Écrivez vos nom et prénom avant de commencer une nouvelle double feuille.

Tracez et laissez une marge de 1 cm environ à gauche de chaque page.

Encadrez la réponse définitive sous forme de formule.

Documents, Calculatrice et Téléphone: non autorisés

Attention : aucun échange ne sera autorisé entre étudiants (stylo, règle, effaceur, etc.)

Soignez votre écriture : cela en facilitera la lecture et en accélèrera la correction.

Durée: 1h 30

Questions de cours (3 pts)

Soit un solide S en mouvement par rapport aux référentiels absolu et relatif.

- $\mathcal{R}(0, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ est le référentiel absolu.
- $\mathcal{R}'\left(0',\overrightarrow{e'_x},\overrightarrow{e'_y},\overrightarrow{e'_z}\right)$ est le référentiel relatif.
- $\mathcal{R}''\left(O'',\overrightarrow{e''_x},\overrightarrow{e''_y},\overrightarrow{e''_z}\right)$ est un référentiel lié au solide S.

Nous noterons les vitesses de rotations suivantes ainsi :

- ullet $\overrightarrow{\Omega_e} = \overrightarrow{\Omega}(\mathcal{R}'/\mathcal{R})$ est la vitesse de rotation d'entraînement
- $\overrightarrow{\Omega_r} = \overrightarrow{\Omega}(S/\mathcal{R}')$ est la vitesse de rotation relative
- $\overrightarrow{\Omega_a} = \overrightarrow{\Omega}(S/\mathcal{R})$ est la vitesse de rotation absolue

Exprimer les formules suivantes, où M est un point du solide S : 5. L'accélération de Coriolis $\overrightarrow{a_c}(M)$ 6. L'accélération relative $\overrightarrow{a_r}(M)$

- 1. La vitesse de rotation absolue $\overrightarrow{\Omega_a}$
- 2. La vitesse d'entrainement $\overrightarrow{V_e}(M)$
- 3. La vitesse relative $\overrightarrow{V_r}(M)$
- 4. L'accélération d'entrainement $\overrightarrow{a_e}(M)$

Exercice 1 (7 pts):

Un manège d'enfants, comportant quatre capsules, tourne à une vitesse de rotation $\overrightarrow{\Omega_1} = \omega_1 \vec{z}$, avec $\omega_1= heta_1$. Sur la plateforme, les quatre capsules tournent également autour de leurs axes respectifs 03/05/2016 (C,\vec{z}) à une vitesse de rotation par rapport au manège $\overrightarrow{\Omega_2}=\omega_2\vec{z}$, avec $\omega_2=\dot{\theta}_2>0$. Les angles sont définis ainsi : $\theta_1 = (\widehat{x_0}, \widehat{x_1})$ et $\theta_2 = (\widehat{x_1}, \widehat{x_2})$.

Les axes (C, \vec{z}) sont situés à une distance R de O, telle que $\overrightarrow{OC} = R\overrightarrow{x_1}$. Les enfants s'installent à quatre par capsule. Soit un enfant installé dans une capsule de centre C en M, tel que $\overrightarrow{CM} = r\overrightarrow{x_2}$. Attention : ω_1 et ω_2 ne sont pas nécessairement constants.

Nous utiliserons les trois référentiels suivants :

- $\mathcal{R}_0(0,\overrightarrow{x_0},\overrightarrow{y_0},\overrightarrow{z})$: lié à la Terre
- $\mathcal{R}_1(0,\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z})$: lié au manège tournant
- R₂(で, ズノ, デノ, テノ, え): lié à la capsule centrée en C

Questions:

- 1. Donner la chaine cinématique
- 2. En déduire les expressions des vecteurs vitesses de rotation entre les 3 7. Calculer l'accélération d'entrainement de M référentiels
- 3. Écrire les vecteurs de \mathcal{R}_1 par rapport à \mathcal{R}_0
- 4. Écrire les vecteurs de \mathcal{R}_2 par rapport à \mathcal{R}_1
- 5. Calculer la vitesse d'entrainement de M
- 6. Calculer la vitesse relative de M
- 8. Calculer l'accélération de Coriolis de M
- 9. Calculer l'accélération relative de M

Exercice 2 (10 pts):

On considère un hélicoptère (figure ci-dessous) se déplaçant à vitesse uniforme non nécessairement constante $\overrightarrow{V}=v\overrightarrow{e_x}$ le long de l'axe $(0, \overrightarrow{e_x})$ fixe dans le référentiel terrestre. Les 3 pales de l'hélice ont une longueur R et tournent à la vitesse angulaire $\omega=rac{d heta}{dt}$ également variable dans le temps. Soit un point M situé en bout de pale. Nous utiliserons les trois référentiels suivants :

- $\mathcal{R}(0, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ est le référentiel absolu, lié à la Terre. • $\mathcal{R}'(A, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ est le référentiel relatif, lié à l'hélicoptère.
- $\mathcal{R}''(A, \overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$ est un référentiel lié aux pales de l'hélicoptère.

Questions:

- Donner la chaine cinématique
- ~ 2. En déduire les expressions des vecteurs vitesses de rotation entre les 3 référentiels
- 3. Écrire les vecteurs de \mathcal{R}' par rapport à \mathcal{R}
 - 4. Écrire les vecteurs de \mathcal{R}'' par rapport à \mathcal{R}'
- 5. Calculer la vitesse d'entrainement de M
- 6. Calculer la vitesse relative de M
- 7. Calculer l'accélération d'entrainement de M
- 8. Calculer l'accélération de Coriolis de M
- 9. Calculer l'accélération relative de M

