Week6

Qi'ao Chen 21210160025

April 6, 2022

Exercise 1. Let $p \in S_1(M)$ be a non-constant type. Show that [p] is not a minimal element in the fundamental order.

Proof. Suppose p is realized by a in $N \succeq M$ and let $q(x) = \operatorname{tp}(a/N) \supseteq p$. Then $(x = a) \in q(x)$. But p is not a constant type, hence $(x = y) \in [q]$ and $(x = y) \notin [p]$. Therefore [q] < [p].

Exercise 2. Let $p \in S_1(M)$ be a constant type and let $q \in S_1(N)$ be an extension of p. Show that [q] = [p]

Proof. If $p=\operatorname{tp}(a/M)$ for some $a\in M$, then $q=\operatorname{tp}(a/N)$. For any $\varphi(x,b)\in q(x)$ with $b\in N$, we have $\mathbb{M}\vDash \varphi(a,b)$ and therefore $\mathbb{M}\vDash \exists y\varphi(a,y)$. Hence $\exists y\varphi(x,y)\in p$ and so there is $b'\in M$ with $\varphi(x,b')\in p$. Thus $[p]\leq [q]$ and so [p]=[q]

Exercise 3. Let $p \in S_1(M)$ be a constant type. Show that [p] is a minimal element in the fundamental order.

Proof. For any $N \leq \mathbb{M}, q \in S_1(N)$ and $[q] \leq [p]$, by Proposition 7, there is an ultrafilter \mathcal{U} and an elementary embedding $M \to N^{\mathcal{U}}$ making $q^{\mathcal{U}}$ an extension of p. Then $[q^{\mathcal{U}}] = [p]$ as p is a constant type. But since $q \subseteq q^{\mathcal{U}}$, we have $[q^{\mathcal{U}}] \leq [q]$. Therefore [q] = [p].

Exercise 4. Suppose the theory T is DLO. Let M,N be small models. Let a,b be elements of \mathbb{M} . Suppose $a\notin M$ and $\operatorname{tp}(a/M)$ is not the type at $+\infty$ or $-\infty$. Suppose $b\notin N$, and $\operatorname{tp}(b/N)$ is not the type at $+\infty$ or $-\infty$. Let $\varphi(x,\bar{c})$ be a formula in $\operatorname{tp}(a/M)$. Show there is $\bar{c}'\in N$ s.t. $\varphi(x,\bar{c}')$ is a formula in $\operatorname{tp}(b/N)$.

Proof. We may assume $\varphi(x,y_1,\ldots,y_n)$ is a quantifier-free L-formula and it defines a linear order among x and \bar{y} since otherwise we may find $\psi(x,y_1,\ldots,y_n)$ which defines a linear order and implies φ . By rearranging variables, we may assume $y_1 \leq \ldots \leq y_k \leq x \leq y_{k+1} \leq \ldots y_n$ where $1 \leq k \leq n$. Then we can find $d_1 \leq \ldots \leq d_n$ in N with $d_1 \leq \ldots d_k \leq b \leq d_{k+1} \leq \ldots \leq d_n$. Then $\varphi(x,\bar{d}) \in \operatorname{tp}(b/N)$