

PLC简介

- CPU
- 电源
- 存储
- I/O
- 网络模块

PLC通讯方式

• 通信介质: 双绞线、同轴电缆、光纤

- 非以太网通信协议(RS232/RS485等串行或总 线接口):
 - Modbus/Profibus/MPI/DeviceNet/ControlNet

- 以太网通信协议:
 - Modbus TCP/Profinet/Ethernet IP/IEC104/DNP3

PLC可能存在的安全缺陷

- 通讯协议脆弱性
 - 无加密
 - 无认证

- 设备无安全策略
 - 无访问控制
 - 无用户保护

可利用PLC安全缺陷进行攻击

- 修改PLC内存数据
 - Tag/Address/Var
- 修改PLC运行状态
 - Stop
 - Run
 - Reset
 - Reboot
- 修改PLC逻辑
 - Delete
 - Download

对PLC的攻击方式

● 通过PC攻击PLC

- 通过渗透等方式获得上位机、工业主机等PC终端权限,再通过PC端向PLC发起攻击
- 案例:震网、Irongate

- 利用PLC的通讯功能,攻击其它 PLC(或其它工业资产)
- 案例: PLC-blaster

国外研究动向

- BlackHat 2015 (2015.8)
 - SCADACS Internet-Facing PLCs A New Back Orifice
- 32C3 (2015.12)
 - OpenSource Security PLC-Blaster A PLC only worm
- BlackHat Asia 2016 (2016.3)
 - OpenSource Security PLC-Blaster: A Worm Living Solely in the PLC
- BlackHat 2016 (2016.8)
 - OpenSource Security PLC-Blaster: A Worm Living Solely in the PLC

• 以西门子S7系列PLC为研究对象

- 掌握S7协议,实现了S7协议功能测试工具
- 通过西门子S7-1200 PLC实现内网扫描
- 通过西门子S7-1200 PLC实现Socks代理
- 实现对不同型号、不同品牌PLC的攻击

研究实验环境

国家工业控制系统与产品安全质量监督检验中心

- S7-1200 PLC 2台
 - 6ES7-211-1HE40-0XB0
- S7-300 PLC 1台
 - 6ES7-313C-5BE01-0AB0
 - CP 343-1 (6GK7-343-1EX30-0XE0)
- 天然气管道输送SCADA系统测试床一套
 - 阿尔泰Modbus RTU2个
 - 被控对象: 比例阀

研究实验环境

S7-300

S7-1200

阿尔泰RTU

工控系统与产品综合检测平台

天然气管道 SCADA系统

• 以西门子S7系列PLC为研究对象

- 掌握S7协议,实现了S7协议功能测试工具
- 通过西门子S7-1200 PLC实现内网扫描
- 通过西门子S7-1200 PLC实现Socks代理
- 实现对不同型号、不同品牌PLC的攻击

S7协议功能测试工具

数据测试

- PLC Tester
 - Get Module Info
 - Set CPURun/Stop
 - Fuzz Set Value
 - Fuzz DB Data
 - Fuzz Block

Target PLC IP:	192.168.1.200	Rack: 0 Slo	ot: 2	
Start Block Number:	0	Start Data address:	0	1
End Block Number:	20	End Data address:	20	200
Block Type:	ALL	Set Data type:	ALL	1
вюск Туре:	ALL	Set Point Data:	01	5
	Connection	Target S7 PLC		
STOR	Connection	Target S7 PLC	U	

S7协议功能测试工具

程序测试

- PLC Tester
 - Block Download
 - Block Upload
 - Block Delete
 - DB Upload
 - Data Change
 - Time Setting

• 以西门子S7系列PLC为研究对象

- 掌握S7协议,实现了S7协议功能测试工具
- 通过西门子S7-1200 PLC实现内网扫描
- 通过西门子S7-1200 PLC实现Socks代理
- 实现对不同型号、不同品牌PLC的攻击

PLC自带通讯功能

- S7-300
 - FB65 "TCON"
 - FB63 "TSEND"
 - FB64 "TRCV"
- S7-1200
 - TCON
 - TSEND/TUSEND
 - TRCV/TURCV
- CP
 - AG SEND
 - AG RECV

名称	描述	版本	
▶ 🛅 S7 通信		V1.2	^
▼ 📴 开放式用户通信		<u>V3.1</u>	≣
■ TSEND_C	通过以太网发送数据 (TCP)	<u>V2.1</u>	
■ TRCV_C	通过以太网读取数据 (TCP)	<u>V2.1</u>	
▼ 🛅 其它			
■ TCON	建立通信连接	V3.0	
■ TDISCON	断开通信连接	V2.1	
= TSEND	通过通信连接发送数据	V3.0	
■ TRCV	通过通信连接接收数据	V3.0	
TUSEND	通过 UDP 发送数据	V3.0	
■ TURCV	通过 UDP 接收数据	V3.0	
■ T_CONFIG	组态接口	V1.0	
▼ 🛅 WEB 服务器			
→ ₩₩	同步用户定义的Web页	<u>V1.1</u>	
▶ 🛅 其他			
▶ 🗀 诵信外理哭			~

√ 项目 1211 proxy_back 已打开。

通过西门子S7-1200 PLC实现内网扫描。

利用TCON/TSEND(TUSEND)/TRCV(TURCV)在PLC中实现:

SNMP扫描

- Get OID Description for 1.3.6.1.2.1.1.1

● ISO-TSAP扫描

- COTP (初始化连接)
- TPKT(确认连接)
- Read SZL(读系统状态信息)

通过西门子S7-1200 PLC实现内网扫描。

• 以西门子S7系列PLC为研究对象

- 掌握S7协议,实现了S7协议功能测试工具
- 通过西门子S7-1200 PLC实现内网扫描
- 通过西门子S7-1200 PLC实现Socks代理
- 实现对不同型号、不同品牌PLC的攻击

Socks代理交互流程

流程

在S7-1200 PLC上实现Socks后门

- client —> PLC1 (Socks server)
 - 无认证请求连接
- PLC1 —> client
 - 无认证连接确认
- client —> PLC1
 - 请求连接IP和端口
- PLC1 —> client
 - 确认可以连接
- client —> PLC1
 - Data
- PLC1 —> PLC2
 - Forward Data
- PLC2—>PLC1
 - Response Data
- PLC1—>client
 - Forward Response Data

危害分析

• 访问生产网络其他可达资源

• 突破网络边界

• 绕过白名单等安全防护机制

• 以西门子S7系列PLC为研究对象

- 掌握S7协议,实现了S7协议功能测试工具
- 通过西门子S7-1200 PLC实现内网扫描
- 通过西门子S7-1200 PLC实现Socks代理
- 实现对不同型号、不同品牌PLC的攻击

攻击演示视频1

攻击演示视频2

如何加强防护

- 断开不必要的公网连接
- 开启PLC自带的安全 防护配置
- 部署网络安全监测设备,发现异常流量

提出了边界防护、安全配置、安全监测等防护措施,可有效避免 PLC遭受此类攻击

工信

关于委托编制《工业控制系统信息安全防护指南》 的函

工业和信息化部电子科学技术情报研究所:

为明确工业控制系统信息安全(以下简称"工控安全") 防护要求,指导工业企业加强工控安全防护工作,切实提高 工业企业工控安全保障水平,我司委托你单位承担开展《工 业控制系统信息安全防护指南》编制工作,具体如下:

- 一、项目名称:《工业控制系统信息安全防护指南》编制。
- 二、项目委托依据:根据我司工作需要。
- 三、项目主要内容:
- (1) 依据我国相关法律法规和规范性文件要求,参考 国外的相关做法和防护策略,编制《工业控制系统信息安全 防护指南》。
 - (2)组织召开1次专家研讨会,并按专家意见完善防

谢谢!

工信部电子一所工业信息安全保障技术实验室 国家工业控制系统与产品安全质量监督检验中心 李 俊 010-88687835