

CI 2 – SLCI : ETUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

Chapitre 2 – Modélisation des Systèmes Linéaires Continus Invariants

TRANSFORMÉE DE LAPLACE DÉCOMPOSITION EN ÉLÉMENTS SIMPLES

Préliminaire

Le but de ce document n'est pas de se substituer à un cours de mathématiques mais de fournir quelques techniques de calcul pour décomposer une fraction rationnelle en éléments simples.

- 1. Dans les fonctions que nous utiliserons, le degré du numérateur sera toujours inférieur ou égal au degré du numérateur : $N(p) \le D(p)$.
- 2. On appelle **pôles** d'une fonction rationnelle les racines du dénominateur. On appelle **zéros** d'une fonction rationnelle les racines du numérateur.
- 3. Le numérateur sera un produit de polynômes de degrés inférieurs ou égaux à 2.

1 Cas d'une fonction avec des pôles réels simples - deg(N(p)) < deg(D(p))

Soit la fonction rationnelle suivante :

$$F(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{(p - p_1) \cdot (p - p_2) \cdots (p - p_n)}$$

avec $deg(N(p)) < deg(D(p)), p_1 \neq p_2 \neq p_n$. On peut décomposer la fonction ainsi :

$$F(p) = \frac{\alpha_1}{p - p_1} + \frac{\alpha_2}{p - p_2} + \dots + \frac{\alpha_n}{p - p_n}$$

avec $\alpha_i \in \mathbb{R}$.

Wéthode

- 1. On multiplie les deux formes de F(p) par $(p p_i)$.
- 2. On pose $p = p_i$.

Méthode

- 3. On détermine α_i .
- 4. On réalise l'opération n fois (avec n = deg(D(p)).

Décomposer la fonction suivante en éléments simples :

$$F(p) = \frac{p^3 + 4}{(p+1)(p+2)(p+3)(p+4)}$$

Exemple

2 Cas d'une fonction avec des pôles réels simples -deg(N(p)) = deg(D(p))

Soit la fonction rationnelle suivante :

$$F(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{(p - p_1) \cdot (p - p_2) \cdots (p - p_n)}$$

avec deg(N(p)) = deg(D(p)), $p_1 \neq p_2 \neq p_n$. On peut décomposer la fonction ainsi :

$$F(p) = K + \frac{\alpha_1}{p - p_1} + \frac{\alpha_2}{p - p_2} + \dots + \frac{\alpha_n}{p - p_n}$$

avec $\alpha_i \in \mathbb{R}$ et $K \in \mathbb{R}$

Ráculta

- 1. Calcul des α_i :
 - (a) On multiplie les deux formes de F(p) par $(p-p_i)$.
 - (b) On pose $p = p_i$.
 - (c) On détermine α_i .
 - (d) On réalise l'opération n fois (avec n = deg(D(p)).
- 2. Calcul de K:
 - (a) Pour les deux formes de F(p) on calcule $\lim_{p\to\infty} F(p)$.
 - (b) On détermine *K* .

Métho

Décomposer la fonction suivante en éléments simples :

Exemple

$$F(p) = \frac{p^2 + 1}{(p+1)(p+4)}$$

3 Cas d'une fonction avec des pôles réels multiples - deg(N(p)) < deg(D(p))

Soit la fonction rationnelle suivante :

$$F(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{(p-p_1)^n}$$

avec deg(N(p)) < deg(D(p)). On peut décomposer la fonction ainsi :

$$F(p) = \frac{\alpha_1}{p - p_1} + \frac{\alpha_2}{(p - p_1)^2} + \dots + \frac{\alpha_n}{(p - p_1)^n}$$

avec $\alpha_i \in \mathbb{R}$.

Méthode

Résultat

Les méthodes précédentes restent utilisables. Elles ne permettent pas de déterminer touts les α_i . On peut alors mettre les deux formes de F(p) au même dénominateur et identifier les monômes. On peut aussi prendre des valeurs particulières de p et résoudre un système d'équations. Le calcul de certaines limites en ∞ peut permettre de déterminer certains coefficients.

Exemple

Décomposer la fonction suivante en éléments simples :

$$F(p) = \frac{p^2 + 1}{p^3(p+1)}$$

4 Cas d'une fonction avec des pôles complexes - deg(N(p)) < deg(D(p))

Soit la fonction rationnelle suivante :

$$F(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{(p - p_1)(ap^2 + bp + c)}$$

avec deg(N(p)) < deg(D(p)). On peut décomposer la fonction ainsi :

$$F(p) = \frac{\alpha_1}{p - p_1} + \frac{\alpha_2 + \alpha_3 p}{a p^2 + b p + c}$$

avec $\alpha_i \in \mathbb{R}$.

James

Décomposer la fonction suivante en éléments simples :

$$F(p) = \frac{p+3}{(p+1)(p^2+1)}$$