### MAELAS code

User manual v1.0

Authors:

P. Nieves

S. Arapan

S.H. Zhang

A.P. Kądzielawa

R.F. Zhang

D. Legut



MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach



NATIONAL SUPERCOMPUTING
CENTER





August 22, 2020

Email: pablo.nieves.cordones@vsb.cz

http://www.md-esg.eu/

## Outline

- WHAT IS MAGNETOSTRICTION?
- WHAT IS MAELAS CODE?
- INSTALLATION
- HOW TO USE MAELAS CODE
- METHODOLOGY
- WORKFLOW
- BRIEF REVIEW OF KNOWN MAGNETOSTRICTIVE MATERIALS
- MAELAS TESTS
- BIBLIOGRAPHY

## WHAT IS MAGNETOSTRICTION?

Magnetostriction is a physical phenomenon in which the process of magnetization induces a change in shape or dimension of a magnetic material.



Figure 1: Magnetostriction of a single crystal under an external magnetic field ( $\alpha \| H$ ) perpendicular to the measured length direction ( $\beta \perp H$ ). Symbols M and  $M_s$  stand for macroscopic magnetization and saturation magnetization, respectively. Dash line on the right represents the original size of the demagnetized material. The magnetostriction effect has been magnified in order to help to visualize it easily, in real materials it is smaller ( $\Delta l/l_0 \sim 10^{-3} - 10^{-6}$ ).

## WHAT IS MAELAS CODE?

- MAELAS code is a software to calculate anisotropic magnetostriction coefficients and magnetoelastic constants up to second order.
- ➤ It generates required input files for VASP code to perform Density Functional Theory calculations, and it deduces the value of magnetostriction coefficients from the calculated energies given by VASP.
- If the elastic tensor is provided, then it can also calculate the magnetoelastic constants.
- MAELAS can also be used with other DFT codes instead of VASP, after file conversion to VASP format files.

### INSTALLATION

The MAELAS code requires to have Python3(>=3.6). For example, in Ubuntu Linux machine you can check the installed version of python3 by opening a terminal and typing

python3 --version

In case you need to install python3 in your machine, you can type

sudo apt-get update sudo apt-get install python3

Note that in some HPC clusters you might need to load the Python module (ml Python). To install MAELAS code, download and extract the .zip file, go to the folder that contains the file setup.py and type

python3 setup.py install --user

This procedure will also install all required dependencies automatically

pymatgen(>=2020.4.29), scikit-learn(>=0.23.1), pyfiglet(>=0.8.post0), argparse(>=1.4.0), numpy(>=1.18.4), matplotlib(>=3.2.1), scipy(>=1.4.1), setuptools(>=40.8.0)

More available options for the installation can be found in the file INSTALL. By default, the executable file "maelas" is installed in the folder /home/\$USER/.local/bin/where \$USER is the name of your username folder. This folder should be included to the PATH variable by adding in the file /home/\$USER/.bashrc the following line

export PATH=/home/\$USER/.local/bin/:\$PATH

Then you should close the terminal and open the terminal again. If you need to install pip3 in Ubuntu Linux, then type

sudo apt-get update sudo apt-get install python3-pip



#### **Step 1: Cell relaxation**

If your initial POSCAR is not relaxed and you want to perform a cell relaxation before calculating the magnetostriction coefficients, then you can use MAELAS code to generate INCAR and KPOINTS files to relax the structure with VASP. To do so, in the terminal you should copy your initial POSCAR in the same folder where you want to generate the input files for VASP, and after going to this folder then type

maelas -r -i POSCARO -k 40

where tag -r indicates that you want to generate VASP files for cell relaxation, -i POSCAR0 is the input non-relaxed POSCAR file (you can name it whatever you want) and -k 40 is the length parameter that determines a regular mesh of k-points. It will generate 4 files: POSCAR, INCAR, KPOINTS and vasp\_jsub\_rlx. Here, one still needs to copy manually the POTCAR file in this folder in order to have all required files for VASP run. The generated file vasp\_jsub\_rlx is a script to submit jobs in HPC facilities, one can specify some settings in this script by adding more tags in the command line. For instance,

maelas -r -i POSCARO -k 40 -t 48 -c 24 -q qprod -a OPEN-00-00 -f /scratch/example\_rlx

where -t 48 indicates that the number of maximum CPU hours for the VASP calculation is 48 hours,-c 24 means that the number of cores for the VASP calculation is 24, -q qprod set the type of queue in HPC facilities, -a OPEN-00-00 is the project identification number for running jobs in HPC facilities and -f /scratch/example\_rlx is the folder where you want to run VASP calculations. All these data are included in the vasp\_jsub\_rlx file, so one can submit this VASP job immediately in HPC facilities by typing

qsub vasp jsub rlx

This procedure might be helpful for high-throughput routines. Note that the user might need to modify vasp\_jsub\_rlx (it is in PBS Pro format) depending on the cluster or local computer batch scheduling. More options can be added in vasp\_jsub\_rlx file through the terminal command line, to see them just type

maelas –h

Note that generated INCAR and KPOINTS files contain standard setting for cell relaxation. The user might need to change these files in order to include more advanced settings. In case your structure is already relaxed or you do not want to perform a cell relaxation, then you can skip this step and move to step 2.

#### Step 2: Test MAE

Copy the relaxed POSCAR and POTCAR files in the same folder where you want to generate the input files for VASP jobs. In the terminal, after going to this folder then type

maelas -m -i POSCAR\_rlx -k 70 -s1 1 0 0 -s2 0 0 1

where -m indicates that you want to generate input VASP files for the calculation of MAE, -i POSCAR\_rlx is the initial relaxed POSCAR file (you can name it whatever you want), -k 70 is the length parameter that determines a regular mesh of k-points, -s1 1 0 0 is the first spin direction to calculate MAE: s1x s1y s1z and -s2 0 0 1 is the second spin direction to calculate MAE: s2x s2y s2z. It will generate the following files:

POSCAR\_0\_0 (it is the same POSCAR as )

INCAR\_0\_C (non-collinear calculation where C=1,2 is the spin orientation case)

INCAR\_std (collinear calculation to generate the WAVECAR and CHGCAR files to run non-collinear calculations)

KPOINTS (file for the kpoint generation of VASP)

vasp\_mae, vasp\_mae\_jsub and vasp\_mae\_0 (interconnected bash scripts to run VASP calculations automatically)

vasp\_mae\_cp\_oszicar (bash script to get the calculated OSZICAR\_0\_0\_C files after VASP calculation is finished)

The generated files vasp\_mae, vasp\_mae\_jsub and vasp\_mae\_0 are interconnected scripts to submit jobs in HPC facilities. One needs only to execute the file vasp mae in order to run all VASP jobs automatically. You can specify some job settings in these scripts by adding more tags in the command line. For instance,

maelas -m -i POSCAR\_rlx -k 70 -s1 1 0 0 -s2 0 0 1 -t 48 -c 24 -q qprod -a OPEN-00-00 -f /scratch/example\_mag

where -t 48 indicates that the number of maximum CPU hours for the VASP calculation is 48 hours,-c 24 means that the number of cores for the VASP calculation is 24, -q qprod set to production queuethe type of queue in HPC facilities, -a OPEN-00-00 is the project identification number for running jobs in HPC facilities and -f /scratch/example\_mag is the folder where you want to run VASP calculations. This procedure might be helpful for high-throughput routines. Note that the user might need to modify vasp\_mae\_jsub (it is in PBS Pro format) depending on the cluster or local computer batch scheduling. More options can be added in these script files through the terminal command line, to see them just type

maelas -h

#### Step 3: Generation of VASP files for the calculation of anisotropic magnetostriction coefficients

Copy the relaxed POSCAR and POTCAR files in the same folder where you want to generate the input files for VASP run. In the terminal, after going to this folder then type

maelas -g -i POSCAR\_rlx -k 70 -n 7 -s 0.1

where -g indicates that you want to generate input VASP files for the calculation of anisotropic magnetostriction coefficients, -i POSCAR\_rlx is the initial relaxed POSCAR file (you can name it whatever you want), -k 70 is the length parameter that determines a regular mesh of k-points, -n 7 means that it will generate 7 distorted states for each magentostriction mode and-s 0.1 is the maximum strain applied for distorting the structure. It will generate the following files:

POSCAR\_A\_B (volume-conserving distorted cell where A=magnetostriction mode, B=1,...,n distorted cell for each magentostriction mode)

INCAR A C (non-collinear calculation where A=magnetostriction mode, C=1,2 is the spin orientation case)

INCAR\_std (collinear calculation to generate the WAVECAR and CHGCAR files to run non-collinear calculations)

**KPOINTS** 

vasp\_maelas, vasp\_jsub and vasp\_0 (interconnected bash scripts to run VASP calculations automatically)

vasp\_cp\_oszicar (bash script to get the calculated OSZICAR\_A\_B\_C files after VASP calculation is finished)

The generated files vasp\_maelas, vasp\_jsub and vasp\_0 are interconnected scripts to submit jobs in HPC facilities, one can specify some job settings in these scripts by adding more tags in the command line. For instance,

maelas -g -i POSCAR\_rlx -k 70 -n 7 -s 0.1 -t 48 -c 24 -q qprod -a OPEN-00-00 -f /scratch/example\_mag

where -t 48 indicates that the number of maximum CPU hours for the VASP calculation is 48 hours,-c 24 means that the number of cores for the VASP calculation is 24, -q aprod set the type of queue in HPC facilities, -a OPEN-00-00 is the project identification number for running jobs in HPC facilities and -f /scratch/example\_mag is the folder where you want to run VASP calculations. This procedure might be helpful for high-throughput routines. Note that the user might need to modify vasp\_jsub (it is in PBS Pro format) depending on the cluster or local computer batch scheduling. More options can be added in these script files through the terminal command line, to see them just type

maelas –h

#### **Step 4: Run VASP calculations**

For each generated POSCAR\_A\_B one should run first a collinear calculation using INCAR\_std and use the generated WAVECAR and CHGCAR files to run non-collinear calculations for each INCAR\_A\_C (C=1,2) using the same POSCAR\_A\_B. This procedure can be automatically done in HPC facilities just by running the generated bash script

./vasp\_maelas

This will launch independent jobs for each POSCAR\_A\_B. Each job will run 3 VASP calculations: a collinear one (VASP executable "vasp\_std") to generate WAVECAR and CHGCAR files, and two non-collinear (VASP executable "vasp\_ncl") for INCAR\_A\_1 and INCAR\_A\_2. The jobs will be executed in subfolders P\_A\_B inside the folder indicated by tag -f in the step 2. Note that the user might need to modify vasp\_jsub depending on the cluster or local computer queuing system.

Once all jobs are finished, then one can easily get calculated non-collinear OSZICAR files (needed in step 4), by running the bash script

./vasp\_cp\_oszicar

it will copy these OSZICAR files and name them as OSZICAR A B C (C=1,2) in the same folder where this script is executed.

#### VASP executables:

"vasp\_std" is the standard version of vasp without spin-orbit coupling (LNONCOLLINEAR = .FALSE., LSORBIT = .FALSE.)

"vasp\_ncl" is for non-collinear calculations for instance to perform fully non-collinear magnetic structure calculations or to include spin-orbit interactions in the calculations (LSORBIT = .TRUE.)

### Step 5: Derivation of anisotropic magnetostriction coefficients and magnetoelastic constants

Finally, to derive the anisotropic magnetostriction coefficients one needs to have in the same folder the following files:

POSCAR\_rlx (the relaxed POSCAR file used as input in step 3)
POSCAR\_A\_B (distorted POSCAR generated in step 3)
OSZICAR\_A\_B\_C (non-collinear OSZICAR files calculated in step 4 for each POSCAR\_A\_B and INCAR\_A\_C)

Next, in the terminal go to this folder a type

maelas -d -i POSCAR\_rlx -n 7

where -d indicates that you want to derive the spin-dependent magnetostriction coefficients from the calculated OSZICAR files, -i POSCAR\_rlx is the relaxed POSCAR file used as input in step 3 (you can name it whatever you want) and -n 7 is the number of distorted states for each magentostriction mode used in step 3.

It will derive and print the calculated anisotropic magnetostriction coefficients in the terminal. If you want to print it in a file (for example, "results.out"), then you can type

maelas -d -i POSCAR\_rlx -n 7 > results.out

Additionally, the energy values extracted from OSZICAR\_A\_B\_C files are shown in generated files ene\_A\_C.dat and fit\_ene\_A\_C.png. The energy difference between the two spin configurations for each magnetostriction mode are shown in Fig. dE\_A.png. If the elastic tensor is provided as input, then MAELAS can also calculate the magnetoelastic constants. To do so, one needs to add tags -b and -e with the name of the file containing the elastic tensor with the same format and units (GPa) as it is written by AELAS code (file ELADAT). Hence, you could type

maelas -d -i POSCAR rlx -n 7 -b -e ELADAT

where ELADAT is the name of the file (it could be whatever name you want) with the elastic tensor data.

Elastic tensor: Format of the 262.03 186.20 186.20 0.00 elastic tensor file 186.20 262.03 186.20 0.00 186.20 186.20 262.03 0.00 0.00 0.00 0.00 116.63 0.00 0.00 0.00 0.00 116.63 0.00 0.00 0.00 0.00 116.63

User can see all possible optional arguments by typing

maelas -h

The optional arguments are the following:

```
-h, --help
            Show this help message and exit
-i POS
            Name of the initial non-distorted POSCAR file (default: POSCAR)
            Number of distorted states for each magnetostriction mode (default: 7)
-n NDIST
-s STRAIN
            Maximum value of the parameter epsilon for the strain tensor to generate the distorted POSCAR files (default: 0.01)
-k KP
            VASP automatic k-point mesh generation to create the KPOINTS file (default: 60)
            Generation of required VASP files for the calculation of magnetostriction coefficients.
-g
-d
            Derivation of magnetostriction coefficients from the energy written in the OSZICAR files.
            Generation of required VASP files for the cell relaxation
-r
            Generation of required VASP files to test MAE
-m
-s1 s1x s1y s1z First spin direction to calculate MAE
-s2 s2x s2y s2z Second spin direction to calculate MAE
-b
            Calculation of the magnetoelastic constants from the calculated magnetostriction coefficients and provided elastic tensor.
            File with the elastic tensor data in the same format and units (GPa) as it is written by ELAS code (file ELADAT).
-e ELAS
-sp SYMPRE
               Tolerance for symmetry finding (default: 0.01)
               Angle tolerance for symmetry finding (default: 5.0)
-sa SYMANG
-sg SG0
            Space group number 1-230. If it is equal to 0, then it will be determined by a symmetry analysis (default: 0)
-c CORE
            Number of cores for the VASP calculation (default: 24)
            Number of maximum CPU hours for the VASP calculation (default: 48)
-t TIME
-f VASP FOLD Folder where you will run VASP calculations (default: /scratch)
-mp MPI
             Command for mpi run of VASP (default: mpiexec.hydra)
            Project id for running jobs in HPC facilities (default: OPEN-X-X)
-a P ID
```

-l LOAD MODULE Module of VASP that should be loaded (default: VASP/5.4.4-intel-2017c-mkl=cluster)

-q QUEUE Type of gueue to be used for VASP calculations in HPC facilities (default: gprod)

#### Summary: In a nutshell

Step 1: Cell relaxation

maelas -r -i POSCARO -k 40

qsub vasp\_jsub\_rlx

Step 2: Test MAE

maelas -m -i POSCAR rlx -k 70 -s1 1 0 0 -s2 0 0 1

./vasp\_mae

./vasp\_mae\_cp\_oszicar

**Step 3:** Generate VASP inputs for calculation of magnetostriction coefficients

maelas -g -i POSCAR\_rlx -k 70 -n 7 -s 0.1

Step 4: Run VASP calculations

./vasp\_maelas

./vasp\_cp\_oszicar

**Step 5:** Derivation of anisotropic magnetostriction coefficients

maelas -d -i POSCAR rlx -n 7

**Step 5:** Derivation of anisotropic magnetostriction coefficients and magnetoelastic constants

maelas -d -i POSCAR\_rlx -n 7 -b -e ELADAT

See all optional arguments: maelas -h



#### Using MAELAS with other DFT codes instead of VASP

MAELAS has been designed to read and write files for VASP code automatically. However, it is possible to use MAELAS with other DFT codes instead of VASP, after file conversion to VASP format files. Although, this process might require some extra work for the user. Namely, converting initial and distorted POSCAR files into the other DFT code format, reading the spin direction of each state from INCAR\_A\_C files (variable SAXIS) and write the calculated energies in a OSZICAR-like file (called OSZICAR\_A\_B\_C) on the penultimate line and third column with same format as in VASP (this is the place where MAELAS reads the energy value of each OSZICAR\_A\_B\_C file). For instance, in the following OSZICAR-like file, one should write the calculated energy value at "\*\*Energy\_DFT\_code\*\*":

|      | N  | E                   | dE              | d eps ncg          | rms       | rms(c) |        |
|------|----|---------------------|-----------------|--------------------|-----------|--------|--------|
| DAV: | 1  | -0.219086777516E+02 | -0.21909E+02    | 0.99185E+02*****   | 0.709E+00 |        |        |
| DAV: | 2  | -0.219092777733E+02 | -0.60002E-03    | -0.60002E-03*****  | 0.452E-01 |        |        |
| DAV: | 3  | -0.219092846144E+02 | -0.684115-05    | -0.68405E-05*****  | 0.485E-02 |        |        |
| DAV: | 4  | -0.219092847670E+02 | -0.15258E-06    | -0.15274E-06*****  | 0.641E-03 |        |        |
| DAV: | 5  | -0.219092847725E+02 | 0.55161E-08     | -0.52995E-08*****  | 0.117E-03 |        |        |
| DAV: | 6  | **Energy DFT code** | -0.19827E-09    | -0.11530E-09868760 | 0.143E-04 |        |        |
| 1    | F= | 21909285E+02 E0=219 | 09330E+02 d E = | =0.135168E-03 mag= | 0.0000    | 0.0000 | 2.5077 |

### **Crystal systems supported by MAELAS v1.0**

Table 1: Number of independent second-order elastic constants of each crystal system. Number of independent magnetoelastic and magnetostriction coefficients up to second-order of the direction cosine polynomial in the first-order magnetoelastic energy. In the last column we specify which crystal systems are supported by the current version of MAELAS.

| Crystal system  | Point groups                 | Space<br>groups | Elastic constants $(c_{ij})$ | Magnetoelastic constants (b) | Magnetostriction coefficients $(\lambda)$ | MAELAS |
|-----------------|------------------------------|-----------------|------------------------------|------------------------------|-------------------------------------------|--------|
| Triclinic       | $1, \overline{1}$            | 1-2             | 21                           | 36                           | 36                                        | No     |
| Monoclinic      | 2, m, 2/m                    | 3 - 15          | 13                           | 20                           | 20                                        | No     |
| Orthorhombic    | 222,2mm,mmm                  | 16 - 74         | 9                            | 12                           | 12                                        | Yes    |
| Tetragonal (II) | $4, \bar{4}, 4/m$            | 75 - 88         | 7                            | 10                           | 10                                        | No     |
| Tetragonal (I)  | $4mm, 422, \bar{4}2m, 4/mmm$ | 89 - 142        | 6                            | 7                            | 7                                         | Yes    |
| Trigonal (II)   | $3,\bar{3}$                  | 143 - 148       | 7                            | 12                           | 12                                        | No     |
| Trigonal (I)    | $32,3m,\bar{3}m$             | 149 - 167       | 6                            | 8                            | 8                                         | Yes    |
| Hexagonal(II)   | $6,\bar{6},6/m$              | 168 - 176       | 5                            | 8                            | 8                                         | No     |
| Hexagonal (I)   | $6mm, 622, \bar{6}2m, 6/mmm$ | 177 - 194       | 5                            | 6                            | 6                                         | Yes    |
| Cubic (II)      | $23, m\bar{3}$               | 195 - 206       | 3                            | 4                            | 4                                         | No     |
| Cubic (I)       | $432,\bar{4}3m,m\bar{3}m$    | 207 - 230       | 3                            | 3                            | 3                                         | Yes    |

The crystal systems not supported by MAELAS might be included in the new versions of the code



### Methodology

$$\begin{split} \frac{\Delta l}{l_0} \bigg|_{\pmb{\beta}^i}^{\pmb{\alpha}_1^i} - \frac{\Delta l}{l_0} \bigg|_{\pmb{\beta}^i}^{\pmb{\alpha}_2^i} &= \eta^i \lambda^i \\ \frac{\Delta l}{l_0} \bigg|_{\pmb{\beta}^i}^{\pmb{\alpha}_1^i} - \frac{\Delta l}{l_0} \bigg|_{\pmb{\beta}^i}^{\pmb{\alpha}_2^i} &= \frac{l_1 - l_0}{l_0} - \frac{l_2 - l_0}{l_0} = \frac{2(l_1 - l_2)}{(l_1 + l_2) \left[1 - \frac{l_1 + l_2 - 2l_0}{l_1 + l_2}\right]} \\ &= \frac{2(l_1 - l_2)}{l_1 + l_2} \left[1 + \frac{l_1 + l_2 - 2l_0}{l_1 + l_2} + \dots\right] \approx \frac{2(l_1 - l_2)}{l_1 + l_2} \end{split}$$

 $\lambda^{i} = \frac{2(l_1 - l_2)}{\eta^{i}(l_1 + l_2)}$ 

Fitting to a quadratic function

$$E(l) \begin{vmatrix} \alpha_j \\ \beta \end{vmatrix} = A_j l^2 + B_j l + C_j, \quad j = 1, 2$$

Minimum:  $l_{1(2)} = -B_{1(2)}/(2A_{1(2)})$ 



Cell length along  $\beta = \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ 

Table 2: Implemented distortion ( $\beta$ ) and spin directions ( $\alpha_1$ ,  $\alpha_2$ ) in MAELAS to calculate the anisotropic magnetostriction coefficients according to Eq.30. The second column presents the equation of the relative length change that we used in Eq.30 for each crystal system. In the last column we show the value of parameter  $\eta$  that is defined in Eq.30. The symbols a,b,c correspond to the lattice parameters of the relaxed (not distorted) unit cell.

| Crystal system | $\frac{\Delta l}{l_0}$ | Magnetostriction<br>coefficient | β                                                                         | $\alpha_1$                                                                | $\alpha_2$                                                | <u>η</u>                                                                      |
|----------------|------------------------|---------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|
| Cubic (I)      | Eq.10                  | λ <sub>001</sub>                | (0,0,1)                                                                   | (0,0,1)                                                                   | (1,0,0)                                                   | 3/2                                                                           |
|                |                        | $\lambda_{111}$                 | $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ | $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ | $\left(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}}\right)$   | $\frac{\overline{2}}{3}$                                                      |
| Hexagonal (I)  | Eq.16                  | $\lambda^{\alpha 1,2}$          | (1,0,0)                                                                   | $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$  | 1/3                                                                           |
|                | _                      | λα2,2                           | (0,0,1)                                                                   | (0,0,1)                                                                   | (1,0,0)                                                   | 1                                                                             |
|                |                        | $\lambda^{\gamma,2}$            | (1,0,0)                                                                   | (1,0,0)                                                                   | (0,1,0)                                                   | 1                                                                             |
|                |                        | $\lambda^{\epsilon,2}$          | $\frac{(a,0,c)}{\sqrt{a^2+c^2}}$                                          | $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$                  | $\left(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$ | $\frac{2ac}{a^2+c^2}$                                                         |
| Trigonal (I)   | Eq.20                  | $\lambda^{\alpha 1,2}$          | (1,0,0)                                                                   | (0,0,1)                                                                   | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$  | 1                                                                             |
|                |                        | $\lambda^{\alpha 2,2}$          | (0,0,1)                                                                   | (0,0,1)                                                                   | (1,0,0)                                                   | 1                                                                             |
|                |                        | $\lambda^{\gamma,1}$            | (1,0,0)                                                                   | (1,0,0)                                                                   | (0,1,0)                                                   | 1                                                                             |
|                |                        | $\lambda^{\gamma,2}$            | $\frac{(a,0,c)}{\sqrt{a^2+c^2}}$                                          | $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$                  | $\left(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}}\right)$   | $\frac{ac}{a^2+c^2}$                                                          |
|                |                        | $\lambda_{12}$                  | $\frac{(a,0,c)}{\sqrt{a^2+c^2}}$                                          | $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$                  | $(0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})$            | $\frac{a^2}{2(a^2+c^2)}$                                                      |
|                |                        | $\lambda_{21}$                  | $\frac{(a,0,c)}{\sqrt{a^2+c^2}}$                                          | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$                  | $\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right)$ | $\frac{ac}{a^2+c^2}$                                                          |
| Tetragonal (I) | Eq.24                  | $\lambda^{\alpha 1,2}$          | (1,0,0)                                                                   | $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$  | 1/3                                                                           |
|                |                        | $\lambda^{\alpha 2,2}$          | (0,0,1)                                                                   | (0,0,1)                                                                   | (1,0,0)                                                   | 1                                                                             |
|                |                        | $\lambda^{\gamma,2}$            | (1,0,0)                                                                   | (1,0,0)                                                                   | (0,1,0)                                                   | 1                                                                             |
|                |                        | $\lambda^{\epsilon,2}$          | $\frac{(a,0,c)}{\sqrt{a^2+c^2}}$                                          | $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$                  | $\left(\frac{-1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$   | $\frac{2ac}{a^2+c^2}$                                                         |
|                |                        | $\lambda^{\delta,2}$            | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$                  | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$                  | $\left(\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$   | 1                                                                             |
| Orthorhombic   | Eq.27                  | $\lambda_1$                     | (1,0,0)                                                                   | (1,0,0)                                                                   | (0,0,1)                                                   | 1                                                                             |
|                |                        | $\lambda_2$                     | (1,0,0)                                                                   | (0,1,0)                                                                   | (0,0,1)                                                   | 1                                                                             |
|                |                        | $\lambda_3$                     | (0,1,0)                                                                   | (1,0,0)                                                                   | (0,0,1)                                                   | 1                                                                             |
|                |                        | $\lambda_4$                     | (0,1,0)                                                                   | (0,1,0)                                                                   | (0,0,1)                                                   | 1                                                                             |
|                |                        | $\lambda_5$                     | (0,0,1)                                                                   | (1,0,0)                                                                   | (0,0,1)                                                   | 1                                                                             |
|                |                        | $\lambda_6$                     | (0,0,1)<br>(a,b,0)                                                        | (0,1,0)                                                                   | (0,0,1)                                                   | $\frac{1}{(a-b)(a[\lambda_1+\lambda_2]-b[\lambda_3+\lambda_4])+4ab\lambda_7}$ |
|                |                        | $\lambda_7$                     | $\frac{(a,\nu,0)}{\sqrt{a^2+b^2}}$                                        | $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$                  | (0,0,1)                                                   | $2(a^2+b^2)\lambda_7$                                                         |
|                |                        | $\lambda_8$                     | $\frac{(a,0,c)}{\sqrt{a^2+c^2}}$                                          | $\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$                    | (0,0,1)                                                   | $\frac{(a-c)(a\lambda_1-c\lambda_5)+4ac\lambda_8}{2(a^2+c^2)\lambda_8}$       |
|                |                        | λ9                              | $\frac{(0,b,c)}{\sqrt{b^2+c^2}}$                                          | $(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$                             | (0,0,1)                                                   | $\frac{(b-c)(b\lambda_4-c\lambda_6)+4bc\lambda_9}{2(b^2+c^2)\lambda_9}$       |

CUBIC (I)

SG 207-230

### Cubic (I)

### Workflow

### Elastic energy

$$E_{el}^{cub} = \frac{c_{11}}{2} (\varepsilon_{xx}^2 + \varepsilon_{yy}^2 + \varepsilon_{zz}^2) + c_{12} (\varepsilon_{xx} \varepsilon_{yy} + \varepsilon_{xx} \varepsilon_{zz} + \varepsilon_{yy} \varepsilon_{zz}) + \frac{c_{44}}{2} (\varepsilon_{xy}^2 + \varepsilon_{yz}^2 + \varepsilon_{xz}^2)$$













 $+b_2(\alpha_x\alpha_y\epsilon_{xy}+\alpha_x\alpha_z\epsilon_{xz}+\alpha_y\alpha_z\epsilon_{yz})$ 



$$E_{me}^{cub(I)} = b_0(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + b_1(\alpha_x^2 \varepsilon_{xx} + \alpha_y^2 \varepsilon_{yy} + \alpha_z^2 \varepsilon_{zz})$$

$$\lambda^{\alpha} = \frac{-b_0 - \frac{1}{3}b_1}{c_{11} + 2c_{12}},$$

$$\lambda_{001} = \frac{-2b_1}{3(c_{11} - c_{12})},$$

$$-b_2$$

$$\lambda_{111} = \frac{-b_2}{3c_{44}}$$

 $\frac{\Delta l}{l_0} \bigg|_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}} = \lambda^{\alpha} + \frac{3}{2} \lambda_{001} \left( \alpha_x^2 \beta_x^2 + \alpha_y^2 \beta_y^2 + \alpha_z^2 \beta_z^2 - \frac{1}{3} \right)$ 

 $+3\lambda_{111}(\alpha_x\alpha_y\beta_x\beta_y+\alpha_y\alpha_z\beta_y\beta_z+\alpha_x\alpha_z\beta_x\beta_z)$ 

$$\frac{\Delta l}{l_0} \Big|_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}} = \lambda^{\alpha} + \frac{3}{2} \lambda_{001} \left( \alpha_x^2 \beta_x^2 + \alpha_y^2 \beta_y^2 + \alpha_z^2 \beta_z^2 - \frac{1}{3} \right) + 3 \lambda_{111} (\alpha_x \alpha_y \beta_x \beta_y + \alpha_y \alpha_z \beta_y \beta_z + \alpha_x \alpha_z \beta_x \beta_z)$$

space group: 201-230

POSCAR 1 X (N POSCAR: Distortion along [0,0,1])

INCAR std (1 INCAR: collinear w/o SOC)

INCAR 1 1 (1 INCAR: non-collinear with SOC, SPIN=[0,0,1])

INCAR 1 2 (1 INCAR: non-collinear with SOC, SPIN=[1,0,0])

OSZICAR\_1\_X\_1 OSZICAR\_1\_X\_2

Cubic (I)

 $\lambda_{111}$ 

 $\lambda_{001}$ 

POSCAR 2 X (N POSCAR: Distortion along [1,1,1])

INCAR\_std (1 INCAR: collinear w/o SOC)

INCAR 2 1 (1 INCAR: non-collinear with SOC, SPIN=[1,1,1])

INCAR 2 2 (1 INCAR: non-collinear with SOC, SPIN=[1,0,-1])

OSZICAR\_2\_X\_1

OSZICAR\_2\_X\_2

Symmetry **POSCAR** analysis

Volume-conserving transformations (determinant of transformation matrix = 1)





$$\underline{\boldsymbol{\varepsilon}}\Big|_{\boldsymbol{\beta}=(0,0,1)}^{\lambda_{001}} = \begin{pmatrix} \frac{1}{\sqrt{1+\epsilon}} & 0 & 0\\ 0 & \frac{1}{\sqrt{1+\epsilon}} & 0\\ 0 & 0 & 1+\epsilon \end{pmatrix}, \quad \underline{\boldsymbol{\varepsilon}}\Big|_{\boldsymbol{\beta}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)}^{\lambda_{111}} = \zeta\begin{pmatrix} 1 & \frac{\epsilon}{2} & \frac{\epsilon}{2}\\ \frac{\epsilon}{2} & 1 & \frac{\epsilon}{2}\\ \frac{\epsilon}{2} & \frac{\epsilon}{2} & 1 \end{pmatrix}$$

$$\zeta = \sqrt[3]{4/(4-3\varepsilon^2+\varepsilon^3)}$$



cell length along B

Minimum: 
$$l_{1(2)} = -B_{1(2)}/(2A_{1(2)})$$



Polycrystal: 
$$\lambda_S = \frac{2}{5}\lambda_{100} + \frac{3}{5}\lambda_{11}$$

The maximum value of  $\varepsilon$  is set with tag-s

# HEXAGONAL (I)

SG 177-194

## Workflow

### Elastic energy

$$E_{el}^{hex} = \frac{1}{2}c_{11}(\varepsilon_{xx}^2 + \varepsilon_{yy}^2) + c_{12}\varepsilon_{xx}\varepsilon_{yy} + c_{13}(\varepsilon_{xx} + \varepsilon_{yy})\varepsilon_{zz} + \frac{1}{2}c_{33}\varepsilon_{zz}^2 + \frac{1}{2}c_{44}(\varepsilon_{yz}^2 + \varepsilon_{xz}^2) + \frac{1}{4}(c_{11} - c_{12})\varepsilon_{xy}^2.$$



### Magnetoelastic energy

$$\begin{split} E_{me}^{hex(I)} &= b_{11}(\varepsilon_{xx} + \varepsilon_{yy}) + b_{12}\varepsilon_{zz} + b_{21}\left(\alpha_z^2 - \frac{1}{3}\right)(\varepsilon_{xx} + \varepsilon_{yy}) + b_{22}\left(\alpha_z^2 - \frac{1}{3}\right)\varepsilon_{zz} \\ &+ \frac{1}{2}b_3[(\alpha_x^2 - \alpha_y^2)(\varepsilon_{xx} - \varepsilon_{yy}) + 2\alpha_x\alpha_y\varepsilon_{xy}] + b_4(\alpha_x\alpha_z\varepsilon_{xz} + \alpha_y\alpha_z\varepsilon_{yz}). \end{split}$$

$$\begin{split} \frac{\Delta l}{l_0} \bigg|_{\pmb{\beta}}^{\pmb{\alpha}} &= \lambda^{\alpha 1,0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2,0} \beta_z^2 + \lambda^{\alpha 1,2} \left( \alpha_z^2 - \frac{1}{3} \right) (\beta_x^2 + \beta_y^2) \\ &+ \lambda^{\alpha 2,2} \left( \alpha_z^2 - \frac{1}{3} \right) \beta_z^2 + \lambda^{\gamma,2} \left[ \frac{1}{2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + 2 \alpha_x \alpha_y \beta_x \beta_y \right] \\ &+ 2 \lambda^{\varepsilon,2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z), \end{split}$$

$$\lambda^{\alpha 1,0} = \frac{b_{11}c_{33} + b_{12}c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 2,0} = \frac{2b_{11}c_{33} - b_{12}(c_{11} + c_{22})}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 1,2} = \frac{-b_{21}c_{33} + b_{22}c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 2,2} = \frac{2b_{21}c_{33} - b_{22}(c_{11} + c_{22})}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\gamma,2} = \frac{-b_3}{c_{11} - c_{12}},$$

$$\lambda^{\epsilon,2} = \frac{-b_4}{2c_{44}}.$$



## Distorted states



$$|\boldsymbol{\alpha}| = 1, |\boldsymbol{\beta}| = 1$$

strain along x-axis:  $\beta = (1,0,0)$ 

$$\underline{\boldsymbol{\varepsilon}}\Big|_{\boldsymbol{\beta}=(1,0,0)}^{\boldsymbol{\lambda}^{\alpha 1,2}} = \begin{pmatrix} 1+\boldsymbol{\varepsilon} & 0 & 0\\ 0 & \frac{1}{\sqrt{1+\boldsymbol{\varepsilon}}} & 0\\ 0 & 0 & \frac{1}{\sqrt{1+\boldsymbol{\varepsilon}}} \end{pmatrix}$$

$$\lambda^{\alpha 1,2}$$



volume-conserving





A= $\begin{pmatrix} a1\\b1 \end{pmatrix}$ 

## Distorted states



$$|\boldsymbol{\alpha}| = 1, |\boldsymbol{\beta}| = 1$$

strain along z-axis:  $\beta = (0,0,1)$ 

$$\mathbf{\underline{\varepsilon}}\Big|_{\mathbf{\beta}=(0,0,1)}^{\mathbf{\lambda}^{\alpha2,2}} = \begin{pmatrix} \frac{1}{\sqrt{1+\epsilon}} & 0 & 0\\ 0 & \frac{1}{\sqrt{1+\epsilon}} & 0\\ 0 & 0 & 1+\epsilon \end{pmatrix}$$



volume-conserving

 $\lambda^{\alpha 2,2}$ 





S=(1,0,0)

 $A = \begin{pmatrix} a1 \\ b1 \\ 0 \end{pmatrix}$ 

$$A = \begin{pmatrix} a1 & 0 & 0 \\ b1 & b2 & 0 \\ 0 & 0 & c3 \end{pmatrix}$$

## Distorted states



$$|\boldsymbol{\alpha}| = 1, |\boldsymbol{\beta}| = 1$$

$$\mathbf{\underline{\varepsilon}}\Big|_{\mathbf{\beta}=(1,0,0)}^{\lambda^{\gamma,2}} = \begin{pmatrix} 1+\varepsilon & 0 & 0\\ 0 & \frac{1}{\sqrt{1+\varepsilon}} & 0\\ 0 & 0 & \frac{1}{\sqrt{1+\varepsilon}} \end{pmatrix}$$

volume-conserving











## Distorted states



$$|\boldsymbol{\alpha}| = 1, |\boldsymbol{\beta}| = 1$$

shear along xz:  $\beta = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$ 

a and c are the lattice parameters of the relaxed (not distorted) unit cell.

$$\underline{\underline{\boldsymbol{\varepsilon}}}\Big|_{\boldsymbol{\beta}=\frac{(a,0,c)}{\sqrt{a^2+c^2}}}^{\boldsymbol{\lambda}^{\boldsymbol{\varepsilon},2}} = \boldsymbol{\omega} \begin{pmatrix} 1 & 0 & \frac{\boldsymbol{\varepsilon}c}{2a} \\ 0 & 1 & 0 \\ \frac{\boldsymbol{\varepsilon}a}{2c} & 0 & 1 \end{pmatrix}$$



 $\lambda^{\varepsilon,2}$ 



S=(1,0,1)





$$A = \begin{pmatrix} a1 & 0 & 0 \\ b1 & b2 & 0 \\ 0 & 0 & c3 \end{pmatrix}$$

## Relation between different notations



Clark

Callen  $\lambda_{11}^{\alpha} = 2\lambda_1^{\alpha,0} + \lambda_2^{\alpha,0} + 2\lambda_1^{\alpha,2} + \lambda_2^{\alpha,2}$  $(\sqrt{3}/2)\lambda_{12}^{\alpha}=2\lambda_{1}^{\alpha,2}+\lambda_{2}^{\alpha,2}$  $2\lambda_{21}^{\alpha} = -\lambda_1^{\alpha,0} + \lambda_2^{\alpha,0}$  $\sqrt{3}\lambda_{22}^{\alpha} = -\lambda_1^{\alpha,2} + \lambda_2^{\alpha,2}$ .  $\lambda \gamma = \lambda \gamma^2$ 

The calculated magnetostriction coefficients are written in Clark, Mason, Birss and Callen notation in MAELAS code

**MAELAS** notation

# TRIGONAL (I)

SG 149-167

### Trigonal (I)

## Workflow

### Elastic energy

$$\begin{split} E_{el}^{trig(I)} &= \frac{1}{2}c_{11}(\varepsilon_{xx}^2 + \varepsilon_{yy}^2) + c_{12}\varepsilon_{xx}\varepsilon_{yy} + c_{13}(\varepsilon_{xx} + \varepsilon_{yy})\varepsilon_{zz} + \frac{1}{2}c_{33}\varepsilon_{zz}^2 \\ &\quad + \frac{1}{2}c_{44}(\varepsilon_{xz}^2 + \varepsilon_{yz}^2) + \frac{1}{4}(c_{11} - c_{12})\varepsilon_{xy}^2 + c_{14}(\varepsilon_{xy}\varepsilon_{xz} + \varepsilon_{xx}\varepsilon_{yz} - \varepsilon_{yy}\varepsilon_{yz}) \end{split}$$



### Magnetoelastic energy

$$\begin{split} E_{me}^{trig(I)} &= b_{11}(\varepsilon_{xx} + \varepsilon_{yy}) + b_{12}\varepsilon_{zz} + b_{21}\left(\alpha_z^2 - \frac{1}{3}\right)(\varepsilon_{xx} + \varepsilon_{yy}) + b_{22}\left(\alpha_z^2 - \frac{1}{3}\right)\varepsilon_{zz} \\ &+ \frac{1}{2}b_3[(\alpha_x^2 - \alpha_y^2)(\varepsilon_{xx} - \varepsilon_{yy}) + 2\alpha_x\alpha_y] + b_4(\alpha_x\alpha_z\varepsilon_{xz} + \alpha_y\alpha_z\varepsilon_{yz}) \\ &+ b_{14}\left[\frac{1}{2}(\alpha_x^2 - \alpha_y^2)\varepsilon_{yz} + \alpha_x\alpha_y\varepsilon_{xz}\right] + b_{34}\left[\frac{1}{2}\alpha_y\alpha_z(\varepsilon_{xx} - \varepsilon_{yy}) + \alpha_x\alpha_z\varepsilon_{xy}\right]. \end{split}$$

$$\begin{split} \frac{\Delta l}{l_0} \bigg|_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}} &= \lambda^{\alpha 1,0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2,0} \beta_z^2 + \lambda^{\alpha 1,2} \left( \alpha_z^2 - \frac{1}{3} \right) (\beta_x^2 + \beta_y^2) \\ &+ \lambda^{\alpha 2,2} \left( \alpha_z^2 - \frac{1}{3} \right) \beta_z^2 + \lambda^{\gamma,1} \left[ \frac{1}{2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \alpha_x \alpha_y \beta_x \beta_y \right] \\ &+ \lambda^{\gamma,2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z) + \lambda_{12} \left[ \frac{1}{2} \alpha_y \alpha_z (\beta_x^2 - \beta_y^2) + \alpha_x \alpha_z \beta_x \beta_y \right] \\ &+ \lambda_{21} \left[ \frac{1}{2} (\alpha_x^2 - \alpha_y^2) \beta_y \beta_z + \alpha_x \alpha_y \beta_x \beta_z \right], \end{split}$$

$$\lambda^{\alpha 1,0} = \frac{b_{11}c_{33} + b_{12}c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 2,0} = \frac{2b_{11}c_{33} - b_{12}(c_{11} + c_{22})}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 1,2} = \frac{-b_{21}c_{33} + b_{22}c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 2,2} = \frac{2b_{21}c_{33} - b_{22}(c_{11} + c_{22})}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\gamma,1} = \frac{c_{14}b_{14} - c_{44}b_{3}}{\frac{1}{2}c_{44}(c_{11} - c_{12}) - c_{14}^2},$$

$$\lambda^{\gamma,2} = \frac{\frac{1}{2}b_{4}(c_{11} - c_{12}) - b_{34}c_{14}}{\frac{1}{2}c_{44}(c_{11} - c_{12}) - c_{14}^2},$$

$$\lambda_{12} = \frac{c_{14}b_{4} - c_{44}b_{34}}{\frac{1}{2}c_{44}(c_{11} - c_{12}) - c_{14}^2},$$

$$\lambda_{21} = \frac{\frac{1}{2}b_{14}(c_{11} - c_{12}) - b_{3}c_{14}}{\frac{1}{2}c_{44}(c_{11} - c_{12}) - c_{14}^2}.$$



# TETRAGONAL (I)

SG 89-142

### Tetragonal (I)

### Elastic energy

$$E_{el}^{tet} = \frac{1}{2}c_{11}(\varepsilon_{xx}^2 + \varepsilon_{yy}^2) + c_{12}\varepsilon_{xx}\varepsilon_{yy} + c_{13}(\varepsilon_{xx} + \varepsilon_{yy})\varepsilon_{zz} + \frac{1}{2}c_{33}\varepsilon_{zz}^2 + \frac{1}{2}c_{44}(\varepsilon_{xz}^2 + \varepsilon_{yz}^2) + \frac{1}{2}c_{66}\varepsilon_{xy}^2.$$



### Magnetoelastic energy

$$\begin{split} E^{tet(I)}_{me} &= b_{11}(\varepsilon_{xx} + \varepsilon_{yy}) + b_{12}\varepsilon_{zz} + b_{21}\left(\alpha_z^2 - \frac{1}{3}\right)(\varepsilon_{xx} + \varepsilon_{yy}) + b_{22}\left(\alpha_z^2 - \frac{1}{3}\right)\varepsilon_{zz} \\ &+ \frac{1}{2}b_3(\alpha_x^2 - \alpha_y^2)(\varepsilon_{xx} - \varepsilon_{yy}) + b_3'\alpha_x\alpha_y\varepsilon_{xy} + b_4(\alpha_x\alpha_z\varepsilon_{xz} + \alpha_y\alpha_z\varepsilon_{yz}). \end{split}$$



$$\begin{split} \frac{\Delta l}{l_0} \Bigg|_{\pmb{\beta}}^{\pmb{\alpha}} &= \lambda^{\alpha 1,0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2,0} \beta_z^2 + \lambda^{\alpha 1,2} \left( \alpha_z^2 - \frac{1}{3} \right) (\beta_x^2 + \beta_y^2) \\ &+ \lambda^{\alpha 2,2} \left( \alpha_z^2 - \frac{1}{3} \right) \beta_z^2 + \frac{1}{2} \lambda^{\gamma,2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + 2 \lambda^{\delta,2} \alpha_x \alpha_y \beta_x \beta_y \\ &+ 2 \lambda^{\varepsilon,2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z), \end{split}$$

$$\lambda^{\alpha 1,0} = \frac{b_{11}c_{33} + b_{12}c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 2,0} = \frac{2b_{11}c_{33} - b_{12}(c_{11} + c_{22})}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 1,2} = \frac{-b_{21}c_{33} + b_{22}c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\alpha 2,2} = \frac{2b_{21}c_{33} - b_{22}(c_{11} + c_{22})}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},$$

$$\lambda^{\gamma,2} = \frac{-b_3}{c_{11} - c_{12}},$$

$$\lambda^{\delta,2} = \frac{-b_3'}{2c_{66}},$$

$$\lambda^{\varepsilon,2} = \frac{-b_4'}{2c_{44}}.$$



Space group: 75-142

Tetragonal





OSZICAR\_5\_X\_1

OSZICAR\_5\_X\_2

POS\_5\_X (N POSCAR: Distortion along [1,1,0])  $\lambda^{\delta,2}$ 

INCAR\_std (1 INCAR: collinear w/o SOC)

INCAR\_5\_1 (1 INCAR: non-collinear with SOC, SPIN=[1,1,0]) INCAR\_5\_2 (1 INCAR: non-collinear with SOC, SPIN=[-1,1,0])



**POSCAR** 



Symmetry

analysis





## Relation between different notations

### Tetragonal (I)

Cullen

$$\begin{split} \frac{\Delta l}{l_0} \Bigg|_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}} &= \lambda^{\alpha 1,0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2,0} \beta_z^2 + \lambda^{\alpha 1,2} \left( \alpha_z^2 - \frac{1}{3} \right) (\beta_x^2 + \beta_y^2) \\ &+ \lambda^{\alpha 2,2} \left( \alpha_z^2 - \frac{1}{3} \right) \beta_z^2 + \frac{1}{2} \lambda^{\gamma,2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + 2 \lambda^{\delta,2} \alpha_x \alpha_y \beta_x \beta_y \\ &+ 2 \lambda^{\epsilon,2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z), \end{split}$$



$$\begin{split} \frac{\Delta l}{l_0} \Bigg|_{\pmb{\beta}}^{\pmb{\alpha}} &= \lambda_{Mason}^{\alpha 1,0} (\beta_x^2 + \beta_y^2) + \lambda_{Mason}^{\alpha 2,0} \beta_z^2 + \frac{1}{2} \lambda_1 [(\alpha_x \beta_x - \alpha_y \beta_y)^2 - (\alpha_x \beta_y + \alpha_y \beta_x)^2 \\ &+ (1 - \beta_z^2) (1 - \alpha_z^2) - 2 \alpha_z \beta_z (\alpha_x \beta_x + \alpha_y \beta_y)] + 4 \lambda_2 \alpha_z \beta_z (\alpha_x \beta_x + \alpha_y \beta_y) \\ &+ 4 \lambda_3 \alpha_x \alpha_y \beta_x \beta_y + \lambda_4 [\beta_z^2 (1 - \alpha_z^2) - \alpha_z \beta_z (\alpha_x \beta_x + \alpha_y \beta_y)] \\ &+ \frac{1}{2} \lambda_5 [(\alpha_x \beta_y - \alpha_y \beta_x)^2 - (\alpha_x \beta_x + \alpha_y \beta_y)^2 + (1 - \beta_z^2) (1 - \alpha_z^2)]. \end{split}$$

$$\begin{split} \lambda_{Mason}^{\alpha 1,0} &= \lambda^{\alpha 1,0} + \frac{2}{3} \lambda^{\alpha 1,2} \\ \lambda_{Mason}^{\alpha 2,0} &= \lambda^{\alpha 2,0} + \frac{2}{3} \lambda^{\alpha 2,2} \\ \lambda_{1} &= -\lambda^{\alpha 1,2} + \frac{1}{2} \lambda^{\gamma,2} \\ \lambda_{2} &= \frac{1}{2} \lambda^{\epsilon,2} - \frac{1}{4} \lambda^{\alpha 2,2} - \frac{1}{4} \lambda^{\alpha 1,2} + \frac{1}{8} \lambda^{\gamma,2} \\ \lambda_{3} &= \frac{1}{2} \lambda^{\delta,2} - \lambda^{\alpha 1,2} \\ \lambda_{4} &= -\lambda^{\alpha 2,2} \\ \lambda_{5} &= -\lambda^{\alpha 1,2} - \frac{1}{2} \lambda^{\gamma,2}. \end{split}$$

## ORTHORHOMBIC

SG 16-74

#### Orthorhombic

### Workflow

### Elastic energy

$$\begin{split} E_{el}^{ortho} &= \frac{1}{2} c_{11} \varepsilon_{xx}^2 + \frac{1}{2} c_{22} \varepsilon_{yy}^2 + c_{12} \varepsilon_{xx} \varepsilon_{yy} + c_{13} \varepsilon_{xx} \varepsilon_{zz} + c_{23} \varepsilon_{yy} \varepsilon_{zz} + \frac{1}{2} c_{33} \varepsilon_{zz}^2 \\ &\quad + \frac{1}{2} c_{44} \varepsilon_{yz}^2 + \frac{1}{2} c_{55} \varepsilon_{xz}^2 + \frac{1}{2} c_{66} \varepsilon_{xy}^2. \end{split}$$



### Magnetoelastic energy

$$\begin{split} E_{me}^{ortho} &= b_{01}\varepsilon_{xx} + b_{02}\varepsilon_{yy} + b_{03}\varepsilon_{zz} + b_{1}\alpha_{x}^{2}\varepsilon_{xx} + b_{2}\alpha_{y}^{2}\varepsilon_{xx} + b_{3}\alpha_{x}^{2}\varepsilon_{yy} + b_{4}\alpha_{y}^{2}\varepsilon_{yy} \\ &+ b_{5}\alpha_{x}^{2}\varepsilon_{zz} + b_{6}\alpha_{y}^{2}\varepsilon_{zz} + b_{7}\alpha_{x}\alpha_{y}\varepsilon_{xy} + b_{8}\alpha_{x}\alpha_{z}\varepsilon_{xz} + b_{9}\alpha_{y}\alpha_{z}\varepsilon_{yz}, \end{split}$$

$$\begin{split} \frac{\Delta l}{l_0} \bigg|_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}} &= \lambda^{\alpha 1,0} \beta_x^2 + \lambda^{\alpha 2,0} \beta_y^2 + \lambda^{\alpha 3,0} \beta_z^2 + \lambda_1 (\alpha_x^2 \beta_x^2 - \alpha_x \alpha_y \beta_x \beta_y - \alpha_x \alpha_z \beta_x \beta_z) \\ &+ \lambda_2 (\alpha_y^2 \beta_x^2 - \alpha_x \alpha_y \beta_x \beta_y) + \lambda_3 (\alpha_x^2 \beta_y^2 - \alpha_x \alpha_y \beta_x \beta_y) \\ &+ \lambda_4 (\alpha_y^2 \beta_y^2 - \alpha_x \alpha_y \beta_x \beta_y - \alpha_y \alpha_z \beta_y \beta_z) + \lambda_5 (\alpha_x^2 \beta_z^2 - \alpha_x \alpha_z \beta_x \beta_z) \\ &+ \lambda_6 (\alpha_y^2 \beta_z^2 - \alpha_y \alpha_z \beta_y \beta_z) + 4\lambda_7 \alpha_x \alpha_y \beta_x \beta_y + 4\lambda_8 \alpha_x \alpha_z \beta_x \beta_z + 4\lambda_9 \alpha_y \alpha_z \beta_y \beta_z. \end{split}$$

$$b_{01} = -c_{11}\lambda^{\alpha 1,0} - c_{12}\lambda^{\alpha 2,0} - c_{13}\lambda^{\alpha 3,0}$$

$$b_{02} = -c_{12}\lambda^{\alpha 1,0} - c_{22}\lambda^{\alpha 2,0} - c_{23}\lambda^{\alpha 3,0}$$

$$b_{03} = -c_{13}\lambda^{\alpha 1,0} - c_{23}\lambda^{\alpha 2,0} - c_{33}\lambda^{\alpha 3,0}$$

$$b_{1} = -c_{11}\lambda_{1} - c_{12}\lambda_{3} - c_{13}\lambda_{5}$$

$$b_{2} = -c_{11}\lambda_{2} - c_{12}\lambda_{4} - c_{13}\lambda_{6}$$

$$b_{3} = -c_{12}\lambda_{1} - c_{22}\lambda_{3} - c_{23}\lambda_{5}$$

$$b_{4} = -c_{12}\lambda_{2} - c_{22}\lambda_{4} - c_{23}\lambda_{6}$$

$$b_{5} = -c_{13}\lambda_{1} - c_{23}\lambda_{3} - c_{33}\lambda_{5}$$

$$b_{6} = -c_{13}\lambda_{2} - c_{23}\lambda_{4} - c_{33}\lambda_{6}$$

$$b_{7} = c_{66}(\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} - 4\lambda_{7})$$

$$b_{8} = c_{55}(\lambda_{1} + \lambda_{5} - 4\lambda_{8})$$

$$b_{9} = c_{44}(\lambda_{4} + \lambda_{6} - 4\lambda_{9}).$$



### **Cubic systems: Itenerant magnets**

R.Q. Wu et al. | Journal of Magnetism and Magnetic Materials 177-181 (1998) 1216-1219

|        | a (a.u.) | σ       | $M_s(\mu_B)$ | $M_L(\mu_B)$ | λ <sub>001</sub> (10 <sup>-6</sup> ) |
|--------|----------|---------|--------------|--------------|--------------------------------------|
| bcc Fe |          |         |              |              |                                      |
| LDA    | 5.20     | -0.409  | 2.05         | 0.048        | 52                                   |
| GGA    | 5.37     | -0.486  | 2.17         | 0.045        | 29                                   |
| EXP    | 5.41     | -0.368  | 2.22         | 0.08         | 21                                   |
| fcc Co |          |         |              |              |                                      |
| LDA    | 6.48     | -0.374  | 1.59         | 0.076        | 92                                   |
| GGA    | 6.67     | -0.396  | 1.66         | 0.073        | 56                                   |
| EXP    | 6.70     |         | 1.72         | 0.12         | 79                                   |
| fee Ni |          |         |              |              |                                      |
| LDA    | 6.46     | -0.332  | 0.62         | 0.049        | -63                                  |
| GGA    | 6.64     | -0.3376 | 0.66         | 0.050        | -56                                  |
| EXP    | 6.66     | -0.376  | 0.57         | 0.05         | -49                                  |

| •                                       | R. C. O'Handley,                                    |                                     | 2 K                                   | Ro                                  | om Temper                                | ature                   |
|-----------------------------------------|-----------------------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|------------------------------------------|-------------------------|
| Modern magnetic materials, Wiley, 2000. |                                                     | $\lambda_{100}(\lambda^{\gamma,2})$ | $\lambda_{111}(\lambda^{\epsilon,2})$ | $\lambda_{100}(\lambda^{\gamma,2})$ | $\lambda_{111}(\lambda^{\varepsilon,2})$ | Polycrystal $\lambda_s$ |
|                                         |                                                     |                                     | 3d Metal                              | s                                   |                                          |                         |
| 1                                       | BCC-Fe                                              | 26                                  | -30                                   | 21                                  | -21                                      | -7                      |
| ]                                       | HCP-Co"                                             | (-150)                              | (45)                                  | (-140)                              | (50)                                     | (-62)                   |
| ]                                       | FCC-Ni                                              | -60                                 | -35                                   | -46                                 | -24                                      | -34                     |
| ]                                       | BCC-FeCo                                            | _                                   | _                                     | 140                                 | 30                                       |                         |
| £                                       | $-Fe_{80}B_{20}$                                    | 48 (isotropic)                      | _                                     | _                                   | _                                        | +32                     |
|                                         | a-Fe <sub>40</sub> Ni <sub>40</sub> B <sub>20</sub> | +20                                 | _                                     | _                                   | _                                        | +14                     |
|                                         | $a-Cos_{80}B_{20}$                                  | -4                                  | _                                     |                                     |                                          | -4                      |



#### **Cubic systems: Itenerant magnets**





G. Engdahl, Handbook of giant magnetostrictive materials, Academic Press, 1999

### **Cubic systems: Rare-Earth magnets**

M. Gibbs, Modern trends in magnetostriction, Springer, 2001.

### C15 cubic Laves phase

|                                       | Theory | Experiment |
|---------------------------------------|--------|------------|
| λ <sub>001</sub> (GdCo <sub>2</sub> ) | -407   | -1200      |
| $\lambda_{111}$ (GdCo <sub>2</sub> )  | 19     | < 10       |
| $\lambda_{001}$ (SmCo <sub>2</sub> )  | -290   |            |
| λ <sub>001</sub> (ErCo <sub>2</sub> ) | -516   | -1000      |
| $\lambda_{001}$ (GdFe <sub>2</sub> )  | 44     | 39         |





Table 16-10. Low-temperature magnetostriction constants for RCo<sub>2</sub> crystals [from Levitin and Markosyan (1990) unless otherwise noted].

| R in $RCo_2$ | $10^6\lambda_{111}$ | $10^6 \lambda_{100}$ | $T_{\rm c}\left({ m K}\right)^{\rm a}$ |
|--------------|---------------------|----------------------|----------------------------------------|
| Gd           | <10-5               | -1200                | 409                                    |
| Tb           | 4500                | -1200 <sup>b</sup>   | 256                                    |
| Dy           | 5000 в, с           | -2000 d              | 159                                    |
|              |                     | -1300°               |                                        |
| Но           | 300, 600°           | -2000                | 85                                     |
| Er           | -2500               | -1000                | 36                                     |
| Tm           | −4100 b             | 750°                 | 18                                     |

Table 1.6. Magnetostriction of Cubic Laves Phase Compounds with Rare Earths at T=0

| Compound          | $\lambda_{111}(10^{-6})$ | $\lambda_{100}(10^{-6})$ | $T_c$ (K |
|-------------------|--------------------------|--------------------------|----------|
| NdAl <sub>2</sub> | _                        | - 700                    | 61       |
| TbAl <sub>2</sub> | - 3000                   | _                        | 114      |
| DyAl <sub>2</sub> | -                        | - 1700                   | 68       |
| TbMn <sub>2</sub> | - 3000                   |                          | 40       |
| TbFe <sub>2</sub> | 4000, 4500               | _                        | 711      |
| DyFe <sub>2</sub> | _                        | - 70                     | 635      |
| HoFe <sub>2</sub> |                          | - 750                    | 612      |
| TmFe <sub>2</sub> | -3500, -2600             | _                        | 610      |
| TbCo <sub>2</sub> | 4400                     | _                        | 256      |
| DyCo <sub>2</sub> | _                        | - 2000                   | 159      |
| HoCo <sub>2</sub> | _                        | - 2200                   | 85       |
| ErCo <sub>2</sub> | - 2500                   | -                        | 36       |
| TbNi <sub>2</sub> | 1500                     | _                        | 45       |
| DyNi <sub>2</sub> | _                        | - 1300                   | 30       |
| HoNi <sub>2</sub> | _                        | - 1000                   | 22       |

Table 1.7. Magnitudes of Single-Crystal Magnetostriction in Rare Earth-Fe<sub>2</sub> Compounds

| Compound          | $\frac{3}{2}\lambda_{111} \ (10^{-6})$ (calculated at 0 K) | $\frac{3}{2}\lambda_{111}~(10^{-6})$ (measured at room temperature) | $T_{\rm e}$ |
|-------------------|------------------------------------------------------------|---------------------------------------------------------------------|-------------|
| SmFe <sub>2</sub> | - 4800                                                     | - 3150                                                              | 676         |
| TbFe <sub>2</sub> | 6600                                                       | 3690                                                                | 697, 711    |
| DyFe <sub>2</sub> | 6300                                                       | 1890                                                                | 635         |
| HoFe <sub>2</sub> | 2400                                                       | 288                                                                 | 606         |
| ErFe <sub>2</sub> | - 2250                                                     | - 450                                                               | 590, 597    |
| TmFe <sub>2</sub> | - 5550                                                     | -315                                                                | 560         |

TABLE 6
Magnetostriction coefficients at zero Kelvin in units of 10<sup>-3</sup>

### Hexagonal Rare-Earth

| Element                  | λ <sub>1</sub> α,2 | λ 2,2 | λ γ.2  | λ *.2  | $\lambda_{i}^{\alpha,0} - \frac{1}{3}\lambda_{i}^{\alpha,2}$ | $\lambda_2^{\alpha,0} - \frac{1}{3}\lambda_2^{\alpha,2}$ | λ 7,4 |
|--------------------------|--------------------|-------|--------|--------|--------------------------------------------------------------|----------------------------------------------------------|-------|
| Gadolinium <sup>a)</sup> | 0.14               | -0.13 | 0.11   | 0.02   | <u></u>                                                      | _                                                        | _     |
| Terbium <sup>b)</sup>    | -2.6°)             | 9.0°) | 8.7    | 15.0°) | - 0.8                                                        | 4.3                                                      | -2.1  |
| Dysprosium <sup>b)</sup> | _                  | _     | 9.4    | 5.5    | -2.0                                                         | 7.3                                                      | 1.5   |
| Holmium <sup>b)</sup>    |                    |       | 2.5°)  |        | -3.9                                                         | 7.1                                                      | _     |
| Erbium <sup>b)</sup>     | _                  | -     | -5.1°) | -      | +0.3                                                         | 6.2                                                      | -     |

a) After Mishima et al. (1976).

R. C. O'Handley, Modern magnetic materials, Wiley, 2000.

### **Oxide magnets**

|                                  | T = 4                               | 4.2 K                                    | Room Temperature                    |                                          |                         |
|----------------------------------|-------------------------------------|------------------------------------------|-------------------------------------|------------------------------------------|-------------------------|
|                                  | $\lambda_{100}(\lambda^{\gamma,2})$ | $\lambda_{111}(\lambda^{\varepsilon,2})$ | $\lambda_{100}(\lambda^{\gamma,2})$ | $\lambda_{111}(\lambda^{\varepsilon,2})$ | Polycrystal $\lambda_s$ |
|                                  |                                     | Spinel Ferrit                            | es                                  |                                          | -                       |
| $Fe_3O_4$                        | 0                                   | 50                                       | -15                                 | 56                                       | +40                     |
| $MnFe_2O_4''$                    | -                                   | _                                        | (-54)                               | (10)                                     |                         |
| CoFe <sub>2</sub> O <sub>4</sub> |                                     | _                                        | -670                                | 120                                      | -110                    |
|                                  |                                     | Garnets                                  |                                     |                                          |                         |
| YIG                              | -0.6                                | -2.5                                     | -1.4                                | -1.6                                     | -2                      |

b) After Rhyne (1972).

c) Extrapolated from paramagnetic range using single-ion theory.

## **MAELAS TESTS**

Table 3: Anisotropic magnetostriction coefficients and MAE calculated by the program MAELAS and measured in experiment ( $T \approx 0 \text{ K}$ ) for a set of magnetic materials. In parenthesis we show the magnetostriction coefficients with Mason's definitions obtained using the relations given by Eq. A.2.

| Material             | Crystal system | Space<br>group | Magnetostriction coefficient                                                                                                                                                                                                              | MAELAS<br>(×10 <sup>-6</sup> )                 | Expt. (×10 <sup>-6</sup> )                                             | MAE                                | MAELAS<br>(μeV/atom) | Expt.<br>(µeV/atom)  |
|----------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------|------------------------------------|----------------------|----------------------|
| BCC Fe               | Cubic (I)      | 229            | $\lambda_{001} \\ \lambda_{111}$                                                                                                                                                                                                          | 23<br>19                                       | 26 [44]<br>-30 [44]                                                    | E(110) - E(001)<br>E(111) - E(001) | 0.1<br>0.21          | 1.0 [43]<br>1.3 [43] |
| HCP Co               | Hexagonal (I)  | 194            | $\lambda^{\alpha 1,2} (\lambda_A)$ $\lambda^{\alpha 2,2} (\lambda_B)$ $\lambda^{\gamma,2} (\lambda_C)$ $\lambda^{\epsilon,2} (\lambda_D)$                                                                                                 | 85 (-78)<br>-115 (-92)<br>15 (115)<br>-19 (-1) | 95 (-66) [48]<br>-126 (-123) [48]<br>57 (126) [48]<br>-286 (-128) [48] | E(100) - E(001)                    | 53                   | 61 [43]              |
| YCo <sub>5</sub>     | Hexagonal (I)  | 191            | $\lambda^{\alpha 1,2}$ $\lambda^{\alpha 2,2}$ $\lambda^{\gamma,2}$ $\lambda^{\epsilon,2}$                                                                                                                                                 | -90<br>115<br>76<br>141                        | $ \lambda^{\alpha 1,2}  < 100 [4]   \lambda^{\alpha 2,2}  < 100 [4]$   | E(100) - E(001)                    | 365                  | 567 [49]             |
| L1 <sub>0</sub> FePd | Tetragonal (I) | 123            | $\begin{matrix} \lambda^{\alpha 1,2} \\ \lambda^{\alpha 2,2} \\ \lambda^{\gamma,2} \\ \lambda^{\varepsilon,2} \\ \lambda^{\delta,2} \\ \lambda^{\alpha 1,0} - \frac{\lambda^{\alpha 1,2}}{3} + \frac{\lambda^{\gamma,2}}{2} \end{matrix}$ | -21<br>79<br>31<br>28<br>106                   | 100 [51]                                                               | E(100) - E(001)                    | 106                  | 181 [50]             |

## MAELAS TESTS: Co hcp

### **Experimental results**

Z. Physik 224, 148-155 (1969)



### Calculation of $\lambda^{\alpha 1,2}$ for Co hcp using MAELAS



# Bibliography

- P. Nieves, S. Arapan, S.H. Zhang, A.P. Kądzielawa, R.F. Zhang and D. Legut, "MAELAS: MAgneto-ELAStic properties calculation via computational high-throughput approach", 2020, ArXiv.
- J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 565.
- R.Q. Wu et al. Journal of Magnetism and Magnetic Materials 177-181 (1998) 1216-1219.
- M.R.J.Gibbs, Modern Trends in Magnetostriction, Springer Netherlands (2001).
- Göran Engdahl, Isaak D. Mayergoyz, Handbook of Giant Magnetostrictive Materials, Academic Press (1999).