Plan détaillé de préparation au projet big data :

Table des matières

I.	Liens pour les recherches :	2
II.	Ingestion et création du data lake	2
S	Source de données externe	3
III.	Nettoyage et validation des données	3
IV.	. Traitement des données	3
Construction d'application distribué : Spark- calcul distribué		3
	Développer des requêtes SQL et NoSQL pour traiter des données volumineuses	5
J	Jtilisation de SQL	5
V.	Stockage sur hdfs	6
VI.	. Orchestration	7
A	Airflow ou commandes sh	7
VI	I. Résumé	8

I. Liens pour les recherches :

Usefull

https://spark.apache.org/docs/latest/sql-data-sources-csv.html

https://sparkbyexamples.com/spark/spark-read-options/n

https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ContextAwareIter ator.html?search=dataframe

https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/Dataset.html

Top

https://spark.apache.org/docs/latest/sql-getting-started.html

exemples de toutes les fonctions du dataframes, et jointures

https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/Dataset.html

Second

https://spark.apache.org/docs/latest/

Spark programming

https://spark.apache.org/docs/latest/sql-programming-guide.html

Complet

II. Ingestion et création du data lake

Le data lake est sur une architecture de stockage distribué (lecture et écriture) : stocké sur hdfs, fixer les droits d'accès

- Lister les sources

Source de données externe

Le datalake est alimente en continue (avec une architecture , orchestrateur , message queu ou équivalent) : airflow automatique

III. Nettoyage et validation des données

Les données nettoyées et validées sont stockées dans un output Intermédiaire avec un format qui prend en charge le schéma

IV. Traitement des données

Construction d'application distribué : Spark- calcul distribué L'application utilise aussi des optimisations de la distribution et de répartition de la charge

val dfPartitionned = df.repartition(200)

select avec cast:

```
df.select(expr( " potential >=50 " ) , expr(" cast(overall as int) ") ,
expr("potential") ).show(10)
```

EC Optimisations spark

Numpartitions

```
df= spark.read.option().csv()
val partitionedDF = df.repartition(200)
Create tamp view
df.createOrReplaceTempView(tableName)
créer le cache : df.cache()
libérer : spark.catalog.clearCache()
```

... autres optimisations du cours

```
Demarrer spark
```

Start-all.sh

imports nécessaires

```
import org.apache.spark.sql
import org.apache.spark.sql.types
import org.apache.spark.sql.functions.
import org.apache.spark.sql.types.
import org.apache.spark.sql.
import org.apache.spark.sql.expressions.Window
Join exemple:
val playersPotential = {
   players15.selectExpr(
      "sofifa id", "short name", "cast(overall as int) overall 15", "cast(potential
as int) potential 15"
   ).join(players22.selectExpr(
      "sofifa id", "short name", "cast(overall as int) overall 22", "cast(potential
as int) potential_22"
   ), "sofifa id")
   .withColumn("evolution", expr("overall 22-overall 15"))
   .withColumn("potential vs actual", col("overall 22")-col("potential 15"))
}
```

Creation de colonne

```
Val foo = foo.withColumn( 'status',

Expr( 'CASE WHEN delay <=10 then 'on-time' else 'on-delays' ')
```

```
)
```

Développer des requêtes SQL et NoSQL pour traiter des données volumineuses

Utilisation de SQL

L'application utilise une user-defined function ou une expression en SQL

L'application utilise le DDL pour définir un schéma

```
// Enregistrez le DataFrame en tant que vue SQL Temporaire

Df.read()

Df.cache()

Val repartDf = Df.répartition(8 Nbre_de_coeur)

df.createOrReplaceTempView("nom_table")

val sqlDF = spark.sql("SELECT * FROM nom_table ")

sqlDF.show()

spark.sql("SELECT short_name , overall FROM player22 order by overall desc " ).show
```

avec Built in function

```
val sqldf= {spark.sql("""SELECT short_name , overall, nationality_name, rank
| from (select short_name , overall,nationality_name , RANK()
```

```
OVER( PARTITION BY nationality name Order BY overall DESC ) as
rank
  | from players22
  |)
  | where rank>=3
  | ORDER BY overall desc
   | """"
  | )}
val sqldf= {spark.sql("SELECT short name, overall, nationality name, rank
From (SELECT short name, overall, nationality name, RANK()
OVER( PARTITION BY nationality name Order By overall DESC) as rank
FROM player22
where rank >=3
 ")}
   V.
         Stockage sur hdfs
            Capturer les ls, et mettre dans le rapport : hdfs /user/ubuntu/
           Ubuntu/Datalake (tous les dataset)
           Cleandata
           Dataresult
               o Dataresult1
               o Dataresult2 ...
               0
```

VI. Orchestration

Airflow ou commandes sh

Le pipeline contient plusieurs étapes et l'enchainement est automatisé via orchestrateur

- Faire plusieurs jobs, pour valider

Exemple d'orchestration avec sh

#!/bin/bash

Créer un répertoire dans HDFS hdfs dfs -mkdir -p Nom repertoire

Télécharger le fichier 'dracula'/Api

wget http://www.textfiles.com/etext/FICTION/dracula

Mettre le fichier 'dracula' dans le répertoire 'Nom_repertoire 'de HDFS (Stocker sur HDFS)

hdfs dfs -put -f getdata/storage user/ubuntu/datalake

Lister les fichiers dans le répertoire 'Nom_repertoire' de HDFS hdfs dfs -ls Nom repertoire

Récupérer le fichier 'center_earth' du répertoire 'livres' de HDFS hdfs dfs -get livres/center earth

Dans un fichier script.sh, puis le rendre exécutable avec la commande chmod +x run.sh. Ensuite, vous pouvez l'exécuter avec ./run.sh.

Créer un fichier sh pour chaque job, et appeler dans l'orchestrateur principale

Démarrer l'orchestrateur de façon automatisé crontab -e

0 5 * * 1 sh /home/ubuntu/Desktop/exercice/orchestrateur.sh

VII. Résumé

- 1- avec python, récupérer les souces de données dynamique (api) stocker en json par exemple, sur le disk
 - lister les sources statiques
- 2- un job spark vas créer le datalake dans hdfs
 (stocker toutes les sources de données recoltes dans un dossier dans Hdfs
 (le data lake),)
- 3- un job spark (validation des données) qui vas nettoyer et filtrer les données , et stocker dans un output intermédiaire (dossier dans hdfs)
- 4- des plusieurs jobs spark(environ 2 suivant l'épreuve)
 de traitement des données du datalake (dans hdfs)
 et stockage des résultat de chaque job dans un autre dossier hdfs
 Optimiser (utiliser le cache, nombre de partitions parallèles pour la charge)

Savoir utiliser sparksql

exécuter les jobs en .sh ,ou relancer en automatique avec airflow

traiter les données (compétence obligatoire)

5- tou	nt documenter dans le rapport word, a zipper	
capt	ure des résultats hdfs de chaque output,	
et tou	t le code dans le dossier word qui sera zipper	
Cons	ignes:	
-	Big Data	
O	Durée: 6h	
o prése	o Travail demandé : créer un projet Spark, avec collecte transformation et présentation des données	
o	Modalité de retour : un fichier Zip contenant le projet	
O	Important:	
□ Box	Vous travaillerez sur une machine virtuelle Linux/Ubuntu, avec Virtual	
cette	Vous aurez à rendre une archive Zip : entrainez-vous à créer un Zip sur machine virtuelle	
□ évalu	Attention, veillez à bien tout prendre dans le Zip, seul son contenu sera é, les morceaux manquants ne seront pas récupérés.	

Faire des captures

- Rapport built in