Prelim-Data Analysis Semester Project

AUTHOR
Olaitan Comfort Shekoni

Data Description

The dataset used for this analysis is from the second study of my MSc. thesis titled "Evaluation of the Efficacy of Bovine Adenovirus-Vectored Avian Influenza Vaccine in Poultry,". This study investigates how different mucosal vaccine routes influence protection against avian influenza. For this preliminary analysis, I used qPCR viral-load data (Ct values and log10 genomic equivalents) from tracheal swabs collected at three time points—2, 4, and 6 days post-challenge (DPC2, DPC4, DPC6)—in chickens that received a single dose of the BAdV-H5HA+H7NP vaccine (1x10⁸pfu) in a prime-booster dose vaccine administration via two routes—intraocular (IO) and intramuscular (IM)—and challenged with two avian influenza virus strains (H5N1 and H7N2).

Each Excel sheet corresponds to one **Virus × Timepoint** combination (e.g., DPC2-H5N1).

Key variables:

- Vaccine_Group: Mock, Mock Challenge, Empty-Vector, BAds-AIV
- Route: IM (intramuscular) or IO (intraocular)
- Bird_ID: unique sample identifier
- Ct: qPCR cycle threshold (continuous)
- log10GE: log₁₀ genome equivalents/mL (continuous)

Since "Mock" birds were not challenged, they are excluded.

Data are nested: **Bird_IDs** are nested within **Vaccine_Group** × **Route** combinations, and each sheet (timepoint) is nested within each **Virus**.

#LOADING LIBRARIES
library(tidyverse)

— Attaching core tidyverse packages — — tidyverse 2.0.0 —

http://localhost:3534/ Page 1 of 12

```
2.1.5
✓ dplyr
           1.1.4
                      ✓ readr
✓ forcats 1.0.0
                                  1.5.1

✓ stringr

✓ ggplot2
           4.0.0

✓ tibble

                                  3.3.0
✓ lubridate 1.9.4

✓ tidyr

                                  1.3.1
            1.1.0
✓ purrr
— Conflicts —
tidyverse conflicts() —
* dplyr::filter() masks stats::filter()
                  masks stats::lag()
* dplyr::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>)
to force all conflicts to become errors
library(stringr)
library(readxl)
library(dplyr)
library(tidyr)
library(ggplot2)
library(readr)
                # for parse_number()
library(purrr)
library(broom)
library(multcomp) # for Tukey
Loading required package: mvtnorm
Loading required package: survival
Loading required package: TH.data
Loading required package: MASS
Attaching package: 'MASS'
The following object is masked from 'package:dplyr':
    select
Attaching package: 'TH.data'
The following object is masked from 'package:MASS':
    geyser
 library(car)
Loading required package: carData
```

```
Attaching package: 'car'
The following object is masked from 'package:dplyr':
    recode
The following object is masked from 'package:purrr':
    some
 library(emmeans)
Welcome to emmeans.
Caution: You lose important information if you filter this
package's results.
See '? untidy'
library(multcompView)
library(ggpubr)
 library(glm2)
Attaching package: 'glm2'
The following object is masked from 'package:MASS':
    crabs
The following object is masked from 'package:survival':
    heart
library(glmertree)
Loading required package: lme4
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
    expand, pack, unpack
```

```
Loading required package: partykit
Loading required package: grid
Loading required package: libcoin
```

```
library(glmmTMB)
```

Warning in check_dep_version(dep_pkg = "TMB"): package version mismatch:

glmmTMB was built with TMB package version 1.9.17
Current TMB package version is 1.9.18
Please re-install glmmTMB from source or restore original
'TMB' package (see '?reinstalling' for more information)

```
library(lme4)
library(pscl)
```

Classes and Methods for R originally developed in the Political Science Computational Laboratory Department of Political Science Stanford University (2002–2015), by and under the direction of Simon Jackman. hurdle and zeroinfl functions by Achim Zeileis.

```
library(ZIM)
library(TMB)
library(bbmle)
```

Loading required package: stats4

Attaching package: 'bbmle'

The following object is masked from 'package:dplyr':

slice

```
library(DHARMa)
```

This is DHARMa 0.4.7. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')

```
library(patchwork)
```

Attaching package: 'patchwork'

The following object is masked from 'package:MASS':

area

```
# Loading dataset
# Importing my qPCR excel data file
excel_path <- path.expand("~/Desktop/Entomology tech-Fall 2025/
excel_path <- "ENT_Project_Tracheal_qPCR_Clean.xlsx .xlsx"

ENT_Project_Tracheal_qPCR_Clean_xlsx_ <- read_excel("ENT_Project")
#qPCR data wrangling process
excel_path</pre>
```

[1] "ENT Project Tracheal gPCR Clean.xlsx .xlsx"

```
#GETTING SHEET NAMES FROM THE CHOSEN FILE
sheets <- readxl::excel_sheets(excel_path)
#READING ALL SHEETS AND BINDING INTO ONE DATA FRAME
qpcr <- purrr::map_dfr(sheets, ~ readxl::read_excel(excel_path,
dplyr::glimpse(qpcr)  #quick peek into the selected data</pre>
```

```
Rows: 450
Columns: 8
                <chr> "DPC2", "DPC2", "DPC2", "DPC2", "DPC2",
$ Timepoint
"DPC2", "DPC2", ...
                <chr> "H5N1", "H5N1", "H5N1", "H5N1", "H5N1",
$ Virus
"H5N1", "H5N1", ...
$ Vaccine_Group <chr> "Mock", "Mock", "Mock", "Mock", "Mock",
"Mock", "Mock", ...
                <chr> "NA", "NA", "NA", "NA", "NA", "NA",
$ Route
"NA", "NA", "NA", "N...
                <chr> "No", "No", "No", "No", "No", "No",
$ Challenge
"No", "No", "No", "N...
                <dbl> 38.867, 0.000, 0.000, 0.000, 0.000,
$ Ct
0.000, 0.000, 0.000,...
$ log10GE
                <dbl> 3.807920, 3.250908, 3.250908, 3.250908,
3.250908, 3.2509...
$ Bird ID
                <dbl> 712, 713, 714, 715, 716, 717, 718, 719,
```

http://localhost:3534/ Page 5 of 12

720, 721, 722, 7...

```
# Checking counts per original sheet
 gpcr %>% count(Timepoint, Virus)
# A tibble: 6 \times 3
  Timepoint Virus
  <chr>
            <chr> <int>
1 DPC2
            H5N1
                      77
2 DPC2
            H7N2
                      73
3 DPC4
            H5N1
                      77
4 DPC4
            H7N2
                      73
5 DPC6
            H5N1
                      77
6 DPC6
            H7N2
                      73
```

```
qpcr <- lapply(sheets, function(s) {
  df <- read_excel(excel_path, sheet = s)
  df$Sheet <- s
  return(df)
}) |> bind_rows()
```

```
# Clean and set factors
qpcr <- qpcr %>%
  filter(Vaccine_Group != "Mock") %>%
  mutate(
    Timepoint = factor(Timepoint, levels = c("DPC2","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DPC4","DP
```

```
$ Route
             NA, NA, NA, NA, ...
             <chr> "Yes", "Yes", "Yes", "Yes", "Yes",
$ Challenge
"Yes", "Yes", "Yes", ...
$ Ct
             <dbl> 28.294, 29.838, 30.844, 29.953, 29.932,
31.468, 28.799, ...
$ log10GE
             <dbl> 6.923950, 6.468909, 6.172425, 6.435017,
6.441206, 5.9885...
$ Bird_ID
             <dbl> 775, 776, 777, 778, 779, 780, 781, 782,
783, 784, 785, 7...
$ Sheet
             <chr> "DPC2-H5N1", "DPC2-H5N1", "DPC2-H5N1",
"DPC2-H5N1", "DPC...
$ GroupRoute
             NA, NA, NA, NA, ...
```

Checking Normality (Distribution)

Before model fitting, I checked whether **Ct** and **log10GE** are approximately normally distributed.

```
# Example: visualize H7N2 DPC6 data only

panel <- qpcr %>%
    filter(Virus == "H7N2", Timepoint == "DPC6")

# Histogram and QQ plot for Ct

ggplot(panel, aes(x = Ct)) +
    geom_histogram(bins = 20, fill = "skyblue", color = "black")
    labs(title = "Distribution of Ct values (H7N2 DPC6)", x = "Ct theme_minimal()
```



```
ggplot(panel, aes(sample = Ct)) +
  stat_qq() + stat_qq_line(color = "red") +
  labs(title = "QQ-Plot of Ct values", x = "Theoretical Quantil
  theme_minimal()
```

http://localhost:3534/ Page 8 of 12


```
# Histogram and QQ plot for log10GE

ggplot(panel, aes(x = log10GE)) +
  geom_histogram(bins = 20, fill = "orange", color = "black") -
  labs(title = "Distribution of log10GE (H7N2 DPC6)", x = "log1
  theme_minimal()
```

http://localhost:3534/ Page 9 of 12


```
ggplot(panel, aes(sample = log10GE)) +
  stat_qq() + stat_qq_line(color = "red") +
  labs(title = "QQ-Plot of log10GE", x = "Theoretical Quantiles
  theme_minimal()
```

http://localhost:3534/ Page 10 of 12

Interpretation:

The histograms show approximately continuous, right-skewed distributions—typical of qPCR data. log10GE values are closer to normal than raw Ct values but still slightly skewed.

Model Structure and Selection Rationale

Data Nesting: Each measurement is **nested** as follows:

Nesting structure: Bird_ID \subset (Vaccine_Group \times Route) \subset Timepoint \subset Virus (i.e., multiple birds belong to each treatment group (combination of vaccine and route), within each virus and timepoint.

Example model formula (for next stage)

Continuous response (log10GE) ~ fixed effects (Vaccine_Group, Route) + random effects (Bird_ID nested within Timepoint). Not yet running this model; just specifying for rationale

model_example <- "Imer(log10GE ~ Vaccine_Group * Route + (1 | Timepoint/Bird_ID), data = qpcr)" model_example

http://localhost:3534/ Page 11 of 12

Chosen Model

Since my data contain repeated measurements of viral load (Ct and log10GE) across multiple timepoints, birds, and routes, a **nested or mixed-effects model** is appropriate.

The hierarchical structure (*Bird_ID nested within Timepoint within Virus*) requires random effects to account for correlation. Residuals for log10GE appear approximately normal, so a **Linear Mixed Model (LMM)** with Gaussian error is suitable. So, If future analysis shows strong skewness or heteroscedasticity, a **Tweedie GLMM** will be considered to model zero-inflated or right-skewed data. Thus, I will proceed using a **Gaussian LMM** framework with fixed effects for *Vaccine_Group*, *Route*, and *Virus*, and random effects for *Timepoint* and *Bird_ID*.

http://localhost:3534/ Page 12 of 12