# SVM

# Séparation(s) linéaire(s)

Plusieurs (une infinité) de séparations linéaires possibles ...







# Séparation(s) linéaire(s)

Y en a-t-il une meilleure?













#### Y en a-t-il une meilleure?







Y en a-t-il une meilleure?



Nouveau problème : trouver les W qui maximisent la marge !



Nouveau problème : trouver les W qui maximisent la marge !

C.à.D.: Trouver les vecteurs supports:



#### Minimiser:

$$\frac{1}{2}\alpha^T \begin{bmatrix} y_1 y_1 X_1^T X_1 & \cdots & y_1 y_N X_1^T X_N \\ \vdots & \ddots & \vdots \\ y_N y_1 X_N^T X_1 & \cdots & y_N y_N X_N^T X_N \end{bmatrix} \alpha + [-1 \quad \dots \quad -1]\alpha$$

Sous contraintes:

$$Y^T \alpha = 0$$

Avec:

$$\alpha \geq 0$$

Une fois  $\alpha$  obtenu, on peut retrouyer W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

Une fois  $\alpha$  obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

Attention, il nous manque  $w_0$ !

#### Pour trouver $w_0$ :

1 – Choisir un  $X_n$  tq  $\alpha_n > 0$  c.à.d un Vecteur Support!

2 – Sachant que 
$$y_n(W^TX_n + w_0) = 1$$

3 – Cela nous donne:

$$w_0 = \frac{1}{y_n} - \sum_i w_i X_{n_i}$$

Une fois  $\alpha$  obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

N examples => N paramètres ?

Une fois  $\alpha$  obtenu, on peut retrouyer W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

N examples => N paramètres ?

Si  $X_i$  n'est pas un vecteur support, alors  $\alpha_i=0$ !

Une fois  $\alpha$  obtenu, on peut retrouyer W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

N examples => N paramètres ?

Si  $X_i$  n'est pas un vecteur support, alors  $\alpha_i = 0$ !

Ainsi, nous avons autant de paramètres dans notre modèle que de vecteur support => bonne généralisation !

# Machine à noyaux

#### Retour sur les SVMs

Si nos exemples sont de grande dimension,

$$\begin{bmatrix} y_1 y_1 X_1^T X_1 & \cdots & y_1 y_N X_1^T X_N \\ \vdots & \ddots & \vdots \\ y_N y_1 X_N^T X_1 & \cdots & y_N y_N X_N^T X_N \end{bmatrix}$$

Sera difficile à calculer!

#### Retour sur les SVMs

Projection des entrées dans un autre espace (le retour) :

$$\begin{bmatrix} y_1 y_1 \mathbf{z}_1^T \mathbf{z}_1 & \cdots & y_1 y_N \mathbf{z}_1^T \mathbf{z}_N \\ \vdots & \ddots & \vdots \\ y_N y_1 \mathbf{z}_N^T \mathbf{z}_1 & \cdots & y_N y_N \mathbf{z}_N^T \mathbf{z}_N \end{bmatrix}$$

Si l'espace est de dimension supérieure à l'espace de départ, cela devrait être encore pire!

#### Retour su

Projection des





art, cela

#### Retour sur les SVMs

Projection des entrées dans un autre espace (le retour) :

$$\begin{bmatrix} y_1 y_1 z_1^T z_1 & \cdots & y_1 y_N z_1^T z_N \\ \vdots & \ddots & \vdots \\ y_N y_1 z_N^T z_1 & \cdots & y_N y_N z_N^T z_N \end{bmatrix}$$

Si l'espace est de dimension supérieure à l'espace de départ, cela devrait être encore pire !

Cela dépend du type de transformation!

#### Retour sur les SVMs

Cela dépend du type de transformation!

Nous n'avons besoin que de l'existence de la possibilité d'effectuer produit scalaire dans le nouvel espace!

$$\begin{bmatrix} y_1 y_1 K(X_1, X_1) & \cdots & y_1 y_N K(X_1, X_N) \\ \vdots & \ddots & \vdots \\ y_N y_1 K(X_N, X_1) & \cdots & y_N y_N K(X_N, X_N) \end{bmatrix}$$

#### Différents noyaux :

Noyau Polynomial de degré Q:

$$K(x_n, x_m) = (1 + x_n^T x_m)^Q$$

Noyau à Base Radiale :

$$K(x_n, x_m) = e^{-x_n^2} e^{-x_m^2} e^{2x_n x_m}$$

vaux:

Equivalent à une projection dans un espace de dimension infinie!

egré Q:

$$K(x_n, x_m) = (1 + x_n^T x_n)$$

Sans augmentation du nombre de paramètres!

Noyau à Base Radiale :

$$K(x_n, x_m) = e^{-x_n^2} e^{-x_m^2} e^{2x_n x_m}$$