Math 3A03 - Tutorial 9 Questions - Winter 2019

Nikolay Hristov

March 18/20, 2019

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0. \tag{1}$$

Show that f has either an absolute maximum or an absolute minimum but not necessary both.

Problem 2. Let f be a continuous, one-to-one function defined on the interval [a,b] with f(a) < f(b). Show that, for all $x,y \in [a,b]$, if x < y then f(x) < f(y).

Problem 3. Let $f:[0,1] \to \mathbb{R}$ be a continuous function that is differentiable on (0,1) and with f(0) = 0 and f(1) = 1. Show there must exist distinct numbers ξ_1 and ξ_2 in that interval such that

$$f'(\xi_1)f'(\xi_2) = 1.$$