

30/01/2012

Duração: 1h

Exame normal de **Introdução aos Sistemas Electromagnéticos** Eng. Biomédica 2ºAno/1ºSemestre

Nome _	Nº Aluno		
	Parte I		
•	Para cada questão há uma única hipótese correcta. Cotação: Resposta correcta = 2; Resposta errada = - 0,66 Responda no máximo a 5 questões e indique neste rectângulo as respostas efectivamente		
	respondidas.		

- **1.** Uma carga $q_1 = 2$ nC encontra-se na origem e uma carga $q_2 = -8$ nC encontra-se na posição $\vec{r_2} = 1,00\,\hat{x}$ (m).
- **1.1** O vector campo eléctrico gerado pelas duas cargas no ponto P, que se encontra na posição $\vec{r_p} = -2,00\,\hat{y}$ (m) é:

A: $\overrightarrow{E_P} = 2,41\hat{x} + 0,33\hat{y}$ (V/m)	B: $\overrightarrow{E_p} = 6,44 \hat{x} + 8,38 \hat{y} (V/m)$
C: $\overrightarrow{E_P} = 4.83 \hat{x} + 7.41 \hat{y} (V/m)$	D: $\overrightarrow{E_P} = 2,41\hat{x} + 2,58\hat{y}$ (V/m)

1.2 Ao longo do eixo dos XX, o potencial criado pelas cargas q_1 e q_2 é nulo na(s) posição(ões):

A: -0.33 (m) e 0.20 (m)	B: -2,00 (m) e 0,40 (m)
C: 0,20 (m)	D: 0,40 (m)

1.3 Para que uma carga $q_3 = -2$ nC fique sujeita a uma força eléctrica nula, deve ser colocada na(s) posição(ões):

A: $\vec{r_3} = 1,37 \hat{x}$ (m) ou $\vec{r_3} = -0,69 \hat{x}$ (m)	B: $\vec{r_3} = -1,00 \hat{x}$ (m) ou $\vec{r_3} = -1,37 \hat{x}$ (m)			
C: $\vec{r_3} = -1,00 \hat{x}$ (m)	D: $\vec{r_3} = 4,45\hat{x}$ (m)			

2. Um electrão $(q_e = -1, 6 \times 10^{-19} \ C; m_e = 9, 1 \times 10^{-31} \ kg)$ é lançado com uma velocidade $\vec{v} = 3\hat{x} + 4\hat{y}$ (Mm/s) numa região onde existe um campo magnético uniforme $\vec{B} = 2\hat{x}$ (mT). A trajectória descrita pelo electrão é...

A: circular com um raio de 1,42 cm.

B: helicoidal com um raio de 1,14 cm e um passo de 5,36 cm.

C: circular com um raio de 8,53 mm.

D: helicoidal com um raio de 1,71 cm e um passo de 14,3 cm.

3. Dois fios condutores rectilíneos, percorridos por uma corrente eléctrica i=2 A, são colocados lado a lado, estando os seus centros distanciados de 2 cm. O diâmetro dos próprios fios é desprezável quando comparado com a sua separação.

3.1 Se a corrente fluir no mesmo sentido em ambos os fios, qual o vector campo de indução magnética no ponto intermédio entre estes, expresso no referencial $\{\hat{x}, \hat{y}\}$ apresentado na figura?

stes,	
иΤ	

 $i \odot$

A: $\vec{B} = \vec{0}T$	B: $\vec{B} = -40 \ \hat{y} \ \mu T$
C: $\vec{B} = 20 \ \hat{y} \ \mu T$	D: $\vec{B} = 80,0 \ \hat{y} \ \mu T$

3.2 Se a corrente fluir em sentidos contrários, qual o vector campo de indução magnética no ponto intermédio entre estes, expresso no referencial $\{\hat{x}, \hat{y}\}$ apresentado na figura?

A: $\vec{B} = \vec{0}T$	B: $\vec{B} = -40 \ \hat{y} \ \mu T$	
C: $\vec{B} = 20 \ \hat{y} \ \mu T$	D: $\vec{B} = 80,0 \ \hat{y} \ \mu T$	

3.3 Se as correntes tiverem o mesmo sentido, os fios...

A: ... não exercem forças entre si.

B: ... atraem-se e cada um deles sofre uma força por unidade de comprimento de $40 \,\mu N/m$

C: ... repelem-se e cada um deles sofre uma força por unidade de comprimento de $2.5 \,\mu N/m$

D: ... atraem-se e cada um deles sofre uma força por unidade de comprimento de $10 \,\mu N/m$

Soluções:

1.1	1.2	1.3	2	3.1	3.2	3.3
В	Α	С	В	Α	D	В