NOTE DI MECCANICA QUANTISTICA

Manuel Deodato

INDICE

1	Struttura matematica della meccanica quantistica						
	1.1	Introd	uzione	4			
		1.1.1	Notazione bra-ket	4			
		1.1.2	Operatori	5			
		1.1.3	Operatori autoaggiunti	5			
			Commutatori	5 6			
	1.2	Prodot	to esterno	6			
		1.2.1	Proiettori	6			
		1.2.2	Completezza di una base e valore di aspettazione di un osservabile	7			
			Cambiamento di base	7			
	1.3	Applic	razioni per la meccanica quantistica	7			
				7			
		1.3.2	Rappresentazione degli impulsi	8			
		1.3.3	Misura di un osservabile	8			
			Principi della meccanica quantistica	8			
			Spazio di Hilbert proiettivo, sistemi puri e misti	9			
			Proiettore per sistemi puri	9			
			Flusso di probabilità ed equazione di continuità	10			
2	Intr	ntroduzione alla meccanica quantistica 12					
	2.1		zione temporale	12			
		2.1.1	Equazione di Shrödinger per gli stati	12			
		2.1.2	Soluzione dell'equazione	12			
		2.1.3	Equazione di Shrödinger per la funzione d'onda	12			
			Equazione di Shrödinger per il proiettore	13			
	2.2		zione temporale per gli operatori	13			
			Il quadro di Shrödinger	13			
			Il quadro di Heisenberg	14			
			Evoluzione delle misure	14			
	2.3	•	etrie e operatore impulso	14			
	,		Traslazioni	14			
		-	L'operatore impulso	15			
			Funzione d'onda degli impulsi	15			
			Simmetrie per stati che evolvono temporalmente	16			
			Commutatore di \hat{p} e \hat{X}	16			
	2.4		cipio di indeterminazione	17			
		2.4.1	Introduzione	17			
		2.4.2	Algebra degli operatori sottratti	18			
		2.4.3	Il principio di indeterminazione	18			
	2.5		esempi di \hat{H} per sistemi quantistici	18			
	2.9	2.5.1	Sistema di due corpi	18			
		2.5.2	Particella in campo esterno	19			
	2.6	L'oscillatore armonico		20			
	0	2.6.1	Operatori di creazione e distruzione	20			
		2.6.2	Funzione d'onda per l'oscillatore armonico	21			
	2.7		tore parità e sistemi unidimensionali	22			
	/	2.7.1	Operatore parità	22			
		2.7.1	Alcuni teoremi per sistemi unidimensionali	22			
		2.7.2	Moto di una particella sotto potenziale	23			
		7.5		-5			

		2.7.4	Particella contro barriera di potenziale	24			
	2.8	Mecca	nica quantistica dei sistemi interagenti	24			
		2.8.1	Operatori per sistemi non-interagenti	25			
		2.8.2	La matrice densità	25			
		2.8.3	Caratterizzazione degli stati misti	26			
		2.8.4	Valore di aspettazione per miscele statistiche	26			
		2.8.5	Evoluzione temporale della matrice densità	26			
	2.9	L'oper	atore momento angolare	27			
		2.9.1	Rotazioni in 3D	27			
		2.9.2	Rotazione su funzione d'onda	27			
		2.9.3	Momento angolare	27			
		2.9.4	Momento angolare orbitale	28			
		2.9.5	Spettro del momento angolare	28			
		2.9.6	Introduzione allo spin	29			
		2.9.7	Spettro del momento angolare orbitale	29			
	2.10	Atomo	o di idrogeno	31			
			Particelle in campo centrale	31			
		2.10.2	Funzione d'onda per l'atomo di idrogeno	31			
		2.10.3	Lo stato fondamentale, medie e varianze di posizione e momento	32			
		2.10.4	Principio di indeterminazione	34			
		2.10.5	Oscillatore armonico 3D	34			
	2.11	Lo spin					
			Gli angoli di Eulero e le matrici di Wigner	35			
			Coefficienti di Clebsch-Gordan	35			
		2.11.3	Composizione di due sistemi a due livelli	36			
3	Eser	sercitazioni					
	3.1	Sistem	i a due livelli	38			
		3.1.1	Descrizione generale	38			
		3.1.2	Matrici di Pauli	38			
		3.1.3	Studio di un sistema a due livelli	38			
	3.2	Sistem	a composto da due sottosistemi a due livelli	39			
		3.2.1	Spettro dell'Hamiltoniano	40			
		3.2.2	Matrice densità	40			
	3.3	Buca c	li potenziale V_0	41			
		3.3.1	Buca di potenziale con parità	43			
		3.3.2	Spettro energetico	43			
		3.3.3	Buca di potenziale infinita	44			
	3.4	Dinan	nica degli operatori	45			
		3.4.1	Dinamica di un sistema a due livelli	45			
		3.4.2	Dinamica di un sistema a due livelli tramite rappresentazione di				
			Heisenberg	46			

1 Struttura matematica della meccanica quantistica

1.1 Introduzione

DEFINIZIONE 1.1 — PRODOTTO SCALARE.

Per V spazio vettoriale su \mathbb{C} e ψ , $\phi \in V$, si definisce $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ come:

- $\langle \psi, \phi \rangle \in \mathbb{C}$;
- $\langle \psi, \phi \rangle = \langle \phi, \psi \rangle^*$;
- $\langle \psi, c_1 \phi_1 + c_2 \phi_2 \rangle = c_1 \langle \psi, \phi_1 \rangle + c_2 \langle \psi, \phi_2 \rangle$, con $c_1, c_2 \in \mathbb{C}$;
- $\langle \phi, \phi \rangle \ge 0 \text{ e } \langle \phi, \phi \rangle = 0 \iff \phi = 0.$

Dato $\phi \in V$, questo induce la **norma**:

$$\|\phi\| \stackrel{\text{def}}{=} \sqrt{\langle \phi, \phi \rangle} \tag{1.1.1}$$

Si ricordano le seguenti disuguaglianze:

Schwarz:
$$\left|\left\langle \phi, \psi \right\rangle \right|^2 \le \left\langle \phi, \phi \right\rangle \left\langle \psi, \psi \right\rangle$$

Triangolare: $\left\| \phi + \psi \right\| \le \left\| \psi \right\| + \left\| \phi \right\|$ (1.1.2)

TEOREMA 1.1 — TEOREMA DI RIESZ.

Dato T operatore lineare limitato agente su spazio di Hilbert \mathcal{H} , allora $\exists f \in \mathcal{H} : \forall \phi \in \mathcal{H} \Rightarrow T(\phi) \equiv \langle f, \phi \rangle$. Inoltre, ||T|| = ||f||.

OSSERVAZIONE 1.1 — Funzionali e operatori. Un funzionale lineare è un operatore lineare F che agisce su uno spazio vettoriale V su \mathbb{K} e restituisce un valore nel campo; formalmente: $F:V\to\mathbb{K}$. In generale, gli operatori non restituiscono valori in \mathbb{K} , mentre i funzionali sì.

Gli operatori rappresentano gli osservabili, mentre i funzionali sono usati per calcolare aspettazione e probabilità.

1.1.1 Notazione bra-ket

Sia V uno spazio vettoriale e V' il suo duale; si definiscono:

- per $\phi \in V \longrightarrow |\phi\rangle \in V$;
- per $F \in V' \longrightarrow \langle F | \in V'$.

Per Riesz, per qualche $f \in V$:

$$\langle F|\phi\rangle \stackrel{\text{def}}{=} F(\phi) = \langle f, \phi\rangle \Rightarrow F(\phi) \leftrightarrow \langle f|\phi\rangle$$
 (1.1.3)

Visto che $\langle \phi | \psi \rangle = \langle \phi, \psi \rangle$, allora:

$$\langle c\phi | = c^* \langle \phi | \longleftrightarrow | c\phi \rangle = c | \phi \rangle$$
 (1.1.4)

1.1.2 Operatori

Si considerano vettori, o **stati**, in uno spazio di Hilbert \mathcal{H} . Un operatore che agisce su tale spazio è definito come $\hat{A}: \mathcal{H} \to \mathcal{H}$, quindi $\hat{A} | \phi \rangle \in \mathcal{H}$. Gli operatori di interesse saranno **lineari**.

Se \hat{A} è limitato (quindi continuo), dato $|\psi\rangle \in \mathcal{H}$, con $\{\phi_i\}$ base ortonormale:

$$\begin{cases} \hat{A} |\psi\rangle = |\phi\rangle = \sum_{i=1}^{+\infty} c_i |\phi_i\rangle \\ \\ \hat{A} |\psi\rangle = \sum_{i=1}^{+\infty} b_i \hat{A} |\phi_i\rangle \end{cases}$$

si nota che

$$\langle \phi_j | \hat{A} \psi \rangle = \langle \phi_j | \left(\sum_{i=1}^{+\infty} b_i \hat{A} | \phi_i \rangle \right) = \sum_{i=1}^{+\infty} b_i \underbrace{\langle \phi_j | \hat{A} | \phi_i \rangle}_{\equiv A_{jj}}$$
(1.1.5)

dove A_{ji} è un elemento di matrice; infatti

$$\langle \phi_j | \phi \rangle = \langle \phi_j | \hat{A} | \psi \rangle = \sum_{i=1}^{+\infty} c_i \langle \phi_j | \phi_i \rangle = c_j$$

da cui, unendo le uguaglianze:

$$\sum_{i=1}^{+\infty} A_{ji} b_i = c_j$$

Sia \hat{A} lineare; l'aggiunto è \hat{A}^{\dagger} e tale che $\langle \phi, \hat{A}\psi \rangle = \langle \hat{A}^{\dagger}\phi, \psi \rangle$. Allora, in notazione bra-ket:

$$\langle w| = \langle \phi | \hat{A}^{\dagger} \longleftrightarrow | w \rangle = \hat{A} | \phi \rangle$$
 (1.1.6)

Inoltre

$$\langle \psi, \phi \rangle^* = \langle \phi, \psi \rangle \implies \langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle$$

$$\Rightarrow \langle \psi | \hat{A}^{\dagger} | \phi \rangle^* = \langle \phi | \hat{A} | \psi \rangle$$
(1.1.7)

Infine, se $\{\phi_i\}$ base ortonormale:

$$A_{ii}^{\dagger} = \langle \phi_i | \hat{A}^{\dagger} | \phi_j \rangle = \langle \phi_j | \hat{A} | \phi_i \rangle^* = A_{ii}^* \Rightarrow A^{\dagger} = (A^{\top})^*$$
 (1.1.8)

Da questo, segue:

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}; (cA)^{\dagger} = c^*A^{\dagger}$$
 (1.1.9)

1.1.3 Operatori autoaggiunti

DEFINIZIONE 1.2 — OPERATORE AUTOAGGIUNTO.

Sia \mathcal{H} uno spazio di Hilbert complesso e sia A un operatore lineare definito su un dominio $Dom(A) \subseteq \mathcal{H}$. L'operatore A si dice **autoaggiunto** se soddisfa le seguenti condizioni:

(1). **Densità del dominio:** il dominio Dom(A) è denso nello spazio di Hilbert \mathcal{H} , ovvero:

$$\overline{\mathrm{Dom}(A)} = \mathcal{H}.$$

(2). Simmetria: per ogni ψ , $\phi \in \text{Dom}(A)$,

$$\langle \psi, A\phi \rangle = \langle A\psi, \phi \rangle.$$

(3). **Uguaglianza con l'aggiunto:** il dominio di A coincide con quello del suo aggiunto A^{\dagger} , e i due operatori coincidono, ovvero:

$$Dom(A) = Dom(A^{\dagger})$$
 e $A = A^{\dagger}$.

Essendo $\hat{A} = \hat{A}^{\dagger}$, si ha $A_{ij} = (A_{ij}^*)^{\top}$. Questi sono sempre diagonalizzabili, quindi hanno base ortonormale di autovettori. Visto che $\langle \phi_1 | \hat{A} | \phi_2 \rangle = \langle \phi_2 | \hat{A} | \phi_1 \rangle^*$, allora $\langle \psi | \hat{A} | \psi \rangle \in \mathbb{R}$ ed è il **valore di aspettazione**.

Sia $|\psi\rangle$ autostato di \hat{A} autoaggiunto; allora $\hat{A}|\psi\rangle=a|\psi\rangle\Rightarrow\langle\psi|\,\hat{A}=\langle\psi|\,a^*.$ Si nota, però, che:

$$a \langle \psi | \psi \rangle = \langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \psi \rangle = a^* \langle \psi | \psi \rangle \iff a = a^* \Rightarrow a \in \mathbb{R}$$
 (1.1.10)

Siano $|\psi_1\rangle$, $|\psi_2\rangle$ tali che $\hat{A}|\psi_1\rangle = a_1|\psi_1\rangle$ e $\hat{A}|\psi_2\rangle = a_2|\psi_2\rangle$, con $a_1 \neq a_2$; allora:

$$a_{2} \langle \psi_{1} | \psi_{2} \rangle = \langle \psi_{1} | \hat{A} | \psi_{2} \rangle = \langle \psi_{1} | \hat{A}^{\dagger} | \psi_{2} \rangle = a_{1}^{*} \langle \psi_{1} | \psi_{2} \rangle = a_{1} \langle \psi_{1} | \psi_{2} \rangle$$

$$\Rightarrow (a_{2} - a_{1}) \langle \psi_{1} | \psi_{2} \rangle = 0 \iff |\psi_{1}\rangle \perp |\psi_{2}\rangle$$

$$(1.1.11)$$

1.1.4 Commutatori

DEFINIZIONE 1.3 — COMMUTATORE.

Siano \hat{A} , \hat{B} due operatori; il commutatore è: $[\hat{A}, \hat{B}] \stackrel{\text{def}}{=} \hat{A}\hat{B} - \hat{B}\hat{A}$. Quindi se \hat{A} , \hat{B} commutano, si ha $[\hat{A}, \hat{B}] = 0$.

TEOREMA 1.2 — SPETTRO COMUNE.

Se \hat{A} , \hat{B} sono autoaggiunti e commutano, allora condividono una base di autovettori.

1.2 Prodotto esterno

Applicazione $\rho: V \times V \to O$, con O spazio degli operatori lineari. Un esempio di prodotto esterno è l'operatore lineare

$$\hat{O} = |\psi\rangle\langle\phi|: V \to V \tag{1.2.1}$$

Si nota che:

$$\langle v|\hat{O}w\rangle = \langle v|(|\psi\rangle\langle\phi|)w\rangle = \langle v|\psi\rangle\langle\phi|w\rangle = \langle \hat{O}^{\dagger}v|w\rangle \iff O^{\dagger} = |\phi\rangle\langle\psi|$$

1.2.1 Proiettori

Operatore \hat{P} tale che $\hat{P}^2 = \hat{P}$. Un esempio è $\hat{P} = |\psi\rangle\langle\psi|$, con $||\psi|| = 1$ perché:

$$\hat{P}^2 = |\psi\rangle\langle\psi|\psi\rangle\langle\psi| = |\psi\rangle\langle\psi| \equiv \hat{P}$$

1.2.2 Completezza di una base e valore di aspettazione di un osservabile

Un insieme ortonormale $\{|\phi_i\rangle\}$ si dice completo se:

$$\sum_{i=1}^{+\infty} |\phi_i\rangle \langle \phi_i| = \text{Id}$$
 (1.2.2)

Un insieme ortonormale completo è una base ortonormale di \mathcal{H} , quindi permette di scomporre ogni stato in una combinazione lineare.

1.2.3 Cambiamento di base

Siano $\{|\phi_i\rangle\}_i$, $\{|\psi_i\rangle\}_i$ basi ortonormali. Si esprime una in funzione dell'altra:

$$|\psi_i\rangle = \left(\sum_{j=1}^{+\infty} |\phi_j\rangle \langle \phi_j|\right) |\psi_i\rangle = \sum_{j=1}^{+\infty} \langle \phi_j |\psi_i\rangle |\phi_j\rangle \equiv \sum_{j=1}^{+\infty} S_{ij}^* |\phi_j\rangle \tag{1.2.3}$$

Per φ generico stato: $|\varphi\rangle = \sum_{i=1}^{+\infty} a_i |\phi_i\rangle = \sum_{i=1}^{+\infty} b_i |\psi_i\rangle$; allora:

$$\begin{cases} b_{i} = \langle \psi_{i} | \varphi \rangle = \sum_{j=1}^{+\infty} a_{j} \langle \psi_{i} | \phi_{j} \rangle \equiv \sum_{j=1}^{+\infty} S_{ij} a_{j} \\ a_{i} = \langle \phi_{i} | \varphi \rangle = \sum_{j=1}^{+\infty} b_{j} \langle \phi_{i} | \psi_{j} \rangle \equiv \sum_{j=1}^{+\infty} S_{ji}^{*} b_{j} \end{cases}$$

$$(1.2.4)$$

Ora, essendo le due basi ortonormali:

$$\delta_{ij} = \left\langle \phi_i \left| \left(\sum_{k=1}^{+\infty} \left| \psi_k \right\rangle \left\langle \psi_k \right| \right) \phi_j \right\rangle = \sum_{k=1}^{+\infty} \left\langle \phi_i | \psi_k \right\rangle \left\langle \psi_k | \phi_j \right\rangle = \sum_{k=1}^{+\infty} S_{ki}^* S_{kj}$$
 (1.2.5)

da cui $S^{\dagger}S = Id$.

1.3 Applicazioni per la meccanica quantistica

1.3.1 Rappresentazione delle coordinate

Uno stato si decompone in maniera diversa a seconda della base; ogni decomposizione è una sua diversa **rappresentazione**.

Sia $\hat{Q}: \mathcal{H} \to \mathcal{H}$ operatore autoaggiunto **posizione**¹, con $\hat{Q}|x\rangle = x|x\rangle^2$. Il suo spettro è continuo, quindi la decomposizione spettrale avviene tramite integrale: dato uno stato $|\psi\rangle \in \mathcal{H}$

$$|\psi\rangle = \int_{-\infty}^{+\infty} \langle x|\psi\rangle |x\rangle \ dx \equiv \int_{-\infty}^{+\infty} \psi(x) |x\rangle \ dx$$
 (1.3.1)

con $\psi(x)$ funzione d'onda dello stato $|\psi\rangle$ e ne indica i coefficienti nella rappresentazione delle coordinate.

¹Indicato anche con \hat{X} .

²Gli autostati sono le x, mentre $|x\rangle$ rappresenta gli autovettori.

1.3.2 Rappresentazione degli impulsi

Sia $\hat{p}|p\rangle = p|p\rangle$ operatore impulso (autoaggiunto); per $|\psi\rangle \in \mathcal{H}$:

$$|\psi\rangle = \int_{-\infty}^{+\infty} dp \ c(p)|p\rangle \equiv \int_{-\infty}^{+\infty} dp \ \widetilde{\psi}(p)|p\rangle \tag{1.3.2}$$

dove $\widetilde{\psi}(p)$ è la funzione d'onda nel dominio degli impulsi e si ottiene trasformando con Fourier $\psi(x)$.

1.3.3 Misura di un osservabile

Sia \hat{A} operatore lineare autoaggiunto¹ con autovalori a_i e autovettori $|\lambda_i\rangle$. Assumendo che $\langle \lambda_i | \lambda_j \rangle = \delta_{ij}$ formino una base ortonormale² e dato un generico $|\psi\rangle = \sum_{i=1}^{+\infty} b_i |\lambda_i\rangle$, si nota che :

$$\langle \psi | \hat{A} | \psi \rangle = \left[\sum_{i=1}^{+\infty} b_j^* \langle \lambda_i | \right] \left[\sum_{j=1}^{+\infty} b_j \hat{A} | \lambda_j \rangle \right] = \sum_{i=1}^{+\infty} |b_i|^2 a_i$$
 (1.3.3)

dove si può vedere $|b_i|^2$ come probabilità di ottenere misura a_i da osservabile \hat{A} . In questo senso, deve valere:

$$\sum_{i=1}^{+\infty} |b_i|^2 \stackrel{!}{=} 1$$

Questa condizione è verificata dalla normalizzazione di ciascuno stato:

$$\langle \psi | \psi \rangle = \left[\sum_{i=1}^{+\infty} b_i^* \langle \lambda_i | \right] \left[\sum_{j=1}^{+\infty} b_j | \lambda_j \rangle \right] = \sum_{i,j=1}^{+\infty} b_i^* b_j \langle \lambda_i | \lambda_j \rangle = \sum_{i=1}^{+\infty} |b_i|^2 \stackrel{!}{=} 1 \tag{1.3.4}$$

Per un operatore a spettro continuo \hat{F} , con autovettori $|z\rangle$ relativi ad autovalori z e $|\psi\rangle\in\mathcal{H}$, $|\psi\rangle=\int_{-\infty}^{+\infty}f(z)|z\rangle\ dz$, $f(z)=\langle z|\psi\rangle$:

$$\langle \psi | \hat{F} | \psi \rangle = \int_{-\infty}^{+\infty} f^*(y) \langle y | dy \int_{-\infty}^{+\infty} f(z) \hat{F} | z \rangle dz$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dy dz \ f^*(y) f(z) z \langle y | z \rangle = \int_{-\infty}^{+\infty} z \left| f(z) \right|^2 dz \qquad (1.3.5)$$

$$\langle \psi | \psi \rangle = \int_{-\infty}^{+\infty} \left| f(z) \right|^2 dz \stackrel{!}{=} 1 \text{ (normalizzazione)}$$

1.3.4 Principi della meccanica quantistica

(a). Uno stato fisico $|\psi\rangle$ è un vettore in uno spazio di Hilbert \mathcal{H} , ℓ^2 o L^2 . Lo stesso stato può essere equivalentemente moltiplicato per una fase: $e^{i\alpha} |\psi\rangle$.

¹In generale, ogni operatore in meccanica quantistica, almeno quelli associati ad osservabili, sono operatori lineari autoaggiunti.

²Possono essere sempre costruiti in modo che siano ortonormali.

- (b). Per ogni sistema, ogni stato deve essere tale che $\langle \psi | \psi \rangle = 1$.
- (c). Gli osservabili sono operatori lineari autoaggiunti che agiscono su \mathcal{H} .
- (d). Il valore di aspettazione di un osservabile \hat{A} relativo ad uno stato $|\psi\rangle$ è $\langle\psi|\hat{A}|\psi\rangle$. Se a_i sono autovalori, con $|a_i\rangle$ relativi autovettori, di \hat{A} , la probabilità di ottenere la misura a_i (data dal fatto che il sistema è nello stato $|a_i\rangle$) è $|a_i|^2$.

Nel caso di operatori con spettri continui, si costruisce la densità di probabilità $P(x)dx = |\psi(x)|^2 dx$ (come esempio per operatore posizione \hat{Q}) ed è probabilità di trovare la particella nell'intervallo spaziale dx.

1.3.5 Spazio di Hilbert proiettivo, sistemi puri e misti

Ogni stato $|\psi\rangle$ è definito a meno di una fase; per eliminare fase globale, si usa lo spazio proiettivo $\mathcal{P}(\mathcal{H}) = \mathcal{H}/\sim$, con $|\psi\rangle \sim e^{i\alpha} |\psi\rangle$.

Con gli elementi di $\mathcal{P}(\mathcal{H})$ si può introdurre un **isomorfismo naturale**¹ con lo spazio generato dagli operatori $\rho = |\psi\rangle\langle\psi|$, nel caso di sistemi **puri**.

Un sistema quantistico puro, è univocamente descritto da un singolo stato $|\psi\rangle$ (quello in cui si trova in un certo istante temporale), quindi il proiettore $\rho=|\psi\rangle\langle\psi|$ contiene tutte le informazioni necessarie per una sua descrizione. Un sistema **misto**, invece, non può essere descritto tramite un singolo stato perché appartiene a più stati puri contemporaneamente in una certa proporzione; in questo caso, il proiettore diventa una **matrice di densità** con

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \tag{1.3.6}$$

1.3.6 Proiettore per sistemi puri

La condizione di normalizzazione è:

$$Tr \rho = 1 \tag{1.3.7}$$

Dimostrazione. Se $|\psi\rangle = \sum_{n=1}^{+\infty} c_n |\phi_n\rangle$:

$$\operatorname{Tr} \rho \stackrel{\text{def}}{=} \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} \langle \phi_m | \rho | \phi_n \rangle \, \delta_{mn} = \sum_{n=1}^{+\infty} \langle \phi_n | \rho | \phi_n \rangle = \sum_{n=1}^{+\infty} \langle \phi_n | \psi \rangle \langle \psi | \phi_n \rangle$$

$$= \sum_{n=1}^{+\infty} \left| \langle \phi_n | \psi \rangle \right|^2 = \langle \psi | \psi \rangle$$
(1.3.8)

dove l'ultima uguaglianza deriva dalla completezza di $\{|\phi_n\rangle\}_n$.

Un generico elemento di matrice di $\rho = |\psi\rangle\langle\psi|$ è $\rho_{ij} = c_i c_i^*$, dove $|\psi\rangle = \sum_i c_i |\phi_i\rangle$.

¹Isomorfismo che non dipende dalla scelta del rappresentante della classe di equivalenza.

Dimostrazione. Per conto diretto:

$$\rho_{ij} = \langle \phi_i | \rho | \phi_j \rangle = \langle \phi_i | \psi \rangle \langle \psi | \phi_j \rangle = \sum_{m=1}^{+\infty} c_m \langle \phi_i | \phi_m \rangle \sum_{n=1}^{+\infty} c_n^* \langle \phi_n | \phi_j \rangle$$

$$= \sum_{m,n=1}^{+\infty} c_m c_n^* \delta_{im} \delta_{jn} = c_i c_j^*$$
(1.3.9)

Dato \hat{A} osservabile con base di autostati $\{|a_i\rangle\}_i$:

$$\langle \psi | \hat{A} | \psi \rangle = \text{Tr } \rho \hat{A} \tag{1.3.10}$$

Dimostrazione. Si prende $\psi = \sum_i c_i |a_i\rangle$ e $\rho = |\psi\rangle\langle\psi|$; allora:

$$\operatorname{Tr}(\rho \hat{A}) \stackrel{\text{def}}{=} \sum_{i} \langle a_{i} | \rho \hat{A} | a_{i} \rangle = \sum_{i} a_{i} \langle a_{i} | \rho | a_{i} \rangle = \sum_{i} |c_{i}|^{2} a_{i} \equiv \langle \psi | \hat{A} | \psi \rangle \qquad (1.3.11)$$

1.3.7 Flusso di probabilità ed equazione di continuità

Sistema composto da particella in 3D sotto potenziale V(x). Sia $\psi(\mathbf{x},t)$ funzione d'onda per stato $|\psi(t)\rangle$. La probabilità di trovare particella in una regione Γ dello spazio è¹:

$$P_{\Gamma}(t) \equiv \int_{\Gamma} d^3x \; |\psi(\mathbf{x}, t)|^2 \tag{1.3.12}$$

Per quanto detto in §2.5.2: $i\hbar\partial_t\psi(\mathbf{x},t)=\left(-\frac{\hbar^2}{2m}\nabla^2+V(\mathbf{x})\right)\psi(\mathbf{x},t)$; evoluzione temporale di $P_\Gamma(t)$ è:

$$\begin{split} \partial_t P_\Gamma(t) &= \partial_t \int_\Gamma d^3x \; \psi(\mathbf{x},t) \psi^*(\mathbf{x},t) = \int_\Gamma \left[\psi^*(\mathbf{x},t) \partial_t \psi(\mathbf{x},t) + \psi(\mathbf{x},t) \partial_t \psi^*(\mathbf{x},t) \right] d^3x \\ &= \int_\Gamma \left[\psi^*(\mathbf{x},t) \frac{1}{i\hbar} \left(-\frac{\hbar^2}{2m} \nabla^2 + V(x) \right) \psi(\mathbf{x},t) - \frac{1}{i\hbar} \left(-\frac{\hbar^2}{2m} \nabla^2 + V(x) \right) \psi^*(\mathbf{x},t) \right] d^3x \\ &= \frac{i\hbar}{2m} \int_\Gamma \left[\psi^*(\mathbf{x},t) \nabla^2 \psi(\mathbf{x},t) - \psi(\mathbf{x},t) \nabla^2 \psi^*(\mathbf{x},t) \right] d^3x = \frac{i\hbar}{2m} \int_\Gamma \nabla \cdot \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) d^3x \end{split}$$

Definendo flusso di probabilità:

$$\mathbf{J} = -\frac{i\hbar}{2m} (\psi^* \nabla \psi - \psi \nabla \psi^*)$$
 (1.3.13)

 $^{^1}$ I termini con il potenziale si cancellano perché simmetrici, mentre quelli con ∇^2 no perché in uno sarà derivato ψ , nell'altro ψ^* .

si ha:

$$\partial_t P_{\Gamma}(t) = -\int_{\Gamma} \nabla \cdot \mathbf{J} \ d^3 x \tag{1.3.14}$$

da cui si ottiene equazione di continuità:

$$\partial_t |\psi|^2 + \nabla \cdot \mathbf{J} = 0 \tag{1.3.15}$$

2 Introduzione alla meccanica quantistica

2.1 Evoluzione temporale

2.1.1 Equazione di Shrödinger per gli stati

Variazione temporale dello stato di un sistema: $|\psi(t)\rangle$ o $|\psi,t\rangle$. Per la funzione d'onda: $\psi(x,t) = \langle x|\psi(t)\rangle$. Per trovare evoluzione temporale di uno stato, si richiede che:

- (a). l'evoluzione sia univocamente determinata da uno stato iniziale \Rightarrow si richiede che nell'equazione compaia al massimo il primo ordine di derivazione $\partial_t |\psi(t)\rangle$;
- (b). sperimentalmente, si verifica il principio di sovrapposizione, quindi l'equazione differenziale deve essere lineare.

L'equazione risultante è:

$$i\hbar\partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (2.1.1)

 \hat{H} è un generico operatore che definisce l'evoluzione temporale del sistema. Deve risultare autoaggiunto.

Dimostrazione. Da $\langle \psi(t)|\psi(t)\rangle \stackrel{!}{=} 1$, $\forall t$:

$$0 \stackrel{!}{=} \partial_{t} \langle \psi(t) | \psi(t) \rangle = \left(\partial_{t} \langle \psi(t) | \right) | \psi(t) \rangle + \langle \psi(t) | \left(\partial_{t} | \psi(t) \rangle \right)$$

$$\Rightarrow \frac{i}{\hbar} \langle \psi(t) | \hat{H}^{\dagger} | \psi(t) \rangle = \frac{i}{\hbar} \langle \psi(t) | \hat{H} | \psi(t) \rangle \Rightarrow \hat{H}^{\dagger} = \hat{H}$$
(2.1.2)

Questo candida \hat{H} come osservabile

2.1.2 Soluzione dell'equazione

La soluzione è:

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}|\psi(t_0)\rangle \tag{2.1.3}$$

dove

$$e^{\hat{A}} \stackrel{\text{def}}{=} 1 + \hat{A} + \frac{1}{2}\hat{A}^2 + \dots$$

Visto che \hat{H} è autoaggiunto, l'esponenziale è unitario:

$$e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}e^{\frac{i}{\hbar}\hat{H}(t-t_0)} = \text{Id}$$
 (2.1.4)

Definendo l'**evolutore** come l'operatore $\hat{U}(t,t_0)$ tale che $|\psi(t)\rangle = \hat{U}(t,t_0)|\psi(t_0)\rangle$, risulta $\hat{U}(t,t_0)\hat{U}^{\dagger}(t,t_0) = \mathrm{Id}$. Se \hat{H} indipendente dal tempo, allora $\hat{U}(t,t_0) = e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}$.

2.1.3 Equazione di Shrödinger per la funzione d'onda

Per $\{|x\rangle\}$ base ortonormale $\Rightarrow \int_{-\infty}^{+\infty} dx \ \langle \psi(t)|x\rangle \langle x|\psi(t)\rangle = \int_{-\infty}^{+\infty} dx \ \left|\psi(x,t)\right|^2 \stackrel{!}{=} 1$ per normalizzazione. Nell'eq. di Shrödinger:

$$i\hbar\partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \Rightarrow i\hbar\partial_t \langle x|\psi(t)\rangle = \langle x|\hat{H}|\psi(t)\rangle \Rightarrow i\hbar\partial_t \psi(x,t) = \hat{H}\psi(x,t)$$
 (2.1.5)

Il passaggio $\langle x|\hat{H}|\psi(t)\rangle \stackrel{*}{=} \hat{H}\psi(x,t)$ è giustificato con l'accorgimento che gli \hat{H} non sono gli stessi: uno agisce su ket, l'altro su scalare; la definizione di \hat{H} agente su $\psi(x,t)$ è:

$$\langle x|\hat{H}|\psi(t)\rangle \equiv \int_{-\infty}^{+\infty} dy \ \langle x|\hat{H}|y\rangle \langle y|\psi(t)\rangle \stackrel{\text{def}}{=} \hat{H}\psi(x,t)$$

con $\langle x|\hat{H}|y\rangle$ è l'elemento di matrice dell'Hamiltoniano originale nella rappresentazione delle coordinate.

Per la soluzione dell'equazione:

$$\begin{aligned} |\psi(t)\rangle &= \hat{U}(t,t_0) |\psi(t_0)\rangle \Rightarrow \langle x|\psi(t)\rangle = \psi(x,t) = \langle x|\hat{U}(t,t_0)|\psi(t_0)\rangle \\ \Rightarrow \psi(x,t) &= \int\limits_{-\infty}^{+\infty} dy \ \langle x|\hat{U}(t,t_0)|y\rangle \langle y|\psi(t_0)\rangle = \int\limits_{-\infty}^{+\infty} dy \ \hat{U}(x,y,t,t_0)\psi(y,t_0) \\ \Rightarrow \psi(x,t) &= \hat{U}(t,t_0)\psi(x,t_0) \end{aligned}$$

dove, come prima, i due \hat{U} non sono gli stessi.

2.1.4 Equazione di Shrödinger per il proiettore

Partendo da $\hat{\rho}(t) = |\psi(t)\rangle \langle \psi(t)|$, si trova:

$$\partial_{t}\hat{\rho}(t) = \left[\partial_{t} |\psi(t)\rangle\right] \langle \psi(t)| + |\psi(t)\rangle \left[\partial_{t} \langle \psi(t)|\right]$$

$$= -\frac{i}{\hbar} \hat{H} |\psi(t)\rangle \langle \psi(t)| + \frac{i}{\hbar} |\psi(t)\rangle \langle \psi(t)| \hat{H}^{\dagger} = -\frac{i}{\hbar} \hat{H} \hat{\rho}(t) + \frac{i}{\hbar} \hat{\rho}(t) \hat{H}$$

$$= -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}(t)\right]$$
(2.1.6)

2.2 Evoluzione temporale per gli operatori

Ci sono tre quadri per vedere il problema:

- (a). quadro di Shrödinger: solo gli stati dipendono dal tempo, mentre gli operatori no;
- (b). quadro di Heisenberg: solo gli operatori dipendono dal tempo;
- (c). **quadro misto (o di interazione):** l'Hamiltoniano si divide in $\hat{H} = \hat{H}_0 + \hat{H}_I$, dove il primo evolve gli operatori e il secondo evolve gli stati.

2.2.1 Il quadro di Shrödinger

Evoluzione temporale di \hat{O} , con $\partial_t \hat{O} = 0$, è:

$$\partial_{t} \langle \psi(t) | \hat{O} | \psi(t) \rangle = \frac{i}{\hbar} \langle \psi(t) | \hat{H} \hat{O} | \psi(t) \rangle - \frac{i}{\hbar} \langle \psi(t) | \hat{O} \hat{H} | \psi(t) \rangle$$

$$= \left\langle \psi(t) \left| \frac{i}{\hbar} \left[\hat{H}, \hat{O} \right] \right| \psi(t) \right\rangle$$
(2.2.1)

Operatore **velocità** definito come $\hat{v} = \frac{i}{\hbar} [\hat{H}, \hat{Q}].$

2.2.2 Il quadro di Heisenberg

Gli stati evolvono tramite operatore, quindi si definisce $\hat{O}_H(t)$ come:

$$\left\langle \psi(t_0) \left| e^{\frac{i}{\hbar}\hat{H}t} \hat{O} e^{-\frac{i}{\hbar}\hat{H}t} \right| \psi(t_0) \right\rangle \equiv \left\langle \psi(t_0) | \hat{O}_H(t) | \psi(t_0) \right\rangle \tag{2.2.2}$$

dove si nota che ancora \hat{O} non dipende dal tempo.

2.2.3 Evoluzione delle misure

Modello della mq prevede che operatore \hat{O} autoaggiunto applicato ad uno stato $|\psi\rangle$ restituisca valore rappresentato da \hat{O} in tale stato. In questo senso, potendo espandere $|\psi\rangle$ in autostati di \hat{O} , le misure sono gli autovalori dell'operatore e, a seconda del tipo di spettro, sono continui, discreti o entrambi.

Per l'energia (quindi se $\hat{O} \equiv \hat{H}$), se $|\psi_n\rangle$ autostato dell'autovalore E_n : $\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$, dove E_n è energia dello stato $|\psi_n\rangle$.

Sia $|\phi(t)\rangle = \exp\left(-\frac{i}{\hbar}\hat{H}(t-t_0)\right)|\phi(t_0)\rangle$ un generico stato, con $|\phi(t_0)\rangle = \sum_n c_n |\psi_n(t_0)\rangle$. Allora:

$$|\phi(t)\rangle = \sum_{n=1}^{+\infty} c_n e^{-\frac{i}{\hbar}\hat{H}(t-t_0)} |\psi_n(t_0)\rangle = \sum_{n=1}^{+\infty} c_n e^{-\frac{i}{\hbar}E_n(t-t_0)} |\psi_n(t_0)\rangle$$
 (2.2.3)

L'esponenziale è una fase, quindi $|\phi(t)\rangle$ è **stazionario**. Per questo, se \hat{O} operatore: $\langle \psi_n(t)|\hat{O}|\psi_n(t)\rangle = \langle \psi_n(t_0)|\hat{O}|\psi_n(t_0)\rangle$, da cui $E_n(t) = E_n(0)$ per $\hat{O} \equiv \hat{H}$.

2.3 Simmetrie e operatore impulso

2.3.1 Traslazioni

Sia trasla $|\psi\rangle \to |\psi'\rangle$, $\hat{A} \to \hat{A}'$, e, assumendo simmetria per traslazioni spaziali, si richiede che per $\hat{A} |\phi_n\rangle = a_n |\phi_n\rangle \to \hat{A}' |\phi_n\rangle = a_n' |\phi_n'\rangle$ si abbia $a_n' = a_n$. Se $|\psi\rangle = \sum_n c_n |\phi_n\rangle$ e $|\psi'\rangle = \sum_n c_n' |\phi_n'\rangle$, deve valere $|c_n|^2 = |c_n'|^2$ perché sonno le probabilità di ottenere una certa misura. L'invarianza per traslazione è assicurata quando:

$$\begin{cases} a'_n = a_n \\ |c'_n|^2 = |c_n|^2 \end{cases}$$
 (2.3.1)

Si cerca \hat{U} operatore delle traslazioni. Si assume che questo soddisfi:

$$\begin{cases} |\psi'\rangle = \hat{U} |\psi\rangle, \ \forall |\psi\rangle \in \mathcal{H} \\ \langle \phi'|\psi'\rangle = \langle \phi|\psi\rangle, \ \forall |\phi\rangle, |\psi\rangle \in \mathcal{H} \end{cases}$$
 (2.3.2)

Unendo le due, si trova \hat{U} unitario:

$$\langle \phi' | \psi' \rangle = \langle \phi | \hat{U}^{\dagger} \hat{U} | \psi \rangle \Rightarrow \hat{U}^{\dagger} \hat{U} = \text{Id}$$
 (2.3.3)

Su generico operatore \hat{A} come sopra:

$$\hat{A}'\hat{U}|\phi_{n}\rangle = a_{n}\hat{U}|\phi_{n}\rangle = \hat{U}a_{n}|\phi_{n}\rangle = \hat{U}\hat{A}|\phi_{n}\rangle \Rightarrow \hat{A}'\hat{U}|\phi_{n}\rangle = \hat{U}\hat{A}|\phi_{n}\rangle$$

$$\Rightarrow \hat{A}' = \hat{U}\hat{A}\hat{U}^{\dagger}$$
(2.3.4)

Si definisce azione di \hat{U} su una funzione d'onda:

$$\psi'(x) = \langle x|\psi'\rangle = \langle x|\hat{U}|\psi\rangle \stackrel{\text{def}}{=} \hat{U}\psi(x) \Rightarrow \psi'(x) = \hat{U}\psi(x) \tag{2.3.5}$$

2.3.2 L'operatore impulso

Visto \hat{U} unitario, si prende $\hat{U}(s) = e^{is\hat{K}}$ per parametrizzare la traslazione con parametro continuo s. Si mostra che \hat{K} è autoaggiunto¹. Sviluppando attorno a s = 0:

$$\hat{U}(s) \simeq \hat{U}(0) + s \frac{d}{ds} \hat{U}(s) \Big|_{s=0} + O(s^2) = \text{Id} + is \hat{K} + O(s^2)$$
 (2.3.6)

Dovendo essere $\hat{U}(s)\hat{U}^{\dagger}(s) = \text{Id}$, trascurando $O(s^2)$:

$$\left(\operatorname{Id} + s\frac{d}{ds}\hat{U}^{\dagger}(s)\right)\left(\operatorname{Id} + s\frac{d}{ds}\hat{U}(s)\right) = \left(\operatorname{Id} - is\hat{K}^{\dagger}\right)\left(\operatorname{Id} + is\hat{K}\right) \simeq \operatorname{Id} + is(\hat{K} - \hat{K}^{\dagger}) \tag{2.3.7}$$

da cui $\hat{K} = \hat{K}^{\dagger}$.

Si introduce operatore **impulso**² come $\hat{K} = -\frac{1}{\hbar}\hat{p}$, da cui $\hat{U}(s) = \exp\left(-\frac{i}{\hbar}s\hat{p}\right)$. Si ricava la sua rappresentazione nello spazio delle posizioni. Sviluppando³:

$$\hat{U}\psi(x) \simeq \left(1 - \frac{i}{\hbar}s\hat{p}\right)\psi(x)$$

$$\psi'(x) \equiv \psi(x - s) \simeq \psi(x) + s \left.\frac{d}{ds}\psi(x - s)\right|_{s = 0} = \psi(x) - s\partial_x\psi(x)$$

$$\Rightarrow \left(1 - \frac{i}{\hbar}s\hat{p}\right)\psi(x) = \psi(x) - s\partial_x\psi(x)$$
(2.3.8)

Da cui $\hat{p} = -i\hbar \partial_x$.

2.3.3 Funzione d'onda degli impulsi

Visto che $\hat{p} |\psi\rangle = -i\hbar \partial_x |\psi\rangle$, vale $\langle x|\hat{p}|p\rangle = \hat{p} \langle x|p\rangle \equiv \hat{p}\psi_p(x) \Rightarrow -i\hbar \partial_x \psi_p(x) = p\psi_p(x)$, quindi $\psi_p(x) = \langle x|p\rangle = C \exp\left(\frac{i}{\hbar}px\right)$. Per C, si usa normalizzazione:

$$\delta(p'-p) = \langle p'|p \rangle = \int_{-\infty}^{+\infty} dx \ \langle p'|x \rangle \langle x|p \rangle = \int_{-\infty}^{+\infty} dx \ |C|^2 \exp\left(-\frac{i}{\hbar}x(p'-p)\right) = 2\pi \, |C|^2 \, \hbar \delta(p-p')$$

quindi $C = 1/\sqrt{2\pi\hbar}$ e

$$\psi_p(x) = \langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp\left(\frac{i}{\hbar}px\right)$$
 (2.3.9)

Dato generico $|\psi\rangle \in \mathcal{H}$ rappresentato dalle posizioni, usando $\langle p|x\rangle^* = \psi_p(x)$:

$$\widetilde{\psi}(p) \equiv \langle p|\psi\rangle = \int_{-\infty}^{+\infty} dx \ \langle p|x\rangle \langle x|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \exp\left(-\frac{i}{\hbar}px\right) \psi(x) \ dx \tag{2.3.10}$$

¹Quindi sarà un possibile osservabile.

²Questa introduzione è giustificata dal fatto che, per il teorema di Nöther, l'impulso è il generatore delle traslazioni spaziali.

³Si ottiene l'espressione di \hat{p} nella rappresentazione delle coordinate sotto l'assunzione che una traslazione abbia il seguente effetto su una funzione d'onda: $\psi'(x) \equiv \hat{U}\psi(x) = \psi(x-s)$.

Quindi spazi di posizioni e momenti sono legati da una trasformata di Fourier¹:

$$\begin{cases} \psi(x) \equiv \langle x | \psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \widetilde{\psi}(p) e^{ipx/\hbar} \, dp \\ \\ \widetilde{\psi}(p) \equiv \langle p | \psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x) e^{-ipx/\hbar} \, dx \end{cases}$$
 (2.3.11)

L'azione di \hat{X} su $\widetilde{\psi}(p)$ è:

$$\hat{X}\widetilde{\psi}(p) = i\hbar\partial_p\widetilde{\psi}(p) \tag{2.3.12}$$

cioè la rappresentazione di \hat{X} nello spazio dei momenti è $\hat{X}=i\hbar\partial_{\nu}$. Infatti:

$$\langle p|\hat{X}|\psi\rangle = \int_{-\infty}^{+\infty} dx \ \langle p|\hat{X}|x\rangle \langle x|\psi\rangle = \int_{-\infty}^{+\infty} dx \ \frac{x}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar} \psi(x)$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} x e^{-ipx/\hbar} \psi(x) \ dx = \left(-\frac{\hbar}{i}\right) \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \partial_p e^{-ipx/\hbar} \psi(x) \ dx$$

$$= (i\hbar\partial_p) \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x) e^{-ipx/\hbar} \ dx = i\hbar\partial_p \widetilde{\psi}(p)$$

2.3.4 Simmetrie per stati che evolvono temporalmente

 $\hat{O}(t,t_0)$ operatore di evoluzione temporale: $|\psi'(t)\rangle = \hat{O}(t,t_0)|\psi'(t_0)\rangle = |\psi(t)\rangle = \hat{O}(t,t_0)|\psi(t_0)\rangle$. Simmetria per traslazioni temporali implica: $|\psi'(t)\rangle = \hat{U}(s)|\psi(t)\rangle$, $\forall t$. Unendo le due:

$$|\psi'(t)\rangle = \hat{U}(s)\hat{O}(t,t_0)|\psi(t_0)\rangle = \hat{U}(s)\hat{O}(t,t_0)\hat{U}^{-1}(s)\hat{U}(s)|\psi(t_0)\rangle$$

$$= \hat{U}(s)\hat{O}(t,t_0)\hat{U}^{-1}(s)|\psi'(t_0)\rangle$$
(2.3.13)

Dall'imposizione dell'invarianza per traslazioni, risulta $\hat{U}(s)\hat{O}(t,t_0)\hat{U}^{-1}(s)=\hat{O}(t,t_0)$. Vista la struttura dell'operatore di evoluzione temporale², si ricava $[\hat{H},\hat{U}(s)]=0$. Per s piccoli, $\hat{U}(s)$ è rappresentato da \hat{p} , quindi vale $[\hat{H},\hat{p}]=0$.

2.3.5 Commutatore di \hat{p} e \hat{X}

Sia $\hat{T}(s)$ operatore di traslazione spaziale; se $|x'\rangle = \hat{T}(s)|x\rangle \equiv |x+s\rangle = \exp\left(-\frac{i}{\hbar}s\hat{p}\right)|x\rangle$:

$$\hat{X}|x'\rangle = x'|x'\rangle = (x+s)|x+s\rangle$$

$$\hat{X}'|x'\rangle = \hat{T}(s)\hat{X}\hat{T}^{\dagger}(s)|x'\rangle = x|x+s\rangle$$
(2.3.14)

¹Essendo $\lambda = h/p$ e $k = 2\pi/\lambda = 2\pi p/h = p/\hbar$.

²Nel caso in questione, si può scrivere come esponenziale dell'operatore \hat{H} , che, sviluppato in serie, permette di ricavare l'espressione del commutatore.

con \hat{X}' operatore traslato. Per s piccoli:

$$\hat{X}' = e^{-\frac{i}{\hbar}s\hat{p}}\hat{X}e^{\frac{i}{\hbar}s\hat{p}} \simeq \hat{X} + \frac{i}{\hbar}s[\hat{X},\hat{p}]$$

Visto che $(\hat{X} - s \operatorname{Id}) | x + s \rangle = x | x + s \rangle$, da cui $\hat{X}' = \hat{X} - s \operatorname{Id}$:

$$\hat{X}' = \begin{cases} \hat{X} + \frac{i}{\hbar} s[\hat{X}, \hat{p}] \\ \hat{X} - s \text{ Id} \end{cases} \Rightarrow [\hat{X}, \hat{p}] = i\hbar \text{ Id}$$
 (2.3.15)

Alternativamente, si sarebbe potuto notare che

$$\begin{cases} \hat{X}\psi(x) = x\psi(x) \\ \hat{p}\psi(x) = -i\hbar\partial_x\psi(x) \end{cases}$$

implica:

$$[\hat{X}, \hat{p}]\psi(x) = x(-i\hbar\partial_x)\psi(x) - (-i\hbar\partial_x)x\psi(x)$$

$$= -x(i\hbar\partial_x\psi(x)) + x(i\hbar\partial_x\psi(x)) + \psi(x)(i\hbar\partial_xx) = i\hbar\psi(x), \forall \psi(x)$$
(2.3.16)

2.4 Il principio di indeterminazione

2.4.1 Introduzione

Si usa funzione d'onda¹ tridimensionale² $\psi(\mathbf{r}) = \langle \mathbf{r}|\psi\rangle$, dove $|\mathbf{r}\rangle = |\mathbf{r}(x_1, x_2, x_3)\rangle = |x_1\rangle\otimes|x_2\rangle\otimes|x_3\rangle$. Questa definizione è necessaria per far sì che l'azione di un operatore posizione legato alla singola coordinata restituisca $\hat{X}_1|\mathbf{r}\rangle = x_1|\mathbf{r}\rangle$ per esempio³. Allora $|\psi(\mathbf{r})|^2 = |\langle \mathbf{r}|\psi\rangle|^2$ è densità di probabilità di trovare la particella in un certo intervallo $d\mathbf{r}$. Il valore di aspettazione si esprime come:

$$\mathbf{E}\left[\mathbf{r}\right] = \langle \psi | \hat{\mathbf{R}} | \psi \rangle \equiv \overline{\mathbf{R}} = \iiint dx dy dz \ \mathbf{r} \left| \psi(\mathbf{r}) \right|^2 = \begin{pmatrix} \overline{R}_{x_1} \\ \overline{R}_{x_2} \\ \overline{R}_{x_3} \end{pmatrix}$$
(2.4.1)

La varianza è data da $\mathbf{E}\left[(\mathbf{r}-\overline{\mathbf{R}})^2\right]=\iiint dxdydz \ (\mathbf{r}-\overline{\mathbf{R}})^2 \left|\psi(x,y,z)\right|$, quindi si definisce:

$$\Delta_{r}^{2} \stackrel{\text{def}}{=} \langle \psi | \hat{\mathbf{R}}_{S}^{2} | \psi \rangle = \iiint dx dy dz \ (\mathbf{r} - \overline{\mathbf{R}})^{2} \left| \psi(\mathbf{r}) \right|^{2} \equiv \mathbf{E} \left[(\mathbf{r} - \overline{\mathbf{R}})^{2} \right]$$
(2.4.2)

con $\hat{\mathbf{R}}_S = \hat{\mathbf{R}} - \hat{\overline{\mathbf{R}}}$ è l'operatore posizione **sottratto** e $\hat{\overline{\mathbf{R}}} = \overline{R}$ Id. Analogamente:

$$\overline{p} = \langle \psi | \hat{\mathbf{P}} | \psi \rangle$$

$$\Delta_p^2 = \langle \psi | \hat{\mathbf{P}}_S^2 | \psi \rangle$$
(2.4.3)

 $^{^{1}}$ Con il pedice 0, indica che è relativa allo stato fondamentale ψ_{0} .

²Essa è definita, sotto l'assunzione di poter separare le variabili nell'integrale, come $\psi(\mathbf{r}) = \psi(x_1)\psi(x_2)\psi(x_3)$. Essendo che $|\psi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ e che ogni bra agisce sul ket del suo spazio di Hilbert, si ottiene $\psi(\mathbf{r}) = \langle x_1 \otimes x_2 \otimes x_3 | \psi_{x_1} \otimes \psi_{x_2} \otimes \psi_{x_3} \rangle = \langle x_1 | \psi_{x_1} \rangle \langle x_2 | \psi_{x_2} \rangle \langle x_3 | \psi_{x_2} \rangle$.

ottiene $\psi(\mathbf{r}) = \langle x_1 \otimes x_2 \otimes x_3 | \psi_{x_1} \otimes \psi_{x_2} \otimes \psi_{x_3} \rangle = \langle x_1 | \psi_{x_1} \rangle \langle x_2 | \psi_{x_2} \rangle \langle x_3 | \psi_{x_3} \rangle$.

³In questo caso $|\mathbf{r}\rangle \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$, dove gli operatori $\hat{X}_1, \hat{X}_2, \hat{X}_3$ agiscono rispettivamente su $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$.

2.4.2 Algebra degli operatori sottratti

Siano \hat{A} , \hat{B} autoaggiunti tali che $[\hat{A}, \hat{B}] = i\hat{C}$, con \hat{C} autoaggiunto¹; se \hat{A}_s , \hat{B}_s sono i sottratti, allora è ancora $[\hat{A}_S, \hat{B}_S] = i\hat{C}$:

$$[\hat{A}_S, \hat{B}_S] = (\hat{A} - \hat{\overline{A}})(\hat{B} - \hat{\overline{B}}) - (\hat{B} - \hat{\overline{B}})(\hat{A} - \hat{\overline{A}}) = (\hat{A}\hat{B} - \hat{B}\hat{A}) - \hat{\overline{A}}\hat{B} + \hat{\overline{A}}\hat{B} + \hat{\overline{B}}\hat{A} - \hat{\overline{A}}\hat{B}$$
$$= [\hat{A}, \hat{B}]$$

dove si è usato che l'identità commuta con ogni operatore. Sia $\hat{T} \stackrel{\text{def}}{=} \hat{A}_S + i\omega \hat{B}_S$ non autoaggiunto: $\hat{T}^{\dagger} = \hat{A}_S - i\omega \hat{B}_S$. Si nota che $\hat{T}^{\dagger}\hat{T}$ è autoaggiunto: $(\hat{T}^{\dagger}\hat{T})^{\dagger} = \hat{T}^{\dagger}\hat{T}$.

Per generico $|\psi\rangle$ vale $\langle\psi|\hat{T}^{\dagger}\hat{T}|\psi\rangle \geq 0$:

$$|w\rangle = \hat{T} |\psi\rangle$$
, $\langle w| = \langle \psi | \hat{T}^{\dagger} \Rightarrow \langle w | w \rangle = \langle \psi | \hat{T}^{\dagger} \hat{T} | \psi \rangle \ge 0$

quindi:

$$0 \leq \langle \psi | \hat{T}^{\dagger} \hat{T} | \psi \rangle = \langle \psi | (\hat{A}_{S} - i\omega \hat{B}_{S}) (\hat{A}_{S} + i\omega \hat{B}_{S}) | \psi \rangle = \langle \psi | \hat{A}_{S}^{2} | \psi \rangle + \omega^{2} \langle \psi | \hat{B}_{S}^{2} | \psi \rangle + i\omega \langle \psi | [\hat{A}_{S}, \hat{B}_{S}] | \psi \rangle$$
$$\Rightarrow \langle \psi | \hat{A}_{S}^{2} | \psi \rangle + \omega^{2} \langle \psi | \hat{B}_{S}^{2} | \psi \rangle + i\omega \langle \psi | i\hat{C} | \psi \rangle \geq 0, \ \forall \omega$$

Vale $\forall \omega \Rightarrow$ si cerca ω_0 che la rende più piccola possibile²; si ottiene, per $\omega = \omega_0$:

$$\Delta_A^2 \Delta_B^2 \ge \frac{\langle \psi | \hat{C} | \psi \rangle^2}{4} \Rightarrow \Delta_A \Delta_B \ge \frac{|\langle \psi | \hat{C} | \psi \rangle|}{2} \tag{2.4.4}$$

2.4.3 Il principio di indeterminazione

Usando \hat{A} , \hat{B} come \hat{X}_i , \hat{p}_i ; visto che $[\hat{R}_i, \hat{p}_j] = i\hbar \delta_{ij}$, allora:

$$\Delta_{x_i} \Delta_{p_i} \ge \frac{\hbar}{2} \tag{2.4.5}$$

2.5 Alcuni esempi di \hat{H} per sistemi quantistici

2.5.1 Sistema di due corpi

Il sistema è rappresentato dallo spazio di Hilbert totale dato da $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2$ delle singole particelle in 3D. Per due corpi 1,2 in 3D, si ha un Hamiltoniano:

$$\hat{H} = \frac{\hat{\mathbf{p}}_1^2}{2m_1} + \frac{\hat{\mathbf{p}}_2^2}{2m_2} + U(|\hat{\mathbf{r}}_1 - \hat{\mathbf{r}}_2|)$$
 (2.5.1)

con³ [\hat{r}_{ij} , \hat{p}_{kl}] = $i\hbar \delta_{ik} \delta_{jl}$. Si definiscono:

$$\hat{\mathbf{X}} = \frac{m_1 \hat{\mathbf{r}}_1 + m_2 \hat{\mathbf{r}}_2}{m_1 + m_2}; \quad \hat{\mathbf{x}} = \hat{\mathbf{r}}_2 - \hat{\mathbf{r}}_1$$

$$\hat{\mathbf{P}} = \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2; \quad \hat{\mathbf{p}} = \frac{m_1 \hat{\mathbf{p}}_2 - m_2 \hat{\mathbf{p}}_1}{m_1 + m_2}$$
(2.5.2)

 $^{^1}$ La i fuori serve per assicurare che \hat{C} sia autoaggiunto.

 $^{^{2}}$ La procedura si basa sul derivare rispetto a ω e imporre derivata a 0.

³Il primo indice rappresenta a quale delle due particelle fa riferimento la grandezza, mentre il secondo indice indica la componente del vettore.

con $[\hat{X}_i, \hat{P}_j] = i\hbar \delta_{ij}$ e $[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}$. In questo modo¹:

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2M} + \frac{\hat{\mathbf{p}}^2}{2\mu} + U(|\hat{\mathbf{x}}|), \ M = m_1 + m_2 \quad \text{e} \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$
(2.5.3)

che agisce su una nuova separazione dello sapzio di Hilbert in termini di X (coordinata del centro di massa) e x (coordinata relativa): $\mathcal{H} = \mathcal{H}_{CM} \otimes \mathcal{H}_{rel}$.

Da eq. 2.5.1, passando in rappresentazione delle coordinate:

$$\hat{H} = -\frac{\hbar^2}{2m_1} \vec{\nabla}_1^2 - \frac{\hbar^2}{2m_2} \vec{\nabla}_2^2 + U(|\mathbf{r}_2 - \mathbf{r}_1|)$$

$$= -\frac{\hbar^2}{2M} \vec{\nabla}_X - \frac{\hbar^2}{2\mu} \vec{\nabla}_X + U(|\mathbf{x}|)$$
(2.5.4)

Si è separato \hat{H} in parte dipendente da \hat{X} e parte dipendente solo da \hat{x} . Per risolvere l'equazione di Shrödinger² si usa la separazione delle variabili: $\psi(x, X) = A(X)B(x)$:

$$\begin{cases} -\frac{\hbar^2}{2M} \vec{\nabla}_X^2 A(\mathbf{X}) = EA(\mathbf{X}) \\ \left(-\frac{\hbar^2}{2\mu} \vec{\nabla}_X^2 + U(|\mathbf{x}|) \right) B(\mathbf{x}) = E'B(\mathbf{x}) \end{cases}$$

$$\Rightarrow \left(-\frac{\hbar^2}{2M} \vec{\nabla}_X^2 - \frac{\hbar^2}{2\mu} \vec{\nabla}_X^2 + U(|\mathbf{x}|) \right) \psi(\mathbf{x}, \mathbf{X}) = (E + E') \psi(\mathbf{x}, \mathbf{X})$$
(2.5.5)

2.5.2 Particella in campo esterno

In 1D, particella soggetta a $F = -\partial_x V(x)$ con V(x) potenziale. In questo caso, varrà:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \tag{2.5.6}$$

L'equazione di Shrödinger è:

$$i\hbar\partial_t |\psi(x,t)\rangle = \hat{H} |\psi(x,t)\rangle$$
 (2.5.7)

In rappresentazione delle coordinate, visto che \hat{H} si rappresenta come $-\frac{\hbar^2}{2m}\partial_x^2 + V(x)$:

$$i\hbar\partial_t\psi(x,t) = \left(-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\right)\psi(x,t) \tag{2.5.8}$$

In rappresentazione degli impulsi, invece:

$$i\hbar\partial_t\widetilde{\psi}(p,t) = \left(\frac{p^2}{2m} + V(i\hbar\partial_p)\right)\widetilde{\psi}(p,t)$$
 (2.5.9)

¹Si sostituisce $\hat{\mathbf{p}}_1 = -\hat{\mathbf{p}} + m_1 \hat{\mathbf{P}}/(m_1 + m_2)$ e $\hat{\mathbf{p}}_2 = \hat{\mathbf{p}} + m_2 \hat{\mathbf{P}}/(m_1 + m_2)$.

²Data da $\hat{H}\psi = E\psi$, con E energia dello stato.

2.6 L'oscillatore armonico

2.6.1 Operatori di creazione e distruzione

Si prende un Hamiltoniano analogo al caso classico:

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 \tag{2.6.1}$$

Tramite costanti del sistema come m, ω, \hbar , si costruiscono altre costanti caratteristiche del sistema in questione: $\ell_{\omega} = \sqrt{\hbar/(m\omega)}$ lunghezza caratteristica e $p_{\omega} = m\omega\ell_{\omega}$ impulso caratteristico. Da queste, si definisco gli operatori:

$$\begin{cases} \hat{p} = \hat{P}/p_{\omega} \\ \hat{q} = \hat{x}/\ell_{\omega} \end{cases} \Rightarrow \hat{H} = \frac{\hbar\omega}{2} \left[\hat{p}^2 + \hat{q}^2 \right]$$
 (2.6.2)

Si definisce anche $\hat{a} = (\hat{q} + i\hat{p})/\sqrt{2}$, che soddisfa $\left[\hat{a}, \hat{a}^{\dagger}\right] = 1$ e $\hat{H} = \frac{\hbar\omega}{2} \left(\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a}\right)$. Per $\hat{N} = \hat{a}^{\dagger}\hat{a} \Rightarrow \hat{H} = \hbar\omega(\hat{N} + 1/2)^{1}$; inoltre:

$$[\hat{N}, \hat{a}] = [\hat{a}^{\dagger} \hat{a}, \hat{a}] = \hat{a}^{\dagger} \hat{a} \hat{a} - \hat{a} \hat{a}^{\dagger} \hat{a} = [\hat{a}^{\dagger}, \hat{a}] \hat{a} = -\hat{a}$$
$$[\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} = \hat{a}^{\dagger} [\hat{a}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$$

Prendendo base di autostati di \hat{N} tali che $\hat{N}|\nu\rangle = \nu|\nu\rangle$ e definendo $\hat{a}|\nu\rangle = |w\rangle$, si ha²:

$$\hat{N}|w\rangle = \hat{N}\hat{a}|\nu\rangle = (\hat{a}\hat{N} - \hat{a})|\nu\rangle = \hat{a}(\nu - 1)|\nu\rangle = (\nu - 1)\hat{a}|\nu\rangle = (\nu - 1)|w\rangle \tag{2.6.3}$$

Questo significa che $|w\rangle$ è autostato con autovalore diminuito di 1 rispetto a quello di partenza, che si traduce nel fatto che \hat{a} mappa gli autostati di \hat{N} in autostati con autovalore diminuito di 1.

Si osserva, poi, che gli autovalori di \hat{N} non sono mai negativi:

$$0 \le \langle w | w \rangle = \langle v | \hat{a}^{\dagger} \hat{a} | v \rangle = \langle v | \hat{N} | v \rangle = v \langle v | v \rangle = v$$

che assicura che $\hat{a} | 0 \rangle = | 0 \rangle$. In maniera del tutto analoga si vede che $\hat{N} \hat{a}^{\dagger} | \nu \rangle = (\nu + 1) \hat{a}^{\dagger} | \nu \rangle$, quindi \hat{a}^{\dagger} aumenta autovalore. Si nota che **non vi è limite superiore** agli autovalori, mentre limite inferiore è dato da $\langle \nu | \nu \rangle \geq 0$. Ciò significa che autovalori di \hat{N} vanno da 0 a $+\infty$.

Si nota, infine, che, vale $\hat{a}^{\dagger} | n \rangle = c_n | n+1 \rangle^3$; per trovare c_n , facendo uso della relazione di commutazione $\hat{a}\hat{a}^{\dagger} = \hat{N} + 1$:

$$\begin{cases} \langle n|\hat{a}\hat{a}^{\dagger}|n\rangle = \langle n|(\hat{N}+1)|n\rangle = (n+1)\langle n|n\rangle = n+1\\ \langle n|\hat{a}\hat{a}^{\dagger}|n\rangle = |c_n|^2\langle n+1|n+1\rangle = |c_n|^2 \end{cases} \Rightarrow |c_n|^2 = n+1$$

Dovendo avere autostati normalizzati:

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle \tag{2.6.4}$$

Dagli autovalori di \hat{N} , si ricavano quelli dell'energia $\hat{H} = \hbar\omega(\hat{N} + 1/2) \Rightarrow E_n = \hbar\omega(n + 1/2)$.

¹Questo si ottiene aggiungendo e sottraendo $\hat{a}^{\dagger}\hat{a}$ all'interno della parentesi in \hat{H} .

²La seconda uguaglianza è assicurata dal commutatore $[\hat{N}, \hat{a}] = -\hat{a}$.

³Visto che \hat{a}^{\dagger} deve mappare autostato di \hat{N} in quello che ha autovalore aumentato di 1, allora $\hat{a}^{\dagger} | n \rangle \propto |n+1\rangle$ con costante di proporzionalità c_n . Lo stesso vale per \hat{a} .

2.6.2 Funzione d'onda per l'oscillatore armonico

In rappresentazione delle coordinate, l'equazione di Shrödinger è $\hat{H}\psi(x,t)=i\hbar\partial_t\psi(x,t)$, cioè:

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + \frac{1}{2} m \omega^2 x^2 \right] \psi(x, t) = i\hbar \partial_t \psi(x, t)$$
 (2.6.5)

Per gli autovalori, invece si ha $\hat{H}\psi_E(x) = E\psi_E(x)^{-1}$:

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + \frac{1}{2} m \omega^2 x^2 \right] \psi_E(x) = E \psi_E(x)$$
 (2.6.6)

Si definisce $\lambda = E/E_{\omega}$, dove si è preso $E_{\omega} = \hbar \omega/2$. In rappresentazione delle coordinate, $q = x/\ell_{\omega}$, quindi $\psi(x) = \psi(\ell_{\omega}q) \equiv u(q)$. Quindi:

$$\frac{d^2u}{dq^2} + (\lambda - q^2)u = 0 (2.6.7)$$

Dimostrazione. Essendo $q=x/\ell_\omega\Rightarrow \frac{d}{dx}=\frac{dq}{dx}\frac{d}{dq}=\frac{1}{\ell_\omega}\frac{d}{dq}$. Sostituendo nell'equazione agli autovalori:

$$\left[-\frac{\hbar^2}{2m}\frac{1}{\ell_\omega^2}\frac{d^2}{dq^2}+\frac{1}{2}m\omega\ell_\omega^2q^2\right]\psi_E(x)=\left[-\frac{\hbar\omega}{2}\frac{d^2}{dq^2}+\frac{\hbar\omega}{2}q^2\right]\psi_E(x)=E\psi_E(x)$$

Usando $E = \lambda E_{\omega} = \lambda \frac{\hbar \omega}{2}$ e dividendo tutto per $\frac{\hbar \omega}{2}$, si ottiene il risultato cercato dopo aver sostituito $u(q) = \psi(\ell_{\omega} q)$.

Questo si dice *riscrittura in unità naturali*, cioè si è espresso tutto tramite valori adimensionali.

Si impone condizione di moto limitato, quindi $\lim_{q\to\pm\infty}u(q)=0$; sotto questo limite, l'equazione diventa

$$\frac{d^2u}{dq^2}+q^2u=0 \Rightarrow u(q) \propto e^{q^2/2}, e^{-q^2/2}$$

da cui chiaramente si deve scartare $e^{q^2/2}$ perché non rispetta il limite. Si assume soluzione generale della forma:

$$u(q) = \mathcal{H}(q)e^{-q^2/2}$$
 (2.6.8)

Per trovare $\mathcal{H}(q)$ si sostituisce in equazione originale $\Rightarrow \mathcal{H}'' - 2q\mathcal{H}' + (\lambda - 1)\mathcal{H} = 0$; matematicamente si dimostra che vi è soluzione che non modifica l'andamento di $e^{-q^2/2}$ solo se $(\lambda_n - 1) = 2n$ e questa soluzione sono i **polinomi di Hermite**, della forma

$$\mathcal{H}_n = (-1)^n e^{q^2} \frac{d^n e^{-q^2}}{dq^n}$$
 (2.6.9)

Allora avere una soluzione fisicamente accettabile, cioè che rispetti $\lim_{q\to\pm\infty}u(q)=0$ implica quantizzazione dell'energia perché, dovendo richiedere $\lambda_n=2n+1$, si ha $E_n=\lambda_n E_\omega=\hbar\omega(n+1/2)$.

Ora si torna a $\psi_n(x)$ e si cerca la costante di normalizzazione C_n :

$$\psi_n(x) = C_n \mathcal{H}_n\left(\frac{x}{\ell_\omega}\right) e^{-x^2/(2\ell_\omega^2)}$$
 (2.6.10)

¹Visto che l'evoluzione temporale degli autostati dell'Hamiltoniano è banale, cioè consiste nel prodotto per una fase, si trascura evoluzione temporale nell'equazione agli autovalori.

Per la costante di normalizzazione, si fa uso di $\int_{-\infty}^{+\infty} \mathcal{H}_n^2(q) e^{-q^2} dq = 2^n (n!) \sqrt{\pi}$:

$$1 \stackrel{!}{=} \int_{-\infty}^{+\infty} |\psi_n(x)|^2 dx = |C_n|^2 \int_{-\infty}^{+\infty} \mathcal{H}_n^2 \left(\frac{x}{\ell_\omega}\right) e^{x^2/\ell_\omega^2} dx = |C_n|^2 \ell_\omega \int_{-\infty}^{+\infty} \mathcal{H}_n^2(q) e^{-q^2} dq$$

dove $q = x/\ell_{\omega}$. Allora si ha $C_n = 1/\sqrt{2^n \ell_{\omega} \sqrt{\pi}(n!)}$, da cui:

$$\psi_n(x) = \frac{1}{\sqrt{2^n \ell_\omega \sqrt{\pi}(n!)}} \mathcal{H}_n\left(\frac{x}{\ell_\omega}\right) e^{-x^2/(2\ell_\omega^2)}$$
 (2.6.11)

2.7 Operatore parità e sistemi unidimensionali

2.7.1 Operatore parità

Operatore \hat{P}_a definito in modo tale da soddisfare

$$\hat{P}_{a}\hat{x}\hat{P}_{a}^{-1} = -\hat{x}; \quad \hat{P}_{a}\hat{p}\hat{P}_{a} = -\hat{p}$$

$$\hat{P}_{a}^{2} = \text{Id} \Rightarrow \hat{P}_{a} = \hat{P}_{a}^{-1}$$
(2.7.1)

Da questo deriva che $[\hat{P}_a\hat{x}\hat{P}_a,\hat{P}_a\hat{p}\hat{P}_a]=i\hbar$. Dato un generico stato $|\psi\rangle$, si ha:

$$\hat{P}_a\hat{x}\psi(x) = \hat{P}_ax\psi(x) = x\hat{P}_a\psi(x) \Rightarrow \hat{P}_a\hat{x}\hat{P}_a\hat{P}_a\psi(x) = -\hat{x}\hat{P}_a\psi(x) = x\hat{P}_a\psi(x)$$

cambiando segno ad entrambi i membri, si vede che $\hat{P}_a\psi(x)=\psi(-x)$. L'operatore parità può commutare con \hat{H} quando questo è, per esempio, quadratico in \hat{x} , \hat{p} , infatti:

$$[\hat{P}_a, \hat{p}^2] = \hat{P}_a \hat{p}^2 - \hat{p}\hat{p}\hat{P}_a = \hat{P}_a \hat{p}^2 + \hat{p}\hat{P}_a \hat{p} = \hat{P}_a \hat{p}^2 - \hat{P}_a \hat{p}^2 = 0$$

dove si è sfruttato solo che $\hat{P}_a\hat{P}_a=\mathrm{Id}$. Quando \hat{P}_a commuta con \hat{H} , oltre a valere invarianza temporale, significa anche che hanno stessi autostati. Visto che $\hat{P}_a^2=\mathrm{Id}$, i suoi autovalori sono ± 1 , quindi nei casi in cui $[\hat{H},\hat{P}_a]=0$, si possono ordinare gli autostati $|n\rangle$ di \hat{H} t.c. $\hat{P}_a|n\rangle=(-1)^n|n\rangle$. Questo implica che:

$$\begin{split} \langle n|\hat{x}|n\rangle &= -\langle n|-\hat{x}|n\rangle = -\langle n|\hat{P}_a\hat{x}\hat{P}_a|n\rangle = -(-1)^n(-1)^n\,\langle n|\hat{x}|n\rangle = -\langle n|\hat{x}|n\rangle \\ &\Rightarrow \langle n|\hat{x}|n\rangle = 0 \end{split}$$

Analogamente si vede che $\langle n|\hat{p}|n\rangle = 0$.

2.7.2 Alcuni teoremi per sistemi unidimensionali

Si considera Hamiltoniano della forma $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$.

TEOREMA 2.1.

In 1D, \hat{H} ha spettro non-degenere.

TEOREMA 2.2.

Gli stati fondamentali dello spettro non hanno zeri.

TEOREMA 2.3.

Gli stati non-fondamentali dello spettro hanno degli zeri e l'n-esimo ne ha n.

TEOREMA 2.4.

Uno spettro discreto di \hat{H} corrisponde ad un moto limitato nello spazio.

2.7.3 Moto di una particella sotto potenziale

Si considera sistema 1D composto da particella soggetta a

$$U(x) = \begin{cases} V_0 & , x > 0 \\ 0 & , x < 0 \end{cases}$$

Conseguentemente, l'Hamiltoniano è $\hat{H} = \frac{\hat{p}^2}{2m} + U(\hat{x})$ e l'equazione agli autovalori è data da $\hat{H}\psi_E(x) = E\psi_E(x)$.

Quando una particella arriva da x < 0 e incontra potenziale V_0 si distinguono i casi in cui $E > V_0$ e $E < V_0$.

L'equazione di Shrödinger è data da:

$$\partial_x^2 \psi + \frac{2m}{\hbar^2} \left[E - U(x) \right] \psi = 0$$

• Caso $E > V_0$.

Se x < 0, si ha $\partial_x^2 \psi + k^2 \psi = 0$ con $k = \sqrt{2mE/\hbar^2}$, quindi:

$$\psi_{-}(x) = A_1 e^{ikx} + A_2 e^{-ikx} \tag{2.7.2}$$

Se x > 0, invece, si ha, per $q = \sqrt{\frac{2m(E-V_0)}{\hbar^2}}$, $\partial_x^2 \psi + q^2 \psi = 0$, da cui:

$$\psi_{+}(x) = B_1 e^{iqx} + B_2 e^{-ikx} \tag{2.7.3}$$

Si impone raccordo in x = 0 tra le soluzioni:

$$\begin{cases} A_1 + A_2 = B_1 + B_2 & \text{continuità di } \psi \\ ik(A_1 - A_2) = iq(B_1 - B_2) & \text{continuità di } \psi' \end{cases}$$

Per altre condizioni, si usa flusso di probabilità $J=-\frac{i\hbar}{2m}\left(\psi^*\partial_x\psi-\psi\partial_x\psi^*\right)$; andando a inserire ψ_- nella definizione di J, si ha $J=\frac{\hbar k}{m}\left(|A_1|^2-|A_2|^2\right)\equiv J_{\rm inc}+J_{\rm rif}$. Si assume assenza di onda riflessa, per cui $B_2=0^2$; similmente, si prende anche $A_2=0$ perché non si è interessati ad un'onda che si propaga via dalla barriera.

Per normalizzazione di ψ_{-}^{3} , si prende |J|=1; avendo interpretato $A_{1}e^{ikx}$ come onda incidente e $A_{2}e^{-ikx}$ come onda riflessa, si deve normalizzare a 1 J_{inc} , quindi $A_{1}=1/\sqrt{\hbar k/m}\equiv 1/\sqrt{v^{4}}$.

¹Essendo che in x < 0 U(x) = 0.

²Si richiede questo perché è il coefficiente dell'onda che da x > 0 va verso x < 0.

³È comune utilizzare un tipo di normalizzazione alternativa quando si ha a che fare con particelle non confinate in una regione spaziale.

 $^{^4}$ Si identifica $\hbar k/m$ come la velocità di propagazione dell'onda.

Se $J_{\rm tr} = \frac{\hbar q}{m} |B_1|^2$ come flusso trasmesso, si possono definire anche

$$T \stackrel{\text{def}}{=} \frac{J_{\text{tr}}}{J_{\text{inc}}} = \frac{q}{k} \frac{|B_1|^2}{|A_1|^2}; \quad R \stackrel{\text{def}}{=} \frac{J_{\text{rif}}}{J_{\text{inc}}} = \frac{|A_2|^2}{|A_1|^2}$$
 (2.7.4)

da cui deve risultare anche T + R = 1. Risolvendo le condizioni imposte, si trova:

$$\begin{cases} R = 1 - \frac{4kq}{(k+q)^2} \\ T = \frac{4kq}{(k+q)^2} \end{cases}$$

Per $E/V_0 \to \infty$, deve risultare $T \to 1$, quindi $k \sim q$.

• Caso $E < V_0$.

In x < 0, $\partial_x^2 \psi + k^2 \psi = 0$ con $k = \sqrt{2mE/\hbar^2}$ e si ha stessa soluzione di prima. In x > 0 vale $\partial_x^2 \psi - \beta^2 \psi = 0$ con $\beta = \sqrt{2m(V_0 - E)/\hbar^2}$, quindi

$$\psi_{+}(x) = B_1 e^{-\beta x} + B_2 e^{\beta x} \tag{2.7.5}$$

Per il resto, si richiede ancora $B_2 = 0$ e si impongono le stesse condizioni di raccordo.

2.7.4 Particella contro barriera di potenziale

Si considera $V(x) \neq 0$ per $x \in [0, a]$; si cerca di capire se nel caso di $V_0 > E$, si trova qualcosa per x > a.

Se x < 0 si ha $\partial_x^2 \psi + k^2 \psi = 0$, $k = \sqrt{2mE/\hbar^2}$ e $\psi_- = A_1 e^{ikx} + A_2 e^{-ikx}$. Per 0 < x < a, si ha $\psi_a(x) = B_1 e^{-\beta x} + B_2 e^{\beta x}$. Se x > a, si ha $\psi_+ = C_1 e^{ikx} + C_2 e^{-ikx}$.

Le condizioni di raccordo sono da scrivere sia in x = 0 che in x = a; rispettivamente:

$$\begin{pmatrix} 1 & 1 \\ ik & -ik \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -\beta & \beta \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} , \quad x = 0$$

$$\begin{pmatrix} e^{-\beta a} & e^{\beta a} \\ -\beta e^{-\beta a} & \beta e^{\beta a} \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = \begin{pmatrix} e^{ika} & e^{-ika} \\ ike^{ika} & -ike^{-ika} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

Si richiede $C_2 = 0$ perché si è interessati solo all'effetto tunnel e (forse) si prende $B_2 = 0$ come al solito. Risolvendo il sistema e imponendo R + T = 1, si trova

$$T = \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sinh^2\left(\sqrt{\frac{V_0 - E}{\hbar^2/(2ma^2)}}\right)} \equiv \frac{|C_1|^2}{|A_1|^2} \simeq \frac{16E(V_0 - E)}{V_0^2} e^{-2\sqrt{\frac{V_0 - E}{\hbar^2/(2ma^2)}}}$$
(2.7.6)

con approssimazione per $V_0 - E \gg \hbar^2/(2ma^2)$.

2.8 Meccanica quantistica dei sistemi interagenti

Si considerano sistemi 1, 2. Se questi non interagiscono $\Rightarrow \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$; se $\{|a_n\rangle\}_n$, $\{|b_n\rangle\}_n$ basi di \mathcal{H}_1 , \mathcal{H}_2 rispettivamente, si avrebbe base di \mathcal{H} data da $|a_n,b_m\rangle = |a_n\rangle \otimes |b_m\rangle$, quindi $|\psi\rangle \in \mathcal{H}$ significa che:

$$|\psi\rangle = \sum_{n,m} c_{n,m} |a_n\rangle \otimes |b_m\rangle \equiv \left[\sum_n c_n |a_n\rangle\right] \otimes \left[\sum_m d_m |b_m\rangle\right]$$

dove $c_{n,m} = c_n b_m$.

2.8.1 Operatori per sistemi non-interagenti

Se \hat{A} , \hat{B} operatori di 1, 2 rispettivamente, allora per $\{|a_n\rangle\}$ base di autostati di \hat{A} e $\{|b_m\rangle\}$ base di autostati di \hat{B} :

$$\hat{A} |a_n\rangle \otimes |b_m\rangle = a_n |a_n\rangle \otimes |b_m\rangle$$

$$\hat{B} |a_n\rangle \otimes |b_m\rangle = b_m |a_n\rangle \otimes |b_m\rangle$$

Da questo, risulta

$$(\hat{A} \otimes \hat{B}) |a_n\rangle \otimes |b_m\rangle = a_n b_m |a_n\rangle \otimes |b_m\rangle$$

Per questa caratterizzazione, deve risultare $[\hat{A}, \hat{B}] = 0^1$. Infine, se $|\psi\rangle = \sum_{n,m} c_{n,m} |a_n\rangle \otimes |b_m\rangle$:

$$\hat{A} | \psi \rangle = \sum_{n,m} c_{n,m} (\hat{A} | a_n \rangle) \otimes | b_m \rangle = a_n | \psi \rangle$$

$$(\hat{A} \otimes \hat{B}) | \psi \rangle = \sum_{n,m} c_{n,m} (\hat{A} | a_n \rangle) \otimes (\hat{B} | b_m \rangle) = a_n b_m | \psi \rangle$$

2.8.2 La matrice densità

Se \mathcal{H} spazio del sistema complessivo, con base $|a_nb_m\rangle$, e $|\psi\rangle \in \mathcal{H}$, si scrive matrice densità o come $\rho = |\psi\rangle\langle\psi|$, o con elementi di matrice $\langle a_nb_m|\rho|a_jb_k\rangle$ della **matrice densità**.

Se \hat{R} operatore in \mathcal{H} , inserendo base completa tra ρ e \hat{R} :

$$\langle \psi | \hat{R} | \psi \rangle = \operatorname{tr}(\rho \hat{R}) = \sum_{n,m} \langle a_n b_m | \rho \hat{R} | a_n b_m \rangle = \sum_{n,m,j,k} \langle a_n b_m | \rho | a_j b_k \rangle \langle a_j b_k | \hat{R} | a_n b_m \rangle$$

Si considera caso particolare $\hat{R} = \hat{R}^{(1)} \otimes \operatorname{Id}^{(2)}$ (cioè \hat{R} agisce solo su \mathcal{H}_1) e si ha:

$$\operatorname{tr}(\rho \hat{R}) = \sum_{n,m,j,k} \langle a_n b_m | \rho | a_j b_k \rangle \langle a_j b_k | \hat{R} | a_n b_m \rangle = \sum_{n,m,j,k} \langle a_n b_m | \rho | a_j b_k \rangle \langle a_j | \hat{R}^{(1)} | a_n \rangle \langle b_k | \operatorname{Id}^{(2)} | b_m \rangle$$

$$= \sum_{n,m,j} \langle a_n b_m | \rho | a_j b_m \rangle \langle a_j | \hat{R}^{(1)} | a_n \rangle \equiv \operatorname{tr} \left(\rho^{(1)} \hat{R}^{(1)} \right)$$

dove $\rho^{(1)} = \operatorname{tr}^{(2)} \rho \stackrel{\text{def}}{=} \sum_m \langle a_n b_m | \rho | a_j b_m \rangle$. Tutte le proprietà del proiettore valgono anche per $\rho^{(1)_2}$, cioè $\operatorname{tr}^{(1)} \rho^{(1)} = 1$, $\rho^{(1)\dagger} = \rho^{(1)}$, ma **non è vero** che $\operatorname{tr}^{(1)} \left(\rho^{(1)} \right)^2 = 1$. In generale:

$$\operatorname{tr}^{(1)} \left(\rho^{(1)} \right)^2 \le 1$$
 (2.8.1)

e l'uguaglianza vale quando lo stato che descrive è puro.

¹Questo, in realtà, vale anche quando i sistemi sono interagenti.

²Qui si tratterà $\rho^{(1)}$ in particolare, ma il discorso è analogo per gli altri.

2.8.3 Caratterizzazione degli stati misti

Si considerano due sistemi 1, 2 interagenti e si studia il sistema complessivo, rappresentato da $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, con Hamiltoniano $\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{H}_I$. L'evoluzione temporale di un $|\psi\rangle \in \mathcal{H}$ è data da:

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}t} |\psi(0)\rangle$$

Gli stati che non si possono scrivere come miscela di altri stati sono detti **puri** e si parla di **sovrapposizione coerente**. Un esempio è $|\psi\rangle = \left(|0\rangle^{(1)} + |1\rangle^{(1)}\right) \otimes |0\rangle^{(2)}$ che si separa come prodotto tensore di stati del sistema 1 e del 2.

Quando questo non è possibile, si parla di **miscela statistica**, come per lo stato $|\psi\rangle = |0\rangle^{(1)} \otimes |0\rangle^{(2)} + |1\rangle^{(1)} \otimes |1\rangle^{(2)}$.

2.8.4 Valore di aspettazione per miscele statistiche

Per \hat{O} osservabile, valore di aspettazione per stati puri è $\langle \psi | \hat{O} | \psi \rangle$. Se $| \phi \rangle$ stato misto, non si calcola allo stesso modo perché il sistema si distribuisce su più stati con una certa probabilità. Si calcola come:

$$\langle \hat{O} \rangle = \sum_{n} \omega_n \langle \phi_n | \hat{O} | \phi_n \rangle$$
 (2.8.2)

dove i $|\phi_n\rangle$ sono stati di una base di \mathcal{H} e ω_n è la relativa probabilità, quindi $0 \le \omega_n \le 1$ e $\sum_n \omega_n = 1$.

Introducendo base ortonormale $\{|i\rangle\}$:

$$\langle \hat{O} \rangle = \sum_{n,i,j} \omega_n \langle \phi_n | i \rangle \langle i | \hat{O} | j \rangle \langle j | \phi_n \rangle \equiv \sum_{n,i,j} \omega_n O_{ij} \langle \phi_n | i \rangle \langle j | \phi_n \rangle \equiv \sum_{i,j} \rho_{ji} O_{ij} \equiv \operatorname{tr} \rho \hat{O}$$
(2.8.3)

dove si è definita la matrice densità

$$\rho_{ij} = \sum_{n} \omega_n \langle j | \phi_n \rangle \langle \phi_n | i \rangle \Rightarrow \hat{\rho} = \sum_{n} \omega_n | \phi_n \rangle \langle \phi_n | \qquad (2.8.4)$$

Con questa definizione, la **matrice di densità** permette descrizione del sistema. Per questa definizione, continuano a valere $\hat{\rho} = \hat{\rho}^{\dagger}$ e tr $\rho = 1$, ma

$$\operatorname{tr} \rho^2 = \sum_n \omega_n^2 \le \sum_n \omega_n = 1$$

2.8.5 Evoluzione temporale della matrice densità

Per proiettore classico (che si ha per $\omega_n = 1$ per generico n) $\hat{\rho} = |\psi\rangle\langle\psi|$ l'evoluzione temporale è data da:

$$\hat{\rho}(t) = |\psi(t)\rangle \left\langle \psi(t) \right| = e^{-\frac{i}{\hbar}\hat{H}t} \left| \psi(0) \right\rangle \left\langle \psi(0) \right| e^{\frac{i}{\hbar}\hat{H}t}$$

Per stato misto, in generale:

$$\hat{\rho}(t) = e^{-\frac{i}{\hbar}\hat{H}t}\hat{\rho}(0)e^{\frac{i}{\hbar}\hat{H}t}$$

Per $\{|\phi\rangle_n\}_n$ base:

$$\rho(t) = \sum_{n} \omega_{n} e^{-\frac{i}{\hbar}\hat{H}t} \left| \phi_{n}(0) \right\rangle \left\langle \phi_{n}(0) \right| e^{\frac{i}{\hbar}\hat{H}t} \equiv \sum_{n} \omega_{n} \left| \phi_{n}(t) \right\rangle \left\langle \phi_{n}(t) \right| \tag{2.8.5}$$

2.9 L'operatore momento angolare

2.9.1 Rotazioni in 3D

Una generica rotazione si scrive come composizione di tre matrici di rotazione

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}; \begin{pmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{pmatrix}; \begin{pmatrix} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Per rotazione infinitesima, sviluppando attorno a 0 le matrici sopra, si ottiene la forma generica $R_k(\varepsilon) = \operatorname{Id} -i\varepsilon\Omega_k$, dove k rappresenta l'asse attorno a cui si ruota e:

$$\Omega_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}; \ \Omega_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}; \ \Omega_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Vale $(\Omega_k)_{ij} = -i\varepsilon_{kij}$ e $[\Omega_i, \Omega_j] = i\varepsilon_{ijk}\Omega_k$. Componendo le tre matrici, la rotazione infinitesima più generale, attorno a generico asse \mathbf{n} , è scritta come $R_{\mathbf{n}} = \mathrm{Id} - i\varepsilon_k\Omega_k^{-1}$ (eliminando infinitesimi di ordine superiore al primo). Applicandola a vettore \mathbf{x} , si trova $\mathbf{x}' = \mathbf{x} + \delta\theta\mathbf{n} \times \mathbf{x}$, prendendo $\vec{\varepsilon} = \delta\theta\mathbf{n}$.

2.9.2 Rotazione su funzione d'onda

Dovendo rimanere la probabilità invariata sotto rotazione, la funzione d'onda non deve cambiare valore dopo rotazione dello spazio.

Dato operatore $\hat{U}_R : \mathcal{H} \to \mathcal{H}$, con R matrice di rotazione 3D, si richiede che:

$$\psi'(\mathbf{x}) = \hat{U}_R \psi(\mathbf{x}) = \psi(R^{-1}\mathbf{x}) \tag{2.9.1}$$

dove \hat{U}_R in equazione sopra è definito in L^2 .

2.9.3 Momento angolare

Una trasformazione finita da quella infinitesima è data da

$$\hat{U}_R(\theta) = e^{-\frac{i}{\hbar}\theta \mathbf{n} \cdot \mathbf{J}} \tag{2.9.2}$$

con $\bf n$ asse di rotazione, θ angolo di rotazione e $\bf J$ vettore momento angolare degli operatori Hermitiani dei momenti angolari lungo ciascun asse.

 $^{^{1}}$ Si sta assumendo somma su k.

Valgono le relazioni di commutazione e si mostra solo la prima:

$$\begin{split} [\hat{J}_{a}, \hat{J}_{b}] &= i\hbar \varepsilon_{abc} \hat{J}_{c} \\ [\hat{X}_{a}, \hat{J}_{b}] &= i\hbar \varepsilon_{abc} \hat{X}_{c} \\ [\hat{p}_{a}, \hat{J}_{b}] &= i\hbar \varepsilon_{abc} \hat{p}_{c} \end{split} \tag{2.9.3}$$

Dimostrazione. Si considerano due rotazioni infinitesime attorno a due assi distinti: $R_1(\varepsilon) = \operatorname{Id} - i\varepsilon\Omega_1$ e $R_2 = \operatorname{Id} - i\varepsilon\Omega_2$. Si approssima al secondo ordine (primo ordine non-banale):

$$R_G = R_2(-\varepsilon)R_1(-\varepsilon)R_2(\varepsilon)R_1(\varepsilon) \simeq (\operatorname{Id} + \varepsilon^2[\Omega_1, \Omega_2]) = (\operatorname{Id} + i\varepsilon^2\Omega_3) = R_3(-\varepsilon^2)$$

dove si sono usate relazioni di commutazione dele Ω_k . Applicandole a funzione d'onda, si ha contemporaneamente:

$$\begin{cases} \psi'(\mathbf{x}) = \hat{U}_{R_G} \psi(\mathbf{x}) \simeq \left(\operatorname{Id} + \frac{i}{\hbar} \varepsilon^2 \hat{J}_3 \right) \psi(\mathbf{x}) \\ \psi'(\mathbf{x}) \simeq \left(\operatorname{Id} + \frac{\varepsilon^2}{\hbar^2} [\hat{J}_1, \hat{J}_2] \right) \psi(\mathbf{x}) \end{cases}$$

Confrontando le due, si ottiene la tesi generalizzando relazione. (Forse) alternativamente, si sarebbe potuto procedere direttamente da analisi delle relazioni di commutazione delle Ω_k , considerando che $\hat{J}_k = \Omega_k/\hbar$.

2.9.4 Momento angolare orbitale

Si definisce $\hat{L} = \hat{X} \times \hat{p}$ parte orbitale di \hat{J} . Si mostra che, in rappresentazione delle coordinate:

$$\hat{\mathbf{L}}\psi(\mathbf{x}) = -i\hbar\mathbf{x} \times \nabla\psi(\mathbf{x}) \tag{2.9.4}$$

Dimostrazione. Per rotazione $\delta\theta$ della funzione d'onda, da $\hat{U}_R\psi(\mathbf{x})=\psi(R^{-1}\mathbf{x})$, si ha:

$$e^{-\frac{i}{\hbar}\delta\theta\hat{\mathbf{n}}\cdot\hat{\mathbf{L}}}\psi(\mathbf{x}) = \psi(\mathbf{x} - \delta\theta\hat{\mathbf{n}}\times\mathbf{x})$$

Sviluppando fino al primo ordine entrambi i membri:

$$\left[\operatorname{Id} - \frac{i}{\hbar} \delta \theta \hat{\mathbf{n}} \cdot \hat{\mathbf{L}}\right] \psi(\mathbf{x}) = \psi(\mathbf{x}) - \delta \theta (\hat{\mathbf{n}} \times \mathbf{x}) \cdot \nabla \psi(\mathbf{x})$$

Utilizzando $(\hat{\mathbf{n}} \times \mathbf{x}) \cdot \nabla = \hat{\mathbf{n}} \cdot (\mathbf{x} \times \nabla)$ e dovendo valere per generica scelta di $\hat{\mathbf{n}}$, si ritrova la tesi.

2.9.5 Spettro del momento angolare

 \hat{J}_a e \hat{H} non commutano, quindi non hanno base comune. Si definisce $\hat{J}^2 = \sum_a \hat{J}_a^2$ e si può mostrare che $[\hat{J}^2, \hat{J}_a] = 0$. Si cerca base comune a \hat{J}^2 e \hat{J}_z per convenzione; in particolare, si richiede:

$$\hat{J}^2 |\beta m\rangle = \hbar \beta |\beta m\rangle; \hat{J}_z |\beta m\rangle = \hbar m |\beta m\rangle$$

con $|\beta m\rangle$ autostati normalizzabili¹. Si nota che:

 $^{^1}$ Si usa notazione con due variabili β , m perché corrisponderanno ai due numeri quantici che permettono una più dettagliata descrizione dello stato che rappresentano.

- (a). visto che $\hat{J}^2 = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2$, vale $\beta = \langle \beta m | \hat{J}^2 | \beta m \rangle \ge \langle \beta m | \hat{J}_z^2 | \beta m \rangle = m^2$;
- (b). definendo $\hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$, con $[\hat{J}_z, \hat{J}_{\pm}] = \pm\hbar\hat{J}_{\pm}$ e $[\hat{J}_+, \hat{J}_-] = 2\hbar\hat{J}_z^{-1}$, e dovendo valere $\beta \geq m^2 \Rightarrow \exists m_{\max}, m_{\min}$ tali che:

$$\hat{J}_z \hat{J}_+ |\beta m\rangle = (\hat{J}_+ \hat{J}_z + \hbar \hat{J}_+) |\beta m\rangle = \hbar (m+1) \hat{J}_+ |\beta m\rangle \Rightarrow \hat{J}_+ |\beta m_{\text{max}}\rangle = 0$$

$$\hat{J}_z \hat{J}_- |\beta m\rangle = (\hat{J}_- \hat{J}_z - \hbar \hat{J}_-) |\beta m\rangle = \hbar (m-1) \hat{J}_- |\beta m\rangle \Rightarrow \hat{J}_- |\beta m_{\text{min}}\rangle = 0$$

(c). visto che $\hat{J}_{-}\hat{J}_{+} = \hat{J}^{2} - \hat{J}_{z}^{2} - \hbar \hat{J}_{z}$, si ha:

$$0 = \hat{J}_- \hat{J}_+ |\beta j\rangle = (\hat{J}^2 - \hat{J}_z^2 - \hbar \hat{J}_z) |\beta j\rangle \Rightarrow \hbar^2 (\beta - j^2 - j) = 0 \Rightarrow \beta = j(j+1)$$

con $j=m_{\max}$. Analogamente $m_{\min}=-j$. Visto che $\beta=j(j+1)$, si usa j al posto di β , per cui vale $-j \le m \le j$.

2.9.6 Introduzione allo spin

Si usa solo parte orbitale $\hat{\mathbf{L}}$ per sistemi la cui descrizione avviene tramite singola funzione d'onda.

Si considera sistema descritto da più funzioni d'onda $\psi_1(\mathbf{x})$, $\psi_2(\mathbf{x})$; sotto rotazione, il sistema deve mantenere intatte le sue simmetrie e si deve anche considerare lo spin, che è una proprietà intrinseca della particella. Per questo motivo, una generica rotazione è data da:

$$\hat{U}_{R} \begin{pmatrix} \psi_{1}(\mathbf{x}) \\ \psi_{2}(\mathbf{x}) \end{pmatrix} = e^{-\frac{i}{\hbar}\theta \hat{\mathbf{n}} \cdot \hat{\mathbf{S}}} \begin{pmatrix} \psi_{1}(R^{-1}\mathbf{x}) \\ \psi_{2}(R^{-1}\mathbf{x}) \end{pmatrix}$$
(2.9.5)

con $\hat{\mathbf{S}}$ operatore momento angolare di spin. Questo si occupa della rotazione intrinseca della particella per mantenere intatta la simmetria di partenza, mentre $\hat{\mathbf{L}}$ si occupa della rotazione spaziale. Si assume che:

$$[\hat{\mathbf{L}}, \hat{\mathbf{S}}] = 0 \tag{2.9.6}$$

e si ha $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$. Inoltre, visto che $[\hat{J}_a, \hat{J}_b] = i\hbar \varepsilon_{abc} \hat{J}_c$, deve valere:

$$[\hat{S}_a, \hat{S}_b] = i\hbar \varepsilon_{abc} \hat{S}_c \tag{2.9.7}$$

2.9.7 Spettro del momento angolare orbitale

Analogamente a quanto fatto per \hat{J} , si usano \hat{L}^2 , \hat{L}_z con autostati $|\ell m\rangle$ tali che:

$$\hat{L}^2 |\ell m\rangle = \ell(\ell+1) |\ell m\rangle$$
, $\hat{L}_z |\ell m\rangle = m |\ell m\rangle$

Usando coordinate sferiche, L nello spazio delle coordinate diventa:

$$\hat{\mathbf{L}} = r\hat{r} \times (i\hbar) \left[\hat{r}\partial_r + \frac{1}{r}\hat{\theta}\partial_\theta + \frac{1}{r\sin\theta}\partial_\varphi \right] = -i\hbar \left[\hat{\varphi}\partial_\theta - \frac{1}{\sin\theta}\hat{\theta}\partial_\varphi \right]$$

¹Si mostrano a partire da $[\hat{J}_a, \hat{J}_b] = i\hbar \varepsilon_{abc} \hat{J}_c$.

Si definiscono¹:

$$\hat{\ell}^2 = \hat{L}^2/\hbar = -\left[\frac{1}{\sin^2\theta}\partial_{\varphi}^2 + \frac{1}{\sin\theta}\partial_{\theta}(\sin\theta\partial_{\theta})\right]$$

$$\hat{\ell}_z = \hat{L}_z/\hbar = -i\partial_{\varphi}$$
(2.9.8)

Si cerca soluzione con la separazione delle variabili: $\psi(r,\theta,\varphi) = R(r)Y(\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$. Inserendola in una delle due, visto che non hanno parte che agisce su R(r), questa si semplifica e riduce il problema al calcolo di $Y(\theta,\varphi)$, quindi a risolvere:

$$\begin{cases} \hat{\ell}^2 Y(\theta, \varphi) = \ell(\ell+1) Y(\theta, \varphi) \\ \hat{\ell}_z Y(\theta, \varphi) = m Y(\theta, \varphi) \end{cases}$$
 (2.9.9)

Soluzione della seconda equazione.

Si risolve

$$-i\frac{\partial}{\partial\varphi}\left[\Theta(\theta)\Phi(\varphi)\right]=m\Theta(\theta)\Phi(\varphi) \implies \frac{\partial\Phi}{\partial\varphi}=im\Phi(\varphi)$$

Questo significa che $\Phi(\varphi) \propto e^{-im\varphi}$ con costante di normalizzazione data da $\int_0^{2\pi} \Phi_m^*(\varphi) \Phi_{m'}(\varphi) \ d\varphi = \delta_{mm'}$ dove si è esplicitata dipendenza dal parametro $-\ell < m < \ell$. La soluzione completa è:

$$\Phi_m(\varphi) = \frac{e^{im\varphi}}{\sqrt{2\pi}} \tag{2.9.10}$$

Infine, dovendo risultare $\varphi + 2\pi = \varphi$, si richiede che $\Phi(\varphi + 2\pi) = \Phi(\varphi) \Rightarrow e^{im(2\pi+\varphi)} = e^{im\varphi} \iff e^{i2\pi m} = 1 \iff m \in \mathbb{Z}$. Allora \hat{L}_z può avere solo autovalori del tipo $0, \pm \hbar, \pm 2\hbar, \ldots$

• Soluzione della prima equazione.

Si inserisce $\Phi_m(\varphi)$ e si usa $\partial^2 \Phi_m(\varphi) = -m^2 \Phi_m(\varphi)$, ottenendo:

$$-\left[-\frac{m^2}{\sin^2\theta}+\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)\right]\Theta(\theta)=\ell(\ell+1)\Theta(\theta)$$

La soluzione di questa sono i **polinomi di Legendre** $\Theta_{\ell m}(\theta) \propto P_{\ell}^{m}(\cos \theta)$.

Complessivamente, si ha:

$$Y_{\ell}^{m}(\theta,\varphi) = C_{\ell m} e^{im\varphi} P_{\ell}^{m}(\cos\theta), \ C_{\ell m} = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}}$$
(2.9.11)

In questo modo:

$$\int (Y_{\ell'}^{m'})^* Y_{\ell}^m d\Omega = \delta_{\ell\ell'} \delta_{mm'}$$

e formano base ortonormale per lo spazio di Hilbert L^2 .

 $^{^1}$ In $\hat{\ell}_z$ si ha solo componente φ perché è l'unica che contribuisce alla componente z di $\hat{\mathbf{L}}$, infatti $\hat{z}=\hat{r}\cos\theta-\hat{\theta}\sin\theta$.

2.10 Atomo di idrogeno

2.10.1 Particelle in campo centrale

Si studia problema generale di particelle in campo centrale $U(|\hat{x}_1 - \hat{x}_2|)$; volendo applicare, poi, il discorso all'atomo di idrogeno, si assume un moto limitato. Si riprende trattazione affrontata in §2.5.1, con $\psi(X,x) = \phi(X)\kappa(x)$ per assunzione, che deve soddisfare:

$$\begin{cases} -\frac{\hbar^2}{2M} \nabla_X^2 \phi(X) = E_{\text{CM}} \phi(X) \\ \left(-\frac{\hbar^2}{2\mu} \nabla_x^2 + U(x) \right) \kappa(x) = E \kappa(x) \end{cases}$$
 (2.10.1)

Dalla prima, si trova $\phi(\vec{X}) = Ce^{i\vec{k}\cdot\vec{X}}$, essendo $E_{\text{CM}} = \frac{\hbar^2k^2}{2M}$. Poi ci si mette nel CM, per cui $E_{\text{CM}} = 0$, e si risolve la seconda usando le coordinate sferiche:

$$\hat{H}\psi(r,\theta,\varphi) = E\psi(r,\theta,\varphi) \Rightarrow \left[\frac{1}{r^2}\partial_r(r^2\partial_r) + \frac{1}{r^2}\hat{\ell}^2\right]\psi + \frac{2m}{\hbar^2}\Big(E - U(r)\Big)\psi = 0 \quad (2.10.2)$$

con $\hat{\ell}^2$ dato da eq. 2.9.8. Allora si assume $\psi(r,\theta,\varphi)=R(r)Y_{\ell m}(\theta,\varphi)$, per cui:

$$\frac{1}{r^2}\partial_r(r^2\partial_r)R + \frac{\ell(\ell+1)}{r^2}R + \frac{2m}{\hbar^2}\Big(E - U(r)\Big)R = 0$$

Usando $\chi(r)=rR(r)$, tale che $\chi(r)\to 0$ per $r\to 0$, e definendo $U_{\rm eff}(r)=U(r)+\frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}$, si ha:

$$\frac{d^2}{dr^2}\chi(r) + \frac{2m}{\hbar^2} \Big(E - U_{\text{eff}}(r) \Big) \chi(r) = 0$$
 (2.10.3)

Vista l'equazione differenziale, la soluzione dipenderà dai parametri E, ℓ , quindi un autostato si esprime, in generale, come $|E,\ell,m\rangle$ e costituiscono un sistema ortonormale, che è anche non-degenere, conclusione derivante dal fatto che il problema per R(r) è unidimensionale e relativo a moto limitato, quindi la coppia di autovalori E, ℓ , relativi rispettivamente a \hat{H} , $\hat{\ell}^2$, è non-degenere. Visto che le autofunzioni dipendono da m, lo si include per la descrizione degli stati.

Si assume $R(r) \propto r^a$, con a da determinare; per farlo, si sostituisce nell'equazione differenziale e si manda $r \to 0$, facendo rimanere l'equazione nel limite asintotico di r piccoli:

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \ell(\ell+1)R = 0 \Rightarrow a = \ell \tag{2.10.4}$$

quindi $R(r) \propto r^{\ell}$.

2.10.2 Funzione d'onda per l'atomo di idrogeno

È il caso particolare della trattazione precedente con $U(\hat{r}) = \frac{e^2}{4\pi\epsilon_0\hat{r}}$. A partire dalle grandezze $m_e c^2 \simeq 0.5$ MeV e $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}$ costante di struttura fine, si definisco le grandezze caratteristiche del sistema:

$$\ell_B = \frac{\hbar}{m_e c \alpha} \approx 0.5 \cdot 10^{-10} \,\mathrm{m}$$
 (raggio di Bohr)
$$E_B = \frac{1}{2} m_e c^2 \alpha^2$$
 (costante di Rydberg)

Nel caso di atomo di idrogeno, si approssima $\mu \simeq m_e \equiv m$, e l'equazione agli autovalori relativa è:

 $\left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi \varepsilon_0 r} \right] \psi(\mathbf{x}) = E\psi(\mathbf{x})$ (2.10.6)

Conviene passare in coordinate sferiche e sfruttare invarianza sotto rotazioni, per cui $[\hat{H}, \hat{\mathbf{L}}] = 0$. Usando separazione delle variabili: $\psi_{E\ell m}(\mathbf{x}) \equiv \langle \mathbf{x} | E\ell m \rangle = R_{E\ell}(r) Y_{\ell m}(\theta, \varphi)$.

Si sostituiscono in eq. differenziale per R le grandezze $\overline{r} = r/\ell_B$ e $\overline{E} = E/E_B$. Per semplicità, si ometteranno le barre, ma si intendono grandezze riscalate. Definendo, inoltre, $n = 1/\sqrt{-2E^1}$ e $\rho = 2r/n$:

$$R'' + \frac{2}{\rho}R' + \left[\frac{n}{\rho} - \frac{1}{4} - \frac{\ell(\ell+1)}{\rho^2}\right]R = 0$$
 (2.10.7)

con $R=R(\rho)$. Si è visto che $R(\rho)\propto \rho^\ell$ per $\rho\to 0^+$, mentre per $\rho\to +\infty$ si ha $R''-\frac{1}{4}R=0\Rightarrow R(\rho)\propto e^{\pm\rho/2}$. Volendo descrivere moto limitato, si elimina soluzione con +. Complessivamente, si ha:

$$R(\rho) = \rho^{\ell} e^{-\rho/2} L(\rho)$$
 (2.10.8)

che, sostituita nell'equazione differenziale, restituisce forma di L, che deve essere una **ipergeometrica confluente**. Imponendo che queste funzioni rispettino la condizione energetica $n \in \mathbb{N}$ e $n \ge \ell + 1$, le soluzioni sono i **polinomi generalizzati di Laguerre**:

$$L_k^{(s)}(\rho) = \frac{d^s}{d\rho^s} L_k(\rho), \text{ con } L_k(\rho) = e^{\rho} \frac{d^k}{d\rho^k} \left(\rho^k e^{-\rho} \right)$$
 (2.10.9)

Mettendo tutto insieme e aggiungendo la costante di normalizzazione, si trova:

$$\psi_{n\ell m}(r,\theta,\varphi) = -\sqrt{\frac{4(n-\ell-1)!}{(n\ell_B)^3 n \left[(n+\ell)!\right]^3}} \rho^{\ell} e^{-\rho/2} L_{n+\ell}^{(2\ell+1)}(\rho) Y_{\ell m}(\theta,\varphi) \qquad (2.10.10)$$

dove si è sostituito E con n come pedice in quanto sono in corrispondenza per la relazione $E_n = -\frac{m_e \alpha^2 c^2}{2n^2}$.

2.10.3 Lo stato fondamentale, medie e varianze di posizione e momento

L'energia minima del sistema è $E_1 = -m_e \alpha^2 c^2/2$ e, visto che si deve rispettare $n \ge \ell + 1$ e $|m| \le \ell$, associata a:

$$\psi_{100}(r,\theta,\varphi) = R_{10}(r)Y_{00}(\theta,\varphi) = \frac{1}{\sqrt{\pi\ell_B^3}} e^{-r/\ell_B}$$
 (2.10.11)

Essendo il sistema nello stato fondamentale invariante per rotazioni, deve anche valere $\langle 0|\hat{\mathbf{X}}|0\rangle=0$; questo perché se esistesse grandezza vettoriale, sistema non più invariante per rotazioni \Rightarrow si distingue direzione e verso del vettore. Per lo stesso motivo: $\langle 0|\hat{\mathbf{p}}|0\rangle=0^2$.

 $^{^1\}mathrm{Qui}\,n$ non è immaginario perché le energie relative al sistema limitato che si sta studiando sono assunte negative.

²È ragionevole che sia 0 perché lo stato è legato, nel senso che l'elettrone è vincolato a un moto limitato ad una certa regione dello spazio. Se non fosse nullo, il sistema andrebbe all'infinito lungo quella particolare direzione.

Si può riscrivere ψ_{100} in termini di $\overline{r}=r/\ell_B$, con normalizzazione $(\sqrt{\pi})^{-1} \Rightarrow \psi_{100}=\frac{1}{\sqrt{\pi}}e^{-\overline{r}}$.

Si cerca probabilità di ottenere un certo impulso \mathbf{p} (relativo allo stato fondamentale): $\mathcal{P}(p) = |\widetilde{\psi}_{100}(p)|^2$. Si ottiene trasformando con Fourier ψ_{100} :

$$\widetilde{\psi}_{100} = \frac{1}{(2\pi)^{3/2}} \int d^3x \; e^{-i\mathbf{p}\cdot\mathbf{x}} \psi(\mathbf{x}) = \frac{2\sqrt{2}}{\pi} \frac{1}{(1+p^2)^2}$$

Osservazione 2.1. Sistema invariante per rotazione $\Rightarrow \widetilde{\psi}(p)$ dipende solo da $|\mathbf{p}|$.

Si calcola varianza della posizione¹:

$$\langle 0|\hat{\mathbf{X}}^{2}|0\rangle = \int d^{3}x \ \langle 0|x\rangle \langle x|\hat{\mathbf{X}}^{2}|0\rangle = \int d^{3}x \ \psi_{100}^{*}(x)\hat{\mathbf{X}}^{2}\psi_{100}(x)$$

$$= \int r^{2}dr \sin\theta d\theta d\varphi \ |\mathbf{x}|^{2}|\psi_{100}(x)|^{2}$$

$$= \frac{1}{\pi \ell_{B}^{3}} \int_{0}^{+\infty} dr \ r^{4}e^{-2r/\ell_{B}} \int_{0}^{\pi} d\theta \ \sin\theta \int_{0}^{2\pi} d\varphi$$

$$= \frac{4}{\ell_{B}^{3}} \int_{0}^{+\infty} dr \ r^{4}e^{-2r/\ell_{B}} = \frac{4}{\ell_{B}^{3}} \cdot \frac{3\ell_{B}^{5}}{4} = 3\ell_{B}^{2}$$
(2.10.12)

dove si è usato $\int_0^{+\infty} r^n e^{-\alpha r} dr = \frac{n!}{\alpha^{n+1}}$. Ora si fa il calcolo per $\langle \hat{\mathbf{p}}^2 \rangle$. Si ha $\hat{\mathbf{p}} = -i\hbar \nabla$ nelle coordinate, quindi:

$$\langle \hat{\mathbf{p}}^2 \rangle = -\hbar^2 \int_{\mathbb{R}^3} \psi_{100}^*(\mathbf{x}) \, \nabla^2 \psi_{100}(\mathbf{x}) \, d^3 x = -\hbar^2 \cdot 4\pi \int_0^\infty \psi_{100}(r) \nabla^2 \psi_{100}(r) r^2 \, dr$$

Per una funzione radiale $\nabla^2 \psi(r) = \psi''(r) + \frac{2}{r} \psi'(r)$, dove $\psi'(r) = -\frac{1}{l_B} \psi_{100}(r)$ e $\psi''(r) = \frac{1}{l_B^2} \psi_{100}(r)$, perciò $\nabla^2 \psi_{100}(r) = \frac{1}{l_B^2} \psi_{100}(r) - \frac{2}{l_B r} \psi_{100}(r)$. Allora:

$$\begin{split} \langle \hat{\mathbf{p}}^{2} \rangle &= -\hbar^{2} \cdot 4\pi \int_{0}^{\infty} \frac{1}{\pi l_{B}^{3}} e^{-2r/l_{B}} \left(\frac{1}{l_{B}^{2}} - \frac{2}{l_{B}r} \right) r^{2} dr \\ &= -\frac{4\hbar^{2}}{l_{B}^{3}} \left[\frac{1}{l_{B}^{2}} \int_{0}^{\infty} r^{2} e^{-2r/l_{B}} dr - \frac{2}{l_{B}} \int_{0}^{\infty} r e^{-2r/l_{B}} dr \right] \\ &= -\frac{4\hbar^{2}}{l_{B}^{3}} \left[\frac{1}{l_{B}^{2}} \cdot \frac{l_{B}^{3}}{4} - \frac{2}{l_{B}} \cdot \frac{l_{B}^{2}}{4} \right] = \frac{\hbar^{2}}{l_{B}^{2}} \end{split}$$

$$(2.10.13)$$

Riassumendo:

$$\langle 0|\hat{\mathbf{X}}|0\rangle = \langle 0|\hat{\mathbf{p}}|0\rangle = 0 \; ; \; \langle 0|\hat{\mathbf{X}}^2|0\rangle = 3\ell_B^2 \; ; \; \langle 0|\hat{\mathbf{p}}^2|0\rangle = \frac{\hbar^2}{\ell_B^2} \tag{2.10.14}$$

¹Invarianza per rotazioni $\Rightarrow \psi(\mathbf{x}) \equiv \psi(x)$, inoltre $|\mathbf{x}| \equiv x \equiv r$.

2.10.4 Principio di indeterminazione

Si è visto che, essendo $[\hat{X}_a, \hat{p}_b] = i\hbar \delta_{ab}$, si ricava:

$$\left\langle \left(\hat{X}_a - \langle \hat{X}_a \rangle \right)^2 \right\rangle \left\langle \left(\hat{p}_b - \langle \hat{p}_b \rangle \right)^2 \right\rangle \ge \delta_{ab} \frac{\hbar^2}{4}$$
 (2.10.15)

Applicandolo allo stato fondamentale, per quanto detto sopra, $\langle \hat{X}_a \rangle = \langle \hat{p}_b \rangle = 0$, $\forall a, b$; inoltre, valendo invarianza per rotazioni, sommando su a, b, si ha:

$$\langle \hat{\mathbf{X}}^2 \rangle \langle \hat{\mathbf{p}}^2 \rangle \ge \frac{3\hbar^2}{4}$$
 (2.10.16)

D'altra parte $\langle 0|\hat{X}_a^2|0\rangle = \frac{1}{3}\langle 0|\hat{\mathbf{X}}^2|0\rangle$ e $\langle 0|\hat{p}_a^2|0\rangle = \frac{1}{3}\langle 0|\hat{\mathbf{p}}^2|0\rangle$ vista l'invarianza per rotazioni, quindi:

$$\frac{\hbar^2}{4} \le \langle 0 | \hat{X}_a^2 | 0 \rangle \langle 0 | \hat{p}_a^2 | 0 \rangle = \frac{1}{9} \langle 0 | \hat{\mathbf{X}}^2 | 0 \rangle \langle 0 | \hat{\mathbf{p}}^2 | 0 \rangle \Rightarrow \langle \hat{\mathbf{X}}^2 \rangle \langle \hat{\mathbf{p}}^2 \rangle \ge \frac{9}{4} \hbar^2 \tag{2.10.17}$$

per cui si ottiene un limite inferiore più preciso. Tuttavia si possono usare i risultati in eq. 2.10.14, per concludere che $\langle \hat{X}^2 \rangle \langle \hat{p}^2 \rangle = 3\hbar^2$, conforme con le stime di sopra.

2.10.5 Oscillatore armonico 3D

Si studia sistema con Hamiltoniano $\hat{H} = \sum_{i=1}^{3} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{2}m\omega^{2}\hat{x}_{i}^{2}$. Questo si può scomporre come $\hat{H} = \hat{H}_{1} + \hat{H}_{2} + \hat{H}_{3}$, ciascuno relativo a una coordinata spaziale.

Gli Hamiltoniani si diagonalizzano separatamente, con $\hat{H}_1 | n_1 \rangle = E_{n_1} | n_1 \rangle$, con $E_{n_1} = \hbar \omega (n_1 + 1/2)$. Per operatore di creazione: $|n_1\rangle = \frac{1}{\sqrt{n_1}!} (\hat{a}_1^+)^n |0\rangle$, con $|0\rangle = \frac{1}{\pi^{1/4} \ell^{1/2}} e^{-x^2/(2\ell_\omega^2)}$.

Chiaramente $[\hat{H}_i, \hat{H}_j] = 0$, quindi uno stato di \hat{H} , individuabile tramite $|n_1 n_2 n_3\rangle$, si può rappresentare con $|n_1\rangle |n_2\rangle |n_3\rangle$; ne segue che $E_{n_1 n_2 n_3} = \hbar \omega (n_1 + n_2 + n_3 + 3/2) \equiv \hbar \omega (n_1 + n_2 + n_3 + 3/2)$, visto che $\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{H}_3$.

Potendo scomporre $|n_1n_2n_3\rangle$, questo si scrive come:

$$|n_1n_2n_3\rangle = C(\hat{a}_1^+)^n(\hat{a}_2^+)^n(\hat{a}_3^+)^n|000\rangle$$

dove C è un fattore di normalizzazione e gli \hat{a}_i^+ sono operatori di creazione relativi alla variabile i-esima.

In 3D, la funzione d'onda è:

$$\varphi_0 = \left(\frac{1}{\pi^{1/4} \ell_\omega^{1/2}}\right)^3 e^{-r^2/(2\ell_\omega^2)} \tag{2.10.18}$$

Il valore medio della distanza è dato, usando $\hat{r}^2 = \hat{x}_1^2 + \hat{x}_2^2 + \hat{x}_3^2$, da:

$$\langle 0|^{(1)} \langle 0|^{(2)} \langle 0|^{(3)} (\hat{x}_1^2 + \hat{x}_2^2 + \hat{x}_3^2) |0\rangle^{(1)} |0\rangle^{(2)} |0\rangle^{(3)} = \langle 0|\hat{x}_1^2 |0\rangle \langle 0|\hat{x}_2^2 |0\rangle \langle 0|\hat{x}_3^2 |0\rangle = \frac{3}{2} \ell_\omega^2$$

2.11 Lo spin

Si ricorda che per sistemi descritti da più funzioni d'onda, una rotazione \hat{R} agisce come:

$$\hat{R} \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix} = \hat{M} \begin{pmatrix} \psi_1(R^{-1}\mathbf{x}) \\ \vdots \\ \psi_n(R^{-1}\mathbf{x}) \end{pmatrix}$$

con $\hat{R}(\hat{n}, \theta) = e^{-\frac{i}{\hbar}\theta\hat{n}\cdot\hat{L}}\hat{M}(\hat{n}, \theta)$, dove \hat{M} agisce sulle componenti (rotazione passiva), mentre l'esponenziale agisce sulle coordinate (rotazione attiva).

Visto che \hat{R} deve essere unitario e che l'esponenziale già lo è, anche \hat{M} deve esserlo; allora $\hat{M}(\hat{n}, \theta) = e^{-\frac{i}{\hbar}\theta\hat{n}\cdot\hat{S}}$, con \hat{S} Hermitiano.

 $[\hat{\mathbf{L}}, \hat{\mathbf{S}}] = 0$ visto che agiscono indipendentemente, quindi $\hat{R}(\hat{n}, \theta) = e^{-\frac{i}{\hbar}\theta\hat{n}\cdot(\hat{\mathbf{L}}+\hat{\mathbf{S}})} \equiv e^{-\frac{i}{\hbar}\theta\hat{n}\cdot\hat{\mathbf{J}}}$.

Valendo $[\hat{J}_i, \hat{J}_j] = i\hbar \varepsilon_{ijk} \hat{J}_k$ e $[\hat{L}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{L}_k$, deve risultare $[\hat{S}_i, \hat{S}_j] = i\hbar \varepsilon_{ijk} \hat{S}_k$. Si ha anche:

2.11.1 Gli angoli di Eulero e le matrici di Wigner

Permettono di esprimere la rotazione più generica. Si indicherà rotazione con $\hat{R}(\alpha, \beta, \gamma)$. Usando base completa $|jm\rangle$, si verifica che $\langle j'm'|\hat{R}|jm\rangle \equiv \langle \hat{R}\rangle = M\delta_{j'j}$, con M matrice generica; per farlo, si usa $[\hat{J}^2, \hat{R}] = 0$:

$$\begin{cases} \langle j'm'|\hat{J}^2\hat{R}|jm\rangle = j'(j'+1)\langle\hat{R}\rangle \\ \langle j'm'|\hat{J}^2\hat{R}|jm\rangle = j(j+1)\langle\hat{R}\rangle \end{cases} \iff j=j'$$

Si indica $\langle \hat{R} \rangle \equiv D^j_{m,m'}(\alpha,\beta,\gamma)$, con α,β,γ una delle possibili parametrizzazioni. Usando base $|jm\rangle$:

$$\hat{R}\left|jm\right\rangle = \sum_{i'm'} \left|j'm'\right\rangle \left\langle j'm'|\hat{R}|jm\right\rangle = \sum_{m'} \left|jm'\right\rangle D_{m,m'}^{j}(\alpha,\beta,\gamma)$$

Significa che per ogni rotazione, j è fissato. Si calcolano elementi di $D^j_{m,m'}$; si può dimostrare che¹:

$$\hat{R}(\alpha,\beta,\gamma) = e^{-\frac{i}{\hbar}\gamma\hat{z}'\cdot\mathbf{J}}e^{-\frac{i}{\hbar}\beta\hat{u}\cdot\mathbf{J}}e^{-\frac{i}{\hbar}\alpha\hat{z}\cdot\mathbf{J}} = e^{-\frac{i}{\hbar}\alpha J_z}e^{-\frac{i}{\hbar}\beta J_y}e^{-\frac{i}{\hbar}\gamma J_z}$$

Ne segue che:

$$\begin{split} D^{j}_{m,m'}(\alpha,\beta,\gamma) &= \langle jm'|e^{-\frac{i}{\hbar}\alpha J_z}e^{-\frac{i}{\hbar}\beta J_y}e^{-\frac{i}{\hbar}\gamma J_z}|jm\rangle = e^{i(\alpha m'-\gamma m)}\langle jm'|e^{-\frac{i}{\hbar}\beta J_y}|jm\rangle \\ &\equiv e^{i(\alpha m'-\gamma m)}d^{j}_{m,m'}(\beta) \end{split}$$

Le matrici *D*, *d* sono note come **matrici di Winger**.

2.11.2 Coefficienti di Clebsch-Gordan

Si considerano due sistemi a due livelli, 1 e 2, con momenti angolari fissati J_1 , J_2 rispettivamente. Hanno basi $|j_1m_1\rangle$ e $|j_2m_2\rangle$ singolarmente, mentre la base della compoiszione² si indica con $|j_1j_2m_1m_2\rangle = |j_1m_1\rangle \otimes |j_2m_2\rangle$.

 $^{^{\}mbox{\tiny 1}}\mbox{La}$ seconda disuguaglianza non è dimostrata, è da prendere per buona.

 $^{^2}$ La base della composizione di due sistemi è sempre il prodotto tensore delle basi, però quando vi è interazione, vi può essere la formazione di stati entangled che non sono esprimibili tramite stati di \mathcal{H} .

Si cerca un cambio di base da $|j_1, j_2, m_1, m_2\rangle$ a $|j_1, j_2, J, M\rangle$, con J riferito a $\hat{J} = \hat{J}_1 + \hat{J}_2$ e M a \hat{J}_z , per sistema complessivo invariante rispetto a rotazioni globali (date da \hat{J}).

Si impone $M \stackrel{!}{=} m_1 + m_2$ perché $\hat{J}_z | j_1 j_2 m_1 m_2 \rangle = M | j_1 j_2 m_1 m_2 \rangle$. Definendo N(J) numero di stati associati a J e n(M) numero di stati associati a M, si ha:

$$n(M) = \sum_{i>|M|} N(i)$$
 (2.11.2)

Per esempio, se $j_1 = j_2 = 1/2$, vale n(1) = 1, n(0) = 2, $n(-1) = 1 \Rightarrow N(1) = 1$, N(0) = 1; se $j_1 = j_2 = 1$, vale n(2) = 1, n(1) = 2, n(0) = 3, quindi N(2) = 1, N(0) = 1, N(1) = 1. Vale N(j) = 1 se $|j_1 - j_2| \le j \le j_1 + j_2$.

La relazione tra le due basi è data dai coefficienti di Clebsch-Gordan:

$$|j_{1}j_{2}JM\rangle = \sum_{m_{1},m_{2}} |j_{1}j_{2}m_{1}m_{2}\rangle \langle j_{1}j_{2}m_{1}m_{2}|j_{1}j_{2}JM\rangle$$

$$\equiv \sum_{m_{1},m_{2}} C_{j_{1}j_{2}m_{1}m_{2}}^{JM} |j_{1}j_{2}m_{1}m_{2}\rangle$$
(2.11.3)

Questi coefficienti possono essere scelti reali tramite fasi per gli stati. La relazione si può invertire per scrivere $|j_1j_2m_1m_2\rangle$ tramite il complesso coniugato di $C^{JM}_{j_1j_2m_1m_2}$. Per il seguito, si assumeranno reali.

Questi soddisfano1:

$$\sum_{m_1,m_2} C_{j_1 j_2 m_1 m_2}^{JM} C_{j_1 j_2 m_1 m_2}^{J'M'} = \delta_{JJ'} \delta_{MM'}$$

$$\sum_{I,M} C_{j_1 j_2 m_1 m_2}^{JM} C_{j_1 j_2 m_1' m_2'}^{JM} = \delta_{m_1 m_1'} \delta_{m_2 m_2'}$$
(2.11.4)

2.11.3 Composizione di due sistemi a due livelli

Si considerano due sistemi, 1, 2, a due livelli (quindi entrambi hanno spin 1/2); in questo caso, ciascun operatore di spin sarà associato ad una matrice di Puali: $\hat{S}_a = \frac{\hbar}{2} \sigma_a$.

Per i due sistemi, \hat{S}^2 e \hat{S}_z forniscono base completa $|S=1/2, S_z=\pm 1/2\rangle$. Per descrivere uno stato di un solo sistema, è sufficiente $|S_z\rangle$, infatti si può scegliere $|S_z=-1/2\rangle=\begin{pmatrix} 0\\1 \end{pmatrix}$

e $|S_z = +1/2\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Per il sistema composto, la base è data dal prodotto tensore:

$$\mathcal{B} = \left\{ |1\rangle = \left| \frac{1}{2} \right\rangle^{(1)} \left| \frac{1}{2} \right\rangle^{(2)}, \ |2\rangle = \left| \frac{1}{2} \right\rangle^{(1)} \left| -\frac{1}{2} \right\rangle^{(2)}, \ |3\rangle = \left| -\frac{1}{2} \right\rangle^{(1)} \left| \frac{1}{2} \right\rangle^{(2)}, \ |4\rangle = \left| -\frac{1}{2} \right\rangle^{(1)} \left| -\frac{1}{2} \right\rangle^{(2)} \right\}$$
(2.11.5)

Ora si assume che i due sistemi interagiscono con $\hat{H} = \beta \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$; si definisce $\hat{\mathbf{S}} = \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$ e soddisfa $[\hat{H}, \hat{\mathbf{S}}] = 0$ perché $\mathbf{S}_1 \cdot \mathbf{S}_2$ è uno scalare, quindi invariante sotto rotazioni.

Inoltre, visto che \hat{H} dipende dall'interazione dei due spin: $[\hat{H}, \hat{S}_j] \neq 0$, mentre $[\hat{H}, \hat{P}_j^2] = 0$. Un possibile autostato di \hat{H} potrebbe essere, allora, $|S_1, S_2, S, S_z\rangle^2$ perché

 $^{^1}$ Si ottengono sostituendo i coefficienti di una delle due equazioni (quelle per $|j_1j_2m_1m_2\rangle$ e $|j_1j_2JM\rangle$ per il cambio di base) e imponendo che valga l'uguaglianza.

²In questa notazione, S_1 , S_2 sono gli autostati di \hat{S}_1^2 e \hat{S}_2^2 rispettivamente.

 $\hat{S}_1^2, \hat{S}_2^2, \hat{S}^2, \hat{S}_z$ commutano con \hat{H} .

Si nota che $\hat{H} = \frac{1}{2}\beta \left[(S_1 + S_2)^2 - S_1^2 - S_2^2 \right]$, cioè dipende solo da \hat{S}^2 , \hat{S}_1^2 , \hat{S}_2^2 , quindi i possibili autovalori sono $\frac{\hbar^2}{2}\beta \left[S(S+1)-S_1(S_1+1)-S_2(S_2+1)\right]$ Si cercano i coefficienti di Clebsch-Gordan per

$$|S_1S_{1,z}SS_Z\rangle = \sum_{S_{1,z},S_{2,z}} |S_1S_2S_{1,z}S_{2,z}\rangle C_{S_1S_2S_{1,z}S_{2,z}}^{SS_z}$$

Si definisce $\hat{J}_- = \hat{J}_x - i\hat{J}_y \cos \hat{J}_- |jm\rangle = \hbar[(j-m+1)(j+m)]^{1/2} |j(m-1)\rangle$ e, consequentemente, si definiscono \hat{J}_{1-} , \hat{J}_{2-} tali che $\hat{J}_{-} = \hat{J}_{1-} + \hat{J}_{2-}$; si ha:

$$|S = 1, S_{z} = 1\rangle = |1/2\rangle^{(1)} |1/2\rangle^{(2)} \Rightarrow \hat{J}_{-} |S = 1, S_{z} = 1\rangle = \hbar\sqrt{2} |S = 1, S_{z} = 0\rangle$$

$$\Rightarrow (\hat{J}_{1-} + \hat{J}_{2-}) |1/2\rangle^{(1)} |1/2\rangle^{(2)} = \hat{J}_{1-} |1/2\rangle^{(1)} |1/2\rangle^{(2)} + |1/2\rangle^{(1)} \hat{J}_{2-} |1/2\rangle^{(2)}$$

$$= \hbar \left(|-1/2\rangle^{(1)} |1/2\rangle^{(2)} + |1/2\rangle^{(1)} |-1/2\rangle^{(2)} \right)$$

$$\Rightarrow |S = 1, S_{z} = 0\rangle = \frac{1}{\sqrt{2}} \left(|-1/2\rangle^{(1)} |1/2\rangle^{(2)} + |1/2\rangle^{(1)} |-1/2\rangle^{(2)} \right)$$

$$\Rightarrow |S = 1, S_{z} = -1\rangle = |-1/2\rangle^{(1)} |-1/2\rangle^{(2)}$$

$$|S = 0, S_{z} = 0\rangle = \frac{1}{\sqrt{2}} \left(|1/2\rangle^{(1)} |-1/2\rangle^{(2)} - |-1/2\rangle^{(1)} |1/2\rangle^{(2)} \right)$$

L'ultimo stato si ottiene per ortogonalità con gli altri e usando $S_z=0\Rightarrow$ combinazione di up e down come $|S = 1, S_z = 0\rangle$. In questo modo:

$$C_{1/2}^{11} = 1 \; ; \quad C_{\frac{1}{2}\frac{1}{2}\frac{1}{2}-\frac{1}{2}}^{10} = \frac{1}{\sqrt{2}} \; ; \quad C_{\frac{1}{2}\frac{1}{2}-\frac{1}{2}\frac{1}{2}}^{00} = -\frac{1}{\sqrt{2}}$$
 (2.11.7)

3 ESERCITAZIONI

3.1 Sistemi a due livelli

3.1.1 Descrizione generale

Sono sistemi i cui stati appartengono ad \mathcal{H} , con dim $\mathcal{H}=2$. Possibile base¹ è $\{|0\rangle$, $|1\rangle\}\equiv\{|\downarrow\rangle$, $|\uparrow\rangle\}$, dove $|0\rangle=\begin{pmatrix}0\\1\end{pmatrix}\equiv|\downarrow\rangle$ e $|1\rangle=\begin{pmatrix}1\\0\end{pmatrix}\equiv|\uparrow\rangle$.

Dato $|\psi\rangle \in \mathcal{H}$, allora $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}$ e tali che $|\alpha|^2 + |\beta|^2 = 1$ per normalizzazione $\langle \psi | \psi \rangle \stackrel{!}{=} 1$.

3.1.2 Matrici di Pauli

Dovendo essere autoaggiunto, l'Hamiltoniano per sistemi simili è della forma

$$\hat{H} = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}, \ a, c \in \mathbb{R}, \ b \in \mathbb{C}$$
 (3.1.1)

Una base per i possibili Hamiltoniani è $\mathcal{B} = \{ \mathrm{Id}, \sigma_x, \sigma_y, \sigma_z \}$, dove σ_i sono **matrici di Pauli**:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (3.1.2)

Autovalori e autovettori di, rispettivamente, σ_z , σ_x , σ_y sono:

- $v_{z,-} \equiv |0\rangle$ relativo a $\lambda = -1$ e $v_{z,+} \equiv |1\rangle$ relativo a $\lambda = 1$;
- $v_{x,-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ relativo a $\lambda = -1$ e $v_{x,+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ relativo a $\lambda = 1$;
- $v_{y,-} = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}$ relativo a $\lambda = -1$ e $v_{y,+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$ relativo a $\lambda = 1$.

Le matrici di Pauli soddisfano le seguenti proprietà:

$$\sigma_{\alpha}\sigma_{\beta} = \delta_{\alpha\beta} + i\varepsilon_{\alpha\beta\gamma}\sigma_{\gamma} \Rightarrow \begin{cases} [\sigma_{\alpha}, \sigma_{\beta}] \stackrel{\text{def}}{=} \sigma_{\alpha}\sigma_{\beta} - \sigma_{\beta}\sigma_{\alpha} = 2i\varepsilon_{\alpha\beta\gamma}\sigma_{\gamma} \\ \{\sigma_{\alpha}, \sigma_{\beta}\} \stackrel{\text{def}}{=} \sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = 2\delta_{\alpha\beta} \text{ Id} \end{cases}$$

$$\text{tr } \sigma_{\alpha} = 0$$

$$(3.1.3)$$

3.1.3 Studio di un sistema a due livelli

Si considera $\hat{H} = a\sigma_z + b\sigma_x$, con $a, b \in \mathbb{R}$. Lo spettro è dato da:

$$0 \stackrel{!}{=} \det(\hat{H} - \lambda \operatorname{Id}) = \begin{pmatrix} a - \lambda & b \\ b & -a - \lambda \end{pmatrix} = \lambda^2 - a^2 - b^2$$

 $^{^1\}mathrm{Qui}$ si sottintende una base sul campo complesso $\mathbb{C}.$

da cui $\lambda_{\pm} = \pm \sqrt{a^2 + b^2}$. Gli autostati normalizzati sono:

$$|v_{\pm}\rangle = \frac{1}{\left[2(1+r^2\mp r\sqrt{1+r^2})\right]^{1/2}} \begin{pmatrix} 1 \\ -r\pm\sqrt{1+r^2} \end{pmatrix} \equiv A_{\pm} \begin{pmatrix} 1 \\ R_{\pm} \end{pmatrix}, \ r = \frac{a}{b}$$

Esercizio 3.1.

Si assume che il sistema si trovi in $|v_+\rangle = A_+(|\uparrow\rangle + R_+|\downarrow\rangle)$; calcolare probabilità che stia in $|\uparrow\rangle$.

Svolgimento. La probabilità è data da $|\langle \uparrow | v_+ \rangle|^2 = A^2 \equiv P_{\uparrow}$.

ESERCIZIO 3.2.

Il sistema è ancora in $|v_+\rangle$; indicando con $|\to\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ e $|\leftarrow\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ gli autostati di σ_x , calcolare la probabilità di trovare il sistema in $|\leftarrow\rangle$.

Svolgimento. Si riscrive $|v_+\rangle$ in termini di $|\leftarrow\rangle$, $|\rightarrow\rangle$:

$$|v_+\rangle = A_+ \left(\frac{1+R_+}{\sqrt{2}} \left| \to \right\rangle + \frac{1-R_+}{\sqrt{2}} \left| \leftarrow \right\rangle \right)$$
 quindi $P_\leftarrow = \left(A_+ \frac{1-R_+}{\sqrt{2}}\right)^2$.

Esercizio 3.3.

Calcolare valore di aspettazione di σ_z in $|v_+\rangle$.

Svolgimento. Essendo $|v_{+}\rangle = A_{+}(|\uparrow\rangle + R_{+}|\downarrow\rangle) \Rightarrow \sigma_{z}|v_{+}\rangle = A_{+}(|\uparrow\rangle - R_{+}|\downarrow\rangle)$. Inoltre $\langle v_{+}| = A_{+}^{*}(\langle\uparrow| + R_{+}^{*}\langle\downarrow|) = A(\langle\uparrow| + R_{+}\langle\downarrow|)$ visto che $A_{+}, R_{+} \in \mathbb{R}$. Allora:

$$\langle v_+ | \sigma_z | v_+ \rangle = A^2 - A^2 R_+^2 = A^2 (1 - R_+^2)$$

3.2 Sistema composto da due sottosistemi a due livelli

I due sottosistemi si indicano con 1 e 2, quindi $|\psi_1\rangle$ sarà stato del primo e $|\psi_2\rangle$ sarà stato del secondo.

Si considera sistema con Hamiltoniano $\hat{H} = J\sigma_1 \cdot \sigma_2$, con $J \in \mathbb{R}$ e $\sigma_i = (\sigma_{i,x}, \sigma_{i,y}, \sigma_{i,z})$, mentre il prodotto, invece, è definito da:

$$\sigma_1 \cdot \sigma_2 \stackrel{\text{def}}{=} \sum_{i = \{x, y, z\}} \sigma_{1, i} \otimes \sigma_{2, i} \tag{3.2.1}$$

Definizione 3.1 — Prodotto tensore tra matrici.

Il prodotto tensore tra due matrici, rispettivamente di dimensioni $m \times n$ e $p \times q$, restituisce una matrice di dimensioni $pm \times qn$ definita come:

$$A \otimes B \stackrel{\text{def}}{=} \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$
(3.2.2)

dove ogni prodotto $a_{ii}B$ è blocco dato dal prodotto della matrice B per lo scalare a_{ii} .

Si assume che i due sottosistemi non interagiscono fra loro, quindi ogni operatore agisce sul proprio stato e la base di $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ è semplicemente $\mathcal{B} = \mathcal{B}_1 \otimes \mathcal{B}_2$, ossia:

$$\mathcal{B} = \{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\} \tag{3.2.3}$$

Si vuole rappresentare ${\cal H}$ in forma matriciale. Usando:

$$\begin{aligned}
\sigma_{x} \mid \uparrow \rangle &= \mid \downarrow \rangle , & \sigma_{x} \mid \downarrow \rangle &= \mid \uparrow \rangle \\
\sigma_{y} \mid \uparrow \rangle &= i \mid \downarrow \rangle , & \sigma_{y} \mid \downarrow \rangle &= -i \mid \uparrow \rangle \\
\sigma_{z} \mid \uparrow \rangle &= \mid \uparrow \rangle , & \sigma_{z} \mid \downarrow \rangle &= -| \downarrow \rangle
\end{aligned}
\qquad \Rightarrow \begin{array}{c}
\hat{H} \mid \uparrow \uparrow \rangle &= J \mid \uparrow \uparrow \rangle , & \hat{H} \mid \downarrow \uparrow \rangle &= J \left(2 \mid \uparrow \downarrow \rangle - \mid \downarrow \uparrow \rangle \right) \\
\hat{H} \mid \uparrow \downarrow \rangle &= J \left(2 \mid \downarrow \uparrow \rangle - \mid \uparrow \downarrow \rangle \right) , & \hat{H} \mid \downarrow \downarrow \rangle &= J \mid \downarrow \downarrow \rangle
\end{aligned}$$
(3.2.4)

si ha:

$$H = J \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (3.2.5)

3.2.1 Spettro dell'Hamiltoniano

Ci si restringe al blocco centrale:

$$\begin{pmatrix} -J & 2J \\ 2J & -J \end{pmatrix} \rightarrow \begin{pmatrix} -J - \lambda & 2J \\ 2J & -J - \lambda \end{pmatrix} \Rightarrow (J + \lambda - 2J)(J + \lambda + 2J) \stackrel{!}{=} 0$$

$$\Rightarrow \lambda_1 = J, \ \lambda_2 = -3J \tag{3.2.6}$$

Quindi gli autovalori sono E = J, J, J, -3J. Da questi, si ottengono gli autostati che, normalizzati, sono:

$$\left\{\left|\uparrow\uparrow\rangle\right\rangle,\left|\downarrow\downarrow\rangle\right\rangle,\frac{\left|\uparrow\downarrow\rangle+\left|\downarrow\uparrow\rangle\right\rangle}{\sqrt{2}},\frac{\left|\uparrow\downarrow\rangle-\left|\downarrow\uparrow\rangle\right\rangle}{\sqrt{2}}\right\} \tag{3.2.7}$$

dove i primi 3 sono *stati di tripletto*, mentre l'ultimo è di *singoletto*. Questi, in ordine, hanno autovalori J, J, J, -3J.

3.2.2 Matrice densità

Si vuole scrivere ρ_{ψ} per l'autostato $\psi \equiv \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$:

$$\rho_{\psi} = |\psi\rangle\langle\psi| = \frac{1}{2}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)(\langle\uparrow\downarrow| - |\downarrow\uparrow\rangle)$$

$$= \frac{1}{2}(|\uparrow\downarrow\rangle\langle\uparrow\downarrow| - |\uparrow\downarrow\rangle\langle\downarrow\uparrow| - |\downarrow\uparrow\rangle\langle\uparrow\downarrow| + |\downarrow\uparrow\rangle\langle\downarrow\uparrow|) = \frac{1}{2}\begin{pmatrix}1 & -1\\-1 & 1\end{pmatrix}$$
(3.2.8)

da cui si nota che $\rho=\rho^{\dagger}$ e tr $\rho=1$. Per vedere se lo stato è puro, si calcola:

$$\operatorname{tr} \rho^2 = \frac{1}{4} \operatorname{tr} \left[\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right] = \frac{1}{4} \operatorname{tr} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = 1 \equiv \operatorname{tr} \rho \tag{3.2.9}$$

quindi lo stato à puro.

Si restringe ρ_{ψ} a $\rho_{\psi}^{(1)} = \operatorname{tr}^{(2)} \rho_{\psi}$:

$$\rho_{\psi}^{(1)} = \sum_{j} \langle j | \rho_{\psi} | j \rangle = \langle \uparrow |^{(2)} \rho | \uparrow \rangle^{(2)} + \langle \downarrow |^{(2)} \rho | \downarrow \rangle^{(2)}$$

$$= \frac{1}{2} \langle \uparrow |^{(2)} (| \uparrow \downarrow \rangle \langle \uparrow \downarrow | - | \uparrow \downarrow \rangle \langle \downarrow \uparrow | - | \downarrow \uparrow \rangle \langle \uparrow \downarrow | + | \downarrow \uparrow \rangle \langle \downarrow \uparrow |) | \uparrow \rangle^{(2)} +$$

$$+ \frac{1}{2} \langle \downarrow |^{(2)} (| \uparrow \downarrow \rangle \langle \uparrow \downarrow | - | \uparrow \downarrow \rangle \langle \downarrow \uparrow | - | \downarrow \uparrow \rangle \langle \uparrow \downarrow | + | \downarrow \uparrow \rangle \langle \downarrow \uparrow |) | \downarrow \rangle^{(2)}$$

$$= \frac{1}{2} | \uparrow \rangle \langle \uparrow | + \frac{1}{2} | \downarrow \rangle \langle \downarrow | = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(3.2.10)

dove si è usato il fatto che $|\uparrow\rangle$ e $|\downarrow\rangle$ sono ortonormali. Si nota che i sistemi 1,2 sono entangled perché:

$$(\rho^{(1)})^2 = \frac{1}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \operatorname{tr}(\rho^{(1)})^2 = \frac{1}{2} \neq 1$$

Conoscendo $\rho^{(1)}$, ogni operatore $\sigma_{1,i}$ che agisce su 1 è t.c. $\langle \sigma_{1,i} \rangle = \operatorname{tr}(\rho^{(1)})\sigma_{1,i}$.

3.3 Buca di potenziale V_0

Si considera

$$V(x) = \begin{cases} 0 & , |x| > \frac{a}{2} \\ -V_0 & , |x| \le \frac{a}{2} \end{cases}, \quad a \in R^{>0}$$

L'Hamiltoniano è $\hat{H} = \hat{p}^2/2m + V(\hat{x})$ e si risolve $\hat{H}\psi(x) = E\psi(x)$, ossia

$$-\frac{\hbar^2}{2m}\partial_x^2\psi(x) + V(x)\psi(x) = E\psi(x)$$
(3.3.1)

Svolgimento. Si assume E > 0. Fuori dalla buca (|x| > a/2) vale V(x) = 0, quindi:

$$\psi_{\text{out}}(x) = A \exp\left(i\frac{\sqrt{2mE}}{\hbar}x\right) + B \exp\left(-i\frac{\sqrt{2mE}}{\hbar}x\right)$$
 (3.3.2)

Se |x| = a/2, invece, si ha:

$$\psi_{\text{bound}}(x) = A' \exp\left(i\frac{\sqrt{2m(E+V_0)}}{\hbar}x\right) + B' \exp\left(-i\frac{\sqrt{2m(E+V_0)}}{\hbar}x\right)$$
(3.3.3)

Si rigetta, allora, la possibilità E>0 perché si è interessati al caso di **stati legati**. D'ora in avanti, si considererà E<0. Si nota, inoltre, che $E\geq -V_0$ perché:

$$\begin{split} \frac{\hat{p}^2}{2m} |\psi\rangle + V(\hat{x}) |\psi\rangle &= E |\psi\rangle \implies \left\langle \psi \left| \frac{\hat{p}^2}{2m} \right| \psi \right\rangle + \left\langle \psi |V(\hat{x})|\psi \right\rangle = E \\ &\Rightarrow \left\langle \psi \left| \frac{\hat{p}^2}{2m} \right| \psi \right\rangle + \int\limits_{-\infty}^{+\infty} dx \; \psi^*(x) V(x) \psi(x) \geq \left\langle \psi \left| \frac{\hat{p}^2}{2m} \right| \psi \right\rangle + \min_{x} V(x) \int\limits_{-\infty}^{+\infty} dx \; |\psi(x)|^2 \end{split}$$

Per condizione di normalizzazione, si trova che:

$$E \ge \left(\frac{\hat{p}^2}{2m}\right) + \min_{x} V(x) \Rightarrow E \ge \min_{x} V(x) \equiv -V_0 \tag{3.3.4}$$

Si è interessati al caso di una particella all'interno della buca di potenziale, la cui posizione decresce esponenzialmente al di fuori, pertanto il range di interesse è $-V_0 \le E < 0$.

- Soluzione fuori dalla buca.
 - Qui V(x) = 0, quindi la funzione d'onda è della forma $\psi(x) = Ae^{\lambda x} + Be^{-\lambda x}$, con $\lambda = \frac{1}{\hbar} \sqrt{2m(-E)^3}$. Si indicherà la soluzione per |x| < a/2 con 1 e con 3 quella per |x| > a/2.
- Soluzione nella buca.

Qui
$$V(x) = -V_0$$
, quindi per $\eta = \frac{\sqrt{2m(E+V_0)}}{\hbar}$, si ha $\psi(x) = A_2 e^{i\eta x} + B_2 e^{-i\eta x}$. Visto che $E > -V_0 \Rightarrow \eta > 0$.

Si devono raccordare le soluzioni. Intanto si eliminano i termini non fisicamente pertinenti, come $B_1e^{-\lambda x}$ e $A_3e^{\lambda x}$ perché fanno divergere le soluzioni. Le condizioni di raccordo sono:

$$\begin{split} \psi_1\left(-\frac{a}{2}\right) &= \psi_2\left(-\frac{a}{2}\right) \; ; \;\; \psi_1'\left(-\frac{a}{2}\right) = \psi_2'\left(-\frac{a}{2}\right) \\ \psi_2\left(\frac{a}{2}\right) &= \psi_3\left(\frac{a}{2}\right) \; ; \;\; \psi_2'\left(\frac{a}{2}\right) = \psi_3'\left(\frac{a}{2}\right) \end{split}$$

Da quelle nella prima riga, si ha $A_1e^{-\lambda\frac{a}{2}}=A_2e^{i\eta\frac{a}{2}}+B_2e^{-i\eta\frac{a}{2}}$ e $\lambda A_1e^{\lambda\frac{a}{2}}=i\eta A_2e^{i\eta}-i\eta B_2e^{-i\eta\frac{a}{2}}$. Risolvendo per A_2,B_2 :

$$A_2 = \frac{i\eta + \lambda}{2i\eta} A_1 e^{-(\lambda - i\eta)\frac{a}{2}} \; ; \; B_2 = \frac{i\eta - \lambda}{2i\eta} A_1 e^{-(\lambda + i\eta)\frac{a}{2}}$$

In modo analogo, dalle altre si ottengono due espressioni per B_3 :

$$B_{3} = \begin{cases} \left(e^{i\eta a} \frac{\lambda + i\eta}{2i\eta} - e^{-i\eta a} \frac{\lambda - i\eta}{2i\eta}\right) A_{1} \\ \left(-e^{i\eta a} \frac{\lambda + i\eta}{2\lambda} - e^{-i\eta a} \frac{\lambda - i\eta}{2\lambda}\right) A_{1} \end{cases} \Rightarrow e^{i\eta a} \frac{\lambda^{2} + 2i\lambda\eta - \eta^{2}}{2i\lambda\eta} = e^{-i\eta a} \frac{\lambda^{2} - 2i\lambda\eta - \eta^{2}}{2i\lambda\eta}$$

da cui

$$e^{2i\eta a} \frac{(\lambda + i\eta)^2}{(\lambda - ieta)^2} = 1 \implies \frac{\lambda - i\eta}{\lambda + i\eta} = \pm e^{i\eta a}$$
(3.3.5)

Si distinguono i casi negativo (caso a) e positivo (caso b).

• Caso a.

La condizione si riscrive come:

$$\frac{\lambda/\eta - i}{\lambda/\eta + i} = -e^{i\eta a} \implies \frac{\lambda}{\eta} (1 + e^{i\eta}) = i(1 - e^{i\eta a})$$

$$\Rightarrow \frac{\lambda}{\eta} = \tan\left(\frac{\eta a}{2}\right) \tag{3.3.6}$$

In questo caso, i coefficienti verificano

$$\frac{A_1}{B_3}=-e^{i\eta a}\frac{\lambda+i\eta}{\lambda-i\eta}=1\ ;\ \ \frac{A_2}{B_2}=e^{i\eta a}\frac{\lambda+i\eta}{2i\eta}=1$$

¹Si nota che −*E* > 0, quindi $\lambda \in \mathbb{R}$.

cioè le autofunzioni sono simmetriche rispetto allo zero, quindi sono pari: $\psi_a(x) = \psi_a(-x)$. In definitiva:

$$\psi_{a}(x) = \begin{cases} A_{1}e^{\lambda x} & , \ x < -a/2 \\ B_{2}(e^{i\eta x} + e^{-i\eta x}) = 2B_{2}\cos(\eta x) & , \ |x| < a/2 \\ A_{1}e^{-\lambda x} & , \ x > a/2 \end{cases}$$
(3.3.7)

• Caso b.

Analogamente, al caso precedente, si ottiene:

$$\frac{\lambda}{\eta} = -\frac{1}{\tan\left(\frac{\eta a}{2}\right)} \tag{3.3.8}$$

Questa volta si ha $\frac{A_1}{B_3} = -1$ e $\frac{A_2}{B_2} = -1$, quindi $\psi_b(x) = -\psi_b(-x)$. In definitiva:

$$\psi_b(x) = \begin{cases} A_1 e^{\lambda x} & , \ x < -a/2 \\ B_2(e^{i\eta x} - e^{-i\eta x}) = 2iB_2 \sin(\eta x) & , \ |x| < a/2 \\ -A_1 e^{-\lambda x} & , \ x > a/2 \end{cases}$$
(3.3.9)

3.3.1 Buca di potenziale con parità

Si risolve problema della sezione precedente usando l'operatore parità.

Svolgimento. Invece di verificare alla fine le proprietà di parità delle autofunzioni, si poteva osservare fin da subito che, dato $\hat{\mathcal{P}}$ operatore di parità rispetto allo zero, si ha $[\hat{\mathcal{P}}, V(\hat{x})] = 0$, il che è sufficiente per dire che:

$$[\hat{\mathcal{P}}, \hat{H}] = 0 \tag{3.3.10}$$

Questo implica che esiste una base comune di autovettori di \hat{P} , \hat{H} , quindi le autofunzioni cercate devono avere parità definita¹, quindi, rispetto a \hat{P} , avere autovalore +1 o -1 a seconda se sono pari o dispari rispettivamente.

Questo si traduce in $A_1 = B_3$ e $A_2 = B_2$ per parità positiva e $A_1 = -B_3$ e $A_2 = -B_2$ per parità negativa. In questo modo, si trovano subito le equazioni 3.3.7 e 3.3.9, dalle quali si ricavano le equazioni 3.3.6 e 3.3.8.

3.3.2 Spettro energetico

Si cercano i livelli energetici. Per autofunzioni pari, bisogna imporre contemporaneamente:

$$\lambda = \eta \tan\left(\eta \frac{a}{2}\right)$$

$$k_0 \equiv \sqrt{\frac{2mV_0}{\hbar^2}} = \sqrt{\lambda^2 + \eta^2} \Rightarrow \eta \tan\left(\eta \frac{a}{2}\right) = \sqrt{k_0^2 - \eta^2}$$
(3.3.11)

¹Con questo, si intende che devono essere o pari o dispari rispetto a 0.

Nel caso dispari, analogamente si ha:

$$\lambda = \frac{-\eta}{\tan\left(\eta\frac{a}{2}\right)}$$

$$k_0 = \sqrt{\lambda^2 + \eta^2} \Rightarrow \frac{-\eta}{\tan\left(\eta\frac{a}{2}\right)} = \sqrt{k_0^2 - \eta^2}$$
(3.3.12)

Queste non sono facilmente risolvibili analiticamente e si usa metodo grafico come mostrato di seguito: Si nota che a prescindere dai parametri del sistema, esisterà sempre

Figura 1: Rappresentazione grafica dell'intersezione delle condizioni. Soluzioni pari in linea continua, mentre soluzioni dispari in linea tratteggiata.

un'energia fondamentale relativa al primo stato pari. Detti P, D numeri delle soluzioni, rispettivamente, pari e dispari, si ha N = P + D numero complessivo di autofunzioni, dalla figura si nota che:

$$P = \left\lceil \frac{k_0 a}{2\pi} \right\rceil = 1 + \max_{n \in \mathbb{N}} \left\{ n : \frac{2\pi}{a} n \le k_0 \right\}$$

$$D = \left\lfloor \frac{1}{2} \left(\frac{k_0 a}{\pi} - 1 \right) \right\rfloor = \max_{n \in \mathbb{N}} \left\{ n : \frac{(2n+1)\pi}{a} \le k_0 \right\}$$

$$N = \left\lceil \frac{k_0 a}{\pi} \right\rceil = 1 + \max_{n \in \mathbb{N}} \left\{ n : \frac{\pi}{a} n \le k_0 \right\}$$

$$(3.3.13)$$

3.3.3 Buca di potenziale infinita

Si manda $V_0 \to \infty$, per cui $k_0 = \sqrt{2mV_0/\hbar^2} \to +\infty$. Per questo motivo, le soluzioni (sia pari che dispari) coincidono con gli asintoti:

$$\lambda'_{n} = \begin{cases} \frac{2n+1}{a}\pi & \text{, caso pari} \\ \frac{2n}{a}\pi & \text{, caso dispari} \end{cases}$$
 (3.3.14)

A queste, corrispondono i livelli energetici $E_n = \frac{\hbar^2 \lambda'^2}{2m} - V_0$, quindi si deve risolvere il problema di $V_0 \to \infty$ in questa espressione.

Per correggere espressione, si considera il problema speculare in cui:

$$V(x) = \begin{cases} +\infty &, |x| > a/2\\ 0 &, |x| \le a/2 \end{cases}$$

La soluzione è data da

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x), \ |x| \le \frac{a}{2} \Rightarrow \psi(x) = A\cos(kx) + B\sin(kx)$$
 (3.3.15)

e $k = \sqrt{2mE/\hbar^2}$; dall'imposizione che $\psi(x) = 0$, |x| > a/2, si deve imporre $\psi(\pm a/2) = 0$. Così facendo, si trovano due famiglie di soluzioni:

- soluzioni pari date da $cos(k_n x)$ con $k_n = 2n\pi/a$;
- soluzioni dispari date da $sin(k_n x)$ con $k_n = (2n + 1)\pi/a$.

Si unificano scrivendo $k_n = n\pi/a$, $n \in \mathbb{N}$. Allora $E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$. La normalizzazione impone che i coefficienti delle soluzioni siano $\sqrt{2/a}$.

3.4 Dinamica degli operatori

3.4.1 Dinamica di un sistema a due livelli

Si considera $\hat{H} = -\hat{\mu} \cdot \mathbf{B}$, dove $\mathbf{B} = (0, 0, B_0)$ e $\hat{\mu} = \gamma \hat{\mathbf{S}}$ e $\hat{\mathbf{S}} = \frac{\hbar}{2} \hat{\boldsymbol{\sigma}}$ e $\hat{\boldsymbol{\sigma}}$ vettore delle tre matrici di Pauli, quindi:

$$\hat{H} = -\gamma \frac{\hbar}{2} \hat{\sigma}_z B_0 \tag{3.4.1}$$

Vista la forma di $\hat{\sigma}_z$, \hat{H} ha autostati $|\uparrow\rangle$, $|\downarrow\rangle$, con autovalori, rispettivamente, $-\gamma \frac{\hbar}{2} B_0$ e $\gamma \frac{\hbar}{2} B_0$. Conseguentemente, se γ , $B_0 > 0$, lo stato fondamentale è $|\uparrow\rangle$ (in quanto autostato dell'Hamiltoniano con autovalore più basso).

Si considera generico stato $|\psi\rangle$ e si vuole scrivere evoluzione temporale a partire da $|\psi_0\rangle = a_1|\uparrow\rangle + a_2|\downarrow\rangle$, con $|a_1|^2 + |a_2|^2 = 1$, $a_1, a_2 \in \mathbb{C}$. L'evoluzione è data da:

$$|\psi(t)\rangle = a_{1}e^{-\frac{i}{\hbar}E_{\uparrow}t}|\uparrow\rangle + a_{2}e^{-\frac{i}{\hbar}E_{\downarrow}t}|\downarrow\rangle \rightarrow \left[a_{1}e^{-\frac{i}{\hbar}E_{\uparrow}t}|\uparrow\rangle + a_{2}e^{-\frac{i}{\hbar}E_{\downarrow}t}|\downarrow\rangle\right]e^{\frac{i}{2\hbar}(E_{\uparrow}+E_{\downarrow})t}$$

$$\Rightarrow |\psi(t)\rangle = a_{1}e^{i\omega_{0}t/2}|\uparrow\rangle + a_{2}e^{-i\omega_{0}t/2}|\downarrow\rangle, \ \omega_{0} = \frac{E_{\downarrow} - E_{\uparrow}}{\hbar}$$
(3.4.2)

dove freccia \rightarrow è per indicare la moltiplicazione per una fase.

Si calcolano valori medi delle componenti di $\hat{\mu}$. Si nota che:

$$\langle \hat{\mu}_x \rangle = \gamma \frac{\hbar}{2} \left(a_1^* a_2 e^{-i\omega_0 t} + a_2^* a_1 e^{i\omega_0 t} \right) = \gamma \hbar \Re \left\{ a_2 a_1^* e^{-i\omega_0 t} \right\}$$
 (3.4.3)

dove si è usato che $\hat{\mu}_x = \gamma \frac{\hbar}{2} \hat{\sigma}_x$ e come agisce $\hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ su $|\uparrow\rangle$ e $|\downarrow\rangle$ (eq. 3.2.4).

Prendendo, poi, $a_1 = a_2 = 1/\sqrt{2}$, si trova $\hat{\mu}_x$ e analogamente anche gli altri:

$$\langle \hat{\mu}_x \rangle = \gamma \frac{\hbar}{2} \cos(\omega_0 t), \ \langle \hat{\mu}_y \rangle = -\gamma \frac{\hbar}{2} \sin(\omega_0 t), \ \langle \hat{\mu}_z \rangle = 0$$
 (3.4.4)

Infine:

$$\frac{d}{dt}\langle \hat{\boldsymbol{\mu}} \rangle = -\frac{\omega_0 \hbar}{2} \gamma \begin{pmatrix} \sin \omega_0 t \\ \cos \omega_0 t \\ 0 \end{pmatrix} = \langle \hat{\boldsymbol{\mu}} \rangle \times \omega_0 \hat{z}$$
(3.4.5)

3.4.2 Dinamica di un sistema a due livelli tramite rappresentazione di Heisenberg

In questa: $\hat{H} \rightarrow \hat{H}(t)$. Dato operatore in rappresentazione di Shrödinger \hat{O}_S , in rappresentazione di Heisenberg diventa:

$$\langle \psi(t)|\hat{O}_S|\psi(t)\rangle = \left\langle \psi_0 \left| e^{\frac{i}{\hbar}\hat{H}t}\hat{O}_S e^{-\frac{i}{\hbar}\hat{H}t} \right| \psi_0 \right\rangle \equiv \langle \psi_0|\hat{O}_H|\psi_0\rangle \Rightarrow \hat{O}_H = e^{\frac{i}{\hbar}\hat{H}t}\hat{O}_S e^{-\frac{i}{\hbar}\hat{H}t}$$

Conseguentemente:

$$\frac{d}{dt}\hat{O}_h = \frac{i}{\hbar}\hat{H}e^{\frac{i}{\hbar}\hat{H}t}\hat{O}_S e^{-\frac{i}{\hbar}\hat{H}t} - \frac{i}{\hbar}\hat{H}e^{\frac{i}{\hbar}\hat{H}t}\hat{O}_S e^{-\frac{i}{\hbar}\hat{H}t} \equiv \frac{i}{\hbar}[\hat{H},\hat{O}_H]$$
(3.4.6)

Per gli operatori di seguito, si sottintende che sono in rappresentazione di Heisenberg. Per calcolare $\frac{d}{dt}\hat{\mu}_x$, bisogna calcolare $\frac{d}{dt}\hat{S}_x = \frac{i}{\hbar}[\hat{H},\hat{S}_x]$ per la formula sopra. Essendo $\hat{H} \propto \hat{S}_z$ e $[\hat{S}_z,\hat{S}_x] = i\hbar\hat{S}_y$, si ottiene facilmente il risultato.

Considerando $\mathbf{B} = (B_x, B_y, B_z)$, invece, si ottiene il risultato più generale per cui $[\hat{H},\hat{S}_x] = B_y[\hat{S}_y,\hat{S}_x] + B_z[\hat{S}_z,\hat{S}_x] = i\hbar(B_z\hat{S}_y - B_y\hat{S}_z)$. Questa si generalizza a:

$$\frac{d}{dt}\hat{\mathbf{S}} = \hat{\mathbf{S}} \times \gamma \mathbf{B} \tag{3.4.7}$$