UNIDADE 5: INTEGRAÇÃO NUMÉRICA

Introdução

Do ponto de vista analítico existem diversas regras, que podem ser utilizadas na prática. Contudo, embora tenhamos resultados básicos e importantes para as técnicas de integração analítica, como o Teorema Fundamental do Cálculo Integral, nem sempre podemos resolver todos os casos.

Não podemos sequer dizer que para uma função simples a primitiva também será simples, pois f(x) = 1/x, que é uma função algébrica racional, possui uma primitiva que não o é; a sua primitiva é a função ln(x) que é transcendente.

Quando não conseguirmos calcular a integral por métodos analíticos, mecânicos ou gráficos, então podemos recorrer ao método algorítmico.

Em algumas situações, só podemos usar o método numérico. Por exemplo, se não possuirmos a expressão analítica de **f**, não podemos, em hipótese nenhuma, usar outro método que não o numérico. A integração numérica pode trazer ótimos resultados quando outros métodos falham.

A solução numérica de uma integral simples é comumente chamada de quadratura.

Sabemos do Cálculo Diferencial e Integral que se f(x) é uma função contínua em [a, b], então esta função tem uma primitiva neste intervalo, ou seja, existe F(x) tal que $\int f(x) dx = F(x) + C$, com F'(x) = f(x); demostra-se que, no intervalo [a, b],

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

tais métodos, embora variados, não se aplicam a alguns tipos de integrandos f(x), não sendo conhecidas suas primitivas F(x); para tais casos, e para aqueles em que a obtenção da primitiva, embora viável, é muito trabalhosa, podem-se empregar métodos para o cálculo do valor numérico aproximado de

$$\int_{a}^{b} f(x)dx.$$

A aplicação de tais métodos é obviamente necessária no caso em que o valor de **f(x)** é conhecido apenas em alguns pontos, num intervalo **[a, b]**, ou através de um gráfico.

Lembrando que

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\overline{x}_{i}) \Delta x_{i}$$
(Riemann),

onde $\overline{x_i} \in [x_{i-1}, x_i]$ partes de [a, b], com $x_0 = a$, $x_n = b$ e $\Delta x_i = |x_i - x_{i-1}|$, para n suficientemente grande e Δx_i suficientemente pequeno

$$\sum_{i=1}^n f(\bar{x}_i) \Delta x_i$$
 representa uma boa aproximação para a

Convém lembrar, também, que, sendo f(x) não negativa em [a, b] $\int_a^b f(x)dx$ representa, numericamente, a área da figura delimitada por y = 0, x = a, x = b e y = f(x), como mostra a figura abaixo:

Quando f(x) não for somente positiva, pode-se considerar f(x) em módulo, para o cálculo da área, conforme figura abaixo:

A ideia básica da integração numérica é a substituição da função **f(x)** por um polinômio que a aproxime razoavelmente no intervalo **[a, b]**. Assim o problema fica resolvido pela integração de polinômios, o que é trivial de se fazer. Com este raciocínio podemos deduzir fórmulas para aproximar

$$\int_{a}^{b} f(x) dx$$

As fórmulas que deduziremos terão a expressão abaixo:

$$\int_{a}^{b} f(x)dx \approx A_{0}f(x_{0}) + A_{1}f(x_{1}) + \dots + A_{n}f(x_{n}), x_{i} \in [a, b], \quad i = 0, 1, \dots, n.$$

Fórmulas de Newton-Cotes

Nas fórmulas de Newton-Cotes a ideia de polinômio que aproxime f(x) razoavelmente é que este polinômio interpole f(x) em pontos de [a, b] igualmente espaçados.

Consideremos a partição do intervalo [a, b] em subintervalos, de comprimento h, $[x_i, x_{i+1}], i = 0, 1, ..., n-1.$ Assim $x_{i+1} - x_i = h = (b - a)/n.$

As fórmulas fechadas de Newton-Cotes são fórmulas de integração do tipo $x_0 = a$, $x_n = b$ e

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{n}} f(x)dx \cong A_{0} f(x_{0}) + A_{1} f(x_{1}) + \dots + A_{n} f(x_{n}) = \sum_{i=0}^{n} A_{i} f(x_{i})$$

sendo os coeficientes A_i determinados de acordo com o grau do polinômio aproximador.

Analisaremos a seguir algumas das **fórmulas fechadas de Newton-Cotes** como:

- regra dos retângulos
- regra dos trapézios
- regra de Simpson.

Existem ainda as fórmulas abertas de Newton-Cotes, construídas de maneira análoga às fechadas, com x_0 e $x_n \in (a, b)$.

Regra dos Retângulos

Seja o intervalo finito [a, b] no eixo x que é particionado em n subintervalos igualmente espaçados $[x_i, x_{i+1}]$, com $x_0 = a$ e $x_n = b$ e $h_i = x_{i+1} - x_i$.

Seja f uma função contínua cuja integral não é conhecida.

$$\int_{a}^{b} f(x)dx$$

Nosso objetivo é calcular $\int_a^b f(x)dx$ pelo método da área dos retângulos.

Tais retângulos podem ser considerados de diversas maneiras, conforme mostra as figuras abaixo:

A área de cada retângulo é calculada como:

- no primeiro caso, figura (a), é f(x_i) * h_i;
- no segundo caso, figura (b) é f(x_{i+1}) * h_i
- e no último caso, figura (c), $f((x_i + x_{i+1})/2) * h_i$.

Em qualquer caso a soma das áreas dos retângulos será uma aproximação para $\int\limits_{b}^{b}f(x)dx$

Subdividindo o intervalo [a, b] em n subintervalos, pela regra dos retângulos, que será indicado por R(h), é dada pelas fórmulas:

$$R(h_n) = \sum_{i=0}^{n-1} f(x_i).h_i \quad \text{, ou}$$

$$R(h_n) = \sum_{i=0}^{n-1} f(x_{i+1}).h_i$$
 , ou

$$R(h_n) = \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right).h_i$$

Como h_i é constante, temos h = (b-a)/n. Então:

 $R(h_n) = h \sum_{i=0}^{n-1} f(x_i)$

ou

 $R(h_n) = h \sum_{i=0}^{n-1} f(x_{i+1})$

ou

 $R(h_n) = h \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right)$

ou

Em geral, quando utilizarmos a regra dos retângulos iremos efetuar os cálculos através do caso (c), ou seja,

$$R(h_n) = h \sum_{i=0}^{n-1} f(\bar{x}_i)$$
, sendo $\bar{x}_i = \frac{x_i + x_{i+1}}{2}$.

Exemplo 1: Calcular

$$\int_{0}^{1} \frac{x}{1+x^2} dx.$$

Considere n = 10 e 4 casas decimais com arredondamento.

Solução

a) Número de intervalos:

$$n = 10$$

b) Tamanho do intervalo:

$$h = (b-a)/n = (1-0)/10 = 0,1$$

c) iterações:

i	\bar{x}_i	$f(\bar{x}_i)$
0	(0+0.1)=0.05	0.0499
1	(0.1 + 0.2) = 0.15	0.1467
2	(0.2 + 0.3) = 0.25	0.2353
3	(0.3 + 0.4) = 0.35	0.3118
4	(0.4 + 0.5) = 0.45	0.3742
5	(0.5 + 0.6) = 0.55	0.4223
6	(0.6 + 0.7) = 0.65	0.4569
7	(0.7 + 0.8) = 0.75	0.4800
8	(0.8 + 0.9) = 0.85	0.4935
9	(0.9 + 1) = 0.95	0.4993
Σ	_	3.4699

$$R(0.1) = h \sum f(\bar{x}_i) = (0.1).(3.4699) = 0.34699$$

d) método analítico:

$$\int_{0}^{1} \frac{x}{1+x^{2}} dx = \frac{1}{2} \ln(1+x^{2}) \bigg]_{0}^{1} = \frac{1}{2} (\ln(2) - \ln(1)) = 0,34657$$

Exemplo 2: Em alguns casos pode-se usar $f(x_i) = (f(x_{i-1}) + f(x_i))/2$. Aplicado as condições do **Exemplo 1** temos:

i	$f(x_i)$	$f(\bar{x}_i)$
-1	0	_
0	0.0990	0.0495
1	0.1923	0.1457
2	0.2752	0.2338
3	0.3448	0.3100
4	0.4000	0.3724
5	0.4412	0.4206
6	0.4698	0.4555
7	0.4878	0.4788
8	0.4972	0.4925
9	0.5000	0.4986
Σ	_	3.4574

$$R(0.1) = h \sum f(\overline{x}_i) = (0.1).(3.4574) = 0.34574$$

Exercício 1: Calcular

$$\int_{-1}^{1} x^3 dx$$

Considere n = 8 e 4 casas decimais com arredondamento.

Resposta:

$$R(0.25) = h \sum f(\bar{x}_i) = (0.25).(0.0000) = 0.0000$$

método analítico:
$$\int_{-1}^{1} x^3 dx = \frac{x^4}{4} \bigg]_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0.$$

Regra dos Trapézios

Seja o intervalo finito [a, b] no eixo x que é particionado em n subintervalos igualmente espaçados $[x_i, x_{i+1}]$, com $x_0 = a$ e $x_n = b$ e $h_i = x_{i+1} - x_i$. Seja f uma função contínua ou simplesmente Riemann integrável, cuja integral não é conhecida.

Numericamente: A regra dos trapézios é obtida aproximando-se \mathbf{f} por um polinômio interpolador do 1° grau (ao invés de zero, como na regra dos retângulos). Se usarmos a fórmula de Lagrange para expressar o polinômio $\mathbf{p_1}(\mathbf{x})$ que interpola $\mathbf{f}(\mathbf{x})$ em $\mathbf{x_0}$ e $\mathbf{x_1}$ temos:

$$\int_{a}^{b} f(x)dx \approx \int_{a=x_{0}}^{b=x_{1}} p_{1}(x)dx = \int_{x_{0}}^{x_{1}} \left[\frac{(x-x_{1})}{-h} f(x_{0}) + \frac{(x-x_{0})}{h} f(x_{1}) \right] dx = I_{T}$$

Assim,

$$I_T = \frac{h}{2} [f(x_0) + f(x_1)]$$

que é a área do trapézio de altura $h = x_1 - x_0$ e bases $f(x_0)$ e $f(x_1)$.

Geometricamente: Podemos ver, conforme mostra a figura abaixo:

Interpretação geométrica da regra dos trapézios

A área de cada trapézio é $(f(x_i) + f(x_{i+1}))/2 * hi$.

A soma destas áreas será uma aproximação para

$$\int_{a}^{b} f(x) dx$$

Regra do Trapézio Repetida

Dividindo o intervalo [a, b] em n subintervalos, pela regra dos trapézios, o resultado, que será indicado por T(h), é dada pela fórmula:

$$T(h_n) = \sum_{i=0}^{n-1} \left(\frac{f(x_i) + f(x_{i+1})}{2} \right) h_i$$

Como h_i é constante, temos h = (b-a)/n. Então:

$$T(h_n) = h \sum_{i=0}^{n-1} \left(\frac{f(x_i) + f(x_{i+1})}{2} \right)$$

ou

$$T(h_n) = \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

Exemplo 3: Calcular

$$\int_{3.0}^{3.6} \frac{1}{x} dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere **n = 6** e 4 casas decimais com arredondamento.

a) Número de intervalos:

$$n = 6$$

b) Tamanho do intervalo:

$$h = (b-a)/n = (3,6-3,0)/6 = 0,1$$

c) iterações:

i	x_i	$f(x_i)$	c_i	$\mathbf{c_{i}} \cdot f(\mathbf{x_i})$
0	3.0	0.3333	1	0.3333
1	3.1	0.3226	2	0.6452
2	3.2	0.3125	2	0.6250
3	3.3	0.3030	2	0.6060
4	3.4	0.2941	2	0.5882
5	3.5	0.2857	2	0.5714
6	3.6	0.2778	1	0.2778
Σ	_	_	_	3.6469

$$T(h_6) = \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_5) + f(x_6)]$$

$$T(0.1) = \frac{0.1}{2} (3.6469) = 0,182345$$

d) método analítico:

$$\int_{3,0}^{3,6} \frac{1}{x} dx = \ln(x) \Big|_{3,0}^{3,6} = \ln(3.6) - \ln(3.0) = 0.18232156$$

Exercício 2: Calcular

$$\int_{0}^{1} (2x+3)dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere **n = 5** e **4** casas decimais com arredondamento.

Resposta:

$$T(h_5) = T(0,2) = 4,00000$$

Método analítico:

$$\int_{0}^{1} (2x+3)dx = x^{2} + 3x \Big]_{0}^{1} = 1 + 3 - (0+0) = 4$$

Exercício 3: Calcular

$$\int_{1}^{2} x \ln(x) dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere diversos valores para **n** e **4** casas decimais com arredondamento.

- a) n = 1
- b) n = 2
- c) n = 4
- d) n = 8

Resposta:

- a) $T(h_1) = T(1) = 0,6931$
- b) $T(h_2) = T(0,5) = 0,6507$
- c) $T(h_4) = T(0,25) = 0,6399$
- d) $T(h_8) = T(0,125) = 0,6372$

Método analítico:

$$\int_{1}^{2} x \ln(x) dx = \frac{x^{2} \ln(x)}{2} - \frac{x^{2}}{4} \int_{1}^{2} = \frac{2x^{2} \ln(x) - x^{2}}{4} \int_{1}^{2} = 0.63629436$$

Regra de Simpson

A regra de Simpson é obtida aproximando-se **f** por um polinômio interpolador de 2° grau, ou seja, uma parábola.

Numericamente: Novamente podemos usar a fórmula de Lagrange para estabelecer a fórmula de integração resultante da aproximação de f(x) por um polinômio de grau 2.

Seja $p_2(x)$ o polinômio que interpola f(x) nos pontos $x_0=a$, $x_1=x_0+h$ e $x_2=x_0+2h=b$:

$$p_2(x) = \frac{(x-x_1)(x-x_2)}{(-h)(-2h)} f(x_0) + \frac{(x-x_0)(x-x_2)}{(h)(-h)} f(x_1) + \frac{(x-x_0)(x-x_1)}{(2h)(h)} f(x_2)$$

Assim,

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} f(x)dx \approx \int_{x_{0}}^{x_{2}} p_{2}(x)dx =$$

$$\frac{f(x_0)}{2h^2} \int_{x_0}^{x_2} (x - x_1)(x - x_2) dx - \frac{f(x_1)}{h^2} \int_{x_0}^{x_2} (x - x_0)(x - x_2) dx + \frac{f(x_2)}{2h^2} \int_{x_0}^{x_2} (x - x_0)(x - x_1) dx$$

9

Resolvendo as integrais obtemos a regra de Simpson:

$$\int_{x_0}^{x_2} f(x)dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] = Is$$

Geometricamente: Podemos ver, conforme mostra a figura abaixo:

Interpretação geométrica da regra de Simpson simples

Regra de Simpson Repetida

Aplicando a regra de Simpson repetidas vezes no intervalo $[a, b] = [x_0, x_n]$. Vamos supor que $x_0, x_1, ..., x_n$ são pontos igualmente espaçados, $h=x_{i+1}-x_i$, e n é par (isto é condição necessária pois cada parábola utilizará três pontos consecutivos).

Assim o valor da

$$\int_{a}^{b} f(x)dx$$

pode ser aproximado por:

$$S(h_n) = \frac{h}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-1}) + f(x_n) \right]$$

Exemplo 4: Calcular uma aproximação para

$$\int_{1}^{1} e^{x} dx$$

usando a regra de Simpson com n = 10.

Solução

a) Número de intervalos:

$$n = 10$$

b) Tamanho do intervalo:

$$h = (b-a)/n = (1-0)/10 = 0,1$$

c) iterações:

i	X' _i	f(x' _i)	C _i	c _i *f(x' _i)
0	0,000	1,0000	1	1,0000
1	0,1000	1,1052	4	4,4207
2	0,2000	1,2214	2	2,4428
3	0,3000	1,3499	4	5,3994
4	0,4000	1,4918	2	2,9836
5	0,5000	1,6487	4	6,5949
6	0,6000	1,8221	2	3,6442
7	0,7000	2,0138	4	8,0550
8	0,8000	2,2255	2	4,4511
9	0,9000	2,4596	4	9,8384
10	1,0000	2,7183	1	2,7183
Soma				51,5485

$$S(h_{10}) = 1,71828$$

d) método analítico:

$$\int_{0}^{1} e^{x} dx = e^{x} \Big]_{0}^{1} = e^{1} - e^{0} = 2,7182818 - 1 = 1,7182818$$

Exercício 4: Calcular

$$\int_{1}^{2} x \ln(x) dx$$

pela regra de Simpson, considerando diversos valores para n e, depois analiticamente.

- a) n = 2
- b) n = 4
- c) n = 8

Resposta:

- a) $S(h_2) = S(0,5) = 0,6365$
- b) $S(h_4) = S(0,25) = 0,6363$
- c) $S(h_8) = S(0,125) = 0,6363$