Automne 2014

Modèles Mathématiques pour l'Image

Raphaëlle Chaine

Master Professionnel Image

Université Claude Bernard - Lyon 1

1

Echantillonnage des signaux (discrétisation)

- La plupart des signaux observés dans la nature sont analogiques
- Or le traitement numérique des signaux se fait sur des valeurs discrètes...
- Il est difficile de traiter par ordinateur des signaux à temps continu en toute généralité
- Quelle représentation adopter?

61

Echantillonnage des signaux (discrétisation)

- Par souci de simplicité, on échantillonne les signaux à un rythme régulier ...
- Echantillonnage régulier caractérisé par une période T_e et une fréquence d'échantillonnage f_e =1/ T_e

• Problème : on ne récupère qu'une partie du signal de départ...

62

Echantillonnage des signaux (discrétisation)

- Comment mesurer la perte d'information?
 - Si on connaît certaines caractéristiques fréquentielles du signal de départ et que la fréquence d'échantillonnage est adaptée à ces caractéristiques, alors il n'y a pas de perte!

63

Modèle théorique de l'échantillonnage régulier

- L'échantillonnage peut-être vu comme une modulation (multiplication) du signal de départ
- Rappel:

set:
$$s(0) = \int_{t=-\infty}^{t=+\infty} s(t)\delta(t)dt$$

$$s(nT_e) = \int_{t=-\infty}^{t=+\infty} s(t)\delta(t-nT_e)dt$$

64

Modèle théorique de l'échantillonnage régulier

- Echantillonnage : séquence d'impulsions de Dirac modulées en amplitude par le signal s(t)
- Multiplication du signal d'origine par le peigne de Dirac $\delta_{T_e}(t)$

Modèle théorique de l'échantillonnage régulier

• On obtient le signal échantillonné se(t)

$$s_e(t) = s(t) \sum_{n = -\infty}^{n = +\infty} \delta(t - nT_e)$$
$$= \sum_{n = -\infty}^{n = +\infty} s(nT_e)\delta(t - nT_e)$$

66

Modèle théorique de l'échantillonnage régulier

- Le peigne de Dirac $\delta_{T_e}(t)$ est une distribution
- La transformée de Fourier d'un peigne de Dirac temporel de période T_e est un peigne de Dirac fréquentiel de période f_e

$$\Delta_{f_e}(f) = f_e \sum_{n = -\infty}^{+\infty} \delta(f - nf_e)$$

67

Modèle théorique de l'échantillonnage régulier

- La transformée de Fourier d'un produit est une convolution
- Donc :

$$S_{f_e}(f) = S(f) \otimes \Delta_{f_e}(f)$$
 Exercice:
$$= \int_{\theta = -\infty}^{\theta = +\infty} S(\theta) \Delta_{f_e}(f - \theta) d\theta$$
 on de cette ligne à la suivante?
$$= \sum_{n = -\infty}^{n = +\infty} S(f - nf_e)$$

Modèle théorique de l'échantillonnage régulier

- Effet de l'échantillonnage dans le domaine fréquentiel :
 - $-\,\dot{S}_{f_e}(f)\,$ répétition périodique du spectre S(f) de s(t) avant l'échantillonnage
 - $-S_{f_e}(f)$ est périodique

69

Echantillonnage f(x) f(x)

Modèle théorique de l'échantillonnage régulier

- Effet de l'échantillonnage
 - = Périodisation du spectre d'origine
- Recouvrement du spectre d'origine :
 - Comment retrouver le spectre d'origine S(f) à partir du spectre $S_{fe}(f)$ résultant de l'échantillonnage du signal?
 - On retrouve des copies de S(f) dans $\boldsymbol{S}_{\text{fe}}(\boldsymbol{f})$
 - Ces copies peuvent être isolées dans le cas d'un spectre de départ à bande limitée :

$$S(f) = 0$$
 pour $|f| > f_{max}$

– Il suffit pour cela que $\,f_e>2f_{max}$

Théorème de Shannon

- Dans le cas où le signal d'origine est à bande limitée (pas de hautes fréquences au delà d'un certain seuil f_{max}), il est possible de revenir, SANS DETERIORATIONS, au signal d'origine.
- Un échantillonnage suffisamment fin est néanmoins nécessaire $f_e>2f_{max}$ (fréquence de Nyquist)
- Le recouvrement se fait par filtrage idéal entre $-f_e/2$ et $+f_e/2$

72

Aliasing

- Dans le cas où les hypothèses du théorème de Shannon ne sont pas vérifiées :
 - Les répétitions périodiques se recouvrent les unes les autres
 - Recouvrement de spectre ou aliasing
 - Impossibilité de reconstruire s(t) de manière exacte à partir de ses échantillons
 - Obtention de la fonction la plus lisse passant par tous les échantillons
- Procéder à un filtre passe-bas avant l'échantillonnage

Cas 2D de l'échantillonnage d'une image analogique

• Le résultat demeure le même, les peignes de Dirac étant remplacés par des brosses de Dirac

Echantillonnage Grille d'échantillonnage

