

기계학습개론

- 강의소개 및 머신러닝 개요 -

교수 이홍로

MP: 010-6611-3896

E-mail: hrlee@cnu.ac.kr

강의 홈페이지 : https://cyber.hanbat.ac.kr/

오늘의 강의 목표

- 강의소개
- 기계학습을 공부하기에 앞서
- 인공지능 소개
- 인공지능의 주인공이 되기 위한 준비
- 실습
 - 김태희 송혜교 구분, 손 글씨 숫자 구분

강의소개

■ 수업개요

기계소재융합시스템학과를 비롯한 대학생들의 인공지능 기초 학습을 위한 교과로써,
 다양한 인공지능 활용 사례들을 살펴보고, 인공지능의 기본 원리를 학습하여 파이썬
 프로그래밍 언어를 기반으로 실습해 본다.

■ 교과목표

- 인공지능의 **원리 이해**
- 다양한 인공지능 알고리즘 이해 및 적용 방법 / 시기 이해
- 파이썬을 활용하여 주어진 문제를 해결하는 능력 배양

강의소개

■ 수업방법

- 주당 3시간 이론 및 실습 (금요일 18시 ~ 21시)
- 이론과 실습을 병행

■ 선수 학습내용

- 간단한 프로그래밍 이해 능력
- 이번학기에 반드시 인공지능 관련 내용을 이해하고, 프로그래밍 능력을 쌓아보겠다는 마음가짐

강의 소개

■ 평가방법

• 강의(이론): 50%, 실험/실습: 50%

■ 평가 세부

- 중간고사(이론 / 코딩테스트): 40% 8주차 실시
- 기말고사(이론 / 코딩테스트): 50% 15주차 실시
- 출석(5%): 결석시 1점씩 감점
- 참여도:5%

강의 소개

■ 주교재

• 교수의 강의자료

■ 참고문헌

- "파이썬 라이브러리를 활용한 머신러닝", 안드레아스 뮐러, 세라 가이도, 한빛미디어, 2022
- "혼자 공부하는 머신러닝+딥러닝", 박해선, 한빛미디어, 2020

■ 교과목 홈페이지

- https://cyber.hanbat.ac.kr/
- https://www.sw.re.kr

강의 소개

■ 강의내용

- 1주차 : 강의소개 및 인공지능 개요
- 2주차 : 머신러닝의 이해
- 3주차 : 데이터 다루기1
- 4주차 : 데이터 다루기2
- 5주차 : 회귀 알고리즘과 규제1
- 6주차 : 회귀 알고리즘과 규제2
- 7주차: 다양한 분류 알고리즘1
- 8주차 : 보충 및 중간고사

- 9주차 : 다양한 분류 알고리즘2
- 10주차 : 트리 알고리즘 1
- 11주차 : 트리 알고리즘 2
- 12주차 : 비지도 학습 1
- 13주차 : 비지도 학습 2
- 14주차 : 딥러닝 기초
- 15주차 : 기말고사

■ 인류의 상상과 현실화

■ 매체 속 인공지능

■ 현실 속 인공지능 (약인공지능, 강인공지능, 초인공지능)

■ 지적수준에 따른 분류

분류	설명	사례
약인공지능	특정 문제해결에 전문화된 인공지능	스팸메일 필터링, 검색 서비스, 구글번역, 유튜브 영상 추천
강인공지능	모든 영역에서 인간과 같은 수준인 인공 지능	영화 《터미네이터》에 등장하는 스카이넷, 비서로봇, 협동로봇 (공장로봇)
초인공지능	인류 전체의 지능을 초월하는 인공지능	'인류가 앞으로 1,000년 동안 쓸 수 있는 신(新) 에너지원 만들 기'와 같은 고차원의 명령 수행 가능

■ 인공지능

- 지능(Intelligence)
 - 무언가를 이해하고 배우는 능력
 - 오직 인간만 가지고 있는 고유의 성질
 - 본능적으로 행동하는 것이 아니라 생각하고 이해함으로써 행동으로 옮기는 능력
- 인공지능(AI, Artificial Intelligence)
 - 컴퓨터가 학습하고 생각하여 스스로 판단할 수 있도록 만드는 기술

■ 인공지능의 순기능

• 인공지능 기술이 다양한 산업 분야에 접목되면서 지금까지 상상할 수 없었던 새로운 결과물이 선보여지고 있음

1) 노동대체

• 인간의 정신적·육체적 노동을 최소화하거나 대체함으로써 업무 효율성을 크게 높일 수 있음, (예) 아마존(Amazon) '키바(Kiva)' 로봇

2) 자동화

- 협동로봇을 이용하면 제조 공정의 대부분을 자동화할 수 있음
- 이를 통해 사람은 위험한 작업환경에서 해방될 수 있으며,
 기업은 높은 생산성을 기대할 수 있음

3) 개인 능력 격차 완화

 인공지능은 다년간의 경험과 깊이 있는 지식을 보유한 전문가만이 할 수 있었던 업무를 비전문가도 쉽게 수행할 수 있도록 도움을 줌

■ 인공지능의 역기능

1) 명청한 AI(Dumb AI)

 인공지능에 악의적인 정보를 제공하면 잘못된 판단을 하거나 관점이 편향될 수 있음

2) 법적- 윤리적 책임 소재 문제

• 인공지능은 현행법상 법적 권리나 의무의 주체인 사람(법인)이 아니므로 법적 책임을 물을 수 없음

3) 빈부격차 심화

• 인공지능이 인간의 일자리를 대체함으로써 인간의 생계 위협 가능성

4) 예측 불가능한 AI

- 학습되지 않았거나 추론을 할 수 없는 상황이 발생할 경우,
 인공지능은 평소와 달리 엉뚱한 결과를 내놓을 수 있음
- https://www.youtube.com/watch?v=K1WD6NyvHPQ (3:38,

인공지능 소개 : AI의 역사

■ 인공지능의 발전 과정

인공지능 소개 : 기존방식 vs 머신러닝

인공지능 소개 : 기존방식 vs 머신러닝

- 전통적 프로그래밍
 - 프로그래머가 기계에 규칙을 알려주고, 규칙대로 작동하도록 하는 방식
 - 예) "구멍이 2개이고 중간 부분이 홀쭉하며, 맨 위와 아래가 둥근 모양이라면 8이다"
- 인간의 지식기반 > 데이터 학습기반으로 이동

인공지능 소개 : 기존방식 vs 머신러닝

■ 머신러닝과 딥러닝의 학습적 차이

인공지능 소개 : 용어정립 : 인공지능, 머신러닝, 딥러닝

■ 인공지능을 두려워할 것인가? 주인이 될 것인가?

- 목적함수(Objective Function)
 - 무엇을 배울까?
- 학습(Learning)
 - 어떻게 배울까?
- 일반화(Generalization)
 - 새로운 문제에 어떻게 적용할까?

- 목적함수
 - 어떠한 목적을 가지고 모델을 학습해 최적화하고자 하는 함수
 - Ex)목적은 게임의 OOO점을 내는 것
 - 목적함수는 인공지능의 목적을 설정하고 결과를
 조정할 수 있는 중요한 변수

■ 인간은 어떠한 방식으로 사람을 구별할까?

■ 목적함수의 필요성 | 누구를 위한 알고리즘이 필요할까?

학습(Learning)

- 여러 경험을 통해 패턴을 얻어내고, 다음 행동에 영향을 주는 것
- 데이터의 특성에 따라 학습의 결과가 달라질 수 있다.

고양이? 강아지? Cat? Dog?

- 일반화 (Generalization)
 - 학습한 결과를 어디에 어떻게 적용할 것인가?

실습

■ 주제1: 손 글씨를 학습하여 숫자를 구분하는 웹서비스 제작

■ 주제2 : 김태희, 송혜교 사진을 학습하여 구분하는 웹서비스 제작

머신러닝 맛보기

- 데이터 수집
- 데이터 정제
 - 기본적으로 Python & OpenCV 사용, 필요하면 수작업도 필요
 - https://ccusean.com/tools/face-detection

■ 학습

- 누구나 머신러닝 모델을 쉽고 빠르고 간단하게 만들 수 있도록 구글에서 개발된 웹 기반 머신러닝 모델 도구 사용
- https://teachablemachine.withgoogle.com/
- 웹서비스 개발 및 Deploy
 - · Visual Studio, netlify.com

'인공지능'은 두려워할 존재도 아니며, 여러분 미래의 '조력자'입니다.

인공지능의 '주인공'이 되어 인생을 설계해 보시기 바랍니다.

