Processadores AVR

Ronaldo Husemann

Família AVR

AVR

Advanced Virtual RISC, cujos fundadores são Alf Egil Bogen, Vegard Wollan RISC

A arquitetura AVR foi concebida por dois estudantes do Norwegian Institute of Technology (NTH) e posteriormente refinada e desenvolvida pela **Atmel Norway**, companhia fundada por dois arquitetos de chip

Registradores:

32 registradores de 8 bits de propósito geral Chamados R0,R1,R2 a R31.

Tres registradores compostos

Program counter Stack Pointer Status Register

Família AVR

Menor chip -> menor consumo de energia

- ◆Arquitetura RISC de 8 bits
- ◆Pipeline simples (busca & execução) Instrucoes em um ciclo

Tempo total de busca e execução é 2 CLKs (um pra buscar e outro pra executar). No PIC -> 8 CLKs

- 32 registradores genéricos
- ULA sem dependencia com acumulador
- 3 pares de registradores de indice
- Registradores & IO são mapeados em **SRAM**

O número de instruções

executadas corresponde

Um salto esvazia o pipeline e gasta 2 CLKs, no PIC gasta 8 CLKs

Recursos de Hardware

- Oscilador/clock interno ou externo
- Detector de Brown Out
- **♦**Timers
- Dois um mais
- ♦Uma ou mais USART
- +12C

- ◆Real time clock
- ♦ADC de 10 bits
- Comparador analógico
- Interrupções externas
- Captura de tempo de pulso
- **•**EEPROM
- **♦USB/CAN/RF**

AVR

Família AVR

Microcontroladores da Família AVR tem uma arquitetura simples

- →mesmo código é aceito para todas famílias
- → código de 1 Kbytes a 256 Kbytes
- \rightarrow 8 a 100 pinos

AVR Clássico (AT90Sxxxx)

Modelo original AVR posteriormente aprimorado.

Mega AVR (ATmegaxxxx)

Versão mais poderosa incluindo mais de 120 instruções e vários periféricos extra.

Memória de programa: 4K a 256K bytes Encapsulamento: 28 a 100 pinos

Tiny AVR (ATtinyxxxx)

Voltada para aplicações de baixo custo e consumo de potencia.

Memória de programa: IK a 8K bytes Encapsulamento: 8 a 28 pinos

Special purpose AVR

Desenvolvidos para aplicações e capacidades especiais: USB controller, CAN controller, LCD controller, Zigbee, Ethernet controller, FPGA, e ou advanced PWM.

Família AVR

Part Num.	Code ROM	Data RAM	Data EEPROM	I/O pins	ADC	Time	ers Pin numbers & Package
AT90S2313	2K	128	128	15	0	2	SOIC20, PDIP20
AT90S2323	2K	128	128	3	0	1	SOIC8, PDIP8
AT90S4433	4K	128	256	20	6	2	TQFP32, PDIP28

Table 1-3: Some Members of the ATmega Family											
Part Num.	Code ROM	Data RAM	Data EEPROM	I/O pins	ADC	Timers	Pin numbers & Package				
ATmega8	8K	1K	0.5K	23	8	3	TQFP32, PDIP28				
ATmega16	16K	1K	0.5K	32	8	3	TQFP44, PDIP40				
ATmega32	32K	2K	1 K.	32	8	3	TQFP44, PDIP40				
ATmega64	64K	4K	2K	54	8	4	TQFP64, MLF64				
ATmega1280	128K	8K	4K.	86	16	6	TQFP100, CBGA				

Notes

- 1. All ROM, RAM, and EEPROM memories are in bytes.
- Data RAM (general-purpose RAM) is the amount of RAM available for data manipulation (scratch pad) in addition to the register space.
- All the above chips have USART for serial data transfer.

Part Num.	Code ROM	Data RAM	The state of the s		•		Pin numbers & Package
ATtiny13	1K	64	64	6	4	1	SOIC8, PDIP8
ATtiny25	2K	128	128	6	4	2	SOIC8, PDIP8
ATtiny44	4K	256	256	12	8	2	SOIC14, PDIP14
ATtiny84	8K	512	Embedded	Systems	8	2	SOIC14, PDIP14

Table 1-5: Some Members of the Special Purpose Family											
Part Num.	Code ROM	Data RAM	Data EEPROM	Max I/C pins	Special Capabilities		rs Pin numbers & Package				
AT90CAN128	128K	4K	4K	53	CAN	4	LQFP64				
AT90USB128	7 128K	8K.	4K	48	USB Host	4	TQFP64				
AT90PWM21	6 16K	1K	0.5K	19 /	Advanced PWN	1 2	SOIC24				
ATmega169	16K	1K	0.5K	54	LCD	3	TQFP64, MLF64				

Família AVR

Arquitetura de registradores

General Purpose Working Registers

7 0	Addr.
R0	\$00
R1	\$01
R2	\$02
R13	\$0D
R14	\$0E
R15	\$0F
R16	\$10
R17	\$11
•••	
R26	\$1A
R27	\$1B
R28	\$1C
R29	\$1D
R30	\$1E
R31	\$1F

X-register Low Byte X-register High Byte Y-register Low Byte Y-register High Byte Z-register Low Byte Z-register High Byte

Família AVR

Arquitetura de instruções

Sem dependencia de acumulador

Exemplo

add R23, R11

codificado como opcode de 16 bits 0x0EEB.

Padrão em binário: 0000 1110 1110 1011

6 bits 00011 definem a instrução add.

5 bits 10111 indicam primeiro operador = *register 23*

5 bits 01011 indicam segundo operador = register 11

Exemplo de código

```
int main(void)
{
    char i;
    char j;
    i=0;
    j=0;
    while (i<10) {
        j = j + i;
        PORTB = j;
        i ++;
    }
    return 0;
}

000000be <main>:
    be: 80 e0 ldi r24,0x00 ; 0
    c0: 90 e0 ldi r25,0x00 ; 0

c2: 98 0f add r25, r24

c4: 92 bb out 0x18, r25 ; 18
    c6: 82 bb out 0x18, r24 ; 18
    c8: 8f5f subi r24,0xFF ; 255
    ca: 8a 30 cpi r24,0xAA ; 10
    cc: d1 f7 brne -12 ; 0xc2 <main+0x4>
    ce: 80 e0 ldi r24,0x00 ; 0

d2: 08 95 ret
```

Família AVR

Comparação entre tecnologias em termos de tamanho de código

16

AVR AT90S8515 Pinout

- · Portas de propósito geral
 - PORTA
 - PORTB
 - PORTC
 - PORTD
- · Pinos especiais
 - Crystal (XTAL1/XTAL2)
 - RESET
 - ICP, OLE, OC1B
- Alimentação (VCC/GND)

Circuito de I/O

 Chave simples sem necessidade de componentes externos

Uso comum de AVRs

Uso comum de AVRs

Exemplo

```
void setup()
{
pinMode(13, OUTPUT); //configura pino 13 como saida
}

// Pisca LED
void loop()
{
digitalWrite(13, HIGH); // Ativa LED
delay(100); // Aguarda 0,1 s
digitalWrite(13, LOW); // Apaga LED
delay(100); // Aguarda 0,1 s
}
```

Exemplo

```
const int inputPin = 2;

void setup()
{
  pinMode(inputPin, INPUT); //configura pino 2 como entrada
}

// Le pino
void loop()
{
  int val = digitalRead(inputPin); // le pino de entrada
```

Uso comum de AVRs

Diferentes placas

Uso comum de AVRs

Uso comum de AVRs

```
Blink

Blink

Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.

// Pin 13 has an LED convected on most Arduino boards.

// give it a name:

int led = 13;

// the setup routine runs once when you press reset:

void setup() {

// initialitize the digital pin as an output.

pinHode(led, QUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {

digitalitrite(led, HIDH); // turn the LED on (HIDH is the voitage level)

delay(1800); // vait for a second

loop section

loop section
```

Programa de teste Arduino

```
void setup()
{
pinMode(13, OUTPUT); //configura pino 13 como saida
}

// Pisca LED
void loop()
{
digitalWrite(13,HIGH); // Ativa LED
delay(500); // Aguarda 0,5 s
digitalWrite(13,LOW); // Apaga LED
delay(500); // Aguarda 0,5 s
}
```

Exemplo

· Onda de 300Hz

Placa Arduino UNO

Microcontrolador ATMEGA328P Frequencia da CPU: 16MHz

Exemplo

T = 1/300 = 0,0033 s = 3,33 ms

Onda de 300Hz

2 CLK pra execução -> T/2 = 3,33/2 = 1.66 ms alto e 1.66 ms baixo

Placa Arduino UNO

Microcontrolador ATMEGA328P Frequencia da CPU: 16MHz

Freq_LED 300 Hz T LED = 1/300 = 3,3ms

Exemplo

• Onda de 300Hz

Placa Arduino UNO

Microcontrolador ATMEGA328P Frequencia da CPU: 16MHz

Exemplo – Onda de 300Hz

```
void setup()
{
pinMode(13, OUTPUT); //configura pino 13 como saida
}

// Pisca LED
void loop()
{
digitalWrite(13,HIGH); // Ativa LED
delay(1); // Duração de 1ms
digitalWrite(13,LOW); // Apaga LED
delay(2); // Duração de 2ms
}
```

Exemplo – Onda de 300Hz

```
PiscaLED | Arduino 1.8.13

Arquivo Editar Sketch Ferramentas Ajuda

void setup() {
// Configura pino 13 como saida
pinMode (13, OUTPUT);
}

void loop() {
digitalWrite(13, HIGH); // Ativa LED
delay(1); // Duracao de lms
digitalWrite(13, LOM); // Apaga LED
delay(2); // Duracao de 2ms
}
```

```
mpilação terminada.
«Ketch usa 932 bytes (2%) de espaço de armazenamento para programas. O máximo são 32256 bytes.
Liáveis globais usam 9 bytes (0%) de memória dinâmica, deixando 2039 bytes para variáveis locais. O máximo são 2048 bytes.
```

Exemplo

Testando no PICSimLab

Placa Arduino UNO

Microcontrolador ATMEGA328P Frequencia da CPU: 16MHz

Simulador

Testando no PICSimLab
 <usr dir>/local/App/arduino1238/proj.hex

- Temporizador de 8 bits
 - conta de 0 a 255 (0xFF)
 - Fonte de Clock interna ou externa
- Prescaler
- Interrupção no Overflow
- Comparadores (A e B) para gerar forma de onda (PWM)

• Modo normal de operação

AVR Timer/Counter 0

• Modo normal de operação

TCNTO Register

Timer/Counter Register – TCNT0

AVR Timer/Counter 0

TCCROA

Timer/Counter Control A Register – TCCR0A

TCCROA

Timer/Counter Control A Register – TCCR0A

Note: 1. MAX = 0xFF 2. BOTTOM = 0x00

AVR Timer/Counter 0

TCCR0B

Timer/Counter Control B Register – TCCR0B

Bit	7	6	5	4	3	2	1	0	
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	w	w	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /(No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

TIFR0

Timer/Counter 0 Interrupt Flag Register

Exemplo

Onda de 300Hz

Placa Arduino UNO

Microcontrolador ATMEGA328P

Frequencia da CPU: 16MHz = CLK do timer

No MCS51: CLK timer = CLK CPU/12

No PIC: CLK timer = CLK CPU/4

Freq_LED 300 Hz T_LED = 1/300 = 3,3ms => 1,66ms x 2

Atmel Studio

- Programação em C e Assembly
- Depurador
- Simulador (um pouco limitado)
- Programador (diversos adaptadores e placas comerciais)

Programação

Programação

• Onda de 300Hz

```
Freq_LED 300 Hz
T_LED = 1/300 = 3,3ms => 1,66ms x 2

Prescaler de 256
Freq_timer = 16MHz/256 = 62500
T_timer = 1/62500 = 16us

Num_contagens = 1,66ms/16us ≈ 104 Tá dentro de um número de 8 bits, então ok
```

AVR Timer/Counter 0

Programação (atraso 1,66ms p/ freq. 16MHz)

```
TCCROA = 0; // configura modo normal TCCROB = 0x4; // configura clock /256

TCNTO = 152; // valor inicial TIFRO = (1 << 0); // limpa flag

while ((TIFRO & (1 << 0)) == 0); // aguarda flag
```

Quer 154 contagens, e ele estoura em 255+1, ou seja, é necessário 256-154 contagens

Simulador

AVR Timer/Counter 0

• Modo comparação (Clear Timer on Compare)

Modo comparação (Clear Timer on Compare)

Exemplo com prescaler = 8

Programação

```
#include <avr/io.h>
void atraso()
   TCNT0 = 152;
                     // Valor inicial (104 contagens)
    while ((TIFR0 & (1 <<0)) == 0); // Aguarda flag de estouro
   TIFR0 = (1<<0);
                      // Limpa flag de estouro
int main(void)
   DDRB = (1 << 5); // LED como saida
    TCCR0A = 0;
                       // Configura modo normal
    TCCR0B = 0x4;
                       // Configura clock/256
    TCNT0 = 152;
                       // Valor inicial (104 contagens)
   while (1)
       PORTB |= (1 << 5);
       atraso();
       PORTB &= ~(1 << 5);
        atraso();
}
              (modo normal)
```

```
#include <avr/io.h>
void atraso()
     TIFR0 = (1 << 1);
                            // Limpa flag de comparacao A
     while ((TIFR0 & (1 << 1)) == 0);
⊡int main(void)
     /* Replace with your application code */
     // LED no pino PB5
     DDRB = (1 << 5); // Pino PB5 é saida (LED)
     TCCRØA = Øx2;
                        // Modo CTC para Timer 0
    TCCRØB = Øx4;
                        // Clock/256
     TCNT0 = 0:
                        // Zera timer
     OCRØA = 104;
                        // Valor da comparação 104 contagens (1,66ms)
     while (1)
         PORTB |= (1 << 5);
                               // Ativa LED
         atraso();
         PORTB &= ~(1 << 5);
                                // Apaga LED
         atraso();
                            (modo ctc)
```

Não precisa recarregar o timer, pois é feito automaticamente e o bit de análise é o 1 (no while de atraso)

- Temporizador de 16 bits
 - conta de 0 a 65535 (0xFFFF)
 - Fonte de Clock interna ou externa
 - Captura de entrada por evento evento em pino ICP
- Prescaler
- Interrupção no Overflow
- Comparadores (A e B) para gerar forma de onda (PWM) em resolução 8, 9 ou 10 bits como contador Up ou Down

55

• Modo Captura

5

AVR Timer/Counter 1

Modo PWM

29

• Modo normal de operação

AVR Timer/Counter 1

• Modo comparação

• Modo comparação (Clear Timer on Compare)

(exemplo com prescaler)

AVR Timer/Counter 1

TCCR1A

Timer/Counter Control A Register – TCCR1A

TCCR1A – Timer/Counter 1 Control Register A

COMnA1 COMnB1 COMnC1	COMnA0 COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected
0	1	Toggle OCnA/OCnB/OCnC on compare match
1	0	Clear OCnA/OCnB/OCnC on compare match (set output to low level)
1	1	Set OCnA/OCnB/OCnC on compare match (set output to high level)

62

TCCR1A

Timer/Counter Control A Register – TCCR1A

Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation	тор	Update of OCRnx at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	СТС	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	воттом	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM,Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	стс	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	воттом	TOP
15	1	1	1	1	Fast PWM	OCRnA	воттом	TOP

AVR Timer/Counter 1

TCCR1B

Timer/Counter Control B Register – TCCR1B

TCCR1B - Timer/Counter 1 Control Register B

Bit	7	6	5	4	3	2	1	0	_
(0x81)	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

CS12	CS11	CS10	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /1 (no prescaling)
0	1	0	clk _{I/O} /8 (from prescaler)
0	1	1	clk _{I/O} /64 (from prescaler)
1	0	0	clk _{I/O} /256 (from prescaler)
1	0	1	clk _{I/O} /1024 (from prescaler)
1	1	0	External clock source on T1 pin. Clock on falling edge.
1	1	1	External clock source on T1 pin. Clock on rising edge.

TCCR1C

Timer/Counter Control C Register – TCCR1C

TCCR1C - Timer/Counter 1 Control Register C

Bit	7	6	5	4	3	2	1	0	_
(0x82)	FOC1A	FOC1B	FOC1C	-	-	-	-	-	TCCR1C
Read/Write	w	w	w	R	R	R	R	R	_
Initial Value	0	0	0	0	0	0	0	0	

- Bit 7 FOCnA: Force Output Compare for Channel A
- Bit 6 FOCnB: Force Output Compare for Channel B
- Bit 5 FOCnC: Force Output Compare for Channel C

6

Programação

Onda de 300Hz

```
Freq_LED 300 Hz
T_LED = 1/300 = 3,3ms => 1,66ms x 2

Sem Prescaler
Freq_timer = 16MHz
T_timer = 1/16MHz = 62,5ns

Num_contagens = 1,66ms/62,5ns ≈ 26667
```

```
void atraso()
    TCNT1 = 38869;
                          //Para 300Hz => 26667 contagens
                           //assim : 65536 - 26667 => 38869
    while ( (TIFR1 & (1<<0))==0); // Aguarda flag de estouro
    TIFR1 = (1 << 0);
                          //Limpa flag de estouro
}
                                                                      void atraso()
                                                                           TIFR1 = (1 << 1);
                                                                                                // Limpa flag de comparacao A
int main(void)
                                                                           while ((TIFR1 & (1 << 1)) == 0);
    DDRB = 1 << 5;
                           //Pino PB5 eh saida
    TCCR1A = 0;
                          //Modo normal

    int main(void)

    TCCR1B = 0x1;
                           //clock
                                                                           /* Replace with your application code */
    TCNT1 = 38869;
                           //Para 300Hz => 26667 contagens
                                                                           // LED no pino PB5
                           //assim : 65536 - 26667 => 38869
                                                                           DDRB = (1 << 5);
                                                                                             // Pino PB5 é saida (LED)
    while (1)
                                                                           TCCR1A = 0x\theta; // Mode normal para Timer \theta TCCR1B = (1 << 3) + 1; // Clock direto + CTC
    PORTB |= (1 << 5); //Ativa PB5
                                                                           TCNT1 = 0;
                                                                                             // Zera timer
    atraso();
                                                                                             // Valor da comparação (1,66ms)
                                                                           OCR1A = 26667;
    PORTB &= ~(1 << 5); //Apaga PB5
    atraso();
                                                                           while (1)
                                                                              PORTB |= (1 << 5);
                                                                                                     // Ativa LED
}
                                                                              atraso();
                                                                              PORTB &= ~(1 << 5);
                                                                                                     // Apaga LED
                                                                              atraso();
             (modo normal)
                                                                                             (modo ctc)
```

Interrupções

Interrupções

- RESET
- Timers
- Hardware
 - Seriais
 - · Pinos externos
 - · Comparador analógico

Vetores de interrupção fixos

AVR Interrupt

ATMEL Studio

ISR(tipo_interrupção); // Função padrão para interrupções

sei();

Vector	Program	Source	Interrupt Definition	Arduino/C++ ISR() Macro
No	Address			Vector Name
1	0x0000	RESET	Reset	
2	0x0002	INT0	External Interrupt Request 0 (pin D2)	(INTO_vect)
3	0x0004	INT1	External Interrupt Request 1 (pin D3)	(INT1_vect)
4	0x0006	PCINTO	Pin Change Interrupt Request 0 (pins D8 to D13)	(PCINTO_vect)
5	0x0008	PCINT1	Pin Change Interrupt Request 1 (pins A0 to A5)	(PCINT1_vect)
6	0x000A	PCINT2	Pin Change Interrupt Request 2 (pins D0 to D7)	(PCINT2_vect)
7	0x000C	WDT	Watchdog Time-out Interrupt	(WDT_vect)
8	0x000E	TIMER2 COMPA	Timer/Counter2 Compare Match A	(TIMER2_COMPA_vect)
9	0x0010	TIMER2 COMPB	Timer/Counter2 Compare Match B	(TIMER2_COMPB_vect)
10	0x0012	TIMER2 OVF	Timer/Counter2 Overflow	(TIMER2_OVF_vect)
11	0x0014	TIMER1 CAPT	Timer/Counter1 Capture Event	(TIMER1_CAPT_vect)
12	0x0016	TIMER1 COMPA	Timer/Counter1 Compare Match A	(TIMER1_COMPA_vect)
13	0x0018	TIMER1 COMPB	Timer/Counter1 Compare Match B	(TIMER1_COMPB_vect)
14	0x001A	TIMER1 OVF	Timer/Counter1 Overflow	(TIMER1_OVF_vect)
15	0x001C	TIMERO COMPA	Timer/Counter0 Compare Match A	(TIMERO_COMPA_vect)
16	0x001E	TIMERO COMPB	Timer/Counter0 Compare Match B	(TIMERO_COMPB_vect)
<mark>17</mark>	0x0020	TIMERO OVF	Timer/Counter0 Overflow	(TIMERO_OVF_vect)
18	0x0022	SPI, STC	SPI Serial Transfer Complete	(SPI_STC_vect)
<mark>19</mark>	0x0024	USART, RX	USART Rx Complete	(USART_RX_vect)
20	0x0026	USART, UDRE	USART, Data Register Empty	(USART_UDRE_vect)
<mark>21</mark>	0x0028	USART, TX	USART, Tx Complete	(USART_TX_vect)

Programação

```
#include<avr/io.h>
#include<avr/interrupt.h>
ISR(TIMER1_COMPA_vect)
                               // Interrupcao por comparacao A
    PORTB ^= (1 << 5);
}
int main()
                               // LED como saida
    DDRB = (1 << 5);
    TCNT1 = 0;
    OCR1A = 31250;
                               //Freq saida = 250Hz
    TCCR1A = 0x00;
    TCCR1B = 1 + (1 << 3);
                               // CTC
    TIMSK1 = (1 << OCIE1A);
                               // Habilita interrupcao por atingir comparador A no timer1
    sei();
                               // Habilita interrupcoes globais
    while(1);
}
```