Lecture 12 Pricing IV: Consumer Self Selection

15.011/0111 Economic Analysis for Business Decisions Oz Shy

Why is market segmentation needed? (Review)

- Just setting 2 prices (for all consumers) cannot enhance profit b/c all consumers will choose the lower price option <u>Example</u>: Setting p^H=\$2 and p^L=\$1 for the same good, all consumers will choose to pay p^L=\$1 [thereby making the price p^H irrelevant]
- 2. A market segmentation strategy would
 - 'prevent' high willingness-to-pay consumers from selecting the lower price option
 - while allowing low willingness-to-pay consumers to select the low-price option

Examples to be discussed in class: Student discount, "damaged goods" (delay in delivery, removal of options), senior discount, advance purchase, economy versus business class)

Market segmentation: Information available to the seller about consumer type

Consumer type is <u>observable</u>

Office 365 University

- For 2 devices, including PCs, Macs, iPads, Android, or Windows tablets
- 1TB online storage for 1 user
- 60 minutes monthly Skype calls for 1 user¹
- · Ongoing access to updates

Student price

\$79.99 4-year subscription

1 PC only

Office Home & Student 2016

- · For 1 PC
- . Store files in the cloud with OneDrive
- View, share or edit your documents online
- Great new Word and Excel templates

\$149.99

Unobservable

2 or 3 day shipping

Simple example of segmentation via menu pricing (assuming $MC_H = MC_L = 0$)

Willingness to pay by consumer type

Consumer type	High speed (HS)	Low speed (LS)
Business	\$2,000	\$500
Households	\$300	\$200

Suppose we set $P_1 = 200 , so households could buy LS

Class discussion: what should be the profit-maximizing price of a high-speed printer to induce business consumers to purchase it?

That is, $P_H = $$ \$?

Simple example of segmentation via menu pricing (con'd)

Willingness to pay by consumer type

Consumer type	High speed (HS)	Low speed (LS)
Business	\$2,000	\$500
Households	\$300	\$200

Suppose we set $P_1 = 200 , so households could buy LS

If businesses buy the LS, their CS(Bus., LS) = \$500-\$200=\$300, so they will NOT pay P_H = \$2,000 for HS!

Solution: Set $P_H = \$2,000 - \$300 = \$1,700$ (or \$1699) to include business consumers to buy the HS (instead of LS) printer

Two consumer groups: Tennis club example

To simplify today's discussion: We will be using the same two types of consumer: Serious & casual players

$$Q_c^{\circ}$$
 = # hours/week played by casual players

Assume 2,000 consumers (k = 1,000 players of each type)

$$Q_S = 6 - P \Leftrightarrow p = 6 - Q_S$$
 $Q_C = 3 - \frac{1}{2}P \Leftrightarrow p = 6 - 2Q_C$

Club (seller's) cost structure: MC = 0 and TFC = \$5000

<u>Information issues</u>: (1) Seller can recognize each consumer type and charge different prices to different consumers (2) Seller cannot recognize each type of consumer (player)

Setup 1: Seller can observe consumer type and price discriminate

Set two separate two-part tariffs:

P= price-per-hour + F (membership fee/week)

Casual:
$$P = MC = 0 \& F_c = \$9$$
; Serious: $P = MC = 0 \& F_c = \$18$;

$$\Pi = \$9k + \$18k - \$5k = \$22k = \$22,000$$

Setup 2a: Seller cannot observe consumer type and serves serious player only (high fee)

Set a one (high) two-part tariff:

P= price-per-hour + F (membership fee)

All consumers: P = MC = 0 & F = \$18;

Casual players will not buy because CS = \$9 < \$18 = F

Setup 2b: Seller cannot observe consumer type and serves both player types (low fee)

Set a one (low) two-part tariff:

P= price-per-hour + F (membership fee)

All consumers: P = MC = 0 & F = \$9 = CSc;

Serious players will also buy because $CS_s = \$18 > \$9 = F$

$$\Pi = 2 \cdot \$9k - \$5k = \$13k = \$13,000$$

which yields the same profit as under option 2a (previous slide)

Setup 2c: Seller cannot observe consumer type and serves both player types (P > MC)

Set a one two-part tariff (but, with P > MC): Try: All consumers: $P = \$2 > MC = 0 \& F = \$4 = CS_c$ Rev from $C = \frac{1}{4} + \frac{1}{4}$ Rev from S =+ 4 + 4 $\Pi = 2,000F + 1,000P(Q_C + Q_S) - 5,000$ $= 2,000 \cdot \$4 + 1,000\$2(2 + 4) - 5,000$ = \$15,000 > \$13,000Note: Setting P = \$1.5 would yields Π = \$15,250 2 = Qc 3Qs = 46

The consumer self-selection problem

But, what can the seller do if she does not distinguish among different by types (WTP)?

- Some consumers spend the entire day blaa-blaa over the phone
- Some consumers speak less than 1 minute a day
- But, the carrier (T-mobile, Verizon, AT&T) does not know which one is which
- If you ask the consumers, they will state that they have low willingness to pay (why do you want to reveal that you really like the phone and pay more?)
- The carrier's problem: Design "packages" that appeal to different groups of consumers

Hence, by selecting different packages, consumers will end up revealing their type

Consumer self-selection: Example

T··Mobile·

1 GB
4G LTE DATA

\$50 /MO. INCLUDES:
UNLIMITED TALK,
TEXT & DATA
More Details Below ➤

MOST POPULAR

3 GB 4G LTE DATA

\$60 /MO. INCLUDES:
UNLIMITED TALK,
TEXT & DATA
More Details Below >

5 GB 4G LTE DATA

\$70 /MO. INCLUDES: UNLIMITED TALK, TEXT & DATA

More Details Below >

UNLIMITED

4G LTE DATA*
ON-SMARTPHONE ONLY

\$80 /MO. INCLUDES: UNLIMITED TALK, TEXT & DATA
More Details Below >-

Individual Voice Plans (price per month)

	450 minutes	900 minutes	Unlimited
verizon	\$40	\$60	\$70
€ at&t	\$40	\$60	\$70
Sprint 🎾	\$70	\$90	\$100

Targeting low-use consumers:

Pay As You Go

\$3 per month includes 30 minutes of two, up to 30 and lets you keep

10¢ per min | 10¢ per text

Setup 3a: Seller cannot observe consumer type and sells 2 two packages (menu pricing)

In-class problem: Compute the club's profit-maximizing membership fees for two packages:

- 1. Gold membership: 6 hours/wk selling for for $F_a = $$ \$\$
- 2. Silver membership: 3 hours/wk selling for $F_s = 9$ \$\$\$

Setup 3a: Seller cannot observe consumer type and sells 2 two packages (menu pricing)

Setup 3b: Seller cannot observe consumer type ("improved" menu pricing)

"Damage" the silver package a bit (offer q hours, q < 3)

Tying products (bundling)

Selling several products "bundled" in a single basket (single price), versus selling each product separately (unbundling)

Software bundling

Internet bundling

Offer & Pricing Details

16

Tying products (bundling) assuming MC=0

Consumer type (I and II)	Spreadsheet (good A)	Word processor (good B)
I (max willingness to pay)	\$8	\$3
II (max willingness to pay)	\$2	\$8

No tying (no bundling): Selling A and B as separate products. Profit-maximizing prices are $P_A = P_B = \$8$. Profit = \$16 Note: Consumer I buys good A only. Consumer II buys B only

Tying (bundling): Sell only a package (bundle containing A & B for P = \$10. Profit = \$20