DAFTAR ISI

DAFTAR ISI	i
BAB 1. PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Tujuan Khusus Riset	
1.3 Manfaat Riset	
1.4 Urgensi Riset	
1.5 Temuan yang Ditargetkan	
1.6 Kontribusi Riset	
1.7 Luaran Riset	3
BAB 2. TINJAUAN PUSTAKA	
2.1 Oil Spill Dispersant (OSD)	3
2.2 Nanopartikel Silika	4
2.3 Abu Vulkanik Gunung Sinabung	
2.4 Xanthan Gum	4
BAB 3. METODE RISET	
3.1 Waktu dan Tempat	5
3.2 Bahan dan Alat	5
3.3 Variabel Riset	5
3.4 Tahapan Riset	5
3.5 Prosedur Riset	6
3.6 Luaran dan Capaian Indikator	7
3.7 Analisa Data	7
3.8 Cara Penafsiran Data	8
3.9 Penyimpulan Hasil Riset	8
BAB 4. BIAYA DAN JADWAL KEGIATAN	
4.1 Anggaran Biaya	
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	9
LAMPIRAN	
Lampiran 1. Biodata Ketua dan Anggota, serta Biodata Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	

i

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan negara kepulauan dengan wilayah perairan yang sangat luas. Tingginya aktivitas yang terjadi di perairan Indonesia menimbulkan ancaman terhadap keberlangsungan ekosistem perairan laut dan pesisir Indonesia, Salah satunya potensi pencemaran ekosistem laut berupa tumpahan minyak bumi (Prastyani dan Basith, 2019).

Menurut *Group of Expert on Scientific Aspects of Marine Pollution* (GESAMP), terdapat kandungan hidrokarbon dalam perairan laut dunia sekitar 6,44 juta ton/tahun. Sumber tersebut meliputi sebesar 4,63 juta ton/tahun berasal dari transportasi laut, sebesar 0,18 juta ton/tahun berasal dari instalasi pengeboran lepas pantai, dan sebesar 1,38 juta ton/tahun berasal dari sumber lain termasuk industri dan pemukiman (Amelia, 2022).

Tumpahan minyak di laut tentu akan memberikan dampak yang sangat buruk bagi ekosistem laut. Minyak bumi memiliki kandungan zat kimia berbahaya yang dapat mengganggu kehidupan makhluk hidup di laut. Ikan-ikan dan makhluk hidup laut lainnya yang berada disekitar area tumpahan minyak akan mengandung zat kimia beracun hasil dari tumpahan minyak didalam tubuhnya, sehingga dapat menyebabkan kematian yang akan mengurangi populasi makhluk hidup laut. Selain itu, tumpahan minyak ini juga dapat menyebabkan iritasi pada mata, kulit, dan saluran pernapasan manusia yang dapat berakibat fatal pada kematian. Selain itu juga, minyak ini sulit dibersihkan dari air laut karena minyak berat ini tidak mudah menguap. Hal ini jelas akan menimbulkan penurunan kualitas air laut (Ahyadi dkk., 2021).

Adapun telah dilakukan penanganan yang pemerintah untuk menanggulangi kasus tumpahan minyak di lautan adalah penanganan yang sudah banyak dilakukan pada umumnya, yaitu hanya secara fisik dan kimia. Penanganan ini mempunyai beberapa kelemahan dan berpotensi memberikan dampak yang lebih berbahaya. Seperti penggunaan dispersan dengan bahan kimia yang dilakukan pemerintah dinilai cepat dalam penanganan tumpahan minyak namun, campuran minyak dan dispersan dengan bahan kimia lebih berbahaya dibandingkan dengan minyak mentah itu sendiri sehingga lebih membahayakan ekosistem bawah laut karena dapat terkonsumsi oleh hewan laut dan tersebar melalui rantai makanan.(Wardhani dan Titah, 2020).

Diantara metode penanggulangan kasus tumpahan minyak, metode penambahan *Oil Spill Dispersant* (OSD) merupakan salah satu metode yang dinilai efektif. OSD umumnya adalah campuran surfaktan dengan pelarut organik yang dirancang untuk melakukan proses emulsifikasi (Elvina dkk., 2016).

Dalam beberapa tahun terakhir, emulsi *pickering* atau emulsi yang distabilkan oleh partikel padat menarik banyak perhatian. Keberadaan partikel padat mikro atau nano, sebagai komponen utama emulsi pada antarmuka antara fase minyak dan air menghasilkan emulsi dengan stabilitas unggul, dan toksisitas

lebih rendah dibandingkan dengan emulsi klasik yang distabilkan oleh surfaktan. Partikel yang digunakan untuk emulsi *pickering* antara lain adalah nanopartikel silika, nanopartikel CaCO₃, tanah liat, zein, partikel magnetis, kitosan, partikel lateks, dan partikel biopolimer (Zhao dkk., 2018).

Abu vulkanik Gunung Sinabung memiliki kandungan kimiawi utama berupa Silika (SiO₂) lebih tinggi bila dibandingkan dengan kandungan abu vulkanik beberapa gunung berapi yang ada di Indonesia (Simatupang, 2021). Silika merupakan partikel inorganik yang dikategorikan aman, tidak beracun, dan ramah lingkungan dan merupakan dispersan minyak bumi yang baik pada perairan (Bariyah dan Simatupang, 2021). Berlimpahnya material abu serta tingginya kandungan silika abu vulkanik Gunung Sinabung sangat berpotensi untuk dimanfaatkan sebagai nanopartikel silika dalam emulsi *pickering*.

Telah dikonfirmasi dalam riset sebelumnya bahwa polimer mampu memfasilitasi adsorpsi partikel padat pada antarmuka minyak-air dan berkontribusi pada stabilisasi emulsi bahkan tanpa menurunkan tegangan antar muka. *Xanthan Gum* (XG) adalah polimer ekstraseluler yang diproduksi oleh bakteri *Xanthomonas campestris*. XG memainkan peran penting dalam aplikasi industri sebagai pengental, penstabil emulsi, dan telah ditambahkan ke cairan pengeboran berbasis air karena perilaku pseudoplastik dan stabilitas termalnya (Petri, 2015).

Berdasarkan latar belakang masalah yang telah dipaparkan, riset ini dilakukan dengan tujuan untuk melakukan pembuatan OSD berbasis biopolimer dari nanopartikel silika dari abu vulkanik Gunung Sinabung dan *xanthan gum* serta mengetahui pengaruh komposisi biopolimer bahan-bahan tersebut terhadap OSD yang dihasilkan. OSD yang dihasilkan dari riset ini diharapkan dapat menjadi alternatif solusi dari permasalahan lingkungan yang ditimbulkan oleh tumpahan minyak bumi di perairan dengan kualitas dan efektivitas yang mampu mendekati OSD komersial yang beredar di pasaran dan sesuai standar membantu mewujudkan salah satu program pemerintah yang ada yaitu SDGs terutama *goals* ke-14 yaitu perlindungan ekosistem laut.

1.2 Tujuan Khusus Riset

Tujuan khusus yang diharapkan adalah dapat menghasilkan dan menganalisis efektivitas dan kualitas dari *Oil Spill Dispersant* (OSD) yang dihasilkan dari biopolimer nanopartikel silika dari abu vulkanik gunung Sinabung dan *xanthan gum* dan membantu mewujudkan salah satu program pemerintah yang ada yaitu SDGs terutama *goals* ke 14 yang bertujuan untuk perlindungan ekosistem laut.

1.3 Manfaat Riset

Hasil riset ini diharapkan akan memberikan manfaat dan sumbangan pemikiran bagi pemerintah dan ilmu pengetahuan dalam upaya mengembangkan *Oil Spill Dispersant* ramah lingkungan yang berbasis nanopartikel silika abu vulkanik Gunung Sinabung dan *xanthan gum*.

1.4 Urgensi Riset

Riset ini dilakukan atas dasar urgensi untuk mengatasi masalah pencemaran lingkungan yang dihasilkan dari tumpahan minyak bumi ke perairan dan beralih dari OSD yang bersifat toksik ke produk OSD yang lebih ramah lingkungan dengan memanfaatkan limbah yang terdapat di alam seperti abu vulkanik gunung Sinabung.

1.5 Temuan yang Ditargetkan

Melalui riset ini ditargetkan dapat dihasilkan OSD berbasis nanopartikel silika dari abu vulkanik gunung Sinabung dan *xanthan gum* yang memiliki kualitas dan efektivitas yang baik sebagai dispersan dan lebih ramah lingkungan.

1.6 Kontribusi Riset

Hasil dari riset ini diharapkan membawa kontribusi bagi bangsa Indonesia dalam menambah ilmu pengetahuan khususnya di bidang pengelolaan pencemaran minyak bumi di perairan dengan menggunakan dispersan berbasis biopolimer dari bahan alami berupa abu vulkanik gunung Sinabung dan *xanthan gum* sebagai salah satu solusi untuk mengatasi pencemaran lingkungan akibat tumpahan minyak bumi.

1.7 Luaran Riset

Luaran yang diharapkan dari pelaksanaan PKM-RE ini adalah laporan kemajuan dan laporan akhir tentang pembuatan OSD, produk OSD berbasis nanopartikel silika yang ramah lingkungan, artikel ilmiah yang akan dipublikasi pada jurnal nasional terakeditasi sehingga dapat menjadi sumber referensi bagi masyarakat luas, dan akun media sosial untuk publikasi kegiatan riset yang dilaksanakan dan diiklankan pada jadwal yang ditentukan.

BAB 2. TINJAUAN PUSTAKA

2.1 Oil Spill Dispersant

Oil Spill Dispersant (OSD) umumnya adalah campuran surfaktan dengan pelarut organik yang dirancang untuk melakukan proses emulsifikasi. Dalam aplikasinya pada tumpahan minyak, OSD akan memecah limbah tumpahan minyak menjadi butiran kecil sehingga dapat menyebar di perairan secara alami. Dalam aplikasinya pada tumpahan minyak, OSD akan memecah limbah tumpahan minyak menjadi butiran kecil sehingga dapat menyebar di perairan secara alami (Elvina dkk., 2016). Beberapa bahan yang telah digunakan untuk pembuatan OSD dapat dilihat pada Tabel 2.1.

Tabel 2.1 Bahan-Bahan *Oil Spill Dispersant* yang telah diteliti

Bahan Aktif Digunakan	Keterangan	Sumber
Dietanolamida (DEA)	Bahan baku bersifat toxic pada	Elvina dkk. (2016)
dan Metil Ester	lingkungan namun memiliki	
Sulfonat (MES)	kualitas yang baik	
Ricinus Communis L.	Bahan baku sulit didapat	Hasibuan dkk.
	pembuatannya rumit tetapi	(2019)

	memiliki kualitas yang baik.	
Silika Pasir Laut	Bahan baku mudah didapat	Bramantya dkk.
	tetapi kualitas kurang baik	(2018)

2.2 Nanopartikel Silika

Silika atau dikenal dengan silikon dioksida (SiO₂) adalah senyawa kimia yang berasal dari asam silikat mineral, sintesis tanaman, dan kristal. (Hasri dkk., 2021). Silika merupakan partikel inorganik yang dikategorikan aman, tidak beracun, dan ramah lingkungan dan merupakan dispersan minyak bumi yang baik pada perairan. Diperlukan pengolahan khusus pada sintesis silika untuk mencapai skala nano dengan menggunakan beberapa metode seperti metode sol-gel, metode fasa gas, metode kopresipitasi, metode teknik emulsi, metode injeksi plasma, dan *sputtering* (polimerisasi silika terlarut menjadi organo silikon dioksida) (Hasan dan Sinulingga, 2017).

Nanopartikel silika memiliki beberapa sifat seperti luas permukaan yang besar, kekuatan mekanik yang tinggi dan inert, memiliki stabilitas yang baik, juga tingkat biokompatibilitas dan biodegradasi yang sangat baik (Zhang dkk., 2019). Sifat-sifat ini membuat nanopartikel silika sesuai dan memiliki potensi yang baik untuk diaplikasikan sebagai OSD.

2.3 Abu Vulkanik Gunung Sinabung

Gunung Sinabung adalah gunung berapi yang berada di Kabupaten Karo, Sumatera Utara. Gunung Sinabung kembali aktif dan mengalami letusan pertama pada tanggal 29 Agustus 2010 sejak tahun 1600. Letusan Gunung Sinabung berdampak bagi daerah sekitarnya, terutama untuk kesehatan penduduk (Manurung dan Trilaksono, 2016). Letusan ini mengeluarkan awan panas dan abu vulkanik. Data BNPB menyebutkan diperkirakan sejak gunung Sinabung meletus tahun 2010 hingga saat ini wilayah tersebut menerima ± 250 juta ton abu (Simatupang, 2021).

Selain memiliki dampak negatif bagi lingkungan, abu vulkanik dari letusan Gunung Sinabung yang melimpah juga dapat dimanfaatkan karena kandungan kimiawi yang terdapat pada abu vulkanik tersebut. Kandungan kimia pada abu vulkanik yang dihasilkan letusan Gunung Sinabung pada 11 Januari 2014 adalah SiO₂ sebesar 58,1%, Al₃O₂ sebesar 18,3%, dan CaO sebesar 8,05 hingga 7,09%. Kandungan SiO₂ yang tinggi pada abu vulkanik dapat dimanfaatkan sebagai bahan pembuatan nanopartikel silika (Bariyah dan Simatupang, 2021).

2.4 Xanthan Gum

Xanthan gum merupakan polisakarida ekstraseluler yang disekresikan oleh bakteri Xanthomonas campestris. Xanthan gum dapat diubah menjadi produk komersial dengan proses fermentasi kultur bakteri murni dalam kondisi anaerobik. Kultur bakteri diaerasi pada media yang mengandung glukosa, sumber nitrogen, dan beberapa elemen jejak (urea) yang digunakan sebagai sumber nitrogen. Xanthomonas campestris tumbuh di lingkungan yang kaya nitrogen, dimana

konsentrasi biomassa dibatasi oleh sumber nitrogen dan produksi *xanthan gum* diatur oleh karbon (Gustiani dkk., 2017).

Xanthan gum sering digunakan di berbagai industri sebagai penstabil, pengental, dan pengemulsi. Viskositas yang tinggi dan kelarutan air dari polimer ini juga membuat xanthan gum menjadi bagian yang penting dari industri pengeboran dan pemurnian minyak. Dalam industri perminyakan, xanthan gum digunakan dalam jumlah yang besar, biasanya untuk pengentalan lumpur pengeboran. Fungsi fluida ini adalah untuk membawa benda padat kembali ke permukaan selama pengeboran (Hasan dkk., 2018).

BAB 3. METODE RISET

3.1 Waktu dan Tempat

Riset ini akan dilaksanakan selama 5 bulan di Laboratorium Penelitian, Laboratorium Kimia Fisika, Departemen Teknik Kimia dan Laboratorium Penelitian Terpadu, Universitas Sumatera Utara, Medan.

3.2 Bahan dan Alat

Bahan yang akan digunakan pada kegiatan riset ini adalah daun *Xathan Gum*, *Tetradecane* 98%, Akuades, NaCl, NaOH, HCl, Abu Vulkanik Gunung Sinabung, dan Air Laut. Sedangkan alat yang akan digunakan pada riset ini adalah *beaker glass*, erlenmeyer, corong, gelas ukur, batang pengaduk, termometer, homogenizer, pH meter, *viscometer otswald*, *hotplate*, *magnetic strirer*, *oven*, kertas saring, pipet tetes, desikator, *Microscope Camera*, kamera, mikroskop optik, dan neraca analitik

3.3 Variabel Riset

Variabel independen dalam riset ini berupa perbandingan campuran dari Xathan Gum dan Nanopartikel Silika yaitu berupa (1:1), (1:2), dan (2:1). Variabel lainnya berupa perbandingan penambahan emulsi ke dalam media tercemar berupa (1:2), (1:3), dan (1:4). Variabel dependen dalam riset ini berupa pH, viskiositas, indeks emulsifikasi, konduktivitas, pengenceran drop, interface surface tension, SEM, dan uji parameter reologi serta hasil remediasi limbah diuji kadar COD, BOD, pH, dan viskositas.

3.4 Tahapan Riset

3.5 Prosedur Riset

3.5.1 Pembuatan Nanopartikel Silika dari Abu Vulkanik

Abu vulkanik diayak dengan ayakan 230 mesh untuuk menghomogenkan ukuran abu. Abu yang telah diayak diambil sebanyak 50 gram diperoleh lalu dicuci dengan air. Perbandingan volume air dan serbuk silika sebesar 1:4. Pencucian dilakukan dengan menggunakan magnetic stirrer selama 2 jam. Serbuk silika yang telah dicuci kemudian disaring dan dikeringkan dalam *oven* pada suhu 100 °C selama 1 hari. 20 g silika yang sudah dicuci kemudian ditambahkan dengan NaOH 1,5 N sebanyak 800 mL ke dalam gelas piala. Campuran tersebut kemudian diaduk menggunakan magnetic stirrer dengan pemanasan dijaga konstan pada suhu 90 °C dalam waktu 60 menit. Campuran hasil reaksi didiamkan sampai suhu kamar. Campuran kemudian disaring dengan kertas saring untuk memisahkan larutan natrium silikat dengan serbuk silika. Larutan natrium silikaditeteskan dengan HCl 2 N sampai terbentuk gel dan sampai mencapai pH 4. Gel didiamkan (aging) selama 18 jam. Gel yang telah kaku dilakukan pencucian dengan aquades sampai tercapai pH 7 dan dilakukan pengeringan dalam oven dengan suhu 100 °C selama 3 hari. Setelah itu dilakukan penggerusan dengan mortar sehingga didapatkan serbuk silika.

3.5.2 Pengujian Nanopartikel

Nanopartikel silika lalu dianalisis ukurannya dengan melakukan pengujian Particle Size Analyzer yang akan dilakukan di Laboratorium Nanomedicine Fakultas Farmasi Universitas Sumatera Utara.

3.5.3 Pembuatan Emulsi

Pembuatan emulsi dilakukan dengan menghomogenisasikan larutan xathan gum dan nanopartikel silika. Larutan *xathan gum* dibuat dengan mencampurkan *xathan gum* pada akuades dengan konsentrasi 0,4% (b/v) dan dibiarkan di suhu kamar sebelum 24 jam sebelum dicampurkan. Larutan silika juga dicampurkan pada akuades dengan konsentrasi 0,1% (b/b). Larutan *xathan gum* lalu dimasukkan kedalam larutan silika dengan variabel riset 1:1; 1:3; 3:1 (b/b) pada suhu kamar dan dicampurkan dengan batang pengaduk selama 5 menit. Kedua campuran ini lalu dibiarkan selama 30 menit.

3.5.4 Pengujian Emulsi pada Media Tercemar Limbah Minyak Bumi

Pembuatan sampel pencemaran limbah minyak bumi pada air laut dilakukan dengan mencampurkan *tetradecane* dengan air laut pada perbandingan 1:16 (b/b). Sampel tercemar ini lalu ditambahkan pada larutan emulsi dengan variabel perbandingan 1:2; 1:3; 1:4 (b/b) dengan larutan emulsi. Selanjutnya, campuran ini langsung dihomogenisasikan dengan bantuan *mixer* pada kecepatan 11.000 rpm selama 2 menit. Emulsi diamati oleh mikroskop optik. Emulsifikasi ditentukan oleh persentase ketinggian lapisan emulsi dibagi dengan tinggi total campuran selama periode 24 jam, yang dinyatakan sebagai Indeks Emulsifikasi (EI24). Nilai EI dinilai melalui pergerakan antarmuka emulsi–air dengan kamera. Stabilitas

emulsi ditentukan oleh variansi ukuran tetesan minyak dan nilai EI dari waktu ke waktu.

3.6 Luaran dan Capaian Indikator

Tabel 3.1. Luaran dan Capaian Indikator Riset

No.	Kegiatan	Luaran	Indikator
1.	Studi literatur	Jurnal riset	Didapatkan jurnal riset yang
			benar dan sesuai
2.	Izin riset	Surat izin riset	Didapatkan surat izin riset di
			Laboratorium Penelitian FT
			USU dan Laboratorium
			Terpadu FMIPA USU
3.	Penyiapan alat	Alat dan bahan	Didapatkan alat dan bahan
	dan bahan		yang dibutuhkan
4.	Pengambilan	Data hasil	Didapatkan data pengujian pH,
	data	pengujian produk	viskiositas, emulsifikasi indeks,
		biopolimer	konduktivitas, pengenceran drop,
		sebagai <i>pickering-</i>	interface surface tension, SEM,
		<i>emulsion</i> untuk	dan uji parameter reologi produk
		remediasi minyak	emulsi. Diperoleh pengujian
		bumi di air laut.	COD, BOD, pH, dan viskiositas
			untuk limbah hasil remediasi.
5.	Pembuatan	Laporan kemajuan	Laporan kemajuan
	Laporan		didapatkan
	Kemajuan		
6.	Pengolahan data	Analisis data	Didapatkan data yang sesuai
7.	Pembuatan	Laporan akhir	Laporan akhir dididapatkan
	laporan akhir		
8.	Pembuatan	Artikel ilmiah	Artikel ilmiah dimuat pada
	artikel ilmiah	mengenai	jurnal.
		hasil riset	
9.	Pembuatan dan	Konten di akun	Publikasi kegiatan yang
	Pengunggahan	media sosial	dipromosikan melalui akun media
	konten ke media	terkait riset	sosial secara reguler dan terdapat
	sosial		5 postingan yang diiklankan (ads)

Seluruh rangkaian kegiatan riset ini akan dipublikasikan secara reguler melalui akun media sosial berupa postingan mingguan. Sebanyak 5 postingan diantaranya akan diberi adsense (ads) yang ditayangkan pada tanggal 25 April 2023, 25 Mei 2023, 25 Juni 2023, 25 Juli 2023, dan 25 Agustus 2023, pukul 12.00 WIB.

3.7 Analisis Data

Produk emulsi hasil penggabungan biopolimer nanopartikel silika dan *xathan gum* dikarakterisasi dengan uji indeks emulsifikasi dan uji pengenceran

drop serta konduktivitas untuk menentukan jenis emulsinya. Sifat fisiko-kimianya juga diuji berupa pH dan viskiositasnya untuk melihat kelarutan dalam air laut. Kefektivitasannya dalam meremediasi minyak bumi diuji dengan *interface surface tension* untuk melihat interaksi antar pemukaan emulsi dengan media tercemar. Mekanisme pengemulsiannya diamati secara mikroskopis dengan bantuan SEM dan diuji kestabilitasannya dengan uji parameter reologi dengan melakukan pengukuran osilasi untuk menentukan modulus penyimpanan (G') dan modulus kehilangan (G") untuk frekuensi mulai dari 0,01 hingga 50 Hz pada regangan tetap 0,1 Pa. Selanjutnya hasil remediasi limbah diuji kadar COD, BOD, pH, dan viskiositasnya untuk menguji apakah hasil remediasi sudah sesuai dengan baku mutu limbah.

3.8 Cara Penafsiran Data

Penafsiran data yang diperoleh dilakukan dengan membandingkan data pengujian yang diperoleh. Pengujian produk emulsi akan dibandingkan dengan produk emulsi remediasi konvensional. Hasil remediasi limbah oleh emulsi akan dibandingkan dengan standar dari Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia Nomor 19 Tahun 2010 Tentang Baku Mutu Air Limbah bagi Usaha dan/atau Kegiatan Pengolahan Minyak Bumi.

3.9 Penyimpulan Hasil Riset

Kesimpulan dari hasil riset "Sintesis Biopolimer Nanopartikel Silika dari Abu Vulkanik Gunung Sinabung dan *Xanthan Gum* sebagai Media Remediasi Air Tercemar Minyak Bumi" diambil berdasarkan data-data dari hasil pengujian dan analisa. Penarikan kesimpulan diambil dari data penafsiran dan perbandingan hasil pengujian.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya yang diperlukan dalam riset ini ditampilkan pada Tabel 4.1. Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
1	D. I. I. I. I.	Belmawa	4.775.000
1	Bahan habis pakai	Perguruan Tinggi	500.000
2	a	Belmawa	900.000
2	Sewa dan jasa	Perguruan Tinggi	500.000
3	Transportasi lokal	Belmawa	2.250.000
3		Perguruan Tinggi	-
4	Lain-lain	Belmawa	1.575.000
4		Perguruan Tinggi	-
	Jumlah		
	Rekap Sumber Dana	Belmawa	9.500.000

Perguruan Tinggi	1.000.000
Jumlah	10.500.000

4.2 Jadwal Kegiatan

Jadwal tahap kegiatan yang disusun dalam bentuk *bar chart* sesuai agenda yang dapat dilihat pada Tabel 4.2.

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan			n		Person Penanggung
		1	2	3	4	5	jawab
1	Penyiapan Alat dan Bahan						Roza Dhya Fauziah
2	Pembuatan Nano Partikel						Roza Dhya Fauziah
	Silika dari Abu Vulkanik						
3	Pembuatan Emulsi						Yunita Patricia
4	Pengujian Emulsi pada Media						Farhan Abraar
	Tercemar Limbah Minyak						
	Bumi						
5	Uji Hasil Remediasi Limbah						Muhammad Rafli
							Derriansyah
6	Analisis Data						Cut Fadira Soraya
7	Penulisan Laporan Kemajuan						Farhan Abraar
8	Penulisan Laporan Akhir						Yunita Patricia
9	Pembuatan Artikel Ilmiah						Muhammad Rafli
							Derriansyah
10	Pembuatan dan Mengunggah						Cut Fadira Soraya
	Konten di Akun Media Sosial						

DAFTAR PUSTAKA

- Ahyadi, Y. M., Abimanyu, P. S., dan Muhammad, H. H. 2021. Analisis Dampak Oil Spill di Teluk Balikpapan Terhadap Kehidupan Masyarakat Dalam Perspektif Hukum dan Lingkungan. *Jurnal Bumi Lestari*. 2 (1):18-22
- Amelia, S. 2022. Tumpahan Minyak di Teluk Balikpapan Menimbulkan Permasalahan Lingkungan. *Seri Publikasi Pembelajaran*. 1 (1):1-12.
- Bariyah, S., dan Simatupang, L. 2021. Activation Of Sinabung Mount Volcanic Ash Using Various Mineral Acids. *Indonesian Journal of Chemical Science and Technology*. 4 (1):1-4.
- Bramantya, Yonanda, L.P., Rifaldi, M., dan Oktavian, R., 2018. Sintesis dan Karakterisasi Silika Aerogel Hidrofiik dan Oliofilik Dari Pasir Laut Sebagai Absorben Tumpahan Minyak. *Jurnal Teknik Kimia dan Lingkungan*. 2 (2):49-54
- Elvina, W., Hambali, E., dan Yani, M. 2016. Formulasi Dispersan Minyak Bumi Dari Surfaktan Dietanolamida (DEA) dan Metil Ester Sulfonat (MES). *Jurnal Teknologi Industri Pertanian*. 26 (1):104-110.

- Gustiani, S., Helmy, Q., Kasipah, C., dan Novarini, E. 2017. Produksi dan Karakterisasi Gum Xanthan dari Ampas Tahu Sebagai Pengental Pada Proses Tekstil. *Arena Tekstil.* 32 (2):51-58.
- Hasan, A. E., Yulianto, A., Noviana, I. M., dan Andini, S. P. 2018. Produksi Xanthan Gum Skala Pengembangan Menggunakan Limbah Padat Tapioka. *Junral Ilmiah Teknik Industri*. 6 (2):97-105.
- Hasan, D. B. dan Sinulingga, K. 2017. Sintesis Dan Karakterisasi Nano Partikel Silika Dari Abu Ampas Tebu Sebagaifiller Aluminium. *Jurnal Einstein*. 5(2):1-6.
- Hasibuan, S. Y., Yani M., dan Irdika, M., 2019. The effectiveness of oil spill dispersant addition for phytoremediation of petroleum-contaminated soil using *Ricinus communis L. Journal of degraded and mining lands management*. 6(3) 1811-1819
- Hasri, Fauziah, dan Negara, S. P. 2021. Sintesis Nanosilika Pasir Pantai Takalar Menggunakan Metode Hidrotermal. *Jurnal Sainsmat*. X (2):165-171.
- He, J., Fan, X., Liu, H., He, X., Wang, Q., Liu, Y., Wei, H., dan Wang, B. 2019. The Study On Suaeda Heteroptera Kitag, Nereis Succinea And Bacteria's Joint Bioremediation Of Oil-Contaminated Soilhe Study On Suaeda Heteroptera Kitag, Nereis Succinea And Bacteria's Joint Bioremediation Of Oil-Contaminated Soil. *Microchemical Journal*. 147:872-878.
- Manurung, C. A. dan Trilaksono, N. J. 2016. Kajian Dampak Sebaran Abu Vulkanik Terhadap Kesehatan Studi Kasus: Gunung Sinabung. *Jurnal Dialog Penanggulangan Bencana*. 7 (1):1-16.
- Petri, D. F. 2015. Xanthan Gum: A Versatile Biopolymer For Biomedical And Technological Applications. *Journal Of Applied Polymer Science*. 1-13.
- Prastyani, R., dan Basith, A. 2019. Deteksi Tumpahan Minyak Di Selat Makassar Dengan Penginderaan Jauh Sensor Aktif Dan Pasif. *Elipsoida*. 2 (1):88-94.
- Simatupang, L. 2021. *Material Silika Abu Vulkanik Sinabung: Karakteristik Dan Aplikasi*. Bandung: Media Sains Indonesia.
- Wardhani, W. K., dan Titah, H. S. 2020. Studi Literatur Alternatif Penanganan Tumpahan Minyak Mentah Menggunakan Bacillus subtilis dan Pseudomonas putida (Studi Kasus: Tumpahan Minyak Mentah Sumur YYA-1). *Jurnal Teknik ITS*. 9 (2):F97-F102.
- Zhang, B., Liu, Q., Liu, M., Shi, P., Zhu, L., Zhang, L., dan Li, R. 2019. Biodegradable Hybrid Mesoporous Silica Nanoparticles For Gene/Chemo-Synergetic Therapy Of Breast Cancer. *Journal Of Biomaterials Applications*, 0 (0):1-12.
- Zhao, X., Yu, G., Li, J., Feng, Y., Zhang, L., Peng, Y., Wang, L. 2018. Novel Eco-Friendly Pickering Emulsion Stabilized By Silica Nanoparticles Dispersed With High-Molecular-Weight Amphiphilic Alginate Derivatives. Acs Sustainable Chemistry dan Engineering. 2(3) 1-26.

LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Farhan Abraar
2	Jenis Kelamin	Laki - Laki
3	Program Studi	Teknik Kimia
4	NIM	190405038
5	Tempat dan Tanggal Lahir	Medan 02 Oktober 2001
6	Alamat E-mail	farhanabraar01@gmail.com
7	Nomor Telepon/HP	081264257073

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Covalen Study Group	Anggota Bidang PAL	2021 USU
2	SRE USU	Research and Technology	2022 USU
3	HIMATEK FT USU	Sekretaris Bidang Penelitian dan Pengembangan	2022 USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Finalis PIMNAS 35	Kementrian Pendidikan, Kebudayaan Riset dan Teknologi	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

full

Ketua,

(Farhan Abraar)

A. Identitas Diri

1	Nama Lengkap	Roza Dhya Fauziah
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	190405032
5	Tempat dan Tanggal Lahir	Medan, 30 Januari 2002
6	Alamat E-mail	rozadhyaf@gmail.com
7	Nomor Telepon/HP	081275823469

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Covalen Study Group	Ketua Divisi Pengembangan Literatur dan Akademik	2021 USU
2	SRE USU	Ketua Divisi Manajemen Proyek	2022 USU
3	HIMATEK FT USU	Anggota Bidang Penelitian dan Pengembangan	2022 USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Finalis PIMNAS 35	Kementrian Pendidikan, Kebudayaan Riset dan Teknologi	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Anggota Tim

Runt.

(Roza Dhya Fauziah)

B. Identitas Diri

1	Nama Lengkap	Muhammad Rafli Derriansyah
2	Jenis Kelamin	Laki - Laki
3	Program Studi	Teknik Kimia
4	NIM	190405100
5	Tempat dan Tanggal Lahir	Medan, 14 April 2001
6	Alamat E-mail	mhdrafliderriansyah@gmail.com
7	Nomor Telepon/HP	082164903580

C. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Laboratorium	Asisten Laboratorium	2021 Medan
	Termodinamika Teknik		
	Kimia Departemen		
	Teknik Kimia Fakultas		
	Teknik USU		
2	Gantari Engineering	Ketua Umum	2021 Medan
	Research Club		
3	Badan Koordinasi	Staff Bidang Riset dan	2020 Medan
	Kegiatan Mahasiswa	Teknologi	
	Teknik Kimia Indonesia		
	Daerah VII		
4	Himpunan Mahasiswa	Wakil Kepala Bidang	2020 Medan
	Teknik Kimia Fakultas	Penelitian dan	
	Teknik USU	Pengembangan	

D. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Penerima Pendanaan Proposal	Kementrian Pendidikan,	2022
	Program Kreativitas	Kebudayaan Riset dan	
	Mahasiswa Bidang Riset	Teknologi	
	Eksakta		
2	Finalis Pekan Ilmiah	Kementrian Pendidikan,	2022
	Mahasiswa Nasional ke-35	Kebudayaan Riset dan	
	Universitas Muhammadiyah	Teknologi	
	Malang		
3	Juara 2 Kompetisi Pemilihan	Kementrian Pendidikan,	2022
	Mahasiswa Berprestasi	Kebudayaan Riset dan	
	Program Sarjana di	Teknologi	
	Lingkungan LLDIKTI		
	Wilayah 1 Tahun 2022		

4	Mahasiswa Berprestasi Utama	Universitas Sumatera Utara	2022
	Tingkat Sarjana Universitas		
	Sumatera Utara		
5	Mahasiswa Berprestasi Utama	Fakultas Teknik Universitas	2022
	Fakultas Teknik Universitas	Sumatera Utara	
	Sumatera Utara		
6	Juara 1 Lomba Karya Tulis	PPI Tokodai Tokyo Institute	2021
	Ilmiah Mahasiswa Tokyo	of Technology	1
	Innovation and		1
	Commitment Award		
7	Juara 3 Lomba Karya Tulis	Universitas Syiah Kuala	2021
	Ilmiah Nasional Chemical	- Career	
	Engineering in Action		
	(CHAIN) VII		
8	Mahasiswa Berprestasi I	Universitas Sumatera Utara	2021
	Fakultas Teknik		1
	Universitas Sumatera Utara		
9	Penerima Pendanaan	Kementrian Pendidikan,	2020
	Proposal Program Kreativitas	Kebudayaan Riset dan	
	Mahasiswa Bidang Karsa	Teknologi	
	Cipta		
10	Medali Perunggu Presentasi	Kementrian Pendidikan,	2020
	Pekan Ilmiah Mahasiswa	Kebudayaan Riset dan	
	Nasional ke-33 Universitas	Teknologi	
	Gadjah Mada Bidang PKM-	1	
	Kewirausahaan		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Anggota Tim

(Muhammad Rafli Derriansyah)

A. Identitas Diri

1	Nama Lengkap	Cut Fadira Soraya
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	200405058
5	Tempat dan Tanggal Lahir	Medan, 02 Juni 2002
6	Alamat E-mail	cutfsoraya@gmail.com
7	Nomor Telepon/HP	0831956446332

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
	Covalen Study Group	Bendahara	2022 USU
2	SRE USU	Anggota Divisi Media	2022 USU
3	HIMATEK FT USU	Anggota Bidang Pengabdian Masyarakat	2022 USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan		Tahun	
1	Finalis PIMNAS 35	Kementrian Kebudayaan Teknologi	Pendio Riset	dikan, dan	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Anggota Tim

(Cut Fadira Soraya)

Eworly

A. Identitas Diri

1	Nama Lengkap	Yunita Patricia
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Lingkungan
4	NIM	210407043
5	Tempat dan Tanggal Lahir	Sukaraya, 22 Juni 2003
6	Alamat E-mail	Yunitapatricia22@gmail.com
7	Nomor Telepon/HP	087890745583

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Treehome Sumatera Utara	Kepala divisi Event & Project	2022
2	Society Renewable Energy USU	Staff Human Resource	2022
3	Mengajardidesa (program kementrian pengabdian masyarakat)	Relawan aktif Mengajardidesa	2022

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	•	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Anggota Tim

(Yunita Patricia)

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Ir. Erni Misran, S.T., M.T., Ph.D
2	Jenis Kelamin	Perempuan
	Program Studi	Teknik Kimia
4	NIP/NIDN	197309132000032001 / 0013097301
5	Tempat dan Tanggal Lahir	Medan, 13 September 1973
6	Alamat E-mail	erni_misran@yahoo.com;
		erni2@usu.ac.id
7	Nomor Telepon/HP	0813-7097-7471

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Teknik Kimia	USU	1997
2	Magister (S2)	Teknik Kimia	ITB	2001
3	Doktor (S3)	Teknik Kimia	Universiti Kebangsaan	2014
			Malaysia	
4	Profesi	Teknik Kimia	USU	2019
	Insinyur			

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	Sks
Seme	ster Ganjil		
1.	Azas Teknik Kimia 1	Wajib	2
2.	Proses Pemisahan 1: Distilasi, Absorpsi,	Wajib	3
	Humidifikasi		
3.	Teknik Kesehatan dan Keselamatan Kerja	Wajib	2
4.	Energi Berkelanjutan (S3)	Pilihan	3
Seme	ster Genap		
1.	Azas Teknik Kimia 2	Wajib	3
2.	Komputasi Proses	Wajib	3
3.	Proses Pemisahan 2: Ekstraksi, Leaching,	Wajib	3
	Adsorpsi, Membran		
4.	Elektrokimia	Pilihan	2
5.	Perancangan Proses Lanjut (S2)	Wajib	3
6.	Bioenergi (S2)	Pilihan	3

Riset

No.	Judul Riset	Penyandang Dana	Tahun
1.	Pemanfaatan Karbon Aktif Dari Limbah	Penelitian	
	Biomassa Dalam Pembuatan Membran		2016
	Hibrida Nafion/Karbon Aktif Untuk	Fundamental	

	Duoton Euchano a Mambuan Eucl Call		1
	ProtonExchange Membran Fuel Cell (PEMFC) – Ketua		
2.	Pra Studi Potensi Sampah TPA Terjun untuk Dikonversi Menjadi Listrik – Anggota	Dinas Kebersihan Kota Medan	2016
3.	Hidrolisis Tandan Kosong Kelapa Sawit dengan Iradiasi <i>Microwave</i> - Anggota	BPPTN 2016	2016
4.	Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm</i> <i>Oil</i> - Anggota	Penelitian Produk Terapan Dana DRPM	2017
5.	Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> <i>Blue</i> : Isoterm, Kinetika, Termodinamika, Perpindahan Massa, dan Regenerasi - Ketua	Non-PNBP USU	2017
6.	Pembuatan Biogas dari Sampah Organik Perkotaan Menggunakan Sistem Bioreaktor Anaerobik Berpenyekat	Non-PNBP USU	2017
7.	Pemanfaatan Limbah <i>Fly Ash</i> Sebagai Adsorben Untuk Penyisihan CO ₂ dari Biogas – Ketua	Non-PNBP USU	2018
8.	Pembuatan Membran untuk <i>Proton</i> Exchange Membrane Fuel Cell (PEMFC) dengan Memanfaatkan Limbah Biomassa sebagai Sumber Karbon Aktif dan Limbah Plastik Polietilen - Ketua	Penelitian Dasar DRPM	2018
9.	Ekstraksi Pektin dari Kulit Buah Kakao Melalui Iradiasi Gelombang Mikro – Anggota	USU - Penelitian Terapan	2018
10.	Produksi Ultrafiltrasi Membran Serat Nanoselulosa dari Tandan Kosong Sawit/Polivinil Alkohol (PVA) dengan Metode Elektrospinning - Tahun 1 - Ketua	Penelitian Dasar DRPM	2019
11.		Non-PNBP USU	2019
12.	Produksi Ultrafiltrasi Membran Serat Nanoselulosa dari Tandan Kosong Sawit/Polivinil Alkohol (PVA) dengan Metode Elektrospinning - Tahun 2 - Ketua	Penelitian Dasar DRPM	2020

13.	Pengaruh Variabel Ekstraksi	USU - Penelitan	
	Menggunakan Gelombang Mikro	Tesis Magister	
	Terhadap Proses Regenerasi Spent		2020
	Bleaching Earth Pada Proses Pemucatan		
	Minyak Kelapa Sawit – Anggota		
14.	Pembuatan minyak atsiri dengan metode	USU - Penelitian	2020
	microwave hydro-distillation - Anggota	Terapan	2020
15.	Perbandingan Karakteristik Asap Cair Dari	USU - Penelitian	
	Pirolisis Pelepah Kelapa Sawit Melalui	Terapan	2020
	Proses Adsorpsi - Distilasi Dan Distilasi –		2020
	Adsorpsi - Anggota		
16.	Produksi Ultrafiltrasi Membran Serat		
	Nanoselulosa dari Tandan Kosong	Penelitian Dasar	2021
	Sawit/Polivinil Alkohol (PVA) dengan	DRPM	2021
	Metode Elektrospinning - Tahun 3 - Ketua		
17.	Aplikasi Karbon Aktif Batang Pisang	Penelitian Dasar	
	Sebagai Counter Electrode dan Ekstrak	Unggulan PT -	
	Antosianin Ketan Hitam Sebagai Zat	DRPM	2021
	Warna pada Pembuatan Dye Sensitized		
	Solar Cell (DSSC) – Ketua		
18.	Penggunaan Ultrasonik untuk Intensifikasi	WCU USU	
	Proses Adsorpsi Methylene Blue		2021
	Menggunakan Low Cost Nano-Biosorbent		2021
	Berbasis Kalsium Karbonat - Ketua		

Pengabdian kepada Masyarakat

No.	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1.	IbM Kelompok Petani Karet di Kab. Labuhan Batu Utara	BOPTN USU	2015
	Sosialisasi Bahaya Bahan Kimia Pada Peralatan Memasak Untuk Anggota Perispindo I BICT	Mandiri	2016
3.	Pemanfaatan Asap Cair Hasil Pirolisis Limbah Pelepah Kelapa Sawit untuk Peningkatan Kualitas Bahan Olah Karet	BOPTN USU	2016

	(Bokar) Kelompok Petani Karet Di Desa		
	Sekoci, Kabupaten Langkat		
4	Proses Pengolahan Tanaman Obat		
	(Herba) untuk Terapi Kesehatan	Mandiri	2017
	Alternatif		
5	Pengaruh Zat Kimia dan Parasit dalam		
	Makanan terhadap Kesehatan dan Cara	Mandiri	2017
	Identifikasinya		
6	Pengoperasian Bioreaktor Berpengaduk	BOPTN USU	2017
	Ribbon untuk Pembuatan Pupuk Organik	BOP IN USU	2017
7	Sosialisasi Penyakit Menular untuk	Mandiri	2018
	Anggota Aisyiyah Cabang Medan Johor	Mandiri	2018
8	Sosialisasi tentang Gaya Hidup Sehat		
	untuk Badan Pengurus Pusat Perispindo	Mandiri	2018
	I		
9	Aplikasi Teknologi Pencampuran dan		re
	Pengemasan untuk Pengembangan	DODTNIJIGI	2010
	Usaha Rumah Tangga Pembuatan Sabun	BOPTN USU	2019
	Mandi Cair		
10	Peningkatan Mutu dan Efisiensi	Non PNBP USU -	
	Produksi serta Pengembangan Usaha	Program	
	Pengolahan Bawang Hitam pada	Pengembangan	2020
	UMKM Gempar Tunggal (Anggota)	Produk Unggulan	
		Daerah (PPPUD)	
11	Pemberdayaan Ibu Rumah Tangga di		
	Lingkungan LKP Girly Mode melalui	Non PNBP USU-	
	Keterampilan Tenun Ikat Shibori serta	Kemitraan Mono	2021
	Peningkatan Pengetahuan Terakit Zat	Tahun Reguler	
	warna dan Buangannya (Ketua)		
			American Company

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Dopsen Pendamping

(Erni Misran)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
1	Belanja Bahan			
	Akuades	20 L	10.000	200.000
	Xanthan Gum	1 kg	135.000	135.000
	Tetradecane 98%	250 mL	96.000	906.000
	HCL 37%	100 gram	190.000	190.000
	PH meter Digital	1 buah	455.000	55.000
	NaOH	100 gram	115.000	115.000
	HCl	1 L	125.000	125.000
	NaCl	300 gram	80.000	240.000
	Kertas Saring	2 pack	180.000	360.000
	Tisu	6 gulung	12.000	72.000
	Ayakan 250 mesh	2 buah	10.000	20.000
	Wadah uji sampel 50 mL	20 buah	15.000	300.000
	Hotplate Magnetic stirrer	1 unit	973.000	973.000
	Viscometer otswald	1 unit	300.000	300.000
	Alumunium Foil	3 gulung	27.000	81.000
	Microscope Camera	1 buah	384.000	384.000
	Termometer Digital	1 buah	425.000	425.000
	SUB TOTAL			5.275.000
2	Belanja Sewa			
	Sewa Lab Operasi Teknik Kimia	3 bulan	200.000	600.000
	Sewa Lab Penelitian	3 bulan	200.000	600.000
	Sewa Lab Kimia Fisika	1 bulan	200.000	200.000
	SUB TOTAL	1 Dulaii	200.000	1.400.000
3	Perjalanan Lokal			1.400.000
	Biaya transportasi pembelian	3 bulan	200.000	600.000
	bahan dan peralatan	3 outaii	200.000	000.000
	Keperluan uji coba	3 bulan	200.000	600.000
	Biaya Ongkos Pengiriman	3 bulan	300.000	900.000
	Transportasi Pendampingan	3 kali	50.000	150.000
	SUB TOTAL	3 Kali	30.000	2.250.000
4	Lain-lain			2.230.000
	Masker	4 kotak	25.000	100.000
	Sarung tangan	3 kotak	50.000	150.000
	Hand Sanitizer 500 mL	1 botol	25.000	25.000
	Uji SEM EDX	3 sampel	200.000	600.000
	Uji COD, BOD	3 sampel	150.000	450.000
	Adsense Media Sosial	5 kali	50.000	250.000
	SUB TOTAL	J Kall	30.000	1.575.000
	GRAND TOTAL			10.500.000
GDAN	ND TOTAL (Terbilang Sepuluh Ju	ta Lima Dat	ue Dibu Duniah)	10.300.000
OIVAI	10 101 VI (Terollaris Sebarali Ja	ia Liiia Kal	us Kibu Kupiaii)	

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/ NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Farhan Abraar/ 190405038	Teknik Kimia	Teknik	9	Pengujian emulsi pada media tercemar limbah minyak bumi dan penulisan laporan kemajuan.
2	Roza Dhya Fauziah/ 190405032	Teknik Kimia	Teknik	8	Pembuatan nano partikel silika dari abu vulkanik dan penyiapan alat dan bahan.
3	Muhammad Rafli Derriansyah/ 190405100	Teknik Kimia	Teknil	7	Uji hasil remidiasi limbah dan penulisan laporan akhir.
4	Cut Fadira Soraya /20405058	Teknik Kimia	Teknik	8	Pembuatan artikel ilmiah, analisis data, dan pembuatan konten akun media sosial.
5	Yunita Patricia/ 210407043	Teknik Lingkungan	Teknik	7	Pembuatan emulsi.

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang berhubungan di bawah ini:

:	Farhan Abraar
:	190405038
:	Teknik Kimia
:	Ir. Erni Misran, S.T.,M.T., Ph.D
:	Universitas Sumatera Utara
	:

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Sintesis Biopolimer Nanopartikel Silika dari Abu Vulkanik Gunung Sinabung dan Xanthan Gum sebagai Media Remediasi Air Tercemar Minyak Bumi yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Medan, 14-2-2023

Yang Menyatakan,

(Farhan Abraar)

47AKX288584033

NIM. 190405038