

"

Unsupervised Machine Learning

Unsupervised ML

- Idea: Find patterns & trends in the data, without any prior knowledge
- These patterns may give us new insights into our data
- Main Types:
 - Clustering
 - Dimensionality reduction

Clustering

- Group datapoints into «close» groups
 - Works on some measure of similarity / distance
- Applications:
 - Customer segmentation

 what are the main groups in my customer base?»
 - Recommender Systems «customers like you also bought...»
 - Anomaly Detection

 «this does not look like the others»

K-Means

Algorithm for Clustering

- Initialize k random cluster-centers
- 2. do{
 - 1. Re-assign all points to closest cluster-center
 - 2. Recalculate clustercenters
 - } while #reasignements > 0

K-Means

Dimensionality Reduction

 Idea: represent a highdimensional dataset in lower dimensions, while preserving local structures

- Uses:
 - Data visualisation
 «how do I visualize a 10-D dataset?!»
 - Denoising

«real world variance vs measurment-error»

Dimension in Data-Science / Mathematics:

One axis or column of a dataset. E.g. a Dataset with 10 Columns is a 10 dimensional Dataset

Principal Component Analysis

For dimensionality reduction

- Idea: Find the principal components that best describe the variations in the data
 - "Intuitive" explanations of PCA:
 - Shift the coordinate system such that you can discard one or more axis without loosing much information
 - → PC is the main axis of variance
 - Combine multiple columns of the dataset into one in the optimal way
- Implemented in sklearn.decomposition.PCA

Principal Component:

Main Axis of Variance.
Always perpendicular (90°) to each other.

Additional Information Unsupervised Learning

- kMeans: https://www.youtube.com/watch?v=mfqmoUN-Cuw
- PCA: <a href="https://www.youtube.com/watch?v="https:
 - Math: https://www.youtube.com/watch?v=PFDu9oVAE-g

curse of dimensionality

Hands-On

Part 3

- Implement the K-Means Algorithm for a set of random 2D datapoints (use the 'sklearn make_blobs' function to get a random dataset with underlying clusters
 - Visualize your results (Bonus: can you animate the graph to show each iteration of the algorithm?)
 - How could you improve the initialization-step to reduce strange results?
- 2. Think about how you could use your implementation to categorize a new (previously unknown) datapoint.
 - Bonus: Implement your idea and visualize the result

