

复变函数

与积分变换

主讲人: 张茜

理学院 数学学科

邮 箱: zhang.qian@hit.edu.cn

二、教学内容

复变函数与积分变换课程是工科各专业必修的重要基础 理论课,是工程数学的主要课程之一。复变函数与积分变换 在科学研究、工程技术等各行各业中有着广泛的应用。

本课程由复变函数与积分变换两个部分组成。

复变函数的内容包括:复数与复变函数、解析函数、复变函数的积分、解析函数的级数表示、留数及其应用、以及解析函数在平面场的应用。

积分变换的内容包括: 傅里叶变换和拉普拉斯变换。

其中,带 "*"号的内容本课堂不需要掌握。

第一章 复数与复变函数

<u>复数</u>的产生最早可以追溯到十六世纪中期。但直到十八世纪末期,经过了<u>卡尔丹、笛卡尔、欧拉以及高斯</u>等许多人的长期努力,复数的地位才被确立下来。

复变函数理论产生于十八世纪,在十九世纪得到了全面发展。为复变函数理论的创建做了早期工作的是<u>欧拉、达朗贝尔、拉普拉斯</u>等。为这门学科的发展作了大量奠基工作的则是<u>柯西、黎曼和维尔斯特拉斯</u>等。

复变函数理论中的许多概念、理论和方法是实变函数在复数领域的推广和发展。

第一章 复数与复变函数

- § 1.1 复数运算及几何表示
- § 1.2 复平面上的点集
- § 1.3 复变函数

1. 复数的基本概念

定义 (1) 设x和y是任意两个实数,将形如

$$z = x + iy$$
 (或者 $z = x + yi$)

的数称为<u>复数</u>。其中i称为<u>虚数单位</u>,即 $i^2 = -1$

- (2) x 和 y 分别称为复数 z 的 <u>实</u>部与<u>虚</u>部,并分别表示为: x = Re z, y = Im z.
- (3) 当 x = 0 时,z = 0 + iy = iy 称为<u>纯虚数</u>; 当 y = 0 时,z = x + i0 = x 就是<u>实数</u>。 因此,实数可以看作是复数的特殊情形。

1. 复数的基本概念

相等 设 $z_1 = x_1 + iy_1$ 与 $z_2 = x_2 + iy_2$ 是两个复数

如果 $x_1 = x_2$, $y_1 = y_2$, 则称 $z_1 与 z_2$ 相等。

特别地, z = x + iy = 0 当且仅当 x = y = 0.

2. 复数的四则运算

设
$$z_1 = x_1 + iy_1$$
 与 $z_2 = x_2 + iy_2$ 是两个复数,

(1) 复数的加减法

加法
$$z_1 + z_2 = x_1 + x_2 + i(y_1 + y_2);$$

减法
$$z_1-z_2=x_1-x_2+i(y_1-y_2)$$
.

(2) 复数的乘除法

乘法
$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1);$$

除法 如果存在复数 z,使得 $z_1 = z_2 \cdot z$,则 $z = \frac{z_1}{z_2}$.

函

数

例 1.1.1 化简 i^3 , $\frac{i}{1-i} + \frac{1-i}{i}$.

例 1.1.3 已知
$$x + yi = (2x - 1) + y^2i$$
, 求 $z = x + iy$.

2. 复数的四则运算

(3) 运算法则

交換律 $z_1 + z_2 = z_2 + z_1$;

$$z_1 \cdot z_2 = z_2 \cdot z_1 .$$

结合律 $(z_1+z_2)+z_3=z_1+(z_2+z_3)$;

$$(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).$$

分配律 $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$.

1. 复平面

定义 在平面上建立一个直角坐标系,用坐标为(x,y)的点来表示复数z=x+iy,从而将全体复数和平面上的全部点一一对应起来,此时,x 轴称为<u>实轴</u>,y 轴称为<u>虚轴</u>。

这样表示复数 z 的平面称为 复平面或者 z 平面。

注 复数与实数不同,两个复数(虚部不为零)不能比较大小, 它们之间只有相等与不相等的关系。

1. 复平面

• 在复平面上,从原点到点 z = x + iy所引的向量与该复数 z 也构成一一 对应关系(复数零对应零向量)。

● 引进复平面后,复数 z 与点 z 以及向量 z 视为同一个概念。 因此,我们可以通过分析向量来给出复数的一些性质。

定义 设z的是一个不为0的复数,

- (1) 向量z的长度r称为复数z的模,记为|z|.
- (2) 向量z的"方向角" θ 称为复数z的辐角,记为Argz. (向量与x轴正向的夹角)

2. 复数的模与辐角

(1) $|\operatorname{Re} z| \le |z|$, $|\operatorname{Im} z| \le |z|$.

2. 复数的模与辐角

注: 辐角是多值的,相互之间可相差 $2k\pi$,其中 k 为整数。

例 对于复数 z = -1 + i, 则有 $|z| = \sqrt{2}$,

Arg
$$z = \frac{3\pi}{4} + 2k\pi$$
, $k = 0, \pm 1, \pm 2, \dots$

注 复数 0 的模为 0,辐角无意义。

2. 复数的模与辐角

定义 对于给定的复数 $z \neq 0$, 设有 α 满足:

$$\alpha \in \operatorname{Arg} z \perp \!\!\!\! \perp -\pi < \alpha \leq \pi$$

则称 α 为复数 z 的 主辐角, 记作 $\arg z$.

• 由此就有如下关系:

$$Arg z = arg z + 2k\pi, k = 0, \pm 1, \pm 2, \cdots$$

3. 相互转换关系

(1) 已知实部与虚部,求模与辐角。

$$/z/=\sqrt{x^2+y^2};$$

复

数

5

复变

函

例 1.1.4 求下列各复数的模及辐角.

$$(1)$$
 -2 , (2) $-i$, (3) $1+i$.

3. 相互转换关系

- (1) 已知实部与虚部,求模与辐角。
- (2) 已知模与辐角, 求实部与虚部。

$$x = |z| \cos(\arg z) = |z| \cos(\operatorname{Arg} z);$$

$$y = |z| \sin(\arg z) = |z| \sin(\operatorname{Arg} z)$$
.

• 由此引出复数的三角表示式。

定义 设复数 $z \neq 0$, $r \neq z$ 的模, $\theta \neq z$ 的任意一个辐角, $\pi z = r(\cos \theta + i \sin \theta)$ 为复数z的三角表示式。

- 4. 复数的指数表示
 - 利用欧拉公式 $e^{i\theta} = \cos\theta + i\sin\theta$ 得

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}.$$

定义 设复数 $z \neq 0$,r是z的模, θ 是z的任意一个辐角, 称 $z = re^{i\theta}$ 为复数z的指数表示式。

注 在复数的三角表示式与指数表示式中,辐角不是唯一的, 但习惯上一般取为主辐角。

思考: 两复数相等, 它们的辐角和模长之间的关系?

反之?

例 1.1.5 将复数 $z = -1 - \sqrt{3}i$ 分别化成三角表示式和指数表示式.

1.1.3 共轭复数

1. 共轭复数的定义

定义 设 z = x + iy 是一个复数,

称 z = x - iy 为 z 的 <u>共轭复数</u>,记作 \overline{z} 。

性质 (1) $\overline{\overline{z}} = z$;

- (2) $\overline{z_1 \circ z_2} = \overline{z_1} \circ \overline{z_2}$, 其中,"。"可以是+,-,×,÷;
- (3) $z \cdot \overline{z} = [\text{Re } z]^2 + [\text{Im } z]^2 = x^2 + y^2;$

$$(4) \frac{z+\overline{z}}{2} = \operatorname{Re} z = x,$$

$$\frac{z-\overline{z}}{2i}=\operatorname{Im} z=y.$$

共轭复数的应用: 除法计算中的分母实数化

$$z = \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z}_2}{z_2 \cdot \overline{z}_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)}$$
$$= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}.$$

例 已知
$$z_1 = 5-5i$$
, $z_2 = -3+4i$, 求 $\frac{z_1}{z_2}$, $\frac{z_1}{\overline{z}_2}$.

$$\frac{\cancel{\text{pr}}}{z_2} = \frac{5-5i}{-3+4i} = \frac{(5-5i)(-3-4i)}{(-3+4i)(-3-4i)}$$

$$= \frac{-35-5i}{25} = -\frac{7}{5} - \frac{1}{5}i.$$

(2)
$$\frac{\overline{z}_1}{\overline{z}_2} = \overline{\left(\frac{z_1}{z_2}\right)} = -\frac{7}{5} + \frac{1}{5}i$$
.

例 1.1.8 证明等式
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

1. 乘除 注: 利用指数表示进行复数的乘除法运算

设
$$z_1 = r_1 e^{i\theta_1}, \quad z_2 = r_2 e^{i\theta_2},$$

乘法
$$z_1 \cdot z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2}$$
$$= r_1 r_2 e^{i(\theta_1 + \theta_2)}.$$

除法
$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$
.

- •两个复数相乘,模相乘,辐角相加
- 两个复数相除,模相除,辐角相减

例 1.1.10 化简 $\frac{(1-\sqrt{3}i)(\cos\theta+i\sin\theta)}{(1-i)(\cos\theta-i\sin\theta)}$.

2. 复数的乘方 注: 乘方运算是单值的。

定义 设z是给定的复数,n为正整数,n个z相乘的积称为

复数
$$z$$
的乘幂, 记为 z^n , 即 $z^n = \underbrace{z \cdot z \cdots z}_{n \uparrow}$.

●利用复数的指数表示式可以很快得到乘幂法则。

法则 设 $z = r e^{i\theta}$, 则 $z^n = (r e^{i\theta})^n = r^n e^{in\theta}$.

由复数的三角表示式可得

$$z^{n} = [r(\cos\theta + i\sin\theta)]^{n} = r^{n}(\cos n\theta + i\sin n\theta).$$

在上式中令r=1,则得到 $棣莫弗(De\ Moivre)$ 公式:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta.$$

例 1.1.12 设n为正整数,试证明

$$\left(\frac{-1+\sqrt{3}i}{2}\right)^{3n+1}+\left(\frac{-1-\sqrt{3}i}{2}\right)^{3n+1}=-1.$$

- 3. 复数的方根
 - 复数求方根是复数乘幂的逆运算。

定义 设 z 是给定的复数,n 是正整数,求所有满足 $w^n = z$ 的复数 w ,称为把复数 z 开n 次方,或者称为求复数 z 的n 次方根,记作 $w = \sqrt[n]{z}$ 或 $w = z^{1/n}$.

- 3. 复数的方根 注: 方根运算是多值的。
 - 利用复数的指数表示式可以很快得到开方法则。

推导 设 $z = re^{i\theta}$, $w = \rho e^{i\varphi}$, 由 $w^n = z f \rho^n e^{in\varphi} = re^{i\theta}$,

 $\mathbb{P} \rho^{n}(\cos n\varphi + i\sin n\varphi) = r(\cos \theta + i\sin \theta),$

得 $\rho^n = r$, $\Rightarrow \rho = \sqrt[n]{r}$; —— 正实数的算术根。

$$n\varphi = \theta + 2k\pi$$
, $\Rightarrow \varphi_{k} = \frac{\theta}{n} + k\frac{2\pi}{n}$, $(k = 0, 1, \dots, n-1)$.

法则 设 $z = r e^{i\theta}$, 则 $w_k = \sqrt[n]{z} = \sqrt[n]{r} e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}$, $(k = 0, 1, \dots, n-1)$.

3. 复数的方根

$$w_k = \sqrt[n]{z} = \sqrt[n]{r} e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}, \quad (k = 0, 1, \dots, n-1).$$

描述 在复平面上,这n个根均匀地 分布在一个以原点为中心、以 $\sqrt[n]{r}$ 为半径的圆周上。其中一个 根的辐角是 (θ/n) .

- 方法 直接利用公式求根;
 - 先找到一个特定的根,再确定出其余的根。

第

复 与复变 函 数 例 求 $\sqrt[3]{-8}$.

$$\Re \sqrt[3]{-8} = 2e^{i(\frac{\pi}{3} + \frac{2k\pi}{3})}, \quad (k = 0, 1, 2).$$

具体为: -2, $2e^{\frac{\pi}{3}i}$, $2e^{-\frac{\pi}{3}i}$.

例1.1.13 求解方程 $z^4 = 1 + i$.

1. 无穷大的概念

定义 一个特殊的复数 ∞ ,称为 <u>无穷大</u>,满足 $\infty = \frac{1}{0}$.

法则 (1)
$$z \pm \infty = \infty \pm z = \infty$$
, $(z \neq \infty)$;

(2)
$$z \cdot \infty = \infty \cdot z = \infty$$
, $(z \neq 0)$;

(3)
$$\frac{z}{\infty} = 0$$
, $\frac{\infty}{z} = \infty$, $(z \neq \infty)$.

- 问题 实部虚部是多少? Re∞, Im∞ 无意义。
 - 模与辐角是多少? |∞|=+∞, Arg∞ 无意义。
 - 在复平面上对应到哪一点?

- 2. 无穷远点的概念
- 事实上,在通常的复平面上并不存在这样的点, 因此只能说它是一个"理想"点。

定义 在"复平面"上一个与复数∞对应的"理想"点, (?) 称为无穷远点。

• 那么,这个"理想"点到底在哪里呢?

下面就来看看黎曼(Riemnann)给出的解释。

3. 复球面

3. 复球面

- 如图,某球面与复平面在原点相切, 其中, *N* 为北极, *S* 为南极。
- 球面上除 N 点外的所有点和复平面上的所有点一一对应, 这样的球面称作复球面。
- 球面上的 N 点本身则对应到了"复平面"上的无穷远点。

注 显然,复数∞不能写成+∞或者-∞。

- 4. 扩充复平面
- 定义(1)包括无穷远点在内的复平面称为扩充复平面;
 - (2) 不包括无穷远点在内的复平面称为<u>有限复平面</u>, 或者简称为复平面。

复变函数与级分变换

主讲人: 张茜

理学院 数学学科

邮 箱: zhang.qian@hit.edu.cn

第一章 复数与复变函数

- § 1.1 复数运算及几何表示
- § 1.2 复平面上的点集
- § 1.3 复变函数

1. 邻域

定义 设 z_0 为复平面上的一点, $\delta > 0$,

- (1) 称点集 $\{z: |z-z_0| < \delta\}$ 为 z_0 点的 δ <u>邻域</u>;
- (2) 称点集 $\{z:0<|z-z_0|<\delta\}$ 为 z_0 点的 δ <u>去心邻域</u>。

1. 邻域(无穷远点)

定义 设实数 M>0,

(1) 包括无穷远点在内且 满足 | z | > M 的所有 点的集合, 称为<u>无穷</u> 远点的邻域。

(2) 不包括无穷远点在内 且满足 |z| > M 的所有点的集合,称为<u>无穷远点</u> 的去心邻域,也可记为 $M < |z| < +\infty$.

2. 内点、外点与边界点

考虑某平面点集G以及某一点 z_0 ,

内点 (1) $z_0 \in G$; (2) $\exists \delta > 0$, $\forall z : |z - z_0| < \delta$, 有 $z \in G$.

外点 (1) $z_0 \notin G$; (2) $\exists \delta > 0$, $\forall z : |z - z_0| < \delta$, 有 $z \notin G$.

边界点 (1) z_0 不一定属于 G;

 $(2) \forall \delta > 0$,在 $|z-z_0| < \delta$ 中,既有 $z \in G$,又有 $z \notin G$.

边界 G 的边界点的全体称为 G 的 $\frac{边界}{2}$ 。

3. 开集与闭集

开集 如果G的每个点都是它的内点,则称G为<u>开集</u>。

闭集 如果G的边界点全部都属于G,则称G为<u>闭集</u>。

4. 有界集与无界集

定义 若存在 $\delta > 0$,使得点集 G 包含在原点的 δ 邻域内,则 G 称为有界集,否则称为<u>非有界集</u>或无界集。

1.2.2 区域与曲线

1. 区域与闭区域

区域 平面点集D称为一个区域,如果它满足下列两个条件:

- (1) D 是一个开集;
- (2) D是<u>连通</u>的,即 D 中任何两点都可以用完全属于 D 的一条折线连接起来。

闭区域 区域D与它的边界一起构成 \overline{D} 区域或 \overline{D} 域,记作 \overline{D} 。

注: 闭区域 不是!区域

2. 曲线的分类

考虑曲线 z = z(t) = x(t) + iy(t), $(\alpha \le t \le \beta)$.

简单曲线 $\forall t_1 \in (\alpha, \beta), t_2 \in [\alpha, \beta],$ 当 $t_1 \neq t_2$ 时, $z(t_1) \neq z(t_2)$.

简单闭曲线 简单曲线且 $z(\alpha) = z(\beta)$.

光滑曲线 在区间[α , β]上,x'(t)和y'(t)连续且 $z'(t) \neq 0$.

1.2.2 区域与曲线

- 3. 有界区域与无界区域(顾名思义)
- 4. 内区域与外区域

定义 一条<u>简单闭曲线</u>把整个复平面分成两个区域,其中 有界的一个称为该简单闭曲线的<u>内部</u>(内区域),另一个 称为该简单闭曲线的<u>外部</u>(外区域)。

5. 单连通域与多连通域

定义 设D为区域,如果D内的任何一条简单闭曲线的<u>内部</u>仍属于D,则D称为<u>单连通域</u>,否则称为<u>多连通域</u>。

● <u>多连通域</u>又可具体分为<u>二连域</u>、<u>三连域</u>、……。

- 例 (1) $z+\overline{z}>0$, $\Rightarrow x>0$;
 - (2) $|z+2-i| \ge 1$, $\Rightarrow |z-(-2+i)| \ge 1$;
 - (3) $0 < \arg z < \pi/3$.

例 1.2.5 指出满足下列不等式的点z在怎样的点集内变动?这些点集是不是单连通区域?是否有界?

- (1) $Rez > \frac{1}{2}$
- (2) $|z+i| \leq |2+i|$
- (3) $|z| < 1, Rez \le \frac{1}{2}$

§1.2 复平面上的点集

第一

一查

复数与复变函数

- 例 (1) |z-i|=2, $\Rightarrow x^2+(y-1)^2=4$.
 - (2) $|z+i| = |z-i|, \Rightarrow y = 0.$
 - (3) |z-2i| = |z+2|, $\Rightarrow y = -x$.
 - (4) $z = t + ti \Rightarrow y = x$.
 - (5) $z = t + \frac{1}{t}i$, $t > 0 \Rightarrow xy = 1$.

6. 参数式

• 在直角平面上
$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} (\alpha \le t \le \beta).$$

• 在复平面上 z = z(t) = x(t) + iy(t), $(\alpha \le t \le \beta)$.

例如 考察以原点为圆心、以R为半径的圆周的方程。

(1) 在直角平面上
$$\begin{cases} x = x(\theta) = R\cos\theta, \\ y = y(\theta) = R\sin\theta, \end{cases} (0 \le \theta \le 2\pi).$$

(2) 在复平面上
$$z = z(\theta) = x(\theta) + iy(\theta) = R(\cos\theta + i\sin\theta)$$
, $\Rightarrow z = Re^{i\theta}$, $(0 \le \theta \le 2\pi)$.

7. 有向曲线

定义 设C为平面上一条给定的光滑(或分段光滑)曲线,如果指定C的两个可能方向中的一个作为正向,则C为带有方向的曲线,称为<u>有向曲线</u>,仍记为C。相应地, C^- 则代表与C的方向相反(即C的负方向)的曲线。

- 7. 有向曲线
- •简单闭曲线的正向一般约定为:

当曲线上的点 *P* 顺此方向沿曲线前进时,曲线所围成的有界区域始终位于 *P* 点的左边。

当边界上的点 *P* 顺此方向沿边界前进时,所考察的区域始终位于 *P* 点的左边。

注意区域可以是多连通域。

第一章 复数与复变函数

- § 1.1 复数运算及几何表示
- § 1.2 复平面上的点集
- § 1.3 复变函数

上定义一个复变函数,记作 w = f(z).

1. 基本概念

定义 设D是复平面上的一个点集,对于D中任意的一点z,按照一定法则,有确定的复数 $w \in G$ 与它对应,则称在D

- <u>单值函数</u> 对每个 $z \in D$,有唯一的w与它对应; 比如 $w = f(z) = z^2$.
- <u>多值函数</u> 对每个 $z \in D$,有多个w与它对应; 比如 $w = \sqrt[3]{z}$, w = Arg z.
- 一般情形下,所讨论的"函数"都是指单值函数。
- $\bullet D$ 常常是一个平面区域,称之为定义域,G 称为值域。

2. 几何意义

映射 复变函数 w = f(z) 在几何上被看作是把 z 平面上的一个点集 D 变到 w 平面上的一个点集 D 的 w 的 w (或者 v)。 其中,点集 v 称为像,点集 v 称为原像。

函数、映射以及变换可视为同一个概念。

18

1. 基本概念

分析 设 z = x + iy, w = u + iv, 则 w = f(z) 可以写成 w = u + iv = f(x + iy) = u(x, y) + iv(x, y),

其中, u(x,y)与 v(x,y)为实值二元函数。

分开上式的实部与虚部得到 $\begin{cases} u = u(x,y), \\ v = v(x,y). \end{cases}$

• 一个复变函数对应于两个二元实变函数。

例 1.3.2 $\omega = \frac{1}{z}$ 是定义在除原点外的整个复平面上的.

2. 几何意义

<u>反函数与逆映射</u>

设函数w = f(z)的定义域为z平面上的点集D,值域为w平面上的点集G,则G中的每个点w必将对应着D中的一个(或几个)点z,按照函数的定义,在G上就确定了一个函数 $z = \tilde{f}(w)$,它称为函数w = f(z)的反函数,也称为映射w = f(z)的逆映射。

双方单值与一一映射

若映射w = f(z)与它的逆映射 $z = \tilde{f}(w)$ 都是单值的,则称映射w = f(z)是双方单值的或者一一映射。

例 已知函数 $w=z^2$,求下列点集的像。

解 (1) 点
$$z = \frac{1}{2} + \frac{1}{2}i$$
 对应的像(点)为 $w = \frac{1}{2}i$.

(2) 区域 D 可改写为:

$$D = \{z : 0 < |z| < 1, 0 < \arg z < \pi/2\},$$

$$\diamondsuit z = r e^{i\theta}, \quad \emptyset \ w = z^2 = r^2 e^{i2\theta},$$

可得区域D的像(区域)G满足

$$0 < |w| < 1, 0 < \arg w < \pi,$$

即
$$G = \{w : \text{Im } w > 0, |w| < 1\}.$$

例1.3.4 函数 $w = z^2$ 对应于两个二元实变函数 $u = x^2 - y^2$, v = 2xy,

因此,它把z平面上的两族双曲线 $x^2 - y^2 = c_1$, $2xy = c_2$,

分别映射成w平面上的两族平行直线 $u=c_1, v=c_2$.

1. 极限

定义 设函数 w = f(z)在 z_0 的去心邻域 $0 < |z - z_0| < \rho$ 内有定义,若存在复数 $A \neq \infty$, $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 当 $0 < |z - z_0| < \delta$ 时,有 $|f(z) - A| < \varepsilon$,则称 A 为函数 w = f(z) 当 z 趋向于 z_0 时的极限,记作 $\lim_{z \to z_0} f(z) = A$ 或 $f(z) \to A$ $(z \to z_0)$.

- 注 (1) 函数 f(z) 在 z_0 点可以无定义;
 - (2) z趋向于 zo的方式是任意的。

1. 极限

• 当变点z 一旦进入 z_0 的充分小的 δ 邻域时,它的像点f(z) 就落在A 的预先给定的 ε 邻域内。

定理 设 f(z) = u(x, y) + iv(x, y), $A = u_0 + iv_0$, $z_0 = x_0 + iy_0$,

$$\iiint_{z\to z_0} \lim_{t\to z_0} f(z) = A \iff \lim_{\substack{x\to x_0\\y\to y_0}} u(x,y) = u_0, \quad \lim_{\substack{x\to x_0\\y\to y_0}} v(x,y) = v_0.$$

证明 <u>必要性</u> "⇒"如果 $\lim_{z\to z_0} f(z) = A$,则 $\forall \varepsilon > 0$, $\exists \delta > 0$,

(跳过?) 当 $0 < |z-z_0| = \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时,

$$|f(z)-A| = \sqrt{(u-u_0)^2 + (v-v_0)^2} < \varepsilon,$$

$$\Rightarrow |u-u_0| < \varepsilon, |v-v_0| < \varepsilon,$$

$$\Rightarrow \lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0, \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0.$$

定理 设
$$f(z) = u(x,y) + iv(x,y)$$
, $A = u_0 + iv_0$, $z_0 = x_0 + iv_0$,

$$\iiint_{z\to z_0} f(z) = A \iff \lim_{\substack{x\to x_0\\y\to y_0}} u(x,y) = u_0, \quad \lim_{\substack{x\to x_0\\y\to y_0}} v(x,y) = v_0.$$

证明 充分性 " 如果
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x,y) = u_0$$
, $\lim_{\substack{x \to x_0 \\ y \to y_0}} v(x,y) = v_0$,

则
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, $\dot{\exists} 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 时,

$$|u-u_0|<rac{arepsilon}{\sqrt{2}}$$
 , $|v-v_0|<rac{arepsilon}{\sqrt{2}}$,

$$\Rightarrow |f(z) - A| = \sqrt{(u - u_0)^2 + (v - v_0)^2} < \varepsilon,$$

$$\Rightarrow \lim_{z\to z_0} f(z) = A$$
.

2. 极限

性质 如果 $\lim_{z\to z_0} f(z) = A$, $\lim_{z\to z_0} g(z) = B$, 则

- (1) $\lim_{z \to z_0} [f(z) \pm g(z)] = A \pm B$,
- (2) $\lim_{z\to z_0} [f(z)\cdot g(z)] = A\cdot B,$
- (3) $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{A}{B}, \quad (B \neq 0).$
- (4) 复合函数极限

例 1.3.5 计算下列极限

(1)
$$\lim_{z \to 1} \frac{z\bar{z} + 2z - \bar{z} - 2}{z^2 - 1}$$

$$(2) \lim_{z \to \infty} \frac{2z+i}{z+1}$$

- 所关心的两个问题:
 - (1) 如何证明极限存在? 放大技巧 $|f(z)-A| \leq g(|z-z_0|)$ 。
 - (2) 如何证明极限不存在? 选择不同的路径进行攻击。

例 讨论函数 $f(z) = \frac{z}{z}$ 在 $z \to 0$ 的极限。

解 方法一

$$f(z) = \frac{x - iy}{x + iy},$$

当
$$x=0, y\to 0$$
时, $f(z)\to -1$,

因此极限不存在。

四地似附个竹竹。

$$f(z) = \frac{\overline{z}^2}{|z|^2} = \frac{x^2 - y^2 - i \, 2xy}{x^2 + y^2}, \quad u(x, y) = \frac{x^2 - y^2}{x^2 + y^2},$$

当
$$y=0, x \rightarrow 0$$
 时, $u(x,y) \rightarrow 1$,

当
$$x=0, y\to 0$$
时, $u(x,y)\to -1$,

因此极限不存在。

31

 $z\rightarrow 0$

例 讨论函数 $f(z) = \frac{\overline{z}}{z}$ 在 $z \to 0$ 的极限。

方法三

沿着射线 l_{α} : $z = re^{i\alpha}, r \rightarrow 0$,

$$\lim_{z \in I_{\alpha}} f(z) = e^{i(-2\alpha)}$$
,与 α 有关,因此极限不存在。

2. 连续

定义 若 $\lim_{z \to z_0} f(z) = f(z_0)$, 则称 f(z) 在 z_0 点 <u>连续</u>。

若 f(z) 在区域 D 内处处连续,则称 f(z) 在 D 内 <u>连续</u>。

- 注 (1) 连续的三个要素: $f(z_0)$ 存在; $\lim_{z \to z_0} f(z)$ 存在;相等。
 - (2) 连续的等价表示:

$$\lim_{z\to z_0} f(z) = f(z_0) \iff \lim_{\Delta z\to 0} \Delta w = 0 \iff \lim_{|\Delta z|\to 0} |\Delta w| = 0.$$

其中, $\Delta z = z - z_0$, $\Delta w = f(z + z_0) - f(z_0)$.

通常说: 当自变量充分靠近时,函数值充分靠近。

(3) 一旦知道函数连续,反过来可以用来求函数的极限。

2. 连续

- (1) 在 z_0 连续的两个函数 f(z) 与 g(z) 的和、差、积、商(分母在 z_0 不为零) 在 z_0 处连续。
- (2) 如果函数 $\xi = g(z)$ 在 z_0 处连续,函数 $w = f(\xi)$ 在 $\xi_0 = g(z_0)$ 连续,则函数 $w = f[g(\xi)]$ 在 z_0 处连续。

(由基本初等函数的连续性可得初等函数的连续性)

- (3) 如果函数 f(z) 在有界闭区域 \overline{D} 上连续,则
 - |f(z)| 在 D 上必有界;
 - |f(z)| 在 \overline{D} 上必能取到最大值与最小值;
 - \bullet f(z) 在 \overline{D} 上必一致连续。

例 1.3.6
$$f(z) = \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z}\right)$$
, $z \neq 0$, 试证 $f(z)$ 在原点无极限。

例 讨论函数 $w = f(z) = |z|^2$ 的连续性。

$$\mathbf{M} = |z|^2 = z \cdot \overline{z},$$

$$|\Delta w| = |(z + \Delta z)(\overline{z} + \overline{\Delta z}) - z \cdot \overline{z}|$$

$$= |\Delta z \cdot \overline{z} + \overline{\Delta z} \cdot z + \Delta z \cdot \Delta z|$$

$$\leq 2|\Delta z|\cdot|z|+|\Delta z|^2\rightarrow 0$$
, ($\leq \Delta z\rightarrow 0$ 时)

故函数 $w = f(z) = |z|^2$ 处处连续。

2. 连续

定理 函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 点连续的 充要条件是 u(x,y)和 v(x,y) 在 (x_0,y_0) 点连续。

例如 函数 $f(z) = \ln(x^2 + y^2) + i(x^2 - y^2)$ 在复平面内除原点外是处处连续的。

因为 $u(x,y) = \ln(x^2 + y^2)$ 除原点外是处处连续的,而 $v(x,y) = x^2 - y^2$ 是处处连续的。

例 证明 $f(z) = \arg z$ 在复平面上除去原点和负实轴的区域上连续。

证明: 分成三种情况讨论

(2) z_0 落在负实轴上,分别从上半平面和下半平面趋向于 z_0 ,主辐角极限分别为 $+\pi$, $-\pi$.

$$(3)z_0 \in D = \{z : -\pi < argz < \pi, z \neq 0\}$$

证明在 z_0 处 f(z) 连续。

 $取\delta = |z_0 sin\varepsilon|, \quad \text{则在}|z - z_0| < \delta \text{ 时, } f|argz - argz_0| < \varepsilon$