Decoding context

In the file DecodingDataRead.m, we first took the binarized calcium activity and took the sum of events in 3 s bins (60 frames). We then restricted analysis to:

- (1) times when the mouse was running, and
- (2) when the mouse was in context "1" or "2," representing two different cue configurations in the maze.

Finally, only activity from place cells were used. The resulting pre-processed data was saved for each mouse in a subfolder under the name binned_activity_decode.mat.

```
rootdir = "";
folders = ["M119"+filesep "M120"+filesep "M292"+filesep "M319"+filesep ...
    "M231"+filesep "M314"+filesep "M316"+filesep "M318"+filesep "M210"+filesep];
cohort = ["D1","D1","D1","G1","G1","G1","G1","D1"];
sessions = ["early", "trained", "grouping"];
```

Estimate SVM performance for each animal & each condition.

We saved each run as a separate .mat file manually for comparision later. The resulting validation_accuracy scores were put into excel tables for glme analysis and ease of comparision.

For panel D, the ablate percent and ablation strategy were varied.

```
ablate_percent=0.50;
ablation = 'descend';
test accuracy = nan(length(folders),3);
validation_accuracy = nan(length(folders),3);
s_max = length(sessions);
weights = cell(length(folders),3);
corrs = cell(length(folders),3);
parfor f = 1:length(folders)
    for s = 1:s_max
       try
            A=load(folders(f)+"binned_activity_decode_"+sessions(s)+".mat");
            ds = 10; % how many samples to downsample
            N cells = size(A.a use,2);
            N cells use = round(ablate percent*N cells);
            idx cells use = [];
            if strcmp(ablation, 'random')
                % shuffle the cells
                subset_cells = randperm(N_cells);
                idx_cells_use = subset_cells(1:N_cells_use);
                corrs{f,s} = A.corr_coef(idx_cells_use);
```

```
elseif strcmp(ablation, 'ascend')
                % sort the cells by increasing corr coef (most remap are
                % first)
                [corr_temp,idx_cells_use] =
topkrows(A.corr_coef, N_cells_use, 'ascend');
                corrs{f,s} = corr_temp;
            elseif strcmp(ablation, 'descend')
                [corr_temp,idx_cells_use] =
topkrows(A.corr_coef,N_cells_use,'descend');
                corrs{f,s} = corr_temp;
            elseif strcmp(ablation, 'None')
                idx cells use = 1:N cells use;
                corrs{f,s} = A.corr_coef(idx_cells_use);
            end
            a_use_sub = A.a_use(1:ds:end,idx_cells_use);
            context_use_sub = A.context_use(1:ds:end);
            % % reshuffle context
            % shuffle context ind = randperm(size(context use sub,1));
            % context_use_sub = context_use_sub(shuffle_context_ind);
            hpartition =
cvpartition(context_use_sub, 'Holdout', 0.25, 'Stratify', true);
            X_train = a_use_sub(training(hpartition),:);
            Y_trian = context_use_sub(training(hpartition));
            classificationSVM = fitcsvm(...
                X_train, ...
                Y trian, ...
                'KernelFunction', 'rbf', ...
                'PolynomialOrder', [], ...
                'KernelScale', 'auto', ...
                'BoxConstraint', 1, ... % usuaally 1
                'Standardize', true);
                %'ScoreTransform','sign');
            % k-fold partitioning validation
            partitionedModel = crossval(classificationSVM, 'KFold', 20);
            [validationPredictions, validationScores] =
kfoldPredict(partitionedModel);
            validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun',
'ClassifError');
            validation_accuracy(f,s) = validationAccuracy;
            % test set on hold out
            X_test = a_use_sub(test(hpartition),:);
```

```
Y test = context use sub(test(hpartition));
             [testPredictions,testScores] = predict(classificationSVM,X test);
             testAccuracy = 1 - loss(classificationSVM, X_test, Y_test);
             rocObj test = rocmetrics(Y test, testScores,[1,2]);
             test_accuracy(f,s) = testAccuracy;
             % comparing SVM weights to remapping metric
             weights{f,s} = classificationSVM.Beta;
             display("Completed "+ folders(f)+"binned_activity_decode_"+sessions(s)
+".mat")
        catch e
             display("Skipping "+ folders(f)+"binned_activity_decode_"+sessions(s)
+".mat")
        end
    end
end
   "Completed M292\binned_activity_decode_early.mat"
   "Completed M120\binned_activity_decode_early.mat"
   "Completed M319\binned_activity_decode_early.mat"
   "Completed M316\binned_activity_decode_early.mat"
   "Completed M119\binned_activity_decode_early.mat"
   "Completed M231\binned_activity_decode_early.mat"
   "Completed M292\binned_activity_decode_trained.mat"
   "Completed M292\binned activity decode grouping.mat"
   "Completed M316\binned activity decode trained.mat"
   "Completed M119\binned_activity_decode_trained.mat"
   "Completed M319\binned_activity_decode_trained.mat"
   "Completed M120\binned_activity_decode_trained.mat"
   "Completed M314\binned activity decode early.mat"
   "Completed M316\binned activity decode grouping.mat"
   "Completed M318\binned_activity_decode_early.mat"
   "Completed M119\binned_activity_decode_grouping.mat"
   "Skipping M210\binned_activity_decode_early.mat"
   "Completed M231\binned_activity_decode_trained.mat"
```

```
"Completed M120\binned_activity_decode_grouping.mat"
```

Stats for Panel B

```
clear;
datat = readtable("decoder_results_deltas_repeat.xlsx");
WithinSubjectData =
table(categorical({'All','PC','NonPC','All','PC','NonPC'})',categorical({'D','D','G','G','G','G'})',VariableNames=["CellSets","Tasks"]);

rm = fitrm(datat,'Score1-Score6 ~ 1','WithinDesign',WithinSubjectData);
ranova(rm,'WithinModel','CellSets+Tasks')
```

ans = 6×8 table

. . .

	SumSq	DF	MeanSq	F	pValue	pValueGG
1 (Intercept)	35.2169	1	35.2169	2.2641e+03	4.7363e-10	4.7363e-10
2 Error	0.1089	7	0.0156	1	0.5000	0.5000
3 (Intercept):CellSets	0.0907	2	0.0453	11.0551	0.0013	0.0084
4 Error(CellSets)	0.0574	14	0.0041	1	0.5000	0.5000
5 (Intercept):Tasks	0.0060	1	0.0060	8.9293	0.0203	0.0203
6 Error(Tasks)	0.0047	7	6.7139e-04	1	0.5000	0.5000

rm.multcompare('Tasks','by','CellSets')

ans = 6×8 table

. . .

	CellSets	Tasks_1	Tasks_2	Difference	StdErr	pValue	Lower
1	All	D	G	0.0165	0.0064	0.0361	0.0014
2	All	G	D	-0.0165	0.0064	0.0361	-0.0316
3	NonPC	D	G	0.0162	0.0107	0.1729	-0.0090
4	NonPC	G	D	-0.0162	0.0107	0.1729	-0.0414

[&]quot;Completed M319\binned activity decode grouping.mat"

[&]quot;Completed M231\binned_activity_decode_grouping.mat"

[&]quot;Completed M210\binned_activity_decode_trained.mat"

[&]quot;Skipping M210\binned_activity_decode_grouping.mat"

[&]quot;Completed M314\binned_activity_decode_trained.mat"

[&]quot;Completed M318\binned_activity_decode_trained.mat"

[&]quot;Completed M318\binned_activity_decode_grouping.mat"

[&]quot;Completed M314\binned_activity_decode_grouping.mat"

	CellSets	Tasks_1	Tasks_2	Difference	StdErr	pValue	Lower
5	PC	D	G	0.0343	0.0106	0.0143	0.0092
6	PC	G	D	-0.0343	0.0106	0.0143	-0.0594

```
rm.multcompare('CellSets','by','Tasks')
```

ans = 12×8 table

	Tasks	CellSets_1	CellSets_2	Difference	StdErr	pValue	Lower
1	D	All	NonPC	0.1045	0.0223	0.0055	0.0389
2	D	All	PC	0.0251	0.0088	0.0564	-7.8038e-04
3	D	NonPC	All	-0.1045	0.0223	0.0055	-0.1701
4	D	NonPC	PC	-0.0794	0.0278	0.0561	-0.1612
5	D	PC	All	-0.0251	0.0088	0.0564	-0.0510
6	D	PC	NonPC	0.0794	0.0278	0.0561	-0.0023
7	G	All	NonPC	0.1042	0.0243	0.0089	0.0326
8	G	All	PC	0.0429	0.0150	0.0565	-0.0013
9	G	NonPC	All	-0.1042	0.0243	0.0089	-0.1758
10	G	NonPC	PC	-0.0613	0.0326	0.2141	-0.1573
11	G	PC	All	-0.0429	0.0150	0.0565	-0.0871
12	G	PC	NonPC	0.0613	0.0326	0.2141	-0.0347

Stats for Panel D, inset

The reported beta values are the interaction terms between the percentage "slope" and each task type.

```
clear;
datat = readtable("decoder_results_deltas_repeat_ablate.xlsx");
percents = [zeros(9,1); repmat(25,9,1); repmat(50,9,1)]/100;
cohorts = repmat(datat.Cohort,3,1);
animals = repmat(datat.Animal,3,1);
DU_scores = [datat.Score1;datat.Score5;datat.Score9];
DS_scores = [datat.Score3;datat.Score7;datat.Score11];
GU scores = [datat.Score2;datat.Score6;datat.Score10];
GS_scores = [datat.Score4;datat.Score8;datat.Score12];
grand tasks =
reordercats(categorical([repmat("DU", 27,1); repmat("DS", 27,1); repmat("GU", 27,1); repma
t("GS",27,1)]),["DU","DS","GU","GS"]);
grand_scores = [DU_scores;DS_scores;GU_scores;GS_scores];
grand_percents = repmat(percents,4,1);
grand_animals = repmat(animals,4,1);
grand cohorts = repmat(cohorts,4,1);
```

```
grand table =
table(grand_animals,grand_cohorts,grand_percents,grand_tasks,grand_scores);
grand_glme = fitglme(grand_table, 'grand_scores ~ 1 + grand_percents*grand_tasks +
(1 grand_animals)')
grand_glme =
Generalized linear mixed-effects model fit by PL
Model information:
   Number of observations
                                      102
    Fixed effects coefficients
                                        8
    Random effects coefficients
                                        9
   Covariance parameters
                                        2
   Distribution
                                   Normal
   Link
                                   Identity
   FitMethod
                                   MPL
Formula:
    grand_scores ~ 1 + grand_percents*grand_tasks + (1 | grand_animals)
Model fit statistics:
   AIC
             BIC
                        LogLikelihood
                                         Deviance
    -417.7
             -391.45
                        218.85
                                         -437.7
Fixed effects coefficients (95% CIs):
                                            Estimate
                                                                     tStat
                                                                                 DF
                                                                                       pValue
                                                                                                     Lower
                                                         SE
    {'(Intercept)'
                                                         0.024998
                                                                       35.789
                                                                                       1.4748e-56
                                              0.89465
                                                                                 94
                                                                                                       0.84501
    {'grand_percents'
                                                         0.021694
                                                                      -5.1524
                                                                                       1.4149e-06
                                   }
                                             -0.11178
                                                                                 94
                                                                                                      -0.15485
    {'grand_tasks_DS'
                                            0.0013544
                                                         0.009902
                                                                      0.13678
                                                                                 94
                                                                                          0.89149
                                                                                                     -0.018306
    {'grand_tasks_GU'
                                            -0.026374
                                                         0.010266
                                                                      -2.5692
                                                                                 94
                                                                                         0.011767
                                                                                                     -0.046757
    {'grand_tasks_GS'
                                            -0.028085
                                                         0.010266
                                                                      -2.7358
                                                                                 94
                                                                                        0.0074402
                                                                                                     -0.048467
    {'grand_percents:grand_tasks_DS'}
                                            -0.012929
                                                          0.03068
                                                                     -0.42141
                                                                                 94
                                                                                          0.67442
                                                                                                     -0.073846
    {'grand_percents:grand_tasks_GU'}
                                            -0.017113
                                                         0.031625
                                                                     -0.54112
                                                                                 94
                                                                                          0.58971
                                                                                                     -0.079904
    {'grand_percents:grand_tasks_GS'}
                                             -0.08602
                                                         0.031625
                                                                      -2.7201
                                                                                 94
                                                                                        0.0077758
                                                                                                      -0.14881
Random effects covariance parameters:
Group: grand_animals (9 Levels)
   Name1
                                                 Type
                                                                Estimate
    {'(Intercept)'}
                          {'(Intercept)'}
                                                                0.071993
                                                 {'std'}
Group: Error
```

Name Estimate {'sqrt(Dispersion)'} 0.02301