${\bf Table~1}~~{\bf Definitions~and~Comparisons~of~Conditions}$

Perfect Foresight Versions	Uncertainty Versions
Finite Human Wealth Condition (FHWC)	
$\Gamma/R < 1$	$\Gamma/R < 1$
The growth factor for permanent income	The model's risks are mean-preserving
Γ must be smaller than the discounting	spreads, so the PDV of future income is
factor R for human wealth to be finite.	unchanged by their introduction.
Absolute Impatience Condition (AIC)	
$\mathbf{p} < 1$	$\mathbf{b} < 1$
·	_ `-
The unconstrained consumer is	If wealth is large enough, the expectation
sufficiently impatient that the level of	of consumption next period will be
consumption will be declining over time:	smaller than this period's consumption:
$\mathbf{c}_{t+1} < \mathbf{c}_t$	$\lim_{m_t o \infty} \mathbb{E}_t[\mathbf{c}_{t+1}] < \mathbf{c}_t$
Return Impatie	
Return Impatience Condition (RIC)	Weak RIC (WRIC)
$\mathbf{b}/R < 1$	$\wp^{1/\rho}\mathbf{p}/R < 1$
The growth factor for consumption D	If the probability of the zero-income
must be smaller than the discounting	event is $\wp = 1$ then income is always zero
factor R, so that the PDV of current and	and the condition becomes identical to
future consumption will be finite:	the RIC. Otherwise, weaker.
$c'(m) = 1 - \mathbf{P}/R < 1$	$c'(m) < 1 - \wp^{1/\rho} \mathbf{P}/R < 1$
Growth Impatience Conditions	
GIC	GIC-Nrm
$\mathbf{b}/\Gamma < 1$	$\mathbf{P} \mathbb{E}[\Psi^{-1}]/\Gamma < 1$
For an unconstrained PF consumer, the	By Jensen's inequality stronger than GIC.
ratio of \mathbf{c} to \mathbf{p} will fall over time. For	Ensures consumers will not expect to
constrained, guarantees the constraint	accumulate m unboundedly.
eventually binds. Guarantees	
$\lim_{m_t \uparrow \infty} \mathbb{E}_t[\Psi_{t+1} m_{t+1} / m_t] = \mathbf{p}_{\Gamma}$	$\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{p}_{\underline{\Gamma}}$
Finite Value of Autarky Conditions	
PF-FVAC	FVAC
$\beta\Gamma^{1-\rho} < 1$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$
equivalently $\mathbf{p} < R^{1/\rho} \Gamma^{1-1/\rho}$, , ,
The discounted utility of constrained	By Jensen's inequality, stronger than the
consumers who spend their permanent	PF-FVAC because for $\rho > 1$ and
income each period should be finite.	nondegenerate Ψ , $\mathbb{E}[\Psi^{1-\rho}] > 1$.