

A National Database for Solar Resource Assessment from Ground-Based Observations

James W Hall, PhD

Previous Solar Resource

Accuracy

Research Sites

- Highest accuracy
- Few sites

Custom ground stations

• Temporary sites to ground truth & tune satellite data

Satellite Data (i.e. NSRDB, SolarGIS, SolarAnywhere, etc)

- Global coverage
- Lower accuracy

Coverage

New Solar Resource

Accuracy

New Solar Resource: Ground
Measurements from Professional Sites

Complete US Coverage 2005-Present

More Accurate than the NSRDB

US Ground-Based Solar Irradiance Database - GSID

Satellite Data (NSRDB, 3-tier, SolarGIS, SolarAnywhere, etc)

Coverage

Satellite vs Ground Observations

Satellite-Based Solar Resource

A series of complex models converts cloud images into irradiance estimates¹.

The Ground-Based Solar Irradiance Database (GSID)

Actual surface measurements from professional sites.

warning: actual measurements may contain errors

Satellite vs Ground Observations

The US Ground-Based Solar Irradiance Database (GSID)

Actual surface measurements from professional sites.

warning: actual measurements may contain errors

Al Quality
Control

GSID

Rather than rejecting these measurements because some may contain errors,

Artificial Intelligence

is used to filter out the errors.

US GSID Complete Coverage

Ground-Based Observations

from ~ 100 overlapping networks, over 7000 US sites.

Professionally Operated Sites

maintained by Federal Agencies,
States and Universities

37 km Average Spacing

US GSID

Better Spatial Resolution in Key Areas

US GSID *No Parallax Errors*

The Back Story

AI Quality Control

Sensor Fusion - Data from multiple sensors seeing the same event are combined in such a way that the result has less uncertainty.

Self-Driving Cars,

for example, filter and fuse data from different sensors to plan vehicle path and speed.

US GSIDAl filtering and Quality Control

Sensor Fusion

can sometimes be accomplished with simple filters and models.

In this case, we identified a

Clear Sky Day near Sacramento.

All GHI observations in the area should be similar. One site was malfunctioning and removed from the data stream until repaired.

US GSID

Al filtering and Quality Control

Clear Sky Events

Plotting the historical data shows the upper limits for solar radiation for any location and day of year.

Observations outside this envelope are probably errors.

US USID Al filtering and Quality Control

Consistent deviations from the Hourly Clear Sky Envelope can help identify poor sensor alignment or sensor shading.

US USID

Al filtering and Quality Control

4 neighboring sites in Mississippi track together...

until one site (red) fails

The sensor was repaired/replaced, but now it does not track with the others – could be miscalibration, or the other sensors might all be soiled

US USID

Al filtering and Quality Control

Precipitation History shows significant rain events during this period making sensor soiling unlikely. Site in red was excluded until it was fixed.

US USID

Validation of NREL's NSRDB

NREL's National Solar Radiation

Database was Validated by comparing satellite estimates to research-quality data from the NOAA's SURFRAD network.^{3,4}

Fort Peck, MT
Sioux Falls, SD
Penn State, PA
Boulder, CO

Bondville, IL

Goodwin Creek, MS

US GSID Validation

Global Horizontal Solar Irradiance National Solar Reduction Database Physical Solar Model

*One small difference: Both validations excluded low-irradiance observations. We defined these as GHI < 50W/m2 at SURFRAD sites. The original NSRDB procedure defined them as zenith angles >75 degrees (sun low in sky).

The US Ground-Based Solar Irradiance Database followed this same validation methodology

US GSID
Validation

The GSID had
Lower Bias Error
than the NSRDB for hourly,
daily, monthly and annual
observations

US GSID
Validation

US GSID is More Accurate than the NSRDB

- ✓ Significantly lower Mean Absolute Error hourly & daily
 - ✓ Significantly lower Uncertainty hourly & daily
 - ✓ Similar monthly & annual values

Solar Resource Comparison

US Ground-Based Solar Irradiance Database:

✓ Demonstrated higher temporal accuracy

Demonstrated higher spatial accuracy

Summary

New Solar Resource
Available From
Ground Observations

Quality Control
Using AI
Technology

Validated - Accuracy Better Than NSRDB Satellite Observations

Stand Alone Resource or Combine with Other Solar Data

Thanks

Does anyone have questions?

Gridded daily GHI data for 2005-2018 can be downloaded for free on our website.

For additional data or information visit us at www.SolarDataWarehouse.net or call James Hall at 970.286.8238

References & Credits

- [1] Andrew Clifton, Bri-Mathias Hodge, Caroline Draxl, Jake Badger & Aron Habte (2017). "Wind and solar resource data sets"
- [2] Anders Nottrott & Jan Kleissi (2012). "Validation of the National Solar Radiation Database in California"
- [3] Sengupta, M.; Weekley, A.; Habte, A.; Lopez, A.; Molling, C.; Heidinger, A. (2015). "Validation of the National Solar Radiation Database (NSRDB) (2005–2012)
- [4] Aron Habte, Manajit Sengupta, Anthony Lopez (2017). Evaluation of the National Solar Radiation Database (NSRDB Version 2): 1998–2015

Graphic images courtesy of Slidesgo.com, New York Mesonet, West Texas Mesonet, US Climate Reference Network

