

Scientific Computing Lab

Partial Differential Equations
Instationary Equations

Tobias Neckel

Instationary PDEs

- Stationary PDEs (time-independent):
 - Only spatial derivatives

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = rhs(x, y)$$

Instationary PDEs

- Stationary PDEs (time-independent):
 - Only spatial derivatives

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = rhs(x, y)$$

- Instationary PDEs (time-dependent):
 - Derivatives in space and time

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$$

Discretization

- Spatial discretization
 - > Finite differences
 - See worksheet 4
- Time discretization
 - Compare ODE
 - See worksheet 2 & 3

Explicit/Implicit

- explicit time steps
 - restricted time step sizes
 - dependent on spatial step
 - \succ no equations to solve
- implicit time step
 - unrestricted time step sizes
 - large systems of equations

Accuracy Issues

Discretization error in time and space

$$e = e_{space} + e_{time}$$

- ightharpoonup High-order space disc. ightharpoonup e_{time} dominates
- ightharpoonup High-order time disc. ightharpoonup e_{space} dominates

Accuracy Issues

- Take into account:
 - Order of discretization
 - Region of stability
 - Maximum allowed timestep size

Accuracy Issues

- Take into account:
 - Order of discretization
 - Region of stability
 - Maximum allowed timestep size
- Higher-order methods do not harm (in terms of accuracy; but be aware of comput. costs!)

Explicit/Implicit

- Separation in space/time-discretization
 - Compute spatial derivatives
 - Consider function value on each grid-point as an ODE
- Sketch: 2.5 ways to a full discretization

Example

Example - Continuous

Hook's Law:

$$\sigma = E \varepsilon$$

Normal tension:

$$\sigma = \frac{F_u}{A}$$
 with $\varepsilon = \frac{du}{dx} \rightarrow F_u = E A \frac{du}{dx}$

Newton's Law:

$$dF_u = dm \frac{d^2 u}{dt^2} \quad \text{with} \quad dm = \rho A \, dx \quad \Rightarrow \quad \frac{dF_u}{dx} = \rho A \frac{d^2 u}{dt^2}$$

Example - Continuous

$$\frac{dF_u}{dx} = \rho A \frac{d^2 u}{dt^2} \qquad \text{ar}$$

$$F_u = E A \frac{du}{dx}$$

$$E A \frac{\partial^2 u}{\partial x^2} = \rho A \frac{\partial^2 u}{\partial t^2}$$

$$\Rightarrow E \frac{\partial^2 u}{\partial x^2} = \rho \frac{\partial^2 u}{\partial t^2}$$

In the following, we set $E=1, \rho=1$

Example - Discretization

Continuous Equation:

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial^2 u(x,t)}{\partial t^2}$$

Discretized Equation:

$$\frac{u(i+1,t)-2u(i,t)+u(i-1,t)}{h_0 \cdot h_1}$$

$$= \frac{u(i,t+1)-2u(i,t)+u(i,t-1)}{\delta t^2}$$

Example - Discretization

Discretized Equation:

$$\frac{u(i+1,t)-2u(i,t)+u(i-1,t)}{h_0 \cdot h_1} = \frac{u(i,t+1)-2u(i,t)+u(i,t-1)}{\delta t^2}$$

$$u(i,t+1) = \frac{\delta t^2}{h_0 \cdot h_1} \cdot (u(i+1,t) - 2u(i,t) + u(i-1,t)) + 2u(i,t) - u(i,t-1)$$

Example – Initial/Boundary Conditions

Example – Initial/Boundary Conditions

 $\left| \begin{array}{c} u(1) \\ \vdots \\ u(N) \end{array} \right|$

$$\begin{vmatrix} v(1) \\ \vdots \\ v(N) \end{vmatrix} = \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix}$$

Boundary Conditions:

Example – Initial/Boundary Conditions

Initial Conditions:

$$egin{pmatrix} u(1) \\ \vdots \\ u(N) \end{pmatrix}$$

$$\begin{vmatrix} v(1) \\ \vdots \\ v(N) \end{vmatrix} = \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix}$$

Boundary Conditions:

$$u(0)=0$$

$$\frac{\partial u(N)}{\partial x} = 0$$