ICS Exercise 1

September 26, 2023

1 Number Conversion

Given Y = X + 0x38, Z = (Y | X) - 56, N = (M >> 2) & X. Fill in the table below.

Variable	Binary	Octal	Decimal	Hexadecimal
X	1 1101 0111	727	471	0x1d7
Y	10 0000 1111	1017	527	0x20f
Z	11 1010 0111	1647	935	0x3a7
M	1 1111 0111	767	503	0x1f7
N	101 0101	125	85	0x55

2 Print the decimal numbers

In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits. Packed BCD 8421 (also known as Simple Binary-Coded Decimal, SBCD) uses four bits to represent the range 0 to 9 while the weight of each bit is '8 4 2 1'. For example, the decimal number 2019 is turned into 0x2019 in packed BCD 8421 encoding. The following table represents decimal digits from 0 to 9 in packed BCD 8421 and ASCII.

Digit	Packed BCD 8421	ASCII	Digit	Packed BCD 8421	ASCII
0	0b0000	0x30	5	0b0101	0x35
1	0b0001	0x31	6	0b0110	0x36
2	0b0010	0x32	7	0b0111	0x37
3	0b0011	0x33	8	0b1000	0x38
4	0b0100	0x34	9	0b1001	0x39

You are asked to write a function bcd2str in C to turn a 4-byte packed BCD 8421 number into a string num_str[9] which represents the same number and ends up with a '\0'. For example, the packed BCD 8421 number 0x2019 is supposed to be turned into num_str[9] = {'0', '0', '0', '0', '2', '0',

'1', '9', '\0'}. The pointer num_str has been pointed to the pre-allocated num_str[9] before calling this function. And the input stores the 4-byte packed BCD 8421 number which you should transform.

3 Binary Operations

3.1

Consider the following C program

```
int a = 0x3f;
unsigned short ua = a;
int b = ua >> 1;
short c = (b || 0);
unsigned int d = (~(unsigned int)a) ^ 0xc4;
int e = 0x95 & 0x6f;
```

Assume the program will run on an **8-bit** machine. A 'short' integer is encoded in **4 bits**, while a normal 'int' is encoded in **8 bits**. Please fill in the blanks below.

Expression	Binary Representation		
a	0011 1111		
ua	1111		
b	0000 0111		
С	0001		
d	0000 0100		
e	0000 0101		
(d (!0)) ^ e	0000 0000		
(e + 0x30) + (0x13 >> 2)	0011 1001		
(ua >> c) + (b << d)	0111 0111		

3.2

Given two 32-bit numbers, N and M, and two bit positions, i and j (i < j). Write a method to set all bits between i and j in N equal to bits between i and j in M.

```
int mask = (((unsigned)(~0)) >> (31-j+i)) << i;
int result = (N & (~mask)) | (M & mask);</pre>
```

3.3

Write a function that add two numbers ${\tt A}$ and ${\tt B}$ using bit operations (+ not allowed).

```
while (B != 0) {
   int a = A ^ B;
   int b = (A & B) << 1;
   A = a;
   B = b;
}
return A;</pre>
```