

Diseños de un Factor

¿Qué llevamos?

Modelo:

$$oxed{\mathbf{Y_{ij}} = \mu + \tau_{\mathbf{i}} + \epsilon_{\mathbf{ij}} = \mu_{\mathbf{i}} + \epsilon_{\mathbf{ij}}, \ \mathbf{i} = 1, \dots, \mathbf{a}, \ \mathbf{j} = 1, \dots, \mathbf{n}}$$

Supuestos:

$$\epsilon_{ij} \sim NID(0,\sigma^2).$$

- Ajuste del modelo.
- Verificación de los Supuestos.
- Análisis de Varianza (ANOVA): Significancia del Factor.
- Comparación de medias de tratamientos (Si se rechaza. H₀: Igualdad de medias)—Contrastes
- **FALTA**: Determinar como hallar **n**—Efectos FIJOS.

Para Efectos Aleatorios Leer Sección 12.4 de Montgomery.

Potencia en DECA y Tamaños de Muestra

- Un paso importante en todo problema de diseño de experimentos, es la selección del tamaño de la muestra (número de réplicas en cada uno de los tratamientos).
- Generalmente, se requieren más réplicas si lo que interesa al investigador es estudiar efectos pequeños, o equivalentemente, si se esperan diferencias pequeñas entre los tratamientos.
 - Es decir, a menor diferencia que se espere en los tratamientos mayor será la cantidad de réplicas si se quiere detectar diferencias significativas y viceversa.

Algunos métodos para seleccionar el tamaño de muestra son:

- Por Intervalos de Confianza.
- Utilizando Curvas Características de Operación-(CCO).

Consideraciones acerca del tamaño de muestra

- Si se espera mucha variabilidad dentro de cada tratamiento, debido a variación de fuentes NO controladas como: métodos de medición, medio ambiente, materia prima, etc. serán necesarias más réplicas.
- 2. A menor variabilidad entre los tratamientos mayor será la cantidad de réplicas si el interés es detectar **diferencias significativas** y viceversa.
- 3. Si son varios tratamientos (**4 o más**) entonces esto es un punto favorable para disminuir el número de réplicas.
- 4. Además, se deben tener en cuenta los costos y el tiempo global del experimento.

Uso de Intervalos de Confianza

Si se conoce:

- a: Número de tratamientos.
- Un valor inicial n₀.
- Un valor aproximado de σ (desviación estándar del error aleatorio) y
- La magnitud de las diferencias D_T entre los tratamientos que interesa detectar (ancho que se desea para los intervalos de confianza $(2D_T)$ o precisión del intervalo (D_T)).

Se halla **n** usando la **LSD** (Mínima Diferencia Significativa) entre los tratamientos:

$$LSD = D_T = t_{\alpha/2;N-a} \, \sqrt{\frac{2MSE}{n}} \; , \; \text{de donde}$$

$$n = \frac{2 \, MSE \, \left[t_{\alpha/2;N-a}\right]^2}{D_T^2}$$

tomado $N = n_0 a$, $MSE = \hat{\sigma}^2$.

NOTA: El valor de **n** dado anteriormente, da una idea del **número de réplicas** para cada tratamiento de acuerdo a las consideraciones iniciales.

Ejemplo

Suponga que se desea realizar un nuevo experimento con el mismo número de tratamientos, a=4 y se espera observar una diferencia en los tratamientos del orden de $D_T=0.05$, usando un estimador para σ^2 dado por 0.0015, un nivel de confianza del $95\,\%$ y tomando $n_0=12$.

¿Cuántas réplicas mínimo se deben hacer en cada uno de los tratamientos?. En este caso:

$$n = \frac{\left[t_{0.025;4(12-1)}\right]^2}{D_T^2} 2 \frac{MSE}{0.05^2} = \frac{\left[2.021\right]^2}{0.05^2} 2(0.0015) = 4.90 \approx 5.$$

En general, \mathbf{n} es función de $\mathbf{D_T}$ dado por:

$$n = 0,012253323/D_T^2$$
.

Otros valores posibles son:

$\mathbf{D}_{\mathbf{T}}$	0.05	0.01	0.02	0.03	0.04
n	5	123	31	14	8

Uso de Curvas Características de Operación (CCO)

Una CCO es un gráfico de la probabilidad de cometer un Error Tipo-II de una prueba estadística para un tamaño de muestra particular **v.s.** un parámetro el cual refleja la extensión para la cual la Hipótesis Nula es falsa.

¿Para qué se usan las curvas CC0?

Se usan como guía para el experimentador en la selección del número de réplicas con el objeto de que el diseño sea sensible a las diferencias potenciales importantes en los tratamientos.

Note que para tamaños de muestra iguales en cada tratamiento:

```
\begin{split} \beta &= \mathbf{P}[\mathsf{Cometer~un~Error~tipo} - \mathbf{II}] \\ &= \mathbf{P}[\mathsf{No~Rechazar~H_0|H_0~es~Falsa}] \\ &= 1 - \mathbf{P}[\mathsf{Rechazar~H_0|H_0~es~Falsa}] \\ \beta &= 1 - \mathbf{P}[\mathbf{Fo} > \mathbf{F}_{\alpha:a-1,N-a}|\mathbf{H_0~es~falsa}] \end{split}
```

Para evaluar la probabilidad anterior, se necesita conocer la distribución de F_0 bajo \mathbf{H}_1 , es decir, cuando H_0 es Falsa.

Se puede mostrar que si H_0 es **falsa**, la estadística F dada por:

$$\mathbf{F} = rac{\mathbf{MS_{Trat}}}{\mathbf{MS_E}} \sim \mathbf{F_{\delta,\,a-1,\,N-a}},$$

donde, δ se llama parámetro de **NO** -centralidad.

Para $\delta=0$ -se tiene la distribución F-estándar con a-1 y N-a grados de libertad asociados para el numerador y el denominador, respectivamente.

Las CCO son curvas que se obtienen al graficar β v.s. Φ^2 , donde:

$$\Phi^2 = \frac{n\sum_{i=1}^a \tau_i^2}{a\sigma^2},$$

donde, Φ^2 -está relacionado con el parámetro δ .

Para usar las **CCO** el experimentador debe conocer lo siguiente:

- 1. El parámetro Φ , lo cual es difícil en la práctica. Una forma es elegir los valores de las **medias de los tratamientos** para los cuales se espera rechazar $\mathbf{H_0}$ con alta probabilidad. Si $\mu_1,\,\mu_2,\,\ldots,\,\mu_a$ son las medias de los tratamientos propuestos, el valor de los τ_i se halla mediante: $\tau_i = \mu_i \overline{\mu}$ con $\overline{\mu} = \frac{1}{a} \sum \mu_i$.
- 2. Estimación de σ^2 : Se hace uso de la **experiencia** o de un **experimento previo**, o una **prueba preliminar**(piloto).
 - Si no se tiene, se debe explorar el $\bf n$ para diferentes elecciones de σ y luego seleccionar el tamaño de muestra a elegir, teniendo en cuenta el Tiempo y el Presupuesto para el estudio.

Ejemplo

Para el ejemplo de resistencia a la tensión, suponga que el experimentador está interesado en rechazar la hipótesis nula H_0 con una probabilidad mínima de $0.9=1-\beta=$ potencia si las medias de los tratamientos son:

$$\mu_1 = 11$$
 $\mu_2 = 12$ $\mu_3 = 15$ $\mu_4 = 18$ $\mu_5 = 19$.

Se planea usar un $\alpha = 0.01$.

En este caso se tiene que:

$$\sum \mu_i = 75$$
 y por tanto $\overline{\mu} = 75/5 = 15$.

Luego:

$$\tau_1 = \mu_1 - \overline{\mu} = 11 - 15 = -4.$$

Similarmente se hallan:

$$\tau_2 = -3$$
, $\tau_3 = 0$, $\tau_4 = 3$ y $\tau_5 = 4$,

es decir:

$$\sum_{i=1}^{5} \tau_i^2 = 50.$$

Suponga, además que el experimentador cree que la desviación estándar de la resistencia a la tensión en cualquier nivel del porcentaje de algodón NO excede a $\sigma = 3$. Luego,

$$\Phi^2 = \frac{n\sum_{i=1}^a \tau_i^2}{a \, \sigma^2} = \, \frac{n \, (50)}{5 \, (3^2)} = 1.11 \, n.$$

Ahora, se usa la CCO con:

$$v_1 = a - 1 = 5 - 1 = 4$$

$$v_2 = N - a = a(n-1) = 5(n-1)$$

grados de libertad y $\alpha = 0.01$.

Para distintos valores de **n** se tienen los siguientes resultados:

n	$\mathbf{\Phi}^2$	Φ	$\mathbf{N}-\mathbf{a}=\ \mathbf{a}(\mathbf{n}-1)$	β	Potencia= $1-\beta$
4	4.44	2.11	15	0.30	0.70
5	5.55	2.36	20	0.15	0.85
6	6.66	2.58	25	0.04	0.96

Por lo tanto se requieren al menos n=6-réplicas para tener la potencia deseada de $1-\beta=0.9$.

Programa en R

alcance una potencia del 0.9 = 90% y con un nivel de significancia de 0.01.

Procedimiento Alternativo

- Con el procedimiento anterior es difícil seleccionar el conjunto de medias de los tratamientos sobre el cual se basará la decisión sobre el tamaño de la muestra.
- Un enfoque alterno es la selección del tamaño de muestra, tal que la Hipótesis Nula se rechace si la diferencia entre cualesquier par de medias de tratamientos excede un valor específico.
- Si la diferencia entre DOS medias de tratamiento es cuando más \mathbf{D} , es posible demostrar que el valor mínimo de Φ^2 es:

$$\Phi^2 = \frac{nD^2}{2a\sigma^2}$$

Ejemplo- Continuación

Para el ejemplo de resistencia a la tensión, suponga que el experimentador desea rechazar la Hipótesis Nula con una probabilidad mínima de 0.9, si la diferencia entre cualquier par de medias de tratamientos es a lo sumo igual a 10psi.

Suponiendo que $\sigma = 3$, se obtiene que el valor mínimo de Φ^2 es:

$$\Phi^2 = \frac{nD^2}{2a\sigma^2} = \frac{n(10^2)}{2(5)(3^2)} = 1.11 \text{ n.}$$

de donde, n=6 son las réplicas necesarias para obtener el nivel de sensibilidad deseado cuando $\alpha=0.01$.

Pasos oara hacer el procedimiento en R

- 1. Cargar la librería pwr del CRAN del \mathbf{R} : library(pwr).
- 2. Hallar **f**: Tamaño del efecto, mediante la expresión:

$$\Phi^2 = n f^2$$
, es decir,

$$f = \sqrt{\frac{D^2}{2a\sigma^2}},$$

en el ejemplo: $f = \sqrt{10^2/(2(5)(9))} = \sqrt{1.11111} = 1.054$

3. Se usa la función:

$$pwr.anova.test(f = ,k = ,power = ,sig.level =)$$

donde:

- f: Tamaño del efecto,
- k: Número de niveles del factor,
- power: Potencia,
- sig.level: Nivel de significancia requerido.

Ejemplo: Continuación

Retomando el ejemplo de la resistencia a la tensión se tiene lo siguiente:

```
f=1.054 \, (D=10), \, k=a=5, \, power=0.9, \, sig.level=0.01. pwr.anova.test(f=1.054, k=5, power=0.9, sig.level=0.01) Balanced one-way analysis of variance power calculation k=5 n=5.166904 f=1.054 sig.level=0.01 power=0.9
```

NOTE: n is number in each group

Conclusión: Es decir, el número de observaciones requerido en cada grupo es de n=6, para que se rechace H_0 al detectar diferencias muy pequeñas entre pares de medias, del orden de D=10 y alcanzar una potencia del $90\,\%$.

Tabla para dis	Tabla para distintas configuraciones					
	D	Potencia= $1-\beta$	σ^2	α	n	
	5	0.9	9	0.01	17	
	6	0.9	9	0.01	12	
	7	0.9	9	0.01	9	
	8	0.9	9	0.01	8	
	9	0.9	9	0.01	7	
	10	0.9	9	0.01	6	
•	10	0.99	9	0.01	8	
	10	0.85	9	0.01	5	
	10	0.70	9	0.01	4	
	10	0.40	9	0.01	3	
	5	0.99	9	0.01	24	
	5	0.85	9	0.01	15	
	5	0.70	9	0.01	12	
	5	0.40	9	0.01	8	