Baiji: Domain Planning for CDNs under the 95th Percentile Billing Model

Juan Vanerio 12 Huiran Liu 3 Qi Zhang 3 Stefan Schmid 34

¹Faculty of Computer Science, University of Vienna, Austria

²AIT Austrian Institute of Technology, Austria

³INET, Faculty IV (EECS), Technical University Berlin, Germany

⁴Fraunhofer SIT, Germany

June 3-6, 2024

IFIP/IEEE Networking 2024 Thessaloniki, Greece

Content Delivery Networks (CDN)

- Network of geographically distributed cache servers.
- Crucial component in delivering domain content quickly to users worldwide.
 - Video: 65% of Internet traffic, mostly served from CDNs.
- Reduced Latency: Smaller RTTs result in faster service.
- **■** Content Distribution:
 - Servers located in Points-of-Presence (PoPs)
 - $lue{}$ Close to end-users ightarrow reduced latency ightarrow faster service.

Domain Planning

- Key Challenge: How to plan the placement of domains to PoPs?
 - Service quality.
 - Operational costs to pay ISPs.
 - Cannot change often (static).

■ Ideally: Minimize costs without compromising service quality.

95th-percentile Billing Model

- Bandwidth usage is sampled every 5 minutes and the top 5% is for free!
- Widely used for transmission traffic (backbone, DC,...).

Oportunity

Two possible domain content planning alternatives

full split allocation

Planning Requirements

Real systems have practical requirements!

- Demand conservation (all requests must be satisfied!).
- PoPs have committed access rates.
- $lue{}$ Content cannot be served from distant PoPs ightarrow locality quotas.
- $\blacksquare \ \, \text{High domain cache-hit-ratio per PoP preferred} \! \to \, \text{placement sparsity preferred!}$
 - also, replication uses more space.
- Stability concerns: few changes.

Model Overview

- \bullet j: demand-area pair.
- $X = \{x_{ji}\}$: placement/allocation matrix.
- Demand time series D_j are known in advance.
- θ_i : minimum agreed bandwidth cost to be paid for PoP i.
- γ_j : minimum demand fraction served from local PoPs.
- Forbidden allocations Matrix $C = (c_{ji})$, with $c_{ji} \in \{0,1\}$.
- **Hit ratio**: Penalty function $f(X) \ge 0$ favors sparse allocation matrices X.

Mathematical Model

Find allocation matrix X that maximizes

$$\max_{X} r = \frac{Q_{95}(\sum_{i} (X^{T} D)_{i})}{\sum_{i} \max(Q_{95}(X^{T} D)_{i}, \theta_{i})} - f(X)$$
(1)

subject to:

■ Bandwidth constraint:
$$\sum_{i \in \mathcal{N}_C(i)} \mathbf{D}_i x_{ji} \leq b_i \quad \forall i \in [1, I], \quad \forall t$$

■ **Demand conservation**:
$$\sum_{i \in \mathcal{N}_G(j)} x_{ji} = 1 \quad \forall j \in \mathcal{J}$$

■ Forbidden allocations: Binary matrix
$$C = \{c_{ii}\}, c_{ii} = 0 \Rightarrow x_{ii} = 0$$

Local ratio:
$$\sum_{i \in \mathcal{N}_G(j)} x_{ji} \cdot \ell_{ji} \geq \gamma_j \quad \forall j \in \mathcal{J}$$

where:

- lacksquare θ_i is the minimum agreed bandwidth cost to be paid for PoP i.
- **Hit ratio**: Non-negative penalty $f(X) = \lambda \sum_{i,j} \mathbb{1}_{x_i,j>0}$, favours sparse allocation matrices.
- lacktriangle Demand time series D_j are known in advance.

Bounds and Baselines

Upper bound on performance

$$r = \frac{Q_{95}(\sum_{i} (X^{T} D)_{i})}{\sum_{i} \max(Q_{95}(X^{T} D)_{i}, \theta_{i})} - f(X) \le \frac{Q_{95}(\sum_{j} d_{jt})}{\sum_{i} \theta_{i}}$$

- Not tight.
- Performance also depends on forbidden constraints and time series characteristics.

Single-PoP model

- Objective function compares transmission costs between the distributed solution and a single-PoP system.
- Simplified planning: decision free!
- Traditionally competitive solution, yet opportunity cost?

Baiji: Algorithms

- Static problem (offline)
- non-convex objective function with linear constraints.
- Solve directly: **too slow** (SciPy: years).
- Approach: Use multiple algorithms and enhance their placements through a genetic algorithm.
- Tradeoffs: between computational complexity (speed) and performance.
- Different solution candidates!

Greedy Algorithms

- Greedy Deficit-Affinity-based Algorithm (GDAA)
- Max-based GDAA (GDMAA)
- Greedy Fast with Post Rebalance (GFPR)
- Uniform Balancing (UB)
- Randomized algorithms
 - Monte Carlo (MC)
 - Randomized GDAA (RGDAA)
- **Genetic Algorithm** (GA)

Greedy Algorithms - GDAA

Define affinity between time series \mathbf{y} and \mathbf{z} as

$$affinity(\mathbf{y}, \mathbf{z}) = Q_{95}(\mathbf{y}) + Q_{95}(\mathbf{z}) - Q_{95}(\mathbf{y} + \mathbf{z})$$

- Iteratively allocates (D-A pair) demands sorted desc. by γ -deficit or by p95 traffic.
- Filter among allowed PoPs that can partially support the demand at all times.
 - local and θ -deficitary PoPs have priority.
 - θ -deficit= max $(0, \theta_i Q_{95}(\mathbf{P}_i))$
- Allocate into PoP the **largest affinity** between current PoP traffic (\mathbf{P}_i) and maximum allocable pair demand ($\alpha_{ji}\mathbf{D}_j$) where $\alpha_{ji}\in[0,1]$ used to maximize the affinity:

$$\underset{i,\alpha_{ji}}{\operatorname{arg}} \max_{i,\alpha_{ji}} \quad \operatorname{affinity}(\mathbf{P}_{i},\alpha_{ji}\mathbf{D}_{j})$$
s.t.:
$$p_{it} + \alpha_{ji}d_{jt} \leq b_{i} \quad \forall t \in [1,T]$$
(2)

Update remaining (D-A pair) demand and repeat.

Greedy Algorithms

- **Randomized GDAA**: As GDAA but processing D-A pairs in **random** order.
- Max-based GDAA: As GDAA but allocating to the PoP with the largest remaining bandwidth, regardless of affinity.
- **GFPR**: Allocate D-A pair with largest unallocated peak demand into the PoP with the largest remaining peak bandwidth.

Uniform Balancing - UB

- Straightforward strategy to compute X with as few different cells as possible.
- Start by allocating all pairs into all allowable PoPs with equal weight.
- Iterate through violated constraints and rebalance X's rows and columns (weights) until satisfied.
- **Anchor effect**: If there are no constraints, matches centralized performance (r = 1).

Genetic Algorithm

- A population of candidate solutions is iteratively evolved toward better solutions.
 - Including the algorithms' solutions and both feasible and unfeasible candidates.
- Each candidate matrix X is one individual in the population, matrix cells are genes.
- On each step (generation) the fitness (ϕ) of each individual is evaluated.

$$\phi(X) = \begin{cases} r(X), & \text{if } X \text{ is feasible,} \\ \sum_{k=1}^{K} \min(0, g_k(X)) & \text{otherwise} \end{cases}$$

Where model constraints are expressed as $g_k(X) \ge 0 \, \forall k \in [1, K]$.

Genetic Algorithm

- **Selection**: 20% fittest + 5% top penalized survive.
- Cross-over of survivors' genes create new individuals (offspring).
 - Gene exchange based on random interpolation/swapping.
 - Parent sampling with uniform/fitness-proportional probability.
 - Elitst strategy.
- Mutation Decreasing additive uniform noise on the offspring's genes.
 - Depends on population diversity to avoid getting stuck.
- Stop after a fixed number of generations or if fitness is not increasing.

Evaluation

- Performance evaluation on a real-world and two synthetics datasets:
- Individual evaluation of each algorithm.
- Comparison against bounds and single-PoP baseline when feasible.

	Real-world	SYN1	SYN2
Domains	267	450	240
Areas	30	30	30
PoPs	140	120	100
Pairs	6,140	11,475	6,120
Timeslots	8,879	8,000	8,000
Allowed options	145,457	228,761	101,843

Table: Characteristics of the datasets used for evaluation.

Real-world Dataset

(a) Cactus plot of demand patterns.

(b) Top demand time series.

Real-World Results - Unpenalized Performance wiersität

- Dashed red line: Upper bound.
- Algorithms yield different solutions.
- Best: GA (half the gap).
- Best greedy: GDAA.

Real-World Results - Sparsity

- MC and UB: too dense (Low CHR).
- Greedy algorithms: extremely sparse (High CHR).
- GA is a compromise between sparsity and performance.

Real-World Results - Elapsed times

Algorithm	Elapsed Time	Comments
UB	0.56 s	
GFPR	0.71 s	
GDMAA	17 s	
GDAA	23 s	
RGDAA	2,315 s	200 sortings
MC	5,467 s	10,000 candidates
GA	14,753 s	2,000 generations, 500 candidates

- GA linear on number of generations, super-linear on population size.
- Randomized algorithms are slower as they need many tries for feasible solutions.
- Greedy algorithms are orders of magnitude faster.

Characteristics of synthetic datasets

Dataset SYN1

- Demands are combinations of sine patterns.
- Demand values 10x lower, 87% more pairs, 57% more allowed allocations.
- Dominant committed rates (upper bound ≈ 0.036).

Dataset SYN2

- Pulse-shaped demand patterns (null demand for 96% of time), random offsets.
- Demand values similar to real-world dataset
- single-PoP cost twice as in real-world dataset.

Performance Results on Synthetic Datasets

- Different solutions match the upper bound.
- All algorithms have the potential to solve problem instances.

 GDAA and GA outperform the single-PoP solution (dashed green line).

Conclusions

- **Initiated** constrained CDN domain planning study with flexible domain-to-PoP placements under 95th percentile billing model.
- Formalized the problem mathematically and derived a performance upper bound.
- **Introduced** affinity concept for 95th percentile billing-based optimization.
- Proposed BAIJI, an integrated system of algorithms for CDN planning.
 - Multiple heuristic methods yield different candidate solutions
 - tradeoffs between performance, speed and sparsity.
 - Especially designed Genetic Algorithm improves results further (larger computational cost/time).
- **Empirical evaluation** exhibits high-quality solutions on real-world and synthetic datasets.