

MODELTIME Workflow

Create Modeltime Table

modeltime_table()

Calibrate

modeltime_calibrate()

Refit

modeltime_refit()

Forecast Test Set

modeltime_forecast()

plot_modeltime_forecast()

Test Accuracy

modeltime_accuracy()

		Accuracy	Table					
model_id	.model_desc	.type	mae	mape	mase	smape	rmse	rsc
1	ARIMA(0,1,1)(0,1,1)[12]	Test	151.33	1.41	0.52	1.43	197.71	0.93
2	ARIMA(0,1,1)(0,1,1)[12] W/ XGBOOST ERRORS	Test	147.04	1.37	0.50	1.39	191.84	0.93
3	ETS(M,A,A)	Test	77.00	0.73	0.26	0.73	90.27	0.98
4	PROPHET	Test	177.51	1.70	0.61	1.70	234.65	0.88
5	LM	Test	629.12	6.01	2.15	5.81	657.19	0.91
6	EARTH	Test	709.83	6.59	2.42	6.86	782.82	0.58

table_modeltime_accuracy()

Forecast Future

modeltime_forecast()

plot_modeltime_forecast()

Resources:

- This workflow is covered in depth in the <u>High-Performance Time Series</u> Course (Modules 7 to 18)
- A beginner tutorial is available here: Getting Started with Modeltime
- The "Global Forecasting Workflow" is used to create scalable highperformance model(s) that forecast many time series
- This is NOT the "Iterative Forecasting Process" (Nested Workflow), which is used to forecast iteratively. The Iterative Forecasting Procedure is shown on Page 5.

Modeltime Workflow Page 2

Hyperparameter Tuning Page 3

MODELTIME ENSEMBLE

Multi-Level Stacking

Level 3: Weighted Stack

ensemble_weighted()
ensemble_average()

w1*m1 + w2*m2 + w3*m3 + ...

Level 2:

Stacking Algorithms

ensemble_model_spec()
modeltime_fit_resamples()

Linear Stack

Tree Stack

Level 1:

Sub-Models

ARIMA GLMNET

SVM

XGBoost

arima_reg()

linear_reg()

svm_rbf()

boost_tree()

Additional Resources:

- The Modeltime Ensemble process is covered in-depth in the <u>High-Performance Time Series Course Module 14</u>
- The Lost Time Series Module 5 shows how to use Ensembles to improve Hierarchical Forecasting Performance
- Additional Resource: Getting Started with Modeltime Ensemble

Modeltime Ensemble Page 4

Iterative Forecasting (Nested Workflow)

Used to make individual models for many time series. Can be more accurate than Global Forecasting, but is less scalable.

- This process is covered in-depth in the <u>Lost Time Series Modules</u> (<u>Module 2 Iterative Forecasting at Scale</u>) and (<u>Module 3 Recursive Iterative Forecasting</u>)
- Additional Resource: Getting Started with Nested Forecasting.

Nested Time Series Data

extend_timeseries()
 nest_timeseries()
split_nested_timeseries()

	# A tibble: / × 5										
	id	.actual_data			.future_data				.splits		
	<fct></fct>	t>				t>				t>	
	1 1_1	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
	2 1_3	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
	3 1_8	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
	4 1_13	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
	5 1_38	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
	6 1_93	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
	7 1_95	<tibble< th=""><th>[104</th><th></th><th>2]></th><th><tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<></th></tibble<>	[104		2]>	<tibble< th=""><th>[52</th><th></th><th>2]></th><th><split< th=""><th>[52/52]></th></split<></th></tibble<>	[52		2]>	<split< th=""><th>[52/52]></th></split<>	[52/52]>
1										$\overline{}$	

Many Models

modeltime_nested_fit()

Nested Modeltime Table

```
# Nested Modeltime Table
  Trained on: .splits | Model Errors: [0]
 # A tibble: 7 × 5
        .actual_data
                           .future_data
                                             .splits
                                                              .modeltime_tables
  <fct> <list>
<mdl_time_tbl [2 \times 5]>
2 1_3 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                             < mdl_time_tbl [2 \times 5] >
       <tibble [104 x 2]> <tibble [52 x 2]> <split [52/52]:</pre>
                                                             < mdl_time_tbl [2 \times 5] >
4 1_13 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                             < mdl_time_tbl [2 \times 5] >
5 1_38 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                             < mdl_time_tbl [2 \times 5] >
6 1_93 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                             < mdl_time_tbl [2 \times 5] >
7 1_95 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                             <mdl time tbl [2 \times 5]>
```


Core Functions | Nested Forecasting

1: Nested Fitting

```
modeltime_nested_fit()
```

- Trains each model on training split
- Logs test accuracy, test forecast with confidence intervals on testing split
- Logs additional information including error reports

2: Select Best

```
modeltime_nested_select_best()
```

- Selects best model using accuracy metric
- Filters test forecasts to just those of best models
- Logs best models

3: Nested Refitting

```
modeltime_nested_refit()
```

- Retrains selected models on actual data
- . Logs future forecast on future data

Extracting Nested Modeltime Table Logs

Nested Modeltime Table

Contains
Logged
Attributes
For Fast
extraction

Test Accuracy

extract_nested_test_accuracy()

-				couracy T					
ы	mode_id	.modal_dosc	Nos	mea	mapa	recos	suesbo	1103	rix
U	1	PROPHET	Test	10071.42	45,88	1.99	99.97	11776.87	0.00
U	2	XSECOST	Test	6236.79	26.31	1.23	24.57	9017.22	0.16
1,3	1	PROPHET	Test	3110.80	29.87	1.87	25.46	4707.77	0.80
t3	2	X0BCOST	Test	3185,78	18.81	1.20	20.40	6085.81	0.75
1,8	1	PROPHET	Test	4282.98	11.15	1.82	11.96	4845.08	0.00
1,8	2	XCBCCST	Test	3185.77	9.33	1.53	9.80	4001.47	0.30
1,13	1	PROPHET	Text	6861.13	17.02	2.53	18.76	7309.61	0.15
1,12	2	XGBCGST	Test	2338.42	5,83	0.86	6.02	2721.47	0.54
Ų38	1	PROPHET	Text	20107.21	32.57	2.22	22.50	27931.83	0.00
1,38	2	XGBCOST	Test	0147,04	0.47	0.50	8.75	8825.28	0.46
1,93	1	PROPHET	Tent	17165-30	21.37	1.73	24.46	19123.17	0.00
<u>1</u> 90	- 1	XGECOST	Test	7220.95	9.11	0.73	9.66	0079.21	0.46
1,96	1	PROPHET	Test	22826.05	18.30	2.76	20.37	24094.49	0.46
1,96	- 2	XSECOST	Test	10789.75	8.54	1.30	8.90	12843.50	0.14

Test Forecast

tract_nested_test_forecast()

Error Reporting

Iterative Forecasting Workflow Page 5