Decision Tree

- A decision tree is a flowchart-like tree structure where each internal node denotes the feature, branches denote the rules and the leaf nodes denote the result of the algorithm.
- Decision tree is a hierarchical data structure that represents data through a divide and conquer strategy.
- A decision tree is a simple model for supervised classification. It is used for classifying a single discrete target feature.

Impurity:

for each Feature (calculation)

lowest impurity Feature (good sign)

make decision thee

Vini = 1 - \(\mathref{\infty}\) (usuly used)

Entropy = -\(\mathref{\infty}\) log_2(Pi)

chest pain	good blood eirculation	Blocked arcteries	ffeart disease	weight	Heart disease
No	No	NO	NO	220	Yes
yes	yes	yes	yes	180	∀e <i>s</i>
Yes	yes	No	NO	225	Ye5
Yes	NO	¥e5	ye5	190	NO
		1		155	No

Pyes =
$$\frac{2}{2}$$
 = 1
PNO = $\frac{2}{2}$ = 0
Gini = $1 - 1 - 0$

deritariles

NO

Pyes =
$$\frac{2}{2} = 1$$

Pyes = $\frac{0}{2} = 0$

Pho = $\frac{0}{2} = 0$

Sini = $1 - 0^{\gamma} - 1^{\gamma}$

= 0

$$Gini^{\circ} = \left(\frac{3}{4}\right) \cdot 0.455 + \frac{1}{4}$$
 $= \left[0.33\right]$
persfect

$$Gini = \frac{2}{4}(0) + \frac{2}{4}(0)$$
= 0

Decision based on Information Gain:

Decision Trees:

 Think of a decision tree like a flowchart, where each decision leads to more decisions, and finally, to an outcome. In each step, we make a decision based on certain features to get closer to our goal.

Entropy - Measure of Disorder:

- Entropic Playground: Entropy is like a measure of messiness or disorder in our data.
- Low Entropy: Low entropy means our data is more organized or homogeneous.
- High Entropy: High entropy means our data is a bit messy or diverse.

Information Gain - Seeking Order:

• Information Gain is our guide. It helps us decide which features bring more order to our data. We pick the feature that reduces the chaos in our dataset the most.

Classification or Regression:

Once the decision tree is built, it can be used for classification (for categorical target variables) or regression (for numerical target variables). Each path from the root to a leaf node represents a decision rule.

chest pain	good blood eirculation	Blocked arcteries	ffeart disease	weight	Heart disease
No	No	NO	No	220	Yes
yes	ye5	yes	yes	180	Yes
ye <i>s</i>	yes	No	No	225	Ye5
Ye5	ND	¥e5	yes	190	NO
				155	No

teature: Chest pain, good blood circulation,
Blocked arteries
Target: Heart disease
Dataset Split: Chest pain
(3 xes) No Confused (3 xes) Oy IN Oy IN Gini = 1 - E (10)
27 1N OY 1N Gini = 1 - E (+1)
: Gini 21- E p(i)2
Gini = 1- = Pli)- Lett node: Pyes = 2/3 = 0.66
Left node:
$P_{yes} = \frac{2}{3} = 0.66$ $Crini_{2} = 1 - (0.66)^{2} - (0.33)^{2}$ $P_{yes} = \frac{1}{3} = 0.33$
PNO = 1/3 = 0.33 = 0.455
Right mode,
Pres = = = 0 : Biniz = 1-1092-11)2
PNO 2 1 1 20
: aini 2 Orini (lett) + Orini (Right) x sample x sample
= 3/4 × 0. 455 + 0× 1/4 STOLL KARL MAYER KMON
20:34125 KARL MAYER KM.ON

TOIC	Numerical val	Date:
	weight	Heart disease
	220	76.5
	180	Jes .
	225	Les
	190	No
	155	No
Atter	sonting tro	
	Weight	Heart diseases
11.5	T 155	NO 7 155+180 = 168.9
67.5	180	Xes many 2
85 r	190	No
205	220	Yes 185
2.5	225	Yes 185 2 big
		17 IN 271N
	A Sana Walan	12 Arts Amai sta allat more formare
(42 A	wedge will	परं वर्ण हिलां परं यान क्या व्यापादः

Decision Tree Colab:

https://colab.research.google.com/drive/1Kvm_faeSyZOfKop6WuSrQ_BTpChS2xrw?usp=sharing 3. SVM classifier, Decision Tree Regressor-Classification.ipynb