Universidad ORT Uruguay Facultad de Ingeniería

Proyecto Numérico 2

Fundamentos de Sistemas Ciberfísicos

3 de Julio del 2020

Matias Hernández - 169236

Gianfranco Drago - 198490

a) Escribir la ecuación de calor correspondiente a este problema:

Teóricamente, sabemos que la ecuación debe tener la forma: $\frac{dT}{dt} + \gamma T = \mu(t)$

Procederemos a hallar los valores de γ y μ para nuestra ecuación de calor correspondiente.

Potencia emitida por la resistencia:

$$P_R = \frac{V^2}{R} = \frac{{V_0}^2 [1 - e^{-at} \cos(\omega t)]^2}{R}$$

$$P_R > 0$$

Potencia absorbida por el aire:

$$\dot{Q}_{Aire} = m \, C_a \frac{dT}{dt}$$

$$\dot{Q}_{Aire} > 0$$

Potencia emitida hacia el exterior:

$$P_{Ext} = \frac{k \ 6l^2}{d} (T - T_{amb})$$

$$P_{Ext} > 0$$

Fórmula de Calor:

$$P_R = \dot{Q}_{Aire} + P_{Ext}$$

$$\frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R} = m C_a \frac{dT}{dt} + \frac{k 6l^2}{d} (T - T_{amb})$$

$$\frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R} = m C_a \frac{dT}{dt} + T \frac{k 6l^2}{d} - T_{amb} \frac{k 6l^2}{d}$$

$$\frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R} + T_{amb} \frac{k 6l^2}{d} = m C_a \frac{dT}{dt} + T \frac{k 6l^2}{d}$$

$$m C_a \frac{dT}{dt} + T \frac{k 6l^2}{d} = \frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R} + T_{amb} \frac{k 6l^2}{d}$$

$$m C_a \frac{dT}{dt} = \frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R} + T_{amb} \frac{k 6l^2}{d} - T \frac{k 6l^2}{d}$$

$$\frac{dT}{dt} = \frac{1}{m C_a} \left[\frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R} + T_{amb} \frac{k 6l^2}{d} - T \frac{k 6l^2}{d} \right]$$

$$\frac{dT}{dt} = \frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R m C_a} + T_{amb} \frac{k 6l^2}{d m C_a} - T \frac{k 6l^2}{d m C_a}$$

$$\frac{dT}{dt} + T \frac{k 6l^2}{d m C_a} = \frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R m C_a} + T_{amb} \frac{k 6l^2}{d m C_a}$$

$$\frac{dT}{dt} + T \frac{k 6l^2}{d m C_a} = \frac{1}{m C_a} \left[\frac{V_0^2[1 - e^{-at}\cos(\omega t)]^2}{R m C_a} + T_{amb} \frac{k 6l^2}{d m C_a} \right]$$

$$\gamma = \frac{k \ 6l^2}{d \ m \ C_a}$$

$$\mu(t) = \frac{1}{m \ C_a} \left[\frac{V_0^2 [1 - e^{-at} \cos(\omega t)]^2}{R} + T_{amb} \frac{k \ 6l^2}{d} \right]$$

b) Resolver la ecuación anterior en forma numérica usando el método de Euler.

Determinar y graficar la temperatura de la sala en función del tiempo T(t).

Tomar como paso de integración $dt=0.1\,\mathrm{s}$ y analizar la temperatura hasta un tiempo final de una hora ($t_f=3600\,\mathrm{s}$).

Se utilizará el método de Euler para resolver la ecuación:

$$\frac{dT}{dt} = \frac{\Delta T}{\Delta t}$$

$$\Delta T = \Delta t [\mu(t) - \gamma T]$$

$$T_{i+1} = T_i + \Delta t [\mu(t) - \gamma T]$$

Forma numérica con método de Euler:

```
clear
// Def: Temperatura ambiente, Unidad: Grados Kelvin
Tamb=283
// Def: Paso de integración Delta t para el método de Euler, Unidad: s
dt=0.1
// Def: Tiempo inicial para el método de Euler, Unidad: s
t0 = 0
// Def: Tiempo final para el método de Euler, Unidad: s
tf=3600
// Def: Conductividad términa, Unidad: W/m*K
k = 0.6
// Def: Lado de la sala cúbica, Unidad: m
l=4
// Def: Ancho de pared, Unidad: m
d=0.25
// Def: Masa del aire, Unidad: Kg
m = 76.8
// Def: Calor específico del aire, Unidad: J/Kg*K
Ca=1012
// Def: Voltage inicial, Unidad: V
V0=100
// Def: Resistencia, Unidad: Ohm
R=1
// Def: Unidad: rad/s
```

```
w = 0.02
// Def: Unidad: 1/s
a=0.0035
// Def: Gamma de la fórmula de Calor
gma=(k*5*(l^2))/(d*m*Ca)
function [t, T]=ObtenerTemperaturaPorEuler();
  // Condiciones iniciales
  t(1)=t0
  T(1)=Tamb
  i=1
  while t(i)<=tf
    u=(1/(m*Ca))*((((V0^2)*((1-(%e^((-
a)*t(i)))*cos(w*t(i)))^2))/R)+(Tamb*((k*5*(l^2))/d)))
    T(i+1)=T(i)+(u-gma*T(i))*dt
    t(i+1)=t(i)+dt
    i=i+1
  end
endfunction
// Obtenemos los puntos por Metodo de Euler
[t,T] = ObtenerTemperaturaPorEuler()
// Configuraciones de la Grafica
xgrid:
xlabel("t (s)","fontsize",4,"color","red")
ylabel("T (K)","fontsize",4,"color","red");
title("Temperatura vs. Tiempo","color","red","fontsize",4);
// Grafica de la trayectoria con Metodo de Euler
plot(t,T,"r")
```

Gráfica:

C) Determinar en forma analítica a partir de la ecuación anterior (sin resolverla) la temperatura a que llega el aire T_{∞} en estado de régimen estacionario (o sea, para tiempos muy largos).

La temperatura en el aire cuando llega al estado de régimen estacionario:

$$\frac{dT}{dt} \rightarrow 0$$

Entonces, como:

$$\frac{dT}{dt} + \gamma T = \mu(t)$$

$$0+\gamma T=\mu(t)$$

$$\gamma T = \mu(t)$$

Para T cuando $t \rightarrow \infty$:

$$\gamma T_{\infty} = \lim_{t \to \infty} \mu(t)$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \mu(t)$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \frac{1}{m C_a} \left[\frac{V_0^2 [1 - e^{-at} \cos(\omega t)]^2}{R} + T_{amb} \frac{k 6l^2}{d} \right]$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \frac{1}{76.8 * 1012} \left[\frac{100^2 [1 - e^{-0.0035t} \cos(0.02t)]^2}{1} + 283 \frac{0.6 * 6(4)^2}{0.25} \right]$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \frac{1}{77721.6} \left[\frac{100^2 [1 - 0]^2}{1} + 65203.2 \right]$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \frac{1}{77721.6} [100^2 + 65203.2]$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \frac{1}{77721.6} [75203.2]$$

$$T_{\infty} = \frac{1}{\gamma} \lim_{t \to \infty} \frac{75203.2}{77721.6}$$

$$T_{\infty} = \frac{75203.2}{77721.6 * \gamma}$$

$$T_{\infty} = \frac{75203.2}{77721.6 * \gamma}$$
$$T_{\infty} = \frac{75203.2}{230.4}$$
$$T_{\infty} = \frac{75203.2}{230.4}$$

 $T_{\infty} = 326.4027 \text{ K}$

- **d)** Estimar del estudio numérico, cuanto tiempo t_{∞} hay que esperar en este caso para llegar al estado de régimen estacionario (una variación menor al 1% de la temperatura estacionaria T_{∞}).
- **e)** Determinar la temperatura en régimen estacionario en forma numérica y comparar con el resultado teórico T_{∞} hallado anteriormente.

Se harán la parte d y e juntas:

Tomaremos en cuenta la siguiente fórmula, para calcular numéricamente en Scilab, lo solicitado:

$$\frac{|T_{\infty} - T|}{|T_{\infty} - T_0|} \le \frac{1}{100}$$

Considerando que $T_{\infty} = 326.4027$ K.

Código en Scilab:

```
clear
// Def: Temperatura ambiente, Unidad: Grados Kelvin
Tamb=283
// Def: Paso de integración Delta t para el método de Euler, Unidad: s
dt=0.1
// Def: Tiempo inicial para el método de Euler, Unidad: s
t0 = 0
// Def: Tiempo final para el método de Euler, Unidad: s
tf = 3600
// Def: Conductividad términa, Unidad: W/m*K
k = 0.6
// Def: Lado de la sala cúbica, Unidad: m
// Def: Ancho de pared, Unidad: m
d=0.25
// Def: Masa del aire, Unidad: Kg
m = 76.8
// Def: Calor específico del aire, Unidad: J/Kg*K
Ca = 1012
// Def: Voltage inicial, Unidad: V
V0=100
// Def: Resistencia, Unidad: Ohm
R=1
// Def: Unidad: rad/s
w = 0.02
```

```
// Def: Unidad: 1/s
a=0.0035
// Def: Gamma de la fórmula de Calor
gma=(k*5*(l^2))/(d*m*Ca)
// Def: Temperatura en t inf (analítico), Unidad: Kelvin
TinfA=326.4027
function [t, T]=ObtenerTemperaturaPorEuler();
  // Condiciones iniciales
  t(1)=t0
  T(1)=Tamb
  TinfEncontrado = \%F
  TinfE=0
  tinfE=0
  i=1
  while (t(i)<=tf) && ~TinfEncontrado
   u=(1/(m*Ca))*(((V0^2)*((1-(%e^((-
a)*t(i))*cos(w*t(i))^2)/R+(Tamb*((k*5*(l^2))/d)))
    T(i+1)=T(i)+(u-gma*T(i))*dt
   Tdif=(abs(TinfA-T(i)))/(abs(TinfA-T(1)))
   if(Tdif \le (1/100)) then
      TinfEncontrado = \%T;
     TinfE=T(i)
     tinfE=t(i)
      disp("Tiempo a esperar para que la temperatura llegue a estado de régimen
estacionario (en forma numérica):")
      disp(tinfE)
      disp("Temperatura en régimen estacionario (en forma numérica):")
      disp(TinfE)
    end
   t(i+1)=t(i)+dt
   i=i+1
  end
endfunction
// Obtenemos los puntos por Metodo de Euler
[t,T] = ObtenerTemperaturaPorEuler()
```

Resultado:

```
"Tiempo a esperar para que la temperatura llegue a estado de régimen estacionario (en forma numérica):"
523.90000
"Temperatura en régimen estacionario (en forma numérica):"
325.97293
```

Se puede ver que se obtuvo:

$$t_{\infty} = 523.9 \text{ s}$$
 $T_{\infty} = 325.97293 \text{ K}$

Comparación entre T_{∞} analítico y T_{∞} numérico:

La diferencia entre el T analítico y el numérico fue sólo de 0.42977 K.

Se puede observar, que la T_{∞} hallada analíticamente, no es la misma observada en la gráfica que se generó numéricamente. En la misma se puede observar, que la temperatura estacionaria ronda los 335 K.

f) Determinar en forma numérica el gasto de energía eléctrica (trabajo de la fuerza disipativa) que se necesita para llegar a ese estado estacionario.

El trabajo de la Resistencia es:

$$P = \frac{V^2}{R}$$

Entonces:

$$U = \int P \, dt$$

Para poder relizarlo de manera numérica en Scilab, se resolverá la integral de la siguiente forma:

$$U = \sum_{i} P_i \Delta t$$

Código en Scilab:

```
clear
// Def: Temperatura ambiente, Unidad: Grados Kelvin
Tamb=283
// Def: Paso de integración Delta t para el método de Euler, Unidad: s
dt=0.1
// Def: Tiempo inicial para el método de Euler, Unidad: s
// Def: Tiempo final para el método de Euler, Unidad: s
tf=3600
// Def: Conductividad términa, Unidad: W/m*K
k = 0.6
// Def: Lado de la sala cúbica, Unidad: m
// Def: Ancho de pared, Unidad: m
d=0.25
// Def: Masa del aire, Unidad: Kg
m = 76.8
// Def: Calor específico del aire, Unidad: J/Kg*K
Ca = 1012
// Def: Voltage inicial, Unidad: V
V0=100
// Def: Resistencia, Unidad: Ohm
R=1
// Def: Unidad: rad/s
w = 0.02
// Def: Unidad: 1/s
```

```
a=0.0035
// Def: Gamma de la fórmula de Calor
gma=(k*5*(l^2))/(d*m*Ca)
// Def: Temperatura en t inf (analítico), Unidad: Kelvin
TinfA=326.4027
function [t, T]=ObtenerTemperaturaPorEuler();
 // Condiciones iniciales
 t(1)=t0
 T(1)=Tamb
 TinfEncontrado = \%F
 TinfE=0
 tinfE=0
 U=0
 i=1
 while (t(i)<=tf) && ~TinfEncontrado
   u=(1/(m*Ca))*(((V0^2)*((1-(%e^((-
a)*t(i))*cos(w*t(i))^2)/R+(Tamb*((k*5*(l^2))/d)))
    T(i+1)=T(i)+(u-gma*T(i))*dt
   Tdif=(abs(TinfA-T(i)))/(abs(TinfA-T(1)))
   U=U+((((V0^2)*((1-(\%e^((-a)*t(i)))*cos(w*t(i)))^2))/R)*dt)
   if(Tdif \le (1/100)) then
     TinfEncontrado = \%T;
     TinfE=T(i)
     tinfE=t(i)
      disp("Tiempo a esperar para que la temperatura llegue a estado de régimen
estacionario (en forma numérica):")
     disp(tinfE)
      disp("Temperatura en régimen estacionario (en forma numérica):")
     disp(TinfE)
     disp("Gasto de energía eléctrica necesario para llegar al régimen de estado
estacionario(en forma numérica):")
      disp(U)
   end
   t(i+1)=t(i)+dt
   i=i+1
 end
endfunction
// Obtenemos los puntos por Metodo de Euler
[t,T] = ObtenerTemperaturaPorEuler()
```

Resultado:

"Gasto de energía eléctrica necesario para llegar al régimen de estado estacionario(en forma numérica):"
5911327.5

El gasto de energía eléctrica necesaria para llegar al régimen de estado estacionario, calculado de forma numérica con el código anterior, es:

U = 5911327.5 J