Spidolight Hexabot

Advisors:

Dr. Fahad Mumtaz Salman Qadir

Group members:

Abdullah Khan Lodhi Ahmer Ali Salman Haider Shanza Munir

Outline

- Objective
- Block Diagram
- CAD Modelling
- Spidolight Hexapod
- Motion Study
- Simulation Results
- Hardware Integration
- Gait Analysis
- RC operation
- Limitations

Objective

Aim of the project is to fabricate a robust and lightweight UGV with all terrain capabilities by designing and integrating electrical and mechanical components.

Block Diagram

CAD Modelling

Modelled using SolidWorks 2014

Spidolight Hexapod

Motion Study

- Gait Analysis
- Speed Analysis
- Torque Analysis

Simulation Results

Torque Plot

DC Motor with encoder

Specifications

Motor Specifiactions

Drawing	4-M4*7 op PCDØ35		6.5	版次: 0.0
	客户确认 (Customer APP.):		商	
Details	No Load Current(A):	≤0.700		
	No Load Speed(r.p.m):	$810 \pm 10\%$	标	
	Rated Load Torque(kgf.cm):	1.3	NO.	备注
	Rated Current(A):	≤2.000	1	
	Rated Load Speed(r.p.m):	$648 \pm 10\%$	2	
	Stall Current(A)	7 A	3	
	Stall Torque(kgf.cm)	4.5 Nm	4	
	Rotation Direction:		5	
lemark			6	
raw		Rev		APP.

Hardware integration

Why 3 Motor drivers?

- BTS 7960 motor driver
- 2x Dual H bridge for 4 motors
- ▶ 1 Dual H-Bridge to control 2 motors separately

Work that has been done

- Literature review
- CAD Model design
- Simulations
- Fabrication

Gait of Hexapod

Gait for forward motion

Figure The two phases of the alternating tripod gait. Full circles are legs in stance, open circles are legs in flight. Center of mass, oval dot, must stay inside the *polygon of support* (triangle) formed by stance legs.

Left turn

Right turn

Work in progress

- PID based position control
 - PID is preferred because it has good steady state and transient response
 - First test run

Radio control

Radio control

- 2 channel radio control
- One channel control the forward backward movement
- Second channel control left right turns
- ▶ 27 MHz frequency
- Range is 75 to 100 feet
- RC module has been ordered
- Manufacturer NIKKO

RC operation

Forward: 16 pulses

Reverse: 40 pulses

Left: 28 pulses

Right: 34 pulses

- 🔼 Pulse sequence
- B 27.9MHz signal
- 🕒 Transmitted signal
- Burst sequence, each ≈ 700μs long with ≈ 700μs spacing
- Sequence repeats

RC module connection with Arduino Mega

- Made with D Fritzing,org
- Digital PWM pins to read the inputs
- > 5V power to the receiver

Limitations

- Low range RC
- ► Test runs will be done using power supply, final implementation using lipo batteries

Timeline

End Date	Tasks	Status	
30 th November 2015	Literature Review	Complete	
31 th December 2015	CAD Model	Complete	
29th January 2016	Simulations	Complete	
4 th April 2016	Fabrication	Complete	
30 th April 2016	Programming	In Progress	
10 th May 2016	RC Integration	In Progress	
20 th March 2016	Final testing, results and poster presentation	Not Started	

Thank You!! Questions??