Prova Projeto de Circuitos Reconfiguraveis

Arthur Faria Campos*, *16/0024242**† Engenharia Eletrônica, UNB-FGA, Brasília, Brasil

Index Terms—Virtual Reality, Stereoscopic Cameras, Raspberry Pi, Micro-controllers, Electronic Police Tool.

I. Introdução

M robô móvel usa medidas de distância aos obstáculos através de um sensor de ultrassom e de um sensor de infravermelho. Deseja-se fazer a fusão sensorial dos sensores no intuito de melhorar a estimativa do valor de distância medida pelo robô. Para isto as equações (1), (2) e (3) são usadas. A cada instante de tempo k duas novas medidas (xUL e xIR) são realizadas e um novo valor da distância pode ser estimado através da fusão sensorial.

$$x_{fusao} = x_{UL} + G_{k+1}(x_{IR} - x_{UL})$$
 (1)

$$\sigma_{k+1}^2 = \sigma_k^2 - G_{k+1}\sigma_k^2 \tag{2}$$

$$G_{k+1} = \frac{\sigma_k^2}{\sigma_k^2 + \sigma_z^2} \tag{3}$$

onde,

- x_{fusao} é a estimativa da fusão dos dois sensores em centímetros
- x_{UL} é a medida do sensor de ultrassom em centímetros
- x_{IR} é a medida do sensor de infravermelho em centímetros
- σ_z^2 é o erro de covariância associado ao sensor de infravermelho
- σ_k^2 é o erro de covariância associado ao sensor de ultrassom no instante k.
- σ_{k+1}^2 é o erro de covariância da fusão no instante de tempo k+1.
- G_{k+1} é conhecido como Ganho do filtro e é calculado a cada instante de tempo k.

II. OBJETIVOS

Usando os operadores de cálculo aritmético em ponto flutuante de **27 bits** implemente uma arquitetura de hardware que permita realizar a fusão sensorial com as medidas dos sensores de ultrassom e infravermelho. Explore o paralelismo intrínseco das equações.

As entradas do circuito são x_{UL} e x_{IR} . Use uma entrada start para indicar o início do cálculo e uma saída ready para indicar que a saída (xfusao) está pronta. Apresente um diagrama de blocos da arquitetura de hardware proposta. Apresente os diagramas de estado das máquinas de estados finitos (se aplica). Envie pelo repositório o print do esquemático RTL

III. DIAGRAMA DE BLOCOS

Diagrama de blocos da arquitetura de hardware implementada.

A. Ganho

O bloco da figura 2 e 15 iora realizar o calculo da equação

Figura 2. Bloco que ira efetuar o cálculo da Fusao (1/2)

Figura 3. Bloco que ira efetuar o cálculo da Fusao (2/2)

B. Erro

O bloco da figura 9 e 5 irá realizar o calculo da equação 2.

Figura 4. Bloco que ira efetuar o cálculo do Erro (1/2)

Figura 1. Modelo Utilizado e Implementado

Figura 5. Bloco que ira efetuar o cálculo do Erro (2/2)

C. Ganho

O bloco da figura 6 e 8 iora realizar o calculo da equação 3.

Figura 6. Bloco que ira efetuar o cálculo do Ganho (1/2)

Figura 7. Bloco que ira efetuar o cálculo do Ganho (2/2)

IV. SIMULAÇOES

As simulações foram feitas utilizando arquivos Coe. Fo utilizado o arquivo com a semente para geras os numeros aleatorio com a matricula 1660024242 Utilizou-se a metodologia de verificação automática usando o Matlab para criar os estímulos de entrada e para decodificar a saída.

Foi Calculado o erro quadrático médio entre a solução hardware (27 bits) e a solução no Matlab (64 bits).

Para o gerador de números aleatórios do Matlab foi utilizado a matrícula como semente inicial.

O valor inicial das covariâncias dos sensores foram definidas como:

$$\sigma_k^2 = 0.1$$

$$\sigma_z^2 = 0.5$$

A. Resultados

Os resultados da simulação estao no arquivo Resultado_RoboMovel.txt.

Figura 8. Grafico do Erro

$$MSE = 8.15652134539012e - 13 \tag{4}$$

Figura 9. Simulação Comportamental

Figura 10. Top Module Implementado

V. SIMULAÇAO COMPORTAMENTAL

A. Tempo de execução

Para executar todas as entradas dos arquivos Coe, 100 entradas, temos um tempo de execução de 17.77ns.

B. Latência

$$latencia = 190ns (5)$$

C. Throughput

O Throughput neste caso fica igual a latência.

$$Throughput = 190ns (6)$$

VI. MEMÓRIAS ROM

Arquivo top_module no qual o componente da fusão sensorial recebe, através de duas memórias ROM, as medidas x_{UL} e x_{IR} . O arquivo de inicialização das memórias contém 100 dados aleatórios com distribuição normal e média em 100 centímetros.

O valor da fusão esta mapeado em leds e o switch 15 usado para selecionar a parte mais significativa ou a menos significativa da palavra.

Os switch 0 a 6 são usado para selecionar o endereço de memoria e o botão start para calcular a fusão entre eles.

A. Frequência máxima

O requisito era de 10 ns e a folga de 3,791 ns , o que significa que poderíamos ter pedido um clock de 3,791 ns mais curto e ainda assim estaria tudo bem. Então, poderia ter sido 10 - 3,791 = 6,2090 ns, que é de cerca de 161 MHz

$$F_m ax = 190ns \tag{7}$$

100

VII. CONSUMO DE RECURSOS DE HARDWARE

Utilization (%)

Figura 11. Summary do consumo de recursos

Name	Slice LUTs (20800)	Block RAM Tile (50)	DSPs (90)	Bonded IOB (106)	BUFGCTRL (32)	Slice Registers (41600)	Slice (8150)	LUT as Logic (20800)
∨ top_module	1597	1	3	27	1	403	455	1597
> Mem_XIR (Memory_Xir)	0	0.5	0	0	0		0	0
> Mem_XUL (Memory_Xul)	0	0.5	0	0	0		0	0
> RoboMovel i (RoboMovel)	1597	0	3	0	0		455	1597

Figura 12. Hierarchy do consumo de recursos

VIII. CONSUMO DE ENERGIA

Apresente um print do layout do circuito e do consumo de energia. Qual é a potência total consumida pela arquitetura? Qual é a potência dinâmica? Qual a potência estática?

Figura 13. Layout do circuito

Figura 14. Layout do circuito com Routing

Figura 15. Potência total consumida pela arquitetura

A. Potência dinâmica

$$dinamica = 0.040W (8)$$

B. Potência estática

$$estatica = 0.072W (9)$$