BIS Messmodelle

Datensätze von Philipp & Olivier im Vergleich 3 Februar 2016

Contents

1 Vergleich der Datensatze	2
1.1 Dichte der Verteilungen	2
1.2 Zusammenhänge der z-Werte	2
1.3 Schlussfolgerungen	2
2 Messmodelle	3
2.1 Model 1	3
2.2 Model 2	4
2.3 Model 3	5
2.4 Model 4	6
2.5 Model 5	7
2.6 Model 6	8
2.7 Model 7	9
2.8 Model 8	10
2.9 Model 9	11
2.10 Model 10	12
2.11 Model 11	13
2.14 Model 14	14
2.15 Model 15	15
3 Vergleich der Messmodelle	16
3.1 Philipp's Datensatz	16
3.2 Olivier's Datensatz	16
3.3 Schlussfolgerungen aus den Modelltests	16
4 Stabilität der g Faktorwerte	17
4.1 Philipp's Datensatz	17
4.2 Oliviers's Datensatz	18
4.3 Schlussfolgerungen bezüglich der Stabilität der g Faktorwerte	18

1 Vergleich der Datensätze

Um zu kontrollieren, ob Differenzen bei den Messmodellen auf offensichtliche Unterschiede zwischen den Daten zurückzuführen sind, werden hier als erstes die Verteilungen verglichen und die Differenz der Korrelationsmatrix der Operationen und Inhalten berichtet.

1.1 Dichte der Verteilungen

In der Abbildung abgetragen sind die z-Werte aller Personen über alle 18 Subtests gemittelt. Blau schraffiert ist die Verteilung von Philipp's Datensatz. Grau schraffiert ist die Verteilung von Olivier's Datensatz. Philipp's Standardabweichung beträgt **0.54**. Olivier's Standardabweichung beträgt **0.57**.

BIS z-Werte über alle 18 Subtests gemittelt

1.2 Zusammenhänge der z-Werte

Diese Tabelle bildet die Differenz der (durchwegs signifikanten) Korrelationskoeffizienten zwischen Philipp's und Olivier's Datensatz ab. Negative Differenzen bedeuten, dass in Philipp's Daten tiefere Zusammenhänge beobachtet wurden als in Olivier's Daten (das Gegenteil ist der Fall bei positiven Differenzen).

##	zSpeed	zMemory	zCapacity	zFigural	zVerbal	${\tt zNumeric}$	zTotal
## zSpeed	NA	NA	NA	NA	NA	NA	NA
## zMemory	-0.07	NA	NA	NA	NA	NA	NA
## zCapacity	0.02	-0.08	NA	NA	NA	NA	NA
## zFigural	-0.04	-0.08	0.00	NA	NA	NA	NA
## zVerbal	-0.03	0.00	0.03	0.00	NA	NA	NA
## zNumeric	0.02	-0.05	-0.05	-0.06	0.01	NA	NA
## zTotal	-0.01	-0.04	0.00	-0.03	0.02	-0.01	NA

1.3 Schlussfolgerungen

- Olivier's Datensatz ist etwas heterogener als Philipp's Datensatz
- Olivier's Datensatz zeigt deskriptiv eher höhere Zusammenhänge zwischen den Operationen bzw. Inhalten als Philipp's Datensatz

2 Messmodelle

In diesem Kapitel folgen alle gerechneten Messmodelle. Oberhalb des gezeichneten Messmodells werden (wenn aufgetreten) mit hashtags (#) warnings aufgeführt. Diese Warnungen werden dann ausgegeben, wenn die Modellberechnungen nicht dem normalen Verlauf entsprechen. Unterhalb des gezeichneten Messmodell stehen allgemeine Kommentare, Kommentare die sich nur auf Resultate aus Philipp's Datensatz beziehen, oder Kommentare die sich auf Resultate aus Olivier's Datensatz beziehen. In der Tabelle nach den Kommentaren sind die Modelltests bzw. die Fit-Indizes aufgeführt.

Die Abbildungen in diesem Kapitel stammen alle aus dem Datensatz von Philipp.

2.1 Model 1

- Philipp
 - BD lädt nicht signifikant auf g
 - OE lädt nicht signifikant auf g
- Olivier
 - $-\,$ alle Faktorladungen signifikant

				CFI		SRMI	?
Daten	Chi-Square	df	p		RMSEA		parsimony ratio
Philipp	447	135	< .001	.72	.1012	.09	.79
Olivier	490	135	< .001	.74	.1012	.09	.79

2.2 Model 2

Warning in lavaan::lavaan(model = model2, data = resultsBIS, estimator
= "MLM", : lavaan WARNING: covariance matrix of latent variables is not
positive definite; use inspect(fit, "cov.lv") to investigate.

• Philipp

- Alle Ladungen und Fehlervarianzen mussten manuell>0gesetzt werden
- Kovarianzmatrix der latenten Variablen ist nicht positiv

- Das Modell konvergiert ohne Fehlermeldung
- -3 Faktorladungen des Faktors $\mathit{figural}$ n
icht signifikant
- 1 Faktorladung des Faktors numeric nicht signifikant

D /	CI : C	1.0		CFI	DMCEA	SRMF	
Daten	Chi-Square	df	p		RMSEA		parsimony ratio
Philipp Oliver	111 123	111 111	.49 .20	1 .99	.0003 .0004	.06 .04	.65 .65

2.3 Model 3

```
## Warning in lavaan::lavaan(model = model3, data = resultsBIS, estimator =
## "MLM", : lavaan WARNING: some estimated variances are negative
```

Warning in lavaan::lavaan(model = model3, data = resultsBIS, estimator
= "MLM", : lavaan WARNING: covariance matrix of latent variables is not
positive definite; use inspect(fit, "cov.lv") to investigate.

• Philipp

- Alle Ladungen und Fehlervarianzen mussten manuell>0gesetzt werden, um Fehlermeldungen zu unterdrücken
- Kovarianzmatrix der latenten Variablen ist nicht positiv
- Faktorladung g = speed > 1

- Das Modell konvergiert ohne Fehlermeldung
- 3 Faktorladungen auf figural nicht signifikant
- 1 Faktorladung auf *numeric* **nicht** signifikant

				CFI		SRMR	,
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	117	111	.33	.99	.0004	.06	.65
Olivier	123	111	.20	.99	.0004	.04	.65

2.4 Model 4

• Philipp

- Alle Faktorladungen sind \mathbf{nicht} signifikant
- Varianz von gist \mathbf{nicht} signifikant

- Alle Faktorladungen signifikant
- Varianz von gist signifikant

				CFI		SRMI	?
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	154	27	< .001	.80	.1318	.08	.60
Olivier	165	27	< .001	.81	.1317	.07	.60

2.5 Model 5

Warning in lavaan::lavaan(model = model5, data = resultsBIS, estimator =
"MLM", : lavaan WARNING: model has NOT converged!

Warning in sqrt(ETA2): NaNs produced

Warning in sqrt(ETA2): NaNs produced

Warning in sqrt(ETA2): NaNs produced

Warning in qgraph(Edgelist, labels = nLab, bidirectional = Bidir, directed
= Directed, : Non-finite weights are omitted

• Philipp

- Modell konvergiert nicht

- Negative Fehlervarianzen
- -diverse Faktorladungen \mathbf{nicht} signifikant
- -diverse Varianzen \mathbf{nicht} signifikant

				CFI		SRMR	
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	-	-	-	-	-	-	-
Olivier	8	12	.08	1	.0004	.02	.27

2.6 Model 6

```
## Warning in lavaan::lavaan(model = model6, data = resultsBIS, estimator =
## "MLM", : lavaan WARNING: some estimated variances are negative
```

Warning in lavaan::lavaan(model = model6, data = resultsBIS, estimator
= "MLM", : lavaan WARNING: covariance matrix of latent variables is not
positive definite; use inspect(fit, "cov.lv") to investigate.

• Philipp

- Kovarianzmatrix der latenten Variablen ist **nicht** positiv
- Fehlermatrix ist **nicht** positiv (obwohl manuell > 0 gesetzt)
- memory & capacity laden **nicht** signifikant auf g
- zCapacityVerbal lädt **nicht** signifikant auf *capacity*
- $-\ g$ Varianz ist **nicht** signifikant
- speed Varianz ist **nicht** signifikant
- capacity Varianz ist **nicht** signifikant

• Olivier

- nicht gerechnet, weil Modell 5 schon nicht gut fitted

				CFI		SRME	}
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	5	12	.95	1	.0000	.02	.27
Olivier	-	12	-	-	-	-	-

2.7 Model 7

• Philipp

- (warnings wurden manuell unterdrückt, weil sonst der output zu lang wäre)
- Scaled test statistic (MLM) kann nicht berechnet werden
- -standard errors können nicht berechnet werden (d.h. $\emph{p}\textsc{-}$ Werte der Parameter sind nicht vorhanden)
- Aufgrund fehlender p-Werte wird die Abbildung nicht vollständig geplotted
- Kovarianzmatrix der latenten Variablen ist nicht positiv

• Olivier

 $-\,$ nicht gerechnet, weil Modell5nicht gut fitted

				CFI		SRMR	
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	7	12	.86	1	.0004	.02	.27
Olivier	-	12	=	-	-	-	-

2.8 Model 8

- \bullet $Bemerkung\ zum\ Modell:$ Gleiche Inhalte unterschiedlicher Operationen sind korrliert
- Philipp
 - speed Varianz **nicht** signifikant
 - -z
Speed Numeric lädt \mathbf{nicht} signifikant auf
 speed
 - Nicht alle Residualvarianzen sind signifikant miteinander korreliert
- Olivier
 - $-\ speed$ Varianz signifikant (capacity und memory auch)
 - Nicht alle Residualvarianzen sind signifikant miteinander korreliert

				CFI		SRMI	}
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	40	15	< .01	.96	.0613	.04	.33
Olivier	24	15	.06	.99	.0009	.03	.33

2.9 Model 9

- Bemerkung zum Modell: Gleiche Inhalte unterschiedlicher Operationen sind korrliert (vgl. Modell 8)
- Philipp
 - g Varianz **nicht** signifikant (memory und speed laden nicht signifikant)
 - Nicht alle Residualvarianzen sind signifikant miteinander korreliert
- Olivier
 - -alle Faktorladungen signifikant (folglich auch g Varianz)
 - Nicht alle Residualvarianzen sind signifikant miteinander korreliert

				CFI		SRMI	?
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	39	15	< .01	.96	.0612	.04	.33
Olivier	24	15	.06	.99	.0009	.03	.33

2.10 Model 10

- Im Vergleich zu Modell 8 wurden folgende Covarianzen unterdrückt, weil sie in Model 8 nicht signifikant waren:
 - -z
Speed Numeric $\sim\!\!\sim$ z Memory Numeric
 - zMemoryNumeric ~~ zCapacityNumeric
 - zSpeedFigural ∼ zMemoryFigural
 - zSpeedFigural ~~ zCapacityFigural
- Im Vergleich zu Modell 8 wurden folgende Covarianzen erlaubt, weil die Modifikationsindizes hoch waren:
 - -z
Speed Verbal $\sim\!\!\!\sim$ z Capacity Figural
 - -z
Speed Numeric $\sim\!\!\!\sim$ z Capacity Verbal
 - -z
Speed Figural $\sim\!\!\!\sim$ z Capacity Verbal
- speed Varianz nicht signifikant
- speed und memory korrelieren nicht signifikant miteinander
- Olivier hat Modell (noch) nicht gerechnet

				CFI		SRMI	?
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	21	16	.16	.99	.0008	.04	.36
Olivier	-	16	-	-	-	-	

2.11 Model 11

- Im Vergleich zu Modell 9 wurden folgende Covarianzen unterdrückt, weil sie in Model 8 nicht signifikant waren::
 - -z
Speed Numeric $\sim\!\!\sim$ z Memory Numeric
 - -z
Memory Numeric $\sim\!\!\sim$ z Capacity Numeric
 - -z
Speed Figural $\sim\!\!\!\sim$ z Memory Figural
 - -z
Speed Figural $\sim\!\!\!\sim$ z Capacity Figural
- Im Vergleich zu Modell 9 wurden folgende Covarianzen erlaubt, weil die Modifikationsindizes hoch waren::
 - -z
Speed Verbal $\sim\!\!\sim$ z Capacity Figural
 - -z
Speed Numeric $\sim\!\!\sim$ z Capacity Verbal
 - -z
Speed Figural $\sim\!\!\sim$ z Capacity Verbal
- g Varianz **nicht** signifikant (memory und capacity laden nicht signifikant)
- Olivier hat Modell (noch) nicht gerechnet

				CFI	CFI		?
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	22	16	.16	.99	.0008	.04	.36
Olivier	-	16	-	-	-	-	

2.14 Model 14

Warning in lavaan::lavaan(model = model14, data = resultsBIS, estimator =
"MLM", : lavaan WARNING: model has NOT converged!

Warning in sqrt(ETA2): NaNs produced

Warning in sqrt(ETA2): NaNs produced

Warning in sqrt(ETA2): NaNs produced

Warning in qgraph(Edgelist, labels = nLab, bidirectional = Bidir, directed
= Directed, : Non-finite weights are omitted

- Philipp
 - Modell konvergiert nicht
- Olivier
 - Modell konvergiert nicht

Daten	Chi-Square	df	p	CFI	RMSEA	SRMR parsimony ratio
Philipp	-	-	-	-	-	-
Olivier	-	-	-	-	-	-

2.15 Model 15

- Genau identifizertes Modell - kein Hypothesentest möglich

				CFI	CFI		IR
Daten	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
Philipp	0	0	NA	1	.0000	0	0
Olivier	0	0	NA	1	.0000	0	0

3 Vergleich der Messmodelle

3.1 Philipp's Datensatz

				CFI		SRMR		
Modell	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		Probleme Philipp	Probleme Olivier
1	447	135	< .001	.72	.1012	.09	ja	nein
2	111	111	.49	1	.0003	.06	ja	jein
3	117	111	.33	.99	.0004	.06	ja	jein
4	154	27	< .001	.80	.1318	.08	ja	nein
5	-	-	-	-	-	-	ja	ja
6	5	12	.95	1	.0000	.02	ja	-
7	7	12	.86	1	.0004	.02	ja	-
8	40	15	< .01	.96	.0613	.04	ja	nein
9	39	15	< .01	.96	.0612	.04	ja	nein
10	21	16	.16	.99	.0008	.04	ja	-
11	22	16	.16	.99	.0008	.04	ja	-
14	-	-	-	-	-	-	ja	ja
15	0	0	NA	1	.0000	0	-	-

3.2 Olivier's Datensatz

				CFI		SRMR	,	
Modell	Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		Probleme Philipp	Probleme Olivier
1	490	135	< .001	.74	.1012	.09	ja	nein
2	123	111	.20	.99	.0004	.04	ja	jein
3	123	111	.20	.99	.0004	.04	ja	jein
4	165	27	< .001	.81	.1317	.07	ja	nein
5	8	12	.08	1	.0004	.02	ja	ja
6	-	-	-	-	-	-	ja	-
7	-	-	-	-	-	-	ja	-
8	24	15	.06	.99	.0009	.03	ja	nein
9	24	15	.06	.99	.0009	.03	ja	nein
10	-	-	-	-	-	-	ja	-
11	-	-	-	-	-	-	ja	-
14	-	-	-	-	-	-	ja	ja
15	0	0	NA	1	.0000	0	-	-

3.3 Schlussfolgerungen aus den Modelltests

- $\bullet\,$ Modelle 5, 6, 7, 10, 11 und 14 führen in beiden Datensätzen zu nicht interpretierbaren Lösungen
- Modelle 1 5, 8 und 9 führen in Olivier's Datensatz zu interpretierbaren Lösungen, in Philipp's Datensatz nicht

4 Stabilität der g Faktorwerte

Um zu sehen, wie die g Faktorwerte durch die Modellierungsvarianten beeinflusst werden, haben wir die g Faktorwerte aller Personen derjenigen Modelle extrahiert, die einen g Faktor beinhalten. Das sind Modelle 1, 3, 4, 6, 7, 9, 11, 14 und 15.

Anschliessend haben wir den über alle 18 Subtests gemittelten z-Wert jeder Person, zTotal, mit den extrahierten q Faktorwerten korreliert.

4.1 Philipp's Datensatz

Hier abgebildet ist eine Visualisierung der Zusammenhänge der extrahierten g Faktorwerte aus Philipp's Datensatz.

4.2 Oliviers's Datensatz

Und hier eine Visualisierung der Zusammenhänge der extrahierten g Faktorwerte aus Olivier' Datensatz. **Achtung**: Die hellen Zellen sind deshalb leer, weil Olivier nicht jedes der Messmodelle (1-15) gerechnet hat (d.h. für diese Modelle sind keine Faktorwerte vorhanden).

4.3 Schlussfolgerungen bezüglich der Stabilität der g Faktorwerte

- $\bullet\,$ Die extrahierten g Faktorwerte erweisen sich in beiden Datensätzen als (fast vollständig) unabhängig vom spezifizierten Messmodell
- \bullet Weil der g Faktor für unsere Fragestellungen zentral ist, könnten wir Modell 15 verwenden