

Kyuseok Shim Seoul National University http://ee.snu.ac.kr/~shim

Frequent Pattern Mining

- Association rules
 - Apriori
 - FP-tree
- Sequential patterns
 - Apriori
 - PrefixSpan

Association Rules

구매 번호	구매 상품들
1	{라면, 우유, 오렌지 쥬스, 커피}
2	{라면, 우유, 소시지}
3	{라면, 우유, 커피}
4	{오렌지 쥬스, 비누, 샴푸}

- 데이터 상호간의 연관 규칙을 찾아내는 기술
- '{라면, 우유}->{커피}'
 - 라면과 우유를 산 사람은 커피도 같이 산다
 - 지지도 (support)
 - 전체 트랜잭션의 중에서 그 규칙을 가지고 있는 트랜잭션의 퍼센트
 - 50% 네 가지 트랜잭션 중 1번과 3번 소비자의 구매한 물건들에 들어 있는 규칙
 - 신뢰도 (confidence)
 - 규칙의 왼쪽에 있는 것들을 산 사람들 중에서 오른쪽에 있는 물건들을 모두 산 사람들의 퍼센트
 - 66.7% 라면과 우유를 산 사람들은 세 사람인데 그 중에서 커피를 산 사람은 두 사람이므로

사용 사례

- 고객들의 물품 구매 패턴을 분석한 결과에 기반하여
 - 연관 물품 쿠폰이나 할인 행사 제공
 - 온라인 서점에서 다른 구매자들이 구매한 책 정보를 함께 제 공
 - 더 높은 가격의 상품 추천 (up-selling)
 - 백화점의 Package 구매 상품 조합 결정, 물건 진열 순서 결 정 등
 - 상품 카탈로그 디자인
 - 백화점에서는 물건 진열 (Shelf planning)

사용 사례

- 같이 구매하는 경우가 많을 때 그 중의 어느 물건을 사면 다른 물건을 추천
 - Package로 물건 몇 개를 함께 포장해서 팔 때에 product mix를 결정함
 - 소비자의 그룹에 따른 brand royalty를 알아내고 상품추천
 - Cross-selling (교차 판매) 서로 다른 카타고리 상품을 추천하여 판매
 - 자동차 보험과 생명보험을 함께 판매하는 온라인 보험회사에서 10 억 짜리 생명보험을 가입한 사람에게 자동차보험 대물배상 3억원 추천
 - 11번가에서 디지털카메라를 구매할 때에 명품지갑 추천
 - Up-selling 1 억짜리 생명보험을 구매할 때에 다른 고객들의 빈 번한 패턴을 이용 10억짜리를 구매할 고객으로 판단되어 10억 짜 리 생명보험을 추천함

사용 사례

- Fraud detection 기존의 데이터에서 룰을 만든 후에 그 룰에 나타나지
 않는 패턴으로 유저가 행동할 때 flag를 세팅함
 - 의사의 치료나 처방 과다하거나 불필요한 치료, 검사 또는 처방을 함
 - 의사들의 허위보험 청구 overbilling (더 비싸게 청구), up-coding (10cm 꼬맨 것을 20cm로 청구)
 - 컴퓨터의 해킹탐지
 - 관공서에 사회보장제도로 의한 여러 가지 돈을 청구할 때에 돈이 여기저기로 세어나가는데 이런 것들을 찾아냄
- 시스템 failure 예측 네트웍의 정보를 보고 네트웍 failure를 예측하여 서버를 늘리거나 회선을 늘려서 문제가 없도록 함
- 서브그래프 마이닝
 - Weblog를 이용하여 navigation pattern 을 알아냄 set으로 취급함
 - 화학구조를 분석함

Association Rules

- Given:
 - A database of customer transactions
 - Each transaction is a set of items
- Find all rules X => Y that correlate the presence of one set of items X with another set of items Y
 - Example: 98% of people who purchase <u>diapers and baby</u> food also buy <u>beer</u>.
 - Any number of items in the consequent/antecedent of a rule
 - Possible to specify constraints on rules (e.g., find only rules involving expensive imported products)

Support and Confidence

X → Y [support, confidence]

지지도(support)=
$$\frac{\text{\# of transactions containing all the items in } X \cup Y}{\text{total \# of transactions in the database}}$$

신뢰도(confidence) =
$$\frac{\text{\# of transactions that contain both } X \text{ and } Y}{\text{\# of transactions containing } X}$$

- For minimum support (최소 지지도) = 50%,
 minimum confidence (최손 신뢰도) = 50%
 - B => C with 50% support and 66% confidence

TID	Items
10	a, c, d
20	b, c, e
30	a, b, c, e
40	b, e

Association Rule 찾는 방법

- 문제를 해결하기 위하여 2 개의 스텝으로 나누어 처리 함
 - 스텝 1: Find all (frequent) itemsets that have minimum support
 - Most expensive phase
 - Lots of research
 - 스텝 2: Use the frequent itemsets to generate the desired rules
 - Generation is straight forward

Association Rule 찾는 방법

TID	Items
10	a, c, d, f
20	b, c, e
30	a, b, c, e,
40	b, e
50	a, f

최소지지도=40% 최소신뢰도 = 100%

스텝 1

■ 최소지지도 를 만족하는 frequent itemset들을 모두 찾음

Itemset	Sup	Itemset	Sup
а	3	a,c	2
b	3	a,f	2
С	3	b,c	2
е	3	b,e	3
f	2	c,e	2

Itemset	Sup
b,c,e	2

스텝 2

- 모든 frequent itemset 으로부 터 를 생성
- {b,c,e} 에서 아래 룰들을 다 만든 후에 신뢰도를 체크함
 - $\{b\}->\{c,e\}$ (X)
 - $\{c\}->\{b,e\}$
 - $\{e\}->\{b,c\}$
 - {b,c}->{e} (O)
 - $\{b,e\}->\{c\}$
 - $\{c,e\}->\{b\}$ (O)

Itemsets & Counts

TID	Items	
10	A,C,D	S
20	B,C,E	
30	A,B,C,E	
40	B,E	

Itemset	Count
Α	1
С	1
D	1
A,C	1
A,D	1
C,D	1
A,C,D	1

Itemsets & Counts

TID	Items	
10	A,C,D	
20	B,C,E	S
30	A,B,C,E	
40	B,E	

Itemset	Count
Α	1
С	2
D	1
A,C	1
A,D	1
C,D	1
A,C,D	1
В	1
Е	1
В,С	1
B,E	1
C,E	1
B,C,E	1

Itemsets & Counts

TID	Items	
10	A,C,D	
20	B,C,E	
30	A,B,C,E	
40	B,E	

Itemset	Count
Α	2
С	3
D	1
A,C	2
A,D	1
C,D	1
A,C,D	1
В	2
Е	2
В,С	2
B,E	2
C,E	2 2 2
B,C,E	2

Itemset	Count
A,B	1
A,E	1
A,B,C	1
A,B,E	1
A,B,C,E	1

Itemsets & Counts

TID	Items
10	A,C,D
20	B,C,E
30	A,B,C,E
40	B,E

Itemset	Count
Α	2
С	3
D	1
A,C	2
A,D	1
C,D	1
A,C,D	1
В	3
Е	3
В,С	2
B,E	2 3
C,E	2
B,C,E	2

Itemset	Count
A,B	1
A,E	1
A,B,C	1
A,B,E	1
A,B,C,E	1

Frequent itemsets

Transactions

TID	Items
10	A,C,D
20	B,C,E
30	A,B,C,E
40	B,E

Itemset	Count
Α	2
С	3
D	1
A,C	2
A,D	1
C,D	1
A,C,D	1
В	3
Е	3
В,С	2
B,E	3
C,E	2
B,C,E	2

Itemset	Count
A,B	1
A,E	1
A,B,C	1
A,B,E	1
A,B,C,E	1

We may need 2ⁿ itemset entries for counts!

Can we do better?

- 그냥 데이터를 보고 나오는 모든 상품들의 부분집합을 다 count 하면 exponential 한 개수의 부분집합을 count 하게 됨
- 모든 부분집합을 count 안 하는 방법이 있을까?
- Key Observation
 - Every subset of a frequent item set is also frequent item set.
 - If {beer, diaper, nuts} is frequent, {beer, diaper} must be frequent.
- If there is any item set which is infrequent, its superset will not be generated!
 - A powerful candidate set pruning technique.

Apriori: A Candidate Generationand-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can b generated

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

An Apriori Example

The Apriori Algorithm

- C_k: Candidate itemset of size k
- F_k: frequent itemset of size k
- $F_1 = \{\text{frequent items}\};$
- for $(k = 1; F_k != \emptyset; k++)$ do
 - C_{k+1} = candidates generated from F_k ;
 - for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
 - F_{k+1} = candidates in C_{k+1} with min_support
- return ∪_k F_k;

Discovering Rules

Naïve Algorithm:

```
for each frequent itemset f do
    for each subset c of f do
        if (support(f)/support(f-c) ≥ minconf) then
            output the rule (f-c)→ c,
            with confidence = support(f)/support(f-c)
            and support = support(f)
```

Discovering Rules

- Consider the rule (f-c)→c
- Now, if c1 is a subset of c
 - f-c1 is a superset of C
 support(f-c1) ≤ support(f-c)
 support(f)/support(f-c1) ≥ support(f)/support(f-c)
 conf((f-c1)→c1) ≥ conf((f-c)→c)
- So, if a consequent c generates a valid rule, so do all subsets of c
- Can use the apriori candidate generation algorithm to limit number of possible rules tested.
- Consider a frequent itemset ABCDE
 - If ACDE→B and ABCE→D are the only one-consequent rules with minimum confidence, then ACE → BD is the only other rule that needs to be ested.

Generalized Association Rules

Hierarchies over items (e.g. UPC codes)

- Associations across hierarchies:
 - The rule clothes => footwear may hold even if clothes => shoes do not hold
- [Srikant, Agrawal 95]
- [Han, Fu 95]

Quantitative Association Rules

[Srikant, Agrawal 96]

RecordID	Age	Married	NumCars
100	23	No	1
200	25	Yes	1
300	29	No	0
400	34	Yes	2
500	38	Yes	2

- Quantitative attributes (e.g.age,income)
- Categorical attributes (e.g.make of car)

min support = 40% min confidence = 50%

\	Sample Rules	Support	Confidence
	<age:3039> and <married: yes=""> ==> <numcars:2></numcars:2></married:></age:3039>	40%	100%
	<numcars: 01=""> ==> <married: no=""></married:></numcars:>	40%	66.70%

from [Srikant, Agrawal 96]

Temporal Association Rules

- 데이터에 있는 시간 정보 까지 이용함
- Example:
 - {diaper} -> {beer} (support = 5%, confidence = 87%)
 - 이 룰의 지지도가 평일 6 시에서 9 PM 까지 시간에 는 25%로 점프함
- Problem: How to find rules that follow interesting user-defined temporal patterns
- 각각의 시간마다 모든 룰을 일단 다 찾아 내는 것보다 더 효율적인 알고리즘을 만들어 내는 것이 Challenge임
- [Ozden, Ramaswamy, Silberschatz 98]
- [Ramaswamy, Mahajan, Silberschatz 98]

FP-Tree Algorithm

 Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without Candidate Generation In ACM SIGMOD 2000

Why FP-Tree and not Apriori?

- Apriori works well except when:
 - Lots of frequent patterns
 - Big set of items
 - Low minimum support threshold
 - Long patterns
- Why: Candidate sets become huge
 - Discovering pattern of length 100 requires at least 2¹⁰⁰candidates (number of subsets)
 - Repeated database scans costly (long patterns)
- Multiple database scans are costly
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

FP-Tree: Ideas

- Avoid candidate set explosion by:
 - Compact tree data structure
 - Avoid repeated database scans
 - Restricted test-only
 - Apriori: restricted generation-and-test
 - Search divide-and-conquer based
 - Apriori: breadth-first

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Construct FP-tree from a Transaction Database

	(ordered) frequent items	Items bought	TID
	{ f, c, a, m, p}	{ f, a, c, d, g, i, m, p}	100
min_support = 3	{ f, c, a, b, m}	{a, b, c, f, l, m, o}	200
<u>-</u> 54pport 5	{ f, b}	{ <i>b, f, h, j, o, w</i> }	300
	{ <i>c, b, p</i> }	{ <i>b, c, k, s, p</i> }	400
Ω	$\{f, c, a, m, p\}$	{a, f, c, e, l, p, m, n}	500
\[\forall \tag{\chi}\]			

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

F-list=f-c-a-b-m-p

Example: Construction of FPtree

 $Min_sup = 3$

TID	ltems bought	(Ordered) frequent items
100	f, a, c, d, g, i, m, p	f, c, a, m, p
200	a, b, c, f, l, m, o	f, c, a, b, m
300	b, f, h, j, o	f, b
400	b, c, k, s, p	c, b, p
500	a, f, c, e, l, p, m, n	f, c, a, m, p

item	support
f	4
С	4
а	3
b	3
m	3
р	3

item- name	head of node-link
f	
С	
а	
b	
m	
р	

An Example of a complete FP-tree

Properties of FP-tree

- FP-tree contains the complete information of DB relevant to frequent pattern mining (completeness)
- A lot of sharing of frequent items makes the FP-tree more compact (compactness)
 - e.g. in MaxMiner experiment
 - The total # of occurrence of frequent items: 2,219,609
 - The total # of nodes in the FP-tree : 13,339

FP-Tree: Properties

- The FP-Tree contains everything from the database we need to know for mining frequent patterns
- The size of the FP-tree is ≤ Occurrence of frequent patterns in database

Properties of FP-tree

- FP-tree contains the complete information of DB relevant to frequent pattern mining (completeness)
- A lot of sharing of frequent items makes the FP-tree more compact (compactness)
 - e.g. in MaxMiner experiment
 - The total # of occurrence of frequent items: 2,219,609
 - The total # of nodes in the FP-tree : 13,339

Mining Frequent Patterns

- How do we get find all frequent patterns from the FP-Tree?
 - Intuitively:
 - 1)Find all frequent patterns containing one of the items
 - 2)Then find all frequent patterns containing the next item but NOT containing the previous one
 - 3)Repeat 2) until we're out of items

Conditional Pattern Base

A sub-pattern base under the condition of existence of a certain pattern

Example (min_sup = 3)

Nodes that contribute m's cond. pattern bases

m's cond. pattern bases

- (fca:2), (fcab:1)

Conditional FP-tree

- FP-tree on the conditional pattern bases of a certain item
- If FP-tree consists of single path, all the combinations of items in the path are the freq patterns
- Example (min_sup = 3)

m's cond. pattern bases - (fca:2), (fcab:1)

The nodes that contribute to m's cond. FP-tree m's cond. FP-tree

- (fca:3)

Example: FP-growth

Min_sup=3

item	conditional pattern base	conditional FP-tree	result freq. pattern
р	(fcam:2), (cb:1)	(c:3)	р, ср
m	(fca:2), (fcab:1)	(fca:3)	m, am, cm, fm, cam, fam, fcm, fcam
b	(fca:1), (f:1). (c:1)	none	b
а	(fc:3)	(fc:3)	a, ca, fa, fca
С	(f:3)	(f:3)	c, fc
f	none	none	f

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node-links and the *count* field)
- For Connect-4 DB, compression ratio could be over 100

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **...**
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
C	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3)

{} | | f:3

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefixpath P
- Mining can be decomposed into two parts

 $a_1:n_1$

 a_2 : n_2

- Reduction of the single prefix path into one node
- Concatenation of the mining results of the two parts

Mining Frequent Patterns With FP-trees

- 'Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition

Method

- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Scaling FP-growth by DB Projection

- FP-tree cannot fit in memory?—DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. Partition projection techniques
 - Parallel projection is space costly

Partition-based Projection

FP-Growth vs. Apriori: Scalability With the Support Threshold

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Leads to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Implications of the Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00)
- Mining sequential patterns
 - FreeSpan (KDD'00), PrefixSpan (ICDE'01)
- Constraint-based mining of frequent patterns
 - Convertible constraints (KDD'00, ICDE'01)
- Computing iceberg data cubes with complex measures
 - H-tree and H-cubing algorithm (SIGMOD'01)

MaxMiner: Mining Maxpatterns

- 1st scan: find frequent items
 - A, B, C, D, E
- 2nd scan: find support for

	AB,	AC,	AD,	AE,	ABCDE
_	• •- ,	· · · · /	,	· ·—,	

- BC, BD, BE, BCDE
- CD, CE, CDE, DE,

Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F

Potential

max-patterns

- Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
- R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98

Mining Frequent Closed Patterns: CLOSET

- Flist: list of all frequent items in support ascending order
 - Flist: d-a-f-e-c
- Divide search space
 - Patterns having d
 - Patterns having d but no a, etc.
- Find frequent closed pattern recursively
 - Every transaction having d also has cfa → cfad is a frequent closed pattern
- J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00.

				_
М	in	_su	n=	: ')
1 ' 1	'' ' <u>-</u>	_3u	יאי	_
			-	

TID	Items
10	a, c, d, e, f
20	a, b, e
30	c, e, f
40	a, c, d, f
50	c, e, f

CLOSET+: Mining Closed Itemsets by Pattern-Growth

- Itemset merging: if Y appears in every occurrence of X, then Y is merged with X
- Sub-itemset pruning: if Y ⊃ X, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned
- Hybrid tree projection
 - Bottom-up physical tree-projection
 - Top-down pseudo tree-projection
- Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels
- Efficient subset checking

CHARM: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}
- Eclat/MaxEclat (Zaki et al. @KDD'97), VIPER(P. Shenoy et al.@SIGMOD'00), CHARM (Zaki & Hsiao@SDM'02)

Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD'03)
 - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
 - Mine data sets with small rows but numerous columns
 - Construct a row-enumeration tree for efficient mining