Table S1. Full and partial GvaELV insertions within G. variegatus genome

Contig	Insertion fragment
G_variegatus-3.0.2-377.4	5'LTR-gag-pol-ORF1-tat-env-ORF2-3'LTR
G variegatus-3.0.2-2016.3	5'LTR-gag-pol-ORF1-env-3'LTR
G_variegatus- 3.0.2-5697.1	5'LTR-gag-pol-ORF1-env-ORF2-3'LTR
G_variegatus-3.0.2-10092.17	5'LTR-gag-pol
G_variegatus-3.0.2-2153.2	5'LTR-gag-pol
G_variegatus-3.0.2-10866.4	5'LTR-gag-pol
G_variegatus-3.0.2-8117.15	gag-pol
G_variegatus-3.0.2-152925.1	gag-pol
G_variegatus-3.0.2-8117.16	gag
G_variegatus-3.0.2-10866.7	pol-ORF1-tat-env
G_variegatus-3.0.2-8117.13	pol-ORF1
G_variegatus-3.0.2-49750.1	pol-ORF1
G_variegatus-3.0.2-10866.5	pol
G_variegatus-3.0.2-10866.6	pol
G_variegatus-3.0.2-146880.1	pol
G_variegatus-3.0.2-17753.5	pol
G_variegatus-3.0.2-8117.14	pol
G_variegatus-3.0.2-10092.18	ORF1-tat-env
G_variegatus-3.0.2-8117.12	ORF1-tat-env
G_variegatus-3.0.2-8117.11	env-ORF2
G_variegatus-3.0.2-49750.2	env-ORF2-3'LTR
G_variegatus-3.0.2-3870.9	env-ORF2-3'LTR
G_variegatus-3.0.2-10092.19	env-ORF2-3'LTR
G_variegatus-3.0.2-77437.1	env-ORF2
G_variegatus-3.0.2-104494.1	env-ORF2
G_variegatus-3.0.2-132409.1	env
G_variegatus-3.0.2-10866.8	env
G_variegatus-3.0.2-132314.1	env

Table S2. The contigs of G. variegatus genome that contains solo-LTRs

G_variegatus-3.0.2-8479.2	G_variegatus-3.0.2-7903.10	G_variegatus-3.0.2-2410.7	G_variegatus-3.0.2-10076.10
G_variegatus-3.0.2-2048.1	G_variegatus-3.0.2-2382.24	G_variegatus-3.0.2-22810.4	G_variegatus-3.0.2-154409.1
G_variegatus-3.0.2-1170.10	G_variegatus-3.0.2-9815.3	G_variegatus-3.0.2-9850.2	G_variegatus-3.0.2-8557.11
G_variegatus-3.0.2-3930.9	G_variegatus-3.0.2-1527.22	G_variegatus-3.0.2-1543.12	G_variegatus-3.0.2-851.14
G_variegatus-3.0.2-12197.5	G_variegatus-3.0.2-1410.62	G_variegatus-3.0.2-269.14	G_variegatus-3.0.2-2084.29
G_variegatus-3.0.2-2846.1	G_variegatus-3.0.2-92.27	G_variegatus-3.0.2-55185.1	G_variegatus-3.0.2-828.32
G_variegatus-3.0.2-8406.15	G_variegatus-3.0.2-1206.42	G_variegatus-3.0.2-4052.5	G_variegatus-3.0.2-44618.1
G_variegatus-3.0.2-4589.3	G_variegatus-3.0.2-5385.19	G_variegatus-3.0.2-3530.18	G_variegatus-3.0.2-5300.22
G_variegatus-3.0.2-1584.17	G_variegatus-3.0.2-2433.8	G_variegatus-3.0.2-1646.44	G_variegatus-3.0.2-1125.12
G_variegatus-3.0.2-493.25	G_variegatus-3.0.2-1280.15	G_variegatus-3.0.2-960.14	G_variegatus-3.0.2-204.33
G_variegatus-3.0.2-112676.1	G_variegatus-3.0.2-3400.33	G_variegatus-3.0.2-749.10	G_variegatus-3.0.2-1223.11
G_variegatus-3.0.2-77.12	G_variegatus-3.0.2-1207.29	G_variegatus-3.0.2-644.8	G_variegatus-3.0.2-1068.43
G_variegatus-3.0.2-4172.5	G_variegatus-3.0.2-663.4	G_variegatus-3.0.2-295.43	G_variegatus-3.0.2-128317.1
G_variegatus-3.0.2-145895.1	G_variegatus-3.0.2-11862.5	G_variegatus-3.0.2-169378.1	G_variegatus-3.0.2-1189.17
G_variegatus-3.0.2-7305.2	G_variegatus-3.0.2-11110.6	G_variegatus-3.0.2-4237.2	G_variegatus-3.0.2-9755.6
G_variegatus-3.0.2-2848.6	G_variegatus-3.0.2-5691.3	G_variegatus-3.0.2-4540.15	G_variegatus-3.0.2-1019.35
G_variegatus-3.0.2-110.51	G_variegatus-3.0.2-1019.36	G_variegatus-3.0.2-2585.7	G_variegatus-3.0.2-103.8
G_variegatus-3.0.2-9564.8	G_variegatus-3.0.2-6976.10	G_variegatus-3.0.2-8664.13	G_variegatus-3.0.2-985.11
G_variegatus-3.0.2-778.18	G_variegatus-3.0.2-762.20	G_variegatus-3.0.2-1035.34	G_variegatus-3.0.2-9489.7
G_variegatus-3.0.2-2717.70	G_variegatus-3.0.2-2360.10	G_variegatus-3.0.2-4587.7	G_variegatus-3.0.2-1838.3
G_variegatus-3.0.2-2506.24	G_variegatus-3.0.2-31940.1	G_variegatus-3.0.2-2434.52	G_variegatus-3.0.2-176.29
G_variegatus-3.0.2-2257.8	G_variegatus-3.0.2-2851.5	G_variegatus-3.0.2-12462.12	G_variegatus-3.0.2-34492.2
G_variegatus-3.0.2-8914.13	G_variegatus-3.0.2-1272.13	G_variegatus-3.0.2-9761.9	G_variegatus-3.0.2-2914.23
G_variegatus-3.0.2-9564.7	G_variegatus-3.0.2-9787.2	G_variegatus-3.0.2-1899.3	G_variegatus-3.0.2-5986.3
G_variegatus-3.0.2-668.1	G_variegatus-3.0.2-2783.23	G_variegatus-3.0.2-1448.2	G_variegatus-3.0.2-3980.18
G_variegatus-3.0.2-7320.22	G_variegatus-3.0.2-5377.4	G_variegatus-3.0.2-12001.2	G_variegatus-3.0.2-96066.1
G_variegatus-3.0.2-6707.5	G_variegatus-3.0.2-985.12	G_variegatus-3.0.2-733.20	G_variegatus-3.0.2-41646.1
G_variegatus-3.0.2-1260.29	G_variegatus-3.0.2-4076.14	G_variegatus-3.0.2-15830.7	G_variegatus-3.0.2-34583.1
G_variegatus-3.0.2-2283.10	G_variegatus-3.0.2-846.30	G_variegatus-3.0.2-99674.1	G_variegatus-3.0.2-3770.2
G_variegatus-3.0.2-6765.16	G_variegatus-3.0.2-728.9	G_variegatus-3.0.2-8284.2	G_variegatus-3.0.2-90522.1
G_variegatus-3.0.2-5771.10	G_variegatus-3.0.2-1130.20	G_variegatus-3.0.2-11676.11	G_variegatus-3.0.2-2585.6
G_variegatus-3.0.2-11917.7	G_variegatus-3.0.2-6208.4	G_variegatus-3.0.2-1570.8	G_variegatus-3.0.2-3980.17
G_variegatus-3.0.2-14988.4	G_variegatus-3.0.2-93.30	G_variegatus-3.0.2-509.7	G_variegatus-3.0.2-11464.20
G_variegatus-3.0.2-3285.7	G_variegatus-3.0.2-9418.9	G_variegatus-3.0.2-186.46	G_variegatus-3.0.2-5606.17
G_variegatus-3.0.2-2506.28	G_variegatus-3.0.2-7812.1	G_variegatus-3.0.2-45573.1	G_variegatus-3.0.2-93.31
G_variegatus-3.0.2-6246.24	G_variegatus-3.0.2-6820.1	G_variegatus-3.0.2-5978.7	G_variegatus-3.0.2-12462.13
G_variegatus-3.0.2-4124.7	G_variegatus-3.0.2-1721.22	G_variegatus-3.0.2-808.25	G_variegatus-3.0.2-41149.2
G_variegatus-3.0.2-1032.24	G_variegatus-3.0.2-2986.3	G_variegatus-3.0.2-3938.16	G_variegatus-3.0.2-757.27
	G variegatus-3.0.2-3330.11	G_variegatus-3.0.2-8517.13	

Table S3. The retrovirus sequences used in this study

Virus	Full name	Accession No.
OLV	Ovine lentivirus	NC_001511
MVV	Maedi-visna virus	NC 001452
CAEV	Caprine arthritis-encephalitis virus	NC_001463
BIV	Bovine immunodeficiency virus	NC 001413
HIV-1	Human immunodeficiency virus 1	NC_001802
HIV-2	Human immunodeficiency virus 2	NC 001722
EIAV-USA	Equine infectious anemia virus	NC 001450
EIAV-Ireland	Equine infectious anemia virus	JX480631
EIAV-Liaoning	Equine infectious anemia virus	AF327877
FIVcat	Feline immunodeficiency virus	NC_001482
FIVsubC	Feline immunodeficiency virus	AF474246
FIVoma	Feline immunodeficiency virus	U56928
FIVpuma	Feline immunodeficiency virus	EF455614
FIV-PPR	Feline immunodeficiency virus	M36968
FIV-lion	Feline immunodeficiency virus	EU117992
JDV	Jembrana disease virus	U21603
SIVagm	Simian immunodeficiency virus	NC 001549
SIVmnd2	Simian immunodeficiency virus	NC 004455
SIVhoest	Simian immunodeficiency virus	AF188116
SIVsyk	Simian immunodeficiency virus	L06042
SIVcol	Simian immunodeficiency virus	AF301156
SIVtal	Simian immunodeficiency virus	AY655744
SIVgsn	Simian immunodeficiency virus	AF468659
SIVrcm	Simian immunodeficiency virus	HM803689
SIVsmm	Simian immunodeficiency virus	M80194
SIVcpz	Simian immunodeficiency virus	AF115393
SRLV	Small ruminant lentivirus	HM210570
MELV	Mustelidae endogenous lentivirus	Ref. 1
RELIK-Oryctolagus	Rabbit endogenous lentivirus K	Ref. 2
RELIK-Lepus	Rabbit endogenous lentivirus K	Ref. 3
PSIVgml	Prosimian immunodeficiency virus	Ref. 4
GvaELV	Galeopterus variegatus endogenous lentivirus	This study
PSIVfdl	Prosimian immunodeficiency virus	Ref. 5
ALV	Avian leukemia virus	NC_015116
RSV	Rous sarcoma virus	NC_001407
LDV	Lymphoproliferative disease virus	KC802224
JSRV	Jaagsiekte sheep retrovirus	NC_001494
SRV-1	Simian retrovirus 1	M11841
Python-molurus	Python molurus endogenous retrovirus	AF500296

HERV-K	Human endogenous retrovirus K	AF164614
MMTV	Mouse mammary tumor virus	NC_001503

References

- 1. Han GZ, Worobey M. (2012). Endogenous lentiviral elements in the weasel family (Mustelidae). Mol Biol Evol. 29, 2905-2908.
- 2. Katzourakis A, Tristem M, Pybus OG, Gifford RJ. (2007). Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A. 104, 6261-6265.
- 3. Keckesova Z, Ylinen LM, Towers GJ, Gifford RJ, Katzourakis A. (2009). Identification of a RELIK orthologue in the European hare (*Lepus europaeus*) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology. 384, 7-11.
- 4. Gifford RJ, Katzourakis A, Tristem M, Pybus OG, Winters M, Shafer RW. (2008). A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A. 105, 20362-20367.
- 5. Gilbert C, Maxfield DG, Goodman SM, Feschotte C. (2009). Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet. 5, e1000425.

Fig S1. Retrovirus phylogeny. The phylogeny is 50% majority-rule consensus tree inferred using a Bayesian approach available in MrBayes. The node labels are posterior probabilities. The lentivirus reported in this study, GvaELV, is highlighted in blue.

Fig S2. The reconstructed GvaELV genome sequence

5' LTR-> TGGAGGAAAATGAAGGAGAACACCTGTTAAAGATGGAGGCACTCTTGCTCTCCAGGATTTAGACTGTCAGCAGAAATGCAAAAA GACTGGGTCAGCAAAAATTCGCAAAGCTTAACCGCAAACCACAGACTTCCTATTGAGTTACCTAGGAGATGGGGAGGTATGGGA $\tt TGTGTCTGGTTTGACCACCTCCCCAGGTGGCAGCCCCTAGCTCAAGGCGTGCTCTGAGCAACTCACCTTGCTGCACTC$ <- 5'LTR gag -> MGTVTSARLVT S V I Q G I K H C Q S V E K L K G T G K T T H W A P E D ATTTATAGGGCATTTCGGCAGGCACATGTTTATTGCCCAACGTTTCCTGAAACTGGGACACTAGATGTCAGGGGACTTAGGGAA I Y R A F R Q A H V Y C P T F P E T G T L D V R G L R E GGGATAAGTGCCCTTCAGAAAGCAAGAAAAGAGCACCCAGAGTTGTCTGTAGCTGTGCAAGCCCTGCAGGTATTTCTGTGTAGG G I S A L Q K A R K E H P E L S V A V Q A L Q V F L C R G M L G V A V R T T E E V E K V Y F E F R D A G Q I S D ${\tt TCAAGAAATATACAAGGAGAAGGTAAGCAGGTGTACCCAGTAGTCCAAGGTCCAGGAGGAACTATGTGTTCTCCTCTGCACCCT}$ R N I Q G E G K Q V Y P V V Q G P G G T M C S P L H P ${\tt TGAGTTATGGCAGATTTCTTTGACATCATTAGTCATCATGGATTACTGAGCTCAGAAACTATCACTCGAATGCAAGTTTTATGT}$ * V M A D F F D I I S H H G L L S S E T I T R M Q V L C ATGCAGGATTTATGCCAGGTAGAAGTAAAAGGCTTGATTGCTCAAGCACCTGGGAATGCTGCACAAAAATCAATTCTAAAAGAA M Q D L C Q V E V K G L I A Q A P G N A A Q K S I L K E L L A K Y K D E W D Q Q N P I Q Q D V F P R Q L T G D K ATAGTAGGAGAATCCCCAAACAATAATTTACCAGATGCACAAGCAGGACCCCAATGGGTAATAGCTAGATCAACCTTCCAGGAG I V G E S P N N N L P D A Q A G P Q W V I A R S T F Q E W V V N A L R E G V K L V Q K P P A V T K I V Q G P R E P Y K D F L D R L F E A L E K D F L P L E V S R Y L O D AAATTGGCTTTTGAAAATGCAAATGAAGATTGTAAAAAGATGATGGCTCACTTGCCTCCGGATGCAGCAATTGCTGACAGGATA K L A F E N A N E D C K K M M A H L P P D A A I A D R I H C C R S V G T V T H K Q T M M A E A F A A A L F K G K G N Q Q G L R C F N C N K L G H M K K D C K Q Q R K A T pol -> GCTAATAAAGATGTTACATGTTTCAAATGTGGAAAAAAGGGACACATTGCCAGGTTATGCAGAACAAAAAACGGGAAAGCAGGC ANKDVTCFKCGKKGHIARLCRTKNGKAG S G O G A O A L V S O P V L P S A P V E E E T T K S L <- gag CCCAAATTACCAGTTTGCAACAAAGACCAATAACATTGATACAGTGTGCAGGGACAGAGGTTAAGGTTTTATTAGATACAGGAG ATTTATTAGGGAGAGATAATTTAAGCAAATTTGGAGTACACTTGGTGTGTACAACGTTAAATCAACAGTTAACACCAGTGAAAT TTAAATTGTTACCAGGATTTAGAGGACCACAGGTTAAGCAATGGCCATTATCTGAAGAAAAAATTAAAGCATTACAAGAAATTT $\tt GTGCTGAATTAGAACAGGAAAAAAAGATACAAAGAGTAGGTCCAGAAAATCCTTATAATACACCTGTATTTTTAATAAAAAAGA$ AATCTGGTAAGTGGAGGATGCTTATGGATTTTAGGGAATTAAACAAAGGAATAGATGTAGGAACAGAAACTCAGTTAGGTATTC

	H P A G F S Q V K H F T V I D I K D A Y F T I P L D E E
AA	ATAAGTGAGTTAACAGCATTTACAGTACCTCAAAAGAATAATGCAGGGCCAGGTATAAGATTTAAATGGAAAGTTTTACCAC
AA	GGGTTGATAGGGTCTCCAAAAGGGTATCAATGTACTTTAGAAAAAAATAATAACACCCTGGAAAACAACCCCTGGCATAA
CA	${ t TGTTATGTATATATGGATGATATTTTAATAGGAACAAATTATACAGCTCTCAAACATAAACAAGTAGTCAAAGATTACAAG$
AG	GAATTTAAAAAGTGGGGATTTGAAACCCCACAAGATAAAATACAGAATAGTGATGGGGACAAAGCAGTAAAATATTTAGGAT
AT.	ATTTTAGAACCCAAAACGTGGAAGCCACATAGCTATCAGCTATTGGATAGTAAACCAAAAACATTAAATGATGTTCAACGAG
TA	TTAGGAAGAATTAATTGGATAAAACAAATATATCCTAAGATACAAACAGAAAACATTCAGAAGTTATTAACAGGAGATCAAA
AC	$egin{array}{cccccccccccccccccccccccccccccccccccc$
TG	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
AG	f Y $f Y$ $f Q$ $f E$ $f E$ $f V$ $f S$ $f I$ $f S$ $f I$ $f V$ $f W$ $f N$ $f Q$ $f V$ $f A$ $f Q$ $f G$ $f A$ $f V$ $f H$ $f K$ $f G$
TG	L W W G Y G T S K D R K I K T K A \odot K C V A L A N R M GTTTCAGAAAATAATCATACGATTGGAAAAAGCTACTTTTGAGTATTTAT
TA	S E I I I R L G K V P D E V W L P I E K A T F E Y L L CAAGAAGGATTAGAGGGAACAGAAATTTGGTTATTAAATTGCAAATTTGGTATGGCACCTAACAAAATTTTTGATAAAAGTG
AA	${f E}$ ${f G}$ ${f L}$ ${f E}$ ${f G}$ ${f M}$ ${f A}$ ${f P}$ ${f N}$ ${f K}$ ${f I}$ ${f F}$ ${f D}$ ${f K}$ ${f S}$ ${f E}$ TGTTTAAGTTATCCTGTATATGGAAAAGTGCTGTTCCTGTCACAGGCCCTACAATTTATATAGATGGATCTAGAAAAAAGG
GA	LSYPCIWKSAVPVTGPTIYIDGSRKKG CAGCCAGCTCGTAGTGCTATATGGGAGAATGCAAATAATAATAAAGTAACAGAATTTGAGGGAACAGCTCAGCAAGCA
TT	$m{ t PARSAIWENANNKVTEFEGTAQQAEV}$ AGGGCATTTTATTAGCATTACAATTAGAATATAATCAAATGAACATAGTTACAGACAG
AG	A F L L A L Q L E Y N Q M N I V T D S K Y L W T C I K TTAATGTCTGACTATGCATGGAAAGAAAATCCAATTTGGCAAGAAATCTGGAAATTATTACAAACAA
TA	M S D Y A W K E E N P I W Q E I W K L L Q T K K I Y L CAATGGGTGCCAGGGAAATGAAGAAGCTGACAGTTTAGCCCAGGGAAATGTAGTTCTTACTGCAG
AA	W V P G H Q G V P G N E E A D S L A Q G N V V L T A E GAGGAGGACTTACTGCCACAGCAGTCAGAACTTTGTTTCCCTGGGTGGCAATAAAAGCAGCCAGAGATTGTTATGTGGCAG
CC	E D L L P Q Q S E L C F P G W Q I K A A R D C Y V A A CAGGAAAAAAGACAAATATTTACAGGAATACACCTCCAGTTGGATGAAATGCAAATAGCACAGATGCAATTAAATTATGAAT
TA	EKRQIFTGIHLQLDEMQIAQMOLNYEL
	I K G L L L O S T V K G S Y S T E L I L O V V N F T AAAAAAGGGAATAAATATTCAAAAAGGGTGATCCAGTTGTTATTTTATATATTATAGCTGCTGAAGAGATGGGGGGAAGCAAAGT
	K G I N I O K G D F V V I I Y I I A A E E M G E A K I CAAAAGTCAGCTCCAGATGACATGGTCTGTTTCACCTCAGAAACTTTTCAGGAAGCAGAACAGTGGCATGATGTAACACATG
	K S A P D D M V C F T S E T F O E A E O W H D V T H A AACCCCCGACAATTAGCAAGAAGTTTCATCTTCCTTTAGGATTAGCAAAGCATATTACACAGTTATGCAAAGACTGCCAAC
	P R O L A K P H L P L G L A K H L T O L C K D C O CAGGATACGCTACAGGAGGGGATATAATCAGTTAAAAAAACCAAGAAGGTGTTTGGCAGATGGATG
	D T A T G E G Y N Q L K N Q E G V W Q M D V T H M F E TTAGGACTTTATAAATATGTGTATGTAGCAGTTGACATACAAACAGGAATGATATGGGTTAGTCCACAAAAGGGAGAAACAG
	G L Y K Y V Y V A V D I Q T G M I W V S P Q K G E T A AAACATACACAAACAGCTCTGCTTCAGATCATTCATATGGCAGGGCTCCCAAAGGAAATCCAAAGTGATAATGGACCAGGTT
	K H T Q T A L L Q I I H M A G L P K E I Q S D N G P G F
	GTAGCAGATAGAGTACAAGTGATGTGTAAACAATTAGGGATTAAATGGCATCATGGCATTCCATACCATCCTCAGAGTCAGG A D R V O V M C K O L G I K W H H G I P Y H P O S O G
	AAAGTAGAAGGTACACATAAATTAATTAAACAACACTTCAAAAAAGGTAAAAGAGTTATTTGAAGACCCCATTAATGCTCTGT V E G T H K L I K Q H F K K V K E L F E D P I N A L L
TG	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
TA	AAAAATCAGTTAGAAACATGTAAGCATATGCAAACTTTAACTAATTCCTGTAAATTTTTGTATAAGGATCCCAAGTCACCTC NQLET CKHMQTLTNSCKFLYKDPKSFR
GA	ACAGGGTGGAGAGCCCAGGCACTCTGCAGTGGGAAGGAGCAGGCGTCAGAGTATTAGAACTTACAACTGGAGAGGTAAAAG
	<- pol hypothetical ORF1 ->

TAGTTCCTAAACATCTAACAAAAAGAATTTTTTCAGATGGAGCCTAGAGTTCAGATGAATCCTGAAGTTACTGTTCAGTGGATG

MEPRVQMNPEVTVQWM

D A F C F G Q E E A I I I A Y I I N G Q E L H P G E L M GTAGTGCATAAGCAAACTATTCCTAGATGGTTAACACAGGTTACTCGTTCTATGTGGAATAAACATAGAAAAAGTACAGAACAG V V H K O T I P R W L T O V T R S M W N K H R K S T E O AGATTAATCCAAATACAAAAAAGATATTGGATCAATACCTTTTGTGGACCTAAAAGATATGTCTTAGTGAAAGGATGGGAACAA R L I Q I Q K R Y W I N T F C G P K R Y V L V K G W E Q K V K W V K H I Q L L P K F G N I C M W C P G V K V P H TGGAGTGAACCATATGGTGCTCCAAAGCCTCGTGGATCTTATTTAGTGCAGTTAAGACAATTAATAAATCATATGGTAGAAGAA W S E P Y G A P K P R G S Y L V Q L R Q L I N H M V E E ${\tt ACTCATCCTAGCCCCAGAGGAACTTGTGGATGGCCTTACAGATGCCCACCATGTGTTCTTCAAGCAGCTATTATATTACTAGAA}$ T H P S P R G T C G W P Y R C P P C V L Q A A I I L L E GAGGATTATTGGAAAGATGAGGAAGTTATTCCAAAGTTACAAATGATATGTTATAGTAGATGTTTAAAACAACTGTGGAAAGAA E D Y W K D E E V I P K L Q M I C Y S R C L K Q L W K E M T Y O I S K R N I S T W H A R M O T P V S T K W O S P AAACATGGCCCTCATGTCATTACAGGAATCCCTTGGCAAAGACTAGCAACAAAATTTTGTGTTTTGGGAGTCTAACGGGGATTTA K H G P H V I T G I P W Q R L A T K F C V W E S N G D L

<- hypothetical ORF1

tat ->

TTTTTATATGGTAATGACTCCTAGACTGTTAACAAAAGGAACTCAAACTGACCAAATAAAAATGAGATCCCAAAAGGCAGGACC F Y M V M T P R L L T K G T O T D O I K M R S O K A G P ATCCAAGGAGGATAAAATAATGGAAGAATTAAGGGTGCTTCAGCTTCAACAGGAGAAGAGGAGAGATGGAGACAACAAGAGCT S K E D K I M E E L R V L Q L Q Q E K E E R W R Q Q E L GTGTAACACCAGCTCATCTGGAGAGGACAAGGACGTGAGTGTGCCTTTGTTACCGGCAGGAAAAGGTAAAAATATTATATGGGT S S S G E D K D V S V P L L P A G K G K N I $\tt CTGTATTTTAGCACATTTGTGGGTCCCCACATGTCAAGGTTTTAGGCTAGGGTTGTTAAAATGGTCCAGTGCATCTACACTTGT$ I L A H L W V P T C O G F R L G L L K W S S A S T L V AAGTCCTCAAAAAATCCCTTGGTTTTGTGCAGCAGCCAATACCCAATTAGGATGTCTTCCCAAAAACCATTACATAACACAGCT S P Q K I P W F C A A A N T Q L G C L P K N H Y I T Q L GCATTGGGCAGGAAACAATACCCATATGTGGGGACTTAGAGGACACAGAAATGGTACAGAATATGGAAACAACAATTGGGGGCCT W A G N N T H M W G L R G H R N G T E Y G N N N W G L ${\sf GCAAATAGGAAAACAATGGGTATGGATTTTTGAAAAAATATTTAAATGCTCAATGTCCAAAAAAATATGGCTTATTATAAGCCATT$ I G K Q W V W I F E K Y L N A Q C P K N M A Y Y K P F TAATTGTACAAATGCCACCTGGCCTTTAAATGTAACTGAGGATTATTGGGAAGCAAACTGTAGTGGACTGGAATGGATTCAGA N C T N A T W P L N V T E D Y W E A N C S G L E W I S D TTCCACTGGCAGAATACTTCAAGGACATAAGCCTATGATCTTTAATACCACTTGGGCATTAAAGCAAGGACTTGTAAATCAAAT T G R I L O G H K P M I F N T T W A L K O G L V N O I CAGTTGTAAACCAAATCATACTGCTCAAGGGTCTCAGTGTAAGAAAAGCAATAAAGCTTGGTGTTGTAATTGGAAAGACTGCAA S C K P N H T A Q G S Q C K K S N K A W C C N W K D C N Q F Q D I L E A C P E K L R L L T S F T K G V Q L C TAGACCTTATTATTTTTGGAGTTGTAACAAACACAAAATTCAAAGAGAGTATGACACAAACAGTAATGTTAGTGGTGAATTTAA P Y Y F W S C N K H K I Q R E Y D T N S N V S G E F K ATGGGGGAATGAAACAATTGTGGGCAGTAGTACCAACAGACAAAATGAAACTTTACAGCTAGTAAAATGGGAATGTGACGGAGA W G N E T I V G S S T N R Q N E T L Q L V K W E C D G E AGCTCAAGTCACTCAGTGCTTACCCGAGTTAGGTGAACTTACAACTGATAGTACATTTATAGGAATAGGATGGAAAAACTGGAT Q C L P E L G E L T T D S T F I G I ATATCCTCAATTGGTCTGGCAGGCCAAATTTGTAAATTTGACAAATAATAATACATGGAGAATTCCAACAAGTGAAACAAATGA POLVWOAKFVNLTNNNTWRIPTSETND CCAAAGCATCAAAACTGAACAGTCCTGGCTACATAGTATAAAATTTAACGAAACTCATCCAGGACAAGTAAATTGTACTATTAT Q S I K T E Q S W L H S I K F N E T H P G Q V N C T I M GCATTTATCTAGTTATGCTAATAAGAAGCAATACATGCCTTTTAATAGCTTAGCATTTTGCAATTTATCCTTGCCAGGGCAAGT H L S S Y A N K K Q Y M P F N S L A F C N L S L P G Q

```
M K R C L S N I S N L P E E G K F D C A I P H P W V A G
GGATTTCCAAAGATGGACTTGGCAATACACAAAAAGGCAAGGGGATGATGAGCCATCAACACACATTTGTCCTTTCCATGTGA
  F Q R W T W Q Y T K R Q G D D E P S T P H L S F P C
M K D K O L F O L E C N F V N K T K N A N D T O F C O D
TTGTTTAGAATGTAGATCCAGGGATACTAGGATCTTACTATGGACTCACAAATTAATGCATGTACGGTCATCAGGGGAATACAA
C L E C R S R D T R I L L W T H K L M H V R S S G E Y K
ATATACAACATGTAGTTTCCAATTTATAGGAATTCATTGTGACTCATTAAGAGTTAAAGGCCAGGAAGGCACACAATGGAAAAA
    ATTTGACATAGAAAGTAGTCAGTGTGACATGTTGTTCAATGTATCAGCACCAGAGGGAGCAGCTGGCACACCAAACAGTACATG
F D I E S S Q C D M L F N V S A P E G A A G T P N S T C
ARSRSAICFATTGGPEEWIOOAFDRHIK
GGTGGGCTGACAGGAAAATATAATTCCCATTCCTATAGATGATAACAAGTTAGAAATTGTTAAGCCAAAGAGATCCAAGCGTGG
  G * Q E N I I P I P I D D N K L E I V K P K R S
AGCTGTTTTATTGGCTGCTTTCGGAATTGTTACTGCCATCACTGCTGCGGCTGGTATGGCTACAGGTGGGGTGGCCCTCCATCA
A V L L A A F G I V T A I T A A A G M A T G G V A L H O
ATTACAGGAACTCAAGGAACTAGCAGACAAAAATGTCCAGGTGATGGTGGATCTGATAAAGACCCAGGAAAAATCATTGGGTTTT
L O E L K E L A D K N V O V M V D L I K T O E N H W V F
TACGAGGGATCTTACATTTGGACTTTTGGAGCTAGAAGCTCGAGTACGCTGGATTGAGGAGGTGCTGGCCACTGACAAAGCCTT
  R D L T F G L L E L E A R V R W I E E V L A T D K A
TCAAACATTAAACTGTGAAATATCAGCCGGCAGTCTTTGCATTTTCCGAGAGTGGTACAATACAACACAGCTCAAAGAATGGAT
Q T L N C E I S A G S L C I F R E W Y N T T Q L K E W I
{\tt CAATAGCACCAGCTGGTACAACATGTCAATTAATGAGTGGGCAGCAAGATTACAGTTTTTTCAAAAAGGGCATAAAAGAAATAGA}
N S T S W Y N M S I N E W A A R L Q F F Q K G I K E I D
CAAATTAGTTCTTAAAAATAGAGTAGGAAAAAAGAATAGAGTAGGTTTAACACACTTAAGACATAGTTTACAGAAGGTACAAGA
  L V L K N R V G K K N R V G L T H L R H S L O K V O
GCAGTCAACATTAGAGGCATGGATTAGTACAGTGCCTGATTGGTTGTCTTCCATATGGAGGGCATTAAAAAAAGGTTTGGTGGTG
Q S T L E A W I S T V P D W L S S I W R A L K K S W W W
GCTCATCATCGGCATAATTTGTTTGGTCATCATTATTCCCTTGTTACCTAGTTGTATTAAAGCAATTATAAATTATATCAGAGG
L I I G I I C L V I I I P L L P S C I K A I I N Y I R G
             Hypothetical ORF2
                           <- env
M T T R E M M D N K I K R H K K
AGAAAACTCAAACAAAAGGAAAAACAAAGGCAGCAACACTTGCCCAAACACCATCCCCTTCGCTTTTAGGCTTAAAAGCCGCT
R K L K Q K E K Q R A A T L A Q T P S P S L L G L K A A
                                   <- Hypothetical ORF2
GCTGCAGCACTTGGATATCATCTTATTCCGGCAATAGAAAAAGAGATTTGAACCAAAATCATGCTATTGTTGCTGTTACTGTTG
A A A L G Y H L I P A I E K E I *
AGGCTGCATATTAATCAGATGGCTTTTTGCTGTGTGTATTTAGACTTTGCCAACATTTGCAAGCCTGCTTTTAAAAGAAAAAGG
    -> 3'LTR
GTGGACTGGAGGAAAATGAAGGAGAAACACCTGTTAAAGATGGAGGCACTCTTGCTCTCCAGGATTTAGACTGTGTCAGCAGAAA
GTATGGGAGGGGTTTACAGCTGGCTAAAACATATATAATACATGCCTGTAGGCAATAAAGTTGCTTAGTGCATGTACTAAGTCC
CAGAACTTTGTGTCTGGTTTCTGGTTGCCCACCTCCCTAGGCGGCAGCCCCTAGCTCAAGGCATGCCCTGAGCAACTCACCTCG
<- 3'T.TR
CCCCCAGGACCAAGAGAAACGTGCA
```

```
MgnssRhQgkkRN-----gDssW-Y
CAEV vif
               MqnsfRpQqrrRN-----KepGPnlPlplWKhTAeSIg-rDssW-Y
SRLV vif
               MLssyRnQkkyKqnKi------RevGPQlPlwaWKEIAfSIN-qEpYW-Y
OLV vif
MVV vif
               MLssyRhQkkyKknKa-------ReiGPQlPlwaWKEtAfSIN-qEpYW-Y
               MeeDrnwivvp----Vk-ylkYrtk
HIV-2 vif
HIV-1 vif
               --MEnRwQvmi-----Vk-hhmYvsg
BIV vif
               --MErtlQsvvq----IS-tpsYaLH
JDV vif
               --MErtiQspmq----IS-ppaYaIY
               -MsEedwQvskRlfavlQggvhsamlyiselpemekeQykkefkKrL---lD-kEtgfIr
FIVsubC vif
               -MgpyRvQsskRNmRyfK-----enncsEdgikgfKnk---lglgElrWIr
FIVpuma vif
CAEV vif
               iTmRLQqmmWqKrqNKLqyknEDREYEnWEiTswqWkmhLRRvkqwIqdnrrqsP-W--Q
SRLV vif
               iTvRLQqmmWNKrgNKLqyrnEDKEYEnWEiTswEWkmhLRRvkhrIqengrgNP-W--Q
OLV vif
               sTiRLQGlmWNKrgHKLiFvKEEngYEyWEtTnkQWrmeLRRdlrLIaqinfrNa-W--Q
MVV vif
               sTiRLQGlmWNKrgHKLmFvKEnQgYEyWEtSgkQWkmeIRRdldLIaqinfrNa-W--Q
               dleeVryvphHKvgw-----awWt--csrvifpLqgkshLeiqaY----W--n
HIV-2 vif
HIV-1 vif
               kargwfyrhhyEspH-----pris---sEvhipL-gdarLVittY-----W--g
BIV vif
               pppRfryprWefvrq------teys----mtAcvRKgklVLtYqYai---W--K
               papQyryprWefvmN------Dlys----qtArLqKeeiIItYrYav---W--a
JDV vif
FIVsubC vif
               rlrKaEGikWSfhtr------DyymgyvkElvAgsstpdsLrlYiYisNPLWhgK
FIVpuma vif
               klryVEGilWSfhtr-----EwysdmvrElvA---gtgpLklYcYvshPIWk-R
CAEV vif
               YKvg-gtWKsigv----WFlqaGdYRkVD-----rhFW-----waWRiliCSCr
               YKva-gtWKsigv----WFlqaGdYKkVD------ghFW-----waWRilmCSCr
SRLV vif
               YKsq-ekWniigi----WYdspGeYRDkE-----kqFW-----fhWRiamCSCk
OLV vif
               YKsq-geWKtigv----WYespGdYKgkE-----NqFW-----fhWRialCSCn
MVV vif
               ltpe-kgWlsshaVrltWYtekf-wtDVtP------Dcad-----ilihstyfSC-
HIV-2 vif
HIV-1 vif
               lhtgerdWhlgqgVsieWrkkry-stqVDP-----elad----qlihlYyfdC-
BIV vif
               ----rvWtietg-----FtdpslF--MtPagthTteEIghld-----lfWlrY-CSCp
               ----reWKigtg----fldlgyl---MtPagthTtgELNeld-----lfWvrYtl-Cg
JDV vif
FIVsubC vif
               YRpglknfnkewpfvnmWiktgfmwdDIEkgkTcvGgEISpgWgPGmVgiaiKaFs--Cg
FIVpuma vif
               YRpt-feWnpcwpygnlWltekymwE-IggddIwTGkvtSgFp-PGyIalivKaYtCkCd
CAEV vif
               KEkfDIREFmrGRhrw---DlCKSCaQgeVVKHTrtkSLeRLvLLqmveq-----Hv
SRLV vif
               KErfNIkEFLrGghrw---DlCKSCaQgeIIKHTrPrSLeRLvLLhiveH------Hv
OLV vif
               KErwDIRDFmvGKhrw---DlCKSCiQgeIVRHTePrSLQRLALLhivrN------Hv
MVV vif
               KtrwDIREFmiGKhrw---DlCKSCiQgeIVKnTnPrSLQRLALLhLakD------Hv
HIV-2 vif
               ftagEVRrairGEkll-----SCcnypqahkaqvpSLQyLALvvvqqNdrpqrkgtar
HIV-1 vif
               fsdsaIRkaLlGhivs-----prcEyq-agHnkvgSLQyLALaaLitp-----kk
               hEmppwlDFLrGtln1--RisCRralQasVltsTPrhSLQRLAaLqLctN-----ac
BIV vif
               hrspkwRElLlGEmth---tsCRrtaQaaVVsHTkPhtLQRLAgLtLvcN-----qn
JDV vif
FIVsubC vif
               ErkiEatpvmiiReeidpKkwCgdCwnlmclRnsPPgtLQRLAMLa-cgr-----ka
               KrdltyREiilGKwyl---kwCadCwaliVVRnTPsltLQRLAaLaLgr-----kl
FIVpuma vif
CAEV vif
               FQvlPlWrARrsSttdfPwcrdttgYThaWsvqecwlmeyLlEde----
SRLV vif
               FQvlPlWrARrsStidfPwcrdtsgYThaWsaqecwlmeyLlEde----
OLV vif
               FQimPlWrARrvTvqrfPwsgteglYdtlvytgllghginI-----
MVV vif
               FQvmPlWrARrvTvqkfPwcrspmgYTipWslqecwemesIfE-----
HIV-2 vif
               kQWrrdhwrglrvAredhrslkqggsepsaprahfpgvakVlEila---
HIV-1_vif
               i-----kpPlpsvtkltedrWnkpqktkghrqshtmngh-
               lcWy-----Plg-rindtTplWlnfssgkeptIqqlsGHp-
BIV vif
JDV vif
               lcWy-----Pvg-tvtrnSplWmhfttgkeptIqqlsGHp-
FIVsubC vif
               kcWrgccngRfvSpyrtPadlevigYkpgWnllwlgel-----
               YsWyckppyRffeArvtPldhrilisSar--qedlykldkgsdnanrsm
FIVpuma vif
```

Fig S3. Alignment of representative lentivirus Vif proteins.

```
OLV rev
                  gAvRgvReiRYTRv----kgReerdGssg
EIAV-Ireland rev
                  --maegRdsRYqeemipkeeskgkeekgrnDwWkiapqtpLDndDwccIlrQslPeektP
EIAV-liaoning_rev
                  -----dpqrpLDndEwcrIlrQslPeekiP
                  -----kYsiyvsGiqP
FIVpuma_rev
                  MmeegrKeepeeRgekstmrDllgravdkghltarppvhhVklgrsntVsiaecarGyrP
JDV rev
                  MSeRadEe----llrLlHQtnPypqgP
HIV-2 rev
                  MAgRsgd----sdeelIrtvrlikLlYQsnPppnpe
HIV-1_rev
MVV rev
                  MAsKesKpsRtTRr-----gmepplrEtWnqvlqelVkrqqqeeeeqQglvsGlqa
SMLV rev
                  -mdagaKhiRFTgeetwcevtmgeegk-----kkqegcnkEqqDiqnIkYpkiPtGhsh
CAEV rev
                  MvlmakvysyYSsriirmhsDk-----scdmcmstscaDignskYpdiPtGhsh
                  sE-----RatvQawktspwgkgWKk-ilym
OLV rev
EIAV-Ireland rev
                  sQTCiARRel-----GpgpvqstpskRe---RW--LRGqiQqaEslqeqleWRi-rgvq
                  sQTCiARRhl-----GpgpvscvpgRRd---sW--LRGqvQhaEalqeqleWRi-rgvqcd----gq-----snrnkRRnKqRRrrrrRW--rtiMnsleDR------
EIAV-liaoning rev
FIVpuma rev
                  cR-----GrrpaRRppiRRh-psfWgtLRGLvseaQRrqedrmsdlenrMa
JDV rev
HIV-2 rev
                  -----GtasqRRnRrRRr-rrQW--LR-LvalanKlcavpdpptdspLd
HIV-1 rev
                  -----GtrqaRRnRrRRw-reR---qRqIhsisERilgtylgRsaepvp
                  sKadqiytgnsgdrstGgiggktkKkRgw--yKW--LRkLrareknipsqfy----pdMe
MVV rev
                  l-----GnksrRRrRksgf--wRW--LRGIrRqrntpkdgnk---egLv
h-----GnksrRRrRksgf--wRW--LRGIrQqrnKrksdst---esLe
SMLV rev
CAEV rev
OLV rev
                  tlLplLtlQiwmEetgwngd------
                  qsaeaLr-Evn--qgiwkElqwtrrlrgDyss-----
EIAV-Ireland rev
                  qtakeLE-kvn--keiwrElqytrrqhgDyGs-----
EIAV-liaoning_rev
FIVpuma_rev
                  -----fE-kLf------
JDV rev
                  eleerfE-DLaLvdsggknpaapagsvsppssnpfayslshfskskrvdcgekgnrwgrp
                  raIqhLQ-rLTi-qelpdpptdlpesnsNqGl------
HIV-2 rev
HIV-1_rev
                  lqLppLE-rLTLDcnedcgtsgtqgvgspqil-----
MVV rev
                  snMvgmE-nLTLEtglednalynpathigdma-----
                  ecVgaLa-ELTLDgvmeeEsaeaahhstDdGn-----
SMLV rev
                  pcLgaLa-ELTLEgamekgpaeaarpsaDdGn-----
CAEV rev
OLV rev
EIAV-Ireland_rev
                  --fysskrEErrWgEesKprilKPGdSKrRRKhl---
EIAV-liaoning rev
                  -fgdyrrrEEerWgESs-prvlKPGdSKrRRKhl---
FIVpuma_rev
                  -----genRpq---
                  gafpgagisEldWiESgdggderPkggRypRggntps
JDV_rev
                  -----aET-----
HIV-2 rev
                  -----vEsptvlESgtKE-----
HIV-1 rev
MVV rev
                  ----mdgrEwmeWrESaQKEkrKgGlSgqRtnaypgk
SMLV rev
                  -----ldkwtaWrtppOK-----
CAEV rev
                  -----ldkwmaWrtpgK-----
```

Fig S4. Alignment of representative lentivirus Rev proteins.