# Logistic

덕근쨩

## 선형회귀의 합계…?



# 선형회귀의 한계…?



#### 한계점

- 우선 우리가 합격(1) 불합격(0)으로 제시하려고 하는 문제에 대하여
- 자칫하면 음수가 나온다. 예) y= 2x-5라는 가중치가 나오게 되면, 1시간만 공부하면 -3…?
- 그리고 이진 분류에 있어서 그리 좋은 그래프의 개행이 아니다.->중간부분에서의 의사결정이 다소 애매하다

#### 시그모이드 함수

- 보시다시피, 종속 변수는 0과 1 사이로 고정이라는 것.
- 그리고 선형회귀의 경우에는 결과가 연속적인 숫자이나,
- 로지스틱의 경우는 범주형
- 또한 input 값을 log-odds로 받는다.

$$S(x)=rac{1}{1+e^{-x}}$$



#### 수식적인 접근

• 우선 우리는 자연상수 e를 대충 2.7로 상정한다.

$$S(x)=rac{1}{1+e^{-x}}$$

- 그리고 지수x는 일차함수 형태의 가중치 이다.
- 또한 지수 x앞에 -가 붙은 이유 : y축을 기준으로 대칭을 시켜주었다.

#### odd

$$Odds = \frac{P(event occurring)}{P(event not occurring)}$$

사건이 발생할 확률을 발생하지 않을 확률로 나눈 값이 odds이다.

#### odd

```
Odds = \frac{P(event occurring)}{P(event not occurring)}
위와 같은 식에서, p의 범위는 (0,1)사이 이다.
odd(p)는 (0,∞)가 된다. (분모의 크기가 0에 수렴한다고 생각해봐라)
근데 여기서 log를 씌우면?
범위는 (-\infty,\infty)가 된다. 실수 전체가 범위가 되기 때문에,
                 \log(Odds(p)) = Wx + b
으로 선형회귀의 식을 가져올 수 있게 되는 것.
```

#### 일차함수가 쓰임으로써 생기는 특징

일차함수에서의 기울기는 -> 경사도에 관여

일차함수에서의 y절편은 -> 역시나 편차에 기여

그리고 후 일에 딥러닝 노드간의 상호작용이 유리하다.

#### 최적화에 들어가기에 앞서서

우리는 일차함수와는 다르게, 0과1사이의 값, 즉 확률의 가중치를 구하기 위해서 로지스틱을 쓴다는 것을 명심할 것.

또한, cost function의 경우, 선형이 아니기 때문에

Linear regression과 다르게 경사하강법으로 최적화가 힘들다는 점.



# 함수의 볼록성

## 손실함수

종속변수가 1과 0밖에 없으므로, 저런 형태의 함수를 가져온다. 로그의 성질은 조금만 생각해봐도 위가 0일 수는 없으니까… (아니 뭐 된다고 쳐도 0이면 별도의 연산이 불가능..) 잘 보면 함수 자체는 똑같다.

$$\underline{cost(W)} = \frac{1}{m} \sum \quad \underline{\mathbf{c}(H(x), y)}$$
 
$$c(H(x), y) = \begin{cases} -log(H(x)) &: y = 1 \\ -log(1 - H(x)) &: y = 0 \end{cases}$$

#### 집중하세요~

- log(H(x)) Y=1일 때의 함수이니,

모델에서 예측한 것이 1이면 cost가 0으로 가겠고, 0으로 가면 log 0이니, Cost가 무한대로 치고 올라간다.



#### 집중하세요~

-log(1 - H(x)) Y=0일 때의 함수이니,

모델에서 예측한 것이 0이면 cost가 0으로 가겠고, 1으로 가면 log 0이니, Cost가 무한대로 치고 올라간다.



### 로그 손실

따라서 이러한 함수가 생겨났다. 그리고 이를 통해 나온 sigmoid로 범주를 나누면 된다.

$$-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(h(z^{(i)})) + (1-y^{(i)})log(1-h(z^{(i)}))]$$