ACTIVITATS UD1: INTRODUCCIÓ ALS SISTEMES INFORMÀTICS

Prof. Manuel Enguidanos
SISTEMES INFORMÀTICS

Cicle Formatiu de Grau Superior de Desenvolupament d'Aplicacions Web

1. Explica qui és Von Neumann en el món de la informàtica:

John Von Neumann fue un matemático, físico, ingeniero, economista y científico de la computación húngaro-estadounidense que murió en 1957 a la edad de 53 años. Es considerado uno de los científicos más influyentes del siglo XX.

- Sus contribuciones a la informática incluyen la arquitectura de Von Neumann y el concepto de programa almacenado.
- En física cuántica, desarrolló la teoría matemática de la mecánica cuántica.
- En economía, desarrolló la teoría de juegos.

2. Dibuixa i explica l'esquema d'una arquitectura Von Neumann:

La arquitectura de Von Neumann es el diseño básico de todos los ordenadores modernos. Consta de tres componentes principales:

- Unidad central de proceso (CPU): Se considera el componente principal del ordenador ya que controla todo su funcionamiento. En su interior podemos encontrar:
 - Unidad de control (UC): controla el funcionamiento del ordenador enviando señales al resto de elementos para indicar cual es el que debe ponerse en funcionamiento en cada momento.
 - Unidad aritmética y lógica (ALU): realiza los cálculos necesarios.
- Memoria: almacena los datos y las instrucciones del programa.
- Unidad de entrada/salida (E/S): Se encarga de la comunicación entre la CPU y los periféricos.

3. Per a què serveixen els registres interns de la CPU? Cita els tipus de registres que pot tindre una CPU.

En el interior de la CPU existen 2 componentes principales: ALU y UC.

En el interior de la ALU encontramos los siguientes componentes:

- Registro de datos (RD): son los datos de entrada con los que se va a operar.
- Acumulador: almacena el resultado de la última operación.
- Registro de estado (RE): almacena el estado de la operación.
- Circuito operacional: realizas las operaciones aritmético/lógicas.

En el interior de la UC encontramos los siguientes componentes:

- Registro de instrucción (RI): contiene la instrucción que se está ejecutando.
- Registro contador de programa (CP): almacena la dirección de memoria donde está la siguiente instrucción.
- Decodificador: interpreta la operación.
- Secuenciador: genera microórdenes para que se ejecute la instrucción del RI.
- Reloj: sincroniza todas las órdenes.

4. Quins registres intervenen en una operació de lectura i d'escriptura en la memòria principal?

- Registro de direcciones: almacena la dirección de la memoria donde se va a realizar la lectura/escritura.
- Registro de intercambio: contiene el dato escrito o leído.
- Selector de memoria: el encargado de leer o escribir el dato.

5. Quants tipus de busos existeixen en l'ordinador? Dona una breu explicació de cadascun d'ells.

- Bus de datos: canal por el que se transportan los datos para procesar o para guardar en memoria.
- Bus de direcciones: canal por el se transportan las direcciones donde leer o escribir los datos.
- Bus de control: envía a la UC las señales para indicar que componente debe entrar en funcionamiento.

6. Explica els components pels quals estan compost els processadors.

El procesador tiene 2 componentes principales: ALU y UC (Especificados en detalle en la pregunta 3 aprovechando los dibujos)

7. Mira les propietats del teu ordinador i calcula quina capacitat de memòria té el teu equip:

Tal y como podemos apreciar la RAM tiene una capacidad de 8Gb (8*10⁹ bytes), es decir, 8.000 millones de bytes.

Especificaciones del dispositivo		
Nombre del dispositivo	2A1PC02	
Nombre completo del dispositivo	2A1PC02.ad.fpmislata.com	
Procesador	Intel(R) Core(TM) i3-4160 CPU @ 3.60GHz 3.60 GHz	
RAM instalada	8,00 GB (7,90 GB usable)	
Identificador de dispositivo	85BC8371-A368-40E5-B156- E227E870B944	
ld. del producto	00380-00000-00001-AA765	
Tipo de sistema	Sistema operativo de 64 bits, procesador basado en x64	
Lápiz y entrada táctil	La entrada táctil o manuscrita no está disponible para esta pantalla	

8. Relaciona les següents memòries amb la capacitat adequada i realitza una piràmide de jerarquia de memòria referent a la capacitat de cadascuna d'elles.

Memoria	Capacidad
Caché	500 GB
RAM	256 KB
Auxiliar	3 bytes
Registros CPU	4 GB

9. Relaciona les següents memòries amb el seu temps d'accés de forma adequada i després realitza una piràmide de jerarquia de memòria.

Memoria	Tiempo de acceso
Caché	0.006 ns
RAM	600 ms
Auxiliar	2 ns
Registros CPU	6 ns

Relaciona cada bus de comunicació amb les seues funcions:

11. Relaciona registres de la CPU amb la seua funció.

12. Resol les següents questions sobre representació numèrica, conversió entre sistemes i operacions bàsiques. Explica tot el procés realitzat per arribar a la sol·lució correcta, jo te done la sol·lució de les conversions perquè tu ho comproves directament si el procés és el correcte.

128 64 32 16 8 4 2 1 1 1 1 1 1 1 1 1

- **12.1.** Converteix el decimal 74 a binari 1001010 => 2⁶ +2 ³ +2¹
- 12.2. Converteix el nombre decimal 25 a binari $11001 = 2^4 + 2^3 + 2^0$
- **12.3.** Converteix a binari el decimal **75** 1001011 => 2⁶ + 2³ +2¹ + 2⁰
- 12.4. Converteix a binari el decimal 129 $10000001 \Rightarrow 2^7 + 2^0$
- **12.5.** Converteix a binari el decimal 3,75 3.75 => 11.11

Parte entera: 3 => 11 Parte decimal: 0.75 * 2 = 1.5; 0.5 * 2 = 1.0;

12.6. Converteix a binari el número 12,125

12.125 1100.
Parte entera: 12 => 1100.001
Parte decimal:
0.125 * 2 = 0.25;
0.25 * 2 = 0.5;
0.5 * 2 = 1.0;

12.7. Converteix el binari 10010110 a decimal. 10010110 => 2^7 + 2^4 + 2^2 + 2^1 = 150

12.8. Converteix el binari 0100111,01101 a decimal.

 $0100111,01101 \Rightarrow 39.40625;$

Parte entera: $0100111 \Rightarrow 2^5 + 2^3 + 2^2 + 2^0 = 39$; Parte decimal: $01101 \Rightarrow 2^{-2} + 2^{-3} + 2^{-5} = 0.40625$;

12.9. Converteix el binari 110,0011 a decimal.

110,0011 => 6.1875;

Parte entera: $110 \Rightarrow 2^2 + 2^1 = 6$;

Parte decimal: $0011 \Rightarrow 2^{(-3)} + 2^{(-4)} = 0.1875$;

12.10. Converteix a decimal el binari 111,011.

 $111,011 \Rightarrow 7.375;$

Parte entera: $111 \Rightarrow 2^2 + 2^1 + 2^0 = 7$; Parte decimal: $011 \Rightarrow 2^{-2} + 2^{-3} = 0.375$;

12.11. Converteix a decimal el binari 11100,101.

 $11100,101 \Rightarrow 28.625;$

Parte entera: $11100 \Rightarrow 2^2 + 2^1 + 2^0 = 28$; Parte decimal: $101 \Rightarrow 2^{-1} + 2^{-1} = 0.625$;

12.12. Passa a binari l'hexadecimal EF02.

EF<mark>0</mark>2 => 1110 1111 0000 0010

12.13. Passa a binari l'hexadecimal 73B,F1.

73B,F1 => 0111 0011 1011 1111 0001

12.14. Passa a hexadecimal el binari 101011011.

0001 0101 1011 => 15B

12.15. Passa a binari l'octal 527.

527 => 101 010 111

12.16. Passa a octal el binari 10101100.

010 101 100 => 254

13. Resol les següents questions sobre conversió entre sistemes i operacions bàsiques. Explica tot el procés realitzat per arribar a la sol·lució correcta.

SUMA:

- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 1 y nos llevamos una

RESTA:

- 0 0 = 0
- 0 1 = 1 y nos llevamos una
- 1 0 = 1
- 1 1 = 0

MULTIPLICACIIÓN:

- 0 * 0 = 0
- 0 * 1 = 0
- 1 * 0 = 0
- 1 * 1 = 1
- **13.1.** Realitza la següent suma en binari: 10000+101001 111001
- **13.2.** Realitza la següent suma: 1010111+100001 1111000
- **13.3.** Realitza la següent resta: **1110101-100001** 1010100
- **13.4.** Realitza la següent resta: **1110101-111010** 111011
- **13.5.** Realitza la següent suma: **1010+100011** 101101
- 13.6. Realitza la següent multiplicació:

14. Per a la realització d'aquest exercici és necessari llegir abans la informació sobre portes lògiques, que es poden trobar en el següent enllaç: https://es.wikipedia.org/wiki/Puerta_I%C3%B3gica

Una vegada llegida la informació, pots contestar a les següents preguntes.

La UAL és capaç de realitzar operacions aritmètiques i lògiques. Quines són les operacions lògiques principals? Què són les portes lògiques?

- Las puertas lógicas son dispositivos electronicos que nos permiten realizar operaciones de tipo booleano (operaciones lógicas).
- Las operaciones lógicas principales son: AND: Se realiza mediante la multiplicación y el resultado es 1 si A y B son 1.

Entrada A	Entrada ${\cal B}$	Salida $A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

OR: Se realiza mediante la suma y el resultado es 1 si A o B son 1.

Entrada A	Entrada ${\cal B}$	Salida $A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1

NOT: Es la negación de cualquier operación anterior. El resultado es exactamente el opuesto.

Entrada A	Salida $\overline{\overline{A}}$
0	1
1	0

15. A través de l'eina en línia https://logic.ly/demo/, realitza el circuit equivalent a la funció F= A'B'C + AB'C' (utilitza les portes lògiques AND, OR i NOT).

