Théorie des groupes

1 Théorie des groupes

1.1 Théorèmes

Théorème.

Tout groupe cyclique fini est isomorphe à $\mathbf{Z}/n\mathbf{Z}$ Tout groupe cyclique infini est isomorphe à \mathbf{Z}

Théorème (Lagrange).

Soit G un groupe fini

 $H \le G$

 $|G| = |H| \times [G:H]$

Corollaire.

Soit G un groupe fini

 $x \in G$

L'ordre de x divise le cardinal de G

Corollaire.

Tout groupe d'ordre p premier est cyclique donc isomorphe à $\mathbf{Z}/p\mathbf{Z}$

Théorème (Premier théorème d'isomorphisme).

Soit G,H deux groupes

 $\varphi : G \rightarrow H \ un \ morphisme$

Alors:

 $G/Ker(\varphi)\cong Im(\varphi)$

Théorème (Deuxième théorème d'isomorphisme).

 $Soit\ G\ un\ groupe$

 $H,K \leq G$

On suppose que $H \le N_G(K)$

 $Alors\ HK \leq G,\ K \triangleleft HK,\ H \cap K \triangleleft H\ et:$

 $H/(H \cap K) \cong HK/K$

Théorème (Troisième théorème d'isomorphisme).

Soit G un groupe

 $H, K \triangleleft G \ et \ H \leq K$

Alors $K/H \triangleleft G/H$ et :

 $(G/H)/(K/H)\cong G/K$

Remarque.

A chaque fois qu'il y a dans la conclusion H/K, c'est qu'il y a aussi K⊲H pour que H/K soit bien un groupe

Numéro	Hypothèses	Conclusion
1	$\varphi:G\to H$ un morphisme	$G/Ker(\varphi) \cong Im(\varphi)$
2	$K, H \leq G, H \leq N_G(K)$	$H/(H \cap K) \cong HK/K$
3	$K, H \triangleleft G, K \leq H$	(G/K)/(H/K)

Table 1: Les trois théorèmes d'isomorphismes

1.2 Actions de groupes

Definition.

Soit G un groupe

 $X\ un\ ensemble$

Une action à gauche de G sur X, noté $G \cap X$ est une application $G \times X \to X$ qui satisfait :

 $i) \ \forall x \in X, e \cdot x = x$

 $(ii) \ \forall x \in X, g_1, g_2 \in G, g_1(g_2 \cdot x) = (g_1g_2) \cdot x$

Tout élément g de G définit une application $\sigma_g: X \to X$

 $x \to g \cdot x$

Proposition.

Soit $G \curvearrowright X$ une action

- i) $\forall g \in G, \sigma_g$ est une permutation de X
- ii) $g \to \sigma_q$ est un morphisme de G dans S_X

iii) Si $\phi: G \to S_X$ est un morphisme, on peut définir une action $G \curvearrowright X: g \cdot x = \phi(g)(x)$

Une action $G \curvearrowright X$ est donc la même chose qu'un morphisme $G \to S_X$

Proposition.

Soit $G \curvearrowright X$ une action

i) Le noyau de l'action est le noyau du morphisme associé :

 $\{g \in G/\forall x \in X, g \cdot x = x\}$

ii) Soit $x \in X$

Le stabilisateur de x, noté G_x est :

 $G_x = \{g \in G/g \cdot x = x\}$

iii) L'action est dite fidèle si son noyau est trivial, donc si le morphisme ϕ associé à l'action est injectif. On a de plus :

 $Ker(\phi) = \cap_{x \in X} G_x$

Proposition.

Soit $G \curvearrowright X$ une action

On définit sur X la relation $x \sim x'$ ssi $\exists g \in G/g \cdot x' = x$

 \sim est une relation d'équivalence sur X

 $\forall x \in X, [x]_{\sim} = G \cdot x = g \cdot x/g \in G \text{ et } |G \cdot x| = [G : G_x]$

 $G \cdot x$ est appelée l'orbite de x

On dit que l'action est transitive lorsqu'il n'y a qu'une seule orbite

Definition.

Soit $G \curvearrowright X$ une action

 $Y \subset X$

 $Y \ est \ dite \ G$ -invariante lorsque $\forall g \in G, \forall y \in Y, g \cdot y \in Y$

Théorème (Théorème de Cauchy).

Soit G un groupe fini

p un facteur premier de |G|

G contient un élément d'ordre p

Proposition.

Soit G un groupe

A un ensemble fini

 $G \curvearrowright A$ une action transitive

 $H \triangleleft G$

On note $O_1, ..., O_r$ les orbites de H sur A et on fixe $a \in O_1$ $r = [G : HG_a]$

Proposition (Formule de Burnside).

Soit G un groupe fini qui agit sur un ensemble fini X

On note Ω l'ensemble des orbites pour l'action $G \cap X$ de G sur X

 $|\Omega| = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$

1.2.1 Action par multiplication à gauche

Definition.

Soit G un groupe $G \curvearrowright G : g \cdot g' = gg'$

Proposition.

 $Soit\ G\ un\ groupe$

$$H \leq G$$

On pose X = G/H et on définit $G \curvearrowright X : g \cdot xH = gxH$

- i) L'action est transitive
- ii) Le stabilisateur de H est H
- iii) Le noyau de l'action est $\cap_{g \in G} gHg^{-1}$

Théorème (Théorème de Cayley).

Tout groupe est isomorphe à un sous-groupe du groupe symétrique Si |G| = n, alors G est isomorphe à un sous-groupe de S_n

1.2.2 Action par conjugaison

Definition.

Soit G un groupe $G \curvearrowright G : g \cdot h = ghg^{-1}$

Definition.

Deux éléments de G sont conjugués s'ils sont dans la même orbite par cette action Les orbites s'appellent des classes de conjugaisons

Proposition.

Soit $x \in G$ $C_G(x) = G_x$

Proposition.

 $G \curvearrowright \mathcal{P}(G) : g \cdot S = gSg^{-1}$ $N_G(x) = \{g \in G, gS = Sg\}$ $N_G(\{x\}) = C_G(x)$

Le nombre de conjugués d'une partie $S \subset G$ est $[G:N_G(S)]$ Si $x \in G$, le cardinal de la classe de conjugaison de x est $[G:C_G(x)]$

Proposition (Equation des classes).

Soit G un groupe fini

 $g_1,...,g_r$ les représentantes de classes de conjugaisons qui ne sont pas dans le centre $|G|=|Z(G)|+\sum_{i=0}^r[G:C_G(g_i)]$

Théorème.

Soit p une nombre premier

G un groupe de cardinal $p^n, n \in \mathbf{N}^*$

Alors Z(G) est non trivial

Corollaire.

Soit p un nombre premier

G un groupe de cardinal p^2

Alors G est abélien et $G \cong \mathbf{Z}/p^2\mathbf{Z}$ ou $G \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$

Théorème (Théorème de Cauchy).

Soit G un groupe fini

p un facteur premier de |G|

G admet un sous-groupe d'ordre p

1.3 Théorèmes de Sylow

Definition.

Soit p un nombre premier

G un groupe

On dit qu'un groupe fini est un p-groupe si son ordre est une puissance de p

Un sous-groupe de G qui est un p-groupe s'appelle un p-sous-groupe de G

 $Si |G| = p^{\alpha}m$ ou $p \nmid m$, un sous-groupe de G d'ordre p^{α} est appelé un sous-groupe de Sylow de G

 $Syl_p(G) = \{H \leq G : H \text{ est un } p\text{-Sylow de } G\} \text{ et on pose } n_p(G) = |Syl_p(G)|$

Théorème.

Soit G un groupe fini de cardinal $p^{\alpha}m$ ou $p \nmid m$

- 1) $Syl_p(G) \neq \emptyset$
- 2) Si $Q \leq G$ est un p-sous-groupe et $P \leq G$ est un p-Sylow, alors :

 $\exists g \in G/gQg^{-1} \le P$

En particulier, tous les p-Sylow sont conjugués

3) $n_p \equiv 1[p] \ et \ n_p|m$

Lemme.

Soit $P \in Syl_p(G)$

Si Q est un p-sous-groupe de G, alors $Q \cap N_G(P) = Q \cap P$

1.4 Produit direct et semi-direct

Definition.

Soit $G_1, ..., G_n$ des groupes

Le produit direct $G_1 \times ... \times G_n$ muni de la loi définie par $(g_1, ..., g_n) \cdot (g'_1, ..., g'_n) = (g_1 g'_1, ..., g_n g'_n)$ est un groupe

Proposition.

Soit G_1, G_2 deux groupes

On pose $G_1' = \{(g, e_2)/g \in G_1\}$ et $G_2' = \{(e_1, g)/g \in G_2\}$

- 1) G_1' est un sous-groupe distingué de G isomorphe à G_1 et $G/G_1' \cong G_2$
- 2) Si on identifie G_1 à G'_1 et G_2 à G'_2 , alors :

 $\forall g_1 \in G_1, g_2 \in G_2, g_1g_2 = g_2g_1$

Remarque.

Le résultat est vrai avec un nombre fini de facteurs

Théorème.

Soit G un groupe

 $H, K \leq G$

Supposons que:

- 1) $H, K \triangleleft G$
- 2) $H \cap K = \{e\}$

Alors $HK \cong H \times K$

 $En\ particulier,\ H\ et\ K\ commutent$

Remarque.

Pour n groupes $H_1, ..., H_n$ tels que :

 $H_1, ..., H_n \triangleleft G, \forall i \neq j H_i \cap H_j = \{e\}$

Alors:

 $H_1...H_n \cong H_1 \times ... \times H_n$

Théorème (Théorème chinois).

Soit $n_1, ... n_k \in \mathbf{N}$ tels que $\forall i \neq j, PGCD(n_i, n_j) = 1$

Alors: $\mathbf{Z}/n_1...n_k\mathbf{Z} \cong \mathbf{Z}/n_1\mathbf{Z} \times ... \times \mathbf{Z}/n_k\mathbf{Z}$

Théorème.

Soit H,K des groupes

 $\varphi: K \to Aut(H)$ un morphisme

$$G = \{(h, k)/h \in H, k \in K\}$$

On définit sur G l'opération suivante :

$$(h_1, k_1)(h_2, k_2) = (h_1\varphi(k_1)(h_2), k_1k_2) = (h_1(k_1 \cdot h_2), k_1k_2)$$

Alors:

- i) G est un groupe, l'élément neutre est $(1_H, 1_K)$, $|G| = |H| \times |K|$
- ii) On pose $H = \{(h, 1_K)/h \in H\}$ et $K = \{(1_H, k)/k \in K\}$

```
\begin{split} \tilde{H} &\leq G \ et \ \tilde{H} \cong H \\ \tilde{K} &\leq G \ et \ \tilde{K} \cong K \\ On \ identifie \ H \ \grave{a} \ \tilde{H} \ et \ K \ \grave{a} \ \tilde{K} \\ iii) \ H &\leq G \\ iv) \ H \cap K &= \{1_G\} \\ v) \ Pour \ h &\in H, k \in K, khk^{-1} = \varphi(k)(h) \\ vi) \ \Pi : G \to K, (h,k) \to k \ est \ un \ morphisme \ surjectif \ et \ ker(\Pi) = H \end{split}
```

Definition.

Soit H,K des groupes

 $\varphi: K \to Aut(H)$ un morphisme

$$G = \{(h, k)/h \in H, k \in K\}$$

G muni de l'opération suivante : $(h_1, k_1)(h_2, k_2) = (h_1\varphi(k_1)(h_2), k_1k_2) = (h_1(k_1 \cdot h_2), k_1k_2)$ est un groupe appelé la produit semi-direct de H et K par rapport à φ et il est noté $H \rtimes_{\varphi} K$ (ou $K \ltimes_{\varphi} H$)

Proposition.

Soit H,K des groupes

 $\varphi: K \to Aut(H)$ un morphisme

Les propositions suivantes sont équivalentes :

- i) $id: H \rtimes_{\varphi} K \to H \times K$ est un isomorphisme
- $ii) \ \forall k \in K, \varphi(k) = id_H$
- $iii) \ K \triangleleft H \rtimes_{\varphi} K$

Théorème.

 $Soit\ G\ un\ groupe$

$$H, K \leq G$$

On suppose que :

- i) $H \triangleleft G$
- *ii)* $H \cap K = \{1_G\}$

On pose $\varphi: K \to Aut(H)$ défini par $\forall k \in K, h \in H, \varphi(k)(h) = khk^{-1}$

Alors:

 $HK \leq G \ et \ HK \cong H \rtimes_{\varphi} K$

2 Groupes usuels

2.1 Groupe $(\mathbb{Z}/n\mathbb{Z},+)$

 $\mathbf{Z}/n\mathbf{Z} = \{ \bar{x} : x \in [0,n-1] \}$

Groupe abélien, cyclique engendré par tout élément \bar{x} tel que $x \land n=1$

2.2 Groupe symétrique

Definition. Le groupe symétrique (S_n, o) est le groupe des permutations de [|1, n|]

Definition.

On appelle support de σ l'ensemble des points non fixes de σ : supp $(\sigma) = \{n \in [1, n]/\sigma(n) \neq n\}$

Remarque.

 $x \in supp(\sigma) \Rightarrow \sigma(x) \in supp(\sigma)$

Lemme.

Soit $\sigma, \tau \in S_n$ Si $supp(\sigma) \cap supp(\tau) = \emptyset$, $alors : \sigma\tau = \tau\sigma$

L'ordre d'un k-cycle est de k

Théorème.

Toute permutation est décomposable en produit de cycles à supports disjoints

Tout cycle est décomposable en produit de transpositions

Proposition.

$$S_n = \langle \{(ii+1)/i \in [1, n-1]\} \rangle$$

$$S_n = \langle (12...n), (12) \rangle$$

Definition.

Soit $\sigma \in S_n$

On dit que i, j est une inversion pour σ lorsque i < j et $\sigma(i) > \sigma(j)$ On note $N(\sigma)$ le nombre d'inversions pour σ

Definition.

La signature d'une permutation $\sigma \in S_n$, noté $\epsilon(\sigma)$ est : $\epsilon(\sigma) = (-1)^{N(\sigma)}$

Proposition.

$$\epsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Proposition.

 ϵ est un morphisme surjectif $\epsilon((a_1,...,a_k))=(-1)^{k+1}$

Definition.

Une permutation de signature 1 est dite paire Une permutation de signature -1 est dite impaire

Proposition (Conjugaison dans S_n).

Soit $\sigma, \tau \in S_n$

On pose $\sigma = (a_{11}a_{12}...a_{1k_1})...(a_{m1}a_{m2}...a_{mk_m})$ la décomposition de σ en produit de cycles à supports disjoints $\tau \sigma \tau^{-1} = (\tau(a_{11}...\tau(a_{1k_1}))...(\tau(a_{m1})...\tau(a_{mk_m}))$

Definition.

Soit $\sigma \in S_n$

On note $n_1, ..., n_r$ la suite croissante des longueurs des cycles apparaissant dans la décomposition de σ en produit de cycles à supports disjoints

Une partition de [|1, n|] est une suite $1 \le n_1 \le n_r \le n$ avec $n = \sum_{i=1}^r n_i$

Proposition.

Deux permutation sont conjugués dans S_n si et seulement si elles ont le même type Le nombre de classes de conjugaisons dans S_n est le nombre de partitions de [1, n]

2.3Groupe diédral

Le groupe diédral $D_{2n}, n \geq 3$ est le groupe de symetrie du n-gone regulier

On définit sur [1,n] la relation binaire R_n définit par : iR_nj ssi |j-i|=1 ou i=1 et j=n ou i=n et j=1

Definition.

$$D_{2n} = \{ \sigma \in S_n / \forall i, j \in [1, n], iR_n j \Leftrightarrow \sigma(i)R_n \sigma(j) \}$$

$$\begin{aligned} \mathbf{r} = & (1\ 2\ \dots\ \mathbf{n}) \text{ est la rotation d'angle } \frac{2\pi}{n} \text{ s est la réfléxion par rapport à la droite qui passe par 1} \\ \mathbf{s} = & \begin{cases} & (2n)(3n\text{-}1)\dots(\frac{n}{2}\frac{n}{2}+1)si\ n\ est\ pair} \\ & (2n)(3n\text{-}1)\dots(\frac{n+1}{2}\frac{n+3}{2})si\ n\ est\ impair} \end{cases} \text{ ord}(\mathbf{r}) = \mathbf{n} \text{ et ord}(\mathbf{s}) = 2\ |D_{2n}| = 2netD_{2n} = \{e,r,r^2,...,r^{n-1},s,rs,r^{n-1}\}, \\ & (2n)(3n\text{-}1)\dots(\frac{n+1}{2}\frac{n+3}{2})si\ n\ est\ impair} \end{aligned}$$

2.4 Groupe alternée

Le groupe alterné est le groupe des permutations paires, on le note A_n , on a donc $A_n = \operatorname{Ker}(\epsilon)$ $A_n \triangleleft S_n$ $\operatorname{card}(A_n) = \frac{n!}{2}$ A_n est engendré par les 3-cycles A_n est simple pour $n \geq 5$

3 Exemples de groupes de petits cardinal

3.1 Groupe de Klein

C'est un groupe de cardinal 4 caractérisé par le fait que les trois éléments différents du neutre sont d'ordre deux et e produit de deux de ces éléments distincts donne le troisième. On le note V. C'est un groupe abélien et le plus petit groupe non cyclique.

Table de multiplication du groupe de Klein V_4

	e	a	b	c
\overline{e}	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

3.2
$$S_n, n \in \{2, 3, 4\}$$

3.2.1 S_2

Groupe commutatif $S_2 = \{e, (12)\}$

3.2.2 S_3

Plus petit groupe non abélien $S_3=\{e,(123),(132),(12),(13),(23)\}$ $S_3=D_6,$ gorupe de symétrie du trianle équilatéral

3.2.3 S_4

3.3 $D_{2n}, n \in \{3, 4\}$

3.3.1 D_6

 $D_6=S_3$

3.3.2 D_8

Groupe de symétrie du carré

On montre avec un contre-exemple dans ce groupe que $K \triangleleft H \triangleleft G$ n'implique pas nécéssairement $K \triangleleft G$: $\{e, (13)(24)\} \triangleleft \{e, (13), (24), (13)(24)\} \triangleleft D_8 \text{ mais } \{e, (13)(24)\} \not \triangleleft D_8$

Remarque : $\{e, (13), (24), (13)(24)\}$ est le groupe de Klein

3.4 Q_8

Sous-groupe de
$$GL_2(\mathbf{C})$$

 $\mathbf{I} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \mathbf{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \mathbf{K} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$
En notant 1 la matrice identité :

 $\langle I, J \rangle = \{\pm 1, \pm I, \pm J, \pm K\}$

Plus petit groupe dont tous les sous-groupes sont distingués

4 Liste des groupes de cardinal 1 à 26

G	#	liste des groupes à isomorphisme près
4	2	$C_4, D_2 \cong C_2 \times C_2$
6	2	$C_6, D_3 \cong \mathfrak{S}_3 \cong C_3 \rtimes C_2$
8	5	$C_8, C_2 \times C_4, C_2 \times C_2 \times C_2, Q_8, D_4 \cong C_4 \rtimes C_2$
9	2	$C_9, C_3 \times C_3$
10	2	$C_{10}, D_5 \cong C_5 \rtimes C_2$
12	5	$C_{12}, C_2 \times C_6, D_6 \cong C_6 \rtimes C_2 \cong C_2 \times \mathfrak{S}_3,$
		$\mathfrak{A}_4 \cong (C_2 \times C_2) \rtimes C_3, \ C_3 \rtimes C_4$
14	2	$C_{14}, D_7 \cong C_7 \rtimes C_2$
15	1	C_{15}
16	14	•••
18	5	C_{18} , $C_3 \times C_6$, D_9 , $C_3 \times \mathfrak{S}_3$, $(C_3 \times C_3) \rtimes C_2$
20	5	$C_{20}, C_2 \times C_{10}, C_5 \rtimes_{\varphi_1} C_4, C_5 \rtimes_{\varphi_2} C_4,$
		$D_{10} \cong C_{10} \rtimes C_2 \cong C_5 \rtimes (C_2 \times C_2)$
21	2	$C_{21}, C_7 \rtimes C_3$
22	2	$C_{22}, \ D_{11} \cong C_{11} \rtimes C_2$
24	15	••••
25	2	$C_{25}, C_5 \times C_5$
26	2	$C_{26}, D_{13} \cong C_{13} \rtimes C_2$

Figure 1: Enter Caption