Описание

Компания «Мегалайн» — федерального оператора сотовой связи. Клиентам предлагают два тарифных плана: «Смарт» и «Ультра». Чтобы скорректировать рекламный бюджет, коммерческий департамент хочет понять, какой тариф приносит больше денег. \

Нам предстоит сделать предварительный анализ тарифов на небольшой выборке клиентов. В распоряжении данные 500 пользовате лей «Мегалайна»: кто они, откуда, каким тарифом пользуются, сколько звонков и сообщений каждый отправил за 2018 год. Нужно проанализировать поведение клиентов и сделать вывод — какой тариф лучше.

Описание тарифов

Тариф «Смарт»

• Ежемесячная плата: 550 рублей

• Включено 500 минут разговора, 50 сообщений и 15 Гб интернет-трафика

• Стоимость услуг сверх тарифного пакета:

• минута разговора: 3 рубля

• сообщение: 3 рубля

• 1 Гб интернет-трафика: 200 рублей

Тариф «Ультра»

• Ежемесячная плата: 1950 рублей

Включено 3000 минут разговора, 1000 сообщений и 30 Гб интернет-трафика

• Стоимость услуг сверх тарифного пакета:

• минута разговора: 1 рубль

• сообщение: 1 рубль

• 1 Гб интернет-трафика: 150 рублей

«Мегалайн» всегда округляет секунды до минут, а мегабайты — до гигабайт. Каждый звонок округляется отдельно: даже если он длился всего 1 секунду, будет засчитан как 1 минута. Для веб-трафика отдельные сессии не считаются. Вместо этого общая сумма за месяц округляется в большую сторону. Если абонент использует 1025 мегабайт в этом месяце, с него возьмут плату за 2 гигабайта. Примите, что неиспользованные за предыдущий месяц звонки, смс, интернет на следующий месяц не переносятся.

Описание данных

Таблица **users** (информация о пользователях):

- user_id уникальный идентификатор пользователя
- first_name имя пользователя
- last_name фамилия пользователя
- age возраст пользователя (годы)
- reg_date дата подключения тарифа (день, месяц, год)
- churn_date дата прекращения пользования тарифом (если значение пропущено, то тариф ещё действовал на момент выгрузки данных)

- city город проживания пользователя
- tariff название тарифного плана

Таблица **calls** (информация о звонках):

- id уникальный номер звонка
- call_date дата звонка
- duration длительность звонка в минутах
- user_id идентификатор пользователя, сделавшего звонок

Таблица messages (информация о сообщениях):

- id уникальный номер сообщения
- message_date дата сообщения
- user_id идентификатор пользователя, отправившего сообщение

Таблица **internet** (информация об интернет-сессиях):

- id уникальный номер сессии
- mb_used объём потраченного за сессию интернет-трафика (в мегабайтах)
- session date дата интернет-сессии
- user_id идентификатор пользователя

Таблица tariffs (информация о тарифах):

- tariff_name название тарифа
- rub_monthly_fee ежемесячная абонентская плата в рублях
- minutes_included количество минут разговора в месяц, включённых в абонентскую плату
- messages_included количество сообщений в месяц, включённых в абонентскую плату
- mb_per_month_included объём интернет-трафика, включённого в абонентскую плату (в мегабайтах)
- rub_per_minute стоимость минуты разговора сверх тарифного пакета (например, если в тарифе 100 минут разговора в месяц, то со 101 минуты будет взиматься плата)
- rub_per_message стоимость отправки сообщения сверх тарифного пакета
- rub_per_gb стоимость дополнительного гигабайта интернет-трафика сверх тарифного пакета (1 гигабайт = 1024 мегабайта)

Введение

- Для начала предстоит познакомиться с данными: какие таблицы нам даны? какие типы данных в этих таблицах.
- После этого необходимо будет выполнить предобработку данных: привести данные к нужным типам, избавиться от ошибок (если они есть), проверить дубликаты, заполнить пропуски
- После этого необходимо будет посчитать помесяные траты минут, сообщений и интернета для каждого пользователя.
- Далее можно будет приступить к анализу общих данных: посмотреть на длительность звонков в среднем, кол-во смс, используемый интернет-трафик
- Далее разобьем данные на 2 датафрейма по тариффам и выполним небольшой сравнительный анализ ключевых показателей по тарифам.

• Затем очистим данные от выбросов, выдвенем гипотезы и проведем статистические тесты, чтобы постараться ответить на запрос бизнеса

Ознакомление с данными

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from scipy import stats as st
In [2]: try:
            calls = pd.read_csv('calls.csv')
            internet = pd.read_csv('internet.csv')
            messages = pd.read_csv('messages.csv')
            tariffs = pd.read csv('tariffs.csv')
            users = pd.read_csv('users.csv')
        except:
            calls = pd.read_csv('https://code.s3.yandex.net/datasets/calls.csv')
            internet = pd.read_csv('https://code.s3.yandex.net/datasets/internet.csv')
            messages = pd.read_csv('https://code.s3.yandex.net/datasets/messages.csv')
            tariffs = pd.read csv('https://code.s3.yandex.net/datasets/tariffs.csv')
            users = pd.read csv('https://code.s3.yandex.net/datasets/users.csv')
        pd.options.display.max columns=50
In [3]:
In [4]:
        display(calls.head())
        display(calls.info())
                    call_date duration user_id
        0 1000_0 2018-07-25
                                0.00
                                       1000
          1000_1 2018-08-17
                                0.00
                                       1000
          1000_2 2018-06-11
                                2.85
                                       1000
        3 1000_3 2018-09-21
                               13.80
                                       1000
        4 1000_4 2018-12-15
                                5.18
                                       1000
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 202607 entries, 0 to 202606
        Data columns (total 4 columns):
         #
                        Non-Null Count
             Column
                                         Dtype
                        202607 non-null object
         0
             id
             call_date 202607 non-null object
         1
             duration
                        202607 non-null float64
         2
             user id
                        202607 non-null int64
         3
        dtypes: float64(1), int64(1), object(2)
        memory usage: 6.2+ MB
        None
In [5]: display(internet.head())
        display(internet.info())
```

```
Unnamed: 0
                    id mb_used session_date user_id
            0 1000 0
                          112.95
                                    2018-11-25
                                                  1000
0
             1 1000_1
                         1052.81
                                   2018-09-07
                                                  1000
1
2
            2 1000 2
                         1197.26
                                                  1000
                                   2018-06-25
               1000_3
3
                          550.27
                                   2018-08-22
                                                  1000
4
            4 1000_4
                          302.56
                                   2018-09-24
                                                  1000
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 149396 entries, 0 to 149395

Data columns (total 5 columns):

Column Non-Null Count 0 Unnamed: 0 149396 non-null int64 1 149396 non-null object 2 mb_used 149396 non-null float64 3 session_date 149396 non-null object 149396 non-null int64 4 user_id dtypes: float64(1), int64(2), object(2)

memory usage: 5.7+ MB

None

In [6]: display(messages.head())
display(messages.info())

id message_date user_id **0** 1000_0 2018-06-27 1000 1000_1 1000 2018-10-08 1000_2 2018-08-04 1000 1000_3 1000 2018-06-16 **4** 1000_4 2018-12-05 1000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 123036 entries, 0 to 123035
Data columns (total 3 columns):

Column Non-Null Count Dtype
--- 0 id 123036 non-null object
1 message_date 123036 non-null object
2 user_id 123036 non-null int64

dtypes: int64(1), object(2)
memory usage: 2.8+ MB

None

In [7]: display(tariffs.head())
 display(tariffs.info())

messages_included mb_per_month_included minutes_included rub_monthly_fee rub_per_gb rub 0 50 550 200 150

RangeIndex: 2 entries, 0 to 1 Data columns (total 8 columns): # Column Non-Null Count Dtype 0 messages_included 2 non-null int64 1 mb_per_month_included 2 non-null int64 minutes_included 2 non-null 2 int64 3 rub_monthly_fee 2 non-null int64 4 rub_per_gb 2 non-null int64 5 rub_per_message 2 non-null int64 6 rub_per_minute 2 non-null int64 tariff name 2 non-null object 7 dtypes: int64(7), object(1) memory usage: 256.0+ bytes None

<class 'pandas.core.frame.DataFrame'>

	user_id	age	churn_date	city	first_name	last_name	reg_date	tariff
0	1000	52	NaN	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
1	1001	41	NaN	Москва	Иван	Ежов	2018-11-01	smart
2	1002	59	NaN	Стерлитамак	Евгений	Абрамович	2018-06-17	smart
3	1003	23	NaN	Москва	Белла	Белякова	2018-08-17	ultra
4	1004	68	NaN	Новокузнецк	Татьяна	Авлеенко	2018-05-14	ultra

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	user_id	500 non-null	int64
1	age	500 non-null	int64
2	churn_date	38 non-null	object
3	city	500 non-null	object
4	first_name	500 non-null	object
5	last_name	500 non-null	object
6	reg_date	500 non-null	object
7	tariff	500 non-null	object
d+vn	es: int6/(2)	object(6)	

dtypes: int64(2), object(6)
memory usage: 31.4+ KB

None

```
In [9]: users[users['churn_date'].notnull()].groupby('tariff')['user_id'].count()
```

Out[9]: tariff smart 23 ultra 15

Name: user_id, dtype: int64

Думал сразу посмотреть с какого тарифа люди уходят чаще, но по этим данным сделать какой-либо вывод невозможно. Их и очень мало и цифры отличаются несильно.

Данные выглядят на удивление неплохо. Практически нет пропусков, имена колонок в порядке. Но некоторую предобработку я все-таки выполню

Предобработка данных

Займемся предобработкой данных: проверим на пропуски, дубликаты, аномалии. Также разберемся с типами данных

Для начала поменяем float64 и int64 на более экономичные для памяти типы данных во всех датафреймах.

```
In [10]: data_list = [calls, internet, messages, tariffs, users]

#Цикл пробегается по всем типам данных и меняет float64 и int64 на float32 и int3

for i in data_list:
    for col in i:
        if i[col].dtype == 'float64':
            i[col] = i[col].astype('float32')
        elif i[col].dtype == 'int64':
            i[col] = i[col].astype('int32')
```

Также я видел в таблицах calls, internet, messages и users столбцы с датой. Предлагаю поменять их на необходимый формат

```
In [11]: calls['call_date']= pd.to_datetime(calls['call_date'], format='%Y-%m-%d')
   internet['session_date']= pd.to_datetime(internet['session_date'], format='%Y-%m-%c
   messages['message_date']= pd.to_datetime(messages['message_date'], format='%Y-%m-%c
   users['reg_date']= pd.to_datetime(users['reg_date'], format='%Y-%m-%d')
```

Пропуски встречаются в колонке churn_date (дата прекращения пользования тарифом). В данном случае, клиенты просто продолжали пользоваться тарифом на момент выгрузки данных. Заменять пропуски считаю бессмысленным.

Все, на мой взгяд, данные приведены в нужный формат.

Теперь разберемся с каждой таблицей отдельно. Проверим данные на ошибки и попробуем составить первое впечатление о данных.

Звоники

0

```
In [12]: calls['duration'].hist()

Out[12]: <AxesSubplot:>

80000
70000
60000
40000
30000
20000
10000
```

На гистограмме можно заметить большое кол-во звонков с длительностью 0. Вероятнее

всего, это пропущенные вызовы либо абонент не дозвонился до адресата.

Посчитаем количесвто звонков для каждого пользователья по месяцам

```
In [13]: # Добавим колонку с месяцем
  calls['month'] = calls['call_date'].dt.month
```

Поскольку для обоих тарифов каждый звонок окргуляется отдельно до минут, сразу произведем округление длительности звонков

```
In [14]: calls['duration'] = np.ceil(calls['duration']).astype('int32')
```

Теперь создадим сводник по звонкам за месяц для каждого пользователя.

calls_duration_total	calls_count	month	user_id	
159	22	5	1000	0
172	43	6	1000	1
340	47	7	1000	2
408	52	8	1000	3
466	58	9	1000	4

count	3174.000000	3174.000000
mean	63.833333	456.931632
std	32.678036	238.031270
min	1.000000	0.000000
25%	41.000000	290.000000
50%	63.000000	447.000000
75%	83.000000	592.000000
max	244.000000	1673.000000

<AxesSubplot:>

Большинство клиентов разговаривают по 0-600 минут в месяц. Медиана и среднее на отметке около 450 минут.

Сообщения

Теперь посчитаем количество смс-сообщений для каждого пользователя по месяцам.

```
In [16]: messages.head()
Out[16]:
                 id message_date user_id
          0 1000_0
                       2018-06-27
                                    1000
          1 1000_1
                       2018-10-08
                                    1000
          2 1000_2
                       2018-08-04
                                    1000
          3 1000_3
                       2018-06-16
                                    1000
          4 1000_4
                       2018-12-05
                                    1000
In [17]:
         messages['month'] = messages['message date'].dt.month
```

```
2717.000000
count
mean
           45,283769
           35.051363
std
min
            1.000000
25%
           19.000000
50%
           38.000000
75%
           63.000000
          224.000000
max
Name: messages_count, dtype: float64
```

	user_id	month	messages_count
0	1000	5	22
1	1000	6	60
2	1000	7	75
3	1000	8	81
4	1000	9	57

<AxesSubplot:>

В среднем люди отправляют примерно по 40-45 смс в месяц.

Интернет

```
In [19]: internet.head()
```

ut[19]:		Unnamed: 0	id	mb_used	session_date	user_id
	0	0	1000_0	112.949997	2018-11-25	1000
	1	1	1000_1	1052.810059	2018-09-07	1000
	2	2	1000_2	1197.260010	2018-06-25	1000
	3	3	1000_3	550.270020	2018-08-22	1000
	4	4	1000_4	302.559998	2018-09-24	1000

```
In [20]: internet['month'] = internet['session_date'].dt.month
```

Поскольку оператор округляет мб до гб, предлагаю после построения сводной таблицы поделить использованные мб на 1024 и округлить в бОльшую сторону

count	3203.000000	
mean	17.358414	
std	7.343379	
min	0.000000	
25%	13.000000	
50%	17.000000	
75%	21.000000	
max	49.000000	
N.I	1 1 11	61 .6

Name: gb_used, dtype: float64

	user_id	month	gb_used
0	1000	5	3
1	1000	6	23
2	1000	7	14
3	1000	8	14
4	1000	9	15

<AxesSubplot:>

В среднем клиенты израсходуют около 17 гб в месяц.

Формирование общего датафрейма

Объеденим полученные таблицы со звонками, смс и интрнетом за месяц в один датафрейм

```
In [22]: # Поскольку мы перевели мб в гб в нашем своднике, необходимо перевести мб в гб и в tariffs.insert(1, 'gb_per_month_included', (tariffs['mb_per_month_included']/1024).

In [23]: # Соеденим таблицы со звонками, смс и интернетом data_by_month = pd.merge(pd.merge(calls_by_month, messages_by_month, how='outer', с # Добавим таблицу с информацией о пользователях df = pd.merge(data_by_month, users[['user_id', 'city', 'tariff']], on='user_id', hc # И наконец добавим в общий датафрейм условия по тарифам df = df.merge(tariffs, left_on='tariff', right_on='tariff_name', how='left')
```

Теперь у нас есть общий датафрейм со всеми необходимыми данными для каждого пользователя.

```
In [24]: df.sample(10)
```

	city	gb_used	messages_count	calls_duration_total	calls_count	month	user_id	
:	Калуга	13.0	45.0	339.0	50.0	9	1266	1658
;	Улан-Удэ	24.0	55.0	15.0	1.0	12	1373	2328
;	Магнитогорск	25.0	NaN	600.0	84.0	10	1224	1410
!	Нижний Новгород	1.0	NaN	85.0	12.0	4	1384	2419
!	Владивосток	9.0	20.0	75.0	11.0	9	1202	1274
;	Новокузнецк	14.0	30.0	291.0	33.0	5	1475	3022
!	Ставрополь	23.0	10.0	512.0	67.0	10	1043	264
	Барнаул	10.0	1.0	816.0	106.0	7	1458	2915
	Смоленск	21.0	27.0	540.0	69.0	8	1303	1903
	Якутск	7.0	26.0	166.0	33.0	3	1064	401

Очевидно, что после merge в датафрейме будут пустые значения.

Out[24]:

```
In [25]:
         df.isna().mean()
Out[25]: user_id
                                   0.000000
         month
                                   0.000000
         calls_count
                                   0.012446
         calls_duration_total
                                   0.012446
         messages_count
                                   0.154636
         gb_used
                                   0.003423
         city
                                   0.000000
         tariff
                                   0.000000
         messages_included
                                   0.000000
         gb_per_month_included
                                   0.000000
         mb_per_month_included
                                   0.000000
         minutes_included
                                   0.000000
         rub_monthly_fee
                                   0.000000
         rub_per_gb
                                   0.000000
         rub_per_message
                                   0.000000
         rub_per_minute
                                   0.000000
         tariff_name
                                   0.000000
         dtype: float64
```

Пропуски обнаружены в колонках: кол-во звонков, длительность звонков, кол-во сообщений и траффик в гб. Логичнее всего предположить, что в указанных месяцах клиент не отправлял смс, не делал звонков или не выходил в интернет. Заменяем но 0.

```
0.0
user_id
                         0.0
month
calls_count
                         0.0
calls_duration_total
                         0.0
messages_count
                         0.0
gb_used
                         0.0
                         0.0
city
tariff
                         0.0
messages_included
                         0.0
gb_per_month_included
                         0.0
mb_per_month_included
                         0.0
minutes_included
                         0.0
                         0.0
rub_monthly_fee
rub_per_gb
                         0.0
rub_per_message
                         0.0
                         0.0
rub_per_minute
tariff_name
                         0.0
dtype: float64
```

Отлично. От пропусков избавились, дубликатов нет. Для полного анализа нам необходимо также посчитать помесячную выручку с каждого пользователя.

```
In [27]: # Функция для подсчета выручки
         def profit(data):
             prof = data['rub_monthly_fee']
             if data['messages count'] - data['messages included'] > 0:
                 prof += (data['messages_count'] - data['messages_included']) * data['rub_pe
             if data['calls_duration_total'] - data['minutes_included'] > 0:
                 prof += (data['calls duration total'] - data['minutes included']) * data['i
             if data['gb_used'] - data['gb_per_month_included'] > 0:
                 prof += (data['gb used'] - data['gb per month included']) * data['rub per d
             return int(prof)
         # Добавим колонкис выручкой, суммой переплаты
         df['profit'] = df.apply(profit, axis=1)
         df['overpaid'] = df['profit'] - df['rub_monthly_fee']
In [28]: # Функция для добавления колонки с наличием переплаты (1— есть переплата, 0 — нет п
         def overpaid(data):
             if data['overpaid'] == 0:
                 return 0
             else:
                 return 1
         df['overpayment'] = df.apply(overpaid, axis=1)
In [29]: # Проверим корректность выгрузки
         df.sample(10)
```

1	city	gb_used	messages_count	calls_duration_total	calls_count	month	user_id	
s	Пермь	8.0	2.0	109.0	13.0	3	1009	63
S	Санкт- Петербург	24.0	4.0	414.0	56.0	12	1172	1075
	Новосибирск	25.0	19.0	575.0	79.0	8	1325	2035
S	Красноярск	21.0	14.0	841.0	119.0	10	1173	1080
S	Ставрополь	16.0	47.0	554.0	69.0	11	1155	973
S	Орёл	1.0	0.0	10.0	2.0	6	1439	2803
	Москва	23.0	43.0	643.0	100.0	10	1381	2403
	Иркутск	3.0	27.0	5.0	2.0	2	1089	556
S	Санкт- Петербург	1.0	2.0	24.0	2.0	2	1482	3078
	Тольятти	15.0	47.0	724.0	97.0	8	1099	621

Анализ данных

3

4

1000

1000

8

9

52.0

58.0

Out[29]:

Опишем поведение клиентов оператора, исходя из выборки. Сколько минут разговора, сколько сообщений и какой объём интернет-трафика требуется пользователям каждого тарифа в месяц? Посчитаем среднее количество, дисперсию и стандартное отклонение. Построим гистограммы

Для сравнительного анализа пользователей двух разных тарифов предлагаю разбить наш датафрейм на 2

```
df_smart = df[df['tariff'] == 'smart'].reset_index(drop=True)
In [30]:
          df_ultra = df[df['tariff'] == 'ultra'].reset_index(drop=True)
   [31]:
In [32]:
           df_smart.head()
                              calls_count calls_duration_total messages_count gb_used
Out[32]:
              user_id month
                                                                                                   city
                                                                                                        tariff
           0
                 1001
                                     59.0
                                                        430.0
                                                                                     18.0
                           11
                                                                            0.0
                                                                                                Москва
                                                                                                        smart
                 1001
           1
                           12
                                     63.0
                                                         414.0
                                                                            0.0
                                                                                     14.0
                                                                                                Москва
                                                                                                        smart
           2
                 1002
                           6
                                     15.0
                                                         117.0
                                                                            4.0
                                                                                          Стерлитамак
                                                                                     11.0
                                                                                                        smart
           3
                 1002
                            7
                                     26.0
                                                         214.0
                                                                            11.0
                                                                                     18.0
                                                                                          Стерлитамак
                                                                                                        smart
           4
                 1002
                           8
                                     42.0
                                                        289.0
                                                                           13.0
                                                                                     20.0
                                                                                          Стерлитамак
                                                                                                        smart
           df_ultra.head()
In [33]:
Out[33]:
                              calls_count calls_duration_total messages_count gb_used
              user_id month
                                                                                                 city
                                                                                                      tariff
           0
                1000
                           5
                                     22.0
                                                         159.0
                                                                           22.0
                                                                                      3.0
                                                                                                       ultra
                                                                                          Краснодар
                 1000
           1
                           6
                                     43.0
                                                         172.0
                                                                           60.0
                                                                                     23.0
                                                                                           Краснодар
                                                                                                       ultra
           2
                1000
                           7
                                     47.0
                                                        340.0
                                                                           75.0
                                                                                     14.0 Краснодар
                                                                                                       ultra
```

408.0

466.0

81.0

57.0

14.0

Краснодар

15.0 Краснодар

ultra

ultra

Анализ звонков

```
In [34]:
         # Построение гистрограмм
         fig, axs = plt.subplots(1,2)
         fig.suptitle("Call's_by_tariff")
         fig.set_figheight(5)
         fig.set_figwidth(15)
         df smart['calls duration total'].plot.hist(ax=axs[0])
         axs[0].axvline(df_smart['minutes_included'].mean(), color='y')
         axs[0].set_title('calls_duaration smart')
         axs[0].set_xlabel('duration (m)')
         axs[0].legend(loc='upper right')
         df_ultra['calls_duration_total'].plot.hist(ax=axs[1], color = "r")
         axs[1].set_title('calls_duration_ultra')
         axs[1].set_xlabel('duration (m)')
         axs[1].legend(loc='upper right')
         axs[1].axvline(df_ultra['minutes_included'].mean(), color='g')
         # Сводник для сравнения
         df.groupby('tariff')['calls_duration_total'].agg(['mean', 'median', 'var', 'std'])
```

Out[34]:	tariff	smart	ultra
	mean	417.934948	526.623350
	median	422.000000	518.000000
	var	36219.315784	100873.633397
	std	190.313730	317.606098

В среднем пользователи смарта выговариваю по 417 минут из 500 включенных в тариф. Пользователи ультры выговваривают лишь по 526 минут из 3000 включенных в тариф. Можно заключить, что пользователи смарта более целостно используют тариф, в то время как пользователи ультры в среднем выговаривают лишь по 17% от включенных в тариф минут. \ Также я добавил на график линию, которой обозначены включенные в тариф минуты. Из них видно, что пользователи смарта намного чаще выходят за лимит по минутам звонков, а пользователей ультры, который выговариваю более 3000 минут и вовсе нет. \ График по тарифу смарт выглядит более нормальным, чем график тарифа ультра, который имеет положительную ассиметрию. Это также видно при сравнении среднего и медианы. У тарифа смарт среднее меньше отличается от медианы, нежели чем в тарифе ультра

Анализ сообщений

```
In [35]: # Построение гистрограмм
         fig, axs = plt.subplots(1,2)
         fig.suptitle("Messages_by_tariff")
         fig.set_figheight(5)
         fig.set_figwidth(15)
         df_smart['messages_count'].plot.hist(ax=axs[0])
         axs[0].axvline(df_smart['messages_included'].mean(), color='y')
         axs[0].set_title('messages_smart')
         axs[0].set_xlabel('count')
         axs[0].legend(loc='upper right')
         df_ultra['messages_count'].plot.hist(ax=axs[1], color = "r")
         axs[1].set_title('messages_ultra')
         axs[1].set_xlabel('count')
         axs[1].legend(loc='upper right')
         axs[1].axvline(df_ultra['messages_included'].mean(), color='g')
         # Сводник для сравнения
         df.groupby('tariff')['messages_count'].agg(['mean', 'median', 'var', 'std']).T
```

Out[35]:	tariff	smart	ultra
	mean	33.384029	49.363452
	median	28.000000	38.000000
	var	796.812958	2285.266143
	std	28.227876	47.804457

С сообщениями картина в целом похожа на звонки. Пользователи смарта чаще выходят за лимит, а пользователи ультры отправляют максимум по 200 сообщений, хотя лимит 1000. Среднее для тарифов смарт и ультра на отметказ 33 и 49 сообщений соответсвенно. Медиана - 28 и 38.

Анализ интернета

```
In [36]: # Построение гистрограмм
fig, axs = plt.subplots(1,2)
fig.suptitle("Internet_by_tariff")
fig.set_figheight(5)
fig.set_figwidth(15)
df_smart['gb_used'].plot.hist(ax=axs[0])
axs[0].axvline(df_smart['gb_per_month_included'].mean(), color='y')
axs[0].set_title('internet_smart')
```

```
axs[0].set_xlabel('GB')
axs[0].legend(loc='upper right')
df_ultra['gb_used'].plot.hist(ax=axs[1], color = "r")
axs[1].set_title('internet_ultra')
axs[1].set_xlabel('GB')
axs[1].legend(loc='upper right')
axs[1].axvline(df_ultra['gb_per_month_included'].mean(), color='g')

# Сводник для сравнения
df.groupby('tariff')['gb_used'].agg(['mean', 'median', 'var', 'std']).T
```

```
Out[36]:
              tariff
                         smart
                                      ultra
                    16.328847
                                19.494416
             mean
            median
                     17.000000
                                19.000000
                     33.028705
                                97.091686
                var
                std
                      5.747061
                                  9.853511
```


С интернетом картина отличается. Пользователи обоих тарифов чаще превышают лимит. У пользователей смартра и среднее и медиана и вовсе лежат за допустимым лимитом. Пользователи ультры менее часто превышают лимит, но все же достаточно. Медина и среднее для ультры примерно равны и находятся на отметке в 19 гб.

Анализ выручки

```
In [37]: # Построение гистрограмм
fig, axs = plt.subplots(1,2)
fig.suptitle("Proffits_by_tariff")
fig.set_figheight(5)
fig.set_figwidth(15)
df_smart['profit'].plot.hist(ax=axs[0])
axs[0].set_title('profit_smart')
axs[0].set_xlabel('RUB')
axs[0].legend(loc='upper right')
df_ultra['profit'].plot.hist(ax=axs[1], color = "r")
axs[1].set_title('profit_ultra')
axs[1].set_xlabel('RUB')
axs[1].legend(loc='upper right')

# Сводник для сравнения
df.groupby('tariff')[['profit', 'overpaid', 'overpayment']].agg(['mean', 'media')
```

	tariff	smart	ultra
profit	mean	1289.973531	2070.152284
	median	1023.000000	1950.000000
	var	669785.708006	141516.745079
	std	818.404367	376.187114
overpaid	mean	739.973531	120.152284
	median	473.000000	0.000000
	var	669785.708006	141516.745079
	std	818.404367	376.187114
overpayment	mean	0.745626	0.136041
	median	1.000000	0.000000
	var	0.189753	0.117653

std

0.435607

Out[37]:

0.343006

Анализируя предыдущие данные, можно было предположить, что пользователи смарта намного больше переплачивают сверх тарифа. График и сводная таблица жто подтверждают. Пользователи смарта в **74(!)%** случаев переплачивают по тарифу, в то время как пользователи ультры лишь в 13% случаев. В среднем пользователи смарта переплачивают по 739 рублей.

Проверка гипотез

Очистка данных

Перед проведением статистических тестов предлагаю очистить наши данные от выбросов, тк они могут существенно повлиять на результаты.

```
In [38]: plt.boxplot([df_ultra['profit'], df_smart['profit']]);
```



```
In [39]: # Создадим функцию для очистки данных

def clean_data(data, column):
    q1 = data[column].quantile(0.25)
    q3 = data[column].quantile(0.75)
    iqr = q3 - q1
    iqr_test = (data[column] >= (q1 - 1.5 * iqr)) & (data[column] <= (q3 + 1.5 return data.loc[iqr_test]

# Применим функцию к датафреймам

df_smart = clean_data(df_smart, 'profit')

df_ultra = clean_data(df_ultra, 'profit')
```

Поскольку наши данные являются выборками из ГС и выборками независимыми между собой, мы будем применять T-Test Стьюдента.

Проверка первой гипотезы: средняя выручка пользователей тарифов «Ультра» и «Смарт» различаются

Сформируем нулевую и альтернативную гипотезы:

- Но Средняя выручка пользователей тарифов "Смарт" и "Ультра" не различаются.
- Н1 Средняя выручка пользователей тарифов "Смарт" и "Ультра" различаются.

```
In [40]: # Зададим уровень значимости в 5% alpha = 0.05

# Результат теста results = st.ttest_ind(df_smart['profit'], df_ultra['profit'])

# Выведем на экран значение р-уровня значимости print(f'p-значение: {results.pvalue}')

# Ответ if (results.pvalue < alpha): print("Отвергаем нулевую гипотезу") else: print("Не получилось отвергнуть нулевую гипотезу")
```

р-значение: 6.199325734910118e-155 Отвергаем нулевую гипотезу

Уровень р-значимости невероятно мал. Это значит, что вероятность получить такой результат или более далекий от предполагаемого ничтожно мала. Мы смело отвергаем нулевую гипотезу.

Проверка второй гипотезы: средняя выручка пользователей из Москвы отличается от выручки пользователей из других регионов.

Для начала необходимо разбить наши данные на 2 датафрейма: Москва и Регионы

```
In [41]: df.head()
Out[41]:
               user_id month calls_count calls_duration_total messages_count gb_used
                                                                                                      city
            0
                 1000
                             5
                                       22.0
                                                            159.0
                                                                               22.0
                                                                                          3.0
                                                                                               Краснодар
            1
                 1000
                             6
                                       43.0
                                                            172.0
                                                                               60.0
                                                                                         23.0
                                                                                               Краснодар
            2
                 1000
                             7
                                       47.0
                                                            340.0
                                                                               75.0
                                                                                         14.0
                                                                                               Краснодар
            3
                 1000
                             8
                                       52.0
                                                            408.0
                                                                               81.0
                                                                                         14.0
                                                                                               Краснодар
            4
                 1000
                             9
                                       58.0
                                                           466.0
                                                                               57.0
                                                                                         15.0
                                                                                               Краснодар
In [42]: | df['city'].sort_values().unique()
Out[42]: array(['Архангельск', 'Астрахань', 'Балашиха', 'Барнаул', 'Белгород',
                    'Брянск', 'Владивосток', 'Владикавказ', 'Владимир', 'Волгоград',
                    'Волжский', 'Вологда', 'Воронеж', 'Грозный', 'Екатеринбург',
                    'Иваново', 'Ижевск', 'Иркутск', 'Казань', 'Калининград', 'Калуга', 'Кемерово', 'Киров', 'Кострома', 'Краснодар', 'Красноярск',
                    'Курган', 'Курск', 'Липецк', 'Магнитогорск', 'Махачкала', 'Москва',
                    'Мурманск', 'Набережные Челны', 'Нижневартовск', 'Нижний Новгород', 'Нижний Тагил', 'Новокузнецк', 'Новороссийск', 'Новосибирск',
                    'Омск', 'Оренбург', 'Орёл', 'Пенза', 'Пермь', 'Петрозаводск', 
'Подольск', 'Ростов-на-Дону', 'Рязань', 'Самара',
                    'Санкт-Петербург', 'Саранск', 'Саратов', 'Севастополь', 'Смоленск',
                    'Сочи', 'Ставрополь', 'Стерлитамак', 'Сургут', 'Тамбов', 'Тверь',
                    'Тольятти', 'Томск', 'Тула', 'Тюмень', 'Улан-Удэ', 'Ульяновск', 'Уфа', 'Хабаровск', 'Химки', 'Чебоксары', 'Челябинск', 'Череповец',
                    'Чита', 'Якутск', 'Ярославль'], dtype=object)
In [43]: # Создадим функцию для проверки на регион
           def region(data):
                if data['city'] == 'MockBa':
                     return 'MockBa'
                else:
                     return 'Регион'
            # Добавим колонку с регионом
           df['region'] = df.apply(region, axis=1)
In [44]: df.sample(5)
                   user_id month calls_count calls_duration_total messages_count gb_used
                                                                                                          cit
Out [44]:
            1994
                      1318
                                11
                                           67.0
                                                               524.0
                                                                                   37.0
                                                                                             17.0
                                                                                                       Курга
                                                                                                       Санкт
            1209
                      1189
                                 9
                                           91.0
                                                               629.0
                                                                                   20.0
                                                                                             16.0
                                                                                                   Петербур
            3053
                     1479
                                 7
                                           86.0
                                                               666.0
                                                                                    0.0
                                                                                             26.0 Хабаровс
             889
                      1144
                                           62.0
                                                                516.0
                                                                                   55.0
                                                                                             19.0
                                                                                                    Улан-Уд
             184
                     1028
                                11
                                          133.0
                                                               1021.0
                                                                                             18.0
                                                                                  182.0
                                                                                                        Твер
```

Функция работает.

Создадим 2 датафрейма: для пользователей из Москвы и пользователей из Региона

```
In [45]: df_moscow = df[df['region'] == 'Москва'].copy()
```

```
In [46]: df_region = df[df['region'] == 'Регион'].copy()
```

Сформулируем нулевую и альтернативную гипотезы:

- Но Средняя выручка пользователей из Москвы не отличается от выручки пользователей из других регионов
- H1 Средняя выручка пользователей из Москвы отличается от выручки пользователей из других регионов

```
In [47]: # Зададим уровень значимости в 5%
alpha = 0.05

# Результат теста
results = st.ttest_ind(df_moscow['profit'], df_region['profit'])

# Выведем на экран значение р-уровня значимости
print(f'p-значение: {results.pvalue}')

# Ответ
if (results.pvalue < alpha):
    print("Отвергаем нулевую гипотезу")
else:
    print("Не получилось отвергнуть нулевую гипотезу")</pre>
```

р-значение: 0.5440152911670224 Не получилось отвергнуть нулевую гипотезу

р-уровень значимости очень велик. Можно смело сказать, что с вероятностью в 54% отвергнуть нулевую гипотезу будет ошибкой.

Вывод

Мы проделали большую работу и исследовали данные. В такой работе одного единого вывода быть не может, поэтому изложу несколько выводов:

- Количество минут в тарифе Ультра, возможно, следует пересмотреть. Ни один человек даже не приблизился к установленному лимиту.
- Количесвто смс для тарифа Ультра также следует пересмотреть. Создается ощущение упущенной выгоды.
- С интернетом ситуация такая же, как со звонками и смс. У Ультры нет клиентов, выходящих за лимит.
- Исходя из пунктов выше, можно заметить, что клиенты тарифа Смарт переплачивают намного чаще.
- Но несмотря на это, средняя выручка от тарифа Ультра намного выше, чем от тарифа Смарт. Возможно, изменив немного лимиты, выручка станет еще больше.
- Первая гипотеза о различии выручек от тарифов полностью подтвердилась.
- Однако гипотеза о разности выручки в зависимости от региона использования тарифа, наоборот, полностью провалилась.

Считаю, что тариф ультра в данной ситуации намного выгоднее для компании и рекламную компанию стоит корректировать в соответствии с этим анализом.