

Karta opisu przedmiotu (sylabus) Kierunek studiów : Przemysł 4.0

Nazwa przedmiotu Automatyka przemysłowa		
Nazwa przedmiotu w języku angielskim Industrial automation		
Kod przedmiotu	Rok / semestr	Forma zaliczenia
UEPP4S.24C.204388.23	2 / 3	Zaliczenie
Specjalność	Profil kształcenia	Poziom kształcenia
Wszystkie	ogólnoakademicki	studia drugiego stopnia
Forma studiów	Język wykładowy	Przedmiot
stacjonarne	Polski	Obowiązkowy
Godziny	Liczba punktów ECTS	Blok zajęciowy
Ćwiczenia: 30	3	C
Osoba odpowiedzialna za treść sylabusa	Jarogniew Rykowski	•

Cele uczenia się dla przedmiotu

C1	Nabycie przez studenta wiedzy i umiejętności niezbędnych do rozumienia i efektywnego wykorzystania cech systemów komputerowych na pograniczu sprzętu i oprogramowania
C2	Opanowanie zasad tworzenia rozwiązań na bazie systemów wbudowanych (embedded systems)
C3	Nauka użycia standardowych języków służących do tworzenia rozwiązań z wykorzystaniem programowalnych sterowników logicznych PLC (Programmable Logic Controller)
C4	Zapoznaje się z zasadami projektowania, konstruowania oraz obsługi systemu sterowania i wizualizacji, sposobami konfiguracji elementów systemu SCADA (Supervisory Control And Data Acquisition)

Cele kształcenia UEP

Kod	Treść celu
CS2_1.1	student krytycznie rozważa kwestie praktyczne i teoretyczne
CS2_1.2	student krytycznie ocenia alternatywy w celu wypracowania optymalnego rozwiązania
CS2_1.3	student rozumie najważniejsze aspekty wpływu makro- i mikrootoczenia na decyzje biznesowe
CS2_2.1	student wykorzystuje umiejętność budowania zespołu do realizacji zadań grupowych
CS2_2.2	student wykazuje umiejętności przywódcze i efektywnie pracuje w zespole
CS2_2.3	student przygotowuje prace pisemne i prezentacje ustne zgodnie ze standardami akademickimi
CS2_3.2	student rozumie społeczną odpowiedzialność biznesu i istotę zrównoważonego rozwoju

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się
	Wiedzy	

W1	student zna zasady budowy systemów sterowania	K2_W01, K2_W03	
W2	student rozumie teorię sterowania	K2_W03	
W3	student zna architektury systemów sterowania procesami	K2_W03	
W4	student rozumie podstawowe uwarunkowania w systemach czasu rzeczywistego	K2_W02, K2_W03	
W5	student posiada rozszerzoną wiedzę w zakresie wykorzystywania narzędzi informatycznych w systemach SCADA nadzorujących przebieg procesu technologicznego lub produkcyjnego	K2_W01, K2_W03	
W6	student zna architekturę sterowników PLC	K2_W03	
	Umiejętności		
U1	student potrafi opracować algorytm dla prostego systemu sterowania i zaimplementować go używając języka programowania oraz zweryfikować jego działanie	K2_U01, K2_U06, K2_U07	
U2	student potrafi skonfigurować prostą wymianę danych między sterownikiem PLC i komputerem PC	K2_U01, K2_U06, K2_U07	
U3	student potrafi oprogramować układ sterowania wykorzystując programowalny sterownik	K2_U01, K2_U06	
U4	student potrafi zrealizować układ sterowania z podłączonymi czujnikami i elementami wykonawczymi (aktuatorami)	K2_U01, K2_U06, K2_U07, K2_U08	
	Kompetencji społecznych		
K1	student jest gotów krytycznie ocenić własną wiedzę i umiejętności	K2_K02	
K2	student jest gotów do profesjonalnego podejścia przy rozwiązywaniu problemów technicznych i podejmowania odpowiedzialności za proponowane przez siebie rozwiązania techniczne	K2_K01, K2_K02	
K3	student jest gotów do oceny różnorodności oferty produktowej	K2_K01, K2_K02	

Treści programowe

Lp.	Treści programowe	Cele uczenia się dla przedmiotu	Efekty uczenia się dla przedmiotu
1.	Architektura systemów wbudowanych	C1, C3	W1, W2, W3, K3
2.	Charakterystyka systemów czasu rzeczywistego	C2, C3	W4
3.	Teoria sterowania	C2, C3	W2, U1
4.	Tworzenie algorytmów sterowania	C3	W2, U1, U3
5.	Interfejs użytkownika HMI (Human-Machine Interface) na potrzeby sterowania rozwiązaniami i wizualizacji pomiarów	C1, C2	W5, U1, U3, K1, K2
6.	Sterowniki PLC (Programmable Logic Controller) – struktury, języki programowania, narzędzia programistyczne	C1, C3	W6, U2, U3, U4, K1, K2, K3
7.	Standard OPC (OLE for Process Control)	C1, C3	U3, K2
8.	Dynamiczna wymiana danych DDE (Dynamic Data Exchange)	C1, C2, C3	U3, K2

9.	Systemy SCADA (Supervisory Control And Data Acquisition) - system informatyczny nadzorujący przebieg procesu technologicznego lub produkcyjnego) - budowa, zasady działania, projektowanie	C1, C4	W5, U1, U3, K1, K2, K3
10.	Projekt i realizacja automatycznego systemu sterowania procesem z wykorzystaniem sterownika PLC	C1, C2, C3	U1, U2, U3, U4, K1, K2, K3

Literatura

Obowiązkowa

- 1. Specyfikacja sterowników PLC udostępniana przez prowadzącego zajęcia
- 2. Wojciech Mitkowski, Zarys teorii sterowania, AGH, 2019
- 3. Jacek Kabziński, Teoria sterowania. Projektowanie układów regulacji, PWN, 2021
- 4. Ryszard Jakuszewski, Podstawy programowania systemów SCADA, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, 2009

Zalecana

- 1. Jerzy Kasprzyk, "Programowanie sterowników przemysłowych" (WNT, 2006)
- 2. Tomasz Gilewski, Szkoła programisty PLC. Sterowniki Przemysłowe, Helion, 2017
- 3. Bogdan Broel-Plater, Układy wykorzystujące sterowniki PLC, PWN, 2021
- 4. Zbigniew Seta, Wprowadzenie do zagadnień sterowania, Wykorzystanie programowalnych sterowników logicznych PLC, Wydawnictwo MIKOM, 2002

Wymagania wstępne	-znajomość podstaw programowania -bazowa znajomość reguł logiki matematycznej
Metody nauczania	Metoda projektów , Dyskusja, Analiza przypadków, Rozwiązywanie zadań, Ćwiczenia laboratoryjne, Uczenie problemowe
Sposób zaliczenia	Udział w dyskusji / Uczestnictwo w zajęciach, Projekt grupowy / praca w grupie

Rozliczenie punktów ECTS

Forma aktywności studenta	Średnia liczba godzin przeznaczonych na zrealizowane aktywności*		
Uczestnictwo w ćwiczeniach	30		
Przygotowanie do ćwiczeń	10		
Konsultacje z prowadzącym/i zajęcia	20		
Przygotowanie projektu 30			
	·		
Łączny nakład pracy studenta	Liczba godzin 90	ECTS 3	
Zajęcia z bezpośrednim udziałem nauczyciela	Liczba godzin 50	ECTS 2	
Nakład pracy związany z zajęciami o charakterze praktycznym	Liczba godzin 60	ECTS 2	

^{*} godzina (lekcyjna) oznacza 45 minut

Opis sposobu sprawdzenia osiągnięcia efektów uczenia się

Kod efektu uczenia się	Metoda sprawdzenia		
dla przedmiotu	Udział w dyskusji / Uczestnictwo w zajęciach	Projekt grupowy / praca w grupie	
W1	x		
W2	x		
W3	х		
W4	x		
W5	x	x	
W6	x	x	
U1		x	
U2		x	
U3		x	
U4		х	
K1		х	
K2		x	
K3		х	

Kierunkowe efekty uczenia się

Kod	Treść
K2_K01	Absolwent jest gotów do krytycznego podejścia do otaczającej rzeczywistości gospodarczej i obserwowanych procesów w ramach działalności gospodarczej, rozumie potrzebę uczenia się przez całe życie
K2_K02	Absolwent jest gotów do racjonalnego wyboru określonego rozwiązania techniczno-biznesowego oraz kompetentnego przedstawienia argumentów przemawiających za dokonanym wyborem
K2_U01	Absolwent potrafi prawidłowo interpretować zjawiska ekonomiczne, właściwie analizować przyczyny i przebieg procesów gospodarczych
K2_U06	Absolwent potrafi komunikatywnie wypowiadać się i poprawnie formułować prace pisemne i raporty, opierając się na wybranych teoriach, poglądach różnych autorów lub dostępnych danych
K2_U07	Absolwent potrafi przygotowywać wystąpienia i prezentacje ustne w języku polskim i angielskim, dotyczące wybranych zagadnień, z wykorzystaniem dostępnych źródeł wiedzy
K2_U08	Absolwent potrafi kierować pracą zespołu oraz współdziałać z innymi osobami w ramach prac projektowych z zakresu nowoczesnych technologii informacyjno-komunikacyjnych
K2_W01	Absolwent zna i rozumie podstawy teoretyczne oraz zastosowania praktyczne nowoczesnych technologii, w szczególności systemów multimedialnych, Internetu Rzeczy i inteligentnego przetwarzania danych, z uwzględnieniem skutków społeczno-organizacyjnych wdrożenia danego rozwiązania w praktyce biznesowej
K2_W02	Absolwent zna i rozumie teorię i praktykę programowania w językach imperatywnych i deklaratywnych oraz wie jak łączyć te i inne metody programowania w spójną całość do wykorzystania w zakresie poprawy sytuacji rynkowej przedsiębiorstwa
K2_W03	Absolwent zna i rozumie fizyczne, informacyjne i finansowe aspekty nowych rozwiązań biznesowych oraz ich uwarunkowania ekonomiczne i społeczne