

CSE408 GCD and Optimization Problem

Lecture #39

Euclidean Algorithm


```
m, n gcd(m,n)
                         Euclidean
                         Algorithm
integer euclid(pos. integer m, pos. integer n)
  x = m, y = n
  while(y > 0)
  r = x \mod y
  x = y
  y = r
  return x
```


Step	$r = x \mod y$	X	У
0		33	77

Step	$r = x \mod y$	<i>X</i>	У
0		33	77
1	33 mod 77 = 33	77	33

Step	$r = x \mod y$	X	У
0		33	77
1	33 mod 77 = 33	77	33
2	77 mod 33 = 11	33	11

Step	$r = x \mod y$	X	Y
0		33	77
1	33 mod 77 = 33	77	33
2	77 mod 33 = 11	33	11
3	33 mod 11 = 0	11	0

Step	$r = x \mod y$	X	y
0		244	117

Step	$r = x \mod y$	X	У
0		244	117
1	244 mod 117 = 10	117	10

Step	$r = x \mod y$	X	y
0		244	117
1	244 mod 117 = 10	117	10
2	117 mod 10 = 7	10	7

gcd(244,117):

Step	$r = x \mod y$	X	у
0		244	117
1	244 mod 117 = 10	117	10
2	117 mod 10 = 7	10	7
3	10 mod 7 = 3	7	3

L11

Step	$r = x \mod y$	X	у
0		244	117
1	244 mod 117 = 10	117	10
2	117 mod 10 = 7	10	7
3	10 mod 7 = 3	7	3
4	7 mod 3 = 1	3	1

gcd(244,117):

Step	$r = x \mod y$	X	y
0		244	117
1	244 mod 117 = 10	117	10
2	117 mod 10 = 7	10	7
3	10 mod 7 = 3	7	3
4	7 mod 3 = 1	3	1
5	3 mod 1=0	1	0

By definition → 244 and 117 are rel. prime.

L11

Euclidean Algorithm Correctness |

```
The reason that Euclidean algorithm works is gcd(x,y) is not changed from line to line. If x', y' denote the next values of x, y then: gcd(x',y') = gcd(y, x \mod y)
= gcd(y, x + qy) \quad \text{(the useful fact)}
= gcd(y, x) \quad \text{(subtract } y \text{-multiple)}
= gcd(x,y)
```

L11

Optimization Problem

- In <u>mathematics</u> and <u>computer science</u>, an **optimization problem** is the <u>problem</u> of finding the *best* solution from all <u>feasible solutions</u>. Optimization problems can be divided into two categories depending on whether the <u>variables</u> are continuous or discrete.
- An optimization problem with discrete variables is known as a combinatorial optimization problem. In a combinatorial optimization problem, we are looking for an object such as an integer, permutation or graph from a finite (or possibly countable infinite) set.

Thank You!!!