### PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-093179

(43)Date of publication of application: 06.04.2001

(51)Int.CI.

G11B 7/135 G02B 5/18

(21)Application number: 11-266434

(71)Applicant: PIONEER ELECTRONIC CORP

(22)Date of filing: 21.09.1999

(72)Inventor: OTAKI MASARU

MURAO NORIAKI

### (54) OPTICAL PICKUP

#### (57)Abstract:

PROBLEM TO BE SOLVED: To provide an optical pickup suitable for miniaturization and capable of recording and reproduction to the optical disk or recording surface of different corresponding wavelengths. SOLUTION: This optical pickup is provided with a first light source for emitting a first light beam having a first wavelength, a second light source for emitting a second light beam having a second wavelength longer than the first wavelength, a condensing lens for converging the first and second light beams to the information recording surface of a recording medium and a diffraction optical element arranged in an optical path from the first and second optical sources to the condensing lens. The condensing lens converges the diffracted light beam of a first diffraction order of the first light beam from the diffraction optical element as information reading light or information recording light and converges the diffracted light beam of a second diffraction order lower than the first diffraction order of the second light beam from the diffraction optical element as the information reading light or the information recording light.



### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

### Japanes Publication for Unexamined Patent Applicati n N . 93179/2001 (Tokukai 2001-93179)

### A. Relevance of the Above-identified Document

This document has relevance to <u>claims 1, 14, 16, and</u>
43 of the present application.

# B. <u>Translation of the Relevant Passages of the Document</u> [0007]

[MEANS TO SOLVE THE PROBLEMS]

An optical pickup of the present invention includes: a first light source for emitting a first light beam of a first wavelength; a second light source for emitting a second light beam of a second wavelength longer than the first wavelength; a focusing lens for focusing the first and second light beams onto an information recording face of a recording medium, and a diffraction optical element interposed in an optical path from the first and second light sources to the focusing lens, wherein the focusing lens focuses a first order component of diffraction light of the first light beam produced by the diffraction optical element, so as to reproduce or record information, and wherein the focusing lens focuses a second order component, lower than the first order component, of diffraction light of the second light beam produced by the

diffraction optical element, so as to reproduce or record information.

[0012]

### [DESCRIPTION OF THE EMBODIMENT]

... The optical pickup includes a semiconductor laser LD1 for HD-DVD, emitting blue light of a first wavelength in the vicinity of 400nm to 410nm, preferably of 405nm, and a semiconductor laser LD2 for DVD, emitting red light of a second wavelength, longer than the first wavelength, in the vicinity of 630nm to 660nm, preferably of 650nm...

[0029]

[EXAMPLE 1]

[0039]

Fig. 7 shows changes in wavefront aberration of a HD-DVD (optical disk of 0.6mm thick, light source wavelength  $\lambda$  = 405±5nm) of the objective lens unit so obtained...

[0040]

...Fig. 9 shows changes in wavefront aberration of a DVD (optical disk of 0.6mm thick, light source wavelength  $\lambda = 650\pm10$ nm) of the objective lens unit so obtained...

|  |   |  |  | • |
|--|---|--|--|---|
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  | • |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |
|  |   |  |  |   |

华 噩 **₩** 83 (18)田本西 (1 1 1)

(11)条件出置公司参与 3

平成13年4月6日(2001.4.6) (P2001-93179A) **存開2001-93179** (43)公開日 撒 4 盐

(44).1-12-5 2H049 5D119 7/135 G11B G02B

> 7/135 6/18

G11B 51) Int.Q.

G02B

審査額次 未職収 額次項の数10 OL (全28 頁)

| (21) 出票排斥 | <b>特置平</b> 11-268434  | (71)出版人 00005016  | 000005016           |   |
|-----------|-----------------------|-------------------|---------------------|---|
|           |                       |                   | パイオニア株式会社           |   |
| (22) 出版日  | 平成11年9月21日(1999.9.21) |                   | 東京都昌馬区昌県1丁目4番1号     |   |
|           |                       | (72)発明者           | 大路 東                |   |
|           |                       |                   | 埼玉県橋ヶ島市富土児6丁目1番1号 パ | ~ |
|           |                       |                   | イオニア株式会社集合研究所内      |   |
|           |                       | (72) 発明者          | 林馬 周明               |   |
|           |                       |                   | 東田県館ヶ島市富士県6丁目1番1号 M | ~ |
|           |                       |                   | イオニア株式会社集合研究所内      |   |
| •         |                       | (74)代理人 100079119 | 100079119           |   |
|           |                       |                   | <b>井理士 副社 元禄</b>    |   |
|           |                       |                   |                     |   |
|           |                       |                   | ・報公司等者              |   |

光ピックアップ (54) [発明の名称]

[24] [要約]

【陳曆】 対応被長の異なる光ディスク又は配録面に対 し記録再生可能な小型化に適した光ピックアップを提供

欧光又は情報配録光として集光し、第2光ピームについ ては回折光学素子による第1回折次数より低次の第2回 **所改数の第2光ピーム回折光を情報散取光又は情報記録** 【解決手段】 第1故長を有する第1光ピームを出射す 7、第1及び第2の光源から集光ワンズまでの光路中に 配置された回折光学素子とを備えた光ピックアップであ **発子による第1回折次数の第1光ピーム回折光を情報読** る第1の光顔と、第1被長より長い第2被長を有する第 2 光ピームを出射する第2の光顔と、第1及び第2光ピ **した、無光フンメな、第1光アー々にしこれは回扩光学** 一ムを記録媒体の情報記録面に集光させる集光レンズ ととして集光する。

+ 4838

光アームを記録媒体の情報記録函に集光させる集光レン 5第1の光瀾と、第1故長より長い第2故長を有する第 **メカ、哲院第1及5節2の光質がの哲院催光フンがかい** の光路中に配置された回折光学素子とを備えた光ピック 2 光ピームを出射する第2の光顔と、前配第1及び第2 アップであって、

哲的集光 アンメロ、 包配第1光 アームに りょくは 即回 **所光学業子による第1回折次数の第1光ピーム回折光を** 情報酰取光又は情報配録光として集光し、前配第2光ビ ームについては前配回折光学素子による前配第1回折次 数より低次の第2回が次数の第2光ピーム回折光を情報 **説取光又は情報記録光として集光することを特徴とする** 光アックアップ。 【請求項2】 前記回折格子は鋸歯状の断面を有するこ 【静水項3】 前配回折格子は階段状の断面を有するこ とを特徴とする請求項1記載の光ピックアップ。 とを特徴とする請求項1配載の光ピックアップ。

【請求項4】 前配第1光ピーム回折光の前配第1回折 次数の絶対値は前配第2光ピーム回折光の前配第2回折 **水数の絶対値より1だけ大きへ、から前配第2光ピーム** 回折光の前配第2回折次数の絶対値は1以上であること を特徴とする請求項1~3のいずれか1配載の光ピック 【精水項5】 前配第1光ピーム回折光が2次回折光で 又は、前記第1光ピーム回折光が3次回折光であるとき 前記第2光ピーム回折光は2次回折光であることを特徴 あるとき前記第2光ピーム回折光は1次回折光である。 とする糖水魚4配敷の光パックアップ。

イング

2 μ m X は 2. 4 0 ± 0. 2 μ m の範囲内であることを も後とする請求項1~5のいずれか1配載の光ピックア 「糖水項6】 前配回折格子の深さが、1.42±0.

【開水項7】 前配回折格子のピッチが、20μm以上 であることを特徴とする請求項1~6のいずれか1配載 の米アックアップ

ことを特徴とする請求項1~1のいずれか1配載の光ピ 請求項8】 前配第1被長が400nm~410nm であり、前記第2波長が630nm~660nmである

を特徴とする請求項1~8のいずれか1配載の光ピック 伯配回が格子は平回レンズの凹面に形成されていること 前配回折光学業子は平凹レンズを有し、 糖水項9]

「静水風10] 哲記回が光学素子は哲的集光レンズと 体成形され、前配回が格子は前配集光レンズの光隙側 **長面に形成されていることを特徴とする請求項1~9の** いずれか1 酌載の光アックアップ。

[発明の詳細な説明]

8

における光ピックアップの光学系に関し、特に、異なる 放長のレーザ光源を使うDVD及びHD-DVDへの互 【発明の異する技術分野】本発明は、対応改長の異なる 光ディスクから情報を配録再生する光学式配録再生装置 後住を可能にする光ピックアップに関する。 [0001]

【謝水項1】 第1故長を有する第1光ピームを出針す

、体許請求の範囲】

[0002]

NA化が有効である。短波長化に関しては、G a N基板 せており実用化が近いレベルにある。開発中のレーザの 被長は405ヵmであり、これを使った15GB程度の [従来の技術] 光学式配像再生装置には、光記録媒体の 例えばDVD(digital video disc)等の光ディスクから 虹摩信義を読み取りできる光学式ディスクプワーヤがあ が、更に高密度なパッケージメディアの要求が強く、そ の検討が進んでいる。配像密度の向上には、良く知られ **たいるように使用する光質の短数長化と対物ワンズの高** をベースにした短数長の半導体アーザの研究が進展をみ 高密度DVD(HD-DVD)システムの研究も同様に る。容量4.7GBのDVDが市場に導入されている 油められている。

を実現するために、HD-DVDシステムは被長405 ピーム(以下、単に赤ともいう)を発光するレーザを格 冒ディスクの中間層の短波長光ピームでの反射率が低い n田付近の青色の光ピーム (以下、単に青ともいう)を 発光するレーザに加えて被長650nm付近の赤色の光 数する必要がある。従来、DVDでは基板厚は0.6m 日よめり、妊疫液腫は635mm~655mm、丝色レ ンズの閉口数は0.6程度である。HD-DVDでは基 板厚は 0. 6 mmであり、対応放長は405 nm、対勢 報を読み取りできるコンパチブルディスクブレーヤが求 こで問題になるのは、組被長のワーザではDVDディス クのうち2層ディスクを読めないことである。これは2 められることになるが、その再生システムは、DVDを 再生できることが当然のこととして義務づけられる。こ [0003] そこで、DVDとHD-DVDから配象情 ために生じる。 従って、コンパチブルディスクブレー アンズの関ロ数は0.6徴度である。

に、従来の単レンズで被長の異なる光を両方ともほぼ無 収益で集光することは難しい。このため、DVDとHD -DVDのコンパチピリティーを確保するためには何ら 【0004】 しやし、 粒色アンメの粒し色反拗のため

かの工夫が必要となる。

[0000]

の実現方法として、専用対勢レンズを使う放長にとい切 替える方法が考えられるが、2枚の対物レンズを要すの [発明が解決しようとする課題] そこで、DVD及びH D-DVDのコンスチブルブレーヤ用の光ピックアップ で複雑なレンズ切り替え機構が必要でコストが増大し、 アクチュエータが大きくなるので仏型化に不利である。

また、他の方法として、対勢レンズとコリメータレンズ

性飽を維持することが難しい、などの問題が発生する。 のプリズム、レンズなどの光学県を構成すると、光ピッ クアップ又は光ヘッド全体が複雑になり、大型になる個 コンパチピリティーを確保するため複数光源を用い専用 ロリメータが固然しているため、対象アンメの移動等の と組み合せる方法が考えられるが、対例アンズに対して 再生可能な小型化に達した光アックアップを提供するこ り、対応被長の異なる光ディスク又は記録面に対し記録 向がある。本苑明は、上記課題に鑑みなされたものであ [0006] NTHELTS, DVDEHD-DVD0

## [0007]

回折衣数より低次の第2回折衣敷の第2光ピーム回折光 折光を情報院政光又は情報記集光として集光し、前記第 配置された回折光学素子とを備えた光ピックアップであ 的保証体の有機的原因に集光させる集光マンメイ、哲的 を出射する第2の光源と、前記第1及び第2光ビームを は、第1波長を有する第1光ピームを出射する第1の光 前配回折光学素子による第1回折次数の第1光ピーム回 **6八、四四後光フンメロ、四四郎1光アームにらごハロ** 第1及び第2の光振から前哲集光フンズまいの光路中に を情報読取光又は情報記録光として集光することを特徴 2光ビームについては前配回析光学業子による前配第1 願と、第1波長より長い第2波長を有する第2光ピーA 【発明を解決するための手段】本発明の光ピックアップ

回折格子は鋸歯状の断面を有することを特徴とする。本 回折次数の絶対値より1だけ大きく、から前記第2光に 回折次数の絶対値は前記第2光ピーム回折光の前記第2 状の新面を有することを特徴とする。本発明の光ピック 発用の光ピックアップにおいては、前配回が格子は階段 ことを称縦とする。 一ム回折光の前配第2回折次数の絶対値は1以上である アップにおいては、哲智第1光アーム回炉光の前記第1 【0008】本発用の光アックアップにおいては、哲哲

あることを称殺とする。 42±0. 2μmXは2. 40±0. 2μmの範囲内で ピックアップにおいては、前箇回折格子の深さが、1. 折光は2次回折光であることを特徴とする。本発明の光 ーム回折光が3次回折光であるとき前配第2光ピーム回 ピーム回折光は1次回折光である、又は、前配第1光に 第1光ピーム回折光が2次回折光であるとき前記第2光 【0009】本発用の光ピックアップにおいては、前位

の光ピックアップにおいては、前配回折光学素子は平凹 長が400nm~410nmであり、前記第2被長が6 回炉格子のピッチが、20μm以上であることを発復と **フンズや有つ、哲智回が格子は早回フンズの回面に形成** 30nm~660nmであることを特徴とする。本発明 する。本苑明の光ピックアップにおいては、前記第1波 【0010】本発明の光ピックアップにおいては、前位

> **が格子は哲院集光アソメの光濃健表面に形成されている** 回折光学素子は前配集光フンズと一体成形され、前配回 されていることを称載とする。 【0011】本発用の光ピックアップにおいては、前数

や参照しらら気配する。 【発明の実施の形態】以下、本発明の実施の形態を図面

とを物板とする。

プの概略を示す。光ピックアップは、第1波長が400 びDVD用として切り替えて点灯される。 る。半導体レーザLD1及びLD2はHD-DVD用及 出気するDVD用半導体ワーザ1D2と、を備えてい m好ましくは650nm付近のDVD用の長波長の赤を nm~410nm好ましくは405nm付近の短波長の 1被長より長い第2被長すなわち630nm~660n 青を出射するHD-DVD用半導体レーザLD1と、第 (光アックアップ) 図1は実施の1形態の光アックアッ

結合素子は、光軸結合プリズムに限定されることなく、 子に用いることができる。 た回折格子、被晶コレステリック層などを、光軸結合素 ダイクロイックミラーに代えて、回折角の波長差を使っ **膵臓により形成されている。また、光軸を合成する光彙** しておりかつ、入射角度依存性を持つように多層勝電体 被長650nmの第2レーザピームを反射する特性を有 数長405 nmの第1レーザビームを通過する一方で、 東のフーおアースの光量や第一数は中心姿態や体する。 光ピームを共通の光路となすように設計され、2つの波 結合業子の光軸結合プリズム(色合成プリズム) 10を 第2光ピームすなわち青及び赤の光路を共通させる光線 光軸結合プリズム10中のダイクロイックミラー11は 1に示すように、半導体レーザLD1及びLD2の発散 編えている。この光学県の光軸結合プリズム10は、図 【0013】さらに光ピックアップは、これら第1及び

A10及び偏光ビームスプリッタ13を経て、コリメー を掲過して、対象ワンメユニット16によって、その無 タレンメ14で平行光ピームにされ、1/4波長板15 少なへとも一方からのワーザピームは、光素結合プリス 第1半導体フーガLD1及び第2半導体フーガLD2の ット16を備えている。以上の光照射光学深によって、 ータワンK14、1/4液果板15及U対物ワンKユニ 光ディスク 5の情報配録面のピット列上で光スポットを 点付近に置かれている光ディスク5に向けて集光され、 10の光鶴の下流に偏光ドームスプリッタ13、コリメ 【0014】また光ピックアップは、光軸結合プリズム

ている。HD-DVDXはDVDの光ディスク5からの 偏光ピームスプリッタ13は光検出光学系にも利用され おり、対衡レンメユニット16、1/4波長板15及ひ ップはさらに検出アンズ17など光検出光学系を有した 【0015】以上の光照料光卦珠に加えて、光アックア

> 反射光は、対象アンメリニット16ら集められ1/4巻 る4つの受光面を有する4分割光検出器の受光面20中 **ラチフンズなどの非点収整発虫業子(図示セず)を通過** 光はた竹銭灰光は、空火は、ツツソドツセラフソメ、レ 出用集光アンズ17に向けられる。後出アンズ175歳 長板15を介して偏光ピームスプリッタ13によって巻 心付近に光スポットを形成する。 して、例えば、直交する2線分によって4分割されてな

いて記録信号を生成する。エラー検出回路31は、その 31に供給する。復興回路30は、その電気信号に基づ ぴフォーカス制御用のアクチュエータ26を含む機構を 多フンズゴリシェ16なごやヤー点気御景君する。 クチュエータに供給し、これらが各駆動信号に応じて対 電気信号に基心いてフォーカスエラー信号や、トラッキ 駆動する駆動回路33に接続されている。4分割光検出 0及びエラー検出回路31に接続されている。エラー検 クチュエータの駆動回路33を介して各駆動信号を各ア ングエラー信号や、その伯サーボ信号などを生成し、ア 俊に応じた電気信号を復興回路30及びエラー検出回路 器は、その受光面20中心付近に結復された光スポット **出回路 3 1 は対象アンズはコットのトラッキング影響及** 【0016】また、光検出器の受光面20は復興回路3

い、これらからの光ピームを光輪結合プリズム10によ の長波長の赤色レーザ光震LD2と、の2つの光震を使 ement) と、を組み合せた複合対衡フンズの組立体なめ る。この対象アンメユニット16は、図1に示すよう D-DVD叉はDVDの光ディスク記録面上に集光させ o 八1光路に合成し、対象アンメ斗ニット16によりH DVD用の低波長の青色ァーザ光源LD1と、DVD用 ズム10から集光ワンズ16 a またの光路中に位置す する回折光学素子16bは光源例すなわち光輪結合プリ ダ16cによって光軸に同軸に配置され、回折格子を有 る。集光ワンメ16m及び回折光学業子166は、ホル する回折光学業子16b(DOB: diffractive opticale) **レネルフンズ又はホログラムレンズなどの回折格子を有** X) 16 a と、過光柱の早板上に複数の凹凸からなるフ アンメユニットにおいては、図1に示すように、HD-(対衡レンズユニット) 本発明の光にックアップの対象 、光ピームを記録面へ集光する集光レンズ(基準レン

が難しへなるので、特に、青の波長衛囲で収拾が補圧さ の波長で比べると、青の波長での望ましい特性を出す方 化され波長に反比例して公益が厳しへなるので、赤と青 た非球面ワンズを用いる。一般的に、収益は改長で圧抜 わた非球因フンズを使うことが望まして。 nmで、又は少なくとも青の故長範囲で収差が補正され nm~410nm又は赤の放長範囲630nm~660 【0017】 集光ワンメ16 a は、青の故長釣囲400

クなどからなり、その回折格子16eは図2に示すよう 【0018】回折光学素子16bはガラス、プラスチッ

ときDVD用に被長650nmの第2光ビーム回折光と

回折格子16 eがその表面に形成された素子も用いる: レンズ16dに代えて光透過性平板16dを基板とし、 生じるからである。また、回折光学素子としては、平回 が国フソメト投着つ反対でロフソメト光行でなる影響が 光レンメ16mの特性に対し、後に述べる彼長依存物性 の基板を回フンズにすることは、最良像点を固定した鍼 材料から複数の回折光学素子を複製することもできる。 形を形成しておき、射出成形又はいわゆる2 P 法で透明 は、かかる多段階プァーズ又はプァーズ形状を金型に集 **プァーズを形成した多段階プァーズ又はプァーズ形状の** 特密切別する方法とがあり、これらによって、振辺的に フィ技術を応用する方法と、ダイヤモンドバイトなどで る。回折格子断面形状の作成法として、フォトリングラ 際国の回折格子は回折効率が出より減いので有利であ に、階段形状となるように形成される。例えば、虧質状 る。回析格子16mは、図3に示すように、その斯面が ソグラフィにより積層された環状律又は凸の輪帯からな された回析格子16eとからなる。回析光学業子16b ように、 早回 フンメ 1 6 d と、 早回 フンメの 回通 に 歩点 回折格子ができるが、いずれの方法でも得わない。また **プワーズ形状すなわち虧曲状、又は、図4に示すよう** 【0019】回折光学素子166は図3及び図4に示す 光輪を中心に複数本の同心円に切削され又はホトリ

405 nmの3次回折光を第1光ピーム回折光に用いた 回折光が2次回折光であるとき第2光ピーム回折光は1 は1以上であることが好ましい。よって、第1光アーム いるが、この範囲であれば回折効率が大きく変化するこ 30~660nm)、青 (400~410nm) として わち歩と背の半導体レーザの波景範囲はそれぞれ歩(6 響しない。上配例では光源の第1及び第2光ビームすな ないので、いわら回折光は散取又は哲像にはほとんど影 次回折光B0及びB1はディスク記録面上に合焦状態に の0次回折光R0及び高次回折光並びに青の0次及び1 記録光とした対象アンズや介したDVDディスク記録団 光ピームが透過するとき、第1光ピーム回析光の2次回 図5 (B) に示すように、被長650nmの赤色の第2 うに、形成されてる。また、同時に回折格子16 eは、 a を介してHD-DVDディスク記録面上に集光するよ 色の第1光ビームが透過するとき、その2枚の回折光B 図5 (A) に示すように、例えば、被長405 n mの言 次回が光さめる上記の強の色だ、HD-DVD用に彼長 1だけ大きへ、から第2光ピーム回折光の第2回折枚数 とがないからである。 さらに、第1光アーム回析光の第 上に集光するように、形成されている。これら、合、赤 折光より低次の1次回折光R1を、情報態取光又は情報 2 年、情報院取光又は情報哲像光として儀光アンメ16 1回折次数は、第2光ビーム回折光の第2回折次数より 【0020】回析光学業子16bの回析格子16eは. £

特例2001-93179 (P2001-93179A)

3

して2次回折光が億光されるように、回折光学素子16 bの回折格子16eは作製され得る。

折光を用いずに、青の2次の回折光を用い、赤では2次 より1つ低次の1次回折光を用いるように、回折格子は 形成されている。すなわち、本発明の回折格子は、その 光路長差を、赤と青の故長の必要な回折次数に対してそ パワーを持たない回折格子を用い、0次回折光以外の回 **所光を他方の観取光に用いているが、赤と青の0次の回** 方の戦政光に光強度を得るために0次の回折光すなわち [0021] 一般にコンパチブル光ピックアップではー れぞれ高い回折光率が得られるように形成される。

【0022】倒えば、図3に歩ナブレーメ節掴形状の回 尊牒グレーティングとして扱える。その場合、回折効率 子の磔さdを0~3μmに変化させて、基材として例 えば02-1000 (日立化成) のプラスチック材料か らなる回折光学素子を作製した場合の、回折格子の回折 子は、そのピッチが故長より十分長いのでスカラー理論 **炉棒子を、パッチPを160~260gmとして、回炉** 効率の変化を算出してみる。実施の形態における回折格 が適用でき、また、その深さが故長程度なのでいわゆる n 田は次式数1で表される(田は回折次数)。

 $\eta m = \left|\frac{1}{T}\int_{\mathbb{R}} A(x) \exp\{i\varphi(x)\}\exp(-i\frac{2\pi mx}{T})dx\right|^2$ 

5。また、回が格子のピッチについて一般にピッチが絶 低下する。また、ピッチが締かいほど形状ずれによる影 mの形状ずれが5%に相当する値として、20µm以上 かくなるほど、収差の被長依存性は向上するが、ピッチ が被長の5倍以下になると、原理的に回折効率が大きく 事が大きくなる。そこで本実施の形態では、ピッチ1 μ 【0024】式中、A (x) は透過振幅分布、φ (x) は位相分布、Tはグレーティングのピッチを示してい る。計算においてはA(x) = 1として規格化してい を望ましい値とする。

点では大きく変動する。

【0025】図6は、複軸に回折格子の深さ 9、縦軸に o "Bo" 、"B1" 、"B2" 、"B3" はそれぞれ 青の0次回折光、1次回折光、2次回折光、3次回折光 の回折効率を、"RO"、"R1"、"R2"はそれぞ 回折格子の回折効率の変化を算出した結果である。図中 **た赤の0次回折光、1次回折光、2次回折光の回折効率** 

L. これらの積d (n-1) で表される。故長1=40 【0026】図6から明らかなように、プレーメ化した が最大値をとる。回折格子の位相深さは、dを実験の回 艮λ=650nmに対し関紐折率nk=1. 498であ 回折格子は位相磔さが光の1被長1毎の周期で回折効率 5 nmに対し基材材料の屈折率 nB=1.531で、故 所格子の磔さ、nを回折光学業子基材の屈折率とする

るので、これから計算すると405nmで位相差が1故 長んになる回が格子の欲さは0.763μ田で、この欲 さで青の1次回折光の回折効率が最大になる。青の2次 回折光はその倍の1.526μm、同様に赤の1次回折 代は1.305 mmで最大となる。

まり第1被長の青の2次回折光B2及び第2被長の赤の 1次回折光R1で使う1.42µ四付近と、青の3次回 得られる回折格子の深さが、1.42±0.2μm又は 【0027】これらのことから、赤と青のいずれの故長 でも高い回折光率が得られる回折格子の磔さは、R1と B2の交点、R2とB3の交点であることが分かる。つ 析光B3及び赤の2次回析光R2で使う2. 4μm付近 が、高回折光率が得られる回折格子の磔さである。回折 なるので、これ以上を確保するためには、高回折光率が [0028]また、図6から明らかなように、第1光の 格子の磔さは0.2ヵmずれると十数%位の効率減少に 2. 40±0. 2μmの範囲内とすることが好ましい。

く低下する。青の2次及び3次回折光の回折効率のピー でも回折格子の磔さにずれが生じると、回折効率が大き クは磔さ1. 526μm及び2. 289μmで、同様に 赤の1次及び2次回折光では1.305μm及び2.6 ■及び赤の回折効率のピーク近倍の交点でわれば、回折 効果の変勢が少ないが、それぞれのアークから離れる交 青の1次回折光B1及び第2被長の赤の1次回折光R1 の交点 (回折格子の祭さは、0.965μm) において も、回折光率が80%程度と決して低くはないが、少し 10μmであるので、回折格子の磔さにずれが生じても

数は有効面内で5本である。半径及びピッチのデータは は別体にして光鶴を中心とした回転対称体として設計し た。 回折格子の輸帯パターンすなわち回折格子の輸帯本 して、例えば図5に示したような、回折格子が青(40 5 n m) に対しては2次回折光、赤 (6 2 0 n m) に対 【実施例1】このような機能を有する光ピックアップと しては1 次回折光を使った回折光学業子を集光レンズと た対物ワンズユニットを含む光ピックアップを作製し **長1のとおりである。** [0029]

[0000]

| 1 1.006975 Crrr. 275 Crrr. 2 1.844025 0.02800 3 1.444692 0.1808 4 1.610728 0.1808 6 1.831138 0.2704 | _       |          | 2        | - 30     | Z        | 9        |
|-----------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|----------|
| 1 1000875<br>  1 1000875<br>  2 1264025<br>  3 1,444982<br>  4 1,610728<br>  6 1,421139             | 17 (mm) |          | 0,258063 | 0,18063  | 0,165664 | 0.220410 |
| 2 - 2 - 4                                                                                           | # (mm)  | 1.005975 | 1.244028 | 1,444862 | 1.610728 | 1,831136 |
|                                                                                                     | 1684    | -        | 2        | 9        | •        |          |

【0031】図5に示したように非球面の集光レンズの so 光原側に平凹のレンズの回折光学素子が配置され、その

9

光学素子の入射面及び出射面であり、第3面及び第4面 は集光レンズの入射面及び出射面である。各非球面2は 11面上に回が格子を形成し、凹面及び回が格子はいずれ も非球因形状とした。よった、第1因及び第2回は回が

K:円膏保敷、r:光輪からの半倍、ASi:非球固保

位相関数Φ(r)は、は次式数3で表される。

[0033] (国L, Z:SAG量, R:由學半徑,

次式数2で表される。 [0032]

[美3]

[0034]

 $\Phi(r) = dor \frac{2\pi}{\lambda_0} (DF0 + DFV^2 + DF2r^4 + DF3r^6 + DF4r^6 + DF5r^{10})$  $1 + \sqrt{1 - (1/R)^2 (K+1)r^2} + \sqrt{ASir^4}$ 

本おりたある。 [0036] [表2] 自動散計された各非球面レンズのデータは表2~4のと\* [0035] (ほし、dor:回折水敷、10:故長、r: 光軸からの半鉛、DF1~DF5:保敷)

1,621062 151800 骨垢属 1.90000 0.00000 0.875242 V 280.2T0861V ・日本会員 ・金田 2.164336 -10,344500 **十条分米安** ロランメ ナイスク

[0037]

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

-34,016419 0.000217 -1.5435e-0t -0.685540 #33 #33 0.000156 -8.1804e+04 -0001558 -2.7533p-00 S. Broken 日子 \$ 8 B 田 雅 雅 雅 (16) はこれの

-6.0065g--07 900 6,0000-0 1529-0

(1) ) をとった被長依存性を示す。図示するように対 [0039] 図7に、毎5九九対物アンメコニットのH D-DVD(光ディスク犀み0,6mm、光顔放長1=・ 物アンメリニットの液泡気動にケアツャン原序の. 0.7 405±5nm) に対する被画収差の変化を示す。 図に おいて複雑に放果、機種に光軸上での数面収熱量(ras

【0040】図8は405nmの単一放長で横軸に圏 1以下に抑えられている。

でマンシャル殴事0.071以下に哲えられている。図 角、縦軸に披面収差をとったグラフである。図示するよ 9に、毎られた対動レンズユニットのDVD(光ディス 長依存性を示す。因示するように対物レンズユニットの **うに対動レンズユニットの故画収差は画角約0.8度ま** ク厚み0.6円円、光蔵数長1=650±10nm)に 猴輪に光輪上での波面収差量(tras (1)) なとった設 数面収益はマレシャル限界の.071以下に値めて低く 対する故面収整の変化を示す。図において横軸に故長、

【0041】図10は650nmの単一放長で積極に囲 角、縦軸に被函収盤をとったグラフである。図示するよ **シに対象フングコニットの故語収数は画角 1 度以内で~** レンナル限界の、071以下に抑えられている。なお、

四人られている。

Ŧ,

3

図11は図7及び図9のそれぞれの被長の1次及び2次 わゆる最良像点位置可愛)。 そこでの被面収整量を計算し、被面収整を評価した(ハン ではそれぞれの波長に対する最良像点位置をもとめて、 り、鉄橋に被回収割をとった。なお、図7から図11分 ので、模量に400nm~700nmまでの液果やと の回折光についての故面収益量の変化をグラフ化したも

被長依存物性が改善されている。なお、図12は10の **だ光学業 子って、国フンメ(中国フンメ) や食用したこ** 定の作用項ー対物フンズかの技典で反射の認定や形す。 汝東での東京領点位置や求め、木の位置で四方した名の\* **めれめいめり、いれにより単体の背景用均衡アンメより** うが使用可能な被長範囲が広いことがわかる。 これは回 単体の専用レンズを使う場合よりも本実施例の場合のほ 施例の青の2次回折光の故長と収差の関係を、Bは比較 敷した。図12にその結果を示す。グラフ中、Aは本実 単体の波長依存性特性を測定し、上記実施例のものと比 【0042】 45 円、 五数の六の下作手用の対象フンス

> \*被長での被面収差量を計算し、被面収差を評価した(vi 固定の方が必ず厳しい条件になっている。 1の最良像点位置可変の場合より図12の最良像点位置 最小になる最良像点位置は変化するので、図7及び図1 わゆる最良像点位置固定)。 被長によって、設面収差の

【実施例2】さらに実施例2の光ピックアップとして、 [0043]

しては2次回折光R2を使った回折光学素子16bを集 m) に対しては3次回折光B3、赤 (650 nm) に対 図13 (A) 及び (B) に示す回折格子が青 (405 n アップを作製した。回折格子の輪帯パターンは実施例1 条体として設計した対象アンズユニットを合む光アック 光フンズ 16 a とは別体につた光気を中心とした回版を

ゲータは表5~7のとおりである。 【0044】自動設計した製造された各非禁困フンズの

[0045]

|          | 0.876211 V | ı                     | -        |                   |                 |
|----------|------------|-----------------------|----------|-------------------|-----------------|
| 1,821082 | 0.800000   | ı                     | •        | 700               | ٠               |
|          | 1,000000   | -17,079390            | Ŀ        |                   |                 |
| 1,805257 | 1.798000   | 2.161390 ~            | 3        | 基準レンズ・            | <del>-</del> ,- |
|          | 0.300000   | -                     | 2        |                   | -               |
| 1.518961 | 1,00000    | -696.8697 <b>80</b> V | <b>:</b> | 自伤先学素子            | - •             |
| 里折车      | WES        | 由本學                   | **       |                   |                 |
| -        | (株5]       |                       | 固定し      | 置や水め、その位置に固定して他の米 | 日かみ             |

[0046]

×

※ 【非6】

| -1.2390e+05 -0.418580 17.362961 | -1.2380+05 | Ê   |       |
|---------------------------------|------------|-----|-------|
| 2 954606 -0.482705              | 4.8087e-08 | ASS |       |
| -0.000123                       | -1.530605  | ğ   |       |
| -0,000211                       | 0.000252   | Š   | 神経関係者 |
| -0.000738                       | -0.001291  | ğ   |       |
| <b>\$2</b>                      | 51         |     |       |

| 表 7 | [0047]

3

| _          |            |          |          |         |        |    |        |
|------------|------------|----------|----------|---------|--------|----|--------|
| 2          | 2          | 3        | 3        | 2       | 8      |    |        |
| 7,88776-07 | -1,629th-O | 2,7310-0 | -0.00000 | 0.00028 | -03000 | #1 |        |
| -          |            | 74.      | _        | _       |        | •  | '<br>- |

の歿化を示す。図において複雑に波果、模様に光橋上で =405±5nm) に対する3次回折光による被函収整 HD-DVD(光ディスク厚み0・6mm、光震波長な 【0048】図14に、毎られた対象アンメリニットの 8

> アシャル限界の、07%以下に与えられている。 す。図示するように対象レンズユニットの改画収益は々 の被面収差量(ras(λ))をとった波長依存性を示

1以下に构えられている。 スク厚分0.6mm、光源波長1=650±10nm) うに対例レンズユニットの波面収差は固角約0.8度ま おいて機能に改長、機能に光軌上での效面収差量(rms に対する2次回が光による被面収差の変化を示す。図に 16に、得られた対象アンズユニットのDVD(光ディ ドトフシャグ限率の、07%以下に控えられたいる。図 角、横輪に被回収差をとったグラフである。図示するよ (ル)) をとった数長依存性を示す。 図示するように対 フンメリニットの被回収納はトフジャル殴罪0.07 【0049】図15は405 nmの単一波長で複動に画

8

特閣2001-93179 (P2001-93179A)

#製した。回折格子の輸帯パターンは実施例1と回接にあ

フツャラ競手の、07%以下に営えられたいる。 うに対象アンメユニットの液面収斂は固角 1 度以内にす 角、縦軸に返面収蓋をとったグラフである。図示するよ 【0050】図17は650nmの単一液長で養物に画

0051

しては1次回折光R1を使った回折光学業子と集光レン m) に対しては2次回折光B2、赤 (650 nm) に対 図18(A)及び(B)に示す回折格子が青(405 n 【実施例3】さらに実施例3の光ピックアップとして、

**メとや一体とし光軸を中心とした回航対象体として数軒 10** した対例ワンメユニット16を含む光ピックアップを作ま

[0053]

のデータは表8~10のとおりである。

出射面である。自動設計して製造された各非球面レンス

て、第1面及び第2面は一体集光レンズの回が格子及び 集光フン人の五式回はこれたも非禁厄形式でつた。 よっ の光薫側の入射面上に回折格子を形成し、回折格子及び

【0052】図18に示したように昇楽因の集光フンメ

|          | 0.801258 V |              | - |         |
|----------|------------|--------------|---|---------|
| 1.821082 | 0.800000   | ,            | မ | 7420    |
|          | 1,00000    | 138.437197 V | ~ |         |
| 1.806257 | 1.798000   | 2.512042 V   | - | 複合対策リンズ |
| 里折車      | MME        | 日本年日         | 1 |         |

[0054] 後9]

|                     |            |            | は別回が      |             |     |
|---------------------|------------|------------|-----------|-------------|-----|
| æ                   | ASS        | ŽŠ.        | ŞŞ        | ž           |     |
| -0.441017           | 1,8366e-06 | 2.3084e-05 | 0.000417  | -8.7996e-05 | はは  |
| -0.441017 -2.454504 | 5.7876e-05 | -0.000487  | -0.001463 | -0.007221   | 第2副 |

[第10] 0055

| 8       | 2       | 93      | 953 | 130  |    |
|---------|---------|---------|-----|------|----|
| -531374 | -1,1884 | 7,01454 |     | į    | #1 |
| 79-08   | 8       | 8       | 000 | 2010 |    |

s (A)) をとった波長依存性を示す。図示するように =405±5nm) に対する被面収差の変化を示す。図 対物ワンメユニットの故園収益はトワジャラ限界の. 0 において債権に改長、緩集に光輪上での被面収整量(rm HD-DVD (光ディスク厚み0.6mm、光震波長 l 71以下に抑えられている。 【0056】図19に、毎られた対象アンメ斗リットの

図21に、俳らわた対象アンメ斗ニットのDVD(光戸 角、縦軸に被面収差をとったグラフである。図示するよ イスク厚み0. 6mm、光顔波長 l=650±10n またタフツャル服界の、07L以下に抑えられている。 うに対象アンメユーシャの被固収差は固角約0.95月 【0057】図20は405nmの単一波長で微軸に画

> 徴長、振動に光動上での数面段勘費(rms(A))をと **った波長依存住を示す。図示するように対象レンズユニ** ットの改画収益はタワシャル限界の、07%以下に値め m)に対する被面収差の変化を示す。 図において機能に て用へ答えられている。

角、鉄輪に被面収整をとったグラフである。図示するよ 虫パタフツャル原界の、071以下に対えられている。 うに対衡アンズ斗ニットの故画収斂は画角約0.95度 [0059] 【0058】図22は650nmの単一徴長で微軸に囲

**業子フンズを同じホルダーで支持さき、小型化できる** 館な小型化光ピックアップを得ることができる。このよ 応被長の異なる光ディスク又は記録面に対し記録再生可 る対象フンスを催光フンスと回灯光学業子とからなる複 いとい、以下結構な必果がある。対象ワンズと回纥光学 **らに、対象ワンメに回復又は別年の回が格子や形成する** る複数の凹凸からなる透過型回折格子を有するので、対 より低次の第2回折次数の第2光ピーム回折光を、情報 子を通過するとき、第1光ピーム回折光の第1回折次数 ソメや介した儀光し、さら、第2光アームが回炉光学県 ― 4回折光や、情報競取光又は情報問果光とした儀光っ 回灯光学業子を通過するとき、第1回灯吹吹の第1光に 合対物フンメアつた、回桁光学業子は、第1光アームが **税取光又は情報配録光として集光ワンメを介して集光す** 【発明の効果】本発明によれば、光ピックアップにおけ

8 **吳衛囲で補圧されたレンズを使う 合、はるかに緩和さ** 造が可能となる。特に、対象アンメとして青又は赤の紋 位置特度が優へ、つまり、使用する赤と青の阿波長に対 成でも、回折光学業子がほとんど風折作用をしないので **メとの相互位置関係は他の方法と比べてはるかに扱い数 した成次の収益を補圧する程度の作用であり、対象アン フ、アンメの参考に対しト回題が出出しない。 90年の第** 

9

れた設計が可能となる。

【図1】 本発明による光ピックアップ内部の概略構成 |図面の簡単な説明 習である。 [図2] 本発明による光ピックアップにおける回折格 Fの平面図である。 【図3】 本発明による光ピックアップにおける回折格

【図4】 本発明による光ピックアップにおける回折格 子の部分新面図である。

[図5] 本発明による光ピックアップにおける対物レ ンズユニットの部分原因図である。 Fの部分断画図である。

【図6】 本発明による光ピックアップにおける対物レ ンズユニットの回折格子の磔さと回折効率との関係を示 トグラフである。

【図7】 第1実施例の対物レンズユニットの2次回折 光の第1故長に対する故面収差の変化を示すグラフであ

2 次回折光の画角に対する被面収差の変化を示すグラフ 【図8】 第1実施例の対物アンズコニットの第1故長

【図9】 第1実施例の対物アンズユニットの1次回折 光の第2被長に対する被面収差の変化を示すグラフであ 【図10】 第1実施例の対勢アンズユニットの第2故 長1次回折光の圓角に対する被面収差の変化を示すグラ

第1英権低の対勢アンズユニットの1次回 **析光の第2数長及び2次回折光の第1数長に対する故面** 収益の変化を示すグラフである。 |図11] 7735.

[図12] 第1実施例の対動アンズユニットの2次回 **所光の第1被長に対する被面収整の変化と、第1被長専** 用の比較倒の対動フンズの被面収熱の変化とを示すグラ [図13] 本発明による第2実施例の光ピックアップ

【図14】 第2実施例の対動アンズユニットの3次回 における女勢フンメリニットの部分を周図らわる。

折光の第1故長に対する被面収差の変化を示すグラフで

【図15】 第2実施例の対物レンズユニットの第1故 長3次回折光の固角に対する被面収差の変化を示すグラ 91

第2実施例の対物レンズユニットの2次回 折光の第2故長に対する故面収差の変化を示すグラフで [図16]

第2 実権例の対象アンズユニットの第2 故 長2次回折光の圓角に対する被面収差の変化を示すグラ [図17]

【図18】 本発明による第3実稿例の光ピックアップ **クである。** 

**における対象アンメリニットの部分を固図かわる。** 

【図19】 第3英福兜の対勢アンメリーットの2次回 折光の第1被長に対する被面収差の変化を示すグラフで 【図20】 第3実施例の対動アンズユニットの第1故 長2次回折光の両角に対する被面収差の変化を示すグラ フである。 [図21] 第3英権例の対勢アンズゴニットの1次回 析光の第2被長に対する被面収整の変化を示すグラフで

【図22】 第3実施例の対動レンズユニットの第2被 長1次回折光の画角に対する被面収差の変化を示すグラ

フである。

[符号の説明]

1 光ピックアップ 5 光ディスク

10 光軸結合プリズム

11 ダイクロイックミラー台成画

偏光アームスプリック

コリメータレンズ

1/4被長板 15

0

光板出部受光面 アクチュエータ

省加回路

LD1、LD2 第1及び第2半導体レーザ エラーを出回路

3

[図1]





**特別**2001-93179 (P2001-93179A)



₩ **8**82001-93179 (P2001-93179A)









♦ 58 2001-93179 (P2001-93179A)

10 55 2001-93179 (P2001-93179A)







特別2001-93179 (P2001-93179A)















(27)



フロントページの観念

Fターム(事事) 2H049 AA17 AA18 AA40 AA51 AA57 AA63 5D119 AA41 BA01 CA16 EC47 FA08 JA02 JA03

