1 The system

We consider an a priori unstable Hamiltonian with 3 + 1/2 degrees of freedom

$$H_{\varepsilon}(p,q,I_1,I_2,\varphi_1,\varphi_2,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + h(I_1,I_2) + \varepsilon f(q) g(\varphi_1,\varphi_2,s), \tag{1}$$

where $f(q) = \cos q$, $h(I_1, I_2) = \Omega_1 I_1^2 / 2 + \Omega_2 I_2^2 / 2$ and

$$g(\varphi_1, \varphi_2, s) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s. \tag{2}$$

From now on, for a simpler notation, we denote $I = (I_1, I_2)$ and $\varphi = (\varphi_1, \varphi_2)$.

Remark 1. A similar, but more complicated, case appears in [DLS16]. In such paper g is taken as

$$g(\varphi_1, \varphi_2, s) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos(\varphi_1 + \varphi_2 - s).$$

2 Unperturbed case

In the unperturbed case ($\varepsilon = 0$), such system is the Hamiltonian system with Hamiltonian

$$H_0(p, q, I, \varphi, s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + h(I),$$

and equations

$$\dot{q} = p \qquad \qquad \dot{p} = \sin q \qquad (3)$$

$$\dot{\varphi}_1 = \omega_1 \qquad \qquad \dot{I}_1 = 0$$

$$\dot{\varphi}_2 = \omega_2 \qquad \qquad \dot{I}_2 = 0$$

$$\dot{s} = 1,$$

where $\omega_i = \Omega_i I_i$, i = 1, 2. This system consists of a pendulum plus two rotors. From the equations above, I_1 and I_2 are constants and the flow has the form

$$\Phi_t(p, q, I, \varphi) = (p(t), q(t), I, \varphi + t\omega),$$

where $\omega = (\omega_1, \omega_2)$. And we have an invariant set (on the extend phase space)

$$\mathcal{T}_I = \{(0, 0, I, \varphi, s); \varphi, s \in \mathbb{T}^3\}.$$

In this case, the NHIM is

$$\tilde{\Lambda} = \{ (0, 0, I, \varphi, s) : (I, \varphi, s) \in \mathbb{R}^2 \times \mathbb{T}^3 \}, \tag{4}$$

3 Inner dynamics

The inner dynamics is derived form the restriction of the Hamiltonian (1) and its equations to $\tilde{\Lambda}$, given in (4), i.e.,

$$K_{\varepsilon}(I, \varphi, s) = h(I) + \varepsilon (a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s)$$

and its equations

$$\dot{\varphi}_1 = \omega_1$$
 $\dot{I}_1 = \varepsilon a_1 \sin \varphi_1$ $\dot{\varphi}_2 = \omega_2$ $\dot{I}_2 = \varepsilon a_2 \sin \varphi_2$ $\dot{s} = 1$.

Remark 2. Note that the inner dynamics is integrable.

To describe the resonant regions we consider the autonomous extended Hamiltonian

$$\overline{K}_{\varepsilon} = A + h(I) + \varepsilon \left(a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s \right),$$

$$\dot{\varphi}_1 = \omega_1$$
 $\dot{I}_1 = \varepsilon a_1 \sin \varphi_1$ $\dot{\varphi}_2 = \omega_2$ $\dot{I}_2 = \varepsilon a_2 \sin \varphi_2$ $\dot{A} = \varepsilon a_3 \sin s$.

Consider a change of variables ε -close to the identity

$$(I, A, \varphi, s) = g(J, B, \phi, \sigma) = (J, B, \phi, \sigma) + \mathcal{O}(\varepsilon)$$

such that it is one-time flow for a Hamiltonian εG , i.e., $g = g_{t=1}$, where g_t is solution of

$$\frac{dg_t}{dt} = J_0 \nabla \varepsilon G \circ g_t, \qquad J_0 \text{ is the symplectic matrix } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Composing \overline{K} with g and expanding in a Taylor series around t = 0, one obtains

$$\overline{K} \circ g = \overline{K} + \{\overline{K}, \varepsilon G\} + \frac{1}{2} \{\{\overline{K}, \varepsilon G\}, \varepsilon G\} + \dots,$$

where $\{\cdot\}$ is the Poisson bracket.

$$\overline{K}_{\varepsilon} \circ g = B + h(J) + \varepsilon \left(a_1 \cos \phi_1 + a_2 \cos \phi_2 + a_3 \cos s + \{B + h(J), G\} \right)$$

$$+ \varepsilon^2 \left(\left\{ a_1 \cos \phi_1 + a_2 \cos \phi_2 + a_3 \cos s + \frac{1}{2} \left\{ B + h(J), G \right\}, G \right\} \right) + \mathcal{O}(\varepsilon^3)$$

We want to find G satisfying

$$a_1 \cos \phi_1 + a_2 \cos \phi_2 + a_3 \cos \sigma - \omega_1 \frac{\partial G}{\partial \varphi_1} - \omega_2 \frac{\partial G}{\partial \varphi_2} - \frac{\partial G}{\partial \sigma} = 0.$$
 (5)

Given a < b < 1, consider any function $\Psi \in C^{\infty}(\mathbb{R})$ satisfying $\Psi(x) = 1$ for $x \in [-a, a]$ and $\Psi(x) = 0$ for $x \notin [-b, b]$, and introduce

$$G(J, \phi, \sigma) = \frac{a_1(1 - \Psi(I_1))\sin\phi_1}{\omega_1} + \frac{a_2(1 - \Psi(I_2)\sin\phi_2)}{\omega_2} + a_3\sin\sigma.$$

For J_1 and $J_2 \notin [-a, a]$,

$$\overline{K} \circ g = h(J) + B + \mathcal{O}(\varepsilon^2). \tag{6}$$

For $J_i \in [-a, a]$ and J_j and $\notin [-b, b]$, $i, j = \{1, 2\}$ and $i \neq j$,

$$\overline{K} \circ g = h(J) + B + \varepsilon a_i \cos \phi_i + \mathcal{O}(\varepsilon^2). \tag{7}$$

From (6) and (7), there are just two resonances, on $J_1 = 0$ and $J_2 = 0$. Therefore, $J = (J_1, J_2) = 0$ is a double resonance. Moreover, there are no resonances of second order.

Coming back to the original variables (I, φ, s) , the model just has two resonant sets at first order:

$$\mathcal{R}_1 = \{ (I_1, I_2), I_1 = 0 \}$$

$$\mathcal{R}_2 = \{ (I_1, I_2), I_2 = 0 \}$$
(8)

and there is no resonance of second order. And, $\mathcal{R}_1 \cap \mathcal{R}_2$ is the double resonant set.

4 Scattering map

4.1 Definition of scattering map

We are going to explore the properties of the scattering maps of Hamiltonian (1). The notion of scattering map on a NHIM was introduced in [DLS00]. Let W be an open set of $[-I_1^*, I_1^*] \times [-I_2^*, I_2^*] \times \mathbb{T}^3$ such that the invariant manifolds of the NHIM $\tilde{\Lambda}$ introduced in (4) intersect transversally along a homoclinic manifold $\Gamma = \{\tilde{z}(I, \varphi, s; \varepsilon), (I, \varphi, s) \in W\}$ and for any $\tilde{z} \in \Gamma$ there exists an unique $\tilde{x}_{+,-} = \tilde{x}_{+,-}(I, \varphi, s; \varepsilon) \in \tilde{\Lambda}$ such that $\tilde{z} \in W_{\varepsilon}^s(x_-) \cap W_{\varepsilon}^s(\tilde{x}_+)$. Let

$$H_{+,-} = \bigcup \left\{ \tilde{x}_{+,-}(I, \varphi, s; \varepsilon) : (I, \varphi, s) \in W \right\}.$$

The scattering map associated to Γ is the map

$$S: H_{-} \longrightarrow H_{+}$$

$$\tilde{x}_{-} \longmapsto S(\tilde{x}_{-}) = \tilde{x}_{+}.$$

For the characterization of the scattering maps, it is required to select the homoclinic manifold Γ and this be done using the Poincaré-Melnikov theory. From [DLS06, DH11], we have the following proposition

Proposition 3. Given $(I, \varphi, s) \in [-I_1^*, I_1^*] \times [-I_1^*, I_1^*] \times \mathbb{T}^3$, assume that the real function

$$\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi - \tau \omega, s - \tau) \in \mathbb{R}$$
 (9)

has a non degenerate critical point $\tau^* = \tau^*(I, \varphi, s)$, where $\omega = (\omega_1, \omega_2)$ and

$$\mathcal{L}(I,\varphi,s) := \int_{-\infty}^{+\infty} \left(f(q_0(\rho)) - f(0) \right) g(\varphi + \rho \omega, s + \rho; 0) d\rho.$$

Then, for $0 < \varepsilon$ small enough, there exists a unique transversal homoclinic point \tilde{z} to $\tilde{\Lambda}_{\varepsilon}$ of Hamiltonian (1), which is ε -close to the point $\tilde{z}^*(I,\varphi,s) = (p_0(\tau^*), q_0(\tau^*), I, \varphi, s) \in W^0(\tilde{\Lambda})$:

$$\tilde{z} = \tilde{z}(I, \varphi, s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), I, \varphi, s) \in W^u(\tilde{\Lambda}_{\varepsilon}) \pitchfork W^s(\tilde{\Lambda}_{\varepsilon}). \tag{10}$$

The function \mathcal{L} is called the *Melnikov potential* of Hamiltonian (1). The Melnikov potential takes the form

$$\mathcal{L}(I,\varphi,s) = A_1 \cos \varphi_1 + A_2 \cos \varphi_2 + A_3 \cos s,\tag{11}$$

where and

referencia mel pot gen

$$A_i := A(\omega_i) = \frac{2\pi\omega_i a_i}{\sinh(\pi\omega_i/2)}, \quad i = 1, 2 \quad \text{ and } A_3 = \frac{2\pi a_3}{\sinh(\pi/2)}$$

The homoclinic manifold Γ is characterized by the function $\tau^*(I, \varphi, s)$. Once a $\tau^*(I, \varphi, s)$ is chosen, by the geometric properties of the scattering map, see [?, DH09, DH11], the scattering map has the explicit form

$$S(I, \varphi, s) = (I + \varepsilon \nabla_{\varphi} L^* + (\mathcal{O}(\varepsilon^2), \mathcal{O}(\varepsilon^2)), \varphi - \varepsilon \nabla_I L^* + (\mathcal{O}(\varepsilon^2), \mathcal{O}(\varepsilon^2)), s),$$

where

$$L^* = L^*(I, \varphi, s) = \mathcal{L}(I, \varphi - \tau^*(I, \varphi, s)\omega, s - \tau^*(I, \varphi, s)). \tag{12}$$

Notice that the variable s is fixed under the scattering map. As a consequence [DH11], introducing the variable

$$\theta = \varphi - s\,\omega \tag{13}$$

and defining the reduced Poincaré function

$$\mathcal{L}^*(I,\theta) := L^*(I,\varphi - s\omega, 0) = L^*(I,\varphi,s), \tag{14}$$

in the variables (I, θ) the scattering map has the simple form

$$\mathcal{S}(I,\theta) = \left(I + \varepsilon \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + \mathbf{O}(\varepsilon^2), \theta - \varepsilon \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + \mathbf{O}(\varepsilon^2)\right),$$

where $\mathbf{O}(\varepsilon^2) = (\mathcal{O}(\varepsilon^2), \mathcal{O}(\varepsilon^2))$. So up to $\mathcal{O}(\varepsilon^2)$ terms, $\mathcal{S}(I, \theta)$ is the ε times flow of the *autonomous* Hamiltonian $-\mathcal{L}^*(I, \theta)$. In particular, the iterates under the scattering map follow the level curves of \mathcal{L}^* up to $\mathcal{O}(\varepsilon^2)$.

4.2 Crests and NHIM lines

We have seen that the function τ^* plays a central role in our study. Therefore, we are interested in finding the critical points $\tau^* = \tau^*(I, \varphi, s)$ of function (9) or, for our concrete case (11), τ^* solution of

$$\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - \omega \tau, s - \tau) = \omega_1 A_1 \sin(\varphi_1 - \omega_1 \tau) + \omega_2 A_2 \sin(\varphi_2 - \omega_2 \tau) + A_3 \sin(s - \tau). \tag{15}$$

This equation can be viewed from two equivalently geometrical viewpoints. The first one is that to find $\tau^* = \tau^*(I, \varphi, s)$ satisfying (15) for any $(I, \varphi, s) \in [-I_1^*, I_1^*] \times [-I_2^*, I_2^*] \times \mathbb{T}^3$ is the same as to look for the extrema of \mathcal{L} on the *NHIM* line

$$R(I,\varphi,s) = \{ (I,\varphi - \tau\omega, s - \tau) : \tau \in \mathbb{R} \}. \tag{16}$$

The other viewpoint is that, fixing (I, φ, s) , a solution τ^* of (15) is equivalent to finding intersections between a NHIM line (16) and a surface defined by

$$\omega_1 A_1 \sin \varphi_1 + \omega_2 A_2 \sin \varphi_2 + A_3 \sin s = 0. \tag{17}$$

These surfaces are called *crests*, and in a general way can be defined by

Definition 4. [DH11] We define by Crests C(I) the surfaces on $(I, \varphi, s), (\varphi, s) \in \mathbb{T}^3$, such that

$$\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - \tau \omega, s - \tau)|_{\tau = 0} = 0, \tag{18}$$

or equivalently,

$$\omega \cdot \frac{\partial \mathcal{L}}{\partial \varphi}(I, \varphi, s) + \frac{\partial \mathcal{L}}{\partial s}(I, \varphi, s) = 0.$$

Note that equation (17) can be rewritten as

$$\alpha_1(I_1)\mu_1 \sin \varphi_1 + \alpha_2(I_2)\mu_2 \sin \varphi_2 + \sin s = 0 \tag{19}$$

where, for i = 1, 2,

$$\mu_i = \frac{a_i}{a_3}$$
 and $\alpha_i(I_i) = (\omega_i)^2 \frac{\sinh(\pi/2)}{\sinh(\omega_i \pi/2)}$. (20)

Observe that α_i is well defined for any value of I_i . To understand the intersection between NHIM lines and the crests $\mathcal{C}(I)$, first we need to study how these surfaces look like for different values of μ_i and ω_i , for i = 1, 2.

Remark 5. With Eq. (19) we wish to emphasize the similarity between such crests with the crests studied in [DS17a, DS17b].

As explained before, when we have introduced the crests, we are interested in their geometrical behavior. For this purpose, we study their possible parameterization. One can see from (19) that if

$$|\alpha_1(I_1)\mu_1\sin\varphi_1 + \alpha(I_2)\mu_2\sin\varphi_2| \le 1 \tag{21}$$

we can write s as a function of φ_1 and φ_2 , more exactly

$$s = \begin{cases} \xi_{\mathrm{M}}(I,\varphi) = \arcsin\left(\alpha_{1}(I_{1})\mu_{1}\sin\varphi_{1} + \alpha_{2}(I_{2})\mu_{2}\sin\varphi_{2}\right) \mod 2\pi \\ \xi_{\mathrm{m}}(I,\varphi) = -\arcsin\left(\alpha_{1}(I_{1})\mu_{1}\sin\varphi_{1} + \alpha_{2}(I_{2})\mu_{2}\sin\varphi_{2}\right) + \pi \mod 2\pi. \end{cases}$$

In accordance with the notation used in [DS17a, DS17b], the crests C(I) parameterized by $\xi_{\rm M}(I,\varphi)$ and $\xi_{\rm m}(I,\varphi)$ are called *horizontal* crests. From expression of the function $\alpha_i(I_i)$ given in (20), we have $|\alpha_i(I_i)| < 1.03$. This implies

$$|\alpha_1(I_1)\mu_1\sin\varphi_1 + \alpha_2(I_2)\mu_2\sin\varphi_2| \le 1.03(|\mu_1| + |\mu_2|).$$

Therefore, if

$$|\mu_1| + |\mu_2| \le 1/1.03 \approx 0.97,$$
 (22)

the crests C(I) are horizontal for any value of I_1 and I_2 .

Fig. 1: Horizontal Crests C(I): $\mu_1 = \mu_2 = 0.4$ and $\omega_1 = \omega_2 = 1$.

If condition (21) is not satisfied, s cannot be written as a function of φ_1 and φ_2 , then we have two possibilities: a) we can write φ_i as a function of φ_j and s, or b) the projection of the crests $\mathcal{C}(I)$ on each plane ((φ_1, φ_2) , (φ_1, s) and (φ_2, s)) has holes.

The fist case is only possible if $\left|\frac{\alpha(I_j)\mu_j}{\alpha_i(I_i)\mu_i}\sin\varphi_j + \frac{\sin s}{\alpha_i(I_i)\mu_i}\right| \leq 1$. Then the crests $\mathcal{C}(I)$ are called *vertical* crests and can be parameterized by

$$\varphi_i = \left\{ \begin{array}{c} \eta_{\mathrm{M},i}(I,\varphi_j,s) = \arcsin\left(\frac{1}{\alpha_i(I_i)\mu_i}\left(\sin s - \alpha_j(I_j)\mu_j\sin\varphi_j\right)\right) \\ \\ \eta_{\mathrm{m},i}(I,\varphi_j,s) = -\arcsin\left(\frac{1}{\alpha_i(I_i)\mu_i}\left(\sin s - \alpha_j(I_j)\mu_j\sin\varphi_j\right)\right) + \pi. \end{array} \right.$$

In the second case, Eq. (4) defines a unique surface, see Fig. 2(b). Note that for horizontal and vertical crests C(I) is formed by two surfaces that can be parameterized separately. Then, in such case C(I) is called *unseparated* crests.

To write φ_i as a function of φ_j and $s \mid \mu_i \mid$ is needed to be greater than 0.97. In fact, suppose that there exists an I such that $\varphi_i(\varphi_j, s)$. From Eq. (17), we have

$$\sin \varphi_i = -\left(\frac{A_j(I_j)\omega_j \sin \varphi_j}{A_i(I_i)\omega_i} + \frac{A_3 \sin s}{A_i(I_i)\omega_i}\right),\,$$

(a) Vertical Crests C(I): $\mu_1=1.7,\ \mu_2=0.4$ (b) Unseparated Crests C(I): $\mu_1=0.7,\ \mu_2=$ and $\omega_1=\omega_2=1.$ 0.7 and $\omega_1=\omega_2=1.$

Fig. 2: Different kinds of Crests

for any φ_j and s with $\left|\frac{A_j(I_j)\omega_j\sin\varphi_j}{A_i(I_i)\omega_i} + \frac{A_3\sin s}{A_i(I_i)\omega_i}\right| \leq 1$. In particular for $\varphi_j = 0$ and $s = \pi/2$, so

$$\left|\frac{A_3}{A_i(I_i)\omega_i}\right| \leq 1, \quad \text{or equivalentely} \quad \left|\frac{1}{\alpha_i(I_i)\mu_i}\right| \leq 1.$$

Therefore, we obtain

$$0.97 \approx \frac{1}{1.03} < \left| \frac{1}{\alpha_i(I_i)} \right| \le |\mu_i|.$$

As a consequence, if $|\mu_1| + |\mu_2| > 0.97$, but $|\mu_1|, |\mu_2| < 0.97$ then there are no vertical crests, only horizontal or unseparated crests.

4.2.1 Tangency condition

We now explore the existence of tangency between the crests C(I) and the lines $R(I, \varphi, s)$. The crests are a family of surfaces, so there exists a tangency such tangecy if a tangent vector of the straight line $R(I, \varphi, s)$ lies on the bundle tangent of one of these surfaces.

The vector tangent of $R(I, \varphi, s)$ at any point is $v = -(\omega_1, \omega_2, 1)$. Consider the function $F_I : \mathbb{T}^3 \mapsto \mathbb{R}$,

$$F_I(\varphi, s) = \alpha_1(I_1)\mu_1 \sin \varphi_1 + \alpha_2(I_2)\mu_2 \sin \varphi_2 + \sin s,$$

we note that the crests C(I) can be defined as $(\varphi, s) \in \mathbb{T}^3$ such that $F_I(\varphi, s) = 0$. Fixing a point $\mathbf{p} = (\varphi, s)$ in C(I), the normal vector of C(I) at the point \mathbf{p} is

$$\nabla F_I(\mathbf{p}) = (\alpha_1(I_1)\mu_1\cos\varphi_1, \alpha_2(I_2)\mu_2\cos\varphi_2, \cos s).$$

The vector v lies on the tangent space of the crests at the point \mathbf{p} if, and only if $\nabla F(\mathbf{p}) \cdot v = 0$. This condition is equivalent to

$$\alpha_1(I_1)\omega_1\mu_1\cos\varphi_1 + \alpha_2(I_2)\omega_2\mu_2\cos\varphi_2 + \cos s = 0.$$
(23)

From (19) and (23), there is tangency between a horizontal crest C(I) and the NHIM lines $R(I, \varphi, s)$ for φ_1 and φ_2 satisfying

$$(\omega_1 \alpha_1(I_1) \mu_1 \cos \varphi_1 + \omega_2 \alpha_2(I_2) \mu_2 \cos \varphi_2)^2 + (\alpha_1(I_1) \mu_1 \sin \varphi_1 + \alpha_2(I_2) \mu_2 \sin \varphi_2)^2 = 1$$

Denote by $f_I(\varphi) = (\omega_1 \alpha_1(I_1)\mu_1 \cos \varphi_1 + \omega_2 \alpha_2(I_2)\mu_2 \cos \varphi_2)^2 + (\alpha_1(I_1)\mu_1 \sin \varphi_1 + \alpha_2(I_2)\mu_2 \sin \varphi_2)^2$ Note that, if there are values of μ_1 and μ_2 such that $f_I(\varphi) < 1$ for any I, there is no tangency. As commented before, $|\alpha_i(I_i)| < 1.03$ From (20), we obtain $|\alpha_i(I_i)\omega_i| < 1.6$. This implies

$$f_{I}(\varphi) < (1.6)^{2} (|\mu_{1}\cos\varphi_{1}| + |\mu_{2}\cos\varphi_{2}|)^{2} + (1.03)^{2} (|\mu_{1}\sin\varphi_{1}| + |\mu_{2}\sin\varphi_{2}|)^{2}$$

$$< 1.6^{2} |\mu_{1}|^{2} + 1.6^{2} |\mu_{2}|^{2} + 2 |\mu_{1}| |\mu_{2}| (1.6^{2} |\cos\varphi_{1}| |\cos\varphi_{2}| + 1.03^{2} |\sin\varphi_{1}| |\sin\varphi_{2}|)$$

$$< 1.6^{2} (|\mu_{1}| + |\mu_{2}|)^{2}.$$

It is enough to require $|\mu_1| + |\mu_2| < 1/1.6 = 0.625$ to ensure $f_I(\varphi) < 1$ for any value of I. It is easy to verify that if $|\mu_1| + |\mu_2| > 1/1.6$ there are a I and a φ such that $f_I(\varphi) > 1$.

Proposition 6. Consider the crest C(I) defined by (4) and the NHIM lines $R(I, \varphi, s)$ defined in (16).

- a) For $|\mu_1| + |\mu_2| > 0.625$ the crests are horizontal and the intersections between any crest and any NHIM line are transversal.
- b) For $0.625 \le |\mu_1| + |\mu_2| \le 0.97$ the two crests C(I) are still horizontal, but for some value of I there are NHIM lines which are tangent to the crests.
- c) For $0.97 < |\mu_1| + |\mu_2|$ and $|\mu_1|, |\mu_2| < 0.97$ The crests C(I) are horizontal or unseparated and for some value of I there are NHIM lines which are tangent to the crests.

4.3 Diffusion

$$\dot{I}_{i} = -A_{i}\sin(\theta_{i} - \omega_{i}\tau^{*}) \qquad \dot{\theta}_{i} = -\Omega_{i}\left(\frac{dA_{i}}{d\omega_{i}}\cos(\theta_{i} - \omega_{i}\tau^{*}) + \tau^{*}A_{i}\sin(\theta_{i} - \omega_{i}\tau^{*})\right), \tag{24}$$

i = 1, 2.

Note we are interested in the diffusion in the variables $I = (I_1, I_2)$. The worst situation for the diffusion is I constant, i.e., $\dot{I} = 0$. From (24), it happens for

$$A_i \sin(\theta_i - \omega_i \tau^*(I, \theta)) = 0, \tag{25}$$

where $i = 1, 2, I = (I_1, I_2)$ and $\theta = (\theta_1, \theta_2)$. It is easy to check that for $\Omega_i \neq 0, A_i \neq 0$ for any I_i . Therefore, (25) is equivalento to

$$\sin(\theta_i - \omega_i \tau^*(I, \theta)) = 0.$$

This is satisfied for $\theta_i - \omega_i \tau^*(I, \theta) = 0, \pi, i = 1, 2.$

4.3.1 Horizontal Crests

Now, we are assuming that for any value of μ_1 , μ_2 and I the crests are "horizontal". So, $\psi = \theta - \tau^*(I, \theta)\omega$ is always defined, and we can write the inverse function as

$$\theta = \psi - \xi_i(I, \psi)\omega, \tag{26}$$

where if $j \mod 2 = 0$, $\xi_j(I, \psi) = -\arcsin(\alpha_1(I_1)\mu_1\sin\psi_1 + \alpha_2(I_2)\mu_2\sin\psi_2) + 2j\pi$. Otherwise, $\xi_j(I, \psi) = \arcsin(\alpha_1(I_1)\mu_1\sin\psi_1 + \alpha_2(I_2)\mu_2\sin\psi_2) + \pi + 2j\pi$.

We begin for the maximum crest $C_{\rm M}(I)$ parameterized by $\xi_j(j \bmod 2 = 0)$. From (25) and the definition of ψ , $\dot{I} = 0$ if, and only if $\psi_i = 0$, π , for i = 1, 2. From (13) and the expression of ξ_j , $\theta_i = -2\pi\omega_i j$ for $\psi_i = 0$, and $\theta_i = (1 - 2j\omega_i)\pi$ for $\psi_i = \pi$. This implies that (I, θ) such that $\dot{I} = 0$ lie on the union of 4 planes, namely \mathbf{P}_j , $(0, 0, 0, \pi) + \mathbf{P}_j$, $(0, 0, \pi, 0) + \mathbf{P}_j$, $(0, 0, \pi, \pi) + \mathbf{P}_j$, where

$$\mathbf{P}_{j} = \langle (1, 0, -2\pi\Omega_{1}j, 0), (0, 1, 0, -2\pi\Omega_{2}j) \rangle.$$

For the minimal crest $C_{\rm m}(I)$ parameterized by ξ_j with $j \mod 2 = 1$. In this case, $\theta_i = -(1 + 2j)\omega_i\pi$ for $\psi_i = 0$ and $\theta_i = \pi + (1 + 2j)\omega_i\pi$ for $\psi_i = \pi$. As before, $\dot{I} = 0$ on 4 planes: \mathbf{P}_j , $(0,0,\pi,0) + \mathbf{P}_j$, $(0,0,0,\pi) + \mathbf{P}_j$ and $(0,0,\pi,\pi) + \mathbf{P}_j$, where

$$\mathbf{P}_i = \langle (1, 0, -(1+2j)\Omega_1\pi, 0), (0, 1, 0, -(1+2j)\Omega_2\pi) \rangle.$$

As an example we study two concrete cases: First we are going to take the scattering maps $S_0(I,\theta)$ and $S_1(I,\theta)$ associated to ξ_0 and ξ_1 respectively, and to look for the intersection set between two planes of the eight planes associated to $C_0(I)$ and $C_1(I)$ such that the value of I is constant. Later, we do the same study for $S_0(I,\theta)$ and $S_2(I,\theta)$.

For $S_0(I, \theta)$ and $S_1(I, \theta)$, we have

$$\mathbf{P}_0 = \langle (1, 0, 0, 0), (0, 1, 0, 0) \rangle$$
 and $\mathbf{P}_1 = \langle (1, 0, -3\Omega_1 \pi, 0), (0, 1, 0, -3\Omega_2 \pi) \rangle$.

The intersection set between two planes of the eight planes associated to $C_0(I)$ and $C_1(I)$ has 16 points, more specifically, is the set

$$\begin{split} \mathfrak{I}_{0,1} &= \left\{ (0,0,0,0), \left(0,\frac{1}{3\Omega_{2}},0,0\right), \left(\frac{1}{3\Omega_{1}},0,0,0\right), \left(\frac{1}{3\Omega_{1}},\frac{1}{3\Omega_{2}},0,0\right), \\ &\left(0,\frac{-1}{3\Omega_{2}},0,\pi\right), (0,0,0,\pi), \left(\frac{1}{3\Omega_{1}},\frac{-1}{3\Omega_{2}},0,\pi\right), \left(\frac{1}{3\Omega_{1}},0,0,\pi\right), \\ &\left(\frac{-1}{3\Omega_{1}},0,\pi,0\right), \left(\frac{-1}{3\Omega_{1}},\frac{1}{3\Omega_{2}},\pi,0\right), (0,0,\pi,0), \left(0,\frac{1}{3\Omega_{2}},\pi,0\right), \\ &\left(\frac{-1}{3\Omega_{1}},\frac{-1}{3\Omega_{2}},\pi,\pi\right), \left(\frac{-1}{3\Omega_{1}},0,\pi,\pi\right), \left(0,\frac{-1}{3\Omega_{2}}.\pi,\pi\right), (0,0,\pi,\pi) \right\} \end{split}$$

For $S_0(I, \theta)$ and $S_2(I, \theta)$, since

$$\mathbf{P}_2 = \langle (1, 0, -4\Omega_1 \pi, 0), (0, 1, 0, -4\Omega_2 \pi) \rangle.$$

The intersection set between two planes of the eight planes associated to $C_0(I)$ and $C_2(I)$ is the set

$$\begin{split} \mathfrak{I}_{0,2} &= \left\{ (0,0,0,0), \left(0,\frac{1}{4\Omega_2},0,0\right), \left(\frac{1}{4\Omega_1},0,0,0\right), \left(\frac{1}{4\Omega_1},\frac{1}{4\Omega_2},0,0\right), \\ &\left(0,\frac{-1}{4\Omega_2},0,\pi\right), (0,0,0,\pi), \left(\frac{1}{4\Omega_1},\frac{-1}{4\Omega_2},0,\pi\right), \left(\frac{1}{4\Omega_1},0,0,\pi\right), \\ &\left(\frac{-1}{4\Omega_1},0,\pi,0\right), \left(\frac{-1}{4\Omega_1},\frac{1}{4\Omega_2},\pi,0\right), (0,0,\pi,0), \left(0,\frac{1}{4\Omega_2},\pi,0\right), \\ &\left(\frac{-1}{4\Omega_1},\frac{-1}{4\Omega_2},\pi,\pi\right), \left(\frac{-1}{4\Omega_1},0,\pi,\pi\right), \left(0,\frac{-1}{4\Omega_2}.\pi,\pi\right), (0,0,\pi,\pi) \right\} \end{split}$$

Observe these two sets imply that in a combination of these three scattering maps $S_0(I,\theta)$, $S_1(I,\theta)$ and $S_2(I,\theta)$, the value of I is constant just in (0,0,0,0), $(0,0,0,\pi)$, $(0,0,\pi,0)$ and $(0,0,\pi,\pi)$, this mean such combination provide us a great freedom to construct of diffusion. So, it is enough to study the regions where the value of I for each scattering maps is increase and ways to avoid the points cited above.

5 Theorems

Theorem 7 (More general result). Consider the Hamiltonian (1)+(2). Assume $a_1a_2a_3 \neq 0$ and $|a_1/a_3|+|a_2/a_3|<0.625$. Then, for every δ there exists $0<\varepsilon_0$ such that for every $0<|\varepsilon|<\varepsilon_0$, given $I_{\pm}\in\mathcal{I}^*\setminus\{(0,0)\}$, there exists an orbit $\tilde{x}(t)$ and T>0, such that

$$|I(\tilde{x}(0)) - I_{-}| \le C\delta$$

$$|I(\tilde{x}(T)) - I_{-}| \le C\delta$$
(27)

Actually, we will prove that given $I_{\pm} \in \mathcal{I}^* \setminus \{(0,0)\}$, we are able to build a path $\gamma(s) \subset \mathcal{I}^* \setminus \{(0,0)\}$ such that there exist an orbit $\tilde{x}(t)$ where $I(\tilde{x}(t))$ is δ -close to $\gamma(\Psi(t))$ for some parameterization Ψ .

Definition 8 ([GM17]). Let A be some set and consider a set $f = \{f_i | i \in I\}$ of locally defined maps $f_i : Dom f_i \to A$. A finite sequence $(x_n)_{0 \le n \le N-1}$ of points of A is an *orbit of length* N of the polysystem f, when there exists a sequence $(i_n)_{0 \le n \le N-1} \in I^N$ such that for $0 \le n < N$,

$$x_{n+1} = f_{i_n}(x_n).$$

Theorem 9 (Diffusion paths using only Scattering maps). Assume $a_1a_2a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (1)+(2). Given any two $(I_{\pm}, \theta_{\pm}) \in \tilde{\mathcal{I}}$, where

$$\tilde{\mathcal{I}} = \mathbb{R}^2 \times \mathbb{T}^2 \setminus \{(0,0,0,0), (0,0,\pi,0), (0,0,0,\pi), (0,0,\pi,\pi)\},\$$

and any δ there exists $\varepsilon_0 > 0$ such that for every $0 < |\varepsilon| < \varepsilon_0$ there is an orbit $(I^i, \theta^i)_{0 \le i < N}$ of the polyscattering map (S_0, S_1, S_2) :

$$(I^{i+1}, \theta^{i+1}) = S_{\ell}(I^i, \theta^i), \text{ where } \ell \in \{0, 1, 2\},$$

such that

$$|(I^0, \theta^0) - (I_-, \theta_-)| < \delta \text{ and } |(I^N, \theta^N) - (I_+, \theta_+)| < \delta.$$

Proof.

Theorem 10 (Existence of Highways). Assume $a_1a_2a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (1)+(2). Given any $0 < c_j < C_j$, j = 1, 2, there is an orbit $(I^i, \theta^i)_{0 \leq i < N}$ of the scattering map S_0 such that

$$\left|I_{j}^{0}\right| < c_{j}$$
 and $\left|I_{j}^{N}\right| > C_{j}$, $j = 1, 2$.

References

- [DH09] A. Delshams and G. Huguet. Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems. *Nonlinearity*, 22(8):1997–2077, 2009.
- [DH11] A. Delshams and G. Huguet. A geometric mechanism of diffusion: rigorous verification in a priori unstable Hamiltonian systems. *J. Differential Equations*, 250(5):2601–2623, 2011
- [DLS00] A. Delshams, R. de la Llave and T. M. Seara. A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of \mathbf{T}^2 . Comm. Math. Phys., 209(2):353–392, 2000.
- [DLS06] A. Delshams, R. de la Llave and T. M. Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. *Mem. Amer. Math. Soc.*, 179(844):viii+141, 2006.
- [DLS16] A. Delshams, R. de la Llave and T. M. Seara. Instability of high dimensional hamiltonian systems: Multiple resonances do not impede diffusion. *Advances in Mathematics*, 294:689 755, 2016.
- [DS17a] A. Delshams and R. G. Schaefer. Arnold diffusion for a complete family of perturbations. Regular and Chaotic Dynamics, 22(1):78–108, 2017.
- [DS17b] A. Delshams and R. G. Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. *ArXiv e-prints*, September 2017.
- [GM17] M. Gidea and J.-P. Marco. Diffusion along chains of normally hyperbolic cylinders. ArXiv e-prints, August 2017.