17 Второй и третий законы Ньютона

Если результирующая сила, действующая на тело, *не равна нулю*, то в ИСО¹ тело движется с ускорением. На рис. 1 показан опыт с толканием тележки.

Рис. 1. Наблюдатель толкает тележку

Наблюдатель H действует на тележку T вправо силой $\vec{F}_{\text{наблюдателя}}$. Кроме того тележка притягивается к планете вниз силой $\vec{F}_{\text{планеты}}$ и отталкивается от поверхности вверх силой $\vec{F}_{\text{поверхности}}$; при этом $\vec{F}_{\text{планеты}} + \vec{F}_{\text{поверхности}} = 0$.

В этом случае² на тележку действует результирующая сила, равная $\vec{R}_{\rm T} = \vec{F}_{\rm планеты} + \vec{F}_{\rm поверхности} + \vec{F}_{\rm наблюдателя} = \vec{F}_{\rm наблюдателя} \neq 0$, и тележка приобретает ускорение $\vec{a}_{\rm T}$. Также наблюдатель заметил, что чем больше результирующая сила $\vec{R}_{\rm T}$ — тем больше ускорение $\vec{a}_{\rm T}$, причем $\vec{R}_{\rm T}$ и $\vec{a}_{\rm T}$ сонаправлены.

Связь результирующей силы с ускорением дает второй закон Ньютона.

Второй закон Ньютона. Результирующая сила, действующая на тело, равна произведению массы тела на его ускорение:

$$\vec{R} = m\vec{a}.\tag{1}$$

С другой стороны, наблюдатель ощущает действие на себя со стороны тележки, которая как бы «мешает» ему двигаться вправо (рис. 2).

Рис. 2. Взаимодействие наблюдателя и тележки

Действительно, и тележка в рассматриваемом опыте действует на наблюдателя (сила $\vec{F}_{\text{тележки}}$) — ведь если резко «убрать» тележку, то наблюдатель устремится туда, куда происходит толкание, то есть вправо. (Вообще любые силы носят взаимный характер: если тело A действует на тело B, то и тело B действует на тело A.)

Третий закон Ньютона. Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению (при этом обе силы лежат на одной прямой):

$$\vec{F}_{1\to 2} = -\vec{F}_{2\to 1},\tag{2}$$

где $\vec{F}_{1\to 2}$ — сила, действующая на второе тело со стороны первого; $\vec{F}_{2\to 1}$ — сила, действующая на первое тело со стороны второго.

Так, согласно третьему закону Ньютона: $F_{\text{наблюдателя}} = F_{\text{тележки}}$ (рис. 2).

¹Инерциальная система отсчета.

²Под колесами гладкая поверхность.