GATE

Hinglish

General Aptitude Quantitative Aptitude

Calendars

DPP-10

1.	Find the day of the week of April 16th, 1976, if April 16th 1974 was Tuesday?		6.	If your birthday is on 28th May, 1991, then what day it was?		
	(a) Friday(c) Tuesday	(b) Monday (d) Saturday		(a) (c)	Tuesday Friday	(b) Wednesday (d) Sunday
2.	Find the day of the (a) Sunday (c) Friday	e week on 15th January, 1979? (b) Monday (d) Wednesday	7.	Wh (a) (c)	at day of the we Sunday Tuesday	eek is 1st March, 1990? (b) Thursday (d) Friday
3.	If 23rd May, 200 will be 23rd Dece			Wh (a) (c)	ich year will ha 2008 2010	ve the same calendar that of 2007 (b) 2013 (d) 2018
4.	(c) Tuesday	(d) Friday was a Friday. What day of the	9.	(a) (c) You	2002 2006	ve same calendar that of 2001? (b) 2005 (d) 2007 llege first time on 4th June, 2001
5.	On which day of (a) Monday	the week does 28 th May, 2003 fall? (b) Tuesday		(a)	Monday Wednesday	(b) Tuesday (d) Thursday

(c) Wednesday

(d) Thursday

Answer Key

1. (a)

2.

(b) (c) 3.

(a)

(c) 5.

6. (a)

7. (b)

8. (d)

9. (d)

10. (a)

Hints and Solutions

1. (a)

From 16th April 1974 to 16th April 1976 is completely one normal year and one leap year as February of 1975 and 1976 fall in.

Thus 1 + 2 = 3 odd days Tuesday + 3 = Friday

2. (b)

1900 →1 odd day

$$3 + 3 = 6$$
 odd days

$$1978 \rightarrow 1 + 6 = 7 \text{ or } 0 \text{ odd days}$$

$$January = 1 \text{ odd day } (15)$$

Total 0 + 1 = 1 (Monday)

3. (c)

After 23 May, left days in May = 8 = 1 odd day

June
$$-2$$
; July -3 ; August -3 ; September -2

October
$$-3$$
; November -2 ; December -2 (23)

Total = 4 odd days (18)

 \therefore Friday + 4 = Tuesday.

4. (a)

From 3rd January, 1992 to 3rd January, 1993 is complete one leap year as February of 1992 falls in.

Thus 2 odd days

Friday + 2 = Sunday

5. (c)

 $2000 \rightarrow 0$ odd days

2 years further = 2 odd days (N.Y)

$$2002 \rightarrow 0 + 2 = 2$$
 odd days

J-3; F-0; M-3; A-2: M-0=1 odd days

Total 2 + 1 = 3 odd days (Wednesday)

6. (a)

 $1900 \rightarrow 1$ odd day

2 + 5 = 7 or 0 odd days

$$1990 \rightarrow 1 + 0 = 1$$
 odd day

$$J-3$$
; $F-0$; $M-3$; $A-2$; $M-0=1$ odd day

Total 1 + 1 = 2 odd days (Tuesday)

7. (b)

 $1900 \rightarrow 1 \text{ odd day}$

2 + 4 = 6 odd days

$$1989 \rightarrow 1 + 6 = 7 \text{ or } 0 \text{ odd days}$$

$$J-3; F-0; M-1$$

Total 3 + 1 = 4 odd days (Thursday)

8. (d)

2007 (N. Y) = 1 odd day

$$2008 (L.Y) = 2 \text{ odd days}$$

$$2009 (N.Y) = 1 \text{ odd day}$$

$$2010 (N.Y) = 1 \text{ odd day}$$

$$2011 (N.Y) = 1 \text{ odd day}$$

$$2012 (L.Y) = 2 \text{ odd days}$$

$$2013 (N.Y) = 1 \text{ odd day}$$

$$2014 (N.Y) = 1 \text{ odd day}$$

$$2015 (N.Y) = 1 \text{ odd day}$$

$$2016 (L.Y) = 2 \text{ odd days}$$

$$2017 (N.Y) = 1 \text{ odd day}$$

Total 14 odd days means the calendar repeat in 2018.

9. (d)

2001 (N.Y) = 1 odd day

2002 (N.Y) = 1 odd day

2003 (N.Y) = 1 odd day

2004 (L.Y) = 2 odd days

2005 (N.Y) = 1 odd day

2006 (N.Y) = 1 odd day

Total 7 odd days means the calendar repeats in 2007.

10. (a)

 $2000 \rightarrow 0$ odd day

J-3; F-0; M-3; A-2; M-3; J-4

Total = 1 odd day (Monday)

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

