باسمه تعالى

گزارش تکلیف سری سوم سیستم های چند رسانه ای – استاد سماوی عرفان بهرامی – ۹۶۲۴۵۱۳

توضيحات سوال ١

قسمت الف:

با استفاده از تابع نوشته شده در تكليف قبلي cdf را به دست مي آوريم.

[CDF, Histogram] = hist_cdf(Image);

نقطه ی اول را به دست آورده و برش اول را ایجاد می کنیم: TO

```
Cut = CDF(256, 1)/2;
 5
             T0 = 0;
 6
             for i=1: 1: 256
 7 🗀
                 if CDF(i, 1) >= Cut
 8
 9
                     T0 = i;
                     break;
10
11
                 end
12
             end
```

به طور مشابه نقطه وسط قسمت های چپ و راست نقطه اولیه را که بدست آوردیم ، پیدا می کنیم: T01 و T02

```
Cut = CDF(T0, 1)/2;
14
             T01 = 0;
15
             for i=1: 1: T0
16
                 if CDF(i, 1) >= Cut
17
                     T01 = i;
18
19
                     break;
                 end
20
             end
21
22
             Cut = ((CDF(256, 1) - CDF(T0, 1))/2) + CDF(T0);
23
             T02 = 0;
24
25
             for i=T01+1: 1: 256
                 if CDF(i, 1) >= Cut
26
                     T02 = i;
27
28
                     break;
29
                 end
30
             end
```

در نهایت بر روی تمامی پیکسل های تصویر یک پیمایش انجام داده و بر اساس اینکه در کدام یک از چهار ناحیه ی ایجاد شده قرار می گیرد ، میانگین ابتدا و انتهای ناحیه به جای مقدار فعلی پیکسل قرار می گیرد تا کل عکس به چهار سطح روشنایی تبدیل شود. برای مثال اگر مقدار پیکسل از TO2 کمتر باشد (بین TO2 و TO2) آنگاه میانگین T0 و TO2 به جای مقدار فعلی پیکسل قرار می گیرد.

```
[Row, Col] = size(Image);
32
             Out = uint8(zeros(Row, Col));
33
34
             for i=1: 1: Row
35 =
                 for j=1: 1: Col
36
                    if Image(i, j) <= T0
37
                         Out(i, j) = (T0+T01)/2;
38
                    elseif Image(i, j) <= T01</pre>
39
                         Out(i, j) = T01/2;
40
                    elseif Image(i, j) <= T02</pre>
41
                         Out(i,j) = (T02+T0)/2;
42
43
44
                         Out(i, j) = (255+T02)/2;
45
                    end
                 end
46
             end
47
```

در این قسمت کد تصویر به صورت ساده کوآنتیزه شده و تمام پیکسل ها بر 64 تقسیم و در 64 ضرب شده و در نهایت در کنار خروجی کوآنتیزه نشده نمایش داده می شود.

```
49
           SJ64=uint8(Out./64);
           BJ64=SJ64.*64;
50
51
52
           imshow(Out, []);
                                                T0 : ' num2str(T0) '
                                                                                T02 : ' num2str(T02) ]);
53
           title(['T01 : ' num2str(T01) '
54
           figure
55
           imshow(BJ64, []);
           title(['simple quantized']);
56
57
```

اسكرين شات 2.tif:

توضيحات سوال ١

قسمت ب:

با استفاده از تابع نوشته شده در تكليف قبلي cdf را به دست مي آوريم.

```
[CDF, Histogram] = hist_cdf(Image);
```

در این بخش از کد cdf را به 2^n بخش تقسیم می کنیم (اندازه ی هر بخش cdf می شود) و مقدار تصویر در مرزهای تقسیم بندی را بدست می آوریم.

در این قسمت مقدار هر پیکسل با مقدار مرزهای به دست آمده در قسمت قبل مقایسه می شود و به جای مقدار فعلی ، میانگین ابتدا و انتهای ناحیه ای که پیکسل در آن است ، قرار داده می شود.

```
[Row, Col] = size(Image);
15
16
             Immage=Image;
             Num = [0, T, 255];
17
             Out = uint8(zeros(Row, Col));
18
             for i=1:Row
19
20
                 for j=1:Col
                      for k=1:n
21
                       if( (k==1) && ( Immage(i,j)<T(1,1) ) )</pre>
22
                         Out(i,j)=T(1,1)/2;
23
24
                       if((k==n) && (Immage(i,j)>T(1,n-1)))
25
                         Out(i,j)=(255+T(1,n-1))/2;
26
                       end
27
                       if( (k~=n) && (k~=1) )
28
                         if ((Immage(i,j)>T(1,k-1)) && ((Immage(i,j)<T(1,k))))</pre>
29
                            Out(i,j)=(T(1,k-1)+T(1,k))/2;
30
                         end
31
32
                        end
33
                      end
                 end
34
35
             end
```

در این قسمت کد تصویر به صورت ساده کوآنتیزه شده و تمام پیکسل ها بر 64 تقسیم و در 64 ضرب شده و در نهایت در کنار خروجی کوآنتیزه نشده نمایش داده می شود.

اسكرين شات 1.tif:

اسكرين شات 2.tif:

توضيحات سوال ٢:

۱- ابتدا با توجه به سایز بلاک ورودی تابع ، تصویر را resize کرده تا در مورد بلاک بندی مشکلی پیش نباید.

```
[row, col] = size(Image);

row = row + K - rem(row, K);
col = col + K - rem(col, K);

J = imresize(Image, [row, col]);  % Fit Size of the Image according to the K
temp = uint8(zeros(K, K));
Counter = 0;
```

۲- سپس بر روی عکس پیمایش کرده و بلاک های K * K را جدا می کنیم.

۳- به ازای هر بلاک ضرایب مربوطه را استخراج کرده و اگر از حد آستانه تعیین شده کوچکتر باشد ، آن ها را صفر می کنیم و در نهایت عکس تبدیل می گیریم.

۴- قسمت آخر کد مربوط به درصد ضرائب صفر شده و نمایش موارد خواسته شده در صورت سوال می باشد. همچنین از تابع PSNR استفاده شده است که تابع آن طبق تعریف آن به طور مشخص پیاده سازی شده است.

اسكرين شات 1.tif:

psnr =

-10.8428

fx >>

اسكرين شات 2.tif:

psnr =

-13.9439

fx >>

پایان

با تشكر از زحمات شما