# **SOC LAB**

Lab3 report

ID:R12921076 Name:郭桓愷



### Design conception:

- tap ram & data ram皆使用bram11
- 1. 初始化tap\_ram&datat\_ram(將0填入)
- 2. Tap parameters 寫入bram:

當讀取到的awaddr位於0x20-FF則判斷資料為Tap parameter。 將address轉換為Bram的address後(awaddr-32)連同data送入bram 此時拉高we進行寫入 完成後回傳write\_done訊號至判斷address的block告知已完成寫入 並拉低WE,拉高awready&wready,等待下一筆資料。

- 3. 待主機發送ap start
- 4. Data 寫入bram:

當ap\_start拉高後開始運作,將data賦予address後送入bram。 此時拉高we進行寫入,待fir完成一次運算後,拉高ss\_tready&拉低we, 等待下一筆資料。

### 5. Fir運算:

進行一次FIR運算需11筆data及coef,我的設計是每一次的iteration都會發出一條tap\_ram的address及一條data\_ram的address,讀取對應的data後進行運算,並將相乘結果與reg內的上筆數據相加後再存進reg內,完成11次iteration後輸出結果至sm port,並將下一筆data寫入bram。

### 6. 完成所有data運算:

完成一次fir運算counter會記數,當達datalength數量時,發送finish的狀態,此時會拉高sm\_tlast,並將ap\_done=1寫入rdata,address 0x00處。且進行tap ram&data ram初始化,完成後將所有狀態與port回歸初始條件。

### 7. Run for three times

## Tap\_bram:

| Block | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------|---|---|---|---|---|---|---|---|---|---|----|
| coef  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

## data\_bram:

data=x[n]

| Block | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
|-------|---|---|---|---|---|---|---|---|---|---|----|--|
| n     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |



| Block | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------|----|----|----|----|----|----|----|----|----|----|----|
| n     | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |



Tap\_parameter=coef(x)
data=x[n]

運算時每個iteration result=resuil+temp; Temp[i]=coef[i]\*data\_block[10-i]; i=i+1

i x n

| 0  |   |   |   |   |   |   |   |   |   |    |
|----|---|---|---|---|---|---|---|---|---|----|
| 0  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0  |

Y[10]

i x n

| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 |

Y[21]

|          | i        | 0  | 1  | 2  | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----------|----------|----|----|----|----|---|---|---|---|---|---|----|
|          | X        | 0  | 1  | 2  | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 第一筆data計 | 算        | 10 | 9  | 8  | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0  |
|          |          | 0  | 10 | 9  | 8  | 7 | 6 | 5 | 4 | 3 | 2 | 1  |
|          |          | 1  | 0  | 10 | 9  | 8 | 7 | 6 | 5 | 4 | 3 | 2  |
|          |          | 2  | 1  | 0  | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3  |
|          |          |    |    |    |    |   | : |   |   |   |   |    |
|          |          | 9  | 8  | 7  | 6  | 5 | 4 | 3 | 2 | 1 | 0 | 1  |
|          |          | 10 | 9  | 8  | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0  |
|          | <b>\</b> | 0  | 10 | 9  | 8  | 7 | 6 | 5 | 4 | 3 | 2 | 1  |

```
Data_ram地址:
每筆新data{
Z=j
每筆iteration{
data_ram_A<=(z-i)<<2
當zi=0時z=11+j}
J=j+1;j=11時歸零
}
```

Tap\_ram地址:

Tap\_ram\_A<=i<<2

|      | i   | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------|-----|----|----|----|----|----|----|----|----|----|----|----|
| J=0  | z-i | 0  | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  |
|      | Z   | 0  | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
| J=1  | z-i | 1  | 0  | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  |
|      | Z   | 1  | 1  | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
|      |     |    |    |    |    |    |    |    |    |    |    |    |
| J=10 | z-i | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|      | Z   | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |

Z-j iteration

Data\_ram地址: 每筆新data{ Z=j; J=j+1; J=10後歸零}

每筆iteration{
data\_ram\_A<=(z-i)<<2
當zi=0時z=11+j}

### result

```
Log
                                      Reports
                                                 Design Runs
Tcl Console
              × Messages
Q <u>¥</u> ♦
                 Ш
   Check Coefficient ...
                   699545000.
   time =
  0K: exp =
                    0, rdata =
                                         0
  0K: exp =
                   -10, rdata =
                                       -10
  0K: exp =
                    -9, rdata =
                                        -9
                   23, rdata =
  0K: exp =
                                        23
                    56, rdata =
                                        56
  0K: exp =
                    63, rdata =
  0K: exp =
                                        63
  0K: exp =
                    56, rdata =
                                        56
  0K: exp =
                    23, rdata =
                                        23
  0K: exp =
                    -9, rdata =
                                        -9
  0K: exp =
                   -10, rdata =
                                       -10
  0K: exp =
                    0, rdata =
                                        0
   Tape programming done ...
   Start FIR
  ----End the coefficient input(AXI-lite)----
  0K: exp =
                     0, rdata =
  -----3End the data input(AXI-Stream)-----
                   2, rdata =
  0K: exp =
  0K: exp =
                     4, rdata =
   -----Congratulations! Pass-----
   ----- 3rd Simulation End -----
  $finish called at time: 1048305 ns: File "C:/Users/kai/Desktop/SOC/lab3/lab3/fir_tb.v" Line 315
  INFO: [USF-XSim-96] XSim completed. Design snapshot 'fir_tb_behav' loaded.
   INFO: [USF-XSim-97] XSim simulation ran for 1500000ns
△ launch_simulation: Time (s): cpu = 00:00:06 ; elapsed = 00:00:11 . Memory (MB): peak = 3661.242 ; gain = 57.961
```

## Synthesis report

```
Start RTL Component Statistics
141
    -----
142
    Detailed RTL Component Info:
143
    +---Adders :
144
145
          2 Input
                   32 Bit
                              Adders := 5
146
          2 Input
                   12 Bit
                              Adders := 6
147
          3 Input
                   12 Bit
                              Adders := 1
   +---Registers :
148
                     32 Bit
                             Registers := 5
149
                     12 Bit
                             Registers := 2
150
                      1 Bit
                             Registers := 8
151
152
   +---Multipliers:
                    32x32 Multipliers := 1
153
154
    +---Muxes :
                               Muxes := 1
155
          3 Input
                   32 Bit
                    1 Bit
                               Muxes := 13
          2 Input
156
157
    Finished RTL Component Statistics
158
```

```
2 | Report BlackBoxes:
  +-+----+
  | | | BlackBox name | Instances |
  +-+----+
  +-+----+
8 Report Cell Usage:
  +----+
      +----+
       IBUFG | 1|
       ICARRY4 I
  12
                 211
       ILUT1
  13
                 31
  14
       ILUT2
  15
       ILUT4
                 31
  16
       ILUT5
  17
       ILUT6
                 31
  18
       IFDRE
       IFDSE
  19
                 31
       LIBUF
                 31
  110
       IOBUF
5 Finished Writing Synthesis Report: Time (s): cpu = 00:00:23; elapsed = 00:00:24. Memory (MB): peak = 2535.0
```

## Synthesis report

#### 1. Slice Logic

| +                       | -+ |      | +. |       | +- |            | + |                 | +    |
|-------------------------|----|------|----|-------|----|------------|---|-----------------|------|
| Site Type               | i  | Used | i  | Fixed | İ  | Prohibited | İ | Available   Uti | 1%   |
| +                       | -+ |      | +  |       | +- |            | + |                 | +    |
| Slice LUTs*             | 1  | 30   | Ī  | 0     | I  | 0          | I | 53200   0.      | 06 I |
| I LUT as Logic          | 1  | 30   | Ī  | 0     | I  | 0          | I | 53200 I 0.      | 06 I |
| l LUT as Memory         | -  | 0    | Ī  | 0     | I  | 0          | I | 17400 I 0.      | 00 1 |
| Slice Registers         | 1  | 73   | Ī  | 0     | ١  | 0          | I | 106400 I 0.     | 07 I |
| I Register as Flip Flop | 1  | 73   | Ī  | 0     | ١  | 0          | I | 106400 I 0.     | 07 I |
| l Register as Latch     | 1  | 0    | Ī  | 0     | I  | 0          | I | 106400 I 0.     | 00 1 |
| I F7 Muxes              | -  | 0    | I  | 0     | I  | 0          | I | 26600 I 0.      | 00 1 |
| I F8 Muxes              | 1  | 0    | Ī  | 0     | I  | 0          | I | 13300 I 0.      | 00 1 |
| +                       | -+ |      | +  |       | +- |            | + |                 | +    |

<sup>\*</sup> Warning! The Final LUT count, after physical optimizations and full implementation, is typically low Warning! LUT value is adjusted to account for LUT combining.

#### 2. Memory

-----

| +- |                | + |      | + |       | + |            | + |           | + |       | + |
|----|----------------|---|------|---|-------|---|------------|---|-----------|---|-------|---|
| İ  | Site Type      | İ | Used | İ | Fixed | Ì | Prohibited | Ì | Available | İ | Util% | İ |
|    | Block RAM Tile | Ċ |      | Ċ |       | Ċ |            | Ċ |           | Ċ |       |   |
| I  | RAMB36/FIFO*   | 1 | 0    | I | 0     | Ī | 0          | Ī | 140       | Ī | 0.00  | I |
| I  | RAMB18         | 1 | 0    | I | 0     | I | 0          | Ī | 280       | I | 0.00  | I |
|    |                |   |      |   |       |   |            |   |           |   |       |   |

| Utilization                 |    |    |                  | Post-Synthe | sis   Post-Im | plementation |
|-----------------------------|----|----|------------------|-------------|---------------|--------------|
|                             |    |    |                  |             | Gra           | ph   Table   |
| LUT   1%<br>FF   1%<br>IO - |    |    |                  |             |               | ■ 138%       |
| BUFG 3%                     | 25 | 50 | 75               | 100         | 125           | 150          |
|                             |    |    | Estimated Utiliz |             |               |              |

| Name        | Constraints | Status                 | WNS | TNS | WHS | THS | WBSS | TPWS | Total Power | Failed Routes | Methodology | RQA Score | QoR Suggestions | LUT | FF | BRAM | URAM | DSP | Start             | Elapsed  | Run Strategy                                      |
|-------------|-------------|------------------------|-----|-----|-----|-----|------|------|-------------|---------------|-------------|-----------|-----------------|-----|----|------|------|-----|-------------------|----------|---------------------------------------------------|
| √ ✓ synth_1 | constrs_1   | synth_design Complete! |     |     |     |     |      |      |             |               |             |           |                 | 29  | 73 | 0    | 0    | 0   | 10/22/23, 4:10 AM | 00:00:34 | Vivado Synthesis Defaults (Vivado Synthesis 2023) |

## timing report



## 1.tap\_ram&data\_ram initialization



## 2. Tap parameter write



## 3. Tap parameter read



從送入araddr到送出rdata共會有4個clk的延遲,故在設計時有使rvalid delay四個cycle發送以同步信號。

## 4.Write ap\_start



### 5.Data write



Data寫入後立即進行fir運算,完成FIR運算後READY拉高,進行下一筆data讀取



此為第二筆data,從rdata至data\_in有1個clk的延遲,因此在此有延長we開啟的時間以確保bram寫入正確的data而不是上筆data。



=0\*5-10\*4-9\*3+23\*2+56\*1+63\*0+56\*0+23\*0-9\*0-10\*0+0\*0=35



=0\*31 -10\*30 -9\*29 +23\*28 +56\*27 +63\*26 +56\*25 +23\*24 -9\*23 -10\*22 +0\*21=4758

## 7.ap\_done



## 8. clock cycles from ap\_start to ap\_done



Start:1415

Done:349425

#Takes 348010 cycles