Proof

Zark Zijian Wang

December 02, 2023

We define $s_{0\to T}=[s_0,s_1,...,s_T]$ as a sequence of rewards, starting at period 0 and ending at period T. Similarly, $s_{0\to t}=[s_0,...,s_t]$ is defined as a sub-sequence of it. Let $\mathcal{W}=[w_0,...,w_T]$ denote the attention weights for all rewards in sequence $s_{0\to T}$, where $W\in[0,1]^{T+1}$. Let $C(\mathcal{W})$ denote the information cost function. We can construct the following constrained optimal discounting problem for $s_{0\to T}$:

$$\max_{\mathcal{W}} \quad \sum_{t=0}^{T} w_t u(s_t) - C(\mathcal{W})$$

$$s.t. \quad \sum_{t=0}^{T} w_t = 1, \ w_t \ge 0 \text{ for all } t \in \{0, 1, \dots, T\}$$
(A.1)

We assume C(W) is constituted by separable costs, that is, $C(W) = \sum_{t=0}^{T} f_t(w_t)$, where $f_t(w_t)$ is an increasing and convex function.

Axiom 1 (sequential outcome-betweenness) For any $s_{0\to T}$, there exists a $\alpha \in (0,1)$ such that $s_{0\to T} \sim \alpha \cdot s_{0\to T-1} + (1-\alpha) \cdot s_T$.

Axiom 2 (sequential bracket-independence) For any $s_{0\to T}$, if there exists non-negative real numbers α_1 , α_2 , β_0 , β_1 , β_2 , such that $s_{0\to T} \sim \alpha_1 \cdot s_{0\to T-1} + \alpha_2 \cdot s_T$, and $s_{0\to T} \sim \beta_0 \cdot s_{0\to T-2} + \beta_1 \cdot s_{T-1} + \beta_2 \cdot s_T$, then we must have $\alpha_2 = \beta_2$.

Axiom 3 (aggregate invariance to constant sequences) Consider two constant sequences, denoted as s_c and s'_c , where each element in s_c is equal to c and each element in s'_c is equal

to c'. For any $s_{0\to T}$, $s'_{0\to T}$ and $\alpha \in (0,1)$, if $\alpha \cdot s_t + (1-\alpha) \cdot c \sim \alpha \cdot s'_t + (1-\alpha) \cdot c'$ holds for every t, then $\alpha \cdot s_{0\to T} + (1-\alpha) \cdot s_c \sim \alpha \cdot s'_{0\to T} + (1-\alpha) \cdot s'_c$.

Axiom 4 (state independence) If $s_t \succ s_t'$, then for any $\alpha \in (0,1)$ and reward c, $\alpha \cdot s_t + (1 - \alpha) \cdot c \succ \alpha \cdot s_t' + (1 - \alpha) \cdot c$.

Proposition: \succsim admits an ADU representation if it admits a DU representation subject to the constrained optimal discounting problem, and satisfies Axiom 1-4.

Proof.

Lemma 1. If Axiom 1 holds, for any $s_{0\to T}$, there exist non-negative real numbers w_0, w_1, \ldots, w_T such that $s_{0\to T} \sim w_0 \cdot s_0 + w_1 \cdot s_1 + \ldots + w_T \cdot s_T$ where $\sum_{t=0}^T w_t = 1$.

When T=1, the claim of Lemma 1 is a direct application of Axiom 1. When $T\geq 2$, according to Axiom 1, for any $2\leq t\leq T$, there should exist a real number $\alpha_t\in(0,1)$ such that $s_{0\to t}\sim\alpha_t\cdot s_{0\to t-1}+(1-\alpha_t)\cdot s_t$. For sequence $s_{0\to T}$, we can recursively apply these preference relations as follows:

$$s_{0\to T} \sim \alpha_{T-1} \cdot s_{0\to T-1} + (1 - \alpha_{T-1}) \cdot s_T$$

$$\sim \alpha_{T-1}\alpha_{T-2} \cdot s_{0\to T-2} + \alpha_{T-1}(1 - \alpha_{T-2}) \cdot s_{T-1} + (1 - \alpha_{T-1}) \cdot s_T$$

$$\sim \dots$$

$$\sim w_0 \cdot s_0 + w_1 \cdot s_1 + \dots + w_T \cdot s_T$$

where $w_0 = \prod_{t=0}^{T-1} \alpha_t$, $w_T = 1 - \alpha_{T-1}$, and for 0 < t < T, $w_t = (1 - \alpha_{t-1}) \prod_{\tau=t}^{T-1} \alpha_{\tau}$. It is easy to show the sum of all these weights, denoted by w_t $(0 \le t \le T)$, equals 1.

Thus, if Axiom 1 holds, for any sequence $s_{0\to T}$, we can always find a convex combination of all elements in it, such that the decision maker is indifferent between the sequence and the convex combination of its elements. By Lemma 2, I show this convex combination is unique.

Lemma 2. If Axiom 1-2 holds, then suppose $s_{0\to T} \sim \sum_{t=0}^T w_t \cdot s_t$ and $s_{0\to T+1} \sim \sum_{t=0}^{T+1} w_t' \cdot s_t$, where $w_t > 0$, $w_t' > 0$, $\sum_{t=0}^T w_t = 1$, and $\sum_{t=0}^{T+1} w_t' = 1$, we must have $\frac{w_0}{w_0'} = \frac{w_1}{w_1'} = \dots = \frac{w_T}{w_T'}$. Corollary 1.

Lemma 3. If Axiom 1 and Axiom 3-4 holds, then for any $s_{0\to T}$ and $s'_{0\to T}$, where $u(s_t) = u(s'_t) + \Delta u$ holds for any t and Δu is a constant real number, we have $w_t = w'_t$.

Suppose
$$\alpha \cdot s_t + (1 - \alpha) \cdot c \sim \alpha \cdot s_t' + (1 - \alpha) \cdot c'$$

From Axiom 4,
$$\alpha \cdot u(s_t) + (1 - \alpha) \cdot u(c) = \alpha \cdot u(s_t') + (1 - \alpha) \cdot u(c')$$

This yields
$$u(s_t) - u(s_t') = \Delta u$$
, where $\Delta u = \frac{1-\alpha}{\alpha}(u(c') - u(c))$.

By Lemma 1, if Axiom 1 holds, we have $V(s_c) = u(c)$. The same applies to $V(s'_c)$.

By Axiom 3, we have $V(s_{0\rightarrow T})=V(s'_{0\rightarrow T})+\Delta u.$

This yields
$$\sum_{t=0}^{T} w_t u(s_t) - w_t' u(s_t') = \Delta u$$

Replace
$$\Delta u$$
, we have $\sum_{t=0}^{T} w_t u(s_t) - w_t' u(s_t') = \sum_{t=0}^{T} w_t (u(s_t) - u(s_t'))$

So,
$$\sum_{t=0}^{T} (w_t - w_t') u(s_t') = 0$$

Given each instantaneous utility can be any non-negative real number, we must have $w_t = w'_t$.

The FOC condition of the constrained optimal discounting problem is:

$$f'_t(w_t) = u(s_t) + \theta, \ \forall t \in \{0, 1, ..., T\}$$