Computer Graphics (CS 543) Lecture 4a: Linear Algebra for Graphics (Points, Scalars, Vectors)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Announcements

- Sample exam 1 will be posted on class website
- Exam 1 next week in class, Sept 26
 - Exam review at the end of today's class
- Date change: Project 2 out next week, due Oct 10

Standard Unit Vectors

Define

$$\mathbf{i} = (1,0,0)$$

$$\mathbf{j} = (0,1,0)$$

$$\mathbf{k} = (0,0,1)$$

So that any vector,

$$\mathbf{v} = (a, b, c) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

Cross Product (Vector product)

If

$$\mathbf{a} = (a_x, a_y, a_z) \qquad \mathbf{b} = (b_x, b_y, b_z)$$

Then

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{i} - (a_x b_z - a_z b_x) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

Remember using determinant

$$egin{array}{cccc} i & j & k \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array}$$

Note: a x b is perpendicular to a and b

Cross Product

Note: a x **b** is perpendicular to both **a** and **b**

Cross Product (Vector product)

Calculate **a** \times **b** if a = (3,0,2) and **b** = (4,1,8)

$$\mathbf{a} = (3,0,2)$$
 $\mathbf{b} = (4,1,8)$

Using determinant

$$\begin{vmatrix} i & j & k \\ 3 & 0 & 2 \\ 4 & 1 & 8 \end{vmatrix}$$

Then

$$\mathbf{a} \times \mathbf{b} = (0-2)\mathbf{i} - (24-8)\mathbf{j} + (3-0)\mathbf{k}$$
$$= -2\mathbf{i} - 16\mathbf{j} + 3\mathbf{k}$$

Normal for Triangle using Cross Product Method

plane
$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$$

$$\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$

normalize $n \leftarrow n/|n|$

Note that right-hand rule determines outward face

Newell Method for Normal Vectors

- Problems with cross product method:
 - calculation difficult by hand, tedious
 - If 2 vectors almost parallel, cross product is small
 - Numerical inaccuracy may result

- Proposed by Martin Newell at Utah (teapot guy)
 - Uses formulae, suitable for computer
 - Compute during mesh generation
 - Robust!

Example: Find normal of polygon with vertices
 P0 = (6,1,4), P1=(7,0,9) and P2 = (1,1,2)

Using simple cross product:

$$((7,0,9)-(6,1,4)) \times ((1,1,2)-(6,1,4)) = (2,-23,-5)$$

P1 - P0

P1 (7,0,9)

Formulae: Normal N = (mx, my, mz)

$$m_x = \sum_{i=0}^{N-1} (y_i - y_{next(i)}) (z_i + z_{next(i)})$$

$$m_{y} = \sum_{i=0}^{N-1} (z_{i} - z_{next(i)}) (x_{i} + x_{next(i)})$$

$$m_z = \sum_{i=0}^{N-1} (x_i - x_{next(i)}) (y_i + y_{next(i)})$$

ors

Newell Method for Normal Vectors

Calculate x component of normal

$$m_{x} = \sum_{i=0}^{N-1} (y_{i} - y_{next(i)})(z_{i} + z_{next(i)})$$

$$m_{x} = (1)(13) + (-1)(11) + (0)(6)$$

$$m_{x} = 13 - 11 + 0$$

$$m_{x} = 2$$

	x	y	z
P0	6	1	4
P1	7	0	9
P2	1	1	2
P0	6	1	4

Newell Method for Normal Vectors

Calculate y component of normal

$$m_{y} = \sum_{i=0}^{N-1} \left(z_{i} - z_{next(i)}\right) \left(x_{i} + x_{next(i)}\right)$$

$$m_{y} = (-5)(13) + (7)(8) + (-2)(7)$$

$$m_{y} = -65 + 56 - 14$$

$$m_{y} = -23$$

Newell Method for Normal Vectors

Calculate z component of normal

$$m_{z} = \sum_{i=0}^{N-1} (x_{i} - x_{next(i)})(y_{i} + y_{next(i)})$$

$$m_{z} = (-1)(1) + (6)(1) + (-5)(2)$$

$$m_{z} = -1 + 6 - 10$$

$$m_{z} = -5$$
P0 $\begin{bmatrix} x & y & z \\ 6 & 1 & 4 \end{bmatrix}$
P1 $\begin{bmatrix} 7 & 0 & 9 \\ 1 & 1 & 2 \\ 6 & 1 & 4 \end{bmatrix}$
P0 $\begin{bmatrix} 6 & 1 & 4 \\ 6 & 1 & 4 \end{bmatrix}$

Note: Using Newell method yields same result as Cross product method (2,-23,-5)

- a = original vector
- n = normal vector
- **r** = reflected vector
- m = projection of a along n
- e = projection of a orthogonal to n

Note:
$$\Theta_1 = \Theta_2$$

$$e = a - m$$

$$r = e - m$$

$$=> r = a - 2m$$

Forms of Equation of a Line

- Two-dimensional forms of a line
 - Explicit: y = mx + h
 - Implicit: ax + by +c =0
 - Parametric:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$
$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

Extends to curves and surfaces

Convexity

 An object is convex iff for any two points in the object all points on the straight line between these points are also in the object

References

- Angel and Shreiner, Interactive Computer Graphics, 6th edition, Chapter 3
- Hill and Kelley, Computer Graphics using OpenGL, 3rd edition, Sections 4.2 - 4.4

Computer Graphics (CS 543) Lecture 4a: Building 3D Models

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

3D Applications

- **2D points:** (x,y) coordinates
- **3D points:** have (x,y,z) coordinates

- Programming 3D similar to 2D
 - Load representation of 3D object into data structure

- Draw 3D object
- 3. Set up Hidden surface removal: Correctly determine order in which primitives (triangles, faces) are rendered (e.g Blocked faces NOT drawn)

3D Coordinate Systems

- Vertex (x,y,z) positions specified on coordinate system
- OpenGL uses right hand coordinate system

Right hand coordinate system

Tip: sweep fingers x-y: thumb is z

Left hand coordinate systemNot used in OpenGL

- Make GLUT 3D calls in OpenGL program to generate vertices describing different shapes (Restrictive?)
- Two types of GLUT models:
 - Wireframe Models

- Basic Shapes
 - Cone: glutWireCone(), glutSolidCone()
 - Sphere: glutWireSphere(), glutSolidSphere()
 - Cube: glutWireCube(), glutSolidCube()
- More advanced shapes:
 - Newell Teapot: (symbolic)
 - Dodecahedron, Torus

Newell Teapot

3D Modeling: GLUT Models

- Glut functions under the hood
 - generate sequence of points that define a shape
 - Generated vertices and faces passed to OpenGL for rendering
- Example: glutWireCone generates sequence of vertices, and faces defining cone and connectivity

Polygonal Meshes

- Modeling with GLUT shapes (cube, sphere, etc) too restrictive
- Difficult to approach realism. E.g. model a horse
- Preferred way is using polygonal meshes:
 - Collection of polygons, or faces, that form "skin" of object
 - More flexible, represents complex surfaces better
 - Examples:
 - Human face
 - Animal structures
 - Furniture, etc

Each face of mesh is a polygon

Polygonal Meshes

- Mesh = sequence of polygons forming thin skin around object
- OpenGL good at drawing polygons, triangles
- Meshes now standard in graphics
- Simple meshes exact. (e.g barn)
- Complex meshes approximate (e.g. human face)

Original: 424,000 triangles

60,000 triangles (14%).

1000 triangles (0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)

Representing a Mesh

Consider a mesh

- There are 8 vertices and 12 edges
 - 5 interior polygons
 - 6 interior (shared) edges (shown in orange)
- Each vertex has a location $v_i = (x_i y_i z_i)$

Simple Representation

- Define each polygon by (x,y,z) locations of its vertices
- OpenGL code

```
vertex[i] = vec3(x1, y1, z1);
vertex[i+1] = vec3(x6, y6, z6);
vertex[i+2] = vec3(x7, y7, z7);
i+=3;
```

Issues with Simple Representation

Declaring face f1

```
vertex[i] = vec3(x1, y1, z1);
vertex[i+1] = vec3(x7, y7, z7);
vertex[i+2] = vec3(x8, y8, z8);
vertex[i+3] = vec3(x6, y6, z6);
```

Declaring face f2

```
vertex[i] = vec3(x1, y1, z1);
vertex[i+1] = vec3(x2, y2, z2);
vertex[i+2] = vec3(x7, y7, z7);
```


- Inefficient and unstructured
 - Repeats: vertices v1 and v7 repeated while declaring f1 and f2
 - Shared vertices shared declared multiple times
 - Delete vertex? Move vertex? Search for all occurences of vertex

Geometry vs Topology

- Geometry: (x,y,z) locations of the vertices
- Topology: How vertices and edges are connected
- Good data structures separate geometry from topology
 - Example:
 - A polygon is ordered list of vertices
 - An edge connects successive pairs of vertices

Topology holds even if geometry changes (vertex moves)

- Convention: traverse vertices counter-clockwise around normal
- Focus on direction of traversal
 - Orders $\{v_1, v_0, v_3\}$ and $\{v_3, v_2, v_1\}$ are same *(ccw)*
 - Order {v₁, v₂, v₃} is different (clockwise)
- Normal vector: Direction each polygon is facing

- Vertex list: (x,y,z) of vertices (its geometry) are put in array
- Use pointers from vertices into vertex list
- Polygon list: vertices connected to each polygon (face)

Geometry example:
Vertex v7 coordinates
are (x7,y7,z7).
Note: If v7 moves,
changed once in vertex
list

Vertex List Issue: Shared Edges

- Vertex lists draw filled polygons correctly
- If each polygon is drawn by its edges, shared edges are drawn twice

• Alternatively: Can store mesh by edge list

Simply draw each edges once **E.g** e1 connects v1 and v6

Note polygons are not represented

Vertex Attributes

- Vertices can have attributes
 - Position (x, y, z) E.g (20, 12, 18)
 - Color (R,G,B) E.g. (1,0,0) or (red)
 - Normal (x,y,z)
 - Texture coordinates

Vertex Attributes

- Store vertex attributes in single Array (array of structures)
- Later: pass array to OpenGL, specify attributes, order, position using glVertexAttribPointer

Declaring Array of Vertex Attributes

Consider the following array of vertex attributes

So we can define attribute positions (per vertex)

```
#define VERTEX_POS_INDEX 0
#define VERTEX_COLOR_INDEX 1
#define VERTEX_TEXCOORD0_INDX 2
#define VERTEX_TEXCOORD1_INDX 3
```


Declaring Array of Vertex Attributes

Also define number of floats (storage) for each vertex attribute

Define offsets (# of floats) of each vertex attribute from beginning

```
#define VERTEX_POS_OFFSET 0
#define VERTEX_COLOR_OFFSET 3
#define VERTEX_TEXCOORD0_OFFSET 6
#define VERTEX_TEXCOORD1_OFFSET 8
```


Vertex 1 Attributes

Vertex 2 Attributes

Allocate memory for entire array of vertex attributes

Recall

```
float *p = malloc(numVertices * VERTEX_ATTRIB_SIZE * sizeof(float));

Allocate memory for all vertices
```


Vertex 1 Attributes Vertex 2 Attributes b S S S Z S X X Z **Position** Color Tex0 Tex1 **Position** Color Tex0 Tex1

- glVertexAttribPointer used to specify vertex attributes
- Example: to specify vertex position attribute

```
Position 0 3 values (x, y, z)

glVertexAttribPointer (VERTEX_POS_INDX, VERTEX_POS_SIZE, Data should not Be normalized

Data is floats VERTEX_ATTRIB_SIZE * sizeof(float), p);

glEnableVertexAttribArray(0); Stride: distance between consecutive vertices Pointer to data
```

do same for normal, tex0 and tex1

Full Example: Rotating Cube in 3D

Desired Program behaviour:

- Draw colored cube
- Continuous rotation about X,Y or Z axis
 - Idle function called repeatedly when nothing to do
 - Increment angle of rotation in idle function
- Use 3-button mouse to change direction of rotation
 - Click left button -> rotate cube around X axis
 - Click middle button -> rotate cube around Y axis
 - Click right button -> rotate cube around Z axis

Use default camera

- If we don't set camera, we get a default camera
- Located at origin and points in the negative z direction

Cube Vertices

};

Declare array of (x,y,z,w) vertex positions for a unit cube centered at origin (Sides aligned with axes)

b 1

Color Cube

```
// generate 6 quads,
// sides of cube

void colorcube()
{
    quad( 1, 0, 3, 2 );
    quad( 2, 3, 7, 6 );
    quad( 3, 0, 4, 7 );
    quad( 6, 5, 1, 2 );
    quad( 4, 5, 6, 7 );
    quad( 5, 4, 0, 1 );
```

Function **quad** is Passed vertex indices

Quad Function

quad 2

```
C
                                        d
d
                                                        C
                 C
                 b
                                                                                b
a
```

```
// quad generates two triangles (a,b,c) and (a,c,d) for each face
// and assigns colors to the vertices
int Index = 0; // Index goes 0 to 5, one per vertex of face
void quad( int a, int b, int c, int d )
{
    colors[Index] = vertex colors[a]; points[Index] = vertices[a]; Index++;
    colors[Index] = vertex colors[b]; points[Index] = vertices[b]; Index++;
    colors[Index] = vertex colors[c]; points[Index] = vertices[c]; Index++;
    colors[Index] = vertex colors[a]; points[Index] = vertices[a]; Index++;
    colors[Index] = vertex colors[c]; points[Index] = vertices[c]; Index++;
    colors[Index] = vertex colors[d]; points[Index] = vertices[d]; Index++;
    quad 0
              points[0 - 5]
                                         Points[] array to be
                                                               Read from appropriate index
    quad 1
               points[6 - 11]
                                         Sent to GPU
                                                               of unique positions declared
           = points [12 - 17] ...etc
```



```
Send points[] and colors[] data to GPU separately using glBufferSubData

glBufferSubData( GL_ARRAY_BUFFER, 0, sizeof(points), points );
glBufferSubData( GL_ARRAY_BUFFER, sizeof(points), sizeof(colors), colors );

points

colors
```

```
// Load vertex and fragment shaders and use the resulting shader program
GLuint program = InitShader( "vshader36.glsl", "fshader36.glsl" );
glUseProgram( program );
```

Initialization III

```
theta = glGetUniformLocation( program, "theta" );

Want to Connect rotation variable theta
in program to variable in shader
```

Display Callback

```
void display( void )
{
    glClear( GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT );
    glUniform3fv( theta, 1, theta );
    glDrawArrays( GL_TRIANGLES, 0, NumVertices );
    glutSwapBuffers();
}
```

Draw series of triangles forming cube

Mouse Callback

Select axis (x,y,z) to rotate around Using mouse click

Idle Callback

```
void idle( void ) <</pre>
{
    theta[axis] += 0.01;
    if ( theta[axis] > 360.0 ) {
         theta[axis] -= 360.0;
    }
    glutPostRedisplay();
}
void main( void ){
  .......
  glutIdleFunc( idle );
```

The idle() function is called whenever nothing to do

Use it to increment rotation angle in steps of theta = 0.01 around currently selected axis

Note: still need to:

Apply rotation by (theta) in shader

References

- Angel and Shreiner, Interactive Computer Graphics, 6th edition, Chapter 3
- Hill and Kelley, Computer Graphics using OpenGL, 3rd edition