Student's Name:

Introduction to circuit analysis

Homework # 5 – Series-Parallel dc circuit

Instructions:

- You have to show all work in order to receive full credit
- All answer must be in engineering notation rounded off to the hundredth

1) Determine the total resistance, R_T (3 pts)

2) For the following circuit:

- a. Sketch 3 equivalent circuit (3 pts)
- b. (6 pts)Find the total resistance, R_T
- c. (2 pts) Calculate I_T or I_S

Find the current through each resistor (2 pts each)

V_{R1}
V_{R2}
V _{R3}
V_{R4}
V _{R5}
V _{R6}
V_{R7}
V_{R0}

I_{R1}
I _{R2}
I _{R3}
I_{R4}
I _{R5}
I _{R6}
I _{R7}

3) For the ladder network

- a. Sketch three equivalent circuit (3pts)
- b. (8 pts) Determine R_T
- c. (2 pts) Calculate I_S

Find the voltage across each resistor (2 pts each)

Find the current through each resistor (2 pts)

V_{R1}
V_{R2}
V _{R3}
$V_{R4}\underline{\hspace{1cm}}$
V_{R5}
V_{R6}
V _{R7}
V_{R8}

I_{R1}
I _{R2}
I _{R3}
I_{R4}
I _{R5}
I _{R6}
I _{R7}
I_{R8}

4) For the network

- a. (2 pts) Sketch two equivalent circuit
- b. (3 pts) Determine R_T
- b. (3 pts) Find I_{R1} , I_{R2} , and I_{R3}
- c. (3 pts) Find voltage $V_{R1},\,V_{R2},$ and V_{R3}

------ HOMEWORK ENDS HERE ------