This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

1 20 ALM BULLET DE CUERTA DE CALCALITA DE LA CALCALITA DE CALCALITA DE CALCALITA DE CALCALITA DE CALCALITA DE

(43) Date de la publication internationale 21 juin 2001 (21.06.2001)

PCT

(10) Numéro de publication internationale WO 01/44809 A2

(51) Classification internationale des brevets⁷:
G01N 33/53, C12Q 1/68

Manuel [IT/FR]; 49. rue Félix Faure, F-91270 Vigneux-sur-Seine (FR).

(21) Numéro de la demande internationale:

PCT/FR00/03503

(74) Mandataire: CABINET ORES; 6, avenue de Messine, F-75008 Paris (FR).

(84) États désignés (régional): brevet européen (AT, BE, CH,

CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) Date de dépôt international:

13 décembre 2000 (13.12.2000)

(81) États désignés (national): JP, US.

(25) Langue de dépôt:

français

(26) Langue de publication:

français

(20) Langue de paris

(30) Données relatives à la priorité: 99/15884 16 décembre 1999 (16.12.1999) FR

(71) Déposant (pour tous les États désignés sauf US): NAU-TILUS BIOTECH [FR/FR]; Pépinière Génopole Industries, 4, rue Pierre Fontaine, F-91000 Evry Cedex (FR). Publiée:

 Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

cole Indusex (FR). En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de

la Gazette du PCT.

SE, TR).

(72) Inventeur; et

(75) Inventeur/Déposant (pour US seulement): VEGA,

(54) Title: METHODS FOR SCREENING OR EVALUATING THE PERFORMANCE OF A SET OF BIOLOGICAL AGENTS IN LIVING TARGET CELLS AND THEIR USES

(54) Titre: METHODES DE CRIBLAGE OU D'EVALUATION DE LA PERFORMANCE D'UN ENSEMBLE D'AGENTS BIO-LOGIQUES DANS DES CELLULES CIBLES VIVANTES ET LEURS APPLICATIONS

(57) Abstract: The invention concerns a method for screening and/or evaluating the performance of a set of biological agents, such as a library of recombinant viral or non-viral vectors, of recombinant proteins or antibodies in living target cells (complex biological system).

(57) Abrégé: Méthode de criblage et/ou d'évaluation de la performance d'un ensemble d'agents biologiques, tel qu'une banque de vecteurs viraux ou non viraux recombinants, de protéines recombinantes ou d'anticorps, dans des cellules cibles vivantes (système biologique complexe).

METHODES DE CRIBLAGE OU D'EVALUATION DE LA PERFORMANCE D'UN ENSEMBLE D'AGENTS BIOLOGIQUES DANS DES CELLULES CIBLES VIVANTES ET LEURS APPLICATIONS

L'invention est relative à des méthodes de criblage et/ou d'évaluation de la performance d'un ensemble d'agents biologiques, tels qu'une banque de vecteurs viraux ou non viraux recombinants (vecteurs de transfert de gènes), de vaccins, de protéines recombinantes ou d'anticorps, dans des cellules cibles vivantes (système biologique complexe).

Les progrès relatifs aux transferts de gènes en thérapie génique dépendent de la capacité à développer des vecteurs permettant l'expression d'une substance au niveau de la cellule cible, ladite substance ayant effectivement un effet thérapeutique au niveau de ladite cible. Il est donc important de pouvoir disposer de vecteurs de qualité clinique, utilisables dans des essais de phase I.

Pour l'obtention d'une information quantitative concernant les performances potentielles d'un vecteur de transfert de gène, les paramètres d'évaluation proposés dans la littérature sont :

le titre en particules physiques (pp) (Mittereder et al., J. Virol., 1996, 70, 11, 7498-7509; Atkinson et al., NAR, 1998, 26, 11, 2821-2823; Kechli et al., Hum. Gene Ther., 1998, 9, 4, 587-590; Nelson et al., Hum. Gene Ther., 1998, 9, 16, 2401-2405), qui représente le contenu total en particules de vecteur; habituellement ce titre est évalué soit à partir du contenu en acides nucléiques des vecteurs (hybridation des acides nucléiques ou DO₂₆₀ respectivement pour AAV et AdV), soit à partir du contenu en protéines virales (activité RT et contenu en p24, par exemple pour MLV et HIV, respectivement); la mesure physique des particules virales ou des génomes présente l'inconvénient de pouvoir être confondue avec la présence de particules défectives (defective-interfering particles ou DI) et

le titre en particules infectieuses (*ip*: unités infectieuses, unités de transduction) (Mittereder et al., précité; Weitzman. et al., J. Virol., 1996, 70, 3, 1845-1854; Salvetti et al., Hum. Gene Ther., 1998, 9, 5, 695-706) est évalué par l'étude des changements observés dans les cellules infectées (réplication virale, intégration du provirus, lyse cellulaire, expression du transgène), par des méthodes essentiellement basées sur les dilutions en série, suivies soit par une extrapolation linéaire, soit par une

approximation asymptotique; ainsi *ip* mesure le nombre de particules actives dans le processus dont l'effet est mesuré: *ip* ne correspond donc pas à toutes les particules potentiellement actives; *ip* constitue une partie des particules physiques (*pp*), l'autre partie desdites particules physiques étant constituée par des particules inactives (*nip* ou *non-infectious particles*),

. la détection des plaques, dans le cas de virus lytiques; cette méthode est quantitative mais difficile à mettre en œuvre et ne peut pas s'appliquer aux virus non-cytopathiques et

. la variation des rapports particules/infectivité.

10

Par exemple, dans l'article au nom d'E.M. Atkinson et al. (NAR, 1998, 26, 11, 2821-2823) et dans la Demande Internationale PCT WO 99/11764, pour résoudre le problème de la détermination du titre et la comparaison de différents virus recombinants utilisés en thérapie génique, il est proposé une nouvelle méthode, considérée comme plus fiable que celles antérieurement utilisées et qui met en œuvre essentiellement une étape d'amplification du matériel génétique viral dans une lignée cellulaire hôte, des préparations de vecteur standard de titre connu obtenues par dilutions en série et un contrôle interne de titre connu. De manière plus précise, la méthode comprend dans différents puits d'une plaque de microtitration, l'infection de cellules à l'aide d'une préparation virale, la réplication du génome viral dans ladite cellule hôte, la lyse chimique de ladite cellule, une hybridation de l'acide nucléique puis la détermination de la quantité relative d'acide nucléique viral répliqué dans chaque puits.

Dans l'article au nom d'A.R. DAVIS et al. (Gene Therapy, 1998, 5, 1148-1152), il est considéré qu'une utilisation optimale des adénovirus recombinants en thérapie génique passe par le développement d'une technique adaptée à la séparation rapide de nouveaux recombinants qui ne sont pas contaminés par le virus sauvage. Pour ce faire, les Auteurs de cet article proposent de créer des adénovirus recombinants en cotransfectant des cellules 293 avec l'ADN viral dérivé à partir de la région 3' du génome d'un recombinant qui ne comprend pas la région E1 mais qui exprime la protéine fluorescente (GFP ou green fluorescent protein) et un plasmide portant la région 5' du génome; la cotransfection peut ainsi être visualisée par microscopie de fluorescence.

20

30

Les méthodes de l'art antérieur font appel exclusivement à la mesure du titre en particules physiques (pp) et/ou à la mesure du titre en particules infectieuses (ip) pour évaluer un vecteur de transfert de gène. Les préparations de vecteur avec un titre élevé en particules infectieuses et un rapport particules physiques/particules infectieuses faible sont considérées comme étant de haute qualité, ces deux paramètres étant considérés comme fournissant une information quantitative concernant la performance d'un vecteur de transfert de gène.

Toutefois, les procédures actuelles utilisées pour évaluer pp ainsi que ip varient selon le type de vecteur, sont peu reproductibles et imprécises; en outre, ces paramètres ne sont pas suffisamment informatifs pour permettre de définir de manière précise les caractéristiques d'un vecteur et donc d'évaluer ses performances.

La présente invention s'est en conséquence donnée pour but, de fournir un procédé standardisé qui soit apte à évaluer l'interaction entre un vecteur de thérapie génique et plus généralement de n'importe quel agent biologique, avec un système biologique complexe (cellules cibles vivantes).

C'est également un but de l'invention de fournir un procédé de criblage d'un ensemble d'agents biologiques complexes, en vue de la sélection de l'agent biologique le plus adapté à l'application recherchée.

La présente invention a pour objet un procédé d'évaluation de la performance d'un ensemble d'agents biologiques complexes dans des cellules cibles vivantes, avec lesquelles lesdits agents biologiques interagissent, lequel procédé est caractérisé en ce qu'il comprend au moins les étapes suivantes :

- (a) la préparation, pour chaque agent biologique dudit ensemble, d'une gamme d'échantillons, obtenue par dilutions en série dudit agent biologique à une concentration R1,
- (b) l'incubation de chaque échantillon de ladite gamme de dilutions obtenue en 1. avec lesdites cellules cibles à une concentration constante R2,
- (c) la détermination du produit P de la réaction R1 + R2, à un instant t, dans chacun desdits échantillons,
- (d) l'établissement d'une courbe théorique H à partir desdits points expérimentaux R1 et P, pour chaque agent biologique par approximation itérative de

15

30

paramètres qui reflètent la réaction R1+R2 → P, audit instant t, conformément à l'équation suivante :-

$$P = P_{max} (\pi R1)^{r} / (\kappa + (\pi R1)^{r}) \qquad r=1,...,n \qquad (2),$$

dans laquelle:

R1 représente la concentration en agent biologique dans un échantillon de la gamme,

P représente le produit de la réaction R1 + R2 à un instant t,

P_{max} représente la capacité maximale de la réaction,

κ représente la résistance du système biologique à une concentration constante R2 à répondre audit agent biologique (constance de résistance de R2),

r représente un coefficient qui dépend de R1 et qui correspond au coefficient de Hill, et

 π représente la puissance intrinsèque de l'agent biologique R1 à induire une réponse dans le système biologique (production de P à l'instant t), et

(e) le tri des valeurs de κ et de π obtenues en (d), pour chaque agent biologique et le classement des agents biologiques en fonction desdites valeurs.

La présente invention a également pour objet un procédé de criblage d'un ensemble d'agents biologiques complexes modifiés (banque de mutants) dans des cellules cibles vivantes avec lesquelles lesdits agents biologiques interagissent, lequel procédé est caractérisé en ce qu'il comprend au moins les étapes (a) à (e) telles que définies ci-dessus et une étape (f) de sélection de l'agent biologique le plus adapté à l'application recherchée.

Selon un mode de mise en œuvre avantageux dudit procédé, l'ensemble d'agents biologiques modifiés est constitué par une banque de mutants, obtenue par l'introduction naturelle ou artificielle d'une ou plusieurs mutations dans la séquence nucléotidique et/ou peptidique desdits agents biologiques.

Au sens de la présente invention, on entend par mutation, une insertion, une délétion ou une substitution d'au moins un nucléotide ou d'au moins acide aminé.

Les procédés selon l'invention consistent à analyser pour chaque gamme d'agent biologique à tester, sur la base de l'équation de Hill, la réponse du système biologique (production d'un produit P à un instant t).

PCT/FR00/03503 WO 01/44809 5

L'équation de Hill est une formalisation générale qui décrit l'interaction entre différentes molécules. Elle exprime la quantité de produit formé comme une fonction de la concentration des réactifs et de la constante d'affinité du système.

Originellement développée pour l'étude de la dissociation entre l'hémoglobine et l'oxygène, l'équation de Hill englobe l'analyse de la cinétique enzymatique par l'équation de Michaelis-Menten, l'analyse de la liaison ligandrécepteur et l'analyse des systèmes allostériques.

En effet, conformément à Hill, pour une réaction simple :

$$R1 + R2 \rightarrow P$$
 K

5

10

20

30

dans laquelle l'affinité K entre R1 et R2 change en fonction de leurs concentrations; l'équation de Hill décrit l'accumulation du produit P comme une fonction de la concentration de l'un des réactifs (R1) et des propriétés intrinsèques (K) du système.

$$P = \sum_{r=1}^{r=n} P_{max} \cdot R1^r / (K + R1)^r$$
 (R2 constante) (1)

dans laquelle R1, P, P_{max} et K représentent respectivement la concentration du réactif R1, la concentration du produit P, la capacité maximale de la réaction et la constante d'affinité entre R1 et R2.

Le coefficient de Hill r est une fonction de R1. r est égal à 1 lorsque des sites de liaison interactifs indépendants sont impliquées entre R1 et R2, comme dans le cas décrit par Michaelis-Menten. r varie de 1 à n pour des systèmes dans les lesquels les sites impliqués dans l'interaction entre R1 et R2 ne sont pas indépendants les uns des autres. L'affinité pour R1 au niveau de n'importe quel site de liaison de R2 varie comme une fonction soit du degré d'occupation des autres sites de R2, soit de la concentration de R1 lui-même ou soit de la concentration d'autres régulateurs (positifs ou négatifs).

Ces analyses basées sur l'équation de Hill se sont toujours limitées à des protéines individuelles ou à des systèmes simples mis en œuvre dans des conditions expérimentales définies de manière très précise.

Il n'était pas pensable, jusqu'à présent que l'équation de Hill pouvait s'appliquer à l'interaction entre des systèmes complexes telles que les cellules vivantes et des agents biologiques complexes tels que les virus, les vecteurs viraux et non-viraux recombinants comme les vecteurs de transfert de gènes, les vaccins, les protéines recombinantes ou les anticorps, par exemple.

De manière surprenante, l'Inventeur a maintenant trouvé que l'analyse de systèmes complexes tels que l'infection d'une cellule par un virus ou un vecteur de thérapie génique, était possible par sélection de paramètres directement dérivés de l'équation de Hill.

Premières définitions

WO 01/44809

10

15

25

- R1 correspond à la concentration en agent biologique; il peut signifier, dans la présente invention, selon le contexte, l'ensemble des concentrations obtenues par dilution de la préparation d'agent biologique, utilisées pour déterminer le produit P ou l'agent biologique lui-même;
- on entend par agent biologique, par exemple, mais de manière non limitative, un vecteur viral ou non viral recombinant contenant une molécule d'acide nucléique d'intérêt (gène, cassette d'expression d'une protéine, molécule d'ARN antisens, ribozyme, génome viral recombinant ou fragment de ce génome) tel qu'un vecteur de transfert de gènes ou un vecteur d'expression, un virus, un anticorps, un 20 vaccin ou une protéine recombinante;
 - R2 correspond à la concentration des cellules cibles vivantes, il peut signifier, dans la présente invention, selon le contexte, la concentration des cellules cibles vivante (constante) utilisée pour déterminer le produit P ou les cellules cibles vivantes elles-mêmes;
 - on entend par cellules cibles vivantes, des cellules cibles in vivo, in vitro ou ex vivo, avant leur modification par un agent biologique;
- P (output) représente la réponse des cellules cibles R2 à chaque dilution d'agent biologique (input) à une concentration R1; le produit P peut être déterminé soit directement, soit indirectement par la mesure de paramètres biolo-30 giques reflétant la réponse du système biologique (cellules cibles) audit agent biologique (ou réaction R1+R2 ou processus biologique); il s'agit notamment de la mesure d'une activité enzymatique, de l'expression d'un transgène, de la productivité d'un

virus, de la cytotoxicité, de la tumorigenèse, de l'immunogénicité etc..... Dans ce cas, le test biologique mis en œuvre pour déterminer P est soit un test in vitro, soit un test in vivo; il permet de déterminer des paramètres biologiques représentatifs de la réponse du système biologique à l'agent biologique étudié;

- les techniques utilisées pour déterminer, estimer, analyser ou calculer les valeurs de P à un instant t sont, de manière non limitative, des mesures de radioactivité, de fluorescence, de luminenescence, d'absorbance ou le dénombrement de cellules;

- le paramètre π : π mesure la puissance intrinsèque de l'agent biologique pour produire P dans les cellules cibles vivantes considérées; π s'oppose à κ (constante de résistance) qui constitue le facteur d'opposition desdites cellules à la production de P; par exemple, dans le cas où l'agent biologique est représenté par des particules virales infectieuses (R1), l'on peut considérer que pour chaque particule virale infectieuse ajoutée, l'activité du virus est donnée par l'équation πR1; pour obtenir une réponse des cellules cibles vivantes (production de P), la puissance intrinsèque π doit être supérieure à κ dans la cellule. π constitue une caractéristique spécifique de l'agent biologique étudié; dans ce contexte, des variants d'un agent biologique étudié ne présenteront pas la même valeur de π dans un processus réactionnel donné. On peut considérer que π constitue un paramètre reflétant l'activité chimique par opposition à la concentration pour des composés chimiques simples. π constitue un facteur de correction qui affecte la concentration R1 de l'agent biologique pour indiquer sa force ou activité réelle dans un processus réactionnel donné; les variations de π affectent l'équation (2) en déplaçant la courbe vers la droite ou vers la gauche selon que la valeur de π décroît ou croît ; la pente de la courbe obtenue à l'étape (d) augmente, lorsque π augmente; les courbes obtenues à l'étape (d), qui ne diffèrent entre elles qu'en ce qui concerne le paramètre π , ne sont pas parallèles entre elles ; π est un paramètre clé pour la caractérisation de l'agent biologique et la détermination de sa performance pour accomplir la réaction (processus biologique) étudiée : π trouve une application directe et pratique dans l'optimisation et la mise au point de l'agent biologique utilisé, dans la mesure où ce paramètre permet de comparer la puissance

relative de variants dudit agent ; toutefois, ce paramètre ne permet pas seul d'évaluer l'ensemble du système ;

- le paramètre κ (constante de résistance) : κ mesure la résistance interne des cellules cibles vivantes au processus biologique induit par l'agent biologique pour l'obtention de P; k est une caractéristique spécifique du processus biologique (réaction entre R1et R2) particulier et des cellules cibles vivantes (type cellulaire) testées : le même processus biologique pour des lignées ou des types cellulaires différents conduira à l'obtention de paramètres k différents; de plus, les facteurs qui ont une influence sur la performance d'une cellule dans la réalisation dudit processus biologique, tels que les agents contaminants ou les agents toxiques, modifient la valeur de κ pour ladite cellule ; on peut considérer que κ est analogue aux constantes de dissociation ou d'affinité pour des composés chimiques ou des réactions biologiques simples; les variations de k affectent l'équation (2) en déplaçant la courbe de la droite vers la gauche, selon que κ augmente ou diminue; les courbes obtenues à l'étape (d), qui ne diffèrent entre elles qu'en ce qui concerne le paramètre k, sont parallèles entre elles; k est un paramètre clé pour l'estimation des performances du test biologique sélectionné pour évaluer la réaction globale (réaction R1+R2); κ trouve une application directe et pratique dans le développement et la validation du test sélectionné pour évaluer la réaction dans laquelle intervient l'agent biologique et dans l'évaluation de la susceptibilité ou la sensibilité de différents types cellulaires à participer à ladite réaction.

10

20

25

30

De manière surprenante, conformément au procédé selon l'invention, différents agents biologiques complexes et/ou différentes cellules cibles vivantes peuvent être comparés et classés sur la base de leur performance évaluée par au moins les deux paramètres ci-dessus mentionnés, désignés par l'expression « paramètres de Hill ».

Ainsi une analyse précise et une comparaison de la réponse biologique des cellules cibles vivantes tant *in vitro* qu'*in vivo* à des agents biologiques complexes devient effectivement possible.

Également conformément à l'invention un certain nombre de paramètres, dérivés de l'équation de Hill, peut être enregistré et utilisé pour quantifier des

30

caractéristiques pertinentes d'un système complexe : agent biologique, cellules cibles et processus ou réaction, résultant de leur interaction.

Par exemple, dans le cas où le système complexe serait représenté par l'infection d'une cellule par un virus, on peut observer un grand nombre d'interactions (protéine/protéine, protéine/acide nucléique, protéine/petite molécule), qui sont susceptibles d'être, conformément à l'invention, décrites par le procédé mettant en œuvre l'équation de Hill. La réaction globale, formalisée par les réactifs entrants (*input*), à savoir les virus et les cellules et les produits de la réaction (*output*) [réponse cellulaire à l'infection] peut être analysée en utilisant l'équation de Hill, et ce, quel que soit le nombre d'étapes intermédiaires.

Selon un mode de mise en œuvre avantageux desdits procédés, l'agent biologique est sélectionné dans le groupe constitué par les virus, les vecteurs viraux et non-viraux, les vaccins, les anticorps et les protéines recombinantes.

Des réactions complexes, telles que celles impliquant l'interaction entre des virus recombinants (R1) et des cellules vivantes (R2) et qui induisent une réponse biologique, peuvent être analysées et les réactifs (R1 et R2) caractérisés par le procédé selon l'invention mettant en œuvre l'équation de Hill (paramètres π et κ) et éventuellement au moins l'un des paramètres dérivés, tels que définis ci-après.

Selon un autre mode de mise en œuvre avantageux desdits procédés, à l'étape (c), la détermination de P est réalisée soit de manière directe, par exemple par dosage de P, soit de manière indirecte, par exemple, à l'aide d'un test biologique convenablement sélectionné pour la mesure d'au moins un paramètre ou une variable reflétant la réponse des cellules cibles vivantes audit agent biologique, comme précisé ci-dessus.

Selon un autre mode de mise en œuvre avantageux desdits procédés, ils comprennent, en outre, la mesure d'au moins l'un des paramètres dérivés suivants :

- l'efficacité globale ε de la réaction induite par l'agent biologique sur ledit système,
 - le titre apparent τ de l'agent biologique,
 - le titre absolu θ dudit agent biologique, et
 - l'index d'hétérogénéité η de ladite réaction biologique.

PCT/FR00/03503

Définitions de ces paramètres dérivés

10

15

- efficacité globale ε : ε mesure l'efficacité globale maximale de la réaction agent biologique (R1), caractérisé par un paramètre π donné et des cellules cibles vivantes (R2), caractérisées par un paramètre κ donné : ε est donc spécifique du couple agent biologique (π)/système biologique (κ) pour ce qui concerne la réaction étudiée ; des modifications des paramètres π et/ou κ entraînent des modifications du paramètre ε . ε est un paramètre clé pour la caractérisation de l'efficacité de la réaction globale mettant en œuvre R1 et R2 ; il est en particulier important et utile pour l'optimisation du *test* lorsque π et κ ont été sélectionnés et pour étudier de manière séparée les modifications soit de π , soit de κ ;

- le titre apparent τ: dans l'équation de Hill (2), lorsque R1 augmente, r augmente de 1 à 2, 3, 4 et P approche sa valeur maximale P_{max}. Dans l'autre direction, R1 ne peut diminuer que jusqu'à un point minimal (R1_{min}), auquel correspondent les valeurs minimales de r et de P. La courbe sigmoīdale de Hill n'est pas symétrique: seul son bras droit est asymptotique (jusqu'à Pmax); sur son bras gauche, la courbe a une origine à R1min. D'un point de vue biologique, le fait qu'il n'existe pas de P pour $R1 < R1_{min}$, signifie qu'il n'y a pas de produit de réaction lorsque la concentration en agent biologique est < R1_{min}: le système ne répond pas à des valeurs de R1 < R1_{min}. R1_{min} représente donc la quantité minimale de R1 qui induit une réponse dans les cellules cibles vivantes concernées et est représenté par τ; le titre, défini de cette manière, ne correspond ni à une valeur asymptotique, ni à une valeur approchée par extrapolation, mais un paramètre précis de l'équation de Hill et correspond à l'origine mathématique de la courbe théorique obtenue en (d). On peut donc considérer que t mesure la dilution limite ou le titre apparent de l'agent biologique étudié; la valeur de τ est déterminée par la limite de sensibilité du système et par la méthode utilisée pour mesurer le produit P; c'est la raison pour laquelle il est dénommé titre apparent; τ est spécifique de la quantité d'agent biologique testé et représente la concentration apparente de l'agent biologique; il est exprimé en unités par volume (dilution maximale d'agent biologique qui induit la production de P). En d'autres termes, t est représenté par le R1 maximal pour lequel le coefficient de Hill r atteint sa valeur minimale, ledit coefficient de Hill devenant constant pour une valeur

égale à ou proche de 1. τ selon la présente invention, correspond au titre généralement utilisé pour les virus, les anticorps et les vecteurs ; toutefois, contrairement à ce qui est décrit dans l'art antérieur, ce paramètre seul ne permet pas d'évaluer un système biologique complexe. Les variations de τ affectent l'équation (2) en déplaçant la courbe vers la droite ou vers la gauche, selon que la valeur de τ décroît ou croît, respectivement. τ constitue un paramètre clé qui mesure la concentration apparente du stock initial d'agent biologique, qui est nécessaire à l'usage que l'on souhaite en faire ;

- titre absolu θ : θ mesure le titre absolu en agent biologique; la valeur de θ n'est ni déterminée, ni dépendante de la limite de sensibilité des cellules cibles testées ou de la méthode utilisée pour mesurer P; c'est la raison pour laquelle θ est dénommé titre absolu ; θ est spécifique de la quantité initiale d'agent biologique testé ; il représente la concentration physique réelle en agent biologique et est exprimé en unités/volume (i. e. la dilution maximale d'agent biologique qui induit la production de P) ; θ est obtenu, conformément à l'équation (3) suivante :

$$\theta \pi = \tau / s \tag{3},$$

dans laquelle s représente la sensibilité de la méthode de détection.

En conséquence, pour des agents biologiques évalués en utilisant la même méthode de détection de P, l'expression suivante, représentée dans l'équation (4) suivante est valable :

$$\theta 1\pi 1 / \tau 1 = \theta 2\pi 2 / \tau 2 = \theta n\pi n / \tau n = constante$$
 (4).

En utilisant l'équation (4), le rapport entre deux titres absolus correspondant à deux préparations d'agents biologiques différents, peut être obtenu à partir des valeurs de π et de τ de ces deux préparations d'agents biologiques. Les variations de θ affectent l'équation (2) en déplaçant la courbe vers la droite ou vers la gauche et/ou en changeant la pente de la courbe. θ est le paramètre qui mesure la concentration absolue initiale en agent biologique.

l'index d'hétérogénéité η: η mesure l'hétérogénéité interne de la réaction qui peut être due, soit aux cellules (discontinuité de la constante de résistance
κ), soit à l'agent biologique (discontinuité de la puissance intrinsèque π). La présence d'une hétérogénéité interne dans la réaction R1+R2 peut être détectée par l'apparition

de paliers dans l'évolution du coefficient de Hill, correspondant à la courbe de Hill qui s'ajuste aux données expérimentales. η est donc défini comme l'index d'hétérogénéité et sa valeur correspond au nombre de paliers observés dans l'évolution du coefficient de Hill : un palier : $\eta = 1$; deux paliers : $\eta = 2$; trois paliers : $\eta = 3$; n paliers : $\eta = n$. η est un paramètre clé pour l'analyse détaillée de la réaction. Il est utile pour l'étude de chaque palier identifié. La présence de paliers se traduit par une discontinuité brusque de κ ou de π . Les processus complexes, tels que ceux évalués dans la présente invention, consistent en une succession d'événements dans multidimensionnel de réactions biologiques reliées entre elles et interrégulées. Ainsi, la constante de résistance k pour une réaction particulière est un indicateur macroscopique de la résistance globale de la réaction biologique ($\kappa = \kappa_1 x \kappa_2 x \kappa_i ... \kappa_n$). Si la contribution des constantes microscopiques de résistance $(\kappa_1, \kappa_2, ... \kappa_i, ... \kappa_n)$ pour les paliers individuels impliqués dans la réaction étaient homogènes, et qu'aucun seuil n'existait pour passer d'un palier à l'autre; dans ce cas, on n'observerait aucune discontinuité dans l'évolution du coefficient de Hill par rapport à R1. Cependant, l'existence d'une hétérogénéité importante parmi les valeurs k, correspondant aux paliers individuels microscopiques pourrait conduire à une discontinuité macroscopique du système. Cette hétérogénéité pourrait entraîner des modifications dans la variation du coefficient de Hill et en conséquence, le besoin d'un saut quantitatif des valeurs macroscopiques de k afin que l'équation (2) s'ajuste aux données. .

En conséquence, chaque palier peut-être déterminé par une constante de résistance macroscopique κ différente et/ou une constante de résistance macroscopique π différente. Les systèmes dans lesquels $\eta = 2$ peuvent ainsi être décrits à l'aide d'une équation de Hill dans laquelle :

- κ prend deux valeurs différentes : κ1 et κ2, selon les valeurs de R1 considérées : une partie de la courbe est décrite par k1 et une autre partie de la courbe est décrite par k2. Les courbes de Hill décrivant la réaction globale, caractérisées par $\eta = 2$ sont des hybrides générées à partir de deux courbes de Hill parallèles différant uniquement par le paramètre k. La transition d'une courbe à l'autre peut modifier la pente de la courbe de Hill résultante ou

- π prend deux valeurs différentes : $\pi 1$ et $\pi 2$, selon les valeurs de R1 considérées : une partie de la courbe est décrite par $\pi 1$ et une autre partie de la courbe est décrite par $\pi 2$. Les courbes de Hill décrivant la réaction globale, caractérisées par $\eta = 2$ sont des hybrides générées à partir de deux courbes de Hill parallèles différant uniquement par le paramètre π . La transition d'une courbe à l'autre peut modifier la pente de la courbe de Hill résultante.

Selon un autre mode de mise en œuvre avantageux desdits procédés, la mesure du paramètre d'évaluation ε représentant l'efficacité spécifique d'un agent biologique apte à induire la production de P dans lesdites cellules cibles vivantes est réalisée :

- soit par mesure de la pente, de la courbe H théorique obtenue en (d), à son point d'inflexion,

- soit par calcul du maximum de la dérivée première δP/δR1 et éventuellement de la dérivée seconde de la courbe théorique H obtenue en (d); en effet, l'efficacité de la réaction décrite dans l'équation (2) est donnée par l'augmentation de l'output P qui peut être obtenue en augmentant l'input R1. Ainsi, la dérivée première de P par rapport à R1, ou la pente de la courbe décrite dans l'équation (2) fournit l'efficacité globale de la réaction pour chaque input ou entrée R1.

L'efficacité globale maximale ou ε est donc bien exprimée directement soit par la pente au point d'inflexion de la courbe décrite dans l'équation (2), soit par le maximum de sa dérivée $\delta P/\delta R1$. A la fois la pente de la courbe donnée par l'équation (2) et le maximum de $\delta P/\delta R1$ augmentent lorsque ε augmente.

Selon un autre mode de mise en œuvre avantageux desdits procédés, ils comprennent, en outre, la mesure des paramètres suivants : π/P_{max}, κ/P_{max} ou ε/P_{max} Ces valeurs corrigées sont indépendantes de la capacité maximale(P_{max}), elles permettent donc de mieux comparer les différents paramètres, π, κ et ε dans le cas où P_{max} serait différente selon les systèmes ou bien dans le cas où l'agent biologique affecterait P_{max}.

25

30

Selon encore un autre mode de mise en œuvre desdits procédés, les valeurs des paramètres de Hill correspondant à chaque agent biologique sont comparées à celles obtenues avec un agent biologique de référence.

Également conformément à l'invention, pour valider l'analyse de la réaction R1+R2 par l'équation de Hill, lesdits procédés peuvent comprendre en outre une étape de traitement des données expérimentales obtenues à l'étape (d) (Hill plot), conformément à l'équation suivante :

$$\log |P/(1-P)|$$
 vs. $\log R1$.

Également conformément à l'invention, la sélection des agents biologiques, des vecteurs par exemple, présentant des valeurs minimales acceptables pour les paramètres sélectionnés: κ , r, ϵ , θ , τ , η , π/P_{max} , κ/P_{max} ou ϵ/P_{max} peuvent avantageusement être soumis à une analyse itérative pour obtenir la courbe H la mieux ajustée statistiquement aux valeurs expérimentales R1 et P.

Les agents biologiques, sélectionnés, conformément aux procédés selon l'invention sont ensuite validés définitivement pour leurs propriétés biologiques.

De manière avantageuse, les paramètres κ , r, ϵ , θ , τ , η , π/P_{max} , κ/P_{max} ou ϵ/P_{max} , obtenus conformément aux procédés selon l'invention sont utilisés pour :

- valider et optimiser les agents biologiques utilisables dans une 20 application particulière (procédé de criblage d'une banque d'agents biologiques modifiés),
 - développer et optimiser les tests de caractérisation d'agents biologiques, éventuellement modifiés (procédé d'évaluation de la performance).

A titre d'exemple et de façon non limitative, les procédés selon l'invention peuvent être utilisés pour:

• cribler une banque de vecteurs viraux ou non viraux pour la thérapie génique, une banque d'anticorps pour le diagnostic d'une infection ou la sélection d'anticorps efficaces contre des cellules tumorales ou bien une banque de protéines recombinantes pour le diagnostic ou le traitement d'une pathologie humaine ou animale;

25

• comparer différents vecteurs ou des lots d'un même vecteur obtenus par un même procédé de préparation ou par des procédés de préparation différents.

En variante, ce sont les cellules cibles qui sont soumises à des dilutions en série, R1 étant constante; les étapes (a) et (b) sont donc modifiées en conséquence et l'étape (d). comprend l'établissement d'une courbe théorique H la mieux ajustée aux valeurs expérimentales (P et R2) par itération, en attribuant des valeurs aux différents paramètres de l'équation de Hill (P_{max} , κ , π et r).

La présente invention a également pour objet, un agent biologique modifié caractérisé en ce qu'il est susceptible d'être obtenu par le procédé de criblage selon l'invention.

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en œuvre du procédé objet de la présente invention ainsi qu'aux dessins annexés, dans lesquels :

- la figure 1A représente les courbes théoriques de Hill (H) obtenues par itération à partir des valeurs expérimentales P et R1 (f(logdil)) des deux échantillons 1 et 2 de rAAV. Les paramètres κ , π , τ et P_{max} de ces deux échantillons ont été déterminés directement à partir de ces courbes théoriques ;
- la figure 1B représente la courbe r=f(logdil) qui permet de déterminer l'index d'hétérogénéité du système biologique (η) ;
 - la figure 2 représente le plot de Hill $(\log |P/(1-P)| = f(R1))$;
 - la figure 3 illustre l'obtention du paramètre ε;
- la figure 4 représente les valeurs expérimentales obtenues (P et R1) et l'ensemble des valeurs théoriques calculées qui ont servi au tracé des différentes courbes présentées dans les figures 1 à 3;
- la figure 5 représente les valeurs des différents paramètres de Hill obtenues selon l'invention pour les deux échantillons de rAAV étudiés ;
- la figure 6 (A et B) illustre un système biologique hétérogène (η =
 2). La figure 6A représente les courbes théoriques de Hill s'ajustant aux valeurs expérimentales de P et de R1 (f(concentration)); la figure 6B comprend en abscisse le n°

20

du point, ordonné selon les concentrations de la figure 6A et en ordonnées les valeurs de r; cette courbe présente 2 paliers $(\eta = 2)$;

- la figure 7 illustre le criblage d'une banque de vecteurs d'expression du gène rep de rAAV, chacun des vecteurs codant pour un mutant 5 différent dudit gène. Les courbes expérimentales P = f(log 1/dilution) sont présentées pour chaque vecteur et la valeur du titre apparent t, déterminée à partir de chaque courbe théorique de Hill, est indiquée par une flèche sur l'axe des abscisses;
 - la figure 8 illustre l'évaluation de la performance d'un plasmide d'expression par le procédé selon l'invention; et
 - la figure 9 illustre le criblage d'une banque d'anticorps par le procédé selon l'invention.

Il doit être bien entendu, toutefois, que ces exemples sont donnés uniquement à titre d'illustration de l'objet de l'invention, dont ils ne constituent en aucune manière une limitation.

Exemple 1: Comparaison de la performance de deux échantillons de vecteurs recombinants [virus associé à l'adénovirus recombinant (rAAV)] dans des cellules HeLa rc-32.

a) Matériel et méthode

- Définition du système biologique

L'agent biologique étudié est un vecteur viral recombinant (rAAV) Deux stocks de rAAV (échantillon 1 et échantillon 2), obtenus selon les techniques classiques connues de l'homme du métier, décrites dans E.M. Atkinson et al. (NAR, 1998, 26, 11, 2821-2823) ont été évalués dans les cellules HeLa rc-32 (A. Salvetti et al., Hum. Gene Ther., 1998, 20, 9, 5, 695-706). Les cellules ont été ensemencées dans 25 les puits d'une plaque de microtitration à une concentration R2 constante, puis infectées avec les dilutions en série des échantillons 1 et 2. Au temps t=48h à 72h, les cellules ont été récoltées puis le génome viral a été isolé et hybridé avec une sonde nucléotidique spécifique marquée, selon la technique du Dot Blot classiquement utilisée par l'homme du métier, décrite dans E.M. Atkinson et al. (NAR, 1998, 26, 11, 2821-2823). Le signal (produit P) représentant la quantité d'ADN hybridée a été mesuré pour chaque dilution des échantillons 1 et 2, à l'aide d'un phosphorimageur et les valeurs obtenues sont présentées dans la figure 4. Le test biologique mis en œuvre

(hybridation) permet d'évaluer la réplication de l'agent biologique (rAAV) dans les cellules cibles HeLa rc-32.

Les étapes suivies, conformément au procédé selon l'invention pour analyser lesdits rAAV sont présentées ci-dessous. L'ensemble des valeurs des différents paramètres de Hill obtenues pour les échantillons 1 et 2 de rAAV est résumé dans la figure 5.

- Etape 1 : Détermination de la courbe de Hill optimale (H) pour chaque préparation de vecteur (figure $1\dot{A}$)

La courbe de Hill optimale s'ajustant le mieux avec les valeurs expé10 rimentales a été obtenue par itération en attribuant des valeurs aux différents paramètres de l'équation de Hill, à savoir : P_{max}, κ, π, et r. Les meilleures courbes de Hill
obtenues pour les échantillons 1 et 2 sont présentées sur la figure 1A, elles correspondent respectivement aux valeurs théoriques H1 et H2 des échantillons 1 et 2,
(figure 4). Les valeurs de P sont exprimées en unités arbitraires (pixels) en fonction du
15 log de la dilution du vecteur.

Pour l'échantillon 1, on obtient :

$$P = 2.05 (0.125 R1)^r / (450 + (0.125 R1)^r)$$

Pour l'échantillon 2, on obtient :

30

$$P = 2,35 (0,172 R1)^r / (450 + (0,172 R1)^r)$$

- * Avec r=1,0, 1,0, 1,25, 1,5, 1,75, 2,0, 2,25, 2,5, 2,75
 - * Le système utilisé pour ce test (les cellules HeLa rc-32) est supposé montrer la même résistance vis à vis des deux échantillons (κ=450).

- Etape 2 : Tracé du plot de Hill (figure 2A et 2B)

Le plot de Hill correspondant à log | P/(1-P)| en fonction du log de la dilution a été tracé, à partir des valeurs expérimentales, pour les deux échantillons[figures 2D (échantillon 1) et 2D' (échantillon 2)]. La régression linéaire obtenue montre que les données présentées dans la figure 1A répondent bien à l'équation de Hill.

- Etape 3 : Détermination de la concentration limite (titre τ) des préparations de vecteur (figure 1A)

τ est déterminé par la valeur maximale de R1 pour laquelle le coefficient de Hill (sur la courbe optimale de Hill) est égal à 1. Les valeurs τ des échantillons 1 et 2

20

25

30

ont été déterminées à partir des courbes de la figure 1A, les valeurs obtenues sont de 5,89 pour les deux échantillons.

- Etape 4 : Détermination de l'efficacité (ϵ) et de l'efficacité standardisée (ϵ/P_{max}) (figure 3)

L'efficacité est la pente de la courbe de Hill (ou de toute courbe sigmoïdale traduisant les valeurs obtenues) à son point d'inflexion.

ε a été calculée comme suit :

La courbe H' (H'=δH/δR1), dérivée de H a été tracée.

La valeur maximale atteinte par la courbe correspondant à ε a été déterminée pour les échantillons 1 et 2, les valeurs obtenues sont 0, 808 et 0,906, respectivement (figure 3).

- Etape 5: Détermination de l'homogénéité du système biologique (η), (figure 1B)

La courbe r en fonction de log dil a été tracée et le nombre de paliers sur la courbe a été déterminé.

L'index d'hétérogénéité η a été déterminé comme suit, en fonction du nombre de paliers (un palier ; η =1, deux paliers ; η =2, x paliers ; η =x)

On obtient $\eta=1$; par conséquent le système biologique testé est homogène.

- Etape 6 : Caractérisation complète du vecteur (figure 5)

L'ensemble des valeurs obtenues pour chacun des paramètres suivants :

 P_{max} , κ , r, ϵ , τ , π , η , ϵ/P_{max} , π/P_{max} et κ/P_{max} , permet de caractériser chaque préparation de vecteur.

- Etape 7: Classement des vecteurs en fonction de leur performance (figure 5)

Les vecteurs ont été classés en fonction des valeurs obtenues pour :

 P_{max} , κ , π , τ , π/P_{max} et κ/P_{max} .

b) Résultats

Les deux échantillons montrent des titres apparents équivalents $(\tau=5,89)$; cependant les titres absolus sont différents $\theta_1/\theta_2=\pi_2/\pi_1=0,725$ et la

puissance de l'échantillon 2 (π_1 =0,172) est supérieure à celle de l'échantillon 1 (π_2 =0,125).

Cette valeur n'est pas compensée par la puissance corrigée π/P_{max} puisque l'on retrouve une valeur pour l'échantillon 2 (π/P_{max} =0,07) supérieure à celle de l'échantillon 1 (π/P_{max} =0,06).

En considérant que κ est constant, c'est-à-dire que les cellules HeLa rc-32 montrent la même résistance vis-à-vis des deux échantillons, l'échantillon 2 est légèrement plus efficace que l'échantillon 1 (ϵ_2 =0,906> ϵ_1 = 0,808) et sa capacité maximale P_{max} =2,35 est supérieure à celle de l'échantillon 1 (P_{max} =2,05).

L'analyse des valeurs des différents paramètres de Hill obtenues pour les deux échantillons de vecteur recombinant permet de tirer les conclusions suivantes :

Les titres apparents de deux lots d'un même vecteur sont équivalents et correspondent à ce qui est généralement déterminé dans l'Art antérieur, alors que la détermination des paramètres de Hill et éventuellement des paramètres dérivés permet de mettre en évidence des différences dans leur puissance corrigée et leur efficacité. La caractérisation de deux lots d'un même vecteur viral, à l'aide des paramètres pertinents de Hill et éventuellement de ses paramètres dérivés permet donc bien de valider et d'optimiser des agents biologiques (préparations de vecteurs viraux par exemple) utilisables dans une application particulière (thérapie génique in vivo).

Exemple 2: Système biologique présentant une hétérogénéité.

a) Définition du système biologique

10

L'agent biologique analysé est un vecteur rétroviral dénommé (pSI-EGFP; Ropp et al., Cytometry, 1995, 21, 309-317), codant le gène rapporteur de la protéine fluorescente eucaryote (*Eukaryotic Green Fluorescent Protein* ou EGFP) et les cellules cibles sont les cellules HT-1080 (ATCC n° CCL-121).

Les cellules cibles ont été ensemencées à une concentration R2 et infectées avec les dilutions en série du vecteur. Au temps t=48h, l'intensité de fluorescence (produit P) représentant la quantité du gène rapporteur EGFP exprimée par le vecteur a été mesurée pour chaque dilution.

b) Détermination de la courbe de Hill optimale (figure 6A)

L'ensemble des points expérimentaux ne peut pas s'ajuster à une seule courbe de Hill. On observe deux sous-ensembles de points :

- les points situés dans la partie gauche de la figure 6A s'ajustent à une courbe de Hill correspondant à κ=8000 (courbe supérieure),

- les points situés dans la partie droite de la figure 6A s'ajustent à une courbe de Hill correspondant à κ=3500 (courbe inférieure).

c) Détermination de l'homogénéité du système biologique (n), (figure 6B)

La courbe r en fonction des n° de points, ordonnés selon les concentrations telles qu'elles apparaissent à la figure 6A, a été tracée et le nombre de paliers sur la pente de la courbe a été déterminé (figure 6B).

La courbe présente 2 paliers ; par conséquent le système biologique testé est hétérogène et présente un index d'hétérogénéité η=2.

Exemple 3: Criblage d'une banque de plasmides d'expression de mutants du gène rep de rAAV.

a) Matériel et Méthode

- Définition du système biologique

L'ensemble d'agents biologiques modifiés est une banque de vecteurs d'expression de mutants du gène <u>rep</u> de rAAV et les cellules cibles sont une lignée d'encapsidation de rAAV (lignée HeLa rc-32). Les cellules ont été ensemencées à une concentration constante R2 puis transfectées avec les dilutions en série des différents plasmides d'expression. Au temps t = 48 h, la quantité de virus produite (produit P) a été mesurée selon la technique de dot-blot, telle que décrite à l'exemple 1.

- Détermination des paramètres de Hill

Ces paramètres sont déterminés en suivant les étapes 1 à 7 telles que décrites à l'exemple 1 et l'étape finale de sélection du mutant le plus adapté à la production du virus recombinant est effectuée en fonction des valeurs de τ obtenues.

b) Résultats

25

30

Les courbes expérimentales P = f (log 1/dilution) sont présentées à la figure 7 et le titre apparent τ de chaque plasmide d'expression, déterminé à partir de la courbe théorique de Hill est le suivant :

- Plasmide n°1 (courbe (1)) : $\tau = 7,1$
- Plasmide n°2 (courbe (2)) : $\tau = 6.4$
- Plasmide n°3 (courbe (3)) : $\tau = 6$

Les résultats indiquent que le mutant du gène rep de rAAV contenu dans le plasmide n°1 possède l'activité la plus élevée dans le système testé.

Ainsi que cela ressort de ce qui précède, l'invention ne se limite nullement à ceux de ses modes de mise en oeuvre, de réalisation et d'application qui viennent d'être décrits de façon plus explicite; elle en embrasse au contraire toutes les variantes qui peuvent venir à l'esprit du technicien en la matière, sans s'écarter du cadre, ni de la portée, de la présente invention.

30

REVENDICATIONS

- 1°) Procédé d'évaluation de la performance d'un ensemble d'agents biologiques complexes dans des cellules cibles vivantes, avec lesquelles lesdits agents biologiques interagissent, lequel procédé est caractérisé en ce qu'il comprend au moins les étapes suivantes :
- (a) la préparation, pour chaque agent biologique dudit ensemble, d'une gamme d'échantillons, obtenue par dilutions en série dudit agent biologique à une concentration R1,
- (b) l'incubation de chaque échantillon de ladite gamme de dilutions obtenue en 1, avec lesdites cellules cibles à une concentration constante R2,
 - (c) la détermination du produit P de la réaction R1 + R2, à un instant t, dans chacun desdits échantillons,
 - (d) l'établissement d'une courbe théorique H à partir desdits points expérimentaux R1 et P, pour chaque agent biologique par approximation itérative de paramètres qui reflètent la réaction R1+R2 → P, audit instant t, conformément à l'équation suivante :

$$P = P_{max} (\pi R1)^r / (\kappa + (\pi R1)^r) \qquad r=1,...,n \qquad (2),$$
dans laquelle:

R1 représente la concentration en agent biologique dans un échan-20 tillon de la gamme,

P représente le produit de la réaction R1 + R2 à un instant t,

P_{max} représente la capacité maximale de la réaction,

 κ représente la résistance des cellules cibles vivantes à répondre audit agent biologique,

r représente un coefficient qui dépend de R1 et qui correspond au coefficient de Hill, et

 π représente la puissance intrinsèque de l'agent biologique à induire une réponse dans les cellules cibles vivantes, et

- (e) le tri des valeurs de κ et de π obtenues en (d), pour chaque agent biologique et le classement des agents biologiques en fonction desdites valeurs.
 - 2°) Procédé de criblage d'un ensemble d'agents biologiques complexes modifiés (banque de mutants) dans des cellules cibles vivantes avec

30

lesquelles lesdits agents biologiques interagissent, lequel procédé est caractérisé en ce qu'il comprend au moins les étapes (a) à (e) telles que définies à la revendication 1 et une étape (f) de sélection de l'agent biologique le plus adapté à l'application recherchée.

- 3°) Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit agent biologique est sélectionné dans le groupe constitué par les virus, les vecteurs viraux et non-viraux, les vaccins, les anticorps et les protéines recombinantes.
- 4°) Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'à l'étape (c), la détermination de P est réalisée soit de manière directe, par exemple par dosage de P, soit de manière indirecte, par exemple, à l'aide d'un test biologique convenablement sélectionné pour la mesure d'au moins un paramètre ou une variable reflétant la réponse du système biologique audit agent biologique.
- 5°) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend, en outre, la mesure d'au moins l'un des paramètres dérivés suivants :
 - l'efficacité globale ϵ de la réaction induite par l'agent biologique sur ledit système,
- le titre apparent τ de l'agent biologique, correspondant à l'origine
 20 de la courbe théorique H obtenue en (d),
 - le titre absolu θ dudit agent biologique défini par l'équation $\theta \pi = \tau /s$ (3), dans laquelle s représente la sensibilité de la méthode de détection, et
 - l'index d'hétérogénéité n de ladite réaction biologique.
- 6°) Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la mesure du paramètre d'évaluation & représentant l'efficacité spécifique d'un agent biologique apte à induire la production de P dans les cellules cibles vivantes est réalisée soit par mesure de la pente de la courbe théorique obtenue en (d) à son point d'inflexion, soit par calcul du maximum de la dérivée première et éventuellement de la dérivée seconde de la courbe théorique obtenue en (d).
 - 7°) Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend en outre la mesure des paramètres suivants : π/P_{max} , κ/P_{max} ou ϵ/P_{max} .

WO 01/44809 PCT/FR00/03503

24

8°) Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les valeurs des paramètres de Hill correspondant à chaque agent biologique sont comparées à celles obtenues avec un agent biologique de référence.

9°) Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que pour valider l'analyse de la réaction R1+R2 par l'équation de Hill, le procédé peut comprendre en outre une étape de traitement des données expérimentales obtenues à l'étape (d) (Hill plot), conformément à l'équation suivante :

 $\log |P/(1-P)|$ vs. $\log R1$.

20

25

10°) Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend:

. la sélection des agents biologiques présentant des valeurs minimales acceptables pour les paramètres sélectionnés : π , κ , r, ϵ , θ , τ , η , π/P_{max} , κ/P_{max} ou ϵ/P_{max} et

. l'analyse itérative des courbes H correspondant auxdits agents biologiques sélectionnés, conformément à l'équation (2), pour éliminer les valeurs élevées par compensation, suivie de

l'élimination des agents biologiques qui compensent et pour lesquels des courbes alternatives peuvent être obtenues, pour la constitution d'une liste d'agents biologiques à action optimale.

11°) Procédé selon l'une quelconque des revendications 2 à 10, caractérisé en ce que ledit ensemble d'agents biologiques modifiés est constitué par une banque de mutants, obtenue par l'introduction naturelle ou artificielle d'une ou plusieurs mutations dans la séquence nucléotidique et/ou peptidique desdits agents biologiques.

12°) Agent biologique modifié, caractérisé en ce qu'il est susceptible d'être obtenu par le procédé selon la revendication 11.

WO 01/44809 PCT/FR00/03503

1/7

FIGURE 1

FIGURE 2

FIGURE 3

	_						
		7	-1,3802 -0,8653 -0,2126 0,6585				
		7 101d 111L	-1,3802 -0,8653 -0,2126 0,6585 0,5082 0,3123 0,2553				
			1,3802 -0,8653 -0,1402 1,5097				
	Hill plot 1	200	.1,3802 .0,8653 .0,1402 1,5097 0,4952 0,3171 0,3010				
			0,0358 0,0281 0,0358 1 0,0358 0,0234 0,0358 0,0601 0,0473 0,6601 1 0,0347 0,0274 0,0347 0,1679 0,1442 0,1679 1,25 0,1540 0,1385 0,1540 0,9555 0,9552 0,9555 1,75 0,7350 0,746 0,3300 1,5208 1,5522 1,5208 2 0,8075 0,8528 0,8075 1,8591 1,8857 1,8591 2,25 0,4834 0,4764 0,4834 1,9913 2,0338 1,9913 2,5 0,1888 0,1688 0,1888 2,0332 2,0339 2,0332 2,75 0,0599 0,0487 0,0599				
	H'(2)		0,0281 0,0274 0,1385 0,3840 0,7746 0,8528 0,4764 0,1688				
	n H'(1) H'(2)		0,0358 0,0347 0,1540 0,3900 0,7350 0,4834 0,1888				
	_	1 1,25 1,5 1,75 2,25 2,25 2,5 2,75					
			0,0358 0,0281 0,0358 0,0601 0,0473 0,0601 0,1679 0,1442 0,1679 0,4409 0,4130 0,4409 0,9555 0,9552 0,955 1,5208 1,5522 1,5208 1,8591 1,8857 1,8591 1,9913 2,0038 1,9913 2,0332 2,0379 2,0332				
10/1	H(2)		0,0281 0,0473 0,1442 0,4130 0,9552 1,5522 1,5857 2,0038 2,0379				
16/11	L(T) H(Z)		0,0358 0,0601 0,1679 0,4409 0,9555 1,5208 1,8591 1,9913 2,0332				
10/21	1/6/		0,04 0,12 0,38 0,82 1,45 1,95 2,25 2,32				
D/11			0,04 0,12 0,42 0,97 1,47 1,93				
(lip)au	1	•	1,6990 2,3979 3,0969 3,7959 4,4949 5,1938 5,8928 6,5918				
vol(((R1))		-	0,000 0,004 0,0008 0,00016 0,000032 0,00000128 0,00000128				

FIGURE 4

3/7

3, .				
E	chantillon l	Echantillon 2		
P _{max}	2,05	2,35	_	
τ (log dil)	5,89	5,89		
π	0,125	0,172		
π/P_{max}	0,06	0,07		
к	450	450		
к/Pmax	219,5	191,5		
ε .	0,808	0,906		
e/Pmax	0,394	0,385		
η	1	1		
r	1,0, 1,0, 1,25	1,0, 1,0, 1,25,		
•	1,5, 1,75, 2,0	1,5, 1,75, 2,0,		
	2,25, 2,5, 2,75	2,25, 2,5, 2,75		
$\Delta r/\Delta$ (log dil)=cte.	0,313	0,313		

FIGURE 5

FIGURE 7

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 21 juin 2001 (21.06.2001)

PCT

(10) Numéro de publication internationale WO 01/44809 A3

- (51) Classification internationale des brevets7:
 - G01N 33/50, C12Q 1/68, C12N 7/02
- (21) Numéro de la demande internationale :

PCT/FR00/03503

(22) Date de dépôt international:

13 décembre 2000 (13.12.2000)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

16 décembre 1999 (16.12.1999) 99/15884

(71) Déposant (pour tous les États désignés sauf US) : NAU-TILUS BIOTECH [FR/FR]; Pépinière Génopole Industries, 4, rue Pierre Fontaine, F-91000 Evry Cedex (FR).

- (72) Inventeur; et
- (75) Inventeur/Déposant (pour US seulement): VEGA, Manuel [IT/FR]; 49, rue Félix Faure, F-91270 Vigneux-sur-Seine (FR).
- (74) Mandataire: CABINET ORES; 6, avenue de Messine, F-75008 Paris (FR).
- (81) États désignés (national): JP, US.
- (84) États désignés (régional): brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Publiée:

avec rapport de recherche internationale

(88) Date de publication du rapport de recherche 20 décembre 2001 internationale:

[Suite sur la page suivante]

(54) Title: EVALUATION OF BIOLOGICAL AGENTS IN LIVING TARGET CELLS

(54) Titre: EVALUATION D'AGENTS BIOLOGIQUES DANS DES CELLULES CIBLES VIVANTES

(57) Abstract: The invention concerns a method for screening and/or evaluating the performance of a set of biological agents, such as a library of recombinant viral or non-viral vectors, of recombinant proteins or antibodies in living target cells (complex biological system).

[Suite sur la page suivante]

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

⁽⁵⁷⁾ Abrégé: Méthode de criblage et/ou d'évaluation de la performance d'un ensemble d'agents biologiques, tel qu'une banque de vecteurs viraux ou non viraux recombinants, de protéines recombinantes ou d'anticorps, dans des cellules cibles vivantes (système biologique complexe).

INTERNATIONAL SEARCH REPORT

mational Application No PCT/FR 00/03503

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01N33/50 C12Q1/68 C12N7/02								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS								
Minimum documentation searched (classification system followed by classification symbols) IPC 7 GO1N C12Q								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS, WPI Data								
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriate, of the rela	levant passages	Relevant to claim No.					
A	CHARBORD P; NEEL H; LEHN P; PARME "NORMAL HUMAN GRANULO MONOCYTIC E MARROW PROGENITOR CELLS RESPONSIV COLONY STIMULATING ACTIVITY" NOUVELLE REVUE FRANCAISE D'HEMATO vol. 22, 1980, pages 357-370, XPO page 363; figure 3	1-11						
A	SCHUHMANN KLAUS; ROMANIN CHRISTOF BAUMGARTNER WERNER; GROSCHNER KLA "Intracellular Ca2+ inhibits smoot L-type Ca2+ channels by activation protein phosphatase type 2B and be interaction with the channel" JOURNAL OF GENERAL PHYSIOLOGY, vol. 110, November 1997 (1997-11) 503-513, XP000949861 abstract	1-11						
X Further documents are listed in the continuation of box C. Patent family members are listed in annex.								
T later document published after the international liting date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered not be of particular relevance. *T* later document published after the international titled to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone which is cred to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *Date of the actual completion of the international search *T* later document published after the international liting date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand t								
	1 July 2001	20/07/2001						
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Authorized officer Hart-Davis, J						

Form PCT/ISA/210 (second sheet) (July 1992)

1

mational Application No PCT/FR 00/03503

		PC1/FR 00/03503
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	·
Category "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	MOULLIER P; DAVELOOSE D; LETERRIER F; HOEBEKE J: "COMPARATIVE BINDING OF WHEAT GERM AGGLUTININ AND ITS SUCCINYLATED FORM ON LYMPHOCYTES" EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 161, 1986, pages 197-204, XP000951462 page 199; figure 4	1-11
A	ATKINSON E M ET AL: "A high-throughput hybridization method for titer determination of viruses and gene therapy vectors" NUCLEIC ACIDS RESEARCH,GB,OXFORD UNIVERSITY PRESS, SURREY, vol. 26, no. 11, 1 June 1998 (1998-06-01), pages 2821-2823, XP002099502 ISSN: 0305-1048 cited in the application the whole document	1-3
Α	NELSON DAVID M; WAHLFORS J JARMO; CHEN LIN; ONODERA MASAFUMI; MORGAN RICHARD A: "Characterization of diverse viral vector preparations, using a simple and rapid whole-virion dot-blot method" HUMAN GENE THERAPY, vol. 9, 1 November 1998 (1998-11-01), pages 2401-2405, XP000951429 cited in the application the whole document	1-3
Α	MITTEREDER NANETTE; MARCH KEITH L; TRAPNELL BRUCE C: "Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy" JOURNAL OF VIROLOGY, vol. 70, no. 11, November 1996 (1996-11), pages 7498-7509, XP002148995 cited in the application the whole document	1-3
A	SALVETTI A ET AL: "Factors influencing recombinant adeno-associated virus production" HUMAN GENE THERAPY,XX,XX, vol. 9, no. 5, 20 March 1998 (1998-03-20), pages 695-706, XP002097712 ISSN: 1043-0342 cited in the application page 697, column 2, paragraph 2 -page 699, column 1, paragraph 1	1-3

rnational Application No PCT/FR 00/03503

	cliation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Category *		
A	DAVIS A R ET AL: "HIGH THROUGHPUT METHOD FOR CREATING AND SCREENING RECOMBINANT ADENOVIRUSES" GENE THERAPY,GB,MACMILLAN PRESS LTD., BASINGSTOKE,	1-3
	vol. 5, no. 8, August 1998 (1998-08), pages 1148-1152, XP000867556 ISSN: 0969-7128 cited in the application the whole document	
		
		a.

Continuation of Box I.2

Claim no.: 12

Claim 12 of the present application concerns a "modified biological agent", solely defined by the fact that it is "obtainable by the method as per Claim 11", said method involving a bank of mutants, the evaluation of the performance of an agent introduced in target cells being assessed as per Claims 2 to 10.

No technical characteristic is mentioned in Claim 12, for example a chemical structure element, which would enable a meaningful search. Claim 12 does not provide any means to distinguish the substances forming part of prior art from the novel substances. No definition of the subject matter for which protection could be legitimately claimed can therefore be deduced from Claim 12 (PCT Article 6) or from the description (PCT Article 5).

Notwithstanding the reasons mentioned above, Claim 12 is also lacking in clarity (PCT Article 6). Indeed, there has been an attempt to define an agent by means of the result of a method which is not a production method but an identification method, which requires considerable effort on the part of a person skilled in the art to determine what is covered by said claim. It is not possible for the latter, without experimental research going beyond a routine test, to know if a given agent would be "obtainable by the method as per Claim 11". A fortiori, at the level of purely documentary research, the International Searching Authority cannot determine which agents would meet with what is claimed in Claim 12. In the present case, the lack of clarity is such that it is not possible to carry out a meaningful search on the whole spectrum covered by the claims.

The applicant's attention is drawn to the fact that claims, or parts of claims, concerning inventions in respect of which no search report has been established need not be the subject of a preliminary examination report (PCT Rule 66.1(e)). The applicant is advised that the line of conduct adopted by the EPO acting in its capacity as International Preliminary Examining Authority is not to proceed with a preliminary examination of a subject matter in respect of which no search has been carried out. That attitude will remain unchanged, notwithstanding whether or not the claims have been modified, either after the report has been received, or during any procedure under Chapter II.

RAPPORT DE RECHERCHE INTERNATIONALE

nande Internationale No PCT/FR 00/03503

A. CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE G01N33/50 C12Q1/68 C12N7/02		
Selon la clas	ssification internationale des brevels (CIB) ou à la fois selon la classific	ation nationale et la CIB	
B. DOMAIN	NES SUR LESQUELS LA RECHERCHE A PORTE		
Documental CIB 7	ion minimale consultee (systeme de classification suivi des symboles d G01N C12Q	de classement)	
Documental	ion consultee autre que la documentalion minimale dans la mesure où	ces documents relevent des domaines s	ur lesqueis a porte la recherche
Base de dor	nnees électronique consultee au cours de la recherche internationale (n	nom de la base de donnees, et si réalisat	ole, termes de recherche utilises)
EPO-In	ternal, BIOSIS, WPI Data		
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Catégorie "	Identification des documents cités, avec, le cas écheant, l'indication (des passages pertinents	no. des revendications visées
A	CHARBORD P; NEEL H; LEHN P; PARMEN "NORMAL HUMAN GRANULO MONOCYTIC BO MARROW PROGENITOR CELLS RESPONSIVE COLONY STIMULATING ACTIVITY"	NE NESS TO	1-11
	NOUVELLE REVUE FRANCAISE D'HEMATOL vol. 22, 1980, pages 357-370, XP00 page 363; figure 3	.0GIE, 10949859	
A	SCHUHMANN KLAUS; ROMANIN CHRISTOPH; BAUMGARTNER WERNER; GROSCHNER KLAUS: "Intracellular Ca2+ inhibits smooth muscle L-type Ca2+ channels by activation of protein phosphatase type 2B and by direct interaction with the channel" JOURNAL OF GENERAL PHYSIOLOGY, vol. 110, novembre 1997 (1997-11), pages		1-11
	503-513, XP000949861 abrégé		
		/ 	
X Voir	la suite du cadre C pour la fin de la liste des documents	Les documents de familles de bre	evets sont indiqués en annexe
'A' docum	ent définissant l'état genéral de la technique, non	* document ulterieur publié après la date date de priorité et n'appartenenant pa lechnique pertugnt, mais cite pour co	ıs a l'état de la
considére comme particulièrement pertinent ou la theorie constituant la base de l'invention "E" document anticilièrem, mais publié à la date de dépôt international "X" document particulièrement pertinent; l'invention revendiquée ne peut			nvention invention revendiquée ne peut
priorite autre	*L' document pouvant jeter un doute sur une revendication de pnorité ou câté pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) *Y' document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive		
'O' document se référant à une divulgation orale, a un usage, a une exposition ou tous autres moyens document set associé à un ou plusieurs autres une exposition ou tous autres moyens documents de même nature, cette combinaison étant evidente pour une personne du metier		mbinaison étant evidente	
	rieurement à la date de priorite revendiquée *8 relle la recherche internationale a été effectivement achevee	Date d'expédition du present rapport o	
1	1 juillet 2001	20/07/2001	
Nom et adre	esse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnaire autorise	
1	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040. Tx. 31 651 epo nl. Fav. (+31–70) 340–3016	Hart-Davis, J	

RAPPORT DE RECHERCHE INTERNATIONALE

rande Internationale No
PCT/FR 00/03503

pertinents	no. des revendications visées 1-11 1-3
potunenta	1-11
	1-3
	1-3
	1-3
	1-3

RAPPORT DE RECHERCHE INTERNATIONALE

nande Internationale No PCT/FR 00/03503

	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec,le cas échéant, l'indicationdes passages pertinents	no. des revendications visee
atégorie °	identification des documents cites, avec, le cas echeant, i indication des passages pertinents	no, des revenuscations visee:
	DAVIS A R ET AL: "HIGH THROUGHPUT METHOD FOR CREATING AND SCREENING RECOMBINANT ADENOVIRUSES" GENE THERAPY,GB,MACMILLAN PRESS LTD., BASINGSTOKE, vol. 5, no. 8, août 1998 (1998-08), pages 1148-1152, XP000867556 ISSN: 0969-7128 cité dans la demande le document en entier	1-3
		·
		·
	-	

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

Suite du cadre I.2

Revendications nos.: 12

La revendication 12 présente a trait à un "agent biologique modifié", défini uniquement par le fait qu'il est "susceptible d'être obtenu par le procédé selon la revendication 11", ledit procédé mettant en jeu une banque du mutants; l'évaluation de la performance d'un agent introduit dans des cellules cibles étant évaluée selon les revendications 2 à 10.

Aucune caractéristique technique n'est présente dans la revendication 12, par exemple un élement de structure chimique, qui permettrait que l'on effectue une recherche significative. La revendication 12 ne fournit aucun moyen de distinguer des substances faisant partie de l'état de la technique des substances nouvelles. Aucune définition de la matière pour laquelle une protection pourrait être légitimement revendiquée ne peut donc être déduite de la revendication 12 (Article 6 PCT) ou de la description (Article 5 PCT).

Indépendamment des raisons évoquées ci-dessus, la revendication 12 manque aussi de clarté (Article 6 PCT). En effet, on a cherché à définir un agent au moyen du résultat d'un procédé non pas de fabrication mais d'identification, qui exige un effort considérable de la part de l'homme du métier afin de déterminer ce qui est couvert par cette revendication. Il n'est pas possible pour ce dernier, sans recherches expérimentales allant au-delà d'un essai de routine, de savoir si un agent donné serait "susceptible d'être obtenu par le procédé selon la revendication 11". A fortiori, au stade de recherche purement documentaire, l'administration chargée de la recherche internationale ne peut déterminer quels agents satisferaient à la revendication 12. Le manque de clarté est tel, dans le cas présent, qu'une recherche significative sur tout le spectre couvert par les revendications est impossible.

L'attention du déposant est attirée sur le fait que les revendications, ou des parties de revendications, ayant trait aux inventions pour lesquelles aucun rapport de recherche n'a été établi ne peuvent faire obligatoirement l'objet d'un rapport préliminaire d'examen (Règle 66.1(e) PCT). Le déposant est averti que la ligne de conduite adoptée par l'OEB agissant en qualité d'administration chargée de l'examen préliminaire international est, normalement, de ne pas procéder à un examen préliminaire sur un sujet n'ayant pas fait l'objet d'une recherche. Cette attitude restera inchangée, indépendamment du fait que les revendications aient ou n'aient pas été modifiées, soit après la réception du rapport de recherche, soit pendant une quelconque procédure sous le Chapitre II.

METHODS FOR SCREENING OR ASSESSING THE PERFORMANCE OF A COLLECTION OF BIOLOGICAL AGENTS IN LIVING TARGET CELLS, AND THEIR APPLICATIONS

The invention relates to methods for screening and/or assessing the performance of a collection of biological agents, such as a library of recombinant viral or nonviral vectors (vectors for transferring genes), of vaccines, of recombinant proteins or of antibodies, in living target cells (complex biological system).

Progress relating to the transfer of genes in gene therapy depends on the ability to develop vectors which enable a substance to be expressed at the level of the target cell, with said substance having a positive therapeutic effect at the level of said cell. It is therefore important to have available vectors which are of clinical quality and which can be used in phase I trials.

20

15

The assessment parameters which are proposed in the literature for obtaining quantitative information with regard to the potential performance of a gene transfer vector are:

25

• the titer o f physical particles (pp) (Mittereder et al., J. Virol., 1996, 70, 11, 7498 -7509; Atkinson et al., NAR, 1998, 26, 11, 2821 -2823; Kechli et al., Hum. Gene Ther., 1998, 9, 4, 587 -590; Nelson et al., Hum. Gene Ther., 1998, 9, 16, 2401 -2405), which 30 represents the total content of vector particles; as a rule, this titer is assessed either on the basis of the nucleic acid content of the vectors (hybridization of the nucleic acids or OD 260 in the case of AAV and AdV, respectively), or on the basis of the content o f viral 35 proteins (RT activity and content of p24, for example, in the case of MLV and HIV, respectively); physical measurement of the viral particles or of the genomes

suffers from the drawback of being able to be confused with the presence of defective pa rticles (defectiveinterfering particles or DI), and

- the titer of infectious particles (ip: infectious units, transduction units) (Mittereder et al., loc. cit.; Weitzman et al., J. Virol., 1996, 70, 3, 1845 1854; Salvetti et al., Hum. Gene Ther., 1998, 9 695-706) is assessed by studying the changes which are observed in the infected cells (viral replication, 10 integration of the provirus, cell lysis, expression of the transgene), using methods which are essentially based on serial dilutions followed eit her by a linear extrapolation or by an asymptotic approximation; thus, ip measures the number of particles which are active in 15 the method whose effect is measured: ip does not correspond, therefore, to all the particles which are potentially active; ip con stitutes a part of the physical particles (pp), with the other part of said physical particles consisting of inactive particles 20 (nip or non-infectious particles),
- detecting plaques in the case of lytic viruses; while this method is quantitative, it is dif implement and cannot be applied to noncytopathic 25 viruses, and
 - varying the particles/infectivity ratios.
- For example, in order to solve the problem of 30 determining the titer and comparing different recombinant viruses used in gene therapy, the ar by E.M. Atkinson et al. (NAR, 1998, 26, 11, 2821 -2823) and international application PCT WO 99/11764 propose a new method which is regarded as being more reliable than those previously used and which essentially employs a step of amplifying the viral genetic material in a host cell line, preparations of standard vector of

known titer, which preparations are obtained by serial dilutions, and an internal control of known titer. More specifically, the method comprises using a viral preparation to infect—cells in different wells in a microtitration plate, replicating the viral genome in said host cell, chemically lysing said cell, hybridizing the nucleic acid and then determining the relative quantity of viral nucleic acid which has been replicated in each well.

10

30

35

In the article by A.R. Davis et al. (Gene Therapy, 1998, 5, 1148 -1152), it is considered that optimum use of recombinant adenoviruses in gene therapy involves developing a technique which is suitable for rapidly separating new recombinants which ar e not contaminated 15 by the wild -type virus. In order to do this, the authors of this article propose creating recombinant adenoviruses by cotransfecting 293 cells with the viral DNA derived from the 3' region of the genome of a recombinant which does not co mprise the El region but 20 which expresses the fluorescent protein (GFP or fluorescent protein) and a plasmid carrying the 5' region of the genome; in this way, the cotransfection can be visualized by fluorescence microscopy. 25

The methods of the prior art resort exclusively to measuring the titer of physical particles (pp) and/or to measuring the titer of infectious particles (ip) for the purpose of assessing a gene transfer vector. The vector preparations having a high titer of infectious particles and a low physical particles/infectious particles ratio are regarded as being of high quality, with these two parameters being considered to supply quantitative information with regard to the performance of a gene transfer vector.

However, the procedures whi ch are currently employed

PCT/FR00/03503

for assessing pp and ip vary depending on the type of vector, are not particularly reproducible and are imprecise; furthermore, these parameters are not sufficiently informative to make it possible to precisely define the characterristics of a vector and therefore to assess its performance.

Consequently, the object given to the present invention is that of providing a standardized method which is capable of assessing the interaction between a gene therapy vector, and, more generall y, any biological agent whatsoever, and a complex biological system (living target cells).

- Another object of the invention is to provide a method for screening a collection of complex biological agents with a view to selecting the biological agent which is most suitable for the sought-after application.
- The present invention relates to a method for assessing the performance of a collection of complex biological agents in living target cells with which said biological agents interact, which method is characterized in that it comprises at least the following steps:
 - (a) preparing, for each biological agent in said collection, a range of samples, which range is obtained by making serial dilutions of said biological agent at a concentration R1,
 - (b) incubating each sample of said range of dilutions obtained in 1. with said target cells at a constant concentration R2,
 - (c) determining the product P of the reaction R1 + R2, at a time t, in each of said samples,

35

.

(d) constructing a theoretical curve H from said experimental points R1 and P for each biological agent by iterative approximation of parameters which reflect the reaction R1+R2 \rightarrow P, at said time t, in accordance with the following equation:

$$P = P_{max}(\pi R1)^{r}/(\kappa + (\pi R1)^{r})$$
 $r=1,...,n$ (2).

in which:

10

R1 represents the conce ntration of biological agent in a sample of the range,

P represents the product of the reaction R1 $\,+\,$ R2 at a 15 time t,

 P_{max} represents the maximum capacity of the reaction,

 κ represents the resistance of the biological system, at a constant concentration R2, to responding to said biological agent (constancy of resistance of R2),

r represents a coefficient which depends on R1 and which corresponds to the Hill coefficient, and

25

 π represents the intrinsic power of the biological agent R1 to induce a response in the biological system (production of P at time t), and

30 (e) sorting the values of κ and π obtained in (d) for each biological agent and classifying the biological agents in accordance with said values.

The present invention also relates to a method fo screening a collection of modified complex biological agents (library of mutants) in living target cells with which said biological agents interact, which method is characterized in that it comprises at least the

steps (a) to (e) as defined above and a s tep (f) of selecting the biological agent which is most suited for the sought-after application.

According to an advantageous embodiment of said method, the collection of modified biological agents comprises a library of mutants which is obtained by natur ally or artificially introducing one or more mutations into the nucleotide and/or peptide sequence of said biological agents.

Within the meaning of the present invention, a mutation is understood as being an insertion, a deletion or a substitution of at least one nucleotide or of at least one amino acid.

The methods according to the invention consist in analyzing the response of the biological system (production of a product P at a time t), for each range of biological agent to be tested, on the basis of the Hill equation.

The Hill equation is a general formalization which describes the interaction between different molecules. It expresses the quantity of product formed as a function of the concentration of reagents and of the affinity constant of the system.

Originally developed for studying dissociation between
hemoglobin and oxygen, the Hill equation encompasses
analysis of enzyme kinetics by the Michaelis -Menten
equation, analysis of ligand -receptor binding and the
analysis of allosteric systems.

35 Thus, in accordance with Hill, in the case of a simple reaction:

 $R1 + R2 \rightarrow P$

15

.

Κ,

in which the affinity K between R1 and R2 changes in dependence on their concentrations; the Hill equation describes the accumulation of the product P as a function of the con centration of one of the reagents (R1) and of the intrinsic properties (K) of the system.

$$r=n$$
10 $P = \sum_{r=1}^{\infty} P_{max} \cdot R1^{r}/(K + R1)^{r}$ (R2 constant) (1)

in which R1, P, P max and K respectively represent the concentration of the reagent R1, the concentration of the product P, the maximum capacity of the reaction and the affinity constant between R1 and R2.

The Hill coefficient r is a function of R1. r is equal to 1 when independent interactive binding sites are involved between R1 and R2, as in the case described by Michaelis-Menten. r varies from 1 to n for systems in which the sites involved in the interaction between R1 and R2 are not independent of each other. The affinity for R1 at the level of any R2 binding site varies as a function either of the degree of occupation of the other R2 sites or of the concentration of R1 itself or of the concentration of other regulators (positive or negative).

- These analyses based on the Hill equation are still limited to individual proteins or to simple systems implemented under defined experimental conditions in a very precise manner.
- 35 Up to the present time, it was not possible to conceive that it would be possible for the Hill equation to be applied to the interaction between complex systems such as living cells and comple x biological agents such as viruses, recombinant viral and nonviral vectors, such

as gene transfer vectors, vaccines, recombinant proteins or antibodies, for example.

Surprisingly, the inventor has now found that it is possible to analyze complex systems, such as the infection of a cell with a virus or a gene therapy vector, by selecting parameters which are directly derived from the Hill equation.

10 Initial definitions

- R1 corresponds to the concentration of biological agent; in the present invention, it c an signify, depending on the context, all the concentrations which are obtained by diluting the preparation of biological agent and which are used for determining product P or the biological agent itself;
- biological agent is understood as meaning, by way of
 example but not in a limiting manner, a recombinant viral or nonviral vector containing a nucleic acid molecule of interest (gene, cassette for expressing a protein, antisense RNA molecule, ribozyme, recombinant viral genome or fragment of this genome) such as a gene
 transfer vector or an expression vector, a virus, an antibody, a vaccine or a recombinant protein;
- R2 corresponds to the concentration of the living target cells; in the present invention it can signify,
 30 depending on the context, the concen tration of the living target cells (constant) which is used for determining the product P or the living target cells themselves;
- living target cells are understood as meaning target cells in vivo, in vitro or ex vivo, before they are modified by a biological agent;

- P (output) represents the response of the target cells R2 to each dilution of biological agent (at a concentration R1; the product P can be determined either directly or indirectly by measuring biological parameters which reflect the response of the biological system (target cells) to said biological agent (or R1+R2 reaction or biological method); it is a matter, in particular, of measuring an enzymic activity, the expression of a transgene, the productivity of a virus, cytotoxicity, tumo rigenesis, immunogenicity, etc. In 10 this case, the biological test which is used for determining P is either an in vitro test or an in vivo test; it makes it possible to determine the biological parameters which are representative of the response of 15 the bio logical system to the biological agent being studied;
- the techniques used for determining, assessing, analyzing or calculating values of P at a time t are,
 in a non -limiting manner, measurements of radio activity, of fluorescence, of luminescence, of absorbance or of cell counting;
- the parameter π : π measures the intrinsic capacity of the biological agent for producing P in the living 25 target cells under consideration; π is opposed to (resistance constant), which constitutes the factor of opposition of s aid cells to the production of P; for example, in the case in which the biological agent is represented by infectious viral particles (R1), it is 30 possible to consider that, for each infectious viral particle added, the activity of the virus is given by the equation $\pi R1$; in order to obtain a response by the living target cells (production of P), the intrinsic capacity π should be greater than κ in the cell. π con-35 stitutes a specific characteristic of the biological agent being studied; in this context, varia nts of a biological agent being studied will not exhibit the

same value of π in a given reaction method. It may be considered that π constitutes a parameter which reflects chemical activity as opposed to concentration in the case of simple chemical compounds. $\boldsymbol{\pi}$ constitutes a correction factor which affects the concentration R1 of the biological agent in order to indicate its power or true activity in a given reaction method; varia tions in π affect the equation (2) by displacing the curve toward the right o r toward the left depending on π decreases or increases; the whether the value of 10 slope of the curve obtained at step (d) increases when π increases; the curves which are obtained in step which only differ from each other as far as the parameter π is concerned are not parallel to each other; π is a key parameter for characterizing the 15 biological agent and determining its performance in accomplishing the reaction (biological method) being studied: π can be applied directly and practically in optimizing a nd developing the biological agent employed, to the extent that this parameter makes it 20 possible to compare the relative power of variants of said agent; however, this parameter does not make it possible, on its own, to assess all the system;

25 - the paramete r κ (resistance constant): κ measures the internal resistance of the living target cells to the biological process induced by the biological agent for obtaining P; κ is a specific characteristic of the particular biological process (reaction between R1 and R2) and of the living target cells (cell type) being tested: the same biological process will lead, in the case of different cell lines or cell types, to different κ parameters being obtained; furthermore, the factors which have an influence on the perfor mance of a cell in carrying out said biological process, such as contaminating agents or toxic agents, modify the value of κ for said cell; it is possible to consider that κ is analogous to the dissociation constants or affinity

constants for simple biolog ical reactions or chemical compounds; the variations in κ affect the equation (2) by displacing the curve from the right to the left depending on whether κ increases or decreases; the curves obtained in step (d) which only differ from each the parameter κ is concerned are other as far as parallel to each other; κ is a key parameter for appraising the performance of the biological test which is selected for assessing the overall reaction (reaction R1+R2); κ can be applied directly and 10 practically in developing and validating the test which is selected for assessing the reaction in which the biological agent is involved and in assessing the susceptibility or the sensitivity of different cell types for participating in said reaction. 15

Surprisingly, in accordance with the method according to the invention, different complex biological agents and/or different living target cells can be compared and classified on the basis of their performance as assessed by at least the two abovementioned parameters, which are des ignated by the expression "Hill parameters".

- In this way, it actually becomes possible to precisely analyze and compare the biological response of the living target cells, both in vitro and in vivo, to complex biological agents.
- Also in accordance with the invention, a certain number of parameters, which are derived from the Hill equation, can be recorded and used for quantifying the relevant characteristics of a complex system: biological agent, target cells and process or reaction resulting from their interaction.

For example, in the case in which the complex system is represented by the infection of a cell with a virus, it

is possible to observe a large number of interactions (protein/protein, protein/nucleic acid, protein/small molecule) which, accord ing to the invention, are capable of being described by the method which makes use of the Hill equation. The overall reaction, formalized by the reagents which enter in (input) namely the viruses and the cells, and the products of the reaction (output) [cellular response to infection] can be analyzed by using the Hill equation, with this being possible whatever the number of intermediate steps.

According to an advantageous embodiment of said methods, the biological agent is selected from the group comprising viruses, viral and nonviral vectors, vaccines, antibodies and recombinant proteins.

15

30

Complex reactions, such as those involving the interaction between recombinant viruses (R1) and living cells (R2), and which induce a biological response, can be analyzed, and the reagents (R1 and R2) characterized, by the method according to the invention making use of the Hill equation (parameters π and κ) and, where appropriate, at least one of the derived parameters, as defined below.

According to another advanta geous embodiment of said methods, P is determined in step (c) either directly, for example assaying P, or indirectly, for example using a biological test which is appropriately selected for measuring at least one parameter or one variable which reflects the response of the living target cells to said biological agent, as specified above.

35 According to another advantageous embodiment of said methods, they additionally comprise measuring at least one of the following derived parameters:

- the overall efficiency ϵ of the reaction induced by the biological agent on said system,
- the apparent titer τ of the biological agent,

5

- the absolute titer θ of said biological agent, and
- the heterogeneity index $\ensuremath{\eta}$ of said biological reaction.

10

Definitions of these derived parameters

- overall efficiency ε: ε measures the maximum overall efficiency of the biological agent (R1), which is
 characterized by a given parameter π, and the living target cells (R2), which are characterized by a given parameter κ, reaction: ε is therefore specific for the biological agent (π)/biological system (κ) pair as far as the reaction being studied is concerned; changes in
 the parameters π and/or κ lead to changes in the parameter ε. ε is a key parameter for characterizing the efficiency of the overall reaction employing R1 and R2; it is particularly important and useful for optimizing the test when π and κ have been selected and for
 separately studying the changes of either π or κ;
- the apparent titer τ: when R1 increases in the Hill equation (2), r increases from 1 to 2, 3, 4, etc. and P approaches its maximum value P max. In the other
 direction, R1 is only able to decrease to a minimum point (R1 min) to which the minimum values of r and P correspond. The sigmoidal Hill curve is not sym metrical: only its right arm is asymptotic (up to P max); on its left arm, the curve has an origin at R1 min. From a biological point of view, the fact that no P exists for R1 < R1 min means that there is no reaction product when the concentration of biological agent is < R1 min: the system does not respond to values of R1 < R1 min.

 Rl_{min} therefore represents the minimum quantity of R1 which induces a response in the living target cells in question and is represented by τ ; the titer, defined in this way, does not correspond e ither to an asymptotic value or to a value approached by extrapolation but, instead, to a precise parameter of the Hill equation, and corresponds to the mathematical origin of the theoretical curve obtained in (d). It is therefore possible to consider that τ measures the limiting dilution or the apparent titer of the biological agent 10 being studied; the value of τ is determined by the sensitivity limit of the system and by the method used for measuring the product P; it is for this reason that it is designated apparent titer; τ is specific for the quantity of biological agent tested and represents the 15 apparent concentration of the biological agent; it is expressed in units per volume (maximum dilution of biological agent which induces production of P). In other words, τ is represented by the maximum R1 for which the Hill coefficient r reaches its minimum value, 20 with said Hill coefficient becoming constant for a τ according to the value equal to or close to 1. present invention corresponds to the titer which is generally used for viruses, antibodies and vectors; however, contrary to what is described in the prior 25 art, this parameter on its own does not make it possible to assess a complex biological system. The variations in τ affect the equation (2) by displaci the curve toward the right or to the left depending on whether the value of τ decreases or increases, 30 respectively. τ constitutes a key parameter which measures the apparent con centration of the initial supply of biological agent which is required for the use which it is desired to make of it;

35

- absolute titer θ : θ measures the absolute titer of biological agent; the value of θ is neither determined by, nor dependent on the sensitivity limit of the

35

target cells tested or the method used for measuring P; this is why θ is designated absolute titer; θ is specific for the initial quantity of biological agent tested; it represents the true physical concentration of biological agent and is expressed in units per volume (i.e. the maximum dilution of biological a gent which induces the production of P); θ is obtained in accordance with the following equation (3):

$$10 \quad \theta \pi = \tau / s \tag{3}$$

in which s represents the sensitivity of the detection method.

15 Consequently, in the case of biological agents which are assessed using the same method for detecting P, the following expression, which is represented in the following equation (4), is valid:

20
$$\theta 1\pi 1/i1 = \theta 2\pi 2/i2 = \theta n\pi n/in = constant$$
 (4).

It is possible to use equation (4) to obtain the ratio between two absolute titers, corresponding to two different biological agent preparations, from the values of π and τ for these two biological agent preparations. The variations of θ affect the equation (2) by displacing the curve toward the right or toward the left and/or by changing the slope of the curve. θ is the parameter which measures the initial absolute concentration of biological agent.

The heterogeneity index η : η measures the internal heterogeneity of the reaction, which can be due either to the cells (discontinuity in the resista nce constant κ) or to the biological agent (discontinuity in the intrinsic power π). The presence of an internal heterogeneity in the reaction R1+R2 can be detected by the appearance of plateaus in the development of the

Hill coefficient, corresponding to the Hill curve which fits the experimental data. η is therefore defined as the heterogeneity index and its value corresponds to the number of plateaus observed in the development of the Hill coefficient: one plateau: η = 1; two plateaus: $\eta = 2$; three plateaus: $\eta = 3$; n plateau: $\eta = n$. η is a key parameter for analyzing the reaction in detail. It is useful for studying each plateau which is identified. The presence of plateaus is expressed by an abrupt discontinuity in κ or π . Complex processes, such 10 as those assessed in the present invention, consist of a succession of events in a multidimensional network of biological reactions which are interlinked and interregulated. Thus, the resistance constant particular reaction is a macroscopic indicator of t 15 overall resistance of the biological reaction $(\kappa = \kappa_1 \times \kappa_2 \times \kappa_1 \dots \kappa_n)$. If the contribution of the microscopic resistance constants $(\kappa_1, \kappa_2, ... \kappa_i, ... \kappa_n)$ for the individual plateaus involved in the reaction were homogeneous, and if no threshold existed f or passing 20 from one plateau to another, no discontinuity would be observed in the development of the Hill coefficient with regard to R1. However, the existence of $\kappa_{\text{[illegible]}}$ values significant heterogeneity among the corresponding to the individual micro scopic plateaus 25 could lead to a macroscopic discontinuity in the system. This heterogeneity could entail changes in the variation of the Hill coefficient and, as a consequence, the need for a quantitative jump in the macroscopic values of $\ \kappa$ so as to ensure that equation 30 (2) fits the data.

Consequently, each plateau may be determined by a different macroscopic resistance constant κ and/or a different macroscopic resistance constant π . The systems in which η = 2 can thus be described using a Hill equation in which:

20

25

- κ takes two different values: $\kappa 1$ and $\kappa 2$, depending on the values of R1 under consideration: one part of the curve is described by $\kappa 1$ while another part of the curve is described by $\kappa 2$. The Hill curves describing the overall reaction, which curves are characterized by η = 2, are hybrids which are generated from two parallel Hill curves which differ solely in the parameter κ . Transition from one curve to the other can change the slope of the resulting Hill curve or

- π takes two different values: $\pi 1$ and $\pi 2$, depending on the values of R1 under consideration: one part of the curve is described by $\pi 1$ while another part of the curve is described by $\pi 2$. The Hill curves describing the overall reaction, which curves are characterized by $\eta = 2$, are hybrids whi chare generated from two parallel Hill curves which differ solely in the parameter π . Transition from one curve to the other can

alter the slope of the resulting Hill curve.

According to another advantageous embodiment of said methods, the measurement of the assessment parameter ϵ , representing the specific efficiency of a biological agent which is capable of inducing the production of P in said living target cells, is effected:

- either by measuring the slope of the theoretical H curve obtained in (d) at its point of inflexion,
- or by calculating the maximum of the first derivative δP/δR1 and, where appropriate, of the second derivative of the theoretical H curve obtained in (d); this is because the efficiency of the reaction described in equation (2) is given by the increase in the output P which can be obtained by increasing the input R1. Thus, the first derivative of P with respect to R1, or the slope of the curve described in equation (2) furnishes the overall efficiency of the reaction for each input or

entry R1.

The maximum global efficiency, or ϵ , is therefore indeed expressed directly, either by the slope at the point of inflexion of the curve described in equation (2) or by the maximum of its derivative $\delta P/\delta R1$. Both the slope of the curve given by equation (2) and the maximum of $\delta P/\delta R1$ increase when ϵ increases.

10

15

According to another advantageous embodiment of said methods, these methods additionally comprise measuring the following parameters: π/P_{max} , κ/P_{max} or ϵ/P_{max} . These corrected values are in dependent of the maximum capacity (P $_{max}$); they therefore permit a better com -parison of the different parameters π , κ and ϵ when P $_{max}$ differs depending on the systems or else when the biological agent affects P_{max} .

- According to yet another embodiment of s aid methods, the values of the Hill parameters corresponding to each biological agent are compared with those obtained using a reference biological agent.
- 25 In order to validate the analysis of the reaction R1+R2 by the Hill equation, said methods can, also in accordance with the invention, additionally comprise a step of treating the experimental data obtained in step (d) (Hill plot) in accordance with the following equation:

log|P/(1-P)| vs. log R1.

Also in accordance with the invention, the selection of the biological agents, for example the vectors, which exhibit the minimum acceptable values for the selected parameters: κ , r, ϵ , θ , τ , η , π/P_{max} , κ/P_{max} or ϵ/P_{max} can advantageously be subjected to an iterative analysis in

15

order to obtain the H curve whi ch statistically best fits the experimental R1 and P values.

The biological agents which are selected, in accordance with the methods according to the invention, are then definitively validated for their biological properties.

Advantageously, the parameters κ , r, ϵ , θ , τ , η , π/P_{max} , κ/P_{max} or ϵ/P_{max} , which are obtained in accordance with the methods according to the invention, are used for:

- validating and optimizing the biological agents which can be used in a particular application (method of screening a library of modified biological agents),
- developing and optimizing the tests for characterizing biological agents which may possibly have been modified (method of evaluating performance).
- 20 By way of example, and in a non -limiting manner, the methods according to the invention can be used for:
 - screening a library of viral or nonviral vectors for gene therapy, screening a library of antibodies for diagnosing an infection or for selecting antibodies which are effective against tumor cells, or else screening a library of recombinant proteins for diagnosing or treating a human or animal disease;
- comparing different vectors or batches of one and the same vector obtained by one and the same preparation method or by different preparation methods.

Alternatively, it is the target cells which are

subjected to serial dilutions, with R1 being constant;

steps (a) and (b) are therefore modified as a con

sequence and step (d) comprises the construction, by

iteration, of a theoretical H curve which best fits the

experimental values (P and R2) by attributing values to the different parameters of the Hill equation (P $_{max}$, κ , π and r).

- 5 The present invention also relates to a modified biological agent which is characterized in that it can be obtained by the screening method according to the invention.
- As well as the above provisions, the invention additionally comprises other provisions which will be evident from the description which follows and which refers to examples of the implementation of the method which is the subject of the present invention and to the appended drawings, in which:
- figure 1A depicts the theoretical Hill (H) curves which are obtained by iteration from the experimental values P and R1 (f(logdil)) of the two samples 1 and 2
 of rAAV. The parameters κ, π, τ and P max of these two samples were determined directly from these theoretical curves;
- figure 1B depicts the curve r = f(logdil) which enables the heterogeneity index of the biological system (η) to be determined;
 - figure 2 depicts the Hill plot (log|♥(1-P)| = f(R1));
- 30 figure 3 shows how parameter ε is obtained;
- figure 4 depicts the experimental values obtained (P and R1) and all the calculated theoretical values which were used for drawing the different curves depicted in figures 1 to 3;
 - figure 5 de picts values of the different Hill parameters which were obtained, in accordance with the

invention, for the two samples of rAAV which were studied;

- figure 6 (A and B) illustrates a heterogeneous biological system (η = 2). Figure 6A depicts the theoretical Hill curves which fit the experimental values of P and R1 (f(concentration)); figure 6B comprises, on the x axis, the no. of the point, arranged in accordance with the concentrations in figure 6A, and, on the y axis, the values of r; this curve depicts 2 plateaus (η = 2);
 - figure 7 illustrates the screening of a library of vectors expressing the rAAV rep gene, with each of the vectors encoding a different mutant of said gene. The experimental curves P = f(log 1/dilution) are depicted for each vector and t he value of the apparent titer 1, determined from each theoretical Hill curve, is indicated by an arrow on the x axis;

figure 8 illustrates the assessment of the
 performance of an expression plasmid using the method

according to the invention; and

25 - figure 9 illustrates the screening of an antibody library by the method according to the invention.

It should of course be understood, however, that these examples are given solely by way of illustrating the subject matter of the invention, to which they in no way constitute a limitation.

Example 1 : Comparison of the performance of two
recombinant vector [recombinant adenoassociated virus
(rAAV)] samples in HeLa rc-32 cells.

a) Materials and method

30

30

35

- Definition of the biological system

. The biological agent s tudied is a recombinant viral vector (rAAV). Two batches of rAAV (sample sample 2), which were obtained using standard techniques which are known to the skilled person and described in E.M. Atkinson et al. (NAR, 1998, 26, 11, d in HeLa rc -32 cells 2821-2823), were assesse (A. Salvetti et al., Hum. Gene Ther., 1998, 20, 9, 5, 10 695-706). Cells were sown in the wells of a micro titration plate at a constant concentration R2 and then infected with serial dilutions of samples 1 and 2. At time t = 48 h to 72 h, the cells were harvested and the viral genome was then isolated and hybridized with a specific labeled nucleotide probe in accordance with 15 the dot blot technique, which is customarily used by the skilled person and which is described in E.M. Atkinson et al. (NAR, 1998, 26, 11, 2821 The signal (product P) representing the quantity of DNA hybridized was measured for each dilution of samples 20 and 2 using a phosphorimager, and the values which were obtained are given in figure 4. The biological test which was used (hybridization) makes it possible to assess the replication of the biological agent (rAAV) in the HeLa rc-32 target cells. 25

The steps which were followed, in conformity with the method according to the invention, for analyzing said rAAVs are presented below. All the values of the different Hill parameters which were obtained for the rAAV samples 1 and 2 are compiled in figure 5.

- Step 1: Determining the optimum Hill (H) curve for each vector preparation (figure 1A)

The optimum Hill curve, which best fits the experimental values, was obtained by iteration while attributing values to the different parameters of the

Hill equation, namely: P_{max} , κ , π , and r. The best Hill curves which were obtained for samples 1 and 2 are presented in figure 1A; they correspond, respectively, to the theoretical values H1 and H2 of samples 1 and 2 (figure 4). The values of P are expressed in arbitrary units (pixels) as a function of the log of the dilution of the vector.

The following is obtained in the case of sample 1:

10

20

 $P = 2.05 (0.125 R1)^{r}/(450 + (0.125 R1)^{r})$

The following is obtained in the case of sample 2:

15 $P = 2.35 (0.172 R1)^{r}/(450 + (0.172 R1)^{r})$

*with r = 1.0, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75 *The system used for this test (the HeLa rc -32 cells) is assumed to show the same resistance toward the two samples (κ = 450).

- Step 2: Plotting the Hill plot (figures 2A and 2B)

The Hill plot, corresponding to log|P/(1 -P)| as a function of the log of the dilution was plotted for the two samples [figures 2D (sample 1) and 2D' (sample 2)] using the experimental values. The linear regression obtained shows that the data presented in figure 1A fit the Hill equation well.

30 - Step 3: Determining the limiting concentration (titer
i) of the vector preparations (figure 1A)

 τ is determined by the maximum value of R1 at which the Hill coefficient (on the optimum Hill curve) is equal to 1. The τ values of samples 1 and 2 were determined from the curves in figure 1A; the values obtained are 5.89 for each of the two samples.

15

35

- Step 4: Determining the efficiency (ϵ) and the standardized efficiency (ϵ/P_{max}) (figure 3)

The efficiency is the slope of the Hill curve (or any sigmoidal curve conveying the values obtained) at its point of inflexion.

ε was calculated as follows:

10 the curve H'(H' = δ H/ δ R1), derived from H, was plotted.

The maximum value reached by the curve, corresponding to ε , was determined for samples 1 and 2, with the values obtained being 0.808 and 0.906, respectively (figure 3).

- Step 5: Determining the homogeneity of the biological system (η) , (figure 1B)
- 20 The curve r as a function of log dil was plotted and the number of plateaus on the curve was determined.

The heterogeneity index η was determined as follows, as a function of the number of plateaus (one plateau; $\eta = 1$, two plateaus; $\eta = 2$, x plateaus; $\eta = x$).

 η = 1 is obtained; consequently, the biological system tested is homogeneous.

30 - Step 6: Complete characterization of the vector
 (figure 5)

The set of values obtained for each of the followin g parameters:

 $P_{max},~\kappa,~r,~\epsilon,~\tau,~\eta,~\epsilon/P_{max}~and~\kappa/P_{max},~makes~it~pos~sible~to~characterize~each~vector~preparation.$

- Step 7: Classifying the vectors in terms of their performance (figure 5)

The vectors were classified in terms of the values obtained for:

P_{max} , κ , π , τ , π/P_{max} and κ/P_{max} .

b) Results

10

This value is not compensated by the corrected power π/P_{max} since the value found for sample 2 (π/P_{max} = 0.07) is greater than that for sample 1 (π/P_{max} = 0.06).

20

25

30

35

15

Considering that κ is constant, that is that the HeLa rc-32 cells exhibit the same resistance toward the two samples, sample 2 is slightly more efficient than sample 1 (ϵ_2 = 0.906 > ϵ_1 = 0.808) and its maximum capacity P $_{max}$ = 2.35 is greater than that of sample 1 (Pmax = 2.05).

The analysis of the values of the different Hill parameters obtained for the two recombinant vector samples makes it possible to draw the following conclusions:

the apparent titers of two batches of one and the same vector are equivalent and correspond to that which is generally determined in the prior art, wher eas determining the Hill parameters and, if necessary, the derived parameters makes it possible to demonstrate differences in their corrected power and their

20

25

efficiency. Characterizing two batches of one and the same viral vector using relevant Hill parame ters and, if necessary, derived Hill parameters, therefore does indeed make it possible to validate and optimize biological agents (preparations of viral vectors, for example) which can be used in a specific application (gene therapy in vivo).

Example 2 : Biological system which exhibits a 10 heterogeneity

a) Defining the biological system

The biological agent which is analyzed is a retroviral vector, which is designated pSI -EGFP (Ropp et al., Cytometry, 1995, 21, 309 -317) and which encodes the eukaryotic fl uorescent protein reporter gene (eukaryotic green fluorescent protein or EGFP), and the target cells are HT-1080 cells (ATCC No. CCL-121).

The target cells were seeded at a concentration R2 and infected with serial dilutions of the vector. At time t = 48 h, the fluorescence intensity (product P), representing the quantity of the EGFP reporter gene expressed by the vector, was measured for each dilution.

b) Determining the optimum Hill curve (figure 6A)

- 30 The experimental points are not all able to fit a single Hill curve. Two subsets of points are observed:
- the points situated in the left -hand part of figure 6A fit a Hill curve corresponding to $\kappa=8\,000$ (upper curve),
 - the points situated in the right -hand part of figure 6A fit a Hill curve corresponding to $\kappa\,=\,3$ 500

.

(lower curve).

c) Determining the homogeneity of the biological system (η) , (figure 6B)

5

10

The curve r as a function of the no. of points, arranged in accordance with the concentrations as they appear in figure 6A, was plotted and the number of plateaus on the slope of the curve was determined (figure 6B).

The curve exhibits 2 plateaus; consequently, the bio logical system being tested is heterogeneous and exhibits a heterogeneity index η = 2.

15

Example 3: Screening a library of plasmids express ing
mutants of the rAAV rep gene

a) Materials and method

20

- Defining the biological system

The collection of modified biological agents is a library of vectors expressing mutants of the <u>rAAV rep</u> gene and the target cells are an rAAV encapsidation cell line (HeLa rc-32 cell line). The cells were seeded at a constant concentration R2 and then transfected with serial dilutions of the different expression plasmids. At time t = 48 h, the quantity of virus produced (product P) was measured by the dot blot technique as described in example 1.

- Determining the Hill parameters

These parameters are determined following steps $\,$ 1 to 7 as described in example $\,$ 1, and the final step of selecting the mutant which is most suited to producing the recombinant virus is effected in dependence on the ι

values obtained.

b) Results

- 5 The experimental curves P = f(log 1/dilution) are depicted in figure 7 and the apparent titer ι of each expression plasmid, determined from the theoretical Hill curve, is as follows:
- 10 plasmid no. 1 (curve (1)): i = 7.1
 - plasmid no. 2 (curve (2)): i = 6.4
 - plasmid no. 3 (curve (3)): $\iota = 6$

The results indicate that the mutant of the rAAV rep

gene contained in plasmid no. 1 possesses the highest
activity in the system tested.

As is evident from the above , the invention is in no way limited to those of its embodiments which have just been described more explicitly; on the contrary, it

also encompasses all the variants of which the skilled person can conceive without departing from the context or scope of the present invention.

CLAIMS

- 1. A method for assessing the performance of a collection of complex biological agents in living target cells with which said biological agents interact, which method is characterized in that it comprises at least the following steps:
- (a) preparing, for each biological agent in said collection, a range of samples, which range is obtained by making serial dilutions of said biological agent at a concentration R1,
- (b) incubating each sample of said range of dilutions obtained in 1. wi th said target cells at a constant concentration R2,
 - (c) determining the product P of the reaction R1 + R2, at a time t, in each of said samples,
- (d) constructing a theoretical H curve from said experimental points R1 and P for each biological agent by iterative approximation of parameters which reflect the reaction R1+R2 \rightarrow P, at said time t, in accordance with the following equation:

$$P = P_{max}(\pi R1)^{r}/(\kappa + (\pi R1)^{r})$$
 $r=1,...,n$ (2),

in which:

30

20

R1 represents the concentration of biological agent in a sample of the range,

P represents the product of the reaction R1 $\,+\,$ R2 at a 35 time t,

 P_{max} represents the maximum capacity of the reaction,

 κ represents the resistance of the living target cells to responding to said biological agent,

r represents a coefficient which de pends on R1 and which corresponds to the Hill coefficient, and

 $\boldsymbol{\pi}$ represents the intrinsic power of the biological agent to induce a response in the living target cells, and

- (e) sorting the values of κ and π obtained in (d) for each biological agent and c lassifying the biological agents in accordance with said values.
- 2. A method for screening a collection of modified complex biological agents (library of mutants) in living target cells with which said biological agents interact, which method is character—ized in that it comprises at least the steps (a) to (e) as defined in claim 1 and a step—(f) of selecting the biological agent which is most suited for the sought—after application.
- 3. The method as claimed in claim 1 or claim 2, characterized in that said biological agent is selected from the group comprising viruses, viral and nonviral vectors, vaccines, antibodies and recombinant proteins.
- 4. The method as claimed in any one of claims 1 to 3, characterized in that P is determined in step (c) either dir ectly, for example by assaying P, or indirectly, for example using a biological test which is appropriately selected for measuring at least one parameter or one variable which reflects the response of the biological system to said biological agent.
 - 5. The method as claimed in any one of claims 1 to 4, characterized in that it additionally comprises

measuring at least one of the following derived parameters:

- the overall efficiency ϵ of the reaction induced by the biological agent on said system,
 - the apparent titer ι of the biological agent, corresponding to the origin of the theoretical H curve obtained in (d),

- the absolute titer θ of said biological agent defined by the equation $\theta\pi=\iota/s$ (3), in which s represents the sensitivity of the detection method, and
- 15 the heterogeneity index η of said biological reaction.
- The method as claimed in any one of claims 1 to 5, characterized in that the measurement of the assessment
 parameter ε, representing the specific efficiency of a biological agent which is capable of inducing the production of P in the living target cells, is effected either by measuring the slope of the theoretical curve obtained in (d) at its point of inflexion, or by
 calculating the maximum of the first derivative and, where appropriate, of the second derivative of the theoretical curve obtained in (d).
- 7. The method as claimed in any one of claims 1 to 6, characterized in that it additionally comprises measuring the following parameters: π/P_{max} , κ/P_{max} or ϵ/P_{max} .
- 8. The method as claimed in any one of claims 1 to 7, characterized in that the values of the Hill parameters corresponding to each biological agent are compared with those obtained using a reference biological agent.

9. The method as claimed in any one of claims 1 to 8, characterized in that, in order to validate the analysis of the reaction R1+R2 by the Hill equation, the method can additionally comprise a step of treating the experimental data obtained in step (d) (Hill plot) in accordance with the following equation:

log|P/(1-P)| vs. log R1.

- 10 10. The method as claimed in any one of claims 1 to 9, characterized in that it comprises:
 - selecting the biological agents which exhibit the minimum acceptable values for the selected parameters:
- 15 π , κ , r, ϵ , θ , ι , η , π/P_{max} , κ/P_{max} or ϵ/P_{max} and
- iteratively analyzing the H curves corresponding to said selected biological agents, in accordance with equation (2), in order to eliminate the values raised
 by compensation, followed by
 - eliminating the biological agents which compensate and for which alternative curves can be obtained, in order to form a list of biological agents having an optimal action.
- 11. The method as claimed in any one of claims 2 to 10, characterized in that said collection of modified biological agents comprises a l ibrary of mutants which is obtained by naturally or artificially introducing one or more mutations into the nucleotide and/or peptide sequence of said biological agents.
- 12. A modified biological agent, characterized in that it can be obtained by the meth od as claimed in claim 11.

FIGURE 1

FIGURE 2

	Hill plot	1. 3802 0.8653 0.2126 0.6585 0.5082 0.3123 0.2553
	 .	1.3802 0.8653 0.1402 1.5097
	Hill plot	1.3802 0.8653 0.1402 1.5097 0.4952 0.3171 0.3010
		0.0358 0.0347 0.1540 0.3900 0.7350 0.8075 0.4834 0.1886
10/17	(7)	0.0359 0.0281 0.0358 1 0.0350 0.02201 0.0601 0.01679 0.1679 0.1679 0.1679 0.1570 0.1305 0.4409 0.4130 0.4409 1.25 0.1540 0.1305 0.9555 0.9552 0.9552 0.9552 0.9552 0.9552 0.9552 0.9552 0.9553 0.4039 0.4130 0.4409 1.5 0.8591 0.4520 0.8528 0.8521 0.8591 0.4888 0.16888 0.1688 0.1688 0.
הינו	7	0.0350 0.1510 0.1510 0.3900 0.7350 0.8075 0.4034 0.1886
5	=	1 1.25 1.5 1.75 2.25 2.25 2.25
		0.0358 0.0501 0.1679 0.4409 0.9555 1.5208 1.8591 1.9913
H(2)		0.0358 0.0281 0.0601 0.0473 0.1679 0.1442 0.4409 0.4130 0.9555 0.9552 1.5208 1.5522 1.6591 1.6857 1.9913 2.0038 2.0332 2.0379
H(1)		0.0359 0.0281 0.0350 1 0.0601 0.0601 0.0601 0.1679 0.1472 0.1679 1.25 0.4409 0.4130 0.4409 1.55 0.9555 0.9552 0.9555 1.75 0.16391 0.639
P(2)		0 0.04 0.12 0.38 0.02 1.45 1.95 2.25 2.32
P(1)		0.04 0.12 0.42 0.97 1.47 1.93
log(dil)		1. 6990 2.3979 3.0969 3.7959 4.4949 5.1938 5.8928 6.5918
vol(f(R1))		0.1 0.02 0.004 0.0008 0.000032 0.0000032 0.00000128 0.00000128

1.3802 0.8653 0.2126 0.6585

FIGURE 4

	Sample 1	Sample 2	
Pmax	2.05	2.35	
τ (log dil)	5-89	5-89	
π	0.125	0-172	
π/P _{max}	0.06	0-07	
K	450	450	
к/Pmax	219.5	191.5	
ε .	0.808	0.906	
ε/Pmax	0.394	0.385	
η	1	ı	
'I	1.0, 1.0, 1.25	1.0, 1.0, 1.25,	
•	1.5, 1.75, 2.0	1.5, 1.75, 2.0,	
	2.25, 2.5, 2.75	2.25, 2.5, 2.75	
$\Delta r/\Delta$ (log dil)= constant	0.313	0.513	

FIGURE 5

FIGURE 6

