SUBMITTED BY: Prachi Aggarwal

COURSE: Bsc(H) Computer Science

ROLL NO: 21570015

SUBJECT: GE: Differential Equation

UNIQUE PAPER CODE: 32355301

SEMESTER: IIIrd

YEAR: 2nd

SUBMITTED TO: Avneesh

Examination Rollno: 21033570042

TOPIC: Practical File

INDEX

Sno.	Practical Topic	Page No.
1.	Solution of first order differential equation.	
2.	Plotting of second order solution family of differential equation.	
3.	Plotting of third order solution family of differential equation.	
4.	Solution of differential equation by variation of parameter method.	
5.	Solution of system of ordinary differential equations.	
6.	Solution of Cauchy problem for first order partial differential equation.	
7.	Plotting the characteristics for the first order partial differential equations.	
8.	Plot the integral surface of a given first order partial differential equation with initial data.	

Q1) Solution of first order differential equation.

$$xy' = (y/x)^3+y$$

In[5]:= eq1 = DSolve[x * y'[x] == (y[x]/x)^3 + y[x], y[x], x]

Out[5]=
$$\left\{ \left\{ y[x] \rightarrow -\frac{x^{3/2}}{\sqrt{2 + x \, c_1}} \right\}, \left\{ y[x] \rightarrow \frac{x^{3/2}}{\sqrt{2 + x \, c_1}} \right\} \right\}$$

In[6]:= gs = y[x] /. eq1

Out[6]=
$$\left\{-\frac{x^{3/2}}{\sqrt{2+x} c_1}, \frac{x^{3/2}}{\sqrt{2+x} c_1}\right\}$$

$xy' = x \tan(y/x) + y$

```
In[7]:= eq1 = DSolve[x * y '[x] == x * Tan[y[x] / x] + y[x], y[x], x]

... Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete

Out[7]= \{\{y[x] \rightarrow x \, ArcSin[e^{c_1}x]\}\}

In[8]:= gs = y[x] /. eq1

Out[8]= \{x \, ArcSin[e^{c_1}x]\}
```

$y' = e^{(x-y)} + x^2e^{(-y)}$

In[9]:= eq1 = DSolve[y'[x] == Exp[x-y[x]]+(x^2) * Exp[-y[x]], y[x], x]

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for compout[9]=
$$\left\{\left\{y[x] \to \text{Log}\left[e^x + \frac{x^3}{3} + c_1\right]\right\}\right\}$$

In[10]:= gs = y[x] /. eq1

Out[10]= $\left\{\text{Log}\left[e^x + \frac{x^3}{3} + c_1\right]\right\}$

$$y' + 3x^2 y = x^2 \text{ where } y(0) = 2$$

```
In[11]:= eq1 = DSolve[y'[x] + 3 * (x^2) * y[x] == x^2, y[x], x]

Out[11]= \left\{\left\{y[x] \rightarrow \frac{1}{3} + e^{-x^3} c_1\right\}\right\}

In[12]:= eqSolve = DSolve[\left\{y'[x] + 3 * (x^2) * y[x] == x^2, y[\theta] == 2\right\}, y[x], x]

Out[12]:= \left\{\left\{y[x] \rightarrow \frac{1}{3} e^{-x^3} (5 + e^{x^3})\right\}\right\}

In[13]:= gs = y[x] /. eqSolve

Out[13]:= \left\{\frac{1}{3} e^{-x^3} (5 + e^{x^3})\right\}

In[14]:= Plot[gs, \left\{x, -5, 5\right\}]

Out[14]:= \frac{3.0 \times 10^{15}}{1.5 \times 10^{15}}

\frac{3.0 \times 10^{15}}{1.0 \times 10^{15}}

\frac{1.5 \times 10^{15}}{5.0 \times 10^{14}}
```

$4xyy' = y^2 + 1$, where y(1)=1

```
In[18]:= eq1 = DSolve[4 * x * y[x] * y'[x] == y[x]^2 + 1, y[x], x]

Out[18]:= \left\{ \left\{ y[x] \to -\sqrt{-1 + e^{2c_1} \sqrt{x}} \right\}, \left\{ y[x] \to \sqrt{-1 + e^{2c_1} \sqrt{x}} \right\} \right\}

In[19]:= eqSolve = DSolve[\left\{ 4 * x * y[x] * y'[x] == y[x]^2 + 1, y[1] == 1 \right\}, y[x], x]
```

Out[19]=
$$\left\{\left\{y[X] \rightarrow \sqrt{-1+2\sqrt{X}}\right\}\right\}$$

In[20]:= gs = y[x]/.eqSolve

Out[20]=
$$\left\{\sqrt{-1+2\sqrt{x}}\right\}$$

In[21]:= Plot[gs, {x, -3, 3}]

$x^2y' + xy = y^3/x$, where y(1)=1

$$ln[22] = eq1 = DSolve[x^2 * y'[x] + x * y[x] == y[x]^3 / x, y[x], x]$$

Out[22]=
$$\left\{\left\{y\left[x\right] \rightarrow -\frac{\sqrt{2}x}{\sqrt{1+2x^4c_1}}\right\}, \left\{y\left[x\right] \rightarrow \frac{\sqrt{2}x}{\sqrt{1+2x^4c_1}}\right\}\right\}$$

$$ln[23]:= eqSolve = DSolve[{x^2 * y'[x] + x * y[x] == y[x]^3 / x, y[1] == 1}, y[x], x]$$

DSolve: For some branches of the general solution, the given boundary conditions lead to an empty solution.

Out[23]=
$$\left\{ \left\{ y \left[x \right] \rightarrow \frac{\sqrt{2} x}{\sqrt{1+x^4}} \right\} \right\}$$

$$In[24]= gs = y[x]/. eqSolve$$

Out[24]=
$$\left\{ \frac{\sqrt{2} \times \sqrt{1 + x^4}}{\sqrt{1 + x^4}} \right\}$$

Q2) Plotting of second order solution family of differential equation.

$$y'' - 6y' + 5y == 0$$
 where $y'(0)=1$ and $y(0)=0$

$$y'' + 2y' - 25y = 0$$
, $y(0)=3$, $y'(1)=3$

```
 \begin{aligned} &\inf[t] = \text{ eq1 = DSolve}[\{y''[x] + 2 * y'[x] - 25 * y[x] = 0\}, \ y[x], \ x] \\ &\text{out}[t] = \{\{y[x] \rightarrow e^{(-1 - \sqrt{26}) \times} c_1 + e^{(-1 + \sqrt{26}) \times} c_2\}\} \\ &\inf[t] = \text{ eqsolve = DSolve}[\{y''[x] + 2 * y'[x] - 25 * y[x] = 0, \ y'[1] = 3, \ y[0] = 3\}, \ y[x], \ x] \\ &\text{out}[t] = \{\{y[x] \rightarrow \frac{3(e^{(-1 + \sqrt{26}) \times} + \sqrt{26} e^{(-1 + \sqrt{26}) \times} - e^{1 + \sqrt{26} + (-1 - \sqrt{26}) \times} - e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + \sqrt{26} e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})\}\} \\ &\text{ in}[t] = \text{ gs = y[x] } / \text{. eqsolve} \\ &\text{ out}[t] = \{\frac{3(e^{(-1 + \sqrt{26}) \times} + \sqrt{26} e^{(-1 + \sqrt{26}) \times} - e^{1 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})\}} \\ &\text{ out}[t] = \{\frac{3(e^{(-1 + \sqrt{26}) \times} + \sqrt{26} e^{(-1 + \sqrt{26}) \times} - e^{1 + \sqrt{26} + (-1 - \sqrt{26}) \times} + \sqrt{26} e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ out}[t] = \{\frac{3(e^{(-1 + \sqrt{26}) \times} + \sqrt{26} e^{(-1 + \sqrt{26}) \times} - e^{1 + \sqrt{26} + (-1 - \sqrt{26}) \times} + \sqrt{26} e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ out}[t] = \{\frac{3(e^{(-1 + \sqrt{26}) \times} + \sqrt{26} e^{(-1 + \sqrt{26}) \times} - e^{1 + \sqrt{26} + (-1 - \sqrt{26}) \times} + \sqrt{26} e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ out}[t] = \frac{3(e^{(-1 + \sqrt{26}) \times} + \sqrt{26} e^{(-1 + \sqrt{26}) \times} - e^{1 + \sqrt{26} + (-1 - \sqrt{26}) \times} + \sqrt{26} e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ 1} + \sqrt{26} - e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + \sqrt{26} e^{2 + \sqrt{26} + (-1 + \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ 1} + \sqrt{26} - e^{2 + \sqrt{26} + (-1 - \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ 1} + \sqrt{26} - e^{2 + \sqrt{26} + (-1 + \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \\ &\text{ 1} + \sqrt{26} - e^{2 + \sqrt{26} + (-1 + \sqrt{26}) \times} + e^{1 + \sqrt{26} + (-1 + \sqrt{26}) \times})} \end{aligned}
```

y"-y+y=0

In[5]= eq1 = DSolve[{y''[x] - y'[x] + y[x] == 0}, y[x], x]

Out[5]= {{y[x]
$$\rightarrow e^{x/2} c_1 \cos \left[\frac{\sqrt{3} x}{2}\right] + e^{x/2} c_2 \sin \left[\frac{\sqrt{3} x}{2}\right]}}$$

In[7]= esolve = y[x] /. eq1[[1]] /. {C[1] \rightarrow 2, C[2] \rightarrow 3}

Out[7]= 2 $e^{x/2} \cos \left[\frac{\sqrt{3} x}{2}\right] + 3 e^{x/2} \sin \left[\frac{\sqrt{3} x}{2}\right]$

In[9]= esolve2 = y[x] /. eq1[[1]] /. {C[1] \rightarrow -2, C[2] \rightarrow 2}

Out[9]= $-2 e^{x/2} \cos \left[\frac{\sqrt{3} x}{2}\right] + 2 e^{x/2} \sin \left[\frac{\sqrt{3} x}{2}\right]$

In[10]= esolve3 = y[x] /. eq1[[1]] /. {C[1] \rightarrow -3, C[2] \rightarrow 1}

Out[10]= $-3 e^{x/2} \cos \left[\frac{\sqrt{3} x}{2}\right] + e^{x/2} \sin \left[\frac{\sqrt{3} x}{2}\right]$

In[12]= Plot[{esolve, esolve2, esolve3}, {x, -5, 5}]

```
In[16]: eq1 = DSolve[{y''[x] + y[x] = 4}, y[x], x]

Out[16]: {\{y[x] \rightarrow 4 + c_1 \cos[x] + c_2 \sin[x]\}}

In[17]: eqsol = y[x] /. eq1[[1]] /. {C[1] \rightarrow -3, C[2] \rightarrow 1}

Out[17]: 4 - 3 \cos[x] + \sin[x]

In[18]: eqsol2 = y[x] /. eq1[[1]] /. {C[1] \rightarrow -2, C[2] \rightarrow 2}

Out[18]: 4 - 2 \cos[x] + 2 \sin[x]

In[19]: eqsol3 = y[x] /. eq1[[1]] /. {C[1] \rightarrow 0, C[2] \rightarrow 4}

Out[19]: 4 + 4 \sin[x]

In[20]: Plot[{eqsol, eqsol2, eqsol3}, {x, -5, 5}]
```

y"-2y-6=0 where y'(0)=2 and y(0)=1

2y"+2y'-y=0

 \oplus

-4

In[27]:= eq1 = DSolve[{2 * y''[x] + 2 * y'[x] - y[x] == 0}, y[x], x]

Out[27]:= {{
$$y[x] \rightarrow e^{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}\right)x} c_1 + e^{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)x} c_2}}$$

In[28]:= eqsol = y[x] /. eq1[[1]] /. {C[1] \rightarrow -1, C[2] \rightarrow 3}

Out[28]:= $-e^{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}\right)x} + 3e^{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)x}$

In[29]:= eqsol2 = y[x] /. eq1[[1]] /. {C[1] \rightarrow -4, C[2] \rightarrow 2}

Out[29]:= $-4e^{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}\right)x} + 2e^{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)x}$

In[30]:= eqsol3 = y[x] /. eq1[[1]] /. {C[1] \rightarrow -3, C[2] \rightarrow 5}

Out[30]:= $-3e^{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}\right)x} + 5e^{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)x}$

In[31]:= Plot[{eqsol, eqsol2, eqsol3}, {x, -5, 5}]

Out[31]:= -300

Q3) Plotting of third order solution family of differential equation.

y""+5y"+2y'+10y=0 where y"(0)=10, y'(0)=3,y(0)=0

```
 \begin{aligned} & \text{Pr}[22]^* & \text{ eq1} = \text{DSolve}[\{y'''[x] + 5 + y''[x] + 2 + y'[x] + y'[x] + 10 + y[x] = 0\}, y[x], x] \\ & \text{Out}[32]^* & \left\{ y[x] \rightarrow e^{*} \underbrace{(\bigcirc -4.81....)}_{C_1 + e^{*}} \underbrace{(\bigcirc -0.9957... -1.44....)}_{C_2 + e^{*}} \underbrace{(\bigcirc -0.9957... +1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... +1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... +1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... -1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... -1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... -1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... +1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... -1.44...)}_{C_3 + e^{*}} \underbrace{(\bigcirc -3.9957... -1.44...
```

y""-9y"+15y'+25y=0 where y"(0)=15, y'(0)=10,y(0)=5.

```
 \begin{aligned} & \text{In[36]} = \text{ eq1 = DSolve}[\{y'''[x] - 9 * y''[x] + 15 * y'[x] + 25 * y[x] == 0\}, \ y[x], \ x] \\ & \text{Out[36]} = \left\{ \left\{ y[x] \rightarrow e^{-x} \ c_1 + e^{5x} \ c_2 + e^{5x} \ x \ c_3 \right\} \right\} \\ & \text{In[37]} = \text{ esol = DSolve}[\{y'''[x] - 9 * y''[x] + 15 * y'[x] + 25 * y[x] == 0, \ y''[0] == 15, \ y'[0] == 19, \ y[0] == 5\}, \ y[x], \ x] \\ & \text{Out[37]} = \left\{ \left\{ y[x] \rightarrow -\frac{5}{9} e^{-x} \left( -2 - 7 e^{6x} + 15 e^{6x} x \right) \right\} \right\} \\ & \text{In[38]} = \text{gs = y[x] } / \cdot \text{esol} \\ & \text{Out[38]} = \left\{ -\frac{5}{9} e^{-x} \left( -2 - 7 e^{6x} + 15 e^{6x} x \right) \right\} \\ & \text{In[39]} = \text{Plot[gs, } \{x, -5, 5\}] \\ & -4 \times 10^{9} \\ & -5 \times 10^{9} \\ & -6 \times 10^{9} \\ & -7 \times 10^{9} \end{aligned}
```

y'''-y''-4y'-2y=0 where y''(0)=10, y'(0)=5,y(0)=10

```
 \begin{aligned} &\inf\{40\} = \ \text{eq1} = \ \text{DSolve}[\{y'''[x] - y''[x] - 4 * y'[x] - 2 * y[x] == 0\}, \ y[x], \ x] \\ &\text{Out}[40] = \left\{ \left\{ y[x] \rightarrow e^{(1-\sqrt{3})\times} c_1 + e^{(1+\sqrt{3})\times} c_2 + e^{-x} c_3 \right\} \right\} \\ &\inf\{41\} = \ \text{sol} = \ \text{DSolve}[\{y'''[x] - y''[x] - 4 * y'[x] - 2 * y[x] == 0, \ y''[0] == 10, \ y'[0] == 5, \ y[0] == 10\}, \ y[x], \ x] \\ &Out[41] = \left\{ \left\{ y[x] \rightarrow \frac{5 \, e^{-x} \left( -16 - 8 \, \sqrt{3} + 21 \, e^{x + (1-\sqrt{3})\times} + 12 \, \sqrt{3} \, e^{x + (1-\sqrt{3})\times} + 3 \, e^{x + (1+\sqrt{3})\times} \right)}{2 \, (2 + \sqrt{3})} \right\} \right\} \\ &\inf\{42\} = \left\{ \frac{5 \, e^{-x} \left( -16 - 8 \, \sqrt{3} + 21 \, e^{x + (1-\sqrt{3})\times} + 12 \, \sqrt{3} \, e^{x + (1-\sqrt{3})\times} + 3 \, e^{x + (1+\sqrt{3})\times} \right)}{2 \, (2 + \sqrt{3})} \right\} \\ &\inf\{43\} = \ \text{Plot}[gs, \{x, -5, 5\}] \end{aligned}
```

y""+4y"+5y"+20y=0

```
 \begin{aligned} &\inf\{44\} = \exp 1 = \mathsf{DSolve}[\{y'''[x] + 4 * y''[x] + 5 * y'[x] + 20 * y[x] = = 0\}, \ y[x], \ x] \\ &\operatorname{Out}[44] = \left\{ \left\{ y[x] \to e^{-4 \times} \, \mathbf{c}_3 + \mathbf{c}_1 \, \mathsf{Cos}[\sqrt{5} \, x] + \mathbf{c}_2 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \right\} \\ &\inf\{45\} = \sup \left\{ y[x] / . \, \exp 1 \\ &\operatorname{Out}[45] = \left\{ e^{-4 \times} \, \mathbf{c}_3 + \mathbf{c}_1 \, \mathsf{Cos}[\sqrt{5} \, x] + \mathbf{c}_2 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \right\} \\ &\inf\{46\} = \sup \left\{ e^{-4 \times} \, \mathbf{c}_3 + \mathbf{c}_1 \, \mathsf{Cos}[\sqrt{5} \, x] + \mathbf{c}_2 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \\ &\inf\{46\} = \sup \left\{ 3 \, e^{-4 \times} + \mathsf{Cos}[\sqrt{5} \, x] + 2 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \\ &\inf\{46\} = \sup \left\{ 3 \, e^{-4 \times} + \mathsf{Cos}[\sqrt{5} \, x] + 2 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \\ &\inf\{47\} = \sup \left\{ 2 \, e^{-4 \times} + 2 \, \mathsf{Cos}[\sqrt{5} \, x] + 4 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \\ &\inf\{48\} = \sup \left\{ 3 \, e^{-4 \times} + 2 \, \mathsf{Cos}[\sqrt{5} \, x] + 6 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \\ &\inf\{48\} = \left\{ 9 \, e^{-4 \times} + 3 \, \mathsf{Cos}[\sqrt{5} \, x] + 6 \, \mathsf{Sin}[\sqrt{5} \, x] \right\} \\ &\inf\{49\} = \mathsf{Plot}[\left\{ gs, \, gs2, \, gs3 \right\}, \, \left\{ x, \, -5, \, 5 \right\} \right] \\ &\frac{6 \times 10^6}{1 \times 10^6} \\ &\frac{4 \times 10^6}{1 \times 10^6} \\ &1 \times 10^6 \end{aligned}
```

y'''-13y''+19y'+33y=0

```
 \begin{aligned} &\inf[50] = \text{ eq1 = DSolve}[\{y'''[x] - 13 * y''[x] + 19 * y'[x] + 33 * y[x] == \emptyset\}, \ y[x], \ x] \\ &\text{Out}[50] = \left\{ \left\{ y[x] \to e^{-x} \ c_1 + e^{3x} \ c_2 + e^{11x} \ c_3 \right\} \right\} \\ &\inf[51] = \text{ sol = } y[x] \ /. \ \text{ eq1} \\ &\text{Out}[51] = \left\{ e^{-x} \ c_1 + e^{3x} \ c_2 + e^{11x} \ c_3 \right\} \\ &\inf[52] = \text{ gs = Evaluate}[\text{sol } /. \ \{\text{C[1]} \to -6, \ \text{C[2]} \to \emptyset, \ \text{C[3]} \to 8\} \right] \\ &\text{Out}[52] = \left\{ -6 \ e^{-x} + 8 \ e^{11x} \right\} \\ &\inf[53] = \text{ gs2 = Evaluate}[\text{sol } /. \ \{\text{C[1]} \to -4, \ \text{C[2]} \to 3, \ \text{C[3]} \to \emptyset\} \right] \\ &\text{ gs3 = Evaluate}[\text{sol } /. \ \{\text{C[1]} \to \emptyset, \ \text{C[2]} \to -5, \ \text{C[3]} \to 4\} \right] \\ &\text{Out}[53] = \left\{ -4 \ e^{-x} + 3 \ e^{3x} \right\} \\ &\text{Out}[54] = \left\{ -5 \ e^{3x} + 4 \ e^{11x} \right\} \\ &\text{ in}[56] = \text{Plot}[\{\text{gs, gs2, gs3}\}, \ \{x, -0.5, 0.5\}] \right] \\ &\text{Out}[56] = \end{aligned}
```

y""+3y"+6y"+18y=0

```
\begin{aligned} & \text{In [So]} = \text{ eq1} = \text{DSolve} \left\{ \left\{ y'''[x] + 3 * y''[x] + 6 * y'[x] + 18 * y[x] = 9 \text{ , } y[\theta] = 9 \text{ , } y'[\theta] = 9 \text{ , } y'[\theta] = 9 \text{ , } y[x], x \right\} \\ & \text{Out[So]} = \left\{ \left\{ y[x] \to \frac{1}{5} \text{ a } e^{-2x} \left( 2 + 3 e^{2x} \text{Cos}[\sqrt{6} \text{ x}] + \sqrt{6} e^{2x} \text{Sin}[\sqrt{6} \text{ x}] \right) \right\} \right\} \\ & \text{In [So]} = \text{Sol} = \text{Evaluate} \left\{ y[x] / \text{. eq1} / \text{. } \left\{ 4 \Rightarrow 2 \right\}, \left\{ 4 \Rightarrow 4 \right\}, \left\{ 4 \Rightarrow 6 \right\} \right\} \right] \\ & \text{Out[So]} = \left\{ \left\{ \frac{2}{5} e^{-2x} \left( 2 + 3 e^{2x} \text{Cos}[\sqrt{6} \text{ x}] + \sqrt{6} e^{2x} \text{Sin}[\sqrt{6} \text{ x}] \right) \right\}, \left\{ \frac{4}{5} e^{-2x} \left( 2 + 3 e^{2x} \text{Cos}[\sqrt{6} \text{ x}] + \sqrt{6} e^{2x} \text{Sin}[\sqrt{6} \text{ x}] \right) \right\}, \left\{ \frac{6}{5} e^{-2x} \left( 2 + 3 e^{2x} \text{Cos}[\sqrt{6} \text{ x}] + \sqrt{6} e^{2x} \text{Sin}[\sqrt{6} \text{ x}] \right) \right\} \\ & \text{In [6o]} = \text{gs} = \text{DSolve} \left\{ \left\{ y'''[x] + 3 * y''[x] + 6 * y'[x] + 18 * y[x] = 9 \text{ , } y[\theta] = 9 \text{ , } y'[\theta] = 9 \text{ , } y'[\theta] = 9 \text{ , } y[x], x \right\} \\ & \text{Out[6o]} = \left\{ \left\{ y[x] \to \frac{3}{3} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ 2 \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ 2 \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\} \right\} \right\} \\ & \text{Out[6o]} = \left\{ \sqrt{\frac{2}{3}} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{ x}] \right\}, \left\{ \sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Sin}[\sqrt{6} \text{Si
```

57n[**v**6 x])}}

 $In[64]= Plot[{sol, gs, gs2}, {x, -5, 5}]$

Q4) Solution of differential equation by variation of parameter method.

$y''-3y'+2y=e^{(3x)}$

```
prac4a.nb
   ln[65]:= eq1 = {y''[x] - 3 * y'[x] + 2 * y[x] == 0}
  Out[65]= \{2y[x] - 3y'[x] + y''[x] == 0\}
   ln[66] = r[x] = Exp[3 * x]
  Out[66]= @3 ×
   In[67]:= eq2 = DSolve[eq1, y[x], x]
  Out[67]= \{\{y[x] \rightarrow e^x c_1 + e^{2x} c_2\}\}
   ln[68] = yh[x] = y[x] /. eq2
  Out[68]= \{ \theta^{\times} C_1 + \theta^{2 \times} C_2 \}
   In[69]= Print["THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=",
         THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=e^{x}c_{1}+e^{2x}c_{2}
   ln[70]:= y1[x] = Exp[x]
  Out[70]= @ ×
   ln[71] = y2[x] = Exp[2 * x]
  Out[71]= @ 2 ×
   In[72]:= W = Wronskian[{y1[x], y2[x]}, x]
   ln[74]:= Print["THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS\n W(y1,y2)=", W]
         THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS
         W(y1,y2)=03×
   ln[75] = u[x] = Integrate[-y2[x] * r[x] / W, x]
  Out[75]= -\frac{\theta^2}{2}
  ln[75]:= u[x] = Integrate[-y2[x]*r[x]/W, x]
 Out[75]= -\frac{e^{2}}{2}
  ln[76]:= v[x] = Integrate[y1[x] * r[x] / W, x]
  ln[77]:= yp[x] = u[x] * y1[x] + v[x] * y2[x]
 Out[77]= \frac{e^{3}}{2}
  ln[78]:= Print["THE PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS yp[x]=", yp[x]]
         THE PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS yp[x] = \frac{e^{3x}}{2}
  \ln[79]: Print["THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS\n y[x]=", Sol = yh[x]+yp[x]]
         THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS
        y[x] = \left\{ \frac{e^{3x}}{2} + e^{x} c_{1} + e^{2x} c_{2} \right\}
```

y''=y= 2x^2-x-3

```
ln[80] = eq1 = {y''[x] - y[x] == 0}
Out[80]= \{-y[x] + y''[x] == 0\}
 ln[81] = r[x] = 2 * x^2 - x - 3
Out[81]= -3 - x + 2 x^2
 In[82] = eq2 = DSolve[eq1, y[x], x]
Out[82]= \{ \{ y [x] \rightarrow \theta^{\times} C_1 + \theta^{-\times} C_2 \} \}
 ln[87] = yh[x] = y[x] /. eq2
Out[87]= \{ \theta^{\times} \mathbb{C}_1 + \theta^{-\times} \mathbb{C}_2 \}
 IN[88]:= Print["THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=",
        THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=e^x c_1+e^{-x} c_2
 In[84]:= y1[x] = Exp[x]
       y2[x] = Exp[-x]
Out[84]= e x
Out[85]= @ -x
In[86]:= W = Wronskian[{y1[x], y2[x]}, x]
Out[86]= -2
 ln[89]:= Print["THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS\n W(y1,y2)=", W]
        THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS
         W(y1,y2) = -2
 In[90] = u[x] = Integrate[-y2[x] * r[x] / W, x]
1 a-x ... / 2 . 2 ... \
      W(y1,y2)=-2
 ln[90]:= u[x] = Integrate[-y2[x] * r[x] / W, x]
Out[90]= -\frac{1}{2} e^{-x} \times (3 + 2 \times)
 ln[91]:= v[x] = Integrate[y1[x] * r[x] / W, x]
Out[91]= \frac{1}{2} e^{x} (-2 + 5 \times -2 \times^{2})
 \ln[92] = yp[x] = u[x] * y1[x] + v[x] * y2[x]
Out[92]= -\frac{1}{2} x (3+2x) + \frac{1}{2} (-2+5x-2x<sup>2</sup>)
 \label{eq:loss_print} $$\inf[$^{y}$ = Print[$^{y}$ + PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS $$yp[$x]$ = ", $$yp[$x]$]$
        THE PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS yp[x] = \frac{1}{2}x(3+2x) + \frac{1}{2}(-2+5x-2x^2)
  \texttt{In} [94] = \textbf{Print} ["\texttt{THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS \n } y[x] = ", \texttt{Sol} = yh[x] + yp[x]] 
       THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS
y[x] = \left\{ -\frac{1}{2}x(3+2x) + \frac{1}{2}(-2+5x-2x^2) + e^x c_1 + e^{-x} c_2 \right\}
```

y"+y=tan(x)

```
In[95]:= eq1 = {y''[x] + y[x] == 0}
   Out[95]= \{y[x] + y''[x] == 0\}
    In[96]:= r[x] = Tan[x]
   Out[96]= Tan[x]
    In[97]:= eq2 = DSolve[eq1, y[x], x]
   Out[97]= \{\{y[x] \rightarrow c_1 Cos[x] + c_2 Sin[x]\}\}
    In[98]:= yh[x] = y[x] /. eq2
   Out[98]= \{c_1 Cos[x] + c_2 Sin[x]\}
    In[99]:= Print["THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=",
            THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=c_1 \cos[x]+c_2 \sin[x]
   ln[100] = y1[x] = Cos[x]
            y2[x] = Sin[x]
  Out[100]= Cos[x]
  Out[101]= Sin[x]
   In[102]:= W = Wronskian[{y1[x], y2[x]}, x]
  Out[102]= 1
   In[103]:= Print["THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS\n W(y1,y2)=", W]
            THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS
             W(y1,y2)=1
   In[104]= u[x] = Integrate[-y2[x] * r[x] / W, x]
  Out[104]= Log\left[Cos\left[\frac{x}{2}\right] - Sin\left[\frac{x}{2}\right]\right] - Log\left[Cos\left[\frac{x}{2}\right] + Sin\left[\frac{x}{2}\right]\right] + Sin[x]
 ln[107] = v[x] = Integrate[y1[x] * r[x] / W, x]
Out[107]= -Cos[x]
Out[106]= -\frac{1}{2} e^{-i \times} (1 + e^{2i \times})
 ln[108] = yp[x] = u[x] * y1[x] + v[x] * y2[x]
Out[108] = -Cos[x] Sin[x] + Cos[x] \left( Log\left[Cos\left[\frac{x}{2}\right] - Sin\left[\frac{x}{2}\right]\right] - Log\left[Cos\left[\frac{x}{2}\right] + Sin\left[\frac{x}{2}\right]\right] + Sin[x] \right)
 \label{eq:log_log_log} $$\inf["THE PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS $$yp[x]=", yp[x]]$$
         THE PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS yp[x] = -\cos[x] \sin[x] + \cos[x] \left( \log\left[\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right] - \log\left[\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right] + \sin[x] \right)
 [n]_{10} = Print["THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS n y[x]=", Sol=yh[x]+yp[x]]
         THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS
          y[x] = \left(c_1 \cos[x] + c_2 \sin[x] - \cos[x] \sin[x] + \cos[x] \left(\log\left[\cos\left(\frac{x}{2}\right] - \sin\left(\frac{x}{2}\right]\right] - \log\left[\cos\left(\frac{x}{2}\right] + \sin\left(\frac{x}{2}\right]\right] + \sin[x]\right)\right)
```

y"+y==cosx-sinx

```
ln[113] = eq1 = {y''[x] + y[x] == 0}
Out[113]= \{y[x] + y''[x] == 0\}
 ln[114] = r[x] = Cos[x] - Sin[x]
Out[114]= Cos[x] - Sin[x]
 In[115] = eq2 = DSolve[eq1, y[x], x]
Out[115]= \{\{y[x] \rightarrow c_1 Cos[x] + c_2 Sin[x]\}\}
 ln[116] = yh[x] = y[x] /. eq2
Out[116]= \{c_1 Cos[x] + c_2 Sin[x]\}
 In[117]:= Print["THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=",
           y[x]/.eq2[[1]]]
          THE GENERAL SOLUTION OF THE CORRESPONDING HOMOGENEOUS DIFFERENTIAL EQUATION IS yh=c_1 \cos[x]+c_2 \sin[x]
 In[118]= y1[x] = Cos[x]
Out[118]= Cos[x]
 In[120]:= y2[x] = Sin[x]
Out[120]= Sin[x]
 In[121]:= W = Wronskian[{y1[x], y2[x]}, x]
Out[121]= 1
 In[122]:= Print["THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS\n W(y1,y2)=", W]
          THE WRONSKIAN OF Y1 AND Y2 SOLUTION IS
           W(y1, y2)=1
 ln[123]:= u[x] = Integrate[-y2[x] * r[x] / W, x]
Out[123]= \frac{x}{2} + \frac{\cos[x]^2}{2} - \frac{1}{4} \sin[2x]
  ln[123]:= u[x] = Integrate[-y2[x]*r[x]/W, x]
 Out[123]= \frac{x}{2} + \frac{\cos[x]^2}{2} - \frac{1}{4} \sin[2x]
  ln[124]= v[x] = Integrate[y1[x]*r[x]/W, x]
 Out[124]= \frac{x}{2} + \frac{\cos[x]^2}{2} + \frac{1}{4} \sin[2x]
  \ln[125] = yp[x] = u[x] * y1[x] + v[x] * y2[x]
 Out[125]= Cos[x] \left(\frac{x}{2} + \frac{\cos[x]^2}{2} - \frac{1}{4}\sin[2x]\right) + \sin[x] \left(\frac{x}{2} + \frac{\cos[x]^2}{2} + \frac{1}{4}\sin[2x]\right)
  In[126]:= Print["THE PARTICULAR INTEGRAL OF NON-HOMOG | Copy to clipboard. ; yp[x]=", yp[x]]
          THE PARTICULAR INTEGRAL OF NON-HOMOGENEOUS EQUATION IS yp[x] = Cos[x] \left(\frac{x}{2} + \frac{Cos[x]^2}{2} - \frac{1}{4}Sin[2x]\right) + Sin[x] \left(\frac{x}{2} + \frac{Cos[x]^2}{2} + \frac{1}{4}Sin[2x]\right)
  \ln[127]= Print["THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS\n y[x]=", Sol=yh[x]+yp[x]]
          THE GENERAL SOLUTIONO FTHE GIVEN NON-HOMOGENEOUS DIFFERNTIAL EQUATION IS
          y[x] = \left\{ c_1 \cos[x] + c_2 \sin[x] + \cos[x] \left( \frac{x}{2} + \frac{\cos[x]^2}{2} - \frac{1}{4} \sin[2x] \right) + \sin[x] \left( \frac{x}{2} + \frac{\cos[x]^2}{2} + \frac{1}{4} \sin[2x] \right) \right\}
```

Q5) Solution of system of ordinary differential equations.

dy/dx = y+z

dz/dx=2y+z

```
In[128]= e1 = { y'[x] == y[x] + z[x], z'[x] == 2 * y[x] + z[x] } 
Out[128]= { y'[x] == y[x] + z[x], z'[x] == 2 y[x] + z[x] } 
In[131]= sol1 = DSolve[e1, {y[x], z[x]}, x] 

Out[131]= { { y[x] \rightarrow \frac{1}{2} e^{x - \sqrt{2} x} (1 + e^{2\sqrt{2} x}) c_1 + \frac{e^{x - \sqrt{2} x} (-1 + e^{2\sqrt{2} x}) c_2}{2\sqrt{2}}, z[x] \rightarrow \frac{e^{x - \sqrt{2} x} (-1 + e^{2\sqrt{2} x}) c_1}{\sqrt{2}} + \frac{1}{2} e^{x - \sqrt{2} x} (1 + e^{2\sqrt{2} x}) c_2 } } 
In[132]= sol2 = {y[x], z[x]} /. sol1[[1]] /. {c[1] \rightarrow 2, c[2] \rightarrow 4} 
Out[132]= {\sqrt{2} e^{x - \sqrt{2} x} (-1 + e^{2\sqrt{2} x}) + e^{x - \sqrt{2} x} (1 + e^{2\sqrt{2} x}), \sqrt{2} e^{x - \sqrt{2} x} (-1 + e^{2\sqrt{2} x}) + 2 e^{x - \sqrt{2} x} (1 + e^{2\sqrt{2} x}) } } 
In[133]= Plot[sol2, {x, -6.5, 6.5}]

Out[133]= Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]=  

Out[133]
```

dy/dx = y+2z

dz/dx=4y-z

```
In[134]:= eq2 = {y'[x] == y[x] + 2 * z[x], z'[x] == 4 * y[x] - z[x]}

Out[134]:= {y'[x] == y[x] + 2 z[x], z'[x] == 4 y[x] - z[x]}

In[136]:= sol = DSolve[eq2, {y[x], z[x]}, x]

Out[135]:= {{y[x]} \rightarrow \frac{1}{3}e^{-3x} (1 + 2e^{6x}) c_1 + \frac{1}{3}e^{-3x} (-1 + e^{6x}) c_2, z[x] \rightarrow \frac{2}{3}e^{-3x} (-1 + e^{6x}) c_1 + \frac{1}{3}e^{-3x} (2 + e^{6x}) c_2}}}

In[136]:= gs = {y[x], z[x]} /· sol[[1]] /· {C[1]} \rightarrow \theta, C[2] \rightarrow 1}

Out[137]:= Plot[gs, {x, -0.5, 0.5}]

In[137]:= Plot[gs, {x, -0.5, 0.5}]

axes \checkmark | image size \checkmark | add fill | background \checkmark | more... | \rightleftharpoons | \rightleftharpoons
```

dy/dx=4y+3z

dz/dx=y+z

dy/dx=6z

dz/dx=2y+3z

dy/dx=y+2z

dz/dx=3y+2z

```
 \begin{aligned} &\inf[146] = \mathbf{e} \mathbf{1} = \left\{ y'[x] = = y[x] + 2 * z[x], \ z'[x] = = 3 * y[x] + 2 * z[x] \right\} \\ &\inf[147] = \sup[147] = \sup[147]
```

dy/dx=y-z

dz/dx=-y+z

```
In[151]:= e1 = \{y'[x] = y[x] - z[x], z'[x] = -y[x] + z[x]\}

Out[151]:= \{y'[x] = y[x] - z[x], z'[x] = -y[x] + z[x]\}

In[152]:= sol1 = DSolve[e1, \{y[x], z[x]\}, x\}

Out[152]:= \{\{y[x] \rightarrow \frac{1}{2} (1 + e^{2x}) c_1 + \frac{1}{2} (1 - e^{2x}) c_2, z[x] \rightarrow \frac{1}{2} (1 - e^{2x}) c_1 + \frac{1}{2} (1 + e^{2x}) c_2\}\}

In[153]:= sol2 = \{y[x], z[x]\} /. sol1[[1]] /. \{c[1] \rightarrow e, c[2] \rightarrow 2\}

Out[153]:= \{1 - e^{2x}, 1 + e^{2x}\}

In[154]:= Plot[sol2, \{x, -e.5, e.5\}]

Out[154]:= \{x, -e.5, e.5\}]
```

axes ▼ image size ▼ add fill hackground ▼ more 🚔 🖃

Q6) Solution of Cauchy problem for first order partial differential equation.

z = u(x,y)

p=du/dx=D[u[x,y],x]

q=du/dy=D[u[x,y],y]

-3p+2q+z=0 with u(x,y)=sinx

In[155]:= eq1 = 3 * D[u[x, y], x] + 2 * D[u[x, y], y] == 0

Out[155]:= 2 u^(0,1)[x, y] + 3 u^(1,0)[x, y] == 0

In[157]:= sol = DSolve[{eq1, u[x, 0] == Sin[x]}, u, {x, y}]

Out[157]:=
$$\{\{u \rightarrow Function[\{x, y\}, -Sin[\frac{3}{2}(-\frac{2x}{3}+y)]]\}\}$$

 $In[159]:= Plot3D[u[x, y] /. sol, {x, -Pi/2, Pi/2}, {y, -Pi/2, Pi/2}]$

-yp+xq=0 with u(0,y)=e^-y^2

```
In[160]= eq1 = y * D[u[x, y], x] + x * D[u[x, y], y] == 0
Out[160]= x u^{(0, 1)}[x, y] + y u^{(1, 0)}[x, y] == 0
In[161]= sol = DSolve[{eq1, u[0, y] == Exp[-y^2]}, u, {x, y}]
Out[161]= {{u \rightarrow Function[{x, y}, e^{x^2 - y^2}]}}
In[162]= Plot3D[u[x, y] /. sol, {x, -5, 5}, {y, -6, 6}]

Out[162]= \frac{10000}{5000}
```

-xp+yq=2xy with u=2 on y=x^2

$$\begin{split} & \text{In}[163] = \text{eq1} = \text{x} \star \text{D}[\text{u}[\text{x}, \text{y}], \text{x}] + \text{y} \star \text{D}[\text{u}[\text{x}, \text{y}], \text{y}] == 2 \star \text{x} \star \text{y} \\ & \text{Out}[163] = \text{y} \, \text{u}^{(\theta, \, 1)}[\text{x}, \, \text{y}] + \text{x} \, \text{u}^{(1, \, \theta)}[\text{x}, \, \text{y}] == 2 \, \text{x} \, \text{y} \\ & \text{In}[164] = \text{sol} = \text{DSolve}[\{\text{eq1}, \, \text{u}[\text{x}, \, \text{x}^2] == 2\}, \, \text{u}, \, \{\text{x}, \, \text{y}\}] \\ & \text{Out}[164] = \left\{ \left\{ \text{u} \to \text{Function}[\{\text{x}, \, \text{y}\}, \, \frac{2 \, \text{x}^3 + \text{x}^4 \, \text{y} - \text{y}^3}{\text{x}^3}] \right\} \right\} \end{split}$$

 $ln[165] = Plot3D[u[x, y] /. sol, {x, -4, 4}, {y, -6, 6}]$

 $-p+xq=(y-1/2x^2)^2$ with $u(0,y)=e^y$

 $ln[166]:= eq1 = D[u[x, y], x] + x * D[u[x, y], y] == (y-1/2x^2)^2$

Out[166]=
$$\times u^{(0,1)}[x, y] + u^{(1,0)}[x, y] == \left(-\frac{x^2}{2} + y\right)^2$$

 $ln[167] = sol = DSolve[{eq1, u[0, y] == Exp[y]}, u, {x, y}]$

$$Out[167] = \left\{ \left\{ u \rightarrow Function \left[\left\{ x \, , \, y \right\} \, , \, \frac{1}{4} \, e^{-\frac{x^2}{2}} \left(4 \, e^y + e^{\frac{x^2}{2}} \, x^5 - 4 \, e^{\frac{x^2}{2}} \, x^3 \, y + 4 \, e^{\frac{x^2}{2}} \, x \, y^2 \right) \right] \right\} \right\}$$

 $ln[168]:= Plot3D[u[x, y] /. sol, {x, -4, 4}, {y, -5, 5}]$

Q7) Plotting the characteristics for the first order partial differential equations.

P+2xq=2xu with Cauchy data u[x,0]=x^2

-50

```
In[169] = eq1 = D[u[x, y], x] + 2 * x * D[u[x, y], y] == 2 * x * u[x, y]
Out[169] = 2 \times u^{(0, 1)}[x, y] + u^{(1, 0)}[x, y] == 2 \times u[x, y]
In[170] = sol = DSolve[\{eq1, u[x, 0] == x^2\}, u, \{x, y\}]
Out[170] = \{\{u \rightarrow Function[\{x, y\}, -e^y(-x^2 + y)]\}\}
In[171] = Plot3D[u[x, y] /. sol, \{x, -4, 4\}, \{y, -6, 6\}]
Out[171] = 0
```

xp+yq=u+1 where Cauchy data $u[x,y]=x^2$ on $y=x^2$

Out[175]=
$$y u^{(0,1)}[x, y] + x u^{(1,0)}[x, y] == 1 + u[x, y]$$

In[176]= $sol = DSolve[\{eq1, u[x, x^2] == x^2\}, u, \{x, y\}]$

Out[176]= $\{\{u \rightarrow Function[\{x, y\}, \frac{x^2 - y + y^2}{y}]\}\}$

In[177]= $Plot3D[u[x, y] /. sol, \{x, -4, 4\}, \{y, -5, 5\}]$

Out[177]= $u[x, y] /. sol, \{x, -4, 4\}, \{y, -5, 5\}$

 $\label{eq:local_$

$2xyp+q(x^2+y^2)=0$ with cauchy data $u=e^x/x-y$ on x+y=1

-yp+xq==0 with u(0,y)=e^-y^2

```
In[181]= eq1 = y * D[u[x, y], x] + x * D[u[x, y], y] == 0

Out[181]= x u<sup>(0, 1)</sup>[x, y] + y u<sup>(1, 0)</sup>[x, y] == 0

In[182]= sol = DSolve[{eq1, u[0, y] == Exp[-y^2]}, u, {x, y}]

Out[182]= {{u → Function[{x, y}, e<sup>x²-y²</sup>]}}

In[183]= Plot3D[u[x, y] /. sol, {x, -5, 5}, {y, -4, 4}]

Out[183]= 200000

Out[183]= 200000

Out[183]= 200000

Nesh * axes * background * viewpoint * more...
```

p+xq==0 where u(0,y)=siny

```
\begin{split} & \ln[184] = \text{eq1} = \text{D}[\text{u}[\text{x}, \text{y}], \text{x}] + \text{x} \star \text{D}[\text{u}[\text{x}, \text{y}], \text{y}] == 0 \\ & \text{Out}[184] = \text{x} \, \text{u}^{(0, 1)}[\text{x}, \text{y}] + \text{u}^{(1, 0)}[\text{x}, \text{y}] == 0 \\ & \text{In}[185] = \text{sol} = \text{DSolve}[\{\text{eq1}, \text{u}[0, \text{y}] == \text{Sin}[\text{y}]\}, \text{u}, \{\text{x}, \text{y}\}] \\ & \text{Out}[185] = \left\{ \left\{ \text{u} \to \text{Function}[\{\text{x}, \text{y}\}, -\text{Sin}[\frac{\text{x}^2}{2} - \text{y}]] \right\} \right\} \\ & \text{In}[186] = \text{Plot3D}[\text{u}[\text{x}, \text{y}] /. \text{sol}, \{\text{x}, -\text{Pi}/2, \text{Pi}/2\}, \{\text{y}, -0.1, 0.1\}] \end{split}
```


Q8)Plot the integral surfaces of the first order partial differential equations with initial data.

up+q=1 where x(s,0)=x0 and y(s,0)=y0, u(s,0)-u0(s)

Ans))))))))

```
QUESTION 1: FIND THE INTEGRAL SURFACE OF THE EQUATION
```

```
 u * Subscript[u, x] + Subscript[u, y] = 1, \text{ and initial data } x (s, 0) = x0 (s), y (s, 0) = y0, u (s, 0) = u0 (s)  solution: - The Characteristic Equation is  dx/u = dy/1 = du/1 = dt, = > \text{Then}   x (s, t) = t^2 + tu0 (s) + x0 (s)   y (s, t) = t + y0 (s)   u (s, t) = u0 (s)   (a) x (s, 0) = s, y (s, 0) = 2s, u (s, 0) = s   Then x = 1/2 t^2 + ts, y = t + 2s   u = t + s.
```


 $ln[190]:= Show[f, f2, PlotLabel \rightarrow "Integral surface through initial curve"]$

up+q=1 and x(s,0)=x0, y(s,0)=y0(s), u(s,0)=u0(s).

solution: - The Characteristic Equation is

dx/u = dy/1 = du/1 = dt, = > Then

 $x(s, t) = t^2, tu0(s) + x0(s),$

y(s, t) = t + y0(s)

u(s, t) = t + u0(s).

(a) $x(s, \theta) = 2s^2, y(s, \theta) = 2s, u(s, \theta) = s$, then $x = 1/2t^2 + 2s^2, y = t + 2s, u = t$

 $\label{eq:local_local_local_local_local} \mbox{ln[191]:= } f = \mbox{ParametricPlot3D[\{(1/2)*t^2+2*s^2, t+2s, t\}, \{s, 0, 1\}, \{t, -1, 1\}, \mbox{PlotPoints} \rightarrow 10]$

 $In[192]:= f2 = ParametricPlot3D[{2 s^2, 2 s, 0}, {s, -0.5, 1.5}]$

ln[193]:= Show[f, f2, PlotLabel \rightarrow "Integral surface through initial curve"]

up+q=1 and x(s,0)=x0, y(s,0)=y0(s), u(s,0)=u0(s).

 $\label{localization} $$\inf[196]:= Show[f, f2, PlotLabel \to "Integral surface through initial curve"]$$

