- 【1】図1のような直径 $d_1$ , $d_2$ および長さ $\ell_1$ , $\ell_2$ からなる段付き丸棒について、各棒の縦弾性係数 $E_1$ , $E_2$ および線膨張係数 $\alpha_1$ , $\alpha_2$ として、以下の問いに答えよ.
  - (1) 図 1 (a)のように引張荷重 P が作用するとき、各棒に生じる応力  $\sigma_1$ 、 $\sigma_2$  および棒全体の伸び  $\lambda$  を求めよ.
  - (2) 図 1 (b)のように両端を固定して温度が t K 上昇したとき,各棒に生じる応力 $\sigma_1$ , $\sigma_2$ を求めよ.



- 【2】図2のような長さ $\ell$ の片持ちはり ABの自由端をばね定数  $\ell$ のばねで支え、等分布荷重  $\ell$ を作用させるとき、はりの縦弾性係数  $\ell$ および断面 2次モーメント  $\ell$ として、以下の問いに答えよ.
  - (1) 図のように座標 (x, y) をとり、固定端の反力  $R_A$ 、曲げモーメント  $M_A$  を未知数として曲げモーメント M(x)を表せ.
  - (2) たわみの基礎式 (微分方程式), A 点の境界条件を示せ。さらに B 点の境界条件を反力  $R_B$  とばね定数 k を用いて示せ.
  - (3) 反力  $R_A$ ,  $R_B$ , 曲げモーメント  $M_A$  を求めて, せん断力線図 (SFD) および曲げモーメント線図 (BMD) を描け (概略図でよい).



## 材 料 力 学

- 【3】縦弾性係数E, ポアソン比 $\nu$ , 横弾性係数Gの等方弾性体に関して以下の問いに答えよ.
  - (1) 図 3 に示す 2 次元平面応力状態( $\sigma_z=0$ )における各応力成分  $\sigma_x$ ,  $\sigma_y$ ,  $\tau_{xy}$  と ひずみ成分  $\varepsilon_x$ ,  $\varepsilon_y$ ,  $\gamma_{xy}$  の間の関係式(一般化フックの法則)を書け.
  - (2) 応力が作用している面 (xy 平面) と垂直な面における垂直ひずみ $\varepsilon$  を求めよ.
  - (3) x軸と垂直な面における応力ベクトル(=合応力の大きさと方向を表すベクトル)  $p_1$ の成分 $\left(p_{1x},p_{1y}\right)$ とその大きさ $\left|p_1\right|$ を求めよ.
  - (4) y軸と垂直な面における応力ベクトル  $p_2$  の成分 $(p_{2x},p_{2y})$ とその大きさ $|p_2|$ を求めよ.
  - (5) 法線の方向余弦が(l,m)で表される面における応力ベクトル $p_n$ の成分 $(p_{nx},p_{ny})$  とその大きさ $|p_n|$ を求めよ.

