Técnicas para Big Data

Clase 06 - Web Semántica

Outline

Introducción a Bases de Datos de Grafos

Web Semántica SPARQL

NoSQL

NoSQL

- Menos restricciones que un esquema relacional
- "Schemaless"
- Facilidad para distribuir

NoSQL Tipos de NoSQL

NoSQL Tipos de NoSQL

- Bases de datos de Documentos
- Bases de datos Key Value
- Bases de datos de Grafos
- Bases de datos orientadas a columnas

Casos de Uso

Casos de Uso

- Redes sociales
- Provenance
- Algoritmos de rutas
- Muchos otros...

Modelo

- Conjunto de Nodos \it{V}
- Conjunto de aristas $E \subseteq V \times V$
- Nodos y aristas pueden tener atributos
- Consultas en base a patrones

Si se puede modelar con una base de datos relacional, ¿por qué existen las bases de datos de grafos?

- Están orientadas a encontrar relaciones rápidamente.
- Bases de datos relacionales son muy generales, las bases de datos de grafos son un subconjunto "optimizado"

Grafos vs JSON / XML

JSON/XML	Grafos
Información jerárquica	Información sin jerarquía
Lectura humana y por computador	Principalmente lectura por computador
Comunicación entre aplicaciones	Pensada para consultas de relaciones
Acoplamiento a la Web y HTML	Se puede modelar sobre BD relacional

Outline

NoSQL **Web Semántica** SPARQL

¿Se puede consultar la Web como una base de datos? ¿De qué forma sería posible?

- ¿Por qué consultar automáticamente la Web?
- ¿Qué es lo que hace Google?

- Existen documentos legibles por humanos:
 - XML
 - HTML
- Queremos documentos legibles por computadores

```
<html>
 <body>
   <h1>My webpage!</h1>
   Hi! My name is Raymundo Lizama and this is
     my webpage.
   If you want to contact me,
     <a href=mailto:raymundo@uai.cl>send me an
     email</a>
   <a href="papers">Here</a> are some
     papers I've collaborated in in the context
     of my research with
     <a href="http://adriansoto.cl">
     Adrián Soto Suárez.</a>
   <a href="dogpictures">Here</a> are some
     pictures of my dog.
```

- Queremos que la web tenga datos además de información HTML
- Los documentos hablan sobre entidades
- Las entidades se modelan como un grafo
- Las entidades tienen un identificador único (URI)
- Las entidades tienen relaciones entre sí, y también llevan una URI

Resource Description Framework (RDF)

Representación de Triples

Sujeto	Predicado	Objeto
example:p001	foaf:name	"Katalina Arteaga"
example:p002	foaf:name	"Miguel Romero"
example:p001	example:studentOf	example:p002
example:p002	foaf:worksAt	example:u001
example:u001	rdfs:label	"UAI"

Obs example, foaf y rdfs son abreviaciones de prefijos

example:p001 = <http://example.org/p001>

Resource Description Framework (RDF)

Ontologías

Ontologías

- Vocabulario común para definir relaciones
- Ejemplo: FOAF (Friend of a Friend)
 - URI: http://xmlns.com/foaf/0.1/ (Prefijo)
 - foaf:name (abreviación de http://xmlns.com/foaf/
 0.1/name>)
 - foaf:knows
 - •
- Otros ejemplos: OWL, BabelNet, BioPAX...

RDF

RDF

- Datos distribuidos
- Representación de la Web como un grafo
- Utilizadas por miles de personas

Lenguaje de consultas para Bases de Datos RDF

Lenguaje de consultas para Bases de Datos RDF

SELECT ?x ?y ?z WHERE { ?x ?y ?z }

SPARQL Ejemplo

SPARQL Ejemplo

```
SELECT ?name WHERE {
    ?universidad rdfs:label "UAI" .
    ?prof foaf:worksAt ?universidad .
    ?prof foaf:name ?name
}
```

Ejemplo

"Todos los profesores que hacen clases en la UAI"

```
SELECT ?name WHERE {
    ?universidad rdfs:label "UAI" .
    ?prof foaf:worksAt ?universidad .
    ?prof foaf:name ?name
}
```

Web Semántica

Web Semántica

- La idea es usar toda la información de la Web como si fuera un grafo.
- Esto implica:
 - Estándar para publicar datos (RDF)
 - Estándar para consultar datos
 - Lidiar con la arquitectura y escala de la Web
- Tópico de investigación importante a nivel mundial

Outline

NoSQL Web Semántica SPARQL

SPARQL

SPARQL

- Es el lenguaje de consultas de la Web Semántica
- Se basa en Graph Patterns

SPARQL

```
SELECT ?var1 ... ?varn WHERE {
     <Graph Pattern>
}
```

Se retornan todos los mappings que cumplan con la expresión señalada en < Graph Pattern>

Conjunciones

```
SELECT * WHERE {
  ?U :name ?N .
  ?U :email ?E .
  ?U :phoneNumber ?P
}
```

- Conjunciones
- Grupos

```
SELECT * WHERE {
  ?U :name ?N .
  {
    ?U :email ?E .
    ?U :phoneNumber ?P
  }
}
```

- Conjunciones
- Grupos
- Opcionales

```
SELECT * WHERE {
  ?U :name ?N .
  OPTIONAL {
    ?U :email ?E .
    ?U :phoneNumber ?P
  }
}
```

- Conjunciones
- Grupos
- Opcionales
- Anidación de opcionales

```
SELECT * WHERE {
 ?U :name ?N .
 OPTIONAL {
  ?U :email ?E .
  OPTIONAL {
   ?U :phoneNumber ?P
```

- Conjunciones
- Grupos
- Opcionales
- Anidación de opcionales
- Filtrados (selección)
- Unión
- •

```
SELECT * WHERE {
 ?U :name ?N .
 OPTIONAL {
  ?U :email ?E .
  OPTIONAL {
   ?U :phoneNumber ?P
 FILTER (contains(?N,
 "Letelier")
}
```

Se hace match de una expresión con los triples de la base de datos

Observación: en SPARQL se consultan Grafos, pero una query con SELECT retorna **Mappings**!

?universidad rdfs:label "UAI" .

?universidad rdfs:label "UAI" .

?prof foaf:worksAt ?universidad .

?prof foaf:worksAt ?universidad .

?prof foaf:name ?name

?prof foaf:name ?name

Carlos Villanueva juega en ?equipo

Ejemplo

Ejemplo

Ejemplo

Ejemplo

A partir de ahora, los ejemplos usarán los prefijos respectivos

Ejemplo

A partir de ahora, los ejemplos usarán los prefijos respectivos

Otro ejemplo

Otro ejemplo

Filter

Filter

Se filtran los mappings arrojados por un Graph Pattern

Filter Ejemplo

Filter Ejemplo

```
# Todas las comunas de Chile, pero solamente
retornamos los labels en inglés
SELECT ?label
WHERE
    ?comunasdechile rdfs:label "commune of
Chile"@en .
    ?comuna wdt:P31 ?comunasdechile .
    ?comuna rdfs:label ?label
    FILTER(lang(?label) = "en")
}
```

Filter Otro ejemplo

Filter Otro ejemplo

Optional

Optional

- Se añade una cláusula al graph pattern
- Si hay mappings que no hacen match dentro de la cláusul opcional, no se elimina el resultado

Optional

```
# Las selecciones nacionales de fútbol junto a su
cuenta de twitter, si es que tienen

SELECT ?seleccion ?label ?twitter WHERE {
    ?seleccion wdt:P31 wd:Q6979593 .
    ?seleccion rdfs:label ?label .
    OPTIONAL {?seleccion wdt:P2002 ?twitter}
    FILTER(lang(?label) = "en")
}
```

Union

Se unen resultados de dos Graph Patterns

Union Ejemplo

Union

Ejemplo

```
# Comunas de Chile y Argentina
SELECT ?comuna ?label WHERE
{
    ?comunasdechile rdfs:label "commune of Chile"@en .
    ?comuna wdt:P31 ?comunasdechile .
    ?comuna rdfs:label ?label
    FILTER(lang(?label) = "en")
   } UNION {
    ?comuna wdt:P31 wd:Q515 .
    ?comuna wdt:P17 wd:Q414 .
    ?comuna rdfs:label ?label
    FILTER(lang(?label) = "en")
```

Construct

Construct

En vez de retornar mappings, se retornan grafos

Construct Ejemplo

Construct

Ejemplo

```
# Grafo con todas las comunas de Chile

CONSTRUCT { ?comuna ex:nombre_comuna ?label } WHERE
{
     ?comunasdechile rdfs:label "commune of Chile"@en .
     ?comuna wdt:P31 ?comunasdechile .
     ?comuna rdfs:label ?label
}
```

Más SPARQL

Más SPARQL

Existen muchos otros operadores de SPARQL:

- SERVICE
- BIND
- COUNT
- DISTINCT
- FROM, FROM GRAPH
- Property Paths
- •

SPARQL y SQL

Comparación

SPARQL y SQL

Comparación

SPARQL	SQL
Basic Graph Patterns	Similar a hacer un Join
SELECT ?v1 ?vn	SELECT v1,, vn
Operador OPTIONAL	Operador OUTER JOIN
FILTER	Selección del álgebra relacional
DISTINCT	DISTINCT
UNION	UNION

SPARQL Endpoints

SPARQL Endpoints

- Un Endpoint de SPARQL es un servicio que permite recibir consultas en SPARQL y retornar los resultados.
- Permiten distribuir las bases de datos en muchos servidores.
- Algunos endpoints:
 - DBPedia
 - Yago
 - DBLP
 - WikiData

• . . .

Service

Service

Operador que permite consultar varios endpoint en una consulta

Service

Ejemplo

Service Ejemplo

```
SELECT ?name WHERE
{
    <http://example.org/myfoaf/I> foaf:knows ?person .
    SERVICE <http://people.example.org/sparql> {
        ?person foaf:name ?name
    }
}
```

Más acerca de SPARQL

- SPARQL 1.1: https://www.w3.org/TR/sparql11-query/
- Semántica de SPARQL: http://users.dcc.uchile.cl/ ~cgutierr/ftp/sparql_semantics.pdf
- Endpoint de WikiData: https://query.wikidata.org/

Técnicas para Big Data

Clase 06 - Web Semántica