

Classification non supervisée : k moyennes et ACP

Chloé Clavel, chloe.clavel@telecom-paristech.fr, Sources : Isabelle Bloch, Jean-Marie Nicolas, Bernard Burtschy, Anne Sabourin

Telecom ParisTech, France

Plan du cours

Introduction à la classification non supervisée

k moyennes

Analyse en composantes principales - ACP

Pour aller plus loin

Plan du cours

Introduction à la classification non supervisée

La classification non supervisée

Méthodes de classification non supervisées

- Méthodes de regroupement ou de clustering
- problème de partitionnement des objets à classifier selon certains critères

Méthodes hiérarchiques vs. méthodes non hiérarchiques

- ► Méthodes hiérarchiques : graphes/arbres (voir polycopié ne seront pas vues dans le cadre de ce cours)
- ► Méthodes non hiérarchiques : k-moyennes, ISODATA, boules optimisées, nuées dynamiques

Méthodes non hiérarchiques de classification non supervisée

Méthodes non hiérarchiques de classification non supervisée

- ▶ on cherche à regrouper les observations en différentes classes selon un critère de regroupement
- on recherche une description des classes par leur densité de probabilité :
 - ▶ on connait les formes des densités de probabilités mais pas les paramètres des lois
 - ▶ on cherche les paramètres des lois qui maximisent le critère de regroupement des observations selon ces classes

Méthodes non hiérarchiques de classification non supervisée

- problème d'estimation de paramètres comme vu dans le cours de classification bayésienne
 - en entrée : le nombre de classes, les probabilités a priori de chaque classe, et les formes de densité des probabilités conditionnelles d'appartenance des observations à chaque classe (ex : gaussienne, multinomiale, loi gamma)
 - ▶ ce que l'on cherche à estimer : les paramètres des lois de probabilités des classes
 - méthode classiquement utilisée : estimateur du maximum de vraisemblance

Estimation des paramètres des lois par le maximum de vraisemblance

Cas où : les observations sont distribuées dans chaque classe selon la loi normale dont on connait les variances.

▶ loi normale

$$p(x|\omega_i; \mu_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(x-\mu_i)^t \Sigma_i^{-1}(x-\mu_i)}$$

- ightharpoonup avec μ_i la moyenne (de même dimension que les échantillons)
- \triangleright Σ_i la matrice de variance-covariance (supposée connue)
- ► d la dimension de l'espace des échantillons

Institut Mines-Telecom

Estimation des paramètres des lois par le maximum de vraisemblance

► On cherche les paramètres (ici les moyennes) qui maximisent (algorithme EM (Expectation-Maximization))

$$p(x|\omega_i;\mu_i)$$

► Après quelques calculs (voir poly, annulation de la dérivée de l'expression + application de la règle de Bayes), on obtient :

$$\hat{\mu}_i = \frac{\sum_{k=1}^n P(\omega_i | x_k; \hat{\mu}) x_k}{\sum_{k=1}^n P(\omega_i | x_k; \hat{\mu})}$$

▶ Cette expression est implicite (les $\hat{\mu}_i$ sont des deux côtés de l'équation) : c'est un système d'équations couplées non linéaires dont la résolution est compliquée.

Estimation des paramètres des lois par le maximum de vraisemblance

Pour résoudre l'équation $\hat{\mu_i} = \frac{\sum_{k=1}^n P(\omega_i|x_k;\hat{\mu})x_k}{\sum_{k=1}^n P(\omega_i|x_k;\hat{\mu})}$, on utilise un schéma itératif :

- on part d'un regroupement initial et des moyennes associées à ce regroupement $\hat{\mu}(0)$
- on estime les moyennes du regroupement de l'itération suivante en fonction des estimations de l'itération précédente :

$$\hat{\mu}_i(j+1) = \frac{\sum_{k=1}^n P(\omega_i|x_k; \hat{\mu}(j))x_k}{\sum_{k=1}^n P(\omega_i|x_k; \hat{\mu}(j))}$$

ightharpoonup jusqu'à ce que $\hat{\mu}_i(j+1) = \hat{\mu}(j)$

Ne garantit pas l'obtention d'un minimum global (dépend de l'initialisation)

Estimation des paramètres des lois

Schéma itératif et principe général :

- ▶ initialisation :
 - considérer un ensemble K de clusters et initialiser les paramètres de la loi associée à chaque cluster
 - attribuer chaque observation à un cluster en fonction de sa probabilité d'appartenir à une classe (classe la plus probable)
 - -> partitionnement initial
- ▶ itération :
 - Recalculer les paramètres du modèle sur la base des clusters du partitionnement courant
 - Redistribuer les observations dans les clusters à partir de ce nouveau modèle

Illustration dans le cas gaussien

En entrée : 2 classes avec comme probabilités a priori P(w1) = P(w2) = 0.5, une forme de densité de probabilité gaussienne avec comme variance $\sigma = 8$

μ1 =50, μ2 =60

μ1 =50, μ2 =55

On cherche à estimer μ_1 et μ_2 en utilisant l'algorithme EM

Illustration dans le cas gaussien

On cherche à obtenir $\mu_1 = 50$ et $\mu_2 = 75,60,55$

μ_2	μ_1	μ_2	Nombre itérations
75	50,01	75,1	3
60	49,96	59,94	7
55	49,95	55,10	16

Le nombre d'itérations requises est plus élevé quand μ_1 et μ_2 sont proches

Plan du cours

k moyennes

Les approximations des k-moyennes

Rappel:

▶ La distance de Mahalanobis est la distance de l'observation au centre de la classe (représenté par la moyenne des observations) pondérée par la dispersion de la classe (représentée par la variance des observations)

$$d = (x_k - \hat{\mu}_i)^t \hat{\Sigma}_i^{-1} (x_k - \hat{\mu}_i)$$

▶ La probabilité a posteriori $P(\omega_i|x_k,\hat{\theta})$ est d'autant plus grande que la distance de Mahalanobis est petite

Les approximations des k-moyennes

Première approximation :

- on remplace la distance de Mahalanobis par la distance euclidienne $||x_k - \hat{\mu_i}||^2$
- \triangleright on cherche alors la moyenne $\hat{\mu_m}$ qui minimise la distance
- permet de se ramener à une estimation de la moyenne (sans avoir à estimer les variances)

Cette approximation ramène le problème du regroupement des observations en des classes en l'optimisation d'un critère lié à la distance au centre des classes (moyenne des observations sur les classes): l'inertie $\sum_{i \in \{1, \dots, C\}} \sum_{x_k \in C_i} ||x_k - \mu_i||_2^2$

Les approximations des k-moyennes

Deuxième approximation sur les lois a posteriori

- "Binarisation" du processus : x_k est considéré comme appartenant de manière certaine à la classe ω_m, et n'appartenant (de façon certaine aussi) à aucune des autres classes.
- ▶ la probabilité est égale à 1 si l'observation appartient à la classe ω_m et à 0 sinon

$$\hat{P}(\omega_i|x_k;\hat{\theta}) = \begin{cases} 1 \text{ si } i = m, \\ 0 \text{ sinon,} \end{cases}$$
 (1)

$$\hat{\mu}_i(j+1) = \frac{\sum_{k=1}^n P(\omega_i|\mathsf{x}_k; \hat{\mu}(j))\mathsf{x}_k}{\sum_{k=1}^n P(\omega_i|\mathsf{x}_k; \hat{\mu}(j))} \Rightarrow \hat{\mu}_i(j+1) = \frac{1}{|\mathcal{C}_i(j)|} \sum_{\mathsf{x}_k \in \mathcal{C}_i(j)} \mathsf{x}_k$$

K-means - l'algorithme

(attention, changement de notation) : L'algorithme de K-Means partitionne les points en K groupes disjoints $\{\mathcal{C}_1,\ldots,\mathcal{C}_K\}$ en minimisant la variance intra-classe. Le critère minimisé est appelé inertie :

$$\sum_{k \in \{1,...,K\}} \sum_{i \in C_k} \|x_i - \mu_k\|_2^2$$

où les μ_k sont les centroides des classes :

$$\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i, \forall k \in \{1, \cdots, K\} ,$$

et où $i \in \mathcal{C}_{k_0}$ si :

$$k_o = argmin_{k \in \{1,...,K\}} ||x_i - \mu_k||_2$$
.

K-means - l'algorithme

L'apprentissage se fait en alternant deux étapes :

- une étape d'assignement où, sachant les (μ_k) , on va calculer les labels de chaque point
- une étape de mise à jour des centroides sachant les labels.

On arrête l'algorithme quand l'inertie ne décroit plus beaucoup. L'inertie est un critère non-convexe ⇒ la solution trouvée dépend de l'initialisation ⇒ lancer l'algorithme plusieurs fois avec des initialisations différentes pour ne garder que la solution avec l'inertie la plus faible.

K-means - l'algorithme

- ▶ Etape 1 : Initialisation. Choix de centres initiaux $m_j(1)$ arbitraires (équidistribués, tirés au hasard, ou encore k échantillons choisis au hasard parmi les n).
- ▶ Etape 2 : Affectation. À l'itération i, x est affecté à ω_i si :

$$||x - m_j(i)|| = \min_{l=1}^k ||x - m_l(i)||.$$
 (2)

Tous les échantillons sont classés selon cette règle (du centre le plus proche).

K-means – l'algorithme

▶ Etape 3 : Mise à jour des centres. Calcul des nouveaux centres $m_i(i+1)$ pour minimiser l'erreur quadratique :

$$J_j = \sum_{x \in \omega_j} \|x - m_j(i+1)\|^2$$

En annulant la dérivée de cette expression par rapport à m_i , on obtient:

$$\frac{\partial J_j}{m_j} = -2\sum_{x \in \omega_i} (x - m_j) = 0,$$

d'où la valeur optimale de m_i pour l'itération (i + 1):

$$m_j(i+1) = \frac{1}{n_j} \sum_{x \in (i)} x.$$
 (3)

K-means – l'algorithme

▶ Etape 4 : Test de convergence. Si $\forall j, m_j (i+1) = m_j(i)$, fin. Sinon, retour à l'étape 2.

Plan du cours

Introduction à la classification non supervisée

k moyennes

Analyse en composantes principales - ACP

Pour aller plus loin

Objectif

- représenter les données par des vecteurs de dimension réduite
- approche non supervisée car les données sont traitées indépendamment de leurs classes
- Analyser les relations entre un grand nombre de variables
- Rechercher des variables de synthèse en nombres réduits (facteurs)
- ► En perdant le moins d'information

Origine Karl Pearson (1901)

Autre dénomination : décomposition en valeurs singulières et Décomposition de Karhunen-Loève (1958)

Les données :

▶ une matrice correspondant aux observations (*N* individus pour lesquels on dispose de p caractéristiques)

	$\mathbf{v}_{\scriptscriptstyle 1}$	$\mathbf{v}_{_{\mathrm{j}}}$	\mathbf{V}_{P}
Obs. 1			
Obs. I			
Obs n			
Moyenne	m_1	mj	m_p

- ► Exemple de données :
 - un individu = un document textuel et ses caractéristiques les mots qui le composent
 - un individu = une image et ses caractéristiques le niveau de gris de chacun de ses pixels

Soient:

- ► *N* individus, *p* caractéristiques
- $\rightarrow x_k^i$ la kième caractéristique de l'individu i.
- ► *M* la matrice dans laquelle chaque ligne est constituée par un individu et chaque colonne représente une variable.

Raisonnement sur les lignes :

- ▶ les observations = N lignes de M = N points dans l'espace \mathbb{R}^p .
- ▶ on peut identifier les groupes d'observations qui ont des mesures voisines (proximité des obs.)

Raisonnement sur les colonnes :

- ▶ les caractéristiques = p col. de M = p points de l'espace \mathbb{R}^N
- chaque caractéristique peut être décrite par sa mesure sur les N observations et on peut observer la proximité entre les caractéristiques dans \mathbb{R}^N

le but de l'ACP est de visualiser dans un espace de plus petite dimension les proximités entre les observations et ainsi les corrélations entre les variables.

Objectif : Résumer les p variables en k synthèses (facteurs) $k \le p$ indépendantes

- Première contrainte : les facteurs sont des combinaisons linéaires des variables initiales $F_k = \sum_{j=1}^p \lambda_{kj} V_j$
- ▶ Deuxième contrainte : les facteurs sont indépendants deux à deux $F_i \perp F_j$ quand $i \neq j$

Les mesures utilisées dans l'ACP :

- ► Calcul de la moyenne et de l'écart type par variables : $m_j = \frac{1}{n} \sum_{i=1}^{N} X_{ij}$ et $\sigma_j^2 = \frac{1}{n} \sum_{i=1}^{N} (X_{ij} m_j)^2$
- ► Calcul de la distance entre deux observations (par exemple distance euclidienne) : $d^2(i,j) = \sum_{k=1}^{N} (X_{ik} X_{ik})^2$
- ► Mesure de la relation entre deux variables :
 - le produit scalaire : $\langle i,j \rangle = \sum_{k=1}^{N} X_{ik} X_{ik}$

Les trois ACP:

- analyser les données brutes
- analyse centrée : on remplace chaque observation par ses écarts à la moyenne
 - ▶ le produit scalaire devient : $\langle i,j \rangle = \sum_{k=1}^{N} (X_{ik} - m_i)(X_{jk} - m_j) = n * Cov(i,j)$
- ▶ analyse centrée réduite ou normée (la plus courante) :

$$x_k^{\prime i} = \frac{x_k^i - m_k}{\sigma_k}$$

• le produit scalaire devient : $\langle i,j \rangle = n * Corr(i,j)$

Objectif : visualiser dans un espace de plus petite dimension les proximités entre les observations et ainsi les corrélations entre les variables.

Les étapes de l'ACP :

- ▶ ETAPE 1 : centrage et réduction des données ; soient m_k et σ_k , les moyenne et écart-type de la kième variable, on notera $x_k'^i = \frac{x_k^i m_k}{\sigma_k}$ la donnée centrée réduite ;
- ► ETAPE 2 calcul de la matrice de covariance des données centrées réduites (mesure les relations entre les variables);

- ► ETAPE 3 : Recherche du sous-espace de projection
 - Le sous-espace optimal permet de visualiser les proximités entre les observations et les corrélations entre les variables.
 - Le meilleur sous-espace de dimension 1 est caractérisé par un vecteur unitaire u_1 ($||u_1||=1$): le vecteur qui «passe au mieux » à travers le nuage de points i.e. celui qui minimise la somme des carrés de la distance de chaque point à la droite.

RAPPEL MATHEMATIQUE:

Institut Mines-Telecom

- un critère de déformation minimum de nuage par projection est celui où les distances entre les points projetés sont les plus voisines de celles entre les points initiaux.
- ► Ceci revient à rechercher les vecteurs propres de la matrice X^tX

- ► ETAPE 3 (suite) : Recherche du sous-espace de projection
 - Passage aux dimensions supérieures dans l'espace de projection : calcul des valeurs propres λ_i et vecteurs propres u_i de la matrice de covariance:
 - ► Le meilleur sous-espace de dimension 1 est défini par le vecteur propre associé à la plus grande valeur propre de la matrice de covariance.

35/40

PROJECTION

- vérification de l'ordre des vecteurs propres selon les valeurs propres croissantes
- calcul des composantes principales x_q^{"i} exprimées dans la base des vecteurs propres :

$$x_q^{\prime\prime i} = x^{\prime i} u_q$$

en notant x'^i le vecteur ligne constitué par les observations de l'individu i.

PROJECTION

- ▶ On obtient donc de nouvelles variables constituées par des combinaisons linéaires des anciennes.
- Les composantes principales contiennent une quantité d'information proportionnelle à la valeur propre correspondante.
- les valeurs propres mesurent l'influence de chaque facteur ou composante principale
- ▶ On définit ainsi le pourcentage d'inertie par $\frac{\lambda_i}{\sum_{i=1}^{p} \lambda_i}$.

Exemple d'utilisation

- dans le cas de l'analyse de documents textuels : décomposition de matrices selon leurs directions propres (ou singulières) pour conserver un maximum d'information sur un nombre minimum de dimensions. La décomposition en valeurs singulières de la matrice terme/document permet d'obtenir des thèmes dominants dans le corpus, chacun étant associé à un sous-espace singulier.
- dans le cas de l'analyse d'image (voir TP) : réduire le nombre de canaux nécessaires pour conserver l'essentiel de l'information contenue dans l'image

Plan du cours

Pour aller plus loin

Quelques références

Likforman-Sulem, Laurence, and Elisa Barney Smith.

Reconnaissance des formes-Théorie et pratique sous Matlab-Cours et exercices corrigés. (2013).

Duda, Richard O., Peter E. Hart, and David G. Stork. *Pattern classification*. John Wiley & Sons, 2012.

