数列

1.	设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $S_{m-1}=-2, S_m=0, S_{m+1}=3$, 则 $m=$				()
	(A) 3	(B) 4	(C) 5	(D) 6		
2.	已知 $\{a_n\}$ 是公差为 1 的等差数列, S_n 为 $\{a_n\}$ 的前 n 项和,若 $S_8=4S_4$,则 $a_{10}=$)
	(A) $\frac{17}{2}$	(B) $\frac{19}{2}$	(C) 10	(D) 12		
3.	设 S_n 是等差数列 $\{a_n\}$ 的前 n 项和,若 $a_1+a_3+a_5=3$,则 $S_5=$					
	(A) 5	(B) 7	(C) 9	(D) 11		
4.	等比数列 $\{a_n\}$ 满足 $a_1=3$, $a_1+a_3+a_5=21$,则 $a_3+a_5+a_7=$					
	(A) 21	(B) 42	(C) 63	(D) 84		
5.	. 已知等比数列 $\{a_n\}$ 满足 $a_1=rac{1}{4},a_3a_5=4(a_4-1),$ 则 $a_2=$					
	(A) 2	(B) 1	(C) $\frac{1}{2}$	(D) $\frac{1}{8}$		
6.	. 已知等差数列 $\{a_n\}$ 的前 9 项和为 27 , $a_{10}=8$,求 $a_{100}=$)
	(A) 100	(B) 99	(C) 98	(D) 97		
7.	设 $\{a_n\}$ 是公比为 q 的等比	C数列,则"q>1"是"{	a_n } 为递增数列"的		()
	(A) 充分且不必要条件		(B) 必要且不充分条件			
	(C) 充分必要条件		(D) 既不充分也不必要条	4件		
8.	. 下面是关于公差 $d > 0$ 的等差数列 $\{a_n\}$ 的四个命题: p_1 : 数列 $\{a_n\}$ 是递增数列; p_2 : 数列 $\{na_n\}$ 是递增数列; p_3 : 数列 $\left\{\frac{a_n}{n}\right\}$ 是递增数列; p_4 : 数列 $\{a_n+3nd\}$ 是递增数列. 其中的真命题为					
	(A) p_1, p_2	(B) p_3, p_4	(C) p_2, p_3	(D) p_1, p_4		
9.	已知各项都为正数的等比数列 $\{a_n\}$, $a_1a_2a_3=5$, $a_7a_8a_9=10$, 则 $a_4a_5a_6=$)
	(A) $5\sqrt{2}$	(B) 7	(C) 6	(D) $4\sqrt{2}$		
10.	已知数列 $\{a_n\}$ 的前 n 项和 (A) 2^{n-1}	为 S_n , $a_1=1$, $S_n=2a_n$	$S_n = (B) \left(\frac{3}{2}\right)^{n-1}$		()
	$(C)\left(\frac{2}{3}\right)^{n-1}$		(B) $\left(\frac{1}{2}\right)$ (D) $\frac{1}{2^{n-1}}$			
11.	在等比数列 $\{a_n\}$ 中, a_1 =	= 1, 公比 q ≠ 1. 若 a _m =	$a_1a_2a_3a_4a_5$,则 $m =$		()

(C) 11

(D) 12

(B) 10

(A) 9

12.	设 $\{a_n\}$ 是等差数列,下列	结论中正确的是			()			
	(A)		$+a_2 < 0$						
	(C) $\stackrel{.}{=} 0 < a_1 < a_2, \ $								
13.	数列 $\{a_n\}$ 满足 $a_{n+1}+(-1)^na_n=2n-1$,则 $\{a_n\}$ 的前 60 项和为				()			
	(A) 3690	(B) 3660	(C) 1845	(D) 1830					
14.	设 S_n 是等差数列 $\{a_n\}$ 的官	前 n 项和,若 $\frac{a_5}{a_3} = \frac{5}{9}$,则	$\frac{S_9}{S_5} =$		()			
	(A) 1	(B) -1	(C) 2	(D) $\frac{1}{2}$					
15.	在等比数列 $\{a_n\}$ 中, $a_1=1$,公比 $ q \neq 1$. 若 $a_m=a_1a_2a_3a_4a_5$,则 $m=$)			
	(A) 9	(B) 10	(C) 11	(D) 12					
16.	已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为								
	(A) 2	(B) 3	(C) 4	(D) 5					
17.	在各项均不为零的等差数列 $\{a_n\}$ 中,若 $a_{n+1}+a_n^2+a_{n-1}=0 (n\geqslant 2)$,则 $S_{2n-1}-4n=$)			
	(A) -2	(B) 0	(C) 1	(D) 2					
18.	等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 $a_{m-1}+a_{m+1}-a_m^2=0$, $S_{2m-1}=38$,则 $m=$)			
	(A) 38	(B) 20	(C) 10	(D) 9					
19.	已知数列 $\{a_n\}$ 为等比数列],下面结论中正确的是			()			
	$(A) a_1 + a_3 \geqslant 2a_2$		(B) $a_1^2 + a_3^2 \ge 2a_2^2$						
	(C) 若 $a_1 = a_3$, 则 $a_1 = a_2$ (D) 若 $a_3 > a_1$, 则 $a_4 > a_2$								
20.	若等比数列 $\{a_n\}$ 满足 $a_na_{n+1}=16^n$,则公比 $q=$)			
	(A) 2	(B) 4	(C) 8	(D) 16					
21.	设等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $S_2=3$, $S_4=15$,则 $S_6=$)			
	(A) 31	(B) 32	(C) 63	(D) 64					
22.	已知数列 $\{a_n\}$ 是首项为 1	的等比数列, S_n 是 $\{a_n\}$ [的前 n 项和,且 $9S_3 = S_6$,则数列 $\left\{\frac{1}{-}\right\}$ 自	的前 5	项			
	和为			(a_n))			
	(A) $\frac{15}{8}$ 或 5	(B) $\frac{31}{16}$ 或 5	(C) $\frac{31}{16}$	(D) $\frac{15}{8}$					
23.	若等差数列 $\{a_n\}$ 满足 $a_7+a_8+a_9>0$, $a_7+a_{10}<0$,则当 $n=$ 时 $\{a_n\}$ 的前 n 项和最大.								
24.	在等比数列 $\{a_n\}$ 中, $a_1=\frac{1}{2}$, $a_4=-4$,则公比 $q=$; $ a_1 + a_2 +\cdots+ a_n =$								
25.	设等比数列 $\{a_n\}$ 满足 $a_1+a_3=10$, $a_2+a_4=5$,则 $a_1a_2\cdots a_n$ 的最大值为								
26.	若数列 $\{a_n\}$ 的前 n 项和 S	$a_n = rac{2}{3}a_n + rac{1}{3}$,则数列 { a_n	} 的通项公式是 <i>a_n</i> =	<u>_</u> .					

- 27. 若等比数列 $\{a_n\}$ 满足 $a_2 + a_4 = 20$, $a_3 + a_5 = 40$, 则公比 $q = ______$; 前 n 项和 $S_n = ______$.
- 28. 已知等比数列 $\{a_n\}$ 为递增数列,且 $a_5^2=a_{10},\ 2(a_n+a_{n+2})=5a_{n+1}$,则数列数列 $\{a_n\}$ 的通项公式 $a_n=$ _____.
- 29. 设等比数列 $\{a_n\}$ 的公比为 q,前 n 项和为 S_n ,若 S_{n+1} , S_n , S_{n+2} 成等差数列,则 q 的值为_____.
- 30. 设 S_n 是数列 $\{a_n\}$ 的前 n 项和,且 $a_1 = -1$, $a_{n+1} = S_n S_{n+1}$,则 $S_n = _____$.
- 31. 设数列 $\{a_n\}$, $\{b_n\}$ 都是等差数列,若 $a_1+b_1=7$, $a_3+b_3=21$, 则 $a_5+b_5=$ _____.

- 32. 已知等差数列 $\{a_n\}$ 和等比数列 $\{a_n\}$ 满足 $a_1=b_1=1,\; a_2+a_4=10,\; b_2b_4=a_5.$
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求和 $b_1 + b_3 + b_5 + \cdots + b_{2n-1}$.

- 33. 已知数列 $\{a_n\}$ 满足 $a_1=1, a_{n+1}=3a_n+1$, 其中 $n\in \mathbb{N}^*$.
- (1) 证明 $\left\{a_n + \frac{1}{2}\right\}$ 是等比数列, 并求 $\left\{a_n\right\}$ 的通项公式;
- (2) 证明 $\frac{1}{a_1} + \frac{1}{a_2} \cdots \frac{1}{a_n} < \frac{3}{2}$.

- 34. 已知各项都为正数的数列 $\{a_n\}$ 满足 $a_1=1, a_n^2-2(a_{n+1}-1)a_n-2a_{n+1}=0.$
- (1) $\bar{\mathbb{X}} a_2, a_3;$
- (2) 求 $\{a_n\}$ 的通项公式.

- 35. 等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 $a_1=10,\ a_2$ 为整数,且 $S_n \leq S_4$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

- 36. 已知数列 $\{a_n\}$ 是等差数列,且 $a_1=2,\ a_1+a_2+a_3=12.$
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 令 $b_n = a_n 3^n (x \in \mathbf{R})$, 求数列 $\{b_n\}$ 前 n 项和的公式.

37. 已知正项数列 $\{b_n\}$ 的前 n 项和 $B_n = \frac{1}{4}(b_n+1)^2$,求 $\{b_n\}$ 的通项公式.

- 38. 已知数列 $\{a_n\}$ 是公差为 3 的等差数列,数列 b_n 满足 $b_1=1$, $b_2=\frac{1}{3}$, $a_nb_{n+1}+b_{n+1}=nb_n$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求 $\{b_n\}$ 的前 n 项和.

- 39. 数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$, $a_{n+2}=2a_{n+1}-a_n+2$.
- (1) 设 $b_n = a_{n+1} a_n$, 证明 $\{b_n\}$ 是等差数列;
- (2) 求数列 $\{a_n\}$ 的通项公式.

- 40. 已知等差数列 $\{a_n\}$ 的公差不为零, $a_1=25$,且 a_1,a_{11},a_{13} 成等比数列.
- (1) 求 $\{a_n\}$ 的通项公式;

- 41. 已知等比数列 $\{a_n\}$ 的首项 $a_1=2$, 前 n 项和 S_n , 且 a_2 是 $3S_2-4$ 与 $2-\frac{5}{2}S_1$ 的等差中项.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n=(n+1)a_n$, T_n 是数列 b_n 的前 n 项和 , $n\in \mathbf{N}^*$, 求 T_n .

- 42. 已知等差数列 $\{a_n\}$ 满足 $a_1 + a_2 = 10$, $a_4 a_3 = 2$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设等比数列 $\{b_n\}$ 满足 $b_2=a_3,\ b_3=a_7,\ 问:\ b_6$ 与数列 $\{a_n\}$ 的第几项相等?

- 43. 已知等差数列 $\{a_n\}$ 满足 $a_1=3,\ a_4=12,$ 数列 $\{b_n\}$ 满足 $b_1=4,\ b_4=20,\ 且 <math>\{b_n-a_n\}$ 是等比数列.
- (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
- (2) 求数列 $\{b_n\}$ 的前 n 项和.

- 44. 等差数列 $\{a_n\}$ 中, $a_3 + a_4 = 4$, $a_5 + a_7 = 6$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = [a_n]$, 求数列 $\{b_n\}$ 的前 10 项和, 其中 [x] 表示不超过 x 的最大整数, 如 [0.9] = 0, [2.6] = 2.

- 45. 已知数列 $\{a_n\}$ 的前 n 项和 $S_n=1+\lambda a_n$,其中 $\lambda \neq 0$.
- (1) 证明 $\{a_n\}$ 是等比数列,并求其通项公式;
- (2) 若 $S_5 = \frac{31}{32}$,求 λ .

- 46. S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $a_n>0$, $a_n^2+2a_n=4S_n+3$,其中 $n\in {\bf N}^*$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和.

- 47. 已知 $\{a_n\}$ 是递增的等差数列, a_2 , a_4 是方程 $x^2 5x + 6 = 0$ 的根.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\left\{\frac{a_n}{2^n}\right\}$ 的前 n 项和.

- 48. 已知等差数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_3=0,\ S_5=-5.$
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\frac{1}{a_{2n-1}a_{2n+1}}$ 的前 n 项和

- 49. 等比数列 $\{a_n\}$ 的各项均为正数,且 $2a_1+3a_2=1,\ a_3^2=9a_2a_6.$
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \log_3 a_1 + \log_3 a_2 + \dots + \log_3 a_n$, 求数列 $\left\{\frac{1}{b_n}\right\}$ 的前 n 项和.