ЛАБОРАТОРНАЯ РАБОТА 4.5.2

ИНТЕРФЕРЕНЦИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Цель работы: исследование видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

Оборудование: Не-Ne лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф, поляроид, линейка.

ТЕОРИЯ

Для двух интерферирующих пучков, попадающих на экран или фотодиод полная видность интерференционной картины равна

$$\nu = \nu_1 \nu_2 \nu_3 = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{1}$$
 Где ν_1 – отражает видность от разницы амплитуд, ν_2 - видность от геометрической разности хода, ν_3 – в

зависимости от поляризации. Тогда,

$$\nu_1 = \frac{2\sqrt{\delta}}{1+\delta} \tag{2}$$

Где δ - отношение интенсивностей интерферирующих волн. Для линейно поляризованных волн

$$v_3 = \cos \beta \tag{3}$$

Где β - угол между плоскостями поляризации. Если поляризация линейна, но ее направление меняется хаотически, то

$$\nu_3 = \cos^2 \beta \tag{4}$$

Рассмотрим спектральный состав излучения лазера. Условие возбуждения генерации может выполняться для нескольких резонансных частот f_m

$$f_m = \frac{c}{\lambda_m} = \frac{mc}{2L}$$

$$\Delta v = \frac{c}{2L}$$
(5)

Тогда, число мод можно оценить как

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} \tag{6}$$

Полуширина для графика видности связана с диапазоном частот как

$$l_{1/2} = \frac{0.26c}{\Delta F} \tag{7}$$

ХОД РАБОТЫ

ОПРЕДЕЛЕНИЕ ПЕРИОДА РЕШЁТОК ПО ИХ ПРОСТРАНСТВЕННОМУ СПЕКТРУ

Включим лазер, настроим установку.

Рис. 2. Схема установки. З, З₁, З₂, З₃ — зеркала. Π_1 и Π_2 — поляроиды. Б₁ и Б₂ — блоки № 1 и 2. ДК — делительный кубик, РФ — ромб Френеля. Φ Д — фотодиод, Э — экран, ПК — пьезокерамика, Л — линза

Сферическое зеркало настроим так, чтобы луч попал на центр экрана у входа фотодиода. Получим интерференционную картину, совместив оба пучка. Включим осциллограф и блок питания фотодиода. Настроим поляроид Π_1 на максимальную видность. Установим дополнительный поляроид между лазером и параллелепипедом Френеля. Освещенность меняется в зависимости от угла поворота и поэтому свет поляризован.

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ВИДНОСТИ

Исследуем зависимость видности интерференционной катины от угла α поворота поляроида Π_1 при нулевой разности хода.

$lpha^{\circ}$	h_1	h_2	h_3	h_4
90	0.5	7.0	6.0	9.0
80	0.8	7.0	7.0	8.0
70	1.0	7.0	7.0	9.0
60	2.0	7.0	7.0	11
50	3.0	6.5	6.5	15
40	4.5	7.0	6.0	17
30	5.0	7.0	5.0	20
20	5.0	7.0	3.0	21
10	7.0	7.0	2.0	25
0	7.0	7.0	1.0	26

Получаемые осциллограммы выглядят примерно так:

Рис. 5. Осциллограмма сигналов фотодиода

На ней линия 0 – перекрыты оба пучка, линия 1 – перекрыт пучок 2, линия 2 – перекрыт пучок 1, и уровни h_3 и h_4 – сигнал от обоих пучков. Полагая, что $v_2=1$ из формул (1) и (2) получим

$$\nu_3 = \frac{\nu}{\nu_1} = \frac{h_4 - h_3}{h_4 + h_3} \times \frac{h_1 + h_2}{2\sqrt{h_1 h_2}} \tag{8}$$

Построим график зависимости и изобразим на нем теоретические зависимости

Исследуем зависимость видности от разности хода между лучами. Установим поляроид Π_1 так, чтобы картина была максимально четкой ($\nu_3=1$). Снимем характеристики осциллограм меняя кординату x блока F_2 .

х , см	h_1	h_2	h_3	h_4
10	6	4	3	18
20	6	9	2	26
30	5	14	15	25
40	5	12	15	20
50	5	13	15	20
60	5	13	16	21
70	6	11	13	22
80	7	14	3	37

16	6	5.5	1	24
17	6.5	8	1	29
18	7	12	2	34
19	6	7	1	26
78	7	8	2	28
79	7	11	2	33
77	6	13	5	36
81	6.5	10	2	31
76	6	12	5	33
82	7	13	3	37
83	7	11	3	33

Учитывая те же формулы построим зависимость:

Используя данные графика определим:

L	64 см	Расстояние между максимумами		
Δu_m	2.4×10^6 см	Межмодовое расстояние		
$l_{1/2}$	20 см	Задержка на половине высоты главного максимума		
ΔF	3.9 × 10 ⁶ Гц	Диапазон частот в котором происходит генерация		
	515 X 10 1 H	продольных мод		
N	4	Число генерирумых лазером продольных мод		