PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR)

FILTRI IIR (Infinite Impulse Response)

 DOMINIO TEMPORALE (equazione alle differenze finite)

$$y(n) = \sum_{k=0}^{M} a_k x(n-k) - \sum_{k=1}^{N} b_k y(n-k)$$

Ordine del filtro: N

DOMINIO DELLA TRASFORMATA ZETA (funzione di trasferimento)

$$H(z) = \frac{\sum_{k=0}^{M} a_k z^{-k}}{1 + \sum_{k=1}^{N} b_k z^{-k}} = \frac{a_0 \prod_{k=1}^{M} (1 - Z_k z^{-1})}{\prod_{k=1}^{N} (1 - P_k z^{-1})}$$

$$M \leq N$$

Se M > N→ filtro IIR di ordine N + filtro FIR di ordine M - N

Z_k zeri del filtro

P_k poli del filtro

a_k e b_k reali: filtro reale

a_k e b_k complessi: filtro complesso

DOMINIO DELLA FREQUENZA

$$H(F) = H(z)_{|z=e^{j2\pi F}} = |H(F)| e^{j\varphi(F)}$$

CARATTERISTICHE

- Risposta impulsiva infinita
- Eccellenti risposte in ampiezza ma risposte di fase non lineari
- E' necessario verificare la stabilità dal filtro

Caso particolare: N = 2

Sezione del II ordine (reale)

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}}$$

Due zeri complessi coniugati: Z_0 e Z_0^*

Due poli complessi coniugati: P_0 e P_0^*

Filtro passa - tutto (II ordine)

$$H_{p}(z) = \frac{b_{2} + b_{1}z^{-1} + z^{-2}}{1 + b_{1}z^{-1} + b_{2}z^{-2}} = \frac{N(z)}{D(z)} = \frac{z^{-2}D(z^{-1})}{D(z)}$$

N(z) e D(z) sono polinomi speculari

$$|H_p(F)| = \frac{|D(e^{-j2\pi F})|}{|D(e^{j2\pi F})|} = (coeff. reali) = 1$$

$$\varphi(F) \leq 0$$

Proprietà che si può estendere a filtri passa tutto di ordine N qualunque (> 2).

Sezione del II° ordine con solo poli

Si può verificare che

$$|H(F)|$$
 ha un max relativo se: $\cos \theta < \frac{2r}{1+r^2}$

per
$$F_0$$
: $\cos 2\pi F_0 = \frac{\cos \theta (1+r^2)}{2r}$, che vale

$$H_{\mathbf{M}} = \frac{1}{1-r} \bullet \frac{1}{(1+r) \operatorname{sen}\theta}$$

inversamente proporzionale alla distanza del polo dal cerchio unitario

Per $r \cong 1$, la banda a - 3dB

$$B_{-3dB} \cong \frac{1-r}{\pi}$$

 Il filtro è tanto più selettivo quanto più il polo si avvicina al cerchio unitario

Sistemi a fase minima

Consideriamo la seguente operazione:

passa tutto

poichè
$$\varphi_2(F) \leq 0 \Rightarrow \varphi_3(F) \leq \varphi_1(F)$$

● I sistemi lineari H₁(z) e H₃(z) hanno la stessa risposta in ampiezza. Differiscono per la posizione degli zeri che sono invertiti in modulo rispetto alle circonferenza unitaria sul piano zeta.

Ritardo di fase:

$$\Delta_3(F) = -\frac{\varphi_3(F)}{2\pi F} \geq \Delta_1(F) = -\frac{\varphi_1(F)}{2\pi F}$$

H₁(z): sistema a ritardo di fase minimo (brevemente a fase minima) fra tutti quelli che hanno la stessa risposta in ampiezza

Nota: generalizzazione possibile a IIR di qualunque ordine e ai FIR

PROGETTO FILTRI IIR

- Due principali metodi di progetto
- 1 Progetto indiretto da prototipi di filtri analogici
 - sono disponibili espressioni note di filtri analogici, semplici e efficienti
 - -metodo relativamente semplice e algebrico

2 - Progetto diretto del filtro numerico

- filtri molto efficienti
- flessibilità di progetto
- con l'ausilio del calcolatore (metodo non algebrico)

IIR: PROGETTO DA PROTOTIPI ANALOGICI

 si parte da una funzione di trasferimento G(s) del filtro analogico

 successivamente G(s) viene trasformata tramite una appropriata corrispondenza tra il piano s e il piano z per dare la corrispondente funzione di trasferimento H(z) del filtro digitale Trasformazione s ← z tale che:

funzione razionale — funzione razionale (realizzazione circuitale)

semipiano sinistro — interno della circonferenza unitaria (stabilità)

TRASFORMAZIONE BILINEARE

$$s = k \frac{1-z^{-1}}{1+z^{-1}} \Leftrightarrow z = \frac{k+s}{k-s}$$

k costante opportuna (reale)

1) per
$$z = e^{j2\pi F}$$

$$s = k \frac{1 - e^{-j2\pi F}}{1 + e^{-j2\pi F}} =$$

$$= k \frac{e^{-j\pi F} (e^{j\pi F} - e^{-j\pi F})}{e^{-j\pi F} (e^{j\pi F} + e^{-j\pi F})} = j k tg\pi F$$

2) Una funzione razionale è trasformata in una funzione razionale

3)
$$|z| < 1$$
 per Re(s) < 0

Verifica le tre condizioni

La trasformazione bilineare è quella più comunemente usata. Altre trasformazioni sono possibili e usate.

PROCEDURA DI PROGETTO

G(s) funzione di trasferimento di un filtro analogico (disponibile)

$$H(z) = G(s)$$
 $|_{s=k} \frac{1-z^{-1}}{1+z^{-1}}$

Relazione fondamentale [che segue dal punto 1]

$$2\pi f_a = k tg \pi F \Leftrightarrow f_a = \frac{k}{2\pi} tg \pi F$$

Attenzione

Le frequenze del filtro analogico f_a non corrispondono alle frequenze $f = F f_c$ del filtro numerico \Rightarrow deformazione dell'asse delle frequenze (che deve essere tenuta in conto nel progetto)

■ Esempio di determinazione di k

Progettare un filtro (es. passa basso) con frequenza di taglio F_t

A disposizione un prototipo (passa basso) con frequenza di taglio f_{at}.
Molto spesso sono disponibili filtri normalizzati.

$$\omega_{at} = 2\pi f_{at} = 1$$

Si sceglie k:

$$k = 2\pi f_{at} \cot g \pi F_t = \omega_{at} \cot g \pi F_t$$

- Trasformazione bilineare: svantaggi
- distorsione dell'asse delle frequenze
- risposta in frequenza del filtro numerico diversa da quella del filtro analogico
- trasforma un filtro analogico in un filtro numerico "dello stesso tipo" (per esempio un passa basso analogico in un passa basso numerico)

PROGETTO DI FILTRI IIR PASSA-ALTO, PASSA-BANDA E ELIMINA BANDA

Normalmente sono disponibili prototipi analogici passa-basso (generalmente normalizzati). Si possono seguire diverse procedure.

Per esempio:

- A) Progettare un prototipo passa-basso numerico mediante la bilineare ed operare successivamente una trasformazione nel piano z da passa-basso al tipo di filtro desiderato. Queste trasformazioni sono riportate in diversi testi.
- B) Operare una trasformazione diretta dal prototipo analogico passa-basso al filtro numerico del tipo desiderato.

La prima procedura richiede due trasformazioni.

La seconda procedura richiede una sola trasfor - mazione, che può essere dedotta combinando le due della prima procedura.

Di seguito sono riportate le trasformazioni da effettuare per la procedura B.

■ Progetto di filtri passa-alto

con

F_t frequenza di taglio del filtro numerico

 f_{at} frequenza di taglio del prototipo passa-basso analogico [se normalizzata $f_{at} = 1/(2\pi)$]

Progetto di filtri passa-banda

$$s = k \frac{1 - 2\alpha z^{-1} + z^{-2}}{1 - z^{-2}}$$

$$k = 2\pi f_{at} \cot g \pi (F_2 - F_1)$$

$$\alpha = \frac{\cos \pi (F_2 + F_1)}{\cos \pi (F_2 - F_1)}$$

con

- F₁ frequenza di taglio inferiore del filtro numerico
- F₂ frequenza di taglio superiore del filtro numerico
- f_{at} frequenza di taglio del prototipo passa-basso analogico

■ Progetto di filtri elimina-banda

$$s = k \frac{1 - z^{-2}}{1 - 2\alpha z^{-1} + z^{-2}}$$

$$k = 2\pi f_{at} tg \pi (F_2 - F_1)$$

$$\alpha = \frac{\cos \pi (F_2 + F_1)}{\cos \pi (F_2 - F_1)}$$

con

- F₁ frequenza di taglio inferiore del filtro numerico
- F₂ frequenza di taglio superiore del filtro numerico
- f_{at} frequenza di taglio del prototipo passa-basso analogico

Nota

Ordine del filtro numerico rispetto a quello del prototipo analogico:

- Rimane invariato per i filtri passa-basso e passa-alto
- Raddoppia per i filtri passa-banda e elimina banda.

PROGETTO DIRETTO DI FILTRI IIR CON METODI ITERATIVI

Non si parte da prototipi analogici, ma si progetta direttamente il filtro numerico dalle specifiche in frequenza

Minimizzazione dell'errore quadratico medio

H₀(F) risposta in frequenza desiderata

e.q.m.
$$E = \sum_{i=1}^{M} \{ |H(F_i)| - |H_0(F_i)| \}^2$$
 da minimizzare

F_i sono M prescelte frequenze

Supponiamo che il filtro da progettare sia

$$H(z) = \frac{\sum_{k=0}^{M} a_k z^{-k}}{1 + \sum_{k=1}^{N} b_k z^{-k}}$$

Si impone (per N=M):

$$\frac{\partial E}{\partial a_{k}} = 0$$

$$\frac{\partial E}{\partial b_{k}} = 0$$
2N+1 equazioni non lineari in 2N + 1 incognite

Algoritmi e programmi per la soluzione del sistema (con metodi iterativi, per es. programma di Yule-Walker in Matlab)

Se il filtro da progettare è fattorizzato in S sezioni del II ordine

$$H(z) = C \prod_{k=1}^{s} \frac{1 + a_k z^{-1} + b_k z^{-2}}{1 + c_k z^{-1} + d_k z^{-2}} = C G(z)$$

Si impone:

$$\frac{\partial E}{\partial C} = 0$$

$$\frac{\partial E}{\partial a_k} = 0$$

$$\frac{\partial E}{\partial b_k} = 0$$

$$\frac{\partial E}{\partial c_k} = 0$$

4S + 1 equazioni non lineari in 4S + 1 incognite

Ci sono metodi efficienti (algoritmi: es. Fletcher-Powell) per la soluzione di questo sistema.

<u>Osservazione</u>

Il metodo non pone vincoli sui poli e zeri.
Poli e zeri possono risultare esterni al cerchio unitario → filtro instabile

Metodo da completare con:

- determinazione dei poli
- ogni polo esterno P_0 viene sostituito con il suo inverso e coniugato $1/P_0^* \rightarrow$ risposta in frequenza inalterata.

STRUTTURE REALIZZATIVE CANONICHE

Sono quelle che impiegano il minimo numero di operatori (memorie, moltiplicatori, addizionatori) elementari

Struttura canonica diretta

$$H(z) = \frac{\sum_{k=0}^{N} a_k z^{-k}}{1 + \sum_{k=1}^{N} b_k z^{-k}}$$

$$y(n) = \sum_{k=0}^{N} a_k x(n-k) - \sum_{k=1}^{N} b_k y(n-k)$$

Struttura canonica trasposta

Si ottiene con le operazioni di trasposizione per reti lineari

Caratteristica

Ciascun campione attuale dell'ingresso x(n) e dell'uscita y(n) è moltiplicato per tutti i corrispondeti coefficienti in successione: può semplificare la realizzazione hw/sw

Realizzazione con sezioni in cascata

Si decompone

$$H(z) = a_0 \left[\prod_{i=1}^{K_1} H_i^{(1)}(z) \right] \left[\prod_{i=1}^{K_2} H_i^{(2)}(z) \right],$$
 $N = K_1 + 2K_2.$

H_i⁽¹⁾ (z), sistema del I ordine con poli e zeri reali
 H_i⁽²⁾ (z), sistemi del II ordine con poli e zeri complessi

K₁+K₂ filtri realizzati con strutture del I e del II ordine

- Problemi connessi con questa struttura
- 1. Associazione di zeri e poli per ogni sezione
- 2. Ordinamento delle sezioni in cascata
- 3. Scalatura fra una sezione e l'altra per pre venire il generarsi di valori troppo grandi (overflow) o troppo piccoli (underflow).

Aritmetica "infinita": 1, 2 e 3 non hanno conseguenze.

Aritmetica "finita": necessità di soluzioni adeguate per 1, 2 e 3

Associazione zeri e poli

Per ridurre gli effetti della realizzazione con aritmetica a precisione finita, si segue in pratica la seguente procedura:

- i) partire dal polo più vicino alla circonferrenza unitaria ed associarvi lo zero ad esso più vicino
- ii) continuare come in (i) fino ad esaurimento di tutti i poli restanti

Ordinamento delle sezioni

La procedura seguita in pratica per ridurre gli effetti di una realizzazione in aritmetica a precisione finita e' la seguente:

 sezioni ordinate in ordine decrescente dei valori massimi delle loro risposte in ampiezza.

Struttura parallela

Si esprime

$$H(z) = A + \sum_{i=1}^{k} H_i(z)$$

con

K = interno opportuno

 $A = a_N / b_N$

H_i (z) sezione del I o II ordine (a seconda del tipo di zeri e poli)

	FIR	IIR
Fase	puo' essere esattamente lineare	non lineare
Stabilita'	sempre	da controllare
Strutture realizzative	piu' facili e semplici	piu' complicate
Numero di operazioni	maggiore	minore
Precisione finita	effetti minori e piu' facili da analizzare	effetti maggiori e piu' difficili da analizzare
Procedure di progetto	mediante calcolatore	per filtri semplici procedura algebrica in genere mediante calcolatore