WO 2020/021006 PCT/EP2019/070032 - 27 -

[0167] Le câble 50 selon le premier mode de réalisation présente un allongement structural As tel que $As \ge 1\%$, de préférence tel que $As \ge 1\%$, de préférence $As \ge 2,5\%$, plus préférentiellement $As \ge 3\%$ et encore plus préférentiellement $3\% \le As \le 5,5\%$ et ici égal à 4,8%. Comme décrit précédemment, on détermine la valeur As en traçant une courbe force-allongement du câble en appliquant la norme ASTM D2969-04 de 2014. On a représenté la courbe obtenue sur la figure 6. Puis, de cette courbe force allongement, on en déduit la variation de la dérivée de cette courbe force allongement. On a représenté sur la figure 7 la variation de cette dérivée en fonction de l'allongement. Le point de dérivée la plus élevée correspond alors à la valeur As.

5

10

15

20

25

30

35

[0168] L'angle d'hélice a de chaque élément filaire métallique est tel que $13^{\circ} \le a \le 21^{\circ}$. En l'espèce, tel que décrit précédemment, avec les caractéristiques du câble 50, on a $\alpha(1)=20,05^{\circ}$, $\alpha(2)=20,36^{\circ}$ et $\alpha(3)=\alpha=20,37^{\circ}$.

[0169] Chaque élément filaire métallique 54 présente un rayon de courbure d'hélice Rf tel que 2 mm \leq Rf \leq 7 mm, de préférence 2 mm \leq Rf \leq 5 mm et plus préférentiellement 3 mm \leq Rf \leq 5 mm. Le rayon de courbure Rf est calculé selon la relation Rf=P/(u x Sin(2a)). Comme ici P=8 mm et a=20,37°, Rf=3,90 mm.

[0170] Le diamètre d'hélice Dh de chaque élément filaire métallique est tel que 0,40 mm \leq Dh \leq 1,50 mm, de préférence 0,50 mm \leq Dh \leq 1,00 mm et plus préférentiellement 0,70 mm \leq Dh \leq 1,00 mm. Le diamètre d'hélice Dh est calculé selon la relation Dh=P x Tan(a) / $\tau \tau$. Comme ici P=8 mm et a=20,37°, Dh=0,95 mm.

[0171] Les éléments filaires métalliques 54 définissent une voûte interne 58 du câble 50 de diamètre Dv. Le diamètre de voûte Dv est calculé selon la relation Dv=Dh-Df dans laquelle Df est le diamètre de chaque élément filaire métallique et Dh le diamètre d'hélice. Avantageusement, Dv est tel que Dv \geq 0,46 mm et de préférence 0,46 mm \leq Dv \leq 0,70 mm. Ici, comme Dh=0,95 mm et Df=0,32 mm, on a Dv=0,63 mm.

[0172] Conformément à l'invention, on a $9 \le Rf / Df \le 30$, et de façon préférée $11 \le Rf / Df \le 19$. Ici Rf / Df=12,2. Conformément à l'invention, on a également $1,30 \le Dv / Df \le 2,1$, de préférence $1,30 \le Dv / Df \le 2,05$ et plus préférentiellement $1,30 \le Dv / Df \le 2,00$ et ici Dv / Df=1.97.

[0173] CABLE SELON UN DEUXIEME MODE DE REALISATION DE L'INVENTION

[0174] On va maintenant décrire un deuxième mode de réalisation d'un câble du pneumatique selon l'invention. Ce câble, désigné par la référence 50', est illustré sur les figures 8 et 9. Les éléments analogues à ceux du premier mode de réalisation représentés sur les figures précédentes sont désignés par des références identiques.

[0175] Le câble 50' comprend une unique couche 52 d'éléments filaires métalliques 54