Proof theory and modal logic

Sonia Marin

supervised by: Lutz Straßburger and Dale Miller Parsifal, INRIA

January 14, 2015

Inria-LIX PhD seminar

Proof theory

What is a mathematical proof?

What is proof theory about?

- build a deductive system for a logic and formalize the proofs of its theorems
- study the structure of the proofs, their computational behavior, ...
- construct the proofs in the most efficient way

A deductive system for classical logic

atomic propositions combined with connectives: \neg , \wedge , \vee , \rightarrow , . . .

Axioms

ax.1
$$A \rightarrow (B \rightarrow A)$$

ax.2 $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
ax.3 $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

Rules

mp
$$\frac{A \quad A \to B}{B}$$
 modus ponens

1. ax.2:
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

1. ax.2:
$$(p \rightarrow (B \rightarrow C)) \rightarrow ((p \rightarrow B) \rightarrow (p \rightarrow C))$$

1. ax.2:
$$(p \rightarrow (B \rightarrow C)) \rightarrow ((p \rightarrow B) \rightarrow (p \rightarrow C))$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow C)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow C))$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow C)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow C))$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

2. ax.1: $A \rightarrow (B \rightarrow A)$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

2. ax.1:
$$p \rightarrow (B \rightarrow p)$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

2. ax.1:
$$p \rightarrow (B \rightarrow p)$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

2. ax.1:
$$p \rightarrow ((q \rightarrow p) \rightarrow p)$$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

- 2. ax.1: $p \rightarrow ((q \rightarrow p) \rightarrow p)$
- 3. mp: $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p)$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

- 2. ax.1: $p \rightarrow ((q \rightarrow p) \rightarrow p)$
- 3. mp: $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p)$
- 4. ax.1: $p \rightarrow (q \rightarrow p)$

1. ax.2:
$$(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

- 2. ax.1: $p \rightarrow ((q \rightarrow p) \rightarrow p)$
- 3. mp: $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p)$
- 4. ax.1: $p \rightarrow (q \rightarrow p)$
- 5. mp: $p \rightarrow p$

Sequent calculus

Sequents

$$A_1, \dots, A_m \vdash B_1, \dots, B_n$$

 $A_1 \land \dots \land A_m \to B_1 \lor \dots \lor B_n$

Axioms

sequents of the form: $A \vdash A$

Rules

inference rules of the form: $\frac{S_1}{S}$ or $\frac{S_1}{S}$

A sequent system for classical logic

LK

$$ax \frac{}{A \vdash A} \qquad cut \frac{\Gamma \vdash \Delta, A \quad A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta}$$

$$\neg_{I} \frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \qquad \neg_{r} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \qquad \rightarrow_{I} \frac{\Gamma \vdash \Delta, A \quad \Gamma, B \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta} \qquad \rightarrow_{r} \frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta A \rightarrow B}$$

$$\land_{I} \frac{\Gamma, A_{i} \vdash \Delta}{\Gamma, A_{1} \land A_{2} \vdash \Delta} \qquad \land_{r} \frac{\Gamma, \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} \qquad \lor_{I} \frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B} \qquad \lor_{r} \frac{\Gamma, A_{i} \vdash \Delta}{\Gamma, A_{1} \lor A_{2} \vdash \Delta}$$

$$w_{I} \frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} \qquad w_{r} \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} \qquad c_{I} \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \qquad c_{r} \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A}$$

$$\rightarrow_{I} \frac{\Gamma \vdash A, \Delta \quad B, \Gamma \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$$

$$\frac{\vdash p \to q, p \quad p \vdash p}{(p \to q) \to p \vdash p}$$

Proof tree

$$\rightarrow_{I} \frac{\Gamma \vdash A, \Delta \quad B, \Gamma \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$$

$$\rightarrow_{r} \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta}$$

$$\frac{ \begin{array}{ccc} p \vdash q, \color{red} p \\ \hline \vdash p \rightarrow q, \color{red} p \end{array} & p \vdash p \\ \hline (p \rightarrow q) \rightarrow p \vdash p \end{array}$$

Proof tree

$$\frac{\frac{p \vdash p}{p \vdash q, p}}{\vdash p \to q, p} \xrightarrow{p \vdash p} \frac{(p \to q) \to p \vdash p}{(p \to q) \to p \vdash p}$$

Proof tree

$$\rightarrow_{I} \frac{\Gamma \vdash A, \Delta \quad B, \Gamma \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$$

$$\rightarrow_{r} \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta}$$

$$w_{r} \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}$$

$$\frac{\frac{p \vdash p}{p \vdash q, p}}{\frac{\vdash p \to q, p}{(p \to q) \to p \vdash p}}$$

Proof tree

$$\rightarrow_{I} \frac{\Gamma \vdash A, \Delta \quad B, \Gamma \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$$

$$\rightarrow_{r} \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta}$$

$$w_{r} \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}$$

Modal logic

or modal logics ...

Epistemic logics, deontic logics, temporal logics, provability logics

Modal logic

or modal logics ...

Epistemic logics, deontic logics, temporal logics, provability logics

atomic propositions combined with connectives: \neg , \wedge , \vee , \rightarrow , \square , \Diamond

Modal logic

or modal logics ...

Epistemic logics, deontic logics, temporal logics, provability logics

atomic propositions combined with connectives: \neg , \wedge , \vee , \rightarrow , \square , \Diamond

Axioms

$$ax.1 A \rightarrow (B \rightarrow A)$$

ax.2
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

ax.3
$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

$$\mathsf{k}\ \Box(\mathsf{A}\to\mathsf{B})\to(\Box\mathsf{A}\to\Box\mathsf{B})$$

$$w \Vdash A \land B$$
 iff $w \Vdash A$ and $w \Vdash B$

$$w \Vdash A \land B \text{ iff } w \Vdash A \text{ and } w \Vdash B$$

$$w \Vdash A \land B \text{ iff } w \Vdash A \text{ and } w \Vdash B$$

$$w \Vdash A \land B$$
 iff $w \Vdash A$ and $w \Vdash B$

And more axioms . . .

 $d: \Box A \rightarrow \Diamond A$

t: $A \rightarrow \Diamond A$

b: $A \rightarrow \Box \Diamond A$

4: $\Diamond \Diamond A \rightarrow \Diamond A$

5: $\Diamond A \rightarrow \Box \Diamond A$

And even more axioms ...

Name	Axiom	Frame condition
K	$\Box(A \to B) \to (\Box A \to \Box B)$	N/A
Т	$\Box A \rightarrow A$	reflexive: $w R w$
4	$\Box A \rightarrow \Box \Box A$	transitive: $w R v \wedge v R u \Rightarrow w R u$
	$\Box\Box A \to \Box A$	dense: $w R u \Rightarrow \exists v (w R v \land v R u)$
D	$\Box A \to \Diamond A$ or $\Diamond \top$	serial: $\forall w \exists v (w R v)$
В	$A \to \Box \Diamond A$	$symmetric: w \ R \ v \Rightarrow v \ R \ w$
5	$\Diamond A \rightarrow \Box \Diamond A$	Euclidean: $w R u \wedge w R v \Rightarrow u R v$
GL	$\Box(\Box A \to A) \to \Box A$	R transitive, R ⁻¹ well-founded
Grz	$\Box(\Box(A \to \Box A) \to A) \to A$	R reflexive and transitive, R ⁻¹ -Id well-founded
н	$\Box(\Box A \to B) \lor \Box(\Box B \to A)$	$w R u \wedge w R v \Rightarrow u R v \vee v R u$
М	$\Box \Diamond A \rightarrow \Diamond \Box A$	(a complicated second-order property)
G	$\Diamond \Box A \rightarrow \Box \Diamond A$	$\text{convergent: } w \mathrel{R} u \wedge w \mathrel{R} v \Rightarrow \exists x \left(u \mathrel{R} x \wedge v \mathrel{R} x \right)$
	$A \rightarrow \Box A$	$w R v \Rightarrow w = v$
	$\Diamond A \rightarrow \Box A$	partial function: $w R u \wedge w R v \Rightarrow u = v$
	$\Diamond A \leftrightarrow \Box A$	function: $\forall w \; \exists ! u \; w \; R u$
	$\square A$ or $\square \bot$	empty: $\forall w \forall u \neg (w R u)$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

4:
$$\Diamond \Diamond A \rightarrow \Diamond A$$

transitivity: $\forall w. \ \forall v. \ \forall u. \ wRv \land vRu \rightarrow wRu$

Nested sequents

root

 Γ_0

Nested sequents

distance 1

root

$$\Gamma_0, [\Gamma_1], [\Gamma_2 \qquad]$$

Nested sequents

distance 2

distance 1

root

$$\Gamma_0, [\Gamma_1], [\Gamma_2, [\Gamma_3]]$$

Nested sequent system for modal logic

NK+...

$$\begin{split} & \operatorname{id} \frac{1}{\Gamma\{a,\bar{a}\}} & \vee \frac{\Gamma\{A,B\}}{\Gamma\{A\vee B\}} & \wedge \frac{\Gamma\{A\}}{\Gamma\{A\wedge B\}} & \square \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \Diamond \frac{\Gamma\{\Diamond A,[A,\Delta]\}}{\Gamma\{\Diamond A,[\Delta]\}} \\ & \operatorname{d}^{\Diamond} \frac{\Gamma\{\Diamond A,[A]\}}{\Gamma\{\Diamond A\}} & \operatorname{t}^{\Diamond} \frac{\Gamma\{\Diamond A,A\}}{\Gamma\{\Diamond A\}} & \operatorname{b}^{\Diamond} \frac{\Gamma\{[\Delta,\Diamond A],A\}}{\Gamma\{[\Delta,\Diamond A]\}} & \operatorname{d}^{\Diamond} \frac{\Gamma\{[\Delta,[\Delta,\Delta]\}}{\Gamma\{\Diamond A,[\Delta]\}} & \operatorname{f}^{\Diamond} \frac{\Gamma\{[\Delta,[\Delta]\},\{\Delta]\}}{\Gamma\{\Diamond A\}\{\emptyset\}} \\ & \operatorname{d}^{[1]} \frac{\Gamma\{[\emptyset]\}}{\Gamma\{\emptyset\}} & \operatorname{t}^{[1]} \frac{\Gamma\{[\Delta]\}}{\Gamma\{\Delta\}} & \operatorname{b}^{[1]} \frac{\Gamma\{[\Sigma,[\Delta]]\}}{\Gamma\{[\Sigma],\Delta\}} & \operatorname{d}^{[1]} \frac{\Gamma\{[\Delta],[\Sigma]\}}{\Gamma\{[\Delta],\Sigma]\}} & \operatorname{f}^{[1]} \frac{\Gamma\{[\Delta]\}\{\emptyset\}}{\Gamma\{\emptyset\}\{[\Delta]\}} \end{split}$$

Future work

Scott-Lemmon axioms: (M.Fitting)

$$\lozenge^h\Box^iA \to \Box^j\lozenge^kA$$
 for $h,i,j,k\geq 0$

ex: $\Diamond \Box A \rightarrow \Box \Diamond A$

Future work

Scott-Lemmon axioms: (M.Fitting)

$$\lozenge^h \Box^i A \to \Box^j \lozenge^k A$$
 for $h, i, j, k \ge 0$

Frame properties: (O.Lahav)

$$\forall w_1 \dots w_n \exists u \bigvee_{\langle S_R, S_= \rangle} (\bigwedge_{i \in S_R} w_i R u \wedge \bigwedge_{i \in S_=} w_i = u)$$

ex:
$$\forall w_1. \forall w_2. (w_1Rw_2 \lor w_2Rw_1)$$

$$w_1 \longrightarrow w_2$$
 or $w_1 \leftarrow w_2$