

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=7; day=16; hr=16; min=49; sec=18; ms=192;]

=====

Application No: 10534772 Version No: 1.0

Input Set:

Output Set:

Started: 2008-07-16 14:41:20.943
Finished: 2008-07-16 14:41:23.801
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 858 ms
Total Warnings: 29
Total Errors: 0
No. of SeqIDs Defined: 29
Actual SeqID Count: 29

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2008-07-16 14:41:20.943
Finished: 2008-07-16 14:41:23.801
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 858 ms
Total Warnings: 29
Total Errors: 0
No. of SeqIDs Defined: 29
Actual SeqID Count: 29

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> TOMLINSON, Stephen
HOLERS, V. Michael

<120> Complement Receptor 2 Targeted
Complement Modulators

<130> 577712000200

<140> 10534772
<141> 2008-07-16

<150> PCT/US2003/036459
<151> 2003-11-13

<150> US 60/426,676
<151> 2002-11-15

<160> 29

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1041
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 1
gactgtggcc ttccccaga tgtaccta at gcccagccag ctttggagg ccgtacaagt 60
tttcccgagg atactgtaat aacgtacaaa tgtgaagaaa gctttgtgaa aattcctggc 120
gagaaggact cagtgatctg ccttaaggcc agtcaatggt cagatattga agagttctgc 180
aatcgtagct gcgaggtgcc aacaaggctt aattctgcat ccctcaaaca gccttatatc 240
actcagaatt atttccagt cggtactgtt gtggatatg agtgcgtcc aggttacaga 300
agagaacctt ctctatcacc aaaactaact tgccttcaga attaaaaatg gtccacacga 360
gtcgaatttt gtaaaaagaa atcatgccct aatccgggag aaatacgaaa tggtcagatt 420
gatgtaccag gtggcatatt atttggtgca accatctcct tctcatgtaa cacagggtac 480
aaattatgg gctcgacttc tagttttgtt cttatttcag gcagctctgt ccagtggagt 540
gacccggtgc cagagtgcag agaaatttat tgtccagcac caccacaaat tgacaatgga 600
ataattcaag gggAACGTGA ccattatggta tatagacagt ctgtAACGTA tgcatgtaat 660
aaaggattca ccatgattgg agagcactct atttattgtt ctgtaaataa tgatgaagga 720
gagtggagtg gcccaccacc tgaatgcaga ggaaaatctc taacttccaa ggtccacca 780
acagttcaga aacctaccac agtaaatgtt ccaactacag aagtctcacc aacttctcag 840
aaaaccacca caaaaaccac cacaccaat gctcaagcaa cacggagtac acctgttcc 900
aggacaaccca agcatttca tggaaacaacc ccaaataaag gaagtggAAC cacttcaggt 960
actaccgcgc ttctatctgg gcacacgtgt ttcacgttga caggtttgtc tgggacgcta 1020
gtaaccatgg gcttgctgac t 1041

<210> 2
<211> 380
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 2

Met Thr Val Ala Arg Pro Ser Val Pro Ala Ala Leu Pro Leu Leu Gly
1 5 10 15
Glu Leu Pro Arg Leu Leu Leu Val Leu Leu Cys Leu Pro Ala Val
20 25 30
Trp Asp Cys Gly Leu Pro Pro Asp Val Pro Asn Ala Gln Pro Ala Leu
35 40 45
Glu Gly Arg Thr Ser Phe Pro Glu Asp Thr Val Ile Thr Tyr Lys Cys
50 55 60
Glu Glu Ser Phe Val Lys Ile Pro Gly Glu Lys Asp Ser Val Ile Cys
65 70 75 80
Leu Lys Gly Ser Gln Trp Ser Asp Ile Glu Glu Phe Cys Asn Arg Ser
85 90 95
Cys Glu Val Pro Thr Arg Leu Asn Ser Ala Ser Leu Lys Gln Pro Tyr
100 105 110
Ile Thr Gln Asn Tyr Phe Pro Val Gly Thr Val Val Glu Tyr Glu Cys
115 120 125
Arg Pro Gly Tyr Arg Arg Glu Pro Ser Leu Ser Pro Lys Leu Thr Cys
130 135 140
Leu Gln Asn Leu Lys Trp Ser Thr Ala Val Glu Phe Cys Lys Lys Lys
145 150 155 160
Ser Cys Pro Asn Pro Gly Glu Ile Arg Asn Gly Gln Ile Asp Val Pro
165 170 175
Gly Gly Ile Leu Phe Gly Ala Thr Ile Ser Phe Ser Cys Asn Thr Gly
180 185 190
Tyr Lys Leu Phe Gly Ser Thr Ser Phe Cys Leu Ile Ser Gly Ser
195 200 205
Ser Val Gln Trp Ser Asp Pro Leu Pro Glu Cys Arg Glu Ile Tyr Cys
210 215 220
Pro Ala Pro Pro Gln Ile Asp Asn Gly Ile Ile Gln Gly Glu Arg Asp
225 230 235 240
His Tyr Gly Tyr Arg Gln Ser Val Thr Tyr Ala Cys Asn Lys Gly Phe
245 250 255
Thr Met Ile Gly Glu His Ser Ile Tyr Cys Thr Val Asn Asn Asp Glu
260 265 270
Gly Glu Trp Ser Gly Pro Pro Glu Cys Arg Gly Lys Ser Leu Thr
275 280 285
Ser Lys Val Pro Pro Thr Val Gln Lys Pro Thr Thr Val Asn Val Pro
290 295 300
Thr Thr Glu Val Ser Pro Thr Ser Gln Lys Thr Thr Thr Lys Thr Thr
305 310 315 320
Thr Pro Asn Ala Gln Ala Thr Arg Ser Thr Pro Val Ser Arg Thr Thr
325 330 335
Lys His Phe His Glu Thr Thr Pro Asn Lys Gly Ser Gly Thr Thr Ser
340 345 350
Gly Thr Thr Arg Leu Leu Ser Gly His Thr Cys Phe Thr Leu Thr Gly
355 360 365
Leu Leu Gly Thr Leu Val Thr Met Gly Leu Leu Thr
370 375 380

<210> 3
<211> 306
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 3
cagtgcata actgtcctaa cccaaactgct gactgcaaaa cagccgtcaa ttgttcatct 60
gattttgatg cgtgtctcat taccaaagct gggttacaag tgtataacaa gtgttggaaag 120
ttttagcatt gcaatttcaa cgacgtcaca acccgcttga gggaaaaatga gctaacgtac 180
tactgctgca agaaggacct gtgttaactt aacgaacagc ttgaaaatgg tgggacatcc 240
ttatcagaga aaacagttct tctgctggtg actccatttc tggcagcagc ctggagcctt 300
catccc 306

<210> 4
<211> 126
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 4
Met Gly Ile Gln Gly Gly Ser Val Leu Phe Gly Leu Leu Leu Val Leu
1 5 10 15
Ala Val Phe Cys His Ser Gly His Gln Cys Tyr Asn Cys Pro Asn Pro
20 25 30
Thr Ala Asp Cys Lys Thr Ala Val Asn Cys Ser Ser Asp Phe Asp Ala
35 40 45
Cys Leu Ile Thr Lys Ala Gly Leu Gln Val Tyr Asn Lys Cys Trp Lys
50 55 60
Phe Glu His Cys Asn Phe Asn Asp Val Thr Thr Arg Leu Arg Glu Asn
65 70 75 80
Glu Leu Thr Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu
85 90 95
Gln Leu Glu Asn Gly Gly Thr Ser Leu Ser Glu Lys Thr Val Leu Leu
100 105 110
Leu Val Thr Pro Phe Leu Ala Ala Ala Trp Ser Leu His Pro
115 120 125

<210> 5
<211> 1485
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 5
atttcttgtg gctctcctcc gcctatccta aatggccgga ttagttatta ttctaccccc 60
atttgttgtt gtaccgtat aaggtacagt tgttcaggta cttccgcct cattggagaa 120

aaaagtctat tatgcataac taaagacaaa gtggatggaa cctgggataa acctgctcct 180
aatgtgaat atttcaataa atattcttct tgccctgagc ccatagtagcc aggaggatac 240
aaaatttagag gctctacacc ctacagacat ggtgattctg tgacatttc ctgtaaaacc 300
aacttctcca tgaacggaaa caagtctgtt tgggtgtcaag caaataatat gtgggggccc 360
acacgactac caacctgtgt aagtgtttc cctctcgagt gtccagact tcctatgatc 420
cacaatggac atcacacaag tgagaatgtt ggctccattt ctccaggatt gtctgtgact 480
tacagctgtg aatctggta ctgtgtt ggagaaaaga tcattaactg tttgtcttcg 540
ggaaaatgga gtgctgtccc cccccacatgt gaagaggcac gctgtaaatc tctaggacga 600
tttcccaatg ggaaggtaaa ggagcctcca attctccggg ttgggtgtaac tgcaaacttt 660
ttctgtgatg aagggtatcg actgcaaggc ccaccttcta gtcgggtgt aattgctgga 720
cagggagttg ctggaccaa aatgccagta tgtggaggtg ggtcggtgg cggcggatcc 780
gactgtggcc ttccccaga tgtacctaatt gcccagccag ctttggaaagg ccgtacaagt 840
tttcccgagg atactgtaat aacgtacaaa tgtgaagaaa gcttggtaaa aattcctggc 900
gagaaggact cagtgatctg ccttaaggc agtcaatggt cagatattga agagttctgc 960
aatcgtagct gcgagggtgcc aacaaggcta aattctgcat ccctcaaaaca gccttatatc 1020
actcagaattt atttccagt cggtactgtt gtggaatatg agtgcgtcc aggttacaga 1080
agagaacctt ctctatcacc aaaactaact tgccttcaga attttaaatg gtccacagca 1140
gtcgaattttt gtaaaaaagaa atcatgccct aatccggag aaatacgaaa tggtcagatt 1200
gatgtaccag gtggcatatt atttgggtca accatctcct tctcatgtaa cacagggtac 1260
aaattatttg gctcgacttc tagttttgt cttatttcag gcagctctgt ccagtggagt 1320
gaccgcgtgc cagagtgcag agaaatttat tgtccagcac caccacaaat tgacaatgg 1380
ataattcaag gggAACGTGA ccattatgg aatacagt ctgtaacgt tgcatgtaat 1440
aaaggattca ccatgattgg agagcactct atttattgtt ctgtg 1485

<210> 6

<211> 495

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 6

Ile Ser Cys Gly Ser Pro Pro Pro Ile Leu Asn Gly Arg Ile Ser Tyr

1 5 10 15

Tyr Ser Thr Pro Ile Ala Val Gly Thr Val Ile Arg Tyr Ser Cys Ser

20 25 30

Gly Thr Phe Arg Leu Ile Gly Glu Lys Ser Leu Leu Cys Ile Thr Lys

35 40 45

Asp Lys Val Asp Gly Thr Trp Asp Lys Pro Ala Pro Lys Cys Glu Tyr

50 55 60

Phe Asn Lys Tyr Ser Ser Cys Pro Glu Pro Ile Val Pro Gly Gly Tyr

65 70 75 80

Lys Ile Arg Gly Ser Thr Pro Tyr Arg His Gly Asp Ser Val Thr Phe

85 90 95

Ala Cys Lys Thr Asn Phe Ser Met Asn Gly Asn Lys Ser Val Trp Cys

100 105 110

Gln Ala Asn Asn Met Trp Gly Pro Thr Arg Leu Pro Thr Cys Val Ser

115 120 125

Val Phe Pro Leu Glu Cys Pro Ala Leu Pro Met Ile His Asn Gly His

130 135 140

His Thr Ser Glu Asn Val Gly Ser Ile Ala Pro Gly Leu Ser Val Thr

145 150 155 160

Tyr Ser Cys Glu Ser Gly Tyr Leu Leu Val Gly Glu Lys Ile Ile Asn

165 170 175

Cys Leu Ser Ser Gly Lys Trp Ser Ala Val Pro Pro Thr Cys Glu Glu

180	185	190
Ala Arg Cys Lys Ser Leu Gly Arg Phe Pro Asn Gly Lys Val Lys Glu		
195	200	205
Pro Pro Ile Leu Arg Val Gly Val Thr Ala Asn Phe Phe Cys Asp Glu		
210	215	220
Gly Tyr Arg Leu Gln Gly Pro Pro Ser Ser Arg Cys Val Ile Ala Gly		
225	230	235
Gln Gly Val Ala Trp Thr Lys Met Pro Val Cys Gly Gly Ser Gly		
245	250	255
Gly Gly Gly Ser Asp Cys Gly Leu Pro Pro Asp Val Pro Asn Ala Gln		
260	265	270
Pro Ala Leu Glu Gly Arg Thr Ser Phe Pro Glu Asp Thr Val Ile Thr		
275	280	285
Tyr Lys Cys Glu Glu Ser Phe Val Lys Ile Pro Gly Glu Lys Asp Ser		
290	295	300
Val Ile Cys Leu Lys Gly Ser Gln Trp Ser Asp Ile Glu Glu Phe Cys		
305	310	315
Asn Arg Ser Cys Glu Val Pro Thr Arg Leu Asn Ser Ala Ser Leu Lys		
325	330	335
Gln Pro Tyr Ile Thr Gln Asn Tyr Phe Pro Val Gly Thr Val Val Glu		
340	345	350
Tyr Glu Cys Arg Pro Gly Tyr Arg Arg Glu Pro Ser Leu Ser Pro Lys		
355	360	365
Leu Thr Cys Leu Gln Asn Leu Lys Trp Ser Thr Ala Val Glu Phe Cys		
370	375	380
Lys Lys Lys Ser Cys Pro Asn Pro Gly Glu Ile Arg Asn Gly Gln Ile		
385	390	395
Asp Val Pro Gly Gly Ile Leu Phe Gly Ala Thr Ile Ser Phe Ser Cys		
405	410	415
Asn Thr Gly Tyr Lys Leu Phe Gly Ser Thr Ser Ser Phe Cys Leu Ile		
420	425	430
Ser Gly Ser Ser Val Gln Trp Ser Asp Pro Leu Pro Glu Cys Arg Glu		
435	440	445
Ile Tyr Cys Pro Ala Pro Pro Gln Ile Asp Asn Gly Ile Ile Gln Gly		
450	455	460
Glu Arg Asp His Tyr Gly Tyr Arg Gln Ser Val Thr Tyr Ala Cys Asn		
465	470	475
Lys Gly Phe Thr Met Ile Gly Glu His Ser Ile Tyr Cys Thr Val		
485	490	495

<210> 7
<211> 1002
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 7
atttcttgtg gctctcctcc gcctatccta aatggccgga ttagttatta ttctacccccc 60
attgctgttg gtaccgtat aaggtaagt tgttcaggtt ccttcgcct cattggagaa 120
aaaagtctat tatgcataac taaagacaaa gtggatggaa cctgggataa acctgctcct 180
aaatgtaat attcaataa atattcttct tgccctgagc ccatagtacc aggaggatac 240
aaaatttagag gctctacacc ctacagacat ggtgattctg tgacatgtc ctgtaaaacc 300
aacttctcca tgaacggaaa caagtctgtt tggtgtcaag caaataatat gtggggccg 360

acacgactac caacctgtgt aagtgtttc cctctcgagt gtccagca ctatgatc 420
cacaatggac atcacacaag tgagaatgtt ggctccattg ctccaggatt gtctgtgact 480
tacagctgtg aatctggtaa cttgctgtt ggagaaaaga tcattaactg tttgtctcg 540
ggaaaaatgga gtgctgtccc cccccacatgt gaagaggcac gctgtaaatc tctaggacga 600
tttcccaatg ggaaggtaaa ggagcctcca attctccggg ttgggtgtaac tgcaaactt 660
ttctgtgatg aagggtatcg actgcaaggc ccacctcta gtcgggtgt aattgctgga 720
cagggagttg ctggaccaa aatgccagta tttcaggag gaggaggc cctgcagtgc 780
tacaactgtc ctaacccaaac tgctgactgc aaaacagccg tcaattgttc atctgattt 840
gatgcgtgtc tcattaccaa agctgggtta caagtgtata acaagtgttg gaagtttgag 900
cattgcaatt tcaacgacgt cacaacccgc ttgagggaaa atgagctaac gtactactgc 960
tgcaagaagg acctgtgtaa cttaacgaa cagcttgaaa at 1002

<210> 8

<211> 334

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 8

Ile	Ser	Cys	Gly	Ser	Pro	Pro	Pro	Ile	Leu	Asn	Gly	Arg	Ile	Ser	Tyr
1								5					10		15
Tyr	Ser	Thr	Pro	Ile	Ala	Val	Gly	Thr	Val	Ile	Arg	Tyr	Ser	Cys	Ser
								20					25		30
Gly	Thr	Phe	Arg	Leu	Ile	Gly	Glu	Lys	Ser	Leu	Leu	Cys	Ile	Thr	Lys
								35					40		45
Asp	Lys	Val	Asp	Gly	Thr	Trp	Asp	Lys	Pro	Ala	Pro	Lys	Cys	Glu	Tyr
								50					55		60
Phe	Asn	Lys	Tyr	Ser	Ser	Cys	Pro	Glu	Pro	Ile	Val	Pro	Gly	Gly	Tyr
								65					70		75
Lys	Ile	Arg	Gly	Ser	Thr	Pro	Tyr	Arg	His	Gly	Asp	Ser	Val	Thr	Phe
								85					90		95
Ala	Cys	Lys	Thr	Asn	Phe	Ser	Met	Asn	Gly	Asn	Lys	Ser	Val	Trp	Cys
								100					105		110
Gln	Ala	Asn	Asn	Met	Trp	Gly	Pro	Thr	Arg	Leu	Pro	Thr	Cys	Val	Ser
								115					120		125
Val	Phe	Pro	Leu	Glu	Cys	Pro	Ala	Leu	Pro	Met	Ile	His	Asn	Gly	His
								130					135		140
His	Thr	Ser	Glu	Asn	Val	Gly	Ser	Ile	Ala	Pro	Gly	Leu	Ser	Val	Thr
								145					150		155
Tyr	Ser	Cys	Glu	Ser	Gly	Tyr	Leu	Leu	Val	Gly	Glu	Lys	Ile	Ile	Asn
								165					170		175
Cys	Leu	Ser	Ser	Gly	Lys	Trp	Ser	Ala	Val	Pro	Pro	Thr	Cys	Glu	Glu
								180					185		190
Ala	Arg	Cys	Lys	Ser	Leu	Gly	Arg	Phe	Pro	Asn	Gly	Lys	Val	Lys	Glu
								195					200		205
Pro	Pro	Ile	Leu	Arg	Val	Gly	Val	Thr	Ala	Asn	Phe	Phe	Cys	Asp	Glu
								210					215		220
Gly	Tyr	Arg	Leu	Gln	Gly	Pro	Pro	Ser	Ser	Arg	Cys	Val	Ile	Ala	Gly
								225					230		235
Gln	Gly	Val	Ala	Trp	Thr	Lys	Met	Pro	Val	Cys	Ser	Gly	Gly	Gly	Gly
								245					250		255
Ser	Leu	Gln	Cys	Tyr	Asn	Cys	Pro	Asn	Pro	Thr	Ala	Asp	Cys	Lys	Thr
								260					265		270
Ala	Val	Asn	Cys	Ser	Ser	Asp	Phe	Asp	Ala	Cys	Leu	Ile	Thr	Lys	Ala

275 280 285
Gly Leu Gln Val Tyr Asn Lys Cys Trp Lys Phe Glu His Cys Asn Phe
290 295 300
Asn Asp Val Thr Thr Arg Leu Arg Glu Asn Glu Leu Thr Tyr Tyr Cys
305 310 315 320
Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gln Leu Glu Asn
325 330

<210> 9
<211> 1554
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 9
gactgtggcc ttccccaga tgtaccta at gcccagccag ctttggagg ccgtacaagt 60
tttcccgagg atactgtaat aacgtacaaa tgtgaagaaa gctttgtgaa aattcctggc 120
gagaaggact cagtgatctg ccttaaggc agtcaatggt cagatattga agagttctgc 180
aatcgttagct gcgagggtgcc aacaaggct aattctgcat ccctcaaaca gccttatatc 240
actcagaatt atttccagt cggtactgtt gtggatatg agtgcgtcc aggttacaga 3