WORKED BY: mathematics teacher PJETËR NEÇAJ

TIRANA, ALBANIA on July 6, 2025

TOPIC: A PROBLEM from PLANE GEOMETRY

Given any quadrilateral ABCD. Let there be any point P inside this quadrilateral. We join the point P with the midpoints of the sides of the quadrilateral and thus 4 quadrilaterals are formed. We denote by S_1,S_2,S_3,S_4 the surfaces of these quadrilaterals that were formed, taking them in turn, in a sequence (according to the movement of the clock). The problem is: Can we find a connection between the surfaces S_1,S_2,S_3,S_4 ?

• We are reasoning as follows:

First we are making auxiliary constructions, we join the point P with the vertices ABCD. In the triangle PAB we have the two triangles PAM and PMB where AM=MB which means that these two triangles have equal areas. We denote $a=S_{PAM}=S_{PMB}$

In triangle PBC we have two triangles PBN and PNC where BN=NC means that these two triangles have equal areas.

We denote b=S_{PBN}=S_{PNC}

We denote c=S_{PCK}=S_{PKD}

We denote d=S_{PDL}=S_{PLA}

We evaluate $S_1+S_3=(a+d)+(b+c)=a+b+c+d$

We evaluate $S_2+S_4=(c+d)+(a+b)=a+b+c+d$

It is clear that the amounts: $S_1+S_3=S_2+S_4$

So we have a True Statement, we have proven a THEOREM.

Now I am formulating the THEOREM that I PROVEN.

THEOREM: If any point P inside any concave quadrilateral, is joined to the midpoints of the sides of the quadrilateral, 4 quadrilaterals with surfaces by S_1, S_2, S_3, S_4 (marked in a direction of rotation) are formed, then the equation is true: $S_1+S_3=S_2+S_4$.

ATTENTION: We are continuing the study of the PROBLEM, now in the general case, for any concave polygon with an even number of sides n=6,n=8,n=10,.... And we reason as follows:

•Let's have any concave hexagon:

Point P anywhere inside the hexagon, and M,N,K,L,Q,H are the midpoints of the sides.

We connect the point P with the midpoints of the sides and 6 quadrilaterals will be formed as in the figure. Auxiliary construction, we connect the point P with all the vertices of the hexagon ABCDEF.

In triangle PAB we have AM=MB, which means:

Surface S_{PAM}=S_{PMB}=a square unit.

We continue the reasoning as above and in triangle PFA we have FH=HA, leading to:

S_{PFH}=S_{PHA}=f square unit.

We denote: S_1 = S_{PMAH} , S_2 = S_{PHFQ} , S_3 = S_{PQEL} , S_4 = S_{PLDK} , S_5 = S_{PKCN} , S_6 = S_{PNBM}

We evaluate: $S_1+S_3+S_5=(a+f)+(e+d)+(c+b)=a+b+c+d+e+f$

We also have $S_2+S_4+S_6=(f+e)+(d+c)+(b+a)=a+b+c+d+e+f$

• It is clear that the sums: $S_1+S_3+S_5 = S_2+S_4+S_6$

It is clear that the Theorem we proved above for n=4 and n=6 is true when the number of sides n is even for n=4,6,8,10,12,.....

So it is true that: $S_1+S_3+S_5+S_7+....+S_{n-1} = S_2+S_4+S_6+S_8+....+S_n$

• I believe that I DISCOVERED a truth in PLANE GEOMETRY, that is, I PROVEN a THEOREM, and I wish and believe that I have the right to give it a NAME, I am naming it:

THEOREM PJETËR NEÇAJ

Tirana, Albania on JULY 6, 2025