

Anurag Prasad and Jarrod Lewis CS591 Data Analytics – Spring 2017 Instructor: Babis Tsourakakis

Can we use Yelp reviews to generate tips for restaurants?

Motivation

- Yelp currently has "tips" from users to help other users
- But reviews also hold valuable information for businesses!

Project Goals

- Look specifically at cafes: Yelp's "Coffee & Tea" category
- Discover topics relevant to a particular cafes based on its reviews
 - Analyze relationship between...
 - topics and star-ratings
 - topics and reviewer sentiment
 - Create a model to predict topics of unseen reviews
 - Generate feedback based on topic stars and sentiments

Related Work: tf-idf

- Term frequency-inverse document frequency [1]
 - Standard "bag of words" text information retrieval method
 - Measures the number of occurrences of word in entire text corpus
 - Benefits
 - Extracts most descriptive terms in dataset
 - Good for lexical features
 - Limitations
 - Reveals little about intra/inter-document structure
 - Not good for capturing semantics
 - Does not capture position in text,
 Co-occurrences in different documents, etc.

Related Work: pLSI

- Probabilistic latent semantic indexing [2]
 - Pr[word-doc co-occurrence] is mixture of conditionally independent multinomial distributions

$$p(d,w_n) = p(d) \sum_{z} p(w_n | z) p(z | d).$$

observable variables Topic *c*:

latent variable

Doc *d*, word w:

- Limitations
 - Not flexible enough to handle unseen text (relies on training set)
 - No probabilistic model at document-level (ignores uncertainty)
 - # topics grows linearly with size of corpus → overfitting
 - "Bag of words" approach ignores word and document order

Related Work: LDA

Latent Dirichlet Allocation [3]

- Two-level generative probabilistic model
 - Choose $\theta \sim Dir(\alpha)$
 - * θ : topic distribution for document M
 - * Prior a: per-document topic dist.

choose a word w_n from $p(w_n | \theta, \beta)$

* Prior β: per-topic word dist.

For each of *N* words w_x:

- Improvements over standard pLSI
 - Modified to fit a Dirichlet distribution
 - Does not overfit on small datasets
- Limitations
 - Topics can be hard to interpret ("supervised" part)

Plate notation for LDA model

LDA with Dirichlet-distributed topic-word distributions

Geometric Comparison: pLSI vs LDA

- pLSI
 - Multiple docs per topic, but...
 - Pr[documents] with pLSI are points
- LDA
 - Can place docs within any point within topic simplex

LDA Toy Example

- 1. Babis knows many things.
- 2. Ben would like to learn TensorFlow.
- 3. Babis knows TensorFlow.

Topic 1: 'Babis', 'knows', 'things'

Topic 2: 'Ben', 'learn', 'TensorFlow'

- 1. 100% Topic 1
- 2. 100% Topic 2
- 3. 67% Topic 1, 33% Topic 2

Related Work: Subtopic Extraction

- Subtopic Extraction from Reviews [4]
 - Used LDA model to extract subtopics from 158,000 reviews
 - Application focused on correlation between subtopics
 - Influenced our decisions for using LDA and Gensim library for topic modeling
- Gensim (topic modeling library)
 - It provides tools for transforming the text data into the relevant structure for the model
 - The model generated can be used to predict the topic distribution of an unseen document

Related Work: Sentiment Treebanks

- Sentiment Treebank [5]
 - Implementation of the Stanford Core NLP
 - Attempt to get more meaningful sentiment scores
 - The treebank looks at the overall sentence structure, not just a bag of words

Methodology

- 1. Process reviews in dataset to create usable corpus
- 2. Train LDA model on dataset
- 3. Extract topics using model
 - a. per review
 - b. per cafe
- 4. Get star ratings and sentiments of each topic
 - a. Sentiment analysis with Sentiment Treebank
 - b. Rank the topics based on star rating and sentiment score
- 5. Predict topics of unseen reviews
 - a. Given a cafe Yelp url, return suggestions based on the cafe's reviews
 - b. Produce suggestions for a cafe based on its reviews

Developing the LDA Model

- LDA model trained using the Yelp Academic Dataset
 - 'Coffee & Tea' category 179,409 reviews on cafes
- Before the data could be fed into the LDA model it had to be cleaned
 - Stopwords filtered out of the data
 - Words stemmed so that their structure could be easily matched
 - Part-of-speech tagging used to filter for nouns, the best identifiers for subtopics
 - Words transformed into the gensim corpus format which maps words to values

Experiments: LDA Topic Extraction

Topic Extraction

- LDA model categorizes subtopics based on 10 key nouns
- Based on experimentation we decided to use K=25 subtopic groups
 - K=50 topics produced poorly defined topics
 - Even at K=25 there was still some trouble with interpreting the groups

Coffee - General	Atmosphere	Wait Time/Service	Baked Bread Items
coffee (20.4%)	place (8.9%)	time (4.5%)	bagel (8.6%)
shop (3.9%)	staff (5.2%)	service (3.1%)	pastry (6.4%)
bean (1.3%)	music (2.1%)	order (3.4%)	bread (2.3%)
espresso (%)	fun (1.3%)	wait (1.3%)	baguette (1.6%)

Topic word distributions

Experiments: Sentiment Analysis Application

- Modified Python wrapper to call Stanford NLP Sentiment Treebank
- Reviews were broken up into their individual sentences and fed into the treebank
- {0: Very Negative, 1: Negative, 2: Neutral, 3: Positive, 4 Very Positive}
- Combined sentiment scores used to assign aggregate sentiment score to topics
 - On review the use of the treebanks seems to be a significant improvement over traditional sentiment scoring

Experiments: Topic Breakdown for an Unseen Review

Went in here for the first time today to just grab a cup of coffee and do some studying. Great atmosphere. Not a lot of tables to sit down and people tend to stay there for a long time but that's typical of most coffee shops especially when their coffee is as good as theirs. I actually just got their regular drip coffee and it was some of the best standard coffee around.

Experiments: Generating Recommendations for Cafes

- Example cafe recommendation: 3 Little Figs (https://www.yelp.com/biz/3-little-figs-somerville)
- Produced recommendation
 - Keep up the good work with...
 - Food & Meals (sentiment: slightly positive (2.44) / avg. stars: 4.86)
 - Physical Space (sentiment: slightly positive (2.35) / avg. stars: 4.67)
 - Atmosphere (sentiment: neutral (2.0) / avg. stars: 4.6)
 - May need to make improvements with...
 - Tea (sentiment: neutral (1.78) / avg. stars: 4.43)
 - Baked Bread Items (sentiment: slightly negative (1.71) / avg. stars: 4.56)
 - Small Desserts (sentiment: slightly negative (1.69) / avg. stars: 4.56)

Experiments: Predicting Star Rating from Sentiments

Star Rating Prediction

- Significant correlation for Star Rating and Sentiment Score on every cafe page tested
- This simple regression model can be used to predict Star Rating from Sentiment Score
- The prediction performs worst with low rated reviews as often the intercept of the regression is above 2

Prediction takes two inputs

- Cafe Yelp url
- Unseen review text

Fun Experiment: Predicting star rating for friend's review

"Absolutely my favorite place to go to on weekdays (the lines go out the door on weekends)

- coffee is consistently great and the sandwiches are fab"
 - Predicted rating: 4.5
 - Actual rating:

haha interesting

i gave it 5

Technical Challenges

- Finding substantial training data
 - Attempt 1: webscraping
 - Attempt 2: Yelp dataset
- Figuring out appropriate K topics to use for LDA
- Interpreting "cloudy" subtopics
- Dealing with infrequent subtopics
 - o Improvisation: Factored in weight of subtopic
- Web-scraping to acquire reviews given cafes
 - Could acquire first page of 20 reviews per cafe due to Yelp's restrictions

Findings

- There were topics produced by the LDA model which were easily defined and fit our data well
- Rating of the subtopics could be predicted using sentiment score
- The combination of LDA and Sentiment Scoring could be a viable option for ranking what subtopics a business should improve

Potential Improvements

- Look at more categories of restaurants
 - Create multiple LDA models for different categories of food
 - Output Description
 Output
- Train on a larger and more representative dataset
 - The Yelp Academic Dataset was focused in Las Vegas so some groups of subtopics were biased to this geographic area
- Train the Sentiment Treebank on a more related set of data
 - Currently the treebank is based on a set of movie reviews
- More sophisticated star-rating prediction such as MLE

Conclusion

- LDA allowed us to extract implicit subtopics that standard text mining would neglect
- Sentiment treebanks are an improvement on traditional SA
- This combination allows us to
 - Learn what customers care about in their reviews.
 - Identify priority points for restaurants
- Implications for Yelp offer recommendation tools to its listed businesses

References

- [1] J. Ramos. "Using TF-IDF to Determine Word Relevance in Document Queries"
- [2] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. "Indexing by latent semantic analysis." Journal of the American Society of Information Science, 41(6):391407, 1990.
- [3] D. Blei, A. Ng, and M. Jordan. "Latent Dirichlet Allocation." Journal of Machine Learning Research, 3:9931022, January 2003.
- [4] J. Huang, S. Rogers, and E. Joo. "Improving Restaurants by Extracting Subtopics from Yelp Reviews", Spring 2013.
- [5] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, C. Potts "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"