5

10

15

20

25

ABSTRACT

IL-5 INHIBITING 6-AZAURACIL DERIVATIVES

The present invention is concerned with the compounds of formula

$$\mathbb{R}^{4} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{4} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{N} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{1} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{1})_{p}}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{(\mathbb{R}^{3})_{p}}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}}$$

the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein p is 0 to 4; X is O, S, NR⁵ or a direct bond; Y is O, S, NR⁵ or S(O)₂; R¹ independently is C₁₋₆alkyl, halo, polyhaloC₁₋₆alkyl, hydroxy, mercapto, C₁-6alkyloxy, C₁-6alkylthio, C₁-6alkylcarbonyloxy, aryl, cyano, nitro, Het³, R⁶, NR⁷R⁸ or substituted C_{1.4}alkyl; R² is Het¹, C_{3.7}cycloalkyl or optionally substituted C₁₋₆alkyl and if X is O, S or NR⁵, then R² may also represent aminocarbonyl, aminothiocarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylthiocarbonyl, arylcarbonyl, arylthiocarbonyl, Het¹carbonyl or Het¹thiocarbonyl; R³ and R⁴ independently are hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; R³ and R⁴ form a C₂₋₆alkanediyl; R⁵ is hydrogen or C_{1.4}alkyl; R⁶ is a sulfonyl or sulfinyl derivative; R⁷ and R⁸ are independently hydrogen, optionally substituted C₁₋₄alkyl, aryl, a carbonyl containing moiety, C₃₋₇cycloalkyl, -Y-C₁₋₄alkanediyl-C(=0)-O-R¹⁴, Het³, Het⁴ and R⁶; R¹¹ is hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C₁-4alkyloxy, formyl, trihaloC₁-4alkylsulfonyloxy, R⁶, NR⁷R⁸, C(=O)NR⁷R⁸, C₁-4alkanediyl-C(=O)-O-R¹⁴, -C(=O)-O-R¹⁴, -Y-C₁-4alkanediyl-C(=O)-O-R¹⁴, aryl, aryloxy, arylcarbonyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyloxy, phthalimide-2-yl, Het³ and C(=O)Het3; R14 is hydrogen, C1-4alkyl, C3-7cycloalkyl, aminocarbonylmethylene or mono-or di(C₁₋₄alkyl)aminocarbonylmethylene; aryl is optionally substituted phenyl; Het¹, Het², Het³ and Het⁴ are optionally substituted heterocycles; to processes for their preparation and compositions comprising them. It further relates to their use as a medicine.