Move

Name	Dharini Baskaran
Identity Key	dhba5060

	Level	Completed
O	Beginner	9
	Intermediate	8
\Diamond	Advanced	1
\&>	Expert	0

Goal				
4722	14			
5722	16			
Total Completed				
18				

¹☑ Calculate T

²✓ Calculate and Draw Q

Т				T *P	→ Q
1			2	0	-2+2
	1		-2	-1	1-2
		1	1	2	1+1
			1	1	1

³ Calculate T and Q

⁴ ○ 3D rotation notations → Matrices

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

5 ■ 3D rotation notations → Matrices

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

Z

Calculate and Draw Q

r -5	;	X)		5	
5 -	,		*		deg
				\Box	sin(
				Q	cos
		7			

P •

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

R*P Q

		5
		Z
P	•	
		2
		-5
-5	(Ŷ)	5

0	-1		0
1	0		ð
	C	1	0
			1

Z

Rotate p along Y by (-53°) Calculate and draw Q

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

P(0,-2,5)

	U	
	-2	
	5	
,		
	4	C
	-2	

Rotate p along X by (37°) Calculate and draw Q

Rotate p along X by (-53°) Calculate and draw Q

¹º ✓ Order of rotations

Given a set of rotations, R1, R2, and R3 to apply to a point p. Consider two different sequence of rotations as follows:

$$q_1 = (R1 * (R2 * (R3 * p)))$$

 $q_2 = (R3 * (R2 * (R1 * p)))$

In general, which two statements are true

- \square A. $q_1 = q_2$ in 3D
- \square B. $q_1 \neq q_2$ in 3D
- \square C. $q_1 = q_2$ in 2D
- \square D. $q_1 \neq q_2$ in 2D

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

		y			1	
	1	C	5	0	2	
		0	1	D	-1	
Rax		1	0	O	4	
		-5	C	1	i	
			~	-5		1
z ^c	0		-1	0	-4	ľ
D				0	1	
R _b	1		0	0	2	
			C	1	1	

p

-4

-1

$lue{O}$ Move the camera in the world; Calculate and draw ${}^{ m W}{ m C}_1$

World Coordinate System

Reminder: In the world coordinate, Y's direction is downward in "axial", and left in "sagittal"

P moves in the Camera Coordinate system the Calculate and draw ^{C1}P

World Coordinate System

In the world, if the camera moves to A, then in the camera view, P moved { left (fight) up | down }

In the world, if the camera moves to B, then in the camera view, P moved { left | right | up down

(Circle the direction. Hint: draw the body)

Camera Coordinate System X-Y plane (coronal) only

P moves in the Camera Coordinate system the Calculate and draw ^{C1}P

World Coordinate System

In the world, if the camera moves to A, then in the camera view, P moved { front | back | up | down }

In the world, if the camera moves to B, then in the camera view, P moved {front | back vup down }

(Circle the direction. Hint: draw the body)

5

Camera Coordinate System Z-Y plane (sagittal) only

Infer camera movement from point correspondence $^{\rm CO}$ p and $^{\rm C1}$ p. Draw $^{\rm W}{\rm C_1}$

Y

-5

World Coordinate System

 C_0

$$^{W}P = (4, -3, 2)$$

$$^{W}C_{0} = (0, 0, 0)$$

$$t_c = (2, -1, 3)^{t_c = -t_p Z}$$

$$WC_1 = (2 - 1) \frac{3}{WC_1} Wc_0 + tc_5$$

$$^{CO}P = (4, -3, 2)$$

$$t_p = (-2, 1, -3)$$

cip = cop+tp

$$^{C1}P = (2, -2, -1)$$

Calculate camera's movement: Tc = $(\frac{1}{2}, \frac{4}{4}, \frac{6}{2})$

5	3	2
-4	0	1
4	5	5
1	1	1

		t	
4,			M
			١

Tp

1	0	0	
0	1	0	4
0	0	1	-6
0	0	0	1

6	4	3
0	4	5
-2	-1	-1
1	1	1

Calculate camera's movement: Tc = (-2, -5, 5)

The measurements of point correspondences P and P' may not be perfect. Thus, you may derive a different Tp from each point correspondence.

Apply a simple "majority vote" to determine the Tp to solve this problem.

1	0	0	2
0	1	0	Ŋ
0	0	1	-5
0	0	0	1

P1	P2	Р3	P4	P5
5	5	3	3	2
-4	-3	0	1	1
4	4	5	5	5
1	1	1	1	1

P1'	P2'	P3'	P4'	P5'
7	7	5	5	4
1	1	5	5	6
-1	-1	0	0	0
1	1	1	1	1