МЕТОДЫ СИММЕТРИЧНОГО ШИФРОВАНИЯ

Алгоритм стандарта шифрования DES (*Data Encryption Standard*)

Историческая справка о DES

- Стандарт шифрования данных (DES) блочный шифр с симметричными ключами, разработан Национальным Институтом Стандартов и Технологии (NIST – National Institute of Standards and Technology).
- В I973 году NIST издал запрос для разработки предложения национальной криптографической системы с симметричными ключами. Предложенная IBM модификация проекта, названного Lucifer, была принята как DES.
- DES был издан в марте 1975 года как Федеральный Стандарт Обработки Информации (FIPS – Federal Information Processing Standard).

Структура DES

- Открытый текст шифруется блоками 64 бит, используя 64 битный ключ шифра (56 битов фактический ключ+8 битов четности)
- Процесс шифрования состоит из двух перестановок (Р -блоки) и 16-ти раундов Фейстеля
- Каждый раунд использует различные 48 битовые раундовые ключи, сгенерированный на основе ключа шифра
- Для шифрования и расшифрования используется один и тот же алгоритм и ключ

Начальная и конечная перестановки

Прямая перестановка *IP* блока открытого текста

58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

Обратная перестановка IP^{-1} блока шифротекста

40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

Раунды DES

- На входе раунда субблоки от предыдущего раунда
- Выполняется необратимое преобразование (функция DES) правого субблока
- Вычисляется ХОК левого субблока и результата преобразования
- Субблоки меняются местами

Функция шифрования DES

Р-блоки перестановки

Р-блок расширения (переставляет биты субблока R_{I-1})

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Прямой Р-блок (переставляет биты выходов S-блоков)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

S- блоки функции DES

- Для каждого S -блока есть собственная таблица (всего 8)
- Комбинация битов 1 и 6 на входе определяет одну из четырех строк
- Комбинация битов от 2 -го до 5 -го определяет один из шестнадцати столбцов
- 4-х битовая подстановка берется из клетки на пересечении строки и столбца
- Пример: S-блок 1

Таблицы подстановок S-блоков

												a.					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	S_1
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	S_2
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15	
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9	
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	S_3
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7	
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12	
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15	
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	S_4
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14	

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15	
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	S_4
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14	
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9	
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6	S_5
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14	
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3	
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11	
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8	S_{6}
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6	
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13	
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1	
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6	S_7
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2	
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12	
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7	
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2	S_8
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8	
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11	

Генерация раундовых ключей DES

Удаляются биты проверки 8, 16,32,...,64, ключ разделяется пополам и выполняется перестановка 56 бит фактического ключа

57	49	41	33	25	17	9	1	58	50	42	34	26	18	63	55	47	39	31	23	15	7	62	54	46	38	30	22
10	2	59	51	43	35	27	19	11	3	60	52	44	36	14	6	61	53	45	37	29	21	13	5	28	20	12	4

Каждая половинка циклически сдвигается влево в зависимости от номера раунда

Раунд	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Число бит	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Половинки ключа объединяются и обрабатываются Р-блоком сжатия

14	17	11	24	1	5	3	28	15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2	41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56	34	53	46	42	50	36	29	32

Обратимость DES

- Последний раунд отличается других: он содержать только смеситель и не содержит устройства замены
- Ключи раундов применяются при шифровании и дешифровании в обратном порядке

Спецификация симметричного блочного шифра

- Пример: Шифр DES:
 - № Блок сообщения 64 бит
 - № Секретный ключ 64 бит
 - Блок шифровки 64 бит

Проблемы DES

- Недостаточная длина ключа. Существует всего 2⁵⁶ = 7,2*10¹⁶
 возможных ключей, что в настоящее время допускает успешное применение лобовых атак
- Проблемы с ключами шифрования:
 - 4 ключа являются слабыми (порождают одинаковые раундовые ключи). Это ключи, в которых все биты какой-либо из половин расширяемого ключа являются нулевыми или единичными.

 - 48 ключей являются «возможно слабыми», Возможно слабые ключи при их расширении дают только 4 различных ключа раунда
- Существует опасность, что эти S-блоки (основа алгоритма)
 конструировались таким образом, чтобы был возможен криптоанализ
 со стороны разработчика, который знает их слабые стороны (пока нет подтверждений)

Взлом DES

1998 г. используя суперкомпьютер стоимостью 250 тыс. долл., сотрудники RSA Laboratory «взломали» DES менее чем за три дня. Эксперимент проходил в рамках исследования DES Challenge II, проводимого RSA Laboratory под руководством общественной организации Electronic Frontier Foundation (EFF). Суперкомпьютер, построенный в RSA Laboratory для расшифровки данных, закодированных методом DES по 56-разрядному ключу, получил название EFF DES Cracker.

Шифр Double DES и атака встреча посередине

(meet-in-the-middle attack)

$$C = E(E(M, K_1), K_2)$$

 $M = E^{-1}(E^{-1}(C, K_2), K_1)$

- ullet Ищем такую пару K_1 и K_2 , чтобы $E(M,K_1)=E^{-1}(C,K_2)$
- ightharpoonup Сложность атаки (меньше ожидаемой $\sim 2^{112}$)
 - 9 2^{56} шифрований и $\sim \! 2^{56}$ ячеек памяти для хранения вариантов $\pmb{K_1}$
 - 9 2^{56} расшифрований $\sim \! 2^{56}$ ячеек памяти для хранения вариантов $\pmb{K_2}$

Шифр Triple DES

Создатель: ІВМ

Опубликован: 1978 г.

Размер ключа: 112 (2TDES) или 168 bits

(3TDES)

Размер блока: 64 бит

Число 48 DES-эквивалентных раундов

раундов:

Тип: Сеть Фейстеля

- Модификации:
 - DES-EEE3
 - DES-EDE3
 - DES-EEE2
 - DES-EDE2
- Самая популярная разновидность это DES-EDE3 и DES-EDE2
- Реализован во многих приложениях, ориентированных на работу с Интернет, в том числе в PGP и S/mime.

Режимы работы блочных шифров

Режим электронной кодовой книги

ECB — Electronic Code Book

Достоинства:

- Шифрование может быть параллельным
- Ошибка в передаче блока не имеет никакого воздействия на другие блоки

Недостатки:

- Одинаковые блоки открытого текста будут преобразовываться в одинаковые блоки шифротекста
- Независимость блоков создает возможность для замены некоторых блоков зашифрованного текста без знания ключа

Режим сцепления блоков шифротекста

CBC — Cipher Block Chaining IV - Initialization Vector

Достоинства:

- Одинаковые блоки исходного текста,
 преобразуются в различные блоки шифротекста.
- Последний блок шифротекста зависит от всех бит отрытого текста сообщения и может использоваться для контроля целостности сообщения

Недостатки:

 Зашифрование сообщения не поддаётся распараллеливанию

Режим обратной связи по шифру

Е: Шифрование

Рі: Блок исходного текста Сі: Блок зашифрованного текста Ті: Временный регистр К: Секретный ключ

D: Дешифрование

IV: Начальный вектор (S₁)

Достоинства:

- Это шифр потока, в котором ключевой поток зависит от зашифрованного текста
- В этом режиме не требуется дополнение блоков,
- Недостатки:
 - Ошибка в единственном бите шифротекста создает ошибку в следующих блоках до тех пор, пока, ошибка находятся в регистре сдвига

CFB - Cipher Feedback

Режим обратной связи по выходу

Шифрование

Е: Шифрование D: Дешифрование

і: Блок і исходного текста Сі: Блок і зашифрованного текста

Секретный ключ
 IV: Начальный вектор (S1)
 Ferистр сдвига
 T_i: Временный регистр

OFB - Output Feedback

Достоинства:

- Фактически, это шифр потока, в котором ключевой поток не зависит от исходного и зашифрованного текста
- Каждый бит в зашифрованном тексте независим от предыдущего бита или битов.
 Это позволяет избежать распространения ошибок

Недостатки:

⊌ Чтобы одним и тем же ключом зашифровать больше, чем одно сообщение, значение IV должно быть изменено для каждого сообщения

Режим счетчика

CTR - Counter

Достоинства:

- Создает n -битовый зашифрованный текст, блоки которого независимы друг от друга они зависят только от значений счетчика.
 Фактически, это шифр потока
- Режим, подобно режиму ЕСВ, может использоваться, чтобы зашифровать и расшифровывать файлы произвольного доступа, и значение счетчика может быть связано номером записи в файле

Недостатки:

 Если значения счетчиков совпадает, то шифрование производится на одном ключе

Атака с выбранным открытом текстом на режим ЕСВ

- Цель: дешифровать конфиденциальную часть открытого текста без знания ключа
- Модель нарушителя:
 - Знает используемый режим работы блочного шифра, длину блока и способ дополнения последнего блока
 - Умеет формировать и добавлять префикс к конфиденциальной (для нарушителя) части <u>открытого текста</u> и делать это незаметно и многократно
 - Умеет перехватывать шифровку всего сообщения и разделять ее на блоки и сохранять копии необходимых блоков

Тактика действий нарушителя (ЕСВ)

МЕТОДЫ СИММЕТРИЧНОГО ШИФРОВАНИЯ

Магма - алгоритм стандартов шифрования ГОСТ 28147-89, ГОСТ Р 34.12–2015, ГОСТ 34.12–2018

Историческая справка

- ГОСТ 28147—89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. Советский и российский стандарт симметричного шифрования, введённый в 1990 году. По некоторым сведениям, алгоритм, положенный впоследствии в основу стандарта, родился, предположительно в 1970-х годах. С момента опубликования этого ГОСТа на нём стоял ограничительный гриф «Для служебного пользования», и формально шифр был объявлен полностью открытым» только в мае 1994 года.
- РОСТ 3412-2015 Информационная технология. КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ. Блочные шифры. Ввел в действие в июне 2015 сразу два блочных шифра , на которые разрешено ссылаться «Магма» (аналог ГОСТ 28147—89) и «Кузнечик»
- У ГОСТ 34.12-2018 Информационная технология. Криптографическая защита информации. Блочные шифры. Введен в действие в ноябре 2018 терминологическая и концептуальная увязка с международными стандартами от ИСО

Структура шифра «Магма»

- Открытый текст шифруется блоками 64 бит, используя 256 битный ключ шифра
- Процесс шифрования состоит из 32-х раундов схемы Фейстеля и назван базовым циклом зашифрования (32-3)
- Для расшифрования используется тот же алгоритм и ключ
- Процесс расшифрования назван базовым циклом расшифровывания (32-P)
- Еще есть базовый цикл выработки имитовставки (16-3)

Раунды шифра «Магма»

- Раунд назван основным шагом криптопреобразования
- На входе раунда субблоки от предыдущего раунда
- В левый субблок копируется содержимое правого субблока
- Правый субблок и раундовый ключ складываются по модулю 2³²
- Результат сложения разбивается на восемь 4-битных значений (*блоков кода*), каждое из которых подается для замены на вход S-блока (*узла таблицы замен*)
- Выходы всех S- блоков объединяются в 32-битное слово, которое затем циклически сдвигается на 11 бит влево
- Вычисляется XOR результата с левым субблоком и результат обновляет правый субблок

S-блоки в шифре «Магма»

Номер S- блока								Подст	ановка							
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	12	4	6	2	10	5	11	9	14	8	13	7	0	3	15	1
2	6	8	2	3	9	10	5	12	1	14	4	7	11	13	0	15
3	11	3	5	8	2	15	10	13	14	1	7	4	12	9	6	0
4	12	8	2	1	13	4	15	6	7	0	10	5	3	14	9	11
5	7	15	5	10	8	1	6	13	0	9	3	14	11	4	2	12
6	5	13	15	6	9	2	12	10	11	7	8	1	4	3	14	0
7	8	14	2	5	6	9	1	12	15	4	11	0	13	10	3	7
8	1	7	14	13	0	5	8	3	4	15	10	6	9	12	11	2

Алгоритм развертывания ключа в «Магме»

Раунд	1	2	3	4	5	6	7	8
Ключ	1	2	3	4	5	6	7	8
Раунд	9	10	11	12	13	14	15	16
Ключ	1	2	3	4	5	6	7	8
Раунд	17	18	19	20	21	22	23	24
Ключ	1	2	3	4	5	6	7	8
Раунд	25	26	27	28	29	30	31	32
Ключ	8	7	6	5	4	3	2	1

- 256-битный ключ шифра последовательно разбивается на восемь 32-битных раундовых ключей
- Каждый раундовый ключ используется в четырех различных раундах по определенной схеме

Схема использования раундовых ключей

Криптоанализ шифра «Магма»

- XSL-атака (eXtended Sparse Linearization) метод, основанный на алгебраических свойствах шифра, предполагает решение особой системы уравнений.
- На первом этапе из достаточно большого количества пар открытых-шифрованных текстов выбирается те, которые позволяют рассматривать преобразования на меньшем, чем 32 количестве раундов
- На втором этапе результаты работы S-блоков описываются уравнениями вида:

$$\sum_{i,j} \alpha_{ij} * x_i * x_j + \sum_{i,j} \beta_{ij} * y_i * y_j + \sum_{i,j} \gamma_{ij} * x_i * y_j + \sum_i \delta_i * x_i + \sum_i \epsilon_i * x_i + \eta = 0$$

Где x_i и y_i – соответственно биты на входе и выходе S-блоков i-го раунда шифрования.

№ Практический результат : 2^{64} известных открытых текста и $\sim 2^{64}$ бит памяти для хранения пар "открытый текст/шифртекст" позволяют взломать ГОСТ в 2^8 быстрее, чем простой перебор.

Сравнительный анализ «Магма» и DES

- В ГОСТ применяется 256-битный ключ шифра, а в DES 56-битный. При выборе сильных S-блоков ГОСТ считается очень стойким алгоритмом.
- В DES применяются нерегулярные перестановки Р, в ГОСТ используется 11-битный циклический сдвиг влево. Поэтому ГОСТ требуется 8 раундов прежде, чем изменение одного входного бита повлияет на каждый бит результата; DES для этого нужно только 5 раундов.
- В DES только 16 раундов, в ГОСТ 32 раунда, что делает его более стойким к дифференциальному и линейному криптоанализу
- ГОСТ использует гораздо более простую процедуру создания раундовых ключей, чем DES

