

Smart-Github-Analyzer

CÉCILE GRACIANNE, ALEXANDRE BLUKACZ, PAUL-ARNAUD PY

CERTIFICATION - CEGEFOS

19 MARS 2018

Objectifs du projet

- Utiliser les données open source de la plateforme GitHub pour :
 - Collecter les données et développer une structure de stockage adaptée à la volumétrie et aux modifications constantes de ces données
 - Créer un moteur de recherche interrogeant ces données
 - Identifier les projets qui deviendront populaires à l'avenir
 - Effectuer des recommandations pour les utilisateurs de la plateforme

Description des données sources

- 2 datasets disponibles sur Google BigQuery :
 - github_repos
 - ▶ 3 TB
 - 9 tables
 - commits
 - contents
 - files
 - languages
 - licenses
 - sample_commits
 - sample_contents
 - sample_files
 - sample repos

Description des données sources

- 2 datasets disponibles su
 - github_repos
 - ▶ 3 TB
 - 9 tables
 - commits
 - contents
 - files
 - languages
 - licenses
 - sample commits
 - sample contents
 - sample_files
 - sample_repos

Description des données sources

- 2 datasets disponibles sur Google BigQuery :
 - github_repos
 - githubarchives

Row	type	public	payload	repo.id	repo.name	repo.url	actor.id	actor.login	actor.grava tar_id	actor.avata r_url
1	IssuesEvent	true	{"number":10	null	/	https://api.git	null	null	null	https://secure
2	IssuesEvent	true	{"number":14	null	/	https://api.git	null	null	null	https://secure
3	CreateEvent	true	{"name":"Side	null	/	https://api.git	null	null	null	https://secure
4	IssuesEvent	true	{"number":96	null	/	https://api.git	null	null	null	https://secure
5	IssuesEvent	true	{"number":73	null	/	https://api.git	null	null	null	https://secure
6	IssuesEvent	true	{"number":18	null	/	https://api.git	null	null	null	https://secure
7	PushEvent	true	{"shas":[["deī	null	/	https://api.git	null	null	null	https://secure
8	CreateEvent	true	{"name":"sar	null	/	https://api.git	413899	naoty	0031b165c1f8	https://secure
9	GistEvent	true	{"name":"gist	null	/	https://api.git	17495	woodie	0439edc42c4	https://secure
10	CreateEvent	true	{"name":"tuto	null	/	https://api.git	508577	vladvoic	079b0f7167dk	https://secure

Par jour, mois, années

Row	actor.url	org.id	org.login	org.gravata r_id	org.avatar_ url	org.url	created_at	id	other
1	https://api.git	null	null	null	null	null	7:38.000 UTC	1154270429	null
2	https://api.git	null	null	null	null	null	3:38.000 UTC	1154610989	null
3	https://api.git	null	null	null	null	null	5:11.000 UTC	1154218032	null
4	 https://api.git	null	null	null	null	null	0:39.000 UTC	1154266629	null
5	https://api.git	null	null	null	null	null	2:36.000 UTC	1154237601	null
6	 https://api.git	null	null	null	null	null	9:41.000 UTC	1154923509	null
7	https://api.git	null	null	null	null	null	L:00.000 UTC	1154870299	null
8	 https://api.git	null	null	null	null	null	5:56.000 UTC	1154581173	null
9	 https://api.git	null	null	null	null	null	6:40.000 UTC	1153898859	null
10	 https://api.git	null	null	null	null	null	9:36.000 UTC	1154106861	null

Architecture globale

1. Collecte des données

1. Collecte des données

Table JSON

First < Prev Rows 1 - 12 of 4341654 Next > Last

2. Stockage des données

- Pourquoi MongoDB ?
 - Pas de schéma de données prédéfini
 - Format JSON
 - Existence d'une version stand-alone

A. Collecte des données provenant des archives Github

- Mise à jour de la base de données githubarchives toutes les heures
- Script python :
 - Collecte en format JSON les nouvelles données
 - Décompresse les fichiers JSON à la volée
 - Envoi les données dans RabbitMO

B. Ajout de commits dans les données source

- Générateur de commits
 - NodeJS
 - Création de faux commits à partir d'un modèle de commit en format JSON
 - Association de ces commits à un projet fictif
 - Envoi de ces commits sur un serveur web, puis sur rabbitMQ
- ► Git-API
 - Serveur web

c. Broker/consumer

- RabbitMQ (broker)
 - Gestionnaire de file d'attente
 - Grande fiabilité sur forte montée en charge
 - Gain de flexibilité : modèles complexes de file d'attente possible
- RabbitMQ Management plug-in
 - ► HTTP API
- Consumer
 - Python

http://localhost:15672

dans mongoDB

Consumer

D. Difficultés rencontrées

- Applicabilité de la solution sur Windows
 - Incompatibilités des formats de retour à la ligne Linux/Windows
- Library python Pika
 - Plus de mise à jour depuis 3 ans
 - Library alternative : Celery

4. Rechercher de l'information dans les données

des nouveaux

inputs

4. Rechercher de l'information dans les données

A. Quelle solution proposer?

- ElasticSearch
 - Recherche sur tous les champs possible (y compris sur les contenus des commits et des commentaires)
 - Recherche rapide
- Postman
 - Pour tester la bonne marche d'elasticSearch et certaines requêtes
- Kibana
 - Interface visuelle et dynamique
 - Interconnexion native avec FlasticSearch

40,064 74 22

20

4. Rechercher de l'information dans les données

B. Difficultés rencontrées

- Conflit ElasticSearch/Kibana Neo4j
 - Les versions 5.6.8 de Kibana et ElasticeSearch entrent en conflit dans le docker-compose avec Neo4j sous windows
 - Utilisation des versions 6.2.2 pour éviter ce conflit
- Connecteur MongoDB
 - Pas encore de versions disponible gratuitement compatibles avec les versions 6.2.2 d'ElasticSearch et Kibana
 - Manque de temps pour en développer un nousmême

5. Identifier des pistes de travail pour les utilisateurs de Github

5. Identifier des pistes de travail pour les utilisateurs de Github

A. Pourquoi Neo4j?

- Interprétation possible des events de github comme des relations
 - Recommander à un utilisateur un projet sur lequel il pourrait travailler = comprendre les **relations** entre les projets et les utilisateurs de Github

5. Identifier des pistes de travail pour les utilisateurs de Github

B. Architecture du moteur de recommandations

- Connecteur MongoDB-Neo4j
 - Python
 - Collecte et tri les données dans mongoDB
 - Insertion des données dans Neo4j
- ► Neo4j
 - Modélisation relationnelle des données
 - Visualisation des résultats
- Serveur Apache
 - php
 - Interrogation de Neo4j et visualisation des recommandations

4. Rechercher de l'information dans les données

D. Difficultés rencontrées

- Connecteur MongoDB-Neo4j
 - Mongo connector + Neo Doc Manager
 - Requiert un replicaset d'un cluster mongo pour fonctionner
 - Importe l'intégralité des données des documents JSON
 - Tri possible avec une version payante du connecteur
 - Plug-in Neo APOC en swift
 - ► Interrogation sur mongoDB extrêmement lente
 - Développement d'un connecteur spécialisé
- Importation d'une fraction seulement des données de mongoDB dans Neo4j

6. Prédire la popularité des projets Github

6. Prédire la popularité des projets Github

A. Transformation des données

- Adoption massive d'un projet = projet populaire
- Qu'est-ce qu'un projet populaire ? Quels indicateurs utiliser ?
 - Activité du repository : nombre de commits, de push event, de fork event etc.
 - Le nombre de stars
 - Le nombre de watchEvent/unité de temps
 - Le nombre de contributeurs
 - La popularité des contributeurs
 - Le langage utilisé
 - Le type de licence du projet

Nécessité de transformer les variables qualitatives brutes en données quantitatives

6. Prédire la popularité des projets Github

B. Modèle de prédiction

- Un projet est soit massivement adopté, soit il ne l'est pas
 - Apprentissage supervisé : classification
 - Arbres de décisions
 - Random Forest
 - Naive Bayes
 - Support vector machine
 - K-mean
 - etc.
 - Quel seuil (de popularité) considérer ?

Smart-Github-Analyzer: to be continued...

- Architecture inachevée, mais qui devrait supporter une montée en charge pour une mise en production, sous réserve de :
 - Déployer des clusters MongoDB et ElasticSearch
 - Adapter l'import de données dans Neo4j
- Terminer le projet
 - Finaliser le moteur de recherche
 - Finaliser le moteur de prédictions
- S'appuyer sur des solutions cloud
 - Machines de collecte des données dans AWS

Smart-Github-Analyzer: to be continued...

- Readme
- Only on Github !!

Merci de votre attention!

