1. UFD, PID, ED AND IRREDUCIBILITY OF POLYNOMIALS

- (1) Show that $\mathbb{R}[x,y]$ and $\mathbb{Z}[x]$ are not PIDs.
- (2) Prove that $2, 3, 1 \pm \sqrt{-5}$ are irreducible elements in $\mathbb{Z}[\sqrt{-5}]$.
- (3) Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[w]$ are EDs, where $w = \exp^{2\pi i/3}$.
- (4) Let F be a subfield of \mathbb{C} . Show that an irreducible polynomial in F[x] has no multiple roots.
- (5) Show that an integer prime p is a prime element of $\mathbb{Z}[\sqrt{3}]$ if and only if $x^2 3$ is irreducible in $\mathbb{F}_p[x]$.
- (6) Factor 30, 10, 1 3i into product of Gaussian primes.
- (7) Prove that every Gaussian prime divides exactly one integer prime.
- (8) Prove that $f, g \in \mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ if and only if $(f, g)\mathbb{Z}[x] \cap \mathbb{Z} \neq (0)$.
- (9) Prove that polynomials $f(x) = x^2 + 26x + 213$, $g(x) = 8x^3 6x + 1$ are irreducible over $\mathbb{Q}[x]$.
- (10) Factor $x^5 + 5x + 5$ into irreducible factors in $\mathbb{Q}[x]$ and $\mathbb{F}_2[x]$.
- (11) Factor $x^3 + x + 1$ in $\mathbb{F}_p[x]$ where p = 2, 3, 5.
- (12) Let f(x) be a monic integer polynomial of positive degree having a rational root r. Show that r is an integer.
- (13) Let $R = \mathbb{Z}[w]$, where $w = \exp^{2\pi i/3}(a)$ Decompose 3 into irreducible factors in R.
 - (b) Let $p \neq 3$ be a rational prime. Show that if $x^2 + x + 1$ has a root in \mathbb{F}_p , then $p \equiv 1 \pmod{3}$.
 - (c) Show that (p) is a prime ideal of R if and only if $p \neq a^2 ab + b^2$ for some integers a and b.

(This question is optional).