Hedging performances of the Black-Scholes model in imperfect log-normal world

Anthony Tedde

Louvain School of Management (LSM)

2018

Contents

Context

Other models

Merton's Jump-Diffusion Model Heston stochastic volatility model Options pricing method

Methodology

Calibration
Delta hedging

Analysis and results

Analysis and results: BSM Analysis and results: Merton Analysis and results: Heston

Context: Black-Scholes-Merton model

Black-Scholes-Merton solution

$$c(t,x) = xN(d_{+}(\Delta t, x)) - Ke^{-r\Delta t}N(d_{-}(\Delta t, x))$$

with

$$d_{\pm} (\Delta t, x) = \frac{1}{\sigma \sqrt{\Delta t}} \left[\log \frac{x}{K} + \left(r \pm \frac{\sigma^2}{2} \Delta t \right) \right]$$

Geometric Brownian Motion

$$S(t) = S(0) e^{\sigma W(t) + \left(\alpha - \frac{1}{2\sigma^2}\right)t}$$

Context: Black-Scholes-Merton assumptions

- 1. The short-term risk free rate r is known and constant.
- The stock return involving in the computation of BSM equation is log-normally distributed with constant mean and variance rates.
- 3. No dividend are provided with the considered share of stock.
- 4. The option considered within the computation is European.
- 5. The prices for the bid and ask quotes are identical. It means that there is no bid-ask spread to be considered.
- 6. Share of stock can be divided into any portions such as needed for the computation.
- 7. Short selling is allowed with no penalties.

Context: Black–Scholes–Merton assumptions

- 1. The short-term risk free rate r is known and constant.
- The stock return involving in the computation of BSM equation is log-normally distributed with constant mean and variance rates.
- 3. No dividend are provided with the considered share of stock.
- 4. The option considered within the computation is European.
- 5. The prices for the bid and ask quotes are identical. It means that there is no bid-ask spread to be considered.
- 6. Share of stock can be divided into any portions such as needed for the computation.
- 7. Short selling is allowed with no penalties.

Context: Black-Scholes-Merton log-return density

$$\ln \frac{S(t)}{S(0)} \sim N\left(\left(\alpha - \frac{\sigma^2}{2}\right)t, \sigma^2 t\right)$$

Context: Black–Scholes–Merton log-return density The Apple case

Context: Black-Scholes-Merton volatility surface

Context: Summary

- Normality of log-returns
- Options' price implied volatility
- Geometric Brownian Motion should be replaced

Other models

Context

Other models

Merton's Jump-Diffusion Model Heston stochastic volatility model Options pricing method

Methodology

Delta hedging

Analysis and results

Analysis and results: BSM Analysis and results: Merton Analysis and results: Heston

The Merton's Jump-Diffusion Model (MJD)

MJD stochastic process

$$S\left(t\right) = S\left(0\right)e^{\left(\alpha - \frac{\sigma^{2}}{2} - \lambda\kappa\right)t + \sigma W\left(t\right) + \sum_{i=1}^{N_{t}}Y_{i}}$$

Graphical representation

MJD: log-return density

Impact on the skewness (μ)

MJD: log-return density

Impact on the kurtosis (λ)

The Heston stochastic volatility model (HSV)

HSV stochastic process

$$dV(t) = \kappa (\theta - V(t)) dt + \sigma \sqrt{V(t)} dW_V(t)$$

$$dS(t) = \alpha S(t) dt + \sqrt{V(t)} S(t) dW_S(t)$$

$$\rho = dW_v(t) dW_S(t)$$

MJD: log-return density

Impact on the skewness (ρ)

MJD: log-return density

Impact on the kurtosis (σ)

Heston probabilistic approach

$$c(t) = S(t)P_1 - e^{-r(T-t)}KP_2$$

With

$$P_1(x, V, t; \ln K) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{-i\phi \ln K} \psi(x, V, t; \phi - i)}{i\phi \psi(x, V, t; -i)}\right) d\phi$$

$$P_2(x, V, t; \ln K) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{-i\phi \ln K} \psi(x, V, t; \phi)}{i\phi}\right) d\phi$$

Methodology

Context

Other models

Merton's Jump-Diffusion Model Heston stochastic volatility model Options pricing method

Methodology

Calibration
Delta hedging

Analysis and results

Analysis and results: BSM Analysis and results: Merton Analysis and results: Heston

Calibration

Template data

- ► Apple stocks (01/01/2017 31/12/2017)
- ► Apple stocks call options (18/05/2018)

Calibration of the option valuation models

- Concerns the models used to price the options
- least-square non-linear analysis

Calibration of the time-series generation models

- Concerns the time-series used to simulate stock prices evolutions
- ▶ Fit optimization based method

MJD: Implied volatility

HSV: Implied volatility

Delta hedging

Construction of the delta-neutral portfolio at T=0

$$p(t_0) = \Delta^{m \oplus h}(t_0) S(t_0)$$

Portfolio balancing

$$p(t_i) = \left(\Delta^{m \oplus h}(t_i) - \Delta^{m \oplus h}(t_{i-1})\right) S(t_i),$$

$$\forall i \in \mathbb{Z}: i \in [1,T]$$

Delta hedging

Measurement of the performances

$$P\&L = e^{-rT} \frac{\pi(S(T), T)}{c(S(0), 0)}$$

Where

$$\pi(S(t), t) = \Delta(t)S(t) + e^{rt}c(S(t_0), t_0) - \sum_{i \in \mathbb{Z}: i \in [1, t]} \left(e^{r(t - t_i)} p(t_i) \right) - c(S(t), t)$$

Analysis and results

Context

Other models

Merton's Jump-Diffusion Model Heston stochastic volatility model Options pricing method

Methodology

Calibration

Delta hedging

Analysis and results

Analysis and results: BSM Analysis and results: Merton Analysis and results: Heston

- ► Balancing frequency
- ► Negative P&L
 - Gamma

		91 dbm	182 dbm	399 dbm
	intraday	-0	_0	- 0
140	daily	0	0	0
	weekly	0	0	0
	intraday		_0	
160	daily	0	0	0
	weekly	-0.001	-0.001	-0.003
	intraday		0.001	-0.001
186	daily	-0.005	-0.002	-0.004
	weekly	-0.01	-0.019	-0.021
	intraday	0.022	0.008	-0.001
200	daily	-0.002	-0.005	-0.006
	weekly	-0.007	-0.052	-0.037
	intraday	0.02	0.042	-0.007
230	daily	0.022	-0.063	-0.022
	weekly	0.317	-0.285	-0.136

- ► Short Gamma
- ▶ Long Theta

- ► Balancing frequency
- Negative effect on P&L
 - ▶ Short Gamma
- Positive effect on P&L
 - Long Theta

		91 dbm	182 dbm	399 dbm
	intraday		_0	
140	daily	0	0	0
	weekly	0	0	0
	intraday		_0	
160	daily	0	0	0
	weekly	-0.001	-0.001	-0.003
	intraday		0.001	-0.001
186	daily	-0.005	-0.002	-0.004
	weekly	-0.01	-0.019	-0.021
	intraday	0.022	0.008	-0.001
200	daily	-0.002	-0.005	-0.006
	weekly	-0.007	-0.052	-0.037
	intraday	0.02	0.042	-0.007
230	daily	0.022	-0.063	-0.022
	weekly	0.317	-0.285	-0.136

Strikes	frequency	91 dbm		182 dbm		399 dbm	
		Δ_{mrt}	Δ_{bsm}	Δ_{mrt}	Δ_{bsm}	Δ_{mrt}	Δ_{bsm}
140	intraday	0.004	0.006	0.011	0.012	-0.01	0.021
	daily	0.002	0.006	0.008	0.012	0.016	0.021
	weekly	0.004	0.006	0.006	0.011	0.007	0.021
160	intraday	0.011	0.018	$\bar{0}.\bar{0}2\bar{1}$	0.029	0.025	0.042
	daily	0.016	0.018	0.022	0.029	0.019	0.042
	weekly	0.013	0.016	0.018	0.026	0.018	0.04
186	intraday	0.036	0.021	0.078	0.055	0.079	0.074
	daily	0.039	0.022	0.072	0.055	0.068	0.074
	weekly	0.014	-0.008	0.055	0.037	0.057	0.061
200	intraday	0.072	-0.002	0.139	0.061	$\bar{0}.\bar{1}3^{-}$	0.086
	daily	0.06	-0.013	0.131	0.057	0.115	0.085
	weekly	-0.02	-0.1	0.083	0.005	0.085	0.053
230	intraday	0.955	0.331	0.444	-0.061	0.301	0.063
	daily	1.098	0.466	0.409	-0.091	0.261	0.054
	weekly	-0.741	-1.335	0.085	-0.438	0.174	-0.088

Table: Hedging with MJD: Relative P&L

Weekly rebalanced portfolio(K = 230, dbm = 91)

Daily rebalanced portfolio(K = 230, dbm = 91)

Intradaily rebalanced portfolio(K = 230, dbm = 91)

Strikes	frequency	91 dbm		182 dbm		399 dbm	
		Δ_{hsv}	Δ_{bsm}	Δ_{hsv}	Δ_{bsm}	Δ_{hsv}	Δ_{bsm}
140	intraday	0	0.002	$\bar{0}.\bar{0}1\bar{1}$	0.011	0.009	0.038
	daily	-0.001	0.002	0.01	0.011	0.009	0.038
	weekly	0.001	0.002	0	0.011	0.008	0.038
160	intraday	0.009	0.028	0.023	0.073	0.042	0.143
	daily	0.008	0.028	0.025	0.072	0.036	0.143
	weekly	0.008	0.028	0.019	0.073	0.036	0.143
186	intraday	0.158	0.252	0.159	0.392	0.153	0.524
	daily	0.15	0.245	0.195	0.391	0.156	0.522
	weekly	0.117	0.241	0.158	0.378	0.139	0.519
200	intraday	0.459	-0.298	0.43	0.146	0.279	0.546
	daily	0.433	-0.361	0.42	0.126	0.255	0.544
	weekly	0.268	-0.659	0.369	0.005	0.246	0.498
230	intraday	2.136	-0.527	1.884	-2.452	$\bar{1}.\bar{0}1$	-0.235
	daily	1.948	-1.197	1.893	-2.655	0.989	-0.224
	weekly	1.407	-2.152	1.547	-2.402	0.917	-0.353

Table: Hedging with HSV: Relative P & L

Conclusion

- Possibility to reproduce volatility smiles
- Better performances for in/at-the-money
- Effects of Gamma / Theta not negligible for out-of-the-money
- Usage of deltas Heston / Merton if possible

How to go further

- Consider a wider range of assets
- Accurately measure the effect of Gamma / Theta