Sesión N° 9

Ensayo curvas características de una bomba centrifuga

Laboratorio de Máquinas (ICM 557)

Segundo Semestre 2020

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: 8501

Fecha:

11 de diciembre del 2020

1 Resumen

Se presenta un resumen de las conclusiones del análisis obtenido de una bomba centrifuga.

- Se estudia una bomba Francis Helicoidal.
- El máximo rendimiento se obtiene cuando la bomba opera a 2700 [rpm] con un caudal de $43,15[\frac{m^3}{h}]$ obteniéndose un Isorendimiento de 81,81%.
- Se sugiere un funcionamiento de la bomba lo mas cerca posible de su mejor punto de eficiencia, de esta forma se maximiza la vida útil de los componentes y obtener un desgaste mínimo.

2 Índice

Contenido

1 Resumen	3
2 Índice	4
3 Introducción	5
4 Objetivos	6
5 Metodología/Procedimientos	7
6 Resultados	8
6.1 Isorendimiento vs Caudal	8
6.2 Curva de potencia vs caudal	9
6.3 Φ v/s Ψ	10
6.4 Velocidad especifica	11
7 Conclusión	12
8 Referencias	13
9 Anexo	14
9.1 Formulas:	14
9.2 Tablas	16
9.2.1 Datos del ensayo de una bomba centrifuga	16
9.2.2 Datos calculados	18
9.2.3 Gráfico del venturímetro	20

3 Introducción

El presente informa busca analizar el comportamiento de una bomba centrifuga a distintas RPM.

El estudio y posterior análisis de una de las bombas mas solicitadas en la industria se lograra mediante los datos proporcionados en la experiencia previa.

4 Objetivos

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

Preguntas a responder:

- Graficar: De isorendimiento y potencia vs caudal.
 - o ¿Cuáles son las condiciones óptimas de operación de esta bomba?
 - ¿Las curvas tiene la forma esperada?
 - o ¿Cuál es la potencia máxima consumida?
 - ¿Qué tipo de curvas son?
- Graficar: Curva Ψ vs Φ
 - o ¿La nube de puntos que conforman esta curva son muy dispersos?
 - Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es?
 Justifíquelo.
 - Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta 3.4.3.2.

5 Metodología/Procedimientos.

Para la realización de la experiencia se siguieron los siguientes pasos:

> Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga

totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente

para que se estabilice su funcionamiento, tome las siguientes medidas:

n: velocidad del ensayo [rpm]

nx: velocidad de la bomba [rpm]

pax%: presión de aspiración [%]

pdx%: presión de descarga [%]

 Δhx : caudal de la bomba, presión diferencial en el venturímetro [mm_{Hg}]

Fx: fuerza medidas en la balanza [Kp]

t_a: temperatura de agua en el estanque[°C]

 P_{atm} : presión atmosférica [mm_{Ha}]

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo.

Medición de los valores siguientes:

cpax: altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].

cpdx: altura piezométrica del manómetro de descarga respecto del eje de la bomba, en

[mm].

Para los cálculos correspondientes se utilizaron las fórmulas del anexo 9.1 y las tablas del

anexo 9.2.

7

6 Resultados.

En esta sección se presentarán los resultados obtenidos del ensayo realizado a una bomba centrifuga sometida a distintas condiciones de operación.

6.1 Isorendimiento vs Caudal.

En la Grafico1 se representan la Isodermico vs Caudal₁ para distintos valores de rpm.

Para 3070 [rpm]:

En este se aprecia que el máximo rendimiento se alcanza a los 69,19% a un caudal de 78,99[\frac{m^3}{h}].

Para 2900 [rpm]:

En este se aprecia que el máximo rendimiento se alcanza a los 71,23% a un caudal de $86,31[\frac{m^3}{h}]$.

Para 2700 [rpm]:

En este se aprecia que el máximo rendimiento se alcanza a los 81,81% a un caudal de $43,15[\frac{m^3}{h}]$.

Se observa que el máximo rendimiento se obtiene cuando la bomba opera a 2700 [rpm] con un caudal de $43,15[\frac{m^3}{h}]$ obteniéndose un Isorendimiento de 81,81%.

Se observa una curva con trayectoria parabólica, la cual al llegar a su punto de máximo rendimiento desciende. Su apariencia se debe a la disminución del caudal contra la presión.

Se observa que las curvas obtenidas son las esperadas. Las variaciones generadas son producto de la variación de la altura respecto al caudal Qx obtenidas del grafico del Venturimetro¹.

8

¹ Dato obtenido del Grafico 4, Aneo 2.

Grafico1: Representación de Isorendimientos a determinados caudales para cada variación de rpm ensayado.

6.2 Curva de potencia vs caudal

En la Grafico2 se representan la potencia vs Caudal₁ para distintos valores de rpm.

Para 3070 [rpm]:

En este se aprecia que la potencia máxima se alcanza a los 4,31 [KW] a un caudal de $64,63 \left[\frac{m^3}{h}\right]$.

Para 2900 [rpm]:

En este se aprecia que la potencia máxima se alcanza a los 3,59 [KW] a un caudal de $64,71 \left[\frac{m^3}{h}\right]$.

Para 2700 [rpm]:

En este se aprecia que la potencia máxima se alcanza a los 2,77 [KW] a un caudal de $64,72 \left[\frac{m^3}{h}\right]$.

Se observa que el máximo rendimiento se obtiene cuando la bomba opera a 3070 [rpm] con un caudal de $64,63[\frac{m^3}{h}]$ obteniéndose una potencia de 4,31[KW].

Se observa una curva con trayectoria parabólica, la cual al llegar a su punto de máxima potencia desciende. Su apariencia se debe a la disminución del caudal contra la presión.

Grafico2: Representación de potencia eléctrica a determinados caudales para cada variación de rpm ensayado.

6.3 Φ v/s Ψ

En la Grafico3 se representan la Φ v/s Ψ para distintos valores de rpm.

Los coeficientes de carga y capacidad para los distintos rpm estudiados son coincidentes. Muestran una dispersión no mayor a 0,084[-] entre las curvas lo cual era de esperar al tratarse del mismo fluido de trabajo.

Grafico3: Representación Φ v/s Ψ para cada variación de rpm ensayado.

6.4 Velocidad especifica

En la tabla 3 se ven representados diversas velocidades específicas para las variaciones de rpm analizadas.

Se observa a partir del Grafico 1 que el punto óptimo se logra a los 2700[rpm]. En la tabla 3 la velocidad específica para el punto óptimo en la columna correspondiente a los rpm dichos es de 75,33.

Se puede inferir de acuerdo a los datos obtenidos y según la clasificación de bombas según su Ns, que se estudia una bomba Francis Helicoidal.

Ns	Ns	Ns
3070[rpm]	2900[rpm]	2700[rpm]
135,39761	125,78761	115,09259
130,78526	123,59983	112,99777
128,42857	121,37262	110,88548
126,02783	119,10378	108,73216
121,06394	114,43121	104,31152
115,89107	107,05903	99,65467
104,82742	99,08327	92,26230
98,83224	93,44879	87,00182
89,08617	87,39828	81,38275
74,13622	70,07452	75,33185
60,52214	52,22147	57,53565
0,00000	0,00000	0,00000

Tabla3: Tabla de velocidades específicas para distintos rpm ensayados:

7 Conclusión.

- Al analizar los valores calculados se ratifica que se estudia una bomba Francis Helicoidal.
- El máximo rendimiento se obtiene cuando la bomba opera a 2700 [rpm] con un caudal de 43,15 [m³/h] obteniéndose un Isorendimiento de 81,81%.
- Se sugiere un funcionamiento de la bomba lo mas cerca posible de su mejor punto de eficiencia, de esta forma se maximiza la vida útil de los componentes y obtener un desgaste mínimo.
- El máximo rendimiento se obtiene cuando la bomba opera a 3070 [rpm] con un caudal de 64,63 [m³/h] obteniéndose una potencia de 4,31 [KW].
- Los coeficientes de carga y capacidad nos brindan una comparación para resolver las limitantes existentes para calcular y diseñar bombas centrífugas en la manipulación de fluidos con propiedades diferentes a las del agua.

8 Referencias.

- Determinación de los coeficientes de carga y capacidad para bombas centrífugas que manipulan fluidos con propiedades diferentes a las del agua PPT IME 447 Ventilador Radial, proporcionado en clases. << Universidad Autónoma del Estado de México México>>
- Curva característica de la bomba centrífuga
 - https://www.debem.com/es/curva-caracteristica-de-bomba-centrifuga/
 - https://www.northridgepumps.com/article-261_como-leer-la-curva-de-rendimientode-una-bomba
- Texto guía:
 - > Termodinámica 6th edición, Yunus A. Cengel.

9 Anexo

9.1 Formulas:

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \left[m_{ca} \right]$$

cpdx=165 [mm]

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0.0007355 Fxnx$$
 [kW]

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

peso específico del agua en [N/m³]

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete B₂ ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

Error experimental (2):

Para el cálculo de errores experimentales se utilizó la siguiente formula:

$$Error = \frac{valor\ experimental - valor\ teorico}{valor\ teorico}*100$$

9.2 Tablas

9.2.1 Datos del ensayo de una bomba centrifuga.

					3070	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

					2900	[rpm]				
	n	срах	cpdx	nx	рах	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7

					2700	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

Tabla1: Los valores medidos en la prueba de ensayo de una bomba centrifuga a distintos rpm.

9.2.2 Datos calculados.

	h	[-]	0,16315	0,27050	0,35513	0,43064	0,49669	0,57468	0,67453	0,74580	0,78557	0,86196	0,89537	0,95586		h	[-]	0,16815	0,27808	0,33584	0,41782	0,49700	0,56586	0,64794	0,72481	0,79185	0,85193	0,89836	8/996′0
	Φ	[-]	0,13392	0,12495	0,12049	0,11603	0,10707	0,09811	0,08028	0,07136	0,05798	0,04015	0,02676	0,00000		0	El	0,13713	0,13240	0,12767	0,12294	0,11349	0,09933	0,08509	0,07568	0,06620	0,04256	0,02363	0,0000,0
	cm ₂	[s/w]	2,90619	2,71157	2,61472	2,51788	2,32344	2,12913	1,74202	1,54846	1,25812	0,87129	0,58067	0,00000		cm ₂	[w/s]	2,81099	2,71406	2,61713	2,52020	2,32634	2,03624	1,74415	1,55142	1,35703	0,87238	0,48449	0,00000
	U ₂	[s/w]	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055		U ₂	[s/w]	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889
	ાથા	[%]	33,17351	47,07100	55,92958	63,19112	65,87523	69,15770	66,06941	65,96377	58,30494	47,94311	36,21172	0,00000		ngl	[%]	35,07365	52,19290	57,64527	66,07652	71,23412	69,67463	68,02551	85966'29	68,27368	50,70681	32,31867	0000000
	Nh	[kW]	1,14979	1,77864	2,25175	2,62938	2,79851	2,96712	2,84946	2,80045	2,39672	1,82119	1,26079	0,00000		Nh	[kW]	1,02278	1,63309	1,90186	2,27848	2,50181	2,49325	2,44536	2,43320	2,32518	1,60818	0,94180	0,00000
3070 [rpm]	Ne	[kW]	3,46600	3,77863	4,02604	4,16099	4,24820	4,29036	4,31282	4,24544	4,11066	3,79865	3,48171	2,53828	2900 [rpm]	Ne	[kw]	2,91611	3,12896	3,29924	3,44824	3,51210	3,57842	3,59476	3,57842	3,40567	3,17153	2,91410	1,99945
3070	Nex	[kW]	3,48296	3,80083	4,04969	4,18544	4,27732	4,32399	4,34663	4,27871	4,14288	3,82470	3,50900	2,55817	2900	Nex	[kW]	2,92516	3,13868	3,30949	3,45895	3,52301	3,58583	3,60966	3,58583	3,41625	3,18138	2,92617	2,00774
	Н	[m _{ca}]	3,91723	6,49459	8,52664	10,33955	11,92555	13,79799	16,19548	17,90655	18,86157	20,69552	21,49781	22,95023		н	[m _{ca}]	3,60254	2,95767	7,19511	8,95147	10,64796	12,12327	13,88168	15,52857	16,96488	18,25222	19,24687	20,71282
	XH	[m _{ca}]	3,93	6,52	92′8	10,38	11,98	13,87	16,28	18	18,96	20,79	21,61	23,07		HX H	[m _{ca}]	3,61	2,97	7,21	8,97	10,67	12,14	13,92	15,55	17	18,29	19,3	20,77
	xpd	[m _{ca}]	2,765	209'S	7,925	596′6	11,805	13,925	16,685	18,645	19,845	21,925	22,925	25,005		xpd	[m _{ca}]	2,645	5,245	6,725	8,725	10,605	12,365	14,365	16,245	17,885	19,405	20,645	22,605
	рах	[m _{ca}]	-1,1650	-0,9150	-0,6350	-0,4150	-0,1750	0,0550	0,4050	0,6450	0,8850	1,1350	1,3150	1,9350		bax	[m _{ca}]	-0,965	-0,725	-0,485	-0,245	-0,065	0,225	0,445	269′0	0,885	1,115	1,345	1,835
	D	[m³/h]	107,8244	100,6034	97,0104	93,4174	86,2034	78,9942	64,6316	57,4503	46,6784	32,3263	21,5439	00000		Q	[m³/h]	104,292112	100,695832	97,0995522	93,5032725	86,3107131	75,547898	64,7107438	22,5603032	50,3479159	32,3665174	17,9752066	0
	ΧΌ	[m³/h]	108	100,8	2′26	93,6	86,4	79,2	64,8	9′25	46,8	32,4	21,6	0		ď	[m³/h]	104,4	100,8	97,2	93'6	86,4	75,6	64,8	9'25	50,4	32,4	18	0
			1	2	3	4	5	9	7	8	6	10	11	12				1	2	3	4	5	9	7	8	6	10	11	12

	U_2 cm ₂ Φ Ψ	[-] [-] [s/w] [s/w]		19,08518 2,71485 0,14225 0,17044	19,08518 2,61693 0,13712 0,25789	19,08518 2,52000 0,13204 0,33472	19,08518 2,42308 0,12696 0,40403	19,08518 2,23006 0,11685 0,48820	19,08518 2,03539 0,10665 0,56736	19,08518 1,74462 0,09141 0,66675	19,08518 1,55135 0,08129 0,74252	19,08518 1,35743 0,07112 0,81242	19,08518 1,16308 0,06094 0,87683	19,08518 0,67846 0,03555 0,90853	19,08518 0,00000 0,00000 0,96494
	Ngl	[%]		37,73265	51,52057	61,42079	69,15927	74,62643	78,08229	78,65269	78,95736	80,24301	81,81195	55,57119	000000
	Nh	[kw]		0,86792	1,26586	1,58212	1,83627	2,04209	2,16602	2,18184	2,16060	2,06849	1,91285	1,15617	000000
2700 [rpm]	Ne	[kW]		2,30018	2,45699	2,57588	2,65514	2,73642	2,77402	2,77402	2,73642	2,57778	2,33810	2,08052	1,54553
270	Nex	[kw]		2,30529	2,46519	2,58447	2,66400	2,74250	2,78328	2,78328	2,74250	2,58352	2,34591	2,08746	1.55068
	Н	[⁸ w]		3,16531	4,78935	6,21618	7,50332	95990'6	10,53657	12,38247	13,78956	15,08764	16,28379	16,87248	9106621
	쒸	[m _{ca}]		3,17	4,8	6,23	7,52	80'6	10,56	12,41	13,81	15,11	16,32	16,91	17.96
	xpd	[m _{ca}]		2,485	4,365	2)662	7,405	9,205	10,925	13,005	14,605	16,125	17,565	18,285	19.805
	рах	[m _a]		-0,685	-0,435	-0,265	-0,115	0,125	0,365	0,595	0,795	1,015	1,245	1,375	1.845
	Q	[m ³ /h]		100,725389	97,0921199	93,4961154	89,900111	82,7387121	75,5160932	64,7280799	57,5573649	50,3626943	43,1520533	25,1720311	0
	ď	[m ³ /h]		100,8	97,2	93'6	06	82,8	75,6	64,8	57,6	50,4	43,2	25,2	0
				1	2	3	4	5	9	7	8	6	10	11	12

Tabla2: Datos calculados que representan los distintos valores con sus respectivas normalizaciones.

9.2.3 Gráfico del venturímetro.

Grafico4: Diferencia de alturas vs caudal.