Classification I: Naïve Bayes and Logistic Regression

Digging into Data: Jordan Boyd-Graber

University of Maryland

February 18, 2013

COLLEGE OF INFORMATION STUDIES

Slides adapted from Hinrich Schütze and Lauren Hannah

Roadmap

- Classification
- Estimating probability distributions
- Naïve Bayes Example
- Logistic regression
- Evaluating classification

Outline

- Classification
- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

Given:

 A universe X our examples can come from (e.g., English documents with a predefined vocabulary)

4 / 43

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_l\}$

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_l\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_l\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set *D* of labeled documents with each labeled document $d \in \mathbb{X} \times \mathbb{C}$

Given:

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_l\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set D of labeled documents with each labeled document $d \in \mathbb{X} \times \mathbb{C}$

Using a learning method or learning algorithm, we then wish to learn a classifier γ that maps documents to classes:

$$\gamma: \mathbb{X} \to \mathbb{C}$$

Topic classification

Examples of how search engines use classification

- Standing queries (e.g., Google Alerts)
- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- The automatic detection of sexually explicit content (sexually explicit vs. not)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)

Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP. PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- → We need automatic methods for classification.

Classification methods: 2. Rule-based

- There are "IDE" type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is expensive.

Classification methods: 3. Statistical/Probabilistic

- As per our definition of the classification problem text classification as a learning problem
- Supervised learning of a the classification function γ and its application to classifying new documents
- We will look at a couple of methods for doing this: Naive Bayes, Rocchio, kNN
- No free lunch: requires hand-classified training data
- But this manual classification can be done by non-experts.

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$

- n_d is the length of the document. (number of tokens)
- $P(w_i|c)$ is the conditional probability of term w_i occurring in a document of class c
- $P(w_i|c)$ as a measure of how much evidence w_i contributes that c is the correct class.
- P(c) is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another. we choose the c with higher P(c).

Maximum a posteriori class

- Our goal is to find the "best" class.
- The best class in Naive Bayes classification is the most likely or **maximum** a posteriori (MAP) class c map :

$$c_{\mathsf{map}} = \arg\max_{c_j \in \mathbb{C}} \hat{P}(c_j | d) = \arg\max_{c_j \in \mathbb{C}} \hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j)$$

• We write \hat{P} for P since these values are **e**stimates from the training set.

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

• Suppose we want to estimate $P(w_n = \text{``buy''}|z = \text{SPAM})$.

• Suppose we want to estimate $P(w_n = \text{"buy"}|z = \text{SPAM})$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

14 / 43

Suppose we want to estimate $P(w_n = \text{``buy''}|z = \text{SPAM})$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

Maximum likelihood (ML) estimate of the probability is:

$$\hat{\theta}_i = \frac{n_i}{\sum_k n_k} \tag{1}$$

Suppose we want to estimate $P(w_n = \text{``buy''}|z = \text{SPAM})$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

Maximum likelihood (ML) estimate of the probability is:

$$\hat{\theta}_i = \frac{n_i}{\sum_k n_k} \tag{1}$$

Is this reasonable?

The problem with maximum likelihood estimates: Zeros (cont)

If there were no occurrences of "bagel" in documents in class SPAM, we'd get a zero estimate:

$$\hat{P}(\text{"bagel"}|\text{SPAM}) = \frac{T_{\text{SPAM},\text{"bagel"}}}{\sum_{w' \in V} T_{\text{SPAM},w'}} = 0$$

- \rightarrow We will get P(SPAM|d) = 0 for any document that contains bage!
- Zero probabilities cannot be conditioned away.

- In computational linguistics, we often have a *prior* notion of what our probability distributions are going to look like (for example, non-zero, sparse, uniform, etc.).
- This estimate of a probability distribution is called the maximum a posteriori (MAP) estimate:

$$\theta_{\mathsf{MAP}} = \operatorname{argmax}_{\theta} f(x|\theta)g(\theta)$$
 (2)

For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

• α_i is called a smoothing factor, a pseudocount, etc.

For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When $\alpha_i = 1$ for all i, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions (just do this).

For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When $\alpha_i = 1$ for all i, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions (just do this).
- To geek out, the set $\{\alpha_1, \dots, \alpha_N\}$ parameterizes a Dirichlet distribution, which is itself a distribution over distributions and is the conjugate prior of the Multinomial (don't need to know this).

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- Motivating Naïve Bayes Example
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

- Suppose that I have two coins, C_1 and C_2
- Now suppose I pull a coin out of my pocket, flip it a bunch of times, record the coin and outcomes, and repeat many times:

```
0 1 1 1 1
C1 \cdot
C1: 0 1 0
C2: 1 0 0 0 0 0 0 1
C1: 0 1
C1: 1 1 0 1 1 1
C2: 0 0 1 1 0 1
C2: 1 0 0 0
```

 Now suppose I am given a new sequence, 0 0 1 0 0 1; which coin is it from?

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

K-nn will not work: what is the distance between 0 1 0 and 1 0 0 1?

However, there is some structure:

- Easy to get $P(C_1)$, $P(C_2)$
- Also easy to get $P(X_i = 1 \mid C_1)$ and $P(X_i = 1 \mid C_2)$
- By conditional independence.

$$P(X = 0 10 | C_1) = P(X_1 = 0 | C_1)P(X_2 = 1 | C_1)P(X_2 = 0 | C_1)$$

Can we use these to get $P(C_1|X=001001)$?

Summary: have P(data|class), want P(class|data)

Solution: Bayes' rule!

$$P(class | data) = \frac{P(data | class)P(class)}{P(data)}$$

$$= \frac{P(data | class)P(class)}{\sum_{class=1}^{C} P(data | class)P(class)}$$

To compute, we need to estimate P(data | class), P(class) for all classes

Training data:

```
C1: 0 1 0
C2: 1 0 0 0 0 0 0 1
C1: 0 1
C1: 1 1 0 1 1 1
```

C2: 0 0 1 1 0 1

C2: 1 0 0 0

Testing data: 0 0 1 0 0 1

Estimate $P(C_1)$, $P(C_2)$, $P(X = 001001 | C_1)$, $P(X = 001001 | C_2)$

Naive Bayes Classifier

This works because the coin flips are independent given the coin parameter. What about this case:

- want to identify the type of fruit given a set of features: color, shape and size
- color: red, green, yellow or orange (categorical)
- shape: round, oval or long+skinny (categorical)
- size: diameter in inches (continuous)

Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily independent:

Given category "apple," the color "green" has a higher probability given "size < 2":

P(green | size < 2, apple) > P(green | apple)

Naive Bayes Classifier

Using chain rule,

$$\begin{split} P(\textit{apple} \,|\, \textit{green, round, size} &= 2) \\ &= \frac{P(\textit{green, round, size} = 2 \,|\, \textit{apple}) P(\textit{apple})}{\sum_{\textit{fruits}} P(\textit{green, round, size} = 2 \,|\, \textit{fruit j}) P(\textit{fruit j})} \\ &\propto P(\textit{green} \,|\, \textit{round, size} = 2, \textit{apple}) P(\textit{round} \,|\, \textit{size} = 2, \textit{apple}) \\ &\times P(\textit{size} = 2 \,|\, \textit{apple}) P(\textit{apple}) \end{split}$$

But computing conditional probabilities is hard! There are many combinations of (color, shape, size) for each fruit.

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

$$P(green|round, size = 2, apple) = P(green|apple)$$

 $P(round|green, size = 2, apple) = P(round|apple)$
 $P(size = 2|green, round, apple) = P(size = 2|apple)$

More generally for features (or covariates) X_1, \ldots, X_m and class Y,

$$P(X_i | X_1,...,X_{i-1},X_{i+1},...,X_m,Y) = P(X_i | Y),$$

 $P(X_1,...,X_m | Y) = \prod_{i=1}^m P(X_i | Y)$

Naive Bayes Classifier

Why conditional independence?

- estimating multivariate functions (like $P(X_1,...,X_m|Y)$) is mathematically hard, while estimating univariate ones is easier (like $P(X_i | Y)$)
- need less data to fit univariate functions well
- univariate estimators differ much less than multivariate estimator (low variance)
- ... but they may end up finding the wrong values (more bias)

Naïve Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we make the **N**aive Bayes conditional independence assumption:

$$P(d|c_j) = P(\langle w_1, \ldots, w_{n_d} \rangle | c_j) = \prod_{1 \leq i \leq n_d} P(X_i = w_i | c_j)$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(X_i = w_i | c_i)$.

Recall from earlier the estimates for these priors and conditional probabilities:

$$\hat{P}(c_j) = \frac{N_c}{N}$$
 and $\hat{P}(w|c) = \frac{T_{cw}+1}{(\sum_{w' \in V} T_{cw'})+B}$

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- Naïve Bayes Example
- **Logistic Regression**
- **Logistic Regression Example**

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

ID	Color	Origin	Organic	Apple?
1	Red	Domestic	Conventional	Yes
2	Red	Domestic	Conventional	No
3	Red	Domestic	Conventional	Yes
4	Yellow	Domestic	Conventional	No
5	Yellow	Domestic	Organic	Yes
6	Yellow	Imported	Organic	No
7	Yellow	Imported	Organic	Yes
8	Yellow	Imported	Conventional	No
9	Red	Imported	Organic	No
10	Red	Domestic	Organic	Yes

Computing Probabilities

$$p(\mathsf{Apple}) = \frac{5+1}{10+2} = .5$$

$$p(\mathsf{Red}|\mathsf{Apple}) \frac{3+1}{5+2} = 0.57$$

$$p(\text{Imp}|\text{Apple}) \frac{5+2}{5+2} = 0.37$$
 $p(\text{Imp}|\text{Apple}) \frac{1+1}{5+2} = 0.29$

$$p(\text{Conv}|\text{Apple})\frac{2+1}{5+2} = 0.43$$

$$p(\neg Apple) = \frac{5+1}{10+2} = .5$$

$$p(\text{Red}|\neg \text{Apple})\frac{2+1}{5+2} = 0.43$$

$$p(\text{Imp}|\neg \text{Apple})\frac{3+1}{5+2} = 0.57$$

$$p(\text{Conv}|\neg \text{Apple})\frac{3+1}{5+2} = 0.57$$

Computing Probabilities

$$p(Apple) = \frac{5+1}{10+2} = .5$$

$$p(\text{Red}|\text{Apple})\frac{3+1}{5+2} = 0.57$$

$$p(Imp|Apple)\frac{1+1}{5+2} = 0.29$$

$$p(\text{Conv}|\text{Apple})\frac{2+1}{5+2} = 0.43$$

$$p(\neg Apple) = \frac{5+1}{10+2} = .5$$

$$p(\text{Red}|\neg \text{Apple}) \frac{2+1}{5+2} = 0.43$$

 $p(\text{Imp}|\neg \text{Apple}) \frac{3+1}{5+2} = 0.57$

$$p(\text{Conv}|\neg \text{Apple})\frac{3+1}{5+2} = 0.57$$

 $p(C|\neg App)p(I|\neg App)p(R|\neg App)p(\neg App)$

$$p(C|App)p(I|App)p(R|App)p(Apple)$$

= 43 · 29 · 57 · 5

$$=.57 \cdot .57 \cdot .43 \cdot .5$$

=.070

Computing Probabilities

$$p(Apple) = \frac{5+1}{10+2} = .5$$

$$p(\neg Apple) = \frac{5+1}{10+2} = .5$$

$$p(\text{Red}|\text{Apple})\frac{3+1}{5+2} = 0.57$$

 $p(\text{Imp}|\text{Apple})\frac{1+1}{5+2} = 0.29$

$$p(\text{Red}|\neg \text{Apple})\frac{2+1}{5+2} = 0.43$$

 $p(\text{Imp}|\neg \text{Apple})\frac{3+1}{5+2} = 0.57$

$$p(\text{Conv}|\text{Apple})\frac{2+1}{5+2} = 0.43$$

$$p(\text{Conv}|\neg \text{Apple})\frac{3+1}{5+2} = 0.57$$

$$p(C|App)p(I|App)p(R|App)p(Apple)$$

= 43 · 29 · 57 · 5

$$p(C|\neg App)p(I|\neg App)p(R|\neg App)p(\neg App)$$
= 57 · 57 · 43 · 5

=.035

$$=.070$$

So, probably not an apple!

Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- Since $\log(xy) = \log(x) + \log(y)$, we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\mathsf{map}} = \arg\max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j) \right]$$

 $\arg\max_{c_j \in \mathbb{C}} \left[\log \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \log \hat{P}(w_i | c_j) \right]$

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

Generative vs. Discriminative Models

- Easy to compute p(x|y), we want p(y|x)
- Naïve Bayes used Bayes rule to reverse conditioning
- **Generative** models try to model both y and x
- **Discriminative** models only model y (what you care about) given x
- We'll talk about one model that does that called logistic regression
 - Logistic: A special mathematical function it uses
 - Regression: Combines a weight vector with observations to create an answer
- Naïve Bayes is a special case of logistic regression

Logistic Regression: Definition

- Weight vector w_i
- Observations X_i
- "Bias" w_0 (like background probabilities in naïve Bayes)

$$P(Y = 0|X) = \frac{1}{1 + \exp\left[w_0 + \sum_i w_i X_i\right]}$$
(4)

$$P(Y=1|X) = \frac{\exp\left[w_0 + \sum_i w_i X_i\right]}{1 + \exp\left[w_0 + \sum_i w_i X_i\right]}$$
 (5)

- Math is much hairier! (See optional reading)
- For shorthand, we'll say that

$$P(Y=0|X) = \sigma(-(w_0 + \sum_i w_i X_i))$$
 (6)

$$P(Y = 1|X) = 1 - \sigma(-(w_0 + \sum_i w_i X_i))$$
 (7)

• Where $\sigma(z) = \frac{1}{1 - \exp[-z]}$

What's this "exp"?

- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1. Why is this useful?

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**

feature	symbol	weight
bias	w_0	0.1
"viagra"	w_1	2.0
"mother"	W_2	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	W_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document?

$$X = \{\}$$

feature	symbol	weight
bias	w_0	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	W_4	3.0

What does Y = 1 mean?

Example 1: Empty Document?

$$X = \{\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = .52$$

feature	symbol	weight
bias	w_0	0.1
"viagra"	w_1	2.0
"mother"	W_2	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	W_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document?

$$X = \{\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = .52$$

• Bias w_0 encodes the prior probability of a class

feature	symbol	weight
bias	<i>w</i> ₀	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	<i>W</i> ₄	3.0

What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.13$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = .87$$

Include bias, and sum the other weights

feature	symbol	weight
bias	<i>w</i> ₀	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	<i>W</i> ₄	3.0

What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.13$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = .87$$

Include bias, and sum the other weights

feature	symbol	weight
bias	<i>w</i> ₀	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	<i>W</i> ₄	3.0

What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.13$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = .87$$

Include bias, and sum the other weights

feature	symbol	weight
bias	<i>w</i> ₀	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	<i>W</i> ₄	3.0

What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.13$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = .87$$

Multiply feature presence by weight

feature	symbol	weight
bias	<i>w</i> ₀	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	<i>W</i> ₄	3.0

What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.13$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = .87$$

Multiply feature presence by weight

feature	symbol	weight
bias	<i>w</i> ₀	0.1
"viagra"	w_1	2.0
"mother"	<i>W</i> ₂	-1.0
"work"	<i>W</i> ₃	-0.5
"nigeria"	<i>W</i> ₄	3.0

What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.13$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = .87$$

Multiply feature presence by weight

Equivalence of Naïve Bayes and Logistic Regression

Consider Naïve Bayes and logistic regression with two classes: (+) and (-).

Naïve Bayes

$$\hat{P}(c_+)\prod_i\hat{P}(w_i|c_+)$$
 $\hat{P}(c_-)\prod_i\hat{P}(w_i|c_-)$

Logistic Regression

$$\sigma\left(-w_0 - \sum_i w_i X_i\right) = \frac{1}{1 + \exp\left(w_0 + \sum_i w_i X_i\right)}$$

$$1 - \sigma\left(-w_0 - \sum_i w_i X_i\right) = \frac{\exp\left(w_0 + \sum_i w_i X_i\right)}{1 + \exp\left(w_0 + \sum_i w_i X_i\right)}$$

- These are actually the same if $w_0 = \sigma \left(\log \left(\frac{p(c_+)}{1 p(c_+)} \right) + \sum_i \log \left(\frac{1 P(w_i|c_+)}{1 P(w_i|c_-)} \right) \right)$
- and $w_j = \log \left(\frac{P(w_j|c_+)(1-P(w_j|c_-))}{P(w_j|c_-)(1-P(w_j|c_+))} \right)$

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always wins)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (this is why naïve Bayes not in Rattle)

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always wins)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (this is why naïve Bayes not in Rattle)
- Don't need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression

Outline

- **Naive Bayes Definition**
- **Estimating Probability Distributions**
- **Motivating Naïve Bayes Example**
- **Naïve Bayes**
- **Naïve Bayes Example**
- **Logistic Regression**
- **Logistic Regression Example**
- Wrapup

Next time ...

- More classification
 - State-of-the-art models
 - Interpretable models
 - Not the same thing!
- What does it mean to have a good classifier?
- Running all these classifiers in Rattle