ENSTA Paris

NOM Prénom :

IC202

Mercredi 14 décembre 2022

Les polycopiés et les notes prises en cours sont autorisés. Les appareils électroniques ne sont pas autorisés.

Nota:

L'examen comprend 4 exercices complètement indépendants.

Exercice 1

Soient X_1 et X_2 deux variables aléatoires identiquement distribuées, mais pas forcément indépendantes. Soit :

$$\gamma = 1 - \frac{H(X_2|X_1)}{H(X_1)}$$

1/ Montrer que $\gamma = I(X_1; X_2)/H(X_1)$.

2/ Montrer que $0 \le \gamma \le 1$.

3/ Quand est-ce que y est égal à 0 ?

4/ Quand est-ce que y est égal à 1?

Exercice 2

On considère le code en bloc linéaire qui aux bits information (m_0, m_1, m_2, m_3) associe un mot code $C = (m_0, m_1, m_2, m_3, c_0, c_1, c_2, c_4)$, dont les bits de redondance (c_0, c_1, c_2, c_4) sont calculés de la façon suivante :

$$c_0 = m_1 + m_2 + m_3$$

$$c_1 = m_0 + m_1 + m_2$$

$$c_2 = m_0 + m_1 + m_3$$

$$c_3 = m_0 + m_2 + m_3$$

1/ Donner sa matrice génératrice et sa matrice de contrôle.

Déterminer la distance minimale du code. En déduire son pouvoir de détection et son pouvoir de correction.

8/Proposer un tableau de déchiffrement (on désire uniquement corriger les erreurs dont le poids est inférieur ou égal à la capacité de correction du code) et corriger le mot reçu : R = (11010101)

ENSTA Paris

NOM Prénom:

IC202

Mercredi 14 décembre 2022

Les polycopiés et les notes prises en cours sont autorisés. Les appareils électroniques ne sont pas autorisés.

Nota:

L'examen comprend 4 exercices complètement indépendants.

Exercice 3

Op considère le corps de Galois à 16 éléments engendré par le polynôme 1 + X³ + X⁴.

Y/Donner dans un tableau à deux colonnes la liste des éléments du corps: dans la première colonne vous exprimerez comme puissance d'un élément primitif α les différents éléments non nuls de ce corps, et dans la deuxième colonne, vous donnerez la représentation équivalente de chaque élément comme un polynôme de degré inférieur ou égal à 3.

2/ Donner le schéma d'un registre à décalage générant une séquence pseudo-aléatoire de longueur $2^4 - 1 = 15$.

3/ Donner les caractéristiques (distance minimale, polynôme générateur, longueur avant et après codage), d'un code BCH de longueur n=15 qui puisse corriger deux erreurs. 4/ Donner un schéma électronique permettant le codage, et un schéma électronique permettant la détection d'erreur ainsi que le calcul des syndromes.

5/ On reçoit le mot dont la représentation polynomiale est : $R(X) = X^8 + X^{10}$. Décoder le mot reçu.

Exercice 4

On considère un canal discret sans mémoire. Soit X une variable aléatoire réelle prenant deux valeurs réelles $\{0,1\}$ représentant l'entrée du canal. Le canal rajoute un bruit B tel que $P(B=0)=P(B=a)=\frac{1}{2}$, où a est un nombre réel. On suppose que X et B sont indépendantes. La sortie du canal s'exprime donc par Y=X+B.

Déterminer, la capacité du canal en fonction en distinguant 4 différents cas : a=-1, a=0, a=+1, le nombre a prend une autre valeur réelle que -1, 0, +1.