5th International Association for the Advancement of Space Safety Conference Versailles, FRANCE October 17-19, 2011

Human Factors Throughout the Life Cycle: Lessons Learned from the Shuttle Program

Human Factors in Ground Processing

Barbara G. Kanki, PhD.

NASA Ames Research Center

Moffett Field, California USA
barbara.g.kanki@nasa.gov

Agenda

Human Factors in Ground Processing

- Introduction
 - Managing risk in human systems
 - > Contributing risks: design, environment, process
- Example: STS-93 wire anomaly
 - Design risks
 - > Environment risks
 - Process risks
 - Human systems issues
- Summary

Managing Risk in Human Systems

- HUMAN SYSTEMSDESIGN RISK
 - Individual / Teams
 - Skills & knowledge
 - Leadership
 - Team complement
 - Work practices
 - Organizations
 - Training
 - Controls
 - Resources
 - Workforce

- - Hardware / Software
- ENVIRONMENT RISK
 - Workplace / Conditions / Hazards
- PROCESS RISK
 - Procedures / Policies / Resources

Focus on the human interfaces

Managing Risk in Human Systems

DESIGN

- Is damage visible?
- Is there access to the work area?

ENVIRONMENT

- Is there adequate space, lighting?
- > Is PPE required?

PROCESS

- Are resources, controls adequate?
- Are work procedures usable, up-to-date?
- Do teams communicate/ coordinate appropriately?

STS-93 JULY 23, 1999

- Five seconds after lift-off, one of two redundant main engine controllers on two of the three engines shut down due to power fluctuation (later found to be due to wire arcing).
- OUTCOME: The redundant controllers on those two engines -- center and right main engines -- functioned normally allowing them to fully support Columbia's climb to orbit

An orbiter has more than 300 miles of wires such as these shown in the cable tray.

A damaged wire found during wiring inspections in Columbia's payload bay following STS-93, caused a short circuit in two separate main engine controllers on launch.

Wiring In-Flight Anomaly: Basic Findings

Inspection revealed a single
 14 ga. polyimide wire had arced to a burred screw head; located in the aft left-hand mid-body bay #11 lower wire tray.

 Wiring in the mid-body payload bay normally covered; records indicate covers last removed during Orbiter Maintenance Down Period (OMDP) 4 years earlier in the Palmdale depot facility.

Wiring In-Flight Anomaly: Root Cause

- Root cause
 - Work-induced collateral damage
 - No evidence of generic chafing exists (not simply fair wear-and-tear)
 - Wire protection specification applied inconsistently
- Therefore, assessments focused on maintenance practices.

Wiring In-Flight Anomaly: Assessments

- Review the Space Shuttle systems and maintenance practices... look at NASA practices, Shuttle anomalies, and civilian and military experience. (NASA)
- Identify strengths and weaknesses in shuttle processing, compare shuttle processing to commercial aviation best practices, make suggestions to reduce Ground-Processing-Induced In-Flight Anomaly (GPI-IFA) risk (USA)

http://www.hq.nasa.gov/osf/shuttle_assess.html

HUMAN SYSTEM Issues

- INDIVIDUAL RISKS: Ground personnel expected to perform "error-free" and in compliance with procedures
 - Not aware of the in-fight consequences of ground-processing-induced "errors"
 - > Downsized workforce under strain
- TEAM-LEVEL RISKS: KSC team and Palmdale processing teams have different standards
 - > Wire inspection criteria need redefinition

TECHNICAL Issues: Wiring System

DESIGN RISKS

- Maximum feasible separation of redundant systems (e.g., redundancy of circuits compromised by placement in same wire bundle)
- Identification of single point failures
- Over time and modifications, additional wire protection for critical systems (e.g., wire tray covers become hard to close)

TECHNICAL Issues: Wiring System

WORK ENVIRONMENT RISKS

- > Extensive wiring inspection, repair
- ➤ High traffic area?
- > Access to work area?
- Damage visible?

TECHNICAL Issues: Wiring System

PROCESS RISKS

- Managed through certification, skill, procedural control, inspection, teaming and continuous reinforcement of safety awareness
- Little emphasis on error reporting, management, and understanding of why workmanship errors occur
- Line employees should be aware of relationship between workmanship/test errors and GPI-IFAs

Summary

- Risk Management in Human Systems applies to:
 - > Individuals
 - > Teams
 - Organizations
- Risk Contributors to Human Systems are:
 - Design risks
 - > Work Environment risks
 - > Process risks

Summary

- Apply Lessons Learned to future programs
 - Maintain a realistic attitude toward risky operations
 - Develop a better understanding of the risk of Ground-Processing-Induced In-Flight Anomalies
 - Expand corrective actions beyond specific, technical fixes
 - Fit solutions to the risks: design risks are not well-solved by process solutions

Thank You