# Elementary potential flows

#### **Uniform flow**

\_\_\_\_

Unitom flow with velocity Vo oriented in positive n-direction

U= V0 9=0

Cheek: This flow satisfies  $\nabla \cdot \vec{V} = 0 \Rightarrow \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$  Whatsfy  $\nabla x \vec{V} = 0 \Rightarrow \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$  Whatsfy

 $n = \frac{0}{V_0} = \text{Const}$ 

the Sflow satisfies both incompressible flow and irrotational flow condition => sq it is a potential flow.

$$\frac{\phi:}{\partial x} = u \qquad \frac{\partial \phi}{\partial y} = 0$$

$$\Rightarrow \frac{\partial \phi}{\partial x} = V_{\infty} \qquad \frac{\partial \phi}{\partial y} = 0$$

$$\Rightarrow \phi = V_{\infty} x + f(y) \qquad \phi = f(x)$$

on Comparison,  $f(y) = 0 \Rightarrow | \phi = V_{\infty} x |$ 

$$\frac{\partial \psi}{\partial y} = V_{\infty}$$

$$\frac{\partial \psi}{\partial x} = V_{\infty}$$

$$\frac{\partial \psi}{\partial x} = 0$$

$$\frac{\partial \psi}{\partial x} = 0$$

$$\psi = f(y)$$

$$\psi = f(y)$$

on Companison 
$$f(n)=0 \Rightarrow \boxed{\psi=V_{0}y} \quad y=\frac{\psi}{V_{\infty}} \quad y=\frac{G_{0}}{V_{\infty}}$$

$$y = \frac{y}{V_{\infty}}$$
  $y = Constant$ 



y = Constant hnes are the Streamhnes a = anstant lines are the equipotential lines.

#### Source flow and Sink flow



V, V0=0

Source

Vr - Radial Velocity Vo - Tangential Velocity Source flow:

$$\Rightarrow$$
  $V_8 = \frac{C}{7}$ ,  $V_0 = 0$  C-Constant

To find C, consider volume flow rate at any distance r.

Volume flow rate Q = Arca × Velocity

$$\lambda$$
 - Volume flow rate at  $\Rightarrow \lambda = 2\pi V_{V}$   $\Rightarrow c = \frac{\lambda}{2\pi}$  any radius  $v$  ber unit  $\Rightarrow V_{V} = \frac{\lambda}{2\pi}$   $\Rightarrow c = \frac{\lambda}{2\pi}$  length.

> is called the SOURCE STRENGTH

$$\frac{\partial 4}{\partial \phi} = \sqrt{4}$$

$$\frac{4}{1} \frac{\partial 6}{\partial \phi} = \sqrt{6}$$

$$\Rightarrow \frac{\partial \phi}{\partial x} = \frac{\lambda}{2\pi}$$

$$\frac{\partial \phi}{\partial \phi} = 0$$

$$\Rightarrow \frac{\partial \phi}{\partial x} = \frac{\lambda}{2\Pi x}$$

$$\Rightarrow \phi = \frac{\lambda}{2\Pi} \ln x + f(\theta)$$

$$\Rightarrow \phi = f(x)$$

$$\phi = f(x)$$

Equipotential lines correspond to lines of In ~ = constant

$$\frac{\lambda}{1}\frac{90}{90} = \Lambda^{8}$$

$$\frac{9\lambda}{90} = -\Lambda^{0}$$

$$\frac{\partial x}{\partial \phi} = -\sqrt{6}$$

$$\Rightarrow \frac{1}{\sqrt{3\psi}} = \frac{3\psi}{\sqrt{3\psi}} = 0$$

$$0 = \frac{\lambda R}{\sqrt{6}} = 0$$

$$\Rightarrow \Psi = \frac{\lambda}{2\pi} \Theta + f(r) \qquad \Psi = f(\theta)$$

$$\psi = f(0)$$

$$\Rightarrow \boxed{\psi = \frac{\lambda}{2\pi} 0}$$

 $\Rightarrow$   $| \Psi = \frac{\lambda}{2\pi} 0 |$  Streamlines corresponds to the lines of 0 = Constant



Sink Strength = -X

Sink: opposite of source.

opposite of source.

$$V_{3} = \frac{-\lambda}{2\Pi r}$$
 $V_{0} = 0$ 
 $\phi = \frac{-\lambda}{2\Pi} \ln r$ 
 $\psi = -\frac{\lambda}{2\Pi} \theta$ 

$$\phi = \frac{-\lambda}{2\pi} \ln \gamma$$

$$\psi = -\frac{\lambda}{2\pi}\theta$$

#### Free Vortex flow

- Flow in desert circular streamlines is called a vosten flow





Circulation:

- It is defined as the negative of line integral of velocity along the Closed Curve



=> potential flow

$$\Pi = -\oint \vec{V} \cdot d\vec{L} = -V_{\theta} \oint d\vec{L} = -V_{\theta} 2\Pi \vec{r}$$

$$\Pi - \text{Circulation} \Rightarrow V_{\theta} = \frac{\Gamma}{2\Pi \vec{r}} \Rightarrow C = \frac{\Gamma}{2\Pi}$$

$$\Pi \text{ is Called Vortex STRENGTH}$$

$$\phi$$
:

$$\frac{\partial A}{\partial \phi} = A^{A} \qquad \frac{A}{1} \frac{\Delta \phi}{\Delta \phi} = A^{\phi}$$

$$\frac{\partial x}{\partial \phi} = 0$$

$$\phi = f(\theta)$$

$$\frac{1}{\sqrt{2\phi}} = \sqrt{\phi}$$

$$\frac{1}{8}\frac{\partial \beta}{\partial \theta} = \frac{-\Gamma}{2\Pi \beta}$$

$$\frac{\partial \phi}{\partial x} = 0$$

$$\frac{1}{\sqrt{200}} = \frac{1}{2110}$$

$$\phi = f(0)$$

$$\phi = -\frac{1}{2110} + f(x)$$

$$\phi = -\frac{\Gamma}{2\pi} \theta$$

on Comparison  $\phi = -\frac{\Gamma}{2\pi}0$   $\Rightarrow \theta = constant are the equipotential lines$ 

$$\frac{3}{1}\frac{\partial \phi}{\partial h} = 1$$

$$\frac{7}{90} = 0$$

$$\psi = f(x)$$

$$-\frac{22}{9A} = \sqrt{6}$$

$$\frac{1}{\sqrt[4]{\frac{\partial \psi}{\partial \phi}}} = 0$$

$$\frac{-\frac{\partial \psi}{\partial x}}{\sqrt[4]{\frac{\partial \psi}{\partial x}}} = 0$$

$$\frac{-\frac{\partial \psi}{\partial x}}{\sqrt[4]{\frac{\partial \psi}{\partial x}}} = 0$$

$$\psi = \frac{1}{\sqrt[4]{\frac{\partial \psi}{\partial \phi}}} = 0$$

$$\psi = \frac{r}{r} \ln r$$

on Comparison,  $\Psi = \frac{\Gamma}{2\Pi} \ln r$   $\Rightarrow$   $\gamma = Constant$  are the streamlines



Note:  $\eta = - \int \overline{V} \cdot ds$ 

why that is a -ve ligh?

O and Vo are positive in Counter clock-wise direction, whereas M is taken to be the in clock-wise direction.

# **Forced Vortex flow**





V<sub>8</sub> = 0

- Not a potential How
- Does not satisfy the irrotational flow Condition

$$\nabla \times \nabla \neq 0$$

$$\nabla \times \nabla = \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

$$= \frac{1}{4} \left[ \frac{\partial (x \vee y)}{\partial x} - \frac{\partial \sqrt{x}}{\partial y} \right]$$

\* Rotational vosters

=> Forced vorter is rotational

## Real Vosteri:



Rankine Vorter



\* All real vortices will be a combination of both forced vorten and a free vorten.

Eg: wholprols
Tornados
Cyclones

# Combination of elementary flows

$$\frac{\partial^2 \psi}{\partial n^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$
 2 and order linear equations  $\frac{\partial^2 \psi}{\partial n^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$   $\Rightarrow \psi_1$  is a solution  $\psi_2$  is a bolution of this early  $\psi_1 + \psi_2$  is also a solution of this early possible potential flow physically possible potential flow

#### **Doublet flow**

## Sower and Sink pair



$$\Psi|_{Sourc} = \frac{\lambda}{2\pi} \theta$$

$$\Psi_{SNK} = -\frac{\lambda}{2\pi} \theta$$

At a point p in the flow,

$$\Psi = \Psi_{\text{Sower}} = + \Psi_{\text{Sink}}$$

$$= \frac{\lambda}{2\pi} \theta_1 - \frac{\lambda}{2\pi} \theta_2$$

$$\Psi = \frac{\lambda}{2\pi} (\theta_1 - \theta_2) = \frac{-\lambda}{2\pi} \Delta \theta$$



**Figure 3.24** How a source-sink pair approaches a doublet in the limiting case.

- let the distance *I* approach zero while the absolute magnitudes of the strengths of the source and sink increase in such a fashion that the product *β*remains constant.
- In the limit, as  $l \to 0$  while  $l\lambda$  remains constant, we obtain a special flow pattern defined as a *doublet*.
- The strength of the doublet is denoted by  $\kappa$  and is defined as  $\kappa \equiv l \lambda$ .



$$\Psi = \lim_{\lambda \to 0} \left( \frac{-\lambda}{2\pi} d\theta \right) - 0$$

$$K = \lambda \lambda = \text{constant} \left( \frac{-\lambda}{2\pi} d\theta \right)$$

From the Liagram,

$$a = \lambda \sin \theta$$

$$\operatorname{Cos} d\theta = \frac{r - \operatorname{Los} \theta}{b} \Rightarrow b = \frac{r - \operatorname{Los} \theta}{\operatorname{Cos} d\theta}$$

As 
$$L \rightarrow 0$$
,  $do \rightarrow 0 \Rightarrow Cordo \approx 1$ , Tando  $\approx do$   
 $\Rightarrow b = \gamma - Lordo$ 

Tando = 
$$\frac{a}{b}$$
  $\Rightarrow$   $d\theta = \frac{a}{b} = \frac{l \sin \theta}{r - l \cos \theta}$   $-2$ 



$$\Rightarrow \lim_{N \to \infty} \frac{1}{2\pi} \frac{1}{1 - 1} \frac{1} \frac{1}{1 - 1} \frac{$$

$$\Rightarrow \forall = \frac{-k}{2\pi} \frac{\sin \theta}{v}$$
 Stream function for a Doublet flow.

$$\frac{\phi:}{\phi} = \phi_{\text{Sowne}} + \phi_{\text{Sink}} = \frac{\lambda}{2\pi} \ln \gamma_1 - \frac{\lambda}{2\pi} \ln \gamma_2$$

$$= \frac{\lambda}{2\pi} \ln \left(\frac{\gamma_1}{\gamma_2}\right) = -\frac{\lambda}{2\pi} \ln \left(\frac{\gamma_2}{\gamma_1}\right)$$

From the diagram 7, = 8 and 82=b = Y-1008 0

$$\Rightarrow \frac{\tau_2}{\tau_1} = \frac{\tau - \lambda \cos \theta}{\tau} = 1 - \frac{1}{4} \cos \theta$$

Velocity potential of fire a doublet is

$$\phi = \lim_{\lambda \to 0} \left[ \frac{-\lambda}{2\pi} \ln \frac{\tau_2}{\tau_1} \right] = \lim_{\lambda \to 0} \left[ \frac{-\lambda}{2\pi} \ln \left( 1 - \frac{\lambda}{\tau} \cos \theta \right) \right]$$

$$K = |\lambda| = \text{Const.}$$
Use suris expansion to

suplify

Series empanhon too In (1-N) is

$$\ln (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$

$$\Rightarrow \phi = \lim_{k=\lambda\lambda=\text{const}} \left[ -\frac{\lambda}{r} \left( -\frac{1}{r} \cos \theta - \frac{1^2}{2r^2} \cos^2 \theta - \frac{1^3}{3r^3} \cos^3 \theta - \cdots \right) \right]$$

$$\Rightarrow \qquad \phi = \frac{k}{2\pi} \frac{\text{Cos0}}{\text{7}} \qquad \text{Velocity potential for a}$$

$$\text{Doublet flow}$$



**Figure 3.25** Doublet flow with strength  $\kappa$ .



#### **SUMMARY**

| Type of flow                       | Velocity                                                    | $\phi$                                      | $\psi$                                     |
|------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------|
| Uniform flow in <i>x</i> direction | $u = V_{\infty}$                                            | $V_{\infty}x$                               | $V_{\infty}y$                              |
| Source                             | $V_r = \frac{\Lambda}{2\pi r}$                              | $\frac{\Lambda}{2\pi} \ln r$                | $\frac{\Lambda}{2\pi}\theta$               |
| Vortex                             | $V_{	heta} = -rac{\Gamma}{2\pi r}$                         | $-rac{\Gamma}{2\pi}	heta$                  | $\frac{\Gamma}{2\pi} \ln r$                |
| Doublet                            | $V_r = -\frac{\kappa}{2\pi} \frac{\cos \theta}{r^2}$        | $\frac{\kappa}{2\pi} \frac{\cos \theta}{r}$ | $-\frac{\kappa}{2\pi}\frac{\sin\theta}{r}$ |
|                                    | $V_{\theta} = -\frac{\kappa}{2\pi} \frac{\sin \theta}{r^2}$ |                                             |                                            |