Busca Adaptativa em Grandes Vizinhanças Aplicada à Minimização da Largura de Corte em Grafos

Vinícius Gandra Martins Santos

Orientador: Marco Antonio Moreira de Carvalho

Universidade Federal de Ouro Preto

11 de Maio de 2018

Sumari

- 1 Introdução
- 2 Metodologia
- 3 Experimentos
- 4 Conclusão

Largura de Corte

Definição

- >> Problema de leiaute em grafos;
- » Definir uma disposição linear de vértices;
- >> Minimizar o número de arestas entre vértices consecutivos no layout;
- » NP-Difícil.

Largura de corte

Função de avaliação

$$CW_f(G) = max_{v \in V} CW_f(v).$$

(1)

Bibliografia

- ≫ Scatter search (SS)
 - ► Pantrigo et al. (2012).
- >> Variable Formulation Search (VFS)
 - ▶ Pardo et al. (2013).
- » Algoritmo Genético Fuzzy
 - ► Fraire-Huacuja et al. (2017).

Método

Busca Adaptativa em Grandes Vizinhanças (Adaptive Large Neighborhood Search, ALNS), Ropke e Pisinger (2006).

Solução Inicial

- >> Baseado na metodologia GRASP;
- >> Proposto por Pantrigo et al. (2012);
- >> Método C1:
 - 1 Selecionar vértice com menor grau de adjacência e inserir na solução;
 - Criar lista CL de vértices que possuem adjacência a qualquer vértice presente na solução;
 - 3 Construir lista restrita RCL de vértices com bom valor de aptidão;
 - 4 Selecionar aleatoriamente um vértice de RCL:
 - **5** Retornar para o passo 2 enquanto houver vértices em CL.

Vizinhanças

Vizinhanças de Remoção

- \gg Recebe solução representada por uma sequência de vértices π ;
- \gg Seleciona q vértices da solução para reinserção.

Vizinhanças de Inserção

- \gg Recebe solução π e um conjunto γ de vértices para inserção;
- \gg Cada vértice de γ é selecionada aleatoriamente e reinserido na solução.

- Roleta é representada no intervalo $R = [0...1] \in \mathbb{R}$;
- Cada vizinhança i recebe uma fatia proporcional à sua probabilidade de ser selecionada;
- $\gg v1 = 60, v2 = 125, v3 = 115,$ v4 = 200.

Vizinhanças de Remoção

- >> Remoção Aleatória;
- » Remoção de Vértices Críticos;
- Remoção de Vértices Relacionados;
- » Remoção de Vértices Desbalanceados.

- A Equação (2) segue uma distribuição triangular;
- Seleciona aleatoriamente um número entre [1, n];
- u é uma variável aleatória entre [0,1].

$$q = \lfloor n - \sqrt{(1-u)(n-1)^2} + 0.5 \rfloor$$
 (2)

Remoção de Vértices Críticos

Remoção de Vértices Relacionados

Remoção de Vértices Desbalanceados

- » Inserção Aleatória;
- Inserção na Melhor Posição.

Inserção na Melhor Posição

Pontuação

- $\gg \sigma_1$, quando as heurísticas (remoção e inserção) resultaram na melhor solução até o momento;
- $\gg \sigma_2$, quando as heurísticas resultaram em uma solução cujo custo seja menor que o da solução corrente; e
- $\gg \sigma_3$, quando as heurísticas resultaram em uma solução que é aceita por um critério de aceitação, porém com o custo maior que o da solução corrente.

Critério de aceitação

Uma solução π' gerada a partir de outra solução π é aceita com probabilidade calculada de acordo com a Equação:

$$e^{-(f(\pi')-f(\pi))/T} \tag{3}$$

- $\gg T$ Temperatura;
- $T_{start} = -0.81 \times f(\pi_0) / \ln 0.5 \text{Temperatura inicial};$
- $T_{end} = -0.45 \times f(\pi^*) / \ln 0.5$ Temperatura final;
- $\gg T = T \times (T_{end}/T_{start})^{1/k}$) Taxa de resfriamento.

ANLS

Suavização

- r_{i,j} são os pontos observados da heurística i no segmento j;
- a_i é o número de vezes que a heurística i foi chamada durante o segmento j;
- $\gg \rho \in (0,1)$ é o fator de reação.

$$r_{i,j+1} = \rho \frac{\overline{r}_{i,j}}{a_i} + (1 - \rho)r_{i,j}$$
 (4)

$$r_j = [29.48, 3.28, 1.50, 2.69]$$

 $r_{j+1} = [2.56, 1.28, 0.62, 1.17]$

ANLS

00000

Ambiente Computacional

- >> Processador Intel Core i7 3.6 GHz:
- 16 GB RAM;
- Ubuntu 14.04 LTS;
- Código escrito em C++, compilado com g++ 4.8.4 e opções -O3 e -march=native.

Conjuntos de Instâncias

- \gg Small: composto por 84 grafos com proporções que variam entre 16 < n < 24 e 18 < m < 49;
- \gg Grid: composto por 81 matrizes que representam grades bidimensionais com dimensões entre 9×9 a 729×729 ;
- Harwell-Boeing (HB): subconjunto derivado do Harwell-Boeing Sparse Matrix Collection, composto por 87 instâncias que variam de 30 a 700 vértices e 46 a 41686 arestas.

	BKS	<i>S</i> *	S	S_0	<i>gap</i> (%)	σ	T(s)
Small	4,92	4,92	4,93	5,32	0,00	0,02	0,12
Grid	11,56	12,94	14,35	16,33	7,54	0,92	14,06
HB	311,55	314,03	318,57	358,86	2,40	3,38	202,71

	V	FS	9	SS	ALNS	
	S	#OPT	S	#OPT	S	#OPT
Small	_	=	4,92	84	4,92	84
Grid	12,23	59	13,00	44	12,94	42
HB	314,39	61	315,22	59	314,03	61

Pontuação das Vizinhanças

Vizinhanças de Remoção

- Remoção de vértices relacionados obteve a melhor pontuação e apresentou diferença significativa em relação a outras três vizinhanças;
- Remoção aleatória obteve a pior pontuação, cerca de metade dos pontos da remoção de vértices relacionados.

Vizinhanças de Inserção

- As duas vizinhanças de inserção na melhor posição obtiveram pontuações similares sem diferença relevante;
- A vizinhanças de inserção aleatória obteve em torno de 60% da pontuação da melhor vizinhança de inserção.

Análise de Convergência

- Desenvolvimento da metaheurística Busca Adaptativa em Grandes Vizinhancas;
- Aplicação inédita do ALNS ao problema de Largura de Corte;
- > Experimentos computacionais executados em 252 instâncias;
- >> Tempo médio de 72 segundos por instâncias;
- \gg 74% (187) de soluções ótimas encontradas com gap médio de 5%.

- » Pesquisar e implementar novas heurísticas de inserção e remoção;
- >> Pesquisar e implementar métodos de refinamento;
- >> Realizar experimentos computacionais utilizando novas instâncias;
- Escrever artigo científico.

Vinícius Gandra Martins Santos

Orientador: Marco Antonio Moreira de Carvalho

Universidade Federal de Ouro Preto

11 de Maio de 2018