Parcial II

Alejandro Salazar Mejía

23/8/2021

```
library('MCMCpack')
## Warning: package 'MCMCpack' was built under R version 4.0.5
## Loading required package: coda
## Warning: package 'coda' was built under R version 4.0.5
## Loading required package: MASS
## ##
## ## Markov Chain Monte Carlo Package (MCMCpack)
## ## Copyright (C) 2003-2021 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
## ##
## ## Support provided by the U.S. National Science Foundation
## ## (Grants SES-0350646 and SES-0350613)
## ##
library(hdrcde)
## Warning: package 'hdrcde' was built under R version 4.0.5
## This is hdrcde 3.4
library(KernSmooth)
## Warning: package 'KernSmooth' was built under R version 4.0.5
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
library(knitr)
library(readr)
library(plotrix)
```

Warning: package 'plotrix' was built under R version 4.0.3

library(HH)

```
## Warning: package 'HH' was built under R version 4.0.4
## Loading required package: lattice
## Loading required package: grid
## Loading required package: latticeExtra
## Warning: package 'latticeExtra' was built under R version 4.0.2
## Loading required package: multcomp
## Warning: package 'multcomp' was built under R version 4.0.4
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 4.0.3
## Loading required package: survival
## Loading required package: TH.data
## Warning: package 'TH.data' was built under R version 4.0.4
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
##
      geyser
## Loading required package: gridExtra
## Warning: package 'gridExtra' was built under R version 4.0.2
##
## Attaching package: 'HH'
## The following object is masked from 'package:coda':
##
##
       acfplot
source('funcionesAux.R')
```

Como se explicó en la sección 3.1, la métodología de elicitación consiste básicamente en elegir al menos dos puntos de diseño, y elicitar la distribución normal de la respuesta en dichos puntos. En esta sección se muestra dicho proceso.

Se escogieron tres puntos de diseño: los modelos 2013, 2015 y 2017. Una vez obtenidos los intervalos en cada año y la frencuencia de la muestra hipotéticas en estos, se hace uso de la función estimaNormal, programada por el profesor Juan Carlos Correa Morales y presentada en el curso de estadística bayesiana en las diapositivas de la clase 10. Esta función nos permite encontrar una distribución normal que mejor ajuste sus probabilidades a las frecuencias relativas correspondientes a cada subintervalo por medio de un proceso de optimización.

A continuación se muestra de manera gráfica el resultado de la elicitación del precio del auto en cada añomodelo, junto con la distribución normal ajustada y su tabla de parámetros estimados.

2013:

```
limites 2013 \leftarrow c(25, 26, 27, 28, 29, 30)
frecus2013 <- c(20, 40, 80, 100, 100)
(resu2013 <- optim(c(26,5),estimaNormal,method='L-BFGS-B',</pre>
             lower=c(25,0.01),upper=c(28,50),
             limites=limites2013 ,frecu=frecus2013))
## $par
## [1] 28.000000 1.965467
## $value
## [1] 0.0213493
##
## $counts
## function gradient
##
         16
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
param.opt2013<-resu2013$par
histograma (frecus 2013, limites 2013,
           main = "Distribución del precio \nen Millones de pesos del modelo 2013",
           xlab = "Millones de pesos ($)",
           ylab = "Densidad")
```

dnorm(xx,mean=param.opt2013[1],sd=sqrt(param.opt2013[2])),type='1')

points(xx<-seq(min(limites2013)-1,max(limites2013)+2,length=100),</pre>

Distribución del precio en Millones de pesos del modelo 2013


```
kable(t(param.opt2013),
    col.names = c("$\\mu_{2013}$", "$\\sigma^2_{2013}$"),
    caption = "Parámetros de la distribución en el año-modelo 2013")
```

Table 1: Parámetros de la distribución en el año-modelo 2013

μ_{2013}	σ^2_{2013}
28	1.965467

2015:

\$value

```
## [1] 0.004495004
##
## $counts
## function gradient
##
         29
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
param.opt2015<-resu2015$par
histograma (frecus 2015, limites 2015,
           main = "Distribución del precio \nen Millones de pesos del modelo 2015",
           xlab = "Millones de pesos ($)",
           ylab = "Densidad")
points(xx<-seq(min(limites2015)-1,max(limites2015)+1.5,length=100),</pre>
       dnorm(xx,mean=param.opt2015[1],sd=sqrt(param.opt2015[2])),type='1')
```

Distribución del precio en Millones de pesos del modelo 2015


```
kable(t(param.opt2015),
    col.names = c("$\\mu_{2015}$", "$\\sigma^2_{2015}$"),
    caption = "Parametros de la distribución en el año-modelo 2015")
```

Table 2: Parámetros de la distribución en el año-modelo 2015

μ_{2015}	σ_{2015}^2
31.92742	0.6453334

2017:

```
limites 2017 < c(35, 36, 37, 38)
frecus2017 \leftarrow c(20, 30, 50)
(resu2017 <- optim(c(36,5),estimaNormal,method='L-BFGS-B',</pre>
             lower=c(35,0.01), upper=c(38,50),
             limites=limites2017 ,frecu=frecus2017))
## $par
## [1] 37.2062508 0.7023848
##
## $value
## [1] 0.02302974
## $counts
## function gradient
##
         22
                   22
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
param.opt2017<-resu2017$par
histograma(frecus2017,limites2017,
           main = "Distribución del precio \nen Millones de pesos del modelo 2017",
           xlab = "Millones de pesos ($)",
           ylab = "Densidad")
points(xx<-seq(min(limites2017), max(limites2017)+1.5, length=100),</pre>
```

dnorm(xx,mean=param.opt2017[1],sd=sqrt(param.opt2017[2])),type='1')

Distribución del precio en Millones de pesos del modelo 2017


```
kable(t(param.opt2017),
    col.names = c("$\\mu_{2017}$", "$\\sigma^2_{2017}$"),
    caption = "Parametros de la distribución en el año-modelo 2017")
```

Table 3: Parámetros de la distribución en el año-modelo 2017

μ_{2017}	σ^2_{2017}
37.20625	0.7023848

Una vez obtenidas las tres normales, se simularon 20 datos de cada una (este número busca reflejar el conocimiento que tiene el experto sobre el tema el cual es alto). A dicha muestra se le ajustó un modelo de regresión lineal simple y se guardaron los valores de los tres parámetros de interés. Este proceso se repitió 1000 veces, lo que resulta en una muestra simulada de tamaño 1000 de β_0 , β_1 y σ^2 .

Apriori:

```
betas0 <- c()
betas1 <- c()
sigmas2 <- c()

x <- rep(c(13,15,17), each= 20)</pre>
```

```
for (i in 1:1000) {
    y2013 <- rnorm(20, mean = param.opt2013[1], sd = param.opt2013[2])
    y2015 <- rnorm(20, mean = param.opt2015[1], sd = param.opt2015[2])
    y2017 <- rnorm(20, mean = param.opt2017[1], sd = param.opt2017[2])
    y <- c(y2013, y2015, y2017)
    modelo <- lm(y-x)

betas0 <- c(betas0, modelo$coefficients[1])
    betas1 <- c(betas1, modelo$coefficients[2])
    sigmas2 <- c(sigmas2, (summary(modelo)$sigma)**2)
}

taus <- 1/sigmas2</pre>
```

```
# Estimación de parás. de normal bivariada de BetaO y Beta1
betas <- data.frame(betasO, betas1)
b0 <- colMeans(betas)
B0 <- solve(var(betas))

# Estimación de parás. de Gamma inversa por MM
m <- mean(sigmas2)
v <- var(sigmas2)
alpha <- m^2/v+2
beta <- m*(m^2/v+1)</pre>
```

Se busca contruir una distribución apriori con la siguiente p.d.f:

$$\xi(\beta_0, \beta_1, \sigma^2) = \mathcal{N}(\beta_0, \beta_1) \times \mathcal{G}.\mathcal{I}(\sigma^{\epsilon})$$

Para esto, vamos a aproximar la distribución apriori del experto al modelo teórico anterior. Se estima entonces el vector de medias y la matriz de var-cov de $\mathcal{N}(\beta_0, \beta_1)$, y los parámetros de escala y forma para $\mathcal{G}.\mathcal{I}(\sigma^{\in})$ usando el método de los momentos.

A continuación se muestra de manera gráfica las distribuciones de $\beta_0, \beta_1, y \sigma^2, y$ su tabla de parámetros estimados necesarios para ajustar el modelo teórico.

Distribución conjunta de β_0 y β_1

Distribución conjunta de $\,\beta_0\,y\,\beta_1\,$

Distribución Marginal de $\,\beta_0\,$

Distribución Marginal de β_1

Table 4: Vector de Medias

μ_{eta_0}	μ_{eta_1}
-2.242797	2.307811

Table 5: Matriz de var-cov

	eta_0	β_1
β_0	90.20124	1446.908
β_1	1446.90823	23281.579

Distribución de σ^2

Distribución de σ^2

Table 6: Parámetros de G.I

Forma	Escala
16.70453	26.24429

Datos Muestrales:

Obtenidos de: https://carros.tucarro.com.co/ https://carros.mercadolibre.com.co/ https://www.olx.com.co/

En particular se buscaron autos cuyo modelo concordaran con los puntos de diseño escogidos, de forma que, más adelante, podamos comparar la información del experto con la muestral.

```
DatosCarros <- read_csv("DatosCarros.csv", col_names = c("modeloAuto", "precio"))
### Parsed with column specification:
## cols(
## modeloAuto = col_double(),</pre>
```

```
## precio = col_double()
## )
```

DatosCarros\$modeloAuto <- as.numeric(sub("20","",as.character(DatosCarros\$modeloAuto)))
attach(DatosCarros)</pre>

```
# Table <- data.frame(round(matrix(c(summary(precio),sd(precio)),ncol=7),2))
# names(Table)=c(names(summary(precio)), "sd")
# win.qraph(width = 10)
# layout(rbind(c(1,1),c(2,3)), heights=c(1,3))
# plot.new()
# addtable2plot(x="top", table=Table, xpad=1, ypad=1, bty='o',
                display.rownames = F, hlines = TRUE, vlines = TRUE,
#
                title = "Estadísticos de resumen")
#
# den <- density(precio)</pre>
# hist(precio, breaks="FD", freq=F, xlim=c(min(den$x), max(den$x)),
       main = paste("Histograma del precio en Millones de pesos"),
#
       xlab="Millones de pesos ($)",col="white")
# lines(den,col=2,lwd=2)
# boxplot(precio,boxwex=0.4,xlab="Precio en Millones ($)",
          col="white")
```

kable(table(modeloAuto))

modeloAuto	Freq
12	4
13	16
14	10
15	16
16	3
17	13

Gráfico de Dispersión


```
modeloVero <- lm(precio~modeloAuto)
anovaModeloVero <- data.frame(anova(modeloVero))
anovaModeloVero[2,c(4,5)] <- c("", "")
kable(anovaModeloVero)</pre>
```

	Df	Sum.Sq	Mean.Sq	F.value	PrF.
modeloAuto Residuals	1 60	1299.4866 329.1919	$1299.486589 \\ 5.486532$	236.85028740771	1.68555407073729e-22

	Estimate	Std. Error	t value	$\Pr(> t)$
β_0	-7.945133	2.7630245	-2.875520	0.0055751
β_1	2.896230	0.1881898	15.389941	0.0000000
σ^2	5.486532	5.4865316	5.486532	5.4865316

```
test <- shapiro.test(residuals(modeloVero))
qqnorm(residuals(modeloVero),cex=1.5,bty="n",font=3,font.main=3)</pre>
```

Normal Q-Q Plot

95% confidence and prediction intervals for modeloVero

Datos Muestrales vs. Experto

Datos precios vs. elicitación: 2013

Distribución del precio según experto y datos del modelo 2013

Datos precios vs. elicitación: 2015

Distribución del precio según experto y datos del modelo 2015

Datos precios vs. elicitación: 2017

Distribución del precio según experto y datos del modelo 2017

Posterior

	Mean	SD	Naive SE	Time-series SE
β_0	0.5535579	1.5928144	0.0159281	0.0157497
β_1	2.1453325	0.0995763	0.0009958	0.0009789
σ^2	9.0942537	1.4113519	0.0141135	0.0154395

kable(aux1, col.names = colnames(suPoste\$statistics))

```
aux2 <- suPoste$quantiles
rownames(aux2) <- c("$\\beta_0$","$\\beta_1$", "$\\sigma^2$")
kable(aux2, col.names = colnames(suPoste$quantiles))</pre>
```

	2.5%	25%	50%	75%	97.5%
β_0 β_1	-2.576070 1.951876	-0.5035473 2.0778265	0.5653743 2.1443272	1.622853 2.211730	3.634972 2.340782
σ^2	6.749725	8.0945744	8.9600237	9.922975	12.255180

win.graph()
plot(resPoste)

Trace of (Intercept)

Trace of modeloAuto

Trace of sigma2

Density of (Intercept)

Density of modeloAuto

Density of sigma2

cor(resPoste)

```
## (Intercept) modeloAuto sigma2

## (Intercept) 1.0000000 -0.9978014 -0.1496021

## modeloAuto -0.9978014 1.0000000 0.1327372

## sigma2 -0.1496021 0.1327372 1.0000000
```

Precio del modelo 2013

Distribución del precio medio del modelo 2013

```
preciosMedios2013 <- resPoste[,1] + resPoste[,2] * 13</pre>
```

Distribución del precio medio del modelo 2013


```
suM2013 <- summary(preciosMedios2013)
kable(suM2013$statistics, col.names = colnames(suM2013$statistics))</pre>
```

Mean	28.4428798
SD	0.3131492
Naive SE	0.0031315
Time-series SE	0.0031898

kable(suM2013\$quantiles, col.names = colnames(suM2013\$quantiles))

2.5%	27.82192
25%	28.23555
50%	28.44762
75%	28.65198
97.5%	29.04906

Distribución predictiva del precio del modelo 2013

Distribución predictiva del precio del modelo 2013


```
suP2013 <- summary(preciosPredic2013)
kable(suP2013$statistics, col.names = colnames(suP2013$statistics))</pre>
```

Mean	28.4169511
SD	3.0257141
Naive SE	0.0302571
Time-series SE	0.0302571

```
kable(suP2013$quantiles, col.names = colnames(suP2013$quantiles))
```

2.5%	22.47618
25%	26.38974
50%	28.42841
75%	30.42737
97.5%	34.32316

Precio del modelo 2015

Distribución del precio medio del modelo 2015

```
preciosMedios2015 <- resPoste[,1] + resPoste[,2] * 15</pre>
```

```
hdrPreciosMedios2015 <- hdr.den(preciosMedios2015, xlab = "Millones de COP", ylab = "Densidad", main = expression("Distribución del precio medio del modelo 2015"))
```

Distribución del precio medio del modelo 2015


```
suM2015 <- summary(preciosMedios2015)
kable(suM2015$statistics, col.names = colnames(suM2015$statistics))</pre>
```

Mean	32.7335448
SD	0.1424635
Naive SE	0.0014246
Time-series SE	0.0015259

kable(suM2015\$quantiles, col.names = colnames(suM2015\$quantiles))

2.5%	32.44772
25%	32.63866
50%	32.73546
75%	32.82877
97.5%	33.01363

Distribución predictiva del precio del modelo 2015

```
preciosPredic2015 <- preciosMedios2015 + errores
```

Distribución predictiva del precio del modelo 2015


```
suP2015 <- summary(preciosPredic2015)
kable(suP2015$statistics, col.names = colnames(suP2015$statistics))</pre>
```

Mean	32.7076161
SD	3.0095809
Naive SE	0.0300958
Time-series SE	0.0300958

kable(suP2015\$quantiles, col.names = colnames(suP2015\$quantiles))

2.5%	26.82285
25%	30.69119
50%	32.71649
75%	34.71421
97.5%	38.55255

Precio del modelo 2017

Distribución del precio medio del modelo 2017

Distribución del precio medio del modelo 2017


```
suM2017 <- summary(preciosMedios2017)
kable(suM2017$statistics, col.names = colnames(suM2017$statistics))</pre>
```

Mean	37.0242097
SD	0.1478270
Naive SE	0.0014783
Time-series SE	0.0014783

```
kable(suM2017$quantiles, col.names = colnames(suM2017$quantiles))
```

36.73139
36.92554
37.02272
37.12329
37.31725

Distribución predictiva del precio del modelo 2017

Distribución predictiva del precio del modelo 2017


```
suP2017 <- summary(preciosPredic2017)
kable(suP2017$statistics, col.names = colnames(suP2017$statistics))</pre>
```

Mean	36.9982810
SD	3.0065815
Naive SE	0.0300658
Time-series SE	0.0300658

kable(suP2017\$quantiles, col.names = colnames(suP2017\$quantiles))

2.5%	31.13469
25%	34.98804
50%	37.01164
75%	39.00401
97.5%	42.86840