

HEXFET® Power MOSFET

V _{DS}	-20	٧
V _{GS Max}	±12	٧
$R_{DS(on) max}$ (@V _{GS} = -4.5V)	135	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = -2.5V)	236	mΩ

Application(s)

• System/Load Switch

Features and Benefits

Features

Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

results in

Delicitis
Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol	Symbol Parameter		Units	
V _{DS}	Drain-Source Voltage	-20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-2.6		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.1	А	
I _{DM}	Pulsed Drain Current	-11		
P _D @T _A = 25°C Maximum Power Dissipation		1.3	10/	
P _D @T _A = 70°C Maximum Power Dissipation		0.80	 W	
Linear Derating Factor		0.01	W/°C	
V _{GS}	Gate-to-Source Voltage	± 12	V	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ^③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ®		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

1

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-20		_	V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		9.5	_	mV/°C	Reference to 25°C, $I_D = -1 \text{mA}$
R	Static Drain-to-Source On-Resistance		90	135	mΩ	$V_{GS} = -4.5V, I_D = -2.6A$ ②
R _{DS(on)}	Static Diam-to-Source On-Nesistance		157	236	11122	$V_{GS} = -2.5V, I_D = -2.1A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	-0.4		-1.1	V	$V_{DS} = V_{GS}$, $I_D = -10\mu A$
I _{DSS}	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -16V, V_{GS} = 0V$
	Diam-to-Source Leakage Current			-150	μΑ	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	na I	V _{GS} = -12V
R _G	Internal Gate Resistance		16		Ω	
gfs	Forward Transconductance	3.4			S	$V_{DS} = -10V, I_{D} = -2.6A$
Q_g	Total Gate Charge		2.9			I _D = -2.6A
Q_{gs}	Gate-to-Source Charge		0.52		nC	V _{DS} =-10V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.2	_		V _{GS} = -4.5V ②
$t_{d(on)}$	Turn-On Delay Time		5.3	_		V _{DD} =-10V②
t _r	Rise Time		7.7			$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		26		ns	$R_G = 6.8\Omega$
t _f	Fall Time		16			V _{GS} = -4.5V
C _{iss}	Input Capacitance		220			V _{GS} = 0V
C _{oss}	Output Capacitance	_	70		pF	V _{DS} = -16V
C _{rss}	Reverse Transfer Capacitance		48			f = 1.0KHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.0	Α	showing the
I _{SM}	Pulsed Source Current			-11	_ ^	integral reverse
	(Body Diode) ①			-11		p-n junction diode.
V_{SD}	Diode Forward Voltage	_	_	-1.2	V	$T_J=25^{\circ}C,\;I_S=\text{-}2.6A,\;V_{GS}=0V$ ②
t _{rr}	Reverse Recovery Time		17	26	ns	$T_J = 25^{\circ}C$, $V_R = -15V$, $I_F = -2.6A$
Q _{rr}	Reverse Recovery Charge		6.2	9.3	nC	di/dt = 100A/µs ②

International TOR Rectifier

IRLML2246TRPbF

 $(V) = \frac{100}{100} = \frac{100}{1$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML2246TRPbF

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

(m) Populari (m) P

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Typical On-Resistance vs.
Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International IOR Rectifier

IRLML2246TRPbF

1000 800 600 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 Time (sec)

Fig 15. Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

International IOR Rectifier

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS				
SYMBOL MILLIMETERS		INCHES		
STIVIBOL	MIN	MAX	MIN	MAX
Α	0.89	1.12	0.035	0.044
A1	0.01	0.10	0.0004	0.004
A2	0.88	1.02	0.035	0.040
b	0.30	0.50	0.012	0.020
С	0.08	0.20	0.003	0.008
D	2.80	3.04	0.110	0.120
Е	2.10	2.64	0.083	0.104
E1	1.20	1.40	0.047	0.055
е	0.95	BSC	0.037	BSC
e1	1.90	BSC	0.075	BSC
L	0.40	0.60	0.016	0.024
L1	0.54	REF	0.021	REF
L2	0.25	BSC	0.010	BSC
0	0	8	0	8

- DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: MILLIMETER.

 A DATUM PLANE H IS LOCATED AT THE MOLD PARTING LINE.
- ∠∆DATUM PLANE HIS LOCATED AT THE MICL D PARTINIS LINE.

 ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMINISIONS D AND BI ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES
 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD PLASH MICLD PROTRUSIONS
 OR INTERLEAD PLASH SHALL NOT EXCEED 0.25 MI/(10.010 INCH) PER SIDE.

 ADMENSION, IS THE LEAD LEASH SHALL SOFT EXCEED 1.25 MI/(10.010 INCH) PER SIDE.

 B OUTLINE CONFORMS TO JEDEC OUTLINE TO 226 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

2009

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ (SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

Orderable part number	Package Type	Standard Pack Note		Note
		Form	Quantity	
IRLML2246TRPbF	Micro3 (SOT-23)	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††} (per JEDEC JESD47F ^{†††} guidelines)		
Moisture Sensitivity Level	Micro3 (SOT-23)	MSL1 (per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board.
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 03/2012