Machine Learning(ML) Basics

Tessema Mengistu (Ph.D.)

mengistu@cs.vt.edu

Outline

- Overview of ML
- Classification of ML
- Issues in ML

- Machine learning
 - Study of algorithms and statistical models to solve problems by inference rather than instructions
 - Enables a system to autonomously learn and improve using neural networks and deep learning, without being explicitly programmed, by feeding it large amounts of data
 - A subset of Artificial Intelligence

- A typical ML process follows the following steps ML pipeline:
 - Problem framing
 - Define ML problems from business projects
 - What is the success measurement of the problem?
 - What are the traditional ways of solving the problem?
 - Is there enough quality data to solve the problem using ML?
 - What is the best ML approach to solve the problem?
 - Data collection
 - Collect data from various sources, which may involve data labeling
 - Make sure that the datasets represent the real ML problem and are in the right format for ML model training
 - Data evaluation
 - Examine the data using statistical tools
 - to sample, balance, and scale datasets and handle missing values and outliers in the datasets

- Feature engineering
 - Select and create model features and targets
 - Extract, construct, and transform features
- Model selection
 - choose the appropriate machine learning algorithm(s) based on the problem type (e.g., classification, regression), data characteristics, and performance requirements

- Model training
 - Train the model with the training dataset
 - Minimize the gap between the forecasted target value and the actual target value - the loss function (also called the cost function)
 - Mean Square Error (MSE) A popular loss function for regression

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Model verification
 - Verify the model with the verification dataset
 - Improving the performance of models
 - Model parameter tuning

• Combining different models with diverse strengths -ensemble

- Model testing
 - Test the model with the testing dataset
- Model deployment
 - Deploy the ML model to production
 - Inference applying the trained model to unseen data

- Three major classes based on the type of learning
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

- Supervised learning
 - A machine predicts the class of unknown objects based on prior class-related information of similar objects
 - When you have a labeled dataset that you can use to train your model
 - Broadly categorized:
 - Classification
 - Credit card fraud detection
 - Regression
 - Predicting stock value based on historical trend
 - Example Algorithms: Naïve Bayes, Decision tree, and k-Nearest Neighbors, etc.

- Confusion Matrix:
 - An NxN table that summarizes the number of correct and incorrect predictions that a classification model made
 - True positive (TP) an outcome where the model correctly predicts the positive class
 - False positive (FP) is an outcome where the model incorrectly predicts the positive class
 - False negative (FN) an outcome where the model incorrectly predicts the negative class
 - True negative (TN) is an outcome where the model correctly predicts the negative class

- Evaluation
 - Classification
 - Model accuracy:

$$= \frac{TP + TN}{TP + FP + FN + TN}$$

• **Precision** - the proportion of positive identifications that are correct

$$=\frac{TP}{TP + FP}$$

 Recall (sensitivity) - the proportion of actual positives that were identified correctly

$$=\frac{1P}{TP + FN}$$

- Unsupervised learning
 - A machine finds patterns in unknown objects by grouping similar objects together
 - Training a model on unlabeled data to identify patterns and relationships
 - Pattern discovery or knowledge discovery
 - Categorized as:
 - Clustering
 - Association analysis
 - Example: K-means, DBSCAN

- Reinforcement learning
 - Interacts with its environment and take actions to maximize rewards
 - A machine learns to act on its own to achieve the given goals
 - Agents learn from the environment by trial and error
 - Example Application
 - self-driving cars
 - Algorithms
 - Q-learning, Sarsa

- Issues in Machine Learning
 - Data quality
 - Privacy
 - Bias and ethical issues

- Model underfitting
 - If the target function (model) fails to capture the essential characteristics of the underlying data well
 - Results in both poor performance with training data as well as poor generalization to test data
 - Solution
 - Using more training data
 - Reducing features by effective feature selection

- Model overfitting
 - Model has been designed in such a way that it emulates the training data too closely
 - Results in wrong classification in the test data set
 - Solution
 - Using validation

References

- The Self-Taught Cloud Computing Engineer: A comprehensive professional study guide to AWS, Azure, and GCP. Logan Song. Packt Publishing, 2023
- Machine Learning. S. Chandramouli, S. Dutt, A. K. Das, Pearson Education India, 2018