Assignment3

葛云皓(116020910017)

Task1

Implement traditional one-versus-one and one-versus-rest task decomposition methods to solve a multiclass problem mentioned below.

1, one versus one

We use matlab circumstance to operate the libsym. First to compile 4 most significant function

Libsymtrain libsympredict Libsymread Libsymwrite

- (1)Load the train.txt and test.txt
- (2)Devide the training data into 12 groups
- (3)Reordering the data to prepare the training data
- (4) Train the data with libsymtrain function, and get 12*(12-1)/2=66 models.
- (5)Predict the test data with each models and get the final predict by voting.

More details are in the attachment 'hw3 onevsone.m'

2, one versus rest

We use matlab circumstance to operate the libsvm. First to compile 4 most significant function

Libsymtrain libsympredict Libsymread Libsymwrite

- (1)Load the train.txt and test.txt
- (2)Reordering the data to prepare the training data
- (3)Change the entrance parameter of libsymtrain function to set one versus rest structure by logic calculate.
- (4)Train the data with libsymtrain function, and get 12 models.
- (5) Predict the test data with each models and get the final predict by maximum probably.

More details are in the attachment 'hw3 onevsrest.m'

Task2

Implement part-versus-part task decomposition method to solve the same multi-class problem part-versus-part

- (1) Load the train.txt and test.txt
- (2) Devide the training data into 12 groups as the 'one'
- (3) Use min-max methort devide the single group into different part.
- (4) Train the combine of part to get the models
- (5) Use min-max methord to predict the test data

More details are in the attachment 'hw3_onevsrest.m'

Task3

Use two different kernel functions, namely linear and RBF, in all in all your classifiers.

To change the kernel function, we change the interface parameters of libsymtrain

-t means the type of kernel function

- 0 linear: u'v
- 1 polynomial
- 2 RBFfunction
- 3 sigmoid:

Task4 Compare the advantages and disadvantages of these three task decomposition methods. Compare of the these three task decomposition methods with parameter of libsymtrain(-c 1 -g 0.2 -t 0 -b 1)

Methord	Kernel	Time					Accuracy	Complexity
	function							
one versus	linear	<u>Function Name</u>	Calls	<u>Total Time</u>	Self Time*	Total Time Plot (dark band = self time)	0.6063	middle
one		hw3_onevsone	1	16.103 s	1.199 s			
one		libsymtrain (MEX-file)	66	12.775 s	12.775 s			
		libsympredict (MEX-file)	66	2.008 s	2.008 s	•		
		libsymread (MEX-file)	2	0.108 s	0.108 s	I		
		mode	1	0.014 s	0.013 s			
		<u>ipermute</u>	1	0.001 s	0.001 s			
one versus	RBF	Function Name	Calls	Total Time	Self Time	Total Time Plot (dark band = self time)	0.5991	middle
one		hw3_onevsone	1	21.886 s	1.242 s			
		libsymtrain (MEX-file)	66	18.011 s	18.011 s			
		libsympredict (MEX-file)	66	2.513 s	2.513 s			
		libsymread (MEX-file)	2	0.104 s	0.104 s			
		mode	1	0.015 s	0.015 s			
		ipermute	1	0.001 s	0.001 s			
one versus	linear	<u>Function Name</u>	Calls	Total Time	Self Time	Total Time Plot (dark band = self time)	0.5707	concise
rest		hw3_onevsall	1	24.173 s	0.048 s			
		libsymtrain (MEX-file)	12	23.185 s	23.185 s			
		libsympredict (MEX-file)	12	0.834 s	0.834 s	1		
		libsymread (MEX-file)	2	0.107 s	0.107 s			
one versus	RBF	Function Name	Calls	Total Time	Self Time	* Total Time Plot (dark band = self time)	0.5779	concise
rest		hw3_onevrest	1	34.842 s	0.042 s			
		libsymtrain (MEX-file)	12	33.515 s	33.515 s			
		libsympredict (MEX-file)	12	1.183 s	1.183 s	ı		
		libsymread (MEX-file)	2	0.103 s	0.103 s			
part versus	linear	<u>Function Name</u>	Calls	Total Tim	e Self Tin	Total Time Plot (dark band = self time	0.6030	complex
part		hw3_partvspart	1	23.036 s	2.902 s	_		
		libsymtrain (MEX-file)	264	14.095 s	14.095	s		
		libsympredict (MEX-file)	330	5.904 s	5.904 s			
		libsymread (MEX-file)	2	0.121 s	0.121 s	1		
		mode	1	0.014 s	0.014 s			
		ipermute	1	0.001 s	0.001 s		_	
						1		
part versus	RBF	Function Name	Call	Total Tin	ne Self Ti	me* Total Time Plot (dark band = self tir	0.5680	complex
part		hw3_partvspart	1	26.444 s	2.607	s		
		libsymtrain (MEX-file)	264	17.064 s	17.064	s		
		libsympredict (MEX-file)	330	6.660 s	6.660	s 📉		
		libsymread (MEX-file)	2	0.099 s	0.099	s		
		mode_	1	0.014 s	0.013		_	
		ipermute	1	0.001 s	0.001			
			1	1	1	I	<u> </u>	

Conclusion

- 1 Without adjust parameter, the accuracy is not high enough to get the optimism prediction.
- 2 The Linear kernal may get a higher accuracy compared with RBF kernal in same parameter of libsymtrain.
- 3 One verse one methord may get the highest accuracy with the middle complexity.