

Duplications, ploidy and recombination

Learning outcomes

- What is duplication?
 - tandem repeats, gene duplications
- What is ploidy?
 - Understanding ploidy
 - Aneuploidy and identification
- What is recombination?
 - Detection
 - Impact

Mechanisms of adaptation

- Gene duplications
 - duplication of antifungal drug target ERG11
- Tandem repeats
 - repeats in promoter regions increase gene expression
 - A. fumigatus TR₃₄ and TR₄₆

Mechanisms of adaptation

- Most eukaryotic species have two (diploid) or >2 (polyploid) sets of chromosomes
 - result of ancient whole genome duplication or hybridisation events
- Many clinically relevant fungi undergo ploidy changs during adaptation
 - to adverse/novel environments
 - some fungi exist as stable haploid, diploid, polyploid, undergo ploidy changes and revert back

Mechanisms of adaptation

- Aneuploidy = abnormal chromosome number
 - observed in novel environments
 - periods of cellular stress
 - during ploidy level changes

Aneuploidy detection

- Flow cytometry (A)
 - disadvantages:
 - isolates with single aneuploid chr may not be significantly different in fluorescent signal compared to known ploidy control
 - isolates with multiple aneuploidies may not show different DNA fluorescence because they cancel each other out
- Whole genome sequencing (B)
 - copy number of each chromosome relative to entire genome based on read depth
 - aneuploidy is increase or decrease in read depth relative to entire genome
 - can also pick up segmental chromosome aneuploidies and gene duplications/deletions
 - allele frequencies determine baseline ploidy
 - haploid (1N) genome will have allele frequency of 1, diploid (2N) will have an allele frequency of 0.5 and 1 etc (C)
 - limited to strains with significant heterozygosity

Aneuploidy in fungi

- S. cerevisiae
 - environmental isolates include stable haploids, diploids and polyploids
 - clinical and industrial isolates show aneuploidies
 - adaptive stable aneuploid chromosomes found in sherry and ale strains

Aneuploidy in fungi

- S. cerevisiae
 - environmental isolates include stable haploids, diploids and polyploids
 - clinical and industrial isolates show aneuploidies
 - adaptive stable aneuploid chromosomes found in sherry and ale strains
- Cryptococcus neoformans
 - Aneuploidy, and amplification of Chr 1 is linked to antifungal drug stress and resistance
- Candida albicans
 - aneuploidy seen as adaptation to growth on alternative growth sources, exposure to drugs, high temperature, host interactions

Strain	Aneuploidy	MIC ₅₀	MIC ₉₀
KN99a		2	4
T2.1	+Chr6, -Chr13	4	8
T2.2	+Chr1	8	16
T2.3	+Chr1	8	16
T2.6	+Chr1, -Chr9	16	32
T2.7	+Chr1,8	8	16
T2.8	-Chr13	4	8

Strain	Aneuploidy	MIC ₅₀	MIC ₉₀
KN99α		2	4
T3.2	+Chr1	16	32
T3.4	+Chr1	16	32
T3.5	+Chr1, 4	16	32
T3.8	+Chr1	32	64
T3.10	+Chr1, 4	32	32

- Breaking and reassembling pieces of DNA to create new combinations of alleles.
- Sexual recombination:
 - involves meiosis —> crossingover —> exchange of DNA
 - need two compatible mating types
 - creates genetic variation in the offspring

- Breaking and reassembling pieces of DNA to create new combinations of alleles.
- Parasexual recombination:
 - no meiosis
 - undergo fusion to form heterokaryons, and chromosomes exchange segments before returning to a haploid state.

- Gene conversion:
 - DNA repair mechanisms may favour one gene sequence over another, leading to unequal representation/new allelic combinations
- Mitotic recombination
 - gene shuffling in asexual fungi

- Adaptability
 - Environmental adaptation e.g. temperature, nutrient availability
- Drug resistance and/or virulence
 - see A. fumigatus highest number of meiotic crossovers
- Speciation
 - Recombination contributes to genetic divergence, and formation of new species