Programmation fonctionnelle - TD5

23 février 2022

1 Croissance de fonction $[\star]$

Soit la fonction f définie par $f(n) = x^2 + 2x + 3$. Prouvez

- 1. $f \in \mathcal{O}(n^2)$.
- 2. $f \in \mathcal{O}(n^3)$.
- 3. $f \notin \mathcal{O}(n)$.

2 Comparaison asymptotique et composition $[\star\star]$

Prouvez les énoncés suivants :

- 1. Soient les fonctions f, f', g et g' telles que $f \in \mathcal{O}(g)$ et $f \in \mathcal{O}(g')$, alors $f + f' \in \mathcal{O}(\max(g, g'))$, et $f \times f' \in \mathcal{O}(g \times g')$.
- 2. Soient les fonction f, g et h telles que $f \in \mathcal{O}(g)$ et $g \in \mathcal{O}(h)$, alors $f \in \mathcal{O}(h)$.

3 Complexité d'un algorithme récursif $[\star\star]$

Une liste d'entiers est dîte superdécroissante si chacun de ses éléments est strictement plus grand que la somme de tous ceux qui le suivent. Par exemple la liste [21,10,5,3,1] est superdécroissante, tandis que la liste [8,5,3,1] ne l'est pas. La fonction superdecreasing teste si une liste est superdécroissante :

```
def sum(1: List[Int]): Int = l match
  case Nil ⇒ 0
  case n :: xs ⇒ n + sum(xs)

def superdecreasing(l: List[Int]) : Boolean = l match
  case Nil ⇒ true
  case n :: xs ⇒ n > sum(xs) && superdecreasing(xs)
```

- 1. Donnez une expression récursive de $r_{sum}(n)$, le nombre de réductions nécessaires pour évaluer la fonction sum sur une liste de taille n.
- 2. Donnez une expression explicite (non récursive) de $r_{sum}(n)$.
- 3. Faite de même pour la fonction superdecreasing, et vérifiez qu'elle a une complexité temporelle quadratique en la longueur de la liste .
- 4. Écrivez une fonction équivalente à superdecreasing de complexité $\mathcal{O}(n)$ (indication : vous pouvez utilisez la fonction reverse, qui a une complexité $\mathcal{O}(n)$)

4 Exponentiation rapide [★]

L'algorithme suivant utilise le principe diviser pour régner afin de calculer x^y (on suppose que x et y sont suffisamment petits pour éviter des dépassement de capacité) :

```
\begin{array}{lll} \textbf{def} \ \ pow(x: \ Int \ , \ y: \ Int \ ): \ Int \ = \\ \textbf{if} \ \ y == 0 \ \ \textbf{then} \ \ 1 \ \ \textbf{else} \\ \textbf{val} \ \ p = pow(x \ , \ y \ / \ 2) \\ \textbf{if} \ \ y \ \% \ \ 2 == 0 \ \ \textbf{then} \ \ p \ * \ p \ \ \textbf{else} \ \ p \ * \ p \ * \ x \end{array}
```

- 1. Donnez une expression récursive de $r_{pow}(n)$, le nombre de réductions nécessaires pour évaluer pow(x,n).
- 2. Déterminez la complexité temporelle de pow(x,n) en fonction de la valeur de n, et de la taille de l'entrée.

5 Suite de Padovan $[\star\star]$

Le programme suivant calcule le nième nombre de la suite de Padovan :

```
def padovan(n: Int) : Int =
  if n < 0 then throw new IllegalArgumentException
  else if n < 3 then 1 else padovan(n-2) + padovan(n-3)</pre>
```

- 1. Le master theorem permet-il de déterminer la complexité de ce programme? Expliquez.
- 2. Déterminez la complexité temporelle de cette fonction (indication : dessinez l'arbre des appels récursifs et déterminez sa taille en fonction de n).
- 3. Donnez une fonction qui calcule le même résultat en $\mathcal{O}(n)$.

6 Propriétés de la croissance asymptotique $[\star\star\star]$

Prouvez les énoncés suivants :

- 1. Pour toutes valeurs 1 < a et 1 < b, $log_a(n) \in \mathcal{O}(\log_b(n))$ (notez que cette propriété est vraie même si a < b).
- 2. Pour toutes valeurs a et b telles que $1 < a < b, x^a \in \mathcal{O}(x^b)$ et $x^b \notin \mathcal{O}(x^a)$.
- 3. Pour toutes valeurs a et b telles que $1 < a < b, a^x \in \mathcal{O}(b^x)$ et $b^x \notin \mathcal{O}(a^x)$.
- 4. Pour toutes valeurs 0 < a et 1 < b, $x^a \in \mathcal{O}(b^x)$ et $b^x \notin \mathcal{O}(x^a)$.