Week 2 Video 3

Diagnostic Metrics

Different Methods, Different Measures

- Today we'll continue our focus on classifiers
- Later this week we'll discuss regressors

And other methods will get worked in later in the course

Last class

We discussed accuracy and Kappa

 Today, we'll discuss additional metrics for assessing classifier goodness

□ Receiver-Operating Characteristic Curve

- You are predicting something which has two values
 - Correct/Incorrect
 - Gaming the System/not Gaming the System
 - Dropout/Not Dropout

 Your prediction model outputs a probability or other real value

□ How good is your prediction model?

Example

PREDICTION	TRUTH	
0.1		0
0.7		1
0.44		0
0.4		0
0.8		1
0.55		0
0.2		0
0.1		0
0.09		0
0.19		0
0.51		1
0.14		0
0.95		1
0.3		0

□ Take any number and use it as a cut-off

 Some number of predictions (maybe 0) will then be classified as 1's

□ The rest (maybe 0) will be classified as 0's

PREDICTION	TRUTH	
0.1		0
0.7		1
0.44		0
0.4		0
0.8		1
0.55		0
0.2		0
0.1		0
0.09		0
0.19		0
0.51		1
0.14		0
0.95		1
0.3		0

PREDICTION	TRUTH	
0.1	()
0.7	1	I
0.44	()
0.4	()
0.8	1	I
0.55	()
0.2	()
0.1	()
0.09	()
0.19	()
0.51	1	l
0.14	()
0.95	1	I
0.3	()

Four possibilities

- □ True positive
- □ False positive
- □ True negative
- □ False negative

PREDICTION	TRUTH	
0.1	0	TRUE NEGATIVE
0.7	1	TRUE POSITIVE
0.44	0	TRUE NEGATIVE
0.4	0	TRUE NEGATIVE
0.8	1	TRUE POSITIVE
0.55	0	TRUE NEGATIVE
0.2	0	TRUE NEGATIVE
0.1	0	TRUE NEGATIVE
0.09	0	TRUE NEGATIVE
0.19	0	TRUE NEGATIVE
0.51	1	FALSE NEGATIVE
0.14	0	TRUE NEGATIVE
0.95	1	TRUE POSITIVE
0.3	0	TRUE NEGATIVE

PREDICTION	TRUTH	
0.1	0	TRUE NEGATIVE
0.7	1	TRUE POSITIVE
0.44	0	TRUE NEGATIVE
0.4	0	TRUE NEGATIVE
0.8	1	TRUE POSITIVE
0.55	0	FALSE POSITIVE
0.2	0	TRUE NEGATIVE
0.1	0	TRUE NEGATIVE
0.09	0	TRUE NEGATIVE
0.19	0	TRUE NEGATIVE
0.51	1	TRUE POSITIVE
0.14	0	TRUE NEGATIVE
0.95	1	TRUE POSITIVE
0.3	0	TRUE NEGATIVE

PREDICTION	TRUTH	
0.1	0	TRUE NEGATIVE
0.7	1	FALSE NEGATIVE
0.44	0	TRUE NEGATIVE
0.4	0	TRUE NEGATIVE
0.8	1	FALSE NEGATIVE
0.55	0	TRUE NEGATIVE
0.2	0	TRUE NEGATIVE
0.1	0	TRUE NEGATIVE
0.09	0	TRUE NEGATIVE
0.19	0	TRUE NEGATIVE
0.51	1	FALSE NEGATIVE
0.14	0	TRUE NEGATIVE
0.95	1	FALSE NEGATIVE
0.3	0	TRUE NEGATIVE

ROC curve

- X axis = Percent false positives (versus true negatives)
 - False positives to the right
- Y axis = Percent true positives (versus false negatives)
 - True positives going up

Example

Is this a good model or a bad model?

Chance model

Good model (but note stair steps)

Poor model

So bad it's good

A': A close relative of ROC

The probability that if the model is given an example from each category, it will accurately identify which is which

A'

- Is mathematically equivalent to the Wilcoxon statistic (Hanley & McNeil, 1982)
- Useful result, because it means that you can compute statistical tests for
 - Whether two A' values are significantly different
 - Same data set or different data sets!
 - Whether an A' value is significantly different than chance

Notes

- Not really a good way (yet) to compute A' for 3 or more categories
 - □ There are methods, but the semantics change somewhat

Comparing Two Models (ANY two models)

$$Z = \frac{A'_1 - A'_2}{\sqrt{\text{SE}(A'_1)^2 + \text{SE}(A'_2)^2}}$$

Comparing Model to Chance

$$Z = \frac{A'_1 - 0.5}{\sqrt{\text{SE}(A'_1)^2 + 0}}$$

Equations

$$D_p = (n_p - 1) \left(\frac{A'}{2 - A'} - A'^2 \right) \quad D_n = (n_n - 1) \left(\frac{2 * A'^2}{1 + A'} - A'^2 \right)$$

SE(A') =
$$\sqrt{\frac{A'(1-A') + D_p + D_n}{n_p * n_n}}$$

Complication

- □ This test assumes independence
- If you have data for multiple students, you usually should compute A' and signifiance for each student and then integrate across students (Baker et al., 2008)
 - There are reasons why you might not want to compute A' within-student, for example if there is no intra-student variance
 - If you don't do this, don't do a statistical test

A'

- Closely mathematically approximates the area under the ROC curve, called AUC (Hanley & McNeil, 1982)
- The semantics of A' are easier to understand, but it is often calculated as AUC
 - Though at this moment, I can't say I'm sure why A' actually seems mathematically easier

More Caution

The implementations of AUC are buggy in all major statistical packages that I've looked at

Special cases get messed up

- There is A' code on my webpage that is more reliable for known special cases
 - Computes as Wilcoxon rather than the faster but more mathematically difficult integral calculus

A' and Kappa

A' and Kappa

- □ A'
 - more difficult to compute
 - only works for two categories (without complicated extensions)
 - \blacksquare meaning is invariant across data sets (A'=0.6 is always better than A'=0.55)
 - very easy to interpret statistically

A'

 A' values are almost always higher than Kappa values

A' takes confidence into account

Precision and Recall

$$\begin{array}{c} \blacksquare \text{ Recall} = & \underline{\text{TP}} \\ \hline \text{TP} + \text{FN} \end{array}$$

What do these mean?

 Precision = The probability that a data point classified as true is actually true

 Recall = The probability that a data point that is actually true is classified as true

Still active debate about these metrics

- (Jeni et al., 2013) finds evidence that A' is more robust to skewed distributions than Kappa and also several other metrics
- (Dhanani et al., 2014) finds evidence that models selected with RMSE (which we'll talk about next time) come closer to true parameter values than A'

Next lecture

■ Metrics for regressors