第三章

存储管理

方 钰

主要内容

- 3.1 存储管理的主要任务
- 3.2 连续分配方式
- 3.3 页式存储管理
- 3.4 段式与段页式存储管理**
- 3.5 UNIX 存储管理

程序地址空间

- 物理地址空间
- 地址变换
- 存储空间管理

i386线性地址空间

使用二级页表管理进程的线性地址

复习一下UNIX V6++的进程程序地址空间......

8M用户态逻辑地址空间

perating System

主要内容

- 3.1 存储管理的主要任务
- 3.2 连续分配方式
- 3.3 页式存储管理
- 3.4 段式与段页式存储管理**
- 3.5 UNIX 存储管理

程序地址空间

- 物理地址空间
- 地址变换
- 存储空间管理

UNIX中进程的构成(进程图象)

Tongji University, 2023-2024-1 Fang Yu GRA

主要内容

- 3.1 存储管理的主要任务
- 3.2 连续分配方式
- 3.3 页式存储管理
- 3.4 段式与段页式存储管理**
- 3.5 UNIX 存储管理

程序地址空间

- 物理地址空间
- 地址变换
- 存储空间管理

Operating System 保留区 4M+4K 代码段 1M 内核 1.5M 数据段 内核堆对象 2M 页表区 堆栈段 4M 8M-1 x_caddr 代码段 3**G** 保留区 3G+1M 内核 用户区 3G+1.5M 内核堆对象 p_addr **PPDA** 3G+2M 数据段 页表区 堆栈段 PPDA 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K 代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w p 4M 8M-1 0# 1# 代码段 x caddr **3G** 保留区 3G+1M 内核 用户区 3G+1.5M 内核堆对象 p_addr **PPDA** 3G+2M 数据段 页表区 堆栈段 **PPDA** 1023# 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K 代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w 4M 8M-1 0# 1# 代码段 x caddr **3G** 假设代码段 保留区 占据<mark>n+1</mark>个 3G+1M 页面 内核 用户区 3G+1.5M 内核堆对象 p_addr **PPDA** 3G+2M 数据段 页表区 堆栈段 **PPDA** 1023# 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K 代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w **4M** 8M-1 0# 1# x caddr>>12 0 1 代码段 x caddr **3G** 假设代码段 x caddr>>12+1 1 保留区 占据<mark>n+1</mark>个 3G+1M ••• ••• ••• 页面 内核 x caddr>>12+n 用户区 0 3G+1.5M 内核堆对象 p addr **PPDA** 3G+2M u,用户代码数据 ro, 只读 数据段 页表区 堆栈段 **PPDA** 1023# 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K 代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w **4M** 8M-1 0# 1# x caddr>>12 0 代码段 x caddr **3G** 假设代码段 x caddr>>12+1 1 1 0 保留区 占据<mark>n+1</mark>个 3G+1M ••• ••• ••• 页面 内核 x_caddr>>12+n 1 用户区 1 0 3G+1.5M 内核堆对象 p addr **PPDA** 假设数据段 3G+2M 占据<mark>m+1</mark> 数据段 页表区 个页面 堆栈段 **PPDA** 1023# 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K 代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w **4M** 8M-1 0# 1# x caddr>>12 0 代码段 x caddr **3G** 假设代码段 x caddr>>12+1 1 1 0 保留区 占据<mark>n+1</mark>个 3G+1M • • • ••• ••• 页面 内核 x_caddr>>12+n 1 用户区 1 0 3G+1.5M 内核堆对象 p addr **PPDA** 假设数据段 3G+2M 占据<mark>m+1</mark> ••••• ••• ••• ••• 数据段 页表区 个页面 堆栈段 ••••• ••• **PPDA** 1023# 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 ••• 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w **4M** 8M-1 0# 1# x caddr>>12 0 代码段 x caddr **3G** 假设代码段 x caddr>>12+1 1 1 0 保留区 占据n+1个 3G+1M ••• • • • ••• 页面 内核 x caddr>>12+n 1 用户区 1 0 3G+1.5M 内核堆对象 p addr p addr >>12+1 **PPDA** 假设数据段 3G+2M 占据<mark>m+1</mark> ••• ••• 数据段 页表区 p addr >>12+1+m 个页面 堆栈段 ••••• ••• **PPDA** 1023# 3G+4M-1

Operating System Page Table 0# 编译器预留 Page Base Address 保留区 4M+4K代码段 0# 1M 内核 1# 1.5M 数据段 内核堆对象 ••• 2M 1023# 页表区 Page Table 1# 堆栈段 **Page Base Address** u/s r/w **4M** 8M-1 0# 1# x caddr>>12 0 代码段 x caddr **3G** 假设代码段 x caddr>>12+1 1 1 0 保留区 占据n+1个 3G+1M ••• • • • ••• 页面 内核 x caddr>>12+n 1 用户区 1 0 3G+1.5M 内核堆对象 p addr p addr >>12+1 **PPDA** 假设数据段 3G+2M 占据<mark>m+1</mark> ••• ••• 数据段 页表区 p addr >>12+1+m 个页面 堆栈段 ••• **PPDA** p addr >>12+1+m+1 1023# 3G+4M-1

保留区 4M+4K 代码段 1M 内核 1.5M 数据段 内核堆对象 2M 页表区 堆栈段 4M 8M-1 x_caddr 代码段 3**G** Page Table 768# 保留区 **Page Base Address** u/s r/w 3G+1M p 内核 0# 用户区 3G+1.5M 内核堆对象 1# p_addr **PPDA** 3G+2M 数据段 页表区 1022# 堆栈段 PPDA 1023# 3G+4M-1

Tongji University, 2023-2024-1 Fang Yu **Operating System**

现运行进程的内核 页表与用户页表

现运行进程的内核

页表与用户页表

现运行进程的内核 页表与用户页表

现运行进程的内核 页表与用户页表

现运行进程的内核

页表与用户页表

进程图像交换时.....

相对虚实地址映射表

	¬ 0
保留区	
	1M
内核堆对象	1.5M
页表区	2M
	4M
代码段	x_caddr
用户区	
PPDA	p_addr
数据段	
堆栈段	

	Page Base Address		u/s	r/w	р
0#	XXX		X	X	X
	•••	x x x x x x x 1 0 1 1 0 1	•••		
1024#	XXX		X	x	X
1025#	0		1	0	1
1026#	1		1	0	1
1027#	1		1	1	1
	全0)			
2047#	2		1	1	1

每次换进/换出,只需修改p_addr和x_caddr, 无需刷新页表,节省时间

进程被调度上台时......

Operating System

进程被调度上台时......

进程被调度上台时......

进程被调度上台时.....

Fang Yu

如果进程执行 程序地址[4M+7k] 处一条指令

如果该指令为 inc [4M+14k]

如果系统中还有另一个进程

有一样的相对虚实地址映射表:

相对虚实地址映射表

	Page Base Address		u/s	r/w	р
0#	ххх		x	x	x
	•••		•••	•••	x x x x 0 1 0 1
1024#	ххх		x	x	x
1025#	0		1	0	1
1026#	1		1	0	1
1027#	1		1	1	1
	全()			
2047#	2		1	1	1

说明两个进程有完全一样的程序地址

如果系统中还有另一个进程

保留区		Page Table 768# (0x201号页框)			Page Table 768#	(0	x201	号页框	E)		
TINE 1N		Page Base Address	u/s		р		Page Base Address		u/s	r/w	р
内核	0#			1	1	0#	0		0	1	1
内核堆对象	5M 1#	1	0	1	1	1#	1		0	1	1
2N									•		
页表区	1023#	0x440	0	1	1	1023#	0x410		0	1	1
41	1	Page Table 1# (0x203号页框)					Page Table 1#	(0x	203특	子 页框)	
4N	1	Page Table 1# (0x203号页框)				Page Table 1# (0x203号页框)					
		Page Base Address	u/s	r/w	р	4.0	Page Base Address		u/s	r/w	р
/\\TTCI	caddr 1#	0x420	1	0	1	1#	0x420		1	0	1
代码段 4N	<mark>l + 128K</mark>	0x421	1	0	1		0x421		1	0	1
		0x441	1	1	1		0x411		1	1	1
用户区	— 1023#	0x442	1	1	1	1023#	0v412		1	1	1
用厂凸	addr	UX 44 2		<u>'</u>	1	1023#	UX412			•	
					-/1	TT 60 40/\ /		74	= -	44.L	#
PPDA P		治阴邢人法	红旦十		<i>7.</i> 5 5		6 6/ 7 - 7 8 8 1 - 12 17 -	-//5 <u>-</u>	- 4 6 4		
PPDA P_		说明两个进	程过	特	1t	的段部分(1	T的中的逐	推			

如果系统中还有另一个进程

本节小结:

- 1 UNIX V6++中进程核心态与用户态下的逻辑地址空间
- 2 UNIX V6++中进程核心态与用户态下的物理地址空间
- 3 UNIX V6++中利用两级页表实现的地址变换过程
- 4 UNIX V6++如何获得现运行进程完整的图像