Teoria dos Autômatos

Lista 8

lista de exercícios 16

1. Reconhecendo o complemento

Construa autômatos de pilha para as seguintes linguagens

- a) $\overline{L_A}$, onde L_A é a linguagem $a^nb^na^n$
- b) $\overline{L_B}$, onde L_B é a linguagem $\mathbf{a}^{\mathbf{n}}\mathbf{b}^{\mathbf{m}}\mathbf{a}^{\mathbf{n}}\mathbf{b}^{\mathbf{m}}$
- c) PAL (i.e., as palavras que não são palíndromos)

2. BOOL

Construa um autômato de pilha que reconhece as expressões booleanas completamente parentizadas (envolvendo as operações + e *).

Por exemplo,

$$(0+1), (1*(0+1)), ((1+1)*(0+1)), \dots \in BOOL$$

3. BOOLneg

Modifique o autômato da questão anterior para que ele passe a reconhecer expressões booleanas que envolvem o operador de negação (\neg) .

Por exemplo,

$$\neg (0 + \neg 1), (1 * \neg \neg (0 + 1)), \neg (\neg (1 + 1) * \neg (0 + 1)), \dots \in BOOLneg$$

Note que o operador de negação não precisa estar associado ao seu próprio par de parênteses.

lista de exercícios 17

1. Padrões recursivos

Analise as linguagens abaixo e encontre o padrão recursivo que caracteriza as suas palavras

- a) DOB
- b) BOOLneg (ver lista de exercícios 18)
- c) EXPR-n: a linguagem das expressões aritméticas que não são (necessariamente) completamente parentizadas.

2. Construção de autômatos de pilha

Construa autômatos de pilha para as linguagens da questão anterior utilizando os padrões recursivos que você identificou.