Cálculo Numérico

Faculdade de Engenharia, Arquiteturas e Urbanismo – FEAU

Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia)

V – Ajuste de curvas pelo método dos mínimos quadrados

Objetivos: O objetivo desta aula é apresentar o método dos mínimos quadrados (MMQ) como outra forma de aproximação de funções. Ao contrário do polinômio interpolador visto no capitulo anterior, agora não é necessário que o ajuste passe exatamente por cima dos pontos ajustados. Em outras palavras, com esse método encontramos uma função $\varphi(x)$ de um certo tipo pré-estabelecido (ex. reta, parábola, senoide) que melhor ajusta um conjunto de pontos ou uma função dada.

1. Introdução

Como vimos na última aula, uma forma de se trabalhar com uma função definida por uma tabela de valores é a interpolação. Contudo, a interpolação pode não ser aconselhável quando:

- 1) É preciso obter um valor aproximado da função em algum ponto fora do intervalo de tabelamento (extrapolação).
- 2) Os valores tabelados são resultado de experimentos físicos, pois estes valores poderão conter erros inerentes que, em geral, não são previsíveis.

Surge então a necessidade de se ajustar a estas funções tabeladas uma função que seja uma "boa aproximação" para as mesmas e que nos permita "extrapolar" com certa margem de segurança. Assim, o objetivo deste processo é aproximar uma função f(x) por outra função $\phi(x)$, escolhida de uma família de funções ou por uma soma de funções em duas situações distintas:

Domínio discreto: quando a função f é dada por uma tabela de valores.

Domínio contínuo: quando a função f é dada por sua forma analítica.

Veremos nesta aula o método de ajuste de curva aos pontos experimentais (caso discreto) pelo método dos mínimos quadrados!

2 Caso Discreto

O problema do ajuste de curvas no caso em que se tem uma tabela de m pontos

-				-
x_1	x_2	x_3	 x_m	
$f(x_1)$	$f(x_2)$	$f(x_3)$	 $f(x_m)$	

com $x_1, x_2, x_3, \ldots, x_m \in [a,b]$, consiste em: "escolhidas" n funções contínuas $g_1(x), g_2(x), g_3(x), \ldots, g_n(x)$, contínuas em [a,b], obter n constantes $a_1, a_2, a_3, \ldots, a_n$ tais que a função $\varphi(x) = a_1 g_1(x) + a_2 g_2(x) + a_3 g_3(x) + \ldots + a_n g_n(x)$ se aproxime ao máximo de f(x).

Este modelo matemático é linear pois os coeficientes que devem ser determinados a_1 , a_2 , a_3 , ..., a_n aparecem linearmente, embora as funções $g_1(x)$, $g_2(x)$, $g_3(x)$, ..., $g_n(x)$ possam ser funções não lineares de x, como por exemplo, $g_1(x) = x^2$, $g_2(x) = e^x$, $g_3(x) = (1+x)^2$, etc.

Surge então a primeira pergunta: Como escolher as funções contínuas $g_1(x)$, $g_2(x)$, $g_3(x)$, ..., $g_n(x)$?

Esta escolha pode ser feita observando o gráfico dos pontos tabelados (**diagrama de dispersão**) ou baseando-se em fundamentos teóricos do experimento que forneceu a tabela. Portanto, dada uma tabela de pontos $(x_1, f(x_1)), (x_2, f(x_2)),, (x_n, f(x_n))$, deve-se, em primeiro lugar colocar estes pontes num gráfico cartesiano e a partir daí pode-se visualizar a curva que melhor se ajusta aos dados.

EXEMPLO 1

Seja a tabela de pontos abaixo:

O diagrama de dispersão para esses pontos é apresentado ao lado:

Esse diagrama se assemelha muito a uma parábola com centro na origem, não e? Portanto, nesse caso, é natural escolhermos apenas uma função $g_1(x)=x^2$ e procurarmos então $\varphi(x)=ax^2$ (equação geral de uma parábola passando pela origem).

EXEMPLO 2

Se considerarmos uma experiência onde foram medidos vários valores de corrente elétrica (i) que passa por uma resistência (R) submetida a várias tensões (V), colocando os valores correspondentes de corrente elétrica e tensão em um gráfico podemos ter a figura ao lado:

Neste caso, existe uma fundamentação teórica relacionando a corrente com a tensão (V= R i; Lei de Ohm), isto é, V é uma função linear de i. Assim, $g_I(i)=i$ e $\varphi(i)=a$ $g_I(i)=a$ i. Queremos ajustar nesse caso uma reta.

Surge agora a segunda pergunta: Qual parábola com equação αx^2 melhor se ajusta ao diagrama do exemplo 1 e qual reta, passando pela origem, melhor se ajusta ao diagrama do exemplo 2?

No caso geral, escolhidas as funções $g_1(x)$, $g_2(x)$, ..., $g_n(x)$, temos de estabelecer o conceito de proximidade entre as funções $\varphi(x)$ e f(x) para obter as constantes a_1 , a_2 , a_3 , ..., a_n .

Uma idéia é impor que o desvio entre f(x) e $\varphi(x)$, ou seja, $d_k = (f(x_k) - \varphi(x_k))$ seja mínimo para todos os pontos (k = 1, 2, ..., m).

Existem varias formas de impor que os desvios sejam mínimos. Veremos nessa aula o método dos mínimos quadrados.

Seja $d_k = f(x_k) - \varphi(x_k)$ o desvio em x_k .

O método dos mínimos quadrados consiste em escolher os coeficientes a_1 , a_2 , a_3 , ..., a_n de tal forma que a soma dos quadrados dos desvios seja mínima, isto é: $\sum_{k=1}^m d_k^2 = \sum_{k=1}^m [f(x_k) - \Phi(x_k)]^2$ deve ser mínimo. A derivada tem que ser igual a zero!

Assim, os coeficientes $a_1, a_2, a_3, \dots, a_n$ que fazem com que $\varphi(x)$ se aproxime ao máximo de f(x), são os que minimizam a função:

$$F(a_1, a_2, a_3, ..., a_n) = \sum_{k=1}^{m} [f(x_k) - \varphi(x_k)]^2 = \sum_{k=1}^{m} [f(x_k) - a_1 g_1(x_k) - a_2 g_2(x_k) - a_3 g_3(x_k) - ... - a_n g_n(x_k)]^2$$

Para isto é necessário que:

$$\frac{\partial F}{\partial a_{j}}(a_{1},a_{2},a_{3},\cdots,a_{n})=0, \ j=1,2,3,...,n, \text{ isto \'e:} \qquad \qquad \text{Obs: A derivada tem que ser zero para acharmos o valor mínimo de F.}$$

$$\frac{\partial F}{\partial a_{j}}(a_{1},a_{2},a_{3},\cdots,a_{n})=$$

$$2\cdot \sum_{k=1}^{m}[f(x_{k})-a_{1}g_{1}(x_{k})-a_{2}g_{2}(x_{k})-\cdots-a_{n}g_{n}(x_{k})]\cdot[-g_{j}(x_{k})]=0, \ j=1,2,3,...,n$$
ou
$$\sum_{k=1}^{m}[f(x_{k})-a_{1}g_{1}(x_{k})-a_{2}g_{2}(x_{k})-\cdots-a_{n}g_{n}(x_{k})]\cdot[g_{j}(x_{k})]=0, \ j=1,2,3,...,n$$

Assim, tem-se o seguinte sistema de n equações lineares com n incógnitas $a_1, a_2, a_3, \dots, a_n$:

$$\begin{cases} \sum_{k=1}^{m} [f(x_k) - a_1 g_1(x_k) - a_2 g_2(x_k) - \dots - a_n g_n(x_k)] \cdot [g_1(x_k)] = 0 \\ \sum_{k=1}^{m} [f(x_k) - a_1 g_1(x_k) - a_2 g_2(x_k) - \dots - a_n g_n(x_k)] \cdot [g_2(x_k)] = 0 \\ \vdots & \vdots \\ \sum_{k=1}^{m} [f(x_k) - a_1 g_1(x_k) - a_2 g_2(x_k) - \dots - a_n g_n(x_k)] \cdot [g_n(x_k)] = 0 \end{cases}$$

Que é equivalente a:

$$\left[\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{1}(x_{k}) \right] \cdot a_{1} + \dots + \left[\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{n}(x_{k}) \right] \cdot a_{n} = \sum_{k=1}^{m} g_{1}(x_{k}) \cdot f(x_{k}) \\
\left[\sum_{k=1}^{m} g_{2}(x_{k}) \cdot g_{1}(x_{k}) \right] \cdot a_{1} + \dots + \left[\sum_{k=1}^{m} g_{2}(x_{k}) \cdot g_{n}(x_{k}) \right] \cdot a_{n} = \sum_{k=1}^{m} g_{2}(x_{k}) \cdot f(x_{k}) \\
\vdots \qquad \vdots \qquad \vdots \\
\left[\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{1}(x_{k}) \right] \cdot a_{1} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{n}(x_{k}) \right] \cdot a_{n} = \sum_{k=1}^{m} g_{n}(x_{k}) \cdot f(x_{k})$$

As equações deste sistema linear são chamadas de equações normais.

Este sistema pode ser escrito na forma matricial $\hat{A} \cdot \hat{a} = \hat{b}$

$$\begin{cases} a_{11} a_{1} + a_{12} a_{2} + \cdots + a_{1n} a_{n} &= b_{1} \\ a_{21} a_{1} + a_{22} a_{2} + \cdots + a_{2n} a_{n} &= b_{2} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} a_{1} + a_{n2} a_{2} + \cdots + a_{nn} a_{n} &= b_{n} \end{cases} \qquad \qquad \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \times \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix}$$

onde $A = (a_{ij})$ tal que $a_{ij} = \sum_{k=1}^{m} g_i(x_k) \cdot g_j(x_k) = \sum_{k=1}^{m} g_j(x_k) \cdot g_i(x_k) = a_{ji}$, ou seja, $A \neq 0$ uma matriz simétrica;

$$a_i = [a_1, a_2, ..., a_n]^T$$
 e $b = [b_1, b_2, ..., b_n]^T$ é tal que $b_i = \sum_{k=1}^m g_i(x_k) \cdot f(x_k)$.

Leitura opcional: produto escalar

Lembrando que, dados os vetores x e $y \in \Re^m$ o número real $\langle x,y \rangle = \sum_{k=1}^m x_k \cdot y_k$ é chamado de produto escalar de x por y, e usando esta notação no sistema normal $A \cdot \hat{a}_i = \hat{b}_i$ tem-se: $a_{ij} = \langle \overline{g}_i, \overline{g}_j \rangle$ e $b_i = \langle \overline{g}_i, \overline{f} \rangle$ onde:

$$\overline{g}_l$$
 é o vetor $[g_l(x_1) \ g_l(x_2) \ g_l(x_3) \ \cdots \ g_l(x_m)]^T$ e \overline{f} é o vetor $[f(x_1) \ f(x_2) \ f(x_3) \ \cdots \ f(x_m)]^T$.

Produto escalar

$$\langle \overline{g}_i, \overline{g}_j \rangle = \sum_{k=1}^m g_i(x_k)g_j(x_k).$$

Desta forma o sistema na forma matricial fica:

$$\begin{bmatrix} \langle \overline{g}_{1}, \overline{g}_{1} \rangle & \langle \overline{g}_{1}, \overline{g}_{2} \rangle & \cdots & \langle \overline{g}_{1}, \overline{g}_{n} \rangle \\ \langle \overline{g}_{2}, \overline{g}_{1} \rangle & \langle \overline{g}_{2}, \overline{g}_{2} \rangle & \cdots & \langle \overline{g}_{2}, \overline{g}_{n} \rangle \\ \vdots & \vdots & & \vdots \\ \langle \overline{g}_{n}, \overline{g}_{1} \rangle & \langle \overline{g}_{n}, \overline{g}_{2} \rangle & \cdots & \langle \overline{g}_{n}, \overline{g}_{n} \rangle \end{bmatrix} \cdot \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} \langle \overline{g}_{1}, \overline{f} \rangle \\ \langle \overline{g}_{2}, \overline{f} \rangle \\ \vdots \\ \langle \overline{g}_{n}, \overline{f} \rangle \end{bmatrix}$$

Demonstra-se que, se as funções $g_1(x)$, $g_2(x)$, $g_3(x)$, ..., $g_n(x)$ forem tais que os vetores $\overline{g}_1, \overline{g}_2, \overline{g}_3, \dots, \overline{g}_n$, sejam linearmente independentes (LI), então $\det A \neq 0$ e o sistema de equações é possível e determinado (SPD). Demonstra-se ainda que a solução única deste sistema, $a_1, a_2, a_3, \dots, a_n$ é o ponto em que a função $F(a_1, a_2, a_3, \dots, a_n)$ atinge seu valor mínimo.

OBS: Se os vetores $\overline{g}_1, \overline{g}_2, \overline{g}_3, \dots, \overline{g}_n$, forem ortogonais entre si, isto é, se $\langle \overline{g}_i, \overline{g}_j \rangle = 0$ se $i \neq j$ e $\langle \overline{g}_i, \overline{g}_j \rangle \neq 0$ se i = j, a matriz dos coeficientes A será uma matriz diagonal, o que facilita a resolução do sistema $\hat{A} \cdot \hat{a}_i = \hat{b}_i$

Na prática, o funcionamento do MMQ pode ser dividido em 4 passos:

PASSO 1 – Depois de escolhida a função ajuste $\varphi(x)$ identificar nela as funções auxiliares g(x) tal que $\varphi(x)$ seja do tipo:

$$\phi(x) = \sum_{i=1}^{n} a_i g_i(x) = a_1 g_1(x) + a_2 g_2(x) + a_3 g_3(x) \dots + a_n g_n(x) \qquad n \in \mathbf{I}$$

PASSO 2 – Montar o sistema de equações. O numero de equações do sistema igual ao numero de funções auxiliares g_i(x) (igual ao numero de incógnitas a_i)

Ex 1. No caso da reta: $\varphi(x) = a_1 + a_2 x \rightarrow g_1(x) = 1$ e $g_2(x) = x$

Teremos um sistema com 2 equações. $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ \uparrow incógnitas

Ex 2. No caso de uma parábola: $\varphi(x) = a_1 + a_2 x + a_3 x^2 \rightarrow g_1(x) = 1$, $g_2(x) = x$ e $g_3(x) = x^2$

Teremos um sistema com 3 equações. $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix}$

Ex 3. No caso de uma exponencial simples: $\varphi(x) = a_1 e^x \rightarrow g_1(x) = e^x$ Teremos um sistema com 1 equação. $a_{11} \times a_1 = b_1$ $\uparrow \\ \text{incógnita}$

PASSO 3 - Calcular os coeficientes aij e bi do passo 2. Esses coeficientes são definidos pelos seguintes somatórios e após seu calculo obteremos números.

número de pontos experimentais. $a_{ij} = \sum_{k=1}^{m} g_i(x_k) g_j(x_k) = a_{ji} \qquad b_i = \sum_{k=1}^{m} f(x_k) g_i(x_k)$

PASSO 4 - Reescrever o sistema de equações do passo 2 (agora os a_{ij} e b_i são números) e resolvêlo, por exemplo, utilizando o método de eliminação de Gauss ou algum método iterativo (Gauss-Jacobi ou Gauss-Seidel).

Exercício 1

Ajuste os dados abaixo pelo método dos quadrados mínimos utilizando:

a) uma reta
$$\phi(x) = a_1 + a_2 x \rightarrow g_1(x) = 1$$
 e $g_2(x) = x$

b) uma parábola do tipo
$$\varphi(x) = a_1 + a_2 x + a_3 x^2 \rightarrow g_1(x) = 1$$
, $g_2(x) = x e g_3(x) = x^2$

x	1	· 2	3	4	5	6	7	8
у	0.5	0.6	0.9	0.8	1.2	1.5	1.7	2.0

Solução a)

Nesse caso temos $f(x) \approx \phi(x) = a_1 + a_2 x$ o que resulta em termos $g_1(x) = 1$ e $g_2(x) = x$ Para encontrarmos a_1 e a_2 resolveremos o sistema de 2 equações abaixo:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Escrevendo o sistema em termos dos a_{ij} e b_i, ficamos assim:

Temos 8 pontos experimentais
$$\left[\sum_{k=1}^{8} g_1(x_k)g_1(x_k)\right] a_1 + \left[\sum_{k=1}^{8} g_2(x_k)g_1(x_k)\right] a_2 = \sum_{k=1}^{8} f(x_k)g_1(x_k) \\
\left[\sum_{k=1}^{8} g_1(x_k)g_2(x_k)\right] a_1 + \left[\sum_{k=1}^{8} g_2(x_k)g_2(x_k)\right] a_2 = \sum_{k=1}^{8} f(x_k)g_2(x_k)$$

Cada somatório da parte esquerda resultará em:

$$\sum_{k=1}^{8} g_{1}(x_{k}) g_{1}(x_{k}) = \sum_{k=1}^{8} (g_{1}(x_{k}))^{2} = 1 \times 1 + 1 \times$$

$$\sum_{k=1}^{8} g_2(x_k) g_1(x_k) = 1 \times 1 + 2 \times 1 + 3 \times 1 + 4 \times 1 + 5 \times 1 + 6 \times 1 + 7 \times 1 + 8 \times 1 = 36$$

$$\sum_{k=1}^{8} g_1(x_k) g_2(x_k) = 1 \times 1 + 1 \times 2 + 1 \times 3 + 1 \times 4 + 1 \times 5 + 1 \times 6 + 1 \times 7 + 1 \times 8 = 36$$

$$\sum_{k=1}^{8} g_{2}(x_{k}) g_{2}(x_{k}) = \sum_{k=1}^{8} (g_{2}(x_{k}))^{2} = 1 \times 1 + 2 \times 2 + 3 \times 3 + 4 \times 4 + 5 \times 5 + 6 \times 6 + 7 \times 7 + 8 \times 8 = 204$$

Cada somatório da parte direita resultará em:

$$\sum_{k=1}^{8} f(x_k) g_1(x_k) = 0.5 \times 1 + 0.6 \times 1 + 0.9 \times 1 + 0.8 \times 1 + 1.2 \times 1 + 1.5 \times 1 + 1.7 \times 1 + 2.0 \times 1 = 9.2$$

$$\sum_{k=1}^{8} f(x_k) g_2(x_k) = 0.5 \times 1 + 0.6 \times 2 + 0.9 \times 3 + 0.8 \times 4 + 1.2 \times 5 + 1.5 \times 6 + 1.7 \times 7 + 2.0 \times 8 = 50.5$$

Reescrevendo o sistema de equações teremos:

$$\begin{cases} 8a_1 + 36a_2 = 9.2 \\ 36a_1 + 204a_2 = 50.5 \end{cases}$$

$$\begin{cases} -36a_1 - 162a_2 = -41.5 \\ 36a_1 + 204a_2 = 50.5 \end{cases}$$

Subtraindo as duas equações encontramos:

$$a_2 = \frac{50.5 - 41.5}{204 - 162} = 0.214$$
 e $a_1 = \frac{50 - 204 \times 0.214}{36} = 0.176$

Podemos agora escrever a equação que ajusta os pontos experimentais $f(x) \approx \varphi(x) = a_1 + a_2 x$.

Resposta:

$$\phi(x) = 0.176 + 0.214 x$$

Solução b)

Nesse caso temos $f(x) \approx \varphi(x) = a_1 + a_2 x + a_3 x^2$ o que resulta em termos $g_1(x) = 1$, $g_2(x) = x$ e $g_3(x) = x^2$. De forma análoga ao caso anterior, para encontrarmos a_1 , a_2 e a_3 resolveremos o sistema de 3 equações abaixo:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Escrevendo o sistema em termos dos aii e bi, ficamos assim:

$$\begin{cases}
\left[\sum_{k=1}^{8} g_{1}(x_{k})g_{1}(x_{k})\right]a_{1} + \left[\sum_{k=1}^{8} g_{2}(x_{k})g_{1}(x_{k})\right]a_{2} + \left[\sum_{k=1}^{8} g_{3}(x_{k})g_{1}(x_{k})\right]a_{3} = \sum_{k=1}^{8} f(x_{k})g_{1}(x_{k}) \\
\left[\sum_{k=1}^{8} g_{1}(x_{k})g_{2}(x_{k})\right]a_{1} + \left[\sum_{k=1}^{8} g_{2}(x_{k})g_{2}(x_{k})\right]a_{2} + \left[\sum_{k=1}^{8} g_{3}(x_{k})g_{2}(x_{k})\right]a_{3} = \sum_{k=1}^{8} f(x_{k})g_{2}(x_{k}) \\
\left[\sum_{k=1}^{8} g_{1}(x_{k})g_{3}(x_{k})\right]a_{1} + \left[\sum_{k=1}^{8} g_{2}(x_{k})g_{3}(x_{k})\right]a_{2} + \left[\sum_{k=1}^{8} g_{3}(x_{k})g_{3}(x_{k})\right]a_{3} = \sum_{k=1}^{8} f(x_{k})g_{3}(x_{k})
\end{cases}$$

Cada somatório da parte esquerda resultará em:

$$\sum_{k=1}^{8} g_1(x_k) g_1(x_k) = \sum_{k=1}^{8} (g_1(x_k))^2 = 1 \times 1 + 1 \times 1 = 8$$

$$\sum_{k=1}^{8} g_2(x_k) g_1(x_k) = 1 \times 1 + 2 \times 1 + 3 \times 1 + 4 \times 1 + 5 \times 1 + 6 \times 1 + 7 \times 1 + 8 \times 1 = 36$$

$$\sum_{k=1}^{8} g_3(x_k) g_1(x_k) = 1^2 \times 1 + 2^2 \times 1 + 3^2 \times 1 + 4^2 \times 1 + 5^2 \times 1 + 6^2 \times 1 + 7^2 \times 1 + 8^2 \times 1 = 204$$

$$\sum_{k=1}^{8} g_1(x_k) g_2(x_k) = 1 \times 1 + 1 \times 2 + 1 \times 3 + 1 \times 4 + 1 \times 5 + 1 \times 6 + 1 \times 7 + 1 \times 8 = 36$$

$$\sum_{k=1}^{8} g_2(x_k) g_2(x_k) = \sum_{k=1}^{8} (g_2(x_k))^2 = 1 \times 1 + 2 \times 2 + 3 \times 3 + 4 \times 4 + 5 \times 5 + 6 \times 6 + 7 \times 7 + 8 \times 8 = 204$$

$$\sum_{k=1}^{8} g_3(x_k) g_2(x_k) = 1^2 \times 1 + 2^2 \times 2 + 3^2 \times 3 + 4^2 \times 4 + 5^2 \times 5 + 6^2 \times 6 + 7^2 \times 7 + 8^2 \times 8 = 1296$$

$$\sum_{k=1}^{8} g_1(x_k) g_3(x_k) g_3(x_k) = 1 \times 1^2 + 1 \times 2^2 + 1 \times 3^2 + 1 \times 4^2 + 1 \times 5^2 + 1 \times 6^2 + 1 \times 7^2 + 1 \times 8^2 = 204$$

$$\sum_{k=1}^{8} g_2(x_k) g_3(x_k) g_3(x_k) = 1 \times 1^2 + 2 \times 2^2 + 3 \times 3^2 + 4 \times 4^2 + 5 \times 5^2 + 6 \times 6^2 + 7 \times 7^2 + 8 \times 8^2 = 1296$$

$$\sum_{k=1}^{8} g_2(x_k) g_3(x_k) g_3(x_k) = 1 \times 1^2 + 2 \times 2^2 + 3 \times 3^2 + 4 \times 4^2 + 5 \times 5^2 + 6 \times 6^2 + 7 \times 7^2 + 8 \times 8^2 = 1296$$

$$\sum_{k=1}^{8} g_3(x_k) g_3(x_k) g_3(x_k) = \sum_{k=1}^{8} (g_3(x_k))^2 = 1^2 \times 1^2 + 2^2 \times 2^2 + 3^2 \times 3^2 + 4^2 \times 4^2 + 5^2 \times 5^2 + 6^2 \times 6^2 + 7^2 \times 7^2 + 8^2 \times 8 = 8772$$

$$\sum_{k=1}^{8} g_3(x_k) g_3(x_k) g_3(x_k) = \sum_{k=1}^{8} (g_3(x_k))^2 = 1^2 \times 1^2 + 2^2 \times 2^2 + 3^2 \times 3^2 + 4^2 \times 4^2 + 5^2 \times 5^2 + 6^2 \times 6^2 + 7^2 \times 7^2 + 8^2 \times 8 = 8772$$

Cada somatório da parte direita resultara em:

$$\sum_{k=1}^{8} f(x_k) g_1(x_k) = 0.5 \times 1 + 0.6 \times 1 + 0.9 \times 1 + 0.8 \times 1 + 1.2 \times 1 + 1.5 \times 1 + 1.7 \times 1 + 2.0 \times 1 = 9.2$$

$$\sum_{k=1}^{8} f(x_k) g_2(x_k) = 0.5 \times 1 + 0.6 \times 2 + 0.9 \times 3 + 0.8 \times 4 + 1.2 \times 5 + 1.5 \times 6 + 1.7 \times 7 + 2.0 \times 8 = 50.5$$

$$\sum_{k=1}^{8} f(x_k) g_3(x_k) = 0.5 \times 1^2 + 0.6 \times 2^2 + 0.9 \times 3^2 + 0.8 \times 4^2 + 1.2 \times 5^2 + 1.5 \times 6^2 + 1.7 \times 7^2 + 2.0 \times 8^2 = 319.1$$

Reescrevendo o sistema de equações teremos:

$$\begin{cases} 8a_1 + 36a_2 + 204a_3 = 9.2 \\ 36a_1 + 204a_2 + 1296a_3 = 50.5 \\ 204a_1 + 1296a_2 + 8772a_3 = 319.1 \end{cases}$$

Nesse caso utilizaremos o método direto de eliminação de Gauss para resolver o sistema de equações.

matriz sanduíche otimizada 1ª etapa de eliminação 204 1296 319.1 8772 319.1 8772 204 1296 36 204 1296 50.5 -24.706 -252 -5.8120 8 36 204 -14.823 -140 9.2 -3.133 2ª etapa de eliminação re-escrevendo o sistema de equações 204 1296 8772 319.1 $204a_1 + 1296 a_2 + 8772a_3 = 319.1$ $-24.706 a_2 - 252 a_3 = -5.812$ -24.706 -252 -5.8120 $11.193a_3 = 0.354$ 0 0 11.193 0.354

Resolvendo o sistema de baixo para cima encontramos:

$$a_3 = 0.0316$$
, $a_2 = -0.0871$ e $a_1 = 0.7587$

Podemos agora escrever a equação da parábola que melhor ajusta os pontos experimentais $f(x) \approx \varphi(x) = a_1 + a_2 x + a_3 x^2$.

Resposta:

$$\phi(\mathbf{x}) = 0.7587 - 0.0871 \,\mathrm{x} + 0.0316 \,\mathrm{x}^2$$

Exercício 2

Resolveremos agora o exemplo 1 que vimos no inicio da aula. A partir da função tabelada abaixo, desenhamos o diagrama de dispersão e percebemos que a melhor curva que ajusta os pontos seria um a parábola passando pela origem, ou seja, $f(x) \approx \varphi(x) = a_1 x^2$ (neste caso teremos apenas 1 função $g_1(x) = x^2$).

Como só temos uma função de g(x) e $f(x) \approx \varphi(x) = a_1 x^2$ temos de resolver apenas a equação e com isso encontramos diretamente o valor de a_1

$$a_{11} \times a_1 = b_1$$

$$\sum_{k=1}^{11} g_1(x_k) g_1(x_k) \times a_1 = \sum_{k=1}^{11} g_1(x_k) f(x_k)$$

Resolvendo os dois somatórios temos:

$$\sum_{k=1}^{11} \underbrace{\left(g_1(x_k)\right)^2}_{\left(\mathbf{x_k}^2\right)^2} = 1 + 0.3164 + 0.1296 + 0.0625 + 0.0081 + 0 + 0.0016 + 0.0256 + 0.0625 + 0.2401 + 1 = 2.8464$$

$$\sum_{k=1}^{11} f(x_k) \underbrace{g_1(x_k)}_{\mathbf{x_k}^2} = 2.05 + 0.6486 + 0.162 + 0.1 + 0.045 + 0 + 0.008 + 0.096 + 0.128 + 0.588 + 2.05 = 5.8756$$

Logo nossa equação é 2.8464 a = 5.8756 \longrightarrow a = 2.0642

Então $\varphi(x) = 2.0642 \ x^2$ é a parábola que melhor se aproxima dos pontos tabelados segundo o método dos mínimos quadrados.

Exercício proposto 1

Ajuste os dados abaixo pelo método dos quadrados mínimos utilizando:

- a) uma reta $\phi(x) = a_1 + a_2 x \rightarrow g_1(x) = 1$ e $g_2(x) = x$
- b) uma parábola do tipo $\varphi(x) = a_1 + a_2 x + a_3 x^2 \rightarrow g_1(x) = 1$, $g_2(x) = x$ e $g_3(x) = x^2$

X	0	1	2	3	4
у	27	42	60	87	127

Resp: a)
$$\varphi(x) = 19.6 + 24.5 x$$

b) $\varphi(x) = 28.02 + 7.64 x + 4.21 x^2$

Exercício proposto 2

O número de bactérias, por unidade de volume, existente em uma cultura após x horas é dado na tabela abaixo:

número de horas	0	1	2	3	4	5	6
número de bactérias	32	47	65	92	132	190	275

- (a) Ajuste os dados acima a curva $y = ae^{bx}$ pelo método dos mínimos quadrados.
- (b) Quantas horas seriam necessárias para que o número de bactérias por unidade de volume ultrapasse 2000?

DICA: Para usar o método dos mínimos quadrados é necessário termos $\varphi(x)$ no formato abaixo:

$$f(x) \approx \phi(x) = \sum_{i=1}^{n} a_i g_i(x) = a_1 g_1(x) + a_2 g_2(x) + a_3 g_3(x) \dots + a_n g_n(x)$$
 $n \in I$

Portanto temos que reescrever a equação proposta para o ajuste $y = a e^{bx}$

Aplicando ln dos dois lados temos: $ln(y) = ln(a e^{bx}) = ln(a) + ln(e^{bx}) = ln(a) + bx$ Fazendo $ln(y) = y^*$ e $ln(a) = a^*$ ficamos com a equação da reta ao lado: $y^* = a^* + bx$

Basta agora reescrever a tabela acima usando x e $y^* = ln(y)$ e aplicar o método MMQ. Depois de encontrarmos os valores $a^* = ln(a)$ e b escrevemos a função original $y = a e^{bx}$

Resp: a)
$$y^* = 3,469 + 0,355 x \rightarrow y = 32,104 e^{0,355 x}$$
 b) $x = \frac{\ln(\frac{y}{a})}{b} = 11,64 hs$

Exercício proposto 3

Dada a tabela abaixo, faça o gráfico de dispersão dos dados e ajuste uma curva da melhor maneira possível.

Х	0, 5	0,75	1	1, 5	2,0	2, 5	3, 0
у	-2, 8	-0, 6	1	3, 2	4, 8	6, 0	7,0