### Министерство образования Республики Беларусь

# Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Лабораторная работа №2 «Исследование цепи постоянного тока методом узловых потенциалов и методом эквивалентного генератора»

Вариант № 4

 Выполнил: ст. гр. 950503
 Полховский А.Ф.

 Проверил:
 Батюков С.В.

### 1. Цель работы

Экспериментальная проверка следующих методов расчета цепей постоянного тока:

- 1) метода узловых потенциалов;
- 2) метода двух узлов (как частного случая метода узловых потенциалов);
- 3) метода эквивалентного генератора напряжения.

#### 2. Расчёт домашнего задания

Исходные данные варианта представлены в таблице 1.

Таблица 1 – Исходные данные

| N<br>Ba | ap. | <i>Е</i> 2,<br>В | E4,<br>B | <i>R</i> <sub>1</sub> ,<br>кОм | <i>R</i> <sub>2</sub> ,<br>кОм | <i>R</i> <sub>3</sub> ,<br>кОм | <i>R</i> <sub>4</sub> ,<br>кОм | <i>R</i> <sub>5</sub> ,<br>кОм | <i>R</i> <sub>6</sub> ,<br>кОм | Баз.<br>узел | Нагруз-<br>ка | Контур потен-<br>циальной<br>диаграммы |
|---------|-----|------------------|----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------|---------------|----------------------------------------|
| 4       | 1   | 30               | 15       | 2,4                            | 2,0                            | 3,9                            | 1,0                            | 3,9                            | 2,4                            | 3            | $R_3$         | 2-1-5-4-6-3-2                          |



Рисунок 1 – Исходная схема электрической цепи

2.1 Рассчитаем токи в схеме (рис. 1) по данным табл. 1 методом узловых потенциалов.

2.1.1 Узел 3 принимаем за базисный, неизвестные межузловые напряжения —  $U_{13}$ ,  $U_{23}$ ,  $U_{43}$ . На основании метода узловых потенциалов составляем систему уравнений (2.1):

$$\begin{cases} U_{13} \cdot \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) - U_{23} \cdot \frac{1}{R_{1}} - U_{43} \cdot \frac{1}{R_{2}} = \frac{E_{2}}{R_{2}} \\ -U_{13} \cdot \frac{1}{R_{1}} + U_{23} \cdot \left(\frac{1}{R_{1}} + \frac{1}{R_{5}} + \frac{1}{R_{6}}\right) - U_{43} \cdot \frac{1}{R_{6}} = 0 \\ -U_{13} \cdot \frac{1}{R_{2}} - U_{23} \cdot \frac{1}{R_{6}} + U_{43} \cdot \left(\frac{1}{R_{6}} + \frac{1}{R_{2}} + \frac{1}{R_{4}}\right) = -\frac{E_{2}}{R_{2}} - \frac{E_{4}}{R_{4}} \end{cases}$$
(2.1)

2.1.2 Вычисляем узловые токи по формулам

$$I_{11} = \frac{E_2}{R_2} = \frac{30}{2} = 15 \text{ (MA)}$$
 
$$I_{22} = 0 \text{ (MA)}$$
 
$$I_{44} = -\frac{E_2}{R_2} - \frac{E_4}{R_4} = -\frac{30}{2} - \frac{15}{1} = -30 \text{ (MA)}$$

2.1.3 Решая систему уравнений (2.1), определяем межузловые напряжения

$$U_{13} = 4,886(B)$$
  
 $U_{23} = -3,958(B)$   
 $U_{43} = -15,238(B)$ 

2.1.4 Приняв потенциал базисного узла  $\phi_3$  равным нулю, получаем

$$U_{13} = \varphi_1 - \varphi_3 = \varphi_1$$

$$U_{23} = \varphi_2 - \varphi_3 = \varphi_2$$

$$U_{43} = \varphi_4 - \varphi_3 = \varphi_4$$

2.1.5 Найдем остальные межузловые напряжения по формулам

$$U_{12} = \varphi_1 - \varphi_2 = U_{13} - U_{23} = 4,886 + 3,958 = 8,844 \text{ (B)}$$
  
 $U_{41} = \varphi_4 - \varphi_1 = U_{13} - U_{43} = -15,238 - 4,886 = -20,124 \text{ (B)}$   
 $U_{24} = \varphi_2 - \varphi_4 = U_{31} - U_{41} = = -3,958 + 15,238 = 11,28 \text{ (B)}$ 

2.1.6 На основании закона Ома вычисляем токи ветвей

$$I_1 = \frac{U_{21}}{R_1} = \frac{8,844}{2,4} = 3,685 \text{ (MA)}$$

$$I_2 = \frac{E_2 + U_{41}}{R_2} = \frac{30 - 20,124}{2} = 4,938 \text{ (MA)}$$

$$I_3 = \frac{U_{31}}{R_3} = \frac{-4,886}{3,9} = -1,253 \text{ (MA)}$$

$$I_4 = \frac{E_4 - U_{34}}{R_4} = \frac{15 - 15,238}{1,0} = -0,238 \text{ (MA)}$$

$$I_5 = \frac{U_{23}}{R_5} = \frac{3,958}{3,9} = 1,015 \text{ (MA)}$$

$$I_6 = \frac{U_{24}}{R_6} = \frac{11,28}{2,4} = 4,7 \text{ (MA)}$$

 $2.2~{
m Metoдom}$  эквивалентного генератора напряжения определим ток в сопротивлении нагрузки  $R_3.$ 



Рисунок 2 – Схема для метода эквивалентного генератора напряжения

2.2.1 Найдем напряжение эквивалентного генератора (рис. 2)  $U_{\rm x.x}$  как напряжение между точками схемы, где было подключено  $R_3$ .

$$U_{\text{x.x}} = U_{21} - U_{23} = -I_5 \cdot R_5 + I_1 \cdot R_1$$

2.2.2 Токи  $I_1$  и  $I_5$  вычислим с помощью метода двух узлов. Узел 4 примем за базисный (рис.3). Получаем уравнение



Рисунок 3 – Схема для расчета цепи методом двух узлов

$$I_{22} = U_{22} \cdot g_{22},$$

где g22 – собственная проводимость узла 2, равная

$$g_{22} = \frac{1}{R_1 + R_2} + \frac{1}{R_5 + R_4} + \frac{1}{R_6} = \frac{1}{2,4 + 2} + \frac{1}{2,4} + \frac{1}{1 + 3,9} = 0,848 (\text{MCM})$$

На основании первого закона Кирхгофа и закона Ома, следует

$$I_{22} = \frac{E_2}{R_1 + R_2} + \frac{E_4}{R_4 + R_5} = -\frac{30}{2.4 + 2} - \frac{15}{1 + 3.9} = 9,879 \text{ (MA)}$$

Следовательно, т.к.  $U_{22} = \varphi_2$ 

$$\varphi_2 = \frac{I_{22}}{g_{22}} = \frac{9,879}{0,848} = 11,65 \text{ (B)}$$

На основании обобщенного закона Ома для участка цепи рассчитываем токи

$$I'_{2} = \frac{\varphi_{2} - E_{2}}{R_{1} + R_{2}} = \frac{11,65 - 15}{2 + 2,4} = -4,17 \text{ (MA)}$$

$$I'_{6} = \frac{\varphi_{2}}{R_{6}} = \frac{11,65}{2,4} = 4,854 \text{ (MA)}$$

$$I'_{4} = \frac{\varphi_{4} - E_{4}}{R_{4} + R_{5}} = \frac{11,65 - 15}{1 + 3.9} = 0,6837 \text{ (MA)}$$

2.2.3 Напряжение холостого хода определяем, как

$$U_{23} = I'_4 * R_5 = -2,666(B)$$

$$U_{21} = I'_2 * R_1 = -10,009(B)$$

$$U_{xx} = U_{21} - U_{23} = -10,009 + 2,666 = -7,343(B)$$

2.2.4 Определим внутреннее сопротивление аналитическирасчетным путем, исключаем из схемы все источники ЭДС, но оставляя их внутренние сопротивления. Преобразуем треугольник из узлов 1, 4, 3 в звезду, получим:



Рисунок 4 – Преобразование пассивного треугольника в звезду

$$R'_1 = \frac{R_1 * R_2}{R_1 + R_2 + R_6} = \frac{2,4 * 2}{2,4 + 2 + 2,4} = 0,7059 (кОм)$$
 $R'_2 = \frac{R_1 * R_6}{R_1 + R_2 + R_6} = \frac{2,4 * 2,4}{2,4 + 2 + 2,4} = 0,847 (кОм)$ 
 $R'_3 = \frac{R_2 * R_6}{R_1 + R_2 + R_6} = \frac{2 * 2,4}{2,4 + 2 + 2,4} = 0,7059 (кОм)$ 
 $R_{_{3KB}} = R'_1 + \frac{(R'_2 + R_5) * (R'_3 + R_4)}{R'_2 + R'_3 + R_5 + R_4} = 0,7059 + \frac{(0,847 + 3,9) * (0,7059 + 1)}{0.847 + 0.7059 + 3.9 + 1} = 1,961 (кОм)$ 

2.2.5 Определяем  $I_{\kappa 3}$  по формуле

$$I_{\text{K3}} = \frac{U_{xx}}{R_{\text{akb}}} = \frac{-7,343}{1,961} = -3,744 \text{ (MA)}$$

2.2.6 Ток в ветви нагрузки  $R_3$  определяем по формуле

$$I_3 = \frac{U_{xx}}{R_{3KB} + R_3} = \frac{-7,343}{1,961 + 3,9} = -1,253 \text{ (MA)}$$

Расчетные и экспериментальные данные к данной лабораторной работе представлены в таблице 2.

Таблица 2 – Расчетные и экспериментальные данные

|                        |                           | <i>Е</i> <sub>4</sub> . | Метод узловых напряжений    |        |         |       |       |                              |        |                                |     | Метод двух узлов                |                        |        |       |  |
|------------------------|---------------------------|-------------------------|-----------------------------|--------|---------|-------|-------|------------------------------|--------|--------------------------------|-----|---------------------------------|------------------------|--------|-------|--|
| Данные                 | <i>E</i> <sub>2</sub> . в |                         | Узловые<br>напряжени<br>я,В |        |         | $I_1$ | $I_2$ | оки<br><i>I</i> <sub>3</sub> | $I_4$  | вей,м<br><i>I</i> <sub>5</sub> | ,   | Узлово<br>е<br>напря-<br>жение. | Токи<br>ветве<br>й. мА |        |       |  |
|                        |                           |                         |                             |        |         |       |       |                              |        |                                | В   |                                 |                        | _      |       |  |
| Расчетные              | 30                        | 15                      | 4,886                       | -3,958 | -15,238 | 3,685 | 4,938 | -1,253                       | -0,238 | 1,015                          | 4,7 | 11,65                           | -4,17                  | 0,6837 | 4,854 |  |
| Эксперимен-<br>тальные | 29,6                      | 15,65                   | 4,41                        | -4,28  | -15,63  | 3,74  | 4,76  | -1,2                         | -0,22  | 68'0                           | 4,6 | 11,74                           | -3,9                   | 0,7    | 4,9   |  |

#### Продолжение таблицы 2

| Данные                 |          | ц эквивало<br>генератор |        |        | Опытные данные для построения потенциальной диаграммы – напряжения участков цепи |      |      |       |       |        |  |
|------------------------|----------|-------------------------|--------|--------|----------------------------------------------------------------------------------|------|------|-------|-------|--------|--|
|                        | U x.x, B | Ік.з, мА                | Rвн,Ом | Ін, мА |                                                                                  |      |      |       |       |        |  |
| Расчетные              | -7,343   | -3,744                  | 1,961  | -1,253 | φ2                                                                               | φ1   | φ3   | φ4    | φ5    | φ6     |  |
| Эксперимен-<br>тальные | -6,73    | -3,43                   | 1,961  | -1,148 | 0                                                                                | 8,74 | 4,34 | -11,4 | -20,6 | -11,37 |  |

## 3. Построение потенциальной диаграммы по экспериментальным данным

Потенциальная диаграмма (рис.5) строилась по контуру 2-1-5-4-6-3-2. Суммарное сопротивление контура  $R=R_1+R_2+R_4+R_5=2,4+2,0+1,0+3,9=9,3$  (кОм). Потенциал базового узла (3) принимаем равным 0.

#### 4. Выводы

В результате выполнения лабораторной работы методом узловых потенциалов и методом эквивалентного генератора определены токи в электрической схеме. Экспериментальные результаты совпали с теоретическим расчётом с достаточной точностью. По экспериментальным данным построена потенциальная диаграмма.



Рисунок 5 — Потенциальная диаграмма