Combinatorial Logic

Submitted by

Caleb Burke

658780838

Department of Computer Science

Faculty of Science and Technology

Vancouver Island University

CSCI 355 Digital Logic and Computer Organization

Submitted to

Prof. Ajay Shrestha

September 24, 2024

Table of Contents

Contents

1. Objectives	1
2. Components Required	
3. Background (You can remove this section)	
4. Pre-Lab	
6. Lab Procedure with Deliverables	3
7. Conclusion	6
References	6
Appendix	. 6

1. Objectives

- 1. Design multibit adder using Verilog HDL
- 2. Design multibit comparator using Verilog HDL
- 3. Interpret waveforms generated with input/output signals

2. Components Required

Power supply, 1 x 7400 Quad 2-Input NAND Gate, 1 x 7402 Quad 2-Input NOR Gate, Breadboard, Digital Circuit Evaluator, Wiring Kit

4. Pre-Lab

4.1 Why is a multi-bit adder processed from the least-significant bit to the most significant bit while a multi-bit comparator is processed from the most significant bit to the least-significant bit?

4.2 Write the decimal number 7129 in different representations in Verilog HDL:

Binary = ?

Octal = ?

Hex = ?

Decimal =

6. Lab Procedure

6.1 N-bit adder

1. fulladder

Verilog main code and testbench code attached.

Timing diagram

2. Eight bit adder

Verilog main code and testbench code attached.

Timing diagram

3. 32 bit adder

Verilog main code and testbench code attached.

5

Timing diagram

1. One bit comparator

Verilog main code and testbench code attached.

6

Timing diagram

2. Four bit comparator

Verilog main code and testbench code attached.

7

Timing diagram

7. Conclusion

In this lab, I implemented and tested a multi-bit adder and comparator using Verilog HDL. Time diagrams confirmed functionality and reinforced core concepts.

Appendix

Signature: Caleb Burke