Kontekstno-neodvisne gramatike za kodiranje in stiskanje podatkov

Janez Podlogar

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

21. 11. 2022

Kodiranje in kod

Zapis informacije v neki obliki ni primeren za vsakršno rabo. Spreminjanje zapisa sporočila imenujemo *kodiranje*, sistemu pravil, po katerem se kodiranje opravi, pa *kod*.

Primer kodiranja

Morsejeva abeceda je kodiranje črk, števil in ločil s pomočjo zaporedja kratkih in dolgih signalov:

- Dolžina kratkega signala je ena enota.
- Dolgi signal je trikrat daljši od kratkega signala.
- Razmik med signali znotraj črke je tišina dolžine kratkega signala.
- Razmik med črkami je tišina dolga tri kratke signale oz. en dolgi signal.
- Presledek med besedami je tišina dolga sedmih kratkih signalov.

Morsejeva abeceda

Slika: Mednarodna Morsejeva abeceda

Abeceda in nizi na abecedi

Definicija

Abeceda je končna neprazna množica Σ . Elementom abecede pravimo *črke. Množica vseh končnih nizov abecede* Σ označimo z Σ^* in vključuje tudi prazen niz, ki ga označimo z ε . *Dolžino niza w* označimo z |w| in je enaka številu črk v nizu $w \in \Sigma^*$. *Jezik na abecedi* Σ je poljubna podmnožica množice Σ^* .

Abeceda in nizi na abecedi

Definicija

Abeceda je končna neprazna množica Σ . Elementom abecede pravimo *črke. Množica vseh končnih nizov abecede* Σ označimo z Σ^* in vključuje tudi prazen niz, ki ga označimo z ε . *Dolžino niza w* označimo z |w| in je enaka številu črk v nizu $w \in \Sigma^*$. *Jezik na abecedi* Σ je poljubna podmnožica množice Σ^* .

Primer

Naj bo $\Sigma = \{a, b, c\}$ abeceda, potem je

 $ab \in \Sigma^*$, $cababcccababcccab \in \Sigma^*$.

Kodiranje in dekodiranje

Definicija

Kodiranje nizov abecede Σ je injektivna funkcija $\kappa \colon \Sigma^* \to \Sigma_c^*$, kjer je Σ_c kodirna abeceda in $\kappa(w)$ imenujemo koda niza w. Dokodiranje kodiranja κ je funkcija $\kappa^{-1} \colon C \subseteq \Sigma_c^* \to \Sigma^*$, da velja

$$\forall w \in \Sigma^* : \kappa^{-1}(\kappa(w)) = w$$

Formalizirzacija Morsejeve abecede

Abecedi sta

$$\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{_\},$$

$$\Sigma_c = \{\cdot, -, _\}.$$

Definirajmo kodno funkcijo črk abecede $\kappa\colon \Sigma\to \Sigma_c^*$, ki vsakei črki iz abecede Σ priredi niz črk kodirne abecede Σ_c . Za niz $w=a_1a_2\dots a_n\in \Sigma^*$ definiramo kodirno funkcijo K po črkah

$$K(w) = \kappa(a_1) \underline{\ } \kappa(a_2) \underline{\ } \cdots \kappa(a_n).$$

Formalizirzacija Morsejeve abecede

Vrednosti funkcije κ so določene s tabelo

Dodatno presledek med besedami _ kodiramo v šest kratkih enot tišine

$$\kappa(\underline{}) = \underline{}$$

Stiskanje podatkov

Definicija

Stiskanje je kodiranje K za katerega velja

$$\exists n \in \mathbb{N} \ \forall w \in \Sigma^* \colon |w| \ge n \implies |K(w)| \ll |w|.$$

Za abecedo vzemimo $\Sigma = \{a, b, c\}$ in poglejmo niz

w = cababcccababcccab.

Za abecedo vzemimo $\Sigma = \{a, b, c\}$ in poglejmo niz

w = cababcccababcccab.

Uvedemo novi spremenljivki A = ab in B = ccc.

Za abecedo vzemimo $\Sigma = \{a, b, c\}$ in poglejmo niz

w = cababcccababcccab.

Uvedemo novi spremenljivki A = ab in B = ccc. Potem je

$$w = cAABAABA$$
.

Za abecedo vzemimo $\Sigma = \{a, b, c\}$ in poglejmo niz

w = cababcccababcccab.

Uvedemo novi spremenljivki A = ab in B = ccc. Potem je

$$w = cAABAABA$$
.

Uvedemo novo spremeljivko C = AAB.

Za abecedo vzemimo $\Sigma = \{a,b,c\}$ in poglejmo niz

w = cababcccababcccab.

Uvedemo novi spremenljivki A = ab in B = ccc. Potem je

$$w = cAABAABA$$
.

Uvedemo novo spremeljivko C = AAB. Potem je

$$w = cCCA$$
.

Prešnji postopek napišemo na sledeč način s pomočjo produkcijskih pravil

$$S \rightarrow cCCA$$
,

$$A \rightarrow ab$$
,

$$B \rightarrow ccc$$
,

$$C \rightarrow AAB$$
.

Definicija

Formalna gramatika G so pravila, ki nam iz abecede Σ tvorijo jezik, označimo ga z L(G).

Definicija

Formalna gramatika G so pravila, ki nam iz abecede Σ tvorijo jezik, označimo ga z L(G).

Definicija

Kontektsno-neodvisna gramatika je četverica $G=(V,\Sigma,P,S)$, kjer je V končna množica spremenljivk, abeceda Σ množica končnih simbolov tako, da $\Sigma\cap V=\emptyset$, $P\subseteq V\times (V\cup\Sigma)^*$ relacija, ki ji pravimo produkcijsko pravilo in $S\in V$ začetna spremenljivka.

Definicija

Naj bo $G=(V,\Sigma,P,S)$ kontekstno-neodvisna gramatika. Naj bodo α , β , $\gamma \in (V \cup \Sigma)^*$ nizi spremenljivk in končnih simbolov, $A \in V$ spremenljivka ter naj bo $(A,\beta) \in P$ produkcijsko pravilo, označimo ga z $A \to \beta$. Pravimo, da se $\alpha A \gamma$ prepiše s pravilom A v $\alpha \beta \gamma$, pišemo $\alpha A \gamma \Rightarrow \alpha \beta \gamma$. Pravimo, da α porodi β , če je $\alpha = \beta$ ali če za $k \geq 0$ obstaja zaporedje $\alpha_1, \alpha_2, \ldots \alpha_n \in (V \cup \Sigma)^*$ tako, da

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n \Rightarrow \beta$$

in pišemo $\alpha \stackrel{*}{\Rightarrow} \beta$.

Posledica

Jezik kontekstno neodvisne gramatike G je

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$$

Zgled stiskanja niza w z zapisom gramatike

Formalizirajmo gramatiko iz prejšnjega primera. Gramatiko smo generirali z nizom w = cababcccababcccab.

Zgled stiskanja niza w z zapisom gramatike

Formalizirajmo gramatiko iz prejšnjega primera. Gramatiko smo generirali z nizom w=cababcccababcccab. Dobimo $G_w=(V,\Sigma,P,S)$, kjer je

$$V = \{S, A, B, C\},$$

 $\Sigma = \{a, b, c\},$
 $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\},$
 $S = S.$

Zgled stiskanja niza w z zapisom gramatike

Formalizirajmo gramatiko iz prejšnjega primera. Gramatiko smo generirali z nizom w=cababcccababcccab. Dobimo $G_w=(V,\Sigma,P,S)$, kjer je

$$V = \{S, A, B, C\},$$

 $\Sigma = \{a, b, c\},$
 $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\},$
 $S = S.$

Vidimo, da G_w ustreza naši definiciji kontekstno-neodvisne gramatike in res kodira w, saj je

$$L(G_w) = \{w\}$$