Asymptotic Analysis of Linearly Elastic Shells. III. Justification of Koiter's Shell Equations

PHILIPPE G. CIARLET & VÉRONIQUE LODS

Communicated by the Editor

Abstract

We consider as in Parts I and II a family of linearly elastic shells of thickness 2ε , all having the same middle surface $S = \varphi(\bar{\omega}) \subset \mathbb{R}^3$, where $\omega \subset \mathbb{R}^2$ is a bounded and connected open set with a Lipschitz-continuous boundary, and $\varphi \in \mathscr{C}^3(\bar{\omega}; \mathbb{R}^3)$. The shells are clamped on a portion of their lateral face, whose middle line is $\varphi(\gamma_0)$, where γ_0 is a portion of $\partial \omega$ with length $\gamma_0 > 0$. For all $\varepsilon > 0$, let u^ε denote the covariant components of the displacement $u^\varepsilon_i g^{i,\varepsilon}$ of the points of the shell, obtained by solving the three-dimensional problem; let ζ^ε_i denote the covariant components of the displacement ζ^ε_i of the points of the middle surface S, obtained by solving the two-dimensional model of W.T. Kotter, which consists in finding

$$\boldsymbol{\zeta}^{\varepsilon} = (\boldsymbol{\zeta}_{i}^{\varepsilon}) \in \boldsymbol{V}_{K}(\omega) = \left\{ \boldsymbol{\eta} = (\boldsymbol{\eta}_{i}) \in H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega); \boldsymbol{\eta}_{i} = \partial_{v} \boldsymbol{\eta}_{3} = 0 \text{ on } \boldsymbol{\gamma}_{0} \right\}$$

such that

$$\begin{split} \varepsilon \int\limits_{\omega} a^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau}(\boldsymbol{\zeta}^{\varepsilon}) \gamma_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \ dy + \frac{\varepsilon^3}{3} \int\limits_{\omega} a^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\boldsymbol{\zeta}^{\varepsilon}) \rho_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \ dy \\ = \int\limits_{\omega} p^{i,\varepsilon} \eta_i \sqrt{a} \ dy \quad \text{ for all } \boldsymbol{\eta} = (\eta_i) \in V_K(\omega), \end{split}$$

where $a^{\alpha\beta\sigma\tau}$ are the components of the two-dimensional elasticity tensor of $S, \gamma_{\alpha\beta}(\eta)$ and $\rho_{\alpha\beta}(\eta)$ are the components of the linearized change of metric and change of curvature tensors of S, and $p^{i,\varepsilon}$ are the components of the resultant of the applied forces.

Under the same assumptions as in Part I, we show that the fields $\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}u_i^{\varepsilon}\,dx_3^{\varepsilon}$ and $\zeta_i^{\varepsilon}a^i$, both defined on the surface S, have the same principal part as $\varepsilon\to 0$, in $H^1(\omega)$ for the tangential components, and in $L^2(\omega)$ for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as $\varepsilon\to 0$, in $H^1(\omega)$ for

all their components. For "membrane" and "flexural" shells, the two-dimensional model of W.T. Korter is therefore justified.

Contents

1.	The two-dimensional Koiter shell equations	192
2.	Compared asymptotic behaviors of the solutions	
	of the three-dimensional and Koiter's equations	193
3	Conclusions and comments	199

1. The two-dimensional Koiter shell equations

This is the third part of a three-part work, the first (CIARLET & LODS [1996b]) and second (CIARLET, LODS & MIARA [1996]), henceforth simply referred to as "Part I" and "Part II", devoted to membrane and flexural shell equations. We refer to the "Introduction" of Part I for a general introduction to the asymptotic analysis of "thin" elastic structures and for an extensive list of relevant references.

The assumptions on the set ω and on the mapping φ , the notation, and the geometrical and mechanical description of the shell are the same as in Sec. 1 of Part I. As in Part II, γ_0 denotes a subset of the boundary γ of ω that satisfies length $\gamma_0 > 0$.

The two-dimensional linear shell equations of Koiter (cf. Koiter [1970]) read as follows: Let $\zeta_i^\varepsilon: \bar{\omega} \to \mathbf{R}$ denote the three covariant components of the displacement field of the points of the middle surface $S = \varphi(\bar{\omega})$ of the shell; this means that $\zeta_i^\varepsilon(y)\mathbf{a}^i(y)$ is the displacement of the point $\varphi(y)$. Then the unknown $\zeta^\varepsilon = (\zeta_i^\varepsilon)$ satisfies

$$\boldsymbol{\zeta}^{\varepsilon} \in V_K(\omega) := \{ \boldsymbol{\eta} = (\eta_i) \in H^1(\omega) \times H^1(\omega) \times H^2(\omega); \ \eta_i = \partial_{\nu} \eta_3 = 0 \text{ on } \gamma_0 \},$$

(1.2)
$$\varepsilon \int_{\omega} a^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau}(\boldsymbol{\zeta}^{\varepsilon}) \gamma_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \, dy + \frac{\varepsilon^{3}}{3} \int_{\omega} a^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\boldsymbol{\zeta}^{\varepsilon}) \rho_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \, dy$$

$$= \int_{\omega} p^{i,\varepsilon} \eta_{i} \sqrt{a} \, dy \quad \text{for all } \boldsymbol{\eta} \in V_{K}(\omega),$$

where (the functions $a, a^{\alpha\beta}, \Gamma^{\sigma}_{\alpha\beta}, b^{\sigma}_{\alpha}, b^{\sigma}_{\alpha}|_{\beta}, c_{\alpha\beta} \in \mathscr{C}^{0}(\bar{\omega})$ are defined in Sec. 1 of Part I and in (3.1), (3.2) of Part II; ∂_{ν} is the outer normal derivative operator along γ):

$$a^{\alpha\beta\sigma\tau} = \frac{4\lambda\mu}{(\lambda+2\mu)} a^{\alpha\beta} a^{\sigma\tau} + 2\mu (a^{\alpha\sigma} a^{\beta\tau} + a^{\alpha\tau} a^{\beta\sigma}),$$

(1.4)
$$\gamma_{\alpha\beta}(\boldsymbol{\eta}) = \frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha}) - \Gamma^{\sigma}_{\alpha\beta}\eta_{\sigma} - b_{\alpha\beta}\eta_{3},$$

(1.5)
$$\rho_{\alpha\beta}(\mathbf{\eta}) = \partial_{\alpha\beta}\eta_{3} - \Gamma^{\sigma}_{\alpha\beta}\partial_{\sigma}\eta_{3} + b^{\sigma}_{\beta}(\partial_{\alpha}\eta_{\sigma} - \Gamma^{\tau}_{\alpha\sigma}\eta_{\tau}) + b^{\sigma}_{\alpha}(\partial_{\beta}\eta_{\sigma} - \Gamma^{\tau}_{\beta\sigma}\eta_{\tau}) + b^{\sigma}_{\alpha}|_{\beta}\eta_{\sigma} - c_{\alpha\beta}\eta_{3},$$

$$(1.6) p^{i,\varepsilon} = \frac{1}{2} \int_{-\varepsilon}^{\varepsilon} f^{i,\varepsilon} dx_3^{\varepsilon} + (h_+^{i,\varepsilon} + h_-^{i,\varepsilon}).$$

We recall that 2ε is the *thickness* of the shell, $\lambda>0$ and $\mu>0$ are the *Lamé constants*, assumed to be *independent* of ε , of its constituting material, the functions $a^{\alpha\beta\sigma\tau}$ are the contravariant components of the *elasticity tensor* of the surface S, the functions $\gamma_{\alpha\beta}(\cdot)$ and $\rho_{\alpha\beta}(\cdot)$ are the covariant components of the *change of metric* and *change of curvature tensors of the surface* S, the functions $f^{i,\varepsilon} \in L^2(\Omega^\varepsilon)$ are the contravariant components of the *applied body force* acting in $\Phi(\Omega^\varepsilon)$, and the functions $h_i^{i,\varepsilon}$, $h_i^{i,\varepsilon} \in L^2(\omega)$ are defined by

$$h^{i,\varepsilon}_+(y) = h^{i,\varepsilon}(y,\varepsilon), \quad h^{i,\varepsilon}_-(y) = h^{i,\varepsilon}(y,-\varepsilon) \quad \text{for } y \in \omega,$$

where $h^{i,\varepsilon} \in L^2(\Gamma_+^{\varepsilon} \cup \Gamma_-^{\varepsilon})$ are the contravariant components of the *applied* surface force acting on the "upper" and "lower" faces $\Phi(\Gamma_+^{\varepsilon})$ and $\Phi(\Gamma_-^{\varepsilon})$ of the shell (as in Part II, we assume that there are no surface forces acting on the portion $\Phi(\{\gamma - \gamma_0\} \times [-\varepsilon, \varepsilon])$ of the lateral face of the shell).

The existence and uniqueness of a solution to the variational problem (1.1), (1.2), which follows from the $V_K(\omega)$ -ellipticity of the bilinear form found in (1.2), was first established by Bernadou & Ciarlet [1976]. A different, and more natural, proof was subsequently proposed by Ciarlet & Miara [1992], then combined with the first one in Bernadou, Ciarlet & Miara [1994]. Finally, a more "intrinsic" proof, which applies to the more general situation where the mapping $\varphi: \bar{\omega} \to \mathbf{R}^3$ is only in the space $\mathbf{W}^{2,\infty}(\omega)$, has been more more recently given by Blouza & Le Dret [1994a,b]. (Here the variational problem (1.2) has to be formulated differently, for the functions $b_{\alpha}^{\sigma}|_{\beta}$ are no longer defined in this case.) The regularity of the solution when $\gamma_0 = \gamma$ has been established by Alexandrescu [1994]; her proof relies on the theory of elliptic systems due to Agmon, Douglis & Nirenberg [1964].

2. Compared asymptotic behaviors of the solutions of the three-dimensional and Koiter's equations

We recall that the *three-dimensional shell problem* consists in finding $\mathbf{u}^{\varepsilon} = (u_i^{\varepsilon})$ such that (cf. Sec. 1 of Part I, notably for the definitions of the functions g^{ε} , $g^{ij,\varepsilon}$, $\Gamma_{ii}^{p,\varepsilon}$):

(2.1)
$$\mathbf{u}^{\varepsilon} \in V(\Omega^{\varepsilon}) = \{ \mathbf{v}^{\varepsilon} = (\mathbf{v}_{i}^{\varepsilon}) \in \mathbf{H}^{1}(\Omega^{\varepsilon}); \mathbf{v}^{\varepsilon} = \mathbf{0} \text{ on } \Gamma_{0}^{\varepsilon} \},$$

$$(2.2) \qquad \int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e_{k\parallel l}^{\varepsilon}(\boldsymbol{u}^{\varepsilon}) e_{i\parallel j}^{\varepsilon}(\boldsymbol{v}^{\varepsilon}) \sqrt{g^{\varepsilon}} \ dx^{\varepsilon}$$

$$= \int_{\Omega^{\varepsilon}} f^{i,\varepsilon} v_{i}^{\varepsilon} \sqrt{g^{\varepsilon}} \ dx^{\varepsilon} + \int_{\Gamma^{\varepsilon}_{-} \cup \Gamma^{\varepsilon}} h^{i,\varepsilon} v_{i}^{\varepsilon} d\hat{\Gamma}^{\varepsilon} \quad \text{ for all } \boldsymbol{v}^{\varepsilon} \in \boldsymbol{V}(\Omega^{\varepsilon}),$$

where

(2.3)
$$\Gamma_0^{\varepsilon} = \gamma_0 \times [-\varepsilon, \varepsilon], x$$

(2.4)
$$A^{ijkl,\varepsilon} = \lambda g^{ij,\varepsilon} g^{kl,\varepsilon} + \mu(g^{ik,\varepsilon} g^{jl,\varepsilon} + g^{il,\varepsilon} g^{jk,\varepsilon}),$$

(2.5)
$$e_{i\parallel j}^{\varepsilon}(\boldsymbol{v}^{\varepsilon}) = \frac{1}{2} (\partial_{i}^{\varepsilon} v_{i}^{\varepsilon} + \partial_{j}^{\varepsilon} v_{i}^{\varepsilon}) - \Gamma_{ij}^{p,\varepsilon} v_{p}^{\varepsilon}.$$

In (2.1)–(2.5), the unknown functions u_i^{ε} represent the covariant components of the displacement field $u_i^{\varepsilon}g^{i,\varepsilon}$ of the point of the shell $\Phi(\overline{\Omega}^{\varepsilon})$, the functions $A^{ijkl,\varepsilon}$ represent the contravariant components of the three-dimensional elasticity tensor (we recall that the Lamé constants λ and μ are assumed to be independent of ε), the functions $e_{i|l}^{\varepsilon}(v^{\varepsilon})$ are the contravariant components of the linearized strain tensor, and $d\hat{\Gamma}^{\varepsilon}$ is the area element along the boundary of the set $\Phi(\Omega^{\varepsilon})$ (cf. Sec. 6 of Part I).

Consider now either a family of "membrane" shells, or a family of "flexural" shells, in the senses understood in Parts I and II. We show that, in each case, the asymptotic behavior as $\varepsilon \to 0$ of the average across the thickness of the displacement found by solving the three-dimensional problem (2.1), (2,2) and the displacement found by solving the two-dimensional equations (1.1), (1.2) of Koiter are identical. To this end, we combine the convergence theorems established in Parts I and II for the "three-dimensional displacement" with results of Destuynder [1985] and Sanchez-Palencia [1989a, 1989b] for the "Koiter's two-dimensional displacement". To begin with, we consider membrane shells; we recall in this respect that assumption (2.6) has been discussed in Sec. 7 of Part I.

Theorem 2.1. Assume that $\gamma_0 = \gamma$, that there exists a constant c such that

(2.6)
$$\left\{ \sum_{\alpha} \| \eta_{\alpha} \|_{1,\omega}^{2} + \| \eta_{3} \|_{0,\omega}^{2} \right\}^{1/2} \leq c \left\{ \sum_{\alpha,\beta} \| \gamma_{\alpha\beta}(\boldsymbol{\eta}) \|_{0,\omega}^{2} \right\}^{1/2}$$

$$for all \ \boldsymbol{\eta} = (\eta_{i}) \in V_{M}(\omega),$$

where the space $V_M(\omega)$ is defined by

(2.7)
$$V_{M}(\omega) := \{ \boldsymbol{\eta} = (\eta_{i}); \eta_{\alpha} \in H_{0}^{1}(\omega), \eta_{3} \in L^{2}(\omega) \}$$
$$= H_{0}^{1}(\omega) \times H_{0}^{1}(\omega) \times L^{2}(\omega),$$

and assume that there exist functions $f^i \in L^2(\Omega), h_+^{\alpha}, h_-^{\alpha} \in L^2(\omega)$, and $h_+^3, h_-^3 \in H^1(\omega)$ independent of ε such that

$$(2.8) \quad f^{i,\varepsilon}(x^{\varepsilon}) = f^i(x) \text{ for all } x \in \Omega \quad \text{and} \quad h^{i,\varepsilon}_{\pm}(y) = \varepsilon h^i_{\pm}(y) \text{ for all } y \in \omega.$$

Let $\zeta \in V_M(\omega)$ denote the unique solution of the two-dimensional membrane shell equations:

(2.9)
$$\int_{\omega} a^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau}(\zeta) \gamma_{\alpha\beta}(\eta) \sqrt{a} \, dy = \int_{\omega} \left\{ \int_{-1}^{1} f^{i} dx_{3} + h_{+}^{i} + h_{-}^{i} \right\} \eta_{i} \sqrt{a} \, dy$$

for all $\eta = (\eta_i) \in V_M(\omega)$. Finally, let $\zeta^{\varepsilon} = (\zeta_i^{\varepsilon}) \in V_K(\omega)$ denote the solution of the two-dimensional shell equations (1.1), (1.2) of Koiter, and let $\mathbf{u}^{\varepsilon} = (u_i^{\varepsilon}) \in V(\Omega^{\varepsilon})$ denote the solution of the three-dimensional problem (2.1), (2.2). Then

(2.10)
$$\zeta_{\alpha}^{\varepsilon} \mathbf{a}^{\alpha} \to \zeta_{\alpha} \mathbf{a}^{\alpha} \text{ in } \mathbf{H}^{1}(\omega), \quad \zeta_{3}^{\varepsilon} \mathbf{a}^{3} \to \zeta_{3} \mathbf{a}^{3} \text{ in } \mathbf{L}^{2}(\omega),$$

$$(2.11) \ \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} u_{\alpha}^{\varepsilon} \ \boldsymbol{g}^{\alpha,\varepsilon} dx_{3}^{\varepsilon} \to \zeta_{\alpha} \boldsymbol{a}^{\alpha} \ \text{in } \boldsymbol{H}^{1}(\omega), \quad \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} u_{3}^{\varepsilon} \boldsymbol{g}^{3,\varepsilon} dx_{3}^{\varepsilon} \to \zeta_{3} \boldsymbol{a}^{3} \ \text{in } \boldsymbol{L}^{2}(\omega),$$

$$as \ \varepsilon \to 0.$$

Proof. There exists a constant c_0 such that (cf., e.g., Lemma 2.1 of Bernadou, Ciarlet & Miara [1994]):

(2.12)
$$\sum_{\alpha,\beta} |t_{\alpha\beta}|^2 \leq c_0 a^{\alpha\beta\sigma\tau}(y) t_{\sigma\tau} t_{\alpha\beta}$$

for all $y \in \bar{\omega}$ and all symmetric matrices $(t_{\alpha\beta})$. That equations (2.9) have a unique solution $\zeta \in V_M(\omega)$ is then a consequence of (2.12) combined with assumption (2.6) (which holds for "uniformly elliptic surfaces", such as a portion of a sphere or of an ellipsoid; cf. Ciarlet & Sanchez-Palencia [1996] and Ciarlet & Lods [1996a]).

The convergence $\zeta^{\varepsilon} \to \zeta$ in $H^1(\omega) \times H^1(\omega) \times L^2(\omega)$ was first established by Destuynder [1985, Th. 7.1]; it was also noted by Sanchez-Palencia [1986b, Th. 4.1] (see also Caillerie & Sanchez-Palencia [1995]), who observed that it is a consequence of general results in perturbation theory (as found for instance in Sanchez-Palencia [1980]). We nevertheless give a simple, "self-contained" proof for the sake of completeness. For brevity, let

(2.13)
$$B_M(\zeta, \eta) := \int_{\Omega} a^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau}(\zeta) \gamma_{\alpha\beta}(\eta) \sqrt{a} \ dy,$$

(2.14)
$$B_F(\zeta, \eta) := \frac{1}{3} \int a^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\zeta) \rho_{\alpha\beta}(\eta) \sqrt{a} \ dy,$$

(2.15)
$$L(\eta) := \int_{\omega} \left\{ \int_{-1}^{1} f^{i} dx_{3} + h_{+}^{i} + h_{-}^{i} \right\} \eta_{i} \sqrt{a} dy,$$

(2.16)
$$\|L\| := \left\{ \sum_{i} \left\| \int_{-1}^{1} f^{i} dx_{3} + h_{+}^{i} + h_{-}^{i} \right\|_{0,\omega}^{2} \right\}^{1/2},$$

(2.17)
$$\| \boldsymbol{\eta} \|_{V_{M}(\omega)} := \left\{ \sum_{\alpha} \| \eta_{\alpha} \|_{1,\omega}^{2} + \| \eta_{3} \|_{0,\omega}^{2} \right\}^{1/2}.$$

Note that the space $V_K(\omega)$, which here is simply $H_0^1(\omega) \times H_0^1(\omega) \times H^2(\omega)$, is contained in the space $V_M(\omega)$.

By virtue of assumptions (2.8), the solution ζ^{ε} of (1.1), (1.2) also satisfies

$$(2.18) B_M(\zeta^{\varepsilon}, \eta) + \varepsilon^2 B_F(\zeta^{\varepsilon}, \eta) = L(\eta) \text{for all } \eta \in V_K(\omega).$$

Hence letting $\eta = \zeta^{\varepsilon}$ in (2.18) yields

$$\frac{1}{c^2} \parallel \zeta^{\varepsilon} \parallel^2_{V_{M}(\omega)} + \frac{1}{3} \sum_{\alpha,\beta} \parallel \varepsilon \rho_{\alpha\beta}(\zeta^{\varepsilon}) \parallel^2_{0,\omega} \leq c_0 \parallel L \parallel \parallel \zeta^{\varepsilon} \parallel_{V_{M}(\omega)},$$

by assumption (2.6) and inequality (2.12). Therefore the family $(\zeta^{\varepsilon})_{\varepsilon>0}$ is bounded in $V_M(\omega)$ and the families $(\varepsilon \rho_{\alpha\beta}(\zeta^{\varepsilon}))_{\varepsilon>0}$ are bounded in $L^2(\omega)$; hence there exists a subsequence, still denoted $(\zeta^{\varepsilon})_{\varepsilon>0}$ for convenience, and there exist functions $\tilde{\zeta} \in V_M(\omega)$ and $\rho_{\alpha\beta}^{-1} \in L^2(\omega)$ such that

$$\zeta^{\varepsilon} \rightharpoonup \tilde{\zeta} \quad \text{in } V_{M}(\omega),$$

(2.20)
$$\varepsilon \rho_{\alpha\beta}(\zeta^{\varepsilon}) \rightharpoonup \rho_{\alpha\beta}^{-1} \text{ in } L^{2}(\omega).$$

(As usual → and → respectively denote strong and weak convergences.)

Fix $\eta \in V_K(\omega)$ in (2.18) and let $\varepsilon \to 0$; then the weak convergences (2.19), (2.20) yield $B_M(\tilde{\zeta}, \eta) = L(\eta)$. Since the space $V_K(\omega)$ is dense in $V_M(\omega)$, we conclude that $B_M(\tilde{\zeta}, \eta) = L(\eta)$ for all $\eta \in V_M(\omega)$. Hence

where $\zeta \in V_M(\omega)$ is the unique solution to equations (2.9), and the weak convergence $\zeta^{\varepsilon} \rightharpoonup \zeta$ in $V_M(\omega)$ holds for the whole family $(\zeta^{\varepsilon})_{\varepsilon>0}$.

By virtue of assumption (2.6) combined with inequality (2.12), establishing the strong convergence

$$(2.22) \hspace{1cm} \zeta^{\varepsilon} \to \zeta \quad \text{in} \ \textit{V}_{M}(\omega),$$

is equivalent to establishing the convergence

$$B_M(\zeta^{\varepsilon}-\zeta,\zeta^{\varepsilon}-\zeta) o 0,$$

which itself follows from the relations

$$\begin{split} 0 &\leqq B_M(\zeta^\varepsilon - \zeta, \zeta^\varepsilon - \zeta) = B_M(\zeta^\varepsilon, \zeta^\varepsilon) - 2B_M(\zeta^\varepsilon, \zeta) + B_M(\zeta, \zeta), \\ &B_M(\zeta^\varepsilon, \zeta^\varepsilon) \leqq L(\zeta^\varepsilon) \quad \text{(cf. (2.18))}, \\ B_M(\zeta^\varepsilon, \zeta) &\to B_M(\zeta, \zeta), \quad L(\zeta^\varepsilon) \to L(\zeta) \quad \text{(cf. (2.19) and (2.21))}, \\ B_M(\zeta, \zeta) &= L(\zeta) \quad \text{(cf. (2.9))}. \end{split}$$

It is then clear that the convergence (2.22) implies the convergences (2.10). The convergences (2.11) have been established in Theorem 7.1 of Part I. \square

Remark. The convergence (2.22) still holds if the functions h_+^3, h_-^3 are in $L^2(\omega)$. The stronger assumptions $h_+^3, h_-^3 \in H^1(\omega)$ are needed for establishing the convergences (2.11).

We next consider *flexural shells*; we recall in this respect that the assumption $V_F(\omega) \neq \{0\}$ has been discussed in Sec. 7 of Part II.

Theorem 2.2. Assume that

$$(2.23) length \gamma_0 > 0,$$

and that the space of inextensional displacements

$$(2.24) V_F(\omega) := \{ \boldsymbol{\eta} \in V_K(\omega); \, \gamma_{\alpha\beta}(\boldsymbol{\eta}) = 0 \text{ in } \omega \}$$

does not reduce to $\{0\}$; finally, assume that there exist functions $f^i \in L^2(\Omega)$ and $h^i_+, h^i_- \in L^2(\omega)$ such that

(2.25)
$$f^{i,\varepsilon}(x^{\varepsilon}) = \varepsilon^2 f^i(x)$$
 for all $x \in \Omega$, $h^{i,\varepsilon}_+(y) = \varepsilon^3 h^i_+(y)$ for all $y \in \omega$.

Let $\zeta \in V_F(\omega)$ denote the unique solution of the two-dimensional flexural shell equations

$$(2.26) \qquad \frac{1}{3} \int_{\omega} a^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\zeta) \rho_{\alpha\beta}(\eta) \sqrt{a} \ dy = \int_{\omega} \left\{ \int_{-1}^{1} f^{i} dx_{3} + h_{+}^{i} + h_{-}^{i} \right\} \eta_{i} \sqrt{a} \ dy$$

for all $\eta = (\eta_i) \in V_F(\omega)$. Finally, let $\zeta^{\varepsilon} \in V_K(\omega)$ denote the solution of the twodimensional shell equations (1.1), (1.2) of Koiter, and let $\mathbf{u}^{\varepsilon} \in V(\Omega^{\varepsilon})$ denote the solution of the three-dimensional problem (2.1), (2.2). Then

(2.27)
$$\zeta_{\alpha}^{\varepsilon} \mathbf{a}^{\alpha} \to \zeta_{\alpha} \mathbf{a}^{\alpha} \text{ in } \mathbf{H}^{1}(\omega), \quad \zeta_{3}^{\varepsilon} \mathbf{a}^{3} \to \zeta_{3} \mathbf{a}^{3} \text{ in } \mathbf{H}^{2}(\omega),$$

(2.28)
$$\frac{1}{2\varepsilon} \int_{\varepsilon}^{\varepsilon} u_{i}^{\varepsilon} \boldsymbol{g}^{i,\varepsilon} dx_{3}^{\varepsilon} \to \zeta_{i} \boldsymbol{a}^{i} \quad in \ \boldsymbol{H}^{1}(\omega)$$

as $\varepsilon \to 0$.

Proof. That equations (2.26) have a unique solution $\zeta \in V_F(\omega)$ is a consequence of the $V_K(\omega)$ -ellipticity of the bilinear form appearing in Koiter's equations combined with the definition (2.24) of the space $V_F(\omega)$ and the expression of the bilinear form found in (2.26).

The first convergence result similar to (2.27) is due to Sanchez-Palencia [1989a, Th. 2.1], who noticed that the *weak* convergence $\zeta^{\varepsilon} \rightharpoonup \zeta$ in $V_K(\omega)$, i.e., in $H^1(\omega) \times H^1(\omega) \times H^2(\omega)$, holds, as a consequence of general results in perturbation theory. We show that in fact the stronger result (2.35) holds. In addition to the notation (2.13)–(2.16), we let

(2.29)
$$\| \boldsymbol{\eta} \|_{\boldsymbol{V}_{K}(\omega)} = \left\{ \sum_{\alpha} \| \eta_{\alpha} \|_{1,\omega}^{2} + \| \eta_{3} \|_{2,\omega}^{2} \right\}^{1/2}.$$

As shown in Bernadou & Ciarlet [1976], Ciarlet & Miara [1992], Bernadou, Ciarlet & Miara [1994], Blouza & Le Dret [1994a, b], there exists a constant c_1 such that

for all $\eta \in V_K(\omega)$ (in particular, the assumption (2.23) is needed here). By virtue of assumptions (2.25), the solution ζ^{ε} of (1.1), (1.2) also satisfies

$$(2.31) \frac{1}{\varepsilon^2} B_M(\zeta^{\varepsilon}, \boldsymbol{\eta}) + B_F(\zeta^{\varepsilon}, \boldsymbol{\eta}) = \boldsymbol{L}(\boldsymbol{\eta}) \text{for all } \boldsymbol{\eta} \in \boldsymbol{V}_K(\omega).$$

Hence letting $\eta = \zeta^{\varepsilon}$ in (2.31) and combining inequalities (2.12) and (2.30), we obtain (without loss of generality, we may assume $\varepsilon \leq 1$):

$$\frac{1}{3c_1^2} \left\| \zeta^{\varepsilon} \right\|_{V_{k}(\omega)}^2 \leq \sum_{\alpha,\beta} \left\| \frac{1}{\varepsilon} \gamma_{\alpha\beta}(\zeta^{\varepsilon}) \right\|_{0,\omega}^2 + \frac{1}{3} \sum_{\alpha,\beta} \left\| \rho_{\alpha\beta}(\zeta^{\varepsilon}) \right\|_{0,\omega}^2 \leq c_0 \left\| L \right\| \left\| \zeta^{\varepsilon} \right\|_{V_{k}(\omega)}.$$

Therefore there exists a subsequence, still denoted $(\zeta^{\epsilon})_{\epsilon>0}$ for convenience, and there exists a function $\tilde{\zeta} \in V_K(\omega)$, such that

$$\zeta^{\varepsilon} \rightharpoonup \tilde{\zeta} \quad \text{in } V_K(\omega),$$

(2.33)
$$\gamma_{\alpha\beta}(\zeta^{\varepsilon}) \to 0 \quad \text{in } L^{2}(\omega).$$

The weak convergence (2.32) implies that $\gamma_{\alpha\beta}(\zeta^{\varepsilon}) \rightharpoonup \gamma_{\alpha\beta}(\tilde{\zeta})$ in $L^{2}(\omega)$; hence $\gamma_{\alpha\beta}(\tilde{\zeta}) = 0$ by (2.33), and thus $\tilde{\zeta} \in V_{F}(\omega)$. Fix $\eta \in V_{F}(\omega)$ in (2.31) and let $\varepsilon \to 0$; then the weak convergence (2.32) yields $B_{F}(\tilde{\zeta}, \eta) = L(\eta)$. Hence

where $\zeta \in V_F(\omega)$ is the unique solution to equations (2.26), and the weak convergence (2.32) holds for the whole family $(\zeta^{\varepsilon})_{\varepsilon>0}$.

By virtue of inequality (2.30) combined with the strong convergence (2.33) and the relations $\gamma_{\alpha\beta}(\zeta) = 0$, establishing the strong convergence

$$(2.35) \zeta^{\varepsilon} \to \zeta \quad \text{in } V_K(\omega)$$

is equivalent to establishing the convergence

$$B_F(\zeta^{\varepsilon}-\zeta,\zeta^{\varepsilon}-\zeta) o 0,$$

which itself follows from the relations

$$\begin{split} 0 &\leqq B_F(\zeta^\varepsilon - \zeta, \zeta^\varepsilon - \zeta) = B_F(\zeta^\varepsilon, \zeta^\varepsilon) - 2B_F(\zeta^\varepsilon, \zeta) + B_F(\zeta, \zeta), \\ &B_F(\zeta^\varepsilon, \zeta^\varepsilon) \leqq L(\zeta^\varepsilon) \quad \text{(cf. (2.31))}, \\ B_F(\zeta^\varepsilon, \zeta) &\to B_F(\zeta, \zeta), \quad \text{and} \quad L(\zeta^\varepsilon) \to L(\zeta) \quad \text{(cf. (2.32) and (2.34))}, \\ &B_F(\zeta, \zeta) = L(\zeta) \quad \text{(cf. (2.26))}. \end{split}$$

It is then clear that the convergence (2.35) implies the convergences (2.27) (the assumption $\varphi \in \mathscr{C}^3(\bar{\omega})$ is used for the last one). The convergences (2.28) have been established in Theorem 7.1 of Part II. \square

3. Conclusions and comments

We have therefore justified the two-dimensional Koiter shell equations when they are applied to a "membrane" shell $(\gamma_0 = \gamma \text{ and assumption (2.6) holds)}$ or to a "flexural" shell $(V_F(\omega) \neq \{0\})$. For in essence, relations (2.10), (2.11) and (2.27), (2.28) show that in each case the averages across the thickness of the tangential components $u_{\alpha}^{\varepsilon} g^{\alpha,\varepsilon}$ and normal component $u_{\beta}^{\varepsilon} g^{\beta,\varepsilon}$ of the "three-dimensional" displacement vector $u_{i}^{\varepsilon} g^{i,\varepsilon}$ and the tangential components $\zeta_{\alpha}^{\varepsilon} a^{\alpha}$ and normal component $\zeta_{\beta}^{\varepsilon} a^{\beta}$ of the two-dimensional displacement vector $\zeta_{i}^{\varepsilon} a^{i}$ found by solving Koiter's equations have the same principal parts, either in $H^{1}(\omega) \times L^{2}(\omega)$ (membrane shells) or in $H^{1}(\omega)$ (flexural shell).

Our asymptotic analysis also shows that Koiter's equations are as good as the membrane shell equations (2.9) when they are applied to a "membrane" shell, and as good as the flexural shell equations (2.26) when they are applied to a "flexural" shell. These truly remarkable properties of Koiter's two-dimensional shell equations, which also hold for the remaining "generalized membrane" shells (cf. Ciarlet & Lods [1996c]), certainly explain their "improbable success" in the manifold numerical simulations where they are so often blithely applied.

Acknowledgment. This work is part of the Human Capital and Mobility Program "Shells: Mathematical Modeling and Analysis, Scientific Computing" of the Commission of the European Communities (Contract N⁰ ERBCHRXCT940536), whose support is gratefully acknowledged.

References

- AGMON, S., DOUGLIS, A. & NIRENBERG, L. [1964]: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, *Comm. Pure Appl. Math.* 17, 35–92.
- ALEXANDRESCU, O. [1994]: Théorème d'existence pour le modèle bidimensionnel de coque non linéaire de W.T. Koiter, C. R. Acad. Sci. Paris, Sér. I, 319, 899–902.
- Bernadou, M. & Ciarlet, P. G. [1976]: Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in *Computing Methods in Applied Sciences and Engineering* (R. Glowinski & J. L. Lions, editors), pp. 89–136, Lecture Notes in Economics and Mathematical Systems, Vol. 134, Springer-Verlag.
- Bernadou, M., Ciarlet, P. G. & Miara, B. [1994]: Existence theorems for two-dimensional linear shell theories, *J. Elasticity* **34**, 111–138.
- BLOUZA, A. & LE DRET, H. [1994a]: Sur le lemme du mouvement rigide, C. R. Acad. Sci. Paris, Sér. I, 319, 1015–1020.
- BLOUZA, A. & LE DRET, H. [1994b]: Existence et unicité pour le modèle de Koiter pour une coque peu régulière, C. R. Acad. Sci. Paris, Sér. I, 319, 1127–1132.
- Caillerie, D. & Sanchez-Palencia, E. [1996a]: A new kind of singular-stiff problems and application to this elastic shells, *Math. Models Methods Appl. Sci.* **5**, 47–66.
- CIARLET, P.G. & Lods, V. [1996a]: On the ellipticity of linear membrane shell equations, J. Math. Pures Appl. 75, 107–124.

- CIARLET, P. G. & Lods, V. [1996b]: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations, Arch. Rational Mech. Anal. 136, 119– 161
- CIARLET, P. G. & Lods, V. [1996c]: Asymptotic analysis of linearly elastic shells. "Generalized membrane shells", *J. Elasticity* 43, 147–188.
- CIARLET, P. G., LODS, V. & MIARA, B. [1996]: Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations, *Arch. Rational Mech. Anal.* 136, 163–190.
- CIARLET, P. G. & MIARA, B. [1992]: On the ellipticity of linear shell models, Z. angew. Math. Phys. 43, 243–253
- CIARLET, P. G. & SANCHEZ-PALENCIA, E. [1996]: An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, *J. Math. Pures Appl.* **75**, 51–67.
- Destuynder, P. [1985]: A classification of thin shell theories, *Acta Applicandæ Mathematicæ* **4**, 15–63.
- Koiter, W.T. [1970]: On the foundations of the linear theory of thin elastic shells, *Proc. Kon. Ned. Akad. Wetensch.* **B73**, 169–195.
- SANCHEZ-PALENCIA, E. [1980]: Nonhomogeneous Media and Vibration Theory, Springer-Verlag.
- Sanchez-Palencia, E. [1989a]: Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée, C.R. Acad. Sci. Paris, Sér. I, 309, 411–417.
- SANCHEZ-PALENCIA, E. [1989b]: Statique et dynamique des coques minces. II. Cas de flexion pure inhibée, C. R. Acad. Sci. Paris Sér. I, 309, 531–537.

Laboratoire d'Analyse Numérique Université Pierre et Marie Curie 4 Place Jussieu 75005 Paris

(Accepted August 11, 1995)