STAT2602/3902 Mid-term Class Test (2:30pm - 3:30pm)

[Total: 50 marks]

- 1. Recall that if $X \sim \chi^2_{\nu}$, $M_X(t) = \frac{1}{(1-2t)^{\frac{\nu}{2}}}$ for $t < \frac{1}{2}$, where $M_X(t)$ is the moment generating function of X. Let X_1, X_2, X_3 be an independent random sample such that $X_i \sim \chi^2_i$ for i = 1, 2, 3.
 - (i) Calculate the moment generating function of $Y = \sum_{i=1}^{3} X_i$. [5 marks]
 - (ii) Specify the distribution of Y. [2 marks]
 - (iii) Calculate $E(Y^s)$ for s = 1, 2. [8 marks]

[Total: 15 marks]

- 2. Let X_1, X_2, \dots, X_n be an independent random sample from $N(0, \theta)$, where $\theta > 0$.
 - (i) Find $\hat{\theta}_1$, the MLE of θ on the space $\Omega_1 = \{\theta : \theta > 0\}$. [5 marks]
 - (ii) Show that $\hat{\theta}_1$ is an unbiased estimator of θ . [5 marks]
 - (iii) Show that $\hat{\theta}_1$ is a consistent estimator of θ . [5 marks]
 - (iv) Recall that $EX_i^4 = 3\theta^2$. Will $\hat{\theta}_1$ be the UMVUE of θ ? Explain it. [5 marks]
 - (v) Find $\hat{\theta}_2$, the MLE of θ on the space

$$\Omega_2 = \{\theta : \theta > \theta_*\},\$$

where θ_* is a given finite positive constant.

[10 marks]

(vi) Show that $\hat{\theta}_2$ is a biased estimator of θ .

[5 marks]

[Total: 35 marks]

A LIST OF STATISTICAL FORMULAE

1.
$$M_X(t) = \mathbb{E}(e^{tX})$$
. $\mathbb{E}(X^r) = \left(\frac{\mathrm{d}^r}{\mathrm{d}t^r}M_X(t)\right)\Big|_{t=0}$.

2. For $X \sim \text{Uniform}(a, b)$,

$$f(x) = \frac{x}{b-a}$$

3. For $X \sim N(\mu, \sigma^2)$,

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ M_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right).$$

4.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
. $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

5.
$$\operatorname{Bias}(\hat{\theta}) = \operatorname{E}(\hat{\theta}) - \theta$$
. $\operatorname{E}\left[(\hat{\theta} - \theta)^2\right] = \operatorname{Var}(\hat{\theta}) + \left[\operatorname{Bias}(\hat{\theta})\right]^2$.

6.
$$I(\theta) = E\left[\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^2\right] = E\left[-\frac{\partial^2 \ln f(X;\theta)}{\partial \theta^2}\right]. \quad Var(\hat{\theta}) \ge \frac{1}{nI(\theta)}.$$

7. Factorization:
$$\mathbf{f}(x_1, \dots, x_n; \theta) = g(T(x_1, \dots, x_n); \theta)h(x_1, \dots, x_n).$$

8. Expontial family:
$$f(x;\theta) = h(x)c(\theta) \exp\left(\sum_{i=1}^{s} p_i(\theta)t_i(x)\right)$$
.

9. CLT:
$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \approx N(0, 1)$$
 for large n .

10. Normal population
$$\Longrightarrow \frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2, \ \frac{\overline{X} - \mu}{S/\sqrt{n-1}} \sim t_{n-1}.$$