Classification

ECE30007 Intro to Al Project

Contents

- 1. Recap on learning strategies
- 2. Decision Trees
- 3. Random Forests
- 4. Scikit-Learn with MNIST data

Learning Strategies

- Unsupervised learning
 - e.g., clustering and dimension reduction
- Supervised learning
 - Classification
 - Problems with categorical solutions like yes/no, apple/orange/mango
 - Regression
 - Problems wherein continuous value needs to be predicted, such as "product price" or "profits"

Decision Trees

A member in supervised learning

Example of Decision Tree

Decision Tree for classification/regression

Classification Tree

Am I out of shampoo?

True False

grocery shopping no need for grocery shopping

Regression Tree

Terminology

Terminology

- Decision nodes
- Carry out predictions

Key questions

Prediction

Given a decision tree, how to use it to make predictions?

Training (Learning)

- How to train (learn) a decision tree from data?
- Which questions to ask, and when?

Prediction

Should I watch this video?

https://towardsdatascience.com/how-are-decision-trees-built-a8e5af57ce8

Prediction

- A decision tree
 - Assuming that a trained decision tree is given
 - For each data instance, answer to the query on each node and take the branch with the answer
 - When the instance arrives at a leaf node, make a prediction according to the node's decision
 - This could be efficiently implemented as a recursive program

Training

Training data example

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Training

- Idea
 - Start from an empty decision tree, with all train data
 - Split on next best attribute(feature)
 - Use, for example, information gain to decide the splitting condition

How to make splits?
How to split the data into multiple nodes?

Training example

assuming that diameter is the best feature now.

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Training example

assuming that color is the best feature now.

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Training example

How to find the best feature?

- Entropy: degree of complexity in data
 - $H(Y) = E[I(Y)] = E[-\log_2 P(Y)] = -\sum_i P(y_i) \log_2 P(y_i)$
 - High/low entropy: less/more predictable
- Conditional Entropy of Y given X
 - $H(Y|X) = \sum_{j} p(x_j) \left(-\sum_{i} p(y_i|x_j) \log_2 p(y_i|x_j) \right)$

- Splitting criterion: Information gain
 - Decrease in entropy (uncertainty) after splitting a node
 - IG(X) = H(Y) H(Y|X)

Exercise(1) – Toy dataset

STEP . Make a toy dataset

Exercise(2) – Useful functions

```
def unique_vals(rows, col):
  ...
                                                                   [8] unique_vals(train_data, 0)
  rows: list of row data
  col: the index of column that we want to find
   ...
                                                                         {'Green', 'Red', 'Yellow'}
  return set([row[col] for row in rows])
def class_counts(rows):
   """Counts the number of each type of example in a dataset.
   rows: list of row data
   counts = {} # a dictionary of label -> count.
                                                                   class_counts(train_data)
   for row in rows:
       # in our dataset format, the label is always the last column
                                                                   {'Apple': 2, 'Grape': 2, 'Lemon': 2}
       label = row[-1]
       if label not in counts:
```


counts[label] += 1

return counts

counts[label] = 0

Exercise(2) – Useful functions

```
def is_numeric(value):
    return isinstance(value, int) or isinstance(value, float)

    print(is_numeric(7), is_numeric('Blue'))

    True False
```


Exercise(3) – Question class

```
we need one question on each node
[106] class Question:
       ## Constructor
                                                       Question(1, 3) means
       def __init__(self, column, value):
                                                       "is Diameter greater than 3?
         self.column = column
         self.value = value
       def compare with question(self, example):
                                                      we need this function to split the rows
         ...
                                                       based on the question
         Arguments:
         example -- List of row data (EX. ['Blue', 2, 'Blueberry'])
         val = example[self.column]
         if is_numeric(val):
           return val >= self.value
         else:
           return val == self.value
       ## Python __repr__() function returns the object representation in string format.
       def __repr__(self):
         condition = "=="
         if is_numeric(self.value):
           condition = ">="
         return "Is {} {} {}?".format(columns[self.column], condition, str(self.value))
```


Exercise(3) – Question class

Let's implement Quesetion class! [107] Question(1, 3) Is diameter >= 3? [108] Question(0, 'Green') Is color == Green? Color Diameter Label Green 3 Apple Yellow 3 Apple Red Grape Red Grape Yellow Lemon 3 Yellow Lemon

Exercise(4) – Partition function

split the data based on the question

```
def partition(rows, question):
  """Partitions a dataset
  Arguments:
  rows -- List of row data
  question -- An object of Question class
  .....
  true_rows, false_rows = [], []
  for row in rows:
    if question.compare_with_question(row):
      true rows.append(row)
    else:
      false_rows.append(row)
  return true_rows, false_rows
```

Partition

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Exercise(4) – Partition function

' 🎥 : If we partition 'train_data' with a question "Is color == Red 🥒", what is the true_rows and false_rows?

```
[26] true_rows, false_rows = partition(train_data, Question(0, 'Red'))

[27] print("The true_rows\n ===> ", true_rows, "\nThe false_rows\n ===> ", false_rows)

The true_rows
===> [['Red', 1, 'Grape'], ['Red', 1, 'Grape']]
The false_rows
===> [['Green', 3, 'Apple'], ['Yellow', 3, 'Apple'], ['Yellow', 3, 'Lemon'], ['Yellow', 4, 'Lemon']]
```

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Exercise(5) – Entropy calculation

```
def entropy(labels, base=None):
  """ Computes entropy of label distribution.
 Arguments:
  labels -- Lists of data's label
                                         implemenation of entropy might be beyond this class.
 n_labels = len(labels)
                                         but please understand how to use it
                                         in the following slides
  if n_labels <= 1:
    return 0
  counts = class_counts(labels) # return "dict{class_label : counts}"
  probs = [counts[key]/n_labels for key in counts.keys()]
  n_classes = np.count_nonzero(probs)
  if n_classes <= 1:
    return 0
  ent = 0.
  # Compute entropy
  # base = e if base is None else base
  for i in probs:
    ent -= i * log2(i)
                                      -\sum_{i} P(y_i) \log_2 P(y_i)
  return ent
```


Exercise(5) – Entropy calculation

▼ 🎎 : In pure dataset, how much entropy value did you get?

Signature in impure dataset, how much entropy value did you get?

1.0

Exercise(5) – Entropy calculation

Exercise(6) – Information Gain

```
def info_gain(left, right, current_uncertainty): """Information Gain.  
IG = \text{The uncertainty of the starting node - the weighted impurity of two child nodes.} 
p = \text{float(len(left)) / (len(left) + len(right))} 
print("(1) \text{ Avg of Impurity = } \{:.4f\} * \{:.4f\} * \{:.4f\} * \{:.4f\} ".format(p, entropy(left), (1-p), entropy(right))) 
print("(2) \text{ Current uncertainty = } \{:.4f\} ".format(current_uncertainty)) 
IG = \underbrace{\text{current\_uncertainty}}_{\text{print}("(3) \text{ Information gain = } \{:.4f\} - (\{:.4f\} * \{:.4f\} * \{:.4f\}
```

entropy at the current node

[26] current_uncertainty = entropy(train_data)
 print("\nCurrent uncertainty ===> {:.4f}".format(current_uncertainty))

Current uncertainty ===> 1.5850

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Current uncertainty =
$$-(\frac{1}{3}\log_2\frac{1}{3} + \frac{1}{3}\log_2\frac{1}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

= 1.5850

Exercise(6) – Information Gain

▼ \(\square \): How much information do we gain by partitioning on 'Green'?

```
[44] print('Question?', Question(0, 'Green'))
    true_rows, false_rows = partition(train_data, Question(0, 'Green'))
    print("True_rows ===> {}".format(true_rows))
    print("False rows ===> {}\n".format(false rows))
    print("\nThe information gain by partitioning on \"Green\" is {:.4f}".format(
        info_gain(true_rows, false_rows, current_uncertainty)))
```

```
Question? Is color == Green?
True_rows ===> [['Green', 3, 'Apple']]
False rows ===> [['Yellow', 3, 'Apple'], ['Red', 1, 'Grape'], ['Red', 1, 'Grape'], ['Yellow', 3, 'Lemon'], ['Yellow', 4, 'Lemon']]
(1) Avg of Impurity = 0.1667 * 0.0000 + 0.8333 * 1.5219
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.1667 * 0.0000 + 0.8333 * 1.5219)= 0.3167
The information gain by partitioning on "Green" is 0.3167
```


information gain for "color==Green"

Impurity of True = 0

Impurity of False = 1.5219

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Avg Impurity =
$$\frac{1}{6} \times 0 + \frac{5}{6} \times 1.5219 = 1.268$$

Information gain = 1.5850 - 1.268 = 0.3167

Exercise(6) – Information Gain

: How much information do we gain by partitioning on diameter >= 3?

```
[117] print('Question?', Question(1, 3))
     true_rows, false_rows = partition(train_data, Question(1, 3))
     print("True_rows ===> {}".format(true_rows))
     print("False rows ===> {}\n".format(false rows))
     print("\nThe information gain by partitioning on \"Green\" is {:.4f}".format(
         info_gain(true_rows, false_rows, current_uncertainty)))
```

```
Ouestion? Is diameter >= 3?
True_rows ===> [['Green', 3, 'Apple'], ['Yellow', 3, 'Apple'], ['Yellow', 3, 'Lemon'], ['Yellow', 4, 'Lemon']]
False rows ===> [['Red', 1, 'Grape'], ['Red', 1, 'Grape']]
(1) Avg of Impurity = 0.6667 * 1.0000 + 0.3333 * 0.0000
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.6667 * 1.0000 + 0.3333 * 0.0000) = 0.9183
The information gain by partitioning on "diameter >= 3" is 0.9183
```


information gain for "Diameter >= 3"

Impurity of False = 1.5219

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Avg Impurity =
$$\frac{4}{6} \times 1 + \frac{2}{6} \times 0 = 0.666$$

Information gain =
$$1.5850 - 0.666 = 0.9183$$

Exercise(7) – Find the best split!

```
[129] def find_best_split(rows):
       best_gain = 0
       best_question = None
       current_uncertainty = entropy(rows)
       n_features = len(rows[0]) - 1
       for col in range(n_features):
                                                         for all features
         values = set([row[col] for row in rows])
         for val in values:
                                                         for all values on the feature
           question = Question(col, val)
           true_rows, false_rows = partition(rows, question)
           if len(true_rows) == 0 or len(false_rows) == 0:
             continue
           print('Qustion ====>>> ', question)
           gain = info_gain(true_rows, false_rows, current_uncertainty)
           if gain >= best_gain:
             best_gain, best_question = gain, question
       return best_gain, best_question
```

Exercise(7) – Find the best split!

```
Oustion ====>>> Is color == Green?
(1) Avg of Impurity = 0.1667 * 0.0000 + 0.8333 * 1.5219
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.1667 * 0.0000 + 0.8333 * 1.5219)= 0.3167
Oustion ====>>> Is color == Yellow?
(1) Avg of Impurity = 0.5000 * 0.9183 + 0.5000 * 0.9183
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.5000 * 0.9183 + 0.5000 * 0.9183) = 0.6667
Oustion ====>>> Is color == Red?
(1) Avg of Impurity = 0.3333 * 0.0000 + 0.6667 * 1.0000
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.3333 * 0.0000 + 0.6667 * 1.0000) = 0.9183
Qustion ====>>> Is diameter >= 3?
(1) Avg of Impurity = 0.6667 * 1.0000 + 0.3333 * 0.0000
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.6667 * 1.0000 + 0.3333 * 0.0000) = 0.9183
Oustion ====>>> Is diameter >= 4?
(1) Avg of Impurity = 0.1667 * 0.0000 + 0.8333 * 1.5219
(2) Current uncertainty = 1.5850
(3) Information gain = 1.5850 - (0.1667 * 0.0000 + 0.8333 * 1.5219)= 0.3167
The best question ====>>>> Is diameter >= 3?
```


recursive training

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Training continuously based on 'True' row data of statement 'Diameter >= 3?'

Exercise(8) - Make a Decision Tree!


```
[145] class Leaf:
    """A Leaf node classifies data.

    This holds a dictionary of class (e.g., "Apple") -> number of times
    it appears in the rows from the training data that reach this leaf.
    """

def __init__(self, rows):
    ## 'self.predictions' is a dictionary of class counts.
    self.predictions = class_counts(rows)

in Exercise(2)
```


Exercise(8) – Make a Decision Tree!

Root Node

Decision Node

Exercise(8) – Make a Decision Tree!

```
Sub-Tree
                                                                    Decision Node
                                                                                               Decision Node
[147] def build_tree(rows):
       """Builds the tree.
                                                                                                      Decision Node
                                                               Leaf Node
                                                                             Leaf Node
                                                                                           Leaf Node
       Arguments:
       rows --- List of row data
       .....
       gain, question = find_best_split(rows)
                                                                                           Leaf Node
                                                                                                        Leaf Node
       ## If information gain is equal to 0, just return the Leaf object.
       if gain == 0:
         return Leaf(rows)
       true_rows, false_rows = partition(rows, question)
       ## Make additional tree nodes
       true_branch = build_tree(true_rows)
       false_branch = build_tree(false_rows)
       return Decision_Node(question, true_branch, false_branch)
```


Exercise(8) - Make a Decision Tree!

```
[148] def print_tree(node, spacing=""):
         """Tree printing function."""
         # Base case: we've reached a leaf
         if isinstance(node, Leaf):
             print (spacing + "Predict", node.predictions)
             return
         # Print the question at this node
         print (spacing + str(node.question))
         # Call this function recursively on the true branch
         print (spacing + '--> True:')
         print_tree(node.true_branch, spacing + " ")
         # Call this function recursively on the false branch
         print (spacing + '--> False:')
         print_tree(node.false_branch, spacing + " ")
```


Exercise(8) – Make a Decision Tree!

▼ A: Let's build one Decision Tree!

```
[149] my_tree = build_tree(train_data)
    print(type(my_tree))
```

\(\frac{\text{\tin}\text{\tett}\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\texit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\

```
[150] print_tree(my_tree)

Is diameter >= 3?
--> True:
    Is diameter >= 4?
--> True:
        Predict {'Lemon': 1}
--> False:
        Is color == Yellow?
--> True:
        Predict {'Apple': 1, 'Lemon': 1}
--> False:
        Predict {'Apple': 1}
--> False:
        Predict {'Grape': 2}
```


False

False

Apple 100%

Grape 🤏

100%

Diameter >= 3

False

Color == Yellow

True

True

Apple 9 50%

Lemon 6 50%

True

Lemon 4

100%

Diameter >= 4

Exercise(8) – Make a Decision Tree!

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Strain_data[1]',?
Which results do you get when you classify 'train_data[1]',?

```
[151] def classify(row, node):
    ## If this node is Leaf, return predicted results.
    if isinstance(node, Leaf):
        return node.predictions ## If you don't know what data
    if node.question.compare_with_question(row):
        return classify(row, node.true_branch)
    else:
        return classify(row, node.false_branch)
```

```
[155] ## Return the each class counts
    classify(train_data[0], my_tree)
```


Exercise(8) – Make a Decision Tree!

```
" Apple': '100%'}

Then, Which class is 'train_data[1]' classified into?

"""A nicer way to print the predictions at a leaf."""

total = sun(counts.values()) * 1.0
probs = {}
for lbl in counts.keys{):
    probs[lbl] = str(int(counts[lbl] / total * 100)) + "%"
    return probs

[157] print_leaf(classify(train_data[0], my_tree))

{'Apple': '100%'}
```

==> If color is yellow and diameter is 3, this fruit is predicted 100% 🍅.

```
print_leaf(classify(train_data[1], my_tree))
{'Apple': '50%', 'Lemon': '50%'}
```


Exercise(9) – Test our Decision Tree!

Exercise(10) - Decision Tree with sklearn

```
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import sklearn

decisionTree = DecisionTreeClassifier(random_state=0, criterion="entropy")
decisionTree.fit(train_df.iloc[:, 0:2], train_df.iloc[:, 2])

plt.figure(figsize=(12,12))
sklearn.tree.plot_tree(decisionTree, filled=True, feature_names=["color", "diameter"],proportion=True)
```

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon
Yellow	4	Lemon

Decision Trees

- Advantages
 - Simple to understand, interpret, and visualize
 - Little effort is required for data preparation
 - Normalization is not required
 - Able to obtain non-linear decision boundaries
 - Can handle both numeric and categorical data
- Disadvantages
 - Overfitting when the depth is too deep
 - High variance (models tends to be less stable)

Background of Random Forests

- Issues with Decision Trees
 - Overfitting: occurs when the algorithm captures noise the data
 - Unstable: the model can get unstable with merely small variations in data(the model could get too much sensitive)

Solutions

- Must use tricks to find "simple trees"
 - Early stopping of training (learning)
 - Fixed depth: do not grow trees further than a specified depth
 - Minimum population per leaf node: do not split a node if the number of data instance fall in the node is smaller than a specified number
 - Readjusting/simplifying trained trees
 - Pruning: simplify trees by merging leaf nodes

Random Forests

Random Forest: Ensemble (mixture) of decision trees

Random Forests

- Random Forest: Ensemble (mixture) of decision trees
 - Use multiple decision trees together to improve the predictive accuracy
 - To avoid over-fitting
 - To improve stability and accuracy
 - Combining weak classifiers in order to produce a strong classifier
 - Condition: diversity among the weak classifiers
 - Illustration: using <u>1 tree</u> vs <u>100 trees</u>

Random Forests

- How to achieve diversity
 - Bagging: Bootstrap aggregating
 - Bootstrap: Random resampling with repetition
 - Learn decision trees from different subsamples of original data
- How to make a group decision?
 - Each decision tree in a random forest makes a decision
 - Multiple decisions are aggregated using majority vote or average
 Random Forest Simplified

https://levelup.gitconnected.com/a-noobs-guide-to-random-forest-d7398d56b01c

- Decision Tree
 - sklearn.tree.DecisionTreeClassfier

```
with open('../data/mnist.pkl', 'rb') as f:
    train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
... loading data

train_x, train_y = train_set
    test_x, test_y = test_set

train_x = pd.DataFrame(train_x)
    train_y = pd.DataFrame(train_y, columns=['label'])
    test_x = pd.DataFrame(test_x)
    test_y = pd.DataFrame(test_y, columns=['label'])

from sklearn.tree import DecisionTreeClassifier

decisionTree = DecisionTreeClassifier(random_state=0, criterion="entropy")
    decisionTree.fit(train_x, train_y)
```

{"gini", "entropy"}, default="gini"
The function to measure the quality of a split.

- Decision Tree
 - sklearn.tree.DecisionTreeClassfier

```
from sklearn.tree import DecisionTreeClassifier

decisionTree = DecisionTreeClassifier(random_state=0, criterion="entropy")

decisionTree. fit(train_x, train_y)

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted='deprecated')

X : array-like, sparse matrix} of shape (n_samples, n_features)
Y : array-like of shape (n_samples,) or (n_samples, n_outputs)
```


- Decision Tree
 - sklearn.tree.DecisionTreeClassfier

```
print("=== > Test set score : {:.2f}".format(decisionTree.score(test_x, test_y)))
=== > Test set score : 0.88

score(X, y, sample_weight=None)

X : array-like of shape (n_samples, n_features)
Y : array-like of shape (n_samples,) or (n_samples, n_outputs)
```


- Random Forest
 - sklearn.ensemble. RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier

rforest = RandomForestClassifier(random_state=0)

rforest.fit(train_x, train_y)
```

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted='deprecated')

X : array-like, sparse matrix} of shape (n_samples, n_features) **Y** : array-like of shape (n_samples,) or (n_samples, n_outputs)

class sklearn.ensemble. RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

- Random Forest
 - sklearn.ensemble. RandomForestClassifier

```
print("Test set score : {:.2f}".format(rforest score(test_x, test_y)))

Test set score : 0.97

score(X, y, sample_weight=None)

X : array-like of shape (n_samples, n_features)
Y : array-like of shape (n_samples,) or (n_samples, n_outputs)
```


confusion matrix with heatmap

decision tree

```
from sklearn.metrics import confusion_matrix
import seaborn as sn #if not available, "!pip install seaborn"

pred_y = decisionTree.predict(test_x)
cmdtree = confusion_matrix(test_y, pred_y)

plt.figure(figsize=(10,7))
sn.heatmap(cmdtree, annot=True, fmt='d')

plt.title(" < CONFUSION MATRIX > ")
plt.ylabel('Predicted label')
plt.xlabel('True Label')

plt.show()
```


confusion matrix with heatmap

random forest

```
from sklearn.metrics import confusion_matrix
import seaborn as sn

pred_y = rforest.predict(test_x)
rtree_cmd = confusion_matrix(test_y, pred_y)

plt.figure(figsize = (10, 7))
sn.heatmap(rtree_cmd, annot=True, fmt='d')

plt.title(" < CONFUSION MATRIX > ")
plt.ylabel('Predicted label')
plt.xlabel('True Label')

plt.show()
```

