Curso de Lógica Matemática

Cristo Daniel Alvarado

15 de febrero de 2024

Índice general

0.	Introducción	2
	0.1. Temario	2
	0.2. Conectivas Lógicas	2
1.	Lógica Proposicional	4
	1.1. Alfabeto	4
	1.2. Modeos o Estructuras	5

Capítulo 0

Introducción

0.1. Temario

Los siguientes temas se verán a lo largo del curso:

- 1. Lógica (Teoría de Modelos).
 - 1.1) Lógica proposicional.
 - 1.2) Lógica de primer orden.
- 2. Teoría de la Computabilidad.
- 3. Teoría de Conjuntos.

Y la bibliografía para el curso es la siguiente:

- Enderton, 'Introducción matemática a la lógica'.
- Enderton, 'Teoría de la computabilidad'.
- Copi, 'Lógica Simbólica' o 'Computability Theory'.
- Rebeca Weber 'Computability Theory'.

0.2. Conectivas Lógicas

La disyunción (\land), conjunción (\lor), negación (\neg), implicación (\Rightarrow) y si y sólo si (\iff) son las conectivas lógicas usadas usualmente.

(Se habló un poco de una cosa llamada forma normal disyuntiva).

A $\{\land, \lor, \neg\}$ se le conoce como un conjunto completo de conectivas lógicas. Nos podemos quedar simplemente con conjuntos completos de disyuntivas con solo dos elementos, a saber: $\{\land, \neg\}$ y $\{\lor, \neg\}$, ya que $P \lor Q$ es $\neg(\neg P \land \neg Q)$. (de forma similar a lo otro $P \land Q$ es $\neg(\neg P \lor \neg Q)$).

También $\{\Rightarrow,\neg\}$ es otro conjunto completo de conectivas lógicas, ya que $P \land Q$ es $\neg(P \Rightarrow \neq Q)$.

Y, {|} es un conjunto completo, donde | es llamado la **barra de Scheffel**, que tiene la siguiente tabla de verdad.

P	Q	P Q
\overline{V}	V	F
V	F	V
F	V	V
F	F	V

con este, se tiene un conjunto completo de conectivas lógicas.

Como muchas veces se usan conectivas de este tipo:

$$(P \Rightarrow \neg Q) \Rightarrow ((P \Rightarrow R) \land \neg (Q \Rightarrow S) \land T)$$

al ser muy largas, a veces es más conveniente escribirlas en forma Polaca. De esta forma, lo anterior quedaría de la siguiente manera:

$$\Rightarrow \Rightarrow P \neg Q \land \land PR \neg \Rightarrow QST$$

Ahora empezamos con el estudio formal de la lógica.

Capítulo 1

Lógica Proposicional

1.1. Alfabeto

El alfabeto de la lógica proposicional es un conjunto que consta de dos tipos de símbolos:

- 1. Variables, denotadas por $p_1, p_2, ..., p_n, ...$ (a lo más una cantidad numerable). Estas representan proposiciones o enunciados (tengo un paraguas, me caí de las escaleras, no tengo café en la cafetera, etc...).
- 2. Conectivas, como \Rightarrow y \neg .

Aceptamos la existencia de estas cosas (pues, al menos debemos aceptar la existencia de algo).

Se van a trabajar con sucesiones finitas de símbolos del alfabeto descrito anteriormente. Ahora necesitaremos especificar que tipos de sucesiones van a servirnos para tener un significado formal.

Definición 1.1.1

En el conjunto de sucesiones finitas de símbolos del alfabeto, definimos una **fórmula bien formada** (abreviada como **FBF**) como sigue:

- 1. Cada variable es una FBF.
- 2. Si φ, ψ son **FBF**, entonces $\neg \varphi$ y $\Rightarrow \varphi \psi$ también lo son.

Observación 1.1.1

Recordar que usamos la notación Polaca en la definición anterior.

A continuación unos ejemplos:

Ejemplo 1.1.1

 p_{17} , p_{54} y $\Rightarrow p_2p_{25}$ son FBF. Las primeras dos son llamadas **variables aisladas**. También lo es $\neg \Rightarrow p_2p_{25}$ (en este ejemplo, los p_i son variables).

Pero, por ejemplo $\Rightarrow \neg p_1 p_2 p_3$ y $\Rightarrow p_4$ no son FBF.

Viendo el ejemplo anterior, notamos que el operador \Rightarrow es binario (solo usa dos entradas) y \neg es unario (solo una entrada). Por lo cual, añadir o no demás variables a los opeadores dentro de la fórmula, hace que la fórmula ya no sea una FBF.

Observación 1.1.2

Eventualmente se va a sustituir la notación Polaca por la normal, para que se pueda leer la FBF y el proceso no sea robotizado.

Definiremos ahora más conectivas lógicas para poder trabajar más cómodamente.

Definición 1.1.2

Se definirán tres conectivas lógicos adicionales.

- 1. Se define la **disyunción** $\varphi \lor \psi$ como $\Rightarrow \neg \psi \varphi$ (en notación Polaca).
- 2. Se define la **conjunción** $\varphi \wedge \psi$ como $\neg(\neg \psi \vee \neg \varphi)$.
- 3. Se define el si sólo si $\psi \iff \varphi \text{ como } (\psi \Rightarrow \varphi) \land (\varphi \Rightarrow \psi)$.

1.2. Modeos o Estructuras

En el fondo, queremos que las FBF sean cosas verdaderas o falsas. Un Modelo o Estructura es algo que le va a dar significado a las FBF. De alguna manera va a ser una forma de asignarle el valor de verdadero o falso a cada una de las variables.

Definición 1.2.1

Un **Modelo o Estructura** de la lógica proposicional es una función $m: \mathrm{Var} \to \{V, F\}$, donde Var denota al conjunto de símbolos que son variables. Básicamente estamos diciendo que hay variables que son verdaderas y otras que son falsas.

Teorema 1.2.1

Para todo modelo m, existe una única extensión $\overline{m}: FBF \to \{V, F\}$, donde FBF denota al conjunto de las fórmulas bien formadas, tal que $\overline{m}(\neg \varphi) = V \iff \overline{m}(\varphi) = F$ y $\overline{m}(\neg \varphi \psi) = F \iff \overline{m}(\varphi) = V$ y $\overline{m}(\psi) = F$.

Definición 1.2.2

Sea m un modelo, φ una fórmula y Σ un cojunto de fórmulas. Definimos que

- 1. $m \vDash \varphi$ (m satisface φ) si $\overline{m}(\varphi) = V$.
- 2. $m \models \Sigma$ si $m \models \varphi$ para cada φ elemento de Σ .

Ejemplo 1.2.1

Sea m un modelo tal que $m(p_1)=V$ y $m(p_i)=F$, para todo $i\geq 2$. En este caso $m\not\models \neg p_5$, pero $m\models \neg p_5$.

Definición 1.2.3

Decimos que una fórmula φ es:

- 1. Satisfacible si existe un modelo m tal que $m \vDash \varphi$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \varphi$.
- 3. Una tautología si todo modelo m cumple que $m \vDash \varphi$.

Ejemplo 1.2.2

Tomemos de ejemplo a $\Rightarrow p_1p_2$. cualquier modelo que haga a p_1 y p_3 verdaderas, o ambas falsas satisfacen la FBF, p_1 , $\neg \Rightarrow p_1p_3$ o $\neg (p_1 \Rightarrow \neg p_1)$. Por lo cual, esta fórmula es satisfacible.

En cambio, $\neg(p_1 \Rightarrow p_1)$ es contradictoria y, por ende $p_1 \Rightarrow p_1$ y $\neg p_1 \Rightarrow \neg p_1$ son tautologías.

Definición 1.2.4

Sea Σ un conjunto de fórmulas. Decimos que Σ es

- 1. Satisfacible si existe un modelo m tal que $m \models \Sigma$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \Sigma$.
- 3. Una tautología si todo modelo m cumple que $m \models \Sigma$.

Ejemplo 1.2.3

El conjunto de fórmulas $\Sigma = \{ \Rightarrow p_1 p_2, p_1, \neg p_2 \}$ no es satisfacible (en este caso, es contradictorio).

Observación 1.2.1

Se tiene lo siguiente:

- 1. Una tautología \Rightarrow satisfacible.
- 2. φ es satisfacible $\iff \neg \varphi$ es una contradicción.
- 3. Satisfacible es lo mismo que no contradictoria.

Definición 1.2.5

Si Σ es un conjunto de FBF y φ es alguna otra fórmula, entonces decimos que φ es **consecuencia lógica** de Σ , o que Σ **implica lógicamente** a φ , escrito como $\Sigma \vDash \varphi$, si para todo modelo m tal que $m \vDash \Sigma$ se tiene que $m \vDash \varphi$.

Ejemplo 1.2.4

El conjunto de FBF $\{\Rightarrow p_1p_2, p_1\} \vDash p_2$.

Observación 1.2.2

Se tiene lo siguiente:

- 1. Un conjunto de FBF $\Sigma \nvDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible.
- 2. Además, un conjunto de FBF $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ no es satisfacible.

Lema 1.2.1

Sea Σ un conjunto de fórmulas y sean $Var(\Sigma)$ el conjunto de las variables p_i que aparecen en las fórmulas de Σ . Si m_1 y m_2 son dos modelos tales que

$$m_1|_{\operatorname{Var}(\Sigma)} = m_2|_{\operatorname{Var}(\Sigma)}$$

entonces, $\overline{m_1}|_{\Sigma} = \overline{m_2}|_{\Sigma}$. En particular, para cada fórmula φ que sea elemento de Σ , entonces

Demostración:

Sin pérdida de generalidad, Σ es cerrado bajo subformulas.

Procederemos por inducción sobre $\varphi \in \Sigma$, demostraremos que $\overline{m_1}(\varphi) = \overline{m_2}(\varphi)$. Si φ coincide con algún p_i , entonces $p_i \in \text{Var}(\Sigma)$ y, por tanto

$$\overline{m_1}(p_i) = m_1(p_i) = m_2(p_i) = \overline{m_2}(p_i)$$

Ahora hacemos el paso inductivo.

- 1. Tenemos el caso en que φ es de la forma $\neg \psi$ y suponemos que $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\neg \psi) = F \iff \overline{m_1}(\psi) = V \iff \overline{m_2}(\psi) = V \iff \overline{m_2}(\neg \psi) = F$. Por lo tanto, $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. El caso en que sea verdadero es análogo.
- 2. Tenemos el caso en que φ es de la forma $\Rightarrow \varphi_1 \psi$ y, supontemos que $\overline{m_1}(\varphi_1) = \overline{m_2}(\varphi_1)$ y $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\Rightarrow \varphi_1 \psi) = F \iff \overline{m_1}(\varphi_1) = V$ y $\overline{m_1}(\psi) = F \iff$ (por hipótesis de inducción) $\overline{m_2}(\varphi_1) = V$ y $\overline{m_2}(\psi) = F \iff \overline{m_2}(\Rightarrow \varphi_1 \psi) = F$. El caso en que sean verdaderas es análogo. Por tanto, $\overline{m_1}(\Rightarrow \varphi_1 \psi) = \overline{m_2}(\Rightarrow \varphi_1 \psi)$.

Lo cual completa el paso inductivo.

Corolario 1.2.1

Si Σ es un conjunto finito de fórmulas, entonces se puede verificar 'Mecánicamente' si es el caso, que $\Sigma \vDash \varphi$.

El procedimiento para verificar el modelo, se hace mediante la tabla de verdad de las variables y las FBF de Σ .

Definición 1.2.6

Decimos que un conjunto de fórmulas bien formadas Σ es **finitamente satisfacible** si cualquier subconjunto finito $\Delta \subseteq \Sigma$ es satisfacible.

Teorema 1.2.2 (Teorema de Compacidad de Gödel)

Si Σ es un conjunto (arbitrario) de fórmulas tal que $\Sigma \vDash \varphi$, entonces existe un $\Delta \subseteq \Sigma$ finito tal que $\Delta \vDash \varphi$.

El teorema que Gödel probó originalmente fue este:

Teorema 1.2.3 (Teorema de Gödel)

Un conjunto de fórmulas Σ es satisfacible si y sólo si es finitamente satisfacible.

Veamos por qué el teorema de Gödel implica el teorema de compacidad de Gödel. Se tiene que $\Sigma \nvDash \varphi \iff$ existe un modelo m tal que $m \vDash \Sigma \cup \{\neg \varphi\}$. Es decir, si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible, es decir que es finitamente satisfacible (por el teorema de Gödel), es decir que para todo $\Delta \subseteq \Sigma$ finito se cumple que

$$\Delta \cup \{\neg \varphi\}$$

es satisfacible. Y esto sucede si y sólo si para todo $\Delta \subseteq \Sigma$ finito existe m tal que $m \models \Delta \cup \{\neg \varphi\}$, si y sólo si para todo $\Delta \subseteq \Sigma$ finito $\Delta \nvDash \varphi$, con lo cual

$$\Sigma \nvDash \varphi \iff \Delta \nvDash \varphi$$

para todo $\Delta \subseteq \Sigma$ finito, que es el teorema de compacidad en su forma contrapositiva.

Lema 1.2.2

Sea Σ un conjunto finitamente satisfacible, y sea φ cualquier fórmula, entonces o bien $\Sigma \cup \{\varphi\}$ es finitamente satisfacible o $\Sigma \cup \{\neg \varphi\}$ lo es.

Demostración:

Supongamos que no, es decir que tanto $\Sigma \cup \{\varphi\}$ como $\Sigma \cup \{\neg \varphi\}$ no son finitamente satisfacibles, por lo cual existen $\Delta_1, \Delta_2 \subseteq \Sigma$ finitos tales que $\Delta_1 \cup \{\varphi\}$ y $\Delta_2 \cup \{\neg \varphi\}$ no son satisfacibles. Entonces $\Delta_1 \cup \Delta_2$ no puede ser satisfacible, pues si m es un modelo tal que $m \models \Delta_1 \cup \Delta_2$, entonces $m \models \varphi$ contradice el hecho de que $\Delta_1 \cup \{\varphi\}$ es no satisfacible y si $m \models \neg \varphi$ contradice el hecho de que $\Delta_2 \cup \{\neg \varphi\}$ no es satisfacible, siendo $\Delta_1 \cup \Delta_2 \subseteq \Sigma$, se contradice el hecho de que Σ es finitamente satisfacible#_c. Luego se tiene el resultado.