DoExercises:

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

		Luigi ivilazi
2022-06-01	## ## Attaching nackago: 'vtable'	
2022-05-31	<pre>## Attaching package: 'xtable' ## The following object is masked from 'package:emayili':</pre>	
2022-05-30	## ## display	
2022-05-27	Soluzioni all'esercizio del 2022-05-19 creato per luigi.miazzo	
2022-05-26	Sono date due variabili casuali discrete: X prende valori in $\{-1, 8.5, 9.5\}$, mentre $Y(\omega) \in \{-6.5, 8, 9.5\}$.	
2022-05-25	Si conoscono: la funzione di probabilità marginale $p_X(x) = P(X=x)$	
2022-05-24	-1 8.5 9.5 0.39 0.33 0.28	
2022-05-23	e le probabilità condizionate $p_{Y X}(y x)$ (righe della seguente tabella)	
2022-05-20	-1 0.36 0.30 0.34	
2022-05-19	$8.5 \ 0.04 \ 0.24 \ 0.72$ $9.5 \ 0.23 \ 0.10 \ 0.67$	
2022-05-18	Suggerimento: Potete estrarre dal sorgente le tabelle HTML e, usando qualche sito, trasformarle in csv, per poi leggere i dati con read.csv(file, row.names = 1).	
2022-05-17	Quesiti e soluzioni	
2022-05-16	Quesito 1 Qual è la probabilità della coppia $(9.5, 9.5)$, secondo la legge bivariata di (X,Y) ?	
2022-05-13	Dalla definizione di probabilità condizionata:	
2022-05-12	$p_{X Y}(x y) = \mathrm{P}(\{X=x\} \{Y=y\}) = rac{p_{X,Y}(x,y)}{p_Y(y)}$	
2022-05-11	per ogni $y \in R_Y$ tale che $p_Y(y) > 0$; da cui	
2022-05-11	$p_{X,Y}(x,y) = p_{X Y}(X=x Y=y) \cdot p_Y(y).$	
	e, sostituendo ad x e y i valori dati, concludiamo.	
2022-05-09	Risposta corretta: 0.1876 Risposta inserita: 0.1876	
2022-05-06	• che corrisponde a 0.1876	
2022-05-05	Quesito 2	
2022-05-04	Determinare $\mathrm{Cov}(X,Y)$.	
2022-05-03	Sappiamo che la covarianza è $C_{\mathrm{OV}}(Y V) = \mathbb{F}[(Y-\mathbb{F}(Y))(V-\mathbb{F}(V))]$	
2022-05-02	$\mathrm{Cov}(X,Y) = \mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))] \ = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$	
2022-04-29	quindi dobbiamo, per prima cosa, calcolare i valori attesi di X e Y .	
2022-04-28	$\mathbb{E}(X)$ si ottiene immediatamente, poiché la marginale di X è nota, $\mathbb{E}(X)=5.075$.	
2022-04-27	Per calcolare $\mathbb{E}(Y)$ possiamo usare la regola dell'aspettazione totale $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y X))$ o ricavare la marginale di Y dalla funzione di probabilità congiunta ricavata nel punto precedente. I valori di $\mathbb{E}(Y X=x)$ per ogni valore di x sono: print(xtable(EY_X), include.rownames = TRUE, include.colnames = TRUE, type="html")	
2022-04-26	## html table generated in R 4.1.2 by xtable 1.8-4 package	
2022-04-22	## Thu Jun 9 22:32:16 2022 ## ##	
2022-04-21	## -1 3.29 ## 8.5 8.5	
2022-04-20	## 9.5 5.67 ##	
2022-04-19	Infine $\mathbb{E}(Y) = \sum_{i=1}^3 \mathbb{E}(Y X=x_i) p_X(x_i) = 5.6757.$	
2022-04-15	Dopodiché possiamo procedere in due modi:	
2022-04-14	• 1. Centriamo le variabili X e Y attorno alle rispettive medie, chiamiamo $\tilde{X} = X - \mathbb{E}(X)$ e $\tilde{Y} = Y - \mathbb{E}(Y)$ le rispettive v.a. centrate, e calcoliamo il valore atteso del prodotto (usando la funzione di densità discreta congiunta)	
2022-04-13	$\mathbb{E}(ilde{X} ilde{Y}) = \sum_{i=1}^3 \sum_{j=1}^3 ilde{x}_i ilde{x}_j p_{X,Y}(x_i,x_j).$	
2022-04-12	• 2. Calcoliamo il valore atteso del prodotto delle variabili non centrate (usando la funzione di densità discreta congiunta), a cui poi sottrarremo il prodotto dei valori attesi	
2022-04-11	$\mathbb{E}(XY) = \sum_{i=1}^3 \sum_{j=1}^3 x_i y_j p_{X,Y} \left(x_i, y_j ight).$	
2022-04-08		
2022-04-07	In entrambi i casi abbiamo bisogno della densità discreta congiunta di (X,Y) , che riportiamo qui per comodità.	
2022-04-06	-6.5 8 9.5 -1 0.14 0.12 0.13	
2022-04-05	8.5 0.01 0.08 0.24 9.5 0.06 0.03 0.19	
2022-04-04	 Risposta corretta: 8.8374225 Risposta inserita: 8.8374225 	
2022-04-01	• che corrisponde a 8.8374225	
2022-03-31	Quesito 3	
2022-03-30	Determinare l'indice di correlazione di Pearson, $ ho(X,Y)$. La correlazione di X e Y è data da	
2022-03-29		
2022-03-28	$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X) \cdot \operatorname{var}(Y)}}$	
2022-03-24	Dobbiamo quindi calcolare la varianze delle singole variabili.	

La varianza di X si ricava direttamente usando la definizione e la marginale di X, $\mathbb{V}ar(X) = \sum_{i=1}^3 \tilde{x}_i^2 p_X(x)$ (dove abbiamo usato la notazione precedente $\tilde{x}_i = x_i - \mathbb{E}(X)$).

basta fare colSums(p_XY) e otteniamo 0.218, 0.2242, 0.5578.

Risposta corretta: 0.2808802

Risposta inserita: 0.2808802

che corrisponde a 0.2808802

Per la varianza di Y dobbiamo, prima, ricavarci la marginale e poi procedere come per la X. La marginale di Y, $p_Y(y)$ si ottiene prendendo la somma di ogni colonna nella tabella della distribuzione congiunta. In R, se abbiamo salvato le probabilità congiunta in una matrice chiamata p_XY ,