

填充

- · 给定(32 x 32)输入图像
- ·应用5x5大小的卷积核
 - 第1层得到输出大小 28 x 28
 - · 第7层得到输出大小4 x 4
- 更大的卷积核可以更快地减小输出大小
 - ・形状从 $n_h \times n_w$ 减少到 $(n_h k_h + 1) \times (n_w k_w + 1)$

填充

在输入周围添加额外的行/列

$$0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$$

填充

•填充 p_h 行和 p_w 列,输出形状为

$$(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$$

- 通常取 $p_h = k_h 1$, $p_w = k_w 1$
 - 当 k_h 为奇数: 在上下两侧填充 $p_h/2$
 - ・ 当 k_h 为偶数: 在上侧填充 $\lceil p_h/2 \rceil$,在下侧填充 $\lceil p_h/2 \rceil$

步幅

- 填充减小的输出大小与层数线性相关
 - · 给定输入大小 224 x 224, 在使用 5 x 5 卷积核的情况下,需要 44 层将输出降低到 4 x 4
 - 需要大量计算才能得到较小输出

动手学深度学习 v2·https://courses.d2l.ai/zh-v2

步幅

- 步幅是指行/列的滑动步长
 - 例: 高度3 宽度2 的步幅

$$0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$$

 $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$

步幅

• 给定高度 s_h 和宽度 s_w 的步幅,输出形状是

$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor$$

• 如果
$$p_h = k_h - 1$$
, $p_w = k_w - 1$

$$\lfloor (n_h + s_h - 1)/s_h \rfloor \times \lfloor (n_w + s_w - 1)/s_w \rfloor$$

• 如果输入高度和宽度可以被步幅整除

$$(n_h/s_h) \times (n_w/s_w)$$

总结

- 填充和步幅是卷积层的超参数
- 填充在输入周围添加额外的行/列,来控制输出形状的减少量
- 步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状