Stereo matching

ZEHUA FU

DIRECTEUR DE THÈSE: MOHSEN ARDABILIAN

Stereo Matching

Problem Description:

Find the stereo correspondence between two given image pair.

disparity map

Applications

- Autonomous driving
- Robotics
- ☐ Intermediate view generation

Spatial information

Temporal information

[1] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? the KITTI vision benchmark suite," *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, pp. 3354–3361, 2012.

[2] https://www.wikiwand.com/en/Nao_(robot)

[3] https://github.com/OpenDroneMap/OpenDroneMap/wiki

Optical Flow

Brightness Constancy

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change. I(x+u,y+v,t+1) = I(x,y,t)

Temporal Persistence

Assumption:

The image motion of a surface patch changes gradually over time.

Spatial Coherence

Assumption

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Optical Flow

Which pixel went where?

Fig. 2.1 Color coding of flow vectors: Direction is coded by hue, length by saturation. The example on the *right* shows the expanding flow field of a forward motion. Flow vectors above 20 px are saturated and appear in *darker* colors

Time: t

Time: t + dt

3D Scene Flow

- "Joint stereo and optical flow"
- Given ≥ 2 video frames from ≥ 2 different viewpoints
- Estimate dense 3D shape and 3D motion field

Scene Flow

Solution: use scene flow to improve stereo matching

stereo matching VS scene flow

- dense correspondence
- spatial principal difficulties matching ambiguities, occlusion, illumination...
- data informationspatial VS spatial & temporal

still VS still & 3D motion

(Traditional stereo matching don't share information between frames)

KITTI: optical flow 2015

	Method	Data	Code	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Density	Time	Environment	С
1	PRSM	B	code	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	99.99	300 s	1 core @ 2.5 Ghz (C/C++)	
C. Vo	ogel, K. Schir	ndler	and S.	Roth:	3D Sce	ne Flov	v Estim	ation v	vith a F	iecew	ise Rig	id Scer	ne Mod	lel. ijc	/ 2015.				
2	OSF		<u>code</u>	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	100.00	50 min	1 core @ 2.5 Ghz (C/C++)	
M. <i>N</i>	lenze and A.	Geig	er: <u>Ob</u>	ject Sc	ene Flo	w for A	Autono	mous V	ehicles	. Conf	erence	on Co	mpute	r Visio	n and F	attern F	Recognit	ion (CVPR) 2015.	
3	SFFG			4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	99.99	80 s	1 core @ 2.5 Ghz (C/C++)	
Anor	nymous subm	ission	1																
4 <u>P</u>	R-Sceneflow		<u>code</u>	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	100.00	150 s	4 core @ 3.0 Ghz (Matlab + C/C++)	
C. Vo	ogel, K. Schi	ndler	and S.	Roth:	Piecev	rise Rig	id Scer	ne Flow	. ICCV	2013.									
5	SGM+SF			5.15	15.29	6.84	14.10	23.13	15.60	20.91	28.90	22.24	23.09	37.12	25.43	100.00	45 min	16 core @ 3.2 Ghz (C/C++)	
	irschmüller: Iornacek, A. I														4.				
6	PCSF			6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	100.00	0.09 s	GPU @ 2.0 Ghz (C/C++)	
Anor	nymous subm	ission	1	-	•	-	-	•		-			-						
7	SGM+C+NL		<u>code</u>	5.15	15.29	6.84	28.77	25.65	28.25	34.24	45.40	36.10	38.21	53.04	40.68	100.00	4.5 min	1 core @ 2.5 Ghz (C/C++)	
	irschmüller: un, S. Roth a														and the	Princip	les Behi	nd Them. IJCV 2013.	
8	SGM+LDOF		<u>code</u>	5.15	15.29	6.84	29.58	23.48	28.56	40.81	35.42	39.91	43.99	44.79	44.12	100.00	86 s	1 core @ 2.5 Ghz (C/C++)	
	irschmüller: rox and J. Ma														nation.	PAMI 20	11.		
9	HWBSF			19.61	22.69	20.12	35.72	28.15	34.46	40.74	35.53	39.87	46.42	43.99	46.02	100.00	7 min	4 cores @ 3.5 Ghz (C/C++)	
Anor	nymous subm	ission	1		•			•											
10	GCSF		<u>code</u>	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	100.00	2.4 s	1 core @ 2.5 Ghz (C/C++)	
J. Ce	ech, J. Sanch	ez-Ri	iera an	d R. Ho	oraud:	Scene	Flow Es	timatio	n by g	rowing	Corres	ponde	ence Se	eeds. C	VPR 20	11.			
11	VSF		<u>code</u>	27.31	21.72	26.38	59.51	44.93	57.08	50.06	47.57	49.64	67.69	64.03	67.08	100.00	125 min	1 core @ 2.5 Ghz (C/C++)	
F. H	uguet and F.	Deve	rnay: /	A Varia	tional <i>I</i>	Method	for Sco	ene Flo	w Estir	nation	from S	tereo	Seque	nces. I	CCV 20	07.			

KITTI: scene flow 2015

	Method	Data	Code	Fl-bg	Fl-fg	Fl-all	Density	Time	Environment	Compare
1	PRSM	ĭĭ &	<u>code</u>	5.33 %	17.02 %	7.28 %	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	
. Vo	ogel, K. Schindler	and S. Ro	th: 3D S	cene Flow	Estimation v	vith a Piece	ewise Rigid S	cene Model	. ijcv 2015.	
2	OSF	66	<u>code</u>	5.62 %	22.17 %	8.37 %	100.00 %	50 min	1 core @ 2.5 Ghz (C/C++)	
۱. M	enze and A. Geig	er: <u>Object</u>	t Scene	Flow for Au	itonomous V	<u>ehicles</u> . Co	nference on	Computer '	Vision and Pattern Recognition (CVPR) 2015.	
3	<u>SFFG</u>	66		10.40 %	30.33 %	13.71 %	100.00 %	80 s	1 core @ 2.5 Ghz (C/C++)	
non	ymous submissio	n								
4	PR-Sceneflow	66	<u>code</u>	11.73 %	27.73 %	14.39 %	100.00 %	150 s	4 core @ 3.0 Ghz (Matlab + C/C++)	
. Vo	ogel, K. Schindler	and S. Ro	th: <u>Piec</u>	ewise Rigid	Scene Flov	v. ICCV 2013	3.		<u>-</u>	
5	SOF			14.63 %	27.73 %	16.81 %	100.00 %	6 min	1 core @ 2.5 Ghz (Matlab)	
. Se	villa-Lara, D. Sur	ı, V. Jampa	ani and I	M. Black: <u>O</u>	ptical Flow	with Semar	ntic Segment	ation and L	ocalized Layers. CVPR 2016.	
6	<u>GV</u>			14.84 %	28.50 %	17.11 %	100.00 %	x	4 core @ 2.5 ghz	
non	ymous submissio	n								
7	MR-Flow			19.42 %	27.65 %	20.79 %	100.00 %	12 s	1 core @ 2.5 Ghz (Python + C/C++)	
non	ymous submissio	n								
8	<u>PatchBatch</u>			19.98 %	30.24 %	21.69 %	100.00 %	50 s	GPU @ 2.5 Ghz (Python)	
non	ymous submissio	n								
9	SGM+SF	88		20.91 %	28.90 %	22.24 %	100.00 %	45 min	16 core @ 3.2 Ghz (C/C++)	
	irschmüller: <mark>Ster</mark> ornacek, A. Fitzg								₹ 2014.	
10	<u>DiscreteFlow</u>		<u>code</u>	21.53 %	26.68 %	22.38 %	100.00 %	3 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
. M	enze, C. Heipke	and A. Gei	iger: <u>Disc</u>	rete Optin	nization for	Optical Flo	<u>w</u> . German (onference	on Pattern Recognition (GCPR) 2015.	

KITTI: stereo 2015

	Method	Data	Code	D1-bg	D1-fg	<u>D1-all</u>	Density	Time	Environment	Compare
ı	Displets v2		code	3.00 %	5.56 %	3.43 %	100.00 %	265 s	>8 cores @ 3.0 Ghz (Matlab + C/C++)	
. G	uney and A. Geige	r: <u>Displet</u>	s: Resol	ving Stere	o Ambiguiti	es using O	bject Knowle	dge. Confere	nce on Computer Vision and Pattern Recognition (C	VPR) 2015.
2	MC-CNN-acrt	: : : : :	<u>code</u>	2.89 %	8.88 %	3.89 %	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	
. ZI	bontar and Y. LeCi	un: <u>Stere</u>	o Matchi	ing by Trai	ning a Conv	olutional /	Neural Netwo	ork to Compar	<u>e Image Patches</u> . Submitted to JMLR .	
3	CNN-SPS			3.30 %	7.92 %	4.07 %	100.00 %	80 s	GPU @ 2.5 Ghz (C/C++)	
ner	nymous submission									
4	<u>PRSM</u>	∌₽	<u>code</u>	3.02 %	10.52 %	4.27 %	99.99 %	300 s	1 core @ 2.5 Ghz (C/C++)	
V	legel, K. Schindler	and S. Pe	th. <u>2D S</u>	cono Flow	Estimation	with a Die	courico Pigid	Scone Medel	. ijev 2015.	····· ·
5	<u>DispNetC</u>			4.32 %	4.41 %	4.34 %	100.00 %	0.06 s	Nvidia GTX Titan X (Caffe)	
			Fischer,	D. Cremei	rs, A. Dosov	itskiy and	T. Brox: A La	rge Dataset to	o Train Convolutional Networks for Disparity, Optica	al Flow, and Scene
	v Estimation. CVPR	2010.		2.02.0	40.57.0	F 04 8	400.00.0		N. II. CTV 070	
6	SGM+CNN			3.93 %	10.56 %	5.04 %	100.00 %	2 s	Nvidia GTX 970	
anor	nymous submission									
-			:	2.07.07	44.46.00	E 07 W	00.00.0		0.0.5.01 (0.0.0.1)	
<u> </u>	EEL	: : : : : : : : :		3.86 %	11.16 %	5.07 %	99.99 %	5 s	1 core @ 2.5 Ghz (C/C++)	
	nvmous submission									
nor 8	nvmous submission SPS-St		code	3.84 %	12.67 %	5.31 %	100.00 %	2 s	1 core @ 3.5 Ghz (C/C++)	
nor 8	nvmous submission SPS-St		<u> </u>	3.84 %	12.67 %	5.31 %	100.00 % ion, Occlusion	2 s		
nor 8	nvmous submission SPS-St		<u> </u>	3.84 %	12.67 %	5.31 %	100.00 %	2 s	1 core @ 3.5 Ghz (C/C++)	
8 (. Y	SPS-St amaguchi, D. McAl	lester and	<u> </u>	3.84 % asun: Effic	12.67 % ient Joint S	5.31 % Segmentati	100.00 % ion, Occlusion	2 s n Labeling, Ste	1 core @ 3.5 Ghz (C/C++) ereo and Flow Estimation. ECCV 2014.	
8 (. Y	SPS-St amaguchi, D. McAl	lester and	<u> </u>	3.84 % asun: Effic	12.67 % ient Joint S	5.31 % Segmentati	100.00 % ion, Occlusion	2 s n Labeling, Ste	1 core @ 3.5 Ghz (C/C++) ereo and Flow Estimation. ECCV 2014.	

Solution: CNN & Scene Flow

Stereo Net:

Zbontar J, LeCun Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1592-1599.

Optical flow Net:

Dosovitskiy A, Fischer P, Ilg E, et al. FlowNet: Learning Optical Flow With Convolutional Networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 2758-2766.

Dataset

Mayer N, Ilg E, Häusser P, et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation[J]. arXiv preprint arXiv:1512.02134, 2015.(http://vision.in.tum.de/research/deeplearning)