Linear Regression Models with Interaction/Moderation

Rose Medeiros StataCorp LLC

Contents

L	Intr	roduction	1
	1.1	Goals	1
2	Esti	imation	3
	2.1	Including Categorical Variables	3
	2.2	Including Interactions	6
3			2
	3.1	About Postestimation	2
	3.2	Investigating Categorical by Categorical Interactions	13
	3.3	Investigating Categorical by Continuous Interactions	22
	3.4	Investigating Continuous by Continuous Interactions	28
1			37
	4.1	Graphing Extras	37
	4.2	Conclusion	1
_			
1	Ir	ntroduction	
1.	1 (Goals	
	_		

Goals

- Learn how to use factor variable notation when fitting models involving
 - ♦ Categorical variables
 - ♦ Interactions
 - ♦ Polynomial terms
- Learn how to use postestimation tools to interpret interactions
 - ♦ Tests for group differences
 - ♦ Tests of slopes
 - ♦ Graphs

A Linear Model

- We'll use data from the National Health and Nutrition Examination Survey (NHANES) for our examples
 - . webuse nhanes2
- We'll start with a basic a model for bmi using age and sex (female).
- Before we fit the model, let's investigate the variables using codebook

. codebook bmi age female

bmiBody Mass Index (BMI)

type: numeric (float)

range: [12.385596,61.129696] units: 1.000e-07

unique values: 9,941 missing .: 0/10,351

mean: 25.5376 std. dev: 4.91497

percentiles: 10% 25% 50% 75%

20.1037 22.142 24.8181 28.0267 31.7259

age in years

type: numeric (byte)

units: 1 range: [20,74]

unique values: 55 missing .: 0/10,351

mean: 47.5797 std. dev: 17.2148

10% 25% 50% 75% 90% percentiles:

24 31 49 63 69

1=female, 0=male

type: numeric (byte)

range: [0,1] units: 1

unique values: 2 missing .: 0/10,351

tabulation: Freq. Value 4,915 0

5,436 1

- Now we can fit the model
 - . regress bmi age female

Source	SS	df	MS		Number of obs F(2. 10348)		10,351 156.29
Model Residual	7330.98402 242693.178	2 10,348	3665.4920 23.453148	1 Prob 3 R-sq - Adj	> F uared R-squared	= = =	0.0000 0.0293 0.0291 4.8428
bmi				 P> t			Interval
age female _cons	.0488667	.0027653 .0953249 .1482223	17.67 0.40 156.47	0.000 0.690 0.000	. 04344(14879; 22 . 902(36	.0542872 .2249168 23.48309

2 Estimation

2.1 Including Categorical Variables

Working with Categorical Variables

• We would now like to include region in the model, let's take a look at this variable

. codebook region

region 1=NE, 2=MW, 3=S, 4=W

type: numeric (byte)

label: region

range: [1,4] units: 1 unique values: 4 missing .: 0/10,351

tabulation: Freq. Numeric Label
2,096 1 NE
2,774 2 MW
2,853 3 S
2,628 4 W

- ♦ It cannot simply be added to the list of covariates because it has 4 categories
- To include a categorical variable, put an i. in front of its name—this declares the variable to be a categorical variable, or in Stataese, a *factor variable*

- For example, to add region to our model we use
 - . regress bmi age i.female i.region

Source	SS	df	MS		ber of obs , 10345)		10,351 63.02
Model				66 Pro	, 10345) b > F		0.0000
Residual	242633.964				quared		0.0296
	250024.162			naj	R-squared t MSE		0.0291 4.843
bmi	Coef.		t		[95% C	onf.	Interval]
age	.0488851				.04346	05	.0543097
female							
0	0	(base)					
1	.0372717	.0953357	0.39	0.696	14960	47	.2241481
region		<i>(</i> -)					
NE	0	(base)					
MW		.1402121			2683		.2813207
S I	. 0387957	. 1393383	0.28	0.781	23433	42	.3119256
₩ 	1537648	.1418286	-1.08	0.278	43177	62	.1242466
_cons	23.2187	.1760452	131.89	0.000	22.873	62	23.56378

Niceities

- Value labels associated with factor variables are displayed in the regression table
- We can tell Stata to show the base categories for our factor variables
 - . set showbaselevels on

Factor Notation as Operators

- The i. operator can be applied to many variables at once:
 - . regress bmi age i.(female region)

Source	SS	df	MS	Number of obs		10,351
Model	7390.19781	5	1478.03956	Prob > F		63.02 0.0000
Residual	242633.964 	. ,	23.4542256 	-		0.0296 0.0291
Total	250024.162	10,350	24.1569239	Root MSE	=	4.843
bmi	 Coef.	Std Err	 t.	P> t [95% (Conf T	ntervall
				0.000 04346		

bmi		Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0488851	.0027674	17.66	0.000	.0434605	.0543097
female						
0	0	(base)				
1	.0372717	.0953357	0.39	0.696	1496047	.2241481
I						
region						
NE	0	(base)				
MW	.0064779	.1402121	0.05	0.963	268365	.2813207
S I	.0387957	.1393383	0.28	0.781	2343342	.3119256
W I	1537648	.1418286	-1.08	0.278	4317762	.1242466
I						
_cons	23.2187	.1760452	131.89	0.000	22.87362	23.56378

- In other words, it understands the distributive property
 - ♦ This is useful when using variable ranges, for example
- For the curious, factor variable notation works with wildcards
 - ♦ If there were many variables starting with u, then i.u* would include them all as factor variables

Using Different Base Categories

- By default, the smallest-valued category is the base category
- This can be overridden within commands
 - \diamond b#. specifies the value # as the base
 - \diamond b(##). specifies the #'th largest value as the base
 - \$ b(first). specifies the smallest value as the base
 - ♦ b(last). specifies the largest value as the base
 - ♦ b(freq). specifies the most prevalent value as the base
 - bn. specifies there should be no base

Playing with the Base

- We can use region=3 as the base class on the fly:
 - . regress bmi age i.female b3.region
- We can use the most prevalent category as the base
 - . regress bmi age i.female b(freq).region
- Factor variables can be distributed across many variables
 - . regress bmi age b(freq).(female region)
- The base category can be omitted (with some care here)
 - . regress bmi age i.female bn.region, noconstant
- We can also include a term for region=4 only
 - . regress bmi age i.female 4.region

2.2 Including Interactions

Specifying Interactions

- Factor variables are also used for specifying interactions
 - ♦ This is where they really shine
- To include both main effects and interaction terms in a model, put ## between the variables
- To include only the interaction terms, put # between the terms

Categorical Interactions

• For example, to fit a model that includes main effects for age, female, and region, as well as the interaction of female, and region

. regress bmi age female##region

Source	SS	df	MS	Number of obs - F(8, 10342)		10,351 40.30
Model	7559.19099	8	944.898874		10342) =	
Residual	242464.971	10,342	23.4446888	R-squa	ared =	0.0302
					1	0.0295
Total	250024.162	10,350	24.1569239	Root MSE		4.842
bmi	Coef.	Std. Err	. t	P> t	[95% Conf	. Interval]
	.0488087	.0027671	 17.64	0.000	.0433846	.0542328
age 	.0400007	.0027671	17.04	0.000	.0433646	.0542526
female						
0	0	(base)				
1	2939562	.2116093	-1.39	0.165	7087514	.1208389
region						
NE	0	(base)				
MW	1420836	.2023593	-0.70	0.483	538747	. 2545798
s I	3347762	.2015721	-1.66	0.097	7298965	.0603441
W	2694841	.204234	-1.32	0.187	6698222	.1308541
female#region						
1#MW	.2897474	.280525	1.03	0.302	2601358	.8396306
1#S	.7124639	.2789251	2.55	0.011	.1657169	1.259211
1#W	.2266557	. 2837887	0.80	0.424	3296251	.7829365
_cons	23.39271	.2013939	116.15	0.000	22.99793	23.78748

• Variables involved in interactions are assumed to be categorical, so no i. is needed

- To see all the omitted terms we can add the allbaselevels option
 - . regress bmi age female##region, allbaselevels

Source	SS	df	MS		er of obs		10,351
Madal I	7559.19099		944.898874		10342) > F	=	40.30
Residual							0.0000
residual	242464.971	10,342	23.4440000		ared -squared	_	0.0302
Total	250024.162	10 350	24 1560220	-	-		4.842
TOUAL	250024.102	10,350	24.1509259	ROOL	HSE	_	4.042
bmi	Coef.	Std. Err	. t	P> t	[95% Co	onf.	Interval]
age	.0488087	.0027671	17.64	0.000	.043384	 !6	.0542328
١							
female							
0	0	(base)					
1	2939562	.2116093	-1.39	0.165	708751	.4	.1208389
I							
region							
NE		(base)					
MW	1420836	. 2023593	-0.70	0.483	53874	<u>1</u> 7	. 2545798
S	3347762		-1.66	0.097	729896	55	.0603441
W I	2694841	.204234	-1.32	0.187	669822	22	.1308541
female#region	•	(1)					
O#NE	0	(
O#MW	0						
0#S	0	(base)					
O#W	0	(base)					
1#NE	0	()	4 00	0.000	0.004.05		0000000
1#MW	.2897474		1.03	0.302			.8396306
1#S		. 2789251		0.011	.165716		
1#W	. 2266557	. 2837887	0.80	0.424	329625	1	.7829365
_cons 	23.39271	.2013939	116.15	0.000	22.9979	3	23.78748

Categorical by Continuous Interactions

- To include continuous variables in interactions use c. to specify that a variable is continuous
 - $\diamond\,$ Otherwise it will be assumed to be categorical
- Here is our model with an interaction between age and region
 - . regress bmi c.age##region i.female

Source	l ss	df	MS			= 10,351 = 40.35
	7568.54189			37 Prob	> F	= 0.0000
Residual		•	23.443784		1	= 0.0303
m	•	40.050		-	1	= 0.0295
lotal	250024.162	10,350	24.150923	39 KOO1	t MSE	= 4.8419
bmi	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
age	+ .0607829 	.0062164	9.78	0.000	.0485975	.0729683
region	! 					
NE	I 0	(base)				
MW	l .3951518	.4106204	0.96	0.336	4097436	1.200047
S		.4181868			.2319407	
W	.5921285	.4181932	1.42	0.157	227611	1.411868
	l					
region#c.age	l					
MW	0080245	.0081638	-0.98	0.326	0240272	.0079782
S	0211109	.008219	-2.57	0.010	0372217	0050002
W	0155977	.0082261	-1.90	0.058	0317225	.000527
	l					
female	l					
0	0	(base)				
1	.038259	.0953259	0.40	0.688	1485982	.2251161
	 -					
_cons	22.64929	.3193208	70.93	0.000	22.02336	23.27522

Continuous by Continuous Interactions

- Prefix both variables in the interaction with c. to fit models with continuous by continuous variable interactions
- For example, we can interact age with serum vitamin c levels (vitaminc)
 - . regress bmi c.age##c.vitaminc i.female i.region

Source	SS	df	MS	Number of obs	=	9,973
+				F(7, 9965)	=	63.61
Model	10298.9223	7	1471.27461	Prob > F	=	0.0000
Residual	230479.207	9,965	23.1288718	R-squared	=	0.0428
+				Adj R-squared	=	0.0421
Total	240778.13	9,972	24.1454201	Root MSE	=	4.8092

bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0220407	.0059366	3.71	0.000	.0104038	.0336777
vitaminc	-2.331426	.2717928	-8.58	0.000	-2.864194	-1.798657
c.age#c.vitaminc	.029107	.0050017	5.82	0.000	.0193026	.0389115
female						
0	0	(base)				
1 	.1858965	.0982311	1.89	0.058	0066564	.3784494
region						
NE	0	(base)				
MW	0936871	. 1412331	-0.66	0.507	3705326	.1831584
S I	2137082	. 1431247	-1.49	0.135	4942615	.0668451
₩ I	1626738	.1430181	-1.14	0.255	4430182	.1176706
_cons	25.45695	.3293507	77.29	0.000	24.81136	26.10255

- To include polynomial terms, interact a variable with itself
- ullet For example, a model that includes both age and age^2
 - . regress bmi c.age##c.age i.female i.region

Source	SS	df	MS		er of obs		10,351
+				- F(6,	10344)	=	73.84
Model	10269.3919	6	1711.5653	32 Prob	> F	=	0.0000
Residual	239754.77	10,344	23.178148	87 R-sc	quared	=	0.0411
+				- Adj	R-squared	=	0.0405
Total	250024.162	10,350	24.156923	89 Root	MSE	=	4.8144
bmi	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
age	. 2731368	.0203077	13.45	0.000	. 233329	7	.3129439
1							
c.age#c.age	0024099	.0002162	-11.15	0.000	002833	7	0019861
I							
female							
0	0	(base)					
1	.0462855	.0947764	0.49	0.625	139494	5	.2320656
1							
region							
NE	0	(base)					
MW	.0322091	.1394036	0.23	0.817	241048	9	.3054671
S	.0289346	.1385186	0.21	0.835	242588	6	.3004579
W I	1105093	.1410448	-0.78	0.433	386984	4	.1659657
1							
_cons	18.6987	.4416971	42.33	0.000	17.8328	9	19.56451

 $[\]diamond$ The coefficient for age-squared is next to c.age#c.age

Higher Order Interactions

- Factor variable syntax can be used to specify higher order interactions
- If the interactions are specified using ## all lower order terms are included

- For example, here we fit a model for bmi using a model that includes the three-way interaction of continuous variables age and vitaminc and categorical variable female
 - . regress bmi c.age##c.vitaminc##female

Source	SS	df			=	9,973
				F(7, 9965)	=	76.60
Model	12294.4386	7	1756.34837	Prob > F	=	0.0000
Residual	228483.691	9,965	22.9286193	R-squared	=	0.0511
+-				Adj R-squared	=	0.0504
Total	240778.13	9,972	24.1454201	Root MSE	=	4.7884

bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	0038595	.0084263	-0.46	0.647	0203767	.0126578
vitaminc	-2.008713	.4231851	-4.75	0.000	-2.838241	-1.179185
c.age#c.vitaminc 	.0313728	.0078481	4.00	0.000	.0159889	.0467566
female						
0	0	(base)				
1	-2.098183	.6208318	-3.38	0.001	-3.315138	8812268
female#c.age						
1	.0646392	.0119517	5.41	0.000	.0412115	.0880668
female#c.vitaminc						
1	.0314475	.5539279	0.06	0.955	-1.054363	1.117258
Ì						
female#c.age#c.vitaminc						
1	0166002	.0102645	-1.62	0.106	0367206	.0035203
!						
_cons	26.16464	.4416624	59.24	0.000	25.29889	27.03039

Some Factor Variable Notes

- If you plan to look at marginal effects of any kind, it is best to
 - ♦ Explicitly mark all categorical variables with i.
 - ⋄ Specify all interactions using # or ##
 - Specify powers of a variable as interactions of the variable with itself
- There can be up to 8 categorical and 8 continuous interactions in one expression
 - ♦ Have fun with the interpretation

3 Postestimation

3.1 About Postestimation

Introduction to Postestimation

• In Stata jargon, postestimation commands are commands that can be run after a model is fit, for example

- ⋄ Predictions
- Additional hypothesis tests
- ♦ Checks of assumptions
- We'll explore postestimation tools that can be used to help interpret the results of models that include interactions
- The usefulness of specific tools will depend on the types of hypotheses you wish to examine

3.2 Investigating Categorical by Categorical Interactions

Estimating a Model

- Lets begin by running a model with main effects for age, female and region, and the interaction of female and region
 - . regress bmi age female##region

Source	SS	df	MS		er of obs =	,
Model	7559.19099	e	944.898874		10342) = > F =	
Residual	242464.971		23.4446888		iared =	
						0.0295
Total	250024.162	10,350	24.1569239	-	-	4.842
		· 				
bmi	Coef.	Std. Err	. t	P> t	[95% Conf	. Interval]
age	.0488087	.0027671	17.64	0.000	.0433846	.0542328
female						
0	0	(base)				
1	2939562	.2116093	-1.39	0.165	7087514	.1208389
I						
region						
NE	0	(base)				
MW	1420836	.2023593	-0.70	0.483	538747	. 2545798
S	3347762	.2015721	-1.66	0.097	7298965	.0603441
W	2694841	.204234	-1.32	0.187	6698222	.1308541
female#region	00001101	000505	4 00		0001050	000000
1#MW	.2897474		1.03	0.302		.8396306
1#S	.7124639		2.55	0.011	.1657169	1.259211
1#W	. 2266557	. 2837887	0.80	0.424	3296251	.7829365
1	02 20074	0042020	110 15	0 000	00 00700	02 70740
_cons	23.39271	. 2013939	116.15	0.000	22.99793	23.78748

- How might we begin?
 - Perform joint tests of coefficients
 - ⋄ Estimate and test hypotheses about group differences

Finding the Coefficient Names

- Some postestimation commands require that you know the names used to store the coefficients
- To see these names we can replay the model and showing the coefficient legend
 - . regress, coeflegend

Source	SS	df	MS	Number of obs	=	10,351
+				F(8, 10342)	=	40.30
Model	7559.19099	8	944.898874	Prob > F	=	0.0000
Residual	242464.971	10,342	23.4446888	R-squared	=	0.0302
+				Adj R-squared	=	0.0295
Total	250024.162	10,350	24.1569239	Root MSE	=	4.842

bmi	Coef.	Legend
age	.0488087	_b[age]
female		
0	0	_b[0b.female]
1	2939562	_b[1.female]
1		
region		
NE	0	_b[1b.region]
MW	1420836	_b[2.region]
S	3347762	_b[3.region]
W	2694841	_b[4.region]
1		-
female#region		
1#MW	.2897474	_b[1.female#2.region]
1#S	.7124639	_b[1.female#3.region]
1#W	.2266557	_b[1.female#4.region]
1		-
_cons	23.39271	_b[_cons]

• From here, we can see the full specification of the factor levels:

```
_b[2.region] corresponds to region=2 which is "MW" or midwest _b[3.region] corresponds to region=3 which is "S" or south
```

• We can also see the terms for the interaction:

```
_b[1.female#2.region] corresponds to the term for the interaction of region=2 and female=1 _b[1.female#3.region] corresponds to the term for the interaction of region=3 and female=1
```

Joint Tests

- The test command performs a Wald test of the specified null hypothesis
 - \diamond The default test is that the listed terms are equal to 0
- test takes a list of terms, which may be variable names, but can also be terms associated with factor variables

• To perform a joint test of the null hypothesis that the coefficients for the levels of region are all equal to 0

```
(1) 2.region = 0
(2) 3.region = 0
(3) 4.region = 0
F(3, 10342) = 1.07
Prob > F = 0.3600
```

. test 2.region 3.region 4.region

Since the model contains an interaction, this is a test of the effect of region when female=0

Testing Sets of Coefficients

- To test that all of the coefficients associated with the interaction of female and region we would need to give the full name of all the coefficients
 - . test 1.female#2.region 1.female#3.region 1.female#4.region
- testparm also performs Wald tests, but it accepts lists of variables, rather than coefficients in the model
- So we can perform joint tests with less typing, for example

```
. testparm i.region#i.female
( 1) 1.female#2.region = 0
( 2) 1.female#3.region = 0
( 3) 1.female#4.region = 0

F( 3, 10342) = 2.40
Prob > F = 0.0656
```

An Alternative Test

- Likelihood ratio tests provide an alternative method of testing sets of coefficients
- To test the coefficients associated with the interaction of female and region we need to store our model results. The name is arbitrary, we'll call them m1
 - . estimates store m1

- Now we can rerun our model without region
 - . regress bmi age i.female i.region

Source	SS	df	MS		per of obs		10,351 63.02
Model	7390.19781	 5	1478 03956	-) > F		
Residual					uared		
+					R-squared		
Total	250024.162	10,350	24.1569239	9	MSE		4.843
		·					
bmi	Coef.	Std. Err.	t	P> t	[95% Con:	 f.	Interval]
age	.0488851	.0027674	17.66	0.000	.0434605		.0543097
female							
0	0	(base)					
1		.0953357	0.39	0.696	1496047		.2241481
i							
region							
NE	0	(base)					
MW	.0064779	.1402121	0.05	0.963	268365		.2813207
S	.0387957	.1393383	0.28	0.781	2343342		.3119256
W	1537648	.1418286	-1.08	0.278	4317762		.1242466
1							
_cons	23.2187	.1760452	131.89	0.000	22.87362		23.56378

• If we were removing one of these variables entirely, we would want to add if e(sample) to makes sure the same sample, what Stata calls the *estimation sample*, is used for both models

Likelihood Ratio Tests (Continued)

- Now we store the second set of estimates
 - . estimates store m2
- And use the lrtest command to perform the likelihood ratio test
 - . lrtest m1 m2

Likelihood-ratio test LR chi2(3) = 7.21 (Assumption: m2 nested in m1) Prob > chi2 = 0.0654

- We'll restore the results from m1
 - . estimates restore m1

(results m1 are active now)

• Now it's as if we just ran the model stored in m1

Tests of Differences

• test can also be used to the equality of coefficients

- A likelihood ratio test can also be used; see help constraint for information on setting the necessary constraints
- The lincom command can be used to calculate linear combinations of coefficients, along with standard errors, hypothesis tests, and confidence intervals
- For example, to obtain the difference in coefficients
 - . lincom 3.region#1.female 4.region#1.female
 - (1) 1.female#3.region 1.female#4.region = 0

bmi			[95% Conf.	
•			0282827	

Contrasts

- The contrast command allows us to test a wide variety of comparisons across groups
- For example comparing regions separately for men and women
 - . contrast region@female, effects

Contrasts of marginal linear predictions

Margins : asbalanced

	df	F	P>F
region@female			
0	3	1.07	0.3600
1] 3	2.17	0.0890
Joint	6 	1.62	0.1364
Denominator	10342		

	 +-	Contrast	Std. Err.	t	P> t	[95% Conf.	Interval]
region@female							
(MW vs base) 0		1420836	.2023593	-0.70	0.483	538747	. 2545798
(MW vs base) 1		.1476637	.1943419	0.76	0.447	2332839	.5286114
(S vs base) 0		3347762	.2015721	-1.66	0.097	7298965	.0603441
(S vs base) 1		.3776878	.1927872	1.96	0.050	0002125	.755588
(W vs base) 0		2694841	.204234	-1.32	0.187	6698222	.1308541
(W vs base) 1	ا 	0428284	.1970381	-0.22	0.828	4290612	.3434044

- \diamond The @ symbol requests comparisons of the levels of region at each value of female
- ♦ The effects option requests that individual contrasts be displayed along with their standard errors, hypothesis tests, and confidence intervals

Adjusting for Multiple Comparisons

- Use of contrast can result in a large number of hypothesis tests
- The mcompare() option can be used to adjust p-values and confidence intervals for multiple comparisons within factor variable terms
- The available methods are
 - ⋄ noadjust
 - ⋄ bonferroni
 - ♦ sidak
 - ⋄ scheffe
- To apply Bonferroni's adjustment to our previous contrast
 - . contrast region@female, effects mcompare(bonferroni)

Contrasts of marginal linear predictions

Margins : asbalanced

	df	F	P>F
region@female	,		
0	3	1.07	0.3600
1	3	2.17	0.0890
Joint	l 6	1.62	0.1364
Denominator	10342		

Note: Bonferroni-adjusted p-values are reported for tests on individual contrasts only.

		Number	of
	1	Compariso	ns
	+-		
region@female	1		6

	1			Bonfe	erroni	Bonfe	rroni
	1	Contrast	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
region@female	+-						
(MW vs base) 0	1	1420836	.2023593	-0.70	1.000	6760623	.391895
(MW vs base) 1	1	. 1476637	.1943419	0.76	1.000	3651588	.6604863
(S vs base) 0	1	3347762	.2015721	-1.66	0.581	8666776	. 1971252
(S vs base) 1	1	.3776878	.1927872	1.96	0.301	1310325	.886408
(W vs base) 0	1	2694841	.204234	-1.32	1.000	8084096	. 2694415
(W vs base) 1		0428284	.1970381	-0.22	1.000	5627657	.4771089

Average Predicted Values

- We might want to explore predictions based on our model and data
- Predictions for individual observations can be made using the predict command, see help predict
- To find out about our model more generally, we may be more interested in average predicted values
 - Also known as predictive margins or recycled predictions
- To obtain the average predicted value of bmi
 - . margins

Predictions at Specified Values of Factor Variables

- Stata calls the list of variables that follow the margins command the marginslist
 - ♦ To appear in the *marginslist* a variable must have been specified as factor variable in the model
- To obtain the average predicted value of bmi at different values of region
 - . margins region

- How were these values generated?
 - 1. Calculate the predicted value of bmi setting region=1 and using each case's observed values of female and age
 - 2. Find the mean of the predicted values
 - 3. Repeat steps 1 and 2 for each value of region

Predicted Values with Multiple Factor Variables

• We can obtain margins for multiple variables

. margins region female

Predictive margins Number of obs = 10,351

Model VCE : OLS

Expression : Linear prediction, predict()

<u></u> !	_	Delta-method	z'		54	
	Margin	Std. Err.	t	P> t	L95% Conf.	Interval]
region						
NE	25.56063	.1057882	241.62	0.000	25.35327	25.768
MW	25.57071	.09198	278.00	0.000	25.39042	25.75101
S	25.60002	.0906777	282.32	0.000	25.42227	25.77776
W I	25.41018	.0944557	269.02	0.000	25.22503	25.59533
1						
female						
0	25.51624	.0690736	369.41	0.000	25.38084	25.65164
1	25.55385	.0656788	389.07	0.000	25.42511	25.68259

• Or we can oobtain predicted values of bmi at each combination of region and female

. margins region#female

Predictive margins Number of obs = 10,351

Model VCE : OLS

Expression : Linear prediction, predict()

	 I	I	 Delta-method	 l			
	İ	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
region#female	-+ 						
NE#O		25.71501	. 1517587	169.45	0.000	25.41753	26.01248
NE#1		25.42105	.1474742	172.38	0.000	25.13197	25.71013
MW#O		25.57292	.1338383	191.07	0.000	25.31058	25.83527
MW#1		25.56872	.1265618	202.03	0.000	25.32063	25.8168
S#0		25.38023	.1326702	191.30	0.000	25.12017	25.64029
S#1	1	25.79874	.1241829	207.75	0.000	25.55532	26.04216
W#O		25.44552	.1366851	186.16	0.000	25.17759	25.71345
W#1	 	25.37822	.1306734	194.21	0.000	25.12208	25.63437

• We might prefer to graph these results, we can do so using the marginsplot command

Graphing Predicted Values

. marginsplot

♦ If our model did not include a region by female interaction, the lines would be parallel

Predicted Values for Specific Groups

- When we specify the variables in the *marginslist* Stata calculates predicted values treating each case as though it belonged to each group
- The over() option allows us to obtain predictions separately for each group, for example
 - . margins, over(female)

Predictive margins Number of obs = 10,351

Model VCE : OLS

Expression : Linear prediction, predict()

over : female

		Delta-method Std. Err.	t		[95% Conf.	Interval]
female 0 1	25.50999 25.56256	.0690654 .0656723	369.36 389.24	0.000	25.37461 25.43383	25.64538 25.69129

- This time the table shows
 - ♦ The average predicted value of bmi for cases where female=0 using each case's observed values of age and region
 - ♦ The average predicted value of bmi for cases where female=1 using each case's observed values of age and region
- This can be useful when we want to compare groups

3.3 Investigating Categorical by Continuous Interactions

A Categorical by Continuous Interaction

• For this set of examples, we'll fit a model that includes an interaction between the continuous variable age and the categorical variable region

regress	bmi	c.age##region	i.female

Source	SS	df	MS		201 01 022	= 10,351 = 40.35
Model	7568.54189	8	946 06773	-	•	= 0.0000
Residual		10,342				= 0.0303
					-	= 0.0295
Total	250024.162	10.350	24.156923		-	= 4.8419
		,,,,,,				
bmi	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
age	.0607829	.0062164	9.78	0.000	.0485975	.0729683
region	•	(1)				
NE	0	(base)			4007400	4 000045
MW		.4106204	0.96	0.336		
S I		.4181868	2.51		. 2319407	
W	.5921285	.4181932	1.42	0.157	227611	1.411868
region#c.age						
MW		.0081638	-0.98	0.326		
S I	0211109	.008219	-2.57	0.010	0372217	0050002
W	0155977	.0082261	-1.90	0.058	0317225	.000527
1						
female						
0	0	(base)				
1	.038259	.0953259	0.40	0.688	1485982	.2251161
_cons	22.64929	.3193208	70.93	0.000	22.02336	23.27522

- Let's take a look at how the coefficients are stored
 - . regress, coeflegend

Source	SS	df	MS	Number of obs		10,351
				F(8, 10342)		40.35
Model	7568.54189		946.067737	Prob > F		0.000
Residual	242455.62	10,342	23.4437846	R-squared		
Total	250024.162	10,350	24.1569239	Adj R-squared Root MSE	=	0.0295 4.8419
bmi	Coef.	Legend				
age	.0607829	_b[age]				
region						
NE I	0	_b[1b.regi	on]			
MW		_b[2.regio				
S		_b[3.regio				
W	.5921285	_b[4.regio	n]			
1						
region#c.age						
MW		_b[2.regio	_			
S I		- 0	0			
W	0155977	_b[4.regio	n#c.age]			
female	•	. 501 . 6				
0		_b[Ob.fema				
1	.038259	_b[1.femal	eJ			
_cons	22.64929	_b[_cons]				

test and testparm

• As before, we can test the null hypothesis that all of the coefficients associated with the interaction of age and region are equal to 0 using testparm

```
. testparm c.age#i.region
( 1) 2.region#c.age = 0
( 2) 3.region#c.age = 0
( 3) 4.region#c.age = 0

F( 3, 10342) = 2.54
Prob > F = 0.0549
```

- We could also use 1rtest
- We can test specific hypotheses about the slopes
- For example we might want to test whether the slope of age is significantly different in the south (region=3) versus the west (region=4)

Estimated Slopes

• We can use lincom to estimate the slope of age for the south (region=3)

. lincom c.age + 3.region#c.age

(1) age + 3.region#c.age = 0

bmi			[95% Conf.	
·			.0291329	

• We can also use margins with the dydx() option to calculate the slope of age for each region

. margins region, dydx(age)

• The dydx() option calculates derivative of the predicted values with respect to the specified variable, also known as the marginal effect

Predictions at Specified Values

• To obtain margins at set values of continuous variables use the at() option

• For example, the predicted value of bmi at each level of region setting age=20

. margins region, at(age=20) vsquish

Predictive margins Number of obs = 10,351

Model VCE : OLS

Expression : Linear prediction, predict()
at : age = 20

			 Delta-method				
		Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
region	- +- -						
NE	1	23.88504	.2026955	117.84	0.000	23.48772	24.28236
MW	1	24.1197	.1678019	143.74	0.000	23.79078	24.44862
S	1	24.51449	.1766004	138.81	0.000	24.16832	24.86066
W	I	24.16521	.1772397	136.34	0.000	23.81779	24.51264

- ♦ The vsquish option reduces the vertical space in the output
- The at() option accepts *numlists* so we aren't restricted to a single value of age
 - . margins region, at(age=(20(25)70)) vsquish

Predictive margins Number of obs = 10,351
Model VCE : OLS

Expression : Linear prediction, predict()

1._at : age = 20 2._at : age = 45 3._at : age = 70

		I	 Delta-method	 l			
	İ	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
_at#region	-+- .						
1#NE	1	23.88504	.2026955	117.84	0.000	23.48772	24.28236
1#MW	1	24.1197	.1678019	143.74	0.000	23.79078	24.44862
1#S	-	24.51449	.1766004	138.81	0.000	24.16832	24.86066
1#W	-	24.16521	.1772397	136.34	0.000	23.81779	24.51264
2#NE	-	25.40461	.1072029	236.98	0.000	25.19447	25.61475
2#MW	-	25.43866	.0922856	275.65	0.000	25.25776	25.61956
2#S	1	25.50629	.0922593	276.46	0.000	25.32544	25.68713
2#W	1	25.29484	.0956797	264.37	0.000	25.10729	25.48239
3#NE	1	26.92418	.1737943	154.92	0.000	26.58351	27.26485
3#MW	1	26.75762	.1545335	173.15	0.000	26.4547	27.06054
3#S	1	26.49809	.148221	178.77	0.000	26.20754	26.78863
3#W	 	26.42447	.1522388	173.57	0.000	26.12605	26.72289

 $[\]diamond\,$ The observed values of age are from 20 to 74

Graphing Predicted Values

• And we can plot the results

. marginsplot

Suppressing Confidence Intervals

- The confidence intervals can make the graph appear messy; we can suppress them
 - . marginsplot, noci

♦ This is dangerous because it makes the predictions look more precise than they are

Testing for Differences

- We might want to perform tests of differences at different levels of the continuous variable
- To obtain tests of differences between levels of region at each level of age
 - . margins region, at(age=(20(10)70)) vsquish contrast

Model VCE : OLS

Expression : Linear prediction, predict()
1._at : age = 20
2._at : age = 30
3._at : age = 40
4._at : age = 50
5._at : age = 60
6._at : age = 70

Contrasts of predictive margins

	df	F	P>F
region@_at	 		
1	3	1.94	0.1200
2	3	1.59	0.1884
3	3	1.06	0.3642
4	3	0.93	0.4251
5	3	1.56	0.1974
6	3	2.05	0.1041
Joint	6	1.69	0.1193
Denominator	10342		

Predicted Values Over Groups

- As with marginslist, when we specify at () Stata calculates predicted values treating each case as though they belong
 to each group or combination of values
- As before, we can use the over() option after models with categorical by continuous interactions
- For example, to obtain predicted values for each region using the observed values of female and age in that region
 - . margins, over(region)

Predictive margins Number of obs = 10,351

Model VCE : OLS

Expression : Linear prediction, predict()

over : region

| Delta-method | Margin Std. Err. t P>|t| [95% Conf. Interval] | region | NE | 25.57535 .1057592 241.83 0.000 25.36804 25.78266 | MW | 25.51936 .0919307 277.59 0.000 25.33916 25.69956 | S | 25.63317 .090649 282.77 0.000 25.45548 25.81086 | W | 25.42299 .0944498 269.17 0.000 25.23785 25.60813

3.4 Investigating Continuous by Continuous Interactions

A Continuous by Continuous Interaction

- For this example we'll use a similar model for bmi but we'll add a main effect of serum vitamin c (vitaminc), and an interaction between age and vitaminc
- Before we fit the model, let's take a closer look at vitaminc
 - . summ vitaminc, detail

Percentiles Smallest

1% .2 .1

5% .3 .1

10% .3 .1 Obs 9,973

25% .6 .1 Sum of Wgt. 9,973

serum vitamin C (mg/dL)

50%	1	Largest	Mean Std. Dev.	1.034814 .5813791
75%	1.4	8.3		
90%	1.7	9.4	Variance	.3380017
95%	1.9	13.9	Skewness	4.539869
99%	2.4	18.1	Kurtosis	108.2617

- ♦ The distribution has a long tail, but most observations are between .2 and 2.
- Now lets fit the model
 - . regress bmi c.age##c.vitaminc i.female i.region

Source	SS	df	MS	Number of obs F(7. 9965)	=	9,973 63.61
Model			1471.27461	Prob > F	=	0.0000
•	230479.207	-	23.1288718	R-squared	=	0.0428
		•		Adj R-squared	=	0.0420
Total	240778.13		24.1454201	Root MSE	=	4.8092
TOTAL	240770.13	9,912	24.1454201	HOOC PAR	_	4.0032

bmi	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
age	.0220407	.0059366	3.71	0.000	.0104038	.0336777
vitaminc	-2.331426	.2717928	-8.58	0.000	-2.864194	-1.798657
c.age#c.vitaminc	.029107	.0050017	5.82	0.000	.0193026	.0389115
female						
0	0	(base)				
1	.1858965	.0982311	1.89	0.058	0066564	.3784494
ı						
region						
NE	0	(base)				
MW	0936871	.1412331	-0.66	0.507	3705326	.1831584
S I	2137082	.1431247	-1.49	0.135	4942615	.0668451
W I	1626738	.1430181	-1.14	0.255	4430182	.1176706
I						
_cons	25.45695	.3293507	77.29	0.000	24.81136	26.10255

- We can replay the model using coeflegend
 - . regress, coeflegend

Estimating Slopes

- We can use lincom to calculate the slope for vitaminc when age=49 (it's median)
 - . lincom vitaminc + c.vitaminc#c.age*49
 - (1) vitaminc + 49*c.age#c.vitaminc = 0

bmi			[95% Conf.	
·			-1.075841 	

- We could also calculate the slope of age when vitaminc=1 (it's median)
 - . lincom age + c.vitaminc#c.age*1
 - (1) age + c.age#c.vitaminc = 0

bmi			[95% Conf.	- · · · ·
·			.0456176	

- margins can produce estimates of the slopes for a range of values
 - . margins, dydx(vitaminc) at(age=(20(10)70)) vsquish

Average marg					Number	of obs	=	9,973
Expression	:	Linear pred	iction, pred	dict()				
dy/dx w.r.t.	:	vitaminc	_					
1at	:	age	=	20				
2at	:	age	=	30				
3at	:	age	=	40				
4at	:	age	=	50				
5at	:	age	=	60				
6at	:	age	=	70				
	ı		Delta-method	i				
	1	dy/dx	Std. Err.	t	P> t	[95% Co	nf.	<pre>Interval]</pre>
vitaminc	-+ 							
_at	-1							
1	-	-1.749285	. 1797317	-9.73	0.000	-2.10159	5	-1.396974
2	1	-1.458214	.1379304	-10.57	0.000	-1.72858	6	-1.187843
3	-	-1.167144	.1036802	-11.26	0.000	-1.37037	8	9639098
4	-	8760735	.0864746	-10.13	0.000	-1.04558	1	7065659

-6.10 0.000

-2.33 0.020

-.7731173 -.3968889

-.5414532 -.0464122

5 | -.5850031 .0959667

.126273

6 | -.2939327

Graphing Slopes

- $\, \bullet \,$ We can graph the slopes of vitaminc across age
 - . marginsplot, yline(0)

Predicted Values

• Specifying multiple variables in the at() option results in predictions at each combination of values

. margins , at(age=(20(25)70) vitaminc=(.2(.6)2)) vsquish

Predictive ma	rgins			Number o	of obs =	9,973
Model VCE	: OLS					
	: Linear pred:	•				
1at	-	=	20			
0 .	vitaminc	=	.2			
2at	: age	=	20			
2 -+	vitaminc	=	.8			
3at	: age	=	20			
1 0+	vitaminc	=	1.4 20			
4at	: age vitaminc	=	20			
5at	: age	=	45			
Jat	vitaminc	=	.2			
6at		=	45			
5u0	vitaminc	=	.8			
7at	: age	=	45			
	vitaminc	=	1.4			
8at	: age	=	45			
-	vitaminc	=	2			
9at	: age	=	70			
_	vitaminc	=	.2			
10at	: age	=	70			
	vitaminc	=	.8			
11at	: age	=	70			
	vitaminc	=	1.4			
12at	: age	=	70			
	vitaminc	=	2			
		Delta-method		D> +	[95% Conf.	Intervall
	.+					Interval]
_at	1					
	25.52113			0.000	25.18816	25.8541
	24.47156				24.27996	24.66316
3	23.42199	.1162436	201.49	0.000	23.19413	23.64985
	22.37242				21.97682	22.76802
	26.21768		294.02	0.000	26.04289	26.39247
6	25.60472	.0525344			25.50174	25.70769
	24.99175					25.11067
8	24.37879 26.91423	.1034993	235.55	0.000	24.17591	
					26.64207	27.1864
						26.91024
	26.56152	.0875619			26.38988	
12	26.38516	.1381377	191.01	0.000	26.11438	26.65593

. marginsplot

Changing the X-axis Variable

- We can select which variable appears on the x-axis using the xdimension() option
 - . marginsplot, xdimension(vitaminc)

Models with Polynomial Terms

- ullet We'll start by fitting a model that includes age and \mbox{age}^2
 - . regress bmi c.age##c.age i.female i.region

Source	SS	df	MS		ber of obs , 10344)		10,351 73.84
Model	10269.3919	6	1711.5653	32 Pro	b > F	=	0.0000
Residual	239754.77	10,344	23.178148		quared		
Total	250024.162	10,350	24.156923	-	R-squared t MSE		0.0405 4.8144
	Coef.		t	P> t	[95% Co	 nf.	Interval]
·	. 2731368		13.45	0.000	. 233329	7	.3129439
c.age#c.age	0024099	.0002162	-11.15	0.000	002833	7	0019861
female							
0	0	(base)					
1	.0462855	.0947764	0.49	0.625	139494	5	. 2320656
region							
NE	0	(base)					
MW	.0322091	.1394036	0.23	0.817	2410489	9	.3054671
S	.0289346	.1385186	0.21	0.835	2425886	3	.3004579
W	1105093	.1410448	-0.78	0.433	386984	1	.1659657
1							
_cons	18.6987	.4416971	42.33	0.000	17.83289) 	19.56451

- Graphs can be particularly useful in understanding models with polynomial terms
- Here we predict values of bmi at different values of age
 - . margins, at(age=(20(10)70)) vsquish

. margins, at	0 (age-(20(10))	O)) VSQUISH				
Predictive ma	argins			Number o	of obs =	10,351
Model VCE	: OLS					
Expression	: Linear pred	iction, pre	dict()			
1at	: age	=	20			
2at	: age	=	30			
3at	: age	=	40			
4at	: age	=	50			
5at	: age	=	60			
6at	: age	=	70			
	•	Delta-metho				
	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
	-+					
_at						
1	23.21033	. 1253478	185.17	0.000	22.96462	23.45604
2	24.73675	.0678653	364.50	0.000	24.60372	24.86977
3	25.78118	.0755647	341.18	0.000	25.63306	25.9293
4	26.34363	.0780441	337.55	0.000	26.19065	26.49661
5	26.4241	.0635204	415.99	0.000	26.29959	26.54861
6	1 26.02259	.0951272	273.56	0.000	25.83612	26.20905

Graphing Predicted Values

- And graph the predictions
 - . marginsplot

Slopes

- We can also obtain estimates of the slope of age across its range
- To do so we'll include age in both the dyed() and at() options
 - . margins, dydx(age) at(age=(20(10)70)) vsquish

Average marg	Average marginal effects				Number	$\sf of$	obs	=	10,351
Model VCE	:	OLS							
Expression	:	Linear pred	iction, predi	Lct()					
dy/dx w.r.t.	:	age							
1at	:	age	=	20					
2at	:	age	=	30					
3at	:	age	=	40					
4at	:	age	=	50					
5at	:	age	=	60					
6at	:	age	=	70					
	١		Delta-method						
	I	dy/dx	Std. Err.	t	P> t		[95% Co	nf.	Interval]
	-+-								
age									
_at									
1		. 1767405	.0117968	14.98	0.000		. 1536164	4	.1998646
2	-	.1285424	.0076583	16.78	0.000		.113530	7	. 143554
3	-	.0803442	.0039415	20.38	0.000		.072618	1	.0880703
4	-	.032146	.0031343	10.26	0.000		.026002	2	.0382899
5	1	0160521	.0064432	-2.49	0.013		028683	2	0034222
6	1	0642503	.010517	-6.11	0.000	-	084865	7	0436349

Adding a Cubic Term

- The same process can be used with higher order polynomials, here we add a cubic term for age
 - . regress bmi c.age##c.age##c.age i.female i.region

S	Source	SS	df	MS	Number of obs	=	10,351
	+-				F(7, 10343)	=	64.27
	Model	10422.3157	7	1488.90224	Prob > F	=	0.0000
Res	sidual	239601.846	10,343	23.1656044	R-squared	=	0.0417
	+-				Adj R-squared	=	0.0410
	Total	250024.162	10,350	24.1569239	Root MSE	=	4.8131

bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.5056311	.0927387	5.45	0.000	.3238453	.6874169
c.age#c.age	0077683	.0020967	-3.70	0.000	0118782	0036583
c.age#c.age#c.age	.0000383	.0000149	2.57	0.010	9.07e-06	.0000675
female	I					
0	1 0	(base)				
1	l .0449127	.0947522	0.47	0.636	1408201	. 2306454
region	I					
NE	1 0	(base)				
MW	.0274302	.1393783	0.20	0.844	2457782	.3006386
S	.025305	.1384883	0.18	0.855	2461589	. 2967689
W	1172832 	.1410312	-0.83	0.406	3937317	.1591653
_cons	15.6426	1.268785	12.33	0.000	13.15554	18.12967

- As before we can predict slopes at specified values of age
 - . margins, dydx(age) at (age=(20(10)70)) vsquish

Number of obs = 10,351 Average marginal effects Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : age 1._at : age . age
2._at : age
3._at : age
4._at : age
5._at : age
6._at : age 30 40 50 60 70 | Delta-method | dy/dx Std. Err. t P>|t| [95% Conf. Interval] ______ - 1 _at |
 1
 .2408252
 .0275901
 8.73
 0.000
 .1867432
 .2949071

 2
 .1428662
 .0094709
 15.08
 0.000
 .1243014
 .161431

 3
 .06787
 .0062529
 10.85
 0.000
 .055613
 .0801269

 4
 .0158363
 .0070791
 2.24
 0.025
 .0019598
 .0297128

 5 | -.0132346
 .0065341
 -2.03
 0.043
 -.0260428
 -.0004265

 6 | -.0193429
 .0203971
 -0.95
 0.343
 -.0593252
 .0206395

- Or predict bmi at different values of age
 - . margins, at (age=(20(9)74)) vsquish

Predictive m	•	gins OLS			Number o	of obs =	= 10,351
Expression	:	Linear pred	iction, pred	dict()			
1at	:	age	=	20			
2at	:	age	=	29			
3at	:	age	=	38			
4at	:	age	=	47			
5at	:	age	=	56			
6at	:	age	=	65			
7at	:	age	=	74			
	 	 I	 Delta-metho	 d			
	İ				P> t	[95% Con:	f. Interval]
	-+-						
1	- [22.96222	.1582057	145.14	0.000	22.6521	23.27233
2	-	24.71431	.0814708	303.35	0.000	24.55461	24.87401
3	-	25.74733	.0900762	285.84	0.000	25.57077	25.9239
4	-	26.22869	.0798098	328.64	0.000	26.07225	26.38513
5	-	26.32577	.0843705	312.03	0.000	26.16039	26.49115
6	-	26.20598	.0744024	352.22	0.000	26.06013	26.35182
7	-1	26.03671	. 1783785	145.96	0.000	25.68705	26.38636

♦ Here, we get predictions across the full range of ages in the dataset (i.e. 20-74)

Graphing the Cubic Term

- And we can easily graph this as well
 - . marginsplot

4 Conclusion

4.1 Graphing Extras

Adding Additional Plots

- We can add other types of twoway plots to the plots drawn by marginsplots
 - ⋄ Continuing with our cubic example
- The addplot option allows us to add additional plots to our marginsplots
- We do want to be careful about the order in which graphs are drawn, we usually want the most dense graphs, for example individual data points, drawn first
 - \diamond Specifying addplot(..., below) draws the added plot below the marginsplot

Adding Observed Data

. marginsplot, addplot(scatter bmi age, below ///
 legend(order(3 "Observed Values" 2 "Predictions")) ///
 xlabel(20(9)74))

• Note: The confidence intervals are in the plot, they're just small relative to the scale of the y-axis, so they're hard to see.

Changing the Plot Type

- We can change the plots drawn by marginsplot to another twoway plot type
 - ♦ See help twoway for a list
- The recast() option changes the plot for the predictions
 - recastci() changes how the Cls are plotted

- Let's run a simple model to demonstrate
 - . regress bmi i.region
 - . margins region

Source	SS	df	MS		ber of obs		10,351
				-	, 10347)		0.89
	64.491028				b > F		0.4455
Residual	249959.671	-	24.15/695		quared		0.0003
Total	250024.162			-	R-squared		4.915
TOTAL	250024.102	10,550	24.100920	9 1100	C FISE	_	4.913
bmi	Coef.				[95% Con	f.	Interval]
region							
NE		(base)					
	055989			0.694	3348208	;	. 2228428
S	.0578207	.1413969	0.41	0.683	2193446	;	.334986
W				0.290	4345101		.1297811
_cons	25.57535	.1073574	238.23	0.000	25.36491		25.78579
					6 1		40.054
Adjusted predi				Number	of obs	=	10,351
Model VCE	: ULS						
Expression	· Iinear nredi	ction pre	dict()				
LAPTESSION	. Linear preur	ction, pre	dicc()				
	l D	elta-metho	d				
	Margin	Std. Err.	t	P> t	[95% Con	f.	<pre>Interval]</pre>
	·						
region							
NE							
MW					25.33644		
S							25.81355
W	25.42299	.0958771	265.16	0.000	25.23505	,	25.61092

Estimates as a Scatterplot

. marginsplot, recast(scatter)

Estimates as a Bar plot

. marginsplot, recast(bar) plotopts(barwidth(.9))

- \diamond The plotopts() option allows you to specify options for the plots
- \diamond barwidth() specifies the width of the bars in units of the x variable

4.2 Conclusion

Conclusion

- We've seen how to fit models that include interactions
- We've learned how to use Stata's postestimation tools to explore the resulting models
- We've learned how to graph predictions and how to modify those graphs

Index