

Resource-efficient algorithm for estimating the trace of quantum state powers ${\rm Tr}(\rho^k)$

Myeongjin Shin*, <u>Junseo Lee*</u>, Seungwoo Lee, and Kabgyun Jeong harris.junseo@gmail.com | arXiv:2408.00314

Summary

- Estimating the trace of quantum state powers, $Tr(\rho^k)$, for k identical quantum states is a fundamental task with numerous applications in quantum information processing.
- Inspired by the Newton-Girard method, we significantly improve upon existing results by introducing an algorithm that requires only $\mathcal{O}(\widetilde{r})$ qubits and $\mathcal{O}(\widetilde{r})$ multi-qubit gates, where $\widetilde{r} = \min \{ \operatorname{rank}(\rho), \lfloor \ln (2k/\epsilon) \rfloor \}$.

[Algorithm 1] Estimation of $Tr(\rho^k)$

- 1. Estimate the values of $\text{Tr}(\rho^{\ell})$ for $\ell = 1, 2, ..., t$ using the method proposed in [Quek *et al.*, *Quantum*, 2024], and denote them as $Q_{\ell(\leq t)}$. The estimation is $\epsilon(2kt \ln t)^{-1}$ -additive.
- 2. Calculate the elementary symmetric polynomial b_k (1 $\leq k \leq t$) defined as:

$$b_k = \frac{1}{k} \sum_{\ell=1}^k (-1)^{\ell-1} b_{k-\ell} Q_\ell, \ b_0 = 1.$$
 (1)

3. The value of $\text{Tr}(\rho^{\ell})$ can be ϵ -additively estimated for $\ell > t$ using the following recurrence relation:

$$Q_{\ell(>t)} = \sum_{k=1}^{t} (-1)^{k-1} b_k Q_{\ell-k}.$$
 (2)

[Algorithm 2] Estimation of $Tr(M\rho^k)$

- 1. Following Steps 1 and 2 of [Algorithm 1], with Step 1 providing an $\epsilon(2 ||M||_{\infty} kt \ln t)^{-1}$ -additive estimate, we obtain b_1, \dots, b_t .
- 2. $(\epsilon/4)$ -additively estimate the values of $\text{Tr}(M\rho^{\ell})$ for $\ell=1,2,\ldots,t$ using the method proposed in [Liang *et al.*, *PRA*, 2023], and denote these values as $Q_{\ell(\leq t),M}$.
- 3. The value of $\text{Tr}(M\rho^{\ell})$ can be ϵ -additively estimated for $\ell > t$ using the following recurrence relation:

$$Q_{\ell(>t),M} = \sum_{k=1}^{t} (-1)^{k-1} b_k Q_{\ell-k,M}.$$
 (3)

Theorem 3.3. Suppose that

$$\varepsilon_{i,M} = |\epsilon_{i,M}| = |P_{i,M} - Q_{i,M}| < \epsilon/4$$
, and (4)

$$\varepsilon_i = |\epsilon_i| = |P_i - Q_i| < \epsilon (2 \|M\|_{\infty} kt \ln t)^{-1}, \quad (5)$$

holds for $i=1,2,\ldots,t$, where the operator norm $\|M\|_{\infty}$ is defined corresponding to the ∞ -norm for vectors $\|x\|$, as $\|M\|_{\infty} = \sup_{x\neq 0} \frac{\|Mx\|_{\infty}}{\|x\|_{\infty}}$. Setting $t=\widetilde{r}_M$ and proceeding with **[Algorithm 2]** based on the recurrence relation (3), the following relation always holds:

$$|\epsilon_{i,M}| = |P_{i,M} - Q_{i,M}| \le \epsilon \tag{6}$$

for i = 1, 2, ..., k. Where \widetilde{r}_M is the effective rank for the observable M defined as:

$$\widetilde{r}_{M} = \min \left\{ r, \left| \ln \left(2k \|M\|_{\infty} / \epsilon \right) \right| \right\}.$$
 (7)

Notations: a_k and b_k represent the elementary symmetric polynomials corresponding to $P_i = \text{Tr}(\rho^i)$ and $Q_i = \text{Tr}(\rho^i)$, respectively.

Additionally, $P_{i,M} = \text{Tr}(M\rho^i)$ and $Q_{i,M} = \widetilde{\text{Tr}(M\rho^i)}$.

Resource requirements for estimating $\{Tr(\rho^i)\}_{i=1}^k$

Method	# Depth	# Qubits	# CSWAP	# Copies	Original $ \psi angle$
Generalized swap test	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}\left(k^2/\epsilon^2\right)$	NOT required
Hadamard test	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}\left(k^2/\epsilon^2\right)$	Required
Two-copy test	$\mathcal{O}(1)$	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}\left(k^2/\epsilon^2\right)$	Required
Two-copy test & Qubit-reset	$\mathcal{O}(k)$	O(1)	$\mathcal{O}(k)$	$\mathcal{O}\left(k^2/\epsilon^2\right)$	Required
Multivarite trace estimation	$\mathcal{O}(1)$	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}\left(k^2/\epsilon^2\right)$	NOT required
Ours (this work)	O(1)	$\mathcal{O}(\widetilde{r})$	$\mathcal{O}(\widetilde{r})$	$\widetilde{\mathcal{O}}\left(k^2/\epsilon^2\right)$	NOT required

Effective rank for ϵ -additive estimations

Quantity	Quantum Resource Needed	Lower bound on t (in [Algorithm 1 & 2])
$Tr(\rho^k)$	$\{\operatorname{Tr}(\rho^i)\}_{i=1}^t$	$\min \{ \operatorname{rank}(\rho), \lfloor \ln (2k/\epsilon) \rfloor \}$
$Tr(M\rho^k)$	$\{\operatorname{Tr}(\rho^i), \operatorname{Tr}(M\rho^i)\}_{i=1}^t$	$\min \left\{ \operatorname{rank}(\rho), \left[\ln \left(2k \ M\ _{\infty} / \epsilon \right) \right] \right\}$
$Tr(ho^k\sigma^\ell)$	$\{\operatorname{Tr}(\rho^{i}), \operatorname{Tr}(\sigma^{i})\}_{i=1}^{t}, \{\operatorname{Tr}(\rho^{i}\sigma^{j})\}_{(i,j)=(1,1)}^{(t,t)}$	$\min \{ \max\{ \operatorname{rank}(\rho), \operatorname{rank}(\sigma) \}, \lfloor \ln ((4k + 4\ell)/\epsilon) \rfloor \}$

Rank is all you need

Lemma 3.1. Let $d_k = b_k - a_k$, then the following holds:

$$|d_k| \leq \sum_{j=1}^k \frac{|\epsilon_j|}{j}.$$
 (8)

Theorem 3.1. Suppose that,

$$\varepsilon_i = |\epsilon_i| = |Q_i - P_i| < \epsilon (kt \ln t)^{-1}$$
 (9)

holds for i = 1, 2, ..., t. Setting t = r and proceeding with **[Algorithm 1]** based on the recurrence relation (2), the following relation always holds:

$$|\epsilon_i| = |Q_i - P_i| < \epsilon \tag{10}$$

for i = 1, 2, ..., k.

Corollary 3.1. To estimate $\text{Tr}(\rho^i)$ for all $i \leq k$ within an additive error of ϵ and with a success probability of at least $1 - \delta$, where $\delta \in (0, 1)$, it suffices to estimate each $\text{Tr}(\rho^j)$ for $j \leq r$ within an additive error of ϵ_j , as defined in Theorem 3.1. This can be achieved by using

$$\mathcal{O}\left(\frac{k^2r^2\ln^2r\ln\left(1/\delta\right)}{\epsilon^2}\right) \tag{11}$$

runs on a constant-depth quantum circuit consisting of $\mathcal{O}(j)$ qubits and $\mathcal{O}(j)$ CSWAP operations.

Application: Entanglement detection

- Separable quantum state ρ_{AB} always has a positive semi-definite (PSD) partial transpose (PT), denoted as $\rho_{AB}^{\Gamma_B}$.
- The *k*-th PT moment: $p_k^{PT} = \text{Tr} \left| \left(\rho^{\Gamma} \right)^k \right|$.

Lemma 5.1. A quantum state ρ is entangled if $e_i(\lambda_1, ..., \lambda_r) < 0$ for some i = 1, 2, ..., r, where p_i^{PT} are the PT moments of ρ^{Γ} , and $e_i(x_1, ..., x_m)$ denotes the elementary symmetric polynomial in m variables, which satisfies the recursive formula

$$e_k = \frac{1}{k} \sum_{i=1}^k (-1)^{i-1} e_{k-i} p_i^{PT}.$$
 (12)

- Computing $\{p_i^{\mathsf{PT}}\}_{i=1}^t$, $t = \mathcal{O}(\ln(r/\epsilon))$ is sufficient to estimate higher-order PT moments.
- ► Using these PT moments and the recursive formula (12), we can detect entanglement.

Effective rank is all you need

Lemma 3.2. Suppose that \widetilde{P}_i is defined as

$$\widetilde{P}_{i(\leq t)} = \operatorname{Tr}(\rho^i) = \sum_{j=1}^r p_j^i, \tag{13}$$

$$\widetilde{P}_{i(>t)} = \sum_{k=1}^{t} (-1)^{k-1} a_k \widetilde{P}_{i-k}.$$
 (14)

Then the following holds:

$$\left|\widetilde{P}_{k}-P_{k}\right|\leq\frac{k}{t!}\left(1-\frac{t}{r}\right).$$
 (15)

Theorem 3.2. Suppose that,

$$\varepsilon_i = |\epsilon_i| = |Q_i - P_i| < \epsilon (2kt \ln t)^{-1}$$
 (16)

holds for i = 1, 2, ..., t. Setting $t = \lfloor \ln(2k/\epsilon) \rfloor$ and proceeding with **[Algorithm 1]** based on the recurrence relation (2), the following relation always holds:

$$|\epsilon_i| = |Q_i - P_i| < \epsilon \tag{17}$$

for i = 1, 2, ..., k.

Corollary 3.2. To estimate $\text{Tr}(\rho^i)$ for all $i \leq k$ within an additive error of ϵ and with a success probability of at least $1 - \delta$, where $\delta \in (0, 1)$, it suffices to estimate each $\text{Tr}(\rho^j)$ for $j \leq \lfloor \ln{(2k/\epsilon)} \rfloor$ within an additive error of ϵ_j , as defined in Theorem 3.2. This can be achieved by using

$$\widetilde{\mathcal{O}}\left(\frac{k^2\ln(1/\delta)}{\epsilon^2}\right) \tag{18}$$

runs on a constant-depth quantum circuit consisting of $\mathcal{O}(j)$ qubits and $\mathcal{O}(j)$ CSWAP operations. Where $\widetilde{\mathcal{O}}(\cdot)$ ignores the logarithmic terms.

Open problems

- ► Tighter upper bound on $|\widetilde{P}_k P_k|$ and t:
 - ► Conjecture: $t = \mathcal{O}\left(\frac{\ln(k/\epsilon)}{\ln\ln(k/\epsilon)}\right)$.
- Upper bounds for restricted settings:
 - Incoherent measurements
 - Bounded quantum memory
- ightharpoonup -multiplicative error dependence
- Impact on virtual distillation
- Finding more rank-dependent algorithms