L3 – 8.1/8.2 Sum/Difference and Product/Quotient of Functions MHF4U

Part 1: Sum and Difference of Functions

When two functions f(x) and g(x) are combined to form the function (f+g)(x) or (f-g)(x), the new function is called the sum or difference of f and g.

The graph of f+g or f-g can be obtained by adding or subtracting corresponding y-coordinates. This is called the superposition principle.

$$(f+g)(x) = f(x) + g(x)$$

$$(f - g)(x) = f(x) - g(x)$$

Example 1: Given $f(x) = -x^2 + 3$ and g(x) = -2x determine the graphs of (f + g)(x) and (f - g)(x).

Method 1: Graphically

x	f(x)	g(x)	f(x) + g(x)	f(x)-g(x)
-3	-6	6	0	-12
-2	-1	4	3	-5
-1	2	2	4	0
0	3	0	3	3
1	2	-2	0	4
2	-1	-4	-5	3
3	-6	-6	-12	0

Method 2: Algebraically

$$(f+g)(x) = f(x) + g(x)$$

$$(f+g)(x) = (-x^2 + 3) + (-2x)$$

$$(f+g)(x) = -x^2 - 2x + 3$$

Complete Square to find Vertex

$$(f+g)(x) = -(x^2 + 2x) + 3$$

$$(f+g)(x) = -(x^2 + 2x + 1 - 1) + 3$$

$$(f+g)(x) = -(x^2 + 2x + 1) + 1 + 3$$

$$(f+g)(x) = -(x+1)^2 + 4$$

vertex is (-1, 4)

x	(f+g)(x)
-4	-5
-3	0
-2	3
-1	4
0	3
1	0
2	-5

$$(f-g)(x) = f(x) - g(x)$$

$$(f+g)(x) = (-x^2 + 3) - (-2x)$$

$$(f+g)(x) = -x^2 + 2x + 3$$

Complete Square to find Vertex

$$(f+g)(x) = -(x^2 - 2x) + 3$$

$$(f+g)(x) = -(x^2 - 2x + 1 - 1) + 3$$

$$(f+g)(x) = -(x^2 - 2x + 1) + 1 + 3$$

$$(f+g)(x) = -(x-1)^2 + 4$$

vertex is (1, 4)

x	(f-g)(x)
-2	-5
-1	0
0	3
1	4
2	3
3	0
4	-5

(f-g)(x)

 $D: \{X \in \mathbb{R}\}$

(f+g)(x)

 $D: \{X \in \mathbb{R}\}$

 $R: \{Y \in \mathbb{R} | y \le 4\}$

 $R: \{Y \in \mathbb{R} | y \le 4\}$

Note: The domain of the sum or difference of functions is the intersection of the domains of f and g

Part 2: Product and Quotient of Functions

When two functions f(x) and g(x) are combined to form the function $(f \cdot g)(x)$ or $(f \div g)(x)$, the new function is called the product or quotient of f and g.

The graph of $f \cdot g$ or $f \div g$ can be obtained by multiplying or dividing corresponding y-coordinates.

$$(f \times g)(x) = f(x) \times g(x)$$

$$(f \div g)(x) = f(x) \div g(x)$$

Example 2: Let f(x) = x + 3 and $g(x) = x^2 + 8x + 15$. Determine an equation and graph for

a)
$$(f \times g)(x)$$

$$(f \times g)(x) = f(x)g(x)$$

$$(f \times g)(x) = (x+3)(x^2+8x+15)$$

$$(f \times g)(x) = (x+3)(x+3)(x+5)$$

$$(f \times g)(x) = (x+3)^2(x+5)$$

x —intercepts at -3 (order 2) and -5 (order 1) Extends from Q1 to Q3

b)
$$(f \div g)(x)$$

$$(f \div g)(x) = \frac{f(x)}{g(x)}$$

$$(f \div g)(x) = \frac{x+3}{(x+3)(x+5)}$$

$$(f \div g)(x) = \frac{1}{x+5}; x \neq -5, -3$$

VA: x = -5HA: y = 0Hole at x = -3

Note: always a HA at y=0 when denominator is higher degree than numerator

y = x + 5		
\boldsymbol{x}	y	
-7	-2	
-6	-1	
-5.5	-0.5	
-5	0	
-4.5	0.5	
-4	1	
-3	2	

$y = \frac{1}{x+5}$			
x	$\frac{1}{y}$		
-7	-0.5		
-6	-1		
-5.5	-2		
-5	Und		
-4.5	2		
-4	1		
-3	Und		

c) State the domain and range of both functions

$$(f \times g)(x)$$

$$(f \div g)(x)$$

$$D: \{X \in \mathbb{R}\}$$

D:
$$\{X \in \mathbb{R} | x \neq -5, -3\}$$

$$R: \{Y \in \mathbb{R}\}$$

$$R: \{Y \in \mathbb{R} | y \neq 0, 0.5\}$$