Diagonal Harmonics and Shuffle Theorems

George H. Seelinger

ghseeli@umich.edu

on joint work with Jonah Blasiak, Mark Haiman, Jennifer Morse, and Anna Pun arXiv:2102.07931

Capsule Research Talk

23 August 2021

Outline

- Symmetric polynomials and The Shuffle Theorem
- Generalizations of The Shuffle Theorem
- Proof techniques and new progress

• Polynomials $f \in \mathbb{Q}(q,t)[x_1,\ldots,x_n]$ satisfying $\sigma.f = f$ for all $\sigma \in S_n$.

• Polynomials $f \in \mathbb{Q}(q,t)[x_1,\ldots,x_n]$ satisfying $\sigma.f = f$ for all $\sigma \in S_n$.

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

• Polynomials $f \in \mathbb{Q}(q,t)[x_1,\ldots,x_n]$ satisfying $\sigma.f = f$ for all $\sigma \in S_n$.

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

• E.g. for n = 3,

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1x_2 + x_1x_3 + x_2x_3 \quad h_2 = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$$

$$e_3 = x_1x_2x_3 \quad h_3 = x_1^3 + x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + \cdots$$

• Polynomials $f \in \mathbb{Q}(q,t)[x_1,\ldots,x_n]$ satisfying $\sigma.f = f$ for all $\sigma \in S_n$.

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

• E.g. for n = 3,

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1x_2 + x_1x_3 + x_2x_3 \quad h_2 = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$$

$$e_3 = x_1x_2x_3 \quad h_3 = x_1^3 + x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + \cdots$$

• Let $\Lambda=\mathbb{Q}(q,t)[e_1,e_2,\ldots]=\mathbb{Q}(q,t)[h_1,h_2,\ldots]$. Call these "symmetric functions."

• Polynomials $f \in \mathbb{Q}(q,t)[x_1,\ldots,x_n]$ satisfying $\sigma.f = f$ for all $\sigma \in S_n$.

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

• E.g. for n = 3,

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1x_2 + x_1x_3 + x_2x_3 \quad h_2 = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$$

$$e_3 = x_1x_2x_3 \quad h_3 = x_1^3 + x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + \cdots$$

- Let $\Lambda = \mathbb{Q}(q,t)[e_1,e_2,\ldots] = \mathbb{Q}(q,t)[h_1,h_2,\ldots]$. Call these "symmetric functions."
- Λ is a $\mathbb{Q}(q, t)$ -algebra.

Distinguished basis of Schur polynomials

$$s_{\mu}(x_1,\ldots,x_l) = \sum_{w \in S_l} w\left(\frac{x_1^{\mu_1} \cdots x_l^{\mu_l}}{\prod_{i < j} (1 - x_j/x_i)}\right)$$

Distinguished basis of Schur polynomials

$$s_{\mu}(x_1,\ldots,x_l) = \sum_{w \in S_l} w\left(\frac{x_1^{\mu_1} \cdots x_l^{\mu_l}}{\prod_{i < j} (1 - x_j/x_i)}\right)$$

• Basis of symmetric polynomials indexed by integer partitions $\mu = (\mu_1, \dots, \mu_l) \in \mathbb{Z}^l$ where $\mu_1 \ge \dots \ge \mu_l \ge 0$.

Distinguished basis of Schur polynomials

$$s_{\mu}(x_1,\ldots,x_l) = \sum_{w \in S_l} w\left(\frac{x_1^{\mu_1} \cdots x_l^{\mu_l}}{\prod_{i < j} (1 - x_j/x_i)}\right)$$

- Basis of symmetric polynomials indexed by integer partitions $\mu = (\mu_1, \dots, \mu_l) \in \mathbb{Z}^l$ where $\mu_1 \ge \dots \ge \mu_l \ge 0$.
- Representation-theoretic and geometric significance.

Distinguished basis of Schur polynomials

$$s_{\mu}(x_1,\ldots,x_l) = \sum_{w \in S_l} w\left(\frac{x_1^{\mu_1} \cdots x_l^{\mu_l}}{\prod_{i < j} (1 - x_j/x_i)}\right)$$

- Basis of symmetric polynomials indexed by integer partitions $\mu = (\mu_1, \dots, \mu_l) \in \mathbb{Z}^l$ where $\mu_1 \ge \dots \ge \mu_l \ge 0$.
- Representation-theoretic and geometric significance.

Hidden Guide: Schur Positivity

"Naturally occurring" symmetric functions which are non-negative (coefficients in $\mathbb{N}[q,t]$) linear combinations in Schur polynomial basis are interesting.

Theorem (Carlsson-Mellit, 2018)

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- ∇ a symmetric function operator with (modified) Macdonald polynomials as eigenfunctions:

$$abla ilde{H}_{\mu}(X;q,t) = t^{n(\mu)} q^{n(\mu')} ilde{H}_{\mu}(X;q,t)$$

Theorem (Carlsson-Mellit, 2018)

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- ∇ a symmetric function operator with (modified) Macdonald polynomials as eigenfunctions:

$$abla ilde{H}_{\mu}(X;q,t) = t^{n(\mu)} q^{n(\mu')} ilde{H}_{\mu}(X;q,t)$$

• Algebraic LHS: ∇e_k doubly graded character of diagonal coinvariants for S_k ((Haiman, 2002) via Hilbert Scheme connection).

Theorem (Carlsson-Mellit, 2018)

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

Combinatorial RHS: Combinatorics of Dyck paths.

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by-k Dyck paths.

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by-k Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \, G_{
u(\lambda)}(X; q^{-1})$$

- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by-k Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.
- $\mathcal{G}_{\nu(\lambda)}(X;q)$ a symmetric LLT polynomial indexed by a tuple of offset rows.

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0,k) to (k,0).

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

• area(λ) = number of squares above λ but below the path δ of alternating S-E steps.

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area(λ) = 10.

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area(λ) = 10.
- Catalan-number many Dyck paths for fixed k.

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area(λ) = 10.
- Catalan-number many Dyck paths for fixed k. (1,2,5,14,42,...)

dinv

 $dinv(\lambda) = \#$ of balanced hooks in diagram below λ .

dinv

 $dinv(\lambda) = \#$ of balanced hooks in diagram below λ .

Balanced hook is given by a cell below λ satisfying

$$\frac{\ell}{a+1} < 1 - \epsilon < \frac{\ell+1}{a} \,, \quad \epsilon \text{ small}.$$

 $G_{\nu(\lambda)}(X;q)$ is an LLT polynomial for a tuple of rows, $\nu(\lambda)=(\nu^{(1)},\dots,\nu^{(r)}).$

 $G_{\nu(\lambda)}(X;q)$ is an LLT polynomial for a tuple of rows, $\nu(\lambda)=(\nu^{(1)},\dots,\nu^{(r)}).$

 $G_{\nu(\lambda)}(X;q)$ is an LLT polynomial for a tuple of rows, $\nu(\lambda)=(\nu^{(1)},\dots,\nu^{(r)}).$

 $G_{\nu(\lambda)}(X;q)$ is an LLT polynomial for a tuple of rows, $\nu(\lambda)=(\nu^{(1)},\ldots,\nu^{(r)}).$

 $G_{\nu(\lambda)}(X;q)$ is an LLT polynomial for a tuple of rows, $\nu(\lambda)=(\nu^{(1)},\ldots,\nu^{(r)}).$

$$\mathcal{G}_{
u}(X;q) = \sum_{T \in \mathsf{SSYT}(
u)} q^{i(T)} x^T$$

for T a weakly increasing filling of rows and i(T) the number of attacking inversions:

$$\mathcal{G}_{\nu}(X;q) = \sum_{T \in SSYT(\nu)} q^{i(T)} x^{T}$$

for T a weakly increasing filling of rows and i(T) the number of attacking inversions:

$$T = \frac{2|4|4|7|8|9|9}{1|1|6|7|7|7}$$

$$\mathcal{G}_{
u}(X;q) = \sum_{T \in \mathsf{SSYT}(
u)} q^{i(T)} x^T$$

for T a weakly increasing filling of rows and i(T) the number of attacking inversions: ______

$$T = \frac{\boxed{1|1|6|7|7|7}}{} \rightarrow q^{i(T)}x^{T} = q^{18}x_{1}^{3}x_{2}^{2}x_{3}^{2}x_{4}^{2}x_{5}x_{6}x_{7}^{4}x_{8}x_{9}^{2}$$

$$\mathcal{G}_{
u}(X;q) = \sum_{T \in \mathsf{SSYT}(
u)} q^{i(T)} x^T$$

for T a weakly increasing filling of rows and i(T) the number of attacking inversions: _____

$$\begin{array}{c|c}
1 & 2 & 3 & 3 & 5 \\
\hline
2 & 4 & 4 & 7 & 8 & 9 & 9
\end{array}$$

$$T = \frac{\boxed{1|1|6|7|7|7}}{} \rightarrow q^{i(T)}x^{T} = q^{18}x_{1}^{3}x_{2}^{2}x_{3}^{2}x_{4}^{2}x_{5}x_{6}x_{7}^{4}x_{8}x_{9}^{2}$$

$$\mathcal{G}_{\square}(x_1, x_2; q) = x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3 + q x_1^2 x_2 + q x_1 x_2^2$$

$$\boxed{111} \quad \boxed{112} \quad \boxed{112} \quad \boxed{212} \quad \boxed{11} \quad \boxed{212}$$

$$\boxed{1} \quad \boxed{1} \quad \boxed{2} \quad \boxed{2} \quad \boxed{2} \quad \boxed{1}$$

$$= s_3 + q s_{2.1}$$

$$\mathcal{G}_{
u}(X;q) = \sum_{T \in \mathsf{SSYT}(
u)} q^{i(T)} x^T$$

for T a weakly increasing filling of rows and i(T) the number of attacking inversions:

$$\begin{array}{c|c}
1 & 2 & 3 & 3 & 5 \\
\hline
2 & 4 & 4 & 7 & 8 & 9 & 9
\end{array}$$

$$T = \frac{\boxed{1116777}}{} \rightarrow q^{i(T)}x^{T} = q^{18}x_{1}^{3}x_{2}^{2}x_{3}^{2}x_{4}^{2}x_{5}x_{6}x_{7}^{4}x_{8}x_{9}^{2}$$

$$\mathcal{G}_{\square}(x_1, x_2; q) = x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3 + q x_1^2 x_2 + q x_1 x_2^2$$

$$\boxed{111} \quad \boxed{112} \quad \boxed{112} \quad \boxed{212} \quad \boxed{11} \quad \boxed{212}$$

$$\boxed{1} \quad \boxed{1} \quad \boxed{2} \quad \boxed{2} \quad \boxed{2} \quad \boxed{1}$$

$$= s_3 + q s_{2.1}$$

• \mathcal{G}_{ν} is symmetric and Schur positive.

Example ∇e_3

$$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \mathcal{G}_{\nu(\lambda)}(X;q^{-1})$$

• Entire quantity is q, t-symmetric

$$\lambda \quad q^{\operatorname{dinv}(\lambda)}t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)}t^{\operatorname{area}(\lambda)}\mathcal{G}_{
u(\lambda)}(X;q^{-1})$$
 $q^3 \qquad s_3 + qs_{2,1} + q^2s_{2,1} + q^3s_{1,1,1}$
 $q^2t \qquad qts_{2,1} + q^2ts_{1,1,1}$
 $qt \qquad ts_{2,1} + qts_{1,1,1}$
 $qt^2 \qquad t^2s_{2,1} + qt^2s_{1,1,1}$
 $t^3 \qquad t^3s_{1,1,1}$

- Entire quantity is q, t-symmetric
- Coefficient of $s_{1,1,1}$ in sum is a "(q, t)-Catalan number" $(q^3 + q^2t + qt + qt^2 + t^3)$.

George H. Seelinger (UMich)

Outline

- Symmetric polynomials and The Shuffle Theorem
- Generalizations of The Shuffle Theorem
- Proof techniques and new progress

• \mathcal{E} contains, for every coprime $m, n \in \mathbb{Z}$, subalgebra $\Lambda(X^{m,n}) \cong \Lambda$, with relations between them. (Burban-Schiffmann, 2012)

- \mathcal{E} contains, for every coprime $m, n \in \mathbb{Z}$, subalgebra $\Lambda(X^{m,n}) \cong \Lambda$, with relations between them. (Burban-Schiffmann, 2012)
- \mathcal{E} acts on Λ , e.g., for M=(1-q)(1-t) and automorphism ω ,

$$e_k[-MX^{m,1}]\cdot 1 = \omega \nabla^m e_k$$

- \mathcal{E} contains, for every coprime $m, n \in \mathbb{Z}$, subalgebra $\Lambda(X^{m,n}) \cong \Lambda$, with relations between them. (Burban-Schiffmann, 2012)
- $\mathcal E$ acts on Λ , e.g., for M=(1-q)(1-t) and automorphism ω ,

$$e_k[-MX^{m,1}]\cdot 1=\omega\nabla^m e_k$$

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin, 2016) (Proved by Mellit, 2016)

$$e_k[-MX^{m,n}]\cdot 1 = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}_p(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

where summation is over all (kn, km)-Dyck paths.

- \mathcal{E} contains, for every coprime $m, n \in \mathbb{Z}$, subalgebra $\Lambda(X^{m,n}) \cong \Lambda$, with relations between them. (Burban-Schiffmann, 2012)
- $\mathcal E$ acts on Λ , e.g., for M=(1-q)(1-t) and automorphism ω ,

$$e_k[-MX^{m,1}]\cdot 1 = \omega \nabla^m e_k$$

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin, 2016) (Proved by Mellit, 2016)

$$e_k[-MX^{m,n}]\cdot 1 = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}_p(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

where summation is over all (kn, km)-Dyck paths.

• Coefficient of $s_{1,...,1}$ is "rational (q, t)-Catalan number"

Rational Path Combinatorics

Rational Path Combinatorics

• area(λ) as before; number of boxes between λ and highest path δ below $y + \frac{n}{m}x = kn$.

Rational Path Combinatorics

- area(λ) as before; number of boxes between λ and highest path δ below $y + \frac{n}{m}x = kn$.
- $\operatorname{dinv}_{p}(\lambda) = \operatorname{number} \operatorname{of} p$ -balanced hooks:

$$\frac{\ell}{a+1} $p = \frac{n}{m} - \epsilon$$$

$$p = \frac{n}{m} - \epsilon$$

Negut Elements

For $b \in \mathbb{Z}^I$, special elements $D_b \in \mathcal{E}$ generalizing $e_k[-MX^{m,n}]$.

Negut Elements

For $b \in \mathbb{Z}^{I}$, special elements $D_b \in \mathcal{E}$ generalizing $e_k[-MX^{m,n}]$.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021a)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $(b_1, \ldots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

Negut Elements

For $b \in \mathbb{Z}^{I}$, special elements $D_b \in \mathcal{E}$ generalizing $e_k[-MX^{m,n}]$.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021a)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $(b_1, \ldots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$D_{(b_1,\ldots,b_l)}\cdot 1$$

Negut Elements

For $b \in \mathbb{Z}^I$, special elements $D_b \in \mathcal{E}$ generalizing $e_k[-MX^{m,n}]$.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021a)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $(b_1, \ldots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$D_{(b_1,...,b_l)} \cdot 1 = \sum_{\lambda} \omega \mathcal{G}_{\nu(\lambda)}(X;q^{-1})$$

where summation is over all lattice paths under the line y + px = s,

Negut Elements

For $b \in \mathbb{Z}^l$, special elements $D_b \in \mathcal{E}$ generalizing $e_k[-MX^{m,n}]$.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021a)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $(b_1, \ldots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$D_{(b_1,...,b_l)} \cdot 1 = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}_p(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

where summation is over all lattice paths under the line y + px = s,

 $\mathrm{area}(\lambda)$ as before $\mathrm{dinv}_p(\lambda) = \#p\text{-balanced hooks }\frac{\ell}{a+1}$

Outline

- Symmetric polynomials and The Shuffle Theorem
- Generalizations of The Shuffle Theorem
- Proof techniques and new progress

Key Relationship

$$\omega(D_{b} \cdot 1)(x_{1}, \dots, x_{l}) = \left(\sum_{w \in S_{l}} w \left(\frac{x_{1}^{b_{1}} \cdots x_{l}^{b_{l}} \prod_{i+1 < j} (1 - qtx_{i}/x_{i+1})}{\prod_{i < j} ((1 - \frac{x_{j}}{x_{i}})(1 - q\frac{x_{i}}{x_{j}})(1 - t\frac{x_{i}}{x_{j}}))} \right) \right)_{pol}$$

Key Relationship

$$\omega(D_{b} \cdot 1)(x_{1}, \dots, x_{l}) = \left(\sum_{w \in S_{l}} w \left(\frac{x_{1}^{b_{1}} \cdots x_{l}^{b_{l}} \prod_{i+1 < j} (1 - qtx_{i}/x_{i+1})}{\prod_{i < j} ((1 - \frac{x_{j}}{x_{i}})(1 - q\frac{x_{i}}{x_{j}})(1 - t\frac{x_{i}}{x_{j}}))} \right) \right)_{pol}$$

Let ψD_b be RHS without applying pol. Easier to prove a "shuffle theorem-like" result on infinite series:

Key Relationship

$$\omega(D_{b} \cdot 1)(x_{1}, \dots, x_{l}) = \left(\sum_{w \in S_{l}} w \left(\frac{x_{1}^{b_{1}} \cdots x_{l}^{b_{l}} \prod_{i+1 < j} (1 - qtx_{i}/x_{i+1})}{\prod_{i < j} ((1 - \frac{x_{j}}{x_{i}})(1 - q\frac{x_{i}}{x_{j}})(1 - t\frac{x_{i}}{x_{j}}))} \right) \right)_{pol}$$

Let ψD_b be RHS without applying pol. Easier to prove a "shuffle theorem-like" result on infinite series:

Stable Shuffle Theorem (Blasiak-Haiman-Morse-Pun-S., 2021a)

For $b \in \mathbb{Z}^I$ corresponding to some choice of highest path under line of slope -r/s,

$$\psi D_{\mathsf{b}} = \sum_{a_1, \dots, a_{l-1} > 0} t^{|\mathsf{a}|} \mathcal{L}^{\sigma}_{((b_l, \dots, b_1) + (0, a_{l-1}, \dots, a_1)) / (a_{l-1}, \dots, a_1, 0)}(x_1, \dots, x_l; q)$$

for infinite formal sum $\mathcal{L}^{\sigma}_{\beta/\alpha}$ a "series LLT." (Grojnowski-Haiman, 2007).

• (Twisted) non-symmetric Hall-Littlewood polynomials $E_{\lambda}^{\sigma}(x_1,\ldots,x_l;q)$ defined via Demazure-Lusztig operators

$$T_i = qs_i + (1-q)\frac{s_i - 1}{1 - x_{i+1}/x_i}$$

• (Twisted) non-symmetric Hall-Littlewood polynomials $E_{\lambda}^{\sigma}(x_1,\ldots,x_l;q)$ defined via Demazure-Lusztig operators

$$T_i = qs_i + (1-q)\frac{s_i - 1}{1 - x_{i+1}/x_i}$$

 $\bullet \ F_{\lambda}^{\sigma} = \overline{E_{-\lambda}^{\sigma w_0}}.$

• (Twisted) non-symmetric Hall-Littlewood polynomials $E_{\lambda}^{\sigma}(x_1,\ldots,x_l;q)$ defined via Demazure-Lusztig operators

$$T_i = qs_i + (1-q)\frac{s_i - 1}{1 - x_{i+1}/x_i}$$

• $F_{\lambda}^{\sigma} = \overline{E_{-\lambda}^{\sigma w_0}}$.

Cauchy identity

$$\frac{\prod_{i < j} (1 - q t x_i y_j)}{\prod_{i \le j} (1 - t x_i y_j)} = \sum_{a \ge 0} t^{|a|} E_a^{\sigma}(x_1, \dots, x_l; q^{-1}) F_a^{\sigma}(y_1, \dots, y_l; q),$$

• (Twisted) non-symmetric Hall-Littlewood polynomials $E_{\lambda}^{\sigma}(x_1,\ldots,x_l;q)$ defined via Demazure-Lusztig operators

$$T_i = qs_i + (1-q)\frac{s_i - 1}{1 - x_{i+1}/x_i}$$

• $F_{\lambda}^{\sigma} = \overline{E_{-\lambda}^{\sigma w_0}}$.

Cauchy identity

$$\frac{\prod_{i < j} (1 - q t x_i y_j)}{\prod_{i \le j} (1 - t x_i y_j)} = \sum_{\mathsf{a} \ge 0} t^{|\mathsf{a}|} \, E_\mathsf{a}^\sigma(x_1, \dots, x_I; q^{-1}) \, F_\mathsf{a}^\sigma(y_1, \dots, y_I; q),$$

• $\mathcal{L}^{\sigma}_{eta/lpha}=H_q(w_0(F^{\sigma^{-1}}_eta(x;q)\overline{F^{\sigma^{-1}}_lpha(x;q)}))$ for

$$H_q(f) = \sum_{w \in S_l} w \left(f \prod_{i < j} ((1 - x_j/x_i)(1 - qx_i/x_j))^{-1} \right)$$

Note
$$\psi D_b = H_q \left(x^b rac{\prod_{i+1 < j} (1 - qtx_i/x_j)}{\prod_{i < j} (1 - tx_i/x_j)} \right)$$

Note
$$\psi D_b = H_q\left(x^b rac{\prod_{i+1 < j} (1 - qtx_i/x_j)}{\prod_{i < j} (1 - tx_i/x_j)}
ight)$$
 (looks related to $rac{\prod_{i < j} (1 - qtx_iy_j)}{\prod_{i \le j} (1 - tx_iy_j)}$)

Note
$$\psi D_b = H_q \left(x^b rac{\prod_{i+1 < j} (1 - qtx_i/x_j)}{\prod_{i < j} (1 - tx_i/x_j)} \right)$$
 (looks related to $\frac{\prod_{i < j} (1 - qtx_iy_j)}{\prod_{i \le j} (1 - tx_iy_j)} \right)$

Stable Shuffle Theorem

For $b \in \mathbb{Z}^I$ corresponding to some choice of highest path under line of slope -r/s,

$$\psi D_{\mathsf{b}} = \sum_{\substack{a_1, \dots, a_{l-1} > 0}} t^{|\mathsf{a}|} \mathcal{L}^{\sigma}_{((b_l, \dots, b_1) + (0, a_{l-1}, \dots, a_1)) / (a_{l-1}, \dots, a_1, 0)}(x_1, \dots, x_l; q)$$

Note
$$\psi D_b = H_q \left(x^b rac{\prod_{i+1 < j} (1 - qtx_i/x_j)}{\prod_{i < j} (1 - tx_i/x_j)} \right)$$
 (looks related to $\frac{\prod_{i < j} (1 - qtx_iy_j)}{\prod_{i \le j} (1 - tx_iy_j)} \right)$

Stable Shuffle Theorem

For $b \in \mathbb{Z}^I$ corresponding to some choice of highest path under line of slope -r/s,

$$\psi D_{b} = \sum_{a_{1},...,a_{l-1}>0} t^{|a|} \mathcal{L}^{\sigma}_{((b_{l},...,b_{1})+(0,a_{l-1},...,a_{1}))/(a_{l-1},...,a_{1},0)}(x_{1},...,x_{l};q)$$

Under polynomial truncation,

$$\mathcal{L}^{\sigma}_{eta/lpha}(x_1,\ldots,x_l;q) o q^{\mathsf{dinv}_p(\lambda)} \mathcal{G}_{
u(\lambda)}(x_1,\ldots,x_l;q^{-1})$$

Note
$$\psi D_b = H_q \left(x^b rac{\prod_{i+1 < j} (1 - qtx_i/x_j)}{\prod_{i < j} (1 - tx_i/x_j)} \right)$$
 (looks related to $\frac{\prod_{i < j} (1 - qtx_iy_j)}{\prod_{i \le j} (1 - tx_iy_j)} \right)$

Stable Shuffle Theorem

For $b \in \mathbb{Z}^I$ corresponding to some choice of highest path under line of slope -r/s,

$$\psi D_{b} = \sum_{a_{1},...,a_{l-1}>0} t^{|a|} \mathcal{L}^{\sigma}_{((b_{l},...,b_{1})+(0,a_{l-1},...,a_{1}))/(a_{l-1},...,a_{1},0)}(x_{1},...,x_{l};q)$$

Under polynomial truncation,

$$\mathcal{L}^{\sigma}_{eta/lpha}(x_1,\ldots,x_l;q) o q^{\operatorname{dinv}_p(\lambda)} \mathcal{G}_{
u(\lambda)}(x_1,\ldots,x_l;q^{-1})$$

$$\Longrightarrow \omega(D_b \cdot 1)(x_1,\ldots,x_l) = \sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}_p(\lambda)} \mathcal{G}_{\nu(\lambda)}(x_1,\ldots,x_l;q^{-1}).$$

Same paradigm works to show the following formulas.

Same paradigm works to show the following formulas.

Extended Delta Theorem (Blasiak-Haiman-Morse-Pun-S., 2021b)

For Δ_{h_l} , $\Delta'_{e_{k-1}}$ operators generalizing ∇ ,

$$\Delta_{\textit{h}_{\textit{l}}}\Delta'_{\textit{e}_{k-1}}\textit{e}_{\textit{n}} = \langle \textit{z}^{\textit{k}} \rangle \sum_{\lambda,\textit{P}} q^{\mathsf{dinv}(\textit{P})} t^{\mathsf{area}(\lambda)} x^{\textit{P}} \prod_{\textit{r}_{\textit{i}}(\lambda) = \textit{r}_{\textit{i}-1}(\lambda) + 1} (1 + \textit{z}t^{-\textit{r}_{\textit{i}}(\lambda)}) \,.$$

Same paradigm works to show the following formulas.

Extended Delta Theorem (Blasiak-Haiman-Morse-Pun-S., 2021b)

For Δ_{h_l} , $\Delta'_{e_{k-1}}$ operators generalizing ∇ ,

$$\Delta_{\textit{h}_{\textit{l}}}\Delta'_{\textit{e}_{k-1}}\textit{e}_{\textit{n}} = \langle \textit{z}^k \rangle \sum_{\lambda,\textit{P}} q^{\mathsf{dinv}(\textit{P})} t^{\mathsf{area}(\lambda)} x^{\textit{P}} \prod_{\textit{r}_{\textit{i}}(\lambda) = \textit{r}_{\textit{i}-1}(\lambda) + 1} (1 + \textit{z}t^{-\textit{r}_{\textit{i}}(\lambda)}) \,.$$

Loehr-Warrington Conjecture

$$abla s_{\mu} = \operatorname{sgn}(\mu) \sum_{(G,R) \in \mathit{LNDP}_{\mu}} t^{\operatorname{\mathsf{area}}(G,R)} q^{\operatorname{\mathsf{dinv}}(G,R)} x^R$$

 D_b defined for any $b \in \mathbb{Z}^I$. When is $D_b \cdot 1$ nice?

Convex Curve Conjecture (Blasiak-Haiman-Morse-Pun-S., 2021a)

For $b = (b_1, ..., b_l)$ the south steps of highest path under a convex curve, the Schur expansion of $D_b \cdot 1$ has coefficients in $\mathbb{N}[q, t]$.

Convex Curve Conjecture (Blasiak-Haiman-Morse-Pun-S., 2021a)

For $b = (b_1, ..., b_l)$ the south steps of highest path under a convex curve, the Schur expansion of $D_b \cdot 1$ has coefficients in $\mathbb{N}[q, t]$.

• Experimental computation suggests this is "tight."

Convex Curve Conjecture (Blasiak-Haiman-Morse-Pun-S., 2021a)

For $b = (b_1, ..., b_l)$ the south steps of highest path under a convex curve, the Schur expansion of $D_b \cdot 1$ has coefficients in $\mathbb{N}[q, t]$.

- Experimental computation suggests this is "tight."
- Coefficient of $s_{1,...,1}$ coincides with (q, t)-polynomials found in (Gorsky-Hawkes-Schilling-Rainbolt, 2020), (Galashin-Lam, 2021).

References

Thank you!

Bergeron, Francois, Adriano Garsia, Emily Sergel Leven, and Guoce Xin. 2016. Compositional (km, kn)-shuffle conjectures, Int. Math. Res. Not. IMRN 14, 4229–4270, DOI 10.1093/imrn/rnv272. MR3556418

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H Seelinger. 2021a. A Shuffle Theorem for Paths Under Any Line, arXiv e-prints, available at arXiv:2102.07931.

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2021b. A proof of the Extended Delta Conjecture, arXiv e-prints, available at arXiv:2102.08815.

Burban, Igor and Olivier Schiffmann. 2012. On the Hall algebra of an elliptic curve, I, Duke Math. J. 161, no. 7, 1171–1231, DOI 10.1215/00127094-1593263. MR2922373

Carlsson, Erik and Anton Mellit. 2018. A proof of the shuffle conjecture, J. Amer. Math. Soc. 31, no. 3, 661–697, DOI 10.1090/jams/893. MR3787405

Galashin, Pavel and Thomas Lam. 2021. Positroid Catalan numbers, arXiv e-prints, arXiv:2104.05701, available at arXiv:2104.05701.

Garsia, Adriano M. and Mark Haiman. 1993. A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90, no. 8, 3607–3610, DOI 10.1073/pnas.90.8.3607. MR1214091

Gorsky, Eugene, Graham Hawkes, Anne Schilling, and Julianne Rainbolt. 2020. Generalized q, t-Catalan numbers, Algebr. Comb. 3, no. 4, 855–886, DOI 10.5802/alco.120. MR4145982

Grojnowski, Ian and Mark Haiman. 2007. Affine Hecke algebras and positivity of LLT and Macdonald polynomials, Unpublished manuscript.

Haglund, J. and Haiman, M. and Loehr. 2005. A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126, no. 2, 195–232, DOI 10.1215/S0012-7094-04-12621-1.

Haglund, J., J. B. Remmel, and A. T. Wilson. 2018. The delta conjecture, Trans. Amer. Math. Soc. 370, no. 6, 4029–4057, DOI 10.1090/tran/7096. MR3811519

Haiman, Mark. 2002. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149, no. 2, 371–407. DOI 10.1007/s002220200219. MR1918676

Mellit, Anton. 2016. Toric braids and (m, n)-parking functions, arXiv e-prints, arXiv:1604.07456, available at arXiv:1604.07456.

Negut, Andrei. 2014. The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22, 6242–6275, DOI 10.1093/imrn/rnt156. MR3283004