Başarım Metrikleri

Başarım Metrikleri

 Problemlerin çözümü genellikle pek çok farklı algoritmayı farklı parametrelerle yeniden denemeyi içerir.

Bunların arasından en iyisini nasıl seçebiliriz?

Neye göre "en iyi"?

Başarım Metrikleri

Accuracy (kesinlik):

a = Doğru tahmin edilen test örneği sayısı b = Yanlış tahmin edilen test örneği sayısı

$$accuracy = \frac{a}{a+b}$$

Örnek

- 50 soruluk bir sınav
- 35 doğru cevap, 15 yanlış cevap
- accuracy = 35/50 = 0.7

Hata Tipleri

- False Positives (Hatalı Pozitif)
 - Sistem DOĞRU tahmin etti ama YANLIŞ olmalıydı.
 - Yanlış alarmlar.
 - Type I Error (istatistik)
 - Örnek: Çoban köylülere kurt geliyor dedi, ama kurt gelmedi.
- False Negatives (Hatalı Negatif)
 - Sistem YANLIŞ tahmin etti ama DOĞRU olmalıydı.
 - Kaçırılan örnekler.
 - Type II Error (istatistik)
 - Örnek: Çoban köylülere kurt gelmiyor dedi, ama kurt geldi.
- True Positives (Doğru Pozitif), True Negatives (Doğru Negatif)

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen	Class 1	21	6
Sınıf	Class 2	7	41

TP =

TN =

FP =

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen	Class 1	21	6
Sınıf	Class 2	7	41

TP = 21

TN =

FP =

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen	Class 1	21	6
Sınıf	Class 2	7	41

TP = 21

TN = 41

FP =

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen	Class 1	21	6
Sınıf	Class 2	7	41

TP = 21

TN = 41

FP = 6

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen	Class 1	21	6
Sınıf	Class 2	7	41

TP = 21

TN = 41

FP = 6

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen	Class 1	21	6
Sınıf	Class 2	7	41

$$accuracy = \frac{21+41}{21+6+7+41} = \frac{62}{75}$$

		Gerçek Sınıf	
		Class 1 (POS)	Class 2 (NEG)
Tahmin Edilen	Class 1 (POS)	21 (TP)	6 (FP)
Sınıf	Class 2 (NEG)	7 (FN)	41 (TN)

$$TP = 21$$

$$FP = 6$$

$$accuracy = \frac{21+41}{21+6+7+41} = \frac{62}{75}$$

- Bir binary-classification problemi düşünün:
 - class 1 test örneği sayısı = 10
 - o class 2 test örneği sayısı = 9990
- Bütün örnekleri class 2 tahmin edersek accuracy değeri kaç olur?

Bir binary-classification problemi düşünün:

- class 1 test örneği sayısı = 10
- o class 2 test örneği sayısı = 9990

Bütün örnekleri class 2 tahmin edersek accuracy değeri kaç olur?

- o 9990 / 10000 = 99.9%
- Model başarımı çok yüksek gibi duruyor, fakat aslında hiçbir şey öğrenmiyor.
- Class 1 asla doğru tahmin edilmeyecek.
- o Böyle bir durumda accuracy değeri yanlış yönlendirmeye müsait.
- Örnek durum?

- Bir binary-classification problemi düşünün:
 - class 1 test örneği sayısı = 10
 - o class 2 test örneği sayısı = 9990
- Bütün örnekleri class 2 tahmin edersek accuracy değeri kaç olur?
 - o 9990 / 10000 = 99.9%
 - Model başarımı çok yüksek gibi duruyor, fakat aslında hiçbir şey öğrenmiyor.
 - Class 1 asla doğru tahmin edilmeyecek.
 - o Böyle bir durumda accuracy değeri yanlış yönlendirmeye müsait.
 - Örnek durum?
- Kanser hastalığı tespiti. Kişi geçmişine dayanarak kimin kanser olabileceğini tahmin edin. class 1 = kanser, class 2 = sağlıklı.

		Gerçek Sınıf	
		Class 1 Class 2	
Tahmin Edilen	Class 1	0	0
Sınıf	Class 2	10	9990

$$accuracy = \frac{0 + 9990}{0 + 0 + 9990 + 10} = 99.9\%$$

Precision, Recall, F-measure

- Precision (hassaslık): TP değerinin bütün pozitif tahminlere oranı
- Recall (Sensitivity, TPR, duyarlılık):
 TP değerinin bütün pozitif örneklere oranı
- Specificity (TNR): TN değerinin bütün negatif örneklere oranı
- F-skoru: Precision ve Recall değerlerinin harmonik ortalaması.

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P + R}$$

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin	Class 1	1	0
Edilen Sınıf	Class 2	9	90

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P+R}$$

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen Sınıf	Class 1	1	0
	Class 2	9	90

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P + R}$$

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin	Class 1	10	50
Edilen Sınıf	Class 2	0	40

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P+R}$$

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen Sınıf	Class 1	10	50
	Class 2	0	40

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P + R}$$

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen Sınıf	Class 1	9	1
	Class 2	1	89

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P+R}$$

		Gerçek Sınıf	
		Class 1	Class 2
Tahmin Edilen Sınıf	Class 1	9	1
	Class 2	1	89

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{2PR}{P + R}$$

- Bir binary-classification problemi düşünün.
 - Modeliniz (0,1) demek yerine bir olasılık dönüyor olsun.
 - Örnek 1: Yarın hava yağmurlu mu değil mi tahmin edilmeye çalışılıyor.
 Model yarın havanın yağışlı olma ihtimalinin 51% olduğunu söylüyor.
 - Örnek 2: Gelen bir mail spam mı değil mi tespit edilmeye çalışılıyor. Model bir mailin spam olma ihtimalinin 78% olduğunu söylüyor.
 - Sınıflandırma neye göre yapılabilir?

- Bir binary-classification problemi düşünün.
 - Modeliniz (0,1) demek yerine bir olasılık dönüyor olsun.
 - Örnek 1: Yarın hava yağmurlu mu değil mi tahmin edilmeye çalışılıyor.
 Model yarın havanın yağışlı olma ihtimalinin 51% olduğunu söylüyor.
 - Örnek 2: Gelen bir mail spam mı değil mi tespit edilmeye çalışılıyor. Model bir mailin spam olma ihtimalinin 78% olduğunu söylüyor.
 - Sınıflandırma neye göre yapılabilir?

Uygun bir threshold nasıl belirleriz? http://www.navan.name/roc/

P:		Gerçek Sınıf			
	R:		Spam	Not Spam	
Tahmin Edilen Sınıf	Spam				
	Not Spam				

Toplam 30 test örneği

• Actually not spar

Actually spam

P:		Gerçek Sınıf	
R:		Spam	Not Spam
Tahmin	Spam	7	1
Edilen Sınıf	Not Spam	4	18

- Actually not spar
- Actually spam

- Actually not spar
- Actually spam

P: 0.88 R: 0.64

Tahmin

Edilen Sınıf Spam

Not Spam

Gerçek Sınıf

Spam Not Spam

7 1

4

18

Actually not span
 Actually spam

	Threshold		
	NTNTNTNTNTNTNTNTNTNTNTNTNFNTNFNTNFPTP FP TP TP TP TP TP TP TP		
0.0	Output of Logistic Regression model 1.0		

Classification

Actually not spar

Actually spam

- Actually not spar
- Actually spam

0.0

1.0

P: 0.88 R: 0.64		Gerçek Sınıf	
		Spam	Not Spam
Tahmin	Spam	7	1
Edilen Sınıf	Not Spam	4	18

P:		Gerçek Sınıf	
R:		Spam	Not Spam
Tahmin Edilen Sınıf	Spam		
	Not Spam		

0.0

1.0

P: 0.88 R: 0.64		Gerçek Sınıf	
		Spam	Not Spam
Tahmin	Spam	7	1
Edilen Sınıf	Not Spam	4	18

P: R:		Gerçek Sınıf	
		Spam	Not Spam
Tahmin Edilen Sınıf	Spam	8	2
	Not Spam	3	17

0.0

1.0

P: 0.88 R: 0.64		Gerçek Sınıf	
		Spam	Not Spam
Tahmin	Spam	7	1
Edilen Sınıf	Not Spam	4	18

P: 0.80 R: 0.73		Gerçek Sınıf	
		Spam	Not Spam
Tahmin	Spam	8	2
Edilen Sınıf	Not Spam	3	17

0.0

1.0

P: 0.88		Gerçek Sınıf	
R: 0.64		Spam	Not Spam
Tahmin Edilen	Spam	7	1
Sınıf	Not Spam	4	18

P: 0.80 R: 0.73		Gerçek Sınıf	
		Spam	Not Spam
Tahmin Edilen Sınıf	Spam	8	2
	Not Spam	3	17

P: R:		Gerçek Sınıf	
		Spam	Not Spam
Tahmin Edilen Sınıf	Spam	9	3
	Not Spam	2	16

ROC Curve

ROC Curve: receiver operating characteristic curve (alıcı işletim karakteristiği eğrisi)

- Bir sınıflandırma modelinin bütün sınır değerlerindeki performansını gösteren eğriye denir. TPR ve FPR değerleri kullanılarak oluşturulur.
- **TPR (True Positive Rate):** TP / (TP + FN)
- TNR (True Negative Rate): TN / (FP + TN)

ROC Curve

ROC Curve: receiver operating characteristic curve (alıcı işletim karakteristiği eğrisi)

- Bir sınıflandırma modelinin bütün sınır değerlerindeki performansını gösteren eğriye denir. TPR ve FPR değerleri kullanılarak oluşturulur.
- TPR (True Positive Rate): TP / (TP + FN)
- TNR (True Negative Rate): TN / (FP + TN)

ROC Curve

ROC Curve: receiver operating characteristic curve (alıcı işletim karakteristiği eğrisi)

- Bir sınıflandırma modelinin bütün sınır değerlerindeki performansını gösteren eğriye denir. TPR ve FPR değerleri kullanılarak oluşturulur.
- TPR (True Positive Rate): TP / (TP + FN)
- TNR (True Negative Rate): TN / (FP + TN)

PR Curve

PR Curve: Precision-Recall Curve

- Farklı eşik değerleri için P-R ilişkisini görselleştiren eğridir.
- AUC_pr: PR Curve altında kalan alanı ifade eder.

PR Curve imbalanced datasetlerde azınlık pozitif için daha hassastır.

