

CHEE

Siddaganga Institute of Technology, Tumakuru-572 103 (An Autonomous Institution affiliated to VTU, Belagavi, Approved by AICTE, New Delhi)

Supplementary Semester Bachelor of Electrical and Electronics Engineering Examinations Sep. 2024

Chemistry for EEE Stream

		Chemistry for EEE Stream					
Time: 3 Hours		Max. Marks: 100					
		Note : 1. Revealing of Identity in any form in the answer book will be treated as malph 2. Answer any five questions choosing one full question from each unit. Unit - I	ractio	ce.	со	PO	PSC
1	a)	What is single electrode potential? Explain the origin of single electrode potential when the concentration of ions in solution is low.	5	2	1	1	
	b)	Explain the construction and working of Ag-AgCl electrode.	5	2	1		
	c)	Describe the experimental details and give the mathematical derivation for determination of pH of a solution using glass electrode.	5	2	1	1	
	d)	For the cell, Fe Fe ⁺⁺ (0.01M) Ag ⁺ (0.1M) Ag, write the cell reaction and evaluate the emf of the cell at 298K, if $E^{\circ}_{Fe^{2+} Fe}$ and $E^{\circ}_{Ag^{+} Ag}$ are -0.44V and 0.8V respectively.	5	5	1	1	
		OR					
2	a)	Derive Nernst equation for single electrode potential.	5	4	1	1	
	b)	With a neat diagram, explain the construction and working of Calomel electrode.	5	2	1	1	
	c)	What is a concentration cell? Derive an expression for the emf of concentration cell.	5	4	1	1	
	d)	A voltaic cell consists of a rod of copper immersed in a 10.0M solution of CuSO ₄ and a rod of iron immersed in a 0.1M solution of FeSO ₄ . Evaluate the voltage for					
		the cell at STP. Given , $E^{\circ}{}_{Cu}^{++}{}_{/\!Cu}$ =0.34 V and $E^{\circ}{}_{Fe}^{++}{}_{/\!Fe}$ =-0.44 V	5	5	1	1	
_		Unit - II					
3	a)	State and derive Beer-Lambert's law.	5	4	2	2	
	b)	A compound has a molar absorptivity of 6.74×10^3 Lmol ⁻¹ cm ⁻¹ . What concentration of the compound would be required to produce a solution having a transmittance of 7.77% in a 2.5 cm cell?	5				
	c)	Describe the construction and working of lead-acid battery.	5	1	2	2	
	d)	Explain the operation of a battery during discharging and charging process.	5	2	2	2	
	u)	OR	3	2	2	2	
4	a)	Explain the variation in conductance for the titration of mixture of strong acid and					
		weak acid against strong base with graphs.	5	2	2	2	
	b)	With the principle and explain the potentimetric titration of FAS against K ₂ Cr ₂ O ₇ .	5	2	2	2	
	c)	Identify the anode, cathode materials and write he electrode reactions during					
	4)	discharging and charging of Ni-Cd battery.	5	3	2	2	
	d)	Discuss the construction and working of Lithium-ion battery. Unit - III	5	4	2	2	
5	a)	Outline the synthesis of nano TiO ₂ by hydrothermal method.	5	2	3	2	
_	b)	Explain the synthesis of carbon nanotubes by arc discharge method.	5	2	3		
	c)	Define % of atom economy. Evaluate the percentage atom economy for the product, acetophenone from the following chemical reaction. (Given At. Wt. of C=12, H=1, O=16, Cl=35.5)	3	2	3	2	
		+ CH ₃ COCLAICI ₃ + HQ					

Describe the working principle of light emitting diodes (LEDs).

What are conductors? Explain the mechanism of conduction in solids.

5

5

2

5

1

c)