

Computation of homology groups and generators

S. Peltier, S. Alayrangues, L. Fuchs, J-O. Lachaud.

Université de Poitiers

Laboratoire SIC (FRE 2731 CNRS)

UFR SFA, Département d'Informatique

Computing topological properties :

Computing topological properties :

Homology,

Computing topological properties :

- Homology,
- Usually studied on simplicial objects,

Computing topological properties :

- Homology,
- Usually studied on simplicial objects,
- Objective : Take advantage of various methods' qualities.

■ Characterize « holes »:

Plan

- Semi-simplicial sets
- Definition of homology
- Computing homology
- A method for moduli generators
- Experimentations Perspectives

Semi-simplicial sets

Set of abstract simplices

Semi-simplicial sets

- Set of abstract simplices
- boundary operators

Semi-simplicial sets

- Set of abstract simplices
- boundary operators
- identity relation

$$d_i d_j = d_j d_{i-1}$$
 with $j < i$

Oriented simplices

Oriented simplices

$$\partial(\sigma) = \sum_{i=0}^{\dim(\sigma)} (-1)^i \sigma d_i$$

Oriented simplices

$$\partial(\sigma) = \sum_{i=0}^{\dim(\sigma)} (-1)^i \sigma d_i$$

Oriented simplices

$$\partial(\sigma) = \sum_{i=0}^{\dim(\sigma)} (-1)^i \sigma d_i$$

Oriented simplices

$$\partial(\sigma) = \sum_{i=0}^{\dim(\sigma)} (-1)^i \sigma d_i$$

$$\partial(\partial(\sigma)) = 0$$

Free chain complex

$$C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

with
$$\partial \circ \partial = 0$$

Free chain complex

$$C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

with $\partial \circ \partial = 0$

example:

$$\partial(A_1 + 2A_2) = \partial(A_1) + 2\partial(A_2)$$

$$= (S_3 - S_1) + 2(S_3 - S_2)$$

$$= 3S_3 - S_1 - 2S_2$$

$$A_3$$

c is a p-cycle $\Leftrightarrow \partial_p(c) = 0$

c is a p-cycle $\Leftrightarrow \partial_p(c) = 0$

examples:

Any 0-chain is a cycle

c is a p-cycle $\Leftrightarrow \partial_p(c) = 0$

examples:

Any 0-chain is a cycle

$$\partial(A_1 + A_4) = 0$$

c is a p-cycle $\Leftrightarrow \partial_p(c) = 0$

examples:

Any 0-chain is a cycle

$$\partial(A_1 + A_4) = 0$$

$$\partial(A_1 - A_2 + A_3) = 0$$

p-boundaries

c is a p-boundary $\Leftrightarrow \partial_{p+1}(c') = c$

p-boundaries

c is a p-boundary $\Leftrightarrow \partial_{p+1}(c') = c$

examples:

$$S_1 - S_3 = \partial(A_3 - A_2)$$

p-boundaries

c is a p-boundary $\Leftrightarrow \partial_{p+1}(c') = c$

examples:

$$S_1 - S_3 = \partial(A_3 - A_2)$$

$$A_1 - A_2 + A_3 = \partial(F_1)$$

 z_1 homologous to z_2 if $z_1 = z_2 + \partial(c)$

 z_1 homologous to z_2 if $z_1 = z_2 + \partial(c)$

examples:

$$z_1 = A_1 + A_4$$

 z_1 homologous to z_2 if $z_1 = z_2 + \partial(c)$

examples:

$$z_1 = A_1 + A_4$$

 $z_2 = A_2 + A_4 - A_3$
 $= z_1 + \partial(-F_1)$

 z_1 homologous to z_2 if $z_1 = z_2 + \partial(c)$

examples:

$$z_1 = A_1 + A_4$$

 $z_2 = A_2 + A_4 - A_3$
 $= z_1 + \partial(-F_1)$

 H_p : Equivalence classes

- $lacksquare Z_p$ is a subgroup of C_p
- $lacksquare B_p$ is a subgroup of C_p
- B_p is a subgroup of Z_p due to $\partial \circ \partial = 0$
- $lacksquare H_p$ is the quotient group Z_p/B_p
- $\blacksquare H_p \cong \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{\beta} \oplus \mathbb{Z}/t_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/t_n\mathbb{Z}$

Université

Klein bottle

Klein Bottle

Getting Betti numbers

[DE93] An Incremental Algorithm for Betti numbers of simplicial complexes

[KMM04] Computational homology

- Getting Betti numbers
 [DE93] An Incremental Algorithm for Betti numbers of simplicial complexes
 [KMM04] Computational homology
- Getting Betti numbers and torsion coefficients [Mun84] Elements of algebraic topology

- Getting Betti numbers
 [DE93] An Incremental Algorithm for Betti numbers of simplicial complexes
 [KMM04] Computational homology
- Getting Betti numbers and torsion coefficients [Mun84] Elements of algebraic topology
- Getting representants of homology classes [Ago76] Algebraic Topology, a first course

- Getting Betti numbers
 [DE93] An Incremental Algorithm for Betti numbers of simplicial complexes
 [KMM04] Computational homology
- Getting Betti numbers and torsion coefficients [Mun84] Elements of algebraic topology
- Getting representants of homology classes
 [Ago76] Algebraic Topology, a first course
- Getting homology groups in low dimensions
 [DG96] Computing Homology Groups of Simplicial Complexes in R3
 [Z04] Topology for computing

Incidence matrices

$$\mathbf{E^0} = \begin{array}{cccc} & A_1 & A_2 & A_3 & A_4 \\ S_1 \begin{pmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 0 \\ S_3 \begin{pmatrix} 1 & 1 & 0 & -1 \end{pmatrix} \end{array}$$

$$\mathbf{E^1} = egin{array}{c} F_1 \ A_1 \left(egin{array}{c} 1 \ -1 \ A_3 \left(egin{array}{c} 1 \ -1 \ 1 \ 0 \end{array}
ight) \end{array}$$

Smith normal form

q-cycles $\sharp Z_q$

Where λ_1 divides $\lambda_2\cdots$ divides λ_k

q-cycles $\sharp Z_q$

(q-1)-boundaries $\sharp B_{q-1}$

Where λ_1 divides $\lambda_2 \cdots$ divides λ_k

$$q$$
-cycles $\sharp Z_q$

$$(q-1)$$
-boundaries $\sharp B_{q-1}$

$$\beta_q = \sharp Z_q - \sharp B_q$$

Where λ_1 divides $\lambda_2 \cdots$ divides λ_k

$$\mathbf{N}_{*}^{\mathbf{0}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{N}_*^1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{N}_{*}^{\mathbf{0}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{N}^{\mathbf{1}}_{*} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{N}_{*}^{\mathbf{0}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{N}_*^1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{N}_{*}^{\mathbf{0}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{N}_*^1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Storjohann

Betti numbers

Torsion coefficients

Moduli operations

Agoston

Betti numbers

Torsion coefficients

Generators

Storjohann

Betti numbers

Torsion coefficients

Moduli operations

Agoston

Betti numbers

Torsion coefficients

Generators

Moduli generators

Experimentation

Experimentation

Computing time

Experimentation

Computing time

Discussion, perspectives

Relation between moduli generators and classical generators?

Discussion, perspectives

- Relation between moduli generators and classical generators ?
- A basis for $H_1(T, \mathbf{Z}/2)$ that is not a basis for $H_1(T, \mathbf{Z})$:

Continuing the software

- Continuing the software
- Experimentations

- Continuing the software
- Experimentations
 - Less simple objects

- Continuing the software
- Experimentations
 - Less simple objects
 - Objects obtained from a segmentation

- Continuing the software
- Experimentations
 - Less simple objects
 - Objects obtained from a segmentation
 - Apparition of huge integers

- Continuing the software
- Experimentations
 - Less simple objects
 - Objects obtained from a segmentation
 - Apparition of huge integers
- lacktriangle Application for 3D and 4D images

