

Unit 8. LL(k) grammars

Hierarchy of grammar classes

LL(k) grammar

- What is LL(k)?
 - The first L stands for scanning the input from left to right,
 - the second L stands for producing a leftmost derivation,
 - And k stands for using **k** input symbols of lookahead at each step to make parsing action decision.

LL(k) Grammar

- Subset of CFG's
- Permits deterministic left-to-right recognition with a look ahead of k symbols
- Builds the parse tree top-down
- If the correct production can be deduced from the partially constructed tree and the next k symbols in the unscanned string, for every possible step, then the grammar is said to be LL(k)
- If a parse table can be constructed for the grammar, then it is LL(k), if it can't, it is not LL(k)

LL(k) Grammars

- An LL(k) grammar has the property that a parser can be constructed to scan an input string from left to right and build a leftmost derivation by examining next k input symbols to determine the unique production for each derivation step.
- If a language has an LL(k) grammar, it is called an LL(k) language.
- LL(k) languages are deterministic context-free languages, but there are deterministic context-free languages that are not LL(k)

How to Build Parse Tables? FIRST and FOLLOW Sets

For a string of grammar symbols α define FIRST(α) as

- The set of tokens that appear as the first symbol in some string that derives from α
- If $\alpha \Rightarrow^* \epsilon$, then ϵ is in FIRST(α)

For a non-terminal symbol A, define FOLLOW(A) as

The set of terminal symbols that can appear immediately to the right of A in some sentential form

FIRST Set Construction

To construct FIRST(X) for a grammar symbol X, apply the following rules until no more symbols can be added to FIRST(X)

- If X is a terminal FIRST(X) is {X}
- If $X \to \mathcal{E}$ is a production then ε is in FIRST(X)
- If X is a nonterminal and $X \rightarrow Y_1 Y_2 \dots Y_k$ is a production then put every symbol in FIRST (Y_1) other than \mathcal{E} to FIRST(X)
- If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_k$ is a production, then put terminal a in FIRST(X) if a is in FIRST(Y_i) and Y is in FIRST(Y_i) for all $1 \le j < i$
- If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_k$ is a production, then put \mathcal{E} in FIRST(X) if \mathcal{E} is in FIRST(Y_i) for all $1 \le i \le k$

Computing FIRST Sets for Strings of Symbols

To construct the FIRST set for any string of grammar symbols $X_1X_2 ... X_k$ (given the FIRST sets for symbols $X_1, X_2, ... X_k$) apply the following rules.

FIRST($X_1X_2 ... X_k$) contains:

- Any symbol in FIRST(X_1) other than ε
- Any symbol in FIRST(X_i) other than ε , if ε is in FIRST(X_j) for all $1 \le j < i$
- ε , if ε is in FIRST(X_i) for all $1 \le i \le n$

$FIRST_k(\alpha)$

<u>Description</u>: Given a CFG, k is a natural number, α contains both terminals and nonterminals.

FIRST_k(α)consists of all terminal prefixes of length k (or less if α derives a terminal string of length less than k) of terminal strings that can be derived from α

<u>Definition</u>: Given grammar $G=(\Sigma, \Delta, P, S)$, natural number $k, \alpha \in V^*$

 $FIRSTk(\alpha) =$

 $\{ x \in \Sigma^* \mid \alpha \Rightarrow x\beta \text{ and } |x| = k \text{ or } \alpha \Rightarrow x \text{ and } |x| < k \}$

$FOLLOW_k(\alpha)$

includes the set of terminal strings that can occur immediately to the right of α in any sentential form

Especially, if α is nonterminal A and βA is a sentential form then ϵ is in FOLLOW₁(A).

$FOLLOW_k(\alpha)$

FOLLOW_k(α) = { $x \in \Sigma^* \mid S \Rightarrow^* \beta \alpha \delta \text{ and } x \in FIRST_k(\delta)$ }

Especially, if $\alpha = A \in \Delta^*$, $S \Rightarrow^* \beta A$ then FOLLOW₁(A) = $\{\epsilon\}$ or FOLLOW₁(A) = $\{\xi\}$ (EOF)
FOLLOW(A) is FOLLOW₁(A)

LL(k) Grammars

<u>Definition</u> Let $G = (\Sigma, \Delta, P, S)$ is a CFG and $k \in N$. G is LL(k) if for any two leftmost derivations

$$S => xA\alpha => x\beta_1\alpha => xZ_1$$

$$S \Rightarrow xA\alpha \Rightarrow x\beta_2\alpha \Rightarrow xZ_2$$

if
$$FIRST_k(Z_1) = FIRST_k(Z_2)$$
 then $\beta_1 = \beta_2$

It can be shown that LL(k) grammars are not ambiguous and not left-recursive.

Example

Grammar G:

 $S \rightarrow aSb \mid ab$

is not LL(1), but is LL(2)

Simple LL(1) Grammars

For simple LL(1) grammars all rules have the form

$$A \rightarrow a_1 \alpha_1 \mid a_2 \alpha_2 \mid \dots \mid a_n \alpha_n$$

where

- a_i is a terminal, $1 \le i \le n$
- $a_i \neq a_j$ for $i \neq j$ and
- α_i is a sequence of terminals and non-terminal or is empty, $1 \le i \le n$

How to recognize a LL(1) grammar?

<u>Theorem</u> A context-free grammar $G = (\Sigma, \Delta, P, S)$ is LL(1) if and if only if for every nonterminal A and every strings of symbols

$$A \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$
, $n \ge 2$ we have $FIRST_1(\alpha_i) \cap FIRST_1(\alpha_j) = \emptyset$, $i \ne j$ If $\alpha_i \Rightarrow * \varepsilon$ then

$$FIRST_1(\alpha_i) \cap FOLLOW_1(A) = \emptyset$$
, $i \neq j$

KPL is LL(1)?- FIRST & FOLLOW

А	FIRST(A)	FOLLOW(A)
Block	KW_CONST, KW_VAR, KW_TYPE, KW_FUNCTION, KW_PROCEDURE, KW_BEGIN	SB_PERIOD, SB_SEMICOLON
Unsignedconst	TK_IDENT, TK_NUMBER, TK_CHAR.	
Constant	SB_PLUS,SB_MINUS, TK_IDENT TK_NUMBER	
Туре	TK_IDENT, TK_NUMBER, TK_CHAR, KW_ARRAY	
Statement	TK_IDENT, KW_CALL, KW_BEGIN, KW_IF, KW_WHILE, KW_FOR	KW_ELSE,SB_SEMICOLON, KW_END
Expression3	SB_PLUS,SB_MINUS, ε	SB_COMMA,SB_SEMICOLON, KW_END, KW_TO, KW_THEN, KW_DO, SB_RPAR, SB_RSEL, SB_EQ, SB_NEQ, SB_LT, SB_LE, SB_GT, SB_GE, KW_ELSE

KPL is LL(1)?

Consider the following set of production with Statement on LHS

```
Statement ::= AssignSt
    Statement ::= CallSt
    Statement ::= GroupSt
    Statement ::= IfSt
    Statement ::= WhileSt
    Statement ::= ForSt
    Statement ::= & FIRST (RHS1)={TK IDEN}
    FIRST (RHS2)={KW CALL}
    FIRST (RHS3)={KW_BEGIN}
    FIRST (RHS4)={KW_IF}
    FIRST (RHS5)={KW_WHILE}
    FIRST (RHS6)={KW FOR}
    FIRST (RHS7)=\{\varepsilon\}
    FOLLOW(LHS)={SB_SEMICOLON, KW_END, KW_ELSE}
The set of productions of Statement satisfies LL(1) condition
```


KPL is LL(1)?

```
Factor ::= UnsignedConstant
```

Factor ::= Variable

Factor ::= FunctionApplication

Factor ::= SB_LPAR Expression SB_RPAR

```
FIRST(RHS1)={TK_IDENT, TK_NUMBER, TK_CHAR}
FIRST(RHS2)={TK_IDENT}
FIRST(RHS3)={TK_IDENT}
FIRST(RHS4)={SB_LPAR}
The set of productions of Factor does not satisfy LL(1) condition, but satisfies LL(2) condition
```


KPL is LL(2)

```
Factor ::= TK CHAR
        Factor ::= TK IDENT
        Factor ::= TK IDENT Arguments
        Factor ::= TK IDENT Indexes
        Factor ::= SB LPAR Expression SB RPAR
FIRST<sub>2</sub>(RHS1)={TK_NUMBER}
FIRST<sub>2</sub> (RHS2)={TK CHAR}
FIRST<sub>2</sub> (RHS3)={TK IDENT}
FIRST<sub>2</sub> (RHS4)={TK_IDENT SB_LPAR}
FIRST<sub>2</sub> (RHS5)={TK_IDENT SB_LSEL}
FIRST<sub>2</sub> (RHS6) ={SB LPAR TK IDENT, SB LPAR TK NUMBER,
SB LPAR SB LPAR, SB LPAR TK CHAR}
```


The set of productions satisfies LL(2) condition

Factor ::= TK NUMBER

Grammar Transformations

- Left factoring: Sometimes we can "left-factor" an LL(k) grammar to obtain an equivalent LL(n) grammar where n < k.
- Example. The grammar $S \rightarrow aaS \mid ab \mid b$ is LL(2) but not LL(1). But we can factor out the common prefix a from productions $S \rightarrow aaS \mid ab$ to obtain

$$S \rightarrow aT$$

$$T \rightarrow aS \mid b$$
.

This gives the new grammar:

$$S \rightarrow aT \mid b$$

$$T \rightarrow aS \mid b$$
.

Left Factoring to obtain LL(1) grammars

When more than one production for nonterminal A starts with the same symbols, the FIRST sets are not disjoint

 $ifstmt \rightarrow if \ cond \ then \ stmt$ $| if \ cond \ then \ stmt \ else \ stmt$

Use *left factoring* to fix the problem

ifstmt \rightarrow if expr then stmt elsestmt elsestmt \rightarrow else stmt

