CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 2: Analysis of Algorithms

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

THIS LECTURE

- → Parts from S&W 1.4
- → Estimate the performance of algorithms by
 - → Experiments & Observations
 - → Precise Mathematical Calculations

Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

how many times do you have to turn the crank?

Analytic Engine

WHY ANALYSE ALGORITHMS?

- → **Good programmer:** to predict the performance of our programs.
- → Good client: to choose between alternative algorithms/implementations.
- → Good manager: to provide guarantees to clients / avoid client complaints.
- ightarrow Good theoritician: to understand the nature of computing.

Some algorithmic successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

· Applications: DVD, JPEG, MRI, astrophysics,

• Brute force: N^2 steps.

• FFT algorithm: $N \log N$ steps, enables new technology.

Friedrich Gauss 1805

Some algorithmic successes

N-body simulation.

- Simulate gravitational interactions among *N* bodies.
- Brute force: N^2 steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

Andrew Appel PU '81

The challenge

Q. Will my program be able to solve a large practical input?

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- · Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- · Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

EXPERIMENTAL APPROACH:

MEASURING PRECISE RUNNING TIME

Example: 3-SUM

3-Sum. Given *N* distinct integers, how many triples sum to exactly zero?

% more 8ints.txt	
30 -40 -20 -10 40 0 1	10 5
% java ThreeSum 8ints 4	s.txt

	Seore	0
and the same of the	++	
MUNICIPAL EKORAMAKINI	T. 1	// v
BEEN ANDERSONANTE OF ANDERSONANTE		X

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

Context. Deeply related to problems in computational geometry.

3-SUM: brute-force algorithm

```
public class ThreeSum
   public static int count(int[] a)
      int N = a.length;
      int count = 0:
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
                                                          check each triple
                if (a[i] + a[i] + a[k] == 0)
                                                          for simplicity, ignore
                                                          integer overflow
                   count++:
      return count;
   public static void main(String[] args)
      In in = new In(args[0]);
      int[] a = in.readAllInts();
      StdOut.println(count(a));
```

FORWARD THINKING QUESTION

The input of **ThreeSum** is an array of size *N*.

Suppose we care only about 100-element arrays.

There are many different 100-element arrays.

```
public class ThreeSum
{
   public static int count(int[] a)
      int N = a.length;
      int count = 0;
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
               if(a[i] + a[j] + a[k] == 0)
                  count++;
      return count;
```

FORWARD THINKING QUESTION

The input of **ThreeSum** is an array of size *N*.

Suppose we care only about 100-element arrays.

There are many different 100-element arrays.

Q. Is the running time of **ThreeSum** dependent on which 100-element array we provide as input?

```
public class ThreeSum
{
   public static int count(int[] a)
      int N = a.length;
      int count = 0;
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
               if(a[i] + a[j] + a[k] == 0)
                  count++;
      return count;
```

Measuring the running time

Q. How to time a program?

A. Manual.

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

tick tick

528

% java ThreeSum 4Kints.txt

tick tick

Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    int[] a = in.readAllInts();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a));
    double time = stopwatch.elapsedTime();
    StdOut.println("elapsed time " + time);
}
```

Empirical analysis

Run the program for various input sizes and measure running time.

Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) †
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	?

Data analysis

Standard plot. Plot running time T(N) vs. input size N.

Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.

Regression. Fit straight line through data points: aN^b . N^b . N^b . N^b . N^b . Slope Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Try out the experimental analysis:

https://docs.google.com/spreadsheets/d/

1WnihyK6g1pYdcT2ndZOqNNRkTitXkWKnOrTgCnM-bw8/edit?usp=sharing

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

"order of growth" of running time is about N³ [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

Observations.

N	time (seconds) †
8,000	51.1
8,000	51.0
8,000	51.1
16,000	410.8

validates hypothesis!

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio	$T(2N)$ $a(2N)^b$
250	0.0		-	$\frac{T(2N)}{T(N)} = \frac{a(2N)^b}{aN^b}$
500	0.0	4.8	2.3	$= 2^b$
1,000	0.1	6.9	2.8	
2,000	0.8	7.7	2.9	
4,000	6.4	8.0	3.0 ←	lg (6.4 / 0.8) = 3.0
8,000	51.1	8.0	3.0	
		seems	to converge to	a constant b ≈ 3

Hypothesis. Running time is about $a N^b$ with $b = \lg$ ratio.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of N) and solve for a.

N	time (seconds) †	
8,000	51.1	
8,000	51.0	
8,000	51.1	

$$51.1 = a \times 8000^3$$

 $\Rightarrow a = 0.998 \times 10^{-10}$

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

Experimental algorithmics

System independent effects.

- Algorithm. determines exponent in power law
- System dependent effects.
 - · Hardware: CPU, memory, cache, ...
 - Software: compiler, interpreter, garbage collector, ...
 - System: operating system, network, other apps, ...

determines constant in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

MATHEMATICAL APPROACH 1:

CALCULATING PRECISE RUNNING TIME

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

- Need to analyze program to determine set of operations.
- · Cost depends on machine, compiler.
- · Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Cost of basic operations

Challenge. How to estimate constants.

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

Observation. Most primitive operations take constant time.

operation	example	nanoseconds †
variable declaration	int a	c_1
assignment statement	a = b	c_2
integer compare	a < b	<i>c</i> ₃
array element access	a[i]	C4
array length	a.length	<i>C</i> ₅
1D array allocation	new int[N]	$c_6 N$
2D array allocation	new int[N][N]	c ₇ N ²

Caveat. Non-primitive operations often take more than constant time.

Example: 1-SUM

Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
      count++;</pre>
```

operation	frequency
variable declaration	2
assignment statement	2
less than compare	N + 1
equal to compare	N
array access	N
increment	N to 2 N

Example: 2-SUM

Q. How many instructions as a function of input size N?

```
int count = 0;
          for (int i = 0; i < N; i++)
              for (int j = i+1; j < N; j++)
                 if (a[i] + a[j] == 0)
                     count++:
                                              0+1+2+\ldots+(N-1) = \frac{1}{2}N(N-1)
Pf. [n even]
                              0
                          0
              0+1+2+\ldots+(N-1) = \frac{1}{2}N^2 - \frac{1}{2}N
```

square

half of diagonal

String theory infinite sum

$$1+2+3+4+\ldots = -\frac{1}{12}$$

http://www.nytimes.com/2014/02/04/science/in-the-end-it-all-adds-up-to.html

Example: 2-SUM

Q. How many instructions as a function of input size N?

operation	frequency
variable declaration	N + 2
assignment statement	N + 2
less than compare	½ (N + 1) (N + 2)
equal to compare	½ N (N – 1)
array access	N(N-1)
increment	½ <i>N</i> (<i>N</i> − 1) to <i>N</i> (<i>N</i> − 1)

tedious to count exactly

CALCULATING PRECISE RUNNING TIME

$$T_N = c_1 A + c_2 B + c_3 C + c_4 D + c_5 E$$

Where

 c_1 :cost of array access

 c_2 :cost of integer addition

 c_3 :cost of integer comparison

 c_4 :cost of increment

c₅ :cost of assignment

A :number of array accesses

B:number of integer additions

C:number of integer comparisons

 ${\it D}$:number of increments

E :number of assignments

CALCULATING PRECISE RUNNING TIME

$$T_N = c_1 A + c_2 B + c_3 C + c_4 D + c_5 E$$

Where

 c_1 :cost of array access

 c_2 :cost of integer addition

 c_3 :cost of integer comparison

c₄ :cost of increment

c₅ :cost of assignment

A :number of array accesses

B:number of integer additions

C:number of integer comparisons

D :number of increments

E :number of assignments

Q. Advantages / Disadvantages?