

Assignment – Telemarketing to sell long term deposits

Contents

SECTION 1: Data Summary	2
SECTION 2: Data Visualization	3
SECTION 3: Logistics Regression	4
SECTION 4: Model for Decision Tree classification	6
SECTION 5: Model for Bayesian classification	6
SECTION 6: Comparison of the 2 Model	7
SECTION 7: Complete R File (code)	7

Data Mining - Assignment

SECTION 1: Data Summary

> summary(bdata)	#To know the data						
age	job	marital		education	default	housing	loan
Min. :17.00	admin. :10422		university.deg	ree :12168	no :32588	no :18622	no :33950
1st Qu.:32.00	blue-collar: 9254		high.school		unknown: 8597	unknown: 990	unknown: 990
Median :38.00	technician : 6743		basic.9y	: 6045	yes : 3	yes :21576	yes : 6248
Mean :40.02	services : 3969		professional.c				
3rd Qu.:47.00	management : 2924		basic.4y	: 4176			
Max. :98.00	retired : 1720		basic.6y	: 2292			
	(Other) : 6156		(Other)	: 1749			
contact	month	day_of_week dur		ampaign	pdays	previous	poutcome
cellular :26144				: 1.000	Min. : 0.0	Min. :0.000	failure : 4252
telephone:15044				Qu.: 1.000	1st Qu.:999.0	1st Qu.:0.000	nonexistent:35563
	aug : 6178			an : 2.000	Median :999.0	Median :0.000	success : 1373
	jun : 5318			: 2.568	Mean :962.5	Mean :0.173	
	nov : 4101			Qu.: 3.000	3rd Qu.:999.0	3rd Qu.:0.000	
	apr : 2632 (Other): 2016	Max.	:4918.0 Max.	:56.000	Max. :999.0	Max. :7.000	
emp.var.rate		cons.conf.idx	euribor3m	nr.employed	l y		
Min. :-3.4000				Min. :4964			
1st Qu.:-1.8000				1st Qu.:5099			
Median : 1.1000				Median :5191			
Mean : 0.0818				Mean :5167			
3rd Qu.: 1.4000				3rd Qu. : 5228			
Max. : 1.4000				Max. :5228			

SECTION 2: Data Visualization

plot(bdata\$y,bdata\$age, ylab="Age") plot(bdata\$y,bdata\$job, ylab="Job")

plot(bdata\$y,bdata\$loan, ylab="loan")

plot(bdata\$y,bdata\$education,ylab="Education")

qqplot(bdata\$y,bdata\$job)

qqplot(bdata\$y,bdata\$age)

SECTION 3: Logistics Regression

Check for Multi-collinearity

Step 1:

```
model_LR<-glm(y~., data = bdata_trng_final, family = "binomial")
vif(model_LR) # throws error "there are aliased coefficients in t
he model"
Error in vif.default(model_LR) :
    there are aliased coefficients in the model</pre>
```

Step 2:

Find the problematic variable. Below line gives the name of the attribute with aliased coefficients

```
> ld_vars <- attributes(alias(model_LR)$Complete)$dimnames[[1]]
> ld_vars
[1] "loanunknown"
```

Step 3:

Remove the predictor variable "loan" and build the model again.

```
> model_LR<-glm(y~.-loan, data = bdata_trng_final, family = "bino
mial")
> vif(model_LR)
```

	GVIF	Df	$GVIF^{(1/(2*Df))}$
age	2.097427	1	1.448250
job	6.009406	11	1.084929
marital	1.488378	3	1.068527
education	3.496928	7	1.093540
default	1.161552	2	1.038149
housing	1.026318	2	1.006515
contact	2.523594	1	1.588582
month	74.878885	9	1.270958
day_of_week	1.077809	4	1.009410
duration	1.411048	1	1.187875
campaign	1.064896	1	1.031938
pdays	9.123700	1	3.020546
previous	5.460787	1	2.336833
poutcome	26.479101	2	2.268432
emp.var.rate	135.674988	1	11.647961
cons.price.idx	54.897808	1	7.409306
cons.conf.idx	5.234861	1	2.287982
euribor3m	142.832425	1	11.951252
nr.employed	145.223657	1	12.050878

Step 4:

VIF result shows presence of multicollinearity. Remove variables that has vif > 5 (Yellow lines above) and build the model again.

```
> model_LR<-qlm(y~age+marital+education+default+housing+contact+d</pre>
ay_of_week+duration+campaign, data = bdata_trng_final, family = "
binomial")
> vif(model_LR)
                GVIF Df GVIF^(1/(2*Df))
                                1.209789
            1.463590
age
                      1
marital
            1.339616
                       3
                                1.049937
education
            1.243936
                       7
                                1.015714
default
            1.112016
                       2
                                1.026899
housing
            1.010428
                       2
                                1.002597
contact
            1.062167
                       1
                                1.030615
day_of_week 1.016600
                                1.002060
duration
            1.134090
                      1
                                1.064937
                                1.009166
campaign
            1.018416
                      1
```

Step 5:

VIF result shows multicollinearity have been rectified. Above model looks fine.

Accuracy of the model:

Finding accuracy of the above Logistic Regression Model using R and AUC (Area Under the Curve)

R code snippet:

- > pred_y<-predict(model_LR,bdata_tst, type="response")</pre>
- > pred<-prediction(pred_y,bdata_tst\$y)</pre>
- > rocc<-performance(pred, "tpr", "fpr")</pre>
- > plot(rocc)
- > aucrp<-performance(pred,"auc")</pre>
- > aucrp

ROC Curve

AUC: 0.8636697 ~ 86.366%

SECTION 4: Model for Decision Tree classification

ROC Curve

AUC: 0.911614 ~ 91.16%

ROC Curve:

SECTION 5: Model for Bayesian classification

AUC: 0.8697756 ~ 86.97%

SECTION 6: Comparison of the 2 Model

Comparing the AUC values for Decision Tree and Bayesian's Classification, Decision Tree accuracy is higher.

	Decision Tree	Bayesian Classification	
	rree	Classification	
AUC %	<mark>91.16</mark>	86.97	

SECTION 7: Complete R File (code)

SECTION 8: Data File

