4

	〔問1〕	1	イ	2	ウ					
	〔問 2〕	〔証	明〕							
	1 辺の長さが $2a$ cmの正方形の面積は $(2a)^2$ cm 2 , この正方形の各辺に接する円の 面積は πa^2 cm 2 で,タイルが n^2 枚あるから,									
	$X = \{ (2 a)^{2} - \pi a^{2} \} \times n^{2}$ $= (4 a^{2} - \pi a^{2}) \times n^{2}$ $= (4 - \pi)a^{2}n^{2} \cdots \cdots$									
2	タイルを縦と横に n 枚ずつ並べてできる 正方形と同じ大きさの正方形の 1 辺の長さ は $2an$ cm, この正方形の各辺に接する円の 半径は an cmであるから, $Y = (2an)^2 - \pi \times (an)^2$ $= 4a^2n^2 - \pi a^2n^2$									
	$= (4 - \pi)a^2n^2 \qquad \cdots \qquad (2)$									

(1), (2)より,

X = Y

	〔問1〕	Ž		え	2		2		5
3	〔問 2〕	1		1		2	ア		問 2 5 点
	〔問3〕	1 2							問3 5 点
								\equiv	問1

〔問1〕				1		5
〔問2〕	1	〔証	明〕			問2① 7 点

仮定から、AB=APだから、
△ABPは二等辺三角形である。
二等辺三角形の底角は等しいから、
∠ABP=∠APB
よって、
∠ABP=∠QPR ···········(1)
四角形ABCDは長方形だから、
AB // DC

平行線の同位角は等しいから, $\angle ABP = \angle QRP \cdots \cdots (2)$ (1), (2)より $\angle QPR = \angle QRP$ よって, $\triangle QRP$ において, 2つの角が等しいから,

 $\triangle QRP$ は二等辺三角形である。

5.

			お	4
問2	2	おかき	か	8
			き	5

	〔問1〕	<	<	5	問1 5 点
5	〔問 2〕	<u>けこ</u> さ	け	9	問 2 5 点
			ت	6	
			さ	5	

※ 1 [問7] 全て「正答」で、点を与える。

※ 2 [問1] 全て「正答」で、点を与える。

※ 3 〔問2〕 全て「正答」で、点を与える。