group

with a peptide coupling agent in the presence of a non-nucleophilic base in a polar aprotic solvent and then removing the protecting group.

5

21. A process for preparing a compound of formula I as claimed in any one of claims 2 to 17 which comprises reacting a compound of formula VII as defined in claim 19 with a compound of formula VIII

$$Y \xrightarrow{R^{13}} R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

10

in which Y is an activated ester or NY is an isocyanate group.

15