Lab 8 13-09-2022

September 13, 2022

- 0.1 Programs using matplotlib / seaborn for data visualisation
- 0.1.1 a) Write a program to draw univariate visualization plots(line plot, histogram, boxplot, barchart, piechart) with matplotlib for iris dataset

```
[54]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
[9]: i = pd.read_csv('iris.csv')
df = pd.DataFrame(i)
print(df)
```

	sepal_length	${\tt sepal_width}$	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

.

.

.

.

.

0.1.2 Histogram

```
[76]: x = df["sepal_length"]
    plt.hist(x, bins = 20, color = "g")
    plt.title("Sepal Length")
    plt.xlabel("Sepal_Length")
    plt.ylabel("Count")
```

[76]: Text(0, 0.5, 'Count')

2

```
[69]: df["petal_length"].plot(kind = 'hist')
    plt.title("Petal Length")
    plt.xlabel("Sepal_Length")
    plt.ylabel("Count")
```

[69]: Text(0, 0.5, 'Count')

0.1.3 Line

```
[70]: df.plot(kind = 'line')
plt.title("Line Plot")
```

[70]: Text(0.5, 1.0, 'Line Plot')


```
[21]: df["sepal_length"].plot(kind = 'line')
  plt.title("Sepal Length")
  plt.xlabel("Sepal_Length")
  plt.ylabel("Count")
```

[21]: Text(0, 0.5, 'Count')

0.1.4 Box

```
[73]: df.boxplot()
  plt.ylabel("Count")
  plt.title("Box plot")
```

[73]: Text(0.5, 1.0, 'Box plot')


```
[71]: df["sepal_length"].plot(kind = 'box')
plt.title("Sepal_Length")
#plt.xlabel("Sepal_Length")
plt.ylabel("Count")
```

[71]: Text(0, 0.5, 'Count')

0.1.5 Barplot

```
[77]: plt.bar(df['species'],df['sepal_length'])
    plt.title('Bar Chart')
    plt.xlabel('Species')
    plt.ylabel('sepal_length')
```

[77]: Text(0, 0.5, 'sepal_length')


```
[96]: plt.bar(df['species'],df['petal_length'], color = 'g')
    plt.xlabel('Species')
    plt.ylabel('petal_length')
```

[96]: Text(0, 0.5, 'petal_length')

0.1.6 Pie

```
[88]: plt.pie(df['species'].
       ovalue_counts(), labels=['setosa', 'versicolor', 'virginica'], autopct='%1.0f%%', □
       ⇒shadow=True)
[88]: ([<matplotlib.patches.Wedge at 0x7fe312ad0e20>,
        <matplotlib.patches.Wedge at 0x7fe312adc7f0>,
        <matplotlib.patches.Wedge at 0x7fe312ae81c0>],
       [Text(0.5499999702695115, 0.9526279613277875, 'setosa'),
       Text(-1.0999999999994, -1.0298943258065002e-07, 'versicolor'),
       Text(0.5500001486524352, -0.9526278583383436, 'virginica')],
       [Text(0.299999837833699, 0.5196152516333385, '33%'),
       Text(-0.59999999999974, -5.6176054134900006e-08, '33%'),
       Text(0.30000008108314646, -0.5196151954572783, '33%')])
```


- 0.1.7 b) Write a program to draw multivariate visualization plots (scatter plots, scatter multiple, scatter matrix, bubble plot) with matplotlib for iris dataset
- 0.1.8 Scatter plot

```
[42]: df.plot.scatter(x='petal_length', y = 'petal_width')
```

[42]: <AxesSubplot:xlabel='petal_length', ylabel='petal_width'>

0.1.9 Scatter Multiple

```
[44]: ax1 = df.plot(kind='scatter', x='petal_length', y = 'petal_width', \( \triangle \) ax2 = df.plot(kind='scatter', x='petal_length', y = 'sepal_length', \( \triangle \) ax2 = df.plot(kind='scatter', x='petal_length', y = 'sepal_length', \( \triangle \) ax3 = df.plot(kind='scatter', x='petal_length', y = \( \triangle \) ax3 = df.plot(kind='scatter', x='petal_length', y = \( \triangle \) 'sepal_width', label='petal_length Vs sepal_width', color='b', ax=ax2) print(ax1 == ax2 == ax3)
```

True

0.1.10 Scatter Matrix

```
[47]: from pandas.plotting import scatter_matrix scatter_matrix(df, alpha=0.5, diagonal='kde') pd.plotting.scatter_matrix(df)
```

```
[47]: array([[<AxesSubplot:xlabel='sepal length', ylabel='sepal length'>,
              <AxesSubplot:xlabel='sepal_width', ylabel='sepal_length'>,
              <AxesSubplot:xlabel='petal_length', ylabel='sepal_length'>,
              <AxesSubplot:xlabel='petal_width', ylabel='sepal_length'>],
             [<AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>,
              <AxesSubplot:xlabel='sepal_width', ylabel='sepal_width'>,
              <AxesSubplot:xlabel='petal_length', ylabel='sepal_width'>,
              <AxesSubplot:xlabel='petal_width', ylabel='sepal_width'>],
             [<AxesSubplot:xlabel='sepal_length', ylabel='petal_length'>,
              <AxesSubplot:xlabel='sepal_width', ylabel='petal_length'>,
              <AxesSubplot:xlabel='petal_length', ylabel='petal_length'>,
              <AxesSubplot:xlabel='petal_width', ylabel='petal_length'>],
             [<AxesSubplot:xlabel='sepal_length', ylabel='petal_width'>,
              <AxesSubplot:xlabel='sepal_width', ylabel='petal_width'>,
              <AxesSubplot:xlabel='petal_length', ylabel='petal_width'>,
              <AxesSubplot:xlabel='petal width', ylabel='petal width'>]],
            dtype=object)
```


0.1.11 Bubble Plot

```
[98]: plt.scatter('petal_length', 'petal_width', s='sepal_length', alpha=0.5, udata=df)
```

[98]: <matplotlib.collections.PathCollection at 0x7fe3123a3b50>

0.1.12 c) Write a program to draw univariate and multivariate visualization plots with seaborn(line plot, pairplot, jointplot, heatmap) for iris dataset

0.1.13 Line plot

```
[57]: sns.lineplot(data=df)
```

[57]: <AxesSubplot:>

0.1.14 Pair Plot

```
[59]: sns.pairplot(data=df,kind='scatter')
```

[59]: <seaborn.axisgrid.PairGrid at 0x7fe314b0e490>

0.1.15 Joint Plot

```
[58]: sns.jointplot(x='sepal_length',y='sepal_width',data=df,height=4)
```

[58]: <seaborn.axisgrid.JointGrid at 0x7fe314c604c0>

0.1.16 Heat Map

[63]: sns.heatmap(df.corr(),annot=True)

[63]: <AxesSubplot:>

0.1.17 Boxplot

```
[91]: p = sns.boxplot(data=iris)
p.set_ylabel("count")
```

[91]: Text(0, 0.5, 'count')

0.1.18 Striplot

```
[99]: sns.stripplot(data=df)
```

[99]: <AxesSubplot:>

0.1.19 Swarm

```
[100]: sns.swarmplot(x='species', y='sepal_length', data=df)
```

[100]: <AxesSubplot:xlabel='species', ylabel='sepal_length'>

0.1.20 Count plot

[101]: sns.countplot(data=df)

[101]: <AxesSubplot:ylabel='count'>

0.1.21 Violin plot

[102]: sns.violinplot(data=df)

[102]: <AxesSubplot:>

0.1.22 Boxenplot

[104]: sns.boxenplot(data=df)

[104]: <AxesSubplot:>

0.1.23 kdeplot

[107]: sns.kdeplot(data=df)

[107]: <AxesSubplot:ylabel='Density'>

