Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет программной инженерии и компьютерной техники

Компьютерные сети Лабораторная №1

> Выполнил: Беляков Дмитрий Группа: Р33122 Преподаватель: Маркина Т. А.

1.

Исходное сообщение: Беляков Д. С.

Шестнадцатеричный код: C1 E5 EB FF EA EE E2 20 C4 2E 20 D1 2E

Двоичный код: 11000001 11100101 11101011 11111111 11101010 11101110 11100010 00100000

11000100 00101110 00100000 11010001 00101110

Длина сообщения: 13 байт (104 бит)

2.

Физическое кодирование

NR₂

Верхняя и нижняя граница (спектр сигнала)

$$\begin{split} &f_0 = \frac{1}{T} = \frac{C}{2} = \frac{1 \, \Gamma \text{6um/c}}{2} = 500 \, \text{Mey} \\ &f_e = 7 * f_0 = 3500 \, \text{Mey} \\ &f_{_H} = \frac{1}{20} * t_b = \frac{C}{20} = 50 \, \text{Mey} \\ &S = f_e - f_{_H} = 3500 - 50 = 3450 \, \text{Mey} < F \\ &f_{_{CP}} = (5 * f_0 + \frac{4 \, f_0}{2} + \frac{8 \, f_0}{4} + \frac{5 \, f_0}{5} + \frac{10 \, f_0}{10}) / 32 \approx 0.292 \, f_0 = 343,75 \, \text{Mey} \end{split}$$

RZ

$$f_{0} = \frac{1}{t_{b}} = C = 1 \Gamma \epsilon y$$

$$f_{0} = 7*C = 7000 M \epsilon y$$

$$f_{1} = \frac{C}{2} = 500 M \epsilon y$$

$$S = (7000 - 500) = 6500 M \epsilon y < F$$

$$f_{cp} = (\frac{10}{2} + 25)*\frac{f_{0}}{31} = 967.742 M \epsilon y$$

AMI

$$f_0 = \frac{1}{2t_b} = \frac{1}{2C} = 500 \,\text{Mey}$$

$$f_e = 7 * f_0 = 3500 \,\text{Mey}$$

$$f_H = \frac{C}{10} = 100 \,\text{Mey}$$

$$S = (3500 - 100) = 3400 \,\text{Mey} < F$$

$$f_{cp} = (25 + \frac{5}{5} + \frac{2}{2}) * \frac{f_0}{32} = 421.875 \,\text{Mey}$$

NRZI

$$\begin{split} &f_0 = \frac{1}{2t_b} = \frac{1}{2C} = 500 \, \text{Mzy} \\ &f_e = 7*f_0 = 3500 \, \text{Mzy} \\ &f_{_H} = \frac{C}{12} = 83.333 \, \text{Mzy} \\ &S = (3500 - 83.333) = 3416.667 \, \text{Mzy} < F \\ &f_{_{CP}} = (17 + \frac{6}{6} + \frac{3}{3} + \frac{6}{2}) * \frac{f_0}{32} = 343.75 \, \text{Mzy} \end{split}$$

Манчестерский

$$f_0 = \frac{1}{t_b} = C = 1 \Gamma e y$$

$$f_e = 7 * f_0 = 7000 Me y$$

$$f_H = \frac{C}{2} = 500 Me y$$

$$S = (7000 - 500) = 6500 Me y < F$$

$$f_{cp} = (\frac{10}{2} + 22) * \frac{f_0}{32} = 843.75 Me y$$

Сравнительный анализ

	f_0 , M eq	$f_{_{\it H}}$, Мгц	$f_{_{\it в}}$, Мгц	F , Мгц	f_{cp} ,Мгц
NRZ	500	50	3500	3450	343.75
RZ	1000	500	7000	6500	967.742
AMI	500	100	3500	3400	421.875
NRZi	500	83.333	3500	3416.667	343.75
Манчестерский	1000	500	7000	6500	843.75

	NRZ	RZ	AMI	NRZi	Манч
Минимизация спектра	+		+	+	
Самосинхронизация		+			+
Отсутствие постоянной состовляющей		+			+
Обнаружение ошибок и их исправление		+	+	+	
Низкая стоимость реализации	+			+	+

Одними из лучших способов кодирования для передачи сообщения будут NRZi и Манчестерский, прежде всего за счёт низкой стоимости реализации, которая сегодня играет одну из важнейщих ролей. Но так как манчестерский не имеет постоянной состовляющей, использовать логическое кодирование и скемблирование не имеет для него смысла. Для последующих вычислений возьмём NRZ.

3. **Логическое кодирование**

Двоичный код: 11010010 01111000 10111110 01011111 10111101 11100101 10111001 11001110

 $01010010\ 10011110\ 11010010\ 10101001\ 11001010\ 01111011\ 01101001\ 10100111\ 00$

Hex: D2 78 BE 5F BD E5 B9 CE 52 9E D2 A9 CA 7B 69 A7 00

Длина сообщения: 130 бит (16,25 байт) Избыточность: 3.25/13 = 0.25 = 25%

NRZ

$$f_{0} = \frac{1}{2t_{b}} = C = 500 \text{ Mey}$$

$$f_{e} = 7 * f_{0} = 3500 \text{ Mey}$$

$$f_{u} = \frac{C}{10} = 100 \text{ Mey}$$

$$S = (3500 - 100) = 3400 \text{ Mey} < F$$

$$f_{cp} = (7 + \frac{8}{4} + \frac{3}{3} + \frac{4}{4} + \frac{10}{5}) * \frac{f_{0}}{32} = 406.25 \text{ Mey}$$

NRZi

$$f_0 = \frac{1}{2t_b} = \frac{1}{2C} = 500 \, \text{Mey}$$

$$f_e = 7 * f_0 = 3500 \, \text{Mey}$$

$$f_H = \frac{C}{8} = 125 \, \text{Mey}$$

$$S = (3500 - 125) = 3375 \, \text{Mey} < F$$

$$f_{cp} = (12 + \frac{6}{2} + \frac{9}{3} + \frac{4}{4}) * \frac{f_0}{32} = 593.75 \, \text{Mey}$$

	f_0 , Mzų	f _н , Мгц	f _в , Мгц	F , Мгц	f _{ср} , Мгц
NRZi	500	125	3500	3375	593.75
NRZ	500	100	3500	3400	406.25

Для передачи данного сообщения подходит лучше код NRZi, так как имеет меньшую полосу пропускания, следовательно, меньше ресурсов необходимо на реализацию. Также для NRZi $f_{\it cp}$ больше, чем NRZ. В целом, логическое кодирование уменьшило полосу пропускания для обоих методов, а также повысило $f_{\it cp}$, что положительно сказывается на передачу сигнала.

4.

Скрэмблирование

Для данного небольшого сообщения в 32 бит лучше выбрать $B_i = A_i \oplus B_{i-3} \oplus B_{i-5}$, при использовании полинома $B_i = A_i \oplus B_{i-5} \oplus B_{i-7}$ будут излишние последовательности нулей и единиц.

$$B[1] = A[1] = 1$$

$$B[2] = A[2] = 1$$

$$B[3] = A[3] = 0$$

$$B[4] = A[4] \wedge B[1] = 1$$

$$B[5] = A[5] \wedge B[2] = 1$$

$$B[6] = A[6] \wedge B[3] \wedge B[1] = 1$$

```
B[7] = A[7] \wedge B[4] \wedge B[2] = 0
B[8] = A[8] \wedge B[5] \wedge B[3] = 0
B[9] = A[9] \wedge B[6] \wedge B[4] = 1
B[10] = A[10] \land B[7] \land B[5] = 0
B[11] = A[11] \land B[8] \land B[6] = 0
B[12] = A[12] \land B[9] \land B[7] = 1
B[13] = A[13] \wedge B[10] \wedge B[8] = 0
B[14] = A[14] \wedge B[11] \wedge B[9] = 0
B[15] = A[15] \wedge B[12] \wedge B[10] = 1
B[16] = A[16] \land B[13] \land B[11] = 1
B[17] = A[17] \wedge B[14] \wedge B[12] = 0
B[18] = A[18] \wedge B[15] \wedge B[13] = 0
B[19] = A[19] \land B[16] \land B[14] = 0
B[20] = A[20] \wedge B[17] \wedge B[15] = 1
B[21] = A[21] \wedge B[18] \wedge B[16] = 0
B[22] = A[22] \wedge B[19] \wedge B[17] = 0
B[23] = A[23] \wedge B[20] \wedge B[18] = 0
B[24] = A[24] \wedge B[21] \wedge B[19] = 1
B[25] = A[25] \wedge B[22] \wedge B[20] = 0
B[26] = A[26] \wedge B[23] \wedge B[21] = 1
B[27] = A[27] \wedge B[24] \wedge B[22] = 0
B[28] = A[28] \wedge B[25] \wedge B[23] = 1
B[29] = A[29] \land B[26] \land B[24] = 1
B[30] = A[30] \land B[27] \land B[25] = 1
B[31] = A[31] \wedge B[28] \wedge B[26] = 1
B[32] = A[32] \wedge B[29] \wedge B[27] = 0
B[33] = A[33] \wedge B[30] \wedge B[28] = 1
B[34] = A[34] \wedge B[31] \wedge B[29] = 1
B[35] = A[35] \wedge B[32] \wedge B[30] = 0
B[36] = A[36] \wedge B[33] \wedge B[31] = 0
B[37] = A[37] \wedge B[34] \wedge B[32] = 0
B[38] = A[38] \wedge B[35] \wedge B[33] = 1
B[39] = A[39] \wedge B[36] \wedge B[34] = 0
B[40] = A[40] \wedge B[37] \wedge B[35] = 0
B[41] = A[41] \wedge B[38] \wedge B[36] = 0
B[42] = A[42] \wedge B[39] \wedge B[37] = 1
B[43] = A[43] \land B[40] \land B[38] = 0
B[44] = A[44] \wedge B[41] \wedge B[39] = 0
B[45] = A[45] \wedge B[42] \wedge B[40] = 0
B[46] = A[46] \wedge B[43] \wedge B[41] = 1
B[47] = A[47] \wedge B[44] \wedge B[42] = 0
B[48] = A[48] \wedge B[45] \wedge B[43] = 0
B[49] = A[49] \wedge B[46] \wedge B[44] = 0
B[50] = A[50] \wedge B[47] \wedge B[45] = 1
B[51] = A[51] \wedge B[48] \wedge B[46] = 0
B[52] = A[52] \wedge B[49] \wedge B[47] = 0
B[53] = A[53] \wedge B[50] \wedge B[48] = 1
B[54] = A[54] \wedge B[51] \wedge B[49] = 0
B[55] = A[55] \wedge B[52] \wedge B[50] = 0
```

```
B[56] = A[56] \land B[53] \land B[51] = 1
B[57] = A[57] \wedge B[54] \wedge B[52] = 0
B[58] = A[58] \wedge B[55] \wedge B[53] = 1
B[59] = A[59] \wedge B[56] \wedge B[54] = 0
B[60] = A[60] \wedge B[57] \wedge B[55] = 0
B[61] = A[61] \wedge B[58] \wedge B[56] = 0
B[62] = A[62] \wedge B[59] \wedge B[57] = 0
B[63] = A[63] \land B[60] \land B[58] = 1
B[64] = A[64] \wedge B[61] \wedge B[59] = 0
B[65] = A[65] \wedge B[62] \wedge B[60] = 1
B[66] = A[66] \land B[63] \land B[61] = 0
B[67] = A[67] \wedge B[64] \wedge B[62] = 0
B[68] = A[68] \land B[65] \land B[63] = 0
B[69] = A[69] \land B[66] \land B[64] = 0
B[70] = A[70] \land B[67] \land B[65] = 0
B[71] = A[71] \land B[68] \land B[66] = 0
B[72] = A[72] \wedge B[69] \wedge B[67] = 0
B[73] = A[73] \wedge B[70] \wedge B[68] = 0
B[74] = A[74] \wedge B[71] \wedge B[69] = 0
B[75] = A[75] \wedge B[72] \wedge B[70] = 1
B[76] = A[76] \wedge B[73] \wedge B[71] = 0
B[77] = A[77] \wedge B[74] \wedge B[72] = 1
B[78] = A[78] \wedge B[75] \wedge B[73] = 0
B[79] = A[79] \wedge B[76] \wedge B[74] = 1
B[80] = A[80] \land B[77] \land B[75] = 0
B[81] = A[81] \wedge B[78] \wedge B[76] = 0
B[82] = A[82] \wedge B[79] \wedge B[77] = 0
B[83] = A[83] \land B[80] \land B[78] = 1
B[84] = A[84] \land B[81] \land B[79] = 1
B[85] = A[85] \wedge B[82] \wedge B[80] = 0
B[86] = A[86] \land B[83] \land B[81] = 1
B[87] = A[87] \land B[84] \land B[82] = 1
B[88] = A[88] \land B[85] \land B[83] = 1
B[89] = A[89] \land B[86] \land B[84] = 1
B[90] = A[90] \wedge B[87] \wedge B[85] = 0
B[91] = A[91] \land B[88] \land B[86] = 0
B[92] = A[92] \land B[89] \land B[87] = 1
B[93] = A[93] \wedge B[90] \wedge B[88] = 1
B[94] = A[94] \wedge B[91] \wedge B[89] = 1
B[95] = A[95] \wedge B[92] \wedge B[90] = 1
B[96] = A[96] \land B[93] \land B[91] = 0
B[97] = A[97] \wedge B[94] \wedge B[92] = 0
B[98] = A[98] \land B[95] \land B[93] = 0
B[99] = A[99] \wedge B[96] \wedge B[94] = 0
B[100] = A[100] \land B[97] \land B[95] = 1
B[101] = A[101] \land B[98] \land B[96] = 1
B[102] = A[102] \land B[99] \land B[97] = 1
B[103] = A[103] \land B[100] \land B[98] = 0
B[104] = A[104] \land B[101] \land B[99] = 1
```


$$f_0 = \frac{1}{2t_b} = C = 500 \text{ Mey}$$

$$f_e = 7 * f_0 = 3500 \text{ Mey}$$

$$f_H = \frac{C}{8} = 125 \text{ Mey}$$

$$S = (3500 - 125) = 3375 \text{ Mey} < F$$

$$f_{cp} = (9 + \frac{10}{2} + \frac{9}{3} + \frac{4}{4}) * \frac{f_0}{32} = 562.5 \text{ Mey}$$

$$f_0 = \frac{1}{2t_b} = \frac{1}{2C} = 500 \,\text{Mey}$$

$$f_e = 7 * f_0 = 3500 \,\text{Mey}$$

$$f_H = \frac{C}{8} = 125 \,\text{Mey}$$

$$S = (3500 - 125) = 3375 \,\text{Mey} < F$$

$$f_{cp} = (7 + \frac{8}{2} + \frac{9}{3} + \frac{8}{4}) * \frac{f_0}{32} = 250 \,\text{Mey}$$

	f_0 , Мгц	f _н , Мгц	f _в , Мгц	F , Мгц	f _{ср} , Мгц
NRZi	500	125	3500	3375	250
NRZ	500	125	3500	3375	562.5

При скремблировании лучше подойдёт NRZ, так как средняя частота выше, а значит уменьшается влияние постоянной состовляющей.

	f ₀ , Мгц		f _н , Мгц		f _в , Мгц			F , Мгц			f_{cp} ,Мгц				
	Без	4B/	Скр	Без	4B/	Скр	Без	4B/	Скр	Без	4B/	Скр	Без	4B/	Скр
	лог.	5B	ем-	лог.	5B	ем-	лог.	5B	ем-	лог.	5B	ем-	лог.	5B	ем-
	код.		бли	код.		бли	код.		бли	код.		бли	код.		бли
			po-			po-			po-			po-			po-
			вани			вани			вани			вани			вани
			e			e			e			e			e
NRZ	500	500	500	83.3	125	125	3500	3500	3500	3416	3375	3375	343.	593.	250
i				33						.667			75	75	
NRZ	500	500	500	50	100	125	3500	3500	3500	3450	3400	3375	343.	562.	734.
													75	5	375

По данным сравнительной таблицы можно сделать вывод, что логическое кодирование и скремблирование эффективно как для NRZ, так и для NRZi. В обоих случаях нижняя частота повышается, полоса пропускания уменьшается, среднее повышается, что уменьшает затраты на реализацию, а также понижает влияние постоянной состовляющей, так как макимальные периоды сигналов уменьшаются, однако скремблирование эффективнее, так как не дополняется новыми сигналами, полоса пропускания для NRZ меньше, среднее для NRZ и для NRZi выше.