

Implementation of Kinematics and **Dynamics of an Elephant Trunk like** Robotic Arm

Amir Hadzic Jamina Häseli

Bachelor Thesis

Supervised by Prof. Dr. Siegwart Roland, Dr. Sa Inkyu, Blöchliger Fabian

Motivation

- simulation environment
- model based controller
- better understanding

Autonomous Systems Lab

Doctoral thesis of Dr. Falkenhahn [2]

- derivation of dynamic model
- model simplifications
- validation
- model based path planning

Goal

- adaptation and implementation of
 - kinematic model
 - dynamic model
- parameter identification
- validation of both models

Kinematic model

key assumption: constant curvature [2] coordinates

 θ : curvature/bending angle

 κ : curvature

 φ : orientation angle

 q_i : muscle lengths with i = 1, 2, 3

rotation matrix

displacement vector

$${}^{w}H_{h} = \begin{bmatrix} \cos^{2}(\varphi) \cdot (\cos(\theta) - 1) + 1 & \sin(\varphi) \cdot \cos(\varphi) \cdot (\cos(\theta) - 1) & \cos(\varphi) \cdot \sin(\theta) \\ \sin(\varphi) \cdot \cos(\varphi) \cdot (\cos(\theta) - 1) & \cos^{2}(\varphi) \cdot (1 - \cos(\theta)) + \cos(\theta) & \sin(\varphi) \cdot \sin(\theta) \\ -\cos(\varphi) \cdot \sin(\theta) & -\sin(\varphi) \cdot \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Dynamic model - principle

adapted from [3]

Dynamic model – muscle forces

adapted from [3]

 $F_{B,1,dmp}$: damping force of muscle 1

 $F_{B,1,act}$: pressure force of muscle 1

 $F_{B,1,spr}$: spring force of muscle 1

Parameters

- · length stiffness coefficient
- damping coefficient
- pressure acting area

Dynamic model – tip forces

 F_G : gravitational force

*M*_{Bend}: bending moment

 $F_{spr,spline}$: spring force, center spline

Parameters

- · bending stiffness
- spline spring coefficient
- mass

adapted from [3]

Dynamic model - approach

Lagrange equations: $\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} = Q_i$, $i = \{1, 2, 3\}$

- q_i : generalized coordinates \rightarrow 3 muscle lengths
- T: kinetic energy $\rightarrow T = T_{translation} + T_{rotation} = \frac{1}{2} (m * {}^w\dot{r}_c^T * {}^w\dot{r}_c + {}^w\omega_c^T * {}^t\varepsilon * {}^w\omega_c)$
- U: potential energy $\rightarrow U = -m * {}^{w}g^{T} * {}^{w}r_{c} + M_{bend}(\theta)$
- Q_i : generalized force acting on each muscle
- Assumption: $T_{rotation} \ll T_{translation} \rightarrow T_{rotation} \approx 0$ [2]

m: mass of segment

 r_c : position vector of mass

 I_c : inertia tensor

 ω_c : angular velocity vector

g: gravity vector

 M_{bend} : bending moment

Dynamic model - implementation

The 3 Lagrange equations lead to [1]

$$M(q)\ddot{q} + \Omega(q,\dot{q})\dot{q} + N(q,\dot{q}) = \tau(p)$$
, where

q: generalized coordinate vector

p: pressure vector.

Reduction of order to 6 equations:

$$v \coloneqq \dot{q}$$

$$M(q)\dot{v} + \Omega(q, v)v + N(q, v) = \tau(p)$$

Dynamic model - implementation

- Equations are symbolically derived once and implemented directly.
- Discretization of equation:

 Derivative is approximated with Euler Forward and 4th order Runge-Kutta method.

Implementation - challenges

- long terms to deal with
- singularities in equations
- complex calculus background
- prone to instability

Parameter identification – stiffnesses

key idea: static points $\rightarrow \dot{q} = \ddot{q} = 0 \rightarrow$ differential equations become linear

Parameter identification - damping coefficient

Parameter identification - damping coefficient

Validation - kinematic model

Visualization - kinematic model

Results - kinematic model

Autonomous Systems Lab

Results - kinematic model

Results - kinematic model

mean error = $6.3 \text{ mm} \pm 3.6 \text{ } mm$

Validation - dynamic model

Results – dynamic model - steps

Autonomous Systems Lab

paesslatedimputscle lengths

mean error = $5.6 \pm 3 mm$

length [m]

Results – dynamic model - steps

Results – dynamic model - steps

mean error = $25.3 \pm 13.2 \, mm$

Results – dynamic model- linear pressure

mean error = $5.9 \pm 3 mm$

Results – dynamic model – linear pressure

Results – dynamic model – linear pressure

mean error = $25.7 \pm 23.4 \, mm$

Autonomous Systems Lab

Results – Euler vs. Runge-Kutta

calculation time per time step:

Euler: 0.52 s

Runge-Kutta: 1.9 s

- Both are unstable for time steps > 0.0005 s.
- Even though Runge-Kutta is a higher order method accuracy is not improved.

Conclusion

- Kinematic model was implemented with a position error of 6.3 mm
- Dynamic model is tested with linear and step pressure inputs.
- Dynamic Model implemented with a muscle length error of 5.6-5.9 mm.
- Calculation time for 1 second simulation is 16.6 min.

Outlook

- to achieve real time calculation
 - model simplification → reduces calculation time
 - more stable approximation method → increases dt
- model valves
- parameter identification with optimization tools
- model mass in center of gravity

Bibliography

- [1] FestHQ. (2010,04,15). Festo Bionic Handling Assistant- Animation, https://www.youtube.com/watch?v=EeSUPTAz2MM
- [2] V. Falkenhahn, 2017, Modellierung und modellbasierte Regelung von Kontinuum-Manipulatoren, DOI: http://dx.doi.org/10.18419/opus-9226
- [3] V. Falkenhahn, 2015, Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler–Lagrange Formalism, DOI:10.1109/TRO.2015.2496826

Backup slide: rotational energy

Backup slide: dynamic model - kinetic energy

Lagrange Equations:
$$\left(\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} = Q_i$$

$$T_{rot} \ll T_{trans} \rightarrow T_{rot} \approx 0$$

$$\frac{d}{dt} \frac{\partial T_{trans}}{\partial \dot{q}_i} = m (^w \ddot{H}_h{}^h r_C)^T (\frac{\partial^w H_h}{\partial q_i}{}^h r_C) + \frac{\partial T_{trans}}{\partial q_i}$$

$${}^{w}\ddot{H}_{h} = \sum_{\chi=1}^{3} \left(\frac{\partial^{w} H_{h}}{\partial q_{\chi}} \ddot{q}_{\chi} + \sum_{\alpha=1}^{3} \frac{\partial^{2w} H_{h}}{\partial q_{\alpha} \partial q_{\chi}} \dot{q}_{\chi} \dot{q}_{\alpha} \right)$$

Backup slide: dynamic model - potential energy

Lagrange Equations: $\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} =$

Assuption: $M_{bend} \neq M_{bend}(\varphi)$

$$\frac{\partial U}{\partial q_i} = -m^w g^T \frac{\partial^w H_h}{\partial q_i} {}^h r_C + \frac{\partial M_{bend}}{\partial \theta} \frac{\partial \theta}{\partial q_i}$$

Backup slide: dynamic model – generalized force

Lagrange Equations: $\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} = Q_i$

$$Q_i = {}^w F_C^T \frac{\partial^w H_h}{\partial q_i} {}^h r_C + \sum_{\chi=1}^3 {}^w F_{e,M\chi}^T \frac{\partial^w H_h}{\partial q_i} {}^h r_{M,\chi}$$

$${}^{w}F_{C} = -{}^{w}H_{h}({}^{h}F_{e,C,spr}(l_{bar}) + {}^{h}F_{C,dmp}(\dot{l}_{bar}))$$

$${}^{w}F_{e,M,i} = {}^{w}H_{h}({}^{h}F_{e,M,i,akt}(p_{i}) - ({}^{h}F_{M,i,spr}(q_{i}) + {}^{h}F_{M,i,dmp}(\dot{q}_{i})))$$

A: pressure surface δ : displacement of muscle

k: length stiffness

