NOI 2025 模拟赛

四川省集 **测试时间: 2025.05.24**

题目名称	自卑	dsa	game		
题目类型	传统型	传统型	交互型		
目录	inferiority	dsa	game		
可执行文件名	inferiority	dsa	game		
输入文件名	inferiority.in	dsa.in	game.in		
输出文件名	inferiority.out	dsa.out	game.out		
提交文件名	inferiority.cpp	dsa.cpp	game.cpp		
时间限制	4.0 秒	2.0 秒	1.0 秒		
内存限制	64 MiB	1024 MiB	512 MiB		
子任务数目	4	20	5		
测试点是否等分	否	是	否		
编译选项	-02 -std=c++14				

【注意事项(请仔细阅读)】

- 1. 选手提交的源程序请直接放在个人目录下,无需建立子文件夹;
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 程序可使用的栈空间大小与该题内存空间限制一致。
- 7. 在终端中执行命令 ulimit -s unlimited 可将当前终端下的栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
 - 8. 若无特殊说明,每道题的代码大小限制为 100KB。
 - 9. 若无特殊说明,输入与输出中同一行的相邻整数、字符串等均使用一个空格分隔。
- 10. 输入文件中可能存在行末空格,请选手使用更完善的读入方式(例如 scanf 函数)避免出错。
- 11. 直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。

- 12. 使用 std::deque 等 STL 容器时,请注意其内存空间消耗。
- 13. 请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外不允许在程序中手动开启其他编译选项,一经发现,本题成绩以 0 分处理。

NOI 2025 模拟赛 自卑(inferiority)

自卑 (inferiority)

【题目背景】

什么是自卑呢?

【题目描述】

有 n 个人排成一列,每个人有一个能力值 a_i 。

老师将会举行 m 次考试, 第 i 次考试将只有 $[l_i, r_i]$ 内的人参加。

每次考试中,对于 $[l_i, r_i]$ 中的任两个人 x, y , 若 $a_x > a_y \times 2$, 则 x 会给 y 带来 $a_x \oplus a_y$ 的自卑值, 其中 \oplus 表示异或。

该次考试产生的自卑值为其中所有人产生的所有自卑值之和。

求每次考试产生的自卑值。

【输入格式】

从文件 *inferiority.in* 中读入数据。

第一行两个正整数 n, m。

第二行 n 个整数,表示 a_i 。

第三行到第 m+2 行, 每行两个整数 l_i, r_i 。

【输出格式】

输出到文件 inferiority.out 中。

m 行, 每行一个整数表示答案。

【样例 0 输入】

```
      1
      7
      7

      2
      3
      4
      7
      7
      3
      7
      3

      3
      1
      6
      6
      6
      6
      7
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1</td
```

NOI 2025 模拟赛 自卑(inferiority)

【样例 0 输出】

1	24
2	12
3	0
4	8
5	16
6	0
7	24

【样例 1】

见选手目录下的 *inferiority/sample1.in* 与 *inferiority/sample1.out*。 该样例满足子任务 1 的限制条件。

【样例 2】

见选手目录下的 *inferiority/sample2.in* 与 *inferiority/sample2.out*。 该样例满足子任务 2 的限制条件。

【样例 3】

见选手目录下的 *inferiority/sample3.in* 与 *inferiority/sample3.out*。 该样例满足子任务 3 的限制条件。

【样例 4】

见选手目录下的 *inferiority/sample4.in* 与 *inferiority/sample4.out*。 该样例满足子任务 4 的限制条件。

【测试点约束】

对于 100% 的数据,满足 $n, m \le 10^5, 1 \le a_i \le n$ 。

子任务编号	特殊限制	分值
1	$n, m \le 300$	10
2	$n, m \le 5000$	10
3	$n, m \le 2 \times 10^4$	30
4	无	50

NOI 2025 模拟赛 dsa(dsa)

dsa (dsa)

【题目背景】

Hanghanghanghanghanghanghang...

【题目描述】

给你一个正整数序列 $a_1, a_2, , a_n$ 。设 $S = n + A_i$.

有 S 张卡片。每张卡片上都写有一个整数。卡片上的整数是 $a_1,a_2,\cdots a_n,-1,\cdots -1$ 。 其中,有 $\sum a_i$ 张卡片上写着 -1 。

NIT 现在站在数线上的坐标 0 处。他将执行以下操作 S 次。

假设 x 是 NIT 的当前坐标。选择并丢弃他手中的一张牌。设 v 为弃牌上的数字,并 跳转到坐标 x+v 。如果他跳到了坐标 0 ,则获得一枚硬币。

对于每一个 $k=1,2,3\cdots,n$,求 NIT 的下棋顺序中使得他恰好赚到 k 枚硬币模数为 998244353 的个数。

您应该计算走棋顺序。也就是说,如果两张牌的数字相同,弃掉其中一张与弃掉另一 张是没有区别的。

【输入格式】

从 dsa.in 中读入数据。

第一行一个正整数 n。

第二行 n 个正整数 $a_1, a_2, \cdots a_n$ 。

【输出格式】

输出到文件 dsa.out 中。

n 行, 第 i 行输出 k=i 的答案。

【样例 1 输入】

1 2

2 1 1

【样例 1 输出】

NOI 2025 模拟赛 dsa(dsa)

```
1 2 2 4
```

【样例 2 输入】

```
1 3 2 1 2 3
```

【样例 2 输出】

【样例 3】

见选手目录下的 dsa/dsa3.in 与 dsa/dsa3.ans。 该样例满足测试点 $5\sim7$ 的限制条件。

【样例 4】

见选手目录下的 dsa/dsa4.in 与 dsa/dsa4.ans。 该样例满足测试点 $8 \sim 10$ 的限制条件。

【样例 5】

见选手目录下的 dsa/dsa5.in 与 dsa/dsa5.ans。 该样例满足测试点 $11 \sim 13$ 的限制条件。

【样例 6】

见选手目录下的 dsa/dsa6.in 与 dsa/dsa6.ans。 该样例满足测试点 $14 \sim 15$ 的限制条件。

【样例7】

见选手目录下的 dsa/dsa7.in 与 dsa/dsa7.ans。 该样例满足测试点 $16 \sim 17$ 的限制条件。

NOI 2025 模拟赛 dsa(dsa)

【样例 8】

见选手目录下的 dsa/dsa8.in 与 dsa/dsa8.ans。 该样例满足测试点 $18 \sim 20$ 的限制条件。

【测试点约束】

测试点编号	特殊限制		
$1 \sim 2$	$n \le 5, a_i \le 2$		
$3 \sim 4$	$n \le 10, a_i \le 5$		
$5 \sim 7$	$n \le 20$		
$8 \sim 10$	$a_i \le 1$		
$\boxed{11 \sim 13}$	$a_i \le 2$		
$\boxed{14 \sim 15}$	$n \le 50$		
$\phantom{00000000000000000000000000000000000$	$n \le 500$		
$\boxed{18 \sim 20}$	$n \le 5000$		

对于所有数据 $1 \le n \le 5000, 1 \le a_i \le 5000$ 。

NOI 2025 模拟赛 game (game)

game (game)

【题目背景】

你会博弈论吗?

红磷和白磷很喜欢玩游戏,有向无环图上的公平博弈已经满足不了他们了,这次,他 们遇到了有环的有向图。

他们发现,每轮会有多个棋子,每次他们可以选择一个棋子,一条出边移动(棋子间不会互相影响),移动不了的人就是输家;

显然的, 红磷和白磷都足够聪明。

【题目描述】

这是一道交互题。

交互库会给出一个 n 个点 m 条边的有向无环图,你可以更改 k 次边(添加/删除),不需要保证你操作完成后的图还是一个有向无环图。

然后交互库会询问你 q 次,每次交互库选定一个点 x,你可以给出一个可重集 S,交互库会将 x 加入 S ,然后在 S 中的点上放置棋子(个数是其在 S 中的出现次数),再让红磷和白磷开始一轮游戏,并告诉你游戏结果:先手胜利/后手胜利/平局(即会进行无限 久)。

你需要回答交互库。

【实现细节】

你需要实现两个函数:

```
vector<pair<int, int>> init(vector<pair<int, int>> Edges, int n, int m,
    int k, int q, int qlim);
int ask();
```

init 函数传入初始的 DAG, 点数, 边数, 修改边的次数限制, 询问次数, 每次询问的 $\sum |S|$ 的限制, 你要返回你操作完后的图, 不允许有重边。

ask 函数会在每次交互库询问你时调用,你要返回交互库选定的x。

交互库会实现一个函数:

```
int play(vector<int> S);
```

你可以调用它,传入一个可重集 S,它会返回游戏结果: 1(先手胜利)/0(平局)/-1(后手胜利),请注意满足每次询问中,你调用的 play 函数的 $\sum |S| \leq q lim$

可以保证的是,每次 play 的时间复杂度为: $\mathcal{O}(n|S|\log n)$ 。

NOI 2025 模拟赛 game (game)

比赛时会下发头文件 game.h 和交互库 grader.o。

你需要在你的代码中引用 game.h。

你需要在编译时使用以下命令:

g++ grader.o game.cpp -02 -std=c++14 -o game

请在 Linux(虚拟机) 下使用,不保证能在 Windows 下使用。

【输入格式】

注意, 这是交互库的输入, 你不应该, 也不能通过读入获取答案。

第一行三个非负整数 n, m, k。

接下来 m 行,每行两个非负整数 u,v,表示一条有向边,保证形成一个 'DAG'。

接下来一行两个非负整数 q, qlim。

接下来 q 行,每行一个非负整数,表示每次询问交互库选定的 x。

本题的点编号从 0 开始。

【输出格式】

注意,这是交互库的输出,你不应该,也不能通过输出 token 来通过此题目。如果你没有违反限制:交互库会记录你的答案,并且输出如下:

1 总询问次数: {}, 正确: {}, 错误: {}, 修改了 {} 条边, 最大的 Σ|S| 是 {}, 你的得分是: {}

如果你违反了限制:交互库会输出你违反的限制,如下:

1 不合法的使用: {}

【测试点约束】

子任务编号	$n \leq$	$m \leq$	$q \leq$	qlim =	k =	特殊性质	测试点数目
1	20	200	100	20	4251	/	2
2	200	19900	500	500	4251	A	4
3	500	0	1000	20	125000	/	2
4	1000	0	1000	20	4251	/	5
5	1000	19900	1000	20	4251	/	7

特殊性质 A: 保证给出的图中, $\forall i \neq j$, i 和 j 间有一条边。

NOI 2025 模拟赛 game (game)

评分方式

评分机制如下: 1. 正确率 pC:

- 如果 pC < 96%, A = 0.
- 如果 $96\% \le pC < 100\%$, $A = \frac{pC 0.96}{0.04} \times 0.7$ 。
- 如果 pC = 100, A = 100。
- 2. 修改边的限制 ku:
 - 如果 ku > 2k, B = 0
 - 如果 $k < ku \le 2k$, $B = \frac{2k ku}{k} \times 0.5 + 0.2$.
 - 如果 $ku \le k$, B = 100
- 3. 每次询问的 $\sum |S|$ 的限制 qu:
 - 如果 qu > 2qlim, C = 0.
 - 如果 $qlim < qu \le 2qlim$, $C = \frac{2qlim qu}{qlim} \times 0.5 + 0.2$.
 - 如果 $qu \leq qlim$, C = 100.

每个测试点的得分率将是 $A \times B \times C$ 。

【提示】

你会写这道题的交互库吗?

本着对选手们的信任,本题交互库并未做防攻击机制,请不要对交互库进行攻击,否则会被置为 0 分