3. Неизброими множества

Едно множество A се нарича неизброимо ако A не е крайно и A не е изброимо,

С други думи, едно множество А е неизброимо, ако елементите му не могат да се подредят (изброят) в редица.

Твърдение

Ако $A \subseteq B$ и A е неизброимо, то и B е неизброимо.

Дефиниция

$$f_B(x) = 1$$
 ако $x \in B$ и $f_B(x) = 0$ ако $x \notin B$.

Едно множество A се нарича неизброимо ако A не е крайно и A не е изброимо,

С други думи, едно множество А е неизброимо, ако елементите му не могат да се подредят (изброят) в редица.

Твърдение

Ако $A \subseteq B$ и A е неизброимо, то и B е неизброимо.

Дефиниция

$$f_B(x) = 1$$
 ако $x \in B$ и $f_B(x) = 0$ ако $x \notin B$.

Едно множество A се нарича неизброимо ако A не е крайно и A не е изброимо,

С други думи, едно множество А е неизброимо, ако елементите му не могат да се подредят (изброят) в редица.

Твърдение

Ако $A \subseteq B$ и A е неизброимо, то и B е неизброимо.

Дефиниция

$$f_B(x) = 1$$
 ако $x \in B$ и $f_B(x) = 0$ ако $x \notin B$.

Едно множество A се нарича неизброимо ако A не е крайно и A не е изброимо,

С други думи, едно множество А е неизброимо, ако елементите му не могат да се подредят (изброят) в редица.

Твърдение

Ако $A \subseteq B$ и A е неизброимо, то и B е неизброимо.

Дефиниция

$$f_B(x) = 1$$
 ако $x \in B$ и $f_B(x) = 0$ ако $x \notin B$

Едно множество A се нарича неизброимо ако A не е крайно и A не е изброимо,

С други думи, едно множество А е неизброимо, ако елементите му не могат да се подредят (изброят) в редица.

Твърдение

Ако $A \subseteq B$ и A е неизброимо, то и B е неизброимо.

Дефиниция

$$f_B(x) = 1$$
 ако $x \in B$ и $f_B(x) = 0$ ако $x \notin B$.

Забележка

Ясно е, че съществува естествена биекция между $\mathcal{P}(A)$ и множеството на всички характеристични функции $H_A = \{f_B | B \subseteq A\}$, а имено

 $\mathfrak{F}:\mathcal{P}(\mathrm{A}) o\mathrm{H}_{\mathrm{A}},$ определена с равенството $\mathfrak{F}(\mathrm{B})=\mathrm{f}_{\mathrm{B}}.$

Забележка

Ясно е, че съществува естествена биекция между $\mathcal{P}(A)$ и множеството на всички характеристични функции $H_A = \{f_B | B \subseteq A\}$, а имено

 $\mathfrak{F}:\mathcal{P}(A)\to H_A$, определена с равенството $\mathfrak{F}(B)=f_B.$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots \tag{*}$$

$$f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots$$

 $f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots$
 $f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots \tag{*}$$

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots \tag{*}$$

от съответните характеристични функции. Да ги подредим в редица едно под друго и да напишем съответните стойности:

$$f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots$$

 $f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots$
 $f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots$

4□ ト 4回 ト 4 亘 ト 4 亘 り 9 0 ○

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

от съответните характеристични функции. Да ги подредим в редица едно под друго и да напишем съответните стойности:

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

4 ロ ト 4 御 ト 4 重 ト 4 重 ト 9 9 0

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

$$f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots$$

 $f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots$
 $f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots$

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

от съответните характеристични функции. Да ги подредим в редица едно под друго и да напишем съответните стойности:

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺 ○夕@

Множеството $\mathcal{P}(\mathbb{N})$ е неизброимо.

Доказателство. Да допуснем, че $\mathcal{P}(\mathbb{N})$ не е неизброимо, т.е. елементите му могат да се подредят в редица. Нека всички подмножества на \mathbb{N} са подредени в редицата A_0, A_1, A_2, \ldots (може и с повторения). Да разгледаме редицата

$$f_{A_0}, f_{A_1}, f_{A_2}, \dots$$
 (*)

от съответните характеристични функции. Да ги подредим в редица едно под друго и да напишем съответните стойности:

$$\begin{array}{l} f_{A_0}(0), f_{A_0}(1), f_{A_0}(2), \dots \\ f_{A_1}(0), f_{A_1}(1), f_{A_1}(2), \dots \\ f_{A_2}(0), f_{A_2}(1), f_{A_2}(2), \dots \end{array}$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺 ○夕@

Ще построим характеристична функция на множество B, ака, че $f_{\rm B}$ да не съвпада с никой член на редицата (*).

Наистина, нека $f_B(n) = 0$, ако $f_{A_n}(n) = 1$ и $f_B(n) = 1$, ако $f_{A_n}(n) = 0$. Функцията f_B е напълно определена и това определя напълно множеството В. От друга страна f_B не съвпада с никой член на редицата (*), защото се различава в поне една точка от всяка функция на редицата (*), именно $f_B(n)$ се различава от $f_{A_n}(n)$. Полученото противоречие доказва теоремата.

Следствие

Множеството $\mathcal{P}(A)$ е неизброимо, ако A е изброимо.

Твърдение

Множеството [0, 1] е неизброимо.

Следствие

Множеството $\mathcal{P}(A)$ е неизброимо, ако A е изброимо.

Твърдение

Множеството [0,1] е неизброимо.

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \dots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\dots$ и като $0,0999\dots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13} \dots \\ 0, a_{21}a_{22}a_{23} \dots \\ 0, a_{31}a_{32}a_{33} \dots
```

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0,a_1a_2a_3\ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13} \dots \\ 0, a_{21}a_{22}a_{23} \dots
```

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13}\dots
```

 $^{0,} a_{21}a_{22}a_{23}\dots$

 $^{0,} a_{31}a_{32}a_{33}$.

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13}...
```

 $^{0,} a_{21}a_{22}a_{23}\dots$

 $^{0,} a_{31}a_{32}a_{33}$.

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13} \dots
```

 $^{0,} a_{21}a_{22}a_{23}\dots$

 $^{0,} a_{31}a_{32}a_{33}$.

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13}\dots
```

 $^{0,} a_{21}a_{22}a_{23}\dots$

 $^{0,} a_{31}a_{32}a_{33}$.

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

Да допуснем, че множеството на всички реални числа в интервала [0,1] можем да подредим в редица. Нека това е редицата (вертикално, както и по-горе):

 $0, a_{11}a_{12}a_{13}\dots$

 $0, a_{21}a_{22}a_{23}..$

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
\begin{array}{l} 0, a_{11}a_{12}a_{13}\dots \\ 0, a_{21}a_{22}a_{23}\dots \\ 0, a_{31}a_{32}a_{33}\dots \end{array}
```

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13}\dots
```

 $^{0,} a_{21}a_{22}a_{23}\dots$

 $^{0,} a_{31}a_{32}a_{33}\dots$

Знаем, че всяко реално число в интервала [0,1] може да се представи с безкрайна десетична дроб, т.е. може да се представи във вида $0, a_1 a_2 a_3 \ldots$, където всяко a_i е естествено число в интервала J_{10} . Има един проблем, че това представяне не е еднозначно. Например, реалното число 0,1 може да се представи в безкрайната десетична дроб като $0,100\ldots$ и като $0,0999\ldots$ Това можем да го избегнем като изберем само едното от тях.

```
0, a_{11}a_{12}a_{13} \dots \\ 0, a_{21}a_{22}a_{23} \dots \\ 0, a_{31}a_{32}a_{33} \dots
```

Следствиє

Следствие

Следствиє

Следствие

Следствиє

Следствие

Следствие