BACTERIA AND ARCHAEA

Evolution and the Natural World Lecture 9 06/10/2021

Vasili Pankratov (vasili.pankratov@ut.ee)

Phylogenetic trees

BACTERIA AND ARCHAEA

Overview

Prokaryotes Bacteria and Archaea

Archaea: similarities to bacteria

- Cell size and morphology
- Cell division
- Circular DNA
- Genome size
- Similarities in gene expression

Archaea: similarities to eukaryotes

- rRNA sequence
- Histones, homologous to the eukaryotic ones
- Homology of enzymes, involved in DNA replication and transcription

Archaea: unique features

Bacteria and Eukarya

- Some genes with no homologues in bacteria and eukaryotes
- Unique structure of their cell walls and flagella
- Atypical cell membranes

from Archaea. http://library.open.oregonstate.edu/microbiology/chapter/archaea/

Membranes: details

Archaea: metabolism and ecology

- Many but not all are extremophiles: thermophiles, halophiles
- Some live in marshes: methanogens
- No human pathogens discovered; but are present in the human gut
- Form communities with other archaea and bacteria

BACTERIA AND ARCHAEA

Biochemistry

B&A are ubiquitous

- "Normal" environment:
 - Water, soil, rock surface
- Extreme environment:
 - Hot springs and hydrothermal vents;
 - Glaciers;
 - Deep sea;
 - Salty, alkaline and acidic bodies of water;
 - Deserts
 - Environments with high levels of radiation
 - Earth crust (up to 5 km)

B&A have specific adaptations to their environment

Adaptations to harsh conditions

Problem	Solution
High temperature	Protein – more bonds, tRNA and rRNA – more G and C, monolayer membranes and other modifications of lipids
Low temperature	Antifreeze solutes
High salinity	High intracellular osmotic pressure
High/low pH	Ion transporters
Desiccation/high radiation	Free radicals scavengers, enhanced DNA repair

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184722

Energy source	sunlight	photo-			
	chemical reactions (e.g. oxidation during respiration)	chemo-			
Electron					
donor	organic compound (e.g. sugars)		organo-		trophes
Carbon source	inorganic compound (e.g. CO ₂)			auto-	
	organic compound (e.g. sugars)			hetero-	

Energy	sunlight	photo-			
	chemical reactions (e.g. oxidation during respiration)	chemo-			
Electron donor	inorganic compound (e.g. H ₂ , H ₂ S)		litho-		
	organic compound (e.g. sugars)		organo-		trophes
Carbon source	inorganic compound (e.g. CO ₂)			auto-	
	organic compound (e.g. sugars)			hetero-	

Energy	sunlight	photo-			
	chemical reactions (e.g. oxidation during respiration)	chemo-			
Electron					
donor	organic compound (e.g. sugars)		organo-		trophes
Carbon source	inorganic compound (e.g. CO ₂)			auto-	
	organic compound (e.g. sugars)			hetero-	

E.coli (like humans) is chemoorganoheterotrophes

Cyanobacteria (like plants) are photolithoautotrophes

Nitrifying bacteria are chemolithoautotrophes
(they get energy and electrons from NH₄⁺ > NO₂⁻ to fix CO₂)

Autotrophy in B&A

https://en.wikipedia.org/wiki/Riftia_pachyptila#/media/File: Riftia_tube_worm_colony_Galapagos_2011.jpg

- Conversion of CO₂ (CH₄, CH₃OH etc) to organic compounds needs energy (ATP and NADH)
- Energy sources: light or inorganic RedOx reactions (photo- and chemosynthesis)
- Great diversity of biochemical pathways of CO₂ fixation

Phototrophy in B&A

https://www.epa.gov/national-aquatic-resource-surveys/indicator s-cyanobacteria

- "Real" photosynthesis found in 5 groups of bacteria (Cyanobacteria, Chlorobi, Chlorofexi, Heliobacteria and alpha-proteobacteria) and in chloroplast-carrying organisms
- Horizontal gene transfer involved

Phototrophy in B&A

- "Real" photosynthesis means it involves chlorophylls, electron-transport chain, transmembrane H+ gradient and ATP synthase and is linked to autotrophy
- But details are different, e.g. only cyanobacteria (and chloroplasts) use H₂O and produce O₂
- There are other ways of converting light into useful energy (ATP). Example: bacteriorhodopsin of halophilic archaea which is a "light-powered" transmembrane H+ pump

Living together with others

- Complex microbial communities like microbial mats
- BTW these can form fossils (stromatolites)

Mutualistic symbionts

 $0.5 \mu m$

- Mitochondria and chloroplasts
- Some lichens
- Rhizobium (nodules on plant roots)
- Human (and other animals) gut, skin and mucosa microbiota (both B & A)

https://fineartamerica.com/featured/1-nodules-of-rhizobium-leguminosarum-dr-jeremy-burgessscience-photo-library.html

Parasitic Bacteria

- No pathogenic Archaea found so far
- All eukaryotes have bacterial pathogens
- Many pathogenic species of bacteria in different groups >
 - Pathogenicity is easily gained and lost; also due to HGT
- Some are intracellular pathogens (e.g. Chlamydia, Rickettsia, Mycobacterium) – the simplest cellular life forms known
- The line between parasites and mutualists is thin

BACTERIA AND ARCHAEA

Genetics

Genetic material

© Copyright. 2014. University of Waikato. All rights reserved.

- Typically 1 circular "chromosome" (=nucleoid) (+ plasmids)
- Many possible exceptions (linear chromosomes, more than 1 chromosome)

Chromosome vs plasmids

Chromosome

- Carry all the essential, "house-keeping" genes
- Control of copy number

Plasmids

- Normally are not essential can be lost
- But may carry genes like
 - Antibiotic resistance
 - Pathogenicity
 - Conjugation and DNA transfer
- Often many copies
- Are selfish elements

Prokaryotic genomes

- Genomes are small compared to those of eukaryotes (average 1 mln bp; 1000 genes)
- Normally genes make up most of the genome and an average gene is ~ 1 kb long
- (In eukaryotes a lot of DNA does not code for proteins)

Gene expression

 Most genes in Bacteria and Archaea are grouped into operons: groups of genes that are transcribed together into one transcript and are involved in a common process

Introns

- Typically Eukaryotic genes have introns
- Bacteria and Archaea also can have introns but these are less widespread and of different type compared to Eukaryotes

Gene content

- Number of genes varies even within a species
- Core genome genes found in every strain
- Pangenome all genes found in a particular species

B&A genomes are labile

- Genes can be easily lost if not essential
- Bacteria exchange genetic material horizontal (lateral) gene transfer (HGT/LGT)
 - HGT is of great importance for B&A evolution (a way to acquire new genes)
 - Can happen between distinct taxa, even between Bacteria and Archaea -> the concept of a species is very vague
 - The fraction of the genome recently acquired can exceed 15%

Transformation

- Bacteria cells can take DNA molecules from the environment
- These may get inserted into the chromosome if homologous
- Or such molecules can replicate on their own plasmids

Conjugation

- Presence of certain plasmids (F-factor in the case of E.coli) turn bacteria into **Donors**
- Donors have pili that they use to attach to recipient cells
- A copy of the plasmid is transmitted to the recipient cell

By Adenosine - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7831864

Transduction

- Viruses of B&A (phages)
 can randomly incorporate
 pieces of the host DNA and
 transfer it to other B&A cells
- Generalized random DNA fragments are transferred
- Specialized DNA close to viral integration site is transferred

Barriers to HGT

- Foreign DNA can get degraded by restriction enzymes and similar systems (CRISPR/Cas9)
- Foreign DNA has to be replicated in the cell have its origin of replication (plasmids) or integrate into host DNA
- Foreign DNA has to be expressed

BACTERIA AND ARCHAEA

Phylogeny

Systematics of Bacteria and Archaea

- Classical approach:
 - based on morphology and biochemistry, which change fast during evolution
 - restricted to cultivated species
- DNA-based approach:
 - no need to cultivate; DNA, isolated from the environment can be used metagenomics
 - usually rRNA genes are used
 - fewer problems with parallel evolution and trait loss
 - but horizontal gene transfer makes things complicated and challenges the very concept of a tree

Vertical vs horizontal inheritance

PLASTIDS MITOCHOR Other genes – the web of life COMMON ANCESTRAL COMMUNITY OF PRIMITIVE CELLS

EUKARYOTES

Genes involved in replication, transcription, translation – the tree of life

By Andrew Z. Colvin - Barth F. Smets, Ph.D., with permission, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69411999

ARCHAEA

Bacterial phyla (some examples)

- Cyanobacteria
- Proteobacteria (incl. Escherichia coli, Vibrio cholerae, Yersinia pestis, Helicobacter pilori)
- Spyrochetes (Borrelia burgdorferi, Treponema pallidum)
- <u>Firmicutes</u> (1 of 2 Gram+, incl. *Staphylococcus, Streptococcus, Bacillus, Clostridium*)
- <u>Actinobacteria</u> (2nd Gram+ group, incl. *Mycobacterium tuberculosis*, *M. leprae*, *Streptomyces*)

Archaea phyla

- Euryarchaeota widespread, incl. methanogens
- Crenarchaeota widespread, incl. thermophiles
- Asgardarchaeota deserved a lot of attention

B&A: key points

- Morphologically "simple", but highly adapted to their environment, e.g. by biochemical adaptations > enormous phenotypic diversity
- Phylogenetically highly diverged old MRCA
- HGT the concept of the web of life
- Important for understanding the origin of life and the origin of Eukaryotes