Modelos Estocásticos (INDG-1008): Lección 03

Semestre: 2017-2018 Término II Instructor: Luis I. Reyes Castro

Problema 3.1. Considere la siguiente variante del modelo M/M/1, donde $q \in (0,1)$ y la tasa de arribo decae geométricamente con el número de clientes en cola.

Complete las siguientes actividades:

- a) 3 Puntos: Calcule la distribución estacionaria del sistema, en los casos cuando existe, como función de λ , μ y k.
- b) 2 Puntos: Calcule las métricas de desempeño L y L_q .
- c) 2 Puntos: Calcule la tasa de arribo promedio $\bar{\lambda}$ junto con las métricas W y W_q .

Problema 3.2. En un restaurante all-you-can-eat (i.e., "todo lo que puedas comer") los clientes arriban de acuerdo a un proceso Poisson con tasa λ por hora. El restaurante ofrece un variado buffet, y los clientes se sirven a si mismos; en particular, la distribución del tiempo de auto-servicio es exponencial con parámatro μ por hora. El restaurante tiene capacidad para hasta C clientes.

Modelando este sistema como una cola $M/M/\infty/C$, *i.e.*, como una cola M/M/K/C con infinitos servidores, complete las siguientes actividades:

- a) 2 Puntos: Calcule la distribución estacionaria del sistema, en los casos cuando existe, como función de λ , μ y k.
- b) 3 Puntos: Calcule las métricas de desempeño L y L_q , W y W_q .