2. Información Cuántica

EJERCICIOS

2.1 Sea $\mathscr{A} = \mathscr{M}_n(\mathbb{C})$ el álgebra \mathbb{C}^* formada por las matrices complejas $n \times n$.

a/ Demostrar que todo estado ω sobre \mathscr{A} , es decir, toda aplicación lineal $\omega: \mathscr{A} \to \mathbb{C}$, positiva ($\omega(X) \geq 0$ si $X \geq 0$), y tal que $\omega(\mathbf{1}) = 1$, es de la forma

$$\omega(A) = \operatorname{Tr}(\rho_{\omega}A),$$

donde ρ_{ω} es un elemento autoadjunto y positivo de $\mathcal{M}_n(\mathbb{C})$, de traza Tr $\rho_{\omega} = 1$.

b/ Sean $A, B \in \mathscr{A}$ tales que $0 \le A \le B$.

- 1. Demostrar que si existe A^{-1} , entonces $B^{-1} \le A^{-1}$.
- 2. Probar que la desigualdad $A^2 \leq B^2$ no es necesariamente cierta. (Dar un contraejemplo.)
- **2.2** Sean X, Y, Z tres sistemas cuánticos, de dimensiones hilbertianas 2, 2, y 3, respectivamente. El sistema conjunto XYZ se halla en el estado ρ_{123} dado por

en la base tensorial

$$\{|a_ib_jc_k\rangle, 1 \le i \le 2, 1 \le j \le 2, 1 \le k \le 3\},\$$

lexicográficamente ordenada

$$|a_1b_1c_1\rangle, |a_1b_1c_2\rangle, |a_1b_2c_1\rangle, |a_1b_2c_2\rangle, |a_2b_1c_1\rangle, ... |a_2b_2c_3\rangle,$$

donde $\{|a_i\rangle, 1 \leq i \leq 2\}$, $\{|b_j\rangle, \leq j \leq 2\}$, $\{|c_k\rangle, 1 \leq k \leq 3\}$ son bases ortonormales en los espacios de Hilbert $\mathbb{C}^2, \mathbb{C}^2, \mathbb{C}^3$ de X, Y, Z, respectivamente.

Se piden:

i/ Las entropías (von Neumann) del estado ρ_{123} y de sus estados parciales $\rho_{ij}, \rho_i, i, j = 1, 2, 3, i < j$. Comprobar si se satisfacen las desigualdades esperadas (por ejemplo, la subaditividad fuerte y la triangularidad). Comentar.

ii/ Las informaciones mutuas y las entropías condicionales de los estados de los dos subsistemas en que puede descomponerse *XYZ*. Comentar.

iii/ Las informaciones mutuas y las entropías condicionales de los estados de los dos subsistemas en que puede descomponerse XY, XZ, e YZ.

iv/ Las distancias en traza y fidelidad entre los estados y el producto directo de los estados parciales de sus componentes (por ejemplo, entre ρ_{123} y $\rho_{12}\otimes\rho_3$, entre ρ_{12} y $\rho_1\otimes\rho_2$, etc.) .

v/ Discutir si los estados anteriores ρ_{123} , ρ_{ij} , i < j, son entrelazados o no.

vi/ Finalmente, averiguar cuáles de los estados ρ_i , ρ_{ij} , ρ_{123} , son puros. ¿Lo sabíamos ya?

- **2.3** Tenemos una colección de 50 qubits (partículas de espín $\frac{1}{2}$) preparados todos en un mismo estado puro $\rho = |\psi\rangle\langle\psi|$. Sobre 20 de ellos medimos la componente $S_1 := \mathbf{S} \cdot \mathbf{n}_1$ el espín $vecS = \frac{1}{2}\boldsymbol{\sigma}$ en la dirección $\mathbf{n}_1 := (1,1,0)/\sqrt{2}$, obteniendo $+\frac{1}{2}$ en 15 de los casos, $y-\frac{1}{2}$ en los restantes 5 casos. Sobre 15 de los otros 30, se mide la componente $S_2 := \mathbf{S} \cdot \mathbf{n}_2$ en la dirección $\mathbf{n}_2 := (1,-2,0)/\sqrt{5}$, con el resultado $+\frac{1}{2}$ en 4 casos $y-\frac{1}{2}$ en los otros 11. Finalmente, en los 15 qubits restantes, medimos el observable $A := \mathbf{1} + \sigma_1 \frac{1}{2}\sigma_2 + \sigma_3$, obteniendo $\frac{5}{2}$ en 7 casos $y-\frac{1}{2}$ en 8 restantes.
- 1. ¿Cuál es la mejor estimación bayesiana $\rho_{\rm B}$ de ρ ?

- 2. Estimar los valores medios $\langle S_1 \rangle$, $\langle S_2 \rangle$ y $\langle A \rangle$ a partir de las mediciones anteriores, y suponiendo que estas estimaciones son los valores medios correctos de esos observables en el estado buscado, estimar éste por el principio de máxima entropía. Sea ρ_J tal estimación. Calcular la distancia en traza entre ρ_B y ρ_J , así como su fidelidad mutua.
- **2.4** En un sistema cuántico de N=7 niveles se mide el observable A dado por su siguiente representación matricial en una base ortonormal $\{|k\rangle, k=1,...,7\}$:

$$A = \frac{1}{36} \begin{pmatrix} 222 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -14 & 9-43i & 57-22i & -87-15i & 18+11i & -29+77i \\ 0 & 9+43i & -11 & -17+69i & -6-72i & -65+9i & -62-8i \\ 0 & 57+22i & -17-69i & 106 & -5+63i & -56-81i & 25-i \\ 0 & -87+15i & -6+72i & -5-63i & 67 & -27+57i & 8+166i \\ 0 & 18-11i & -65-9i & -56+81i & -27-57i & -8 & -47+13i \\ 0 & -29-77i & -62+8i & 25+i & 8-166i & -47-13i & 45 \end{pmatrix}.$$

En esa medición proyectiva se seleccionan solo los valores de A que son ≤ 0 . Suponiendo que el estado del sistema sobre el que se realiza la medida viene dado por el operador densidad

$$\rho = \frac{1}{186} \begin{pmatrix} 26 & -7 - 9i & -11i & 1 - 4i & 2 - 5i & 7 - 4i & 17 - i \\ -7 + 9i & 36 & 17 - i & 10 - 9i & -10 + 9i & 6 + 16i & -7 + 17i \\ 11i & 17 + i & 20 & 3 & -3 + 6i & 3 + 8i & -4 + 17i \\ 1 + 4i & 10 + 9i & 3 & 23 & -9 - 5i & -9 + 16i & 5 + 11i \\ 2 + 5i & -10 - 9i & -3 - 6i & -9 + 5i & 22 & 7 - 13i & 4i \\ 7 + 4i & 6 - 16i & 3 - 8i & -9 - 16i & 7 + 13i & 28 & 7 - 2i \\ 17 + i & -7 - 17i & -4 - 17i & 5 - 11i & -4i & 7 + 2i & 31 \end{pmatrix}.$$

se pide:

1/ La probabilidad p_{Δ} de que la medida de A sobre ρ arroje valores en el intervalo $\Delta := (-\infty, 0]$.

- 2/ Si la medición es ideal y selecciona solo la parte $\sigma(A) \cap \Delta$ del espectro $\sigma(A)$ de A, determinar el estado ρ'_{Δ} en que queda el sistema tras tal medida.
- 3/ Comparar las entropías $S(\rho)$, $S(\rho'_{\Delta})$, $S(\rho')$; con ρ' denotamos el estado tras la medición no selectiva, es decir, aceptando todos los valores posibles de $\sigma(A)$. Comentar el resultado de la comparación.
- **2.5** Sea un sistema formado por un qubit A (espín $\frac{1}{2}$) y un qutrit B (espín 1). Denotaremos por $\{e_1, e_2\}$ y $\{f_1, f_2, f_3\}$ sendas bases ortonormales en los espacios de Hilbert \mathcal{H}_A y \mathcal{H}_B de los subsistemas

A y *B*, respectivamente; la base tensorial $\{e_i \otimes f_j, i = 1, 2, j = 1, 2, 3\}$ se supondrá lexicográficamente ordenada.

Sean $\mathbf{S}_A = \frac{1}{2}(\sigma_1, \sigma_2, \sigma_3)$ y $\mathbf{S}_B = (S_1, S_2, S_3)$ los operadores de espín de A y B, respectivamente, donde $\sigma_1, \sigma_2, \sigma_3$ son las matrices de Pauli, y (S_1, S_2, S_3) las matrices de espín 1 en la base estándar, es decir, las que se obtienen con la identificación $|f_1\rangle = |j=1, m=+1\rangle$, $|f_2\rangle = |j=1, m=0\rangle$, $|f_3\rangle = |j=1, m=-1\rangle$, y el convenio de Condon-Shortley (representración $\mathcal{D}^{(1)}$).

Sean los vectores $\mathbf{n}_A := (1, -2, 2)/3$, $\mathbf{n}_B := (3, 0, 4)/5$, e indiquemos por

$$s_A := \mathbf{S}_A \cdot \mathbf{n}_A, \quad s_B := \mathbf{S}_B \cdot \mathbf{n}_B$$

las proyecciones de los espines de A y B en las direcciones dadas por los vectores \mathbf{n}_A , \mathbf{n}_B , respectivamente. Los proyectores espectrales de estos observables s_A y s_B son, como es bien sabido,

$$P(s_A = \pm 1/2) = \frac{1}{2}(\mathbf{1}_2 \pm \sigma_3),$$

 $P(s_B = \pm 1) = \frac{1}{2}(\pm s_B + s_B s_B), \quad P(s_B = 0) = \mathbf{1}_3 - s_B s_B.$

Supongamos que inicialmente (t = 0) el sistema AB se halla en un estado $\rho_{AB}(0)$ puro, dado por

$$\rho_{AB}(0) := P_A(s_A = -1/2) \otimes P_B(s_B = 0).$$

Dicho estado evoluciona en el tiempo con el Hamiltoniano

$$H := \frac{1}{2}(\mathbf{S}_A + \mathbf{S}_B)^2 := \frac{1}{2}(\mathbf{S}_A \otimes \mathbf{1}_B + \mathbf{1}_A \otimes \mathbf{S}_B)^2$$

Cuando ha transcurrido un tiempo τ_0 desde el inicio (t=0), realizamos una medición proyectiva y no selectiva de los observables s_A, s_B , obteniendo los resultados m_A, m_B con probabilidades $p(m_A, m_B)$.

Se pide:

1/ Escribir el estado inicial $\rho_{AB}(0)$, y calcular los estados parciales $\rho_A(0)$, $\rho_B(0)$. Comprobar que las entropías de estos últimos son iguales y comentar por qué.

2/ Calcular, cuando $\tau_0 = \pi$, el estado $\rho_{AB}(\tau_0)$ del sistema, así como el tablero de probabilidades $p(m_A, m_B)$, para m_A, m_B recorriendo los valores $-\frac{1}{2}, \frac{1}{2}$ y -1, 0, 1, respectivamente.

3/ Hallar el estado $\rho'_{AB}(\tau_0)$ del sistema inmediatamente tras la medición realizada en el instante $\tau_0 = \pi$. Comparar las entropías von Neumann de $\rho_{AB}(\tau_0)$ y $\rho'_{AB}(\tau_0)$, y luego comparar su diferencia con la entropía Shannon de la distribución de probabilidades $\{p(m_A, m_B)\}$ antes obtenida. Comentar el resultado.

4/ Hallar el estado $\rho_A(\tau_0)$ del subsistema A, y escribirlo en forma de Kraus, es decir, como

$$ho_A(au_0) = \sum_j K_j(au_0)
ho_A(0) K_j^{\dagger}(au_0).$$

- 5/ Probar que la evolución del sistema compuesto es cíclica, y calcular su periodo.
- **2.6** Un sistema bipartito AB se halla en el estado dado por la siguiente matriz 15×15 en una base ortonormal tensorial:

Se pide:

1/ Probar que ρ_{AB} es puro. Sea ψ_{AB} un vector estado de ρ_{AB} . Calcularlo, salvo fase.

2/ Calcular los estados parciales ρ_A y ρ_B de los subsistemas A y B en ρ_{AB} . A través de los rangos de las matrices ρ_A y ρ_B discutir si ψ_{AB} es factorizable o no, es decir, si presenta, o no, entrelazamiento.

3/ Hallar la descomposición Schmidt de ψ_{AB} .

Consider a quantum system of two qutrits. Let it be in the pure state $\rho = |\psi\rangle\langle\psi|$, with

$$|\psi\rangle = (|12\rangle + |21\rangle + |13\rangle + |31\rangle + |23\rangle + |32\rangle)/\sqrt{6},$$

where $\{|ij\rangle := |i\rangle \otimes |j\rangle\}$, with i = 1, 2, 3, j = 1, 2, 3, is an orthonormal basis in $\mathbb{C}^3 \otimes \mathbb{C}^3$.

- 1/ Write the corresponding density matrix.
- 2/ Is ρ separable?
- 3/ What is the value of its entanglement?
- 4/ Write $|\psi\rangle$ in its Schmidt form.