Homework 03

ECE 449/590, Fall 2022

Due Date: 11/09 by the end of the day (Chicago time)

- 1. (30 points) Let $\{x^{(1)}, \ldots, x^{(m)}\}$ be sampled i.i.d. from a Gaussian distribution of mean μ and variance σ^2 . Let $\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$ be an estimator of Gaussian mean μ . Show that $\operatorname{Var}(\hat{\mu}_m) = \frac{\sigma^2}{m}$.
- 2. (70 points) Considering the following neural network with inputs (x_1, x_2) , outputs (z_1, z_2, z_3) , and parameters $\boldsymbol{\theta} = (a, b, c, d, e, f, i, j, k, l, m, n, o, p, q)$,

$$\begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix},$$

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \text{ReLU}(g_1) \\ \text{ReLU}(g_2) \end{pmatrix},$$

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} i & j \\ k & l \\ m & n \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \begin{pmatrix} o \\ p \\ q \end{pmatrix}.$$

- A. (15 points) For a minibatch containing a single training sample $(x_1, x_2, y = 2)$, apply softmax and write down the cross-entropy loss function $J(\boldsymbol{\theta})$ as a function of (z_1, z_2, z_3) . Compute $\frac{\partial J}{\partial z_1}$, $\frac{\partial J}{\partial z_2}$, $\frac{\partial J}{\partial z_3}$ as functions of (z_1, z_2, z_3) .
- B. (20 points) Base on A., apply backprop to compute $\frac{\partial J}{\partial i}$, $\frac{\partial J}{\partial j}$, $\frac{\partial J}{\partial k}$, $\frac{\partial J}{\partial l}$, $\frac{\partial J}{\partial m}$, $\frac{\partial J}{\partial n}$, $\frac{\partial J}{\partial o}$, $\frac{\partial J}{\partial p}$, $\frac{\partial J}{\partial q}$, $\frac{\partial J}{\partial h_1}$, $\frac{\partial J}{\partial h_2}$.
- C. (20 points) Base on B., apply backprop to compute $\frac{\partial J}{\partial a}$, $\frac{\partial J}{\partial b}$, $\frac{\partial J}{\partial c}$, $\frac{\partial J}{\partial d}$, $\frac{\partial J}{\partial e}$, $\frac{\partial J}{\partial e}$, $\frac{\partial J}{\partial e}$, the compute $\frac{\partial J}{\partial x_1}$ and $\frac{\partial J}{\partial x_2}$.

 (Hint: use the step function u(x) as the derivative of ReLU(x).)
- D. (15 points) For the learning rate ϵ , show the equation to apply the simple SGD algorithm to update $\boldsymbol{\theta}$ for this minibatch.