用例设计

测试计划-->需求分析-->用例设计和编写-->用例执行-->测试报告--总结

1、设计测试用例的目的:

- 提高测试效率
- 保证测试的覆盖
- 跟进测试进度

2、用例设计的方法

等价类划分法

同类型的数据,取一个代表数据进行测试

- 有效等价类: 对程序有效的输入集合
 - 有效等价类用例尽量覆盖更多的有效等价类
- 无效等价类:对程序无效的输入集合
 - 。 无效等价类测试用例一条只能覆盖一个无效等价类

优缺点:

优点: 能够有效的选取测试数据,增加效率,避免盲目无逻辑的选择测试用例

缺点: 没有充分考虑组合的情况,需要结合边界值方法补充测试用例

边界值分析法:

边界值分析是对等价类划分法的一种补充,选取等价类边界上的值进行设计用例的方法

上点: 边界上的点

离点:举例上点最近的点,如果是闭区间,则离点在外侧,如果是开区间,离点在内侧

内点: 在区间范围内的点

有序的等价类是有边界的, 无序的等价类是没有边界的, 无法使用边界值分析法。例如: 字符串, 汽车, 小学, 高中。

闭区间:

开区间/半开区间:

判定表法

多种不同的条件相互组合产生多种不同的结果,可以使用判定表分析法简化测试用例

• 条件桩: 所有条件项的总称

条件项:各种不同的条件动作桩:所有动作项的总称

。 动作项: 各种不同的动作

判定表使用步骤:

- 找出需求中所有的条件项和动作项
- 画出判定表,将所有的条件分别组合,按照组合的结果填入动作项
- 合并同类项:
 - 。 合并原理: 所有条件满足N-1个相同, 并且动作项一致则可以合并
 - 为什么可以合并: 当某个条件对最终结果没有影响的时候, 可以不对这个条件设置测试用例
 - 。 每一次合并只能合并一次,一组数据不可以连续合并
 - 。 所有数据合并完成有, 如果还存在可以合并的数据, 则可以再次合并

条件桩		1	2	3	4	5	6	7	8	
	手机号	Υ	Υ	Υ	Υ	N	N	N	N	
	密码	N	Υ	N	Υ	Υ	Υ	N	N	
	协议勾选	Υ	N	N	Υ	Υ	N	Υ	N	
动作桩										
	注册成功	N	N	N	Υ	N	N	N	N	
条件桩		1	2	3	4	5				
	手机号	Υ	/	Υ	N	N				
	密码	N	Υ	Υ	Υ	N				
	协议勾选	/	N	Υ	Υ	/				
动作桩										
	注册成功	N	N	Υ	N	N				

因果图

因果图与判定表法基本一样,但是相比判定表法多考虑到了条件与条件之间,条件与结果之间,结果与 结果之间的关系。

• 条件与条件之间的关系:

。 异: 多个提条件最多出现一个

。 或: 多个条件中至少出现一个

• 唯一: 多个条件中有且只有一个

。 要求: A是1时, B必须是1

• 条件与结果:

○ 恒等: 出现某个条件, 必须出现某个结果

。 非: 出现某个条件, 不会出现某个结果

。 或: 多个条件出现一个,则会出现某个结果

。 与: 多个条件同时出现, 出现某个结果

• 结果与结果:

。 强制: 出现了某个结果, 另一个结果不会出现

原本步骤:

- 提取需求中条件和结果
- 画出因果图
- 转换成判定表
- 简化判定表
- 生成测试用例

实际使用步骤:

- 提取需求中的条件和结果
- 直接画出判定表
- 简化判定表
- 生成测试用例

举例:

经典的因果图案例:一个处理单价为5角的饮料的自动售货机。

其规格说如下:

若投入5角钱或1元钱的硬币,押下〖橙汁〗或〖啤酒〗的按钮,则相应的饮料就送出来。若售货机没有零钱找,则一个显示〖零钱找完〗的红灯亮,这时在投入1元硬币并押下按钮后,饮料不送出来而且1元硬币也退出来;若有零钱找,则显示〖零钱找完〗的红灯灭,在送出饮料的同时退还5角硬币。"

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
零钱	Y	Y	Y	Y	Y	Y	Υ	Y	Y	N	N	N	N	N	N	N	N	N
投5角	Υ	Υ				Υ				Υ	Υ				Υ			
投1块			Y	Y			Υ					Y	Υ			Y		
按橙汁	Y		Y					Y		Υ			Υ				Υ	
按啤酒		Y		Y					Y		Υ	Y						Y
出啤酒		Υ		Υ							Υ							
出橙汁	Υ		Y							Υ								
退5角			Ý	Y														
退1元												Y	Υ					
红灯亮												Y	Y	Υ	Υ	Y	Y	Y
200775																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
零钱	/	/	Y	Y	Y	Y	Y	Y	N	N	N	N	N	N				
投5角	Y	Y			1						1							
投1块	<u> </u>	<u> </u>	Y	Y		Y			Y	Y		Y						
按橙汁	Y		Ý				Υ			Ÿ			Y					
按啤酒		V		V				Y	Y					Y				
JX***/EI		<u> </u>						<u> </u>	<u> </u>									
															1			
出啤酒		Y		Y														
出橙汁	Y	<u> </u>	Y															
退5角			Y	Y														
退1元			<u> </u>						Y	V								
红灯亮									Y	V	V	V	Y	Y				
ZIVI Z									<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>				
	-																	

正交实验法

• 从其他学科中借鉴过来的方法

• 正交实验法: 是从大量的测试点中挑选出合适与具有代表性得测试点进行测试

• 具体内容:

因子:影响测试结果的条件数量

水平:因子的条件数量

举例:

组装电脑		
CPU	主板	显卡
amd1	技嘉1	七彩虹1
intel2	华硕2	微星2
龙芯3	微星3	泰坦3

使用步骤:

- 提取因子和水平
- 画出正交表
- 根据正交表选定测试用例

实际使用步骤:

- 提取因子和水平
- 分别标号
- 借助工具生成正交表
- 通过正交表选定测试用例

流程分析法

把软件的主要流程当做路径来设计测试用例

流程分析法一般用于流程较多且繁琐的项目(金融项目,银行,证券,政府金融)、

举例: 方维借款流程

测试用例举例:

状态迁移法

软件有不同的状态,测试的时候需要考虑不同状态之间的切换测试

流程分析法是有业务上的顺序,而状态迁移法是需要根据实际情况测试,两者没有直接的关系

步骤:

• 从需求中列出所有的状态

- 确定各个状态之间的转换关系
- 设计合理的测试用例:
 - 。 覆盖所有的状态转换
 - 。 尽可能减少重复的状态转换

举例:

红绿灯测试:

假设各个状态之间可以随意转换红绿灯的状态:红色,黄色,绿色,关闭

• 状态之间的装换关系

红色: -->黄色 -->绿色 -->关闭

黄色: -->红色 -->绿色 -->关闭

绿色: -->红色 -->黄色 -->关闭 关闭: -->红色 -->黄色 -->绿色

- 测试用例:
 - 关闭-->红色-->黄色-->绿色-->红色-->关闭
 - 关闭-->黄色-->红色-->绿色-->关闭
 - o 关闭-->绿色-->黄色-->关闭

错误推断

错误推断类似于异常处理的需求分析法

通常是根据个人经验去推断软件可能出现的错误,尝试使用不同的方法去验证软件的可靠性。

举例: 商城购物

- 下单后库存要减少,取消订单后库存返还,锁单后库存减扣。
- 美团共享单车,一个账号只能开锁一辆单车,但是是否能使用一个账号的两个端同时扫码开锁两辆车。
- app端产生的订单在小程序是否能支付成功。
- 各种不同个优惠券的相互冲突和优惠金额计算
- 使用优惠券后同时购买多个商品, 优惠金额如何计算

app常见的异常测试/错误推断:

• 安装: 内存不足, 不兼容系统

• 网路: 网络开关未打开, 网略切换, 网络缓慢

• 用户授权: 手机硬件权限授权, 用户的注销、冻结等

• 二维码: 失效, 过期, 其他二维码

使用错误推断法检查方维借款流程,是否发现意外的bug

总结:

用例的方法是为了提高测试用例编写的效率,增加测试用例的覆盖率,在不同的情况下,要采取对应的用例设计方法。

工作中常用方法:

• 等价类、边界值,流程分析法,错误推断,判定表

不常用:

• 因果图,正交实验法,状态迁移