Simulating Branching Processes in R

Alice Hankin - Summer Research Scholarship 2020/21

Offspring distribution has a geometric distribution with a mean of 1.5

Offspring distribution \sim geometric with a mean of 1.5

Initial distribution ~ geometric with mean 1.4

Distribution after detection (at generation 7) ~ geometric with mean 0.8

https://alicemh.shinyapps.io/tree/

The offspring distribution has a geometric parameter of 0.35 (mean of ~1.86)

We sample 100 trees

The detection probability is 0.05

The probability of being detected at generation *n* is:

$$g^n(0) - g^{n-1}(0)$$

Where $g^n(x)$ is the n^{th} iteration of the probability generating function of the offspring distribution

https://alicemh.shinyapps.io/hist/

Multitype model

Infectious nodes:

- Die with probability P
- Otherwise remain infectious and spread to a random number of non-infectious people

Two types of node:

- Infectious nodes
- Non-infectious nodes

Non-infectious nodes:

- Turn infectious with probability Q
- Otherwise remain non-infectious

Orange nodes are infectious
Blue nodes are non-infectious

- On average, infectious nodes spread to 1.8 non-infectious nodes (geometrically distributed)
- The probability of infectious dying is 1/3
- The probability of non-infectious becoming infectious is 1/3

The probability of infectious dying and the probability of non-infectious becoming infectious remain at 1/3

The average spread changes from 1.8 to 0.5 in generation 20

Average spread changes from 1.2 to 0.48 in generation 20

$$\frac{-4x - 2(x-2)\ln\left(\frac{1}{1-x}\right)}{x^3}$$

500 trees5 samples per tree

Sampling at generation 50

Sampling at generation 100

Thank you:)