Indian Institute of Technology Kharagpur Mid-Spring Semester Examination 2022-23

Date of Examination: Session FN/AN, Subject. No. MA60056 / MA60280

Department: Mathematics

Duration:2 Hrs, Subject Name: RTSM TOTAL MARKS: 30

Specific Chart, graph paper log book etc. required.... NO. No. of Registered Students: 62 (PGDBA)+64 (B.Tech)

INSTRUCTIONS: Answer all the questions. Answer all parts of a question in consecutive places. Numerical answers must be in decimal. Answer only within the error range ∓ 0.01 will get the credit.

Numeric values might be of use: $\Phi(1.64) = 0.90$; $\Phi(1.96) = 0.95$, $\Phi(0.25) = 0.5987063$. $P(t_{18} < 2.1) = 0.975$, $P(t_{9} \le 1.833) = 0.95$, $P(t_{8} \le 2.306) = 0.975$, $P(t_{6} \le 2.447) = 0.975$

- 1. Let $S_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 \leq 9\}$ and a subspace of \mathbb{R}^3 as $S_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + 5x_2 + 9x_3 = 0, 2x_1 + 4x_2 + 6x_3 = 0\}$. Find the area of $S_1 \cap S_2^{\perp}$. [4]
- 2. Let (X,Y) follow a bivariate normal distribution with $(\mu_x=2,\mu_y=3,\sigma_x^2=4,\sigma_y^2=9,\rho=1/3)$. Find $P(|3X-2Y| \leq \sqrt{3})$.
- 3. Let $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ for all i = 1, 2, ... 10 independently. Observed values of $\hat{\beta}_0 = 1.2$, MSError = 3.6, $\bar{x} = 2.3$, $S_{xx} = 5.7$. Compute the observed absolute value of the t-statistic for $H_0: \beta_0 = 1.8$ vs $H_1: \beta_0 \neq 1.8$. [4]
- 4. Let for a simple linear regression model MSError = 0.35, n = 10, $S_{xx} = 5.7$, $\bar{x} = 3.5$. Find the length of the 95% prediction interval of y for x = 3.3 [4]
- 5. For the model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n), Y \in \mathbb{R}^n, \beta \in \mathbb{R}^{(k+1)}$ if $R^2 = 0.82, k = 6, n = 25$ find the value of F-statistic for the ANOVA of regression model. [4]
- 6. Prove or disprove: $(Y_1 2Y_2 + 3Y_3 1.5Y_4 0.5Y_6)$ is a liner zero function under multiple linear regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N(0, \sigma^2\mathbf{I}_6)$, $\mathbf{Y} \in \mathbb{R}^6$, $\boldsymbol{\beta} \in \mathbb{R}^4$ observed \mathbf{X} matrix is

$$\mathbf{X} = \begin{bmatrix} 1 & 3.0 & -1.5 & -0.4 \\ 1 & 1.5 & 1.0 & 2.0 \\ 1 & 0.5 & 2.0 & 0.8 \\ 1 & 1.0 & 1.0 & -2.0 \\ 1 & 7.0 & 4.0 & 0.9 \\ 1 & 0.0 & 2.0 & 7.0 \end{bmatrix}$$

- 7. For the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n), \mathbf{Y} \in \mathbb{R}^n, \ \boldsymbol{\beta} \in \mathbb{R}^{(k+1)}$ test at 5% level for the hypothesis $H_0: \beta_1 2\beta_2 = 2.2$ against $H_1: \beta_1 2\beta_2 \neq 2.2$. It is given that n = 25, k = 6, estimated values of β_1 and β_2 are 3.73 and 0.75 respectively. Denoting $C = (\mathbf{X}^T \mathbf{X})^{-1}$ it is obtained from data that $C_{00} = 0.0839, C_{11} = 0.25, C_{22} = 0.64, C_{02} = 0.12, C_{12} = 0.025$ and $\hat{\sigma} = 0.125$. Find the observed value of t-statistic.
- 8. Consider the simple linear regression model E(y|x) = a + bx. Here x variable stands for the length of a pendulum in \log_{10} scale and y variable stands for the measured time period of it in the \log_{10} scale too. Under the i.i.d. normality assumption for random errors predict value of the time period (y_0) for length $x_0 = 1.06$ with justification.

$\int x$	1.04	1.08	1.02	1.10	1.07	1.05	1.03	1.09
y	0.818	0.845	0.899	0.865	0.890	0.946	0.938	0.935