

MOS FIELD EFFECT TRANSISTOR μ PA2463T1Q

N-CHANNEL MOS FIELD EFFECT TRANSISTOR FOR SWITCHING

DESCRIPTION

The μ PA2463T1Q is a switching device, which can be driven directly by a 2.5 V power source.

The μ PA2463T1Q features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

FEATURES

- 2.5 V drive available
- · Low on-state resistance

RDS(on)1 = $20.0 \text{ m}\Omega$ MAX. (Vgs = 4.5 V, ID = 3.0 A)

 $R_{DS(on)2} = 21.0 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 4.0 \text{ V, ID} = 3.0 \text{ A)}$

 $R_{DS(on)3} = 24.0 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 3.1 \text{ V, Ip} = 3.0 \text{ A)}$

 $R_{DS(on)4} = 28.5 \text{ m}\Omega \text{ MAX.} \text{ (VGS} = 2.5 \text{ V, ID} = 3.0 \text{ A)}$

• Built-in G-S protection diode against ESD

PACKAGE DRAWING (Unit: mm)

1,2,3 : Source 1 4 : Gate 1 6,7,8 : Source 2 5 : Gate 2

Lead surface metal is Gold. Hatching area is Cu.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

VDSS	20.0	V
Vgss	±12.0	V
ID(DC)	$\pm~6.0$	Α
D(pulse)	± 50	Α
P _{T1}	1.0	W
Tch	150	°C
Tstg	-55 to +150	°C
	VGSS ID(DC) ID(pulse) PT1 Tch	VGSS ± 12.0 ID(DC) ± 6.0 ID(pulse) ± 50 PT1 1.0 Tch 150

Notes 1. Mounted on FR-4 board of 25.4mm \times 25.4mm \times 0.8mmt

2. PW \leq 10 μ s, Duty Cycle \leq 1%

EQUIVALENT CIRCUIT

ORDERING INFORMATION

PART NUMBER	LEAD PLATING	PACKING	PACKAGE
μ PA2463T1Q-E1-A ^{Note}	Au	Reel	
μ PA2463T1Q-E2-A ^{Note}		3000 p/reel	8PIN HUSON (2720)

Note Pb-free (This product does not contain Pb in the external electrode and other parts.)

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

ELECTRICAL CHARACTERISTICS (TA = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 20.0 V, V _{GS} = 0 V			1.0	μΑ
Gate Leakage Current	Igss	V _{GS} = ±12.0 V, V _{DS} = 0 V			±10.0	μΑ
Gate to Source Cut-off Voltage	V _{GS(off)}	Vps = 10.0 V, lp = 1.0 mA	0.50		1.50	V
Forward Transfer Admittance Note	yfs	V _{DS} = 10.0 V, I _D = 3.0 A	T.B.D.			S
Drain to Source On-state Resistance Note	RDS(on)1	Vgs = 4.5 V, ID = 3.0 A	12.0	16.0	20.0	mΩ
	RDS(on)2	Vgs = 4.0 V, ID = 3.0 A	13.0	16.5	21.0	mΩ
	RDS(on)3	Vgs = 3.1V, ID = 3.0 A	13.5	18.0	24.0	mΩ
	RDS(on)4	V _G S = 2.5 V, I _D = 3.0 A	15.0	21.0	28.5	mΩ
Input Capacitance	Ciss	Vps = 10.0 V,		540		pF
Output Capacitance	Coss	V _G S = 0 V,		105		pF
Reverse Transfer Capacitance	Crss	f = 1.0 MHz		25		pF
Turn-on Delay Time	td(on)	VDD = 10.0 V,		T.B.D.		us
Rise Time	tr	ID = 3.0 A,		T.B.D.		us
Turn-off Delay Time	td(off)	Vgs = 4.0 V,		T.B.D.		us
Fall Time	tr	$R_G = 6 \Omega$		T.B.D.		us
Total Gate Charge	Q _G	VDD = 16.0 V,		6.0		nC
Gate to Source Charge	Q _G s	Vgs = 4.0 V,		1.5		nC
Gate to Drain Charge	Q _{GD}	ID = 6.0A		2.5		nC
Body Diode Forward Voltage Note	V _{F(S-D)}	IF = 6.0 A, VGS = 0 V		0.82		V

Note Pulsed: PW \leq 350 μ s, Duty Cycle \leq 2%

TEST CIRCUIT 1 SWITCHING TIME

TEST CIRCUIT 2 GATE CHARGE

2 RK-UD-10-0051

(Mount Pad Design example)

RK-UD-10-0051 3

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent
 of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
 in semiconductor product operation and application examples. The incorporation of these circuits, software and
 information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC
 Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of
 these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special", and "Specific".
 The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics products before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M5 02.11-1

4 RK-UD-10-0051