

Decision trees

Motivation

- Motivation for nonlinear models
 - Real-world phenomena exhibit nonlinearities (e.g., local optima)
 - Nonlinearity can be non-additive (i.e., cannot be captured by linear-in-parameters regression)
- Motivation for decision trees
 - Conceptually simple, but very flexible to capture nonlinearities
 - Good building block for combining in committees (ensembles) of models

- Input space is divided into subregions
- Simple local models estimated for each subregion
- Division is recursive

E.g., Y as function of X₁ and X₂

- Partition input space into subregions R_1, \dots, R_5
- Build local model for each subregion, e.g., $f(X) = c_1$ in R_1 , $f(X) = c_2$ in R_2 , etc.

The Elements of **Statistical Learning**

Data Mining, Inference, and Prediction

- Division is greedy/short-sighted: only the optimality of the next step, not the entire model, is considered
- Each new locally optimal division has a more homogenous response
- Division expressed as rules
- Model prediction of a new sample done by following division rules

E.g., Y as function of X₁ and X₂

- Subregion membership based on rules, e.g., $x \in R_1$ if $x_1 \le t_1$ and $x_2 \le t_2$
- Model prediction: $f(X) = c_1 \text{ in } R_1, \ f(X) = c_2 \text{ in } R_2, \\ \text{etc.}$

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Section 9.2

$$f(X) = \sum_{m} c_{m} I_{m} \{ (X_{1}, X_{2}) \in R_{m} \}$$

Section 9.2

$$f(X) = \sum_{m} c_{m} I_{m} \{ (X_{1}, X_{2}) \in R_{m} \}$$

Section 9.2

$$f(X) = \sum_{m} c_{m} I_{m} \{ (X_{1}, X_{2}) \in R_{m} \}$$

Section 9.2

$$f(X) = \sum_{m} c_{m} I_{m} \{ (X_{1}, X_{2}) \in R_{m} \}$$

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction
Second Edition

Section 9.2

Tree depth (2, in this case)

Leaf/terminal nodes

Decision trees: Regression

- What is the local model c_m ?
 - Average of y_i in R_m
 - $\hat{c}_m = ave(y_i|x_i \in R_m)$
 - This minimizes sum of squares in R_m
- How to determine each new division?
 - Greedy algorithm:
 - Consider every possible split s on every possible variable j
 - Minimize the sum of squares for the pair of subregions produced by (j,s)

$$\min_{j,s} \left[\sum_{x_i \in R_1(j,s)} (y_i - \hat{c}_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{c}_2)^2 \right]$$

The Elements of **Statistical Learning**

Data Mining, Inference, and Prediction

Decision trees: Regression

- When to stop splitting?
 - A large tree (many recursive subdivisions) may overfit the data
 - A small tree may not capture sufficient structure in the data
 - Tree size is a tuning parameter, determining model complexity
 - Tree size limited by:
 - Depth of tree
 - Minimum samples required to consider a division (split)
 - Minimum samples in a subregion (leaf node)

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Decision trees: Hyperparameters

- Maximum depth of tree
- Minimum samples in non-terminal node to allow splitting
- Minimum required splitting criteria increase in non-terminal node to allow splitting
- Minimum samples allowed in a leaf node
- Maximum number of leaf nodes

Leaf/terminal nodes

Ensembles of trees

Ensemble methods: Concept

- Premise:
 - Combination of predictions of population of models can improve overall prediction especially if models are uncorrelated
- Approach:
 - Generate population of uncorrelated models
 - Combine model predictions from population

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

- Random forest: Generate population of uncorrelated models
 - Introducing data set variation

Bagging (bootstrap aggregation)

Different bootstrap sample (with replacement) of data for each tree, same original number of samples

Training data set for tree 1

Training data set for tree 2

Training data set for tree 3

The Elements of **Statistical Learning** Data Mining, Inference, and Prediction

- Random forest: Generate population of uncorrelated models
 - Introducing data set variation

Random split selection

At each split opportunity, only a random subset of the variables are available for consideration

Tree 1, split 1 options

Tree 2, split 1 options

Tree 3, split 1 options

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

Second Edition

- Random forest: Combine model predictions from population
 - Regression: Average of predictions of all trees
 - Classification: Majority vote of predictions of all trees

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

- Random forest: Hyperparameters
 - Number of trees
 - Anything from 10 to 1000
- Number of variables available for selection per split
 - Example guideline: \sqrt{m} where m is number of variables in data set
- Note: Individual tree depth typically not limited

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Ensemble methods: Boosted trees

Boosting

- Base models fitted sequentially, not independently
- Each subsequent model aims to improve on errors made by previous result
- Preferential that base model underfits / has high bias E.g., low depth decision tree (also decreases computational cost)

Gradient boosting

Each iteration:

- Change **target** of estimator (residual error made by previous estimator), with shrinkage parameter/learning rate Overall prediction:
- **Sum** of estimations

XGBoost: Boosting with "tricks" and heuristics

Deng, Haowen & Zhou, Youyou & Wang, Lin & Zhang, Cheng. (2021). Ensemble learning for the early prediction of neonatal jaundice with genetic features. BMC Medical Informatics and Decision Making.

Machine Learning in Python for Process Systems Engineering

Model interpretation

Machine learning: Interpretation

- Interpretability = the degree to which a human can understand the cause of a decision
- Importance of model interpretability:
 - Increases scientific knowledge of world
 - Increases social acceptance of model
 - Allows error-finding and auditing of model

23

Machine learning: Interpretation

- Interpretability = the degree to which a human can understand the cause of a decision
- Linear models are typically interpretable:
 - $\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
 - Constant, visible effect (β_i) of input variable x_i on prediction \hat{y}
 - Effect typically independent of other variables

Machine learning: Interpretation

- Interpretability = the degree to which a human can understand the cause of a decision
- Machine learning models are typically "black boxes":
 - Complex global structures (neural networks) and/or very local-based predictions (K-nn)
 - Difficult to trace effect that the change in an individual variable has on the final model prediction
 - Variable effect of input variable x_i on prediction \hat{y} , dependent on other input variables

- Global interpretation method = describe average behaviour of a machine learning model
- Provides expected values based on the distribution of the data
- Useful to understand the general mechanisms in the data or model
- Examples:
 - Permutation feature importance
 - Partial dependence plot

- Permutation feature importance
- Measures the increase in prediction error of the model, after a feature's value has been permuted

X_{j}	y
4	5
1	9
6	13
2	17
5	21
3	25

Feature importance $FI_j = e_{perm} - e$

- Permutation feature importance
- Measures the increase in prediction error of the model, after a feature's value has been permuted
- Pseudo-algorithm:
 - Input: Trained model f, data $\{x_i, y_i\}_{i=1}^n$ as feature matrix X and response vector y, error/loss measure L(y, f(X))
 - Result: Feature importance FI_i for each feature (variable) j
 - Steps:
 - 1. Estimate the original model error $e_{orig} = L(y, f(X))$
 - 2. For each feature (variable) $j \in \{1, ..., m\}$ do:
 - a) Generate feature matrix X_{perm} by permuting feature j in the data X (this breaks the association between feature j and true response y)
 - b) Estimate loss/error $e_{perm} = L(y, f(X_{perm}))$
 - c) Calculate permutation feature importance $FI_j = e_{perm} e_{orig}$

28

Global methods for interpretation

- Partial dependence plot
- Shows the *marginal* effect of one or two features have on the predicted outcome of a model
 - *Marginal:* Averaging over the effect of other features
- Feature(s) of interest are X_S , rest of features in model are X_C

- Partial dependence plot
- Shows the marginal effect of one or two features have on the predicted outcome of a model
 - *Marginal:* Averaging over the effect of other features
- Feature(s) of interest are X_S , rest of features in model are X_C

Original data X_S, X_C ,

Original data for X_C ; with $X_S = b_1$

Original data for X_C ; with $X_S = b_2$

Original data for X_C ; with $X_S = b_3$

Original data for X_C ; with $X_S = b_n$

- Individual conditional expectation (ICE) plot
- Shows the individual effect one or two features have on the predicted outcome of a model
- Feature(s) of interest are X_S, rest of features in model are X_C

- Individual conditional expectation (ICE) plot
- Shows the individual effect one or two features have on the predicted outcome of a model
- Feature(s) of interest are X_S , rest of features in model are X_C

Original data X_S, X_C, y

Original data for $m{X}_C, m{y};$ with $m{X}_S = b_1$

Original data for $\pmb{X}_{\mathcal{C}}, \pmb{y};$ with $\pmb{X}_{\mathcal{S}} = b_2$

Original data for X_C , y; with $X_S = b_3$

Original data for X_C , y; with $X_S = b_n$

n lines =
n observations in **X** data

- Individual conditional expectation (ICE) plot
- Shows the individual effect one or two features have on the predicted outcome of a model
- Feature(s) of interest are X_S , rest of features in model are X_C

Original data X_S, X_C, y

Original data for $m{X}_C, m{y};$ with $m{X}_S = b_1$

Original data for $\pmb{X}_{\mathcal{C}}, \pmb{y};$ with $\pmb{X}_{\mathcal{S}} = b_2$

Original data for X_C , y; with $X_S = b_3$

Original data for X_C , y; with $X_S = b_n$

n lines = n observations in **X** data

References

- Hastie et al. (2009) The Elements of Statistical Learning
- Molnar (2023) Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.

+27 21 851 3123

info@stonethree.com

24 Gardner Williams Avenue

Paardevlei Somerset West

South Africa 7130

www.stonethree.com

