Devoir à la maison n°05

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Matrices stochastiques (d'après ESCP 1996)

Définitions et notations

Dans tout le problème, p désigne un entier supérieur ou égal à 2.

Pour $M \in \mathcal{M}_p(\mathbb{R})$ et $(i, j) \in [1, p]^2$, on notera $c_{i,j}(M)$ le coefficient de M sur la $i^{\text{ème}}$ ligne et sur la $j^{\text{ème}}$ colonne.

On dira qu'une matrice $M \in \mathcal{M}_p(\mathbb{R})$ est *stochastique* si :

(i)
$$\forall (i, j) \in [[1, p]]^2, c_{i,j}(M) \ge 0.$$

(ii)
$$\forall i \in [[1, p]], \sum_{i=1}^{p} c_{i,j}(M) = 1.$$

On dira qu'une suite de matrices $(M_n)_{n\in\mathbb{N}}$ de $\mathcal{M}_p(\mathbb{R})$ converge vers $M\in\mathcal{M}_p(\mathbb{R})$ si pour tout $(i,j)\in [\![1,p]\!]^2$, la suite $(c_{i,j}(M_n))_{n\in\mathbb{N}}$ converge vers $c_{i,j}(M)$. Dans ce cas, on dira que M est la limite de (M_n) . Etant donnée une matrice $A\in\mathcal{M}_p(\mathbb{R})$, pour tout entier $n\in\mathbb{N}$, on note

$$C_n = \frac{1}{n+1} \sum_{k=0}^{n} A^k$$

On dit enfin qu'une matrice $A \in \mathcal{M}_p(\mathbb{R})$ est r-périodique où $r \in \mathbb{N}^*$ si $A^r = I_p$.

L'objectif du problème est d'étudier quelques propriétés des matrices stochastiques et notamment, la convergence de la suite $(C_n)_{n\in\mathbb{N}}$ lorsque A est stochastique et r-périodique.

Partie I – Etude d'exemples

1

I.1 Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose

$$\gamma_n = \frac{1}{n+1} \sum_{k=0}^n \alpha^k$$

- **I.1.a** Calculer γ_n pour tout $n \in \mathbb{N}$ en disinguant les cas $\alpha = 1$ et $\alpha \neq 1$.
- **I.1.b** Etudier en fonction de α la convergence de la suite (γ_n) et, en cas ce convergence, préciser la limite de (γ_n) .
- I.2 Premier exemple d'étude de (C_n) .

On prend
$$p = 3$$
 et $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- **I.2.a** Calculer A^2 et A^3 . En déduire A^{3k} , A^{3k+1} et A^{3k+2} pour tout $k \in \mathbb{N}$.
- **I.2.b** Calculer C_{3n} , C_{3n+1} et C_{3n+2} pour tout $n \in \mathbb{N}$. En déduire que la suite (C_n) converge et préciser sa limite C.
- **I.2.c** On note v l'endomorphisme de \mathbb{R}^3 canoniquement associé à \mathbb{C} . Montrer que v est un projecteur de \mathbb{R}^3 et déterminer $\operatorname{Ker} v$ et $\operatorname{Im} v$.
- I.3 Deuxième exemple d'étude de (C_n) .

On prend
$$p = 2$$
 et $A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

- **I.3.a** Déterminer une matrice $P \in GL_2(\mathbb{R})$ telle que $A = PDP^{-1}$ avec $D = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{6} \end{pmatrix}$.
- **I.3.b** En déduire A^k pour tout $k \in \mathbb{N}$.
- **I.3.c** Déterminer deux matrices $U, V \in \mathcal{M}_2(\mathbb{R})$ telles que pour tout $k \in \mathbb{N}$:

$$A^k = U + \left(-\frac{1}{6}\right)^k V$$

- **I.3.d** Pour tout entier $n \in \mathbb{N}$, exprimer C_n en fonction de n, U et V.
- **I.3.e** En déduire que la suite $(C_n)_{n\in\mathbb{N}}$ converge et préciser sa limite C.
- **I.3.f** On note v l'endomorphisme de \mathbb{R}^2 canoniquement associé à C. Montrer que v est un projecteur de \mathbb{R}^2 et déterminer $\operatorname{Ker} v$ et $\operatorname{Im} v$.

Partie II – Etude de $(C_n)_{n\in\mathbb{N}}$ lorsque A est r-périodique

Dans cette partie, r désigne un entier naturel non nul.

II.1 Soit $(\alpha_k)_{k\in\mathbb{N}}$ une suite r-périodique de réels, c'est-à-dire que pour tout $k\in\mathbb{N}$, $\alpha_{k+r}=\alpha_k$. On pose

$$\gamma = \frac{1}{r} \sum_{k=0}^{r-1} \alpha_k$$

Pour tout $n \in \mathbb{N}$, on pose

$$\gamma_n = \frac{1}{n+1} \sum_{k=0}^n \alpha_k$$

II.1.a Prouver que pour tout $k \in \mathbb{N}$,

$$\gamma = \frac{1}{r} \sum_{l=0}^{r-1} \alpha_{k+l}$$

II.1.b Montrer que la suite de terme général

$$\beta_n = (n+1)\gamma_n - (n+1)\gamma$$

est *r*-périodique. En déduire que $(\beta_n)_{n\in\mathbb{N}}$ est bornée.

- **II.1.c** Etablir que $(\gamma_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.
- **II.2** Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice *r*-périodique.
 - **II.2.a** Montrer que pour tout couple $(i, j) \in [1, p]^2$, la suite de terme général $\alpha_k = c_{i,j}(A^k)$ est r-périodique. En déduire que (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=0}^{r-1} A^k$$

- **II.2.b** Montrer que AC = CA = C.
- **II.2.c** On note u et v les endomorphismes de \mathbb{R}^p canoniquement associés à A et C. Montrer que
 - (i) v est un projecteur;
 - (ii) Ker(v) = Im(u Id);
 - (iii) Im(v) = Ker(u Id).

où Id désigne l'application identique de \mathbb{R}^p .

- **II.3.a** Soit $(\alpha_k)_{k \in \mathbb{N}}$ une suite de réels r-périodique à partir d'un certain rang $m \in \mathbb{N}$, c'est-à-dire que pour tout $k \geq m$, $\alpha_{k+r} = \alpha_k$. On définit (γ_n) comme dans la question **II.1**. Prouver que la suite (γ_n) admet une limite que l'on précisera. Pour cela, on pourra considérer la suite de terme général $\alpha'_k = \alpha_{k+m}$ et lui associer une suite (γ'_n) comme à la question **II.1** puis montrer que la suite de terme général $\gamma'_n \gamma_n$ converge vers 0.
 - **II.3.b** Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice *r*-périodique à partir d'un certain rang $m \in \mathbb{N}$, c'est-à-dire que $A^{m+r} = A^m$. Prouver que la suite (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=m}^{m+r-1} A^k$$

- **II.3.c** Soient u et v les endomorphismes de \mathbb{R}^p canoniquement associés à A et C. Montrer à nouveau que
 - (i) v est un projecteur;
 - (ii) Ker(v) = Im(u Id);
 - (iii) Im(v) = Ker(u Id).

Partie III – Etude de matrices stochastiques

On note \mathcal{S}_p l'ensemble des matrices *stochastiques* de $\mathcal{M}_p(\mathbb{R})$ et \mathcal{D}_p l'ensemble des matrices *déterministes* de $\mathcal{M}_p(\mathbb{R})$, c'est-à-dire des matrices stochastiques dont tous les coefficients sont égaux à 0 ou 1. Enfin, on note Δ_p l'ensemble des matrices déterministes et inversibles de $\mathcal{M}_p(\mathbb{R})$.

III.1 Matrices stochastiques.

- **III.1.a** Soient $(\lambda, \mu) \in \mathbb{R}^2$ tel que $\lambda \geq 0$, $\mu \geq 0$ et $\lambda + \mu = 1$ et $(M, N) \in \mathcal{S}_p^2$. Montrer que $\lambda M + \mu N \in \mathcal{S}_p$.
- **III.1.b** Soit $(M, N) \in \mathcal{S}_p^2$. Montrer que $MN \in \mathcal{S}_p$.
- **III.1.c** Soit $A \in \mathcal{S}_p$. Montrer que pour tout $n \in \mathbb{N}$, $C_n \in \mathcal{S}_p$. Que peut-on en déduire pour la limite C de (C_n) lorsqu'elle existe?

III.2 Matrices déterministes.

- **III.2.a** Montrer qu'une matrice $M \in \mathcal{M}_p(\mathbb{R})$ est déterministe si et seulement si tous ses coefficients sont égaux à 0 ou 1 et si chaque ligne de M contient exactement un coefficient égal à 1.
- **III.2.b** En déduire que \mathcal{D}_p est un ensemble fini et préciser son cardinal.
- **III.2.c** Soit $(M, N) \in \mathcal{D}_p^2$. Montrer que $MN \in \mathcal{D}_p$.
- **III.2.d** Soit $A \in \mathcal{D}_p$. Montrer que A est r-périodique à partir d'un certain rang m. Montrer que si A est inversible, A est r-périodique.
- **III.2.e** Soit $A \in \Delta_p$. Montrer que chaque colonne de A contient exactement un coefficient égal à 1. En déduire que $A^{-1} \in \Delta_p$.

III.3 Etude de la suite (C_n) associée à une matrice A déterministe.

Soit $A \in \mathcal{D}_p$. En utilisant les résultats de la partie 2, montrer que (C_n) converge vers une matrice $C \in \mathcal{S}_p$ telle que $C^2 = C$.

III.4 Matrices stochastiques inversibles.

Soit $(X, Y) \in \mathcal{S}_p^2$ tel que $XY = I_p$. On se propose de montrer que $(X, Y) \in \Delta_p^2$.

III.4.a Justifier que X et Y sont inversibles.

III.4.b On pose pour
$$j \in [1, p]$$

$$\mu_j = \max\{c_{i,j}(Y), 1 \le i \le p\}$$

Prouver que $\mu_j = 1$ pour tout $j \in [1, p]$. On pourra calculer le coefficient $c_{jj}(XY)$.

III.4.c En déduire que $Y \in \Delta_p$ puis que $X \in \Delta_p$.

III.4.d Plus généralement, soit $(U,V) \in \mathcal{S}_p^2$ tel que $UV \in \Delta_p$. Montrer que $(U,V) \in \Delta_p^2$.