CS & IT

ENGINEERING

Digital Logic Logic Gate

Lecture No. 07

By- CHANDAN SIR

TOPICS TO BE COVERED X-NOR GATE

01 Question Practice

02 Discussion

humber of 1 - parity

X-NOR CHATE :

① Symbol

A D
$$\overline{A} \oplus B = A \odot B = \overline{A} \overline{B} + AB$$

A	B	AOB
0	0	1
0	1	0
1	0	9
1	1	1

$$3 + A = B$$

$$A = B$$

$$3 = 1$$

$$A = B$$

Even parity Metector

Equal Metector

Equal Metector

Equivalance Logic

Coincidance Logic

$$A = 00 = \overline{A}$$

INVERTER

BUFFER

- (A) Astable Multivibrator X=0
- (B) Bistable Multivibrator X=1

EVEN NUMBER OF INPUT :-

Case (1)

Output will be high for even no of inputs ore high.

Case (3) A AOB (AOF	3)0c	A	B	C	(AOB)OC	AO (BOC
B)	0	0	0	0	0	0
C	(0	0	1	1	1
(AOB)OC = AO(BOC)	3	0	1	0	T	1
	3	0	1	1	0	0
A—————————————————————————————————————	4	1	0	0	1	1
3-17	5	1	0	1	0	0
(c-)	6	1	1	0	0	0
	(1)	1	1	1	0	1

For Even Variables.

AOBOCODOEOF - AOBOCODOEOF

4 0/p will be high for even no of 1's in the inpuls.

For odd variables.

(AOB)OC = AOBOC

 $(((A \circ B) \circ C) \circ D) \circ E = A \oplus B \oplus C \oplus D \oplus E$

O/P will be high for odd number of 1's in the inputs.

olp will be high for even inputs ure high

A HOB
$$=$$
 B $=$ A \oplus B $=$ A \oplus B $=$ A \oplus B $=$ A \oplus A

$$A \circ B = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B}$$

$$A \circ \overline{B} = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B}$$

$$A \circ \overline{B} = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B}$$

$$A \circ \overline{B} = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B}$$

$$A \circ \overline{B} = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B}$$

$$A \circ \overline{B} = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B}$$

= AB+ AB

$$AOB = \overline{A}OB = AO\overline{B} = \overline{A}O\overline{B} = \overline{A}OB$$

- QO ABBC =
- QQ AOBOAB
- 93) (AOB) (HC
- 99 (ABB) OC

Q.1 "M&G

AB THE

The Boolean function given below: $f(A, B) = A \oplus B \oplus AB = A \oplus B \oplus X$ which statement is/are correct?

AB	AB	ABBOX	
00	0	(0)	
40 1	0	T	
10	0	11/	
(11)	1	[1]	

It is a OR GATE

AIC

B It is a NAND GATE

- It requires 3 NAND gate to implement the function
- It required 2 NAND gates to implement the function

$$A \oplus B = X = \overline{A}B + A\overline{B}$$
 $\overline{A} \oplus B = \overline{X} = A \oplus B = \overline{A}\overline{B} + AB$

$$= A[B+B]+AB \qquad (A+A)(A+B) = A+B$$

$$= A\cdot 1+AB \implies A+AB = (A+A)(A+B) = A+B$$

Q.2

MCQ

Minimized expression will be $Y = A \oplus (A + B)$

A+B=X

$$(A \oplus A) \times (A \oplus B)$$
 $(A \oplus A) \times (A \oplus B)$
 $(A \oplus B) \times (A \oplus B)$

$$\begin{array}{ll}
A \oplus X \\
\overline{AX+AX} & \overline{A+B}=\overline{A}\cdot\overline{B} \\
\overline{AA+AB+AB+AB} \\
= \overline{AB}$$

 $\bar{A} \cdot B$

	AOX				
AB	A	AtB	XEM		
0 0	0	0	0		
0 1	0.	1 .	1		
10	1	1	0		
1 1	1	1	0		
		1	T		

- (C) AOB
- (D) AOB (E) AQq...999

$$\begin{array}{c}
\overline{A} \oplus \overline{B} = \overline{X} \\
A \oplus B = \overline{X} \oplus X
\end{array}$$

$$A \oplus B = \overline{X} \oplus X$$

Q.3

MEQ

If the output y = 1
Then correct input is/are-

- A 1111, 0000
- B 1010, 0111
- 0101,0101
- D 1100, 1110

Q.4

Output y will be-

- A 0
- B
- C A ⊕ B
- $A \oplus B \oplus C \oplus D$

Q.5

The output f for the given logic circuit will be-

- **A** 0
- B 1
- C A + B
- D None

Q.6

The Following logic gate circuit is equivalent to

- A NAND
- B OR
- C XOR
- D NOT

Q.7

The minimum number of two input NAND gates required to implement y = abcd is

- A
- **B** 4
- **C** 5
- \mathbf{D}

Q.8

In the logic circuit shown below, how many AND, how many OR and how many NOT gates are redundant?

A 2 AND gates and 3 NOT gates

B 2 AND gates and 2 NOT gates

2 AND gates, 2 NOT gates

3 AND gates and 3 NOT gates

Q.8

The digital circuit shown below, is observed to generate output y = 1. Which one of the following input condition does so?

A
$$x_1 = x_3 = 1, x_2 = 0$$

B
$$x_1 = 0, x_2 = x_3 = 1$$

$$x_1 = x_2 = x_3 = 0$$

$$\mathbf{D} \quad \mathbf{x}_1 = \mathbf{x}_2 = \mathbf{x}_3 = \mathbf{1}$$

Common data for Questions Q.9 and Q.10

All the logic gates in the circuit shown below, have equal finite propagation delay.

Q.9

The circuit can be used as clock generator, if

- $\mathbf{A} \quad \mathbf{x} = \mathbf{0}$
- $\mathbf{B} \quad \mathbf{x} = \mathbf{1}$
- x = 0 or 1
- \mathbf{D} $\mathbf{x} = \mathbf{y}$

Q.10

If the output waveform has frequency of 10 MHz, the propagation delay of each logic gate, is

- A 5 ns
- B 10 ns
- **C** 20 ns
- D 50 ns

Q.11

The Boolean expressions $f_1(a, b)$ and $f_2(x, y)$ in the following two circuits, are

A $f_1(a, b) = 0, f_2(x, y) = 1$

- $f_1(a, b) = a \oplus b, f_2(x, y) = 1$
- B $f_1(a, b) = \overline{a \oplus b}, f_2(x, y) = x \oplus y$ D $f_1(a, b) = 1, f_2(x, y) = 0$

Thank you

Seldiers!

