Graph Mining SD212

2. Random graphs

Thomas Bonald

2017 - 2018

Motivation

Random graph = random instance of a graph with some specific statistical properties

Motivation

Random graph = random instance of a graph with some specific statistical properties

Useful for:

- generating graphs "for free"
- testing algorithms (simulation)
- proving algorithms / providing performance guarantees (analysis)

Motivation

Random graph = random instance of a graph with some specific statistical properties

Useful for:

- generating graphs "for free"
- testing algorithms (simulation)
- proving algorithms / providing performance guarantees (analysis)

We focus on **undirected** graphs; the results naturally extend to directed graphs

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model
- 4. Stochastic block model

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v
- Degree distribution

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v
- Degree distribution (all instances)
- Empirical degree distribution (one instance)

Large Erdös-Rényi graphs

- $ightharpoonup n o +\infty$
- ightharpoonup p
 ightharpoonup 0
- ▶ $np \rightarrow \lambda$

Example with n=100, p=0.03 ($\lambda=3$)

Large Erdös-Rényi graphs

- $ightharpoonup n o +\infty$
- ightharpoonup p
 ightharpoonup 0
- ▶ $np \rightarrow \lambda$
- Degree distribution (all instances)
- Empirical degree distribution (one instance)


```
~P(\I ambda)
```

Galton-Watson tree

Recursive definition:

- A root
- ► The offspring of each node has a Poisson distribution with parameter λ n-> +\infy, p->0, (n-n_new)p = \lambda

```
 \begin{array}{lll} X \sim P(\lambda) \\ G(t) &= E(t^*) \\ &= \sum_{i=0}^{\infty} \frac{1}{i} &= e^{-i} \\ &= e^{-i} \\
```

Three regimes

\frac{1} {1-\lambda}

Extinction probability

Assume
$$\lambda \geq 1$$
 q = \lim_{k -> + \infinity} P(Z_{k=0})

Fixed-point equation

Extinction probability

Back to Erdös-Rényi graphs

Three regimes:

- ▶ **Subcritical** (λ < 1): finite tree \rightarrow many small components
- Supercritical (λ > 1): infinite tree with probability p = 1 − q → one giant component containing a fraction p of the nodes (the others in small components)
- ▶ **Critical** ($\lambda = 1$): finite tree (but infinite expectation) → one large component

Examples

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model
- 4. Stochastic block model

Power law

► The typical degree distribution of real graphs is of the form

$$p_k \propto \frac{1}{k^{\alpha}} \quad \alpha > 1$$

Power law

► The typical degree distribution of real graphs is of the form

$$p_k \propto rac{1}{k^{lpha}} \quad lpha > 1$$

 Explained by the "rich get richer" phenomenon Barabasi & Albert 1999

Barabasi-Albert model

Explicit construction (with $d \ge 1$):

- Start from a clique of d nodes
- ► Add new nodes one at a time, each of degree *d* and with **preferential attachment**

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model
- 4. Stochastic block model

Configuration model

Given some sequence of integers d_1, \ldots, d_n , can we generate a graph with this particular **degree sequence**?

Havel-Hakimi algorithm

 $http: \verb|//blog.51cto.com/sbp810050504/883904| \\$

Random configuration

Number of self-loops

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model
- 4. Stochastic block model

Stochastic block model

Random graphs with some underlying community structure

- ▶ A partition of $\{1, ..., n\}$ in k blocks
- ► A block connectivity matrix B

Summary

Random graphs are generated from **models**

- Erdös-Rényi graphs
- Preferential attachment
- Configuration model
- ► Stochastic block model

- \rightarrow No structure
- \rightarrow Power law
- → Degree sequence
- \rightarrow Clusters

These may be combined to get more realistic (but complex) models