PK 2

1. Дать определение окрестности и открытого множества в \mathbb{R}^n .

Опр. ε -окрестностью точки $a\in\mathbb{R}^n$ называется множество $U_{\varepsilon}(a)$ всех точек $x\in\mathbb{R}^n$, расстояние от которых до точки a меньше ε .

To есть $U_arepsilon(a) = \{x \in \mathbb{R}^n \mid
ho(x,a) < arepsilon\}$

Для проколотой: $\mathring{U}_{arepsilon}(a) = \{x \in \mathbb{R}^n \mid 0 <
ho(x,a) < arepsilon\}$

Опр. Множество $A\subset\mathbb{R}^n$ называется открытым, если все его точки внутренние.

2. Дать определение предельной точки, граничной точки множества и замкнутого множества в \mathbb{R}^n .

Опр. Точка $a\in\mathbb{R}^n$ называется граничной точкой множества $A\subset\mathbb{R}^n$, если любая окрестность $U_{\varepsilon}(a)$ содержит и точки из A, и точки из $\mathbb{R}^n\setminus A$.

Опр. Точка $a\in\mathbb{R}^n$ называется предельной точкой множества $A\subset\mathbb{R}^n$, если $\forall\,\mathring{U}_{arepsilon}(a)$ содержит точки множества A.

Опр. Множество $A \subset \mathbb{R}^n$ называется замкнутым, если оно содержит все свои граничные точки.

3. Дать определение ограниченного и связного множества в \mathbb{R}^n .

Опр. Множество $A \subset \mathbb{R}^n$ называется ограниченным, если $\exists U_{\varepsilon}((0,0,\ldots,0))$ точки 0, целиком содержащая множество A.

Опр. Множество $A \subset \mathbb{R}^n$ называется линейно связным, если любые две его точки можно соединить непрерывной кривой.

4. Дать определение предела ФНП по множеству и непрерывной ФНП.

Опр. Пусть задана функция $f:\mathbb{R}^n o\mathbb{R}^m$, множество $A\subset D(f)\subset\mathbb{R}^n$ и a - предельная точка множества A . Тогда $b\in\mathbb{R}^n$ называется пределом функции f(x) в точке a по множеству A, если

- ullet $orall U_arepsilon(b)$ $\exists \mathring{U}_\delta(a)$ такая, что $orall x \in \mathring{U}_\delta(a) \cap A \; f(x) \in U_arepsilon(b)$ (определение по Коши)
- для любой последовательности $\{a_k\}$, $a_k \neq a$, сходящейся к точке a и $a_k \in A \ \forall k$ последовательность значений $\{b_k\} = \{f(a_k)\}$ сходится к точке b (определение по Гейне)

Опр. Функция нескольких переменных $f:A\subset \mathbb{R}^n \to \mathbb{R}^m$ называется непрерывной в точке $a\in A$, предельной для множества A, если:

$$1) \; \exists \lim_{\substack{x \to a \\ A}} f(x)$$

$$2) \ \lim_{\substack{x \to a \\ A}} f(x) = f(a)$$

Опр. Функция нескольких переменных $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ называется непрерывной на множестве A, если она непрерывна во всех точках множества A.

5. Дать определение частной производной ФНП в точке.

Опр. Пусть функция $f:\mathbb{R}^n o\mathbb{R}^m$ определена в некоторой δ -окрестности точки $U_\delta(a)$ точки $a=(a_1,\dots,a_n)\in\mathbb{R}^n$

Пусть Δx_i - любое приращение i-ой переменной функции $f(x_1,\dots,x_n)$ такое, что точка $(a_1,\dots,a_{i-1},a_i+\Delta x_i,a_{i+1},\dots,a_n)\in U_\delta(a)$

Частным приращением функции f по переменной x_i в точке a называется разность

$$\Delta_i f(a) = f(a_1, \ldots, a_{i-1}, a_i + \Delta x_i, a_{i+1}, \ldots, a_n) - f(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n)$$

Частной производной функции f по переменной x_i в точке a называется предел(если он существует)

$$\lim_{\Delta x_i o 0} rac{\Delta_i f(a)}{\Delta x_i}$$

Обоз.
$$\frac{\partial f(a)}{\partial x_i}$$
 или $f'_{x_i}(a)$

6. Дать определение ФНП, дифференцируемой в точке.

Опр. Функция f называется дифференцируемой в точке x, если её полное приращение в некоторой окрестности точки x можно представить в виде:

$$\Delta f(x) = A \cdot \Delta x + \alpha(\Delta x) \cdot |\Delta x|,$$

где A - матрица m imes n, элементы которой не зависят от Δx , $lpha(\Delta x):\mathbb{R}^n o \mathbb{R}^m$ - бесконечно малая функция при $\Delta x o 0$

7. Записать формулы для вычисления частных производных сложной функции вида z=f(u(x,y),v(x,y)).

$$z_x' = z_u' \cdot u_x' + z_v' \cdot v_x'$$

$$z_y' = z_u' \cdot u_y' + z_v' \cdot v_y'$$

или

$$rac{\partial z}{\partial x} = rac{\partial z}{\partial u} \cdot rac{\partial u}{\partial x} + rac{\partial z}{\partial v} \cdot rac{\partial v}{\partial x}$$
 $rac{\partial z}{\partial u} = rac{\partial z}{\partial u} \cdot rac{\partial u}{\partial y} + rac{\partial z}{\partial v} \cdot rac{\partial v}{\partial y}$

$$\partial y = \partial u = \partial y = \partial v = \partial y$$

8. Записать формулу для вычисления производной сложной функции вида u=f(x(t),y(t),z(t)).

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial t}$$

9. Записать формулы для вычисления частных производных неявной функции z(x,y), заданной уравнением F(x,y,z)=0.

$$rac{\partial z}{\partial x} = -rac{\left(rac{\partial F}{\partial x}
ight)}{\left(rac{\partial F}{\partial z}
ight)}$$

$$rac{\partial z}{\partial y} = -rac{\left(rac{\partial F}{\partial y}
ight)}{\left(rac{\partial F}{\partial z}
ight)}$$

10. Сформулировать теорему о связи непрерывности и дифференцируемости ФНП.

Теорема. Если функция $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в точке $x \in \mathbb{R}^n$, то она непрерывна в точке x. **Следствие.** Если функция $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в области $X \in \mathbb{R}^n$, то она непрерывна в области X.

11. Сформулировать теорему о необходимых условиях дифференцируемости ФНП.

Теорема. Пусть функция $f:\mathbb{R}^n o\mathbb{R}^m$ дифференцируема в точке $x\in\mathbb{R}^n$.

Тогда в точке x существуют частные производные функции f по всем переменным, то есть определена матрица Якоби f'(x), причём матрица A из опр. дифференцируемой функции и матрица Якоби f'(x) равны, то есть $a_{ij} = \frac{\partial f_j(x)}{\partial x}$

12. Сформулировать теорему о достаточных условиях дифференцируемости ФНП.

Теорема. Пусть функция $f:\mathbb{R}^n o \mathbb{R}^m$ имеет матрицу Якоби в некоторой окрестности U(a) точки $a\in\mathbb{R}^n$ и все элементы $\frac{\partial f_j}{\partial x_i}$ матрицы Якоби непрерывны в точке $a\in\mathbb{R}^n$.

Тогда функция f дифференцируема в точке a.

13. Сформулировать теорему о неявной функции.

Теорема. (формулировка очень большая, здесь очень сильно упрощённый вариант из семинаров) Дано уравнение F(x,y,z)=0. Пусть оно разрешимо относительно z, тогда существует неявно заданная функция z=z(x,y), при подстановке которой в уравнение оно обращается в верное равенство, причём дифференцируемая.

Её частные производные:

$$rac{\partial z}{\partial x} = -rac{\left(rac{\partial F}{\partial x}
ight)}{\left(rac{\partial F}{\partial z}
ight)}$$
 и $rac{\partial z}{\partial y} = -rac{\left(rac{\partial F}{\partial y}
ight)}{\left(rac{\partial F}{\partial z}
ight)}$

14. Дать определение (полного) первого дифференциала ФНП.

Опр. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}^m$ определена в некоторой окрестности U(x) точки $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ и дифференцируема в точке x.

Полным (первым) дифференциалом функции f в точке x называется линейная относительно $\Delta x=(\Delta x_1,\dots,\Delta x_n)$ часть приращения $\Delta f(x)$ функции f в точке x. **Обоз.** $df(x)=f'(x)\cdot \Delta x$

15. Сформулировать теорему о необходимых и достаточных условиях того, чтобы выражение P(x, y) dx + Q(x, y) dy было полным дифференциалом.

Теорема. Выражение P(x,y)dx+Q(z,y)dy является полным дифференциалом некоторой функции $u(x,y) \iff$

1. функции
$$P(x,y),Q(x,y),rac{\partial P(x,y)}{\partial y},rac{\partial Q(x,y)}{\partial x}$$
 непрерывны в некоторой области $G\subset\mathbb{R}^2$ 2. $rac{\partial P(x,y)}{\partial y}=rac{\partial Q(x,y)}{\partial x}\; orall (x,y)\in G$

16. Дать определение второго дифференциала ФНП и матрицы Гессе.

Опр. Пусть функция $f:\mathbb{R}^n o \mathbb{R}^m$ определена и дифференцируема в некоторой окрестности U(x) точки $x=(x_1,\dots,x_n)\in\mathbb{R}^n$ и её первый дифференциал df(x) дифференцируем в точке x Вторым дифференциалом функции f(x) в точке x называется дифференциал 1-ого порядка дифференциала функции f(x)

Обоз. $d^2 f(x) = d(df(x))$

17. Сформулировать теорему о независимости смешанных частных производных от порядка дифференцирования.

Теорема. Пусть скалярная функция $f:\mathbb{R}^n \to \mathbb{R}$ имеет в некоторой окрестности U(a) точки $a\in\mathbb{R}^n$ смешанные частные производные $f''_{xy}(x)$ и $f''_{yx}(x)$, которые непрерывны в точке a. Тогда $f''_{xy}(a)=f''_{yx}(a)$

18. Дать определение градиента ФНП и производной ФНП по направлению.

Опр. Градиентом функции $f:\mathbb{R}^n o\mathbb{R}$ в точке $x\in\mathbb{R}^n$ называется вектор из частных производных $\mathrm{grad}f(x)=\left(rac{\partial f(x)}{\partial x_1},\ldots,rac{\partial f(x)}{\partial x_n}
ight)$, если все частные производные существуют.

Опр. Производной функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $a \in \mathbb{R}^n$ по направлению вектора \vec{n} называется число, равное пределу(если он существует):

$$rac{\partial f(a)}{\partial ec{n}} = \lim_{s o +0} rac{f(a+sec{n}) - f(a)}{s}$$

19. Перечислить основные свойства градиента ФНП.

Свойства градиента функции и производной по направлению:

- 1. Если скалярная функция $f:\mathbb{R}^n o\mathbb{R}$ дифференцируема в точке $a\in\mathbb{R}^n$, то $rac{\partial f(a)}{\partial ec{n}}=np_{ec{n}}\mathrm{grad}f(x)$ проекция градиента на направление вектора
- 2. Если скалярная функция $f:\mathbb{R}^n o\mathbb{R}$ дифференцируема в точке $a\in\mathbb{R}^n$ и $\vec{n}=\mathrm{grad}f$, то $rac{\partial f(a)}{\partial \vec{n}}=|\mathrm{grad}f(a)|$
- 3. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то в этой точке вектор $\operatorname{grad} f(a)$ указывает направление наибольшего роста функции
- 4. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то в этой точке вектор $-\operatorname{grad} f(a)$ указывает направление наибольшего убывания функции
- 5. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то наибольшая скорость возрастания(убывания) функции в точке a равна $|\operatorname{grad} f(a)|$ $(-|\operatorname{grad} f(a)|)$

20. Записать формулу для вычисления производной ФНП по направлению.

Производная функции f по направлению вектора \vec{n} находится как скалярное произведение вектора \vec{n} и градиента функции $\operatorname{grad} f(a)$ в точке a ($\vec{n_0}$ - нормированный вектор \vec{n}):

$$rac{\partial f(a)}{\partial ec{n}} = \left(\mathrm{grad} f(a), ec{n_0}
ight)$$

21. Записать уравнения касательной и нормали к поверхности F(x,y,z)=0 в точке $(x_0,y_0,z_0).$

Касательная к графику функции F(x,y,z)=0 в точке (x_0,y_0,z_0) :

$$F_x'(x-x_0)+F_y'(y-y_0)+F_z'(z-z_0)=0$$

Нормаль к графику функции F(x, y, z) = 0 в точке (x_0, y_0, z_0) :

$$rac{x-x_0}{F_x'} = rac{y-y_0}{F_y'} = rac{z-z_0}{F_z'}$$

22. Сформулировать теорему Тейлора для функции двух переменных.

Теорема. (остаточный член в форме Лагранжа)

Пусть скалярная функция $f:\mathbb{R}^n o\mathbb{R}$ имеет в некоторой окрестности $U_\delta(x_0)$ точки $x_0\in\mathbb{R}^n$:

- 1. все частные производные до порядка m+1
- 2. непрерывные в окрестности $U_{\delta}(x_0)$

Тогда $\forall x \in U_{\delta}(x_0) \; \exists \theta \in (0,1)$:

$$f(x) = f(x_0) + \sum_{k=1}^m rac{d^k f(x_0)}{k!} + rac{d^{m+1} f(x_0 + heta(x-x_0))}{(m+1)!}$$

Теорема. (остаточный член в форме Пеано)

Пусть скалярная функция $f:\mathbb{R}^n o\mathbb{R}$ имеет в некоторой окрестности $U_\delta(x_0)$ точки $x_0\in\mathbb{R}^n$:

- 1. все частные производные до порядка m+1
- 2. причём все частные производные до порядка m непрерывны в окрестности $U_\delta(x_0)$
- 3. а все частные производные порядка m+1 непрерывны в точке x_0

Тогда $\forall x \in U_{\delta}(x_0)$:

$$f(x) = f(x_0) + \sum_{k=1}^m rac{d^k f(x_0)}{k!} + o(|x-x_0|^m)$$

23. Дать определение (обычного) экстремума (локального максимума и минимума) ФНП.

Опр. Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ определена в некоторой окрестности точки $a \in \mathbb{R}^n$. Точка a называется точкой локального максимума (минимума) функции f(x), если $\exists \mathring{U}(a)$ такая, что $\forall x \in \mathring{U}(a) \ f(x) \leq f(a) \ (f(x) \geq f(a))$. Точки локального максимума и локального минимума называются точками локального экстремума функции.

24. Сформулировать необходимые условия экстремума ФНП.

Теорема. Пусть для скалярной функции $f: \mathbb{R}^n o \mathbb{R}$

- 1. точка $a \in \mathbb{R}^n$ является точкой экстремума
- 2. и существует частная производная $f_{x_i}'(a)$ для некоторого $i=\overline{1,n}$

Тогда $f_{x_i}^\prime=0$

Следствие 1. Если $\exists \operatorname{grad} f(a)$, то $\operatorname{grad} f(a) = 0$

Следствие 2. Если функция дифференцируема в точке a, то df(a)=0

25. Сформулировать достаточные условия экстремума ФНП.

Теорема. Пусть скалярная функция $f:\mathbb{R}^n o\mathbb{R}$

- 1. дважды непрерывно дифференцируема в некоторой окрестности
- 2. $\operatorname{grad} f(a) = 0$
- 3. квадратичная форма $d^2f(a)$
 - 1. положительно определена, тогда в точке a функция f(x) имеет строгий локальный минимум
 - 2. отрицательно определена, тогда в точке a функция f(x) имеет строгий локальный максимум
 - 3. знакопеременна, тогда в точке a функция f(x) не имеет экстремума

26. Дать определение условного экстремума ФНП.

Опр. Пусть скалярная функция $f:\mathbb{R}^n \to \mathbb{R}$ и векторная функция $\varphi:\mathbb{R}^n \to \mathbb{R}^m$ (m < n) определены в некоторой окрестности точки $a \in \mathbb{R}^n$

$$arphi(x) = ec{0}$$
 - некоторое условие

Точка a называется точкой условного локального максимума (минимума) функции f(x), если существует проколотая окрестность $\mathring{U}(a)$: $\forall x \in \mathring{U}(a)$, удовлетворяющих условию $\varphi(x) = 0$,

$$f(x) \le f(a) \ (f(x) \ge f(a)).$$

Точки условного максимума и условного минимума называются точками условного локального экстремума.

27. Сформулировать необходимые условия условного экстремума ФНП.

Теорема. Пусть

- 1. скалярная функция $f:\mathbb{R}^n \to \mathbb{R}$ и векторная функция $\varphi:\mathbb{R}^n \to \mathbb{R}^m$ (m < n) непрерывно дифференцируемы в некоторой окрестности точки $a \in \mathbb{R}^n$
- 2. точка a является точкой условного экстремума функции f(x) при условиях связи arphi=0
- 3. ранг матрицы Якоби $\varphi'(a)$ функции $\varphi(x)$ в точке a равен m, то есть $\operatorname{rg} \varphi'(a) = m$

Тогда существуют множители Лагранжа $\lambda_1,\dots,\lambda_m$:

$$egin{cases} L'_{x_1}(a,\lambda)=0\ \dots\ L'_{x_n}(a,\lambda)=0\ L'_{\lambda_1}(a,\lambda)=0\ \dots\ L'_{\lambda_m}(a,\lambda)=0 \end{cases}$$

Решения системы являются стационарными точками функции Лагранжа.

28. Сформулировать достаточные условия условного экстремума ФНП.

Теорема. Пусть

- 1. скалярная функция $f:\mathbb{R}^n o\mathbb{R}$ и векторная функция $\varphi:\mathbb{R}^n o\mathbb{R}^m$ (m< n) дважды непрерывно дифференцируемы в некоторой окрестности точки $a\in\mathbb{R}^n$
- 2. $\varphi(a) = \vec{0}, \operatorname{rg} \varphi'(a) = m$
- 3. координаты точки $(a_1,\ldots,a_n,\lambda_1,\ldots,\lambda_m)\in\mathbb{R}^{(m+n)}$ являются решением системы уравнений:

$$egin{cases} L'_{x_1}(a,\lambda)=0\ \dots\ L'_{x_n}(a,\lambda)=0\ L'_{\lambda_1}(a,\lambda)=0\ \dots\ L'_{\lambda_m}(a,\lambda)=0 \end{cases}$$

- 4. для функции $L(x)=L(x,\lambda_a)$ и подпространства $H=\{dx_1,\dots,dx_n\mid d\varphi(a)=0\}$ квадратичная форма $d^2L(a)|_H$
 - 1. положительно определённая, тогда функция f(x) в точке a имеет строгий локальный минимум при условии $\varphi(x)=0$
 - 2. отрицательно определённая, тогда функция f(x) в точке a имеет строгий локальный максимум при условии $\varphi(x)=0$
 - 3. знакопеременная, тогда функция функция f(x) в точке a не имеет условного экстремума при условии $\varphi(x)=0$

29. Дать определение функции Лагранжа и множителей Лагранжа задачи на условный экстремум ФНП.

Опр. Функцией Лагранжа для задачи на условный экстремум $f(x) o \operatorname{extr}$

$$arphi_1(x)=0$$
 \dots

$$arphi_m(x)=0$$

называется функция $L(x,\lambda)=f(x)+\lambda_1 arphi_1(x)+\cdots+\lambda_m arphi_m(x).$

Числа $\lambda_1,\dots,\lambda_n$ называются множителями Лагранжа.