Język C++ zajęcia nr 4

Zadanie CPP04 – do wykonania podczas zajęć:

Napisz dwie następujące funkcje **przeciążone**, obie o nazwie *rozw*:

- 1. funkcja wyznacza rozwiązanie równania liniowego postaci ax+b=0
- 2. funkcja wyznacza rzeczywiste rozwiązania równania kwadratowego postaci $ax^2+bx+c=0$, przy założeniu ze a $\neq 0$,

Obie funkcje są typu **int** i zwracają **liczbę istniejących rozwiązań** w liczbach rzeczywistych dla danego równania (0, 1 lub 2). Współczynniki równania są argumentami funkcji przekazywanymi przez wartość, a **wartości rozwiązań są argumentami przekazywanymi przez referencję**. Przykładowe deklaracje funkcji:

- 1. int rozw (double a, double b, double &x1);
- 2. int rozw (double a, double b, double c, double &x1, double &x2);

Następnie napisz funkcję **main** wywołującą obie te funkcje z przykładowymi parametrami aktualnymi i drukującą otrzymane rozwiązania. Uruchom program.

Operator zasięgu

Nazwa zadeklarowana w bloku zasłania identyczną nazwę globalną lub zadeklarowaną w otaczającym bloku zewnętrznym. Do zasłoniętej nazwy globalnej można odwoływać się używając **operatora zasięgu ::** umieszczonego przed nazwą:

Dostęp do obiektu globalnego (zinterpretuj program):

```
globalne x=2
lokalne x=3
```

Uwaga: Poprzez użycie operatora zasięgu nie można uzyskać dostępu do zasłoniętej nazwy lokalnej.

Klasy

Pojęcie klasy. Definicja klasy wprowadza nowy typ danych, który może być wykorzystywany w programowaniu na równi z klasycznymi typami wbudowanymi w składnię języka C++.

Definicja klasy:

```
class nowy_typ
{

// ... ciało klasy ...
};
```

Po zdefiniowaniu klasy można deklarować obiekty jej typu, podobnie jak w przypadku typów standardowych:

```
char x; // x jest typu char

nowy_typ y; // y jest typu nowy_typ

nowy_typ *p; // p jest typu wskaźnik na nowy_typ

nowy_typ t[12]; // t jest tablicą elementów typu nowy_typ
```

Zasięg definicji klasy obejmuje najmniejszy blok lub blok funkcyjny, w którym klasa została zdefiniowana. Zasięg globalny mają klasy zdefiniowane na zewnątrz funkcji.

Zasięg definicji klas:

```
class P
                            // definicja klasy P o zasięgu globalnym
{
   int a;
};
int main()
{
   class N
                           // definicja klasy N o zasięgu funkcji
   {
       int a;
   };
   {
                      // początek bloku -----
      class K // definicja klasy K o zasięgu bloku
       {
          int a;
      };
      P x1;
      N y1;
      K z1;
                      // koniec bloku -----
   }
   P x2;
   N y2;
                      // błąd, deklaracja poza zasięgiem definicji klasy K
   K z2;
}
P x3;
                      // błąd, deklaracja poza zasięgiem definicji klasy N
N y3;
                      // błąd, deklaracja poza zasięgiem definicji klasy K
K z3;
```

Składowe klasy

Ciało klasy zawiera składniki (**składowe** lub **komponenty**) klasy, którymi mogą być:

Dane składowe będące danymi różnych typów deklarowanymi wewnątrz definicji klasy. Występujące w klasie dane są niezależnie umieszczane w każdym obiekcie tej klasy. W deklaracji klasy nie mogą być inicjalizowane.

Funkcje składowe, którymi są funkcje deklarowane wewnątrz definicji klasy. Funkcje takie są umieszczane tylko jednokrotnie bez względu na liczbę obiektów klasy. Mają one bezpośredni dostęp poprzez nazwy do wszystkich składowych klasy.

Dostęp do składowych klasy

Składową klasy można osiągnąć poprzez 1) *nazwę obiektu*, 2) *wskaźnik* na obiekt lub 3) *referencję* do obiektu. W przypadkach 1) i 3) dostęp do składowych obiektu danej klasy uzyskiwany jest poprzez użycie operatora składowej, a w przypadku 2) poprzez operator wskaźnikowy składowej – podobnie jak w przypadku struktur lub unii. W wymienionych przypadkach stosowana jest składnia:

obiekt . składowa
wskaźnik -> składowa
referencja . składowa

Użycie w ciele funkcji składowej:

- nazwy <u>danej składowej</u> bez operatora . lub -> oznacza odwołanie do <u>danej</u>
 składowej tego obiektu, dla którego wywołana została funkcja składowa,
- nazwy pewnej <u>funkcji składowej</u> bez pośrednictwa operatora . lub -> oznacza wywołanie tej funkcji dla tego obiektu, dla którego wywołana została funkcja, w której ciele znajduje się wspomniana nazwa funkcji.

Dostęp do składowych (wersja 1) - wprowadź i uruchom program, zinterpretuj jego kod:

```
#include <iostream>
using namespace std;
//---- Definicja klasy
class tramwaj
{
 public:
  //---- dane składowe
  int numer;
  int pasazerowie;
  //----- funkcje składowe
  void wsiada(int liczba_osob){pasazerowie += liczba_osob;}
  void wysiada(int liczba_osob){pasazerowie -= liczba_osob;}
};
int main()
{
  //----- Deklaracje obiektów
  tramwaj niebieski;
  tramwaj czerwony;
  //----- Wykorzystanie składowych
  niebieski.numer = 4;
  niebieski.pasazerowie = 0;
  czerwony.numer = 3;
  czerwony.pasazerowie = 0;
  niebieski.wsiada(15);
  czerwony.wsiada(20);
  niebieski.wysiada(3);
  czerwony.wsiada(5);
  czerwony.wysiada(8);
  cout <<czerwony.numer<<" "<<czerwony.pasazerowie<<endl;</pre>
```

```
    4
    12

    3
    17
```

Dostęp do składowych (wersja 2) - wprowadź i uruchom program (jako modyfikacje poprzedniego programu), zinterpretuj jego kod:

```
#include <iostream>
using namespace std;
//----- Definicja klasy
class tramwaj
{
 public:
  //---- dane składowe
  int numer;
  int pasazerowie;
  //----- funkcje składowe
   void wsiada(int liczba_osob){pasazerowie += liczba_osob;}
  void wysiada(int liczba_osob){pasazerowie -= liczba_osob;}
};
int main()
{
  //----- Deklaracje obiektów
   tramwaj niebieski;
   tramwaj czerwony;
   tramwaj* p = &czerwony; // p jest wskaźnikiem na obiekt klasy tramwaj
   tramwaj& nowy = niebieski; // nowy jest referencją dla niebieski
   //----- Wykorzystanie składowych
   niebieski.numer = 4;
   niebieski.pasazerowie = 0;
   niebieski.wsiada(15);
   p->numer = 9;
   czerwony.pasazerowie = 0;
   p->wsiada(24);
   nowy.wysiada(5);
   cout << nowy.numer <<" "<< nowy.pasazerowie << endl;</pre>
   cout <<niebieski.numer<<" "<<niebieski.pasazerowie<< endl;</pre>
   cout <<czerwony.numer<<" "<<czerwony.pasazerowie<<endl;</pre>
}
```

```
4 10
4 10
9 24
```

Kwalifikacja nazw składowych klasy

Jeżeli funkcja składowa zostanie **zdefiniowana** wewnątrz klasy, to kompilator nada jej formę funkcji otwartej **inline** – zobacz oba w/w programy "Dostęp do składowych" wersja 1 i 2.

Funkcja składowa klasy występuje częściej w formie funkcji zamkniętej, co jest uzyskiwane przez umieszczenie wewnątrz klasy jedynie **deklaracji** funkcji składowej, a jej **definicji** na zewnątrz klasy. W takim przypadku nazwa funkcji w definicji musi być **kwalifikowana** nazwą klasy z operatorem zasięgu:

nazwa_klasy :: nazwa_składowej

Program "Kwalifikowanie nazw" – zinterpretuj poszczególne elementy kodu źródłowego.

Kwalifikowanie nazw:

```
#include <iostream>
using namespace std;
//---- Definicja klasy
class tramwaj
 public:
                                       // liczba pasażerów wewnątrz
   int osoby;
  void wsiada(int osoby);
  void wysiada(int osoby);
};
//----- Definicje funkcji składowych
void tramwaj::wysiada(int osoby)
                                       // kwalifikowana nazwa funkcji
{
                                            // kwalifikowana nazwa danej
   tramwaj::osoby=tramwaj::osoby-osoby;
   return;
void tramwaj::wsiada(int osoby)
                                      // kwalifikowana nazwa funkcji
{
   tramwaj::osoby=tramwaj::osoby+osoby;
                                            // kwalifikowana nazwa danej
   return;
```

```
int main()
{
   //----- Definicje obiektów
   tramwaj a;
   tramwaj b;
   //----- Wykorzystanie danych składowych
   a.osoby = 25;
   b.osoby = 16;
   cout << a.osoby << " " << b.osoby;</pre>
  //----- Wykorzystanie funkcji składowych
   b.wsiada(7);
   cout << "\n" << b.osoby;</pre>
   b.wysiada(3);
   cout << "\n" << b.osoby;</pre>
   a.wysiada(2);
   cout << "\n" << a.osoby;</pre>
   a.wsiada(11);
   cout << "\n" << a.osoby << " " << b.osoby;</pre>
```

Oczekiwane wyniki:

```
25 16
23
20
23
34 20
```

Jaki charakter mają funkcje składowe klasy tramwaj – otwarty czy zamknięty? Jaka jest różnica pomiędzy funkcją otwartą i zamkniętą?