

Ailerons

Glenn Research Center

Ailerons

MICHAEL AYEDUN ERIK CARRION

Data Description

Goal: Predict the control action of the aircraft's ailerons - reverse engineer human control skills to serve as a model for an auto-pilot system

Data Set:

- 13,750 observations
- 40 Predictors represent the state of the aircraft
- No missing values
- No categorical variables

Cross Validation Curves

Run Time: .406 seconds

Run Time: .343 seconds

Run Time: .317 seconds

R² Boxplots for Training and Test Data

Residual Boxplots for Training and Test Data

Coefficent Plots for lasso

Coefficent Plots for ridge

Coefficent Plots for Elastic net

Feature Importance Plots for Random Forest

Important Variables

- 7, 3, & 6 : absRoll, p, curRoll
- No Dictionary Interpretation Difficult

Accuracy vs. Run Time

METHOD	90% R ² INTERVAL	FULL FIT TIME
Ridge	.80668220	0.42
Lasso	.80968254	0.33
Elastic Net	.80968255	0.35
Random Forest	.79508160	116.98

Concluding Remarks

- Random Forest Tends to overfit, very slow. Multicollinearity an issue.
- Lasso, Ridge, Elastic Net Solid performance. Reduced Variance at the cost of added bias
- Next Steps:
 - Refine the Ridge, Lasso, or Elastic Net Model.