Quantitative Finance with Python

A Practical Guide to Investment Management, Trading, and Financial Engineering

Chris Kelliher

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK

First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Chris Kelliher

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Kelliher, Chris, author.

Title: Quantitative finance with Python: a practical guide to investment management, trading, and financial engineering / Chris Kelliher.

Description: 1 Edition. | Boca Raton, FL: Chapman & Hall, CRC Press, 2022.

| Series: Chapman & Hall/CRC Financial Mathematics series | Includes

bibliographical references and index.

Identifiers: LCCN 2021056941 (print) | LCCN 2021056942 (ebook) | ISBN

9781032014432 (hardback) | ISBN 9781032019147 (paperback) | ISBN

9781003180975 (ebook)

Subjects: LCSH: Investments--Management. | Trading bands (Securities) |

Financial engineering. | Python (Computer program language)

Classification: LCC HG4515.2 .K445 2022 (print) | LCC HG4515.2 (ebook) |

DDC 332.6--dc23/eng/20220113

LC record available at https://lccn.loc.gov/2021056941

LC ebook record available at https://lccn.loc.gov/2021056942

ISBN: 978-1-032-01443-2 (hbk) ISBN: 978-1-032-01914-7 (pbk) ISBN: 978-1-003-18097-5 (ebk)

DOI: 10.1201/9781003180975

Typeset in Latin Modern font by KnowledgeWorks Global Ltd.

Publisher's note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: www.routledge.com/9781032014432

To my amazing daughter, Sloane, my light and purpose.

To my wonderful, loving wife, Andrea, without whom none of
my achievements would be possible.

To my incredible, supportive parents and sister and brother,

Jen and Lucas.

Contents

Foreword	b		xxxi
Author			xxxiii
Contribu	tors		xxxv
Acknowle	edgme	ents	xxxvii
Section I	Fou	andations of Quant Modeling	
Chapter		Setting the Stage: Quant Landscape	3
1.1	INTRO	DDUCTION	3
1.2	QUAN	T FINANCE INSTITUTIONS	4
	1.2.1	Sell-Side: Dealers & Market Makers	4
	1.2.2	Buy-Side: Asset Managers & Hedge Funds	5
	1.2.3	Financial Technology Firms	6
1.3	MOST	COMMON QUANT CAREER PATHS	6
	1.3.1	Buy Side	6
	1.3.2	Sell Side	7
	1.3.3	Financial Technology	8
	1.3.4	What's Common between Roles?	9
1.4	TYPES	S OF FINANCIAL INSTRUMENTS	9
	1.4.1	Equity Instruments	9
	1.4.2	Debt Instruments	10
	1.4.3	Forwards & Futures	11
	1.4.4	Options	12
	1.4.5	Option Straddles in Practice	14
	1.4.6	Put-Call Parity	14
	1.4.7	Swaps	15
	1.4.8	Equity Index Total Return Swaps in Practice	17
	1.4.9	Over-the-Counter vs. Exchange Traded Products	18

viii ■ Contents

1.5	STAGI	ES OF A QUANT PROJECT	18
	1.5.1	Data Collection	19
	1.5.2	Data Cleaning	19
	1.5.3	Model Implementation	19
	1.5.4	Model Validation	20
1.6	TREN	DS: WHERE IS QUANT FINANCE GOING?	20
	1.6.1	Automation	20
	1.6.2	Rapid Increase of Available Data	20
	1.6.3	Commoditization of Factor Premias	21
	1.6.4	Movement toward Incorporating Machine Learning/Artificial Intelligence	21
	1.6.5	Increasing Prevalence of Required Quant/Technical Skills	22
CHAPTER	2 ■ T	heoretical Underpinnings of Quant Modeling: Modeling	
		ne Risk Neutral Measure	23
2.1	INTRO	DDUCTION	23
2.2	RISK I	NEUTRAL PRICING & NO ARBITRAGE	24
	2.2.1	Risk Neutral vs. Actual Probabilities	24
	2.2.2	Theory of No Arbitrage	25
	2.2.3	Complete Markets	26
	2.2.4	Risk Neutral Valuation Equation	26
	2.2.5	Risk Neutral Discounting, Risk Premia & Stochastic Discount Factors	26
2.3	BINON	MIAL TREES	27
	2.3.1	Discrete vs. Continuous Time Models	27
	2.3.2	Scaled Random Walk	28
	2.3.3	Discrete Binomial Tree Model	29
	2.3.4	Limiting Distribution of Binomial Tree Model	32
2.4	BUILD	DING BLOCKS OF STOCHASTIC CALCULUS	33
	2.4.1	Deterministic vs. Stochastic Calculus	33
	2.4.2	Stochastic Processes	33
	2.4.3	Martingales	34
	2.4.4	Brownian Motion	34
	2.4.5	Properties of Brownian Motion	35
2.5	STOC	HASTIC DIFFERENTIAL EQUATIONS	38
	2.5.1	Generic SDE Formulation	38

	2.5.2	Bachelier SDE	38
	2.5.3	Black-Scholes SDE	39
	2.5.4	Stochastic Models in Practice	39
2.6	ITO'S	LEMMA	40
	2.6.1	General Formulation & Theory	40
	2.6.2	Ito in Practice: Risk-Free Bond	41
	2.6.3	Ito in Practice: Black-Scholes Dynamics	42
2.7	CONN	IECTION BETWEEN SDEs AND PDEs	44
	2.7.1	PDEs & Stochastic Processes	44
	2.7.2	Deriving the Black-Scholes PDE	44
	2.7.3	General Formulation: Feynman-Kac Formula	47
	2.7.4	Working with PDEs in Practice	48
2.8	GIRSA	ANOV'S THEOREM	48
	2.8.1	Change of Measure via Girsanov's Theorem	48
	2.8.2	Applications of Girsanov's Theorem	50
CHAPTER		heoretical Underpinnings of Quant Modeling: Modeling	
	th	ne Physical Measure	51
3.1		DDUCTION: FORECASTING VS. REPLICATION	51
3.2		ET EFFICIENCY AND RISK PREMIA	52
	3.2.1	Efficient Market Hypothesis	52
	3.2.2	Market Anomalies, Behavioral Finance & Risk Premia	53
	3.2.3	Risk Premia Example: Selling Insurance	5 4
3.3	LINEA	R REGRESSION MODELS	54
	3.3.1	Introduction & Terminology	54
	3.3.2	Univariate Linear Regression	56
	3.3.3	Multivariate Linear Regression	58
	3.3.4	Standard Errors & Significance Tests	59
	3.3.5	Assumptions of Linear Regression	62
	3.3.6	How are Regression Models used in Practice?	63
	3.3.7	Regression Models in Practice: Calculating High-Yield Betas to Stocks and Bonds	64
3.4	TIME	SERIES MODELS	65
	3.4.1	Time Series Data	65
	3.4.2	Stationary vs. Non-Stationary Series & Differencing	65
	3.4.3	White Noise & Random Walks	66

Contents ■ ix

x ■ Contents

	3.4.4	Autoregressive Processes & Unit Root Tests	67
	3.4.5	Moving Average Models	69
	3.4.6	ARMA Models	70
	3.4.7	State Space Models	71
	3.4.8	How are Time Series Models used in practice?	71
3.5	PANEL	REGRESSION MODELS	72
3.6	CORE	PORTFOLIO AND INVESTMENT CONCEPTS	74
	3.6.1	Time Value of Money	74
	3.6.2	Compounding Returns	75
	3.6.3	Portfolio Calculations	76
	3.6.4	Portfolio Concepts in Practice: Benefit of Diversification	79
3.7	BOOTS	STRAPPING	80
	3.7.1	Overview	80
3.8	PRINC	IPAL COMPONENT ANALYSIS	82
3.9		LUSIONS: COMPARISON TO RISK NEUTRAL MEASURE	
	MODE	LING	84
CHAPTER	4 ■ Pv	ython Programming Environment	85
	· · ·	, and a sign and a sig	
4.1	THE P	YTHON PROGRAMMING LANGUAGE	85
4.2	ADVAN	ITAGES AND DISADVANTAGES OF PYTHON	85
4.3	PYTHO	ON DEVELOPMENT ENVIRONMENTS	86
4.4	BASIC	PROGRAMMING CONCEPTS IN PYTHON	87
	4.4.1	Language Syntax	87
	4.4.2	Data Types in Python	88
	4.4.3	Working with Built-in Functions	88
	4.4.4	Conditional Statements	89
	4.4.5	Operator Precedence	90
	4.4.6	Loops	90
	4.4.7	Working with Strings	91
	4.4.8	User-Defined Functions	92
	4.4.9	Variable Scope	92
	4.4.10	Importing Modules	93
	4.4.11	Exception Handling	94
	4.4.12	Recursive Functions	95

	Contents	■ X1
4.4.13	Plotting/Visualizations	95
5 ■ Pr	ogramming Concepts in Python	97
INTRO	DUCTION	97
NUMP	Y LIBRARY	97
PANDA	S LIBRARY	98
DATA S	TRUCTURES IN PYTHON	98
5.4.1	Tuples	99
5.4.2	Lists	99
5.4.3	Array	100
5.4.4	Differences between Lists and NumPy Arrays	101
5.4.5	Covariance Matrices in Practice	101
5.4.6	Covariance Matrices in Practice: Are Correlations Stationary?	102
5.4.7	Series	103
5.4.8	DataFrame	103
5.4.9	Dictionary	106
IMPLEI	MENTATION OF QUANT TECHNIQUES IN PYTHON	107
5.5.1	Random Number Generation	107
5.5.2	Linear Regression	108
5.5.3	Linear Regression in Practice: Equity Return Decomposition by Fama-French Factors	108
5.5.4	Autocorrelation Tests	109
5.5.5	ARMA Models in Practice: Testing for Mean-Reversion in Equity Index Returns	110
5.5.6	Matrix Decompositions	110
OBJEC	T-ORIENTED PROGRAMMING IN PYTHON	111
5.6.1	Principles of Object-Oriented Programming	112
5.6.2	Classes in Python	113
5.6.3	Constructors	114
5.6.4	Destructors	115
5.6.5	Class Attributes	116
5.6.6	Class Methods	116
5.6.7	Class Methods vs. Global Functions	117
5.6.8	Operator Overloading	118
5.6.9	Inheritance in Python	119
	5 • Pro INTRO NUMPY PANDA DATA S 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.4.9 IMPLEI 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.6 OBJEC 5.6.1 5.6.2 5.6.3 5.6.4 5.6.5 5.6.6 5.6.7 5.6.8	INTRODUCTION NUMPY LIBRARY PANDAS LIBRARY DATA STRUCTURES IN PYTHON 5.4.1 Tuples 5.4.2 Lists 5.4.3 Array 5.4.4 Differences between Lists and NumPy Arrays 5.4.5 Covariance Matrices in Practice 5.4.6 Covariance Matrices in Practice: Are Correlations Stationary? 5.4.7 Series 5.4.8 DataFrame 5.4.9 Dictionary IMPLEMENTATION OF QUANT TECHNIQUES IN PYTHON 5.5.1 Random Number Generation 5.5.2 Linear Regression 5.5.3 Linear Regression in Practice: Equity Return Decomposition by Fama-French Factors 5.5.4 Autocorrelation Tests 5.5.5 ARMA Models in Practice: Testing for Mean-Reversion in Equity Index Returns 5.5.6 Matrix Decompositions OBJECT-ORIENTED PROGRAMMING IN PYTHON 5.6.1 Principles of Object-Oriented Programming 5.6.2 Classes in Python 5.6.3 Constructors 5.6.4 Destructors 5.6.5 Class Attributes 5.6.6 Class Methods vs. Global Functions 5.6.8 Operator Overloading

xii ■ Contents

	5.6.10	Polymorphism in Python	120
5.7	DESIG	ON PATTERNS	121
	5.7.1	Types of Design Patterns	121
	5.7.2	Abstract Base Classes	121
	5.7.3	Factory Pattern	122
	5.7.4	Singleton Pattern	122
	5.7.5	Template Method	122
5.8	SEAR	CH ALGORITHMS	123
	5.8.1	Binary Search Algorithm	123
5.9	SORT	ALGORITHMS	123
	5.9.1	Selection Sort	124
	5.9.2	Insertion Sort	124
	5.9.3	Bubble Sort	124
	5.9.4	Merge Sort	125
CHAPTER	6 - W	Vorking with Financial Datasets	127
6.1	INTRO	DDUCTION	127
6.2	DATA (COLLECTION	128
	6.2.1	Overview	128
	6.2.2	Reading & Writing Files in Python	128
	6.2.3	Parsing Data from a Website	130
	6.2.4	Interacting with Databases in Python	130
6.3	COMN	MON FINANCIAL DATASETS	131
	6.3.1	Stock Data	132
	6.3.2	Currency Data	132
	6.3.3	Futures Data	132
	6.3.4	Options Data	133
	6.3.5	Fixed Income Data	134
6.4	COMN	MON FINANCIAL DATA SOURCES	134
6.5	CLEA	NING DIFFERENT TYPES OF FINANCIAL DATA	135
	6.5.1	Proper Handling of Corporate Actions	135
	6.5.2	Avoiding Survivorship Bias	136
	6.5.3	Detecting Arbitrage in the Data	137
6.6	HAND	LING MISSING DATA	138
	6.6.1	Interpolation & Filling Forward	138
	6.6.2	Filling via Regression	139

		Contents	5 ■ X111
	6.6.3	Filling via Bootstrapping	140
	6.6.4	Filling via K-Nearest Neighbor	141
6.7	OUTL	IER DETECTION	141
	6.7.1	Single vs. Multi-Variate Outlier Detection	141
	6.7.2	Plotting	142
	6.7.3	Standard Deviation	142
	6.7.4	Density Analysis	142
	6.7.5	Distance from K-Nearest Neighbor	143
	6.7.6	Outlier Detection in Practice: Identifying Anomalies in Electurns	ΓF 143
Chapter	7 - N	Model Validation	145
7.1	WHY I	IS MODEL VALIDATION SO IMPORTANT?	145
7.2	HOW I	DO WE ENSURE OUR MODELS ARE CORRECT?	146
7.3	COMP	PONENTS OF A MODEL VALIDATION PROCESS	147
	7.3.1	Model Documentation	147
	7.3.2	Code Review	147
	7.3.3	Unit Tests	148
	7.3.4	Production Model Change Process	149
7.4	GOAL	S OF MODEL VALIDATION	149
	7.4.1	Validating Model Implementation	149
	7.4.2	Understanding Model Strengths and Weaknesses	150
	7.4.3	Identifying Model Assumptions	150
7.5		EOFF BETWEEN REALISTIC ASSUMPTIONS AND IMONY IN MODELS	151
Section		tions Modeling	101
Chapter	8 s	Stochastic Models	155
8.1	SIMPL	LE MODELS	155
	8.1.1	Black-Scholes Model	155
	8.1.2	Black-Scholes Model in Practice: Are Equity Returns Log-Normally Distributed?	157
	8.1.3	Implied Volatility Surfaces in Practice: Equity Options	157
	8.1.4	Bachelier Model	159
	8.1.5	CEV Model	160

xiv ■ Contents

	8.1.6	CEV Model in Practice: Impact of Beta	161
	8.1.7	Ornstein-Uhlenbeck Process	162
	8.1.8	Cox-Ingersol-Ross Model	164
	8.1.9	Conclusions	164
8.2	STOCI	HASTIC VOLATILITY MODELS	165
	8.2.1	Introduction	165
	8.2.2	Heston Model	166
	8.2.3	SABR Model	167
	8.2.4	SABR Model in Practice: Relationship between Model Parameters and Volatility Surface	169
	8.2.5	Stochastic Volatility Models: Comments	170
8.3	JUMP	DIFFUSION MODELS	171
	8.3.1	Introduction	171
	8.3.2	Merton's Jump Diffusion Model	172
	8.3.3	SVJ Model	172
	8.3.4	Variance Gamma Model	174
	8.3.5	VGSA Model	175
	8.3.6	Comments on Jump Processes	177
8.4	LOCA	L VOLATILITY MODELS	178
	8.4.1	Dupire's Formula	178
	8.4.2	Local Volatility Model in Practice: S&P Option Local Volatility Surface	179
8.5	STOCI	HASTIC LOCAL VOLATILITY MODELS	180
8.6	PRAC	TICALITIES OF USING THESE MODELS	180
	8.6.1	Comparison of Stochastic Models	180
	8.6.2	Leveraging Stochastic Models in Practice	181
CHAPTER	9 • O	options Pricing Techniques for European Options	183
0.1	MODE	TE WITH CLOSED FORM COLUTIONS OF ASYMPTOTIC	
9.1		ELS WITH CLOSED FORM SOLUTIONS OR ASYMPTOTIC PPROXIMATIONS	183
9.2	OPTIC	ON PRICING VIA QUADRATURE	184
	9.2.1	Overview	184
	9.2.2	Quadrature Approximations	184
	9.2.3	Approximating a Pricing Integral via Quadrature	186
	9.2.4	Quadrature Methods in Practice: Digital Options Prices in Black-Scholes vs. Bachelier Model	188

9.3	OPTIO	N PRICING VIA FFT	189
	9.3.1	Fourier Transforms & Characteristic Functions	189
	9.3.2	European Option Pricing via Transform	190
	9.3.3	Digital Option Pricing via Transform	194
	9.3.4	Calculating Outer Pricing Integral via Quadrature	196
	9.3.5	Summary of FFT Algorithm	198
	9.3.6	Calculating Outer Pricing Integral via FFT	198
	9.3.7	Summary: Option Pricing via FFT	200
	9.3.8	Strike Spacing Functions	201
	9.3.9	Interpolation of Option Prices	201
	9.3.10	Technique Parameters	202
	9.3.11	Dependence on Technique Parameters	203
	9.3.12	Strengths and Weaknesses	204
	9.3.13	Variants of FFT Pricing Technique	204
	9.3.14	FFT Pricing in Practice: Sensitivity to Technique	100
0.4	DOOT	Parameters	205
9.4		FINDING	206
	9.4.1	Setup	206
	9.4.2	Newton's Method	207
	9.4.3	First Calibration: Implied Volatility	208
	9.4.4	Implied Volatility in Practice: Volatility Skew for VIX Options	209
9.5	OPTIM	IIZATION TECHNIQUES	209
	9.5.1	Background & Terminology	211
	9.5.2	Global vs. Local Minima & Maxima	211
	9.5.3	First- & Second-Order Conditions	212
	9.5.4	Unconstrained Optimization	213
	9.5.5	Lagrange Multipliers	214
	9.5.6	Optimization with Equality Constraints	215
	9.5.7	Minimum Variance Portfolios in Practice: Stock & Bond Minimum Variance Portfolio Weights	216
	9.5.8	Convex Functions	216
	9.5.9	Optimization Methods in Practice	217
9.6		RATION OF VOLATILITY SURFACES	217
	9.6.1	Optimization Formulation	218
	9.6.2	Objective Functions	219
	9.6.3	Constraints	219

xvi ■ Contents

	9.6.4	Regularization	220
	9.6.5	Gradient-Based vs. Gradient-Free Optimizers	220
	9.6.6	Gradient-Based Methods with Linear Constraints	221
	9.6.7	Practicalities of Calibrating Volatility Surfaces	221
	9.6.8	Calibration in Practice: BRLJPY Currency Options	222
CHAPTER	10 ■ Op	otions Pricing Techniques for Exotic Options	223
10.1	INTRO	DUCTION	223
10.2	SIMULA	ATION	224
	10.2.1	Overview	224
	10.2.2	Central Limit Theorem & Law of Large Numbers	226
	10.2.3	Random Number Generators	228
	10.2.4	Generating Random Variables	229
	10.2.5	Transforming Random Numbers	229
	10.2.6	Transforming Random Numbers: Inverse Transform Technique	230
	10.2.7	Transforming Random Numbers: Acceptance Rejection Method	231
	10.2.8	Generating Normal Random Variables	234
	10.2.9	Quasi Random Numbers	236
	10.2.10	Euler Discretization of SDEs	236
	10.2.11	Simulating from Geometric Brownian Motion	238
	10.2.12	Simulating from the Heston Model	239
	10.2.13	Simulating from the Variance Gamma Model	240
	10.2.14	Variance Reduction Techniques	241
	10.2.15	Strengths and Weaknesses	245
	10.2.16	Simulation in Practice: Impact of Skew on Lookback Options Values in the Heston Model	246
10.3	NUMEF	RICAL SOLUTIONS TO PDEs	247
	10.3.1	Overview	247
	10.3.2	PDE Representations of Stochastic Processes	248
	10.3.3	Finite Differences	249
	10.3.4	Time & Space Grid	252
	10.3.5	Boundary Conditions	252
	10.3.6	Explicit Scheme	253
	10.3.7	Implicit Scheme	256

		Contents ■	xvii
	10.3.8	Crank-Nicolson	258
	10.3.9	Stability	259
	10.3.10	Multi-Dimension PDEs	259
	10.3.11	Partial Integro Differential Equations	260
	10.3.12	Strengths & Weaknesses	260
	10.3.13	American vs. European Digital Options in Practice	261
10.4	MODEL	ING EXOTIC OPTIONS IN PRACTICE	263
Chapter	11 ■ Gr	reeks and Options Trading	265
		<u> </u>	
11.1	INTROI	DUCTION	265
11.2	BLACK	-SCHOLES GREEKS	266
	11.2.1	Delta	266
	11.2.2	Gamma	267
	11.2.3	Delta and Gamma in Practice: Delta and Gamma by Strike	268
	11.2.4	Theta	270
	11.2.5	Theta in Practice: How Does Theta Change by Option Expiry?	271
	11.2.6	Vega	272
	11.2.7	Practical Uses of Greeks	272
11.3	THETA	VS. GAMMA	273
11.4	MODEL	DEPENDENCE OF GREEKS	274
11.5	GREEK	S FOR EXOTIC OPTIONS	275
11.6	ESTIMA	ATION OF GREEKS VIA FINITE DIFFERENCES	275
11.7	SMILE	ADJUSTED GREEKS	276
	11.7.1	Smile Adjusted Greeks in Practice: USDBRL Options	278
11.8	HEDGII	NG IN PRACTICE	278
	11.8.1	Re-Balancing Strategies	279
	11.8.2	Delta Hedging in Practice	280
	11.8.3	Vega Hedging in Practice	280
	11.8.4	Validation of Greeks Out-of-Sample	281
11.9	COMM	ON OPTIONS TRADING STRUCTURES	282
	11.9.1	Benefits of Trading Options	282
	11.9.2	Covered Calls	282
	11.9.3	Call & Put Spreads	283
	11.9.4	Straddles & Strangles	284
	11.9.5	Butterflies	286

xviii ■ Contents

	11.9.6	Condors	287
	11.9.7	Calendar Spreads	287
	11.9.8	Risk Reversals	289
	11.9.9	1x2s	290
11.10	VOLATI	LITY AS AN ASSET CLASS	291
11.11		REMIA IN THE OPTIONS MARKET: IMPLIED VS. REALIZED	000
	VOLATI		292
		Delta-Hedged Straddles	292
		Implied vs. Realized Volatility	293
44.40		Implied Volatility Premium in Practice: S&P 500	294
11.12	CASES	STUDY: GAMESTOP REDDIT MANIA	295
CHAPTER	12 ■ Ex	traction of Risk Neutral Densities	297
12.1	MOTIVA		297
12.2	BREDE	N-LITZENBERGER	298
	12.2.1	Derivation	298
	12.2.2	Breeden-Litzenberger in the Presence of Imprecise Data	299
	12.2.3	Strengths and Weaknesses	300
	12.2.4	Applying Breden-Litzenberger in Practice	300
12.3		ECTION BETWEEN RISK NEUTRAL DISTRIBUTIONS AND ET INSTRUMENTS	301
	12.3.1	Butterflies	301
	12.3.2	Digital Options	302
12.4	OPTIMI EXTRA	ZATION FRAMEWORK FOR NON-PARAMETRIC DENSITY CTION	303
12.5	WEIGT	HED MONTE CARLO	305
	12.5.1	Optimization Directly on Terminal Probabilities	305
	12.5.2	Inclusion of a Prior Distribution	306
	12.5.3	Weighting Simulated Paths Instead of Probabilities	307
	12.5.4	Strengths and Weaknesses	307
	12.5.5	Implementation of Weighted Monte Carlo in Practice: S&P Options	308
12.6		ONSHIP BETWEEN VOLATILITY SKEW AND RISK AL DENSITIES	308
12.7		REMIA IN THE OPTIONS MARKET: COMPARISON OF RISK AL VS. PHYSICAL MEASURES	310
	12.7.1	Comparison of Risk Neutral vs. Physical Measure: Example	311

		Co	ontents ■	xix
	12.7.2	Connection to Market Implied Risk Premia		312
	12.7.3	Taking Advantage of Deviations between the Risk N	eutral &	
		Physical Measure		312
12.8		LUSIONS & ASSESSMENT OF PARAMETRIC VS.		040
	NON-P	PARAMETRIC METHODS		313
SECTION I	III Qua	ant Modeling in Different Markets		
CHAPTER	13 • In	terest Rate Markets		317
404	MADIC			047
13.1		ET SETTING		317
13.2		PRICING CONCEPTS Description Cook flower		318
	13.2.1	Present Value & Discounting Cashflows		318
	13.2.2	Pricing a Zero Coupon Bond		319
	13.2.3	Pricing a Coupon Bond		319
	13.2.4	Daycount Conventions Violate Metawites		320
	13.2.5	Yield to Maturity		320
	13.2.6	Duration & Convexity Band Briging in Practices Duration and Converitue		321
	13.2.7	Bond Pricing in Practice: Duration and Convexity Maturity	VS.	321
	13.2.8	From Yield to Maturity to a Yield Curve		322
13.3	MAIN C	COMPONENTS OF A YIELD CURVE		323
	13.3.1	Overview		323
	13.3.2	FRA's & Eurodollar Futures		323
	13.3.3	Swaps		324
13.4	MARKE	ET RATES		326
13.5	YIELD	CURVE CONSTRUCTION		327
	13.5.1	Motivation		327
	13.5.2	Libor vs. OIS		328
	13.5.3	Bootstrapping		328
	13.5.4	Optimization		330
	13.5.5	Comparison of Methodologies		331
	13.5.6	Bootstrapping in Practice: US Swap Rates		331
	13.5.7	Empirical Observations of the Yield Curve		332
	13.5.8	Fed Policy and the Yield Curve		332
13.6	MODE	LING INTEREST RATE DERIVATIVES		333
	13.6.1	Linear vs. Non-Linear Payoffs		333
	13.6.2	Vanilla vs. Exotic Options		334

xx ■ Contents

	13.6.3	Most Common Interest Rate Derivatives	334
	13.6.4	Modeling the Curve vs. Modeling a Single Rate	335
13.7	MODEL	ING VOLATILITY FOR A SINGLE RATE: CAPS/FLOORS	336
	13.7.1	T-Forward Numeraire	336
	13.7.2	Caplets/Floorlets via Black's Model	337
	13.7.3	Stripping Cap/Floor Volatilities	338
	13.7.4	Fitting the Volatility Skew	339
13.8	MODEL	ING VOLATILITY FOR A SINGLE RATE: SWAPTIONS	339
	13.8.1	Annuity Function & Numeraire	339
	13.8.2	Pricing via the Bachelier Model	339
	13.8.3	Fitting the Volatility Skew with the SABR Model	340
	13.8.4	Swaption Volatility Cube	341
13.9	MODEL	ING THE TERM STRUCTURE: SHORT RATE MODELS	341
	13.9.1	Short Rate Models: Overview	341
	13.9.2	Ho-Lee	343
	13.9.3	Vasicek	344
	13.9.4	Cox Ingersol Ross	345
	13.9.5	Hull-White	346
	13.9.6	Multi-Factor Short Rate Models	346
	13.9.7	Two Factor Gaussian Short Rate Model	347
	13.9.8	Two Factor Hull-White Model	348
	13.9.9	Short Rate Models: Conclusions	348
13.10	MODEL	ING THE TERM STRUCTURE: FORWARD RATE MODELS	349
	13.10.1	Libor Market Models: Introduction	349
	13.10.2	Log-Normal Libor Market Model	350
	13.10.3	SABR Libor Market Model	350
	13.10.4	Valuation of Swaptions in an LMM Framework	351
13.11	EXOTIC	OPTIONS	352
	13.11.1	Spread Options	352
	13.11.2	Bermudan Swaptions	353
13.12	INVEST	MENT PERSPECTIVE: TRADED STRUCTURES	354
	13.12.1	Hedging Interest Rate Risk in Practice	354
	13.12.2	Harvesting Carry in Rates Markets: Swaps	355
	13.12.3	Swaps vs. Treasuries Basis Trade	356
	13.12.4	Conditional Flattener/Steepeners	357
	13.12.5	Triangles: Swaptions vs. Mid-Curves	358

		Contents	xxi
	13.12.6	Wedges: Caps vs. Swaptions	359
	13.12.7	Berm vs. Most Expensive European	360
13.13	CASE	STUDY: INTRODUCTION OF NEGATIVE RATES	361
CHAPTER	14 • C	redit Markets	363
14.1	MARKI	ET SETTING	363
14.2	MODE	LING DEFAULT RISK: HAZARD RATE MODELS	365
14.3	RISKY	BOND	367
	14.3.1	Modeling Risky Bonds	367
	14.3.2	Bonds in Practice: Comparison of Risky & Risk-Free Bond Duration	369
14.4	CREDI	T DEFAULT SWAPS	369
	14.4.1	Overview	369
	14.4.2	Valuation of CDS	370
	14.4.3	Risk Annuity vs. IR Annuity	372
	14.4.4	Credit Triangle	372
	14.4.5	Mark to Market of a CDS	373
	14.4.6	Market Risks of CDS	374
14.5	CDS V	S. CORPORATE BONDS	375
	14.5.1	CDS Bond Basis	375
	14.5.2	What Drives the CDS-Bond Basis?	376
14.6	BOOTS	STRAPPING A SURVIVAL CURVE	376
	14.6.1	Term Structure of Hazard Rates	376
	14.6.2	CDS Curve: Bootstrapping Procedure	377
	14.6.3	Alternate Approach: Optimization	377
14.7	INDICE	ES OF CREDIT DEFAULT SWAPS	378
	14.7.1	Credit Indices	378
	14.7.2	Valuing Credit Indices	379
	14.7.3	Index vs. Single Name Basis	380
	14.7.4	Credit Indices in Practice: Extracting IG & HY Index Hazard Rates	381
14.8	MARKI	ET IMPLIED VS EMPIRICAL DEFAULT PROBABILITIES	382
14.9	OPTIO	NS ON CDS & CDX INDICES	383
	14.9.1	Options on CDS	383
	14.9.2	Options on Indices	385

xxii ■ Contents

14.10	MODEL	LING CORRELATION: CDOS	386
	14.10.1	CDO Subordination Structure	386
	14.10.2	Mechanics of CDOs	387
	14.10.3	Default Correlation & the Tranche Loss Distribution	388
	14.10.4	A Simple Model for CDOs: One Factor Large Pool	
		Homogeneous Model	388
	14.10.5	Correlation Skew	390
	14.10.6	CDO Correlation in Practice: Impact of Correlation on Tranche Valuation	390
	14.10.7	Alternative Models for CDOs	391
14.11	MODEL	S CONNECTING EQUITY AND CREDIT	392
	14.11.1	Merton's Model	392
	14.11.2	Hirsa-Madan Approach	394
14.12	MORTO	GAGE BACKED SECURITIES	394
14.13	INVEST	TMENT PERSPECTIVE: TRADED STRUCTURES	396
	14.13.1	Hedging Credit Risk	396
	14.13.2	Harvesting Carry in Credit Markets	397
	14.13.3	CDS Bond Basis	398
	14.13.4	Trading Credit Index Calendar Spreads	398
	14.13.5	Correlation Trade: Mezzanine vs. Equity Tranches	400
CHAPTER	15 ■ Fo	reign Exchange Markets	401
15.1	MARKE	ET SETTING	401
	15.1.1	Overview	401
	15.1.2	G10 Major Currencies	402
	15.1.3	EM Currencies	402
	15.1.4	Major Players	403
	15.1.5	Derivatives Market Structure	404
15.2	MODEL	ING IN A CURRENCY SETTING	405
	15.2.1	FX Quotations	405
	15.2.2	FX Forward Valuations	407
	15.2.3	Carry in FX Markets: Do FX forward Realize?	407
	15.2.4	Deliverable vs. Non-Deliverable Forwards	410
	15.2.5	FX Triangles	411
	15.2.6	Black-Scholes Model in an FX Setting	411
	15.2.7	Quoting Conventions in FX Vol. Surfaces	412
		· · · · · · · · · · · · · · · · · · ·	

16.5.1 Hedging Equity Risk

444

xxiv ■ Contents

	16.5.2	Momentum in Single Stocks	445
	16.5.3	Harvesting Roll Yield via Commodity Futures Curves	445
	16.5.4	Lookback vs. European	447
	16.5.5	Dispersion Trading: Index vs. Single Names	448
	16.5.6	Leveraged ETF Decay	449
16.6	CASE S	STUDY: NAT. GAS SHORT SQUEEZE	451
16.7	CASE S	STUDY: VOLATILITY ETP APOCALYPSE OF 2018	454
SECTION	IV Port	folio Construction & Risk Management	
CHAPTER	17 ■ Po	ortfolio Construction & Optimization Techniques	459
17.1	TUEOD	RETICAL BACKGROUND	459
17.1	17.1.1		459
	17.1.1	Physical vs. Risk-Neutral Measure First- & Second-Order Conditions, Lagrange Multipliers	460
	17.1.2	Interpretation of Lagrange Multipliers	461
17.2		VARIANCE OPTIMIZATION	463
17.2	17.2.1	Investor Utility	463
	17.2.1	Unconstrained Mean-Variance Optimization	464
	17.2.3	Mean-Variance Efficient Frontier	465
	17.2.4	Mean-Variance Fully Invested Efficient Frontier	466
	17.2.5	Mean-Variance Optimization in Practice: Efficient Frontier	467
	17.2.6	Fully Invested Minimum Variance Portfolio	469
	17.2.7	Mean-Variance Optimization with Inequality Constraints	469
	17.2.8	Most Common Constraints	470
	17.2.9	Mean-Variance Optimization: Market or Factor Exposure Constraints	471
	17.2.10	Mean-Variance Optimization: Turnover Constraint	471
	17.2.11	Minimizing Tracking Error to a Benchmark	472
	17.2.12	Estimation of Portfolio Optimization Inputs	473
17.3		ENGES ASSOCIATED WITH MEAN-VARIANCE	474
	17.3.1	Estimation Error in Expected Returns	474
	17.3.2	Mean-Variance Optimization in Practice: Impact of	
		Estimation Error	475
	17.3.3	Estimation Error of Variance Estimates	476
	17.3.4	Singularity of Covariance Matrices	477

	17.3.5	Mean-Variance Optimization in Practice: Analysis of Covariance Matrices	478	
	17.3.6	Non-Stationarity of Asset Correlations	479	
17.4	CAPITAL ASSET PRICING MODEL			
	17.4.1	Leverage & the Tangency Portfolio	480	
	17.4.2	CAPM	481	
	17.4.3	Systemic vs. Idiosyncratic Risk	481	
	17.4.4	CAPM in Practice: Efficient Frontier, Tangency Portfolio and Leverage	482	
	17.4.5	Multi-Factor Models	482	
	17.4.6	Fama-French Factors	483	
17.5	BLACK	C-LITTERMAN	484	
	17.5.1	Market Implied Equilibrium Expected Returns	484	
	17.5.2	Bayes' Rule	485	
	17.5.3	Incorporating Subjective Views	486	
	17.5.4	The Black-Litterman Model	487	
17.6	RESAMPLING			
	17.6.1	Resampling the Efficient Frontier	488	
	17.6.2	Resampling in Practice: Comparison to a Mean-Variance Efficient Frontier	489	
17.7	DOWN	SIDE RISK BASED OPTIMIZATION	490	
	17.7.1	Value at Risk (VaR)	491	
	17.7.2	Conditional Value at Risk (CVaR)	491	
	17.7.3	Mean-VaR Optimal Portfolio	492	
	17.7.4	Mean-CVaR Optimal Portfolio	493	
17.8	RISK P	PARITY	494	
	17.8.1	Introduction	494	
	17.8.2	Inverse Volatility Weighting	495	
	17.8.3	Marginal Risk Contributions	495	
	17.8.4	Risk Parity Optimization Formulation	496	
	17.8.5	Strengths and Weaknesses of Risk Parity	497	
	17.8.6	Asset Class Risk Parity Portfolio in Practice	497	
17.9	COMPA	ARISON OF METHODOLOGIES	498	

CHAPTER	18 • Mo	odeling Expected Returns and Covariance Matrices	499
18.1	SINGLE	& MULTI-FACTOR MODELS FOR EXPECTED RETURNS	499
	18.1.1	Building Expected Return Models	499
	18.1.2	Employing Regularization Techniques	501
	18.1.3	Regularization Techniques in Practice: Impact on Expected Return Model	502
	18.1.4	Correcting for Serial Correlation	503
	18.1.5	Isolating Signal from Noise	505
	18.1.6	Information Coefficient	505
	18.1.7	Information Coefficient in Practice: Rolling IC of a Short Term FX Reversal Signal	507
	18.1.8	The Fundamental Law of Active Management: Relationship between Information Ratio & Information Coefficient	507
18.2	MODEL	ING VOLATILITY	508
	18.2.1	Estimating Volatility	508
	18.2.2	Rolling & Expanding Windows Volatility Estimates	509
	18.2.3	Exponentially Weighted Moving Average Estimates	511
	18.2.4	High Frequency & Range Based Volatility Estimators	512
	18.2.5	Mean-Reverting Volatility Models: GARCH	513
	18.2.6	GARCH in Practice: Estimation of $GARCH(1,1)$ Parameters to Equity Index Returns	516
	18.2.7	Estimation of Covariance Matrices	517
	18.2.8	Correcting for Negative Eigenvalues	517
	18.2.9	Shrinkage Methods for Covariance Matrices	518
	18.2.10	Shrinkage in Practice: Impact on Structure of Principal Components	519
	18.2.11	Random Matrix Theory	520
CHAPTER	19 - Ris	sk Management	523
40.4	MOTIV	ATION O OFTTINO	500
19.1		ATION & SETTING	523
	19.1.1	Risk Management in Practice	523
	19.1.2	Defined vs. Undefined Risks	524
10.0	19.1.3	Types of Risk	525 5 00
19.2		ON RISK MEASURES	526
	19.2.1	Portfolio Value at Risk	526

	19.2.2	Marginal VaR Contribution	527
	19.2.3	Portfolio Conditional Value at Risk	527
	19.2.4	Marginal CVaR Contribution	528
	19.2.5	Extreme Loss, Stress Tests & Scenario Analysis	528
19.3	CALCU	JLATION OF PORTFOLIO VaR AND CVaR	529
	19.3.1	Overview	529
	19.3.2	Historical Simulation	530
	19.3.3	Monte Carlo Simulation	531
	19.3.4	Strengths and Weaknesses of Each Approach	532
	19.3.5	Validating Our Risk Calculations Out-of-Sample	533
	19.3.6	VaR in Practice: Out of Sample Test of Rolling VaR	534
19.4	RISK N	MANAGEMENT OF NON-LINEAR INSTRUMENTS	535
	19.4.1	Non-Linear Risk	535
	19.4.2	Hedging Portfolios via Scenarios	537
19.5	RISK N	MANAGEMENT IN RATES & CREDIT MARKETS	537
	19.5.1	Introduction	537
	19.5.2	Converting from Change in Yield to Change in Price	538
	19.5.3	DV01 and Credit Spread 01: Risk Management via Parallel	
		Shifts	539
	19.5.4	Partial DV01's: Risk Management via Key Rate Shifts	541
	19.5.5	Jump to Default Risk	542
	19.5.6	Principal Component Based Shifts	543
CHAPTER	20 Q	uantitative Trading Models	545
20.1	INTRO	DUCTION TO QUANT TRADING MODELS	545
	20.1.1	Quant Strategies	545
	20.1.2	What is Alpha Research?	546
	20.1.3	Types of Quant Strategies	547
20.2	BACK-	TESTING	547
	20.2.1	Parameter Estimation	548
	20.2.2	Modeling Transactions Costs	549
	20.2.3	Evaluating Back-Test Performance	551
	20.2.4	Most Common Quant Traps	551
	20.2.5	Common Performance Metrics	552
	20.2.6	Back-Tested Sharpe Ratios	557
	20.2.7	In-Sample and Out-of-Sample Analysis	558

Contents ■ xxvii

xxviii ■ Contents

	20.2.8	Out-of-Sample Performance & Slippage	559
20.3	COMM	ON STAT-ARB STRATEGIES	560
	20.3.1	Single Asset Momentum & Mean-Reversion Strategies	560
	20.3.2	Cross Asset Autocorrelation Strategies	561
	20.3.3	Pairs Trading	562
	20.3.4	Pairs Trading in Practice: Gold vs. Gold Miners	564
	20.3.5	Factor Models	565
	20.3.6	PCA-Based Strategies	567
	20.3.7	PCA Decomposition in Practice: How many Principal Components Explain the S&P 500?	570
	20.3.8	Risk Premia Strategies	571
	20.3.9	Momentum in Practice: Country ETFs	573
	20.3.10	Translating Raw Signals to Positions	574
20.4	SYSTE	MATIC OPTIONS BASED STRATEGIES	576
	20.4.1	Back-Testing Strategies Using Options	576
	20.4.2	Common Options Trading Strategies	577
	20.4.3	Options Strategy in Practice: Covered Calls on NASDAQ	584
20.5	COMBI	NING QUANT STRATEGIES	586
20.6	PRINCI	PLES OF DISCRETIONARY VS. SYSTEMATIC INVESTING	591
CHAPTER	21 • Inc	corporating Machine Learning Techniques	593
21.1	MACHII	NE LEARNING FRAMEWORK	593
21.1	21.1.1	Machine Learning vs. Econometrics	593
		Stages of a Machine Learning Project	594
	21.1.2	Parameter Tuning & Cross Validation	596
	21.1.4	Classes of Machine Learning Algorithms	597
	21.1.5	Applications of Machine Learning in Asset Management	301
	21.1.0	& Trading	597
	21.1.6	Challenges of Using Machine Learning in Finance	598
21.2	SUPER	VISED VS. UNSUPERVISED LEARNING METHODS	599
	21.2.1	Supervised vs. Unsupervised Learning	599
	21.2.2	Supervised Learning Methods	600
	21.2.3	Regression vs. Classification Techniques	602
	21.2.4	Unsupervised Learning Methods	603
21.3	CLUST	ERING	604

	21.3.2	K-Means Clustering	604
	21.3.3	Hierarchical Clustering	605
	21.3.4	Distance Metrics	606
	21.3.5	Optimal Number of Clusters	607
	21.3.6	Clustering in Finance	608
	21.3.7	Clustering in Practice: Asset Class & Risk-on Risk-off Clusters	608
21.4	CLASS	IFICATION TECHNIQUES	610
	21.4.1	What is Classification?	610
	21.4.2	K-Nearest Neighbor	611
	21.4.3	Probit Regression	612
	21.4.4	Logistic Regression	614
	21.4.5	Support Vector Machines	616
	21.4.6	Confusion Matrices	620
	21.4.7	Classification Problems in Finance	621
	21.4.8	Classification in Practice: Using Classification Techniques in an Alpha Signal	622
21.5	FEATU	RE IMPORTANCE & INTERPRETABILITY	622
	21.5.1	Feature Importance & Interpretability	622
21.6	OTHER	R APPLICATIONS OF MACHINE LEARNING	624
	21.6.1	Delta Hedging Schemes & Optimal Execution via	
		Reinforcement Learning	624
	21.6.2	Credit Risk Modeling via Classification Techniques	624
	21.6.3	Incorporating Alternative Data via Natural Language Processing (NLP) Algorithms and Other Machine	COT
	01.6.4	Learning Techniques	625
	21.6.4	Volatility Surface Calibration via Deep Learning	625
Bibliogra	aphy		627
Index			641

Contents ■ xxix

Foreword

In March 2018, the Federal Reserve ("Fed") was in the midst of its first hiking cycle in over a decade, and the European Central Bank ("ECB"), still reeling from the Eurozone debt crisis, continued to charge investors for the privilege of borrowing money. US sovereign bonds ("Treasuries") were yielding 3% over their German counterparts ("Bunds"), an all-time high, and unconventional monetary policy from the two central banks had pushed the cost of protection to an all-time low.

Meanwhile, across the pond, a sophisticated Canadian pension flipped a rather esoteric coin: A so-called digital put-on Euro/Dollar, a currency pair that trades over a trillion dollars a day. On this crisp winter morning, the EURUSD exchange rate ("spot") was 1.2500. If the flip resulted in heads and spot ended below 1.2500 in 2 years, the pension would receive \$10 million. If the flip were tails and spot ended above 1.2500, the pension would have to pay \$2.5 million. Naturally, the 4 to 1 asymmetry in the payout suggests that the odds of heads were only 25%. Interestingly, the flip yielded heads, and in 2 years, spot was below 1.2500.

After the trade, I called Chris, reiterated the pitch, and explained that since January 1999, when EURUSD first started trading, the market implied odds of heads had never been lower. As macroeconomic analysis and empirical realizations suggest that the coin is fair, and there is about 50% chance of getting heads, should the client perhaps consider trading the digital put in 10x the size? In his quintessentially measured manner, Chris noted, "We must have a repeatable experiment to isolate a statistical edge". Ten separate flips, for instance, could reduce the risk by over 2/3. Moreover, negative bund yields, which guarantee that investors will lose money, incentivize capital flows to Treasuries, and the anomalous rates "carry is a well-rewarded risk premium". Furthermore, as "investors value \$1 in risk-off more than \$1 in risk-on", does the limited upside in the payout of the digital put also harness a well-rewarded tail risk premium?

I wish I were surprised by Chris's nuance, or objectivity, or spontaneity. Having known him for 8 years, though, I have come to realize that he is the most gifted quant I have had the privilege to work with, and this book is a testament to his ability to break complex ideas down to first principles, even in the treatment of the most complex financial theory. The balance between rigor and intuition is masterful, and the textbook is essential reading for graduate students who aspire to work in investment management. Further, the depth of the material in each chapter makes this book indispensable for derivative traders and financial engineers at investment banks, and for quantitative portfolio managers at pensions, insurers, hedge funds and mutual funds. Lastly, the "investment perspectives" and case studies make this an

xxxii Foreword

invaluable guide for practitioners structuring overlays, hedges and absolute return strategies in fixed income, credit, equities, currencies and commodities.

In writing this book, Chris has also made a concerted effort to acknowledge that markets are not about what is true, but rather what can be true, and when: With negative yields, will Bunds decay to near zero in many years? If so, will \$1 invested in Treasuries, compound and buy all Bunds in the distant future? Or will the inflation differential between the Eurozone and the US lead to a secular decline in the purchasing power of \$1? One may conjecture that no intelligent investor will buy perpetual Bunds with a negative yield. However, even if the Bund yield in the distant future is positive, but less than the Treasury yield, market implied odds of heads, for a perpetual flip, must be zero. As the price of the perpetual digital put is zero, must the intelligent investor add this option to her portfolio?

Since the global financial crisis, the search for yield has increasingly pushed investors down the risk spectrum, and negative interest rates, and unconventional monetary policy, are likely just the tip of the iceberg. This book recognizes that unlike physics, finance has no universal laws, and an asset manager must develop an investment philosophy to navigate the known knowns, known unknowns and unknown unknowns. To allow a portfolio manager to see the world as it was, and as it can be, this book balances the traditional investment finance topics with the more innovative quant techniques, such as machine learning. Our hope is that the principles in this book transcend the outcome of the perpetual flip.

- Tushar Arora

Author

Chris Kelliher is a senior quantitative researcher in the Global Asset Allocation group at Fidelity Investments. In addition, Mr. Kelliher is a lecturer in the Master's in Mathematical Finance and Financial Technology program at Boston University's Questrom School of Business. In this role he teaches multiple graduate-level courses including computational methods in finance, fixed income and programming for quant finance. Prior to joining Fidelity in 2019, he served as a portfolio manager for RDC Capital Partners. Before joining RDC, he served as a principal and quantitative portfolio manager at a leading quantitative investment management firm, FDO Partners. Prior to FDO, Mr. Kelliher was a senior quantitative portfolio analyst and trader at Convexity Capital Management and a senior quantitative researcher at Bracebridge Capital. He has been in the financial industry since 2004. Mr. Kelliher earned a BA in economics from Gordon College, where he graduated Cum Laude with departmental honours and an MS in mathematical finance from New York University's Courant Institute.

Contributors

Tushar Arora

INSEAD

Paris, France

George Kepertis

Boston University

Boston, Massachusetts

You Xie

Boston University

Boston, Massachusetts

Lingyi Xu

Boston University

Boston, Massachusetts

Maximillian Zhang

Boston University

Boston, Massachusetts

Acknowledgments

Thank you to the many talented mathematical finance graduate students at Boston University who have taken my courses and motivated me to write this book. Special thanks to my exceptional working team of Lingyi Xu, George Kepertis, You Xie and Max Zhang, who contributed to the coding and in-practice examples in the book, as well as provided invaluable feedback throughout the process. My sincerest appreciation to Eugene Sorets, who was a tremendous colleague and mentor for many years, and who co-taught multiple courses with me that helped shaped the courses that served as the baseline for this text. I am also eternally grateful to the many mentors that I have had throughout the years, most notably Ali Hirsa and Tom Knox. My deepest gratitude to Tushar Arora for his significant contributions to the book and his continued feedback along the way. I am thankful to Tinghe Lou, Alan Grezda, Yincong He and Boyu Dong for their feedback on the book and for their work in finding errors in the text. Thanks to my family for their support throughout the process of writing this text, and their patience with my perpetual focus on the book during the last year. Any typos and errors are entirely my responsibility.

Foundations of Quant Modeling

Setting the Stage: Quant Landscape

1.1 INTRODUCTION

UANTITATIVE finance and investment management are broad fields that are still evolving rapidly. Technological and modeling innovations over the last decades have led to a series of fundamental shifts in the industry that are likely just beginning. This creates challenges and opportunities for aspiring quants who are, for example, able to harness the new data sources, apply new machine learning techniques or leverage cutting edge derivative models. The landscape of these fields is also fairly broad, ranging from solving investment problems related to optimal retirement outcomes for investors to providing value to firms by helping them hedge certain undesirable exposures.

In spite of the innovations, however, quants must remember that models are by definition approximations of the world. As George Box famously said "All Models are Wrong, Some are Useful", and this is something all quants should take to heart. When applying a model, the knowledge of its strengths, weaknesses and limitations must be at the forefront of our mind. Exacerbating this phenomenon is the fact that finance, unlike hard sciences like Physics or Chemistry, does not allow for repeatable experiments. In fact, in finance we don't even know for sure that consecutive experiments come from the same underlying distribution because of the possibility of a regime change. Making this even more challenging is the potential feedback loop created by the presence of human behavior and psychology in the market. This is a key differentiating factor relative to other, harder, sciences. As a result, quants should aim to make models that are parsimonious and only as complex as the situation requires, and to be aware and transparent about the limitations and assumptions¹.

The goal of this book is to bridge the gap between theory and practice in this world. This book is designed to help the reader understand the underlying financial theory, but also to become more fluent in applying these concepts in Python. To achieve this, there will be a supplementary coding repository with a bevy of practical

DOI: 10.1201/9781003180975-1

¹Along these lines, Wilmott and Derman have created a so-called modeling manifesto designed to emphasize the differences between models and actual, traded markets. [151]

4 ■ Quantitative Finance with Python

applications and Python code designed to build the reader's intuition and provide a coding baseline.

In this chapter we aim to orient the reader to the landscape of quant finance. In doing so, we provide an overview of what types of firms make up the financial world, what some common quant careers tend to look like, and what the instruments are that quants are asked to model. In later chapters, we discuss the specifics of modeling each instrument mentioned here, and many of the modeling techniques that are central to the quant careers discussed. Before diving into the modeling techniques, however, our goal is to provide more context around why the techniques and instruments matter and how they fit into the larger picture of quant finance and investment management.

We then discuss what a typical quant project looks like, with an emphasis on what is common across all roles and seats at different organizations. Of critical importance is not only being able to understand the models and the mathematical theory, but also being fluent with the corresponding data and having the required tools to validate the models being created. Lastly, we try to provide the reader with some perspective on trends in the industry. Unlike other less dynamic and more mature fields, finance is still rapidly changing as new data and tools become available. Against this backdrop, the author provides some perspective on what skills might be most valuable going forward, and what the industry might look like in the future.

1.2 QUANT FINANCE INSTITUTIONS

The fields of finance and investment management contain many interconnected players that serve investors in different ways. For some, such as buy-side hedge funds and asset managers, their main function is to generate investments with positive returns and create products that are attractive to investors. For others, such as dealers, market makers and other sell-side institutions, their main function is to match buyers and sellers in different markets and create customized derivative structures that can help their clients hedge their underlying risks. Lastly, the field includes a lot of additional service providers. These providers may provide access to data, including innovative data sources, or an analytics platform for helping other institutions with common quant calculations. This space includes financial technology companies, whose primary role is to leverage technology and new data sources to create applications or signals that can be leveraged by buy or sell-side institutions to make more efficient decisions. In the remainder of this section we provide the reader some context on what functions these organizations provide. We then proceed to discuss where quants might fit in at these various entities in the following section.

1.2.1 Sell-Side: Dealers & Market Makers

Sell-side institutions facilitate markets by providing liquidity through making markets and by structuring deals that are customized to meet client demands. On the market making side, sell-side institutions provide liquidity by stepping in as buyers or sellers when needed and subsequently looking to offload the risk that they take on quickly as the market returns to an equilibrium. Market makers are compensated for

their liquidity provision by collecting the bid-offer spread on these transactions. In many markets, market makers use automated execution algorithms to make markets. In other cases, traders may fill this role by manually surveying the available order stack and stepping in when the order book becomes skewed toward buys or sells respectively.

Dealers also facilitate markets by creating structures for clients that help them to hedge their risks, or instrument a macroeconomic view, efficiently. This often involves creating derivative structures and exotic options that fit a clients needs. When doing this, a dealer may seek another client willing to take on the offsetting trade that eliminates the risk of the structure completely. In other cases, the dealer/market maker may warehouse the risk internally, or may choose to hedge certain sensitivities of the underlying structure, but allow certain other sensitivities to remain on their books. We will discuss this hedging process for various derivative structures in more detail in chapter 11.

1.2.2 Buy-Side: Asset Managers & Hedge Funds

Buy-side institutions, such as hedge funds and asset managers, are responsible for managing assets on behalf of their clients. The main goal of a buy-side firm is to deliver strong investment returns. To this end, hedge funds and asset managers may employ many different types of strategies and investment philosophies, ranging from purely discretionary to purely systematic. For example, hedge funds and asset managers may pursue the following types of strategies:

Global Macro: Global Macro strategies may be discretionary in nature, where views are generated based on a portfolio manager's assessment of economic conditions, or systematic, where positions are based on quantitative signals that are linked to macroeconomic variables.

Relative Value: Relative value strategies try to identify inconsistencies in the pricing of related instruments and profit from their expected convergence. These relative value strategies may be within a certain asset class, or may try to capture relative value between two asset classes, and may be pursued via a discretionary approach, or systematically.

Event Driven: Event driven strategies try to profit from upcoming corporate events, such are mergers or acquisitions. These strategies tend to bet on whether these transactions will be completed, benefiting from subsequently adjusted valuations.

Risk Premia: Risk premia strategies try to identify risks that are well-rewarded and harvest them through consistent, isolated exposure to the premia. Common risk premia strategies include carry, value, volatility, quality and momentum. Some of these risk premia strategies are discussed in chapter 20.

Statistical Arbitrage: Statistical arbitrage strategies are a quantitative form of relative value strategies where a quantitative model is used to identify anomalies between assets, for example, through a factor model. In other cases, a pairs trading approach may be used, where we bet on convergence of highly correlated stocks that have recently diverged. These types of statistical arbitrage models are discussed further in detail in chapter 20.

6 ■ Quantitative Finance with Python

A key differentiating factor between hedge funds and asset managers is the level and structure of their fees. Hedge funds generally charge significantly higher fees, and have sizable fees linked to their funds performance. Additionally, most hedge funds are so-called absolute return funds, meaning that their performance is judged in absolute terms. Asset managers, by contrast, often do not collect performance fees and measure their performance relative to benchmark indices with comparable market exposure. Hedge funds also tend to have considerably more freedom in the instruments and structures that they can trade, and require less transparency².

1.2.3 Financial Technology Firms

Generally speaking, financial technology firms leverage data and technology to create products that they can market to buy-side and sell-side institutions. The proliferation of available data over the last decade has led to a large increase in Fin-Tech companies. Many FinTech companies at their core solve big data problems, where they take non-structured data and transform it into a usable format for their clients. As an example, a FinTech company might track traffic on different companies websites and create a summary signal for investment managers. In another context, FinTech companies might leverage technological innovations and cloud computing to provide faster and more accurate methods for pricing complex derivatives. Buy and sell-side institutions, would then purchase these firms services and then incorporate them into their processes, either directly or indirectly.

1.3 MOST COMMON QUANT CAREER PATHS

Aspiring quants may find themselves situated in any of these organizations and following many disparate career paths along the way. In many ways, the organization that a quant chooses will determine what type of modeling skills will be most emphasized. In **buy-side** institutions, such as hedge funds and asset managers, a heavy focus will be placed on econometric and portfolio construction techniques. Conversely, while working on the **sell-side**, at dealers, or investment banks, understanding of stochastic processes may play a larger role. Even within these institutions, a quant's role may vary greatly depending on their group/department. To provide additional context, in the following sections, we briefly describe what the most common quant functions are at buy-side, sell-side and fin-tech companies.

1.3.1 Buy Side

At buy-side institutions, building investment products and delivering investment outcomes are at the core of the business. As such, many quants join these shops, such as asset management firms, pension funds, and hedge funds, and focus on building models that lead to optimal portfolios, alpha signals or proper risk management.

Examples of roles within buy-side institutions include:

Desk Quants: A desk quant sits on a trading floor at a hedge fund or other

²Because of this, there are tighter restrictions on who can invest in hedge funds.

buy-side firm and supports portfolio managers through quantitative analysis. The function of this support can vary greatly from institution to institution and may in some cases involve a great deal of forecasting models and have a heavy emphasis on regression methods, machine learning techniques and time series/econometric modeling, such as those described in chapter 3. In other cases, this support may involve more analysis of derivative valuations, and identifying hedging strategies, as discussed in section II of this text. Desk quants may also helps provide portfolio managers with quantitative analysis that supports discretionary trading process.

Asset Management Quants: A quant at an asset manager will have a large emphasis placed on portfolio construction and portfolio optimization techniques. As such, understanding of the theory of optimization, and the various ways to apply it to investment portfolios is a critical skill-set. Asset management quants may also be responsible for building alpha models and other signals, and in doing so will leverage econometric modeling tools. Asset management quants will rely heavily on the material covered in section IV of this text.

Research Quants: Research quants tend to focus more on longer term research projects and try to build new innovative models. These may be relative value models, proprietary alpha signals or innovative portfolio construction techniques. Research quants utilize many of the same skills as other quants, but are more focused on designing proprietary, groundbreaking models rather than providing ad-hoc analysis for portfolio managers.

Quant Developers: Quant developers are responsible for building production models and applications for buy-side shops. In this role, quant developers must be experts in programming, but also have a mastery of the underlying financial theory. Quant Developers will rely on the programming skills described in chapters 4 and 5 and also must be able to leverage the financial theory and models described in the rest of the book.

Quant Portfolio Managers: Generally these quants are given a set risk-budget that they use to deploy quantitative strategies. These roles have a heavy market facing component, but also require an ability to leverage quant tools such as regression and machine learning to build systematic models. As such, these roles also require a strong background in finance in order to understand the dynamics of the market and uncover attractive strategies to run quantitatively. Simplified versions of some of the strategies that might be employed by quantitative portfolio managers are described in more detail in chapter 20.

1.3.2 Sell Side

At sell-side institutions, making markets and structuring products for clients are crucial drivers of success, and quants at these institutions can play a large role in both of these pursuits. Many quants join sell-side shops and are responsible for creating automated execution algorithms that help the firm make markets. Other quants may be responsible for helping build customized derivative products catered to clients hedging needs. This process is commonly referred to on the sell-side as structuring. Examples of quant roles on the sell-side include:

Desk Quants: Like a buy-side desk quant, a desk quant on the sell-side sits on a trading desk and supports traders and market makers. Sell-side desk quants will often help create structured products that are customized for clients. This may involve creating exotic option payoffs that provide a precise set of desired exposures. It may also involve creating pricing models for exotic options, modeling sensitivities (Greeks) for complex derivatives and building different types of hedging portfolios. Sell-side desk quants will leverage the concepts discussed in section II with a particular emphasis on the exotic option pricing topics discussed in chapter 10 and the hedging topics discussed in chapter 11.

Risk Quants: Risk quants help sell-side institutions measure various forms of risk, such as market risk, counterparty risk, model risk and operational risk. These are often significant roles at banks as they determine their capital ratios and subsequently the cash that banks must hold. Market risk quants are responsible for determining risk limits and designing stress tests. Many of the topics relevant to risk quants are discussed in chapter 19. Risk quants also often need to work with the modeling concepts presented in the rest of the book, such as the time series analysis and derivatives modeling concepts discussed in chapter 3 and section II, respectively.

Model Validation Quants: Many sell-side institutions have separate teams designed to validate newly created production models and production model changes. The quants on these teams, model validation quants, are responsible for understanding the financial theory behind the models, analyzing the assumptions, and independently verifying the results. The principles of model validation are discussed in detail in chapter 7. Additionally, model validation quants gain exposure to the underlying models that they are validating through implementing them independently and the verification process.

Quant Trader/Automated Market Maker: Quant traders and quant market makers are responsible for building automated market making algorithms. These algorithms are used to match buyers and sellers in a highly efficient manner, while collecting the bid-offer spread. Unlike a Quantitative Portfolio manager, a market making quant tends to build higher frequency trading models and will hold risk for very short time periods. This leads to an increased emphasis on coding efficiency and algorithms. The foundations for a Quant Trader's coding background are discussed in more detail in chapter 5, and some examples of the types of trading algorithms that they rely on are presented in chapter 20.

Quant Developer: Much like quant developers on the buy-side, sell-side quant developers are responsible for building scalable, production code leveraged by sell-side institutions. This requires mastery of coding languages like Python, and also strong knowledge of financial theory. In contrast to buy-side quant developers, sell-side quant developers will have a larger emphasis on the options modeling techniques discussed in section II.

1.3.3 Financial Technology

Data Scientist: Financial technology is a burgeoning area of growth within the finance industry and is a natural place for quants. Technological advances have led to

a proliferation of data over the last decade, leading to new opportunities for quants to analyze and try to extract signals from the data. At these firms, quants generally serve in data scientist type roles, apply machine learning techniques and solve big data problems. For example, a quant may be responsible for building or applying Natural Language Processing algorithms to try to company press releases and trying to extract a meaningful signal to market to buy-side institutions.

What's Common between Roles?

Regardless of the type of institution a quant ends up in, there are certain common themes in their modeling work and required expertise. In particular, at the heart of the majority of most quant problem is trying to understand the underlying distribution of assets. In chapters 2 and 3 we discuss the core mathematical tools used by buy- and sell-side institutions for understanding these underlying distributions. Additionally, solving quant problems in practice generally involves implementing a numerical approximation to a chosen model, and working with market data. As a result, a strong mastery of coding languages is central to success as a quant.

TYPES OF FINANCIAL INSTRUMENTS

There are two main types of instruments in financial markets, cash instruments, such as stocks and bonds, and derivatives, whose value is contingent on an underlying asset, such as a stock or a bond.

Analysis of different types of financial instruments requires a potentially different set of quantitative tools. As we will see, in some cases, such as forward contracts, simple replication and no arbitrage arguments will help us to model the instrument. Other times we will need more complex replication arguments, based on dynamically replicated portfolios, such as when valuing options. Lastly, in some circumstances these replication arguments may fail and, we may need to instead invoke the principles of market efficiency and behavioral finance to calculate an expectation.

The following sections briefly describe the main financial instruments that are of interest to quants and financial firms:

Equity Instruments 1.4.1

Equity instruments enable investors to purchase a stake in the future profits of a company. Some equities may pay periodic payments in the form of dividends, whereas others might forego dividends and rely on price appreciation in order to generate returns. Equity instruments may include both public and private companies and arise when companies issue securities (i.e. stocks) to investors. Companies may issue these securities in order to help finance new projects, and in doing so are sharing the future profits of these projects directly with investors. Equity investments embed a significant amount of risk as they are at the bottom of the capital structure, meaning that they are last to be re-paid in the event of a bankruptcy or default event. Because of this, it is natural to think that equity investors would expect to be paid a premium for taking on this risk. Market participants commonly refer to this as the equity risk premium. The equity market also has other equity like products such as exchange traded products and exchange traded notes. Common models for equities are discussed in section IV and the underlying techniques that tend to belie these models are discussed in chapter 3.

1.4.2 Debt Instruments

Governments and private companies often gain access to capital by borrowing money to fund certain projects or expenses. When doing so, they often create a debt security, such as a government or corporate bond. These bonds are the most common type of fixed income or debt instrument, and are structured such that the money is repaid at a certain maturity date. The value that is re-paid at the maturity date is referred to as a bond's principal. In addition, a periodic stream of coupons may be paid between the initiation and maturity dates. In other cases, a bond might not pay coupons but instead have a higher principal relative to its current price.³

A bond that does not pay any coupons is referred to as a zero-coupon bond. Pricing debt instruments, such as zero-coupon bonds, relies on present value and time value of money concepts, which are further explored in chapter 3.⁴ As an example, the pricing equation for a zero-coupon bond can be written as:

$$V_0 = \exp\left(-yT\right)P\tag{1.1}$$

where P is the bond's principal and V_0 is the current value or price of the bond. Further, y is the yield that is required in order for investors to bear the risks associated with the bond. In the case of a government bond, the primary risk would be that this yield would change, which would change the market value of the bond. This is referred to as interest rate risk. In the case of corporate bonds, another critical risk would be that the underlying corporation might go bankrupt and fail to repay their debt. Investors are likely to require a higher yield, or a lower initial price, in order to withstand this risk of default. It should be noted, however, that debt holders are above equities in the capital structure, meaning they will be re-paid, or partially repaid, prior to any payment to equity holders. In practice this means that in the event of a default bond holders often receive some payment less than the bond's principal, which is known as the recovery value.

Astute readers may notice that this implies that both equity and corporate bond holders share the same default risk for a particular firm. That is, they are both linked to the same firm, and as a result the same underlying earnings and future cashflows, however, are characterized by different payoffs and are at different places in the firms capitalization structure. This creates a natural relationship between equities and corporate bonds, which we explore further in chapter 14.

There are many different types and variations of bonds within fixed income markets. Some bonds are linked to nominal rates whereas others are adjusted for changes

³Assuming positive interest rates.

⁴More detail on these concepts can also be found in [191].

in inflation. Additionally, bonds may contain many other features, such as gradual repayment of principal⁵ or have coupons that vary with a certain reference rate. More information is provided on modeling debt instruments in chapter 13.

1.4.3 Forwards & Futures

Forwards and futures are, generally speaking, the simplest derivatives instrument. A forward or futures contract is an agreement to buy or sell a specific asset or security at a predetermined date. Importantly, in a forward or futures contract it is required that the security be bought or sold at the predetermined price, regardless of whether it is economically advantageous to the investor. Forwards and futures contracts themselves are quite similar, with the main differentiating factor being that forwards are overthe-counter contracts and futures are exchange traded.

Forward and futures contracts can be used to hedge against price changes in a given asset by locking in the price today. As an example, an investor with foreign currency exposure may choose to hedge that currency risk via a forward contract rather than bear the risk that the currency will move in an adverse way.

The payoff for a long position in a forward contract can be written as:

$$V_0 = S_T - F \tag{1.2}$$

where F is the agreed upon delivery price and S_T is the asset price on the delivery date. Similarly, a short position in a forward contract can be written as:

$$V_0 = F - S_T \tag{1.3}$$

F is typically chosen such that the value of the forward contract when initiating the, V_0 , is equal to zero [179].

Replication arguments can be used to find the relationship between spot (current asset) prices and forward prices. To see this, consider the following two portfolios:

- Long Position in Forward Contract
- Borrow S_0 dollars at Risk Free Rate & Buy Asset for S_0 dollars.

The following table summarizes the payoffs of these respective portfolios both at trade initiation (t = 0) and expiry (t = T):

Time	Portfolio 1: Long Forward	Portfolio 2: Borrow and Long Stock
0	0	0
T	$S_T - F$	$S_T - S_0 \exp\left(rT\right)$

Note that we are assuming a constant interest rate, no transactions costs and that the underlying asset does not pay dividends. As you can see, the value of both of these portfolios at t=0 is zero. The value at expiry in both cases depends on S_T , and the other terms, such as F, are known at trade initiation.

⁵Which is referred to as an Amortizing Bond

These portfolios have the same economics, in that they both provide exposure the underlying asset on the expiry/delivery date. To see this, consider a portfolio that is long portfolio 1 and short portfolio 2. In that case, the payoff for this investor becomes:

$$V_0 = 0 (1.4)$$

$$V_T = F - S_0 \exp(rT) \tag{1.5}$$

This portfolio has zero cost, therefore, in the absence of arbitrage, its payoff must also be equal to zero. This leads to a forward pricing equation of:

$$F = S_0 \exp\left(rT\right) \tag{1.6}$$

If the forward prices diverges from this, it can easily be shown that this results in an arbitrage opportunity. For example, if $F - S_0 \exp(rT) > 0$, then we can go long a forward contract, sell the stock at the current price and lend the proceeds. Conversely, if $F - S_0 \exp(rT) > 0$, then we can enter a short position in the forward contract and borrow money to buy the stock at the current price.

It should be emphasized that this replication is **static**. This means that we built a single replicating portfolio and were able to wait until expiry without adjusting our hedge. Later in the book we will use replication arguments to value option payoffs, and in this case **dynamic replication** will be required.

These forward pricing replication arguments can easily extended to include dividends [100]. Incorporation of dividends⁶ leads to the following formula for forward pricing:

$$F = S_0 \exp\left((r - q)T\right) \tag{1.7}$$

where q is an asset's dividend yield. Under certain assumptions, such as constant or deterministic interest rates, it can also be shown that futures and forward prices will be the same.

Forward contracts are particularly common in foreign exchange markets. Equity and commodity markets, in contrast, have liquid markets for many index futures. In interest rate markets, both forwards and futures contracts are traded, and the role of a stochastic discount factor creates another level of complexity in valuing and differentiating between the two⁷. Futures and forwards contracts in these different markets are discussed in more detail in section III. Additionally, more detailed treatment of forwards and futures contracts can be found in [100].

1.4.4 Options

An option provides an investor with the right, rather than the obligation to buy or sell an asset at a predetermined price on a specified date. This contrasts with a forward contract where that exchange is required. Thus, as the name implies, an option

⁶In the form of a continuous dividend yield.

⁷More details on futures modeling in an interest rate setting, and the convexity correction that arises, can be found in chapter 13

provides the investor with a choice of whether to engage in the transaction depending on whether it is economically favorable⁸. It turns out that this right to choose whether to exercise leads to some interesting and subtle mathematical properties.

The most common options are call and put options which are often referred to as vanilla options. A call option provides an investor the right to buy a security or asset for a given price at the option's expiry date. Clearly, situations when the asset price at expiry are highest are best for holders of call options.

A put option, conversely, gives an investor the right to sell a security for a prespecified price at expiry. Put options will be most valuable when the asset price at expiry is lowest. The agreed upon price specified in an option is referred to as the strike price.

The payoff for a call option, C and put option, P, respectively, can be written as:

$$C = \max(S_T - K, 0) \tag{1.8}$$

$$P = \max(K - S_T, 0) \tag{1.9}$$

where the max in the payoff functions reflects that investors will only exercise their option if it makes sense economically⁹. We can see that a call option payoff looks like a long position in a forward contract when the option is exercised, and will only be exercised if $S_T > K$. Similarly, a put option payoffs are similar to a short position in a forward contract conditional on the option being exercised, which will only happen if $S_T < K$.

In the following chart, we can see what a payoff diagram for a call and put option look like:

⁸This is referred to as an exercise decision

⁹Because the payoff is greater than zero.

14 ■ Quantitative Finance with Python

As we can see, the payoff of a long position in a call or a put option is always greater than or equal to zero. As a result, in contrast to forwards, where the upfront cost is zero, options will require an upfront payment to receive this potential positive payment in the future. Additionally, we can see that the inclusion of the max function, created by an option holder's right to choose, leads to non-linearity in the payoff function.

A significant portion of this book is dedicated to understanding, modeling and trading these types of options structures. In particular, chapter 2 and section II provide the foundational tools for modeling options.

1.4.5 Option Straddles in Practice

A commonly traded option strategy is a so-called straddle, where we combine a long position in a put option with a long position in a call option at the same strike. In the following chart, we can see the pavoff diagram for this options portfolio:

From the payoff diagram, we can see an interesting feature of this strategy is that the payoff is high when the underlying asset moves in either direction. It is also defined by a strictly non-negative payoff, meaning that we should expect to pay a premium for it. At first glance, this appears to be an appealing proposition for investors. We are indifferent in how the asset moves, we just need to wait for it to move in order for us to profit. The truth, however, turns out to be far more nuanced. Nonetheless, straddles are fundamental options structures that we will continue to explore throughout the book, most notably in chapter 11.

1.4.6 Put-Call Parity

A relationship between call and put options can also be established via a static replication argument akin to the one we saw earlier for forward contracts. This relationship is known as put-call parity, and is based on the fact that a long position in a call, combined with a short position in a put, replicates a forward contract in the underlying asset.

To see this, let's consider an investor with the following options portfolio:

Portfolio 1

- Buy a call with strike K and expiry T
- Short a put with strike K and expiry T

The payoff at expiry for an investor in this portfolio can be expressed via the following formula:

$$V_T = \max(S_T - K, 0) - \max(K - S_T, 0) \tag{1.10}$$

If S_T is above K at expiry, then the put we sold will expiry worthless, and the payoff will simply be $S_T - K$. Similarly, if S_T expires below K, then the call expires worthless and the payoff is $-(K - S_T) = S_T - K$. Therefore, the payoff of this portfolio is $V_T = S_T - K$ regardless of the value at expiry.

Now let's consider a second portfolio:

Portfolio 2

- Buy a single unit of stock at the current price, S_0
- \bullet Borrows K dollars in the risk-free bond

At time T, this second portfolio will also have a value of $S_T - K$ regardless of the value of S_T . Therefore, these two portfolios have the same terminal value at all times, and consequently must have the same upfront cost in the absence of arbitrage. This means we must have the following relationship:

$$C - P = \left(S_0 - Ke^{-rT}\right) \tag{1.11}$$

where C is the price of a call option with strike K and time to expiry T, P is the price of a put option with the same strike and expiry, S_0 is the current stock price, and r is the risk-free rate. It should be emphasized that the left-hand side of this equation is the cost of portfolio 1 above, a long position in a call and a short position in a put. Similarly, the right hand side is the cost of the second portfolio, a long position in the underlying asset and a short position in the risk-free bond. This formula can be quite useful as it enables us to establish the price of a put option given the price of a call, or vice versa.

1.4.7 Swaps

A swap is an agreement to a periodic exchange of cashflows between two parties. The swap contract specifies the dates of the exchanges of cash flows, and defines the reference variable or variables that determine the cashflow. In contrast to forwards, swaps are characterized by multiple cash flows on different dates.

Swaps define at least one so-called **floating leg**, whose cashflow is dependent on the level, return or change in some underlying reference variable. It may also include a **fixed leg** where the coupon is set at contract initiation. The most common types of swaps are fixed for floating swaps, where one leg is linked to an interest rate, equity return or other market variable, and the fixed leg coupon, is set when the contract is entered. Other swaps may be floating for floating swaps, with each leg referencing a different market variable.

The cashflows for the fixed leg of a swap can be calculated using the present value concepts detailed in chapter 3¹⁰. In particular, the present value for each leg of a swap is calculated by discounting each cashflow to today. The present value for the cashflows of the fixed leg of a swap can then be written as:

$$PV(fixed) = \sum_{i=1}^{N} \delta_{t_i} CD(0, t_i)$$
(1.12)

where C is the set fixed coupon and $D(0, t_i)$ is the discount factor from time t_i to today, and δ_{t_i} is the time between payments. The reader may also notice that, because C is a constant set when the trade is entered, it can be moved outside the summation. We can see that the present value of the fixed leg of a swap is the sum of the discounted cashflows weighted by the time interval. While this part may seem trivial, it turns out there is actually some ambiguity in how we calculate the time between payments, δ_i . For example, do we include all days or only business days? Do we assume each month has 30 days or count the actual number of days in each month? In practice a **daycount convention** is specified to help us measure time intervals precisely. The most common daycount conventions are discussed in more detail in chapter 13.

To calculate the present value of the cashflows of a floating leg in a swap we can use the following equation:

$$PV(float) = \sum_{i=1}^{N} \delta_{t_i} F_{t_i} D(0, t_i)$$
(1.13)

where F_{t_i} is the value of the reference rate, index or return at time t_i . Unlike the fixed leg, this value is not known at trade initiation and requires knowledge of the expected future value of the reference variable¹¹. However, in many cases, a forward or futures contract may directly tell us the expected value of the reference variable, $\mathbb{E}[F_{t_i}]$.

The present value of the swap then becomes:¹²

$$PV = PV(float) - PV(fixed)$$
 (1.14)

¹⁰For more information see [191]

¹¹It should be noted that only the expected value of the reference variable is needed to value a swap contract, in contrast to options structures where the entire distribution will be required

¹²Note that this is from the perspective of the buyer of the floating leg.

The most common types of swaps are interest rate swaps and credit default swaps.¹³ In interest rate swaps, the most common products are fixed for floating swaps where Libor is the reference rate for the floating leg. In credit default swaps, a fixed coupon is paid regularly in exchange for a payment conditional on default of an underlying entity.¹⁴ In the next sections, we look at an example of finding the fair swap rate for a swap contract and then look at a market driven example: equity index total return swaps.

1.4.8 Equity Index Total Return Swaps in Practice

In this section we leverage the coding example found in the supplementary materials to value a total return swap on the S&P 500 where the return of the index is defined as the floating leg and the fixed leg is a constant, financing leg. The rate for this financing leg is set by market participants via hedging and replication arguments similar to those introduced in this chapter for forwards. In particular, in the following chart we show the cumulative P&L to an investor who receives the floating S&P return and pays the fixed financing cost:

We can see that, in this example the investor who receives the S&P return makes a substantial profit, leading to a loss on the other side of the trade. This should be unsurprising, however, as the period of observation was defined by particularly strong equity returns as the drawdown from the Covid crisis eased, resulting in initially negative returns but a steep uptrend in the above chart.

¹³Interest Rate swaps are discussed in more detail in chapter 13. Credit Default Swaps are discussed in more detail in chapter 14. More information on swaps can also be found in [100] and [96].

¹⁴Given their structure, credit default swaps can be viewed as analogous to life insurance contracts on corporations or governments.

1.4.9 Over-the-Counter vs. Exchange Traded Products

In many markets, instruments trade on an exchange. These instruments tend to be liquid and are characterized by standardized terms, such as contract size and expiration date. Exchange traded markets naturally lend themselves to automated trading and low-touch execution¹⁵. The majority of the products in equity and equity derivatives markets are exchange traded.

In other cases, over-the-counter (OTC) contracts are the market standard. In these cases, an intermediary such as a dealer will customize a structure to cater to the needs of a client. These markets are far less standardized with customizable terms/features, and are characterized by high-touch execution. Execution in OTC markets often happens via phone or Bloomberg chat requiring interaction and potential negotiation with a sell-side counterpart. In these markets, clients, such as buy-side institutions often reach out to dealers with a desired structure, and the dealer responds with pricing. This process may then include several iterations working with the dealer to finalize the trades terms and negotiate the price. Many derivatives, including the vast majority of exotic options, are traded OTC.

The primary benefit of an OTC contract is that an investor may customize the terms and exposure to meet their exact needs. This is not possible in exchange traded products which consist of only standard instruments with preset features. As an example, a client looking to hedge currency risk that is contingent on future sales of a product might want to enter a customized contract that hedges this currency risk conditional on positive equity returns, when sales are likely to be strongest. This type of OTC product is commonly referred to as a **hybrid** option, as it is contingent on returns in both the foreign exchange and equity markets. The primary drawbacks of OTC contracts are the less automated, higher touch execution, and the corresponding lower levels of liquidity that can lead to higher bid-offer spreads. This leads to a situation where investors must solicit pricing for a dealer to start the execution process, rather than observing a set of market data and choosing the pockets where pricing looks most competitive.

In section III, we will highlight which markets trade which instruments on exchanges vs. OTC, and discuss the implications for investors looking to leverage those products, and for quants looking to model them. We will find that the distinction is most important in interest rate markets, where we use non-deterministic interest rates¹⁶.

1.5 STAGES OF A QUANT PROJECT

Quant projects can vary greatly by organization and role, as we saw earlier in this chapter, however, there is a great deal of commonality in how these varying quant tasks are structured. In particular, quant projects, generally speaking consist of the following four main steps: data collection, data cleaning, model implementation and

 $^{^{15}}$ Low touch execution refers to the ability to execute trades in an automated manner with minimal dealer contact.

¹⁶See chapter 13 for more details

model validation. In the following sections, we briefly describe what each of theses steps entails. Throughout the book, we will highlight approaches to tackling these steps efficiently, both from a technical and quantitative perspective.

1.5.1 Data Collection

Data collection is the process of identifying the proper source for our model and gathering it in a desired format for use in the model. This part of a quant project requires being able to interact with different types of data sources, such as databases, flat/CSV files, ftp sites and websites. As such, we need to be familiar with the libraries in Python that support these tasks. We discuss this stage, and some of the more commonly used financial data sources, in more detail in chapter 6.

1.5.2 Data Cleaning

Once we have obtained the relevant data for our model the next step is to make sure that it is in proper order for our model to use. This process is traditionally referred to as data cleaning, where we analyze the set of data that we are given to make sure there are no invalid values, missing data or data that is not in line with the assumptions of the model. Depending on the type of data we are working with, this process can range from very simple to extremely complex. For example, with equity data we may need to verify that corporate actions are handled in an appropriate manner. In contrast, when working with derivatives, we need to check the data for arbitrage that would violate our model assumptions. Completing this stage of a project will require a level of mastery of Python data structures and an ability to use them to transform and manipulate data. These data structures are discussed in more detail in chapter 5, and more details on the typical cleaning procedure for different types of financial data is discussed in chapter 6.

1.5.3 Model Implementation

Model implementation is the core task we face as quants. It is the process of writing a piece of code that efficiently implements our model of choice. In practical quant finance applications, closed form solutions are rarely available to solve realistic problems. As a result, quant projects require implementation of an approximation of a given model in code. The underlying models and techniques vary by application, ranging from using simulation of an Stochastic Differential Equation to estimate an option price to using econometric techniques to forecast stock returns. As models become more complex, this step becomes increasingly challenging.

The vast majority of this book is dedicated to model implementation and the most common models and techniques used to solve these problems. We also focus heavily on methods for implementing models in a robust and scalable way by providing the required background in object-oriented programming concepts. Further, in section III we work through different model implementations across asset classes and discuss the key considerations for modeling across different markets.

1.5.4 Model Validation

Once we have implemented our model, a separate process must begin that convinces us that the model has implemented correctly and robustly. This process is referred to as model validation, and it is designed to catch unintended software bugs, identify model assumptions and limitations of the model. For simple models, this process may be relatively straight-forward, as we can verify our model against another independent third party implementation. As models get increasingly realistic, this process becomes much less trivial as the true model values themselves become elusive. In this context, we need to rely on a set of procedures to ensure that we have coded our models correctly. This model validation step is discussed in detail in chapter 7.

1.6 TRENDS: WHERE IS QUANT FINANCE GOING?

In this chapter we have tried to provide somewhat of a roadmap to the quant finance and investment management industry. As a relatively new, younger field, quant finance and investment management is still in a very dynamic phase. This is partly driven by technological innovations and partly driven by fundamental improvements to the underlying models. Along these lines, in the remainder of this section we highlight a few areas of potential evolution in the coming years and decades.

1.6.1 Automation

Automation is a key trend in the finance industry that is likely to continue for the foreseeable future. On the one hand, technological advances have led to the ability to streamline and automate processes that used to require manual intervention or calculations. Automation of these processes generally requires strong programming knowledge and often also requires a solid understanding of the underlying financial concepts. In some cases, automation may involve writing a script to take the place of a manual reconciliation process a portfolio manager used to do. More substantively, automation may also involve replacing human based trading algorithms with automated execution algorithms. This is a trend that we have seen in most exchange traded markets, that is, execution has gotten significantly lower-touch. In the future, there is the potential for this to extend to other segments of the market.

1.6.2 Rapid Increase of Available Data

Over the past few decades, a plethora of new data sources have become available, many of which are relevant for buy-side and sell-side institutions. This has created a dramatic rise in the number of big data problems and data scientists in the quant finance industry. Many of these data sources have substantially different structure than standard financial datasets, such as text data and satellite photographs. The ability to parse text data, such as newspaper articles, could be directly relevant to buy-side institutions who want to process news data using a systematic approach. Similarly, image data of store parking lots may provide insight into the demand for different stores and products that leads balance sheet data.

This trend in the availability of data is likely to continue. It has been said that something like 90% of the financial data available to market participants is from the last decade and further that proliferation of data is likely to make this statement true in the next few decades as well. This is a welcome trend for quants, finTech firms and data scientists looking to apply their skills in finance as it provides a richer opportunity set. This data is not without challenges, however, as the fact that these datasets are new makes it challenging to thoroughly analyze them historically in different regimes. It stands to reason, however, that the reward for being able to process these new data sources robustly should also be quite high before other market participants catch on.

1.6.3 Commoditization of Factor Premias

Another key trend in the quant finance and investment management community has been the evolution of the concepts of **alpha** and **beta**. Traditionally, investment returns have been viewed against a benchmark with comparable market exposure. This means that for most hedge funds, if they arguably take minimal market exposure, or beta, over long periods of time, then their performance¹⁷ would be judged in absolute terms. For asset management firms who take large amounts of beta, their performance would be judged against a balanced benchmark with the appropriate beta, such as a $60/40^{18}$. This ensures that investment managers are compensated for the excess returns, or alpha that they generate but are not compensated for their market exposure, which could easily be replicated elsewhere more cheaply.

More recently, there has been a movement toward identification of additional factors, or risk premia, such as carry, value, momentum, (low) volatility and quality. This has created a headwind for many investment firms as the returns in these premia have become increasingly commoditized, leading to lower fees and cheaper replication. Further, returns from these premia, which used to be classified as **alpha**, have become another type of **beta**. Although in some ways this has been a challenge for the buyside, it also creates an opportunity for quants who are able to identify and find robust ways to harvest these premia.

1.6.4 Movement toward Incorporating Machine Learning/Artificial Intelligence

In recent years, there has been a push toward using machine learning techniques and artificial intelligence to help solve quant finance and portfolio management problems. This trend is likely not going anywhere, and recently many seminal works in machine learning have discussed the potential applications of these techniques in a financial setting¹⁹. For example, Machine Learning may help us with many quantitative tasks, such as extracting meaning from unstructured data, building complex optimal hedging schemes and creating higher frequency trading strategies.

¹⁷And consequently their ability to charge performance fees.

 $^{^{18}\}mathrm{A}$ 60/40 portfolio has a 60% allocation to equities and 40% allocation to fixed income.

¹⁹Such as Halperin [101] and Lopez de Prado [56] [58]

22 ■ Quantitative Finance with Python

While this trend toward Machine Learning is likely to continue and potentially accelerate into the future it is important to know the strengths and weaknesses of these different techniques and keep in mind Wilmott's quant manifesto [151]. No model or technique will be a perfect representation of the world or perfect in all circumstances. In the context of machine learning, this may mean that there are certain instances where application of these techniques is natural and leads to significant improvement. Conversely, it is important to keep in mind that in other cases machine learning techniques are likely to struggle to add value. For example, in some cases, such as lower frequency strategies, there might not be sufficient data to warrant use of sophisticated machine learning techniques with large feature sets. In chapter 21 we discuss the potential uses and challenges of leveraged machine learning techniques in finance.

1.6.5 Increasing Prevalence of Required Quant/Technical Skills

Taken together, these trends lead to a larger overarching trend in favor of the importance of quantitative techniques that can help us uncover new data sources, explain the cross-section of market returns via a set of harvestable premia, and help us automate trading and other processes. Over the past few decades, many roles in the financial industry have begun to require more technical skills and a more quantitative inclination. Knowledge of a coding language such as Python and fluency with basic quant techniques has become more widespread, leading to an industry where substantial quantitative analysis is required even for the some of the most fundamentally oriented institutions.