Операции с целыми числами

11

Обзор главы

В разделе	Вы найдете	на стр.
11.1	Сложение целых чисел	11–2
11.2	Сложение двойных целых чисел	11–3
11.3	Вычитание целых чисел	11–4
11.4	Вычитание двойных целых чисел	11–5
11.5	Умножение целых чисел	11–6
11.6	Умножение двойных целых чисел	11–7
11.7	Деление целых чисел	11-8
11.8	Деление двойных целых чисел	11–9
11.9	Получение остатка от деления двойных целых чисел	11–10
11.10	Оценка битов слова состояния в случае арифметических операций с целыми числами	11–11

11.1 Сложение целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду *Сложить целые числа*. Эта команда складывает входы IN1 и IN2. Результат можно считать на OUT. Если результат выходит за пределы допустимого диапазона для целых чисел, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ADD_I EN	IN1	INT	I, Q, M, D, L или константа	Первое слагаемое
IN1 OUT	IN2	INT	I, Q, M, D, L или константа	Второе слагаемое
IN2 ENO	OUT	INT	I, Q, M, D, L	Результат сложения
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-1. Блок "Сложение целых чисел" и параметры

Рис. 11-2. Сложение целых чисел

11.2 Сложение двойных целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Сложить двойные целые числа. Эта команда складывает входы IN1 и IN2. Результат можно считать на ОUТ. Если результат выходит за пределы допустимого диапазона для двойных целых чисел, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ADD_DI EN	IN1	DINT	I, Q, M, D, L или константа	Первое слагаемое
IN1 OUT	IN2	DINT	I, Q, M, D, L или константа	Второе слагаемое
IN2 ENO	OUT	DINT	I, Q, M, D, L	Результат сложения
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-3. Блок "Сложение двойных целых чисел" и параметры

Рис. 11-4. Сложение двойных целых чисел

11.3 Вычитание целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Вычесть целые числа. Эта команда вычитает вход IN2 из IN1. Результат можно считать на OUT. Если результат выходит за пределы допустимого диапазона для целых чисел, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
SUB_I EN	IN1	INT	I, Q, M, D, L или константа	Уменьшаемое
IN1 OUT	IN2	INT	I, Q, M, D, L или константа	Вычитаемое
IN2 ENO	OUT	INT	I, Q, M, D, L	Результат вычитания
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-5. Блок "Вычитание целых чисел" и параметры

Рис. 11-6. Вычитание целых чисел

11.4 Вычитание двойных целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Вычесть двойные целые числа. Эта команда вычитает вход IN2 из IN1. Результат можно считать на OUT. Если результат выходит за пределы допустимого диапазона для двойных целых чисел, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
SUB_DI EN			I, Q, M, D, L или константа	Уменьшаемое
IN1 OUT	IN2	DINT	I, Q, M, D, L или константа	Вычитаемое
IN2 ENO	OUT	DINT	I, Q, M, D, L	Результат вычитания
	ENO	BOOL	I, Q, M, D, L	

Рис. 11-7. Блок "Вычитание двойных целых чисел" и параметры

Рис. 11-8. Вычитание двойных целых чисел

11.5 Умножение целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Умножить целые числа. Эта команда перемножает входы IN1 и IN2. Результат в виде 32-битного целого числа можно считать на OUT. Если результат выходит за пределы допустимого диапазона для 16-битных чисел, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
MUL_I EN	IN1	INT	I, Q, M, D, L или константа	Первый сомножитель
IN1 OUT	IN2	INT	I, Q, M, D, L или константа	Второй сомножитель
IN2 ENO	OUT	DINT	I, Q, M, D, L	Результат умножения
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-9. Блок "Умножение целых чисел" и параметры

Рис. 11-10. Умножение целых чисел

11.6 Умножение двойных целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Умножить двойные целые числа. Эта команда перемножает входы IN1 и IN2. Результат в виде 32-битного целого числа можно считать на OUT. Если результат выходит за пределы допустимого диапазона для двойных целых чисел, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
MUL_DI EN	IN1	DINT	I, Q, M, D, L или константа	Первый сомножитель
IN1 OUT	IN2	DINT	I, Q, M, D, L или константа	Второй сомножитель
IN2 ENO	OUT	DINT	I, Q, M, D, L	Результат умножения
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-11. Блок "Умножение двойных целых чисел" и параметры

Рис. 11-12. Умножение двойных целых чисел

11.7 Деление целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду *Разделить целые числа*. Эта команда делит вход IN1 на IN2. Целую часть частного от деления (округленный результат) можно считать на OUT. Если частное выходит за пределы допустимого диапазона для целого числа, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
DIV_I EN	IN1	INT	I, Q, M, D, L или константа	Делимое
IN1 OUT	IN2	INT	I, Q, M, D, L или константа	Делитель
IN2 ENO	OUT	INT	I, Q, M, D, L	Результат деления
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-13. Блок "Деление целых чисел" и параметры

Рис. 11-14. Деление целых чисел

11.8 Деление двойных целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Разделить двойные целые числа. Эта команда делит вход IN1 на IN2. Частное от деления (округленный результат) можно считать на ОUТ. Команда Разделить двойные целые числа хранит частное от деления в виде единственного 32-битного значения в формате DINT. Этак команда не выдает остатка от деления. Если частное выходит за пределы допустимого диапазона для двойного целого числа, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
DIV_DI EN	- INI		I, Q, M, D, L или константа	Делимое
IN1 OUT	IN2	DINT	I, Q, M, D, L или константа	Делитель
IN2 ENO	OUT	DINT	I, Q, M, D, L	Результат деления
	ENO	BOOL	I, Q, M, D, L	Z

Рис. 11-15. Блок "Деление двойных целых чисел" и параметры

Рис. 11-16. Деление двойных целых чисел

11.9 Получение остатка от деления двойных целых чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Вернуть остаток от деления двойных целых чисел. Эта команда делит вход IN1 на IN2. Остаток от деления можно считать на OUT. Если результат выходит за пределы допустимого диапазона для двойного целого числа, то биты OV и OS слова состояния равны 1, а ENO равно 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
MOD EN	IN1	DINT	I, Q, M, D, L или константа	Делимое
IN1 OUT	IN2	DINT	I, Q, M, D, L или константа	Делитель
IN2 ENO	OUT	DINT	I, Q, M, D, L	Остаток
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 11-17. Блок "Возврат остатка от деления двойных целых чисел" и параметры

Рис. 11-18. Получение остатка от деления двойных целых чисел

11.10 Оценка битов слова состояния в случае арифметических операций с целыми числами

Описание

Операции с целыми числами влияют на следующие биты слова состояния:

- CC1 и CC0
- OV
- OS

Тире (–) в таблице означает, что результат операции не влияет на этот бит.

Таблица 11–1. Состояние сигнала битов слова состояния (результат в допустимом диапазоне)

Допустимый диапазон результата	Бити	Биты слова состояния				
Ц елые (16 и 32 бита)	CC1	CC0	ov	os		
0 (ноль)	0	0	0	_		
16 бит: −32 768 ≤ результат < 0 (отрицательное число) 32 бита: −2 147 483 648 ≤ результат < 0 (отрицательное число)	0	1	0	_		
16 бит: 32 767 ≥ результат > 0 (положительное число) 32 бита: 2 147 483 647 ≥ результат > 0 (положительное число)	1	0	0	_		

Таблица 11–2. Состояние сигнала битов слова состояния (результат за пределами допустимого диапазона)

Недопустимый диапазон для результата	Биты слова состояния				
Целые (16 и 32 бита)	CC1	CC0	ov	os	
16 бит: результат ≥ 32 767 (положительное число) 32 бита: результат ≥ 2 147 483 647 (положительное число)	1	0	1	1	
16 бит: результат ≤ -32768 (отрицательное число) 32 бита: результат ≤ -2147483648 (отрицательное число)	0	1	1	1	

Таблица 11–3. Состояние сигнала битов слова состояния (арифметические операции с целыми числами (32 бита) +D, /D и MOD)

Операция	Биты слова состояния			
	CC1	CC0	OV	os
+D: результат = -4 294 967 296	0	0	1	1
/D или MOD: деление на 0	1	1	1	1