Introdução aos Sistemas Digitais

1º ano, 1º semestre

Dossiê Pedagógico

1	ENQUADRAMENTO DA DISCIPLINA NOS CURSOS DO DETI 1					
2	ОВ	JETIVOS DA DISCIPLINA	. 1			
3	BIBLIOGRAFIA BÁSICA					
4	PR	OGRAMA E MÉTODOS	. 2			
5	AVALIAÇÃO2					
	5.1	Regras gerais				
	5.2	Avaliação na época de recurso	. 3			
	5.3	Alunos repetentes	. 3			
6	SE	QUÊNCIA PREVISÍVEL DAS AULAS TP E PL	. 3			
7	REGRAS GERAIS DE FUNCIONAMENTO DA DISCIPLINA					
	7.1	Funcionamento das aulas PL	. 4			
	7.2	Regime de faltas				
	7.3	E-mails	. 5			
	7.4	Esclarecimento de dúvidas	. 5			
	7.5	llícitos	. 5			

1 Enquadramento da disciplina nos cursos do DETI

Créditos ECTS: 6

Código da disciplina: 40332

A disciplina de Introdução aos Sistemas Digitais (ISD) é uma disciplina comum aos seguintes cursos de formação inicial da responsabilidade do DETI: Licenciatura em Engenharia de Computadores e Informática (LECI), Licenciatura em Engenharia Eletrotécnica e de Computadores (LEEC) e Licenciatura em Engenharia de Automação Industrial (LEAI). A disciplina é lecionada no 1º semestre do 1º ano, com uma escolaridade 0, 2, 2 (T, TP, PL), sendo as aulas TP e PL lecionadas em dois blocos de 120 minutos.

A disciplina de ISD faz parte do elenco de disciplinas obrigatórias da área científica de Arquitetura de Sistemas Computacionais (ASC). Esta UC enquadra-se de forma propedêutica na área científica da arquitetura dos sistemas computacionais tendo como objetivos genéricos apresentar aos alunos um conjunto de tópicos fundamentais relativos ao universo dos Sistemas Digitais, os quais terão implicações para toda a formação posterior dos alunos nesta área científica, bem como em outras áreas afins.

Esta disciplina é percursora e basilar face a uma série de UCs que lhe sucedem na área de ASC. Logo no 2º semestre do 1º ano surge a disciplina de Laboratório de Sistemas Digitais onde serão abordados tópicos fundamentais para o domínio das técnicas modernas de projeto de sistemas digitais como são as arquiteturas reconfiguráveis e as linguagens de descrição de *hardware*.

Os conhecimentos adquiridos nesta dupla de UCs são posteriormente complementados nas disciplinas de Arquitetura de Computadores I e Arquitetura de Computadores II, onde se aborda a organização e síntese dos diversos elementos de um sistema de computação, no intuito de fornecer as bases essenciais necessárias à conceção de sistemas eletrónicos com processadores incorporados (*embedded systems*).

2 Objetivos da disciplina

- Apresentar conceitos essenciais sobre representação digital da informação: sistemas de numeração e codificação.
- Apresentar formalmente a álgebra de Boole no contexto dos sistemas digitais binários e demonstrar a sua importância prática como instrumento de especificação e descrição de sistemas digitais.
- Apresentar os blocos lógicos combinatórios fundamentais.
- Estudar as estruturas elementares de armazenamento de informação mais relevantes e introduzir o conceito de estado.
- Apresentar blocos lógicos sequenciais fundamentais.
- Exercitar as técnicas de análise e síntese de sistemas digitais de baixa complexidade.

3 Bibliografia Básica

- J.F. Wakerly, Digital design: Principles and Practices, 5th ed, Prentice-Hall, 2018
- J. Deschamps, E. Valderrama, L. Téres, *Digital Systems, from Logic Gates to Processors*, Springer, 2017
- M. Mano, M. Ciletti, *Digital Design*, 4th ed, Prentice-Hall, 2006
- T. Floyd, Sistemas Digitais: fundamentos e aplicações, 9ª ed., Bookman, 2007
- A. Amaral, Eletrónica Digital, Fundamentos e Projeto, Edições Sílabo, 2019
- M. Dias, Sistemas Digitais, Princípios e Prática, 3ª ed., FCA, 2013

4 Programa e Métodos

O programa resumido da disciplina é sintetizável nos seguintes aspetos:

- Introdução aos sistemas digitais
- Representação e codificação de informação
- Álgebra de Boole
- Lógica combinatória elementar
- Blocos combinatórios
- Circuitos aritméticos
- Sistemas sequenciais
- Estratégias de análise de circuitos sequenciais
- Blocos sequenciais fundamentais
- Síntese de máquinas de estado

Em termos de metodologia adotada na disciplina realça-se o fato de as aulas teórico-práticas (TP) terem um caráter expositivo, complementado com exemplos de aplicação, jogos digitais, uso de sistemas de resposta imediata, avaliação formativa e *team-based learning*. Por seu lado, as aulas práticas e laboratoriais (PL) decorrem em laboratório de computadores e consistem na resolução de problemas de análise e na síntese e simulação de circuitos digitais utilizando um simulador digital. Os trabalhos realizados no contexto das aulas PL devem obrigatoriamente ser complementados com exercícios realizados fora do contexto das aulas.

As aulas PL incluem guiões para simulação de sistemas digitais de pequena complexidade. Para trabalho autónomo, será conveniente que os alunos instalem nos seus computadores pessoais a ferramenta de projeto de sistemas digitais Intel Quartus Prime.

5 Avaliação

5.1 Regras gerais

NOTA: Todos os momentos de avaliação serão realizados em aulas TP e PL. Os alunos devem assim trazer os seus computadores portáteis.

A avaliação assenta em duas alternativas mutuamente exclusivas:

Avaliação contínua

A avaliação será integralmente realizada durante as aulas TP e PL. Este modo de avaliação integra 6 componentes, 5 dos quais ocorrerão em datas a anunciar. Existirão assim 3 testes TP e 2 problemas de simulação aos quais se atribuem os seguintes pesos: TP1: 20%, TP2: 20%, TP3: 20%, S1: 15%, S2: 15%. O 6° componente de avaliação refere-se a participação ativa dos alunos nas aulas TP e tem o peso de 10%.

Avaliação final

Os alunos que assim o entendam podem optar apenas por avaliação final. Esta avaliação será também feita em laboratório e será composta por uma parte TP e uma parte com problemas de simulação. A opção por avaliação final deve ser comunicada, por *e-mail*, à regente da UC até 1 de outubro de 2023.

Por omissão, os Trabalhadores Estudantes farão a avaliação final. Se puderem frequentar as aulas e desejarem optar por avaliação contínua devem informar, por *e-mail*, a regente da UC dessa sua opção até 1 de outubro de 2023.

A nota final é obtida por arrendamento final às unidades. A aprovação a esta disciplina implica uma avaliação global superior ou igual a 9,5 valores. Não existem notas mínimas às componentes individuais de avaliação.

5.2 Avaliação na época de recurso

A época de recurso substitui a avaliação realizada durante o semestre. Ficam automaticamente inscritos na época de recurso os alunos que não obtiveram aprovação em época normal. O exame de recurso incide sobre toda a matéria lecionada no âmbito da disciplina e a classificação nele obtida constitui a nota final da respetiva disciplina. O exame de recurso será formalmente semelhante ao exame final da época normal e será também realizado em laboratório.

5.3 Alunos repetentes

 As notas positivas obtidas nas várias componentes de avaliação no ano letivo de 2022/2023 não são mantidas.

6 Sequência previsível das aulas TP e PL

O calendário previsto das aulas teórico-práticas e práticas e laboratoriais e respetivos tópicos abordados são apresentados de seguida. Sempre que necessário podem sofrer alterações sem aviso prévio.

Data	Tópico TP	Data	Tópico PL
19.09	Slides 00-01: Apresentação da disciplina	21.09	Guião 1-2: Sistemas de numeração
20.09	Introdução aos sistemas digitais	22.09	
	Sistemas de numeração	25.09	
		26.09	
		27.09	
26.09	Slides 02: Quantidades com sinal	28.09	Guião 1-2: Quantidades com sinal -
27.09	Operações aritméticas	29.09	representação
	Códigos binários: BCD, Gray	02.10	Exercícios com operações aritméticas
		03.10	Códigos
		04.10	
03.10	Slides 03: Álgebra de Boole: postulados e	12.10	Guião 3: Funções Booleanas
04.10	teoremas, princípio de dualidade,	06.10	Teoremas e manipulação algébrica de
	conjuntos completos de operadores	09.10	funções
	Simplificação algébrica de expressões	10.10	Minimização algébrica
		11.10	0.19
10.10 11.10	Slides 03-04: Formas canónicas	19.10	Guião 4: Formas canónicas
11.10	Métodos sistemáticos de minimização de	13.10 16.10	Minimização de funções booleanas com o
	funções booleanas, mapas de Karnaugh	17.10	método de Karnaugh
		18.10	
17.10	Slides 04: Condições irrelevantes	26.10	Guião 4: Formas canónicas
18.10	Análise de circuitos	20.10	Minimização de funções booleanas com o
10.10	Síntese de circuitos elementares	23.10	método de Karnaugh
	Since de circulos ciementares	24.10	Guião 5: Introdução à captura de diagramas
	Realização de TP1	25.10	esquemáticos e simulação comportamental
			baseadas em ferramentas de projeto
			assistido por computador
24.10	Slides 05-06: Blocos combinatórios:	02.11	Guião 6: Descodificadores
25.10	descodificadores Implementação de	27.10	Simulação funcional
	funções lógicas com descodificadores	30.10	
	Codificadores	31.10	
		<mark>01.11*</mark>	
31.10	Slides 07: Multiplexers, multiplexers em	09.11	Guião 6: Descodificadores e codificadores
01.11*	cascata	03.11	Simulação funcional
	Implementação de funções lógicas com	06.11	
	multiplexers	07.11	
	Desmultiplexers, buffers 3-state	08.11	

07.11	Slides 08: Circuitos aritméticos:	16.11	Guião 7: Multiplexers
08.11	somadores, comparadores,	10.11	Simulação funcional
	multiplicadores	13.11	
		14.11	
		15.11	
14.11	Realização de TP2	23.11	Guião 8: Circuitos aritméticos: somadores,
15.11		17.11	comparadores
	Slides 09: Sistemas sequenciais: o conceito	20.11	'
	de estado, latches, flip-flops	21.11	
		22.11	
21.11	Slides 10: Análise de máquinas de estados	30.11	Realização de S1
22.11	finitos	24.11	•
	Análise temporal	27.11	Guião 9-10: Latches e flip-flops
		28.11	
		29.11	
28.11	Slides 11: Síntese de máquinas de estados	07.12	Guião 9-10: Análise de circuitos sequenciais
29.11	finitos	<mark>01.12*</mark>	Simulação de circuitos sequenciais com
	Inicialização síncrona/assíncrona	04.12	Quartus Prime
		05.12	
		06.12	
05.12	Slides 12: Blocos sequenciais	14.12	Guião 11-13: Síntese de circuitos sequenciais
06.12	fundamentais: registos, registos de	15.12	Registos, registos de deslocamento
	deslocamento, contadores	11.12	Contadores
		12.12	
		13.12	
12.12	Slides 12: Blocos sequenciais	21.12	Guião 11-13: Síntese de circuitos sequenciais
13.12	fundamentais: contadores em anel	22.12	Registos, registos de deslocamento
	Resolução de exercícios	18.12	Contadores
		19.12	
		20.12	Realização de S2
19.12	Revisão de matéria		
20.12			
	Realização de TP3		

7 Regras gerais de funcionamento da disciplina

7.1 Funcionamento das aulas PL

1. Inscrição nas turmas PL

A manutenção da inscrição numa determinada turma PL obriga à presença do aluno em pelo menos uma das duas primeiras aulas. Os alunos que, justificada ou injustificadamente, não compareçam às duas primeiras aulas PL perdem automaticamente a sua inscrição, ficando posteriormente condicionados à frequência de uma das turmas onde existam vagas.

7.2 Regime de faltas

- Não haverá registo de faltas nas aulas TP.
- Atendendo ao atual regulamento de estudos da UA, todos os estudantes que, não usufruindo do estatuto de trabalhador-estudante no ano letivo corrente, faltem injustificadamente a mais de 20% de aulas PL reprovam automaticamente à disciplina ficando impedidos de apresentar-se a qualquer prova da mesma durante o corrente ano letivo.
- A justificação formal das faltas deverá ser feita junto da secretaria do DETI dentro do prazo regulamentar. Paralelamente e tão cedo quanto possível o aluno deverá enviar cópia da justificação ao respetivo docente da PL.

7.3 E-mails

- Os *e-mails* sobre questões relativas à componente prática e laboratorial da disciplina devem ser obrigatoriamente dirigidos ao docente responsável pela turma a que o remetente pertence.
- Os *e-mails* sobre questões relativas à componente teórico-prática da disciplina ou sobre questões relacionadas com o funcionamento da disciplina devem ser obrigatoriamente *dirigidos* simultaneamente a todos os docentes responsáveis pelas aulas teórico-práticas da disciplina (Augusto Silva <u>augusto silva@ua.pt</u>; Iouliia Skliarova <u>iouliia@ua.pt</u>).
- Só será dada resposta a *e-mails* que, no corpo da mensagem, indiquem explicitamente o nome e o número mecanográfico do remetente.

7.4 Esclarecimento de dúvidas

- As sessões de orientação tutorial (OT) vão decorrer em modo de ensino à distância.
- Não haverão OTs na 1ª semana de aulas.
- Independentemente das OTs, os alunos são vivamente convidados a contatarem formal ou informalmente os seus docentes das turmas práticas e laboratoriais para esclarecimento de dúvidas ou outro tipo de apoio ao estudo autónomo.

7.5 Ilícitos

A cópia, no todo ou em parte, de qualquer material entregue para avaliação é considerada fraude. Sem prejuízo de outras medidas, a deteção dessa prática implica a atribuição de nota 0 (zero) ao elemento de avaliação em causa.