Verifying SPLs using parity games expressing variability

Sjef van Loo 6 November, 2019

Msc Thesis Computer Science and Engineering Supervised by T.A.C. Willemse

Outline

- ► Verification & SPLs
- ► Problem statement
- ► Variability Parity Games & algorithms
- ► Experimental results
- ► Conclusions

Verification

3

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- lacktriangle Mathematically *specify a requirement* (modal μ -calculus)

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus)
- ► Check if the model satisfies the requirement

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- e.g. an elevator that can be configured to detect overload

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- ▶ e.g. an elevator that can be configured to detect overload
- ► FTSs can be used to model the entire system using *features*

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- ▶ e.g. an elevator that can be configured to detect overload
- ► FTSs can be used to model the entire system using *features*
- ► An FTS can be transformed to an LTS given a specific feature assignment

Problem statement

► Find all the products in an SPL that satisfy a requirement

▶ Do so more efficiently than verifying every product independently

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

► Infinite path starting at some vertex

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game:

ightharpoonup Played for a specific configuration $c\in\mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

- lacktriangle Played for a specific configuration $c\in\mathfrak{C}$
- $ightharpoonup W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$$

$$v_1 \searrow 3 \qquad \{c_1\} \qquad 0 \qquad v_2 \qquad \mathfrak{C} = \{c_1, c_2\}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \{c_2\} \qquad 1 \qquad v_5$$

$$v_3 \searrow 2 \qquad \mathfrak{C} \qquad 4 \qquad v_4$$

- ▶ Played for a specific configuration $c \in \mathfrak{C}$
- $\qquad \qquad \blacktriangleright \ \ W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $\qquad \qquad \blacktriangleright \quad W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$$

$$v_1 \searrow \{c_1\} \qquad 0 \qquad v_2 \qquad \mathfrak{C} = \{c_1, c_2\}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \{c_2\} \qquad 1 \qquad v_5$$

$$v_3 \searrow 2 \qquad \mathfrak{C} \qquad 4 \qquad v_4$$

- lackbox Played for a specific configuration $c\in\mathfrak{C}$
- $\qquad \qquad \bullet \ \ \, W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $\qquad \qquad \bullet \quad W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Which products in M satisfy φ ?

Theorem

A VPG can be constructed from an FTS and a modal μ -calculus formula φ such that M satisfies φ for product p iff special vertex v_0 is won by player 0 in the resulting VPG played for p.

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

A VPG can be constructed from an FTS and a modal μ -calculus formula φ such that M satisfies φ for product p iff special vertex v_0 is won by player 0 in the resulting VPG played for p.

Variability parity game

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

A VPG can be constructed from an FTS and a modal μ -calculus formula φ such that M satisfies φ for product p iff special vertex v_0 is won by player 0 in the resulting VPG played for p.

VPG algorithms

- ► Solve VPGs independently; solve every parity game expressed by the VPG
- ► Solve VPGs *collectively*; solve the VPG as a whole

VPG algorithms

- ► Solve VPGs independently; solve every parity game expressed by the VPG
- ► Solve VPGs *collectively*; solve the VPG as a whole
- ► Introduced two collective algorithms
 - ► Recursive algorithm
 - ► Incremental pre-solve algorithm
- ► Evaluate performance of independent approach vs collective approach

- ► Existing parity game algorithm
- ► Spends most time performing the *attractor* calculation
- ► Introduce an efficient attractor calculation for VPGs

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α				√				

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

	<i>v</i> ₁	v ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α				√	√			√

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
A			√	√	√			√

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

	<i>v</i> ₁	v ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α			√	√	√	√		√

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

	<i>v</i> ₁	v ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α			√	√	√	√	√	√

Attractor calculation: Given player α and

μ,		VΙ	v 2	V3	V4	V5	V6	V	
vertex set U : Find all vertices from where	Α			\	√	\		\checkmark	
player $lpha$ can force the play to $\emph{U}.$				l					

$$A_{0} = U, A = \bigcup_{i \geq 0} A_{i}$$

$$A_{i+1} = A_{i} \cup \{ v \in V_{\alpha} \mid \exists_{w} : (v, w) \in E \land w \in A_{i} \}$$

$$\cup \{ v \notin V_{\alpha} \mid \forall_{w} : (v, w) \in E \implies w \in A_{i} \}$$

V4 V0 V0 V4 VE V6 V7

Attractor calculation: Given player α and vertex set U: Find all vertices from where player α can force the play to U.

Example:
$$\alpha = 0, U = \{v_4\}$$

	v_1	V 2	<i>V</i> 3	<i>V</i> 4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
A_0				\checkmark				
A_1				√	√			√
A_2			√	√	√			√
A_3			√	√	√	√		√
A_4			√	√	√	√	√	√
A_5			√	√	√	√	√	√

$$A_0 = U, A = \bigcup_{i \ge 0} A_i$$

$$A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$$

$$\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$$

 $A:V\to 2^{\mathfrak{C}}$

A: V	$A:V\to 2^{\mathfrak{C}}$											
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	v ₈				
A_0				C								

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

For every vertex v, find a set of configurations C such that player α can force the play from v to U when the VPG is played for configuration $c \in C$. Example, $\mathfrak{C} = \{c_1, c_2\}$:

A:V	\prime \rightarrow	$2^{\mathfrak{C}}$						
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	<i>V</i> 7	v ₈
A_0				C				

If $v \in V_{\alpha}$: Find for every outgoing edge which configurations play to A_i , add them all to $A_i(v)$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

For every vertex v, find a set of configurations C such that player α can force the play from v to U when the VPG is played for configuration $c \in C$. Example, $\mathfrak{C} = \{c_1, c_2\}$:

A: V	\prime \rightarrow	$2^{\mathfrak{C}}$						
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	<i>V</i> 7	v 8
A_0				C				

If $v \notin V_{\alpha}$: Find for every outgoing edge through which configurations player $1 - \alpha$ cannot escape A_i , add the intersection to $A_i(v)$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$A:V\to 2^{\mathfrak{C}}$											
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	V 7	v ₈			
A_0				C							
A_1			$\{c_2\}$	C	C			$\{c_1\}$			

$$A_1(v_5) = A_0(v_5) \cup (\theta(v_5, v_4) \cap A_0(v_4))$$

= $\emptyset \cup (\mathfrak{C} \cap \mathfrak{C}) = \mathfrak{C}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$A:V\to 2^{\mathfrak{C}}$												
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	V 7	V 8				
A_0				C								
A_1			$\{c_2\}$	C	C			$\{c_1\}$				

$$A_1(v_8) = A_0(v_8) \cup (\theta(v_8, v_8) \cap A_0(v_8))$$

$$\cup (\theta(v_8, v_4) \cap A_0(v_4))$$

$$= \emptyset \cup (\mathfrak{C} \cap \emptyset) \cup (\{c_1\} \cap \mathfrak{C}) = \{c_1\}$$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$A:V o 2^{\mathfrak C}$								
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	V 7	V 8
A_0				C				
A_1			$\{c_2\}$	C	C			$\{c_1\}$

$$\begin{aligned} A_1(v_3) &= A_0(v_3) \cup (\\ &((\mathfrak{C} \backslash \theta(v_3, v_4)) \cup A_0(v_4)) \cap \\ &((\mathfrak{C} \backslash \theta(v_3, v_8)) \cup A_0(v_8))) \\ &= \emptyset \cup ((\emptyset \cup \mathfrak{C}) \cap (\{c_2\} \cup \emptyset)) = \{c_2\} \end{aligned}$$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

A:V	$A:V\to 2^{\mathfrak{C}}$							
	v_1	V 2	<i>V</i> 3	V4	V 5	<i>V</i> ₆	V 7	v ₈
A_0				C				
A_1			$\{c_2\}$	C	C			$\{c_1\}$
A_2			C	C	C	$\{c_2\}$		$\{c_1\}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

<u> </u>	$A:V o 2^{\mathfrak C}$							
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	<i>V</i> 7	v ₈
A_0				C				
A_1			$\{c_2\}$	C	C			$\{c_1\}$
A_2			C	C	C	$\{c_2\}$		$\{c_1\}$
A_3			C	C	C	C		$\{c_1\}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

A:V	$A:V o 2^{\mathfrak C}$							
	v_1	V 2	<i>V</i> 3	V4	<i>V</i> ₅	<i>V</i> ₆	<i>V</i> 7	v ₈
A_0				C				
A_1			$\{c_2\}$	C	C			$\{c_1\}$
A_2			C	C	C	$\{c_2\}$		$\{c_1\}$
A_3			C	C	C	C		$\{c_1\}$
A_4			C	C	C	C	$\{c_1\}$	$\{c_1\}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

- ► Solve VPG by solving every parity game independently using the original recursive algorithm
- ► Solve VPG collectively using the modified attractor calculation

- ► Solve VPG by solving every parity game independently using the original recursive algorithm
- ► Solve VPG collectively using the modified attractor calculation
- Modified attractor calculation relies on set operations betweens sets of configurations
- ► Can we perform these operations efficiently?

- ► Represent sets simply as a collection of all its elements (explicit)
- ► Alternatively, represent sets as boolean formulas (symbolic)

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0

Boolean formula:

$$F(x_2,x_1,x_0) = (\neg x_2 \land x_1 \land \neg x_0) \lor (x_2 \land (x_1 \lor \neg x_0))$$

$x_2x_1x_0$	$F(x_2,x_1,x_0)$
000	0
001	0
010	1
011	0
100	1
101	0
110	1
111	1

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0
- Boolean formulas can be very small
- e.g. $T = \{s_0, \dots, s_3\}$ can be expressed as $\neg x_2$
- ► e.g. S can be expressed as **true**

Boolean formula:

$$F(x_2,x_1,x_0) = (\neg x_2 \land x_1 \land \neg x_0) \lor (x_2 \land (x_1 \lor \neg x_0))$$

$x_2x_1x_0$	$F(x_2,x_1,x_0)$
000	0
001	0
010	1
011	0
100	1
101	0
110	1
111	1

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0
- Boolean formulas can be very small
- e.g. $T = \{s_0, \dots, s_3\}$ can be expressed as $\neg x_2$
- ► e.g. S can be expressed as **true**
- ▶ Boolean operators \lor , \land coincide with set operators \cup , \cap

Boolean formula:

$$F(x_2,x_1,x_0) = (\neg x_2 \land x_1 \land \neg x_0) \lor (x_2 \land (x_1 \lor \neg x_0))$$

$x_2x_1x_0$	$F(x_2,x_1,x_0)$
000	0
001	0
010	1
011	0
100	1
101	0
110	1
111	1

- ► Boolean formulas can be expressed as BDDs
- ightharpoonup Simple formulas \Longrightarrow small BDDs \Longrightarrow quick set operators

- ► Boolean formulas can be expressed as BDDs
- lacktriangle Simple formulas \Longrightarrow small BDDs \Longrightarrow quick set operators
- ► FTSs use features
- ► FTSs use boolean formulas to enable/disable parts of the system

- ► Boolean formulas can be expressed as BDDs
- lacktriangle Simple formulas \Longrightarrow small BDDs \Longrightarrow quick set operators
- ► FTSs use features
- ► FTSs use boolean formulas to enable/disable parts of the system
- ► VPGs are constructed such that every edge either:
 - ► admits all configurations, or
 - ▶ is guarded by a set that coincides with a formula from the FTS

VPG algorithms - Recursive algorithm - Time complexities

n: # vertices, e: # edges, d: # distinct priorities, c # configurations

m. Tr vertices, c. Tr eages, a. Tr aise	 J, C	11	
Set operations			
Explicit sets			
Symbolic sets			
Algorithms			
Original recursive algorithm			
Independent approach			
Collective algorithm (explicit)			
Collective algorithm (symbolic)			

VPG algorithms - Recursive algorithm - Time complexities

n: # vertices, e: # edges, d: # distinct priorities, c # configurations

m. The vertices, c. The eages, a. The also	inter priorities, e Tr com
Set operations	
Explicit sets	<i>O</i> (<i>c</i>)
Symbolic sets	$O(c^2)$
Algorithms	
Original recursive algorithm	
Independent approach	
Collective algorithm (explicit)	
Collective algorithm (symbolic)	

VPG algorithms - Recursive algorithm - Time complexities

n: # vertices, e: # edges, d: # distinct priorities, c # configurations

Set operations		
Explicit sets	O(c)	
Symbolic sets	$O(c^2)$	

Algorithms	
Original recursive algorithm	$O(e*n^d)$
Independent approach	$O(c*e*n^d)$
Collective algorithm (explicit)	
Collective algorithm (symbolic)	

VPG algorithms - Recursive algorithm - Time complexities

n: # vertices, e: # edges, d: # distinct priorities, c # configurations

Set operations		
Explicit sets	<i>O</i> (<i>c</i>)	
Symbolic sets	$O(c^2)$	

Algorithms	
Original recursive algorithm	$O(e*n^d)$
Independent approach	$O(c*e*n^d)$
Collective algorithm (explicit)	$O(n*c^2*e*n^d)$
Collective algorithm (symbolic)	

VPG algorithms - Recursive algorithm - Time complexities

n: # vertices, e: # edges, d: # distinct priorities, c # configurations

Set operations	
Explicit sets	<i>O</i> (<i>c</i>)
Symbolic sets	$O(c^2)$

Algorithms	
Original recursive algorithm	$O(e*n^d)$
Independent approach	$O(c*e*n^d)$
Collective algorithm (explicit)	$O(n*c^2*e*n^d)$
Collective algorithm (symbolic)	$O(n*c^3*e*n^d)$

Minepump SPL

- ► Keep a mine shaft free from water
- ▶ 10 features that change the sensor/actor setup

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ► 128 valid feature assignments
- ▶ 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ► 128 valid feature assignments
- ► 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

Elevator SPL

- ► Elevator travelling between five floor
- ► 5 features, including overload detection and parking

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ▶ 128 valid feature assignments
- ► 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

Elevator SPL

- ► Elevator travelling between five floor
- ► 5 features, including overload detection and parking
- ► 64 valid feature assignments
- ▶ 34k states and 200k
- ► 7 requirements
- ➤ 7 VPGs ranging from 440k and 1.85m vertices and 2 to 3 distinct priorities

Figure: Running times, in ms, on the minepump games.

Figure: Running times, in ms, on the elevator games.

Independent recursive algorithm
 Collective recursive algorithm with a symbolic representation of configurations
 Collective recursive algorithm with an explicit representation of configurations

Discussion

Collective recursive algorithm:

- ► Symbolic variant increases performance 3-18 times (SPL games)
- ► For certain random games the symbolic performance drops rapidly, explicit performance is steady

Discussion

Collective recursive algorithm:

- ► Symbolic variant increases performance 3-18 times (SPL games)
- ► For certain random games the symbolic performance drops rapidly, explicit performance is steady

Incremental pre-solve algorithm:

- ► Same time complexity as independent approach $(O(c * e * n^d))$
- ► Slightly increases performance of SPL games and random games
- ► Not consistent or very significant

- \triangleright Parity games: Terminate when special vertex v_0 is solved
- \triangleright VPGs: Terminate when special vertex v_0 is solved for all configurations

- ightharpoonup Parity games: Terminate when special vertex v_0 is solved
- \triangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- ▶ Introduced local variants of existing algorithms and of the novel VPG algorithms

- ightharpoonup Parity games: Terminate when special vertex v_0 is solved
- \blacktriangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- ▶ Introduced local variants of existing algorithms and of the novel VPG algorithms
- ► Relative performance: How much quicker are the collective algorithms?
- ▶ Is the relative local performance greater than the relative global performance?

- ightharpoonup Parity games: Terminate when special vertex v_0 is solved
- \triangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- ▶ Introduced local variants of existing algorithms and of the novel VPG algorithms
- ▶ Relative performance: How much quicker are the collective algorithms?
- ▶ Is the relative local performance greater than the relative global performance?

Results:

- ► Recursive algorithms: no significant increase in relative performance
- ► Incremental pre-solve algorithm: increases relative performance for random games

Conclusions

- ► VPGs can be used to verify SPLs
- ► Collective approaches outperform independent approaches
- Locally solving VPGs can increase performance (more so than locally solving parity games does)

Extra - Incremental pre-solve

Figure: Running times, in ms, on the minepump games.

Figure: Running times, in ms, on the elevator games.