Reference crop evapotranspiration (ET_o) in Uzbekistan

Based on "Irrigation and Drainage Paper - 56" by UN-FAO [1]

DRAFT

26/10/2020

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma * \left(\frac{900}{T + 273}\right)u_2 * (e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

WARNING!

THIS PAPER IS DAFT COPY OF THE WORK IN PROGRESS. PUBLISHED FOR THE PURPOSE OF FEEDBACK AND CONTRIBUTIONS. FOLLOWING ARE THE SHORTCOMINGS OF THIS REPORT:

Climate data must be verified independently based on other sources. Data in this report are based on arithmetic average calculations, instead of statistical analysis. No attempt is made to identify anomalies and outliers.

TABLE OF CONTENTS

TABLE OF CONTENTS	3
LIST OF FIGURES	
LIST OF TABLES	
IN THIS REVISION	
WHAT IS EVAPOTRANSPIRATION	
PROCESS OF CALCULATING ETo	6
What information is required to calculate ET ₀ ?	6
How data were gathered?	·······
How ET _o calculation process organized?	·······
DOWNLOADING THE DATA	
EVAPOTRANSPIRATION IN UZBEKISTAN	
MONTHLY ETO BY REGIONS.	11
BI-WEEKLY EVAPOTRANSPIRATION BY REGIONS	
REGIONS	
KARAKALPAKSTAN REPUBLIC	
Andijan	
FERGANA	
Namangan	
TASHKENT	
Syrdarya	
JIZZAKH	
SAMARKAND	
Kashkadarya	
SURKHANDARYA	
NAVOIY	
Bukhara	
Khorezm	26
RIRLIOGRADHY	27

LIST OF FIGURES

FIGURE 1 ETO IN UZBEKISTAN	Q
FIGURE 2 SOLAR RADIATION IN MJ/m²/DAY	
FIGURE 3 WIND SPEED VS RELATIVE HUMIDITY IN UZBEKISTAN	
FIGURE 4 PRECIPITATION IN UZBEKISTAN	
FIGURE 5 ET ₀ IN KARAKALPAK REPUBLIC	
FIGURE 6 PRECIPITATION IN KARAKALPAKSTAN REPUBLIC	
FIGURE 7 ETO IN ANDIJAN.	
FIGURE 8 PRECIPITATION IN ANDIJAN	
FIGURE 9 ETO IN FERGANA	
FIGURE 10 PRECIPITATION IN FERGANA	16
FIGURE 11 ETO IN NAMANGAN	
FIGURE 12 PRECIPITATION IN NAMANGAN	
FIGURE 13 ETO IN TASHKENT.	18
FIGURE 14 PRECIPITATION IN TASHKENT	
FIGURE 15 ETO IN SYRDARYA	19
FIGURE 16 PRECIPITATION IN SYRDARYA	
FIGURE 17 ETO IN JIZZAKH	
FIGURE 18 PRECIPITATION IN JIZZAKH	
FIGURE 19 ETO IN SAMARKAND	21
FIGURE 20 PRECIPITATION IN SAMARKAND	
FIGURE 21 ETO IN KASHKADARYA	22
FIGURE 22 PRECIPITATION IN KASHKADARYA	22
FIGURE 23 ETO IN SURKHANDARYA	
FIGURE 24 PRECIPITATION IN SURKHANDARYA	23
FIGURE 25 ETO IN NAVOIY	24
FIGURE 26 PRECIPITATION IN NAVOIY	24
FIGURE 27 ETO IN BUKHARA	25
FIGURE 28 PRECIPITATION IN BUKHARA	25
FIGURE 29 ETO IN KHOREZM	26
FIGURE 30 PRECIPITATION IN KHOREZM	26
LIST OF TABLES	
TABLE 1 UNIT CONVERSION	
TABLE 3 BI-WEEKLY ETO BY REGIONS.	
TABLE 4 ET ₀ IN DISTRICTS OF KARAKALPAKSTAN REPUBLIC	
TABLE 5 ETO IN DISTRICTS OF ANDIJAN	
TABLE 6 ETO IN DISTRICTS OF FERGANA	
TABLE 7 ETO IN DISTRICTS OF NAMANGAN	
TABLE 8 PRECIPITATION IN DISTRICTS OF TASHKENT	
TABLE 9 ETO IN DISTRICTS OF JIZZAKH	
TABLE 10 ETO IN DISTRICTS OF SAMARKAND	_
TABLE 11 ETO IN DISTRICTS OF KASHKADARYA	
TABLE 12 ETO IN DISTRICTS OF SURKHANDARYA	
TABLE 13 ETO IN DISTRICTS OF BUKHARA	
TABLE 14 ETO IN DISTRICTS OF KHOREZM	

IN THIS REVISION

This is the 1st publication of the report. Based on the 5th draft revision of the report in the Uzbek language.

WHAT IS EVAPOTRANSPIRATION

"Evaporation is the process whereby liquid water is converted to water vapour (vaporization) and removed from the evaporating surface (vapour removal). Water evaporates from a variety of surfaces, such as lakes, rivers, pavements, soils and wet vegetation.

Energy is required to change the state of the molecules of water from liquid to vapour. Direct solar radiation and, to a lesser extent, the ambient temperature of the air provide this energy. The driving force to remove water vapour from the evaporating surface is the difference between the water vapour pressure at the evaporating surface and that of the surrounding atmosphere. As evaporation proceeds, the surrounding air becomes gradually saturated and the process will slow down and might stop if the wet air is not transferred to the atmosphere. The replacement of the saturated air with drier air depends greatly on wind speed. Hence, solar radiation, air temperature, air humidity and wind speed are climatological parameters to consider when assessing the evaporation process.

Where the evaporating surface is the soil surface, the degree of shading of the crop canopy and the amount of water available at the evaporating surface are other factors that affect the evaporation process. Frequent rains, irrigation and water transported upwards in a soil from a shallow water table wet the soil surface. Where the soil is able to supply water fast enough to satisfy the evaporation demand, the evaporation from the soil is determined only by the meteorological conditions. However, where the interval between rains and irrigation becomes large and the ability of the soil to conduct moisture to pear the surface is small, the water content in the topsoil drops and the soil surface dries out. Under these circumstances the limited availability of water exerts a controlling influence on soil evaporation. In the absence of any supply of water to the soil surface, evaporation decreases rapidly and may cease almost completely within a few days". [1]

Unit of measure We report ET in mm. To convert it to other widely used units:

Table 1 unit conversion

мм	т ³ /га	<i>MJ / м</i> ² / кун
1мм	10м³/га	2.45 MJ/м ² /кун

Above was the direct quote from FAO's "Irrigation and Drainage Paper 56" [1], referred to as "the paper" from now on. We could not have stated any clearer even if we tried!

PROCESS OF CALCULATING ETO

We briefly want to look into the steps taken to generate this report.

What information is required to calculate ET_o?

To be able to calculate ET_o based on the paper [1] we had to gather certain climatic data from specific locations. Namely:

- Latitude of the location
- Altitude of the location
- Daily high and low air temperature
- Daily mean relative humidity of the air
- Wind speed at 2 meters above soil surface
- Solar radiation, in MJ/m²/day

How data were gathered?

We were able to download climate data from "Global Weather Data" project [2] of Texas A&M University. Data covered periods from 1979 through august of 2014 in daily resolutions. We used Google Earth® software to make sure to limit the data for agricultural areas only.

We were left with 70 files in .csv format.

Had we had a choice we would have used recorded data from National Weather Service of Uzbekistan [3]. This is something to consider for the future revisions of the report. Or at least to validate the data downloaded.

Collected data reported wind speed at 10m height. Though Penman-Monteith method required wind speed for 2m profile. We had to calibrate wind data for required height based on logarithmic wind speed profiling formula:

Equation 1 [1]

$$u_2 = u_z \frac{4.87}{\ln(67.8z - 5.42)}$$

Where:

 u_2 – wind speed at 2m u_Z – wind speed at z m. height z – anemometer height

How ET_o calculation process organized?

According to the paper [1] Penman-Monteith equation was detailed as the most accurate method of calculating reference crop's evapotranspiration.

Following algorithms outlined in the paper we created software module in Python programming language named **penmon.** Software module is freely available for download from the author's github.com page ¹.

Using *pandas* and *penmon* modules we were able to calculate ET_o values for downloaded records. As the result final updated daraframe had the following layout:

Out[2]:

	date	longitude	latitude	altitude	temp_max	temp_min	precip	wind_speed	humidity_mean	solar_radiation	NaN	eto
0	1979-01-01	66.875	37.6236	401	16.438	6.655	0.0	3.280757	0.389999	10.437468	NaN	1.97
1	1979-01-02	66.875	37.6236	401	15.260	7.025	0.0	4.589078	0.330150	10.298419	NaN	2.45
2	1979-01-03	66.875	37.6236	401	15.336	6.856	0.0	5.436256	0.361547	10.459294	NaN	2.66
3	1979-01-04	66.875	37.6236	401	14.454	7.882	0.0	6.653929	0.374802	10.508286	NaN	2.95
4	1979-01-05	66.875	37.6236	401	16.820	7.656	0.0	5.522275	0.278040	10.887414	NaN	3.13

Dataframe was transferred to Excel. Using Power Pivot data were grouped and analyzed. Visualizations in this report are directly imported from the spreadsheet.

Downloading the data

Data used to calculate ETo, analyze and generate this report are freely available for download from our github.com page, including the spreadsheet².

¹ <u>https://github.com/sherzodr/penmon</u>

² https://github.com/sherzodr/agriclimuz

EVAPOTRANSPIRATION IN UZBEKISTAN

Reminder!

Reported water demand is for the reference crop. To convert them to your specific crop you need to multiply these values to your crop's coefficient

Highest ET_o was calculated for July. For March-October (usual irrigation season) 1,260mm of evapotranspiration was calculated. This accounts to 12,600 m³/ha water demand:

Figure 1 ETo in Uzbekistan

Highest values of solar radiation are observed during months of June and July. Total of 855 and 870 MJ/m² solar radiation is observed during these months respectively:

Figure 2 Solar radiation in MJ/m²/day

Most winds are observed during July, followed by June. This explains why highest amount of ET_0 is observed during July. Winds lower humidity levels which increases evapotranspiration.

Figure 3 Wind speed vs relative humidity in Uzbekistan

55% of total precipitation is observed fall through winter. 85% of the precipitation is observed during months of September through April. Precipitation during the irrigation is usually not effective to cover plants water demand [5]. When planning irrigation system we suggest not to rely on precipitation.

Note

Up to 10mm/month of precipitation is ineffective to cover plants water demand. [5]

Figure 4 Precipitation in Uzbekistan

Monthly ETo by regions.

35 years of data reveal the following average values of ETo grouped by regions:

Table 2 ETo by regions

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Andijan	2.04	3.56	5.08	6.49	6.83	5.94	4.08	2.17
Bukhara	2.77	5.05	7.10	8.88	9.37	8.37	5.97	3.37
Fergana	2.26	3.95	5.52	6.86	7.12	6.19	4.31	2.33
Jizzakh	2.00	3.66	5.38	6.71	6.82	5.95	4.22	2.35
Namangan	1.82	3.34	4.78	6.14	6.53	5.82	4.12	2.19
Navoiy	2.67	4.94	7.12	9.17	9.88	8.83	6.15	3.28
Kashkadarya	2.36	4.19	6.09	7.81	8.48	7.39	5.08	2.92
Karakalpakstan rep.	2.10	4.49	6.36	7.68	7.74	6.78	4.76	2.59
Samarkand	2.20	3.90	5.64	7.20	7.63	6.78	4.88	2.77
Syrdarya	2.01	3.66	5.29	6.51	6.65	5.88	4.23	2.32
Surkhandarya	2.84	4.70	6.22	7.33	7.27	6.35	4.84	3.28
Tashkent	2.07	3.61	5.27	6.79	7.01	6.17	4.44	2.52
Khorezm	2.31	4.65	6.40	7.71	7.78	6.83	4.90	2.74

Bi-weekly evapotranspiration by regions

At our orchard we budget for irrigation volume on bi-weekly basis. Bi-weekly ET_o report comes in handy for this purpose.

Table 3 Bi-weekly ETo by regions

	And	Bukh	Fer	Jiz	Nam	Nav	Kash	Kara	Sam	Syr	Sur	Tash	Khor
Mar													
1-15	1.70	2.31	1.89	1.66	1.53	2.22	2.01	1.63	1.84	1.67	2.49	1.76	1.83
16-31	2.35	3.19	2.61	2.32	2.10	3.09	2.69	2.53	2.54	2.33	3.17	2.37	2.75
Apr													
1-15	3.09	4.47	3.47	3.19	2.88	4.34	3.66	3.86	3.43	3.18	4.20	3.14	4.06
16-30	4.01	5.64	4.43	4.13	3.80	5.54	4.72	5.12	4.37	4.13	5.19	4.08	5.24
May													
1-15	4.73	6.68	5.18	4.99	4.45	6.66	5.72	6.06	5.27	4.94	5.87	4.89	6.10
16-31	5.41	7.49	5.84	5.74	5.09	7.54	6.44	6.64	5.99	5.61	6.55	5.63	6.69
Jun													

	And	Bukh	Fer	Jiz	Nam	Nav	Kash	Kara	Sam	Syr	Sur	Tash	Khor
1-15	6.22	8.47	6.63	6.50	5.86	8.65	7.38	7.47	6.87	6.33	7.18	6.49	7.51
16-30	6.77	9.29	7.10	6.92	6.41	9.69	8.25	7.90	7.53	6.69	7.48	7.08	7.90
Jul													
1-15	6.94	9.39	7.26	6.94	6.61	9.88	8.58	7.78	7.69	6.74	7.46	7.15	7.83
16-31	6.73	9.34	6.98	6.71	6.46	9.87	8.39	7.71	7.57	6.56	7.09	6.89	7.73
Aug													
1-15	6.33	8.92	6.60	6.33	6.18	9.44	7.91	7.17	7.22	6.22	6.69	6.54	7.22
16-31	5.57	7.84	5.80	5.60	5.48	8.27	6.90	6.42	6.37	5.57	6.03	5.83	6.48
Sep													
1-15	4.62	6.72	4.85	4.74	4.64	7.01	5.74	5.41	5.48	4.76	5.26	4.97	5.53
16-30	3.54	5.23	3.77	3.70	3.59	5.30	4.42	4.11	4.27	3.71	4.42	3.91	4.27
Oct													
1-15	2.58	3.88	2.76	2.78	2.59	3.82	3.33	3.05	3.20	2.73	3.62	2.88	3.20
16-31	1.79	2.89	1.92	1.95	1.82	2.77	2.53	2.16	2.37	1.93	2.96	2.17	2.31

Rest of the report will look at climate and ET_o in regions. We also break the report down to specific areas in the regions where data was collected. Climate of some regions are complex so breaking them down by specific areas helps to draw the whole picture. We also look at precipitation by each region.

REGIONS

Karakalpakstan Republic

Figure 5 ET_o in Karakalpak Republic

Table 4 ET_o in districts of Karakalpakstan Republic

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Karakalpakstan								
Amudaryo	2.26	4.60	6.32	7.64	7.72	6.78	4.82	2.65
Beruniy	2.23	4.60	6.41	7.78	7.91	6.95	4.92	2.68
Chimboy	2.04	4.46	6.39	7.71	7.76	6.79	4.75	2.57
Kegeyli	2.07	4.45	6.31	7.60	7.64	6.69	4.68	2.55
Nukus	2.17	4.54	6.33	7.60	7.64	6.70	4.73	2.61
Qo'ng'irot	1.99	4.32	6.18	7.42	7.44	6.49	4.52	2.45
Qorao'zak	2.05	4.53	6.51	7.90	7.97	6.97	4.87	2.63
Shumanay	2.16	4.54	6.35	7.63	7.65	6.71	4.75	2.61
Taxtako'pir	2.00	4.49	6.55	7.96	8.01	7.01	4.89	2.63
To'rtko'l	2.25	4.69	6.60	8.07	8.24	7.25	5.13	2.78
Xo'jayli	2.21	4.57	6.32	7.61	7.70	6.77	4.83	2.70

Figure 6 Precipitation in Karakalpakstan Republic

Andijan

Figure 7 ETo in Andijan

Table 5 ETo in districts of Andijan

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Andijan								
Asaka	2.01	3.50	5.02	6.41	6.77	5.89	3.98	2.04
Boz	2.10	3.67	5.19	6.50	6.77	5.81	3.91	2.05
Uchkurgan	2.06	3.61	5.18	6.68	7.03	6.14	4.41	2.52
Xarabek	1.99	3.44	4.93	6.38	6.76	5.91	4.04	2.08

Figure 8 Precipitation in Andijan

Fergana

Figure 9 ETo in Fergana

Table 6 ETo in districts of Fergana

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Fergana								
Altyarik	2.11	3.80	5.38	6.80	7.06	6.16	4.34	2.29
Besharyk	2.57	4.31	5.91	7.25	7.52	6.54	4.57	2.62
Kuva	1.98	3.56	5.08	6.55	6.90	6.07	4.31	2.24
O'zbkeiston	2.43	4.18	5.77	7.05	7.29	6.36	4.41	2.39
Rishtan	2.25	4.00	5.60	6.92	7.14	6.20	4.32	2.31
Ulugnor	2.20	3.84	5.38	6.60	6.80	5.79	3.92	2.12

Figure 10 Precipitation in Fergana

Namangan

Figure 11 ETo in Namangan

Table 7 ETo in districts of Namangan

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Jizzakh								
Arnasoy	1.91	3.58	5.27	6.65	6.97	6.20	4.32	2.29
Jizzah	2.02	3.63	5.31	6.60	6.59	5.66	4.02	2.32
Paxtakor	1.97	3.65	5.31	6.58	6.81	6.08	4.32	2.33
Zarbdor	2.03	3.69	5.45	6.79	6.78	5.83	4.15	2.37
Zomin	2.09	3.76	5.54	6.94	6.96	5.99	4.30	2.44

Figure 12 Precipitation in Namangan

Tashkent

Figure 13 ETo in Tashkent

Table 8 Precipitation in districts of Tashkent

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Tashkent								
Buka	2.03	3.51	5.07	6.39	6.51	5.70	4.13	2.37
Parkent	1.89	3.32	4.85	6.44	6.85	6.09	4.34	2.41
Toytepa	2.15	3.68	5.41	7.05	7.33	6.48	4.68	2.65
Yalangch	2.20	3.83	5.56	7.08	7.26	6.37	4.61	2.68
Yangiyul	2.09	3.71	5.47	6.97	7.11	6.23	4.45	2.48

Figure 14 Precipitation in Tashkent

Syrdarya

Figure 15 ETo in Syrdarya

Above report was gathered from Havast area – the only information we were able to find in this region. Expanding observation to other fields of Syrdarya may give us different picture.

Figure 16 Precipitation in Syrdarya

Jizzakh

Figure 17 ETo in Jizzakh

Table 9 ETo in districts of Jizzakh

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Jizzakh								
Arnasoy	1.91	3.58	5.27	6.65	6.97	6.20	4.32	2.29
Jizzah	2.02	3.63	5.31	6.60	6.59	5.66	4.02	2.32
Paxtakor	1.97	3.65	5.31	6.58	6.81	6.08	4.32	2.33
Zarbdor	2.03	3.69	5.45	6.79	6.78	5.83	4.15	2.37
Zomin	2.09	3.76	5.54	6.94	6.96	5.99	4.30	2.44

Figure 18 Precipitation in Jizzakh

Samarkand

Figure 19 ETo in Samarkand

Table 10 ETo in districts of Samarkand

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Samarkand								
Bulungur	2.26	3.94	5.64	7.08	7.36	6.50	4.70	2.72
Pastdargom	2.17	3.91	5.75	7.35	7.86	7.04	5.03	2.80
Payariq	2.22	3.93	5.69	7.21	7.62	6.79	4.89	2.77
Urgut	2.17	3.81	5.50	7.16	7.67	6.81	4.88	2.79

Figure 20 Precipitation in Samarkand

Kashkadarya

Figure 21 ETo in Kashkadarya

Table 11 ETo in districts of Kashkadarya

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Kashkadarya								
Chodshar	2.40	4.27	6.20	7.91	8.63	7.49	5.10	2.92
Kitob	2.06	3.70	5.48	7.21	7.81	6.91	4.88	2.77
Mirishkor	2.49	4.39	6.38	8.23	9.03	7.96	5.42	3.05
Qarshi	2.50	4.39	6.31	7.91	8.45	7.22	4.93	2.92

Figure 22 Precipitation in Kashkadarya

Surkhandarya

Figure 23 ETo in Surkhandarya

Table 12 ETo in districts of Surkhandarya

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Surkhandarya								
Khodzha-Kiya	2.90	4.79	6.29	7.31	7.19	6.23	4.76	3.27
Takiya	3.20	5.18	6.65	7.53	7.27	6.29	4.88	3.47
Uchkula	2.42	4.12	5.72	7.16	7.36	6.53	4.88	3.11

Figure 24 Precipitation in Surkhandarya

Navoiy

Record!

Highest ETo was calculated in Navoiy region. During July average ETo was 9.88mms/day

Figure 25 ETo in Navoiy

Kyzyltepa is the only district in Navoiy we were able to analyze climate data for. Since Navoiy is a vast area more locations must be analyzed.

Figure 26 Precipitation in Navoiy

Bukhara

Figure 27 ETo in Bukhara

Table 13 ETo in districts of Bukhara

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Bukhara								
Buryabab	3.31	5.33	6.83	7.68	7.38	6.41	4.99	3.57
Gijduvon	2.59	4.92	7.12	9.13	9.80	8.80	6.20	3.31
Jondor	2.73	5.05	7.16	9.11	9.73	8.72	6.14	3.34
Kuyuchukurak	2.63	4.99	7.16	9.13	9.78	8.78	6.21	3.35
Romitan	2.63	5.00	7.15	9.09	9.68	8.69	6.14	3.34
Sarxar	2.71	5.02	7.16	9.15	9.82	8.81	6.17	3.32

Figure 28 Precipitation in Bukhara

Khorezm

Figure 29 ETo in Khorezm

Table 14 ETo in districts of Khorezm

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Khorezm								
Dashovuz ³	2.19	4.57	6.37	7.67	7.70	6.77	4.82	2.67
Xiva	2.44	4.75	6.45	7.76	7.85	6.90	4.98	2.83
Yangiarik	2.43	4.72	6.42	7.73	7.86	6.90	4.96	2.80

Figure 30 Precipitation in Khorezm

³ "Dashovuz" in located in Turkmenistan. Since it's closely bordered with Khorezm we felt it was appropriate to include in Khorezm's ETo study.

BIBLIOGRAPHY

- [1] UN-FAO, Crop evapotranspiration Guidelines for computing crop water requirements FAO Irrigation and drainage paper 56, Rome: FAO, 1998.
- [2] Texas A&M University, "Global Weather Data for SWAT," 08 2014. [Online]. Available: http://globalweather.tamu.edu. [Accessed 02 10 2020].
- [3] "УзГидроМет," [Online]. Available: http://www.meteo.uz.
- [4] UN-FAO, Effective rainfall in irrigated agriculture. Irrigation and drainage paper 25, 1978.
- [5] IAEA.org, "REVISED FAO METHODOLOGY FOR CROP REQUIREMENT," [Online]. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/29/062/29062763.pdf.
- [6] University of California, "Understanding Your Orchard's Water Requirements," 2007. [Online]. Available: http://fruitandnuteducation.ucdavis.edu/files/165618.pdf. [Accessed 16 October 2020].
- [7] UAN-FAO, Crop Water Requirements. Irrigation and drainage paper 24, Rome: UN-FAO, 1977.
- [8] Bahodir & Sons, Ф/X, "Экин сув талабини аниклашнинг текин усули," 06 09 2020. [Online]. Available: https://youtu.be/3c6CI07YF9E. [Accessed 16 10 2020].