

概述

TA6932是一种 LED(发光二极管显示器)驱动控制专用电路,内部集成有MO数字接口、 数据锁存器、LED 高压驱动。本产品性能优良,质量可靠。主要应用于多段位显示屏驱动。 采用 SOP32的封装形式。

特性说明

- 采用功率 OMOS 工艺
- 显示模式(8段× 16位)
- 辉度调节电路(占空比 8级可调)
- 串行接口 (CLK, STB, DIN)
- 振荡方式: RC振荡(450KHz+5%)
- 内置上电复位电路 ● 封装形式: SOP32

三、 管脚定义:

				All the second
GRID13	1		32	GRID12
GRID14	2		31	GRID11
GRID15	3		30	GRID10
GRID16	4		29	GRID9
GND	5		28	GND
DIN	6		27	GRID8
CLK	7		26	GRID7
STB	8	TA6932	25	GRID6
NC	9	1110/32	24	GRID5
SEG1	10		23	GRID4
SEG2	11		22	GRID3
SEG3	12		21	GRID2
SEG4	13		20	GRID1
SEG5	14		19	GND
SEG6	15		18	VDD
SEG7	16		17	SEG8
			J	

四、 管脚说明

符号	管脚名称	说明					
DIN	数据输入	在时钟上升沿输入串行数据,从低位开始。可与 DOU短接作 DIO使用					
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略					
СLК	时钟输入	在时钟上升沿输入 输出串行数据					
SEG1~ SEG8	输出(段)	段输出 ,F管开漏输出					
GRIDI~ GRID16	输出(位)	位输出,N管开漏输出					
VDD	逻辑电源	5V± 10%					
GVD	逻辑地	接系统地					
NC	空脚	内部未连线					

图(1)

显示寄存器地址和显示模式:

该寄存器存储通过串行接口从外部器件传送到 TA6932 的数据, 地址从 00H-0F+共 16字节单元, 分别 与芯片 SOE和 CRID管脚所接的 LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SECI	SEC	SEG	SEC4	SECS	3E06	SEG7	SEES.	
XX	HL(1	武四位)	>	(xHU(高四位	.)	
B0	B1	B2	B3	B4	B5	B6	B7	
	00	HL			00)HJ		ŒIDI
	0′	1HL			01	IHU		GRID2
	02	∄L.			02	2HU		ŒID3
	03	3HL			03	GRID4		
	04	4HL			04		GRID5	
	05	HL.			05	CRID6		
	06	HL_			06	GRID7		
	07	7HL			07	GRID8		
	30	3HL			30	3HJ		CRID9
	09	HL_	4		09	HU		CRID10
	0/	HL			0/	HU		CRID11
	OE	HL /			OE	3HU		CRID12
		H			α		ŒID13	
	OE	H			OE	CRID14		
	OE	HL		0 EH U				CRID15
	OF	1 +L			OF	1 U		CRID16

图(2)

指令说明:

指令用来设置显示模式和LED驱动器的状态。

在 STBF 降沿后由 DIN输入的第一个字节作为一条指令。经过译码, 取最高 BT, BB两位比特位以区别 不同的指令。

B7	B6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效 (之前传送的指令或数据保持有效)。

1 数据命令设置:

该指令用来设置数据写和读, B和 B位不允许设置 01或 11。

LSB

B7	B6	B5 B4		B3	B2	B1	В0	功能	说明		
0	1							0	0	数据读写模式 设置	写数据到显示寄存器
0	1	无关	项,		0			地址增加模式	自动地址增加		
0	1	填 0			1			设置	固定地址		
0	1			0				测试模式设置	普通模式		
0	1			1				(内部使用)	测试模式		

2 地址命令设设置:

MSB							LSB	
B7	B6	B5	B4	В3	B2	B1	B0	显示地址
1	1			0	0	0	0	00H
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03H
1	1			0	1	0	0	04H
1	1			0	1	0	1	05H
1	1			0	1	1	0	06H
1	1	无关		0	1	1	1	07H
1	1	填	0	1	0	0	0	08H
1	1			1	0	0	1	09H
1	1	1		1	0	1	0	0AH
1	1			1	0	1	1	0BH
1	1			1	1	0	0	ОСН
1	1		>	1	1	0	1	ODH
1	1			1	1	1	0	0 EH
1	1			1	1	1	1	OFH

该指令用来设置显示寄存器的地址。

如果地址设为 10H或更高,数据被忽略,直到有效地址被设定。上电时,地址默认设为 00H

TA6932

3 显示控制:

MSB							LSB		
B7	B6	B5	B4	B3	B2	B1	B0	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1	- 消光数量设置 -	设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1		设置脉冲宽度为 10/16
1	0	无关	-		1	0	0		设置脉冲宽度为 11/16
1	0	填	0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小八人以直	显示开

图(4)

七、 串行数据传输格式:

数据接收(写数据)

接收1个BIT都在时钟的上升沿操作。

注意:读取数据时,从串行时钟 CLK 的第 8个上升沿开始设置指令到 CLK 下降沿读数据之间需要一个 等待时间 Twait (最小 1μ S)。

八、 显示:

1. 驱动共阴数码管:

图(6)

图 (6)给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID协低电平的时候让SEG1,SEG2,SEG3,SEG4,SEG5,SEG6为高电平,SEG7为低电平,查看图(2)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1,	1	1	1	00H
B7	B6	B5	B4	B3	B2	B1	B0	

2. 驱动共阳数码管:

图 (7)给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1, GRID2, GRID3, GRID4, GRID5, GRID6为低电平的时候让SEG协高电平,在GRID7为低电平的时候让SEG协低电平。要向地址单元00H-05H里面写入数据01H,其余的地址单元全部写00H3

TA6932

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	00H
0	0	0	0	0	0	0	1	01H
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	03H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	05H
0	0	0	0	0	0	0	0	06H
B7	B6	B5	B4	B3	B2	B1	B0	

注意: SEG1-8为 P管开漏输出, CRID1-16为 N管开漏输出,在使用时候,SEC只能接LEI的阳极,CRID只能接LEI的阴极,不可反接。

九、 应用时串行数据的传输:

1 地址自动加一模式

使用地址自动加 模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕,"STB"不需要置高紧跟着传数据,最多 16BYTE,数据传送完毕才将"STB"置高。

Command1:设置数据命令Command2:设置显示地址

Data1~ n: 传输显示数据至 Command 2地址和后面的地址内(最多 16 bytes)

Command3: 显示控制命令

2 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的 1BYTE数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传 1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第 2个数据需要存放的地址,最多 16BYTE数据传送完毕,"STB"置高。

Command1: 设置数据命令 Command2: 设置显示地址 1

Data1: 传输显示数据 1至 Command 2地址内

Command3: 设置显示地址 2

Data2: 传输显示数据 至 Command 地址内

Command4: 显示控制命令

3 程序设计流程图:

采用地址自动加一的程序设计流程图:

采用固定地址的程序设计流程图:

十、 应用电路:

www.titanmec.com

2 TA6932驱动共阳数码屏接线电路图 (11):

注意: 1、VDQ GND之间滤波电容在 POD板布线应尽量靠近 TA6932芯片放置,加强滤波效果。

2、连接在DIQ CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。

3 因蓝光数码管的导通压降压约为 3V, 因此 TA6932供电应选用 5V

十一、 电气参数:

极限参数 (Ta = 25 , Vss = 0 V)

参数	符号	范围	単位
逻辑电源电压	VDD	-0.5 ~ +7.0	V
逻辑输入电压	VI1	-0.5 ~ VDD + 0.5	V
LED Seg 驱动输出电流	101	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	ηW
工作温度	Topt	-40 ~ +80	
储存温度	Tstg	-65 ~ +150	

正常工作范围 (Ta = -20 ~ +70 , Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	3	5	5.5	V	ı
高电平输入电压	VIH	0.7 VD	-	VDD	>	ı
低电平输入电压	VIL	0	-	0.3 VDD	V	

电气特性(Ta = -20 ~ +70 , VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	loh1	-20	-25	-40	mA	Seg1~Seg8, Vo = vdd-2V
同电干棚山电///	loh2	-20	-30	-50	mA	Seg1~Seg8, Vo = vdd-3V
低电平输出电流	IOL1	80	140	ı	mA	Grid1~Grid16 Vo=0.3V
低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout

高电平输出电流容许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1~ Seg8
输出下拉电阻	RL		10		K	
输入电流	П	-	-	± 1	μА	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		V	CLK, DIN, STB
低电平输入电压	VIL	-	-	0.3 VDD	٧	CLK, DIN, STB
滞后电压	VH	-	0.35	-	V	CLK, DIN, STB
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70 , VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件		
振荡频率	fosc	1	500		KHz	R = 16.5 K		
	tPLZ	1	-	300	ns		ar cal	
传输延迟时间	tPZL		<u>-</u>	100	ns	CL =	15pF, RL = 10K	
	ПДН 1	-		2	μs		Seg1~ Seg8	
上升时间	TTZH 2		'	0.5	μs	CL = 300p F	Grid1~ Grid16	
下降时间	TTHZ	1	-	120	μs	CL = 3	300pF, Segn, Gridn	
最大时钟频率	Fmax	1	-	-	MHz	占空比 50% -		
输入电容	CI	-	-	15	рF			

时序特性 (Ta = -20 ~ +70 ,

$= 4.5 \sim 5.5 \text{ V}$	$= 4.5 \sim 5.5$	V]		,
$= 4.5 \sim 5.5 \text{ V}$	$= 4.5 \sim 5.5$	V]	. 1	,

参数	符号	最小	典型	最大	单位	测试条件		
时钟脉冲宽度	PWCLK	400		-	ns	-		
选通脉冲宽度	PWSTB	1	1	-	μs	-		
数据建立时间	tSETUP	100	1	-	ns	-		
数据保持时间	tHOLD	100	1	-	ns	-		
CLK STB时间	tCLK STB	1	ı	-	μs	CLK STB		
等待时间	tVAIT	1	-	-	μs	ак ак		

时序波形图:

TA6932

十二、 封装尺寸

尺寸 标注	最 小 (mm)	最 大(mm)	尺寸 标注	最小(mm)	最 大 (mm)	
A	20. 88	20.88 21.08		0.99TYP		
A1	0.3	0. 5	D1	0.55	0.95	
A2	1. 2	7TYP	D2	1.45		
A3	0. 71	7TYP	R1			
В	10. 2 10. 6		R2			
B1	7. 42 7. 62		θ 1	8°TYP		
B2	8. 9	TYP	θ 2	15°TYP		
C1	2.14	2.34	θ 3	4°TYP		
C2	0.2 0.32		θ 4	14°TYP		
C3	0.10	0. 25				

DETAIL "X"

I All specs and applications shown above subject to change without prior notice. 似上电路及规格仅供参考 如本公司进行修正,恕不另行通知。)

本应用文档最后更新日期为:2011-10-19