Performance Measurement Using Simple TWAMP for Segment Routing Networks

draft-gandhi-spring-stamp-srpm-05

```
Rakesh Gandhi - Cisco Systems (<u>rgandhi@cisco.com</u>) - Presenter
Clarence Filsfils - Cisco Systems (<u>cfilsfil@cisco.com</u>)
Daniel Voyer - Bell Canada (<u>daniel.voyer@bell.ca</u>)
Mach(Guoyi) Chen - Huawei (<u>mach.chen@huawei.com</u>)
Bart Janssens - Colt (<u>Bart.Janssens@colt.net</u>)
```

Agenda

- Requirements and Scope
- Summary of Procedure
- Next Steps

Requirements, Goals and Scope

Requirements:

- In-band Performance Delay and Loss Measurement
 - ✓ Links and end-to-end P2P/P2MP SR paths
 - ✓ Links include physical, virtual, LAG, LAG member links
 - ✓ Applicable to SR-MPLS/SRv6 data planes
- One-way, two-way, round-trip delay and packet loss metrics

Goals:

- Avoid provisioning and maintaining test sessions on Session-Reflector Stateless mode
- Avoid control protocol for signaling dynamic parameters

Scope:

- STAMP [RFC 8762]
- STAMP Extensions [RFC 8972]
- STAMP Extensions for SR [draft-gandhi-ippm-stamp-srpm]

Updates Since Version-02

Updates:

- ✓ Replaced TWAMP Light draft with STAMP draft
- ✓ Draft status Informational
- ✓ Updated terminology to align with STAMP
- ✓ Added (synthetic) packet loss section
- ✓ Removed stand-alone direct measurement messages
- ✓ Removed text for IPv6/UDP test packet with zero checksum
- ✓ Various editorial changes to address review comments

Open Items:

None

Example STAMP Reference Model

Session-Sender Test Packet for Links

- For links, the STAMP Session-Sender test packets are transmitted over the links using local and remote link addresses
- User-configured destination UDP port is used for STAMP test packets (or port 862)
- IPv4 TTL /IPv6 Hop-limit is set to 1
- Applicable to physical, virtual, LAG, LAG member links

```
IP Header
Source TP Address = Session-Sender TPv4 or TPv6 Address
 Destination IP Address = Session-Reflector IPv4 or IPv6 Addr .
Protocol = UDP
UDP Header
Source Port = As chosen by Session-Sender
 Destination Port = User-configured Port | 862
Payload = Test Packet specified in Section 4.2 of RFC 8762
        Figure 1: Session-Sender Test Packet for links
```

STAMP Session-Sender Test Packet for SR-MPLS and SRv6 Policy

For end-to-end SR Policy, the STAMP Session-Sender test packets are transmitted on the SR Policy with:

- 1. MPLS label stack of SR-MPLS Policy
- 2. SRv6 SRH [RFC 8754] with Segment List of SRv6 Policy
 - Using upper-layer processing defined in SRv6 network programming
- User-configured destination UDP port is used for STAMP test packets (or port 862)
- IPv4 TTL/IPv6 Hop-limit is set to 255
- Color-Only Destination Steering:
 - IPv4
 - Destination Address in 127/8 range
 - TTL is set to 1
 - IPv6
 - Destination Address set to ::1/128
 - Hop Limit is set to 1

```
TP Header
 Source IP Address = Session-Sender IPv6 Address
 Destination TP Address = Destination TPv6 Address
SRH as specified in RFC 8754
 <Segment List>
IP Header
 Source TP Address = Session-Sender TPv6 Address
 Destination IP Address = Session-Reflector IPv6 Address
UDP Header
 Source Port = As chosen by Session-Sender
 Destination Port = User-configured Port | 862
Payload = Test Packet specified in Section 4.2 of RFC 8762
```

Figure 3: Example Session-Sender test packet for SRv6 Policy

STAMP Session-Sender Test Packet for P2MP SR-MPLS Policy

- For end-to-end P2MP SR-MPLS Policy, STAMP Session-Sender test packets are transmitted with:
 - Tree-SID of the P2MP SR-MPLS Policy
 - IPv4 destination address selected from 127/8 range
 - IPv4 TTL is set to 1

STAMP Session-Reflector Test Packet

 STAMP Session-Reflector reply test packet is sent using the IP/UDP information from the received test packet.

```
IP Header
  Source IP Address = Session-Reflector IPv4 or IPv6 Address
  Destination IP Address =
             Source IP Address from Received Test Packet
 Protocol = UDP
 UDP Header
. Source Port = As chosen by Session-Reflector
. Destination Port = Source Port from Received Test Packet
| Payload = Test Packet specified in Section 4.3 of RFC 8762
           Figure 5: STAMP Session-Reflector Test Packet
```

Performance Measurement Modes

- Need to measure in-band one-way, two-way and round-trip delay metrics in SR networks
- One-way Delay Measurement Mode
 - Existing (default) behavior
- Two-way Delay Measurement Mode
 - STAMP Session-Reflector test packet sent "in-band" on reverse path
 - Link: Use Control Code Sub-TLV in the Return Path TLV from the received test packet.
 - E2E SR path: Use Segment List Sub-TLV in the Return Path TLV from the received test packet.
- Round-trip Delay Measurement Mode
 - STAMP Session-Sender test packet sent in loopback mode, carries the return path in the packet header

ECMP Support for SR Path

- SR Path can have ECMP between the ingress and transit nodes, between transit nodes and between transit and egress nodes.
- Sending STAMP test packets that can take advantage of the hashing function in forwarding plane.
- Existing forwarding mechanisms are applicable to test packets. Examples are:
 - For IPv4
 - Sweeping destination address in IPv4 header (e.g. 127/8)
 - Identify intended actual destination node in "Destination Node Address TLV"
 - For IPv6
 - Sweeping flow label in IPv6 header

Example PM Metrics

- Compute following example (one-way, two-way, round-trip) delay metrics:
 - Minimum delay
 - Maximum delay
 - Average delay
 - Delay variance
- Compute following example loss metrics:
 - Packet loss (i.e., synthetic packet loss)
 - Direct measurement packet counters
 - Session status succeeded/failed (i.e., measurement is active)

Next Steps

- Welcome your comments and suggestions
- Requesting WG adoption

Thank you