

DEUTSCHE DEMOKRATISCHE REPUBLIK



# PATENTSCHRIFT

(12) Wirtschaftspatent

DD (11) 236 745 A1

Erteilt gemäß § 17 Absatz 1 Patentgesetz

4(51) C 08 G 18/18

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

---

(21) WP C 08 G / 261 865 2 (22) 11.04.84 (44) 18.06.86

---

(71) Technische Universität Dresden, 8027 Dresden, Mommsenstraße 13, DD  
(72) Noack, Rainer, Dr. rer. nat.; Schwetlick, Klaus, Prof. Dr. rer. nat. habil., DD

---

(54) Verfahren zur Polymerisation von Isocyanaten (IV)

---

(57) Die Erfindung beschreibt Katalysatoren zur Polymerisation von organischen Isocyanaten zu isocyanuratgruppenhaltigen Verbindungen. Die neuen Katalysatoren sind Stoffe, die in einem Molekül tertiäre Aminogruppen und mindestens eine Hydroxymethylamingruppe enthalten. Diese Katalysatoren besitzen eine hohe Aktivität bei der Polymerisation von Isocyanaten zu Isocyanuratpolyisocyanaten, bei der Herstellung von Polyisocyanuratschaum und bei der Einführung von Isocyanuratgruppen in andere Polyurethanskunststoffe.

ISSN 0433-6461

5 Seiten

**Erfindungsanspruch:**

1. Verfahren zur Polymerisation von organischen Isocyanaten zu Isocyanurat- und gegebenenfalls Carbodiimidgruppen enthaltenden Verbindungen, gekennzeichnet dadurch, daß als Katalysatoren Verbindungen eingesetzt werden, die in einem Molekül über mindestens eine basische tertiäre Aminogruppe als auch über eine Hydroxymethylaminoalylgruppe der Struktur verfügen.



2. Verfahren gemäß Punkt 1, gekennzeichnet dadurch, daß die Katalysatoren Hydroxymethylaminiderivate nachstehender Struktur sind:



wobei R<sup>1</sup> vorzugsweise Alkyl, Cycloalkyl, Aralkyl, Aryl, Dialkylaminoalkyl oder R<sub>2</sub><sup>2</sup>-(A)-, R<sup>2</sup> vorzugsweise R<sup>1</sup> oder mit sich selbst bzw. R<sup>1</sup> zu einem heterocyclischen Rest verbunden ist und A gleich (CHR<sup>1</sup>)<sub>n</sub> oder -(CHR<sup>1</sup>)<sub>n</sub>X(CHR<sup>1</sup>)<sub>n</sub> ist (X = O, S, NR<sup>1</sup>, n = 1-20).

3. Verfahren gemäß Punkt 1 und 2, gekennzeichnet dadurch, daß die Katalysatoren zur Herstellung von Isocyanuratpolyisocyanatlösungen Verwendung finden.
4. Verfahren gemäß Punkt 1 und 2, gekennzeichnet dadurch, daß die Katalysatoren zur Herstellung von Polyisocyanurat- und/oder Polyurethanschaumstoffen verwendet werden.

**Anwendungsgebiet der Erfindung**

Die vorliegende Erfindung betrifft die Herstellung und Verwendung von neuartigen Katalysatoren und deren Verwendung zur Polymerisation von Isocyanaten zu Isocyanuratgruppen und gegebenenfalls Carbodiimidgruppen aufweisenden Polyisocyanaten, Polyisocyanuratschaumstoffen und anderen Polyurethanskunststoffen.

**Charakteristik der bekannten technischen Lösungen**

Es ist bekannt, daß Isocyanate mit Hilfe von Katalysatoren in Isocyanurate überführt werden können. Gemäß dem Stand der Technik werden zahlreiche Katalysatoren für die Cyclisierung und Polymerisation von Isocyanaten beschrieben. Als Beispiele seien genannt: starke Basen wie quarternäre Ammoniumhydroxide, -alkoxide, -phenolate, -carboxylate, Alkalimetallsalze von Alkoholen, Phenolen, Amiden, Imiden und Lactamen; weiterhin Alkalimetall- und Metallsalze von Carbonsäuren, metallorganische Salze, Phosphine, substituierte Hexahydrotriazine, Phenolmannichbasen und andere. Eine große Anzahl von Katalysatorsystemen ist auf der Grundlage von basischen tertiären Aminen und geeigneten Cokatalysatoren aufgebaut worden, beispielsweise mit tert. Aminen und Oxiranen, Aziridinen, cyclischen Carbonaten, Lactonen, Hexahydrotriazinen, -s-Diketonen, Aldehyden, Oximen, Alkoholen, Phenolen, Urethanen und Allophanaten. Dabei sind oft zwitterionische Intermediate die wirksamen Verbindungen, die auch direkt als solche eingesetzt werden können.

Es ist ebenfalls möglich, Cyclisierungs- und Polymerisationsreaktionen von Isocyanaten durch saure Katalysatoren, wie AlCl<sub>3</sub>, ZnCl<sub>2</sub>, BF<sub>3</sub> und andere zu befördern. Die anionische Aktivierung der Isocyanuratbildung durch basische Salze ist im allgemeinen recht wirksam, aber mit einer Reihe von Beschränkungen behaftet, die die begrenzte Löslichkeit der Salze im Reaktionssystem, die zum Teil extreme Aktivität und die damit verbundene schlechte Dosierbarkeit sowie die Störanfälligkeit gegen Verunreinigungen betreffen. Katalytische Systeme aus tertiären Aminen und Cokatalysatoren, insbesondere Epoxiden sind ebenfalls besonders geeignet, wobei die bevorzugte Verwendung von Diazabicyclooctan zu einer ausreichenden Aktivität führt und überschüssiges Epoxid unter Bildung von Oxazolidonstrukturen eingebaut wird. Weiterhin sind aus Aminen, Epoxiden und H-aciden Verbindungen in einer Vorreaktion hergestellte quarternäre Ammoniumverbindungen empfohlen worden. Sie erleiden aber bei der Lagerung durch Zersetzungreaktionen Aktivitätsverluste, was wiederum eine genaue Dosierung problematisch macht.

Hohe Isocyanatausbeuten bei einfacher Reaktionsführung ergeben die stark basischen N,N',N'-Tris-(dialkylaminoalkyl)-1,3,5-hexahydrotriazine oder Mannichbasen von Phenolen, z. B. 2,4,6-Tris-(dimethylaminomethyl)-phenol. Diese Stoffklassen enthalten Katalysator und Cokatalysator in einem Molekül. In Kombination mit gewissen Alkoholen oder s-Triazinen werden diese Katalysatoren auch zur Herstellung von Carbodiimiden aufweisenden Schaumstoffen benutzt, die vorher nur über spezielle Phospholenoxyde zugänglich waren. Ein hoher Gehalt an Isocyanurat- und Carbodiimidgruppen ist wegen der damit verbundenen Erhöhung der Flammwidrigkeit und Temperaturbeständigkeit häufig sehr erwünscht. Die Anwendung der aufgeführten Katalysatoren gehört zum Stand der Technik, entspricht aber in vielen Fällen nicht den technischen, örtlichen oder rohstoffseitigen Gegebenheiten bei der Herstellung von Isocyanurat- und gegebenenfalls carbodiimidgruppenhaltigen Polyurethanprodukten.

**Ziel der Erfindung**

Aufgabe der vorliegenden Erfindung war es, neuartige und leicht zugängliche Katalysatoren für die Polymerisation von Isocyanaten zu finden, die die Herstellung von Isocyanurat- und gegebenenfalls Carbodiimidgruppen aufweisenden Polymerisationsprodukten ermöglichen.

### Darlegung des Wesens der Erfindung

Gegenstand der vorliegenden Erfindung ist die Herstellung und Verwendung von neuartigen Katalysatoren für die Polymerisation von organischen Isocyanaten.

Die neuartigen Katalysatoren sind dadurch gekennzeichnet, daß sie in einem Molekül über mindestens eine tertiäre Aminogruppe sowie über eine Hydroxymethylamingruppe verfügen.

Diese Kombination führt zu außerordentlich aktiven Katalysatoren der Isocyanuratbildung. Der intramolekulare Effekt ist überraschend und war auf Grund der Kenntnisse über die katalytische Polymerisation von Isocyanaten nicht erwartet worden. Gegenüber vergleichbaren nichtsalzartigen Katalysatoren des Standes der Technik, wie z. B. Aminoalkohol, Phenolmannichbasen, subst. Hexahydrotriazinen sowie den ungekoppelten System tert. Amin/Hydroxymethylamin liegt die katalytische Aktivität der erfindungsgemäßen Stoffe insbesondere bei der Polymerisation von aromatischen Isocyanaten wesentlich höher. Darüber hinaus lassen sich auch andere Isocyanate tri- oder polymerisieren. Bei erhöhter Temperatur wird gleichzeitig in gewissem Ausmaß die Bildung von Carbodiimidgruppen und deren Reaktionsprodukte bewirkt.

Beispiele für die erfindungsgemäßen Katalysatoren entsprechen bevorzugt der allgemeinen Formel I und stellen beispielsweise Reaktionsprodukte von tertiären Aminogruppen aufweisenden primären und sekundären Aminen mit Formaldehyd dar.



Die Position der tertiären Aminogruppe und deren Struktur beeinflußt die katalytische Aktivität der erfindungsgemäßen Stoffe erheblich, so daß unterschiedliche Wirksamkeiten einstellbar sind.

Für die angegebenen Reste sind beispielhaft folgende Gruppen anzusetzen:

|       |                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------|
| $R^1$ | = $R^2$ , H, Alkyl, Cycloalkyl, Aralkyl, Aryl, Dialkylaminoalkyl, $R_2^2$ (A)-, $R^2O$ (A)-, $R^2OOC$ (A)-, |
| $R^2$ | = $R^1$                                                                                                     |
| $R^2$ | = verbundene Reste, wie $-(CH_2)_m-$ , $-(CH_2)_m-XCH_2CH_2-$                                               |
| A     | = $(CHR^1)_n$ , $-(CHR^1)_n-X-(CHR^1)_m$                                                                    |
| X     | = O, S, NR <sup>1</sup>                                                                                     |
| n     | = 1-20                                                                                                      |
| m     | = 2-5                                                                                                       |

Gegebenenfalls können die genannten Gruppen noch indifferente Substituenten tragen oder auch weitere katalytisch beziehungsweise cokatalytisch wirkende Substituenten besitzen, wie z. B. tertiäre Aminogruppen, Urethangruppen, Alkoholgruppen, Phenolgruppen und andere.

Bevorzugt sind Verbindungen, die sich vom Formaldehyd ableiten.

Die erfindungsgemäßen Katalysatoren sind nach literaturbekannten Verfahren zur Herstellung von Hydroxymethylaminen leicht zugänglich. Spezielle Angaben hierzu findet man beispielsweise in:

Houben-Weyl, Methoden der Organischen Chemie, Band 11/2 und 14/2,

M. Zief, J. P. Mason, J. Org. Chem. 8, 1 (1943),

H. Hellmann, G. Opitz, Chem. Ber. 89, 91 (1956).

Die erfindungsgemäßen Katalysatoren sind vorwiegend flüssige Substanzen, die durch Elementaranalyse, Brechungsindex, spektroskopische Methoden oder Bestimmung des Aminäquivalents charakterisiert werden können. Die Verbindungen sind bis zu einem gewissen Grade stabil und lagerfähig. Der größte Teil der erfindungsgemäßen Verbindungen war bislang unbekannt und wurde erstmalig hergestellt.

Durch die Verwendung der erfindungsgemäßen Katalysatoren gelingt es in einfacher Weise Diisocyanate zu technisch interessanten Isocyanuratpolyisocyanaten umzusetzen. Die gezielte Cyclotrimerisierung von Diisocyanaten zu Isocyanuratpolyisocyanaten erfolgt entsprechend anderer katalytischer Verfahren des Standes der Technik lösungsmittelfrei oder in Gegenwart von inerten Lösungsmitteln bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei 20-80°C, und Reaktionszeiten zwischen 0,1 und 20 h. Die notwendige Katalysatorkonzentration ist von Fall zu Fall verschieden und liegt etwa zwischen 0,01 und 2,0%. Nach Erreichen des bevorzugten Umsatzes kann die Reaktion durch Zugabe von sauren Stoffen, wie Benzoylchlorid, Toluolsulfochlorid, Phosphorsäure, HCl etc., beendet werden.

Die so hergestellten Produkte können nach der gegebenenfalls erfolgten Entfernung der Restmengen an freien Diisocyanaten als physiologisch unbedenkliche Härterkomponenten für Polyurethanlacke und -klebstoffe verwendet werden. Durch Umsetzung mit geeigneten wenig verzweigten Polyolen sind Einkomponentenlacke für den Holz- und Bautenschutz erhältlich.

Nach der Blockierung der freien NCO-Gruppen mit Phenolen, Lactamen, Oximen und ähnlichen Mitteln sind wertvolle Isocyanatabspalter für Draht- und Gewebelacke und weitere spezielle Anwendungsbiete zugänglich.

Lösungsmittelfreie Lösungen von Isocyanuratpolyisocyanaten eignen sich zum Einbringen von thermisch stabilen Isocyanuratgruppen in beliebige Polyurethanskunststoffe insbesondere in Polyurethanschäume.

Ein weiteres Anwendungsgebiet der Erfindung ist die Herstellung von gegebenenfalls schwerentflammbaren, urethangruppenhaltigen Polyisocyanuratschaumstoffen durch Umsetzung von organischen Isocyanaten und Polyhydroxylverbindungen in Gegenwart von Katalysatoren, Treibmitteln, Hilfsstoffen und Zusatzstoffen, daß dadurch gekennzeichnet ist, daß als Katalysatoren die erfindungsgemäßen Stoffe verwendet werden. Die so hergestellten Schaumstoffe weisen gleichzeitig einen erhöhten Gehalt an Carbodiimidgruppen und deren Reaktionsprodukten auf. Üblicherweise kommen dabei 0,4-5,0% Katalysator zum Einsatz, gegebenenfalls in Kombination mit anderen Polymerisationskatalysatoren. Die verwendeten Polyisocyanate, Polyhydroxylverbindungen, Treibmittel, Schaumstabilisatoren, Flammenschutzmittel entsprechen den in der Polyurethanchemie üblichen Stoffen. Die Herstellung kann nach den bekannten Methoden des Standes der Technik erfolgen.

**Ausführungsbeispiele**

Herstellung von erfindungsgemäßen Katalysatoren

A) 28,8 T N,N-Dimethyl-N'-Isopropyl-propandiamin-(1,3) wird in 30 T Benzol gelöst und mit 6,5 T Paraformaldehyd unter leichtem Erwärmen behandelt. Nachdem der Paraformaldehyd weitgehend in Lösung gegangen ist, wird filtriert und im Vakuum von Lösungsmittel befreit. Der erhaltene Rückstand wird folgendermaßen charakterisiert:

Ausbeute: 95 %

$n_D^{20}$ : 1,4439

Struktur:  $\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{N}(\text{Pr}^i)\text{-CH}_2\text{OH}$  (30/5)

In analoger Weise werden die nachfolgenden Hydroxymethylamine hergestellt:

|    | Hydroxymethylamin                                                                                     | Nr.  | $n_D^{20}$ |
|----|-------------------------------------------------------------------------------------------------------|------|------------|
| B) | $\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{NMe-CH}_2\text{OH}$                               | 30/2 | 1,4546     |
| C) | $(\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2)_2\text{N-CH}_2\text{OH}$                             | 30/3 | 1,4738     |
| D) | $\text{Me}_2\text{NCH}_2\text{CH}_2\text{OCH}_2\text{NBu-CH}_2\text{OH}$                              | 30/4 | 1,4449     |
| E) | $\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{N}(\text{C}_6\text{H}_{11})\text{-CH}_2\text{OH}$ | 30/8 | 1,4845     |

**Beispiel 1–6**

5,0 ml Phenylisocyanat werden in 50 ml trockenem Methylethylketon gelöst und bei 50°C mit den in Tab. 1 angegebenen Katalysatoren versetzt. Durch Titration des NCO-Gehaltes kann die Umsetzung verfolgt werden. Man bestimmt die Zeit, in der die NCO-Konzentration auf 0,2 mol l<sup>-1</sup> (76% Umsatz) gesunken ist. Aus den ausreagierten Lösungen kann nach dem Abdampfen des Lösungsmittels, Aufnahme in Ethylglykolacetat und Fällen mit n-Hexan sehr reines Triphenylisocyanurat (Fp. 281–84°C) nachgewiesen werden (A. ca. 4,4–4,8 g) und durch Vergleich mit authentischen Material mittels IR-Spektroskopie und Hochdruckflüssigchromatographie charakterisiert werden.

**Tabelle 1**

| Beispiel           | Katalysator/Nr. | m/g   | t(76 % Umsatz)/min |
|--------------------|-----------------|-------|--------------------|
| 1                  | 30/2            | 0,217 | 37                 |
| 2                  | 30/3            | 0,344 | 48                 |
| 3                  | 30/4            | 0,144 | 12                 |
| 4                  | 30/4            | 0,277 | 4,5                |
| 5                  | 30/5            | 0,236 | 29                 |
| 6                  | 30/8            | 0,291 | 25,5               |
| Vergleichsbeispiel | Polycat 41      | 0,465 | 28                 |

**Beispiel 7**

60 ml Toluylendiisocyanat (80/20) werden in 86 ml Butylacetat gelöst, auf 60°C erwärmt und mit 0,1 ml des Katalysators 30/3 versetzt. Man muß gegebenenfalls kühlen und beendet die Reaktion mit 0,4 ml Benzoylchlorid, wenn der gewünschte NCO-Gehalt erreicht ist. Die Polyisocyanuratpolyisocyanatlösungen wird durch den NCO-Gehalt, den TDI-Gehalt und die Viskosität charakterisiert.

|                            |             |
|----------------------------|-------------|
| Reaktionszeit:             | 120 min     |
| NCO:                       | 11,85 %     |
| TDI:                       | 5,09 %      |
| $\eta(20^\circ\text{C})$ : | 100 mPa · s |

**Beispiel 8**

Man verfährt wie in Beispiel 7, verwendet aber 0,2 ml des Katalysators 30/8. Die Temperatur steigt binnen 5 min auf 87°C und fällt dann wieder auf 60°C ab (20 min). Man lässt 1 h nachröhren, verdünnt mit 40 ml Butylacetat auf 40% Feststoff und erhält folgende analytische Daten:

|                            |             |
|----------------------------|-------------|
| Reaktionszeit:             | 84 min      |
| NCO:                       | 7,34 %      |
| TDI:                       | 2,08 %      |
| $\pm (20^\circ\text{C})$ : | 260 mPa · s |

**Beispiele 9–12**

Zur Bestimmung der katalytischen Aktivität für die Polymerisation von Isocyanaten werden 0,2 ml der angegebenen Katalysatoren mit 10 ml 2,4/2,6-Toluylendiisocyanat (T80) unter magnetischer Rührung in einem isolierten Gefäß versetzt. Die exotherme Reaktion wird durch Temperaturmessung (Thermoelement) verfolgt und die charakteristischen Größen des

Temperaturverlaufes zur vergleichenden Auswertung benutzt. Als Beispiele des Standes der Technik werden DMP30 (Tris-2,4,6-dimethylaminomethylphenol) und Polycat 41 (Tris-1,3,5-dimethylaminopropylhexahydrotriazin) mitgeführt.

Tabelle 2

| Beispiel            | Katalysator/Nr. | Ind.-periode/s | $\Delta T_{\max}/^{\circ}\text{C}$ |
|---------------------|-----------------|----------------|------------------------------------|
| 9                   | 30/2            | 16             | 106                                |
| 10                  | 30/3            | 24             | 93                                 |
| 11                  | 30/4            | 67             | 123                                |
| 12                  | 30/5            | 18             | 85                                 |
| 13                  | 30/8            | 29             | 101                                |
| Vergleichsbeispiele | DMP 30          | 244            | 40                                 |
|                     | Polycat 41      | 16             | 86                                 |

[logo] (12) Economic patent

Granted pursuant to section 17, subsection 1 of the Patent Law

(19) DD

(11) 236 745 A1

4(51) C08 G 18/18

OFFICE FOR INVENTIONS AND PATENT MATTERS Published in the version submitted by the applicant

---

(21) WP C 08 G / 261 865 2 (22) 04/11/84 (44) 06/18/86

---

(71) Technical University of Dresden, 8027 Dresden, Mommsenstraße 13, DD

(72) Noack, Rainer, Dr. rer. nat.; Schwetlick, Klaus, Prof. Dr. rer. nat. habil., DD

---

(54) Method for the polymerization of isocyanates (IV)

---

(57) The invention relates to catalysts for the polymerization of organic isocyanates into compounds containing isocyanurate groups. The new catalysts are substances containing tertiary amino groups in one molecule and at least one hydroxymethyl amino group. These catalysts are highly active in the polymerization of isocyanates into isocyanurate polyisocyanates, in the production of polyisocyanurate foam and in the introduction of isocyanurate groups into other synthetic polyurethanes.

### Exemplary embodiments

Manufacture of catalysts according to the invention

A) 28.8T N,N-dimethyl-N'-isopropyl-propanediamine-(1,3) is dissolved in 30 T of benzol and treated with 6.5 T of paraformaldehyde under light heating. After paraformaldehyde has largely dissolved, the solution is filtered and the solvent removed under vacuum treatment. The resulting residue is characterized as follows:

Yield: 95%  
 $n_D^{20}$ : 1.4439  
 Structure:  $\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{N}(\text{Pr}^i)\text{-CH}_2\text{OH}$  (30/5)

The following hydroxymethylamines are manufactured analogously:

|    | Hydroxymethylamine                                                                                    | No.  | $n_D^{20}$ |
|----|-------------------------------------------------------------------------------------------------------|------|------------|
| B) | $\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{NMe-CH}_2\text{OH}$                               | 30/2 | 1.4546     |
| C) | $(\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2)_2\text{N-CH}_2\text{OH}$                             | 30/3 | 1.4738     |
| D) | $\text{Me}_2\text{NCH}_2\text{CH}_2\text{OCH}_2\text{NBu-CH}_2\text{OH}$                              | 30/4 | 1.4449     |
| E) | $\text{Me}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{N}(\text{C}_6\text{H}_{11})\text{-CH}_2\text{OH}$ | 30/8 | 1.4845     |

### Examples 1–6

5.0 mL of phenylisocyanate are dissolved in 50 mL of dry methyl ethyl ketone and added to the catalysts outlined in Tab. 1 at 50°C. The conversion is traceable by means of titration of the NCO content. The time required for the NCO concentration to drop to 0.2 mol/L (76% of the conversion) is measured. After the evaporation of the solvent, addition to ethylglycolacetate and precipitation with n-hexane from the fully cured solutions, very pure triphenylisocyanurate (Fp. 281–84°C) can be determined (A. approx. 4.4–4.8 g) and characterized based on the comparison with the authentic material by means of IR spectroscopy and high-pressure liquid chromatography.

Table 1

| Example             | Catalyst/no. | m/g   | t (76% of conversion)/min |
|---------------------|--------------|-------|---------------------------|
| 1                   | 30/2         | 0.217 | 37                        |
| 2                   | 30/3         | 0.344 | 48                        |
| 3                   | 30/4         | 0.144 | 12                        |
| 4                   | 30/4         | 0.277 | 4.5                       |
| 5                   | 30/5         | 0.236 | 29                        |
| 6                   | 30/8         | 0.291 | 25.5                      |
| Comparative example | Polycat41    | 0.465 | 28                        |

### Example 7

60 mL of toluylene diisocyanate (80/20) are dissolved in 86 mL of butylacetate, heated to 60°C and added to 0.1 mL of catalyst 30/3. If necessary, the solution is cooled and the reaction completed with 0.4 mL of benzoylchloride once the desired NCO content is reached. The polyisocyanurate polyisocyanate solution is characterized by the NCO content, the TDI content and the viscosity.

Reaction time: 120 min  
 NCO: 11.85%  
 TDI: 5.09%  
 $\eta(20^\circ\text{C})$ : 100 mPa · s

### Example 8

Proceed the same as in example 7, but use 0.2 mL of catalyst 30/8. The temperature increases to 87°C within 5 min and drops back to 60°C (20 min). Re-stirring for 1 h and dilution with 40 mL of butylacetate to 40% solid substance yields the following analytical data:

Reaction time: 84 min  
 NCO: 7.34%  
 TDI: 2.08%  
 $\pm(20^\circ\text{C})$ : 260 mPa · s

### Examples 9–12

To determine the catalytic activity for the polymerization of isocyanates, a magnetic stirrer is used to add 0.2 mL of the specified catalysts to 10 mL of 2,4/2,6-toluylene diisocyanate (T80) in an insulating container. The exothermic reaction is traced by measuring the temperature (thermo element) and the characteristic parameters of the temperature development are

used for the comparative analysis. DMP30 (tris-2,4,6-dimethylaminomethylphenol) and polycat 41 (tris-1,3,5-dimethylaminopropylhexahydrotriazine) are used additionally as examples of prior art.

**Table 2**

| Example              | Catalyst/no. | Ind. period/s | $\Delta T_{\max}/^{\circ}\text{C}$ |
|----------------------|--------------|---------------|------------------------------------|
| 9                    | 30/2         | 16            | 106                                |
| 10                   | 30/3         | 24            | 93                                 |
| 11                   | 30/4         | 67            | 123                                |
| 12                   | 30/5         | 18            | 85                                 |
| 13                   | 30/8         | 29            | 101                                |
| Comparative examples | DMP 30       | 244           | 40                                 |
|                      | Polycat 41   | 16            | 86                                 |