Module 6 - Energy Methods

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 3 - Example: Swinging Pendulum

Topic 3 - Example: Swinging Pendulum

- Model Description and Assumptions
- Sketches and FBDs
- Kinetic and Potential Energies
- Apply Convervation of Energy
- Standard Form of EOM

Model Description and Assumptions

Model:

A Swinging Pendulum

Description:

A mass is suspended by a rigid link from a pin.

Assumptions:

Apply Convervation of Energy Standard Form of EOM

Sketches and FBDs

First *separate* the bodies of interest to draw a free body diagram.

Also, choose a zero-pontential reference.

Kinetic and Potential Energies

Now, identify all kinetic and potential energies present.

Kinetic Energy

Potential Energy

Apply Convervation of Energy

Apply the conservation of energy.

$$rac{d}{dt}\left(\textit{KE} + \textit{PE}
ight) = rac{d}{dt}\left(\textit{Constant}
ight) = 0$$

Standard Form of EOM

Finally Re-arrange the resulting equation to get the equations of motion in a standard form.