Imperial College London

Exploring state representations for offline RL

Thesis Presentation

Aimilios Hatzistamou

Presentation outline

- Background
- 2 Algorithms & Representations
- 3 State representation in offline RL
- 4 Large-scale tasks
- Conclusion
- 6 References

Motivation & Problem statement

Thesis

With both abstractions and the offline RL setting showing strong promise, the focus of this Master's thesis will be to **evaluate** whether offline RL can benefit from explicit representation models—a question that is still largely unexplored to this day.

State Abstraction

Figure 1: Agent-MDP interaction with state abstraction. Every timestep, the MDP produces a state s and the agent learns from $s_{\phi} = \phi(s)$.

A good abstraction satisfies (Abel, 2019):

- Efficient creation
- Efficient decision-making
- Near optimality

State Abstraction

Bisimulation Relations and Metrics

Bisimulation groups together states that are indistinguishable in terms of rewards over all possible action sequences tested—the **bisimulation relations** (Givan et al., 2003)

$$\phi(s_1) = \phi(s_2) \implies \begin{cases} r(s_1, a) = r(s_2, a) & \forall a \in \mathcal{A} \\ P(G|s_1, a) = P(G|s_2, a) & \forall G \in \mathcal{S}_B, \ a \in \mathcal{A} \end{cases}$$

where $P(G|s, a) = \sum_{s' \in G} P(s'|s, a)$ and S_B is the set of all groups G of equivalent states under abstraction ϕ .

Bisimulation metrics (Ferns and Precup, 2014) offer a way to quantify the "behavioral similarity" between states:

$$d(s_i, s_j) = \max_{a \in \mathcal{A}} (1 - c) |r(s_i, a) - r(s_j, a)| + c \cdot W_1(P_{s_i}^a, P_{s_j}^a, d)$$
 (1)

where $c \in [0,1)$, and W_1 is the Wasserstein-1 distance.

State Abstraction

State representation learning

Common approaches to learning a state representation:

- Auto-Encoders.
- Forward models.
- Inverse models.
- Exploiting rewards.
- Prior knowledge.

In practice, used as auxiliary tasks (additional training objectives).

Intuition: learning to estimate quantities that are relevant to solving the main RL problem over a shared representation will speed up the progress on the main RL task.

Offline RL Overview

Figure 1: In the offline setting, an agent learns from a fixed dataset containing historical decisions and outcomes. The dataset may contain examples of both desirable and undesirable behaviour, and the policy(ies) that generated the data is typically unknown.

Algorithms & Representations

Algorithms Behavioral Cloning

Agent learns a policy $\pi_{\theta}(a_t|s_t)$ mapping states to actions.

Objective function:

Negative log-likelihood of the selected action being from the policy $\pi_{\mathcal{B}}$ being cloned, i.e. minimizing $-\log p(a_t = \pi_{\mathcal{B}}(s_t)|s_t)$ across the whole dataset.

Algorithms

Deep Q-Networks

DQN uses Q-learning algorithm to estimate optimal action-values

$$Q^*(s, a) = \mathbb{E}_{\pi^*}[R_t|s_t = s, a_t = a]$$

Optimal policy is then constructed as: $\pi^*(s) = \arg \max_a Q^*(s, a)$.

DQN loss =
$$L_{\delta}(r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_{t}, a_{t}))$$

Our implementation uses several common improvements:

- Experience replay (replay buffer = the offline dataset)
- Target Q-network
- N-step bootstrapping (offline data w/ 5-step transitions)
- Double Q-learning (Hasselt, 2010)

Representations Reward vs Reconstruction

Reconstruction:

- Rich training signal.
- Not aligned with RL problem.

Reward:

- Sparser signal.
- RL-informed: can discard irrelevant information.

Representations SRL Methods

	Training Signal		Model Architecture		Latent State	
	Recons.	Reward	Forward	Multi-Step	Stoch.	Discrete
PCA	√					
AE	\checkmark					
VAE	\checkmark				\checkmark	
VQ-VAE,	\checkmark				\checkmark	\checkmark
DBC		\checkmark				
DeepMDP		\checkmark	\checkmark			
VPN		\checkmark	\checkmark	\checkmark		
World Models	\checkmark		\checkmark	\checkmark	\checkmark	

Table 1: Classification of the SRL models we considered for our experiments. Our selected methods are indicated in bold.

Representations

DeepMDP, Gelada et al. (2019)

Minimize two tractable losses: reward predictions and prediction of the distribution over next latent states.

$$J(\phi) = L_r + \alpha L_t = (r_{t+1} - \hat{r}_{t+1})^2 + \alpha ||s_{\phi,t+1} - \hat{s}_{\phi,t+1}||_2$$

where α is a weighting factor, $\hat{r}_{t+1} = f(s_t, a_t)$ and $\hat{s}_{\phi,t+1} = g(s_t, a_t)$. f and g are neural network function approximators and we use a deterministic transition model for simplicity.

Representations

Deep Bisimulation for Control (DBC), Zhang et al. (2020)

$$J(\phi) = \left(\|s_{\phi,i} - s_{\phi,j}\|_1 - |r_i - r_j| - \gamma W_2(\hat{\mathcal{P}}(\cdot|\bar{s}_{\phi,i}, a_i), \hat{\mathcal{P}}(\cdot|\bar{s}_{\phi,j}, a_j)) \right)^2$$
 where r are rewards, and \bar{s}_{ϕ} denotes $\phi(s)$ without gradient propagation.

Figure 2: Architecture for learning DBC with an offline DQN.

Representations

Proposed: Contrastive DBC

Problem: DBC is *unstable* offline. We proposed learning the bisimulation metric using contrastive metric embeddings (CME, Agarwal et al. 2021).

Algorithm 1: Learning bisimulation metric with CMEs

- 1 **Given**: State embedding $\phi(\cdot)$, Metric $d(\cdot, \cdot)$, Dataset \mathcal{D} and hyperparameters: temperature $1/\lambda$, Scale β , Total training steps K.;
- 2 for step in k=1...K do
- Sample a pair of batches $B_i \sim \mathcal{D}$, $B_j \sim \mathcal{D}$;
- Update the weights of ϕ to minimize \mathcal{L}_{CME} where $\mathcal{L}_{CME} = \mathbb{E}_{B_i, B_i \sim \mathcal{D}}[L_{\phi}(B_i, B_j)]$
- 5 end

State representation in offline RL

Classic control (Cartpole) with distractions Distractor types

Figure 2: Example distractors plotted over 1k time-steps.

Results

Results Summary

Main takeaways:

- Explicit representations can help offline learners discover significantly better policies.
- Reward-informed representations outperformed reconstruction and baselines.
- Contrastive DBC, more stable and outperforms DBC in several settings.
- High distractions, no reward → convergence failures.

Atari Unplugged (Gulcehre et al., 2021)

Figure 3: Sample frames from the two Atari games we pick. We use datasets of transitions with sticky actions, 4 stacked frames. 500M transitions per game, 375GB and 1.5TB for Pong and Yars respectively.

Atari results

Without tuning \longrightarrow no clear benefit of using representations on these tasks.

Figure 3: Training offline agents with different representation objectives on offline Atari data. No hyperparameters were tuned due to time/compute constraints.

Extra distractions

Figure 3: Example Pong frames with background substitution. Approach inspired by work of Zhang et al. (2020) on DeepMind Control Suite.

Extra distractions

(a) Offline training of different SRL methods on Pong with background substitution.

(b) Render of DQN evaluation

Illustrating tuning sensitivity

Figure 3: **Left**: a frame captured during online evaluation. **Right**: its reconstruction by the autoencoder. Despite the propagation of gradients from DQN to encoder, the jointly-trained representation is unable to capture the location of the ball.

Conclusion Contributions

- Evaluation of several SRL methods on offline tasks. Our empirical evidence suggest that introducing a jointly-trained representation loss can improve the performance of offline policy learning algorithms, but is sensitive to tuning.
- Oistractor benchmark. We proposed a benchmark environment to evaluate the robustness of different SRL methods against distractions in the observation space
- Contrastive DBC. Contrastive loss to embed the bisimulation metric, effectively grouping states that are behaviorally equivalent. Better experimental properties than DBC.
- Insights and discussions

Conclusion Future Work

- **Different SRL objectives**. Explore other classes of methods (e.g. sequence models).
- Real world. Extend our results to real-world domains (e.g. robotic manipulation).
- Which representations are most sensitive to the exact values of hyperparameters, and what techniques can render training more robust?
- Offline RL algorithms. Evaluate SRL with other algorithms like CQL or BRAC.

References I

Abel, D.

2019. A Theory of State Abstraction for Reinforcement Learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):9876–9877.

Agarwal, R., M. C. Machado, P. S. Castro, and M. G. Bellemare 2021. Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning. arXiv:2101.05265 [cs, stat].

Ferns, N. and D. Precup 2014. Bisimulation Metrics are Optimal Value Functions. Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014.

References II

- Gelada, C., S. Kumar, J. Buckman, O. Nachum, and M. G.
 Bellemare
 2019. DeepMDP: Learning Continuous Latent Space Models for Representation Learning. arXiv:1906.02736 [cs, stat].
- Givan, R., T. Dean, and M. Greig 2003. Equivalence notions and model minimization in Markov decision processes. *Artificial Intelligence*, 147(1).
- Gulcehre, C., Z. Wang, A. Novikov, T. L. Paine, S. G. Colmenarejo, K. Zolna, R. Agarwal, J. Merel, D. Mankowitz, C. Paduraru, G. Dulac-Arnold, J. Li, M. Norouzi, M. Hoffman, O. Nachum, G. Tucker, N. Heess, and N. de Freitas 2021. RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning. arXiv:2006.13888 [cs, stat]. arXiv: 2006.13888.

References III

Hasselt, H.

2010. Double Q-learning. In *Advances in Neural Information Processing Systems*, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, eds., volume 23. Curran Associates, Inc.

Zhang, A., R. McAllister, R. Calandra, Y. Gal, and S. Levine 2020. Learning Invariant Representations for Reinforcement Learning without Reconstruction. arXiv:2006.10742 [cs, stat].