NYU Tandon School of Engineering Fall 2022, ECE 6913

Project A Report

Name: Anjali Gohil and Ankita Gupta NetID(Section B): ag8822@nyu.edu

NYU ID: N12735714

NetID (Section A) : ag9135@nyu.edu

NYU ID: N15402218

1. Schematic for a single stage processor

2. Schematic for a five stage processor

3. Performance parameter measures

Formulas Utilized -

CPI = No. of cycles/No. of instructions
Instructions per cycle = 1/Cycles per instruction

Final Grid -

# Test Case	No. of instructions	No of Cycles		Cycles per instruction (CPI)		Instructions per cycle (IPC)	
		Single	Five	Single	Five	Single	Five
		Stage	Stage	Stage	Stage	Stage	Stage
Test	5	6	10	1.2	2	0.83	0.5
Case 0							
Test	39	40	46	1.02	1.18	0.98	0.85
Case 1							
Test	6	7	10	1.16	1.67	0.86	0.6
Case 2							
Test	7	8	11	1.14	1.56	0.88	0.64
Case 3							
Test	27	28	38	1.04	1.4	0.96	0.71
Case 4							

4. Compare the results from both the single stage and the five stage pipelined processor implementations and explain why one is better than the other

Five Stage Advantages -

- Throughput (rate of doing work) per instruction increases.
- No. of instructions executed simultaneously increases.
- Faster ALU can be designed when pipelining is utilized.
- Clock frequencies of pipelined CPU is higher than that of RAM. Hence, decrease in execution time is significant.
- Overall increase in performance of CPU.

Single Stage Advantages -

- Designing single stage processor is less tedious.
- Instruction latency is relatively lower.
- Prediction of throughput is also easier.
- The probability of hazard problems for branch instructions is way less.
- Total time including the execution time is lower than five stage.
- 5. Optimizations / Features added to improve performance (1 additional credit)
 - # Not Added