Relations

Fondements

Question 1/11

Relation d'équivalence

Réponse 1/11

Réflexive, symétrique et transitive Notée \equiv ou \sim

Question 2/11

Relation d'ordre strict

Réponse 2/11

Irréflexive et transitive Notée < ou >

Question 3/11

Asymétrie

Réponse 3/11

$$(x \mathcal{R} y) \Rightarrow \neg (y \mathcal{R} x)$$

Question 4/11

Réflexivité

Réponse 4/11

 $x \mathcal{R} x$

Question 5/11

Antisymétrie

Réponse 5/11

$$(x \mathcal{R} y) \land (y \mathcal{R} x) \Rightarrow (x = y)$$

Question 6/11

La relation d'équivalence \mathcal{R} est une congruence sur $(E, \times_1, \cdots, \times_n)$

Réponse 6/11

$$\forall (x, x', y, y') \in E^4, \ \forall i \in [1, n]$$
$$(x \mathcal{R} x') \land (y \mathcal{R} y') \Rightarrow (x \times_i y) \mathcal{R} (x' \times_i y')$$

Question 7/11

Irréflixivité ou antiréfléxivité

Réponse 7/11

$$\neg(x \mathcal{R} x)$$

Question 8/11

Théorème de la factorisation d'une application constante sur les classes d'équivalences

Réponse 8/11

$$(\forall (x,y) \in E^2, \ x \mathcal{R} \ y \Rightarrow f(x) = f(y))$$

$$\Leftrightarrow (\exists g : E/\mathcal{R} \to F, f = g \circ \pi_{\mathcal{R}})$$

Question 9/11

Transitivité

Réponse 9/11

$$(x \mathcal{R} y) \land (y \mathcal{R} z) \Rightarrow (x \mathcal{R} z)$$

Question 10/11

Symétrie

Réponse 10/11

$$x \mathcal{R} y \Rightarrow y \mathcal{R} x$$

Question 11/11

Relation d'ordre large

Réponse 11/11

Réflexive, antisymétrique et transitive Notée \leq ou \geq