Hartshorne solution 4.1

Pistol Dagger

1

曲線 X 上の点 P について、P 以外で正則であるような非定数の有理型関数は存在するか?

P は因子として ample であるため、ある自然数 n があって nP は very ample となる。nP の完備線形系が定める射影埋め込み $j\colon X\to \mathbb{P}^d$ を考えると、 $nP\subset X$ はある超平面 H について $j^{-1}(H)$ と表示されることが理解される。よって $X\setminus P$ は \mathbb{A}^d に埋め込まれた多様体であるため、かつこれは点ではないため、 \mathbb{A}^d により誘導される非定数な関数が存在する。

あるいは Riemann-Roch theorem を用いても定量的に解くことができる。

2

曲線 X 上の点 P_1, \ldots, P_n について、 P_{\bullet} では極であって、それ以外で正則であるような有理型関数は存在するか?

同様の方法で $j\colon X\to\mathbb{P}^n$ で $j^{-1}(H)=a(P_1+\ldots+P_n)$ なるようなものがとれる。このとき簡単のため $H=(x_0)$ で切り出されるとする。 $H\cap X$ は有限点であるから、 $\frac{\sum b_\bullet x_\bullet}{x_0}$ であって $H\cap X$ を極のままにする 関数が存在する。よって、この関数を引き戻しは P_1,\ldots,P_n を極とし、それ以外の点で正則な関数となる。

3

X を integral, separated, regular, one-dimensional scheme であって of finite type over k かつ not proper over k とする。このとき X は affine である。

X の関数体を K とする - このとき、 C_K を次のようなスキームとする。点としては K/k のなかの DVR R であって K を商体に持つもの全体として、位相は補有限位相をいれ、また関数の層は $\Gamma(U):=\bigcap_{P\in U}R_P$ と定める。

これがスキームであることを確認する。まず環付き空間となっていることはよく、局所環付き空間であることについては、 $\mathcal{O}_P \subset R_P$ はよく、また $x \in R_P$ について、 $x \in R_Q$ なる Q 全体の集合は補有限であるため、よい。

 $P\in C_K$ が与えられたとき、 $x\in R_P$ を任意にとると、 $x\in R_Q$ なる Q について k[x] の整閉包を R とおくと、 $R\subset R_Q$ が成り立つ。ここで R は Dedekind 環であることに注意すると、 $\{x\in R_Q\}\subset C_K$ は環付き空間として $\mathrm{Spec}(R)$ に同型である。よってこれはスキームとなる。

X の各点 P について、 $\mathcal{O}_P \subset K$ は DVR である - よって、 $X \to C_K$ なる位相空間の射を取ることができ

る。また、 $U\subset X$ について $\Gamma(U)=\bigcup_{P\in U}\mathcal{O}_P$ が示されるため、 $X\to C_K$ は自然に環付き空間の射となる。 X の開集合 $\mathrm{Spec}(R)$ に射を制限するとこれは開部分スキームを定めるため、よって $X\to C_K$ はスキームの射である。

separated であるため、center の uniqueness より、 $X \to C_K$ は単射である - ここまでのことから、X は C_K の開部分スキームであることがわかる。

Hartshorne, I 章あるいは II 章の理論により C_K は projective であることはすでに理解されている。この とき $D=C_K\setminus X$ をとると、nD はやがて very ample となるため、X は affine となる。

4

separated, one-dimensional scheme of finite type over k であって、どの既約成分も proper でないような X について、これが affine であることを示せ。

話は integral, separated, one-dimensional, of finite type に帰着させることができ、Ex.III.4.2 によれば finite surjective $X \to Y$ であって X が affine ならば Y もまた affine であるため、正規化 $\widetilde{X} \to X$ を考えると、 \widetilde{X} が proper ならばその像も proper となるはずゆえ、 \widetilde{X} は affine. よって話は終わる。

5

effective divisor D について $\dim |D| \leq \deg(D)$ が成り立ち、等号は D=0 あるいは g=0 の際に実現される。

Riemann-Roch より、 $l(D)-l(K-D)=\deg(D)+1-g$ が成り立ち、よって $l(D)-g=l(D)-l(K)\leq l(D)-l(K-D)=\deg(D)+1-g$ が成り立ち、これは命題の前半をいう。後半については、l(K)=l(K-D) が成り立つ条件について考えればよい。

 $D \neq 0$ とすると、l(K) = l(K-P) なる P が存在する。 すると Riemann-Roch より l(P) = 2 となって、これは g = 0 を imply する。

6

X を種数 g の curve とすると、degree が g+1 以下の $X \to \mathbb{P}^1$ なる有限射が存在する。

 $X \to \mathbb{P}^1$ なる degree d の有限射を構成するためには、X 上の degree d の因子 D であって basepoint-free なものを構成すればよい。

ここで、basepoint-free とは、すなわち任意の $P \in X$ について、 $\mathcal{L}(D)$ の元 f が存在して D+(f) の support に P がないようにできることをいう - これは l(D-P)=l(D)-1 と同値である。

basepoint-free な因子があれば、k は無限体であるため、線型空間は芯に部分な線型空間の有限和では表されないため、 D_1,D_2 であって support を共有しないものがとれる。したがって、 $X\to\mathbb{P}^1$ なる射が構成される。

ここで、 $X \to \mathbb{P}^1$ が finite となる条件について復習する - X は projective scheme であり、surjective ならば quasi-finite であるため、これは finite となる。よって finite でないということは、これは一点を経由することになり、 $\deg(D)=0$ となってしまう。逆に $\deg(D)=0$ ならば、 $X \to \mathbb{P}^1$ は一点を経由する。

basepoint-free であるためには、effective な divisor と線形同値でなければならないことは先に言及しておく。

degree が g+1 以下の因子について、これらがすべて basepoint-free でなかったとすると、degree $d \leq g+1$ の任意の effective divisor と線形同値な D について、ある $P \in X$ が存在して $0 \leq l(D) = l(D-P)$ が成り立ち、帰納的に $P = P_1, \ldots, P_d$ が存在して $0 \leq l(D) = l(D-P_1-\ldots-P_d) = 0$ が理解される。

このとき、Riemann-Roch theorem に degree が g+1 の effective divisor を代入すると、左辺は高々 1 で抑えられ、右辺は 2 以上となるため、矛盾する。よって、degree が g+1 以下なる \mathbb{P}^1 への射が存在する。

7

 $X \to \mathbb{P}^1$ なる degree 2 の射を持つ種数 2 以上の curve X について、これを hyperelliptic という。

- (a) 種数が 2 のとき、|K| は hyperelliptic curve としての構造を定めることをみよ。
- (b) 任意の $g \ge 2$ について、種数 g の hyperelliptic curve が存在することを示せ。

|K| は basepoint-free である - 実際、l(K)=1 であり、かつ l(K-P)=1 ならば $X\cong \mathbb{P}^1$ となってしまうため、よい。また K の degree は 2 である。よってこれは hyperelliptic structure を定める。

 $\mathbb{P}^1 \times \mathbb{P}^1$ の (g+1,2) 型の因子であって nonsingular なものは Bertini の定理によって存在がいえる - さらに、あるファイバーと横断的に交わるようにしておく。この種数を計算すると、g と一致し、また一方の \mathbb{P}^1 への射影を考えると、ファイバーと因子との交差は長さ 2 であるから、この射影は degree 2 であることが理解される。

8

X を integral projective curve とする。このとき、完全系列

$$0 \to \mathcal{O}_{\widetilde{X}} \to f_*\mathcal{O}_X \to \bigoplus_P \widetilde{\mathcal{O}_P}/\mathcal{O}_P \to 0$$

が得られる。このとき δ_P を $\widetilde{\mathcal{O}_P}/\mathcal{O}_P$ の length とする。

- (a) $p_a(X) = p_a(\widetilde{X}) + \sum \delta_P$ を示せ。
- (b) $p_a(X) = 0$ ならば X は \mathbb{P}^1 と同型であることを示せ。
- (c) P が node あるいは ordinary cusp であるとき $\delta_P = 1$ であることを示せ。

完全系列については、局所的には \widetilde{R}/R であって、これは局所化すると $\widetilde{R_{\mathfrak{p}}}/R_{\mathfrak{p}}$ とかけるためよい。

- (a) p_a の記述を思い出せばよい。ただし f が finite であることに注意する必要はある。
- (b) (a) より、 $p_a(\tilde{X}) \geq 0$ でありまた $\delta \geq 0$ であったため、X は非特異であってさらに \mathbb{P}^1 である。
- (c)? 長くなるため、あとにまわす。

X を integral projective 1-dimensional scheme over k とする。このとき、 X_{reg} を regular locus とする。

- (a) D を regular locus に support をもつ divisor とする このとき $\chi(\mathcal{L}(D)) = \deg(D) + 1 p_a(X)$ が成り立つ。
- (b) 任意の X 上の Cartier divisor は very ample Cartier divisor の差でかけることを確認せよ。
- (c) 任意の X 上の line bundle は regular locus に support をもつ divisor D によって $\mathcal{L}(D)$ のかた ちでかけることを示せ。
- (d) X が locally c.i. であるとき、 ω_X° なる dualizing sheaf は line bundle であるため、これに対応する因子を K と表記すると、次の Riemann-Roch の定理が成り立つ。

$$l(D) - l(K - D) = \deg(D) + 1 - p_a.$$

- (a) については、D=0 の場合は明らかである。摩天楼層だけズレる部分も計算すれば一般の場合で明らかである。
- (b) Cartier divisor とは、 $\Gamma(\mathcal{K}^*) \to \Gamma(\mathcal{K}^*/\mathcal{O}^*)$ の cokernel の元であるが、これは X が integral であるため line bundle \mathcal{L} と対応する。このとき、very ample divisor H をとると、 $\mathcal{L} \otimes \mathcal{L}(D)^{\otimes n}$ は globally generated であり、よって $\mathcal{L} \otimes \mathcal{L}(D)^{\otimes n} \otimes \mathcal{L}(D)$ は very ample となる。
- (c) (b) を使わなくても示せるが、せっかく示したので使って示す。埋め込みを用意して、特異点と被らない超平面で切り出せばよい。
 - (d) Serre duality により明らか。

10

X を integral projective scheme over k であって $p_a=1$ なるものとする。さらに locally c.i. とする。 このとき、regular point P_0 を固定すると、 $P\mapsto \mathcal{L}(P-P_0)$ は X_{reg} から $\mathrm{Pic}^\circ(X)$ への全単射になっている。

本文中の類似の議論と完全にパラレルに示される。

11 8, (c)

domain R について、これが N-1 であるとは、商体での整閉包が R-finite であることをいう。また N-2, Japanese であるとは、任意の商体の有限次拡大のもとでの整閉包が R-finite であることをいう。

Nagata ring とは、Noetherian ring R であって、任意の素イデアル $\mathfrak p$ について $R/\mathfrak p$ が Japanese であることをいう。

• R を Nagata ring とし、 $R \to S$ を essentially of finite type ring map とする。さらに、S は reduced であるとする。このとき S のなかでの R の整閉包は R-finite である。

実際、S は Noetherian であるため、極小素イデアル \mathfrak{q}_{ullet} について $\prod S_{\mathfrak{q}_{ullet}}$ に埋め込まれ、よって S につい

て以下これを体としてよい。 $R \to S$ の kernel を $\mathfrak p$ とすると、S は $R/\mathfrak p$ 上 essentially of finite type である から、 $R/\mathfrak p$ の商体上有限生成拡大体であり、よって代数的な部分は有限拡大となっている。よって Nagata ring の定義より、S での整閉包は有限 R-finite module となっている。

ここまでの設定のもとで、reduced 1-dimensional Nagata ring について δ -invariant なる数値を定める。

● (A, m) を 1-次元 Nagata ring として、さらに reduced とする。このとき、A' を A の total ring の なかでの整閉包とする。すれば、A' は normal Nagata ring となり、A'/A は finite length となる。

先程の議論から、A' は A-finite である。A' が normal であることは normal ring の一般論より明らかで、 $A \to A'$ が finite であることから Nagata ring の一般論より A' は Nagata である - 実際 Noether 性はよく、素イデアルごとの N-2 性のみ確認すればよい。これは次の補題による。

• $R \subset S$ を quasi-finite extension of domains とし、R を N-2, Noetherian とする。 このとき S は N-2 である。

実際には finite のレベルで示せばよくて - この場合は明らかである。quasi-finite のレベルでは、stacks に その証明が載っている。

f を A の nonzerodivisor とすると、 A_f は A の total ring となり、 $A \to A' \to A_f$ なる射の図式をみれば、A'/A は $\mathfrak m$ にのみ stalk をもつため、finite length である。

よって、A'/A の length として A の δ -invariant を定める。

次に、A の completion \hat{A} の δ -invariant についてみていく。

そもそも \hat{A} は reduced 1-dimensional Nagata ring であるか?

• Noetherian local ring A についてこれが analytically unramified であるとは、 \widehat{A} が reduced であることをいう。

analytically unramified に関する基本的事実に関して復習していく。まず $R \to \hat{R}$ は faithfully flat であるから特に単射であり、R が analytically unramified ならば R は reduced である。

また、R が reduced であったとして、 \mathfrak{q}_{\bullet} が極小素イデアルであったとして、さらに R/\mathfrak{q}_{\bullet} が analytically unramified であったとする。このとき R は analytically unramified である。実際、 $R \to \prod R/\mathfrak{q}_{\bullet}$ の完備化は単射であるから、主張は従う。

また、Noetherian local Nagata domain が analytically unramified であることを示す - これが完了すれば A: reduced Nagata ring について、 \hat{A} が reduced であることを確認できる。

工事中

ここまでの議論により、 \hat{A} の δ -invariant は A の δ -invariant と一致する。よって、 δ -invariant を計算するには completion のデータがあれば充分である。

よって、具体的な node, ordinary cusp をもつ特異な曲線について算術種数を計算すればよい。