AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (currently amended): A method of producing a gas sensor having a sensor element extending

in an axial direction and having a front end side to face a measured gas, a metallic housing

radially surrounding the sensor element and holding therein the sensor element, a tubular

metallic member provided to a rear end side of the metallic housing, at least one lead wire

extending from an inside to an outside of the tubular metallic member and having a conductor

wire electrically connected to the sensor element and an insulating film covering the conductor

wire, and an elastic seal member having a lead wire insertion hole into which the lead wire is

inserted, the methodeharacterized by comprising:

a disposition step of preparing the elastic seal member having a main body portion and a

smaller diameter portion smaller in outer diameter than the main body portion, disposing the

entire main body portion and a part of the smaller diameter portion inside the tubular metallic

member and allowing-the a remaining part of the smaller diameter portion to protrude outward

from a rear end of the tubular metallic member; and

a crimping step of crimping at least a portion of the tubular metallic member radially

inward and thereby compressively deforming the elastic seal member.

9

Appln. No.: National Stage of PCT/JP2005/000031

2. (currently amended): A method-of producing a gas sensor according to claim 1, wherein the elastic seal member protrudes outward from the rear end of the tubular metallic member along

the axial direction by 0.6 mm or more after the crimping step.

3. (currently amended): A method-of-producing a gas sensor according to claim 1-or 2, wherein

the smaller diameter portion of the elastic seal member before compressive deformation has a

nearly cylindrical section and a connecting section connecting between the cylindrical section

and the main body portion and increasing in outer diameter gradually toward the main body

portion.

4. (currently amended): A method of producing a gas sensor according to claim 1 or 2, wherein

the outer circumferential surface of the smaller diameter portion of the elastic seal member

before compressive deformation forms an inclined surface that tapers toward a rear end side.

5. (currently amended): A method-of-producing a gas sensor according to claim 3-or 4, wherein

the relation of $0.7 \le d/D < 1.0$ is satisfied where D is the inner diameter (unit: mm) of the rear end

of the tubular metallic member and d is the outer diameter (unit: mm) of the smaller diameter

portion of the elastic seal member corresponding in position to the rear end of the tubular

metallic member after the disposition step.

10

Appln. No.: National Stage of PCT/JP2005/000031

6. (currently amended): A method of producing a gas sensor having a sensor element extending in an axial direction and having a front end side to face a measured gas, a metallic housing radially surrounding the sensor element and holding therein the sensor element, a tubular metallic member provided to a rear end side of the metallic housing, at least one lead wire extending from an inside to an outside of the tubular metallic member and having a conductor wire electrically connected to the sensor element and an insulating film covering the conductor wire, and an elastic seal member having a lead wire insertion hole into which the lead wire is inserted, the methodeharacterized by comprising:

a disposition step of disposing the elastic seal member inside the tubular metallic member so that the a portion of the elastic seal member protrudes outward from a rear end of the tubular metallic member; and

a crimping step of crimping at least a portion of the tubular metallic member radially inward and thereby compressively deforming the elastic seal member;

wherein the crimping step is performed under a condition where a space between the rear end of the tubular metallic member and the outer circumferential surface of the elastic seal member corresponding in position to the rear end of the tubular metallic member is larger than a space between an inner circumferential surface of a portion to be crimped of the tubular metallic member and the outer circumferential surface of the elastic seal member corresponding in position to the portion to be crimped of the tubular metallic member.

7. (currently amended): A gas sensor comprising:

a sensor element extending in an axial direction and having a front end side to face a measured gas;

a metallic housing-radially surrounding the sensor element and holding therein the sensor element;

a tubular metallic member provided to a rear end side of the metallic housing;

at least one lead wire extending from an inside to an outside of the tubular metallic member and having a conductor wire electrically connected to the sensor element and an insulating film covering the conductor wire; and

an elastic seal member having a lead wire insertion hole into which the lead wire is inserted, whereincharacterized in that a space is provided between the rear end of the tubular metallic member and the outer circumferential surface of the elastic seal member.

- 8. (original): A gas sensor according to claim 7, wherein the elastic seal member includes a main body portion disposed inside the tubular metallic member and a smaller diameter portion disposed at the more rear end side than the main body portion and smaller in outer diameter than the main body portion, and the space is provided between the rear end of the tubular metallic member and the smaller diameter portion.
- 9. (currently amended): A gas sensor according to claim 7-or 8, wherein the tubular metallic member includes a fixing portion that fixes the elastic seal member to an inside thereof and a larger diameter portion disposed at the more rear end side than the fixing portion and larger in

Preliminary Amendment

Appln. No.: National Stage of PCT/JP2005/000031

inner diameter than the fixing portion, and the space is formed between the larger diameter portion and the elastic seal member.

10. (currently amended): A gas sensor according to <u>claim 7 any of claims 7 to 9</u>, wherein the elastic seal member protrudes outward from the rear end of the tubular metallic member along the axial direction by 0.6 mm or more.