AUV Localization Using Dead Reckoning Techniques with IMU Sensor

EEL5934 Aerial & Marine Robotics – Course Project

Authors: Brandon Davis & Ryan Gochar

Overview

 The purpose of this project is to implement and evaluate a dead reckoning localization algorithm using an inertial measurement unit (IMU) sensor on an autonomous vehicle. The implementation will be applicable for an autonomous underwater vehicle (AUV).

Background

- Most robust and widely used localization system is Global Navigation Satellite System (GNSS).
- Certain environments deny the use of GNSS: underground, indoors, underwater.
- The need for autonomous vehicles to operate in these GNSS denied environments produce the need for alternative localization methods.

Dead Reckoning Overview

 Method of determining current position based on previous positions and estimates of speed, heading, and elapsed time.

Source: https://en.wikipedia.org/wiki/Dead_reckoning

Internal Measurement Unit (IMU)

- For this project, the Bosch BNO055 9 degrees-of-freedom (DOF) MEMS IMU will be used. This IMU is a combination of these sensors:
 - 3-axis Accelerometer measures linear velocity along X,Y,Z axis.
 - 3-axis Gyroscope measures angular velocity around X,Y,Z axis.
 - 3-axis Magnetometer measures magnetic field along X,Y,Z axis.

Objectives

- Implement a localization scheme using only data from an IMU and measure performance compared to ground truth data (absolute position).
- Implement a Kalman filter based localization scheme using high-rate attitude sensors and low-rate aiding sensors_[2].
- Low rate aiding sensors provide a ground truth data measurement for error correction of system. These sensors can be:
 - GNSS (For surface vessels)
 - DVL (Velocity for AUV)
 - Acoustic localization (AUV)
- Verify performance of Kalman Filter dead reckoning using simulated sensor data.
- Verify dead reckoning algorithm is setup to run real-time.

Methodology

- Body frame origin at CO {o_b} of the vehicle.
- IMU frame origin of IMU measurement frame.
- GNSS frame origin of GNSS sensor.
- NED North-East-Down:
 - \blacksquare x_n points toward true North.
 - \blacksquare y_n points towards East.
 - \blacksquare z_n points downward normal to Earth's surface.

Assumptions:

 For simulated data, we assume for a strapdown system that the IMU and GPS frame are aligned with the BODY frame and share an origin. Therefore, all IMU measurements are in the BODY frame.

Methodology (cont.)

- Prior to using the IMU data for any calculations, the static IMU data needs to be evaluated and filtered for noise_[1,2].
 - Filtering of IMU data is commonly done using a Kalman filter_[1,2]. For this project either a Kalman filter is used. Tuning of the filter will be required and differ from sensor to sensor based on quality of data.
- In addition to filtering, any static transforms from the IMU coordinate frame convention to the body frame convention needs to be calculated.

Methodology (cont.)

- From the IMU data, the attitude vector $\Theta_b = [\phi, \theta, \psi]^T$ is calculated_[2] where ϕ is the roll, θ is the pitch, and ψ is the yaw.
- The roll and pitch angles are needed to project the 3-axis magnetometer data onto the horizontal plane using the *rotation matrix* $R_{y,\theta}R_{x,\phi}$ [2]
- Then the magnetic compass heading can be calculated using the horizontal components_[2]:

$$\psi_m = -atan2(h_y, h_x)$$

• The velocity in 3-axis is calculated by multiplying acceleration measurements by the elapsed time from previous measurement and adding to a previously known velocity value_[1].

Strapdown Navigation Equations

$$p_{nmI}^{\vec{n}} = v_{nmI}^n$$
 Position vector

$$v_{nmI}^{\dot{n}} = a_{nmI}^n$$
 Velocity vector

$$\dot{\theta_{\mathrm{nb}}} = T_{\mathrm{b}}^{\mathrm{n}}(t)\omega_{\mathrm{nb}}^{\mathrm{b}}$$
 Euler angles

Methodology – Kalman Filter

- How it works?
- Efficient which makes it good for processing real time data
- Inputs: Acceleration data, Magnetometer data (transformations)
- Implementation: pykalman KalmanFilter
- Define state matrices
 - F = Transition matrices
 - H = Observation matrices
 - Q = Transition covariance
 - R = Observation covariance
 - O X0 = Initial state mean
 - P0 = Initial state covariance
- Output: Filtered Acceleration Data

Methodology – Open-loop IMU Solution

- Direct Filter
 - Accelerometer and angular rate measurements are inputs to strapdown navigation equations.
 - O Position and velocity are states in the estimator.
- Double integration of Acceleration
 - Velocity
 - Position
- Rotation transformations
- Output: Plot positions against true GPS position

Figure XX. Principle integration of IMU data.[1]

$$\mathbf{p}[\mathbf{k}] = \mathbf{p}[\mathbf{k} - \mathbf{1}] + \mathbf{v} * dt$$

$$\mathbf{v}[\mathbf{k}] = \mathbf{v}[\mathbf{k} - \mathbf{1}] + \mathbf{a} * dt$$

Methodology (cont.)

- We want to compare how introducing an additional sensor measurement will affect the localization solution.
- The process is repeated but instead of using the calculated velocity from IMU data, measured velocity data is used.
- For the purposes of this project, the measured velocity data will come from the GPS data. In a real GNSS denied scenario an alternative sensor type might be used to measure velocity and will depend on the environment/application.

Methodology – Indirect Feedback Kalman Filter

Indirect Filter –

 Accelerometer and angular rate measurements are inputs to strapdown navigation equations.

 Error estimates are used to update the INS estimates directly to avoid drift.^[1]

High-rate IMU Strapdown navigation equations \hat{x}_{ins} Output prediction $\delta \hat{x}$ Kalman filter δy Low-rate aiding sensors

Figure 2. Indirect feedback filter for INS.[1]

Feedback filter (reset)

True state: $\chi[k] = \chi_{ins}[k] + \delta\chi[k]$

Error state: $\delta \chi[k]$

Results – Filtering Acceleration

Results – Open-loop IMU Solution

Results – Open-loop IMU Solution

References

[1] Toy, A. Durdu and A. Yusefi, "Improved Dead Reckoning Localization using IMU Sensor," 2022 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 2022, pp. 1-5, doi: 10.1109/ISETC56213.2022.10010239.

[2] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd ed. Hoboken, NJ, USA: Wiley, 2021.

Questions?