Técnicas de Busca e Ordenação (TBO)

Laboratório 6 – Simulação Dirigida por Eventos

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (UFES)

(Material baseado nos slides do Professor Eduardo Zambon)

Simulação de colisões de partículas

Objetivo: Simular o movimento 2D de N partículas que se comportam segundo as leis de colisão elástica.

Simulação de colisões de partículas

Objetivo: Simular o movimento 2D de *N* partículas que se comportam segundo as leis de colisão elástica.

Modelo físico:

- Partículas em movimento interagem entre si e com as paredes via colisões elásticas. (Veja Física I - Mecânica.)
- Cada partícula é um disco com posição, velocidade, massa e raio.
- Nenhuma outra força atuando.

Simulação dirigida por tempo (time-driven simulation)

Funcionamento:

- Discretizar o tempo em intervalos de tamanho dt.
- Atualizar a posição de cada partícula depois de cada dt unidades de tempo, verificando sobreposições.
- Se há sobreposição, retorne o relógio até o momento da colisão, atualize a velocidade das partículas que colidiram e continue a simulação.

Simulação dirigida por tempo (time-driven simulation)

Principais desvantagens:

- Aproximadamente N²/2 verificações de sobreposição por intervalo de tempo.
- Simulação é muito lenta se dt é muito pequeno.
- Podemos perder colisões se dt é muito grande. (Se as partículas em rota de colisão não se sobrepõem quanto estamos olhando.)

Simulação dirigida por eventos (*event-driven sim.*)

Modifique o estado do sistema somente quanto algo de interessante acontece.

- Entre colisões, as partículas se movem em linha reta.
- Focar somente nos instantes de tempo em que uma colisão ocorre.
- Manter uma fila com prioridades (PQ) de eventos de colisão, ordenados por tempo.
- Remover o mínimo = buscar próxima colisão.

Previsão de colisão: Dados a posição, velocidade e raio da partícula, quando será a sua próxima colisão com uma parede ou outra partícula.

Resolução de colisão: Se uma colisão ocorreu, atualize as informações da(s) partícula(s) de acordo com as leis da física.

Previsão e resolução de colisões

Modelo físico é complicado, mas já foi implementado!

Previsão de colisão:

- time_to_hit(Particle *p, Particle *q)
- time_to_hit_vertical_wall(Particle *p)
- time_to_hit_horizontal_wall(Particle *p)

Resolução de colisão:

- bounce_off(Particle *p, Particle *q)
- bounce_off_vertical_wall(Particle *p)
- bounce_off_horizontal_wall(Particle *p)

Sistema de colisões: inicialização

Inicialização:

- Preencher PQ com as colisões potenciais com as paredes.
- Preencher PQ com as colisões potenciais entre partículas.
- Potenciais porque uma colisão pode ser invalidada.

Sistema de colisões: loop principal

Loop principal:

- Remova o próximo evento de PQ (menor prioridade = t).
- Se o evento foi invalidado, ignore-o.
- Avance todas as partículas para o tempo t, em uma linha reta.
- Atualize as velocidades das partículas em colisão.
- Preveja as futuras colisões das partículas envolvidas e insira os eventos em PQ.

Atividade

Realize os seguintes passos para completar a atividade deste laboratório.

- Baixe o código de template e os arquivos de entrada do AVA.
- Leia e entenda o código fornecido. Os comentários marcados com TODO indicam os locais que você deve modificar.
- Implemente (e teste) uma fila com prioridade mínima para ordenar os eventos. Veja o arquivo PQ.c fornecido.
- Implemente a simulação de eventos. Veja o arquivo colsys.c fornecido.
- **5** Comece testado a simulação para a entrada pendulum4.txt, que é a mais simples.
- Inicialmente, desative a GUI para os seus primeiros testes. Quando tudo estiver OK, ative-a novamente.