

* NOTICES *

This patent has been translated by the Japan Patent Office Web Page located at: http://www.jpo.go.jp/. The Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

Publication No. JP 10-313,566 Filed May 12, 1997 Publication Date November 24, 1998 Application No. 09-120830

Begin Translation:

CLAIMS

[Claim(s)]

[Claim 1] The linear motor which makes the aforementioned permanent magnet the shape of a tubed basic form in the linear motor which has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, and is characterized by constituting the aforementioned stator section as between the permanent magnets which adjoin each other by inserting the pin center, large shaft by the non-magnetic material in these, and binding tight from both sides was stuck. [Claim 2] The linear motor characterized by covering the periphery side of two or more aforementioned permanent magnets with the tube-like object by the non-magnetic material in a linear motor according to claim 1.

[Claim 3] The linear motor characterized by forming a male screw in the end side of the aforementioned pin center, large shaft, thrusting into a bracket, forming a male screw also in an other end side in a linear motor according to claim 2 covering predetermined length, equipping the male screw by the side of this other end with a nut, and making it stick between two or more aforementioned permanent magnets between the aforementioned brackets.

[Claim 4] It is the linear motor which the aforementioned permanent magnet is a ring-like in a linear motor according to claim 3, and is characterized by the aforementioned tube-like object being the pipe of the cross-section round shape in which adhesion fitting on the periphery of the aforementioned permanent magnet is possible.

[Claim 5] It is the linear motor characterized by the aforementioned permanent magnet consisting of rare earth or ferrite system magnet material in a linear motor according to claim 4.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[The technical field to which invention belongs] this invention relates to improvement of the stator especially constituted combining two or more permanent magnets about a linear motor.

[0002]

[Description of the Prior Art] Using a linear motor for the part as which straight-line movement is required like a print head in the field of OA equipment recently is proposed. Usually, the linear motor has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, and the moving part which is arranged so that this may be surrounded on the outside of this stator section, and contains the coil which can be slid to the shaft orientations of the stator section. By passing current in a coil so that the magnetic flux generated with a permanent magnet may be intersected, based on the interaction of this current and magnetic field, driving force occurs in shaft orientations at the coil section, consequently moving part moves

[0003] In such a linear motor, the assembly precision of two or more permanent magnets which can be set in the stator section influences the positioning accuracy of moving part. Until now, two or more permanent magnets are attached to cylindrical supporter material by adhesion, and explain this with reference to <u>drawing 5</u>.

[0004] In drawing 5, it pastes up in series and the stator section 40 is constituted so that an opposite magnetic pole may counter mutually the both sides of the cylindrical supporter material 41 which consists of a non-magnetic material in the permanent magnet 42 of two or more letters of a block. In for OA equipment, such the stator section 40 is [the overall length of the length of a permanent magnet 42] less than 1m in about several cm. For this reason, it is necessary to paste up dozens of or more permanent magnets 42 on the supporter material 41.

[0005]

[Problem(s) to be Solved by the Invention] Since big repulsive force acts between the adjacent permanent magnets 42 in case the above adhesion is performed, you have to keep time until adhesives solidify in the state where the permanent magnet 42 was held with the fixture. For this reason, the manufacturing process of the stator section 40 not only needs the time for solidifying adhesives, but had the problem of being easy to produce a position gap of a permanent magnet.

[0006] Then, the technical problem of this invention is to offer the linear motor equipped with the stator section which attached the permanent magnet without adhesion.
[0007] Other technical problems of this invention are to offer the linear motor equipped with the stator section which attached the permanent magnet with high positioning

[0008] The technical problem of further others of this invention has assembly in offering the linear motor equipped with the easy and cheap stator section. [0009]

[Means for Solving the Problem] The linear motor characterized by constituting the aforementioned stator section as between the permanent magnets which adjoin each other by according to this invention making the aforementioned permanent magnet into the shape of a tubed basic form in the linear motor which has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, inserting the pin center, large shaft by the non-magnetic material in these, and binding tight from both sides was stuck is offered.

[0010] In addition, it is desirable to cover the periphery side of two or more aforementioned permanent magnets with the tube-like object by the non-magnetic material.

[0011] Moreover, it is desirable to form a male screw in the end side of the aforementioned pin center, large shaft, to thrust into a bracket, to form a male screw also in an other end side covering predetermined length, to equip the male screw by the side of this other end with a nut, and to stick between two or more aforementioned permanent magnets between the

aforementioned brackets.

[0012] Furthermore, the aforementioned permanent magnet is a ring-like and, as for the aforementioned tube-like object, it is desirable that it is the pipe of the cross-section round shape in which adhesion fitting on the periphery of the aforementioned permanent magnet is possible.

[0013] As for the aforementioned permanent magnet, it is desirable to consist of rare earth or ferrite system magnet material.

[0014]

[Embodiments of the Invention] Below, the gestalt of desirable operation of this invention is explained. With reference to drawing 2, the linear motor in this gestalt has the stator section 10 and moving part 20. The stator section 10 has the bracket 11 by the non-magnetic material, and the pipe 12 by the non-magnetic material having many permanent magnets so that it may explain in detail later. Moving part 20 has two or more coils 21 (here 12 pieces), as shown in drawing 3 (a), and a pipe 12 penetrates the coil 21 of these plurality. The slide to the shaft orientations of a pipe 12 of moving part 20 is attained in the state of contact or non-contact at the pipe 12. In addition, the AC power supply of a three phase circuit is connected to 12 coils 21, and as each coil 21 shows each phases W, U, and V at drawing 3 (b), it connects with them.

[0015] With reference to drawing 1, the stator section 10 which is the feature of this gestalt is explained. In addition to a bracket 11 and a pipe 12, the stator section 10 has the pin center, large shaft 14 by the non-magnetic material inserted in the permanent magnet 13 of the shape of two or more ring, and two or more permanent magnets 13, and the nut 15 for bolting. It is thrust into the female screw section which the male screw 14-1 was formed in the end side of the pin center, large shaft 14, and was formed in the bracket 11. The male screw 14-2 covering predetermined length which ****s, carries out and has ** is formed also in the other end side of the pin center, large shaft 14, a nut 15 is screwed in this male screw 14-2, and it is made to stick between two or more permanent magnets 13 between a bracket 11 and a nut 15. Two or more permanent magnets 13 are together put in series so that an opposite magnetic pole may counter mutually, and it is made to cover the periphery side of the permanent magnet 13 of these plurality in the pipe 12 of a cross-section round shape. In addition, the hole 11-1 for the screw-thread insertion for attaching the stator section 10 in the device by which a linear motor is mounted is formed in the bracket 11. [0016] Although the large rare earth or ferrite system material of flux density is desirable as a material of a permanent magnet 13, other magnet material is sufficient. As a material of a pipe 12, a non-magnetic material like stainless steel is used as a material of the pin center, large shaft 14 that what is necessary is just non-magnetic materials, such as aluminum, brass, and stainless steel. Especially the pin center, large shaft 14 is designed so that a mechanical strength required for the assembly of a permanent magnet 13 may be obtained. On the other hand, the thinner one is desirable as it can avoid decreasing the magnetic field which acts on the moving part 20 arranged on the outside about a pipe 12. A pipe 12 is realized by stainless steel with a thickness of 1mm as an example. Moreover, a pipe 12 also has the function which guides this moving part 20, when moving part 20 is a contact process, while having the bore which will be in the periphery section and the adhesion state of a permanent magnet 13 and having a rustproof function of a permanent magnet 13.

[0017] An example of the assembly method of this stator section 10 is explained. The male screw 14-1 of the pin center, large shaft 14 is thrust into a bracket 11. Next, a pipe 12 is arranged around the pin center, large shaft 14, and it inserts one permanent magnet 13 at a time into a pipe 12 through the pin center, large shaft 14. If the permanent magnet 13 of the predetermined number is put in, a nut 15 will be screwed in a male screw 14-2, and it will

bind tight so that between permanent magnets 13 may stick. In addition, although it is necessary to turn a nut 15 within a pipe 12 when the length of a pipe 12 is longer than the length when attaching the permanent magnet 13 of the predetermined number like <u>drawing 1</u>, this is performed using a special fixture. After attaching a permanent magnet 13, opening of a pipe 12 is closed by the cap 16.

[0018] For reference, the permanent magnet 13 with the outer diameter of 36.3mm, a bore [of 16.3mm], and a length of 60mm is used for drawing 4, and flux density (Y=20mm of distance from a medial axis, 25mm, and 30mm) of an actual measurement is shown in it. There is nothing until it says, and the flux density in the joint of two permanent magnets 13 shows peak value.

[0019] The stator section by this gestalt is realizable to a length of about about 2m. In addition, the shape not only of the shape of a ring but a polygon has as the configuration of a permanent magnet 13, and it is made into the cross-section configuration same as a pipe 12 in this case. Moreover, the linear motor by this gestalt is applicable not only to a comparatively small thing like OA equipment but the part as which straight-line movement is required in a large-scale industrial machine as shown in the move table in a large-sized machine tool like a milling machine.

[0020]

[Effect of the Invention] As explained above, according to this invention, the following effects are acquired, when two or more permanent magnets for constituting the stator section of a linear motor are attached without an adhesion process and were made to be made.

[0021] ** Since two or more permanent magnets are attached and are made only in bolting, structure and a linear motor easy [attachment work] and cheap can be offered.

[0022] ** Since the adhesion process is unnecessary, time until the special fixture and special adhesives for holding a permanent magnet on the occasion of adhesion solidify can attach by being unnecessary in a short time.

[0023] ** Since the position gap between two or more permanent magnets does not arise, a permanent magnet can be arranged as a design value, consequently the positioning accuracy of moving part can be raised.

TECHNICAL FIELD

[The technical field to which invention belongs] this invention relates to improvement of the stator especially constituted combining two or more permanent magnets about a linear motor.

PRIOR ART

[Description of the Prior Art] Using a linear motor for the part as which straight-line movement is required like a print head in the field of OA equipment recently is proposed. Usually, the linear motor has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, and the moving part which is arranged so that this may be surrounded on the outside of this stator section, and contains the coil which can be slid to the shaft orientations of the stator section. By passing current in a coil so that the magnetic flux generated with a permanent magnet may be intersected, based on the interaction of this current and magnetic field,

driving force occurs in shaft orientations at the coil section, consequently moving part moves.

[0003] In such a linear motor, the assembly precision of two or more permanent magnets which can be set in the stator section influences the positioning accuracy of moving part. Until now, two or more permanent magnets are attached to cylindrical supporter material by adhesion, and explain this with reference to drawing 5.

[0004] In <u>drawing 5</u>, it pastes up in series and the stator section 40 is constituted so that an opposite magnetic pole may counter mutually the both sides of the cylindrical supporter material 41 which consists of a non-magnetic material in the permanent magnet 42 of two or more letters of a block. In for OA equipment, such the stator section 40 is [the overall length of the length of a permanent magnet 42] less than 1m in about several cm. For this reason, it is necessary to paste up dozens of or more permanent magnets 42 on the supporter material 41.

EFFECT OF THE INVENTION

attach by being unnecessary in a short time.

[Effect of the Invention] As explained above, according to this invention, the following effects are acquired, when two or more permanent magnets for constituting the stator section of a linear motor are attached without an adhesion process and were made to be made.

[0021] ** Since two or more permanent magnets are attached and are made only in bolting, structure and a linear motor easy [attachment work] and cheap can be offered.
[0022] ** Since the adhesion process is unnecessary, time until the special fixture and special adhesives for holding a permanent magnet on the occasion of adhesion solidify can

[0023] ** Since the position gap between two or more permanent magnets does not arise, a permanent magnet can be arranged as a design value, consequently the positioning accuracy of moving part can be raised.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] Since big repulsive force acts between the adjacent permanent magnets 42 in case the above adhesion is performed, you have to keep time until adhesives solidify in the state where the permanent magnet 42 was held with the fixture. For this reason, the manufacturing process of the stator section 40 not only needs the time for solidifying adhesives, but had the problem of being easy to produce a position gap of a permanent magnet.

[0006] Then, the technical problem of this invention is to offer the linear motor equipped with the stator section which attached the permanent magnet without adhesion.

[0007] Other technical problems of this invention are to offer the linear motor equipped with the stator section which attached the permanent magnet with high positioning accuracy.

[0008] The technical problem of further others of this invention has assembly in offering the linear motor equipped with the easy and cheap stator section.

[Means for Solving the Problem] The linear motor characterized by constituting the aforementioned stator section as between the permanent magnets which adjoin each other by according to this invention making the aforementioned permanent magnet into the shape of a tubed basic form in the linear motor which has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, inserting the pin center, large shaft by the non-magnetic material in these, and binding tight from both sides was stuck is offered.

[0010] In addition, it is desirable to cover the periphery side of two or more aforementioned permanent magnets with the tube-like object by the non-magnetic material.

[0011] Moreover, it is desirable to form a male screw in the end side of the aforementioned pin center, large shaft, to thrust into a bracket, to form a male screw also in an other end side covering predetermined length, to equip the male screw by the side of this other end with a nut, and to stick between two or more aforementioned permanent magnets between the aforementioned brackets.

[0012] Furthermore, the aforementioned permanent magnet is a ring-like and, as for the aforementioned tube-like object, it is desirable that it is the pipe of the cross-section round shape in which adhesion fitting on the periphery of the aforementioned permanent magnet is possible.

[0013] As for the aforementioned permanent magnet, it is desirable to consist of rare earth or ferrite system magnet material.

[0014]

[Embodiments of the Invention] Below, the gestalt of desirable operation of this invention is explained. With reference to drawing 2, the linear motor in this gestalt has the stator section 10 and moving part 20. The stator section 10 has the bracket 11 by the non-magnetic material, and the pipe 12 by the non-magnetic material having many permanent magnets so that it may explain in detail later. Moving part 20 has two or more coils 21 (here 12 pieces), as shown in drawing 3 (a), and a pipe 12 penetrates the coil 21 of these plurality. The slide to the shaft orientations of a pipe 12 of moving part 20 is attained in the state of contact or non-contact at the pipe 12. In addition, the AC power supply of a three phase circuit is connected to 12 coils 21, and as each coil 21 shows each phases W, U, and V at drawing 3 (b), it connects with them.

[0015] With reference to drawing 1, the stator section 10 which is the feature of this gestalt is explained. In addition to a bracket 11 and a pipe 12, the stator section 10 has the pin center, large shaft 14 by the non-magnetic material inserted in the permanent magnet 13 of the shape of two or more ring, and two or more permanent magnets 13, and the nut 15 for bolting. It is thrust into the female screw section which the male screw 14-1 was formed in the end side of the pin center, large shaft 14, and was formed in the bracket 11. The male screw 14-2 covering predetermined length which ****s, carries out and has ** is formed also in the other end side of the pin center, large shaft 14, a nut 15 is screwed in this male screw 14-2, and it is made to stick between two or more permanent magnets 13 between a bracket 11 and a nut 15. Two or more permanent magnets 13 are together put in series so that an opposite magnetic pole may counter mutually, and it is made to cover the periphery side of the permanent magnet 13 of these plurality in the pipe 12 of a cross-section round shape. In addition, the hole 11-1 for the screw-thread insertion for attaching the stator section 10 in the device by which a linear motor is mounted is formed in the bracket 11. [0016] Although the large rare earth or ferrite system material of flux density is desirable as a material of a permanent magnet 13, other magnet material is sufficient. As a material of a pipe 12, a non-magnetic material like stainless steel is used as a material of the pin

center, large shaft 14 that what is necessary is just non-magnetic materials, such as aluminum, brass, and stainless steel. Especially the pin center, large shaft 14 is designed so that a mechanical strength required for the assembly of a permanent magnet 13 may be obtained. On the other hand, the thinner one is desirable as it can avoid decreasing the magnetic field which acts on the moving part 20 arranged on the outside about a pipe 12. A pipe 12 is realized by stainless steel with a thickness of 1mm as an example. Moreover, a pipe 12 also has the function which guides this moving part 20, when moving part 20 is a contact process, while having the bore which will be in the periphery section and the adhesion state of a permanent magnet 13 and having a rustproof function of a permanent magnet 13.

[0017] An example of the assembly method of this stator section 10 is explained. The male screw 14-1 of the pin center, large shaft 14 is thrust into a bracket 11. Next, a pipe 12 is arranged around the pin center, large shaft 14, and it inserts one permanent magnet 13 at a time into a pipe 12 through the pin center, large shaft 14. If the permanent magnet 13 of the predetermined number is put in, a nut 15 will be screwed in a male screw 14-2, and it will bind tight so that between permanent magnets 13 may stick. In addition, although it is necessary to turn a nut 15 within a pipe 12 when the length of a pipe 12 is longer than the length when attaching the permanent magnet 13 of the predetermined number like drawing 1, this is performed using a special fixture. After attaching a permanent magnet 13, opening of a pipe 12 is closed by the cap 16.

[0018] For reference, the permanent magnet 13 with the outer diameter of 36.3mm, a bore [of 16.3mm], and a length of 60mm is used for $\frac{1}{2}$ and flux density (Y= 20mm of distance from a medial axis, 25mm, and 30mm) of an actual measurement is shown in it. There is nothing until it says, and the flux density in the joint of two permanent magnets 13 shows peak value.

[0019] The stator section by this gestalt is realizable to a length of about 2m. In addition, the shape not only of the shape of a ring but a polygon has as the configuration of a permanent magnet 13, and it is made into the cross-section configuration same as a pipe 12 in this case. Moreover, the linear motor by this gestalt is applicable not only to a comparatively small thing like OA equipment but the part as which straight-line movement is required in a large-scale industrial machine as shown in the move table in a large-sized machine tool like a milling machine.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the cross section showing the structure of the stator section of the linear motor by the gestalt of desirable operation of this invention.

[Drawing 2] It is drawing having shown the appearance of the linear motor by the gestalt of desirable operation of this invention, and drawing (a) is [front view and drawing (c) of a plan and drawing (b)] side elevations.

[Drawing 3] It is drawing for explaining the moving part in <u>drawing 2</u>, and is drawing in which drawing's (a's)'s having shown the side elevation and having shown an example of the topology of two or more coils of drawing (a) (b).

[Drawing 4] It is drawing having shown the survey result of the flux density by the stator section shown in drawing 1.

[Drawing 5] It is drawing having shown the starter section in the conventional linear motor roughly.

[Description of Notations]

- 10 Stator Section
- 11 Bracket
- 12 Pipe
- 13 Permanent Magnet 14 Pin Center, large Shaft 14-1, 14-2 Male screw
- 15 Nut
- 16 Cap
- 20 Moving Part
- 21 Coil

DRAWINGS

[Drawing 4]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開發导 特開平10-313566

(43)公開日 平成10年(1988)11月24日

(51) IntCl.* HO2K 41/03 **地別記号**

ΡI H02K 41/03

審査開京 未請求 買求項の数5 OL (全 5 頁)

(21) 出版書号

鈴薯平9-120830

(71) 出題人 597065352

株式会社ジイエムシー

神奈川県川崎市多岸区至严369

(22) 出聯日

平成9年(1897) 5月12日

(72) 発明者 石山 里丘

東京都都城市東長福860番地の3

(74)代理人 弁理士 後藤 芹介 (外2名)

(54) 【9897の名称】 リニアモータ

(57)【英約】

【課題】 永久磁石を授着無しで組み付けたステータ部 を備えたリニアモータを提供すること。

【解決手段】 永久磁石13を簡択とし、これらに非欲 性材料によるセンター輸1 4を挿入して両側から締め付 けることにより難り合う永久磁石の間を密着させるよう にしてステータ部10を構成した。

【特許請求の範囲】

【請求項1】 複数の永久磁石を互いに反対の磁極が対向するように面別に組み合わせて成るステータ部を有するリニアモータにおいて、前記永久磁石を同状の基本形状とし、これらに非線性材料によるセンター軸を挿入して阿伽から締め付けることにより繰り合う永久磁石の間を密着させるようにして前記ステータ部を構成したことを特徴とするリニアモータ。

【請求項2】 ・ 請求項1 記載のリニアモータにおいて、 前記複数の永久国石の外周側を非磁性材料による管状体 で履うようにしたことを特徴とするリニアモータ。

【資水項3】 請求項2記載のリニアモータにおいて、 前記センター軸の一端側におねじを形成してブラケット に無入し、他端側にも所定の長さにわたっておねじを形 成し、終他端側のおねじにはナットを要着して前記ブラ ケットとの間で前記複数の永久磁石の間を密着させるよ うにしたことを特徴とするリニアモータ。

【請求項4】 請求項3記載のリニアモータにおいて、 前記永久磁石はリング状であり、前記筒状体は前記永久 磁石の外周に密着嵌合可能な断面円形のパイプであるこ とを特徴とするリニアモータ。

[請求項6] 請求項4記載のリニアモータにおいて、 前配永久磁石は、希土類またはフェライト系磁石材料から成ることを特徴とするリニアモータ。

【芫明の詳細な説明】

[0001]

【発明の異十る技術分野】本発明はリニアモータに関し、特に複数の永久磁石を組み合わせて構成されるステータの改良に関する。

[0002]

【従来の技術】最近、〇A機器の分野において、例えば 印字ヘッドのように直線移動が要求される部位に、リニ アモータを利用することが提案されている。通常、リニ アモータは、複数の永久能石を互いに反対の磁極が対向 するように直列に組み合わせて成るステータ部と、この ステータ部の外側にこれを関むように配置され、ステー タ部の軸方向にスライド可能なコイルを含む可動部とを 有している。永久破石で発生される磁域と交叉するよう にコイルに電流を流すことにより、この電流と磁形との 相互作用に基づいてコイル部には触方向に駆動力が発生 し、その越菜、可動部が移動する。

[0003] このようなリニアモータにおいては、ステータ部における複数の永久磁石の組立特度が可動所の位置決め精度を左右する。これまで、複数の永久磁石は横状の支持部材に接着により組み付けられており、これを図6を一照して説明する。

【0004】図6において、ステータ部40は、非磁性 材料より成る棒状の支料部材41の両側に、複数のプロック状の永久磁石42を互いに反対の磁機が対向するように直対に接着して構成されている。このようなステー タ部40は、OA機器用の場合、永久融石42の長さは 数cm程度で、全長は1m以内である。このため、数十個以上の永久磁石42を支持部計41に接着する必要が ある。

[0005]

【発明が解決しようとする課題】上記のような接着を行う際には、除り合う永久敵石48の間に大きな反発力が作用するので、接着別が固化するまでの時間は永久敬石42を治具で保持した状態に置かなければならない。このため、ステーダ部40の製造工程は接着別を固化させるための時間を必要とするだけでなく、永久磁石の位置すれが生じ易いという問題があった。

【0006】そこで、本発明の課題は、永久磁石を接着 無しで組み付けたステータ部を備えたリニアモータを協 供することにある。

【0007】本発明の他の課題は、永久磁石を高い位置 映め精度で組み付けたステータ部を備えたリニアモータ を提供することにある。

(0008] 本発明の更に他の課題は、超立が容易で安 価なステーク部を備えたリニアモータを提供することに ある。

[0009]

【課題を解決するための手段】本預明によれば、複数の 水久磁石を互いに反対の磁極が対向するように直列に起 み合わせて成るステータ部を有するリニアモータにおい て、前記永久磁石を断状の基本形状とし、これらに非磁 性材料によるセンター軸を挿入して両側から締め付ける ことにより降り合う水久磁石の間を密着させるようにし て前辺ステータ部を構成したことを特徴とするリニアモ ータが提供される。

【0010】なお、前記複数の永久確可の外周領を非確性材料による筒状体で預うことが好ましい。

【0011】また、前記センター階の一端側におねじを 形成してプラケットに銀入し、他機関にも所定の長さに わたっておねじを形成し、該他端側のおねじにはナット を数着して前記プラケットとの間で前記複数の永久磁石 の間を密着させることが好ましい。

【0012】更に、前記永久隆石はリング状であり、前記筒状体は前記永久礎石の外層に密着嵌合可能な新闻円形のパイプであることが好ましい。

[0012] 前記永久明石は、希土原宝たはフェライト 系誌石材料から成ることが好ましい。

(0014)

【発明の支充の形態】以下に、本花例の好ましい実施の形態について説明する。図2を参照して、本形盤におけるリニアモータは、ステータ第10と可動語20とを有する。ステータ部10は、後で詳しく説明するように、非単性材料によるブラケット11と多数の永久集石を内蔵した非磁性材料によるパイプ12とを有する。可動師20は、図3(a)に示すように、複数のコイル21

(ここでは12個)を有し、これら複数のコイル21を パイプ12が貫通する。可動部20はパイプ12に硬性 あるいは非接触状態でパイプ12の軸方向にスライド可 能になっている。なお、12個のコイル21には、3相 の交流電源が接続され、各相W、U、Vには各コイル2 1が図3(b)に示すように接続される。

【0016】図1を参照して、本形態の特徴であるステ 一夕郎10について説明する。 ステータ部10は、ブラ ケット11、パイプ12に加えて、複数のリング状の永 久部石13と、複数の永久取石13に挿入された非磁性 材料によるセンター韓14と、締め付け用のナット16 とを有する。センター軸14の一端側にはおねじ14-1が形成され、プラケット11に形成されためねじ部に 個入されている。センター軸14の位端側にも所定の長 さにわたろねじしろを持つおねじ14-2が形成され、 このおねじ14-2にナット16が螺合されてプラケッ ト11とナット16との関で複数の永久磁石13の間を 密着させるようにしている。 複数の永久磁石13は、五 いに反対の破極が対向するように直列に超み合わされ、 これら複数の永久融石13の外周側を断面円形のパイプ 12で使うようにしている。なお、プラケット11に は、ステータ部10を、リニアモータが実装される機器 に取り付けるためのねじ挿通用の孔11-1が設けられ

【0016】永久磁石13の材料としては、磁東密度の大きい希土環主たはフェライト系材料が好ましいが他の報石材料でも良い。パイプ12の材料としては、アルニウム、真鍮、ステンレス等の非磁性材料であれば良く、センター軸14の材料としては、ステンレスの非磁性材料が使用される。特に、センター軸14の材料としては、ステンレスの独立に必要な確認的強度が得られるとは、永久被石13の体制しては、その外のに設計される。一方、パイプ12は厚さ1mmのステンレスで実現される。また、パイプ12は厚さ1mmのステンレスで実現される。また、パイプ12は厚さ1mmのステンレスで実現される。また、パイプ12は厚さ1mmのステンレスで実現される。また、パイプ12は厚さ1mmのステンレスで実現される。また、カ内番を有して永久磁石13の防鎖の機能を有するとと共に、可動部20が接触式の場合には、この可動部20をガイドする機能をも有する。

【0017】このステータ新10の組立方法の一例を説明する。センター軸14のおねじ14-1をプラケット11に購入する。次に、パイプ12をセンター軸14の周囲に配貸し、永久座石13を1億ずつセンター軸14を通してパイプ12内に挿入する。所定個数の永久顧石13を入れたら、ナット15をおねじ14-2に現合し、永久確石13間が高着するように締め付ける。なお、関1のように、パイプ12の長さが、所応個数の永久確石1 を組み付けた時の長さよりも長い却合には、ナット16をパイプ12内で回す必要があるが、これは特別な位具を用いて行われる。永久磁石13を超み付け

た後、パイプ12の関ロはキャップ16で選がれる。 【0018】図4には、参考のために、外径36、3mm、内径16、3mm、長さ60mmの永久避石13を用い、中心輸からの題雕Y=20mm、25mm、30mmでの破束密度の実別値を示す。言うまでも無く、2つの永久磁石13の接合部での破束密度がピーク値を示す。

【0019】本形態によるステータ部は、長さ約2m程度まで実現できる。なお、永久極石13の形状は、リング状に限らず多角形状でも良く、この場合パイプ12も同じ断面形状にされる。また、本形像によるリニアモータは、OA機器のような比較的小型のものに限らず、例えばフライス酸のような大型工作機械における移動テーブルのような大型圧剤機械において直線移動が要米される部位にも適用可能である。

[0020]

【発明の効果】以上説明してきたように、本発明によれば、リニアモータのステータ部を構成するための複数の永久磁石を接着工程類しで組み付けできるようにしたこ複数の永久磁石を締め付けだけで組み付けできるので、構造及び組付け作業が間単で安価なリニ接着工程が不要であるので、接着に限して永久磁石を保持するための特殊な治具及び接着剤が固化するまでの時間が不要であり、組み付けを頻時間で行複数の永久磁石間の位置ずれが生じないので、永久磁石を設計低通りに配置でき、その結果、可動節の位置決め特度を向上させることができる。

【図面の簡単な説明】

【図1】本発明の好主しい表施の形態によるリニアモー タのステーク部の構造を示す前面図である。

【図2】本発明の好ましい実施の形態によるリニアモー タの外観を示した図であり、図(a)は平面図、図

- (6) は正面団、団 (4) は側面図である。
- 【図3】図2における可動部を放明するための図で、図
- (a) は傾面図、図(b) は図(a) の複数のコイルの 征納形態の一例を示した図である。

【図4】図1に示されたステータ部による磁束密度の実 創結果を示した図である。

【図5】従来のリニアモータにおけるスタータ部を散略 的に示した関である。

【符号の説明】

- 10 ステータ部
- 11 ブラケット
- 12 パイプ
- 13 永久從石
- 14 センター核

14-1, 14-2 846

15 ナット 16 キャップ 20 可動部

[图1]

(B)2]

[24]

P6 -5-