WWW.PadmanerETE MATHEWATTPECS

Binary Operation (or) closure-property

Ya, bes, axbis unique and axbes

properties

where s is any nonempty

axb

i) Commutative property

axb=bxa Vabes

G. KARTHIKEYAM THIRUVARUR DT

2) Associative Property

a*(b*c)=(a*b)*c Va,b,ces

3) Existence of identity property ees is an identity element

axe=exa=a Vacs

4) Existence of Inverse property

bes is said to be Inverse element of a

oxb=bxa=e Traes b=a-1

Exercise 12.1

i) Determine whether * is a binary operation on the sets given below i) axb = a 16100 R
1616R 33340 K

albier = (5-)xe

=> axber Ya, ber.

* is the binary operation on R.

(ii) axb=min (a,b) on A = \$ 12,3,4,53 GMAR OF LT

Let a, b ∈ A min (a, b) ∈ A For example

min (1,2)=1 €A min (1,5)=1 €A min (2,3) =2 €A

... x is the binary operation on A.

20 71. + barry + bule +

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.Padasalai.Net binary on R www.TrbTnpsc.com Let a, b eR root of negative numbers noting = 0,50¢R [: 2,-2 ER 25-2¢R => axb&R ... * is not binary on R. 2). On z, define ⊗ by (m⊗n)=mn+nm Ym,nez . Is \otimes binary on zLet minez take m=2 n=-2 $m^{n}+n^{m}=2^{-2}+(-2)^{2}$ mn+nm dz · mon &z · · · wis not binary on z. 3) Let * be defined on R by (axb) = a+b+ab-7. IS * binary on R? If so find 3* (-7) 1-et a, ber clearly a, b, a, b & R : a+b+ab-7 ER > axber * is binary operator on R 3×(-75)=3-7+3(-7)-7 45-7-21-105 = 45-133 =-88 4) Let A= ga+15b; a, b = z, check whether the usual multiplication is a binary operation on A Let x=a+J=b y=c+dJ= x, yea , a, b, c, dez xy= (at/6b) (ct/6d) = ac+5bd+15ad+16bc =(ac+5bd)+J5(ad+bc) CA

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.Padasalai.Net -' xyen

multiplication is binary on R.

5) ci). Define an operation * on 9 as follows

a*b= a+b; a, beg. Examine the closure, commutative and associative proporties satisfied by

Octosuré property given a, beq > a+beq > a+beq > a+beq. Va, beq. mutative property *is closure on q.

@ commutative property

axb=a+b

+ albeg axb=bxa

commutative proporty is true. .. * is commutative

3 associative proporty

ax(*c) = ax (b+c) = a+(btc) = 2a+b+cx== ase(bxc) = 20 +b+c-0 (a*b)*c=(a+b)*c>

 $= \frac{(a \pm b) + c}{2} = \frac{a + b + 2c}{2} \times \frac{1}{2}$

= atbtoc = 0

From 020 (0xb)xc = 0x*(bxc)

* is not associative on 9.

(ii) Define an operation * on g as follows a*b=a+b a, beg. Examine the existence of identity and the existence of inverse for the operation * on g.

(1) Existence of Identity

Let a eq, e be the identity element on 9. By depinition of * axe= ate

By definition of e axe = a.

*	_				
1	×	a	b	9	d
1	a	a	c	Ь	d
1	b	d	Q.	b	C,
1	c	c	ol	a	a
	d	d	Ь	a	C

He estimate of invarion Is it commutative and associative?

w commutative property

a*b=c but $b*a=d \Rightarrow a*b\neq b*a$ a*c=b but $c*a=c \Rightarrow a*c\neq c*a$ $\therefore *$ is not commutative.

2) associative Property

(a*b)*c = c*c = a a*(b*c) = a*b = c a*(b*c) = a*(b*c) a*(b*c) = a*(b*c)a*(b*c) = a*(b*c)

8) Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

be any three boolean matrices of the same type find w AVB ii) AAB (iii) (AVB) AC (IV) (AAB) VC.

$$\frac{1}{100} = \frac{1}{1000} \times \frac{1}{1000} = \frac{1}{10000} \times \frac{1}{100000} = \frac{1}{10000000}$$

$$\begin{array}{c}
(i) & AAB = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}
\end{array}$$

$$(iii) (AVB) \land C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(iii) (AVB) \land C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(iii) (AVB) \land C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 0 & 1$$

www.Padasalai.Net www.TrbTnpsc.com 9(i) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} ; x \in R - \{0\} \right\}$ and let x be the matrix multiplication. Determine whether x is closed under x. If so examine the commutative and associative properties satisfied by x on x.

A, BEM

1) closure property

 $= \begin{pmatrix} 5x\lambda & 5x\lambda \end{pmatrix} \in W \quad x^{\lambda} \in S - \delta_{0}$ $\Rightarrow WB = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix}$ $\Rightarrow WB = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix}$

HBEM

A,BEM => AXBEM

: * is closed, on m

2) commutative property

A*B = B*A

* is commutative on M.

3) associative property

Matrix multiplication is always associative.

i.e. A*(B*c)=(A*B)*c. \text{VAIB, CEM}

* is associative. on M.

(ii) Let $M = \left\{ \left(\frac{x}{x} \frac{x}{x} \right); x \in R - 202 \right\}$ and let * be the matrix multiplication. Determine whether m is closed under *. If so examine the existence of identity, inverse property for * on M,

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

O closuroww/proposbuji.Net HIBEM Where $A = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$, $B = \begin{pmatrix} y & y \\ y & y \end{pmatrix}$ x, y = R-{0} A*B= (2xy 2xy) EM AXB EM AIBEM => AXBEM :- * is closed on M. @ Existence of Identity property Let AEM, E=(EE) be the Identity element AE=A (xx)(ee)=(xx) $\binom{2xe}{2xe} = \binom{x}{x}$ 2xe=x1 e=12 e R-203 Identity element E= (15 1/2) EM satisfies AE=A similarly EEA=A VACM * has identity element on M (1) Existence of Inverse property. Let AGM, A = (x x) be the inverse of ANDE $\begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} x & x' \\ x' & x' \end{pmatrix} = \begin{pmatrix} b_2 & b_2 \\ b_2 & b_2 \end{pmatrix}$ $\begin{pmatrix} 2xx^{-1} & 2xx^{-1} \\ 2xx^{-1} & 2xx^{-1} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$ $2xx^{-1}=\frac{1}{2}$ x7=1x = R-203 $\vec{A} = \begin{pmatrix} \frac{1}{4x} & \frac{1}{4x} \\ \frac{1}{4x} & \frac{1}{4x} \end{pmatrix} \in M$ is the inverse of A in M similarly we can find A-IA=E YACM * Inverse on M,

(e) is Let A be 9-819, Define * on A by xxy=x+y-xy www.Padasalai.Net® Is * binary on A? If so examine the commutative and associative properties satisfied by * on A. n=q-212 x, y &A x = 1 y +1 * is defined by x*y=x+y-xy 1 closure property Let x14 EA 2+1, 4+1 virtue x-1+0, y-1+0 (x-1)(y-1) =0 xy-x-y+1+0 1 = x+4-xc4 xyen > xxyen. xxy+ 15=> xxyen * is closed on A: G karthikeyan @ commutative property: Thirwarur DT Let xiy & A xxy = xxy - xy =y+x-yxXXI = HXX. * is commutative on A. 3 resociative property: (x*y)*z = (x+y-xy)*z = (x+y-xy)+z - (x+y-xy)z(xxy)xz = x+y+z-xy-xz-yz+xyz -0 xx(xz)=xx(y+z-yz). = x+(y+z-yz) -x(y+z-yz) xx(4xz)=x+y+z-xy-xz-yz+xyz-From OSE (xxy) *z = xx(yxz) Y x1412 EA * 18 associative on A (ii) examine the existence of identity, inverse

- properties for * on A.
 - 1) closure property (same as on above)
 - @ existence of Identity property. Let xa GA, e be the identity element

BAMA Godeley Gilly of X www.TrbTnpsc.com By definition of e xxe-xe=x e(1-x)=0 Identity element e=0 EA * has Identity element on A Existence of 3 Imerse property: Let xen, in x be the inverse of x By definition of $x = x + x^{-1} = x + x^{-1} - x + x^{-1} = x + x^{-1} - x + x^{-1} = x + x + x^{-1} = x + x + x = x$ By definition of x' xxx'=e $\frac{1}{x^{2}}(1-x)=-\infty$ oc = -x GA I WEERSE OF I BY I SEESENI * has inverse element por ViceA. Mathematical Logic n palote publication put Truth tables Truth table for AND Truth table for NOT LO I DILLUTED TO STANDING TO BE TO SEE FO JET to have one we T. The Bridge 3 Truth table for or @ Truth table for conditional statement. need to sent as one of the transfer of sedant of the

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

new at with it should a large range F

www.Padasalai.Net @ Truth table por Bi-conditional statement. 9 P4>9

F T

www.TrbTnpsc.com 6 Truth table for Exclusive OR (EOR) V

Q PVQ

3 Tautology

A statement is said to be tautology if its truth values is always T irrespective of the truth values of its compound statements, (denoted by T)

8) contradiction

A statement is said to be contradiction if its truth value is always F irrespective of the truth. values of its compound statements. (denoted by (F)

9) contingency A statement which is neither a tautology nor a contradiction is called contingency.

10) Duality

The dual of a statement promula is obtained by replacing V by n T by F Fby T, F by T 1 by V

EXENCISE 12.2

1) Let p: Jupiter is a planet and q: India is an Island be any two simple statements. Give verbal sentence describing each of the following statements.

P: Jupiter is a planet q: India is an Island.

(1) -p: Jupiter is not a planet

(i) Pn-q: Jupiter is a planet and India is not an Island,

(iii) -pvq: Jupiter is not a planet or India is an Island

(1) P→79: If Jupiter is a planet then India is not Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.TrbTnpsc.com

- (v) P ⇔ q: Jupiter is a planet if and only if India is an Island.
- 2) write each of the following sentences in symbolic form using statement variables P and q.

P: 19 is a prime number

q: All the angles of a triangle are equal,

is 19 18 not a prime number and all the angles of a triangle are equal.

7PA9

(11) 19 1s a prime number or all the angles of a triangle are not equal.

PV-19

(ii) 19 is a prime number and all the angles of a triangle are equal

PN9

(14) 19 is riot a prime rumber

-, P.

3) Determine the Truth value of each of the pollowing statements.

U If 6+2=5, then the milk is white.

P; 6+2=5 F

of q: The milk is white T

Symbolic form is

FIT Truth value is T

(ii) china is in Europe or J3 is an integer.

p: china is in Europe F q: 13 is an integer F

symbolic Form is PVQ

FVF Truth value is F

(ii) It is not true that 5+5=9 or Earth is a planet,

P: It is true that 5+5=9

q: Earth is a planet.

symbolic form is ¬PVQ!

Truth value TVT

Truth value is T

(11) 11 is a prime number and all the sides of a rectangle are equal.

P: 11 is a prime number of all the sides of a rectangle are equal.

Symbolic form is Priq.
Truth value TNF

Truth value is IF

4) which one of the following sentences is a proposition?

w 4+7=12 proposition

iii what are you doing? (not a proposition)

(iii) 3n < 81, nEN (proposition)

(11) Peacock is our national bird. (proposition)

(v) How tall this mountain is! (not a proposition)

-: with the one propositions,

5) write the converse, inverse, and contrapositive of each of the following implication

is If x and y are numbers such that x=y, then x2=y2

P: x and y are numbers such that x=y $q: x^2=y^2$

given statement symbolic form is P->2

Oconverse 9>P

If x and y are numbers such that x2=y2

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner -② <u>Irwerse</u>: ¬p→¬q

If x and y ove numbers such that x + y then x + y2

- ③ contrapositive: $\neg q \rightarrow \neg p$ If x and y are numbers such that $x^2 + y^2$ then $x \neq y$
- ii) If a quadrilateral is a square then it is a rectangle.

P: A quadrilateral is a square.

q: A quadrilateral is a rectangle

given statement is P->9

O cowerse: 9>P

If a quadrilateral is a rectangle then it is a square.

2 Inwerse: -- p->-9

If a quadrilational is not a square. Then
It is not a rectangle.

3 Contrapositive:

If a quadrilateral is not a rectangle. then it is not a square.

6) construct the truth table for the following

U TPATE

V	P	2	-IP	79	1-7F	7-19	CHI.	2 (3)	orly in
A	*	T	F	F	101	F	F 19	G.KO	irthikoyan
	T	F	F	T	PPS	F			uvarur DT
A	F	Т	T	F	7	F	100	The same	1
0	F	F	T	·T	i i	T	dio-	T	T - 100
10.	- /	0.4	-01	0	0	-10	DA	40	- (DA-

(p ~ ¬q)	Р	9	79	P1-19	-1 (PA-19)
Filley adiabasi umdakat	1-1-1	1-1-1	444	F F	T F T T

iii) (PVq)V¬q	P	9	brd	79	(pva) V (79)
	T	T	T	F	T
	T	F	T	T	T
WANN.	F	T	T	F	T
. O	F	F	F	T	T

P	19	r	7P	7p->r	P4>9	(-p>r)∧(p>q)
T	T	т.	F	Т	T	T
T	T	F	F.I	no.T	T	T
T	F	T	F	T	F	F
1	F	F	F	T	F	F
F	T	T	T	on Trees	de ·	F
F	T	F	Т	FA	F	F
F	F	T	T	T	7	T
F	F	F	T	FS	T	F

To verify whether the following compound propositions are tautologies or contradictions or contingency,

in	(PAQ)	1	-1 (PVCL)
----	-------	---	-----------

12	12	P/9.	PVq_	7CPV2)	(Bud) V-1(7/d)
T	T	T	本	F	F
F	Ť	F	7	F	F
F	F	F	>F	T	F

Last column contains only F This is a contradiction

W (CPYQ) 1 ¬P)→q

P	9	PVQ	¬P	(END) V-L	~((PVQ)∧¬P)→Q
T	4	т	F	F	N. T.
T	OF-	T	F	F	1-
F	7	Typ	Tp	Time	0.0
F	F	F	TI	F	T

Last column. contains only T This is a Tautology.

 $(1) \quad (P \rightarrow Q) \iff (P \rightarrow Q) \qquad \text{www.TrbTnpsc.com}$

·P	9	P→q	-P	7P->92	(P→q) ←> (¬P>q)
Т	7	Т	F	Т	T.
Т	F	F	F	T	F
F	T	T	T	T	T
F	F	7	T	F	F

Last contains T and F

... This is a contingency,

UV) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

P	9	r	P→q	q→r	p→r	(P→q)∧(q→r)	((p→q) \(q→n)) → (p→r
T	T	T	T	Ţ	T	145	T
T	T	F	1	-	-	100	Dist.
Т	F	T	P -	1		S	1
T	F	F	-	1	-		
F	T	T	T	51	1	5	To O
F	Т	F	T	F	T	F	180° T
F	F	-	T			T	UT
F	F	F	T	JT (T- kin	

Last contains only T _-This is a tautology;

8) show that is - (PAQ) = -PY-19

D	TAR	PAQ	T(PAQ)
丁	T	Т	(5)
Т	F	F	65
F	T	F	ST.

		Wa	TABLE	(2)
P	9	TP	79	TPVTQ
Т	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	$-\tau$

From Table Ole Last columns ove Identical.

-: - (PAQ) = -PV-1Q.

8) ii) -	7	D-7	Q)三 P	
Mar and Darke	P	9	P->2	-(P->q)
Table	TT	TF	T	F
	+	0.1	T	F

79
2010

From Padesalai Note 6 www.TrbTnpsc.com
Last columns are identical :. ¬(P->9) ≡ P1(~99)

9) prove that $q \rightarrow p \equiv \neg p \rightarrow \neg q$

		TH	BLEO
	P	2	Q->P
1	Т	T	T
ı	Т	F	T
	F	T	F
	F	F	T

	TF	BLE	=0		To AMMA
1	P	9	¬P	79	7P->-19
	T	T	F	F	T
	T	F	F	T	1 -7
	F	Т	T	F	F
	F	F	T	T	The state of the s

From table 020 The last columns are identical.

10) show that p-19 and 9->p are not equivalent.

THOLEO .	Р	Q	P->9
Ť	T	TF	17 1
	F	T ·	T

THBLE	Р	2	9->P
	十二	不是	Τ.
	FF	TF	F

ruot identical. P->9 \$ 12->P.

1). show that -- (p => q) = p -- 1q

	P	9.	p <>> 9	-1(P4>9)	311
TABLE	т	Т	7100	in Fig.	TABL
	T	F	F	7	800
	F	T	F	5	1550
-18/8/	F	F	T	CSF	

13	P	9	79	p ←>79
上の	T	T	F	F
E	T	F	T	т
ell.	F	\mathcal{A}_{i}	W.F	CRIT 18
	F	F	T	SA.E
	3191	337	1000	10 47 P

From table 080 Last columns are Identical: $\neg (p \Leftrightarrow q) = p \Leftrightarrow \neg q$

12) check whether the statement $P \rightarrow (Q \rightarrow P)$ is a tautology or a contradiction without using the truth table.

$$P \rightarrow (Q \rightarrow P) \equiv P \rightarrow (\neg Q \vee P)$$

 $\equiv \neg P \vee (\neg Q \vee P)$
 $\equiv \neg P \vee (P \vee \neg Q)$ (* commutative
 $\equiv \neg P \vee P) \vee \neg Q$ [* associative Law]

= T V 79

ET

.. P → (q → P) is a Tauto logy.

13) using truth table check whether the statements - (pvq) v (-prq) and -p are logically equivalent

F	9	PVQ	T(PVQ)	¬P	(JPAQ)	-(pvq) V(-1P19)
7	Т	Т	F	F	F	F
Т	F	т	F	F	F.	F
F	T	Т	F	5	Т	Tinaut
F	F,	VIE)T	pr-T.gc	TTT	NF9	T

From the table Last column and the Fifth columns one Identical:

-(CPVQ) V (-1PAQ) = -1P

14) Prove $p \rightarrow (q \rightarrow r) \equiv (pnq) \rightarrow r$ with out using truth table.

 $p \rightarrow (q \rightarrow r) \equiv p \rightarrow (\neg q \vee r)$

= ¬pv(¬qvr)

Law)

THE (EVPE -CPAQ) VY

(push or = (6 va) - na bus and bus)

Hence proved,

15) prove that $p \rightarrow (\neg q vr) \equiv \neg p v (\neg q vr)$ using truth table.

TABLE (P> (-19 vr)

P	9	r	79	(gvr)	P>(-1qvr)
Т	Т	Т	F		T
Т	Т	F	F	F	F
T	F	T	T	T	The terms
T	F	F	Ť	· T	~ i T
F	T	Ţ	F	TIN	E T
F	T	F	F	EX	Τ
F	F	T	T	\$	T
F	F	F	T 1	AT I	TI

TABLE (2)

INPLE	41						Land a MANA and a second
	P	9	2	TP	79	(T9V7)	JPV(JQVI)
	T	T	7	F	#F24	7. 700	TO
	T	T	FO	FF.	F=	Family	FINNS
2 1 2 1 1 C	7	F	T	F	1	T	T
	T	F	F	F		T	
0019	F	T	TO	7	F'	7	一十二
Salaran I	F	T	\$	Ţ,	F	F	Fred T
5 L-20 K-	F	FA	5	T	T	丁	T _
salalah Unang	F	F	- The	E		T	T

From Table (1)20 Last column are Identical.

P > $(\neg q v r) \equiv \neg P \lor (\neg q v r)$ (Using one table is also good)

Need Suggestions G. Karthikeyan Thiruvarur(DT) 9715634957