

Text Technologies for Data Science INFR11145

Laws of Text

Instructor: Walid Magdy

26-Sep-2017

Reminder: Skills to be gained

- Working with large text collections
- Few shell commands
- Some Perl programming (regex)
- IR tools: Lemur / Indri / Solr
- Crawling: Web / Tweets
- TEAM WORK

Lecture Objectives

- Learn about some text laws
 - Zipf's law
 - Benford's law
 - Heap's law
 - Clumping/contagion
- Index size estimation

Walid Magdy, TTDS 2017/2018

Try with me ...

- Shell commands: cat, sort, uniq, grep
- Perl
- Excel (or alternative)
- Download the following:
 - Bible: http://www.gutenberg.org/cache/epub/10/pg10.txt
 - Unix commands for windows https://sourceforge.net/projects/unxutils
- Piazza (PLEASE)
 https://piazza.com/class/j766gisdu46m

Words' nature

- Word → basic unit to represent text
- Certain characteristics are observed for the words we use!
- These characteristics are very consistent, that we can apply laws for them
- These laws apply for:
 - Different languages
 - Different domains of text

Walid Magdy, TTDS 201<u>7/2018</u>

Frequency of words

- Some words are very frequent e.g. "the", "of", "to"
- Many words are not that frequent e.g. "schizophrenia", "covfefe"
- ~50% terms appears once
- Frequency of words has hard exponential decay

Zipf's Law:

 For a given collection of text, ranking unique terms according to their frequency, then:

$$r \times P_r \cong const$$

- r, rank of term according to frequency
- P_r , probability of appearance of term
- $P_r \cong \frac{const}{r} \to f(x) \cong \frac{1}{x}$

Walid Magdy, TTDS 2017/2018

Zipf's Law:

Wikipedia abstracts

→ 3.5M En abstracts

$$r \times P_r \cong const \rightarrow r \times freq_r \cong const$$

Term	Rank	Frequency	r x freq
the	1	5,134,790	5,134,790
of	2	3,102,474	6,204,948
in	3	2,607,875	7,823,625
a	4	2,492,328	9,969,312
is	5	2,181,502	10,907,510
and	6	1,962,326	11,773,956
was	7	1,159,088	8,113,616
to	8	1,088,396	8,707,168
by	9	766,656	6,899,904
an	10	566,970	5,669,700
it	11	557,492	6,132,412
for	13	493,374	5,970,456
as	14	480,277	6,413,862
on	15	471,544	6,723,878
from	16	412,785	7,073,160

Benford's Law:

- First digit of a number follows a Zipf's like law!
 - Terms frequencies
 - Physical constants
 - Energy bills
 - Population numbers
- Beford's law:

$$P(d) = \log(1 + \frac{1}{d})$$

Heap's Law:

- While going through documents, the number of new terms noticed will reduce over time
- For a book/collection, while reading through, record:
 - n: number of words read
 - v: number of news words (unique words)
- Vocabulary growth:

$$v(n) = k \times n^b$$

where, $b < 1$
typically, $0.4 < b < 0.7$

Clumping/Contagion in text

- From Zipf's law, we notice:
 - Most words do not appear that much!
 - Once you a word once → expect to see again!
 - Words are like:
 - Rare contagious disease
 - · Not, rare independent lightening
- Words are rare events, but they are contagious

Walid Magdy, TTDS 2017/2018

Clumping/Contagion in text

- Wiki abstract collection
 - · Identify terms appeared only twice
 - Measure distance between the two occurrences of the terms:

 $d = n_{occurence2} - n_{occurence1}$

- Plot density function of d
- Majority of terms appearing only twice appear close to each other.

Applying the laws

- Given a collection of 20 billion terms,
- What is the number of unique terms?

Heap's law: $v(n) = k \times n^b$, assume k = 0.25, b = 0.5→ $v(n) = 0.25 \times (20B)^{0.5} \cong 35M$

• What is the number of terms appearing once?

Zipf's law → ~17M appeared only once

Walid Magdy, TTDS 2017/2018

Estimating Index size

- How many pages Google have in index?
- Assume two independent words: t₁, t₂
- Search for $\{t_1\}$, $\{t_2\}$, $\{t_1,t_2\}$, and report number of results n_1 , n_2 , $n_{1,2}$

-
$$P(t_1) = \frac{n_1}{N}$$
, $P(t_2) = \frac{n_2}{N}$, $P(t_1, t_2) = \frac{n_{1,2}}{N}$
but, t_1 , t_2 independent $\rightarrow P(t_1, t_2) = P(t_1)$. $P(t_2)$
 $\rightarrow \frac{n_{1,2}}{N} = \frac{n_1}{N}$. $\frac{n_2}{N} \rightarrow N = \frac{n_1 n_2}{n_{1,2}}$

- Repeat for different t_1 and t_2 , and estimate N

^{*} It worth noting that observed *n*'s are estimated as well

Testing on Google

t ₁	t ₂	n ₁	n ₂	n _{1,2}	N
yellow	water	7.26B	4.37B	628M	50.5B
John	green	3.13B	14.44B	801M	56.4B
purple	politics	4.41B	799M	66.6M	52.9B
Irma	car	233M	5.09B	17.6M	67.3B
falafel	pencil	23.8M	480M	319K	35.9B

• Index size → 40-60 billion

Walid Magdy, TTDS 2017/2018

Summary

- Text Laws:
 - Zipf
 - Benford
 - Heab
 - Index size

^{*} Google index size is over 60 trillion web pages

Recourses

- Text book:
 - Search engines: IR in practice → chapter 4
- Videos:
 - Zipf's law, Vsouce: https://www.youtube.com/watch?v=fCn8zs912OE
 - Benford's law, Numberphile: https://www.youtube.com/watch?v=XXjIR2OK1kM

Walid Magdy, TTDS 2017/2018

Next Lecture

- Getting ready for indexing?
- Pre-processing steps before the indexing process

