Name: Zhen Yao

Advanced Calculus 2 Instructor Piotr Hajłasz Final Exam

Due on May 1, 2020

Problem	Possible points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	

You need 100 points so 2 problems is a bonus.

Problem 1. Suppose $f: \mathbb{R}^2_+ \to \mathbb{R}$ is a continuous function defined on

$$\mathbb{R}^2_+ = \{(x, y) : x \in \mathbb{R}, \ y > 0\}.$$

Assume also that the limits

$$g(u,v) = \lim_{t \to 0} \frac{f((u+t)\cos v, (u+t)\sin v) - f(u\cos v, u\sin v)}{t},$$

and

$$h(u,v) = \lim_{t \to 0} \frac{f(u\cos(v+t)), u\sin(v+t)) - f(u\cos v, u\sin v)}{t},$$

exist and define continuous functions g, h on the domain

$$D = \{(u, v) : u > 0, \ 0 < v < \pi\}.$$

Prove that the function f is differentiable on \mathbb{R}^2_+ .

Proof. Let $\Phi: D \to \mathbb{R}^2_+$ defined as $\Phi(u,v) = (u\cos v, u\sin v)$ is diffeomorphism, since $D\Phi(u,v) = \begin{bmatrix} \cos v & -u\sin v \\ \sin v & u\cos v \end{bmatrix} = u > 0$. Also,

$$g(u,v) = \frac{\partial (f \circ \Phi)}{\partial u}, \quad h(u,v) = \frac{\partial (f \circ \Phi)}{\partial v}$$

and partial derivatives of $f \circ \Phi$ are continuous, and then $f \circ \Phi \in C^1$. Thus, $f = (f \circ \Phi) \circ \Phi^{-1} \in C^1$.

Problem 2. Let $f \in C^1(\mathbb{R})$ be a continuously differentiable function such that $|f'(x)| \le 1/2$ for all $x \in \mathbb{R}$. Define $g : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$g(x,y) = (x + f(y), y + f(x)).$$

Prove that

- (1) g is a diffeomorphism,
- (2) $q(\mathbb{R}^2) = \mathbb{R}^2$,
- (3) the area $|g([0,1]^2)|$ of the image of the unit square belongs to the interval [3/4,5/4].

Hint: Among other tools use the contraction principle. *Proof.*

(a) For part (a) and (b), it suffices to show that det Dg > 0 on \mathbb{R}^2 and for every (x_0, y_0) , there is a unique (x, y) such that $g(x, y) = (x_0, y_0)$. We have

$$\det Dg(x,y) = \begin{vmatrix} 1 & f'(y) \\ f'(x) & 1 \end{vmatrix} = 1 - f'(x)f'(y) \ge \frac{3}{4} > 0.$$

To prove the existence of a unique solution to $g(x,y) = (x_0, y_0)$, use the contraction principle. Let

$$T(x,y) = -g(x,y) + (x,y) + (x_0, y_0)$$

= $(x_0 - f(y), y_0 - f(x)).$

Then,

$$T(x,y) - T(x',y') = (x_0 - f(y), y_0 - f(x)) - (x_0 - f(y'), y_0 - f(x'))$$

= $(f(y') - f(y), f(x') - f(x))$
= $(f'(\xi)(y' - y), f'(\zeta)(x' - x)),$

and then

$$|T(x,y) - T(x',y')| = \sqrt{|f(y') - f(y)|^2 + |f(x') - f(x)|^2}$$

$$\leq \frac{1}{2}\sqrt{|y' - y|^2 + |x' - x|^2}.$$

Thus, T is a contraction. Hence there is a unique fixed point (x, y) of T such that $(x_0 - f(y), y_0 - f(x)) = (x, y)$, and it follows that

$$g(x,y) = (x + f(y), y + f(x)) = (x_0, y_0).$$

Thus, g is a diffeomorphism.

(c) Since det $Dg = 1 - f'(x)f'(y) \in \left[\frac{3}{4}, \frac{5}{4}\right]$, then

$$\left|g([0,1]^2)\right| = \int_{[0,1]^2} |\!\det Dg| \! \in \left[\frac{3}{4},\frac{5}{4}\right].$$

Problem 3. Prove that the tangent planes to the surface S defined by $x^2 + y^2 - z^2 = 1$ at the points $(x, y, 0) \in S$ are parallel to the z-axis.

Proof. The gradient vector of S at point (x, y, 0) is $(2x, 2y, -2z)|_{z=0} = (2x, 2y, 0)$. And this vector is certainly orthogonal to the tangent planes to S at (x, y, 0), and also it is orthogonal to z-axis. Thus, these tangent planes are parallel to the z-axis.

Problem 4. Prove that if $f:[0,1] \to [0,1]$ is a continuous function then its graph as a subset of \mathbb{R}^2 has measure zero.

Proof. Since f is continuous on a compact set, then f is uniformly continuous, i.e., for any $\varepsilon > 0$, there exists $\delta > 0$, such that if $|x - y| < \delta$, then $|f(x) - f(y)| \le \varepsilon/2$. Now let $\delta = 1/n$ for some n such that above condition holds. Denote the set $\left[f\left(\frac{k}{n}\right), f\left(\frac{k+1}{n}\right)\right] \times \left[f\left(\frac{k}{n}\right) - \frac{\varepsilon}{2}, f\left(\frac{k}{n}\right) + \frac{\varepsilon}{2}\right]$ by $P_k, k = 0, 1, \dots, n-1$ then the volume $|P_k| = \frac{\varepsilon}{n}$. Then, the graph G_f of f satisfies $G_f \subset \bigcup_{k=1}^n P_k$ and then

$$|G_f| = \sum_{i=1}^n |P_k| = n \frac{\varepsilon}{n} = \varepsilon \to 0.$$

Thus, the graph of f has measure zero.

Problem 5. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a continuous function. Let $K \subset \mathbb{R}^3$ be a compact set such that $|f(x) - f(y)| \le 2012|x - y|^2$ for all $x, y \in K$. Prove that the set $f(K) \subset \mathbb{R}^2$ has measure zero as a subset of \mathbb{R}^2 .

Proof. Since K is compact, then there exists M>0 such that $K\subset [-M,M]^3$ and K can be covered by n^3 closed cubes Q_i of side-length 2M/n, whose diameter is $2\sqrt{3}M/n$. Each such cube can be covered by a closed ball of radius $2\sqrt{3}M/n$ centered at any point of the cube. Then, K can be covered by no more than n^3 balls $B\left(x_i, 2\sqrt{3}M/n\right), x_i\in K$, such that $Q_i\cap K\neq\varnothing$ and $Q_i\cap K\subset B\left(x_i, 2\sqrt{3}M/n\right)$. Now,

$$f\left(B\left(x_i, 2\sqrt{3}M/n\right)\right) \subset B\left(f(x_i), 2012\left(2\sqrt{3}M/n\right)^2\right),$$

also, $K \subset \bigcup_{i=1}^{k} B(x_i, 2\sqrt{3}M/n), k \leq n^3$, then,

$$f(K) \subset \bigcup_{i=1}^{k} B\left(f(x_i), 2012\left(2\sqrt{3}M/n\right)^2\right).$$

Denote $2012 \left(2\sqrt{3}M/n\right)^2$ by r_i , then

$$\sum_{i=1}^{k} r_i^2 \le cn^{-4} n^3 = cn^{-1} \xrightarrow{n \to \infty} 0.$$

Thus, f(K) has measure zero.

Problem 6. Assume that $f:[0,1] \to [0,1]$ is a continuous function such that the set $\{x \in [0,1]: f(x)=1\}$ has measure zero. Prove directly (without using any results like monotone or dominated convergence theorem) that

$$\lim_{n \to \infty} \int_0^1 f(x)^n \, dx = 0.$$

Proof. Let $E = \{x \in [0,1] | f(x) = 1\}$. For fixed $\varepsilon > 0$, since E has zero measure, then $E \subset \bigcup_{i=1}^k I_i$, where I_i are open and $\sum_{i=1}^k |I_i| < \varepsilon/2$, i.e., $\bigcup_{i=1}^k I_i$ are a covering of E by open intervals of total lengths less than $\varepsilon/2$.

By compactness of [0,1], $[0,1] \setminus \bigcup_{i=1}^k I_i$ is closed and hence compact. Then f attains maximum M on this set, which is strictly less than 1, and hence $|f(x)| \leq M < 1$ for all $x \in [0,1] \setminus \bigcup_{i=1}^k I_i$. Then,

$$f(x) \le \begin{cases} 1, & x \in \bigcup_{i=1}^k I_i, \\ M^n, & x \notin \bigcup_{i=1}^k I_i. \end{cases}$$

and then we have

$$\int_{0}^{1} f^{n} dx \leq 1 \cdot \left| \sum_{i=1}^{k} I_{i} \right| + M^{n} \cdot 1,$$

$$\leq \frac{\varepsilon}{2} + M^{n}.$$

Since M < 1, then there exists N > 0 such that for all $n \ge N$, $M^n < \varepsilon/2$. Thus, for all $n \ge N$, $\int_0^1 f^n dx \le \varepsilon \to 0$.

Problem 7. Let $\gamma: \mathbb{R} \to \mathbb{R}^n$ and $\mathbf{v}_i: \mathbb{R} \to \mathbb{R}^n$, i = 1, 2, ..., n-1, be C^{∞} smooth functions such that for any $t \in \mathbb{R}$ the vectors

$$\gamma'(t), \mathbf{v}_1(t), \dots, \mathbf{v}_{n-1}(t)$$

form an orthonormal basis of \mathbb{R}^n (here we differentiate γ but **do not** differentiate \mathbf{v}_i , i = 1, 2, ..., n - 1).

Consider the mapping $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\Phi(x_1, \dots, x_n) = \gamma(x_n) + \sum_{i=1}^{n-1} x_i \mathbf{v}_i(x_n).$$

- (a) Find the derivative $D\Phi(x_1,\ldots,x_n)$;
- (b) Prove that Φ is a diffeomorphism in a neighborhood of and point of the form $(0, \ldots, 0, x_n)$;
- (c) Find the limit

$$\lim_{r \to 0} \frac{|\Phi(B^n(0,r))|}{|B^n(0,r)|} \,,$$

where $B^n(0,r)$ denotes the ball of radius r centered at the origin and |A| stands for the volume of the set A.

Proof.

- (a) $D\Phi(x_1, \dots, x_n) = (\mathbf{v}_1(x_n), \dots, \mathbf{v}_{n-1}(x_n), \gamma'(x_n) + \sum_{i=1}^{n-1} x_i \mathbf{v}'_{n-1}(x_n)).$
- (b) $D\Phi(0,\ldots,0,x_n) = (\mathbf{v}_1(x_n),\ldots,\mathbf{v}_{n-1}(x_n),\gamma'(x_n))$ is an orthogonal matrix and then $|D\Phi|(0,\ldots,0,x_n) = \pm 1 \neq 0$. Thus, Φ is a diffeomorphism in a neighborhood of a point of the form $(0,\ldots,0,x_n)$.

(c)
$$\lim_{r \to 0} \frac{|\Phi(B^{n}(0,r))|}{|B^{n}(0,r)|} = \lim_{r \to 0} \frac{\left| \int_{B^{n}} \gamma(x_{n}) dA + \sum_{i=1}^{n-1} \int_{B^{n}} x_{i} \mathbf{v}_{i}(x_{n}) dA \right|}{\int_{B^{n}} 1 dA}$$

$$= \frac{\left| \int_{B^{n}} \gamma(0) dA + \sum_{i=1}^{n-1} \int_{B^{n}} 0 \mathbf{v}_{i}(0) dA \right|}{\left| \int_{B^{n}} 1 dA \right|}$$

$$= |\gamma(0)|.$$

Problem 8. Prove that if $K \in C^1(\mathbb{R}^2 \setminus \{(0,0)\})$ satisfies the estimate

$$|\nabla K(x)| \le \frac{1}{|x|^3}$$
 for all $x \ne (0,0)$

then there is a constant C > 0 such that

$$\iint_{\{x \in \mathbb{R}^2: |x| > 2|y|\}} |K(x - y) - K(x)| \, dx \le C$$

for all $y \in \mathbb{R}^2$.

Hint: Use the mean value theorem to estimate |K(x - y) - K(x)| and then integrate in polar coordinates.

Proof. Denote the left hand side by I. If y = 0, then I = 0. We can assume |y| > 0, and the point of interval connecting x to x - y are of form x - ty, $t \in [0, 1]$. Then, with |x| > 2|y|,

$$|x - ty| > |x| - |y| > \frac{|x|}{2}$$
.

With mean value theorem,

$$\begin{split} |K(x-y)-K(x)| &\leq |\nabla K(x-ty)| \cdot |(x-y)-x| \\ &\leq \frac{|y|}{|x-ty|^3} \\ &\leq \frac{8|y|}{|x|^3}. \end{split}$$

Thus,

$$\iint_{|x|>2|y|} |K(x-y) - K(x)| \, dx \le \iint_{|x|>2|y|} \frac{8|y|}{|x|^3} \, dx$$

$$= 8|y| \int_0^{2\pi} \int_{2|y|}^{\infty} \frac{1}{r^3} r \, dr d\theta$$

$$= 8|y| 2\pi \left(-r^{-1}\right) \Big|_{2|y|}^{\infty} = 8\pi.$$

Problem 9. Use Green's theorem to prove the following result: If the vertices of a polygon, in counterclockwise order, are $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, then the area of the polygon is

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i),$$

where we use notation $x_{n+1} = x_1$, $y_{n+1} = y_1$.

Proof. By Green's theorem, the area is

$$A = \frac{1}{2} \int_C x \, dy - y \, dx = \frac{1}{2} \sum_{i=1}^n \int_{(x_i, y_i)}^{(x_{i+1}, y_{i+1})} x \, dy - y \, dx.$$

Let $\alpha(t) = (x_i + t(x_{i+1} - x_i), y_i + t(y_{i+1} - y_i)), t \in [0, 1]$ is a parameterization of the segment connecting (x_i, y_i) to (x_{i+1}, y_{i+1}) . Let $\gamma(t) = (x(t), y(t)) \to \mathbb{R}^2, t \in [a, b]$, then

$$\int_{\gamma} P \, dx + Q \, dy = \int_{a}^{b} \left(P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right) \, dt$$

Then,

$$\int_{(x_{i},y_{i})}^{(x_{i+1},y_{i+1})} x \, dy - y \, dx = \int_{0}^{1} (x_{i} + t(x_{i+1} - x_{i}))(y_{i+1} - y_{i}) - (y_{i} + t(y_{i+1} - y_{i}))(x_{i+1} - x_{i}) \, dt$$

$$= \left(tx_{i} + \frac{t^{2}}{2}(x_{i+1} - x_{i}) \right) (y_{i+1} - y_{i}) \Big|_{0}^{1}$$

$$- \left(ty_{i} + \frac{t^{2}}{2}(y_{i+1} - y_{i}) \right) (x_{i+1} - x_{i}) \Big|_{0}^{1}$$

$$= x_{i}y_{i+1} - x_{i+1}y_{i},$$

and hence,

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i).$$

Problem 10. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with C^1 boundary and let $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi(x,y) = (u(x,y),v(x,y))$, be a C^2 diffeomorphism. Prove that

$$\int_{\partial\Omega} uv_x \, dx + uv_y \, dy = \pm |\Phi(\Omega)|,$$

where $|\Phi(\Omega)|$ denotes the area of $\Phi(\Omega)$ and $\partial\Omega$ has positive orientation. Show on examples that both cases $+|\Phi(\Omega)|$ and $-|\Phi(\Omega)|$ are possible.

Proof. By Green's theorem, $\int_{\partial\Omega} P \, dx + Q \, dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$, then

$$\begin{split} \int_{\partial\Omega} u v_x \, dx + u v_y \, dy &= \iint_{\Omega} \frac{\partial}{\partial x} \left(u v_y \right) - \frac{\partial}{\partial y} \left(u v_x \right) \\ &= \iint_{\Omega} u_x v_y + u v_{yx} - u_y v_x - u v_{xy} \\ &= \iint_{\Omega} u_x v_y - u_y v_x, \end{split}$$

where in the last step we used the fact that $\Phi \in C^2$. Moreover,

$$\iint_{\Omega} u_x v_y - u_y v_x = \iint_{\Omega} \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \iint_{\Omega} \det D\Phi.$$

In particular, with change of variable, we have

$$\int_{\Phi(\Omega)} f = \int_{\Omega} (f \circ \Phi) |\det D\Phi|,$$

setting f = 1 gives

$$\int_{\Omega} |\det D\Phi| = |\Phi(\Omega)|.$$

Thus,

$$\int_{\partial\Omega} uv_x \, dx + uv_y \, dy = \begin{cases} |\Phi(\Omega)|, & \det D\Phi > 0, \\ -|\Phi(\Omega)|, & \det D\Phi < 0. \end{cases}$$

Taking $\Phi(x,y)=(x,y)$, then the integral equals to $|\Phi(\Omega)|$, if we take $\Phi(x,y)=(-x,y)$, then the integral equals to $-|\Phi(\Omega)|$.

Problem 11. Let f be a polynomial of total degree at most three in $(x, y, z) \in \mathbb{R}^3$. Prove that:

$$\int_{x^2+y^2+z^2<1} f(x,y,z) \, dx \, dy \, dz = \frac{4\pi f((0,0,0))}{3} + \frac{2\pi \left(\Delta f\right) ((0,0,0))}{15}.$$

Here $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian operator on \mathbb{R}^3 .

Proof. With Taylor's formula,

$$f(x) = f(0) + \sum_{i=1}^{3} \frac{\partial f}{\partial x_i}(0)x_i + \frac{1}{2} \sum_{i,j=1}^{3} \frac{\partial^2 f}{\partial x_i \partial x_i}(0)x_i x_i + \frac{1}{6} \sum_{i,j,k=1}^{3} \frac{\partial^3 f}{\partial x_i \partial x_i \partial x_k}(0)x_i x_i x_k + R.$$

and since f is a polynomial of degree at most 3, then the remainder R = 0. Also, with the property of odd function,

$$\int_{B} x_i \, dx = 0, \quad \int_{B} x_i x_i x_k \, dx = 0,$$

and

$$\int_{B} x_i x_i \, dx = 0, \ i \neq j.$$

Then,

$$\int_{B} f(x, y, z) dx dy dz = f(0) \underbrace{\int_{B} dx}_{4\pi/3} + \frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} f}{\partial x_{i}^{2}}(0) \int_{B} x_{i}^{2} dx,$$

also, with

$$\begin{split} \int_B x_1^2 \, dx &= \int_B x_2^2 \, dx = \int_B x_3^2 \, dx = \frac{1}{3} \int_B |x|^2 \, dx \\ &= \int_0^1 \int_{S(r)} r^2 \, d\sigma \, dr \\ &= \int_0^1 r^2 \cdot 4\pi r^2 \, dr = \frac{4\pi}{5}, \end{split}$$

the proof is completed.

Problem 12. Suppose that $K \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$ and

$$K(x) = \frac{K(x/||x||)}{||x||} \quad \text{for all } x \in \mathbb{R}^2 \setminus \{0\}.$$

- (a) Prove that $\nabla K(tx) = t^{-2} \nabla K(x)$ for $x \neq 0$ and t > 0.
- (b) Use the divergence theorem to prove that (on both sides we integrate vector valued functions)

$$\int_{\{1 \le \|x\| \le 2019\}} \nabla K(x) \, dx = \int_{\partial \{1 \le \|x\| \le 2019\}} K(x) \vec{\mathbf{n}} \, d\sigma(x).$$

(c) Prove that

$$\int_{\{1 < ||x|| < 2019\}} \nabla K(x) \, dx = 0.$$

Hint. Show first that $K(tx) = t^{-1}K(x)$ for $x \neq 0$, t > 0. In (a) differentiate K(tx). Part (a) is not needed for parts (b) and (c). Proof.

(a) Note that

$$K(tx) = \frac{K(tx/||tx||)}{||tx||} = t^{-1} \frac{K(x/||x||)}{||x||} = t^{-1} K(x).$$

Then,

$$t^{-1}\frac{\partial K}{\partial x_i}(x) = \frac{\partial}{\partial x_i}(t^{-1}K(x)) = \frac{\partial}{\partial x_i}(K(tx)) = \frac{\partial K}{\partial x_i}(tx) \cdot t,$$

which gives,

$$\frac{\partial K}{\partial x_i}(tx) = t^{-2} \frac{\partial K}{\partial x_i}(x).$$

Thus,

$$\nabla K(tx) = t^{-2} \nabla K(x).$$

(b) With divergence theorem, $\int_{\Omega} \nabla \cdot \vec{F} = \int_{\partial \Omega} \vec{F} \cdot \vec{\mathbf{n}}$, if F(x) = (K(x), 0), then $\nabla \cdot F = \frac{\partial K}{\partial x_1}$

$$\int_{\{1 \le ||x|| \le 2019\}} \frac{\partial K}{\partial x_1} = \int_{\partial \{1 \le ||x|| \le 2019\}} F \cdot \vec{\mathbf{n}} \, d\sigma(x) = \int_{\partial \{1 \le ||x|| \le 2019\}} K(x) n_1 \, d\sigma(x),$$

where in the last step we used $F \cdot \vec{\mathbf{n}} = (K(x), 0) \cdot (n_1, n_2) = K(x)n_1$. Similarly, if F(x) = (0, K(x)), then $\nabla \cdot F = \frac{\partial K}{\partial x_2}$ and then

$$\int_{\{1 \le ||x|| \le 2019\}} \frac{\partial K}{\partial x_2} = \int_{\partial \{1 \le ||x|| \le 2019\}} K(x) n_2 \, d\sigma(x).$$

Thus,

$$\int_{\{1 \le ||x|| \le 2019\}} \nabla K(x) \, dx = \int_{\partial \{1 \le ||x|| \le 2019\}} K(x) \vec{\mathbf{n}} \, d\sigma(x).$$

$$\int_{\{1 \le ||x|| \le 2019\}} \nabla K(x) \, dx = \int_{\partial \{1 \le ||x|| \le 2019\}} K(x) \vec{\mathbf{n}} \, d\sigma(x)
= -\int_{||x|| = 1} K(x) \frac{x}{||x||} \, d\sigma(x) + \int_{||x|| = 2019} K(x) \frac{x}{||x||} \, d\sigma(x).$$

Note that $K(2019x) = 2019^{-1}K(x)$. Use standard parameterization of the circle, we have

$$\int_{\gamma} f \, dx dy = \int_{a}^{b} f(x(t), y(t)) \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \, dt,$$

where $\gamma:[a,b]\to\mathbb{R}$ and $|\dot{\gamma}(t)|=\sqrt{\dot{x}(t)^2+\dot{y}(t)^2}$. Take $\gamma(t)=2019(\cos t,\sin t)$, then

$$\int_{\|x\|=2019} K(x) \frac{x}{\|x\|} d\sigma(x) = \int_0^{2\pi} K(2019\cos t, 2019\sin t) \frac{(2019\cos t, 2019\sin t)}{2019} 2019 dt$$

$$= \int_0^{2\pi} K(\cos t, \sin t) \frac{(\cos t, \sin t)}{1} dt$$

$$= \int_{\|x\|=1} K(x) \frac{x}{\|x\|} d\sigma(x).$$

Thus,

$$\int_{\{1 \le ||x|| \le 2019\}} \nabla K(x) \, dx = 0.$$