Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Spis treści

1	Informacje v	wstępne	1
	02.10.2024	Grafy Cayleya	1
	1.	Metryka słów	1
	2.	Graf Cayleya	1
	3.	Quasi-izometrie	3
	4.	Przestrzenie geodezyjne	5
	5.	Lemat Milnora-Švarca	6
	6.	Grupy współmierne	7
	09.10.2024	Lemat Milnora-Švarca	8
2	Niezmienni	ki izometrii	13
	16.10.2024	Końce (w nieskończoności) grup przestrzeni	13
	1.	Granica odwrotna	14
	2.	Przestrzeń końców	16
	23.10.2024	Przestrzeń końców jest niezmiennikiem q.i	19
	1.	Alternatywny opis przestrzeni końców (promienie)	19
	2.	Dowód - końce są niezmiennikiem q.i	20
	30.10.2024	Końce skończenie generowalnych grup - twierdzenie Freudanthala-	
		Hopfa	23
	06.11.2024	Grupy o dwóch końcach	26
	1.	Działanie grupy na przestrzeni końców	26
	2.	Grupy o 2 końcach zawierają cykliczną podgrupę skończonego indeksu	27
	13.11.2024	Tempo wzrostu grupy	29
	1.	Funkcje wzrostu	29
	2.	Abstrakcyjne funkcje wzrostu	30
	3.	Tempo wzrostu grupy	30
	4.	Grupy o wzroście wielomianowym	33
	20.12.2024	Funkcja wzrostu i metryka Riemanna	35
	04.12.2024	Wymiar asymptotyczny oraz dowód asdim $\mathbb{Z}^n=\operatorname{asdim} \mathbb{R}^n=n$	38
	1.	Wymiar asymptotyczny	38
	2.	Dowód homologiczny	39
	3.	Zgrubna (coarse) niezmienniczość wymiaru asymptotycznego	41

	4.	Przykład użycia zgrubnej równoważności	42
3	Hiperboliczn	ność	43
	11.12.2024	Przestrzenie hiperboliczne	43
	1.	Brzeg Gromova	45
	18.12.2024	Końce a brzeg grupy hiberbolicznej	48
	08.01.2025	Brzeg Gromova ∂G grupy hiperbolicznej G o nieskończenie wielu koń-	
		cach	49

08.01.2025 Brzeg Gromova ∂G grupy hiperbolicznej G o nieskończenie wielu końcach.

Do tej pory dowiedzieliśmy się, że

- $G \operatorname{ma} \infty \operatorname{wiele} \operatorname{końców} \iff \operatorname{Ends}(G) \cong \operatorname{zbiór} \operatorname{Cantora}$
- jeśli G jest hiperboliczna, to końce G odpowiadają komponentom spójności ∂G .

Pozostaje pytanie, jak wygląda ∂G , gdy hiperboliczna grupa G ma ∞ wiele końców?

Rozważmy przypadek $\Gamma = G * H$, gdzie G i H to nieskończone grupy hiperboliczne. Niech S będzie skończonym zbiorem generatorów G, a T - skończonym zbiorem generatorów H. $S \cup T$ jest więc zbiorem generatorów Γ i graf Cayleya $C = C(\Gamma, S \cup T)$ to suma drzewiasta grafów G oraz H.

Promienie geodezyjne w C to sklejone kawałki geodezyjnych z C(G,S) oraz C(H,T). Można podzielić je na dwa rodzaje

- promienie, które od pewnego miejsca są w pojedynczej kopii C(G, S) lub C(H, T)
- promienie, które przechodzą przez nieskończenie wiele kopii grafów grup składowych.

Dla każdej kopii C_0 grafu C(G, S) w C promienie geodezyjne o początku w e pozostające od pewnego miejsca w tej kopii wyznaczają podzbiór w $\partial \Gamma = \partial C$, który oznaczymy przez ∂C_0 .

Fakt 3.11

 ∂C_0 jest metrycznie przeskalowaną kopią brzegu $\partial G = \partial C(G, S)$, o czynnik a^{-D} , gdzie D jest to odległość od e do tego wierzchołka w C_0 przez który wchodzą do C_0 promienie o początku w e.

Fakt 3.12

Dla różnych kopii C_0 i C_0' grafów C(G,S) lub C(H,T) w C podzbiory ∂C_0 , $\partial C_0' \subseteq \partial (G*H)$ są rozłączne.