Difference between machine learning and statistics

&

Application to genome analysis

What is Machine Learning?

Machine learning (ML) is the study of algorithms and mathematical models that computer systems use to progressively improve their performance on a specific task...(Wikipedia)

Example

Digitaria ciliaris

Example

= Digitaria ciliaris

= Digitaria ciliaris

Learning From past data

Detect patterns

Prediction

= Digitaria violascens

(ex. *Digitaria violascens* = Hairless leaf sheath)

= ???

= Digitaria violascens

97%: *Digitaria violascens* 3%: *Digitaria ciliaris*

Example

New Dataset

Past Data

Sequence	Crop yield
ATTGAC	2,0kg
GAGGTA···	3,6kg
TGCCGC	1,1kg
ATCGAA	2.1kg
•••	•••

Learning

Detect features & patterns & Make mathmatical model $CropYield = ax + by + cz \dots$

Prediction

Sequence	Crop yield
GAAAAC···	???
TTAGGG···	???
•••	•••

Sequence	Predicted Crop yield
GAAAAC···	1.82kg
TTAGGG···	1.11kg
•••	•••

Difference between machine learning and statistics

...method & algorithm are common

Statistics

Description statistics ··· Make data easier for people to understand using statistics or visualize ex) mean, variance

Estimated statistics ... Consideration on data

ex) Estimate mean value of population Estimate the position of related genes at SNP-index

Machine learning

Make highly accurate prediction models from past data

Difference between machine learning and statistics

- · · · Different purposes / strategies
- Statistics · · · Selection of models and methods and validity are important

ex)
$$CropYield = ax + by + cz ...$$
 ...Good Accuracy

Which variable are important? Why this model get good accuracy?

ex) \boldsymbol{a} is big $\rightarrow \boldsymbol{x}$ has large effect

- Machine learning · · · How to achieve high prediction accuracy is important
- → Focus on prediction accuracy even in various methods, black box model

ex)
$$CropYield = \sqrt[3]{a^8x^{27}z^{55}} + \lim_{n \to \infty} \left(\frac{\int b \sin \alpha n}{n}\right)^n + \cdots$$

Sometimes it's difficult to understand model

ex) \boldsymbol{a} is big \rightarrow ? ? ?

···Very high accuracy

Application to genome analysis

ex1) To know gene function \rightarrow It is important how easy it is to understand the model

$$CropYield = \beta_1 gene_1 + \beta_2 gene_2 + \beta_3 gene_3 \dots$$

ex2) Apply Genomic Breeding \rightarrow The prediction accuracy of new dataset is also important

Summary

- Statistics and machine learning are trying to solve problems by using data, but the goal
 and strategy is different.
- Especially genome analysis

Gene Data → To find gene function, evolutionary mechanism…etc

- · What does data mean?
- What can we detect from models?