Statistical Learning: Feature Learning

Jesse Gronsbell

Department of Statistical Sciences, University of Toronto

Recap from yesterday

How to compute or estimate m and b for the linear model with LS

More on LS and linear regression

Logistic regression

What we'll cover today

• Feature learning

Model evaluation

Part III: Principal Component Analysis

What happens when we have more covariates?

p = 1

What happens when we have more covariates?

Why do we have to think about this?

• In the old days, we had a **small number of covariates** to build a model

We now have big data sets that require a lot of cleaning and preparation

- Cleaner and correctly prepared data will lead to "good" results
 - Good = prediction performance, interpretation, understanding, trustworthiness, etc.

Feature (or representation) learning

- A subfield of statistical learning (or ML) focusing on methods that yield useful
 and often concise representations of the data
- Can replace feature engineering or the manual process of identifying covariates

- Useful when:
 - We have a lot of covariates and want to simplify and/or remove noise
 - The data set doesn't have a natural representation
 - **Ex.** Yelp dataset on kaggle has 5.2 million reviews on 174,000 businesses

There are many flavors of feature learning

Supervised

Find a representation of **X** using **y**

- Linear discriminant analysis ('shallow')
- Neural network ('deep')

Unsupervised

Find a representation of **X** without using **y**

- Principal component analysis ('shallow')
- Autoencoder ('deep')

There are many flavors of feature learning

Supervised

Find a representation of **X** using **y**

- Linear discriminant analysis ('shallow')
- Neural network ('deep')

Unsupervised

Find a representation of **X** without using **y**

- Principal component analysis ('shallow')
- Autoencoder ('deep')

Principal component analysis (PCA)

 PCA generates new covariates that are weighted sums of the original covariates

- The new covariates capture the variance in the data and are uncorrelated
- Sometimes, only a subset of the new covariates contain all the variability in the original covariates
 - PCA yields a more compact representation of the original data set without losing information

Visualizing PCA

Intuition for the math behind PCA

 We obtain the principal components with the eigendecomposition of the covariance matrix of X

- The covariance matrix tells us how the covariates vary with one another
- The **eigendecomposition** gives us:
 - **Eigenvectors**: the directions (or components) that capture the most variance
 - **Eigenvalues**: the magnitude of the directions
- The eigenvectors with the largest eigenvalues are the principal components

PCA is great - what is the catch?

 We may have a more compact data set, but our new covariates are harder to understand

We pay the price in what is called model interpretability

More in the deep learning lectures!

