Setting up a Kubernetes cluster

Kubernetes is an open-source platform for governing clusters of containerized application services. Kubernetes automates the vital aspects of container lifecycle management, including scaling, replication, monitoring, and scheduling.

The central component of Kubernetes is a cluster, which is itself made up of multiple physical or virtual machines. Each cluster component performs a specific function as either a master or a worker—a master controls and manages the containers in the nodes, while a worker hosts the groups of one or more containers.

This feature-rich cluster contains six key components, namely an API server, scheduler, controller, etcd, kubelet, and kube-proxy. Through this lens, the first four components run on the master, whereas the rest of the functions run on the worker.

kubeadm builds a minimum viable, production-ready Kubernetes cluster that conforms to best practices. It also allows us to choose the container runtime, though it has Docker by default. This solution requires a minimum of two VMs to run the master and worker.

Now, let's delve into the installation steps. They'll be illustrated from the root user-space, so if you're trying them from non-root user-space, add sudo before every command.

Prerequisites

- 1. 2 or more Linux Server running Ubuntu 18.04 (Min Req. 2GB of RAM and 2 CPUs.)
- 2. Access to a user account on each system with **sudo** or root privileges
- 3. Open Inbound and Outbound Rules on both Machines

Container Runtime: Docker Installation

Kubernetes Requires an Existing Docker installation. If you already have Docker skip to the next step.

Step 1: Update the package list with the Command

Step 2: Install Docekr with Command:

\$ sudo apt install docker.io

Step 3: Now check Docker Status

\$ service docker status

Install Kubernetes

Before installing Kubernetes on Ubuntu, you should first run through a few prerequisite tasks to ensure the installation goes smoothly.

1. Install transport-https and curl package using apt-get install the command. Transporthttps package allows the use of repositories accessed via the HTTP Secure protocol, and curl allows you to transfer data to or from a server or download, etc.

```
$ sudo apt-get update
$ sudo apt-get install -y apt-transport-https ca-certificates curl
```

2. Add the GPG key for the official Kubernetes repository to your system using curl command.

\$ sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg https://packages.cloud.google.com/apt/doc/apt-key.gpg

Note:- If you get an erroe Curl not installed you can install it using

\$ sudo apt-get install curl

3. Add the Kubernetes repository to APT sources and update the system.

\$ echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee /etc/apt/sources.list.d/kubernetes.list

Note:- Repeat this step on both the machines

4. Kubernetes Installation Tools

Now Install kubectl (which manages cluster), kubeadm(which starts cluster), and kubelt (which manages Pods and Container) on both the Machines

- \$ sudo apt-get update
- \$ sudo apt-get install -y kubelet kubeadm kubectl
- \$ sudo apt-mark hold kubelet kubeadm kubectl

5. Initialize the cluster (run only on the master):

\$ sudo kubeadm init --pod-network-cidr=10.244.0.0/16

6. Set up local kubeconfig

- \$ mkdir -p \$HOME/.kube
- \$ sudo cp -i /etc/kubernetes/admin.conf \$HOME/.kube/config
- \$ sudo chown \$(id -u):\$(id -g) \$HOME/.kube/config

7. Apply Flannel CNI network overlay (or any other network as per need)

- \$ kubectl apply -f

8. Join the worker nodes to the cluster

\$ kubeadm join [your unique string from the kubeadm init command]

9. Verify the worker nodes have joined the cluster successfully

\$ kubectl get nodes