Importance of Dispersion for Shoaling Waves

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

November 30, 2017

Introduction

Motivation : Tsunamis

Model : Shallow Water Wave and Serre equations

Experiment : Comparison of numerical solutions

Indian ocean tsunami

Experimer 00 00000 000000 000000

Tsunamis

Tsunami diagram

1: Generation

2 : Propagation far from coast

3 : Propagation near coast

4: Inundation

Depth averaged equations

Shallow water wave equations

- ▶ Wavelengths (λ) >> Water depth (H) ($\lambda \ge 20H$)
- Horizontal velocity constant over z
- Vertical velocity is 0
- ▶ Pressure is hydrostatic $p(z) = \rho g(h + b z)$

Shallow water wave equations

Conservation of Mass

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0$$

Conservation of Momentum

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2}\right) + gh\frac{\partial b}{\partial x} = 0$$

Serre equations

- No restrictions
- Horizontal velocity is constant over z
- Vertical velocity is linear in z

$$v'(z) = u \frac{\partial b}{\partial x} - (z - b) \frac{\partial u}{\partial x}$$

Pressure

$$p(z) = \rho g(h+b-z) + \rho(h+b-z)\Psi + \frac{\rho}{2}(h+b-z)(h-b+z)\Phi$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial b}{\partial x} , \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}$$

Serre equations

Conservation of Mass

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0$$

Conservation of Momentum

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{gh^2}{2} \right) + gh \frac{\partial b}{\partial x} + \frac{\partial}{\partial x} \left(\frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right) + \frac{\partial b}{\partial x} \left(h \Psi + \frac{h^2}{2} \Phi \right) = 0$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial b}{\partial x} , \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}$$

Differences

Differences:

- Dispersion
- Higher order terms

Are they important for tsunamis?

Aim

- ► Compare Shallow Water Wave and Serre equations
- Highlight different behaviours
- Highlight possible impacts these differences could make on current simulations

Numerical Solvers

- Shallow water wave equations: ANUGA, second-order finite volume method
- Serre equations: second-order finite volume method (same technique as ANUGA) and a second-order finite difference method

Experiments

- Experimental results of Beji and Battjes (1994)
- Artificial example replicating common phenomena

Periodic waves over a submerged bar

Periodic waves over a submerged bar: initial conditions

Wave gauge 1: boundary condition

Figure: Low frequency $\lambda = 3.69m$ and H = 0.4m

Figure: High frequency $\lambda = 2.05m$ and H = 0.4m

Periodic waves over a submerged bar

Wave gauge 2: experimental result

Figure: Low frequency

Figure: High frequency

Wave gauge 2: shallow water wave equation

Figure: Low frequency

Figure: High frequency

Periodic waves over a submerged bar

Wave gauge 2: all results

Figure: Low frequency

Figure: High frequency

Wave gauge 3: experimental result

Figure: Low frequency

Figure: High frequency

Periodic waves over a submerged bar

Wave gauge 3: shallow water wave equation

Figure: Low frequency

Figure: High frequency

Periodic waves over a submerged bar

Wave gauge 3: all results

Figure: Low frequency

Figure: High frequency

Wave gauge 4: experimental result

Figure: Low frequency

Figure: High frequency

Wave gauge 4: shallow water wave equation

Figure: Low frequency

Figure: High frequency

Periodic waves over a submerged bar

Wave gauge 4: all results

Figure: Low Frequency

Figure: High Frequency

Solitary wave over a constant slope

Solitary wave over a constant slope: initial conditions

Solitary wave over a constant slope

Before slope

Solitary wave over a constant slope

Shoaling

Solitary wave over a constant slope

Bore formation

Solitary wave over a constant slope

Front of bore

Conclusion

- Dispersion plays an important role when wavelengths are not long compared to water depths
- Dispersion is not important for shoaling of long wavelength waves
- Dispersion is an important effect for waves after shoaling has occurred.
- For shoaled waves our current models may underestimate wave amplitude and predict later arrival times.

