

网络技术基础

高智刚

M.P. & WeChat: 13572460159

E-mail: gaozhigang@nwpu.edu.cn

第一章:网络技术概述

本章主要内容

- 计算机网络的基本概念
 - 计算机网络组成
 - 计算机网络的分类和网络结构
 - 计算机网络性能指标
- 计算机网络发展历程
- 计算机网络体系结构

- 什么是计算机网络?
 - 一计算机技术与通信技术结合,实现信息传送, 达到资源共享的系统(广义观点)
 - 计算机硬件、线缆、网络设备和让计算机能相互通信的计算机和软件的集合,即"自治的计算机互连所形成的集合"

• 什么是计算机网络?

网络是指"三网":

电信网络、有线电视网络和计算机网络

三网融合

有了网络, 未来的生活

会是什么样?

- 小型计算机网络
 - 两台PC和一根线缆

· 超大型计算机网络: 因特网 (Internet)

个人、家庭用户

PC机、便携机

网卡、Modem/Cable Modem

ADSL Modem

PSTN/ISDN/DSL

帐户

企业、集团用户

PC机、便携机

网卡、交换机/HUB

路由器

数字电路/FR/ATM/DDN/ATM/X.25/

分部

- 计算机网络能做什么? (功能)
 - 资源共享
 - 软件、硬件、数据(数据库)
 - 数据通信
 - · 文件传输、IP电话、email、视频会议、信息发布、 交互式娱乐、音乐
 - 事务处理
 - 电子商务/金融/政务、远程教育、远程医疗

- 计算机网络分类 (分类方法很多)
 - -根据网络的覆盖范围与规模 (scale) 分类
 - 按网络拓扑结构分类
 - 根据网络使用的传输技术分类
 - 按网络服务的对象分类
 - 按节点之间的关系分类
 - 按介质访问协议分类

-

- 按覆盖范围和规模
 - 局域网 (LAN-Local Area Network)
 - 城域网 (MAN-Metropolitan Area Network)
 - 广域网 (WAN-Wide Area Network)

- 局域网 (LAN)
 - 在一栋或相邻的几栋大楼内, 小范围<10km
 - 以太网(Ethernet)、令牌环网(token ring)、光纤 分布式数据接口FDDI、无线网等连接方式
 - 下图是集线器连接的双绞线以太网

- 广域网 (WAN)
 - 覆盖一个城市, 国家, 全球, 范围大>100km
 - 点到点互连,点到点式通信

- 城域网 (MAN)
 - 介于局域网和广域网之间
 - 中等网络规模, 范围<100km
 - 局限于一座城市的范围内

• 按拓扑结构分类

- 有一个中心节点, 其它节点与其构成点到点连接
- 树形
 - 一个根结点、多个中间分支节点和叶子节点构成
- 总线形
 - 所有节点挂接到一条总线上,广播式信道
 - 需要有介质访问控制规程以防止冲突

• 按拓扑结构分类

- 环形

- 所有节点连接成一个闭合的环,点到点连接
- 全连接
 - 点到点全连接,连接数随节点数的增长迅速增长, 建造成本提高,只适用于节点数很少的广域网中

- 不规则

点到点部分连接,多用于广域网,由于连接的不完全性,需要有交换节点

- 计算机网络性能指标
 - ① 传输速率
 - ② 带宽
 - ③ 数据吞吐量
 - 4 时延

- 传输速率
 - 数据传输速率 (比特率) 用C表示
 - 每秒能传送多少个比特数
 - bps(bit per second)
 - C=1/T \times log₂M

T为传输信息的电脉冲宽度

M为一个码元所取得的有效离散值个数(调制电平数)

• 传输速率

- -信号传输速率 (波特率) 用B表示
 - 码元速率、调制速率
 - 每秒传送的码元数
 - ·波特(Baud)
 - B=1/T

举例1

当波特率为9600时

若M=2, 数据传输率为9600b/s;

若M=16,数据传输率为38.4kb/s。

- 比特率、波特率和信号编码级数的关系如下:
 - $R_{bit} = R_{baud} log_2 M$

- · 带宽 (bandwidth)
 - 在某给定时间内通过某个网络连接的信息量
 - -模拟通信系统或传输介质中,所说的"带宽"是指信号频率的通频范围,单位为"赫兹"
 - 数字通信系统中"带宽",理论上是指传输信道的信道容量,也即信道中传递信息的最大值,单位为"比特/秒"

• 带宽 (bandwidth)

模拟电话线的频带 (300Hz——3400Hz为语音通信频带 25KHz——1.1MHz为ADSL频带)

• 带宽 (bandwidth)

• 带宽 (bandwidth)

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = ~1,000 bps = 10 ³ bps
Megabits per second	Mbps	1 Mbps = ~1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = ~1,000,000,000 bps = 10 ⁹ bps
Terabits per second	Tbps	1 Tbps = ~1,000,000,000,000 bps = 10 ¹² bps

在我们常说的56k拨号,100M局域网都是bps计量,当用于软件下载时,下载工具一般又以Bps计算,所以它们之间有8bit=1Byte的换算关系,那么56kbps拨号极限下载速度是56kbps/8=7KBps每秒下载7K字节

• 数据吞吐量

- 在一天的某段时间内使用特定的路由下载一个 文件时所获得的实际带宽
- 可以用单位时间发送的比特数、帧数或分组数进行表示
- 由于很多种原因, 吞吐量远远小于传输使用介质所能达到的最大带宽

- 数据吞吐量
 - 影响数据吞吐量的因素:
 - 互联网上的设备
 - 网络拓扑形式
 - •用户数量
 - 计算机
 - 服务器
 - • • •

• 时延

- 信息从网络的一端传送到另一端所需的时间
- 时延=处理时延+排队时延+发送时延+传播时延
 - 处理时延=对数据进行处理和错误校验所需的时间
 - 排队时延=数据在中间结点等待转发的延迟时间
 - 发送时延=数据位数/信道带宽
 - 传播时延=d/s
 d:距离, s:介质中信号传播速度(≈0.7c)

- 从体系结构来观察
 - 计算机网络发展可分为三个阶段(三代网络)
 - ① 以主机为中心的联机终端系统 "计算机一终端"系统
 - ② 以通信子网为中心的主机互连 "计算机—计算机" 网络
 - ③ 体系结构标准化网络 层次化结构

(1) 以主机为中心的联机终端系统

- 特征:终端共享主机的软硬件资源
 - 单台主机: 执行计算和通信任务
- 多台终端: 执行用户交互
 连接方式: 本地或远程
 T
 T

 T
 T
 T
 T
 T
 T
 T
 T

(1) 以主机为中心的联机终端系统

举例1

飞机订票系统

- HOST(航空公司总部)
- Terminals(订票点)
- 通信线路(电话线路)

缺点

主机负荷重—数据处理+通信 线路利用率低

集中控制方式, 可靠性低

- ② 以通信子网为中心的主机互连
 - 多个终端联机系统互联,形成多主机互联网络
 - 网络结构从"主机-终端"转为"主机-主机"

- 主机一主机网络的演变 一) 两层网络
 - 通信子网: 由通信控制处理机 (CCP) 组成传

输网络, 提供信息传输服务

- 资源子网:建立在通信子网基础上的主机集合,

提供计算资源

• 两层网络概念结构

• 两层网络概念结构

举例1: ARPANET

- 因特网的前身
- 美苏冷战时期由美国军方建立的实验性网络
- ·最初4个节点→70's的60多个节点
- 地域跨越美洲、欧洲
- 具有现代网络的许多特征
 - 分组交换
 - 分层次的网络体系
 - 较为完善的通信协议

计算机网络发展历程

③ 体系结构标准化网络

网络发展的功能与任务需求复杂,需要划分层次化的结构并明确各层次的协议(网络的体系结构)

底层: 实现信号发送与接收

中间层: 寻址、媒体接入控制、数据包转发、拥塞控制、差

错控制等

高层:面向用户,网络浏览、电子邮件、文件传输

核心思想: 屏蔽底层细节,向用户提供通用一致的

网络服务

计算机网络发展历程

③ 体系结构标准化网络

- 70年代出现了多种计算机网络体系结构
 IBM-System Network Architecture, SNA, 1974
 Honeywell-Distributed System Architecture, DSA
 Digital-Digital Network Architecture, DNA

 互不兼容
- 1977年ISO专门建立了委员会,考虑到连网方便和 灵活性等要求,提出了一种不基于特定机型、操作 系统或公司网络体系结构的7层开放系统互连参考模型 (OSI/RM)

计算机网络发展历程

• 计算机网络在我国的发展

- -1994年4月20日我国用64kb/s专线正式接入因特网
- 中国公用计算机互联网 (CHINANET)
- 中国教育和科研计算机网 (CERNET)
- 中国科学技术网 (CSTNET)
- 中国国际经济贸易互联网 (CIETNET)
- 中国网通互联网 (CNCNET)
- 中国联通互联网 (UNINET)
- 中国移动互联网 (CMNET)
- 中国长城互联网 (CGWNET)
- -中国卫星集团互联网 (CSNET)

- ISO/OSI 模型
 - 国际标准化组织ISO (International Standard Organization)于1983年正式颁布了一个称为"开 放系统互连参考模型"(Open System Interconnection / Reference Model)的国际标准 ISO7498, 简称OSI参考模型或OSI/RM、由七层 组成,也称为OSI七层模型

- ()SI七层模型的目的和优点
 - 化解复杂性
 - -标准化接口
 - 模块化、易于工程
 - 确保技术的通用
 - 加速发展
 - 简化教学和学习

• ()SI七层模型

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

- 应用层:与用户最接近的一层
- 表示层: 通用的数据格式, 语法
- 会话层: 控制会话
- 传输层: 流控、保证可靠性
- 网络层:路径选择、路由及逻辑选路
- 数据链路层: 帧、介质访问控制
- 物理层: 规定信号和介质

• OSI七层模型

应用层 应用层 表示层 (高层) 会话层 传输层 网络层 数据流层 数据链路层 物理层

从3个层面抽象计算机网络:

- 分层结构:从功能划分为7层, 上层功能实现依赖下层,不同 结点的同层具有相同功能
- 协议:不同节点同等层间通过 协议实现通信(水平方向作用)
- 服务:每层使用下层服务,并 向上层提供服务(垂直方向作用)

• OSI七层模型-高层

物理层

		<u>例子</u>
应用层	用户接口、为应用处理提供网络服务	Telnet HTTP
表示层	·数据表示、数据格式、结构 ·加密等特殊处理过程 ·协商数据传输语法	ASCII EBCDIC JPEG
会话层	建立、管理、终结应用间的会话,保证不同应用间的数据区分	Operating System/ Application Access Scheduling
传输层		
网络层		
数据链路层		

应用层	• ()S[七层模型-数据》	充 层
表示层		<u>例子</u>
传输层	· 端到端的连接,可靠或不可靠的数据传输 · 数据重传前的错误纠正、流控 · 建立、维护、终止虚电路	TCP UDP SPX
网络层	提供路由器用来决定路径的逻辑寻址	> IP IPX
数据链路层	・将比特组合成字节进而组合成帧・用MAC地址访问介质、网络拓扑・错误发现、通知但不能纠正・提供穿越介质的可靠数据传输	> 802.3 / 802.2 HDLC
物理层	· 设备间接收或发送比特流 · 说明电压、线速和线缆等	EIA/TIA-232 V.35

- OSI模型和TCP/IP模型
- OSI/RM缺点: 层次划分不尽合理、部分功能在多个层次重复出现;协议过分复杂、效率低;标准制定周期过长、缺乏商业驱动力
- 由于OSI参考模型实现的复杂性和ARPAnet的迅速发展,TCP/IP协议逐渐得到了业界的广泛认可,成为了事实上的网络连接的标准协议

• OSI模型和TCP/IP模型

• 五层体系结构

- TCP/IP 是四层的体系结构:应用层、传输层、 网际层和网络接口层
- 但最下面的网络接口层并没有具体内容
- 因此往往采取折中的办法,即综合OSI和 TCP/IP的优点,采用一种只有五层协议的体系 结构

• 五层体系结构

- 应用层(application layer)
- 传输层(transport layer)
- 网络层(network layer)
- 数据链路层(data link layer)
- 物理层(physical layer)

• 点对点通信: Peer-to-peer communications

• 封装的含义及封装过程

本章知识点小结

- 什么是计算机网络?
- 计算机网络拓扑结构有哪些?
- 计算机网络性能指标有哪些?
- 计算机网络体系结构是什么?
- 思考题
 - P23: 1.1、1.4、1.8、1.11、1.13、1.15、1.23