

Algorithmen in der Bioinformatik

3. Sequenz-Vergleiche - Dynamische Programmierung -

Prof. Dr. Gunnar Klau

Nach Jones & Pevzner: An Introduction to Bioinformatics Algorithms, Kapitel 6

DNA-Sequenz-Vergleiche

- Die Suche nach Ähnlichkeit einer Sequenz mit bekannten Genen ist die Methode zur Funktionsbestimmung
- 1984 fanden Russell Doolittle & Co. Ähnlichkeit zwischen einem krebsverursachenden Gen und einem normalem Wachstumsfaktor

Zystische Fibrose/Mukoviszidose

Zystische Fibrose: chronische, häufig tödliche Krankheit der Schleimdrüsen

- ➤ Führt zu Verstopfung der Bronchien → Atemprobleme
- autosomal rezessiv (++, +-, --)
- Verantwortliches Gen unbekannt bis 1989

Bioinformatik:

- 70% der Patienten haben dieselbe Mutation des CFTR-Gens
- Ähnlichkeit mit Genen, die als Transport-Kanäle in der Zellmembran fungieren
- Funktion: Cl—-Kanal
 (justiert Viskosität des Sekrets)

Zystische Fibrose

Sequenzvergleich: wozu und wie?

- Ähnlichkeit eines unbekannten Gens zu einem bekannten Gen gibt Hinweise auf Funktion
- Ähnlichkeits-Score erlaubt Aussagen über die Wahrscheinlichkeit gleicher bzw. ähnlicher Funktion
- Dynamische Programmierung ist eine Technik u. a. zum Aufdecken von Ähnlichkeiten zwischen Genen

Tourismus in Manhattan: Problem

Finde den Weg durch Manhattan (nur ost- und südwärts!), der an den meisten Attraktionen (*) vorbeikommt.

Wenn wir Kanten Gewichte geben (*=1, sonst 0), dann suchen wir den 'längsten' Pfad.

Tourismus in Manhattan: Formulierung

Ziel: Finde den längsten Pfad in einem gewichteten "Süd-Ost"-Gitter.

<u>Eingabe:</u> Ein gewichtetes Gitter *G* mit zwei speziellen Knoten (Quelle und Senke)

Ausgabe: Ein längster Pfad in G von Quelle zu Senke

TIM: Beispiel

TIM: Gieriger Algorithmus ist nicht exakt

Warum nur ein Problem gleichzeitig lösen?

- ➤ TIM: Suche den längsten Pfad von (0,0) nach (*m*, *n*)
- Verallgemeinertes Problem:
 Suche den längsten Pfad von (0,0) nach (i, j) für <u>alle</u> i = 1, ..., m,
 j = 1, ..., n.

Das allgemeine Problem sieht zwar schwieriger aus, ist aber keine große zusätzliche Arbeit:

Grundidee der dynamischen Programmierung!

Dynamische Programmierung (DP)

- > Idee
 - Zerteile Problem in kleinere Teilprobleme
 - Baue Lösungen größerer Probleme aus Lösungen kleinerer Probleme zusammen
 - Effiziente Realisierung eines rekursiven Algorithmus durch Speicherung von Teilresultaten
 - Speichere diese in DP-Tabelle
 - Kaufe dir Rechenzeit mit Speicherplatz
- Wichtige Überlegungen
 - Wie teile ich auf? Definiere Wert der Optimallösung rekursiv
 - Bestimme diesen Wert "bottom-up"

Richard E. Bellman

DP: Fibonaci numbers $F_n = F_{n-n} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$ fib(n)if n = 0: return 0; if n = 1: return 1;

else return fib (n-1) + fib (n-2)

TIM: Rekurrenz

Berechne *Score*(*i,j*) durch die Rekurrenz-Relation:

$$s_{i,j} =$$

Laufzeit: n x m (n = # Spalten, m = # Zeilen)

Manhattan ist kein perfektes Gitter

Score(B):
$$s_{A1} + \text{Gewicht der Kante } (A_1, B)$$
$$s_{B} = \max \quad s_{A2} + \text{Gewicht der Kante } (A_2, B)$$
$$s_{A3} + \text{Gewicht der Kante } (A_3, B)$$

Allgemeine Rekurrenz-Relation:

$$s_X = \max_{Y \in Vorgänger(X)} \{s_Y + Gewicht der Kante (Y, X)\}$$

Vorgänger(X) := {Knoten Y mit Kante Y \rightarrow X}

DAG: Directed Acyclic Graphs

:= Graphen mit gerichteten Kanten ohne Zyklen (d.h.: Kein Weg von einem Knoten zu sich selbst)

Wir brauchen eine Ordnung: Wenn wir Knoten X analysieren, müssen Werte für alle Vorgänger Y bereits vorliegen.

Topologische Ordnungen

Eine Nummerierung von Knoten heißt *topologische Ordnung* des DAG :⇔ jede Kante läuft von einem Knoten mit kleinerer Nummer zu einem Knoten mit größerer Nummer

Der längste Pfad in einem DAG: Problem

Ziel: Finde den längsten (d.h. am stärksten gewichteten) Pfad zwischen zwei Knoten in einem gewichteten DAG

<u>Eingabe</u>: Ein gewichteter DAG *G* mit zwei ausgezeichneten Knoten (Quelle und Senke)

Ausgabe: Ein längster Pfad in G von Quelle zu Senke

Der längste Pfad: Dynamische Programmierung

Rekurrenz-Relation:

$$s_x = \max_{Y \in Vorgänger(X)} \{s_Y + Gewicht der Kante(Y, X)\}$$

Laufzeit ist O(# Kanten)

Verschiedene Strategien:

Bsp: Münzenkette

Spielregeln:

- Auf dem Tisch liegt eine Kette von Münzen mit verschiedenem Wert.
- Ich kann entweder die erste oder die letzte Münze nehmen und behalten.
- Dann ist mein Gegenspieler dran...
- ...bis alle Münzen weg sind.

Ziel: möglichst viel gewinnen.

<u>Frage:</u> Kann ich vor Beginn des Spiels angeben, wieviel ich <u>mindestens</u> gewinne wenn ich bestmöglich spiele (egal, welche Züge mein Gegenspieler macht)?

Antwort: Dynamische Programmierung!

Rekurrenz für eine beliebige Teilsequenz von i...j: $G(i,j) = \max\{v_i + \min\{G(i+1,j-1), G(i+2,j)\}, v_j + \min\{G(i+1,j-1), G(i,j-2)\}\}$

I Minten mit Wert vi E IN für i EM

 $G(i,j) = \max \{ v_i + \min \{ G(i+2,j), G(i+1,j-1) \},$ $V_{j_{\pm}} + \min \{ G(i+1), j-1 \},$ $G(i,j-2) \} \}$

Anfgabe: projr., rek. / DP G(i,i) = Vi $G(i,i+1) = max \{Vi, Vi+1\}$

Alignments: 2-zeilige Darstellung

Für 2 DNA-Sequenzen:

v: ATGTTAT m = 7

w: ATCGTA n = 6

Alignment: $2 \times k$ -Matrix mit $k \ge \max(m,n)$

5 Matches 1 Einfügung 2 Löschungen

Indels (= INsertions & DELetionS)

Längste gemeinsame Teilsequenz: Problem

Ziel: Finde die längsten identischen, geordneten Teilsequenzen

Eingabe: 2 Sequenzen

$$\mathbf{v} = v_1 \, v_2 ... v_m$$

$$w = w_1 \ w_2 ... w_n$$

Ausgabe: Eine Abfolge von Positionen i für v und j in w mit

$$1 \le i_1 < i_2 < \dots < i_t \le m$$

$$1 \le j_1 < j_2 < \dots < j_t \le n$$

so dass t maximal ist und $v_{i_s} = w_{j_s}$ für alle s

Koordinaten *i*: 2 6 8 Elemente von *v*: Α Т C т G A Т Elemente von w: C Т G A Т Α 2 3 5 5 0 4 6 6 Koordinaten *j*:

$$(0,0)\rightarrow(1,0)\rightarrow(2,1)\rightarrow(2,2)\rightarrow(3,3)\rightarrow(3,4)\rightarrow(4,5)\rightarrow(5,5)\rightarrow(6,6)\rightarrow(7,6)\rightarrow(8,7)$$

LGT & Manhattan-Tourismus

Jeder <u>Pfad</u> ist eine gemeinsame Teilsequenz

Jede <u>diagonale Kante</u> gibt 1 zusätzliches Element

LGT Problem: Finde den Pfad mit den meisten diagonalen Kanten

LGT: Rekurrenz

Länge der LGT bis (i, j)

:

$$S_{i,j} = \max \begin{cases} S_{i-1,j} & i-1,j-1 \\ S_{i,j-1} & S_{i-1,j-1} + 1 \text{ wenn } v_i = w_j \end{cases}$$

$$i-1,j-1 & i-1,j \\ 0 & i,j-1 & i-1,j \\ i,j & i-1,j-1 & i-1,j-1 & i-1,j \\ i,j & i-1,j-1 & i-1,j-1 & i-1,j-1 \\ i,j & i-1,j-1 & i-1,j-1 & i-1,j-1 \\ i,j & i-1,j-1 & i-1,j-1 \\ i,j & i-1,j-1 & i-1,j-1 & i-1,j-1 \\ i,j & i-1,j-1$$

Edit-Abstand

:= Minimale Anzahl elementarer Operationen (Einfügungen, Löschungen, Substitutionen), um String \mathbf{v} in String \mathbf{w} zu überführen := $d_E(\mathbf{v},\mathbf{w})$

Hamming-Abstand:

Edit-Abstand:

Vergleicht immer
i-ten Buchstaben von v mit
i-tem Buchstaben von w

Vergleicht (für 'beste' i,j)

i-ten Buchstaben von v mit
j-tem Buchstaben von w

$$d_H(\mathbf{v},\mathbf{w}) = \mathbf{8}$$

$$d_E(\mathbf{v},\mathbf{w}) = \mathbf{2}$$

(trivial)

(nicht-trivial)

Beispiel: ATGTTAT → ATCGTAC

LGT im Edit-Graphen

und → sind Indels in v und w mit Score 0.

sind Matches mit Score 1.

→ Alignment-Pfad hat Score 5

Alternative Pfade können gleichen Score haben!

Initialisiere Reihe 0 und Spalte 0 mit Score 0 (Indel-Präfix)

LGT Algorithmus

```
1. LGT(v,w)
2. for i \leftarrow 1 to n
s_{i,0} \leftarrow 0
                                               O(nm) um das Gitter zu füllen
4. for j \leftarrow 1 to m
s_{0,j} \leftarrow 0
6. for i \leftarrow 1 to n
              for j \leftarrow 1 to m
8.
             if (v_i = w_i)
9.
                       s_{i,i} \leftarrow \max (s_{i-1,i}, s_{i,i-1}, s_{i-1,j-1} + 1)
10.
                  else
11.
                      s_{i,i} \leftarrow \max(s_{i-1,i}, s_{i,i-1})
12.
                  case:
13.
                                                                : b_{i,j} \leftarrow \text{``} \uparrow \text{``}
                      S_{i,j} = S_{i-1,j}
                                                     : b<sub>i,i</sub> ← "←"
14.
                      S_{i,j} = S_{i,j-1}
                      S_{i,j} = S_{i-1,j-1} + 1 and V_i = W_i : b_{i,j} \leftarrow {}^{"} \mathbb{R}^{"}
15.
16.
     return (s_{n.m}, b)
```

Ausgabe LGT: Backtracking


```
1. <u>PrintLGT(b,v,i,j)</u>
```

2. **if**
$$i = 0$$
 or $j = 0$

- 3. return
- 4. case

5.
$$b_{i,j} = \mathbf{K}^{"}$$
: PrintLGT(b,v, $i-1$, $j-1$)

- 6. print v_i
- 7. $b_{i,j} = \text{``} \leftarrow \text{``} : PrintLGT}(b, v, i, j-1)$
- 8. $b_{i,j} = \text{``} \uparrow \text{''} : PrintLGT}(b, v, i-1, j)$