Лекция 6

Сложность рекурсивных алгоритмов. Умножение матриц (над кольцом и булевых). Простой рекурсивный алгоритм для умножения целых чисел. Нахождение пары ближайших точек на плоскости

6.1 Сложность рекурсивных алгоритмов

Предположим, что алгоритм действует по схеме «разделяй и властвуй», т.е. сводит задачу к нескольким таким же задачам меньшего размера и решает их. Тогда время его работы можно оценить при помощи следующей теоремы (аналогично можно оценить и занимаемую память).

Теорема 6.1. Пусть функция Т задана соотношениями

$$T(1) = 1,$$

$$T(n) \le aT(\lceil n/c \rceil) + bn^d \ npu \ n > 1,$$

 $r de \ a, b, c, d > 0 - \kappa$ онстанты. Тогда

- $ecnu\ a < c^d$, $mo\ T(n) = O(n^d)$;
- $ecnu\ a = c^d$, $mo\ T(n) = O(n^d \log n)$;
- $ecnu\ a > c^d$, $mo\ T(n) = O(n^{\log_c a})$.

Замечание 6.1. При использовании этой теоремы n может быть любым параметром задачи, а не только размером входа.

Доказательство. Оценим T(N) для N вида c^k ; результат для n, не являющихся степенями c, будет простым следствием.

Лекция 6. Сложность рекурсивных алгоритмов. Умножение матриц (над кольцом и булевых). Простой рекурсивный алгоритм для умножения целых чисел. Нахождение пары ближайших точек на плоскости

Раскрыв рекуррентное соотношение, получим

$$T(N) \leq bN^d + aT(N/c) \leq bN^d + ab(N/c)^d + T(N/c^2) \leq \dots$$

$$\leq bN^d \sum_{i=0}^k \left(\frac{a}{c^d}\right)^i. \tag{6.1}$$

В случае $a < c^d$ эта $\sum_{i=0}^k$ ограничена $\sum_{i=0}^{+\infty}$, а та, в свою очередь, константой. В случае $a = c^d$ имеем сумму из $k = \log_c N$ единиц. Если же $a > c^d$, вычислим сумму как сумму геометрической прогрессии.

Наконец, покажем, что теорема верна и для произвольного n. Пусть $N=c^{\lceil \log_c n \rceil},$ для таких N мы теорему уже доказали. Тогда

$$T(n) \leq^{?} T_{*}(N) = O(T_{*}(n)),$$

где T_* — наша оценка (с конкретной константой вместо O(...)). Неравенство $\leq^?$ выполняется, так как каждый член более громоздко выглядящей суммы

$$T(n) \le bn^d + ab\lceil n/c\rceil^d + a^2b(\lceil \lceil n/c\rceil/c\rceil)^d + \dots$$

мажорируется соответствующим членом оцененной нами суммы (6.1), которая в «раскрытом» виде выглядит как

$$T(N) \le bN^d + ab(N/c)^d + a^2b(N/c^2)^d + \dots$$

6.2 Умножение матриц

Задача: вычислить произведение \mathbf{C} матриц \mathbf{A} и \mathbf{B} размера $n \times n$ над произвольным кольцом, используя лишь операции кольца. Будем подсчитывать количество этих операций. Как обычно, n можно считать степенью двойки (говоря формально, можно перемножить чуть бо́льшие матрицы; при написании реальной программы это, конечно, необязательно).

Очевидный способ. Поделим эти матрицы на четыре части, пополам по вертикали и горизонтали: например, $\mathbf{A} = \begin{pmatrix} \mathbf{A_{11}} & \mathbf{A_{12}} \\ \mathbf{A_{21}} & \mathbf{A_{22}} \end{pmatrix}$. Каждая из матриц разбиения будет иметь размерность $\frac{n}{2} \times \frac{n}{2}$. Сведем перемножение матриц размера $n \times n$ к перемножению матриц размера $\frac{n}{2} \times \frac{n}{2}$:

$$\begin{split} \mathbf{C}_{11} &= & \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21}, \\ \mathbf{C}_{12} &= & \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22}, \\ \mathbf{C}_{21} &= & \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21}, \\ \mathbf{C}_{22} &= & \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22}. \end{split}$$

Далее каждую из матриц \mathbf{A}_{ij} , \mathbf{B}_{ij} опять поделим на четыре равные части, и так далее, пока не сведем перемножение матриц к операциям перемножения элементов кольца.

Подсчитаем количество T(n) операций с элементами матриц, выполняемых таким алгоритмом:

$$T(n) = 8T\left(\frac{n}{2}\right) + cn^2$$
, где c — некоторая константа.

По теореме 6.1, $T(n) = O(n^3)$.

Алгоритм Штрассена. Опять рассмотрим такое же разбиение матриц и введем новые матрицы

$$\begin{array}{lcl} \mathbf{M}_1 & = & (\mathbf{A}_{12} - \mathbf{A}_{22})(\mathbf{B}_{21} + \mathbf{B}_{22}), \\ \mathbf{M}_2 & = & (\mathbf{A}_{11} + \mathbf{A}_{22})(\mathbf{B}_{11} + \mathbf{B}_{22}), \\ \mathbf{M}_3 & = & (\mathbf{A}_{11} - \mathbf{A}_{21})(\mathbf{B}_{11} + \mathbf{B}_{12}), \\ \mathbf{M}_4 & = & (\mathbf{A}_{11} + \mathbf{A}_{12})\mathbf{B}_{22}, \\ \mathbf{M}_5 & = & \mathbf{A}_{11}(\mathbf{B}_{12} - \mathbf{B}_{22}), \\ \mathbf{M}_6 & = & \mathbf{A}_{22}(\mathbf{B}_{21} - \mathbf{B}_{11}), \\ \mathbf{M}_7 & = & (\mathbf{A}_{21} + \mathbf{A}_{22})\mathbf{B}_{11}. \end{array}$$

Тогда \mathbf{C}_{ij} можно выразить через \mathbf{M}_{kl} :

$$\begin{split} \mathbf{C}_{11} &= & \mathbf{M}_1 + \mathbf{M}_2 - \mathbf{M}_4 + \mathbf{M}_6, \\ \mathbf{C}_{12} &= & \mathbf{M}_4 + \mathbf{M}_5, \\ \mathbf{C}_{21} &= & \mathbf{M}_6 + \mathbf{M}_7, \\ \mathbf{C}_{22} &= & \mathbf{M}_2 - \mathbf{M}_3 + \mathbf{M}_5 - \mathbf{M}_7. \end{split}$$

Подсчитаем количество T(n) операций с элементами матриц, выполняемых таким алгоритмом:

$$T(n) = 7T\left(\frac{n}{2}\right) + cn^2$$
, где c — некоторая константа.

По теореме 6.1, $T(n) = O(n^{\log_2 7})$. Поскольку $\log_2 7 \approx 2.80735$, этот алгоритм лучше предыдущего и лучше тривиального алгоритма (через вычисление каждого элемента матрицы C по определению произведения матриц).

Как можно проверить, что алгоритм действительно находит произведение матриц? Этот алгоритм прост, и убедиться в его правильности можно простой подстановкой. Далее мы научимся проверять произвольный алгоритм для этой задачи и даже программу, написанную на его основе, быстрее и лучше.

Упражнение 6.1. Где мы воспользовались принадлежностью *кольцу* элементов матриц?

Замечание 6.2. К умножению можно свести и обращение матриц (конечно, невырожденных и, к тому же, над полем). Для этого понадобится разложить матрицу в произведение матриц специального вида (нижнетреугольную, верхнетреугольную и матрицу перестановки). Если кому-то понадобится реализовать этот алгоритм, можно прочесть в книге Ахо, Хопкрофта и Ульмана или Кормена, Лейзерсона и Ривеста.

Лекция 6. Сложность рекурсивных алгоритмов. Умножение матриц (над кольцом и булевых). Простой рекурсивный алгоритм для умножения целых чисел. Нахождение пары ближайших точек на плоскости

Упражнение 6.2. Мы выяснили количество операций над элементами кольца. За какое время можно перемножить на РАМ матрицы, состоящие из целых чисел? (Подсказка: за какое время Вы можете перемножить целые числа на РАМ?)

6.3 Умножение булевых матриц

Произведение (конъюнкция) булевых матриц (их элементами могут быть T (истина) и F (ложь)) определяется точно так же, как и произведение обычных матриц, но в качестве умножения элементов выступает конъюнкция \wedge , а в качестве сложения — дизъюнкция \vee . Мы не можем использовать наш быстрый алгоритм для перемножения булевых матриц, так как T и F с операциями \vee и \wedge не образуют кольца.

Пример 6.1. Пример перемножения булевых матриц:

$$\begin{pmatrix} T & F \\ T & F \end{pmatrix} \wedge \begin{pmatrix} F & T \\ T & T \end{pmatrix} = \begin{pmatrix} F & T \\ F & T \end{pmatrix}.$$

Теорема 6.2. Умножение булевых матриц можно выполнить за $O(n^{\log 7})$ арифметических операций по модулю n+1.

Доказательство. Чтобы воспользоваться нашим быстрым алгоритмом, будем вместо булевых операций \vee и \wedge использовать операции сложения и умножения в кольце \mathbb{Z}_{n+1} , где n – размер матрицы. Легко показать, что элемент произведения, вычисленного таким образом, отличен от нуля тогда и только тогда, когда соответствующий элемент произведения булевых матриц истинен.

Задача 6.1. Сформулируйте и докажите верхнюю оценку *времени* работы этого алгоритма на РАМ. Обратите внимание, что Вам предстоит производить операции по модулю n+1.

6.4 Простой рекурсивный алгоритм для умножения чисел

Сложение n-битовых чисел можно осуществить за O(n) (во-первых, у нас имеется такая инструкция RAM-машины; во-вторых, ясно, что это действительно можно реализовать физически). Рассмотрим умножение n-битовых чисел (пусть n — степень двойки; можно считать так в любом случае, так как иначе время работы увеличится не более, чем в константу раз). Умножение «в столбик» даст, очевидно, время $\Omega(n^2)$. Хотелось бы построить более быстрый алгоритм.

Почему мы не включили операцию умножения в RAM-машину? Именно потому, что непонятно, как физически реализовать ее так, чтобы она работала время O(n).

Начнем с простого алгоритма, время работы которого составляет $O(n^{\log_2 3})$. В дальнейшем мы изучим алгоритм, который умножает числа за время $O(n \cdot \log n \cdot \log \log n)$ (он, кстати, будет использовать наш простой рекурсивный алгоритм как подпрограмму).

4

Имеем два n-битовых числа a и b. Разделим их в битовом представлении на n/2-битовые a_1, a_2 и b_1, b_2 (соответственно), а затем перемножим эти числа рекурсивно:

$$a = a_1 \cdot 2^{n/2} + a_2,$$

$$b = b_1 \cdot 2^{n/2} + b_2,$$

$$a \cdot b = a_1b_1 \cdot 2^n + (a_1b_2 + a_2b_1) \cdot 2^{n/2} + a_2b_2;$$

средний коэффициент можно вычислить, используя лишь одно умножение и остальные два коэффициента:

$$a_1b_2 + a_2b_1 = (a_1 + a_2)(b_1 + b_2) - a_1b_1 - a_2b_2.$$

Тем самым получаем, что нам достаточно трех умножений n/2-битовых чисел (ибо умножение на степень двойки — по существу, не умножение), т.е. рекуррентное уравнение для времени работы —

$$T(n) \le 3T(n/2) + cn.$$

Тогда по теореме 6.1 $T(n) = O(n^{\log_2 3})$.

Замечание 6.3. Нюанс: строго говоря, мы перемножали не n/2-битные, а (n/2+1)-битные числа $x=a_1+a_2$ и $y=b_1+b_2$, но одно к другому сводится за линейное время. Действительно, пусть $x=2A+x',\ y=2B+y',$ где A и B-n/2-битные числа, x' и y'-1 биты. Тогда xy=4AB+2Ay'+2Bx'+x'y'. «Сложным» умножением здесь является только $A\cdot B$; остальные «умножения» реализуются за линейное время, поскольку это умножения на степени двойки или 0.

6.5 Нахождение пары ближайших точек на плоскости

Задача: на плоскости заданы координаты $n \geq 2$ точек (x_i, y_i) . Найти две различные точки из числа заданных, находящиеся на минимально возможном расстоянии (и определить это расстояние).

Решение: построим рекурсивный алгоритм. Нам понадобится два упорядоченных двунаправленных списка номеров наших точек: список X будет упорядочен по возрастанию первой координаты, список Y — по возрастанию второй координаты. Будет также полезно, если в элементах первого списка будут храниться ссылки на соответствующие тем же точкам места второго списка.

Разделим наше множество точек на два приблизительно равных по мощности: первые $\lceil n/2 \rceil$ элементов списка X и оставшиеся. (Сделать это, используя наши списки, просто — получатся такие же пары списков, только в два раза короче.) Назовем эти множества S_1 и S_2 ; имеется значение x_0 первой координаты, которое разделяет элементы этих множеств. Рекурсивно применим наш алгоритм к S_1 и к S_2 — тем самым, найдем ближайшие пары точек для каждого из этих множеств.

Пусть наименьшее из полученных расстояний — δ . Для завершения вычислений нам остается проверить случай, когда ближайшая пара состоит из одной точки множества S_1 и одной точки множества S_2 . Если это так, расстояние между ними менее

Лекция 6. Сложность рекурсивных алгоритмов. Умножение матриц (над кольцом и булевых). Простой рекурсивный алгоритм для умножения целых чисел. Нахождение пары ближайших точек на плоскости

 δ , а значит, обе они находятся в вертикальной полосе с координатами от $x_0 - \delta$ до $x_0 + \delta$ (множество таких точек легко выделить при помощи списка X).

Проверим расстояния от каждой из полученных точек до следующих семи точек в списке Y. Заметим, что этого достаточно: искомая пара точек находится внутри прямоугольника высоты δ , выделенного из нашей вертикальной полосы. Этот прямоугольник состоит из двух квадратов со стороной δ , в каждом из них может быть не более четырех точек, иначе в соответствующем множестве S_i были бы точки, расстояние между которыми было бы меньше δ (разделим этот квадрат на четыре одинаковых квадратика — в каждом из них может быть только одна точка).

Рекуррентное неравенство для количества операций, совершаемых рекурсивной частью нашего алгоритма, очевидно, $T(n) \leq 2T(\lceil n/2 \rceil) + O(n)$. По теореме 6.1, $T(n) = O(n \log n)$, и столько же операций используется на построение исходных списков (поскольку их надо отсортировать: это можно сделать, nanpumep, построив B^+ -дерево¹). (Заметим, что на перебор всех пар точек понадобилось бы $\Omega(n^2)$ операций.)

¹В дальнейшем мы изучим и более разумные способы сортировки.