Elektronikpraktikum WS02/03 Klausur Prof. P. Böni

Montag, 26.1.04, Hörsaal 3

1. Aufgabe: Thevenin-Modell (6P)

Skizzieren Sie das Thevenin-Modell und geben Sie $U_{\rm Th}$ und $R_{\rm Th}$ für die drei Schaltungen in Abb. 1. an.

2. Aufgabe: Tiefpaß (5P)

Skizzieren Sie die Übertragungsfunktion $A(\omega)=U_a/U_e$ und Betrag und Vorzeichen der Phasenverschiebung ϕ zwischen U_a und U_e der Schaltung in Abb. 2 als Funktion der Frequenz!

Bei welcher Frequenz ist $A=-3\mathrm{dB}$? Wie groß ist die Phasenverschiebung in diesem Punkt? Wie fällt $A(\omega)$ für Frequenzen $\omega>\omega_{-3\mathrm{dB}}$ ab (in dB/Oktave oder dB/Dekade)?

3. Aufgabe: Transistor (9P)

Legen Sie die fehlenden Werte des Verstärkers in Abb. 3 fest:

- a) Am Ruhepunkt sei $I_C=0.5 \mathrm{mA}$. Legen Sie R_C so fest, daß U_{out} auf der halben Versorgungsspannung liegt.
- b) Welchen R_E brauchen Sie, um die Verstärkung $V = U_{out}/U_{in} = 10$ zu erhalten?
- c) Wie groß sind U_E und U_B ?
- d) Berechnen Sie den Basisstrom i_B und die Eingangsimpedanz R_m des Transistors. Die Stromverstärkung sei $\beta=h_{FE}=100$.
- e) Legen Sie den Basis-Spannungsteiler R_1 , R_2 fest. Welchen Thevenin-Widerstand $R_{TH(B)}$ sollte dieser Spannungsteiler höchstens haben?
- f) C_1 bildet mit R_{in} und $R_{TH(B)}$ einen Tiefpaß. Wie groß ist ω_{-3bB} ?

Abb. 4

4. Aufgabe: Operationsverstärker (6P)

Berechnen Sie U_a (mit Vorzeichen) für die Schaltungen in Abb. 4 für ideale Operationsverstärker. Das U^2 -Kästchen in d) legt an den invertierenden Eingang des Operationsverstärkes U_a^2 an.