MOSAICmodeling – A Fully Equation-oriented, Webbased Tool for Modeling, Simulation, and Optimization in Chemical Engineering

E. Esche*1, S. Bublitz1, M. Sotto Maior1, J.-U. Repke1

I. Motivation: Modeling at the Documentation Level

Formulate Models as They are Published in Articles

- Let users enter models with descriptions in LaTeX
- Mimic articles as closely as possible
- Allow for universal export of models

II. Motivation: Collaborative Modeling

Work Together on Model Formulation, Simulation, and **Optimization**

- Facilitate the exchange of models for simulation and optimization
- Use mathematics as the common denominator
- Allow for simultaneous access

III. User Workflow in MOSAIC modeling

IV. Implementation: Java & MySQL

GUI:

Fat client implemented in Java with automatic updates and online access required

Backend:

User data stored on servers spread worldwide using either MySQL or MariaDB

VI. Current and Future Developments

V. Functionality

Universal Code Generation

- Users can define their own code exports of models
- Advanced functionality for model analysis, discretization, decomposition, and documentation

Connection to Chemical Plants via OPC UA

- Complex mapping issues to sensors and actuators
- Introduction of new variable classifications for measurements and controls

Synchronization Between Server Locations

 Expected issues with long connection times

References

- [1] G. Tolksdorf, E. Esche, G. Wozny, J.-U. Repke (2019) Computers & Chemical Engineering, 121, 670-684, DOI: 10.1016/j.compchemeng.2018.12.006
- [2] E. Esche, C. Hoffmann, M. Illner, D. Müller, S. Fillinger, G. Tolksdorf, H. Bonart, G. Wozny, J.-U. Repke (2017) Chemie Ingenieur Technik, DOI: 10.1002/cite.201600114
- [3] V. A. Merchan, E. Esche, S. Fillinger, G. Tolksdorf, and G. Wozny (2015) Chemie Ingeniuer Technik, DOI: 10.1002/cite.201500099

Acknowledgements

Financial support from the German Research Foundation DFG EXC 314 is gratefully acknowledged.

^{*}erik.esche@tu-berlin.de

¹Process Dynamics and Operations Group, Technische Universität Berlin, Sekr. KWT-9, Str. des 17. Juni 135, D-10623 Berlin, Germany