Bases de l'électricité

I Généralités

I.1 La charge électrique

La **charge** est une qualité intrinsique d'une particule (comme la masse). Elle s'exprime en Coulomb (C) et est de dimension $I.T^{-1}$. La charge est une grandeur scalaire **algébrique** (+ ou -), une grandeur **algébrique** et est **conservatrice** (un système fermé est de charge fixe).

La charge est portée par les électrons (-e) et les protons (e), avec $e = 1.6 * 10^{-19} C$ la **charge** élémentaire.

I.2 Le courant électrique

Le **courant électrique** est un déplacement d'ensemble de charges.

I.3 Dipôle électrique, branche, maille, circuit

Un **dipôle** possède 2 pôles, lui permettant d'être traversé par un courant électrique. Une association de dipôles forme un **circuit**.

Une association de dipôles à la "queue-leu-leu" appelée association série forme une branche.

Une association de dipôles qui boucle sur elle même est appelée une **maille**.

I.4 Intensité électrique

L'intensité électrique est un débit de charge noté I.

On a $I = \frac{\delta Q}{dt}$ avec δQ la charge qui traverse la section pendant Δt .

Pour mesurer l'intensité on utilise un ampèremètre branché en série avec le + sur le mA et le - sur le COM.

Figure 1: Ampèremètre en dérivation

On a la **loi des noeuds** car il n'y a pas d'accumulation dans les noeuds :

$$\sum_{\text{entrant}} I = \sum_{\text{sortant}} I$$

II La tension électrique

II.1 Retour sur l'analogie

On a U la **tension électrique** une différence de potentiel en Volts (V) : $U_{AB} = V_A - V_B$

Pour mesurer une tension on utilise un voltmètre branché en dérivation avec le + sur le Ω et le - sur le COM.

Figure 2: Voltmètre en série

II.2 Addivité des tensions et loi des mailles

La tension est une grandeur additive, et on a la **loi des mailles** :

$$\sum_{\substack{\text{tension} \\ \text{mailles}}} \varepsilon_i U_i = 0 \text{ avec } \varepsilon_i = \begin{cases} 1 \text{ si } U_i \text{ dans le sens de parcours} \\ -1 \text{ sinon} \end{cases}$$

La *loi des mailles* et la *loi des noeuds* sont les lois de **Kirchhoff**. Elles sont valables en régime continu et en régime lentement variable (*ARQS*).

III Approximation des régimes quasi stationnaires (ARQS)

Pour dire qu'un système est **lentement variable** il faut que $\tau \gg \frac{d}{c}$, avec τ le temps caractéristique d'évolution de la source, d la taille du circuit et c la vitesse de la lumière dans le vide.

Si ce critère est vérifié, alors tous les points du circuit *voient* en même temps tout changement du signal source.

Puisque les générateurs de TP on un $\tau \gg 3$ ns, alors on est dans l'ARQS en TP.

IV Résistors

IV.1 Généralités

Un résistor est un dipôle qui conduit plus ou moins bien l'électricité.

On schématise un résistor de la manière suivante :

Figure 3: Schéma d'un résistor

On a **loi d'Ohm** : U=RI avec R la résistance en Ohm (Ω) , attention, en convention générateur on a U=-RI.

Un résistor est un dipôle passif, en l'absence de U pas de I et un dipôle linéaire car U et I sont linéairement liés.

En pratique, un résistor est un morceau de matérieau doté d'une **conductivité électrique** notée σ en $S.m^{-1}$.

On a la relation suivante : $R = \frac{l}{\sigma S}$ (l la longueur et S la surface)

On considère les résistances suivantes :

- $R_{\rm fil} = 0.1\Omega$
- $R_{
 m voltm\`etre}=10M\Omega$ (modélisé par un interrupteur ouvert)
- $R_{
 m amp\`erem\`etre}=0.1\Omega$ (modélisé par un fil)

On a aussi une tension nulle dans un fil.

IV.2 Associations de résistors et pont diviseurs

IV.2.a Association série

Dans le schéma suivant, on a ${\cal R}={\cal R}_1+{\cal R}_2$:

Figure 4: Association série de résistors

IV.2.b Pont diviseur

On considère le schéma en figure 4, on a $U_1 = \frac{R_1}{R_1 + R_2} U$.

$$\textbf{Preuve} \quad \text{On a } U_1=R_1i \text{ et } U=(R_1+R_2)i \text{ soit } \tfrac{U_1}{U}=\tfrac{R_1i}{(R_1+R_2)i}=\tfrac{R_1}{R_1+R_2}$$

IV.2.c Association en dérivation

Dans le schéma suivant, on a $\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}$:

Figure 5: Association en dérivation de résistors

 $\begin{array}{ll} \textbf{Preuve} & \text{D'après la loi des mailles on a } U_1 = U_2 = U \text{ et d'après la loi d'Ohm, } U = R_1 i = R_2 i \text{ soit d'après la loi des noeuds } i = i_1 + i_2 = \frac{U}{R_1} + \frac{U}{R_2} = U \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) \text{ ainsi } U = \bigg(\frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \bigg) I \end{array}$

IV.2.d Pont diviseur de courant

On considère le schéma en figure 5, on a $i_1 = \frac{R_2}{R_1 + R_2}i$.

IV.2.e Puissance dissipée par un résistor

On a $P = RI^2$ la puissance dissipée par effet Joule.

Preuve $P_{\text{reque}} = Ui = U_R i_R = R i_R i_R = R i_R^2$ (en convention récepteur)

V Masse

La **masse** est le point d'un circuit de potentiel nul, V=0V, c'est l'origine des potentiels. En théorie elle est choisie arbitrairement, en pratique elle est imposée par certains appareils électriques reliés à la Terre. On la schématise de la manière suivante :

Figure 6: Schématisation d'une masse

VI Générateur de tension

VI.1 Générateur (source) de tension idéal

Le **générateur de tension idéal** est un générateur qui impose une tension entre ses bornes, il est schématisé de la manière suivante avec *E* sa **force électromotrice** ou f.e.m.

Figure 7: Schématisation d'un générateur de tension idéal

U est ainsi indépendante de I, c'est un dipôle actif car $U \neq 0V$ même si I = 0A.

VI.2 Générateur de tension réel

On a le **générateur de Thévenin** schématisé de la manière suivante avec un générateur idéal et une résistance interne :

Figure 8: Schématisation d'un générateur de Thévenin

On a $U=U_R+E=E-Ri$ (convention générateur).

- À I = 0A, le générateur ne *débite* pas, sa **tension à vide** est sa f.e.m.
- Sinon il débite U < E, et il apparaît une chute de tension à ses bornes

On a
$$P_{ ext{fournie}} = UI = (E - R_i i)i = Ei - R_i i^2$$

VII Générateur de courant (HP)

On a le générateur de courant idéal schématisé ci dessous :

Figure 9: Schématisation d'un générateur de courant idéal

Le générateur de Norton est un modèle de générateur de courant réel schématisé ci dessous :

Figure 10: Schématisation d'un générateur de Norton

On a
$$U=-R_n(i-i_0)=R_ni_0-R_ni$$
 soit $U=C_{\mathrm{te}}-R_ni$

On a le résultat HP de l'équivalence Thévenin/Norton si $\left\{ \begin{matrix} R_n = R_i \\ R_n I = E \end{matrix} \right.$