

Ross Girshick

Al2

CV 20/20 Retrospective Vision Workshop, CVPR 2024

NLP circa 1999

Summary of Contents

1st edition

NLP today has transform(er)ed

Speech and Language Processing

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

Third Edition draft

Daniel Jurafsky Stanford University

James H. Martin
University of Colorado at Boulder

Copyright ©2023. All rights reserved.

Draft of February 3, 2024. Comments and typos welcome!

Summary of Contents

I	Fun	damental Algorithms for NLP	1
	1		3
	2	Regular Expressions, Text Normalization, Edit Distance	4
	3	N-gram Language Models 3	32
	4	Naive Bayes, Text Classification, and Sentiment	50
	5	Logistic Regression 8	31
	6	Vector Semantics and Embeddings)5
	7	Neural Networks and Neural Language Models13	36
	8	Sequence Labeling for Parts of Speech and Named Entities 16	52
	9	RNNs and LSTMs	37
	10	Transformers and Large Language Models21	3
	11	Fine-Tuning and Masked Language Models24	2
	12	Prompting, In-Context Learning, and Instruct Tuning26	53
II	NI	P Applications 26	5
	13	Machine Translation26	7
	14	Question Answering and Information Retrieval29	13
	15	Chatbots & Dialogue Systems31	5
	16	Automatic Speech Recognition and Text-to-Speech	37
Ш	A	nnotating Linguistic Structure 36	5
	17	Context-Free Grammars and Constituency Parsing 36	57
		Dependency Parsing	
	19	Information Extraction: Relations, Events, and Time41	5
	20	Semantic Role Labeling44	1
	21	Lexicons for Sentiment, Affect, and Connotation46	61
		Coreference Resolution and Entity Linking 48	
		Discourse Coherence51	
		bliography53	
	Su	bject Index56	53

Neural networks, LMs, transformers, and LLMs

Misc. other stuff (including parsing)

3rd edition

The book is now 40% shorter

1999 \rightarrow 2024: What happened to parsing?

"In the early history of NLP these structures [parses] were an <u>intermediate step toward deeper language</u> <u>processing</u>.

1999 \rightarrow 2024: What happened to parsing?

"In the early history of NLP these structures [parses] were an <u>intermediate step toward deeper language</u> <u>processing</u>.

In modern NLP, we don't generally make explicit use of parse or other structures inside the neural language models [...], or directly in applications like those we discussed in Part II.

NLP circa 1999

Summary of Contents

NLP circa 1999

Summary of Contents 1 Introduction..... (sub)words I Words Regular Expressions and Autom 21 Morphology and Finite-State T Computational Phonology Text peech 91 Probabilistic Model of Long lation and Spelling 139 N-grams 7 HMMs and Speech II Syntax syntax Word Classes and Part-of-Speech Tagging 285 (parsing) lized and Probabilistic Parsing443 LLMs III se unties semantics 16 Lexical Semantics 587 17 Word Sense Disambiguation and Information Retrieval . . 627 **Pragmatics** 19 Dialogue and Conversational Agents......715 A Regular Expression Operators 829 B The Porter Stemmi Algor pragmatics

(Of course, if your end goal is to have a parser, then build a parser. But likely you will do this with an LLM anyway.)

What are the "parsers" of computer vision?

- Before we answer this question, take a step back
- We need to understand what our real tasks are

- Let's study the rise of LLMs
 - What lessons can we learn?

Why are LLMs so successful?

- Real tasks are text generation tasks
 - High societal and economic value
 - <u>Universality</u>: can do POS tagging, parsing, etc. as text generation (if you really want to)

Summary of Contents

	1 Introduction	1
I	Words	19
	2 Regular Expressions and Automata	21
	3 Morphology and Finite-State Transder	57
	4 Computational Phonology and Terreto-Seech	91
	5 Probabilistic Models of Pronun at and Spelling	139
	6 N-grams	189
	7 HMMs and Speech Progriti	233
II	Syntax	283
	8 Word Classes and Part Speech Tagging	285
	9 Context-Free Grammars for English	319
	10 Parsing with ext-Free Grammars	353
	11 Features and Valification	
	12 Lex plized and robabilistic Parsing	
	13 Langu Complexity	473
Ш		495
	14 Creenting Meaning.	497
4	Se Attic Analysis	
	6 Lexical Semantics	587
	Word Sense Disambiguation and Information Retrieva	ıl 627
IV	Pragmatics	661
	Pragmatics 18 Discourse	663
	19 Dialogue and Conversational Agents	715
	20 Generation	
	21 Machine Translation	797
	A Regular Expression Operators	
	The Porter Stemm ag Algor um	
	San C. tag ets	5
	aining MI s: he Forward-F cky rd Algorith	841
Bil	bliography	851
Ind	dex	923

NLP circa 2024 NLP circa 1999

Why are LLMs so successful?

- Real tasks are text generation tasks
 - High societal and economic value
 - Universality: can do POS tagging, parsing, etc. as text generation (if you really want to)
- Text generation is all you need

Summary of Contents

	1	Introduction
I	Wor	ds 19
	2	Regular Expressions and Automata
	3	
	4	Morphology and Finite-State Transder 57 Computational Phonology and Textors sech 91 Probabilistic Models of Pronuncial and Spelling 139
	5	Probabilistic Models of Pronun around Spelling 139
	6	N-grams
	7	HMMs and Speech Polog iti
II	Syn	
	8	Word Classes and Part Speech Tagging 285
	9	Context-Free Grammars for English
	10	Parsing with ext-Free Grammars353
		Features and Valification
	12	Lex plized and robabilistic Parsing
	13	Langu Complexity
Ш	Sei	495
	14	re nting Meaning
4		Sentic Analysis
	(6	Lexical Semantics 587
		Word Sense Disambiguation and Information Retrieval 627
IV	Pra	agmatics 661
	18	Discourse
		Dialogue and Conversational Agents715
		Generation
	21	Machine Translation797
	A	Regular Expression Operators 829
		The Porter Stemm g Algor um 831
		5 at C. tag ts
		raining MI 3: he Forward-F cky rd Algorith h 841
Bil	oliogr	eaphy 851
Ind	lex	923

NLP circa 2024 NLP circa 1999

Why are LLMs so successful?

- Real tasks are text generation tasks
 - High societal and economic value
 - Universality: can do POS tagging, parsing, etc. as text generation (if you really want to)
- Text generation is all you need
- But wait, there's more!
 What if I told you:
 - High-quality data is abundant
 - The test task = the training task
 - Training is basically supervised

Summary of Contents

	1 Introduction 1
I	Words 19
	2 Regular Expressions and Automata
	3 Morphology and Finite-State Transder 57
	4 Computational Phonology and Terrato-Seech 91
	5 Probabilistic Models of Pronun of and Spelling 139
	6 N-grams
	7 HMMs and Speech Prograft
II	Syntax
	8 Word Classes and Part Speech Tagging
	9 Context-Free Grammars for English
	10 Parsing with collect-Free Grammars
	11 Features and Valification
	12 Lextelized and Probabilistic Parsing
	13 Langu Complexity
III	Seman
	14 x ore unting Meaning.
4	Se Intic Analysis
	6 Lexical Semantics
	Word Sense Disambiguation and Informatio
IV	Pragmatics
	18 Discourse
	19 Dialogue and Conversational Agents
	20 Generation
	21 Machine Translation
	A Regular Expression Operators
	The Porter Stemm og Algor un
	3 at C. tag ts
	aining MI : he Forward-H cky rd Alg ith h 841
Bil	bliography 851
Inc	dex 923

NLP circa 2024

NLP circa 1999

The LLM miracle

- Test task = training task (... maybe also data? (9))
- Massive high-quality data
- Supervised training
- All for what people truly care about: text generation

- This basically never happens, and it should blow our minds
 - Most CV/ML: sad proxy loss/tasks, small data, low annotation quality, ...

The LLM miracle

- Test task = training task (... maybe also data? (9))
- Massive high-quality data
- Supervised training
- All for what people truly care about: text generation

- This basically never happens, and it should blow our minds
 - Most CV/ML: sad proxy loss/tasks, small data, low annotation quality, ...

What are the real tasks of computer vision?

• Caveat: focusing on recognition-y things, not 3D-y things

- Q1: Who benefits from CV?
- A1: Those who cannot see
 - People with low or no vision
 - Real task = open-ended visual QA about the real world
 - In general, AI agents operating in visual environments
 - Real tasks =
 - Robots: "cook me dinner", "fold my laundry", "wash my dishes", ...
 - Internet agents: "shop for my climbing shoes at a good sale price", ...
 - ...

What are the real tasks of computer vision?

- Real tasks =
 - Open-ended visual QA about the real world
 - Robot: "cook me dinner", ...
 - Internet agent: "shop for me", ...

- Traditional CV tasks (classification, detection, segmentation, ...)
 are not required a priori
 - Helpful intermediates or *The Wrong Way* (i.e., parsers)?

What are the real tasks of computer vision?

- Q2: What is the most scientifically important direction?
- A2: Algorithms that learn with human-like data constraints
 - Constraints
 - Ego-centric video
 - ~24M frames in 18 months (12 hours / day, 1 FPS)
 - Limited embodied control
 - Observations have very different statistics cf. web data
 - Long term, this is probably way more important
 - It doesn't require a data miracle
 - But it's hard, we have no gradient, few people work on it, and maybe not needed (birds vs. airplanes)

Jayaraman and Smith

What are the "parsers" of computer vision?

- Identify your real tasks (I gave 2)
 - General VQA and embodied vision
 - Learning with human-like data constraints
- Given your real tasks, fake tasks ("parsers") are those subproblems that are not helpful for solving your real tasks
 - This definition is relative to your choice of real tasks

Let's take general VQA and embodied vision

- The system needs a vast array of skills
 - Scene text reading (OCR)
 - Object recognition (classification)
 - Object delineation (detection, segmentation)
 - Chart / infographic parsing
 - Document parsing
 - Instrument reading
 - Place recognition
 - Action recognition
 - Face recognition
 - World knowledge
 - •

Your Real Tasks

Let's take general VQA and embodied vision

- The system needs a vast and of skills
 - Scene text reading (OCR)
 - Object recognition (classification)
 - Object delineation (detection, segmentation)
 - Chart / infograp@parsing
 - Document pring
 - Instrument ading
 - Place cognition
 - Action recognition
 - Fare ecognition
 - Wrld knowledge

Bespoke solutions to these subproblems will never fit together to solve general VQA and embodied vision

What's the "LLM miracle" story here?

 Hypothesis: scaling vision backbones plus LLMs (simple LLaVAstyle model) will effectively "solve" the general VQA / embodied vision tasks to the extent that LLMs "solve" any problem

• But, the big open question is what data to use and how to get it

• It's not as clean & easy as for LLMs, but I think it's possible

Reflections on detectors as parsers

- I started working on object detection in 2008 and worked on it until ~2022
- The "why?" didn't matter for a long time
- Detection didn't work at all, it was interesting to make anything work at all

Was working on detection a mistake?

- Absolutely not
 - Science is iterative and noisy
 - A single step to the optimum is magic
- We gained knowledge along the way
 - Our modern techniques build on the knowledge we gained
- But to advance, we must iterate
 - Datasets must evolve
 - Tasks must evolve

Takeaway 1

• Be skeptical of ideas taken for granted for the last 50-60 years

- Example: object detection
 - I want to solve open-ended, real-world QA that powers embodied agents
 - Making better object detectors is 100% the wrong direction for this achieving this goal, imo
 - It's too limited, too brittle, too data constrained, etc.

Takeaway 2

- Answer "what are the real tasks?" for yourself
 - We need diversity of perspectives, most will be wrong
 - It's very dull when everyone thinks in the same way
 - Your fake tasks are defined relative to your real tasks

• Examples:

- General VQA and embodied vision
- Learning with human-like data constraints
- •
- What are yours?

Takeaway 3

• Trying to solve a scientifically interesting problem with no other motivation than gaining knowledge can be extremely fruitful

- Example: object detection
 - Key early success of deep learning in CV, after classification
 - Moved the CV community into deep learning, convinced many people

R-CNN paper from CVPR 2014

Thank you!

Data curation makes this supervised learning

- In self-supervised learning the "self", i.e. the model/data, is all you need
- Instead, careful data curation BY HUMANS is king
 - **We** pick sentences (g.t. prefixes and labels) to maximize downstream perf
 - This process is nothing more than highly efficient batch labeling
- Ok, this point is mostly a semantic quibble