Outline

Lesson 27: Solving Linear Programs

linear programming, simplex methods, iterative search

AICE1005

Recap

• Linear programs are problems that can be formulated as follows

$$\min_{\boldsymbol{x}} \boldsymbol{c} \cdot \boldsymbol{x}$$

subject to

$$\mathbf{A}^{\leq}x\leq b^{\leq},\quad \mathbf{A}^{\geq}x\geq b^{\geq},\quad \mathbf{A}^{=}x=b^{=},\quad x\geq 0$$

- Where $x = (x_1, x_2, ..., x_n)$
- A* are matrices and we interpret the inequalities to mean

$$\forall k \qquad \sum_{i=1}^{n} A_{kj}^{\leq} x_j \leq b_k^{\leq}$$

AICE1005

Transforming Linear Programs

- We can always transform an inequality constraint into an equality constraint by adding slack variables
- E.g.

$$\boldsymbol{a}_1 \cdot \boldsymbol{x} \ge 0$$

$$a_1 \cdot x \ge 0$$
 \Rightarrow $a_1 \cdot x - z_1 = 0$ $z_1 \ge 0$

$$\boldsymbol{a}_2 \cdot \boldsymbol{x} \leq 0$$

$$\Rightarrow$$

$$\Rightarrow \qquad \mathbf{a}_1 \cdot \mathbf{x} + z_2 = 0 \quad z_2 \ge 0$$

 z_1 (the excess) and z_2 (the deficit) are known as slack variables

• A linear program with just equality constraints is said to be in normal form

AICE1005

Basic Feasible Solution

- A basic feasible solution or basic feasible point is a solution that lies at a vertex of the feasible space
- To solve a linear program we will start at a basic feasible point and move to the neighbour which best improves the objective function
- When we cannot find a better solution we are at the optimal solution
- This is an example of an iterative improvement algorithm which gives an optimal solution

- 1. Recap
- 2. Basic Feasible Solutions
- 3. Simplex Method
- 4. Classic LP Problems

Optima and Vertices

- Because the objective function is linear $(c \cdot x)$ there is a direction where the objective is always improving
- Thus, the optima cannot lie in the interior of the search space
- When we meet a constraint that limits the direction we can move, but we can still move along the constraint
- We then meet another constraint which restricts the direction we can move by two degrees of freedom
- ullet Eventually, we will reach n constraints which defines a vertex of the feasible region and is optimal

AICE1005

Outline

- 1. Recap
- 2. Basic Feasible Solutions
- 3. Simplex Method
- 4. Classic LP Problems

AICE1005

Algorithms and Analysis

Constraints

- There are two types of constraints
- 1. n non-negativity constraints $x_i > 0$
- $2.\ m$ additional constraints, which we can take to be equalities $\mathbf{A}x = \mathbf{b}$
- Note that some of the variables might be slack variables
- We consider the case when there are more variables than additional constraints, i.e. n > m
- This is usually be the case, but. . . I
- If this isn't true it turns out you can consider an equivalent problem (dual problem) where you have a variable for each constraint and a constraint for each variable

Algorithms and Analysis

Basic Variable

- In total we have n+m constraints
- ullet n constraints must be satisfied to be at a vertex of feasible region
- So at least n-m of the non-negativity constraints are satisfied (i.e. $x_i=0$)
- The n m variables that are zero are said to be non-basic variables.
- ullet The other m variables are said to be **basic variables**

AICE1005 Algorithms and Analysis

Eliminating Auxiliary Variables

 In phase one we run a simplex algorithm with an auxiliary cost function

$$\min f_{\scriptscriptstyle \mathsf{aux}}(oldsymbol{x}, oldsymbol{\xi}) = \sum_{k=1}^m \xi_k oldsymbol{\mathbb{I}}$$

- ullet This should find a solution where all the $\xi_k=0$
- If no solution exists it means there is no feasible solution and we're finished
- If there is a solution then we can eliminate the auxiliary variables and we have a feasible solution

AICE1005 Algorithms and Analysis 1

Phase Two

- \bullet In phase two we now have an initial basic feasible solution (with n-m zero variables)
- \bullet We then run the simplex algorithm on the original objective function $f(x) = c \cdot x \mathbb{I}$
- That is we move to a neighbouring vertex which gives the best increase in the objective function
- To help organise this search we write the objective function and constraints in a restricted normal form and then build a tableau showing the basic variables and the non-basic variables

AICE1005 Algorithms and Analysis 1

Tableau

 $\max_{\mathbf{x}} \ f(\mathbf{x}) = \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{16} \frac{$ $x_8 = 3.2 + 6.0 c_2 + 6.130 c_2 + 25 c_3 c_4 + 5.0 c_2 + 5.0 c_2 + 5.0 c_3 + 5.0 c_4 + 5.0 c_2 + 5.0 c_3 + 5.0 c_4 + 5.0 c_3 + 5.0 c_4 + 5.0 c_4$ $x_2 = 0.4 \cdot 0.4 \cdot 2000 \text{cm} + 100000 \text{cm} \cdot 2000 \text{cm} + 0.0150 \text{cm} \ge 0.08943$ $\mathbf{P}_{\mathbf{p}}$ to $\mathbf{r}_{\mathbf{p}}$ with $\mathbf{r}_{\mathbf{p}}$ $\mathbf{r}_{\mathbf{p}}$ $\mathbf{r}_{\mathbf{p}}$ $\mathbf{r}_{\mathbf{p}}$ $\mathbf{r}_{\mathbf{p}}$ $\mathbf{r}_{\mathbf{p}}$ $x_{\overline{g_1}} = 1.1_{x_0^{\underline{g_1}}} \underbrace{0.002}_{x_0^{\underline{g_2}}} \underbrace{0.002}_{x_0^{\underline{g_2$ $077x_2 - 9062x_8 + 0.69x_9$ <u>x₈₅₃= 0.38₇₃ (</u> 2177 1302077 12822²³70.044 $f(\mathbf{x})$ -3322 $2004 2x_2 14x_0 74x_8 - 0.062x_3$ 90013 -01090 -0.53 0000012 0.120 02129 0329 00022 -13 -0.093 -0.28 -0.089 x_{4} 0.58 -0188 -0.052 -0.256 | 0.072 | -0.52 | -0.062

Initial Basic Feasible Solution

- One of the tricky bits of tackling a linear program is to find an initial feasible solution
- We do this in **phase one** of the simplex program
- To do this for each additional constraint we add a new auxiliary variable \(\xi_k\), e.g.

$$\forall\,k\in\{1,2,\ldots,m\}\qquad \xi_k+\sum_iA_{ki}x_i=b_k\geq 0$$

ullet We then can find a basic feasible solution by setting $x_i=0$ so

$$\xi_k = b_k \quad \forall k \in \{1, 2, \dots, m\}$$

AICE1005 Algorithms and Analysis 10

Outline

- 1. Recap
- 2. Basic Feasible Solutions
- 3. Simplex Method
- 4. Classic LP Problems

AICE1005 Algorithms and Analysis

Restricted Normal Form

- To perform the moves between vertices it helps to represent the problem in a restricted normal form.
- Starting from a basic feasible point we have a constraint for each basic (non-zero) variable
- We write the constraints as an equality between basic and non-basic (zero valued) variables
- Similarly we write the objective function in terms of non-basic variables
- This is always possible as we can use the constraints to eliminate the basic variables

AICE1005 Algorithms and Analysis 1

Awkward Problems

- If there are any column with all entries positive then this variable can be increase forever—this is a signal that the linear programming problem is unbounded.
- You can also find that a basic variable becomes zero—this is known as a degenerate feasible vector
- It can by removed by exchanging variables on the left of the inequality with variables on the right!
- This makes the algorithm a bit more complex to implement

EE005 Algorithms and Analysis 15 AICE1005 Algorithms and Analysis 14

High Performance Solvers

- Although the tableau method is the "classic solver" it doesn't cut the mustard for large scale problems
- The simplex update can also be viewed as solving a linear set of equations which is facilitated by performing an LU-decomposition
- However, the constraints are often very sparse so good solvers try to take advantage of the sparsity!
- Top end simplex algorithms are rather complex
- There is a second approach known as the interior point method which is competitive on large problems

AICE1005 Algorithms and Analysis 17

Interior Point Method

- An alternative to the simplex method is the interior point method which always remains in the feasible region, away from the constraints
- These method iterate towards the constraints and are provably polynomial
- For small linear programming problems they are out-performed in practice by the simplex method
- On large and very large problems they seem to perform as well if not better than the simplex method
- The high-end solvers will have a variety of interior point methods tailored to the particular problem

AICE1005 Algorithms and Analysis

LP Problems

- Any problem that can be set up as a linear program can be solved in polynomial time.
- One way is just to feed it to a LP-solver
- Sometimes the problems are important enough and have such a distinctive formulation that faster specialised algorithms have been developed
- We consider a couple of classic problems: $maximum \ flow$ and $linear \ assignment$

AICE1005 Algorithms and Analysis

Example

- Consider a firm that has to ship haggis from Edinburgh to Southampton
- The shipping firm transports this in crates which it sends through intermediate cities
- The number of crates is limited by the size of the lorries it uses

Time Complexity of Simplex

- The time complexity of the updates is $O(n^2)$
- The critical question is how many updates are necessary
- It turns out that typically this is O(n) making the simplex algorithm $O(n^3)$
- However, it is possible to cook up problems where there is a "long path" from the initial solution to the optimum which is exponentially big!
- Thus the worst case time is exponential, although this almost never happens in practice!

AICE1005 Algorithms and Analysis 18

Outline

- 1. Recap
- 2. Basic Feasible Solutions
- 3. Simplex Method
- 4. Classic LP Problems

AICE1005 Algorithms and Analysis 20

Maximum Flow

- In maximum flow we consider a directed graph representing a network of pipes
- We choose one vertex as the source and a second vertex as a sinkle
- Each edge has a flow capacity that cannot be exceeded.
- The problem is to maximise the flow between source of sink
- This can be used to model the flow of a fluid, parts in an assembly line, current in an electrical circuit or packets through a communication network!

AICE1005 Algorithms and Analysis 2

Flow

- \bullet We are given a directed graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ where each edge has a capacity $c(i,j) \mathbb{I}$
- We define the flow from i to j as f(i,j) with $0 \le f(i,j) \le c(i,j)$
- ullet For all vertices except the source (s) and sink (t) we assume

$$\forall i \in \mathcal{V}/\{s,t\} \qquad \sum_{j \in \mathcal{V}|(i,j) \in \mathcal{E}} f(i,j) = \sum_{j \in \mathcal{V}|(i,j) \in \mathcal{E}} f(j,i)$$

(i.e. no flow is lost from source to sink)

• We want to maximise the flow from the source

$$\sum_{i \in \mathcal{V} | (s,i) \in \mathcal{E}} f(s,i)$$

11005 Algorithms and Analysis 23 AICE1005 Algorithms and Analysis

Solving Maximum Flow

- As set up we have a linear objective function with linear constraints
- We can therefore solve this problem with a LP-solver
- (Note the solution will typically involve a fraction flow)
- However, this is such a classic problem with a distinctive structure that we can solve it more quickly with other algorithms.
- ullet The classic algorithm is the Ford-Fulkerson method with run time $O(|\mathcal{E}| imes f_{\max})$ where f_{\max} is the maximum flow, although we won't cover this in the coursel

AICE1005

Algorithms and Analysis

LA as LP

The linear assignment problem can be set as a linear programming problem

$$\begin{split} \min_{\boldsymbol{x}} \sum_{a \in \mathcal{A}, t \in \mathcal{T}} c(a, t) x_{a, t} \\ \text{subject to} \\ \forall a \in \mathcal{A} \qquad \sum_{t \in \mathcal{T}} x_{a, t} = 1 \\ \forall t \in \mathcal{T} \qquad \sum_{a \in \mathcal{A}} x_{a, t} = 1 \\ \forall (a, t) \in (\mathcal{A}, \mathcal{T}) \qquad x_{a, t} \geq 0 \end{split}$$

AICE1005

AICE1005

gorithms and Analysis

Quadratic Programming

- If we have linear constraints and a quadratic objective function then we have a quadratic programming problem!
- Again this can be solved in polynomial time
- Many of the ideas used are the same as for linear programming
- This also has important applications in science and engineering

Linear Assignment

- We are given a set of n agents, \mathcal{A} , and n tasks, $\mathcal{T}_{\blacksquare}$
- Each agent has a cost associated with performing a task c(a,t)
- We want to assign an agent to one task so as to minimise the total cost
- Consider a taxi firm with taxi's at 5 different locations and 5 requests to fulfil. The cost is the distance to the clients. Which taxi should go to which client?

AICE1005

gorithms and Analysis

Hungarian Algorithm

- Linear assignment is another classic problem that is commonly encountered
- Although it can be solved using a generic LP-solver this is not the most efficient algorithm
- The most efficient algorithm is the Hungarian algorithms
- This is rather complex (having once implemented it I can tell you from bitter experience it ain't easy)
- Its worst case time is $O(n^3)$ although it frequently takes $\Theta(n^2)$

AICE1005

Algorithms and Analys

Lessons

- Linear programming is a classic problem
- We know a huge number of problems are solvable in polynomial time because they can be formulated as linear programs
- Linear programs occur sufficiently often that they are hugely important
- They aren't easy to solve, although standard simplex is not massively complex
- For particular LP problems with distinctive structure there are sometimes better algorithms than generic LP-solvers

29

AICE1005

Algorithms and Analysis

30