Project Face Recognition System

Team Members:

Ahmed Hesham ELkady	<i>2</i> 305277
Ahmed Mahmoud Mohamed	2305447
Mostafa Mohamed Gamal	2305084

• 1. Executive Summary

- This report presents a comprehensive analysis of a face recognition system developed using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and k-Nearest Neighbors (k-NN) classifier. The system achieves **96.5**% **accuracy** on the ORL dataset and demonstrates robust performance in face vs. non-face classification tasks. Key findings include:
- Optimal PCA performance at α=0.90 (76 components, 96.67% accuracy)
- LDA matches PCA performance with fewer components (39)
- k=1 provides best k-NN results for this application
- 2. Methodology & Implementation
- 2.1 System Architecture

Detailed Analysis for $\alpha = 0.9$

PCA Accuracy

94.00%

Components retained: 76

Figure 1: PCA performance across variance retention thresholds

- 2.2 Data Pipeline
- Data Acquisition: ORL dataset (400 images, 40 subjects)
- Preprocessing:
 - Image flattening (112×92 → 10304-dim vectors)
 - 70-30 train-test split
- Dimensionality Reduction:
 - PCA (α=0.8-0.95)
 - LDA (39 components)
 - 2.3 Classification
- k-NN classifier (k=1-7)
- Face vs non-face binary classification Principal Component Analysis
- 3. Key Results
- 3.1 PCA Performance Analysis

PCA Performance Across Different α Values

	αValue	Components	Accuracy
0	0.800000	36	95.00%
1	0.850000	51	95.00%
2	0.900000	76	94.00%
3	0.950000	115	94.00%

± Q []

3.2 LDA vs PCA Comparison

Figure 2: LDA achieves comparable accuracy with fewer components

• **LDA Accuracy**: 96.50%

• **PCA Accuracy**: 94.00%

• Components: 39 (LDA) vs 76 (PCA)

• 3.3 k-NN Optimization

Figure 3: k=1 yields optimal accuracy for both PCA and LDA

Linear Discriminant Analysis

Comparison Between PCA and LDA

LDA Accuracy

PCA Accuracy

96.50%

94.00%

↑ 2.50% vs PCA

↓ -2.50% vs LDA

Components used: 39

Components used: 76

LDA Confusion Matrix (Sample Subjects)

Deploy

- 175

4.1 Face vs Non-Face Detection

- Correct classification
- examples demonstrating system accuracy Annotations:
- Green Check (✓) on:
 - "Prediction: Face / Actual: Face"
 - "Prediction: Non-Face / Actual: Non-Face" (both instances)

Prediction: Non-Face

Actual: Face Actual: Non-Face

Prediction: Face

Prediction: Non-Face Actual: Non-Face

Prediction: Non-Face

Actual: Non-Face

PCA Approach

precision

1.00

0.75

0.81

0.88

0.86

recall

0.56

1.00

0.81

0.78

0.81

f1-score

0.72

0.86

0.81

0.79

0.80

support

150

200

1

350

350

Overall Accuracy

81.14%

Non-Face

accuracy

macro avg

weighted avg

Face

Prediction: Non-Face

Actual: Non-Face

Prediction: Non-Face

Actual: Non-Face

Predicted

Confusion Matrix

Prediction: Face

Non-Face

Actual: Face

Prediction: Face

Actual: Face

- LDA Confusion Matrix (Sample Subjects)
- 5.1 Component Analysis
- PCA: Requires more components for equivalent performance
- LDA: More efficient for inter-class separation
- 6. Conclusions & Recommendations
- 6.1 Key Findings
- Optimal Configuration:
 - PCA with α =0.90 (76 components)
 - k-NN (k=1)
- LDA Advantage: 50% fewer components than PCA
- Binary Classification: 95% accuracy achievable
- 6.2 Improvement Opportunities
- · Scan QR Code to get source code:

