SVM

What is SVM?

- SVM: Support Vector Machines.
- Supervised Learning Models used for classification and regression analysis
- Linear Classifier
- Can perform non linear Classification.

Linear Classification

Non Linear Classification

Complex Boundaries

Regularization parameter

How much you want to avoid misclassifying each training example.

Low Value of Regularization

High Value of Regularization

Gamma

How far the influence of a single training example reaches

High Value of Gamma

Low Value of Gamma

Conversion to high Dimensions

Margin

Deciding the best Model

B is the best model

Advantages

- It works well with clear margin of separation
- Do not stuck to local minima
- Effective in high dimensional spaces
- Memory efficient as it uses a subset of training points in decision (called support vectors)

Disadvantages

- It doesn't perform well, when data set is large as the training time is higher
- Doesn't perform well when target classes are overlapping
- Does not directly provide probability estimates

Thank You!!!