Deletion-based Sentence Compression with Deep Reinforcement Learning

Yang Zhao

2018/2/9

Overview

- Introduction
- Sentence compression with reinforcement learning
- Experiment
- Result

Overview

- Introduction
- Sentence compression with reinforcement learning
- Experiment
- Result

What is Sentence Compression

- Sentence compression aims to
 - use fewer words than the source sentence,
 - retain the most important information from the source sentence,
 - remain grammatical.

• Example:

S: A man suffered a serious head injury after a morning car crash today.

C: A man suffered a injury after a car crash.

Applications of Sentence Compression

1. Compress text to be displayed on small screens like cellphone. [Corston-Oliver, 2001]

2. Generate subtitle for high-rate speech. [Vandeghinste and Pan, 2004]

3. Compress lengthy product titles for E-commerce. [Wang et al., 2018]

Points of Sentence Compression

- Sentence compression aims to
 - use fewer words than the source sentence,
 - retain the most important information,
 - remain grammatical.
 - Length Constrains
 - Informativeness
 - Readability

S: A man suffered a serious head injury after a morning car crash today.

C: A man suffered a injury after a car crash.

Problem formulation

S: A man suffered a serious head injury after a morning car crash today.

Sequence labeling problem

Previous works on sentence compression

- Tree-pruning based approaches
 - Dependency tree pruning

- Machine-learning based approaches
 - CRF v.s. Recurrent neural network

Previous works

 Previous approaches for sentence compression are mainly rule-based or data-driven.

-Directly prune syntactic trees to generate compression (Knight and Marcu, 2000; Kirkpatrick et al., 2011; Filippova and Altun, 2013; ...)

The dog is sleeping on the porch.

Problem with rule-based compression

• If syntactic parse trees are incorrect, deleting sub-trees could yield wrong compression.

Previous works

Input: The dog is sleeping on the porch

Output: 1 1 1 1 0 0 0

• Treat sentence compression as a sequence labeling problem (label "1": kept; label "0": removed) (Filippova et al., 2015; Klerke et al., 2016; ...)

Problem with data-driven compression

Problem: it is not able to consider the whole predicted compression as a whole

Overview

- Introduction
- Sentence compression with reinforcement learning (RL)
- Experiment
- Results

What the RL brings

• Previous models are optimized to maximize the likelihood of training data, which may not well match the evaluation metrics that actually quantify the compression quality.

Automatic evaluations in Sentence compression

Gold	Aaron donald won the 2013 bronko nagurski trophy .		
1	$(ncsubj, win+ed: 3_VVD, donald: 2_NP1)$		
2	$(\text{dobj, win} + ed: 3_VVD, \text{ trophy: } 8_NN1)$		
3	(det, trophy: 8_NN1 , the: 4_AT)		
4	(ncmod, trophy: 8_NN1 , 2013 : 5_MC)		
5	(ncmod, trophy: 8_NN1 , bronko: 6_JJ)		
6	$(ncmod, trophy: 8_NN1, nagurski: 7_JJ)$		
7	$(ncmod, donald: 2_NP1, Aaron: 1_NP1)$		
System	Aaron donald won .		
1	$(ncsubj, win+ed: 3_VVD, donald: 2_NP1)$		
2	$(ncmod, donald: 2_NP1, Aaron: 1_NP1)$		

- G = a set of grammatical relations in ground truth
- S = a set of grammatical relations in system output

•
$$F_1 = \frac{2|G \cap S|}{|G| + |S|}$$

Grammatical relations yielded by dependency parser

Model Overview

Key Modules of the Model

- Informativeness Module
- Readability Module
- Length Module

Informativeness Module

• During training, when we apply dependency parser to both compressed sentence (S) and ground truth (G), two sets of grammatical relations would be yielded respectively

- G = a set of grammatical relations in ground truth
- S = a set of grammatical relations in system output
- $F_1 = \frac{2|G \cap S|}{|G| + |S|}$

 F_1 as a reward is to feed into policy network during training

Readability Module

$$R_{LM} = \exp\left(\frac{1}{|\hat{Y}|} \sum_{i=1}^{|\hat{Y}|} \log P_{LM}(\hat{y}_i | \hat{y}_{0:i-1})\right)$$

• It is the normalized sentence probability assigned by an LSTM language model trained on sentence compression corpus

Length module - Compression Rate Reward Inspired by Beta Function

• Experimental results show that model can get to our specifying compression rate very quickly.

Overview

- Introduction
- Sentence compression with reinforcement learning (RL)
- Experiment
- Result

Dataset

GOOGLE News Dataset					
Domain	NEWS				
size	10,000 sentence compression pairs				
training/dev/test	8,000/1,000/1,000				

Training details

- Policy network is a two-layer bi-directional LSTM followed by a binary Softmax layer.
- Embedding size is 128.
- Hidden size is 128.
- Since the converge takes time, pre-training is used to speed up the training.

Baselines

- Integer linear programming (ILP) (Clarke & Lapata, 2008)
- Long short-term memory network (LSTM) (Filippova et. al, 2015)
- ILP+LSTM (Wang et al., 2017)

Preliminary Result

Google News Dataset	F_1	Stanford-parser- F_1	compression rate
Original ILP (Clarke Lapata, 08)	56.0	-	0.50
LSTMs (Filippova et al.,15)	80.1	78.4	0.49
LSTMs+ILP(Wang et al., 17)	75.2	56.7	0.47
Our model	81.6	81.1	0.47

Table 1: F_1 results based on ground-truth (F_1) and grammatical relations $(Stanf - F_1)$.

Next Step

- Conduct experiments on other datasets
- Replace the sequential language model with syntactic language model

•

Thank you!