תרגיל בית 2

סימטריות בדידות

J. J. Sakurai, Modern Quantum Mechanics (2nd edition), Chapter 4 -חומר קריאה

- 1. השתמשו **בשיקולי זוגיות** וחשבו את את אלמנטי המטריצה הבאים עבור אוסצילטור הרמוני קוונטי (חד-מימדי)
 - $\langle n|x|n\rangle$ (N)
 - $\langle n|p^2|n+1\rangle$ (2)
 - $\langle n|xpx|n\rangle$ (λ)
 - $\Pi: \mathbf{r}
 ightarrow -\mathbf{r}$ נתון אופרטור השיקוף Π המבצע את הפעולה 2.
 - (א) חשבו את

$$\Pi Y_m^{(\ell)}(\theta,\varphi) = ?$$

(ב) השתמשו בשיקולי זוגיות וקבעו עבור כל אחד מאלמנטי המטריצה הבאים האם הוא מתאפס או לא:

$$\langle n\ell m|x|n\ell m\rangle$$
, $\langle n\ell m|\mathbf{r}|n,\ell+2,m\rangle$, $\langle n\ell m|x^2+y^2+z^2|n,\ell+1,m\rangle$

. כאשר של אטום המצבים העצמיים המוכרים של אטום מימן כאשר $|n\ell m
angle$

- 3. נתונה טרנספורמציה שהיוצר ההרמיטי שלה הוא T. הראו כי אם ההמלטוניאן מתחלף עם T, אז הוא בהכרח מלוכסן בבסיס המצבים העצמיים של T. הדרכה:
 - $T|t\rangle = t|T\rangle$ סמנו את המצבים העצמיים והערכים העצמיים של Tב-(א)
 - L[H,T]=0השתמשו בעובדה ש- $\{t'|[H,T]|t\}$ והשתמשו בעובדה ש-(ב)
 - 4. עבור כל אחד מהאופרטורים הבאים, קיבעו כיצד הם משתנים תחת שיקוף ותחת היפוך בזמן

$$\mathbf{S} \cdot \mathbf{S} (\mathsf{T}) \qquad \mathbf{S} \cdot \mathbf{L} (\lambda) \qquad \mathbf{S} \cdot \mathbf{r} (\lambda) \qquad \mathbf{S} \cdot \mathbf{p} (\mathsf{N})$$

5. נתונה מערכת לא מנוונת ללא ספין שההמילטוניאן שלה אינווריאנטי תחת היפוך בזמן. הוכיחו כי ניתן לבחור את הפונקציות העצמיות להיות ממשיות (בבסיס המקום).

ניסית חובה) תהודה מגנטית (חזרה על ההרצאה): 6. מאלת חובה) תהודה מגנטית השלת ספין $s=\frac{1}{2}$ נתון תחת השפעת השדה המגנטי

$$\mathbf{B}(t) = B_{\perp} \left[\cos(\omega t)\,\hat{\mathbf{x}} + \sin(\omega t)\,\hat{\mathbf{y}}\right] + B_0\hat{\mathbf{z}}$$

- S_z את ההמילטוניאן בבסיס המלכסן את (א)
- \cos \sin בלבד. (רמז: כתבו את $\sigma_z, \sigma_+, \sigma_-$ בטאו את ההמילטוניאן במונחי האופרטורים באמצעות אקספוננטים מרוכבים.)
- נסמן שעל ההמילטוניאן היא טרנספורמציה אוניטרית. הראו שעל ההמילטוניאן לעבור , $\left| ar{\psi} \right> = U \left| \psi \right>$ טרנספורמציה בצורה הבאה

$$,\bar{H}=UHU^{\dagger}+i\hbar\frac{\partial U}{\partial t}U^{\dagger}$$

על מנת לקיים את משוואת שרדינגר $\left|ar{\psi}
ight>=i\hbarrac{\partial}{\partial t}\left|ar{\psi}
ight>$ על מנת לקיים את משוואת שרדינגר

(ד) כעת נתונה הטרנספורמציה

$$.U = \exp\left(i\frac{S_z}{\hbar}\Omega_0 t\right)$$

כתבו את האופרטור U בבסיס המלכסן את S_z , וחשבו את ההמילטוניאן לאחר הטרנספורמציה. מה צריכה להיות Ω_0 כך שלאחר הטרנספורמציה נקבל המילטוניאן בלתי תלוי בזמן?

- $.ar{H}$ מצאו את האנרגיות העצמיות והמצבים העצמיים של ההמלטוניאן החדש (ה)
- ?t זמן זמן לאחר אחר און כי המערכת התחילה או $S_z=rac{\hbar}{2}$ מה הסיכוי למדוד $S_z=rac{\hbar}{2}$ לאחר אחר און (ו)

בהצלחה!