Homework 4

21-236 Mathematical Studies Analysis II

Name: Shashank Singh Email: sss1@andrew.cmu.edu

Problem 1

Let $f:(a,b)\times\mathbb{R}\to\mathbb{R}$ be of class C^1 , such that, $\forall x\in(a,b), \exists \alpha_x>0$ such that, $\forall y\in\mathbb{R}$,

$$\left| \frac{\partial f}{\partial y}(x,y) \right| \ge \alpha_x.$$

Suppose there existed $\mathbf{x}_1, \mathbf{x}_2 \in (a, b) \times \mathbb{R}$ such that $f(\mathbf{x}_1) < 0 < f(\mathbf{x}_2)$. Let $h : [0, 1] \to \mathbb{R}$ such that, $\forall t \in [0, 1], h(t) = \frac{\partial f}{\partial y}(x_1 + t(x_2 - x_1))$. Since f is C^1 , $\frac{\partial f}{\partial y}$ is continuous, and therefore h is continuous. Thus, by the Intermediate Value Theorem, there exists $t_0 \in [0, 1]$ such that $h(t_0) = 0$. However, then, $\exists (x, y) \in (a, b) \times \mathbb{R}$ such that

$$\left| \frac{\partial f}{\partial y}(x, y) \right| = 0,$$

contradicting the given constraint. Therefore, $\frac{\partial f}{\partial y}$ is either everywhere positive or everywhere negative. Without loss of generality, take it to be everywhere positive (since taking (-f) does not change $\{(x,y) \in (a,b) \times \mathbb{R} | f(x,y) = 0\}$). Let $x \in (a,b)$. Then, since

$$\frac{\partial f}{\partial f} \ge \alpha_x > 0,$$

by the Mean Value Theorem, for $y = \frac{-f(0)}{\alpha_x}$, if f(0) < 0, then $f(x,y) \ge f(x,0) + \alpha_x(y-0) = 0$, and, if $f(x,0) \ge 0$, then $f(x,y) \le f(x,0) + \alpha_x(y-0) = 0$; in any case, f(y) and f(0) have different sign, so, by the intermediate value theorem, there exists $y_0 \in [f(0), y] \cup [y, f(0)]$, such that $f(x, y_0) = 0$. Since f is strictly increasing in y, y_0 is unique. Therefore, $\forall x \in (a, b)$, there exists a unique function $g:(a,b) \to \mathbb{R}$ (defined by $g:=(x \mapsto y_0)$) such that, $\forall x \in (a,b), f(x,g(x)) = 0$.

Let $x \in (a, b)$. Then, since f(x, g(x)) = 0 and $\frac{\partial f}{\partial y}(x, g(x)) > \alpha_x$, by the implicit function theorem, within open balls $B_1 = B(x, r_1) \subseteq (a, b)$, $B_2 = B(y, r_2) \subseteq \mathbb{R}$, such that, $\forall x \in B_1$, there is a unique function $g_x : B_1 \to B_2$ mapping x to y such that f(x, y) = 0, and, furthermore, since f is of class C^1 , g_x is also of class C^1 . However, the restriction of g to g to g has this property, so that, since g_x is the unique function with this property, $g|_{B_1} = g_x$, and consequently g is of class g in a ball around g. Since this is true for all g is of class g on its entire domain.

Problem 2

Let $g: [0,1] \to Y$ such that, $\forall t \in [0,1], g(t) = f(x+t(y-x))$. Let $y_0 = f(y) - f(x) = g(1) - g(0) \in Y$. By the Corollary of the Hahn-Banach Theorem proven in the notes, there exists a linear function $L: Y \to \mathbb{R}$ such that, for $y_0 = g(1) - g(0), L(y_0) = ||y_0||$, and, $\forall y \in Y, L(y) \le ||y||$. By the Mean Value Theorem, $L(g(1)) - L(g(0)) \le \sup(\frac{d(L \circ g)}{dt}(1 - 0).$

Because L is linear, so that, $\forall t_1, t_2 \in [0, 1]$ $\frac{L(g(t_1)) - L(g(t_2))}{t_1 - t_2} = L\left(\frac{g(t_1) - g(t_2)}{t_1 - t_2}\right)$. Thus, $\forall t \in [0, 1]$, $(L \circ g)'(t) = L(g'(t))$.

By the Chain Rule, $\forall w \in S$, $\frac{dg}{dt}(w) = \frac{\partial f}{\partial v}(w) ||y - x||_X$.

$$\begin{split} \|f(y) - f(x)\|_{Y} &= \|g(1) - g(0)\|_{Y} \\ &= \|L(g(1) - g(0))\|_{Y} \\ &= \|(L \circ g)(1) - (L \circ g)(0)\|_{Y} \\ &\leq \sup_{t \in [0,1]} \|(L \circ g)'(t))\|_{Y} |1 - 0| \\ &= \sup_{t \in [0,1]} \|L(g'(t))\|_{Y} \\ &= \sup_{w \in S} \|L\left(\frac{\partial f}{\partial v}(w)\right) \|y - x\|_{X} \|_{Y} \\ &\leq \sup_{w \in S} \left\|\frac{\partial f}{\partial v}(w)\right\|_{Y} \|y - x\|_{X} \end{split}$$

Problem 3

Let

(a) Let $(x,y) \in \{(x,y): f(x) < y\}$. By the result of part (a) of Problem 1 on Assignment 2, there exists at least one point $(t,s) \in E$ such that $\operatorname{dist}((x,y),E) = \|(x,y)-(t,s)\|$. Suppose there exist distinct $x_1, x_2 \in [a,b]$ such that $\operatorname{dist}((x,y),E) = \|(x,y)-(x_1,f(x_1))\|$ and $\operatorname{dist}((x,y),E) = \|(x,y)-(x_2,f(x_2))\|$. Without loss of generality, $x_1 < x_2$. Let B = B((x,y),g(x,y)). By definition of the distance function, there cannot be $t \in [a,b]$ such that $\|(x,y)-(t,f(t))\| < g(x,y)$, so that, at $(x_1,f(x_1))$ and $(x_2,f(x_2))$, B is tangent to the graph of f (insofar as $B \cap \{(x,f(x)): x \in [a,b]\} = \emptyset$ and $(x_1,f(x_1)), (x_2,f(x_2)) \in \partial B \cap \{(x,f(x)): x \in [a,b]\}$). Thus, the curvature of f at some point must be at least that of the boundary of B, so that, since the curvature of a circle of radius δ is $\frac{1}{\delta}$, $f'' \geq \frac{1}{\delta}$.

On the other hand, since f is of class C^2 , f'' is continuous, so that, by the Weierstrass Theorem, f'' has an upper bound M on [a,b]. Therefore, letting $\delta < \frac{1}{M}$, ensures that (t,s) is unique, $\forall (x,y) \in U_{\delta}$.

(b) Let $(x, y) \in U_{\delta}$, for δ as in part (a), and let (t, s) be the unique point shown to exist in part (a). Since the tangent vector of f at (t, s) is (t, f'(t)), the normal vector of f at (t, s) is (-f', t). Since (x, y) - (t, s) is in the direction of the normal vector of f at (t, s), we have

$$(x,y) = (t,s) + \|(x,y) - (t,s)\| \frac{(t,-\frac{1}{f'(t)})}{\|(t,-\frac{1}{f'(t)})\|}.$$

(c) Let $L: \mathbb{R}^2 \to \mathbb{R}$ such that, $\forall (x,y) \in \mathbb{R}^2$, $L(x,y) = x^2 + y^2$. Then, Letting $h: \mathbb{R} \to \mathbb{R}$ such that, $\forall (x,y) \in \mathbb{R}^2$,

$$h(x,y) = L((t,s) + \|(x,y) - (t,s)\| \frac{(t, -\frac{1}{f'(t)})}{\|(t, -\frac{1}{f'(t)})\|} - (x,y)),$$

by the result of part (b) above, fixing $(L \circ h)(x,y) = 0$, since the derivative of $L \circ h$ is non-zero, by the Implicit Function Theorem, in some ball around (t,s), there exists a unique function g_x such that $h(x,g_x(x)) = 0$, and, furthermore, g_x is of class C^1 . However, $(L \circ h)(x,y) = 0$ if and only if g(x,y) = ||(x,y) - (t,s)||, so that g also has this property. Therefore, since g_x is unique $g = g_x$, so that g is of class C^1 .

Problem 4

(a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ such that, $\forall (x, y) \in \mathbb{R}^2$,

$$f(x,y) = \alpha \log(1+xy) + \alpha^2 xy - 2\sin x + y - 1.$$

Evaluating f at (0,1) gives f(0,1)=0. Evaluating

$$\frac{\partial f}{\partial y}(x,y) = \frac{\alpha x}{1+xy} + \alpha^2 x + 1$$

at (0,1) gives

$$\frac{\partial f}{\partial y}(0,1) = 1 \neq 0.$$

Therefore, by the Implicit Function Theorem, fixing f(x,y) = 0 determines, in a ball $B_x = B(0,r_1)$, a unique function $g: B_x \to B_y = B(1,r_2)$ such that, $\forall x \in B_x$, f(x,g(x)) = 0.