

AN4991 应用笔记

如何使用USART或LPUART将STM32F0/F3/L0/L4 微控制器从低功耗模式唤醒

前言

通用同步/异步收发器(USART)和低功耗通用异步收发器(LPUART)以先进的低功耗模式功能为特色,即使在MCU处于低功耗模式且APB时钟被禁用时也可以正常接收数据。

在本文档中, STM32仅指表 1中列出的产品系列。

表1. 适用产品

类型	产品系列		
微控制器系列	STM32F0、STM32F3、STM32L0和STM32L4		

目录 AN4991

目录

1	可通	过USAF	RT/LPUART唤醒MCU的低功耗模式	5
2	USA	RT/LPU	JART唤醒功能	6
	2.1	双时钟	域	6
	2.2	USAR	T/LPUART唤醒源	6
3	当HS	iI时钟关	闭时USART/LPUART如何从低功耗模式唤醒STM	132 7
4	如何	确定允许	午从低功耗模式正确唤醒的USART/LPUART波特ጃ	ጆ9
	4.1	低功耗	模式下USART/LPUART内核时钟开启	9
		4.1.1	HSI 时钟用作 USART/LPUART 时钟源	
		4.1.2	LSE 时钟用作 LPUART 时钟源	9
		4.1.3	LSE 时钟用作 USART 时钟源	9
	4.2	低功耗	模式下USART/LPUART HSI内核时钟关闭	10
5	结论			13
6	肥木	压曲		1.4

AN4991 表格索引

表格索引

	适用产品	
	STM32低功耗模式比较	5
	BRR [3:0] = 0000 时的 USART 接收器容差	10
	BRR[3:0] # 0000 时的 USART 接收器容差1	
	LPUART接收器的容差 1	
	文档版本历史	
表7.	中文文档版本历史	14

图片索引 AN4991

图片索引

图1.	唤醒事件得到验证(唤醒事件 = 地址匹配)7
图2.	唤醒事件未得到验证(唤醒事件 = 地址匹配)8

1 可通过USART/LPUART唤醒MCU的低功耗模式

USART和LPUART可将STM32 MCU从低功耗模式唤醒。表 2给出了不同MCU系列的低功耗模式的总结。

表2. STM32低功耗模式比较

产品系列	USART可从以下模式唤醒MCU	LPUART可从以下模式唤醒MCU
STM32F0/F3	停止模式(主调压器处于运行模式或 低功耗模式)	N.A
STM32L0	停止模式(主调压器处于运行模式或 低功耗模式,范围1/2/3)	停止模式(主调压器处于运行模式或 低功耗模式,范围1/2/3)
STM32L4	停止模式0 停止模式1	停止模式0 停止模式1 停止模式2

关于以上低功耗模式的详细描述,请参见相应参考手册的功率控制部分。

2 USART/LPUART唤醒功能

2.1 双时钟域

仅当外设支持双时钟域时,USART/LPUART才能将MCU从低功耗模式唤醒。这意味着可通过独立于APB时钟的时钟为USART/LPUART提供时钟。此时钟可以是HSI或LSE时钟。因此,即使USART/LPUART时钟被禁用且MCU处于低功耗模式,USART/LPUART也能够接收数据。

2.2 USART/LPUART唤醒源

有不同的USART/LPUART唤醒源可用于将MCU从低功耗模式唤醒:

- 通过USART/LPUART CR3寄存器的WUS位字段选择的特定事件。
 - 00: 在地址匹配时唤醒(按照USART/LPUART CR2寄存器的ADD[7:0]和ADDM7的定义)
 - 01: 保留
 - 10: 检测到Start位时唤醒
 - 11:在每次接收到数据时唤醒(即USART/LPUART_ISR寄存器中RXNE置位) 当唤醒事件得到验证时,通过硬件将USART/LPUART_ISR寄存器中的WUF标志置位,无 论MCU处于低功耗模式还是运行模式。如果USART/LPUART_CR3寄存器中的相应中断使 能位(WUFIE)置位,它将生成唤醒中断。
- RXNE中断
 在进入低功耗模式前,必须通过USART/LPUART_CR1寄存器中的RXNEIE位置位来使能RXNE中断。

为使USART/LPUART能够将MCU从低功耗模式唤醒,在进入低功耗模式前,USART/LPUART CR1控制寄存器中的UESM位必须置位。

3 当HSI时钟关闭时USART/LPUART如何从低功耗模式唤醒 STM32

如果STM32 MCU处于低功耗模式且用作USART/LPUART内核时钟的HSI时钟关闭,当在USART/LPUART接收线路上检测到下降沿时,USART/LPUART接口请求重新开启HSI时钟。然后,将使用HSI时钟进行帧接收。

如果唤醒事件得到验证,将从低功耗模式唤醒MCU并进行正常的数据接收。

如果唤醒事件未得到验证,HSI时钟将重新关闭,MCU不唤醒并维持低功耗模式,内核时钟请求被释放。 图 1和图 2显示了编程为"地址匹配检测"的唤醒事件的示例。

1. 请参见*第 4.2 节*获取关于t_{WUUSART}和t_{WULPUART}的详细信息。

1. 请参见*第 4.2节*获取关于t_{WUUSART}和t_{WULPUART}的详细信息。

4 如何确定允许从低功耗模式正确唤醒的USART/LPUART波特率

允许从低功耗模式正确唤醒的最大波特率取决于当STM32 MCU处于低功耗模式时内核时钟 开启还是关闭。

4.1 低功耗模式下USART/LPUART内核时钟开启

如果处于低功耗模式时USART/LPUART内核时钟开启,则对允许从低功耗模式唤醒的最大波特率无限制。处于运行模式时同样如此。

4.1.1 HSI 时钟用作 USART/LPUART 时钟源

在STM32L0/L4系列中,在低功耗模式下有两种保持HSI时钟开启的方式:

- 将RCC CR寄存器中的HSIKERON位置位。
- 或者,将USART/LPUART_CR3寄存器中的UCESM位置位。此位允许USART/LPUART在任何时间(而不只是在开始位下降沿)请求时钟。
- 注: 本节不适用于在停止模式下HSI时钟始终关闭且仅当在USART/LPUART接收线路上检测到下降沿时开启的STM32F0/F3系列。

4.1.2 LSE 时钟用作 LPUART 时钟源

当将LSE时钟用作LPUART时钟源时,可以达到的最大波特率为9600波特。

LSE时钟在低功耗模式下保持开启,但在LPUART未请求此内核时钟时不为LPUART提供时钟源。为了在低功耗模式下以9600波特正确接收数据,必须将LPUART_CR3寄存器中的UCESM位置位。此位允许LPUART在任何时间(而不只是在开始位下降沿)请求时钟。

4.1.3 LSE 时钟用作 USART 时钟源

当将LSE时钟用作LPUART时钟源时,在8倍过采样时可达到的最大波特率为4096波特,在16倍过采样时为2048波特。

4.2 低功耗模式下USART/LPUART HSI内核时钟关闭

如果低功耗模式下HSI时钟关闭,则允许将MCU从低功耗模式正确唤醒的最大波特率取决于下列条件:

对于STM32L4 MCU,器件数据手册中指定了twuusart(或twulpuart)。

- USART接收器容差则取决于下列参数:
 - 通过USART CR1寄存器中的M位配置的9、10或11位字符长度
 - 通过USART_CR1寄存器中的OVER8位配置的8倍或16倍过采样
 - USART BRR寄存器的BRR[3:0]位等于或不等于0000。
 - 根据USART_CR3寄存器中的ONEBIT位,使用一个或三个采样位进行数据采样 表 3和表 4基于上述参数的值总结了USART接收器容差。

表3. BRR [3:0] = 0000 时的 USART 接收器容差

B4 /-	OVER8 位 = 0		OVER8 位 = 1	
M 位	ONEBIT = 0	ONEBIT = 1	ONEBIT = 0	ONEBIT = 1
00	3.75 %	4.375 %	2.50 %	3.75 %
01	3.41 %	3.97 %	2.27 %	3.41 %
10	4.16 %	4.86 %	2.77 %	4.16 %

表 4. BRR[3:0] # 0000 时的 USART 接收器容差

	大山 Diateory in control X Kin 1左					
	OVER8 位 = 0		OVER8 位 = 1			
	M 位	ONEBIT = 0	ONEBIT = 1	ONEBIT = 0	ONEBIT = 1	
	00	3.33 %	3.88 %	2 %	3 %	
	01	3.03 %	3.53 %	1.82 %	2.73 %	
	10	3.7 %	4.31 %	2.22 %	3.33 %	

- LPUART接收器容差则取决于下列参数:
 - 通过LPUART CR2寄存器中的STOP[1:0]位配置的停止位数。
 - LPUART BRR寄存器值

表 5基于上述参数的值总结了USART接收器容差。

	OVER8 位 = 0		OVER8 位 = 1	
M 位	ONEBIT = 0	ONEBIT = 1	ONEBIT = 0	ONEBIT = 1
8 位(M=00),1 个停止 位	1.82 %	2.56 %	3.90 %	4.42 %
9 位(M=01),1 个停止 位	1.69 %	2.33 %	2.53 %	4.14 %
7 位(M=10),1 个停止 位	2.08 %	2.86 %	4.35 %	4.42 %
8 位(M=00),2 个停止 位	2.08 %	2.86 %	4.35 %	4.42 %
9 位(M=01),2 个停止 位	1.82 %	2.56 %	3.90 %	4.42 %
7 位(M=10),2 个停止 位	2.34 %	3.23 %	4.92 %	4.42 %

表5. LPUART接收器的容差

仅当总时钟系统偏差小于USART/LPUART接收器的容差时,USART/LPUART异步接收器才能正常工作。影响总偏差的因素包括:

- DTRA: 发送器误差引起的偏差(其中还包括发送器本地振荡器的偏差)
- DQUANT:接收器的波特率量化引起的误差
- DREC:接收器本地振荡器的偏差
- DTCL:传输线路引起的偏差(通常是由于收发器所引起,它可能会在低电平到高电平转 换时序与高电平到低电平转换时序之间引入不对称)

DTRA + DQUANT + DREC + DTCL + DWU < USART/LPUART receiver tolerance

其中,DWU为使用从低功耗模式唤醒时采样点偏差导致的误差。

可按以下方式计算允许从低功耗模式正确唤醒的最大波特率:

- 以具有9位数据长度、M位 = 01的USART/LPUART接收器为例 DWU max = t_{WUUSART/WULPUART} / (11 x T_{bit min}) 波特率最大值 = (11 x DWU max) / t_{WUUSART/WULPUART} 其中, T_{bit Min} 是最小位持续时间
- 以具有8位数据长度、M位 = 00的USART/LPUART接收器为例
 DWU max = t_{WUUSART/WULPUART} / (10 x T_{bit min})
 波特率最大值 = (10 x DWU max) / t_{WUUSART/WULPUART}
- 以具有7位数据长度、M位 = 10的USART/LPUART接收器为例 DWU max = t_{WUUSART/WULPUART} / (9 x T_{bit min}) 波特率最大值 = (9 x DWU max) / t_{WUUSART/WULPUART}

以OVER8=0、M位=10、ONEBIT=1且BRR[3:0]=0000的的STM32L4USART接收器 为例。

在这些条件下,根据*表 3: BRR[3:0]=0000时的USART接收器容差*,USART接收器的容差为 4.86 %。

考虑一种理想情况:参数 DTRA、DQUANT、DREC和DTCL为 0%,则DWU最大值为4.86%。 实际上,我们至少需要考虑HSI不准确性。

假设 HSI 不准确性为 1 %, $t_{WUUSART}$ = 8.5 μs (对于停止模式 1/2) DWU max = 4.86 % - 1 % = 3.86 %

 $T_{bit min} = 8.5 \mu s / (9 \times 3.86 \%) = 24.4 \mu s.$

在这些情况下,允许从低功耗模式正确唤醒的最大波特率为 $1/23.31 \, \mu s = \sim 40 \, Kbaud$ 。

AN4991 结论

5 结论

此应用笔记解释了USART/LPUART如何将MCU从停止模式唤醒。它还提供了大致确定允许从低功耗模式正确唤醒的USART/LPUART最大波特率的指南。

版本历史 AN4991

6 版本历史

表6. 文档版本历史

日期	版本	变更
2017年3月8日	1	初始版本。

表7. 中文文档版本历史

日期	版本	变更
2017年10月13日	1	中文初始版本。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。本文档的中文版本为英文版本的翻译件,仅供参考之用;若中文版本与英文版本有任何冲突或不一致,则以英文版本为准。

© 2017 STMicroelectronics - 保留所有权利

