Results

Paired Samples T-Test

Paired Samples T-Test

			Statistic	р		Effect Size
Insta-minutes time 1	Insta-minutes time 2	Wilcoxon W	117	0.001	Rank biserial correlation	0.950

[3]

Descriptives

	N	Mean	Median	SD	SE
Insta-minutes time 1	15	80.7	85	35.9	9.28
Insta-minutes time 2	15	49.0	45	24.3	6.27

Paired Samples T-Test

Paired Samples T-Test

			Statistic	df	р
Insta-minutes time 1	Insta-minutes time 2	Student's t	4.87	14.0	< .001
		Wilcoxon W	117		0.001

Note. $H_a \mu_{Measure 1 - Measure 2} \neq 0$

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a numeric variable for Variable 2 / Independent Variables. Hence, the <u>Pearson correlation coefficient</u>, which is a measure for the strength of the linear relationship between two variables, seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Correlation Matrix

- Drop your two variables in the white box at the right
- Under Correlation Coefficients, select Pearson (selected by default)
- Under Hypothesis, select your alternative hypothesis

Alternatively, you could perform a <u>linear regression analysis</u>. The test outcomes of both methods will be equivalent. Click on the links to learn more about these methods!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Single Variable

You have entered a numeric variable. Hence, the <u>one sample t test</u> for the population mean may be a good option for you! In order to run this test in jamovi, go to: T-Tests > One Sample T-Test

- Drop your variable in the box below Dependent Variables
- Under Hypothesis, fill in the value for μ_0 in the box next to Test Value, and select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric <u>Wilcoxon signed-rank test</u> for the population median instead. Click on the links to learn more about these tests!

Scatter Plot

References

[1] The jamovi project (2024). jamovi. (Version 2.5) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2023). *R: A Language and environment for statistical computing*. (Version 4.3) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2024-01-09).

[3] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. <i>Comprehensive Psychology</i> , <i>3</i> , 2165–2228.	
1 sychology, 5, 2105-2220.	