

Représentation des nombres entiers relatifs

1. Règle générale

Les nombres entiers négatifs sont codés de façon que les opérations classiques sur les entiers relatifs puissent être effectuées normalement.

Autrement dit, 2 + (-2) doit bien donner 0 pour somme.

RAPPEL

Les entiers positifs sont codés suivant le poids des bits (LSB et MSB).

Exemples:

Pour un mot binaire sur 4 bits

MSB			LSB	Valeur
2 ³	2 ²	2 ¹	2º	base 10
1	1	1	1	+ 15
1	1	1	0	+ 14
1	1	0	1	+ 13
1	1	0	0	+ 12
1	0	1	1	+ 11
1	0	1	0	+ 10
1	0	0	1	+ 9
1	0	0	0	+ 8
0	1	1	1	+ 7
0	1	1	0	+ 6
0	1	0	1	+ 5
0	1	0	0	+ 4
0	0	1	1	+ 3
0	0	1	0	+ 2
0	0	0	1	+ 1
0	0	0	0	0

Pour les entiers négatifs, on utilise une plage réservée aux entiers positifs (la seconde partie)

Voir ci-dessous:

	Valeur											
base 10												
1	1	1	1		-	1		de p &				
1	1	1	0		-	2		valeurs obtenues par la méthode de complément à 2				
1	1	0	1		-	3		la n				
1	1	0	0		-	4		obt nét ém				
1	0	1	1		-	5		ent hoc ent				
1	0	1	0		-	6		les de à 2				
1	0	0	1		-	7	Ļ					
1	0	0	0		-	8	\	/				
0	1	1	1		+	7						
0	1	1	0		+	6						
0	1	0	1		+	5						
0	1	0	0		+	4	4					
0	0	1	1		+	3						
0	0	1	0		+	2						
0	0	0	1		+	1						
0	0	0	0			0						
MSB LSB												
2^3	2^2	21	2^{0}									

Dans ce cas, le bit de poids fort (MSB) indique le signe de l'entier.

Si MSB = 0 alors « entier positif »

Si MSB = 1 alors « entier négatif »

2. Règles d'encodage des entiers relatifs

Dans cet encodage:

- → le bit de poids fort représente le signe des entiers (0 pour un entier positif et 1 pour un entier négatif),
- → la représentation des nombres positifs ou nul est inchangée
- → les nombres négatifs sont encodés par la méthode du complément à deux.

Le complément à deux

Le complément à deux d'un mot binaire m de k bits s'obtient en inversant les k bits et en ajoutant 1.

Exemple: Pour coder un entier négatif (méthode du complément à 2)

Le complément à 2 d'un nombre signé transforme un nombre positif en un nombre négatif et <u>vis versa</u>.