

决赛答辩评审会

《基于TPU平台的OCR模型性能优化》

队伍名称: 识唔识得

目录

01 赛题分析

02 解决方案

03 实验结果

开源调研

模型迁移

方案评估

赛题分析

在低端嵌入式设备上部署文本识别模型 (复杂街景场景)

利用 TPU 平台实现 OCR 模型量化部署,落地端侧场景

- 基线项目: <u>ppocrv3@fp16 CV186X</u>
 - CPU: 8 core ARM, TPU: 16 TOPS INT8
- Milk-V Duo 系列开发板: Duo 64MB (CV1800B)
 - CPU: 1 core RISC-V, TPU: 0.5 TOPS INT8

评分公式:文字识别质量(精度),模型部署成本(推理速度)

- $score = 90 + 40 * f1_score 0.085 * infer_time$
- 满分线规格
 - f1_score: 0.57 (ppocrv3 官方参考数据)
 - infer_time: 150ms

解决思路

模型迁移

方案评估

Milk-V Duo 硬件

• TPU 基准测试

OCR 开源解决方案

- 原项目就地测试
- CPU+onnx 测试

编译 cvimodel

• 转换-量化校准-部署

编写 cvirunner

• TPU+cvimodel 测试

数据集

• 正则化处理

评价指标

- mean(F1)
- mean(infer_time)
- e2e FPS

争取精度对标

硬件调研

Milk-V Duo (CV1800B)

CPU: RISC-V C906@1.0 GHz

TPU: 0.5 TOPS@INT8

Mem: DDR2 16bit 64M (26.8M reserved for ION)

MilkV Duo 开发板

TPU benchmark

模型	GFLOPS	运行时间 (s)	[FPS]
resnet18	1.81	0.30	3.33
densenet121	2.83	0.85	1.18
mobilenetv2	0.30	0.20	5.00
shufflenetv2	0.14	0.16	6.25
squeezenet1.1	0.35	0.16	6.25
googlenet12	1.5	0.24	4.16
yolov5n	4.5	0.55	1.80

(*) 运行时间用time工具测定:含图像与模型的加载时间 (**) GFLOPS 数据来自 torchvision 参考

https://pytorch.org/vision/stable/models.html

模型调研

- 轻量化开源 OCR 解决方案
 - PaddleOCR
 - RapidOCR
 - CnOCR
 - chineseocr_lite
- PPOCR 流水线
 - det 文本框检出
 - cls 文本框旋正
 - rec 文本框识别

ocr := det*1 + (cls+rec)*k

PPOCR v3 架构图

https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/blog/PP-OCRv3_introduction.html

模型调研

PPOCR benchmark (CPU+onnx)

发行板本	det	rec	cls	官方参考 Hmean	A榜 推理时间 (ms)	A榜 F1-Score
v4	DBNet (4.51MB)	SVTR (10.3MB)	mbnetV3 (559KB)	62.24%/	76.05	0.60724
v3	DBNet (2.31MB)	SVTR (10.1MB)		57.99% 62.90%	58.68	0.57585
v2	DBNet (2.22MB)	CRNN (7.99MB)		57.60%	43.02	0.52051
mobile	DBNet (2.22MB)	CRNN (4.22MB)			41.61	0.34883

- 迁移与部署的出发点
 - 可暂时忽略 cls 模型:作用不是很大,且导致较高时延
 - 优先考虑 v2 系列: v3/v4 模型较大, 转换后大概率炸 ION 内存

模型转换与编译: paddle → onnx → mlir → cvimodel

- ONNX 优化
 - 移除模型末尾的 Softmax 层
- 转换 (transform)
 - 设定 mean/scale/input shapes
- 校准 (calibrate)
 - 使用 300 个样例
 - 对 rec 校准数据集做右端填充 255
- 部署 (deploy)
 - 量化数据类型
 - det: INT8 sym + quant_output
 - rec: BF16 (混精度收益不大)
 - 前处理融合
 - 输入格式: BGR_PACKED (符合 opency::imread)

```
model_transform.py \
    --model_name $MODEL_NAME \
    --model_def $MODEL_DEF \
    --input_shapes $INPUT_SHAPE \
    --mean $MEAN \
    --scale $SCALE \
    --keep_aspect_ratio \
    --test_input $TEST_INPUT \
    --test_result $TEST_RESULT \
    --debug \
    --mlir $MLIR_MODEL_FILE

run_calibration.py $MLIR_MODEL_FILE \
    --dataset $CALI_DATASET \
    --input_num 300 \
    -0 $CALI_TABLE_FILE
```

```
model deploy.py \
  --chip $CHIP \
  --mlir $MLIR MODEL FILE \
  --quantize $QTYPE \
  --quant input \
  $QUANT OUTPUT \
  $QUANTIZE TABLE \
  --calibration table $CALI TABLE FILE \
  --test input $TEST INPUT \
  --test reference $TEST RESULT \
  --tolerance 0.85,0.45 \
  $COMPARE ALL \
  --fuse preprocess \
  --customization format BGR PACKED \
  --ignore f16 overflow \
  --op divide \
  --debug \
  --model $CVI MODEL FILE
```


模型转换与编译: paddle → onnx → mlir → cvimodel

· 编译产生 cvimodel 的基本信息

子模型	编译预设	GFLOPS (mlir)	ION 内存需求 (MB)	板上推理时间 (ms)	
	v4_det_int8	4.904	22.26	ООМ	
	v3_det_int8	3.918	14.10	270.805	
det	v2_det_int8	3.906	13.25	247.386	
uet	mb_det_int8	3.906	13.25	223.39	
	v2_det_int8_480	-	6.90	128.963	优
	v2_det_int8_320	-	3.72	46.317	先
rec	v3_rec_bf16	0. 942	10.07	95.523	考 虑
	v2_rec_bf16	1.130	12.42	65.314	,,,
	mb_rec_bf16	0.286	7.93	33.612	
cls	mb_cls_int8	0.119	0.77	-	

模型运行时 cvirunner

- 基于 cviruntime (milkv-duo/tpu-sdk-cv180x) 实现
- det 前处理: resize + pad=0
- det 后处理: binarize + findContours + unclip
- rec 前处理: resize + pad=255
- rec 后处理: argmax
- 黄色标记的函数调用将用作性能计时点
 - ts_model_load / ts_model_unload
 - ts_img_load / ts_img_crop
 - ts_det_pre / ts_det_infer / ts_det_post
 - ts_rec_pre / ts_ rec_infer / ts_rec_post

```
Model det = load_model(); rec = load_model();
for (string &file : file list) {
  Mat img = imread(file);
  Mat img = det.preprocess(img);
  int8 *segmap = det.infer(img);
  vector<Box> box_list = det.postprocess(segmap);
  for (Box &box : box_list) {
    Mat img_crop = warp_crop_perspective(img, box);
    Mat img_crop = rec.preprocess(img_crop);
    float32 *logits = rec.infer(img_crop);
    int[] token_ids = rec.postprocess(logits);
unload_model(det); unload_model(rec);
```


模型运行时 cvirunner – unclip 算法的近似实现

- 考虑增加外边距 r, 使矩形框面积扩大 k 倍
 - 即有 (w+r)(h+r) = kwh
 - 解得 $r = \frac{1}{4} \left[\sqrt{(w+h)^2 + 4(k-1)wh} (w+h) \right]$
- 各顶点按法向外移 $\sqrt{2}r$ 距离
 - 设顶点 O 的左右邻居为点 A、B
 - 定义法向 $\vec{v} = norm(\overrightarrow{AO} + \overrightarrow{BO})$
- 减少了第三方库依赖 ②
 - k 为超参数 (默认值 2.7)

unclip 示意

实验设置

- 数据集
 - A榜: ICDAR2019-LVST, 2350 个样本
 - B1榜: MSRA-TD500, 500 个样本
 - B2榜:未知数据集,3992个样本;对于尺寸超过640的图预先降采样处理
 - · 我们的Duo板子不支持 > 1.5GB的磁盘分区,无法上传原数据集 (3.91GB)
 - JPEG解码内存不足导致严重的 MemSwap
 - 磨损 TF 寿命;干扰计时测定;概率炸内存 SegFault
- 评估指标: 比赛给定样例项目中的评定规则
 - mean(F1): 以文本框为单位, box_iou>0.5 且 text_sim>0.5 记为一个 TP
 - mean(infer_time): 平均一次det + 一次rec的纯TPU推理时间
 - real_fps:不计数据读取时间的端到端 FPS

```
ts_model_load: 829.000 ms
ts model unload: 108.380 ms
_____
n img:
            3992
n crop:
            11920
-----[Total]-----
ts img load: 384295.531 ms
ts img crop: 94681.820 ms
ts det pre: 20239.100 ms
ts_det_infer: 885796.500 ms
ts det post: 93333.594 ms
ts rec pre: 19606.209 ms
ts_rec_infer: 398918.812 ms
ts rec post: 77933.859 ms
-----[Average]-----
ts det pre: 5.070 ms
ts_rec_pre: 1.645 ms
ts pre:
            9.981 ms
ts_det_infer: 221.893 ms
ts rec infer: 33.466 ms
ts infer:
            321.822 ms
ts_det_post: 23.380 ms
ts_rec_post: 6.538 ms
ts post:
            42.903 ms
Total time: 1977897.125 ms
```


评估结果

我们的提交材料中包含更多的可用模型组合,可按需任意测试 ③

数据集	模型配置	F1	infer_time	e2e FPS	estimate/submit score		
	v2_det + v2_rec	0.44099	333.937	0.88	79.25498		
	v3_det + mb_rec	0.42010	277.942	1.22	83.17896		
A榜	v2_det + mb_rec	0.42781	256.211	1.42	85.33433	主观最优	
A们方	v2_det + mb_rec (480)	0.33901	155.279	1.885	90.36170	最佳平衡	
	v2_det + mb_rec (320)	0.20613	75.951	2.954	91.78934		
	mb_det + mb_rec	0.32475	256.930	1.47	81.15095		

提交得分

A 榜 B 榜		B 榜					
排名	排名变化	队伍名称	有效提交次数	最高分提交时间	最高得分	f_core	max f_core
1	_ -	识唔识得	1	2024-11-16 18:44	99.38789602	0.44719740	0.44719740
(2)	-	常务副SOTA	1	2024-11-16 22:46	99.36871660	0.44671792	0.44671792
3	↓ 1	default7629265	2	2024-11-16 23:48	98.25850707	0.41896268	0.41896268
4	-	1024	2	2024-11-15 08:19	89.94687500	0.00000000	0.00000000
5	-	tcco	1	2024-11-16 23:40	87.25703265	0.14392582	0.14392582

注:评测网站无法提交infer_time,其反馈的分数并非按定义的评分公式计算 👺

推理样例 (印刷字体/密集,良好 👶)

家乐福中关村广场

费送货车

大宗购物热线: 51721515

CARREFOUR ZGC PLAZA STORE

FREE-DELIVERY

BIG PURCHASE SERVICE LINE51721515

推理样例 (印刷字体/密集/竖排文本,次之 😂)

国家自主创新试范区核心区中关村商务中心区品牌发布专业平台

四 010-1339 1201

010-82483330

13391699998

13911615850

优京人系世纪园除店告育限公司 尽精微·致广大 www. 86ad. com

推理样例(长文本/小字/反光,不太好 👺)

及用存较在水中食, 网将定则在暂冰箱卫生, 并理变质食 rdieoiwildsgoseheroen 微款房地产及设施管理 MS RE&FTea veing

推理样例 (手写字体,不太好 😮)

很示: 请他液于送回水房 湘梨 ZLS

推理样例 (艺术字体/透视畸变, 离谱 🐷)

讨论 & 总结

- 讨论: 迁移后精度损失来源
 - 以 ppocrv2+A榜数据 为基准

总结

- 将 ppocr 系列模型移植到 Milk-V Duo (CV1800B) 板上部署运行,支持任意组件混搭
- 优化 cvimodel 编译参数,优化数据校准方式
- 实现高效的 cvirunner, 提出近似 unclip 算法
- 3种运行环境下的模型基准测试,分析模型迁移前后的精度损失来源

感谢观看!