Package 'FreeSortR'

October 12, 2022

Description Provides tools for describing and analysing free sorting data. Main methods are computation of consensus partition and factorial analysis of the dissimilarity matrix between stimuli (us-

Maintainer Philippe Courcoux <philippe.courcoux@oniris-nantes.fr>

ing multidimensional scaling approach).

Type Package

Version 1.3 **Date** 2017-12-15

Title Free Sorting Data Analysis

Author Philippe Courcoux

License GPL-2
Depends R (>= 3.1), methods, smacof, vegan, ellipse
NeedsCompilation no
Repository CRAN
Date/Publication 2017-12-17 20:26:27 UTC
R topics documented:
FreeSortR-package
AromaSort
AromaTerms
ConsensusPartition
Cooccurrences
DescriptionPartition
Dissimil
DissTot
getConfig
getPartition
getPercent
getStress
MdsDimChoice
MdsDiss
MdsSort

2 FreeSortR-package

	ortR-package Analysis of free sorting data.
Index	2
	SortingPartition-class
	SortingPartition
	SortingMds-class
	ReadSortFile
	RandIndex
	plotTerms
	plotMds
	nGroups

Description

This package gives several tools for analysing free sorting data.

Details

Package: FreeSortR
Type: Package
Version: 1.0

Date: 2014-04-29 License: GPL

Depends: methods, smacof

The function for managing sorting data is SortingPartition(). Function for computing consensus partition is ConsensusPartition(). Multidimensional scaling of sorting data may be performed with the function MdsSort().

Author(s)

Philippe Courcoux

Maintainer: <philippe.courcoux@oniris-nantes.fr>

References

Ph. Courcoux, P. Faye, E.M. Qannari (2014) Determination of the consensus partition and cluster analysis of subjects in a free sorting task experiment. Food Quality and Preference, 32, 107-112.

See Also

SortingPartition, ConsensusPartition, MdsSort

AromaSort 3

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
res<-ConsensusPartition(Aroma)
DescriptionPartition(res$Consensus)
resMds<-MdsSort(Aroma,ndim=3)
plotMds(resMds)</pre>
```

AromaSort

Aroma sorting data

Description

Partitions of 16 aromas by 31 subjects (free sorting task)

Usage

```
data(AromaSort)
```

Format

A data frame with 16 observations (aromas) and 31 variables (subjects).

Details

List of stimuli : Lemon, Grapefruit, Pineapple, Pear, Honey, Butter, Grilledbread, Grilledhazelnut, Strawberry, Raspberry, Cherry, Blackcurrant, Greenpepper, Smoked, Pepper, Licorice.

References

Ph. Courcoux, P. Faye, E.M. Qannari (2014) Determination of the consensus partition and cluster analysis of subjects in a free sorting task experiment. Food Quality and Preference 32, 107-112

```
data(AromaSort)
```

4 ConsensusPartition

AromaTerms

Aroma data (verbalisation by 31 subjects)

Description

Free sorting of 16 aromas described by 31 subjects. Data are occurrences of terms for describing stimuli. Partitions given by the subjects are described in the AromaSort data.

Usage

data(AromaTerms)

Format

A data frame with 16 observations (aromas) and 36 variables (terms). Rownames and colnames refer to stimuli and terms labels.

Details

List of terms: Acid, Smoked, Heady, Citrus, Lemon, Cake, Milk, Woody, Grain, Low, Redfruit, Grilled, Strong, Fat, Vegetal, Medicine, Chemical, Licorice, Bread, Alcohol, Almond, Caramel, Coal, Unpleasant, Soft, Pepper, Flower, Fresh, Red, Fruit, Natural, Spicy, Sugar, Hot, Pleasant, Candy.

Examples

data(AromaTerms)

ConsensusPartition

Consensus of Partitions

Description

Returns the consensus partition among a set of partitions

Usage

```
ConsensusPartition(Part, ngroups = 0, type = "cutree", optim = FALSE,
maxiter = 100, plotDendrogram = FALSE, verbose = FALSE)
```

Consensus Partition 5

Arguments

Part Object of class SortingPartition

ngroups Number of groups of the consensus (or ngroups=0 for optimal choice)

optim Optimisation of the consensus (default is optim=FALSE)
maxiter Maximum number of iterations for fusion algorithm

plotDendrogram Plot of the dendrogram (if type="cutree" initialisation)

verbose Print the initialisation results

Details

The criterion for optimal consensus is the mean adjusted Rand Index between the consensus and the partitions given by the subjects.

If ngroups=0, consensus is computed between 2 and nstimuli-1 and the best consensus is returned.

For type="cutree", the initialisation step is based on cutting the tree generated by clustering the stimuli. For type="fusion", the initialisation step is based on the fusion algorithm. In this case, results are more accurate but the algorithm might be time consuming. For type="medoid", the consensus is the closest partition to all the partitions given by subjects.

For optim=TRUE, a transfer step is performed after the initialisation step.

Value

List of following components:

Consensus Consensus

Crit Criterion for consensus

References

Krieger & Green (1999) J. of Classification, 16:63-89

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
res<-ConsensusPartition(Aroma,ngroups=0,type="cutree")
res
##res<-ConsensusPartition(Aroma,ngroups=0,type="fusion",optim=TRUE)
##res
##res<-ConsensusPartition(Aroma,type="medoid")
##res</pre>
```

6 DescriptionPartition

Cooccurrences

Coocurrences

Description

Returns the matrix of cooccurrences between stimuli.

Usage

```
Cooccurrences(Part)
```

Arguments

Part

Object of class SortingPartition

Details

Returns the matrix of cooccurrences between stimuli (number of times two stimuli have been sorted in the same group).

Value

A matrix of cooccurrences (stimuli x stimuli).

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)</pre>
MatCooc<-Cooccurrences(Aroma)</pre>
```

DescriptionPartition Description of a partition

Description

DescriptionPartition() shows a partition given by a subject.

Usage

```
DescriptionPartition(Part, subject = 1, replicate = 1, Labels=NULL)
```

Arguments

Part Object of class SortingPartition or vector giving a partition

Subject identifier (number or label of a subject) subject

Number of the replicate to show (in the case of multiple partitions) replicate

Labels of the stimuli Labels

Dissimil 7

Value

Returns the partition with labels of stimuli bracketted in groups.

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
DescriptionPartition(Aroma, subject=1)</pre>
```

Dissimil

Dissimilarities between stimuli

Description

Creates a list of dissimilarity matrices from partitions given by the subjects.

Usage

```
Dissimil(Part)
```

Arguments

Part

Object of class SortingPartition

Details

In the case of free sorting data, a list of dissimilarity matrices (the length of the list is equal to the number of subjects).

In the case of multiple sorting, dissimilarity matrix for a subject is the sum of the dissimilarity matrices computed from each of the different partitions given by this subject.

Value

A list of dissimilarity matrices (one matrix for each subject).

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
ListDiss<-Dissimil(Aroma)</pre>
```

8 getConfig

DissTot

Overall Dissimilarities between stimuli.

Description

Creates the matrix of dissimilarities between stimuli.

Usage

```
DissTot(Part)
```

Arguments

Part

Object of class SortingPartition

Value

The matrix of dissimilarities between stimuli (number of times that two stimuli have not been grouped)

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
DisTot<-DissTot(Aroma)</pre>
```

getConfig

Gets the Mds configuration.

Description

Gets the Mds config resulting from the function MdsSort().

Usage

```
getConfig(object)
```

Arguments

object

An object of class SortingMds

Value

An array of Mds configuration

getPartition 9

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2)
config<-getConfig(resMds)</pre>
```

getPartition

Gets the partitions.

Description

Returns an array of the partitions given by the subjects.

Usage

```
getPartition(object)
```

Arguments

object

An object of class SortingPartition

Value

An array of the stimuli as rows and the partitions as columns.

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
part<-getPartition(Aroma)</pre>
```

getPercent

Gets the percentages of variance

Description

Returns the percentage of variance explained by the dimensions of a Mds solution returned by the function MdsSort().

Usage

```
getPercent(object)
```

Arguments

object

An object of class SortingMds

10 getStress

Value

A vector of percentage of variance of the Mds configuration.

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2)
perc<-getPercent(resMds)</pre>
```

getStress

Gets the stress value

Description

Get the Kruskal stress value of the Mds solution returned by the function MdsSort().

Usage

```
getStress(object)
```

Arguments

object

An object of class SortingMds

Value

A numeric value of stress.

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2)
stress<-getStress(resMds)</pre>
```

MdsDimChoice 11

MdsDimChoice Computation of the stress of Mds solution
--

Description

MdsDimChoice() returns a table of stress values of Multidimensionnal scaling for different dimensions. The different dimensions to test are given as an argument of the function.

The Mds is based on smacof algorithm and may be metric or not metric.

Usage

```
MdsDimChoice(Part, dimen = c(2, 4), metric = FALSE,
ties = "primary", itmax = 5000, eps = 1e-06)
```

Arguments

Part	Part is an object of class SortingPartition
dimen	Vector of (minimum and maximum of) dimensions for Mds (default is dimen=c(2,4))
metric	Metric or non metric Mds (default is metric=FALSE for non metric Mds)
ties	Treatment of ties in case of non metric Mds
itmax	Maximum number of iterations
eps	Epsilon for Mds computation

Value

Table of Kruskal stress for the chosen dimensions

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
tabres<-MdsDimChoice(Aroma)</pre>
```

Mds Of a dissimile

Description

Computes the multidimensional scaling of a matrix of dissimilarities between stimuli. Mds is based on smacof algorithm. The Mds configuration is rotated in order to get orthogonal dimensions sorted by decreasing variance.

12 MdsSort

Usage

Arguments

MatDissimil A matrix of dissimilarities

ndim Dimension of the Mds

metric Metric or not metric Mds

ties Treatment of ties in case of non metric Mds

itmax Maximum number of iterations eps Epsilon for Mds computation

Value

List of the following components:

Config Mds configuration of the stimuli

Percent Percentage of inertia of the dimensions of Mds

Stress of the Mds solution

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
ListDissimil<-Dissimil(Aroma)
MatDissim<-apply(simplify2array(ListDissimil),c(1,2),'sum')
Mdsres<-MdsDiss(MatDissim)</pre>
```

Mds of sorting data

Description

MdsSort returns the results of the multidimensional scaling of a list of dissimilarities. The Mds is based on smacof algorithm and may be metric or not metric.

Botstrap on subjects allows to draw confidence regions for the stimuli.

Usage

```
MdsSort(Part,ndim=2,nboot=0,metric=FALSE,ties="primary",itmax=5000,eps=1e-06)
```

nGroups 13

Arguments

Part	Part is an object of class SortingPartition
ndim	Dimension of the Mds (default is ndim=2)
nhoot	Number of hootstrap samples (default is phoot

nboot Number of bootstrap samples (default is nboot=0 for no bootstrap analysis)

metric Metric or non metric Mds (default is metric=FALSE for non metric)

ties Treatment of ties in case of non metric Mds

itmax Number maximum of iterations eps Epsilon fot Mds computation

Value

An object of class SortingMds

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2)</pre>
```

nGroups

Number of groups given by the subjects

Description

Returns the number of groups given by the subjects of a free sorting experiment.

Usage

```
nGroups(object)
```

Arguments

object An object of class SortingPartition

Value

A vector giving the number of groups made by the subjects

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
nGroups(Aroma)</pre>
```

14 plotTerms

plotMds	Plot of the configuration of Mds
protinas	Plot of the configuration of Mds

Description

plotMds returns a plot of the configuration resulting from a Multidimensionnal scaling.

Confidence ellipsoids are plotted if a bootstrap approach has been used in the MdsSort() step.

Usage

```
plotMds(ResMds, dim=c(1,2), ellipse=FALSE, proba=0.90, col=NULL)
```

Arguments

ResMds	ResMds is an	object of class	SortingMds
IVESITUS	ixconius is an	object of class	SOI LINGINGS

dim Vector of dimensions to be plotted (default is dim=c(1,2))

ellipse Indicates if ellipsoids have to be plotted (default if ellipse=FALSE)

proba Probability for plotting ellipses (default is proba=.90)

col The color to be used for the text, possibly vectors

Value

plot of Mds configuration

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2)
plotMds(resMds)</pre>
```

plotTerms

Plot of the terms used during verbalisation step

Description

plotTerms() produces a plot of the terms. The rows of array MatTerms are the stimuli and the columns are the terms.

Usage

```
plotTerms(MatTerms,ResMds,dim=c(1,2),type="correl",add=TRUE)
```

RandIndex 15

Arguments

MatTerms Array of occurrences of terms
ResMds Object of class SortingMds

dim Vector of dimensions to be plotted (default is dim=c(1,2))

type Indicates the type of plotting (default is type="correl" for correlations)

add Indicates if the stimuli are added to the plot (if type="baryc")

Details

If type="correl", the correlations between occurrences of terms and dimensions of a Mds configuration are plotted. plotTerms() returns the correlation matrix.

If type="baryc", a barycentric representation of terms is used. If add=TRUE, the stimuli are added to this plot. plotTerms() returns the coordinates of terms.

Value

returns a matrix of correlation or a configuration of terms (depending on type).

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2)
data(AromaTerms)
plotTerms(AromaTerms,resMds)</pre>
```

RandIndex

Rand Index between partitions

Description

Computes the Rand Index and the Adjusted Rand Index between two partitions

Usage

```
RandIndex(Partition1, Partition2)
```

Arguments

Partition1 Vector describing the first partition
Partition2 Vector describing the second partition

Details

Supports incomplete partitions (value 0 is coding for missing stimulus)

16 ReadSortFile

Value

List of following components:

Rand Index between the partitions

AdjustedRand Adjusted rand Index between the partitions

References

```
Rand (1971) Jasa, 66, 846-850
Hubert & Arabie (1985) J. of Classification, 2, 193-218
```

Examples

```
Partition1<-c(1,1,1,2,2,2)
Partition2<-c(1,1,2,2,2,3)
r<-RandIndex(Partition1,Partition2)
r
# $Rand
# [1] 0.6
# $AdjustedRand
# [1] 0.1176471</pre>
```

ReadSortFile

Read a file of free sorting data

Description

The function (ReadSortFile()) reads a csv file of free sorting data.

The file contains stimuli as rows and subjects as columns. For a subject, two stimuli in the same group are coded by the same symbol. First row contains the labels of subjects and first column contains the labels of stimuli.

For each subject, the coding of a group may be a number or a list of terms describing the group (terms have to be separated by a symbol, as a comma).

Returns a matrix of sorting and, if this is adequate, matrices describing the use of terms by subjects.

Usage

```
ReadSortFile(filename, terms=FALSE, septerms=",", sep=";", dec=".")
```

Arguments

filename File name (and address if necessary)

terms Boolean indicating if groups are coded by terms (terms=TRUE) or numbers (de-

fault terms=FALSE)

septerms Symbol for separating terms (default is septerms=",") if terms=TRUE

sep Symbol for separating data in the csv file (default is sep=";")

dec Decimal separator (default is dec=".")

SortingMds-class 17

Value

List of the following components:

Matrix of sorting groups (may be used by the function SortingPartition)

Matrix of occurences of the terms used by the subjects

Stress List of terms used by each subject

Examples

```
# dat<-ReadSortFile ("FSdata.csv")
# Sort<-SortingPartition(dat$MatSort)</pre>
```

SortingMds-class

Class SortingMds

Description

A class for Mds results

Objects from the Class

Objects are created by the function MdsSort().

Slots

```
nstimuli: Number of stimuli
nsubjects: Number of subjects
LabStim: Labels of stimuli
LabSubj: Labels of subjects
ndim: Dimension of the Mds
Config: Array of the configuration of stimuli
Percent: Vector of inertia of the dimensions
Stress: Kruskal stress of the configuration
```

ResBoot: (optional) Results of bootstrap on the subjects

Methods

```
getConfig signature(object = "SortingMds")
getPercent signature(object = "SortingMds")
getStress signature(object = "SortingMds")
show show(object = "SortingMds")
summary summary(object = "SortingMds")
```

18 SortingPartition

Examples

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
resMds<-MdsSort(Aroma,ndim=2,metric=FALSE)
summary(resMds)</pre>
```

SortingPartition

Creates an object of class SortingPartition

Description

Returns an object of class SortingPartition from an array containing the partitions.

The array has stimuli as rows and subjects as columns. For a subject, two stimuli in the same group are coded by the same number.

Usage

```
SortingPartition(DataSort)
```

Arguments

DataSort

A dataframe containing the partitions of the subjects

Details

The first row contains the labels of subjects and the first column contains the labels of stimuli.

In the case of multiple sorting task, the different partitions given by the same subject are in columns sharing the same name (but with different subnames: A, A.1, A.2...) in the array.

A value of 0 indicates that the subject did not sort the given stimulus (in case of incomplete design).

Value

An object of class SortingPartition.

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
show(Aroma)</pre>
```

SortingPartition-class 19

```
SortingPartition-class
```

 ${\it Class}$ SortingPartition

Description

A class for free sorting data

Objects from the Class

Objects can be created from an array by calls of the form SortingPartition().

Slots

```
type: Type of sorting procedure : type="Free" or type="Multiple"
nstimuli: Number of stimuli
nsubjects: Number of subjects
LabStim: Labels of stimuli
LabSubj: Labels of subjects
Partition: List of partitions of the stimuli given by subjects
```

Methods

```
show show(object = "SortingPartition")
summary summary(object = "SortingPartition")
getPartition getPartition(object = "SortingPartition")
nGroups nGroups(object = "SortingPartition")
```

```
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
summary(Aroma)
show(Aroma)
getPartition(Aroma)</pre>
```

Index

* package	ReadSortFile, 16
FreeSortR-package, 2	alani. Cambin mMala maklaad
Amorro Comb. 2	show, SortingMds-method
AromaSort, 3	(SortingMds-class), 17
AromaTerms, 4	show, SortingPartition-method
ConsensusPartition, 2, 4	(SortingPartition-class), 19
Cooccurrences, 6	SortingMods-class, 17
cooccurrences, o	SortingPartition, 2, 18
DescriptionPartition, 6	SortingPartition-class, 19
Dissimil, 7	summary, SortingMds-method
DissTot, 8	(SortingMds-class), 17
D13310t, 0	summary, SortingPartition-method
FreeSortR (FreeSortR-package), 2	(SortingPartition-class), 19
FreeSortR-package, 2	
,	
getConfig, 8	
<pre>getConfig,SortingMds-method</pre>	
(SortingMds-class), 17	
getPartition, 9	
<pre>getPartition,SortingPartition-method</pre>	
(SortingPartition-class), 19	
getPercent, 9	
getPercent,SortingMds-method	
(SortingMds-class), 17	
getStress, 10	
getStress,SortingMds-method	
(SortingMds-class), 17	
,,	
MdsDimChoice, 11	
MdsDiss, 11	
MdsSort, 2, 12	
nGroups, 13	
nGroups,SortingPartition-method	
(SortingPartition-class), 19	
plotMdc 14	
plotMds, 14	
plotTerms, 14	
RandIndex, 15	