ISTA 116: Statistical Foundations for the Information Age

ISTA 116: Statistical Foundations for the Information Age

Probability Intro

19 October 2011

ISTA 116: Statistical Foundations for the Information Age
Why Learn About Probability?

- Saw last time some "real world" uses for probability:
 - Evaluating medical evidence
 - Detecting "Foul Play"
 - Deciding what action will give the best chance of a good result
 - Determine whether correlations / group differences in data are "real", or due to "chance" (sampling error)

ISTA 116: Statistical Foundations for the Information Age

Outline

- 1 Why Learn About Probability?
- 2 What is Probability?
 - Interpreting Probabilities
- 3 Sample Space and Events
 - Set Operations
- 4 Axioms of Probability and Their Corollaries

ISTA 116: Statistical Foundations for the Information Age
Why Learn About Probability?

Medical Testing

- Suppose a test for a somewhat rare disease (affecting 1 in 10,000 people) is 99% accurate: 99% of sick people test positive, and 99% of healthy people test negative.
- If you test positive, what is the probability you have the disease?
- This is a question of **Conditional Probability**:
 - What is the probability of disease, *conditioned on* testing positive? (Recall tornado example)

ISTA 116: Statistical Foundations for the Information Age
Why Learn About Probability?

Is A Difference Real?

- Black defendants got the death penalty more often than white defendants.
 - Are juries racially biased? What's the probability of a difference this big happening just by "random chance"?
 - If this probability is low enough, we say that the difference is **statistically significant**.
 - Note that this is a *different* question from "Is the relationship *causal*".

ISTA 116: Statistical Foundations for the Information Age
Why Learn About Probability?

Conditional Probability is Not Symmetric

- We can state all of these things as conditional probabilities:
 - What is the probability of a difference this large in a sample conditioned on the hypothesis that there is really no difference in the population?
 - What is the probability of a correlation this large in a sample, conditioned on the hypothesis that there is no relationship in the population?

ISTA 116: Statistical Foundations for the Information Age
Why Learn About Probability?

Is A Correlation Real?

- Frost and Illiteracy were negatively correlated among U.S. states.
- Can debate why this might be: does frost *cause* illiteracy? Does some other factor lead to increases in both?
- But before we even do that, we should ask "How likely are we to get this or a bigger correlation value by random chance?"
- If this probability isn't very low, there might be nothing to explain.
- Again, if the probability of this happening by random chance is low enough, then the correlation is statistically significant.

Conditional Probability is Not Symmetric

- This is *not* the same thing as the reverse:
 - What is the probability that there is no difference in the population, *conditioned on* having a difference in the sample?
 - What is the probability that there is no relationship in the population, *conditioned on* having a particular correlation in the sample?
- Example: 99% of people with the disease test positive, but only 1% of people who test positive have the disease.

What is Probability?

- If I flip a coin, what is the probability that it will come up heads?
- Most people say 1/2, but why is that?
- What is the probability that the coin will come up either heads or tails?
- Which is more likely?
- Intuitively we have two equations:

$$\begin{split} P(\mathsf{Heads}) + P(\mathsf{Tails}) &= 1 \\ P(\mathsf{Heads}) &= P(\mathsf{Tails}) \\ \Rightarrow 2P(\mathsf{Heads}) = 2P(\mathsf{Tails}) &= 1 \\ \Rightarrow P(\mathsf{Heads}) = P(\mathsf{Tails}) &= \frac{1}{2} \end{split}$$

ISTA 116: Statistical Foundations for the Information Age

What is Probability?

Interpreting Probabilities

ISTA 116: Statistical Foundations for the Information Age

└─What is Probability?

Interpreting Probabilities

Interpreting Probabilities

- What does this 1/2 mean?
- Basically two schools of thought on this:
 - Objective probability
 - Subjective probability

ISTA 116: Statistical Foundations for the Information Age

What is Probability?

Interpreting Probabilities

Reminders/Announcements

- Lab 5 posted; due next Monday
- Extra assignments posted soon
 - Can use as a quiz grade

ISTA 116: Statistical Foundations for the Information Age

-What is Probability? Interpreting Probabilities

Objective Probabilities

- Probabilities are properties of the external world.
- The probability of an event represents the long run **proportion** of the time the event occurs under repeated, controlled experimentation.
- If I flip the coin a million bajillion times, the probability of heads is the proportion of the flips that would come up heads.

$$P(\text{Heads}) pprox rac{\# \text{ of flips that came up heads}}{\text{Total } \# \text{ of flips}}$$

ISTA 116: Statistical Foundations for the Information Age

└─What is Probability?

Interpreting Probabilities

Objective Probabilities

- Advantages
 - Probabilities are determined solely by observation
 - Everyone should assign the same probability to a (well defined) experimental outcome
- Criticisms
 - Restrictive set of events that can have probabilities
 - Can never assign an exact probability to anything; only an approximation

ISTA 116: Statistical Foundations for the Information Age

└─What is Probability?

Interpreting Probabilities

Objective Probabilities

- On this view, probabilities only truly apply to outcomes of processes that can be repeated indefinitely.
- In particular, can't ascribe a probability to something that has already happened
- Also can't ascribe probabilities to events that may only happen once.
- Objective probability is associated with **classical** or frequentist statistics.

ISTA 116: Statistical Foundations for the Information Age

What is Probability?

Interpreting Probabilities

Subjective Probabilities

- Probabilities aren't in the world itself; they're in our knowledge/beliefs about the world
- I have no reason to believe heads and tails have different probabilities, so I assign them both 1/2.
- More generally, can assign probabilities by the betting odds you'd be willing to accept:

$$\frac{P(\mathsf{Not\ Heads})}{P(\mathsf{Heads})} = \mathsf{Minimum\ betting\ odds\ to\ bet\ on\ Heads}$$

Subjective Probabilities

- You can bet on a lot of things in principle, even things that have already happened, or would only happen once, but which you don't have complete information about.
- Moreover, different people have different information, and might ascribe different probabilities to the same event.
- But as we gain new information, we can use mathematical rules of probability to *update* our beliefs (i.e., condition on new information) in a rational way.
- This process, of subjective initial probabilities combined with rational updating, is associated with Bayesian statistics

ISTA 116: Statistical Foundations for the Information Age What is Probability? Interpreting Probabilities

The Dutch Book

Figure: A Dutch Book

- A "Dutch Book" is a set of bets that are guaranteed to make money regardless of the outcome
- Example: 2:1 odds on Heads and 2:1 odds on Tails
- Examples: Race tracks, credit default swaps, ...
- Can rule out Dutch Book probabilities as "irrational".

ISTA 116: Statistical Foundations for the Information Age

└─What is Probability? └─Interpreting Probabilities

Bayesian Statistics

Figure: Reverend Thomas Bayes (1701-1761)

Figure: Pierre-Simon Laplace (1749-1827)

ISTA 116: Statistical Foundations for the Information Age

What is Probability?

Interpreting Probabilities

Subjective Probability

Advantages

- Can assign probabilities to a lot more propositions
- Use Bayesian math to update beliefs as evidence comes in
- Allow us to state questions intuitively: "What is the probability that you have disease X, given that you tested positive?"

Criticisms

- Too much "wiggle room" to set initial probabilities
- Different people can assign different probabilities to the same thing, with both equally "rational"

The Sample Space

- Probability is very closely tied to area, so we use lots of spatial metaphors
- The set of all possible distinguishable outcomes of a random experiment is called the **sample space**. Often written Ω .
 - What's the sample space for an individual coin flip?
 - What's the sample space for rolling a die?
 - For pulling a ball out of a bag?
 - For randomly choosing a student?
 - For flipping two different coins?
 - Flipping one coin twice?
 - Observing the number of earthquakes in San Francisco in a particular year?
 - Observing someone's height?

ISTA 116: Statistical Foundations for the Information Age
Sample Space and Events

Events

- Formally, an **event** E is a subset (or "sub-region") of the sample space. When we make a particular observation, we are either "in" E or not.
- It is sometimes helpful to think about events as propositions ("sentences") that are either True or False on a particular occasion.
 - "The coin comes up heads"
 - "The die comes up an even number"
 - "There are more than 20 earthquakes"
 - "I choose a sophomore"
- Notice that Ω itself is an event: "something possible happens".
- The **empty set**, ∅ is also an event: "nothing possible happens".

ISTA 116: Statistical Foundations for the Information Age
Sample Space and Events

A Sample Space

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

Some Events

Events

- It is events that have probabilities.
 - P(Coin comes up heads) = 1/2
 - Or, for short, P(Heads) = 1/2
 - P(Die comes up an even number) = 3/6
 - etc.
- Probabilities correspond to the "size" of the event set.

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events
Set Operations

Set Complement = NOT

- If E is an event, its **complement**, written E^C is the negation of E: it is the event representing everything in the sample space outside E that can occur.
- For each E, identify E^C in words:
 - lacksquare $E_1 = \mathsf{Coin}\ \mathsf{comes}\ \mathsf{up}\ \mathsf{heads}$
 - E_2 = Die comes up even
 - \blacksquare $E_3 = I$ draw a yellow ball
 - \blacksquare $E_4 =$ There are more than 20 earthquakes
 - $E_5 = A$ person is between 5 and 6 feet tall (inclusive)
 - E_6 = Die comes up between 1 and 6 (inclusive)
- What is $(E^C)^C$?

STA 116: Statistical Foundations for the Information Age

Sample Space and Events
Set Operations

Set Operations

- Since events are sets of outcomes, we can apply **set operations** on them to get new events.
- If we think about events as True/False propositions, the basic set operations correspond to *AND*, *OR* and *NOT*.

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events
Set Operations

The Complement

The Complement

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

Set Operations

The Union

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

$\mathsf{Set}\;\mathsf{Union}=\mathit{OR}$

LSet Operations

- If E_1 and E_2 are events, their **union** (written $E_1 \cup E_2$) represents the event that happens when *either* E_1 *or* E_2 (or both) occur.
- Identify $E_1 \cup E_2$ in words:
 - $E_1 = \text{Coin comes up heads}$; $E_2 = \text{Coin comes up tails}$
 - $lackbox{\blacksquare} E_1 = \mathsf{Die} \ \mathsf{comes} \ \mathsf{up} \ \mathsf{2} \ \mathsf{or} \ \mathsf{less};$
 - $E_2 = \mathsf{Die}\ \mathsf{comes}\ \mathsf{up}\ \mathsf{4}\ \mathsf{or}\ \mathsf{more}$
 - $E_1 = I$ pick a freshman; $E_2 = I$ pick a sophomore.
 - $E \cup E^{\dot{C}}$

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

Set Operations

The Union

Set Intersection = AND

- If E_1 and E_2 are events, their **intersection** (written $E_1 \cap E_2$) represents the event that happens when both E_1 and E_2 occur.
- Identify $E_1 \cap E_2$ in words:
 - $E_1 = \text{Coin comes up heads}; E_2 = \text{Coin comes up tails}$
 - E_1 = Die comes up 2 or more; E_2 = Die comes up 4 or less
 - $E_1 = I$ pick a lefty; $E_2 = I$ pick an upperclassman
 - $E \cap E^{\dot{C}}$
 - $E_1 \cap (E_1 \cup E_2)$

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

Set Operations

The Intersection

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

Set Operations

The Intersection

ISTA 116: Statistical Foundations for the Information Age
Sample Space and Events

Disjoint Events

LSet Operations

- Two events, E_1 and E_2 are said to be **disjoint** if their intersection is the empty set, i.e., $E_1 \cap E_2$
- What does this mean in words?

Disjoint Events

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

LSet Operations

The Intersection

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events

LSet Operations

DeMorgan's Laws

There are some basic identities called **DeMorgan's Laws** that tell you what you get when you combine set operations in certain ways

$$(E_1 \cap E_2)^C = E_1^C \cup E_2^C$$

- The complement of the intersection is the union of the complements.
- "If not both, then either not one, or not the other"

$$(E_1 \cup E_2)^C = E_1^C \cap E_2^C$$

- The complement of the union is the intersection of the complements.
- "If neither, then both not one and not the other"

ISTA 116: Statistical Foundations for the Information Age

Sample Space and Events LSet Operations

The Union

Three Axioms of Probability

Regardless of your preferred interpretation of probabilities, they have to follow three simple rules:

(Axioms of Probability)

- **1 Nonnegativity**: $P(E) \ge 0$ for any event E
- **2 Disjoint Additivity**: If E_1 and E_2 are **disjoint**, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.
- **3** Unity of the Sample Space: $P(\Omega) = 1$

Everything else follows from these three.

ISTA 116: Statistical Foundations for the Information Age
Axioms of Probability and Their Corollaries

Consequences of the Axioms

- How would I calculate $P(E^C)$? (For example, suppose E is "There are fewer than 20 earthquakes")
- How would I calculate $P(E_1 \cup E_2)$ if E_1 and E_2 might not be disjoint? (Take E_1 = "I pick a lefty", E_2 = "I pick an upperclassman")
 - What else do I need to know?

ISTA 116: Statistical Foundations for the Information Age
Axioms of Probability and Their Corollaries

Disjoint Events

ISTA 116: Statistical Foundations for the Information Age

Axioms of Probability and Their Corollaries

Two Corollaries

(Probability Corollaries)

- **1** The Complement Rule: $P(E^C) = 1 P(E)$
 - lacktriangle Either E happens or it doesn't, so these two probabilities add to one
 - Proof: E and E^C are disjoint, and their union is Ω , so $P(E) + P(E^C) = P(\Omega) = 1$.
- **Probability of General Unions:**

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

- If we add up the probabilities, we are double counting the intersection, so subtract one out.
- Four disjoint possibilities: $E_1 \cap E_2$, $E_1 \cap E_2^C$, $E_1^C \cap E_2$, and $E_1^C \cap E_2^C$. Now construct the pieces out of disjoint unions.