Interpolazione di funzioni. Analisi degli errori per interpolazione composita lineare e spline

Sia

$$H = \max_{i=1,n} |x_i - x_{i-1}|$$

Interpolazione lineare composita

Se $f \in C^2([x_0, x_n])$, esiste una costante $c_1 > 0$ indipendente da H t.c. $(p_1^c$ dipende da H):

$$E_c(H) = \|f - p_1^c\|_{\infty} = \max_{x_0 \le x \le x_0} |f(x) - p_1^c(x)| \le c_1 H^2 \|f^{(2)}\|_{\infty}$$

Se i nodi x_i sono equispaziati, allora $c_1 = 1/8$.

Interpolazione con spline cubiche

Se $f \in C^4([x_0, x_n])$, esiste una costante $c_2 > 0$ indipendente da H t.c. $(s_3$ dipende da H):

$$E_s(H) = \|f - s_3\|_{\infty} = \max_{x_0 < x < x_n} |f(x) - s_3(x)| \le c_2 H^4 \|f^{(4)}\|_{\infty}$$

Se i nodi x_i sono equispaziati, allora $c_2=5/384$,

Problema 6:

Data la funzione $f(x) = 1/(x^2 + 1)$ sull'intervallo $[x_a, x_b] = [-5, 5]$, costruire l'interpolatore lineare composito $p_1^c(x)$ interpolante f in (n + 1) nodi equispaziati, con n = 10 : 10 : 500

- Se $n \le 100$, rappresentare su uno stesso grafico f(x) e $p_1^c(x)$,
- ② per ogni valore di n, posto $H = (x_b x_a)/n$, calcolare l'errore $E_1^c(H) := \|f p_1^c\|_{\infty}$,
- **3** alla fine del ciclo in n, rappresentare in scala logaritmica tutti gli errori calcolati (H in ascissa e gli errori $E_1^c(H)$ in ordinata),
- verificare che, quando $H \to 0$, gli errori $E_1^c(H)$ si comportano come dice la stima teorica, ovvero $E_1^c(H) \le c_1 H^2$.

Nota. Per calcolare gli errori valutare il max su un insieme di 1000 punti equispaziati in $[x_a, x_b]$.

Svolgimento

Come capire se l'errore è del secondo ordine in H.

Dopo aver salvato gli errori nel vettore e1ch ed i valori di H nel vettore H possiamo valutare il comportamento degli errori in funzione di H come segue:

Se il vettore c1 contiene valori pressoché costanti, allora vuole dire che $E_1^c(H) \simeq c_1 H^2$.

Alternativamente, se dal plot:

si ottengono due linee con la stessa pendenza, allora vuole dire che $E_1^c(H) \simeq c_1 H^2$.

Problema 7:

Data la funzione $f(x) = 1/(x^2 + 1)$ sull'intervallo $[x_a, x_b] = [-5, 5]$, costruire la spline cubica $s_3(x)$ interpolante f in (n+1) nodi equispaziati, con n=10:10:500

- **1** Se $n \le 100$, rappresentare su uno stesso grafico f(x) e $s_3(x)$,
- ② per ogni valore di n, posto $H = (x_b x_a)/n$, calcolare l'errore $E_s(H) := \|f s_3\|_{\infty}$,
- 3 alla fine del ciclo in n, rappresentare in scala logaritmica tutti gli errori calcolati (H in ascissa e gli errori $E_s(H)$ in ordinata),
- verificare che, quando $H \to 0$, gli errori $E_s(H)$ si comportano come dice la stima teorica, ovvero $E_s(H) \le c_2 H^4$.

Nota. Per calcolare gli errori valutare il max su un insieme di 1000 punti equispaziati in $[x_a, x_b]$.

Lavorando in maniera analoga con le spline, salviamo gli errori nel vettore esh e calcoliamo

Se il vettore c2 contiene valori pressoché costanti, allora vuole dire che $E_s(H) \simeq c_2 H^4$.

