

Introduction to Hypothesis Testing

• Estimation is the application of an algorithm

- Estimation is the application of an algorithm
 - E.g. Taking an average: $\bar{X} = \sum_{i=1}^{N} x_i / n$

- Estimation is the application of an algorithm
 - E.g. Taking an average: $\bar{X} = \sum_{i=1}^{N} x_i / n$
- Inference is putting an accuracy on our estimate

- Estimation is the application of an algorithm
 - E.g. Taking an average: $\bar{X} = \sum_{i=1}^{N} x_i/n$
- Inference is putting an accuracy on our estimate
 - E.g. Standard error around average: $\left[\sum_{i=1}^{n} \frac{(x_i \bar{x})^2}{n(n-1)}\right]^{1/2}$

- Estimation is the application of an algorithm
 - E.g. Taking an average: $\bar{X} = \sum_{i=1}^{N} x_i / n$
- Inference is putting an accuracy on our estimate
 - E.g. Standard error around average: $\left[\sum_{i=1}^{n} \frac{(x_i \bar{x})^2}{n(n-1)}\right]^{1/2}$
- (Possibly surprising) fact about inference: we use the same data we used for estimation to do inference!

- Estimation is the application of an algorithm
 - E.g. Taking an average: $\bar{X} = \sum_{i=1}^{N} x_i/n$
- Inference is putting an accuracy on our estimate
 - E.g. Standard error around average: $\left[\sum_{i=1}^{n} \frac{(x_i \bar{x})^2}{n(n-1)}\right]^{1/2}$
- Check for understanding: Can we name some other types of estimation or inference we've seen before?

Quick aside on philosophy of statistics (review)

Frequentist Statistics

 A frequentist is concerned with repeated observations in the limit

Frequentist Statistics

- A frequentist is concerned with repeated observations in the limit
- Processes may have true frequencies, but we're interested in modeling probabilities as many, many (many!) repeats of an experiment

Frequentist Statistics

- A frequentist is concerned with repeated observations in the limit
- Processes may have true frequencies, but we're interested in modeling probabilities as many, many (many!) repeats of an experiment

- 1. Derive the probabilistic property of a procedure
- 2. Apply the probability directly to our observed data

A Bayesian describes parameters by probability distributions

- A Bayesian describes parameters by probability distributions
- Before seeing any data, a prior distribution (based on the experimenters' belief) is formulated

- A Bayesian describes parameters by probability distributions
- Before seeing any data, a prior distribution (based on the experimenters' belief) is formulated
- This prior distribution is then updated after seeing data (a sample from the distribution)

- A Bayesian describes parameters by probability distributions
- Before seeing any data, a prior distribution (based on the experimenters' belief) is formulated
- This prior distribution is then updated after seeing data (a sample from the distribution)
- After updating, the distribution is called the posterior distribution

Frequentist vs. Bayesian

- We use much of the same math and the same formulas in both frequentist and Bayesian statistics
- What differs is the interpretation
- We will point out the difference in interpretation where appropriate

Back to our regularly scheduled hypothesis testing lecture...

A hypothesis is a statement about a population parameter

A hypothesis is a statement about a population parameter

- In hypothesis testing, we create two hypotheses
 - The null hypothesis (H₀)
 - And the alternative hypothesis (H₁ or H_A)

A hypothesis is a statement about a population parameter

- In hypothesis testing, we create two hypotheses
 - The null hypothesis (H₀)
 - And the alternative hypothesis (H₁ or H_A)

 We decide which one to call the null depending on how our problem is set up

A hypothesis is a statement about a population parameter

- In hypothesis testing, we create two hypotheses
 - The null hypothesis (H₀)
 - And the alternative hypothesis (H₁ or H_A)

 Check for understanding: Can we give some examples of a null and alternative hypothesis from OLS?

Decision Rules: Frequentist Interpretation

- A hypothesis testing procedure gives us a rule to decide:
 - For which values of our test statistic do we accept H₀
 - For which values of our test statistic do we reject H₀
 and accept H₁

Decision Rules: Frequentist Interpretation

- A hypothesis testing procedure gives us a rule to decide:
 - For which values of our test statistic do we accept H₀
 - For which values of our test statistic do we reject H₀
 and accept H₁
- You may hear some people say that you can reject H₀ but that you never accept H₁ — for our purposes, this doesn't matter so much: we're using hypothesis testing in order to decide which of two paths to take in our project

Decision Rules: Bayesian Interpretation

- In the Bayesian interpretation (example to follow), we don't get a decision boundary
- Instead, we get updated (posterior) probabilities

Likelihood Ratio Test

Coin Tossing Example

- You have two coins
 - Coin 1 has a .7 probability of coming up heads
 - Coin 2 has a .5 probability of coming up heads
- Pick one coin without looking
- Toss the coin 10 times and record # heads
- Question: Given the number of heads you see, which of the two coins did you toss?

 Given what we know about coins 1 and 2, we can make a table of the probability of seeing x heads out of 10 tosses

X	0	1	2	3	4	5	6	7	8	9	10
Coin 1 P(Head) = .5	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001
Coin 2 P(Head) = .7	0.000	0.0001	0.001	0.009	0.037	0.103	0.200	0.267	0.236	0.121	0.028

 We can now calculate a likelihood ratio, based on the number of heads we saw when tossing the unidentified coin

X	0	1	2	3	4	5	6	7	8	9	10
Coin 1 P(Head) = .5	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001
Coin 2 P(Head) = .7	0.000	0.0001	0.001	0.009	0.037	0.103	0.200	0.267	0.236	0.121	0.028

• Let's say we saw three heads

X	0	1	2	3	4	5	6	7	8	9	10
Coin 1 P(Head) = .5	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001
Coin 2 P(Head) = .7	0.000	0.0001	0.001	0.009	0.037	0.103	0.200	0.267	0.236	0.121	0.028

- Let's say we saw three heads
 - $P_1(3)/P_2(3) = 0.117/0.009 = 13$
 - Coin 1 was 13 times more likely to give us the output
 3 heads than coin 2 was

X	0	1	2	3	4	5	6	7	8	9	10
Coin 1 P(Head) = .5	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001
Coin 2 P(Head) = .7	0.000	0.0001	0.001	0.009	0.037	0.103	0.200	0.267	0.236	0.121	0.028

- Let's say we saw three heads
 - $P_1(3)/P_2(3) = 0.117/0.009 = 13$
 - Coin 1 was 13 times more likely to give us the output
 3 heads than coin 2 was
 - We call this the likelihood ratio

- In the Bayesian interpretation of hypothesis testing, we need to have priors for each hypothesis
 - In this case, we randomly chose the coin to flip
 - $P(H_1 = we chose coin 1) = 1/2 and$
 - $P(H_2 = we chose coin 2) = 1/2$
 - ... we have no way, before seeing the data, to determine the coin that was chosen, so just assign 1/2 to each

- Priors: $P(H_1) = 1/2 = P(H_2) = 1/2$
- Updating priors after seeing the data (e.g. x = 3 heads)

$$P(H_1 | x) = \frac{P(x | H_1)P(H_1)}{P(x)}$$

- Priors: $P(H_1) = 1/2 = P(H_2) = 1/2$
- Updating priors after seeing the data (e.g. x = 3 heads)

•
$$P(H_1 | x) = \frac{P(x | H_1)P(H_1)}{P(x)}$$

• We can write out the ratio: $\frac{P(H_1|x)}{P(H_2|x)} = \frac{P(H_1)P(x|H_1)}{P(H_2)P(x|H_2)}$

The priors (P(H₀)/P(H₁)) are multiplied by the likelihood ratio, which

aces not depend on the priors

The likelihood ratio tells us how we should update the priors in

reaction to seeing a given set of data!

- Priors: $P(H_1) = 1/2 = P(H_2) = 1/2$
- Updating priors after seeing the data (e.g. x = 3 heads)

•
$$P(H_1 | x) = \frac{P(x | H_1)P(H_1)}{P(x)}$$

- We can write out the ratio: $\frac{P(H_1|x)}{P(H_2|x)} = \frac{P(H_1)P(x|H_1)}{P(H_2)P(x|H_2)}$
- The priors (P(H₁)/P(H₂)) are multiplied by the likelihood ratio, which does not depend on the priors
- The likelihood ratio tells us how we should update the priors in reaction to seeing a given set of data!

Neyman-Pearson Interpretation

- Neyman-Pearson paradigm (1933) is non-Bayesian
- Gives up or down vote on H₀ vs H₁

- Neyman-Pearson paradigm (1933) is non-Bayesian
- Gives up or down vote on H₀ vs H₁
- Terminology:

		Decision	
		Accept H₀	Reject H₀
Tu4la	H₀	Correct	Type I error
Truth	H₁	Type II error (β)	Correct

Power of a test = 1 - P(type II error)

 The likelihood ratio is called a test statistic: we use it to decide whether to accept/reject H₀

- The likelihood ratio is called a test statistic: we use it to decide whether to accept/reject H₀
 - The set of values of the test statistic that lead to rejection of H₀ is called the **rejection region**
 - The set of values of the test statistic that lead to acceptance of H₀ is called the **acceptance region**

- The likelihood ratio is called a test statistic: we use it to decide whether to accept/reject H₀
 - The set of values of the test statistic that lead to rejection of H₀ is called the **rejection region**
 - The set of values of the test statistic that lead to acceptance of H₀ is called the **acceptance region**
- The test statistic's distribution when the null is true is called the null distribution

Neyman-Pearson Interpretation of Coin Tossing Example

- In the coin tossing example:
 - H_0 : the coin is fair and P(H) = .5
 - H_1 : the coin is unfair and P(H) > .7
- Check for understanding: How can we test the null hypothesis? Take a minute and write it out!

Neyman-Pearson Interpretation of Coin Tossing Example

- In the coin tossing example:
 - H_0 : the coin is fair and P(H) = .5
 - H_1 : the coin is unfair and P(H) > .7
- Test the null hypothesis
 - We know H₀ is distributed binom(10, .5)
 - Choose a p-value cutoff (more on p-values soon), say .05
 - Calculate the CDF of 3 positives from a binom(10, .5)
 - = 82%
 - This is > 5%, so we don't reject H_0

Significance Level & P-Values

Significance Level and P-Values

- We know the distribution of our null hypothesis
- To get a rejection region, we calculate our test statistic
- We will choose, before testing our data, the level at which we will reject our null hypothesis

Significance Level and P-Values

- A significance level (a) is a probability threshold below which the null hypothesis will be rejected
- We must choose an a before computing our test statistic! If we don't, we might be accused of p-hacking
- Choosing α is somewhat arbitrary, but often .01 or .05
- The p-value is the smallest significance level at which the null hypothesis would be rejected
- Fisher interpretation of p-value: the probability under the null of a result as or more extreme than actually observed
- The confidence interval: the values of our statistic for which we accept the null

Significance Level and P-Values

F-Statistic

F-Statistic

- H₀: the data can be modeled by setting all betas to zero
- Reject the null if the p-value is small enough

OLS Regression Results

Dep. Variable:	Y	R-squared:	0.733
Model:	OLS	Adj. R-squared:	0.663
Method:	Least Squares	F-statistic:	10.50
Date:	Mon, 08 Oct 2018	Prob (F-statistic):	1.24e-05
Time:	20:16:45	Log-Likelihood:	-97.250
No. Observations:	30	AIC:	208.5
Df Residuals:	23	BIC:	218.3
Df Model:	6		
Covariance Type:	nonrobust		

QUESTIONS?