Build a Data Annotation Tool using AL and TL

Final Presentation

Thursday, August 19, 2021

Presented by: Yongchao Zhou

Motivation

Figure 1: Machine Learning Life Cycle

Motivation

How to build a label-efficient ML System?

Figure 1: Machine Learning Life Cycle

Motivation

How to build a label-efficient ML System?

Figure 1: Machine Learning Life Cycle

Why AL + TL?

Table 1: Comparison of Active Learning and Transfer Learning

	Active Learning (AL)	Transfer Learning (TL)
Goal	Select most informative example	Reuse knowlege learned elsewhere
Effect	Reduce number of labeled data	Reduce model training time Reduce number of labeled data
Target	Data	Model

Live Demo - DANER

Named Entity Recognition Service		
✓ ORG ✓ PRODUCT ✓ GPE ✓ LOC ✓ PERSON ☐ MISC ☐ NORP ☐ FACILITY		
EVENT LAW LANGUAGE ART DATE TIME MONEY QUANTITY		
ORDINAL CARDINAL PERCENT		
SELECT ALL DEFAULT RESET		
Model en_core_web_sm		
Hinton is viewed as a leading figure in the deep learning community. The dramatic image-recognition milestone of the AlexNet designed in collaboration with his students Alex <u>Krizhevsky</u> and Ilya <u>Sutskever</u> for the ImageNet challenge 2012 was a breakthrough in the field of computer vision.		
Max characters 1500 287		
ANALYZE RESET		
Hinton ORG is viewed as a leading figure in the deep learning community. The dramatic image-recognition milestone		
of the AlexNet ORG designed in collaboration with his students Alex Krizhevsky PERSON and		
Ilya Sutskever Person for the ImageNet ORG challenge 2012 was a breakthrough in the field of computer vision.		

Figure 2: NER Inference Service

Figure 3: NER Annotation Service

5

How to implement?

Figure 4: Data Annotation Process

Figure 5: Annotation Service Structure Overview

5

How to implement?

Figure 4: Data Annotation Process

Figure 5: Annotation Service Structure Overview

5

How to implement?

Figure 4: Data Annotation Process

Figure 5: Annotation Service Structure Overview


```
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01,
                  # strength of weight decay
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
                            # the instantiated 💬 Transformers model to be trained
   model = hf _ model ,
   tokenizer=tokenizer, # the tokenizer that is compatible with model
   train_dataset=active_set, # AL dataset
trainer.train()
```



```
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
   max_steps=MAX_STEPS,
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01, # strength of weight decay
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
   model=hf_model,
   tokenizer=tokenizer,
   args=training_args,
   train_dataset=active_set, # AL dataset
trainer.train()
```



```
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments
training_args = TrainingArguments(
   max_steps=MAX_STEPS,
                       # total number of training steps per AL step
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01,
                      # strength of weight decay
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
   model=hf_model,
   tokenizer=tokenizer,
   args=training_args,
   train_dataset=active_set, # AL dataset
trainer.train()
```



```
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
   max_steps=MAX_STEPS,
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01, # strength of weight decay
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
   model=hf_model,
   tokenizer=tokenizer,
   args=training_args,
   train_dataset=active_set, # AL dataset
trainer.train()
```



```
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments
training_args = TrainingArguments(
   max_steps=MAX_STEPS,
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01, # strength of weight decay
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
   model=hf_model,
                                   # the instantiated @ Transformers model to be trained
   tokenizer=tokenizer,
                                  # the tokenizer that is compatible with model
   args=training_args,
                                  # training arguments, defined above
   train_dataset=active_set, # AL dataset
trainer.train()
```



```
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
   max_steps=MAX_STEPS,
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01,
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
   model=hf_model,
   tokenizer=tokenizer,
   args=training_args,
   train_dataset=active_set,
trainer.train()
```



```
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
   per_device_train_batch_size=32, # batch size per device during training
   per_device_eval_batch_size=64, # batch size for evaluation
   weight_decay=0.01,
                  # strength of weight decay
tokenizer = AutoTokenizer.from_pretrained(model_name)
hf_model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
trainer = Trainer(
                            # the instantiated 💬 Transformers model to be trained
   model = hf _ model ,
   tokenizer=tokenizer, # the tokenizer that is compatible with model
   train_dataset=active_set, # AL dataset
trainer.train()
```


- Maximum Normalized Log-Probability (MNLP)
 - Intuition: select the most uncertain points.
 - How to represent the uncertainty?
 - Let \mathbf{x}_i be the i^{th} data point with n tokens.
 - The probability of model current prediction: $\max_{y_1,\ldots,y_n} \mathbb{P}\left[y_1,\ldots,y_n\mid \mathbf{x}_i\right]$
 - The normalized log probability of model current prediction on \mathbf{x}_i is computed as,

$$MNLP(\mathbf{x}_i) = \max_{y*1,\ldots,y*n} rac{1}{n} \sum *j = 1^n \log \mathbb{P}\left[y*j \mid \mathbf{x}_i
ight]$$

lacksquare AL Data Candidate $\{\mathbf{x}\} = rg\min_{\mathbf{x}_i} MNLP(\mathbf{x}_i)$

- Maximum Normalized Log-Probability (MNLP)
 - Intuition: select the most uncertain points.
 - How to represent the uncertainty?
 - Let \mathbf{x}_i be the i^{th} data point with n tokens.
 - lacksquare The probability of model current prediction: $\max_{y_1,\ldots,y_n}\mathbb{P}\left[y_1,\ldots,y_n\mid \mathbf{x}_i
 ight]$
 - The normalized log probability of model current prediction on \mathbf{x}_i is computed as,

$$MNLP(\mathbf{x}_i) = \max_{y*1,\ldots,y*n} rac{1}{n} \sum *j = 1^n \log \mathbb{P}\left[y*j \mid \mathbf{x}_i
ight]$$

lacksquare AL Data Candidate $\{\mathbf{x}\} = rg\min_{\mathbf{x}_i} MNLP(\mathbf{x}_i)$

- Maximum Normalized Log-Probability (MNLP)
 - Intuition: select the most uncertain points.
 - How to represent the uncertainty?
 - Let \mathbf{x}_i be the i^{th} data point with n tokens.
 - $lacksymbol{ullet}$ The probability of model current prediction: $\max_{y_1,\ldots,y_n}\mathbb{P}\left[y_1,\ldots,y_n\mid \mathbf{x}_i
 ight]$
 - The normalized log probability of model current prediction on \mathbf{x}_i is computed as,

$$MNLP(\mathbf{x}_i) = \max_{y*1,\ldots,y*n} rac{1}{n} \sum *j = 1^n \log \mathbb{P}\left[y*j \mid \mathbf{x}_i
ight]$$

lacksquare AL Data Candidate $\{\mathbf{x}\} = rg\min_{\mathbf{x}_i} MNLP(\mathbf{x}_i)$

- Maximum Normalized Log-Probability (MNLP)
 - Intuition: select the most uncertain points.
 - How to represent the uncertainty?
 - Let \mathbf{x}_i be the i^{th} data point with n tokens.
 - $lacksymbol{lack}$ The probability of model current prediction: $\max_{y_1,\ldots,y_n}\mathbb{P}\left[y_1,\ldots,y_n\mid \mathbf{x}_i
 ight]$
 - The normalized log probability of model current prediction on \mathbf{x}_i is computed as,

$$MNLP(\mathbf{x}_i) = \max_{y*1,\ldots,y*n} rac{1}{n} \sum *j = 1^n \log \mathbb{P}\left[y*j \mid \mathbf{x}_i
ight]$$

lacksquare AL Data Candidate $\{\mathbf{x}\} = rg\min_{\mathbf{x}_i} MNLP(\mathbf{x}_i)$

Select data with small MNLP score!

Small score = Low Confidence = High Uncertainty

Limitation and Next Step

- Active Learning Performance Gap
 - Dataset? Architecture?
 - Transfer Learning?
 - More robust AL Algorithm is needed
- Noisy Human Label
 - Human label may not be reliable

User 1

Data Quality Control

Limitation and Next Step

- Active Learning Performance Gap
 - Dataset? Architecture?
 - Transfer Learning?
 - More robust AL Algorithm is needed
- Noisy Human Label
 - Human label may not be reliable

User 1

User 2

Geoffrey Everest Hinton (born 6 December 1947 DATE) is a British NORP - Canadian cognitive psychologist and computer scientist , most noted for his work on artificial neural networks .

Data Quality Control

Figure 6: AL Performance from Literature [1]

[1] Deep Active Learning for Named Entity Recognition (ICLR2018)

Take away

Figure 7: Internship Take Away

