Relatório Trabalho Final – Problema 1: Fábrica de papel

Henrique Santa Terra
Jenice Júlio Correa de Lima
José Nivaldo da Silva Hypólito
Luciene Alves Santos Mota
Paula Lumy Takeuchi
Prof. Me. Júnior César Bonafim (jrbonafim@gmail.com)

12 de junho de 2023

1 Apresentação do problema

O problema recebido se trata sobre uma fábrica que necessita cortar matrizes de papel de acordo com a demanda de itens menores. O problema é dividido em duas partes, a parte A requer a minimização do desperdício de papel da matriz que será cortada de acordo com os padrões de corte, a parte B possui o mesmo segmento da parte A com a introdução de uma nova variável que limita a quantidade de padrões de corte.

Os arquivos com os dados utilizados para a resolução do problema foram disponibilizados da seguinte forma:

Figura 1: Resumo das instâncias

Também foi passado uma dica para a resolução do problema envolvendo o uso de combinações para gerar os possíveis padrões de corte.

2 Resolução do problema A

Com base nos parâmetros definidos na apresentação do problema o seguinte modelo foi criado: Quantidades

- n: Quantidade de tipos de itens
- m: Quantidade de padrões de corte

Variáveis

• x_j : Quantidade que será utilizada do padrão de corte j, para $j=1,\ldots,m$

Parâmetros

- D_i : Demanda do item i, para $i=1,\ldots,n$
- P_{ij} : Padrão de corte i do tipo de item j, para $i=1,\ldots,n$ e $j=1,\ldots,m$

Modelo

min
$$\sum_{j=1}^{m} x_i$$

s.a. $\sum_{j=1}^{m} P_{ij} x_j \ge D_i$ $i = 1, \dots, n$
 $x_j \in +\mathbb{Z}$ $j = 1, \dots, m$

Após a realização dos testes os seguintes resultados foram obtidos:

Tabela 1: Resultados obtidos após a realização dos testes para a parte A do problema

Arquivos	Tamanho da matriz	Qnt. de itens menores	Qtn. de padrões de corte gerados	Qtn. de padrões de corte utilizados	Total de matri- zes usadas	Qtn. de papel desperdiçada
inst_200_5.txt	200	5	51	8	3339	18957
inst_130_6.txt	130	6	48	6	5135	5946
inst_200_4.txt	200	4	14	3	3381	13826
inst_110_5.txt	110	5	229	9	1078	0
inst_100_4.txt	100	4	24	4	2194	10943
inst_250_5.txt	250	5	64	6	3078	11698
inst_100_6.txt	100	6	91	7	3128	6106
inst_130_4.txt	130	4	14	4	3081	6938
inst_250_6.txt	250	6	119	9	3090	3004
inst_200_6.txt	200	6	87	6	4084	15757
inst_130_5.txt	130	5	38	5	3468	2613
inst_100_5.txt	100	5	40	6	2678	12879
inst_250_4.txt	250	4	25	5	2448	22514

A partir os resultados obtidos para a parte A do problema, observa-se que a instância inst_110_5.txt, com matriz de tamanho 110 e com 5 tamanhos diferentes de itens menores, se destaca das demais por sua grande quantidade de padrões de cortes gerados, 229, o que levou a minimizar o uso de matrizes, com 1078 bobinas grandes usadas, e ao não desperdício de papel. Essa instância também apresentou uma rápida resolução do problema com um número pequeno de iterações.

3 Resolução do problema B

Com base nos parâmetros definidos na apresentação do problema o seguinte modelo foi criado: Quantidades

- n: Quantidade de tipos de itens
- m: Quantidade de padrões de corte

Variáveis

- x_j : Quantidade que será utilizada do padrão de corte j, para $j=1,\ldots,m$
- $s_j = \begin{cases} 1 : \text{Caso o padrão } j \text{ seja utilizado} \\ 0 : \text{Caso não seja} \end{cases}$

Parâmetros

- D_i : Demanda do item i, para i = 1, ..., n
- P_{ij} : Padrão de corte i do tipo de item j, para $i=1,\ldots,n$ e $j=1,\ldots,m$
- R: Máximo permitido de padrões de corte

Modelo

$$\min \sum_{j=1}^{m} x_{i}$$

$$\text{s.a.} \sum_{j=1}^{m} P_{ij}x_{j} \geq D_{i}$$

$$i = 1, \dots, n$$

$$\sum_{j=1}^{m} s_{j} \leq R$$

$$x_{j} \leq Ms_{j}$$

$$j = 1, \dots, m$$

$$M = \sum_{i=1}^{n} D_{i}$$

$$s_{j} \in \{0, 1\}$$

$$x_{j} \in +\mathbb{Z}$$

$$j = 1, \dots, m$$

$$j = 1, \dots, m$$

Tabela 2: Resultados obtidos após a realização dos testes para a parte B do problema

Arquivos	Tamanho da matriz	Qtn. de itens menores	Qtn. de padrões de corte gerados	Limite de Padrões de corte	Qtn. de padrões de corte utilizados	Total de matrizes usadas	Qtn. de papel desperdiçada
inst_200_5.txt	200	5	51	5	5	3364	20204
inst_130_6.txt	130	6	48	7	7	5135	5956
inst_200_4.txt	200	4	14	4	3	3381	13826
inst_110_5.txt	110	5	229	5	5	1078	0
inst_100_4.txt	100	4	24	5	4	2194	10943
inst_250_5.txt	250	5	64	5	5	3084	11108
inst_100_6.txt	100	6	91	6	6	3128	6107
inst_130_4.txt	130	4	14	5	5	3081	6957
inst_250_6.txt	250	6	119	7	7	3090	2998
inst_200_6.txt	200	6	87	6	6	4084	15757
inst_130_5.txt	130	5	38	5	5	3468	2613
inst_100_5.txt	100	5	40	6	6	2678	12879
inst_250_4.txt	250	4	25	4	4	2451	22968

Após a realização dos testes os seguintes resultados foram obtidos:

Limitando o padrão de corte a 5, novamente, a instância inst_110_5.txt se destacou porque conseguiu minimizar o número de bobinas utilizadas, mantendo o mesmo resultado do item anterior e, também por ter mantido baixo o desperdício. Com a restrição, houve um grande aumento do tempo para a resolução, demorando muito mais que o resultado anterior e utilizando mais de 200 mil iterações do método simplex.

4 Conclusão

A partir dos resultados obtidos, pode-se concluir que apesar da restrição imposta na parte B do problema, foi possível manter a quantidade de bobinas utilizadas ao custo do aumento do desperdício de papel e aumento do tempo de processamento.