Average price Forecast in Brent, Croydon, Kensington&Chelsea by type

Yuling Xue

2024-06-13

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
# Load necessary libraries
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
     method
                       from
##
     as.zoo.data.frame zoo
library(tseries)
library(ggplot2)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library(Metrics)
##
## Attaching package: 'Metrics'
## The following object is masked from 'package:forecast':
##
##
       accuracy
```

```
### Brent Area
# Load the data of Brent Area
brent_data <- read.csv("~/Desktop/Updated_Brent_df.csv")</pre>
# Convert the Date column to Date type of Brent Area
brent_data$Date <- as.Date(brent_data$Date, format="%Y-%m-%d")</pre>
# Extract the Average Price for each property type and Date columns in Brent
brent_detached_price <- brent_data$Detached_Average_Price</pre>
brent_semi_detached_price <- brent_data$Semi_Detached_Average_Price</pre>
brent_terraced_price <- brent_data$Terraced_Average_Price</pre>
brent_flat_price <- brent_data$Flat_Average_Price</pre>
brent_dates <- brent_data$Date</pre>
# Create time series object for each property type of Brent Area
brent_detached_ts <- ts(brent_detached_price,</pre>
                         start = c(1995, 1), frequency = 12)
brent_semi_detached_ts <- ts(brent_semi_detached_price,</pre>
                               start = c(1995, 1), frequency = 12)
brent_terraced_ts <- ts(brent_terraced_price,</pre>
                         start = c(1995, 1), frequency = 12)
brent_flat_ts <- ts(brent_flat_price,</pre>
                     start = c(1995, 1), frequency = 12)
# Plot the time series of Brent Area
plot(brent_detached_ts, main = "Brent Detached Average Price Time Series",
     ylab = "Detached Average Price", xlab = "Year")
```

Brent Detached Average Price Time Series


```
plot(brent_semi_detached_ts,
    main = "Brent Semi-Detached Average Price Time Series",
    ylab = "Semi-Detached Average Price", xlab = "Year")
```

Brent Semi-Detached Average Price Time Series

Brent Terraced Average Price Time Series

plot(brent_flat_ts, main = "Brent Flat Average Price Time Series",
 ylab = "Flat Average Price", xlab = "Year")

Brent Flat Average Price Time Series


```
# Calculate the p-value for the original series
#By using ADF test for each property type of Brent Area
adf_test_brent_d <- adf.test(brent_detached_ts)</pre>
adf test brent sd <- adf.test(brent semi detached ts)</pre>
adf_test_brent_t <- adf.test(brent_terraced_ts)</pre>
adf_test_brent_f <- adf.test(brent_flat_ts)</pre>
p_value_brent_d <- adf_test_brent_d$p.value</pre>
p_value_brent_sd <- adf_test_brent_sd$p.value</pre>
p_value_brent_t <- adf_test_brent_t$p.value</pre>
p_value_brent_f <- adf_test_brent_f$p.value</pre>
print(paste("Brent p-value:", p_value_brent_d, p_value_brent_sd,
            p_value_brent_t, p_value_brent_f))
## [1] "Brent p-value: 0.380002094355907 0.376728027975092 0.388089375457254 0.690335496911936"
# Perform first-order differencing of Brent Area
brent_detached_ts_diff <- diff(brent_detached_ts)</pre>
brent_semi_detached_ts_diff <- diff(brent_semi_detached_ts)</pre>
brent_terraced_ts_diff <- diff(brent_terraced_ts)</pre>
brent_flat_ts_diff <- diff(brent_flat_ts)</pre>
# Perform ADF test on differenced series of Brent Area
adf_test_diff_brent_d <- adf.test(brent_detached_ts_diff)</pre>
## Warning in adf.test(brent_detached_ts_diff): p-value smaller than printed
## p-value
adf_test_diff_brent_sd <- adf.test(brent_semi_detached_ts_diff)</pre>
## Warning in adf.test(brent_semi_detached_ts_diff): p-value smaller than printed
## p-value
adf_test_diff_brent_t <- adf.test(brent_terraced_ts_diff)</pre>
## Warning in adf.test(brent_terraced_ts_diff): p-value smaller than printed
## p-value
adf_test_diff_brent_f <- adf.test(brent_flat_ts_diff)</pre>
## Warning in adf.test(brent_flat_ts_diff): p-value smaller than printed p-value
differenced_p_value_brent_d <- adf_test_diff_brent_d$p.value</pre>
differenced_p_value_brent_sd <- adf_test_diff_brent_sd$p.value</pre>
differenced_p_value_brent_t <- adf_test_diff_brent_t$p.value</pre>
differenced_p_value_brent_f <- adf_test_diff_brent_f$p.value</pre>
print(paste("Brent difference1_p-value:", differenced_p_value_brent_d,
            differenced_p_value_brent_sd, differenced_p_value_brent_t,
            differenced_p_value_brent_f))
```

[1] "Brent difference1_p-value: 0.01 0.01 0.01 0.01"

ACF of Differenced Detached Average Price of Brent Area

PACF of Differenced Detached Average Price of Brent Area

ACF of Differenced Semi-Detached Average Price of Brent Area

PACF of Differenced Semi-Detached Average Price of Brent Area

ACF of Differenced Terraced Average Price of Brent Area

PACF of Differenced Terraced Average Price of Brent Area

ACF of Differenced Flat Average Price of Brent Area

PACF of Differenced Flat Average Price of Brent Area


```
##
##
   ARIMA(0,0,0)
                            with zero mean
                                               : 7740.719
   ARIMA(0,0,0)
                            with non-zero mean: 7730.828
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
                                               : 7738.43
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 7730.577
##
   ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                               : 7739.675
   ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 7732.422
##
   ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                               : 7737.926
   ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 7730.441
##
   ARIMA(0,0,0)(1,0,1)[12] with zero mean
   ARIMA(0,0,0)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(0,0,0)(1,0,2)[12] with zero mean
   ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                               : 7738.689
   ARIMA(0,0,0)(2,0,0)[12] with non-zero mean: 7732.147
   ARIMA(0,0,0)(2,0,1)[12] with zero mean
##
   ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(2,0,2)[12] with zero mean
##
  ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : Inf
   ARIMA(0,0,1)
                            with zero mean
                                               : 7721.184
##
   ARIMA(0,0,1)
                            with non-zero mean: 7714.912
  ARIMA(0,0,1)(0,0,1)[12] with zero mean
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 7716.362
## ARIMA(0,0,1)(0,0,2)[12] with zero mean
```

```
ARIMA(0,0,1)(0,0,2)[12] with non-zero mean: 7718.134
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                              : 7721.734
## ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 7716.317
## ARIMA(0,0,1)(1,0,1)[12] with zero mean
   ARIMA(0,0,1)(1,0,1)[12] with non-zero mean: Inf
##
   ARIMA(0,0,1)(1,0,2)[12] with zero mean
  ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
                                              : 7722.546
   ARIMA(0,0,1)(2,0,0)[12] with zero mean
##
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean: 7717.92
##
   ARIMA(0,0,1)(2,0,1)[12] with zero mean
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)(2,0,2)[12] with zero mean
                                              : Inf
   ARIMA(0,0,1)(2,0,2)[12] with non-zero mean: Inf
##
   ARIMA(0,0,2)
                           with zero mean
                                              : 7670.492
##
   ARIMA(0,0,2)
                           with non-zero mean: 7671.266
##
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                              : 7671.62
##
   ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 7672.161
##
   ARIMA(0,0,2)(0,0,2)[12] with zero mean
  ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 7672.638
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                             : 7671.78
##
   ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 7672.376
## ARIMA(0,0,2)(1,0,1)[12] with zero mean
## ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : 7673.991
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
##
                                            : 7672.856
##
   ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: 7673.24
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 7670.969
##
   ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 7671.166
   ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                              : 7671.181
##
   ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : 7671.422
  ARIMA(0,0,3)
                           with zero mean
                                              : 7601.334
##
   ARIMA(0,0,3)
                           with non-zero mean: 7592.637
##
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                              : 7602.418
##
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : 7594.503
##
  ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                             : 7604.415
##
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean: 7596.371
   ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                              : 7602.435
## ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : 7594.514
## ARIMA(0,0,3)(1,0,1)[12] with zero mean
                                              : 7603.948
##
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: 7596.107
##
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                             : 7604.505
   ARIMA(0,0,3)(2,0,0)[12] with non-zero mean: 7596.451
##
  ARIMA(0,0,4)
                           with zero mean
                                              : 7602.754
   ARIMA(0.0.4)
                           with non-zero mean: 7593.162
##
   ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                              : 7604.167
  ARIMA(0,0,4)(0,0,1)[12] with non-zero mean: 7595.238
   ARIMA(0,0,4)(1,0,0)[12] with zero mean
##
                                              : 7604.176
##
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean: 7595.238
##
   ARIMA(0,0,5)
                           with zero mean
                                              : 7597.691
  ARIMA(0,0,5)
                           with non-zero mean: 7590.778
##
   ARIMA(1,0,0)
                           with zero mean
                                              : 7719.156
## ARIMA(1,0,0)
                           with non-zero mean: 7714.272
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                              : 7719.851
## ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 7715.56
## ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                           : 7721.505
```

```
ARIMA(1,0,0)(0,0,2)[12] with non-zero mean: 7717.492
   ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                             : 7719.732
## ARIMA(1,0,0)(1,0,0)[12] with non-zero mean: 7715.522
## ARIMA(1,0,0)(1,0,1)[12] with zero mean
   ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
## ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                              : 7721.106
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 7717.356
##
   ARIMA(1,0,0)(2,0,1)[12] with zero mean
  ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
##
   ARIMA(1,0,0)(2,0,2)[12] with zero mean
                                             : Inf
   ARIMA(1,0,0)(2,0,2)[12] with non-zero mean: Inf
##
  ARIMA(1,0,1)
                                             : 7720.78
                           with zero mean
##
  ARIMA(1,0,1)
                           with non-zero mean: 7715.648
##
   ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                             : 7721.648
##
   ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 7717.121
##
  ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                            : 7723.216
## ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 7718.998
   ARIMA(1,0,1)(1,0,0)[12] with zero mean
## ARIMA(1,0,1)(1,0,0)[12] with non-zero mean : 7717.084
## ARIMA(1,0,1)(1,0,1)[12] with zero mean
## ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : Inf
   ARIMA(1,0,1)(1,0,2)[12] with zero mean
##
## ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : Inf
  ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                            : 7722.764
##
   ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 7718.833
   ARIMA(1,0,1)(2,0,1)[12] with zero mean
  ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)
                           with zero mean
                                             : 7633.682
##
   ARIMA(1,0,2)
                           with non-zero mean: 7632.882
##
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                             : 7635.473
##
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : 7634.845
## ARIMA(1,0,2)(0,0,2)[12] with zero mean
                                             : 7635.445
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean: 7634.416
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                              : 7635.523
## ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : 7634.868
## ARIMA(1,0,2)(1,0,1)[12] with zero mean
                                             : 7635.726
   ARIMA(1,0,2)(1,0,1)[12] with non-zero mean : 7635.169
## ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                            : 7635.517
  ARIMA(1,0,2)(2,0,0)[12] with non-zero mean: 7634.211
## ARIMA(1,0,3)
                           with zero mean
                                             : 7603.044
   ARIMA(1.0.3)
                           with non-zero mean: 7593.761
  ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                             : 7604.319
## ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : 7595.793
                                             : 7604.332
## ARIMA(1,0,3)(1,0,0)[12] with zero mean
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : 7595.796
##
  ARIMA(1,0,4)
                           with zero mean
                                             : Inf
  ARIMA(1,0,4)
                           with non-zero mean: 7593.232
## ARIMA(2,0,0)
                           with zero mean
                                             : 7719.828
## ARIMA(2,0,0)
                           with non-zero mean: 7713.708
## ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                            : 7721.005
## ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 7715.534
## ARIMA(2,0,0)(0,0,2)[12] with zero mean
```

```
ARIMA(2,0,0)(0,0,2)[12] with non-zero mean: 7717.069
## ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                             : 7720.893
## ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 7715.51
## ARIMA(2,0,0)(1,0,1)[12] with zero mean
   ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: Inf
## ARIMA(2,0,0)(1,0,2)[12] with zero mean
## ARIMA(2,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                             : 7721.58
##
   ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 7716.784
##
   ARIMA(2,0,0)(2,0,1)[12] with zero mean
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean : Inf
##
                           with zero mean
                                             : 7718.276
  ARIMA(2,0,1)
##
   ARIMA(2,0,1)
                           with non-zero mean: 7708.904
##
                                             : 7719.598
   ARIMA(2,0,1)(0,0,1)[12] with zero mean
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean: 7710.914
##
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                             : 7720.071
##
   ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 7711.9
##
  ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                            : 7719.471
## ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 7710.905
   ARIMA(2,0,1)(1,0,1)[12] with zero mean
## ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,1)(2,0,0)[12] with zero mean
## ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 7711.452
                           with zero mean
##
   ARIMA(2.0.2)
## ARIMA(2,0,2)
                           with non-zero mean : Inf
  ARIMA(2,0,2)(0,0,1)[12] with zero mean
##
   ARIMA(2,0,2)(0,0,1)[12] with non-zero mean: Inf
   ARIMA(2,0,2)(1,0,0)[12] with zero mean
  ARIMA(2,0,2)(1,0,0)[12] with non-zero mean: Inf
## ARIMA(2,0,3)
                           with zero mean
                                             : Inf
##
   ARIMA(2,0,3)
                           with non-zero mean : Inf
##
   ARIMA(3,0,0)
                           with zero mean
                                             : 7693.597
##
  ARIMA(3,0,0)
                           with non-zero mean: 7680.387
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                             : 7693.13
##
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean: 7681.751
## ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                             : 7693.405
## ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 7682.75
## ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                              : 7692.664
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean: 7681.652
## ARIMA(3,0,0)(1,0,1)[12] with zero mean
  ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                             : 7691.516
   ARIMA(3,0,0)(2,0,0)[12] with non-zero mean: 7682.033
##
  ARIMA(3,0,1)
                           with zero mean
                                              : 7678.696
  ARIMA(3,0,1)
                           with non-zero mean: 7667.206
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
##
                                             : 7679.744
##
   ARIMA(3,0,1)(0,0,1)[12] with non-zero mean: 7669.184
##
  ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                             : 7679.55
  ARIMA(3,0,1)(1,0,0)[12] with non-zero mean: 7669.17
## ARIMA(3,0,2)
                           with zero mean
                                             : Inf
## ARIMA(3,0,2)
                           with non-zero mean : Inf
## ARIMA(4,0,0)
                           with zero mean
                                             : 7661.856
## ARIMA(4,0,0)
                           with non-zero mean: 7656.028
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 7663.443
```

```
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 7657.976
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 7663.374
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean : 7657.96
## ARIMA(4,0,1)
                          with zero mean
                                            : 7663.922
## ARIMA(4,0,1)
                          with non-zero mean: 7658.039
##
  ARIMA(5,0,0)
                          with zero mean
                                          : 7663.918
                          with non-zero mean: 7657.932
  ARIMA(5.0.0)
##
##
##
  Best model: ARIMA(0,0,5)
                                      with non-zero mean
fit arima brent sd <- auto.arima(brent semi detached ts diff, stepwise = FALSE,
                          approximation = FALSE, trace = TRUE)
##
##
   ARIMA(0,0,0)
                           with zero mean
                                             : 7440.947
## ARIMA(0,0,0)
                           with non-zero mean: 7430.444
## ARIMA(0,0,0)(0,0,1)[12] with zero mean
## ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 7430.136
## ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                           : 7439.994
## ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 7432.119
## ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                           : 7438.067
## ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 7430.062
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
## ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
                                            : Inf
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                           : 7439.326
## ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 7432.013
## ARIMA(0,0,0)(2,0,1)[12] with zero mean
                                           : Inf
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,2)[12] with zero mean
## ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,1)
                                            : 7424.814
                           with zero mean
## ARIMA(0,0,1)
                           with non-zero mean: 7417.924
## ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                           : 7425.17
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 7419.165
## ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                           : 7426.88
## ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 7421.178
## ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                           : 7425.034
## ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 7419.141
## ARIMA(0,0,1)(1,0,1)[12] with zero mean
## ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,1)(1,0,2)[12] with zero mean
## ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                           : 7426.541
## ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 7421.123
```

with non-zero mean: 7388.812

: 7388.065

ARIMA(0,0,1)(2,0,1)[12] with zero mean

ARIMA(0,0,1)(2,0,2)[12] with zero mean

ARIMA(0,0,2)

ARIMA(0,0,2)

ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf

ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf

with zero mean

```
ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                             : 7389.047
   ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 7389.536
## ARIMA(0,0,2)(0,0,2)[12] with zero mean
## ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 7388.872
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                             : 7389.281
##
   ARIMA(0,0,2)(1,0,0)[12] with non-zero mean: 7389.844
  ARIMA(0,0,2)(1,0,1)[12] with zero mean
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean: 7391.187
##
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
                                              : 7388.876
##
   ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: 7389.167
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                              : 7386.719
##
   ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 7386.768
   ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                              : 7386.483
##
   ARIMA(0,0,2)(2,0,1)[12] with non-zero mean: 7386.611
##
                                              : 7312.148
   ARIMA(0,0,3)
                           with zero mean
##
   ARIMA(0,0,3)
                            with non-zero mean: 7302.678
##
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                              : 7313.098
##
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean: 7304.537
  ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                             : 7314.923
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean: 7306.17
##
   ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                              : 7313.149
## ARIMA(0,0,3)(1,0,0)[12] with non-zero mean: 7304.554
                                              : 7314.409
## ARIMA(0,0,3)(1,0,1)[12] with zero mean
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: 7306.016
##
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                             : 7315.169
   ARIMA(0,0,3)(2,0,0)[12] with non-zero mean: 7306.251
##
   ARIMA(0,0,4)
                           with zero mean
                                              : 7314.037
   ARIMA(0,0,4)
                           with non-zero mean: 7303.999
                                              : 7315.152
##
   ARIMA(0,0,4)(0,0,1)[12] with zero mean
  ARIMA(0,0,4)(0,0,1)[12] with non-zero mean: 7306.043
##
   ARIMA(0,0,4)(1,0,0)[12] with zero mean
                                              : 7315.198
##
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean: 7306.047
##
   ARIMA(0,0,5)
                           with zero mean
                                              : 7306.096
##
  ARIMA(0,0,5)
                           with non-zero mean: 7299.433
##
   ARIMA(1,0,0)
                           with zero mean
                                              : 7423.071
                           with non-zero mean: 7417.448
##
   ARIMA(1,0,0)
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                             : 7423.402
## ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 7418.516
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
##
                                              : 7425.324
##
   ARIMA(1,0,0)(0,0,2)[12] with non-zero mean: 7420.571
   ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                            : 7423.318
##
  ARIMA(1,0,0)(1,0,0)[12] with non-zero mean: 7418.507
   ARIMA(1,0,0)(1,0,1)[12] with zero mean
##
   ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : Inf
   ARIMA(1,0,0)(1,0,2)[12] with zero mean
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
##
##
   ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                              : 7425.145
##
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean: 7420.555
  ARIMA(1,0,0)(2,0,1)[12] with zero mean
##
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,1)
                           with zero mean
                                              : 7424.875
## ARIMA(1,0,1)
                           with non-zero mean: 7419.04
```

```
ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                             : 7425.347
   ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 7420.279
## ARIMA(1,0,1)(0,0,2)[12] with zero mean
## ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 7422.336
   ARIMA(1,0,1)(1,0,0)[12] with zero mean
## ARIMA(1,0,1)(1,0,0)[12] with non-zero mean : 7420.265
## ARIMA(1,0,1)(1,0,1)[12] with zero mean
## ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : Inf
   ARIMA(1,0,1)(1,0,2)[12] with zero mean
##
   ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : Inf
  ARIMA(1,0,1)(2,0,0)[12] with zero mean
##
   ARIMA(1,0,1)(2,0,0)[12] with non-zero mean: 7422.307
   ARIMA(1,0,1)(2,0,1)[12] with zero mean
##
   ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
##
                                              : 7346.976
   ARIMA(1,0,2)
                           with zero mean
##
   ARIMA(1,0,2)
                           with non-zero mean: 7346.055
##
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                              : 7348.628
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean: 7347.931
## ARIMA(1,0,2)(0,0,2)[12] with zero mean
                                             : 7347.468
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean: 7346.259
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                              : 7348.724
## ARIMA(1,0,2)(1,0,0)[12] with non-zero mean: 7347.981
## ARIMA(1,0,2)(1,0,1)[12] with zero mean
                                              : 7348.165
   ARIMA(1,0,2)(1,0,1)[12] with non-zero mean : 7347.536
## ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                             : 7347.543
  ARIMA(1,0,2)(2,0,0)[12] with non-zero mean: 7345.966
##
                           with zero mean
                                             : 7314.119
  ARIMA(1,0,3)
   ARIMA(1,0,3)
                           with non-zero mean: 7304.314
                                              : 7315.16
  ARIMA(1,0,3)(0,0,1)[12] with zero mean
## ARIMA(1,0,3)(0,0,1)[12] with non-zero mean: 7306.303
##
   ARIMA(1,0,3)(1,0,0)[12] with zero mean
                                             : 7315.209
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean: 7306.31
##
   ARIMA(1,0,4) with zero mean
                                   : Inf
##
  ARIMA(1,0,4)
                           with non-zero mean: 7303.534
##
   ARIMA(2,0,0)
                           with zero mean
                                              : 7424.328
                           with non-zero mean : 7417.64
## ARIMA(2,0,0)
## ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                             : 7425.075
## ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 7419.267
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                             : 7426.848
## ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 7421.223
  ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                            : 7424.977
## ARIMA(2,0,0)(1,0,0)[12] with non-zero mean: 7419.246
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
##
  ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(2,0,0)(1,0,2)[12] with zero mean
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean : Inf
##
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                              : 7426.547
##
  ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 7421.134
  ARIMA(2,0,0)(2,0,1)[12] with zero mean
## ARIMA(2,0,0)(2,0,1)[12] with non-zero mean : Inf
                                              : 7423.744
## ARIMA(2,0,1)
                           with zero mean
## ARIMA(2,0,1)
                           with non-zero mean: 7414.163
## ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                             : Inf
## ARIMA(2,0,1)(0,0,1)[12] with non-zero mean: 7416.083
```

```
## ARIMA(2,0,1)(0,0,2)[12] with non-zero mean : 7417.724
## ARIMA(2,0,1)(1,0,0)[12] with zero mean
## ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 7416.069
## ARIMA(2,0,1)(1,0,1)[12] with zero mean
## ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                           : 7425.464
## ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 7417.511
##
   ARIMA(2,0,2)
                           with zero mean
                                              : 7313.483
## ARIMA(2,0,2)
                           with non-zero mean : Inf
## ARIMA(2,0,2)(0,0,1)[12] with zero mean
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(2,0,3)
                           with zero mean
                                             : 7308.38
##
   ARIMA(2,0,3)
                           with non-zero mean: 7299.644
## ARIMA(3,0,0)
                           with zero mean
                                             : 7400.92
## ARIMA(3,0,0)
                           with non-zero mean: 7387.187
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                            : 7400.256
## ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 7388.524
## ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                            : 7401.177
## ARIMA(3,0,0)(0,0,2)[12] with non-zero mean: 7389.951
                                            : 7399.857
## ARIMA(3,0,0)(1,0,0)[12] with zero mean
## ARIMA(3,0,0)(1,0,0)[12] with non-zero mean: 7388.445
## ARIMA(3,0,0)(1,0,1)[12] with zero mean
## ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                           : 7399.716
## ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 7389.445
                                             : 7386.318
## ARIMA(3,0,1)
                           with zero mean
## ARIMA(3,0,1)
                           with non-zero mean: 7374.228
## ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                            : 7387.257
   ARIMA(3,0,1)(0,0,1)[12] with non-zero mean: 7376.201
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                           : 7387.083
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 7376.189
## ARIMA(3,0,2)
                           with zero mean
                                             : 7308.121
## ARIMA(3,0,2)
                           with non-zero mean: 7300.901
## ARIMA(4,0,0)
                           with zero mean
                                            : 7368.243
## ARIMA(4,0,0)
                           with non-zero mean: 7362.093
   ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 7369.794
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 7364.038
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 7369.736
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean: 7364.026
## ARIMA(4.0.1)
                           with zero mean
                                             : 7370.266
##
  ARIMA(4,0,1)
                           with non-zero mean: 7364.16
  ARIMA(5,0,0)
                           with zero mean
                                             : 7370.215
##
   ARIMA(5,0,0)
                           with non-zero mean: 7364.136
##
##
##
   Best model: ARIMA(0,0,5)
                                       with non-zero mean
fit_arima_brent_t <- auto.arima(brent_terraced_ts_diff, stepwise = FALSE,</pre>
                         approximation = FALSE, trace = TRUE)
```

: 7426.068

ARIMA(2,0,1)(0,0,2)[12] with zero mean

```
##
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 7339.597
                           with non-zero mean: 7329.726
##
   ARIMA(0,0,0)
  ARIMA(0,0,0)(0,0,1)[12] with zero mean
##
                                            : 7336.031
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 7328.356
##
   ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                             : 7336.746
  ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 7329.828
## ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                             : 7335.179
   ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 7328.013
##
   ARIMA(0,0,0)(1,0,1)[12] with zero mean
   ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,0)(1,0,2)[12] with zero mean
   ARIMA(0,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                             : 7334.969
   ARIMA(0,0,0)(2,0,0)[12] with non-zero mean: 7329.069
##
   ARIMA(0,0,0)(2,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(2,0,2)[12] with zero mean
  ARIMA(0,0,0)(2,0,2)[12] with non-zero mean: Inf
##
   ARIMA(0,0,1)
                           with zero mean
                                             : 7317.811
##
   ARIMA(0,0,1)
                           with non-zero mean: 7311.637
## ARIMA(0,0,1)(0,0,1)[12] with zero mean
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 7312.596
   ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                            : 7319.14
##
  ARIMA(0,0,1)(0,0,2)[12] with non-zero mean: 7314.276
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                            : 7317.67
##
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 7312.5
   ARIMA(0,0,1)(1,0,1)[12] with zero mean
  ARIMA(0,0,1)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(0,0,1)(1,0,2)[12] with zero mean
##
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                             : 7318.23
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 7313.882
##
  ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean: Inf
   ARIMA(0,0,1)(2,0,2)[12] with zero mean
## ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)
                           with zero mean
                                              : 7270.304
##
   ARIMA(0,0,2)
                           with non-zero mean: 7271.038
##
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                            : 7271.71
  ARIMA(0,0,2)(0,0,1)[12] with non-zero mean: 7272.272
##
  ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                             : 7271.945
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 7272.36
##
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                             : 7271.829
  ARIMA(0,0,2)(1,0,0)[12] with non-zero mean: 7272.435
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
                                             : 7273.576
##
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : 7274.106
##
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
                                            : 7272.205
  ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: 7272.613
##
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 7270.552
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 7270.753
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                             : 7270.104
## ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : 7270.352
## ARIMA(0,0,3)
                           with zero mean
                                           : 7202.718
```

```
ARIMA(0,0,3)
                           with non-zero mean: 7194.391
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                            : 7202.972
## ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : 7195.719
## ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                            : 7205.008
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : 7197.718
## ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                             : 7202.97
## ARIMA(0,0,3)(1,0,0)[12] with non-zero mean: 7195.736
## ARIMA(0,0,3)(1,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: Inf
##
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                            : 7204.974
   ARIMA(0,0,3)(2,0,0)[12] with non-zero mean: 7197.816
##
                                             : 7203.408
  ARIMA(0,0,4)
                           with zero mean
##
   ARIMA(0,0,4)
                           with non-zero mean: 7193.665
##
  ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                             : 7204.342
  ARIMA(0,0,4)(0,0,1)[12] with non-zero mean: 7195.624
##
   ARIMA(0,0,4)(1,0,0)[12] with zero mean
                                            : 7204.335
##
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : 7195.627
##
  ARIMA(0,0,5)
                           with zero mean
                                            : 7198.242
## ARIMA(0,0,5)
                           with non-zero mean: 7191.564
## ARIMA(1,0,0)
                           with zero mean
                                             : 7315.546
## ARIMA(1,0,0)
                           with non-zero mean: 7310.835
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
## ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 7311.539
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
##
                                           : 7317.249
## ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 7313.437
  ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                            : 7315.404
##
   ARIMA(1,0,0)(1,0,0)[12] with non-zero mean: 7311.461
   ARIMA(1,0,0)(1,0,1)[12] with zero mean
  ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
                                            : 7316.688
##
   ARIMA(1,0,0)(2,0,0)[12] with zero mean
##
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean: 7313.188
##
  ARIMA(1,0,0)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,1)
                           with zero mean
                                              : 7317.098
##
   ARIMA(1,0,1)
                           with non-zero mean: 7312.126
##
   ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                            : 7317.381
  ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 7313.106
##
  ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                            : 7318.968
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 7314.949
##
                                            : 7317.202
  ARIMA(1,0,1)(1,0,0)[12] with zero mean
  ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 7313.03
## ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : Inf
##
  ARIMA(1,0,1)(1,0,2)[12] with zero mean
  ARIMA(1,0,1)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                            : 7318.345
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 7314.662
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
## ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)
                           with zero mean
                                           : 7235.202
```

```
ARIMA(1,0,2)
                           with non-zero mean: 7234.454
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                             : 7236.507
  ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : 7236.036
                                             : 7236.452
## ARIMA(1,0,2)(0,0,2)[12] with zero mean
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : 7235.634
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                             : 7236.649
## ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : 7236.137
## ARIMA(1,0,2)(1,0,1)[12] with zero mean
                                             : 7236.395
##
   ARIMA(1,0,2)(1,0,1)[12] with non-zero mean : 7235.928
##
   ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                            : 7236.887
   ARIMA(1,0,2)(2,0,0)[12] with non-zero mean: 7235.827
##
                           with zero mean
                                             : 7204.034
   ARIMA(1,0,3)
##
   ARIMA(1,0,3)
                           with non-zero mean: 7194.734
##
  ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                             : 7204.676
   ARIMA(1,0,3)(0,0,1)[12] with non-zero mean: 7196.524
##
   ARIMA(1,0,3)(1,0,0)[12] with zero mean
                                             : 7204.672
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean: 7196.531
##
  ARIMA(1,0,4)
                           with zero mean
                                            : 7202.762
## ARIMA(1,0,4)
                           with non-zero mean: 7193.37
##
   ARIMA(2,0,0)
                           with zero mean
                                             : 7316.089
##
   ARIMA(2,0,0)
                           with non-zero mean: 7310.178
## ARIMA(2,0,0)(0,0,1)[12] with zero mean
## ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 7311.679
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
##
                                            : 7318.08
##
  ARIMA(2,0,0)(0,0,2)[12] with non-zero mean: 7313.208
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                            : 7316.614
##
   ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 7311.619
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
  ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(2,0,0)(1,0,2)[12] with zero mean
##
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                             : 7317.247
##
   ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 7312.771
  ARIMA(2,0,0)(2,0,1)[12] with zero mean
##
                                             : Inf
##
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean: Inf
                                              : 7314.776
##
                           with zero mean
   ARIMA(2,0,1)
## ARIMA(2,0,1)
                           with non-zero mean: 7305.621
## ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                             : 7315.676
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean: 7307.438
##
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                            : 7316.37
  ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 7308.574
##
  ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 7315.485
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 7307.405
##
  ARIMA(2,0,1)(1,0,1)[12] with zero mean
  ARIMA(2,0,1)(1,0,1)[12] with non-zero mean: Inf
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
##
                                             : 7315.083
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean: 7307.98
##
   ARIMA(2,0,2)
                           with zero mean
                           with non-zero mean : Inf
  ARIMA(2,0,2)
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
                                             : Inf
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(2,0,3)
                           with zero mean
                                           : Inf
```

```
ARIMA(2,0,3)
                           with non-zero mean : Inf
##
                           with zero mean
   ARIMA(3,0,0)
                                            : 7293.59
## ARIMA(3,0,0)
                           with non-zero mean: 7281.574
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                            : 7292.46
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 7282.357
## ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                            : 7292.781
## ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 7283.143
## ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                            : 7291.863
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean : 7282.155
## ARIMA(3,0,0)(1,0,1)[12] with zero mean
## ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                            : 7290.24
  ARIMA(3,0,0)(2,0,0)[12] with non-zero mean: 7281.87
## ARIMA(3,0,1)
                           with zero mean
                                             : 7279.005
## ARIMA(3,0,1)
                           with non-zero mean: 7268.407
##
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                            : 7279.462
##
   ARIMA(3,0,1)(0,0,1)[12] with non-zero mean: 7270.045
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                           : 7279.15
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 7269.973
## ARIMA(3,0,2)
                           with zero mean
## ARIMA(3,0,2)
                           with non-zero mean : Inf
## ARIMA(4,0,0)
                           with zero mean
                                            : 7262.866
## ARIMA(4,0,0)
                           with non-zero mean: 7257.453
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 7263.856
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 7258.978
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 7263.676
##
  ARIMA(4,0,0)(1,0,0)[12] with non-zero mean: 7258.895
## ARIMA(4,0,1)
                           with zero mean
                                             : 7264.858
##
  ARIMA(4,0,1)
                           with non-zero mean: 7259.236
  ARIMA(5,0,0)
                           with zero mean
                                             : 7264.752
##
   ARIMA(5,0,0)
                           with non-zero mean: 7258.706
##
##
##
##
   Best model: ARIMA(0,0,5)
                                       with non-zero mean
fit_arima_brent_f <- auto.arima(brent_flat_ts_diff, stepwise = FALSE,</pre>
                         approximation = FALSE, trace = TRUE)
##
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 7023.711
## ARIMA(0,0,0)
                           with non-zero mean: 7014.322
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
##
                                            : 7017.073
##
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 7010.275
##
   ARIMA(0,0,0)(0,0,2)[12] with zero mean
  ARIMA(0,0,0)(0,0,2)[12] with non-zero mean: 7012.215
   ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                           : 7017.102
## ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 7010.601
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
## ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : 7012.22
   ARIMA(0,0,0)(1,0,2)[12] with zero mean
##
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : 7014.272
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                           : 7019.129
```

ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 7012.332

```
ARIMA(0,0,0)(2,0,1)[12] with zero mean
                                              : 7021.102
   ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : 7014.257
## ARIMA(0,0,0)(2,0,2)[12] with zero mean
## ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)
                            with zero mean
                                               : 7009.818
##
   ARIMA(0,0,1)
                            with non-zero mean: 7003.495
  ARIMA(0,0,1)(0,0,1)[12] with zero mean
   ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 7001.748
##
   ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                               : 7008.656
##
   ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 7003.518
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                              : 7006.839
##
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 7002.038
   ARIMA(0,0,1)(1,0,1)[12] with zero mean
                                              : 7008.658
##
   ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : 7003.575
   ARIMA(0,0,1)(1,0,2)[12] with zero mean
                                              : 7010.728
##
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean: 7005.587
##
   ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                              : 7008.765
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 7003.569
  ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                             : 7010.708
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : 7005.522
##
   ARIMA(0,0,1)(2,0,2)[12] with zero mean
  ARIMA(0,0,1)(2,0,2)[12] with non-zero mean: Inf
## ARIMA(0,0,2)
                            with zero mean
                                               : 6969.779
                            with non-zero mean: 6970.577
##
   ARIMA(0.0.2)
##
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                              : 6971.529
   ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 6972.207
##
   ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                             : 6967.025
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 6967.348
##
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                              : 6971.623
   ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 6972.347
##
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
                                              : 6971.756
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : 6973.45
##
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
                                             : 6967.102
##
   ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: 6967.486
##
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 6965.209
   ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 6965.317
  ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                              : 6964
  ARIMA(0,0,2)(2,0,1)[12] with non-zero mean: 6964.254
##
##
   ARIMA(0,0,3)
                            with zero mean
                                               : 6885.843
##
                            with non-zero mean: 6876.254
   ARIMA(0,0,3)
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                             : 6884.865
##
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : 6876.756
   ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                              : 6885.754
##
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : 6877.135
   ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                              : 6885.223
   ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : 6876.988
##
##
   ARIMA(0,0,3)(1,0,1)[12] with zero mean
                                              : 6885.226
##
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean : 6877.125
                                              : 6886.631
  ARIMA(0,0,3)(2,0,0)[12] with zero mean
##
  ARIMA(0,0,3)(2,0,0)[12] with non-zero mean: 6877.652
## ARIMA(0,0,4)
                                               : 6887.483
                            with zero mean
## ARIMA(0,0,4)
                            with non-zero mean: 6877.364
## ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                              : 6886.836
## ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : 6878.311
```

```
ARIMA(0,0,4)(1,0,0)[12] with zero mean
                                              : 6887.172
##
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : 6878.493
  ARIMA(0,0,5)
##
                           with zero mean
## ARIMA(0,0,5)
                           with non-zero mean : Inf
##
   ARIMA(1,0,0)
                           with zero mean
                                              : 7008.478
##
                           with non-zero mean: 7003.143
  ARIMA(1,0,0)
  ARIMA(1,0,0)(0,0,1)[12] with zero mean
   ARIMA(1,0,0)(0,0,1)[12] with non-zero mean: 7001.247
##
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                              : 7007.32
##
   ARIMA(1,0,0)(0,0,2)[12] with non-zero mean: 7002.89
   ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                             : 7005.708
   ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 7001.602
##
   ARIMA(1,0,0)(1,0,1)[12] with zero mean
                                              : 7007.321
##
   ARIMA(1,0,0)(1,0,1)[12] with non-zero mean: 7002.99
   ARIMA(1,0,0)(1,0,2)[12] with zero mean
                                              : 7009.37
##
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : 7004.958
##
   ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                             : 7007.459
##
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean: 7002.929
  ARIMA(1,0,0)(2,0,1)[12] with zero mean
                                             : 7009.354
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: 7004.857
##
   ARIMA(1,0,0)(2,0,2)[12] with zero mean
  ARIMA(1,0,0)(2,0,2)[12] with non-zero mean: Inf
                                              : 7010.283
## ARIMA(1,0,1)
                           with zero mean
                           with non-zero mean: 7004.782
##
   ARIMA(1.0.1)
##
   ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                              : 7007.376
   ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 7003.099
##
   ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                             : 7009.31
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 7004.787
                                             : 7007.645
  ARIMA(1,0,1)(1,0,0)[12] with zero mean
  ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 7003.423
##
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : 7009.308
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : 7004.876
##
   ARIMA(1,0,1)(1,0,2)[12] with zero mean
                                             : 7011.373
##
  ARIMA(1,0,1)(1,0,2)[12] with non-zero mean: 7006.871
##
   ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                             : 7009.442
   ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 7004.825
  ARIMA(1,0,1)(2,0,1)[12] with zero mean
                                              : 7011.359
  ARIMA(1,0,1)(2,0,1)[12] with non-zero mean: 7006.777
##
##
   ARIMA(1,0,2)
                           with zero mean
                                              : 6924.909
##
                           with non-zero mean: 6924.042
   ARIMA(1,0,2)
  ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                            : 6925.96
##
  ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : 6925.431
   ARIMA(1,0,2)(0,0,2)[12] with zero mean
                                             : 6922.51
##
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : 6921.343
  ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                              : 6926.258
   ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : 6925.645
##
##
   ARIMA(1,0,2)(1,0,1)[12] with zero mean
                                              : 6924.071
##
  ARIMA(1,0,2)(1,0,1)[12] with non-zero mean: 6923.566
                                             : 6922.78
  ARIMA(1,0,2)(2,0,0)[12] with zero mean
## ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : 6921.227
                                              : 6887.676
## ARIMA(1,0,3)
                           with zero mean
## ARIMA(1,0,3)
                           with non-zero mean: 6877.761
## ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                              : 6886.885
## ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : 6878.544
```

```
ARIMA(1,0,3)(1,0,0)[12] with zero mean
                                             : 6887.232
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : 6878.747
##
  ARIMA(1,0,4)
                           with zero mean
## ARIMA(1,0,4)
                           with non-zero mean : Inf
   ARIMA(2,0,0)
                           with zero mean
                                              : 7009.608
##
                           with non-zero mean: 7003.28
  ARIMA(2,0,0)
  ARIMA(2,0,0)(0,0,1)[12] with zero mean
   ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 7002.252
##
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                             : 7009.074
##
   ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 7004.075
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                             : 7007.281
##
   ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 7002.466
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
                                              : 7009.067
##
   ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: 7004.125
   ARIMA(2,0,0)(1,0,2)[12] with zero mean
                                              : 7011.138
##
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean : 7006.16
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                              : 7009.185
##
   ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 7004.116
  ARIMA(2,0,0)(2,0,1)[12] with zero mean
                                             : 7011.132
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean : 7006.102
##
   ARIMA(2,0,1)
                           with zero mean
                                              : 7007.458
## ARIMA(2,0,1)
                           with non-zero mean: 6997.616
## ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                              : Inf
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 6997.411
##
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                             : 6999.79
   ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 6999.447
##
   ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 7005.341
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 6997.48
  ARIMA(2,0,1)(1,0,1)[12] with zero mean
  ARIMA(2,0,1)(1,0,1)[12] with non-zero mean: 6999.449
##
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                             : 7000.03
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 6999.477
##
   ARIMA(2,0,2)
                           with zero mean
##
  ARIMA(2,0,2)
                           with non-zero mean : Inf
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
   ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(2,0,3)
                           with zero mean
##
                           with non-zero mean : Inf
   ARIMA(2,0,3)
                           with zero mean
  ARIMA(3,0,0)
                                            : 6976.311
##
  ARIMA(3,0,0)
                           with non-zero mean: 6962.072
   ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                              : 6972.497
##
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 6961.212
  ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                              : 6974.495
   ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 6963.29
##
##
   ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                             : 6972.276
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean : 6961.227
  ARIMA(3,0,0)(1,0,1)[12] with zero mean
##
   ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                              : 6974.131
## ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 6963.31
## ARIMA(3,0,1)
                           with zero mean
                                              : 6963.738
## ARIMA(3,0,1)
                           with non-zero mean: 6951.468
```

```
## ARIMA(3,0,1)(0,0,1)[12] with zero mean : 6962.242
## ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 6951.97
## ARIMA(3,0,1)(1,0,0)[12] with zero mean : 6962.125
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 6951.983
## ARIMA(3,0,2)
                          with zero mean
                                            : Inf
## ARIMA(3,0,2)
                         with non-zero mean : Inf
## ARIMA(4.0.0)
                          with zero mean : 6949.401
## ARIMA(4,0,0)
                           with non-zero mean: 6942.086
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 6949.254
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 6942.856
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 6949.249
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean : 6942.884
                                             : 6950.992
## ARIMA(4,0,1)
                          with zero mean
                         with non-zero mean: 6944.082
## ARIMA(4,0,1)
## ARIMA(5,0,0)
                         with zero mean
                                            : 6950.542
## ARIMA(5,0,0)
                          with non-zero mean: 6943.96
##
##
##
## Best model: ARIMA(0,0,3)
                                      with non-zero mean
# Forecast using the ARIMA model for each property type of Brent Area
forecasted_values_arima_brent_d <- forecast(fit_arima_brent_d, h = 18)</pre>
forecasted_values_arima_brent_sd <- forecast(fit_arima_brent_sd, h = 18)</pre>
forecasted values arima brent t <- forecast(fit arima brent t, h = 18)
forecasted_values_arima_brent_f <- forecast(fit_arima_brent_f, h = 18)</pre>
# Plot the differenced forecast value for each property type of Brent Area
plot(forecasted values arima brent d,
     main = "Brent Differenced Detached Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Brent Differenced Detached Average Price Forecast


```
plot(forecasted_values_arima_brent_sd,
    main = "Brent Differenced Semi-Detached Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Brent Differenced Semi-Detached Average Price Forecast


```
plot(forecasted_values_arima_brent_t,
    main = "Brent Differenced Terraced Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Brent Differenced Terraced Average Price Forecast


```
plot(forecasted_values_arima_brent_f,
    main = "Brent Differenced Flat Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Brent Differenced Flat Average Price Forecast

Summary of the model for four different type of properties of Brent Area
For Detached of Brent Area
print(forecasted_values_arima_brent_d)

```
##
            Point Forecast
                                Lo 80
                                          Hi 80
                                                     Lo 95
                                                                Hi 95
## Apr 2024
               -50716.7586 -66295.99 -35137.53 -74543.130 -26890.39
## May 2024
                 5506.6442 -11490.49
                                       22503.78 -20488.226
                                                             31501.51
  Jun 2024
                36470.6679
                           18877.45
                                       54063.88
                                                  9564.167
                                                             63377.17
## Jul 2024
                                       18846.53 -30673.867
                                                             29210.59
                 -731.6382 -20309.81
## Aug 2024
                -3887.2727 -23467.26
                                       15692.71 -33832.279
                                                             26057.73
## Sep 2024
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Oct 2024
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Nov 2024
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Dec 2024
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Jan 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Feb 2025
                 2723.8064 -16953.08
                                                             32817.01
                                       22400.70 -27369.401
## Mar 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Apr 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## May 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Jun 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Jul 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Aug 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
## Sep 2025
                 2723.8064 -16953.08
                                       22400.70 -27369.401
                                                             32817.01
```

summary(fit_arima_brent_d)

```
## Series: brent_detached_ts_diff
## ARIMA(0,0,5) with non-zero mean
```

```
##
## Coefficients:
##
           ma1
                   ma2
                             ma3
                                      ma4
                                              ma5
         0.4363 0.2915 -0.5514 -0.0171
                                           0.1252
                                                   2723.8064
##
## s.e. 0.0545 0.0605
                         0.0585
                                  0.0736 0.0581
##
## sigma^2 = 147779433: log likelihood = -3788.23
## AIC=7590.45
                AICc=7590.78 BIC=7617.46
##
## Training set error measures:
                              RMSE
                                        MAE
                                                 MPE
                                                         MAPE
                                                                   MASE
                      ME
## Training set 0.5480889 12051.81 7330.117 590.1545 821.9871 0.5884996
##
                       ACF1
## Training set 0.004829623
# For Semi-Detached of Brent Area
print(forecasted_values_arima_brent_sd)
                                           Hi 80
                                                      Lo 95
##
            Point Forecast
                                Lo 80
                                                                Hi 95
## Apr 2024
                -31875.313 -42152.062 -21598.565 -47592.244 -16158.38
## May 2024
                 2051.992 -9049.153 13153.138 -14925.745
                                                             19029.73
## Jun 2024
                 24238.808 12780.314
                                       35697.301
                                                   6714.555
                                                             41763.06
## Jul 2024
                -1825.539 -14546.212 10895.134 -21280.130
                                                             17629.05
## Aug 2024
                -3767.677 -16490.335
                                        8954.982 -23225.304
                                                             15689.95
## Sep 2024
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Oct 2024
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Nov 2024
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Dec 2024
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Jan 2025
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Feb 2025
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Mar 2025
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Apr 2025
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## May 2025
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Jun 2025
                 1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Jul 2025
                 1812.175 -11007.526 14631.876 -17793.866
## Aug 2025
                  1812.175 -11007.526 14631.876 -17793.866
                                                             21418.22
## Sep 2025
                  1812.175 -11007.526
                                       14631.876 -17793.866
                                                             21418.22
summary(fit_arima_brent_sd)
## Series: brent_semi_detached_ts_diff
## ARIMA(0,0,5) with non-zero mean
##
## Coefficients:
##
                   ma2
                             ma3
                                     ma4
                                             {\tt ma5}
            ma1
                                                       mean
         0.4085
                0.2763
                         -0.5376 0.0219
                                         0.1532
                                                  1812.1749
## s.e. 0.0540 0.0582
                         0.0593 0.0714 0.0581
                                                   562.1047
## sigma^2 = 64303470: log likelihood = -3642.55
## AIC=7299.11
                AICc=7299.43 BIC=7326.11
##
## Training set error measures:
##
                              RMSE
                                        MAE
                                                 MPE
                                                         MAPE
                                                                   MASE
                      MF.
```

```
## Training set 0.8649025 7949.914 4764.676 5.444808 330.4916 0.5851739
##
                      ACF1
## Training set 0.003683309
# For Terraced of Brent Area
print(forecasted_values_arima_brent_t)
           Point Forecast
                               Lo 80
                                          Hi 80
                                                    Lo 95
                                                              Hi 95
              -29689.7385 -38496.904 -20882.573 -43159.136 -16220.34
## Apr 2024
## May 2024
                 424.8655 -9239.336 10089.067 -14355.256
                                                           15204.99
## Jun 2024
               20991.5830 10970.099 31013.067
                                                 5665.046
                                                           36318.12
## Jul 2024
               869.3539 -10261.280 11999.987 -16153.481 17892.19
## Aug 2024
               -2047.4578 -13184.732
                                      9089.817 -19080.450
                                                           14985.53
## Sep 2024
              1529.9638 -9658.311 12718.238 -15581.025 18640.95
## Oct 2024
              1529.9638 -9658.311 12718.238 -15581.025 18640.95
## Nov 2024
              1529.9638 -9658.311 12718.238 -15581.025 18640.95
## Dec 2024
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Jan 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Feb 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Mar 2025
                1529.9638 -9658.311 12718.238 -15581.025 18640.95
## Apr 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## May 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Jun 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Jul 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Aug 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
## Sep 2025
                1529.9638 -9658.311 12718.238 -15581.025
                                                           18640.95
summary(fit_arima_brent_t)
## Series: brent_terraced_ts_diff
## ARIMA(0,0,5) with non-zero mean
##
## Coefficients:
##
           ma1
                   ma2
                            ma3
                                     ma4
                                             ma5
                                                      mean
        0.4518  0.3011  -0.5500  -0.0437  0.1212  1529.9638
## s.e. 0.0540 0.0598
                        0.0634
                                 0.0743 0.0585
                                                  466.8625
## sigma^2 = 47227370: log likelihood = -3588.62
## AIC=7191.24 AICc=7191.56 BIC=7218.24
## Training set error measures:
                              RMSE
                                        MAE
                                                 MPE
                                                         MAPE
                       ME
## Training set -0.3876984 6813.058 4100.292 -324.8744 581.8374 0.5953967
                      ACF1
## Training set 0.001820432
# For Flat of Brent Area
print(forecasted_values_arima_brent_f)
##
           Point Forecast
                               Lo 80
                                        Hi 80
                                                    Lo 95
            -14457.2294 -20088.274 -8826.185 -23069.1684 -5845.290
## Apr 2024
              -1861.1296 -7836.861 4114.602 -11000.2229 7277.964
## May 2024
```

```
## Jun 2024
                10336.5996 4019.521 16653.679
                                                   675.4609 19997.738
## Jul 2024
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Aug 2024
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Sep 2024
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Oct 2024
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Nov 2024
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Dec 2024
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Jan 2025
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Feb 2025
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Mar 2025
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Apr 2025
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## May 2025
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
## Jun 2025
                  960.5162 -6219.355
                                       8140.388 -10020.1495 11941.182
## Jul 2025
                  960.5162 -6219.355
                                       8140.388 -10020.1495 11941.182
                  960.5162 -6219.355
                                       8140.388 -10020.1495 11941.182
## Aug 2025
## Sep 2025
                  960.5162 -6219.355 8140.388 -10020.1495 11941.182
summary(fit_arima_brent_f)
## Series: brent flat ts diff
## ARIMA(0,0,3) with non-zero mean
##
## Coefficients:
##
           ma1
                    ma2
                             ma3
                                      mean
##
         0.3552 0.3638 -0.6060 960.5162
## s.e. 0.0426 0.0453
                        0.0412 260.4608
##
## sigma^2 = 19306531: log likelihood = -3433.04
## AIC=6876.08
                AICc=6876.25
                               BIC=6895.37
## Training set error measures:
##
                        ME
                               RMSE
                                         MAE
                                                  MPF.
                                                          MAPE
                                                                     MASE
## Training set -0.8731979 4368.739 2704.925 953.4919 1223.537 0.5900422
                      ACF1
##
## Training set 0.02600061
# Calculate the forecasted actual prices
# By adding the last observed price and the forecasted differences of Brent Area
# For detached_ts of Brent Area
last_value_brent_d <- as.numeric(tail(brent_detached_ts, n = 1))</pre>
forecasted_values_brent_d <- c(last_value_brent_d,</pre>
                               forecasted_values_arima_brent_d$mean)
cumulative_forecasted_values_brent_d <- cumsum(forecasted_values_brent_d)</pre>
forecasted_values_brent_d_ts <- ts(cumulative_forecasted_values_brent_d[-1],</pre>
                             start = c(2024, 2), frequency = 12)
# For semi_detached_ts of Brent Area
last_value_brent_sd <- as.numeric(tail(brent_semi_detached_ts, n = 1))</pre>
forecasted_values_brent_sd <- c(last_value_brent_sd,</pre>
                                forecasted_values_arima_brent_sd$mean)
cumulative_forecasted_values_brent_sd <- cumsum(forecasted_values_brent_sd)</pre>
forecasted values brent sd ts <- ts(cumulative forecasted values brent sd[-1],
                              start = c(2024, 2), frequency = 12)
```

```
# For terraced_ts of Brent Area
last_value_brent_t <- as.numeric(tail(brent_terraced_ts, n = 1))</pre>
forecasted_values_brent_t <- c(last_value_brent_t,</pre>
                                forecasted values arima brent t$mean)
cumulative_forecasted_values_brent_t <- cumsum(forecasted_values_brent_t)</pre>
forecasted_values_brent_t_ts <- ts(cumulative_forecasted_values_brent_t[-1],</pre>
                              start = c(2024, 2), frequency = 12)
# For flat ts of Brent Area
last_value_brent_f <- as.numeric(tail(brent_flat_ts, n = 1))</pre>
forecasted_values_brent_f <- c(last_value_brent_f,</pre>
                                forecasted_values_arima_brent_f$mean)
cumulative_forecasted_values_brent_f <- cumsum(forecasted_values_brent_f)</pre>
forecasted_values_brent_f_ts <- ts(cumulative_forecasted_values_brent_f[-1],</pre>
                                    start = c(2024, 2), frequency = 12)
# Combine the original and forecasted time series of Brent Area
combined_brent_detached_ts_Arima <- ts(c(as.numeric(brent_detached_ts),</pre>
as.numeric(forecasted_values_brent_d_ts)), start = c(1995, 1), frequency = 12)
combined_brent_semi_detached_ts_Arima <-</pre>
  ts(c(as.numeric(brent semi detached ts),
as.numeric(forecasted_values_brent_sd_ts)), start = c(1995, 1), frequency = 12)
combined_brent_terraced_ts_Arima <- ts(c(as.numeric(brent_terraced_ts),</pre>
as.numeric(forecasted_values_brent_t_ts)), start = c(1995, 1), frequency = 12)
combined_brent_flat_ts_Arima <- ts(c(as.numeric(brent_flat_ts),</pre>
as.numeric(forecasted_values_brent_f_ts)), start = c(1995, 1), frequency = 12)
# Plot the combined time series of Brent Area
plot(combined_brent_detached_ts_Arima,
     main = "Brent Detached Average Price Arima",
     ylab = "Price", xlab = "Year")
```

Brent Detached Average Price Arima


```
plot(combined_brent_semi_detached_ts_Arima,
    main = "Brent Semi-Detached Average Price Arima",
    ylab = "Price", xlab = "Year")
```

Brent Semi-Detached Average Price Arima


```
plot(combined_brent_terraced_ts_Arima,
    main = "Brent Terraced Average Price Arima",
    ylab = "Price", xlab = "Year")
```

Brent Terraced Average Price Arima


```
plot(combined_brent_flat_ts_Arima,
    main = "Brent Flat Average Price Arima",
    ylab = "Price", xlab = "Year")
```

Brent Flat Average Price Arima


```
# ETS model for Brent Area
fit_ets_brent_d <- ets(brent_detached_ts)</pre>
fit_ets_brent_sd <- ets(brent_semi_detached_ts)</pre>
fit_ets_brent_t <- ets(brent_terraced_ts)</pre>
fit_ets_brent_f <- ets(brent_flat_ts)</pre>
# Forecast using the ETS model for each property type of Brent Area
forecasted_values_ets_brent_d <- forecast(fit_ets_brent_d, h = 18)</pre>
forecasted_values_ets_brent_sd <- forecast(fit_ets_brent_sd, h = 18)</pre>
forecasted_values_ets_brent_t <- forecast(fit_ets_brent_t, h = 18)</pre>
forecasted_values_ets_brent_f <- forecast(fit_ets_brent_f, h = 18)</pre>
# Combine the historical and forecasted values
# For each property type by ETS of Brent Area
combined_brent_detached_ts_ets <- ts(c(brent_detached_price,</pre>
                                         forecasted_values_ets_brent_d$mean),
                                       start = c(1995, 1), frequency = 12)
combined_brent_semi_detached_ts_ets <- ts(c(brent_semi_detached_price,</pre>
                                            forecasted_values_ets_brent_sd$mean),
                                            start = c(1995, 1), frequency = 12)
combined_brent_terraced_ts_ets <- ts(c(brent_terraced_price,</pre>
                                         forecasted_values_ets_brent_t$mean),
                                       start = c(1995, 1), frequency = 12)
combined_brent_flat_ts_ets <- ts(c(brent_flat_price,</pre>
                                     forecasted_values_ets_brent_f$mean),
                                   start = c(1995, 1), frequency = 12)
# Plot the ETS forecast value for each property type of Brent Area
plot(forecasted_values_ets_brent_d,
```

```
main = "Brent Detached Average Price ETS",
ylab = "Price", xlab = "Year")
```

Brent Detached Average Price ETS


```
plot(forecasted_values_ets_brent_sd,
    main = "Brent Semi-Detached Average Price ETS",
    ylab = "Price", xlab = "Year")
```

Brent Semi-Detached Average Price ETS


```
plot(forecasted_values_ets_brent_t,
    main = "Brent Terraced Average Price ETS",
    ylab = "Price", xlab = "Year")
```

Brent Terraced Average Price ETS


```
plot(forecasted_values_ets_brent_f,
    main = "Brent Flat Average Price ETS",
    ylab = "Price", xlab = "Year")
```

Brent Flat Average Price ETS

Summary of the ETS model for four different type of properties of Brent Area
For Detached of Brent Area
print(forecasted_values_ets_brent_d)

```
##
            Point Forecast
                                Lo 80
                                        Hi 80
                                                  Lo 95
                                                          Hi 95
                   1135562 1111079.9 1160045 1098119.6 1173005
## Apr 2024
## May 2024
                   1136016 1099802.3 1172229 1080632.0 1191400
## Jun 2024
                   1139763 1093294.9 1186231 1068696.3 1210829
## Jul 2024
                   1146579 1090281.8 1202875 1060480.1 1232677
## Aug 2024
                   1159692 1093374.9 1226009 1058268.8 1261115
                   1164638 1088727.1 1240549 1048542.3 1280734
## Sep 2024
## Oct 2024
                   1157962 1073233.0 1242691 1028380.2 1287544
## Nov 2024
                   1140536 1047911.8 1233161
                                               998879.4 1282193
## Dec 2024
                   1126299 1025680.0 1226918
                                               972415.6 1280182
## Jan 2025
                   1117764 1008706.0 1226822
                                               950974.0 1284554
## Feb 2025
                   1113485
                            995539.4 1231431
                                               933102.7 1293867
## Mar 2025
                            981322.3 1234897
                                               914205.0 1302014
                   1108110
## Apr 2025
                   1106263
                            970129.6 1242397
                                               898064.8 1314462
## May 2025
                   1106642
                            960734.7 1252549
                                               883496.1 1329788
## Jun 2025
                   1110229
                            953916.0 1266541
                                               871169.1 1349288
## Jul 2025
                   1116803
                            949395.0 1284212
                                               860774.3 1372833
## Aug 2025
                   1129511
                            949727.2 1309295
                                               854555.5 1404466
## Sep 2025
                   1134262
                            943020.3 1325505
                                               841782.8 1426742
```

```
summary(fit_ets_brent_d)
```

```
## ETS(M,A,M)
##
## Call:
##
    ets(y = brent_detached_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9998
##
       beta = 0.0869
##
       gamma = 2e-04
##
##
     Initial states:
##
       1 = 154738.8759
##
       b = 1661.6836
##
       s = 0.9958 \ 1.0062 \ 1.0194 \ 1.023 \ 1.0165 \ 1.0028
               0.9947 0.9893 0.9868 0.9862 0.9888 0.9904
##
##
##
     sigma: 0.0168
##
##
        AIC
                 AICc
                           BIC
## 8489.442 8491.280 8555.075
##
## Training set error measures:
##
                                                      MPE
                                                               MAPE
                        ME
                                RMSE
                                          MAE
                                                                         MASE
## Training set -134.1591 14198.26 8450.961 0.00582066 1.178831 0.1730639
##
                      ACF1
## Training set 0.1281662
```

For Semi-Detached of Brent Area

print(forecasted_values_ets_brent_sd)

```
Lo 80
                                       Hi 80
                                                Lo 95
            Point Forecast
                                                          Hi 95
## Apr 2024
                  751531.4 735402.7 767660.1 726864.6 776198.1
                  751644.7 727832.6 775456.7 715227.3 788062.0
## May 2024
## Jun 2024
                  753930.0 723470.3 784389.8 707345.9 800514.2
## Jul 2024
                  756138.6 719492.1 792785.1 700092.6 812184.6
## Aug 2024
                  757706.5 715144.8 800268.2 692614.0 822799.0
                  757640.5 709408.9 805872.1 683876.6 831404.3
## Sep 2024
## Oct 2024
                  752112.9 698709.1 805516.8 670438.8 833787.1
## Nov 2024
                  743787.2 685586.7 801987.7 654777.2 832797.2
## Dec 2024
                  738656.1 675562.4 801749.9 642162.6 835149.7
## Jan 2025
                  737296.4 669078.3 805514.5 632965.8 841627.0
## Feb 2025
                  738605.6 665054.1 812157.2 626118.2 851093.0
## Mar 2025
                  734117.4 655865.4 812369.5 614441.3 853793.6
## Apr 2025
                  734202.5 650823.7 817581.4 606685.6 861719.5
## May 2025
                  735044.2 646476.5 823612.0 599591.5 870496.9
## Jun 2025
                  737983.0 643976.9 831989.1 594213.1 881753.0
## Jul 2025
                  740822.6 641380.6 840264.6 588739.1 892906.1
## Aug 2025
                  743010.4 638215.6 847805.2 582740.5 903280.3
## Sep 2025
                  743570.9 633664.8 853477.1 575484.0 911657.9
```

```
summary(fit_ets_brent_sd)
## ETS(M,Ad,M)
##
## Call:
##
    ets(y = brent_semi_detached_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9999
##
       beta = 0.0832
##
       gamma = 1e-04
##
       phi
             = 0.9555
##
##
     Initial states:
##
       1 = 98065.8348
##
       b = 1228.8995
       s = 0.993 \ 0.9981 \ 1.0073 \ 1.0128 \ 1.0108 \ 1.0065
##
##
              1.0013 0.996 0.9934 0.9918 0.9963 0.9929
##
##
     sigma: 0.0167
##
##
        AIC
                AICc
                           BIC
## 8187.164 8189.225 8256.659
## Training set error measures:
                       ME
                              RMSE
                                         MAE
                                                   MPE
                                                            MAPE
                                                                       MASE
                                                                                 ACF1
## Training set 611.9561 9342.572 5483.786 0.1953599 1.162433 0.1694913 0.1162961
# For Terraced of Brent Area
```

```
print(forecasted_values_ets_brent_t)
```

```
Point Forecast
                              Lo 80
                                       Hi 80
                                                Lo 95
## Apr 2024
                  633269.0 619125.0 647413.1 611637.5 654900.5
## May 2024
                  633448.1 613066.4 653829.8 602277.0 664619.2
## Jun 2024
                  633627.2 608197.2 659057.2 594735.3 672519.0
## Jul 2024
                  633806.3 603898.9 663713.6 588067.0 679545.6
## Aug 2024
                  633985.3 599937.2 668033.4 581913.3 686057.4
## Sep 2024
                  634164.4 596194.2 672134.6 576094.0 692234.9
                  634343.5 592601.2 676085.8 570504.2 698182.8
## Oct 2024
## Nov 2024
                  634522.6 589114.5 679930.7 565076.9 703968.2
## Dec 2024
                  634701.7 585704.3 683699.0 559766.7 709636.6
## Jan 2025
                  634880.7 582349.4 687412.1 554541.0 715220.5
## Feb 2025
                  635059.8 579034.2 691085.5 549376.0 720743.7
## Mar 2025
                  635238.9 575746.7 694731.2 544253.4 726224.5
## Apr 2025
                  635418.0 572477.7 698358.3 539159.1 731676.9
## May 2025
                  635597.1 569219.9 701974.2 534082.0 737112.1
## Jun 2025
                  635776.1 565967.6 705584.7 529013.1 742539.2
## Jul 2025
                  635955.2 562715.8 709194.7 523945.2 747965.3
## Aug 2025
                  636134.3 559460.7 712807.9 518872.1 753396.5
## Sep 2025
                  636313.4 556199.0 716427.8 513789.0 758837.8
```

```
summary(fit_ets_brent_t)
## ETS(M,A,N)
## Call:
   ets(y = brent_terraced_ts)
##
##
    Smoothing parameters:
##
       alpha = 0.9999
##
       beta = 0.0372
##
##
    Initial states:
##
       1 = 81421.3009
##
       b = 303.6323
##
##
    sigma: 0.0174
##
##
        AIC
                AICc
                          BTC
## 8083.843 8084.017 8103.147
##
## Training set error measures:
                                                                    MASE
##
                             RMSE
                                       MAE
                                                  MPE
                                                           MAPE
                                                                              ACF1
                       ME
## Training set -9.535812 8572.18 5025.153 0.06702895 1.244866 0.182206 0.2276409
# For Flat of Brent Area
print(forecasted_values_ets_brent_f)
            Point Forecast
                              Lo 80
                                       Hi 80
                                                Lo 95
                                                          Hi 95
## Apr 2024
                  405281.5 396542.8 414020.2 391916.8 418646.2
## May 2024
                  405476.9 392827.9 418125.9 386131.9 424821.8
## Jun 2024
                  405672.2 389821.6 421522.9 381430.7 429913.7
## Jul 2024
                  405867.6 387147.5 424587.7 377237.7 434497.5
## Aug 2024
                  406062.9 384663.8 427462.1 373335.7 438790.2
## Sep 2024
                  406258.3 382299.4 430217.3 369616.2 442900.4
## Oct 2024
                  406453.7 380013.2 432894.1 366016.5 446890.9
## Nov 2024
                  406649.0 377779.3 435518.8 362496.5 450801.5
## Dec 2024
                  406844.4 375580.0 438108.8 359029.6 454659.2
## Jan 2025
                  407039.7 373402.8 440676.7 355596.5 458483.0
## Feb 2025
                  407235.1 371238.7 443231.5 352183.4 462286.8
## Mar 2025
                  407430.5 369080.9 445780.1 348779.8 466081.1
## Apr 2025
                  407625.8 366923.9 448327.7 345377.6 469874.0
## May 2025
                  407821.2 364763.7 450878.7 341970.5 473671.9
## Jun 2025
                  408016.5 362597.0 453436.1 338553.4 477479.7
## Jul 2025
                  408211.9 360421.2 456002.6 335122.3 481301.5
## Aug 2025
                  408407.3 358234.0 458580.5 331673.9 485140.6
## Sep 2025
                  408602.6 356033.8 461171.4 328205.6 488999.7
summary(fit_ets_brent_f)
## ETS(M,A,N)
##
## Call:
```

```
##
    ets(y = brent_flat_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9999
##
       beta = 0.046
##
     Initial states:
##
##
       1 = 60823.0935
##
       b = 188.9293
##
##
     sigma: 0.0168
##
##
        AIC
                AICc
                           BIC
## 7811.656 7811.830 7830.960
##
## Training set error measures:
                                                             MAPE
                                                                       MASE
                                                                                  ACF1
##
                        ME
                                                    MPE
                               RMSE
                                         MAE
## Training set 0.3984275 5460.828 3295.79 0.06046445 1.204346 0.1841529 0.1729913
# STL model for Brent Area
stl_brent_d <- stl(brent_detached_ts, s.window = "periodic")</pre>
stl_brent_sd <- stl(brent_semi_detached_ts, s.window = "periodic")</pre>
stl_brent_t <- stl(brent_terraced_ts, s.window = "periodic")</pre>
stl_brent_f <- stl(brent_flat_ts, s.window = "periodic")</pre>
# Forecast using the STL model
# For each property type of Brent Area
forecasted_values_stl_brent_d <- forecast(stl_brent_d, method='ets',h = 18)</pre>
forecasted values stl brent sd <- forecast(stl brent sd, method='ets', h = 18)
forecasted_values_stl_brent_t <- forecast(stl_brent_t, method='ets', h = 18)</pre>
forecasted_values_stl_brent_f <- forecast(stl_brent_f, method='ets', h = 18)</pre>
# Combine the historical and forecasted values
# For each property type by STL of Brent Area
combined_brent_detached_ts_stl <- ts(c(brent_detached_price,</pre>
                                         forecasted_values_stl_brent_d$mean),
                                       start = c(1995, 1), frequency = 12)
combined_brent_semi_detached_ts_stl <- ts(c(brent_semi_detached_price,</pre>
                                            forecasted_values_stl_brent_sd$mean),
                                            start = c(1995, 1), frequency = 12)
combined_brent_terraced_ts_stl <- ts(c(brent_terraced_price,</pre>
                                         forecasted_values_stl_brent_t$mean),
                                       start = c(1995, 1), frequency = 12)
combined_brent_flat_ts_stl <- ts(c(brent_flat_price,</pre>
                                     forecasted_values_stl_brent_f$mean),
                                   start = c(1995, 1), frequency = 12)
# Plot the STL forecast value for each property type of Brent Area
plot(forecasted_values_stl_brent_d,
     main = "Brent Detached Average Price STL",
     ylab = "Price", xlab = "Year")
```

Brent Detached Average Price STL


```
plot(forecasted_values_stl_brent_sd,
    main = "Brent Semi-Detached Average Price STL",
    ylab = "Price", xlab = "Year")
```

Brent Semi-Detached Average Price STL


```
plot(forecasted_values_stl_brent_t,
    main = "Brent Terraced Average Price STL",
    ylab = "Price", xlab = "Year")
```

Brent Terraced Average Price STL


```
plot(forecasted_values_stl_brent_f,
    main = "Brent Flat Average Price STL",
    ylab = "Price", xlab = "Year")
```

Brent Flat Average Price STL

Summary of the STL model for four different type of properties of Brent Area
For Detached of Brent Area
print(forecasted_values_stl_brent_d)

```
##
            Point Forecast
                               Lo 80
                                       Hi 80
                                                  Lo 95
                                                          Hi 95
                   1139640 1111273.4 1168006 1096257.1 1183023
## Apr 2024
## May 2024
                   1140200 1099273.6 1181127 1077608.2 1202793
## Jun 2024
                   1143017 1091891.1 1194142 1064826.9 1221206
## Jul 2024
                   1146637 1086439.9 1206834 1054573.4 1238701
## Aug 2024
                   1155583 1086973.3 1224193 1050653.5 1260513
## Sep 2024
                   1161761 1085162.7 1238359 1044614.2 1278907
## Oct 2024
                   1159243 1074945.3 1243541 1030320.6 1288166
## Nov 2024
                   1150246 1058448.9 1242043 1009854.5 1290638
## Dec 2024
                   1144399 1045244.6 1243552
                                               992755.7 1296041
## Jan 2025
                   1143391 1036980.1 1249801
                                               980649.7 1306132
## Feb 2025
                   1142562 1028963.7 1256160
                                               968828.6 1316295
## Mar 2025
                   1138112 1017372.9 1258852
                                               953457.3 1322767
                   1140357 1012503.8 1268210
## Apr 2025
                                               944822.5 1335891
## May 2025
                   1140917 1005964.1 1275871
                                               934524.1 1347311
## Jun 2025
                   1143734 1001682.0 1285785
                                               926484.4 1360983
## Jul 2025
                   1147354
                            998197.0 1296511
                                               919238.1 1375470
## Aug 2025
                   1156300 1000022.7 1312578
                                               917294.4 1395306
## Sep 2025
                   1162478 999058.6 1325897
                                               912549.7 1412406
```

```
## Call:
## stl(x = brent_detached_ts, s.window = "periodic")
```

summary(stl_brent_d)

```
##
##
  Time.series components:
      seasonal
##
                          trend
                                          remainder
## Min. :-9282.223 Min. : 157438.8 Min. :-82598.44
                                         1st Qu.: -6202.32
##
   ## Median :-3840.205 Median : 588836.9 Median :
                                                   640.91
  Mean : -51.110 Mean : 651388.8
                                        Mean :
                                                       4.60
   3rd Qu.: 3090.502
                                          3rd Qu.: 5164.47
##
                      3rd Qu.:1032757.8
##
   Max. :14724.706 Max.
                            :1214038.2
                                          Max. : 55965.26
##
   IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
                   653004
                             11367
                                           662802
         8775
                     98.5
                                           100.0
##
        1.3
                               1.7
##
##
  Weights: all == 1
##
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# For Semi-Detached of Brent Area
print(forecasted_values_stl_brent_sd)
                            Lo 80
                                     Hi 80
                                              Lo 95
                                                       Hi 95
##
           Point Forecast
                 754264.0 735160.5 773367.4 725047.7 783480.2
## Apr 2024
## May 2024
                 755745.5 728197.4 783293.7 713614.2 797876.8
## Jun 2024
                 758558.2 724162.3 792954.1 705954.2 811162.2
## Jul 2024
                 761019.7 720540.1 801499.4 699111.4 822928.1
## Aug 2024
                 766217.2 720102.0 812332.4 695690.1 836744.4
## Sep 2024
                 769336.0 717874.9 820797.0 690633.0 848038.9
## Oct 2024
                 767703.2 711093.7 824312.7 681126.4 854279.9
## Nov 2024
                 761822.6 700203.4 823441.9 667584.2 856061.1
## Dec 2024
                 759126.2 692595.9 825656.4 657377.0 860875.4
## Jan 2025
                 758711.7 687340.7 830082.6 649559.2 867864.1
## Feb 2025
                 758817.5 682655.2 834979.9 642337.3 875297.8
## Mar 2025
                 755718.5 674798.2 836638.8 631961.5 879475.5
## Apr 2025
                 757756.0 672098.7 843413.2 626754.5 888757.4
## May 2025
                 759237.5 668854.8 849620.3 621009.0 897466.1
                 762050.2 666945.3 857155.0 616599.9 907500.4
## Jun 2025
## Jul 2025
                 764511.7 664682.1 864341.4 611835.4 917188.1
## Aug 2025
                 769709.2 665146.6 874271.8 609794.5 929623.9
## Sep 2025
                 772828.0 663520.0 882135.9 605655.9 940000.0
summary(stl_brent_sd)
## Call:
## stl(x = brent_semi_detached_ts, s.window = "periodic")
##
## Time.series components:
##
      seasonal
                           trend
                                           remainder
```

```
## Min.
          :-6468.674 Min.
                             :100083.5 Min. :-54077.07
## 1st Qu.:-3305.157 1st Qu.:243184.8 1st Qu.: -4417.18
                                                    380.16
## Median :-2188.029 Median :393113.7
                                         Median :
## Mean : -35.444 Mean
                             :428151.6
                                         Mean :
                                                    -5.44
   3rd Qu.: 1160.558 3rd Qu.:681466.3
                                         3rd Qu.: 3511.04
##
  Max. : 8894.769 Max. :797384.2
                                         Max. : 34888.13
  IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
         4466
                    438281
                               7928
                                           444330
##
        1.0
                     98.6
                                1.8
                                           100.0
##
##
  Weights: all == 1
##
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
   $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# For Terraced of Brent Area
print(forecasted_values_stl_brent_t)
##
           Point Forecast
                             Lo 80
                                     Hi 80
                                              Lo 95
                                                       Hi 95
## Apr 2024
                 635552.3 618709.6 652394.9 609793.6 661310.9
## May 2024
                 637529.1 613276.7 661781.4 600438.2 674619.9
## Jun 2024
                 640815.4 610577.7 671053.1 594570.8 687060.0
## Jul 2024
                 643365.2 607828.6 678901.9 589016.6 697713.9
## Aug 2024
                 648250.1 607820.6 688679.5 586418.6 710081.6
## Sep 2024
                 650835.2 605778.1 695892.2 581926.4 719744.0
## Oct 2024
                 648842.5 599340.9 698344.2 573136.4 724548.7
## Nov 2024
                 643459.5 589643.9 697275.1 561155.6 725763.4
## Dec 2024
                 641005.2 582970.4 699040.0 552248.6 729761.7
## Jan 2025
                 640920.1 578735.4 703104.7 545816.8 736023.3
## Feb 2025
                 641131.9 574847.8 707416.0 539759.2 742504.7
## Mar 2025
                 638772.7 568425.4 709120.1 531185.8 746359.7
## Apr 2025
                 641235.3 566849.6 715620.9 527472.2 754998.3
                 643212.1 564804.2 721619.9 523297.6 763126.5
## May 2025
## Jun 2025
                 646498.4 564077.4 728919.4 520446.3 772550.4
## Jul 2025
                 649048.2 562617.2 735479.2 516863.4 781233.0
## Aug 2025
                 653933.1 563490.5 744375.6 515613.1 792253.0
                 656518.2 562058.5 750977.9 512054.5 800981.9
## Sep 2025
summary(stl brent t)
## stl(x = brent_terraced_ts, s.window = "periodic")
## Time.series components:
##
      seasonal
                                           remainder
                           trend
## Min. :-6371.886 Min. : 82716.5 Min. :-47342.61
## 1st Qu.:-3539.148 1st Qu.:200131.7
                                         1st Qu.: -4131.86
## Median :-2718.710 Median :338972.8
                                         Median: 540.76
```

```
Mean : -37.574
                              :362453.8
                                          Mean : -18.86
                       Mean
   3rd Qu.: 2009.260
                       3rd Qu.:577033.5
                                          3rd Qu.: 3305.24
                       Max. :665299.7
   Max. : 8532.049
                                          Max. : 31277.07
##
   IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
                    376902
                                7437
         5548
##
                     99.3
                                2.0
                                            100.0
     %
        1.5
##
##
  Weights: all == 1
##
  Other components: List of 5
   $ win : Named num [1:3] 3511 19 13
##
   $ deg : Named int [1:3] 0 1 1
  $ jump : Named num [1:3] 352 2 2
   $ inner: int 2
##
   $ outer: int 0
# For Flat of Brent Area
print(forecasted_values_stl_brent_f)
                                               Lo 95
##
           Point Forecast
                             Lo 80
                                      Hi 80
                                                        Hi 95
## Apr 2024
                 406546.1 396859.3 416232.9 391731.4 421360.7
                 407864.0 393837.8 421890.2 386412.8 429315.2
## May 2024
## Jun 2024
                 409856.5 392273.9 427439.0 382966.3 436746.6
## Jul 2024
                 411257.9 390485.5 432030.3 379489.3 443026.5
## Aug 2024
                 413458.9 389706.0 437211.7 377132.0 449785.8
                 414667.5 388064.9 441270.1 373982.3 455352.7
## Sep 2024
## Oct 2024
                 413539.9 384173.0 442906.9 368627.1 458452.8
## Nov 2024
                 410444.7 378370.0 442519.4 361390.7 459498.7
## Dec 2024
                 409212.3 374467.0 443957.7 356073.9 462350.8
## Jan 2025
                 409247.5 371854.8 446640.1 352060.3 466434.6
## Feb 2025
                 410118.1 370091.5 450144.8 348902.6 471333.6
                 409152.1 366497.2 451807.1 343917.0 474387.3
## Mar 2025
## Apr 2025
                 410612.2 365328.8 455895.6 341357.2 479867.2
## May 2025
                 411930.1 364013.6 459846.7 338648.1 485212.2
## Jun 2025
                 413922.6 363364.5 464480.6 336600.7 491244.5
## Jul 2025
                 415324.0 362113.2 468534.8 333945.1 496702.9
                 417525.0 361647.8 473402.2 332068.2 502981.8
## Aug 2025
## Sep 2025
                 418733.6 360174.5 477292.8 329175.1 508292.2
summary(stl_brent_f)
## Call:
##
   stl(x = brent_flat_ts, s.window = "periodic")
##
##
   Time.series components:
##
                                            remainder
      seasonal
                           trend
          :-3158.617
                       Min. : 61969.2
                                          Min. :-31347.912
##
  Min.
                                          1st Qu.: -2441.169
  1st Qu.:-2081.918
##
                       1st Qu.:152513.2
## Median :-1058.328
                       Median :241268.1
                                          Median :
                                                      69.704
## Mean : -21.077
                       Mean :248156.1
                                          Mean : -20.251
## 3rd Qu.: 1657.895
                       3rd Qu.:381088.6
                                          3rd Qu.: 2132.059
## Max. : 4389.807
                                          Max. : 22837.044
                       Max. :412594.5
```

```
##
    IQR:
##
        STL.seasonal STL.trend STL.remainder data
                     228575
##
          3740
                                  4573
                                               234549
          1.6
                                               100.0
##
                      97.5
                                  1.9
##
## Weights: all == 1
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# Split the data into training and test sets of Brent Area
train_end \leftarrow c(2023, 6)
test_start <- c(2023, 6)
#Detached property of Brent Area
# By ARIMA model for Detached of Brent Area
brent_detached_train_arima <- window(brent_detached_ts_diff, end = train_end)</pre>
# Fit specified ARIMA models to the training data for Detached of Brent Area
fit_arima_brent_d_train <- Arima(brent_detached_train_arima,</pre>
                                  order = c(0, 0, 5)
forecasted_values_arima_brent_d_train <- forecast(fit_arima_brent_d_train,</pre>
                                                    h = 9)
# Add the forecasted differenced values to the last observed value of Brent Area
brent_detached_new_ts <- ts(brent_detached_price,</pre>
                           start = c(1995, 1), end = c(2023, 6), frequency = 12)
last_value_brent_detached <- as.numeric(tail(brent_detached_new_ts, n = 1))</pre>
forecasted_values_brent_detached_combined <- c(last_value_brent_detached,</pre>
                                     forecasted_values_arima_brent_d_train$mean)
cumulative forecasted values brent detached <-
  cumsum(forecasted_values_brent_detached_combined)
forecasted values arima brent d test <-
  ts(cumulative_forecasted_values_brent_detached,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Detached by ARIMA of Brent Area
mse_brent_detached_arima <- mean((window(brent_detached_ts,</pre>
                                          start=test_start) -
                                     forecasted_values_arima_brent_d_test)^2)
mae_brent_detached_arima <- mean(abs(window(brent_detached_ts,</pre>
                                              start=test_start) -
                                        forecasted_values_arima_brent_d_test))
# By ETS model for Detached of Brent Area
brent_detached_train_ets <- window(brent_detached_ts, end = train_end)
brent_detached_test_ets <- window(brent_detached_ts, start = test_start)</pre>
# Fit ETS models to the training data for Detached of Brent Area
fit_ets_brent_d_train <- ets(brent_detached_train_ets)</pre>
```

```
# Forecast the test period for Detached of Brent Area
forecasted_values_ets_brent_d_test <- forecast(fit_ets_brent_d_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Detached of Brent Area
mse_brent_detached_ets <- mean((brent_detached_test_ets -</pre>
                                   forecasted_values_ets_brent_d_test$mean)^2)
mae_brent_detached_ets <- mean(abs(brent_detached_test_ets -</pre>
                                      forecasted values ets brent d test$mean))
# By STL model for Detached of Brent Area
brent_detached_train_stl <- window(brent_detached_ts, end = train_end)</pre>
brent_detached_test_stl <- window(brent_detached_ts, start = test_start)</pre>
fit_stl_brent_d_train <- stl(brent_detached_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_brent_d_test <- forecast(fit_stl_brent_d_train,</pre>
                                                method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Detached of Brent Area
mse_brent_detached_stl <- mean((brent_detached_test_stl -</pre>
                                   forecasted_values_stl_brent_d_test$mean)^2)
mae_brent_detached_stl <- mean(abs(brent_detached_test_stl -</pre>
                                      forecasted values stl brent d test$mean))
# Print MSE and MAE of Brent Area
print(paste("Brent Detached MSE for Arima:", mse_brent_detached_arima))
## [1] "Brent Detached MSE for Arima: 719073122.859176"
print(paste("Brent Detached MAE for Arima:", mae_brent_detached_arima))
## [1] "Brent Detached MAE for Arima: 19391.7938886515"
print(paste("Brent Detached MSE for ETS:", mse brent detached ets))
## [1] "Brent Detached MSE for ETS: 765145364.383674"
print(paste("Brent Detached MAE for ETS:", mae_brent_detached_ets))
## [1] "Brent Detached MAE for ETS: 22613.7702735772"
print(paste("Brent Detached MSE for STL:", mse_brent_detached_stl))
## [1] "Brent Detached MSE for STL: 534549456.298435"
print(paste("Brent Detached MAE for STL:", mae brent detached stl))
## [1] "Brent Detached MAE for STL: 18642.00743622"
```

Brent Detached Average Price: Forecast vs Actual


```
last_value_brent_semi_detached <- as.numeric(tail(brent_semi_detached_new_ts,</pre>
forecasted_values_brent_semi_detached_combined <-</pre>
  c(last value brent semi detached,
    forecasted_values_arima_brent_sd_train$mean)
cumulative_forecasted_values_brent_semi_detached <-</pre>
  cumsum(forecasted_values_brent_semi_detached_combined)
forecasted values arima brent sd test <-
  ts(cumulative_forecasted_values_brent_semi_detached,
     start = test start, frequency = 12)
# Calculate MSE and MAE for Semi-Detached by ARIMA of Brent Area
mse_brent_semi_detached_arima <- mean((window(brent_semi_detached_ts,</pre>
                                                start=test start) -
                                       forecasted_values_arima_brent_sd_test)^2)
mae_brent_semi_detached_arima <- mean(abs(window(brent_semi_detached_ts,</pre>
                                                   start=test_start) -
                                          forecasted_values_arima_brent_sd_test))
# By ETS model for Semi-Detached of Brent Area
brent_semi_detached_train_ets <- window(brent_semi_detached_ts, end = train_end)</pre>
brent_semi_detached_test_ets <- window(brent_semi_detached_ts,</pre>
                                        start = test start)
# Fit ETS models to the training data for Semi-Detached of Brent Area
fit ets brent sd train <- ets(brent semi detached train ets)
# Forecast the test period for Semi-Detached of Brent Area
forecasted_values_ets_brent_sd_test <- forecast(fit_ets_brent_sd_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Semi-Detached of Brent Area
mse_brent_semi_detached_ets <- mean((brent_semi_detached_test_ets -</pre>
                                     forecasted_values_ets_brent_sd_test$mean)^2)
mae_brent_semi_detached_ets <- mean(abs(brent_semi_detached_test_ets -</pre>
                                       forecasted_values_ets_brent_sd_test$mean))
# By STL model for Semi-Detached of Brent Area
brent_semi_detached_train_stl <- window(brent_semi_detached_ts, end = train_end)
brent_semi_detached_test_stl <- window(brent_semi_detached_ts,</pre>
                                        start = test_start)
fit_stl_brent_sd_train <- stl(brent_semi_detached_train_stl,</pre>
                               s.window = "periodic")
forecasted_values_stl_brent_sd_test <- forecast(fit_stl_brent_sd_train,</pre>
                                                  method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Semi-Detached of Brent Area
mse_brent_semi_detached_stl <- mean((brent_semi_detached_test_stl -</pre>
                                     forecasted_values_stl_brent_sd_test$mean)^2)
mae_brent_semi_detached_stl <- mean(abs(brent_semi_detached_test_stl -</pre>
                                       forecasted_values_stl_brent_sd_test$mean))
# Print MSE and MAE for Semi-Detached of Brent Area
print(paste("Brent Semi-Detached MSE for ARIMA:",
```

```
mse_brent_semi_detached_arima))
## [1] "Brent Semi-Detached MSE for ARIMA: 240503401.526663"
print(paste("Brent Semi-Detached MAE for ARIMA:",
           mae_brent_semi_detached_arima))
## [1] "Brent Semi-Detached MAE for ARIMA: 11908.0549804835"
print(paste("Brent Semi-Detached MSE for ETS:",
           mse_brent_semi_detached_ets))
## [1] "Brent Semi-Detached MSE for ETS: 258701315.053434"
print(paste("Brent Semi-Detached MAE for ETS:",
            mae_brent_semi_detached_ets))
## [1] "Brent Semi-Detached MAE for ETS: 13885.9328324341"
print(paste("Brent Semi-Detached MSE for STL:",
           mse_brent_semi_detached_stl))
## [1] "Brent Semi-Detached MSE for STL: 173467546.618505"
print(paste("Brent Semi-Detached MAE for STL:",
            mae_brent_semi_detached_stl))
## [1] "Brent Semi-Detached MAE for STL: 11771.8204146328"
# Plot the combined time series with forecast for Semi-Detached of Brent Area
plot(window(brent_semi_detached_ts, start = train_end), type = "l",
     col = "blue",
     main = "Brent Semi-Detached Average Price: Forecast vs Actual",
    ylab = "Price", xlab = "Year",
     ylim = range(c(window(brent_semi_detached_ts, start = train_end),
                    forecasted_values_arima_brent_sd_test,
                    forecasted_values_ets_brent_sd_test$mean,
                    forecasted_values_stl_brent_sd_test$mean)))
lines(forecasted_values_arima_brent_sd_test, col = "red")
lines(forecasted_values_ets_brent_sd_test$mean, col = "green")
lines(forecasted_values_stl_brent_sd_test$mean, col = "yellow")
legend("topright", legend = c("Price", "ARIMA", "ETS", "STL"),
      col = c("blue", "red", "green", "yellow"), lty = 1, cex = 0.8)
```

Brent Semi-Detached Average Price: Forecast vs Actual


```
# Terraced property of Brent Area
# By ARIMA model for Terraced of Brent Area
brent_terraced_train_arima <- window(brent_terraced_ts_diff, end = train_end)</pre>
# Fit specified ARIMA models to the training data for Terraced of Brent Area
fit_arima_brent_t_train <- Arima(brent_terraced_train_arima,</pre>
                                   order = c(2, 0, 5))
forecasted_values_arima_brent_t_train <- forecast(fit_arima_brent_t_train,</pre>
                                                    h = 9)
# Add the forecasted differenced values of Terraced in Brent Area
brent_terraced_new_ts <- ts(brent_terraced_price, start = c(1995, 1),</pre>
                             end = c(2023, 6), frequency = 12)
last_value_brent_terraced <- as.numeric(tail(brent_terraced_new_ts, n = 1))</pre>
forecasted_values_brent_terraced_combined <-</pre>
  c(last_value_brent_terraced,
    forecasted_values_arima_brent_t_train$mean)
cumulative_forecasted_values_brent_terraced <-</pre>
  cumsum(forecasted_values_brent_terraced_combined)
forecasted_values_arima_brent_t_test <-</pre>
  ts(cumulative_forecasted_values_brent_terraced,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Terraced by ARIMA of Brent Area
mse_brent_terraced_arima <- mean((window(brent_terraced_ts, start=test_start) -</pre>
                                      forecasted values arima brent t test)^2)
mae_brent_terraced_arima <- mean(abs(window(brent_terraced_ts,</pre>
                                              start=test start) -
                                         forecasted_values_arima_brent_t_test))
```

```
# By ETS model for Terraced of Brent Area
brent_terraced_train_ets <- window(brent_terraced_ts, end = train_end)</pre>
brent terraced test ets <- window(brent terraced ts, start = test start)</pre>
# Fit ETS models to the training data for Terraced of Brent Area
fit_ets_brent_t_train <- ets(brent_terraced_train_ets)</pre>
# Forecast the test period for Terraced of Brent Area
forecasted_values_ets_brent_t_test <- forecast(fit_ets_brent_t_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Terraced of Brent Area
mse_brent_terraced_ets <- mean((brent_terraced_test_ets -</pre>
                                   forecasted_values_ets_brent_t_test$mean)^2)
mae_brent_terraced_ets <- mean(abs(brent_terraced_test_ets -</pre>
                                      forecasted_values_ets_brent_t_test$mean))
# By STL model for Terraced of Brent Area
brent_terraced_train_stl <- window(brent_terraced_ts, end = train_end)</pre>
brent_terraced_test_stl <- window(brent_terraced_ts, start = test_start)</pre>
fit_stl_brent_t_train <- stl(brent_terraced_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_brent_t_test <- forecast(fit_stl_brent_t_train,</pre>
                                                method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Terraced of Brent Area
mse brent terraced stl <- mean((brent terraced test stl -</pre>
                                   forecasted_values_stl_brent_t_test$mean)^2)
mae_brent_terraced_stl <- mean(abs(brent_terraced_test_stl -</pre>
                                      forecasted_values_stl_brent_t_test$mean))
# Print MSE and MAE of Terraced in Brent Area
print(paste("Brent Terraced MSE for ARIMA:", mse_brent_terraced_arima))
## [1] "Brent Terraced MSE for ARIMA: 200465734.613222"
print(paste("Brent Terraced MAE for ARIMA:", mae_brent_terraced_arima))
## [1] "Brent Terraced MAE for ARIMA: 10693.0071390128"
print(paste("Brent Terraced MSE for ETS:", mse_brent_terraced_ets))
## [1] "Brent Terraced MSE for ETS: 179735961.58828"
print(paste("Brent Terraced MAE for ETS:", mae_brent_terraced_ets))
## [1] "Brent Terraced MAE for ETS: 10257.3682407471"
print(paste("Brent Terraced MSE for STL:", mse_brent_terraced_stl))
```

[1] "Brent Terraced MSE for STL: 150517030.927186"

```
print(paste("Brent Terraced MAE for STL:", mae_brent_terraced_stl))
```

[1] "Brent Terraced MAE for STL: 10761.2839519828"

Brent Terraced Average Price: Forecast vs Actual


```
brent_flat_new_ts <- ts(brent_flat_price, start = c(1995, 1),</pre>
                         end = c(2023, 6), frequency = 12)
last_value_brent_flat <- as.numeric(tail(brent_flat_new_ts, n = 1))</pre>
forecasted_values_brent_flat_combined <-</pre>
  c(last_value_brent_flat, forecasted_values_arima_brent_f_train$mean)
cumulative_forecasted_values_brent_flat <-</pre>
  cumsum(forecasted_values_brent_flat_combined)
forecasted values arima brent f test <-
  ts(cumulative_forecasted_values_brent_flat, start = test_start,
     frequency = 12)
# Calculate MSE and MAE for Flat by ARIMA of Brent Area
mse_brent_flat_arima <- mean((window(brent_flat_ts, start=test_start) -</pre>
                                 forecasted_values_arima_brent_f_test)^2)
mae_brent_flat_arima <- mean(abs(window(brent_flat_ts, start=test_start) -</pre>
                                     forecasted_values_arima_brent_f_test))
# By ETS model for Flat of Brent Area
brent_flat_train_ets <- window(brent_flat_ts, end = train_end)</pre>
brent_flat_test_ets <- window(brent_flat_ts, start = test_start)</pre>
# Fit ETS models to the training data for Flat of Brent Area
fit_ets_brent_f_train <- ets(brent_flat_train_ets)</pre>
# Forecast the test period for Flat of Brent Area
forecasted_values_ets_brent_f_test <- forecast(fit_ets_brent_f_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Flat of Brent Area
mse_brent_flat_ets <- mean((brent_flat_test_ets -</pre>
                             forecasted_values_ets_brent_f_test$mean)^2)
mae_brent_flat_ets <- mean(abs(brent_flat_test_ets -</pre>
                                forecasted_values_ets_brent_f_test$mean))
# By STL model for Flat of Brent Area
brent_flat_train_stl <- window(brent_flat_ts, end = train_end)</pre>
brent_flat_test_stl <- window(brent_flat_ts, start = test_start)</pre>
fit_stl_brent_f_train <- stl(brent_flat_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_brent_f_test <- forecast(fit_stl_brent_f_train,</pre>
                                                 method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Flat of Brent Area
mse_brent_flat_stl <- mean((brent_flat_test_stl -</pre>
                             forecasted_values_stl_brent_f_test$mean)^2)
mae_brent_flat_stl <- mean(abs(brent_flat_test_stl -</pre>
                                forecasted_values_stl_brent_f_test$mean))
# Print MSE and MAE of Flat in Brent Area
print(paste("Brent Flat MSE for ARIMA:", mse_brent_flat_arima))
```

[1] "Brent Flat MSE for ARIMA: 30884602.9555907"

```
print(paste("Brent Flat MAE for ARIMA:", mae_brent_flat_arima))
## [1] "Brent Flat MAE for ARIMA: 4673.23986867098"
print(paste("Brent Flat MSE for ETS:", mse_brent_flat_ets))
## [1] "Brent Flat MSE for ETS: 39890845.0825861"
print(paste("Brent Flat MAE for ETS:", mae_brent_flat_ets))
## [1] "Brent Flat MAE for ETS: 5810.26480880922"
print(paste("Brent Flat MSE for STL:", mse_brent_flat_stl))
## [1] "Brent Flat MSE for STL: 46753804.8973573"
print(paste("Brent Flat MAE for STL:", mae_brent_flat_stl))
## [1] "Brent Flat MAE for STL: 5812.86835251555"
# Plot the combined time series with forecast for Flat of Brent Area
plot(window(brent_flat_ts, start = train_end), type = "l", col = "blue",
    main = "Brent Flat Average Price: Forecast vs Actual", ylab = "Price",
     xlab = "Year", ylim = range(c(window(brent_flat_ts, start = train_end),
                                   forecasted_values_arima_brent_f_test,
                                   forecasted_values_ets_brent_f_test$mean,
                                   forecasted_values_stl_brent_f_test$mean)))
lines(forecasted_values_arima_brent_f_test, col = "red")
lines(forecasted_values_ets_brent_f_test$mean, col = "green")
lines(forecasted_values_stl_brent_f_test$mean, col = "yellow")
legend("topright", legend = c("Price", "ARIMA", "ETS", "STL"),
```

col = c("blue", "red", "green", "yellow"), lty = 1, cex = 0.8)

Brent Flat Average Price: Forecast vs Actual

Brent Average Price of Four Properties

Brent Mean Price of Less MSE

Brent Mean Price of Less MAE


```
# Compare two models for which one is better in Brent Area
combined_mean_price_brent_less_MSE_test <-</pre>
  (forecasted_values_stl_brent_d_test$mean +
     forecasted_values_stl_brent_sd_test$mean +
     forecasted_values_stl_brent_t_test$mean +
     forecasted_values_arima_brent_f_test) / 4
combined_mean_price_brent_less_MSE_test_ts <-</pre>
  ts(combined mean price brent less MSE test,
     start = test_start, frequency = 12)
combined_mean_price_brent_less_MAE_test <-</pre>
  (forecasted_values_stl_brent_d_test$mean +
     forecasted_values_stl_brent_sd_test$mean +
     forecasted_values_ets_brent_t_test$mean +
     forecasted_values_arima_brent_f_test) / 4
combined_mean_price_brent_less_MAE_test_ts <-</pre>
  ts(combined_mean_price_brent_less_MAE_test,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for combined mean prices in Brent Area
combined_mean_price_brent_test <- window(combined_mean_price_brent_ts,</pre>
                                           start = test_start)
mse_combined_brent_less_MSE <-</pre>
  mean((combined_mean_price_brent_test -
          combined_mean_price_brent_less_MSE_test_ts)^2)
mae_combined_brent_less_MSE <- mean(abs(combined_mean_price_brent_test -</pre>
                                      combined_mean_price_brent_less_MSE_test_ts))
```

[1] "Brent Combined Mean Price MSE for Less MSE Model: 107820761.994977"

[1] "Brent Combined Mean Price MAE for Less MSE Model: 9737.95323887907"

[1] "Brent Combined Mean Price MSE for Less MAE Model: 113355278.670304"

[1] "Brent Combined Mean Price MAE for Less MAE Model: 9962.44868555034"

Brent Combined Mean Prices Comparison


```
### Croydon Area
# Load the data of Croydon Area
croydon_data <- read.csv("~/Desktop/Updated_Croydon_df.csv")</pre>
# Convert the Date column to Date type of Croydon Area
croydon_data$Date <- as.Date(croydon_data$Date, format="%Y-%m-%d")</pre>
# Extract the Average Price for each property type and Date columns in Croydon
croydon detached price <- croydon data$Detached Average Price</pre>
croydon_semi_detached_price <- croydon_data$Semi_Detached_Average_Price</pre>
croydon terraced price <- croydon data$Terraced Average Price</pre>
croydon_flat_price <- croydon_data$Flat_Average_Price</pre>
croydon_dates <- croydon_data$Date</pre>
# Create time series object for each property type of Croydon Area
croydon_detached_ts <- ts(croydon_detached_price,</pre>
                           start = c(1995, 1), frequency = 12)
croydon_semi_detached_ts <- ts(croydon_semi_detached_price,</pre>
                                 start = c(1995, 1), frequency = 12)
croydon_terraced_ts <- ts(croydon_terraced_price,</pre>
                           start = c(1995, 1), frequency = 12)
croydon_flat_ts <- ts(croydon_flat_price, start = c(1995, 1), frequency = 12)</pre>
# Plot the time series of Croydon Area
plot(croydon_detached_ts, main = "Croydon Detached Average Price Time Series",
     ylab = "Detached Average Price", xlab = "Year")
```

Croydon Detached Average Price Time Series


```
plot(croydon_semi_detached_ts,
    main = "Croydon Semi-Detached Average Price Time Series",
    ylab = "Semi-Detached Average Price", xlab = "Year")
```

Croydon Semi-Detached Average Price Time Series


```
plot(croydon_terraced_ts, main = "Croydon Terraced Average Price Time Series",
    ylab = "Terraced Average Price", xlab = "Year")
```

Croydon Terraced Average Price Time Series

plot(croydon_flat_ts, main = "Croydon Flat Average Price Time Series",
 ylab = "Flat Average Price", xlab = "Year")

Croydon Flat Average Price Time Series

[1] "Croydon p-value: 0.482159416344303 0.429833692588994 0.420094571650799 0.423259870045663"

```
# Perform first-order differencing of Croydon Area
croydon_detached_ts_diff <- diff(croydon_detached_ts)
croydon_semi_detached_ts_diff <- diff(croydon_semi_detached_ts)
croydon_terraced_ts_diff <- diff(croydon_terraced_ts)
croydon_flat_ts_diff <- diff(croydon_flat_ts)

# Perform ADF test on differenced series of Croydon Area
adf_test_diff_croydon_d <- adf.test(croydon_detached_ts_diff)</pre>
```

```
## Warning in adf.test(croydon_detached_ts_diff): p-value smaller than printed
## p-value
```

```
adf_test_diff_croydon_sd <- adf.test(croydon_semi_detached_ts_diff)</pre>
## Warning in adf.test(croydon_semi_detached_ts_diff): p-value smaller than
## printed p-value
adf_test_diff_croydon_t <- adf.test(croydon_terraced_ts_diff)</pre>
## Warning in adf.test(croydon_terraced_ts_diff): p-value smaller than printed
## p-value
adf_test_diff_croydon_f <- adf.test(croydon_flat_ts_diff)</pre>
## Warning in adf.test(croydon_flat_ts_diff): p-value smaller than printed p-value
differenced_p_value_croydon_d <- adf_test_diff_croydon_d$p.value</pre>
differenced_p_value_croydon_sd <- adf_test_diff_croydon_sd$p.value</pre>
differenced_p_value_croydon_t <- adf_test_diff_croydon_t$p.value</pre>
differenced_p_value_croydon_f <- adf_test_diff_croydon_f$p.value</pre>
print(paste("Croydon difference1_p-value:", differenced_p_value_croydon_d,
            differenced_p_value_croydon_sd, differenced_p_value_croydon_t,
            differenced_p_value_croydon_f))
## [1] "Croydon difference1 p-value: 0.01 0.01 0.01 0.01"
# Define function to plot ACF and PACF of Croydon Area
plot acf pacf <- function(ts diff, title) {</pre>
  acf(ts_diff, main = paste("ACF of", title))
 pacf(ts_diff, main = paste("PACF of", title))
}
# Plot ACF and PACF for differenced series for each property type in Croydon
```

"Croydon Differenced Detached Average Price Forecast")

plot_acf_pacf(croydon_detached_ts_diff,

ACF of Croydon Differenced Detached Average Price Forecast

PACF of Croydon Differenced Detached Average Price Forecast

ACF of Croydon Differenced Semi-Detached Average Price Forecas

PACF of Croydon Differenced Semi-Detached Average Price Foreca

ACF of Croydon Differenced Terraced Average Price Forecast

PACF of Croydon Differenced Terraced Average Price Forecast

ACF of Croydon Differenced Flat Average Price Forecast

PACF of Croydon Differenced Flat Average Price Forecast


```
##
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 7061.172
                           with non-zero mean: 7023.322
##
   ARIMA(0,0,0)
  ARIMA(0,0,0)(0,0,1)[12] with zero mean
##
                                             : 7047.076
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean: 7019.787
##
   ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                             : 7039.692
  ARIMA(0,0,0)(0,0,2)[12] with non-zero mean: 7019.271
## ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                             : 7041.604
   ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 7018.869
##
   ARIMA(0,0,0)(1,0,1)[12] with zero mean
   ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : 7019.797
##
   ARIMA(0,0,0)(1,0,2)[12] with zero mean
   ARIMA(0,0,0)(1,0,2)[12] with non-zero mean: 7021.3
##
                                             : 7036.096
   ARIMA(0,0,0)(2,0,0)[12] with zero mean
   ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 7019.338
##
   ARIMA(0,0,0)(2,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(2,0,2)[12] with zero mean
  ARIMA(0,0,0)(2,0,2)[12] with non-zero mean: Inf
##
   ARIMA(0,0,1)
                           with zero mean
                                             : 6975.332
                           with non-zero mean: 6951.206
##
   ARIMA(0,0,1)
## ARIMA(0,0,1)(0,0,1)[12] with zero mean
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 6950.971
   ARIMA(0,0,1)(0,0,2)[12] with zero mean
##
  ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 6950.24
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                            : 6968.086
##
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 6950.558
   ARIMA(0,0,1)(1,0,1)[12] with zero mean
  ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : 6951.529
  ARIMA(0,0,1)(1,0,2)[12] with zero mean
                                             : 6965.395
##
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : 6952.305
##
   ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                             : 6963.085
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 6950.464
##
  ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean: Inf
   ARIMA(0,0,1)(2,0,2)[12] with zero mean
  ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)
                           with zero mean
                                              : 6826.691
##
   ARIMA(0,0,2)
                           with non-zero mean: 6819.341
##
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                            : 6828.159
  ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 6819.237
##
  ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                            : 6827.977
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 6820.806
##
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                            : 6828.052
  ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 6819.051
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
##
                                             : Inf
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean: Inf
##
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
  ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 6827.8
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 6820.585
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
## ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,3)
                           with zero mean
                                           : 6808.86
```

```
ARIMA(0,0,3)
                           with non-zero mean: 6793.625
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                             : 6810.638
## ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : 6795.63
## ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                             : 6808.371
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : 6796.35
## ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                             : 6810.559
  ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : 6795.62
## ARIMA(0,0,3)(1,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                            : 6807.755
   ARIMA(0,0,3)(2,0,0)[12] with non-zero mean : 6796.284
##
                           with zero mean
                                             : 6806.799
   ARIMA(0,0,4)
##
   ARIMA(0,0,4)
                           with non-zero mean: 6793.595
##
                                             : 6808.382
  ARIMA(0,0,4)(0,0,1)[12] with zero mean
   ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : 6795.675
##
   ARIMA(0,0,4)(1,0,0)[12] with zero mean
                                             : 6808.263
##
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : 6795.675
##
  ARIMA(0,0,5)
                           with zero mean
                                            : 6806.728
## ARIMA(0,0,5)
                           with non-zero mean: 6794.595
## ARIMA(1,0,0)
                           with zero mean
                                              : 6919.41
   ARIMA(1,0,0)
##
                           with non-zero mean: 6910.635
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
## ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 6910.778
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                            : 6917.508
## ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 6911.535
  ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                            : 6917.648
##
   ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 6910.555
   ARIMA(1,0,0)(1,0,1)[12] with zero mean
  ARIMA(1,0,0)(1,0,1)[12] with non-zero mean: 6912.235
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
                                             : 6919.56
##
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                             : 6917.556
##
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 6911.772
  ARIMA(1,0,0)(2,0,1)[12] with zero mean
##
                                             : Inf
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
   ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : 6911.766
## ARIMA(1,0,1)
                           with zero mean
                                              : 6920.202
##
   ARIMA(1,0,1)
                           with non-zero mean: 6912.265
##
   ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                            : 6918.24
  ARIMA(1,0,1)(0,0,1)[12] with non-zero mean : 6911.973
##
  ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                             : 6918.122
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 6912.926
##
   ARIMA(1,0,1)(1,0,0)[12] with zero mean
                                             : 6917.597
  ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 6911.715
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : Inf
##
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : 6913.484
##
  ARIMA(1,0,1)(1,0,2)[12] with zero mean
  ARIMA(1,0,1)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                             : 6918.22
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 6913.159
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
## ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)
                           with zero mean
                                           : 6806.642
```

```
ARIMA(1,0,2)
                           with non-zero mean: 6792.809
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                             : 6808.368
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : 6794.829
## ARIMA(1,0,2)(0,0,2)[12] with zero mean
                                             : 6806.73
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : 6795.898
##
   ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                              : 6808.283
  ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : 6794.823
## ARIMA(1,0,2)(1,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,2)(1,0,1)[12] with non-zero mean: Inf
##
   ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                             : 6806.238
   ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : 6795.838
##
                           with zero mean
                                              : 6808.694
   ARIMA(1,0,3)
##
   ARIMA(1,0,3)
                           with non-zero mean: 6794.273
##
   ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                              : 6810.41
   ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : 6796.333
##
   ARIMA(1,0,3)(1,0,0)[12] with zero mean
                                              : 6810.315
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : 6796.33
##
   ARIMA(1,0,4)
                           with zero mean
                                              : 6793.361
##
  ARIMA(1,0,4)
                           with non-zero mean: 6789.841
##
   ARIMA(2,0,0)
                           with zero mean
                                              : 6919.346
                           with non-zero mean : 6911.873
##
   ARIMA(2,0,0)
## ARIMA(2,0,0)(0,0,1)[12] with zero mean
## ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 6911.131
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
##
                                            : 6917.012
##
   ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 6912.255
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                            : 6916.108
##
   ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 6910.852
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
                                              : 6917.401
  ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: 6912.698
  ARIMA(2,0,0)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                              : 6917.133
##
   ARIMA(2,0,0)(2,0,0)[12] with non-zero mean : 6912.48
  ARIMA(2,0,0)(2,0,1)[12] with zero mean
##
                                             : Inf
##
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean: Inf
##
                           with zero mean
                                              : 6903.059
   ARIMA(2,0,1)
##
   ARIMA(2,0,1)
                           with non-zero mean: 6896.354
##
   ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                              : 6901.484
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 6896.139
##
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                             : 6902.926
  ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 6898.077
##
  ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 6901.182
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 6896.065
##
   ARIMA(2,0,1)(1,0,1)[12] with zero mean
                                             : 6902.987
  ARIMA(2,0,1)(1,0,1)[12] with non-zero mean: 6898.135
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
##
                                              : 6902.946
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 6898.126
##
   ARIMA(2,0,2)
                           with zero mean
                                              : 6808.688
   ARIMA(2,0,2)
                           with non-zero mean: 6793.962
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
                                              : 6810.382
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : 6796.036
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
                                             : 6810.277
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : 6796.035
## ARIMA(2,0,3)
                           with zero mean
                                            : 6797.211
```

```
ARIMA(2,0,3)
                           with non-zero mean: 6795.03
                           with zero mean
##
   ARIMA(3,0,0)
                                              : 6902.816
##
  ARIMA(3,0,0)
                           with non-zero mean: 6888.739
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                             : 6900.451
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 6889.254
##
  ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                             : 6901.068
  ARIMA(3,0,0)(0,0,2)[12] with non-zero mean: 6891.096
  ARIMA(3,0,0)(1,0,0)[12] with zero mean
##
                                             : 6899.908
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean : 6889.187
   ARIMA(3,0,0)(1,0,1)[12] with zero mean
##
  ARIMA(3,0,0)(1,0,1)[12] with non-zero mean: 6891.246
   ARIMA(3,0,0)(2,0,0)[12] with zero mean
##
                                             : 6901.12
   ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 6891.203
##
  ARIMA(3,0,1)
                           with zero mean
                                              : 6887.173
##
  ARIMA(3,0,1)
                           with non-zero mean: 6874.016
##
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                             : 6887.539
##
   ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 6875.908
  ARIMA(3,0,1)(1,0,0)[12] with zero mean
  ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 6875.9
##
   ARIMA(3,0,2)
                           with zero mean
                                             : 6805.979
##
   ARIMA(3,0,2)
                           with non-zero mean: 6794.266
                           with zero mean
## ARIMA(4,0,0)
                                             : 6849.408
                           with non-zero mean : 6844.313
## ARIMA(4,0,0)
   ARIMA(4,0,0)(0,0,1)[12] with zero mean
##
                                            : 6851.447
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 6846.18
  ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                            : 6851.44
##
  ARIMA(4,0,0)(1,0,0)[12] with non-zero mean: 6846.148
##
   ARIMA(4,0,1)
                           with zero mean
                                              : 6844.674
##
  ARIMA(4,0,1)
                           with non-zero mean: 6841.578
   ARIMA(5,0,0)
                           with zero mean
                                              : 6840.077
##
   ARIMA(5,0,0)
                           with non-zero mean: 6837.409
##
##
##
   Best model: ARIMA(1,0,4)
                                       with non-zero mean
fit_arima_croydon_sd <- auto.arima(croydon_semi_detached_ts_diff,</pre>
                                  stepwise = FALSE,
                           approximation = FALSE, trace = TRUE)
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 6740.57
##
   ARIMA(0,0,0)
                           with non-zero mean: 6697.36
##
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
                                             6732.55
##
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 6698.087
   ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                             : 6723.276
   ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 6697.85
##
   ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                             : 6728.743
  ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 6697.885
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : 6699.449
##
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
```

: 6720.349

ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf

ARIMA(0,0,0)(2,0,0)[12] with zero mean

```
ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 6698.318
## ARIMA(0,0,0)(2,0,1)[12] with zero mean
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,2)[12] with zero mean
   ARIMA(0,0,0)(2,0,2)[12] with non-zero mean: Inf
## ARIMA(0,0,1)
                           with zero mean
                                              : 6658.426
                           with non-zero mean: 6630.641
  ARIMA(0.0.1)
## ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                             : 6655.841
   ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 6632.15
##
   ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                            : 6651.326
   ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 6632.971
##
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                             : 6654.466
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 6632.088
##
   ARIMA(0,0,1)(1,0,1)[12] with zero mean
  ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : 6633.968
##
   ARIMA(0,0,1)(1,0,2)[12] with zero mean
                                             : 6652.68
##
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
##
  ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                            : 6650.492
## ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 6633.263
   ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf
##
## ARIMA(0,0,1)(2,0,2)[12] with zero mean
## ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : 6632.055
##
                           with zero mean
   ARIMA(0.0.2)
## ARIMA(0,0,2)
                           with non-zero mean: 6497.795
  ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                            : 6508.003
##
   ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 6497.547
   ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                             : 6509.479
  ARIMA(0,0,2)(0,0,2)[12] with non-zero mean: 6499.44
  ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                             : 6507.954
##
   ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 6497.603
##
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : Inf
##
  ARIMA(0,0,2)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 6509.241
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 6499.673
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : 6498.216
## ARIMA(0,0,3)
                           with zero mean
                                             : 6487.525
  ARIMA(0,0,3)
                           with non-zero mean: 6469.665
## ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                             : 6489.423
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : 6471.35
##
   ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                             : 6487.948
  ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : 6473.05
                                             : 6489.384
## ARIMA(0,0,3)(1,0,0)[12] with zero mean
   ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : 6471.321
##
  ARIMA(0,0,3)(1,0,1)[12] with zero mean
  ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: Inf
## ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                             : Inf
## ARIMA(0,0,3)(2,0,0)[12] with non-zero mean : 6472.9
## ARIMA(0,0,4)
                           with zero mean
                                             : 6482.361
## ARIMA(0,0,4)
                           with non-zero mean: 6467.449
## ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                           : 6484.177
```

```
ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : 6469.372
   ARIMA(0,0,4)(1,0,0)[12] with zero mean
                                             : 6484.128
## ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : 6469.362
## ARIMA(0,0,5)
                           with zero mean
                                             : 6482.757
   ARIMA(0,0,5)
                           with non-zero mean: 6468.915
## ARIMA(1,0,0)
                           with zero mean
                                              : 6601.389
## ARIMA(1,0,0)
                           with non-zero mean: 6590.641
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                             : 6601.976
   ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 6592.286
##
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                            : 6602.938
  ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 6594.24
##
   ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                             : 6601.818
   ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 6592.275
##
  ARIMA(1,0,0)(1,0,1)[12] with zero mean
                                             : 6603.627
## ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : 6594.331
##
   ARIMA(1,0,0)(1,0,2)[12] with zero mean
                                            : Inf
##
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
##
  ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                            : 6603.185
## ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 6594.308
   ARIMA(1,0,0)(2,0,1)[12] with zero mean
                                             : Inf
## ARIMA(1,0,0)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : 6592.524
                           with zero mean
##
   ARIMA(1.0.1)
                                              : 6599.955
## ARIMA(1,0,1)
                           with non-zero mean: 6591.039
  ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                            : 6600.223
##
   ARIMA(1,0,1)(0,0,1)[12] with non-zero mean : 6592.476
   ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                              : 6601.67
  ARIMA(1,0,1)(0,0,2)[12] with non-zero mean: 6594.498
## ARIMA(1,0,1)(1,0,0)[12] with zero mean
                                             : 6600.093
##
   ARIMA(1,0,1)(1,0,0)[12] with non-zero mean : 6592.468
##
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : 6602.065
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : 6594.538
## ARIMA(1,0,1)(1,0,2)[12] with zero mean
                                             : Inf
   ARIMA(1,0,1)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                             : 6601.902
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 6594.538
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,1)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,2)
                           with zero mean
                                             : 6483.492
  ARIMA(1,0,2)
                           with non-zero mean: 6466.676
## ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                             : 6485.315
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : 6468.458
##
  ARIMA(1,0,2)(0,0,2)[12] with zero mean
  ARIMA(1,0,2)(0,0,2)[12] with non-zero mean: 6470.258
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                             : 6485.262
##
   ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : 6468.439
##
  ARIMA(1,0,2)(1,0,1)[12] with zero mean
## ARIMA(1,0,2)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(2,0,0)[12] with zero mean
## ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : 6470.138
## ARIMA(1,0,3)
                           with zero mean
                                             : 6485.395
## ARIMA(1,0,3)
                           with non-zero mean: 6468.614
## ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                           : 6487.274
```

```
ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : 6470.432
   ARIMA(1,0,3)(1,0,0)[12] with zero mean
                                              : 6487.23
  ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : 6470.414
## ARIMA(1,0,4)
                           with zero mean
                                              : 6468.927
##
   ARIMA(1,0,4)
                           with non-zero mean: 6464.268
##
                                              : 6597.791
   ARIMA(2,0,0)
                           with zero mean
  ARIMA(2.0.0)
                           with non-zero mean: 6589.552
   ARIMA(2,0,0)(0,0,1)[12] with zero mean
##
                                              : 6597.759
   ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 6590.764
##
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                             : 6599.377
   ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 6592.817
##
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                             : 6597.641
   ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 6590.763
##
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
                                             : 6599.661
   ARIMA(2,0,0)(1,0,1)[12] with non-zero mean : 6592.831
##
   ARIMA(2,0,0)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                            : 6599.589
  ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 6592.822
   ARIMA(2,0,0)(2,0,1)[12] with zero mean
                                              : Inf
##
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean : 6593.306
                           with zero mean
  ARIMA(2,0,1)
## ARIMA(2,0,1)
                           with non-zero mean: 6574.379
   ARIMA(2,0,1)(0,0,1)[12] with zero mean
##
                                              : 6583.086
##
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 6576.031
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                            : 6585.137
##
   ARIMA(2,0,1)(0,0,2)[12] with non-zero mean : 6577.881
   ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                              : 6583.083
  ARIMA(2,0,1)(1,0,0)[12] with non-zero mean: 6576.056
  ARIMA(2,0,1)(1,0,1)[12] with zero mean
                                              : 6585.151
##
   ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : 6578.088
##
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                              : 6585.144
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 6577.78
##
                           with zero mean
  ARIMA(2,0,2)
                                              : 6485.265
##
   ARIMA(2,0,2)
                           with non-zero mean: 6468.555
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
                                              : 6487.177
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : 6470.387
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
                                              : 6487.141
##
   ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : 6470.369
##
                           with zero mean
   ARIMA(2,0,3)
                                              : 6470.682
   ARIMA(2,0,3)
                           with non-zero mean: 6468.065
##
  ARIMA(3,0,0)
                           with zero mean
                                              : 6581.938
   ARIMA(3.0.0)
                           with non-zero mean: 6566.902
##
   ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                              : 6581.538
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 6568.497
   ARIMA(3,0,0)(0,0,2)[12] with zero mean
##
                                             : 6582.897
##
   ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 6570.574
##
   ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                             : 6581.361
  ARIMA(3,0,0)(1,0,0)[12] with non-zero mean: 6568.506
##
   ARIMA(3,0,0)(1,0,1)[12] with zero mean
                                             : 6583.355
## ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : 6570.583
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                             : 6583.208
## ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 6570.516
## ARIMA(3,0,1)
                           with zero mean
                                           : 6570.255
```

```
## ARIMA(3,0,1)
                           with non-zero mean: 6556.121
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                           : 6571.381
## ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 6558.198
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                           : 6571.335
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 6558.198
## ARIMA(3,0,2)
                          with zero mean
                                            : Inf
## ARIMA(3.0.2)
                           with non-zero mean: 6468.973
                                           : 6538.531
## ARIMA(4,0,0)
                           with zero mean
## ARIMA(4,0,0)
                           with non-zero mean: 6532.09
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 6540.423
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 6533.603
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 6540.413
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean: 6533.604
                                            : 6533.552
## ARIMA(4,0,1)
                           with zero mean
## ARIMA(4,0,1)
                           with non-zero mean: 6529.431
##
   ARIMA(5,0,0)
                           with zero mean
                                           : 6528.134
##
   ARIMA(5,0,0)
                          with non-zero mean: 6524.52
##
##
##
##
   Best model: ARIMA(1,0,4)
                                      with non-zero mean
fit_arima_croydon_t <- auto.arima(croydon_terraced_ts_diff, stepwise = FALSE,
                         approximation = FALSE, trace = TRUE)
##
##
  ARIMA(0,0,0)
                           with zero mean
                                              : 6553.457
##
   ARIMA(0,0,0)
                           with non-zero mean: 6513.768
##
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
                                           : 6548.55
## ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 6515.428
## ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                           : 6542.477
   ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 6516.505
## ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                           : 6546.288
```

```
## ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 6515.389
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
                                            : Inf
## ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : 6517.226
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
## ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 6516.621
## ARIMA(0,0,0)(2,0,1)[12] with zero mean
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(2,0,2)[12] with zero mean
##
   ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : Inf
##
##
  ARIMA(0,0,1)
                           with zero mean
                                           : 6470.465
## ARIMA(0,0,1)
                           with non-zero mean: 6445.056
   ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                           : 6469.091
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 6446.902
## ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                           : 6467.16
## ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 6448.631
                                           : 6468.299
## ARIMA(0,0,1)(1,0,0)[12] with zero mean
## ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 6446.889
## ARIMA(0,0,1)(1,0,1)[12] with zero mean
## ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : 6448.902
```

```
ARIMA(0,0,1)(1,0,2)[12] with zero mean
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(0,0,1)(2,0,0)[12] with zero mean
## ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 6448.686
   ARIMA(0,0,1)(2,0,1)[12] with zero mean
## ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf
  ARIMA(0,0,1)(2,0,2)[12] with zero mean
## ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : 6448.143
##
   ARIMA(0.0.2)
                           with zero mean
                                              : 6330.245
##
   ARIMA(0,0,2)
                           with non-zero mean: 6322.811
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
##
   ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 6320.614
   ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                              : 6332.369
##
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 6322.494
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                              : 6330.454
##
   ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 6320.758
##
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(0,0,2)(1,0,2)[12] with zero mean
   ARIMA(0,0,2)(1,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                              : 6331.943
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 6322.823
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                              : Inf
   ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : 6323.812
##
##
  ARIMA(0,0,3)
                           with zero mean
                                              : 6311.059
   ARIMA(0,0,3)
                           with non-zero mean: 6294.877
##
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                             : 6313.019
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : 6295.187
  ARIMA(0,0,3)(0,0,2)[12] with zero mean
                                             : 6312.824
  ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : 6297.176
##
   ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                             : 6312.999
##
   ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : 6295.102
##
   ARIMA(0,0,3)(1,0,1)[12] with zero mean
##
  ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: Inf
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                             : 6312.113
   ARIMA(0,0,3)(2,0,0)[12] with non-zero mean : 6296.908
## ARIMA(0,0,4)
                           with zero mean
                                              : 6308.09
## ARIMA(0,0,4)
                           with non-zero mean : 6294.142
   ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                              : 6310.059
##
   ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : 6294.723
  ARIMA(0,0,4)(1,0,0)[12] with zero mean
                                            : 6310.043
##
  ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : 6294.671
   ARIMA(0.0.5)
                           with zero mean
                                              : 6305.536
##
  ARIMA(0,0,5)
                           with non-zero mean: 6293.581
  ARIMA(1,0,0)
                           with zero mean
                                              : 6415.162
##
                           with non-zero mean: 6405.334
   ARIMA(1,0,0)
##
   ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                              : 6416.406
##
  ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 6407.286
  ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                             : 6418.308
## ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 6409.258
## ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                              : 6416.376
## ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 6407.29
## ARIMA(1,0,0)(1,0,1)[12] with zero mean
                                              : 6418.392
## ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : 6409.347
```

```
ARIMA(1,0,0)(1,0,2)[12] with zero mean
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : 6410.844
## ARIMA(1,0,0)(2,0,0)[12] with zero mean
## ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 6409.225
   ARIMA(1,0,0)(2,0,1)[12] with zero mean
##
  ARIMA(1,0,0)(2,0,1)[12] with non-zero mean : 6410.733
  ARIMA(1,0,0)(2,0,2)[12] with zero mean
                                              : 6417.252
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : Inf
##
   ARIMA(1,0,1)
                           with zero mean
                                              : 6414.353
##
   ARIMA(1,0,1)
                           with non-zero mean: 6406.036
   ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                              : 6415.594
##
   ARIMA(1,0,1)(0,0,1)[12] with non-zero mean : 6407.957
                                              : 6417.643
   ARIMA(1,0,1)(0,0,2)[12] with zero mean
##
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 6409.847
   ARIMA(1,0,1)(1,0,0)[12] with zero mean
                                              : 6415.591
##
   ARIMA(1,0,1)(1,0,0)[12] with non-zero mean : 6407.964
##
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : 6417.65
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : 6410.009
  ARIMA(1,0,1)(1,0,2)[12] with zero mean
   ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : 6411.397
##
   ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                              : 6417.649
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 6409.791
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
                                              : 6419.697
   ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : 6411.255
##
##
   ARIMA(1,0,2)
                           with zero mean
                                              : 6308.909
   ARIMA(1,0,2)
                           with non-zero mean: 6294.251
##
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                              : 6310.84
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : 6294.417
  ARIMA(1,0,2)(0,0,2)[12] with zero mean
                                             : 6310.911
  ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : 6296.468
##
   ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                             : 6310.816
##
   ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : 6294.352
##
   ARIMA(1,0,2)(1,0,1)[12] with zero mean
##
  ARIMA(1,0,2)(1,0,1)[12] with non-zero mean: Inf
   ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                              : 6310.261
## ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : 6296.264
## ARIMA(1,0,3)
                           with zero mean
                                              : 6310.902
## ARIMA(1,0,3)
                           with non-zero mean: 6295.389
   ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                              : 6312.869
##
   ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : 6295.792
  ARIMA(1,0,3)(1,0,0)[12] with zero mean
                                            : 6312.848
##
  ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : 6295.718
   ARIMA(1,0,4)
                           with zero mean
                                              : 6296.382
##
   ARIMA(1,0,4)
                           with non-zero mean: 6291.747
  ARIMA(2,0,0)
                           with zero mean
                                              : 6412.579
##
   ARIMA(2,0,0)
                           with non-zero mean: 6404.864
##
   ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                              : 6413.775
##
   ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 6406.746
  ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                             : 6415.832
##
   ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 6408.532
## ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                              : 6413.786
## ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 6406.758
## ARIMA(2,0,0)(1,0,1)[12] with zero mean
                                             : 6415.833
## ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: 6408.787
```

```
ARIMA(2,0,0)(1,0,2)[12] with zero mean
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean : 6410.037
  ARIMA(2,0,0)(2,0,0)[12] with zero mean
## ARIMA(2,0,0)(2,0,0)[12] with non-zero mean : 6408.454
   ARIMA(2,0,0)(2,0,1)[12] with zero mean
                                              : 6417.82
##
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean : 6409.865
   ARIMA(2.0.1)
                            with zero mean
                                               : 6399.116
                            with non-zero mean: 6391.65
##
   ARIMA(2,0,1)
##
   ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                               : 6400.946
##
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 6393.719
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                              : 6402.721
##
   ARIMA(2,0,1)(0,0,2)[12] with non-zero mean : 6394.517
   ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                               : 6400.962
##
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 6393.719
   ARIMA(2,0,1)(1,0,1)[12] with zero mean
                                              : 6402.961
##
   ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : 6395.052
##
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                              : 6402.642
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 6394.536
                            with zero mean
##
   ARIMA(2,0,2)
                                              : 6310.827
##
   ARIMA(2,0,2)
                            with non-zero mean: 6294.732
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
                                               : 6312.818
  ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : 6295.338
##
  ARIMA(2,0,2)(1,0,0)[12] with zero mean
                                               : 6312.802
   ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : 6295.267
##
##
   ARIMA(2,0,3)
                            with zero mean
                                               : 6299.346
   ARIMA(2,0,3)
                            with non-zero mean: 6296.902
##
                            with zero mean
                                              : 6398.328
   ARIMA(3,0,0)
   ARIMA(3,0,0)
                            with non-zero mean: 6384.605
                                              : 6399.404
##
   ARIMA(3,0,0)(0,0,1)[12] with zero mean
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 6386.652
##
   ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                              : 6401.441
##
   ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 6388.32
##
   ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                             : 6399.393
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean : 6386.654
##
   ARIMA(3,0,0)(1,0,1)[12] with zero mean
                                              : 6401.467
##
   ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : 6388.182
   ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                             : 6401.463
##
   ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 6388.285
##
   ARIMA(3,0,1)
                            with zero mean
                                               : 6389.03
##
                            with non-zero mean: 6376.238
   ARIMA(3,0,1)
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                             : 6390.902
##
   ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 6378.172
   ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                              : 6390.904
##
   ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 6378.185
  ARIMA(3,0,2)
                            with zero mean
                                               : 6305.687
##
   ARIMA(3,0,2)
                            with non-zero mean: 6293.547
##
   ARIMA(4,0,0)
                            with zero mean
                                               : 6366.194
##
   ARIMA(4,0,0)
                            with non-zero mean: 6359.596
                                              : 6367.975
   ARIMA(4,0,0)(0,0,1)[12] with zero mean
##
   ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 6360.877
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                              : 6367.976
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean : 6360.92
## ARIMA(4,0,1)
                            with zero mean
                                              : 6363.337
## ARIMA(4,0,1)
                            with non-zero mean: 6358.766
```

```
ARIMA(5,0,0)
                           with zero mean
                                           : 6360.186
##
   ARIMA(5,0,0)
                           with non-zero mean: 6355.967
##
##
##
##
  Best model: ARIMA(1,0,4)
                                       with non-zero mean
fit_arima_croydon_f <- auto.arima(croydon_flat_ts_diff, stepwise = FALSE,</pre>
                         approximation = FALSE, trace = TRUE)
##
##
  ARIMA(0,0,0)
                           with zero mean
                                              : 6334.932
##
                           with non-zero mean: 6301.256
   ARIMA(0,0,0)
## ARIMA(0,0,0)(0,0,1)[12] with zero mean
                                            : 6326.621
  ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 6300.491
## ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                            : 6322.804
   ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 6301.576
## ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                            : 6323.934
## ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 6300.236
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
                                            : 6321.22
##
   ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : 6302.077
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
                                           : 6323.116
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : 6303.361
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                           : 6321.307
## ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 6301.833
## ARIMA(0,0,0)(2,0,1)[12] with zero mean
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : 6303.476
##
   ARIMA(0,0,0)(2,0,2)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : 6305.24
##
   ARIMA(0,0,1)
                           with zero mean
##
  ARIMA(0,0,1)
                           with non-zero mean: 6237.068
   ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                            : 6255.305
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 6237.383
## ARIMA(0,0,1)(0,0,2)[12] with zero mean
## ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 6238.884
##
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                           : 6254.157
## ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 6237.265
## ARIMA(0,0,1)(1,0,1)[12] with zero mean
                                           : 6254.067
## ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : 6239.247
## ARIMA(0,0,1)(1,0,2)[12] with zero mean
## ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                            : 6253.699
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 6239.102
##
   ARIMA(0,0,1)(2,0,1)[12] with zero mean
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf
  ARIMA(0,0,1)(2,0,2)[12] with zero mean
                                            : Inf
   ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
##
  ARIMA(0,0,2)
                           with zero mean
                                             : 6134.803
## ARIMA(0,0,2)
                           with non-zero mean: 6126.06
```

: 6132.504

: 6133.142

ARIMA(0,0,2)(0,0,1)[12] with zero mean

ARIMA(0,0,2)(0,0,2)[12] with zero mean

ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 6126.988

ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 6129.045 ## ARIMA(0,0,2)(1,0,0)[12] with zero mean : 6132.28

```
ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 6126.95
## ARIMA(0,0,2)(1,0,1)[12] with zero mean
## ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,2)(1,0,2)[12] with zero mean
   ARIMA(0,0,2)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 6132.174
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 6128.905
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : 6128.84
##
   ARIMA(0,0,3)
                           with zero mean
   ARIMA(0,0,3)
                           with non-zero mean : Inf
##
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(0,0,2)[12] with zero mean
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(1,0,0)[12] with zero mean
##
   ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : Inf
##
  ARIMA(0,0,3)(1,0,1)[12] with zero mean
## ARIMA(0,0,3)(1,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
## ARIMA(0,0,3)(2,0,0)[12] with non-zero mean : Inf
## ARIMA(0,0,4)
                           with zero mean
## ARIMA(0,0,4)
                           with non-zero mean : Inf
   ARIMA(0,0,4)(0,0,1)[12] with zero mean
##
## ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : Inf
  ARIMA(0,0,4)(1,0,0)[12] with zero mean
##
  ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : Inf
   ARIMA(0,0,5)
                           with zero mean
## ARIMA(0,0,5)
                           with non-zero mean : Inf
## ARIMA(1,0,0)
                           with zero mean
                                             : 6202.159
##
   ARIMA(1,0,0)
                           with non-zero mean: 6193.512
##
   ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                              : 6202.827
##
  ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 6195.022
## ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                             : 6204.155
##
   ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 6196.997
## ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                              : 6202.706
## ARIMA(1,0,0)(1,0,0)[12] with non-zero mean: 6195.009
## ARIMA(1,0,0)(1,0,1)[12] with zero mean
                                              : 6204.582
##
   ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : 6197.066
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
  ARIMA(1,0,0)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                             : 6204.32
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 6197.052
##
  ARIMA(1,0,0)(2,0,1)[12] with zero mean
  ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,0)(2,0,2)[12] with non-zero mean: Inf
##
  ARIMA(1,0,1)
                           with zero mean
                                             : 6195.664
  ARIMA(1,0,1)
                           with non-zero mean: 6189.854
## ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                             : 6196.859
## ARIMA(1,0,1)(0,0,1)[12] with non-zero mean : 6191.499
## ARIMA(1,0,1)(0,0,2)[12] with zero mean
## ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 6193.554
## ARIMA(1,0,1)(1,0,0)[12] with zero mean
                                           : 6196.818
```

```
ARIMA(1,0,1)(1,0,0)[12] with non-zero mean : 6191.496
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : 6198.842
## ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : 6193.568
## ARIMA(1,0,1)(1,0,2)[12] with zero mean
   ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                             : 6198.763
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 6193.566
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : 6195.05
##
   ARIMA(1,0,2)
                           with zero mean
   ARIMA(1,0,2)
                           with non-zero mean : Inf
##
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean: Inf
##
   ARIMA(1,0,2)(0,0,2)[12] with zero mean
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : Inf
##
   ARIMA(1,0,2)(1,0,0)[12] with zero mean
##
   ARIMA(1,0,2)(1,0,0)[12] with non-zero mean: Inf
##
  ARIMA(1,0,2)(1,0,1)[12] with zero mean
  ARIMA(1,0,2)(1,0,1)[12] with non-zero mean: Inf
   ARIMA(1,0,2)(2,0,0)[12] with zero mean
##
   ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : Inf
## ARIMA(1,0,3)
                           with zero mean
## ARIMA(1,0,3)
                           with non-zero mean : Inf
   ARIMA(1,0,3)(0,0,1)[12] with zero mean
##
## ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : Inf
  ARIMA(1,0,3)(1,0,0)[12] with zero mean
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean: Inf
##
   ARIMA(1,0,4)
                           with zero mean
##
  ARIMA(1,0,4)
                           with non-zero mean : Inf
  ARIMA(2,0,0)
                           with zero mean
                                              : 6191.577
##
   ARIMA(2,0,0)
                           with non-zero mean: 6186.005
##
   ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                              : 6192.822
##
   ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 6187.698
                                             : 6194.69
##
  ARIMA(2,0,0)(0,0,2)[12] with zero mean
##
   ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 6189.766
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                              : 6192.789
## ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 6187.699
## ARIMA(2,0,0)(1,0,1)[12] with zero mean
                                              : 6194.825
   ARIMA(2,0,0)(1,0,1)[12] with non-zero mean : 6189.769
## ARIMA(2,0,0)(1,0,2)[12] with zero mean
  ARIMA(2,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                             : 6194.77
   ARIMA(2,0,0)(2,0,0)[12] with non-zero mean : 6189.763
##
   ARIMA(2,0,0)(2,0,1)[12] with zero mean
                                              : Inf
  ARIMA(2,0,0)(2,0,1)[12] with non-zero mean: 6191.172
##
   ARIMA(2,0,1)
                                              : 6176.323
                           with zero mean
##
   ARIMA(2,0,1)
                           with non-zero mean: 6170.366
##
   ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                             : 6178.273
  ARIMA(2,0,1)(0,0,1)[12] with non-zero mean: 6172.436
##
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                             : 6180.27
## ARIMA(2,0,1)(0,0,2)[12] with non-zero mean : 6174.488
## ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 6178.27
## ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 6172.436
## ARIMA(2,0,1)(1,0,1)[12] with zero mean
                                           : 6180.34
```

```
## ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                            : 6180.285
## ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 6174.488
## ARIMA(2,0,2)
                           with zero mean
                                             : Inf
## ARIMA(2,0,2)
                           with non-zero mean : Inf
## ARIMA(2,0,2)(0,0,1)[12] with zero mean
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(2,0,3)
                           with zero mean
                                            : Inf
## ARIMA(2,0,3)
                           with non-zero mean : Inf
## ARIMA(3,0,0)
                           with zero mean
                                             : 6179.337
## ARIMA(3,0,0)
                           with non-zero mean: 6169.772
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                            : 6180.585
## ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 6171.646
## ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                            : 6182.107
## ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 6173.698
## ARIMA(3,0,0)(1,0,0)[12] with zero mean
## ARIMA(3,0,0)(1,0,0)[12] with non-zero mean : 6171.643
## ARIMA(3,0,0)(1,0,1)[12] with zero mean
                                            : 6182.492
## ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : 6173.725
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                            : 6182.244
## ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 6173.721
                           with zero mean
## ARIMA(3.0.1)
                                           : 6171.222
## ARIMA(3,0,1)
                           with non-zero mean : 6162.23
## ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                           : 6173.145
## ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 6164.308
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                             : 6173.135
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 6164.308
## ARIMA(3,0,2)
                           with zero mean
                                             : Inf
## ARIMA(3,0,2)
                           with non-zero mean : Inf
                                            : 6147.349
## ARIMA(4,0,0)
                           with zero mean
## ARIMA(4,0,0)
                           with non-zero mean: 6142.91
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                            : 6148.669
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 6143.936
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                             : 6148.619
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean : 6143.907
## ARIMA(4,0,1)
                           with zero mean
                                             : 6139.878
## ARIMA(4,0,1)
                           with non-zero mean: 6137.741
                                           : 6135.574
## ARIMA(5,0,0)
                           with zero mean
  ARIMA(5,0,0)
                           with non-zero mean: 6133.221
##
##
##
  Best model: ARIMA(0,0,2)
                                       with non-zero mean
# Forecast using the ARIMA model for each property type of Croydon Area
forecasted_values_arima_croydon_d <- forecast(fit_arima_croydon_d, h = 18)</pre>
forecasted_values_arima_croydon_sd <- forecast(fit_arima_croydon_sd, h = 18)</pre>
forecasted_values_arima_croydon_t <- forecast(fit_arima_croydon_t, h = 18)</pre>
forecasted_values_arima_croydon_f <- forecast(fit_arima_croydon_f, h = 18)</pre>
# Plot the differenced forecast value for each property type of Croydon Area
plot(forecasted values arima croydon d,
```

```
main = "Croydon Detached Differenced Forecast 18 Months",
ylab = "Firstly Differenced Price", xlab = "Year")
```

Croydon Detached Differenced Forecast 18 Months


```
plot(forecasted_values_arima_croydon_sd,
    main = "Croydon Semi-Detached Differenced Forecast 18 Months",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Croydon Semi-Detached Differenced Forecast 18 Months


```
plot(forecasted_values_arima_croydon_t,
    main = "Croydon Terraced Differenced Forecast 18 Months",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Croydon Terraced Differenced Forecast 18 Months


```
plot(forecasted_values_arima_croydon_f,
    main = "Croydon Flat Differenced Forecast 18 Months",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

Croydon Flat Differenced Forecast 18 Months

Summary of the model for four different type of properties of Croydon Area
For Detached of Croydon Area
print(forecasted_values_arima_croydon_d)

```
##
            Point Forecast
                                Lo 80
                                          Hi 80
                                                      Lo 95
                                                                Hi 95
                            8329.413 18247.916
                                                   5704.144 20873.185
## Apr 2024
                13288.6646
## May 2024
                -2234.5522 -8149.924
                                       3680.820 -11281.333
                                                             6812.228
## Jun 2024
                  699.9471 -6180.803
                                       7580.697
                                                  -9823.252 11223.146
  Jul 2024
                 1375.8584 -5582.263
                                       8333.980
                                                  -9265.671 12017.388
  Aug 2024
                 1455.2830 -5548.294
                                       8458.860
                                                  -9255.764 12166.330
                 1522.1370 -5513.468
                                       8557.742
                                                  -9237.892 12282.166
##
  Sep 2024
## Oct 2024
                 1578.4102 -5479.799
                                       8636.619
                                                  -9216.189 12373.009
## Nov 2024
                 1625.7770 -5448.403
                                       8699.957
                                                  -9193.248 12444.802
## Dec 2024
                 1665.6471 -5419.827
                                       8751.122
                                                  -9170.651 12501.945
## Jan 2025
                 1699.2071 -5394.259
                                       8792.673
                                                  -9149.312 12547.727
## Feb 2025
                 1727.4555 -5371.666
                                       8826.577
                                                  -9129.715 12584.626
## Mar 2025
                 1751.2331 -5351.894
                                                  -9112.062 12614.528
                                       8854.360
## Apr 2025
                 1771.2474 -5334.716
                                       8877.210
                                                  -9096.385 12638.880
                                       8896.066
                                                  -9082.611 12658.799
## May 2025
                 1788.0940 -5319.878
                                                  -9070.606 12675.155
## Jun 2025
                 1802.2744 -5307.120
                                       8911.669
## Jul 2025
                                                  -9060.212 12688.633
                 1814.2104 -5296.192
                                       8924.613
## Aug 2025
                 1824.2574 -5286.859
                                       8935.374
                                                  -9051.257 12699.772
## Sep 2025
                 1832.7142 -5278.908
                                       8944.337
                                                  -9043.574 12709.002
```

```
summary(fit_arima_croydon_d)
## Series: croydon_detached_ts_diff
## ARIMA(1,0,4) with non-zero mean
##
## Coefficients:
##
            ar1
                    ma1
                            ma2
                                     ma3
                                             ma4
                                                       mean
##
         0.8417 -0.1915 0.1614 -0.8052 0.3363
                                                  1877.6905
## s.e. 0.0901
                 0.0978 0.0729
                                 0.0726 0.0552
                                                   643.8804
## sigma^2 = 14974698: log likelihood = -3387.76
## AIC=6789.51 AICc=6789.84 BIC=6816.52
##
## Training set error measures:
##
                     ME
                            RMSE
                                      MAE
                                               MPE
                                                       MAPE
                                                                 MASE
                                                                            ACF1
## Training set 13.87798 3836.403 2725.986 23.72384 183.1522 0.5349603 0.00967617
# For Semi-Detached of Croydon Area
print(forecasted_values_arima_croydon_sd)
            Point Forecast
                              Lo 80
                                        Hi 80
                                                  Lo 95
                                                            Hi 95
                10255.874 7142.554 13369.194 5494.462 15017.287
## Apr 2024
## May 2024
                -1761.047 -5451.477 1929.382 -7405.072
                                                         3882.977
## Jun 2024
                 1027.592 -3281.759 5336.943 -5562.992
                                                         7618.176
## Jul 2024
                 1394.208 -2961.506 5749.922 -5267.282
                                                         8055.697
## Aug 2024
                 1375.226 -3016.628 5767.080 -5341.535
                                                         8091.986
## Sep 2024
                 1359.684 -3056.233 5775.600 -5393.878 8113.245
## Oct 2024
                 1346.958 -3085.017 5778.933 -5431.163 8125.079
## Nov 2024
                 1336.538 -3106.170 5779.247 -5457.998
                                                         8131.074
## Dec 2024
                 1328.007 -3121.883 5777.896 -5477.512
                                                         8133.526
## Jan 2025
                 1321.022 -3133.676 5775.719 -5491.850
                                                         8133.893
## Feb 2025
                 1315.302 -3142.615 5773.220 -5502.494
                                                         8133.099
## Mar 2025
                 1310.619 -3149.456 5770.694 -5510.477
                                                         8131.715
## Apr 2025
                 1306.785 -3154.736 5768.306 -5516.523
                                                         8130.092
## May 2025
                 1303.645 -3158.845 5766.135 -5521.144
                                                         8128.435
## Jun 2025
                 1301.075 -3162.065 5764.214 -5524.708
                                                         8126.857
## Jul 2025
                 1298.970 -3164.605 5762.545 -5527.479
                                                         8125,419
## Aug 2025
                 1297.247 -3166.620 5761.113 -5529.649
                                                         8124.142
## Sep 2025
                 1295.836 -3168.227 5759.898 -5531.359 8123.030
summary(fit_arima_croydon_sd)
## Series: croydon_semi_detached_ts_diff
## ARIMA(1,0,4) with non-zero mean
##
## Coefficients:
            ar1
                    ma1
                            ma2
                                     ma3
                                             ma4
                                                      mean
##
         0.8188 -0.1823 0.1936
                                -0.7888 0.3473
                                                  1289.460
## s.e. 0.0968
                 0.1037 0.0764
                                  0.0768 0.0547
                                                   401.359
```

sigma^2 = 5901577: log likelihood = -3224.97
AIC=6463.94 AICc=6464.27 BIC=6490.95

```
##
## Training set error measures:
                      ME
                             RMSF.
                                       MAF.
                                                MPE
                                                        MAPE
## Training set 2.870847 2408.403 1654.117 -9.76907 175.3152 0.505261 0.002796679
# For Terraced of Croydon Area
print(forecasted_values_arima_croydon_t)
##
            Point Forecast
                               Lo 80
                                        Hi 80
                                                  Lo 95
                                                            Hi 95
                 7424.5797 4990.187 9858.973 3701.497 11147.663
## Apr 2024
                 -371.2671 -3254.111 2511.577 -4780.197
## May 2024
                                                         4037.662
## Jun 2024
                 480.4136 -2886.655 3847.483 -4669.074
                                                         5629.901
## Jul 2024
                 1089.2171 -2315.922 4494.357 -4118.494
                                                         6296.929
## Aug 2024
                 1060.9544 -2366.674 4488.582 -4181.150
                                                         6303.059
## Sep 2024
                 1038.4018 -2403.469 4480.273 -4225.485
                                                         6302.289
## Oct 2024
                 1020.4057 -2430.504 4471.315 -4257.305
                                                         6298.116
## Nov 2024
                 1006.0455 -2450.607 4462.698 -4280.448
                                                         6292.539
## Dec 2024
                 994.5866 -2465.717 4454.890 -4297.491
                                                         6286.665
## Jan 2025
                 985.4429 -2477.184 4448.070 -4310.188
                                                         6281.074
## Feb 2025
                 978.1465 -2485.959 4442.252 -4319.746
                                                         6276.039
## Mar 2025
                  972.3243 -2492.722 4437.371 -4327.007
                                                         6271.656
## Apr 2025
                 967.6783 -2497.967 4433.324 -4332.569
                                                         6267.926
## May 2025
                  963.9711 -2502.056 4429.998 -4336.860
                                                         6264.802
## Jun 2025
                  961.0128 -2505.257 4427.283 -4340.190
                                                         6262.215
## Jul 2025
                  958.6522 -2507.772 4425.077 -4342.787
                                                         6260.091
## Aug 2025
                  956.7686 -2509.755 4423.292 -4344.821
                                                         6258.358
## Sep 2025
                  955.2655 -2511.320 4421.851 -4346.420
                                                         6256.951
summary(fit_arima_croydon_t)
## Series: croydon_terraced_ts_diff
## ARIMA(1,0,4) with non-zero mean
##
## Coefficients:
##
            ar1
                     ma1
                             ma2
                                      ma3
                                              ma4
                                                       mean
##
         0.7980 -0.1636 0.2084
                                 -0.7788
                                           0.3275
                                                   949.3289
## s.e. 0.1234
                 0.1277 0.0943
                                   0.0963
                                           0.0557
                                                   293.6534
## sigma^2 = 3608337: log likelihood = -3138.71
## AIC=6291.42
                AICc=6291.75
                              BIC=6318.42
##
## Training set error measures:
                            RMSE
                                               MPE
                                                       MAPE
                                                                 MASE
                                                                             ACF1
                      ME
                                      MAE
## Training set 3.069001 1883.21 1247.162 52.26089 169.4062 0.5013394 0.005014159
# For Flat of Croydon Area
print(forecasted_values_arima_croydon_f)
            Point Forecast
                                Lo 80
                                         Hi 80
                                                   Lo 95
                                                            Hi 95
##
## Apr 2024
                 5906.6194 3965.5691 7847.670 2938.039 8875.200
## May 2024
                 1748.8814 -628.0219 4125.785 -1886.279 5384.041
## Jun 2024
                 656.0727 -2103.7639 3415.909 -3564.733 4876.878
```

```
## Jul 2024
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Aug 2024
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Sep 2024
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Oct 2024
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Nov 2024
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Dec 2024
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Jan 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Feb 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Mar 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Apr 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## May 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Jun 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Jul 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Aug 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
## Sep 2025
                  656.0727 -2103.7639 3415.909 -3564.733 4876.878
summary(fit_arima_croydon_f)
## Series: croydon_flat_ts_diff
## ARIMA(0,0,2) with non-zero mean
##
## Coefficients:
##
            ma1
                    ma2
                             mean
         0.7068 0.7226 656.0727
##
## s.e. 0.0712 0.0669 195.3703
## sigma^2 = 2294042: log likelihood = -3058.97
## AIC=6125.94
                 AICc=6126.06
                               BIC=6141.38
##
## Training set error measures:
                                                                              ACF1
##
                      ME
                             RMSE
                                        MAE
                                                 MPE
                                                        MAPE
                                                                   MASE
## Training set 1.178869 1508.104 1043.734 1122.885 1236.85 0.5475467 -0.1318704
# Calculate the forecasted actual prices
#By adding the last observed price and the forecasted differences in Croydon
# For detached_ts of Croydon Area
last_value_croydon_d <- as.numeric(tail(croydon_detached_ts, n = 1))</pre>
forecasted_values_croydon_d <- c(last_value_croydon_d,</pre>
                                  forecasted_values_arima_croydon_d$mean)
cumulative_forecasted_values_croydon_d <- cumsum(forecasted_values_croydon_d)</pre>
forecasted_values_croydon_d_ts <- ts(cumulative_forecasted_values_croydon_d[-1],</pre>
                             start = c(2024, 2), frequency = 12)
# For semi_detached_ts of Croydon Area
last_value_croydon_sd <- as.numeric(tail(croydon_semi_detached_ts, n = 1))</pre>
forecasted_values_croydon_sd <- c(last_value_croydon_sd,</pre>
                                   forecasted_values_arima_croydon_sd$mean)
cumulative_forecasted_values_croydon_sd <- cumsum(forecasted_values_croydon_sd)</pre>
forecasted_values_croydon_sd_ts <-</pre>
  ts(cumulative_forecasted_values_croydon_sd[-1],
     start = c(2024, 2), frequency = 12)
# For terraced_ts of Croydon Area
```

```
last_value_croydon_t <- as.numeric(tail(croydon_terraced_ts, n = 1))</pre>
forecasted_values_croydon_t <- c(last_value_croydon_t,</pre>
                                  forecasted_values_arima_croydon_t$mean)
cumulative_forecasted_values_croydon_t <- cumsum(forecasted_values_croydon_t)</pre>
forecasted_values_croydon_t_ts <- ts(cumulative_forecasted_values_croydon_t[-1],</pre>
                              start = c(2024, 2), frequency = 12)
# For flat ts of Croydon Area
last_value_croydon_f <- as.numeric(tail(croydon_flat_ts, n = 1))</pre>
forecasted_values_croydon_f <- c(last_value_croydon_f,</pre>
                                  forecasted_values_arima_croydon_f$mean)
cumulative_forecasted_values_croydon_f <- cumsum(forecasted_values_croydon_f)</pre>
forecasted_values_croydon_f_ts <- ts(cumulative_forecasted_values_croydon_f[-1],</pre>
                                       start = c(2024, 2), frequency = 12)
# Combine the original and forecasted time series of Croydon Area
combined_croydon_detached_ts_Arima <-</pre>
  ts(c(as.numeric(croydon_detached_ts),
       as.numeric(forecasted_values_croydon_d_ts)),
     start = c(1995, 1), frequency = 12)
combined_croydon_semi_detached_ts_Arima <-</pre>
  ts(c(as.numeric(croydon_semi_detached_ts),
       as.numeric(forecasted_values_croydon_sd_ts)),
     start = c(1995, 1), frequency = 12)
combined croydon terraced ts Arima <-
  ts(c(as.numeric(croydon_terraced_ts),
       as.numeric(forecasted_values_croydon_t_ts)),
     start = c(1995, 1), frequency = 12)
combined_croydon_flat_ts_Arima <-</pre>
  ts(c(as.numeric(croydon_flat_ts),
       as.numeric(forecasted_values_croydon_f_ts)),
     start = c(1995, 1), frequency = 12)
# Plot the combined time series of Croydon Area
plot(combined_croydon_detached_ts_Arima,
     main = "Croydon Detached Average Price Arima",
     ylab = "Price", xlab = "Year")
```

Croydon Detached Average Price Arima


```
plot(combined_croydon_semi_detached_ts_Arima,
    main = "Croydon Semi-Detached Average Price Arima",
    ylab = "Price", xlab = "Year")
```

Croydon Semi-Detached Average Price Arima


```
plot(combined_croydon_terraced_ts_Arima,
    main = "Croydon Terraced Average Price Arima",
    ylab = "Price", xlab = "Year")
```

Croydon Terraced Average Price Arima


```
plot(combined_croydon_flat_ts_Arima,
    main = "Croydon Flat Average Price Arima",
    ylab = "Price", xlab = "Year")
```

Croydon Flat Average Price Arima


```
# ETS model for Croydon Area
fit_ets_croydon_d <- ets(croydon_detached_ts)</pre>
fit_ets_croydon_sd <- ets(croydon_semi_detached_ts)</pre>
fit_ets_croydon_t <- ets(croydon_terraced_ts)</pre>
fit_ets_croydon_f <- ets(croydon_flat_ts)</pre>
# Forecast using the ETS model for each property type of Croydon Area
forecasted_values_ets_croydon_d <- forecast(fit_ets_croydon_d, h = 18)</pre>
forecasted_values_ets_croydon_sd <- forecast(fit_ets_croydon_sd, h = 18)</pre>
forecasted_values_ets_croydon_t <- forecast(fit_ets_croydon_t, h = 18)</pre>
forecasted_values_ets_croydon_f <- forecast(fit_ets_croydon_f, h = 18)</pre>
# Combine the historical and forecasted values by ETS of Croydon Area
combined croydon detached ts ets <-
  ts(c(croydon_detached_price, forecasted_values_ets_croydon_d$mean),
     start = c(1995, 1), frequency = 12)
combined_croydon_semi_detached_ts_ets <-</pre>
  ts(c(croydon_semi_detached_price, forecasted_values_ets_croydon_sd$mean),
     start = c(1995, 1), frequency = 12)
combined_croydon_terraced_ts_ets <-</pre>
  ts(c(croydon_terraced_price, forecasted_values_ets_croydon_t$mean),
     start = c(1995, 1), frequency = 12)
combined_croydon_flat_ts_ets <-</pre>
  ts(c(croydon_flat_price, forecasted_values_ets_croydon_f$mean),
     start = c(1995, 1), frequency = 12)
# Plot the ETS forecast value for each property type of Croydon Area
plot(forecasted values ets croydon d,
     main = "Croydon Detached Average Price ETS",
```

```
ylab = "Price", xlab = "Year")
```

Croydon Detached Average Price ETS


```
plot(forecasted_values_ets_croydon_sd,
    main = "Croydon Semi-Detached Average Price ETS",
    ylab = "Price", xlab = "Year")
```

Croydon Semi-Detached Average Price ETS


```
plot(forecasted_values_ets_croydon_t,
    main = "Croydon Terraced Average Price ETS",
    ylab = "Price", xlab = "Year")
```

Croydon Terraced Average Price ETS


```
plot(forecasted_values_ets_croydon_f,
    main = "Croydon Flat Average Price ETS",
    ylab = "Price", xlab = "Year")
```

Croydon Flat Average Price ETS

Summary of the ETS model for four different type of properties of Croydon Area
For Detached of Croydon Area
print(forecasted_values_ets_croydon_d)

```
##
            Point Forecast
                              Lo 80
                                        Hi 80
                                                 Lo 95
                                                           Hi 95
                  812439.0 803109.9 821768.1 798171.4
## Apr 2024
                                                        826706.6
## May 2024
                  808969.2 791170.8 826767.5 781749.0
                                                        836189.4
## Jun 2024
                  806193.3 779295.3 833091.4 765056.3
                                                        847330.3
## Jul 2024
                  803972.6 767819.3 840126.0 748680.9
                                                        859264.4
## Aug 2024
                  802196.1 756873.0 847519.1 732880.5
                                                        871511.6
                  800774.8 746498.5 855051.1 717766.4
## Sep 2024
                                                        883783.3
## Oct 2024
                  799637.8 736693.9 862581.8 703373.3
                                                        895902.3
## Nov 2024
                  798728.2 727435.0 870021.4 689694.7
                                                        907761.7
## Dec 2024
                  798000.5 718687.2 877313.9 676701.3
                                                        919299.8
## Jan 2025
                  797418.4 710411.2 884425.7 664352.3
                                                        930484.5
## Feb 2025
                  796952.7 702567.0 891338.4 652602.2
                                                        941303.2
## Mar 2025
                  796580.1 695116.1 898044.1 641404.4
                                                        951755.9
## Apr 2025
                  796282.1 688022.4 904541.7 630713.3
                                                        961850.8
## May 2025
                  796043.6 681252.6 910834.6 620485.9
                                                        971601.3
                  795852.9 674776.3 916929.4 610682.2
## Jun 2025
                                                        981023.5
## Jul 2025
                  795700.2 668566.3 922834.2 601265.7
                                                        990134.8
## Aug 2025
                  795578.2 662598.2 928558.1 592202.9
                                                        998953.4
## Sep 2025
                  795480.5 656850.1 934110.8 583463.7 1007497.3
```

```
summary(fit_ets_croydon_d)
## ETS(M,Ad,N)
##
## Call:
##
   ets(y = croydon_detached_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.951
##
       beta = 0.8454
##
       phi
           = 0.8
##
##
     Initial states:
       1 = 147048.4016
##
##
       b = 19.5331
##
##
     sigma: 0.009
##
##
        AIC
                AICc
                          BIC
## 7855.393 7855.637 7878.558
##
## Training set error measures:
##
                      ME
                             RMSE
                                       MAE
                                                  MPE
                                                           MAPE
                                                                     MASE
## Training set 426.0959 4785.155 3411.969 0.1175854 0.7001338 0.1042044
##
                       ACF1
## Training set -0.04304432
# For Semi-Detached of Croydon Area
print(forecasted_values_ets_croydon_sd)
##
            Point Forecast
                              Lo 80
                                       Hi 80
                                                 Lo 95
                                                          Hi 95
                  534670.5 528912.2 540428.9 525863.9 543477.2
## Apr 2024
## May 2024
                  533212.2 522330.1 544094.3 516569.4 549855.0
## Jun 2024
                  532045.5 515693.4 548397.7 507037.1 557054.0
## Jul 2024
                  531112.2 509206.7 553017.8 497610.6 564613.9
## Aug 2024
                  530365.6 502960.9 557770.2 488453.8 572277.3
## Sep 2024
                  529768.2 496994.4 562542.0 479645.0 579891.5
## Oct 2024
                  529290.4 491317.5 567263.2 471215.9 587364.9
## Nov 2024
                  528908.1 485925.5 571890.7 463171.9 594644.3
## Dec 2024
                  528602.2 480805.5 576398.9 455503.5 601701.0
## Jan 2025
                  528357.6 475940.8 580774.3 448193.1 608522.1
## Feb 2025
                  528161.8 471312.8 585010.8 441218.8 615104.9
## Mar 2025
                  528005.3 466902.9 589107.6 434557.3 621453.3
                  527880.0 462692.9 593067.1 428184.9 627575.0
## Apr 2025
## May 2025
                  527779.8 458665.8 596893.7 422079.1 633480.4
## Jun 2025
                  527699.6 454805.8 600593.4 416218.2 639181.0
## Jul 2025
                  527635.5 451098.5 604172.4 410582.3 644688.6
## Aug 2025
                  527584.1 447530.7 607637.6 405153.0 650015.3
                  527543.1 444090.6 610995.6 399913.6 655172.6
## Sep 2025
summary(fit_ets_croydon_sd)
```

```
## ETS(M,Ad,N)
##
## Call:
##
   ets(y = croydon_semi_detached_ts)
##
##
    Smoothing parameters:
##
       alpha = 0.957
       beta = 0.8103
##
##
       phi = 0.8
##
##
    Initial states:
##
      1 = 88616.6438
       b = 72.6588
##
##
##
    sigma: 0.0084
##
##
                          BIC
        AIC
                AICc
## 7485.147 7485.391 7508.312
##
## Training set error measures:
##
                      ME
                             RMSE
                                      MAE
                                                MPE
                                                         MAPE
                                                                     MASE
## Training set 297.5689 3009.719 2045.24 0.1273933 0.6398718 0.09533882
##
                       ACF1
## Training set -0.06498525
# For Terraced of Croydon Area
print(forecasted_values_ets_croydon_t)
            Point Forecast
                              Lo 80
                                       Hi 80
                                                Lo 95
                                                         Hi 95
## Apr 2024
                  392566.1 388254.4 396877.8 385971.9 399160.3
## May 2024
                  391863.7 383737.4 399990.0 379435.6 404291.8
## Jun 2024
                  391301.7 379107.2 403496.2 372651.9 409951.5
## Jul 2024
                  390852.2 374527.9 407176.4 365886.4 415817.9
## Aug 2024
                  390492.5 370078.2 410906.8 359271.6 421713.4
## Sep 2024
                  390204.8 365796.0 414613.6 352874.7 427534.9
## Oct 2024
                  389974.6 361696.6 418252.7 346727.1 433222.2
## Nov 2024
                  389790.5 357782.8 421798.1 340839.0 438741.9
## Dec 2024
                  389643.2 354050.4 425235.9 335208.7 444077.6
## Jan 2025
                  389525.3 350490.8 428559.8 329827.2 449223.4
## Feb 2025
                  389431.0 347093.8 431768.3 324681.8 454180.3
## Mar 2025
                  389355.6 343848.0 434863.2 319757.7 458953.5
## Apr 2025
                  389295.3 340742.3 437848.3 315039.9 463550.7
## May 2025
                  389247.0 337765.6 440728.4 310513.0 467981.0
## Jun 2025
                  389208.4 334907.7 443509.0 306162.7 472254.0
## Jul 2025
                  389177.5 332159.0 446195.9 301975.3 476379.7
                  389152.8 329510.6 448794.9 297937.9 480367.6
## Aug 2025
## Sep 2025
                  389133.0 326954.4 451311.6 294039.0 484226.9
summary(fit_ets_croydon_t)
## ETS(M,Ad,N)
##
## Call:
```

```
##
   ets(y = croydon_terraced_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9576
##
       beta = 0.8012
##
           = 0.8
       phi
##
##
     Initial states:
##
       1 = 63709.1785
       b = 25.2679
##
##
##
     sigma: 0.0086
##
##
        AIC
                AICc
                          BIC
## 7275.403 7275.647 7298.568
##
## Training set error measures:
                      ME
                             RMSE
                                       MAE
                                                  MPE
                                                           MAPE
                                                                      MASE
## Training set 222.6095 2310.065 1527.998 0.1305258 0.6464408 0.09402495
## Training set -0.05248312
# For Flat of Croydon Area
print(forecasted_values_ets_croydon_f)
##
            Point Forecast
                              Lo 80
                                       Hi 80
                                                 Lo 95
                                                          Hi 95
                  281533.4 278361.6 284705.1 276682.6 286384.2
## Apr 2024
                  282971.0 277171.9 288770.0 274102.0 291839.9
## May 2024
## Jun 2024
                  284147.1 275629.1 292665.0 271120.0 297174.1
## Jul 2024
                  285109.2 273840.1 296378.3 267874.7 302343.8
## Aug 2024
                  285896.4 271891.1 299901.6 264477.2 307315.6
## Sep 2024
                  286540.4 269844.5 303236.2 261006.2 312074.5
## Oct 2024
                  287067.2 267745.1 306389.2 257516.7 316617.7
## Nov 2024
                  287498.2 265625.1 309371.3 254046.2 320950.2
## Dec 2024
                  287850.8 263507.3 312194.4 250620.6 325081.1
## Jan 2025
                  288139.3 261407.7 314870.9 247256.8 329021.8
## Feb 2025
                  288375.3 259337.5 317413.1 243965.9 332784.7
## Mar 2025
                  288568.4 257304.4 319832.4 240754.2 336382.6
## Apr 2025
                  288726.3 255313.0 322139.7 237625.1 339827.6
## May 2025
                  288855.6 253366.4 324344.7 234579.6 343131.6
## Jun 2025
                  288961.3 251465.9 326456.6 231617.1 346305.4
## Jul 2025
                  289047.8 249612.1 328483.4 228736.1 349359.4
## Aug 2025
                  289118.5 247804.5 330432.6 225934.1 352302.9
                  289176.4 246042.2 332310.6 223208.3 355144.5
## Sep 2025
summary(fit_ets_croydon_f)
## ETS(M,Ad,N)
##
## Call:
##
  ets(y = croydon_flat_ts)
##
##
    Smoothing parameters:
```

```
##
       alpha = 0.9999
##
       beta = 0.6446
##
           = 0.8181
##
##
     Initial states:
       1 = 55603.6151
##
       b = -35.4384
##
##
##
     sigma: 0.0088
##
##
        AIC
                AICc
                           BIC
## 7145.956 7146.200 7169.121
## Training set error measures:
                                                   MPE
                                                            MAPE
                                                                        MASE
##
                              RMSE
                                        MAE
## Training set 170.9752 1678.753 1205.753 0.1275841 0.6781077 0.09851299
##
## Training set -0.05581029
# STL model for Croydon Area
stl_croydon_d <- stl(croydon_detached_ts, s.window = "periodic")</pre>
stl_croydon_sd <- stl(croydon_semi_detached_ts, s.window = "periodic")</pre>
stl_croydon_t <- stl(croydon_terraced_ts, s.window = "periodic")</pre>
stl_croydon_f <- stl(croydon_flat_ts, s.window = "periodic")</pre>
# Forecast using the STL model for each property type of Croydon Area
forecasted_values_stl_croydon_d <- forecast(stl_croydon_d, method='ets',h = 18)</pre>
forecasted_values_stl_croydon_sd <- forecast(stl_croydon_sd, method='ets',</pre>
forecasted_values_stl_croydon_t <- forecast(stl_croydon_t, method='ets', h = 18)</pre>
forecasted_values_stl_croydon_f <- forecast(stl_croydon_f, method='ets', h = 18)</pre>
# Combine the historical and forecasted values by STL of Croydon Area
combined_croydon_detached_ts_stl <-</pre>
  ts(c(croydon_detached_price, forecasted_values_stl_croydon_d$mean),
     start = c(1995, 1), frequency = 12)
combined_croydon_semi_detached_ts_stl <-</pre>
  ts(c(croydon_semi_detached_price, forecasted_values_stl_croydon_sd$mean),
     start = c(1995, 1), frequency = 12)
combined croydon terraced ts stl <-
  ts(c(croydon_terraced_price, forecasted_values_stl_croydon_t$mean),
     start = c(1995, 1), frequency = 12)
combined_croydon_flat_ts_stl <-</pre>
  ts(c(croydon_flat_price, forecasted_values_stl_croydon_f$mean),
     start = c(1995, 1), frequency = 12)
# Plot the STL forecast value for each property type of Croydon Area
plot(forecasted_values_stl_croydon_d,
     main = "Croydon Detached Average Price STL",
     ylab = "Price", xlab = "Year")
```

Croydon Detached Average Price STL


```
plot(forecasted_values_stl_croydon_sd,
    main = "Croydon Semi-Detached Average Price STL",
    ylab = "Price", xlab = "Year")
```

Croydon Semi-Detached Average Price STL


```
plot(forecasted_values_stl_croydon_t,
    main = "Croydon Terraced Average Price STL",
    ylab = "Price", xlab = "Year")
```

Croydon Terraced Average Price STL


```
plot(forecasted_values_stl_croydon_f,
    main = "Croydon Flat Average Price STL",
    ylab = "Price", xlab = "Year")
```

Croydon Flat Average Price STL

Summary of the STL model for four different type of properties of Croydon Area
For Detached of Croydon Area
print(forecasted_values_stl_croydon_d)

```
##
            Point Forecast
                              Lo 80
                                       Hi 80
                                                 Lo 95
                                                          Hi 95
                  811664.6 802770.8 820558.5 798062.6 825266.6
## Apr 2024
## May 2024
                  808231.1 791523.1 824939.0 782678.5 833783.7
## Jun 2024
                  806267.2 781440.1 831094.4 768297.3 844237.1
## Jul 2024
                  806591.0 773597.6 839584.4 756131.9 857050.0
## Aug 2024
                  808862.9 767819.1 849906.6 746091.9 871633.9
## Sep 2024
                  811505.7 762621.2 860390.3 736743.2 886268.2
## Oct 2024
                  811032.6 754566.9 867498.4 724675.8 897389.5
## Nov 2024
                  809321.5 745557.4 873085.7 711802.7 906840.4
## Dec 2024
                  806756.4 735982.8 877529.9 698517.6 914995.2
## Jan 2025
                  805077.4 727579.3 882575.5 686554.3 923600.5
## Feb 2025
                  803759.2 719811.2 887707.1 675371.9 932146.5
## Mar 2025
                  802374.3 712237.4 892511.1 664521.8 940226.7
                  800628.4 704548.2 896708.6 653686.4 947570.4
## Apr 2025
## May 2025
                  799402.1 697608.1 901196.1 643721.6 955082.5
## Jun 2025
                  799204.0 691910.0 906498.1 635112.0 963296.1
## Jul 2025
                  800940.4 688344.8 913536.0 628740.3 973140.5
## Aug 2025
                  804342.4 686629.2 922055.6 624315.6 984369.2
## Sep 2025
                  807889.4 685229.0 930549.7 620296.6 995482.2
```

summary(stl_croydon_d)

```
## Call:
## stl(x = croydon_detached_ts, s.window = "periodic")
```

```
##
##
  Time.series components:
      seasonal
##
                           trend
                                          remainder
## Min. :-4339.047
                     Min.
                             :146355.0 Min. :-18365.644
##
   1st Qu.:-2498.445 1st Qu.:322528.5
                                         1st Qu.: -3021.939
## Median: -535.162 Median: 445723.6 Median: -111.747
  Mean : -4.945 Mean :484139.7
                                         Mean :
                                                     50.986
   3rd Qu.: 1746.294
                                          3rd Qu.: 2789.967
##
                       3rd Qu.:747370.2
##
   Max. : 4904.186 Max. :865562.7
                                         Max. : 18852.060
##
   IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
         4245
                   424842
                                5812
                                           430740
                                            100.0
##
        1.0
                     98.6
                                1.3
##
##
  Weights: all == 1
##
## Other components: List of 5
  $ win : Named num [1:3] 3511 19 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# For Semi-Detached of Croydon Area
print(forecasted_values_stl_croydon_sd)
                             Lo 80
                                      Hi 80
                                               Lo 95
                                                       Hi 95
##
           Point Forecast
                 534408.8 528481.1 540336.4 525343.2 543474.3
## Apr 2024
## May 2024
                 533533.7 522386.6 544680.7 516485.8 550581.6
## Jun 2024
                 533431.1 516870.4 549991.9 508103.7 558758.6
## Jul 2024
                 534085.4 512080.2 556090.7 500431.3 567739.6
## Aug 2024
                 535260.8 507886.4 562635.2 493395.3 577126.3
## Sep 2024
                 536168.8 503562.6 568775.1 486301.8 586035.8
## Oct 2024
                 535663.7 497996.2 573331.3 478056.2 593271.3
## Nov 2024
                 534466.9 491924.2 577009.5 469403.5 599530.2
## Dec 2024
                 533699.4 486472.3 580926.5 461471.7 605927.0
## Jan 2025
                 532685.0 480961.7 584408.3 453581.0 611789.0
## Feb 2025
                 532258.2 476220.4 588296.0 446555.8 617960.6
## Mar 2025
                 531169.8 470990.5 591349.2 439133.5 623206.2
## Apr 2025
                 530483.8 466325.8 594641.8 432362.6 628605.0
## May 2025
                 530393.0 462408.8 598377.2 426420.1 634365.9
## Jun 2025
                 530918.1 459249.8 602586.3 421310.9 640525.2
## Jul 2025
                 532074.6 456854.3 607294.8 417035.1 647114.1
## Aug 2025
                 533651.7 455002.0 612301.4 413367.4 653936.1
                 534881.3 452915.8 616846.8 409525.9 660236.7
## Sep 2025
summary(stl_croydon_sd)
## Call:
   stl(x = croydon_semi_detached_ts, s.window = "periodic")
##
##
## Time.series components:
##
      seasonal
                            trend
                                            remainder
```

```
## Min. :-2105.2105 Min. : 88791.6
                                          Min. :-11333.493
## 1st Qu.:-1458.9340 1st Qu.:194142.4 1st Qu.: -1687.898
## Median: -340.0459 Median: 281840.0 Median: -290.801
                               :308186.6
## Mean : -5.8914
                       Mean
                                          Mean
                                                      23.528
   3rd Qu.: 1266.8504
                        3rd Qu.:478199.1
                                          3rd Qu.: 1725.166
##
  Max. : 2520.2144
                       Max. :561990.8
                                          Max. : 12831.278
  IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
         2726
                    284057
                                3413
                                           286640
##
        1.0
                    99.1
                                1.2
                                           100.0
##
##
   Weights: all == 1
##
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
   $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# For Terraced of Croydon Area
print(forecasted_values_stl_croydon_t)
##
           Point Forecast
                             Lo 80
                                      Hi 80
                                              Lo 95
                                                       Hi 95
## Apr 2024
                 392892.9 388404.7 397381.1 386028.8 399757.1
## May 2024
                 392867.4 384485.0 401249.7 380047.6 405687.1
## Jun 2024
                 393539.3 381117.5 405961.1 374541.8 412536.9
## Jul 2024
                 394063.6 377579.1 410548.1 368852.7 419274.5
## Aug 2024
                 395083.4 374591.8 415575.0 363744.1 426422.6
## Sep 2024
                 395529.1 371131.8 419926.5 358216.6 432841.6
## Oct 2024
                 395081.3 366904.5 423258.1 351988.6 438174.0
## Nov 2024
                 394101.4 362283.0 425919.7 345439.4 442763.4
## Dec 2024
                 393740.3 358421.6 429058.9 339725.1 447755.4
## Jan 2025
                 393065.8 354386.6 431745.1 333911.0 452220.7
## Feb 2025
                 392838.1 350933.1 434743.1 328750.0 456926.2
## Mar 2025
                 391972.2 346970.0 436974.5 323147.2 460797.2
## Apr 2025
                 391913.1 343934.7 439891.5 318536.5 465289.8
## May 2025
                 392083.5 341242.3 442924.7 314328.6 469838.4
## Jun 2025
                 392912.2 339314.1 446510.4 310940.9 474883.6
## Jul 2025
                 393562.0 337305.2 449818.8 307524.6 479599.3
## Aug 2025
                 394682.1 335858.0 453506.2 304718.4 484645.8
                 395208.1 333901.4 456514.7 301447.6 488968.5
## Sep 2025
summary(stl_croydon_t)
##
  stl(x = croydon_terraced_ts, s.window = "periodic")
## Time.series components:
##
      seasonal
                                            remainder
                            trend
## Min.
         :-1482.1624 Min. : 63378.2
                                         Min. :-10380.729
## 1st Qu.: -947.5821 1st Qu.:136112.1 1st Qu.: -1344.659
## Median : -398.3617 Median :207566.1
                                         Median: -178.065
```

```
Mean : -6.9441
                        Mean
                               :225687.2
                                           Mean
   3rd Qu.: 557.7394
                        3rd Qu.:351423.7
                                           3rd Qu.: 1282.306
   Max. : 1861.3801
                                           Max. : 10921.691
                        Max.
                             :415834.3
##
   IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
                    215312
                                2627
         1505
##
        0.7
                     99.2
                                            100.0
     %
                                1.2
##
##
  Weights: all == 1
##
  Other components: List of 5
   $ win : Named num [1:3] 3511 19 13
##
   $ deg : Named int [1:3] 0 1 1
  $ jump : Named num [1:3] 352 2 2
   $ inner: int 2
##
   $ outer: int 0
# For Flat of Croydon Area
print(forecasted_values_stl_croydon_f)
##
            Point Forecast
                             Lo 80
                                      Hi 80
                                               Lo 95
                                                        Hi 95
## Apr 2024
                 281530.3 278329.3 284731.3 276634.8 286425.9
                 283206.6 277257.5 289155.6 274108.2 292304.9
## May 2024
## Jun 2024
                 284892.5 276100.5 293684.4 271446.3 298338.6
## Jul 2024
                 286293.5 274640.4 297946.7 268471.6 304115.5
## Aug 2024
                 287353.5 272873.7 301833.3 265208.5 309498.5
                 288147.8 270907.3 305388.3 261780.7 314514.9
## Sep 2024
## Oct 2024
                 288349.4 268431.9 308267.0 257888.2 318810.7
## Nov 2024
                 288168.4 265666.2 310670.5 253754.3 322582.5
## Dec 2024
                 288361.4 263370.1 313352.7 250140.5 326582.3
## Jan 2025
                 288199.4 260813.9 315585.0 246316.9 330082.0
## Feb 2025
                 288673.2 258985.9 318360.6 243270.3 334076.2
## Mar 2025
                 288511.6 256610.8 320412.5 239723.5 337299.8
## Apr 2025
                 288518.7 254488.1 322549.3 236473.4 340563.9
## May 2025
                 288797.3 252715.8 324878.7 233615.4 343979.1
## Jun 2025
                 289365.0 251306.5 327423.5 231159.6 347570.5
## Jul 2025
                 289871.6 249905.0 329838.2 228747.9 350995.2
                 290216.0 248405.5 332026.4 226272.4 354159.5
## Aug 2025
## Sep 2025
                 290437.8 246843.3 334032.2 223765.8 357109.7
summary(stl_croydon_f)
## Call:
##
   stl(x = croydon_flat_ts, s.window = "periodic")
##
##
   Time.series components:
##
                                             remainder
      seasonal
                           trend
          :-684.7788
                              : 55155.46
##
  Min.
                       Min.
                                          Min.
                                                  :-5271.367
  1st Qu.:-512.5068
##
                       1st Qu.:122564.62
                                           1st Qu.:-1066.964
## Median : -98.7477
                       Median :166927.70
                                           Median : -174.178
## Mean : -3.7481
                       Mean :177907.42
                                           Mean :
                                                       9.838
## 3rd Qu.: 416.4787
                       3rd Qu.:268511.29
                                           3rd Qu.: 903.590
## Max. : 887.5969
                       Max.
                              :289338.74
                                           Max. : 6521.877
```

```
##
    IQR:
##
        STL.seasonal STL.trend STL.remainder data
                                  1971
                                              146441
##
           929
                     145947
         0.6
                                  1.3
                                              100.0
##
      %
                      99.7
##
## Weights: all == 1
##
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# Split the data into training and test sets of Croydon Area
train_end <- c(2023, 6)
test_start <- c(2023, 6)
#Detached property of Croydon Area
# By ARIMA model for Detached of Croydon Area
croydon_detached_train_arima <- window(croydon_detached_ts_diff,</pre>
                                        end = train_end)
# Fit specified ARIMA models to the training data for Detached of Croydon Area
fit_arima_croydon_d_train <- Arima(croydon_detached_train_arima,</pre>
                                    order = c(1, 0, 4))
forecasted_values_arima_croydon_d_train <- forecast(fit_arima_croydon_d_train,
                                                     h = 9)
# Add the forecasted differenced values to the last observed value in Croydon
croydon_detached_new_ts <- ts(croydon_detached_price, start = c(1995, 1),</pre>
                               end = c(2023, 6), frequency = 12)
last_value_croydon_detached <- as.numeric(tail(croydon_detached_new_ts, n = 1))</pre>
forecasted_values_croydon_detached_combined <- c(last_value_croydon_detached,
                                   forecasted_values_arima_croydon_d_train$mean)
cumulative forecasted values croydon detached <-
  cumsum(forecasted_values_croydon_detached_combined)
forecasted_values_arima_croydon_d_test <-</pre>
  ts(cumulative_forecasted_values_croydon_detached,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Detached by ARIMA of Croydon Area
mse_croydon_detached_arima <- mean((window(croydon_detached_ts,</pre>
                                            start=test_start) -
                                       forecasted_values_arima_croydon_d_test)^2)
mae_croydon_detached_arima <- mean(abs(window(croydon_detached_ts,</pre>
                                            start=test_start) -
                                         forecasted_values_arima_croydon_d_test))
# By ETS model for Detached of Croydon Area
croydon_detached_train_ets <- window(croydon_detached_ts, end = train_end)</pre>
croydon_detached_test_ets <- window(croydon_detached_ts, start = test_start)</pre>
# Fit ETS models to the training data for Detached of Croydon Area
```

```
fit_ets_croydon_d_train <- ets(croydon_detached_train_ets)</pre>
# Forecast the test period for Detached of Croydon Area
forecasted_values_ets_croydon_d_test <- forecast(fit_ets_croydon_d_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Detached of Croydon Area
mse_croydon_detached_ets <- mean((croydon_detached_test_ets -</pre>
                                   forecasted values ets croydon d test$mean)^2)
mae_croydon_detached_ets <- mean(abs(croydon_detached_test_ets -</pre>
                                     forecasted_values_ets_croydon_d_test$mean))
# By STL model for Detached of Croydon Area
croydon_detached_train_stl <- window(croydon_detached_ts, end = train_end)</pre>
croydon_detached_test_stl <- window(croydon_detached_ts, start = test_start)</pre>
fit_stl_croydon_d_train <- stl(croydon_detached_train_stl,</pre>
                                s.window = "periodic")
forecasted_values_stl_croydon_d_test <- forecast(fit_stl_croydon_d_train,</pre>
                                                  method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Detached of Croydon Area
mse_croydon_detached_stl <- mean((croydon_detached_test_stl -</pre>
                                   forecasted_values_stl_croydon_d_test$mean)^2)
mae_croydon_detached_stl <- mean(abs(croydon_detached_test_stl -</pre>
                                     forecasted_values_stl_croydon_d_test$mean))
# Print MSE and MAE of Croydon Area
print(paste("Croydon Detached MSE for Arima:", mse croydon detached arima))
## [1] "Croydon Detached MSE for Arima: 330525392.463312"
print(paste("Croydon Detached MAE for Arima:", mae_croydon_detached_arima))
## [1] "Croydon Detached MAE for Arima: 14054.1412276337"
print(paste("Croydon Detached MSE for ETS:", mse_croydon_detached_ets))
## [1] "Croydon Detached MSE for ETS: 348654263.983745"
print(paste("Croydon Detached MAE for ETS:", mae_croydon_detached_ets))
## [1] "Croydon Detached MAE for ETS: 15724.9505179042"
print(paste("Croydon Detached MSE for STL:", mse_croydon_detached_stl))
## [1] "Croydon Detached MSE for STL: 193448958.22914"
print(paste("Croydon Detached MAE for STL:", mae_croydon_detached_stl))
## [1] "Croydon Detached MAE for STL: 10678.8530999883"
```

Croydon Detached Average Price: Forecast vs Actual


```
frequency = 12)
last_value_croydon_semi_detached <-</pre>
  as.numeric(tail(croydon_semi_detached_new_ts, n = 1))
forecasted_values_croydon_semi_detached_combined <-</pre>
  c(last_value_croydon_semi_detached,
    forecasted values arima croydon sd train$mean)
cumulative_forecasted_values_croydon_semi_detached <-</pre>
  cumsum(forecasted values croydon semi detached combined)
forecasted values arima croydon sd test <-
  ts(cumulative forecasted values croydon semi detached,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Semi-Detached by ARIMA of Croydon Area
mse_croydon_semi_detached_arima <- mean((window(croydon_semi_detached_ts,</pre>
                                                  start=test start) -
                                     forecasted_values_arima_croydon_sd_test)^2)
mae_croydon_semi_detached_arima <- mean(abs(window(croydon_semi_detached_ts,
                                                     start=test_start) -
                                        forecasted_values_arima_croydon_sd_test))
# By ETS model for Semi-Detached of Croydon Area
croydon_semi_detached_train_ets <- window(croydon_semi_detached_ts,</pre>
                                            end = train end)
croydon_semi_detached_test_ets <- window(croydon_semi_detached_ts,</pre>
                                           start = test start)
# Fit ETS models to the training data for Semi-Detached of Croydon Area
fit_ets_croydon_sd_train <- ets(croydon_semi_detached_train_ets)</pre>
# Forecast the test period for Semi-Detached of Croydon Area
forecasted_values_ets_croydon_sd_test <- forecast(fit_ets_croydon_sd_train,</pre>
                                                    h = 9)
# Calculate MSE and MAE by ETS for Semi-Detached of Croydon Area
mse_croydon_semi_detached_ets <- mean((croydon_semi_detached_test_ets -</pre>
                                   forecasted_values_ets_croydon_sd_test$mean)^2)
mae_croydon_semi_detached_ets <- mean(abs(croydon_semi_detached_test_ets -</pre>
                                      forecasted_values_ets_croydon_sd_test$mean))
# By STL model for Semi-Detached of Croydon Area
croydon_semi_detached_train_stl <- window(croydon_semi_detached_ts,</pre>
                                            end = train end)
croydon_semi_detached_test_stl <- window(croydon_semi_detached_ts,</pre>
                                           start = test start)
fit_stl_croydon_sd_train <- stl(croydon_semi_detached_train_stl,</pre>
                                 s.window = "periodic")
forecasted_values_stl_croydon_sd_test <- forecast(fit_stl_croydon_sd_train,</pre>
                                                    method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Semi-Detached of Croydon Area
mse_croydon_semi_detached_stl <- mean((croydon_semi_detached_test_stl -</pre>
                                   forecasted_values_stl_croydon_sd_test$mean)^2)
mae_croydon_semi_detached_stl <- mean(abs(croydon_semi_detached_test_stl -</pre>
```

```
forecasted_values_stl_croydon_sd_test$mean))
# Print MSE and MAE for Semi-Detached of Croydon Area
print(paste("Croydon Semi-Detached MSE for ARIMA:",
            mse_croydon_semi_detached_arima))
## [1] "Croydon Semi-Detached MSE for ARIMA: 232690045.837641"
print(paste("Croydon Semi-Detached MAE for ARIMA:",
            mae_croydon_semi_detached_arima))
## [1] "Croydon Semi-Detached MAE for ARIMA: 13116.3959861087"
print(paste("Croydon Semi-Detached MSE for ETS:",
            mse_croydon_semi_detached_ets))
## [1] "Croydon Semi-Detached MSE for ETS: 161323955.940805"
print(paste("Croydon Semi-Detached MAE for ETS:",
            mae_croydon_semi_detached_ets))
## [1] "Croydon Semi-Detached MAE for ETS: 10852.5445499123"
print(paste("Croydon Semi-Detached MSE for STL:",
            mse_croydon_semi_detached_stl))
## [1] "Croydon Semi-Detached MSE for STL: 149458286.2626"
print(paste("Croydon Semi-Detached MAE for STL:",
            mae croydon semi detached stl))
## [1] "Croydon Semi-Detached MAE for STL: 10642.5917819419"
# Plot the combined time series with forecast for Semi-Detached of Croydon
plot(window(croydon_semi_detached_ts, start = train_end), type = "1",
     col = "blue",
    main = "Croydon Semi-Detached Average Price: Forecast vs Actual",
     ylab = "Price", xlab = "Year",
     ylim = range(c(window(croydon_semi_detached_ts, start = train_end),
                    forecasted_values_arima_croydon_sd_test,
                    forecasted_values_ets_croydon_sd_test$mean,
                    forecasted_values_stl_croydon_sd_test$mean)))
lines(forecasted_values_arima_croydon_sd_test, col = "red")
lines(forecasted_values_ets_croydon_sd_test$mean, col = "green")
lines(forecasted_values_stl_croydon_sd_test$mean, col = "yellow")
legend("topright", legend = c("Price", "ARIMA", "ETS", "STL"),
       col = c("blue", "red", "green", "yellow"), lty = 1, cex = 0.8)
```

Croydon Semi-Detached Average Price: Forecast vs Actual


```
# Terraced property of Croydon Area
# By ARIMA model for Terraced of Croydon Area
croydon_terraced_train_arima <- window(croydon_terraced_ts_diff,</pre>
                                         end = train_end)
# Fit specified ARIMA models to the training data for Terraced of Croydon Area
fit_arima_croydon_t_train <- Arima(croydon_terraced_train_arima,</pre>
                                     order = c(1, 0, 4))
forecasted_values_arima_croydon_t_train <- forecast(fit_arima_croydon_t_train,</pre>
                                                       h = 9)
# Add forecasted differenced values of Terraced in Croydon Area
croydon_terraced_new_ts <- ts(croydon_terraced_price, start = c(1995, 1),</pre>
                               end = c(2023, 6), frequency = 12)
last_value_croydon_terraced <- as.numeric(tail(croydon_terraced_new_ts, n = 1))</pre>
forecasted_values_croydon_terraced_combined <- c(last_value_croydon_terraced,</pre>
                                    forecasted_values_arima_croydon_t_train$mean)
cumulative_forecasted_values_croydon_terraced <-</pre>
  cumsum(forecasted_values_croydon_terraced_combined)
forecasted_values_arima_croydon_t_test <-</pre>
  ts(cumulative_forecasted_values_croydon_terraced,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Terraced by ARIMA of Croydon Area
mse_croydon_terraced_arima <- mean((window(croydon_terraced_ts,</pre>
                                             start=test start) -
                                        forecasted_values_arima_croydon_t_test)^2)
mae_croydon_terraced_arima <- mean(abs(window(croydon_terraced_ts,</pre>
                                                start=test_start) -
```

```
forecasted_values_arima_croydon_t_test))
# By ETS model for Terraced of Croydon Area
croydon_terraced_train_ets <- window(croydon_terraced_ts, end = train_end)</pre>
croydon_terraced_test_ets <- window(croydon_terraced_ts, start = test_start)</pre>
# Fit ETS models to the training data for Terraced of Croydon Area
fit ets croydon t train <- ets(croydon terraced train ets)</pre>
# Forecast the test period for Terraced of Croydon Area
forecasted_values_ets_croydon_t_test <- forecast(fit_ets_croydon_t_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Terraced of Croydon Area
mse_croydon_terraced_ets <- mean((croydon_terraced_test_ets -</pre>
                                   forecasted_values_ets_croydon_t_test$mean)^2)
mae_croydon_terraced_ets <- mean(abs(croydon_terraced_test_ets -</pre>
                                     forecasted_values_ets_croydon_t_test$mean))
# By STL model for Terraced of Croydon Area
croydon_terraced_train_stl <- window(croydon_terraced_ts, end = train_end)</pre>
croydon_terraced_test_stl <- window(croydon_terraced_ts, start = test_start)</pre>
fit_stl_croydon_t_train <- stl(croydon_terraced_train_stl,</pre>
                                s.window = "periodic")
forecasted_values_stl_croydon_t_test <- forecast(fit_stl_croydon_t_train,</pre>
                                                  method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Terraced of Croydon Area
mse_croydon_terraced_stl <- mean((croydon_terraced_test_stl -</pre>
                                   forecasted_values_stl_croydon_t_test$mean)^2)
mae_croydon_terraced_stl <- mean(abs(croydon_terraced_test_stl -</pre>
                                     forecasted_values_stl_croydon_t_test$mean))
# Print MSE and MAE of Terraced in Croydon Area
print(paste("Croydon Terraced MSE for ARIMA:", mse_croydon_terraced_arima))
## [1] "Croydon Terraced MSE for ARIMA: 111250169.644619"
print(paste("Croydon Terraced MAE for ARIMA:", mae croydon terraced arima))
## [1] "Croydon Terraced MAE for ARIMA: 8382.52954868874"
print(paste("Croydon Terraced MSE for ETS:", mse_croydon_terraced_ets))
## [1] "Croydon Terraced MSE for ETS: 60651533.3796279"
print(paste("Croydon Terraced MAE for ETS:", mae_croydon_terraced_ets))
## [1] "Croydon Terraced MAE for ETS: 5826.38323999192"
```

```
print(paste("Croydon Terraced MSE for STL:", mse_croydon_terraced_stl))
## [1] "Croydon Terraced MSE for STL: 69992263.5603383"
print(paste("Croydon Terraced MAE for STL:", mae_croydon_terraced_stl))
```

[1] "Croydon Terraced MAE for STL: 6601.16091356683"

Croydon Terraced Average Price: Forecast vs Actual


```
# Flat property of Croydon Area
# By ARIMA model for Flat of Croydon Area
croydon_flat_train_arima <- window(croydon_flat_ts_diff, end = train_end)</pre>
```

```
# Fit specified ARIMA models to the training data for Flat of Croydon Area
fit_arima_croydon_f_train <- Arima(croydon_flat_train_arima, order = c(0, 0, 2))</pre>
forecasted_values_arima_croydon_f_train <- forecast(fit_arima_croydon_f_train,</pre>
# Add the forecasted differenced values to the last observed value in Croydon
croydon_flat_new_ts <- ts(croydon_flat_price, start = c(1995, 1),</pre>
                         end = c(2023, 6), frequency = 12)
last_value_croydon_flat <- as.numeric(tail(croydon_flat_new_ts, n = 1))</pre>
forecasted_values_croydon_flat_combined <-</pre>
  c(last_value_croydon_flat, forecasted_values_arima_croydon_f_train$mean)
cumulative_forecasted_values_croydon_flat <-</pre>
  cumsum(forecasted_values_croydon_flat_combined)
forecasted_values_arima_croydon_f_test <-</pre>
  ts(cumulative_forecasted_values_croydon_flat,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Flat by ARIMA of Croydon Area
mse_croydon_flat_arima <- mean((window(croydon_flat_ts, start=test_start) -</pre>
                               forecasted_values_arima_croydon_f_test)^2)
mae_croydon_flat_arima <- mean(abs(window(croydon_flat_ts, start=test_start) -</pre>
                                   forecasted values arima croydon f test))
# By ETS model for Flat of Croydon Area
croydon_flat_train_ets <- window(croydon_flat_ts, end = train_end)</pre>
croydon_flat_test_ets <- window(croydon_flat_ts, start = test_start)</pre>
# Fit ETS models to the training data for Flat of Croydon Area
fit_ets_croydon_f_train <- ets(croydon_flat_train_ets)</pre>
# Forecast the test period for Flat of Croydon Area
forecasted_values_ets_croydon_f_test <- forecast(fit_ets_croydon_f_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Flat of Croydon Area
mse_croydon_flat_ets <- mean((croydon_flat_test_ets -</pre>
                                 forecasted values ets croydon f test$mean)^2)
mae_croydon_flat_ets <- mean(abs(croydon_flat_test_ets -</pre>
                                     forecasted_values_ets_croydon_f_test$mean))
# By STL model for Flat of Croydon Area
croydon_flat_train_stl <- window(croydon_flat_ts, end = train_end)</pre>
croydon_flat_test_stl <- window(croydon_flat_ts, start = test_start)</pre>
fit_stl_croydon_f_train <- stl(croydon_flat_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_croydon_f_test <- forecast(fit_stl_croydon_f_train,</pre>
                                                   method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Flat of Croydon Area
mse_croydon_flat_stl <- mean((croydon_flat_test_stl -</pre>
                                 forecasted_values_stl_croydon_f_test$mean)^2)
mae_croydon_flat_stl <- mean(abs(croydon_flat_test_stl -</pre>
                                    forecasted_values_stl_croydon_f_test$mean))
# Print MSE and MAE of Flat in Croydon Area
print(paste("Croydon Flat MSE for ARIMA:", mse_croydon_flat_arima))
```

```
## [1] "Croydon Flat MSE for ARIMA: 20113708.1656028"
print(paste("Croydon Flat MAE for ARIMA:", mae_croydon_flat_arima))
## [1] "Croydon Flat MAE for ARIMA: 3554.18632357111"
print(paste("Croydon Flat MSE for ETS:", mse_croydon_flat_ets))
## [1] "Croydon Flat MSE for ETS: 18985222.1987678"
print(paste("Croydon Flat MAE for ETS:", mae_croydon_flat_ets))
## [1] "Croydon Flat MAE for ETS: 3822.54299288067"
print(paste("Croydon Flat MSE for STL:", mse_croydon_flat_stl))
## [1] "Croydon Flat MSE for STL: 19972274.9261258"
print(paste("Croydon Flat MAE for STL:", mae_croydon_flat_stl))
## [1] "Croydon Flat MAE for STL: 3720.21139188537"
# Plot the combined time series with forecast for Flat of Croydon Area
plot(window(croydon_flat_ts, start = train_end), type = "l", col = "blue",
     main = "Croydon Flat Average Price: Forecast vs Actual", ylab = "Price",
     xlab = "Year", ylim = range(c(window(croydon_flat_ts, start = train_end),
                                   forecasted_values_arima_croydon_f_test,
                                   forecasted_values_ets_croydon_f_test$mean,
                                   forecasted_values_stl_croydon_f_test$mean)))
lines(forecasted_values_arima_croydon_f_test, col = "red")
lines(forecasted_values_ets_croydon_f_test$mean, col = "green")
lines(forecasted_values_stl_croydon_f_test$mean, col = "yellow")
legend("topright", legend = c("Price", "ARIMA", "ETS", "STL"),
```

col = c("blue", "red", "green", "yellow"), lty = 1, cex = 0.8)

Croydon Flat Average Price: Forecast vs Actual

Croydon Average Price of Four Properties


```
# If we look for less MSE in Croydon Area,
# STL model is the best for Detached
# STL model is the best for Semi-Detached
# ETS model is the best for Terraced
# ETS model is the best for Flat

# Calculate the combined mean price for property types in Croydon with less MSE
combined_mean_price_croydon_less_MSE <- (combined_croydon_detached_ts_stl + combined_croydon_semi_detached_ts_stl + combined_croydon_terraced_ts_ets + combined_croydon_flat_ts_ets) / 4

combined_mean_price_croydon_less_MSE_ts <- ts(combined_mean_price_croydon_less_MSE, start = c(1995, 1), frequency = 12)

plot(combined_mean_price_croydon_less_MSE_ts,
    main = "Croydon Mean Price of Less MSE",
    ylab = "Combined Mean Price", xlab = "Year")</pre>
```

Croydon Mean Price of Less MSE

Croydon Mean Price of Less MAE


```
# Compare two models for which one is better in Croydon Area
combined_mean_price_croydon_less_MSE_test <-</pre>
  (forecasted_values_stl_croydon_d_test$mean +
     forecasted_values_stl_croydon_sd_test$mean +
     forecasted_values_ets_croydon_t_test$mean +
     forecasted_values_ets_croydon_f_test$mean) / 4
combined_mean_price_croydon_less_MSE_test_ts <-</pre>
  ts(combined_mean_price_croydon_less_MSE_test,
     start = test start, frequency = 12)
combined mean price croydon less MAE test <-
  (forecasted_values_stl_croydon_d_test$mean +
     forecasted_values_stl_croydon_sd_test$mean +
     forecasted values ets croydon t test$mean +
     forecasted_values_arima_croydon_f_test) / 4
combined_mean_price_croydon_less_MAE_test_ts <-</pre>
  ts(combined_mean_price_croydon_less_MAE_test,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for combined mean prices in Croydon Area
combined_mean_price_croydon_test <- window(combined_mean_price_croydon_ts,</pre>
                                             start = test_start)
mse_combined_croydon_less_MSE <- mean((combined_mean_price_croydon_test -</pre>
                                 combined_mean_price_croydon_less_MSE_test_ts)^2)
mae_combined_croydon_less_MSE <- mean(abs(combined_mean_price_croydon_test -</pre>
                                   combined mean price croydon less MSE test ts))
mse_combined_croydon_less_MAE <- mean((combined_mean_price_croydon_test -</pre>
                                 combined_mean_price_croydon_less_MAE_test_ts)^2)
```

"" [1] Groyadi Gombinoa ilom 11100 ilom 101 mede ilom ilometi. Georgeo ilom

[1] "Croydon Combined Mean Price MAE for Less MSE Model: 7535.4884935506"

[1] "Croydon Combined Mean Price MSE for Less MAE Model: 91148744.724732"

[1] "Croydon Combined Mean Price MAE for Less MAE Model: 7138.67941386594"

Croydon Combined Mean Prices Comparison


```
### Kensington and Chelsea Area
# Load the data of Kensington and Chelsea Area
kc_data <- read.csv("~/Desktop/Updated_KensingtonandChelsea_df.csv")</pre>
# Convert the Date column to Date type of Kensington and Chelsea Area
kc_data$Date <- as.Date(kc_data$Date, format="%Y-%m-%d")</pre>
# Extract the Average Price for each property type and Date columns
# In Kensington and Chelsea Area
kc_detached_price <- kc_data$Detached_Average_Price</pre>
kc_semi_detached_price <- kc_data$Semi_Detached_Average_Price</pre>
kc_terraced_price <- kc_data$Terraced_Average_Price</pre>
kc_flat_price <- kc_data$Flat_Average_Price</pre>
kc_dates <- kc_data$Date</pre>
# Create time series object for each property type in Kensington and Chelsea
kc_detached_ts <- ts(kc_detached_price, start = c(1995, 1), frequency = 12)</pre>
kc_semi_detached_ts <- ts(kc_semi_detached_price, start = c(1995, 1),</pre>
                           frequency = 12)
kc_terraced_ts <- ts(kc_terraced_price, start = c(1995, 1), frequency = 12)</pre>
kc_flat_ts <- ts(kc_flat_price, start = c(1995, 1), frequency = 12)</pre>
# Plot the time series of Kensington and Chelsea Area
plot(kc_detached_ts, main = "K&C Detached Average Price Time Series",
     ylab = "Detached Average Price", xlab = "Year")
```

K&C Detached Average Price Time Series

plot(kc_semi_detached_ts, main = "K&C Semi-Detached Average Price Time Series",
 ylab = "Semi-Detached Average Price", xlab = "Year")

K&C Semi-Detached Average Price Time Series

K&C Terraced Average Price Time Series


```
plot(kc_flat_ts, main = "K&C Flat Average Price Time Series",
    ylab = "Flat Average Price", xlab = "Year")
```

K&C Flat Average Price Time Series

[1] "Kensington and Chelsea p-value: 0.789333134209407 0.659399148825699 0.877662677907351 0.9783525

```
# Perform first-order differencing of Kensington and Chelsea Area
kc_detached_ts_diff <- diff(kc_detached_ts)
kc_semi_detached_ts_diff <- diff(kc_semi_detached_ts)
kc_terraced_ts_diff <- diff(kc_terraced_ts)
kc_flat_ts_diff <- diff(kc_flat_ts)

# Perform ADF test on differenced series of Kensington and Chelsea Area
adf_test_diff_kc_d <- adf.test(kc_detached_ts_diff)</pre>
```

Warning in adf.test(kc_detached_ts_diff): p-value smaller than printed p-value

```
adf_test_diff_kc_sd <- adf.test(kc_semi_detached_ts_diff)</pre>
## Warning in adf.test(kc_semi_detached_ts_diff): p-value smaller than printed
## p-value
adf_test_diff_kc_t <- adf.test(kc_terraced_ts_diff)</pre>
## Warning in adf.test(kc_terraced_ts_diff): p-value smaller than printed p-value
adf_test_diff_kc_f <- adf.test(kc_flat_ts_diff)</pre>
## Warning in adf.test(kc_flat_ts_diff): p-value smaller than printed p-value
differenced_p_value_kc_d <- adf_test_diff_kc_d$p.value</pre>
differenced_p_value_kc_sd <- adf_test_diff_kc_sd$p.value</pre>
differenced_p_value_kc_t <- adf_test_diff_kc_t$p.value</pre>
differenced_p_value_kc_f <- adf_test_diff_kc_f$p.value</pre>
print(paste("Kensington and Chelsea difference1_p-value:",
            differenced_p_value_kc_d,
            differenced_p_value_kc_sd,
            differenced_p_value_kc_t,
            differenced_p_value_kc_f))
## [1] "Kensington and Chelsea difference1_p-value: 0.01 0.01 0.01 0.01"
# Define function to plot ACF and PACF of Kensington and Chelsea Area
plot acf pacf <- function(ts diff, title) {</pre>
  acf(ts_diff, main = paste("ACF of", title))
  pacf(ts_diff, main = paste("PACF of", title))
# Plot ACF and PACF for differenced series for each property type
```

In Kensington and Chelsea

plot_acf_pacf(kc_detached_ts_diff,

"Differenced Detached Average Price of K&C Area")

ACF of Differenced Detached Average Price of K&C Area

PACF of Differenced Detached Average Price of K&C Area

ACF of Differenced Semi-Detached Average Price of K&C Area

PACF of Differenced Semi-Detached Average Price of K&C Area

ACF of Differenced Terraced Average Price of K&C Area

PACF of Differenced Terraced Average Price of K&C Area

plot_acf_pacf(kc_flat_ts_diff, "Differenced Flat Average Price of K&C Area")

ACF of Differenced Flat Average Price of K&C Area

PACF of Differenced Flat Average Price of K&C Area


```
##
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 8962.552
                           with non-zero mean: 8961.922
##
  ARIMA(0,0,0)
  ARIMA(0,0,0)(0,0,1)[12] with zero mean
##
                                            : 8964.464
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 8963.932
##
   ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                             : 8965.157
  ARIMA(0,0,0)(0,0,2)[12] with non-zero mean: 8964.982
## ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                             : 8964.45
   ARIMA(0,0,0)(1,0,0)[12] with non-zero mean: 8963.93
##
   ARIMA(0,0,0)(1,0,1)[12] with zero mean
   ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(1,0,2)[12] with zero mean
##
   ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
##
                                            : 8965.069
   ARIMA(0,0,0)(2,0,0)[12] with zero mean
   ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 8964.962
##
   ARIMA(0,0,0)(2,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,0)(2,0,2)[12] with zero mean
  ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)
                           with zero mean
                                             : 8961.567
                           with non-zero mean: 8961.284
##
   ARIMA(0,0,1)
## ARIMA(0,0,1)(0,0,1)[12] with zero mean
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 8963.322
   ARIMA(0,0,1)(0,0,2)[12] with zero mean
## ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 8963.812
  ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                            : 8963.532
##
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 8963.321
   ARIMA(0,0,1)(1,0,1)[12] with zero mean
  ARIMA(0,0,1)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(0,0,1)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                             : 8963.515
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 8963.778
##
  ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean: Inf
   ARIMA(0,0,1)(2,0,2)[12] with zero mean
## ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)
                           with zero mean
                                              : 8922.995
##
   ARIMA(0,0,2)
                           with non-zero mean: 8923.994
##
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                            : 8925.04
  ARIMA(0,0,2)(0,0,1)[12] with non-zero mean: 8926.044
##
  ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                            : 8925.062
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 8926.272
##
                                            : 8925.04
   ARIMA(0,0,2)(1,0,0)[12] with zero mean
  ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 8926.043
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
                                            : Inf
##
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : 8927.736
##
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
  ARIMA(0,0,2)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 8924.829
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 8926.074
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
## ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,3)
                           with zero mean
                                           : Inf
```

```
ARIMA(0,0,3)
                           with non-zero mean : Inf
   ARIMA(0,0,3)(0,0,1)[12] with zero mean
## ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,3)(0,0,2)[12] with zero mean
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,3)(1,0,0)[12] with zero mean
## ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(0,0,3)(1,0,1)[12] with zero mean
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: Inf
##
   ARIMA(0,0,3)(2,0,0)[12] with zero mean
  ARIMA(0,0,3)(2,0,0)[12] with non-zero mean: Inf
##
  ARIMA(0,0,4)
                           with zero mean
                                             : Inf
##
   ARIMA(0,0,4)
                           with non-zero mean : Inf
##
  ARIMA(0,0,4)(0,0,1)[12] with zero mean
  ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,4)(1,0,0)[12] with zero mean
##
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : Inf
##
  ARIMA(0,0,5)
                           with zero mean
## ARIMA(0,0,5)
                           with non-zero mean : Inf
## ARIMA(1,0,0)
                           with zero mean
                                             : 8959.992
## ARIMA(1,0,0)
                           with non-zero mean: 8959.919
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
## ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 8961.961
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                            : 8961.709
## ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 8962.117
  ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                            : 8961.982
##
   ARIMA(1,0,0)(1,0,0)[12] with non-zero mean: 8961.961
   ARIMA(1,0,0)(1,0,1)[12] with zero mean
  ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
##
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
                                             : 8961.584
##
   ARIMA(1,0,0)(2,0,0)[12] with zero mean
##
   ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 8962.062
##
  ARIMA(1,0,0)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,1)
                           with zero mean
                                              : 8959.255
##
   ARIMA(1,0,1)
                           with non-zero mean: 8959.491
## ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                            : 8961.274
  ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 8961.546
##
  ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                             : 8960.95
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 8961.607
##
                                             : 8961.269
  ARIMA(1,0,1)(1,0,0)[12] with zero mean
  ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 8961.546
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
##
                                             : Inf
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : Inf
##
  ARIMA(1,0,1)(1,0,2)[12] with zero mean
  ARIMA(1,0,1)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                             : 8960.818
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean: 8961.537
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
## ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)
                           with zero mean
                                           : Inf
```

```
## ARIMA(1,0,2)
                           with non-zero mean : Inf
   ARIMA(1,0,2)(0,0,1)[12] with zero mean
## ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(0,0,2)[12] with zero mean
   ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
## ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(1,0,1)[12] with zero mean
   ARIMA(1,0,2)(1,0,1)[12] with non-zero mean: Inf
##
   ARIMA(1,0,2)(2,0,0)[12] with zero mean
  ARIMA(1,0,2)(2,0,0)[12] with non-zero mean: Inf
##
                                             : Inf
  ARIMA(1,0,3)
                           with zero mean
##
   ARIMA(1,0,3)
                           with non-zero mean : Inf
##
  ARIMA(1,0,3)(0,0,1)[12] with zero mean
  ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : Inf
##
   ARIMA(1,0,3)(1,0,0)[12] with zero mean
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : Inf
##
  ARIMA(1,0,4)
                           with zero mean
                           with non-zero mean : Inf
## ARIMA(1,0,4)
## ARIMA(2,0,0)
                           with zero mean
                                             : 8942.689
                           with non-zero mean: 8943.454
## ARIMA(2,0,0)
## ARIMA(2,0,0)(0,0,1)[12] with zero mean
## ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 8945.498
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                            : 8945.393
## ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 8946.407
  ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                            : 8944.69
##
   ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 8945.497
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
  ARIMA(2,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,0)(1,0,2)[12] with zero mean
##
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                             : 8945.293
##
   ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 8946.341
  ARIMA(2,0,0)(2,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(2,0,1)
                           with zero mean
                                              : 8918.016
## ARIMA(2,0,1)
                           with non-zero mean: 8918.691
## ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                             : 8920.068
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 8920.732
## ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                            : 8921.253
  ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 8922.103
## ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 8920.068
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 8920.729
##
  ARIMA(2,0,1)(1,0,1)[12] with zero mean
  ARIMA(2,0,1)(1,0,1)[12] with non-zero mean: 8922.666
## ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                             : 8921.176
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 8922.058
##
  ARIMA(2,0,2)
                           with zero mean
                           with non-zero mean : Inf
  ARIMA(2,0,2)
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(2,0,3)
                           with zero mean
                                           : Inf
```

```
ARIMA(2,0,3)
                           with non-zero mean : Inf
## ARIMA(3,0,0)
                           with zero mean
                                            : 8892.333
                           with non-zero mean: 8891.283
## ARIMA(3,0,0)
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                           : 8894.381
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean: 8893.344
## ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                           : 8895.571
## ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 8894.906
                                            : 8894.38
## ARIMA(3,0,0)(1,0,0)[12] with zero mean
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean: 8893.344
## ARIMA(3,0,0)(1,0,1)[12] with zero mean
## ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : Inf
  ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                           : 8895.426
  ARIMA(3,0,0)(2,0,0)[12] with non-zero mean: 8894.838
## ARIMA(3,0,1)
                           with zero mean
                                            : 8894.386
## ARIMA(3,0,1)
                           with non-zero mean: 8893.329
##
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                           : 8896.447
##
  ARIMA(3,0,1)(0,0,1)[12] with non-zero mean: 8895.406
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                           : 8896.446
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 8895.406
## ARIMA(3,0,2)
                           with zero mean
                                            : Inf
## ARIMA(3,0,2)
                           with non-zero mean: 8892.602
## ARIMA(4,0,0)
                           with zero mean
                                           : 8894.387
## ARIMA(4,0,0)
                           with non-zero mean: 8893.337
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 8896.448
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 8895.413
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 8896.447
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean: 8895.413
## ARIMA(4,0,1)
                           with zero mean
                                             : 8896.45
## ARIMA(4,0,1)
                           with non-zero mean : Inf
  ARIMA(5,0,0)
                           with zero mean
                                             : 8895.803
##
   ARIMA(5,0,0)
                           with non-zero mean: 8894.334
##
##
##
##
   Best model: ARIMA(3,0,0)
                                      with non-zero mean
fit_arima_kc_sd <- auto.arima(kc_semi_detached_ts_diff, stepwise = FALSE,</pre>
                          approximation = FALSE, trace = TRUE)
##
##
  ARIMA(0,0,0)
                           with zero mean
                                              : 8984.021
## ARIMA(0,0,0)
                           with non-zero mean: 8983.045
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
##
                                            : 8985.876
##
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 8985.032
##
  ARIMA(0,0,0)(0,0,2)[12] with zero mean
  ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 8986.513
   ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                           : 8985.86
##
  ARIMA(0,0,0)(1,0,0)[12] with non-zero mean: 8985.029
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
## ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                          : 8986.996
## ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 8986.515
```

```
ARIMA(0,0,0)(2,0,1)[12] with zero mean
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,2)[12] with zero mean
## ARIMA(0,0,0)(2,0,2)[12] with non-zero mean : Inf
   ARIMA(0,0,1)
                           with zero mean
                                              : 8980.463
## ARIMA(0,0,1)
                           with non-zero mean: 8979.99
  ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                             : 8982.343
## ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 8981.981
   ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                             : 8982.658
##
   ARIMA(0,0,1)(0,0,2)[12] with non-zero mean: 8982.7
   ARIMA(0,0,1)(1,0,0)[12] with zero mean
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 8981.975
##
   ARIMA(0,0,1)(1,0,1)[12] with zero mean
##
   ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,1)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                             : 8982.597
##
   ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 8982.706
  ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,1)(2,0,2)[12] with zero mean
## ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)
                           with zero mean
                                              : 8942.882
                           with non-zero mean: 8943.802
##
   ARIMA(0.0.2)
## ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                             : 8944.867
  ARIMA(0,0,2)(0,0,1)[12] with non-zero mean: 8945.826
##
   ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                             : 8945.328
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 8946.473
                                             : 8944.859
  ARIMA(0,0,2)(1,0,0)[12] with zero mean
  ARIMA(0,0,2)(1,0,0)[12] with non-zero mean: 8945.821
##
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,2)(1,0,2)[12] with zero mean
##
  ARIMA(0,0,2)(1,0,2)[12] with non-zero mean : Inf
##
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                             : 8945.189
   ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 8946.368
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
## ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)
                           with zero mean
## ARIMA(0,0,3)
                           with non-zero mean : Inf
  ARIMA(0,0,3)(0,0,1)[12] with zero mean
##
  ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : Inf
   ARIMA(0,0,3)(0,0,2)[12] with zero mean
##
   ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : Inf
  ARIMA(0,0,3)(1,0,0)[12] with zero mean
## ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(1,0,1)[12] with zero mean
##
  ARIMA(0,0,3)(1,0,1)[12] with non-zero mean : Inf
  ARIMA(0,0,3)(2,0,0)[12] with zero mean
## ARIMA(0,0,3)(2,0,0)[12] with non-zero mean : Inf
## ARIMA(0,0,4)
                           with zero mean
## ARIMA(0,0,4)
                           with non-zero mean : Inf
## ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                             : Inf
## ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : Inf
```

```
ARIMA(0,0,4)(1,0,0)[12] with zero mean
   ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(0,0,5)
                           with zero mean
## ARIMA(0,0,5)
                           with non-zero mean : Inf
   ARIMA(1,0,0)
                           with zero mean
                                             : 8977.801
## ARIMA(1,0,0)
                           with non-zero mean: 8977.63
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                            : 8979.688
## ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 8979.616
   ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                            : 8979.551
##
   ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 8979.907
  ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                             : 8979.666
##
   ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 8979.608
   ARIMA(1,0,0)(1,0,1)[12] with zero mean
##
  ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
##
   ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                             : 8979.476
  ARIMA(1,0,0)(2,0,0)[12] with non-zero mean: 8979.9
## ARIMA(1,0,0)(2,0,1)[12] with zero mean
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,1)
                           with zero mean
                                              : 8977.402
                           with non-zero mean: 8977.506
##
   ARIMA(1.0.1)
## ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                             : 8979.307
  ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 8979.5
##
   ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                             : 8979.282
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 8979.843
                                             : 8979.285
  ARIMA(1,0,1)(1,0,0)[12] with zero mean
## ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 8979.491
##
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : Inf
##
  ARIMA(1,0,1)(1,0,2)[12] with zero mean
## ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : Inf
   ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                             : 8979.207
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 8979.826
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
## ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
##
   ARIMA(1,0,2)
                           with zero mean
## ARIMA(1,0,2)
                           with non-zero mean : Inf
  ARIMA(1,0,2)(0,0,1)[12] with zero mean
## ARIMA(1,0,2)(0,0,1)[12] with non-zero mean : Inf
   ARIMA(1,0,2)(0,0,2)[12] with zero mean
## ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
## ARIMA(1,0,2)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(1,0,2)(1,0,1)[12] with zero mean
## ARIMA(1,0,2)(1,0,1)[12] with non-zero mean : Inf
  ARIMA(1,0,2)(2,0,0)[12] with zero mean
## ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : Inf
## ARIMA(1,0,3)
                           with zero mean
## ARIMA(1,0,3)
                           with non-zero mean : Inf
## ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                             : Inf
## ARIMA(1,0,3)(0,0,1)[12] with non-zero mean : Inf
```

```
ARIMA(1,0,3)(1,0,0)[12] with zero mean
##
   ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : Inf
  ARIMA(1,0,4)
                           with zero mean
## ARIMA(1,0,4)
                           with non-zero mean : Inf
   ARIMA(2,0,0)
                           with zero mean
                                             : 8966.14
## ARIMA(2,0,0)
                           with non-zero mean: 8966.72
  ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                            : 8968.055
## ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 8968.707
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                            : 8969.114
##
   ARIMA(2,0,0)(0,0,2)[12] with non-zero mean: 8969.96
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                             : 8968.042
##
   ARIMA(2,0,0)(1,0,0)[12] with non-zero mean: 8968.7
   ARIMA(2,0,0)(1,0,1)[12] with zero mean
##
   ARIMA(2,0,0)(1,0,1)[12] with non-zero mean: Inf
  ARIMA(2,0,0)(1,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(2,0,0)(1,0,2)[12] with non-zero mean: Inf
##
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                             : 8969.056
##
  ARIMA(2,0,0)(2,0,0)[12] with non-zero mean: 8969.933
  ARIMA(2,0,0)(2,0,1)[12] with zero mean
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean: Inf
##
   ARIMA(2,0,1)
                           with zero mean
                                              : 8944.788
## ARIMA(2,0,1)
                           with non-zero mean: 8945.308
## ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                             : 8946.843
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 8947.376
## ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                             : 8948.486
  ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 8949.16
##
   ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 8946.843
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 8947.376
  ARIMA(2,0,1)(1,0,1)[12] with zero mean
## ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : Inf
##
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                             : 8948.465
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean: 8949.157
##
   ARIMA(2,0,2)
                           with zero mean
##
  ARIMA(2,0,2)
                           with non-zero mean : Inf
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(2,0,3)
                           with zero mean
## ARIMA(2,0,3)
                           with non-zero mean : Inf
  ARIMA(3,0,0)
                           with zero mean
                                           : 8917.821
##
  ARIMA(3,0,0)
                           with non-zero mean: 8916.455
   ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                              : 8919.816
##
   ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 8918.525
  ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                              : 8921.288
   ARIMA(3,0,0)(0,0,2)[12] with non-zero mean: 8920.308
##
##
   ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                             : 8919.811
##
  ARIMA(3,0,0)(1,0,0)[12] with non-zero mean: 8918.525
  ARIMA(3,0,0)(1,0,1)[12] with zero mean
##
   ARIMA(3,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                              : 8921.203
## ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 8920.283
## ARIMA(3,0,1)
                           with zero mean
                                             : 8919.843
## ARIMA(3,0,1)
                           with non-zero mean: 8918.29
```

```
ARIMA(3,0,1)(0,0,1)[12] with zero mean
## ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 8920.359
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                           : 8921.823
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 8920.358
## ARIMA(3,0,2)
                           with zero mean
                                            : Inf
## ARIMA(3,0,2)
                           with non-zero mean: 8916.858
## ARIMA(4.0.0)
                           with zero mean
                                           : 8919.853
## ARIMA(4,0,0)
                           with non-zero mean: 8918.382
##
   ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 8921.846
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean: 8920.459
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                            : 8921.839
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean: 8920.458
##
  ARIMA(4,0,1)
                           with zero mean
                                             : Inf
##
  ARIMA(4,0,1)
                           with non-zero mean : Inf
##
  ARIMA(5,0,0)
                                            : 8921.37
                           with zero mean
##
   ARIMA(5,0,0)
                           with non-zero mean: 8919.473
##
##
##
## Best model: ARIMA(3,0,0)
                                       with non-zero mean
fit_arima_kc_t <- auto.arima(kc_terraced_ts_diff, stepwise = FALSE,</pre>
                         approximation = FALSE, trace = TRUE)
##
```

```
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 8694.927
  ARIMA(0,0,0)
                           with non-zero mean: 8693.957
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
                                           : 8696.851
##
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean: 8695.977
  ARIMA(0,0,0)(0,0,2)[12] with zero mean
  ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 8697.318
   ARIMA(0,0,0)(1,0,0)[12] with zero mean
## ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 8695.975
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
## ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                           : 8697.803
## ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 8697.324
## ARIMA(0,0,0)(2,0,1)[12] with zero mean
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,2)[12] with zero mean
                                            : Inf
   ARIMA(0,0,0)(2,0,2)[12] with non-zero mean: Inf
##
##
   ARIMA(0,0,1)
                           with zero mean
                                            8692.283
##
  ARIMA(0,0,1)
                           with non-zero mean: 8691.78
  ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                            : 8694.222
   ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 8693.805
## ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                            : 8694.321
## ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 8694.323
## ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                            : 8694.209
## ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 8693.802
## ARIMA(0,0,1)(1,0,1)[12] with zero mean
## ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,1)(1,0,2)[12] with zero mean
```

```
ARIMA(0,0,1)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                           : 8694.219
## ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 8694.316
## ARIMA(0,0,1)(2,0,1)[12] with zero mean
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,1)(2,0,2)[12] with zero mean
## ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)
                           with zero mean
                                             : 8655.682
##
   ARIMA(0,0,2)
                           with non-zero mean: 8656.548
##
   ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                           : 8657.714
  ARIMA(0,0,2)(0,0,1)[12] with non-zero mean: 8658.604
##
   ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                            : 8657.84
   ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 8658.942
##
                                            : 8657.712
  ARIMA(0,0,2)(1,0,0)[12] with zero mean
  ARIMA(0,0,2)(1,0,0)[12] with non-zero mean: 8658.603
##
   ARIMA(0,0,2)(1,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,2)(1,0,2)[12] with zero mean
## ARIMA(0,0,2)(1,0,2)[12] with non-zero mean : Inf
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
                                            : 8657.647
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 8658.796
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
## ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : Inf
##
                           with zero mean
   ARIMA(0.0.3)
## ARIMA(0,0,3)
                           with non-zero mean : Inf
  ARIMA(0,0,3)(0,0,1)[12] with zero mean
##
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean: Inf
   ARIMA(0,0,3)(0,0,2)[12] with zero mean
  ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,3)(1,0,0)[12] with zero mean
##
   ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(1,0,1)[12] with zero mean
##
   ARIMA(0,0,3)(1,0,1)[12] with non-zero mean: Inf
## ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,3)(2,0,0)[12] with non-zero mean: Inf
## ARIMA(0,0,4)
                           with zero mean
## ARIMA(0,0,4)
                           with non-zero mean : Inf
## ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,4)(0,0,1)[12] with non-zero mean: Inf
## ARIMA(0,0,4)(1,0,0)[12] with zero mean
  ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(0,0,5)
                           with zero mean
                                             : Inf
                           with non-zero mean : Inf
## ARIMA(0.0.5)
## ARIMA(1,0,0)
                           with zero mean
                                            : 8689.976
## ARIMA(1,0,0)
                           with non-zero mean: 8689.755
## ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                            : 8691.923
##
   ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 8691.778
##
  ARIMA(1,0,0)(0,0,2)[12] with zero mean
                                            : 8691.523
## ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 8691.828
## ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                            : 8691.909
## ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 8691.774
## ARIMA(1,0,0)(1,0,1)[12] with zero mean
## ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(1,0,2)[12] with zero mean
```

```
ARIMA(1,0,0)(1,0,2)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                           : 8691.395
## ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : 8691.797
## ARIMA(1,0,0)(2,0,1)[12] with zero mean
   ARIMA(1,0,0)(2,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,1)
                           with zero mean
                                             : 8689.323
##
   ARIMA(1,0,1)
                           with non-zero mean: 8689.407
##
   ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                           : 8691.298
  ARIMA(1,0,1)(0,0,1)[12] with non-zero mean: 8691.444
##
  ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                            : 8691.028
   ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 8691.554
##
  ARIMA(1,0,1)(1,0,0)[12] with zero mean
                                            : 8691.287
## ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 8691.441
##
   ARIMA(1,0,1)(1,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,1)(1,0,2)[12] with zero mean
## ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : Inf
   ARIMA(1,0,1)(2,0,0)[12] with zero mean
                                            : 8690.909
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 8691.516
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
## ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
                           with zero mean
##
   ARIMA(1.0.2)
## ARIMA(1,0,2)
                           with non-zero mean : Inf
  ARIMA(1,0,2)(0,0,1)[12] with zero mean
##
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean: Inf
   ARIMA(1,0,2)(0,0,2)[12] with zero mean
## ARIMA(1,0,2)(0,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(1,0,0)[12] with zero mean
##
   ARIMA(1,0,2)(1,0,0)[12] with non-zero mean: Inf
##
   ARIMA(1,0,2)(1,0,1)[12] with zero mean
##
  ARIMA(1,0,2)(1,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                             : Inf
## ARIMA(1,0,2)(2,0,0)[12] with non-zero mean : Inf
## ARIMA(1,0,3)
                           with zero mean
## ARIMA(1,0,3)
                           with non-zero mean : Inf
## ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,3)(0,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,3)(1,0,0)[12] with zero mean
## ARIMA(1,0,3)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(1,0,4)
                           with zero mean
                                             : Inf
                           with non-zero mean : Inf
## ARIMA(1.0.4)
## ARIMA(2,0,0)
                           with zero mean
                                             : 8676.246
## ARIMA(2,0,0)
                           with non-zero mean: 8676.836
## ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                            : 8678.268
##
   ARIMA(2,0,0)(0,0,1)[12] with non-zero mean: 8678.89
##
  ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                            : 8679.37
## ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 8680.179
## ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                            : 8678.265
## ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 8678.89
## ARIMA(2,0,0)(1,0,1)[12] with zero mean
## ARIMA(2,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,0)(1,0,2)[12] with zero mean
```

```
ARIMA(2,0,0)(1,0,2)[12] with non-zero mean: Inf
   ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                            : 8679.316
## ARIMA(2,0,0)(2,0,0)[12] with non-zero mean : 8680.16
## ARIMA(2,0,0)(2,0,1)[12] with zero mean
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean : Inf
##
                           with zero mean
                                              : 8655.741
  ARIMA(2,0,1)
  ARIMA(2.0.1)
                           with non-zero mean: 8656.252
## ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                             : 8657.78
   ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 8658.263
##
   ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                            : 8659.398
  ARIMA(2,0,1)(0,0,2)[12] with non-zero mean: 8660.025
##
   ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                             : 8657.779
   ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 8658.259
##
  ARIMA(2,0,1)(1,0,1)[12] with zero mean
  ARIMA(2,0,1)(1,0,1)[12] with non-zero mean: 8660.312
##
   ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                             : 8659.398
##
   ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 8660.044
## ARIMA(2,0,2)
                           with zero mean
## ARIMA(2,0,2)
                           with non-zero mean : Inf
##
   ARIMA(2,0,2)(0,0,1)[12] with zero mean
##
   ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(2.0.3)
                           with zero mean
## ARIMA(2,0,3)
                           with non-zero mean : Inf
  ARIMA(3,0,0)
                           with zero mean
                                            : 8630.979
##
                           with non-zero mean: 8629.743
   ARIMA(3,0,0)
   ARIMA(3,0,0)(0,0,1)[12] with zero mean
                                             : 8633.02
  ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 8631.808
  ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                             : 8634.268
##
   ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 8633.4
##
   ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                             : 8633.019
##
   ARIMA(3,0,0)(1,0,0)[12] with non-zero mean: 8631.807
##
  ARIMA(3,0,0)(1,0,1)[12] with zero mean
                                             : Inf
   ARIMA(3,0,0)(1,0,1)[12] with non-zero mean: Inf
   ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                              : 8634.144
  ARIMA(3,0,0)(2,0,0)[12] with non-zero mean: 8633.359
## ARIMA(3,0,1)
                           with zero mean
                                              : 8632.835
##
   ARIMA(3,0,1)
                           with non-zero mean: 8631.069
##
   ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                             : 8634.854
  ARIMA(3,0,1)(0,0,1)[12] with non-zero mean: 8633.136
##
  ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                             : 8634.848
   ARIMA(3,0,1)(1,0,0)[12] with non-zero mean: 8633.136
##
                                              : 8632.699
  ARIMA(3,0,2)
                           with zero mean
  ARIMA(3,0,2)
                           with non-zero mean: 8629.314
## ARIMA(4,0,0)
                                             : 8632.909
                           with zero mean
##
   ARIMA(4,0,0)
                           with non-zero mean: 8631.492
##
  ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                             : 8634.945
  ARIMA(4,0,0)(0,0,1)[12] with non-zero mean: 8633.575
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                             : 8634.942
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean : 8633.575
## ARIMA(4,0,1)
                           with zero mean
                                             : Inf
## ARIMA(4,0,1)
                           with non-zero mean: 8629.721
## ARIMA(5,0,0)
                           with zero mean
                                           : 8634.198
```

```
ARIMA(5,0,0)
                         with non-zero mean: 8632.287
##
##
##
##
  Best model: ARIMA(3,0,2)
                                       with non-zero mean
fit_arima_kc_f <- auto.arima(kc_flat_ts_diff, stepwise = FALSE,</pre>
                         approximation = FALSE, trace = TRUE)
##
##
   ARIMA(0,0,0)
                           with zero mean
                                              : 8119.486
##
  ARIMA(0,0,0)
                           with non-zero mean: 8118.385
                                           : 8121.491
   ARIMA(0,0,0)(0,0,1)[12] with zero mean
##
   ARIMA(0,0,0)(0,0,1)[12] with non-zero mean : 8120.416
  ARIMA(0,0,0)(0,0,2)[12] with zero mean
                                           : 8122.475
## ARIMA(0,0,0)(0,0,2)[12] with non-zero mean : 8121.749
   ARIMA(0,0,0)(1,0,0)[12] with zero mean
                                           : 8121.489
## ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : 8120.416
## ARIMA(0,0,0)(1,0,1)[12] with zero mean
## ARIMA(0,0,0)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(1,0,2)[12] with zero mean
## ARIMA(0,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,0)[12] with zero mean
                                            : 8122.518
## ARIMA(0,0,0)(2,0,0)[12] with non-zero mean : 8121.827
                                             : Inf
## ARIMA(0,0,0)(2,0,1)[12] with zero mean
## ARIMA(0,0,0)(2,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,0)(2,0,2)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,0)(2,0,2)[12] with non-zero mean: Inf
##
                           with zero mean
   ARIMA(0,0,1)
                                           : 8118.6
##
  ARIMA(0,0,1)
                           with non-zero mean: 8117.9
## ARIMA(0,0,1)(0,0,1)[12] with zero mean
                                            : 8120.634
   ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : 8119.928
## ARIMA(0,0,1)(0,0,2)[12] with zero mean
                                            : 8120.916
## ARIMA(0,0,1)(0,0,2)[12] with non-zero mean : 8120.651
## ARIMA(0,0,1)(1,0,0)[12] with zero mean
                                            : 8120.634
##
   ARIMA(0,0,1)(1,0,0)[12] with non-zero mean : 8119.926
## ARIMA(0,0,1)(1,0,1)[12] with zero mean
## ARIMA(0,0,1)(1,0,1)[12] with non-zero mean : 8121.916
## ARIMA(0,0,1)(1,0,2)[12] with zero mean
## ARIMA(0,0,1)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,1)(2,0,0)[12] with zero mean
                                            : 8121.031
## ARIMA(0,0,1)(2,0,0)[12] with non-zero mean : 8120.8
## ARIMA(0,0,1)(2,0,1)[12] with zero mean
                                            : Inf
##
   ARIMA(0,0,1)(2,0,1)[12] with non-zero mean: Inf
  ARIMA(0,0,1)(2,0,2)[12] with zero mean
  ARIMA(0,0,1)(2,0,2)[12] with non-zero mean : Inf
## ARIMA(0,0,2)
                           with zero mean
                                             : 8084.096
                           with non-zero mean: 8084.911
## ARIMA(0,0,2)
## ARIMA(0,0,2)(0,0,1)[12] with zero mean
                                            : 8086.057
## ARIMA(0,0,2)(0,0,1)[12] with non-zero mean : 8086.843
## ARIMA(0,0,2)(0,0,2)[12] with zero mean
                                           : 8086.034
## ARIMA(0,0,2)(0,0,2)[12] with non-zero mean : 8087.058
## ARIMA(0,0,2)(1,0,0)[12] with zero mean
                                           : 8086.043
## ARIMA(0,0,2)(1,0,0)[12] with non-zero mean : 8086.824
```

```
ARIMA(0,0,2)(1,0,1)[12] with zero mean
                                             : 8087.724
## ARIMA(0,0,2)(1,0,1)[12] with non-zero mean : 8088.523
## ARIMA(0,0,2)(1,0,2)[12] with zero mean
## ARIMA(0,0,2)(1,0,2)[12] with non-zero mean : Inf
   ARIMA(0,0,2)(2,0,0)[12] with zero mean
## ARIMA(0,0,2)(2,0,0)[12] with non-zero mean : 8087.046
## ARIMA(0,0,2)(2,0,1)[12] with zero mean
## ARIMA(0,0,2)(2,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)
                           with zero mean
##
   ARIMA(0,0,3)
                           with non-zero mean : Inf
  ARIMA(0,0,3)(0,0,1)[12] with zero mean
   ARIMA(0,0,3)(0,0,1)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(0,0,2)[12] with zero mean
##
  ARIMA(0,0,3)(0,0,2)[12] with non-zero mean : Inf
  ARIMA(0,0,3)(1,0,0)[12] with zero mean
                                             : Inf
##
   ARIMA(0,0,3)(1,0,0)[12] with non-zero mean : Inf
##
   ARIMA(0,0,3)(1,0,1)[12] with zero mean
## ARIMA(0,0,3)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,3)(2,0,0)[12] with zero mean
                                             : Inf
## ARIMA(0,0,3)(2,0,0)[12] with non-zero mean : Inf
## ARIMA(0,0,4)
                           with zero mean
## ARIMA(0,0,4)
                           with non-zero mean : Inf
## ARIMA(0,0,4)(0,0,1)[12] with zero mean
                                             : Inf
   ARIMA(0,0,4)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(0,0,4)(1,0,0)[12] with zero mean
  ARIMA(0,0,4)(1,0,0)[12] with non-zero mean : Inf
##
                           with zero mean
                                             : Inf
  ARIMA(0,0,5)
## ARIMA(0,0,5)
                           with non-zero mean : Inf
## ARIMA(1,0,0)
                           with zero mean
                                             : 8117.231
## ARIMA(1,0,0)
                           with non-zero mean: 8116.751
##
   ARIMA(1,0,0)(0,0,1)[12] with zero mean
                                             : 8119.265
##
   ARIMA(1,0,0)(0,0,1)[12] with non-zero mean : 8118.767
##
  ARIMA(1,0,0)(0,0,2)[12] with zero mean
## ARIMA(1,0,0)(0,0,2)[12] with non-zero mean : 8119.162
   ARIMA(1,0,0)(1,0,0)[12] with zero mean
                                             : 8119.265
## ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : 8118.764
## ARIMA(1,0,0)(1,0,1)[12] with zero mean
## ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : 8120.719
   ARIMA(1,0,0)(1,0,2)[12] with zero mean
## ARIMA(1,0,0)(1,0,2)[12] with non-zero mean : Inf
## ARIMA(1,0,0)(2,0,0)[12] with zero mean
                                           : 8119.327
## ARIMA(1,0,0)(2,0,0)[12] with non-zero mean: 8119.339
   ARIMA(1,0,0)(2,0,1)[12] with zero mean
## ARIMA(1,0,0)(2,0,1)[12] with non-zero mean : Inf
  ARIMA(1,0,0)(2,0,2)[12] with zero mean
## ARIMA(1,0,0)(2,0,2)[12] with non-zero mean : Inf
##
   ARIMA(1,0,1)
                           with zero mean
                                             : 8117.208
##
  ARIMA(1,0,1)
                           with non-zero mean: 8117.013
  ARIMA(1,0,1)(0,0,1)[12] with zero mean
                                             : 8119.252
## ARIMA(1,0,1)(0,0,1)[12] with non-zero mean : 8119.038
## ARIMA(1,0,1)(0,0,2)[12] with zero mean
                                              : 8119.211
## ARIMA(1,0,1)(0,0,2)[12] with non-zero mean : 8119.42
## ARIMA(1,0,1)(1,0,0)[12] with zero mean
                                             : 8119.251
## ARIMA(1,0,1)(1,0,0)[12] with non-zero mean: 8119.034
```

```
ARIMA(1,0,1)(1,0,1)[12] with zero mean
## ARIMA(1,0,1)(1,0,1)[12] with non-zero mean : 8120.988
## ARIMA(1,0,1)(1,0,2)[12] with zero mean
## ARIMA(1,0,1)(1,0,2)[12] with non-zero mean : Inf
   ARIMA(1,0,1)(2,0,0)[12] with zero mean
## ARIMA(1,0,1)(2,0,0)[12] with non-zero mean : 8119.588
## ARIMA(1,0,1)(2,0,1)[12] with zero mean
                                             : Inf
## ARIMA(1,0,1)(2,0,1)[12] with non-zero mean : Inf
##
   ARIMA(1,0,2)
                           with zero mean
##
   ARIMA(1,0,2)
                           with non-zero mean : Inf
  ARIMA(1,0,2)(0,0,1)[12] with zero mean
##
   ARIMA(1,0,2)(0,0,1)[12] with non-zero mean: Inf
   ARIMA(1,0,2)(0,0,2)[12] with zero mean
##
  ARIMA(1,0,2)(0,0,2)[12] with non-zero mean: Inf
  ARIMA(1,0,2)(1,0,0)[12] with zero mean
                                             : Inf
##
   ARIMA(1,0,2)(1,0,0)[12] with non-zero mean: Inf
##
   ARIMA(1,0,2)(1,0,1)[12] with zero mean
## ARIMA(1,0,2)(1,0,1)[12] with non-zero mean : Inf
## ARIMA(1,0,2)(2,0,0)[12] with zero mean
                                             : Inf
   ARIMA(1,0,2)(2,0,0)[12] with non-zero mean: Inf
## ARIMA(1,0,3)
                           with zero mean
## ARIMA(1,0,3)
                           with non-zero mean : Inf
## ARIMA(1,0,3)(0,0,1)[12] with zero mean
                                             : Inf
   ARIMA(1,0,3)(0,0,1)[12] with non-zero mean: Inf
## ARIMA(1,0,3)(1,0,0)[12] with zero mean
  ARIMA(1,0,3)(1,0,0)[12] with non-zero mean: Inf
##
                           with zero mean
                                             : Inf
  ARIMA(1,0,4)
##
   ARIMA(1,0,4)
                           with non-zero mean : Inf
##
                                              : 8104.179
  ARIMA(2,0,0)
                           with zero mean
## ARIMA(2,0,0)
                           with non-zero mean: 8104.561
##
   ARIMA(2,0,0)(0,0,1)[12] with zero mean
                                             : 8106.226
##
   ARIMA(2,0,0)(0,0,1)[12] with non-zero mean : 8106.609
##
   ARIMA(2,0,0)(0,0,2)[12] with zero mean
                                            : 8107.405
## ARIMA(2,0,0)(0,0,2)[12] with non-zero mean : 8107.993
##
   ARIMA(2,0,0)(1,0,0)[12] with zero mean
                                             : 8106.226
## ARIMA(2,0,0)(1,0,0)[12] with non-zero mean : 8106.608
## ARIMA(2,0,0)(1,0,1)[12] with zero mean
## ARIMA(2,0,0)(1,0,1)[12] with non-zero mean : 8108.643
   ARIMA(2,0,0)(1,0,2)[12] with zero mean
## ARIMA(2,0,0)(1,0,2)[12] with non-zero mean : Inf
  ARIMA(2,0,0)(2,0,0)[12] with zero mean
                                           : 8107.436
## ARIMA(2,0,0)(2,0,0)[12] with non-zero mean : 8108.037
   ARIMA(2,0,0)(2,0,1)[12] with zero mean
                                              : Inf
##
   ARIMA(2,0,0)(2,0,1)[12] with non-zero mean: Inf
  ARIMA(2,0,1)
                           with zero mean
                                              : 8081.201
##
   ARIMA(2,0,1)
                           with non-zero mean: 8081.516
##
   ARIMA(2,0,1)(0,0,1)[12] with zero mean
                                              : 8083.074
##
  ARIMA(2,0,1)(0,0,1)[12] with non-zero mean : 8083.296
  ARIMA(2,0,1)(0,0,2)[12] with zero mean
                                             : 8084.773
## ARIMA(2,0,1)(0,0,2)[12] with non-zero mean : 8085.142
## ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                              : 8083.062
## ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : 8083.281
## ARIMA(2,0,1)(1,0,1)[12] with zero mean
                                             : 8085.068
## ARIMA(2,0,1)(1,0,1)[12] with non-zero mean : 8085.321
```

```
ARIMA(2,0,1)(2,0,0)[12] with zero mean
                                            : 8084.812
## ARIMA(2,0,1)(2,0,0)[12] with non-zero mean : 8085.18
## ARIMA(2,0,2)
                           with zero mean
## ARIMA(2,0,2)
                           with non-zero mean : Inf
## ARIMA(2,0,2)(0,0,1)[12] with zero mean
## ARIMA(2,0,2)(0,0,1)[12] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,0)[12] with zero mean
## ARIMA(2,0,2)(1,0,0)[12] with non-zero mean : Inf
## ARIMA(2,0,3)
                           with zero mean
## ARIMA(2,0,3)
                           with non-zero mean : Inf
## ARIMA(3,0,0)
                           with zero mean
                                           : 8053.053
## ARIMA(3,0,0)
                           with non-zero mean: 8051.258
                                            : 8055.042
## ARIMA(3,0,0)(0,0,1)[12] with zero mean
## ARIMA(3,0,0)(0,0,1)[12] with non-zero mean : 8053.077
## ARIMA(3,0,0)(0,0,2)[12] with zero mean
                                            : 8056.343
## ARIMA(3,0,0)(0,0,2)[12] with non-zero mean : 8054.766
## ARIMA(3,0,0)(1,0,0)[12] with zero mean
                                           : 8055.035
## ARIMA(3,0,0)(1,0,0)[12] with non-zero mean : 8053.06
## ARIMA(3,0,0)(1,0,1)[12] with zero mean
                                           : 8056.953
## ARIMA(3,0,0)(1,0,1)[12] with non-zero mean: 8055.028
## ARIMA(3,0,0)(2,0,0)[12] with zero mean
                                           : 8056.313
## ARIMA(3,0,0)(2,0,0)[12] with non-zero mean : 8054.779
## ARIMA(3,0,1)
                           with zero mean
                                            : 8055.098
                           with non-zero mean: 8053.155
## ARIMA(3.0.1)
## ARIMA(3,0,1)(0,0,1)[12] with zero mean
                                            : 8057.109
## ARIMA(3,0,1)(0,0,1)[12] with non-zero mean : 8055.059
## ARIMA(3,0,1)(1,0,0)[12] with zero mean
                                           : 8057.103
## ARIMA(3,0,1)(1,0,0)[12] with non-zero mean : 8055.045
## ARIMA(3,0,2)
                           with zero mean
                                            : Inf
## ARIMA(3,0,2)
                           with non-zero mean: 8051.717
## ARIMA(4,0,0)
                           with zero mean
                                           : 8055.101
## ARIMA(4,0,0)
                           with non-zero mean: 8053.218
## ARIMA(4,0,0)(0,0,1)[12] with zero mean
                                           : 8057.11
## ARIMA(4,0,0)(0,0,1)[12] with non-zero mean : 8055.094
## ARIMA(4,0,0)(1,0,0)[12] with zero mean
                                           : 8057.103
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean : 8055.08
## ARIMA(4,0,1)
                           with zero mean
## ARIMA(4,0,1)
                           with non-zero mean : Inf
##
   ARIMA(5,0,0)
                           with zero mean : 8056.652
##
   ARIMA(5,0,0)
                          with non-zero mean: 8054.335
##
##
##
   Best model: ARIMA(3,0,0)
                                       with non-zero mean
# Forecast using the ARIMA model for each property type
# In Kensington and Chelsea Area
forecasted_values_arima_kc_d <- forecast(fit_arima_kc_d, h = 18)</pre>
forecasted_values_arima_kc_sd <- forecast(fit_arima_kc_sd, h = 18)</pre>
forecasted_values_arima_kc_t <- forecast(fit_arima_kc_t, h = 18)</pre>
forecasted_values_arima_kc_f <- forecast(fit_arima_kc_f, h = 18)</pre>
# Plot the differenced forecast value for each property type
# In Kensington and Chelsea
```

```
plot(forecasted_values_arima_kc_d,
    main = "K&C Differenced Detached Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

K&C Differenced Detached Average Price Forecast


```
plot(forecasted_values_arima_kc_sd,
    main = "K&C Differenced Semi-Detached Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

K&C Differenced Semi-Detached Average Price Forecast


```
plot(forecasted_values_arima_kc_t,
    main = "K&C Differenced Terraced Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

K&C Differenced Terraced Average Price Forecast


```
plot(forecasted_values_arima_kc_f,
    main = "K&C Croydon Flat Average Price Forecast",
    ylab = "Firstly Differenced Price", xlab = "Year")
```

K&C Croydon Flat Average Price Forecast


```
# Summary of the model for four different type of properties
# In Kensington and Chelsea
# For Detached of Kensington and Chelsea Area
print(forecasted_values_arima_kc_d)
```

```
##
            Point Forecast
                                Lo 80
                                         Hi 80
                                                    Lo 95
                                                             Hi 95
                            -53345.94 148345.4 -106730.4 201729.9
## Apr 2024
                47499.7497
                            -90773.59 113739.2 -144904.9 167870.5
## May 2024
                11482.8000
  Jun 2024
                48691.5231
                            -57530.56 154913.6 -113761.1 211144.2
  Jul 2024
                  593.1166 -109537.04 110723.3 -167836.4 169022.7
                           -94456.80 125942.5 -152793.0 184278.7
  Aug 2024
                15742.8616
## Sep 2024
                -8187.4323 -120019.04 103644.2 -179219.1 162844.3
## Oct 2024
                 9933.6240 -102106.32 121973.6 -161416.7 181283.9
## Nov 2024
                 1079.6126 -110983.14 113142.4 -170305.6 172464.8
                           -99064.87 125719.0 -158561.6 185215.7
## Dec 2024
                13327.0818
## Jan 2025
                 6233.9650 -106171.28 118639.2 -165675.0 178143.0
## Feb 2025
                11548.9503 -100890.57 123988.5 -160412.5 183510.4
## Mar 2025
                 5972.6968 -106513.46 118458.9 -166060.0 178005.4
## Apr 2025
                 9093.0255 -103396.16 121582.2 -162944.3 181130.4
## May 2025
                 6167.8330 -106334.92 118670.6 -165890.3 178225.9
                 8593.8331 -103914.77 121102.4 -163473.2 180660.9
## Jun 2025
## Jul 2025
                 7065.7808 -105444.26 119575.8 -165003.5 179135.0
## Aug 2025
                 8542.2639 -103971.08 121055.6 -163532.0 180616.6
                 7477.2099 -105036.98 119991.4 -164598.4 179552.8
## Sep 2025
```

```
summary(fit_arima_kc_d)
## Series: kc_detached_ts_diff
## ARIMA(3,0,0) with non-zero mean
##
## Coefficients:
##
            ar1
                    ar2
                             ar3
                                      mean
##
         0.1678 0.2570 -0.3793
                                 7844.422
## s.e. 0.0493 0.0482
                          0.0495 4387.469
## sigma^2 = 6.192e+09: log likelihood = -4440.55
## AIC=8891.11
                AICc=8891.28
                              BIC=8910.4
##
## Training set error measures:
##
                       ME
                              RMSE
                                        MAE
                                                 MPE
                                                         MAPE
                                                                   MASE
## Training set -20.21112 78239.36 52211.78 102.1582 273.3586 0.6253291
##
## Training set -0.001850832
# For Semi-Detached of Kensington and Chelsea Area
print(forecasted_values_arima_kc_sd)
##
            Point Forecast
                                Lo 80
                                         Hi 80
                                                   Lo 95
                51062.8851 -53481.01 155606.8 -108823.2 210949.0
## Apr 2024
## May 2024
                15350.4654 -91019.83 121720.8 -147328.9 178029.8
## Jun 2024
                41979.2391 -68037.14 151995.6 -126276.3 210234.8
## Jul 2024
                  584.2136 -113219.96 114388.4 -173464.2 174632.7
## Aug 2024
                12341.5417 -101632.81 126315.9 -161967.2 186650.3
## Sep 2024
                -5040.6344 -120496.48 110415.2 -181615.1 171533.8
## Oct 2024
                 9871.7062 -105736.81 125480.2 -166936.3 186679.7
## Nov 2024
                 4230.9202 -111380.86 119842.7 -172582.0 181043.9
## Dec 2024
                13132.6068 -102762.31 129027.5 -164113.4 190378.6
## Jan 2025
                 7928.0806 -107970.30 123826.5 -169323.2 185179.4
## Feb 2025
                11131.6776 -104784.75 127048.1 -166147.2 188410.6
## Mar 2025
                 7199.8734 -108751.42 123151.2 -170132.3 184532.1
## Apr 2025
                 9149.6705 -106801.96 125101.3 -168183.0 186482.4
## May 2025
                 7403.6895 -108556.08 123363.5 -169941.5 184748.9
## Jun 2025
                 8996.7315 -106966.28 124959.7 -168353.4 186346.8
## Jul 2025
                 8161.4006 -107801.90 124124.7 -169189.2 185512.0
## Aug 2025
                 9027.3040 -106937.91 124992.5 -168326.2 186380.8
## Sep 2025
                 8401.0256 -107564.48 124366.5 -168952.9 185755.0
summary(fit_arima_kc_sd)
## Series: kc_semi_detached_ts_diff
## ARIMA(3,0,0) with non-zero mean
##
## Coefficients:
##
            ar1
                    ar2
                             ar3
                                      mean
##
         0.1877 0.2334 -0.3728 8569.609
## s.e. 0.0494 0.0488
                          0.0496
                                 4562.365
```

##

```
## sigma^2 = 6.655e+09: log likelihood = -4453.14
## AIC=8916.28 AICc=8916.46 BIC=8935.57
##
## Training set error measures:
                      ME
                            RMSE
                                      MAE
                                               MPE
                                                       MAPE
## Training set -22.77273 81108.55 53360.84 63.16122 146.3736 0.6265387
## Training set -0.006765575
# For Terraced of Kensington and Chelsea Area
print(forecasted_values_arima_kc_t)
           Point Forecast
                             Lo 80
                                       Hi 80
                                                  Lo 95
                                                           Hi 95
## Apr 2024
              54101.53089 -15048.90 123251.96 -51654.92 159858.0
## May 2024
              31063.92607 -38765.72 100893.57 -75731.30 137859.2
## Jun 2024
              56071.81721 -15779.23 127922.86 -53814.87 165958.5
## Jul 2024
              16641.89395 -57682.77 90966.56 -97027.87 130311.7
## Aug 2024
              18159.10921 -56455.85 92774.07 -95954.62 132272.8
## Sep 2024
              -6567.95853 -83170.01 70034.10 -123720.69 110584.8
                 87.44254 -76538.38 76713.26 -117101.64 117276.5
## Oct 2024
## Nov 2024
              -6668.37617 -83417.95 70081.20 -124046.72 110710.0
## Dec 2024
               3536.71145 -73369.69 80443.12 -114081.48 121154.9
               ## Jan 2025
## Feb 2025
               9077.92631 -67965.08 86120.94 -108749.19 126905.0
## Mar 2025
               7179.34990 -69864.43 84223.13 -110648.94 125007.6
## Apr 2025
               9004.54846 -68047.45 86056.55 -108836.31 126845.4
## May 2025
               6358.93581 -70703.51 83421.38 -111497.90 124215.8
               6668.91909 -70394.14 83731.98 -111188.85 124526.7
## Jun 2025
## Jul 2025
               5039.13844 -72031.71 82109.99 -112830.55 122908.8
## Aug 2025
               5575.37902 -71495.48 82646.24 -112294.34 123445.1
               5082.28607 -71989.13 82153.70 -112788.27 122952.8
## Sep 2025
summary(fit_arima_kc_t)
## Series: kc_terraced_ts_diff
## ARIMA(3,0,2) with non-zero mean
##
## Coefficients:
##
           ar1
                   ar2
                            ar3
                                             ma2
                                    ma1
                                                      mean
##
        0.4497 0.3675 -0.4367
                                -0.3092
                                        -0.1859
                                                  5868.322
## s.e. 0.1076 0.0910
                        0.0493
                                 0.1174
                                          0.0940
                                                  2343.330
## sigma^2 = 2.912e+09: log likelihood = -4307.49
## AIC=8628.99 AICc=8629.31 BIC=8655.99
## Training set error measures:
                                               MPE
                                                       MAPE
##
                      ME
                            RMSE
                                      MAE
## Training set -9.779701 53493.86 36086.47 77.78488 169.5204 0.6362536
                      ACF1
## Training set 0.006576417
```

```
# For Flat of Kensington and Chelsea Area
print(forecasted_values_arima_kc_f)
            Point Forecast
                               Lo 80
                                        Hi 80
                                                   Lo 95
                                                            Hi 95
## Apr 2024
                19463.7545 -10909.92 49837.43 -26988.77 65916.28
## May 2024
                -1499.4556 -32246.83 29247.92 -48523.51 45524.60
## Jun 2024
                11320.7435 -20396.21 43037.70 -37186.16 59827.64
## Jul 2024
                -3500.4757 -36549.81 29548.86 -54045.07 47044.12
## Aug 2024
                 5154.7605 -27928.09 38237.61 -45441.10 55750.62
## Sep 2024
                -1818.5406 -35333.06 31695.98 -53074.57 49437.49
## Oct 2024
                 4757.7666 -28840.14 38355.67 -46625.79 56141.32
## Nov 2024
                  867.2335 -32732.00 34466.47 -50518.36 52252.83
                 4445.0164 -29250.97 38141.01 -47088.55 55978.59
## Dec 2024
## Jan 2025
                 1591.5518 -32109.31 35292.41 -49949.46 53132.57
## Feb 2025
                 3459.0924 -30247.38 37165.56 -48090.50 55008.69
## Mar 2025
                 1723.7192 -31997.94 35445.38 -49849.11 53296.55
## Apr 2025
                 2974.5818 -30747.68 36696.85 -48599.17 54548.34
## May 2025
                 2055.2620 -31669.84 35780.37 -49522.84 53633.36
## Jun 2025
                 2864.0408 -30863.04 36591.12 -48717.08 54445.16
## Jul 2025
                 2299.9682 -31427.33 36027.27 -49281.49 53881.42
                 2750.1196 -30977.98 36478.22 -48832.56 54332.80
## Aug 2025
                 2380.9727 -31347.39 36109.33 -49202.10 53964.05
## Sep 2025
summary(fit_arima_kc_f)
## Series: kc_flat_ts_diff
## ARIMA(3,0,0) with non-zero mean
##
## Coefficients:
##
            ar1
                    ar2
                             ar3
                                      mean
##
         0.1573 0.2315 -0.3826 2527.359
## s.e. 0.0492 0.0484
                          0.0493 1269.449
## sigma^2 = 561723360: log likelihood = -4020.54
## AIC=8051.08
                AICc=8051.26
                               BIC=8070.37
## Training set error measures:
##
                                                MPE
                                                         MAPE
                                                                   MASE
                       MF.
                              RMSE
                                       MAF.
## Training set -2.447202 23564.88 15997.7 63.06536 134.4906 0.6157379
                        ACF1
## Training set -0.006248376
# Calculate the forecasted actual prices
# By adding the last observed price and the forecasted differences
# In Kensington and Chelsea
# For detached_ts of Kensington and Chelsea Area
last_value_kc_d <- as.numeric(tail(kc_detached_ts, n = 1))</pre>
forecasted_values_kc_d <- c(last_value_kc_d, forecasted_values_arima_kc_d$mean)
cumulative_forecasted_values_kc_d <- cumsum(forecasted_values_kc_d)</pre>
forecasted_values_kc_d_ts <- ts(cumulative_forecasted_values_kc_d[-1],</pre>
```

start = c(2024, 2), frequency = 12)

```
# For semi_detached_ts of Kensington and Chelsea Area
last_value_kc_sd <- as.numeric(tail(kc_semi_detached_ts, n = 1))</pre>
forecasted_values_kc_sd <- c(last_value_kc_sd,</pre>
                              forecasted values arima kc sd$mean)
cumulative_forecasted_values_kc_sd <- cumsum(forecasted_values_kc_sd)</pre>
forecasted_values_kc_sd_ts <- ts(cumulative_forecasted_values_kc_sd[-1],</pre>
                               start = c(2024, 2), frequency = 12)
# For terraced_ts of Kensington and Chelsea Area
last_value_kc_t <- as.numeric(tail(kc_terraced_ts, n = 1))</pre>
forecasted_values_kc_t <- c(last_value_kc_t, forecasted_values_arima_kc_t$mean)</pre>
cumulative_forecasted_values_kc_t <- cumsum(forecasted_values_kc_t)</pre>
forecasted_values_kc_t_ts <- ts(cumulative_forecasted_values_kc_t[-1],</pre>
                              start = c(2024, 2), frequency = 12)
# For flat_ts of Kensington and Chelsea Area
last_value_kc_f <- as.numeric(tail(kc_flat_ts, n = 1))</pre>
forecasted_values_kc_f <- c(last_value_kc_f, forecasted_values_arima_kc_f$mean)</pre>
cumulative_forecasted_values_kc_f <- cumsum(forecasted_values_kc_f)</pre>
forecasted_values_kc_f_ts <- ts(cumulative_forecasted_values_kc_f[-1],</pre>
                                  start = c(2024, 2), frequency = 12)
# Combine the original and forecasted time series of Kensington and Chelsea Area
combined_kc_detached_ts_Arima <- ts(c(as.numeric(kc_detached_ts),</pre>
                                        as.numeric(forecasted_values_kc_d_ts)),
                                      start = c(1995, 1), frequency = 12)
combined_kc_semi_detached_ts_Arima <- ts(c(as.numeric(kc_semi_detached_ts),</pre>
                                          as.numeric(forecasted_values_kc_sd_ts)),
                                          start = c(1995, 1), frequency = 12)
combined_kc_terraced_ts_Arima <- ts(c(as.numeric(kc_terraced_ts),</pre>
                                        as.numeric(forecasted_values_kc_t_ts)),
                                      start = c(1995, 1), frequency = 12)
combined_kc_flat_ts_Arima <- ts(c(as.numeric(kc_flat_ts),</pre>
                                   as.numeric(forecasted_values_kc_f_ts)),
                                 start = c(1995, 1), frequency = 12)
# Plot the combined time series of Kensington and Chelsea Area
plot(combined kc detached ts Arima,
     main = "K&C Detached Average Price Arima",
     ylab = "Price", xlab = "Year")
```

K&C Detached Average Price Arima


```
plot(combined_kc_semi_detached_ts_Arima,
    main = "K&C Semi-Detached Average Price Arima",
    ylab = "Price", xlab = "Year")
```

K&C Semi-Detached Average Price Arima


```
plot(combined_kc_terraced_ts_Arima,
    main = "K&C Terraced Average Price Arima",
    ylab = "Price", xlab = "Year")
```

K&C Terraced Average Price Arima


```
plot(combined_kc_flat_ts_Arima,
    main = "K&C Flat Average Price Arima",
    ylab = "Price", xlab = "Year")
```

K&C Flat Average Price Arima


```
# ETS model for Kensington and Chelsea Area
fit_ets_kc_d <- ets(kc_detached_ts)</pre>
fit_ets_kc_sd <- ets(kc_semi_detached_ts)</pre>
fit_ets_kc_t <- ets(kc_terraced_ts)</pre>
fit_ets_kc_f <- ets(kc_flat_ts)</pre>
# Forecast using the ETS model for each property type in Kensington and Chelsea
forecasted_values_ets_kc_d <- forecast(fit_ets_kc_d, h = 18)</pre>
forecasted_values_ets_kc_sd <- forecast(fit_ets_kc_sd, h = 18)</pre>
forecasted_values_ets_kc_t <- forecast(fit_ets_kc_t, h = 18)</pre>
forecasted_values_ets_kc_f <- forecast(fit_ets_kc_f, h = 18)</pre>
# Combine the historical and forecasted values for each property type by ETS
# In Kensington and Chelsea
combined_kc_detached_ts_ets <- ts(c(kc_detached_price,</pre>
                                      forecasted_values_ets_kc_d$mean),
                                    start = c(1995, 1), frequency = 12)
combined_kc_semi_detached_ts_ets <- ts(c(kc_semi_detached_price,</pre>
                                           forecasted_values_ets_kc_sd$mean),
                                         start = c(1995, 1), frequency = 12)
combined_kc_terraced_ts_ets <- ts(c(kc_terraced_price,</pre>
                                      forecasted_values_ets_kc_t$mean),
                                    start = c(1995, 1), frequency = 12)
combined_kc_flat_ts_ets <- ts(c(kc_flat_price, forecasted_values_ets_kc_f$mean),</pre>
                                start = c(1995, 1), frequency = 12)
# Plot the ETS forecast value for each property type in Kensington and Chelsea
plot(forecasted_values_ets_kc_d,
     main = "K&C Detached Average Price ETS",
```

```
ylab = "Price", xlab = "Year")
```

K&C Detached Average Price ETS

K&C Semi-Detached Average Price ETS


```
plot(forecasted_values_ets_kc_t,
    main = "K&C Terraced Average Price ETS",
    ylab = "Price", xlab = "Year")
```

K&C Terraced Average Price ETS


```
plot(forecasted_values_ets_kc_f,
    main = "K&C Flat Average Price ETS",
    ylab = "Price", xlab = "Year")
```

K&C Flat Average Price ETS


```
# Summary of the ETS model for four different type of properties
# In Kensington and Chelsea
# For Detached of Kensington and Chelsea Area
print(forecasted_values_ets_kc_d)
```

```
##
            Point Forecast
                             Lo 80
                                      Hi 80
                                              Lo 95
                   3171263 3039947 3302579 2970433 3372093
## Apr 2024
## May 2024
                   3160932 2973562 3348303 2874374 3447491
## Jun 2024
                   3154898 2923094 3386702 2800385 3509411
## Jul 2024
                   3202143 2927258 3477027 2781743 3622542
                   3225000 2911888 3538111 2746137 3703863
## Aug 2024
## Sep 2024
                   3260057 2909393 3610721 2723762 3796351
## Oct 2024
                   3178978 2805526 3552430 2607832 3750124
## Nov 2024
                   3159441 2758329 3560553 2545994 3772889
                   3086839 2666729 3506948 2444336 3729341
## Dec 2024
## Jan 2025
                   3108606 2657978 3559234 2419430 3797782
## Feb 2025
                   3070424 2598816 3542032 2349162 3791686
## Mar 2025
                   3062417 2566183 3558651 2303493 3821341
                   3062622 2540998 3584247 2264866 3860379
## Apr 2025
                   3054738 2509603 3599872 2221026 3888449
## May 2025
## Jun 2025
                   3050960 2482058 3619862 2180900 3921020
                   3098699 2496414 3700985 2177583 4019816
## Jul 2025
## Aug 2025
                   3122850 2491504 3754195 2157290 4088409
## Sep 2025
                   3158816 2495833 3821798 2144871 4172760
```

summary(fit_ets_kc_d) ## ETS(M,Ad,M)

```
##
## Call:
##
    ets(y = kc_detached_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9998
##
       beta = 0.0207
##
       gamma = 1e-04
##
       phi
           = 0.9775
##
##
     Initial states:
##
       1 = 502456.762
##
       b = 8010.3765
       s = 0.9863 \ 1.0067 \ 1.01 \ 1.0327 \ 1.0186 \ 1.0083
##
##
              0.9903 0.9891 0.9891 0.9865 0.9864 0.996
##
##
     sigma: 0.0323
##
##
        AIC
                AICc
                           BIC
## 9777.663 9779.723 9847.157
## Training set error measures:
                       ME
                              RMSE
                                         MAE
                                                   MPE
                                                            MAPE
                                                                      MASE
                                                                                ACF1
## Training set 2847.821 82895.26 57372.68 0.1680941 2.512479 0.270424 0.1309965
```

For Semi-Detached of Kensington and Chelsea Area print(forecasted_values_ets_kc_sd)

```
Point Forecast
                             Lo 80
                                     Hi 80
                                             Lo 95
## Apr 2024
                   3390618 3250047 3531189 3175633 3605603
## May 2024
                   3391552 3191545 3591560 3085667 3697438
## Jun 2024
                   3400760 3153716 3647804 3022939 3778581
## Jul 2024
                   3456368 3164787 3747949 3010433 3902303
## Aug 2024
                   3470718 3141526 3799910 2967262 3974174
## Sep 2024
                   3489828 3125222 3854433 2932212 4047444
                   3383687 2999764 3767610 2796527 3970847
## Oct 2024
## Nov 2024
                   3378006 2966064 3789947 2747996 4008015
## Dec 2024
                   3323924 2891718 3756130 2662922 3984926
## Jan 2025
                   3364537 2900987 3828087 2655598 4073475
## Feb 2025
                   3325774 2842740 3808808 2587037 4064511
## Mar 2025
                   3341150 2831750 3850550 2562090 4120210
## Apr 2025
                   3352447 2817811 3887084 2534792 4170103
## May 2025
                   3354097 2796295 3911899 2501012 4207182
## Jun 2025
                   3363918 2782063 3945773 2474048 4253788
## Jul 2025
                   3419637 2805854 4033419 2480937 4358336
## Aug 2025
                   3434537 2796146 4072928 2458202 4410872
                  3454142 2790462 4117823 2439130 4469154
## Sep 2025
```

summary(fit_ets_kc_sd)

```
## ETS(M,Ad,M)
##
## Call:
##
    ets(y = kc_semi_detached_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9998
##
       beta = 0.0102
##
       gamma = 1e-04
##
       phi
           = 0.98
##
##
     Initial states:
##
       1 = 454277.7251
##
       b = 8465.0359
       s = 0.982 \ 0.9971 \ 0.9978 \ 1.0282 \ 1.0215 \ 1.0163
##
##
              0.999 0.9952 0.9939 0.9897 0.9843 0.9949
##
##
     sigma: 0.0324
##
##
        AIC
                AICc
                           BIC
## 9785.384 9787.444 9854.878
## Training set error measures:
                       ME
                              RMSE
                                         MAE
                                                   MPE
                                                            MAPE
                                                                       MASE
                                                                                 ACF1
## Training set 4556.844 85556.05 58638.91 0.2352319 2.499583 0.2643734 0.1811295
```

For Terraced of Kensington and Chelsea Area

print(forecasted_values_ets_kc_t)

```
Point Forecast
                             Lo 80
                                     Hi 80
                                             Lo 95
## Apr 2024
                   2238761 2147664 2329858 2099440 2378081
## May 2024
                   2235765 2104617 2366912 2035192 2436338
## Jun 2024
                   2233755 2070306 2397205 1983781 2483730
                   2273485 2077998 2468972 1974513 2572456
## Jul 2024
## Aug 2024
                   2275923 2053439 2498408 1935663 2616184
## Sep 2024
                   2282338 2034002 2530675 1902541 2662136
                   2199818 1937317 2462320 1798357 2601280
## Oct 2024
## Nov 2024
                   2194696 1910626 2478766 1760249 2629143
## Dec 2024
                   2151158 1851709 2450607 1693191 2609125
## Jan 2025
                   2162821 1841233 2484410 1670994 2654649
## Feb 2025
                   2141433 1803233 2479633 1624201 2658665
## Mar 2025
                   2147446 1788910 2505982 1599113 2695779
## Apr 2025
                   2149019 1771228 2526810 1571237 2726801
## May 2025
                   2150563 1753875 2547251 1543882 2757244
## Jun 2025
                   2152846 1737439 2568253 1517536 2788156
## Jul 2025
                   2195231 1753315 2637146 1519380 2871082
## Aug 2025
                   2201496 1740246 2662746 1496075 2906917
                  2211440 1730246 2692635 1475517 2947363
## Sep 2025
```

```
summary(fit_ets_kc_t)
## ETS(M,Ad,M)
##
## Call:
##
    ets(y = kc_terraced_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9998
##
       beta = 0.0334
##
       gamma = 2e-04
##
       phi
            = 0.9465
##
##
     Initial states:
##
       1 = 309676.1405
##
       b = 5628.391
       s = 0.9818 \ 0.9986 \ 0.9976 \ 1.0315 \ 1.0249 \ 1.0199
##
##
              0.998 0.9947 0.9916 0.9884 0.983 0.99
##
##
     sigma: 0.0318
##
##
        AIC
                AICc
                           BIC
## 9503.477 9505.537 9572.971
## Training set error measures:
                      ME
                             RMSE
                                       MAE
                                                  MPE
                                                           MAPE
                                                                    MASE
                                                                               ACF1
## Training set 3016.14 56923.69 39055.75 0.2727458 2.441415 0.262582 0.1542435
# For Flat of Kensington and Chelsea Area
print(forecasted_values_ets_kc_f)
```

```
Point Forecast
                              Lo 80
                                      Hi 80
                                               Lo 95
## Apr 2024
                   1032996 992497.2 1073495 971058.3 1094934
## May 2024
                   1035100 977753.4 1092447 947395.8 1122804
## Jun 2024
                   1037204 966877.8 1107530 929649.3 1144759
## Jul 2024
                   1039308 957996.2 1120619 914952.5 1163663
## Aug 2024
                   1041412 950383.8 1132439 902196.6 1180627
## Sep 2024
                   1043515 943669.1 1143362 890813.7 1196217
                   1045619 937632.0 1153607 880467.0 1210772
## Oct 2024
## Nov 2024
                   1047723 932129.1 1163317 870937.3 1224509
## Dec 2024
                   1049827 927060.9 1172593 862072.5 1237582
## Jan 2025
                   1051931 922355.1 1181507 853761.9 1250100
## Feb 2025
                   1054035 917957.3 1190112 845922.3 1262147
                   1056139 913825.1 1198452 838489.0 1273788
## Mar 2025
## Apr 2025
                   1058242 909925.0 1206560 831410.5 1285074
## May 2025
                   1060346 906229.7 1214463 824645.3 1296047
## Jun 2025
                   1062450 902716.8 1222183 818159.2 1306741
## Jul 2025
                   1064554 899367.8 1229740 811923.5 1317184
## Aug 2025
                   1066658 896166.7 1237149 805914.2 1327401
                   1068762 893100.1 1244423 800110.5 1337413
## Sep 2025
```

```
summary(fit_ets_kc_f)
## ETS(M,A,N)
## Call:
    ets(y = kc_flat_ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9999
##
       beta = 1e-04
##
     Initial states:
##
##
       1 = 160421.7673
##
       b = 2087.8621
##
##
     sigma: 0.0306
##
##
        AIC
                           BIC
                AICc
## 8969.709 8969.883 8989.013
##
## Training set error measures:
##
                      ME
                             RMSE
                                        MAE
                                                   MPF.
                                                            MAPE
                                                                       MASE
                                                                                 ACF1
## Training set 368.091 26153.64 18346.63 0.06002268 2.418989 0.2752429 0.1023466
# STL model for Kensington and Chelsea Area
stl_kc_d <- stl(kc_detached_ts, s.window = "periodic")</pre>
stl_kc_sd <- stl(kc_semi_detached_ts, s.window = "periodic")</pre>
stl_kc_t <- stl(kc_terraced_ts, s.window = "periodic")</pre>
stl_kc_f <- stl(kc_flat_ts, s.window = "periodic")</pre>
# Forecast using the STL model for each property type in Kensington and Chelsea
forecasted_values_stl_kc_d <- forecast(stl_kc_d, method='ets',h = 18)</pre>
forecasted_values_stl_kc_sd <- forecast(stl_kc_sd, method='ets', h = 18)</pre>
forecasted_values_stl_kc_t <- forecast(stl_kc_t, method='ets', h = 18)</pre>
forecasted_values_stl_kc_f <- forecast(stl_kc_f, method='ets', h = 18)</pre>
# Combine the historical and forecasted values for each property type
# By STL of Kensington and Chelsea Area
combined_kc_detached_ts_stl <- ts(c(kc_detached_price,</pre>
                                      forecasted_values_stl_kc_d$mean),
                                    start = c(1995, 1), frequency = 12)
combined_kc_semi_detached_ts_stl <- ts(c(kc_semi_detached_price,</pre>
                                           forecasted_values_stl_kc_sd$mean),
                                         start = c(1995, 1), frequency = 12)
combined_kc_terraced_ts_stl <- ts(c(kc_terraced_price,</pre>
                                      forecasted_values_stl_kc_t$mean),
                                    start = c(1995, 1), frequency = 12)
combined_kc_flat_ts_stl <- ts(c(kc_flat_price, forecasted_values_stl_kc_f$mean),</pre>
                               start = c(1995, 1), frequency = 12)
# Plot the STL forecast value for each property type in Kensington and Chelsea
plot(forecasted values stl kc d,
     main = "K&C Detached Average Price STL",
```

```
ylab = "Price", xlab = "Year")
```

K&C Detached Average Price STL

K&C Semi-Detached Average Price STL


```
plot(forecasted_values_stl_kc_t,
    main = "K&C Terraced Average Price STL",
    ylab = "Price", xlab = "Year")
```

K&C Terraced Average Price STL


```
plot(forecasted_values_stl_kc_f,
    main = "K&C Flat Average Price STL",
    ylab = "Price", xlab = "Year")
```

K&C Flat Average Price STL


```
# Summary of the STL model for four different type of properties
# In Kensington and Chelsea
# For Detached of Kensington and Chelsea Area
print(forecasted_values_stl_kc_d)
```

```
##
            Point Forecast
                             Lo 80
                                      Hi 80
                                              Lo 95
                   3182557 3038263 3326851 2961878 3403236
## Apr 2024
## May 2024
                   3181108 2975992 3386224 2867410 3494806
## Jun 2024
                   3179092 2926575 3431609 2792900 3565283
## Jul 2024
                   3212258 2919167 3505349 2764014 3660502
                   3242200 2912821 3571578 2738459 3745940
## Aug 2024
## Sep 2024
                   3273789 2911114 3636464 2719125 3828452
## Oct 2024
                   3222875 2829128 3616623 2620691 3825060
## Nov 2024
                   3224703 2801612 3647794 2577641 3871766
## Dec 2024
                   3185489 2734438 3636540 2495667 3875311
## Jan 2025
                   3206357 2728484 3684231 2475513 3937201
## Feb 2025
                   3183030 2679283 3686776 2412616 3953444
## Mar 2025
                   3199100 2670285 3727915 2390348 4007852
                   3208390 2655199 3761582 2362357 4054424
## Apr 2025
                   3206941 2629971 3783911 2324542 4089340
## May 2025
## Jun 2025
                   3204925 2604700 3805149 2286960 4122889
## Jul 2025
                   3238091 2615072 3861111 2285266 4190917
## Aug 2025
                   3268033 2622626 3913439 2280969 4255097
## Sep 2025
                   3299622 2632190 3967054 2278874 4320370
```

```
summary(stl_kc_d)
```

```
##
   Call:
   stl(x = kc_detached_ts, s.window = "periodic")
##
##
##
   Time.series components:
##
      seasonal
                           trend
                                           remainder
##
          :-34370.98 Min.
                              : 520691
                                                :-382696.4
   Min.
                                         Min.
   1st Qu.:-20770.07
                       1st Qu.:1108982 1st Qu.: -38333.2
   Median :-13315.80 Median :1955043
##
                                         Median :
                                                    -359.3
   Mean : -181.52
                       Mean :2165028
                                         Mean :
                                                    1180.7
##
   3rd Qu.: 13760.79
                       3rd Qu.:3415029
                                         3rd Qu.: 39923.2
   Max.
          : 67152.12
                       Max.
                              :4080701
                                         Max.
                                                : 417871.8
   IQR:
##
##
       STL.seasonal STL.trend STL.remainder data
##
         34531
                    2306047
                                78256
                                            2260177
##
     %
        1.5
                    102.0
                                3.5
                                            100.0
##
##
   Weights: all == 1
##
## Other components: List of 5
   $ win : Named num [1:3] 3511 19 13
   $ deg : Named int [1:3] 0 1 1
   $ jump : Named num [1:3] 352 2 2
##
   $ inner: int 2
   $ outer: int 0
```

For Semi-Detached of Kensington and Chelsea Area print(forecasted_values_stl_kc_sd)

```
##
            Point Forecast
                             Lo 80
                                     Hi 80
                                             Lo 95
                                                     Hi 95
                   3389831 3232141 3547521 3148665 3630997
## Apr 2024
## May 2024
                   3391498 3167460 3615536 3048862 3734134
## Jun 2024
                   3395569 3119906 3671232 2973979 3817159
## Jul 2024
                   3435494 3115708 3755279 2946424 3924563
## Aug 2024
                   3467312 3108124 3826499 2917982 4016642
## Sep 2024
                  3496097 3100807 3891386 2891554 4100640
## Oct 2024
                  3443450 3014518 3872381 2787456 4099444
## Nov 2024
                  3448105 2987447 3908763 2743590 4152620
## Dec 2024
                  3412562 2921717 3903408 2661879 4163246
## Jan 2025
                   3437367 2917600 3957135 2642452 4232283
## Feb 2025
                  3415717 2868089 3963346 2578192 4253243
## Mar 2025
                   3434677 2860089 4009265 2555920 4313433
## Apr 2025
                  3444570 2843798 4045341 2525769 4363371
## May 2025
                   3446237 2819956 4072517 2488424 4404050
## Jun 2025
                   3450308 2799110 4101505 2454387 4446229
## Jul 2025
                   3490232 2814639 4165825 2457002 4523463
## Aug 2025
                   3522050 2822526 4221575 2452220 4591881
## Sep 2025
                   3550836 2827793 4273878 2445038 4656633
```

summary(stl_kc_sd)

```
## Call:
   stl(x = kc_semi_detached_ts, s.window = "periodic")
##
##
  Time.series components:
##
      seasonal
                          trend
                                         remainder
##
  Min. :-35449.80 Min. : 472286 Min. :-409376.9
   1st Qu.:-21051.75    1st Qu.:1125069    1st Qu.: -42067.7
## Median: -15720.21 Median: 2045624 Median: 2944.8
                                        Mean :
   Mean : -187.29 Mean :2209426
                                                 1068.6
   3rd Qu.: 10622.89
                      3rd Qu.:3418362
                                        3rd Qu.: 36742.6
## Max. : 67737.72 Max. :4229933 Max. : 419285.0
   IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
##
         31675
                2293293
                               78810
                                           2276849
##
        1.4
                    100.7
                               3.5
                                           100.0
##
## Weights: all == 1
##
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# For Terraced of Kensington and Chelsea Area
print(forecasted_values_stl_kc_t)
           Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Apr 2024
                 2249534 2147151 2351916 2092953 2406115
## May 2024
                  2252383 2106870 2397896 2029840 2474926
                 2256683 2077574 2435791 1982760 2530605
## Jun 2024
## Jul 2024
                 2281759 2073909 2489610 1963879 2599640
                 2300522 2066978 2534066 1943348 2657696
## Aug 2024
## Sep 2024
                 2317567 2060459 2574676 1924354 2710780
## Oct 2024
                 2279812 2000724 2558900 1852984 2706640
## Nov 2024
                 2282973 1983137 2582809 1824414 2741533
## Dec 2024
                2258253 1938658 2577849 1769474 2747033
## Jan 2025
                2274422 1935878 2612967 1756664 2792181
## Feb 2025
                2257549 1900735 2614363 1711850 2803249
                2268075 1893567 2642582 1695315 2840834
## Mar 2025
                2275648 1883942 2667354 1676585 2874711
## Apr 2025
## May 2025
                 2278497 1870021 2686973 1653787 2903207
## Jun 2025
                 2282797 1857927 2707667 1633015 2932580
## Jul 2025
                 2307874 1866940 2748807 1633524 2982223
## Aug 2025
                 2326636 1869933 2783340 1628168 3025105
## Sep 2025
                  2343682 1871468 2815895 1621494 3065870
summary(stl kc t)
## Call:
## stl(x = kc_terraced_ts, s.window = "periodic")
##
```

```
Time.series components:
##
                                          remainder
      seasonal
                          trend
         :-25538.23 Min. : 323090.4 Min. :-254706.06
##
  Min.
  1st Qu.:-17188.70 1st Qu.: 757127.7 1st Qu.: -28412.40
## Median : -8994.99 Median :1406792.9
                                         Median :
                                                    1306.81
##
  Mean : -140.22 Mean
                            :1509558.1
                                         Mean :
                                                      686.95
   3rd Qu.: 6414.50
                       3rd Qu.:2365620.5
                                          3rd Qu.: 26038.53
  Max. : 45361.01
                                          Max. : 263768.26
##
                       Max.
                             :2823075.4
##
   IQR:
##
       STL.seasonal STL.trend STL.remainder data
##
                   1608493
                               54451
##
        1.5
                    101.9
                                3.4
                                           100.0
##
  Weights: all == 1
##
##
##
   Other components: List of 5
   $ win : Named num [1:3] 3511 19 13
##
  $ deg : Named int [1:3] 0 1 1
  $ jump : Named num [1:3] 352 2 2
   $ inner: int 2
  $ outer: int 0
# For Flat of Kensington and Chelsea Area
print(forecasted_values_stl_kc_f)
##
           Point Forecast
                             Lo 80
                                    Hi 80
                                             Lo 95
                  1033957 991263.6 1076651 968663.0 1099251
## Apr 2024
## May 2024
                  1037874 977221.9 1098526 945114.8 1130633
## Jun 2024
                  1040651 966028.7 1115272 926526.3 1154775
## Jul 2024
                  1051898 965339.0 1138456 919517.6 1184278
## Aug 2024
                  1056833 959617.4 1154049 908154.3 1205512
## Sep 2024
                 1061649 954670.9 1168628 898039.9 1225259
## Oct 2024
                 1044992 928918.9 1161066 867473.4 1222511
## Nov 2024
                  1048246 923597.0 1172894 857611.9 1238879
                  1041722 908916.1 1174528 838612.8 1244832
## Dec 2024
## Jan 2025
                  1048754 908134.7 1189374 833695.1 1263814
## Feb 2025
                  1040809 892663.6 1188954 814240.4 1267377
## Mar 2025
                  1043384 887959.2 1198810 805682.1 1281087
## Apr 2025
                 1046449 883955.0 1208943 797935.7 1294963
## May 2025
                 1050366 880986.2 1219745 791322.1 1309409
## Jun 2025
                  1053143 877038.9 1229246 783815.2 1322470
## Jul 2025
                  1064390 881704.2 1247075 784996.3 1343783
## Aug 2025
                  1069325 880184.6 1258466 780059.4 1358591
## Sep 2025
                  1074141 878658.2 1269624 775175.7 1373107
summary(stl_kc_f)
  stl(x = kc_flat_ts, s.window = "periodic")
##
##
## Time.series components:
      seasonal
                          trend
                                            remainder
## Min. :-9773.258 Min. : 167197.8
                                         Min. :-109170.51
```

```
## 1st Qu.:-6777.819
                        1st Qu.: 402395.9
                                            1st Qu.: -12929.44
## Median: -1603.353 Median: 694884.8 Median:
                                                         720.86
                        Mean : 724963.3
## Mean : -53.556
                                            Mean :
                                                         248.35
## 3rd Qu.: 786.631
                        3rd Qu.:1123897.6
                                            3rd Qu.: 12841.69
## Max.
          :16272.306 Max. :1257556.6
                                           Max. : 110742.08
## IQR:
       STL.seasonal STL.trend STL.remainder data
##
##
          7564
                     721502
                                25771
                                              716898
##
      %
        1.1
                     100.6
                                 3.6
                                              100.0
##
## Weights: all == 1
##
## Other components: List of 5
## $ win : Named num [1:3] 3511 19 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 352 2 2
## $ inner: int 2
## $ outer: int 0
# Split the data into training and test sets of Kensington and Chelsea Area
train_end \leftarrow c(2023, 6)
test_start <- c(2023, 6)
#Detached property of Kensington and Chelsea Area
# By ARIMA model for Detached of Kensington and Chelsea Area
kc_detached_train_arima <- window(kc_detached_ts_diff, end = train_end)
# Fit best-fit ARIMA models to the training data
# For Detached in Kensington and Chelsea
fit_arima_kc_d_train <- Arima(kc_detached_train_arima, order = c(3, 0, 0))</pre>
forecasted_values_arima_kc_d_train <- forecast(fit_arima_kc_d_train, h = 9)</pre>
# Add forecasted differenced values to the last observed value
# In Kensington and Chelsea
kc detached new ts \leftarrow ts(kc detached price, start = c(1995, 1),
                         end = c(2023, 6), frequency = 12)
last_value_kc_detached <- as.numeric(tail(kc_detached_new_ts, n = 1))</pre>
forecasted_values_kc_detached_combined <- c(last_value_kc_detached,</pre>
                                         forecasted_values_arima_kc_d_train$mean)
cumulative_forecasted_values_kc_detached <-</pre>
  cumsum(forecasted_values_kc_detached_combined)
forecasted_values_arima_kc_d_test <-</pre>
  ts(cumulative_forecasted_values_kc_detached,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Detached by ARIMA of Kensington and Chelsea Area
mse_kc_detached_arima <- mean((window(kc_detached_ts, start=test_start) -</pre>
                                 forecasted_values_arima_kc_d_test)^2)
mae_kc_detached_arima <- mean(abs(window(kc_detached_ts, start=test_start) -</pre>
                                    forecasted_values_arima_kc_d_test))
# By ETS model for Detached of Kensington and Chelsea Area
kc_detached_train_ets <- window(kc_detached_ts, end = train_end)</pre>
kc_detached_test_ets <- window(kc_detached_ts, start = test_start)</pre>
```

```
# Fit ETS models to the training data for Detached in Kensington and Chelsea
fit_ets_kc_d_train <- ets(kc_detached_train_ets)</pre>
# Forecast the test period for Detached of Kensington and Chelsea Area
forecasted_values_ets_kc_d_test <- forecast(fit_ets_kc_d_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Detached of Kensington and Chelsea Area
mse kc detached ets <- mean((kc detached test ets -
                                forecasted_values_ets_kc_d_test$mean)^2)
mae_kc_detached_ets <- mean(abs(kc_detached_test_ets -</pre>
                                   forecasted_values_ets_kc_d_test$mean))
# By STL model for Detached of Kensington and Chelsea Area
kc_detached_train_stl <- window(kc_detached_ts, end = train_end)</pre>
kc_detached_test_stl <- window(kc_detached_ts, start = test_start)</pre>
fit_stl_kc_d_train <- stl(kc_detached_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_kc_d_test <- forecast(fit_stl_kc_d_train,</pre>
                                             method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Detached of Kensington and Chelsea Area
mse_kc_detached_stl <- mean((kc_detached_test_stl -</pre>
                                forecasted_values_stl_kc_d_test$mean)^2)
mae_kc_detached_stl <- mean(abs(kc_detached_test_stl -</pre>
                                   forecasted_values_stl_kc_d_test$mean))
# Print MSE and MAE of Kensington and Chelsea Area
print(paste("Kensington and Chelsea Detached MSE for Arima:",
            mse_kc_detached_arima))
## [1] "Kensington and Chelsea Detached MSE for Arima: 256602175180.269"
print(paste("Kensington and Chelsea Detached MAE for Arima:",
            mae_kc_detached_arima))
## [1] "Kensington and Chelsea Detached MAE for Arima: 391420.528055581"
print(paste("Kensington and Chelsea Detached MSE for ETS:",
            mse_kc_detached_ets))
## [1] "Kensington and Chelsea Detached MSE for ETS: 240845944759.074"
print(paste("Kensington and Chelsea Detached MAE for ETS:",
            mae_kc_detached_ets))
## [1] "Kensington and Chelsea Detached MAE for ETS: 401449.559920602"
print(paste("Kensington and Chelsea Detached MSE for STL:",
            mse_kc_detached_stl))
```

[1] "Kensington and Chelsea Detached MSE for STL: 236617504930.275"

[1] "Kensington and Chelsea Detached MAE for STL: 381362.8610051"

K&C Detached Average Price: Forecast vs Actual


```
# Semi-Detached property of Kensington and Chelsea Area
# By ARIMA model for Semi-Detached of Kensington and Chelsea Area
kc_semi_detached_train_arima <-
window(kc_semi_detached_ts_diff, end = train_end)
# Fit specified ARIMA models to the training data for Semi-Detached
# In Kensington and Chelsea</pre>
```

```
fit_arima_kc_sd_train <- Arima(kc_semi_detached_train_arima, order = c(3, 0, 0))</pre>
forecasted_values_arima_kc_sd_train <- forecast(fit_arima_kc_sd_train, h = 9)</pre>
# Add the forecasted differenced values to the last observed value
# In Kensington and Chelsea
kc_semi_detached_new_ts <- ts(kc_semi_detached_price, start = c(1995, 1),</pre>
                               end = c(2023, 6), frequency = 12)
last value kc semi detached <- as.numeric(tail(kc semi detached new ts, n = 1))
forecasted_values_kc_semi_detached_combined <- c(last_value_kc_semi_detached,</pre>
                                        forecasted values arima kc sd train$mean)
cumulative_forecasted_values_kc_semi_detached <-</pre>
  cumsum(forecasted_values_kc_semi_detached_combined)
forecasted values arima kc sd test <-
  ts(cumulative_forecasted_values_kc_semi_detached,
     start = test_start, frequency = 12)
# Calculate MSE and MAE for Semi-Detached by ARIMA in Kensington and Chelsea
mse_kc_semi_detached_arima <- mean((window(kc_semi_detached_ts,</pre>
                                             start=test_start) -
                                       forecasted_values_arima_kc_sd_test)^2)
mae_kc_semi_detached_arima <- mean(abs(window(kc_semi_detached_ts,</pre>
                                                start=test_start) -
                                           forecasted_values_arima_kc_sd_test))
# By ETS model for Semi-Detached of Kensington and Chelsea Area
kc_semi_detached_train_ets <- window(kc_semi_detached_ts, end = train_end)</pre>
kc_semi_detached_test_ets <- window(kc_semi_detached_ts, start = test_start)</pre>
# Fit ETS models to the training data for Semi-Detached in Kensington and Chelsea
fit_ets_kc_sd_train <- ets(kc_semi_detached_train_ets)</pre>
# Forecast the test period for Semi-Detached of Kensington and Chelsea Area
forecasted_values_ets_kc_sd_test <- forecast(fit_ets_kc_sd_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Semi-Detached of Kensington and Chelsea Area
mse_kc_semi_detached_ets <- mean((kc_semi_detached_test_ets -</pre>
                                     forecasted_values_ets_kc_sd_test$mean)^2)
mae_kc_semi_detached_ets <- mean(abs(kc_semi_detached_test_ets -</pre>
                                        forecasted_values_ets_kc_sd_test$mean))
# By STL model for Semi-Detached of Kensington and Chelsea Area
kc_semi_detached_train_stl <- window(kc_semi_detached_ts, end = train_end)</pre>
kc_semi_detached_test_stl <- window(kc_semi_detached_ts, start = test_start)</pre>
fit_stl_kc_sd_train <- stl(kc_semi_detached_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_kc_sd_test <- forecast(fit_stl_kc_sd_train,</pre>
                                               method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Semi-Detached of Kensington and Chelsea Area
mse_kc_semi_detached_stl <- mean((kc_semi_detached_test_stl -</pre>
                                     forecasted_values_stl_kc_sd_test$mean)^2)
mae_kc_semi_detached_stl <- mean(abs(kc_semi_detached_test_stl -</pre>
                                         forecasted_values_stl_kc_sd_test$mean))
```

```
# Print MSE and MAE for Semi-Detached of Kensington and Chelsea Area
print(paste("Kensington and Chelsea Semi-Detached MSE for ARIMA:",
            mse kc semi detached arima))
## [1] "Kensington and Chelsea Semi-Detached MSE for ARIMA: 231299875931.127"
print(paste("Kensington and Chelsea Semi-Detached MAE for ARIMA:",
           mae_kc_semi_detached_arima))
## [1] "Kensington and Chelsea Semi-Detached MAE for ARIMA: 371214.321803534"
print(paste("Kensington and Chelsea Semi-Detached MSE for ETS:",
            mse_kc_semi_detached_ets))
## [1] "Kensington and Chelsea Semi-Detached MSE for ETS: 195888396227.247"
print(paste("Kensington and Chelsea Semi-Detached MAE for ETS:",
            mae_kc_semi_detached_ets))
## [1] "Kensington and Chelsea Semi-Detached MAE for ETS: 359640.055757359"
print(paste("Kensington and Chelsea Semi-Detached MSE for STL:",
           mse_kc_semi_detached_stl))
## [1] "Kensington and Chelsea Semi-Detached MSE for STL: 211915795068.3"
print(paste("Kensington and Chelsea Semi-Detached MAE for STL:",
            mae_kc_semi_detached_stl))
## [1] "Kensington and Chelsea Semi-Detached MAE for STL: 359126.391435254"
# Plot the combined time series with forecast for Semi-Detached
# In Kensington and Chelsea
plot(window(kc_semi_detached_ts, start = train_end), type = "l", col = "blue",
     main = "K&C Semi-Detached Average Price: Forecast vs Actual",
     ylab = "Price", xlab = "Year",
     ylim = range(c(window(kc_semi_detached_ts, start = train_end),
                    forecasted_values_arima_kc_sd_test,
                    forecasted_values_ets_kc_sd_test$mean,
                    forecasted_values_stl_kc_sd_test$mean)))
lines(forecasted_values_arima_kc_sd_test, col = "red")
lines(forecasted_values_ets_kc_sd_test$mean, col = "green")
lines(forecasted values stl kc sd test$mean, col = "yellow")
legend("topright", legend = c("Price", "ARIMA", "ETS", "STL"),
       col = c("blue", "red", "green", "yellow"), lty = 1, cex = 0.8)
```

K&C Semi-Detached Average Price: Forecast vs Actual


```
# Terraced property of Kensington and Chelsea Area
# By ARIMA model for Terraced of Kensington and Chelsea Area
kc_terraced_train_arima <- window(kc_terraced_ts_diff, end = train_end)
# Fit specified ARIMA models to the training data for Terraced
# In Kensington and Chelsea
fit_arima_kc_t_train <- Arima(kc_terraced_train_arima, order = c(3, 0, 2))</pre>
forecasted_values_arima_kc_t_train <- forecast(fit_arima_kc_t_train, h = 9)</pre>
# Add the forecasted differenced values to the last observed value of Terraced
# In Kensington and Chelsea
kc_terraced_new_ts <- ts(kc_terraced_price, start = c(1995, 1),</pre>
                          end = c(2023, 6), frequency = 12)
last_value_kc_terraced <- as.numeric(tail(kc_terraced_new_ts, n = 1))</pre>
forecasted_values_kc_terraced_combined <- c(last_value_kc_terraced,</pre>
                                          forecasted_values_arima_kc_t_train$mean)
cumulative_forecasted_values_kc_terraced <-</pre>
  cumsum(forecasted_values_kc_terraced_combined)
forecasted_values_arima_kc_t_test <- ts(cumulative_forecasted_values_kc_terraced
                                          , start = test_start, frequency = 12)
# Calculate MSE and MAE for Terraced by ARIMA of Kensington and Chelsea Area
mse_kc_terraced_arima <- mean((window(kc_terraced_ts, start=test_start) -</pre>
                                  forecasted_values_arima_kc_t_test)^2)
mae_kc_terraced_arima <- mean(abs(window(kc_terraced_ts, start=test_start) -</pre>
                                     forecasted_values_arima_kc_t_test))
# By ETS model for Terraced of Kensington and Chelsea Area
kc_terraced_train_ets <- window(kc_terraced_ts, end = train_end)</pre>
```

```
kc_terraced_test_ets <- window(kc_terraced_ts, start = test_start)</pre>
# Fit ETS models to the training data for Terraced in Kensington and Chelsea
fit_ets_kc_t_train <- ets(kc_terraced_train_ets)</pre>
# Forecast the test period for Terraced of Kensington and Chelsea Area
forecasted_values_ets_kc_t_test <- forecast(fit_ets_kc_t_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Terraced of Kensington and Chelsea Area
mse_kc_terraced_ets <- mean((kc_terraced_test_ets -</pre>
                                forecasted_values_ets_kc_t_test$mean)^2)
mae_kc_terraced_ets <- mean(abs(kc_terraced_test_ets -</pre>
                                   forecasted values ets kc t test$mean))
# By STL model for Terraced of Kensington and Chelsea Area
kc_terraced_train_stl <- window(kc_terraced_ts, end = train_end)</pre>
kc_terraced_test_stl <- window(kc_terraced_ts, start = test_start)</pre>
fit_stl_kc_t_train <- stl(kc_terraced_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_kc_t_test <- forecast(fit_stl_kc_t_train,</pre>
                                             method = 'ets', h = 9)
\# Calculate MSE and MAE by STL for Terraced of Kensington and Chelsea Area
mse_kc_terraced_stl <- mean((kc_terraced_test_stl -</pre>
                                forecasted_values_stl_kc_t_test$mean)^2)
mae_kc_terraced_stl <- mean(abs(kc_terraced_test_stl -</pre>
                                   forecasted_values_stl_kc_t_test$mean))
# Print MSE and MAE of Terraced in Kensington and Chelsea Area
print(paste("Kensington and Chelsea Terraced MSE for ARIMA:",
           mse_kc_terraced_arima))
## [1] "Kensington and Chelsea Terraced MSE for ARIMA: 100208878811.946"
print(paste("Kensington and Chelsea Terraced MAE for ARIMA:",
            mae_kc_terraced_arima))
## [1] "Kensington and Chelsea Terraced MAE for ARIMA: 253548.054587164"
print(paste("Kensington and Chelsea Terraced MSE for ETS:",
            mse_kc_terraced_ets))
## [1] "Kensington and Chelsea Terraced MSE for ETS: 81455270012.4159"
print(paste("Kensington and Chelsea Terraced MAE for ETS:",
            mae_kc_terraced_ets))
## [1] "Kensington and Chelsea Terraced MAE for ETS: 239365.286497315"
print(paste("Kensington and Chelsea Terraced MSE for STL:",
            mse_kc_terraced_stl))
```

[1] "Kensington and Chelsea Terraced MAE for STL: 245836.40431311"

K&C Terraced Average Price: Forecast vs Actual


```
# Flat property of Kensington and Chelsea Area
# By ARIMA model for Flat of Kensington and Chelsea Area
kc_flat_train_arima <- window(kc_flat_ts_diff, end = train_end)
# Fit specified ARIMA models to the training data for Flat</pre>
```

```
# In Kensington and Chelsea
fit_arima_kc_f_train <- Arima(kc_flat_train_arima, order = c(3, 0, 2))</pre>
forecasted_values_arima_kc_f_train <- forecast(fit_arima_kc_f_train, h = 9)</pre>
# Add the forecasted differenced values to the last observed value
# In Kensington and Chelsea
kc_flat_new_ts <- ts(kc_flat_price, start = c(1995, 1),</pre>
                         end = c(2023, 6), frequency = 12)
last_value_kc_flat <- as.numeric(tail(kc_flat_new_ts, n = 1))</pre>
forecasted_values_kc_flat_combined <-</pre>
  c(last_value_kc_flat, forecasted_values_arima_kc_f_train$mean)
cumulative_forecasted_values_kc_flat <-</pre>
  cumsum(forecasted_values_kc_flat_combined)
forecasted_values_arima_kc_f_test <- ts(cumulative_forecasted_values_kc_flat,</pre>
                                             start = test_start, frequency = 12)
# Calculate MSE and MAE for Flat by ARIMA of Kensington and Chelsea Area
mse_kc_flat_arima <- mean((window(kc_flat_ts, start=test_start) -</pre>
                                forecasted_values_arima_kc_f_test)^2)
mae_kc_flat_arima <- mean(abs(window(kc_flat_ts, start=test_start) -</pre>
                                   forecasted_values_arima_kc_f_test))
# By ETS model for Flat of Kensington and Chelsea Area
kc_flat_train_ets <- window(kc_flat_ts, end = train_end)</pre>
kc_flat_test_ets <- window(kc_flat_ts, start = test_start)</pre>
# Fit ETS models to the training data for Flat of Kensington and Chelsea Area
fit_ets_kc_f_train <- ets(kc_flat_train_ets)</pre>
# Forecast the test period for Flat of Kensington and Chelsea Area
forecasted_values_ets_kc_f_test <- forecast(fit_ets_kc_f_train, h = 9)</pre>
# Calculate MSE and MAE by ETS for Flat of Kensington and Chelsea Area
mse_kc_flat_ets <- mean((kc_flat_test_ets -</pre>
                             forecasted_values_ets_kc_f_test$mean)^2)
mae_kc_flat_ets <- mean(abs(kc_flat_test_ets -</pre>
                                 forecasted_values_ets_kc_f_test$mean))
# By STL model for Flat of Kensington and Chelsea Area
kc_flat_train_stl <- window(kc_flat_ts, end = train_end)</pre>
kc_flat_test_stl <- window(kc_flat_ts, start = test_start)</pre>
fit_stl_kc_f_train <- stl(kc_flat_train_stl, s.window = "periodic")</pre>
forecasted_values_stl_kc_f_test <- forecast(fit_stl_kc_f_train,</pre>
                                               method = 'ets', h = 9)
# Calculate MSE and MAE by STL for Flat of Kensington and Chelsea Area
mse_kc_flat_stl <- mean((kc_flat_test_stl -</pre>
                             forecasted_values_stl_kc_f_test$mean)^2)
mae_kc_flat_stl <- mean(abs(kc_flat_test_stl -</pre>
                                 forecasted_values_stl_kc_f_test$mean))
# Print MSE and MAE of Flat in Kensington and Chelsea Area
print(paste("Kensington and Chelsea Flat MSE for ARIMA:", mse_kc_flat_arima))
```

```
## [1] "Kensington and Chelsea Flat MSE for ARIMA: 13701932617.2996"
print(paste("Kensington and Chelsea Flat MAE for ARIMA:", mae_kc_flat_arima))
## [1] "Kensington and Chelsea Flat MAE for ARIMA: 95129.9942786225"
print(paste("Kensington and Chelsea Flat MSE for ETS:", mse_kc_flat_ets))
## [1] "Kensington and Chelsea Flat MSE for ETS: 12957579481.7158"
print(paste("Kensington and Chelsea Flat MAE for ETS:", mae_kc_flat_ets))
## [1] "Kensington and Chelsea Flat MAE for ETS: 90353.5516287361"
print(paste("Kensington and Chelsea Flat MSE for STL:", mse_kc_flat_stl))
## [1] "Kensington and Chelsea Flat MSE for STL: 12640829974.4374"
print(paste("Kensington and Chelsea Flat MAE for STL:", mae_kc_flat_stl))
## [1] "Kensington and Chelsea Flat MAE for STL: 92030.6816328988"
# Plot the combined time series with forecast for Flat
# In Kensington and Chelsea Area
plot(window(kc_flat_ts, start = train_end), type = "l", col = "blue",
     main = "K&C Flat Average Price: Forecast vs Actual", ylab = "Price",
     xlab = "Year", ylim = range(c(window(kc_flat_ts, start = train_end),
                                   forecasted_values_arima_kc_f_test,
                                   forecasted_values_ets_kc_f_test$mean,
                                   forecasted_values_stl_kc_f_test$mean)))
lines(forecasted_values_arima_kc_f_test, col = "red")
lines(forecasted_values_ets_kc_f_test$mean, col = "green")
lines(forecasted_values_stl_kc_f_test$mean, col = "yellow")
legend("topright", legend = c("Price", "ARIMA", "ETS", "STL"),
```

col = c("blue", "red", "green", "yellow"), lty = 1, cex = 0.8)

K&C Flat Average Price: Forecast vs Actual

Kensington and Chelsea Average Price of Four Properties


```
# If we look for less MSE in Kensington and Chelsea Area,
# STL model is the best for Detached
# ETS model is the best for Semi-Detached
# ETS model is the best for Terraced
# STL model is the best for Flat
# Calculate the combined mean price for all property types
# of Kensington and Chelsea Area with less MSE
combined_mean_price_kc_less_MSE <- (combined_kc_detached_ts_stl +</pre>
                                       combined_kc_semi_detached_ts_ets +
                                       combined_kc_terraced_ts_ets +
                                       combined_kc_flat_ts_stl) / 4
combined_mean_price_kc_less_MSE_ts <- ts(combined_mean_price_kc_less_MSE,</pre>
                                          start = c(1995, 1), frequency = 12)
plot(combined_mean_price_kc_less_MSE_ts,
     main = "K&C Mean Price of Less MSE",
     ylab = "Combined Mean Price", xlab = "Year")
```

K&C Mean Price of Less MSE

K&C Mean Price of Less MAE


```
# Compare two models for which one is better in Kensington and Chelsea Area
combined_mean_price_kc_less_MSE_test <- (forecasted_values_stl_kc_d_test$mean</pre>
                                           + forecasted_values_ets_kc_sd_test$mean
                                           + forecasted_values_ets_kc_t_test$mean
                                     + forecasted_values_stl_kc_f_test$mean) / 4
combined_mean_price_kc_less_MSE_test_ts <-</pre>
  ts(combined_mean_price_kc_less_MSE_test, start = test_start, frequency = 12)
combined_mean_price_kc_less_MAE_test <- (forecasted_values_stl_kc_d_test$mean +</pre>
                                            forecasted values stl kc sd test$mean
                                           + forecasted_values_ets_kc_t_test$mean
                                     + forecasted_values_ets_kc_f_test$mean) / 4
combined mean price kc less MAE test ts <-
  ts(combined_mean_price_kc_less_MAE_test, start = test_start, frequency = 12)
# Calculate MSE and MAE for combined mean prices in Kensington and Chelsea Area
combined_mean_price_kc_test <- window(combined_mean_price_kc_ts,</pre>
                                        start = test_start)
mse_combined_kc_less_MSE <- mean((combined_mean_price_kc_test -</pre>
                                     combined_mean_price_kc_less_MSE_test_ts)^2)
mae_combined_kc_less_MSE <- mean(abs(combined_mean_price_kc_test -</pre>
                                        combined_mean_price_kc_less_MSE_test_ts))
mse_combined_kc_less_MAE <- mean((combined_mean_price_kc_test -</pre>
                                     combined mean price kc less MAE test ts)^2)
mae_combined_kc_less_MAE <- mean(abs(combined_mean_price_kc_test -</pre>
                                         combined_mean_price_kc_less_MAE_test_ts))
```

print(paste("Kensington and Chelsea Combined Mean Price MAE for Less MAE Model:"
 , mae_combined_kc_less_MAE))

[1] "Kensington and Chelsea Combined Mean Price MSE for Less MAE Model: 78671284799.6368"

[1] "Kensington and Chelsea Combined Mean Price MAE for Less MAE Model: 211171.41153049"

K&C Combined Mean Prices Comparison

