Statistical Physics (MSc) Homework 3.

Pál Balázs

2019. december 9.

QUESTION

(On the next page there is a table.) Next to your name you can find five numbers under the column $\mathcal{G}(X,X')$. Give the contribution of those graphs to $\mathcal{G}(X,X')$ in coordinate space. Choose appropriate coordinates at the vertices and write it on your figures in the solutions. Next to your name you can find another five numbers under the column $\mathcal{G}(\mathbf{k},i\omega_n)$. Give the contribution of those graphs to $\mathcal{G}(\mathbf{k},i\omega_n)$. Once again, use clear notations for your conventions together with a picture showing the newly introduced momenta and frequencies. Classify your graphs if they are reducible or irreducible.

The row of the table with my name:

No.	Name	$G\left(X,X^{\prime}\right)$				$G(\mathbf{k}, i\omega_n)$					
:	:	i i				i i					
17	Pál Balázs	8	5	6	10	3	7	2	4	1	9
•	:	i:				i i					

REDUCIBILITY

Def. An **internal vertex** is a node which is either part of a propagator loop, or have more than one connections. Internal vertices are marked with filled dots (\bullet) on the figures. Similarly, external vertices could be defined as the opposite of internal vertices, which are marked as empty dots (\circ) on the diagrams.

Def. An **internal edge/line** is an edge which connects two internal vertices. In contrast, external edges/lines are always connected to at least one external vertex.

Def. We call a diagram **reducible** which fall into two disjunct pieces if we cut one internal propagator line.

Def. Similarly, we call a diagram **irreducible** which does not fall into two disjunct pieces if we cut one internal propagator line.

Using these definitions, we can easily identify the reducible and irreducible graphs:

Reducible graphs				Irreducible graphs						
1	3	7	8	2	4	5	6	9	10	

REDUCIBLE GRAPHS

EXPRESSING THE GRAPHS

GRAPH 1. — MOMENTUM REPRESENTATION

SOLUTION

GRAPH 2. — MOMENTUM REPRESENTATION

SOLUTION

GRAPH 3. — COORDINATE REPRESENTATION

SOLUTION

Fermion propagator lines are building connections between the points $(X' \to X_1)$, $(X'_2 \to X)$, $(X_1 \to X_2)$, $(X_2 \to X'_2)$ and $(X'_1 \to X'_1)$, where the last one is a fermion loop. Their contributions are:

$$-\mathcal{G}_{0}\left(X_{i},X_{j}\right) \rightarrow \left[-\mathcal{G}_{0}\left(X_{2},X_{1}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{2}^{\prime},X_{2}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1}^{\prime},X_{1}^{\prime}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1},X^{\prime}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X,X_{2}^{\prime}\right)\right] = \\ = -\mathcal{G}_{0}\left(X_{2},X_{1}\right) \cdot \mathcal{G}_{0}\left(X_{2}^{\prime},X_{2}\right) \cdot \mathcal{G}_{0}\left(X_{1}^{\prime},X_{1}^{\prime}\right) \cdot \mathcal{G}_{0}\left(X_{1},X^{\prime}\right) \cdot \mathcal{G}_{0}\left(X,X_{2}^{\prime}\right)$$

$$(1)$$

Fermion loops also contribute to the Green's function. Since there are only one of them its contribution is

$$(-1)^F \to (-1)^1 = -1 \tag{2}$$

Interaction happens between (X_1, X_1) and (X_2, X_2) . Their contributions are

$$-\frac{1}{\hbar}v\left(X_{i}X_{i}'\right) \to \left(-\frac{1}{\hbar}\right)v\left(X_{1}X_{1}'\right) \cdot \left(-\frac{1}{\hbar}\right)v\left(X_{2}X_{2}'\right) = \frac{1}{\hbar^{2}}v\left(X_{1}X_{1}'\right)v\left(X_{2}X_{2}'\right) \tag{3}$$

Putting them all together, we need to integrate over all the internal X_i points to get the Green's function:

$$\mathcal{G}\left(X, X'\right) = \int dX_{1} \int dX_{2} \int dX'_{1} \int dX'_{2} \cdot (-1) \cdot \frac{1}{\hbar^{2}} v\left(X_{1} X'_{1}\right) v\left(X_{2} X'_{2}\right) \times \left[-\mathcal{G}_{0}\left(X_{2}, X_{1}\right) \cdot \mathcal{G}_{0}\left(X'_{2}, X_{2}\right) \cdot \mathcal{G}_{0}\left(X'_{1}, X'_{1}\right) \cdot \mathcal{G}_{0}\left(X_{1}, X'\right) \cdot \mathcal{G}_{0}\left(X, X'_{2}\right)\right]$$
(4)

Where the (-1) term cancels out the minus sign at the \mathcal{G}_0 contributions. Thus the Green's function is the following:

$$\mathcal{G}\left(X, X'\right) = \int dX_1 \int dX_2 \int dX_1' \int dX_2' \cdot \frac{1}{\hbar^2} v\left(X_1 X_1'\right) v\left(X_2 X_2'\right) \times \mathcal{G}_0\left(X_2, X_1\right) \cdot \mathcal{G}_0\left(X_2', X_2\right) \cdot \mathcal{G}_0\left(X_1', X_1'\right) \cdot \mathcal{G}_0\left(X_1, X'\right) \cdot \mathcal{G}_0\left(X, X_2'\right)$$

$$(5)$$

GRAPH 4. — MOMENTUM REPRESENTATION

SOLUTION

GRAPH 5. — COORDINATE REPRESENTATION

SOLUTION

Fermion propagator lines are building connections between the points $(X' \to X_2)$, $(X_2 \to X_1)$, $(X_1 \to X_1')$, $(X_1' \to X_2')$ and $(X_2' \to X)$. Their contributions are:

$$-\mathcal{G}_{0}\left(X_{i},X_{j}\right) \rightarrow \left[-\mathcal{G}_{0}\left(X_{2},X'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1},X_{2}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1}',X_{1}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{2}',X_{1}'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X,X_{2}'\right)\right] =$$

$$= -\mathcal{G}_{0}\left(X_{2},X'\right) \cdot \mathcal{G}_{0}\left(X_{1},X_{2}\right) \cdot \mathcal{G}_{0}\left(X_{1}',X_{1}\right) \cdot \mathcal{G}_{0}\left(X_{2}',X_{1}'\right) \cdot \mathcal{G}_{0}\left(X,X_{2}'\right)$$

$$(6)$$

Interaction happens between (X_1, X_1) and (X_2, X_2) . Their contributions are

$$-\frac{1}{\hbar}v\left(X_{i}X_{i}'\right) \to \left(-\frac{1}{\hbar}\right)v\left(X_{1}X_{1}'\right) \cdot \left(-\frac{1}{\hbar}\right)v\left(X_{2}X_{2}'\right) = \frac{1}{\hbar^{2}}v\left(X_{1}X_{1}'\right)v\left(X_{2}X_{2}'\right) \tag{7}$$

Putting them all together, we need to integrate over all the internal X_i points to get the final form for the integral of the Green's function:

$$\mathcal{G}(X, X') = \int dX_1 \int dX_2 \int dX_1' \int dX_2' \cdot \frac{1}{\hbar^2} v\left(X_1 X_1'\right) v\left(X_2 X_2'\right) \times \left[-\mathcal{G}_0\left(X_2, X'\right) \cdot \mathcal{G}_0\left(X_1, X_2\right) \cdot \mathcal{G}_0\left(X_1', X_1\right) \cdot \mathcal{G}_0\left(X_2', X_1'\right) \cdot \mathcal{G}_0\left(X, X_2'\right)\right]$$
(8)

GRAPH 6. — COORDINATE REPRESENTATION

SOLUTION

Fermion propagator lines are building connections between the points $(X' \to X_1)$, $(X_1 \to X)$, $(X_1' \to X_2)$, $(X_2 \to X_1')$ and $(X_2' \to X_2')$, where the last three are forming two separate fermion loops. Their contributions are:

$$-\mathcal{G}_{0}\left(X_{i},X_{j}\right) \rightarrow \left[-\mathcal{G}_{0}\left(X_{1},X'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X,X_{1}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{2},X_{1}'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1}',X_{2}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{2}',X_{2}'\right)\right] =$$

$$= -\mathcal{G}_{0}\left(X_{1},X'\right) \cdot \mathcal{G}_{0}\left(X,X_{1}\right) \cdot \mathcal{G}_{0}\left(X_{2},X_{1}'\right) \cdot \mathcal{G}_{0}\left(X_{1}',X_{2}\right) \cdot \mathcal{G}_{0}\left(X_{2}',X_{2}'\right)$$

$$(9)$$

Fermion loops also contribute to the Green's function. Since there are two of them their contribution is

$$(-1)^F \to (-1)^2 = 1\tag{10}$$

Interaction happens between (X_1, X_1) and (X_2, X_2) . Their contributions are

$$-\frac{1}{\hbar}v\left(X_{i}X_{i}'\right) \to \left(-\frac{1}{\hbar}\right)v\left(X_{1}X_{1}'\right) \cdot \left(-\frac{1}{\hbar}\right)v\left(X_{2}X_{2}'\right) = \frac{1}{\hbar^{2}}v\left(X_{1}X_{1}'\right)v\left(X_{2}X_{2}'\right) \tag{11}$$

Putting them all together, we need to integrate over all the internal X_i points to get the Green's function:

$$\mathcal{G}\left(X, X'\right) = \int dX_{1} \int dX_{2} \int dX_{1}' \int dX_{2}' \cdot (1) \cdot \frac{1}{\hbar^{2}} v\left(X_{1} X_{1}'\right) v\left(X_{2} X_{2}'\right) \times \left[-\mathcal{G}_{0}\left(X_{1}, X'\right) \cdot \mathcal{G}_{0}\left(X, X_{1}\right) \cdot \mathcal{G}_{0}\left(X_{2}, X_{1}'\right) \cdot \mathcal{G}_{0}\left(X_{1}', X_{2}\right) \cdot \mathcal{G}_{0}\left(X_{2}', X_{2}'\right)\right]$$

$$(12)$$

Where the \cdot (1) term stand for the contribution from the fermion loops.

GRAPH 7. — MOMENTUM REPRESENTATION

SOLUTION

GRAPH 8. — COORDINATE REPRESENTATION

SOLUTION

Fermion propagator lines are building connections between the points $(X' \to X_2)$, $(X_2 \to X_2')$, $(X_2' \to X_1)$, $(X_1 \to X_1')$ and $(X_1' \to X)$. Their contributions are:

$$-\mathcal{G}_{0}\left(X_{i},X_{j}\right) \rightarrow \left[-\mathcal{G}_{0}\left(X_{2},X'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{2}',X_{2}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1},X_{2}'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1}',X_{1}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X,X_{1}'\right)\right] =$$

$$= -\mathcal{G}_{0}\left(X_{2},X'\right) \cdot \mathcal{G}_{0}\left(X_{2}',X_{2}\right) \cdot \mathcal{G}_{0}\left(X_{1},X_{2}'\right) \cdot \mathcal{G}_{0}\left(X_{1}',X_{1}\right) \cdot \mathcal{G}_{0}\left(X,X_{1}'\right)$$

$$(13)$$

Interaction happens between (X_1, X_1) and (X_2, X_2) . Their contributions are

$$-\frac{1}{\hbar}v\left(X_{i}X_{i}'\right) \to \left(-\frac{1}{\hbar}\right)v\left(X_{1}X_{1}'\right) \cdot \left(-\frac{1}{\hbar}\right)v\left(X_{2}X_{2}'\right) = \frac{1}{\hbar^{2}}v\left(X_{1}X_{1}'\right)v\left(X_{2}X_{2}'\right) \tag{14}$$

Putting them all together, we need to integrate over all the internal X_i points to get the final form for the integral of the Green's function:

$$\mathcal{G}(X, X') = \int dX_1 \int dX_2 \int dX_1' \int dX_2' \cdot \frac{1}{\hbar^2} v\left(X_1 X_1'\right) v\left(X_2 X_2'\right) \times \left[-\mathcal{G}_0\left(X_2, X'\right) \cdot \mathcal{G}_0\left(X_2', X_2\right) \cdot \mathcal{G}_0\left(X_1, X_2'\right) \cdot \mathcal{G}_0\left(X_1', X_1\right) \cdot \mathcal{G}_0\left(X, X_1'\right)\right]$$
(15)

GRAPH 9. — MOMENTUM REPRESENTATION

SOLUTION

GRAPH 10. — COORDINATE REPRESENTATION

SOLUTION

Fermion propagator lines are building connections between the points $(X' \to X_2)$, $(X_2 \to X_1)$, $(X_1 \to X_2')$, $(X_2' \to X_1')$ and $(X_1' \to X)$. Their contributions are:

$$-\mathcal{G}_{0}\left(X_{i},X_{j}\right) \rightarrow \left[-\mathcal{G}_{0}\left(X_{2},X'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1},X_{2}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{2}',X_{1}\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X_{1}',X_{2}'\right)\right] \cdot \left[-\mathcal{G}_{0}\left(X,X_{1}'\right)\right] = \\ = -\mathcal{G}_{0}\left(X_{2},X'\right) \cdot \mathcal{G}_{0}\left(X_{1},X_{2}\right) \cdot \mathcal{G}_{0}\left(X_{2}',X_{1}\right) \cdot \mathcal{G}_{0}\left(X_{1}',X_{2}'\right) \cdot \mathcal{G}_{0}\left(X,X_{1}'\right)$$

$$(16)$$

Interaction happens between (X_1, X_1) and (X_2, X_2) . Their contributions are

$$-\frac{1}{\hbar}v\left(X_{i}X_{i}'\right) \to \left(-\frac{1}{\hbar}\right)v\left(X_{1}X_{1}'\right) \cdot \left(-\frac{1}{\hbar}\right)v\left(X_{2}X_{2}'\right) = \frac{1}{\hbar^{2}}v\left(X_{1}X_{1}'\right)v\left(X_{2}X_{2}'\right) \tag{17}$$

Putting them all together, we need to integrate over all the internal X_i points to get the final form for the integral of the Green's function:

$$\mathcal{G}(X, X') = \int dX_1 \int dX_2 \int dX_1' \int dX_2' \cdot \frac{1}{\hbar^2} v(X_1 X_1') v(X_2 X_2') \times \left[-\mathcal{G}_0(X_2, X') \cdot \mathcal{G}_0(X_1, X_2) \cdot \mathcal{G}_0(X_2', X_1) \cdot \mathcal{G}_0(X_1', X_2') \cdot \mathcal{G}_0(X, X_1') \right]$$
(18)