Examenul național de bacalaureat 2021 Proba E. c)

Matematică M tehnologic

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că $(1+3i)^2 6i = -8$, unde $i^2 = -1$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 3x 7. Determinați coordonatele punctului de intersecție a graficelor celor două funcții.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3-x} = 2x$.
- **5p 4.** Arătați că numărul de submulțimi cu două elemente ale mulțimii $A = \{1, 2, 3, 4, 5\}$ este egal cu numărul de submulțimi cu trei elemente ale mulțimii A.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2), B(-1,0) și C(0,a), unde a este număr real. Determinați numărul real a, știind că dreapta AB conține punctul C.
- **5p 6.** Se consideră numărul real $x \in \left(0, \frac{\pi}{2}\right)$ astfel încât $\cos x + \sin \frac{\pi}{6} = 1$. Calculați $\sin x$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} -2 & -6 \\ 1 & 3 \end{pmatrix}$ și M(x) = A + xB, unde x este număr real.
- **5p** a) Arătați că det A = 0.
- **5p b)** Demonstrați că $M(x) \cdot M(1) = xM(1)$, pentru orice număr real x.
- **5p** c) Determinați numărul natural n, știind că $M(4) \cdot M(3) \cdot M(2) \cdot M(1) = nM(1)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x * y = x + y + x^2 y^2$.
- **5p a)** Arătați că 1 * 2 = 7.
- **5p b)** Demonstrați că e = 0 este elementul neutru al legii de compoziție "*".
- **5p** c) Determinați numerele întregi x pentru care $(-2)*x \le 3$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + x^4 2x + 2$.
- **5p** a) Arătați că $f'(x) = e^x + 4x^3 2, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că funcția f este convexă.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x \frac{1}{x}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) + \frac{1}{x} \right) dx = 4$.
- **5p b)** Arătați că $\int_{1}^{2} \left(f(x) + \frac{1}{x} \right) \ln x dx = 2 \ln 2 \frac{3}{4}$.
- **5p** c) Determinați cel mai mare număr natural nenul n pentru care $\int_{1}^{\sqrt{2}} x^{n+1} f^{n}(x) dx \ge \frac{1}{2021}$.