Chapter: Construction of Quadrilateral

Page no.: 198 Exercise: 17 A

Question 1: Solution:

Steps of construction:

Step 1: Draw AB=4.2 cm.

Step 2: With A as the Centre and radius equal to 8 cm, draw an arc.

Step 3: With B as the Centre and radius equal to 6 cm, draw another arc, cutting the previous arc at C.

Step 4: Join BC.

Step 5: With A as the Centre and radius equal to 5 cm, draw an arc.

Step 6: With C as the Centre and radius equal to 5.2 cm, draw another arc, cutting the previous arc at D.

Step 7: Join AD and CD.

Thus, ABCD is the required quadrilateral.

Question 2: Solution:

Steps of construction:

Step 1: Draw PQ=5.4 cm.

Step 2: With P as the Centre and radius equal to 4 cm, draw an arc.

Step 3: With Q as the Centre and radius equal to 4.6 cm, draw another arc, cutting the previous arc at R.

Step 4: Join QR.

Step 5: With P as the Centre and radius equal to 3.5 cm, draw an arc.

Step 6: With R as the Centre and radius equal to 4.3 cm, draw another arc, cutting the previous arc at S.

Step 7: Join PS and RS.

Thus, PQRS is the required quadrilateral.

Question 3:

Solution:

Steps of construction:

Step 1: Draw AB=3.5 cm.

Step 2: With B as the Centre and radius equal to 5.6 cm, draw an arc.

Step 3: With A as the Centre and radius equal to 4.5 cm, draw another arc, cutting the previous arc at D.

Step 4: Join BD and AD.

Step 5: With D as the Centre and radius equal to 4.5 cm, draw an arc.

Step 6: With B as the Centre and radius equal to 3.8 cm, draw another arc, cutting the previous arc at C.

Step 7: Join BC and CD.

Thus, ABCD is the required quadrilateral.

Question 4:

Solution:

Steps of construction:

Step 1: DrawAB=3.6 cm.

Step 2: With B as the centre and radius equal to 4 cm, draw an arc.

Step 3: With A as the centre and radius equal to 2.7 cm, draw another arc, cutting the previous arc at D.

Step 4: Join BD and AD.

Step 5: With A as the centre and radius equal to 4.6 cm, draw an arc.

Step 6: With B as the centre and radius equal to 3.3 cm, draw another arc, cutting the previous arc at C.

Step 7: Join AC, BC and CD.

Thus, ABCD is the required quadrilateral.

Question 5:

Solution:

Steps of construction:

Step 1: Draw QR=7.5 cm.

Step 2: With Q as the centre and radius equal to 10 cm, draw an arc.

Step 3: With R as the centre and radius equal to 5 cm, draw another arc, cutting the previous arc at S.

Step 4: Join QS and RS.

Step 5: With S as the centre and radius equal to 6 cm, draw an arc.

Step 6: With R as the centre and radius equal to 6 cm, draw another arc, cutting the previous arc at P.

Step 7: Join PS and PR.

Step 8: PQ = 4.9 cm

Thus, PQRS is the required quadrilateral.

Question 6:

Solution:

Steps of construction:

Step 1: Draw AB=3.4 cm.

Step 2: With B as the centre and radius equal to 4 cm, draw an arc.

Step 3: With A as the centre and radius equal to 5.7 cm, draw another arc, cutting the previous arc at D.

Step 4: Join BD and AD.

Step 5: With A as the centre and radius equal to 8 cm, draw an arc.

Step 6: With D as the centre and radius equal to 3 cm, draw another arc, cutting the previous arc at C.

Step 7: Join AC, CD and BC.

Thus, ABCD is the required quadrilateral.

Question 7:

Solution:

Steps of construction:

Step 1: Draw AB=3.4 cm.

Step 2: With B as the Centre and radius equal to 4 cm, draw an arc.

Step 3: With A as the Centre and radius equal to 5.7 cm, draw another arc, cutting the previous arc at D.

Step 4: Join BD and AD.

Step 5: With A as the Centre and radius equal to 8 cm, draw an arc.

Step 6: With D as the Centre and radius equal to 3 cm, draw another arc, cutting the previous arc at C.

Step 7: Join AC, CD and BC.

Thus, ABCD is the required quadrilateral.

Question 8:

Solution:

Steps of construction:

Step 1: Draw AB= 2.9cm

Step 2: Make $\angle A = \angle D80^{\circ}$

Step 3: With A as the Centre, draw an arc of 3.4cm. Name that point as D.

Step 4: With D as the Centre, draw an arc of 2.7cm.

Step 5: With B as the Centre, draw an arc of 3.2 cm, cutting the previous arc at C.

Step 6: Join CD and BC.

Then, ABCD is the required quadrilateral.

Question 9:

Solution:

Steps of construction:

Step 1: Draw BC= 5cm

Step 2: Make $\angle B=125^{\circ}$ and $\angle C=60^{\circ}$

Step 3: With B as the Centre, draw an arc of 3.5 cm. Name that point as A.

Step 4: With C as the Centre, draw an arc of 4.6 cm. Name that point as D.

Step 5: Join A and D.

Then, ABCD is the required quadrilateral.

Question 10:

Solution:

Steps of construction:

Step 1: Draw QR= 5.6 cm

Step 2: Make $\angle Q=45^{\circ}$ and $\angle R=90^{\circ}$

Step 3: With Q as the Centre, draw an arc of 6 cm. Name that point as P.

Step 4: With R as the Centre, draw an arc of 2.7cm. Name that point as S.

Step 6: Join P and S.

Then, PQRS is the required quadrilateral.

Question 11:

Solution:

Steps of construction:

Step 1: Draw AB=5.6 cm

Step 2: Make $\angle A=50^{\circ}$ and $\angle B=105^{\circ}$

Step 3: With B as the Centre, draw an arc of 4cm.

Step 4: Sum of all the angles of the quadrilateral is 360°

 $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

 $50^{\circ} + 105^{\circ} + \angle C + 80^{\circ} = 360^{\circ}$

 $235 \circ + \angle C = 360^{\circ}$

 $\angle C = 360^{\circ} - 235^{\circ}$

∠C=125°

Step 5: With C as the Centre, make \angle C equal to $\angle 125^{\circ}$.

Step 6: Join C and D.

Step 7: Measure $\angle D=80^{\circ}$

Then, ABCD is the required quadrilateral.

Question 12:

Solution:

Steps of construction:

Step 1: Draw PQ= 5cm

Step 2:

 $\angle P + \angle Q + \angle R + \angle S = AB \parallel DC$

$$100^{\circ} + \angle Q + 100^{\circ} + 75^{\circ} = (9x)^{\circ} 162^{\circ} \frac{360^{\circ}}{20} (9 \times 18)^{\circ} (Breadth)^{2} x^{2} \sqrt{36} \frac{A}{2}$$

$$275^{\circ} + \angle Q = 360^{\circ}$$

$$\angle Q = 360^{\circ} - 275^{\circ}$$

$$\angle Q=85^{\circ}$$

Step 3: Make $\angle P=100^{\circ}$ and $\angle Q=85^{\circ}$

Step 4: With Q as the Centre, draw an arc of 6.5 cm.

Step 5: Make $\angle R=100^{\circ}$

Step 6: Join R and S.

Step 7: Measure $\angle S = 75^{\circ}$

Then, PQRS is the required quadrilateral.

Question 13:

Solution:

Steps of construction:

Step 1: Draw AB=4cm

Step 2: Make ∠B=90∘

Step 3: $AC^2 = AB^2 + BC^2$

 $5^2 = 4^2 + BC^2$

 $25-16=BC^2$

BC=3cm

With B as the Centre, draw an arc equal to 3 cm.

Step 4: Make $\angle C = 90^{\circ}$

Step 5: With A as the Centre and radius equal to 5.5 cm, draw an arc and name that point as D.

Then, ABCD is the required quadrilateral.

Exercise: 17 B Page no.: 201

Question 1: Solution:

Steps of construction:

Step 1: Draw AB = 5.2cm

Step 2: With B as the Centre, draw an arc of 4.7 cm.

Step 3: With A as the Centre, draw another arc of 7.6 cm, cutting the previous arc at C.

Step 4: Join A and C.

Step 5: We know that the opposite sides of a parallelogram are equal. Thus, with C as the Centre, draw an arc of 5.2cm.

Step 6: With A as the Centre, draw another arc of 4.7 cm, cutting the previous arc at D.

Step 7: Join CD and AD.

Then, ABCD is the required parallelogram.

Question 2:

Solution:

Steps of construction:

Step 1: Draw AB= 4.3cm

Step 2: With B as the Centre, draw an arc of 6.8 cm.

Step 3: With A as the Centre, draw another arc of 4cm, cutting the previous arc at D.

Step 4: Join BD and AD.

Step 5: We know that the opposite sides of a parallelogram are equal. Thus, with D as the Centre, draw an arc of 4.3cm.

Step 6: With B as the Centre, draw another arc of 4 cm, cutting the previous arc at C.

Step 7: Join CD and BC.

Then, ABCD is the required parallelogram.

Question 3:

Solution:

Steps of construction:

Step 1: Draw PQ = 4 cm

Step 2: Make $\angle POR = 60^{\circ}$

Step 3: With Q as the Centre, draw an arc of 6 cm and name that point as R.

Step 4: With R as the Centre, draw an arc of 4 cm and name that point as S.

Step 5: Join SR and PS.

Then, PQRS is the required parallelogram.

Question 4:

Solution:

Steps of construction:

Step 1: Draw BC = 5cm

Step 2: Make an $\angle BCD = 120^{\circ}$

Step 3: With C as Centre draw an arc of 4.8 cm, name that point as D

Step 4: With D as Centre draw an arc 5cm, name that point as A

Step 5: With B as Centre draw another arc 4.8 cm cutting the previous arc at A.

Step 6: Join AD and AB

then, ABCD is a required parallelogram.

Question 5:

Solution:

We know that the diagonals of a parallelogram bisect each other.

Steps of construction:

Step 1: Draw AB = 4.4cm

Step 2: With A as the Centre and radius 2.8cm, draw an arc.

Step 3: With B as the Centre and radius 3.5cm, draw another arc, cutting the previous arc at point O.

Step 4: Join OA and OB.

Step 5: Produce OA to C, such that OC = AO. Produce OB to D, such that OB = OD.

Step 6: Join AD, BC, and CD.

Thus, ABCD is the required parallelogram. The other side is 4.5 cm in length.

Question 6:

Solution:

Steps of construction:

Step 1: Draw AB = 6.5cm

Step 2: Draw a perpendicular at point A. Name that ray as AX. From point A, draw an arc of length 2.5 cm on the ray AX and name that point as L.

Step 3: On point L, make a perpendicular. Draw a straight line YZ passing through L, which is perpendicular to the ray AX.

Step 4: Cut an arc of length 3.4 cm on the line YZ and name it as C.

Step 5: From point C, cut an arc of length 6.5 cm on the line YZ. Name that point as D.

Step 6: Join BC and AD.

Therefore, quadrilateral ABCD is a parallelogram.

Question 7:

Solution:

We know that the diagonals of a parallelogram bisect each other.

Steps of construction:

Step 1: Draw AC = 3.8cm

Step 2: Bisect AC at O.

Step 3: Make $\angle COX = 60^{\circ}$

Produce XO to Y.

Step 4:

$$OB = \frac{1}{2} (4.6) \text{ cm}$$

OB=2.3 cm

And OD =
$$\frac{1}{2}$$
 (4.6) cm

OD=2.3 cm

Step 5: Join AB, BC, CD and AD.

Thus, ABCD is the required parallelogram.

Question 8:

Solution:

Steps of construction:

Step 1: Draw AB = 11cm

Step 2: Make $\angle A = 90^{\circ}$

$$\angle B = 90^{\circ}$$

Step 3: Draw an arc of 8.5 cm from point A and name that point as D.

Step 4: Draw an arc of 8.5 cm from point B and name that point as C.

Step 5: Join C and D.

Thus, ABCD is the required rectangle.

Question 9:

Solution:

All the sides of a square are equal.

Steps of construction:

Step 1: Draw AB = 6.4cm

Step 2: Make $\angle A = 90^{\circ}$

$$\angle B = 90^{\circ}$$

Step 3: Draw an arc of length 6.4 cm from point A and name that point as D.

Step 4: Draw an arc of length 6.4 cm from point B and name that point as C.

Step 5: Join C and D.

Thus, ABCD is a required square.

Question10:

Solution:

We know that the diagonals of a square bisect each other at right angles.

Steps of construction:

Step 1: Draw AC = 5.8 cm

Step 2: Draw the perpendicular bisector XY of AC, meeting it at O.

Step 3:

: From O:

$$OB = \frac{1}{2} (5.8) \text{ cm} = 2.9 \text{ cm}$$

$$OD = \frac{1}{2} (5.8) \text{ cm} = 2.9 \text{ cm}$$

Step 4: Join AB, BC, CD and DA.

ABCD is the required square.

Question 11:

Solution:

Steps of construction:

Step 1: Draw QR = 3.6cm

Step 2: Make $\angle Q = 90^{\circ} \angle R = 90^{\circ}$

Step 3:

$$PR^2 = PQ^2 + QR^2$$

$$6^2 = PQ^2 + 3.6^2$$

$$PQ^2 = 36 - 12.96$$

$$PQ^2 = 23.04$$

$$PQ = \sqrt{23.04}$$

$$PQ = 4.8 \text{ cm}$$

Step 3: Draw an arc of length 4.8 cm from point Q and name that point as P.

Step 4: Draw an arc of length 6 cm from point R, cutting the previous arc at P.

Step 5: Join PQ

Step 6: Draw an arc of length 4.8 cm from point R.

From point P, draw an arc of length 3.6 cm, cutting the previous arc. Name that point as S.

Step 7: Join P and S.

Thus, PQRS is the required rectangle. The other side is 4.8 cm in length.

Question 12:

Solution:

We know that the diagonals of a rhombus bisect each other.

Steps of construction:

Step 1: Draw AC = 6cm

Step 2: Draw a perpendicular bisector (XY) of AC, which bisects AC at O.

Step 3:

$$OB = \frac{1}{2} (8) \text{ cm}$$

$$OB = 4cm$$

And OD =
$$\frac{1}{2}$$
 (8) cm

Draw an arc of length 4 cm on OX and name that point as B.

Draw an arc of length 4 cm on OY and name that point as D.

Step 4: Join AB, BC, CD and AD.

Thus, ABCD is the required rhombus, as shown in the figure.

Question 13:

Solution:

Steps of construction:

Step 1: Draw AB = 4cm

Step 2: With B as the Centre, draw an arc of 4 cm.

Step 3: With A as the Centre, draw another arc of 6.5 cm, cutting the previous arc at C.

Step 4: Join AC and BC.

Step 5: With C as the Centre, draw an arc of 4 cm.

Step 6: With A as the Centre, draw another arc of 4 cm, cutting the previous arc at D.

Step 7: Join AD and CD.

ABCD is the required rhombus.

Question14:

Solution:

Steps of construction:

Step 1: Draw AB = 7.2 cm

Step2: Draw $\angle ABY = 60^{\circ}$

 $\angle BAX = 120^{\circ}$

Sum of the adjacent angles is 180°

 $\angle BAX + \angle ABY = 180^{\circ}$

 $\angle BAX = 180^{\circ} - 60^{\circ}$

 $= 120^{\circ}$

Step 3:

Set off AD (7.2 cm) along AX and BC (7.2 cm) along BY.

Step 4: Join C and D.

Then, ABCD is the required rhombus.

Question 15:

Solution:

Steps of construction:

Step 1: Draw AB = 6 cm

Step 2: Make $\angle ABX = 75^{\circ}$

Step 3: With B as the Centre, draw an arc at 4cm. Name that point as C.

Step 4: AB || CD

 $\therefore \angle ABX + \angle BCY = 180^{\circ}$

 $\angle BCY = 180^{\circ} - 75^{\circ} = 105^{\circ}$

Make \angle BCY = 105°

At C, draw an arc of length 3.2 cm

Step 5: Join A and D.

Thus, ABCD is the required trapezium.

Question 16:

Solution:

Steps of construction:

Step1: Draw AB equal to 7 cm.

Step2: Make an angle, $\angle ABX$, equal to 60°

Step3: With B as the Centre, draw an arc of 5 cm. Name that point as C. Join B and C.

Step4: AB ∥ DC

 $\therefore \angle ABX + \angle BCY = 180^{\circ}$

 $\angle BCY = 180^{\circ} - 60^{\circ}$

$$= 120^{\circ}$$

draw an angle, $\angle BCY$, equal to 120°

Step4: With A as the Centre, draw an arc of length 6.5 cm, which cuts CY. Mark that point as D. Step5: Join A and D.

Thus, ABCD is the required trapezium.

Test paper 17 Page No.: 202

A. Question 1:

Solution:

(i) Open curve: An open curve is a curve where the beginning and end points are different.

Example: Parabola

(ii) Closed Curve: A curve that joins up so there are no end points.

Example: Ellipse

(iii) Simple closed curve: A closed curve that does not intersect itself.

Question 2:

Solution:

Let the angles be $(x)^{\circ}$, $(2x)^{\circ}$, $(3x)^{\circ}$ and $(4x)^{\circ}$

Sum of the angles of a quadrilateral is 360°

$$x + 2x + 3x + 4x = 360^{\circ}$$

$$10x = 360^{\circ}$$

$$x = \frac{360}{10}$$

$$x = 36^{\circ}$$

$$(2x)^{\circ} = (2 \times 36)^{\circ} = 72^{\circ}$$

$$(3x)^{\circ} = (3 \times 36)^{\circ} = 108^{\circ}$$

$$(4x)^{\circ} = (4 \times 36)^{\circ} = 144^{\circ}$$

The angles of the quadrilateral are 36° , 72° , 108° , and 144°

Question 3:

Solution:

Let the two adjacent angles of the parallelogram be $(2x)^o$ and $(3x)^o$

Sum of any two adjacent angles of a parallelogram is 180°

$$\therefore 2x + 3x = 180^{\circ}$$

$$5x = \frac{180^{\circ}}{5}$$

$$x = 36^{\circ}$$

$$(2x)^o = (2 \times 36)^o = 72^o$$

$$(3x)^{\circ} = (3 \times 36)^{\circ} = 108^{\circ}$$

Measures of the angles are 72° and 108° .

Question 4:

Solution:

Let the length be 4x cm and the breadth be 5x cm.

Perimeter of the rectangle = 180 cm

Perimeter of the rectangle = 2(1 + b)

$$2(1+b) = 180$$

$$2(4x + 5x) = 180$$

$$2(9x) = 180$$

$$18x = 180$$

$$x = 10$$

Length =
$$4x \text{ cm} = 4 \text{ x } 10 = 40 \text{ cm}$$

Breadth =
$$5x \text{ cm} = 5 \text{ x } 10 = 50 \text{ cm}$$

Question 5:

Solution:

Rhombus is a parallelogram.

Consider:

 \triangle AOB and \triangle COD

 $\angle OAB = \angle OCD$ (alternate angle)

 $\angle ODC = \angle OBA$ (alternate angle)

 $\angle DOC = \angle AOB$ (vertically opposite angles)

 $\triangle AOB \cong COB$

 \therefore AO = CO

OB = OD

Therefore, the diagonals bisects at O.

Now, let us prove that the diagonals intersect each other at right angles.

Consider \triangle COD and \triangle COB:

CD = CB (all sides of a rhombus are equal)

CO = CO (common side)

OD = OB (point O bisects BD)

 $\therefore \triangle COD \cong \triangle COB$

 $\therefore \angle COD = \angle COB$ (corresponding parts of congruent triangles)

Further, $\angle COD + \angle COB = 180^{\circ}$ (linear pair)

$$\therefore$$
 \angle COD = \angle COB = 90°

It is proved that the diagonals of a rhombus are perpendicular bisectors of each other.

Question 6:

Solution:

All the sides of a rhombus are equal in length.

The diagonals of a rhombus intersect at 90°

the diagonal and the side of a rhombus form right triangles.

In $\triangle AOB$:

$$AB^2 = AO^2 + OB^2$$

$$AB^2 = 8^2 + 6^2$$

$$AB^2 = 64 + 36$$

$$AB^2 = 100$$

$$AB = \sqrt{100}$$

$$AB = 10 \text{ cm}$$

Therefore, the length of each side of the rhombus is 10 cm.

B. Mark (\checkmark) against the correct answer in each of the following: Ouestion 7:

Solution:

Opposite angles of a parallelogram are equal.

$$\therefore 3x - 2 = 50 - x$$

$$3x + x = 50 + 2$$

$$4x = 52$$

$$x = \frac{52}{4}$$

$$x = 13$$

Therefore, the first and the second angles are:

$$(3x-2)^{\circ} = (2 \times 13 - 2)^{\circ} = 37^{\circ}$$

$$(50-x)^{\circ} = (50-13)^{\circ} = 37^{\circ}$$

Sum of adjacent angles in a parallelogram is 180°

Adjacent angles = $180^{\circ} - 37^{\circ} = 143^{\circ}$

Question 8:

Solution:

(d) none of the these

Let the angles be $(x)^{\circ}$, $(3x)^{\circ}$, $(7x)^{\circ}$ and $(9x)^{\circ}$

Sum of the angles of the quadrilateral is 360°

$$x + 3x + 7x + 9x = 360^{\circ}$$

$$20x = 360^{\circ}$$

$$x = \frac{360^{\circ}}{20}$$

$$x = 18$$

Angles:
$$(3x)^{o} = (3 \times 18)^{o} = 54^{o}$$

 $(7x)^{o} = (7 \times 18)^{o} = 126^{o}$
 $(9x)^{o} = (9 \times 18)^{o} = 162^{o}$

Question 9:

Solution:

(b) 6 cm

Let the breadth of the rectangle be x cm.

Diagonal = 10 cm

Length= 8 cm

The rectangle is divided into two right triangles.

$$(Diagonal)^2 = (Length)^2 + (Breadth)^2$$

$$10^2 = 8^2 + x^2$$

$$100-64=x^2$$

$$x^2 = 36$$

$$x = \sqrt{36}$$

$$x = 6 \text{ cm}$$

Breadth of the rectangle = 6 cm

Question 10:

Solution:

(d)
$$x = 8$$

All sides of a square are equal.

PQ = QR

$$(2x + 3) = (3x - 5)$$

 $2x - 3x = -5 - 3$
 $x = 8$ cm

Question 11:

Solution:

(d) 90°

We know that the opposite sides and the angles in a parallelogram are equal. Also, its adjacent sides are supplementary, i.e. sum of the sides is equal $to180^{\circ}$.

Now, the bisectors of these angles form a triangle, whose two angles are:

$$\frac{A}{2}$$
 And $\frac{B}{2}$ or $\frac{A}{2} = (90 - \frac{A}{2})$

Sum of the angles of a triangle is 180°

$$\frac{A}{2} + 90^{\circ} - \frac{\angle A}{2} + \angle O = 180^{\circ}$$

$$\angle O = 180^{\circ} - 90^{\circ}$$

$$\angle O = 90^{\circ}$$

Hence, the two bisectors intersect at right angles.

Question 12:

Solution:

(c)9

Hexagon has six sides.

Number of diagonals = $\frac{n(n-3)}{2}$ (where n is the number of sides) = $\frac{6(6-3)}{2}$

Question 13:

Solution:

(b) 8

Interior angle =
$$\frac{180(n-2)}{n}$$
$$135 = \frac{180(n-2)}{n}$$
$$135n = 180n - 360$$
$$360 = 180n - 135n$$

$$n = 8$$

It has 8 sides.

C.

Question 14:

Solution:

(i)

Solution: 360°

(ii)

Solution: $(n-2) \times 180^{\circ}$

(iii)

Solutions: $\frac{n(n-3)}{2}$

Question 15:

(i)

Solution: Sum of all exterior angles of a regular polygon is 360°.

(ii)

Solution: Sum of all interior angles of a polygon is (n-2) x 180° where n is the number of sides

Question 16:

(i)

Solution: Octagon has 8 sides.

 $\therefore \text{ Interior angle} = \frac{180^{\circ} n - 360^{\circ}}{n}$

Interior angle = $\frac{(180^{\circ} \times 8) - 360^{\circ}}{8} = 135^{\circ}$

(ii)

Solution: Sum of the interior angles of a regular hexagon = $(6 - 2) \times 180^{\circ} = 720^{\circ}$

(iii)

Solution: each exterior angle of a regular polygon is 60° .

$$\therefore \frac{360^{\circ}}{60^{\circ}} = 6$$

Therefore, the given polygon is a hexagon.

(iv)

Solution: If the interior angle is 108°

Then the exterior angle will be 72° (Interior and exterior angles are supplementary) Sum of the exterior angles of a polygon is 360° .

Let there be n sides of a polygon.

$$72n = 360$$

$$n = \frac{360}{72}$$

$$n = 5$$

Since it has 5 sides, the polygon is a pentagon.

(v)

Solution: A pentagon has 5 diagonals.

If n is the number of sides, the number of diagonals = $\frac{n(n-3)}{2}$ = $\frac{5(5-3)}{2}$ = 5

D. Question 17:

Solution:

(i)

Solution: F

The diagonals of a parallelogram need not be equal in length.

(ii)

Solution: F

The diagonals of a rectangle are not perpendicular to each other.

(iii)

Solution: T

(iv)

Solution: T

Adjacent sides of a kite are equal and this is also true for a rhombus. Additionally, all the sides of a rhombus are equal to each other.

E. Question 18:

Solution:

Steps of construction:

Step 1: Take PQ = 4.2 cm

Step 2: Make $\angle XPQ=120^{\circ}$, $\angle YQP=60^{\circ}$

Step 3: Cut an arc of length 5 cm from point Q. Name that point as R.

Step 4: From P, make an arc of length 6 cm. Name that point as S.

Step 5: Join P and S.

Thus, PQRS is a quadrilateral.

