Xishun Zhao *

November 23, 2012

Abstract

Given f, g, and H such that $f + H \in MU(1), g + H \in MU(1)$. Then

$$\forall h \in H, (H-h) + \{f, g\}$$
 is satisfiable

Proof. For n = 1, it is clearly true.

Then by induction and the disjoint splitting property of MU(1) formulas

Suppose $\Phi := Q\varphi$ with $\varphi = H + \{f, g\}$ with the above property. Then (conjecture) Φ is true iff both Q(H + f) and Q(H + g) are ture

Need the following property.

 $F \in MU(1)$. $f, g \in F$, a path from f to g

 $f_1 = f, \dots, f_n = g$ and L_1, \dots, L_n such that

 $L_1 \in f_1, \neg L_i, L_{i+1} \text{ are in } f_{i+1} \text{ for } i = 1, \dots, n-1, \neg L_n \in f_n.$

Claim: Let $f, g \in F$, π_1, π_2 are two paths from f to say to g_1 and g_2 . Then the two path are compatable, that is, they do not contain complementary literals.

Proof. For n = 1 clearly. For n > 1 by using disjoint splitting.

So, in this case, QMU(2) is solvable in polynomial time.

Suppose F is lean d(F) = 2.

Case 1. $F - \{f\} \in MU(1)$, and for all $h \in F - \{f\}$, $F - \{h\}$ is satisfiable.

Case 2. $F - \{f\} \in MU(1)$, and there is $g \in F - f$, F - g is in MU(1) (then this case)

Case 3. $F' \subseteq F \in MU(1)$ such that F - F' has more than one clauses.

Case 4. $F \in MU(2)$

^{*}Corresponding author. Tel: 0086-20-84114036, Fax:0086-20-84110298.

1 General Structure of LEAN(2)

Suppose $F \in MLEAN(2)$ unsatisfiable, but $F \notin MU(2)$.

Then F must contain a MU(1) subformula. So, let $G \subseteq F$ be a subformula in MU(1). Let $\theta = F - G$.

Plaese note that F is matching lean, the formula θ' obtained from θ by omitting variables occurring in G must be mlean and has deficiency 1.

Case 1. For any clause $g \in G$ such that $(G - \{g\}) + \theta$ is satisfiable. That is, G is the only MU(1) subformula of F.

We suppose it is not case 1.

Case 2. For some $g \in G$ such that $(G - \{g\}) + \theta$ is unsatisfiable. That is there is $G' \subseteq F$ such that $G' \neq G$ and $G' \in \mathrm{MU}(1)$.

Because $G' = G' \cap G + G' \cap \theta$ and G' has deficiency 1, it must be that $\theta \subseteq G'$.

Let $H = G \cap G'$, $\eta = G' - H$. That is, F can be written as follows

$$F = \theta + H + \eta$$
 with $\theta + H \in MU(1)$ and $\eta + H \in MU(1)$

Let θ^- (resp. η^-) be the formula obtained from θ (resp. η) by omitting occurrences of variables of H. Then both θ^- and η^- are in MU(1) and have distinct variables.

The following is an example of such formulas

Let θ^+ is the clause obtained from θ by iteratively applying sDP reduction on variables in θ^- . Likewise for η^+ . Then we have

$$\{\theta^{+}\} + H, \{\eta^{+}\} + H \text{ and } \{\theta^{+} \vee \eta^{+}\} + H \text{ are all in MU}(1)$$