TD0

Stabilisateur passif d'image – Corrigé

Mines Ponts 2018 - PSI.

C1-05

C2-09

Mise en situation

Objectif

Suite à une sollicitation brève de $0.5 \,\mathrm{m\,s^{-2}}$, l'amplitude des oscillations de la caméra ne doit pas dépasser les 0.5° .

Travail demandé

Question 1 Par une étude dynamique que vous mettrez en œuvre, montrer que l'équation de mouvement de (E) dans **(0)** galiléen s'exprime comme $Q_1 \frac{d^2 \varphi(t)}{dt^2} + Q_2(t) = Q_3(t)a(t)$.

Correction

(1) et (E) sont en liaison pivot d'axe $(O, \overrightarrow{Y_0})$. On va donc réaliser un théorème du moment dynamique appliqué à (E) en O en projection sur $\overrightarrow{Y_0}$.

Calcul de $\delta(O, E/0)$

Méthode 1 – En passant par le calcul de $\overrightarrow{\delta(O,2/0)}$, $\overrightarrow{\delta(O,C/0)}$ et $\overrightarrow{\delta(O,Cp/0)}$

Le support 2 étant sans masse, on a $\overrightarrow{\delta(O,2/0)} = \overrightarrow{0}$. La caméra et le contrepoids étant considérés comme des masses ponctuelles, on a $\overrightarrow{\delta(G_C,C/0)} = \overrightarrow{0}$ et $\overrightarrow{\delta(G_{Cp},Cp/0)} = \overrightarrow{0}$.

$$\begin{aligned} & \text{Calcul de } \overrightarrow{\delta(O, C/0)} = \delta(G_C, C/0) + \overrightarrow{OG_C} \land M_C \overrightarrow{\Gamma(G_C, C/0)}. \\ & \text{Calcul de } \overrightarrow{\Gamma(G_C, C/0)} = \overrightarrow{\delta(G_C, C/0)} + \overrightarrow{V(G_C, 1/0)} = \overrightarrow{G_CO} \land \overrightarrow{\Omega(C/0)} + v(t) \overrightarrow{X_0} = -L_C \overrightarrow{Z_2} \land \overrightarrow{\phiY_2} + v(t) \overrightarrow{X_0} = L_C \overrightarrow{\phiX_2} + v(t) \overrightarrow{X_0}. \\ & \text{De plus } \overrightarrow{\Gamma(G_C, C/0)} = L_C \overrightarrow{\phiX_2} - L_C \overrightarrow{\phi^2} \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}. \\ & \text{Au final, } \overrightarrow{\delta(O, C/0)} = \overrightarrow{OG_C} \land M_C \overrightarrow{\Gamma(G_C, C/0)} = L_C \overrightarrow{Z_2} \land M_C \left(L_C \overrightarrow{\phiX_2} - L_C \overrightarrow{\phi^2} \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}\right) \\ & \overrightarrow{\delta(O, C/0)} = L_C M_C \left(L_C \overrightarrow{\phiY_2} + a(t) \cos \overrightarrow{\phiY_0}\right). \end{aligned}$$

Bilan des actions mécaniques en O agissant sur E

► Liaison pivot $\{\mathcal{T}(1 \to E)\}$ avec $\overline{\mathcal{M}(O, 1 \to E)} \cdot \overrightarrow{Y_2} = 0$. ► $\{\mathcal{T}(\text{pes} \to C)\}$ avec $\overline{\mathcal{M}(O, \text{pes} \to C)} \cdot \overrightarrow{Y_2} = (\overrightarrow{OG_C} \land -M_C g \overrightarrow{Z_0}) \overrightarrow{Y_2}$ $= (L_C \overrightarrow{Z_2} \land -M_C g \overrightarrow{Z_0}) \overrightarrow{Y_2} = L_C M_C g \sin \varphi \overrightarrow{Y_2}$.

$$\begin{tabular}{l} \blacktriangleright & \{ \mathcal{T} (\operatorname{pes} \to Cp) \} \quad \operatorname{avec} \quad \overline{\mathcal{M} (O, \operatorname{pes} \to Cp)} \ \cdot \ \overrightarrow{Y_2} = \quad \left(-L_{Cp} \overrightarrow{Z_2} \wedge -M_{Cp} g \overrightarrow{Z_0} \right) \overrightarrow{Y_2} \ = \\ & -L_{Cp} M_{Cp} g \sin \varphi \overrightarrow{Y_2}. \\ \\ \hline \textbf{Théorème du moment dynamique en } O \ \textbf{en projection sur } \overrightarrow{Y_2} \\ \ddot{\varphi} \left(M_{Cp} L_{Cp}^2 + M_C L_C^2 \right) + \left(M_C L_C - M_{Cp} L_{Cp} \right) a(t) \cos \varphi = L_C M_C g \sin \varphi - L_{Cp} M_{Cp} g \sin \varphi. \\ \Leftrightarrow \qquad \ddot{\varphi} \left(M_{Cp} L_{Cp}^2 + M_C L_C^2 \right) \ + \ \left(L_{Cp} M_{Cp} - L_C M_C \right) g \sin \varphi \ = \\ & - \left(M_C L_C - M_{Cp} L_{Cp} \right) a(t) \cos \varphi. \\ \\ \hline \textbf{On a donc} : Q_1 = M_{Cp} L_{Cp}^2 + M_C L_C^2, \ Q_2(t) = \left(L_{Cp} M_{Cp} - L_C M_C \right) g \sin \varphi, \ Q_3(t) = \\ \left(M_{Cp} L_{Cp} - M_C L_C \right) \cos \varphi. \\ \\ \\ \hline \end{tabular}$$

Question 2 Établir sous forme canonique la fonction de transfert $H(p) = \frac{\Phi(p)}{A(p)}$. Donner l'expression de la pulsation propre ω_0 en fonction de m_c , m_{cp} , L_c , L_{cp} et g.

Correction

Dans les conditions précédentes, on a
$$Q_1 = M_{Cp}L_{Cp}^2 + M_CL_C^2$$
, $Q_2(t) = \left(L_{Cp}M_{Cp} - L_CM_C\right)g\varphi$ et $Q_3(t) = \left(M_{Cp}L_{Cp} - M_CL_C\right)$.

L'équation de comportement devient donc $Q_1\frac{\mathrm{d}^2\varphi(t)}{\mathrm{d}t^2} + \left(L_{Cp}M_{Cp} - L_CM_C\right)g\varphi = Q_3a(t)$

$$\Rightarrow Q_1p^2\Phi(p) + \left(L_{Cp}M_{Cp} - L_CM_C\right)g\Phi(p) = Q_3A(p) \text{ et } H(p) = \frac{Q_3}{Q_1p^2 + \left(L_{Cp}M_{Cp} - L_CM_C\right)g}$$

On a donc $\omega_0^2 = \frac{\left(L_{Cp}M_{Cp} - L_CM_C\right)g}{Q_1} = \frac{\left(L_{Cp}M_{Cp} - L_CM_C\right)g}{M_{Cp}L_{Cp}^2 + M_CL_C^2}$. Le gain K vaut $\frac{M_{Cp}L_{Cp} - M_CL_C}{\left(L_{Cp}M_{Cp} - L_CM_C\right)g} = \frac{1}{g}$.

Question 3 Tracer l'allure du diagramme asymptotique de gain $G_{dB} = f(\omega)$ de la fonction de transfert $H(j\omega)$. Placer les caractéristiques remarquables.

Question 4 Pour un fonctionnement filtrant satisfaisant, on impose que $\omega_0 = 0.1\omega_a$.

Le stabilisateur est réglé en conséquence par l'intermédiaire du couple (m_{cp}, L_{cp}) . En utilisant le comportement asymptotique en gain de G_{dB} , estimer numériquement l'amplitude $\Delta \varphi$ (en degrés) des oscillations de **(E)** selon l'axe $(O, \overrightarrow{y_0})$.

Correction

On a $\omega_a=10\omega_0$. Une décade après ω_0 , $G_{\rm dB}=-20\log 10-40=-60\,{\rm dB}$. Une atténuation $\frac{-60}{20}=0,001$. L'amplitude des oscillations sera donc de $0,001a_0=5\times 10^{-4}\,{\rm rad}$ soit $0,03^\circ$.

Retour sur le cahier des charges

Question 5 Conclure vis-à-vis de l'objectif et sur les écarts obtenus.

Correction

On a $0.03^{\circ} < 0.5^{\circ}$. Le cahier des charges est vérifié au voisinage de $10\omega_0$.

Éléments de correction

 $\begin{array}{lll} 1. & Q_1 & = & M_{Cp}L_{Cp}^2 & + \\ & M_CL_C^2, & Q_2(t) & = \\ & \left(L_{Cp}M_{Cp} - L_CM_C\right)g\sin\varphi, \\ & Q_3(t) & = \\ & \left(M_{Cp}L_{Cp} - M_CL_C\right)\cos\varphi. \\ 2. & \omega_0^2 & = \\ & \frac{\left(L_{Cp}M_{Cp} - L_CM_C\right)g}{M_{Cp}L_{Cp}^2 + M_CL_C^2}. \\ 3. & . \\ 4. & 0,03^\circ. \end{array}$