FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. It is usually easier to code in "high-level" languages than in "low-level" ones. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. It is very difficult to determine what are the most popular modern programming languages. Normally the first step in debugging is to attempt to reproduce the problem. Code-breaking algorithms have also existed for centuries. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Also, specific user environment and usage history can make it difficult to reproduce the problem. Integrated development environments (IDEs) aim to integrate all such help. Many applications use a mix of several languages in their construction and use. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA.