TD19: Acides-bases, précipitation - corrigé

Exercice 1 : Acide éthanoïque

- 1. L'acide éthanoïque est un acide faible car il n'est pas totalement dissocié dans l'eau, s'il l'était on aurait $[H_3O^+]=c=2.0\times 10^{-3}\,\mathrm{mol/l}$ et dans ce cas on aurait $pH=-\log(c)=2.7<3.9$.
- 2. $CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$
- 3. Comme le pH est très inférieur à 7, on peut négliger l'autoprotolyse de l'eau et on a le tableau d'avancement suivant :

	CH ₃ COOH	+ H ₂ O	\longrightarrow	CH ₃ COO	+	H ₃ O ⁺
init.	$c \times V$	∞		0		0
fin.	$c \times V - \xi_f$	∞		ξ_f		ξ_f

La valeur du pH mesurée donne la concentration de H_3O^+ à l'équilibre et donc $\xi_f: -\log(\xi_f/V)=3$.9. L'avancement volumique final de la réaction est $\xi_f/V=10^{-3.9}\simeq 1,3\times 10^{-4}\,\mathrm{mol/l}$. La constante d'acidité de l'acide éthanoïque est $K_A=\frac{\xi_f^2}{c-\xi_f/V}\simeq 9\times 10^{-6}$

Exercice 2: Influence de la dillution

- 1. $HF + H_2O \longrightarrow F^- + H_3O^+$
- 2. On établit le tableau d'avancement volumique associé à la réaction ci-dessus (en négligeant l'autoprotolyse de l'eau) :

	HF	+	H ₂ O	\longrightarrow	F-	+	H ₃ O ⁺
init.	c_1		∞		0		0
fin.	$c_1 - \xi_{vf}$		∞		ξ_{vf}		ξ_{vf}

Pour déterminer le pH il faut trouver ξ_{vf} et donc résoudre l'équation : $\frac{\xi_{vf}^2}{c_1 - \xi_{vf}} = 10^{-3.2}$. On trouve $\xi_{vf} \simeq 7.6 \times 10^{-3}$ mol/l. Soit $pH = -\log(7.6 \times 10^{-3}) \simeq 2.1$

- 3. La concentration devient $c_2=c_1/10=0.01\,\mathrm{mol/l}$. On résout la même équation que dans la question précédente et on trouve $\xi_{vf}\simeq 2.2\times 10^{-3}\,\mathrm{mol/l}$ et $pH\simeq 2.7$
- 4. Si la dillution n'avait pas d'effet sur l'avancement de la réaction, diviser la concentration en acide par 10 reviendrait à augmenter le pH de 1. Or on remarque que le pH n'augmente que de 0.6, ce qui signifie que lors de la dillution des ions H₃O⁺ sont créés et donc la dillution a tendance à augmenter l'avancement final de la réaction.

Exercice 3 : Dissolution de l'acide propanoïque

C'est presque le même exercice que le précédent!

1. On établit le tableau d'avancement de la réaction de l'acide avec l'eau :

	C ₂ H ₃ COOH	+	H ₂ O	\longrightarrow	C ₂ H ₃ COO	+	H ₃ O ⁺
init.	C		∞		0		0
fin.	$C - \xi_{vf}$		∞		ξ_{vf}		ξ_{vf}

Pour déterminer ξ_{vf} on doit résoudre l'équation : $\frac{\xi_{vf}^2}{c_1-\xi_{vf}}=10^{-4.87}$. On trouve $\xi_{vf}\simeq 3.6\times 10^{-4}$ mol/l. Le taux de dissociation est $x=\xi_{vf}/C=3$.6%, il est faiblement dissocié.

2. Le pH de la solution est $pH = -\log(\xi_{vf}) \simeq 3{,}44$

Exercice 4 : DIAGRAMME DE PRÉDOMINANCE

1. Diagrammes de prédominance :

- (a) Les deux espèces chimiques mises en solution ont des domaines de prédominance disjoints. Elles ne peuvent pas être simultanément prédominantes.
 - (b) Le système va se transformer suivant la réaction : $HNO_2 + CH_3NH_2 \longrightarrow NO_2^- + CH_3NH_3^+$
 - (c) La constante d'équilibre de cette réaction est $K=10^{10.7-3.3}=10^{7.4}\simeq 2,51\times 10^7$
- 3. Tableau d'avancement :

	HNO ₂	+	CH ₃ NH ₂	\longrightarrow	NO ₂	+	CH ₃ NH ₃ ⁺
init.	C_1V_1		C_2V_2		0		0
fin.	$C_1V_1 - \xi_f$		$C_2V_2 - \xi_f$		ξ_f		ξ_f

Comme $C_1V_1=C_2V_2=CV$, on peut écrire à l'équilibre : $\frac{\xi_f^2}{(CV-\xi_f)^2}=K$ d'où $\frac{\xi_f}{CV-\xi_f}=\sqrt{K}$. Soit enfin $\xi_f=CV\frac{\sqrt{K}}{1+\sqrt{K}}=0.9998\times CV\simeq CV=5\times 10^{-4}\,\mathrm{mol}$

La réaction peut donc être considérée comme totale (on aurait pu le deviner car $K > 10^4$)

Exercice 5 : Dosage du vinaigre

- 1. L'équation de la transformation chimique étudiée est : $CH_3COOH + HO^- \longrightarrow CH_3COO^- + H_2O$
- 2. Le quotient de cette réaction est $Q_r = \frac{[\text{CH}_3\text{COO}^-]c_0}{[HO^-][CH3COOH]}$. Dans l'état d'équilibre on a $Q_r = K$ où K est la constante d'équilibre du système.

À l'équilibre, on a également $\frac{1}{c_0^2}[H_3O^+][HO^-]=K_e$, on en déduit qu'à l'équilibre $[HO^-]/c_0=K_ec_0/[H_3O^+]$. La constante d'équilibre de la réaction étudiée est donc :

$$K = \frac{1}{K_e} \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{c_0[\text{CH}_2\text{COOH}]} = \frac{K_A}{K_e} = 10^{-pK_A + pK_e} = 10^{9.2}$$
(1)

La valeur de *K* ne dépend évidemment pas de la composition initiale du système.

3. Le point d'équivalence est caractérisé par un saut de pH, on le détermine graphiquement (par exemple par la *méthode des tangentes*) on trouve $v_{eq} \simeq 12.7$ ml. En notant c la concentrations en acide éthanoïque du vinaigre, on a la relation

$$\frac{c}{10}V_1 = c_2 v_{eq}$$
 d'où $c = 10 \frac{c_2 v_{eq}}{V_1} \simeq 1.3 \times 10^{-1} \,\text{mol}/\ell$ (2)

4. Si on se place à $V_2 = v_{eq}/2$. On a introduit une quantité d'ions HO suffisante pour consommer la moitié de l'acide éthanoïque initialement présent. On aura donc dans ce cas $[CH_3COOH] = [CH_3COO^-]$ et $pH = pK_A = 4$. 8. Cela correspond plutôt bien à la valeur lue sur la courbe de dosage à la demi-équivalence $(pH \simeq 5)$.

Exercice 6: Dissolution du phosphate de Calcium

- 1. L'équation de dissolution du phosphate de calcium dans l'eau est : $Ca_3(PO_4)_2 \longrightarrow 3 Ca^{2+} + 2 PO_4^{3-}$
- 2. À saturation, on peut dissoudre $m=7.30\,\mathrm{g}$ de phosphate de calcium ce qui correspond à $n=\frac{m-m'}{M}\simeq 2.35\times 10^{-2}\,\mathrm{mol.}$ À l'équilibre on a donc $n_{\mathrm{Ca_2}^+}=3n$ et $n_{\mathrm{PO_4}^{3-}}=2n$. Donc finalement la constante d'équilibre est $K=\frac{1}{c^5}[\mathrm{Ca^{2+}}]^3[\mathrm{PO_4}^{3-}]^2\simeq 3.71$

Exercice 7 : DISSOLUTION DU SEL DE CUISINE

L'équation de dissolution du sel de cuisine est NaCl \longrightarrow Na⁺ + Cl⁻ à saturation, on a $\frac{1}{c_0^2}[Na+][Cl-]=x^2=K_s$. Donc la quantité de matière de NaCl que l'on peut dissoudre dans l'eau est x=6,24 mol soit $m\simeq 365,3$ g

2016-2017