Immune Regulation

Dr. Nadisha Badanasinghe MBBS, Dip.Med.Micro, MD

Objectives

- What is immune regulation?
- Why we need it?
- What are the mechanisms of immune regulation?
- What is central tolerance?
- What is peripheral tolerance?

Why is immune regulation important?

 If not regulated properly, it can cause harm to host

- If defective-----> Immunedeficiency ----> severe infections cancers
- If exaggerated----> Hypersensitivity
 tissue destruction
- If inappropriate -----> Autoimmunity ----> immune response to self tissues

Immune Regulation

- A balance between
 - > activation and
 - > suppression

of effector cells

 to achieve an efficient immune response without damaging the host.

Immune Regulation

- Natural regulatory mechanisms
- Artificial regulatory mechanisms

Natural Regulatory Mechanisms

Immune Regulation

- Regulatory mechanisms act at all phases of immune response
 - Recognition
 - Activation
 - Effector function

Immune Regulation

- The immune system should react against foreign antigens, but not self antigens
- The activated immune system should be turned off when the foreign antigen is killed
- The immune system should be unresponsive to self antigens

" immunological tolerance"

Tolerance Burnet's Hypothesis:(1949)

 During neonatal stage of life, or when immune system is developing, all Ags present are recognized as <u>self.</u>

Immune system becomes tolerant to these Ags

How does immune system discriminate "self" from "non-self"?

- 1. Innate immune system
- 2. Adaptive immune system

Mechanisms of Innate immune system

- Cells of innate immune system has receptors (Pattern recognition receptors) to identify broadly expressed molecules shared by broad groups of microbes ("pathogen-associated molecular patterns" PAMPs)
 e.g. – bac DNA, LPS, teichoic acid
- They are only present on microbes not on self tissues
- Mechanisms of unresponsiveness to self tissues by
 - 1. Ignorance (lack of recognition) of self cells (unless they change their surface structures)
 - 2. Presence of inhibitory structures/ receptors

Mechanisms of Adaptive system

 Lymphocytes with receptors capable of recognizing self antigens are constantly being generated in adaptive system

Immune system is readily accessible to self antigens

? Big problem

How these self reactive lymphocytes are eliminated?

- 1)Central tolerance is induced by "Negative selection"
 - T cells in thymus
 - B cells in bone marrow cells die by "Apoptosis"
- 2) Peripheral tolerance is induced by Anergy or Apoptosis
 - T cells Ag recognition without costimulation (2nd signal)
 - B cells Ag recognition without T cell help or blocking of signaling pw "partial activation"
- 3) Regulatory T cells

What is central tolerance?

- Process whereby immature T and B cells acquire tolerance to self antigens during maturation in primary lymphoid organs.
- If an immature lymphocyte strongly recognizes and interacts with a self antigen (present in bone marrow and thymus) -----> dies by a process called apoptosis before it can complete its maturation ---clonal deletion

"Negative selection"

lymphocytes that survive negative selection move to peripheral lymphoid organs

Mechanisms of unresponsiveness:

Central tolerance in B and T cells (I): Clonal Deletion

Negative selection

Positive selection

What is peripheral tolerance?

- Process whereby mature T and B cells acquire tolerance to self antigens present in secondary lymphoid organs
- When mature lymphocytes recognize antigens without 2nd signal needed for their full activation
 - Anergy (alive but functionally hyporesponsive/ inactivated)
 - Apoptosis (programmed cell death)

B cell tolerance

What are the 2 signals required for T cell activation?

What are the 2 signals required for T cell activation?

The two-signal requirement for T cell activation

Regulatory T cells

 Some immature T cells that recognize self antigens in thymus develop into regulatory T cells

 They enter peripheral tissues and produce cytokines that block the activation of self reactive lymphocytes

Artificial Regulatory Mechanisms

Artificial Regulatory Mechanisms

Given For -

Prevention of infection

Treatment for infection/ca

Patients with immune deficiency

Given For -

Prevention of graft rejection

Treatment of Autoimmunity

Immune-modulation

- Can be done artificially to
 - -->Potentiate / stimulate immune response
 - -->Suppress immune response

E.g.

Potentiate - by giving Vaccines, antibodies, effector T cells, cytokines, adjuvants

Suppression – by immuno-suppressive drugs, ionizing radiation

Any Questions?

