Lecture 24: Process modeling & balance laws

- Process modeling, structure and methodolgy
- Balance laws
 - Closure relations

Book: 10.4, 11.1-11.4

2nd Mai – Exam 2016

15	11.04	No lecture (Easter)	
	13.04	No lecture (Easter)	
16	18.04	No lecture (Easter)	
	20.04	Process modelling and balance laws (differential balance)	E: 10.4, 11.1-4
17	25.04	Process modelling and balance laws (closure relations)	E: 10.4, 11.1-4
	27.04	No lecture (TTK4135 lab.rapport)	
18	02.05	Discussion: Exam 2016 (+Review)	
	04.05	No lecture	

Forum

Student Evaluation

Please fill out the student evaluation on itslearning

Example – heated rod

- At all sidewalls there is heat exchange with the environment (T_e , heat exchange coefficient α)
- At the front side there is a heat flux \dot{Q}
- At the back side there is a constant temperature T_s

Abstraction of process

Process equations

- Balance laws
 - Mass
 - Momentum
 - Energy
 - **–** ..

- Constitutive equations
 - For (generalized) flows
 - Thermodynamic equations of state
 (e.g. ideal gas law)
 - Phenomenological relationships (e.g. between friction force and flow in a pipe)
 - ...

- Constraints
 - Geometric relationships
 - Equilibrium conditions
 - ..

Also called «closure relations» as they «close» the balance laws (such that #equations = #variables)

Process variables

- Thermodynamic state variables
 - Mass,pressures,levels, ...
 - Velocities
 - Temperatures
 - **–** ...

- (Generalized) flows
 - Transport (single phase)
 - Exchange (between phases)
 - Sources (reactions)
 - ..

- Phenomenological coefficients
 - Viscosity
 - Reaction rates
 - Valve constants
 - .

- Geometric dimensions
 - Lengths, Areas, Volumes
 - ...

Example: Bubble reactor

Model reactor as quasi-homogenous

Assumptions:

- Ideally mixed
- Inflows are pure substances
- Substance A and C are in liquid phase, substance B is gaseous
- The total surface area of the bubbles depends on the inflow B

•
$$S_R = S_R(N_{B,in})$$

 The reaction rate can be calculated based on the concentration of A and the pressure in the reactor

•
$$R_0 = R_0(c_{A,liq}, p)$$

- Densities ρ_A and ρ_C and mole masses M_A and M_C are constant and known
- The gas phase can be described by the ideal gas law

•
$$p V_{gas} = n_B R_m T$$

The volume of the reactor is constant and known