Римановы многообразия

Пусть $p \in M$ — точка в римановом многообразии $M, v \in T_pM$ — единичный касательный вектор. Тогда известно, что существует единственная максимальная нетривиальная геодезическая γ , выходящая из точки p в направлении v с единичной скоростью.

ДГТ 13\diamond1. Пусть $M = \mathbf{S}^n$, \mathbf{R}^n или \mathbf{H}^n . Покажите, что:

- (a) $\gamma(t) = \cos(t) \cdot p + \sin(t) \cdot v$, если $M = \mathbf{S}^n$;
- (b) $\gamma(t) = p + tv$, если $M = \mathbf{R}^n$;
- (c) $\gamma(t) = \cosh(t) \cdot p + \sinh(t) \cdot v$, если $M = \mathbf{H}^n$.

ДГТ 13 \diamond 2. Пусть $\mathbb{U}^2 = \{(x,y) \in \mathbf{R}^2 \mid y > 0\}$ с гиперболической метрикой

$$g_U = (dx \otimes dx + dy \otimes dy)/y^2.$$

Какова матрица Грама метрики g_U ? Покажите, что геодезические в этой метрики суть вертикальные прямые x = const и полуокружности с центром на оси x.

ДГТ 13\diamond3. В предыдущей задаче элемент площади есть 2-мерная форма объема, которая равна $\operatorname{vol}_g = \sqrt{\det(g_U)} \cdot dx \wedge dy$. Найдите ее.

- (а) Найдите площадь идеального треугольника.
- (b) Найдите площадь гиперболического треугольника в \mathbb{U}^2 с углами α, β, γ .