Information Management **Data Modelling**

LEVEL 1
COMPUTING SCIENCE 1Q

Dr Craig Macdonald

Craig.Macdonald@glasgow.ac.uk

Room M101 Lilybank Gardens

Database design lifecycle

- Requirements analysis
 - O User needs; what must database do?
- Conceptual design
 - o High-level description; often using E/R model

- Logical design
 - o Translate E/R model into (typically) relational schema
- Schema refinement
 - Check schema for redundancies and anomalies
- Physical design/tuning
 - o Consider typical workloads, and further optimise

The Entity-Relationship Model

What is an ER Model?

Entity Relationship Model

- A conceptual data model
 - later mapped to a logical data model or schema (definitions of TABLES)
 - o this in turn is mapped to a physical model by the DBMS
- Most common method for semantic modelling of DB
- Simple and highly applicable

What is an ER Model?

- Usually described using *Entity-Relationship Diagrams*
 - O Describes type of information to be stored in a database
 - Provides an overview and classifications of used terms and their relationships

The Entity-Relationship Model

- Data in an ER Model is described in terms of three key concepts:
 - Entities
 - ${\color{red}\circ} Relationships$
 - Attributes

Entities

- An entity is a uniquely identifiable object in the real world about which we wish to store data
 - For example: The Bank of Scotland, The University of Aberdeen, Tony Blair, Celtic Football Club, BBC, a car......
- A thing which is recognised as being capable of an independent existence and which can be uniquely identified

Entities

Entities can be thought of as nouns

- O Can be a **physical object** such as a house or a car
- O Can be an **event** such as a house sale or a car service
- Can be a **concept** such as a customer transaction

Employee

Entities

- Entities are grouped together into 'categories' called entity types or entity sets
 - Employee, Department, Project
- An entity is an instance of a given entity-type
- There are usually many instances of an entity-type

Subtyping

- A subtype is an entity type that inherits the properties of its parent type
 - e.g. programmer & manager can be represented as subtypes of employee
- Employee attributes (name, NIN, etc) belong to programmer and manager by virtue of being subtypes of employee
- Subtypes may be
 - o disjoint must belong to exactly one subtype
 - o inclusive may belong to either or both

Subtyping notation 'd' for disjoint or 'o' for inclusive

Relationships

- Captures how two or more entities are related
- Can be thought of as verbs, linking two or more nouns
- Examples:
 - an owns relationship between a company and a computer
 - a *supervises* relationship between an employee and a department
 - a performs relationship between an artist and a song
 - a *proved* relationship between a mathematician and a theorem

Relationship Degrees The Degree of a relationship is the number of entity types participating Binary relationships 2 participating entity types Employee works for Department Ternary relationships 3 participating entity types a Manager manages a Project in a Department

• One-to-one (1-1) • Each manager manages ONLY one project • Each project is managed by ONLY one manager

Essential Reading

- After this lecture
 - o Rolland, Chapter 2
 - × 2.1, 2.3.1
- Before next lecture
 - o Rolland, Chapter 3
 - × 3.1, 3.2
 - O Rolland, Chapter 4
 - × 4.1

From written Scenario to an ER Model

- Identify the Entities, their Attributes, and all Relationships involved in any given scenario
- Represent this in an Entity-Relationship Diagram
- ER Diagram (and model) can then be used to implement the actual relationship tables in the database itself (we will do this in the lab in week 3)

Constructing an ER diagram

- Identify the entity types (in boxes)
- 2. Identify each entity types' properties
- 3. Decide which properties are attributes (connected to entity in oval)
- Decide which attributes could be keys
- Select primary key (underlined attribute)
- 6. Determine which properties infer relationships (labelled diamond between the participating entities)
- Decide on the cardinality and participation of the relationship (numbers at entities involved in relationship; single line Vs double line at entity)

An Example Scenario

A company has *a* set of departments. Each department has a name, number, manager and possibly several locations. The manager is an employee and started managing the department on a given date. A department controls several projects, each with a name, number and location

Each employee has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An employee may work on many projects, not all in their own department, and works X hours on each of these projects. Each employee has a set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.

(1) Identify Entities in the 'Company' Scenario

The Example Scenario

A company has *a* set of **departments**. Each department <u>has</u> a name, number, manager and possibly several locations. The manager <u>is an employee</u> and started <u>managing</u> the department on a given date. A department <u>controls</u> several **projects**, each with a name, number and location

Each **employee** has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An **employee** may <u>work on</u> many <u>projects</u>, not all in their own department, and <u>works</u> X hours on each of these projects. Each <u>employee</u> <u>has a</u> set of **dependants**, each with a name, date-of-birth, sex and familial relationship to the employee.

Entities in the Company Scenario Departments, Employees, Projects, Dependants Notes Company is not an entity type - it is the whole database Some things are relationships rather than entities themselves Managers? "The manager is an employee" Supervisors? "Each employee has a supervisor"

(2) Identify Attributes in Company Scenario

The Example Scenario

A company has α set of departments. Each department has a **name**, **number**, manager and possibly several **locations**. The manager is an employee and started managing the department on a **given date**. A department controls several projects, each with a **name**, **number** and **location**.

Each employee has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An employee may work on many projects, not all in their own department, and works X hours on each of these projects. Each employee has a set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.

Attributes in the Company Scenario

- The attributes of the company database are:
 - O Department name, number, {locations}
 - Employee <u>National Insurance Number</u>, **name**, **address**, salary, sex, birthdate,
 - O Project name, number, location
 - O Dependent name, sex, DofB, relationship

Note – again – watch out – don't simply make everything an attribute....some things are relationships, or attributes of relationships – not the entity itself

Attributes in the Company Scenario

How to represent attributes of an entity in an ER diagram:

(3) Identify Relationships in Company Scenario

The Example Scenario

A **company** has a set of **departments**. Each department has a name, number, manager and possibly several locations. The manager is an employee and started managing the department on a given date. A **department** controls several **projects**, each with a name, number and location

Each employee has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An *employee* may <u>work on many *projects*</u>, not all in their own department, and <u>works X hours</u> on each of these projects. Each employee has a set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.

Relationships in the Company Scenario

- A company <u>has a</u> set of departments
- A department *controls* several projects
- An employee may <u>work on</u> many projects, and <u>works</u> X hours on each of these projects.

Relationships in the Company Scenario

Relationships with their own attributes

- Each employee <u>has a</u> set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.
- The manager is an employee and started managing the department on a given date

Constructing an ER diagram

- 1. Identify the entity types (in boxes)
- 2. Identify each entity types' properties
- 3. Decide which properties are attributes (connected to entity in oval)
- 4. Decide which attributes could be keys
- 5. Select primary key (underlined attribute)
- 6. Determine which properties infer relationships (labelled diamond between the participating entities)
- Decide on the cardinality and participation of the relationship (numbers at entities involved in relationship; single line Vs double line at entity)

Essential Reading

- After this lecture
 - o Rolland, Chapter 2
 - × 2.1, 2.3.1
- Before next lecture
 - o Rolland, Chapter 3
 - × 3.1, 3.2
 - ORolland, Chapter 4
 - × 4.1