Classification Project

Nick Kozachuk, Carl Saba, Theodore Woodworth

Outline

- Data & Tasks
- Methodology
- > Results

Data & Tasks

Data Sets Analyzed

- lyer
- Cho
- YaleB

Cho Outline

- Collected from UCI ML repository
- Gene sequence data
- Sample Size: 386
- Total Features: 16
- Total Classes: 5

Iyer Outline

- Collected from UCI ML repository
- Gene sequence data
- Sample Size: 517
- Total Features: 12
- Total Classes: 11

YaleB Outline

- 3 Seperate sets of gray scale images of human faces from 38 people
- Sample Size:
 - Training: 2186
 - o Testing: 228
- Total Features: 32x32
- Total Classes: 38

Figure 1: Sample images of one person in Yale B dataset.

Classification Methods

- Logistic Regression
- Random Forest
- Convolutional Neural Network (CNN)

Goal

Analyze the performance of different classification methods across different datasets

Methodology

Libraries

- pROC
- Caret
- randomForest
- MLmetrics
- nnet
- keras
- tensorflow
- dplyr

Optimizations & Techniques

- K-fold Cross Validation
 - Iyer & Cho Hyperparameter tuning
- Principal Component Analysis (PCA)
 - Dimensionality Reduction
- Hold-out validation
 - YaleB provided a training & testing dataset
 - lyer & Cho did not

Results

Measurements

- F1 Score
- AUC
- Accuracy

Iyer Dataset Results

Iyer Dataset Standard Deviation of Results

Cho Dataset Results

Cho Dataset Standard Deviation of Results

Yale Set 2 Results

Takeaways

Pros & Cons

- Logistic Regression
 - Simple, fast to train/test, less prone to overfitting
 - Struggles with high-dimensional data, sensitive to outliers, linear problems only, requires large datasets
- Random Forest
 - Handles large number of features, linear and nonlinear use, measures feature importance
 - Computationally intensive, suffers from overfitting if too many trees, difficult to interpret results
- Convolutional Neural Network
 - Handles high-dimensional data, captures nonlinear relationships, automatically learns features, powerful overall
 - Computationally intensive, requires accurate parameter specifications

Thank You