EST AVAILABLE COPY

PAT-NO:

JP410129523A

DOCUMENT-IDENTIFIER:

JP 10129523 A

TITLE:

SUSPENSION UPPER ARM SUPPORT STRUCTURE

PUBN-DATE:

May 19, 1998

INVENTOR-INFORMATION:

NAME

HASHIMOTO, NORIO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NISSAN MOTOR CO LTD

N/A

APPL-NO:

JP08292796

APPL-DATE:

November 5, 1996

INT-CL (IPC): B62D025/08, B60G007/02

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a suspension upper arm support

which is easy to obtain geometry precision without changing the opening

direction of a cross section of an arm bracket on the way.

SOLUTION: An arm bracket 9 is constituted to be a hat shape in a cross

section which is opened to outside A in car width direction along vertical

direction and to be an unfolded fan shape directing a lower end part

downward. As there is no switchback which changes an opening direction in the

cross section on the way of the arm bracket 9, rigidity can be obtained easily.

The structure can prevent the torsion of the arm bracket 9 and is advantageous

in obtaining geometry precision.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-129523

(43)公開日 平成10年(1998) 5月19日

(51) Int.Cl.8

B 6 2 D 25/08

B60G 7/02

識別記号

FΙ

B 6 2 D 25/08

B60G 7/02

E

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出願番号

特願平8-292796

(71)出願人 000003997

日産自動車株式会社

神奈川県横浜市神奈川区宝町2番地

(22)出願日 平成8年(1996)11月5日

(72)発明者 橘本 礼生

神奈川県横浜市神奈川区宝町2番地日産自

動車株式会社内

(74)代理人 弁理士 高月 猛

(54) 【発明の名称】 サスペンションアッパアーム支持構造

(57)【要約】

【課題】 アームブラケットの断面の開き方向が途中で 変化せず、ジオメトリー精度の得やすいサスペンション アッパアーム支持構造を提供する。

【解決手段】 アームブラケット9を上下方向にわたっ て車幅方向外側Aへ開いた断面ハット形状とし且つ下端 部11を下側に向けて末広がり形状にした。アームブラ ケット9の途中に断面に開き方向を変更する切返しがな いため、剛性が得やすい。アームブラケット9のねじれ が防止され、ジオメトリー精度を得る上においても有利 である。

1/21/05, EAST Version: 2.0.1.4

1

【特許請求の範囲】

【請求項1】 ストラットハウジングの下端部をフロントサイドメンバに結合し、該ストラットハウジングの前後端部に車幅方向外側からアームブラケットを上下方向に沿って取付け、該アームブラケットの下端部をフロントサイドメンバに結合すると共に、アームブラケットの一般部でサスペンションアッパアームの両端部を支持したサスペンションアッパアーム支持構造であって、前記アームブラケットを上下方向にわたって車幅方向外側へ開いた断面ハット形状とし且つ下端部を下側に向け 10 て末広がり形状にしたことを特徴とするサスペンションアッパアーム支持構造。

【請求項2】 前後のアームブラケットに前後方向に沿う連結ブラケットの両端部を車幅方向外側から取付けて、各アームブラケットを閉断面にした請求項1記載のサスペンションアッパアーム支持構造。

【請求項3】 連結ブラケットの両端部がアームブラケットの下端部に取付けられる請求項2記載のサスペンションアッパアーム支持構造。

【請求項4】 連結ブラケットでパイプを支持した請求 20 項3記載のサスペンションアッパアーム支持構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は自動車のサスペンションアッパアーム支持構造に関する。

[0002]

【従来の技術】自動車のフロントサスペンションにおけるサスペンションアッパアームは、先端が二股形状になっており、その両端部がストラットハウジングの前後に設けられたアームブラケットの一般部に支持されている。30(類似技術として、特開平4-189683号公報参照)。

【0003】サスペンションアッパアームの両端部はアームブラケットに対して車幅方向外側から取付けられて支持されるため、少なくもサスペンションアッパアームが支持される一般部は車幅方向外側へ開いた断面形状でなければならない。また、それとは逆に、アームブラケットの下端部はストラットハウジングやフロントサイドメンバに取付けられて閉断面を形成すべく、車幅方向内側へ開いた断面形状となっている。

[0004]

【発明が解決しようとする課題】しかしながら、このような従来の技術にあっては、アームブラケットの断面形状が、サスペンションアッパアームを支持する一般部では車幅方向外側へ開いており、下端部では車幅方向内側へ開いているため、その切返し部分における剛性低下を補うためにアームブラケット全体の板厚を上げる必要があり、車体重量の増加を招いてしまう。

INDITED 125.

れぞれ上下で断面の開き方向が変化することは、サスペンションアッパアームのジオメトリー精度を得る上においても不利であり、ジオメトリー調整に時間がかかる。 【0006】この発明はこのような従来の技術に着目してなされたものであり、アームブラケットの断面の開き方向が途中で変化せず、ジオメトリー精度の得やすいサスペンションアッパアーム支持構造を提供するものである。

[0007]

【課題を解決するための手段】この発明は、ストラットハウジングの下端部をフロントサイドメンバに結合し、該ストラットハウジングの前後端部に車幅方向外側からアームブラケットを上下方向に沿って取付け、該アームブラケットの下端部をフロントサイドメンバに結合すると共に、アームブラケットの一般部でサスペンションアッパアームの両端部を支持したサスペンションアッパアーム支持構造であって、前記アームブラケットを上下方向にわたって車幅方向外側へ開いた断面ハット形状とし且つ下端部を下側に向けて末広がり形状にしたものである。

【0008】この発明によれば、アームブラケットが上下方向にわたって車幅方向外側へ開いた断面ハット形状をしており、どの部分でもサスペンションアッパアームを支持できる。そして、アームブラケットの途中に断面に開き方向を変更する切返しがないため、剛性が得やすい。アームブラケットの下端部をフロントサイドメンバに結合しても閉断面は得られないが、下端部が末広がり形状をしており、広い面積で高剛性のフロントサイドメンバに結合されるため、閉断面を形成する場合と同等の剛性が得られる。

【0009】また、このようにアームブラケットの下端 部を広い面積でフロントサイドメンバに結合すること は、アームブラケットのねじれが防止され、ジオメトリ ー精度を得る上においても有利である。

【0010】連結ブラケットにより各アームブラケット (特に下端部)を各々閉断面化すれば、アームブラケットの剛性が更に向上する。連結ブラケットを利用してパイプを支持しても良い。

[0011]

) 【発明の実施の形態】以下、この発明の好適な実施形態 を図1〜図6に基づいて説明する。図中、Aが車幅方向 外側で、Bが車幅方向内側である。

【0012】図1は自動車のエンジンルームの右側の構造を示している。1はフロントサイドメンバで、前後方向に配されている。フロントサイドメンバ1にはフードリッジパネル2の下端部が結合されている。このフードリッジパネル2は概略断面L形状で、その上部には2枚に部材を接合した閉断面のフードリッジレインフォース3が前後方向に沿って配されている。

【0005】また、前後のアームブラケットにおいてそ 50 【0013】フードリッジパネル 2内にはホイルハウス 1/21/05, EAST Version: 2.0.1.4

インナ4が設けられ、該ホイルハウスインナ4内にはストラットハウジング5が設けられている。ストラットハウジング5の上部にはサスペンションの突き上げ入力を受け止めるためのサポート6が取付けられている。また、ストラットハウジング5の前後端部には、上下に湾曲した形状の凸部7が形成されている。更に、ストラットハウジング5の中央には孔8も形成されている。

【0014】9がアームブラケットで、上下方向にわたって車幅方向外側へ開いた断面ハット形状をしており、一般部10は通常の幅で形成されているが、下端部11は下側に向けた末広がり形状になっている。前記のストラットハウジング5における凸部7はこのアームブラケット9の一般部10に相応した形状をしている。従って、このアームブラケット9は、一般部10が凸部7に車幅方向外側から結合され、下端部11がフロントサイドメンバ1に結合される。一般部10の上部には前後に貫通する支持孔12が形成され、凸部7の側面にも対応する支持孔13が形成されている。

【0015】アームブラケット9の下端部11は、図3 及び図6に示すように、互いに接近した側面11aの方 20 が、離反している側面11bよりも長く形成されてい る。そして、この前後の下端部11には所定の上下幅を 有する連結ブラケット14が前後方向に沿った状態で車 幅方向外側から取付けられている。この連結ブラケット 14を取付けることにより、各下端部11は閉断面とな る。

【0016】また、連結ブラケット14の両端部15 も、下端部11の側面11a、11bの長さの違いに相応してクランク状に曲折している。これは連結ブラケット14の曲折部15a(図6参照)を各下端部11の側面11aに係合させることにより、該下端部11の前後への広がりを防止するためである。更に、連結ブラケット14に長手方向に沿ってビード部16が形成されており、該連結ブラケット14の剛性を高めている。

【0017】この連結ブラケット14の途中部分には車幅方向外側へ向けた取付片17が一体的に曲折形成してあり、該取付片17にストラットハウジング5の孔8から挿入したブレーキパイプ18が支持されている。ブレーキパイプ18はこの取付片17においてブレーキホース19に接続されており、その接続部がクリップ20に40て固定されている。

【0018】そして、このようにして取付けたアームブラケット9の上部にサスペンションアッパアーム21の両端部22を支持する。サスペンションアッパアーム21の支持は、アームブラケット9の上部及び凸部7に形成した支持孔12、13を貫通するボルト・ナット手段23により行われる。

【0019】この実施例によれば、アームブラケット9が上下方向にわたって車幅方向外側へ開いた断面ハット 形状をしており、途中に断面に開き方向を変更する切返 50 しがないため、剛性が高い。従って、アームブラケット 9の板厚を上げる必要がなく、重量軽減を図ることがで きる。また、アームブラケット9の下端部11が末広が

り形状をしており、広い面積で高剛性のフロントサイド メンバ1に結合されるため、この点においても剛性が向 上する。更に、連結ブラケット14により、各下端部1 1を閉断面化しているため、剛性が更に向上する。

【0020】加えて、アームブラケット9の下端部11 を広い面積でフロントサイドメンバ1に結合すること 10 は、アームブラケット9のねじれが防止され、サスペン ションのジオメトリー精度を得る上においても有利である。

[0021]

【発明の効果】この発明によれば、アームブラケットが 上下方向にわたって車幅方向外側へ開いた断面ハット形 状をしており、どの部分でもサスペンションアッパアー ムを支持できる。そして、アームブラケットの途中に断 面に開き方向を変更する切返しがないため、剛性が得や すい。

【0022】また、このようにアームブラケットの下端 部を広い面積でフロントサイドメンバに結合すること は、アームブラケットのねじれが防止され、ジオメトリ ー精度を得る上においても有利である。

【0023】連結ブラケットにより各アームブラケット (特に下端部)を各々閉断面化すれば、アームブラケットの剛性が更に向上する。連結ブラケットを利用してパイプを支持しても良い。

【図面の簡単な説明】

【図1】この発明の一実施形態に係るサスペンションア 30 ッパアーム支持構造を示すストラットハウジング周辺部 の斜視図。

【図2】ストラットハウジングの分解斜視図。

【図3】アームブラケットの下端部を斜面部外側から見た斜視図。

【図4】図3中矢示SA-SA線に沿う断面図。

【図5】図1中矢示SB-SB線に沿う断面図。

【図6】図3中矢示SC-SC線に沿う断面図。 【符号の説明】

1 フロントサイドメンバ

5 ストラットハウジング

9 アームブラケット

10 一般部

11 下端部

14 連結ブラケット

18 ブレーキパイプ

21 サスペンションアッパアーム

22 両端部

A 車幅方向外側

B 車幅方向内側

1/21/05, EAST Version: 2.0.1.4

1/21/05, EAST Version: 2.0.1.4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.