EPITA

Mathématiques

Partiel S3

Décembre 2023

Durée: 3 heures

Nom:

- Ne pas écrire au crayon de papier.

Prénom :				
Classe:				
NOTE:				
Le barème est sur 40 points. La note se ramenée à une note sur 20 par une simple division par 2.				
Consignes:				
 Lire l'énoncé entier avant de commencer. Il y a en tout 6 exercices. Documents et calculatrices interdits. Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée. 				

Exercice 1 (5.5 points)

Dans $E = \mathbb{R}^3$, considérons la famille $\mathcal{F} = (\varepsilon_1 = (1, -1, 2), \varepsilon_2 = (-1, 4, 1), \varepsilon_3 = (1, -2, 1))$. 1. Cette famille \mathcal{F} est-elle une base de E? Sinon, en extraire une sous-famille libre maximale et la compléter pour obtenir une base de E. On note \mathcal{B}' la base obtenue. 2. Déterminer les coordonnées dans \mathcal{B}' du vecteur u = (2,0,6)3. Donner la matrice de passage de la base canonique \mathcal{B} à la base \mathcal{B}' .

Exercice 2 (6.5 points)

 $\text{Considérons l'application linéaire } f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ P & \longmapsto & \left(P(1), \int_0^2 P(x) \, \mathrm{d}x \right) \end{array} \right.$

	$\langle J_0 \rangle$
1.	Donner la matrice de f dans les bases canoniques $\left(1,X,X^2\right)$ au départ et $\left((1,0),(0,1)\right)$ à l'arrivée.
2.	Déterminer une base de $\mathrm{Ker}(f)$ et en déduire sa dimension.
3.	Déterminer une base de $Im(f)$ et en déduire sa dimension.
4.	Énoncer le théorème du rang et vérifier que vos résultats sont compatibles avec ce théorème.
5.	Trouver l'ensemble S de tous les polynômes $P \in \mathbb{R}_2[X]$ tels que $f(P) = (3,8).$

Exercice 3: une démonstration de cours (5 points)

Soient E un \mathbb{R} -espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E de dimensions n et p non nulles. Donnons-nous $\mathcal{B}_1=(e_1,\cdots,e_n)$ une base de F et $\mathcal{B}_2=(\varepsilon_1,\cdots,\varepsilon_p)$ une base de G et considérons la famille

 $\mathcal{F}=(e_1,\cdots,e_n,\varepsilon_1,\cdots,\varepsilon_p)$

obtenue par concaténation de \mathcal{B}_1 et \mathcal{B}_2 .				
Montrer que $F \cap G = \{0_E\} \Longrightarrow \mathcal{F}$ est libre.				
.,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

······································				

Exercice 4: construction d'un projecteur (8 points)

On se place dans l'espace vectoriel $E=\mathbb{R}^3$ muni de sa base canonique \mathcal{B} . On considère les sous-espaces vectoriels

$$F = \{(x, y, z) \in E, \ x + 2y - z = 0\} \qquad \text{et} \qquad G = \left\{(x, y, z) \in E, \ \left| \begin{array}{ccc} x + y + z & = & 0 \\ x + y - z & = & 0 \end{array} \right. \right\}$$

1.	Trouver une base de F et une base de G .
2.	Montrer que $E = F \oplus G$.
3.	D'après la question précédente, on sait que pour tout $u \in E$, il existe un unique $(v, w) \in F \times G$ tel que $u = v + w$.
	Considérons l'endomorphisme $p:u\longmapsto w.$
	(a) Supposons que $u \in F$. Que vaut $p(u)$? Justifier.

(b) Supposons que $u \in G$. Que vaut $p(u)$? Justi	fier.
(c) Soit B' la hase de E obtenue par concatén	ation des bases de F et de G trouvées à la question 1. Déterminer la
matrice de p dans cette base \mathcal{B}' au départ e	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(d) Soit A la matrice de p dans la base canonique calculer A. On ne demande pas de faire	ue au départ et à l'arrivée. Donner la relation matricielle qui permet de le calcul de A .
Evencies E . másolution d'un systèm	no différential (7 points)
Exercice 5 : résolution d'un systèn	ne differentier (7 points)
On cherche les fonctions réelles x et y dérivables sur $\mathbb F$	telles que :
x(0) - 1 y(0) - 2 et	$\forall t \in \mathbb{R}, \; \left\{ egin{array}{ll} x'(t) &=& -5x(t) + 4y(t) \ y'(t) &=& -6x(t) + 5y(t) \end{array} ight.$
L(0) = 1, g(0) = 2	$y' \in \mathbb{R}^n, y'(t) = -6x(t) + 5y(t)$
Pour cela, on définit la fonction vectorielle $u: \left\{ \begin{array}{cc} \mathbb{R} & -t \\ t & -t \end{array} \right.$	$egin{array}{lll} ightarrow & \mathbb{R}^2 \ ightarrow & \left(x(t),y(t) ight) \end{array} ight. egin{array}{lll} ext{et sa fonction dérivée } u': \left\{egin{array}{lll} \mathbb{R} & \longrightarrow & \mathbb{R}^2 \ t & \longmapsto & \left(x'(t),y'(t) ight) \end{array} ight.$
On rappelle que, pour tout $(z_0,a)\in\mathbb{R}^2$, l'unique fonct	tion réelle dérivable z vérifiant
	et $orall t \in \mathbb{R}, z'(t) = az(t)$
	$v \in \mathbb{R}^d, \ v \in \mathbb{R}^d, \ v \in \mathbb{R}^d$
est la fonction $z:t\longmapsto z_0e^{at}$.	
1. Déterminer $f \in \mathcal{L}(\mathbb{R}^2)$ telle que pour tout $t \in \mathbb{R}$	$\mathbb{R},u'(t)=fig(u(t)ig),$ et donner sa matrice dans la base canonique de $\mathbb{R}^2.$
 2. Dans R², on considère la base canonique B₁ = (a) Donner la matrice de passage P de B₁ à B₂ 	$(e_1=(1,0),e_2=(0,1))$ et une autre base $\mathcal{B}_2=(\varepsilon_1=(1,1),\varepsilon_2=(2,3))$. et son inverse P^{-1} .
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(b) Trouver les coordonnées de $u(0)=(1,2)$ dans	ns la base $\mathcal{B}_2.$
,	

(c) Donner la matrice de f dans la base \mathcal{B}_2 au départ et à l'arrivée.			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<i>(</i> 1)	$(x_2(t))$ $(x_2(t))$, $(x_2'(t))$,		
(d)	Notons $X_2(t) = \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix}$ et $X_2'(t) = \begin{pmatrix} x_2'(t) \\ y_2'(t) \end{pmatrix}$ les colonnes constituées des coordonnées dans la base \mathcal{B}_2 des vecteurs		
	$u(t)$ et $u'(t)$. Trouver une relation matricielle donnant $X_2'(t)$ en fonction de $X_2(t)$.		
(e) En déduire les fonctions $t \mapsto x_2(t)$ et $t \mapsto y_2(t)$.			
(f)	En déduire les fonctions $t \mapsto x(t)$ et $t \mapsto y(t)$.		

Exercice 6 : diagonalisation de matrices carrées (8 points)

Soient les matrices $A = \begin{pmatrix} 2 & -4 & 1 \\ 0 & -2 & 1 \\ 4 & -5 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 5 & 5 \\ -5 & -8 & -5 \\ 5 & 5 & 2 \end{pmatrix}$.

1.	Calculer sous forme factorisée les polynômes caractéristiques de A et de B . Vérifier que les valeurs propres de A sont -1 et 2, puis que celles de B sont -3 et 2.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,
2.	Les matrices A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, donner P et D . Vous prendrez soin de votre rédaction.

Mathématiques Partiel S3 – décembre 2023	S3 [*] 2023 Epita
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

