soc2

July 22, 2024

1 Final Project - Dhairya Kantawala

First after seeing the data and reading the problem statement carefully I understood the following: * 5 years of store-item sales data * asked to predict 3 months of sales for 50 different items at 10 different stores * Should stores be modeled separately or Pool together? * Does deep learning work better than ARIMA here? * Can either beat xgboost? — I think the best way to go by this is try different methods and see which gives the best result.

1.1 Let's first organize our data and also visulize it (EDA)

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
[]: print(train.info())
  print(train.describe())
  print(train.head())
  # Just quick check on the data
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 913000 entries, 0 to 912999
Data columns (total 4 columns):
    Column Non-Null Count
                            Dtype
    -----
            913000 non-null datetime64[ns]
0
    date
1
    store
           913000 non-null int64
2
            913000 non-null int64
    item
    sales
            913000 non-null int64
dtypes: datetime64[ns](1), int64(3)
memory usage: 27.9 MB
```

```
None
                                     date
                                                    store
                                                                    item
                                           913000.000000
                                                           913000.000000
    count
                                   913000
    mean
           2015-07-02 11:59:59.999999744
                                                 5.500000
                                                               25.500000
                      2013-01-01 00:00:00
    min
                                                 1.000000
                                                                1.000000
    25%
                      2014-04-02 00:00:00
                                                 3.000000
                                                               13.000000
    50%
                      2015-07-02 12:00:00
                                                 5.500000
                                                               25.500000
    75%
                      2016-10-01 00:00:00
                                                 8.000000
                                                               38.000000
                      2017-12-31 00:00:00
                                                10.000000
                                                               50.000000
    max
                                                 2.872283
                                                               14.430878
    std
                                      NaN
                   sales
           913000.000000
    count
               52.250287
    mean
    min
                0.000000
    25%
               30.000000
    50%
               47.000000
    75%
               70.000000
              231.000000
    max
    std
               28.801144
            date store
                               sales
                         item
    0 2013-01-01
                       1
                             1
                                   13
    1 2013-01-02
                       1
                             1
                                   11
    2 2013-01-03
                                   14
    3 2013-01-04
                       1
                                   13
    4 2013-01-05
                       1
                                   10
[]: print(train.isnull().sum())
     # No missing value, I like this :)
    date
    store
             0
             0
    item
    sales
             0
    dtype: int64
[]: # For beautiful plottings
     sns.set(style="whitegrid")
     plt.figure(figsize=(12, 6))
[]: <Figure size 1200x600 with 0 Axes>
    <Figure size 1200x600 with 0 Axes>
[]: # Plot of total sales over time
     total_sales = train.groupby('date').agg({'sales': 'sum'}).reset_index()
     plt.figure(figsize=(14, 7))
     plt.plot(total_sales['date'], total_sales['sales'], marker='o')
     plt.title('Total Sales Over Time')
```



```
[]: # Sales distribution per store
plt.figure(figsize=(14, 7))
sns.boxplot(x='store', y='sales', data=train)
plt.title('Sales Distribution per Store')
plt.xlabel('Store')
plt.ylabel('Store')
plt.ylabel('Sales')
plt.show()

# Did not gave me much insight.
```



```
[]: # Sales distribution per item
plt.figure(figsize=(14, 7))
sns.boxplot(x='item', y='sales', data=train)
plt.title('Sales Distribution per Item')
plt.xlabel('Item')
plt.ylabel('Sales')
plt.show()

# Again not a big insight, will help in knowing some famous items
```


<ipython-input-59-ef62d5e22106>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='day_of_week', y='sales', data=average_sales_by_dow,
palette='viridis')

<ipython-input-60-7f7b87d19766>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='month', y='sales', data=average_sales_by_month,
palette='viridis')


```
[]: # Sales trends for each store
plt.figure(figsize=(14, 7))
for store_id in train['store'].unique():
```

```
store_sales = train[train['store'] == store_id].groupby('date').

agg({'sales': 'sum'}).reset_index()

plt.plot(store_sales['date'], store_sales['sales'], label=f'Store_u

{store_id}')

plt.title('Sales Trends for Each Store')

plt.xlabel('Date')

plt.ylabel('Total Sales')

plt.legend()

plt.show()

# This is very similar to the first graph and shows a very nice seasonality_u

data. We can also see that the month vise sales are also seasonal in every_u

store.
```



```
[]: # Sales trends for each item
plt.figure(figsize=(14, 7))
for item_id in train['item'].unique():
    item_sales = train[train['item'] == item_id].groupby('date').agg({'sales':_
        'sum'}).reset_index()
    plt.plot(item_sales['date'], item_sales['sales'], label=f'Item {item_id}')
plt.title('Sales Trends for Each Item')
plt.xlabel('Date')
plt.ylabel('Total Sales')
plt.legend()
plt.show()
```

here also there is a nice seasonality, with this we can see that the most \rightarrow common items and least common has a very similar pattern.

1.2 Now after EDA, let's try seasonal decomposition

```
[]: import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose

# Aggregating data to daily total sales
total_sales_daily = train.groupby('date').agg({'sales': 'sum'}).reset_index()
```

```
# Assuming daily data with yearly seasonality (period=365)
result = seasonal_decompose(total_sales_daily['sales'], model='additive',

→period=365)
```

```
[]: # Plot of original series
    plt.figure(figsize=(14, 10))
    plt.subplot(411)
    plt.plot(total_sales_daily['date'], result.observed, label='Observed')
    plt.legend(loc='upper left')
    plt.title('Seasonal Decomposition')
    # Plot of trend component
    plt.subplot(412)
    plt.plot(total_sales_daily['date'], result.trend, label='Trend', color='orange')
    plt.legend(loc='upper left')
    # Plot of seasonal component
    plt.subplot(413)
    plt.plot(total_sales_daily['date'], result.seasonal, label='Seasonal',_
     plt.legend(loc='upper left')
    # Plot of residual component
    plt.subplot(414)
    plt.plot(total_sales_daily['date'], result.resid, label='Residual', color='red')
    plt.legend(loc='upper left')
    plt.tight_layout()
    plt.show()
```


1.3 Let's start with (store, item) SAIRMA modeling

```
[]: import pandas as pd
     import matplotlib.pyplot as plt
     #lets see first:
     print("Train Data:")
     print(train.head())
     # then we convert to datetime
     train['date'] = pd.to_datetime(train['date'])
     # just checking once again
     print("\nData Types After Date Conversion:")
     print(train.dtypes)
     # Pivot the data
     train_pivot = train.pivot_table(index='date', columns=['store', 'item'],__
      →values='sales')
     # Print the first few rows of the pivoted data
     print("\nPivoted Train Data:")
     print(train_pivot.head())
     # Visualize the data for a few store-item combinations
     store_item_combinations = [(1, 1), (1, 2), (2, 1), (2, 2), (10, 1), (10, 50)]
     plt.figure(figsize=(14, 8))
     for store, item in store_item_combinations:
```

```
plt.plot(train_pivot.index, train_pivot[(store, item)], label=f'Store⊔
  ⇔{store}, Item {item}')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.title('Sales Data for Selected Store-Item Combinations')
plt.legend()
plt.show()
# okay so much better visulisation, and we can see that the seasonality is \Box
  ⇔continued, so far so good.
Train Data:
        date store
                            sales
                                    day_of_week
                      item
0 2013-01-01
                   1
                         1
                                13
                                               1
                                                       1
1 2013-01-02
                                11
                                               2
                                                       1
2 2013-01-03
                   1
                                14
                                               3
                                                      1
3 2013-01-04
                   1
                                13
                                               4
                                                       1
4 2013-01-05
                   1
                         1
                                10
                                               5
                                                      1
Data Types After Date Conversion:
date
                datetime64[ns]
                         int64
store
item
                         int64
                         int64
sales
day_of_week
                         int32
month
                         int32
dtype: object
Pivoted Train Data:
store
            1
                                                           10
item
                     3
                              5
                                  6
                                      7
                                           8
                                               9
                                                           41
                                                               42
                                                                   43
                                                                            45
                         4
                                                   10
                                                                        44
date
2013-01-01
           13
                 33
                     15
                         10
                             11
                                  31
                                      25
                                          33
                                               18
                                                   37
                                                           12
                                                               20
                                                                   24
                                                                        17
                                                                            45
2013-01-02
           11
                 43
                     30
                               6
                                  36
                                      23
                                           37
                                               23
                                                   34
                                                           10
                                                               22
                                                                   29
                                                                            45
                         11
                                                                        10
                 23
                                           38
                                                   32
                                                                            56
2013-01-03
            14
                     14
                          8
                                  18
                                      34
                                               25
                                                           17
                                                               27
                                                                   43
                                                                        20
2013-01-04
            13
                 18
                     10
                         19
                               9
                                  19
                                      36
                                          54
                                               22
                                                   45
                                                           13
                                                               24
                                                                   27
                                                                        12
                                                                            50
                     23
2013-01-05
            10
                 34
                         12
                                  31
                                      38
                                           51
                                               29
                                                   35
                                                           14
                                                               25
                                                                   31
                                                                        25
                                                                            62
                                                       •••
store
item
            46
                47
                     48
                         49
                              50
date
2013-01-01
           37
                 11
                     25
                         17
                              33
2013-01-02
            33
                 13
                     24
                              37
                         13
                     29
2013-01-03
            28
                 16
                         19
                              46
2013-01-04 44
                 11
                     39
                         23
                              51
2013-01-05 45
                 16
                     34
                         22
```

[5 rows x 500 columns]


```
[]: # Visualize the data for a store-item combinations
    store_item_combinations = [(1, 1)]
    plt.figure(figsize=(14, 8))
    for store, item in store_item_combinations:
        plt.plot(train_pivot.index, train_pivot[(store, item)], label=f'Store_
     plt.xlabel('Date')
    plt.ylabel('Sales')
    plt.title('Sales Data for Selected Store-Item Combinations')
    plt.legend()
    plt.show()
    dataset_1_1 = pd.DataFrame({
         'sales': train_pivot[(1, 1)]
    })
    print("\nDataset for Store 1, Item 1:")
    print(dataset_1_1.head())
```



```
Dataset for Store 1, Item 1:
                sales
    date
    2013-01-01
                   13
    2013-01-02
                   11
    2013-01-03
                   14
    2013-01-04
                   13
    2013-01-05
                   10
[ ]: df = dataset_1_1
     #here I am trying to do SARMA on only one then will do for every.
[]: import pandas as pd
     # Assuming your data is in a DataFrame called `df`
     df['date'] = pd.to_datetime(df.index)
     df.set_index('date', inplace=True)
[]: import matplotlib.pyplot as plt
     df['sales'].plot(figsize=(12, 6))
     plt.title('Sales Over Time')
     plt.xlabel('Date')
    plt.ylabel('Sales')
```

plt.show()


```
[]: from statsmodels.tsa.seasonal import seasonal_decompose

result = seasonal_decompose(df['sales'], model='additive')
result.plot()
plt.show()
```


2013-02013-02014-02014-02015-02015-02016-02016-02017-02017-07

```
[]: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# ACF and PACF plots
plot_acf(df['sales'])
plot_pacf(df['sales'])
plt.show()

from statsmodels.tsa.stattools import adfuller

result = adfuller(df['sales'])
print('ADF Statistic:', result[0])
print('p-value:', result[1])
```


ADF Statistic: -3.1576705563328042 p-value: 0.02256938062657153

[]: #okay so if we want like accurate model with SAIRMA we have to have a lot of \Box \Box paitence, sadly I don't have it

1.4 Let's get (1,1) using xgboost

```
[]: df['date'] = pd.to_datetime(df.index)
df
```

```
[]:
                sales
                             date
     date
    2013-01-01
                    13 2013-01-01
    2013-01-02
                    11 2013-01-02
    2013-01-03
                   14 2013-01-03
    2013-01-04
                    13 2013-01-04
                    10 2013-01-05
    2013-01-05
     2017-12-27
                    14 2017-12-27
     2017-12-28
                    19 2017-12-28
```

```
2017-12-29 15 2017-12-29
     2017-12-30
                   27 2017-12-30
     2017-12-31 23 2017-12-31
     [1826 rows x 2 columns]
[]: import pandas as pd
     from sklearn.model_selection import train_test_split
[]: train_size = int(len(df) * 0.8)
     train_df = df[:train_size]
     test_df = df[train_size:]
     train_df.head()
[]:
                 sales
                             date
     date
     2013-01-01
                  13 2013-01-01
     2013-01-02 11 2013-01-02
    2013-01-03 14 2013-01-03
2013-01-04 13 2013-01-04
     2013-01-05 10 2013-01-05
[]: import pandas as pd
     from sklearn.model_selection import train_test_split
     import xgboost as xgb
     from sklearn.metrics import mean_squared_error
     import matplotlib.pyplot as plt
     # Feature engineering
     def create_features(df):
         df.loc[:, 'year'] = df['date'].dt.year
         df.loc[:, 'month'] = df['date'].dt.month
         df.loc[:, 'day'] = df['date'].dt.day
         df.loc[:, 'day_of_week'] = df['date'].dt.dayofweek
         df.loc[:, 'day_of_year'] = df['date'].dt.dayofyear
         df.loc[:, 'week_of_year'] = df['date'].dt.isocalendar().week.astype(int)
         return df
     train_df = create_features(train_df)
     test_df = create_features(test_df)
     # Separate features and target
     X_train = train_df.drop(['date', 'sales'], axis=1)
     y_train = train_df['sales']
```

```
X_test = test_df.drop(['date', 'sales'], axis=1)
y_test = test_df['sales']
model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10000,__
  ⇒learning_rate=0.01)
model.fit(X train, y train, eval set=[(X test, y test)],
 ⇔early_stopping_rounds=50, verbose=False)
y_pred = model.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
print(f'RMSE: {rmse:.2f}')
plt.figure(figsize=(15, 6))
plt.plot(test_df['date'], y_test, label='Actual Sales')
plt.plot(test_df['date'], y_pred, label='Predicted Sales')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.title('Actual vs Predicted Sales')
plt.legend()
plt.show()
<ipython-input-77-3d691a977a27>:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df.loc[:, 'year'] = df['date'].dt.year
<ipython-input-77-3d691a977a27>:12: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df.loc[:, 'month'] = df['date'].dt.month
<ipython-input-77-3d691a977a27>:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df.loc[:, 'day'] = df['date'].dt.day
<ipython-input-77-3d691a977a27>:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'day_of_week'] = df['date'].dt.dayofweek <ipython-input-77-3d691a977a27>:15: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'day_of_year'] = df['date'].dt.dayofyear <ipython-input-77-3d691a977a27>:16: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'week_of_year'] = df['date'].dt.isocalendar().week.astype(int) <ipython-input-77-3d691a977a27>:11: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'year'] = df['date'].dt.year <ipython-input-77-3d691a977a27>:12: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'month'] = df['date'].dt.month <ipython-input-77-3d691a977a27>:13: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'day'] = df['date'].dt.day <ipython-input-77-3d691a977a27>:14: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'day_of_week'] = df['date'].dt.dayofweek <ipython-input-77-3d691a977a27>:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'day_of_year'] = df['date'].dt.dayofyear <ipython-input-77-3d691a977a27>:16: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df.loc[:, 'week_of_year'] = df['date'].dt.isocalendar().week.astype(int) /usr/local/lib/python3.10/dist-packages/xgboost/sklearn.py:889: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or `set_params` instead.

warnings.warn(

RMSE: 4.99


```
def calculate_smape(y_true, y_pred):
    epsilon = 1e-10
    return np.mean(np.abs(y_true - y_pred) / (np.abs(y_true) + np.abs(y_pred) +
    epsilon)) * 100

smape = calculate_smape(y_test, y_pred)
print(f'SMAPE: {smape:.2f}%')
```

SMAPE: 9.47%

1.5 Let's get (1,1) using LightGBM

```
[]: df = df.drop(columns='date')
[]: df
[]:
                 sales
     date
     2013-01-01
                    13
     2013-01-02
                    11
     2013-01-03
                    14
     2013-01-04
                    13
     2013-01-05
                    10
                    14
     2017-12-27
     2017-12-28
                    19
     2017-12-29
                    15
     2017-12-30
                    27
     2017-12-31
                    23
     [1826 rows x 1 columns]
[]: import pandas as pd
     from sklearn.model_selection import train_test_split
     df['day'] = df.index.day
     df['month'] = df.index.month
     df['year'] = df.index.year
[]: df
[]:
                 sales day
                             month year
     date
     2013-01-01
                    13
                          1
                                  1
                                    2013
                          2
     2013-01-02
                                  1 2013
                    11
     2013-01-03
                    14
                          3
                                    2013
                                  1
                    13
                          4
     2013-01-04
                                  1 2013
                          5
     2013-01-05
                    10
                                  1
                                    2013
     2017-12-27
                         27
                                 12 2017
                    14
     2017-12-28
                    19
                         28
                                 12 2017
     2017-12-29
                    15
                         29
                                 12 2017
     2017-12-30
                    27
                                 12 2017
                         30
     2017-12-31
                    23
                         31
                                 12 2017
     [1826 rows x 4 columns]
```

```
[]: X = df[['day', 'month', 'year']]
     y = df['sales']
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      ⇔shuffle=False)
[]: import lightgbm as lgb
     train_data = lgb.Dataset(X_train, label=y_train)
     test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
     params = {
         'objective': 'regression',
         'metric': 'rmse',
         'boosting_type': 'gbdt'
     }
     model = lgb.train(
        params,
         train_data, num_boost_round=10000,
         valid_sets=[test_data]
     )
    [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of
    testing was 0.000032 seconds.
    You can set `force_row_wise=true` to remove the overhead.
    And if memory is not enough, you can set `force_col_wise=true`.
    [LightGBM] [Info] Total Bins 50
    [LightGBM] [Info] Number of data points in the train set: 1460, number of used
    features: 3
    [LightGBM] [Info] Start training from score 19.422603
[]: import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.metrics import mean_squared_error
     y_pred = model.predict(X_test, num_iteration=model.best_iteration)
     rmse = np.sqrt(mean_squared_error(y_test, y_pred))
     print(f'Root Mean Squared Error: {rmse}')
     plt.figure(figsize=(14, 7))
     plt.plot(y_test.index, y_test, label='Actual Sales', color='blue')
     plt.plot(y_test.index, y_pred, label='Predicted Sales', color='red')
     plt.xlabel('Date')
     plt.ylabel('Sales')
     plt.title('Sales Forecast vs Actual Sales')
     plt.legend()
```

plt.show()

Root Mean Squared Error: 7.159668530790061


```
import numpy as np

def calculate_smape(y_true, y_pred):
    epsilon = 1e-10
    return np.mean(np.abs(y_true - y_pred) / (np.abs(y_true) + np.abs(y_pred) +
    epsilon)) * 100

smape = calculate_smape(y_test, y_pred)
    print(f'SMAPE: {smape:.2f}%')
```

SMAPE: 13.61%

1.6 Let's get (1,1) using prophet

```
[]: df = df.drop(columns='day')

[]: df = df.drop(columns='month')

[]: df = df.drop(columns='year')

[]: df['date'] = pd.to_datetime(df.index)
df
```

```
[]:
                sales
                            date
    date
    2013-01-01
                   13 2013-01-01
    2013-01-02
                   11 2013-01-02
    2013-01-03
                  14 2013-01-03
    2013-01-04
                   13 2013-01-04
    2013-01-05
                   10 2013-01-05
    2017-12-27 14 2017-12-27
    2017-12-28
                   19 2017-12-28
    2017-12-29 15 2017-12-29
    2017-12-30
                   27 2017-12-30
    2017-12-31
                   23 2017-12-31
     [1826 rows x 2 columns]
[]: import pandas as pd
    from prophet import Prophet
    df.columns = ['y', 'ds']
    df['ds'] = pd.to_datetime(df['ds'])
[]: split_date = '2017-01-01'
    train = df[df['ds'] < split_date]</pre>
    test = df[df['ds'] >= split_date]
[]: model = Prophet()
    model.fit(train)
    INFO:prophet:Disabling daily seasonality. Run prophet with
    daily_seasonality=True to override this.
    DEBUG:cmdstanpy:input tempfile: /tmp/tmppu_qmmjm/tu7yn6mp.json
    DEBUG:cmdstanpy:input tempfile: /tmp/tmppu_qmmjm/x3bq_ld3.json
    DEBUG:cmdstanpy:idx 0
    DEBUG:cmdstanpy:running CmdStan, num_threads: None
    DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.10/dist-
    packages/prophet/stan model/prophet model.bin', 'random', 'seed=21383', 'data',
    'file=/tmp/tmppu_qmmjm/tu7yn6mp.json', 'init=/tmp/tmppu_qmmjm/x3bq_ld3.json',
    'output',
    'file=/tmp/tmppu_qmmjm/prophet_modelelgt6dde/prophet_model-20240722082532.csv',
    'method=optimize', 'algorithm=lbfgs', 'iter=10000']
    08:25:32 - cmdstanpy - INFO - Chain [1] start processing
    INFO:cmdstanpy:Chain [1] start processing
    08:25:32 - cmdstanpy - INFO - Chain [1] done processing
    INFO:cmdstanpy:Chain [1] done processing
[]: cophet.forecaster.Prophet at 0x7bc3c07d99c0>
```

```
[]: future = model.make_future_dataframe(periods=len(test))
  forecast = model.predict(future)

forecast = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
  result = pd.merge(test, forecast, on='ds')
```



```
[]: import numpy as np

rmse = np.sqrt(np.mean((result['y'] - result['yhat'])**2))
```

```
smape = 100 * np.mean(np.abs(result['y'] - result['yhat']) / ((np.
      →abs(result['y']) + np.abs(result['yhat'])) / 2))
    print(f'RMSE: {rmse}')
    print(f'sMAPE: {smape}')
    RMSE: 4.967927662978357
    sMAPE: 19.175684276137304
[]: df
[]:
                           ds
                 У
    date
    2013-01-01 13 2013-01-01
    2013-01-02 11 2013-01-02
    2013-01-03 14 2013-01-03
    2013-01-04 13 2013-01-04
    2013-01-05 10 2013-01-05
    2017-12-27 14 2017-12-27
    2017-12-29 15 2017-12-29
    2017-12-30 27 2017-12-30
    2017-12-31 23 2017-12-31
    [1826 rows x 2 columns]
[]: import pandas as pd
    from prophet import Prophet
    import matplotlib.pyplot as plt
    import numpy as np
    split_date = '2017-01-01'
    train = df[df['ds'] < split_date]</pre>
    test = df[df['ds'] >= split_date]
    model = Prophet(
        yearly_seasonality=True,
        weekly_seasonality=True,
        changepoint_prior_scale=0.5,
        seasonality_prior_scale=10.0
    model.fit(train)
    future = model.make_future_dataframe(periods=len(test))
    forecast = model.predict(future)
```

```
result = pd.merge(test, forecast[['ds', 'yhat', 'yhat lower', 'yhat upper']], u
 on='ds')
plt.figure(figsize=(10, 6))
plt.plot(train['ds'], train['y'], label='Train')
plt.plot(test['ds'], test['y'], label='Test')
plt.plot(result['ds'], result['yhat'], label='Forecast', color='orange')
plt.fill_between(result['ds'], result['yhat_lower'], result['yhat_upper'],_u

¬color='orange', alpha=0.2)
plt.xlabel('Date')
plt.ylabel('Sales')
plt.legend()
plt.show()
rmse = np.sqrt(np.mean((result['y'] - result['yhat'])**2))
smape = 100 * np.mean(np.abs(result['y'] - result['yhat']) / ((np.
 →abs(result['y']) + np.abs(result['yhat'])) / 2))
print(f'RMSE: {rmse}')
print(f'sMAPE: {smape}')
INFO:prophet:Disabling daily seasonality. Run prophet with
daily_seasonality=True to override this.
DEBUG:cmdstanpy:input tempfile: /tmp/tmppu qmmjm/mnseqv4x.json
DEBUG:cmdstanpy:input tempfile: /tmp/tmppu_qmmjm/m9ah3xwo.json
DEBUG:cmdstanpy:idx 0
DEBUG:cmdstanpy:running CmdStan, num_threads: None
DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.10/dist-
packages/prophet/stan_model/prophet_model.bin', 'random', 'seed=21798', 'data',
'file=/tmp/tmppu_qmmjm/mnseqv4x.json', 'init=/tmp/tmppu_qmmjm/m9ah3xwo.json',
'output',
'file=/tmp/tmppu_qmmjm/prophet_modeliw__pdxp/prophet_model-20240722082731.csv',
'method=optimize', 'algorithm=lbfgs', 'iter=10000']
08:27:31 - cmdstanpy - INFO - Chain [1] start processing
INFO:cmdstanpy:Chain [1] start processing
08:27:31 - cmdstanpy - INFO - Chain [1] done processing
INFO:cmdstanpy:Chain [1] done processing
```


RMSE: 4.860181490857254 sMAPE: 18.71643431424785

1.7 Let's get (1,1) using LSTM

I mean I can use it but they have asked to predict next 3 months, this will be very inacurate

1.8 conclusion

So here after using a lot of models, it turns out that making (store, item) df and then using xgboost gives us the best result (here: 9.47%)

[]: