# Projeto de Compiladores 2021/22

Compilador para a linguagem deiGo

#### 3 de outubro de 2021

Este projeto consiste no desenvolvimento de um compilador para a linguagem deiGo, que é um subconjunto da linguagem Go (https://golang.org/ref/spec) de acordo com a especificação de maio de 2018.

Na linguagem deiGo é possível usar variáveis e literais dos tipos string, bool, int e float32 (estes dois últimos com sinal). A linguagem deiGo inclui expressões aritméticas e lógicas, instruções de atribuição, operadores relacionais, e instruções de controlo (if-else e for). Inclui também funções com os tipos de dados já referidos e ainda o tipo especial []string, sendo a passagem de parâmetros sempre feita por valor.

A função main() invocada no início de cada programa é declarada na package main e não recebe argumentos nem retorna qualquer valor. O programa package main; func main() {}; é dos mais pequenos possíveis na linguagem deiGo. Os programas podem ler e escrever carateres na consola com as funções pré-definidas strconv.Atoi(os.Args[...]) e fmt.Println(...), respetivamente.

O significado de um programa na linguagem deiGo será o mesmo que na linguagem Go, assumindo a pré-definição das funções strconv.Atoi(...) e fmt.Println(...), bem como da variável os.Args[...]. Por fim, são aceites comentários nas formas /\* ... \*/ e // ... que deverão ser ignorados. Assim, por exemplo, o programa que se segue calcula o fatorial de um número passado como argumento:

```
package main;
func factorial(n int) int {
    if n == 0 {
        return 1;
    };
    return n * factorial(n-1);
};
func main() {
    var argument int;
    argument,_ = strconv.Atoi(os.Args[1]);
    fmt.Println(factorial(argument));
};
```

Este programa declara uma variável argument do tipo int e atribui-lhe o valor inteiro do argumento passado ao programa, usando a função Atoi para realizar a conversão (esta função retorna um par de valores e o segundo valor é descartado). De seguida, calcula o fatorial desse valor e invoca a função Println para escrever o resultado na consola.

# 1 Metas e avaliação

O projeto está estruturado em quatro metas encadeadas, nas quais o resultado de cada meta é o ponto de partida para a meta seguinte. As datas e as ponderações são as seguintes:

- 1. Análise lexical (19%) 20 de outubro de 2021
- 2. Análise sintática (25%) 19 de novembro de 2021 (meta de avaliação)
- 3. Análise semântica (25%) 3 de dezembro de 2021
- 4. Geração de código (25%) 17 de dezembro de 2021 (meta de avaliação)

A entrega final será acompanhada de um relatório que tem um peso de 6% na avaliação. Para além disso, a entrega final do trabalho deverá ser feita através do Inforestudante, até ao dia seguinte ao da Meta 4, e incluir todo o código-fonte produzido no âmbito do projeto (exatamente os mesmos arquivos .zip que tiverem sido colocados no MOOSHAK em cada meta).

O trabalho será verificado no MOOSHAK, em cada uma das metas, usando um concurso criado para o efeito. A classificação final da Meta 1 é obtida em conjunto com a Meta 2 e a classificação final da Meta 3 é obtida em conjunto com a Meta 4. O nome do grupo a registar no MOOSHAK deverá ser obrigatoriamente da forma "uc2019123456\_uc2019654321" usando os números de estudante como identificação do grupo na página https://mooshak.dei.uc.pt/~comp2021 na qual o MOOSHAK está acessível.

## 1.1 Defesa e grupos

O trabalho será realizado por grupos de dois alunos inscritos em turmas práticas do mesmo docente. Em casos excecionais, a confirmar com o docente, admite-se trabalhos individuais. A defesa oral do trabalho será realizada em grupo entre os dias 3 e 7 de janeiro de 2021. A nota final do projeto diz respeito à prestação individual na defesa e está limitada pela soma ponderada das pontuações obtidas no MOOSHAK em cada uma das metas. Assim, a classificação final nunca poderá exceder a pontuação obtida no MOOSHAK acrescida da classificação do relatório final. Os programas de teste colocados por cada estudante no repositório https://git.dei.uc.pt/rbarbosa/Comp2021/tree/master serão contabilizados na avaliação. Aplica-se mínimos de 40% à nota final após a defesa.

#### 2 Analisador lexical – Meta 1

Nesta primeira meta deve ser programado um analisador lexical para a linguagem deiGo. A programação deve ser feita em linguagem C utilizando a ferramenta *lex*. Os "tokens" a ser considerados pelo compilador são apresentados de seguida e deverão estar de acordo com a especificação da linguagem Go, disponível em https://golang.org/ref/spec#Lexical\_elements e no material de apoio da disciplina.

### **2.1 Tokens da linguagem** deiGo

ID: sequências alfanuméricas começadas por uma letra, onde o símbolo "\_" conta como uma letra. Letras maiúsculas e minúsculas são consideradas letras diferentes.

STRLIT: uma sequência de carateres (excepto "carriage return", "newline", ou aspas duplas) e/ou "sequências de escape" entre aspas duplas. Apenas as sequências de escape \f, \n, \r, \t, \\ e \" são especificadas pela linguagem. Sequências de escape não especificadas devem dar origem a erros lexicais, como se detalha mais adiante.

INTLIT: uma sequência de dígitos que representa uma constante inteira. Existe a opção de adicionar um prefixo para especificar outra base que não a decimal: 0 para octal, 0x ou 0X para hexadecimal. Nesta última, as letras (a-f) e (A-F) correspondem aos valores entre 10 e 15.

REALLIT: uma parte inteira seguida de um ponto, opcionalmente seguido de uma parte fracionária e/ou de um expoente; ou um ponto seguido de uma parte fracionária, opcionalmente seguida de um expoente; ou uma parte inteira seguida de um expoente. O expoente consiste numa das letras "e" ou "E" seguida de um número opcionalmente precedido de um dos sinais "+" ou "-". Tanto a parte inteira como a parte fracionária e o número do expoente consistem em sequências de dígitos decimais.

```
SEMICOLON = ";"

COMMA = ","

BLANKID = "_"

ASSIGN = "="

STAR = "*"

DIV = "/"

MINUS = "-"

PLUS = "+"

EQ = "=="

GE = ">="
```

$$LBRACE = "{"}$$

$$LPAR = "("$$

$$RBRACE = "$$
}"

$$RPAR = ")"$$

PACKAGE = "package"

RETURN = "return"

ELSE = "else"

FOR = "for"

FLOAT32 = "float32"

BOOL = "bool"

STRING = "string"

```
PRINT = "fmt.Println"

PARSEINT = "strconv.Atoi"

FUNC = "func"

CMDARGS = "os.Args"
```

RESERVED: todas as palavras reservadas da linguagem Go não utilizadas em deiGo bem como o operador de incremento ("++") e o operador de decremento ("--").

O analisador deve aceitar (e ignorar) como separador de tokens o espaço em branco (espaços, tabs e mudanças de linha), bem como comentários dos tipos // ... e /\* ... \*/. Deve ainda detetar a existência de quaisquer erros lexicais no ficheiro de entrada, tal como se especifica mais adiante.

### 2.2 Programação do analisador

O analisador deverá chamar-se gocompiler, ler o ficheiro a processar através do *stdin* e, quando invocado com a opção -1, deve emitir os tokens e as mensagens de erro para o *stdout* e terminar. Na ausência de qualquer opção, deve escrever no *stdout* apenas as mensagens de erro. Por exemplo, caso o ficheiro factorial.dgo contenha o programa de exemplo dado anteriormente, que calcula o fatorial de números, a invocação:

```
./gocompiler -l < factorial.dgo
```

deverá imprimir a correspondente sequência de tokens no ecrã. Neste caso:

```
PACKAGE
ID(main)
SEMICOLON
FUNC
ID(factorial)
LPAR
ID(n)
INT
RPAR
INT
LBRACE
...
```

Figura 1: Exemplo de output do analisador lexical. O output completo está disponível em: https://git.dei.uc.pt/rbarbosa/Comp2021/blob/master/meta1/factorial.out

Sempre que uma categoria lexical contenha mais do que um único símbolo, o token encontrado deve ser impresso entre parêntesis logo a seguir à categoria do token, tal como exemplificado na Figura 1 para ID. Por outras palavras, as categorias ID, STRLIT, INTLIT, REALLIT e RESERVED requerem que o valor encontrado seja impresso a seguir ao nome da categoria lexical.

Em deiGo, o ";" é utilizado como terminador em muitas situações. No entanto, a linguagem permite que grande parte destes ";" sejam omitidos. Para isso, quando o programa está a ser analisado lexicalmente é emitido, de forma automática, um token SEMICOLON sempre que o último token de uma linha seja:

- um literal INTLIT, REALLIT ou STRLIT
- um ID
- o símbolo RETURN
- ou um dos operadores de pontuação RPAR, RSQ ou RBRACE

#### 2.3 Tratamento de erros

Caso o ficheiro contenha erros lexicais, o programa deverá imprimir exatamente uma das seguintes mensagens no *stdout*, consoante o caso:

```
Line <num linha>, column <num coluna>: illegal character (<c>)\n
Line <num linha>, column <num coluna>: invalid octal constant (<c>)\n
Line <num linha>, column <num coluna>: unterminated comment\n
Line <num linha>, column <num coluna>: unterminated string literal\n
Line <num linha>, column <num coluna>: invalid escape sequence (<c>)\n
```

onde <num linha> e <num coluna> devem ser substituídos pelos valores correspondentes ao *início* do token que originou o erro, e <c> deve ser substituído por esse token. O analisador deve recuperar da ocorrência de erros lexicais a partir do *fim* desse token. Tanto as linhas como as colunas são numeradas a partir de 1.

## 2.4 Entrega da Meta 1

O ficheiro *lex* a entregar deverá obrigatoriamente listar os autores num comentário colocado no topo desse ficheiro, contendo o nome e o número de estudante de cada elemento do grupo. Esse ficheiro deverá chamar-se gocompiler.l e ser enviado num arquivo de nome gocompiler.zip, que não deverá ter quaisquer diretorias.

O trabalho deverá ser verificado no MOOSHAK, usando o concurso criado especificamente para o efeito e cuja página está acima indicada na Secção 1. Será tida em conta apenas a última submissão ao problema A desse concurso. Os restantes problemas destinam-se a ajudar na validação do analisador. No entanto, o MOOSHAK não deve ser utilizado como ferramenta de depuração. Os estudantes deverão usar e contribuir para o repositório que está disponível em https://git.dei.uc.pt/rbarbosa/Comp2021/tree/master contendo casos de teste.