Project 1: World Progress

In this project, you'll explore data from <u>Gapminder.org</u>, a website dedicated to providing a fact-based view of the world and how it has changed. That site includes several data visualizations and presentations, but also publishes the raw data that we will use in this project to recreate and extend some of their most famous visualizations.

The Gapminder website collects data from many sources and compiles them into tables that describe many countries around the world. All of the data they aggregate are published in the <u>Systema Globalis</u>. Their goal is "to compile all public statistics; Social, Economic and Environmental; into a comparable total dataset." All data sets in this project are copied directly from the Systema Globalis without any changes.

Logistics

Deadline. This project is due at 11:59pm on Monday, Feb 26.

Checkpoint. For full credit, you must also complete the first 8 questions and submit the preliminary assignment by 11:59pm on Thursday, Feb 22. After you've submitted the checkpoint, you may still change your answers before the project deadline - only your final submission will be graded for correctness.

Rules. Don't share your code with other students. You are welcome to discuss questions with other students, but don't share the answers. If someone asks you for the answer, resist! Instead, you can demonstrate how you would solve a similar problem.

Advice. Develop your answers incrementally. To perform a complicated table manipulation, break it up into steps, perform each step on a different line, give a new name to each result, and check that each intermediate result is what you expect. You can add any additional names or functions you want to the provided cells. Make sure that you are using distinct and meaningful variable names throughout the notebook. Along that line, DO NOT reuse the variable names that we use when we grade your answers. For example, in Question 1 of the Global Poverty section, we ask you to assign an answer to latest. Do not reassign the variable name latest to anything else in your notebook, otherwise there is the chance that our tests grade against what latest was reassigned to.

You never have to use just one line in this project or any others. Use intermediate variables and multiple lines as much as you would like!

To get started, load datascience, numpy, plots, and ok by running the cell below.

```
from datascience import *
import numpy as np

%matplotlib inline
import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')
```

1. Global Population Growth

The global population of humans reached 1 billion around 1800, 3 billion around 1960, and 7 billion around 2011. The potential impact of exponential population growth has concerned scientists, economists, and politicians alike.

The UN Population Division estimates that the world population will likely continue to grow throughout the 21st century, but at a slower rate, perhaps reaching 11 billion by 2100. However, the UN does not rule out scenarios of more extreme growth.

In this section, we will examine some of the factors that influence population growth and how they are changing around the world.

The first table we will consider is the total population of each country over time. Run the cell below.

```
from google.colab import drive
drive.mount('/content/drive')
    Mounted at /content/drive

population = Table.read_table('/content/drive/MyDrive/population.csv')
population.show(3)
```

geo	time	population_total	
abw	1800	19286	
abw	1801	19286	
abw	1802	19286	
(87792 rows omitted)			

Note: The data for this project was downloaded in February 2017.

→ Bangladesh

In the population table, the geo column contains three-letter codes established by the International Organization for Standardization (ISO) in the Alpha-3 standard. We will begin by taking a close look at Bangladesh. Inspect the standard to find the 3-letter code for Bangladesh.

Question 1. Create a table called b_pop that has two columns labeled time and population_total. The first column should contain the years from 1970 through 2015 (including both 1970 and 2015) and the second should contain the population of Bangladesh in each of those years.

```
b_pop = population.where("geo", are.equal_to("bgd")).select("time", "population_total")
b_pop
```

time	population_total	
1600	12918659	
1601	12944609	
1602	12970611	
1603	12996665	
1604	13022772	
1605	13048931	
1606	13075143	
1607	13101407	
1608	13127724	
1609	13154094	
(491 rows omitted)		

Run the following cell to create a table called b_five that has the population of Bangladesh every five years. At a glance, it appears that the population of Bangladesh has been growing quickly indeed!

```
b_pop.set_format('population_total', NumberFormatter)
fives = np.arange(1970, 2016, 5) # 1970, 1975, 1980, ...
b_five = b_pop.sort('time').where('time', are.contained_in(fives))
b_five
```

time	population_total
1970	65,048,701
1975	71,247,153
1980	81,364,176
1985	93,015,182
1990	105,983,136
1995	118,427,768
2000	131,280,739
2005	142,929,979
2010	151,616,777
2015	160,995,642

Question 2. Assign initial to an array that contains the population for every five year interval from 1970 to 2010. Then, assign changed to an array that contains the population for every five year interval from 1975 to 2015. You should use the b_five table to create both arrays, first filtering the table to only contain the relevant years.

We have provided the code below that uses initial and changed in order to add a column to b_five called annual_growth. Don't worry about the calculation of the growth rates; run the test below to test your solution.

In case you're curious where the formula in the second to last line comes from, The general formula for growth rate is (final/beginning)^(1/t)-1, where t is time in years.

```
initial = b_five.sort('time').where('time', are.between(1970,2010))
changed = b_five.sort('time').where('time', are.between(1975,2015))
initial

#b_1970_through_2010 = b_five.where('time', are.below_or_equal_to(2010))
#b_five_growth = b_1970_through_2010.with_column('annual_growth', (changed/initial)**0.2-1)
#b_five_growth.set_format('annual_growth', PercentFormatter)
```

population_total	time
65,048,70	1970
71,247,153	1975
81,364,176	1980
93,015,182	1985
105,983,136	1990
118,427,768	1995
131,280,739	2000
142,929,979	2005

While the population has grown every five years since 1970, the annual growth rate decreased dramatically from 1985 to 2005. Let's look at some other information in order to develop a possible explanation. Run the next cell to load three additional tables of measurements about countries over time.

```
life_expectancy = Table.read_table('/content/drive/MyDrive/life_expectancy.csv')
child_mortality = Table.read_table('/content/drive/MyDrive/child_mortality.csv').relabel(2, 'child_mortality_under_5_per_1000_born')
fertility = Table.read_table('/content/drive/MyDrive/fertility.csv')
```

The life_expectancy table contains a statistic that is often used to measure how long people live, called *life expectancy at birth*. This number, for a country in a given year, does not measure how long babies born in that year are expected to live. Instead, it measures how long someone would live, on average, if the *mortality conditions* in that year persisted throughout their lifetime. These "mortality conditions" describe what fraction of people at each age survived the year. So, it is a way of measuring the proportion of people that are staying alive, aggregated over different age groups in the population.

Run the following cells below to see <code>life_expectancy</code>, <code>child_mortality</code>, and <code>fertility</code>. Refer back to these tables as they will be helpful for answering further questions!

life_expectancy

geo	time	life_expectancy_years		
afg	1800	28.21		
afg	1801	28.2		
afg	1802	28.19		
afg	1803	28.18		
afg	1804	28.17		
afg	1805	28.16		
afg	1806	28.15		
afg	1807	28.14		
afg	1808	28.13		
afg	1809	28.12		
(43847 rows omitted)				

child_mortality

geo	time	child_mortality_under_5_per_1000_born	
afg	1800	468.6	
afg	1801	468.6	
afg	1802	468.6	
afg	1803	468.6	
afg	1804	468.6	
afg	1805	468.6	
afg	1806	470	
afg	1807	470	
afg	1808	470	
afg	1809	470	
(40746 rows omitted)			

fertility

geo	time	children_per_woman_total_fertility	
afg	1800	7	
afg	1801	7	
afg	1802	7	
afg	1803	7	
afg	1804	7	
afg	1805	7	
afg	1806	7	
afg	1807	7	
afg	1808	7	
afg	1809	7	
(43402 rows omitted)			

Question 3. Perhaps population is growing more slowly because people aren't living as long. Use the <code>life_expectancy</code> table to draw a line graph with the years 1970 and later on the horizontal axis that shows how the *life expectancy* at birth has changed in Bangladesh.

#Fill in code here
life_expectancy_1970 = life_expectancy.where("geo", are.equal_to("bgd")).sort('time').where('time', are.above_or_equal_to(1970))
plots.plot(life_expectancy_1970.column(1),life_expectancy_1970.column(2))

Question 4. Assuming everything else stays the same, do the trends in life expectancy in the graph above directly explain why the population growth rate decreased from 1985 to 2010 in Bangladesh? Why or why not?

Hint: What happened in Bangladesh in 1991, and does that event explain the overall change in population growth rate?

The graph itself doesn't directly explain what happened but you can figure out a lot of people must have died-after a quick google search it must be the cyclone that hit bangladesh in 1991- very unfortunate

The fertility table contains a statistic that is often used to measure how many babies are being born, the *total fertility rate*. This number describes the <u>number of children a woman would have in her lifetime</u>, on average, if the current rates of birth by age of the mother persisted throughout her child bearing years, assuming she survived through age 49.

Question 5. Write a function fertility_over_time that takes the Alpha-3 code of a country and a start year. It returns a two-column table with labels Year and Children per woman that can be used to generate a line chart of the country's fertility rate each year, starting at the start year. The plot should include the start year and all later years that appear in the fertility table.

Then, in the next cell, call your fertility_over_time function on the Alpha-3 code for Bangladesh and the year 1970 in order to plot how Bangladesh's fertility rate has changed since 1970. Note that the function fertility_over_time should not return the plot itself. The expression that draws the line plot is provided for you; please don't change it.

```
def fertility_over_time(country, start):
    """Create a two-column table that describes a country's total fertility rate each year."""
    return fertility.where("geo", are.equal_to(country)).sort('time').where('time', are.above_or_equal_to(start)).select("time", "children_p")
bangladesh_code = "bgd"
fertility_over_time(bangladesh_code, 1970).plot(0, 1) # You should *not* change this line.
```


Question 6. Assuming everything else is constant, do the trends in fertility in the graph above help directly explain why the population growth rate decreased from 1985 to 2010 in Bangladesh? Why or why not?

Yes, the fertility directly affects population growth

It has been observed that lower fertility rates are often associated with lower child mortality rates. The link has been attributed to family planning: if parents can expect that their children will all survive into adulthood, then they will choose to have fewer children. We can see if this association is evident in Bangladesh by plotting the relationship between total fertility rate and child mortality rate per 1000 children.

Question 7. Using both the fertility and child_mortality tables, draw a scatter diagram that has Bangladesh's total fertility on the horizontal axis and its child mortality on the vertical axis with one point for each year, starting with 1970.

The expression that draws the scatter diagram is provided for you; please don't change it. Instead, create a table called post_1969_fertility_and_child_mortality with the appropriate column labels and data in order to generate the chart correctly. Use the label Children per woman to describe total fertility and the label Child deaths per 1000 born to describe child mortality.

```
bgd_fertility = fertility.where("geo", are.equal_to("bgd")).sort('time').where('time', are.above_or_equal_to(1970)).select("children_per_woman bgd_child_mortality = child_mortality.where("geo", are.equal_to("bgd")).sort('time').where('time', are.above_or_equal_to(1970)).select("child fertility_and_child_mortality = bgd_fertility.join("time",bgd_child_mortality)

post_1969_fertility_and_child_mortality = fertility_and_child_mortality.select("children_per_woman_total_fertility", "child_mortality_under_5_

post_1969_fertility_and_child_mortality

post_1969_fertility_and_child_mortality.scatter('children_per_woman_total_fertility', 'child_mortality_under_5_per_1000_born') # You should ***
```


Question 8. In one or two sentences, describe the association (if any) that is illustrated by this scatter diagram. Does the diagram show that reduced child mortality causes parents to choose to have fewer children?

Checkpoint (due Friday 2/24)

Congratulations, you have reached the checkpoint! Please submit a pdf of this preliminary assignment to Canvas by February 24 at 11:59pm.

To do this, print your notebook as a pdf. Go to File -> Print -> save as pdf. Then upload the pdf to the corresponding project assignment on Canvas.

The World

The change observed in Bangladesh since 1970 can also be observed in many other developing countries: health services improve, life expectancy increases, and child mortality decreases. At the same time, the fertility rate often plummets, and so the population growth rate decreases despite increasing longevity.

Run the cell below to generate two overlaid histograms, one for 1960 and one for 2010, that show the distributions of total fertility rates for these two years among all 201 countries in the fertility table.

```
Table().with_columns(
    '1960', fertility.where('time', 1960).column(2),
    '2010', fertility.where('time', 2010).column(2)
).hist(bins=np.arange(0, 10, 0.5), unit='child per woman')
_ = plots.xlabel('Children per woman')
_ = plots.ylabel('Percent per children per woman')
_ = plots.xticks(np.arange(10))
```

Question 9. Assign fertility_statements to an array of the numbers of each statement below that can be correctly inferred from these histograms.

- 1. About the same number of countries had a fertility rate between 3.5 and 4.5 in both 1960 and 2010.
- 2. In 2010, about 40% of countries had a fertility rate between 1.5 and 2.
- 3. In 1960, less than 20% of countries had a fertility rate below 3.

- 4. More countries had a fertility rate above 3 in 1960 than in 2010.
- 5. At least half of countries had a fertility rate between 5 and 8 in 1960.
- 6. At least half of countries had a fertility rate below 3 in 2010.

```
fertility_statements = ...
```

Question 10. Draw a line plot of the world population from 1800 through 2005. The world population is the sum of all the country's populations.

```
#Fill in code here
```

Question 11. Create a function stats_for_year that takes a year and returns a table of statistics. The table it returns should have four columns: geo, population_total, children_per_woman_total_fertility, and child_mortality_under_5_per_1000_born. Each row should contain one Alpha-3 country code and three statistics: population, fertility rate, and child mortality for that year from the population, fertility and child_mortality tables. Only include rows for which all three statistics are available for the country and year.

In addition, restrict the result to country codes that appears in big_50, an array of the 50 most populous countries in 2010. This restriction will speed up computations later in the project.

After you write stats_for_year, try calling stats_for_year on any year between 1960 and 2010. Try to understand the output of stats_for_year.

```
# We first create a population table that only includes the
# 50 countries with the largest 2010 populations. We focus on
# these 50 countries only so that plotting later will run faster.
big_50 = population.where('time', are.equal_to(2010)).sort("population_total", descending=True).take(np.arange(50)).column('geo')
population_of_big_50 = population.where('time', are.above(1959)).where('geo', are.contained_in(big_50))

def stats_for_year(year):
    """Return a table of the stats for each country that year."""
    p = population_of_big_50.where('time', are.equal_to(year)).drop('time')
    f = fertility.where('time', are.equal_to(year)).drop('time')
    c = child_mortality.where('time', are.equal_to(year)).drop('time')
    ...
...
```

Question 12. Create a table called pop_by_decade with two columns called decade and population. It has a row for each year since 1960 that starts a decade. The population column contains the total population of all countries included in the result of stats_for_year(year) for the first year of the decade. For example, 1960 is the first year of the 1960's decade. You should see that these countries contain most of the world's population.

Hint: One approach is to define a function pop_for_year that computes this total population, then apply it to the decade column. The stats for year function from the previous question may be useful here.

This first test is just a sanity check for your helper function if you choose to use it. You will not lose points for not implementing the function pop_for_year.

Note: The cell where you will generate the pop_by_decade table is below the cell where you can choose to define the helper function pop_for_year. You should define your pop_by_decade table in the cell that starts with the table decades being defined.

```
def pop_for_year(year):
    ...
```

Now that you've defined your helper function (if you've chosen to do so), define the pop_by_decade table.

```
decades = Table().with_column('decade', np.arange(1960, 2011, 10))
pop_by_decade = ...
pop_by_decade.set_format(1, NumberFormatter)
```

The countries table describes various characteristics of countries. The country column contains the same codes as the geo column in each of the other data tables (population, fertility, and child_mortality). The world_6region column classifies each country into a region of the world. Run the cell below to inspect the data.

```
countries = Table.read_table('/content/drive/MyDrive/countries.csv').where('country', are.contained_in(population.group('geo').column('geo')
countries.select('country', 'name', 'world_6region')
```

Question 13. Create a table called region_counts that has two columns, region and count. It should contain two columns: a region column and a count column that contains the number of countries in each region that appear in the result of stats_for_year(1960). For example, one row would have south_asia as its world_fregion value and an integer as its count value: the number of large South Asian countries for which we have population, fertility, and child mortality numbers from 1960.

```
region_counts = ...
region_counts
```

The following scatter diagram compares total fertility rate and child mortality rate for each country in 1960. The area of each dot represents the population of the country, and the color represents its region of the world. Run the cell. Do you think you can identify any of the dots?

```
from functools import lru_cache as cache
# This cache annotation makes sure that if the same year
# is passed as an argument twice, the work of computing
# the result is only carried out once.
@cache(None)
def stats relabeled(year):
    """Relabeled and cached version of stats_for_year."""
   return stats_for_year(year).relabel(2, 'Children per woman').relabel(3, 'Child deaths per 1000 born')
def fertility_vs_child_mortality(year):
    """Draw a color scatter diagram comparing child mortality and fertility."""
    with_region = stats_relabeled(year).join('geo', countries.select('country', 'world_6region'), 'country')
    with_region.scatter(2, 3, sizes=1, group=4, s=500)
   plots.xlim(0,10)
    plots.ylim(-50, 500)
    plots.title(year)
fertility_vs_child_mortality(1960)
```

Question 14. Assign scatter_statements to an array of the numbers of each statement below that can be inferred from this scatter diagram for 1960.

- 1. As a whole, the europe_central_asia region had the lowest child mortality rate.
- 2. The lowest child mortality rate of any country was from an east_asia_pacific country.
- 3. Most countries had a fertility rate above 5.
- 4. There was an association between child mortality and fertility.
- 5. The two largest countries by population also had the two highest child mortality rate.

```
scatter_statements = ...
```

The result of the cell below is interactive. Drag the slider to the right to see how countries have changed over time. You'll find that the great divide between so-called "Western" and "developing" countries that existed in the 1960's has nearly disappeared. This shift in fertility rates is the reason that the global population is expected to grow more slowly in the 21st century than it did in the 19th and 20th centuries.

Note: Don't worry if a red warning pops up when running the cell below. You'll still be able to run the cell!

Now is a great time to take a break and watch the same data presented by <u>Hans Rosling in a 2010 TEDx talk</u> with smoother animation and witty commentary.

2. Global Poverty

In 1800, 85% of the world's 1 billion people lived in *extreme poverty*, defined by the United Nations as "a condition characterized by severe deprivation of basic human needs, including food, safe drinking water, sanitation facilities, health, shelter, education and information." A common measure of extreme poverty is a person living on less than \$1.25 per day.

In 2018, the proportion of people living in extreme poverty was estimated to be 8%. Although the world rate of extreme poverty has declined consistently for hundreds of years, the number of people living in extreme poverty is still over 600 million. The United Nations recently adopted an <u>ambitious goal</u>: "By 2030, eradicate extreme poverty for all people everywhere." In this section, we will examine extreme poverty trends around the world.

First, load the population and poverty rate by country and year and the country descriptions. While the population table has values for every recent year for many countries, the poverty table only includes certain years for each country in which a measurement of the rate of extreme poverty was available.

```
population = Table.read_table('/content/drive/MyDrive/population.csv')
countries = Table.read_table('/content/drive/MyDrive/countries.csv').where('country', are.contained_in(population.group('geo').column('geo')
poverty = Table.read_table('/content/drive/MyDrive/poverty.csv')
poverty.show(3)
```

Question 1. Assign latest_poverty to a three-column table with one row for each country that appears in the poverty table. The first column should contain the 3-letter code for the country. The second column should contain the most recent year for which an extreme poverty rate is available for the country. The third column should contain the poverty rate in that year. Do not change the last line, so that the labels of your table are set correctly.

Hint: think about how group works: it does a sequential search of the table (from top to bottom) and collects values in the array in the order in which they appear, and then applies a function to that array. The first function may be helpful, but you are not required to use it.

```
def first(values):
    return values.item(0)

latest_poverty = ...
latest_poverty = latest_poverty.relabeled(0, 'geo').relabeled(1, 'time').relabeled(2, 'poverty_percent') # You should *not* change this line latest_poverty
```

Question 2. Using both latest_poverty and population, create a four-column table called recent_poverty_total with one row for each country in latest_poverty. The four columns should have the following labels and contents, in the following order:

- 1. geo contains the 3-letter country code,
- 2. poverty_percent contains the most recent poverty percent,
- 3. population_total contains the population of the country in 2010,
- 4. poverty_total contains the number of people in poverty **rounded to the nearest integer**, based on the 2010 population and most recent poverty rate.

```
poverty_and_pop = ...
recent_poverty_total = ...
recent_poverty_total
```

Question 3. Assign the name poverty_percent to the known percentage of the world's 2010 population that were living in extreme poverty. Assume that the poverty_total numbers in the recent_poverty_total table describe all people in 2010 living in extreme poverty. You should find a number that is above the 2018 global estimate of 8%, since many country-specific poverty rates are older than 2018.

```
poverty_percent = ...
```

The countries table includes not only the name and region of countries, but also their positions on the globe.

```
countries.select('country', 'name', 'world_4region', 'latitude', 'longitude')
```

Question 4. Using both countries and recent_poverty_total, create a five-column table called poverty_map with one row for every country in recent_poverty_total. The five columns should have the following labels and contents:

- 1. latitude contains the country's latitude,
- 2. longitude contains the country's longitude,
- 3. name contains the country's name,
- 4. region contains the country's region from the world 4region column of countries,
- 5. poverty total contains the country's poverty total.

```
poverty_map = ...
poverty_map
```

Run the cell below to draw a map of the world in which the areas of circles represent the number of people living in extreme poverty. Double-click on the map to zoom in.

```
# It may take a few seconds to generate this map.
colors = {'africa': 'blue', 'europe': 'black', 'asia': 'red', 'americas': 'green'}
scaled = poverty_map.with_columns(
    'poverty_total', 1e-4 * poverty_map.column('poverty_total'),
    'region', poverty_map.apply(colors.get, 'region')
)
Circle.map_table(scaled)
```

Although people live in extreme poverty throughout the world (with more than 5 million in the United States), the largest numbers are in Asia and Africa.

Question 5. Assign largest to a two-column table with the name (not the 3-letter code) and poverty_total of the 10 countries with the largest number of people living in extreme poverty.

```
largest = ...
largest.set_format('poverty_total', NumberFormatter)
```

Question 6. Write a function called poverty_timeline that takes the name of a country (not the geo code) as its argument. It should draw a line plot of the number of people living in poverty in that country with time on the horizontal axis. The line plot should have a point for each row in the poverty table for that country. To compute the population living in poverty from a poverty percentage, multiply by the population of the country in that year.

Hint: To make your plot, you will first need to make a table.

Hint: This question is long. Feel free to create cells and experiment.

```
def poverty_timeline(country):
    '''Draw a timeline of people living in extreme poverty in a country.'''
    geo = ...
# This solution will take multiple lines of code. Use as many as you need
...
```

Finally, draw the timelines below to see how the world is changing. You can check your work by comparing your graphs to the ones on gapminder.org.

```
poverty_timeline('India')
```