Tools: EIGENVALUES AND GAUSSIAN DISTRIBUTIONS

EIGENVALUES

We consider a square matrix $A \in \mathbb{R}^{m \times m}$.

Definition

A vector $\xi \in \mathbb{R}^m$ is called an **eigenvector** of A if the direction of ξ does not change under application of A. In other words, if there is a scalar λ such that

$$A\xi = \lambda \xi$$
.

 λ is called an **eigenvalue** of A for the eigenvector ξ .

Properties in general

- ▶ In general, eigenvalues are complex numbers $\lambda \in \mathbb{C}$.
- ► The class of matrices with the nicest eigen-structure are symmetric matrices, for which all eigenvalues are real numbers.

EIGENSTRUCTURE OF SYMMETRIC MATRICES

If a matrix is symmetric:

- ▶ All eigenvalues and eigenvectors are real, i.e. $\lambda \in \mathbb{R}$ and $\xi \in \mathbb{R}^m$.
- ightharpoonup There are rank(A) distinct eigenvectors.
- ► The eigenvectors are pair-wise orthogonal.
- ▶ If rank(A) = m, there is an ONB of \mathbb{R}^m consisting of eigenvectors of A.

Definiteness

type	if
positive definite	all eigenvalues > 0
positive semi-definite	all eigenvalues ≥ 0
negative semi-definite	all eigenvalues ≤ 0
negative definite	all eigenvalues < 0
indefinite	none of the above

EIGENVECTOR ONB

Setting

- ▶ Suppose *A* symmetric, ξ_1, \ldots, ξ_m are eigenvectors and form an ONB.
- \triangleright $\lambda_1, \ldots, \lambda_m$ are the corresponding eigenvalues.

How does *A* act on a vector $v \in \mathbb{R}^m$?

1. Represent v in basis ξ_1, \ldots, ξ_m :

$$v = \sum_{j=1}^{m} v_j^{\mathrm{A}} \xi_j$$
 where $v_j^{\mathrm{A}} \in \mathbb{R}$

2. Multiply by A: Eigenvector definition (recall: $A\xi_j = \lambda \xi_j$) yields

$$Av = A\left(\sum_{j=1}^{m} v_j^{A} \xi_j\right) = \sum_{j=1}^{m} v_j^{A} A \xi_j = \sum_{j=1}^{m} v_j^{A} \lambda_j \xi_j$$

Conclusion

A symmetric matrix acts by scaling the directions ξ_j .

ILLUSTRATION

Setting

We *repeatedly* apply a symmetric matrix B to some vector $v \in \mathbb{R}^m$, i.e. we compute

$$Bv$$
, $B(Bv) = B^2v$, $B(B(Bv)) = B^3v$, ...

How does *v* change?

Example 1: *v* is an eigenvector with eigenvalue 2

The direction of v does not change, but its length doubles with each application of B.

ILLUSTRATION

Example 2: v is an eigenvector with eigenvalue $-\frac{1}{2}$

For an arbitrary vector *v*

$$B^n v = \sum_{j=1}^m v_j^{\mathrm{B}} \lambda_j^n \xi_j$$

- ▶ The weight λ_j^n grows most rapidly for eigenvalue with largest absolute value.
- ► Consequence:

The direction of $B^n v$ converges to the direction of the eigenvector with largest eigenvalue as n grows large.

QUADRATIC FORMS

In applications, symmetric matrices often occur in quadratic forms.

Definition

The **quadratic form** defined by a matrix A is the function

$$q_{\scriptscriptstyle A}: \mathbb{R}^m \to \mathbb{R}$$

$$x \mapsto \langle x, Ax \rangle$$

Intuition

A quadratic form is the *m*-dimensional analogue of a quadratic function ax^2 , with a vector substituted for the scalar x and the matrix A substituted for the scalar $a \in \mathbb{R}$.

QUADRATIC FORMS

Here is the quadratic form for the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$:

- ▶ Left: The function value q_A is graphed on the vertical axis.
- ▶ Right: Each line in \mathbb{R}^2 corresponds to a constant function value of q_A . Dark color = small values.
- \blacktriangleright The red lines are eigenvector directions of A. Their lengths represent the (absolute) values of the eigenvalues.
- ► In this case, both eigenvalues are positive. If all eigenvalues are positive, the contours are ellipses. So:

positive definite matrices \leftrightarrow elliptic quadratic forms

QUADRATIC FORMS

In this plot, the eigenvectors are axis-parallel, and one eigenvalue is negative:

The matrix here is $A = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$.

Intuition

- ► If we change the sign of one of the eigenvalue, the quadratic function along the corresponding eigen-axis flips.
- ► There is a point which is a minimum of the function along one axis direction, and a maximum along the other. Such a point is called a *saddle point*.

APPLICATION: COVARIANCE MATRIX

Recall: Covariance

The covariance of two random variables X_1, X_2 is

$$Cov[X_1, X_2] = \mathbb{E}[(X_1 - \mathbb{E}[X_1])(X_2 - \mathbb{E}[X_2])]$$
.

If $X_1 = X_2$, the covariance is the variance: Cov[X, X] = Var[X].

Covariance matrix

If $X = (X_1, ..., X_m)$ is a random vector with values in \mathbb{R}^m , the matrix of all covariances

$$Cov[X] := (Cov[X_i, X_j])_{i,j} = \begin{pmatrix} Cov[X_1, X_1] & \cdots & Cov[X_1, X_m] \\ \vdots & & \vdots \\ Cov[X_m, X_1] & \cdots & Cov[X_m, X_m] \end{pmatrix}$$

is called the **covariance matrix** of X.

Notation

It is customary to denote the covariance matrix Cov[X] by Σ .

GAUSSIAN DISTRIBUTION

Gaussian density in one dimension

$$p(x; \mu, \sigma) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- μ = expected value of x, σ^2 = variance, σ = standard deviation
- The quotient $\frac{x-\mu}{\sigma}$ measures deviation of x from its expected value in units of σ (i.e. σ defines the length scale)

Gaussian density in m dimensions

The quadratric function

$$-\frac{(x-\mu)^2}{2\sigma^2} = -\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)$$

is replaced by a quadratic form:

$$p(\mathbf{x}; \boldsymbol{\mu}, \Sigma) := \frac{1}{\sqrt{2\pi \det(\Sigma)}} \exp\left(-\frac{1}{2} \left\langle (\mathbf{x} - \boldsymbol{\mu}), \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\rangle\right)$$

COMPONENTS OF A 1D GAUSSIAN

$$\mu = 2, \, \sigma = 2$$

- $ightharpoonup \operatorname{Red}: x \mapsto x$
- Green: $x \mapsto x \mu$

- ▶ Brown: $x \mapsto -\frac{1}{2} \left(\frac{x \mu}{\sigma} \right)^2$
- ▶ Black: $x \mapsto \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$

GEOMETRY OF GAUSSIANS

Covariance matrix of a Gaussian

If a random vector $X \in \mathbb{R}^m$ has Gaussian distribution with density $p(\mathbf{x}; \mu, \Sigma)$, its covariance matrix is $\text{Cov}[X] = \Sigma$. In other words, a Gaussian is parameterized by its covariance.

Observation

Since $Cov[X_i, X_j] = Cov[X_j, X_i]$, the covariance matrix is symmetric.

What is the eigenstructure of Σ ?

- ▶ We know: Σ symmetric \Rightarrow there is an eigenvector ONB
- ▶ Call the eigenvectors in this ONB ξ_1, \ldots, ξ_m and their eigenvalues $\lambda_1, \ldots, \lambda_m$
- We can rotate the coordinate system to ξ_1, \ldots, ξ_m . In the new coordinate system, Σ has the form

$$\Sigma_{[\xi_1,\ldots,\xi_n]} = egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_m \end{pmatrix} = \mathrm{diag}(\lambda_1,\ldots,\lambda_m)$$

EXAMPLE

Quadratic form

$$\langle \mathbf{x}, \Sigma \mathbf{x} \rangle$$
 with $\Sigma = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

The eigenvectors are (1, 1) and (-1, 1) with eigenvalues 3 and 1.

Gaussian density

$$p(\mathbf{x}; \boldsymbol{\mu}, \Sigma)$$
 with $\boldsymbol{\mu} = (0, 0)$.

INTERPRETATION

The ξ_i as random variables

Write e_1, \ldots, e_m for the ONB of axis vectors. We can represent each ξ_i as

$$\xi_i = \sum_{j=1}^m \alpha_{ij} e_j$$

Then $O = (\alpha_{ij})$ is the orthogonal transformation matrix between the two bases. We can represent random vector $X \in \mathbb{R}^m$ sampled from the Gaussian in the eigen-ONB as

$$X_{[\xi_1,...,\xi_m]} = (X'_1,...,X'_m)$$
 with $X'_i = \sum_{j=1}^m \alpha_{ij}X_j$

Since the X_j are random variables (and the α_{ij} are fixed), each X'_i is a scalar random variable.

INTERPRETATION

Meaning of the random variables ξ_i

For any Gaussian $p(\mathbf{x}; \boldsymbol{\mu}, \Sigma)$, we can

- 1. shift the origin of the coordinate system into μ
- 2. rotate the coordinate system to the eigen-ONB of Σ .

In this new coordinate system, the Gaussian has covariance matrix

$$\Sigma_{[\xi_1,\ldots,\xi_m]} = \operatorname{diag}(\lambda_1,\ldots,\lambda_m)$$

where λ_i are the eigenvalues of Σ .

Gaussian in the new coordinates

A Gaussian vector $X_{[\xi_1,...,\xi_m]}$ represented in the new coordinates consists of *m* independent 1D Gaussian variables X'_i . Each X'_i has mean 0 and variance λ_i .

SHRINKAGE

ISSUES WITH LEAST SQUARES

Robustness

- Least squares works only if $\tilde{\mathbf{X}}$ has full column rank, i.e. if $\tilde{\mathbf{X}}^t \tilde{\mathbf{X}}$ is invertible.
- ► If $\tilde{\mathbf{X}}^t\tilde{\mathbf{X}}$ almost not invertible, least squares is numerically unstable. Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- ► Modern problems: Many dimensions/features/predictors (possibly thousands)
- Only a few of these may be important
 - → need some form of feature selection
- ► Least squares:
 - ► Treats all dimensions equally
 - ► Relevant dimensions are averaged with irrelevant ones
 - ► Consequence: Signal loss

REGULARITY OF MATRICES

Regularity

A matrix which is not invertible is also called a **singular** matrix. A matrix which is invertible (not singular) is called **regular**.

In computations

Numerically, matrices can be "almost singular". Intuition:

- A singular matrix maps an entire linear subspace into a single point.
- ▶ If a matrix maps points far away from each other to points very close to each other, it almost behaves like a singular matrix.

REGULARITY OF SYMMETRIC MATRICES

Recall: A positive semi-definite matrix A is singluar \Leftrightarrow smallest EValue is 0

Illustration

If smallest EValue $\lambda_{\min} > 0$ but very small (say $\lambda_{\min} \approx 10^{-10}$):

- Suppose x_1, x_2 are two points in subspace spanned by ξ_{\min} with $||x_1 x_2|| \approx 1000$.
- ► Image under A: $||Ax_1 Ax_2|| \approx 10^{-7}$

In this case

- ► A has an inverse, but A behaves almost like a singular matrix
- The inverse A^{-1} can map almost identical points to points with large distance, i.e.

small change in input \rightarrow large change in output

 \rightarrow unstable behavior

Consequence for Statistics

If a statistical prediction involves the inverse of an almost-singular matrix, the predictions become unreliable (high variance).

IMPLICATIONS FOR LINEAR REGRESSION

Recall: Prediction in linear regression

For a point $\mathbf{x}_{new} \in \mathbb{R}^d$, we predict the corresponding function value as

$$\hat{y}_{\text{new}} = \left\langle \hat{\beta}, (1, \mathbf{x}) \right\rangle = (\tilde{\mathbf{X}}^t \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^t \mathbf{y}$$

Effect of unstable inversion

- Suppose we choose an arbitrary training point $\tilde{\mathbf{x}}_i$ and make a small change to its response value \tilde{y}_i .
- ▶ Intuitively, that should not have a big impact on $\hat{\beta}$ or on prediction.
- ▶ If $\tilde{\mathbf{X}}^t\tilde{\mathbf{X}}$ is almost singular, a small change to \tilde{y}_i can prompt a huge change in $\hat{\beta}$, and hence in the predicted value \hat{y}_{new} .