Commutative laws: p & q == q & p

p	q	p && q	q && p
Т	T	T	T
Т	F	F	F
F	T	F	F
F	F	F	F

Commutative laws: $p \parallel q == q \parallel p$

p	q	$p \parallel q$	$q \parallel p$
Т	T	T	T
Т	F	T	T
F	T	T	T
F	F	F	F

Associative laws: (p && q) && r == p && (q && r)

p	q	r	p && q	(p && q) && r	q && r	p && (q && r)
T	T	F	T	F	F	F
T	F	F	F	F	F	F
F	T	T	F	F	T	F
F	F	T	F	F	F	F

Associative laws: $(p \parallel q) \parallel r == p \parallel (q \parallel r)$

p	q	r	$p \parallel q$	$(p \parallel q) \parallel r$	$q \parallel r$	$p \parallel (q \parallel r)$
Т	Т	F	T	T	T	T
Т	F	F	T	T	F	Т
F	T	T	T	T	T	Т
F	F	T	F	T	T	T

Distributive laws: p && (q || r) == (p && q) || (p && r)

p	q	r	$q \parallel r$	p && (q r)	p && q	p && r	(p && q) (p && r)
Т	Т	F	T	T	T	F	Т
Т	F	F	F	F	F	F	F
F	T	Т	T	F	F	F	F
F	F	T	T	F	F	F	F

Distributive laws: $p \| (q \&\& r) == (p \| q) \&\& (p \| r)$

p	q	r	q && r	p (q && r)	$p \parallel q$	$p \parallel r$	(p q) && (p r)
Т	Т	F	F	T	Т	T	T
Т	F	F	F	T	Т	T	Т
F	T	T	T	T	Т	Т	Т
F	F	T	F	F	F	Т	F

Identity law: $p \&\& t == p OR p \parallel c == p$

p	t	p && t	c	$p \parallel c$
Т	Т	T	F	T
T	Т	T	F	T
F	T	F	F	F
F	T	F	F	F

Negation law: $p \parallel \sim p == t OR p \&\& \sim p == c$

p	~p[i]	t	p ~p	c	p && ~p
Т	F	T	T	F	F
Т	F	T	T	F	F
F	T	T	T	F	F
F	Т	Т	T	F	F

Double negative law: $\sim (\sim p) == p$

p	~p	~(~p)
Т	F	T
Т	F	T
F	T	F
F	T	F

Idempotent law: $p && p == p OR p \parallel p == p$

p	р && р	$p \parallel p$
T	T	T
T	T	T
F	F	F
F	F	F

Universal bound law: $p \parallel t == t OR p \&\& c == c$

p	t	$p \parallel t$	c	p c
Т	T	T	F	F
Т	Т	T	F	F
F	T	T	F	F
F	T	T	F	F

De Morgan's law: \sim (p && q) == \sim p || \sim q

p	q	p && q	~(p && q)	~p	~q	~p ~q
Т	T	T	F	F	F	F
Т	F	F	T	F	T	T
F	T	F	Т	Т	F	T
F	F	F	T	Т	Т	T

De Morgan's law: \sim (p || q) == \sim p && \sim q

p	q	$p \parallel q$	$\sim (p \parallel q)$	~p	~q	~p && ~q
Т	Т	T	F	F	F	F
Т	F	T	F	F	Т	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Absorption law: $p \parallel (p \&\& q) == p$

p	q	p && q	p (p && q)
Т	Т	T	T
Т	F	F	T
F	T	F	F
F	F	F	F

Absorption law: p && (p || q) == p

p	q	$p \parallel q$	p && (p q)		
T	T	T	T		
T	F	T	T		
F	Т	T	F		
F	F	F	F		

Negations of t and c: $\sim t == c OR \sim c == t$

t	~t	c	~c
Т	F	F	T
Т	F	F	T
T	F	F	T
Т	F	F	T