Exercise 1. If $V = \mathbb{V}(F_1, \dots, F_r)$ is an affine variety in \mathbb{A}^n , then the tangent bundle TV is a subvariety of $\mathbb{A}^n \times \mathbb{A}^n$. Find the equations defining TV in $\mathbb{A}^n \times \mathbb{A}^n$. You should label your coordinates of $\mathbb{A}^n \times \mathbb{A}^n$ as $(x_1, \dots, x_n, y_1, \dots, y_n)$. Do the case r = 1 first.

Answer

Exercise 2. Let Γ be the graph of a rational map $X \dashrightarrow Y$. Prove that the projection $\Gamma \to X$ is a birational equivalence.

Answer

Exercise 3. Recall that the Cremona transform is the rational map $\phi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ defined as

$$[x_0:\cdots:x_n]\mapsto [1/x_0:\cdots:1/x_n].$$

Find equations defining the graph of ϕ as a subvariety of $\mathbb{P}^n \times \mathbb{P}^n$.

Answer

Exercise 4. Let B be the blowup of \mathbb{P}^2 at [0:0:1]. Find equations defining B as a subvariety of $\mathbb{P}^2 \times \mathbb{P}^1$. Show that there is a morphism defined everywhere from B to $\mathbb{P}^1 \times \mathbb{P}^1$.

Answer

Exercise 5. An algebraic variety is *rational* if it's birationally equivalent to projective space (of some dimension). Show that the nodal plane curve defined by the equation $y^2 - x^2 - x^3 = 0$ is rational. [Hint: Project from the node.]

Answer