Robotics

Erwin M. Bakker | LIACS Media Lab

7-2 2022

Bij ons leer je de wereld kennen

Robotics in the News: Agility Robotics

A Year of Agility Engineering.
Jan. 18 2022, https://www.youtube.com/watch?v=D8_VmWWRJgE

Universiteit Leiden. Bij ons leer je de wereld kennen

Robotics in the News: Agility Robotics

A Year of Agility Life | 2021 Dec. 2021, https://www.youtube.com/watch?v=s4IavcE4T2Q

Philo of Byzantium (~280 – 220 BC) Al-Jazari (1136 – 1206)

- Mechanisms and methods for automation
- Water-raising machines
- Clocks
- Automata
 - Drink-serving waitress
 - Hand-washing automaton with flush mechanism
 - Peacock fountain with automated servants
 - Musical robot band

Universiteit Leiden. Bij ons leer je de wereld kennen

The Turk

Constructed and unveiled in 1770 by Wolfgang von Kempelen (1734–1804)

Pictures from: http://en.wikipedia.org/wiki/The_Turk

Universiteit Leiden. Bij ons leer je de wereld kennen

EARLY ROBOTS

LOCOMOTION & INVERSE KINEMATICS

South Pointing Chariot by Ma Jun (c. 200–265)

Autonomous Robots for Artificial Life (MIT, T. Braunl, Stuttgart University) 'Rug Warrior'

Universiteit Leiden. Bij ons leer je de wereld kennen

Autonomous Robots for Artificial Life

- Sensors
- Bumper
- Photoresistors (2)
- Infrared Obstacle Detectors w. 2 infrared LED's
- Microphone
- Two Shaft-Encoders

Tekening van: http://ag-vp-www.informatik.uni-kl.de

Autonomous Robots for Artificial Life

Software (PC, Macintosh, UNIX)

Interactive C Compiler and Libraries

- motor(o,speed), motor(1,speed)
- music: tone(), analog(micro)
- get_left_clicks(), get_right_clicks()
- analog(photo_left), analog(photo_right)
- left_ir, right_ir
- left_, right_, back_bumper

- Note: Microsoft Robotics Studio 4: development environment for different robotic platforms (Lego Mindstorm, Fischertechnik, Lynxmotion, Parallax Boe-Bot, Pioneer P3 DX, iRobot Roomba), Kinect (2014†);
- ROS (Robot Operating System) 50+ robots, etc.

Universiteit Leiden. Bij ons leer je de wereld kennen

Autonomous Robots for Artificial Life

Straight ahead

Straight Ahead

Universiteit Leiden. Bij ons leer je de wereld kennen

Straight Ahead

```
void clicks()  // Continuously read out odometer
{ init_velocity();
  while(TRUE)
  {
    if (rechts>0.0)
        rclicks+=get_right_clicks();
    else
        rclicks-=get_right_clicks();
    if (links>0.0)
        lclicks+=get_left_clicks();
    else
        lclicks-=get_left_clicks();
    printf("l: %d r: %d\n",lclicks,rclicks);
    }
}
```

Finding the Light

Universiteit Leiden. Bij ons leer je de wereld kennen

Finding the Light

```
if ( analog(photo_right) < analog(photo_left) )</pre>
{ motor(o, speed);
                       /* rechtsdrehen */
  motor(1, -speed);
} else
                       /* linksdrehen */
{ motor(o, -speed);
 motor(1, speed);
clicks = 0;
while ((\text{clicks} += (\text{get\_left\_clicks}() + \text{get\_right\_clicks}()) / 2)) < 37
        && !all_bumper ) /* eine Umdregung machen solange kein Bumper
betaetigt */
{ printf("FIND MAX %d %d\n", clicks, light);
 light = get_light();
                                /* Lichtwert holen */
                                 /* maximum merken */
 if ( light > max_light )
 { max_light = light; }
  sleep(0.2);
```

Finding the Light 2

Universiteit Leiden. Bij ons leer je de wereld kennen

Mechanical Tortoise (1951)

British Pathé, 1951.

YouTube: https://www.youtube.com/watch?v=wQE82derooc&t=14s

Finding the Light 2

- Drive along the wall until the light source is found.
- Drive with a left curve until the IR-sensors detect an obstacle, then make a correction to the right until no sensor input is read.
- If an obstacle is found that cannot be resolved this way, then drive 1.5 seconds backwards and start over again.

Universiteit Leiden. Bij ons leer je de wereld kennen

How to move to a goal?

Problem: How to move to a goal?

• Grasp, Walk, Stand, Dance, Follow, etc.

Solution:

- Program step by step.
- Inverse kinematics: take end-points and move them to designated points.
- Trace movements by specialist, human, etc.
- Learn the right movements:
 Reinforcement Learning, give a reward when the
 movement resembles the designated movement.

https://pybullet.org/wordpress/

OPNNAR

(b) Raise Arm

(c) Swipe

K. Maas, Full-Body Action Recognition from Monocular RGB-Video: A multi-stage approach using OpenPose and RNNs, BSc Thesis, 2021.

2/6/2022

ROBOTICS SENSORS

- · Bumper switches
- · Acceleration, Orientation, Magnetic
- IR/Visible Light
- Pressure, Force
- Ultrasonic, Lidar, Radar
- · Camera's, stereo camera's
- Structured Light Camera's

Location & Navigation

Problem:

How to locate yourself? How to navigate?

• In unknown or known environment.

With sensors:

• internal, passive, active, gps, beacons, etc. With or without reference points.

Solution:

- Collect data to determine starting position, or determine your location.
- Move around while collecting data from your environment.
- Sensor data is noisy => location and map building is a stochastic process.
- SLAM

OpenCV.org

PiBorg: Yetiborg v2

It is necessary to be at every class and to complete every

workshop and assignment.

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

References

- L. Pinto, J. Davidson, R. Sukthankar, A. Gupta, Robust Adversarial Reinforcement Learning, arXiv:1703.02702, March 2017.
- 2. S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates, arXiv:1610.00633v2 [cs.RO], October 2016.
- 3. C. Finn, S. Levine, Deep Visual Forsight for Planning Robot Motion, arXiv:1610.00696, ICRA 2017, October 2016.
- 4. L. Pinto, J. Davidson, A. Gupta, Supervision via Competition: Robot Adversaries for Learning Tasks, arXiv:1610.01685, ICRA 2017, October 2016.
- K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks, arXiv:1612.05424, CVPR 2017, December 2016.
- 6. A. Banino et al., Vector-based navigation using grid-like
- representations in artificial agents, https://doi.org/10.1038/s41586-018-0102-6, Research Letter, Nature, 2018.
- 8. R. Borst, Robust self-balancing robot mimicking, Bachelor Thesis, August 2017
- 9. Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent Vanhoucke, Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, https://arxiv.org/pdf/1804.10332.pdf, RSS 2018.

Universiteit Leiden. Bij ons leer je de wereld kennen

Robotics

Bij ons leer je de wereld kennen

Robotics Homework I

Assignment:

Give a link to the coolest, strangest, most impressive, most novel, or technologically inspirational robot you could find. And describe in a short paragraph (< 100 words) why you selected this robot.

NB Boston Dynamics Robot are excluded this time (I know they are very cool).

Grading: Pass/No Pass **Due:** Monday 14-2 2022

See BrightSpace Assignment(s) to upload your answer.