第三节 极限的概念

习题 1-3

1. 观察下列数列的变化趋势, 指出它们是否有极限, 若有极限, 请写出其极限:

(1)
$$x_n = (-1)^{n-1} \frac{1}{n}$$
;

(2)
$$x_n = (-1)^n - \frac{1}{n}$$
;

$$(3) x_n = \frac{n-1}{n+1};$$

$$(4) x_n = \sin\frac{n\pi}{2};$$

$$(5) x_n = \cos\frac{1}{n\pi};$$

(6)
$$x_n = \ln \frac{1}{n};$$

(7) 0.1, 0.11, 0.111, ...,
$$0.111...$$
,

解 (1) 有极限, 极限为0;

(2) 不存在极限;

(3) 有极限, 极限为1;

(4) 不存在极限;

(5) 有极限, 极限为1;

(6) 不存在极限($\lim_{n\to\infty} x_n = -\infty$);

- (7) 有极限, 极限为 $\frac{1}{9}$
- 2. 用数列极限的定义证明

(1)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+4}}{n} = 1;$$

(2)
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0(\alpha>0).$$

$$|| || \frac{\sqrt{n^2 + 4}}{n} - 1|| = \frac{\sqrt{n^2 + 4} - n}{n} = \frac{4}{n(\sqrt{n^2 + 4} + n)} < \frac{4}{n}.$$

要使
$$\left|\frac{\sqrt{n^2+4}}{n}-1\right|<\varepsilon$$
,只要 $\frac{4}{n}<\varepsilon$,即 $n>\frac{4}{\varepsilon}$.

于是,
$$\forall \varepsilon > 0$$
,取 $N = [\frac{4}{\varepsilon}]$,只要 $n > N$,就有 $\left| \frac{\sqrt{n^2 + 4}}{n} - 1 \right| < \varepsilon$,所以

$$\lim_{n\to\infty}\frac{\sqrt{n^2+4}}{n}=1;$$

(2)
$$\left| \frac{1}{n^{\alpha}} - 0 \right| = \frac{1}{n^{\alpha}} < \varepsilon$$
, $\square = n > \frac{1}{2\sqrt{\varepsilon}} (\alpha > 0)$.

于是, $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\alpha/\varepsilon}\right]$,只要n > N,就有 $\left|\frac{1}{n^{\alpha}} - 0\right| < \varepsilon$,所以 $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$ $(\alpha > 0)$.

3. 设 $\lim_{n\to\infty} x_n = a$,证明 $\lim_{n\to\infty} |x_n| = |a|$,并举例说明反之未必成立.

证
$$: ||x_n| - |a|| \le |x_n - a|$$
,故 $\forall \varepsilon > 0$,欲使 $||x_n| - |a|| < \varepsilon$,只要 $|x_n - a| < \varepsilon$,

由 $\lim_{n\to\infty}x_n=a$ 知,对 $\forall \, \varepsilon>0$, 当 n>N 时, $\left|x_n-a\right|<\varepsilon$,从而 $\left\|x_n\right|-\left|a\right\|$ $<\varepsilon$,故 $\lim_{n\to\infty}\left|x_n\right|=\left|a\right|$.

反之未必成立,例如: $x_n = (-1)^n$,显然有 $\lim_{n \to \infty} |x_n| = 1$,但 $\lim_{n \to \infty} x_n$ 不存在.

4. 设数列 $\{x_n\}$ 有界,又 $\lim_{n\to\infty} y_n = 0$,证明 $\lim_{n\to\infty} x_n y_n = 0$.

证 由数列 $\{x_n\}$ 有界,故存在M>0,使 $|x_n| \le M$,对一切n都成立.

 $\forall \varepsilon > 0$,因为 $\lim_{n \to \infty} y_n = 0$,所以对于 $\varepsilon_1 = \frac{\varepsilon}{M} > 0$, $\exists N$, 当 n > N 时,就有

$$\left|y_n\right|<\varepsilon_1=\frac{\varepsilon}{M}\;,\;\; {\rm T}\mathbb{E}\left|x_ny_n-0\right|=\left|x_n\right|\cdot\left|y_n\right|< M\cdot\frac{\varepsilon}{M}=\varepsilon\;,\;\; {\rm id}\lim_{n\to\infty}x_ny_n=0\;.$$

5. 用函数极限的定义证明

(1)
$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2;$$

(2)
$$\lim_{x \to +\infty} \frac{\sin 2x}{\sqrt{x}} = 0.$$

$$i\mathbb{E} \quad (1) \quad \left| \frac{1 - 4x^2}{2x + 1} - 2 \right| = \left| 2x + 1 \right| = 2 \left| x - \left(-\frac{1}{2} \right) \right|.$$

要使
$$\left| \frac{1-4x^2}{2x+1} - 2 \right| < \varepsilon$$
,只要 $2\left| x - \left(-\frac{1}{2} \right) \right| < \varepsilon$,即 $\left| x - \left(-\frac{1}{2} \right) \right| < \frac{\varepsilon}{2}$.

于是,
$$\forall \varepsilon > 0$$
, $\exists \delta = \frac{\varepsilon}{2}$, $\exists 0 < \left| x - (-\frac{1}{2}) \right| < \frac{\varepsilon}{2}$ 时,就有 $\left| \frac{1 - 4x^2}{2x + 1} - 2 \right| < \varepsilon$,故

$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2.$$

$$(2) \quad \left| \frac{\sin 2x}{\sqrt{x}} - 0 \right| \le \frac{1}{\sqrt{x}} \ .$$

要使
$$\frac{1}{\sqrt{x}}$$
< ε , 只要 $x>\frac{1}{\varepsilon^2}$,

于是,
$$\forall \varepsilon > 0$$
, 取 $X = \frac{1}{\varepsilon^2}$, 当 $x > X$ 时, 就有 $\left| \frac{\sin 2x}{\sqrt{x}} - 0 \right| < \varepsilon$, 故

$$\lim_{x \to +\infty} \frac{\sin 2x}{\sqrt{x}} = 0.$$

6. 证明: 若 $x \to +\infty$ 及 $x \to -\infty$ 时,函数 f(x) 的极限都存在且都等于 A,则 $\lim_{x \to \infty} f(x) = A$.

证 由 $\lim_{x \to +\infty} f(x) = A$,得 $\forall \varepsilon > 0$, $\exists X_1 > 0$, $\exists X > X_1$ 时,就有 $|f(x) - A| < \varepsilon$;

再由 $\lim_{x\to -\infty}f(x)=A$,得对上述 $\varepsilon>0$, $\exists~X_2>0$,当 $x<-X_2$ 时,就有 $\left|f(x)-A\right|<\varepsilon$.

取 $X = \max\{X_1, X_2\}$,则当 |x| > X 时,有 x > X 或 x < -X ,故 $|f(x) - A| < \varepsilon$,即 $\lim_{x \to a} f(x) = A$.

7. 证明: $\lim_{x \to x_0} f(x)$ 存在的充分必要条件是 f(x) 在 x_0 处的左、右极限均存在且相等.

证 必要性:

如果
$$\lim_{x\to x_0} f(x)$$
 存在,不妨设 $\lim_{x\to x_0} f(x) = A$,则 $\forall \varepsilon > 0$, $\exists \delta > 0$,只要 $0 < \infty$

 $|x-x_0| < \delta$,就有 $|f(x)-A| < \varepsilon$,特别的:

当
$$0 < x - x_0 < \delta$$
 时,有 $|f(x) - A| < \varepsilon$,所以 $\lim_{x \to x^+} f(x) = A$;

当
$$-\delta < x - x_0 < 0$$
 时,有 $|f(x) - A| < \varepsilon$,所以 $\lim_{x \to x_0^-} f(x) = A$.

充分性:

若
$$\lim_{x \to x_0^+} f(x) = A = \lim_{x \to x_0^-} f(x)$$
,则 $\forall \varepsilon > 0$, ∃ $\delta_1 > 0$,只要 $0 < x - x_0 < \delta_1$,就有

$$\left|f(x) - A\right| < \varepsilon, \exists \delta_2 > 0, \ \mathbf{Q} = -\delta_2 < x - x_0 < 0, \ \mathbf{M} \stackrel{\bullet}{\mathbf{q}} \left|f(x) - A\right| < \varepsilon, \ \mathbf{W} \delta = \min\{\delta_1, \delta_2\},$$

只要 $0 < \left| x - x_0 \right| < \delta$,就有 $\left| f(x) - A \right| < \varepsilon$,故 $\lim_{x \to x_0} f(x) = A$.