DTC	P050A	Cold Start Idle Air Control System Performance
DTC	P050B	Cold Start Ignition Timing Performance

DESCRIPTION

The Electronic Throttle Control System (ETCS) controls the engine idling speed. The ETCS operates the throttle actuator to open and close the throttle valve, and adjusts the intake air amount to achieve the target idling speed.

In addition, the ECM retards the ignition timing and the ETCS increases the intake air amount to quickly increase the catalyst temperature at cold start to reduce emissions.

DTC No.	DTC Detection Conditions	Trouble Areas
P050A	Accumulated intake air amount during 10 seconds of idling after cold start, less than threshold (2 trip detection logic)	Throttle body assemblyMass air flow meter
P050B	Ignition timing retard value insufficient for 5 seconds or more during 10 seconds of P050A monitoring duration at cold start (2 trip detection logic)	Air induction system PCV hose connections VVT system Air cleaner filter element ECM

MONITOR DESCRIPTION

The ECM monitors the intake air amount during idling and the ignition timing.

When the Engine Coolant Temperature (ECT) is between -10°C and 50 °C (14°F and 122°F), the ECM calculates the idling intake air amount for 10 seconds, beginning 3 seconds after the engine starts. When the accumulated value is below the threshold, the ECM interprets this as a malfunction in the Idle Speed Control (ISC) system at cold start.

The ECM also monitors the ignition timing at cold start, and judges it to be incorrect when it is advanced to the same value for a warm engine for 5 seconds or more of the 10 second monitoring period. Example:

P050A is detected when all conditions below are met (2 trip detection logic).

- 1. The ECT is between -10°C and 50°C (14°F and 122°F) when the engine starts.
- 2. The engine idles for 13 seconds after engine start.
- 3. The accumulated intake air amount is below the threshold.

The ECM sets the DTC and illuminates the MIL 13 seconds after the engine is next started.

NOTICE:

When the negative battery terminal is disconnected during inspection or repairs, the ISC learning values are cleared. The ISC learning must be performed by warming up the engine and idling for 5 minutes with the ECT at 75°C (167°F) or more because DTCs cannot be detected with the ISC learning values cleared.

MONITOR STRATEGY

Related DTCs	P050A: Idle speed control problem at cold P050B: Idle ignition timing problem at cold
Required Sensors/Components (Main)	Mass air flow meter
Required Sensors/Components (Related)	Engine Coolant Temperature (ECT) sensor, Throttle position sensor, Vehicle speed sensor
Frequency of Operation	Once per driving cycle
Duration	10 seconds
MIL Operation	2 driving cycles
Sequence of Operation	None

TYPICAL ENABLING CONDITIONS

P050A:

Battery voltage	8 V or more
Time after engine start	3 seconds or more
Starter	OFF
ECT at engine start	-10°C (14°F) or more
ECT	-10°C to 50°C (14°F to 122°F)
Engine idling time	3 seconds or more
Fuel-cut	OFF
Vehicle speed	Less than 1.875 mph (3 km/h)
Time after shift position changed (Automatic Transmission)	1 second or more
Atmospheric pressure	76 kPa (570 mmHg) or more

P050B:

Battery voltage	8 V or more
Time after engine start	3 seconds or more
Starter	OFF
ECT at engine start	-10°C (14°F) or more
ECT	-10°C to 50°C (14°F to 122°F)
Engine idling time	3 seconds or more
Fuel-cut	OFF
Vehicle speed	Less than 1.875 mph (3 km/h)

ES

TYPICAL MALFUNCTION THRESHOLDS

P050A:

Accumulated air flow amount (Manual Transmission)	Varies with ECT (Example: Less than 42.5 g)
Accumulated air flow amount (Automatic Transmission)	Varies with ECT (Example: Less than 47.5 g)

P050B:

Accumulated time when ignition timing retard value insufficient	5 seconds or more

HINT:

Read freeze frame data using an intelligent tester. Freeze frame data record the engine condition when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data, from the time the malfunction occurred.

CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P050A AND/OR P050B)

- (a) Connect an intelligent tester to the DLC3.
- (b) Turn the ignition switch ON.
- (c) Turn the tester ON.
- (d) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read the DTCs.

Result

1

Display (DTC Output)	Proceed To
P050A and/or P050B	A
P050A and/or P050B and other DTCs	В

HINT:

If any DTCs other than P050A and P050B are output, troubleshoot those DTCs first.

2 READ VALUE OF INTELLIGENT TESTER (FUEL TRIM)

HINT:

Calculate the total fuel trim values to check the characteristic deviation of the mass air flow meter.

- (a) Connect an intelligent tester to the DLC3.
- (b) Turn the ignition switch ON.
- (c) Turn the tester ON.
- (d) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY / SHORT FT #1 and LONG FT #1.
- (e) Read the values displayed on the tester.
- (f) Add together the SHORT FT #1 and LONG FT #1 values to obtain the total FUEL TRIM.

OK:

Total of the SHORT FT #1 and LONG FT #1 values is between -20 % and 20 %.

ок >

Go to step 14

NG

3 PERFORM ACTIVE TEST USING INTELLIGENT TESTER (PURGE VSV)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the ignition switch to ON.
- (c) Turn the tester ON.
- (d) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / EVAP VSV.
- (e) Disconnect the hose (connected to the canister) from the purge VSV.
- (f) Start the engine.
- (g) Using the tester, turn off the purge VSV (EVAP VSV: OFF).
- (h) Use your finger to confirm that the purge VSV has no suction.

OK:

Purge VSV has no suction.

- (i) Using the tester, turn on the purge VSV (EVAP VSV: ON).
- (j) Use your finger to confirm that the purge VSV has suction.

OK:

Purge VSV has suction.

NG

Go to step 9

OK

4 PERFORM ACTIVE TEST USING INTELLIGENT TESTER (OPERATE OCV)

- (a) Connect the intelligent tester to the DLC3.
- (b) Start the engine and turn the tester ON.
- (c) Warm up the engine.
- (d) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / VVT CTRL B1.

NG

Go to step 10

OK

5 CHECK PCV HOSE CONNECTIONS

OK:

PCV hose is connected correctly and is not damaged.

NG

Go to step 11

	ОК		
	6	CHECK AIR INDUCTION SYSTE	EM
			(a) Check the air induction system for vacuum leakage. OK: No leakage from air induction system.
			NG Go to step 12
	ОК		
	7	CHECK AIR CLEANER FILTER	ELEMENT SUB-ASSEMBLY
•			NEXT Go to step 13
	ОК		
	8	REPLACE MASS AIR FLOW ME	ETER
			NEXT Go to step 19
	9	REPLACE PURGE VSV	
			NEXT Go to step 19
	10	CHECK AND REPAIR VVT SYS	TEM
			NEXT Go to step 19
	11	REPAIR OR REPLACE PCV HO	SE
			NEXT Go to step 19
	12	REPAIR OR REPLACE AIR IND	UCTION SYSTEM
•			NEXT Go to step 19
	13	REPLACE AIR CLEANER FILTE	ER ELEMENT SUB-ASSEMBLY
ļ			NEXT Go to step 19

14	READ VALUE OF INTELLIGENT TESTER (ENGINE SPD)				
		NG	Go to step 17		
ОК	ОК				
15	CHECK THROTTLE VALVE				
		valve c OK: No de	for deposits around the throttle valve and throttle condition. Exposits around the throttle valve and throttle moves smoothly		
		NG	Go to step 18		
ОК		·			
16	REPLACE ECM				
		NEXT	Go to step 19		
17	REPAIR OR REPLACE CRANKSHAFT POSITION SENSOR CIRCUIT				
		NEXT	Go to step 19		
18	REPAIR OR REPLACE THROTTLE BODY ASSEMBLY				
		NEXT	Go to step 19		
19	CHECK WHETHER DTC OUTPUT RECURS (DTC P050A AND/OR P050B)				
	•	NOTICE:	ation, the engine must be cold (the same level		

In this operation, the engine must be cold (the same level as the engine coolant temperature recorded in the freeze frame data).

- (a) Connect an intelligent tester to the DLC3.
- (b) Turn the ignition switch to ON.
- (c) Turn the tester ON.
- (d) Clear DTCs (See page ES-38).
- (e) Switch the ECM from normal mode to check mode using the tester (See page ES-41).
- (f) Start the engine to idle for a minute.

OK:

Stable fast idling.

(g) Read DTCs.

OK:

No DTC output.

END

