

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2020-07-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[평행사변형의 정의]

두 쌍의 대변이 각각 평행한 사각형 $\Rightarrow \overline{AB}//\overline{DC}, \overline{AD}//\overline{BC}$

기본문제

[문제]

1. 다음 평행사변형 ABCD**에서** $\angle D = 102^{\circ}$. $\overline{AD} = 11$ 일 때, x + y의 값을 구하면?

- 90
- 2 100
- 3 110
- **4** 120
- ⑤ 130

[예제]

2. 다음은 평행사변형 ABCD에서 두 대각선의 교점 을 O라고 할 때, $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 임을 설명하 는 과정이다. 빈 칸에 들어갈 것으로 옳은 것을 모 두 고르면?

△OAB와 △OCD에서 AB // DC이므로

∠ABO= (카) (엇각) ···⊙

∠BAO= [(나)] (엇각) …©

평행사변형에서 대변의 길이는 같으므로

AB= (다) ···ⓒ

⊙, ⓒ, ⓒ에 의하여

 $\triangle OAB \equiv (라)((마))$ 합동)이다.

따라서 $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 이다.

- ① (7)): ∠OCD
- ② (나): ∠ODC
- ③ (다): AD
- ④ (라): △OCD
- ⑤ (마): SSS

[문제]

3. 다음 평행사변형 ABCD에서 두 대각선의 교점을 \bigcirc 라고 할 때, x+y의 값을 구하면?

- ① 14
- ② 16
- 3 18
- **4** 20
- (5) 22

평가문제

[중단원 학습 점검]

- **4.** 평행사변형 ABCD에서 $\angle A: \angle B = 3:2$ 일 때, ∠ C의 크기를 구하면?
 - ① $36\degree$
- ② 72°
- $3\,$ 108 $^{\circ}$
- 4 144 $^{\circ}$
- ⑤ 172°

[중단원 학습 점검]

5. 다음 평행사변형 ABCD에서 $\angle B$ 의 이등분선이 변 CD의 연장선과 만나는 점을 E라고 할 때, AB 의 길이를 구하면?

- ① 5cm
- ② 6cm
- ③ 7cm
- 4 8cm
- (5) 9cm

- [중단원 학습 점검]
- **6.** 다음 평행사변형 ABCD에서 ∠A의 이등분선과 BC**의** 교점을 E**라** 하자. $\angle AEB = 65^{\circ}$, $\overline{AD} = 11 \text{cm}$, $\overline{CD} = 9 \text{cm}$ 일 때, x + y의 값을 구하면?

- ① 51
- ② 52
- 3 53
- (4) 54
- **⑤** 55

[단원 마무리]

7. 다음 평행사변형 ABCD에서 $\overline{AE} = \overline{DE}$, \overline{BE} 의 연 장선과 $\overline{\mathrm{CD}}$ 의 연장선의 교점을 F 라 하면, $\overline{BC} = 9$ cm, $\overline{CD} = 4$ cm일 때, \overline{CF} 의 길이를 구하면?

- ① 5cm
- ② 6cm
- ③ 7cm
- 4 8cm
- (5) 9cm

[단원 마무리]

8. 다음 평행사변형 ABCD에서 $\angle B = 74$ $^{\circ}$ 이고, $\angle D$ 의 이등분선이 \overline{BC} 와 만나는 점을 E, 점 A에 서 $\overline{\rm DE}$ 에 내린 수선의 발을 $\rm F$ 라 할 때, $\angle x$ 의 크 기를 구하면?

- $\bigcirc 50^{\circ}$
- ② 51°
- 352°
- 4 53°
- ⑤ 54°

유사문제

 $\mathbf{9}$. 다음 그림과 같은 평행사변형 ABCD에서 x+y의 값을 구하면?

- ① 122
- ② 123
- 3 124
- (4) 125
- (5) 126

10. 다음은 평행사변형 ABCD의 두 쌍의 대변의 길 이가 각각 같음을 설명하는 과정이다. ③, ⓒ에 들 어갈 식으로 옳은 것은?

대각선 AC를 그으면 $\triangle ABC$ 와 $\triangle CDA$ 에서

 $\overline{AB}//\overline{DC}$ 이므로 \bigcirc … ⓐ

 $\overline{AD}//\overline{BC}$ 이므로 \bigcirc … \bigcirc

 \overline{AC} 는 공통 \cdots ©

- ③, ⑤, ⓒ에 의하여 $\triangle ABC \equiv \triangle CDA$ (ASA합동)
- $\therefore \overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$ 이다.
- ① ② $\angle DAC = \angle BCA$, ② $\angle BAC = \angle BCA$
- ② \bigcirc $\angle DAC = \angle BCA$, \bigcirc $\angle ADC = \angle CBA$
- \bigcirc \bigcirc $\angle BAC = \angle DCA$, \bigcirc $\angle DAC = \angle BAC$
- $\textcircled{4} \bigcirc \angle BAC = \angle DCA, \bigcirc \angle ADC = \angle CBA$
- \bigcirc \bigcirc $\angle BAC = \angle DCA$, \bigcirc $\angle DAC = \angle BCA$

11. 다음 그림과 같은 평행사변형 ABCD에서 점 O 는 두 대각선의 교점이다. $\overline{AD} = 10 \text{cm}$, $\overline{AC} = 12 \text{cm}$, $\overline{BD} = 20 \text{cm}$ 일 때, $\triangle BOC$ 의 둘레의 길이는?

- ① 21cm
- ② 26cm
- ③ 31cm
- ④ 36cm
- (5) 42cm
- **12.** 평행사변형 ABCD에서 $\angle B: \angle C=5:4$ 일 때, $\angle A$ 와 $\angle D$ 의 크기를 각각 구하면?
 - ① $\angle A = 40^{\circ}$, $\angle D = 50^{\circ}$
 - ② $\angle A = 50^{\circ}$. $\angle D = 40^{\circ}$
 - \bigcirc $\triangle A = 80^{\circ}, \triangle D = 100^{\circ}$
 - (4) $\angle A = 100^{\circ}$, $\angle D = 80^{\circ}$
 - \bigcirc $\angle A = 90^{\circ}$, $\angle D = 90^{\circ}$
- **13.** 평행사변형 ABCD에서 $\angle D$ 의 이동분선과 \overline{BC} 의 교점을 E, \overline{AB} 의 연장선과 \overline{DE} 의 연장선의 교점을 F 라고 하자. $\overline{AD} = 9cm$, $\overline{CD} = 5cm$ 일 때, $\overline{BF} + \overline{CE}$ 의 길이는?

- ① 6cm
- ② 7 cm
- ③ 8 cm
- 4) 9 cm
- (5) 10 cm

14. 평행사변형 ABCD에서 \overline{DE} 는 $\angle D$ 의 이등분선이 고 $\angle ADC = 50^{\circ}$, $\overline{AF} \perp \overline{ED}$ 일 때, $\angle BAF$ 의 크기 는?

- ① $25\,^{\circ}$

- 4 55 $^{\circ}$
- ⑤ 65°
- **15.** 다음 그림과 같은 평행사변형 ABCD에서 점O는 \overline{AC} 의 중점이다. $\square EOCD$ 가 평행사변형이고 \overline{AD} 와 \overline{EO} 의 교점을 F라고 하자. \overline{AB} = 10, \overline{BC} = 12일 때, **EF**의 길이를 구하면?

1 1

2 2

③ 3

4

- **⑤** 5
- $oldsymbol{16}$. 평행사변형 ABCD에서 $\angle D$ 의 이등분선과 \overline{BC} 의 교점을 E라 하고, 꼭짓점 A에서 \overline{DE} 에 내린 수선 의 발을 F라고 하자. $\angle B = 62$ $^{\circ}$ 일 때, $\angle BAF$ 의 크기는?

- ① 57°
- ② 58°
- 359°
- 4) 60°
- ⑤ 61°

정답 및 해설

1) [정답] ③

[해설]
$$\angle$$
B = \angle D이므로 $x = 102$
 $\overline{AD} = \overline{BC}$ 이므로 $y + 3 = 11$, 즉 $y = 8$
 $\therefore x + y = 110$

2) [정답] ④

[해설] (가): ∠CDO

(나): ∠DCO

(다): <u>CD</u>

(마): ASA

3) [정답] ④

[해설]
$$\overline{OD} = \frac{1}{2}\overline{BD} = 8 \text{ cm}$$
이므로 $x = 8$
 $\overline{AC} = 2\overline{OA} = 12 \text{ cm}$ 이므로 $y = 12$
 $\therefore x + y = 8 + 12 = 20$

4) [정답] ③

[해설] ∠A:∠B=3:2이고, ∠A+∠B=180°이므로
∠A=
$$\frac{3}{2+3}$$
×180°=108°
∴∠C=∠A=108°

5) [정답] ①

6) [정답] ②

[해설]
$$\overline{AD} / \overline{BC}$$
이므로 $\angle DAE = \angle BEA$ 이고,
 $\angle DAE = \angle BAE$ 이므로
 $\angle BAE = \angle BEA = 65$ °
따라서 $\angle ABE + 2 \times 65$ ° = 180 °이므로
 $\angle ABE = 50$ °
이때 $\angle CDA = \angle ABE = 50$ °이므로 $y = 50$
한편 $\angle BAE = \angle BEA$ 이므로 $\overline{BA} = \overline{BE} = 9$ cm
따라서 $\overline{EC} = \overline{BC} - \overline{BE} = 11 - 9 = 2$ cm이므로 $x = 2$
 $\therefore x + y = 2 + 50 = 52$

7) [정답] ④

[해설]
$$\triangle$$
ABE와 \triangle DFE에서

8) [정답] ④

$$\angle ADF = \frac{1}{2} \angle ADC = 37^{\circ}$$

그러므로
$$\triangle$$
AFD에서 \angle DAF = $90\degree - 37\degree = 53\degree$ 이때 \angle BAD + \angle ABC = $180\degree$ 이므로 \angle BAD = $106\degree$ \angle BAF = \angle BAD - \angle DAF = $106\degree - 53\degree = 53\degree$ $\therefore \angle x = 53\degree$

9) [정답] ③

[해설]
$$\overline{AB} = \overline{CD}$$
이므로 $y=5$ $\angle B + \angle C = 180 \degree$ 이므로 $\angle x = 180 \degree - 61 \degree = 119 \degree$ $\therefore x+y=119+5=124$

10) [정답] ⑤

[해설] ⑤
$$\bigcirc$$
 $\angle BAC = \angle DCA($ 연각) \bigcirc $\angle DAC = \angle BCA($ 연각)

11) [정답] ②

[해설]
$$\overline{AO}=\overline{CO}, \ \overline{BO}=\overline{DO}$$
이므로 $\overline{CO}=6cm, \ \overline{BO}=10cm$ 이다. 따라서 ΔBOC 의 둘레의 길이는 $10+6+10=26cm$ 이다.

12) [정답] ③

[해설] 평행사변형에서 $\angle B + \angle C = 180^{\circ}$ 이므로

$$\angle B = 180^{\circ} \times \frac{5}{9} = 100^{\circ}$$

 $\angle C = 180^{\circ} \times \frac{4}{9} = 80^{\circ}$

평행사변형에서 두 쌍의 대각의 크기는 각각 같으므로 $\angle B = \angle D = 100\,^\circ$, $\angle A = \angle C = 80\,^\circ$

13) [정답] ④

[해설]
$$\overline{AF}//\overline{DC}$$
이므로 $\angle AFD = \angle CDE$

즉,
$$\overline{AF} = \overline{AD}$$
, $\overline{AB} = \overline{DC}$ 이므로 $\overline{BF} = 9 - 5 = 4(cm)$ 또, $\overline{AD}//\overline{BC}$ 이므로 $\angle ADE = \angle CED$ 즉, $\overline{CE} = \overline{CD} = 5(cm)$ $\therefore \overline{BF} + \overline{CE} = 4 + 5 = 9(cm)$

14) [정답] ⑤

[해설]
$$\angle ADC = 50\,^{\circ}$$
이므로 $\angle BAD = 180\,^{\circ} - 50\,^{\circ} = 130\,^{\circ}$ 이때 $\angle ADE = 50\,^{\circ} \div 2 = 25\,^{\circ}$, $\angle AFD = 90\,^{\circ}$ 이므로 $\angle FAD = 90\,^{\circ} - 25\,^{\circ} = 65\,^{\circ}$ $\therefore \angle BAF = 130\,^{\circ} - 65\,^{\circ} = 65\,^{\circ}$

15) [정답] ⑤

[해설] $\square EOCD$ 가 평행사변형이므로 $\overline{OF}//\overline{CD}$ 이때 점 O가 \overline{AC} 의 중점이므로 $\overline{OF}=\frac{1}{2}\overline{CD}=5$ 또 $\square EOCD$ 가 평행사변형이므로

 $\overline{OC} = \overline{ED}, \ \overline{AC}//\overline{DE}$ 이제 $\triangle OAF = \triangle EDF(ASA)$ 이므로 $\therefore \overline{EF} = \overline{OF} = 5$

16) [정답] ③

[해설] 평행사변형 ABCD에서 $\angle DAB + \angle B = 180^{\circ}$ 이므로 $\angle BAD + 62\,^{\circ} = 180\,^{\circ}$

 $\therefore \angle BAD = 118^{\circ}$

평행사변형 ABCD에서 두 쌍의 대각의 크기는 각각 같으므로 $\angle B = \angle ADC = 62$ $^{\circ}$

$$\therefore \angle ADF = \frac{1}{2} \angle ADC = 31^{\circ}$$

 $\triangle AFD$ 에서 $\angle DAF = 90\,^{\circ} - 31\,^{\circ} = 59\,^{\circ}$ 이므로 $\angle BAF = \angle BAD - \angle DAF = 118\degree - 59\degree = 59\degree$