122COM: Searching

David Croft

Introduction

Linear search

Rinary search

String searchin

Recan

# 122COM: Searching

**David Croft** 

Coventry University david.croft@coventry.ac.uk

2018



1 Introduction

2 Linear search

3 Binary search

4 String searching

5 Recap



## Introduction

Linear search

String searchin Searching is used everywhere in computing.

- Obvious applications.
  - Text files.
  - Databases.
  - File systems.
  - Search engines.
- Hidden applications.
  - Computer games.
    - Field Of View (FOV) search for objects in view.
    - Path finding https://www.youtube.com/watch?v=19h1g22hby8.
  - Network routing.
  - Sat Nav.
  - Recommender systems.
    - Netflix What-to-watch.
    - Amazon recommended items.



Introduction Linear search

String searching Simplest searching algorithm.

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
  - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
  - Discuss *O*() notation last week.

|            |            |            |            |            |            |            | -          |            |            |            |            |            | 13         |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Α          | В          | Z          | Q          | K          | L          | G          | Н          | U          | Α          | Р          | L          | F          | N          | R          |
| $\uparrow$ | $\uparrow$ | $\uparrow$ |            |            |            | •          |            |            |            |            |            |            |            |            |
| Ζ          | Z          | Z          |            |            |            |            |            |            |            |            |            |            |            |            |
| $\uparrow$ |
| R          | R          | R          | R          | R          | R          | R          | R          | R          | R          | R          | R          | R          | R          | R          |



### A Divide & conquer algorithm.

- Pro: Muuuuuuch faster than linear search.
- Con: Only works on sorted sequences.
- The algorithm:
  - 1 Find middle value of the sequence.
  - If search value == middle value then success.
  - If search value is < middle value then forget about the top half of the sequence.
  - 4 If search value is > middle value then forget about the bottom half of the sequence.
  - Repeat from step 1 until len(sequence) == 0.



David Croft

Linear search

Binary search

Recan

Find E.





Binary search

Maximum number of comparisons needed? Binary Search Trees.

- How many times can we divide our sequence in half?
- Ideal depth of the tree is  $\log_2(n)$ 
  - $\blacksquare$  n=15 in this example.
  - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of  $O(\log n)$ .
  - Covered O() complexity last week.
- Find E.





### It's HOW much faster?!?!!

Binary search

Clearly much faster than linear search.

- To search a trillion elements linearly could mean a trillion comparisons.
- Binary search does it in 39.

#### But...

- Have to sort the list first.
- Sorting lists can be expensive.
  - Will cover sorting in a later week.
- Can't always sort sequences.
- Ordering can be important.
  - E.g. Words in text documents.
  - E.g. Genes in genetic chromosomes.



# String searching

C

David Croft

Linear search

String

searching

I.e. Text searching.

- Finding one sequence in another sequence.
- Naive search.

etc, etc, etc.

- Like linear search but with multiple values to compare.
- Is very slow.





Recap

## Why do I care?

### Everyone

- Searching algorithms are key to understanding many data type.
  - I.e. sets and maps/dicts.
- Key to writing efficient code.
- Key to understanding memory/processor trade offs.



Recap

- Searching
  - Applications everywhere.
- Linear search.
  - Simple.
  - Slow.
- Binary search.
  - Ordered sequence.
  - Very fast.
  - Divide & Conquer.
- String searching.
  - Finding subsequence in sequence.



122COM: Searching

David Croft

Introduction

Linear search

Pinarycoarc

String searching

Recap

The End

