

PROJECT WORK REPORT

NAME: <FIZZA ZEESHAN>

PROGRAM: <TBSE2, 2020>

H Ö G S K O L A N K R I S I T A N S T A D < 2 0 2 1 - 0 2 - 2 1 >

TABLE OF CONTENTS

1.Description of database	3
2. ER MODEL	5
3. Implementation Diagram	
4. EXAMPLE SQL STATEMENTS	
5. CONCLUSION	
6. References	
7. Appendix	22

1. DESCRIPTION OF DATABASE

- I have created an E-Commerce database. E-Commerce is when a consumer usually buys or sells a product usually over the internet. This database stores information about things such as customer data, the orders, products ordered and the shipping details.
- I have five tables in this Database which are as follows:

Shipping_details Orders Customer Product Orders_has_product

• The following tables have these attributes

Shipping_details:

- Shippingdetails_id INT (PK)
- o Description VARCHAR(45)
- o Shipping_status VARCHAR(45)
- o Address VARCHAR(45)
- o ORDER_ORDER_ID INT (FK)

Orders:

- o Order_id INT (PK)
- o Order_type VARCHAR(45)
- o Order_date DATE
- o Price INT
- Customer_customer_id (FK)

Customer:

- Customer id INT (PK)
- Customer_name VARCHAR(45)
- o Email_address VARCHAR(45)
- o Phone_number INT

Product:

- o Product_id INT (PK)
- o Name VARCHAR(45)
- o Quantity INT
- o Weight INT
- o Orders_order_id INT

Orders_has_product:

- o Orders_order_id INT
- o Product_product_id INT
- I have one to one, one to many and many to many relationships between tables in my database.
 - o One to one Shipping Details and Orders

It is one to one because every single order will have the same shipping details. If one customer has an order containing 5 products. That whole order will have the same shipping details.

○ One to many – Customer and Orders

This is one to many since one customer can place multiple orders.

o Many to many – Product and Orders

This is many to many as an order can have many products and many products can belong to one order.

2. ER MODEL

LEGEND

3. IMPLEMENTATION DIAGRAM

4. EXAMPLE SQL STATEMENTS

SELECT

SELECT * FROM customer WHERE customer_name LIKE '%' ORDER BY customer_name ASC;

SELECT * FROM orders;

INSERT

INSERT INTO customer (customer_id , customer_name , email_address, phone_number)

VALUES

- ('6', 'John Doe', 'johndoe@yahoo.com', '0769748669'),
- ('7', 'Mickey Mouse', 'mickeymouse88@gmail.com', '0733336863');

```
Limit to 1000 rows 
insert into customer (customer_id, customer_name, email_address, phone_number)

values

('6', 'John Doe', 'johndoe@yahoo.com', '0769748669'),

('7', 'Mickey Mouse', 'mickeymouse88@gmail.com', '0733336863');
```


INSERT INTO orders (order_id , order_type , order_date, price, customer_customer_id)

VALUES

- ('6', 'Cutlery', '2020-12-17', '1500', '6'),
- ('7', 'Health', '2020-06-02', '445', '7');

1 • SELECT * FROM ecommerce.orders;

UPDATE

UPDATE shipping_details

SET address = '35 James Street'

WHERE shipping_detailsid = '1';

UPDATE product

SET weight = '11'

WHERE product_id = '4';

	name	product_id	quantity	weight	orders_order_id
•	Chocolate Cake	1	2	1	1
	Tea Cups	2	6	2	2
	Jacket	3	1	4	3
	Garden Chairs	4	4	11	4
	Lipstick	5	3	3	5
	NULL	NULL	NULL	NULL	NULL

product 1 ×

DELETE

DELETE FROM shipping_details

WHERE description = 'DIY';

1 • SELECT * FROM ecommerce.shipping_details;

BASIC/INNER JOINS

SELECT customer_customer_name AS 'Customer Names' , orders.order_id AS 'Order ID'

FROM customer inner join orders

ON customer_id = orders.customer_customer_id;

SELECT orders.order_type AS 'Order Type', product.name AS 'Product Name'

FROM orders, product, orders_has_product

WHERE orders.order_id = orders_has_product.orders_order_id AND product.product_id = orders_has_product.product_product_id;

SELECT orders.order_type, shipping_details.description, shipping_details.shipping_status

FROM orders

INNER JOIN shipping_details ON orders.order_id = shipping_details.orders_order_id;

5. CONCLUSION

I have created an E-commerce database for this project which contains several different relationships, attributes, entities, and different keys.

Overall, the project was good. I did not find any difficulty in making ER, EER diagrams or in writing queries.

6. REFERENCES

I created the ER diagram on this website.

(2015)

7. APPENDIX