Lecture 4: Generalizing to unseen data: Smoothing

Jelle Zuidema
ILLC, Universiteit van Amsterdam

(based on slides from Tejaswini Deoskar, Yoav Seginer and Khalil Sima'an)

Taalmodellen 2011, BSc Al

Recap

Relation between language model and next word prediction Markov assumptions: time invariance & limited history Extracting ngrams from corpora Relation between ngrams, HMMs and PCFGs

Generalization & Zipf's law

Learning \approx Generalization to unseen data Zipf's law: the fat head and the long tail

Smoothing (I)

Naive add- λ Good-Turing smoothing

Alan Turing

Smoothing (II)

Katz back-off Jelinek-Mercer from ngrams to PCFGs

Recap: language models and next word prediction

Language/prediction models:
$$P(w_0, w_1, ..., w_m)$$

Chain Rule $P(w_0, w_1, ..., w_m) = P(w_0) \prod_{i=1}^m P(w_i | w_0, ..., w_{i-1})$
Approximation (n-grams)

 $P(w_i | w_1, \dots, w_{i-k}, \dots, w_{i-1}) \approx P(w_i | w_{i-k}, \dots, w_{i-1})$

Markov models An
$$(n-1)^{th}$$
 order Markov model $(n\text{-gram})$:

0-order Markov
$$P(w_0, w_1, ..., w_m) = P(w_0) \prod_{i=1}^m P(w_i)$$

1-order Markov $P(w_0, w_1, ..., w_m) = P(w_0) \prod_{i=1}^m P(w_i|w_{i-1})$
2-order Markov $P(w_0, w_1, ..., w_m) = P(w_0) \prod_{i=1}^m P(w_i|w_{i-2}, w_{i-1})$

Recap: Markov Assumptions

The Markov assumptions:

Time invariance: independent and identical trials!

Limited history: There is a fixed finite k such that for all w_1^{i+1} :

$$P(w_{i+1}|w_1,\ldots,w_i)\approx P(w_{i+1}|w_{i-k},\ldots,w_i)$$

Recap: Estimation

Relative Frequency Estimate

Probabilities of an ngram (word|history) are estimated from frequency of wordin a corpus relative to other words with same history:

$$P(w_i \mid w_{i-k}, \dots, w_{i-1}) = \frac{Count(w_{i-k}, \dots, w_{i-1}, w_i)}{\sum_{w \in V} Count(w_{i-k}, \dots, w_{i-1}, w)}$$

Recap: Estimation

Relative Frequency Estimate

Probabilities of an ngram (word|history) are estimated from frequency of wordin a corpus relative to other words with same history:

$$P(w_i \mid w_{i-k}, \dots, w_{i-1}) = \frac{Count(w_{i-k}, \dots, w_{i-1}, w_i)}{\sum_{w \in V} Count(w_{i-k}, \dots, w_{i-1}, w)}$$

Addition of START and STOP

$$P(w_1,\ldots,w_n) = \prod_{i=1}^{i=n+1} P(w_i|w_{i-n+1},\ldots,w_{i-1})$$

where $w_j = < s >$ (START) for $j \le 0$ en $w_{n+1} = < /s >$ (STOP)

$$\sum_{w \in V \cup \{STOP\}} \textit{Count}(w_{i-k}, \dots, w_{i-1}, w) = \textit{Count}(w_{i-k}, \dots, w_{i-1})$$

Interpolation

Extrapolation

${\sf Extrapolation}$

Easy, if

Simple relation between input and output

Easy, if

- Simple relation between input and output
- ▶ Input and output have few dimensions and few possible values

Easy, if

- Simple relation between input and output
- ▶ Input and output have few dimensions and few possible values
- Training data is a good sample of test domain

Easy, if

- Simple relation between input and output
- ▶ Input and output have few dimensions and few possible values
- Training data is a good sample of test domain

Easy, if

- Simple relation between input and output
- ▶ Input and output have few dimensions and few possible values
- Training data is a good sample of test domain

NLP: assigning probabilities, syntactic analyses or meanings to sequences of words

 Complicated relationship between a sequence of words and its probability, grammaticality or meaning (cf. "arbitrariness", "compositionality", "recursion")

Easy, if

- Simple relation between input and output
- ▶ Input and output have few dimensions and few possible values
- Training data is a good sample of test domain

NLP: assigning probabilities, syntactic analyses or meanings to sequences of words

- Complicated relationship between a sequence of words and its probability, grammaticality or meaning (cf. "arbitrariness", "compositionality", "recursion")
- Very many basic units (rules, words, constructions)

Easy, if

- Simple relation between input and output
- ▶ Input and output have few dimensions and few possible values
- Training data is a good sample of test domain

NLP: assigning probabilities, syntactic analyses or meanings to sequences of words

- Complicated relationship between a sequence of words and its probability, grammaticality or meaning (cf. "arbitrariness", "compositionality", "recursion")
- Very many basic units (rules, words, constructions)
- ▶ Very many rare events (cf. Zipf's law), poor generalization across domains, inherently dynamic.

Zipf distribution (revisited)

Vocabulary size: 43729? Unobserved true words?

Word-frequency distributions in corpora of different sizes

Estimates of vocabulary size depend on corpus size!

unobserved words decreases only slowly with corpus size!

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat sees the mouse", ..., "Tom sees Jerry", "the mouse sees Jerry"

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the

cat sees the mouse", ..., "Tom sees Jerry", "the mouse

sees Jerry"

Problem: P("Jerry sees the mouse") = 0

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat sees the mouse", ..., "Tom sees Jerry", "the mouse

sees Jerry''

Problem: P("Jerry sees the mouse") = 0

Data: text does not contain bigrams $\langle START, Jerry \rangle$ and

 $\langle \textit{Jerry}, \textit{sees} \rangle$

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat sees the mouse", ..., "Tom sees Jerry", "the mouse

sees Jerry''

Problem: P("Jerry sees the mouse") = 0

Data: text does not contain bigrams $\langle START, Jerry \rangle$ and

 $\langle \textit{Jerry}, \textit{sees} \rangle$

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat sees the mouse", ..., "Tom sees Jerry", "the mouse sees Jerry"

Problem: P("Jerry sees the mouse") = 0

Data: text does not contain bigrams $\langle START, Jerry \rangle$ and $\langle Jerry, sees \rangle$

Zeros: are called "unseen events",

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat sees the mouse", ..., "Tom sees Jerry", "the mouse sees Jerry"

Problem: P("Jerry sees the mouse") = 0

Data: text does not contain bigrams $\langle START, Jerry \rangle$ and $\langle Jerry, sees \rangle$

Zeros: are called "unseen events",

Question: the above sentence should have a non-zero probability,

how do we estimate its probability?

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat sees the mouse", …, "Tom sees Jerry", "the mouse sees Jerry"

Problem: P("Jerry sees the mouse") = 0

Data: text does not contain bigrams $\langle START, Jerry \rangle$ and $\langle Jerry, sees \rangle$

Zeros: are called "unseen events",

Question: the above sentence should have a non-zero probability,

how do we estimate its probability?

▶ Why are zero's a problem for language models?

► Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing

- Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing
- ► The problem will get worse as our language models get more informed by adding linguistic knowledge (it is time-consuming to annotate data)

- Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing
- ► The problem will get worse as our language models get more informed by adding linguistic knowledge (it is time-consuming to annotate data)
 - ► For e.g., in case of *n*-gram models, sparse-data problem is worse as *n* increases.

- Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing
- ► The problem will get worse as our language models get more informed by adding linguistic knowledge (it is time-consuming to annotate data)
 - ► For e.g., in case of *n*-gram models, sparse-data problem is worse as *n* increases.
- Symptom for another problem: Maximum-Likelihood counts might be either too high or too low, which implies a suboptimal model : Model does not generalize.

- Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing
- ► The problem will get worse as our language models get more informed by adding linguistic knowledge (it is time-consuming to annotate data)
 - ► For e.g., in case of *n*-gram models, sparse-data problem is worse as *n* increases.
- Symptom for another problem: Maximum-Likelihood counts might be either too high or too low, which implies a suboptimal model : Model does not generalize.

- Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing
- ► The problem will get worse as our language models get more informed by adding linguistic knowledge (it is time-consuming to annotate data)
 - ► For e.g., in case of *n*-gram models, sparse-data problem is worse as *n* increases.
- Symptom for another problem: Maximum-Likelihood counts might be either too high or too low, which implies a suboptimal model : Model does not generalize.

So: we will need a general solution for this.

More data: Does that solve the problem completely?

There are always events that will be missing.

Zipf's law: an empirical observation about word frequency distributions.

freq(e) the frequency of e in naturally occurring data rank(e) the rank of e in the list ordered by frequency

Zipf's law: There is a constant K such that for all e

$$freq(e) \times rank(e) = K$$

Example: An event of the $100,000^{th}$ rank occurs 10,000 times less often than an event of the 10^{th} rank, i.e. $freq(e_{100000}) = \frac{1}{10,000} \times freq(e_{10})$

Hence: Very many infrequent words and only few frequent

ones in any text.

Zipf's law

- Very many infrequent words and a few frequent ones in any text.
- Having a resonably sized corpus is important, but we always need smoothing.
- Smoothing technique used has a large effect on the performance of any NLP system.

General Idea: Discount and redistribute

Reserve mass from seen events in order to give to unseen events.

General Idea: Discount and redistribute

Reserve mass from seen events in order to give to unseen events.

But... the devil is in the details!

► How to discount mass in a proper way? (how much is enough)

General Idea: Discount and redistribute

Reserve mass from seen events in order to give to unseen events.

But... the devil is in the details!

- ► How to discount mass in a proper way? (how much is enough)
- How to redistribute mass? (define neighbors)

General Idea: Discount and redistribute

Reserve mass from seen events in order to give to unseen events.

But... the devil is in the details!

- ▶ How to discount mass in a proper way? (how much is enough)
- How to redistribute mass? (define neighbors)
- How can we combine different model estimates and benefit from the complementary strengths of different models (Interpolation)?

Naive smoothing: Adding λ method (1)

Events: Set E of possible events, e.g. bigrams over V: $E = (V \times V)$

Data: $e_1, \ldots e_N$ (data size is N events)

Counting: Event (bigram) e occurs C(e) times in Data

Relative Frequency estimate: $P_{rf}(e) = \frac{C(e)}{N}$

Naive smoothing: Adding λ method (1)

Events: Set E of possible events, e.g. bigrams over V:

 $E = (V \times V)$

Data: $e_1, \ldots e_N$ (data size is N events)

Counting: Event (bigram) e occurs C(e) times in Data

Relative Frequency estimate: $P_{rf}(e) = \frac{C(e)}{N}$

Smoothing:

Add $0 < \lambda \le 1$: for all $e \in E$ (bigrams) change C(e) and $P_{rf}(e)$

$$\hat{C}(e) = C(e) + \lambda$$

$$P_{\lambda}(e) = \frac{C(e) + \lambda}{N + \lambda |E|}$$

Add λ method (2)

Example: Bigram Model

$$P_{\lambda}(w_i|w_{i-1}) = \frac{\lambda + c(w_{i-1}w_i)}{\sum_{w_i}(\lambda + C(w_{i-1}, w_i))}$$

Advantages: very simple and easy to apply

Disadvantages: Method performs poorly:

- All unseen events receive same probability!
- All events upgraded by λ !

Good-Turing method

Suppose we have data with total count of events being N:

Standard notation:

r = frequency of event e

 n_r = number of events e with frequency r

 $n_r = |\{e \in E | Count(e) = r\}|$

 $N_r = \text{total frequency of events occurring } r \text{ times}$ $N_r = r \times n_r$

Observation:
$$N = \sum_{r=1}^{\infty} N_r$$
 $N_0 = 0$

What we want: To recalculate the frequency r of an event (r^*)

Good-Turing Estimates

For events e with frequency r, the Good-Turing estimate r^* is given by:

$$r^* = (r+1) \times \frac{n_{r+1}}{n_r}$$

 n_r : number of events with freq. r

 n_{r+1} : number of events with freq. r+1

The Good-Turing probability estimate for events with frequency r is given by

$$P_{GT}(e) \approx \frac{r^*}{N}$$

Simple Good-Turing

For events e with frequency r, the Good-Turing estimate r^* is given by:

$$r^* = (r+1) \times \frac{n_{r+1}}{n_r}$$

If n_0 is unknown, estimate it using a linear regression on the frequency spectrum in logspace (Gale & Sampson, 1995).

r (MLE) 0 1 2 3 4

$$N_r$$
 75 × 10⁹ 2 × 10⁶ 450000 189000 106000
 c^* (GT) 0.0000270 0.446 1.26 2.24 3.24

Reference: Good-Turing Frequency Estimation without Tears, William A Gale and Geoffrey Sampson (1995).

Properties of Good-Turing

Preservation: Total number of counts is preserved:

$$N = \sum_{r=1}^{\infty} r n_r = \sum_{r=0}^{\infty} (r+1) n_{r+1} = \sum_{r=0}^{\infty} n_r r^*$$

Discounting: Total freq. for non-zero events is discounted

$$N_0 = n_0 \times 0^* = n_0 \times (1 \times \frac{n_1}{n_0}) = n_1$$

Zero freq. events

$$P_0 = \frac{r^*}{N} = \frac{0*}{N} = \frac{n_1}{N}$$

Zero events: No explicit method for redistributing N_0 among zero events!

Properties of Good-Turing

Preservation: Total number of counts is preserved:

$$N = \sum_{r=1}^{\infty} r n_r = \sum_{r=0}^{\infty} (r+1) n_{r+1} = \sum_{r=0}^{\infty} n_r r^*$$

Discounting: Total freq. for non-zero events is discounted

$$N_0 = n_0 \times 0^* = n_0 \times (1 \times \frac{n_1}{n_0}) = n_1$$

Zero freq. events

$$P_0 = \frac{r^*}{N} = \frac{0*}{N} = \frac{n_1}{N}$$

Zero events: No explicit method for redistributing N_0 among zero events!

GT provides a principled approach to discounting; do we now redistribute reserved mass (N_0) uniformly among zero events?

Given some data, we observe that

► Frequency of trigram ⟨in, birds, of⟩ is zero

Given some data, we observe that

- ► Frequency of trigram ⟨in, birds, of⟩ is zero
- ► Frequency of trigram ⟨power, hide, study⟩ is also zero

Given some data, we observe that

- ► Frequency of trigram ⟨in, birds, of⟩ is zero
- ► Frequency of trigram ⟨power, hide, study⟩ is also zero
- Uniform distribution over unseen events means:

```
P(in, birds, of \mid in, birds) = P(power, hide, study \mid power, hide)
```

Given some data, we observe that

- ► Frequency of trigram ⟨in, birds, of⟩ is zero
- ► Frequency of trigram ⟨power, hide, study⟩ is also zero
- Uniform distribution over unseen events means:

$$P(in, birds, of \mid in, birds) = P(power, hide, study \mid power, hide)$$

Does that refelect our knowledge about English use?

```
P(in, birds, of \mid in, birds) > P(power, hide, study \mid power, hide)
```

Given some data, we observe that

- ► Frequency of trigram ⟨in, birds, of⟩ is zero
- ► Frequency of trigram ⟨power, hide, study⟩ is also zero
- Uniform distribution over unseen events means:

$$P(in, birds, of \mid in, birds) = P(power, hide, study \mid power, hide)$$

Does that refelect our knowledge about English use?

```
P(in, birds, of \mid in, birds) > P(power, hide, study \mid power, hide)
```

➤ This might be achieved if we look at bigrams! $P(in, birds \mid in) P(birds, of \mid birds)$ vs.

```
P(power, hide | power) P(hide, study | hide)
```

Recap

Relation between language model and next word prediction Markov assumptions: time invariance & limited history Extracting ngrams from corpora Relation between ngrams, HMMs and PCFGs

Generalization & Zipf's law

Learning \approx Generalization to unseen data Zipf's law: the fat head and the long tail

Smoothing (I)

Naive add- λ Good-Turing smoothing

Alan Turing

Smoothing (II)

Katz back-off Jelinek-Mercer from ngrams to PCFGs

Alan Turing (1912-1954)

- ► Turing machine (1936)
- War-time decoding, Enigma
- ▶ Postwar: stored program computer (1945-46 Secret report on ACE; more complete than Von Neumann's EDVAC), involved in Manchester Mark I.
- ► Turing test (1950)
- ► Good-Turing (Good, 1953: Biometrika)
- Turing patterns partial differential equations

Turing Machine: Level 0 on the Chomsky Hierarchy

Embedded Pushdown Automaton: Level 1

Pushdown Automaton: Level 2 (Context-free)

Finite-state Machine: Level 3 (Regular)

(NO MEMORY TAPE)

Enigma

Turing Patterns

Recap

Relation between language model and next word prediction Markov assumptions: time invariance & limited history Extracting ngrams from corpora Relation between ngrams, HMMs and PCFGs

Generalization & Zipf's law

Learning \approx Generalization to unseen data Zipf's law: the fat head and the long tail

Smoothing (I)

Naive add- λ Good-Turing smoothing

Alan Turing

Smoothing (II)

Katz back-off Jelinek-Mercer from ngrams to PCFGs

Katz's Backoff

In order to re-distribute reserved mass, use a lower-order distribution

Discount and backoff Suppose $C(w_{i-1}w_i) = r$:

$$C_{katz}(w_{i-1}w_i) = \begin{cases} d_r \times r & \text{if } r > 0 \\ \alpha(w_{i-1}) \times P_{ML}(w_i) & \text{if } r = 0 \end{cases}$$

Discounting all non-zero counts are discounted by $d_r \ (\approx \frac{r^*}{r})$,

Redistribution of reserved mass over zero-events is proportional to their lower-order distribution, for bigrams this is unigrams, for trigrams this is bigrams etc.

Computing d_r

Efficiency: discount only events occurring $1 \le r \le k$: e.g. k = 5,

- Constraint 1: Use Good-Turing estimate for discounting. (There exists some constant μ such that $d_r = 1 \mu(1 \frac{r^*}{r})$
- Constraint 2: What has been discounted must be redistributed:

 Total mass for zero-events is equal to the discounted mass.

According to Good-Turing $N_{1} = n_{1} O^{*} = n_{2} {n \choose 1} = n_{3} O^{*}$

$$N_0 = n_0 0^* = n_0 (\frac{n_1}{n_0}) = n_1$$
:

$$\sum_{r=1}^k n_r \times [r - (d_r r)] = n_1$$

Solution for d_r

$$d_r = \frac{\frac{r^*}{r} - \frac{(k+1)n_{k+1}}{n_1}}{1 - \frac{(k+1)n_{k+1}}{n_1}}$$

Solution for $\alpha(w_{i-1})$ is through solving the constraint that total probability of all events (zero and non-zero occuring) must be equal to 1.0.

See extracts from Chen and Goodman Tech. Report. for details.

Smoothing of Markov Model

Smoothing an (n+1) model gives us an n-gram model.

$$P^*(w_{n+1}|w_1,\ldots,w_n) = \frac{Count^*(w_1,\ldots,w_n,w_{n+1})}{\sum_{w\in V} Count^*(w_1,\ldots,w_n,w)}$$

Here,

$$\sum_{w \in V} Count^*(w_1, \dots, w_n, w) \neq Count^*(w_1, \dots, w_n)$$

Smoothing by linear interpolation: Jelinek-Mercer

(Also called finite mixture models)

Interpolate a bigram with a unigram model using some $0 \leq \lambda \leq 1$

$$P_{interp}(w_{i-1}w_i) = \lambda P_{ML}(w_{i-1}w_i) + (1-\lambda)P_{ML}(w_i)$$

Estimation: data for P_{ML} and held-out data for estimating the λ 's

Algorithm: Baum-Welch/Forward-Backward for Hidden Markov

Models searching for a Maximum-Likelihood estimate

of the λ .

More on this when we learn HMMs!

 $... \, > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

 $... \, > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

$$P^*(z|wxy) = \lambda_4 P_{ML}(z|wxy) + (1 - \lambda_4)P^*(z|xy)$$

 $... > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

$$P^{*}(z|wxy) = \lambda_{4}P_{ML}(z|wxy) + (1 - \lambda_{4})P^{*}(z|xy)$$

$$P^{*}(z|xy) = \lambda_{3}P_{ML}(z|xy) + (1 - \lambda_{3})P^{*}(z|y)$$

 $... > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

$$P^{*}(z|wxy) = \lambda_{4}P_{ML}(z|wxy) + (1 - \lambda_{4})P^{*}(z|xy)$$

$$P^{*}(z|xy) = \lambda_{3}P_{ML}(z|xy) + (1 - \lambda_{3})P^{*}(z|y)$$

$$P^{*}(z|y) = \lambda_{2}P_{ML}(z|y) + (1 - \lambda_{4})P^{*}(z)$$

Ngrams: natural backoff hierarchy

 $... > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

$$P^{*}(z|wxy) = \lambda_{4}P_{ML}(z|wxy) + (1 - \lambda_{4})P^{*}(z|xy)$$

$$P^{*}(z|xy) = \lambda_{3}P_{ML}(z|xy) + (1 - \lambda_{3})P^{*}(z|y)$$

$$P^{*}(z|y) = \lambda_{2}P_{ML}(z|y) + (1 - \lambda_{4})P^{*}(z)$$

$$P^{*}(z) = \lambda_{1}P_{ML}(z) + (1 - \lambda_{4})c$$

Ngrams: natural backoff hierarchy

 $... > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

$$P^{*}(z|wxy) = \lambda_{4}P_{ML}(z|wxy) + (1 - \lambda_{4})P^{*}(z|xy)$$

$$P^{*}(z|xy) = \lambda_{3}P_{ML}(z|xy) + (1 - \lambda_{3})P^{*}(z|y)$$

$$P^{*}(z|y) = \lambda_{2}P_{ML}(z|y) + (1 - \lambda_{4})P^{*}(z)$$

$$P^{*}(z) = \lambda_{1}P_{ML}(z) + (1 - \lambda_{4})c$$

$$P^*(z|wxy) = \lambda_{wxyz} P_{ML}(z|wxy) + (1 - \lambda_{wxyz}) P^*(z|xy)$$
...

Ngrams: natural backoff hierarchy

 $... > \mathsf{Tetragrams} > \mathsf{Trigrams} > \mathsf{Bigrams} > \mathsf{Unigrams} > \mathsf{constant}$

$$P^{*}(z|wxy) = \lambda_{4}P_{ML}(z|wxy) + (1 - \lambda_{4})P^{*}(z|xy)$$

$$P^{*}(z|xy) = \lambda_{3}P_{ML}(z|xy) + (1 - \lambda_{3})P^{*}(z|y)$$

$$P^{*}(z|y) = \lambda_{2}P_{ML}(z|y) + (1 - \lambda_{4})P^{*}(z)$$

$$P^{*}(z) = \lambda_{1}P_{ML}(z) + (1 - \lambda_{4})c$$

$$P^*(z|wxy) = \lambda_{wxyz} P_{ML}(z|wxy) + (1 - \lambda_{wxyz}) P^*(z|xy)$$
...

Deleted interpolation: for each next level, we delete the conditioning context *furthest back in the past*.

Need for smoothing in PCFGs

John cuts pizza with anchovis John cuts bread with a knive

John cuts pizza with anchovis
John cuts bread with a knive

Need to smooth lexicalized rules!

Deleted interpolation

P(expansions|parent, grandparent, leftsister, lexical head) = ?

Deleted interpolation

P(expansions|parent, grandparent, leftsister, lexical head) = ?

Priority list

- 1. parent
- 2. lexical head
- 3. grandparent
- 4. left sister

Deleted interpolation

P(expansions|parent, grandparent, leftsister, lexical head) = ?

Priority list

- 1. parent
- 2. lexical head
- 3. grandparent
- 4. left sister

P(expansions|parent, grandparent, leftsister, lexical head) =

$$\lambda_0 P_{MLE}(...)+ (1-\lambda_0) P(\text{expansions}|\text{parent, grandparent, lexical head})$$

No natural hierarchy in PCFG

Deleted interpolation: for each next level, we delete the conditioning context according to our best guess of the least relevant information.

Summary

- ▶ *n*-gram statistics suffer from sparseness in text as *n* grows
- There are smoothing methods against sparseness
- ▶ Add λ is too simple
- Good-Turing only for reserving mass for zero-events
- Katz allows redistribution according to a lower order distribution
- Interpolation combines lower order distributions

Reference: Joshua Goodman and Stanly Chen. *An empirical study of smoothing techniques for language modeling*. Tech. report TR-10-98, Harvard University, August 1998.

http://research.microsoft.com/~joshuago/

Next Class

Hidden Markov Models

- Theory of Hidden Markov Models
- ► POS tagging: Implementing the language model and the lexical model
- Smoothing
- ► Efficient POS taggers: Trellis, forward/backward algorithm.

No class next week on Monday (Easter)