TP1 : Problème d'étiquettes

Objectifs du TP: • Mettre en œuvre une démarche expérimentale permettant de déterminer la valeur de quelques caractéristiques physiques d'une espèce chimique : masse volumique, solubilité dans l'eau, température de fusion.

• Savoir comparer une valeur expérimentale avec une valeur de référence.

Toute espèce chimique peut être identifiée par ses caractéristiques physiques : masse volumique, densité, températures de changement d'état... Pour chaque espèce chimique, il existe des valeurs de référence pour leurs caractéristiques physiques, auxquelles ont accès les chimistes.

Problématique : Dans la trousse de premiers secours du laboratoire se trouvent 5 flacons sans étiquette. Grâce à l'inventaire on sait que ces 5 flacons correspondent à : de l'eau distillée, de l'éthanol, de l'aspirine, une solution d'éosine et du sérum physiologique.

En utilisant les documents suivants et le matériel à disposition vous devrez identifier chacune de ces substances chimiques.

Document 1 : Caractéristiques physiques					
	Composition	Masse volumique ρ	Température de fusion	Température d'ébullition	Couleur
Eau distillée	H ₂ O	1,0 g.mL ⁻¹	0°C	100°C	Incolore
Ethanol	C ₂ H ₆ O	0,79 g.mL ⁻¹	-117°C	78,4°C	Incolore
Aspirine	C ₉ H ₈ O ₄	1,4 g.mL ⁻¹	135°C	140°C	Incolore
Solution	Non	≈1,0 g.mL ⁻¹	Non	Non	Rouge
d'Eosine	communiquée		communiquée	communiquée	
Sérum	H ₂ O avec Na ⁺ + Cl ⁻	≈1,0 g.mL ⁻¹	Non	Non	Incolore
physiologique	(eau salée)		communiquée	communiquée	

Un changement d'état pour un corps pur se fait à température constante pour une pression donnée ce qui n'est pas le cas pour un mélange.

Document 3: La masse volumique

La masse volumique d'un corps est égale à la masse d'un échantillon de ce corps divisé par son volume :

$$\rho = \frac{m}{V}$$

avec ρ en kg.m⁻³, m en kg et V en m³ ou ρ en g.L⁻¹, m en g et V en L.

Document 4 : La verrerie au laboratoire Fiole jaugée Eprouvette graduée Nom de la verrerie Bécher Erlenmeyer **Photos** SCHOTT **100** +/- 0,10 mL Précision +/- 2 mL Très imprécis (n'est Très imprécis (n'est (incertitude absolue) pas fait pour pas fait pour

Document 6 : Matériel à disposition

mesurer un volume)

- Verrerie du document 4

mesurer un volume)

- Balance au 1/100e de gramme

Questions:

- 1) Compléter le diagramme du document 2
- 2) Quel est l'état physique de l'aspirine à température ambiante ? Justifier
- 3) Ecrire le protocole de l'expérience qui a permis d'obtenir la courbe du document 5. Quel est le changement d'état étudié ?
- 4) Répondre à la problématique en détaillant soigneusement la démarche.
- 5) <u>Si le temps le permet</u> : vérifier le contenu du flacon 1 en mettant en œuvre le protocole de la question 3.