Age Prediction

Al Model Development

Time: 60 mins

Introduction

In this class, the student/s will learn to preprocess the real time video, load age prediction model and predict the age of faces detected in camera.

New Commands Introduced

• flip() Flips the image.

resize()
Resizes the image with a given value.

load_model()
Loads the model

cv2.imshow("Images", img)
Displays the img image and adds "Images" as title of the

window

img[Y: Y+H, X: X+W]
Crops the image as per specified dimension

compile()
Compiles the model

model.predict()
Gives prediction value as per model

Vocabulary

- Traning dataset is a dataset which is used train a model.
- Testing dataset is a dataset which is used to test a trained model

Learning Objectives

Student/s should be able to:

- Recall how to process to create a model
- **Demonstrate** how capture a video, process the video to predic the age of the person.
- Explain the steps required to capture a video, process the video and predict the age.

.

Activities

1. Class Narrative: (2 mins)

 Brief the student/s that you can capture a live video, process it to predict the age of the person in the video.

2. Concept Introduction Activity: (5 mins)

- Let the student/s play the explore-activity to see how the feature to predict the age in real time works. Ask the students to add the model file in every activity sub-folder.
- Using the slides, explain that the student/s will learn:
 - o to capture video and detect faces.
 - o to process the video
 - o to predict the age

3. Activity 1: Capture Video and Detect Faces (14 mins)

Teacher Activity: (7 mins)

- Ask the student/s to recall how they read the camera feed to detect the hands.
- Explain how to capture and store the video in real time.
- Explain that the video is stored in flipped frames as the original video captured is flipped so you need to flip it again.
- Explain how to detect and highlight the faces.

Student Activity: (7 mins)

• Guide the student/s to capture and store the video, detect and highlight the faces in the video.

4. Activity 2: Preprocess the Video (12 mins)

Teacher Activity: (3 mins).

- Demonstrate how to preprocess the detected faces in real time video by cropping and resizing them.
- Explain how to store the preprocessed video frames as an image in a numpy array for further processing.

Student Activity: (9 mins)

Guide the student/s to preprocess the detected faces in real time video.

5. Activity 3: Predict the Age (12 mins)

Teacher Activity: (6 mins)

- Demonstrate how to use the trained tested model to predict ages in real time.
- Explain how to load the age detection model, predict the ages of the detected faces, and display ages for detected faces.

Student Activity: (6 mins)

• Guide the student/s to use the trained tested model to predict ages in real time.

6. Introduce the Post class project: (2 min)

• Use the lung images to detect if the patient is a Pneumothorax patient.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective missions.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student/s to color the bounding box and age prediction values with different colors.
- Encourage the student/s to run the model on video and debug to change the bounded box dimensions and show the face detection with predicted age.

9. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to create an Al tool to automate adding a caption to the video..

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table		
Activity	Activity Name	Link
Class Presentation	Age Prediction	https://s3-whjr-curriculum-uploads.

		whjr.online/360ab19f-18db-49d0-b 522-1109737a61f3.html
Explore Activity	Age Prediction	https://github.com/Tynker-Computer-V ision/TNK-M10-PRO-C76-SAS-BP
Student Activity 1	Capture Video and Detect Faces	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS-BP
Teacher Reference: Student Activity 1 Solution	Capture Video and Detect Faces	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS
Student Activity 2	Preprocess the Video	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS-BP
Teacher Reference: Student Activity 2 Solution	Preprocess the Video	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS
Teacher Activity 3	Predict the Age	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-TAS-BP
Teacher Reference: Teacher Activity 3 Solution	Predict the Age	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-TAS
Student Activity 3	Predict the Age	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS-BP
Teacher Reference: Student Activity 3 Solution	Predict the Age	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS
Student's Additional Activity 1	Change the Color	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Change the Color	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS
Student's Additional Activity 2	Debug the Code	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Debug the Code	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-SAS
Post Class Project	Predict the Pneumothorax Detection	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-PCP-BP
Teacher Reference: Post Class Project Solution	Predict the Pneumothorax Detection	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C76-PCP