

Compléments de Mathématiques 2 (CMA2)

Interpolation polynomiale

Julie Coloigner

Cours bâti à partir du polycopié de cours de Marie-Pierre Lebaud disponible à l'adresse https://perso.univ-rennes1.fr/marie-pierre.lebaud/agint/ecrit/analyse-reelle/interpolation/X-interpolation.pdf

- \odot En analyse numérique, une fonction f inconnue explicitement est souvent
 - connue seulement en certains points points $x_0, x_1, ..., x_N$
 - ou évaluable uniquement au moyen de l'appel à un code coûteux.
- $^{\circ}$ Mais dans de nombreux cas, on a besoin d'effectuer des opérations (dérivation, intégration, ...) sur la fonction f
- Remplacer une fonction f plus ou moins compliqué par une fonction plus simple, qui coïncide avec la première en un nombre fini de points données au départ.

- Agrandir une image avec Photoshop.
- Prédire la température d'un jour de la semaine connaissant les températures des jours précédents et suivants.

www.istic.univ-rennes1.fr

- Soit f une application de \mathbb{R} de \mathbb{R} et on connait $f(x_i)$ pour tout $i \in \{0, ..., N\}$ et on veut trouver un polynôme P tel que $P(x_i)=f(x_i)$
- \circ P est le polynôme d'interpolation en les points x_0, x_1, \dots, x_N
- © Il existe différents types d'interpolation : Interpolation linéaire, interpolation polynomiales, interpolation de Lagrange...

"joindre les points" données par des segments de droite. Entre deux points de coordonnées (x_1, y_1) et (x_2, y_2) , l'interpolation est donnée par la formule suivante :

"joindre les points" données par des segments de droite. Entre deux points de coordonnées (x_1, y_1) et (x_2, y_2) , l'interpolation est donnée par la formule suivante :

$$y = p \times (x - x_1) - y_1$$
avec la pente
$$p = \frac{y_2 - y_1}{x_2 - x_1}$$

"joindre les points" données par des segments de droite. Entre deux points de coordonnées (x_1, y_1) et (x_2, y_2) , l'interpolation est donnée par la formule suivante :

$$y = p \times (x - x_1) + y_1$$
avec la pente
$$p = \frac{y_2 - y_1}{x_2 - x_1}$$

consiste à utiliser un polynôme unique (et non des tronçons comme précédemment), de degré aussi grand que nécessaire pour estimer localement la courbe d'interpolation.

- Etant donnés n+1 points d'abscisses distinctes $M_i = (x_i, f(x_i)), i = 0,1,...,n$, le problème de **l'interpolation polynomiale** consiste à trouver un polynôme de degré inferieur ou égal à n dont le graphe passe par les N+1 points.
- \circ Soit \mathcal{P}_n l'espace vectoriel des polynômes de degré inférieur ou égale à n.
- Trouver un polynôme $p \in \mathcal{P}_n$ tel que $p(x_i) = f(x_i), \forall i = 0, 1 ..., n$
- p est le polynôme d'interpolation en les points x_0, x_1, \dots, n

Cas N=1 (2 points): Soient 2 points $M_0 = (x_0, f(x_0))$ et $M_1 = (x_1, F(x_1))$ d'abscisses différentes $x_0 \neq x_1$, on pose $p(x) = \alpha x_1 + \beta$ et on cherche α et β tel que $p(x_0) = f(x_0)$ et $p(x_1) = f(x_1)$ et on obtient simplement :

$$\alpha = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$\beta = f(x_0) - \alpha x_0$$

$$p(x) = \frac{f(x_1) - f(x_0)}{1 - x_0} (x - x_0) + f(x_0)$$

 $^{\circ}$ Cas N=2 (3 points): Lorsque 3 points d'abscisses 2 à 2 distinctes et que l'on cherche un polynôme de \mathcal{P}_2 , le polynôme cherché est une parabole. Mais dans le cas où les 3 points sont alignés, le graphe du polynôme est une droite (cas N=1).

- **Théorème**: Soit $x_0, x_1, ..., x_n$ un ensemble de n+1 réels distincts, il existe un et un seul polynôme $p \in \mathcal{P}_n$ tel que $p(x_i) = f(x_i), \forall i = 0, ..., n$
- **Preuve**: On décompose p dans la base canonique e_0, e_1, \dots, e_n de \mathcal{P}_n définie par $e_i(x) = x^i$ pour tout $i = 0, 1, \dots, n$

On cherche le polynôme p sous la forme $p(x_i) = \sum_{j=0}^{n} a_j x^j$

On sait alors que p vérifie $p(x_i) = f(x_i)$, $\forall i = 0,1,...,n$ ssi

$$\sum_{j=0}^{N} a_j x_i^j = f(x_i), \ \forall i \ \in \{0, ..., n\}$$

On obtient un système à n+1 équations et n+1 inconnues x_0, x_1, \dots, x_n

© Démonstration :

De façon équivalente, le vecteur des coefficients $a=(a_j)_{j=1,\dots,n}$ est solution du système Va=y où $y=(f(x_j))_{j=0,\dots,N}$

$$V = \begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_n & \dots & x_n^n \end{pmatrix}$$

Ce système admet une solution si det(V) est non nul.

$$\det(V) = \prod_{n>i>j>0} (x_i - x_j)$$

C'est équivalent à dire que le abscisses d'interpolation x_i sont toutes distinctes.

Soit x_0, x_1, \ldots, x_n n+1 réels donnés **distincts**. On définit n+1 polynômes l_i pour i=0à n par

$$l_i(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)}.$$

Le numérateur de chacun de ces polynômes est un produit de n termes $(x-x_k)$ et est donc un polynôme de degré n. Le dénominateur est une constante. On a donc

- i) l_i est un polynôme de degré n
- ii) $l_i(x_k) = 0$ si $i \neq k$ et $0 \leq k \leq n$
- iii) $l_i(x_i) = 1$.

Montrer que : (ii) $l_i(x_i) = 1$

(iii)
$$l_i(x_k) = 0$$

Soit x_0, x_1, \ldots, x_n n+1 réels donnés **distincts**. On définit n+1 polynômes l_i pour i=0 à n par

$$l_i(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)}$$

Le numérateur de chacun de ces polynômes est un produit de n termes $(x-x_k)$ et est donc un polynôme de degré n. Le dénominateur est une constante. On a donc

- i) l_i est un polynôme de degré n
- ii) $l_i(x_k) = 0$ si $i \neq k$ et $0 \leq k \leq n$
- *iii*) $l_i(x_i) = 1$.

Théorème 1 : il n'existe qu'un seul polynôme vérifiant les trois propriétés i), ii) et iii).

Théorème 2 : Les n+1 polynômes de Lagrange forment une base de $\mathbb{R}_n[X]$.

Soit f une fonction donnée définie sur $\mathbb R$ à valeurs dans $\mathbb R$ et x_0, x_1, \ldots, x_n n+1 réels donnés distincts.

Interpoler la fonction f par un polynôme de degré n aux points x_0, x_1, \ldots, x_n consiste à résoudre le problème suivant

Problème
$$(1.3)$$

Trouver un polynôme
$$p$$
 de degré $\leq n$ tel que $p(x_i) = f(x_i), \quad 0 \leq i \leq n.$

Si un tel polynôme existe, il s'écrit de manière unique

$$p(x) = \sum_{i=0}^{n} \alpha_i l_i(x)$$

car les l_i forment une base de $\mathbb{R}_n[X]$. En prenant $x=x_k$ pour $0 \le k \le n$ et en utilisant que $l_i(x_k)=0$ si $k \ne i$ et $l_k(x_k)=1$, on obtient

$$\alpha_k = p(x_k) = f(x_k).$$

Théorème 3 : l'unique solution du problème (3) est donc $p(x) = \sum f(x_i)l_i(x)$.

Ce polynôme s'appelle l'interpolant de la fonction f de degré n aux points $x_0, x_1, ..., x_n$.

Remarque - Le polynôme d'interpolation de Lagrange aux points x_0, x_1, \ldots, x_n d'un polynôme de degré $\leq n$ est lui-même.

Si l'on prend pour f le polynôme constant égal à 1, d'après la remarque précédente, f est égale à son interpolant et on obtient

$$\sum_{i=0}^{n} l_i(x) = 1.$$

Le but de l'interpolation est de remplacer une fonction f plus ou moins compliquée par une fonction plus simple car polynômiale, mais pour justifier cet échange, il nous faut une estimation de l'erreur commise. On rappelle le théorème de Rolle :

Théorème de Rolle : Soit $f : [a, b] \rightarrow$ \mathbb{R} une application continue sur [a, b] et dérivable sur a, b telle que f(a) =f(b), alors il existe $c \in [a, b]$ tel que f'(c) = 0.

Exercice: Calculer les polynômes

d'interpolation de Lagrange aux points

suivants: $M_0 = [-1,4], M_1 = [2,3] et M_2 =$

[3,8]

On considère $x,y\in\mathbb{R}^4$ donnés par : x=[-2,0,1,2] et y=[4,0,0,4]. Parmi les polynômes suivants, lequel est le polynôme d'interpolation P aux points x, y (justifiez votre réponse)?

1.
$$P_1(X) = X^4 - \frac{2}{3}X^3 - 3X^2 + \frac{8}{3}X$$

2.
$$P_2(X) = \frac{4}{3}X^2 - \frac{4}{3}$$

3.
$$P_3(X) = \frac{1}{3}X^3 + X^2 - \frac{4}{3}X$$
.

Estimation de l'erreur d'interpolation

Théorème: On suppose $f \in C^n([a,b])$ alors $\forall x \in [a,b], \exists \xi \in [a,b], f(x) - p(x) = \frac{(x-x_0)(x-x_1)...(x-x_n)}{(n+1)!} f^{(n+1)}(\xi)$

Estimation de l'erreur d'interpolation

Théorème : On suppose $f \in C^n([a,b])$ alors $\forall x \in [a, b], \exists \xi \in [a, b], f(x) - p(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi)$

www.istic.univ-rennes1.fr

Estimation de l'erreur d'interpolation

Théorème : On suppose $f \in C^n([a,b])$ alors $\forall x \in [a,b], \exists \xi \in [a,b], f(x) - p(x) = \frac{(x-x_0)(x-x_1)...(x-x_n)}{(n+1)!} f^{(n+1)}(\xi)$

Estimation de l'erreur d'interpolation

Si
$$x = x_i$$
, $f(x_i) = p(x_i)$
Si $x \neq x_i$ posons $q(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ et
W(t) = $f(t) - p(t) - \frac{q(t)}{q(x)}(f(x) - p(x))$

La fonction W est de classe C^n comme f et s'annule pour $t = x, x_0, x_1, ..., x_n$, elle admet donc au moins n+2 zéros.

Corollaire : Soit $f \in C^n([a,b])$, si f admet au moins n+2 zéros distincts sur [a,b] alors $f^{(n+1)}$ a au moins un zéro sur [a,b].

D'après ce corollaire, il existe $\xi \in [a, b]$, $W^{(n+1)}(\xi) = 0$

$$W^{(n+1)}(t) = f^{(n+1)}(t) - 0 - \frac{(n+1)!}{q(x)} (f(x) - q(x))$$

$$W^{(n+1)}(\xi) = f^{(n+1)}(\xi) - \frac{(n+1)!}{q(x)} (f(x) - q(x)) = 0$$

Estimation de l'erreur d'interpolation

Théorème 4. Si $f^{(n+1)}$ est continue sur [a,b], alors on a :

$$\forall x \in [a,b], \mid f(x) - P(x) \mid \leq \frac{\mid (x-x_0)(x-x_1)\dots(x-x_n) \mid}{(n+1)!} \sup_{x \in [a,b]} \mid f^{(n+1)}(x) \mid.$$

Cette majoration montre que pour une fonction à interpoler f donnée, si nous avons le choix des points d'interpolation dans [a, b], nous avons intérêt à choisir des points de telle sorte que la quantité $|(x-x_0)(x-x_1)...(x-x_n)|$ soit minimale. Ceci est réalisé quand les x_i sont les zéros du **polynôme de Chebytshev** d'ordre n. On les appelle les **points de** Chebytshev.

Définition. On appelle polynôme de Chebyshev de degré n le polynôme T_n défini sur [-1,1] par

$$T_n(x) = \cos(n \operatorname{Arccos}(x)).$$

Considérons la formule de Moivre : $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$. Pour $\theta \in [0, \pi]$, posons $x = \cos \theta$, alors $\sin \theta = \sqrt{1 - x^2}$. On en déduit que

$$\cos n\theta = \cos(n \operatorname{Arccos}(x)) = \sum_{i=0}^{[n/2]} C_n^{2i} (-1)^i x^{n-2i} (1 - x^2)^i.$$

En particulier T_n est un polynôme de degré n.

© Polynôme de Chebychev

n	T_n
0	1
1	\boldsymbol{x}
2	$2x^2-1$
3	$4x^3-3x$
4	$8x^4 - 8x^2 + 1$
5	$16x^5 - 20x^3 + 5x$

www.istic.univ-rennes1.fr

Théorème 8. Les polynômes de Chebychev vérifient la relation de récurrence suivante:

$$T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x).$$

Preuve:
$$\cos(n\theta) + \cos((n+2)) = 2\cos(\theta)\cos((n+1)\theta)$$

 $T_n(\cos\theta) + T_{n-2}(\cos\theta) = 2\cos(\theta)T_{n-1}(\theta)$

Le coefficient du terme en x^n de T_n est 2^{n-1} .

Théorème 13 – T_n a des zéros simples aux n points

$$x_k = \cos(\frac{2k-1}{2n}\pi), \quad k = 1, 2, \dots, n.$$

 T_n atteint son extremum sur l'intervalle [-1,1] aux n+1 points

$$x'_k = \cos\left(\frac{k}{n}\pi\right), \quad k = 0, 1, \dots, n$$

pour lesquels il prend alternativement les valeurs 1 et -1.

Théorème 6. L'erreur d'interpolation minimale est obtenue en prenant les points d'interpolation de Chebychev :

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{2k+1}{2(n+1)}\pi \text{ pour } k = 0,\dots,n$$

et peut être quantifiée à l'aide de l'inégalité suivante :

$$|f(x) - p(x)| \le \frac{1}{(n+1)!} \frac{1}{2^n} \max_{x \in [-1,1]} |f^{(n+1)}(x)|.$$

Cette majoration est la plus fine que l'on puisse obtenir.

Chebyshev

Équidistants

Effet de Runge

4. Polynômes orthogonaux

On se donne une fonction w définie sur a, b, intégrale sur a, b et à valeurs positives ou nulles. Cette fonction est appelée **poids**.

On définit un produit scalaire sur l'ensemble des fonctions continues sur [a, b] par la relation

$$(f,g) = \int_a^b f(t)g(t)w(t) dt.$$

A ce produit scalaire, on associe la norme $||f||^2 = \int_0^b [f(t)]^2 w(t) dt$.

Définition. On appelle **polynômes orthogonaux** relativement au poids w la suite des polynômes $P_0, P_1, \ldots, P_n, \ldots$ ayant les propriétés suivantes

1 – Pour tout n, P_n est de degré n et le coefficient de son terme de plus haut degré est 1.

 $2 - (P_0, \ldots, P_n)$ forme une base orthogonale de $\mathbb{R}_n[X]$.

On admet la proposition suivante

Théorème 7. Quelle que soit la fonction poids *w*, il existe une et unique suite de polynômes orthogonaux.

4. Polynômes orthogonaux

 \circ On prend a = 1, b = -1 et

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

Questions : Montrer que les polynômes de Chebyshev avec la fonction de poids w(x).

4. Polynômes orthogonaux

Exemples: Voici quelques exemples classiques de fonctions poids ω , et le nom des polynômes orthogonaux associés.

$$\star I = [-1, 1], \quad \omega(x) = 1$$

$$\star I =]-1,1[, \quad \omega(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\star I =]-1,1[, \quad \omega(x) = \sqrt{1-x^2}$$

$$\star I = [0, +\infty[, \quad \omega(x) = e^{-x}]$$

$$\star I = \mathbb{R}, \quad \omega(x) = e^{-x^2}$$

$$\mathcal{L}_n(x) = c_n \frac{d^n}{dx^n} \Big((x^2 - 1)^n \Big);$$

Tchebycheff (1ère espèce)
$$T_n(x) = c_n \cos (n \arccos(x));$$

$$U_n(x) = c_n \frac{\sin((n+1)\arccos(x))}{\sin(\arccos(x))};$$

$$L_n(x) = c_n e^x \frac{d^n}{dx^n} \left(e^{-x} x^n \right);$$

$$H_n(x) = c_n(-1)^n e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2/2}\right).$$

