

Chapter 03

시계열 예측모형만들기

ARIMA 모델을 적용한 예측 모형 구축 프로세스

FAST CAMPUS ONLINE 직장인을 위한 파이썬 데이터분석 강사. 주세민 Chapter. 03

시계열 예측모형만들기

IARMA/ARIMA 모형을 이야기하기에 앞서 복습

- AR (Auto Regressive) 모델
 - 이번기의 결과는 이전기의 결과에 영향을 받는 모델
 - 외부 충격이 길게 반영되는 Long memory 모델

AR(1):
$$Y_t = \delta + \phi Y_{t-1} + \varepsilon_t$$

AR(2):
$$Y_t = \delta + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$$

•

AR(n):

- MA (Moving Average) 모델
 - 이번기의 결과는 이전기의 결과와 상관이 없음
 - 외부 충격이 일정기간만 지속되고 없어지는 Short memory 모델

MA(1):
$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$$

MA(2):
$$Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

•

MA(n):

FAST CAMPUS

IAR + MA = ARMA(p, q), ARIMA(p, k, q)

- ARMA (Auto Regressive Moving Average) 모델
 - 예를들어, ARMA(2,2) 모델은 AR(2)+MA(2) 모델임

$$Y_{t} = \delta + \underbrace{\phi_{1}Y_{t-1} + \phi_{2}Y_{t-2}}_{\text{AR}} + \mathcal{E}_{t} + \underbrace{\theta_{1}\mathcal{E}_{t-1} + \theta_{2}\mathcal{E}_{t-2}}_{\text{MA}}$$

- ARIMA (Auto Regressive Integrated Moving Average) 모델
 - ARMA 모델의 원계열 Y_t 를 차분하여 Y_t '로 변환한 모형
 - 예를 들어, ARIMA(2.1.2) 모델은 원계열을 1번 차분하고 AR(2)+MA(2)을 진행한 모델임

FAST CAMPUS

주세민 강사.

ONLINE

IARIMA 모델을 적용할 때 주의점

- ARIMA (p, k, q) 모델: AR(p), Integrated(k), MA(q)
 - 라이브러리에 입력할때 Y_t 를 입력하면, Stationary해질 때까지 알고리즘이 $Y_t^{'},Y_t^{''},...,Y_t^{(k)}$ 와 같이 차분
 - 차분하지 않는 경우, 설명력이 매우 높은 모형이 생성됨 → Training데이터에서만 정확도가 높은 잘못된 결과일 확률이 매우 높음
- 시계열의 단순 차분값을 활용하기 보다 변동율로 변환하기 위해서 원계열에 log를 취하거나 Δlog (log difference)를 취하는 경우도 많음.

원데이터		log (원데이터)		Δlog (원데이터)
200	 -	log(200)		NAN
300	 -	log(300)		log(300)-log(200)
200	 →	log(200)		log(200)-log(300)
100	 -	log(100)		log(100)-log(200)
•••		•••		•••

IARIMA 모델을 이용한 예측 모형 만드는 순서 (다른 시계열 예측도 동일한 순서로 진행)

안정성 검토

 Y_t 가 안정적이지 않으면, ΔY_t 가 안정적인지 확인. \rightarrow 보통 1~2번의 차분으로 안정적인 시계열이 됨 ARIMA(p, 1, q) 또는 ARIMA(p, 2, q) 선정

데이터 특성에 맞는 모형 결정 (AR차수와 MA차수)

PACF peak와 ACF peak의 개수로 AR, MA계수 선정 PACF의 peak이 p개, ACF의 peak이 q개 이면, ARIMA (p, k, q) 모델 선정

학습

특정 시점 이전 데이터(Training set)로 학습

평가

특정 시점 이후 데이터(Test set)로 평가

IAR, MA 차수 결정

IARMA 차수 결정

주세민 강사.

I학습 및 평가

1. 학습 데이터를 평가에 사용하는 경우

알아 맞춰볼께요. 1월1일에는 김치찌개, 1월10일에는 생선구이 먹었지요?

2. 학습 데이터와 테스트 데이터를 분리하여 사용하는 경우

알아 맞춰볼께요. 1월11일에 김치찌개 먹을거죠?

I학습 및 평가

• 다 지나간 학습데이터를 맞춰보는게 목적이 아니라면 테스트 데이터를 분리해서 사용해야..

1. 학습 데이터를 평가에 사용하는 경우

AR 프로세스만 잘 학습해서 이전 관측치를 그 다음기에 그대로 예측하는 경향이 있음 (딥러닝도 똑같음)

→ "변동"을 예측하도록 보완하든지,
아예 Level보다는 변동을 예측 (실무에서 주로 사용)

2. 학습 데이터와 테스트 데이터를 분리하여 사용하는 경우

Fast campus

ONLINE 주세민 강사.

FAST CAMPUS

1다음 강의에서 다룰 내용

- ARIMA (p,k,q) 모형 검토
- 예측 모형 만들기
- 시각화

