Guía N°3: Interpolación y Mínimos Cuadrados

Cálculo Numérico 521230, 2017-2

Nota: Esta guía complementa la Guía de Laboratorio sobre Interpolación y Mínimos Cuadrados.

Interpolación

1. Recordemos que podemos interpolar lo puntos (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) por un polinomio de grado menor o igual a n de la forma $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$. Sabemos que (ver diapositivas de Polinomios de Interpolación) los coeficientes de dicho polinomio son la solución del sistema:

(1)
$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Calcular, si es posible, el polinomio que interpola a los siguientes puntos. En cada caso, graficar los puntos y el polinomio obtenido.

- a) (0,1), (2,3), (3,0).
- b) (-1,1), (0,0), (1,1).
- (c) (-1,0), (2,1), (3,1), (5,2).
- d) (1,1).
- e) (0,1), (1,2), (1,-1).
- 2. Considere los mismos puntos del ejercicio anterior. Utilizando polinomios de Lagrange, encuentre el polinomio que los interpola.
- 3. Compruebe los resultados obtenidos utilizando el comando polyfit de MATLAB. Para mayor información sobre este comando, escribir en el terminal de MATLAB: help polyfit.
- 4. La siguiente tabla muestra datos de temperatura de una sala que fueron tomados cada 20 minutos:

Tiempo (m)	temperatura (0 C).
0	10
20	20
40	30

- a) Encontrar el polinomio que interpola a los datos de la tabla.
- b) Deduzca la temperatura de la sala a los 5 y 35 minutos.
- 5. Interpolar la función $f(x) = sen(x), x \in [0, \pi]$, en los siguientes puntos. En cada caso graficar la función, el polinomio obtenido y los puntos.
 - a) $x_0 = 0$, $x_1 = \pi/2$ y $x_2 = \pi$.
 - b) $x_0 = 0$, $x_1 = \pi/4$, $x_2 = \pi/2$ y $x_3 = \pi$.
 - c) $x_0 = 0$, $x_1 = \pi/4$, $x_2 = \pi/2$, $x_3 = 3\pi/4$ y $x_4 = \pi$.
- 6. Para cada caso del ejemplo anterior, obtener una cota del error de interpolación.
- 7. Para cada caso del Ejercicio 5, encontrar los coeficientes del polinomio de interpolación utilizando el comando polyfit de MATLAB y así comprobar los resultados obtenidos. Además, grafique (en MATLAB) la función y el polinomio de interpolación. Indicación: Utilizar el comando polyval para evaluar el polinomio.

Mínimos cuadrados

- 1. Sean (-1,1), (0,0), (1,2) y (3,0). Ajustar estos puntos por:
 - a) Un polinomio de grado 0.
 - b) Un polinomio de grado 1.
 - c) Un polinomio de grado 2.
 - d) Un polinomio de grado 3. ¿Qué pasa en este caso?

En cada caso graficar el polinomio y los puntos.

2. Se miden las temperaturas de Concepción cada 6 horas durante 2 días, como indica la siguiente tabla. La hora 0 corresponde a las 0:00hrs.

Ajustar las siguientes curvas a estos datos. En cada caso graficar los puntos y la curva obtenida.

- a) $f(x) = a_0 + a_1 x$.
- b) $f(x) = \alpha e^{\beta x + \gamma x^2}$.
- c) $f(x) = c_1 + c_2 \cos\left(\frac{2\pi}{24}x\right) + c_3 \sin\left(\frac{2\pi}{24}x\right)$.

¿Qué función ajusta mejor a los datos?. ¿Por qué?. Utilizar esta función para predecir los valores de temperatura a las 6am del tercer día.

3. Considere la siguiente matriz y vector provenientes de un ajuste por mínimos cuadrados:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Sin resolver el sistema de ecuaciones normales, determinar justificadamente cuál de las siguientes soluciones corresponde a la de mínimos cuadrados. Indicación: Calcular $\|\mathbf{b} - A\mathbf{x}\|_2$.

$$a) \mathbf{x} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

b)
$$\mathbf{x} = \begin{pmatrix} 2/3 \\ 0 \end{pmatrix}$$

b)
$$\mathbf{x} = \begin{pmatrix} 2/3 \\ 0 \end{pmatrix}$$

c) $\mathbf{x} = \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}$