Generovanie do medzijazyka

Ján Šturc Zima 2010

- Formy medzijazyka
- Generovanie výrazov
- Booleovské výrazy
- Príkazy
- Volania
- Spätné plátanie

Použitie medzijazyka v kompilátore

Poznámka: Projekt uncol .

Formy medzijazyka

Polská sufixová forma

 Vynimočne len pre malé zariadenia. Neumožňuje prakticky žiadnu optimalizáciu. Pre bezprostredné vyhodnotenie na zásobníkovom automate (napr. kalkulačky).

Štvorice

- <operácia><1.operand><2.operand><výsledok>
- Vlastne formát trojadresových inštrukcií
- V súčasnosti najpoužívanejší tvar medzijazyka

Trojice

- Šetria 30% pamäte, neumožňujú však optimalizácie vyplývajúce z čiastočného usporiadania kódu. Na adresáciu výsledku sa adresuje trojica.
- Nepriame trojice
 - Kompromis. Tabuľka pre nepriamu adresáciu trojíc umožňuje ich preusporiadanie.

Inštrukcie trojadresového stroja

Program je postupnosť záznamov tvaru:

```
struct { oper: operation;
    address: operand1, operand2, result}
```

- Operácie:
 - aritmetické, logické
 - +,-,_u-,×,/, (real, integer, fixed), div, mod
 - ¬, ∧, ∨, ⊕, <<, >>, (všeliké shifty)
 - move (priradenie, zapamätanie, skoky)
 - if op1 (<,>,=,≠) 0 then goto op2;
 - Ak vieme adresovať všetky registre, skok je move to PC (program counter).
 - indirekcia a referencia (A[i], &a)
 - result:= *(*op1+op2)
 - result:= &op2
- Nebudem v ďaľšom príliš dodržovať formalizmus.
 Zápis v štýle publikácie programov.

"Dračí" medzijazyk

- 1. x := y op z
- 2. x := op y
- 3. x := y
- 4. goto L
- 5. if (x relop y) goto L
- 6. param x
- 7. call p n
- 8. return y
- 9. x := y[i]
- 10. x[i] := y

assignment unary assignment copy unconditional jump conditional jump procedure call procedure call

procedure call

indexed assignment indexed assignment

Projekt – interpretácia medzijazyka

- Príkazy medzijazyka, sú jednoduché príkazy, koré sa vyskytujú v nejakej podobe v každom imperatívnom jazyku (C, Pascal, Algol, ...).
- Po dodaní "syntaktického cukru" ich možno preložiť ľubovolným z uvedených jazykov.
- Volanie procedúr:
 - Ak vyšší jazyk ma rekurziu, je priamočiaré.
 - Programovací jazyk nemá rekurziu. Treba prekladať do volacích záznamov na zásobníku (viď "Podpora počas behu").
- Adresácia:
 - Alokácia pamäte pri kompilácii, robíme alokáciu počas spracovávania deklarácii.
 - Ponechať symbolické mená a ponechať alokáciu pamäte na programovací jazyk (nevhodné, ak chceme skúsiť nejaké optimalizácie).

Rôzne reprezentácie

výraz: a := b * c + b * c

postfix: abc*bc*+ :=

strom výrazu:

dag výrazu:

trojadresový kód:

$$t_1 := b * c$$
 $t_2 := b * c$
 $t_3 := t_1 + t_2$
 $a := t_3$

$$t_1 := b * c$$
 $t_2 := t_1$
 $t_3 := t_1 + t_2$
 $t_3 := t_3$

Generovanie stromov a dagov

- Grafická reprezentácia (binárne stromy), ktoré obsahujú:
 - binárne vnútorné uzly nodes (operácia a dva smerníky na operandy)
 - unárne vnútorné uzly unodes (operácia a smernik na operand)
 - listy leaf obsahujú identifikátory a ich hodnoty
- Sémantické procedúry
 - mknode(op:operation, left, right: pointer):pointer
 - mkunode(op:operation, child: pointer):pointer
 - mkleaf("id", id.place:pointer):pointer
- Lineárna reprezentácia sú trojice (štvorice)
 - unode má druhý smerník prázdny
 - leaf má v prvej položke "identifikátor"
- Lineárnu reprezentáciu vytvoríme očíslovaním trojíc (štvoríc) pomocou post-order traverzovania.

Syntaxou riadený preklad

Syntax	Sémantika
$S \rightarrow id := E$	S.nptr:= mknode(":=", mkleaf(id, id.place), E.nptr)
$E \rightarrow E_1 + E_2$	E.nptr:= mknode("+", E ₁ .nptr, E ₂ .nptr)
$E \rightarrow E_1 * E_2$	E.nptr:= mknode("*", E ₁ .nptr, E ₂ .nptr)
$E \rightarrow - E_1$	E.nptr:= mkunode("uminus", E ₁ .nptr)
$E \rightarrow (E_1)$	E.nptr:= E ₁ .nptr
E o id	E.nptr:= mkleaf(id, id.place)

Strom a := b*(-c) + b*(-c)

0	id	b	
	id	С	
2	u ⁻	1	
1 2 3 4 5 6	*	0	2
4	id	b	
5	id	С 5	
	u-		
7	*	4	6 7
7 8 9	+	3	7
9	id	а	
10	:=	9	8
	I and the second		

Generovanie syntaxou riadeným prekladom

- Na generovanie trojadresového kódu použijeme syntaxou riadený preklad.
- Začneme jazykom pozostávajúcim z priradenia a výrazov.
- Príkaz priradenia S má jediný atribút code vygenerovaný kód.
- Výrazy E majú dva atribúty:
 - code úsek kódu zodpovedajúci výrazu
 - place meno premennej, v ktorej je uložená hodnota výrazu E.
- Označenie: gen(x ":=" y "+" z) reprezentuje príkaz x:= y + z
- Označenie < fragment > || expr znamená zreťazenie fragmentu kódu s výrazom.

Syntaxou riadený preklad

```
S \rightarrow id := E \{ S.code := E.code || gen(id.place ":=" E.place) \}
E \rightarrow E_1 + E_2 { E.place := newtemp;
                   E.code := E_1.code || E_2.code ||
                               gen(E.place ":=" E_1.place "+" E_2.place)}
E \rightarrow E_1 * E_2 { E.place := newtemp();
                   E.code := E_1.code || E_2.code ||
                               gen(E.place ":=" E_1.place "*" E_2.place) }
E \rightarrow - E_1
                 { E.place := newtemp();
                   E.code := E_1.code | |
                              gen(E.place ":=" "uminus" E<sub>1</sub>.place) }
\mathsf{E} \to (\mathsf{E}_1)
                 { E.place := newtemp();
                   E.code := E_1.code }
E \rightarrow id
                 { E.place = id.place;
                   E.code := ""
```

Príklad – syntaktický strom

$$a := b * c + b * -c$$

Príklad – generovanie kódu

	place	code
E _{1n}	b	
E _{2n}	С	
E _{3n}	t ₁	E_{1n} .code E_{2n} .code $t_1 := b * c$
E _{4n}	b	
E _{5n}	С	E _{5n} .code t ₂ := u- c
E _{6n}	t ₂	E_{4n} .code E_{6n} .code E_{3} := b * E_{2}
E _{7n}	t ₃	E_{3n} .code E_{7n} .code E_{4} := E_{1} + E_{3}
E _{8n}	t ₄	E _{8n} .code a := t ₄
S		

Tok riadenia

Deklarácie

```
P \rightarrow MD;B.
M \rightarrow \epsilon
                                   { offset:=0 }
D \rightarrow D;D
D \rightarrow id:T
                                   { enter(id.name, T.type,ofset);
                                     offset:= offset + T.width
                                   { T.type:= integer; T.width:= 4
T \rightarrow integer
T \rightarrow real
                                   { T.type:= real; T.width:= 8
T \rightarrow array[num] of T_1 \{ T.type:= array(num.val, T_1.type);
                                     T.width:= num.val \times T<sub>1</sub>.width
T \rightarrow \uparrow T_1
                                   { T.type:= pointer(T₁.type);
                                     T.width:= 4
```

Pozn. Práca s tabuľkou symbolov je trochu komplikovanejšia. Treba zohľadniť "scope" deklarácií.

"Dračie" sémantické procedúry

- mktable(previous: pointer): pointer
 Vytvára novú tabuľku symbolov. Argumentom je smerník na nadradenú tabuľku a vracia smernik na novo vytvorenú tabuľku.
- enter(table:pointer, name:string, type:type, offset:int)
 Vytvára nový záznam v tabuľke symbolov pre identifikátor name.
- addwidth(table:table, width:integer)
 Zaznamená kumulatívnu dĺžku všetkých položiek v hlavičke tabuľky symbolov.
- enterproc(table:pointer, name:string, newtable:pointer)
 Vytvára novú položku pre vnorenú procedúru v danej tabuľ-ke. Newtable ukazuje na novovytvorenú tabuľku symbolov pre túto procedúru.

Použitie

```
P \rightarrow MD
                                                                                                                                                     { addwidth(top(tblptr), top(offset));
                                                                                                                                                           pop(tblptr); pop(offset)
                                                                                                                                                     { t:= mktable(nil);
M \rightarrow \varepsilon
                                                                                                                                                           push(t, tblptr); push(0, offset)
D \rightarrow D_1; D_2
D \rightarrow \mathbf{proc} id; N D_1; S = \{t := top(tblptr); addwidth(t, top(offset); addwidth(t, top(offset); top(offset); addwidth(t, top(offset); top(offset); top(offset); addwidth(t, top(offset); top(offse
                                                                                                                                                           pop(tblptr); pop(offset);
                                                                                                                                                           enterproc(top(tblptr), id.name, t)
                                                                                                                        { enter(top(tblptr), id.name, T.type, top(offset));
D \rightarrow id : T
                                                                                                                                                               top(offset):= top(offset) + T.width
N \rightarrow \epsilon
                                                                                                                                                     { t:= mktable(top(tblptr));
                                                                                                                                                           push(t, tbptr); push(0, offset)
T \rightarrow record L D end
                                                                                                                      { T.type:= record( top(tblptr));
                                                                                                                                                              T.width:= top(offset);
                                                                                                                                                                 pop(tblptr); pop(offset);
                                                                                                                                                     { t:= mktable(nil);
L \rightarrow \epsilon
                                                                                                                                                            push(t, tblptr); push(0, offset)
```

Príkaz priradenia

```
S \rightarrow id := E { p:= lookup(id.name);
                        if p ≠ nil then gen(p ":=" E.place) else error
E \rightarrow E_1 + E_2 { E.place := newtemp;
                       gen(E.place ":=" E<sub>1</sub>.place "+" E<sub>2</sub>.place)
E \rightarrow E_2 * E_3 { E.place := newtemp;
                       gen(E.place ":=" E<sub>1</sub>.place "*" E<sub>2</sub>.place)
\mathsf{E} \to \mathsf{-} \mathsf{E}_1
                      { E.place := newtemp;
                        gen(E₁.place ":= uminus" E₁.place
\mathsf{E} \to (\mathsf{E}_1)
                     { E.place:= E₁.place
\mathsf{E} \to \mathsf{id}
                     { p:= lookup(id.name);
                        if p ≠ nil then E.place := p else error
```

Polia (arrays)

Polia ukladáme súvisle prvok po prvku: A[low:high] nech w je veľkosť jedneho prvku. Potom adresa i-tého prvku je:

base + (i - low)
$$\times$$
w = base - low \times w +i \times w = A[0] + i \times w

Zovšeobecnenie pre mnohorozmerné polia. Nech n_j = high_j – low_j pre j ≤ k. Adresa prvku A[i₁, i₂, ..., i_k] je:

$$A[0, 0, ... 0] + ((...(i_1 \times n_2 + i_2) \times n_3 + i_3)...) \times n_k + i_k) \times w,$$

kde

$$A[0, 0, ... 0] = base - ((...(low1×n2+low2)×n3+low3)...)×nk+lowk)×w.$$

Základ base je offset prvé voľné miesto na zásobníku. Kvôli tomu musíme fiktívnu adresu nultého prvku počítať. Ak dovolíme len statické polia, stačí počas kompilácie. Označíme ju c(A).

Syntaxou riadený preklad

```
S \rightarrow L := E  { if L.offset = null then gen(L.place ":=" E.place)
                            else gen(L.place "[" L.offset "] := " E.place) }
E \rightarrow L
                       { if L.offset = null then E.place = L.place
                            else E.place := newtemp;
                            gen(E.place ":=" L.place "[" L.offset "]")
L → Elist ] { L.place := newtemp; L.offset := newtemp;
                       gen(L.place ":=" c(Elist.array));
                       gen(L.offset ":=" Elist.place "*" width(Elist.array))}
L \rightarrow id
                    { L.place := id.place; L.offset := null
Elist \rightarrow Elist<sub>1</sub>, E { t := newtemp; m := Elist<sub>1</sub>.ndim + 1;
                       gen(t ":=" Elist<sub>1</sub>.place "*" limit(Elist<sub>1</sub>.array, m));
                       gen(t ":=" t "+" E.place); Elist.array := Elist₁.array;
                        Elist.place := t; Elist.ndim := m
Elist \rightarrow id [ E { Elist.array := id.place;
                        Elist.place := E.place; Elist.ndim := 1
```

Vynutená konverzia (coercion)

Relatívne úplná semantika pravidla $E \rightarrow E_1 + E_2$

```
E.place:= newtemp; /* Radšej do každej vetvy ako druhý príkaz. */
if E<sub>1</sub>.type = integer and E<sub>2</sub>.type = integer then
      { E.type := integer; gen(E.place ":=" E<sub>1</sub>.place "int +" E<sub>2</sub>.place) }
else if E<sub>1</sub>.type = real and E<sub>2</sub>.type = real then
      { E.type := real; gen(E.place ":=" E_1.place "real +" E_2.place) }
else if E<sub>1</sub>.type = integer and E<sub>2</sub>.type = real then
      { E.type := real; u:= newtemp; gen(u ":=" "intoreal" E<sub>1</sub>.place);
                    gen(E.place ":=" u "real +" E<sub>2</sub>.place)
else if E<sub>1</sub>.type = real and E<sub>2</sub>.type = integer then
      { E.type := real; u:= newtemp; gen(u ":=" "intoreal" E2.place);
        gen(E.place ":=" E<sub>1</sub>.place "real +" u)
else E.type := type error;
```

Tok riadenia

```
S \rightarrow if E then S_1
                               { E.true:= newlabel; E.false:= S.next;
                                 S₁.next:= S.next;
                                 S.code:= E.code || gen(E.true ":") ||
                                             S₁.code
S \rightarrow \text{if E then } S_1 \text{ else } S_2
                               { E.true:= newlabel; E.false:= newlabel;
                                 S_1.next:= S.next; S_1.next:= S.next;
                                 S.code:= E.code | gen(E.true ":") ||
                                            S<sub>1</sub>.code || gen("go to" S.next)||
                                            gen(E.false ":") || S<sub>2</sub>.code
S \rightarrow while E do S_1
                               { S.begin:= newlabel; E.true:= newlabel;
                                 E.false:= S.next; S₁.next:= S.next;
                                 S.code:= gen(S.begin ":") || E.code ||
                                            gen(E.true ":") || S₁.code ||
                                            gen("go to" S.begin)
```

Grafické znázornenie

Iná šablóna pre while príkaz

```
S \rightarrow while E do S_1 { S_1.begin:= newlabel; E.begin:= newlabel; S.code:= gen("go to" S_1.begin) || S_1.code || E.code || gen("if E.true go to" S_1.begin) }
```


Pokiaľ boolovské výrazy počítame aritmetickým spôsobom, je táto šablóna vyhodnejšia.

Booleovské výrazy 1 – klasika

```
E \rightarrow E_1 \text{ or } E_2
                           { E.place := newtemp;
                             gen(E.place ":=" E_1.place "or" E_2.place)
E \rightarrow E_1 and E_2
                           { E.place := newtemp;
                              gen(E.place ":=" E<sub>1</sub>.place "and" E<sub>2</sub>.place) }
\mathsf{E} \to \mathsf{not} \; \mathsf{E}_1
                            { E.place := newtemp;
                              gen(E.place ":=" "not" E₁.place)
                           { E.place := E₁.place
\mathsf{E} \to (\mathsf{E}_1)
E → true
                            { E.place := newtemp; gen(E.place ":=" "1") }
E \rightarrow false
                           { E.place := newtemp; gen(E.place ":=" "0") }
E \rightarrow aE_1 relop aE_2 { E.place := newtemp;
                             gen("if" aE<sub>1</sub>.place relop aE<sub>2</sub>.place "go to" +3);
                             gen(E.place ":=" "0"); gen("go to" +2 );
                             gen(E.place ":=" "1")
```

Boolovské výrazy 2 – skratkou

```
{ E₁.true:= E.true; E₁.false:= newlabel;
E \rightarrow E_1 \text{ or } E_2
                             E<sub>2</sub>.true:= E.true;E<sub>2</sub>.false:= E.false;
                             E.code:= E_1.code || gen(E_1.false ":")|| E_2.code }
E \rightarrow E_1 and E_2
                           { E₁.true:= newlabel; E₁.false:= E.false;
                             E<sub>2</sub>.true:= E.true; E<sub>2</sub>.false:= E.false;
                             E.code:= E_1.code || gen(E_1.true ":") || E_2.code }
                           { E₁.true:= E.false; E₁.false:= E.true;
E \rightarrow not E_1
                             E.code:= E_1.code
                           { E₁.true:= E.true; E₁.false:= E.false;
\mathsf{E} \to (\mathsf{E}_1)
                              E.code:= E_1.code
                           { gen("go to" E.true) }
E \rightarrow true
E \rightarrow false
                           { gen("go to" E.false) }
E \rightarrow aE_1 relop aE_2 { E.code:= gen ("if" aE_1.place relop aE_2.place
                            "go to" E.true) | gen("go to" E.false)
```

Príkaz case – šablóny

case E of

V₁: S₁

V₂: S₂

 $V_{n-1}: S_{n-1}$

default: S_n

end

t:=E

go to test

L₁: S₁.code

go to next

 L_{n-1} : S_{n-1} .code

go to next

 L_n : S_n .code

go to next

test: if $t = V_1$ go to L_1

if $t = V_n$ go to $L_n \mid L_{n-1}$: S_n .code

next:

t:= E

if $t \neq V_1$ go to L_1

S₁.code

go to next

 L_1 : if $t \neq V_2$ go to L_2

S₂.code

go to next

 L_{n-2} : if $t \neq V_{n-1}$ go to L_{n-1}

S_{n-1}.code

go to next

next:

Volanie procedúr

Spätné plátanie – backpatching

- Najjednoduchší spôsob implementácie dva prechody
 - Vygenerovať (anotated) syntaktický strom
 - Generovať kód pomocou depth first traversingu tohto stromu
- Pri jednoprechodovom generovaní sú problémom dopredné skoky toku riadenia. Najjednoduchšie je nechať ciele skoku prázdne, poznamenať si ich do nejakého zoznamu a doplniť až keď príslušná adresa je vygenerovaná. Používame príkazy:
 - makelist(i:index_to_quad):pointer_to_list Vytvorí zoznam obsahujúci index i – poradové číslo štvorice a vráti smerník na tento zoznam.
 - merge(p₁, p₂:pointer_to_list):pointer_to_list Spojí dva zoznamy a vráti smerník na výsledný zoznam.
 - backpatch(p:pointer_to_list, a:index_to_quad) Dosadí adresu a do všetkých štvoríc v zozname, na ktorý ukazuje p.

Príklad 1 – boolovské výrazy

```
E \rightarrow E_1 or M E_2
                                { backpatch(E₁.falselist, Mquad);
                                 E.truelist:= merge(E<sub>1</sub>.truelist, E<sub>2</sub>.truelist);
                                 E.falselist:= E_2.falselist
E \rightarrow E_1 and M E_2
                               { backpatch(E₁.truelist, Mquad);
                                 E.truelist:= E_2.truelist;
                                 E.falselist:= merge(E<sub>1</sub>.falselist, E<sub>2</sub>.falselist)
                               { E.truelist:= E<sub>1</sub>.truelist; E.falselist:= E<sub>1</sub>.falselist }
E \rightarrow not E_1
                                { E.truelist:= E<sub>1</sub>.truelist; E.falselist:= E<sub>1</sub>.falselist }
\mathsf{E} \to (\mathsf{E}_1)
E \rightarrow true
                               { E.truelist:= makelist(nextquad); gen("go to" )}
                              { E.falselist:= makelist(nextquad);gen("go to" )}
E \rightarrow false
E \rightarrow aE_1 relop aE_2 { E.truelist:= makelist(nextquad);
                                 E.falselist:= makelist(nextquad+1);
                                 gen("if" aE<sub>1</sub>.place relop aE<sub>2</sub>.place "go to" );
                                 gen("go to" )
M \rightarrow \epsilon
                                {M.quad:= nextquad }
```

Príklad 2 – tok riadenia

```
S \rightarrow \text{if E then } M_1 S_1 N \text{ else } M_2 S_2
       { backpatch(E.truelist, M₁.quad);
        backpatch(E.falselist, M<sub>2</sub>.quad);
        S.nextlist:= merge(S<sub>1</sub>.nextlist, merge(N.nextlist, S<sub>2</sub>.nextlist)}
N \rightarrow \varepsilon { N.nextlist:= makelist(nextguad); gen("go to" )
M \rightarrow \epsilon { M.quad:= nextquad
S \rightarrow if E then M S_1  { backpatch(E.truelist, M.quad);
                             S.nextlist:= merge(E.falselist, S₁.nextlist) }
S \rightarrow while M_1 E do M_2 S_1 { backpatch(S_1.nextlist, M_1.quad);
                                     backpatch(E.truelist, M<sub>2</sub>.quad);
                                     S.nextlist:= E.falselist;
                                     gen("go to" M<sub>1</sub>.quad)
```

Príklad 2 – dokončenie

```
S \rightarrow \textbf{begin L end} \qquad \{ \text{ S.nextlist:= L.nextlist} \}  S \rightarrow A \qquad \{ \text{ S.nextlist:= nill} \}  L \rightarrow L_1 \text{ ; M S} \qquad \{ \text{ backpatch}(L_1.\text{nextlist, M.quad}); \\ L.\text{nextlist:= S.nextlist} \}  L \rightarrow S \qquad \{ \text{ L.nextlist:= S.nextlist} \}
```