Grafos

Caminos de costo mínimo

- Data Structures and Algorithm Analysis in Java; 2nd Ed. Mark Allen Weiss (Capítulo 9)
- Estructuras de datos y algoritmos; Mark Allen Weiss. (Capítulo 9)

Caminos mínimos entre todos los pares de vértices

- Estrategia: Algoritmo de Floyd
 - ➤ Lleva dos matrices D y P, ambas de |V| x |V|

Matriz de costos mínimos

Matriz de vértices intermedios

El costo total del algoritmo es $O(|V|^3)$

Camino de costo mínimo entre cada par de vértices

```
para i=1 hasta cant_Vértices(G)
            para j=1 hasta cant_Vértices(G)
                D[i,j] = A[i,j]
                                              Toma cada vértice como intermedio,
                                              para calcular los caminos
para k=1 hasta cant_Vértices(G)
         para i=1 hasta cant_Vértices(G)
            para j=1 hasta cant_Vértices(G)
                                                       Distancia entre los
                si (D[i,i] > D[i,k] + D[k,i]) 
                                                        vértices i y j, pasando
                     D[i,i] = D[i,k] + D[k,i];
                                                        por k.
                     P[i.i] = k:
```

Camino de costo mínimo entre cada par de vértices

> Ejemplo:

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	8	8	0

		×				
	$D_{i,j}$	1		2	3	4
1	1	0	^	1	5	8
	2	8		0	2	9
	3	8		8	0	2
	4	4	ə	⊖ <u>5</u>	∞ <u>9</u>	0

$$D (4,2) > D(4,1) + D(1,2) \rightarrow D (4,2) = D(4,1) + D(1,2)$$

 $\infty > 4 + 1 \rightarrow D (4,2) = 5$

K=1

Camino de costo mínimo entre cada par de vértices

$D_{i,j}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	8	8	0

K=	1
----	---

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	<u>5</u>	9	0

			>		
	$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
	1	0	1	5 3	∞ <u>10</u>
*	2	8	0	2	9
	3	8	8	0	2
	4	4	<u>5</u>	9 - <u>7</u>	0

Camino de costo mínimo entre cada par de vértices

> Ejemplo:

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	8	8	0

K=	1
----	---

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	<u>5</u>	9	0

K=2

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	<u>3</u>	<u>10</u>
2	8	0	2	9
3	8	8	0	2
4	4	<u>5</u>	<u>7</u>	0

$D_{i,j}$	1	2	3	4
1	0	1	<u>3</u>	10 <u>5</u>
2	8	0	2	94
3	8	8	0	2
4	4	<u>5</u>	<u>7</u>	0

Camino de costo mínimo entre cada par de vértices

> Ejemplo:

$D_{i,j}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	8	8	0

K=3

K=	
----	--

$D_{i,j}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	<u>5</u>	9	0

K=2

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	<u>3</u>	<u>10</u>
2	8	0	2	9
3	8	8	0	2
				_

$\mathbf{D}_{i,j}$	1	2	3	4
1	0	1	<u>3</u>	<u>5</u>
2	8	0	2	<u>4</u>
3	8	8	0	2
4	4	<u>5</u>	7	0

K=	4
----	---

$D_{i,j}$	1	2	3	4
1	0	1	<u>3</u>	<u>5</u>
2	∞ <u>8</u>	0	2	4
3	∞ <u>6</u>	∞ <u>7</u>	0	2
4	4	<u>5</u>	<u>7</u>	0

Camino de costo mínimo entre cada par de vértices

> Ejemplo:

$D_{i,j}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	8	0	2
4	4	8	∞	0

Matriz inicial de costos
entre cada par de vértices

$\mathbf{D}_{i,j}$	1	2	3	4
1	0	1	<u>3</u>	<u>5</u>
2	<u>8</u>	0	2	4
3	<u>6</u>	7	0	2
4	4	<u>5</u>	7	0

Matriz luego de aplicar Floyd con los costos entre cada par de vértices