PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-274378

(43)Date of publication of application : 05.10.2001

(51)Int.CI.

H01L 29/78

(21)Application number : 2000-088915

(71)Applicant: MITSUBISHI ELECTRIC CORP

28.03.2000 (22)Date of filing:

(72)Inventor: ABE YUJI

TOKUDA YASUKI OISHI TOSHIYUKI SHIOZAWA KATSUOMI SUGIHARA KOHEI

(54) SEMICONDUCTOR DEVICE

PROBLEM TO BE SOLVED: To provide a field effect transistor of a short gate length where a leakage current is suppressed for raised gate driving capacity.

SOLUTION: On an MOSFET 20 formed on a silicon substrate 1, a gate insulating film 4 of a material other than a silicon oxide film and a gate electrode 5 positioned over the gate insulating film are provided. The material of gate insulating film has a permitting larger than the silicon oxide, while the thickness of gate insulating film is at a specified value or less? so that a short channel effect equal to or less than that of an 32 MOSFET which uses a gate insulating film of 1.5-2.0 nm in thickness whose main material is a silicon oxide film.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-274378 (P2001-274378A)

7-7J-h*(参考)

(43)公開日 平成13年10月5日(2001.10.5)

FΙ 301G 5F040 識別記号 H01L 29/78 (51) Int.Cl.⁷ H01L 29/78

		審査請求 未請求 請求項の数10 〇L (全 7 頁)
(21) 出願番号	特顧2000-88915(P2000-88915)	(71)出願人 000006013 三菱電機株式会社 東京都千代田区丸の内二丁目2番3号
(22) 出願日	平成12年3月28日(2000.3.28)	東京都千代田区九の内二丁目 2番 3 号 三東京都千代田区九の内二丁目 2番 3 号 三菱電機株式会社内
		(72)発明者 徳田 安紀 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内
		(74)代理人 100064746 弁理士 深見 久郎 (外4名)
		最終頁に統

(54) 【発明の名称】 半導体装置

(57)【要約】

【課題】 リーク電流を抑制し、ゲート駆動能力を高め た短ゲート長の電界効果トランジスタを提供する。

【解決手段】 シリコン基板1上に形成されたMOSF ET20において、シリコン酸化膜以外の材料のゲート 絶縁膜4と、ゲート絶縁膜の上に位置するゲート電極5 とを備え、ゲート絶縁膜の材料はシリコン酸化物よりも 大きい比誘電率を有し、ゲート絶縁膜の膜厚は、シリコ ン酸化膜を主材料とする厚さ1.5 nm~2.0 nmの ゲート絶縁膜を用いたMOSFETにおける短チャネル 効果と同等以下の短チャネル効果を有するように、所定 値以下とされている。

【特許請求の範囲】 【請求項1】 シリコン基板上に形成されたMOS電界 効果型トランジスタにおいて、

前記シリコン基板の上に位置する、シリコン酸化膜以外 の材料を主材料とするゲート絶縁膜と、

前記ゲート絶縁膜の上に位置するゲート電極とを備え、 前記ゲート絶縁膜を構成する材料はシリコン酸化物より も大きい比誘電率を有し、

前記ゲート絶縁膜の膜厚は、シリコン酸化膜を主材料と する厚さ1.5 nm~2.0 nmのゲート絶縁膜を用い たMOSFETにおける短チャネル効果と同等以下の短 チャネル効果を有するように、所定値以下とされてい

る、半導体装置。 【請求項2】 シリコン基板上に形成されたMOS電界 効果型トランジスタにおいて、

前記シリコン基板の上に位置する、シリコン酸化膜以外 の材料を主材料とするゲート絶縁膜と、

前記ゲート絶縁膜の上に位置するゲート電極とを備え、 前記ゲート絶縁膜を構成する材料はシリコン酸化物より も大きい比誘電率を有し、

前記ゲート絶縁膜の膜厚であって、正常にトランジスタ 動作する下限のゲート長である限界ゲート長が、シリコ ン酸化膜を主材料とする厚さ1.5 nm~2.0 nmの ゲート絶縁膜を用いたMOSFETと同等以下となるよ ろに、そのゲート絶縁膜の膜厚範囲が設定されている、 請求項1 に記載の半導体装置。

【請求項3】 前記ゲート絶縁膜の膜厚範囲は、線形領 域のしきい値電圧Vlin.thから飽和領域のしきい値電圧 V thを減じて得られるしきい値電圧差∆V thが所定値と なるゲート長である限界ゲート長が、シリコン酸化膜を 主材料とする厚さ1.5 nm~2.0 nmのゲート絶縁 膜を用いたMOSFETと同等以下となるように設定さ れている、請求項1または2に記載の半導体装置。

【請求項4】 前記限界ゲート長は、前記しきい値電圧 差ΔVthが50mVとなるゲート長である、請求項3に 記載の半導体装置。

【請求項5】 前記ゲート絶縁膜を構成する主材料がチ タン酸バリウム (BaSrTi〇₃) であり、その膜厚 が31nm以下である、請求項1~4のいずれかに記載

の半導体装置。 【請求項6】 前記ゲート絶縁膜を構成する主材料が酸 化チタン(TiOz)であり、その膜厚が19nm以下 である、請求項1~4のいずれかに記載の半導体装置。 【請求項7】 前記ゲート絶縁膜を構成する主材料が酸 化タンタル (Ta,O,)、酸化ジルコニウム (Zr O₂) および酸化ハフニウム (H f O₂) のうちのいずれ かであり、その膜厚が 1 1 n m以下である、請求項 1 ~ 4のいずれかに記載の半導体装置。

【請求項8】 前記ゲート絶縁膜を構成する主材料が、 窒化シリコン (Si,N,) およびアルミナ (Al,O,)

のうちのいずれかであり、その膜厚が4 n m以下であ る、請求項1~4のいずれかに記載の半導体装置。

【請求項9】 前記ゲート絶縁膜と前記シリコン基板と の間において、両者に接する厚さ0.5 n m以下のシリ コン酸化膜をさらに備える、請求項1~8のいずれかに 記載の半導体装置。

【請求項10】 前記ゲート絶縁膜と前記ゲート電極と の間において、両者に接する厚さ0.5nm以下のシリ コン酸化膜をさらに備える、請求項1~8のいずれかに 記載の半導体装置。

【発明の詳細な説明】

[発明の属する技術分野] 本発明は、メモリやロジック [0001] の素子として用いられるMOS型の電界効果トランジス タ (MOSFET:Metal Oxide Semiconductor Field E ffect Transistor)に関する。

【従来の技術】図5は、n型MOSFETの構成を示す断面図 である(例えば、H.S.Momose et al.IEEE Electron Dev 20 ices, vol.43, p.1233(1996))。図5において、主表面 が(100)面であるp型シリコン基板 1 に素子分離領 域2および p型ウエル3が形成され、それらに囲まれる ようにn型MOSFETが形成されている。n型不純物が導入 されたソース・ドレイン領域8の内側にチャネル領域を 挟むようにn型不純物を含むソース・ドレインのエクス テンション6が形成されている。チャネルの上にはゲー ト絶縁膜11を介してゲート電極5が形成され、その側 壁にサイドウォール7が設けられている。上記のn型MD SFETでは、ゲート絶縁膜1 1を薄膜化すれば、ゲート容 量が増加し、このため、ゲート電圧印加によりチャネル **に誘起される電子濃度が増加して駆動能力が向上する。** さらに、ゲート絶縁膜の薄膜化により、ゲート電極が基 板表面のチャネル領域に近づくため、ゲート電極による チャネル領域の支配を強めることができる。このため、 短チャネル効果を抑制することが可能となる。この結 果、微細化されたMOSFETにおいて、一層短縮されたゲー ト長でも正常なトランジスタ動作を得ることができる。 なお、ここで、短チャネル効果とは、例えば、しきい値 電圧V thが ドレイン・ソース電位の影響を受けて低くな る現象等、ゲート長を短くすることに付随して生じる現 象をさす。

【0003】上記のように、ゲート絶縁膜の薄膜化は、 高駆動能力化と短チャネル効果の抑制とをもたらし、ゲ ート長の短縮による高性能化を確保することができる。 しかし、従来より用いられてきたシリコン酸化膜は膜厚 が3 nm以下になると急激にトンネル電流が増加すると いう問題がある。従来例では、ゲート絶縁膜を1.5 n mとしても、ゲート長が短くなるとドレイン電流が増加 するため、単体のトランジスタとしては正常な動作を示 50 すとしている。しかし、LSIとして集積化された場合

には、ゲートのリーク電流はスタンバイ時の消費電力に 大きく影響するので、シリコン酸化膜を用いたゲート絶 縁膜の薄膜化には限界が存在する。このため、ゲート絶 縁膜の薄膜化の限界は1.5nm~2.0nmであると

【0004】上記の状況を打開する方法として、従来か 言われている。 ら用いられてきた比誘電率が3.9のシリコン酸化膜に 代えて、比誘電率が3.9より大きい比誘電率を有する 材料でゲート絶縁膜を形成することが考えられる。この ような材料を用い、薄膜化によってゲート容量を増加さ せても、同一容量で比較した場合、実膜厚はシリコン酸 化膜よりも厚くすることができる。 このため、リーク電 流を減らすことができ、上記の問題を避けることができ る。

[発明が解決しようとする課題] しかしながら、上記の [0005] 考察では、MOSFETの縦方向の膜厚と比誘電率とから決ま るゲート容量の効果のみを考慮に取り入れ、他の方向の 効果を考慮していない。とのため、実際に微細なゲート 長にした場合の2次元的な効果については不明であっ た。すなわち、縦方向の次元にゲート長方向の次元を加 えた効果を取り入れてデバイス特性が考えられていなか った。このため、ゲート絶縁膜の膜厚や比誘電率をどの 範囲に設定すれば、短チャネル効果やリーク電流を許容 できる範囲に抑制できるか不明であった。

[0006]そこで、本発明は、シリコン酸化膜に代わ って高誘電率材料をゲート絶縁膜に用いた半導体装置で あって、駆動能力の向上と短チャネル効果の抑制をはか った短ゲート長の半導体装置を提供することを目的とす

【課題を解決するための手段】本発明の第1の局面の半 [0007] 導体装置では、シリコン基板上に形成されたMOSFE Tにおいて、シリコン基板の上に位置する、シリコン酸 化膜以外の材料を主材料とするゲート絶縁膜と、ゲート 絶縁膜の上に位置するゲート電極とを備える。この半導 体装置では、ゲート絶縁膜を構成する材料はシリコン酸 化物よりも大きい比誘電率を有し、ゲート絶縁膜の膜厚 は、シリコン酸化膜を主材料とする厚さ1.5 n m~ 2. Onmのゲート絶縁膜を用いたMOSFETにおけ る短チャネル効果と同等以下の短チャネル効果を有する ように、所定値以下とされている(請求項1)。

[0008] 比誘電率がシリコン酸化物よりも大きいゲ ート絶縁膜を用いることにより、シリコン酸化膜よりも 厚い膜厚で大きな容量を確保することができる。このた め、従来のシリコン酸化物を用いたゲート絶縁膜に見ら れるように、厚さ3nm以下の範囲で増大するリーク電 流を防止することができる。さらに、ゲートによる駆動 能力を増大させることができる。また、上記構成によれ ば、厚さ1.5 nm~2.0 nmのシリコン酸化膜を用

いたMOSFETにおける短チャネル効果と同等以下の 短チャネル効果となるように上記ゲート絶縁膜の膜厚を 減少させる。このため、現状の厚さ3 n m程度のシリコ ン酸化膜を用いたゲート絶縁膜のMOSFETよりゲー ト長を短くしても、ゲートによるチャンル支配を正常な 範囲に維持することができる。このため、上記のような 現状からのゲート長短縮を行なっても、しきい値電圧V thがドレイン・ソース電位の影響を受けて低くなる現象 等がなくなる。この結果、半導体装置の微細化および高 性能化をともに実現することが可能となる。なお、上記 のシリコン酸化膜の厚さ1.5~2.0 nmは、現状の ゲート絶縁膜で実現できる最小厚さである。この最小厚 さのシリコン酸化膜をゲート絶縁膜に用いたMOSFE Tでは、正常なトランジスタ動作をするゲート長はやは り現状で最小のゲート長となり、半導体装置の微細化を はかる観点から現状最も望ましいものである。したがっ て、本発明においては、半導体装置の微細化を実現する 上で最も望ましい現状のゲート絶縁膜の膜厚を基準にし て、高誘電率材料におけるゲート絶縁膜の膜厚を設定す

[0009] 本発明の第2の局面の半導体装置では、シ 20 ることになる。 リコン基板上に形成されたMOSFETにおいて、シリ コン基板の上に位置する、シリコン酸化膜以外の材料を 主材料とするゲート絶縁膜と、ゲート絶縁膜の上に位置 するゲート電極とを備える。このMOSFETにおい て、ゲート絶縁膜を構成する材料はシリコン酸化物より も大きい比誘電率を有し、ゲート絶縁膜の膜厚であっ て、正常にトランジスタ動作する下限のゲート長である 限界ゲート長が、シリコン酸化膜を主材料とする厚さ 1.5nm~2.0nmのゲート絶縁膜を用いたMOS FETと同等以下となるように、そのゲート絶縁膜の膜 30 厚範囲が設定されている(請求項2)。

【0010】 この構成により、(a)ゲート長を現状の 最小のゲート長以下にすることができ、半導体素子の微 細化に役立ち、(b)その髙誘電率のために高い容量を 有し、駆動能力を向上させ、(c)その厚い膜厚のため にリーク電流を抑制することができる。 上記の構成によ り、短チャネル効果は正常なトランジスタ動作が可能な 範囲内にある。

【0011】上記第1および第2の局面の半導体装置で は、ゲート絶縁膜の膜厚範囲は、線形領域のしきい値電 圧Vlin.thから飽和領域のしきい値電圧Vthを減じて得 られるしきい値電圧差∆V thが所定値となるゲート長で ある限界ゲート長が、シリコン酸化膜を主材料とする厚 さ1.5nm~2.0nmのゲート絶縁膜を用いたMO SFETと同等以下となるように設定されている(請求

【0012】上記において、しきい値電圧差ΔVthは、 ΔV th= V lin.th− V th、である。短チャネル効果が大 きくなると、V lin.thの低下よりもV thの低下が大きく

生じるので、しきい値電圧差ΔV thは増大する。 すなわ ち、しきい値電圧差ΔV thが大きいことは、短チャネル 効果が大きいことを意味する。また、上記の限界ゲート 長は、その限界ゲート長までゲート長を短くしても、短 チャネル効果を正常なトランジスタ動作が可能な所定値 以下に抑制できることを意味する。シリコン酸化膜を主 材料とする厚さ 1.5 nm~2.0 nmのゲート絶縁膜 のMOSFETでは、リーク電流は多いものの、ゲート 長を非常に短い範囲にしても短チャネル効果を抑制して 正常な動作を行なうことができる。上記第2の局面の半 導体装置では、限界ゲート長を上記のように非常に短い 範囲にしても短チャネル効果を正常な範囲に抑制でき、 また、そのような範囲にしてもゲート絶縁膜の厚さは十 分厚いので、リーク電流を抑制することができる。 さら に、その高い比誘電率のために、膜厚を薄く調整してさ らにチャネル支配を強化することができる。

[0013]上記第2の局面の半導体装置では、限界ゲ ート長は、しきい値電圧差ΔVthが50mVとなるゲー ト長である(請求項4)。

【0014】この構成によれば、短チャネル効果の1つ 20 の指標としてしきい値電圧差ΔVth=50mVとなるゲ ート長を採用する。シリコン酸化膜を主材料とする厚さ 1. 5 n m ~ 2. 0 n m のゲート絶縁膜を有するM O S FETについては、しきい値電圧差△Vth=50mVと なるゲート長をデバイスシミュレーションにより求める ことができる。他の誘電体についても比誘電率をパラメ 一々にして、同じくデバイスシミュレーションによりし きい値電圧差ΔVth=50mVとなるゲート長を求める ことができる。上記の本発明のMOSFETは、との厚 さ1.5~2. $0\,\mathrm{mm}$ のシリコン酸化膜の場合に $\Delta\,\mathrm{V}$ th 30 =50mVとなるゲート長である限界ゲート長と同等以 下の限界ゲート長を実現するゲート絶縁膜を有すること になる。したがって、短チャネル効果を抑制した上で十 分な微細化を実現することができる。

[0015]上記の第1および第2の局面の半導体装置 では、ゲート絶縁膜を構成する主材料がチタン酸バリウ ム (BaSrTiO,) であり、その膜厚が31nm以 下である(請求項5)。

【0016】チタン酸パリウムは比誘電率が200~3 00と高いので、膜厚を厚くしても十分高い容量を確保 することができる。しかし、あまり膜厚を厚くするとゲ ートのチャネル支配力が低下して短チャネル効果が大き くなってしまう。上記の膜厚31nmは、1.5nm~ 2. Onm厚さのシリコン酸化膜を用いたMOSFET においてΔV th=50 mVとなるゲート長である限界ゲ ート長、と同等以下の限界ゲート長とするために必要な 厚さである。チタン酸バリウムの膜厚を31nm以下に することにより、限界ゲート長を十分短くしても短チャ ネル効果を正常な範囲に抑制でき、また、低いリーク電 流と高い駆動能力を確保することができる。

【0017】上記の第1および第2の局面の半導体装置 のゲート絶縁膜では、上記のチタン酸バリウムのほか に、例えば、 (a) 膜厚が 1 9 n m以下の酸化チタン (TiO₂)、(b) その膜厚が11nm以下の、酸化 タンタル(Taz〇s)、酸化ジルコニウム(Zr〇z) および酸化ハフニウム (HfO₂) のうちのいずれか、 (c) その膜厚が4 n m以下の、窒化シリコン (Si, N.) およびアルミナ (Al.O.) のうちのいずれか、 を用いることができる(請求項6~8)。ゲート絶縁膜 の各材料の膜厚上限は、1.5 nm~2.0 nm厚さの シリコン酸化膜を用いたMOSFETにおいてAV th= 50mVとなるゲート長である限界ゲート長、と同等以 下の限界ゲート長とするために必要な厚さである。 【0018】上記の第1および第2の局面の半導体装置

では、ゲート絶縁膜とシリコン基板との間において、両 者に接する厚さ0.5 nm以下のシリコン酸化膜をさら に備える(請求項9)。

[0019]シリコン酸化物以外の高誘電体材料は熱処 理時などにシリコン基板と反応して、実際に使用できな い場合がある。このような場合、薄いシリコン酸化膜を 間に介在させることにより反応を抑制することができ る。厚さ0.5mm以下のシリコン酸化膜は高誘電体の ゲート絶縁膜と直列の合成容量を構成する。シリコン酸 化膜の厚さは、0.5 nm以下なのでシリコン酸化膜の 容量が大きく低下することはない。このため、直列の合 成容量は、高誘電体単体の容量に比較して数分の一程度 になるだけであり、本発明の考え方を問題なく適用する ことができる。したがって、リーク電流および短チャネ ル効果を抑制し、高い駆動能力を確保することができ る。また、シリコン基板との界面における界面順位の低 減も実現することができる。すなわち、0.5 n m以下 のシリコン酸化膜を用いることにより、ゲート絶縁膜の 材料変更に伴う不利益を解消して安定化し、その上で、 上記の効果を確保することが可能となる。シリコン酸化 膜の厚さが0.5nmを超えると容量が小さくなり、高 誘電体と直列の合成容量は低下してしまい、ゲートによ る駆動能力が低下する。

[0020]上記第1および第2の半導体装置では、ゲ ート絶縁膜とゲート電極との間において、両者に接する 厚さ0.5 n m以下のシリコン酸化膜を備えている(請 求項10)。

[0021]ゲート電極を構成する材料とゲート絶縁膜 との間で熱処理時などに反応が生じる場合、シリコン酸 化物以外の高誘電体材料を実際に使用できない。とのよ うな場合、上記のように0.5 n m以下のシリコン酸化 膜を介在させることにより、化学的に安定な状態を保つ ことができる。容量的にも問題がないことは上記した通 りである。上記構造においても、シリコン酸化膜の厚さ が0.5 n mを超えると、髙誘電体との直列の合成容量 50 が低下してしまい、ゲートの駆動能力が低下する。

【発明の実施の形態】次に、本発明の実施の形態につい [0022] て図を用いて説明する。

[0023] (実施の形態1) C C では、n型MOSFETを 例に挙げて説明するが、p型MOSFETについてもゲート絶 縁膜の薄膜化の効果は同様である。図1は、本実施例の n型MOSFETの構成を示す概略断面図である。図1 におい て、主表面が(100)面であるp型シリコン基板1に 素子分離領域2 および p 型ウエル3 が形成され、それら に囲まれるようにn型MOSFETが20形成されている。n 型不純物が導入されたソース・ドレイン領域8の内側に チャネル領域を挟むようにn型不純物を含むソースドレ イン・エクステンション6が形成されている。チャネル の上にはゲート絶縁膜4を介してゲート電極5が形成さ れ、その側壁にサイドウォール7が設けられている。ゲ ート絶縁膜4は比誘電率εrの高誘電率材料で形成され ている。また、図1のソース・ドレイン領域の上および ゲート電極の上の表面にシリサイド9が形成されてい る。このシリサイド9は、上層配線との導通をはかるブ ラグ底部と接触していない領域の電気抵抗を下げるため に設けられている。図1にはシリサイド9が形成されて いるが、本発明にとって、このシリサイド9は設けても よいし、また設けなくてもよい。ゲート電極5の上のシ リサイド9も同様である。

【0024】CCで、ゲート絶縁膜4はスパッタ法や化 学的気相成長法等により成膜することができる。このゲ ート絶縁膜の膜厚tは、次に述べるように、ゲート絶縁 膜を構成する高誘電率材料の比誘電率 ε rの大きさに応 じて設定している。 CCで、厚さがもで、比誘電率が ϵ rの高誘電率材料から構成されるゲート絶縁膜のシリコ ン酸化膜等価厚 t eqを、 t eq= t / (ε r/3.9) によっ て定義する。上記の高誘電率材料の比誘電率 ε rが 3. **gより大きいとき、シリコン酸化膜tと同じ膜厚tのゲ** ート絶縁膜のteqはtよりより薄くなる。シリコン酸化 . 膜を用いたゲート絶縁膜と同様に、上記のゲート絶縁膜 も膜厚を薄くすればゲート容量が増加するので、ゲート 電圧印加によりチャネル領域に誘起される電子濃度が増 加して駆動能力は向上する。しかし、ε rが3.9より 大きいために teqが薄くなっても、実際の膜厚 t が厚す ぎる場合には、ゲート電極とチャネル領域とが近づかな 40 いために、ゲートによるチャネルの支配を強めることは できない。すなわち、短チャネル効果を抑制することが できない。

[0025]次に、実膜厚tをデバイスシミュレーショ ンを行なって設定した結果について説明する。 図2は、 ゲート絶縁膜の比誘電率ε rを3. 9~300の範囲に 変え、かつ実膜厚を変えることにより t eq= 1. 5 n m と一定にしたMOSFETについてのしきい値電圧Vthとゲー ト長との関係、および△V thとゲート長との関係を示す 図である。図2中の比誘電率 ε rと具体的な材料との対

応を次に示す。まず、εr=3.9はシリコン酸化膜に 対応する。εr=25は、酸化タンタル (Ta₂O₅)、 酸化ジルコニウム(ZrОょ)、酸化ハフニウム(Hf O_2) などに略対応する。また、 ϵ r = 60には、酸化チ タン (Τ i O_z) が対応する。εr=200~300に は、チタン酸パリウム (BaSrTiO,) が対応す る。図2において、しきい値電圧Vthは飽和領域(ドレ イン電圧1.0V) におけるしきい値電圧である。ま た、しきい値電圧差ΔVthは、線形領域(ドレイン電圧 0.05V) におけるしきい値電圧Vlin.thと上記の飽 和領域におけるしきい値電圧V thとの差である。 すなわ ち、しきい値電圧差△Vth=Vlin.th-Vth、である。 [0026] 図2より明らかなように、比誘電率 erが 大きくなると、しきい値電圧V thの低下やしきい値電圧 差ΔVthの上昇が見られ、短チャネル特性が劣化してい ることが分かる。 すなわち、 t eqが同じでも比誘電率 ϵ rが大きくなると、正常にトランジスタ動作するゲート 長が長くなってしまう。そこで、正常にトランジスタ動 作する下限のゲート長である限界ゲート長しminを、し きい値電圧差ΔVth=50mVとなるゲート長であると 定義して、高誘電率ゲート絶縁膜の実膜厚tとLminと の関係を求めた。結果を図3に示す。図3中には、酸化 膜の薄膜化の限界と言われているゲート絶縁膜の実膜厚 が1.5 nmおよび2.0 nmの場合の限界ゲート長し minも併せて示す。この図3より、高誘電率ゲート絶縁 膜のειが決まった場合に、実膜厚tをいくら以下にし ないと、厚さ1.5 n mまたは2.0 n m のシリコン酸 化膜の場合よりもLminが改善されないか知ることがで きる。比誘電率 ϵ r C と ℓ 、実膜厚の 限界は つぎの と ℓ りとなる。

(a) 厚さ2.0nmのシリコン酸化膜よりもLminを 改善する場合: εr=25の場合には約11 nm以下、 ϵ r=60の場合には約19nm以下、 ϵ r=200の場 合には約28 n m以下、またεr=300の場合には約 31 nm以下にすればよい。なお、図3には示していな いが、シリコン窒化膜に相当するεr=7.5の場合に は約4 n m以下にすればよい。

(b) 厚さ1.5 n mのシリコン酸化膜よりもL minを 改善する場合:εr=25の場合には約9πm以下、εr =60の場合には約16nm以下、 ϵ r=200の場合 には約25 nm以下、またεr=300の場合には約2 8ヵm以下にすればよい。また、シリコン窒化膜に相当 する ε r = 7. 5の場合には約3 n m以下にすればよ

[0027]上記のような実膜厚の高誘電率膜をゲート 絶縁膜に用いることにより、短チャネル特性を劣化させ ることなくチャネル長を短くすることができる。

[0028] (実施の形態2)上記の実施の形態1で は、高誘電率ゲート絶縁膜は単層構造であり、したがっ て1種類のε rを有する膜から構成されていた。本実施 の形態の半導体装置では、図4に示すように、シリコン 基板側に膜厚0.5 n m以下のシリコン酸化膜などの低 誘電率のバッファ層を設けた複層構造のゲート絶縁膜を 用いる。との膜厚0.5nm以下のシリコン酸化膜を有 する複層構造のゲート絶縁膜の採用により、ゲート絶縁 膜とシリコン基板との間で形成される界面順位の低減 や、熱による反応を抑制することができる。また、シリ コン酸化膜の厚さが0.5 nm以下と小さいので、この 部分の容量が大きく低下することはない。このため、高 誘電体とこのシリコン酸化膜との直列の合成容量も、高 誘電体単体の容量に比較して桁違いに低下することはな い。このため、十分高いゲートの駆動能力を確保するこ とができる。上記の複層構造においても、高誘電率ゲー ト絶縁膜の実膜厚 t は、実施の形態 1 に示した値以下に しないと、高誘電率材料をゲート電極側に導入するメリ ットを得ることができない。また、図示していないが、 ゲート電極側に低誘電率のバッファ層を設けた構造につ

[0029]上記において、本発明の実施の形態につい いても同様である。 て説明を行ったが、上記に開示された本発明の実施の形 態は、あくまで例示であって、本発明の範囲はこれら発 明の実施の形態に限定されない。本発明の範囲は、特許 請求の範囲の記載によって示され、さらに特許請求の範 囲の記載と均等の意味および範囲内でのすべての変更を 含む。

[発明の効果] 本発明によれば、MOSFETのゲート絶縁膜 [0030] として高誘電率材料を用いた場合の膜厚を適切にするこ米

* とができる。このため、ゲートにおける容量増加に起因 する大きな駆動力の確保だけでなく、ゲートによるチャ ネルの支配を強め、短チャネル効果を抑制することがで きる。この結果、より微細なゲート長でも正常なトラン ジスタ動作を得ることができ、微細化したMOSFETの性能 を大幅に向上させることが可能となる。

【図面の簡単な説明】

【図1】 本発明の実施の形態1における n型MOSFETの 構成断面図である。

【図2】 図1 に示す n型MOSFETの特性を示す図であ り、しきい値電圧V thおよびしきい値電圧差ΔV thに及 ぼすゲート長しgの影響を示す図である。

【図3】 図1に示すn型MOSFETの高誘電率ゲート絶縁 膜の実膜厚の設定範囲を説明するための図であり、シミ ュレーションによるn型MOSFETの下限界ゲート長Lmin と高誘電率ゲート絶縁膜の実膜厚との関係を示す図であ る。

【図4】 本発明の実施の形態2におけるn型MOSFETの 構成断面図である。

【図5】 従来のn型MOSFETの構成断面図である。 【符号の説明】

1 シリコン基板、2 素子分離領域、3 p型ウエ ル、4 高誘電率のゲート絶縁膜、5 ゲート電極、6 n型エクステンション、7 サイドウォール、8 n 型ソース・ドレイン、9 シリサイド、10 シリコン 酸化膜(低誘電率バッファ層)、11 ゲート絶縁膜、 20 MOSFET.

[図1]

[図2]

[図5]

フロントページの続き

(72)発明者 大石 敏之

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

(72)発明者 塩沢 勝臣

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

(72)発明者 杉原 浩平

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

Fターム(参考) 5F040 DA01 DA06 DC01 DC10 EC01 EC13 ED01 ED03 ED04 ED05

EF02 EK01 FA03 FB01 FC02

FC19