Lecture 2-2: Classical Cryptography -Cryptographic Algorithms and Protocols

Instructor: Xiujie Huang 黄秀姐

Office: Nanhai Building, Room 411

E-mail: t_xiujie@jnu.edu.cn

Department of Computer Science School of Information Science and Technology Jinan University

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

Intuition on Cryptography

Symmetric-Key Cryptosystem (SKC)

Cryptographic Communication System

Protocol:

- A and B choose a random key K by a secure channel
- A wants to sent a string message $\mathbf{x} = x_1 x_2 ... x_n$
- A computes $y_i = e_K(x_i)$ and the resulting string $y = y_1 y_2 ... y_n$ is sent over the insecure channel
- B receives $\mathbf{y} = y_1 y_2 ... y_n$ and decrypts $x_i = d_K(y_i)$ to obtain $\mathbf{x} = x_1 x_2 ... x_n$

Basics of a Cryptosystem

Objective and Solutions

- Objective: confidentially communicate over insecure channels
- SKC is one of the solutions

Basics of a Cryptosystem

Objective and Solutions

- Objective: confidentially communicate over insecure channels
- SKC is one of the solutions

A Simple Cryptosystem

A cryptosystem is a five-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$, where

- **1** \mathcal{P} is a finite set of all possible *plaintexts*,
- \circ C is a finite set of all possible *ciphertexts*,
- \bullet K is a finite set of all possible keys, called keyspace,

Basics of a Cryptosystem

Objective and Solutions

- Objective: confidentially communicate over insecure channels
- SKC is one of the solutions

A Simple Cryptosystem

A cryptosystem is a five-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$, where

- $oldsymbol{0}$ \mathcal{P} is a finite set of all possible *plaintexts*,
- **2** C is a finite set of all possible *ciphertexts*,
- $oldsymbol{\circ}$ \mathcal{K} is a finite set of all possible *keys*, called *keyspace*,
- For each $K \in \mathcal{K}$, $e_K \in \mathcal{E}$, $d_K \in \mathcal{D}$ Encryption rule $e_K : \mathcal{P} \to \mathcal{C}$; Decryption rule $d_K : \mathcal{C} \to \mathcal{P}$, satisfying $d_K(e_K(x)) = x$ for every $x \in \mathcal{P}$.
 - Encryption rule e_K is a injective function (单射), i.e., one-to-one. If $x_1 \neq x_2$, then $e_K(x_1) \neq e_K(x_2)$.

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
 - The Shift Cipher
 - The Affine Cipher
 - The Vigenere Cipher
 - The Hill Cipher
- 3 The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

Cryptosystem 2.2: Substitution Cipher, 替换密码(on Page 21)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let \mathcal{K} consists of all possible permutations of the 26 elements in \mathbb{Z}_{26} . For each permutation $\pi \in \mathcal{K}$, define

- Encryption rule $e_{\pi}: \mathcal{P} \to \mathcal{C}$, $e_{\pi}(x) = \pi(x)$
- Decryption rule $d_{\pi}: \mathcal{C} \to \mathcal{P}$, $d_{\pi}(y) = \pi^{-1}(y)$

where π^{-1} is the inverse permutation to π .

Cryptosystem 2.2: Substitution Cipher, 替换密码(on Page 21)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let \mathcal{K} consists of all possible permutations of the 26 elements in \mathbb{Z}_{26} . For each permutation $\pi \in \mathcal{K}$, define

- Encryption rule $e_{\pi}: \mathcal{P} \to \mathcal{C}$, $e_{\pi}(x) = \pi(x)$
- Decryption rule $d_{\pi}: \mathcal{C} \to \mathcal{P}, d_{\pi}(y) = \pi^{-1}(y)$

where π^{-1} is the inverse permutation to π . $\mathbb{Z}_{26} \leftrightarrow$ the English alphabet (π 是英文字母表的一个置换, π^{-1} 是置换 π 的逆置换.)

Relation of \mathbb{Z}_{26} and the 26-letter English Alphabet:

а	b	С	d	е	f	g	h	i	j		k	Ι	m		
0	1	2	3	4	5	6	7	8	9	1	10	11	12		
n)	р	q	r		s	t	u		٧	W	×	у	z
13	1	4	15	16	17	7	18	19	20)	21	22	23	24	25

plaintext -- lower case letter, ciphertext -- upper case letter

An Example

Let π be the permutation over the **English alphabet** as follows:

 $e_{\pi}(\mathsf{ihaveanapple}) = \pi(\mathsf{ihaveanapple}) = \mathsf{ZGXEHXSXLLBH}$

 $d_{\pi}(\mathsf{ZGXEHXSXLLBH}) = \pi^{-1}(\mathsf{ZGXEHXSXLLBH}) = \mathsf{ihaveanapple}$

An Example

Let π be the permutation over the **English alphabet** as follows:

а	b	С	d	е	f	g	h	i	j	k		m
X	N	Y	Α	Н	Р	0	G	Z	Q	W	/ E	T
n	0	р	q	r	S	t	u	V	w	Х	у	z
S	F	L	R	С	٧	М	U	Е	K	J	D	T

 $e_{\pi}(\mathsf{ihaveanapple}) = \pi(\mathsf{ihaveanapple}) = \mathsf{ZGXEHXSXLLBH}$

 $d_{\pi}(\mathsf{ZGXEHXSXLLBH}) = \pi^{-1}(\mathsf{ZGXEHXSXLLBH}) = \mathsf{ihaveanapple}$

Some Issues:

• The size of Keyspace \mathcal{K} is $=26!>4.0\times 10^{26}$.

An Example

Let π be the permutation over the **English alphabet** as follows:

а	b	С	d	е	f	g	h	i	j	k		r	n
Χ	N	Υ	A	Н	P	0	G	Z	Q	W	/ E	3 -	Τ
n	0	р	q	r	S	t	u	V	w	Х	у	z	

 $d_{\pi}(\mathsf{ZGXEHXSXLLBH}) = \pi^{-1}(\mathsf{ZGXEHXSXLLBH}) = \mathsf{ihaveanapple}$

Some Issues:

- The size of Keyspace ${\cal K}$ is $=26!>4.0\times 10^{26}.$
- An exhaustive key search is infeasible.
 But it can easily be cryptanalyzed by some statistic methods.

An example of a ciphertext-only attack on the substitution cipher

The Shift Cipher

Cryptosystem 2.1: Shift Cipher, 移位密码(on Page 18)

Let $\mathcal{P} = \mathcal{C} = \mathcal{K} \neq \mathbb{Z}_{26}$. For $0 \leq K \leq 25$, define

- Encryption rule $e_K : \mathcal{P} \to \mathcal{C}$ as $e_K(x) = (x+K) \mod 26$,
- Decryption rule $d_K: \mathcal{C} \to \mathcal{P}$ as $d_K(y) = (y K) \mod 26$.

where $x, y \in \mathbb{Z}_{26}$.

The Shift Cipher

Cryptosystem 2.1: Shift Cipher, 移位密码(on Page 18)

Let $\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{26}$. For $0 \leq K \leq 25$, define

- Encryption rule $e_K : \mathcal{P} \to \mathcal{C}$ as $e_K(x) = (x + K) \mod 26$,
- Decryption rule $d_K: \mathcal{C} \to \mathcal{P}$ as $d_K(y) = (y K) \mod 26$.

where $x, y \in \mathbb{Z}_{26}$.

- The Shift Cipher is a special case of the Substitution Cipher.
- When K=3, it is called the *Caesar Cipher*.
- The size of Keyspace K is =26. (only 26 permutations)
- NOT SECURE!!! (exhaustive key search)
- a necessary condition to be secure is that an exhaustive key search should be infeasible.

Cryptosystem 2.3: Affine Cipher, 仿射密码(on Page 25)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let the keyspace be

$$\mathcal{K} = \{ (a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a,26) = 1 \} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$$
 (2.1)

For each key $K = (a, b) \in \mathcal{K}$, define $(x, y \in \mathbb{Z}_{26})$

- Encryption rule $e_K(x) = (\underline{ax+b}) \mod 26$
- Decryption rule $d_K(y) = a^{-1}(y-b) \mod 26$

Cryptosystem 2.3: Affine Cipher, 仿射密码(on Page 25)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let the keyspace be

$$\mathcal{K} = \{ (a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a, 26) = 1 \} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$$
 (2.1)

For each key $K=(a,b)\in\mathcal{K}$, define $(x,y\in\mathbb{Z}_{26})$

- Encryption rule $e_K(x) = (ax + b) \mod 26$
- Decryption rule $d_K(y) = a^{-1}(y b) \mod 26$

Some Issues:

• Verification of $d_K(e_K(x)) = x$: $d_K(e_K(x)) = a^{-1} ((ax + b) \mod 26 - b) \mod 26 = a^{-1}ax \mod 26 = x$.

Cryptosystem 2.3: Affine Cipher, 仿射密码(on Page 25)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let the keyspace be

$$\mathcal{K} = \{ (a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a, 26) = 1 \} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$$
 (2.1)

For each key $K=(a,b)\in\mathcal{K}$, define $(x,y\in\mathbb{Z}_{26})$

- Encryption rule $e_K(x) = (ax + b) \mod 26$
- Decryption rule $d_K(y) = a^{-1}(y-b) \mod 26$

- Verification of $d_K(e_K(x)) = x$: $d_K(e_K(x)) = a^{-1} ((ax + b) \mod 26 b) \mod 26 = a^{-1}ax \mod 26 = x$.
- The size of keyspace is $\phi(26) \times 26 = 12 \times 26 = 312$. (312 permutations)

Cryptosystem 2.3: Affine Cipher, 仿射密码(on Page 25)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let the keyspace be

$$\mathcal{K} = \{ (a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a, 26) = 1 \} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$$
 (2.1)

For each key $K=(a,b)\in\mathcal{K}$, define $(x,y\in\mathbb{Z}_{26})$

- Encryption rule $e_K(x) = (ax + b) \mod 26$
- Decryption rule $d_K(y) = a^{-1}(y-b) \mod 26$

- Verification of $d_K(e_K(x)) = x$: $d_K(e_K(x)) = a^{-1} ((ax + b) \mod 26 b) \mod 26 = a^{-1}ax \mod 26 = x$.
- The size of keyspace is $\phi(26) \times 26 = 12 \times 26 = 312$. (312 permutations)
- The Affine Cipher is a special case of the Substitution Cipher.

Cryptosystem 2.3: Affine Cipher, 仿射密码(on Page 25)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let the keyspace be

$$\mathcal{K} = \{ (a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a, 26) = 1 \} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$$
 (2.1)

For each key $K=(a,b)\in\mathcal{K}$, define $(x,y\in\mathbb{Z}_{26})$

- Encryption rule $e_K(x) = (ax + b) \mod 26$
- Decryption rule $d_K(y) = a^{-1}(y-b) \mod 26$

- Verification of $d_K(e_K(x)) = x$: $d_K(e_K(x)) = a^{-1} ((ax + b) \mod 26 b) \mod 26 = a^{-1}ax \mod 26 = x$.
- The size of keyspace is $\phi(26) \times 26 = 12 \times 26 = 312$. (312 permutations)
- The Affine Cipher is a special case of the Substitution Cipher.
- For the general case of $\mathcal{P} = \mathcal{C} \notin \mathbb{Z}_m$ $\mathcal{K} = \mathbb{Z}_m^* \times \mathbb{Z}_m$?

Cryptosystem 2.3: Affine Cipher, 仿射密码(on Page 25)

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. Let the keyspace be

$$\mathcal{K} = \{ (a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : \gcd(a, 26) = 1 \} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$$
 (2.1)

For each key $K=(a,b)\in\mathcal{K}$, define $(x,y\in\mathbb{Z}_{26})$

- Encryption rule $e_K(x) = (ax + b) \mod 26$
- Decryption rule $d_K(y) = a^{-1}(y b) \mod 26$

- Verification of $d_K(e_K(x)) = x$: $d_K(e_K(x)) = a^{-1} ((ax + b) \mod 26 b) \mod 26 = a^{-1}ax \mod 26 = x$.
- The size of keyspace is $\phi(26) \times 26 = 12 \times 26 = 312$. (312 permutations)
- The Affine Cipher is a special case of the Substitution Cipher.
- For the general case of $\mathcal{P} = \mathcal{C} = \mathbb{Z}_m$, $\mathcal{K} = \mathbb{Z}_m^* \times \mathbb{Z}_m$? The size of keyspace is $\phi(m) \times m$.

Cryptanalysis of the Affine Cipher

A ciphertext-only attack on the Affine cipher

Oscar knows a string of ciphertext, \mathbf{y} , and that is obtained using the Affine cipher.

The Affine cipher can be broken by using the Statistical properties of the English language.

Cryptosystem 2.4: Vigenere Cipher (on Page 26)

Let $n \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. For a key $K = (k_1, k_2, \cdots, k_n)$,

- Encryption: $e_K(x_1, x_2, \dots, x_n) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n);$
- Decryption: $d_K(y_1, y_2, \cdots, y_n) = (y_1 k_1, y_2 k_2, \cdots, y_n k_n)$. where all operations are performed in \mathbb{Z}_{26} .

Cryptosystem 2.4: Vigenere Cipher (on Page 26)

Let $n \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. For a key $K = (k_1, k_2, \cdots, k_n)$,

- Encryption: $e_K(x_1, x_2, \dots, x_n) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n);$
- Decryption: $d_K(y_1, y_2, \dots, y_n) = (y_1 k_1, y_2 k_2, \dots, y_n k_n)$. where all operations are performed in \mathbb{Z}_{26} .

An example

Assume the keyword is "CIPHER" which $\leftrightarrow K = (2, 8, 15, 7, 4, 17)$.

Plaintext: thiscrytosystemisnotsecure

Cryptosystem 2.4: Vigenere Cipher (on Page 26)

Let $n \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. For a key $K = (k_1, k_2, \dots, k_n)$,

- Encryption: $e_K(x_1, x_2, \dots, x_n) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n);$
- Decryption: $d_K(y_1, y_2, \dots, y_n) = (y_1 k_1, y_2 k_2, \dots, y_n k_n)$. where all operations are performed in \mathbb{Z}_{26} .

An example

Assume the keyword is "CIPHER" which $\leftrightarrow K = (2, 8, 15, 7, 4, 17)$.

Plaintext: thiscrytosystemisnotsecure

 $\leftrightarrow 19 \ \ 7 \ \ 8 \ \ 18 \ \ 2 \ \ 17 \ \ 24 \ \ 15 \ \ 19 \ \ 14 \ \ 18 \ \ 24 \ \ 18 \ \ 19 \ \ 4 \ \ 12 \ \ 8 \ \ 18 \cdots$

Cryptosystem 2.4: Vigenere Cipher (on Page 26)

Let $n \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. For a key $K = (k_1, k_2, \dots, k_n)$,

- Encryption: $e_K(x_1, x_2, \dots, x_n) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n);$
- Decryption: $d_K(y_1, y_2, \dots, y_n) = (y_1 k_1, y_2 k_2, \dots, y_n k_n).$ where all operations are performed in \mathbb{Z}_{26} .

An example

Assume the keyword is "CIPHER" which $\leftrightarrow K = (2, 8, 15, 7, 4, 17)$.

Plaintext: thiscrytosystemisnotsecure

Cryptosystem 2.4: Vigenere Cipher (on Page 26)

Let $n \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. For a key $K = (k_1, k_2, \cdots, k_n)$,

- Encryption: $e_K(x_1, x_2, \dots, x_n) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n);$
- Decryption: $d_K(y_1, y_2, \dots, y_n) = (y_1 k_1, y_2 k_2, \dots, y_n k_n)$. where all operations are performed in \mathbb{Z}_{26} .

An example

Assume the keyword is "CIPHER" which $\leftrightarrow K = (2, 8, 15, 7, 4, 17)$.

Plaintext: thiscrytosystemisnotsecure

- \leftrightarrow 19 7 8 18 2 17 24 15 19 14 18 24 18 19 4 12 8 18 \cdots
- \oplus 2 8 15 7 4 17 2 8 15 7 4 17 2 8 15 7 4 17 \cdots
- $=:21 \ 15 \ 23 \ 25 \ 6 \ 8 \ 0 \ 23 \ 8 \ 21 \ 22 \ 15 \ 20 \ 1 \ 19 \ 19 \ 12 \ 9 \cdots$

Ciphertext: VPXZGIAXICWPUBTTMJPWIZITWZT

Cryptosystem 2.4: Vigenere Cipher (on Page 26)

Let $n \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. For a key $K = (k_1, k_2, \dots, k_n)$,

- Encryption: $e_K(x_1, x_2, \dots, x_n) = (x_1 + k_1, x_2 + k_2, \dots, x_n + k_n);$
- Decryption: $d_K(y_1, y_2, \dots, y_n) = (y_1 k_1, y_2 k_2, \dots, y_n k_n).$ where all operations are performed in \mathbb{Z}_{26} .

An example

Assume the keyword is "CIPHER" which $\leftrightarrow K = (2, 8, 15, 7, 4, 17)$.

Plaintext: thiscrytosystemisnotsecure

$$\leftrightarrow$$
 19 7 8 18 2 17 24 15 19 14 18 24 18 19 4 12 8 18 \cdots

$$\begin{array}{c} \leftrightarrow \begin{array}{c} 19 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 7 \\ 8 \\ 15 \\ 0 \end{array} \begin{array}{c} 8 \\ 7 \\ 23 \\ 0 \end{array} \begin{array}{c} 2 \\ 17 \\ 24 \\ 15 \\ 0 \end{array} \begin{array}{c} 12 \\ 15 \\ 23 \\ 0 \end{array} \begin{array}{c} 14 \\ 17 \\ 2 \\ 8 \\ 21 \end{array} \begin{array}{c} 14 \\ 17 \\ 2 \\ 15 \end{array} \begin{array}{c} 18 \\ 15 \\ 20 \\ 15 \end{array} \begin{array}{c} 14 \\ 17 \\ 2 \\ 15 \end{array} \begin{array}{c} 18 \\ 15 \\ 17 \\ 4 \end{array} \begin{array}{c} 18 \\ 17 \\ 17 \\ 17 \\ 17 \end{array} \begin{array}{c} 18 \\ 17 \\ 17 \\ 17 \end{array} \begin{array}{c} 18 \\ 17 \\ 17 \\ 17 \end{array} \begin{array}{c} 18 \\ 17 \\ 17 \\ 17 \end{array} \begin{array}{c} 18 \\ 17 \end{array} \begin{array}{c} 18 \\ 17 \\ 17 \end{array} \begin{array}{c} 18 \\ 17 \\ 17 \end{array} \begin{array}{c} 18 \\$$

$$=: 21/15 \ 23/25/6 \ 8 \ 0 \ 23/8/21 \ 22/15/20/1/19 \ 19 \ 12/9/...$$

Ciphertext: VPXZGIAXICWPUBTTMJPWIZITWZT

A plaintext letter may be decrypted as different cipher letters.

monoalphabetic (单表) v.s. polyalphabetic (多表)

- the monoalphabetic (单表) cryptosystem: each alphabetic character is mapped to a unique alphabetic character.
- the polyalphabetic (多表) cryptosystem: an alphabetic character can be mapped to one of several possible alphabetic characters.

- The Vigenere cipher is polyalphabetic:
 - the key is a string of length n;
 n characters are encrypted at a time;
 - 3. an alphabetic character can be mapped to one of n possible alphabetic characters if the keyword contains n distinct characters.
 - It is named after Blaise de Vigenere (in the sixteenth century).
 - The size of Keyspace is 26^n ; $26^5 \approx 1.19 \times 10^7$, $26^{10} \approx 1.4 \times 10^{14}$.
 - It can be analyzed by some statistical methods Kasiski test, index of coincidence --> n

The Hill Cipher

Cryptosystem 2.5: Hill Cipher (on Page 32)

Let
$$n \in \mathbb{Z}^+$$
 and $n \geq 2$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. Let

$$\mathcal{K} = \{n \times n \text{ invertible matrices over } \mathbb{Z}_{26}\}.$$
 (2.2)

For a key $K \in \mathcal{K}$, define

- Encryption: $e_K(x) = \underline{x}K$;
- Decryption: $d_K(y) = yK^{-1}$.

where all operations are performed in \mathbb{Z}_{26} . k_{ij} *=(-1) $_{i+j}$ det k_{ji}

Theorem 2.3 on Page 30

K⁻¹=(det K)⁻¹K*

K* is the adjoint matrix of K

The Hill Cipher

Cryptosystem 2.5: Hill Cipher (on Page 32)

Let $n \in \mathbb{Z}^+$ and $n \geq 2$. Let $\mathcal{P} = \mathcal{K} = \mathcal{C} = (\mathbb{Z}_{26})^n$. Let

$$\mathcal{K} = \{n \times n \text{ invertible matrices over } \mathbb{Z}_{26}\}. \tag{2.2}$$

For a key $K \in \mathcal{K}$, define

- Encryption: $e_K(x) = \underline{x}K$;
- Decryption: $d_K(y) = \underline{y}K^{-1}$.

where all operations are performed in \mathbb{Z}_{26} .

- The Hill cipher is another polyalphabetic cryptosystem, invented in 1929 by Lester S. Hill.
- The Hill cipher can be broken using the known plaintext attack, which assumes that Oscar knows at least n distinct plaintext-ciphertext pairs.

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

The Permutation Cipher

Cryptosystem 2.6: Permutation Cipher, 置换密码(on Page 33)

Let $m \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$. Let \mathcal{K} consist of all permutations of $\mathcal{M} = \{1, 2, \cdots, m\}$. For a key $\pi \in \mathcal{K}$, define

- Encryption: $e_{\pi}(x_1, x_2, \dots, x_m) = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(m)});$
- Decryption: $d_{\pi}(y_1, y_2, \cdots, y_m) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \cdots, y_{\pi^{-1}(m)}).$

The Permutation Cipher

Cryptosystem 2.6: Permutation Cipher, 置换密码(on Page 33)

Let $m \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$. Let \mathcal{K} consist of all permutations of $\mathcal{M} = \{1, 2, \cdots, m\}$. For a key $\pi \in \mathcal{K}$, define

- Encryption: $e_{\pi}(x_1, x_2, \cdots, x_m) = (x_{\pi(1)}, x_{\pi(2)}, \cdots, x_{\pi(m)});$
- Decryption: $d_{\pi}(y_1, y_2, \dots, y_m) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \dots, y_{\pi^{-1}(m)}).$

此处, π 是位置集合 $\mathcal{M}=\{1,2,\cdots,m\}$ 上的一个置换, π^{-1} 是 π 的逆置换.

The Permutation Cipher

Cryptosystem 2.6: Permutation Cipher, 置换密码(on Page 33)

Let $m \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$. Let \mathcal{K} consist of all permutations of $\mathcal{M} = \{1, 2, \cdots, m\}$. For a key $\pi \in \mathcal{K}$, define

- Encryption: $e_{\pi}(x_1, x_2, \dots, x_m) = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(m)});$
- Decryption: $d_{\pi}(y_1, y_2, \cdots, y_m) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \cdots, y_{\pi^{-1}(m)}).$

此处, π 是位置集合 $\mathcal{M}=\{1,2,\cdots,m\}$ 上的一个置换, π^{-1} 是 π 的逆置换.

Some Issues:

- The Permutation Cipher keeps the plaintext characters unchanged, but alters their positions.
- The size of Keyspace is m!.

The Permutation Cipher

Cryptosystem 2.6: Permutation Cipher, 置换密码(on Page 33)

Let $m \in \mathbb{Z}^+$. Let $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$. Let \mathcal{K} consist of all permutations of $\mathcal{M} = \{1, 2, \cdots, m\}$. For a key $\pi \in \mathcal{K}$, define

- Encryption: $e_{\pi}(x_1, x_2, \dots, x_m) = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(m)});$
- Decryption: $d_{\pi}(y_1, y_2, \dots, y_m) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \dots, y_{\pi^{-1}(m)}).$

此处, π 是位置集合 $\mathcal{M}=\{1,2,\cdots,m\}$ 上的一个置换, π^{-1} 是 π 的逆置换。

Some Issues:

- The Permutation Cipher keeps the plaintext characters unchanged, but alters their positions.
- The size of Keyspace is m!.

Examples

See Pages 32-33, Example 2.7.

The Permutation Cipher is a special case of the Hill Cipher.

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- 3 The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

Stream Ciphers

Block cipher v.s. Stream Cipher

 Block cipher: successive plaintext elements are encrypted by the same key:

$$\mathbf{y} = y_1 y_2 \dots = e_K(x_1) e_K(x_2) \dots$$

• Stream cipher: to generate a Keystream $\mathbf{z}=z_1z_2\cdots$, and use it to encrypt a plaintext string:

$$\mathbf{y} = y_1 y_2 \dots = e_{z_1}(x_1) e_{z_2}(x_2) \dots$$

A block cipher can be seen as a special case of a stream cipher.

Stream Ciphers

Block cipher v.s. Stream Cipher

 Block cipher: successive plaintext elements are encrypted by the same key:

$$\mathbf{y} = y_1 y_2 \dots = e_K(x_1) e_K(x_2) \dots$$

• Stream cipher: to generate a Keystream $\mathbf{z}=z_1z_2\cdots$, and use it to encrypt a plaintext string:

$$\mathbf{y} = y_1 y_2 \dots = e_{z_1}(x_1) e_{z_2}(x_2) \dots$$

A block cipher can be seen as a special case of a stream cipher.

Synchronous v.s. Non-Synchronous

 Is the keystream constructed from the key which is independent of the plaintext and ciphertext?

The Synchronous Stream Cipher

Definition 2.6: Synchronous Stream Cipher, SSC (on Page 35)

An SSC is a six-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{L}, \mathcal{E}, \mathcal{D})$ with a function g:

- $oldsymbol{0}$ \mathcal{P} is a finite set of all possible *plaintexts*,
- $\circled{\mathcal{C}}$ is a finite set of all possible *ciphertexts*,
- $oldsymbol{\circ}$ \mathcal{K} is a finite set of all possible *keys*, called *keyspace*,
- $oldsymbol{0}$ \mathcal{L} is a finite set called the *keystream alphabet*,
- **9** g is the *keystream generator*. g takes a key $K \in \mathcal{K}$ as input, and generates an infinite string $z_1 z_2 \cdots$ called the *keystream*, $z_i \in \mathcal{L}$,
- For each $z \in \mathcal{L}$, there is $e_z \in \mathcal{E}$ & $d_z \in \mathcal{D}$ Encryption rule $e_z : \mathcal{P} \to \mathcal{C}$ & Decryption rule $d_z : \mathcal{C} \to \mathcal{P}$, satisfying $d_z(e_z(x)) = x$ for every $x \in \mathcal{P}$.

The Synchronous Stream Cipher

Definition 2.6: Synchronous Stream Cipher, SSC (on Page 35)

- An SSC is a six-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{L}, \mathcal{E}, \mathcal{D})$ with a function g:
- \bullet \mathcal{P} is a finite set of all possible *plaintexts*,
 - $\circled{\mathcal{C}}$ is a finite set of all possible *ciphertexts*,
 - $oldsymbol{\circ}$ \mathcal{K} is a finite set of all possible *keys*, called *keyspace*,
 - \bullet \mathcal{L} is a finite set called the *keystream alphabet*,
 - **5** g is the *keystream generator*. g takes a key $K \in \mathcal{K}$ as input, and generates an infinite string $z_1 z_2 \cdots$ called the *keystream*, $z_i \in \mathcal{L}$,
 - For each $z \in \mathcal{L}$, there is $e_z \in \mathcal{E} \ \& \ d_z \in \mathcal{D}$ Encryption rule $e_z : \mathcal{P} \to \mathcal{C} \ \& \$ Decryption rule $d_z : \mathcal{C} \to \mathcal{P}$, satisfying $d_z(e_z(x)) = x$ for every $x \in \mathcal{P}$.

Some Issues:

• A stream cipher is *periodic* with period d if $z_{i+d} = z_i$ for all integers z > 1

 $i \ge 1$. The Vigenere Cipher can be defined as a periodic SSC.

The SSC over Binary Alphabets

Let
$$\underline{\mathcal{P}} = \mathcal{C} = \underline{\mathcal{L}} = \underline{\mathbb{Z}}_2$$
, $\underline{\mathcal{K}} = \{k_1, k_2, \cdots, k_m; c_0, c_1 \cdots, c_{m-1}\} = \underline{\mathbb{Z}}_2^{2m}$.

lacktriangle The keystream is generated by a linear recurrence g of degree m:

$$z_{i+m} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2,$$
 (4.1)

for all $i\geq 1$, where $c_0,\cdots,c_{m-1}\in\mathbb{Z}_2$ are constants, and $z_i=k_i, 1\leq i\leq m.$

- ② For each $z \in \mathcal{L}$, define Encryption rule $e_z(x) = (x+z) \mod 2$; Decryption rule $d_z(y) = (y+z) \mod 2$.
 - g: degree m (if $c_0 = 1$), linear, period $2^m 1$ (for binary case) if c_0, \dots, c_{m-1} are proper;

The SSC over Binary Alphabets

Let
$$\mathcal{P} = \mathcal{C} = \mathcal{L} = \mathbb{Z}_2$$
, $\mathcal{K} = \{k_1, k_2, \cdots, k_m; c_0, c_1 \cdots, c_{m-1}\} = \mathbb{Z}_2^{2m}$.

lacktriangle The keystream is generated by a linear recurrence g of degree m:

$$z_{i+m} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2, \tag{4.1}$$

for all $i \geq 1$, where $c_0, \cdots, c_{m-1} \in \mathbb{Z}_2$ are constants, and $z_i = k_i, 1 \leq i \leq m$.

- ② For each $z \in \mathcal{L}$, define Encryption rule $e_z(x) = (x+z) \mod 2$; Decryption rule $d_z(y) = (y+z) \mod 2$.
 - g: degree m (if $c_0 = 1$), linear, period $2^m 1$ (for binary case) if c_0, \dots, c_{m-1} are proper;
 - \bullet keystream can be produced in hardware by a Linear Feedback Shift Register

The SSC over Binary Alphabets

Let
$$\mathcal{P} = \mathcal{C} = \mathcal{L} = \mathbb{Z}_2$$
, $\mathcal{K} = \{ k_1, k_2, \cdots, k_m; c_0, c_1 \cdots, c_{m-1} \} = \mathbb{Z}_2^{2m}$.

lacktriangle The keystream is generated by a linear recurrence g of degree m:

$$z_{i+m} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2, \tag{4.1}$$

for all $i \geq 1$, where $c_0, \dots, c_{m-1} \in \mathbb{Z}_2$ are constants, and $z_i = k_i, 1 \leq i \leq m$.

- ② For each $z \in \mathcal{L}$, define Encryption rule $e_z(x) = (x+z) \mod 2$; Decryption rule $d_z(y) = (y+z) \mod 2$.
 - g: degree m (if $c_0 = 1$), linear, period $2^m 1$ (for binary case) if c_0, \dots, c_{m-1} are proper;
 - keystream can be produced in hardware by a Linear Feedback Shift Register
 - See Pages 36-37, Example 2.8.

Cryptanalysis on the SSC over Binary Alphabets

A known plaintext attack on the LFSR Stream cipher

(See Section 2.2.5)

A Non-Synchronous Stream Cipher

A non-synchronous stream cipher: each keystream element $z_{\rm i}$ depends on previous plaintext or ciphertext elements as well as the key K

Cryotosystem 2.7: Autokey Cipher (Non-Synchronous) (on Page 38)

Let
$$\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathcal{L} = \mathbb{Z}_{26}$$
. Let $z_1 = K$, and define $z_i = x_{i-1}$ for all $i > 2$. For $0 < z < 25$, define

Encryption rule $e_z(x) = (x+z) \pmod{26}$;

Decryption rule $d_z(y) = (y - z) \pmod{26}$.

Examples

See Pages 37-38, Example 2.9.

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- 3 The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

A general assumption

• Kerckhoff's Principle: The opponent, Oscar, knows the cryptosystem being used.

A general assumption

 Kerckhoff's Principle: The opponent, Oscar, knows the cryptosystem being used.

The most Common Types of Attack Models:

The attack model specifies the information available to the adversary.

- $oldsymbol{0}$ ciphertext-only attack: a string of ciphertext $oldsymbol{y}$
- $oldsymbol{2}$ known plaintext attack: plaintext $oldsymbol{x}$ and the corresponding $oldsymbol{y}$
- \odot chosen plaintext attack: access Enc, choose ${\bf x}$ and construct the corresponding ${\bf y}$
- \bullet chosen ciphertext attack: access Dec, choose $\mathbf y$ and construct the corresponding $\mathbf x$

A general assumption

 Kerckhoff's Principle: The opponent, Oscar, knows the cryptosystem being used.

The most Common Types of Attack Models:

The attack model specifies the information available to the adversary.

- ciphertext-only attack: a string of ciphertext y
- $oldsymbol{2}$ known plaintext attack: plaintext ${f x}$ and the corresponding ${f y}$
- $\ensuremath{\mathbf{3}}$ chosen plaintext attack: access Enc, choose \mathbf{x} and construct the corresponding \mathbf{y}
- $\ensuremath{ \bullet}$ chosen ciphertext attack: access Dec, choose y and construct the corresponding x

Objective of the attack

• To determine the key *K*.

Some Issues:

- The weakest type of attack is the ciphertext-only attack.
- The statistical properties of the English language (see Page 40) are usually used in cryptanalysis.

Cryptanalysis: To determine the key K

- A Ciphertext-only attack on the Affine cipher: By using Statistical properties of the English language, See pages 40-42.
- 2 A Ciphertext-only attack on the Substitution cipher: By using Statistical properties of the English language, See pages 42-44.
- A Ciphertext-only attack on the Vigenere cipher: To determine the keyword length: Kasiski test or the index of coincidence; To determine the keyword: Statistical methods, See pages 45-48.
- 4 A known plaintext attack on the Hill cipher: (See pages 48-49)
- A known plaintext attack on the LFSR Stream cipher: (See pages 49-51)

Outline

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- **6** Conclusions

Conclusions

- Basics of a Cryptosystem
- 2 Substitution Ciphers
- 3 The Permutation Cipher
- 4 Stream Ciphers
- 6 Cryptanalysis
- 6 Conclusions

Homework 1

Problem Set 1

Exercises: 2.1, 2.7, 2.8, 2.9, 2.10, 2.15(a), 2.16, 2.18, 2.23, 2.30(with executable codes)

Thanks for your attention! Questions?

