Configuración básica de RIP

Objetivos de aprendizaje

Al completar esta práctica de laboratorio, usted podrá:

- Conectar una red de acuerdo con el Diagrama de topología.
- Eliminar la configuración de inicio y recargar un router al estado por defecto.
- Realizar tareas de configuración básicas en un router.
- Configurar y activar interfaces.
- Configurar enrutamiento RIP en todos los routers.
- Verificar el enrutamiento RIP con los comandos show y debug.
- Reconfigurar la red para que sea contigua.
- Observar el resumen automático en el router de borde.
- Recopilar información acerca del proceso RIP mediante el comando debug ip rip.
- Configurar una ruta estática por defecto.
- Propagar rutas por defecto a vecinos RIP.
- Documentar la configuración de RIP.

A: Ejecución de RIPv1 en redes con clase

Tabla de direccionamiento

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Gateway por defecto
R1	Fa0/0	192.168.1.1	255.255.255.0	No aplicable
	S0/0/0	192.168.2.1	255.255.255.0	No aplicable
R2	Fa0/0	192.168.3.1	255.255.255.0	No aplicable
	S0/0/0	192.168.2.2	255.255.255.0	No aplicable
	S0/0/1	192.168.4.2	255.255.255.0	No aplicable
R3	Fa0/0	192.168.5.1	255.255.255.0	No aplicable
	S0/0/1	192.168.4.1	255.255.255.0	No aplicable
PC1	NIC	192.168.1.10	255.255.255.0	192.168.1.1
PC2	NIC	192.168.3.10	255.255.255.0	192.168.3.1
PC3	NIC	192.168.5.10	255.255.255.0	192.168.5.1

1. Configurar y activar las direcciones serial y Ethernet.

Configure las interfaces de R1, R2 y R3

Configure las interfaces de los routers R1, R2 y R3 con las direcciones IP de la tabla que se encuentra debajo del Diagrama de topología.

Verifique el direccionamiento IP y las interfaces.

Utilice el comando **show ip interface brief** para verificar que el direccionamiento IP es correcto y que las interfaces están activas.

Configure las interfaces Ethernet de PC1, PC2 y PC3.

Configure las interfaces Ethernet de PC1, PC2 y PC3 con las direcciones IP y gateways por defecto de la tabla que se encuentra debajo del Diagrama de topología.

Pruebe la configuración de la PC ejecutando un ping desde la PC al gateway por defecto.

2. Configurar el protocolo RIP.

Habilite un enrutamiento dinámico.

Para habilitar un protocolo de enrutamiento dinámico, ingrese al modo de configuración global y utilice el comando router. Ingrese router ? en el indicador de configuración global para visualizar una lista de los protocolos de enrutamiento disponibles en el router. Para habilitar RIP, ingrese el comando router rip en el modo de configuración global.

Ingrese direcciones de red con clase.

Una vez que se encuentre en el modo de configuración de enrutamiento, ingrese la dirección de red con clase para cada red conectada directamente por medio del comando network.

```
R1(config-router) #network 192.168.1.0
R1(config-router) #network 192.168.2.0
R1(config-router) #
```

Configure RIP en el router R2 por medio de los comandos router rip y network.

Configure RIP en el router R3 por medio de los comandos router rip y network.

3. Verificar el enrutamiento RIP.

Utilice el comando show ip route para verificar que cada router cuente con todas las redes en la topología ingresadas en la tabla de enrutamiento.

Las rutas reveladas a través de RIP se codifican con una **R** en la tabla de enrutamiento. Si las tablas no convergen como se muestra a continuación, resuelva los problemas de configuración. ¿Verificó que las interfaces configuradas estén activas? ¿Configuró RIP correctamente? Regrese a la Tarea 3 y a la Tarea 4 para revisar los pasos necesarios para lograr la convergencia.

Utilice el comando show ip protocols para visualizar la información acerca de los procesos de enrutamiento.

El comando show ip protocols se puede utilizar para visualizar información acerca de los procesos de enrutamiento que se producen en el router. Se puede utilizar este resultado para verificar los parámetros RIP para confirmar que:

- El uso del enrutamiento RIP está configurado.
- Las interfaces correctas envían y reciben las actualizaciones RIP.
- El router notifica las redes correctas.
- Los vecinos RIP están enviando actualizaciones.

```
R1#show ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 16 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 1, receive any version
  Interface
                        Send Recv
                                   Triggered RIP Key-chain
                              2 1
  FastEthernet0/0
                        1
  Serial0/0/0
                        1
Automatic network summarization is in effect
Maximum path: 4
Routing for Networks:
      192.168.1.0
      192.168.2.0
Passive Interface(s):
Routing Information Sources:
      Gateway
                      Distance
                                 Last Update
      192.168.2.2
                           120
Distance: (default is 120)
R1#
```

Utilice el comando debug ip rip para visualizar los mensajes RIP que se envían y reciben.

Las actualizaciones rip se envían cada 30 segundos, por lo que deberá esperar para visualizar la información de depuración.

El resultado de la depuración muestra que R1 recibe una actualización de R2. Observe cómo esta actualización incluye todas las redes que R1 aún no tiene en su tabla de enrutamiento. Debido a que la interfaz FastEthernet0/0 pertenece a la red 192.168.1.0 configurada en RIP, R1 crea una actualización para enviar a esa interfaz. La actualización incluye todas las redes conocidas para R1, excepto la red de la interfaz. Por último, R1 crea una actualización para enviar a R2. Debido a este horizonte dividido, R1 sólo incluye en la actualización la red 192.168.1.0.

Detenga el resultado de la depuración con el comando undebug all.

```
R1#undebug all
All possible debugging has been turned off
```

B: Ejecución de RIPv1 con subredes y entre redes con clase

Diagrama de topología

Tabla de direccionamiento

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Gateway por defecto
R1	Fa0/0	172.30.1.1	255.255.255.0	No aplicable
	S0/0/0	172.30.2.1	255.255.255.0	No aplicable
R2	Fa0/0	172.30.3.1	255.255.255.0	No aplicable
	S0/0/0	172.30.2.2	255.255.255.0	No aplicable
	S0/0/1	192.168.4.9	255.255.255.252	No aplicable
R3	Fa0/0	192.168.5.1	255.255.255.0	No aplicable
	S0/0/1	192.168.4.10	255.255.255.252	No aplicable
PC1	NIC	172.30.1.10	255.255.255.0	172.30.1.1
PC2	NIC	172.30.3.10	255.255.255.0	172.30.3.1
PC3	NIC	192.168.5.10	255.255.255.0	192.168.5.1

Realizar cambios entre el Escenario a y el Escenario B

Cambie el direccionamiento IP en las interfaces como se muestra en el Diagrama de topología y en la Tabla de direccionamiento.

A veces, al cambiar la dirección IP en una interfaz serial, es posible que necesite reiniciar la interfaz mediante el comando shutdown, esperar el mensaje LINK-5-CHANGED y luego ejecutar el comando no shutdown. Este proceso obligará al IOS a comenzar a utilizar la nueva dirección IP.

```
R1(config) #int s0/0/0
R1(config-if) #ip add 172.30.2.1 255.255.255.0
R1(config-if) #shutdown

%LINK-5-CHANGED: Interface Serial0/0/0, changed state to administratively down
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to
down
R1(config-if) #no shutdown

%LINK-5-CHANGED: Interface Serial0/0/0, changed state to up
R1(config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to up
```

Verifique que los routers estén activos

Después de reconfigurar todas las interfaces en los tres routers, verifique que todas las interfaces necesarias estén activas con el comando show ip interface brief.

Elimine las configuraciones RIP de cada router.

Aunque los comandos network anteriores se pueden eliminar con la versión no del comando, es más eficaz simplemente eliminar RIP y comenzar nuevamente. Elimine las configuraciones RIP de cada router con el comando de configuración global no router rip. Esto eliminará todos los comandos de configuración RIP, incluso los comandos network.

```
R1(config) #no router rip
R2(config) #no router rip
R3(config) #no router rip
```

Configurar RIP

Configure el enrutamiento RIP en R1 como se muestra a continuación

```
R1(config) #router rip
R1(config-router) #network 172.30.0.0
```

Observe que solamente se necesita una sentencia de red para R1. Esta sentencia incluye ambas interfaces en subredes diferentes de la red principal 172.30.0.0.

Configure R1 para dejar de enviar actualizaciones desde la interfaz FastEthernet0/0.

Enviar actualizaciones desde la interfaz desperdicia ancho de banda y recursos de procesamiento de todos los dispositivos de la LAN. Además, notificar actualizaciones en una red de broadcast es un riesgo para la seguridad. Las actualizaciones RIP pueden interceptarse con software analizador de protocolos. Las actualizaciones de enrutamiento pueden modificarse y enviarse de regreso al router, dañando la tabla del router con métricas falsas que orientan mal el tráfico.

El comando passive-interface fastethernet 0/0 se utiliza para deshabilitar el envío de actualizaciones RIPv1 a la interfaz. Al finalizar la configuración RIP

```
R1(config-router)#passive-interface fastethernet 0/0
R1(config-router)#end
%SYS-5-CONFIG I: Configured from console by console
```

Configure el enrutamiento RIP en R2 como se muestra a continuación

```
R2(config) #router rip
R2(config-router) #network 172.30.0.0
R2(config-router) #network 192.168.4.0
R2(config-router) #passive-interface fastethernet 0/0
R2(config-router) #end
%SYS-5-CONFIG I: Configured from console by console
```

Observe nuevamente que sólo se necesita una única sentencia de red para las dos subredes de 172.30.0.0. Esta sentencia incluye ambas interfaces, en subredes diferentes, de la red principal 172.30.0.0. Además, está configurada la red para el enlace WAN entre R2 y R3.

Configure el enrutamiento RIP en R3 como se muestra a continuación.

```
R3(config) #router rip
R3(config-router) #network 192.168.4.0
R3(config-router) #network 192.168.5.0
R3(config-router) #passive-interface fastethernet 0/0
R3(config-router) #end
%SYS-5-CONFIG I: Configured from console by console
```

Verificar el enrutamiento RIP.

Utilice el comando show ip route para verificar que cada router cuente con todas las redes en la topología en la tabla de enrutamiento.

Recuerde realizar este proceso en los 3 routers

Nota: RIPv1 es un protocolo de enrutamiento con clase. Los protocolos de enrutamiento con clase no envían la máscara de subred con red en las actualizaciones de enrutamiento. Por ejemplo, R2 envía 172.30.1.0 a R1 sin ninguna información de máscara de subred.

Verifique que todas las interfaces necesarias estén activas.

Si una o más tablas de enrutamiento no tienen una tabla de enrutamiento convergente, primero asegúrese de que todas las interfaces necesarias estén activas con show ip interface brief. Luego utilice show ip protocols para verificar la configuración RIP. Observe en el resultado de este comando que la interfaz FastEthernet0/0 ya no figura en Interface, sino que figura en una nueva sección del resultado. Passive Interface(s).

```
R1#show ip protocols
Routing Protocol is "rip"
  Sending updates every 30 seconds, next due in 20 seconds
  Invalid after 180 seconds, hold down 180, flushed after 240
 Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
 Redistributing: rip
 Default version control: send version 2, receive version 2
    Interface Send Recv Triggered RIP Key-chain
    Serial0/1/0
 Automatic network summarization is in effect
 Maximum path: 4
 Routing for Networks:
    172.30.0.0
    209.165.200.0
Passive Interface(s):
 FastEthernet0/0
 Routing Information Sources:
   Gateway Distance Last Update 209.165.200.229 120 00:00:15
 Distance: (default is 120)
```

Observe los mensajes RIP que se envían y reciben.

Utilice el comando debug ip rip para visualizar los mensajes RIP que se envían y reciben. Observe que las actualizaciones RIP no se envían desde la interfaz fa0/0 debido al comando passiveinterface fastethernet 0/0.

```
R1#debug ip rip
R1#RIP: sending v1 update to 255.255.255.255 via Serial0/0/0 (172.30.2.1)
RIP: build update entries
    network 172.30.1.0 metric 1
RIP: received v1 update from 172.30.2.2 on Serial0/0/0
    172.30.3.0 in 1 hops
```

Detenga el resultado de la depuración con el comando undebug all.

C: Ejecución de RIPv1 en una red de conexión única

Diagrama de topología

En este escenario, se modificará el Escenario B solamente para ejecutar RIP entre R1 y R2. El Escenario C es una configuración típica en la mayoría de las compañías que conectan una red de conexión única a un router de sede central o un ISP. Generalmente, una compañía ejecuta un protocolo de enrutamiento dinámico (en nuestro caso, RIPv1) dentro de una red local, pero encuentra que no es necesario ejecutar un protocolo de enrutamiento dinámico entre el router de gateway de la compañía y el ISP. Por ejemplo, las universidades con campus múltiples con frecuencia ejecutan un protocolo de enrutamiento dinámico entre los campus pero utilizan un enrutamiento por defecto al ISP para tener acceso a Internet. En algunos casos, los campus en ubicaciones remotas pueden incluso utilizar enrutamiento por defecto al campus principal, por lo cual eligen utilizar enrutamiento dinámico sólo a nivel local.

Para mantener el ejemplo en un nivel simple, para el Escenario C se dejó intacto el direccionamiento del Escenario B. Suponga que R3 es el ISP para la Compañía XYZ, que consta de los routers R1 y R2 que utilizan la red principal 172.30.0.0/16, la cual está dividida en subredes con una máscara /24. La Compañía XYZ es una red de conexión única, lo cual significa que existe un solo camino de entrada y un solo camino de salida desde la red 172.30.0.0/16: entrada a través de R2 (router de gateway) y de salida a través de R3 (ISP). No tiene sentido que R2 envíe actualizaciones RIP a R3 para la red 172.30.0.0 cada 30 segundos, ya que R3 no tiene otra forma de llegar a 172.30.0.0 excepto a través de R2. Es más lógico que R3 tenga una ruta estática configurada para la red 172.30.0.0/16 que apunte a R2.

¿Qué sucede con el tráfico que la Compañía XYZ envía a Internet? No tiene sentido que R3 envíe más de 120.000 rutas de resumen de Internet a R2. Todo lo que R2 necesita saber es que si un paquete no está destinado para un host en la red 172.30.0.0, entonces lo debe enviar al ISP, R3. Lo mismo sucede con todos los demás routers de la Compañía XYZ (en este caso solamente R1). Deben enviar a R2 todo el tráfico que no está destinado para la red 172.30.0.0. Luego R2 reenviaría el tráfico a R3.

Realizar cambios entre el Escenario B y el Escenario C.

Elimine la red 192.168.4.0 de la configuración RIP para R2.

Elimine la red 192.168.4.0 de la configuración RIP para R2, ya que no se enviarán actualizaciones entre R2 y R3 y no desea notificar la red 192.168.4.0 a R1.

```
R2(config) #router rip
R2(config-router) #no network 192.168.4.0
```

Elimine por completo el enrutamiento RIP de R3.

```
R3(config) #no router rip
```

Configurar la ruta estática en R3 para la red 172.30.0.0/16.

Dado que R3 y R2 no están intercambiando actualizaciones RIP, se debe configurar una red estática en R3 para la red 172.30.0.0/16. Esto enviará todo el tráfico 172.30.0.0/16 a R2.

```
R3(config) #ip route 172.30.0.0 255.255.252.0 serial0/0/1
```

Configurar una ruta estática por defecto en R2.

Configure R2 para enviar tráfico por defecto a R3.

Configure una ruta estática por defecto en R2 que enviará a R2 todo el tráfico por defecto, paquetes con direcciones IP de destino que no coinciden con una ruta específica en la tabla de enrutamiento.

```
R2(config) # ip route 0.0.0.0 0.0.0.0 serial 0/0/1
```

Configure R2 para enviar información de la ruta estática por defecto a R1.

El comando default-information originate se utiliza para configurar R2 para que incluya la ruta estática por defecto con sus actualizaciones RIP. Configure este comando en R2 para que se envíe la información de la ruta estática por defecto a R1.

```
R2(config) #router rip
R2(config-router) #default-information originate
R2(config-router) #
```

Nota:

a veces es necesario borrar el proceso de enrutamiento RIP antes de que funcione el comando default-information originate. Primero pruebe el comando clear ip route * tanto en R1 como en R2. Este comando hará que todos los routers purguen rutas de inmediato en la tabla de enrutamiento y se soliciten actualizaciones entre sí. a veces esto no funciona con RIP. Si aún no se envió la información de la ruta por defecto a R1, guarde la configuración en R1 y R2 y luego vuelva a cargar ambos routers. De esta forma se reiniciará el hardware y ambos routers reiniciarán el proceso de enrutamiento RIP.

Verificar el enrutamiento RIP.

Utilice el comando show ip route para visualizar la tabla de enrutamiento en R2 y R1.

```
R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
```

Observe que R2 ahora tiene una ruta estática etiquetada como **candidate default** (posible ruta por defecto).

```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 172.30.2.2 to network 0.0.0.0
     172.30.0.0/24 is subnetted, 3 subnets
C
        172.30.2.0 is directly connected, Serial0/0/0
R
        172.30.3.0 [120/1] via 172.30.2.2, 00:00:05, Serial0/0/0
        172.30.1.0 is directly connected, FastEthernet0/0
R* 0.0.0.0/0 [120/1] via 172.30.2.2, 00:00:19, Serial0/0/0
```

Observe que R1 ahora tiene una ruta RIP etiquetada como **candidate default**. La ruta es la ruta por defecto "quad-zero" que envió R2. R1 ahora enviará el tráfico por defecto al **gateway de último recurso** en 172.30.2.2, que es la dirección IP de R2.

Observe las actualizaciones RIP que se envían y reciben en R1 con el comando debug ip rip.

```
RI#debug ip rip
RIP protocol debugging is on
RI#RIP: sending v1 update to 255.255.255.255 via Serial0/0/0 (172.30.2.1)
RIP: build update entries
    network 172.30.1.0 metric 1
RIP: received v1 update from 172.30.2.2 on Serial0/0/0
    0.0.0.0 in 1 hops
    172.30.3.0 in 1 hops
```

Detenga el resultado de la depuración con el comando undebug all.

Utilice el comando show ip route para visualizar la tabla de enrutamiento en R3.

R3#show ip route

<Output omitted>

```
S 172.30.0.0/16 is directly connected, Serial0/0/1 192.168.4.0/30 is subnetted, 1 subnets
C 192.168.4.8 is directly connected, Serial0/0/1 192.168.5.0/24 is directly connected, FastEthernet0/0
```

Observe que RIP no se está utilizando en R3. La única ruta que no está directamente conectada es la ruta estática.

Documentar las configuraciones del router

En cada router, capture el siguiente resultado del comando y guárdelo en un archivo de texto para futuras consultas.

- Configuración activa
- Tabla de enrutamiento
- Resumen de la interfaz
- Resultado de show ip protocols