p-adic measures and Iwasawa cohomology

Arun Soor

October 25, 2025

Abstract

These are notes for a learning seminar on Euler systems. These notes basically lifted from other places. The main references are [Col99] and [Col04]. All typos are my own!

1 p-adic measures

By a \mathbf{Q}_p -Banach space we mean a complete normed \mathbf{Q}_p -vector space. In this talk all norms are assumed to satisfy the ultrametric inequality. For a compact totally disconnected Hausdorff space X we let $\mathscr{C}^0(X, \mathbf{Q}_p)$ denote the space of continuous functions $X \to \mathbf{Q}_p$ equipped with the sup-norm.

Definition 1.1. We define the space of \mathbf{Q}_p -valued p-adic measures as $\mathscr{D}_0(X, \mathbf{Q}_p) := \underline{\mathrm{Hom}}_{\mathbf{Q}_p}(\mathscr{C}^0(X, \mathbf{Q}_p), \mathbf{Q}_p)$. Here $\underline{\mathrm{Hom}}_{\mathbf{Q}_p}$ denotes the internal Hom of \mathbf{Q}_p -Banach spaces (bounded linear maps equipped with the operator norm).

The only totally obvious elements are the Dirac measures $\delta_x \in \mathcal{D}_0(X, \mathbf{Q}_p)$, given by evaluation for each $x \in X$. By definition there is a formal integration pairing

$$\int_{X} : \mathscr{C}^{0}(X, \mathbf{Q}_{p}) \times \mathscr{D}_{0}(X, \mathbf{Q}_{p}) \to \mathbf{Q}_{p} : (f, \mu) \mapsto \int_{X} f d\mu. \tag{1}$$

We note that $\mathscr{D}_0(X, \mathbf{Q}_p)$ is a module for $\mathscr{C}^0(X, \mathbf{Q}_p)$, where $f \cdot \mu$ is determined by $\int_X g(f \cdot \mu) = \int_X gf\mu$. We recall that "functions push back and measures push forward" so that $\mathscr{D}_0(-, \mathbf{Q}_p)$ is covariant in X. Further, for each X, Y there is a natural in X, Y map

$$\mathcal{D}_0(X, \mathbf{Q}_p) \times \mathcal{D}_0(Y, \mathbf{Q}_p) \to \mathcal{D}_0(X \times Y, \mathbf{Q}_p),$$
 (2)

in order to define this map one has to use the isomorphism

$$\mathscr{C}^{0}(X, \mathbf{Q}_{p})\widehat{\otimes}_{\mathbf{Q}_{p}}\mathscr{C}^{0}(Y, \mathbf{Q}_{p}) \xrightarrow{\sim} \mathscr{C}^{0}(X \times Y, \mathbf{Q}_{p}). \tag{3}$$

From this it follows formally that if G is compact totally disconnected Hausdorff topological group then $\mathcal{D}_0(G, \mathbf{Q}_p)$ is a Hopf algebra object in \mathbf{Q}_p -Banach spaces. If G is written multiplicatively then the product (convolution) of measures is given explicitly by the formula

$$\int_{G} f(x)d(\lambda \star \mu)(x) = \int_{G} \left(\int_{G} f(xy)\lambda(x) \right) d\mu(y). \tag{4}$$

If $\eta: G \to \mathbf{Z}_p^{\times}$ is a continuous character and $H \leqslant G$ is a finite index clopen subgroup, we get a G-equivariant homomorphism

$$\{\mu \in \mathscr{D}_0(G, \mathbf{Q}_p) : \|\mu\| \leqslant 1\} \to \mathbf{Z}_p[G/H] \otimes_{\mathbf{Z}_p} \mathbf{Z}_p(\eta) : \mu \mapsto \overline{\mu} \otimes \int_H \eta d\mu.$$
 (5)

This will be used to define specialization maps later.

2 Amice transform

Now we specialise to the case when $G = \mathbf{Z}_p$. For an indeterminate T and $x \in \mathbf{Z}_p$ we consider the power series

$$(1+T)^x = \sum_{n>0} T^n \binom{x}{n}.$$
 (6)

We are supposed to think of this as "continuous¹ in x and analytic in T" so that if we integrate over \mathbb{Z}_p we will get some kind of analytic function. More precisely we have the theorem of Amice and Mahler:

Theorem 2.1. The map

$$\mu \mapsto A_{\mu}(T) := \int_{\mathbf{Z}_p} (1+T)^x d\mu(x) := \sum_{n\geqslant 0} T^n \int_{\mathbf{Z}_p} \binom{x}{n} d\mu(x) \tag{7}$$

is an isometry and gives an isomorphism of Hopf algebra objects with bounded functions on the rigid open unit disk:

$$\mathscr{D}_0(\mathbf{Z}_p, \mathbf{Q}_p) \cong \left\{ \sum_{n \geqslant 0} a_n T^n : a_n \in \mathbf{Q}_p, \sup_n |a_n| < \infty \right\} = \mathbf{Z}_p \llbracket T \rrbracket \otimes_{\mathbf{Z}_p} \mathbf{Q}_p. \tag{8}$$

In particular $\mathbf{Z}_p[\![T]\!]$ is isomorphic to the unit ball in $\mathscr{D}_0(\mathbf{Z}_p, \mathbf{Q}_p)$. By pushforward functoriality $\mathscr{D}_0(\mathbf{Z}_p, \mathbf{Q}_p)$ carries an action of the multiplicative monoid \mathbf{Z}_p . Under the Amice transform the action of $a \in \mathbf{Z}_p$ goes to the action

$$(a \cdot f)(T) := f((1+T)^a - 1) \tag{9}$$

of \mathbf{Z}_p on $\mathbf{Z}_p[\![T]\!] \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$. If we put z = 1 + T then we see that this comes from the familiar \mathbf{Z}_p -action $z \mapsto z^a$ on the rigid open unit disk $\{z : |z-1| < 1\}$. Multiplication of a measure by the continuous function $x = \mathrm{id} : \mathbf{Z}_p \to \mathbf{Q}_p$ goes to the operator $(1+T)\frac{d}{dT}$.

Let $\mathbf{Z}_p[\![\mathbf{Z}_p]\!]$ be the completed group ring. There is a \mathbf{Z}_p -equivariant isomorphism $\mathbf{Z}_p[\![T]\!] \xrightarrow{\sim} \mathbf{Z}_p[\![\mathbf{Z}_p]\!]$ determined by $T \mapsto \gamma - 1$ where γ is the topological generator of \mathbf{Z}_p . This is not completely straightforward to prove: we direct the reader to [Was97, §7.1]. Using the p-1 branches of the p-adic logarithm we obtain the p-adic Mellin transform:

$$\mathscr{D}_0(\mathbf{Z}_p^{\times}, \mathbf{Q}_p) \xrightarrow{\sim} \mathbf{Z}_p[\![\mathbf{Z}_p^{\times}]\!] \otimes_{\mathbf{Z}_p} \mathbf{Q}_p. \tag{10}$$

which is equivariant for the respective \mathbf{Z}_p^{\times} -actions.

Now let $(\varepsilon_n)_{n\geqslant 0}$ be a compatible system of p-power roots of unity in $\overline{\mathbf{Q}}_p$ with $\varepsilon_0=1$. Let K/\mathbf{Q}_p be a finite extension of \mathbf{Q}_p . We do not assume that $\varepsilon_1\in K$. Let $G_K:=\mathrm{Gal}(\overline{K}/K),\ K_n:=K(\varepsilon_n)$ and $K_\infty:=\bigcup_n K_n$. Put $\Gamma_K:=\mathrm{Gal}(K_\infty/K)$ and $\Gamma_n:=\mathrm{Gal}(K_\infty/K_n)$. Let $\chi:\Gamma_K\hookrightarrow \mathbf{Z}_p^\times$ be the cyclotomic character induced by $(\varepsilon_n)_{n\geqslant 0}$. By functoriality $\mathscr{D}_0(\Gamma_K,\mathbf{Q}_p)$ carries an action of Γ_K . By (10) we deduce a G_K -equivariant isomorphism

$$\mathscr{D}_0(\Gamma_K, \mathbf{Q}_p) \xrightarrow{\sim} \mathbf{Z}_p \llbracket \Gamma_K \rrbracket \otimes_{\mathbf{Z}_p} \mathbf{Q}_p.$$
 (11)

3 Two definitions of Iwasawa cohomology

Let T be a finite \mathbf{Z}_p -representation of G_K .

Definition 3.1. (i) We define $H^i_{\mathrm{Iw}}(K,T) := \lim_n H^i(K_n,T)$, the transition maps here are the corestriction maps on Galois cohomology.

¹Or locally-analytic.

(ii) We define $H^i_{\mathrm{Iw}}(K,T) := H^i(K, \mathbf{Z}_p[\![\Gamma_K]\!] \otimes_{\mathbf{Z}_p} T)$.

Example 3.2. Using the first definition of Iwasawa cohomology. By the Kummer map one has $H_{\mathrm{Iw}}^1(K, \mathbf{Z}_p(1)) = \lim_n K_n^{\times}$, the transition maps here are the norms.

Remark 3.3. Using the second definition of Iwasawa cohomology. Note that the actions of Γ_K and G_K on $\mathbf{Z}_p\llbracket\Gamma_K\rrbracket\otimes_{\mathbf{Z}_p}T$ commute (this is just because Γ_K is abelian). Hence the $H^i_{\mathrm{Iw}}(K,T)$ defined as (ii) are $\mathbf{Z}_p\llbracket\Gamma_K\rrbracket$ -modules.

Remark 3.4. Using the second definition of Iwasawa cohomology. We recall that $\mathbf{Z}_p[\![\Gamma_K]\!]$ can be regarded as the unit ball in $\mathscr{D}_0(\Gamma_K, \mathbf{Q}_p)$. Hence if $n \geqslant 0$ and $\eta : G_K \to \mathbf{Z}_p^{\times}$ is a continuous character, we get a G_K -equivariant homomorphism as in (5):

$$\mathbf{Z}_p\llbracket\Gamma_K\rrbracket \to \mathbf{Z}_p[\operatorname{Gal}(K_n/K)] \otimes_{\mathbf{Z}_p} \mathbf{Z}_p(\eta) : \mu \mapsto \overline{\mu} \otimes \int_{\Gamma_n} \eta d\mu,$$
 (12)

which induces a specialization homomorphism:

$$H^{i}_{\mathrm{Iw}}(K,T) \to H^{i}(K, \mathbf{Z}_{p}[\mathrm{Gal}(K_{n}/K)] \otimes_{\mathbf{Z}_{p}} T(\eta)) = H^{i}(K_{n}, T(\eta)).$$
 (13)

where we used Shapiro's Lemma. Hence we can think of Iwasawa cohomology as a gadget which simultaneously interpolates the Galois cohomology at all levels at p and all twists at unramified characters with p-power conductor.

Lemma 3.5. The two definitions of $H^i_{\mathrm{Iw}}(K,T)$ are equivalent.

Proof. By an application of Shapiro's lemma there is an isomorphism

$$\lim_{n} H^{i}(K_{n}, T) \cong \lim_{n} H^{i}(K, \mathbf{Z}_{p}[\operatorname{Gal}(K_{n}/K)] \otimes_{\mathbf{Z}_{p}} T). \tag{14}$$

where the transition maps on the right are induced by the maps $\mathbf{Z}_p[\operatorname{Gal}(K_{n+1}/K)] \to \mathbf{Z}_p[\operatorname{Gal}(K_n/K)]$. Now one wants to commute the limit with the $H^i(-)$. In order to do this, you will find that you have to use Mittag-Leffler in the following form: if $\{M_n\}_n$ is a tower of finite modules over the tower of rings $\{R_n\}_n = \{\mathbf{Z}_p[\operatorname{Gal}(K_n/K)]\}_n$ satisfying the sheaf condition $R_n \otimes_{R_{n+1}} M_{n+1} \xrightarrow{\sim} M_n$, then $R^1 \lim_n M_n = 0$.

Let $\eta: \Gamma_K \to \mathbf{Z}_p^{\times}$ be a continuous character. We recall that we can multiply a measure μ by η . It is easily seen that $g(\eta \cdot \mu) = \eta(\overline{g})^{-1}(\eta \cdot \mu)$ for $g \in G_K$. Hence there is an isomorphism of $\mathbf{Z}_p[G_K]$ -modules $\mathbf{Z}_p[\Gamma_K] \to \mathbf{Z}_p[\Gamma_K] \otimes \mathbf{Z}_p(\eta)$ sending $\mu \mapsto (\eta \cdot \mu) \otimes e_{\eta}$. Hence we get a \mathbf{Z}_p -linear isomorphism i_{η} as in the square:

$$H^{i}_{\mathrm{Iw}}(K,T) \xrightarrow{\cong i_{\eta}} H^{i}_{\mathrm{Iw}}(K,T(\eta))$$

$$\parallel \qquad \qquad \parallel$$

$$H^{i}(K,\mathbf{Z}_{p}\llbracket\Gamma_{K}\rrbracket \otimes_{\mathbf{Z}_{p}} T) \xrightarrow{\cong} H^{i}(K,\mathbf{Z}_{p}\llbracket\Gamma_{K}\rrbracket \otimes_{\mathbf{Z}_{p}} T(\eta))$$

$$(15)$$

The isomorphism i_{η} is not $\mathbf{Z}_{p}\llbracket\Gamma_{K}\rrbracket$ -linear: the action gets twisted through η .

4 Coleman power series

Now we specialize to the case when $K = \mathbf{Q}_p$. We recall again that $H^1_{\mathrm{Iw}}(K, \mathbf{Z}_p(1)) = \lim_n K_n^{\times} \supseteq \lim_n \mathscr{O}_{K_n}^{\times} =: U_{\infty}$ by Kummer theory. Put $\pi_n := \varepsilon_n - 1$.

Theorem 4.1. For every $u = (u_n)_{n \geqslant 1} \in U_\infty$ there is a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^\times$ such that $f_u(\pi_n) = u_n$ for every $n \geqslant 1$.

The Coleman map is the composite

$$U_{\infty} \xrightarrow{u \mapsto f_{u}} \mathbf{Z}_{p} \llbracket T \rrbracket^{\times} \xrightarrow{(1+T) \frac{d}{dT} \log} \mathbf{Z}_{p} \llbracket T \rrbracket, \tag{16}$$

this will be used in later talks.

Example 4.2. Let $a \in \mathbb{Z}_p^{\times}$. If $u_n = (\varepsilon_n^a - 1)/(\varepsilon_n - 1)$ is the system of cyclotomic units, then $f_u(T) = ((1+T)^a - 1)/T$.

Proof of Theorem 4.1. Uniqueness: Follows from Weierstrass preparation (an analytic function on the open disk can only have finitely many zeros inside a closed disk of smaller radius).

Existence: We only give a sketch and direct the reader to [Col04, §7.3] for the details. Consider the ring of integers of the tilt: $\mathscr{O}_{\widehat{K}_{\infty}}^{\flat} := \lim_{x \mapsto x^p} \mathscr{O}_{\widehat{K}_{\infty}}/\pi_1$. This contains the element $\overline{\pi} := (\dots, \overline{\pi}_2, \overline{\pi}_1, 0)$ of norm $|\overline{\pi}|_{\flat} = p^{-p/(p-1)} < 1$. So $T \mapsto \overline{\pi}$ determines a map $\mathbf{F}_p[\![T]\!] \to \mathscr{O}_{\widehat{K}_{\infty}}^{\flat}$. As it turns out, the image of this map is the ring of integers in the field of norms: $E_{\mathbf{Q}_p}^+ = \lim_{x \mapsto x^p} \mathscr{O}_{K_n}/\pi_1$. It is not hard to show that $E_{\mathbf{Q}_p}^+$ contains $\overline{u} = (\dots, \overline{u}_2, \overline{u}_1, \overline{u}_1^p)$. So certainly there exists $f \in \mathbf{Z}_p[\![T]\!]$ with $f(\overline{\pi}) = \overline{u}$, which gives the Coleman power series "approximately".

Now we use a fixed-point iteration to get the Coleman power series on the nose. To this end we introduce the operator $N: \mathbf{Z}_p[\![T]\!] \to \mathbf{Z}_p[\![T]\!]$ determined by $N(g)((1+T)^p-1) = \prod_{\zeta^p=1} g((1+T)\zeta-1)$. It is not hard to show that $N(g)(\pi_n) = N_{K_{n+1}/K_n}(g(\pi_{n+1}))$ and $\pi_1 \mid (N(g)-g)$ for any g.

Taking our "approximate f" from before, we set $f_u := \lim_{k \to \infty} N^k(f)$. It can be shown that this converges when $f \in \mathbf{Z}_p[\![T]\!]^\times$, which holds when $|\overline{u}|_{\flat} = 1$, and fortunately one can easily reduce to this case. We have $N(f_u) = f_u$ by construction. Put $v_n = f_u(\pi_n)$, we know from the properties of N above that $N_{K_{n+1}/K_n}(v_{n+1}) = v_n$ and $v_n = u_n \pmod{\pi_1}$, we want to show that $v_n = u_n$.

It can be shown that the norm maps restrict to maps

$$1 + \pi_1^k \mathcal{O}_{K_{n+1}} \xrightarrow{N_{K_{n+1}/K_n}} 1 + \pi_1^{k+1} \mathcal{O}_{K_n}, \tag{17}$$

for every $n, k \ge 0$. Put $w_n = v_n/u_n$, then $w_n \in 1 + \pi_1 \mathcal{O}_{K_n}$ and $N_{K_{n+1}/K_n}(w_{n+1}) = w_n$. Hence by (17) and induction $w_n = N_{K_{n+k}/K_n}(w_{n+k}) \in 1 + \pi_1^{k+1} \mathcal{O}_{K_n}$ for every $k \ge 0$, so that $w_n = 1$.

References

- [Col99] Pierre Colmez. Fonctions L p-adiques. $S\'{e}minaire$ Bourbaki, 41:21–58, 1998–1999.
- [Col04] Pierre Colmez. Fontaine's rings and p-adic L-functions. Notes for a course given at Tsinghua University in October-December 2004. Available at https://webusers.imj-prg.fr/~pierre.colmez/tsinghua.pdf, 2004.
- [Was97] Lawrence C. Washington. *Introduction to cyclotomic fields*, volume 83 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1997.