Discrete Mathematics Week 6

Abeyah Calpatura

4.5

Exercises

Abeyah Calpatura #1, 2, 7, 17, 22

#1 Solution:

$$n = 70$$
 and $d = 9$
 $70 = 9q + r$
 $q = 7$ and $r = 7$
Since $70 = 9(7) + 7$

#2 Solution:

$$n = 62$$
 and $d = 7$
 $62 = 7q + r$
 $q = 8$ and $r = 6$
Since $62 = 7(8) + 6$

#7 Solution:

#17 Solution: Prove directly from definitions that for every integer n, $n^2 - n + 3$ is odd. Use division into two cases: n is even and n is odd.

Case 1: n is even

$$n = 2k$$
 for some integer k
 $n^2 - n + 3 = (2k)^2 - 2k + 3$
 $n^2 - n + 3 = 4k^2 - 2k + 3$
 $n^2 - n + 3 = 2(2k^2 - k + 1) + 1$
 $n^2 - n + 3 = 2q + 1$
where $q = 2k^2 - k + 1$
Case 2: n is odd
 $n = 2k + 1$ for some integer k
 $n^2 - n + 3 = (2k + 1)^2 - (2k + 1) + 3$
 $n^2 - n + 3 = 4k^2 + 4k + 1 - 2k - 1 + 3$
 $n^2 - n + 3 = 4k^2 + 2k + 3$
 $n^2 - n + 3 = 2(2k^2 + k + 1) + 1$
 $n^2 - n + 3 = 2q + 1$
where $q = 2k^2 + k + 1$
Therefore, $n^2 - n + 3$ is odd for every integer n

#22 Solution: Suppose c is any integer. If $c \mod 15 = 3$, what is $10c \mod 15$? In other words, if division of c by 15 gives a remainder of 3, what is the remainder when 10c is divided by 15? Your solution should show that you obatin the same answer no matter what integer you start with.

$$c \mod 15 = 3$$

$$c = 15q + 3$$

$$10c = 10(15q + 3)$$

$$10c = 150q + 30$$

$$10c = 15(10q + 2)$$

$$10c \mod 15 = 0$$

4.6

Exercises

Abeyah Calpatura #2, 4, 6, 7, 10a