Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 23.10.2018 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben.

JEDES Blatt mit Namen, Matrikelnummer, Übungsgruppennummer versehen.

Serie 1 (30 Punkte)

Aufgabe 1 (10 Punkte)

Es seien X und Y zwei Mengen. Eine Abbildung $f: X \longrightarrow Y$ heißt injektiv, wenn aus $f(x_1) = f(x_2)$ folgt, dass $x_1 = x_2$ gilt. Die Abbildung heißt surjektiv, wenn für jedes $y \in Y$ ein $x \in X$ mit f(x) = y existiert. Eine Abbildung, die sowohl surjektiv als auch injektiv ist, heißt bijektiv.

- (a) Finden Sie eine bijektive Abbildung $f: \mathbb{N} \longrightarrow 2\mathbb{N}$. Hierbei bezeichne $2\mathbb{N}$ die Menge der geraden natürlichen Zahlen.
- (b) Finden Sie eine bijektive Abbildung $f: \mathbb{N} \longrightarrow \mathbb{Z}$.
- (c) Finden Sie eine surjektive Abbildung $f \colon \mathbb{R} \longrightarrow S^1$. Hierbei bezeichne $S^1 := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ den Einheitskreis.
- (d) Gibt es eine injektive Abbildung $f: \mathbb{R} \longrightarrow S^1$?
- (e) Gibt es eine bijektive Abbildung $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$?

Aufgabe 2 (10 Punkte)

Es sei n eine von Null verschiedene natürliche Zahl. Wir betrachten die Teilmenge $\mathcal{R}_n := \{0, \ldots, n-1\}$ der ersten n natürlichen Zahlen. Auf der Menge \mathcal{R}_n können wir wie folgt zwei Verknüpfungen einführen:

Dazu bezeichnen wir den eindeutig bestimmten Rest einer natürlichen Zahl c nach Division durch n mit $R_n(c)$; es gilt $R_n(c) \in \mathcal{R}_n$. Für zwei Zahlen $a, b \in \mathcal{R}_n$ setzen wir jetzt:

$$\oplus: \mathcal{R}_n \times \mathcal{R}_n \longrightarrow \mathcal{R}_n$$
, gegeben durch $(a, b) \mapsto a \oplus b := R_n(a + b)$; $\odot: \mathcal{R}_n \times \mathcal{R}_n \longrightarrow \mathcal{R}_n$, gegeben durch $(a, b) \mapsto a \odot b := R_n(a \cdot b)$.

- (a) Zeigen Sie, dass die Verknüpfung ⊙ assoziativ ist.
- (b) Beweisen Sie folgende Aussagen:
 - (i) Für alle $a, b \in \mathcal{R}_n$ gilt $a \oplus b = b \oplus a$.
 - (ii) Zu jedem $a \in \mathcal{R}_n$ existiert ein $b \in \mathcal{R}_n$, sodass $a \oplus b = 0$ gilt.

- (iii) Für alle $a \in \mathcal{R}_n$ gilt die Aussage $a \oplus 0 = 0 \oplus a = a$.
- (c) Für welche $a \in \mathcal{R}_9$ gibt es ein $b \in \mathcal{R}_9$, so dass $a \odot b = 1$ gilt? Begründen Sie.

Aufgabe 3 (10 Punkte)

(a) Finden Sie alle Lösungen $x, y, z \in \mathbb{R}$ des Gleichungssystems

$$x + 2y + 3z = 1,$$

 $4x + 5y + 6z = -2,$
 $7x + 8y + 9z = -5.$

Für eine natürliche Zahl n > 0 sei die Menge \mathcal{R}_n mit den Verknüpfungen " \oplus " und " \odot " wie in Aufgabe 2 gegeben.

(b) Finden Sie alle Lösungen $x, y \in \mathcal{R}_9$ des Gleichungssystems

$$4 \odot x \oplus 2 \odot y = 6,$$

 $5 \odot x \oplus 4 \odot y = 8.$

(c) Finden Sie alle Lösungen $x, y \in \mathcal{R}_{12}$ des Gleichungssystems

$$7 \odot x \oplus 4 \odot y = 3,$$

$$5 \odot x \oplus 2 \odot y = 9.$$

Aufgabe 4 (0 Punkte)

Lernen Sie das griechische Alphabet, bzw. rufen Sie sich dieses wieder in Erinnerung!

Buchstabe	Name	Buchstabe	Name
α Α	Alpha	νΝ	Ny
β B	Beta	$\xi \Xi$	Xi
γ Γ	Gamma	οО	Omikron
$\delta \Delta$	Delta	π Π	Pi
$\varepsilon \to$	Epsilon	ϱ P	Rho
ζ Z	Zeta	σ Σ	Sigma
η H	Eta	$\tau \mathrm{T}$	Tau
$\vartheta \Theta$	Theta	υΥ	Ypsilon
ι I	Iota	$\varphi \Phi$	Phi
κK	Kappa	χΧ	Chi
λ Λ	Lambda	$\psi \ \Psi$	Psi
$\mu \mathrm{M}$	My	$\omega \Omega$	Omega

Kennen Sie die folgenden Mathematiker:

 $\Theta \alpha \lambda \tilde{\eta} \varsigma$, Πυθαγόρας, Πλάτων, 'Αριστοτέλης, Εὐκλείδης, 'Αρχιμήδης, Διόφαντος? Hinweis: Am Wortende wird der Buchstabe σ durch den Buchstaben ς ersetzt.