250B: Commutative Algebra For the Morbidly Curious

Nir Elber

Spring 2022

CONTENTS

Contents		2
_	Introduction to Dimension 1.1 April 7	3
Lie	st of Definitions	Q

THEME 1

INTRODUCTION TO DIMENSION

In this sense the algebraic geometers have never left paradise: There is no snake (that is, Peano curve) in the garden.

—David Eisenbud

1.1 April 7

We continue.

1.1.1 Fractional Ideals

We continue discussing fractional ideals. Last time we showed the following results.

Lemma 1.1. Fix a Noetherian domain R. Then M is invertible if and only if M is isomorphic to some nonzero fractional ideal.

We were also in the middle of the following proof, which we will finish today.

Lemma 1.2. Fix a Noetherian domain R. If I and J are nonzero fractional ideals, then

$$IJ \cong I \otimes_R J$$
 and $I^{-1}J \cong \operatorname{Hom}(I.J)$.

Proof. The map

$$I \otimes_R J \to IJ$$

is by $a \otimes b \mapsto ab$. This is of course surjective, so we just need injectivity. It suffices to show injectivity upon localizing by any prime \mathfrak{p} . But now we are looking at the map

$$I_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} J_{\mathfrak{p}} \to (IJ)_{\mathfrak{p}},$$

which is injective because $I_{\mathfrak{p}}$ and $J_{\mathfrak{p}}$ are both free $R_{\mathfrak{p}}$ -modules (by definition), so we get the injection here automatically because $R_{\mathfrak{p}}$ is an integral domain.

The map

$$I^{-1}J \to \operatorname{Hom}_{\mathcal{B}}(I,J)$$

is by sending t to $\mu_t: x \mapsto tx$. This map is injective because $\mu_{t_1} = \mu_{t_2}$ implies they are equal on $a \in I$ (say), so $t_1 = t_2$ because R is an integral domain. In fact, we can even say that μ_t is injective for each nonzero t.

It remains to show surjectivity. Well, pick up some R-module homomorphism $\varphi: I \to J$. Now, for some $f \in I \setminus \{0\}$, suppose $\varphi(f) = g$ so that we may consider

$$\mu_{g/f}(f) = g,$$

and we can check that $\mu_{q/f}=\varphi$ everywhere by some computation.

Here is another helpful result.

Lemma 1.3. Fix a Noetherian domain R. Then $I \subseteq K(R)$ is an invertible fractional ideal if and only if $I^{-1}I = R$.

Proof. On one hand, we see that I being invertible implies that $I^{-1}I \cong \operatorname{Hom}_R(I,I) \cong R$. On the other hand, suppose $I^{-1}I = R$. Localizing gives us

$$I_{\mathfrak{p}}I_{\mathfrak{p}}^{-1} = R_{\mathfrak{p}}.$$

But then $vI_{\mathfrak{p}} \not\subseteq \mathfrak{p}R_{\mathfrak{p}}$ for some $v \in I^{-1}$, so we can conclude $vI_{\mathfrak{p}} = R_{\mathfrak{p}}$, so I is indeed locally free.

As such, we are able to build the following group.

Definition 1.4 (Cartier divisors). Fix a Noetherian domain R. Then a *Cartier divisor* is an invertible fractional ideal.

From the above results, the Cartier divisors are an abelian group with respect to multiplication, which we all C(R).

Now, we note that we have a homomorphism

$$C(R) \to \operatorname{Pic} R$$

by $I\mapsto [I]$. Notably, Lemma 1.1 tells us that this homomorphism is surjective, and its kernel consists of ideals I such that [I]=[R], which means $I\cong R$ (as R-modules), which means I is principal, generated by some element of K(R). Thus, we have the exact sequence

$$K(R)^{\times} \to C(R) \to \operatorname{Pic} R \to 0.$$

We would like to make this have 0s on the end, so we note that $a \in K(R)^{\times}$ will have (a) = R if and only if $a \in R^{\times}$, so we get to write

$$0 \to R^{\times} \to K(R)^{\times} \to C(R) \to \operatorname{Pic} R \to 0.$$

As such, we have a way to measure $\operatorname{Pic} R$ by objects only internal to K(R).

To make this behave a little better, we pick up the following lemma.

Lemma 1.5. The group C(R) is generated by invertible ideals $I \subseteq R$.

Proof. The point is to multiply an arbitrary invertible ideal from K(R) to R. Indeed, any invertible fractional ideal $I \in C(R)$ will at least live in K(R). Picking up any nonzero $a \in I \times R$, we note that

$$I = (a^{-1}) \cdot (aI),$$

and $aI \subseteq R$ by construction of a. So we are indeed able to generate C(R) as an R-module by these invertible ideals.

Let's see some examples.

Example 1.6. Fix a principal ideal domain R. Then every ideal is principal and hence isomorphic to R, so $\operatorname{Pic} R = 0$. Namely, C(R) only consists of principal ideals.

Exercise 1.7. We discuss $\operatorname{Pic} \mathbb{Z}[\sqrt{-5}]$.

Proof. Fix the Noetherian domain $R=\mathbb{Z}[\sqrt{-5}]$. This is normal because it is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{-5})$, as we showed on the homework. This is dimension 1 because R is integral over \mathbb{Z} , and $\dim \mathbb{Z}=1$. However, R is not a principal ideal domain because it is not factorial, as

$$(1+\sqrt{-5})(1-\sqrt{-5})=2\cdot 3$$

shows. In particular, the ideal $\mathfrak{p}:=\left(2,1+\sqrt{-5}\right)$ is not principal. In fact, $\mathbb{Z}/\mathfrak{p}=\mathbb{Z}/2\mathbb{Z}$ is a field, so \mathfrak{p} is maximal.

We will take on faith that $\mathfrak p$ is not principal because just look at it. To show that $\mathfrak p$ is invertible, we note that localizing at any prime which is not $\mathfrak p$ will automatically trivialize, so we have left to study

$$\mathfrak{p}R_{\mathfrak{p}}\subseteq R_{\mathfrak{p}}.$$

But in $R_{\mathfrak{p}}$, we see that

$$2 = \frac{1}{3} \cdot \left(1 - \sqrt{-5}\right) \left(1 + \sqrt{-5}\right),$$

SO

$$\mathfrak{p}R_{\mathfrak{p}} = \left(1 + \sqrt{-5}\right),\,$$

which is indeed principal.

Thus, we have a nontrivial element of $\operatorname{Pic} \mathbb{Z}[\sqrt{-5}]$. We can also compute

$$\mathfrak{p}^2 = \left(2, 1 + \sqrt{-5}\right)^2 = \left(4, 2 + 2\sqrt{-5}, -4 + 2\sqrt{-5}\right) = \left(4, 2 + 2\sqrt{-5}, -6\right) = \left(2, 2 + 2\sqrt{-5}, -6\right) = (2),$$

so this is indeed principal. So $\mathfrak p$ is of order 2 in $\operatorname{Pic} \mathbb Z[\sqrt{-5}]$. In fact, this is an isomorphism, which one can see by taking Math 254A.

Example 1.8. Fix $R:=k[x,y]/\left(y^2-x^3\right)\cong k\left[t^2,t^3\right]$ so that k[t] is the normalization of R. Now, any ideal of k[t] is principal, so $\operatorname{Pic} k[t]=0$. However, for any invertible ideal I of k[t], then $I\cap k\left[t^2,t^3\right]$ will remain invertible by tracking through the definition. For example, if we take 1+at as a varies over k, we have a map

$$k \to \operatorname{Pic} R$$

by $a \mapsto (1+at)$, which turns out to be an isomorphism. For more, see exercises 11.15 and 11.16.

Remark 1.9. It is not technically necessary for R to be a domain in the above results, but the proofs are more annoying. Namely, instead of using the fraction field K(R), one should use the total quotient K(R).

1.1.2 Divisors

We now talk about divisors a little more generally. We pick up the following definition.

Definition 1.10 (Pure codimension). Fix a Noetherian domain R. Then $I \subseteq R$ has pure codimension 1 if and only if every prime associated to I has codimension 1.

Track through the map $\mathbb{Z} \to \mathbb{Z}[\sqrt{-5}]/\mathfrak{p}$, and we can note that it is surjective and has kernel (2).

Theorem 1.11. Fix a Noetherian domain R such that $R_{\mathfrak{m}}$ is factorial for each maximal ideal \mathfrak{m} . Then the following are true.

- (a) An ideal $I \subseteq R$ is invertible if and only I has pure codimension 1.
- (b) An invertible fractional ideal I can be written uniquely as

$$I = \mathfrak{p}_1^{m_1} \cdots \mathfrak{p}_n^{m_n},$$

for distinct prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ of codimension 1.

We will prove this momentarily, but let's talk about some consequences.

Corollary 1.12. Fix a Noetherian domain R. Then C(R) is a free abelian group generated by prime ideals $\mathfrak p$ of codimension 1.

Proof. This follows directly from part (b) of the theorem.

Here is the case that number theorists care about.

Definition 1.13 (Dedekind). A *Dedekind domain* is a Noetherian normal domain of dimension 1.

Notably, in a Dedekind domain, all primes of codimension 1 are maximal, which are all now invertible by (a) of the theorem. In particular, $R_{\mathfrak{m}}$ is indeed factorial for all maximal ideals \mathfrak{m} because we showed last class that a Noetherian domain being normal is equivalent to all the primes \mathfrak{p} associated to a principal ideal has $\mathfrak{p}R_{\mathfrak{p}}\subseteq R_{\mathfrak{p}}$ principal, which makes $R_{\mathfrak{p}}$ a discrete valuation ring and in particular factorial.

We now prove our theorem.

Proof of Theorem 1.11. We go one at a time.

- (a) Fix I an invertible fractional ideal. Then $R_{\mathfrak{m}}$ is factorial, so we showed a while ago that this implies $\mathfrak{m}R_{\mathfrak{m}}$ (which is a codimension-1 prime) must be principal, so we are done.
 - We now show the other direction. Well, if $\mathfrak p$ is a prime of codimension 1, then place $\mathfrak p$ in some maximal ideal $\mathfrak m$, and we see that $\mathfrak p_{\mathfrak m}$ is principal and hence codimension 1 in the factorial ring $R_{\mathfrak m}$. This finishes this direction.
- (b) Fix an invertible fractional ideal I. Then we know that any prime $\mathfrak p$ associated to I has codimension 1, by part (a). To start, we show that I is a finite product of primes. Well, otherwise we could find an ideal I of R maximal with respect to not being a product of primes, and place I in a maximal ideal $\mathfrak m$. Of course, $I \subsetneq \mathfrak m$ because $\mathfrak m$ is its own factorization, so we look at

$$\mathfrak{m}^{-1}I \subseteq R$$
.

Notably, $\mathfrak{m}^{-1}I \supseteq I$ would imply that $\mathfrak{m}^{-1}I$ would have a factorization into primes, giving I a factorization into primes.

So we have left to show $I \subsetneq \mathfrak{m}^{-1}I$ require using that R is normal. In particular, $\mathfrak{m}^{-1}I = I$ would imply, by the Cayley–Hamilton theorem, we have that every element $x \in \mathfrak{m}^{-1}$ is integral over R and hence is in R, so $\mathfrak{m}^{-1} = R$, which does not make sense.

Lastly, we show uniqueness. Well, if

$$\prod_{k=1}^m \mathfrak{p}_k = \prod_{\ell=1}^n \mathfrak{q}_\ell,$$

we pick up some \mathfrak{q}_n , and by the product, we can say that some \mathfrak{p}_k contains \mathfrak{q}_1 . But \mathfrak{p}_k has codimension 1, so $\mathfrak{p}_k = \mathfrak{q}_1$, so we can cancel from both sides and then induct downwards.

With the above in mind, we see that we are justified in only caring about the primes of codimension 1. This gives us the following definition.

Definition 1.14 (Divisor). Fix a Noetherian domain R. Then the group of *divisors* Div R is the free abelian group generated by all primes of codimension 1 (as letters).

Notably, there is a good homomorphism

$$\varphi: C(R) \to \text{Div } R$$
,

though they are not the same. To see this, take an invertible ideal $I \in C(R)$ and then set

$$\varphi(I) := \sum_{\mathfrak{p}} \ell(R_{\mathfrak{p}}/I_{\mathfrak{p}})[\mathfrak{p}].$$

Notably, the length $\ell(R_{\mathfrak{p}}/I_{\mathfrak{p}})$ is finite because $\dim R_{\mathfrak{p}}/I_{\mathfrak{p}}=0$ (making $R_{\mathfrak{p}}/I_{\mathfrak{p}}$ Artinian) by the principal ideal theorem: we get $\dim R_{\mathfrak{p}}=1$ and $\dim I_{\mathfrak{p}}=1$, so we bound $\dim R_{\mathfrak{p}}/I_{\mathfrak{p}}$ down to 0. It requires some work to show that φ is a homomorphism. Namely, we have to show that

$$\ell(R_{\mathfrak{p}}/(IJ)_{\mathfrak{p}}) \stackrel{?}{=} \ell(R_{\mathfrak{p}}/I_{\mathfrak{p}}) + \ell(R_{\mathfrak{p}}/I_{\mathfrak{p}}).$$

We are able to force $I_{\mathfrak{p}}$ and $J_{\mathfrak{p}}$ to be principal by using our theory of modules of finite length, so by replacing R with $R_{\mathfrak{p}}$, we are showing

$$\ell(R/(IJ)) \stackrel{?}{=} \ell(R/I) + \ell(R/J),$$

where I=(a) and J=(b). But then we can build the filtration for R/(IJ) by hand by zippering the filtrations for R/I and R/J together.

Remark 1.15. The homomorphism φ is in general not injective, but it will be injective when R is also normal. The main idea is that, if R is normal, then $R_{\mathfrak{p}}$ will be factorial and in particular a discrete valuation ring, so $\ell(R_{\mathfrak{p}}/I_{\mathfrak{p}})$ vanishing everywhere forces I to vanish.

LIST OF DEFINITIONS

Cartier divisors, 4

Dedekind, 6

Divisor, 7

Pure codimension, 5