Project Overview

Project Title:

Comparative Analysis of Deep Learning Models and Traditional Time Series Models for Predicting NIFTY 50 Stock Prices

Summary of the Project Topic and Background:

This project compares deep learning models like Long Short-Term Memory (LSTM) with traditional time series models such as ARIMA and ARIMAX to predict NIFTY 50 stock prices. The NIFTY 50 index, which includes the top 50 companies listed on the National Stock Exchange of India (NSE), is a key benchmark for tracking the Indian stock market and economy.

Traditional models like ARIMA and ARIMAX identify linear trends and seasonal patterns but often struggle with the complex, non-linear nature of financial markets. In contrast, deep learning models like LSTM and GRU recognize long-term patterns and better capture stock price complexities.

Recent research supports this. Yavasani and Wang (2023) showed that LSTM and GRU outperformed ARIMA in predicting stock prices across sectors. Yasin Kırelli (2024) found LSTM provided more accurate predictions for technology stocks. A study in the Journal of Open Innovation (2024) highlighted that GRU models outperformed both LSTM and traditional models, especially for stable indices like NIFTY 50.

This project will explore whether deep learning models truly provide better predictions for NIFTY 50 stock prices compared to traditional models and their implications for investors and analysts seeking reliable forecasting tools.

Research Question:

Can deep learning models (LSTMs) outperform traditional time series models (ARIMA, ARIMAX) in predicting NIFTY 50 stock prices?

Project Goals:

1. Data Collection and Processing:

- Acquire and clean NIFTY 50 data by handling missing values, duplicates, and outliers.
- Apply feature engineering with moving averages, Relative Strength Index (RSI), and volatility indicators
- Perform EDA to identify trends, patterns, and correlations.

2. Development of Predictive Models:

- Implement ARIMA, ARIMAX, LSTM models for stock price prediction.
- Optimize model performance.

3. Model Evaluation:

• Evaluate models using MSE, RMSE, and MAE to identify the best-performing model.

4. Data Visualization and Interpretation:

- Visualize results, including actual vs. predicted prices, residuals, and feature importance.
- Analyse the findings to determine the variables affecting changes in stock prices.

5. Summary and Strategic Insights:

- Consolidate findings, highlighting the model with the best accuracy and interpretability.
- Interpret results to identify factors influencing stock price fluctuations.

Project Plan: Task List and Timeline

Task	Description	Start Date	End Date	Duration
Choosing the	Define the research question and select a	28 th Jan	1 st Feb	5 days
Topic and Dataset	relevant stock dataset.	2025	2025	
Understanding the	Research stock prediction methods,	1st Feb	7 th Feb	1 week
Topic	including ARIMA, ARIMAX, and LSTM to	2025	2025	
_	choose the best approach.			
Preparing the	Create a project plan (PDM report) with	8 th Feb	10 th Feb	3 days
PDM Report and	objectives, methods, and outcomes, and	2025	2025	
Presentation	prepare a summary presentation.			
PDM Plan	Present the PDM plan.	13 th Feb	13 th Feb	1 day
Presentation		2025	2025	
Data Cleaning and	Exploratory Data Analysis.	14 th Feb	27 th Feb	2 weeks
Preprocessing		2025	2025	
Literature Review	Review academic papers.	14 th Feb	28 th Feb	2 weeks
		2025	2025	
Developing	Implement ARIMA and ARIMAX models.	1st Mar	10 th Mar	10 days
Traditional		2025	2025	
Models			_	
Building Deep	Train LSTM model.	11 th Mar	20 th Mar	10 days
Learning Models		2025	2025	
Data Ethics Quiz	Complete mandatory Data Ethics Quiz.	20 th Mar	20 th Mar	1 day
		2025	2025	
Hyperparameter	Optimize model performance using Cross-	21 st Mar	30 th Mar	10 days
Tuning	Validation.	2025	2025	
Model Evaluation	Evaluate and compare models using RMSE,	31st Mar	6 th Apr	1 week
and Comparison	MAE, and MAPE to identify the best	2025	2025	
	performer.	-th .	a o th	
Visualization and	Make graphs to show results and discuss	7 th Apr	13 th Apr	1 week
Interpretation of	important insights from the predictions.	2025	2025	
Results	Campile results into a final resent and	1.4th A	20th A	21
Final Report and Presentation	Compile results into a final report and	14 th Apr 2025	28 th Apr 2025	2 weeks
	prepare for the presentation.	2023	2023	
Preparation	Submit report by April 29.	29 th Apr	29 th Apr	1 day
Report Submission	Submit report by April 29.	29 th Apr 2025	29 th Apr 2025	1 day
Viva Examination	Present and defend project.	13 th May	13 th May	1 day
		2025	2025	

Data Management Plan Overview of the Dataset:

The dataset includes daily NIFTY 50 stock prices (2000-2021) with Open, High, Low, Close, and Volume, sourced from Kaggle (Rohan Rao).

Data Collection:

Source: <u>Kaggle Dataset - Nifty50 Stock Price Prediction</u>

Metadata:

- Format: CSV files
- Records: Approx. 5,000+ daily records for NIFTY 50 stocks

Document Control:

Code Storage & Version Control:

- **GitHub:** Code will be saved on GitHub with regular, labeled commits.
- **GitHub Repository:** https://github.com/RameshKelavath/StockPricePrediction

Data Storage:

• Local Storage: Data will be stored locally in folders like data/, code/, and outputs/.

Data & Code Backup:

• Backup Methods: Code on GitHub, data on OneDrive.

ReadMe File:

- **Project Overview:** A brief explanation of the project's goals.
- Configuration Guidelines: How to install dependencies, run the code, and set up the project.
- Dataset Details: Historic NIFTY 50 data, sourced via Kaggle.
- Guidelines for Usage: How to train models and forecast stock prices using the code.
- License: Project-related licensing data.

Ethical Requirements:

- **GDPR Compliance:** Data is public, contains no personal information, and isn't subject to GDPR.
- **UH Ethical Policies:** As the study uses publicly available data and doesn't contain sensitive or personal information, it complies with UH ethical principles.
- Permission to Use Data: The dataset is publicly accessible on Kaggle, which allows for educational use.
- Accessing Ethical Data: The data was originally collected by reputable financial institutions (NSE), ensuring ethical practices.

Reference:

- 1. Sisodia, P.S., Ameta, G.K., Gupta, A. & Kumar, Y., 2022. *Stock Market Analysis and Prediction for Nifty50 using LSTM Deep Learning Approach*. In: 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). IEEE.
- 2. Adebiyi, A.A., Adewumi, A.O. & Ayo, C.K., 2014. *Stock Price Prediction Using the ARIMA Model*. In: 16th International Conference on Computer Modelling and Simulation (UKSim-AMSS). IEEE.
- 3. Soni, P., Tewari, Y. & Krishnan, D., 2022. *Machine Learning Approaches in Stock Price Prediction: A Systematic Review. Journal of Physics: Conference Series*, 2161(1), p.012065.

Ramesh Kelavath Student Id: 23029839