

Лекция 5

Сумма и пересечение подпространств

Содержание лекции:

Настоящая лекция посвящена обсуждению операций с подпространствами. Рассматриваемые здесь понятия имеют непосредственное приложение в геометрии. Формулируемое условие единственности разложения произвольного вектора имеет прямое отношение к описанию геометрических объектов и исследованию их свойств. Мы начнем с общих понятий суммы и пересечения линейных подпространств.

Ключевые слова:

Пересечение подпространств, сумма подпротранств, прямая сумма подпространств, компоненты вектора, проекция вектора, дополнение пространства, коразмерность пространства.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

5.1 Сумма и пересечение подпространств

Nota bene Пусть $X(\Bbbk)$ - линейное пространство над некоторым полем & и $L_1, L_2 \subset X(\Bbbk)$ - два его собственных подпространства.

Множество L' называется пересечением подпространств L_1 и L_2 , если

$$L' = \{x \in X : x \in L_1 \land x \in L_2\}.$$

 ${\it Nota \ bene}$ Тот факт, что множество L' является пересечением подпространств L_1 и L_2 обозначают следующим образом:

$$L'=L_1\cap L_2.$$

Лемма 5.1. Множество L' - подпространство $X(\mathbb{k})$.

Докажем замкнутость множества L' относительно линейных операций, индуцированных из $X(\Bbbk)$. Действительно,

$$x, x_1, x_2 \in L' \quad \Rightarrow \quad x, x_1, x_2 \in L_1 \cap L_2 \quad \Rightarrow \quad x, x_1, x_2 \in L_1, \quad x, x_1, x_2 \in L_2.$$

Так как L_1 и L_2 - подпространство, то сразу получаем:

$$x_1 + x_2 \in L_1$$
, $x_1 + x_2 \in L_2$ \Rightarrow $x_1 + x_2 \in L_1 \cap L_2 = L'$, $x\lambda \in L_1$, $x\lambda \in L_2$ \Rightarrow $x\lambda \in L'$.

Множество L'' называется **суммой подпространств** L_1 и L_2 , если

$$L'' = \{x \in X : x = x_1 + x_2, \ x_1 \in L_1, \ x_2 \in L_2\}.$$

 ${\it Nota \ bene}$ Тот факт, что множество L' является суммой подпространств L_1 и L_2 обозначают следующим образом:

$$L'' = L_1 + L_2$$
.

Лемма 5.2. Множество $L'' \equiv L_1 + L_2$ - подпространство X.

Пусть $x, y \in L''$, тогда

$$x = x_1 + x_2, \quad y = y_1 + y_2, \quad x_1, y_1 \in L_1, \quad x_2, y_2 \in L_2,$$

$$x + y = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) \quad \Rightarrow \quad x + y \in L'',$$

$$x\lambda = (x_1 + x_2)\lambda = x_1\lambda + x_2\lambda \quad \Rightarrow \quad x\lambda \in L''.$$

Nota bene Определение суммы подпространств, определенное выше не эквивалентно теоретико-множественному объединению L_1 и L_2 .

5.2 Теорема о размерностях

Теорема 5.1. (Грассман) Пусть L_1 и L_2 - подпростраства X, тогда

$$\dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} (L_1 + L_2) + \dim_{\mathbb{k}} (L_1 \cap L_2)$$

Утверждение теоремы эквивалентно следующему. Пусть

$$\{e_1,e_2,\dots,e_m\}$$
 - базис $L_1\cap L_2,$ $\{e_1,e_2,\dots,e_m,f_1,\dots,f_k\}$ - базис $L_1,$ $\{e_1,e_2,\dots,e_m,g_1,\dots,g_l\}$ - базис $L_2,$

тогда

$$\{e_1, e_2, \dots, e_m, f_1, \dots, f_k, g_1, \dots, g_l\}$$
 - базис $L_1 + L_2$.

Для доказательства достаточно показать, что $\{e_1,\ldots,f_1,\ldots,g_1\ldots\}$ - ПН и ЛНЗ в L_1+L_2 . Действительно, для любого $x\in L_1+L_2$ имеем:

$$x = x_1 + x_2 = \left(\sum_{i=1}^m e_i \alpha_1^i + \sum_{j=1}^k f_j \beta_1^j\right) + \left(\sum_{i=1}^m e_i \alpha_2^i + \sum_{s=1}^l g_s \beta_2^s\right) =$$

$$= \sum_{i=1}^m e_i \left(\alpha_1^i + \alpha_2^i\right) + \sum_{j=1}^k f_j \beta_1^j + \sum_{s=1}^l g_s \beta_2^s,$$

что доказывает полноту набора. Для доказательства линейной независимости рассмотрим линейную комбинацию:

$$e_1\alpha^1 + \ldots + e_m\alpha^m + f_1\beta^1 + \ldots + f_k\beta^k + g_1\gamma^1 + \ldots + g_l\gamma^l = 0,$$

 $e_1\alpha^1 + \ldots + e_m\alpha^m + f_1\beta^1 + \ldots + f_k\beta^k = -g_1\gamma^1 - \ldots - g_l\gamma^l \equiv z,$

где $z \in L_1 \cap L_2$ и значит:

$$z = e_1 \delta^1 + \ldots + e_m \delta^m.$$

Из определения $z=-g_1\gamma^1-\ldots-g_l\gamma^l$ следует

$$g_1\gamma^1 + \ldots + g_l\gamma^l + e_1\delta^1 + \ldots + e_m\delta^m = 0 \quad \Rightarrow \quad \gamma^1 = \ldots = \gamma^l = \delta^1 = \ldots = \delta^m = 0,$$

откуда имеем z=0 и

$$e_1\alpha^1 + \ldots + e_m\alpha^m + f_1\beta^1 + \ldots + f_k\beta^k = z = 0 \quad \Rightarrow \quad \alpha^1 = \cdots = \alpha^m = \beta^1 = \ldots = \beta^k = 0.$$

4

Nota bene Понятие суммы и пересечения подпространств распространяется на произвольное конечное их число, именно:

$$L_1 \cap L_2 \cap \ldots \cap L_k = \{x \in X : x \in L_i, i = 1 \ldots k\},\$$

 $L_1 + L_2 + \ldots + L_k = \{x \in X : x = x_1 + x_2 + \ldots + x_k, x_i \in L_i\}.$

То, что это линейные подпространства $X(\mathbb{k})$ доказываются аналогично.

5.3 Прямая сумма подпространств. Проекция

Прямой суммой подпространств L_1 и L_2 называется их сумма \tilde{L} :

$$\forall x \in \tilde{L} \quad x = x_1 + x_2, \quad x_1 \in L_1, \quad x_2 \in L_2,$$

когда такое разложение единственно.

 ${\it Nota \ bene}$ Тот факт, что \tilde{L} является прямой суммой L_1 и L_2 обозначают следующим образом:

$$\tilde{L} = L_1 \dot{+} L_2$$
.

Теорема 5.2. (критерий прямой суммы)

$$L_1 + L_2 = L_1 \dot{+} L_2 \quad \Leftrightarrow \quad L_1 \cap L_2 = \{0_X\}.$$

⇒ Докажем от противного. Пусть

$$L = L_1 \dot{+} L_2, \quad L_1 \cap L_2 \neq \{0\} \quad \Rightarrow \quad \exists z \in L_1 \cap L_2, \quad z \neq 0,$$

 $x = x_1 + x_2 = x_1 + x_2 + z - z = (x_1 + z) + (x_2 - z).$

⇐ Докажем от противного. Пусть

$$L_1\cap L_2=\{0_X\}\,,\quad L=L_1+L_2,$$
 - непрямая сумма $x=x_1+x_2,\quad x=y_1+y_2\quad\Rightarrow\quad 0_X=(x_1-y_1)+(x_2-y_2),$ $x_1-y_1=y_2-x_2=z
eq 0_X,\quad z\in L_1\cap L_2.$

Теорема 5.3. Линейное пространство $X(\mathbb{k})$ является прямой суммой своих подпространств L_1 и L_2 тогда и только тогда, когда эти подпространства дизъюнктны, а сумма их размерностей совпадает с размерностью $X(\mathbb{k})$:

$$X = L_1 \dot{+} L_2 \quad \Leftrightarrow \quad \begin{cases} L_1 \cap L_2 = \{0_X\}, \\ \dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} X \end{cases}$$

 \Rightarrow Первая часть следует из признака прямой суммы. Вторая - из того что

$$X = L_1 + L_2, \quad \dim_{\mathbb{K}} (L_1 \cap L_2) = 0_X$$

 \Leftarrow Имеем $\dim (L_1 \cap L_2) = 0$ и значит

$$\dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} (L_1 + L_2) + 0,$$

$$\dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} X,$$

$$\Rightarrow \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} (L_1 + L_2).$$

Кроме того,

$$\begin{cases} \dim_{\mathbb{K}} X = \dim_{\mathbb{K}} (L_1 + L_2), \\ L_1 + L_2 \subset X \end{cases} \Rightarrow X = L_1 + L_2 \Leftrightarrow X = L_1 \dot{+} L_2.$$

Подпространство $L = \dot{+} \sum_{i=1}^k L_i$ называется **прямой суммой подпространств** L_1, L_2, \ldots, L_k , если единственно разложение

$$\forall x \in L \quad x = x_1 + x_2 + \ldots + x_k, \quad x_j \in L_j.$$

Лемма 5.3.

$$\sum_{i=1}^{k} L_i = \dot{+} \sum_{i=1}^{k} L_i \quad \Rightarrow \quad L_i \cap L_{j \neq i} = \{0_X\}.$$

Используем нисходящую индукцию. Пусть

$$\sum_{i=1}^k L_i = \tilde{L}_{\mathbb{k}} + L_{\mathbb{k}}, \quad \tilde{L}_{\mathbb{k}} = \sum_{i=1}^{k-1} L_i,$$

тогда в силу критерия прямой суммы для двух подпространств будем иметь

$$\tilde{L}_{\mathbb{k}} + L_{\mathbb{k}} = \tilde{L}_{\mathbb{k}} \dot{+} L_{\mathbb{k}} \quad \Rightarrow \quad \tilde{L}_{\mathbb{k}} \cap L_{\mathbb{k}} = \{0_X\}.$$

Таким образом, мы получим

$$L_{k} \cap L_{k} = \{0_{X}\}, \quad i = 1 \dots k - 1.$$

Для подпространства \tilde{L}_{\Bbbk} доказательство повторяется.

Теорема 5.4. Имеет место следующий критерий разложения линейного пространства $X(\mathbb{k})$ в прямую сумму подпространств $L_1, L_2, \ldots, L_{\mathbb{k}}$:

$$X = \dot{+} \sum_{i=1}^{k} L_i \quad \Leftrightarrow \quad \begin{cases} L_i \cap L_{j \neq i} = \{0\}, \\ \dim_{\mathbb{k}} X = \sum_{i=1}^{k} \dim_{\mathbb{k}} L_i. \end{cases}$$

- ⇒ следует из предыдущей леммы и теоремы о размерностях.
- ← используем нисходящую индукцию.

5.4 Проекция вектора на подпространство

Пусть $X = L_1 \dot{+} L_2$, тогда

- x_1, x_2 называются компонентами x в L_1 и L_2 ;
- $x_1 = \mathcal{P}_{L_1}^{\parallel L_2} x$ называется **проекцией** x на L_1 параллельно $L_2;$
- ullet $x_2 = \mathcal{P}_{L_2}^{\parallel L_1} x$ называется **проекцией** x на L_2 параллельно $L_1;$
- ullet $\mathcal{P}_{L_1}^{||L_2|}$ называется проектором на подпространство $L_1;$
- ullet $\mathcal{P}_{L_2}^{\parallel L_1}$ называется проектором на подпространство $L_2;$
- L_1 называется дополнением L_2 до X;
- L_2 называется дополнением L_1 до X;

Nota bene Дополнение к заданному подпространству определяется не единственным образом.

Пример 5.1. Контрпример:

$$L_1 = \mathcal{L}\left\{e_1, e_2\right\}, \quad L_2 = \mathcal{L}\left\{e_3 + \alpha e_1 + \beta e_2\right\}, \quad X = L_1 \dot{+} L_2 \quad \forall \alpha, \beta \in \mathbb{k}.$$

Лемма 5.4. Размерность дополнения подпространства не зависит от конкретного выбора этого дополнения.

▶

Доказательство следует из определения дополнения и теоремы о размерностях.

4

Размерность дополнения подпространства L называется его **коразмерностью**:

$$\dim_{\mathbb{k}} X = n$$
, $\dim_{\mathbb{k}} L = k$, $\operatorname{codim}_{\mathbb{k}} L = n - k$.