CSM 166: Discrete Mathematics for Computer Science

Complex Numbers

Isaac Afari Addo <addoisaacafari@gmail.com>
National Institute for Mathematical Science (NIMS) - Ghana
Department of Mathematics, KNUST
Kumasi-Ghana.

Content

Introduction

Operations with Complex Numbers

Properties Of Complex Conjugates

Geometric Representation Of A Complex Number

Operations In Polar Coordinates

Powers And Roots Of Complex Numbers

Complex Numbers

Definition 1 (Complex Numbers)

A complex number is a number that can be expressed in the form $\mathbf{z} = \mathbf{a} + \mathbf{bi}$, where \mathbf{a} and \mathbf{b} are real numbers and \mathbf{i} is the imaginary unit, that satisfies the equation $\mathbf{i}^2 = -1$.

Let

$$z = a + bi \tag{1}$$

Then **a** is the real part of *z* denoted by a = Re(z) and **b** is the imaginary part of *z* denoted b = Im(z)

Complex Numbers

1. If Re(z) = 0 then z is purely imaginary:

$$z = bi$$

2. If Im(z) = 0 then z is a real number:

$$z = a$$

Conjugate Of A Complex Numbers

Definition 2

The complex conjugate of a complex number $\mathbf{z} = \mathbf{a} + \mathbf{bi}$ is defined as

$$\overline{z} = \mathbf{a} - b\mathbf{i}$$
 (2)

Operations with Complex Numbers I

Let $z_1 = a_1 + b_1 \mathbf{i}$ and $z_2 = a_2 + b_2 \mathbf{i}$. Then

1. Addition:

$$z_1 + z_2 = a_1 + b_1 i + a_2 + b_2 i$$

= $(a_1 + a_2) + (b_1 + b_2) i$

2. Subtraction:

$$z_1 - z_2 = a_1 + b_1 i - (a_2 + b_2) \mathbf{i}$$

= $(a_1 + a_2) + (b_1 - b_2) \mathbf{i}$

Operations with Complex Numbers II

3. Multiplication:

$$z_1 \cdot z_2 = (a_1 + b_1 \mathbf{i}) \cdot (a_2 + b_2) \mathbf{i}$$

$$= a_1 a_2 + a_1 b_2 \mathbf{i} + a_2 b_1 \mathbf{i} + b_1 b_2 \mathbf{i}^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) \mathbf{i}$$

4. Division:

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 \mathbf{i}}{a_2 + b_2 \mathbf{i}} = \frac{a_1 + b_1 \mathbf{i}}{a_2 + b_2 \mathbf{i}} \cdot \frac{a_2 - b_2 \mathbf{i}}{a_2 - b_2 \mathbf{i}}
= \frac{1}{(a_2^2 + b_2^2)} [a_1 a_2 + b_1 b_2 + (a_2 b_1 - a_1 b_2) \mathbf{i}]$$

1.
$$\overline{z} = z$$

2.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$

3.
$$\overline{z+w} = \overline{z} + \overline{w}$$

$$4. \ \overline{z-w} = \overline{z} - \overline{w}$$

5.
$$\overline{zw} = \overline{zu}$$

6.
$$\frac{\overline{z}}{w} = \frac{\overline{z}}{w}$$

1.
$$\overline{z} = z$$

2.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$

$$3. \ \overline{z+w} = \overline{z} + \overline{w}$$

$$4. \ \overline{z-w} = \overline{z} - \overline{w}$$

5.
$$\overline{zw} = \overline{zu}$$

$$6. \ \frac{\overline{z}}{w} = \frac{\overline{z}}{u}$$

1.
$$\overline{z} = z$$

2.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$

3.
$$\overline{z+w} = \overline{z} + \overline{w}$$

4.
$$\overline{z-w} = \overline{z} - \overline{w}$$

5.
$$\overline{zw} = \overline{zu}$$

$$6. \ \frac{\overline{z}}{w} = \frac{\overline{z}}{u}$$

1.
$$\overline{z} = z$$

2.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$

3.
$$\overline{z+w} = \overline{z} + \overline{w}$$

4.
$$\overline{z-w} = \overline{z} - \overline{w}$$

5.
$$\overline{zw} = \overline{zu}$$

$$6. \ \frac{\overline{z}}{w} = \frac{\overline{z}}{u}$$

1.
$$\overline{z} = z$$

2.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$

3.
$$\overline{z+w} = \overline{z} + \overline{w}$$

4.
$$\overline{z-w} = \overline{z} - \overline{w}$$

5.
$$\overline{zw} = \overline{zw}$$

$$6. \ \frac{\overline{z}}{w} = \frac{\overline{z}}{u}$$

1.
$$\overline{z} = z$$

2.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$

3.
$$\overline{z+w} = \overline{z} + \overline{w}$$

4.
$$\overline{z-w} = \overline{z} - \overline{w}$$

5.
$$\overline{zw} = \overline{zw}$$

6.
$$\frac{\overline{z}}{w} = \frac{\overline{z}}{w}$$

Geometric Representation Of A Complex Number (Argand Diagram)

Absolute Value Of A Complex Numbers

Definition 3

The absolute value of a complex number $z = x + y\mathbf{i}$ is defined as

$$|z| = \sqrt{x^2 + y^2}$$

Thus |z| is the distance from the origin to the point z in the complex plane

Absolute Value Of A Complex Numbers

Definition 3

The absolute value of a complex number $z = x + y\mathbf{i}$ is defined as

$$|z| = \sqrt{x^2 + y^2}$$

Thus |z| is the distance from the origin to the point z in the complex plane

Argument Of A Complex Numbers

Definition 4

The angle θ is called the **argument** of the complex number z.

The Principal Argument is $0 < \theta \le 2\pi$ or $-\pi < \theta < \pi$

From the Argand diagram, we deduce the following

1.
$$x = r \cos \theta$$

2.
$$y = r \sin \theta$$

3.
$$z = r[\cos\theta + i\sin\theta]$$

4.
$$|z| = r$$

5.
$$\theta = \arg z = \tan^{-1}(\frac{y}{x})$$

Thus z can be represented in (x, y) or (r, θ) coordinates.

From the Argand diagram, we deduce the following

1.
$$x = r \cos \theta$$

2.
$$y = r \sin \theta$$

3.
$$z = r[\cos\theta + i\sin\theta]$$

4.
$$|z| = r$$

5.
$$\theta = arg z = tan^{-1}(\frac{y}{x})$$

Thus z can be represented in (x, y) or (r, θ) coordinates.

From the Argand diagram, we deduce the following

1.
$$x = r \cos \theta$$

2.
$$y = r \sin \theta$$

3.
$$z = r[\cos\theta + i\sin\theta]$$

4.
$$|z| = r$$

5.
$$\theta = arg z = tan^{-1}(\frac{y}{x})$$

Thus z can be represented in (x, y) or (r, θ) coordinates.

From the Argand diagram, we deduce the following

1.
$$x = r \cos \theta$$

2.
$$y = r \sin \theta$$

3.
$$z = r[\cos\theta + i\sin\theta]$$

4.
$$|z| = r$$

5.
$$\theta = arg z = tan^{-1}(\frac{y}{x})$$

Thus z can be represented in (x, y) or (r, θ) coordinates.

From the Argand diagram, we deduce the following

1.
$$x = r \cos \theta$$

2.
$$y = r \sin \theta$$

3.
$$z = r[\cos\theta + i\sin\theta]$$

4.
$$|z| = r$$

5.
$$\theta = arg z = tan^{-1}(\frac{y}{x})$$

Thus z can be represented in (x, y) or (r, θ) coordinates.

From the Argand diagram, we deduce the following

1.
$$x = r \cos \theta$$

2.
$$y = r \sin \theta$$

3.
$$z = r[\cos\theta + i\sin\theta]$$

4.
$$|z| = r$$

5.
$$\theta = arg z = tan^{-1}(\frac{y}{x})$$

Thus z can be represented in (x, y) or (r, θ) coordinates.

Theorem 1 (Euler)

$$e^{i\theta} = \cos\theta + \mathbf{i}\sin\theta \tag{3}$$

This leads to **De Moivre theorem.**

Theorem 2 (De Moivre)

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

which is the polar coordinate representation of z

Note: If
$$z = re^{i\theta}$$
 then $\overline{z} = re^{-i\theta}$

Theorem 1 (Euler)

$$e^{i\theta} = \cos\theta + \mathbf{i}\sin\theta \tag{3}$$

This leads to **De Moivre theorem.**

Theorem 2 (De Moivre)

$$(\cos\theta + \mathbf{i}\sin\theta)^n = \cos(n\theta) + \mathbf{i}\sin(n\theta)$$

which is the polar coordinate representation of z

Note: If
$$z = re^{i\theta}$$
 then $\overline{z} = re^{-i\theta}$

Theorem 1 (Euler)

$$e^{i\theta} = \cos\theta + \mathbf{i}\sin\theta \tag{3}$$

This leads to **De Moivre theorem.**

Theorem 2 (De Moivre)

$$(\cos\theta + \mathbf{i}\sin\theta)^n = \cos(n\theta) + \mathbf{i}\sin(n\theta)$$

which is the polar coordinate representation of z

Note: If
$$z = re^{i\theta}$$
 then $\overline{z} = re^{-i\theta}$

Operations In Polar Coordinates I

Let $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$. Then

1. Addition:

$$z_1 + z_2 = r_1 e^{i\theta_1} + r_2 e^{i\theta_2}$$

$$= r_1 \cos \theta_1 + ir_1 \sin \theta_1 + r_2 \cos \theta_2 + ir_2 \sin \theta_2$$

$$= (r_1 \cos \theta_1 + r_2 \cos \theta_2) + i(r_1 \sin \theta_1 + r_2 \sin \theta_2)$$

2. Subtraction:

$$z_1 - z_2 = r_1 e^{i\theta_1} - r_2 e^{i\theta_2}$$

$$= r_1 \cos \theta_1 + ir_1 \sin \theta_1 - (r_2 \cos \theta_2 + ir_2 \sin \theta_2)$$

$$= (r_1 \cos \theta_1 - r_2 \cos \theta_2) + i(r_1 \sin \theta_1 - r_2 \sin \theta_2)$$

Operations In Polar Coordinates II

3. Multiplication:

$$z_1 \cdot z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

4. Division:

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

Powers And Roots Of Complex Numbers

From

$$z = re^{i\theta}$$

It implies

$$z = re^{i(\theta + 2\pi k)}$$

for
$$k = 0, \pm 1, \pm 2, \pm 3, \dots$$

Hence
$$z^n = r^n e^{in(\theta + 2\pi k)}$$
 and $z^{\frac{p}{q}} = r^{\frac{p}{q}} e^{\frac{ip(\theta + 2\pi k)}{q}}$ for $k = 0, +1, +2, +3, ...$

Powers And Roots Of Complex Numbers

From

$$z = re^{i\theta}$$

It implies

$$z = re^{i(\theta + 2\pi k)}$$

for
$$k = 0, \pm 1, \pm 2, \pm 3, \dots$$

Hence
$$z^n = r^n e^{in(\theta + 2\pi k)}$$
 and $z^{\frac{p}{q}} = r^{\frac{p}{q}} e^{\frac{ip(\theta + 2\pi k)}{q}}$ for $k = 0, \pm 1, \pm 2, \pm 3, ...$

$\sin\theta$ And $\cos\theta$

From Euler's Theorem:

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$\sinh\theta$ **And** $\cosh\theta$

From Euler's Theorem:

$$sin(i\theta) = \frac{e^{i(i\theta)} - e^{-i(i\theta)}}{2i} = \frac{e^{-\theta} - e^{\theta}}{2i} = \frac{i(e^{\theta} - e^{-\theta})}{2}$$
$$\Rightarrow sin(i\theta) = i sinh \theta$$

And

$$\cos(i\theta) = \frac{e^{i(i\theta)} + e^{-i(i\theta)}}{2} = \frac{e^{-\theta} + e^{\theta}}{2} = \cosh\theta$$

Inverse Of A Complex Number

Note:

$$z \cdot \overline{z} = re^{i\theta} \cdot re^{-i\theta} = r^2 = |z|^2$$

The Inverse Of A Complex Number z is given by

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{re^{-i\theta}}{r^2} = \frac{e^{-i\theta}}{r}$$

Assumption:

Let $z = e^{i\theta}$ where r = 1.

 $\cos^n \theta$

$$z + \frac{1}{z} = e^{i\theta} + e^{-i\theta} = 2\cos\theta$$

and

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

$$\cos^n \theta = \frac{1}{2^n} \left(z + \frac{1}{z} \right)^n$$

Assumption:

Let $z = e^{i\theta}$ where r = 1.

 $\cos^n \theta$

$$z + \frac{1}{z} = e^{i\theta} + e^{-i\theta} = 2\cos\theta$$

and

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

$$\cos^n \theta = \frac{1}{2^n} \left(z + \frac{1}{z} \right)^n$$

Assumption:

Let $z = e^{i\theta}$ where r = 1.

 $\sin^n \theta$

$$z - \frac{1}{z} = e^{i\theta} - e^{-i\theta} = 2i\sin\theta$$

and

$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

$$\sin^n \theta = \frac{1}{(2i)^n} \left(z - \frac{1}{z} \right)^n$$

Assumption:

Let $z = e^{i\theta}$ where r = 1.

 $\sin^n \theta$

$$z - \frac{1}{z} = e^{i\theta} - e^{-i\theta} = 2i\sin\theta$$

and

$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

$$\sin^n \theta = \frac{1}{(2i)^n} \left(z - \frac{1}{z} \right)^n$$

Complex Numbers

Example 1

Find the all solutions to the following equations and plot the results on an Argand diagram

- i) $Z^3 = 1$
- ii) $Z^4 = 1$
- iii) $Z^3 = 8$
- iv) $z^3 = i$

End of Lecture

Questions...???

Thanks