Math 114, Problem Set 7 (due Monday, November 4)

November 1, 2013

(1) Let $V_0, V_1, V_2, V_3, \ldots$ be real vector spaces with norms

$$|| \bullet ||_n : V_n \to \mathbb{R}_{\geq 0}$$
.

Given an element $\vec{v} = (v_n)_{n \ge 0} \in \prod_{n \ge 0} V_n$, let

$$||\vec{v}|| = \sum_{n \ge 0} ||v_n||_n \in \mathbb{R}_{\ge 0} \cup \{\infty\}.$$

Let $V \subseteq \prod_{n\geq 0} V_n$ be the subset consisting of those elements \vec{v} such that $||\vec{v}|| < \infty$. Show that V is real vector space and that $\vec{v} \mapsto ||\vec{v}||$ is a norm on V. If each V_n is a Banach space, show that V is a Banach space. We will refer to V as the ℓ^1 -sum of the Banach spaces $\{V_n\}_{n\geq 0}$.

- (2) Suppose we are given a sequence $E_0, E_1, E_2, \ldots \subseteq \mathbb{R}^m$ of pairwise disjoint measurable subsets of \mathbb{R}^m . Let $E = \bigcup E_n$. Show that $L^1(E)$ is isomorphic to the ℓ^1 -sum of the Banach spaces $L^1(E_n)$.
- (3) Let $E \subseteq \mathbb{R}^n$ be a measurable set, let p and q be real numbers satisfying $\frac{1}{p} + \frac{1}{q} = 1$, and suppose that $f \in L^p(E)$, $g \in L^q(E)$ are functions satisfying

$$\int_{E} fg = ||f||_{L^{p}} ||g||_{L^{q}}.$$

Prove that either f = 0, or there exists a nonnegative real number λ such that $|g| = \lambda |f|^{p/q}$ almost everywhere.

(4) Let p,q,r>1 be real numbers satisfying $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Let $E\subseteq\mathbb{R}^n$ be measurable, and let $f\in L^p(E)$ and $g\in L^q(E)$. Show that the product function fg belongs to $L^r(E)$, and that

$$||fq||_{L^r} < ||f||_{L^p} ||q||_{L^q}.$$

(1) Let $V_0, V_1, V_2, V_3, \ldots$ be real vector spaces with norms

$$|| \bullet ||_n : V_n \to \mathbb{R}_{>0}$$
.

Given an element $\vec{v} = (v_n)_{n \geq 0} \in \prod_{n \geq 0} V_n$, let

$$||\vec{v}|| = \sum_{n \ge 0} ||v_n||_n \in \mathbb{R}_{\ge 0} \cup \{\infty\}.$$

Let $V \subseteq \prod_{n\geq 0} V_n$ be the subset consisting of those elements \vec{v} such that $||\vec{v}|| < \infty$. Show that V is real vector space and that $\vec{v} \mapsto ||\vec{v}||$ is a norm on V. If each V_n is a Banach space, show that V is a Banach space. We will refer to V as the ℓ^1 -sum of the Banach spaces $\{V_n\}_{n\geq 0}$.

Let $\vec{v}, \vec{w} \in V$ and $\lambda \in \mathbb{R}$

Define. $\overrightarrow{V} + \overrightarrow{W} = (V_n + W_n)_{n \ge 0}$. $\lambda \overrightarrow{V} = (\lambda \overrightarrow{V_n})_{n \ge 0}$

=> V: vector space.

Next we show that II. II is a norm.

 \mathbb{Q} $\| \mathbf{v} \| \geq 0$.

 $\|v\| = 0 \Leftrightarrow \|V_n\|_n = 0 \text{ for all } n. \Leftrightarrow \vec{V} = 0.$

[[]

If each Vn: Bonach space. (complete normed linear space)

(Claim) V: Banach space

Let (Vi) be a Cauchy sequence in V.

For all 270. $\exists N \text{ s.t. } j.K>N \Rightarrow ||V_j-V_K|| < \xi$

⇒ Vi = (Vn.i)n≥o. each sequence Vn.i: cauchy

Since each Vn: Banach space.

 $\lim_{i\to\infty} V_{n,i} = V_n \in V_n \qquad V = (V_n)_{n\geq 0} = \lim_{i\to\infty} V_i$

Now we must show that $v \in V$.
(Claim) V < 00
for i>N. Vn.i-Vn n < En & En En < E
$ v - v \le v - v_i < \xi \implies v < v_i + \xi < \infty$
$ (V_i \in V \Rightarrow V_i < \infty) $
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(2) Suppose we are given a sequence $E_0, E_1, E_2, \ldots \subseteq \mathbb{R}^m$ of pairwise disjoint measurable subsets of \mathbb{R}^m . Let $E = \bigcup E_n$. Show that $L^1(E)$ is isomorphic to the ℓ^1 -sum of the Banach spaces $L^1(E_n)$.
$\Lambda := \text{the } L' - \text{sum of the } L' (En)$
Define map $\ell: L'(E) \to \Lambda$ by $\ell(f) = (f _{E_n})_{n \ge 0}$
Then
$\ \mathcal{L}(f) \ _{\mathcal{L}} = \sum_{n \geq 0} \ (f _{E_n}) \ _{\mathcal{L}(E_n)} = \sum_{n \geq 0} \int_{E_n} (f _{E_n}) _{E_n}$
= ∫ _E (f) = f _{L'(E)} < ∞
→ map: well-defined & preserves norms on L(E) and A.
Define map $\rho: \Lambda \rightarrow L'(E)$ by
$P((f_n)_{n\geq 0}) = f_n(x)$ for $x \in E_n$
$= \sum_{n \geq 0} f_n(x) \cdot I_{E_n}(x)$
=> well-defined &
$\ \rho(f_n)_{n\geq 0}\ _{L_1(E)} = \int_E \rho(f_n)_{n\geq 0} = \sum_{n\geq 0} \int_{E_n} f_n $
= \(\fin \rightarrow \rightarrow \fin \rightarrow \ri

(3) Let $E \subseteq \mathbb{R}^n$ be a measurable set, let p and q be real numbers satisfying $\frac{1}{p} + \frac{1}{q} = 1$, and suppose that $f \in L^p(E)$, $g \in L^q(E)$ are functions satisfying

$$\int_{E} fg = ||f||_{L^{p}} ||g||_{L^{q}}.$$

Prove that either f = 0, or there exists a nonnegative real number λ such that $|g| = \lambda |f|^{p/q}$ almost everywhere.

Assume II fllp and II gllq are in (0.00).

(Claim)
$$xy \in \frac{x^p}{p} + \frac{y^p}{q}$$
 [: $x = |f|, y = |g|$; $|fg| \leq \frac{|f|^p}{p} + \frac{|g|^2}{q}$]

When $x, y \geq 0$ [If $g|dy \leq \frac{1}{p} + \frac{1}{q} = 1$]

Fix $y \geq 0$, $y = \frac{x^p}{p} + \frac{y^q}{q} - xy$. for $x \geq 0$

$$\frac{\ell(x) = \chi P' - \gamma}{\ell(x) = (P - 1) \chi P^{2}}$$

$$= \frac{\chi \ell(x)}{\ell(x)} = \frac{\chi \ell(x)}{\ell(x)} =$$

It holds when x= y PI => xP= y2

Let
$$x = \frac{f}{\|f\|_p}$$
 $y = \frac{9}{\|g\|_q}$

$$\Rightarrow \frac{+9}{\|f\|_{p} \|g\|_{q}} \leq \frac{1}{p} \cdot \frac{f^{p}}{\|f\|_{p}^{p}} + \frac{1}{q} \cdot \frac{g^{q}}{\|g\|_{q}^{q}}$$

Since it holds,
$$\frac{|f|^{\frac{\alpha}{2}}}{\|f\|_{\alpha}^{\frac{\alpha}{2}}} = \frac{|g|^{\frac{\alpha}{2}}}{\|g\|_{\alpha}^{\frac{\alpha}{2}}}$$
 a.e.

$$\Rightarrow |g|^{9} = \frac{||g||_{2}^{9}}{||f||_{p}^{p}} \cdot |f|^{p} \text{ a.e.}$$

$$\Rightarrow |g| = \lambda |f|^{p/q}$$
 a.e.

V//

(4) Let p, q, r > 1 be real numbers satisfying $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Let $E \subseteq \mathbb{R}^n$ be measurable, and let $f \in L^p(E)$ and $g \in L^q(E)$. Show that the product function fg belongs to $L^r(E)$, and that

$$||fg||_{L^r} \le ||f||_{L^p}||g||_{L^q}.$$

$$f \in L^{p}(E) \Rightarrow \int |f|^{p} (\infty) \Rightarrow \int |f|^{r} f(\infty) \Rightarrow f^{r} \in L^{\frac{p}{p}}(E)$$

$$g \in L^{q}(E) \Rightarrow \int |g|^{q} (\infty) \Rightarrow \int |g|^{r} f(\infty) \Rightarrow g^{r} \in L^{\frac{q}{p}}(E)$$

$$= L^{\frac{q}{p}}(E)$$

$$\int_{E} f^{r} \cdot g^{r} \leq \|f^{r}\|_{F} \cdot \|g^{r}\|_{\frac{P}{P^{r}}}$$

$$= \left(\int (f^{r})^{\frac{P}{r}}\right)^{\frac{r}{P}} \cdot \left(\int (g^{r})^{\frac{q}{r}}\right)^{\frac{r}{q}}$$

$$= \left(\int |f|^p\right)^{\frac{r}{p}} \cdot \left(\int |g|^q\right)^{\frac{r}{q}} \Rightarrow \|fg\|_r \leq \|f\|_p \|g\|_q$$

$$fg \in L^r(E)$$