MAT141 - Éléments d'algèbre Donné par Jean-Philippe Burelle

Julien Houle

Automne 2025

Table des matières

1	Ensembles	
		Manières de définir une fonction
;	Groupes	
		Propriétés élémentaires des groupes
		Produit cartésien de groupes
		Isomorphismes de groupes
		Puissances d'éléments de groupes
		Sous-groupes

Chapitre 1 Ensembles

Cours 1

Idée: ensemble=patate

Notation. $E \subseteq F \Leftarrow \forall x \in E, x \in F$.

Remarque. $E \subseteq E$.

Notation. La cardinalité d'un ensemble, |E|, est le nombre d'éléments d'un ensemble.

Définition. Définition d'un ensemble par compréhension: $E = \{n \in \mathbb{Z} | 1 \le n \le 20\}.$

Notation. $E = F \Leftrightarrow E \subseteq F \text{ et } F \subseteq E$.

Définition. Produit cartésien: $E \times F = \{(x,y) | x \in E, y \in F\}.$

Définition. Fonction/Application

 $f:A\to B,\ A$ et B des ensembles, associe à chaque $x\in A$ un unique élément $f(x)\in B$.

Cours 2

Rappel.

• Ensemble collection d'objets

ullet élément" d'un ensemble

• sous-ensemble (\subseteq) $E \subseteq F$ si $x \in E$ implique $x \in F$

• E = F ssi $E \subseteq F$ et $F \subseteq E$

• \cup union \cap intersection

• $E \times F$ produit cartésien (paires (x, y))

• $f: E \to F$ fonction ou application, associe à chaque $x \in E$ un unique $\underline{f(x)} \in F$, image

• 1 $\mathbb{1}_E: E \to E$ est définie comme $\mathbb{1}_E(x) = x$

Manières de définir une fonction

- énumérer f(x) pour chaque $x \in E$
- donner une formule une formule ne définit pas tjrs une fonction, elle doit être valide pour chaque x de l'ensemble de départ.
- en mots (décrire la valeur pour chaque $x \in E$)
- mélange de formule et mots

Définition. Une fonction $f: E \to F$ est inversible s'il existe une fonction $\underbrace{g: F \to E}_*$ telle que $\underbrace{g(f(x)) = x}_{**}$ pour

tout $x \in E$ et $\underbrace{f(g(y)) = y}$ pour tout $y \in F$.

Exemple. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x + 1$ est inversible d'inverse g(y) = y - 1

démo.

On vérifie que

$$g(f(x)) = x$$
 $g(f(x)) = g(x+1)$
= $(x+1) - 1$
= x
 $f(g(y)) = y$ $f(g(y)) = f(y-1)$
= $(y-1) + 1$
= y

Proposition. Si f admet un inverse, celui-ci est unique.

 $d\acute{e}mo$.

Supposons que g_1 et g_2 sont tous deux inverses de f et montrons qu'elles sont gales.

(Pour démontrer que deux fonctions sont égales, il suffit de montrer que $g_1(y) = g_2(y)$ pour tout $y \in F$) Soit $y \in F$.

On a

$$g_1(y) \stackrel{***}{=} g_1(\underbrace{f(g_2(y))}_{*})$$

$$\stackrel{**}{=} g_2(y)$$

Définition. Si $f: E \to F$ et $g: F \to G$, alors la composée de f et g est la fonction $g \circ f: E \to G$ définie par la formule $g \circ f(x) = g(f(x))$.

Définition (Redéfinition de l'inverse). $g \circ f = \mathbb{1}_E$

$$f \circ g = \mathbb{1}_F$$

Exemple. $A = \{a, b, c\}$

 $B = \{d, e, f\}$

 $f: A \to B, a \mapsto d, b \mapsto e, c \mapsto f$

 $g: B \to A, d \mapsto a, e \mapsto b, f \mapsto c$

 $g \circ f : A \to A, \ g \circ f(x) = x, \ g \circ f = \mathbb{1}_A.$

De la m̂ manière, $f \circ g = \mathbb{1}_B$.

Ainsi, g est l'inverse de f.

Notation. On note $g = f^{-1}$ l'inverse de f.

Rappel. Pour trouver l'inverse d'une fonction $f:\mathbb{R}\to\mathbb{R}$ donnée par une formule f(x)=y, on isole x en fonction de y.

Exemple.

$$f(x) = 3x - 8$$
$$y = 3x - 8$$
$$y + 8 = 3x$$
$$\frac{y + 8}{3} = x$$
$$g(y) = \frac{y + 8}{3}$$

Dans un devoir, on commence par la formule de l'inverse et on vérifie q(f(x)) = x et f(q(y)) = y.

Définition. On dit que $f: E \to F$ est une fonction injective si $f(x_1) = f(x_2)$ implique $x_1 = x_2$.

Définition. On dit que $f: E \to F$ est une fonction surjective si pour tout $y \in F$, $\exists x \in E$ t.q. f(x) = y.

Définition. On dit que $f: E \to F$ est une fonction bijective si elle est injective et surjective.

Exemple. $f: \mathbb{R} \to \mathbb{R}^{\geq 0}, f(x) = |x|$ f n'est pas injective, car f(1) = |1| = 1 et f(-1) = |-1| = 1, mais $1 \neq -1$. f est surjective, car soit $y \in \mathbb{R}^{\geq 0}$, alors pour x = y, on a f(x) = f(y) = |y| = y.

$$\begin{array}{cccc} f: & \mathbb{N} & \to & \mathbb{N} \\ & x & \mapsto & x+1 \end{array}$$

f est injective: Soient $x_1, x_2 \in \mathbb{N}$. On suppose $f(x_1) = f(x_2)$.

$$x_1 + 1 = x_2 + 1$$
$$x_1 = x_2$$

f n'est pas surjective $y=0\in\mathbb{N}$ n'est pas égal à f(x) pour $x\in\mathbb{N}$. Si il existait x avec $f(x)=0, x+1=0, x=-1, x\not\in\mathbb{N}$.

 $f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 3.$

f est injective:

Soient $x_1, x_2 \in \mathbb{R}$.

supposons $f(x_1) = f(x_2)$, $2x_1 + 3 = 2x_2 + 3$, $2x_1 = 2x_2$, $x_1 = x_2$.

f est surjective:

Soit $y \in \mathbb{R}$.

On cherche x t.q. f(x) = y. Posons $x = \frac{y-3}{2} \in \mathbb{R}$.

Alors, $f(x) = f\left(\frac{y-3}{2}\right) = 2 \cdot \frac{y-3}{2} + 3 = y - 3 + 3 = y$.

Ainsi, f est bijective

 $f: A \to B$, avec $A = \{1, 48, 57\}$ et $B = \{a, b, c\}$.

 $1 \mapsto a, 48 \mapsto a, 57 \mapsto b.$

f n'est pas injective, car $1 \mapsto a$ et $48 \mapsto a$ avec $1 \neq 48$.

f n'est pas surjective, car aucun élément de $x \in A \mapsto c$.

Remarque. La fonction $f': A \to B'$ avec $B' = \{a, b\}$ est surjective.

Cours 3

Rappel. A, B deux ensembles

- $f: A \to B$ une fonction, associe à chaque $x \in A$ un unique $f(x) \in B$. $x \mapsto f(x)$.
- f est inversible s'il existe $g: B \to A$ t.q. g(f(a)) = a pour tout $a \in A$ et f(g(b)) = b pour tout $b \in B$.
- l'inverse est *unique*.
- La composition de $f: A \to B$ avec $g: B \to C$ est $g \circ f: A \to C$ avec $(g \circ f)(a) = g(f(a))$.
- f est injective si $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
- f est surjective si pour tout $b \in B$ il existe $a \in A$ t.q. f(a) = b.
- f est bijective si elle est injective et surjective.

Proposition. $f: A \to B$ est bijective ssi elle est inversible.

démo.

⇐:

Supposons que f est inversible.

Alors, il existe un inverse $g: B \to A$.

(inj): Soient $x_1, x_2 \in A$.

On suppose que $f(x_1) = f(x_2)$.

Alors, $g(f(x_1)) = g(f(x_2))$

Donc, $x_1 = x_2$

(surj): Soit $y \in B$.

Posons $x = g(y) \in A$.

Alors, f(x) = f(g(y)) = y.

 \Rightarrow :

Supposons f est injective et surjective.

Lemme. Pour chaque $y \in B$, il existe un unique $x \in A$ t.q. f(x) = y.

 $d\acute{e}mo$.

Existance: Comme f est surjective, x existe.

<u>Unicité</u>: Supposons $x_1, x_2 \in A$ t.q. $f(x_1) = f(x_2)$, alors $x_1 = x_2$.

On définit $g: B \to A$ par g(y) = x où x est l'unique élément du lemme.

On vérifie:

Soit $x \in A$, alors $g(\underbrace{f(x)}_{y}) = x$, par définition de g.

Soit $y \in B$, alors $f(\underbrace{g(y)}_{\text{l'unique } x \text{ t.q. } f(x) = y}) = y$.

Définition. Une opération (interne, binaire) sur un ensemble E est un fonction $m: E \times E \to E$.

Exemple. $E = \mathbb{Z}$,

$$m: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$

$$(n,m) \longmapsto n+m$$

$$m: \ \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$

$$(n,m) \longmapsto n \cdot m$$

$$\begin{array}{cccc} d: & \mathbb{Q} \times \mathbb{Q} & \longrightarrow & \mathbb{Q} \\ & (x,y) & \longmapsto & \frac{x}{y} \end{array}$$

n'est pas une opération, car $(1,0)\mapsto \frac{1}{0}$ qui n'est pas défini. (d n'est pas une fonction.)

Cependant,

$$d: \quad \mathbb{Q}_* \times \mathbb{Q}_* \quad \longrightarrow \quad \mathbb{Q}_* \\ (x,y) \quad \longmapsto \quad \frac{x}{y}$$

est une opération.

A un ensemble

 $E = \{f : A \to A\}$, où f est une fonction.

$$c: E \times E \longrightarrow E$$

$$(f,g) \longmapsto f \circ g$$

La composition est une opération.

Notation. On note la plupart du temps une opération par un symbole entre les entrées.

Exemple. m(x,y) := x * y, ou x + y, ou $x \circ y$, ou xy

Définition.

Un élément neutre pour une opération * est un élément $e \in E$ t.q. pour tout $x \in E$, e * x = x et x * e = x.

Cours 4

Rappel.

- $f: E \to F$ est bijective $\Leftrightarrow f$ est inversible.
- L'inverse est unique $(g = f^{-1})$
- Opération: $m: E \times E \to E$, ou *: $E \times E \to E$ $(x,y) \mapsto z$
- Élément neutre: $e \in E$ t.q. e * x = x et x * e = x.
- f est injective si tout $y \in F$ a au plus un antécédent
- f est surjective si tout $y \in F$ a au moins un antécédent
- f est bijective si tout $y \in F$ a exactement un antécédent
- x est antécédent de y si f(x) = y

Exemple. Sur \mathbb{N} ,

• 0 est neutre pour +.

$$0+n=n$$

$$n + 0 = n$$

• 1 est neutre pour ×.

$$1 \times n = n$$

$$n \times 1 = n$$

Sur \mathbb{Z} , — est une opération mais elle n'a pas délément neutre.

En effet,

Supposons que $e \in \mathbb{Z}$ est neutre, alors e - n = n pour tout n.

Pour n = 0, e - 0 = 0, donc e = 0.

Pour
$$n = 1$$
, $e - 1 = 1$, donc $-1 = 1$.

• Sur l'ensemble $E = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a,b,c,d \in \mathbb{R} \right\}$, la multiplication matricielle \times est une opération.

La matrice $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est neutre pour \times .

• Sur $E = \{f : A \to A\}$, la fonction $\mathbb{1}_A$ est neutre pour la composition de fonctions.

 $d\'{e}monstration.$

On doit montrer $\mathbb{1}_A \circ f = f$ et $f \circ \mathbb{1}_A = f$ pour tout $f \in E$.

(1) Soit $x \in A$, alors

$$(\mathbb{1}_A \circ f)(x) = \mathbb{1}_A(f(x))$$
$$= f(x)$$

Donc, $\mathbb{1}_A \circ f = f$.

(2) Soit $x \in A$, alors

$$(f \circ \mathbb{1}_A)(x) = f(\mathbb{1}_A(x))$$
$$= f(x)$$

Donc, $f \circ \mathbb{1}_A = f$.

On peut décrire une opération sur un ensemble fini avec sa table "de multiplication".

Exemple.
$$A = \{0, 1\}$$

Définition.

Une opération * sur E est associative si pour tout $x, y, z \in E$, on a (x * y) * z = x * (y * z).

Proposition.

Si * admet un élément neutre, alors celui-ci est unique.

 $d\'{e}monstration.$

Supposons que e et e' sont neutres pour *.

On a

$$e * e' = e'$$
 car e est neutre $e * e' = e$ car e' est neutre

Donc, e = e'.

Définition.

Soit E un ensemble, * une opération sur E et $e \in E$ un neutre pour *. On dit que $a,b \in E$ sont inverses si a*b=e et b*a=e.

Dans ce cas, on dit que a et b sont inversibles.

Exemple.

Dans \mathbb{Z} avec +, 3 et -3 sont inverses. En effet, on a 3+(-3)=0 et (-3)=3=0 avec 0 l'élément neutre de +. Exemple.

Dans \mathbb{Z} avec \times , le neutre est 1, mais seuls 1 et -1 sont inversibles. En effet, on a $1 \times 1 = 1$ et $(-1) \times (-1) = 1$. Remarque.

L'élément neutre est son propre inverse. En effet, e*e=e, pour tout * qui admet e comme élément neutre.

Proposition.

Si * est associative et admet un élément neutre e, alors les inverses sont uniques s'ils existent.

 $d\'{e}monstration.$

Soit $a \in E$.

Supposons b, b' sont inverses de a.

Alors,

$$b = b * e$$

$$= b * (a * b')$$

$$= (b * a) * b'$$

$$= e * b'$$

$$= b'$$

$$car b' \text{ est inverse de } a$$

$$associativité$$

$$car b \text{ est inverse de } a$$

Notation.

Comme l'inverse de a est unique, on le note a^{-1} .

Exemple.

Dans $E = \{f : A \to A\}$, avec l'opération \circ , les fonctions bijectives sont exactement celles qui sont inversibles pour \circ .

Proposition.

 $La\ composition\ de\ fonctions\ est\ associative.$

 $d\'{e}monstration.$

Soient
$$f:A\to B,\,g:B\to C$$
 et $h:C\to D.$ Soit $a\in A.$

$$\begin{split} ((h \circ g) \circ f)(a) &= (h \circ g)(f(a)) \\ &= h(g(f(a))) \\ &= h((g \circ f)(a)) \\ &= (h \circ (g \circ f))(a) \\ (h \circ g) \circ f &= h \circ (g \circ f) \end{split}$$

Chapitre 6 Groupes

Définition.

Un groupe est un ensemble G muni d'une opération * t.q.

- (A) * est associative
- (N) * admet un neutre
- (I) tout $g \in G$ admet un inverse

Exemple.

(1) $(\mathbb{Z}, +)$ est un groupe.

Neutre: 0

Inverse de n: -n

- (2) $(\mathbb{Q}, +)$ et $(\mathbb{R}, +)$ sont des groupes.
- (3) (\mathbb{Z}, \times) n'est pas un groupe, car, par exemple, 2 n'est pas inversible.
- (4) (\mathbb{Q}, \times) n'est pas un groupe, car 0 n'est pas inversible.
- (5) (\mathbb{Q}_*, \times) et (\mathbb{R}, \times) sont des groupes.

Neutre: 1

Inverse de x: $\frac{1}{x}$

Remarque.

(1), (2) et (5) sont commutatifs.

Remarque.

 $(\mathbb{N},+)$ n'est pas un groupe.

Définition.

Si l'opération d'un groupe est commutative, on note le groupe comme abélien (ou commutatif).

1. $GL(n,\mathbb{R})$ est un groupe pour la multiplication matricielle.

 $GL(n,\mathbb{R}) = \{M | M \text{ est une matrice } n \times n \text{ réelle inversible}\}.$

GL: général linéaire

Neutre:
$$\begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}.$$

 M^{-1} la matrice inverse est l'inverse.

Pour $n \geq 2$, $GL(n,\mathbb{R})$ n'est pas abélien.

2. A un ensemble quelconque

 $S(A) = \{f : A \to A | f \text{ est bijective}\}\ \text{est un groupe pour } \circ.$

Neutre: $\mathbb{1}_A$

Inverse de f: f^{-1}

Remarque.

Cours 5

Rappel.

• Groupe: (G, *)

G ensemble

* opération sur G

(A) * est associative $\forall a, b, c \in G, (a*b)*c = a*(b*c)$

 $(N)\,*$ admet un élément neutre dans G $\exists e\in G \text{ t.q. } \forall a\in G, e*a=a=a*e$

(I) tout élément de G est inversible $\forall a \in G, \exists b \in G \text{ t.q. } a*b = e = b*a$

• Le neutre et l'inverse sont uniques

Remarque.

"Le groupe \mathbb{R} " implique l'opération + et "le groupe \mathbb{R}_* " implique l'opération \times .

Propriétés élémentaires des groupes

(a)
$$\forall a, b \in G, (a * b)^{-1} = b^{-1} * a^{-1}.$$

(b)
$$\forall a \in G, (a^{-1})^{-1} = a$$

(c) Si
$$a * b = a * c$$
, alors $b = c$

(d) Si
$$b * a = c * a$$
, alors $b = c$

 $d\'{e}monstration.$

(a) On calcule

$$\begin{array}{lll} (a*b)*(b^{-1}*a^{-1}) = a*(b*(b^{-1}*a^{-1})) & (b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*(a*b)) \\ &= a*((b*b^{-1})*a^{-1}) & = b^{-1}*((a^{-1}*a)*b) \\ &= a*(e*a^{-1}) & = b^{-1}*(e*b) \\ &= a*a^{-1} & = b^{-1}*b \\ &= e & = e \end{array}$$

Donc, $(a * b)^{-1} = b^{-1} * a^{-1}$.

(b) Comme $a^{-1} * a = e = a * a^{-1}$, a est l'inverse de a^{-1} , donc $(a^{-1})^{-1} = a$.

(c) Supposons a * b = a * c. Alors

$$a^{-1} * (a * b) = a^{-1} * (a * c)$$

 $(a^{-1} * a) * b = (a^{-1} * a) * c$
 $e * b = e * c$
 $b = c$

(d) Supposons b * a = c * a. Alors

$$(b*a)*a^{-1} = (c*a)*a^{-1}$$
$$b*(a*a^{-1}) = c*(a*a^{-1})$$
$$b*e = c*e$$
$$b = c$$

Exemple.

$$(\mathbb{Z}_3, +).$$

$$\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$$

+	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	$\overline{0}$	1	$\overline{2}$
$\overline{1}$	1	$\overline{2}$	3
$\overline{2}$	$\overline{2}$	$\overline{0}$	1

+ est associative.

 $\overline{0}$ est l'élément neutre.

$$(\overline{1})^{-1} = \overline{2}.$$

$$(\overline{2})^{-1} = \overline{1}.$$

 $(\mathbb{Z}_3, +)$ est un groupe abélien.

Remarque. La symétrie de la table par rapport à la diagonale implique la commutativité.

Exemple.

 (\mathbb{D}_3, \circ) - groupe dihédral d'ordre 3.

Groupe des symétries d'un triangle équilatéral.

$$\mathbb{D}_{3} = \left\{ \begin{array}{c} \varepsilon \\ \text{identit\'e r\'eflexion par rapport \`a la verticale r\'eflexion par rapport \`a} \end{array}, \begin{array}{c} \beta \\ \text{r\'eflexion par rapport \`a} \end{array}, \begin{array}{c} \gamma \\ \text{r\'eflexion par rapport \`a} \end{array}, \begin{array}{c} \rho \\ \text{r\'eflexion par rapport \'a} \end{array}, \begin{array}{c} \sigma \\ \text{r\'eflexion par rapport \'a} \end{array} \right\}$$

_	0	ε	α	β	γ	ρ	σ
	ε	ε	α	β	γ	ρ	σ
	α	α	ε	ρ	σ	β	γ
	β	β	σ	ε	ρ	γ	α
	γ	γ	ρ	σ	ε	α	β
	ρ	ρ	γ	α	β	σ	ε
Ī	σ	σ	β	γ	α	ε	ρ

 (\mathbb{D}_3, \circ) n'est pas un groupe abélien.

Cours 6

Rappel.

• Groupe: (G, *) avec A, N, I.

Abélien: C.

•

$$a*b = a*c b*a = c*a (a^{-1})^{-1} = a (a*b)^{-1} = b^{-1}*a^{-1}$$

Exemple.

$$(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{Q}_*,\times),(\mathbb{R}_*,\times)$$
 abéliens, $\mathbb{Z}_3,\mathbb{D}_3,GL(n,\mathbb{R}).$

$$S(E) = \{f: E \to E \mid f \text{ est bijective}\}.$$

Remarque. E n'est pas l'ensemble utilisé dans la définition du groupe.

Produit cartésien de groupes

$$(G,*)$$
 et (H,\diamond) deux groupes.

Proposition.

 $G \times H$ est un groupe lorsque muni de l'opération $(a,b) \bullet (a',b') = (a*a',b \diamond b')$, avec $a,a' \in G$ et $b,b' \in H$. démonstration.

(N) $e \in G$ le neutre et $e' \in H$ le neutre, alors $(e, e') \in G \times H$

$$(a,b) \bullet (e,e') = (a*e,b \diamond e')$$
$$= (a,b)$$
$$(e,e') \bullet (a,b) = (e*a,e' \diamond b)$$
$$= (a,b)$$

(e, e') est bien neutre.

- $(I) \ (a,b) \in G \times H,$ alors (a^{-1},b^{-1}) est inverse de (a,b). exercice
- (A) exercice

Exemple. • $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$

$$(x,y) + (x',y') = (x+x',y+y').$$

• $(\mathbb{Z}_2,+)$

$$\begin{array}{c|cccc}
+ & \overline{0} & \overline{1} \\
\hline
\overline{0} & \overline{0} & \overline{1} \\
\hline
\overline{1} & \overline{1} & \overline{0}
\end{array}$$

 $\mathbb{Z}_2 \times \mathbb{Z}_2$

	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$
$(\overline{0},\overline{0})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$
$(\overline{0},\overline{1})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{0})$
$(\overline{1},\overline{0})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$
$(\overline{1},\overline{1})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{0})$

Isomorphismes de groupes

Définition. (G,*) et (H,\diamond) deux groupes.

Un isomorphisme de G vers H est une application $f: G \to H$ t.q.

- 1. $\forall a, b \in G, f(a * b) = f(a) \diamond f(b)$. Préservation des opérations
- 2. f est bijective.

Exemple.

- $(\mathbb{R},+)$ et (\mathbb{R}^+_*,\times) $f:\mathbb{R} \to \mathbb{R}^+_*$ $x \mapsto e^x$ est un isomorphisme de groupes.
 - (1) Soient $x, y \in \mathbb{R}$.

$$f(x + y) = e^{x+y}$$

$$= e^x \times e^y$$

$$= f(x) \times f(y)$$

(2) $\ln : \mathbb{R}^+_* \to \mathbb{R}$ est inverse de $f: \ln e^x = x \forall x \in \mathbb{R}$ et $e^{\ln x} = x \forall x \in \mathbb{R}^+_*$.

Proposition. Si $f: G \to H$ est un isomorphisme de groupes, alors $f(e_G) = e_H$, où e_G est l'élément neutre de G et e_H est l'élément neutre de H.

démonstration. Stratégie: montrer que $f(e_G)$ est neutre pour H et utiliser l'unicité.

Soit $b \in H$.

Comme f est bijective, $\exists a \in G \text{ t.q. } f(a) = b$

$$f(e_G) \diamond b = f(e_G) \diamond f(a)$$

$$= f(e_G * a)$$

$$= f(a)$$

$$= b$$

$$b \diamond f(e_G) = f(a) \diamond f(e_G)$$

$$= f(a * e_G)$$

$$= f(a)$$

$$= b$$

On a donc que $f(e_G) \in H$ est neutre pour \diamond , mais comme l'élément neutre est unique, $f(e_G) = e_H$.

Exemple. Pour $f: \mathbb{R} \to \mathbb{R}^+_*$, $f(0) = e^0 = 1$.

Proposition. Si $f: G \to H$ est un isomorphisme de groupes, alors $f(a^{-1}) = f(a)^{-1}$, pour tout $a \in G$.

démonstration. Stratégie: montrer que $f(a^{-1})$ est inverse de f(a) et utiliser l'unicité.

$$f(a^{-1}) \diamond f(a) = f(a^{-1} * a)$$
 $f(a) \diamond f(a^{-1}) = f(a * a^{-1})$
= $f(e_G)$ = e_H = e_H

On a donc que $f(a^{-1})$ est inverse de f(a), mais comme l'inverse est unique, $f(a^{-1}) = f(a)^{-1}$.

Exemple. Pour $f: \mathbb{R} \to \mathbb{R}^+_*$, $f(-x) = e^{-x} = (e^x)^{-1} = f(x)^{-1} = \frac{1}{f(x)}$, où -x est l'inverse de x pour + et $\frac{1}{f(x)}$ est l'inverse de f(x) pour \times .

Remarque. Si G, H sont des groupes finis et f est un isomorphisme, alors f "envoie la table de G à celle de H".

	*	e_G	a_1	a_2	 	*	$ e_H $	$f(a_1)$	$f(a_2)$	 _
	e_G					$f(e_G)$				
G:	a_1			$a_1 * a_2$	\xrightarrow{f}	$f(a_1)$			$f(a_1) \diamond f(a_2)$: H
	a_2					$f(a_2)$				
	:					:				

Avec $f(a_1 * a_2) = f(a_1) \diamond f(a_2)$.

Exemple.

 \mathbb{Z}_2 , H et C_2 sont isomorphes.

Il existe un isomorphisme entre chaque paire.

Proposition. Si $f: G \to H$ est un isomorphisme, alors $f^{-1}: H \to G$ est un isomorphisme. démonstration.

(1) Soient $b_1, b_2 \in H$.

$$f^{-1}(b_1 \diamond b_2) = f^{-1}(f(f^{-1}(b_1)) \diamond f(f^{-1}(b_2)))$$
$$= f^{-1}(f(f^{-1}(b_1) * f^{-1}(b_2)))$$
$$= f^{-1}(b_1) * f^{-1}(b_2)$$

(2) f^{-1} est bijective, car elle est inversible d'inverse f.

$$f \circ f^{-1} = \mathbb{1}_H$$
$$f^{-1} \circ f = \mathbb{1}_G$$

Proposition (Transitivité).

 $\hat{S}i\ f:G\to H\ et\ g:H\to K\ sont\ des\ isomorphismes,\ alors\ g\circ f:G\to K\ est\ un\ isomorphisme.$ démonstration.

(1) Soient $a, b \in G$

$$(g \circ f)(a * b) = g(f(a * b))$$

$$= g(f(a) \diamond f(b))$$

$$= g(f(a)) \oplus g(f(b))$$

$$= (g \circ f)(a) \oplus (g \circ f)(b)$$

(2) $g \circ f$ est inversible d'inverse $f^{-1} \circ g^{-1}$.

Puissances d'éléments de groupes

Définition (par récurrence).

$$a\in G,\,n\in\mathbb{N}$$

1.
$$a^0 := e_G$$

2.
$$a^n = a * a^{n-1}, \forall n \ge 1$$

Exemple.

•

$$a^{4} = a * a^{3}$$

$$= a * a * a * 2$$

$$= a * a * a * a^{1}$$

$$= a * a * a * a * a^{0}$$

$$= a * a * a * a * e$$

$$= a * a * a * a$$

• Dans $(\mathbb{Z}, +)$, $2^3 = 3 \cdot 2 = 2 + 2 + 2$.

Proposition. $a^{n+m} = a^n * a^m, \forall n, m \in \mathbb{N}.$

démonstration par récurrence sur n.

1. n = 0:

$$a^{0+m} = a^m$$

$$= e * a^m$$

$$= a^0 * a^m$$

2. supposons que $a^{n+m} = a^n * a^m$ pour un $n \ge 0$.

$$a^{(n+1)+m} = a^{n+m+1}$$

= $a * a^{n+m}$
hyp rec = $a * (a^n * a^m)$
= $(a * a^n) * a^m$
= $a^{n+1} * a^m$

Définition. Pour $n \in \mathbb{Z}$.

Si $n \ge 0$, on a déjà défini a^n .

Si n < 0, on définit $a^n = (a^{-1})^{-n}$.

Exemple. $a^{-3} = a^{-1} * a^{-1} * a^{-1}$.

Proposition. $a^{n+m} = a^n * a^m, \forall n, m \in \mathbb{Z}.$

Proposition. $(a^m)^n = a^{mn}, \ \forall m, n \in \mathbb{N}.$ Vraie aussi pour $m, n \in \mathbb{Z}$.

démonstration par récurrence sur m.

1. m = 0:

$$(a^n)^0 = e$$
$$a^{n \cdot 0} = a^0 = e$$

2. supposons que $(a^n)^m = a^{nm}$ pour un certain $m \in \mathbb{N}$.

$$(a^n)^{m+1} = (a^n)(a^n)^m$$
hyp rec = $(a^n)a^{nm}$

$$= a^{n+nm}$$

$$= a^{n(m+1)}$$

Cours 7

Rappel.

• Isomorphisme: $f: G \to H$ t.q.

(1)
$$f(ab) = f(a)f(b)$$

avec $a * b$ et $f(a) \diamond f(b)$ implicitement.

(2) f est bijective

"même table"

• f, g isomorphismes $\Rightarrow f^{-1}, g \circ f$ isomorphismes. $\mathbb{1}_G : G \to G$ est trivialement un isomorphisme.

- G est isomorphe à H s'il existe un isomorphisme $f:G\to H$.
- Puissances:

Soit $a \in G$ avec G un groupe.

$$- a^{0} = e$$

$$- a^{n+1} = aa^{n}$$

$$- a^{-n} = (a^{-1})^{n}$$

$$- a^{n+m} = a^{n}a^{m}$$

$$- (a^{n})^{m} = a^{n \cdot m}$$

 \bullet f isomorphisme

$$- f(e_G) = e_H$$
$$- f(a^{-1}) = f(a)^{-1}$$

Proposition. f isomorphisme $f: G \to H$. $a \in G$. Alors, $f(a^n) = f(a)^n$, $\forall n \in \mathbb{Z}$.

 $d\'{e}monstration par r\'{e}currence sur n.$

$$n \ge 0$$
 1. $n = 0$

$$f(a^0) = f(e_G)$$
$$= e_H$$
$$= f(a)^0$$

2. supposons que $f(a^n) = f(a)^n$ pour un certain $n \in \mathbb{Z}$.

$$f(a^{n+1}) = f(a \cdot a^n)$$

$$= f(a)f(a^n)$$
hyp rec = $f(a)f(a)^n$

$$= f(a)^{n+1}$$

n < 0 alors, -n > 0 et

$$f(a^{n}) = f((a^{-1})^{-n})$$

$$= f(a^{-1})^{-n}$$

$$= (f(a)^{-1})^{-n}$$

$$= f(a)^{n}$$

Exemple. $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{R}) \middle| x \in \mathbb{R} \right\}$, avec la multiplication de matrices. Soient $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} \in H$

(A): associatif, car la multiplication de matrices est associative.

(N): $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in H$ est neutre

(I): l'inverse de
$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
 est $\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$

Ainsi, H est un groupe pour la multiplication matricielle.

On définit
$$f: \mathbb{R} \to H$$
 $x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$

Soient $x, y \in \mathbb{R}$.

$$(1) \ f(x+y) = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = f(x) \cdot f(y)$$

(2) montrons que. f est bijective.

• f est injective Soient $x, y \in \mathbb{R}$. Supposons f(x) = f(y)

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$$
$$x = y$$

• f est surjective Soit $Y = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \in H$, avec $y \in \mathbb{R}$. Y = f(y).

Sous-groupes

Définition. $H \subseteq (G, *)$ est un sous-groupe de G si H est un groupe pour la même opération que G. Exemple.

- $\{e\} \subseteq G$ est un sous-groupe.
- $G \subseteq G$ est un sous-groupe.
- $\{\ldots, -4, -2, 0, 2, 4, \ldots\} = 2\mathbb{Z} \subseteq (\mathbb{Z}, +)$

 $\bullet \ \ {\rm Dans} \ \mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\},\, \{\overline{0},\overline{2}\} \ {\rm est} \ {\rm un} \ {\rm sous\text{-}groupe}.$

$$\begin{array}{c|c|c} + & \overline{0} & \overline{2} \\ \hline \overline{0} & \overline{0} & \overline{2} \\ \hline \overline{2} & \overline{2} & \overline{0} \end{array}$$

Ce groupe est isomorphe à \mathbb{Z}_2 et à $C_2=(\{-1,1\},\times).$

- $(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+).$
- $C_2 \subseteq \mathbb{Q}_* \subseteq \mathbb{R}_*$.
- $\mathbb{D}_3 = \{\varepsilon, \alpha, \beta, \gamma, \rho, \sigma\}.$ $\{\varepsilon, \alpha\}$ et $\{\varepsilon, \rho, \sigma\}$ sont des sous-groupes de \mathbb{D}_3 .

Notation. On note l'ensemble $m\mathbb{Z} = \{m \cdot n \mid n \in \mathbb{Z}\}.$