

planetmath.org

Math for the people, by the people.

connected topological group is generated by any neighborhood of identity

 $Canonical\ name \qquad Connected Topological Group Is Generated By Any Neighborhood Of Identity$

Date of creation 2013-03-22 18:01:45 Last modified on 2013-03-22 18:01:45 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Theorem Classification msc 22A05 **Theorem -** Let G be a connected topological group and e its identity element. If U is any open neighborhood of e, then G is generated by U.

Proof: Let U be an open neighborhood of e. For each $n \in \mathbb{N}$ we denote by U^n the set of elements of the form $u_1 \dots u_n$, where each $u_i \in U$. Let $W := \bigcup_{n \in \mathbb{N}} U^n$.

Since each U^n is open (see http://planetmath.org/BasicResultsInTopologicalGroupsthis entry - 3), we have that W is an open set. We now see that it is also closed.

Let $g \in \overline{W}$, the closure of W. Since gU^{-1} is an open neighborhood of g, it must intersect W. Thus, let $h \in W \cap gU^{-1}$.

- Since $h \in gU^{-1}$, then $h = gu^{-1}$ for some element $u \in U$.
- Since $h \in W$, then $h \in U^n$ for some $n \in \mathbb{N}$, i.e. $h = u_1 \dots u_n$ with each $u_i \in U$.

We then have $g = u_1 \dots u_n u$, i.e. $g \in U^{n+1} \subseteq W$. Hence, W is closed. Since G is connected and W is open and closed, we must have W = G. This means that G is generated by U. \square