Introduction to Machine Learning

Abdessalam Bouchekif

abdessalam.bouchekif@epita.fr

Why Machine Learning?

What rule could we use to tell one digit from another?

☐ Machine learning aims at gaining insights from data and making predictions based on it.

Training set

☐ The goal of ML is to make machines able to learn and solve problems on their own

Data for machine learning

	C	
		3
	Ξ	
	C	d
-	_	ī
- (١
		١
	τ)
	2	٦
	α	2
	€	
	_	ı
	_	
	_	j
	+	ď
	r	1
	_	1
	_	١
	г	
	-	ı
	i_	1
	7	i
C	J.	
_		Ť

Data for machine learning

Types of Machine Learning

f is continuous \Rightarrow regression

f is discrete \Rightarrow classification

The goal is to find a function h that approximates the function $f(i.e f(x) \approx h(x))$

Training set $\{(x_1, y_1), ..., (x_n, y_n)\}$

Where each y_j was generated by a function unknown y = f(x)

Types of Machine Learning

Problem: too much data!

Solution: reduce it

Clustering: reduce number of examples (discrete)

Dimensionality reduction: reduce number of dimensions (continuous)

Types of Machine Learning

Examples applications of machine Learning

- o determine sentiment (e.g., negative, neutral, positive) classification
- o group newspaper articles according to topic clustering
- o identify the broad topic (e.g., Sports, Politics, Culture) of a newspaper article classification
- o predict monthly rent of an apartment you want to rent out regression
- o predict fuel consumption of a car based on weight and horsepower regression
- o classify an incoming e-mail as spam or not-spam classification
- o find communities of users in a social network based on their interests and comments that they write clustering

Applications of Machine Learning

Regression

Linear Regression

Price = 990,000 €

$Area(m^2)$	Price (€)
100	13000
150	18000
247	250000
987	990000

Notation

m: number of training examples

x: input / features

y: output / target

 $(x^{(i)}, y^{(i)})$: i^{th} training example

 $error_{i} = (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x_1$

Parameters: θ_0 , θ_1

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

Mean Squared Error

Erreur quadratique moyenne

Plot cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent [3]

The gradient is the derivation of a multi-variable function

- How to change θ_0 , θ_1 to improve $J(\theta_0, \theta_1)$?
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$

$$\frac{\partial J(\theta)}{\partial \theta} > 0 \Rightarrow decrease \ \theta$$

$$\frac{\partial J(\theta)}{\partial \theta} < 0 \Rightarrow increase \ \theta$$

Gradient descent

initialization
$$\theta$$
 update θ_1 and θ_2 while not converged
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 Return θ_0, θ_1 for $i = 0...1$

$$\begin{cases} \theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \\ \theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} \end{cases}$$

α *learning rate* controls how much of a change we make to our model parameters

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Learning rate

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

 α is **small** \longrightarrow Many iterations until convergence and trapping in local minima.

 α is **too large** \longrightarrow Overshooting.

Often $\alpha = 0.001$

Using multiple input features

Area	estate type	energy class	age	number bedrooms	price
100	Apartement	A	20	3	130000
150	House	A	21	5	180000
247	House	С	20	7	250000
987	House	D	1	10	1250000

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Parameters:
$$\theta = \theta_0, \theta_1, ..., \theta_n$$

Cost function:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_N$$

Notation

N: number of training examples

x: input / features

y: output / target

 $(x^{(i)}, y^{(i)})$: i^{th} training example $x_j^{(i)}$ feature j in i^{th} training example

Vectorized form of lineair regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \theta^T X$$

20

with definition $x_0 = 1$

Gradient descent (n > 1)

initialization θ while not converged

Simultaneously update
$$\theta_j$$
 (j=1,..,n)

 $Return\begin{pmatrix} tmp_0 \\ \vdots \\ tmp_1 \end{pmatrix}$

e not converged
$$tmp_{j} \leftarrow \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$/tmp_{0}$$

$$\begin{cases} \theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \\ \theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)} \\ \theta_{2} = \theta_{2} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)} \\ \dots \\ \theta_{n} = \theta_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)} \end{cases}$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\theta_{0} x_{0}^{(i)} + \dots + \theta_{n} x_{n}^{(i)} \right) - y^{(i)} \right)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

Gradient descent in practice

Gradient descent converges faster for features on similar scale

E.g.
$$x_1 = area(100 - 987)$$

 $x_2 = number\ of\ bedrooms\ (3 - 10)$

$$x_1 = \frac{area}{987}$$

$$x_2 = \frac{number\ of\ bedrooms}{10}$$

Types of Regression

Linear Regression

When there is linear relationship between independent (predictor) and dependent (target) variables.

Polynomial Regression

When there is no linear relationship between independent and dependent variables.

Logistic Regression

When the dependent variables is categorical (True /False, negative / positive/neutral, ...) in nature

Polynomial Regression

Idea

o Add powers of each feature as new features

$$h_{\theta}(x_1, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \cdots$$

$$h_{\theta}(x_1, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_2 x_1^2 x_2 + \cdots$$

Polynomial Regression

Idea

Add powers of each feature as new features

$$h_{\theta}(x_1, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \cdots$$

$$h_{\theta}(x_1, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_2 x_1^2 x_2 + \cdots$$

Area

Logistic Regression

Logistic Regression

2

$$h_{\theta}(x) = \sigma(\theta^T. X)$$

 $p = \frac{1}{1 + e^{-(b_0 + b_1 x)}} \sigma(.)$ is a sigmoid (or logistic) function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Linear regression: predicted y can exceed 0 and 1 range

Logistic regression: predicted y lies within 0 and 1 range

Logistic Regression

- ☐ Used to estimate the probability that an instance belongs to a particular class
- ☐ There are three types of logistic regression
 - Binary logistic model used to estimate the probability of a binary response (*i.e* binary classification).
 - Ordinal logistic model generalizes binary logistic to multiclass problems.
 Example: classify the tweet into one of 3 categories: positive, neutral and negative
 - Nominal logistic model = ordinal logistic but takes into account the order of dependent variables

Example: classify the tweet into one of 5 categories: very positive/slightly positive/neutral/slightly negative/very negative

Binary Logistic Regression

If $h_{\theta}(x) \ge 0.5$, predict y = 1 or equivalenty $\theta^T x \ge 0$ If $h_{\theta}(x) < 0.5$, predict y = 0 or equivalenty $\theta^T x < 0$

Example
$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

and $\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$

Prediction y = 1 whenever $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_1 + \theta_4 x_2^2$$

and

$$\theta = \begin{bmatrix} -4 & 0 & 0 & 1 & 1 \end{bmatrix}^T$$

Prediction y = 1 whenever

$$x_1^2 + x_2^2 \ge 4$$

Logistic regression cost function

$$cost(h_{\theta}, y) = \begin{cases} -\log(h_{\theta}(x)) & if \quad y = 1\\ -\log(1 - h_{\theta}(x)) & if \quad y = 0 \end{cases}$$

$$h_{\theta}(x) = 1 \implies cost(h_{\theta}, y) = 0$$

$$h_{\theta}(x) = 0 \implies cost(h_{\theta}, y)$$
 very lage

Logistic regression cost function

$$cost(h_{\theta}, y) = \begin{cases} -\log(h_{\theta}(x)) & if \quad y = 1\\ -\log(1 - h_{\theta}(x)) & if \quad y = 0 \end{cases}$$

$$h_{\theta}(x) = 0 \implies cost(h_{\theta}, y) = 0$$

$$h_{\theta}(x) = 1 \implies cost(h_{\theta}, y)$$
 very lage

 $h_{\theta}(x)$

Overfitting

Which is the best?

Model performs well on the training data, but not generalizing well to new data.

Detecting Overfitting

- ☐ Separate the initial dataset into two sets
 - Training (70 %)
 - o Test (30 %)

Detecting Overfitting

K-fold cross-validation

- \circ Divide the data the training set into k parts
- Use k 1 of the parts for training and 1 for testing.
- Repeat the procedure *k* times, rotating the test set.

$$E = \frac{1}{n} \sum_{i=1}^{n} E_i$$

This approach can be computationally expensive

Evaluating Models

Confusoin Matrix

- Show how many predictions have been done right and how many have been wrong.
- Let P the label of class 1 and N the label of second class or the label of all classes that are not class 1

		Predicted		
		P	N	
ual	P	True positives (TP)	False Nagatives (FN)	
Act	N	False Positives (FP)	True Negatives (TN)	

37

Metrics - Classification

True positive rate $TPR = \frac{TP}{FN + TP}$	False positive rate $FPR = \frac{FP}{FP + TN}$	Accuracy $Acc = \frac{TP + TN}{FP + FN + TP + TN}$
Precision $P = \frac{TP}{TP + FP}$	Recall $R = \frac{TP}{TP + FN}$	F-score $F = 2 \times \frac{precision \times recall}{precision + recall}$

Example

		Predicted class	
		cancer	no_cancer
Actual class	cancer	90	210
	no_cancer	140	9560

$$Acc = \frac{90 + 9560}{140 + 210 + 90 + 9560} = 96,5\%$$

$$Precision = \frac{90}{230} = 39,13\%$$

$$Recall = \frac{90}{300} = 30,00\%$$

Correctly classified

- o 90 of samples that belong to class *cancer* (TP)
- o 9560 of samples that belong to class *no_cancer* (TN)

Misclassified

- 210 samples from class cancer as class no_cancer
 (FN)
- 140 samples from class no_cancer as class no_cancer (FN)

Conclusion

Classification algorithms Is this A or B? (Supervised Learning) Regression algorithms How much or how many? How is organized? Clustering What should I do next? Reinforcement