Lezione 17 Algebra I

Federico De Sisti2024-11-26

1 Ricordo (Lagrange)

 $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ tale che $a_n \not\equiv_p 0$ con p > 1 primo Allora $f(x) \equiv_p 0$ ammette al più n soluzioni

Corollario 1 (Esercizio)

Dimostrare che se p primo e d|(p-1)| allora $x^d-1 \equiv_p 0$ ammette esatta $mente\ d\ soluzioni$

Dimostrazione (Soluzione)

Abbiamo che se d(p-1) allora $(x^d-1)|(x^{p-1}-1)$

$$\Rightarrow x^{p-1} = (x^d - 1)f(x)$$

 $dove\ f\ \grave{e}\ di\ grado\ (p-1-d)$

 $Ora\ x^{p-1} \equiv_p 1$ ammette p-1 soluzioni distinte per il piccolo teorema di Fermat. Le soluzioni sono $1, 2, \ldots, p-1$

Se una di tali soluzioni non risolve $f(x) \equiv_p 0$ allora risolve $x^d - 1 \equiv_p 0$ (Sto usando il fatto che $\mathbb{Z}/(p)$ è un dominio d'integrità [prodotto commutativo e se il prodotto tra due numeri è 0 allora o uno o l'altro sono 0])

Dato che $f(x) \equiv_p 0$ ammette al più p-1-d soluzioni distinte deduciamo che $x^d-1 \equiv_p ammette \ almeno \ d=(p-1)-(p-1-d) \ soluzioni \ distinte \ in \mathbb{Z}/(p).$ D'altra parte per l'esercizio precedente ne ammette al più d, e quindi segue la tesi.

Corollario 2 (Esercizio)

p>1 primo, d|(p-1) Allora, esistono esattamente $\phi(d)$ interi, distinti in U_p , di ordine d in U_p

Dimostrazione (Soluzione)

Introduco $S_d = \{k \in \mathbb{Z} | ord_{U_p}([k]) = d, 1 \le k \le p-1 \}$

La tesi è equivalente a dimostrare che $|S_d| = \phi(d)$

Abbiamo una partizione $\{1, \ldots, p-1\} = \bigcup S_d$

$$Quindi\ p-1 = \sum_{d \mid (p-1)} |S_d|$$

Ricordo:

$$n = \sum_{d|n} \phi(d) \text{ (esercizio delle vecchie schede)}$$

$$Scegliendo n = p - 1 \text{ deduciamo}$$

$$\sum_{d|p-1} |S_d| = \sum_{d|p-1} \phi(d)$$

Basta allora dimostrare che $|S_d| \le \phi(d) \ \forall d|p-1$

Se
$$S_d = \emptyset \Rightarrow |S_d| = 0 \le \phi(d)$$

 $Se S_d \neq \emptyset \Rightarrow \exists a \in S_d$

 $\Rightarrow \{a, a^2, a^3, \dots, a^d\}$ sono tutti distinti mod(p) infatti

$$a^{i} \equiv_{p} a^{k}$$

$$\updownarrow$$

$$i \equiv_{d} j$$

Quindi a, a^2, \ldots, a^n sono tutte e sole le soluzioni di $x^d - 1 \equiv_p 0$ Quindi gli elementi di ordine d in U_p sono della forma a^j per qualche $j \in \{1, \ldots, j\}$ Ma ord $([a^j]) = \frac{d}{MCD(j,d)}$ (esercizio di una riga) Quindi $|S_d| = \phi(d)$

П

Corollario 3

Esercizio/ p > 1 primo:

Allora esistono esattamente $\phi(p-1)$ radici primitive distinte

Dimostrazione (Soluzione)

Basta applicare l'esercizio precedente, scegliendo d = p - 1

Esercizio

p > 1 primo

dimostrare che $Aut(C_p) \cong C_{p-1}$

Soluzione:

Sappiamo che $Aut(C_p) \cong U_p \cong C_{p-1}$

Dove la prima congruenza la sappiamo da teoremi precedenti, la seconda viene data dal precedente corollario

Congettura 1 (Gauss, 1801)

Esistono infiniti primi per cui 10 è una radice primitiva

Congettura 2 (E. Artin, 1927)

 $a \in \mathbb{Z}, a \neq \pm 1$

Assumiamo che a non sia un quadrato perfetto, Allora esistono infiniti primi per cui a è una radice prima

Osservazione

Oggi sappiamo che la congettura di Artin è vera per infiniti interi a, ma non è noto quali **Esercizio:** p>1 primo

Sia $a = x^2 \text{ con } x \in \mathbb{Z}$

Dimostrare che se $[a] \in U_p$

allora $ord_{U_p}([a] \neq p-1$

Esercizio [classificazione dei gruppi di ordine pq]

Dimostrare che tutti i gruppi non ciclici di ordine pq con $p\neq q$ primi, sono fra

loro isomorfi e non abeliani

Soluzione

Dato G tale che |G|=pq Avevamo dimostrato che $\exists !Q\in Syl_q(G) \Rightarrow Q \unlhd G$ Inoltre $\exists P\in Syl_p(G)\Rightarrow P\leq G$ Abbiamo verificato che: $\cdot P\cap Q=\{e\}$ $\cdot |PQ|=|G|\Rightarrow PQ=G$ $\Rightarrow G\cong Q\rtimes_{\varnothing} P\cong C_q\rtimes_{\varnothing} C_p$