Proposta de Otimização para Algoritmos de Detecção de Bordas em Imagens

S. P. Zambiasi
Faculdades Barddal
Grupo de Estudos em Robôs Inteligentes - GERIS
Av. Madre Benvenuta, 416
Trindade, Florianópolis/SC 88.036-500 BRASIL

Resumo- Uma das técnicas utilizadas na robótica para a visão de um agente é a detecção de bordas das imagens capturadas por seus dispositivos. Este artigo apresenta algumas técnicas simples e eficientes para detecção de bordas e avalia este problema como sendo linearmente separável a partir da utilização de um perceptron. As técnicas propostas visam ser uma opção prática e rápida para as aplicações de robótica, onde requisitos de tempo real são essenciais.

I. INTRODUÇÃO

Pesquisas de visão computacional para robótica envolvem uma enorme gama de problemas ainda não resolvidos ou com apenas soluções parciais. O seu objetivo principal é que máquinas possam reconhecer diferentes objetos ou mesmo o próprio cenário onde se encontram. Apesar da grande de atuais capacidade processamento dos microprocessadores, uma minimização no uso dos recursos ainda é importante quando se trata de robótica, principalmente quando é necessário o uso de dispositivos de baixo custo, com capacidades de processamento e armazenamento reduzidas. Isso justifica a necessidade de aplicações mais eficientes para compensar essa falta de recursos.

II. DETECÇÃO DE BORDAS

A visão computacional aplicada à robótica é um problema muito difícil de se resolver. No entanto, ela pode ser essencial para um agente inteligente em funcionamento [1]. Diversas técnicas são utilizadas em conjunto para a análise das imagens capturadas. Uma delas é a detecção de bordas.

O operador de Roberts [2] é o algoritmo mais antigo e simples para detecção de bordas. Ele utiliza um par de matrizes 2x2 para encontrar as mudanças nas direções x e y. As matrizes são aplicadas sobre cada *pixel* da imagem para produzir medidas de gradiente separadas em cada direção. Estes valores são então combinados para calcular a magnitude absoluta do gradiente do *pixel*. Entretanto o operador de Sobel [2] tem o funcionamento semelhante ao de Roberts, mas utiliza matrizes 3x3.

R. J. Tramontin Jr.

Universidade Federal de Santa Catarina UFSC Departamento de Automação e Sistemas – DAS Grupo de Sist. Inteligentes de Manufatura – GSIGMA Trindade, Florianópolis/SC – 88.040- 900 BRASIL

Para abordar este problema, Zambiasi [3] utilizou uma Rede Neural Artificial (RNA) com treinamento Backpropagation, 9 neurônios de entrada representando a matriz 3x3 do pixel a ser avaliado e todos os seus vizinhos, uma camada intermediária com 10 neurônios, e um neurônio na saída, representando o pixel correspondente na imagem resultante. A Fig. 1. mostra a imagem original e a imagem resultante obtida pela RNA.

Fig. 1. Imagem original (A) e resultante (B).

III. TÉCNICAS PROPOSTAS

O presente artigo apresenta três técnicas baseadas nos modelos de Roberts e da RNA como alternativas para a detecção de bordas em imagens. Elas visam simplificar algum aspecto em relação às originais, visando otimizar o seu desempenho.

A. O Perceptron para Detecção de Bordas

O objetivo inicial deste experimento foi procurar uma alternativa mais simples que o modelo proposto por Zambiasi [3], sem fugir do escopo da inteligência artificial conexionista. A priori foi definida a utilização de um único perceptron, sendo que após o treinamento o mesmo obteve resultados visuais semelhantes ao obtido pela RNA.

Os problemas envolvendo a implementação de uma função e que podem ser resolvidos por um único perceptron são definidos como problemas estáticos linearmente separáveis [4][5]. Dessa forma, por existir um perceptron que resolve este problema, este experimento pode caracterizá-lo como um problema estático linearmente separável.

B. Variantes de Roberts como Alternativa à Deteccão de Bordas

A primeira técnica é um condicional simples baseado na estrutura de máscaras do algoritmo de Roberts. Para a verificação da borda do pixel A (Fig. 2) da imagem de entrada, este é comparado com seu vizinho D. Se eles forem diferentes, então o pixel A da imagem de saída deve fazer parte de uma borda.

Fig. 2. Máscara para o algoritmo do condicional.

Por usar apenas uma das matrizes do operador de Roberts, este algoritmo gera uma imagem menos sensível às informações, pois a outra matriz não é considerada. Para corrigir esta limitação, pode-se criar um *condicional composto*: se A é diferente de D ou B é diferente de C, então o *pixel* A faz parte de uma borda.

IV. COMPARAÇÃO

A. Comparação dos Tempos de Execução

Para comparar os tempos de execução foi utilizada uma imagem 2048x2560 pixels (Fig. 1(A)) em um computador Pentium 4 de 3GHz, com 1Gbyte de RAM, sistema operacional Linux e os protótipos foram implementados em linguagem C. A Tabela I mostra os tempos obtidos em três execuções.

TABELA I COMPARAÇÃO DOS TEMPOS DE EXECUÇÃO (EM SEGUNDOS)

Algoritmo	1ª Execução	2ª Execução	3ª Execução
Roberts	0.10	0.09	0.10
Sobel	0.15	0.15	0.15
RNA	19.39	19.49	19.48
Perceptron	1,05	1,06	1,05
Condicional Simples	0.06	0.06	0.06
Cond. Composto	0.08	0.08	0.08

Evidentemente, a RNA não é uma alternativa eficaz, pois seu tempo de processamento excede, em muito, as demais abordagens. Apesar do *Perceptron* possuir um tempo de execução muito menor do que a RNA, ele está muito acima dos demais. Por fim, os algoritmos dos Condicionais (tanto o simples como o composto) obtiveram tempos de resposta ainda menores que os algoritmos de Roberts e de Sobel.

B. Comparação Visual

Como nesse artigo o fator em evidência é o tempo de resposta, apenas os algoritmos mais rápidos foram eleitos para a comparação visual. Os algoritmos escolhidos são o de Roberts, o de Sobel e os Condicionais.

Por utilizar matrizes maiores, o algoritmo de Sobel (Fig. 3(B)) apresenta um resultado mais bem definido que o de Roberts (Fig. 3(A)).

Fig. 3. Roberts (A) e Sobel (B).

Por serem variantes de Roberts, os resultados apresentados pelos condicionais Simples (Fig. 4(A)) e Composto (Fig. 4(B)) foram semelhantes ao original.

Fig. 4. Condicional Simples (A) e Composto (B)

V. CONSIDERAÇÕES FINAIS

A detecção de bordas é um problema essencial para diversas aplicações de robótica. Este artigo apresentou algumas técnicas para tratá-lo, e propôs três variantes de maior desempenho e com resultados visuais igualmente satisfatórios. Várias imagens foram testadas, obtendo resultados semelhantes.

Mais especificamente, foi proposta uma variante da abordagem de RNAs que utiliza um único neurônio (perceptron) e duas baseadas no algoritmo de Roberts.

De modo a complementar os resultados obtidos, é interessante implementar os algoritmos em um robô atuando em um ambiente real.

REFERÊNCIAS

- [1] R. Arkin, C. Ronald; "Behavior-based robotics". The MIT Press, Cambridge, Massachusetts, p 237-299, 1998.
- [2] R. Fisher, S. Perkins, A. Walker, E. Wokfart; "Feature Detectors", 2003.http://homepages.inf.ed.ac.uk/rbf/HIPR2/featops.htm Acessado em 28/09/2005.
- [3] S. Zambiasi; "Detecção de bordas em Imagens Utilizando Redes Neurais Artificiais". Seminário de Visão Computacional, CPGCC/UFSC, 2001.2.
- [4] S. Haykin, "Redes neurais: princípios e prática". 2.ed. Porto Alegre: Bookman, 2001.
- [5] J. Barreto, "Inteligência Artificial no Limiar do Século XXI". ppp Edições, Florianópolis, 3 edição, 2001.