

Al Microscope

-Classify Blood Cells-

Frauke Albrecht

01 Introduction 04 Results

02 Data 05 Conclusions

03 Approach

06 Outlook

Background

- White blood cells important for the immune system and defend the body against infectious disease and foreign materials
- **5 main types** of white blood cells
- Share commonalities but are distinct in form and function

Objective

Automize Classification of different types of white blood cells in microscope images

Motivation

- Support medical experts with visual diagnosis
- Increase diagnostic accuracy

5 main types of white blood cells

5 main types of white blood cells

5 main types of white blood cells

5 main types of white blood cells

Examples

348 images total

Images have been augmented to about 2500 for each category

Results

Accuracy 85%

Conclusions

- Developed automated tool for blood cell classification from images
- Classified 4 types of cells
- 85% accuracy
- First step to a bigger problem:
 In practice important to detect and count white blood cells

Outlook: Object Detection

An increased or decreased number of leukocytes indicates the presence of a disorder.

falbrechtg@gmail.com

https://github.com/froukje/

Data

Category				
Eosinophil	Responsible for combating multicellular parasites and certain infections; control mechanisms associated with allergy and asthma			
Neutrophil	Kill bacterias. Migrate toward sites of infection or inflammation			
Lymphocyte	Lysis of virally infected cells and tumour cells; Release cytokines and growth factors that regulate other immune cells; Immunoregulation and cytotoxicity; Secretion of antibodies			
Monocyte	Replenishing resident macrophages under normal conditions; migration in response to inflammation signals; differentiation into macrophages or dendritic cells to effect an immune response.			

Data

Category	Туре	Size	%
Eosinophil	granulocyte/ myeloid	12–17µm	1 - 3%
Neutrophil	granulocyte/ myeloid	12–15µm	60 - 70%
Lymphocyte	mononuclear leukocyte (agranulocyte)/ lymphoid	6-10µm	25 - 40%
Monocyte	mononuclear leukocyte (agranulocyte)/ myeloid	12-10µm	2 - 10%

Image: "By A. Rad and M. Häggström. CC-BY-SA 3.0 license." - Image:Hematopoiesis (human) diagram.png by A. Rad, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7351905

Principal Component Analysis

Principal Component Analysis

Explained Variance

Eigenvectors

Principal Component Analysis

input

Feature Importance

2. ConvLayer

