Appendices

Appendix A: German scales used

Table 7: The German scales used to measure sustainability attitudes and sustainability behaviours based on the Theory of Planned Behaviour. Attitudes, subjective norms, perceived behavioural control and intentions were combined to form sustainability attitudes, and self-reported behaviours were taken as sustainability behaviours. The scales have been copied one to one from Pauli (2023).

#	Skala	Item	Theoretische Einordnung	Verwendete Frage auf Deutsch	Quelle
1	Einstellunge n zu klima-	AT1	Nachhaltigkeits- Einstellungen	Die Umwelt in Deutschland ist durch den globalen Klimawandel gefährdet.	Masud et al.
2	schützende m Verhalten	AT2		Die derzeitige globale Erwärmung ist NICHT vom Menschen verursacht, sondern ein natürlicher Vorgang.	2016
3		AT3		Der Klimawandel schadet der natürlichen Umwelt und der Tierwelt in Deutschland.	
4		AT4		Ich bin bereit, einen gewissen Betrag zu bezahlen, um die Auswirkungen des Klimawandels zu verringern.	
5	Subjektive Normen	SN1		In meiner Familie wird oft über den Klimawandel oder die globale Erwärmung diskutiert.	Lin 2013
6		SN2		Meine Mitschülerinnen und Mitschüler diskutieren oft über den Klimawandel oder die globale Erwärmung.	
7		SN3		Meine Mitschülerinnen und Mitschüler könnten mich kritisieren, wenn ich keine Maßnahmen zum Klimaschutz ergreife.	
8	Wahrgenom mene Verhaltens-	PBC 1		Ich glaube, dass ich dazu beitragen kann, die Auswirkungen des Klimawandels abzuschwächen.	Pouya und Niyaz
9	kontrolle	PBC 2		Durch mein Handeln im Alltag kann ich zur Verringerung von CO2-Ausstoß beitragen.	2022
10	Intentionen	IN1		Es liegt in meiner Verantwortung, meine Mitbürgerinnen und Mitbürger zu ermutigen, den Klimawandel zu beachten.	Pouya und Niyaz
11		IN2		Ich bin bereit dazu, mich in meinem täglichen Leben umweltfreundlicher zu verhalten.	2022
12		IN3		Ich bin bereit, alles zu tun, um die Auswirkungen des Klimawandels zu mindern.	
13	Verhalten	B01	Nachhaltigkeits- Verhalten	Ich habe meinen Fleischkonsum in den letzten Monaten bewusst reduziert.	Lin 2013
14		B02		Ich kaufe in Deutschland produziertes Obst und vermeide den Kauf von importiertem Obst (z. B. Bananen, Kiwis).	
15		B03		In meinem Kühlschrank lagere ich oft Lebensmittel, die das Haltbarkeitsdatum überschritten haben.	
16		B04		Beim Kauf von Elektrogeräten achte ich am meisten auf den Preis der Geräte.	
17		B05		Ich kaufe Elektrogeräte, die ein Energiesparlabel haben.	
18		B06		Ich schalte Lichter und Wasserhähne so oft wie möglich aus.	
19		B07		Ich ziehe den Stecker von Geräten, die vorübergehend nicht in Gebrauch sind.	
20		B08		Ich fahre hauptsächlich mit einem Auto oder einem Motorroller, beziehungsweise werde gefahren.	
21		B09		Ich nutze Aufzüge und steige selten Treppen.	
22		B10		Ich unterstütze eine Erhöhung der Besteuerung von Kraftstoffen, um den Verbrauch fossiler Kraftstoffe zu reduzieren.	

1

Table 8: The German scales used for efficacy beliefs were based on the Triple-A framework (Agent-Action-Aim) by Hamann et al. (2024). The scales allow differentiation between personal and collective efficacy beliefs and between aim and action focus.

#	Skala	Theoretische Einstufung	Item	Verwendete Frage auf Deutsch	Quelle
1	Persönliche	Aim-focussed	SW01 01	Ich glaube, dass meine eigenen	Hamann
Ι'	Selbstwirksamkeits-	/ dill locassea	01101_01	Handlungen einen Beitrag zum	et al.
	überzeugungen			Klimaschutz leisten können.	2024
				wenn ich das möchte.	
2		Aim-focussed	SW01_02	Ich glaube, dass ich den	
				Klimaschutz vorantreiben kann,	
				indem ich in meinem Umfeld	
				über den Klimawandel aufkläre,	
				wenn ich das möchte.	
3		Action-	SW01_03_inverse	Ich glaube nicht, dass ich in der	
		focussed		Lage bin, mich für den	
			011101 01	Klimaschutz einzusetzen.	
4		Aim-focussed	SW01_04	Ich glaube, dass ich dazu in der	
				Lage bin, andere davon zu	
				überzeugen, sich für mehr Klimaschutz einzusetzen, wenn	
				ich das möchte.	
5		Aim-focussed	SW01 05 inverse	Ich glaube nicht, dass ich	
"		Allii-locusseu	34401_03_IIIVelse	Möglichkeiten habe, einen	
				Einfluss auf den Klimawandel	
				zu nehmen.	
6		Action-	SW01 06	Ich glaube, dass ich	
		focussed	_	beeinflussen kann, wie meine	
				Schulleitung oder meine Schule	
				bezogen auf den Klimaschutz	
				handelt, wenn ich das möchte.	
7		Aim-focussed	SW01_07	Ich glaube, dass ich meine	
				Schulleitung oder Schule dabei	
				unterstützen kann, sich für	
				Klimaschutz einzusetzen, wenn	
		Aim formered	011/04 00	ich das möchte.	
8		Aim-focussed	SW01_08	Ich glaube, dass ich mich in	
				Zusammenarbeit mit anderen sinnvoll für den Klimaschutz	
				engagieren kann, wenn ich das	
				möchte.	
9	Kollektive	Aim-focussed	CS01 01	Wir. als Schülerinnen und	
"	Wirksamkeits-			Schüler, können durch unsere	
	überzeugungen			Handlungen einen Beitrag zum	
				Kllimaschutz leisten, wenn wir	
				das möchten.	
10		Action-	CS01_02	Wir, als Schülerinnen und	
		focussed		Schüler, können beeinflussen,	
				wie unsere Schulleitung oder	
				Schule bezogen auf den	
				Klimaschutz handelt, wenn wir	
		A:	0004.00	das möchten.	
11		Aim-focussed	CS01_03	Wir, als Schülerinnen und	
				Schüler, sind in der Lage,	
				andere davon zu überzeugen, sich für mehr Klimaschutz	
				einzusetzen, wenn wir das	
				möchten.	
				moditen.	

Appendix B: Form Declaration of consent by parents

Einverständniserklärung der Eltern

Teilnahme an einer Untersuchung zum Thema "Nachhaltigkeitskompetenzen im Projekt KlimaRatSchule"

Liebe Eltern.

im Rahmen meiner Masterarbeit an der Universität Freiburg im Studiengang "Environmental Governance" begleite ich, Daniela Gargya, das Projekt "KlimaRatSchule" (KRS), welches letztes Jahr an der Schule durchgeführt wurde. Mein Ziel ist es nun die längerfristige Wirkung des Projekts, über das Ende hinausgehend, zu untersuchen.

Inwiefern Schülerinnen und Schüler, welche an dem Projekt teilgenommen haben, veränderte Einstellungen und Selbstwirksamkeitsüberzeugungen, also die Überzeugung Vorgänge verstehen und beeinflussen zu können, aufweisen ist ein wesentlicher Teil der Arbeit.

Hierzu füllen die Schülerinnen und Schüler, welche am Projekt teilgenommen haben, sowie eine "Kontrollgruppe", einen identischen Fragebogen online aus. In diesem werden Fragen zu Einstellungen, Verhalten und Selbstwirksamkeit abgefragt. So kann der Einfluss des Projektes auf Nachhaltigkeitskompetenzen untersucht werden.

Das Ausfüllen des Fragebogens erfordert ca. 10-15 Minuten und erfolgt in Anwesenheit einer Lehrperson.

Selbstverständlich erfolgt eine Anonymisierung aller personenbezogenen Daten, sodass keine Ergebnisse auf einzelne Personen rückführbar sind.

Falls Sie noch Fragen haben, können Sie sich sehr gerne mit mir in Verbindung setzen. Ich danke Ihnen für Ihre Unterstützung.

Mit freundliche Grüßen,

Daniela Gargya

Universität Freiburg E-Mail: daniela@gargya.de

Albert-Ludwigs-Universität Freiburg

Fakultät für Umwelt und natürliche Ressourcen

Teilnahme an einer Untersuchung zum Thema "Nachhaltigkeitskompetenzen im Projekt KlimaRatSchule"

Einverständniserklärung der Eltern

Mir ist das Ziel und Wesen der Forschungsprojektes bewusst. Ich hatte die Möglichkeit Fragen zu stellen und habe zurzeit keine weiteren Fragen mehr.

Ich weiß, dass die Teilnahme meines Kindes daran freiwillig ist. Ich weiß, dass ich jederzeit und ohne Angabe von Gründen diese Zustimmung widerrufen kann, ohne dass sich dieser Entschluss nachteilig auf mein Kind auswirken wird. Ich bin damit einverstanden, dass in diesem Forschungsprojekt Daten von meinem Kind in Form von Befragungen erhoben werden. Mir ist bekannt, dass die erhobenen Daten anonym gespeichert und ausschließlich für wissenschaftliche Zwecke verwendet werden.

Hiermit erkläre ich mich einverstanden, das	s			
Meine Tochter/mein Sohn				
freiwillig an einer Untersuchung zum KlimaRatSchule" teilnimmt.	Thema	"Nachhaltigkeitskompetenzen	im	Projekt
Ort, Datum		 Unterschrift Erziehungsb	erect	ntigte:r

Appendix C: Information slide given to students at measurement point 3

Umfrage zum Projekt KlimaRatSchule

Wozu diese Umfrage?

An deiner Schule wurde letztes Jahr das **Projekt "KlimaRatSchule"** durchgeführt. Ein Projekt, dass sich mit dem Thema **Klimaschutz und Beteiligung** beschäftigt hat. Es geht darum, welche **Auswirkungen** das Projekt hat. Du kannst an diesem Fragebogen teilnehmen, **egal ob du an dem Projekt teilgenommen hast oder nicht**.

Worum geht es?

Du bekommst ein paar Fragen (ca. 10-15 Minuten zum Ausfüllen) zu deinen Einstellungen, Verhalten und Überzeugungen. Das Mitmachen am Fragebogen ist freiwillig.

Wie funktioniert es?

Du kannst auf die Umfrage über den Link/ QR-Code zugreifen und die Fragen per Ankreuzen beantworten. Kreuze möglichst spontan das an, was für deine Meinung am Ehesten zutrifft.

Übrigens

Dein Fragebogen ist **anonym**. Das heißt, niemand weiß welche Angaben du gemacht hast. Die Ergebnisse fließen in eine Masterarbeit und können helfen zukünftige Nachhaltigkeitsprojekte noch besser zu gestalten.

Vorab schonmal ganz herzlichen Dank dafür, dass du mitmachst!

https://www.soscisurvey.de/KRSumfrage/

Dani Gargya (Fragen an daniela@gargya.de), Universität Freiburg

Appendix D: Statistical test results

Table 9: Kruskal-Wallis test results comparing scores across 3 measurement points within groups (RQ1).

Scale	Group	P-Value	Kruskal-Wallis H
AT_Mean	Control group	0.7653188	0.5349257
AT_Mean	Involved group	0.3578105	2.0555033
B_Mean	Control group	0.7167712	0.6659973
B_Mean	Involved group	0.2900163	2.4756363
INT_Mean	Control group	0.1033114	4.5400142
INT_Mean	Involved group	0.9685065	0.0640002
PBC_Mean	Control group	0.4085675	1.7901962
PBC_Mean	Involved group	0.0862698	4.9005516
SN_Mean	Control group	0.7083967	0.6895022
SN_Mean	Involved group	0.6809252	0.7686057
TPB_Mean	Control group	0.2351661	2.8949266
TPB_Mean	Involved group	0.1762751	3.4714192

Table 10: Wilcoxon test results comparing groups (RQ1).

Scale	Measurement Point	P-Value	W Statistic	Significance symbols
AT_Mean	Measurement point 1	0.1203383	429.0	
AT_Mean	Measurement point 2	0.0024719	302.5	**
AT_Mean	Measurement point 3	0.0884757	87.5	
B_Mean	Measurement point 1	0.0021725	300.0	**

Scale	Measurement Point	P-Value	W Statistic	Significance symbols
B_Mean	Measurement point 2	0.0000515	210.5	***
B_Mean	Measurement point 3	0.0319491	71.5	*
INT_Mean	Measurement point 1	0.0009521	283.0	***
INT_Mean	Measurement point 2	0.0000551	214.5	***
INT_Mean	Measurement point 3	0.0145942	62.0	*
PBC_Mean	Measurement point 1	0.1694962	446.0	
PBC_Mean	Measurement point 2	0.0005760	270.5	***
PBC_Mean	Measurement point 3	0.2163233	104.5	
SN_Mean	Measurement point 1	0.1392966	435.5	
SN_Mean	Measurement point 2	0.0041714	317.0	**
SN_Mean	Measurement point 3	0.1142683	92.0	
TPB_Mean	Measurement point 1	0.0043080	317.5	**
TPB_Mean	Measurement point 2	0.0000257	196.0	***
TPB_Mean	Measurement point 3	0.0082193	54.0	**

Table 11: Wilcoxon test results comparing personal/collective efficacy within groups (RQ3).

Group	W Statistic	P-Value
Control group	1	1
Involved group	0	1

Table 12: Wilcoxon test results comparing personal/collective efficacy between groups (RQ3).

Scale	P-Value	W Statistic
CS_Mean	0.6103249	123.0
SW_Mean	0.0968496	88.5

Table 13: Wilcoxon test results comparing aim/action focused efficacy within groups (RQ3).

Group	W Statistic	P-Value
Control group	1	1
Involved group	1	1

Table 14: Wilcoxon test results comparing aim/action focused efficacy between groups (RQ3).

Theoretical classification	P-Value	W Statistic	Significance symbol
action	0.2000000	1	
aim	0.0135185	8	*

Appendix E: R Code

R Code, including outputs, can be accessed through GitHub https://github.com/DaniGargya/MEG_thesis.git.

Data formatting and cleaning

```
# Full R script analysing sustainability competencies of students
# Master thesis project 2024, University of Freiburg
# Daniela Gargya
# July 2024
# loading libraries ----
library(tidyverse)
library(ggplot2)
library(dplyr)
library(haven) # to transform data from sav to csv
library(readr) # to transform data from sav to csv
# data conversion Paulis data from sav to csv ----
#pre angell
lisa_data_angell_pre <- read_sav("data/data_collection/data_pauli/ANGELL_PRE_anonym.SAV")
write_csv(x=lisa_data_angell_pre, path="data/data_collection/data_pauli/angell_pre.csv")
#post angell
lisa_data_angell_post <- read_sav("data/data_collection/data_pauli/ANGELL_POST_anonym.SAV")</pre>
write_csv(x=lisa_data_angell_post, path="data/data_collection/data_pauli/angell_post.csv")
# import MP3 data and formating ----
## copied from scoscie website: GNU R-SCript für Daten-Import
ds_file = "rdata_KRSumfrage_2024-06-07_10-21.csv"
options(encoding = "UTF-8")
ds = read.delim(
  file=ds_file, encoding="UTF-8", fileEncoding="UTF-8",
  header = FALSE, sep = "\t", quote = "\"",
  dec = ".", row.names = NULL,
  col.names = c(
    "CASE", "SERIAL", "REF", "QUESTNNR", "MODE", "STARTED", "ATO1_01", "ATO1_02", "ATO1_03",
    "AT01_04","B001_01","B001_02","B001_03","B001_04","B001_05","B001_06","B001_07",
    "B001_08", "B001_09", "B001_10", "CS01_01", "CS01_02", "CS01_03", "IN01_01", "IN01_02",
    "INO1 03", "PB01 01", "PB01 02", "SN01 01", "SN01 02", "SN01 03", "SW01 01", "SW01 02",
    "SW01_03", "SW01_04", "SW01_05", "SW01_06", "SW01_07", "SW01_08", "WD01", "WD02",
    "WD02_01", "WD02_02", "WD02_03", "TIME001", "TIME002", "TIME003", "TIME004", "TIME005",
    "TIME006", "TIME007", "TIME008", "TIME009", "TIME SUM", "MAILSENT", "LASTDATA",
    "FINISHED", "Q_VIEWER", "LASTPAGE", "MAXPAGE", "MISSING", "MISSREL", "TIME_RSI"
  ),
  as.is = TRUE,
  colClasses = c(
    CASE="numeric", SERIAL="character", REF="character", QUESTNNR="character",
    MODE="factor", STARTED="character", AT01_01="numeric", AT01_02="numeric",
    AT01_03="numeric", AT01_04="numeric", B001_01="numeric", B001_02="numeric",
    B001_03="numeric", B001_04="numeric", B001_05="numeric", B001_06="numeric",
    B001_07="numeric", B001_08="numeric", B001_09="numeric", B001_10="numeric",
    CS01_01="numeric", CS01_02="numeric", CS01_03="numeric", IN01_01="numeric",
    IN01_02="numeric", IN01_03="numeric", PB01_01="numeric", PB01_02="numeric",
    SNO1 01="numeric", SNO1 02="numeric", SNO1 03="numeric", SWO1 01="numeric",
    SW01_02="numeric", SW01_03="numeric", SW01_04="numeric", SW01_05="numeric",
    SW01_06="numeric", SW01_07="numeric", SW01_08="numeric", WD01="numeric",
```

```
WD02="numeric", WD02_01="logical", WD02_02="logical", WD02_03="logical",
   TIME001="integer", TIME002="integer", TIME003="integer", TIME004="integer",
   TIME005="integer", TIME006="integer", TIME007="integer", TIME008="integer",
   TIME009="integer", TIME_SUM="integer", MAILSENT="character",
   LASTDATA="character", FINISHED="logical", Q_VIEWER="logical",
   LASTPAGE="numeric", MAXPAGE="numeric", MISSING="numeric", MISSREL="numeric",
   TIME RSI="numeric"
  ),
 skip = 1,
  check.names = TRUE, fill = TRUE,
  strip.white = FALSE, blank.lines.skip = TRUE,
  comment.char = "",
 na.strings = ""
row.names(ds) = ds$CASE
rm(ds_file)
### assign treatment/ control groups ----
 mutate(Group = ifelse(WD02_01, "group2", ifelse(WD02_03, "group0", "group1")))
# exclude incomplete data ----
# Function to count the number of NAs in a row
count_nas <- function(row) {</pre>
  sum(is.na(row))
# Apply the function to each row and create a new column 'count_nas'
ds$count_nas <- apply(ds, 1, count_nas)</pre>
# Filter the data frame to exclude rows with NAs
ds_filtered <- ds[ds$count_nas <= 1, ]</pre>
# exclude data with more than 25% missing (8 answers) ----
# Function to count the number of -1s in a row
count_minus_ones <- function(row) {</pre>
  sum(row == -1, na.rm = TRUE)
ds_filtered$count_minus_ones <- apply(ds_filtered, 1, count_minus_ones)
\# Filter the data frame to exclude rows with more than eight -1s
ds_filtered <- ds_filtered[ds_filtered$count_minus_ones <= 8, ]</pre>
# exclude data with less than 2.5 min/ 150sec! processing time (instead of 4)----
ds_filtered <- ds_filtered[ds_filtered$TIME_SUM >= 150, ]
```

```
# data transformation # scaling according to Pauli (0-3, instead of 1-4) ----
# Define a function to convert values
convert_values <- function(x) {</pre>
 x \leftarrow ifelse(x == 4, 3,
              ifelse(x == 3, 2,
                      ifelse(x == 2, 1,
                             ifelse(x == 1, 0,
                                    ifelse(x == -1, -100,
                                            x)))))
 return(x)
}
# Apply the function to all columns of the data frame
ds_scaled <- lapply(ds_filtered, convert_values)</pre>
ds_scaled <- as.data.frame(ds_scaled)</pre>
# invert certain scales to reflect meaning (AT2, B3, B4, B8, B9, SW3, SW5) ----
# Define a function to inverse scales and add new columns
inverse_scale_and_add_columns <- function(df, columns) {</pre>
 for (col in columns) {
    new_col_name <- paste(col, "inverse", sep = "_")</pre>
    df[[new_col_name]] <- inverse_scale(df[[col]])</pre>
 }
 return(df)
}
# Apply the function to add extra columns with inverse scales
ds_scaled_in <- inverse_scale_and_add_columns(ds_scaled, c("AT01_02", "B001_03", "B001_04", "B001_08",
# save formated dataset as csv (angell_mzp3) ----
write_csv(x=ds_scaled_in, path="data/data_collection/angell_mzp3.csv")
```

Data analysis and visualisation

```
# Data analysis and visualisation

# loading libraries ----
library(tidyverse)
library(ggplot2)
library(RColorBrewer)
library(ggthemes) # for data visualisation
library(treemapify) # for data vis
library(dplyr)
library(purrr)
library(psych) # for cronbach alpha
library(ggrepel)
library(readxl)
library(knitr)

# create colour palette ----
display.brewer.pal(n = 8, name = 'Dark2')
```

```
brewer.pal(n = 8, name = "Dark2")
# clean theme for graphs ----
theme_clean <- function(){</pre>
  theme_bw() +
    theme(axis.text.x = element_text(size = 14),
          axis.text.y = element_text(size = 14),
          axis.title.x = element text(size = 14, face = "plain"),
          axis.title.y = element_text(size = 14, face = "plain"),
          panel.grid.major.x = element_blank(),
          panel.grid.minor.x = element_blank(),
          panel.grid.minor.y = element_blank(),
          panel.grid.major.y = element_blank(),
          plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), units = , "cm"),
          plot.title = element_text(size = 15, vjust = 1, hjust = 0.5),
          legend.text = element_text(size = 12, face = "italic"),
          legend.title = element_text(size = 12, face = "bold"),
          legend.position = c(0.2, 0.8))
}
# importing relevant data ----
mzp1_clean <- read.csv("data/data_collection/data_pauli/angell_pre.csv")</pre>
mzp2_clean <- read.csv("data/data_collection/data_pauli/angell_post.csv")</pre>
mzp3_clean <- read.csv("data/data_collection/angell_mzp3.csv")</pre>
### calculate means MP3 ----
\# Define a function to calculate the mean, excluding -100 and NAs
mean_exclude_negative_100 <- function(row) {</pre>
  values <- row[row != -100 & !is.na(row)]</pre>
  if (length(values) == 0) {
    return(NA) # Return NA if all values are excluded
  return(mean(values))
}
# Calculate the mean values for specific groups of columns and add them as new columns
mzp3_clean$AT_mean <- apply(mzp3_clean[, c("AT01_01", "AT01_02_inverse", "AT01_03", "AT01_04")], 1, mea
#B mean
mzp3_clean$B_mean <- apply(mzp3_clean[, c("B001_01", "B001_02", "B001_03_inverse", "B001_04_inverse", "
# CS mean
mzp3_clean$CS_mean <- apply(mzp3_clean[, c("CS01_01", "CS01_02", "CS01_03")], 1, mean_exclude_negative_
mzp3_clean$IN_mean <- apply(mzp3_clean[, c("IN01_01", "IN01_02", "IN01_03")], 1, mean_exclude_negative_
mzp3_clean$PB_mean <- apply(mzp3_clean[, c("PB01_01", "PB01_02")], 1, mean_exclude_negative_100)
# SN_mean
```

```
mzp3_clean$SN_mean <- apply(mzp3_clean[, c("SN01_01", "SN01_02", "SN01_03")], 1, mean_exclude_negative_</pre>
# SW mean
mzp3_clean$SW_mean <- apply(mzp3_clean[, c("SW01_01", "SW01_02", "SW01_03_inverse", "SW01_04", "SW01_05
mzp3_clean$TPB_mean <- apply(mzp3_clean[, c("AT_mean", "SN_mean", "PB_mean", "IN_mean", "B_mean")], 1, 1</pre>
# SW CS mean
mzp3_clean$SW_CS_mean <- apply(mzp3_clean[, c("SW_mean", "CS_mean")], 1, mean_exclude_negative_100)
### harmonising and combining dfs ----
# Add a time point indicator to each data frame
mzp1_clean$TP <- "Measurement point 1"</pre>
mzp2_clean$TP <- "Measurement point 2"</pre>
mzp3_clean$TP <- "Measurement point 3"</pre>
# MZP3
# Select only the columns that include '_mean' in their names along with 'TP' and 'Group'
selected_columns_t3 <- mzp3_clean %>%
  select(TP, Group, contains("_mean")) %>%
 rename (Time_Point = TP)
# Convert to long format
long_df_t3 <- selected_columns_t3 %>%
  pivot_longer(
   cols = contains("_mean"),
   names_to = "Category",
   values_to = "MeanValue")%>%
  mutate(Category = case_when(
   Category == "AT_mean" ~ "AT_Mean",
   Category == "B_mean" ~ "B_Mean",
   Category == "CS_mean" ~ "CS_Mean";
   Category == "IN_mean" ~ "INT_Mean",
   Category == "PB_mean" ~ "PBC_Mean",
   Category == "SN_mean" ~ "SN_Mean",
   Category == "SW_mean" ~ "SW_Mean",
   Category == "TPB_mean" ~ "TPB_Mean",
   Category == "SW_CS_mean" ~ "SW_CS_Mean",
   TRUE ~ Category # Keep other values unchanged
  ))
# mzp2
# Select only the columns that include '_Mean' in their names along with 'TP' and 'Group'
selected_columns_t2 <- mzp2_clean %>%
  select(TP, Gruppe, contains("_Mean")) %>%
  rename(Time_Point = TP,
         Group = Gruppe) %>%
  mutate(Group = case_when(
  Group == 0 ~ "group0",
```

```
Group == 1 ~ "group1",
  Group == 2 ~ "group2",
  TRUE ~ as.character(Group))) %>%
  mutate(Group = as.factor(Group))
# Convert to long format
long_df_t2 <- selected_columns_t2 %>%
 pivot_longer(
   cols = contains(" Mean"),
   names_to = "Category",
   values_to = "MeanValue"
# mzp 1
# Select only the columns that include '_mean' in their names along with 'TP' and 'Group'
selected_columns_t1 <- mzp1_clean %>%
 rename(TPB_Mean = TPB_Mittelwert,
         Group = Gruppe,
         Time_Point = TP) %>%
 select(Time_Point, Group, contains("_Mean")) %>%
 mutate(Group = case_when(
 Group == 0 ~ "group0",
 Group == 1 ~ "group1",
 Group == 2 ~ "group2",
 TRUE ~ as.character(Group))) %>%
mutate(Group = as.factor(Group))
# Convert to long format
long_df_t1 <- selected_columns_t1 %>%
   pivot_longer(
     cols = contains("_Mean"),
     names_to = "Category",
     values_to = "MeanValue"
   )
# Combine the data frames
combined_df <- rbind(long_df_t1, long_df_t2, long_df_t3) #1617 obs.
# Convert Group, Category and TP to factors
combined_df$Group <- as.factor(combined_df$Group)</pre>
combined_df$Time_Point <- as.factor(combined_df$Time_Point)</pre>
combined_df$Category <- as.factor(combined_df$Category)</pre>
### excluding group 1 from dataset ----
combined_df_g02 <- combined_df %>%
 filter(Group != "group1")
### check for normality of data ----
### MZP1
# exclude group1
selected_columns_t1 <- selected_columns_t1 %>%
 filter(Group != "group1")
```

```
# Find columns with '_Mean' in their name
mean_cols_t1 <- grep("_Mean", names(selected_columns_t1), value = TRUE)</pre>
# Function to conduct normality test and return results
normality_test_t1 <- function(col) {</pre>
  shapiro_test <- shapiro.test(selected_columns_t1[[col]])</pre>
  tibble(Column = col,
         Test = "Shapiro-Wilk",
         W = shapiro test$statistic,
         P_Value = shapiro_test$p.value,
         Normal = shapiro_test$p.value >= 0.05)
}
# Map function over columns and combine results
normality_results_t1 <- map_dfr(mean_cols_t1, normality_test_t1)</pre>
### MZP2
# exclude group1
selected_columns_t2 <- selected_columns_t2 %>%
 filter(Group != "group1")
# Find columns with '_Mean' in their name
mean_cols_t2 <- grep("_Mean", names(selected_columns_t2), value = TRUE)</pre>
# Function to conduct normality test and return results
normality_test_t2 <- function(col) {</pre>
  shapiro_test <- shapiro.test(selected_columns_t2[[col]])</pre>
 tibble(Column = col,
         Test = "Shapiro-Wilk",
         W = shapiro_test$statistic,
         P_Value = shapiro_test$p.value,
         Normal = shapiro_test$p.value >= 0.05)
}
# Map function over columns and combine results
normality_results_t2 <- map_dfr(mean_cols_t2, normality_test_t2)</pre>
### MZP3
# exclude group1
selected_columns_t3 <- selected_columns_t3 %>%
 filter(Group != "group1")
# Find columns with '_Mean' in their name
mean_cols_t3 <- grep("_mean", names(selected_columns_t3), value = TRUE)</pre>
# Function to conduct normality test and return results
normality_test_t3 <- function(col) {</pre>
  shapiro_test <- shapiro.test(selected_columns_t3[[col]])</pre>
 tibble(Column = col,
         Test = "Shapiro-Wilk",
         W = shapiro_test$statistic,
         P_Value = shapiro_test$p.value,
         Normal = shapiro_test$p.value >= 0.05)
```

```
# Map function over columns and combine results
normality_results_t3 <- map_dfr(mean_cols_t3, normality_test_t3)
### calculating internal validity with cronbach alpha MZP3 ----
# Convert -100 to NA
mzp3_cleaner <- mzp3_clean %>%
  filter(Group != "group1") %>%
  mutate(across(everything(), ~ ifelse(. == -100, NA, .)))
# Get column names with _inverse
columns_with_inverse <- grep("_inverse$", names(mzp3_cleaner), value = TRUE)</pre>
# Remove "_inverse" from column names
columns_to_exclude_without_inverse <- gsub("_inverse", "", columns_with_inverse)</pre>
filtered_df_cronbach <- mzp3_cleaner %>%
  select(matches("_0[1-9]$|_10$|_inverse"), -matches("WD")) %>%
  select(-one_of(columns_to_exclude_without_inverse)) %>%
  select(-c("B001_03_inverse", "B001_04_inverse")) #excluding these two items to increase Cronbachs al
# handle missing values by using the mean
filtered_df_cronbach <- filtered_df_cronbach %>%
  mutate(across(everything(), ~ ifelse(is.na(.), mean(., na.rm = TRUE), .)))
# Group the columns based on the first two letters of the column name
groups <- split.default(filtered_df_cronbach, sub("^(..).*", "\\1", names(filtered_df_cronbach)))</pre>
# Calculate Cronbach's alpha for each group
alpha_results <- lapply(groups, function(x) {</pre>
  result <- alpha(x)
  result$total$raw_alpha # Extracting raw alpha from the result
})
# Create a dataframe with scale names and Cronbach's alpha values
df_alpha <- data.frame(</pre>
  Scale = names(alpha_results),
  Alpha = unlist(alpha_results)
# Statistical analyses ----
### RQ1 Comparing SA/SB over time and between groups ----
# Kruskal-Wallis test for time points within each category and group
kw_results <- combined_df_g02 %>%
  filter(!Category %in% c("SW_Mean", "CS_Mean", "SW_CS_Mean")) %>% #exclude irrelevant categories for t
  group_by(Category, Group) %>%
  summarise(
    P_value = kruskal.test(MeanValue ~ Time_Point)$p.value,
    Kruskal_Wallis_H = kruskal.test(MeanValue ~ Time_Point)$statistic, # Extract Kruskal-Wallis H stat
    .groups = 'drop') #%>%
```

```
mutate(significance_time = case_when(
      kruskal_p_time < 0.001 ~ "***",</pre>
      kruskal_p_time < 0.01 ~ "**",</pre>
      kruskal_p_time < 0.05 ~ "*",
      TRUE ~ ""))
kw_results <- kw_results %>%
  mutate(Group = as.character(Group)) %>%
   mutate(Group = case_when(
      Group == "group0" ~ "Control group",
      Group == "group2" ~ "Involved group",
      TRUE ~ Group)) %>%
    rename(Scale = Category)
# Create the table with kable
markdown_table_kruskal <- kable(kw_results, format = "markdown",</pre>
                        col.names = c("Scale", "Group", "P-Value", "Kruskal-Wallis H"))
# Save the Markdown table to a text file
writeLines(markdown_table_kruskal, "outputs/markdown_table_kruskal.md")
# Wilcoxon rank-sum test for groups within each category and time point
wilcox_results_rq1 <- combined_df_g02 %>%
  filter(!Category %in% c("SW_Mean", "CS_Mean", "SW_CS_Mean")) %>% #exclude irrelevant categories for t
  group_by(Category, Time_Point) %>%
   wilcox_p_group = wilcox.test(MeanValue ~ Group)$p.value,
   W_Statistic = wilcox.test(MeanValue ~ Group)$statistic,
    .groups = 'drop'
  ) %>%
 mutate(
    significance_group = case_when(
      wilcox_p_group < 0.001 ~ "***",
      wilcox_p_group < 0.01 ~ "**",
      wilcox_p_group < 0.05 ~ "*",
      TRUE ~ ""
   )
  )
wilcox_results_rq1 <- wilcox_results_rq1 %>%
 rename(Scale = Category)
# Create the table with kable
markdown_table_wilcox_rq1 <- kable(wilcox_results_rq1, format = "markdown",</pre>
                                col.names = c("Scale", "Measurement Point", "P-Value", "W Statistic", "
# Save the Markdown table to a text file
writeLines(markdown_table_wilcox_rq1, "outputs/markdown_table_wilcox_rq1.md")
# Merge results back into the main dataframe
combined_df_g02 <- combined_df_g02 %>%
```

```
left_join(kw_results, by = c("Category", "Group")) %>%
 left_join(wilcox_results, by = c("Category", "Time_Point"))
# Calculate the means for each Group, Competence, and TimePoint
# adding error bars
df_means <- combined_df_g02 %>%
  filter(!Category %in% c("SW_Mean", "CS_Mean", "SW_CS_Mean")) %>% #exclude irrelevant categories for t
  group by (Group, Category, Time Point) %>%
  summarise(MeanValue2 = mean(MeanValue),
            LowerCI = MeanValue2 - qt(0.975, length(MeanValue) - 1) * sd(MeanValue) / sqrt(length(MeanV
            UpperCI = MeanValue2 + qt(0.975, length(MeanValue) - 1) * sd(MeanValue) / sqrt(length(MeanV
            .groups = 'drop') %>%
  left_join(kw_results, by = c("Category", "Group")) %>%
 left_join(wilcox_results, by = c("Category", "Time_Point"))
# Define a labeller function to rename facets
facet_labeller <- labeller(Category = c(</pre>
  AT_Mean = "Sustainability Attitudes\n(Attitude)",
  INT_Mean = "Sustainability Attitudes\n(Intention)",
  PBC_Mean = "Sustainability Attitudes \n(PBC)",
  SN_Mean = "Sustainability Attitudes\n(Subjective norms)",
  B_Mean = "Sustainability Behaviours\n(Behaviour)",
  TPB_Mean = "Cumulative\nSA and SB"))
df_means1 <- df_means %>%
  mutate(Group = recode(Group, "group0" = "Control group", "group2" = "Involved group")) %>%
  mutate(Time Point = recode(Time Point, "t1" = "MP1", "t2" = "MP2", "t3" = "MP3"))
# Custom colors for the groups
custom_colors <- c("#E7298A", "#1B9E77")</pre>
# Add a new factor level to control the order and size of the facets
df_means1$Category <- factor(df_means1$Category, levels = c("AT_Mean", "INT_Mean", "B_Mean", "PBC_Mean"
# Create the graph
(rq1_graph_perfect <- ggplot(df_means1, aes(x = Time_Point, y = MeanValue2, group = Group, color = Grou</pre>
 geom_line() +
  geom_point() +
  geom_errorbar(aes(ymin = LowerCI, ymax = UpperCI), width = 0.1) + # Adding error bars
  facet_wrap(~ Category, scales = "fixed", labeller = facet_labeller, ncol = 3) + # 3x2 grid layout
  labs(x = "\nMeasurement Points", y = "\nMean Value") +
  scale_color_manual(values = custom_colors) + # Custom colors for the groups
  theme minimal() +
  theme(panel.grid.major = element_blank(),  # Remove major grid lines
        panel.grid.minor = element_blank(), # Remove minor grid lines
        panel.border = element_rect(fill = NA, color = "black"), # Add border around each facet
        legend.position = "bottom",
        legend.text = element_text(size = 12, face = "italic"),
        legend.title = element_text(size = 12, face = "bold"),
        axis.title.x = element_text(size = 14, face = "plain"),
        axis.title.y = element_text(size = 14, face = "plain")) +
  geom_text_repel(data = df_means_grouped %% filter(significance_group != ""),
```

```
aes(x = Time_Point, y = MeanValue2, label = significance_group),
                  vjust = -1.5, color = "black", size = 6, inherit.aes = FALSE, segment.color = NA) +
  geom_text_repel(data = df_means_grouped %>% filter(significance_time != ""),
                  aes(x = Time_Point, y = MeanValue2, label = significance_time),
                  vjust = -1.0, color = "blue", size = 3, inherit.aes = FALSE) +
  guides(color = guide_legend(title = NULL))) # Remove the legend title
ggsave(rq1 graph perfect, file = "outputs/rq1 graph perfect.png", width = 7, height = 5)
### RQ2 relationship Efficacy and SA/SB (TPB) with spearman correlation at MZP3 ----
# Shapiro-Wilk normality test
shapiro.test(mzp3_cleaner$TPB_mean) #normally distributed p>0.05
shapiro.test(mzp3_cleaner$SW_mean) #not normally distributed p<0.05</pre>
shapiro.test(mzp3_cleaner_cs$CS_mean) #not normally distributed p<0.05
# Spearman correlation
spearman_test <- cor.test(mzp3_cleaner$TPB_mean, mzp3_cleaner$SW_mean, method = "spearman")</pre>
print(spearman_test)
spearman_cor <- spearman_test$estimate</pre>
spearman_pval <- spearman_test$p.value</pre>
# p value rejects 0 hypothesis of no correlation -> relevant
# spearman_correlation 0.794 -> strong relationship
# Plot with annotation (SPEARMAN)
(rq2a_graph_cor_tpb_sw <-ggplot(mzp3_cleaner, aes(x = TPB_mean, y = SW_mean)) +</pre>
  geom_point(alpha = 0.5, size = 2, color = "#7CFC00") +
  geom_smooth(method = "lm", se = FALSE, color = "#A6761D") +
 ylim(0, 3) +
  theme clean() +
    annotate("text", size = 3, x = 1, y = 2.5, label = paste("Spearman's rho:", round(spearman_cor, 2),
  labs(x = "\nmbed] Attitudes and Behaviours (TPB)", y = "\nmbed] Mean Efficacy beliefs\nmbed])
ggsave(rq2a_graph_cor_tpb_sw, file = "outputs/rq2a_graph_cor_tpb_sw.png", width = 7, height = 5)
### RQ3a: Comparing personal and collective efficacy between and within groups at MP3 ----
# data preparation
# Read the Excel file for classifications
codebook_sw_cs <- read_excel("data/data_collection/codebook_sw_cs.xlsx")</pre>
# Specify the questions of interest explicitly
questions_sw <- c("CS01_01", "CS01_02", "CS01_03", "SW01_01", "SW01_02", "SW01_03_inverse", "SW01_04",
# Calculate the mean scores for the specified questions
mean_scores_sw <- colMeans(mzp3_cleaner[, questions_sw], na.rm = TRUE)</pre>
# Convert the mean scores to a data frame for plotting
mean_scores_sw_df <- data.frame(</pre>
  Question = names(mean_scores_sw),
 Mean_Score = mean_scores_sw
```

```
# Join the dataframes by the column 'Question'
merged_sw_cs <- left_join(mean_scores_sw_df, codebook_sw_cs, by = "Question")
### comparing between groups SW/CS ----
# check distribution of data
# Perform Shapiro-Wilk tests
shapiro_results_sw_cs <- data.frame(</pre>
 Question = questions_sw,
 p value = sapply(questions sw, function(question) shapiro.test(mzp3 cleaner[[question]])$p.value)
## none is normally distributed
# filter out relevant categories
df_tp3 <- combined_df_g02 %>%
 filter(Time_Point == "t3" & Category %in% c("SW_Mean", "CS_Mean"))
### checking wilcoxon for differences in personal/collective between groups
wilcox_rq3_sw_cs_between <- df_tp3 %>%
  group_by(Category) %>%
  rename(Scale = Category) %>%
  summarise(wilcox_p_group = wilcox.test(MeanValue ~ Group)$p.value,
            W_Statistic = wilcox.test(MeanValue ~ Group)$statistic,
    .groups = 'drop') #%>%
 mutate(significance_group = case_when(
     wilcox p group < 0.001 ~ "***",
     wilcox_p_group < 0.01 ~ "**",
     wilcox_p_group < 0.05 ~ "*",
     TRUE ~ ""))
# no significant differences between the groups
# Create the table with kable
markdown_table_wilcox_rq3_sw_cs_between <- kable(wilcox_rq3_sw_cs_between, format = "markdown",
                                   col.names = c("Scale", "P-Value", "W Statistic"))
# Save the Markdown table to a text file
writeLines(markdown_table_wilcox_rq3_sw_cs_between, "outputs/markdown_table_wilcox_rq3_sw_cs_between.md
# Calculate means for each Group and Competence
df_means3 <- df_tp3 %>%
 filter(!is.na(MeanValue)) %>%
  group_by(Group, Category) %>%
  summarise(
   MeanValue2 = mean(MeanValue),
   LowerCI = MeanValue2 - qt(0.975, length(MeanValue) - 1) * sd(MeanValue) / sqrt(length(MeanValue)),
   UpperCI = MeanValue2 + qt(0.975, length(MeanValue) - 1) * sd(MeanValue) / sqrt(length(MeanValue)),
    .groups = 'drop') %>%
 left_join(wilcox_results_sw_cs, by = c("Category"))
# comparing personal/collective within groups ----
# Aggregate scores for CS and SW questions within each group
```

```
aggregate_scores <- mzp3_cleaner %>%
  pivot_longer(cols = c(starts_with("CS"), starts_with("SW")), names_to = "Question", values_to = "Scor
  mutate(Type = ifelse(str_detect(Question, "CS"), "CS", "SW")) %>%
  drop na() %>%
  group_by(Group, Type) %>%
  summarize(Aggregate_Score = mean(Score, na.rm = TRUE), .groups = 'drop')
# Reshape data to wide format to ensure paired observations
wide_data <- aggregate_scores %>%
  pivot_wider(names_from = Type, values_from = Aggregate_Score)
# Function to perform Wilcoxon signed-rank test for aggregated scores
wilcoxon_test_aggregated <- function(data, group) {</pre>
  filtered_data <- data %>% filter(Group == group)
  cs_scores <- filtered_data$CS
  sw_scores <- filtered_data$SW</pre>
 test <- wilcox.test(cs_scores, sw_scores, paired = TRUE)</pre>
 return(data.frame(
   Group = group,
   Statistic = test$statistic,
   P_Value = test$p.value
 ))
}
# Perform Wilcoxon tests for overall comparison within each group
results_group0_overall <- wilcoxon_test_aggregated(wide_data, "group0")
results_group2_overall <- wilcoxon_test_aggregated(wide_data, "group2")</pre>
# Combine results into a dataframe
wilcoxon_results_overall <- rbind(results_group0_overall, results_group2_overall)</pre>
# Add Significance column for stars
wilcoxon_results_overall$Significance <- ifelse(wilcoxon_results_overall$P_Value < 0.05, "*", "")</pre>
# create table
wilcoxon rq3 sw cs within <- wilcoxon results overall %>%
  mutate(Group = as.character(Group)) %>%
  mutate(Group = case_when(
   Group == "group0" ~ "Control group",
    Group == "group2" ~ "Involved group",
   TRUE ~ Group))
# Create the table with kable
markdown_table_wilcoxon_rq3_sw_cs_within <- kable(wilcoxon_rq3_sw_cs_within, format = "markdown",
                                                  col.names = c("Group", "W Statistic", "P-Value"))
# Save the Markdown table to a text file
writeLines(markdown_table_wilcoxon_rq3_sw_cs_within, "outputs/markdown_table_wilcox_rq3_sw_cs_within.md
# Prepare data for visualization
# Function to calculate confidence intervals
```

```
calculate_ci <- function(data, conf_level = 0.95) {</pre>
  mean_val <- mean(data, na.rm = TRUE)</pre>
  stderr <- sd(data, na.rm = TRUE) / sqrt(length(data))</pre>
  error_margin <- qnorm((1 + conf_level) / 2) * stderr</pre>
  lower_ci <- mean_val - error_margin</pre>
 upper_ci <- mean_val + error_margin</pre>
 return(data.frame(Mean = mean_val, Lower_CI = lower_ci, Upper_CI = upper_ci))
# Apply CI calculation to the mean scores
mean_scores_with_ci <- mzp3_cleaner %>%
  pivot_longer(cols = c(starts_with("CS"), starts_with("SW")), names_to = "Question", values_to = "Scor
  mutate(Type = ifelse(str_detect(Question, "CS"), "CS", "SW")) %>%
 drop na() %>%
  group_by(Group, Type) %>%
  summarize(Mean_Score = mean(Score, na.rm = TRUE),
            Lower_CI = mean(Score, na.rm = TRUE) - qnorm(0.975) * (sd(Score, na.rm = TRUE) / sqrt(n()))
            Upper_CI = mean(Score, na.rm = TRUE) + qnorm(0.975) * (sd(Score, na.rm = TRUE) / sqrt(n()))
mean_scores_with_ci1 <- mean_scores_with_ci %>%
  mutate(Group = recode(Group, "group0" = "Control group", "group2" = "Involved group")) %>%
  mutate(Type = recode(Type, "CS" = "Collective efficacy beliefs", "SW" = "Personal efficacy beliefs"))
# Define custom colors2
custom colors2 <- c("#D95F02", "#E6AB02")</pre>
# Plotting the results with annotation and error bars
(rq2b_boxplot_sw_cs_overall <- ggplot(mean_scores_with_ci1, aes(x = Type, y = Mean_Score, fill = Type))</pre>
  geom_bar(stat = "identity", position = position_dodge(), width = 0.7) +
  geom_errorbar(aes(ymin = Lower_CI, ymax = Upper_CI), width = 0.2, position = position_dodge(0.7)) +
  facet_wrap(~ Group, scales = "fixed") +
  labs(y = "\n\nMean Value") +
  theme_clean() +
  scale_fill_manual(values = custom_colors2) +
  theme(axis.title.x = element_blank(),
          axis.text.x = element_blank(),
          axis.ticks.x = element blank(),
          legend.position = "bottom")+
    guides(fill = guide_legend(title = NULL)))
ggsave(rq2b_boxplot_sw_cs_overall, file = "outputs/rq2b_boxplot_sw_cs_overall.png", width = 7, height =
### RQ3b: Comparing aim- and action-focused efficacy between and within groups at MP3 ----
# comparing between groups aim vs action focussed ----
# add new classification only based on aim vs action
merged_group_scores <- merged_group_scores %>%
 mutate(Theoretical_classification2 = case_when(
    grepl("aim", Theoretical_classification, ignore.case = TRUE) ~ "aim",
   TRUE ~ "action"
  ))
```

```
# compare within theoretical classifications:
final_analysis2 <- merged_group_scores %>%
  group_by(Theoretical_classification2, Group) %>%
  summarize(Avg_Mean_Score2 = mean(Mean_Score, na.rm = TRUE), .groups = 'drop')
# only two groups to compare within each theoretical classification
wilcoxon_results_aim_action <- merged_group_scores %>%
  group_by(Theoretical_classification2) %>%
  summarize(
    W_test = list(wilcox.test(Mean_Score ~ Group, data = cur_data())),
    .groups = 'drop'
# Extract p-values and test statistics
wilcoxon_results_aim_action$P_Value <- sapply(wilcoxon_results_aim_action$W_test, function(x) x$p.value
wilcoxon_results_aim_action$Statistic <- sapply(wilcoxon_results_aim_action$W_test, function(x) x$stati
# Add significance stars
wilcoxon_results_aim_action$Significance <- ifelse(wilcoxon_results_aim_action$P_Value < 0.05, "*", "")
wilcox_rq3_aim_action_between <- wilcoxon_results_aim_action %>%
  select(-W_test)
markdown_table_wilcox_rq3_aim_action_between <- kable(wilcox_rq3_aim_action_between, format = "markdown
                                                 col.names = c("Theoretical classification", "P-Value",
# Save the Markdown table to a text file
writeLines(markdown_table_wilcox_rq3_aim_action_between, "outputs/markdown_table_wilcox_rq3_aim_action_'
# Merge Wilcoxon test results back into the main dataframe for plotting
merged_group_scores <- merged_group_scores %>%
  left_join(wilcoxon_results_aim_action %>% select(Theoretical_classification2, Significance), by = "Th
# Apply CI calculation to the mean scores
mean_scores_with_ci2 <- merged_group_scores %>%
  group_by(Group, Theoretical_classification2) %>%
  drop_na() %>%
  summarize(
    Mean_Score = mean(Score, na.rm = TRUE),
    Lower_CI = mean(Score, na.rm = TRUE) - qnorm(0.975) * (sd(Score, na.rm = TRUE) / sqrt(n())),
    Upper_CI = mean(Score, na.rm = TRUE) + qnorm(0.975) * (sd(Score, na.rm = TRUE) / sqrt(n())),
    .groups = 'drop')
mean_scores_with_ci2 <- mean_scores_with_ci2 %>%
  mutate(Group = recode(Group, "group0" = "Control group", "group2" = "Involved group")) %>%
  mutate(Theoretical_classification2 = recode(Theoretical_classification2, "action" = "Action-focused e
#rename(`Types of Efficacy` = Type)
# Define custom colors2
custom_colors3 <- c("#7570B3", "#666666")</pre>
```

```
# Making pretty graph
(rq2b_boxplot_aim_action <- ggplot(mean_scores_with_ci2, aes(x = Theoretical_classification2, y = Mean_</pre>
    geom_bar(stat = "identity", position = position_dodge(), width = 0.7) +
   geom errorbar(aes(ymin = Lower CI, ymax = Upper CI), width = 0.2, position = position dodge(0.7)) +
   facet_wrap(~ Group, scales = "fixed") +
   labs(y = "\n\nMean Value") +
   theme_clean() +
   scale fill manual(values = custom colors3) +
   theme(axis.title.x = element_blank(),
          axis.text.x = element_blank(),
          axis.ticks.x = element_blank(),
          legend.position = "bottom")+
    guides(fill = guide_legend(title = NULL)))
ggsave(rq2b_boxplot_aim_action, file = "outputs/rq2b_boxplot_aim_action.png", width = 7, height = 5)
### compare action vs aim within groups ----
# Aggregate scores for aim and action questions within each group
aggregate_scores <- merged_group_scores %>%
  group_by(Group, Theoretical_classification2) %>%
  summarize(Aggregate_Score = mean(Mean_Score, na.rm = TRUE), .groups = 'drop')
# Reshape data to wide format to ensure paired observations
wide_data2 <- aggregate_scores %>%
  pivot wider(names from = Theoretical classification2, values from = Aggregate Score)
# Function to perform Wilcoxon signed-rank test for aggregated scores
wilcoxon_test_aggregated2 <- function(data, group) {</pre>
  filtered_data <- data %>% filter(Group == !!group)
 aim_scores <- filtered_data$aim</pre>
  action_scores <- filtered_data$action</pre>
 test <- wilcox.test(aim_scores, action_scores, paired = TRUE)</pre>
 return(data.frame(
   Group = group,
   Statistic = test$statistic,
   P Value = test$p.value
 ))
}
# Perform Wilcoxon tests for overall comparison within each group
results_group0_aa <- wilcoxon_test_aggregated2(wide_data2, "group0")
results_group2_aa <- wilcoxon_test_aggregated2(wide_data2, "group2")
# Combine results into a dataframe
wilcoxon_results_aim_action2 <- rbind(results_group0_aa, results_group2_aa)</pre>
# Add Significance column for stars
wilcoxon_results_aim_action2$Significance <- ifelse(wilcoxon_results_aim_action2$P_Value < 0.05, "*", "
# create table
wilcoxon_rq3_aim_action_within <- wilcoxon_results_aim_action2 %>%
```

```
mutate(Group = as.character(Group)) %>%
mutate(Group = case_when(
    Group == "group0" ~ "Control group",
    Group == "group2" ~ "Involved group",
    TRUE ~ Group))

# Create the table with kable
markdown_table_wilcoxon_rq3_aim_action_within <- kable(wilcoxon_rq3_aim_action_within, format = "markdown col.names = c("Group", "W Statistic", "P-Value"))

# Save the Markdown table to a text file
writeLines(markdown_table_wilcoxon_rq3_aim_action_within, "outputs/markdown_table_wilcoxon_rq3_aim_action_within)</pre>
```