

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Constantin Bulucea and Rebecca Rossen

Assignee:

Siliconix incorporated

Title:

Trench DMOS Power Transistor With Field-Shaping Body Proffle and

Three-Dimensional Geometry

Application No.:

08/851,608

Filed:

5 May 1997

Examiner:

S. Crane

Group Art Unit:

2811

Docket No.:

M-799-4C US

San Jose, California 23 December 2002

BOX CPA COMMISSIONER FOR PATENTS Washington, D. C. 20231

INFORMATION DISCLOSURE STATEMENT UNDER 37 CFR 1.97(b)

Sir:

Pursuant to 37 CFR 1.56, 1.97, and 1.98, the documents listed on the accompanying substitute PTO Form 1449 are called to the attention of the Examiner for the above patent application. Copies of these documents are enclosed, including translations where indicated. Copies of English abstracts of all the cited Japanese Patent Publications ("JPPs") are also enclosed, except for JPP 63-124762, a utility model JPP.

The present application is a file-wrapper continuation of parent U.S. patent application 08/453,285 which, in turn, is a file-wrapper continuation of grandparent U.S patent application 08/086,976. Hence all documents cited in parent application 08/453,285 and in grandparent application 08/086,976 are of record in the present application.

JPP 62-12167 was previously cited in grandparent application 08/086,976 and is re-cited here because an English translation of JPP 62-12167 is enclosed.

JPP 62-37965 was previously cited in grandparent application 08/086,976 using the partial number "0037965". JPP 62-37965 is re-cited here for clarity using its full publication

904444 vl - 1 - Serial No.: 08/851/608

LAW OFFICES OF SKJERVEN MORRILL LLF

25 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979 number. Also, the JPP 62-37965 publication date, previously given as 15 February 1987, is corrected here to 18 February 1987.

Blanchard, "Optimization of High Power MOS Transistors", was cited in parent application 08/453,285 and is re-cited here to identify the page numbers and indicate that the document is a Ph.D. dissertation.

Katoh et al, "Design of New Structural High Breakdown Voltage V-MOSFET -- Static Shield V-MOSFET", was cited earlier in this application and is re-cited here because a copy of the Japanese version of the document is enclosed.

Ueda et al, "High Speed Power MOSFET, U-MOS Power FET", was cited earlier in this application using the partial title "U-MOS Power FET" and is re-cited here (a) to present the full title and (b) because an English translation is enclosed. Inasmuch as the Japanese version of Ueda et al, "High Speed Power MOSFET, U-MOS Power FET", has two sets of page numbers, both sets of page numbers "335 - 442" and "143 - 150" are included here in the citation rather than the single set of page numbers "143 - 150" previously used in the citation.

Applicants' attorney does not have an English translation of Kato et al, "A Study for High Voltage V-MOS Structure". However, Kato et al, "A Study for High Voltage V-MOS Structure", appears to deal with material similar to that in Katoh et al, "Design of New Structural High Breakdown Voltage V-MOSFET—Static Shield V-MOSFET", and similar to that in Katoh et al, "Design of High Breakdown V-MOSFET Applying Static Shield Effect".

Applicants' attorney recognizes that the enclosed copies of some of the cited documents repeat copies previously provided to the PTO in connection with the present application, with parent application 08/453,285, or with grandparent application 08/086,976. To the extent that such accumulation of multiple copies may be inconsistent with PTO policy or rules, Applicants' attorney requests the Examiner to discard the earlier-provided copies.

Further enclosed to simplify printing of the present application is a Summary of all the Documents Cited, i.e., now of record, in the present application and suitable for being listed on the first page of the patent as "References Cited". In the enclosed Summary of Cited Documents, the citations for some of the journal articles have been simplified by deleting unnecessary material such as the names of authors after the first-named authors.

LAW OFFICES OF SKJERVEN MORRILL LLP 25 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979

904444 v1 - 2 - Serial No.: 08/851/608

Siliconix inc. ("Siliconix"), the assignee of the present application, is also the assignee of (a) U.S. Patent 5,072,266, the great grandparent of the present application, and (b) U.S. Patent 5,298,442, the great grandparent of the present application.

Siliconix sued Fairchild Semiconductor Corp. ("Fairchild") for infringement of U.S. Patents 5,072,266 and 5,298,442. The patent infringement suit, now settled, was brought in the Northern District of California as case no. 99-04797 SBA. In the infringement suit, Fairchild submitted a 66-page Response Chart in which Fairchild alleged that certain claims of U.S. Patents 5,072,266 and 5,298,442 were invalid as anticipated by, or/and obvious in view of, certain references cited in the Response Chart.

A copy of the Response Chart, dated 30 August 2000, is enclosed. Subject to the comments in the next two paragraphs, all of the documents cited in the Response Chart are included with the enclosed substitute PTO Form 1449 or are already of record in the present application including parent application 08/753,285 and grandparent application 08/086,976. Likewise, aside from the documents already of record in the present application, copies of all the documents cited in the Response Chart are included with the enclosed copies of the references cited in the substitute PTO Form 1449.

On page 3 of the Response Chart, the citation to Kato et al, "A Study of High Voltage V-MOS Structure", should apparently be Kato et al, "A Study for High Voltage V-MOS Structure". That is, "of" in the title should apparently be "for".

Page 3 of the Response Chart cites (a) Katoh et al, "Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect," IEICE Transactions C, Vol. 66, No. 6, 1983, and then (b) Kato et al, "High Voltage-ization Using Static Shield Effect", Electrical Communications Laboratories Technical Journal, Vol. 33, No. 2, 1984. As far as applicants' attorney can determine, these two documents are respective English and Japanese versions of a single reference. Also, the journal/date citation information appears to be wrong for the English version, item (a). Referring to the enclosed substitute PTO Form 1449 and the accompanying copies of the cited documents, items (a) and (b) appear to be Katoh et al, "Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect", Review of the Electrical Communications Laboratories (which is probably an alternative English translation of the Japanese journal translated into English as Electrical Communications

Laboratories Technical Journal for item b) while the remaining citation information is Vol.

LAW OFFICES OF SKJERVEN MORRILL LLP 25 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200

FAX (408) 453-7979

904444 v1 - 3 - Serial No.: 08/851/608

32, No. 6, 1984, pages 1107-1114, for the English version, and Vol. 33, No. 2, 1984, pages 257-268, for the Japanese version.

In the Siliconix/Fairchild patent infringement suit, Fairchild also submitted an Amended Initial Disclosure of Defendant Fairchild Semiconductor – Prior Art in which Fairchild cited over five hundred references, including references cited in the Response Chart.

A copy of this Amended Initial Prior Art Disclosure, likewise dated 30 August 2000, is enclosed.

Certain of the references cited in the Amended Initial Prior Art Disclosure are classified as "102" or/and "103" references with respect to U.S. Patents 5,072,266 and 5,298,442. However, the Amended Initial Prior Art Disclosure does not cite any particular claim(s) of U.S. Patents 5,072,266 and 5,298,442, and does not provide any analogies between any of the claims of U.S. Patents 5,072,266 and 5,298,442, on one hand, and the material of any of the cited references, including the "102", "102/103", and "103" references, on the other hand. All of the "102" references, including three "102" references not mentioned in the Response Chart, are listed on the accompanying substitute PTO Form 1449 or are already of record in the present application.

Aside from the references cited in both the enclosed substitute PTO Form 1449 and the Amended Initial Prior Art Disclosure, Applicants' attorney has not obtained copies of and/or reviewed any of the further references cited in the Amended Initial Prior Art Disclosure in connection with the present application, and expresses no view as to the materiality of any of these further references to any of the claims of this application. The enclosed copy of the Amended Initial Prior Art Disclosure is provided in fulfillment of applicants' attorneys' obligation of candor and good faith with the PTO.

If the Response Chart and the Amended Initial Prior Art Disclosure themselves need to be listed on a (substitute) PTO Form 1449 in order for the Examiner to be obligated to consider these two Fairchild documents, please so inform Applicants' attorney.

Citation of the above documents shall not be construed as:

- 1. an admission that the documents are necessarily prior art with respect to the instant invention;
- 2. a representation that a search has been made; or

904444 vt - 4 - Serial No.: 08/851/608

LAW OFFICES OF SKJERVEN MORRILL LLP 25 METRO DRIVE SLITTE 70

5 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979 3. an admission that the information cited herein is, or is considered to be, material to patentability as defined in 37 CFR 1.56(b).

Please telephone Applicants' attorney at 408-453-9200, ext. 1371, if there are any questions regarding this submission.

EXPRESS MAIL LABEL NO.

EL 945 229 950 US

Respectfully submitted,

Ronald J. Meetin

Attorney for Applicants

Reg. No. 29,089

LAW OFFICES OF SKJERVEN MORRILL LLP

25 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979

904444 v1 - 5 - Serial No.: 08/851/608

6

7

8

10

11

12

13

TERRENCE P. McMAHON (State Bar No. 71910) WILLIAM L. ANTHONY, JR. (State Bar No. 106908)

MONTE COOPER (State Bar No. 196746)

KAI TSENG (State Bar No. 193756)

THOMAS J. GRAY (State Bar No. 191411)

ORRICK, HERRINGTON & SUTCLIFFE LLP

1020 Marsh Road

Menlo Park, CA 94025

Telephone: (650) 614-7400

Facsimile: (650) 614-7401

Attorneys for Defendant

FAIRCHILD SEMICONDUCTOR CORPORATION

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

(OAKLAND DIVISION)

SILICONIX INCORPORATED, a Delaware corporation,

Plaintiff.

CASE NO. 99-04797 SBA

RESPONSE CHART (Civil L.R. 16-9(b))

14

15

16

17

18

19

20

21

22

23

24

25

26

27

FAIRCHILD SEMICONDUCTOR CORPORATION, a Delaware corporation,

Defendant.

Pursuant to Civil Local Rule 16-9(b), Fairchild Semiconductor Corporation ("Fairchild") herein serves its response chart on Plaintiff Siliconix Incorporated Siliconix"). Fairchild provides the following claim invalidity analysis under 35 U.S.C. §§ 102 and 103.

INTRODUCTION I.

Local Rule 16-9(a) requires that the party alleging infringement of a patent must submit a claim chart which "must contain" information identifying "where each element of each infringed claim is found within each apparatus, product [or] device . . .". L.R. 16-9(a)(4). Siliconix's claim chart alleges that Claim 1 of U.S. Patent No. 5,072,266 ("the '266 patent") and Claims 17, 18, 19, 20, 22, 23 and 24 of U.S. Patent No. 5,298,442 ("the '442 patent") are infringed by the Fairchild FDS 6680A product. Siliconix has failed to provide a claim chart which applies the asserted claims of the '266 patent and '442 patent against any other Fairchild product. DOCSSV2:500277.1

ORRICK HERRINGTON & SUTCLIFFE LLP RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

1
2
3
4
5
6
. 7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Accordingly, Siliconix should be precluded from asserting infringement of the '266 patent and/or '422 patent against any other Fairchild product.

II. RESPONSIVE CHART

The following chart indicates which claims of the patent are anticipated by which pieces of prior art. Please note that the information in this document is provisional and subject to revision, for the following reasons:

- (i) Fairchild's position on the invalidity of particular claims will depend on how those claims are construed by the Court. Because claim construction has not yet occurred, Fairchild cannot take a final position on the bases for invalidity of disputed claims because the Court may construe those claims to mean something different from what Fairchild presently assumes them to mean.
 - (ii) Fairchild has not yet completed its search for prior art.
- (iii) Fairchild has not completed its discovery from Plaintiff. Depositions of the persons involved in the drafting and prosecution of the patent-in-suit, and of the inventor, for instance, will likely reveal information that affects the conclusions herein.

Fairchild reserves the right to revise and/or supplement the claim chart. Fairchild incorporates herein the prosecution file history of the '266 patent and the '442 patent.

Presently, Fairchild intends to rely upon the following prior art patents and references:

JP 55146976

JP 58137254

JP 62-16572 -

Physics and Technology of Power MOSFETs, Shi-Chung Sun, UMI Dissertation Services,

February 1982

Optimization of Discrete High Power MOS Transistors, Richard A. Blanchard, UMI

Dissertation Services, Dec. 1981

JP 62012167

U.S. Patent 4,420,379

DOCSSV2:500277.1

SUTCLIFFE LLP

SILICON VALLEY

1	JP 63-124762
2	JP 63-224260
3	JP 59-181668
4	JP 54-57871
5	JP 57-72365
6	JP 59-193064
7	JP 60-28271
8	JP_57-18365
9	JP 59-80970
10	U.S. Patent 4,345,265
11	U.S. Patent 4,443,931
12	U.S. Patent 4,532,534
13	U.S. Patent 4,374,455
14	U.S. Patent 4,767,722
15	U.S. Patent 3,412,297
16	U.S. Patent 4,783,694
17	U.S. Patent 4,593,302
18	Design of New Structural High Breakdown Voltage V-MOSFET – Static Shield V-
19	MOSFET, Kuniharu Katoh and Yuki Shimada, Electronics and Communications in
20	. Japan, Vol. 66-C, No. 6, 1983
21	A Study of High Voltage V-MOS Structure, Kunihara Kato, et al., IEICE Transactions C.,
22	Vol. 81, No. 7(ED81-4), 1981.
23	Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect, Kunihara
24	Kato, et al., IEICE Transactions C, Vol. 66, No. 6, 1983.
25	High Voltage-ization Using Static Shield Effect, Kunihara Kato, et al., Electrical
26	Communications Laboratories Technical Journal, Vol. 33, No. 2, 1984.
27	U-MOS Power MOSFET, Daisuke Ueda, et al., National Technical Report, Vol. 29, No. 2,
28	Apr. 1983

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

DOCSSV2:500277.1

RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

The Following References (referred hereinafter as "KATOH") W	Vill Be Analyzed Together:
--	----------------------------

Design of New Structural High Breakdown Voltage V-MOSFET – Static Shield V-

MOSFET, Kuniharu Katoh and Yuki Shimada, Electronics and Communications in Japan, Vol. 66-C, No. 6, 1983

A Study of High Voltage V-MOS Structure, Kunihara Katoh, et al., IEICE Transactions C., Vol. 81, No. 7(ED81-4), 1981.

Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect, Kunihara Katoh, et al., IEICE Transactions C, Vol. 66, No. 6, 1983.

High Voltage-ization Using Static Shield Effect, Kunihara Katoh, et al., Electrical Communications Laboratories Technical Journal, Vol. 33, No. 2, 1984.

1.

1

2

3

4

5

6

7

8

9

10

13	INVALIDITY CLAIM CHART FO	R U.S. PATENT NO. 5,072,266
14	U.S. Patent 5,072,266	JP 55146976
14	CLAIM 1	
15	1. A trench DMOS transistor cell comprising:	Double Diffusion Insulating Gate Field Effect Transistor
1.5	a substrate of semiconductor material of heavily doped	N+ layer (101)
16	first electrical conductivity type;	
- •	a first covering layer of semiconductor material of said	N- layer (102)
17	first electrical conductivity type lying on the substrate;	
	a second covering layer of semiconductor material of	P layer (3)
18	second electrical conductivity type lying on the first	
	covering layer;	77.1 (10.0)
19	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer (104)
	having a top surface and partly lying over the second	the P layer (3) has a heavily doped P+ region (103)
20	covering layer, wherein a portion of the second covering	which extends upward through the N+ layer (104) and
٠.	layer is heavily doped and this portion extends both	which extends downward (110-1 and 110-2) into the N-
21	vertically upward and downward, an upward portion	layer (102)
22	extending through the third covering layer to the top	
22	surface of the third covering layer and a downward	
23	portion extending downward into the first covering	·
	layer;	
24	a trench having a bottom surface and side surfaces and	trench (5) with a bottom surface and side surfaces which
	extending vertically downward from the top surface of	extend vertically downward from the top surface of the
25	the third covering layer through the third covering layer	N+ layer (104) through the N+ layer (104), the P layer
	and the second covering layer and through a portion of	(3) and through a portion of the N- (102) layer, wherein the bottom surface of the trench (5) lies above a lowest
26	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	part of the downward portion of the P+ region of the P
_	portion of the second covering layer;	layer.
27	electrically conducting semiconductor material	semiconductor material (107)
20	positioned within the trench;	semiconductor material (107)
28	<u> </u>	

	a layer of oxide positioned within the trench between the	oxide (106)
	electrically conducting semiconductor material and the	
:	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
,	conducting semiconductor material, to the third covering	material (107), to the N+ layer (104) and to the N+
	layer and to the substrate, respectively.	substrate (101).

1

2

3			
6	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442		
7	U.S. Patent No. 5,298,442	JP 55146976	
7	CLAIM 17		
8	17. A method for providing a transistor, said method	Double Diffusion Insulating Gate Field Effect Transisto	
	comprising the steps of:	Nt laver (101) and N. laver (102)	
9	providing a first region of a first conductivity type;	N+ layer (101) and N- layer (102)	
0	providing a second region of a second conductivity type over said first region;	P layer (3) formed by a first diffusion	
U	providing a third region of said first conductivity type	N+ layer (104) formed by a second diffusion	
1	such that said first and third regions are separated by said second region;		
,	providing a trench through said third and second	trench (5) with a bottom surface and side surfaces whic	
2	regions; and	extend vertically downward from the top surface of the	
3	, .	N+ layer (104) through the N+ layer (104), the P layer	
כ		(3) and through a portion of the N- (102) layer.	
4	providing a gate in said trench;	Al gate electrode (107)	
•	wherein a portion P of said second region, which portion	the P layer (3) has a heavily doped P+ region (103)	
5	is spaced from said trench, extends deeper than said	which extends upward through the N+ layer (104) and	
,	trench so that, if a predetermined voltage is applied to	which extends downward (110-1 and 110-2) through the	
,	said gate and to said third region and another	N- layer (102) deeper than the trench (5)	
,	predetermined voltage is applied to said first region, an		
,	avalanche breakdown occurs away from a surface of		
	said trench.		
3	·		
,	CLAIM 18		
	18. The method of claim 17 wherein said portion P of	the P layer (3) has a heavily doped P+ region (103)	
)	said second region is doped heavier than another portion	laterally spaced from the trench (5)	
	of said second region which portion is adjacent said	·	
	trench.		
	CLAIM 19		
	19. The method of claim 17 wherein said first region	N+ layer (101) under N- layer (102)	
	comprises a first portion and a second portion over said	·	
	first portion, said second portion being lighter doped		
	than said first portion.		
	CLAIM 20		
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown	
	breakdown is a reach-through breakdown across said	across the N- layer (102)	
	second portion.		
'	CLAIM 22	·	
7	21. The method of claim 17 further comprising the step	oxide (106)	
'	of providing an insulator between said surface of said		
3	trench and said gate.		
,		DECROSION ON A DE DIMESTA A METO COME I D. 14 A	

1	CLAIM 23	
2	23. A method for providing a transistor, said method comprising the steps of:	Double Diffusion Insulating Gate Field Effect Transistor
3	providing a first region of a first conductivity type; providing a second region of said first conductivity type	N+ layer (101)
_	over said first region, said second region being lighter	N- layer (102)
4	doped than said first region;	71 (2) 6
5	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer (3) formed by a first diffusion
6	providing a fourth region of said first conductivity type over said third region;	N+ layer (104) formed by a second diffusion
. 7	providing a trench through said fourth region and third	trench (5) with a bottom surface and side surfaces which
8	regions; and	extend vertically downward from the top surface of the N+ layer (104) through the N+ layer (104), the P layer (3) and through a portion of the N- (102) layer.
9	providing a gate in said trench;	Al gate electrode (107)
10	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer (3) is laterally spaced from said trench
11	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (3) and the N+ layer (101) is less than a depletion width of a
12	width of a planar junction which has the same doping profile as does said junction between said second and	planar junction which has the same doping profile as does the junction between the N- layer (102) and the P
13	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage
14	CLAIM 24	
15	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	the deepest part of the P layer (3) is heavier doped (P+ region(103)) than the part of the P layer (3) adjacent trench (5)
ì		

U.S. Patent 5,072,266	JP 58137254
CLAIM 1	
A trench DMOS transistor cell comprising:	Insulated Gate Semiconductor Device See Fig. 7
ubstrate of semiconductor material of heavily doped st electrical conductivity type;	N+ layer (1)
first covering layer of semiconductor material of said rest electrical conductivity type lying on the substrate;	N- layer (2)
econd covering layer of semiconductor material of ond electrical conductivity type lying on the first ering layer;	P layer (13)

Orrick Herrington & Sutcliffe LLP

SILICON VALLEY

1	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer (14);
2	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	the P layer (13) has a heavily doped P+ region (19) portion which extends upward through the N+ layer (14)
3	layer is heavily doped and this portion extends both	and which extends downward into the N- layer (2)
4	vertically upward and downward, an upward portion extending through the third covering layer to the top	
4	surface of the third covering layer and a downward	
5	portion extending downward into the first covering	
	layer;	
6	a trench having a bottom surface and side surfaces and	trench with a bottom surface and side surfaces which
	extending vertically downward from the top surface of	extend vertically downward from the top surface of the
7	the third covering layer through the third covering layer	N+ layer (14) through the N+ layer (104), the P layer
	and the second covering layer and through a portion of	(13) and through a portion of the N- (19) layer, wherein
8	the first covering layer, wherein the bottom surface of	the bottom surface of the trench lies above a lowest part
	the trench lies above a lowest part of the downward	of the downward portion of the P+ region of the P layer.
9	portion of the second covering layer;	
i	electrically conducting semiconductor material	gate semiconductor material (17)
10	positioned within the trench;	
	a layer of oxide positioned within the trench between the	oxide insulating film (16)
11	electrically conducting semiconductor material and the	
ļ	bottom and side surfaces of the trench; and	
12	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the gate
	conducting semiconductor material, to the third covering	semiconductor material (17), to the N+ layer (14) and to
13	layer and to the substrate, respectively.	the N+ substrate (1).
l l		

U.S. Patent No. 5,298,442	JP 58137254
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	Insulated Gate Semiconductor Device See Fig. 7
providing a first region of a first conductivity type;	N+ layer (1) and N- layer (2)
providing a second region of a second conductivity type over said first region;	P layer (13) formed by a first diffusion
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer (14) formed by a second diffusion
providing a trench through said third and second regions; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer (14) through the N+ layer (14), the P layer (1
	and through a portion of the N- (2) layer.
providing a gate in said trench;	gate semiconductor material (17)

28 ORRICK HERRINGTON & SUTCLIFFE LLP SILICON VALLEY

14

15

24

25

26

27

1	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the P layer (13) has a heavily doped P+ region (19) which extends upward through the N+ layer (14) and
2	trench so that, if a predetermined voltage is applied to said gate and to said third region and another	which extends downward through the N- layer (2) deeper than the trench
3	predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	
4	said trench.	•
5		·
	CLAIM 18	
6	18. The method of claim 17 wherein said portion P of	the P layer (13) has a heavily doped P+ region (19)
7	said second region is doped heavier than another portion of said second region which portion is adjacent said	which is laterally spaced from the trench
8	trench.	
	CLAIM 19	NT: 1(1) 4 NT 1(2)
, 9	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	N+ layer (1) under N- layer (2)
	first portion, said second portion being lighter doped	·
10	than said first portion.	
	CLAIM 20	
11	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
	breakdown is a reach-through breakdown across said	across the N- layer (2)
12	second portion.	1 101000 <u>10</u> 10 11.
12	CLAIM 22	•
13	21. The method of claim 17 further comprising the step	oxide insulating film (16)
14	of providing an insulator between said surface of said	onder districting min (10)
14	trench and said gate.	
15	CLAIM 23	
	23. A method for providing a transistor, said method	Insulated Gate Semiconductor Device
16	comprising the steps of:	
	providing a first region of a first conductivity type;	N+ layer (1)
17	providing a second region of said first conductivity type	N- Layer (2)
	over said first region, said second region being lighter	
18	doped than said first region;	
	providing a third region of a second conductivity type	P layer (13) formed by a first diffusion
19	over said second region, said second and third regions	
	forming a junction;	
20	providing a fourth region of said first conductivity type over said third region;	N+ layer (14) formed by a second diffusion
21	providing a trench through said fourth region and third	V trench which extends vertically downward from the
22	regions; and	top surface of the N+ layer (14) through the N+ layer
22		(14), the P layer (13) and through a portion of the N- (2)
23		layer.
23	providing a gate in said trench;	gate electrode (17)
24	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer (13) is laterally spaced from said V trench
25	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (13)
د2	third region and said first region is less than a depletion	and the N+ layer (1) is less than a depletion width of a
26	width of a planar junction which has the same doping	planar junction which has the same doping profile as
20	profile as does said junction between said second and	does the junction between the N- layer (2) and the P layer
27	third regions at said deepest part of said third region and	(13) at the deepest part of the P layer (13) and which is
21	which is reverse biased around its breakdown voltage.	reverse biased around its breakdown voltage
	l	

1	CLAIM 24	
2	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	the P layer (13) has a heavily doped P+ region (19) which is laterally spaced from the trench
3		

	U.S. Patent 5,072,266	
5	CLAIM 1	JP 6216572
	1. A trench DMOS transistor cell comprising:	Vertical-type Semiconductor Device and Manufacturing Method Therefore
	,	See figs. 1(a) and 1(b)
	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)
	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate:	N layer (2)
	a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (4)
	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and having a top surface and partly lying over the second covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	N+ layer (8) (p. 11 of translation: "Contracted by an n+, type semiconductor layer 8, the p-type semiconductor layer 4 (channel region) thus forms long and short portions underneath the n+-type semiconductor layer 8.")
•	vertically upward and downward, an upward portion extending through the third covering layer to the top	p. 11 of translation: "Forming p+-type semiconductor layers 3 in cells by photolithography is used as another
1	surface of the third covering layer and a downward portion extending downward into the first covering layer;	way of reducing the likelihood of the punch-through phenomenon occurring in conventional DSA MOS FETs."
		the P layer (4) has a heavily doped P+ region (3) portion which extends upward through the N+ layer (1) and which extends downward into the N layer (2)
•	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	p. 12 of translation: "The vertical-type semiconductor device in accordance with the present invention is
	the third covering layer through the third covering layer and the second covering layer and through a portion of	characterized by comprising a semiconductor substrate of a first conduction type whose principal surface is
•	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer;	provided with a groove; a semiconductor film or conductor film pattern formed through the agency of a first inculating film are the semiconductor film or conductor film pattern formed through the agency of a
	portion of the second covering layer;	first insulating film over the groove formed in the principal surface of the semiconductor substrate"
	·	As seen from Fig. 1(b), the P layer (4) has a heavily
		doped P+ region (3) portion which extends upward through the N+ layer (8) and which extends downward into the N layer (2)
	electrically conducting semiconductor material positioned within the trench;	source Al electrode 9 is formed on this insulating film
	·	p. 12 of translation: " a semiconductor film or conductor film pattern formed through the agency of a
	·	first insulating film over the groove formed in the
-	DOCSSV2:500277.1	principal surface of the semiconductor substrate"

ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

1	a lover of oxide positioned within the tourt by	
1	a layer of oxide positioned within the trench between the	first insulating film (5a)
	electrically conducting semiconductor material and the	, ,
2	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	Source Al electrode (9a).
3	conducting semiconductor material, to the third covering	()
	layer and to the substrate, respectively.	Gate Al electrode (9b).
4		
		Since the device is a vertical-type semiconductor device,
5		the N+ layer (1) must have a drain electrode.

INVALIDITY CLAIM CHART FO U.S. Patent No. 5,298,442	JP 62-16572
CLAIM 17	
17. A method for providing a transistor, said method	Vertical-type Semiconductor Device and Manufacturi
comprising the steps of:	Method Therefore
	See figs. 1(a) and 1(b)
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).
providing a second region of a second conductivity type over said first region;	P layer (4) with a P+ region (3).
providing a third region of said first conductivity type	N. 1 (0) (11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
such that said first and third regions are separated by	N+ layer (8) (p. 11 of translation: "Contracted by an n
said second region;	type semiconductor layer 8, the p-type semiconductor layer 4 (channel region) thus forms long and short
said socolid region,	portions underneath the n+-type semiconductor layer 8
providing a trench through said third and second	p. 12 of translation: "The vertical-type semiconductor
regions; and	device in accordance with the present invention is
	characterized by comprising a semiconductor substrate
	a first conduction type whose principal surface is
	provided with a groove: "
providing a gate in said trench;	p. 12 of translation: "a semiconductor film or
•	conductor film pattern formed through the agency of a
	first insulating film over the groove formed in the
wherein a madis D of 11 1 1 1 1 1 1	principal surface of the semiconductor substrate"
wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the P layer (4) has a heavily doped P+ region (3) whic
trench so that, if a predetermined voltage is applied to	extends upward through the N+ layer (8) and which
said gate and to said third region and another	extends downward through the N- layer (2) deeper that the groove
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	
said trench.	
CI AIM 10	
CLAIM 18	1 71
18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	the P layer (4) has a heavily doped P+ region (3) which
of said second region which portion is adjacent said	spaced away from the groove
rench.	,
CLAIM 19	
19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2).
comprises a first portion and a second portion over said	in layer (1) under in layer (2).
first portion, said second portion being lighter doped	
han said first portion.	

ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

1	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said	across the N layer (2)
	second portion.	
3	CLAIM 22	
	21. The method of claim 17 further comprising the step	first insulating film (5a)
4	of providing an insulator between said surface of said	\ , ,
	trench and said gate.	
5	CLAIM 23	
	23. A method for providing a transistor, said method	Vertical-type Semiconductor Device and Manufacturing
6	comprising the steps of:	Method Therefore
	tomprising are steps on	
. 7		See figs. 1(a) and 1(b)
	providing a first region of a first conductivity type;	N+ layer (1)
8	providing a second region of said first conductivity type	N layer (2)
	over said first region, said second region being lighter	1. 20,01 (2)
9	doped than said first region;	
	providing a third region of a second conductivity type	P layer (4)
10	over said second region, said second and third regions	1 16301 (T)
	forming a junction;	
11	providing a fourth region of said first conductivity type	N+ layer (8) (p. 11 of translation: "Contracted by an n+-
	over said third region;	type semiconductor layer 8, the p-type semiconductor
12	over said unite region,	layer 4 (channel region) thus forms long and short
		portions underneath the n+-type semiconductor layer 8.")
13		portions understand in a sypt commenced in the con-
	providing a trench through said fourth region and third	p. 12 of translation: "The vertical-type semiconductor
14	regions; and	device in accordance with the present invention is
	,,	characterized by comprising a semiconductor substrate of
15		a first conduction type whose principal surface is
	·	provided with a groove; a semiconductor film or
16		conductor film pattern formed through the agency of a
		first insulating film over the groove formed in the
17		principal surface of the semiconductor substrate"
18		As seen from Fig. 1(b), the P layer (4) has a heavily
		doped P+ region (3) portion which extends upward
19		through the N+ layer (8) and which extends downward
		into the N layer (2) p. 12 of translation: "The vertical-type semiconductor
20	providing a gate in said trench;	device in accordance with the present invention is
		characterized by comprising a semiconductor substrate of
21	·	a first conduction type whose principal surface is
		provided with a groove;"
22		
	,	p. 12 of translation: " a semiconductor film or
23		conductor film pattern formed through the agency of a
_		first insulating film over the groove formed in the
24		principal surface of the semiconductor substrate"
	wherein a deepest part of said third regions is laterally	P layer (4) is laterally spaced from said groove.
25	spaced from said trench;	

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

26

27

wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	the distance between the deepest part of the P layer (3) and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N layer (2) and the P layer (4) at the deepest part of the P layer (4) and which is reverse biased around its breakdown voltage
CLAIM 24	
24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	the P layer (4) has a heavily doped P+ region (3) which is spaced away from the groove

U.S. Patent 5,072,266	Physics and Technology of Power MOSFETs
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VDMOS – see Figs. 2.1, 2.21 and 3.21
a substrate of semiconductor material of heavily doped	N+ layer
first electrical conductivity type;	
a first covering layer of semiconductor material of said	N- layer
first electrical conductivity type lying on the substrate;	
a second covering layer of semiconductor material of	P layer
second electrical conductivity type lying on the first	
covering layer;	
a third covering layer of semiconductor material of	N+ layer
heavily doped said first electrical conductivity type and	1
having a top surface and partly lying over the second	As seen in Fig. 2.1, a portion of the P layer is neavily
covering layer, wherein a portion of the second coveri	doped P+; the P+ region extends vertically upward
layer is heavily doped and this portion extends both	around the N+ layer and downward into the N- layer
vertically upward and downward, an upward portion	
extending through the third covering layer to the top	
surface of the third covering layer and a downward	
portion extending downward into the first covering	
layer;	
a trench having a bottom surface and side surfaces and	trench with a bottom surface and side surfaces which
extending vertically downward from the top surface of	extend vertically downward from the top surface of the
the third covering layer through the third covering layer	N+ layer through the N+ layer, the P layer and through
and the second covering layer and through a portion o	portion of the N- layer.
the first covering layer, wherein the bottom surface of	
the trench lies above a lowest part of the downward	
portion of the second covering layer;	
electrically conducting semiconductor material	semiconductor material
positioned within the trench;	
a layer of oxide positioned within the trench between	the oxide between the trench and gate
electrically conducting semiconductor material and th	e
bottom and side surfaces of the trench; and	
three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semicondu
conducting semiconductor material, to the third cover	material, to the top N+ layer and to the N+ substrate.
layer and to the substrate, respectively.	

ORRICK HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

1

2

3

4

5

6

	U.S. Patent No. 5,298,442	Physics and Technology of Power MOSFETs
_	CLAIM 17	
	7. A method for providing a transistor, said method comprising the steps of:	VDMOS – see Figs. 2.1, 2.21 and 3.21
	providing a first region of a first conductivity type;	N+ layer substrate and N- layer
p	providing a second region of a second conductivity type over said first region;	P layer formed by a first diffusion
p s	providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer formed by a second diffusion
F	providing a trench through said third and second regions; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer through the N+ layer, the P layer and through portion of the N- layer.
-	providing a gate in said trench;	Al gate electrode
Ī	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the P layer has a heavily doped P+ region which extend upward through the N+ layer and which extends
t	rench so that, if a predetermined voltage is applied to said gate and to said third region and another	downward through the N- layer deeper than the trench.
ľ	predetermined voltage is applied to said first region, an	
a	avalanche breakdown occurs away from a surface of said trench.	
┢	CLAIM 18	
1	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion of said second region which portion is adjacent said	the P layer has a heavily doped P+ region which is laterally spaced away from the trench
41	trench.	
L	CLAIM 19	N+ layer substrate under the N- layer
	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	11. Myor oncomment and a 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1	first portion, said second portion being lighter doped	
L	than said first portion. CLAIM 20	
١	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	avalanche breakdown is a reach-through breakdown across the N- layer
L	second portion. CLAIM 22	
	21. The method of claim 17 further comprising the step of providing an insulator between said surface of said	oxide between the trench and gate
	trench and said gate. CLAIM 23	
	23. A method for providing a transistor, said method comprising the steps of:	VDMOS – see Figs. 2.1, 2.21 and 3.21
	providing a first region of a first conductivity type;	N+ layer
	providing a second region of said first conductivity type	N- Layer

1 2	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer formed by a first diffusion
3	providing a fourth region of said first conductivity type over said third region;	N+ layer formed by a second diffusion
4	providing a trench through said fourth region and third regions; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer through the N+ layer, the P layer and through a portion of the N- layer.
Ì	providing a gate in said trench;	Al gate electrode
6	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer is laterally spaced from said trench
7	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer and the N+ layer is less than a depletion width of a planar
8	width of a planar junction which has the same doping profile as does said junction between said second and	junction which has the same doping profile as does the junction between the N- layer and the P layer at the
9	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	deepest part of the P layer and which is reverse biased around its breakdown voltage
10	CLAIM 24	mount in ordered in the second
11	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	the P layer has a heavily doped P+ region which is laterally spaced away from the trench
12	mile region which put is adjacent serie acree.	1

U.S. Patent 5,072,266	Optimization of Discrete High Power MOS Transistors
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VMOS Structure – see Fig. 4.22
a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N- layer
a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer
a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer;
having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	the P layer has a heavily doped P+ region portion which extends upward through the N+ layer and which extend
layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	downward into the N layer.
extending through the third covering layer to the top surface of the third covering layer and a downward	
portion extending downward into the first covering layer:	
a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the
the third covering layer through the third covering layer and the second covering layer and through a portion of	N+ layer through the N+ layer, the P layer and through portion of the N- layer.

1.

1	the first covering layer, wherein the bottom surface of	
	the trench lies above a lowest part of the downward	
2	portion of the second covering layer;	
-	electrically conducting semiconductor material	semiconductor material
3	positioned within the trench;	
	a layer of oxide positioned within the trench between the	oxide between the trench and gate
4	electrically conducting semiconductor material and the	
	bottom and side surfaces of the trench; and	
5	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
	conducting semiconductor material, to the third covering	material, to the top N+ layer and to the N+ substrate.
6	layer and to the substrate, respectively.	

` [U.S. Patent No. 5,298,442	Optimization of Discrete High Power MOS Transistors
) -	CLAIM 17	
	7. A method for providing a transistor, said method omprising the steps of:	VMOS Structure – see Fig. 4.22
2 P	providing a first region of a first conductivity type;	N+ layer substrate and N- layer
p	providing a second region of a second conductivity type over said first region;	P layer formed by a first diffusion
p	providing a third region of said first conductivity type	N+ layer formed by a second diffusion
s	uch that said first and third regions are separated by aid second region;	
r	providing a trench through said third and second egions; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer through the N+ layer, the P layer and through
5		portion of the N- layer.
. [providing a gate in said trench;	Al gate electrode
v	wherein a portion P of said second region, which portion s spaced from said trench, extends deeper than said rench so that, if a predetermined voltage is applied to	the P layer has a heavily doped P+ region which extend upward through the N+ layer and which extends downward through the N- layer deeper than the trench.
s	said gate and to said third region and another oredetermined voltage is applied to said first region, an	
a	avalanche breakdown occurs away from a surface of said trench.	· ·
	•	,
: ├	CLAIM 18	
} s	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	the P layer has a heavily doped P+ region which is laterally spaced away from the trench
	of said second region which portion is adjacent said trench.	
5	CLAIM 19	N. 1
- 11	19. The method of claim 17 wherein said first region	N+ layer substrate under the N- layer
5	comprises a first portion and a second portion over said	
	first portion, said second portion being lighter doped	

28

ORRICK

HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

1	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said	across the N- layer.
	second portion.	
3	CLAIM 22	
	21. The method of claim 17 further comprising the step	oxide between the trench and gate
4	of providing an insulator between said surface of said	
	trench and said gate.	
5	CLAIM 23	
_	23. A method for providing a transistor, said method	VMOS Structure – see Fig. 4.22
6	comprising the steps of:	
_	providing a first region of a first conductivity type;	N+ layer
7	providing a second region of said first conductivity type	N- Layer
	over said first region, said second region being lighter	·
8	doped than said first region;	
	providing a third region of a second conductivity type	P layer formed by a first diffusion
9	over said second region, said second and third regions	
10	forming a junction;	
10	providing a fourth region of said first conductivity type	N+ layer formed by a second diffusion
11	over said third region;	
. **	providing a trench through said fourth region and third	trench with a bottom surface and side surfaces which
12	regions; and	extend vertically downward from the top surface of the
		N+ layer through the N+ layer, the P layer and through a
13		portion of the N- layer.
	providing a gate in said trench;	Al gate electrode
14	wherein a deepest part of said third regions is laterally	P layer is laterally spaced from said trench
	spaced from said trench;	
15	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer and
	third region and said first region is less than a depletion	the N+ layer is less than a depletion width of a planar
16	width of a planar junction which has the same doping	junction which has the same doping profile as does the
	profile as does said junction between said second and	junction between the N- layer and the P layer at the
17	third regions at said deepest part of said third region and	deepest part of the P layer and which is reverse biased around its breakdown voltage
	which is reverse biased around its breakdown voltage. CLAIM 24	around its breakdown voltage
18		the P layer has a heavily doped P+ region which is
	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said	laterally spaced away from the trench
19	third region which part is adjacent said trench.	l laterary spaced away from the deficit
	unid region which part is adjacent said denon.	

20.

	U.S. Patent 5,072,266	JP 62012167
3 [CLAIM 1	
4	1. A trench DMOS transistor cell comprising:	Manufacture of Vertical Type Semiconductor Device with Groove Section
5		See fig. 1(f).
6	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (11) (p. 5 of the translation: "a n+-type semiconductor substrate 11 with a high concentration of impurities is coated with an n-type semiconductor layer
7 L		12 having a lower concentration of impurities.")
- :	a first covering layer of semiconductor material of said	N layer (12)
8	first electrical conductivity type lying on the substrate;	
	DOCSSV2:500277.1	RESPONSE CHART PURSUANT TO CIVIL L.R. 16-90

ORRICK
HERRINGTON
& SUTCLIFFE LLP SILICON VALLEY

RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

1	a second covering layer of semiconductor material of	P layer (16)
	second electrical conductivity type lying on the first	
2	covering layer;	
	a third covering layer of semiconductor material of	N+ layer (17) lying partly over the P layer (16)
3	heavily doped said first electrical conductivity type and	
	having a top surface and partly lying over the second	P layer (16) extends vertically upward through the N+
4	covering layer, wherein a portion of the second covering	layer (17) to the top surface and downward into the N
	layer is heavily doped and this portion extends both	layer (12)
5	vertically upward and downward, an upward portion	
	extending through the third covering layer to the top	
6	surface of the third covering layer and a downward	,
	portion extending downward into the first covering	
7	layer;	
•	a trench having a bottom surface and side surfaces and	p. 6 of translation: "The grooved portion 20 has smooth
8	extending vertically downward from the top surface of	outlines and does not have any sharp pointed sections."
-	the third covering layer through the third covering layer	
9	and the second covering layer and through a portion of	As seen from fig. 1(f), the grooved portion (20) extends
	the first covering layer, wherein the bottom surface of	upward through the N+ layer (17) and which extends
10	the trench lies above a lowest part of the downward	downward into the P layer (16) and the N layer (12)
- 0	portion of the second covering layer;	
11	electrically conducting semiconductor material	p. 6 of translation: " polycrystalline silicon film 22
	positioned within the trench;	constituting a gate electrode"
12	a layer of oxide positioned within the trench between the	gate oxide film (21)
	electrically conducting semiconductor material and the	,
13	bottom and side surfaces of the trench; and	•
	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
14	conducting semiconductor material, to the third covering	material (22), to the top N+ layer (17) and to the N+
• •	layer and to the substrate, respectively.	substrate (11).
15	layer and to the substrate, respectively.	
	li .	•

U.S. Patent No. 5,298,442	JP 62012167
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	Manufacture of Vertical Type Semiconductor Device with Groove Section
	See fig. 1(f).
providing a first region of a first conductivity type;	N+ layer (11) and N layer (12).
providing a second region-of a second conductivity type over said first region;	P layer (16).
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer (17) lying above the P layer (16).
providing a trench through said third and second regions; and	p. 6 of translation: "The grooved portion 20 has smooth outlines and does not have any sharp pointed sections."
	As seen from fig. 1(f), the grooved portion (20) extends upward through the N+ layer (17) and which extends downward into the P layer (16) and the N layer (12)
providing a gate in said trench;	gate oxide film (21)

SILICON VALLEY

1 2 3	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	the P layer (16) extends upward through the N+ layer (17) and which extends downward through the N layer (12) deeper than the grooved portion (20)
4	said trench.	
5		
6	CLAIM 18	
Ŭ	18. The method of claim 17 wherein said portion P of	N/A
7	said second region is doped heavier than another portion	
	of said second region which portion is adjacent said	
8	trench.	•
	CLAIM 19	
9	19. The method of claim 17 wherein said first region	N+ substrate (11) under N layer (12)
	comprises a first portion and a second portion over said	
0	first portion, said second portion being lighter doped	•
	than said first portion. CLAIM 20	
1		
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said second portion.	across the N layer (12)
	CLAIM 22	
3		-
	21. The method of claim 17 further comprising the step	gate oxide (21)
4	of providing an insulator between said surface of said trench and said gate.	
_	CLAIM 23	
5		
6	23. A method for providing a transistor, said method comprising the steps of:	Manufacture of Vertical Type Semiconductor Device
0	comprising the steps of:	with Groove Section
7	· ·	Son #= 1/0
′	providing a first region of a first conductivity town	See fig. 1(f).
8	providing a first region of a first conductivity type; providing a second region of said first conductivity type	N+ layer (11)
o .	over said first region, said second region being lighter	N layer (12)
9	doped than said first region;	
	providing a third region of a second conductivity type	P layer (16)
0	over said second region, said second and third regions	1 layer (10)
	forming a junction;	
1	providing a fourth region of said first conductivity type	N+ layer (17) lying above the P layer (16)
	over said third region;	14 layer (17) lying above the F layer (10)
2	providing a trench through said fourth region and third	p. 6 of translation: "The grooved portion 20 has smooth
	regions; and	outlines and does not have any sharp pointed sections."
3	rogions, and	outlines and does not have any snarp pointed sections.
4		As seen from fig. 1(f), the grooved portion (20) extends upward through the N+ layer (17) and which extends
ا ۔		downward into the P layer (16) and the N layer (12)
5	providing a gate in said trench; wherein a deepest part of said third regions is laterally	gate oxide film (21)
	triparam a doomast most of said third series is let seller	P layer (16) is laterally spaced from said groove.

28 ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

27

-19-

wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (16) and the N+ layer (11) is less than a depletion width of a
width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	planar junction which has the same doping profile as does the junction between the N- layer (12) and the P layer (16) at the deepest part of the P layer (16) and which is reverse biased around its breakdown voltage
CLAIM 24	
24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	N/A

7	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266	
8	- U.S. Patent 5,072,266	U.S. Patent 4,420,379
	CLAIM 1	, , , , , , , , , , , , , , , , , , , ,
9	1. A trench DMOS transistor cell comprising:	Method for the Formation of Polycrystalline Silicon Layers, and its Application in the Manufacture of a Self-
10		Aligned, Non Planar, MOS Transistor
11		See Figs. 3-19.
12	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (20)
13	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N- layer (21)
14	a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (22), (25) and (27)
15	a third covering layer of semiconductor material of	N+ layer (26)
16	heavily doped said first electrical conductivity type and having a top surface and partly lying over the second	the P layer has a heavily doped P+ region (22) which
17	covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	extends upward through the N+ layer (26) and which extends downward into the N- layer (21)
18	vertically upward and downward, an upward portion extending through the third covering layer to the top	Col. 4, lns. 23-26: "In the stage shown as FIG. 5, the device undergoes an oxidizing treatment which
19	surface of the third covering layer and a downward portion extending downward into the first covering	simultaneously deepens the P+ type guard ring and protects the peripheral part of the junction under a thick
20	layer;	oxide layer 23 (1 micron), called the field oxide."
21	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	trench (30) with a bottom surface and side surfaces which extend vertically downward from the top surface of the
22	the third covering layer through the third covering layer and the second covering layer and through a portion of	N+ layer (26) through the N+ layer (26), the P layer (25) and through a portion of the N- (21) layer, wherein the bottom surface of the trench (30) lies above a lowest part
23	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	of the downward portion of the P layer (22)
24	portion of the second covering layer; electrically conducting semiconductor material positioned within the trench;	semiconductor material (32)
25	a layer of oxide positioned within the trench between the	oxide (31)
26	electrically conducting semiconductor material and the bottom and side surfaces of the trench; and	
27	three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	gate semiconductor material (32), source electrode (33) and drain at N+ substrate (20)
28	layer and to the substrate, respectively.	

2

3

4

5

U.S. Patent No. 5,298,442	U.S. Patent No. 4,420,379
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	Method for the Formation of Polycrystalline Silicon Layers, and its Application in the Manufacture of a Se Aligned, Non Planar, MOS Transistor
	See Figs. 3-19.
providing a first region of a first conductivity type;	N+ layer (20) and N- layer (21)
providing a second region of a second conductivity type over said first region;	P layer (22), (25) and (27)
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer (26)
providing a trench through said third and second regions; and	trench (30) through the N+ layer (26), the P layer (25) and through a portion of the N- (21) layer
providing a gate in said trench;	gate semiconductor material (32)
wherein a portion P of said second region, which portion	a portion of the P layer (22), which portion is spaced
is spaced from said trench, extends deeper than said	from the trench (30), extends deeper than the trench (3
trench so that, if a predetermined voltage is applied to	· ·
said gate and to said third region and another	a portion of the P Layer (22) acts as a guard rail to spre
predetermined voltage is applied to said first region, an	the electric field at the periphery and away from the
avalanche breakdown occurs away from a surface of said trench.	channel.
CLAIM 18	
18. The method of claim 17 wherein said portion P of	P layer has a heavily doped P+ portion (22) which is
said second region is doped heavier than another portion of said second region which portion is adjacent said trench.	laterally spaced from the trench
CLAIM 19	
19. The method of claim 17 wherein said first region	N+ layer (20) under N- layer (21)
comprises a first portion and a second portion over said	11. Tayor (20) under 11- tayer (21)
first portion, said second portion being lighter doped	
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
oreakdown is a reach-through breakdown across said second portion.	across the N- layer (21)
CLAIM 22	
21. The method of claim 17 further comprising the step	oxide (31)
of providing an insulator between said surface of said rench and said gate.	
CLAIM 23	
23. A method for providing a transistor, said method	Method for the Formation of Polycrystalline Silicon
comprising the steps of:	Layers, and its Application in the Manufacture of a Self Aligned, Non Planar, MOS Transistor
	See Figs. 3-19.
	N+ layer (20)

1	providing a second region of said first conductivity type over said first region, said second region being lighter	N- layer (21)
2	doped than said first region;	T (20) (25) 1 (25)
3	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer (22), (25) and (27)
4	providing a fourth region of said first conductivity type over said third region;	N+ layer (26)
5	providing a trench through said fourth region and third regions; and	trench (30) through the N+ layer (26) and the P layer (25) and through a portion of the N- (21) layer
6	providing a gate in said trench;	gate semiconductor material (32)
7	wherein a deepest part of said third regions is laterally spaced from said trench;	the P layer region (22) is laterally spaced from trench (30)
8	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (22) and the N+ layer (20) is less than a depletion width of a
9	width of a planar junction which has the same doping profile as does said junction between said second and	planar junction which has the same doping profile as does the junction between the N- layer (21) and the P
10	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	layer (22) at the deepest part of the P layer (22) and which is reverse biased around its breakdown voltage
11	CLAIM 24	
11	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ and is doped
12	said third region is doped heavier than a part of said third region which part is adjacent said trench.	heavier than the part of the third region P (25) adjacent the trench
Ī	1	

U.S. Patent 5,072,266	JP 63-124762
CLAIM 1	
1. A trench DMOS transistor cell comprising:	Vertical MOSFET
	See fig. 1
a substrate of semiconductor material of heavily doped	N+ layer (1)
first electrical conductivity type;	
a first covering layer of semiconductor material of said	N layer (2)
first electrical conductivity type lying on the substrate;	
a second covering layer of semiconductor material of	P layer (3), (11) and (12)
second electrical conductivity type lying on the first	
covering layer;	
a third covering layer of semiconductor material of	N+ layer (4) lying partly over the P layer (3)
heavily doped said first electrical conductivity type and	
having a top surface and partly lying over the second	A portion of the P layer (11) and (12) is heavily doped
covering layer, wherein a portion of the second covering	P+ and extends upward through the N+ layer (4) to the
layer is heavily doped and this portion extends both	top and downward into the N layer (2).
vertically upward and downward, an upward portion	
extending through the third covering layer to the top	
surface of the third covering layer and a downward	·
portion extending downward into the first covering	
layer;	though (0) having a harron number and side and
a trench having a bottom surface and side surfaces and	trench (8) having a bottom surface and side surfaces an extending vertically downward from the top surface of
extending vertically downward from the top surface of	the N+ layer (4) through the N+ layer (4) and the P layer
the third covering layer through the third covering layer DOCSSV2:500277.1	RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9

1 2	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	(3) and through a portion of the N layer (2), wherein the bottom surface of the trench (8) lies above a lowest part of the P+ layer (12)
	portion of the second covering layer;	
3	electrically conducting semiconductor material	trench (8) possess a highly doped poly-silicon gate
	positioned within the trench;	electrode (9)
4	a layer of oxide positioned within the trench between the	gate oxide film (7)
•	electrically conducting semiconductor material and the	
5	bottom and side surfaces of the trench; and	
,	three electrodes electrically coupled to the electrically	gate electrode (9), source electrode (14) and drain
_	mice electiones electrically coupled to the electrically	
6	conducting semiconductor material, to the third covering	electrode (15)
	layer and to the substrate, respectively.	
	H	

U.S. Patent No. 5,298,442	JP 63-124762
CLAIM 17	
17. A method for providing a transistor, said method	Vertical MOSFET
comprising the steps of:	San Fa 1
C. C. A southering	See fig. 1 N+ layer (1) and N layer (2)
providing a first region of a first conductivity type;	P layer (3), (11) and (12)
providing a second region of a second conductivity type	F layer (3), (11) and (12)
over said first region;	N+ layer (4) such that P layer (3) is between the N layer
providing a third region of said first conductivity type	(2) and the N+ layer (4)
such that said first and third regions are separated by	(2) and no 11 injury (1)
said second region; providing a trench through said third and second	trench (8) extending through the N+ layer (4) and the P
regions; and	layer (3)
providing a gate in said trench;	trench (8) possess a highly doped poly-silicon gate
providing a gate in said deficit,	electrode (9)
wherein a portion P of said second region, which portion	portion P+ (12) is spaced from trench (8) and extends
is spaced from said trench, extends deeper than said	deeper than said trench (8) so that, if a predetermined
trench so that, if a predetermined voltage is applied to	voltage is applied to the gate (9) and to N+ layer (4) and
said gate and to said third region and another	another predetermined voltage is applied to the N+ layer (1), an avalanche breakdown occurs away from a surface
predetermined voltage is applied to said first region, an	of the trench (8).
avalanche breakdown occurs away from a surface of	of the trench (b).
said trench.	
,	
CLAIM 18	(4) 1(10) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18. The method of claim 17 wherein said portion P of	A portion of the P layer (11) and (12) is heavily doped
said second region is doped heavier than another portion	P+
of said second region which portion is adjacent said	P layer (3) is adjacent the trench (8)
trench.	1 tayer (7) is adjacent the denon (6)
CLAIM 19	N+ layer (1) under N layer (2)
19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2)
comprises a first portion and a second portion over said	
first portion, said second portion being lighter doped	
than said first portion.	

ORRICK

HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

- 1		
1	CLAIM 20	
Ī	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said	across the N layer (2)
	second portion.	
3	CLAIM 22	
	21. The method of claim 17 further comprising the step	gate oxide film (7)
4	of providing an insulator between said surface of said	
	trench and said gate.	
5	CLAIM 23	
	23. A method for providing a transistor, said method	Vertical MOSFET
6	comprising the steps of:	
		See fig. 1
.7	providing a first region of a first conductivity type;	N+ layer (1)
	providing a second region of said first conductivity type	N layer (2)
8	over said first region, said second region being lighter	,
9	doped than said first region;	
9	providing a third region of a second conductivity type	P layer (3), (11) and (12) over N layer (2)
10	over said second region, said second and third regions	
. 10	forming a junction;	27.1 (2)
11	providing a fourth region of said first conductivity type	N+ layer (4) lying above the P layer (3).
* *	over said third region;	1 (0) (11 N) I I I I I I I I I I I I I I I I I I
12	providing a trench through said fourth region and third	trench (8) through N+ layer (4) and P layer (3)
	regions; and	:1- C1 (0)
13	providing a gate in said trench;	gate oxide film (9)
	wherein a deepest part of said third regions is laterally	portions of P layer (11) and (12) are laterally spaced from
14	spaced from said trench;	trench (8)
	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (12)
15	third region and said first region is less than a depletion	and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as
	width of a planar junction which has the same doping	does the junction between the N- layer (2) and the P layer
16	profile as does said junction between said second and	(12) at the deepest part of the P layer (12) and which is
	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	reverse biased around its breakdown voltage
17	CLAIM 24	1070130 Oldood drounds 110 Oldandown Youngs
	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ (12) and is
18	said third region is doped heavier than a part of said	doped heavier than the part of the third region P (3)
		adjacent the trench (8)
19	third region which part is adjacent said trench.	adjustit die denen (e)

VMOS FET
See fig. 1
P layer (11) (opposite conductivity type with respect to drain).
N- layer (12)
P layer (13) (20) lying on N layer (12)

11		
1	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer (14) lying partly over the P layer (13), wherein a portion of the P layer (20) is heavily doped P+ and
2	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	extends downward into the N- Layer (12)
3	layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	
4	extending through the third covering layer to the top surface of the third covering layer and a downward	
5	portion extending downward into the first covering layer;	
6	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	trench (15) having a bottom surface and side surfaces and extends vertically downward from the top surface of N+
7	the third covering layer through the third covering layer and the second covering layer and through a portion of	layer (14) through the N+ layer (14) and the P layer (13) and through a portion of the N- layer (12), wherein the bottom surface of the trench (15) lies above the lowest
8	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	part of the downward portion of the P layer (20) which is heavily doped
9	portion of the second covering layer; electrically conducting semiconductor material positioned within the trench;	poly gate material (18) in trench (15)
10	a layer of oxide positioned within the trench between the	gate oxide film (17)
11	electrically conducting semiconductor material and the bottom and side surfaces of the trench; and	
12	three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	gate electrode (18), source electrode (9) and drain electrode (24)
13	layer and to the substrate, respectively.	

U.S. Patent No. 5,298,442	JP 63-224260
CLAIM 17	
17. A method for providing a transistor, said method	VMOS FET
comprising the steps of :	See fig. 1
providing a first region of a first conductivity type;	N- layer (12).
providing a second region of a second conductivity type over said first region;	P layer (16) and (20)
providing a third region of said first conductivity type	N+ layer (14) lying above the P layer (16)
such that said first and third regions are separated by said second region;	
providing a trench through said third and second regions; and	trench (15) extends through N+ layer (17) and P layer (16)
providing a gate in said trench;	poly gate (18)
wherein a portion P of said second region, which portion	a portion of the P layer (20) is laterally spaced from the
is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	trench (15) and extends deeper than the trench (15)
said gate and to said third region and another predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of said trench.	

ORRICK

HERRINGTON

& SUTCLIFFE LLP SILICON VALLEY

1		
1	CLAIM 18	
	18. The method of claim 17 wherein said portion P of	a portion P of the P layer is P+ (20) and is doped heavier
2	said second region is doped heavier than another portion	than the portion (26) of the P layer adjacent the trench
	of said second region which portion is adjacent said	(15)
3	trench.	
ľ	CLAIM 19	
4	19. The method of claim 17 wherein said first region	N/A
Ì	comprises a first portion and a second portion over said	
5	first portion, said second portion being lighter doped	•
	than said first portion.	
6	CLAIM 20	
Ì	20. The method of claim 19 wherein said avalanche	N/A
7	breakdown is a reach-through breakdown across said	
	second portion.	
8	CLAIM 22	
h	21. The method of claim 17 further comprising the step	gate oxide film (17)
9	of providing an insulator between said surface of said	
'	trench and said gate.	•
10	CLAIM 23	
	23. A method for providing a transistor, said method	VMOS FET
11	comprising the steps of:	, , , , , , , , , , , , , , , , , , , ,
	comprising the steps of	See fig. 1.
12	providing a first region of a first conductivity type;	P substrate (11)
l	providing a second region of said first conductivity type	N layer (12)
13	over said first region, said second region being lighter	- · · · · · · · · · · · · · · · · · · ·
	doped than said first region;	<u>.</u>
14	providing a third region of a second conductivity type	P layer (13) and (20)
	over said second region, said second and third regions	
15	forming a junction;	
.	providing a fourth region of said first conductivity type	N+ layer (14) lying above P layer (13)
16	over said third region;	
,,	providing a trench through said fourth region and third	trench (15) extending through N+ layer (13) and P layer
17	regions; and	(13)
18	providing a gate in said trench;	poly gate (18)
10	wherein a deepest part of said third regions is laterally	the deepest part of the P layer (20) is laterally spaced
19	spaced from said trench;	from trench (15)
19	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (20)
20	third region and said first region is less than a depletion	and the P layer (11) is less than a depletion width of a
20	width of a planar junction which has the same doping	planar junction which has the same doping profile as
21	profile as does said junction between said second and	does the junction between the N- layer (12) and the P
	third regions at said deepest part of said third region and	layer (20) at the deepest part of the P layer (20) and
22	which is reverse biased around its breakdown voltage.	which is reverse biased around its breakdown voltage
	CLAIM 24	
23	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ (20) which is
~-	said third region is doped heavier than a part of said	doped heavier than the part of the third region adjacent
24	third region which part is adjacent said trench.	the trench (15)

28 Orrick Herrington & Sutcliffe LLP

SILICON VALLEY

25

26

27

U.S. Patent 5,072,266	JP 59-181668
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VMOS FET
	See fig. 3
substrate of semiconductor material of heavily doped	N+ layer (11) and (12)
first electrical conductivity type;	, ()
a first covering layer of semiconductor material of said	N layer (13)
first electrical conductivity type lying on the substrate;	
a second covering layer of semiconductor material of	P layer (14) and (16) lying on N layer (13)
second electrical conductivity type lying on the first	
covering layer;	·
a third covering layer of semiconductor material of	N+ layer (15) lying partly over the P layer (14), wherein
heavily doped said first electrical conductivity type and	a portion of the P layer is a heavily doped P+ (16) and
having a top surface and partly lying over the second	extends vertically upward through the N+ layer (15) and
covering layer, wherein a portion of the second covering	vertically downward into the N layer (13)
ayer is heavily doped and this portion extends both	
vertically upward and downward, an upward portion	
extending through the third covering layer to the top	
surface of the third covering layer and a downward	
portion extending downward into the first covering ayer;	
a trench having a bottom surface and side surfaces and	trongle (21) having a harry and the Control of the
extending vertically downward from the top surface of	trench (21) having a bottom surface and side surface and extending vertically downward through the N+ layer
he third covering layer through the third covering layer	(15), the P layer (14) and through a portion of the N layer
and the second covering layer and through a portion of	(13), wherein the bottom surface of the trench (21) lies
he first covering layer, wherein the bottom surface of	above the lowest part of the P layer (16).
he trench lies above a lowest part of the downward	
portion of the second covering layer;	
electrically conducting semiconductor material	poly gate in trench (19)
positioned within the trench;	, , , , , , , , , , , , , , , , , ,
a layer of oxide positioned within the trench between the	gate oxide layer (17)
electrically conducting semiconductor material and the	
pottom and side surfaces of the trench; and	
hree electrodes electrically coupled to the electrically	gate electrode (19), source electrode (20) and drain
conducting semiconductor material, to the third covering	electrode (not shown)
ayer and to the substrate, respectively.	

23	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442		
43	U.S. Patent No. 5,298,442	JP 59-181668	
24	CLAIM 17		
25	17. A method for providing a transistor, said method comprising the steps of:	VMOS FET	
-5		See fig. 3	
26	providing a first region of a first conductivity type:	N+ layer (11) and (12), and N layer (13)	

& SUTCLIFFE LLP

SILICON VALLEY

27

21

22

ORRICK DOCSSV2:500277.1

over said first region;

P layer (14) and (16) lying on N layer (13)

providing a second region of a second conductivity type

-		·
1	providing a third region of said first conductivity type such that said first and third regions are separated by	N+ layer (15) lying wherein N layer (13) and N+ layer (15) are separated by P layer (14)
2	said second region; providing a trench through said third and second	trench (21) extending vertically downward through the
3	regions; and	N+ layer (15) and P layer (14)
	providing a gate in said trench;	poly gate in trench (19)
4	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	a portion of the P layer (16), which is spaced from the trench, extends deeper than the trench (21)
6	said gate and to said third region and another predetermined voltage is applied to said first region, an	
7	avalanche breakdown occurs away from a surface of said trench.	
8		
9	CLAIM 18	
,	18. The method of claim 17 wherein said portion P of	a portion of the P layer (14) is a heavily doped P+ (16)
10	said second region is doped heavier than another portion of said second region which portion is adjacent said	which is laterally spaced from the trench (21)
11	trench. CLAIM 19	
12	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	N+ layer (11) and (12) under N layer (13)
13	first portion, said second portion being lighter doped than said first portion.	•
14	CLAIM 20	
15	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	avalanched breakdown is a reach-through breakdown across the N layer (13)
,,	second portion. CLAIM 22	
16	21. The method of claim 17 further comprising the step	gate oxide layer (17)
17	of providing an insulator between said surface of said trench and said gate.	
18	CLAIM 23	
19	23. A method for providing a transistor, said method comprising the steps of:	VMOS FET
20		See fig. 3
20	providing a first region of a first conductivity type; providing a second region of said first conductivity type	N+ layer (11) and (12) N layer (13)
21	over said first region, said second region being lighter doped than said first region;	N layer (13)
22	providing a third region of a second conductivity type	P layer (14) and (16) lying on N layer (13)
23	over said second region, said second and third regions forming a junction;	
24	providing a fourth region of said first conductivity type over said third region;	N+ layer (15) lying over the P layer (14)
25	providing a trench through said fourth region and third regions; and	trench (21) extending vertically downward through the N+ layer (15) and P layer (14)
26	providing a gate in said trench;	gate oxide layer (17)
27	wherein a deepest part of said third regions is laterally spaced from said trench;	a portion of the P layer (16) is laterally spaced from the trench (21)
21		

wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (16)
third region and said first region is less than a depletion	and the N+ layer (12) is less than a depletion width of a
width of a planar junction which has the same doping	planar junction which has the same doping profile as
profile as does said junction between said second and	does the junction between the N layer (13) and the P
third regions at said deepest part of said third region and	layer (16) at the deepest part of the P layer (16) and
which is reverse biased around its breakdown voltage.	which is reverse biased around its breakdown voltage
CLAIM 24	
24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ region (16)
said third region is doped heavier than a part of said	which is doped heavier than P region (14) adjacent the
third region which part is adjacent said trench	trench (21)

•	U.S. Patent 5,072,266	JP 54-57871
	CLAIM 1	
	1. A trench DMOS transistor cell comprising:	VMOS FET
	· .	See fig. 2
	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)
	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (2)
	a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (3) and (10)
,	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer (4) lying partly over the P layer (3), wherein a portion of the P layer is a heavily doped P+ (10) and
	having a top surface and partly lying over the second	extends vertically upward through the N+ layer (4) and vertically downward into the N layer (2)
	covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	vertically downward into the 14 layer (2)
	vertically upward and downward, an upward portion extending through the third covering layer to the top	
	surface of the third covering layer and a downward portion extending downward into the first covering	
-	layer;	
	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of the third covering layer through the third covering layer	trench (11) having a bottom surface and side surfaces and extending vertically downward through the N+ layer (4), the P layer (3) and through a portion of the N layer (2),
	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	wherein the bottom surface of the trench (11) lies above the lowest part of the P layer (10)
	the trench lies above a lowest part of the downward portion of the second covering layer;	
	electrically conducting semiconductor material positioned within the trench;	Al gate (6) in trench (11)
	a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the	gate oxide layer (5)
	bottom and side surfaces of the trench; and	
I	three electrodes electrically coupled to the electrically	gate electrode (6), source electrode (7) and drain

U.S. Patent No. 5,298,442	JP 54-57871
CLAIM 17	
17. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	
	See fig. 2
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).
providing a second region of a second conductivity type	P layer (3) and (10).
over said first region;	
providing a third region of said first conductivity type	N+ layer (4) lying above the P layer (3).
such that said first and third regions are separated by	
said second region;	
providing a trench through said third and second	the trench (11) extends through the N+ layer (4) and the
regions; and	P layer (3)
providing a gate in said trench;	Al gate (6) in trench (11)
wherein a portion P of said second region, which portion	the P layer (10) extends upward through the N+ layer
is spaced from said trench, extends deeper than said	(17) and which extends downward through the N- laye
trench so that, if a predetermined voltage is applied to	(12)
said gate and to said third region and another	
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	
said trench.	
CLAIM 18	
18. The method of claim 17 wherein said portion P of	a portion P of the second region (10) is doped heavier
said second region is doped heavier than another portion	than another portion (3) of the second region which is
of said second region which portion is adjacent said	adjacent the trench (11)
trench.	
CLAIM 19	
19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2)
comprises a first portion and a second portion over said	
first portion, said second portion being lighter doped	
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
breakdown is a reach-through breakdown across said	across N layer (2)
second portion.	
CLAIM 22	
21. The method of claim 17 further comprising the step	gate oxide layer (5)
of providing an insulator between said surface of said	
trench and said gate.	
CLAIM 23	
23. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	
	See fig. 2
providing a first region of a first conductivity type;	N+ layer (1)
providing a second region of said first conductivity type	N layer (2)
over said first region, said second region being lighter	
doped than said first region;	Places (2) and (10)
providing a third region of a second conductivity type	P layer (3) and (10)
over said second region, said second and third regions	
forming a junction;	

1	providing a fourth region of said first conductivity type over said third region;	N+ layer (4) lying above the P layer (3)
2	providing a trench through said fourth region and third regions; and	trench (11) through N+layer (4) and P layer (3)
3	providing a gate in said trench;	gate oxide film (5)
4	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer (10) is laterally spaced from trench (11)
5	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (10) and the N+ layer (1) is less than a depletion width of a
6	width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and	planar junction which has the same doping profile as does the junction between the N layer (2) and the P layer
7	which is reverse biased around its breakdown voltage.	(10) at the deepest part of the P layer (10) and which is reverse biased around its breakdown voltage
ا ہ	CLAIM 24	
8	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region (10) is doped heavier
	said third region is doped heavier than a part of said	than part (3) which is adjacent the trench (11)
9	third region which part is adjacent said trench.	

3	U.S. Patent 5,072,266	JP 57-72365
	CLAIM 1	
4	1. A trench DMOS transistor cell comprising:	VMOS FET
5		See fig. 1
	a substrate of semiconductor material of heavily doped	P+ substrate (1)
6	first electrical conductivity type;	
	a first covering layer of semiconductor material of said	N layer (2)
7	first electrical conductivity type lying on the substrate;	
	a second covering layer of semiconductor material of	P layer (3) and (4)
8	second electrical conductivity type lying on the first	
l	covering layer;	
9	a third covering layer of semiconductor material of	N+ layer (5) lying partly over the P layer (4), wherein the
	heavily doped said first electrical conductivity type and	P layer is heavily doped P+ and extends both vertically
0	having a top surface and partly lying over the second	upward through the N+ layer (5) and downward into the N layer (2)
.	covering layer, wherein a portion of the second covering	i layer (2)
1	layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	
	extending through the third covering layer to the top	,
2	surface of the third covering layer and a downward	
3	portion extending downward into the first covering	
,	layer;	•
4	a trench having a bottom surface and side surfaces and	trench (6) having a bottom surface and side surfaces and
•	extending vertically downward from the top surface of	extending vertically through the N+ layer (5) and the P
5	the third covering layer through the third covering layer	layer (4), and through a portion of the N layer (2), where
	and the second covering layer and through a portion of	the bottom surface of the trench (6) lies above the lowest
5	the first covering layer, wherein the bottom surface of	part of the P layer (3)
	the trench lies above a lowest part of the downward	
7	portion of the second covering layer;	
	9 9	. 11 (0)
	electrically conducting semiconductor material positioned within the trench;	metal layer (8)

1	a layer of oxide positioned within the trench between the	gate oxide (7)
	electrically conducting semiconductor material and the	
2	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	gate electrode (8), source electrode (9) and drain (D)
3	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	

U.S. Patent No. 5,298,442	JP 57-72365
CLAIM 17	
17. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	·
	See fig. 1
providing a first region of a first conductivity type;	N layer (2)
providing a second region of a second conductivity type over said first region;	P layer (4) lying over said N layer (2)
providing a third region of said first conductivity type	N+ layer (5) lying above the P layer (4)
such that said first and third regions are separated by	,
said second region;	
providing a trench through said third and second regions; and	trench (6) through the N+ layer (5) and the P layer (4)
providing a gate in said trench;	metal gate layer (8)
wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	a portion of the P layer (3) is spaced from the trench (6 and extends deeper than trench (6)
said gate and to said third region and another	
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of said trench.	
·	·
CLAIM 18	
18. The method of claim 17 wherein said portion P of	a portion of the second region is doped P+ (3) which is
said second region is doped heavier than another portion	heavier doped than another portion of the second regio
of said second region which portion is adjacent said	that is adjacent the trench (6)
trench.	
CLAIM 19	
19. The method of claim 17 wherein said first region	P+ layer (1) under N layer (2)
comprises a first portion and a second portion over said	
first portion, said second portion being lighter doped	
than said first portion. CLAIM 20	·
20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
breakdown is a reach-through breakdown across said	across the N layer (2)
second portion. CLAIM 22	,
	gate oxide (7)
21. The method of claim 17 further comprising the step of providing an insulator between said surface of said	Bate Oxide (1)
trench and said gate.	

1	CLAIM 23	
	23. A method for providing a transistor, said method	VMOS FET
2	comprising the steps of:	
		See fig. 1
3	providing a first region of a first conductivity type;	
	providing a second region of said first conductivity type	N layer (2)
4	over said first region, said second region being lighter	
	doped than said first region;	
5	providing a third region of a second conductivity type	P layer (4)
_	over said second region, said second and third regions	
6	forming a junction;	
7	providing a fourth region of said first conductivity type	N+ layer (5) lying above the P layer (4)
/	over said third region;	
8	providing a trench through said fourth region and third	trench (6) through the N+ layer (5) and the P layer (4).
0	regions; and	
9	providing a gate in said trench;	metal gate layer (8)
	wherein a deepest part of said third regions is laterally	the deepest part of the P layer (3) is laterally spaced from
10	spaced from said trench;	trench (6)
	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (3)
11	third region and said first region is less than a depletion	and the P+ layer (1) is less than a depletion width of a
	width of a planar junction which has the same doping	planar junction which has the same doping profile as does the junction between the N layer (2) and the P layer
12	profile as does said junction between said second and third regions at said deepest part of said third region and	(3) at the deepest part of the P layer (3) and which is
	which is reverse biased around its breakdown voltage.	reverse biased around its breakdown voltage
13	CLAIM 24	i constituente la create de la
	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is doped P+ (3) which
14	said third region is doped heavier than a part of said	is heavier doped than the part of the third region (4)
	third region which part is adjacent said trench.	adjacent the trench (6)
15		,,

1	6
1	7

U.S. Patent 5,072,266	JP 59-193064
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VMOS FET
	See fig. 2
a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (3)
a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (4)
a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and having a top surface and partly lying over the second covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both vertically upward and downward, an upward portion extending through the third covering layer to the top	N+ layer (5) lying partly over the P layer (4), a portion of the P layer (4) extending vertically upward through the N+ layer (5) and downward into the N layer (3)

surface of the third covering layer and a downward portion extending downward into the first covering layer; a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of the third covering layer through the third covering layer and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; 6 lectrically conducting semiconductor material positioned within the trench; 7 a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench (1) having a bottom surface and side surfaces and extending vertically downward through the N+ layer (5), the P layer (4) and a portion of the N layer (3), where the bottom surface of the trench (10 lies above the lowest portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate oxide (2) gate (8), source (7) and drain (6)		I	
a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of the third covering layer through the third covering layer and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; 6 electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. trench (1) having a bottom surface and side surfaces and extending vertically downward through the N+ layer (5), the P layer (4) and a portion of the N layer (3), where the bottom surface of the trench (10 lies above the lowest portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)	1	portion extending downward into the first covering	·
extending vertically downward from the top surface of the third covering layer through the third covering layer and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. extending vertically downward through the N+ layer (5), the P layer (4) and a portion of the N layer (3), where the bottom surface of the trench (10 lies above the lowest portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)	2	layer;	
extending vertically downward from the top surface of the third covering layer through the third covering layer and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. extending vertically downward through the N+ layer (5), the P layer (4) and a portion of the N layer (3), where the bottom surface of the trench (10 lies above the lowest portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)		a trench having a bottom surface and side surfaces and	trench (1) having a hottom surface and side surfaces and
the third covering layer through the third covering layer and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. the P layer (4) and a portion of the N layer (3), where the bottom surface of the trench (10 lies above the lowest portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)	3		extending vertically downward through the N+ layer (5)
and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. bottom surface of the trench (10 lies above the lowest portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)		the third covering layer through the third covering layer	the Player (4) and a portion of the N layer (3), where the
the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. portion of the P layer (4) gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)	4	and the second covering layer and through a portion of	bottom surface of the trench (10 lies above the lowest
the trench lies above a lowest part of the downward portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)		the first covering layer, wherein the bottom surface of	
portion of the second covering layer; electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)	5	the trench lies above a lowest part of the daymound	portion of the range (1)
electrically conducting semiconductor material positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate semiconductor material (8) in trench (1) gate oxide (2) gate (8), source (7) and drain (6)	,	portion of the second covering lever	
positioned within the trench; a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate oxide (2) gate (8), source (7) and drain (6)	_		
a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate oxide (2) gate (8), source (7) and drain (6)	6		gate semiconductor material (8) in trench (1)
electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate (8), source (7) and drain (6)		positioned within the trench;	
electrically conducting semiconductor material and the bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate (8), source (7) and drain (6)	.7	a layer of oxide positioned within the trench between the	gate oxide (2)
bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering layer and to the substrate, respectively. gate (8), source (7) and drain (6)			:
conducting semiconductor material, to the third covering layer and to the substrate, respectively.	8		
conducting semiconductor material, to the third covering layer and to the substrate, respectively.		three electrodes electrically coupled to the electrically	gate (8), source (7) and drain (6)
layer and to the substrate, respectively.	9		(0)
			. •
	10		

12	` INVALIDITY CLAIM CHART FO	DIIC DATENT NO 5 200 442
13	U.S. Patent No. 5,298,442	JP 59-193064
14	CLAIM 17	
15	17. A method for providing a transistor, said method comprising the steps of:	VMOS FET
15	•	See fig. 2
16	providing a first region of a first conductivity type;	N+ layer and N layer (3)
17	providing a second region of a second conductivity type over said first region;	P layer (4) over N layer (3)
	providing a third region of said first conductivity type such that said first and third regions are separated by	N+ layer (5) lying above the P layer (4).
18	said second region;	
19	providing a trench through said third and second regions; and	trench (1) through N+ layer (5) and P layer (4)
20	providing a gate in said trench;	gate semiconductor material (8)
	wherein a portion P of said second region, which portion	a portion of the P layer (4) is spaced from trench (1) and
21	is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	extends deeper than trench (1)
22	said gate and to said third region and another predetermined voltage is applied to said first region, an	
23	avalanche breakdown occurs away from a surface of said trench.	
24	ממנע עכווניון.	
	·	
25	CLAIM 18	
26	18. The method of claim 17 wherein said portion P of	obvious to have the second region with a heavier doped
	said second region is doped heavier than another portion of said second region which portion is adjacent said	P+ portion
27	trench.	

SILICON VALLEY

1	CLAIM 19	
	19. The method of claim 17 wherein said first region	N+ layer under N- layer (3)
2	comprises a first portion and a second portion over said	, (-)
	first portion, said second portion being lighter doped	
3	than said first portion.	
	CLAIM 20	
4	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
_	breakdown is a reach-through breakdown across said	across the N- layer (3)
5	second portion.	
_	CLAIM 22	
6	21. The method of claim 17 further comprising the step	gate oxide (2)
7	of providing an insulator between said surface of said	
7	trench and said gate.	
8	CLAIM 23	
0	23. A method for providing a transistor, said method	VMOS FET
9	comprising the steps of:	·
		See fig. 2
10	providing a first region of a first conductivity type;	N+ layer
10	providing a second region of said first conductivity type	N layer (3) lying above the N+ layer
11.	over said first region, said second region being lighter	
•	doped than said first region;	
12	providing a third region of a second conductivity type	P layer (4)
	over said second region, said second and third regions	
13	forming a junction;	
	providing a fourth region of said first conductivity type	N+ layer (5) lying above the P layer (4)
14	over said third region;	
	providing a trench through said fourth region and third	trench (1) through the N+ layer (5) and P layer (4)
15	regions; and	11 (2)
	providing a gate in said trench;	gate oxide (2)
16	wherein a deepest part of said third regions is laterally spaced from said trench;	the deepest part of P layer (4) is laterally spaced from
		trench (1)
17	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (4)
10	third region and said first region is less than a depletion width of a planar junction which has the same doping	and the N+ layer is less than a depletion width of a planar
18	profile as does said junction between said second and	junction which has the same doping profile as does the
19	third regions at said deepest part of said third region and	junction between the N- layer (3) and the P layer (4) at
19	which is reverse biased around its breakdown voltage.	the deepest part of the P layer (4) and which is reverse biased around its breakdown voltage
20	. CLAIM 24	olased around its breakdown voltage
~~	24. The method of claim 23 wherein said deepest part of	obvious to have the second region with a having 1
21	said third region is doped heavier than a part of said	obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench (1)
	third region which part is adjacent said trench.	1 - portion faterally spaced from the french (1)
22		
-		

23 2-

25

26

27

U.S. Patent 5,072,266	JP 60-28271
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VMOSFET
	See fig. 3(a-h)
a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)

ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

1	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (2)
2	a second covering layer of semiconductor material of	P1 (0) 1(11)
2	second electrical conductivity type lying on the first	P layer (8) and (11)
3	covering layer;	
	a third covering layer of semiconductor material of	N. 1 (0) 1
4	heavily doped said first electrical conductivity type and	N+ layer (9) lying partly over the P layer (8), where a
•	having a top surface and partly lying over the second	portion of the P layer (11) extends vertically upward through the N+ layer
5	covering layer, wherein a portion of the second covering	imough the 19+ layer
_	layer is heavily doped and this portion extends both	
6	vertically upward and downward, an upward portion	
·	extending through the third covering layer to the top	
7	surface of the third covering layer and a downward	
•	portion extending downward into the first covering	
8	layer;	
	a trench having a bottom surface and side surfaces and	trench (10) having a bottom surface and side surfaces and
9	extending vertically downward from the top surface of	extending vertically downward through the N+ layer (9)
•	the third covering layer through the third covering layer	and the P layer (8) and through a portion of the N layer
10	and the second covering layer and through a portion of	(2)
	the first covering layer, wherein the bottom surface of	·
11	the trench lies above a lowest part of the downward	
	portion of the second covering layer;	
12	electrically conducting semiconductor material	poly gate (6) in trench (10)
	positioned within the trench;	,
13	a layer of oxide positioned within the trench between the	gate oxide film (5)
	electrically conducting semiconductor material and the	
14	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	gate (6), source (14) and drain (backside)
15	conducting semiconductor material, to the third covering	(
	layer and to the substrate, respectively.	
16		

U.S. Patent No. 5,298,442	JP 60-28271
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	VMOSFET
-	See fig. 3(a-h)
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).
providing a second region of a second conductivity type over said first region;	P layer (8) and (11).
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer (9) lying above the P layer (8).
providing a trench through said third and second regions; and	trench (10) through N+ layer (9) and P layer (8)
providing a gate in said trench;	poly gate (6) in trench (10)

- 1		
1	wherein a portion P of said second region, which portion	a portion P of the second region (11) is spaced from the
	is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	trench (10);
	said gate and to said third region and another	the second region extends deeper than the trench (10)
	predetermined voltage is applied to said first region, an	
	avalanche breakdown occurs away from a surface of	·
4	said trench.	
5	CLAIM 10	
6 F	CLAIM 18 18. The method of claim 17 wherein said portion P of	portion P of the second region (11) is doped heavier than
	said second region is doped heavier than another portion	another portion (8) which is adjacent the trench
7	of said second region which portion is adjacent said	
	trench.	
8	CLAIM 19	
9	19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2)
7	comprises a first portion and a second portion over said	
10	first portion, said second portion being lighter doped	
Ţ	than said first portion. CLAIM 20	
11	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
	breakdown is a reach-through breakdown across said	across the N layer (2)
12	second portion.	
13	CLAIM 22	-
13	21. The method of claim 17 further comprising the step	gate oxide film (5)
14	of providing an insulator between said surface of said	
_	trench and said gate.	
15	CLAIM 23	VMOSFET
	23. A method for providing a transistor, said method	VMOSFET
16	comprising the steps of:	See fig. 3(a-h)
17	providing a first region of a first conductivity type;	N+ layer (1)
17	providing a second region of said first conductivity type	N layer (2)
18	over said first region, said second region being lighter	
	doped than said first region;	
19	providing a third region of a second conductivity type	P layer (8)
	over said second region, said second and third regions	
20	forming a junction;	N+ layer (9) lying above the P layer (8)
21	providing a fourth region of said first conductivity type	N+ layer (9) lying above the r layer (6)
21	over said third region; providing a trench through said fourth region and third	trench (10) through N+ layer (9) and P layer (8)
22	regions; and	uchen (10) amough 14 any or (2) and (2)
	providing a gate in said trench;	poly gate (6) in trench (10)
23	wherein a deepest part of said third regions is laterally	deepest part of the third region is laterally spaced from
	spaced from said trench;	the trench (10)
24	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (8)
25	third region and said first region is less than a depletion	and the N+ layer (1) is less than a depletion width of a
25	width of a planar junction which has the same doping	planar junction which has the same doping profile as
26	profile as does said junction between said second and	does the junction between the N- layer (2) and the P layer (8) at the deepest part of the P layer (8) and which is
20	third regions at said deepest part of said third region and	reverse biased around its breakdown voltage
	which is reverse biased around its breakdown voltage.	TOTOLOG DIGGOG GLOUNG IN OLOGICO I TOTAL

-37-

1	CLAIM 24	
2	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	obvious to have deepest part of the third region doped heavier than the part adjacent said trench

5 INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266 6 U.S. Patent 5,072,266 JP 57-18365 CLAIM 1 7 1. A trench DMOS transistor cell comprising: VMOS FET 8 See fig. 2 a substrate of semiconductor material of heavily doped N+ layer (1) first electrical conductivity type; a first covering layer of semiconductor material of said N layer (2) 10 first electrical conductivity type lying on the substrate; a second covering layer of semiconductor material of P layer (3) 11 second electrical conductivity type lying on the first covering layer; 12 a third covering layer of semiconductor material of N+ layer (4) lying partly over the P layer (3) heavily doped said first electrical conductivity type and 13 having a top surface and partly lying over the second covering layer, wherein a portion of the second covering 14 layer is heavily doped and this portion extends both vertically upward and downward, an upward portion 15 extending through the third covering layer to the top surface of the third covering layer and a downward 16 portion extending downward into the first covering 17 a trench having a bottom surface and side surfaces and trench (5) have a bottom surface and side surfaces which extending vertically downward from the top surface of extend vertically downward through the N+ layer (4) and 18 the third covering layer through the third covering layer the P layer (3) and through a portion of the N layer (2) and the second covering layer and through a portion of 19 in fig. 4, the P layer (2) lies between the N+ layer (4) and the first covering layer, wherein the bottom surface of the N layer (2) and extends below the bottom surface of the trench lies above a lowest part of the downward 20 the trench (5) portion of the second covering layer; electrically conducting semiconductor material gate (7) in trench (5) positioned within the trench; a layer of oxide positioned within the trench between the gate oxide layer between gate (7) and trench (5) 22 electrically conducting semiconductor material and the bottom and side surfaces of the trench; and 23 three electrodes electrically coupled to the electrically gate (7), source (6) and drain (not drawn) conducting semiconductor material, to the third covering 24 layer and to the substrate, respectively.

28 ORRICK TERRINGTON & SUTCLIFFE LLP SILICON VALLEY

21

25

26

27

3

4

U.S. Patent No. 5,298,442		JP 57-18365	
	CLAIM 17		
	17. A method for providing a transistor, said method comprising the steps of:	VMOS FET	
	tomprises at supe or .	See fig. 2	
	providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).	
	providing a second region of a second conductivity type	P layer (3).	
	over said first region;	, and the (a).	
	providing a third region of said first conductivity type	N+ layer (4) lying above the P layer (3).	
	such that said first and third regions are separated by	, , , , , , , , , , , , , , , , , , , ,	
	said second region;		
	providing a trench through said third and second regions; and	trench (5) through N+ layer (4) and P layer (3)	
	providing a gate in said trench;	gate (7) in trench (5)	
	wherein a portion P of said second region, which portion	the P layer (3) extends upward through the N+ layer (4)	
-	is spaced from said trench, extends deeper than said		
	trench so that, if a predetermined voltage is applied to	in fig. 4, P layer (4) extends deeper than trench (5)	
-	said gate and to said third region and another		
	predetermined voltage is applied to said first region, an		
	avalanche breakdown occurs away from a surface of said trench.		
	Salu uchcli.		
1	CLAIM 18		
	18. The method of claim 17 wherein said portion P of	obvious to have the second region with a heavier doped	
	said second region is doped heavier than another portion	P+ portion laterally spaced from the trench (1)	
	of said second region which portion is adjacent said	- Formon mercan, spaced from the field (1)	
	trench.		
	CLAIM 19		
	19. The method of claim 17 wherein said first region	N+ layer (1) under N- layer (2)	
	comprises a first portion and a second portion over said	• •	
	first portion, said second portion being lighter doped		
1	than said first portion.		
ŀ	CLAIM 20		
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown	
	breakdown is a reach-through breakdown across said second portion.	across the N- layer (2)	
۲	CLAIM 22		
I	21. The method of claim 17 further comprising the step	gate oxide layer between gate (7) and trench (5)	
	of providing an insulator between said surface of said	Para remark and the first factor (2)	
	trench and said gate.		
	CLAIM 23		
I	23. A method for providing a transistor, said method	VMOS FET	
	comprising the steps of:		
H		See fig. 2	
H	providing a first region of a first conductivity type;	N+ layer (1)	
	providing a second region of said first conductivity type over said first region, said second region being lighter	N layer (2)	

28 Orrick Herrington & Sutcliffe LLP

	U .		
1 2	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer (3)	
3	providing a fourth region of said first conductivity type over said third region;	N+ layer (4) lying above the P layer (3)	
4	providing a trench through said fourth region and third regions; and	trench (5) through N+ layer (4) and P layer (3)	
_	providing a gate in said trench;	gate (7) in trench (5)	
5	wherein a deepest part of said third regions is laterally spaced from said trench;	deepest part of the third region is laterally spaced from the trench (5)	
6	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (3)	
7	third region and said first region is less than a depletion width of a planar junction which has the same doping	and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as	
8	profile as does said junction between said second and third regions at said deepest part of said third region and	does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) and which is	
9	which is reverse biased around its breakdown voltage. CLAIM 24	reverse biased around its breakdown voltage	
10	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said translation.	obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench (7)	
11	third region which part is adjacent said trench.		

1^	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266		
14	U.S. Patent 5,072,266	JP 59-80970	
• •	CLAIM 1		
15	1. A trench DMOS transistor cell comprising:	V Groove MOSFET	
16		See fig. 2	
17	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (2)	
18	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (1)	
19	a second covering layer of semiconductor material of second electrical conductivity type lying on the first	P layer (8)	
	covering layer;		
20	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer (4) lying partly over the P layer (8), where the P	
21	having a top surface and partly lying over the second	layer (8) extends vertically upward through the N+ layer (4) and vertically downward into the N layer (1)	
22	covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both		
	vertically upward and downward, an upward portion		
23	extending through the third covering layer to the top		
	surface of the third covering layer and a downward		
24	portion extending downward into the first covering layer;		
25	a trench having a bottom surface and side surfaces and	trench having a bottom surface and side surface, and	
	extending vertically downward from the top surface of	extending vertically downward through the N+ layer (4)	
26	the third covering layer through the third covering layer	and the P layer (8) and through a portion of the N layer	
	and the second covering layer and through a portion of	(1)	
27	the first covering layer, wherein the bottom surface of		
	the trench lies above a lowest part of the downward		
28	portion of the second covering layer;	·	
	DOCSSV2.600277.1		

1	electrically conducting semiconductor material positioned within the trench;	gate (6) in trench
2	a layer of oxide positioned within the trench between the	gate oxide layer (5)
2	electrically conducting semiconductor material and the	gate oxide layer (3)
3	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	gate (5), source (7) and drain (not drawn)
4	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	
5		

_	- 1
7	
,	- 1
	- 1
	ı

7	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442		
8	U.S. Patent No. 5,298,442	JP 59-80970	
ا ہ	CLAIM 17		
.9	17. A method for providing a transistor, said method	V Groove MOSFET	
10	comprising the steps of :	See fig. 2	
11	providing a first region of a first conductivity type;	N+ layer (2) and N layer (1)	
*	providing a second region of a second conductivity type	P layer (8)	
12	over said first region;	N+ layer (4) lying above the P layer (8)	
13	providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	14+ layer (4) lying above the F layer (6)	
14	providing a trench through said third and second regions; and	trench through N+ layer (4) and P layer (8)	
15	providing a gate in said trench;	gate (6) in trench	
	wherein a portion P of said second region, which portion	a portion of the P layer (8) is laterally spaced from the	
16	is spaced from said trench, extends deeper than said	trench	
	trench so that, if a predetermined voltage is applied to said gate and to said third region and another		
.17	predetermined voltage is applied to said first region, an		
18	avalanche breakdown occurs away from a surface of		
	said trench.		
19			
20	CLAIM 18		
21	18. The method of claim 17 wherein said portion P of	obvious to have the second region with a heavier doped	
۷ ا	said second region is doped heavier than another portion of said second region which portion is adjacent said	P+ portion laterally spaced from the trench	
22	trench.	·	
	CLAIM 19		
23	19. The method of claim 17 wherein said first region	N+ layer (2) under N- layer (1)	
24	comprises a first portion and a second portion over said		
24	first portion, said second portion being lighter doped		
25	than said first portion.		
	CLAIM 20 20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown	
26	breakdown is a reach-through breakdown across said	avaianche breakdown is a reach-through breakdown across the N- layer (1)	
	second portion.	1	
27			

28

1	CLAIM 22	
	21. The method of claim 17 further comprising the step	gate oxide layer (5)
2	of providing an insulator between said surface of said	
	trench and said gate.	
3	CLAIM 23	
4	23. A method for providing a transistor, said method comprising the steps of:	V Groove MOSFET
_		See fig. 2
5	providing a first region of a first conductivity type;	N+ layer (2)
6	providing a second region of said first conductivity type over said first region, said second region being lighter doped than said first region;	N layer (1)
7	providing a third region of a second conductivity type	P layer (8)
8	over said second region, said second and third regions forming a junction;	T layer (6)
9	providing a fourth region of said first conductivity type over said third region;	N+ layer (4) lying above the P layer (8)
10	providing a trench through said fourth region and third regions; and	V trench extends through the N+ layer (4) and the P layer (3)
- 11	providing a gate in said trench;	gate (6) in the V trench
12	wherein a deepest part of said third regions is laterally spaced from said trench;	the deepest part of the P layer (8) is laterally spaced from the V trench
13	wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping	the distance between the deepest part of the P layer (8) and the N+ layer (2) is less than a depletion width of a planar junction which has the same doping profile as
14	profile as does said junction between said second and third regions at said deepest part of said third region and	does the junction between the N- layer (1) and the P layer (8) at the deepest part of the P layer (8) and which is
. 15	which is reverse biased around its breakdown voltage. CLAIM 24	reverse biased around its breakdown voltage
16	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said	obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench
17	third region which part is adjacent said trench.	

U.S. Patent 5,072,266	U-MOS Power FET, National Technical Report, Vol. 29(2), April 1983	
CLAIM 1		
1. A trench DMOS transistor cell comprising:	U-MOSFET – see Fig. 3 Conceptional fabrication process of U-MOSFET	
a substrate of semiconductor material of heavily doped first electrical conductivity type;	n+ layer	
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	n- layer	
a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	p layer	
a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	n+ layer	

	<u> </u>	
1	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	the p layer includes a p+ portion which extends upward through the n+ layer and downward into the n-layer
2	layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	
3	extending through the third covering layer to the top surface of the third covering layer and a downward	
4	portion extending downward into the first covering layer;	
5	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	trench with a bottom surface and side surfaces which extends downward from the top surface of the n+ layer
6	the third covering layer through the third covering layer and the second covering layer and through a portion of	through the n+ layer, the p layer and through a portion of the n- layer.
7	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	
8	portion of the second covering layer;	
	electrically conducting semiconductor material	semiconductor material within the trench
9	positioned within the trench;	
	a layer of oxide positioned within the trench between the	oxide positioned within the trench between the
10	electrically conducting semiconductor material and the	semiconductor material and the bottom and side surfaces
	bottom and side surfaces of the trench; and	of the trench
11	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
	conducting semiconductor material, to the third covering	material, to the top n+ layer and to the n+ substrate.
12	layer and to the substrate, respectively.	

٠	13	

		1
1	5	1

13	L
16	
17	

2021

22

2324

2526

27

14

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442

U-MOS Power FET, National Technical

U.S. Patent No. 5,298,442	Report, Vol. 29(2), April 1983
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	U-MOSFET – see Fig. 3 Conceptional fabrication process of U-MOSFET
providing a first region of a first conductivity type;	n+ layer substrate and n- layer
providing a second region of a second conductivity type over said first region;	p layer
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	n+ layer
providing a trench through said third and second regions; and	trench with a bottom surface and side surfaces which extend vertically downward through the n+ third region, and the p second region
providing a gate in said trench;	gate electrode in the trench
wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	the p second region has a heavily doped p+ region which is spaced from said trench and extends deeper than said trench

ORRICK

HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

said trench.

1	CLAIM 18	
	18. The method of claim 17 wherein said portion P of	the p second region contains a portion P which is doped
2	said second region is doped heavier than another portion	heavier than another portion of said second region which
	of said second region which portion is adjacent said	is adjacent said trench
3	trench.	·
	CLAIM 19	
4	19. The method of claim 17 wherein said first region	the first region comprises a n+ layer substrate (first
	comprises a first portion and a second portion over said	portion) and a n- layer (second portion)
5	first portion, said second portion being lighter doped	
	than said first portion.	
6	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
. 7	breakdown is a reach-through breakdown across said	across the n- layer (second portion) of the first region
	second portion.	
8	CLAIM 22	
	21. The method of claim 17 further comprising the step	oxide positioned within the trench between the
9	of providing an insulator between said surface of said	semiconductor material and the bottom and side surfaces
	trench and said gate.	of the trench
10	CLAIM 23	
11	23. A method for providing a transistor, said method	U-MOSFET – see Fig. 3 Conceptional fabrication
- 11	comprising the steps of:	process of U-MOSFET
12	providing a first region of a first conductivity type;	n+ layer
	providing a second region of said first conductivity type	n- layer
13	over said first region, said second region being lighter	·
	doped than said first region;	
14	providing a third region of a second conductivity type	p layer over n- layer
	over said second region, said second and third regions	·
15	forming a junction;	
	providing a fourth region of said first conductivity type	n+ layer formed over the p layer
16	over said third region; providing a trench through said fourth region and third	Annah autondina dayanyand thayyah tha nel layar (fayyah
	regions; and	trench extending downward through the n+ layer (fourth region) and the p layer (third region)
17	providing a gate in said trench;	gate electrode in the trench
18	wherein a deepest part of said third regions is laterally	the deepest part of the p layer (third region) is laterally
10	spaced from said trench;	spaced from the trench
19	wherein a distance between said deepest part of said	opwood irom tiro trouve
-	third region and said first region is less than a depletion	·
20	width of a planar junction which has the same doping	
	profile as does said junction between said second and	
21	third regions at said deepest part of said third region and	
	which is reverse biased around its breakdown voltage.	
22	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	the deepest part of the p layer (third region) is doped
23	said third region is doped heavier than a part of said	heavier (p+) than the part of the p layer (third region)
	third region which part is adjacent said trench.	adjacent the trench
24		

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

25

2.

U.3	5. Patent 5,072,266	КАТОН
	CLAIM 1	
1. A trench DMOS	transistor cell comprising:	Design of New Structural High Breakdown Voltage V- MOSFET—Static Shield V-MOSFET
		Fig. 3 Cross-sectional view and device parameters of SSV-MOSFET
first electrical cond	conductor material of heavily doped uctivity type;	n+ layer
first electrical condi	er of semiconductor material of said uctivity type lying on the substrate;	n- layer
a second covering la second electrical co covering layer;	ayer of semiconductor material of nductivity type lying on the first	p layer
heavily doped said f having a top surface	er of semiconductor material of first electrical conductivity type and and partly lying over the second	n+ layer
covering layer, when layer is heavily dope	rein a portion of the second covering ed and this portion extends both	
extending through th	nd downward, an upward portion ne third covering layer to the top	
surface of the third of portion extending do layer;	covering layer and a downward ownward into the first covering	
	ttom surface and side surfaces and	
extending vertically the third covering lay	downward from the top surface of yer through the third covering layer	trench extends downward from the top surface of the n+ layer through the n+ layer, the p layer and through a portion of the n- layer.
and the second cover the first covering lay	ring layer and through a portion of er, wherein the bottom surface of	
the trench lies above portion of the second	a lowest part of the downward I covering layer;	
positioned within the	ng semiconductor material trench;	semiconductor material within the trench
electrically conductir	tioned within the trench between the ng semiconductor material and the	oxide positioned within the trench between the semiconductor material and the bottom and side surfaces
three electrodes alact	aces of the trench; and rically coupled to the electrically	of the trench
conducting semicond layer and to the subst	luctor material, to the third covering	three electrodes electrically coupled to the semiconducto material, to the top n+ layer and to the n+ substrate.

23

24

25

26

27

U.S. Patent No. 5,298,442	КАТОН
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	Design of New Structural High Breakdown Voltage V- MOSFET—Static Shield V-MOSFET
	Fig. 3 Cross-sectional view and device parameters of SSV-MOSFET
providing a first region of a first conductivity type;	n+ layer substrate and n- layer
providing a second region of a second conductivity type over said first region;	p layer
providing a third region of said first conductivity type such that said first and third regions are separated by	n+ layer
said second region;	
providing a trench through said third and second regions; and	trench extends through the n+ layer (third region) and p layer (second region)
providing a gate in said trench;	gate electrode in the trench
wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the p second region has a portion which is spaced from said trench and extends deeper than said trench
trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of said trench.	·
CLAIM 18	
18. The method of claim 17 wherein said portion P of	N/A
said second region is doped heavier than another portion of said second region which portion is adjacent said	
trench.	
CLAIM 19	Al- Fire and a second of the s
19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	the first region comprises a n+ layer substrate (first portion) and a n- layer (second portion)
first portion, said second portion being lighter doped than said first portion.	
CLAIM 20	avalancha basaladama is a sasab at a sa ta ta a 1.1
20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said second portion.	avalanche breakdown is a reach-through breakdown across the n- layer (second portion) of the first region
CLAIM 22	
	oxide positioned within the trench between the
21. The method of claim 17 further comprising the step of providing an insulator between said surface of said	
of providing an insulator between said surface of said trench and said gate.	of the trench
of providing an insulator between said surface of said trench and said gate. CLAIM 23 23. A method for providing a transistor, said method	of the trench Design of New Structural High Breakdown Voltage V-
of providing an insulator between said surface of said trench and said gate. CLAIM 23	

- 1		
	providing a second region of said first conductivity type over said first region, said second region being lighter	n- layer
:	doped than said first region;	
	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	p layer over n- layer
	providing a fourth region of said first conductivity type over said third region;	n+ layer formed over the p layer
	providing a trench through said fourth region and third regions; and	trench extending downward through the n+ layer (fourth region) and the p layer (third region)
	providing a gate in said trench;	gate electrode in the trench
	wherein a deepest part of said third regions is laterally spaced from said trench;	the deepest part of the p layer (third region) is laterally spaced from the trench
	wherein a distance between said deepest part of said third region and said first region is less than a depletion	
	width of a planar junction which has the same doping profile as does said junction between said second and	
	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	
	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	N/A
	said third region is doped heavier than a part of said	
∦	third region which part is adjacent said trench.	

Prior Art Under 35 U.S.C. § 103 Which Render the '266 and '442 Patents Obvious:

U.S. Patent 4,345,265 in combination with U.S. Patent 4,374,455

U.S. Patent 4,443,931 in combination with U.S. Patent 4,374,455

U.S. Patent 4,532,534 in combination with U.S. Patent 4,374,455

U.S. Patent 4,345,265 in combination with U.S. Patent 4,767,722

U.S. Patent 4,783,694 in combination with U.S. Patent 3,412,297

U.S. Patent 4,593,302 in combination with U.S. Patent 3,412,297

(Multiple alternative combinations using the prior art references combined above can be made which additionally render the '266 and '442 patents obvious)

25

3

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

23

2627

28

28

2	INVALIDITY CLAIM CHART FOI	U.S. Patent 4,345,265
3	U.S. Patent 5,072,266	In Combination With U.S. Patent 4,374,455
	CLAIM 1	
4 1	1. A trench DMOS transistor cell comprising:	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
6		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
- 11	a substrate of semiconductor material of heavily doped first electrical conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10) '455 Patent: Fig. 2: N+ layer (34)
8 a	a first covering layer of semiconductor material of said	'265 Patent: Figs. 4-6: N- layer (12)
	first electrical conductivity type lying on the substrate;	3
9 L		'455 Patent: Fig. 2: N- layer (36)
0 s	a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23)
1 L		'455 Patent: Fig. 2: P layer (52) and (54)
2 a	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
3 0	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends both
Н.	vertically upward and downward, an upward portion	vertically upward and downward; an upward portion of
5 s	extending through the third covering layer to the top surface of the third covering layer and a downward	the P+ region extends through the N+ layer (32) and (34) and a downward portion extends downward into the N-layer (12).
F	portion extending downward into the first covering ayer;	'455 Patent: Fig. 2: N+ layer (40) partly lying over P
7		layer (52) and (54)
8		'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertically
9		upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
		downward portion extends downward in the N- layer (36).
1 e	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	'455 Patent: Fig. 2: groove (42) having a bottom surface and side surfaces and extending vertically downward
2 a	the third covering layer through the third covering layer and the second covering layer and through a portion of	from the N+ layer (40) through the N+ layer (40) and the P layer (52) and through a portion of the N- layer (36).
3 t	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer;	'265 patent and '455 patent: the deep P+ region (21) and (23) of the '265 patent would be below the lowest point
∡ اــُ		of the grove (42) of the '455 patent
, 1	electrically conducting semiconductor material positioned within the trench;	'455 Patent: Fig. 2: electrode (49)
ء ا ء	a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the	'455 Patent: Fig. 2: oxide layer (47) within the groove (42)
7 t	bottom and side surfaces of the trench; and three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	'455 Patent: Fig. 2: source electrodes (58), drain electrode (50) and gate electrode (49).
	layer and to the substrate, respectively.	otonione (50) and Bate otonione (45).

1	INVALIDITY CLAIM CHART FOR	R U.S. PATENT NO. 5,298,442
2 3	U.S. Patent No. 5,298,442	U.S. Patent 4,345,265 In Combination With U.S. Patent 4,374,455
Ī	CLAIM 17	
4 5	17. A method for providing a transistor, said method comprising the steps of:	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
6		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
7	providing a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10) and N- layer (12)
8	providing a second region of a second conductivity type over said first region;	'455 Patent: Fig. 2: N+ layer (34) and N- layer (36) '265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23); Col. 3, ln. 42.
9		'455 Patent: Fig. 2: P layer (52) and (54)
10	providing a third region of said first conductivity type such that said first and third regions are separated by	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
11	said second region;	'455 Patent: Fig. 2: N+ layer (40)
12	providing a trench through said third and second regions; and	'455 Patent: Fig. 2: groove (42) extending vertically downward through the N+ layer (40) and the P layer (52)
13	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49) in groove (42)
14	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	'265 Patent: Col. 5, lns. 32-47 - "The effect of regions 21 and 23 in enhancing the breakdown characteristic of the
15	trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an	DMOS structure comes about in several ways. First, the fact that the breakdown occurs at the external periphery of or beneath regions 21 and 22 diverts breakdown from
16	avalanche breakdown occurs away from a surface of said trench.	the sensitive channel regions of the DMOS device in the P- regions under the gate 24."
17 18	•	'265 patent and '455 patent: the deep P+ region (21) and (23) of the '265 patent would be below the lowest point of the grove (42) of the '455 patent
	CLAIM 18	
19	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertically
20 21	of said second region which portion is adjacent said trench.	upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a downward portion extends downward in the N- layer
22		(36).
23		'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends both vertically upward and downward; P+ region (21) and
24		(23) are more heavily doped than P- region (20) and (22) near the gate region.
25	CLAIM 19	
26	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	'455 patent: Fig. 2: N+ layer (34) under N- layer (36) '265 Patent: Figs. 4-6: N+ layer (10) under N- layer (12)
27	first portion, said second portion being lighter doped than said first portion.	203 Fatent. Figs. 4-0; 147 layer (10) under 14- layer (12)

- 1		
1	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	'265 Patent and '455 Patent: avalanche breakdown
2	breakdown is a reach-through breakdown across said	would be a reach-through breakdown across the N- layer
ŀ	second portion.	(12)
3	CLAIM 22	
Ì	21. The method of claim 17 further comprising the step	'455 Patent: oxide (47)
4	of providing an insulator between said surface of said	` ,
	trench and said gate.	
5	CLAIM 23	
l	23. A method for providing a transistor, said method	'265 Patent: MOS Power Transistor With Improved
6	comprising the steps of:	High-Voltage Capability
ļ	comprising the steps of	
7		'455 Patent: Method for Manufacturing a Vertical,
		Grooved MOSFET
8	providing a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10)
ļ	providing a first region of a first conductivity type,	
9		'455 Patent: Fig. 2: N+ layer (34)
Ì	providing a second region of said first conductivity type	'265 Patent: Figs. 4-6: N- layer (12)
10	over said first region, said second region being lighter	
	doped than said first region;	'455 Patent: Fig. 2: N- layer (36)
11	providing a third region of a second conductivity type	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23)
	over said second region, said second and third regions	over the second region
12	forming a junction;	
		'455 Patent: Fig. 2: P layer (52)
13	providing a fourth region of said first conductivity type	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly
	over said third region;	lying over P- layer (20) and (22).
14	<u>.</u>	March 1 Ti O Mart 1 (40) of 1 in any D
		'455 Patent: Fig. 2: N+ layer (40) partly lying over P
15		layer (52)
	providing a trench through said fourth region and third	'455 Patent: Fig. 2: groove (42) through the N+ layer
16	regions; and	(40) and the P layer (52)
	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49)
17	wherein a deepest part of said third regions is laterally	'265 Patent: Figs. 4-6: P+ region (21) and (23) is
	spaced from said trench;	laterally spaced from the gate
18	wherein a distance between said deepest part of said	'265 and '455: a distance between said deepest part of a
,	third region and said first region is less than a depletion	third region and a first region would be less than a
19	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
	profile as does said junction between said second and	doping profile as does said junction between a second
20	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
۱, ۱	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
21	CI ADV 24	voltage.
22	CLAIM 24	1965 Para A Fina A Granadian Saha P Jananian
22	24. The method of claim 23 wherein said deepest part of	'265 Patent: Figs. 4-6: a portion of the P- layer is a
23	said third region is doped heavier than a part of said	heavily doped P+ region (21) and (23) and extends both
23	third region which part is adjacent said trench.	vertically upward and downward; P+ region (21) and
24		(23) are more heavily doped than P- region (20) and (22)
2 -7		near the gate region.

25

26

27

	U.S. Patent 5,072,266	U.S. Patent 4,443,931 In Combination With U.S. Patent 4,374,455
_	CLAIM 1	
]	1. A trench DMOS transistor cell comprising:	'931 Patent: Method of Fabricating a Semiconductor Device With a Base Region Having a Deep Portion
		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
f	a substrate of semiconductor material of heavily doped first electrical conductivity type;	'931 Patent: Fig. 13: N+ layer (12)
1	a first covering layer of semiconductor material of said	'455 Patent: Fig. 2: N+ layer (34)
f	Tirst electrical conductivity type lying on the substrate;	'931 Patent: Fig. 13: N layer (14)
\perp		'455 Patent: Fig. 2: N- layer (36)
a	second covering layer of semiconductor material of	'931 Patent: Fig. 13: P layer (34) and (28)
	econd electrical conductivity type lying on the first	
-	overing layer;	'455 Patent: Fig. 2: P layer (52) and (54)
h	third covering layer of semiconductor material of leavily doped said first electrical conductivity type and laving a top surface and partly lying over the second	'931 Patent: Fig. 13: N+ layer (36) partly lying over F layer (34) and (28).
L.	overing layer, wherein a portion of the second covering	'031 Patenti Fig. 12: a martian and D.L. (24)
la	ayer is heavily doped and this portion extends both	'931 Patent: Fig. 13: a portion of the P layer (34) is a heavily doped P+ region (28) and extends both vertical
v	ertically upward and downward, an upward portion	upward and downward; an upward portion of the P+
e	xtending through the third covering layer to the top	region extends through the N+ layer (38) and a
รเ	urface of the third covering layer and a downward	downward portion extends downward into the N layer
po	ortion extending downward into the first covering	(14).
la	yer;	
		'455 Patent: Fig. 2: N+ layer (40) partly lying over P layer (52) and (54)
		'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertical
		upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
		downward portion extends downward to the N- layer (36).
ex	trench having a bottom surface and side surfaces and stending vertically downward from the top surface of third covering layer through the third covering layer	'455 Patent: Fig. 2: groove (42) having a bottom surfact and side surfaces and extending vertically downward from the N+ layer (40) through the N+ layer (40) and the N+ layer (40) and the N+ layer (40) through the N+ layer (40) and the N+ layer (40) and the N+ layer (40) through the N+ layer (40) and the N+ layer (40) and the N+ layer (40) through the N+ layer (40) and the N+ layer (40) and the N+ layer (40) through the N+ layer (40) and the N+ layer (40) and the N+ layer (40) through the N+ layer (40) and the N+ layer (40) and the N+ layer (40) and the N+ layer (40) through the N+ layer (40) and the N+ layer
an	nd the second covering layer and through a portion of e first covering layer, wherein the bottom surface of	P layer (52) and through a portion of the N- layer (36).
the	e trench lies above a lowest part of the downward	
p0	ortion of the second covering layer;	
po	ectrically conducting semiconductor material sitioned within the trench;	'455 Patent: Fig. 2: electrode (49)
ele	layer of oxide positioned within the trench between the ectrically conducting semiconductor material and the ottom and side surfaces of the trench; and	'455 Patent: Fig. 2: oxide layer (47) within the groove (42)
	ree electrodes electrically coupled to the electrically	455 Potenti Fig. 2. compa -1 1 (50) 1
CO	inducting semiconductor material, to the third covering	'455 Patent: Fig. 2: source electrodes (58), drain
	yer and to the substrate, respectively.	electrode (50) and gate electrode (49).

U.S. Patent No. 5,298,442	U.S. Patent 4,443,931 In Combination With U.S. Patent 4,374,455
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	'931 Patent: Method of Fabricating a Semiconductor Device With a Base Region Having a Deep Portion
	'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
providing a first region of a first conductivity type;	'931 Patent: Fig. 13: N+ layer (12) and N layer (14)
	'455 Patent: Fig. 2: N+ layer (34) and N- layer (36)
providing a second region of a second conductivity type over said first region;	'931 Patent: Fig. 13: P layer (34) and (28)
	'455 Patent: Fig. 2: P layer (52)
providing a third region of said first conductivity type	'931 Patent: Fig. 13: N+ layer (12) partly lying over P
such that said first and third regions are separated by said second region;	layer (34)
	'455 Patent: Fig. 2: N+ layer (40)
providing a trench through said third and second	'455 Patent: Fig. 2: groove (42) extending vertically
regions; and	downward through the N+ layer (40) and the P layer (5
providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49) in groove (42)
wherein a portion P of said second region, which portion	'931 patent and '455 patent: the deep P+ region (28) of
is spaced from said trench, extends deeper than said	the '931 patent would be below the lowest point of the
trench so that, if a predetermined voltage is applied to	grove (42) of the '455 patent
said gate and to said third region and another predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	
said trench.	
CLATA 10	
CLAIM 18	1001 P
18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'931 Patent: Fig. 13: a portion of the P layer (34) is a heavily doped P+ region (28)
of said second region which portion is adjacent said trench.	'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertical
	upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
-	downward portion extends downward in the N- layer (36).
CLAIM 19	(30).
19. The method of claim 17 wherein said first region	'455 patent: Fig. 2: N+ layer (34) under N- layer (36)
comprises a first portion and a second portion over said	
first portion, said second portion being lighter doped	'931 Patent: Fig. 13: N+ layer (12) under N- layer (14)
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	'931 Patent and '455 Patent: avalanche breakdown
breakdown is a reach-through breakdown across said second portion.	would be a reach-through breakdown across the N- layer (12)

	<u></u>	
1	CLAIM 22	
	21. The method of claim 17 further comprising the step	'455 Patent: oxide (47)
2	of providing an insulator between said surface of said	· ·
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	'931 Patent: Method of Fabricating a Semiconductor
4	comprising the steps of:	Device With a Base Region Having a Deep Portion
_		
5		'455 Patent: Method for Manufacturing a Vertical,
6		Grooved MOSFET
0	providing a first region of a first conductivity type;	'931 Patent: Fig. 13: N+ layer (12)
7		'455 Patent: Fig. 2: N+ layer (34)
	providing a second region of said first conductivity type	'931 Patent: Fig. 13: N layer (14)
8	over said first region, said second region being lighter	
	doped than said first region;	'455 Patent: Fig. 2: N- layer (36)
9	providing a third region of a second conductivity type	'931 Patent: Fig. 13: P layer (34) and (28)
	over said second region, said second and third regions	
10	forming a junction;	'455 Patent: Fig. 2: P layer (52)
	providing a fourth region of said first conductivity type	'931 Patent: Fig. 13: N+ layer (36) partly lying over P
11	over said third region;	layer (34) and (28)
12	,	'455 Patent: Fig. 2: N+ layer (40) partly lying over P
12		layer (52)
13	providing a trench through said fourth region and third	'455 Patent: Fig. 2: groove (42) through the N+ layer
	regions; and	(40) and the P layer (52)
14	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49)
	wherein a deepest part of said third regions is laterally	'931 Patent: Fig. 13: P+ region (28) is laterally spaced
15	spaced from said trench;	from the gate
	wherein a distance between said deepest part of said	'931 and '455: a distance between said deepest part of a
16	third region and said first region is less than a depletion	third region and a first region would be less than a
.,	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
17	profile as does said junction between said second and	doping profile as does said junction between a second
18	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
10	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
19	CLAIM 24	voltage.
•		(021 Passat, Fig. 12. a page Cat- Pl i - 1
20	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said	'931 Patent: Fig. 13: a portion of the Player is a heavily
·	third region which part is adjacent said trench.	doped P+ region (28) and extends both vertically upward and downward; P+ region (28) is more heavily doped
21	ding region which part is adjacent said hench.	than P- region (34) near the gate region.
		man 1 - region (34) near me gate region.

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

22

23

24

25

26

27

2	U.S. Patent 5,072,266	U.S. Patent 4,532,534 In Combination With U.S. Patent4,374,455
3	CLAIM 1	U.S. Patent4,574,455
	1. A trench DMOS transistor cell comprising:	'534 Patent: MOSFET With Perimeter Channel
		(ACCD - ACAD - ACCD - A
		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
	a substrate of semiconductor material of heavily doped	'534 Patent: Fig. 2: N+ layer (118)
,	first electrical conductivity type;	'455 Patent: Fig. 2: N+ layer (34)
	a first covering layer of semiconductor material of said	'534 Patent: Fig. 2: N- layer (120)
}	first electrical conductivity type lying on the substrate;	
•	, , , , , , , , , , , , , , , , , , , ,	'455 Patent: Fig. 2: N- layer (36)
	a second covering layer of semiconductor material of second electrical conductivity type lying on the first	'534 Patent: Fig. 2: P layer (124) and (126)
) .	covering layer;	'455 Patent: Fig. 2: P layer (52) and (54)
,.	a third covering layer of semiconductor material of	'534 Patent: Fig. 2: N+ layer (128) partly lying over P
l	heavily doped said first electrical conductivity type and	layer (124) and (126)
	having a top surface and partly lying over the second	
	covering layer, wherein a portion of the second covering	'534 Patent: Fig. 2: a portion of the P layer is a heavily
	layer is heavily doped and this portion extends both	doped P+ region (126) and extends both vertically
	vertically upward and downward, an upward portion	upward and downward; an upward portion of the P+
	extending through the third covering layer to the top	region extends through the N+ layer (128) and a downward portion extends downward into the N- layer
	surface of the third covering layer and a downward	(120).
	portion extending downward into the first covering	(120).
;	layer;	'455 Patent: Fig. 2: N+ layer (40) partly lying over P
_		layer (52) and (54)
5		'455 Patent: Fig. 2: a portion of the P layer (52) is a
7		heavily doped P+ region (54) and extends both vertically
	·	upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
3		downward portion extends downward to the N- layer
		(36).
)	a trench having a bottom surface and side surfaces and	'455 Patent: Fig. 2: groove (42) having a bottom surface
)	extending vertically downward from the top surface of	and side surfaces and extending vertically downward
,	the third covering layer through the third covering layer	from the N+ layer (40) through the N+ layer (40) and the
l	and the second covering layer and through a portion of	P layer (52) and through a portion of the N- layer (36).
	the first covering layer, wherein the bottom surface of	
2	the trench lies above a lowest part of the downward	
	portion of the second covering layer;	
,	electrically conducting semiconductor material	'455 Patent: Fig. 2: electrode (49)
	positioned within the trench;	
ļ	a layer of oxide positioned within the trench between the	'455 Patent: Fig. 2: oxide layer (47) within the groove
	electrically conducting semiconductor material and the	(42)
5	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	'455 Patent: Fig. 2: source electrodes (58), drain
5	conducting semiconductor material, to the third covering	electrode (50) and gate electrode (49).
	layer and to the substrate, respectively.	

Į	INVALIDITY CLAIM CHART FOR	
2 3	U.S. Patent No. 5,298,442	U.S. Patent 4,443,534 In Combination With U.S. Patent 4,374,455
-	CLAIM 17	
4	17. A method for providing a transistor, said method comprising the steps of:	'534 Patent: MOSFET With Perimeter Channel
5	•	'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
6	providing a first region of a first conductivity type;	'534 Patent: Fig. 2: N+ layer (118) and N layer (120)
7		'455 Patent: Fig. 2: N+ layer (34) and N- layer (36)
8	providing a second region of a second conductivity type over said first region;	'534 Patent: Fig. 2: P layer (124) and (126)
		'455 Patent: Fig. 2: P layer (52)
9	providing a third region of said first conductivity type such that said first and third regions are separated by	'534 Patent: Fig. 2: N+ layer (128) partly lying over P layer (124) and (126)
10	said second region;	'455 Patent: Fig. 2: N+ layer (40)
11	providing a trench through said third and second regions; and	'455 Patent: Fig. 2: groove (42) extending vertically downward through the N+ layer (40) and the P layer (52)
	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49) in groove (42)
12	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	'534 patent and '455 patent: the deep P+ region (126) of the '534 patent would be below the lowest point of the-
13	trench so that, if a predetermined voltage is applied to said gate and to said third region and another	grove (42) of the '455 patent
14	predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	
15	said trench.	
16		
17	CLAIM 18	Colonia Pi 10 colonia Piccolo
18	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'534 Patent: Fig. 12: a portion of the P layer is a heavily doped P+ region (126)
19	of said second region which portion is adjacent said trench.	'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertically
20		upward and downward; an upward portion of the P+
20		region extends through the N+ layer (40) and a
		region extends through the N+ layer (40) and a downward portion extends downward in the N- layer (36).
20 21 22	CLAIM 19 19. The method of claim 17 wherein said first region	downward portion extends downward in the N- layer
21	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	downward portion extends downward in the N- layer (36).
21 22 23	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said first portion, said second portion being lighter doped	downward portion extends downward in the N- layer (36). '455 patent: Fig. 2: N+ layer (34) under N- layer (36)
21 22	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said first portion, said second portion being lighter doped than said first portion.	downward portion extends downward in the N- layer (36). '455 patent: Fig. 2: N+ layer (34) under N- layer (36) '534 Patent: Fig. 2: N+ layer (118) under N- layer (120)
21 22 23	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said first portion, said second portion being lighter doped	downward portion extends downward in the N- layer (36). '455 patent: Fig. 2: N+ layer (34) under N- layer (36)

. 28

1	CLAIM 22	
	21. The method of claim 17 further comprising the step	'455 Patent: oxide (47)
2	of providing an insulator between said surface of said	
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	'534 Patent: Method of Fabricating a Semiconductor
4	comprising the steps of:	Device With a Base Region Having a Deep Portion
5		'455 Patent: Method for Manufacturing a Vertical,
		Grooved MOSFET
6	providing a first region of a first conductivity type;	'534 Patent: Fig. 2: N+ layer (118)
7		'455 Patent: Fig. 2: N+ layer (34)
8	providing a second region of said first conductivity type over said first region, said second region being lighter	'534 Patent: Fig. 2: N- layer (120)
	doped than said first region;	'455 Patent: Fig. 2: N- layer (36)
, 9	providing a third region of a second conductivity type over said second region, said second and third regions	'534 Patent: Fig. 2: P layer (124) and (126)
10	forming a junction;	'455 Patent: Fig. 2: P layer (52)
11	providing a fourth region of said first conductivity type over said third region;	'534 Patent: Fig. 2: N+ layer (128) partly lying over P layer (124) and (126)
	over said time region,	1, 0 (-2.)
12.	•	'455 Patent: Fig. 2: N+ layer (40) partly lying over P layer (52)
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'455 Patent: Fig. 2: groove (42) through the N+ layer
13	providing a trench through said fourth region and third	(40) and the P layer (52)
	regions; and	
14	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49)
1.5	wherein a deepest part of said third regions is laterally	'534 Patent: Figs. 4-6: P+ region (126) is laterally spaced from the gate
15	spaced from said trench;	
,,	wherein a distance between said deepest part of said	'534 and '455: a distance between said deepest part of a
16	third region and said first region is less than a depletion	third region and a first region would be less than a
17	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
17	profile as does said junction between said second and	doping profile as does said junction between a second
10	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
18	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown voltage.
19	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	'534 Patent: Figs. 4-6: a portion of the P layer is a
20	said third region is doped heavier than a part of said	heavily doped P+ region (126) and extends both
	third region which part is adjacent said trench.	vertically upward and downward; P+ region (126) is
21		more heavily doped than P region (124) which is near the gate region.
22		1 8000 1081011.

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

23

24

25

26

27

U.S. Patent 5,072,266	U.S. Patent 4,345,265 In Combination With U.S. Patent 4,767,722
CLAIM 1	·
1. A trench DMOS transistor cell comprising:	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
	'722 Patent: Method for Making Planar Vertical Cha DMOS Structures
a substrate of semiconductor material of heavily doped first electrical conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10)
	'722 Patent: Figs. 6 and 8: N+ layer (10)
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	'265 Patent: Figs. 4-6: N- layer (12)
a second covering layer of semiconductor material of second electrical conductivity type lying on the first	'722 Patent: Figs. 6 and 8: N- layer (11) '265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (
covering layer;	'722 Patent: Figs. 6 and 8: P layer (20a)
a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
having a top surface and partly lying over the second covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both vertically upward and downward, an upward portion extending through the third covering layer to the top surface of the third covering layer and a downward portion extending downward into the first covering	'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends be vertically upward and downward; an upward portion of the P+ region extends through the N+ layer (32) and (and a downward portion extends downward into the N layer (12).
layer;	'722 Patent: Figs. 6 and 8: N+ layer (21a) partly lyin over P layer (20a)
a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of the third covering layer through the third covering layer	'722 Patent: Figs. 6 and 8: groove (31) having a botto surface and side surfaces and extending vertically downward from the N+ layer (21a) through the N+ la
and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	(21a) and the P layer (20a) and through a portion of the N-layer (11).
the trench lies above a lowest part of the downward portion of the second covering layer;	'265 patent and '455 patent: the deep P+ region (21) a (23) of the '265 patent would be below the lowest poi of the grove (42) of the '455 patent
electrically conducting semiconductor material positioned within the trench;	'722.Patent: Figs. 6 and 8: gate (34)
a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the bottom and side surfaces of the trench; and	'722 Patent: Figs. 6 and 8: oxide layer (32) within the groove (31)
three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	'722 Patent: Fig. 6 and 8: source electrodes (50), drain electrode (51) and gate electrode (49).

26

27

	INVALIDITY CLAIM CHART FOR	U.S. Patent 4,345,265
	U.S. Patent No. 5,298,442	In Combination With U.S. Patent 4,767,722
	CLAIM 17	
II.	. A method for providing a transistor, said method mprising the steps of:	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
		'722 Patent: Method for Making Planar Vertical Chann DMOS Structures
pro	oviding a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10) and N- layer (12)
		'722 Patent: Figs. 6 and 8: N+ layer (10) and N- layer (11)
	oviding a second region of a second conductivity type er said first region;	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23 Col. 3, ln. 42.
		'722 Patent: Figs. 6 and 8: P layer (20a)
suc	oviding a third region of said first conductivity type ch that said first and third regions are separated by	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
	d second region;	'722 Patent: Figs. 6 and 8: N+ layer (21a)
	oviding a trench through said third and second gions; and	'722 Patent: Figs. 6 and 8: groove (31) extending vertically downward through the N+ layer (21a) and the P layer (20a)
pro	oviding a gate in said trench;	'722 Patent: Figs. 6 and 8: gate (34) in groove (31)
wh is s tres sai pre ava	derein a portion P of said second region, which portion spaced from said trench, extends deeper than said nch so that, if a predetermined voltage is applied to id gate and to said third region and another edetermined voltage is applied to said first region, an alanche breakdown occurs away from a surface of id trench.	'265 Patent: Col. 5, Ins. 32-47 – "The effect of regions and 23 in enhancing the breakdown characteristic of the DMOS structure comes about in several ways. First, the fact that the breakdown occurs at the external periphery of or beneath regions 21 and 22 diverts breakdown from the sensitive channel regions of the DMOS device in the P- regions under the gate 24."
		'265 patent and '722 patent: the deep P+ region (21) ar (23) of the '265 patent would be below the lowest poin of the grove (31) of the '722 patent
┢	CLAIM 18	
sai of	The method of claim 17 wherein said portion P of id second region is doped heavier than another portion said second region which portion is adjacent said each.	'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends bot vertically upward and downward; P+ region (21) and (23) are more heavily doped than P- region (20) and (2 pear the gate region
	CT ATM 10	near the gate region.
	CLAIM 19 The method of claim 17 wherein said first region emprises a first portion and a second portion over said	'722 patent: Figs. 6and 8: N+ layer (10) under N- layer (11)
fir	est portion, said second portion being lighter doped an said first portion.	'265 Patent: Figs. 4-6: N+ layer (10) under N- layer (1
-	CLAIM 20	
11	D. The method of claim 19 wherein said avalanche eakdown is a reach-through breakdown across said cond portion.	'265 Patent and '722 Patent: avalanche breakdown would be a reach-through breakdown across the N- lay (11) of the '722 Patent

1	CLAIM 22	
	21. The method of claim 17 further comprising the step	'722 Patent: oxide (32)
2	of providing an insulator between said surface of said	·
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	'265 Patent: MOS Power Transistor With Improved
4	comprising the steps of:	High-Voltage Capability
~	1	
5		'722 Patent: Method for Making Planar Vertical Channel
6		DMOS Structures
U	providing a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10)
. 7		
		'722 Patent: Figs. 6 and 8: N+ layer (10)
8	providing a second region of said first conductivity type	'265 Patent: Figs. 4-6: N- layer (12)
_	over said first region, said second region being lighter	(700 Beauty Fire Cond 9, N. Janes (11)
9	doped than said first region;	'722 Patent: Figs. 6 and 8: N- layer (11)
	providing a third region of a second conductivity type	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23)
10	over said second region, said second and third regions	over the second region
	forming a junction;	'722 Patent: Figs. 6 and 8: P layer (20a)
11	providing a fourth region of said first conductivity type	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly
	over said third region;	lying over P- layer (20) and (22).
12		
13		'722 Patent: Fig. 6 and 8: N+ layer (21a) partly lying
13		over P layer (20a)
14	providing a trench through said fourth region and third	'722 Patent: Figs. 6 and 8: groove (31) through the N+
- 1	regions; and	layer (21a) and the P layer (20a)
15	providing a gate in said trench;	'722 Patent: Figs. 6 and 8: gate (34) '265 Patent: Figs. 4-6: P+ region (21) and (23) is
	wherein a deepest part of said third regions is laterally spaced from said trench;	laterally spaced from the gate
16	wherein a distance between said deepest part of said	'265 and '722: a distance between said deepest part of a
	third region and said first region is less than a depletion	third region and a first region would be less than a
17	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
	profile as does said junction between said second and	doping profile as does said junction between a second
18	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
10	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
19	<u> </u>	voltage.
20	CLAIM 24	
20	24. The method of claim 23 wherein said deepest part of	'265 Patent: Figs. 4-6: a portion of the P- layer is a
21	said third region is doped heavier than a part of said	heavily doped P+ region (21) and (23) and extends both
	third region which part is adjacent said trench.	vertically upward and downward; P+ region (21) and
22	<u> </u>	(23) are more heavily doped than P- region (20) and (22)
		near the gate region.
1		

24

25

26

2	U.S. Patent 5,072,266	U.S. Patent 4,783,694 In Combination With
3		U.S. Patent 3,412,297
	CLAIM 1	
4	1. A trench DMOS transistor cell comprising:	'694 Patent: Integrated Bipolar-MOS Semiconductor Device with Common Collector and Drain
5		Device with Continuit Confector and Drain
•		'297 Patent: MOS Field-Effect Transistor with a One-
6		Micron Vertical Channel
	a substrate of semiconductor material of heavily doped	'694 Patent: Fig. 5: N substrate (40c)
7	first electrical conductivity type;	
	a first covering layer of semiconductor material of said	'694 Patent: Fig. 5: N-Epi layer (40)
8	first electrical conductivity type lying on the substrate;	·
_		'297 Patent: Figs. 4-6: N layer (10)
9	a second covering layer of semiconductor material of	'694 Patent: Fig. 5: P layer (42), (42a) and (42e)
^	second electrical conductivity type lying on the first	(207 Potent: Figs. 4.6: P. lover (12)
0	covering layer;	'297 Patent: Figs. 4-6: P layer (12)
1	a third covering layer of semiconductor material of	'694 Patent: Fig. 5: N+ layer (44) partly lying over P layer (42a) and (42e) where a portion of the P layer (42e)
٠.	heavily doped said first electrical conductivity type and having a top surface and partly lying over the second	is heavily doped P+ and extends vertically upward
2	covering layer, wherein a portion of the second covering	through the N+ layer (44) and vertically downward into
•	layer is heavily doped and this portion extends both	the N-Epi layer (40)
3	vertically upward and downward, an upward portion	
	extending through the third covering layer to the top	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
4	surface of the third covering layer and a downward	layer (12)
	portion extending downward into the first covering	·
5	layer;	
	a trench having a bottom surface and side surfaces and	'297 Patent: Figs 4-6: trench (18) extends downward
5	extending vertically downward from the top surface of	from the top surface of the N layer (16) through the N
,	the third covering layer through the third covering layer	layer (16), P layer (12) and through a portion of the N
7	and the second covering layer and through a portion of	layer (10)
8	the first covering layer, wherein the bottom surface of	
י כ	the trench lies above a lowest part of the downward	
9	portion of the second covering layer; electrically conducting semiconductor material	'297 Patent: conductive semiconductor material (24)
	positioned within the trench;	257 I atent. conductive semiconductor material (24)
0	a layer of oxide positioned within the trench between the	'297 Patent: oxide (14)
	electrically conducting semiconductor material and the	
1	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	'694 Patent: gate (47), source (36) and drain (40c)
2	conducting semiconductor material, to the third covering	
3	layer and to the substrate, respectively.	'297 Patent: electrodes coupled to the gate (24), source (22) and drain (20)

24

25

26

27

1	INVALIDITY CLAIM CHART FOI	R U.S. PATENT NO. 5,298,442
2	U.S. Patent No. 5,298,442	U.S. Patent 4,783,694 In Combination With U.S. Patent 3,412,297
	CLAIM 17	
4	17. A method for providing a transistor, said method comprising the steps of:	'694 Patent: Integrated Bipolar-MOS Semiconductor Device with Common Collector and Drain
6		'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
7	providing a first region of a first conductivity type;	'694 Patent: Fig. 5: N-Epi layer (40).
<i>'</i>		'297 Patent: Figs. 4-6: N layer (10)
8	providing a second region of a second conductivity type over said first region;	'694 Patent: Fig. 5: P layer (42), (42a) and (42e) lying over the N-Epi layer (40)
9.		'297 Patent: Figs. 4-6: P layer (12)
10	providing a third region of said first conductivity type such that said first and third regions are separated by	'694 Patent: Fig. 5: N+ layer (44) partly lying over P layer (42a) and (42e)
11	said second region;	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
12	providing a trench through said third and second	layer (12) '297 Patent: Figs. 4-6: trench (18) through the N layer (16) and the P layer (12)
13	regions; and providing a gate in said trench;	'297 Patent: Figs. 4-6: gate (24) in trench (18)
	wherein a portion P of said second region, which portion	'694 patent and '297 patent: the deep P+ region (42e) of
14	is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	the '694 patent would be below the lowest point of the trench (18) of the '297 patent
15	said gate and to said third region and another predetermined voltage is applied to said first region, an	
16	avalanche breakdown occurs away from a surface of said trench.	
17		
18	CLAIM 18	
19	18. The method of claim 17 wherein said portion P of	'694 Patent: Fig. 5: a portion of the P layer is a heavily
20	said second region is doped heavier than another portion of said second region which portion is adjacent said	doped P+ region (42e); the P+ region (42e) is doped heavier than the P region (42a) adjacent the gate region.
21	trench.	
	CLAIM 19	
22	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	'694 patent: Fig. 5: N+ layer (40c) under N epi layer (40)
23	first portion, said second portion being lighter doped than said first portion.	
24	CLAIM 20	
25	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	'694 Patent and '297 Patent: avalanche breakdown would be a reach-through breakdown across the N epi
26	second portion.	layer
26	CLAIM 22	'297 Patent: oxide (14)
27	21. The method of claim 17 further comprising the step of providing an insulator between said surface of said	257 Fatcht. Oxide (14)
28	trench and said gate.	

1	CLAIM 23	·
_	23. A method for providing a transistor, said method	'694 Patent: Integrated Bipolar-MOS Semiconductor
2	comprising the steps of:	Device with Common Collector and Drain
3		'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
4	providing a first region of a first conductivity type;	
5	providing a second region of said first conductivity type over said first region, said second region being lighter doped than said first region;	'694 Patent: Fig. 2: N-Epi layer (40) '297 Patent: Figs. 4-6: N layer (10)
6	providing a third region of a second conductivity type	'694 Patent: Fig. 2: P layer (42), (42a) and (42e)
	over said second region, said second and third regions	05/11 a.c. 1.g. 2.1 a.g. (12), (12),
7	forming a junction;	'297 Patent: Figs. 4-6: P layer (12)
8	providing a fourth region of said first conductivity type over said third region;	'694 Patent: Fig. 2: N+ layer (44) partly lying over P layer (42a) and (42e)
9		'297 Patent: Figs. 4-6: N layer (16) partly lying over P layer (12)
10	providing a trench through said fourth region and third regions; and	'297 Patent: Figs. 4-6: trench (18) through N layer (16) and P layer (12)
11	providing a gate in said trench;	'297 Patent: Figs. 4-6: gate (24) in trench (18)
12	wherein a deepest part of said third regions is laterally spaced from said trench;	'694 Patent: Fig. 5: the deepest part of the P region (42e) is laterally spaced form said trench
13	wherein a distance between said deepest part of said third region and said first region is less than a depletion	'694 and '297: a distance between said deepest part of a third region and a first region would be less than a
14	width of a planar junction which has the same doping profile as does said junction between said second and	depletion width of a planar junction which has the same doping profile as does said junction between a second
15	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	and third regions at said deepest part of the third region and which is reverse biased around its breakdown voltage.
16	CLAIM 24	
17	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said	'694 Patent: Fig. 5: a portion of the P layer is a heavily doped P+ region (42e) and extends both vertically
18	third region which part is adjacent said trench.	upward and downward; P+ region (42e) is more heavily doped than P region (42a) which is near the gate region.
19		

20	INVALIDITY CLAIM CHART	FOR U.S. PATENT NO. 5,072,266
21	U.S. Patent 5,072,266	U.S. Patent 4,593,302 In Combination With U.S. Patent 3,412,297
22	CLAIM 1	
23	1. A trench DMOS transistor cell comprising:	'302 Patent: Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier
24		Density Beneath the Gate Oxide
25		'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
26	a substrate of semiconductor material of heavily doped first electrical conductivity type;	'302 Patent: Figs. 20 and 22: N+ layer
27	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	'302 Patent: Figs. 20 and 22: N layer (100)
••	, , , , , , , , , , , , , , , , , , , ,	'297 Patent: Figs. 4-6: N layer (10)

DOCSSV2:500277.1

RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

1	a second covering layer of semiconductor material of	'302 Patent: Figs. 20 and 22: P layer (220) and (221)
	second electrical conductivity type lying on the first	
2	covering layer;	'297 Patent: Figs. 4-6: P layer (12)
	a third covering layer of semiconductor material of	'302 Patent: Figs. 20 and 22: N+ layer (170) and (171)
3	heavily doped said first electrical conductivity type and	partly lying over P layer (220) and (221) where a portion
:	having a top surface and partly lying over the second	of the P layer (220) and (221) is heavily doped P+ and
4	covering layer, wherein a portion of the second covering	extends vertically upward through the N+ layer (170) and
ļ	layer is heavily doped and this portion extends both	(171) and vertically downward into the N layer (100)
5	vertically upward and downward, an upward portion	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
_	extending through the third covering layer to the top	layer (12)
6	surface of the third covering layer and a downward	\
_ :	portion extending downward into the first covering	
7	layer;	(207 P-+
	a trench having a bottom surface and side surfaces and	'297 Patent: Figs 4-6: trench (18) extends downward from the top surface of the N layer (16) through the N
8	extending vertically downward from the top surface of	layer (16), P layer (12) and through a portion of the N
9	the third covering layer through the third covering layer	layer (10)
9	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	
10	the trench lies above a lowest part of the downward	
10	portion of the second covering layer;	
11	electrically conducting semiconductor material	'297 Patent: conductive semiconductor material (24)
••	positioned within the trench;	257 2 200 200 200 200 200 200 200 200 200
12	a layer of oxide positioned within the trench between the	'297 Patent: oxide (14)
	electrically conducting semiconductor material and the	
13	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	'320 Patent: gate (132), source (210) and drain (270)
14	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	'297 Patent: electrodes coupled to the gate (24), source
15		(22) and drain (20)

16		·
17	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442	
18	U.S. Patent No. 5,298,442	U.S. Patent 4,593,302 In Combination With U.S. Patent 3,412,297
19	CLAIM 17	
20	17. A method for providing a transistor, said method comprising the steps of:	'302 Patent: Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier Density Beneath the Gate Oxide
21		'297 Patent: MOS Field-Effect Transistor with a One-
22	-	Micron Vertical Channel
23	providing a first region of a first conductivity type;	'302 Patent: Figs. 20 and 22: N+ layer and N layer (100)
		'297 Patent: Figs. 4-6: N layer (10)
24	providing a second region of a second conductivity type over said first region;	'302 Patent: Figs. 20 and 22: P+ layer (220) and (221) lying over the N layer (100)
25	•	'297 Patent: Figs. 4-6: P layer (12)
26	providing a third region of said first conductivity type such that said first and third regions are separated by	'302 Patent: Figs. 20 and 22: N+ layer (170) and (171) partly lying over P layer (220) and (221)
27	said second region;	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
28		layer (12)

1	providing a trench through said third and second regions; and	'297 Patent: Figs. 4-6: trench (18) through the N layer (16) and the P layer (12)
2	providing a gate in said trench;	'297 Patent: Figs. 4-6: gate (24) in trench (18)
_	wherein a portion P of said second region, which portion	'302 patent and '297 patent: the deep P+ region (220)
3	is spaced from said trench, extends deeper than said	and (221) of the '302 patent would be below the lowest
-	trench so that, if a predetermined voltage is applied to	point of the trench (18) of the '297 patent
4	said gate and to said third region and another	policies and the second control of the second
	predetermined voltage is applied to said first region, an	
5	avalanche breakdown occurs away from a surface of	
	said trench.	
6		
	•	
7	CLAIM 18	
	18. The method of claim 17 wherein said portion P of	'302 Patent: Figs. 20 and 22: a portion of the P layer is
8	said second region is doped heavier than another portion	heavily doped P+ region (220) and (221); the P+ region
9	of said second region which portion is adjacent said	(220) and (221) could be doped heavier than the P region
	trench.	adjacent the gate region.
10		
	CLAIM 19	
11		(202 motor): Fire 20 and 22, NJ, 11NJ, 1
	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	'302 patent: Figs. 20 and 22: N+ layer under N- layer (100)
12	first portion, said second portion being lighter doped	(100)
	than said first portion.	
13	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	'302 Patent and '297 Patent: avalanche breakdown
14	breakdown is a reach-through breakdown across said	would be a reach-through breakdown across the N- layer
	second portion.	(100)
15	CLAIM 22	
16	21. The method of claim 17 further comprising the step	'297 Patent: oxide (14)
10	of providing an insulator between said surface of said	` ` `
17	trench and said gate.	· .
•	CLAIM 23	T
18	23. A method for providing a transistor, said method	'302 Patent: Process for Manufacture of High Power
	comprising the steps of:	MOSFET with Laterally Distributed High Carrier
19		Density Beneath the Gate Oxide
		•
20		'297 Patent: MOS Field-Effect Transistor with a One-
ļ		Micron Vertical Channel
21	providing a first region of a first conductivity type;	'302 Patent: Figs. 20 and 22: N+ layer
	providing a second region of said first conductivity type	'302 Patent: Figs. 20 and 22: N layer (100)
22	over said first region, said second region being lighter	'207 Patent: Figs. 4.6: N. Jayor (10)
_	doped than said first region;	'297 Patent: Figs. 4-6: N layer (10)
23	providing a third region of a second conductivity type	'302 Patent: Figs. 20 and 22: P layer (220) and (221)
, l	over said second region, said second and third regions forming a junction;	'297 Patent: Figs. 4-6: P layer (12)
24	providing a fourth region of said first conductivity type	'302 Patent: Figs. 20 and 22: N+ layer (170) and (171)
25	over said third region;	partly lying over P layer (220) and (221)
ادع	over said unite togicit,	paray tying over 1 tayer (220) and (221)
26		'297 Patent: Figs. 4-6: N layer (16) partly lying over P
20		layer (12)
27	providing a trench through said fourth region and third	'297 Patent: Figs. 4-6: trench (18) through N layer (16)
-	regions; and	and P layer (12)
28	providing a gate in said trench;	'297 Patent: Figs. 4-6: gate (24) in trench (18)
	DOCSSV2:500277.1	RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b)
	,	(Case No. C-99-04797 SRA)

1	wherein a deepest part of said third regions is laterally spaced from said trench;	'302 Patent: Figs 20 and 22: deepest part the third (220) and (221) is laterally spaced from said gate region
2	wherein a distance between said deepest part of said	'302 and '297: a distance between said deepest part of a
	third region and said first region is less than a depletion	third region and a first region would be less than a
3	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
	profile as does said junction between said second and	doping profile as does said junction between a second
4	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
5		voltage.
	CLAIM 24	
6	24. The method of claim 23 wherein said deepest part of	'302 Patent: Figs. 20 and 22: a portion of the P layer is a
	said third region is doped heavier than a part of said	heavily doped P+ region (220) and (221) and extends
7	third region which part is adjacent said trench.	both vertically upward and downward; P+ region (220)
		and (221) could be more heavily doped than P region
8	~	which is near the gate region.
· 1		

Fairchild reserves the right to revise and supplement the claim analysis upon further discovery, investigation and analysis prior to the close of discovery. Additionally, the claim construction found by the Court may significantly alter Fairchild's invalidity arguments.

Fairchild asserts that the '266 and '442 patents are invalid under 35 U.S.C. § 112, ¶ 1, as not containing a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention.

Additionally, Fairchild asserts that claim 1 of the '266 and claims 17, 18, 19, 20, 22, 23 and 24 of the '442 patent are invalid as being indefinite under the 35 U.S.C. § 112, ¶ 2. Claim 1 of the '266 and claims 17, 18, 19, 20, 22, 23 and 24 of the '442 patent fail to distinctly claim the subject matter of the invention. For example, the limitation of claim 23 of the '442 patent "wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage" is indefinite under 35 U.S.C § 112, ¶ 2.

Additionally, Fairchild reserves the right to raise a best mode defense upon completion of discovery, specifically upon completion of the depositions of the inventors

ORRICK HERRINGTON

SUTCLIFFE LLP

		·	
1	In defense of Siliconix's allegation of willful infringement, Fairchild intends to rel		
2	upon the opinion(s) of counsel Townsend, Townsend & Crew dated December 23, 1998 and		
3	December 8, 1999. Supplemental invalidity/non-infringement opinion(s) will soon be provided to		
4	trial counsel.	• 	
5	Dated: August 30, 2000.	•	
6		TERRENCE P. MCMAHON	
7		WILLIAM L. ANTHONY, JR MONTE COOPER	
8		KAI TSENG THOMAS J. GRAY	
. 9		ORRICK, HERRINGTON & SUTCLIFFE LLP	
10		K. Jane	
11	·	Kai Tseng Attorneys for Defendant	
12		FAIRCHILD SEMICONDUCTOR, INC.	
13			
14	·		
15			
16			
17			
18			
19			
20			
21			
22			
23			
2425	·		
26			
27			
21			

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

TERRENCE P. McMAHON (State Bar No. 71910) WILLIAM L. ANTHONY, JR. (State Bar No. 106908) MONTE COOPER (State Bar No. 196746) KAI TSENG (State Bar No. 193756) THOMAS J. GRAY (State Bar No. 191411) ORRICK, HERRINGTON & SUTCLIFFE LLP 1020 Marsh Road Menlo Park, CA 94025 Telephone: (650) 614-7400 Facsimile: (650) 614-7401 Attorneys for Defendant,

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SILICONIX INCORPORATED, a Delaware corporation

FAIRCHILD SEMICONDUCTOR

Plaintiff.

FAIRCHILD SEMICONDUCTOR CORPORATION, a Delaware corporation,

Defendant.

CASE NO: C99-04797 SBA

AMENDED INITIAL DISCLOSURE OF DEFENDANT FAIRCHILD SEMICONDUTOR - PRIOR ART PURSUANT TO CIVIL LOCAL RULE 16-7

AMENDED INITIAL DISCLOSURE OF PRIOR ART PURSUANT I. TO L.R. 16-7(D)

Pursuant to Local Rule 16-7(d), defendant Fairchild Semiconductor Corporation ("Fairchild") makes the following amended initial disclosure of prior art:

Attached hereto is Fairchild's amended initial disclosure of prior art patents, products and publications, and tables categorizing those references. Fairchild's investigation, and its analysis of the listed references, is continuing, and Fairchild reserves the right to supplement and to revise the information provided herein as further analysis is performed, additional information becomes available and discovery is completed. All patents are U.S. patents unless otherwise noted. On information and belief, each listed publication was published at least as early as the date given.

10414-4 JG3

DOCSSV2:503110.1

AMENDED INITIAL DISCLOSURE OF PRIOR ART C 99-04797 SBA

ORRICK, HERRINGTON & SUTCLIFFE LLP

Fairchild incorporates, in full, all references cited (however partially) in the patents-in-suit and/or in their respective file histories, as if fully set forth herein. 2 3 While Fairchild will preliminarily identify pursuant to Local Rule 16-7(e) the prior art references which Fairchild believes anticipates the asserted claims or the combination of 4 prior art references which render the asserted claims obvious, please note that the information in 5 this document is provisional and subject to revision, for the following reasons: 6 7 Fairchild's position on the invalidity of particular claims will depend on (i) how those claims are construed by the Court. Because claim construction has not yet occurred, 8 Fairchild cannot take a final position on the bases for invalidity of disputed claims because the 9 Court may construe those claims to mean something different from what Fairchild presently 10 11 assumes them to mean. 12 Fairchild's search for prior art is on-going. (ii) 13 Fairchild has not completed its discovery from Siliconix Inc. Depositions (iii) 14 of the persons involved in the drafting and prosecution of the patent-in-suit, and of the inventors, 15 for instance, will likely reveal information that affects the conclusions herein. 16 PRODUCTION OF DOCUMENTS PURSUANT TO L.R. 16-7(F) II. 17 As required by Local Rule 16-7(f), Fairchild has already produced technical documentation for the Fairchild FDS6680A, the only product accused of infringement in 18 19 Siliconix's Claim Chart. 20 The undersigned certifies that pursuant to local rule 16-6(c) to the best of his knowledge information and belief, formed after a reasonable inquiry, that the disclosure is 21 22 complete and correct, as of this date. 23 Dated: August 30, 2000 24 ORRICK, HERRINGTON & SUTCLIFFE LLP 25 26 27 Attorneys for Defendant 28 Fairchild Semiconductor Corporation ORRICK, HERRINGTON DOCSSV2:503110.1 -2-& SUTCLIFFE LLP 10414-4 103 AMENDED INITIA. SCLOSURE OF PRIOR ART C 99-04797 SBA

1

AMENDED INITIAL DISCLOSURE OF PRIOR ART U.S. Patents No. 5,072,266 & 5,298,422

SILICONIX INC. VS. FAIRCHILD SEMICONDUCTOR CORPORATION

		ACCIONEDIO E	ZEMETE	PIEL CATION	
		INVENTOR		DATE	
-	Mos Field-Effect Transistor	P.R. Amlinger	U.S. PT. NO.	11/19/68	103
	With A One-Micron Vertical	•	3,412,297		
	Channel				
2	Integrated Circuit Utilizing	Jean-Claude Frouin et	U.S. PT. NO.	03/10/70	103
	Dielectric Plus Junction	al.	3,500,139		
	Isolation				
w	Complementary Field-Effect	Roger Cullis	U.S. PT. NO.	06/30/70	103
	Transistors On Common		3,518,509		
	Substrate By Multiple Epitaxy				
	Techniques				
4	Modified Planar Process For	Loyd H. Clevenger	U.S. PT. NO.	10/13/70	
	Making Semiconductor		3,534,234		
	Devices Having Ultrafine		,		
	Mesa Type Geometry				
5	Method Of Fabricating	Peltzer	U.S. PT. NO.	03/07/72	103
	Integrated Circuits, With		3,648,125		
	Integrated Circuits With				
	Oxidized Isolations And The				
-	Resulting Structure				

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION THEE	INVENTOR	NONDEX	DATE	
6	Method Of Manufacturing	Appels et al.	U.S. PT. NO.	08/19/75	103
	Semiconductor Devices In		3,900,350		
	Which Silicon Oxide Regions				
	Inset In Silicon Are Formed				
	By A Masking Oxidation,				
	Wherein An Intermediate				
	Layer Of Polycrystalline				
	Silicon Is Provided Between			•	
	The Substrate And The	-			
	Oxidation Mask				
7	Low Capacitance V. Grove	Rodgers	U.S. PT. NO.	12/02/75	102, 103
	Mos Nor Gate And Method		3,924,265		
	Of Manufacture				
œ	Multilevel Conductor	Naber	U.S. PT. NO.	12/09/75	103
	Structure And Method		3,925,572		
y	Semiconductor Device	Webb	U.S. PT. NO.	05/18/76	
	Manufacture		3,958,040		
10	Semiconductor Device	Abbas et al.	U.S. PT. NO.	06/01/76	
	Having Electrically Insulating	-	3,961,355		
-	Barriers For Surface Leakage				
	Sensitive Devices And				
	Method Of Forming				
=	Method For Forming	Antipov	U.S. PT. NO.	06/08/76	
	Recessed Dielectric Isolation		3,961,999		
	With A Minimized "Birds				
	Beak" Problem				

					_																								$\overline{}$
, —	20	3	10	8				17				16			15				14		<u></u>					12			NC.
	Large Value Capacitor	Device Scilledidución	Field Effect Semiconductor	Single Igfet Memory Cell With Buried Storage Flement	Produced Thereby	And Novel Mask Structures	Comprising Silicon Nitride	Method For Forming Musks	Polycrystalline Growth	Utilizing Monocrystalline-	Semiconductor Device	Method Of Manufacturing A	Semiconductor Device	Electrical Contacts On A	Method Of Forming Raised	Produced By Said Method	Semiconductor Device	Semiconductor Device And A	Method For Producing A	Semiconductor Devices	Dielectrically Isolated	Oxidation	Deposition And Thermal	Combining Dielectric	Dielectric Isolation	Method For Forming		PUBLICATION TITLE	PATENT OR
	Kendall et al.	ב מאמנם	Knkura	Jenne				Magdo et al.				Kaji et al.		·	Reichert			•	Kooi		Hochberg					Feng et al.	INVENTOR	ASSIGNEE/OR	AUTHOR
4,017,885	U.S. PT. NO.	4,015,278	11 & DT NO	U.S. PT. NO. 4 003 036			4,002,511	U.S. PT. NO.			3,977,378	U.S. PT. NO.		3,993,515	U.S. PT. NO.			3,970,486	U.S. PT. NO.	3,966,577	U.S. PT. NO.				3,966,514	U.S. PT. NO.		NUMBER	PATENT
	04/12/77	03123111	03/20/77	01/11/77				01/11/77				12/14/76			11/23/76				07/20/76		06/29/76					06/29/76	DATE	PUBLICATION	ISSUE/
,				103																					•				CLASSIFICATION

	09/19/78	U.S. PT. NO.	Masuoka et al.	Semiconductor Memory	30
103	08/08/78	U.S. PT. NO. 4,105,475	Jenne	Epitaxial Method Of Fabricating Single Igfet Memory Cell With Buried Storage Element	29
103	08/01/78	U.S. PT. NO. 4,104,086	Bondur et al.	Method For Forming Isolated Regions Of Silicon Utilizing Reactive Ion Etching	28
	07/18/78	U.S. PT. NO. 4,101,922	Tihani et al.	Field Effect Transistor With A Short Channel Length	27
103	02/07/78	U.S. PT. NO. 4,072,975	Ishitani	Insulated Gate Field Effect Transistor	26
103	01/24/78	U.S. Pt. No. 4,070,690	Wickstrom	Vmos Transistor	25
103	12/27/77	U.S. PT. NO. 4,065,783	Ouyang	Self-Aligned Double Implanted Short Channel V- Grove Mos Device	24
	11/01/77	U.S. PT. NO. 4,055,884	Jambotkar	Fabrication Of Power Field Effect Transistors And The Resulting Structures	23
103	09/13/77	U.S. PT. NO. 4,048,649	Bohn .	Superintegrated V-Grove Isolated Bipolar And Vmos Transistors	22
	09/06/77	U.S. PT. NO. 4,046,605	Nelson et al.	Method Of Electrically Isolating Individual Semiconductor Circuits In A Wafer	21
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

100	00/44/00	0.3.11.140.	ו יייייייייייייייייייייייייייייייייייי	ochileonade or Meniory	33
103	04/22/80	US PT NO	Natori et al	Semiconductor Memory	95
- 123	04/15/80	U.S. PT. NO. 4,198,693	Kuo	VMOS Read Only Memory	86
				Semiconductor Devices	
	10/03/13	4,170492		Oxidation In Manufacture Of	٥/
	05/00/01	4,104,731	Darker of all	Matha Official	3
	08/14/79	U.S. PT. NO.	Tasch, Jr.	High Capacity Dynamic Ram	
103					36
				Implantation	
				Structures Utilizing Ion-	
		4,159,915		Vertical NPN And PNP	
	07/03/79	U.S. PT. NO.	Anantha et al.	Method For Fabrication	35
		4,148,047		•	
103	04/03/79	U.S. PT. NO.	Hendrickson	Semiconductor Apparatus	34
		4,145,700		fransistors	
	03/20/79	U.S. PT. NO.	Jambotkar	Power Field Effect	33
				Etching And Diffusion	
******		4,140,558		Circuits Utilizing Selective	
103	02/20/79	U.S. PT. NO.	Murphy et al.	Isolation Of Integrated	32
				Capacitance	
				Dynamic Memory Cell	
		4,116,720		Field Effect Transistor For A	
103	09/26/78	U.S. PT. NO.	Vinson	Method Of Making V-MOS	15
	DATE		INVENTOR		
	PUBLICATIO	NOMBER	ASSIGNEE/OR	PUBLICATION TITLE	7.
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	2

NC.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
949	One Device Field Effect	Scheuerlein	U.S. PT. NO.	03/09/82	
,	Transistor (FET) AC Stable		4,319,342		
	Random Access Memory				
	(Ram) Array				
00	Method Of Fabricating MOS	Chang et al.	U.S. PT. NO.	04/13/82	
	Field Effect Transistors		4,324,038		
15	Method Of Manufacturing	lwai et al.	U.S. PT. NO.	05/04/82	
	Semiconductor Devices		4,327,476		
52	Insulated Gate Type	Nishizawa	U.S. PT. NO.	06/08/82	
	Semiconductor Device		4,334,235		
53	Combined DMOS And A	Pao et al.	U.S. PT. NO.	08/10/82	
•	Vertical Bipolar Transistor		4,344,081		
	Device And Fabrication				
	Method Therefor				
54	MOS Power Transistor With	Blanchard	U.S. PT. NO.	08/17/82	103
	Improved High-Voltage	-	4,345,265		
	Capability				
SS	Silicon Integrated Circuits	Jaccodine et al.	U.S. PT. NO.	10/05/82	
			4,353,086		
56	Power MOSFET With An	Becke et al.	U.S. PT. NO.	12/14/82	103
	Anode Region		4,364,073		
57	V-MOS Device With Self-	Garnache et al.	U.S. PT. NO.	12/14/82	102
	Aligned Multiple Electrodes		4,364,074		
S8	Semiconductor Integrated	Crowder et al.	U.S. PT. NO.	12/21/82	103
	Circuit Interconnections		4,364,166		
59	Vertical MOSFET With	Goodman et al.	U.S. PT. NO.	12/28/82	103
	Reduced Turn-On Resistance		4,366,495		
60	VMOS Memory Cell And	Hiltpold	U.S. PT. NO.	12/25/83	103
	Method For Making Same		4,369,564		

61 Method For Manufacturing A Coodman	NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT NUMBER	ISSUE/ PUBLICATION	2
Vertical, Grooved MOSFET Power Static Induction Transistor Fabrication High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.	61	Method For Manufacturing A	Goodman	U.S. PT. NO.	02/22/83	2/83
Power Static Induction Transistor Fabrication High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysificon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Vertical, Grooved MOSFET		4,374,455		
Transistor Fabrication High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	62	Power Static Induction	Cogan	U.S. PT. NO.	03/01/83	1/83
High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysificon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Matsumura et al. Matsumura et al.	•	Transistor Fabrication		4,375,124		
Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysiticon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Matsumura et al. Matsumura et al.	63	High Power MOSFET With	Lidow et al.	U.S. PT. NO.	03/0	03/08/83
Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process FET Memory Cell Structure Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Low On-Resistance And High		4,376,286		
Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Breakdown Voltage			·	
Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysificon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.	64	Method Of Fabricating A	Baliga et al.	U.S. PT. NO.	Ç	04/24/84
A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Semiconductor Device With		4,443,931		
Deep Portion Reactive Sputter Etching Of Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Maydan et al. Fatula Jr. et al. Fatula Jr. et al. Fatula Jr. et al. Makurai Fatula Jr. et al. Fatula Jr. et al. Makurai Matsumura et al. Matsumura et al.		A Base Region Having A				
Reactive Sputter Etching Of Polysiticon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Maydan et al. Maydan et al. Maydan et al. Maydan et al. Matsumura et al. Matsumura et al. Matsumura et al.		Deep Portion			1-	
Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.	8	Polysilicon Utilizing A	Maydan et al.	4.383.885		05/1 //83
FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Chlorine Etch Gas				
And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	99	FET Memory Cell Structure	Fatula Jr. et al.	U.S. PT. NO.		08/09/83
Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		And Process		4,397,075		
Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	67	Fabrication Method For High	Blanchard et al.	U.S. PT. NO.		08/16/83
Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Power MOS Device		4,398,339		
Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	89	Method For Manufacturing A	Sakurai	U.S. PT. NO.		09/20/83
A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Field Isolation Structure For		4,404,735		
Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		A Semiconductor Device				
Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	69	Planar Structure For High	Herman et al.	U.S. PT. NO.		10/25/83
Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Voltage Semiconductor		4,412,242		
Layer Over High Field Regions Semiconductor Device Matsumura et al.		Devices With Gaps In Glassy				
Regions Semiconductor Device Matsumura et al.		Layer Over High Field				
Semiconductor Device Matsumura et al.		Regions			-	
	70	Semiconductor Device	Matsumura et al.	U.S. PT. NO. 4,412,237	-	10/25/83

7					
Ç	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT NUMBER	ISSUE/ PUBLICATION	CLASSIFICATION
71	Method Of Fabricating Mesa MOSFET Using Overhang Mask	Rice	U.S. PT. NO. 4,419,811	12/13/83	
72	Semiconductor Memory Device	Takei	U.S. PT. NO.	02/14/84	103
73	Enhancement Mode JFET	Nishizawa	4,432,006		
	Dynamic Memory	MSHZAWA	U.S. PT. NO.	02/28/84	
74	Fabrication of MOS	Fuls et al.	TIS DT NO	05500	
35	Integrated Circuit Devices		4,450,620	05/29/84	
2	Integrated Circuits	Joy et al.	U.S. PT. NO.	06/19/84	-
76	Isolation For High Density Integrated Circuits	Joy et al.	U.S. PT. NO.	06/19/84	
77			1,40,404/		
	Method Of Manufacturing A Self-Aligned U-MOS	lwai	U.S. PT. NO.	06/26/84	103
	Semiconductor Device		4,400,740		
78	Vertical MESFET With Guardring	Rice	U.S. PT. NO.	07/10/84	
79	Method For Manufacturing	Schwabe et al.	U.S. PT. NO.	07/17/04	
	VLSI Complementary MOS Field Effect Transistor		4,459,740	0//1//84	103
	Circuits In Silicon Gate				-
80	Single Electrode U-MOSFFT	Fig. et al.			
*	ļ		4,462,040	07/24/84	103
,	Insulated-Gate Semiconductor	Temple	U.S. PT. NO.	08/21/84	
	Devices With Integral Shorts		4,466,176		

Method For Mann Semiconductor D. Method Of Fabric Bipolar Dynamic Cell V-MOS Filed Ef. Transistor Method Of Fabric Method Of Fabric MoSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D. Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D. Deep Grip Access The Surface And Method For Form Free Isolation Structuring S. Method For Form Free Isolation Structuring S. MoSFET With P. Channel	PATENT OR	AUTHOR	PATENT	ISSUE/
Method For Mann Semiconductor D. Method Of Fabric Bipolar Dynamic Cell V-MOS Filed Ef. Transistor Method Of Fabric Method Of Fabric Method Of Fabric Self-Aligned Diff Etching Techniqu Method For Fabril Isolation Region I Semiconductor D. Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D. Semiconductor D. Semiconductor D. Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D. Deep Grip Access The Surface And Manufacturing S. Method For Form Free Isolation Str. Utilizing Etch An Techniques MOSFET With P. Channel	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE
Semiconductor D. Method Of Fabric Bipolar Dynamic Cell V-MOS Filed Ef Transistor Method Of Fabric Method Of Fabric MoSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabril Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Stru Utilizing Etch An Techniques MOSFET With P Channel	Method For Manufacturing	Kameyama	U.S. PT. NO.	09/18/84
Method Of Fabric Bipolar Dynamic Cell V-MOS Filed Ef Transistor Method Of Fabric MoSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Stru Utilizing Etch An Techniques MOSFET With P Channel	Semiconductor Device	·	4,472,240	
Bipolar Dynamic Cell V-MOS Filed Ef Transistor Method Of Fabric MOSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Stru Utilizing Etch An Techniques MOSFET With P Channel	Method Of Fabricating A	El-Karach	U.S. PT. NO.	10/16/84
Transistor Method Of Fabric Method Of Fabric MOSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Structuring Etch An Techniques MOSFET With P Channel	Bipolar Dynamic Memory Cell		4,476,623	
Transistor Method Of Fabric MOSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Stru Utilizing Etch An Techniques MOSFET With P Channel	V-MOS Filed Effect	David et al.	U.S. PT. NO.	03/05/85
Method Of Fabric MOSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Structhing Utilizing Etch An Techniques MOSFET With P Channel	ransistor		4,503,449	
MOSFET Structu Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Structhing Utilizing Etch An Techniques MOSFET With P Channel	Method Of Fabricating Power	Vora, et al.	U.S. PT. NO.	03/12/85
Self-Aligned Diff Etching Techniqu Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Strr Utilizing Etch An Techniques MOSFET With P Channel	MOSFET Structure Utilizing		4,503,598	
Etching Technique Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Method Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Stru Utilizing Etch An Techniques MOSFET With P Channel	Self-Aligned Diffusion and			-
Method For Fabri Isolation Region I Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Str Utilizing Etch An Techniques MOSFET With P Channel	Etching Techniques			
Semiconductor D Semiconductor D Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Strı Utilizing Etch An Techniques MOSFET With P Channel	Method For Fabricating	Goto, et al.	U.S. PT. NO.	30/00/VU
Semiconductor D. Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D. Deep Grip Access The Surface And Manufacturing S. Method For Form Free Isolation Strr Utilizing Etch An Techniques MOSFET With P. Channel	Isolation Region In			04/09/60
Self-Aligned Pow With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Strr Utilizing Etch An Techniques MOSFET With P Channel	Semiconductor Devices		4,509,249	04/02/83
With Integral Sou Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Stra Utilizing Etch An Techniques MOSFET With P Channel	Self-Aligned Power MOSFET		4,509,249	04/07/65
Short And Metho Making Semiconductor D Deep Grip Access The Surface And Manufacturing S. Method For Form Free Isolation Strr Utilizing Etch An Techniques MOSFET With P Channel	With Integral Source-Base	Love	4,509,249 U.S. PT. NO.	05/07/85
Making Semiconductor D Deep Grip Access The Surface And Manufacturing S Method For Form Free Isolation Strr Utilizing Etch An Techniques MOSFET With P Channel	Short And Methods Of	Love	4,509,249 U.S. PT. NO. 4,516,143	05/07/85
Semiconductor D. Deep Grip Access The Surface And Manufacturing S. Method For Form Free Isolation Str Utilizing Etch An Techniques MOSFET With P Channel	Aaking	Love	4,509,249 U.S. PT. NO. 4,516,143	05/07/85
Deep Grip Access The Surface And Manufacturing S. Method For Form Free Isolation Str Utilizing Etch An Techniques MOSFET With P Channel		Love	4,509,249 U.S. PT. NO. 4,516,143	05/07/85
The Surface And Manufacturing S. Method For Form Free Isolation Stri Utilizing Etch An Techniques MOSFET With P Channel	Semiconductor Device With	Love Arnould et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO.	05/07/85
Manufacturing S. Method For Form Free Isolation Str Utilizing Etch An Techniques MOSFET With P Channel	Semiconductor Device With Deep Grip Accessible Via	Love Arnould et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552	05/07/85
Method For Form Free Isolation Str Utilizing Etch An Techniques MOSFET With P Channel	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For	Love Arnould et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552	05/07/85
Free Isolation Structure Utilizing Etch An Techniques MOSFET With P	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same	Love Arnould et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552	05/07/85
Utilizing Etch An Techniques MOSFET With P	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void	Love Arnould et al. Beyer et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO.	05/07/85
Techniques MOSFET With P Channel	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void Free Isolation Structure	Love Arnould et al. Beyer et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO. 4,528,047	05/07/85
MOSFET With P Channel	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void Free Isolation Structure Utilizing Etch And Refill	Love Amould et al. Beyer et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO. 4,528,047	05/07/85
Channel	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void Free Isolation Structure Utilizing Etch And Refill Techniques	Love Arnould et al. Beyer et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO. 4,528,047	05/07/85
	he Surface And Process For Manufacturing Same Method For Forming A Void ree Isolation Structure Julizing Etch And Refill echniques	Love Arnould et al. Beyer et al. Ford et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO. 4,528,047 U.S. PT. NO.	05/07/85
One Transistor D	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void Free Isolation Structure Utilizing Etch And Refill Techniques MOSFET With Perimeter Channel	Love Amould et al. Beyer et al. Ford et al.	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO. 4,528,047 U.S. PT. NO. 4,532,534	05/07/85 06/04/85 07/09/85
Random Access Memory	Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void Free Isolation Structure Utilizing Etch And Refill Techniques MOSFET With Perimeter Channel One Transistor Dynamic	Love Armould et al. Beyer et al. Ford et al. Gibbons	4,509,249 U.S. PT. NO. 4,516,143 U.S. PT. NO. 4,520,552 U.S. PT. NO. 4,528,047 U.S. PT. NO. 4,532,534 U.S. PT. NO.	05/07/85 06/04/85 07/09/85 07/30/85

Publicational Power With Schutten et al. U.S. PT. NO. 10/08/85 103	NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
Bidirectional Power With Substrate-Referenced Shield Lateral Bidirectional Notch FET With Extended Gate Insulator Bidirectional Power FET Bidirectional Power FET Bidirectional Power FET Schutten et al. With Field Shaping Schutten et al. U.S. PT. NO. 10/08/85 FIEL With Extended Gate Insulator Bidirectional Power FET Bidirectional Power FET Schutten et al. U.S. PT. NO. 11/12/85 U.S. PT. NO. 11/12/85 Duplicate U.S. PT. NO. 11/12/85 Levinstein et al. U.S. PT. NO. 11/12/85 U.S. PT. NO. 11/12/85 Levinstein et al. U.S. PT. NO. 11/12/85 U.S. PT. NO. 11/12/85 U.S. PT. NO. 11/12/85 U.S. PT. NO. 11/12/85 Levinstein et al. U.S. PT. NO. 11/12/85 U.S. PT. NO. 02/03/86 Integrated Semiconductor Circuit Devices Manufacturing U.S. PT. NO. 02/03/86 U.S. PT. NO. 04/15/86		PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
Substrate-Referenced Shield Lateral Bidirectional Notch FET With Extended Gate Insulator Bidirectional Power FET Bidirectional Power FET Schutten et al. With Field Shaping Duplicate Simplified Planarization Filted Trenches Method Of Fabricating VLSI Complementary Threshold Voltages Inversion-Mode Insulated-Gate Gate Chamiel Field Controlled Device Employing A Recessed Gate Structure Method Of Manufacturing of Lidow, et al. High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Shepard U.S. PT. NO. 11/12/85 U.S. PT. NO. 11/26/85 U.S. PT. NO. 11/26/85 U.S. PT. NO. 12/3/85 U.S. PT. NO. 02/03/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86	92	Bidirectional Power With	Schutten et al.	U.S. PT. NO.	09/10/85	103
Lateral Bidirectional Notch FET With Extended Gate Insulator Bidirectional Power FET Bidirectional Power FET With Field Shaping With Field Shaping Duplicate Simplified Planarization Process For Polysilicon Filled Trenches Method Of Fabricating VLSI Complementary Threshold Voltages Inversion-Mode Insulated-Gate Galtium Arsenide Field-Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing of Lidow, et al. High Power MOSEFT with Laterally Distributed High Carrier Density Beneath The Cate Oxide U.S. PT. NO. 11/26/85 LUS. PT. NO. 11/26/85 U.S. PT. NO. 12/3/85 U.S. PT. NO. 12/3/85 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86		Substrate-Referenced Shield		4,541,001		
HET With Extended Gate Insulator Bidirectional Power FET Bidirectional Power FET With Field Shaping Duplicate Simplified Planarization Process For Polysiticon Filled Trenches Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated-Gate Galtium Arsenide Field-Gate Galtium Arsenide Field-Baliga et al. Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing of Circuit Devices High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide A,545,728 LIVI2/85 Levinstein et al. U.S. PT. NO. 11/26/85 Levinstein et al. U.S. PT. NO. 12/3/85 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86	93	Lateral Bidirectional Notch	Schutten et al.	U.S. PT. NO.	10/08/85	103
Bidirectional Power FET With Field Shaping Duplicate Simplified Planarization Process For Polysilicon Filled Trenches Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing of Lidow, et al. Process for Manufacturing of Lidow, et al. Laterally Distributed High Cartier Density Beneath The Gate Oxide U.S. PT. NO. 11/26/85 U.S. PT. NO. 02/03/86	•	FET With Extended Gate		4,546,367		
Bidirectional Power FET With Field Shaping Duplicate Simplified Planarization Process For Polysilicon Filled Trenches Method Of Fabricating VLSI Complementary Threshold Voltages Inversion-Mode Insulated- Gate Galtum Arsenide Field- Effect Transistors Method Of Making Vertical Device Employing A Recessed Gate Structure Method of Manufacturing of Circuit Devices Process for Manufacturing of Lidow, et al. Laterally Distributed High Carrier Density Beneath The Gate Oxide Duplicate U.S. PT. NO. 11/26/85 U.S. PT. NO. 12/3/85 U.S. PT. NO. 12/3/85 U.S. PT. NO. 12/3/86 U.S. PT. NO. 14/5/86 U.S. PT. NO. 14/5/86		Insulator				
Mith Field Shaping Simplified Planarization Process For Polysilicon Filled Trenches Filled Controlled	94	Bidirectional Power FET	Schutten et al.	U.S. PT. NO.	11/12/85	
Simplified Planarization Process For Polysilicon Filled Trenches Filled Trenches Filled Trenches Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Callium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing Integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Device Simplified Planarization Shepard 4,554,728 Levinstein et al. U.S. PT. NO. 12/3/85 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86		With Field Shaping		4,553,151		
Simplified Planarization Process For Polysilicon Filled Trenches Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Callium Arsenide Field- Effect Transistors Method Of Making Vertical Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of Lidow, et al. High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Shepard 4,554,728 U.S. PT. NO. 12/3/85 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 06/03/86	95		Duplicate			
Process For Polysilicon Filled Trenches Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing Integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide 4,554,728 U.S. PT. NO. 12/3/85 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86	96	Simplified Planarization	Shepard	U.S. PT. NO.	11/26/85	
Filled Trenches Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing Integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Method Of State Structure Lidow, et al. U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86		Process For Polysilicon		4,554,728		
Method Of Fabricating VLSI CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Device Employing A Recessed Gate Structure Method of Manufacturing of Circuit Devices High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Method Of Fabricating VLSI 4,555,842 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86		Filled Trenches				
CMOS Devices Having Complementary Threshold Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide 4,555,842 U.S. PT. NO. 02/03/86 U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86	97	Method Of Fabricating VLSI	Levinstein et al.	U.S. PT. NO.	12/3/85	
Complementary Threshold Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Complementary Threshold Baliga U.S. PT. NO. U.S. PT. NO. 4,571,815 U.S. PT. NO. 4,582,565 U.S. PT. NO. 4,582,565 U.S. PT. NO. 4,582,565 U.S. PT. NO. 4,582,362		CMOS Devices Having		4,555,842		
Voltages Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing Integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide U.S. PT. NO. 02/03/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 06/03/86		Complementary Threshold				
Inversion-Mode Insulated- Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 06/03/86		Voltages	•			
Gate Gallium Arsenide Field- Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide 4,588,958 U.S. PT. NO. 02/25/86 4,571,815 U.S. PT. NO. 04/15/86 U.S. PT. NO. 06/03/86 4,593,302	98	Inversion-Mode Insulated-	Baliga	U.S. PT. NO.	02/03/86	103
Effect Transistors Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Carrier Density Beneath The Gate Oxide U.S. PT. NO. 02/25/86 U.S. PT. NO. 04/15/86 U.S. PT. NO. 04/15/86 4,582,565 U.S. PT. NO. 06/03/86		Gate Gallium Arsenide Field-		4,568,958		
Method Of Making Vertical Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Carrier Density Beneath The Gate Oxide Method Of Making Vertical Baliga et al. 4,571,815 U.S. PT. NO. 4,582,565 U.S. PT. NO. 4,593,302 U.S. PT. NO. 4,593,302		Effect Transistors				
Channel Field Controlled Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide 4,571,815 U.S. PT. NO. 04/15/86 U.S. PT. NO. 06/03/86	99	Method Of Making Vertical	Baliga et al.	U.S. PT. NO:	02/25/86	
Device Employing A Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Device Employing A U.S. PT. NO. 4,582,565 U.S. PT. NO. 06/03/86 4,593,302		Channel Field Controlled		4,571,815		
Recessed Gate Structure Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Rawakatsu U.S. PT. NO. 04/15/86 U.S. PT. NO. 06/03/86 4,593,302		Device Employing A				
Method of Manufacturing integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Manufacturing of Lidow, et al. Lidow, et al. U.S. PT. NO. 4,593,302 4,593,302		Recessed Gate Structure				
integrated Semiconductor Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide 4,582,565 U.S. PT. NO. 06/03/86 4,593,302	100	Method of Manufacturing	Kawakatsu	U.S. PT. NO.	04/15/86	
Circuit Devices Process for Manufacturing of High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide Circuit Devices U.S. PT. NO. 06/03/86 4,593,302		integrated Semiconductor		4,582,565		
Process for Manufacturing of Lidow, et al. U.S. PT. NO. 06/03/86 High Power MOSFET with Laterally Distributed High Carrier Density Beneath The Gate Oxide		Circuit Devices				
4,593,302	101	Process for Manufacturing of	Lidow, et al.	U.S. PT. NO.	06/03/86	103
Carrier Density Beneath The Gate Oxide		High Power MOSFET with		4,593,302		
Carrier Density Beneath The Gate Oxide		Laterally Distributed High				
Gate Oxide		Carrier Density Beneath The				
		Gate Oxide				

				sidewalls of isolation trenches	
	02/03/87	H204	Oh et al.	Method for implanting the	116
				polycrystalline silicone	
				silicides having a high	
				double layers of metal	•
		4,640,844		of gate electrodes formed of	
	02/03/97	U.S. PAT NO.	Neppl et al.	Method for the manufacture	109
		4,639,754		Diminished Bipolar Effects	
103	01/27/87	U.S. PT. NO	Wheatley, Jr. et al.	Vertical MOSFET with	801
				An Insulating Trench	
				Field Oxide With Respect To	•
		4,636,281		Autopositioning Of A Local	
	01/13/87	U.S. PT. NO	Buiguez et al.	Process For The	107
		4,631,803		Free Trench Isolation Devices	
	12/20/86	U.S. PT. NO	Hunter et al.	Method of Fabrication Defect	106
103	12/16/86	U.S. PT. NO 4,630,088	Ogura et al.	MOS Dynamic Ram	105
				Terminal Means	
				Dual Gate Reference	
				Channel Stacking And With	
		4,622,569		FET With Notched Multi-	
103	11/11/86	U.S. PT. NO	Lade et al.	Lateral Bidirectional Power	104
		4,608,584		Transistor	
103	08/24/86	U.S. PT. NO	Mihara	Vertical Type MOS	103
				Its Manufacture	
		4,596,999		Component And Process For	
	06/24/86	U.S. PT. NO	Gobrecht et al.	Power Semiconductor	102
	DATE		INVENTOR		-
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	NC.
CLASSIFICATION	ISSIE/	PATENT	Valually	DA TENETO DE	2

20	PATENT OR	AUTHOR	PATENT	ISSUE/	CLASSIFICATION
Ś	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
Ξ	Dynamic memory device	Lu	U.S. PAT NO.	03/17/87	
	having a single-crystal		6,649,625		
	transistor on a trench				
	capacitor structure and a				
	fabrication method therefor				
112	Shallow grove capacitor	Erb et al.	U.S. PAT NO.	03/17/87	
	fabrication method		4,650,544		
113	Dynamic memory device	Lu	U.S. PAT NO.	03/17/87	
	having a single-crystal		4,649,625		
	transistor on a trench	•			
	capacitor structure and a				
	fabrication method therefor				
114、	Dram cell and array	Malhi	4.651 184 .	03/17/87	103
15	Complementary mos	Sunami et al.	U.S. PAT NO.	06/02/87	
	integrated circuits having		4,670,768		
	vertical channel fets				
116	Semiconductor memory	Miura et al.	U.S. PAT NO.	06/09/87	103
	device with trench		4,672,410		
	surrounding each memory cell				
117	Vertical dram cell and method	Chatterjee et al.	U.S. PAT NO. 4,673,962	06/16/87	103
811	mos transistor	Terry et al.	U.S. PAT NO. 4,675,713	06/23/87	103
119	Process for manufacture of	Lidow et al.	U.S. PAT NO.	07/21/87	103
	high power mosfet with		4,680,853		
	laterally distributed high				
	carrier density beneath the				
	gate oxide				

PUBLICATION TITLE ASSIGNEE/OR INVENTIOR NUMBER ULS. PAT NO. PUBLICATION DATE Methods for forming lateral and vertical dmos transistors Blanchard et al. U.S. PAT NO. 07/28/87 Dram cell and array Chalterjee 4,683,486 U.S. PAT NO. 07/28/87 Power mos fet with decreased resistance in the conducting state Milhara U.S. PAT NO. 09/29/87 Power mos fet with decreased resistance in the conducting state Milhara U.S. PAT NO. 09/29/87 Power mos fet with decreased monolithic senite of the capacitor and high density dynamic memory cells including the capacitor possivated dual dielectric gate switching transistor Douglas U.S. PAT NO. 10/27/87 Method of making trenchine transition system and method for Eapacitor Passivated dual dielectric gate Dynamic ran with capacitor with density dynamic ran with capacitor process for light density dynamic ran Nakamura et al. U.S. PAT NO. 11/3/87 Drance capacitor Switching transistor Baglee et al. U.S. PAT NO. 01/05/88 Drance of Trench capacitor Process for Eapacitor Process for Capacitor Switching transistor Baglee et al. U.S. PAT NO. 01/05/88 U.S. PAT NO. 01/05/88 U.S. PAT NO. 00/14/88 U.S. PAT NO.	NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
Methods for forming lateral and vertical dmos transistors Blanchard et al. 4,682,405 U.S. PAT NO. 4,682,405 07/28/87 Dram cell and array Chatterjee 4,682,405 07/28/87 Dram cell and array Chatterjee 4,683,486 Power mos fet with decreased prosents and resistance in the conducting state Milhara U.S. PAT NO. 09/29/87 Trench etch process Douglas U.S. PAT NO. 10/27/87 Method of making trenching trenching trenching trenching trenching trenching the capacitor and high density dynamic memory cells including the capacitor system and method for labricating same Goth et al. 4,702,795 U.S. PAT NO. 11/3/87 Dynamic ram with capacitor process for ligh density dynamic ram with capacitor process for ligh density dynamic ram with capacitor process for ligh density dynamic ram with capacitor sundence the capacitor sund		PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
Dram cell and array Chanterjee U.S. PAT NO. 07/28/87	120	Methods for forming lateral	Blanchard et al.	U.S. PAT NO.	07/28/87	103
Dram cell and array Chatterjee 4,683,486 Power mos fet with decreased resistance in the conducting state Trench etch process Method of making trenchincorporated monolithic semiconductor capacitor and high density dynamic ram by grove surrounding switching transistor Trench capacitor process for high density dynamic ram Dram with fet stacked over capacitor tapacitor high density memory with field shield Possivated dover stacked over capacitor field shield Roger Cullis Contact discrete discrete discrete al. Dram with fet stacked over capacitor Roger Cullis Dram cell and array (J.S. PAT NO. 09/29/87 LOS. PAT NO. 11/3/87 U.S. PAT NO. 11/3/87 U.S. PAT NO. 11/3/87 U.S. PAT NO. 11/17/87 4,707,721 U.S. PAT NO. 01/05/88 U.S. PAT NO. 01/05/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88		and vertical dmos transistors		4,682,405		
Power mos fet with decreased resistance in the conducting state Trench etch process Method of making trench-incorporated monolithic semiconductor capacitor and high density dynamic memory cells including the capacitor passivated dual dielectric gate al. Dynamic ram with capacitor switching transistor Trench capacitor process for high density memory with field shield Dram with fet stacked over sunami et al practicur capacitor Dram with fet stacked over Sunami et al practicur process for field shield Roger Cullis U.S. PAT NO. 11/3/87 U.S. PAT NO. 11/3/87 U.S. PAT NO. 11/17/87 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 U.S. PAT NO. 01/05/88 U.S. PAT NO. 01/05/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88	121	Dram cell and array	Chatterjee	U.S. PAT NO. 4,683,486	07/28/87	103
resistance in the conducting state Trench etch process Method of making trench- incorporated monolithic semiconductor capacitor and high density dynamic memory cells including the capacitor Passivated dual dielectric gate System and method for fabricating same Dynamic ram with capacitor Prench capacitor process for high density dynamic ram Dram with fet stacked over capacitor High density memory with field shield Roger Cullis Method of making trench- Goth et al. U.S. PAT NO. 11/3/87 4,702,795 U.S. PAT NO. 11/17/87 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 5,707 U.S. PAT NO. 11/17/87 4,717,942 U.S. PAT NO. 11/05/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88	122	Power mos fet with decreased	Mihara	U.S. PAT NO.	09/29/87	
State State State Trench etch process Douglas U.S. PAT NO. 10/27/87		resistance in the conducting		4,697,201		
Trench etch process Douglas U.S. PAT NO. 10/27/87 Method of making trench- incorporated monolithic semiconductor capacitor and high density dynamic memory cells including the capacitor and high density dynamic memory cells including the capacitor passivated dual dielectric gate system and method for fabricating same Dynamic ram with capacitor process for high density dynamic ram Dram with fet stacked over capacitor process for capacitor process for high density memory with price over surrounding switching transistor High density memory with process for capacitor process for field shield Roger Cullis Roger Cullis U.S. PAT NO. 01/25/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88 Initial shield Prance Practic capacitor process for the fet all density memory with process for capacitor process for the fet all density memory with process for capacitor process for the fet all density memory with process for the fet		state				
Method of making trenchincorporated monolithic semiconductor capacitor and high density dynamic memory cells including the capacitor Passivated dual dielectric gate Ang et al. System and method for fabricating same Dynamic ram with capacitor Switching transistor Trench capacitor process for high density dynamic ram Dram with fet stacked over capacitor capacitor capacitor with fet stacked over capacitor field shield Dram with Renney High density memory with field shield Roger Cullis Method of making trans. U.S. PAT NO. 11/3/87 4,704,368 U.S. PAT NO. 11/17/87 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,707,721 4,717,942 5,88 U.S. PAT NO. 01/05/88 U.S. PAT NO. 01/26/88 4,721,987 U.S. PAT NO. 06/14/88 Capacitor U.S. PAT NO. 06/14/88 Capacitor U.S. PAT NO. 06/14/88 Guid shield U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88 Capacitor U.S. PAT NO. 06/14/88 Capacitor U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 Capacitor U.S. PAT NO. 01/26/88	123	Trench etch process	Douglas	U.S. PAT NO. 4,702,795	10/27/87	
micorporated monolithic semiconductor capacitor and high density dynamic memory cells including the capacitor Passivated dual dielectric gate system and method for fabricating same Dynamic ram with capacitor process for light density dynamic ram with fet stacked over capacitor capacitor praction with fet stacked over capacitor field shield Roger Cullis M.Z. PAT NO. 01/05/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88 Inigh density memory with Kenney U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 Inigh density memory with Kenney U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 Inigh density dynamic ram U.S. PAT NO. 06/14/88	124	Method of making trench-	Goth et al.	U.S. PAT NO.	11/3/87	·
semiconductor capacitor and high density dynamic memory cells including the capacitor Passivated dual dielectric gate Ang et al. System and method for fabricating same Dynamic ram with capacitor process for Baglee et al. Trench capacitor process for Baglee et al. Dram with fet stacked over capacitor capacitor process for High density memory with field shield Roger Cullis Makamura et al. U.S. PAT NO. 4,707,721 U.S. PAT NO. 01/05/88 U.S. PAT NO. 4,721,987 U.S. PAT NO. 06/14/88 LIS. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 U.S. PAT NO. 1084937 U.S. PAT NO. 1084937 France 11/07/69		incorporated monolithic		4,704,368		
cells including the capacitor Passivated dual dielectric gate Ang et al. System and method for fabricating same Dynamic ram with capacitor Dynamic ram with capacitor Trench capacitor process for high density dynamic ram with fet stacked over capacitor High density memory with field shield Roger Cullis Cols. PAT NO. 01/05/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 01/26/88 U.S. PAT NO. 06/14/88 Cupacitor U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 U.S. PAT NO. 06/14/88 France U.S. PAT NO. 06/14/88 1084937 France 11/07/69		semiconductor capacitor and				
Passivated dual dielectric gate system and method for fabricating same Ang et al. U.S. PAT NO. 4,707,721 11/17/87 Dynamic ram with capacitor prove surrounding switching transistor Nakamura et al. 4,717,942 U.S. PAT NO. 01/05/88 01/05/88 Trench capacitor process for high density dynamic ram Dram with fet stacked over capacitor Baglee et al. 4,721,987 U.S. PAT NO. 01/26/88 01/26/88 High density memory with field shield Kenney 4,751,557 U.S. PAT NO. 06/14/88 06/14/88 High density memory with field shield Roger Cullis U.S. PAT NO. 06/14/88 06/14/88 06/14/88 France 2,003,068 11/07/69 11/07/69 11/07/69		cells including the capacitor				
System and method for fabricating same 4,707,721	125	Passivated dual dielectric gate	Ang et al.	U.S. PAT NO.	11/17/87	
Dynamic ram with capacitor groove surrounding groove surrounding switching transistor Nakamura et al. 4,717,942 U.S. PAT NO. 4,717,942 01/05/88 Trench capacitor process for high density dynamic ram Baglee et al. 4,721,987 U.S. PAT NO. 4,721,987 01/26/88 Dram with fet stacked over capacitor Sunami et al 2,751,557 U.S. PAT NO. 4,751,557 06/14/88 High density memory with field shield Kenney 4,751,588 U.S. PAT NO. 4,751,588 06/14/88 U.S. PAT NO. 1084937 1084937 11/07/69 France 2003.068 11/07/69		system and method for fabricating same		4,707,721		
groove surrounding switching transistor Switching transistor Baglee et al. U.S. PAT NO. 01/26/88 high density dynamic ram Dram with fet stacked over Sunami et al U.S. PAT NO. 06/14/88 capacitor High density memory with Kenney U.S. PAT NO. 06/14/88 4,751,557 U.S. PAT NO. 06/14/88 density memory with Roger Cullis United Kingdom 09/27/67 1084937 11/07/69 2,003.068 11/07/69	126	Dynamic ram with capacitor	Nakamura et al.	U.S. PAT NO.	01/05/88	
Switching transistor Switching transistor Switching transistor		groove surrounding		4,717,942		
Trench capacitor process for high density dynamic ram Baglee et al. U.S. PAT NO. 01/26/88 Dram with fet stacked over capacitor Sunami et al capacitor U.S. PAT NO. 06/14/88 High density memory with field shield Kenney U.S. PAT NO. 06/14/88 Roger Cullis United Kingdom 109/27/67 09/27/67 France 2,003.068 11/07/69		switching transistor				
high density dynamic rain 4,721,987 Dram with fet stacked over Sunami et al U.S. PAT NO. 06/14/88 Capacitor 4,751,557 High density memory with Kenney U.S. PAT NO. 06/14/88 field shield Roger Cullis United Kingdom 09/27/67 1084937 France 2,003,068	127	Trench capacitor process for	Baglee et al.	U.S. PAT NO.	01/26/88	
Dram with fet stacked over Sunami et al U.S. PAT NO. 06/14/88		high density dynamic ram		4,721,987		
capacitor 4,751,537 High density memory with field shield Kenney U.S. PAT NO. 4,751,588 06/14/88 Roger Cullis United Kingdom 109/27/67 09/27/67 France 2.003.068 11/07/69	128	Dram with fet stacked over	Sunami et al	U.S. PAT NO.	06/14/88	
High density memory with Kenney field shield Roger Cullis U.S. PAT NO. 06/14/88 4,751,588 United Kingdom 09/27/67 1084937 France 2.003.068		capacitor		4,751,557		
Roger Cullis United Kingdom 09/27/67 1084937 France 11/07/69 2.003.068	129	High density memory with field shield	Kenney	U.S. PAT NO. 4,751,588	06/14/88	
France 11/07/69 2.003.068	130		Roger Cullis	United Kingdom 1084937	09/27/67	103
	131			France 2.003.068	11/07/69	103

103	05/00/81	Japan 0058267			145
103	03/00/81	Japan 56-29362			144
103	11/00/80	Japan 55-146976			143
103	07/00/80	Japan 0095366			142
103	05/00/80	Japan 0065463			141
103	08/00/79	Japan 0099583			140
,	03/00/79	Japan 039579			. 139
103	02/00/79	United Kingdom 2002958			138
	01/00/79	Japan 54-885			137
	12/00/78	Japan 0149771			136
	12/00/78	Japan 0142189			135
	08/00/78	Fed. Rep. Of Germany 2706155			134
	07/00/78	Japan 53-74385			133
	12/00/76	Japan 130,178			132
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

	01/00/85	Japan 0012752			157
	10/00/84	United Kingdom 2137811A			156
	06/00/84	Japan 0108325			155
		OII. 0008843		Compositions, Article Manufactured Therefrom And Processes For Preparing The Cured Compositions And Manufactured Articles	
!	09/00/83	European Pat.	Eugene Bertozzi	Curable And Cured	154
	03/00/83	Japan 0050752			153
[02/00/83	Japan 141262			152
	01/00/83	Japan 0003269			151
!	01/00/83	Japan 0010861			150
1	01/00/83	Japan 0003287			149
	12/00/82	European Pat. Off. 0066081	Joseph Shepard	Dense Vertical FET And Method Of Making	148
	07/00/82	Japan 109367			147
I	01/00/82	Japan 0010973			146
	ISSUE/ PUBLICATION DATE	PATENT	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.
			·	7	

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
158			Japan 0064444	04/00/85	103
159			Japan 60-154664	58/00/80	103
160			Japan 152059	58/00/80	
161			Japan 0182161	09/00/85	
162			Fed. Rep. Of Germany 3508996	10/00/85	
163			Japan 226165	11/00/85	
164			Japan 261165	12/00/85	
165	Vertical Bidirectional Stacked Power Fet	James Benjamin, et al	European Patent Off. 0164095	12/00/85	
166	Semiconductor Memory Device	Natsuro Tsubouchi, et al.	United Kingdom 2168195A	12/00/85	
167	Dynamic Ram Cell	Nicky Chau-Chun Lu, et al.	European Pat. Off. 167764	01/00/86	
168			Fed. Rep. Of Germany 3525418	01/00/86	103
.)			Japan 36965	02/00/86	
170			Japan 73366	04/00/86	

			Trotter		
			Jenne, James D.		
			Brimes Fraderick B	State Circuits	
			Randy Hiltpold, Bruce	from IEEE Journal of Solid-	
103	Oct. 1977	N/A	T.J. Rodgers, W.	"VMOS Memory Technology	178
				Disclosure Bulletin	
				Process" from IBM Technical	
	June, 1977	N/A	S.A. Abbas	"Recessed Oxide Isolation	177
			J. Donald Trotter		
			Randolph Hiltpold and		
			J. Barnes, W.	Circuits Conference	
			Bruce Frederick, John	International Solid-State	
		•	Frederick B. Jenne,	Technology" from IEEE	•,
103	Feb. 16, 1977	N/A	Thurman J. Rodgers,	"VMOS Memory	176
				from Solid State Electronics	
			A.S. Grove	Planar Silicon Junctions"	•
	April 15, 1966	N/A	O. Leistiko, Jr. and	"Breakdown Voltage Of	175
		198590	•		
	11/00/86	Japan			174
		186875			
		Off.			•
	07/00/86	Euronean Pat			173
		61-142774			
	06/00/86	Japan			172
		176254			
		Off.			
	04/00/86	European Pat.			171
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	IS: TEV	PATENT	AUTHOR/	PATENT OR	NO.

			Z		
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
170	"Dynamic DMOS Random.	F Rareon	N/A	Dec 1978	103
·	Accuse Mamory Call Daging				
	Access Melliory Cent Design	٠	•		
	with Trench" from IBM				
	Technical Disclosure Bulletin				
180	"Fabrication of V-MOS or U-	T.S. Chang and S.	N/A	Dec. 1979	103
	MOS Random-Access	Ogura			
	Memory Cells With A Self-				
	Aligned Word Line from				
	IBM Technical Disclosure				
	Bulletin				
181	"N. Skin Elimination In	J.J. Fatula, Jr. and P.L.	N/A	Jan. 1980	
	UMOS Device By Re-	Garbarino			
	Oxidation from IBM			-	
	Technical Disclosure Bulletin				
182	"Short-Channel Field-Effect	H.S. Lee and R.R.	N/A	Jan. 1980	103
	Transistors in V-Groves"	Troutman			
	from IBM Technical				
	Disclosure Bulletin				
183	"Vertical FET Random-	T.S. Chang and D.L.	N/A	Jan. 1980	103
	Access Memories With Deep	Critchlow			
	Trench Isolation" from IBM				
	Technical Disclosure Bulletin				
184	"UMOS Transistors on (110)	Elie S. Ammar and	N/A	May 1980	103
	Silicon from IEEE	T.J. Rodgers			
	Transactions on Electron				
	Devices				
185	"V-Groove Dynamic Memory	D.M. Kenney	N/A	Aug. 1980	103
	Cell" from IBM Technical				
	Disclosure Bulletin				

April 1982 Dec. 1982 1982 1982 Jan. 1983			ICCC Iransactions on	
2		Smith	Digital Converter IC's from	
2		R. Curtice, and Rene	GaAs MESFET Analog-to-	
2	•	Upadhyayula, Walter	Evaluation of 2- and 3-Bit	
2	N/A	L. Chamulu	"Design, Fabrication, and	191
~		Jacob Riseman		
~		Joseph F. Shepard and		
~		Codella, Nivo Rovedo,	from IEEE	
2		Christopher F.	Using Double Implanted LDD	
~	N/A	Seiki Ogura,	"A Half Micron MOSFET	190
2		Nagakubo		
~		Momose, and Y.	Devices" from IEEE	
April 1982 Dec. 1982	N/A	R.D. Rung, H.	"Deep Trench Isolated CMOS	189
April 1982 Dec. 1982			Solid State Technology	
April 1982 Dec. 1982			Technology for VLSI from	
April 1982 Dec. 1982		Israel Beinglass	and Contact Barrier	
April 1982	N/A	Nicholas E. Miller and	"CVD Tungsten Interconnect	188
April 1982		Critchlow		
April 1982		Shepard, and Dale L.	Technology	
April 1982		Walker, Joseph F.	Oxide Sidewall-Spacer	
April 1982		Ogura, William W.	Performance LDDFET's with	
	N/A	Paul J. Tsang, Seiki	"Fabrication of High-	187
			Disclosure Bulletin	
			Devices from IBM Technical	
			Capacitance in VMOS	
Feb. 1981 103	N/A	D.M. Kenney	"Reduced BIT Line	186
DATE		INVENTOR		
PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
ISSUE/ CLASSIFICATION	PATENT	AUTHOR/	PATENT OR	NO.

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT	ISSUE/ PUBLICATION	CLASSIFICATION
		INVENTOR		DATE	
192	"A New Vertical Power	Daisuke Euda,	N/A	Jan. 1984	
	MOSFET Structure with	Hiromitsu Takagi, and			•
	Extremely Reduced On-	Gota Kano			
	Resistance from IEEE		•		
	Transactions on Electron				
	Devices		-		
193	"The Insulated Gate	B. Jayant Baliga,	N/A	June 1984	103
	Transistor: A New Three-	Michael S. Adler,			
	Terminal MOS-Controlled	Robert P. Love, Peter			
	Bipolar Power Device from	V. Gray and Nathan			
	IEEE Transactions on	D. Zommer			
	Electron Devices				
194	"Compact One-Device	C.G. Jambotkar	N/A	July 1984	
	Dynamic Ram Cell With High				
	Storage Capacitance from				
	IBM Technical Disclosure				
	Bulletin				
195	"Characterization of As-P	K. Balasubramanyam,	N/A	1984	
	Double Diffused Drain	M.J. Hargrove, H.I.			
	Structure from IEDM	Hanafi, M.S. Lin, D.			
		Hoyniak, J. LaRue and			
		D.R. Thomas			
196	"Self-Aligned Titanium	K. Tsukamoto, T.	N/A	1984	
	Silicidation of Submicron	Okamoto, M. Shimizu,			
	MOS Devices by Rapid Lamp	T. Matsukawa, and H.			
	Annealing from IEDM	Nakata			

Nov. 1987 April 1987 08/16/83 103 03/26/85 103 08/16/88 103 08/30/88	8,339 6,435 4,481 7,722	Blanchard et al. Pliskin et al. Alvi et al. Blanchard Bravillo et al	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided Source/Drain Self-Align CMOS Fabrication Process Method For Making Planar Vertical Channel DMOS Structures Well Extensions For Trench	203
37	8,339 6,435 4,481 7,722	Blanchard et al. Pliskin et al. Alvi et al. Blanchard	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided Source/Drain Self-Align CMOS Fabrication Process Method For Making Planar Vertical Channel DMOS Structures	203
37	8,339 6,435 4,481 7,722	Blanchard et al. Pliskin et al. Alvi et al. Blanchard	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided Source/Drain Self-Align CMOS Fabrication Process Method For Making Planar Vertical Channel DMOS	203
37	8,339 6,435 4,481	Blanchard et al. Pliskin et al. Alvi et al.	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided Source/Drain Self-Align CMOS Fabrication Process	203
37	8,339 6,435 4,481	Blanchard et al. Pliskin et al. Alvi et al.	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided Source/Drain Self-Align CMOS Fabrication Process	203
37	8,339 6,435 4,481	Blanchard et al. Pliskin et al. Alvi et al.	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided Source/Drain Self-Align	203
37	8,339 6,435 4,481	Blanchard et al. Pliskin et al. Alvi et al.	Method For Forming Recessed Isolated Regions Grown Side-Wall Silicided	203
37	8,339 6,435	Blanchard et al. Pliskin et al.	Method For Forming Recessed Isolated Regions	
37	8,339 6,435	Blanchard et al. Pliskin et al.	Method For Forming	
37	8,339	Blanchard et al.	LOWCI INICO DONICO	202
37	8,339	Blanchard et al.	Power MOS Device	
v. 1987 vril 1987			Fabrication Method For High	201
vr. 1987 oril 1987			VLSI Circuits +	
v. 1987	-N/A -A	Y. Pauleau	"Interconnect Materials for	200
)V. 1987		Jayant Baliga	Devices	
ov. 1987		Tantraporn and B.	Transactions on Electron	
v. 1987		Temple, Wirojana	of 1 m Ω · cm2 from <i>IEEE</i>	
ov. 1987		Black, V.A.K.	with a Specific On-Resistance	
	N/A No	HR Chang, R.D.	"Self-Aligned UMOSFET's	199
			Devices	
			Transaction on Electron	•
-			Process from IEEE	
		Gota Kano	by Using a Fully Self-Aligned	
		Hiromitsu Takagi, and	Power MOSFET Fabricated	
April 1987	N/A AF	Daisuke Euda,	"An Ultra-Low On-Resistance	198
			(Twin-Tub V) from IEEE	
		and H.P.W. Hey	and Punch-Through Implants	
		R. Harney, A. Maury	With Self-Aligned Chan-Stop	
		Leung, W.T. Cochran,	Submicron CMOS Process	
86	N/A 1986	M-L. Chen, C-W.	"A High Performance	197
DATE		INVENTOR		
PUBLICATION		ASSIGNEE/OR	PUBLICATION TITLE	
ISSUE/ CLASSIFICATION	PATENT	AOHTUA/	PATENT OR	NC.

			From Solid-State Electronics. 1975 Vol. 18, pp. 363-374	
	:		Oxide In Silicon Gate- Controlled Devices-1 Theory	
03/18/74	N/A	C. Bulucea	Avalanche Injection Into The	214
	JP62012167A		Semiconductor Device With Groove Section	
01/21/87	Japanese PT. Off.	Sasaki Yoshitaka	Manufacture of Vertical Type	213
	JP6203/965A		Thereof	
02/18/87	Japanese PT. Off.	Sasaki Yoshitaka	Longitudinal Semiconductor	212.
	DE 3028561	Hofmann	Component	
	German PT. Off.	D. Edwards and R.	Integrated MOS Electrical	211
			MOS Transistor	
11/03/92	5,160,491	Mori	Method Of Making A Vertical	210
			Recessed	
			With Profile Tailored	
			Delineated Power MOSFET	
		•	Topographic Pattern	
05/28/91	5,019,522	Meyer et al.	Method Of Making	209
			Transistor	
05/14/91	5,016,068	Mori	Vertical Floating-Gate	208
			Fabrication Process	
16/80/10	4,983,535	Blanchard	Vertical DMOS Transistor	207
			Thickness	
			Varying Gate Dielectric	
04/03/90	4,914,058	Blanchard	Grooved DMOS Process With	206
DATE		INVENTOR		
PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.

NC.	PATENT OR	AUTHOR	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NOMBER	PUBLICATION DATE	
215	Avalanche Injection Into The	C. Bulucea	N/A	03/18/74	
	Oxide In Silicon Gate-				
	Controlled Devices-II				
	Experimental Results From				
	Solid-State Electronics, 1975				
	Vol. 18, pp. 381-391				
216	The Oxidation of Shaped	R.B. Marcus and T.T.	N/A	06/00/82	
	Silicon Surfaces From	Sheng	-		
	Journal of the				
	Electrochemical Society				
217	A New Vertical Power	Daisuke Ueda	N/A	01/00/85	103
	MOSFET Structure with	Hiromitsu Takagi and			
	Extremely Reduced On-	Gota Kano		•	
	Resistance From IEEE				-
	Transactions on Electron				-
	Devices, Vol. ED-32, No. 1				
218	Oxidation of Curved Silicon	Lynn O. Wilson and	N/A	02/00/87	
	Surfaces From Journal of the	R.B. Marcus			
	Electrochemical Society Vol.				
	134, No. 2				
219	Nonplanar Oxidation and	Kikuo Yamabe and	N/A	08/00/87	
-	Reduction of Oxide Leakage	Keitaro Imai			
	Currents at Silicon Corners by				
	Rounding-off Oxidation From				
	IEEE Transactions On	•			
	Electron Devices Vol. ED-34,				
	No. 8				

	Ç.	PATENT OR PUBLICATION TITLE Self-Aligned UMOSFET's with a Specific On- Resistance of ImΩ · cm2 From IEEE Transactions On Electron Devices Vol. ED-34, No. 11
221		Breakdown Voltage of Diffused Epitaxial Junctions From Solid-State Electronics Vol. 34, No. 12 pp. 1313-1318
222		Process for Manufacture of High Power Mosfet With Laterally Distributed High Carrier Density Beneath the Gate Oxide
223		Gate Shield Structure For Power Mos Device Semiconductor Device and
225		Method of Manufacturing the Same Process for Manufacture of High Power Mosfet With
226		Gate Oxide Method for Making Planar Vertical Channel DMOS Sturctures

103		Japanese PT. Off. 56131960 A	Yasuno Kosuke, et al.	Preparation	238:
103		Japanese PT. Off. 1 – 142775			237
	08/02/89	Japanese PT. Off. 1 – 192174			236
	05/19/88	Japanese PT. Off. 63114173	lwabuchi Toshiyuki and Ochiai Toshiyukl	Manufacture Thereof	235
103				Various Abstracts of Foreign and Domestic Patents	234
102, 103	04/00/82	IDEZ696-2	Richard A. Blanchard	Optimization of Discrete High Power MOS Transistors	233
102, 103	02/00/82	IDEZ696-1	S.C. Sun	Physics and Technology of Power MOSFETs	232
	11/08/94	U.S. PT NO. 5,362,665	Lu	Method of Making Vertical Drain Cross Point Memory Cell	231
103	08/11/87	U.S. PT NO. 4,685,196	Lee	Method For Making Planar FET having Gate, Source and Drain In The Same Plane	230
102, 103	01/09/90	4,893,160	Blanchard	Method for Increasing the Performance of Trenched Devices and the Resulting Structure	229
103	04/25/89	4,824,793	Richardson et al.	Method of Making DRAM Cell with Trench Capacitor	228
	12/27/88	4,794,561	Hsu	Static RAM Cell with Trench Pull-Down Transistors and Buried-Layer Ground Plate	227
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

		AUTHOR/	PATENT.	ISSI (F)	CLASSIFICATION
Ş	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	1
239			Japanese PT. Off. 2 = 102579		
240			Japanese PT. Off.		
			1 - 310576		
241	Semiconductor Device and	Ueda Daisuke, Takagi	Japanese PT. Off.		103
	Manufacture Thereof	Hiromitsu, and Kano	57-18365 A		-
		Kota			
242			Japanese PT. Off.		
			60-28271		
243		•	Japanese PT. Off.		103
			00-1011		
244	Semiconductor Device with	Sasaki Yoshilaka	620121167 A		
	Grove Section				
245	Methods for Forming Lateral	Blanchard et al.	U.S. PT. No.	07/28/87	103
1	Transistors		4,062,403		
246	Method of Fabricating Power	Vora et al.	U.S. PT. NO.	03/12/85	103
	MOSFET Structure Utilizing		4,503,598		,
	Self-Aligned Diffusion and Etchine			·	
247	Vertical MOSFET and	Morie et al.	U.S. PT. NO.	11/22/88	103
	Method of Manufacturing the		4,786,953		
	Same				
248	FET For High Reserve Bias	Hendrickson et al.	U.S. PT. NO.	04/05/88	
	Voltage and Geometrical		4,735,914		
	Design for Low On		,		•
	Resistance				

	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT	ISSUE/	CLASSIFICATION
		INVENTOR	NOMBER	PUBLICATION	
245	Self-Aligned Power MOSFET With Integral Source-Base Short and Methods of Making		U.S. PT. NO. 4,516,143	05/07/85	103
250	Deep Trench Isolated CMOS Devices from IEEE	R.D. Rung, H. Momose, and Y. Navakuho		00/00/82	103
251	1.25 um Deep-Grove-Isolated Self-Aligned Bipolar Circuits from IEEE	Denny D. Tang, Paul M. Solomon, Tak H.		10/00/82	
	from IEEE	Ning, Randall D. Isaac, and Rudolph E. Burger			
252	An Advanced High- Performance Trench-Isolated Self-Aligned Bipolar	G.P. Li, Tak H. Ning, C.T. Chuang, Mark B. Ketchen, Denny		11/00/87	103
		John Mauer			
233	Process and Device Performance of High-Speed Double Poly-Si Binolar	Tadanori Yamaguchi, Yeou-Chong Simon		08/00/88	
	Technology Using Borosenic-	S. Lee, Evan E.			
	Base Implant from IEEE	Patton, Robert D. Herman, Diane R.			
		Ahrendt, Vladimir F. Drobny, Todd H.			
		Yuzuriha, and Valdis E. Garuts			
		S. Duncan et al.		00/00/88	
653	Technology from IEEE	Takayuki Gomi et al.	·	00/00/88	

PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	CLASSIFICATION
Process He: A Highly	P.C. Hunt and M.P.		00/00/88	
Bipolar Technology For				
Analogue and Digital				
Applications				
A 0.5 vm Very-High-Speed	Takeo Shiba et al.		11/00/91	
Silicon Bipolar Devices				
Technology-U-Groove-				
Isolated SICOS from IEEE				
MOSAIC V - A Very High	V. dela Torre et al.		00/00/91	
Performance Bipolar				
Technology form IEEE				
A Scaled 0.25-vm Bipolar	John D. Cressler et al.		05/00/92	
Technology Using Full e-				
Beam Lithography from IEEE				
A High Performance	M. Kerber et al.	•	00/00/92	
BICMOS Process Featuring			_	
40 GHz/21 ps from IEEE				
A Half-micron Super Self-	T.M. Liu et al.		00/00/92	
aligned BiCMOS Technology				
for High Speed Applications				
from IEDM				
Bipolar Technology For A	S. Nakamura et al.		00/00/92	
0.5-Micron-Wide Base	,			
Transistor With An ECL Gate .				
Delay of 21.5 Picoseconds				
from IEDM			·	
Sub-20psec ECL Circuits	Fumihiko Sato, et al.		00/00/92	
with 50GHz fmax Self-				
aligned SiGe HBTs by IEEE				
	PATENT OR PUBLICATION TITLE Process He: A Highly Advanced Trench Isolated Bipolar Technology For Analogue and Digital Applications A 0.5 om Very-High-Speed Silicon Bipolar Devices Technology-U-Groove- Isolated SICOS from IEEE MOSAIC V – A Very High Performance Bipolar Technology form IEEE A Scaled 0.25-om Bipolar Technology Using Full e- Beam Lithography from IEEE A High Performance BICMOS Process Featuring 40 GHz/21 ps from IEEE A Half-micron Super Self- aligned BiCMOS Technology for High Speed Applications from IEDM Bipolar Technology For A 0.5-Micron-Wide Base Transistor With An ECL Gate Delay of 21.5 Picoseconds from IEDM Sub-20psec ECL Circuits with 50GHz finax Self- aligned SiGe HBTs by IEEE	ed peed peed figh ligh ligh ce- ce- ce- ce- ce- ce- diff follogy tions tons tons tons tons tons tons tons tons	AUTHOR/ ASSIGNEE/OR INVENTOR P.C. Hunt and M.P. ed Cooke P.C. Hunt and M.P. Cooke P.C. Hunt and M.P. P. Hunt	AUTHOR/ ASSIGNEE/OR NUMBER PUBLICA: INVENTOR NUMBER DATE P.C. Hunt and M.P. cd Cooke P.C. Hunt and M.P. Cooke P.C. Hunt and M.P. COOKE P.C. Hunt and M.P. COOKE 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/91 11/00/92 12/00/92 13/00/92 13/00/92 14/00/92 15/00/92 15/00/92 15/00/92 15/00/92

NC.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
264	Process and Device	Tadanori Yamaguchi		08/00/93	
	Characterization for a 30-GHz				
	ff Submicrometer Double				
	Poly-Si Bipolar Tehcnology				
	Using BF2-Implanted Base				
	with Rapid Thermal Process				
	from IEEE			-	
265	0.5 um Bipolar Technology	Chikara Yuamaguchi		00/00/93	
	Using a New Base Formation	et al.			
	Method: SST1C from IEEE				
266	UHF-1: A High Speed	C. Davis et al.		00/00/92	
	Complementary Bipolar				
	Analog Process on SOI from				
	IEEE 1992 Bipolar Circuits				
	and Technology Meeting				
267	CB: A High Speed	J.J.J. Feindt et al.		00/00/92	
	Complementary Bipolar				
	Process On Bonded SOI from				
	IEEE 1992 Bipolar Circuits				
	and Technology Meeting				
268	Sub-20 ps High-Speed ECL	Toshihiko linuma et		03/00/95	
	Bipolar Transistor with Low	al. · .	•		
	Parasitic Architecture from				-
	IEEE Transactions on	,			
	Electron Devices Vol. 42, No.				

				IEEE	
				Technology with a Novel Planarization Process from	
	00/00/87		G. Fuse, H. Ogawa	A Practical Trench Isolation	273
				IEDM	
				Replacement of LOCOS from	
				Technology As A	
	00/00/84		H. Mikoshiba et al.	A New Trench Isolation	272
				Bipolar VLSI's from IEEE	
			-	Technique for High Speed	
	00/00/82		Akio Hayasaka et al.	U-Groove Isolation	271
				Kanaagawa, 211 Japan	
				Limited Kawasaki,	
				*Memory Division, Fujitsu	
				Bipolar Division and	
				Memories - IOP-II from	
				High Performance Bipolar	
	00/00/00		Hiroshi Goto, et al.	An Isolation Technology for	270
				Innovation Conference 1995	
				International Technology and	
	_			Wireless Applications from	
				Analog, Mixed Signal and	
				Power and High-Frequency	
		•		Technology for Ultra-Low	
				Complementary Bipolar	
				Trench Isolated	
	00/00/95		Francois Herbert et al.	A 12 Volt Super-Self-Aligned	269
	DATE		INVENTOR		
_	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
	ISSUE/	PATENT	AUTHOR	PATENT OR	NO.

·	00/00/90		H. Bernhard Pogge et al.	Trench Isolation Technology from IEEE 1990 Bipolar Circuits Technology Meeting	278
				Electron Devices Vol., 37 No.	
				Performance ECL Circuits from <i>IEEE Transactions on</i>	
				Trench Isolation Capacitance for Advanced High-	
	10/00/90		P.F. Lu et al.	On the Scaling Property of	277
				No. 6	
				Device Isolation from J.	
				Double Polysilicon Bipolar	
	00,00,00		· · · · · · · · · · · · · · · · · · ·	Process for Self-Aligned	
	00/00/00		VC Simon et al	Planarized Deen-Trench	276
				Co.	
		-		Center, Samsung Electronics	
				from Advanced Technology	
				Submicron Silicon Devices	
				Technology for Deep-	
	,			(DTI): A Novel Isolaiton	
	00/00/00		T. Park et al.	Double Trench Isolation	275
			·	Submicron CMOS from IEEE	•
				Sidewall Doping For	
				Technology With Diffused	
				Trench Isolation (STI)	
	00/00/88		B. Davari et al.	A Variable-Size Shallow	274
	DATE	•	INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	Z C

	•				
	-				
				Semiconductor Products	
				from Motorola Inc.,	
			al.	High Voltage Applications	
	00/00/00		Francine Y. Robb et	Deep Trench Isolation for	283
				and Technology Meeting	
				IEEE 1992 Bipolar Circuits	
				Speed Bipolar LSIs from	
	-			Structures for Ultra-High-	
		•		Deep Trench Isolation	
	00/00/92		N Itoh, et al	Optimization of Shallow and	282
				654	
		•		Engineering 15 (1991 651-	
		•		CMOS from Microelectronic	
				Isolation for Sub-Halfmicron	
	00/00/91		J.P. Cabanal et al.	Improved Shallow Trench	281
				from IEEE	
				Polysilicon Bipolar Devices	
		•		Self-Aligned Double	
				Isolation Scheme for 38 GHz	
	00/00/91		E. Bertagonolli et al.	Modular Deep Trench	280
				Laboratory	
				Research and Development	
				from Advanced Products	
				Submicron VLSI Technology	
				LOCOS Isolation for	
	00/00/00		Bich-Yen Nguyen et	Framed Mask Poly Buffered	279
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NC.

_					
		INVENTOR		DATE	
284	A Highly Manufacturable	Pierree C. Fazan et al.		00/00/93	-
	Trench Isolation Process for				
	Deep Submicron DRAMs				
	from IEEE				
285	The Effect of Trench	R. Jerome et al.		00/00/93	
	Processing Condition on				
	Complementary Bipolar				
	Analog Devices with		٠		-
	SOVTrench Isolation from				
	IEEE				
286	Offset Trench Isolation from	S.S. Roth		08/00/94	
	J. Electrochem. Soc., Vol.			-	
	141, No. 8, August 1994				
287	Optimization of a Shallow	S.S. Cooperman et al.		09/00/95	
	Trench Isolation Process for			-	
	Improved Planarization from	-			
	J. Electrochem. Soc., Vol. 142				
	No. 9 September 1995				•
288	Study of Precipiate-like	P. Franzosi, et al.		09/00/95	
	Defects in CdTe Crystals			_	
-	from J. Electrochem Soc., Vol				
	142 No. 9 September 1995				
289	Platox: A Planarized Trench	Rashid Bashir, et al.		00/00/95	
	and Field_IDE Isolation from				
_	International Technology and				

N C	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
290	Platop: A Novel Planarized Trench Isolation and Field	R. Bashir, et al.		00/00/00	
·	Oxide Formation Using Poly-				
	Silicon from Analog Process				
	Technology Department,				
	National Semiconductors				
291	Trench Isolation for 0.45 vm	Asanga H. Perera		00/00/95	
•	Active Pitch and Below from				
	IEEE				
292	Silicon Trench Etoch in a Hex	G.K. Herb et al.		10/00/87	
	Reactor from Solid State				
	Technology				
293	Optimized High Rate Deep	M. Engelhardt		00/00/00	
	Silicon Trench Etching for		•		
	Dielectric Isolation in Smart				
	Power Devices from Siemens				
	AG, Corporate Research and				
	Development Otto-Hahn-Ring				
	6 D-81730 Munich Germany		-		
294	Anisotropic Etching of	C. Pomot et al.		01/00/86	
	Silicon Using An SF ₀ / Ar			02/00/86	
	Microwave Multipolar Plasma				
	from J. Vac Sci. technol. B 4				
	(I)				
295	Dry Etching of Silicon	Y. Tzeng et al.		09/00/87	
	Materials in SF ₆ Based			-	
•	Plasmas Roles of N2O and	•			
	Or Additives J. Electrochem				
	Soc.: Solid-State Science and	- -			<u>.</u>
	Technology				

٠.

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION !
296	RIE Etching of Deep Trenches in Si Ssing CBrF3	A.M. Krings et al.		00/00/00	
	and SF ₆ Plasma from				
	Microelectronic Engineering				
	6 (1987) 553-558				
297	Reactive Ion Etching in SF ₆	R. Pinto et al.		01/00/87	
	Gas Mixtures from J.				7
	Electrochem. Soc.,: Solid-				
	State Science and Technology				
	Vol. 134 No. 1				
298	Trench Etches in Silicon with	Robert N. Carlile et al.		08/00/88	
	Controllable Sidewall Angles			1	
	from J. Electrochem. Soc.:				
	Solid-State Science and				
	Technology Vol. 135 No. 8				
299	Plasma Etching of Silicon in	Yeong-Jyh Lii et al.		11/00/90	
	SF ₆ Experimental and Reactor	1			
	Modeling Studies from J.				
*	Electrochem. Soc., Vol. 137,				
	No. 11			-	
300	Aperture Effect in Plasma	M. K. Abachev et al.		00/00/91	
	Etching of Deep Silicon			•	
	Trenches from Vaccum				
	Volume 42/ Numbers 1/2				
	pages 129 to 131				
301	Reactive Ion Etching of	Tsengyou Syau et al.		10/00/91	
	Silicon Trenches Using				
	SF ₀ /O ₂ Gas Mixtures from J.				
	Electrochem. Soc., Vol. 138,				
	No. 10			_	

5	** * **** **** ****	AHTHOD/	CATENT	ieelle/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
302	Trench Etching Using a CBrF3 Plasma and Its Study	G Wohl, et al.		01/14/91	•
	by Optical Emission				
	Spectroscopy by Vacuum/				
	Volume 42/Number 14 pages				
	905 10 910				
303	Deep Trench Plasma Etching	Christopher P. D'Emic		05/00/92	
	of Single Crystal Silicon	et al.		06/00/92	
	Using SF ₆ /0 ₂ Gas Mixtures				
	from J. Vac. Sci. Technol. B	•			
	10(3)				
304	Reactive Ion Etching of Deep	Vladimir N.		00/00/92	
	Trenches in Silicon from 584	Bliznetsov			
	/ SPIE Vol. 1783				
	International Conference of				
	Microelectronics				
305	Influences of Reactant	John C. Arnold		11/00/93	
	Transport on Fluorine			12/00/93	
	Reactive Ion Etching of Deep				
	Trenches in Silicon J. Vac.				
	Sci. Technol. B 11(6)				
306	Etching of Silicon in CBrF3:	Yu P. Baryshev et al.		00/00/92	
	Formation of Deep Trenche			- i	
	and Plasma Diagnostics from				
	386 / SPIE Vol. 1783				
	International Conference of				
	Microelectronics (1992)				

NUMBER PUBLICATION A Mask autors of S.K. Ray le and le and s from blective of Deep of Deep of Deep of Seed al. hol: A Henri Jansen et al. Deep g With Legtenberg et al. Rob Legtenberg et al. NUMBER DUBLICATION DUBLICATION 00/00/93 01/05/93 01/05/93 01/05/93 00/00/94 00/00/94 00/00/95 00/00/95	2	BATENT OR	AHTHOR/	PATENT	ISSUE/	CLASSIFICATION
Deep Trenches in Silicon Using Photoresist As A Mask from Sensors and Actuators A. 37-38 Rapid Plasma Etching of Silicon, Silicon Dioxide and Silicon Nitride Using Microwave Discharges from Senicond Sci. Technol. 8 Highly Anisotropic Selective Reactive lon Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive lon Etcher in Deep Silicon Trench Etching With Profile Control from J Micromech, Microeng. 5 Rob Legtenberg et al. Pol. 142 No. 6 Rob Legtenberg et al. 00/00/95	Ş	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE	
Using Photoresist As A Mask from Sensors and Actuators A. 37-38 Rapid Plasma Etching of Silicon, Silicon Dioxide and Silicon Nitride Using Microwave Discharges from Senicond Sci. Technol. 8 Highly Anisotropic Selective Reactive lon Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive lon Etching With Profile Control from J. Microenech. Microeneg. 5 Anisotropic Reactive lon Etching With Profile Control from J. Electrochem. Soc., Vol. 142 No. 6 No. 142 No. 6	307	Deep Trenches in Silicon	E. Cabruja et al.		00/00/93	
from Sensors and Actuators A. 37-38 Rapid Plasma Etching of Silicon, Silicon Dioxide and Silicon Nitride Using Microwave Discharges from Semicond. Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Microenge. 5 Anisotropic Reactive Ion Etching SFu/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Using Photoresist As A Mask				
Rapid Plasma Etching of Silicon, Silicon Dioxide and Silicon Nitride Using Microwave Discharges from Semicond. Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		from Sensors and Actuators				
Rapid Plasma Etching of Silicon, Silicon Dioxide and Silicon Nitride Using Microwave Discharges from Semicond Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 Of The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SFuOn/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		A. 37-38				
Silicon, Silicon Dioxide and Silicon Nitride Using Microwave Discharges from Semicond. Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SFu/Oz/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6	308	Rapid Plasma Etching of	S.K. Ray		01/05/93	
Silicon Nitride Using Microwave Discharges from Semicond Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SFu/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Silicon, Silicon Dioxide and				
Microwave Discharges from Semicond. Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SFu/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Silicon Nitride Using				
Semicond Sci. Technol. 8 Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SFw/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Microwave Discharges from				
Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Semicond. Sci. Technol. 8				
Reactive Ion Etching of Deep Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6	309	Highly Anisotropic Selective	V.A. Yunkin et al.		00/00/94	
Trenches in Silicon from Microelectronic Engineering 23 The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF6/02/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Reactive Ion Etching of Deep				
Microelectronic Engineering 23 The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive lon Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF4/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Trenches in Silicon from				
The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive lon Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive lon Etching of Silicon Using SF ₄ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Microelectronic Engineering				
The Black Silicon Method: A Henri Jansen et al. Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		23				
Universal Method for Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6	310	The Black Silicon Method: A	Henri Jansen et al.		00/00/95	
Determining The Parameter Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Universal Method for				
Setting of Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Determining The Parameter				
Reactive Ion Etcher in Deep Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Setting of Fluorine-Based				
Silicon Trench Etching With Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Reactive Ion Etcher in Deep				
Profile Control from J. Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Silicon Trench Etching With				
Micromech. Microeng. 5 Anisotropic Reactive Ion Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Profile Control from J.				
Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Micromech. Microeng. 5				
Etching of Silicon Using SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6	311	Anisotropic Reactive Ion	Rob Legtenberg et al.	-	06/00/95	
SF ₀ /O ₂ /CHF ₃ Gas Mixtures from J. Electrochem. Soc., Vol. 142 No. 6		Etching of Silicon Using				
from J. Electrochem. Soc., Vol. 142 No. 6		SF ₀ /O ₂ /CHF ₃ Gas Mixtures				
Vol. 142 No. 6		from J. Electrochem. Soc.,				
		Vol. 142 No. 6				

PUBLICATION DATE 09/00/95 10/00/95 00/00/95 00/00/95 00/00/95	NO.	PATENT OR	AUTHOR	PATENT	ISSUE/	CLASSIFICATION
Deep Trench Fabrication By St (110) Orientation Dependent Etching From J. Fuc. Sci. Techol, B 13(5) The Black Silicon Method II: The Effect of Mask Material and Loading On The Reactive Ion Etching Of Deep Silicon Trenches from Microelectromic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectromic Engineering 27 (1995) 457-462 Silicon Trench Etching from Microelectromic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
Si (110) Orientation Dependent Etching from J. Fuc. Sci. Techol, B 13(5) The Black Silicon Method II: The Effect of Mask Material and Loading On The Reactive Ion Etching Of Deep Silicon Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vaccuum Vol. 42, No. 1, 2, pg. 17 - 19	312	Deep Trench Fabrication By	Jeremy A. Theil		09/00/95	
Dependent Etching from J. Puc. Sci. Techol, B 13(5) The Black Silicon Method II: The Effect of Mask Material and Loading On The Reactive Ion Etching Of Deep Silicon Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276-277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17-19		Si (110) Orientation	,		10/00/95	
The Black Silicon Method II: Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276-277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17-19		Dependent Etching from J.				
The Black Silicon Method II: The Effect of Mask Material and Loading On The Reactive Ion Etching Of Deep Silicon Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		Vuc. Sci. Techol, B 13(5)				
The Effect of Mask Material and Loading On The Reactive lon Etching Of Deep Silicon Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Steep Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276-277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17-19	313	The Black Silicon Method II:	Henri Jansen et al.		00/00/95	
and Loading On The Reactive lon Etching Of Deep Silicon Trenches from Microelectronic Engineering 27 (1995) 473-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		The Effect of Mask Material				
Ion Etching Of Deep Silicon Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface No. 190, pg. 276 - 277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 M. Posselt, G. Otto		and Loading On The Reactive				
Trenches from Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 M. Posselt, G. Otto		Ion Etching Of Deep Silicon				
Microelectronic Engineering 27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		Trenches from				
27 (1995) 475-480 Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		Microelectronic Engineering				•
Selectivity and Si-Load In Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		27 (1995) 475-480				
Deep Trench Etching from Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol.	314	Selectivity and Si-Load In	K. Paul Muller et al.	•	\$6/00/00	
Microelectronic Engineering 27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 Michael Ameen et al. 09/00 M. Morita, G.S. Jong, H. Kumagai T. Ohmi, M. Kosugi, M. M. Morita, G.S. Jong, H. Kumagai T. Ohmi, M. Kosugi, M. M. Morita, G.S. Jong, H. Kumagai M. Morita, G.S. Jong, M. M. Posselt, G. Otto		Deep Trench Etching from			00,00	
27 (1995) 457-462 Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 Michael Ameen et al. 09/00 T. Ohmi, M. Kosugi, M. Morita, G.S. Jong, H. Kumagai T. Ohmi, M. Kosugi, M. Morita, G.S. Jong, M. Morita, G.S. Jong, M. Morita, G.S. Jong, H. Kumagai Technology, from Abstract M. Posselt, G. Otto Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		Microelectronic Engineering				
Silicon Trench Etching Made Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 Michael Ameen et al. O9/00 T. Ohmi, M. Kosugi, H. Kumagai T. Ohmi, M. Kosugi, H. Kumagai M. Posselt, G. Otto		27 (1995) 457-462		•		
Easy from 122/Semiconductor International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacaum Vol. 42, No. 1, 2, pg. 17 - 19	315	Silicon Trench Etching Made	Michael Ameen et al.		()9/()()/88	
International A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscuttered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19 International T. Ohmi, M. Kosugi, M. Morita, G.S. Jong, H. Kumagai M. Morita, G.S. Jong, H. Kumagai M. Posselt, G. Otto		Easy from 122/Semiconductor			0,100,00	
A Step Coverage and a Hole Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of Ions Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19		International				
Filling of Si Film by Surface Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacuum Vol. 42, No. 1, 2, pg. 17 - 19	316	A Step Coverage and a Hole	T. Ohmi, M. Kosugi.		00/00/00	
Reaction Film Formation Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacaum Vol. 42, No. 1, 2, pg. 17 - 19		Filling of Si Film by Surface	M. Morita, G.S. Jong,		00,00	
Technology, from Abstract No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscuttered from the Sidewalls During the Implantation into Deep Trenches, from Vacaum Vol. 42, No. 1, 2, pg. 17 - 19		Reaction Film Formation	H. Kumagai			-
No. 190, pg. 276 - 277 Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacaum Vol. 42, No. 1, 2, pg. 17 - 19		Technology, from Abstract	(
Energy and Angular Distribution of lons Backscattered from the Sidewalls During the Implantation into Deep Trenches, from Vacaum Vol. 42, No. 1, 2, pg. 17 - 19		No. 190, pg. 276 - 277				
Vol	317	Energy and Angular	M. Posselt, G. Otto		00/00/01	
Backscattered from the Sidewalls During the Implantation into Deep Trenches, from <i>Vacuum</i> Vol. 42, No. 1, 2, pg. 17 - 19		Distribution of lons			00/00/21	
Sidewalls During the Implantation into Deep Trenches, from <i>Vacuum</i> Vol 42, No. 1, 2, pg. 17 - 19	-	Backscattered from the	-			
Implantation into Deep Trenches, from <i>Vacuum</i> Vol. 42, No. 1, 2, pg. 17 - 19		Sidewalls During the				
Trenches, from <i>Vacuum</i> Vol. 42, No. 1, 2, pg. 17 - 19		Implantation into Deep				
42, No. 1, 2, pg. 17 - 19		Trenches, from Vacuum Vol.				
		42, No. 1, 2, pg. 17 - 19				

VENTOR VENTOR DATE 1 Sakaue, 101/00/91 ki Nakano, 11 chihara, 10 Horiike 11/04/91 11/04/91 11,12/00/91 Lee, David W. 11,12/00/91 stein 100, J.L. 100, J.L. 11,00/00/91 \$\$\frac{1}{5}\$\$ S.S.C. Chim, \$\$\frac{1}{5}\$\$ G.Q. Xiao, 10	and		_
, B	and	Process Control V. De. 145 -	
, g		Metrology, Inspection, and	
, B		Vol. 1464, Integrated Circuit	-
B	² IE, T. Corle, G.Q. Xiao,	Measurement, from SPIE,	
. *	1th Berman, S.S.C. Chim,	to Trench Bottom-Width	
***	pproach C-H. Chou, J.L.	Pattern Recognition Approach	321
***		- 3568	
*	g. 3562	Technology B 9 (6), pg. 3562	
. *		Journal of Vacuum Sci.	-
. *	, from	Force Microscope Tip, from	
*	nic L. Landstein	Beam Fabricated Atomic	
	tron- Abraham, F. Secord,	Profiling With an Electron-	
	Kam L. Lee, David W.	Submicron Si Trench	320
	- 2402	Lett 59 (19), pg. 2400 - 2402	
	Phys.	Structure, from Appl. Phys.	
		Filled Trench Isolation	
	o Oxide G. Fuse, H. Iwasaki	Arsenic Implantation to Oxide	319
-		L127	
	.124-	Vol. 30, No. 1B, pg. L124-	
	ysics	Journal of Applied Physics	
	iese	Oxidation, from Japanese	
-	en and Yasuhiro Horiike	Tricthylsilane/Hydrogen and	•
	Tsutomu Ichihara,	Repetitive Reaction of	
	ing a Masayuki Nakano,	Deposition of SiO ₂ Using a	
	or Hiroyuki Sakaue,	Digital Chemical Vapor	318
	INVENTOR		
NUMBER PUBLICATION	ASSIGNEE/OR	PUBLICATION TITLE	
UTHOR/ PATENT ISSUE/ CLASSIFICATION	AUTHOR/). PATENT OR	NO.

PUBLICATION T Polysilicon Etchback Process Using HBr, C SF _o Gas Mixtures for Trench Isolation, fron Journal of Electroche Society, Vol. 139, No 575 - 579 Conformal Deposition Deep-Trenched Subtr MOCVD, from Applia Surface Science, 70/7 763 - 767 DUPLICATE Digital Chemical Vap Deposition Study, from Materials Research S Symp Proc., Vol. 288	PATENT OR	MOHTUA	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
	Polysilicon Etchback Plasma	Geun-Young Yeom,		02/00/92	
		Yoshi Ono, Tad			
	SF ₆ Gas Mixtures for Deep-	Yamaguchi			
	Trench Isolation, from				
	Journal of Electrochemical				
	Society, Vol. 139, No. 2, pg.	-			
	Conformal Deposition on a	Yoshihiko Kusakabe,		00/00/93	
	Deep-Trenched Subtrate by	Hiroshi Ohnishi, Toru			
	MOCVD, from Applied	Takahama, Yoshiyuki 📗			
	pg.	Goto			
	Conformal Deposition on a	Yoshihiko Kusakabe,		00/00/93	
	Deep-Trenched Subtrate by	Hiroshi Ohnishi, Toru			
	MOCVD, from Applied	Takahama, Yoshiyuki 📗			
	Ъè.	Goto			
		-			
Deposition of Oxide/Nitric Oxide/Nitric Reaction Str. Materials R. Symp. Proc.	ATE .	H. Sakaue, T.		00/00/93	
Oxide/Nitric Reaction Stu Materials R Symp. Proc.	DUPLICATE Digital Chemical Vapor	Nakasako, K.			
Reaction Stu Materials R Symp. Proc.	ATE hemical Vapor n of Silicon	Nakaune, T. Kusuki,			
Materials R Symp. Proc.	DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface	A. Miki, Y. Horiike			
Symp. Proc.	ATE hemical Vapor n of Silicon tride and its Surface Study, from	,			
	DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society				
169 – 180	DUPLICATE DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg.				

				Topography Over variable	
			DeBrosse, P.C.	Pattern Densities - pg. 308 -	-·· <u>-</u>
			C.W. Koburger, J.K.	Topography Over Variable	
	00/00/00		T.H. Doubenspock,	Planarization of Ulsi	328
				143, No. 2, pg. 639 - 642	
				Electrochem. Society, Vol.	
-				Grains, from Journal of	
			Jong-Choul Kim	Using Island Polysilicon	
			Lim, Byung-Jin Cho,	Oxidation of Silicon Isolation	
	02/00/96		Sung-Ku Kwon, Chan	Nano Trenched Local	327
				pg. 259 - 265	
	•			Manufacturing, Vol. 7, No. 3,	
				Semiconductor	
				Transactions on	
				by Photoemission, from IEEE	
				Trench-Isolated MOSFET's	
			Hideyuk	Measurements of Locos- and	-
	08/00/94		Takashi Ohzone,	Channel-Width	326
	DATE		INVENTOR		
CLASSIFICATION	PUBLICATION	NUMBER	ASSIGNEE/OR	PATENT OR	NO.
CLASSIFICATION	Ische/	DATENT.	1000		

2	PATENT OR	AITHOR/	PATENT	ISSIE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE	
330	A Trench Isolation Process	Stephen Poon, Craig		00/00/93	
	for BiCMOS Circuits, from	Lage			
	IEEE 1993 Bipolar Circuits				
	and Technology Meeting 3.3,				-
	pg. 45 – 48				
331	Oxide-Filled Trench Isolation	J.M. Pierce, P.		00/00/00	
	Planarized Using	Renteln, W.R. Burger,			
	Chemical/Mechanical	S.T. Ahn			
	Polishing		-		
332	Dishing Effects in a Chemical	C. Yu, P.C. Fazan,		09/14/92	
	Mechanical Polishing	V.K. Mathews, T.T.			
	Planarization Process for	Doan			
	Advanced Trench Isolation,				
	from Appl. Physics Letter 61		-		
	(11) (American Institute of				
ļ	Physics)				
333	Chemical/Mechanical	Michael A. Fury		04/00/95	
	Polishing: Emerging				
	Developments in CMP for				
	Semiconductor Planarization,				
	from Solid State Technology,				
3	Physical Characterization of	John Ali Mark		00/00/05	
-	Chemical Mechanical	Rodder, Sudipto R			
	Planarized Surface for Trench	Roy, Greg Shinn,			
	Isolation, from Journal of	Mazhar Islam Raja			
	Electrochemical Society, Vol.				
	142, No. 9, pg. 3088 – 3092				

				2944	
		•		Letter, 36 (23), pg. 2342 -	
				Etching, from App. 1 hysics	
				Crobing Caused by Helicin	
				Subtrate Caused by Tranch	330
	06/24/91		Takeshi Hamamoto	Sidewall Damage in a Silicon	ALL
			•	303-306	
				Deices and Materials, pg.	
				Conference on Solid State	
				(1986 International)	
				Extended Abstracts of the 18	
				Rounding off Oxidation, from	
			Yamabe	Oxide Leakage Currents by	•
	00/00/86		Keitaro Imai, Kikuo	Decrease in Trenched Surface	337
		-		171, pg. 267 - 268	
	•			Process, from Abstract No.	
				Polishing. The BOx-ON	
	-		Papon	100% Chemical-Mechanical	
			F. Martin, AM.	Volatile Memories Using	
			Demolliens, Y. Gobil,	Process for High Density Non	
			Heitzmann, O.	Trench Isolation Refill	
	00/00/00		S. Deleonibus, M.	Optimization of a Shallow	336
				142, No. 10, pg. L187 - L188	
				Electrochemical Society, Vol.	
				Mechanical Polish, Journal of	
				Etchback of Chemical-	
			Chao	Polysilicon Refill and	
			Fu Lei, Tien Sheng	Trench Isolation Using	
	10/00/95		Yuing-Yi Cheng, Tan	A Novel Planarization of	335
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
939	Characterization of the	M.C. Roberts, D.J. Foster		00/00/00	
	Transistors in a Trench				
	Isolated CMOS Process, from				
-	Abstract No. 274, pg. 411 -				
	412				
340	Narrow-Width Effects of	Kikuyo Ohe, Shinji		06/00/89	
	Shallow Trench-Isolated	Odanaka, Kaori			
	CMOS with n+-Polysilicon	Moriyama, Takashi	-		
	Gate, from IEEE Transactions	Hori, Genshu Fuse			
	on Electron Devices, Vol. 36,			-	
	No. 6, pg. 1110 - 1116				
341	A Study of X-Ray Damage	L.C. Hsia		01/00/91	
	Effects on Open-Bottom		-		
	Trench Isolation for Bipolar			_	
	Devices, from the Journal of				
	Electrochemical Society, Vol.				
	138, No. 1, pg. 239 – 242			AND THE PROPERTY OF THE PROPER	
342	Junction Breakdown	Yuk L. Tsang, John		. 09/00/91	-
	Instabilities in Deep Trench	M. Aitken			
	Isolation Structures, from				
	IEEE Transactions on	•			
	Electron Devices, Vol. 38,				
	No. 9, pg. 2134 – 2138				
343	Comparison of Shallow	Brian S. Doyle,		12/00/91	
	Trench and LOCOS Isolation	Kaizad R. Mistry			
	for Hot-Carrier Resistance,				
	from IEEE Electron Device				
	Letters, Vol. 12, No. 12, pg.				
	673 - 675				

			Hansch	Buried- and Surface-Channel	
			Bolam, Wilfried	Isolation on Reliability of	
	00/00/95	;	William Tonti, Ronald	Impact of Shallow Trench	348
				No. 12, pg. 2477 – 2480	
				Electron Devices, Vol. 41,	
				from IEEE Transactions on	
			•	LOCOS and Trench Isolation,	
				n+-Diodes Fabricated by	
			Hideyuki lwata	Breakdown Characteristics of	
	12/00/94		Takashi Ohzone,	Nonuniform Reverse-	347
				15, No. 12, pg. 496 – 498	
				Electron Device Letter, Vol.	
				MOSFET's, from IEEE	
				Buried-Channel P-	
			Alsmeier	Effect in Trench-Isolated	
	12/00/94		J.A. Mandelman, J.	Anomalous Narrow Channel	346
				3033 – 3037	_
				Society, Vol. 140, no. 10, pg.	
				Journal of Electrochemical	
				Junction Transistors, from	
			Archer	Aligned Double-Poly Bipolar	
			Fuoss, Eric Lane, Tim	Emitter Leakage in Self-	
	10/00/93		Fanling Yang, Dennis	Characterization of Collector-	345
				412 - 414	
			Poindexter, M. Steger	Letters, Vol. 14, No. 8, mpg.	
			Mandelman, D.	from IEEE Electron Device	
			Geissler, Jack	Inherent to Trench Isolation,	
	08/00/93		Andres Bryant, S.	The Current-Carrying Corner	344
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR	PATENT OR	NO.

349 NO.	PATENT OR PUBLICATION TITLE Process and Device Simulation of Trench Isolation Corner Parasitic Device, from Abstract No. 236, pg. 329 – 330 VIB-2 3D Simulation of Parasitic MOSFET Effects for Box Isolation Technologies,	AUTHOR/ ASSIGNEE/OR ASSIGNEE/OR INVENTOR T. Furukawa, J.A. Mandelman Gernot Heiser, Matthew Noell, Steve Poon, Marius	PATENT	ISSUE/ PUBLICATION DATE 00/00/00
350	VIB-2 3D Simulation of Parasitic MOSFET Effects for Box Isolation Technologies, from <i>IEEE Transactions on Electron Devices</i> , Vol. 38, No. 12, pg. 3721 – 3722	Gernot Heiser, Matthew Noell, Steve Poon, Marius Orlowski		12/00/91
351	Efficient Simulation of 3-D Stress Distributions at Trench Structures Caused by Thermal Mismatch of Trench Filling and Silicon Subtrate, from COMPEL – The Internation and Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 13, no. 4, pg. 861 – 870	R. Slehobr, G. Hobler		00/00/94
352	Calculation of the Backscattered Ion Energy and Angular Distributions During the Grazing Implantation, from <i>Vacuum</i> , vol. 46, No. 4, pg. 383 – 388	I.E. Mozolcvsky		00/00/95

				pg. 327 – 330	
			Nakakubo	19th Conference on Solid	
			Watanabe, T.	Extended Abstracts of the	
			Kambayashi, M.	Trench Structure, from	
	00/00/87		S. Nadahara, S.	Micro Area Stress Around	357
			William R. Hunter	586 – 589	
			Christopher Slawinski,	Isolation, from IEDM 84, pg.	
	00/00/84		Clarence W. Teng,	Defect Generation in Trench	356
				30, pg. 345 – 348	
			•	Microelectronic Engineering	
				Reactive Ion Etching, from	
			E. Voges	Effects Observed in Silicon	
			Rudenko, D. Fischer,	Aspect Ratio Dependent	
			Lukichev, K.V.	Computer Simulation of	
	00/00/96		V.A. Yunkin, V.F.	Experimental Study and	355
				Vol. 389, pg. 125 – 131	
				Res. Soc. Symposium Proc.	
				in LPCVD Process, from Mat.	
			Heup Moonn	Trench and Film Crystallinity	
			Chee Burm Shin, San	Contour in a Narrow Deep	
	00/00/95		Gyeong Soon Hwang,	Simulation of Film Growth	354
			-	Vol. 38, No. 4, pg. 821 – 828.	
				from Solid-State Electronics,	
				with no Quasi-Saturation,	
			M.S. Towers, K. Boad	Trench VDMOST Structure	
	00/00/95		J. Zeng, P.A. Mawby,	Numerical Analysis of a	353
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.
	L			*	

Distribution for Trench Isolation, from Extended Abstracts of the 1991 International Conference on
Barbara Vasquesz, Teruki Ikeda
,

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
363	Stress Variation Across Arrays of Lines and its	I. De Wolf, R. Rooyackers, H.E.		00/00/95	
	Influence on LOCOS Oxidation, from	Macs			
•	Microelectronic Engineering 28, pg. 79-82				
364	National Trench Isolation Patent Review – presentation	Wipawan Yindeepol		06/11/96	
	materials – Analog/Mixed Signal Process/Device				
	Technology				
365	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Amitava, Bose, Steven S. Cooperman, Marion M. Garver, Andre I.	U.S. PAT. No. 5,492,858	02/20/96	
	Shallow Trench Isolation Process for High Aspect Ratio Trenches	Nasr			
366	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Naoya Matsumoto, Junzoh Shimizu	U.S. PAT. No. 5,474,953	12/12/95	
	Method of Forming an Isolation Region Comprising				
	a Trench Isolation Region and a Selective Oxidation Film Involved in a Semiconductor Device				
367	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Thomas A. Figura, Nanseng Jeng	U.S. PAT. No. 5;472,904	12/05/95	
	Thermal Trench Isolation				

371	370	369	368	
71	70		ά.	NO.
Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent: Trench Isolation Stress Relief;	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent: Encapsulation Method for Localized Oxidation of Silicon with Trench Isolation	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent: Planarized Local Oxidation by Trench-Around Technology; Device Isolation Structure Within a Semiconductor Substrate	Important Trench Patents (06/11/96) National Semiconductor - Abstract of Patent: Trench Isolation Structure and Method for Forming	PATENT OR PUBLICATION TITLE
Stephen J. Gaul, Donald F. Hemmenway	Michael P. Masquelier, Scott S. Roth, Barbara Vasquez	Water Lur, Neng H. Shen, Anna Su	Sudhir K. Madan	AUTHOR/ ASSIGNEE/OR INVENTOR
U.S. PAT. No. 5,448,102	U.S. PAT. No. 5,455,194	U.S. PAT. No. 5,465,003	U.S. PAT. No. 5,468,676	PATENT NUMBER
09/05/95	10/03/95	11/07/95	11/21/95	ISSUE/ PUBLICATION DATE
				CLASSIFICATION

	376		375		374		373		372	N.C.
Integrated Circuit With Planarized Shallow Trench Isolation	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Simple Planarized Trench Isolation and Field Oxide Formation Using Poly-Silicon	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Shallow Trench Etch; Semiconductors	Important Trench Patents (06/11/96) - National Senuconductor - Abstract of Patent:	Self-Aligned Channel Stop for Trench-Isolated Island	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Method for Fabricating Semiconductor Device Isolation Using Double Oxide Spacers	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	PATENT OR PUBLICATION TITLE
	Fusen E. Chen, Fu-Tai Liou		Rashid Bashir, Datong Chen, Francois Herbert		Philippe Schoenborn		James D. Beasom		Chung-Cheng Wu, Ming-Tzong Yang	AUTHOR/ ASSIGNEE/OR INVENTOR
	U.S. PAT. No. 5,410,176		U.S. PAT. No. 5,411,913		U.S. PAT. No. 5,413,966		U.S. PAT. No. 5,436,189		U.S. PAT. No. 5,436,190	PATENT NUMBER
	04/25/95		05/02/95		05/09/95		07/25/95		07/25/95	ISSUE/ PUBLICATION DATE
									·	CLASSIFICATION

377	Important Trench Patents (06/11/96)	Water Lur	U.S. PAT: No.	03/07/95
	- National Semiconductor - Abstract of Patent:	·	5,395,790	
	Stress-Free Isolation Layer			
378	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Sung K. Kwon, Hong S. Yang	U.S. PAT. No. 5,387,539	02/07/95
	Method of Manufacturing	,		
	Trench Isolation			
379	Important Trench Patents (06/11/96) – National Semiconductor – Abstract of Patent:	Rashid Bashir, Datong Chen, Francois	U.S. PAT. No. 5,385,861	01/31/95
	Planarized Trench and Field	11010011		
	Oxide and Poly Isolation Scheme			
380	Important Trench Patents (06/11/96) - National Seniconductor - Abstract of Patent:	Cheng H. Huang, Water Lur	U.S. PAT. No. 5,371,036	12/06/95
	Locos Technology With Narrow Silicon Trench			
381	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Shuichi Harajiri	U.S. PAT. No. 5,348,906	09/20/94
	Method for Manufacturing			

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
385	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Toru Yamazaki	U.S. PAT. No. 5,306,940	04/26/94	
	Seniconductor Device Including a Locos Type Field Oxide Film and a U Trench Penetrating the Locos Film				
386	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Douglas P. Verret	U.S. PAT. No. 5,298,450	03/29/94	
	Process for Simultaneously Fabricating Isolation Structures for Bipolar and CMOS Circuits				
387	Important Trench Patents (06/11/96) - National Semiconductor – Abstract of Patent:	Mark S. Rodder	U.S. PAT. No. 5,223,736	06/29/93	
	Trench Isolation Process with Reduced Topography				
388	Important Trench Patents (06/11/96) - National Semiconductor – Abstract of Patent:	Stephen J. Gaul, Donnald F. Hennmenway	U.S. PAT. No. 5,217,919	06/08/93	
	Method of Forming Island with Polysilicon-Filled				
	Silicon Nitride Protective and				
	Polishing Stop Layer,				
	Etching, Stripping to Expose Underlays Oxide Layer				

				les la control de la control d	
				Having Junction Structure of	
				Semiconductor Device	
		5,148,258		- National Semiconductor - Abstract of Patent:	
	09/15/92	U.S. PAT. No.	Shigeru Morita	Important Trench Patents (06/11/96)	392
				Isolate Circuit Elements	
				Boron Nitride Dielectric to	
				are Embedded with Silicon	
			•	Surface Grooves of Subtrate	
			-	Improved Trench Isolation;	
				Circuit Device Having	
				Semiconductor Integrated	
				Abstract of Patent:	•
		5,168,343		- National Semiconductor -	,
	12/01/92	U.S. PAT. No.	Mitsuru Sakamott	Important Trench Patents (06/11/96)	168
				for MOS Circuits	
				High Density Trench Isolation	-
			Macro, John P. Niemi	Abstract of Patent:	
		5,179,038	Kinney, Jonathan E.	- National Semiconductor -	_
	01/12/93	U.S. PAT. No.	David Back, Wayne I.	Important Trench Patents (06/11/96)	390
				of Trenches	
				Prevent Inversion of Sidewall	
				Trench Isolation Process;	
				Abstract of Patent :	
	04/2//93	5 206 182	Ouy K. Freeman	National Semiconductor -	389
	040700	HO DATE NO		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	DATE			TOBEJCATION THEE	
CLASSIFICATION	PIRI ICATION	NIMBER	ACTION	PAIRI OX	N.
C. ACCIECATION	leelle)	DATENT.			

396		395		394		393	NO.
Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent: Semiconductor Device with Optimal Distance Between Emitter and Trench Isolation	Semiconductor – Abstract of Patent: High Performance Vertical Bipolar Transistor Structure Via Self-Aligning Processing Techniques; Semiconductors	Important Trench Patents (06/11/96) - National	Method for Forming Planarized Shallow Trench Isolation in an Integrated Circuit and a Structure Formed Thereby	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Semiconductor Device Having Trench Isolation	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	PATENT OR PUBLICATION TITLE
Mastada Horiuchi, Kiyoji Ikeda, Tohru Nakamura, Kazuo Nakazato, Mitsuo Nanba, Takahiro Onai, Takeo Shiba, Katsuyoshi Washio	Mark E. Jost	Gary B. Bronner, David L. Haranne		Fusen E. Chen, Fu-Tai Liou		Kazunori Imaoka, Takao Miura	AUTHOR/ ASSIGNEE/OR INVENTOR
U.S. PAT. No. 5,109,263		U.S. PAT. No. 5.128.271		U.S. PAT: No. 5,130,268		U.S. PAT. No. 5,148,247	PATENT NUMBER
04/28/92		07/07/92		07/14/92		09/15/92	ISSUE/ PUBLICATION DATE
							CLASSIFICATION

25	DATENT OD	AUGHOB/	DATENT	leelle)	NOUNTAINMENT
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
397	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Jeffrey E. Brighton, Deems R. Hollingsworth,	U.S. PAT. No. 5,104,816	04/14/92	
-	Polysilicon Self-Aligned Bipolar Device Including	Manuel L. Torreno Jr., Douglas P. Verret			
	Trench Isolation and Process				
	of Manufacturing Same;				
	Forming Inlined Isolation				
	Channel in Semiconductor				
398	Important Trench Patents (06/11/96) - National Semiconductor – Abstract of Patent:	Pier L. Crotti, Nadia Iazzi	U.S. PAT. No. 5,068,202	11/26/91	
	Process for Excavaling				
	Trenches with a Rounded				
	Bottom in a Silicon Subtrate				
	for Making Trench Isolation				
	Structures				
399	Important Trench Patents (06/11/96) - National Semiconductor -	Clarence W. Teng	U.S. PAT. No.	10/29/91	
-	Abstract of Patent:		0,001,000		
	Trench Isolation Process;				
	Filling Groove of Silicon				
	Semiconductor Subtrate				
	having Insulating Sidewalls				
	and Bottom with Polysilicon,				
	Forming, Then Oxidizing the		•		
	Upper Surface of a				
	Polysilicon Layer Which				
	Extends over the Sidewalls		•	•	

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT NUMBER	ISSUE/ PUBLICATION	CLASSIFICATION
400	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Mon	U.S. PAT. No. 5,010,378	04/23/91	·
	Tapered Trench Structure and Process				
401	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Michael L. Kerbaugh, Charles W. Koburger III, Brian J.	U.S. PAT No. 5,006,482	04/09/91	
	Forming Wide Dielectric- Filled Planarized Isolation Trenches in Semiconductors; Using Silicon Nitride as Etch Stop	Macheeney			
402	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Kunio Aomura	U.S. PAT. No. 4,988,639	01/29/91	
	Method of Manufacturing Semiconductor Devices Using Trench Isolation Method that Forms Highly Flat Buried Insulation Film; Silicon Body with Trenches; Insulation Filling, Masking, Dopes				

PUBL Important - National	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
Abstract of	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent :	William R. Hunter, Christopher Slawinski, Clarence Teng	U.S. PAT. No. 4,983,226	01/08/91	
Defect F	Defect Free Trench Isolation Devices and Method of				
Fabricati Insulatio Masking Oxide	Fabrication; Semiconductors, Insulation, Stress Resistance, Masking, Dielectrics, Field Oxide				
404 Important Trench P - National Semicor Abstract of Patent:	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Isamu Namos	U.S. PAT. No. 4,980,311	12/25/90	
Method of Semicon Trench I Produce Revious	Method of Fabricating a Semiconductor Device; Trench Isolation Technique to Produce Narrow and Wide Revious				
405 Important Trench P - National Senticor Abstract of Patent:	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Masafumi Shimbo	U.S. PAT. No. 4,980,306	12/25/90	
Method of Device versions Devices	Method of Making a CMOS Device with Trench Isolation Devices				
406 Important Trench P - National Semicor Abstract of Patent:	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Nobuyuki Itoh, Hiroomi Nakajima, Hiroyuki Nihira	U.S. PAT. No. 4,931,409	06/05/90	
Method	Method of Manufacturing				
Semicon Having	Semiconductor Device Having Trench Isolation				

103		Japan 62-16572			414
103	08/15/83	Jupan 58-137254			413
·	05/19/88	Japan 63114173 A	lwabuchi Toshiyuki et al.	Semiconductor Device and Manufacture Thereof (Abstract)	412
	02/09/88	Japan 63-031170	Ajika Natsuo	Semiconductor Device and Manufacture Thereof (Abstract)	41
103	08/11/87	U.S. PT. NO. 4,685,196	Lee	Method For Making Planar FET Having Gate, Source And Drain In The Same Place	410
	11/08/94	U.S. PT. NO. 5,362,665	Lu	Method of Making Vertical Dram Cross Point Memory Cell	409
				Method of Forming an Oxide Liner and Active Area Mask for Selective Epitaxial Growth in an Isolation Trench	
	02/13/90	U.S. PAT. No. 4,900,692	F.J. Robinson	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	408
				Method of Trench Filling; Integrated Circuit Semiconductor Structure	
·	05/08/90	U.S. PAT. No. 4,924,284	Klaus D. Beyer, Victor J. Silvestri	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	407
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

4 A 08/15/83 102, 103 11/23/83 103 0 A 05/10/84 103 4 A 11/01/84 103 1 A 02/13/85 103 8 03/12/85 103 43 05/07/85 103 04/30/86 103	JP 60-028271 A US 4,503,598 US 4, 516, 143 US 4, 516, 143 EP 179407 (equivalent to US 4,757,032)	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Self-Aligned Power Mosfet with Integral Source-Base Short and Methods of Making DMOS transistor – with body channel and source regions located in substrate	422 423 424
08/15/83 11/23/83 11/23/83 11/01/84 11/01/84 11/01/84 11/01/85 02/13/85 03/12/85	JP 60-028271 A US 4,503,598 US 4, 516, 143 EP 179407 (equivalent to U	Tominaga Vora Vora Contiero	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Self-Aligned Power Mosfet with Integral Source-Base Short and Methods of Making DMOS transistor – with body channel and source regions	422
08/15/83 11/23/83 11/23/84 05/10/84 11/01/84 11/01/84 102/13/85 03/12/85 1	JP 60-028271 A US 4,503,598 US 4, 516, 143 EP 179407	Tominaga Vora Vora Contiero	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Self-Aligned Power Mosfet with Integral Source-Base Short and Methods of Making DMOS transistor – with body	422
08/15/83 1 11/23/83 1 05/10/84 1 11/01/84 1 02/13/85 1 03/12/85 1 05/07/85 1	JP 60-028271 A US 4,503,598 US 4,516, 143	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Self-Aligned Power Mosfet with Integral Source-Base Short and Methods of Making	422
08/15/83 11/23/83 11/23/84 05/10/84 11/01/84 12/13/85 03/12/85	JP 60-028271 A US 4,503,598 US 4, 516, 143	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Self-Aligned Power Mosfet with Integral Source-Base	422
08/15/83 11/23/83 11/23/84 05/10/84 11/01/84 12/13/85 03/12/85	JP 60-028271 A US 4,503,598	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Self-Aligned Power Mosfet	422
08/15/83 11/23/83 11/01/84 11/01/84 12/13/85 03/12/85	JP 60-028271 A	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques	422
08/15/83 11/23/83 11/01/84 11/01/84 102/13/85 03/12/85	JP 60-028271 A	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing Self-Aligned Diffusion and	422
08/15/83 11/23/83 11/01/84 11/01/84 12/13/85	JP 60-028271 A	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power Mosfet Structure Utilizing	422
08/15/83 1 11/23/83 1 05/10/84 1 11/01/84 1 02/13/85 1	JP 60-028271 A	Tominaga Vora	Vertical Type Mosfet Method of Fabricating Power	422
08/15/83 1 11/23/83 1 05/10/84 1 11/01/84 1 02/13/85 1	JP 60-028271 A	Tominaga	Vertical Type Mosfet	
08/15/83 11/23/83 11/23/84				421
08/15/83			Device	
08/15/83	31 07 1770011		Vertical Type Transistor	
08/15/83	IP 59-193064 A	Tanaka	High Withstand Voltage	420
08/15/83			Effect Transistor	
08/15/83	JP 59-080970 A	Yamamoto	V-Groove Mos Type Field-	419
08/15/83			region	
08/15/83	-		opening extending into gate	
08/15/83		•	structure with source contact	
08/15/83			voltage Mosfet- has vertical	
08/15/83	EP 94891 A	Patel	High speed high breakdown	418
08/15/83			Device	
	JP 58-137254 A	Ashikawa	Insulated Gate Semiconductor	417
_			Manufacture Thereof	
5 A 01/30/82 103	JP 57-018365 A	Ueda	Semiconductor Device and	416
			Preparation	
0 A 10/15/81 103	JP 56-131960 A	Yasuno	Semiconductor Device and Its	415
DATE		INVENTOR		
PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
T ISSUE/ CLASSIFICATION	PATENT	AUTHOR/	PATENT OR	NO.

	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
426	Manufacture of Vertical Type Semiconductor Device with Groove Section	Sasaki	JP 62-12167 A	01/21/87	102, 103
	-01-				
	Method for Manufacturing				
	Grooved Vertical Semiconductor Device				
427	Vertical Type Semiconductor	Sasaki	JP 62-016572 A	01/24/87	102 103
	Device and Manufacture Thereof			:	100
428	DMOS transistor - with	Blanchard	EP 209949 A	01/28/87	103
	shaped groove providing small area electrical contact		(equivalent to US		Ċ
429	Vertical Type Semiconductor	Sasaki	JP 62-046569 A	02/28/87	103
	Device and Manufacture Thereof				100
430	Methods for Forming Lateral and Vertical DMOS	Blanchard	US 4, 682, 405	07/28/87 ·	103
	Transistors				
431	Fet for High Reverse Bias	Hendrickson	US 4,735,914	04/05/88	103
	Design for Low on Resistance				
432	Semiconductor Device and	lwabuchi	JP 63-114173 A	05/19/88	INI COL
	Manufacture Thereof			0011000	102, 103
433	Vertical Mosfet and Method	Morie	US 4 786 953	11/22/88	103
	of Manufacturing the Same		9	11,000	
434			JP 1-192174	08/02/89	103
400			JP 1-310576	12/14/89	103

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
436			JP 2-102579	04/16/90	103
437	Insulated gate filed effect transistor	Hideshima et al.	JP 55-146976	11/15/80	102
438	Insulated Gate Semiconductor Device	lio et al.	JP 58-137254	08/15/83	102
439	Vertical-type Semiconductor Device and Manufacturing Method Therefor	Sasaki	JP 62-16572	01/24/87	102
440	Physics and Technology of Power MOSFETs	Sun		02/00/82	102
441	Optimization of Discrete High Power MOS Transistors	Blanchard		12/00/81	102
442	Method for Manufacturing Grooved Vertical Semiconductor Device	Sasaki	JP 62-12167	01/21/87	102
.443	Method for the Formation of Polycrystalline Silicon Layers, and Its Application in the Manufacture of a Self-Aligned, Non Planar, MOS Transistor	Tonnel	U.S. 4,420,379	12/13/83	102
444	Vertical MOSFET	Oshikawa	JP 63-124762	08/15/88	102
445	Conductivity-Modulated MOSFET	lioh et al.	JP 63-224260	09/19/88	102
446	Semiconductor Device	Nakatani	JP 59-181668	10/16/84	102
447	Semiconductor Device	Okabe et al.	JP 54-57871	05/10/79	102
448	High voltage semiconductor switch	Pernyeszi	JP 57-72365	05/06/82	102

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
449	High withstand voltage vertical type transistor device	Tanaka	JP 59-193064	11/01/84	102
450	Vertical MOSFET	Tominaga	JP 60-28271	02/13/85	102
451	Semiconductor Device and Its Method of Manufacture	Ueda et al.	JP 57-18365	01/30/82	102
452	V-groove MOS Field Effect Transistor	Yamamoto	JP 59-80970	05/10/84	102
453	MOS Power Transistor with Improved High-Voltage Capability	Blanchard	U.S. 4,345,265	08/17/82	103
454	Method of Fabricating a Semiconductor Device with a Base Region Having a Deep Portion	Baliga et al.	U.S. 4,443,931	04/24/84	103
455	MOSFET with Perimeter Channel	Ford et al.	U.S. 4,532,534	07/30/85	103
456	Method for Manufacturing a Vertical, Grooved MOSFET	Goodman	U.S. 4,374,455	02/22/83	103
457	MOS-Field Effect Transistor with a One-Micron Vertical Channel	Amlinger	U.S. 3,412,297	11/19/68	103
458	Integrated Bipolar-MOS Semiconductor Device with Common Collector and Drain	Merrill et al.	U.S. 4,783,694	11/08/88	103

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
459	Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier Density Beneath the Gate Oxide	Lidow et al.	U.S. 4,593,302	06/03/86	103
460	Design of New Structural High Breakdown Voltage V- MOSFET	Katoh et al.		1983	102
461	A Study for High Voltage V-MOS Structure [Japanese]	Kato et al.		1981	102
462	Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect	Kato et al.		1983	102
463	High Voltage-ization Using Static Shield Effect	Kato et al.		1984	102
464	U-MOS Power MOSFET	Ueda et al.		04/00/83	102
465	Method for the Formation of Polycrystalline Silicon Layers, and its Application in the Manufacture of a Selfaligned, non planar, MOS Transistor	Tonnel	U.S. 4,420,379		
466	Integrated Circuit and Method of Fabrication	Wakefield et al.	U.S. 3,793,721	02/26/74	
467	Gas-Etching Device	Horiike	U.S. 4,192,706	03/11/80	
468	Semiconductor Device with Isolation Between MOSFET and Control Circuit	Takagi et al.	U.S. 4,879,584	11/07/89	

469 470	PATENT OR PUBLICATION TITLE Method of Manufacturing an Insulated Gate Field Effect Transistor Power Metal-Oxide- Semiconductor Field Effect Transistor Low On-Resistance Power MOS Technology	AUTHOR/ ASSIGNEE/OR INVENTOR Ueno Yilmaz Yilmaz et al.		PATENT NUMBER U.S. 5,086,007 U.S. 5,168,331 U.S. 5,304,831	PATENT NUMBER ISSUE/ PUBLICATION DATE U.S. 5,086,007 02/04/92 U.S. 5,168,331 12/01/92 U.S. 5,304,831 04/19/94
471	Low On-Resistance Power MOS Technology	Yilmaz et al.	U.S. 5,304,831	04/19/94	
472	Termination of the Power Stage of a Monolithic Semiconductor Device	Zambrano et al.	U.S. 5,317,182	05/31/94	
473	Bidirectional Power FET with Integral Avalanche Protection	Schutten et al.	U.S. 4,577,208	03/18/86	
474	Bidirectional Power FET with Field Shaping	Schutten et al.	U.S. 4,553,151	11/12/85	
475	Lateral Bidirectional Shielded Notch FET	Schutten et al.	U.S. 4,571,512	02/18/86	
476	High Density, High Voltage Power FET	Benjamin et al.	U.S. 4,571,606	02/18/86	
477	Split Row Power JFET	Benjamin et al.	U.S. 4,635,084	01/06/87	
478	Integrated Gate Field Effect Transistors Having Closed Gate Structure with Controlled Avalanche Characteristics	Dingwall	U.S. 4,173,022	10/30/79	
479			Taiwan 79217	07/16/86	
480			Taiwan 84398	01/16/87	
481			Taiwan 76243	04/01/86	

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE	
482	-		Taiwan 76658	04/16/86	
483			Taiwan 81000	09/16/86	
484			Taiwan 76659	04/16/86	
485		-	Taiwan 82853	11/16/86	
486			Taiwan 130553	05/04/89	
487			Taiwan 23752	10/01/78	
488			Taiwan 23753	10/01/78	
489			Taiwan 121200	10/02/89	
490			Taiwan 89006	07/16/87	
491			Taiwan 50783	06/01/83	
492			Taiwan 143728	10/11/90	
493			Taiwan 37622	06/01/81	
494		-	Taiwan 37624	06/01/81	
495			Taiwan 79990	08/16/86	
496			Taiwan 105722	11/21/88	
497			Taiwan 182074	04/11/92	
498			Taiwan 205111	05/01/93	
499			Taiwan 114082	06/01/89	
500			Taiwan 133506	05/01/90	
501			Taiwan 134124	05/11/90	
502			Taiwan 173429	11/21/91	
503			Taiwan 31771	08/01/80	

	······································		-	Product of 160 IFDM 86	
	12/07/86		Ueda et al.	Deep-Trench Power	509
				Characteristics, IEDM 86	
				Improved On-Resistance and	
	1986		Darwish	VDMOS Transistors with	808
				Devices	
				Transactions on Electron	
				Dual-Gate MOSFET, IEEE	
				Characteristics in Trench	•
	09/00/91		Mizuno et al.	High Performance	507
		-		Conference 1982	
				Electronics Specialists	
				MOSFETS, IEEE Power	
	1982		Chi and Hu	Some Issues of Power	506
				Specialists Conference 1985	
				IEEE Power Electronics	
				Protected Turn-On Feature,	
				to Add an Overvoltage Self-	
	1985		Przybysz	Laser Trimming of Thyristors	505
				Devices	
				Transactions on Electron	
				Transistors, IEEE	
				VDMOS, and VMOS Power	
				Resistance of LDMOS,	
	02/00/80		Sun and Plummer	Modeling of the On-	504
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	TALENI	AUTHOR	PAIENI CX	Z C

NO.	PATENT OR	AUTHOR			
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	CLASSIFICATI
OIO	Power Semiconductor Devices - A Status Review, IEEE 1982	Pelly		1982	
511	Power MOSFETs or Bipolar Power Transistors for	Freundel		1982	
	Converter Circuits?, IEEE				
	Semiconductor Power				
	Converter Conference				
512	A Complimentary DMOS- VMOS IC Structure, IEEE	Jhabvala and Lin		1978	
	1978, International				
	Semiconductor Power Converter Conference				
513	High-Voltage device	Baliga et al.	-		
	termination techniques, A			10/00/82	
	comparative review, IEE Proc.				
514	A Parametric Study of Power	Hu		1979	
	IEEE Power Electron				
	Specialists Conf.	•			
515	A Low-voltage Power	Rittenhouse and		1990	
	recovery Body Diode for	Schlechi			
	Synchronous Rectification,	-			
	IEEE Power Electronics				
	Spacialina Cont				

_ <u>/ / / / / / / / / / / / / / / / / / /</u>	Power A Nev	522 A Full	521 V-Gro Transi	Capac Transi 1976,	520 Minin	519 Geom Transi	518 A Nev Darlin Power	517 Higher pow V-MOS FE Electronics	On_R. Symp. Smart	516 500V,	NO. PUI	
Structure for Conductivity Modulated Power MOSFETs, Extended Abstructs of the	Power MOSFET, IEDM 1978 A New Injection Suppression	A Fully Implanted V-Groove	V-Groove Power Field Effect Transistors, Technical Digest	Capachances III VIVIOS Transistors, <i>Technical Digest</i> 1976, IEDM	Minimization of Parasitic	Geometry Effects in VMOS Transistors, IEDM 1978	A New VMOS/Bipolar Darlington Transistor for Power Applications, IEDM 1980	Higher power ratings extend V-MOS FETs' dominion, Electronics	On_Resistance, Proc. of the Symp. on High Voltage and Smart Power ICs	500V, Power UMOSFETs with an Ultra-Low Specific	PATENT OR PUBLICATION TITLE	
	Ueda et al.	Fuoss and Verma	Salama		Bhatti et al.	Bhatti and Yau	David et al.	Evans et al.		Chang and Holroyd	AUTHOR/ ASSIGNEE/OR INVENTOR	
											PATENT NUMBER	
	08/20/86	12/04/78	12/05/77		12/06/76	12/04/78	12/08/80	06/22/78		1989	ISSUE/ PUBLICATION DATE	
			·								CLASSIFICATION	

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
524	Static and High Frequencey Modelling of Vertical Channel MOS Transistor, Revue de Physique Appliquee	Rossel et al.		09/11/78	
525	MOS power devices – trends and results, Solid State Devices 1980	Tihanyi		09/15/80	
526	Power MOSFET Technology, IEDM 1979	Lidow et al.		12/03/79	
527	Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors	Combs et al.			
528	Design Construction, and Performance of High Power RF VMOS Devices, <i>IEDM</i> 1979	Johnsen and Granberg		12/03/79	
529	Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits	Troutman		12/00/83	
530	Vertical FET's in GaAs	Rav-Noy et al.	•	07/00/84	
531	The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device	Baliga and Chang		08/00/88	
532	Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	Taguchi et al.		04/00/86	

	03/00/92		Paredes et al.	Transistor Structure A Steady-State VDMOS Transistor Model	549
	08/00/92	·	Ajit et al.	The Minority Carrier Injection Controlled Field-Effect Transistor (MICFET): A New MOS-Gated Power	548
	09/13/82		White et al.	Very Small Grooved MOSFETs	547
				Vertical Driver MOSFET with a Buried Source for the Ground Potential	
	09/00/89		Minami et al.	A New Soft-Error-Immune Static Memory Cell Having a	546
	09/00/89		Chang and Baliga	500-V n-Channel Insulated- Gate Bipolar Transistor with a Trench Gate Structure	545
	1980		Tihanyi	MOS Power Devices - Trends and Results	544
	08/00/92		Petti et al.	The Field-Assisted Turn-Off Thyristor: A Regenerative Device with Voltage- Controlled Turn-Off	543
	08/00/92		Shin et al.	MOSFET Drain Engineering Analysis for Deep- Submicrometer Dimensions: A New Structural Approach	542
2	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

_			ー・ファラファラ		
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	CLASSIFICATION
		INVENTOR		DATE	
550	A High-Density, Self-Aligned	Shenai		05/00/92	
	Power MOSFET Structure				
	Fabricated Using Sacrificial				
	Spacer Technology				
551	A New VDMOSFET	Sakai and Murakami		07/00/89	
	Structure with Reduced				
	Reverse Transfer Capacitance		-		
552	The Design of the Low On-	Pham et al.		09/13/82	
	Resistance Power V-DMOS				
	Transistor				
553	Planar Type Semiconductor	Nakagawa et al.	U.S. 4,567,502	01/28/86	
	Device with a High	•	•		
	Breakdown Voltage				
554			JP 2-83982	03/26/90	
555	Planar Vertical Channel DMOS Structure	Blanchard	U.S. 5,034,785	07/23/91	102, 103
556	Method for Making Planar	Blanchard	U.S. 4,767,722	08/30/88	103
	Vertical Channel DMOS				
	Structures				

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS		
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES ☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		•
☐ SKEWED/SLANTED IMAGES	• • • • •	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
GRAY SCALE DOCUMENTS	,	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE PO	OOR QUAI	LITY
OTHER:	·	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.