Доклад по проект

 $,, Eye Motions \, ``$

(Интерактивни очи с емоции и анимации)

Изготвил: Габриела Стефанова

Клас: 10А / Специалност: "Приложен програмист "

Ръководител: инж. Димитър Желев

Дата: 17.06.2025 г.

Съдържание

. Въведение	3
. Цел на проекта	3
. Използвани компоненти	3
. Софтуерна реализация	4
. Хардуерна реализация	5
. Дизайн и конструкция	6
. Предизвикателства и решения	7
. Идеи за развитие	7
Заключение	8

1. Въведение

Проектът EyeMotions представлява дисплей, върху който се изобразяват анимирани очи, предаващи различни настроения. Управлението на емоциите става чрез бутони, което позволява взаимодействието между потребителя и устройството. Проектът съчетава знания по програмиране и електроника, демонстрирайки приложението на микроконтролери в създаването на визуални ефекти.

2. Цел на проекта

Целта на проекта е демонстрация на софтуерни и хардуерни умения, чрез създаването на анимирани очи, показващи различни емоции на дисплей. Управлението става с бутони, чрез които се сменят четири основни настроения.

3. Използвани компоненти

Проектът EyeMotions използва следните хардуерни компоненти:

- Arduino Nano микроконтролерът, който управлява всички функции на устройството и обработва входните сигнали на бутоните.
- 3.66 см 128х128 SPI TFT LCD дисплей визуализира анимираните очи и промяната на емоциите
- Push бутони използват се за смяна на настроенията на очите, като позволяват управление от потребителя
- Breadboard и жички свързват всички компоненти
- USB кабел захранва устройството

Всички компоненти са свързани жично с breadboard, което позволява лесно тестване и промени без необходимост от запояване.

4. Софтуерна реализация

Софтуерната част на проекта е реализирана с помощта на езика C++ за Arduino. Основната цел на програмата е да управлява TFT дисплея, като реагира на натискането на бутони, чрез които се сменят различни емоции на очите. Кодът включва функции за рисуване на очите, анимации при мигане и изразителни движения на ирисите, което придава по-реалистичен ефект на емоциите.

Използвани са библиотеките **Adafruit_GFX** и **Adafruit_ST7735**, които улесняват работата с дисплея и предоставят функции за графични елементи.

В основния цикъл се извършват следните основни действия:

- Следи се състоянието на бутоните чрез digitalRead(). Когато бутон бъде натиснат (LOW), чрез if-else проверка се активира съответната емоция.
- Сменят се анимациите радост, ярост, тъга, изненада и сънливо състояние.
- За да се реализира плавното мигане, се използва функцията millis() вместо delay(). Това позволява непрекъсната проверка на състоянието на бутоните, дори докато очите мигат.

```
| Separation | Sep
```

Дисплеят се управлява чрез **SPI комуникация** – бърз сериен протокол, при който данните се изпращат от Arduino към дисплея чрез пиновете **CS**, **DC**, **MOSI** и **SCK**.

Тази връзка осигурява бързо и ефективно изобразяване на графични елементи на екрана.

5. Хардуерна реализация

За хардуерната част на проекта е използван **Arduino Nano**, свързан към **TFT** дисплей и пет бутона чрез breadboard. Всички компоненти са свързани с жички, като се използват дигитални пинове на **Arduino**, които изпращат управляващи сигнали към дисплея и бутоните.

Дисплеят е свързан чрез SPI комуникация с използване на пиновете CS, DC, RESET, MOSI и SCK.

Захранването на Arduino се осигурява чрез **USB кабел**. Разположението на компонентите върху breadboard позволява лесно свързване, тестване и модификация на хардуера.

TFT Пин	Arduino Nano Пин	Функция
vcc	5V	Захранване
GND	GND	Земя
cs	D10	Chip Select (SPI)
RESET	D8	Reset
DC(A0)	D9	Data/Command
SDA(MOSI)	D11	SPI Data
SCK	D13	SPI Clock
LED	3.3V	Подсветка

1. Свързване на ТFT дисплей към Arduino Nano

Цвят на бутона	Пин на Ардуино	Емоция
Бял	D2	Нарру (Щастлив)
Червен	D3	Angry (Ядосан)
Син	D4	Surprised (Изненадан)
Черен	D5	Dreamy (Замислен)
Жълт	D6	Confused (Объркан)

2. Свързване на бутоните към Arduino Nano

3. Електрическа схема

6. Дизайн и конструкция

Проектът няма специален корпус, тъй като е създаден за образователна демонстрация и експериментиране. Компонентите са разположени удобно на breadboard, което осигурява лесен достъп до тях.

Графичният дизайн на очите е изчистен и семпъл, с акцент върху ясно различимите емоции, които са показани чрез формата и положението на ирисите, веждите и устата. Анимациите допринасят за по-естествен и динамичен вид.

7. Предизвикателства и решения

По време на разработката се сблъсках с няколко предизвикателства:

- Плавното мигване на очите без да се спира основният цикъл на програмата, което беше решено чрез използването на функцията millis() за управление на времето.
- Създаването на реалистични изражения чрез прецизно позициониране на елементите на лицето, което изискваше експериментиране с координатите и размерите.

8. Идеи за развитие

В бъдеще проектът може да се разшири по следните начини:

- Добавяне на повече емоции и по-сложни анимации за по-голямо разнообразие.
- Интеграция на сензори за разпознаване на лица или емоции, които автоматично да променят изражението на очите.
- Добавяне на звук или говор, които да съпровождат визуалните изражения.
- Вграждане на Wi-Fi или Bluetooth модул за дистанционно управление и свързване с мобилно приложение.

9. Заключение

Проектът EyeMotions успешно съчетава хардуерни и софтуерни умения за създаване на интерактивно и визуално устройство. Той демонстрира възможностите на микроконтролерите в реализирането на анимации и взаимодействие с потребителя. Работата по този проект ми позволи да затвърдя знанията си по програмиране, електроника и дизайн, като същевременно развих умения за решаване на технически предизвикателства. EyeMotions има потенциал за бъдещо разширяване и внедряване на нови функционалности.