Práctico 9: Especificaciones

Para tener en cuenta algunos conceptos: por **subsegmento de xs** o **subsecuencia de xs** entendemos a cualquier lista cuyos elementos están en xs, en el mismo orden y consecutivamente. Por ejemplo, si la lista es $xs = \langle 1, 4, 2, 1, 1, 8, 7 \rangle$ los siguientes son ejemplos de subsegmentos :

- secuencia vacía().
- subsegmento de unitario $\langle 4 \rangle$.
- subsegmento inicial $\langle 1, 4 \rangle$.
- $\langle 2, 1, 1 \rangle$.
- \bullet $\langle 1, 4, 2, 1, 1, 8, 7 \rangle$.
- subsegmento final $\langle 8, 7 \rangle$.

Ejercicio 1. Expresar en lenguaje formal (de primer orden) las siguientes especificaciones.

- f es una función que dice si los elementos de una lista xs son iguales.
- f es una función que dice si los elementos de una lista xs son todos diferentes.
- f es una función que dice si los elementos de una lista xs están ordenados.
- \blacksquare P es un predicado que es true si y solo si, cuando aparece 1 en xs, luego (no necesariamente seguido) aparece 0.
- \blacksquare p es el producto de todos los elementos primos de xs.

Ejercicio 2. Sea xs un lista no vacía con elementos booleanos, tal que true aparezca al menos una vez en la lista. Especificar:

- n es el menor entero tal que xs.n = true.
- n es el último elemento de la lista tal que xs.n = true.
- f es una función que devuelve true si y solo si todos los elementos de xs son equivalentes.

Ejercicio 3. Especificar las siguientes funciones:

• f.xs determina si xs tiene la misma cantidad de pares que impares.

- f.n dice si n es primo.
- f.xs.ys dice si ys es una subsecuencia de xs.
- f.xs.ys dice si ys es una subsecuencia final de xs.

Ejercicio 4. Especificar los siguientes predicados:

- Especifice el predicado P que determina si una lista es un segmento de otra: P: [A]->[A]->Bool.
- Dada una lista de enteros, especifique la suma del subsegmento de suma mínima de la lista. Por ejemplo, si la lista es $xs = \langle 1, -4, -2, 1, -5, 8, -7 \rangle$ el subsegmento que da la suma mínima es $\langle -4, -2, 1, -5 \rangle$, cuya suma es -10. Si $xs = \langle 1, 3, 5 \rangle$, el subsegmento que da la suma mínima es $\langle \rangle$, pues la suma de la lista vacía es cero.
- Especifique el predicado maxigual que determina la longitud del del máximo subsegmento en donde todos sus elementos son iguales: maxigaul : [A] -> Num.

Ejercicio 5. Sea xs una lista no vacia. Expresar las siguientes especificaciones en lenguaje natural:

- $\forall i : 0 \le i \le N \land N \le \sharp xs : xs.i \ge 0$

- $\bullet \langle \forall p, q : 0$