CPT_S 260 Intro to Computer Architecture Lecture 10

Floating Point Arithmetic February 2, 2022

Ganapati Bhat

School of Electrical Engineering and Computer Science
Washington State University

Announcements

- Homework 2 is online
 - Due next Friday

Recap: Fractional Part in Binary Format

 Repeatedly multiply the fraction by 2 and save the resulting integer digits. The digits for the binary number are the 0,1 in order of their computation.

Convert 46.6875 to binary!

Recap: IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Recap: Bias Exponent Representation

- 2's complement makes it difficult to compare exponents
- 1 is (111..111) where is 1 is (000....001). If we just look at 2's complement number, we cannot tell which has higher exponent
- IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is represented by the bit pattern of the value -1 + 127_{ten}, or 126_{ten} = 0111 1110_{two}
- +1 \rightarrow 1 + 127, or 128_{ten} = 1000 0000_{two}

■ The exponent bias for *double* precision is 1023.

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent (also called biased exponent): $00000001 \Rightarrow \text{actual exponent} = 1 127 = -126$
- Fraction: 000...00 ⇒ significand = 1.0
- $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- Exponent (also called biased exponent): $111111110 \Rightarrow \text{actual exponent} = 254 127 = +127$
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved (next slides show for what these exponents are used)
 - Smallest value
 - Exponent: 00000000001 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Special Cases

Zero

Sign bit = 0; biased exponent = all 00 bits; and the fraction = all 00 bits;

Positive and Negative Infinity

 Sign bit = 00 for positive infinity, 11 for negative infinity; biased exponent = all 11 bits; and the fraction = all 00 bits;

NaN (Not-A-Number)

 Sign bit = 0 or 1; biased exponent = all 11 bits; and the fraction is anything but all 00 bits. NaN's occurs when one does an invalid operation on a floating point value, such as dividing by zero, or taking the square root of a negative number.

Therefore, for Infinities and NaNs, we have

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity -sign bit =0 for (+); sign bit =1 for (-)
 - Can be used in subsequent calculations, avoiding need for overflow check
- **■** Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - » e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Precision

Relative precision

- All fraction bits are significant
- Single: approx 2⁻²³
 - Equivalent to 23 × \log_{10} 2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example #1

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = 1000...00
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 01111110
 - Double: -1 + 1023 = 1022 = 01111111110
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example #2

- What number is represented by the single-precision float
- **11000000101000...00**
 - S = 1
 - Fraction = 01000...00
 - Exponent = 10000001 = 129
- $\mathbf{x} = (-1) \times (1 + .01) \times 2^{(129-127)}$
 - $= (-1) \times 1.25 \times 2^2$
 - **■** = -5.0

Overflow and Underflow

- Overflow occurs when a number is larger than the largest number that can be represented
- Underflow occurs when a number is smaller than the smallest number that can be represented

Floating-Point Addition

Consider a 4-digit decimal example

$$-9.999 \times 10^{1} + 1.610 \times 10^{-1}$$

- 1. Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $-9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - -1.0015×10^{2}
- 4. Round and renormalize if necessary
 - -1.002×10^2

Floating-Point Addition

Now consider a 4-digit binary example

■
$$1.000 \times 2^{-1} + -1.110 \times 2^{-2} (0.5 + -0.4375)$$

- 1. Align binary points
 - Shift number with smaller exponent
 - $-1.000 \times 2^{-1} + -0.111 \times 2^{-1}$
- 2. Add significands

$$-1.000 \times 2^{-1} + -0.111 \times 2^{-1} = 0.001 \times 2^{-1}$$

- 3. Normalize result & check for over/underflow
 - 1.000 × 2^{-4} , with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625_{10}

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

Consider a 4-digit decimal example

- $-1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication

Now consider a 4-digit binary example

■
$$1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$$

1. Add exponents

- Unbiased: -1 + -2 = -3
- Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127

2. Multiply significands

■
$$1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$$

3. Normalize result & check for over/underflow

- $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × -ve ⇒ -ve

$$-1.110_2 \times 2^{-3} = -0.21875$$

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Guard and Round Bits

- Used to hold intermediate operands before truncating
- Guard is the first of two extra bits
- Round is the second extra bit

Number	Guard	Round
--------	-------	-------

- Example
- $-2.56 \times 10^{0} + 2.34 \times 10^{2}$

IEEE 754 Rounding Modes

- Always round up (Towards infinity)
- Always round down (Towards negative infinity)
- Truncate
- Round to nearest even
- Tricky in the half way case (0.5)
 - If the LSB retained would be odd, add one
 - If the LSB would be even, truncate
 - Gives a zero in the LSB

Sticky Bit

- A bit used to track whenever there are non-zero bits to the right of the round bit
- Helps differentiate between 0.5000000...0 and 0.500000...1 when rounding
- \bullet 5.01 × 10⁻¹ + 2.34 × 10²

Sticky Bit

- A bit used to track whenever there are non-zero bits to the right of the round bit
- Helps differentiate between 0.5000000...0 and 0.500000...1 when rounding
- \bullet 5.01 × 10⁻¹ + 2.34 × 10²
- Without sticky bit
- Add 0.0050 and 2.34
- Sum of 2.3450
- Round off to 2.34

- With sticky bit
- Add 0.0050 and 2.34
- Sticky bit would be set
- Sum of 2.3450 with sticky bit 1
- Round off to 2.35