A? Problem 1 (12 pts)

A component, with two arms of different lengths, is loaded by a constant force P as shown below. The component has an out-of-plane thickness B and is made from a solid with a Young's modulus E.

- (a) Determine the compliance of the system.
- (b) Calculate the energy release rate G.
- (c) Will crack growth be stable or unstable? Assume that the material has a flat R-curve.

A? Problem 2 (12 pts)

A thin aluminium plate of thickness $t=3\,\mathrm{mm}$ has a central crack of length $2a=60\,\mathrm{mm}$ as a consequence of the manufacturing process. The plate is then tested by applying a tensile stress σ_∞ in the direction normal to the crack.

- (a) If the plate failed at a stress $\sigma_{\infty} = 90$ MPa, evaluate the fracture toughness K_{Ic} of the material.
- (b) Provided that this aluminium alloy has a yield strength $\sigma_Y = 350 \,\text{MPa}$, is it adequate to use Linear Elastic Fracture Mechanics?
- (c) Another plate is produced from the same material, but this time it is reinforced by a wire creating a force P closing the crack (see figure below). Calculate the force P, in N, needed to increase the fracture stress to $\sigma_{\infty}=100\,\mathrm{MPa}$.

A? Problem 3 (12 pts)

A steel grade has an elastic modulus $E=207\,\mathrm{GPa}$ and the R-curve:

$$R = C\sqrt{a - a_0},$$

where a_0 is the initial crack size and $C=2.2\cdot 10^5\,\mathrm{J/m^{5/2}}$. Note that R has units of $\mathrm{J/m^2}$ and crack length is in m. Consider a thin and wide plate with a through central crack $(a\ll W)$ that is made from this material. If this plate has an initial crack length $2a_0=50.8\,\mathrm{mm}$ and is loaded by a tensile stress σ_∞ perpendicular to the crack plane, compute the amount of stable crack growth and the stress σ_∞ at which unstable fracture occurs.

A? Problem 4 (12 pts)

A large plate contains a central crack of length 2a at an angle $\beta=30^\circ$ from the horizontal. The plate is loaded in tension by a stress $2\sigma_\infty$ in the vertical direction, and in compression in the horizontal direction by a stress σ_∞ , see below. Find the stress intensity factors K_I and K_{II} . Express your results as a function of σ_∞ and a.

A? Problem 5 (12 pts)

A crack is loaded in a mixed-mode scenario where $K_I = 2K_{II}$. Find the direction θ , relative to the existing crack plane, along which the crack will propagate.

A? Page 2/2