# Experiment 1

Name: Alireza Asmaee

First Question:

How to set up a microcontroller in the real world?

#### Answer:

we should use 3 wires:

- ✓ VCC
- ✓ GND
- ✓ AVCC (This should connect to VCC whenever not use)

need them to power up the microcontroller.



## Reference:

✓ How to prepare an AtMega16 micro controller on a breadboard

## **Second Question:**

### What is a pull-up?

One important issue that pins of microcontrollers have is floating-inputs that means they have random voltage or value (0,1) so to solve this problem we can use pull-ups for having High voltage (1) & low voltage (0) for pins.

We can use bottom circuit to have pull-up:



But when a,b connect we get a short circuit between Ground & Vcc thatmakes a big current and it makes heat. To solve this problem we use resistor to prevent the high current like down picture:



For calculate minimum R for this can use bottom formula:

$$R_{min} = (V_{cc} - V_{OL}) / I_{OL}$$

R(min): This means minimum pull up resistor V(cc):

is supply voltage

IOL & VOL: this comes from a logical - voltage diagram. (like bottomexample)





Also we can have a capacitor to have a delay to pull-up .For the top picture we use it for Reset pin.

$$T = RC$$

We can use the top formula to calculate the time of capacity charge.

#### How to calculate a pull-up resistor?

From reference i get these bottom tips:

- 1.  $1k\Omega$  to  $10k\Omega$  for general purposes. (10k is preferred)
- 2.  $10k\Omega$  to  $100k\Omega$  if you have a low-power use case such as a devicethat is battery powered.

## Reference:

✓ How do I calculate the required value for a pull-up resistor?

## Third Question:

Define resistor it for bottom circuit to turn on LED:



Any type of LED have a different Forward Voltage, see examples :

| Color             | Wavelength<br>Range (nm) | Forward<br>Voltage (V) | Material                                                                                                                                             |
|-------------------|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ♣ Ultraviolet     | < 400                    | 3.1 - 4.4              | Aluminium nitride (AIN)<br>Aluminium gallium nitride (AlGaN)<br>Aluminium gallium indium nitride (AlGaInN)                                           |
| 🔒 Violet          | 400 - 450                | 2.8 - 4.0              | Indium gallium nitride (InGaN)                                                                                                                       |
| 🔒 Blue            | 450 - 500                | 2.5 - 3.7              | Indium gallium nitride (InGaN)<br>Silicon carbide (SiC)                                                                                              |
| Green             | 500 - 570                | 1.9 - 4.0              | Gallium phosphide (GaP)<br>Aluminium gallium indium phosphide (AlGaInP)<br>Aluminium gallium phosphide (AlGaP)                                       |
| - Yellow          | 570 - 590                | 2.1 - 2.2              | Gallium arsenide phosphide (GaAsP)<br>Aluminium gallium indium phosphide (AlGaInP)<br>Gallium phosphide (GaP)                                        |
| Orange /<br>Amber | 590 - 610                | 2.0 - 2.1              | Gallium arsenide phosphide (GaAsP)<br>Aluminium gallium indium phosphide (AlGaUInf<br>Gallium phosphide (GaP)                                        |
| Red               | 610 - 760                | 1.6 - 2.0              | Aluminium gallium arsenide (AlGaAs)<br>Gallium arsenide phosphide (GaAsP)<br>Aluminium gallium indium phosphide (AlGaInP)<br>Gallium phosphide (GaP) |
| f Infrared        | > 760                    | > 1.9                  | Gallium arsenide (GaAs)<br>Aluminium gallium arsenide (AlGaAs)                                                                                       |

For calculate Resistor we can use this formula:

$$R = (V_s - V_{LED}) / I_{LED}$$

## Reference:

✓ Interfacing an LED to a microcontroller

## Question four:

# Store string with 200 character to EEPROM and send it to another microcontroller with 8 wire

The source code of this project is in gitlab in folderQ4\_8\_line\_communicate with two folder:

- ✓ Sender
- ✓ Receiver
- ✓ Proteus schematic

**Note:** runtime video is uploaded to github. (question\_4\_run)

**Note:** commands of LCD get from this table:

| Hex Code | Command to LCD Command Register           |  |
|----------|-------------------------------------------|--|
| 0E       | Display on, Cursor on                     |  |
| 0F       | Display on, cursor blinking               |  |
| 10       | Shift cursor position to left             |  |
| 14       | Shift cursor position to right            |  |
| 18       | Shift the entire display to the left      |  |
| 1C       | Shift the entire display to the right     |  |
| 80       | Force cursor to the beginning of 1st line |  |
| C0       | Force cursor to the beginning of 2nd li   |  |
| 28       | 2-lines and 5 x 7 matrix D4-D7, 4 bits    |  |
| 33       | Go into 4-bit operating mode              |  |
| 32       | Go into 4-bit operating mode              |  |
| 38       | 2-lines and 5 x 7 matrix D0-D7, 8 bits    |  |

#### Reference:

✓ <u>Avr Atmel Atmega16 Eeprom | Avr Atmega</u>

## Question five:

Implement question four project with only one wire.

The source code of this project is in gitlab in folderQ5\_1\_line\_communicate with two folder:

- ✓ Sender
- ✓ Receiver
- ✓ Proteus schematic

#### Reference:

• Bit Operation in AVR Microcontroller | by Orvin Demsy | Medium