מטלת מנחה (ממיין) 11

הקורס: 20283 - מתמטיקה דיסקרטית חומר הלימוד למטלה: תורת הקבוצות פרק 1

מספר השאלות: 4 משקל המטלה: 3 נקודות

סמסטר: 2009א מועד אחרון להגשה: יום הי

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1 (24 נקי)

שאלה זו נועדת לתרגל מושגים בסיסיים בתורת הקבוצות ולחדד כמה נקודות שכדאי להבינן בשלב מוקדם:

- A (קבוצה שהאיבר היחיד שלה הוא A (קבוצה שהאיבר היחיד שלה הוא *
 - \varnothing מקרה פרטי: ההבדל בין הקבוצה הריקה \varnothing לבין *
 - x'' חלקי ל- x'' איבר של y איבר של x'' איבר x''

 $A = \{\emptyset\}$, $B = \{A\}$, $C = \{\emptyset, A\}$: נתונות הקבוצות הקבוצות

מצא אילו מהטענות הבאות נכונות.

בשאלה זו בלבד אין צורך לנמק - די לתת את רשימת הסעיפים הנכונים.

$$\varnothing \subseteq B$$
 .7 $\varnothing \in B$.3 $\varnothing \subseteq \varnothing$.2 $\varnothing \in \varnothing$.8

$$A \cap B = \emptyset$$
 . $P(A) = C$. $P(A) \subseteq B$. $A \subseteq B$. $A \subseteq B$.

$$P(C) = \{\emptyset, A, B, C\}$$
 $A \cup B = C$ \emptyset

שאלה 2 (21 נקי)

. בספר מתאימה טענה על-סמך על-סמך . $P(A \cap B) = P(A) \cap P(B)$: הוכח אינה מתאימה בספר.

לגבי **איחוד** לא מתקיימת טענה כללית הדומה לזו שבסעיף א': ר' החוברת "אוסף תרגילים פתורים" עמי 1 שאלה 2 . בסעיפים הבאים נבדוק מתי בדיוק כן מתקיים שוויון כזה עבור איחוד. הדרכה לשאלה זו תפורסם באתר הקורס.

- $A \subseteq B$ או $B \subseteq A$ או $A \subseteq B$ ב. הוכח שאם $A \subseteq B$
 - . הוכח את הכיוון ההפוך לטענה שבסעיף בי, כלומר הוכח

$$B \subseteq A$$
 או $A \subseteq B$ או $P(A \cup B) = P(A) \cup P(B)$

הדרכה: נוח להוכיח סעיף זה בדרך השלילה. מהי בדיוק הנחת השלילה במקרה זה?

שאלה 3 (28 נקי)

הוכח או הפרך כל אחת מהטענות הבאות. לטענות שאינן נכונות – הבא דוגמא נגדית. את הוכח או הפרך כל אחת מהטענות הנכונות הוכח בעזרת "אלגברה של קבוצות": צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני, בלי להשתמש במושג "איבר". במקומות בהם מופיע הפרש קבוצות כדאי להיעזר בזהות $A - B = A \cap B$ (עמי 23 בספר הלימוד). ציין באופן ברור בכל צעד את הזהויות עליהן אתה מסתמך. הסימן \oplus מוגדר בעמי 27 בספר.

$$X \cap Z' = (X \cap Y \cap Z') \cup (X \cap Y' \cap Z')$$
.

$$X \cup (Y - Z) = (X \cup Y) - (X \cup Z)$$
 .

 $X \oplus Y = (X \cup Y) - (X \cap Y)$ גיי שאלה 1.22 בעמי 27). $X \oplus Y = (X \cup Y) - (X \cap Y)$

שאלה 4 (27 נקי)

איחוד של קבוצה כלשהי של קבוצות מתואר בהגדרה 1.6 בעמוד 12 בספר.

 $,A_{i}$ אםם xשייך לפחות הקבוצות $x\in\bigcup_{i\in I}A_{i}$: אחת ההגדרה פשוטות במלים במלים x

חיתוך של קבוצה כלשהי של קבוצות מתואר בעמוד 16 בספר.

 $,A_{i}$ אםם xשייך לכל הקבוצות במלים במלים היא: $x\in\bigcap_{i\in I}A_{i}$ היא: Iרכים ב- iמקבל ערכים ב- i

השאלה שלפניך מתרגלת את השימוש בשני המושגים האלה.

. (רי עמי 3 בספר הלימוד). $\mathbf{N} = \{0,1,2,...\}$ היא קבוצת המספרים הטבעיים: \mathbf{N}

. איברים, איברים, איברים, איברים, לכל . $A_n = \{n,\, n+1,\, 2n\}$, $n \in \mathbf{N}$ לכל , איברים, איברים, איברים

$$.\,D_n=A_{n+1}-(A_n\cup A_{n+2})\,$$
 , $n\in {\bf N}\,$ לכל , $n\in {\bf N}\,$

חשב את הקבוצות הבאות. הוכח את תשובותיך.

.
$$B = \{0,1,2,3\}$$
 כאשר , $\bigcup_{n \in B} A_n$

.
$$B = \{0,1,2,3\}$$
 כאשר , $\bigcap_{n \in B} A_n$

.
$$\bigcup_{n\in\mathbf{N}}D_n$$
 .7