Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005

Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry

Prepared for publication by

Neil G. Connelly *University of Bristol, UK*

Richard M. Hartshorn University of Canterbury, New Zealand **Ture Damhus** *Novozymes A/S, Denmark*

Alan T. Hutton *University of Cape Town, South Africa*

IR-9.3.2.2 Choosing between closely related geometries

For real molecules or ions, the stereochemical descriptor should be based on the nearest idealized geometry. However, some idealized geometries are closely related [e.g. square planar (SP-4), four-coordinate square pyramidal (SPY-4), see-saw (SS-4), and tetrahedral (T-4); T-shaped (TS-3), trigonal planar (TP-3), and trigonal pyramidal (TPY-3)] and care may therefore be required in making the choice.

The following approach is useful in determining the polyhedral symbol for four-coordinate structures. The key is to consider the locations of the central atom and the coordinating atoms in relation to each other. If all five atoms are in (or are close to being in) the same plane, then the molecule should be treated as square planar. If the four coordinating atoms are in a plane, but the central atom is significantly displaced from the plane, then the square pyramidal geometry is appropriate. If the four coordinating atoms do not lie in (or close to) a plane, then a polyhedron can be defined by joining all four coordinating atoms together with lines. If the central atom lies inside this polyhedron the molecule should be regarded as tetrahedral, otherwise, it should be regarded as having a see-saw structure.

T-shaped and trigonal planar molecules both have a central atom that lies in (or close to) the plane defined by the coordinating atoms. They differ in that the angles between the three coordinating atoms are approximately the same in the trigonal planar structure, while one angle is much larger than the other two in a T-shaped molecule. The central atom lies significantly out of the plane in a trigonal pyramidal structure.

IR-9.3.3 Describing configuration – distinguishing between diastereoisomers

IR-9.3.3.1 General

The placement of ligands around the central atom must be described in order to identify a particular diastereoisomer. There are a number of common terms (e.g. cis, trans, mer and fac) used to describe the relative locations of ligands in simple systems. However, they can be used only when a particular geometry is present (e.g. octahedral or square planar), and when there are only two kinds of donor atom present (e.g. Ma₂b₂ in a square planar complex, where M is a central atom and 'a' and 'b' are types of donor atom).

Several methods have been used to distinguish between diastereoisomers in more complex systems. Thus, stereoisomers resulting from the coordination of linear tetradentate ligands have often been identified as *trans*, cis- α , or cis- β , ¹⁰ and those resulting from coordination of macrocyclic tetradentate ligands have their own system. ¹¹ The scope of most of these nomenclatures is generally quite limited, but a proposal with wider application in the description of complexes of polydentate ligands has been made more recently. ¹²

Clearly a general method is required in order to distinguish between diastereoisomers of compounds in which either other geometries or more than two kinds of donor atoms are present. The *configuration index* has been developed for this purpose. The next section outlines the method by which a configuration index is obtained for a compound, and the

following sections give details for particular geometries. Commonly used terms are included for each geometry discussed.

IR-9.3.3.2 Configuration index

Once the coordination geometry has been specified by the polyhedral symbol, it becomes necessary to identify which ligands (or donor atoms) occupy particular coordination positions. This is achieved through the use of the configuration index which is a series of digits identifying the positions of the ligating atoms on the vertices of the coordination polyhedron. The configuration index has the property that it distinguishes between diastereoisomers. It appears within the parentheses enclosing the polyhedral symbol (see Section IR-9.3.2.1), following that symbol and separated from it by a hyphen.

Each donor atom must be assigned a priority number based on the rules developed by Cahn, Ingold and Prelog (the CIP rules). These priority numbers are then used to form the configuration index for the compound. The application of the CIP rules to coordination compounds is discussed in detail in Section IR-9.3.5 but, in general, donor atoms that have a higher atomic number have higher priority than those that have a lower atomic number.

The presence of polydentate ligands may require the use of primes on some of the numbers in the configuration index. The primes are used to indicate either that donor atoms are not part of the same polydentate ligand as those that have unprimed priority numbers, or that the donor atoms belong to different parts of a polydentate ligand that are related by symmetry. A primed priority number means that that donor atom has lower priority than the same kind of donor atom without a prime on the priority number. More detail on the 'priming convention' can be found in Section IR-9.3.5.3.

IR-9.3.3.3 Square planar coordination systems (SP-4)

The terms *cis* and *trans* are used commonly as prefixes to distinguish between stereoisomers in square planar systems of the form [Ma₂b₂], where M is the central atom, and 'a' and 'b' are different types of donor atom. Similar donor atoms occupy coordination sites adjacent to one another in the *cis* isomer, and opposite to one another in the *trans* isomer. The *cis-trans* terminology is not adequate to distinguish between the three isomers of a square planar coordination entity [Mabcd], but could be used, in principle, for an [Ma₂bc] system (where the terms *cis* and *trans* would refer to the relative locations of the similar donor atoms). This latter use is not recommended.

The configuration index for a square planar system is placed after the polyhedral symbol (SP-4). It is the single digit which is the priority number for the ligating atom *trans* to the ligating atom of priority number 1, *i.e.* the priority number of the ligating atom *trans* to the most preferred ligating atom.

Examples:

1. Priority sequence: a > b > c > d

(SP-4-1)-(acetonitrile)dichlorido(pyridine)platinum(II)

If there are two possibilities, as in Example 3, the configuration index is the priority number with the higher numerical value. Both the priority 2 ligand (acetonitrile) and the priority 3 ligand (pyridine) are trans to a priority 1 ligand (chloride). The higher numerical value (3) is chosen for the configuration index. This choice is sometimes referred to as having been made according to the principle of trans maximum difference, i.e. that the difference between the numerical values of the priority numbers of the ligands should be as large as possible.

Example:

3. NCMe

(SP-4-3)-(acetonitrile)dichlorido(pyridine)platinum(II)

IR-9.3.3.4 Octahedral coordination systems (OC-6)

The terms *cis* and *trans* are used commonly as prefixes to distinguish between stereoisomers in octahedral systems of the form [Ma₂b₄], where M is the central atom, and 'a' and 'b' are different types of donor atom, and in certain similar systems. The 'a' donors occupy adjacent coordination sites in the *cis* isomer, and opposite coordination sites in the *trans* isomer (Example 1).

The terms *mer* (meridional) and *fac* (facial) are used commonly to distinguish between stereoisomers of complexes of the form [Ma₃b₃]. In the *mer* isomer (Example 2) the two groups of three similar donors each lie on a meridian of the coordination octahedron, in planes that also contain the central atom. In the *fac* isomer (Example 3) the two groups of three similar donors each occupy coordination sites on the corners of a face of the coordination octahedron.

The configuration index of an octahedral system follows the polyhedral symbol (OC-6) and consists of two digits.

The first digit is the priority number of the ligating atom *trans* to the ligating atom of priority number 1, *i.e.* the priority number of the ligating atom *trans* to the most preferred ligating atom. If there is more than one ligating atom of priority 1, then the first digit is the priority number of the *trans* ligand with the highest numerical value (remembering that a primed number will be of higher numerical value than the corresponding unprimed number).

These two ligating atoms, the priority 1 atom and the (lowest priority) atom *trans* to it, define the *reference axis* of the octahedron.

The second digit of the configuration index is the priority number of the ligating atom *trans* to the most preferred ligating atom in the plane that is perpendicular to the reference axis. If there is more than one such ligating atom in that plane, the priority number of the *trans* atom having the largest numerical value is selected.

Examples:

mer-[Co(NH₃)₃(NO₂)₃] (OC-6-21)-triamminetrinitrito- κ ³N-cobalt(III)

fac-[Co(NH₃)₃(NO₂)₃] (OC-6-22)-triamminetrinitrito- κ ³N-cobalt(III)

(OC-6-43)-bis(acetonitrile)dicarbonylnitrosyl(triphenylarsane)chromium(1+)

IR-9.3.3.5 Square pyramidal coordination systems (SPY-4, SPY-5)

The configuration index of an SPY-5 system consists of two digits. The first digit is the priority number of the ligating atom on the C_4 symmetry axis (the reference axis) of the idealized pyramid. The second digit is the priority number of the ligating atom trans to the ligating atom with the lowest priority number in the plane perpendicular to the C_4 symmetry axis. If there is more than one such atom in the perpendicular plane, then the second digit is chosen to have the highest numerical value.

The configuration index of an *SPY-4* system is a single digit that is chosen in the same way as the second digit of *SPY-5* systems. The configuration index of a four-coordinate square pyramidal system will therefore be the same as that for the square planar structure that would result from the ligands and the central atom being coplanar. The difference between the structures is described by the polyhedral symbol rather than by the configuration index.

Examples:

(SPY-5-12)-dibromidotris[di-tert-butyl(phenyl)phosphane]palladium

IR-9.3.3.6 Bipyramidal coordination systems (TBPY-5, PBPY-7, HBPY-8 and HBPY-9)

The configuration index for bipyramidal coordination systems follows the appropriate polyhedral symbol, and consists of two segments separated by a hyphen, except for the trigonal bipyramid where the second segment is not required and is therefore omitted. The first segment has two digits which are the priority numbers of the ligating atoms on the highest order rotational symmetry axis, the reference axis. The lower number is cited first.

The second segment consists of the priority numbers of the ligating atoms in the plane perpendicular to the reference axis. The first digit is the priority number for the preferred ligating atom, *i.e.* the lowest priority number in the plane. The remaining priority numbers are cited in sequential order proceeding around the projection of the structure either clockwise or anticlockwise, in whichever direction gives the lower numerical sequence. The lowest numerical sequence is that having the lower number at the first point of difference when the numbers are compared digit by digit from one end to the other.

Examples:

1. Trigonal bipyramid (TBPY-5)

TBPY-5-25 (TBPY-5-11)-tricarbonylbis(triphenylphosphane)iron

2. Pentagonal bipyramid (PBPY-7)

IR-9.3.3.7 *T-shaped systems (TS-3)*

The configuration index for T-shaped systems follows the polyhedral symbol and consists of a single digit, the priority number of the ligating atom on the stem of the T (as opposed to the crosspiece of the T).

IR-9.3.3.8 See-saw systems (SS-4)

The configuration index for see-saw systems consists of two digits, the priority numbers of the two ligating atoms separated by the largest angle. The number of lower numerical value is cited first.

Examples: 1.

General

IR-9.3.4 Describing absolute configuration – distinguishing between enantiomers IR-9.3.4.1

There are two well-established, but fundamentally different, systems for distinguishing between two enantiomers (stereoisomers that are mirror images of one another). The first, based on the chemical constitution of the compound, involves the R/S convention used for describing tetrahedral centres and the closely related C/A convention used for other polyhedra. The R/S and C/A conventions use the priority sequence referred to in Section IR-9.3.3.2, and detailed in Section IR-9.3.5, where the ligating atoms are assigned a priority number based (usually) on their atomic number and their substituents.

The second is based on the geometry of the molecule and makes use of the skew-lines convention; it is usually applied only to octahedral complexes. The two enantiomers are identified by the symbols Δ and Λ in this system. The C/A nomenclature is not required for those chelate complexes where the skew-lines convention is completely unambiguous (see Sections IR-9.3.4.11 to 9.3.4.14).

IR-9.3.4.2 The R/S convention for tetrahedral centres

The convention used to describe the absolute configurations of tetrahedral centres was originally developed for carbon atom centres (see Ref. 13 and Section P-91 of Ref. 1) but can be used for any tetrahedral centre. There is no need to alter the rules in treating tetrahedral metal complexes.

The symbol R is assigned if the cyclic sequence of priority numbers, proceeding from highest priority, is clockwise when the viewer is looking down the vector from the tetrahedral centre to the least preferred substituent (the substituent having the priority number with the highest numerical value, i.e. 4). An anticlockwise cyclic sequence is assigned the symbol S.

This system is most often used in conjunction with configuration internally in ligands but can be applied equally well to tetrahedral metal centres. It has also been useful for pseudotetrahedral organometallic complexes when, for example, cyclopentadienyl ligands are treated as if they were monodentate ligands of high priority.

Example:

1.

T-4-S

IR-9.3.4.3 The R/S convention for trigonal pyramidal centres

Molecules containing a trigonal pyramidal centre (*TPY-3*) may exist as a pair of stereoisomers. The configuration of this centre can be described in a similar way to that of a tetrahedral centre. This is achieved through notional placement of a 'phantom atom' of low priority in the coordination site that would create a tetrahedral centre from a trigonal pyramidal centre. The centre can then be identified as *R* or *S* by the methods described above.

The use of some bonding theories leads to the placement of a lone pair on a trigonal pyramidal centre. If this is done, the absolute configuration of the centre is also described by the *R/S* convention, in this case by placing the 'phantom atom' in the site that is occupied by the lone pair. Examples of this practice may be found in the description of absolute configurations for sulfoxides in which the alkyl substituents are different.

IR-9.3.4.4 The C/A convention for other polyhedral centres

The *R/S* convention makes use of priority numbers for the determination of chirality at tetrahedral centres, as detailed above. The same principles are readily extendable to geometries other than tetrahedral. However, in order to avoid confusion, and to emphasize the unique aspects of the priority sequence systems as applied to coordination polyhedra, the symbols *R* and *S* are replaced by the symbols *C* and *A* when applied to other polyhedra.

The procedure for arriving at ligating atom priorities is detailed in Section IR-9.3.5. Once these priorities have been assigned, the reference axis (and direction) appropriate to the geometry is identified. The priority numbers of the ligating atoms coordinated in the plane perpendicular to the reference axis are then considered, viewing from the axial ligating atom of higher priority.

Beginning with the highest priority atom in the plane perpendicular to the reference axis, the clockwise and anticlockwise sequences of priority numbers are compared, and that with the lower number at the first point of difference is chosen. If the chosen sequence results from a clockwise reading of the priority numbers, then the structure is given the chirality symbol C, otherwise it is given the symbol A.

IR-9.3.4.5 The C/A convention for trigonal bipyramidal centres

The procedure is similar to that used for tetrahedral systems in the *R/S* convention, but it is modified because of the presence of a unique reference axis (running through the two axial donor atoms and the central atom).

The structure is oriented so that the viewer looks down the reference axis, with the more preferred donor atom (having a priority number with lower numerical value) closer to the viewer. Accordingly, the axial donor atom with the lower priority lies beyond the central atom. Using this orientation, the priority sequence of the three ligating atoms in the trigonal plane is examined. If the sequence proceeds from the highest priority to the lowest priority in a clockwise fashion, the chirality symbol C is assigned. Conversely, if the sequence from highest to lowest priority (from lowest numerical index to highest numerical index) is anticlockwise, the symbol A is assigned.

2.

Examples:

1. (1) (M) (5)

Chirality symbol = C

2

(3)

Chirality symbol = A

IR-9.3.4.6 The C/A convention for square pyramidal centres

A procedure similar to that described in Section IR-9.3.4.4 is used for square pyramidal structures. In the case of SPY-5 systems, the polyhedron is oriented so that the viewer looks along the formal C_4 axis, from the axial ligand toward the central atom. The priority numbers of the ligating atoms in the perpendicular plane are then considered, beginning with the highest priority atom (the one having the priority number of lowest numerical value). The clockwise and anticlockwise sequences of priority numbers are compared, and the structure is assigned the symbol C or A according to whether the clockwise (C) or anticlockwise (A) sequence is lower at the first point of difference.

The chirality of an SPY-4 system is defined in a similar way. In this case, the viewer looks along the formal C_4 axis in such a way that the ligands are further away than the central atom. The priority numbers are then used to assign the symbol C or A, as for the SPY-5 system.

Examples:

IR-9.3.4.7 The C/A convention for see-saw centres

The absolute configurations of see-saw complexes can be described using the C/A system. The configuration index for see-saw systems consists of two digits, the priority numbers of the two ligands separated by the largest angle. The higher priority ligand of these two is identified and used as a point from which to view the two ligands not involved in the configuration index. If moving from the higher priority ligand to the lower (through the smaller angle) entails making a clockwise motion, the absolute configuration is assigned C. An anticlockwise direction results in the absolute configuration A.

Example:

1.

IR-9.3.4.8 The C/A convention for octahedral centres

The absolute configurations of some octahedral complexes can be described using either the skew-line reference system (Section IR-9.3.4.11) or the *C/A* system. The first is used more commonly, but the *C/A* system is more general and may be used for most complexes. The skew-line reference system is only applicable to tris(bidentate), bis(bidentate) and closely related systems.

The reference axis for an octahedral centre is that axis containing the ligating atom of CIP priority 1 and the *trans* ligating atom of lowest possible priority (highest numerical value) (see Section IR-9.3.3.4). The atoms in the coordination plane perpendicular to the reference axis are viewed from the ligating atom having that highest priority (CIP priority 1) and the clockwise and anticlockwise sequences of priority numbers are compared. The structure is assigned the symbol C or A, according to whether the clockwise (C) or anticlockwise (A) sequence is lower at the first point of difference.

Examples:

Example 4 shows the compound $[CoBr_2(en)(NH_3)_2]^+$ which has the polyhedral symbol OC-6 and the configuration index 32. The chirality symbol is C.

Example:

4.
$$\begin{bmatrix} H_2 & Br \\ N_{M_{M_{M_{N}}}} & NH_3 \\ H_2 & NH_3 \end{bmatrix}^+ = \underbrace{ \begin{pmatrix} 1 \\ 2 \\ M \\ 1 \end{pmatrix} }_{3}$$

Example 5 shows the complex $[Ru(CO)ClH(PMe_2Ph)_3]$ which has the descriptor OC-6-24-A. The chloride ligand has priority 1.

Example:

The C/A assignment for polydentate ligands is illustrated by Example 6 which uses the priming convention developed in Section IR-9.3.5. Note that priority number 2 has higher priority than 2'.

Example:

6.

Chirality symbol = A

IR-9.3.4.9 The C/A convention for trigonal prismatic centres

For the trigonal prismatic system, the configuration index is derived from the CIP priority numbers of the ligating atoms opposite the triangular face containing the greater number of ligating atoms of highest CIP priority. The chirality symbol is assigned by viewing the trigonal prism from above the preferred triangular face and noting the direction of progression of the priority sequence for the less preferred triangular face.

Examples:

1.

Chirality symbol = C

Chirality symbol = A

IR-9.3.4.10 The C/A convention for other bipyramidal centres

The procedure used for the trigonal bipyramid is appropriate for other bipyramidal structures. The structure is assigned the symbol C or A, according to whether the clockwise (C) or anticlockwise (A) sequence is lower at the first point of difference when the numbers are compared digit by digit from one end to the other (see Sections IR-9.3.4.5 and IR-9.3.4.6) and the molecule is viewed from the higher priority ligating atom on the reference axis.

Example:

1.
$$Me_2N$$

$$S_{Me_2N}$$

$$NH_3$$

$$Me_2N$$

$$NH_3$$

$$Me_2N$$

$$OH_2$$

$$OH_2$$

$$OH_3$$

$$OH_$$

PBPY-7-12-11'1'33-A

IR-9.3.4.11 The skew-lines convention

Tris(bidentate) complexes constitute a general family for which a useful, unambiguous convention has been developed based on the orientation of skew lines which define a helix.

Examples 1 and 2 represent the *delta* (Δ) and *lambda* (Λ) forms of a complex such as $[\text{Co}(\text{NH}_2\text{CH}_2\text{NH}_2)_3]^{3+}$. The rules define the chiralities of two additional families of structures. These are the *cis*-bis(bidentate) octahedral structures and the conformations of certain chelate rings. It is possible to use the system described below for complexes of higher polydentate ligands, but additional rules are required.¹⁵

Examples:

Two skew-lines which are not orthogonal possess the property of having one, and only one, normal in common. They define a helical system, as illustrated in Figures IR-9.1 and IR-9.2 (below). In Figure IR-9.1, one of the skew-lines, AA, determines the axis of a helix upon a cylinder whose radius is equal to the length of the common normal, NN, to the two skew-lines, AA and BB. The other of the skew-lines, BB, is a tangent to the helix at N and determines the pitch of the helix. In Figure IR-9.2, the two skew-lines AA and BB are seen in projection onto a plane orthogonal to their common normal.

Parts (a) of Figures IR-9.1 and IR-9.2 illustrate a right-handed helix to be associated with the Greek letter delta (Δ referring to configuration, δ to conformation). Parts (b) of Figures IR-9.1 and IR-9.2 illustrate a left-handed helix to be associated with the Greek letter lambda (Δ for configuration, Δ for conformation). In view of the symmetry of the representation constituted by two skew-lines, the helix which the first line, say BB, determines around the second, AA, has the same chirality as that which AA determines around BB. As one of the lines is rotated about NN with respect to the other, inversion occurs when the lines are parallel or perpendicular (Figure IR-9.1).

Figure IR-9.1. Two skew lines AA and BB which are not orthogonal define a helical system. In the Figure, AA is taken as the axis of a cylinder whose radius is determined by the common normal NN of the two skew-lines. The line BB is a tangent to the above cylinder at its crossing point with NN and defines a helix upon this cylinder. Cases (a) and (b) illustrate a right- and left-handed helix, respectively.

Figure IR-9.2. The figure shows pairs of non-orthogonal skew-lines in projection upon a plane parallel to both lines. The full line BB is above the plane of the paper, the dotted line AA is below this plane. Case (a) corresponds to (a) of Figure IR-9.1 and defines a right-handed helix. Case (b) corresponds to (b) of Figure IR-9.1 and defines a left-handed helix.

IR-9.3.4.12 Application of the skew-lines convention to tris(bidentate) octahedral complexes

Any two of the three chelate rings may be chosen to designate the configuration of tris(bidentate) coordination compounds. The donor atoms of each chelate ring define a line. Two such lines for a pair of chelate rings in the same complex define a helix, one line being the axis of the helix and the other a tangent to the helix at the normal common to the skew-lines. The tangent describes a right-handed (Δ) or a left-handed (Λ) helix with respect to the axis and thereby defines the chirality of that configuration.

IR-9.3.4.13 Application of the skew-lines convention to bis(bidentate) octahedral complexes

Figure IR-9.3(a) shows a common orientation of an octahedral tris(bidentate) structure projected onto a plane orthogonal to the three-fold axis of the structure. Figure IR-9.3(b)

shows the same structure oriented to emphasize the skew-line relationship between a pair of chelate rings that can be used to define chirality. Figure IR-9.3(c) shows that the same convention can be used for the *cis*-bis(bidentate) complex. The two chelate rings define the two skew-lines that, in turn, define the helix and the chirality of the substance. The procedure is precisely the same as that described for the tris(bidentate) case, but only a single pair of chelate rings is available.

Figure IR-9.3. Two orientations of a tris(bidentate) structure, (a) and (b), to show the chiral relationship between these two species and the bis(bidentate) structure (c).

IR-9.3.4.14 Application of the skew-lines convention to conformations of chelate rings

In order to assign the chirality of a ring conformation, the line AA in Figure IR-9.2 is defined as that line joining the two ligating atoms of the chelate ring. The other line BB is that joining the two ring atoms which are neighbours to each of the ligating atoms. These two skew-lines define a helix in the usual way. The tangent describes a right-handed (δ) or a left-handed (δ) helix with respect to the axis and thereby defines the conformation in terms of the convention given in Figure IR-9.1. The relationship between the convention of Figure IR-9.2 and the usual representation of chelate ring conformation may be seen by comparing Figures IR-9.2 and IR-9.4.

Figure IR-9.4. δ -Conformation of chelate rings: (a) five-membered; (b) six-membered.

IR-9.3.5 **Determining ligand priority**

IR-9.3.5.1 General

The methods for differentiating between stereoisomers outlined earlier in this Chapter require the assignment of priorities for the ligand atoms attached to the central atom (*i.e.* the donor atoms). These priority numbers are then used in the configuration index, which describes the relative positions of the ligands, and in the assignment of the absolute configuration of the compound.

The following sections outline the method used to arrive at the priority numbers for a given set of donor atoms, and the ways that the basic rules have to be modified in order to describe adequately systems that include polydentate ligands. These modifications, which are collectively referred to as the priming convention, make use of primes on the priority numbers to indicate which donor atoms are grouped together within a particular polydentate ligand.

IR-9.3.5.2 Priority numbers

The procedure for assigning priorities in mononuclear coordination systems is based on the standard sequence rules developed for chiral carbon compounds by Cahn, Ingold and Prelog.¹³ (See also Section P-91 of Ref. 1.) These CIP rules can be used quite generally for assigning priorities to groups attached to a central atom.

The essence of these rules, when applied to coordination compounds, is that the ligands attached to the central atom are compared to one another, beginning with the donor atom and then moving outwards in the structure. The comparison is made on the basis of atomic number and then, if required (*e.g.* when isotopes are being specified), atomic mass. Other properties may be used for subsequent comparisons, but the need for them is sufficiently rare that they need not be detailed here.

Once the ligands have been compared, the priority numbers are assigned as follows:

- (i) identical ligands are assigned the same priority,
- (ii) the ligand(s) with highest priority is (are) assigned the priority number 1; those with the next highest priority, 2; and so on.

Examples:

1.

Priority sequence: Br>Cl>PPh₃, PPh₃>NMe₃>CO Priority numbers sequence: 1>2>3, 3>4>5

2.

In Example 2, the heterocyclic ligand is given priority 2 since it has a lower atomic number donor atom than OH, and the substitution of the nitrogen donor ranks it above the ammine ligands.

In Example 3, all the ligating atoms are nitrogen atoms. The key illustrates how proceeding along the branches of the ligand constituents allows priorities to be assigned. The numbers in columns 1, 2 and 3 on the right are the atomic numbers of the atoms in the structures, with those in brackets being used to take account of the presence of multiple bonds. The averaging techniques used in the case of resonance structures (last two ligands in the list) are given in the original paper. ¹³

IR-9.3.5.3 Priming convention

The priming convention is required in order to avoid ambiguity when using the configuration index to describe the stereochemistry of systems that contain either more than one polydentate ligand of a particular kind, or a polydentate ligand that contains more than one coordinating fragment of a particular kind. This situation is found commonly with bis(tridentate) complexes, but also arises in more complicated cases. The need for this convention is best illustrated by example.

Bis(tridentate) complexes (*i.e.* octahedral complexes containing two identical linear tridentate ligands) may exist in three stereoisomeric forms, and there will be more if the tridentate ligands do not themselves contain some symmetry elements. The three isomers of the simplest case are represented below (Examples 1, 2 and 3), along with their polyhedral symbols (Section IR-9.3.2.1) and configuration indexes (Section IR-9.3.3.4). Complexes of *N*-(2-aminoethyl)ethane-1,2-diamine and iminodiacetate can be described by these diagrams.

N-(2-aminoethyl)ethane-1,2-diamine, or 2,2'-azanediylbis(ethan-1-amine)

iminodiacetate, or 2,2'-azanediyldiacetate

The need for the priming convention can be seen by considering what the configuration indexes of Examples 1 and 3 would be in the absence of the priming convention. The two ligands are identical and consist of two similar fragments fused together. If the primes are ignored, the two complexes have the same distributions of ligating atoms (four donors of priority 1 in a square plane, and two of priority 2 *trans* to one another). They would therefore have the same configuration index, even though they are clearly different complexes.

One way to highlight the difference between these two examples is to note that, in Example 1, all the donor atoms are *trans* to donors that are part of the other ligand. This is not true in Example 3. Using primes to indicate the groupings of donor atoms in particular ligands allows these two stereoisomers to be distinguished from one another by their configuration indexes.

Examples:

The priority numbers on one of the ligands are arbitrarily primed. The primed number is assigned lower priority than the corresponding unprimed number, but a higher priority than the next higher unprimed number. Thus 1' has lower priority than 1, but higher than 2.

The technique also distinguishes between stereoisomers for complexes of higher polydentate ligands as indicated in Examples 4, 5 and 6 for linear tetradentate ligands such as N,N'-bis(2-aminoethyl)ethane-1,2-diamine. In this case, the donor atom priority numbers in half of the tetradentate ligand have been primed.

$$H_2N$$
 N N N N

N,N'-bis(2-aminoethyl)ethane-1,2-diamine

Examples:

Pentadentate and hexadentate ligands can be treated similarly. Examples 7 and 8 apply to stereoisomers of classic linear hexadentate ligands, whereas Examples 9 and 10 apply to ligands containing a branched structure.

Examples:

Example 11 illustrates the use of priming for assigning absolute configuration in a non-octahedral structure. The chirality designation is determined by the system of assigning primes to ligands with the extra requirement that the symbol 1 on the top face is placed above the symbol 1" on the bottom face. This produces the sequence shown and the chirality symbol C when viewing the prism from above the top face. The stereochemical descriptor is TPR-6-1"11'-C. The skew-lines method (Section I-9.3.4.11) could also be applied and would give in this case the descriptor Δ .

Example:

11.

IR-9.4 FINAL REMARKS

This chapter has described the means by which coordination compounds can be named and formulated. These processes involve firstly identifying the central atom(s) and ligands (by name, formula or abbreviation, depending on the context), and secondly defining the nature of the attachment between the central atom(s) and the ligands. This latter step requires that the coordinating atoms in the ligand be identified (if there is any ambiguity), and that the spatial relationships between the ligands be described. The spatial relationships between the ligands are defined in terms of the coordination polyhedron (giving the polyhedral symbol) and the CIP priorities of the donor atoms (giving the configuration index and the absolute configuration).

IR-9.5 REFERENCES

- 1. *Nomenclature of Organic Chemistry, IUPAC Recommendations*, eds. W.H. Powell and H. Favre, Royal Society of Chemistry, in preparation.
- In Nomenclature of Inorganic Chemistry, IUPAC Recommendations 1990, ed. G.J. Leigh, Blackwell Scientific Publications, Oxford, 1990, the term didentate was used rather than bidentate, for reasons of linguistic consistency. Reversion to the previously accepted term, bidentate, reflects common usage.
- 3. The names of the other hydrogen isotopes are discussed in Section IR-3.3.2.
- 4. The names of organic ligands should be assigned in accordance with IUPAC recommendations, see Ref. 1.
- 5. In order to simplify the rules and to resolve ambiguities that may arise when it is not clear whether a ligand is charged or not, the charge on a ligand is no longer considered in determining ligand order in the formulae of coordination compounds. (In *Nomenclature of Inorganic Chemistry, IUPAC Recommendations 1990*, ed. G.J. Leigh, Blackwell Scientific Publications, Oxford, 1990, anionic ligands were listed before neutral ligands.)
- 6. Chapter II-7 of *Nomenclature of Inorganic Chemistry II, IUPAC Recommendations* 2000, eds. J.A. McCleverty and N.G. Connelly, Royal Society of Chemistry, 2001.
- 7. Nomenclature of Inorganic Chemistry II, IUPAC Recommendations 2000, eds. J.A. McCleverty and N.G. Connelly, Royal Society of Chemistry, 2001.

- 8. J.B. Casey, W.J. Evans and W.H. Powell, *Inorg. Chem.*, **20**, 1333–1341 (1981).
- 9. A. von Zelewski, *Stereochemistry of Coordination Compounds*, John Wiley & Sons, Chichester, 1996.
- A.M. Sargeson and G.H. Searle, *Inorg. Chem.*, 4, 45–52 (1965); P.J. Garnett,
 D.W. Watts and J.I. Legg, *Inorg. Chem.*, 8, 2534 (1969); P.F. Coleman, J.I. Legg and
 J. Steele, *Inorg. Chem.*, 9, 937–944 (1970).
- 11. B. Bosnich, C.K. Poon and M.L. Tobe, *Inorg. Chem.*, **4**, 1102–1108 (1965); P.O. Whimp, M.F. Bailey and N.F. Curtis, *J. Chem. Soc.*, 1956–1963 (1970).
- 12. R.M. Hartshorn and D.A. House, J. Chem. Soc., Dalton Trans., 2577–2588 (1998).
- R.S. Cahn, C. Ingold and V. Prelog, *Angew. Chem., Int. Ed. Engl.*, 5, 385–415 (1966);
 V. Prelog and G. Helmchen, *Angew. Chem., Int. Ed. Engl.*, 21, 567–583 (1982).
- 14. M.F. Brown, B.R. Cook and T.E. Sloan, Inorg. Chem., 7, 1563-1568 (1978).
- 15. M. Brorson, T. Damhus and C.E. Schaeffer, *Inorg. Chem.*, 22, 1569–1573 (1983).

IR-10 Organometallic Compounds

CONTENTS

- IR-10.1 Introduction
- IR-10.2 Nomenclature of organometallic compounds of the transition elements
 - IR-10.2.1 Concepts and conventions
 - IR-10.2.1.1 Coordination number
 - IR-10.2.1.2 Chelation
 - IR-10.2.1.3 Specifying connectivity
 - IR-10.2.1.4 Oxidation number and net charge
 - IR-10.2.2 Compounds with one metal-carbon single bond
 - IR-10.2.3 Compounds with several metal-carbon single bonds from one ligand
 - IR-10.2.3.1 The mu (μ) convention
 - IR-10.2.3.2 Chelating ligands
 - IR-10.2.3.3 The kappa (κ) convention
 - IR-10.2.3.4 Bridging ligands
 - IR-10.2.3.5 Metal-metal bonding
 - IR-10.2.4 Compounds with metal-carbon multiple bonds
 - IR-10.2.5 Compounds with bonds to unsaturated molecules or groups
 - IR-10.2.5.1 The eta (η) convention
 - IR-10.2.6 Metallocene nomenclature
- IR-10.3 Nomenclature of organometallic compounds of the main group elements
 - IR-10.3.1 Introduction
 - IR-10.3.2 Organometallic compounds of groups 1 and 2
 - IR-10.3.3 Organometallic compounds of groups 13-16
- IR-10.4 Ordering of central atoms in polynuclear organometallic compounds
 - IR-10.4.1 Central atoms from groups 1-12 only
 - IR-10.4.2 Central atoms from both groups 1-12 and groups 13-16
 - IR-10.4.3 Central atoms from groups 13-16 only
- IR-10.5 References

IR-10.1 INTRODUCTION

The enormous growth in organometallic chemistry over the last fifty years and the discovery of new classes of compounds with unprecedented bonding modes has resulted in the need for additional nomenclature rules for organometallic compounds. This Chapter is therefore considerably expanded over Section I-10.9 of Ref. 1 and is largely based on the IUPAC recommendations published in 1999 for organometallic compounds of the transition elements.²

An organometallic compound is defined as any compound containing at least one bond between a metal atom and a carbon atom. The names of organometallic compounds should therefore accord with the rules of both organic and coordination chemistry nomenclature (even though these have tended to evolve separately).

The major part of this Chapter presents a system of nomenclature for transition element organometallic compounds, based on the additive nomenclature system introduced in Chapter IR-7 and applied to coordination compounds in Chapter IR-9 but incorporating, as far as possible, the rules for naming organic ligands. Most importantly, further rules are formulated which unambiguously designate the special modes of bonding often found in organometallic compounds.

The later part of this Chapter briefly describes aspects of the naming of main group organometallic compounds, where the substitutive system of nomenclature (introduced in Chapter IR-6) is applied by substituting the appropriate parent hydrides of the elements of groups 13–16. The names of organometallic compounds of group 1 and 2 elements are, on the other hand, based on the additive nomenclature system.

It should be emphasized that the nomenclature described in this Chapter is confined to the precise description of the composition of a compound and the connectivity of atoms within a molecule or ion; it is often also important to specify the spatial relationships between the structural components of the molecule or ion (see Section IR-9.3). It is particularly true of organometallic chemistry that nomenclature should not attempt to convey details about the polarity of bonds, patterns of reactivity or methods of synthesis.

IR-10.2 NOMENCLATURE OF ORGANOMETALLIC COMPOUNDS OF THE TRANSITION ELEMENTS

IR-10.2.1 Concepts and conventions

The (additive) nomenclature of coordination complexes, the general definitions and rules of which are given in Sections IR-9.1 and IR-9.2, provides the basis for the system presented here for naming organometallic compounds of the transition elements. The general concepts of coordination chemistry can be applied to organometallic compounds but need to be expanded to deal with the additional modes of connectivity afforded by the interaction of metals with, for example, organic ligands containing unsaturated groupings, such as alkenes, alkynes and aromatic compounds. This section examines relevant concepts and conventions from coordination chemistry as they are applied to organometallic compounds, and indicates what new conventions need to be introduced in order to designate unambiguously the special bonding modes of organometallic compounds.

IR-10.2.1.1 Coordination number

The definition of coordination number as being equal to the number of σ -bonds between the ligands and the central atom (Section IR-9.1.2.6) also applies to ligands such as CN⁻, CO, N₂ and PPh₃, where the bonding of a single ligating atom to a metal may involve a combination of σ - and π -components. The π -bond components are not considered in determining the coordination number, and so [Ir(CO)Cl(PPh₃)₂], [RhI₂(Me)(PPh₃)₂] and [W(CO)₆] have coordination numbers of four, five and six, respectively.

However, this definition cannot be applied to the many organometallic compounds in which two or more adjacent atoms of a ligand interact with the central metal atom through what is often a combination of σ , π and δ bonding (the labels σ , π or δ referring to the symmetry of the orbital interactions between ligand and central atom).

For example, a ligand such as ethene, consisting of two ligating carbon atoms, nevertheless brings only one pair of electrons to the central atom. Likewise, ethyne, coordinating *via* both carbon atoms, can be thought to bring either one or two pairs of electrons to a single metal atom, depending on the type of coordination involved. Both ligands are normally regarded as monodentate. This changes when ethene or ethyne is considered to add oxidatively to a central metal atom; they are then considered to be bidentate chelating ligands which, on electron counting and dissection of the coordination entity to determine oxidation numbers, are assumed to take two pairs of electrons with them. This different view can be expressed by referring to compounds of such ligands as metallacyclopropanes or metallacyclopropenes rather than ethene or ethyne complexes.

IR-10.2.1.2 Chelation

The concept of chelation (Section IR-9.1.2.7) can again be applied strictly only to those organometallic complexes in which the donor atoms of a ligand are attached to the central metal atom through σ -bonds alone. Otherwise, ambiguities will result, as outlined above, even with a simple ligand such as ethene. Butadiene and benzene supply two and three pairs of electrons upon coordination and are therefore regarded as bi- and tridentate ligands, respectively. In stereochemistry, however, such ligands are often treated as if they were monodentate.

IR-10.2.1.3 Specifying connectivity

In the event of a ligand containing several different donor atoms, particularly when not all are used, the point or points of attachment to the metal are specified using the kappa (κ) convention (see Sections IR-9.2.4.1 and IR-9.2.4.2). In organometallic nomenclature the ligating carbon atoms are often sufficiently specified within the ligand name. However, use of the kappa notation becomes necessary to indicate the attachment of heteroatoms, and also to specify the particular points of attachment of a single ligand when bridging different metal centres in a polynuclear complex. The strength of the kappa convention is that its use completely avoids any ambiguities in describing the connectivities between a ligand and one or more metal centres Its use in organometallic nomenclature is discussed further in Section IR-10.2.3.3.

A complementary notation, the eta (η) convention, is used to specify the number ('hapticity') of *contiguous* ligating atoms that are involved in bonding to one or more metals. The need for this convention arises from the special nature of the bonding of unsaturated hydrocarbons to metals *via* their π -electrons, and it is used only when there are several contiguous atoms involved in the bond to the metal. The contiguous atoms of the π -coordinated ligand are often the same element, but they need not be, and they may also be atoms other than carbon. The eta convention is defined in Section IR-10.2.5.1, where its use is extensively illustrated. Even though all connectivity can be expressed by the kappa convention alone, the practice in organometallic nomenclature is that the eta convention should be used wherever there are contiguous ligating atoms. Complicated structures may require the use of both conventions (see Section IR-9.2.4.3).

Organic ligands with the ability to form more than one bond to a metal centre may be chelating (if bonding to a single metal), bridging (if bonding to more than one metal), or sometimes even both chelating and bridging. The bridging bonding mode is indicated by the Greek letter μ (mu) prefixing the ligand name (Section IR-9.2.5.2). This convention is further exemplified for organometallic compounds in Sections IR-10.2.3.1 and IR-10.2.3.4.

IR-10.2.1.4 Oxidation number and net charge

The concept of oxidation number or state (see also Sections IR-4.6.1, IR-5.4.2.2 and IR-9.1.2.8) is sometimes difficult to apply to organometallic compounds. This is especially true when it cannot be determined whether complexation by a ligand is better regarded as a Lewis-acid or Lewis-base association or as an oxidative addition. Thus, for nomenclature purposes it is only the net charge on the coordination entity that is important, and formal oxidation numbers will not be assigned to the central atoms of the organometallic complexes in the following sections. The reader is referred to standard textbooks on organometallic chemistry for discussion of the assignment of oxidation number in such compounds.

IR-10.2.2 Compounds with one metal-carbon single bond

In naming organometallic compounds the usual rules for naming ligands in coordination entities are applied if the ligand coordinates *via* an atom other than carbon (Section IR-9.2.2.3). Thus, the ligand MeCOO⁻ is named acetato, Me₂As⁻ is named dimethylarsanido, and PPh₃ is named triphenylphosphane.

If an organic ligand coordinating *via* one carbon atom is regarded as an anion formed by the removal of one hydron from that atom, the ligand name is formed by replacing the ending 'ide' of the anion name by 'ido'.

Examples:

1.	CH ₃	methanido
2.	CH ₃ CH ₂	ethanido
3.	$(CH_2=CHCH_2)^-$	prop-2-en-1-ido
4.	$C_6H_5^-$	benzenido
5.	$(C_5H_5)^-$	cyclopentadienido

Although strictly speaking ambiguous, the anion name cyclopentadienide is acceptable as a short form of cyclopenta-2,4-dien-1-ide (and consequently the ligand name cyclopentadienido).

The compound [TiCl₃Me] would be called trichlorido(methanido)titanium using the above type of ligand name.

The alternative for naming an organic ligand attached *via* a single carbon atom is to regard it as a substituent group, its name being derived from a parent hydride from which one hydrogen atom has been removed. This designation is somewhat arbitrary as such ligands in organometallic chemistry are generally treated as anions when deducing oxidation states, although the bonding in reality may be highly covalent. However, it has a long

tradition in organic and organometallic chemistry, and its major advantage is that names used in common practice for organic groups can be applied unchanged.

There are two methods for constructing substituent group names from parent hydride names:

(a) The suffix 'yl' replaces the ending 'ane' of the parent hydride name. If the parent hydride is a chain, the atom with the free valence is understood to terminate the chain. In all cases that atom has the locant '1' (which is omitted from the name). This method is employed for saturated acyclic and monocyclic hydrocarbon substituent groups and for the mononuclear parent hydrides of silicon, germanium, tin and lead.

Examples:

6.	CH ₃ -	methyl
7.	CH ₃ CH ₂ -	ethyl
8.	C_6H_{11}	cyclohexyl
9.	CH ₃ CH ₂ CH ₂ CH ₂ -	butyl
10.	$CH_3CH_2CH_2C(Me)H$	1-methylbutyl
11.	Me ₃ Si-	trimethylsilyl

The compound [TiCl₃Me] would be called trichlorido(methyl)titanium by this method.

(b) In a more general method, the suffix 'yl' is added to the name of the parent hydride with elision of the terminal 'e', if present. The atom with the free valence is given a number as low as is consistent with the established numbering of the parent hydride. The locant number, including '1', must always be cited. (See Section P-29 of Ref. 3 for a more complete discussion of substituent group names.)

Examples:

In fused polycyclic hydrocarbons as well as in heterocyclic systems, special numbering schemes are adopted (see Section P-25 of Ref. 3).

Examples:

Table IR-10.1 gives the names used for ligands forming a single bond to a metal, and this is followed by examples illustrating the naming of compounds containing one metal—carbon single bond. In this Table (as well as in Tables IR-10.2 and IR-10.4) the organic ligands are listed both as anions and as neutral species. Acceptable alternative names are given in the final column.

Table IR-10.1 Names for ligands forming a metal–carbon single bond (or bond to other group 14 element)

Ligand formula	Systematic name as anionic ligand	Systematic name as neutral ligand	Acceptable alternative name
CH ₃ - CH ₃ CH ₂ - CH ₃ CH ₂ CH ₂ - (CH ₃) ₂ CH- CH ₂ =CHCH ₂ - CH ₃ CH ₂ CH ₂ CH ₂ -		methyl ethyl propyl propan-2-yl or 1-methylethyl prop-2-en-1-yl butyl	isopropyl allyl
Н	butan-2-ido	butan-2-yl or 1-methylpropyl	sec-butyl
H ₃ C CH-CH ₂ -	2-methylpropan-1-ido	2-methylpropyl	isobutyl
CH-CH ₂ - H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	2-methylpropan-2-ido	2-methylpropan-2-yl or 1,1-dimethylethyl	<i>tert</i> -butyl
CH ₃ H ₃ C-C-CH ₂ -	2,2-dimethylpropan-1-ido	2,2-dimethylpropyl	
H ₂ C CH-	cyclopropanido	cyclopropyl	
H ₂ C	cyclobutanido	cyclobutyl	

Table IR-10.1 Continued

Ligand formula	Systematic name as anionic ligand	Systematic name as neutral ligand	Acceptable alternative name
C ₅ H ₅ -	cyclopenta-2,4-dien-1-ido	cyclopenta-2,4-dien-1-yl	cyclopentadienyl
C ₆ H ₅ —	benzenido	phenyl	
$C_6H_5CH_2$	phenylmethanido	phenylmethyl	benzyl
H ₃ C-C′′	1-oxoethan-1-ido	ethanoyl ^a	acetyl ^a
C ₂ H ₅ -C,	1-oxopropan-1-ido	propanoyl ^a	propionyl ^a
O C ₃ H ₇ -C	1-oxobutan-1-ido	butanoyl ^a	butyryl ^a
	oxo(phenyl)methanido	benzenecarbonyl ^a	benzoyl ^a
H ₂ C=CH-	ethenido	ethenyl	vinyl
HC≡C−	ethynido	ethynyl	
H ₃ Si-	silanido	silyl	
H ₃ Ge-	germanido	germyl	
H ₃ Sn-	stannanido	stannyl	
H ₃ Pb-	plumbanido	plumbyl	

^a These acyl names are preferred to 1-oxoethyl, etc.

Examples:

17. [OsEt(NH₃)₅]Cl pentaammine(ethyl)osmium(1+) chloride 18. Li[CuMe₂] lithium dimethylcuprate(1-)

19.

CrR₄
$$R = 1$$

tetrakis(bicyclo[2.2.1]heptan-1-yl)chromium

20. $[Pt\{C(O)Me\}Me(PEt_3)_2]$ acetyl(methyl)bis(triethylphosphane)platinum

carbonyl(η^5 -cyclopentadienyl)[(*E*)-3-phenylbut-2-en-2-yl](triphenylphosphane)iron

(The η term used here is explained in Section IR-10.2.5.1.)

(phenylethynyl)(pyridine)bis(triphenylphosphane)rhodium

bis [ethane-1,2-diylbis (dimethylphosphane- κP)]hydrido (naphthalen-2-yl)ruthenium

$$P = Me_2PCH_2CH_2PMe_2 = ethane-1,2-diylbis(dimethylphosphane)$$

IR-10.2.3 Compounds with several metal-carbon single bonds from one ligand

When an organic ligand forms more than one metal—carbon single bond (to one or more metal atoms), the ligand name may be derived from the name of the parent hydrocarbon from which the appropriate number of hydrogen atoms have been removed. In the systematic substitutive name, the suffix 'diyl' or 'triyl' is attached to the name of the parent hydrocarbon if two or three hydrogen atoms, respectively, are replaced by one or more metal atoms. There is no removal of the terminal 'e'. The locant '1' is assigned so as to create the longest chain of carbon atoms, and the direction of numbering is chosen to give the lowest possible locants to side chains or substituents. The locant number(s) must always be cited, except for ligands derived from methane.

Alternatively, when considering these ligands as anions, the endings 'diido' and 'triido' should be used. This nomenclature also applies to hypervalent coordination modes, *e.g.* for bridging methyl groups. Typical ligands forming two or three metal–carbon single bonds are listed in Table IR-10.2.

Ligand formula	Systematic name as anionic ligand	Systematic name as neutral ligand	Acceptable alternative name
-CH ₂ - -CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ -	methanediido ethane-1,2-diido propane-1,3-diido butane-1,4-diido	methanediyl ethane-1,2-diyl propane-1,3-diyl butane-1,4-diyl	methylene ethylene
HC-	methanetriido	methanetriyl	
CH ₃ CH<	ethane-1,1-diido	ethane-1,1-diyl	
CH ₃ C -	ethane-1,1,1-triido	ethane-1,1,1-triyl	
-СН=СН-	ethene-1,2-diido	ethene-1,2-diyl	
$H_2C=C$	ethene-1,1-diido	ethene-1,1-diyl	
-C≡C- -C ₆ H ₄ -	ethyne-1,2-diido benzenediido (-1,2-diido, <i>etc</i> .)	ethyne-1,2-diyl benzenediyl (-1,2-diyl, <i>etc</i> .)	phenylene (1,2-, etc.)

Table IR-10.2 Names for ligands forming several metal-carbon single bonds

IR-10.2.3.1 The mu (μ) convention

Organic ligands forming more than one metal–carbon bond can be either chelating, if coordinating to one metal atom, or bridging, if coordinating to two or more metal atoms. A bridging bonding mode is indicated by the Greek letter μ (Sections IR-9.2.5.2 and IR-10.2.3.4).

$$H_2C$$
 H_2C
 H_2C

The number of metal atoms connected by a bridging ligand is indicated by a right subscript, μ_n , where $n \ge 2$, though the bridging index 2 is not normally indicated.

$$\mu$$
-methyl μ_3 -methyl

The name methylene for CH_2 can only be used in connection with a bridging bonding mode (μ -methylene), whereas a CH_2 ligand bonding to one metal only has a metal–carbon double bond and should be named as methylidene (see Section IR-10.2.4).

$$\begin{array}{ccc}
H_2 \\
C \\
M
\end{array}$$
 $M = CH_2$
 μ -methylene methylidene

Likewise, the ligand HC will have at least three different bonding modes: bridging three metals (μ_3 -methanetriyl), bridging two metals (μ -methanylylidene) and coordinating to one metal (methylidyne, see Section IR-10.2.4).

$$M = CH$$
 $M = CH$
 $M = CH$
 $M = CH$
 $M = CH$
 $M = CH$

In a bridging mode the ligand CH_2CH_2 should be called μ -ethane-1,2-diyl, while the same ligand coordinating through both carbon atoms to a single metal centre should be called η^2 -ethene (see Section IR-10.2.5).

$$H_2$$
 H_2 H_3 H_4 H_5 H_5

A similar situation arises with CHCH which, when bridging with the carbon atoms individually bonded to each of two metals, should be called μ -ethene-1,2-diyl or, when the metal-carbon bonds are double, μ -ethanediylidene (see Section IR-10.2.4). The same ligand coordinating through both carbon atoms to both metal centres should be called μ -ethyne; when coordinated through both carbons to one metal it is named η^2 -ethyne (see Section IR-10.2.5).

IR-10.2.3.2 Chelating ligands

Where a chelating ligand is formed by removing two or more hydrogen atoms from a parent compound, the atoms with free valencies, understood to form the bonds to the central atoms, are indicated by using the appropriate ligand name (such as propane-1,3-diyl), *cf.* Section IR-10.2.3. This is demonstrated in Examples 1–3 below. Note that an alternative nomenclature for such metallacycles is currently being developed.

Examples:

1.

$$H_2$$
C PPh_3 H_2 C PPh_3

(butane-1,4-diyl)bis(triphenylphosphane)platinum

2.

(2,4-dimethylpenta-1,3-diene-1,5-diyl)tris(triethylphosphane)iridium(1+)

3.

(1-oxo-2,3-diphenylpropane-1,3-diyl)bis(triphenylphosphane)platinum

IR-10.2.3.3 The kappa (κ) convention

Chelate rings that contain a coordinate (dative) bond from a heteroatom in addition to a carbon attachment should be named using the κ convention. In this convention (see Section IR-9.2.4.2) the coordinating atoms of a polydentate ligand bonding to a metal centre are indicated by the Greek letter kappa, κ , preceding the italicized element symbol of each ligating atom. A right superscript numeral may be added to the symbol κ to indicate the number of identical bonds from a type of ligating atom to the central atom(s); non-equivalent ligating atoms should each be indicated by an italicized element symbol preceded by κ .

In simple cases one or more superscript primes on the element symbol may be used to differentiate between donor atoms of the same element. Otherwise a right superscript numeral corresponding to the conventional numbering of the atoms in the ligand is used to define unambiguously the identity of the ligating atom. These symbols are placed after that portion of the ligand name which represents the particular functionality, substituent group, ring or chain in which the ligating atom is found.

Often it is only necessary for the coordinating heteroatom to be specified using the κ convention, the ligating carbon atom being adequately specified by the appropriate substitutive suffix. For illustrative purposes only, an arrow is used in the examples that

follow to indicate a coordinate bond in the chelate ring. In Example 1 the κC^1 specification is included for clarity but is not strictly necessary as the bonding from carbon atom number 1 is implied by the name 'phenyl'.

Examples:

tetracarbonyl[2-(2-phenyldiazen-1-yl- κN^2)phenyl- κC^1]manganese

chloridohydrido(2-methyl-3-oxo-κ*O*-but-1-en-1-yl)bis(triisopropylphosphane)rhodium

IR-10.2.3.4 Bridging ligands

A bridging ligand is indicated by the Greek letter μ (mu) prefixing the ligand name (see Sections IR-9.2.5.2 and IR-10.2.3.1). Bridging ligands are listed in alphabetical order along with the other ligands, but in names a bridging ligand is cited before a corresponding non-bridging ligand, and multiple bridging is listed in decreasing order of complexity, e.g. μ_3 bridging before μ_2 bridging.

Example:

(μ-ethane-1,1-diyl)bis(pentacarbonylrhenium)

The metal centres in heterodinuclear coordination entities are numbered and listed according to the element sequence given in Table VI*, the central atom arrived at last when traversing this table being numbered '1' and listed in the name first (see Section IR-9.2.5).

The numerical locants of the central atoms are used in conjunction with the κ notation to indicate the distribution of the ligating atoms. Such locants are placed before the κ symbol which, as before, may be followed by a right superscript numeral to denote the number of equivalent bonds to the central atom specified by the locant (see Section IR-9.2.5.5). Thus, decacarbonyl- $1\kappa^5 C$, $2\kappa^5 C$ indicates that the carbon atoms of five carbonyl ligands are bonded to central atom number 1 and another five to central atom number 2. In the names of bridging ligands, the κ terms indicating the bonding to each of the central atoms are separated by a colon, *e.g.* μ -propane-1,2-diyl- $1\kappa C^1$: $2\kappa C^2$.

^{*} Tables numbered with a Roman numeral are collected together at the end of this book.

Example:

$$(OC)_5 Re \underbrace{\begin{array}{c} 3 \\ CH_3 \\ 2 \\ H_2 \end{array}}_{\text{Mn(CO)}_5}$$

decacarbonyl- $1\kappa^5 C$, $2\kappa^5 C$ -(μ -propane-1,2-diyl- $1\kappa C^1$: $2\kappa C^2$)rheniummanganese

IR-10.2.3.5 Metal-metal bonding

Metal-metal bonding is indicated by the italicized element symbols of the appropriate metal atoms, separated by an 'em' dash and enclosed in parentheses, placed after the list of central atom names and before the ionic charge. The element symbols are placed in the same order as the central atoms appear in the name, *i.e.* with the element met last in the sequence of Table VI given first. The number of such metal-metal bonds is indicated by an arabic numeral placed before the first element symbol and separated from it by a space. For the purpose of nomenclature, no distinction is made between different metal-metal bond orders.

Examples:

1.
$$\begin{array}{ccc} H_2C - CH_2 \\ OC)_4Os - Os(CO)_4 \end{array}$$

 $(\mu$ -ethane-1,2-diyl)bis(tetracarbonylosmium)(Os-Os)

2.

$$(OC)_3Co \begin{picture}(C) & Me \\ C & \\ Co(CO)_3 \end{picture}$$

(μ₃-ethane-1,1,1-triyl)-*triangulo*-tris(tricarbonylcobalt)(3 Co—Co)

3.

di- μ -carbonyl-carbonyl- $2\kappa C$ -bis($1\eta^5$ -cyclopentadienyl)($2\eta^5$ -cyclopentadienyl)tungstenrhenium(W—Re)

The η terms involved here are explained in Section IR-10.2.5.1. For a more detailed discussion of dinuclear compounds and larger polynuclear clusters, with further examples, see Section IR-9.2.5.

IR-10.2.4 Compounds with metal-carbon multiple bonds

Ligands regarded as forming metal-carbon double or triple bonds may also be given substituent prefix names derived from the parent hydrides, the ligand names ending with 'ylidene' for a double bond and with 'ylidyne' for a triple bond. These suffixes are used according to two methods (see Section P-29 of Ref. 3).

- (a) The suffix 'ylidene' or 'ylidyne' replaces the ending 'ane' of the parent hydride name. If the parent hydride is a chain, the atom with the free valencies is understood to terminate the chain. This atom has, in all cases, the locant '1' (which is omitted from the name). This method is used only for saturated acyclic and monocyclic hydrocarbon substituent groups and for the mononuclear parent hydrides of silicon, germanium, tin and lead. Note that the suffix 'ylene' should only be used in conjunction with μ to designate bridging $-CH_2-$ (methylene) or $-C_6H_4-$ (phenylene) (see Section IR-10.2.3.1).
- (b) In a more general method, the suffix 'ylidene' or 'ylidyne' is added to the name of the parent hydride with elision of the teminal 'e', if present. The atom with the free valence is given a number as low as is consistent with the established numbering of the parent hydride. For ligand names with the suffix 'ylidene', this locant must always be cited, except if it is the only locant in the name and there is no ambiguity.

Example:

Note that in numbering a ligand that has several points of attachment, the longest chain of carbon atoms is chosen as the parent chain before assigning the lowest possible locant to the atom with the free valence. In a metallacycle, the direction of numbering is chosen so as to give the lowest possible locants to side chains or substituents. Once again, special numbering schemes apply to heterocyclic and polycyclic systems (see Sections P-25 and P-29 of Ref. 3).

If a ligand forms one or more metal-carbon single bonds as well as metal-carbon multiple bonds, the order of endings is 'yl', 'ylidene', 'ylidyne'. Method (b) should then be used to give the lowest possible set of locants for the free valencies. If a choice remains, lower numbers are selected for the 'yl' positions before the 'ylidene' positions and then for any side chains or substituents.

Example:

2.
$$\begin{array}{c|c} CH_3-CH_2-C & propan-1-yl-1-ylidene \end{array}$$

Typical ligands forming a metal–carbon double or triple bond are listed in Table IR-10.3, and this is followed by examples illustrating the naming of compounds containing one or more metal–carbon multiple bonds. The η term in Example 5 is explained in Section IR-10.2.5.1.

Note that the anion names given in Table IR-10.2 (methanediido, ethane-1,1-diido, *etc.*) may also be used for these ligands, but it is then not possible to communicate the concept of the carbon–metal bond as being a double or triple bond.

Table IR-10.3 Names for ligands forming metal-carbon multiple bonds

Ligand formula	Systematic name	Acceptable alternative name
H ₂ C=	methylidene	
МеСН=	ethylidene	
H ₂ C=C=	ethenylidene	vinylidene
$H_2C=HC-HC=$	prop-2-en-1-ylidene	allylidene
H ₂ C=C=C=	propa-1,2-dien-1-ylidene	allenylidene
H_3C $C=$	propan-2-ylidene	isopropylidene
$H_{3}C - C - C = H_{3}$ $H_{3}C - C + C = H_{3}$ $H_{3}C + C + C = H_{3}$	2,2-dimethylpropylidene	
c=	cyclopropylidene	
C=	cyclobutylidene	
c=	cyclopenta-2,4-dien-1-ylidene	
PhHC=	phenylmethylidene	benzylidene
HC_	methanylylidene	
нс≡	methylidyne	
MeC≡	ethylidyne	
EtC≡	propylidyne	
$\begin{array}{c} CH_3 \\ H_3C - C - C = \\ CH_3 \end{array}$	2,2-dimethylpropylidyne	
PhC≡	phenylmethylidyne	benzylidyne

Examples:

3.

(acetonitrile)tetracarbonyl[(2-methoxyphenyl)methylidene]tungsten

4.

(2,4-dimethylpenta-1,3-dien-1-yl-5-ylidene)tris(triethylphosphane)iridium

5.

 $dicarbonyl(\eta^5-cyclopentadienyl)(3-methylbuta-1,2-dien-1-ylidene) manganese$

6.

$$\begin{array}{c|c}
 & O \\
 & C \\
 & O \\
\end{array}$$

tetracarbonyl[(diethylamino)methylidyne]iodidochromium

7.

(2,2-dimethylpropyl)(2,2-dimethylpropylidene)(2,2-dimethylpropylidyne) [ethane-1,2-diylbis(dimethylphosphane- κP)]tungsten*

$$P = Me_2PCH_2CH_2PMe_2 = ethane-1,2-diylbis(dimethylphosphane)$$

IR-10.2.5 Compounds with bonds to unsaturated molecules or groups

Since the discovery of Zeise's salt, $K[Pt(\eta^2-C_2H_4)Cl_3]$, the first organometallic complex of a transition element, and particularly since the first reported synthesis of ferrocene, $[Fe(\eta^5-C_5H_5)_2]$, the number and variety of organometallic compounds with unsaturated organic ligands has increased enormously.

Complexes containing ligands which coordinate to a central atom with at least two adjacent atoms in a 'side-on' fashion require a special nomenclature. These ligands normally contain

*The symbol 'C' is used to divide the name, necessitated by the line break. In the absence of the line break this symbol is omitted. Note that all *hyphens* are true parts of the name.

groups that coordinate via the π -electrons of their multiple bonds, such as alkenes, alkynes and aromatic compounds, but they may also be carbon-free entities containing bonds between heteroelements; the complexes are then generally referred to as ' π -complexes'. However, the exact nature of the bonding (σ, π, δ) is often uncertain. The atoms bonded to the metal atom are therefore indicated in a manner independent of theoretical implications. Thus, the use of the prefixes σ and π is not recommended in nomenclature; these symbols refer to the symmetry of orbitals and their interactions, which are irrelevant for nomenclature purposes.

Ligands such as alkenes, alkynes, nitriles and diazenes, and others such as allyl (C_3H_5), butadiene (C_4H_6), cyclopentadienyl (C_5H_5), cycloheptatrienyl (C_7H_7) and cyclooctatetraene (C_8H_8), may be formally regarded as anionic, neutral (or sometimes cationic). The structures of, and bonding in, their complexes may also be complicated or ill-defined. Names for such ligands are therefore chosen that indicate stoichiometric composition and are derived in a similar way to those for the ligands discussed in preceding Sections.

Ligands considered as neutral molecules are given a name according to the rules of Ref. 3, including the special nomenclature and numbering applied to fused polycyclic or unsaturated heterocyclic ligands (see Section P-25 of Ref. 3).

Ligands regarded as substituent groups derived by removing hydrogen atoms from (substituted) parent hydrides are given the substituent names ending in 'yl', 'diyl', 'ylidene', etc., depending on the number of hydrogen atoms removed, again following Ref. 3 (in particular Section P-29). Ligands regarded as anions obtained by removing hydrons from (substituted) parent hydrides are given the endings 'ido', 'diido', etc., depending on the number of hydrons removed.

IR-10.2.5.1 The eta (η) convention

The special nature of the bonding of unsaturated hydrocarbons to metals via their π -electrons has led to the development of the 'hapto' nomenclature to designate unambiguously the unique bonding modes of the compounds so formed.⁴ (See also Section IR-9.2.4.3.) The Greek symbol η (eta) provides a topological description by indicating the connectivity between the ligand and the central atom. The number of contiguous atoms in the ligand coordinated to the metal is indicated by a right superscript numeral, *e.g.* η^3 ('eta three' or 'trihapto'), η^4 ('eta four' or 'tetrahapto'), η^5 ('eta five' or 'pentahapto'), *etc*. The symbol η is added as a prefix to the ligand name, or to that portion of the ligand name most appropriate to indicate the connectivity, as in cyclopenta-2,4-dien-1-yl- η^2 -ethene *versus* vinyl- η^5 -cyclopentadienyl:

The ligand name η^5 -cyclopentadienyl, although strictly speaking ambiguous, is acceptable as a short form of η^5 -cyclopenta-2,4-dien-1-yl, due to common usage.

These ligand names are enclosed in parentheses in the full name of a complex. Note the importance of making rigorous use of enclosing marks, *etc*. to distinguish the above bonding modes from the other four cases below. Note also that when cyclopenta-2,4-dien-1-yl coordinates at the carbon with the free valence, a κ term is added for explicit indication of that bonding. In general, this is necessary with names of unsaturated ligands which may participate

in several types of bonding (see Example 17 below, where the ligand name ends in 'yl', but the bonding is described using an η term placed elsewhere in the name, and Example 24, where the C^1 atoms in the cyclopentadienyl ligands are involved in binding to both central atoms).

(cyclopenta-2,4-dien-1-yl- κC^1)(η^2 -ethene) (η^5 -cyclopentadienyl)(η^2 -ethene)

Complexes of unsaturated systems incorporating heteroatoms may be designated in the same manner if both the carbon atoms and adjacent heteroatoms are coordinated. Names for typical unsaturated molecules and groups acting as ligands are listed in Table IR-10.4, and this is followed by examples illustrating the naming of compounds containing such ligands. Note that when using the η prefixes, shorthand forms of anion and substituent group names are acceptable, *e.g.* η^5 -cyclohexadienido instead of η^5 -cyclohexa-2,4-dien-1-ido and η^5 -cyclohexadienyl instead of η^5 -cyclohexa-2,4-dien-1-yl.

Table IR-10.4 Ligand names for unsaturated molecules and groups

Ligand ^a	Systematic name as anionic ligand	Systematic name as neutral ligand	Acceptable alternative name	
	η^3 -propenido	η^3 -propenyl	η^3 -allyl	
	η^3 -(Z)-butenido	η^3 -(Z)-butenyl		
	η^3 -2-methylpropenido	η^3 -2-methylpropenyl	η^3 -2-methylallyl	
	η^4 -2-methylidenepropane-1,3-diido	$\eta^{4}\text{-}2\text{-methylidenepropane-}\\ 1,3\text{-diyl}$		
	η^3, η^3 -2,3- dimethylidenebutane- 1,4-diido	η^3 , η^3 -2,3- dimethylidenebutane- 1,4-diyl	$\eta^3, \eta^3\text{-}2, 2'\text{-biallyl}$	
	η^5 -(Z,Z)-pentadienido	η^5 -(Z , Z)-pentadienyl		
	η ⁵ -cyclopentadienido	η ⁵ -cyclopentadienyl		

Table IR-10.4 Continued

Ligand ^a	Systematic name as anionic ligand	Systematic name as neutral ligand	Acceptable alternative name	
	pentamethyl-η ⁵ - cyclopentadienido	pentamethyl-η ⁵ - cyclopentadienyl		
	η^5 -cyclohexadienido	η^5 -cyclohexadienyl		
	η^7 -cycloheptatrienido	η^7 -cycloheptatrienyl ^b		
	η^7 -cyclooctatrienido	η ⁷ -cyclooctatrienyl ^c		
B		1-methyl- η^5 -1 <i>H</i> -borole		
N	η ⁵ -azacyclopentadienido	η^5 -azacyclopentadienyl	η ⁵ -1 <i>H</i> -pyrrolyl	
P	η^5 -phosphacyclopentadienido	$\eta^5\text{-phosphacyclopentadienyl}$	η^5 -1 <i>H</i> -phospholyl	
As	η^5 -arsacyclopentadienido	η^5 -arsacyclopentadienyl	η^5 -1 <i>H</i> -arsolyl	
B _H	η^6 -borinin-1-uido		η^6 -boranuidabenzene ^d	
H 2-	η^6 -1,4-diborinine-1,4-diuido		η^6 -1,4- diboranuidabenzene ^e	

^a The ligands are drawn as if complexed to a metal, *i.e.* these are depictions of bonded entities, not free ligands. The arcs used in these and later examples indicate delocalization (by analogy with the circle in benzene).

The name η^7 -tropyl has been used previously but is no longer acceptable. The name η^7 -homotropyl has been used previously but is no longer acceptable. The name η^6 -boratabenzene has been used previously but is no longer acceptable. The name η^6 -1,4-diboratabenzene has been used previously but is no longer acceptable.

Examples:

1.

 $bis(\eta^6\text{-}benzene)chromium$

2.

 $(\eta^7\text{-cycloheptatrienyl})(\eta^5\text{-cyclopentadienyl}) vanadium$

3.

bis(η^8 -cyclooctatetraene)uranium (*cf.* Section IR-10.2.6)

4.

 $tris(\eta^3-allyl)$ chromium

5.

 $bis(\eta^6\text{-}1\text{-}methyl\text{-}1\text{-}boranuidabenzene}) iron$

6.

 $dicarbonyl(\eta^2\text{-}formaldehyde) bis (triphenylphosphane) osmium$

(η²-carbon dioxide)bis(triethylphosphane)nickel

tricarbonyl $\{N, N\text{-dimethyl-1-[2-(diphenylphosphanyl)-} \eta^6\text{-phenyl}\}$ ethane-1-amine $\}$ chromium

 $tribromido[1,1'-(dimethylsilanediyl)bis(2-methyl-\eta^5-cyclopentadienyl)] niobium$

If not all unsaturated atoms of a ligand are involved in bonding, if a ligand can adopt several bonding modes, or if a ligand bridges several metal atoms, the locants of the ligating atoms appear in a numerical sequence before the symbol η , which is preceded by a hyphen. Extended coordination over more than two contiguous carbon atoms should be indicated by, for example, $(1-4-\eta)$ rather than by $(1,2,3,4-\eta)$. The locants and the symbol η are enclosed in parentheses. No superscript on the symbol η is then necessary.

Examples:

 $\label{eq:dichlorido} dichlorido[(1-3,3a,8a:4a,5-7,7a-\eta)-4,4,8,8-tetramethyl-1,4,5,8-tetrahydro-4,8-disila-s-indacene-1,5-diyl]zirconium$

11. Zr Cl

dichlorido[1,1'-(ethane-1,2-diyl)bis(1-3,3a,7a-η-1*H*-inden-1-yl)]zirconium

dicarbonyl[(1–3- η)-cyclohepta-2,4,6-trien-1-yl](η^5 -cyclopentadienyl)molybdenum

 $[(1,2,5,6-\eta)$ -cyclooctatetraene] $(\eta^5$ -cyclopentadienyl)cobalt

tricarbonyl[$(2-5-\eta)$ -(E,E,E)-octa-2,4,6-trienal]iron

 $(\eta^4\text{-buta-1,3-dien-1-yl-}\kappa\textit{C}^1) carbonyl(\eta^5\text{-cyclopentadienyl}) chromium$

 $[(1-3-\eta)$ -but-2-en-1-yl-4-ylidene- κC^4]carbonyl $(\eta^5$ -cyclopentadienyl)chromium

tricarbonyl[6-oxo- κO -(2-4- η)-hept-3-en-2-yl]iron(1+)

As indicated in the previous example, the η symbol can, if necessary, be combined with the κ symbol (see Section IR-10.2.3.3). The symbol η then precedes the ligand name while the κ symbol is either placed at the end of the ligand name or, for more complicated structures,

after that portion of the ligand name which denotes the particular function in which the ligating atom is found.

Examples:

[N-tert-butyl(η^5 -cyclopentadienyl)dimethylsilanaminido- κN |dichloridotitanium

19.
$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

 $[(E)-\eta^2$ -but-2-enal- κO]chloridobis(triethylphosphane)rhodium

The symbol η^1 is not used. For a cyclopentadienyl ligand bonded by only one σ -bond one uses cyclopenta-2,4-dien-1-yl or cyclopenta-2,4-dien-1-yl- κC^1 .

Example:

dicarbonyl(η^5 -cyclopentadienyl)(cyclopenta-2,4-dien-1-yl- κC^1)iron

If an unsaturated hydrocarbon serves as a bridging ligand, the prefix μ (see Sections IR-10.2.3.1 and IR-10.2.3.4) is combined with both η and κ , where necessary. The colon is used to separate the locants of the bridging ligand which indicate binding to different metal atoms. The metal atoms are numbered according to the rules given in Section IR-9.2.5.6, and their numbers are placed before the η and κ symbols with no hyphens. If ligand locants are also specified, these are separated from the η symbol by a hyphen and the whole expression is enclosed in parentheses, as in $1(2-4-\eta)$.

Examples:

 $(\mu-\eta^2:\eta^2$ -but-2-yne)bis $[(\eta^5$ -cyclopentadienyl)nickel](Ni—Ni)

trans-[μ -(1–4- η :5–8- η)-cyclooctatetraene]bis(tricarbonyliron)

 $\{\mu-[2(1-3,3a,8a-\eta):1(4-6-\eta)]$ azulene $\}$ (pentacarbonyl- $1\kappa^3C$, $2\kappa^2C$) diiron (Fe-Fe)

 $(\mu-1\eta^5$ -cyclopenta-2,4-diene-1,1-diyl- $2\kappa C$) $(\mu-2\eta^5$ -cyclopenta-2,4-diene-1,1-diyl- $1\kappa C$)bis $[(\eta^5$ -cyclopentadienyl)hydridotungsten]

 μ_3 -1 η^2 :2 η^2 -carbonyl-3 κ *C-triangulo*-tris[dicarbonyl(η^5 -cyclopentadienyl)niobium](3 *Nb*—*Nb*)

 $(\mu-2\eta^4$ -buta-1,3-diene-1,4-diyl- $1\kappa^2C^1$, C^4)carbonyl- $1\kappa C$ -bis[$(\eta^5$ -cyclopentadienyl)chromium](Cr-Cr)

The eta convention can also be extended to π -coordinated ligands containing no carbon atoms, such as cyclotriborazane and pentaphosphole ligands.

Examples:

27.

tricarbonyl(η^6 -hexamethyl-1,3,5,2,4,6-triazatriborinane)chromium, or tricarbonyl(η^6 -hexamethylcyclotriborazane)chromium

28.

 $(pentamethyl-\eta^5-cyclopentadienyl)(\eta^5-pentaphospholyl)iron$

This convention may also be used for ligands in which σ -bonds are coordinated in a side-on fashion, such as the H-H bond in complexes of dihydrogen (*i.e.* η^2 -H₂)⁵ or the saturated C-H bonds in 'agostic' interactions.⁶ The η symbol and locants for agostic interactions are placed separately from other locants at the end of the ligand name. In Example 30 the agostic bond is denoted by a half arrow.

Examples:

29.

 $tricarbonyl(\eta^2\hbox{-}dihydrogen) bis(triisopropylphosphane) tungsten$

30.

 $[(1-3-\eta)$ -but-2-en-1yl- η^2 - C^4 , H^4] $(\eta^5$ -cyclopentadienyl)cobalt(1+)

 $(\eta^2, \eta^2$ -cycloocta-1,5-diene) $(\eta^6$ -phenyltriphenylborato)rhodium, or $[(1,2,5,6-\eta)$ -cycloocta-1,5-diene) $](\eta^6$ -phenyltriphenylboranuido)rhodium

IR-10.2.6 **Metallocene nomenclature**

The first transition element compound containing only carbocyclic rings as ligands was bis(η^5 -cyclopentadienyl)iron, [Fe(η^5 -C₅H₅)₂], which has a 'sandwich' structure with two parallel η^5 - or π -bonded rings. The recognition that this compound was amenable to electrophilic substitution, similar to the aromatic behaviour of benzene, led to the suggestion of the non-systematic name 'ferrocene' and to similar names for other 'metallocenes'.

Examples:

1. $[V(\eta^5-C_5H_5)_2]$	vanadocene
2. $[Cr(\eta^5-C_5H_5)_2]$	chromocene
3. $[Co(\eta^5-C_5H_5)_2]$	cobaltocene
4. $[Ni(\eta^5-C_5H_5)_2]$	nickelocene
5. $[Ru(\eta^5-C_5H_5)_2]$	ruthenocene
6. $[Os(\eta^5-C_5H_5)_2]$	osmocene

Metallocene derivatives may be named either by the standard organic suffix (functional) nomenclature or by prefix nomenclature. The organic functional suffix system is described in Section P-33 of Ref. 3. Metallocene substituent group names have endings 'ocenyl', 'ocenediyl', 'ocenetriyl', etc.

Examples:

7. COMe

acetylferrocene, or 1-ferrocenylethan-1-one

8. H
NMe₂
Fe

1-[1-(dimethylamino)ethyl]ferrocene, or 1-ferrocenyl-*N*,*N*-dimethylethan-1-amine

Substituents on the equivalent cyclopentadienyl rings of the metallocene entity are given the lowest possible numerical locants in the usual manner. The first ring is numbered 1–5 and the second ring 1'-5' (see Examples 9 and 10).

Examples:

9. COMe

1,1'-diacetylosmocene, or 1,1'-(osmocene-1,1'-diyl)bis(ethan-1-one)

10.

1,1'-(4-carboxybutane-1,3-diyl)ferrocene, or 3,5-(ferrocene-1,1'-diyl)pentanoic acid

- [Ru(η⁵-C₅Me₅)₂] decamethylruthenocene, or bis(pentamethyl-η⁵-cyclopentadienyl)ruthenium
- 12. [Cr(η⁵-C₅Me₄Et)₂]
 1,1'-diethyloctamethylchromocene, or
 bis(1-ethyl-2,3,4,5-tetramethyl-η⁵-cyclopentadienyl)chromium
- [Co(η⁵-C₅H₄PPh₂)₂]
 1,1'-bis(diphenylphosphanyl)cobaltocene, or (cobaltocene-1,1'-diyl)bis(diphenylphosphane)

Metallocene nomenclature does not, however, apply to all transition elements. For example, there are at least two isomers with the empirical formula $C_{10}H_{10}Ti$ but neither has the regular sandwich structure analogous to that of ferrocene, and so neither should be named 'titanocene'. Similarly, 'manganocene' is a misnomer for $[Mn(\eta^5-C_5H_5)_2]$ since it has a chain structure in the solid state, with no individual sandwich entities. However, decamethylmanganocene, $[Mn(\eta^5-C_5Me_5)_2]$, has a normal sandwich structure, as does decamethylrhenocene, $[Re(\eta^5-C_5Me_5)_2]$. With increasing atomic number, the occurrence of the classic ferrocene-type bis $(\eta^5$ -cyclopentadienyl) sandwich structure becomes rare.

The name-ending 'ocene' should therefore be confined to discrete molecules of the form bis(η^5 -cyclopentadienyl)metal (and ring-substituted analogues), where the cyclopentadienyl rings are essentially parallel, and the metal is in the d-block [i.e. the terminology does not apply to compounds of the s- or p-block elements such as Ba(C₅H₅)₂ or Sn(C₅H₅)₂].

The oxidized species have been referred to as metallocenium(n+) salts, although it should be noted that in this case the ending 'ium' does not carry the usual meaning it has in substitutive nomenclature, *i.e.* the addition of a hydron to a neutral parent compound.

To avoid this ambiguity, the name $bis(\eta^5$ -cyclopentadienyl)iron(1+), for example, is strongly preferred to ferrocenium(1+) for $[Fe(\eta^5-C_5H_5)_2]^+$. The same comment applies to substituted derivatives.

Examples:

```
14. [Co(\eta^5-C_5H_5)_2][PF_6]
bis(\eta^5-cyclopentadienyl)cobalt(1+) hexafluoridophosphate
```

15. $[\text{Co}(\eta^5-\text{C}_5\text{H}_5)(\eta^5-\text{C}_5\text{H}_4\text{COMe})][\text{BF}_4]$ (acetyl- η^5 -cyclopentadienyl)(η^5 -cyclopentadienyl)cobalt(1+) tetrafluoridoborate

The oxidized form of osmocene is dinuclear in the solid state, with a long Os–Os bond, so should not in any case be named using the 'ocenium' nomenclature. However, $[Os(\eta^5-C_5Me_5)_2]^+$ has a mononuclear sandwich structure and may be described as the decamethylosmocenium(1+) ion, although bis(pentamethyl- η^5 -cyclopentadienyl)osmium(1+) is strongly preferred.

In strong protic acid media, ferrocene is hydronated to $[Fe(\eta^5-C_5H_5)_2H]^+$. To avoid ambiguities, this should be named by the additive procedure, *i.e.* bis $(\eta^5$ -cyclopentadienyl)hydridoiron(1+).

Transition element complexes derived from ligands with additional rings fused to the cyclopentadienyl rings are also known. The names of these complexes are derived from the retained common or semisystematic names of the hydrocarbon ligands, *e.g.* 1*H*-inden-1-yl (C_9H_7), fluoren-9-yl ($C_{13}H_9$), and azulene ($C_{10}H_8$). Thus, [Fe(η^5 -C₉H₇)₂] is named bis(η^5 -indenyl)iron or, more specifically, bis[(1–3,3a,7a- η)-1*H*-inden-1-yl]iron. To avoid possible ambiguities, the use of fusion nomenclature, such as 'benzoferrocene', is strongly discouraged.

Many compounds have ligands in addition to two η^5 -cyclopentadienyl rings. They are often referred to as metallocene di(ligand) species, *e.g.* [Ti(η^5 -C₅H₅)₂Cl₂] is frequently named 'titanocene dichloride'. This practice is discouraged since metallocene nomenclature applies only to compounds in which the two rings are parallel. Thus, [Ti(η^5 -C₅H₅)₂Cl₂] is named dichloridobis(η^5 -cyclopentadienyl)titanium, and [W(η^5 -C₅H₅)₂H₂], [Ti(CO)₂(η^5 -C₅H₅)₂] and [Zr(η^5 -C₅H₅)₂Me₂] should be named bis(η^5 -cyclopentadienyl)dihydridotungsten, dicarbonylbis(η^5 -cyclopentadienyl)titanium and bis(η^5 -cyclopentadienyl)dimethylzirconium, respectively.

The bis(cyclooctatetraene) compound $[U(\eta^8-C_8H_8)_2]$ has sometimes been described as 'uranocene'. Related species are obtained from zirconium, $[Zr(\eta^8-C_8H_8)_2]$, and the lanthanoids, *e.g.* $[Ce(\eta^8-C_8H_8)_2]^-$. In such complexes, the carbocyclic rings are parallel and there are certain similarities to ferrocene in the molecular orbital descriptions of their bonding. However, some lanthanoids also form metal(II) cyclopentadienyl complexes, such as $[Sm(\eta^5-C_5Me_5)_2]$. Extension of the 'ocene' nomenclature to $[U(\eta^8-C_8H_8)_2]$ and similar compounds can therefore lead to confusion and is strongly discouraged.

Furthermore, the cyclooctatetraene ring can also function as an η^4 -ligand, as in $[Ti(\eta^4-C_8H_8)(\eta^8-C_8H_8)]$. Compounds of cyclooctatetraene should therefore be named using standard organometallic nomenclature, *e.g.* bis(η^8 -cyclooctatetraene)uranium and $[(1-4-\eta)$ -cyclooctatetraene](η^8 -cyclooctatetraene)titanium. The ligand $C_8H_8^{2-}$ is occasionally

referred to as 'cyclooctatetraenyl'. This name is incorrect as it can only be used for the (as yet hypothetical) ligand C_8H_7 .

IR-10.3 NOMENCLATURE OF ORGANOMETALLIC COMPOUNDS OF THE MAIN GROUP ELEMENTS

IR-10.3.1 **Introduction**

The nomenclature of organometallic compounds of the main group elements is an area of current and ongoing development. This section briefly describes key aspects of the naming of such compounds, leaving a full treatment of the subject to a future IUPAC project. Detailed information on the nomenclature of organic compounds containing the elements of groups 13–16 may be found in Sections P-68 and P-69 of Ref. 3.

In principle, all organometallic compounds, whether of the transition or main group elements, can be given names based on the additive system of nomenclature that is applied to coordination compounds, provided the constitution of the compound is known. Examples of such names were given in Sections IR-7.2 and IR-7.3. In addition, compounds of elements such as boron, silicon, arsenic and selenium are often considered to be organometallic, and are commonly named by notionally substituting the hydrogen atoms of the parent hydride with the appropriate substituent groups.

If a choice must be made, it is recommended here that organometallic compounds derived from the elements of groups 13–16 be named by a substitutive process, while those derived from the elements of groups 1 and 2 be named using the additive system of nomenclature or in some cases just compositional nomenclature if less structural information is to be conveyed. Where an organometallic compound contains two or more central atoms (which may be associated with different nomenclature systems according to the above recommendation), a choice must again be made to provide the basis of the name. A general rule is recommended in Section IR-10.4.

IR-10.3.2 Organometallic compounds of groups 1 and 2

Organometallic compounds of the elements of groups 1 and 2 with a defined coordination structure are named according to the additive system of nomenclature, the general definitions and rules of which are given in Chapter IR-7 and Sections IR-9.1 and IR-9.2. Thus, prefixes denoting the organic groups and any other ligands are placed in alphabetical order before the name of the metal. These prefixes may adopt either the additive 'ido', 'diido', etc. endings or, in the case of hydrocarbyl groups, the substitutive 'yl', 'diyl', etc. endings (see Sections IR-10.2.2 and IR-10.2.3). The latter practice allows names in common usage for organic groups to be applied unchanged. The presence of a hydrogen atom attached to the metal centre must always be indicated (by the prefix 'hydrido') and the name of a cyclic compound with the central atom in the ring may be formed using appropriate locants of a divalent 'diido' or 'diyl' group to indicate chelate-type bonding to the metal, as in Example 5 below.

Many organometallic compounds of groups 1 and 2 exist in associated molecular form (as aggregates) or contain structural solvent, or both. However, their names are often based solely on the stoichiometric compositions of the compounds, unless it is specifically desired to draw attention to the extent of aggregation or the nature of any structural solvent, or both (see Example 3 below). In the examples below, note how the different types of name reflect the different structural content implied by the formulae shown. As usual, the formulae enclosed in square brackets designate coordination entities.

Note that metallocene terminology (Section IR-10.2.6) is not recommended for bis(cyclopentadienyl) compounds of the main group metals (see Examples 6 and 7).

Examples:

- 1. [BeEtH] ethylhydridoberyllium, or ethanidohydridoberyllium
- Na(CHCH₂)
 sodium ethenide (compositional name)
 Na-CH=CH₂, or [Na(CH=CH₂)]
 ethenidosodium, ethenylsodium, or vinylsodium
- 3. [{Li(OEt₂)(μ₃-Ph)}₄] tetrakis[(ethoxyethane)(μ₃-phenyl)lithium], or tetrakis[(μ₃-benzenido)(ethoxyethane)lithium]
- 4. 2Na⁺(Ph₂CCPh₂)²⁻ disodium 1,1,2,2-tetraphenylethane-1,2-diide (compositional name)
 Ph₂C(Na)-C(Na)Ph₂ (μ-1,1,2,2-tetraphenylethane-1,2-diyl)disodium, or (μ-1,1,2,2-tetraphenylethane-1,2-diido-κ²C¹,C²)disodium

5.

[2-(4-methylpent-3-en-1-yl)but-2-ene-1,4-diyl]magnesium, or [2-(4-methylpent-3-en-1-yl)but-2-ene-1,4-diido- $\kappa^2 C^1, C^4$]magnesium

- 6. $[Mg(\eta^5-C_5H_5)_2]$ bis $(\eta^5$ -cyclopentadienyl)magnesium, or bis $(\eta^5$ -cyclopentadienido)magnesium
- 7. [PPh₄][Li(η^5 -C₅H₅)₂] tetraphenylphosphanium bis(η^5 -cyclopentadienyl)lithate(1–), or tetraphenylphosphanium bis(η^5 -cyclopentadienido)lithate(1–)
- 8. LiMe lithium methanide (compositional name)
 [LiMe] methyllithium
 [(LiMe)₄] tetra-µ₃-methyl-tetralithium
 (LiMe)_n poly(methyllithium)

9. MgIMe

magnesium iodide methanide (compositional name)

[MgI(Me)]

iodido(methanido)magnesium (additive name of coordination type)

[MgMe]I

methylmagnesium iodide (compositional name with formally electropositive component named using additive nomenclature)

 $[MgI(Me)]_n$

poly[iodido(methanido)magnesium], or poly[iodido(methyl)magnesium]

IR-10.3.3 Organometallic compounds of groups 13–16

Organometallic compounds of the elements of groups 13–16 are named according to the substitutive system of nomenclature, dealt with in Chapter IR-6. Thus, the name of the parent hydride (formed in accordance with the rules of Section IR-6.2) is modified by a prefix for each substituent replacing a hydrogen atom of the parent hydride. The prefix should be in appropriate substituent form (chloro, methyl, sulfanylidene, *etc.*) and not in ligand form (chlorido, methanido, sulfido, *etc.*).

Where there is more than one kind of substituent, the prefixes are cited in alphabetical order before the name of the parent hydride, parentheses being used to avoid ambiguity, and multiplicative prefixes being used as necessary. Non-standard bonding numbers are indicated using the λ -convention (see Section IR-6.2.2.2). An overview of the rules for naming substituted derivatives of parent hydrides is given in Section IR-6.3, while a detailed exposition may be found in Ref. 3.

Examples:

AlH₂Me methylalumane
 AlEt₃ triethylalumane

3. Me₂CHCH₂CH₂In(H)CH₂CH₂CHMe₂ bis(3-methylbutyl)indigane

4. Sb(CH=CH₂)₃ triethenylstibane, or trivinylstibane

5. SbMe₅ pentamethyl- λ^5 -stibane

6. PhSb=SbPh diphenyldistibene

7. GeCl₂Me₂ dichlorodimethylgermane

8. GeMe(SMe)₃ methyltris(methylsulfanyl)germane

9. BiI₂Ph diiodo(phenyl)bismuthane10. Et₃PbPbEt₃ hexaethyldiplumbane

11. $SnMe_2$ dimethyl- λ^2 -stannane

12. BrSnH₂SnCl₂SnH₂(CH₂CH₂CH₃) 1-bromo-2,2-dichloro-3-propyltristannane

13. Me₃SnCH₂CH₂C≡CSnMe₃ but-1-yne-1,4-diylbis(trimethylstannane) In the presence of one or more characteristic groups that may be expressed using one or more suffixes (-NH₂, -OH, -COOH, *etc.*), the name of the parent hydride carrying the highest-ranking such group is modified by the suffix, and other substituents are then denoted by prefixes as described in Section IR-6.3.1. If acting as a substituent, the group 13–16 parent hydride name in question is modified by changing the ending 'ane' to 'anyl' (or 'yl' for the group 14 elements), 'anediyl', *etc.*

Examples:

- 14. (EtO)₃GeCH₂CH₂COOMe methyl 3-(triethoxygermyl)propanoate
- 15. H₂As(CH₂)₄SO₂Cl 4-arsanylbutane-1-sulfonyl chloride
- 16. OCHCH₂CH₂GeMe₂GeMe₂CH₂CH₂CHO 3,3'-(1,1,2,2-tetramethyldigermane-1,2-diyl)dipropanal
- 17. SiMe₃NH₂ trimethylsilanamine

Sometimes it may be necessary or preferable to consider a parent hydride in which several (four or more) skeletal carbon atoms of a hydrocarbon have been replaced by main group elements. In this method of skeletal replacement the heteroatoms are designated by the 'a' terms of replacement nomenclature (Table X) cited in the order given by Table VI and preceded by the appropriate locant(s). The rules for locant numbering are specified in Section IR-6.2.4.1 and this nomenclature is fully described in Sections P-21.2 and P-22.2 of Ref. 3.

Examples:

19. 2 3 4 5 MeSiH₂OP(H)OCH₂Me 3,5-dioxa-4-phospha-2-silaheptane

21.

2,5,7-triselena-1,4-diphosphabicyclo[2.2.1]heptane

When elements from groups 13–16 replace carbon atoms in monocyclic systems, the resulting structures may be named using the extended Hantzsch–Widman procedures. This

nomenclature is fully described in Section IR-6.2.4.3 and in Section P-22.2 of Ref. 3 and will not be elaborated further here.

Sections P-68 and P-69 of Ref. 3 offer a more comprehensive treatment of the nomenclature of organic compounds containing the elements of groups 13–16.

IR-10.4 ORDERING OF CENTRAL ATOMS IN POLYNUCLEAR ORGANOMETALLIC COMPOUNDS

When an organometallic compound contains two or more different metal atoms, a choice must be made to provide the basis of the name. It is thus convenient to classify the possible central atoms as belonging to either (i) the elements of groups 1–12 (whose compounds are named according to the additive system of nomenclature) or (ii) the elements of groups 13–16 (whose compounds are named according to the substitutive system).

IR-10.4.1 Central atoms from groups 1–12 only

If both or all potential central atoms belong to class (i), then the compound is named additively using the methodology described in Section IR-9.2.5, including the rules given there for ordering the central atoms. Ferrocenyllithium (ferrocenyl, see Section IR-10.2.6) could thus be systematically named:

$$(2\eta^5$$
-cyclopentadienyl) $(2\eta^5$ -cyclopenta-2,4-dien-1-yl-1 κC^1)lithiumiron,

a name which also illustrates the use of the κ and η conventions. Further examples in which both or all central atoms belong to class (i) are given in Sections IR-10.2.3.4, IR-10.2.3.5 and IR-10.2.5.1.

IR-10.4.2 Central atoms from both groups 1–12 and groups 13–16

If at least one possible central atom belongs to class (i) and one or more others to class (ii), then the compound is named additively using the metal atom(s) of class (i) as central atom(s). The remaining atoms of the complex are named as ligands by rules already presented (Sections IR-9.1, IR-9.2 and IR-10.2.1 to IR-10.2.5).

Examples:

- 1. [Li(GePh₃)] (triphenylgermyl)lithium
- 2. (Me₃Si)₃CMgC(SiMe₃)₃ bis[tris(trimethylsilyl)methyl]magnesium
- 3. $[Mo(CO)_5(=Sn\{CH(SiMe_3)_2\}_2)]$ {bis[bis(trimethylsilyl)methyl]- λ^2 -stannylidene}pentacarbonylmolybdenum

4.

[4-(diphenylstibanyl)phenyl](phenyl)mercury

5.

(phenylstibanediyl)bis[dicarbonyl(η^5 -cyclopentadienyl)manganese]

IR-10.4.3 Central atoms from groups 13–16 only

If the possible central atoms are both or all from class (ii), then the compound is named substitutively as described in Section IR-10.3.3 (and in more detail in Section IR-6.3). The parent hydride is chosen on the basis of the following element order ('>' meaning 'chosen before', *cf.* Section P-41 of Ref. 3):

$$N > P > As > Sb > Bi > Si > Ge > Sn > Pb > B > Al > Ga > In > Tl > S > Se > Te > C$$

Thus, for a compound containing both arsenic and lead, the parent hydride would be selected as AsH₃, rather than PbH₄, the lead atom then appearing in the name as a prefixed substituent, often with its own substituent groups.

Examples:

1. As(PbEt₃)₃ tris(triethylplumbyl)arsane

2.

(4-stibanylphenyl)arsane

3.

methoxydimethyl[2-(trimethylgermyl)phenyl]silane

- 4. Et₃PbCH₂CH₂CH₂BiPh₂ diphenyl[3-(triethylplumbyl)propyl]bismuthane
- 5. $SiClH_2Sn(Me) = Sn(Me)SiClH_2$ Si,Si'-(1,2-dimethyldistannene-1,2-diyl)bis(chlorosilane)

IR-10.5 REFERENCES

1. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 1990, ed. G.J. Leigh, Blackwell Scientific Publications, Oxford, 1990.

- 2. Nomenclature of Organometallic Compounds of the Transition Elements, A. Salzer, *Pure Appl. Chem.*, **71**, 1557–1585 (1999).
- 3. *Nomenclature of Organic Chemistry, IUPAC Recommendations*, eds. W.H. Powell and H. Favre, Royal Society of Chemistry, in preparation.
- 4. F.A. Cotton, J. Am. Chem. Soc., 90, 6230-6232 (1968).
- 5. D.J. Heinekey and W.J. Oldham, Jr., Chem. Rev., 93, 913-926 (1993).
- 6. M. Brookhart, M.L.H. Green and L.-L. Wong, Prog. Inorg. Chem., 36, 1–124 (1988).

IR-11 Solids

CONTENTS

			_	
IR-	-11	11	Intro	duction

- IR-11.1.1 General
- IR-11.1.2 Stoichiometric and non-stoichiometric phases
- IR-11.2 Names of solid phases
 - IR-11.2.1 General
 - IR-11.2.2 Mineral names
- IR-11.3 Chemical composition
 - IR-11.3.1 Approximate formulae
 - IR-11.3.2 Phases with variable composition
- IR-11.4 Point defect (Kröger-Vink) notation
 - IR-11.4.1 General
 - IR-11.4.2 Indication of site occupancy
 - IR-11.4.3 Indication of crystallographic sites
 - IR-11.4.4 Indication of charges
 - IR-11.4.5 Defect clusters and use of quasi-chemical equations
- IR-11.5 Phase nomenclature
 - IR-11.5.1 Introduction
 - IR-11.5.2 Recommended notation
- IR-11.6 Non-stoichiometric phases
 - IR-11.6.1 Introduction
 - IR-11.6.2 Modulated structures
 - IR-11.6.3 Crystallographic shear structures
 - IR-11.6.4 Unit cell twinning or chemical twinning
 - IR-11.6.5 Infinitely adaptive structures
 - IR-11.6.6 Intercalation compounds
- IR-11.7 Polymorphism
 - IR-11.7.1 Introduction
 - IR-11.7.2 Use of crystal systems
- IR-11.8 Final remarks
- IR-11.9 References

SOLIDS IR-11.2

IR-11.1 INTRODUCTION

IR-11.1.1 General

This chapter deals with some aspects of terminology, nomenclature and notation for solids. However, in cases where detailed structural information is to be conveyed, fully systematic names can be difficult to construct. An attempt to deal with this problem is described in Ref. 1.

IR-11.1.2 Stoichiometric and non-stoichiometric phases

In binary and multi-component systems, intermediate crystalline phases (stable or metastable) may occur. Thermodynamically, the composition of any such phase is variable. In some cases, such as sodium chloride, the possible variation in composition is very small. Such phases are called stoichiometric. However, in other phases appreciable variations in composition can occur, for example in wustite (nominally FeO).

These are called non-stoichiometric phases. In general, it is possible to define an ideal composition relative to which the variations occur. This composition, called the stoichiometric composition, is usually that in which the ratio of the numbers of different atoms corresponds to the ratio of the numbers of normal crystallographic sites of different types in the ideal (ordered) crystal.

This concept can be used even when the stoichiometric composition is not included in the homogeneity range of the phase. The term 'non-stoichiometric' does not mean phases with complex formulae, but those with *variable composition*, for which the term *solid mixture* is an alternative. Formerly, the term *solid solution* was used, but this term is recommended to apply only in the following sense.^{2–4} *Mixture* is used to describe a solid phase containing more than one substance, when all substances are treated in the same way. *Solution* is used to describe a liquid or solid phase containing more than one substance when, for convenience, one (or more) of the substances, called the *solvent*, is treated differently from the other substances, called *solutes*. For non-stoichiometric phases, each atom or group of atoms that contributes to the non-stoichiometry is treated equally, so the term *mixture* is appropriate.

IR-11.2 NAMES OF SOLID PHASES

IR-11.2.1 General

Names for stoichiometric phases, such as NaCl, are derived simply as in Chapter IR-5, whereas formulae are derived as presented in Chapter IR-4. Although NaCl in the solid state consists of an infinite network of units, $(NaCl)_{\infty}$, the compound is named sodium chloride and represented symbolically as NaCl.

However, for non-stoichiometric phases and solid solutions, formulae are preferable to names, since strictly systematic names tend to be inconveniently cumbersome. They should be used only when unavoidable (*e.g.* for indexing) and should be constructed in the following style.

Examples:

- 1. iron(II) sulfide (iron deficient)
- 2. molybdenum dicarbide (carbon excess)

IR-11.3 SOLIDS

IR-11.2.2 Mineral names

Mineral names should be used only to designate actual minerals and not to define chemical composition. Thus, the name calcite refers to a particular mineral (contrasted with other minerals of similar composition) and is not a term for the chemical compound the composition of which is properly expressed by the name calcium carbonate.

A mineral name may, however, be used to indicate the structure type. Where possible, a name that refers to a general group should replace a more specific name. For example, large numbers of minerals have been named that are all spinels, but which have widely differing atomic constituents. In this case, the generic name 'spinel type' should be used rather than the more specific names chromite, magnetite, etc. The generic mineral name, printed in italics, should be accompanied by a representative chemical formula. This is particularly important for zeolite types.⁵

Examples:

- 1. FeCr₂O₄ (spinel type)
- 2. BaTiO₃ (perovskite type)

IR-11.3 CHEMICAL COMPOSITION

IR-11.3.1 **Approximate formulae**

The formula used in any given case depends upon how much information is to be conveyed. A general notation, which can be used even when the mechanism of the variation in composition is unknown, is to put the sign \sim (read as circa, or 'approximately') before the formula.

Examples:

- 1. ∼FeS
- 2. ∼CuZn

If it is desirable to give more information, one of the notations described below may be used.

IR-11.3.2 Phases with variable composition

For a phase where the variation in composition is caused solely or partially by isovalent substitution, the symbols of the atoms or groups that replace each other may be separated by a comma and placed together between parentheses. If possible, the formula is written so that the limits of the homogeneity range, when one or the other of the two atoms or groups is lacking, are represented.

Examples:

- 1. (Cu,Ni) denotes the complete range of compositions from pure Cu to pure Ni.
- 2. K(Br,Cl) comprises the range from pure KBr to pure KCl.

Phases for which substitution also results in vacant positions are denoted in the same way.

SOLIDS IR-11.4

Examples:

3. (Li₂,Mg)Cl₂ denotes a solid mixture intermediate in composition between LiCl and MgCl₂.

4. $(Al_2,Mg_3)Al_6O_{12}$ represents a solid mixture intermediate in composition between $MgAl_2O_4$ (= $Mg_3Al_6O_{12}$) and Al_2O_3 (*spinel* type) (= $Al_2Al_6O_{12}$).

In general, however, a notation in which there are variables which define composition should be used. The ranges of the variables can also be indicated. Thus, a phase involving substitution of atom A for B is written $A_{m+x}B_{n-x}C_p$ $(0 \le x \le n)$. The commas and parentheses called for above are not then required.

Examples:

- 5. Cu_xNi_{1-x} ($0 \le x \le 1$) is equivalent to (Cu,Ni).
- 6. KBr_xCl_{1-x} ($0 \le x \le 1$) is equivalent to K(Br,Cl).
- 7. $\text{Li}_{2-2x}\text{Mg}_x\text{Cl}_2$ ($0 \le x \le 1$) is equivalent to (Li_2,Mg)Cl₂ but shows explicitly that one vacant cation position appears for every 2 Li⁺ replaced by Mg²⁺.
- 8. $Co_{1-x}O$ indicates that there are vacant cation sites; for x = 0 the formula corresponds to the stoichiometric composition CoO.
- 9. $Ca_x Zr_{1-x}O_{2-x}$ indicates that Zr has been partly replaced by Ca, resulting in vacant anion sites; for x = 0 the formula corresponds to the stoichiometric composition ZrO_2 .

If the variable x is limited this may be shown by using δ or ε instead of x. A specific composition or composition range can be indicated by stating the actual value of the variable x (or δ , or ε). This value can be written in parentheses after the general formula. However, the value of the variable may also be introduced in the formula itself. This notation can be used both for substitutional and for interstitial solid solutions.⁶

Examples:

- 10. Fe_{3x}Li_{4-x}Ti_{2(1-x)}O₆ (x = 0.35), or Fe_{1.05}Li_{3.65}Ti_{1.30}O₆
- 11. LaNi₅H_x (0 < x < 6.7)
- 12. Al₄Th₈H_{15.4}
- 13. $Ni_{1-\delta}O$

IR-11.4 POINT DEFECT (KRÖGER-VINK) NOTATION

IR-11.4.1 General

As well as the chemical composition, information about point defects, site symmetry, and site occupancy can be given by using additional symbols. These symbols may also be used to write quasi-chemical equilibria between point defects.⁶

IR-11.4 SOLIDS

IR-11.4.2 **Indication of site occupancy**

In a formula, the main symbols indicate the species present at a certain site, defined with respect to empty space. This will generally be the symbol of an element. If a site is vacant this is denoted by the italicized symbol V. (In certain contexts other symbols, such as a square box, \Box , are used for vacancies, but the use of italicized V is preferred, the element vanadium being written with the upright letter V).

The site and its occupancy in a structure of ideal composition are represented by right lower indexes. The first index indicates the type of site, and the second index (if used), separated from the first by a comma, indicates the number of atoms on this site. Thus, an atom A on a site normally occupied by A in the ideal structure is expressed by A_A ; an atom A on a site normally occupied by B is expressed A_B ; and $M_{M,1-x}N_{M,x}M_{N,x}N_{N,1-x}$ stands for a disordered alloy, where the ideal composition is M_MN_N with all M atoms on one type of crystallographic site and all N atoms on a second type of crystallographic site. An alternative description is $(M_{1-x}N_x)_M(M_xN_{1-x})_N$. A species occupying an interstitial site (*i.e.* a site which is unoccupied in the ideal structure) is indicated by the subscript 'i'.

Examples:

- 1. $Mg_{Mg,2-x}Sn_{Mg,x}Mg_{Sn,x}Sn_{Sn,1-x}$ shows that in Mg_2Sn some of the Mg atoms are present on Sn sites and *vice versa*.
- 2. $(Bi_{2-x}Te_x)_{Bi}(Bi_xTe_{3-x})_{Te}$ shows that in Bi_2Te_3 some of the Bi atoms are present on Te sites and *vice versa*.
- 3. $Na_{Na,1-x}V_{Na,x}Cl_{Cl,1-x}V_{Cl,x}$ shows that x Na and x Cl sites in NaCl are vacant, giving Schottky defects.
- 4. $Ca_{Ca,1}F_{F,2-x}V_{F,x}F_{i,x}$ shows that in CaF_2 , x F sites are vacant, while x F ions are situated on interstitial sites, creating Frenkel defects.
- 5. (Ca_{0.15}Zr_{0.85})_{Zr}(O_{1.85}V_{0.15})_O, or Ca_{Zr,0.15}Zr_{Zr,0.85}O_{O,1.85}V_{O,0.15}, shows that in CaO-stabilized ZrO₂, 0.85 of the Zr sites are occupied by Zr, 0.15 of the Zr sites are occupied by Ca, and that, of the two oxygen sites, 1.85 sites are occupied by oxygen ions, leaving 0.15 sites vacant.
- 6. V_{V,1}C_{C,0.8}V_{C,0.2} shows that 0.2 C-sites are vacant in vanadium carbide, VC.

The defect symbols can be used in writing quasi-chemical reactions.

Examples:

- 7. $Na_{Na} \rightarrow V_{Na} + Na(g)$ indicates the evaporation of a Na atom, leaving behind a sodium vacancy in the lattice.
- 8. $0.5Cl_2(g)+V_{Cl} \rightarrow Cl_{Cl}$ indicates the incorporation of a chlorine atom, from a dichlorine molecule, on a vacant chlorine site in the lattice.

IR-11.4.3 Indication of crystallographic sites

Crystallographic sites can be distinguished by subscripts, e.g. tet, oct and dod, denoting tetrahedrally, octahedrally and dodecahedrally coordinated sites, respectively. The use of

SOLIDS IR-11.4

subscripts such as a, b, ..., which are not self-explanatory, is not approved. In some cases, such as oxides and sulfides, the number of subscripts can be reduced by defining specific symbols to indicate site symmetries, *e.g.* () for tetrahedral sites, [] for octahedral sites, { } for dodecahedral sites. To avoid confusion, such enclosing marks should be restricted to cases where they are not being used to express multiplication. The meaning of the symbols should be clearly stated in the text.

Examples:

- 1. Mg_{tet}Al_{oct.2}O₄ or (Mg)[Al₂]O₄ denotes a normal spinel.
- 2. Fe_{tet}Fe_{oct}Ni_{oct}O₄ or (Fe)[FeNi]O₄ denotes NiFe₂O₄ (*inverse spinel* type).

IR-11.4.4 **Indication of charges**

Charges are indicated by a right upper index. When formal charges are given, the usual convention holds: one unit of positive charge is indicated by a superscript +, n units of positive charge by a superscript n+, one unit of negative charge by a superscript -, n units of negative charge by a superscript n-. Thus A^{n+} denotes n units of formal positive charge on an atom of symbol A. In defect chemistry, charges are defined preferably with respect to the ideal unperturbed crystal. In this case, they are called *effective charges*. One unit of positive effective charge is shown by a superscript dot, \bullet , (not to be confused with the radical dot described in Section IR-4.6.2) and one unit of negative effective charge by a prime, \cdot ; n units of effective charge are indicated by superscript n^{\bullet} or n^{\prime} . The use of double dots n^{\bullet} or double primes $n^{\prime\prime}$ in the case of two effective charges is also allowed. Thus n^{\bullet} and n^{\bullet} indicate that an atom of symbol A has two units of effective positive charge. Sites that have no effective charge relative to the unperturbed lattice may be indicated explicitly by a superscript cross, *i.e.* n^{\bullet} .

Examples:

- 1. $\text{Li}_{\text{Li},1-2x}\text{Mg}_{\text{Li},x}^{\bullet}V'_{\text{Li},x}\text{Cl}_{\text{Cl}}$ and $\text{Li}_{\text{Li},1-2x}^{x}\text{Mg}_{\text{Li},x}^{\bullet}V'_{\text{Li},x}\text{Cl}_{\text{Cl}}^{x}$ are equivalent expressions for a substitutional solid solution of MgCl₂ in LiCl.
- 2. $Y_{Y,1-2x}Zr_{Y,2x}^{\bullet}O_{i,x}''O_3$ and $Y_{Y,1-2x}^xZr_{Y,2x}^{\bullet}O_{i,x}''O_3^x$ are equivalent expressions for an interstitial solid solution of ZrO_2 in Y_2O_3 .
- 3. $Ag_{Ag,1-x}V'_{Ag,x}Ag^{\bullet}_{i,x}Cl_{Cl}$ indicates that a fraction x of the Ag^+ ions is removed from the Ag sites to interstitial sites, leaving the silver site vacant.

Formal charges may be preferred in cases where the unperturbed crystal contains an element in more than one oxidation state.

Examples:

- 4. $\operatorname{La_{\operatorname{La},1-3x}^{2+}} \operatorname{La_{\operatorname{La},2+2x}^{3+}} V_{\operatorname{La},x}(S^{2-})_4 (0 < x < 1/3)$
- 5. $Cu_{Cu,2-x}^+Fe_{Cu,x}^{3+}Tl_{Tl}^+Se_{Se,1+2x}^{2-}Se_{Se,1-2x}^-$ (0 < x < 1/2) shows that Fe^{3+} partly replaces Cu^+ in $Cu_{2}^+Tl_{2}^+Se^{2-}Se^{-}$.

Free electrons are denoted by e', free holes by h^{\bullet} . As crystals are macroscopically neutral bodies, the sums of the formal charges and of the effective charges must be zero.

IR-11.5 SOLIDS

Key aspects of the Kröger-Vink point defect notation are summarized in Table IR-11.1.

Table IR-11.1 Examples^a of defect notation in $M^{2+}(X^{-})_2$ containing a foreign ion Q

interstitial M ²⁺ ion	M_i^{ullet}	M atom vacancy	$V_{ m M}^{ m x}$
interstitial X ⁻ ion	X'_{i}	X atom vacancy	$V_{\mathrm{X}}^{\mathrm{x}}$
M ²⁺ ion vacancy	$V_{ m M}^{''}$	normal M ²⁺ ion	M_M^x
X ⁻ ion vacancy	$V_{ m X}^{ullet}$	normal X ⁻ ion	X_X^x
interstitial M atom	M_i^x	Q^{3+} ion at M^{2+} site	Q_{M}^{ullet}
interstitial X atom	X_i^x	Q^{2+} ion at M^{2+} site	Q_{M}^{x}
interstitial M ⁺ ion	M_i^{ullet}	Q^+ ion at M^{2+} site	
M ⁺ ion vacancy	$V_{ m M}^{\prime}$	free electron	$egin{array}{c} Q_{M}' \ e' \end{array}$
·		free hole	h^{\bullet}

^a Consider an ionic compound $M^{2+}(X^-)_2$. The formal charge on M is 2+, the formal charge on X is 1-. If an atom X is removed, one negative unit of charge remains on the vacant X site. The vacancy is neutral with respect to the ideal MX_2 lattice and is therefore indicated by V_X or V_X^x . If the electron is also removed from this site, the resultant vacancy is effectively positive, *i.e.* V_X^{\bullet} . Similarly, removal of an M atom leaves V_M , removal of an M^+ ion leaves V_M' , removal of an M^{2+} ion leaves V_M'' . If an impurity with a formal charge of three positive units Q^{3+} is substituted on the M^{2+} site, its effective charge is one positive unit. Therefore it is indicated by Q_M^{\bullet} .

IR-11.4.5 Defect clusters and use of quasi-chemical equations

Pairs or more complicated clusters of defects can be present in a solid. Such a defect cluster is indicated between parentheses. The effective charge of the cluster is indicated as an upper right index.

Examples:

- 1. $(Ca_K^{\bullet}V_K')^x$ denotes a neutral defect pair in a solid solution, for example of $CaCl_2$ in KCl.
- 2. $(V_{Pb}'' V_{Cl}^{\bullet})'$ or $(V_{Pb} V_{Cl})'$ indicates a charged vacancy pair in PbCl₂.

Quasi-chemical reactions may be written for the formation of such defect clusters.

Examples:

- 3. $\text{Cr}_{\text{Mg}}^{\bullet} + V_{\text{Mg}}'' \rightarrow (\text{Cr}_{\text{Mg}}V_{\text{Mg}})'$ describes the association reaction of a Cr^{3+} impurity in MgO with magnesium vacancies.
- 4. $2Cr_{Mg}^{\bullet} + V_{Mg}'' \rightarrow (Cr_{Mg}V_{Mg}Cr_{Mg})^{x}$ gives another possible association reaction in the system of Example 3.
- 5. $Gd_{Ca}^{\bullet} + F_i' \rightarrow (Gd_{Ca}F_i)^x$ describes the formation of a dipole between a Gd^{3+} impurity and a fluorine interstitial in CaF_2 .

IR-11.5 PHASE NOMENCLATURE

IR-11.5.1 **Introduction**

The use of the Pearson notation⁷ (see also Section IR-3.4.4) is recommended for the designation of the structures of metals and solid solutions in binary and more complex

SOLIDS IR-11.6

systems. The use of Greek letters, which do not convey the necessary information, and of the *Strukturbericht* designations, which are not self-explanatory, is not acceptable.

IR-11.5.2 Recommended notation

The Pearson symbol consists of three parts: first, a lower-case italic letter (a, m, o, t, h, c) designating the crystal system; second, an italic capital letter (P, S, F, I, R) designating the lattice setting and, finally, a number designating the number of atoms or ions in the conventional unit cell. Table IR-3.1 summarizes the system.

Examples:

- 1. Cu, symbol (*cF*4), indicates copper of cubic symmetry, with face-centred lattice, containing 4 atoms per unit cell.
- 2. NaCl, symbol (*cF*8), indicates a cubic face-centred lattice with 8 ions per unit cell.
- 3. CuS(hP12), indicates a hexagonal primitive lattice with 12 ions per unit cell.

If required, the Pearson symbol can be followed by the space group and a prototype formula.

Example:

4. CaMg_{0.5}Ag_{1.5}(*hP*12, *P*6₃/*mmc*) (*MgZn*₂ type).

IR-11.6 NON-STOICHIOMETRIC PHASES

IR-11.6.1 **Introduction**

Several special problems of nomenclature for non-stoichiometric phases have arisen with the improvements in the precision with which their structures can be determined. Thus, there are references to homologous series, non-commensurate and semi-commensurate structures, Vernier structures, crystallographic shear phases, Wadsley defects, chemical twinned phases, infinitely adaptive phases and modulated structures. Many of the phases that fall into these classes have no observable composition ranges although they have complex structures and formulae; an example is Mo₁₇O₄₇. These phases, despite their complex formulae, are essentially stoichiometric and possession of a complex formula must not be taken as an indication of a non-stoichiometric compound (*cf.* Section IR-11.1.2).

IR-11.6.2 Modulated structures

Modulated structures possess two or more periodicities in the same direction of space. If the ratio of these periodicities is a rational number, the structures are called *commensurate*;

IR-11.6 SOLIDS

if the ratio is irrational, the structures are called *non-commensurate* or *incommensurate*. Commensurately modulated structures exist in many stoichiometric and non-stoichiometric compounds; they may be regarded as superstructures and be described by the usual rules. Non-commensurately modulated structures occur in several stoichiometric compounds (and some elements), usually in a limited temperature range, *e.g.* U, SiO₂, TaS₂, NbSe₃, NaNO₂, Na₂CO₃ and Rb₂ZnBr₄.

Many modulated structures can be regarded as being composed of two or more substructures. The substructure with the shortest periodicity often represents a simple basic structure, while the other periodicities cause modulations of the basic structure. The basic structure often remains unchanged within a certain composition range, while the other substructures take up the change in stoichiometry. If this change takes place continuously, a non-stoichiometric phase with a non-commensurate structure results. If the change occurs discontinuously, a series of (essentially stoichiometric) homologous compounds with commensurate structures (superstructures of the basic structure) may result or, in the intermediate case, a series of compounds with semi-commensurate or Vernier structures.

Examples:

1. Mn_nSi_{2n-m}

The structure is of the $TiSi_2$ type which has two atom substructures, the Mn array being identical to that of the Ti array in $TiSi_2$ and the Si_2 array being identical to that of the Si_2 array in $TiSi_2$. Removal of Si leads to a composition Mn_nSi_{2n-m} in which the Mn array is completely unchanged. The Si atoms are arranged in rows and, as the Si content falls, the Si atoms in the rows spread out. In this case there will be a Vernier relationship between the Si atom rows and the static Mn positions which will change as the composition varies, giving rise to non-commensurate structures.

2. $YF_{2+x}O$

The structure is of the *fluorite* type with extra sheets of atoms inserted into the parent YX_2 structure. When these are ordered, a homologous series of phases results. When they are disordered, there is a non-commensurate, non-stoichiometric phase, while partial ordering will give a Vernier or semi-commensurate effect. Other layer structures can be treated in the same way.

Misfit structures consist of two or more different, often mutually non-commensurate, units which are held together by electrostatic or other forces; no basic structure can be defined. The composition of compounds with misfit structures is determined by the ratio of the periodicities of their structural units and by electroneutrality.

Examples:

- 3. $Sr_{1-p}Cr_2S_{4-p}$ with p = 0.29, where chains of compositions Sr_3CrS_3 and $Sr_{3-x}S$ lie in tunnels of a framework of composition $Cr_{21}S_{36}$; the three units are mutually non-commensurate.
- 4. LaCrS₃, which is built from non-commensurate sheets of (LaS)⁺ and (CrS₂)⁻.

SOLIDS IR-11.6

IR-11.6.3 Crystallographic shear structures

Crystallographic shear planes (CS planes) are planar faults in a crystal that separate two parts of the crystal which are displaced with respect to each other. The vector describing the displacement is called the crystallographic shear vector (CS vector). Each CS plane causes the composition of the crystal to change by a small increment because the sequence of crystal planes that produces the crystal matrix is changed at the CS plane. (From this it follows that the CS vector must be at an angle to the CS plane. If it were parallel to the plane, the succession of crystal planes would not be altered and no composition change would result. A planar boundary where the displacement vector is parallel to the plane is more properly called an antiphase boundary.)

Because each *CS* plane changes the composition of the crystal slightly, the overall composition of a crystal containing a population of *CS* planes will depend upon the number of *CS* planes present and their orientation. If the *CS* planes are disordered, the crystals will be non-stoichiometric, the stoichiometric variation being due to the *CS* plane 'defect'. If the *CS* planes are ordered into a parallel array, a stoichiometric phase with a complex formula results. In this case, a change in the separation of the *CS* planes in the ordered array will produce a new phase with a new composition. The series of phases produced by changes in the spacing between *CS* planes forms an *homologous* series. The general formula of a particular series will depend upon the type of *CS* plane in the array and the separation between the *CS* planes. A change in the *CS* plane may change the formula of the homologous series.

Examples:

1. Ti_nO_{2n-1}

The parent structure is TiO_2 (*rutile* type). The *CS* planes are the (121) planes. Ordered arrays of *CS* planes can exist, producing an homologous series of oxides with formulae Ti_4O_7 , Ti_5O_9 , Ti_6O_{11} , Ti_7O_{13} , Ti_8O_{15} and Ti_9O_{17} . The series formula is Ti_nO_{2n-1} , with *n* between 4 and 9.

2. $(Mo,W)_nO_{3n-1}$

The parent structure is WO₃. The *CS* planes are the (102) planes. Ordered arrays of *CS* planes can form, producing oxides with formulae Mo₈O₂₃, Mo₉O₂₆, (Mo,W)₁₀O₂₉, (Mo,W)₁₁O₃₂, (Mo,W)₁₂O₃₅, (Mo,W)₁₃O₃₈ and (Mo,W)₁₄O₄₁. The series formula is $(Mo,W)_nO_{3n-1}$, with *n* between 8 and 14.

3. W_nO_{3n-2}

The parent structure is WO₃. The CS planes are the (103) planes. Ordered arrays of CS planes can form, producing oxides with formulae W_nO_{3n-2} , with n between approximately 16 and 25.

IR-11.6.4 Unit cell twinning or chemical twinning

This is a structure-building component in which two constituent parts of the structure are twin-related across the interface. The twin plane changes the composition of the host crystal by a definite amount (which may be zero). Ordered, closely spaced arrays of twin planes will lead to homologous series of phases. Disordered twin planes will lead to non-stoichiometric phases in which the twin planes serve as the defects. There is a close parallel between chemical twinning and crystallographic shear (see Section IR-11.6.3).

IR-11.7 SOLIDS

Example:

1. $(Bi,Pb)_nS_{n-4}$

The parent structure is PbS which has the cF8 (NaCl type) structure. The twin planes are (311) with respect to the PbS unit cell. Two members of the homologous series are known, $Bi_8Pb_{24}S_{36}$ and $Bi_8Pb_{12}S_{24}$, but other members are found in the quaternary Ag-Bi-Pb-S system. The difference between compounds lies in the separation of the twin planes; each structure is built from slabs of PbS of varying thickness, alternate slabs being twinned across (311) with respect to the parent structure.

IR-11.6.5 **Infinitely adaptive structures**

In some systems it would appear that any composition can yield a fully ordered crystal structure over certain temperature and composition ranges. As the composition changes, so the structure changes to meet this need. The term *infinitely adaptive structures* has been applied to this group of substances.⁸

Examples:

- 1. Compounds in the Cr_2O_3 - TiO_2 system between the composition ranges $(Cr,Ti)O_{2,93}$ and $(Cr,Ti)O_{2,90}$.
- 2. Compounds in the Nb_2O_5 - WO_3 system with block-type structure between the composition limits Nb_2O_5 and $8WO_3$ - $9Nb_2O_5$ ($Nb_{18}W_8O_{69}$).

IR-11.6.6 **Intercalation compounds**

There are several materials in which a guest species is inserted into a host matrix. The process is called intercalation, and the product is called an *intercalation compound*. Common examples of intercalated materials are found in the clay silicates, layered dichalcogenides and electrode materials for lithium batteries; graphite intercalation is considered in detail in Ref. 9. Intercalated materials can be designated by conventional chemical formulae such as $\text{Li}_x \text{TaS}_2$ (0 < x < 1) or by host-guest designations, such as $\text{TaS}_2:x\text{Li}$ (0 < x < 1). If the stoichiometry is definite, ordinary compound designations may be used, e.g. $3\text{TaS}_2\cdot4\text{N}_2\text{H}_4$, $\text{C}_5\text{H}_5\text{N}\cdot2\text{TiSe}_2$ and KC₈.

Many intercalation compounds are layered structures and intercalation is a two-dimensional reaction. The term *insertion* is sometimes used for three-dimensional examples, as in the tungsten bronzes, e.g. Na_xWO₃, and the spinels, e.g. Li_xMn₂O₄, and also as a general term for a reaction involving the transfer of a guest atom, ion or molecule into a host crystal lattice⁴ instead of intercalation. More specifically, *intercalation* is used for an insertion reaction that does not cause a major structural modification of the host.⁴ If the structure of the host is modified significantly, for example by breaking of bonds, then the insertion can be referred to as *topochemical* or *topotactic*.⁴

IR-11.7 POLYMORPHISM

IR-11.7.1 **Introduction**

A number of chemical compounds and elements change their crystal structure with external conditions such as temperature and pressure. These various structures are termed polymorphic

SOLIDS IR-11.9

forms or modifications, and in the past have been designated using a number of labelling systems, including Greek letters and Roman numerals; the use of such non-systematic labels is not acceptable. A rational system based upon crystal structure should be used wherever possible (*cf.* Sections IR-3.4.4 and IR-4.2.5).

Polytypes and polytypoids can be regarded as a special form of polymorphism and are treated in more detail in Ref. 10.

IR-11.7.2 Use of crystal systems

Polymorphs are indicated by adding an italicized symbol denoting the crystal system after the name or formula. The symbols used are given in Table IR-3.1. For example, ZnS(c) corresponds to the zinc blende structure or sphalerite, and ZnS(h) to the wurtzite structure. Slightly distorted lattices may be indicated by using the *circa* sign \sim . Thus, a slightly distorted cubic lattice would be expressed as ($\sim c$). In order to give more information, simple well-known structures should be designated by giving the type compound in parentheses whenever possible. For example, AuCd above 343 K should be designated AuCd (*CsCl* type) rather than AuCd(c).

Properties which strongly depend on lattice and point symmetries may require the addition of the space group to the crystal system abbreviation. For more details see Ref. 11.

IR-11.8 FINAL REMARKS

This Chapter deals with some basic notation and nomenclature of solid-state chemistry. In some areas, such as amorphous systems and glasses, the nomenclature needs further development. The reader is also referred to the work of the International Union of Crystallography.

IR-11.9 REFERENCES

- 1. Nomenclature of Inorganic Structure Types, J. Lima-de-Faria, E. Hellner, F. Liebau, E. Makovicky and E. Parthé, *Acta Crystallogr.*, *Sect. A*, **46**, 1–11 (1990).
- 2. M.L. McGlashan, *Chemical Thermodynamics*, Academic Press, London, 1979, pp. 35–36.
- Quantities, Units and Symbols in Physical Chemistry, Second Edn., eds. I. Mills, T. Cvitas, K. Homann, N. Kallay and K. Kuchitsu, Blackwell Scientific Publications, Oxford, 1993, p. 53. (The Green Book. The third edition is planned for publication in 2006.)
- 4. Compendium of Chemical Terminology, IUPAC Recommendations, Second Edn., eds. A.D. McNaught and A. Wilkinson, Blackwell Scientific Publications, Oxford, 1997. (The Gold Book.)
- 5. Chemical Nomenclature and Formulation of Compositions of Synthetic and Natural Zeolites, R.M. Barrer, *Pure Appl. Chem.*, **51**, 1091–1100 (1979).
- 6. F.A. Kröger and H.J. Vink, Solid State Phys., 3, 307–435 (1956).
- 7. W.B. Pearson, *A Handbook of Lattice Spacings and Structures of Metals and Alloys*, Vol. 2, Pergamon Press, Oxford, 1967, pp. 1–2. For tabulated lattice parameters and

IR-11.9 SOLIDS

- data on elemental metals and semi-metals, see pp. 79–91. See also, P. Villars and L.D. Calvert, *Pearson's Handbook of Crystallographic Data for Intermetallic Phases*, Vols. 1–3, American Society for Metals, Metals Park, Ohio, USA, 1985.
- 8. J.S. Anderson. J. Chem. Soc., Dalton Trans., 1107–1115 (1973).
- 9. Graphite Intercalation Compounds, Chapter II-6 in *Nomenclature of Inorganic Chemistry II, IUPAC Recommendations 2000*, eds. J.A. McCleverty and N.G. Connelly, Royal Society of Chemistry, 2001.
- Nomenclature of Polytype Structures, A. Guinier, G.B. Bokij, K. Boll-Dornberger, J.M. Cowley, S. Durovic, H. Jagodzinski, P. Krishna, P.M. de Wolff, B.B. Zvyagin, D.E. Cox, P. Goodman, Th. Hahn, K. Kuchitsu and S.C. Abrahams, *Acta Crystallogr., Sect. A*, 40, 399–404 (1984). See also, S.W. Bailey, V.A. Frank-Kamenetskii, S. Goldsztaub, A. Kato, A. Pabst, H. Schulz, H.F.W. Taylor, M. Fleischer and A.J.C. Wilson, *Acta Crystallogr., Sect. A*, 33, 681–684 (1977).
- 11. Structural Phase Transition Nomenclature, J.-C. Tolédano, A.M. Glazer, Th. Hahn, E. Parthé, R.S. Roth, R.S. Berry, R. Metselaar and S.C. Abrahams, *Acta Crystallogr., Sect. A*, 54, 1028–1033 (1998). Nomenclature of magnetic, incommensurate, composition-changed morphotropic, polytype, transient-structural and quasicrystalline phases undergoing phase transitions, J.-C. Tolédano, R.S. Berry, P.J. Brown, A.M. Glazer, R. Metselaar, D. Pandey, J.M. Perez-Mato, R.S. Roth and S.C. Abrahams, *Acta Crystallogr., Sect A*, 57, 614–626 (2001), and erratum in *Acta Crystallogr., Sect. A*, 58, 79 (2002).

TABLES

Table I Names, symbols and atomic numbers of the elements (see also Section IR-3.1)

Name	Symbol	Atomic number	Name	Symbol	Atomic number
actinium	Ac	89	indium	In	49
aluminium ^a	Al	13	iodine	I	53
americium	Am	95	iridium	Ir	77
antimony	Sb^b	51	iron	Fe ^g	26
argon	Ar	18	krypton	Kr	36
arsenic	As	33	lanthanum	La	57
astatine	At	85	lawrencium	Lr	103
barium	Ba	56	lead	Pb^{h}	82
berkelium	Bk	97	lithium	Li	3
beryllium	Be	4	lutetium	Lu	71
bismuth	Bi	83	magnesium	Mg	12
bohrium	Bh	107	manganese	Mn	25
boron	В	5	meitnerium	Mt	109
bromine	Br	35	mendelevium	Md	101
cadmium	Cd	48	mercury	Hg^{i}	80
caesium ^c	Cs	55	molybdenum	Mo	42
calcium	Ca	20	neodymium	Nd	60
californium	Cf	98	neon	Ne	10
carbon	С	6	neptunium	Np	93
cerium	Ce	58	nickel	Ni	28
chlorine	Cl	17	niobium	Nb	41
chromium	Cr	24	nitrogen ^j	N	7
cobalt	Co	27	nobelium	No	102
copper	Cu^d	29	osmium	Os	76
curium	Cm	96	oxygen	O	8
darmstadtium	Ds	110	palladium	Pd	46
dubnium	Db	105	phosphorus	P	15
dysprosium	Dy	66	platinum	Pt	78
einsteinium	Es	99	plutonium	Pu	94
erbium	Er	68	polonium	Po	84
europium	Eu	63	potassium	$\mathbf{K}^{\mathbf{k}}$	19
fermium	Fm	100	praseodymium	Pr	59
fluorine	F	9	promethium	Pm	61
francium	Fr	87	protactinium	Pa	91
gadolinium	Gd	64	radium	Ra	88
gallium	Ga	31	radon	Rn	86
germanium	Ge	32	rhenium	Re	75
gold	Au ^e	79	rhodium	Rh	45
hafnium	Hf	72	roentgenium	Rg	111
hassium	Hs	108	rubidium	Rb	37
helium	He	2	ruthenium	Ru	44
holmium	Но	67	rutherfordium	Rf	104
hydrogen	H ^f	1	samarium	Sm	62

TABLE I **TABLES**

Table I Continued

Name	Symbol	Atomic number	Name	Symbol	Atomic number
scandium	Sc	21	thorium	Th	90
seaborgium	Sg	106	thulium	Tm	69
selenium	Se	34	tin	Sno	50
silicon	Si	14	titanium	Ti	22
silver	Ag^{l}	47	tungsten	$\mathbf{W}^{\mathbf{p}}$	74
sodium	Na ^m	11	uranium	U	92
strontium	Sr	38	vanadium	V	23
sulfur ⁿ	S	16	xenon	Xe	54
tantalum	Ta	73	ytterbium	Yb	70
technetium	Tc	43	yttrium	Y	39
tellurium	Te	52	zinc	Zn	30
terbium	Tb	65	zirconium	Zr	40
thallium	Tl	81			

^a The alternative spelling 'aluminum' is commonly used.

^b The element symbol Sb derives from the name stibium.

^c The alternative spelling 'cesium' is commonly used.

^d The element symbol Cu derives from the name cuprum.

^e The element symbol Au derives from the name aurum.

^f The hydrogen isotopes ²H and ³H are named deuterium and tritium, respectively, for which the symbols D and T may be used. However, ²H and ³H are preferred (see Section IR-3.3.2).

g The element symbol Fe derives from the name ferrum.

^h The element symbol Pb derives from the name plumbum.

¹ The element symbol Hg derives from the name hydrargyrum.

^j The name azote provides the root 'az' for nitrogen.

^k The element symbol derives K from the name kalium.

¹ The element symbol Ag derives from the name argentum.

^m The element symbol Na derives from the name natrium.

ⁿ The name theion provides the root 'thi' for sulfur.

^o The element symbol Sn derives from the name stannum.

^p The element symbol W derives from the name wolfram.

TABLES TABLE II

Table II Temporary names and symbols for elements of atomic number greater than 111ª

Atomic number	Name ^b	Symbol
112	ununbium	Uub
113	ununtrium	Uut
114	ununquadium	Uuq
115	ununpentium	Uup
116	ununhexium	Uuh
117	ununseptium	Uus
118	ununoctium	Uuo
119	ununennium	Uue
120	unbinilium	Ubn
121	unbiunium	Ubu
130	untrinilium	Utn
140	unquadnilium	Uqn
150	unpentnilium	Upn
160	unhexnilium	Uhn
170	unseptnilium	Usn
180	unoctnilium	Uon
190	unennilium	Uen
200	binilnilium	Bnn
201	binilunium	Bnu
202	binilbium	Bnb
300	trinilnilium	Tnn
400	quadnilnilium	Qnn
500	pentnilnilium	Pnn
900	ennilnilium	Enn

 $^{^{\}rm a}$ These names are used only when the permanent name has not yet been assigned by IUPAC (see Section IR-3.1.1). $^{\rm b}$ One may also write, for example, 'element 112'.

Table III Suffixes and endings^a

a Terminal vowel of prefixes indicating replacement of:

carbon atoms by atoms of other elements in skeletal replacement nomenclature (Section IR-6.2.4.1) and Hantzsch–Widman nomenclature (Section IR-6.2.4.3), *e.g.* 'oxa', 'aza'; boron atoms by atoms of other elements in boron hydride-based nomenclature (Section IR-6.2.4.4), *e.g.* 'carba', 'thia';

heteroatoms by carbon atoms in natural product nomenclature (prefix 'carba').

See Table X for 'a' prefixes for all elements.

ane Ending of names of neutral saturated parent hydrides of elements of Groups 13–17, e.g. thallane, cubane, cyclohexane, cyclohexasilane, diphosphane, tellane, λ^4 -tellane. Cf. Section IR-6.2.2 and Table IR-6.1.

Last part of endings of a number of parent names of saturated heteromonocycles in Hantzsch-Widman nomenclature, *i.e.* of 'irane', 'etane', 'olane', 'ane', 'inane', 'epane', 'ocane', 'onane' and 'ecane' (see Section IR-6.2.4.3).

anide Combined ending of names of anions resulting from the removal of a hydron from a parent hydride with an 'ane' name, formed by adding the suffix 'ide', *e.g.* methanide, CH₃⁻. *Cf.* Section IR-6.4.4.

anium Combined ending of names of cations resulting from the addition of a hydron to a parent structure with an 'ane' name, formed by adding the suffix 'ium', *e.g.* phosphanium, PH₄⁺. *Cf.* Section IR-6.4.1.

ano Ending resulting from the change of the 'ane' ending in names of parent hydrides to form prefixes denoting bridging divalent substituent groups, *e.g.* diazano, –HNNH–.

General ending of additive names of anions, *e.g.* tetrahydridoaluminate(1–), [AlH₄]⁻. *Cf.* Section IR-7.1.4 and Table X.

Ending of names of anions and esters of inorganic oxoacids having the 'ic' ending in the acid name, *e.g.* nitrate, phosphonate, trimethyl phosphate, and of anions and esters of organic acids, *e.g.* acetate, methyl acetate, thiocyanate. See Tables IR-8.1 and IR-8.2 and Table IX for more examples of 'ate' anion names. See also 'inate', 'onate'.

ato Ending of name of any anion with an 'ate' name (see above) acting as a ligand, *e.g.* tetrahydridoaluminato(1–), nitrato, acetato. *Cf.* Sections IR-7.1.3 and IR-9.2.2.3 and Table IX. See also 'inato', 'onato'.

Ending of prefixes for certain anionic substituent groups, e.g. carboxylato, $-C(=O)O^-$; phosphato, $-O-P(=O)(O^-)_2$. See also 'onato'.

diene See 'ene'.

ate

diide See 'ide'.

diido See 'ido'.

diium See 'ium'.

diyl Combined suffix composed of the suffix 'yl' and the multiplicative prefix 'di', indicating the loss of two hydrogen atoms from a parent hydride resulting in a diradical, or a substituent group with two single bonds, if necessary accompanied by locants, *e.g.* hydrazine-1,2-diyl, *HNNH* or -HNNH-; phosphanediyl, HP<. See also 'ylidene'.

diylium See 'ylium'.

ecane Ending of parent names of ten-membered saturated heteromonocycles in Hantzsch–Widman nomenclature, *cf.* Section IR-6.2.4.3.

TABLES TABLE III

Table III Continued

ecine Ending of parent names of ten-membered heteromonocycles with the maximum number of non-cumulative double bonds in Hantzsch-Widman nomenclature, cf. Section IR-6.2.4.3. Ending of systematic names of acyclic and cyclic parent structures with double-bond ene unsaturation, replacing 'ane' in the name of the corresponding saturated parent hydride, and if necessary accompanied by locants and multiplicative prefixes specifying the locations and number of double bonds, e.g. diazene, triazene, pentasil-1-ene, cyclopenta-1,3-diene. Cf. Sections IR-6.2.2.3 and IR- 6.2.2.4. Ending of certain acceptable non-systematic names of unsaturated cyclic parent hydrides, e.g. benzene, azulene. See also 'irene', 'ocene'. enide Combined ending of names of anions resulting from the removal of a hydron from a parent hydride with an 'ene' name, formed by adding the suffix 'ide', e.g. diazenide, HN=N⁻. Cf. Section IR-6.4.4. enium Combined ending of names of cations resulting from the addition of a hydron to a parent structure with an 'ene' name, formed by adding the suffix 'ium', e.g. diazenium. Cf. Section IR-6.4.1. Combined ending resulting from the addition of the suffix 'ium' to a metallocene name. This leads to ambiguous names, see Section IR-10.2.6. Ending resulting from the change of the 'ene' ending in names of cyclic mancude ring eno systems to 'eno' to form prefixes in fusion nomenclature. (See Section P-25.3 of the Blue Bookb.) Ending resulting from the change of the 'ene' ending in names of parent hydrides to form prefixes denoting bridging divalent substituent groups, e.g. diazeno, -N=N-. Ending of parent names of seven-membered saturated heteromonocycles in Hantzschepane Widman nomenclature, cf. Section IR-6.2.4.3. epine Ending of parent names of seven-membered heteromonocycles with the maximum number of non-cumulative double bonds in Hantzsch-Widman nomenclature, cf. Section IR-6.2.4.3. etane General ending of parent names of four-membered saturated heteromonocycles in Hantzsch-Widman nomenclature, cf. Section IR-6.2.4.3. See also 'etidine'. Ending of parent names of four-membered heteromonocycles with the maximum number ete of non-cumulative double bonds in Hantzsch-Widman nomenclature, cf. Section IR-6.2.4.3. etidine Ending of parent names of four-membered nitrogen-containing saturated heteromonocycles in Hantzsch-Widman nomenclature, cf. Section IR-6.2.4.3. ic Ending of names of many acids, both inorganic and organic, e.g. sulfuric acid, acetic acid, benzoic acid. For more examples, particularly of inorganic 'ic' acid names, see Tables IR-8.1 and IR-8.2, and Table IX. See also 'inic' and 'onic'. Ending formerly added to stems of element names to indicate a higher oxidation state, e.g. ferric chloride, cupric oxide, ceric sulfate. Such names are no longer acceptable. ide Ending of names of monoatomic and homopolyatomic anions, e.g. chloride, sulfide, disulfide(2-), triiodide(1-). Cf. Sections IR-5.3.3.2 and IR-5.3.3.3 and Table IX. Ending of names of formally electronegative homoatomic constituents in compositional

names, e.g. disulfur dichloride. Cf. Section IR-5.4.

Table III Continued

Ending of some acceptable non-systematic names of heteropolyatomic anions: cyanide, hydroxide.

Suffix for names of anions formed by removal of one or more hydrons from a parent hydride, accompanied by locants and multiplicative prefixes as appropriate, e.g. hydrazinide, H_2NNH^- ; hydrazine-1,2-diide, H_3 , disulfanediide, S_2^{2-} ; methanide, CH_3^- .

ido Ending of name of any anion with an 'ide' name (see above) acting as a ligand, *e.g.* chlorido, disulfido(2—) or disulfanediido, hydrazinido, hydrazine-1,2-diido, methanido. *Cf.* Sections IR-7.1.3 and IR-9.2.2.3 and Table IX.

Ending of certain prefixes for anionic substituent groups, e.g. oxido for -O⁻.

inane Ending of parent names of six-membered saturated heteromonocycles in Hantzsch—Widman nomenclature, *cf.* Section IR-6.2.4.3.

inate Ending of names of anions and esters of 'inic' oxoacids, e.g. borinate, phosphinate.

inato Modification of the 'inate' ending of an anion name (see above) used when the anion acts as a ligand.

ine Ending of the non-systematic, but still acceptable, parent name hydrazine (N_2H_4) and of the now obsolete names of other Group 15 hydrides, *e.g.* phosphine (PH_3) .

Ending of names of large heteromonocycles (more than 10 ring atoms) with the maximum number of non-cumulative double bonds for use in fusion nomenclature, *e.g.* 2*H*-1-oxa-4,8,11-triazacyclotetradecine.

Last part of endings of a number of parent names in Hantzsch-Widman nomenclature of heteromonocycles, *i.e.* of 'irine', 'iridine', 'etidine', 'olidine', 'ine', 'inine', 'epine', 'ocine', 'onine' and 'ecine' (see Section IR-6.2.4.3).

Ending of a number of parent names of nitrogeneous heterocyclic parent hydrides, e.g. pyridine, acridine.

inic Ending of the parent names of acids of the types $H_2X(=O)(OH)$ (X=N, P, As, Sb), e.g. stibinic acid; HX(=O)(OH) (X=S, Se, Te), e.g. sulfinic acid; and of borinic acid, H_2BOH .

Combined ending of names of anions resulting from the removal of a hydron from a parent hydride with an 'ine' name, formed by adding the suffix 'ide', *e.g.* hydrazinide, H₂NNH⁻. *Cf.* Section IR-6.4.4.

inine Ending of parent names of six-membered heteromonocycles with the maximum number of non-cumulative double bonds in Hantzsch–Widman nomenclature, *cf.* Section IR-6.2.4.3.

inite Ending of names of anions and esters of oxoacids with an 'inous' name, e.g. phosphinite, H_2PO^- , from phosphinous acid.

inito Modification of the 'inite' ending of an anion name (see above) used when the anion acts as a ligand.

inium Combined ending of names of cations resulting from the addition of a hydron to a parent structure with an 'ine' name, formed by adding the suffix 'ium', *e.g.* hydrazinium, pyridinium. *Cf.* Section IR-6.4.1.

ino Ending of some non-systematic substituent group prefixes, e.g. amino, NH₂—; hydrazino, H₂NNH—.

Ending resulting from the change of the 'ine' ending in names of cyclic mancude ring systems to 'ino' to form prefixes in fusion nomenclature. (See Section P-25.3 of the Blue Book^b.)

TABLES TABLE III

inous	Ending of the parent names of acids of the types $H_2X(OH)$ ($X = N, P, As, Sb$), e.g. stibinous acid. See Table IR-8.1 for other such names.
inoyl	Ending of prefixes for substituent groups formed by removing all hydroxy groups from 'inic' acids (see above), $e.g.$ phosphinoyl, $H_2P(O)$ —; seleninoyl, $HSe(O)$ —. (See Table IR-8.1 for phosphinic and seleninic acids.)
inyl	Ending of prefixes for the divalent substituent groups $>X=O$ (sulfinyl, seleninyl and tellurinyl for $X=S$, Se and Te, respectively).
io	Ending of acceptable alternative prefixes for certain cationic substituent groups, $e.g.$ ammonio for azaniumyl, pyridinio for pyridiniumyl ($cf.$ Section IR-6.4.9).
	Now abandoned ending of prefixes for substituent groups consisting of a single atom, <i>e.g.</i> mercurio, -Hg
irane	General ending of parent names of three-membered saturated heteromonocycles in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3. See also 'iridine'.
irene	General ending of parent names of three-membered heteromonocycles with the maximum number of non-cumulative double bonds (<i>i.e.</i> one double bond) in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3. See also 'irine'.
iridine	Ending of parent names of three-membered nitrogen-containing saturated heteromonocycles in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
irine	Ending of parent names of three-membered heteromonocycles with the maximum number of non-cumulative double bonds (<i>i.e.</i> one double bond) and N as the only heteroatom(s) in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
ite	Ending of names of anions and esters of oxoacids having the 'ous' or the 'orous' ending in the acid name, <i>e.g.</i> hypochlorite (from hypochlorous acid), methyl sulfite (from sulfurous acid). <i>Cf.</i> Table IR-8.1. See also 'inite', 'onite'.
ito	Ending of name of any anion with an 'ite' name (see above) acting as a ligand, <i>e.g.</i> nitrito, sulfito. <i>Cf.</i> Sections IR-7.1.3 and IR-9.2.2.3 and Table IX. See also 'inito', 'onito'.
ium	Ending of names of many elements and their cations, $e.g.$ helium, seaborgium, thallium(1+), and of the name of any new element (cf . Ref. 1 of Chapter IR-3).
	Suffix to indicate addition of hydrons to a parent hydride or other parent structure (see 'anium', 'enium', 'inium', 'onium', 'ynium'), accompanied by multiplying prefixes and locants as appropriate, <i>e.g.</i> hydrazinium, H ₂ NNH ₃ ⁺ ; hydrazine-1,2-diium, ⁺ H ₃ NNH ₃ ⁺ .
o	Terminal vowel indicating a negatively charged ligand; see 'ato', 'ido', 'ito'.
	Terminal vowel of prefixes for many inorganic and organic substituent groups, $e.g.$ amino, chloro, oxido, sulfo, thiolato.
	Terminal vowel of prefixes for fusion components. (See Section P-25.3 of the Blue Book ^b .) See also 'eno', 'ino'.
	Terminal vowel of infixes used in functional replacement nomenclature (Section IR-8.6) to indicate replacement of oxygen atoms and/or hydroxy groups, $e.g.$ 'amido', 'nitrido', 'thio'.
ocane	Ending of parent names of eight-membered saturated heteromonocycles in Hantzsch-Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
ocene	Ending of the names of certain bis(cyclopentadienyl) metal compounds, $\it e.g.$ ferrocene. $\it Cf.$ Section IR-10.2.6.

-	
ocine	Ending of parent names of eight-membered heteromonocycles with the maximum number of non-cumulative double bonds in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
ol	Suffix specifying substitution af a hydrogen atom in a parent hydride for the group –OH accompanied by locants and multiplicative prefixes if appropriate, <i>e.g.</i> silanol, SiH ₃ OH; trisilane-1,3-diol, SiH ₂ (OH)SiH ₂ SiH ₂ OH.
	Ending of corresponding suffixes 'thiol', 'selenol', 'tellurol' for $-SH$, $-SeH$ and $-TeH$, respectively.
olane	General ending of parent names of five-membered saturated heteromonocycles in Hantzsch-Widman nomenclature, <i>cf.</i> IR-6.2.4.3. See also 'olidine'.
olate	Suffix specifying substitution of a hydrogen atom in a parent hydride for the substituent $-O^-$, accompanied by locants and multiplicative prefixes if appropriate, <i>e.g.</i> silanolate, SiH ₃ O ⁻ ; trisilane-1,3-diolate, SiH ₂ (O ⁻)SiH ₂ SiH ₂ O ⁻ .
	Ending of corresponding suffixes 'thiolate', 'selenolate', 'tellurolate' for $-S^-$, $-Se^-$ and $-Te^-$, respectively.
olato	Modification of the suffix 'olate' used when the anion in question acts as a ligand.
ole	Ending of parent names of five-membered heteromonocycles with the maximum number of non-cumulative double bonds in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
olidine	Ending of parent names of five-membered nitrogen-containing saturated heteromonocycles in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
onane	Ending of parent names of nine-membered saturated heteromonocycles in Hantzsch-Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
onate	Ending of names of anions and esters of 'onic' oxoacids, $e.g.$ boronate, phosphonate, tetrathionate.
onato	Modification of the 'onate' ending of an anion used when the anion acts as a ligand.
	Ending of prefixes of certain anionic substituent groups, <i>e.g.</i> phosphonato, $-P(=O)(O^-)_2$: sulfonato, $-S(=O)_2(O^-)$.
one	Suffix specifying the substitution of two hydrogen atoms on the same skeletal atom in a parent hydride for the substituent $=$ O, accompanied by locants and multiplicative prefixes as appropriate, $e.g.$ phosphanone, HP=O; pentane-2,4-dione, CH ₃ C(=O)CH ₂ C(=O)CH ₃ .
	Ending of corresponding suffixes 'thione', 'selenone', 'tellurone' for $=$ S, $=$ Se and $=$ Terespectively.
onic	Ending of the parent names of acids of the types $HXO(OH)_2$ (X=N, P, As, Sb), <i>e.g.</i> stibonic acid; $HXO_2(OH)$ (X = S, Se, Te), <i>e.g.</i> sulfonic acid; and of boronic acid, $HB(OH)_2$. See Table IR-8.1.
	Ending of the parent names dithionic, trithionic, etc., acids (see Table IR-8.1).
onine	Ending of parent names of nine-membered heteromonocycles with the maximum number of non-cumulative double bonds in Hantzsch–Widman nomenclature, <i>cf.</i> Section IR-6.2.4.3.
onite	Ending of names of anions and esters of 'onous' oxoacids, e.g. phosphonite, tetrathionite.
onito	Modification of the 'onite' ending of an anion name used when the anion acts as a ligand.

TABLES TABLE III

Table III Continued

onium	Ending of still acceptable non-systematic names of cations formed by hydron addition to a mononuclear parent hydride: ammonium, oxonium (see Section IR-6.4.1).
ono	Ending of prefixes for substituent groups formed from 'onic' acids by removal of a hydrogen atom, $e.g.$ phosphono for $-P(=O)(OH)_2$. <i>Exception:</i> note that $-S(=O)_2OH$ is 'sulfo' rather than 'sulfono'.
onous	Ending of the parent names of acids of the types $HX(OH)_2$ (X = N, P, As, Sb), $e.g.$ stibonous acid.
	Ending of the parent names dithionous, trithionous, etc., acids (see Table IR-8.1).
onoyl	Ending of prefixes for substituent groups formed by removing all hydroxy groups from 'onic' acids, $e.g.$ phosphonoyl, HP(O)<; selenonoyl, HSe(O) ₂ —. (See Table IR-8.1 for phosphonic and selenonic acids.)
onyl	Ending of prefixes for the divalent substituent groups $>X(=O)_2$ (sulfonyl, selenonyl and telluronyl for $X=S$, Se and Te, respectively).
orane	Ending of the acceptable alternative names phosphorane for λ^5 -phosphane (PH ₅), arsorane for λ^5 -arsane (AsH ₅) and stiborane for λ^5 -stibane (SbH ₅).
oryl	Ending of prefixes for substituent groups formed by removing all hydroxy groups from 'oric' acids, $e.g.$ phosphoryl, $P(O) \leftarrow$, from phosphoric acid.
ous	Ending of parent names of certain inorganic oxoacids, <i>e.g.</i> arsorous acid, seleninous acid. For more examples of 'ous' acid names, see Tables IR-8.1 and IR-8.2. See also 'inous', 'onous'.
	Ending formerly added to stems of element names to indicate a lower oxidation state, $e.g.$ ferrous chloride, cuprous oxide, cerous hydroxide. Such names are no longer acceptable.
triene	See 'ene'.
triide	See 'ide'.
triium	See 'ium'.
triyl	Combined suffix composed of the suffix 'yl' and the multiplying prefix 'tri', indicating the loss of three hydrogen atoms from a parent hydride resulting in a triradical or a substituent group forming three single bonds, <i>e.g.</i> the substituent groups boranetriyl, $-B<$; trisilane-1,2,3-triyl, $-SiH_2SiHSiH_2-$; λ^5 -phosphanetriyl, $H_2P \leftarrow$. (See also 'ylidyne' and
	'ylylidene'.)
uide	Suffix specifying the addition of hydride to a parent structure, accompanied by locants and multiplicative prefixes if appropriate, <i>e.g.</i> tellanuide, TeH ₃ ⁻ .
uido	Modification of the 'uide' suffix in an anion name used when the anion acts as a ligand.
У	Terminal vowel of prefixes for some substituent groups, $e.g.$ carboxy, $-$ COOH; hydroxy, $-$ OH; oxy, $-$ O $-$.
	Terminal vowel in prefixes used in specifying chain and ring atoms in additive nomenclature for inorganic chains and rings, <i>cf.</i> Section IR-7.4. These prefixes are given for all elements in Table X.
yl	Suffix to indicate removal of hydrogen atoms from a parent hydride to form radicals or substituent groups, accompanied by multiplicative prefixes and locants as appropriate, e.g.

hydrazinyl, H_2NNH^{\bullet} or H_2NNH- ; hydrazine-1,2-diyl, $^{\bullet}HNNH^{\bullet}$ or -HNNH-. (See also

'diyl', 'ylene', 'ylidene', 'triyl', 'ylylidene', 'ylidyne'.)

Table III Continued

Ending of certain non-systematic names of oxidometal cations, e.g. vanadyl for oxidovanadium(2+). These names are no longer acceptable. ylene Ending of a few still acceptable names for divalent substituent groups, meaning the same as 'diyl': methylene for methanediyl, -CH₂-; phenylene for benzenediyl, -C₆H₄-; (1,2-phenylene for benzene-1,2-diyl etc.). ylidene Suffix for names of divalent substituent groups formed by the loss of two hydrogen atoms from the same atom of a parent hydride and forming a double bond, e.g. azanylidene, HN=, and for names of corresponding diradicals. (See also 'diyl'.) Suffix for names of trivalent substituent groups formed by the loss of three hydrogen atoms ylidyne from the same atom of a parent hydride and forming a triple bond, e.g. phosphanylidyne, P≡. (See also 'ylylidene' and 'triyl'.) ylium Suffix for names of cations formed by the loss of hydride ions from parent hydrides, accompanied by locants and multiplicative prefixes as appropriate, e.g. azanylium, NH₂+; disilane-1,2-diylium, +H₂SiSiH₂+. Combined suffix ('yl' plus 'ylidene') for names of trivalent substituent groups formed by ylylidene the loss of three hydrogen atoms from the same atom, forming a single bond and a double bond, e.g. azanylylidene, -N=. (See also 'ylidyne' and 'triyl'.) Ending of systematic names of acyclic and cyclic parent structures with triple-bond vne unsaturation, replacing 'ane' in the name of the corresponding saturated parent hydride, and if necessary accompanied by locants and multiplicative prefixes specifying the locations and number of triple bonds, e.g. diazyne (see 'ynium' for an application of this name), ethyne, penta-1,4-diyne. ynide Combined ending of names of anions resulting from the removal of a hydron from a parent hydride with an 'yne' name, formed by adding the suffix 'ide', e.g. ethynide, $CH \equiv C^-$. Cf. Section IR-6.4.4. Combined ending of names of cations resulting from the addition of a hydron to a parent ynium structure with an 'yne' name, formed by adding the suffix 'ium', e.g. diazynium $(N \equiv NH^+)$. Cf. Section IR-6.4.1.

^a The term 'suffix' is understood here to mean a name part added to a parent name in order to specify a modification of that parent, *e.g.* substitution of a hydrogen atom in a parent hydride by a characteristic group (suffixes such as 'carboxylic acid', 'thiol', *etc.*) or formation of a radical or substituent group by removal of one or more hydrogen atoms (suffixes such as 'yl', 'ylidene', *etc.*). The term 'ending' is used in a broader sense, but also to designate specifically the common last part (last syllable or last few syllables) of systematic names for members of classes of compounds (such as 'ane', 'ene', 'diene', 'yne', *etc.*, for parent hydrides, and 'onic acid', 'inic acid', *etc.*, for inorganic oxoacids). *b Nomenclature of Organic Chemistry, IUPAC Recommendations, eds. W.H. Powell and H. Favre, Royal Society of Chemistry, in preparation. (The Blue Book.)

TABLES TABLE IV

Table IV Multiplicative prefixes

1	mono	21	henicosa
2	di ^a (bis ^b)	22	docosa
3	tri (tris)	23	tricosa
4	tetra (tetrakis)	30	triaconta
5	penta (pentakis)	31	hentriaconta
6	hexa (hexakis)	35	pentatriaconta
7	hepta (heptakis)	40	tetraconta
8	octa (octakis)	48	octatetraconta
9	nona (nonakis)	50	pentaconta
10	deca (decakis)	52	dopentaconta
11	undeca	60	hexaconta
12	dodeca	70	heptaconta
13	trideca	80	octaconta
14	tetradeca	90	nonaconta
15	pentadeca	100	hecta
16	hexadeca	200	dicta
17	heptadeca	500	pentacta
18	octadeca	1000	kilia
19	nonadeca	2000	dilia
20	icosa		

^a In the case of a ligand using two donor atoms, the term 'bidentate' rather than 'didentate' is recommended because of prevailing usage.

b The prefixes bis, tris, *etc.* (examples are given for 1–10 but continue throughout) are used with composite ligand names or in order to avoid ambiguity.

Table V Geometrical and structural affixes

Except for those denoted by Greek letters, geometrical and structural affixes are italicized. All are separated from the rest of the name by hyphens.

antiprismo eight atoms bound into a regular antiprism

arachno a boron structure intermediate between nido and hypho in degree of openness

asym asymmetrical

catena a chain structure; often used to designate linear polymeric substances cis two groups occupying adjacent positions in a coordination sphere

closo a cage or closed structure, especially a boron skeleton that is a polyhedron

having all faces triangular

cyclo a ring structure. (Here, cyclo is used as a modifier indicating structure and

hence is italicized. In organic nomenclature, 'cyclo' is considered to be part of the parent name since it changes the molecular formula. It is therefore not

italicized.)

 δ (delta) denotes the absolute configuration of chelate ring conformations

 Δ (delta) a structural descriptor to designate deltahedra, or shows absolute configuration

dodecahedro eight atoms bound into a dodecahedron with triangular faces

 η (eta) specifies the bonding of contiguous atoms of a ligand to a central atom three groups occupying the corners of the same face of an octahedron

hexahedro eight atoms bound into a hexahedron (e.g. cube) hexaprismo twelve atoms bound into a hexagonal prism

hypho an open structure, especially a boron skeleton, more closed than a klado

structure but more open than an arachno structure

icosahedro twelve atoms bound into an icosahedron with triangular faces

κ (kappa) specifies the donor atoms in a ligand klado a very open polyboron structure

 λ (lambda) signifies, with its superscript, the bonding number, *i.e.* the sum of the number of

skeletal bonds and the number of hydrogen atoms associated with an atom in a

parent compound; denotes the absolute configuration of chelate ring

conformations

 Λ (lambda) shows absolute configuration

mer meridional; three groups occupying vertices of an octahedron so that one is cis

to the other two which are themselves mutually trans

 μ (mu) signifies that a group so designated bridges two or more coordination centres

a nest-like structure, especially a boron skeleton that is almost closed

octahedro six atoms bound into an octahedron pentaprismo ten atoms bound into a pentagonal prism four atoms bound into a quadrangle (e.g. square)

sym symmetrical

nido

tetrahedro four atoms bound into a tetrahedron

trans two groups occupying positions in a coordination sphere directly opposite each

other

triangulo three atoms bound into a triangle six atoms bound into a triangular prism

TABLES TABLE VI

Table VI Element sequence

Table VII Ligand abbreviations

Guidelines for the construction and use of ligand abbreviations are given in Section IR-4.4.4 and their use in the formulae of coordination complexes is described in Section IR-9.2.3.4. Abbreviations are listed in alphabetical order but those beginning with a numeral are listed by the first letter of the abbreviation (e.g. 2,3,2-tet appears under the letter 't').

Structural formulae of selected ligands are shown in Table VIII (numbered according to the present Table).

Number and abbreviation	Systematic name	Other name (from which abbreviation derived) ^a
1. 4-abu	4-aminobutanoato	
2. Ac	acetyl	
3. acac	2,4-dioxopentan-3-ido	acetylacetonato
4. acacen	2,2'-[ethane-1,2-diylbis(azanylylidene)]bis(4-oxopentan-3-ido)	bis(acetylacetonato)ethylenediamine
5. ade	9 <i>H</i> -purin-6-amine	adenine
6. ado	9-β-D-ribofuranosyl-9 <i>H</i> -purin-6-amine	adenosine
7. adp	adenosine 5'-diphosphato(3–)	
8. aet	2-aminoethanethiolato	
9. ala	2-aminopropanoato	alaninato
10. ama	2-aminopropanedioato	aminomalonato
11. amp	adenosine 5'-phosphato(2-)	adenosine monophosphato
12. $[9]$ aneN ₃ (also tacn)	1,4,7-triazonane	
13. [12]aneN ₄ (also cyclen)	1,4,7,10-tetraazacyclododecane	
14. [14]aneN ₄ (also cyclam)	1,4,8,11-tetraazacyclotetradecane	
15. $[18]$ ane P_4O_2	1,10-dioxa-4,7,13,16-tetraphosphacyclooctadecane	
16. [9]aneS ₃	1,4,7-trithionane	
17. [12]aneS ₄	1,4,7,10-tetrathiacyclododecane	
18. arg	2-amino-5-carbamimidamidopentanoato	argininato
19. asn	2,4-diamino-4-oxobutanoato	asparaginato
20. asp	2-aminobutanedioato	aspartato
21. atmp	[nitrilotris(methylene)]tris(phosphonato)	aminotris(methylenephosphonato)
22. atp	adenosine 5'-triphosphato(4-)	
23. 2,3-bdta	2,2',2'',2'''-(butane-2,3-diyldinitrilo)tetraacetato	

Table VII Continued

Number and abbreviation	Systematic name	Other name (from which abbreviation derived) ^a
24. benzo-15-crown-5	2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13-benzopentaoxacyclopentadecine	
25. big	bis(carbamimidoy1)azanido	biguanid-3-ido
26. biim	2,2'-bi(1 <i>H</i> -imidazole)-1,1'-diido	2,2'-biimidazolato
27. binap	1,1'-binaphthalene-2,2'-diylbis(diphenylphosphane)	
28. bn	butane-2,3-diamine	
29. bpy	2,2'-bipyridine	
30. 4,4'-bpy	4,4'-bipyridine	
31. Bu	butyl	
32. bzac	1,3-dioxo-1-phenylbutan-2-ido	benzoylacetonato
33. bzim	1H-benzimidazol-1-ido	
34. Bz ^b	benzyl	
35. bztz	1,3-benzothiazole	
36. cat	benzene-1,2-diolato	catecholato
37. cbdca	cyclobutane-1,1-dicarboxylato	
38. cdta	2,2',2",2" (cyclohexane-1,2-diyldinitrilo)tetraacetato	
39. C ₅ H ₄ Me	methylcyclopentadienyl	
40. chxn (also dach)	cyclohexane-1,2-diamine	
41. cit	2-hydroxypropane-1,2,3-tricarboxylato	citrato
42. $C_5Me_5^c$	pentamethylcyclopentadienyl	
43. cod	cycloocta-1,5-diene	
44. cot	cycloocta-1,3,5,7-tetraene	
45. Cp	cyclopentadienyl	
46. cptn	cyclopentane-1,2-diamine	
47. 18-crown-6	1,4,7,10,13,16-hexaoxacyclooctadecane	
48. crypt-211	4,7,13,18-tetraoxa-1,10-diazabicyclo[8.5.5]icosane	cryptand 211
49. crypt-222	4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane	cryptand 222
50. Cy	cyclohexyl	

cyclam (see [14]aneN ₄ , No. 14)		
cyclen (see $[12]$ ane N_4 , No. 13)		
51. cys	2-amino-3-sulfanylpropanoato	cysteinato
52. cyt	4-aminopyrimidin-2(1 <i>H</i>)-one	cytosine
53. dabco	1,4-diazabicyclo[2.2.2]octane	
dach (see chxn, No. 40)		diaminocyclohexane
54. dbm	1,3-dioxo-1,3-diphenylpropan-2-ido	dibenzoylmethanato
55. dea	2,2'-azanediyldi(ethan-1-olato)	diethanolaminato
56. depe	ethane-1,2-diylbis(diethylphosphane)	1,2-bis(diethylphosphino)ethane
57. diars	benzene-1,2-diylbis(dimethylarsane)	
58. dien	N-(2-aminoethyl)ethane-1,2-diamine	diethylenetriamine
59. [14]1,3-dieneN ₄	1,4,8,11-tetraazacyclotetradeca-1,3-diene	
60. diop	[(2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(methylene)]bis(diphenylphosphane)	
61. diox	1,4-dioxane	
62. dipamp	ethane-1,2-diylbis[(2-methoxyphenyl)phenylphosphane]	'dimer of phenylanisylmethylphosphine'
63. dma	<i>N,N</i> -dimethylacetamide	dimethylacetamide
64. dme	1,2-dimethoxyethane	
65. dmf	<i>N,N</i> -dimethylformamide	
66. dmg	butane-2,3-diylidenebis(azanolato)	dimethylglyoximato
67. dmpe	ethane-1,2-diylbis(dimethylphosphane)	1,2-bis(dimethylphosphino)ethane
68. dmpm	methylenebis(dimethylphosphane)	bis(dimethylphosphino)methane
69. dmso	(methanesulfinyl)methane	dimethyl sulfoxide
70. dpm	2,2,6,6-tetramethyl-3,5-dioxoheptan-4-ido	dipivaloylmethanato
71. dppe	ethane-1,2-diylbis(diphenylphosphane)	1,2-bis(diphenylphosphino)ethane
72. dppf	1,1'-bis(diphenylphosphanyl)ferrocene	
73. dppm	methylenebis(diphenylphosphane)	bis(diphenylphosphino)methane
74. dppp	propane-1,3-diylbis(diphenylphosphane)	1,3-bis(diphenylphosphino)propane
75. dtmpa	(phosphonatomethyl)azanediylbis[ethane-2,1-	diethylenetriaminepentakis C
	diylnitrilobis(methylene)]tetrakis(phosphonato)	(methylenephosphonato) ^d
76. dtpa	2,2',2''2'''-(carboxylatomethyl)azanediylbis[ethane-2,1-diylnitrilo]tetraacetato	diethylenetriaminepentaacetato
77. ea	2-amino(ethan-1-olato)	ethanolaminato

Table VII Continued

Number and	Systematic name	Other name (from which
abbreviation		abbreviation derived) ^a
78. edda	2,2'-[ethane-1,2-diylbis(azanediyl)]diacetato	ethylenediaminediacetato
79. edta	2,2',2", chane-1,2-diyldinitrilo)tetraacetato	ethylenediaminetetraacetato
80. edtmpa	ethane-1,2-diylbis[nitrilobis(methylene)]tetrakis(phosphonato)	ethylenediaminetetrakis (methylenephosphonato)
81. egta	2,2',2",2"'-[ethane-1,2-diylbis(oxyethane-2,1-diylnitrilo)]tetraacetato	ethylene glycol-bis(2-aminoethyl)- N,N,N',N'-tetraacetic acid
82. en	ethane-1,2-diamine	
83. Et	ethyl	
84. Et ₂ dtc	N,N-diethylcarbamodithioato	N,N-diethyldithiocarbamato
85. fod	6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-dioxooctan-4-ido	
86. fta	1,1,1-trifluoro-2,4-dioxopentan-3-ido	trifluoroacetylacetonato
87. gln	2,5-diamino-5-oxopentanoato	glutaminato
88. glu	2-aminopentanedioato	glutamato
89. gly	aminoacetato	glycinato
90. gua	2-amino-9H-purin-6(1H)-one	guanine
91. guo	2-amino-9-β-D-ribofuranosyl-9 <i>H</i> -purin-6(1 <i>H</i>)-one	guanosine
92. hdtmpa	hexane-1,6-diylbis[nitrilobis(methylene)]tetrakis(phosphonato)	hexamethylenediaminetetrakis
		(methylenephosphonato) ^d
93. hedp	1-hydroxyethane-1,1-diylbis(phosphonato)	1-hydroxyethane-1,1-diphosphonato
94. hfa	1,1,1,5,5,5-hexafluoropentane-2,4-dioxopentan-3-ido	hexafluoroacetylacetonato
95. his	2-amino-3-(imidazol-4-yl)propanoato	histidinato
96. hmpa	hexamethylphosphoric triamide	
97. hmta	1,3,5,7-tetraazatricyclo[3.3.1.1 ^{3,7}]decane	hexamethylenetetramine
98. ida	2,2'-azanediyldiacetato	iminodiacetato
99. ile	2-amino-3-methylpentanoato	isoleucinato
100. im	1 <i>H</i> -imidazol-1-ido	
101. isn	pyridine-4-carboxamide	isonicotinamide

102. leu	2-amino-4-methylpentanoato	leucinato
103. lut	2,6-dimethylpyridine	lutidine
104. lys	2,6-diaminohexanoato	lysinato
105. mal	2-hydroxybutanedioato	malato
106. male	(Z)-butenedioato	maleato
107. malo	propanedioato	malonato
108. Me	methyl	
109. 2-Mepy	2-methylpyridine	
110. met	2-amino-4-(methylsulfanyl)butanoato	methioninato
111. mnt	1,2-dicyanoethene-1,2-dithiolato	maleonitriledithiolato
112. napy	1,8-naphthyridine	
113. nbd	bicyclo[2.2.1]hepta-2,5-diene	norbornadiene
114. nia	pyridine-3-carboxamide	nicotinamide
115. nmp	N-methylpyrrolidine	
116. nta	2,2',2"-nitrilotriacetato	
117. oep	2,3,7,8,12,13,17,18-octaethylporphyrin-21,23-diido	
118. ox	ethanedioato	oxalato
119. pc	phthalocyanine-29,31-diido	
120. 1,2-pdta	2,2',2",2"'-(propane-1,2-diyldinitrilo)tetraacetato	1,2-propylenediaminetetraacetato
121. 1,3-pdta	2,2',2",2"'-(propane-1,3-diyldinitrilo)tetraacetato	1,3-propylenediaminetetraacetato
122. Ph	phenyl	
123. phe	2-amino-3-phenylpropanoato	phenylalaninato
124. phen	1,10-phenanthroline	
125. pip	piperidine	
126. pmdien	2,2'-(methylazanediyl)bis(<i>N</i> , <i>N</i> -dimethylethan-1-amine)	N,N,N',N'',N'' -pentamethyl \subset diethylenetriamine ^d
127. pn	propane-1,2-diamine	
128. ppIX	2,18-bis(2-carboxyethyl)-3,7,12,17-tetramethyl-8,13-divinylporphyrin-21,23-diido	protoporphyrinato IX
129. pro	pyrrolidine-2-carboxylato	prolinato
130. ptn	pentane-2,4-diamine	•
7	1 ,	

Table VII Continued

Number and abbreviation	Systematic name	Other name (from which abbreviation derived) ^a
132. pyz	pyrazine	
133. pz	1H-pyrazol-1-ido	
134. qdt	quinoxaline-2,3-dithiolato	
135. quin	quinolin-8-olato	
136. sal	2-hydroxybenzoato	salicylato
137. salan	2-[(phenylimino)methyl]phenolato	salicylideneanilinato
138. saldien	2,2'-[azanediylbis(ethane-2,1-diylazanylylidenemethanylylidene)]diphenolato	bis(salicylidene)diethylenetriaminato
139. salen	2,2'-[ethane-1,2-diylbis(azanylylidenemethanylylidene)]diphenolato	bis(salicylidene)ethylenediaminato
140. salgly	N-(2-oxidobenzylidene)glycinato	salicylideneglycinato
141. salpn	2,2'-[propane-1,2-diylbis(azanylylidenemethanylylidene)]diphenolato	bis(salicylidene)propylenediaminato
142. saltn	2,2'-[propane-1,3-diylbis(azanylylidenemethanylylidene)]diphenolato	bis(salicylidene)trimethylenediaminato
143. sdta ^e	2,2',2",2" -[(1,2-diphenylethane-1,2-diyl)dinitrilo]tetraacetato	stilbenediaminetetraacetato
144. sep ^f	1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]icosane	
145. ser	2-amino-3-hydroxypropanoato	serinato
146. stien ^e	1,2-diphenylethane-1,2-diamine	stilbenediamine
tacn (see $[9]$ aneN ₃ , No. 12)		1,4,7-triazacyclononane
147. tap	propane-1,2,3-triamine	1,2,3-triaminopropane
148. tart	2,3-dihydroxybutanedioato	tartrato
149. tcne	ethenetetracarbonitrile	tetracyanoethylene
150. tenq	2,2'-(cyclohexa-2,5-diene-1,4-diylidene)di(propanedinitrile)	tetracyanoquinodimethane
151. tdt	4-methylbenzene-1,2-dithiolato	
152. tea	2,2',2"-nitrilotri(ethan-1-olato)	triethanolaminato
153. terpy	2,2':6',2''-terpyridine	terpyridine
154. 2,3,2-tet	N_sN' -bis(2-aminoethy1)propane-1,3-diamine	1,4,8,11-tetraazaundecane
155. 3,3,3-tet	N,N'-bis(3-aminopropyl)propane-1,3-diamine	1,5,9,13-tetraazatridecane
156. tetren	N_sN' -(azanediyldiethane-2,1-diyl)di(ethane-1,2-diamine)	tetraethylenepentamine

157. tfa	trifluoroacetato	
158. thf	oxolane	tetrahydrofuran
159. thiox	1,4-oxathiane	thioxane
160. thr	2-amino-3-hydroxybutanoato	threoninato
161. tht	thiolane	tetrahydrothiophene
162. thy	5-methylpyrimidine-2,4(1H,3H)-dione	thymine
163. tmen	<i>N,N,N',N'</i> -tetramethylethane-1,2-diamine	
164. tmp	5,10,15,20-tetrakis(2,4,6-trimethylphenyl)porphyrin-21,23-diido	5,10,15,20-tetramesitylporphyrin-21,23-diido
165. tn	propane-1,3-diamine	trimethylenediamine
166. Tol (o-, m- or p-)	2-, 3- or 4-methylphenyl	tolyl $(o-, m- \text{ or } p-)$
167. Tp	hydridotris(pyrazolido-N)borato(1-), or tris(1H-pyrazol-1-yl)boranuido	hydrotris(pyrazolyl)borato
168. Tp' ^g	tris(3,5-dimethylpyrazolido-N)hydridoborato(1-)	hydrotris(3,5-dimethylpyrazolyl)borato
169. tpp	5,10,15,20-tetraphenylporphyrin-21,23-diido	
170. tren	<i>N,N</i> -bis(2-aminoethyl)ethane-1,2-diamine	tris(2-aminoethyl)amine
171. trien	<i>N,N'</i> -bis(2-aminoethyl)ethane-1,2-diamine	triethylenetetramine
172. triphos ^h	[(phenylphosphanediyl)bis(ethane-2,1-diyl)]bis(diphenylphosphane)	
173. tris	2-amino-2-(hydroxymethyl)propane-1,3-diol	tris(hydroxymethyl)aminomethane
174. trp	2-amino-3-(1 <i>H</i> -indol-3-yl)propanoato	tryptophanato
175. tsalen	2,2'-[ethane-1,2-diylbis(azanylylidenemethanylylidene)]dibenzenethiolato	bis(thiosalicylidene)ethylenediaminato
176. ttfa	4,4,4-trifluoro-1,3-dioxo-1-(2-thienyl)butan-2-ido	thenoyltrifluoroacetonato
177. ttha	2,2',2",2"'-(ethane-1,2-diylbis[[(carboxylatomethyl)azanediyl]ethane-	triethylenetetraminehexaacetato
	2,1-diylnitrilo})tetraacetato	
178. ttp	5,10,15,20-tetrakis(4-methylphenyl)porphyrin-21,23-diido	5,10,15,20-tetra-p-tolylporphyrin-21,23-diido
179. tu	thiourea	
180. tyr	2-amino-3-(4-hydroxyphenyl)propanoato	tyrosinato
181. tz	1,3-thiazole	thiazole
182. ura	pyrimidine-2,4(1H,3H)-dione	uracil
183. val	2-amino-3-methylbutanoato	valinato
	_	

^a Many of these names are no longer acceptable.

state, an optically active substance, etc.

^b The abbreviation Bz has often been used previously for 'benzoyl', and Bzl has been used for 'benzyl'. Use of the alternatives, PhCO and PhCH₂, is therefore preferable. ^c The use of the abbreviation Cp* for pentamethylcyclopentadienyl is discouraged. It can lead to confusion because the asterisk,*, is also used to represent an excited

TABLES TABLE VII

^d The symbol 'C' is used to divide the name, necessitated by the line break. In the absence of the line break this symbol is omitted. Note that all hyphens are true parts of

e The abbreviation derives from the non-systematic name stilbenediamine which incorrectly implies the presence of a C=C double bond in the ligand.

The abbreviation derives from the non-systematic name sepulchrate which incorrectly implies that the ligand is anionic.

proposed [see S. Trofimenko, Chem. Rev., 93, 943-980 (1993)]. For example, Tp' becomes Tp^{Me2}, the superscript denoting the methyl groups at the 3- and 5-positions ^g The use of Tp' is preferred to Tp* for the reasons given in footnote c. A general procedure for abbreviating substituted hydridotris(pyrazolido-N)borate ligands has been of the pyrazole rings.

^h The abbreviation triphos should not be used for the four-phosphorus ligand PhP(CH₂PPh₂)₃.

Table VIII Structural formulae of selected ligands (numbered according to Table VII)

TABLES TABLE VIII

TABLES TABLE VIII

$$\begin{array}{c|c} & CH_{2}CO_{2}^{-} \\ -O_{2}CCH_{2} \\ N \\ CH_{2}CO_{2}^{-} \\ \end{array}$$

TABLES TABLE VIII

TABLES TABLE VIII

TABLES TABLE VIII

Table VIII Continued

H₂N

TABLES TABLE IX

Fable IX Names of homoatomic, binary and certain other simple molecules, ions, compounds, radicals and substituent groups

This Table names a large number of homoatomic and binary compounds and species, and some heteropolynuclear entities, and thus may be used as a reference for names of simple compounds and a source of examples to guide in the naming of further compounds. It may be necessary to browse the Table to find (families of) compounds that match those of interest. For example, all the oxides of potassium are named; corresponding compounds of the other alkali metals, not included here, analogously. Several silicon and germanium hydride species are named; names for corresponding tin and lead species are not necessarily included

Some inorganic acids and their corresponding bases are included in this Table, but more acid names are given in Tables IR-8.1 and IR-8.2. Only a few simple carboncontaining compounds and substituent groups are included. In particular, organic ligands belonging to the general classes alcoholates, thiolates, phenolates, carboxylates, amines, phosphanes and arsanes as well as (partially) dehydronated amines, phosphanes and arsanes are generally not included. Their naming is described and exemplified Entries in the first column are ordered alphabetically according to the formulae as they appear here. Formulae for binary species are written in this column according to the position of the two elements in Table VI (Section IR-4.4), e.g. ammonia is found under 'NH3', but selane under 'H2Se' and AlLi under 'LiAl'. In case of doubt, cross alphabetically, e.g. 'CISCN $^{\bullet}$ ' is found under the entry 'CCINS', and 'HPO $_4$ ' under 'HO $_4$ P', and these formulae are ordered as described in Section IR-4.4.2.2. In the columns to the right of the first column, special formats may be used for formulae in order to stress a particular structure, e.g. under the entry 'BrHO₃' one finds 'HOBrO₂' references should aid in finding the correct entry in the Table. However, in the first column, formulae of ternary and quaternary compounds are written strictly rather than 'HBrO₃' or '[BrO₂(OH)]', the two formats presented in Table IR-8.2.

The symbol 'S' is used for dividing names when this is made necessary by a line break. When the name is reconstructed from the name given in the Table, this symbol should be omitted. Thus, all hyphens in the Table are true parts of the names. The symbols '>' and '<' placed next to an element symbol both denote two single bonds connecting the atom in question to two other atoms.

additive names (Chapter IR-7) and hydrogen names (Section IR-8.4). Acceptable names which are not entirely systematic (or not formed according to any of the systems mentioned above) are given at the end after a semicolon. No order of preference is implied by the order in which formulae and names are listed, but in practice it may be useful to select particular formulae and names for particular uses. Thus, for sodium chloride the formula [NaCl] and the additive name 'chloridosodium' may be used specifically for the molecular compound, which can be regarded as a coordination compound, whereas 'sodium chloride' may be used, and traditionally is used, for the compound in general and for the solid with the composition NaCl. Corresponding remarks apply to a number of hydrides for which a stoichiometric name may be applied For a given compound, the various systematic names, if applicable, are given in the order: stoichiometric names (Chapter IR-5), substitutive names (Chapter IR-6), to the compound with the stoichiometry in question without further structural implications (such as 'aluminium trihydride' for AIH₃ or 'dihydrogen disulfide' for H₂S₂), whereas a parent hydride name (needed anyway for naming certain derivatives) or an additive name may be used to denote specifically the molecular compound or entity (such as 'alumane' or 'trihydridoaluminium' for the molecular entity [AIH₃] and 'disulfane' for HSSH).

Note from the examples above that in order to stress the distinctions discussed, the square brackets are sometimes used in the Table to enclose formulae for molecular entities that are otherwise often written with no enclosing marks. When a formula with square brackets is shown, there will also be a coordination-type additive name. TABLE IX TABLES

Formula for uncharged atom or group		Name	16	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	$Ligands^{c}$
Ac	actinium	actinium	actinide ^d	actinido
Ag	silver	silver	argentide	argentido
Al	aluminium	aluminium (general) Al ⁺ , aluminium(1+) Al ³⁺ , aluminium(3+)	aluminide (general) Al ⁻ , aluminide(1–)	aluminido (general) AI ⁻ , aluminido(1–)
AICI	AICl, aluminium monochloride [AICl], chloridoaluminium	AICI ⁺ , chloridoaluminium(1+)		
AlCl ₃ (see also	AICl ₃ , aluminium trichloride [AICl ₃], trichloroalumane,			
Al_2Cl_6	trichloridoaluminium			
$AICI_4$			$AICI_4^-$, tetrachloroalumanuide, tetrachloridoaluminate $(1-)$	$AlCl_4$, tetrachloroalumanuido, tetrachloridoaluminato(1–)
AIH	AlH, aluminium monohydride [AlH], λ^1 -alumane (parent hydride name), hydridoaluminium	AlH ⁺ , hydridoaluminium(1+)		
AIH_2	-AlH ₂ , alumanyl			
AIH_3	AlH ₃ , aluminium trihydride [AlH ₃], alumane (parent hydride name), trihydridoaluminium	AlH ₃ •+, alumaniumyl, trihydridoaluminium(•1+)	AlH ₃ •-, alumanuidyl, trihydridoaluminate(•1-) ^e	
AIH_4			AlH ₄ ⁻ , alumanuide, tetrahydridoaluminate(1–)	AlH ₄ ⁻ , alumanuido, tetrahydridoaluminato(1–)
AlO	AlO, aluminium mon(o)oxide [AlO], oxidoaluminium	AIO ⁺ , oxidoaluminium(1+)	AIO ⁻ , oxidoaluminate(1–)	
AlSi	AISi, aluminium monosilicide [AISi], silicidoaluminium			

Table IX Continued

Formula for uncharged atom or group		Name	al	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
Al_2	Al ₂ , dialuminium		Al_2^- , dialuminide(1–)	
$\mathrm{Al}_2\mathrm{Cl}_6$	[Cl ₂ Al(μ-Cl) ₂ AlCl ₂], di-μ-chlorido-bis(dichlorido aluminium)			
Al ₄			Al_4^{2-} , tetraaluminide(2-)	
Am	americium	americium	americide	americido
Ar	argon	argon (general) Ar^+ , $\operatorname{argon}(1+)$	argonide	argonido
ArBe		ArBe ⁺ , beryllidoargon(1+)		
ArF	ArF, argon monofluoride [ArF], fluoridoargon	ArF ⁺ , fluoridoargon(1+)		
ArHe		ArHe+, helidoargon(1+)		
ArLi		ArLi+, lithidoargon(1+)		
Ar_2	Ar ₂ , diargon	Ar_2^+ , diargon(1+)		
As	arsenic >As-, arsanetriyl	arsenic	arsenide (general) As^{3-} , arsenide(3-),	arsenido (general) As³-, arsanetriido; arsenido
			arsanetriide; arsenide	
AsH	AsH, arsenic monohydride	lium),	AsH^{2-} arsanediide,	AsH ²⁻ , arsanediido,
	AsH , arsanylidene, hvdridoarsenic(2•)	hydridoarsenic $(1+)$	hydridoarsenate(2–)	hydridoarsenato(2–)
	>AsH, arsanediyl			
	=AsH, arsanylidene			

TABLE IX TABLES

	AsHO ₂ ²⁻ , hydridodioxidoarsenato(2–); arsonito	$AsHO_3^{2-}$, hydridotrioxidoarsenato(2-); arsonato	AsH ₂ ⁻ , arsanido, dihydridoarsenato(1–)	AsH ₂ O ⁻ , dihydridooxidoarsenato(1-); arsinito	$AsH_2O_2^-$, dihydridodioxidoarsenato(1–); arsinato	$AsO(OH)_2^-$, dihydroxidooxidoarsenato(1–)			
	$AsHO_2^{2-}$, hydridodioxidoarsenate(2-); arsonite	AsHO ₃ ²⁻ , hydridotrioxidoarsenate(2-); arsonate	AsH ₂ ⁻ , arsanide, dihydridoarsenate(1–)	AsH ₂ O ⁻ , dihydridooxidoarsenate(1–); arsinite	AsH ₂ O ₂ ⁻ , dihydridodioxidoarsenate(1–); arsinate	$AsO(OH)_2^-$, dihydroxidooxidoarsenate(1–)	AsH ₃ •, arsanuidyl, trihydridoarsenate(•1-) ^e		
			AsH_2^+ , arsanylium, dihydridoarsenic(1+)				AsH ₃ •+, arsaniumyl, trihydridoarsenic(•1+) -AsH ₃ +, arsaniumyl	AsH_4^+ , arsanium, tetrahydridoarsenic $(1+)$	
>AsH(O), $\cos(-\lambda^5)$ -arsanediyl; arsonoyl = AsH(O), $\cos(-\lambda^5)$ -arsanylidene; arsonoylidene	>AsO(OH), hydroxy(oxo)- λ^5 -arsanediyl; hydroxyarsoryl =AsO(OH), hydroxy(oxo)- λ^5 - arsanylidene; hydroxyarsorylidene		AsH ₂ , arsenic dihydride AsH ₂ *, arsanyl, dihydridoarsenic(•) -AsH ₂ , arsanyl	$-AsH_2O$, oxo- λ^5 -arsanyl; arsinoyl		$-As(O)(OH)_2$, dihydroxyoxo- λ^5 - arsanyl; dihydroxyarsoryl, arsono	AsH ₃ , arsenic trihydride [AsH ₃], arsane (parent hydride name), trihydridoarsenic	$-AsH_4$, λ^5 -arsanyl	AsH ₅ , arsenic pentahydride [AsH ₅], λ ⁵ -arsane (parent hydride name), pentahydridoarsenic
AsHO	AsHO ₂	AsHO ₃	AsH_2	AsH ₂ O	AsH ₂ O ₂	AsH ₂ O ₃	AsH ₃	AsH_4	AsH ₅

Table IX Continued

Formula for uncharged atom or group		Name	16	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	$Ligands^c$
AsO	$>$ As(O)-, oxo- λ^5 -arsanetriyl; arsoryl =As(O)-, oxo- λ^5 -arsanylylidene; arsorylidene =As(O), oxo- λ^5 -arsanylidyne; arsorylidyne			
AsO_3			AsO ₃ ³⁻ , trioxidoarsenate(3-); arsenite, arsorite -As(=O)(O ⁻) ₂ , dioxidooxo- λ ⁵ -arsanyl; arsonato	AsO_3^{3-} , trioxidoarsenato(3); arsenito, arsorito
AsO ₄			AsO_4^{3-} , tetraoxidoarsenate(3-); arsenate, arsorate	AsO_4^{3-} , tetraoxidoarsenato(3-); arsenato, arsorato
AsS_4			AsS_4^{3-} , tetrasulfidoarsenate(3-)	AsS_4^{3-} , tetrasulfidoarsenato(3-)
$\mathrm{As_2H}$			HAs=As ⁻ , diarsenide HAsAs ³⁻ , diarsanetriide	HAs=As ⁻ , diarsenido HAsAs ³⁻ , diarsanetriido
$\mathrm{As_2H_2}$	HAs=AsH, diarsene		H ₂ AsAs ²⁻ , diarsane-1,1-diide HAsAsH ²⁻ , diarsane-1,2-diide	HAs=AsH, diarsene H ₂ AsAs ²⁻ , diarsane-1,1-diido HAsAsH ²⁻ , diarsane-1,2-diido
$\mathrm{As}_{2}\mathrm{H}_{4}$	H ₂ AsAsH ₂ , diarsane			H ₂ AsAsH ₂ , diarsane
As_4	As ₄ , tetraarsenic			As ₄ , tetraarsenic
At	astatine (general) At*, astatine(**), monoastatine	astatine	At ⁻ , astatide(1-); astatide	astatido (general) At ⁻ , astatido(1-); astatido
AtH, see HAt				

TABLE IX TABLES

At_2	At ₂ , diastatine			
Au	blog	gold (general) $Au^+, gold(1+)$ $Au^3+, gold(3+)$	auride	aurido
В	boron >B—, boranetriyl =R horanvlidyne		boride (general) B^{-} , boride(1-) B^{3-} horide(3-): horide	borido (general) B ⁻ , borido(1-) B ³ - horido(3-); horido
ВН	>BH, boranediyl =BH, boranylidene	s(ylium),	BH ²⁻ , boranediide, hydridoborate(2-)	BH ²⁻ , boranediido, hydridoborato(2-)
$\overline{\mathrm{BHO}_3}$			$BO_2(OH)^{2-}$, hydroxidodioxidoborate(2-); hydrogenborate	$BO_2(OH)^{2-}$, hydroxidodioxidoborato(2-); hydrogenborato
$ m BH_2$	-BH ₂ , boranyl	BH_2^+ , boranylium, dihydridoboron(1+)	BH_2^- , boranide, dihydridoborate(2–)	BH_2^- , boranido, dihydridoborato(2–)
BH_2O	-BH(OH), hydroxyboranyl			
$\mathrm{BH_2O_2}$	-B(OH) ₂ , dihydroxyboranyl; borono			
BH_3	BH ₃ , boron trihydride [BH ₃], borane (parent hydride name), trihydridoboron	$BH_3^{\bullet+}$, boraniumyl, trihydridoboron(\bullet 1+)	$BH_3^{\bullet-}$ boranuidyl, trihydridoborate($\bullet 1$ -) e $-BH_3^{-}$, boranuidyl	BH₃ [•] -, trihydridoborato(•1-)
$ m BH_4$		BH_4^+ , boranium, tetrahydridoboron(1+)	BH_4^- , boranuide, tetrahydridoborate(1–)	BH_4^- , boranuido, tetrahydridoborato(1–)
ВО	BO, boron mon(o)oxide [BO], oxidoboron	BO+, oxidoboron(1+)	BO ⁻ , oxidoborate(1–)	BO ⁻ , oxidoborato(1 ⁻)
BO_2			$(BO_2^-)_n = (OBO)_n^{-n}$, catena-poly[(oxidoborate- μ -oxido)(1-)]; metaborate	
BO_3			BO_3^{3-} , trioxidoborate(3-); borate	BO_3^{3-} , trioxidoborato(3-); borato
Ba	barium	barium	baride	barido
BaO	barium oxide			

Table IX Continued

Formula for uncharged atom or group		Name	o	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
BaO_2	$Ba^{2+}O_2^{2-}$, barium dioxide(2-); barium peroxide			
Ве	beryllium	beryllium (general) Be+, beryllium(1+) Be ²⁺ , beryllium(2+)	beryllide	beryllido
ВеН	BeH, beryllium monohydride [BeH], hydridoberyllium	BeH ⁺ , hydridoberyllium(1+)	BeH ⁻ , hydridoberyllate(1–)	BeH ⁻ , hydridoberyllato(1–)
Bh	bohrium	bohrium	bohride	bohrido
Bi	bismuth	bismuth	bismuthide (general) Bi ³⁻ , bismuthide(3-), bismuthanetriide; bismuthide	bismuthido (general) Bi ³⁻ , bismuthido(3), bismuthanetriido; bismuthido
ВіН	>BiH, bismuthanediyl =BiH, bismuthanylidene BiH ² *, bismuthanylidene, hydridobismuth(2*)	BiH ²⁺ , bismuthanebis(ylium), hydridobismuth(2+)	BiH ²⁻ , bismuthanediide, hydridobismuthate(2–)	BiH ²⁻ , bismuthanediido, hydridobismuthato(2–)
BiH_2	−BiH ₂ , bismuthanyl BiH ₂ , bismuthanyl, dihydridobismuth(•)	BiH ₂ +, bismuthanylium, dihydridobismuth(1+)	BiH_2^- , bismuthanide, dihydridobismuthate(1–)	BiH ₂ ⁻ , bismuthanido, dihydridobismuthato(1–)
BiH_3	BiH ₃ , bismuth trihydride [BiH ₃], bismuthane (parent hydride name), trihydridobismuth =BiH ₃ , λ ⁵ -bismuthanylidene	BiH ₃ **, bismuthaniumyl, trihydridobismuth(*1+)	BiH ₃ $^{\bullet-}$, bismuthanuidyl, trihydridobismuthate($^{\bullet}1-$) $^{\circ}$	

Ditt		Dill + hicomotheconius		
4		tetrahydridobismuth $(1+)$		
Bi ₅		Bi_5^{4+} , pentabismuth(4+)		
Bk	berkelium	berkelium	berkelide	berkelido
Br	bromine (general)	bromine (general)	bromide (general)	bromido (general)
	Br [•] , bromine(•), monobromine	Br^+ , bromine(1+)	Br^- , bromide(1–); bromide	Br^- , bromido(1–);
	-Br, bromo			bromido
BrCN	BrCN, cyanobromane,			
	bromidonitridocarbon			
BrH, see HBr				
BrHO	HOBr, bromanol,			
	hydroxidobromine ^f ;			
	hypobromous acid			
$BrHO_2$	HOBrO, hydroxy- λ^3 -bromanone,			
	hydroxidooxidobromine;			
	bromous acid			
$BrHO_3$	HOBrO ₂ ,			
	hydroxy- λ^5 -bromanedione,			
	hydroxidodioxidobromine;			
	bromic acid			
$BrHO_4$	HOBrO ₃ ,			
	hydroxy- λ^7 -bromanetrione,			
	hydroxidotrioxidobromine;			
	perbromic acid			
Br_2	Br ₂ , dibromine	$\operatorname{Br}_{2}^{\bullet+}$, dibromine(\bullet 1+)	$Br_2^{\bullet-}$, dibromide($\bullet 1-$)	Br ₂ , dibromine
Br_3	Br ₃ , tribromine		Br_3^- , tribromide(1–); tribromide	Br_3^- , tribromido(1–); tribromido
C	carbon (general)	carbon (general)	carbide (general)	carbido (general)
	C, monocarbon	C^+ , carbon(1+)	C^{-} , carbide(1–)	C^- , carbido(1 $^-$)
	>C<, methanetetrayl		C^{4-} , carbide(4-),	C^{4-} , carbido(4-), methanetetrayl,
	=C=, methanediylidene		methanetetraide; carbide	methanetetraido
CCINS			CISCN●T,	
			(chloridosulfato)nitrido	
			carbonate(•1−)	

Table IX Continued

Formula for uncharged atom or group		Name	o.	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
СН	CH [•] , hydridocarbon(•) CH ^{3•} , methylidyne, hydridocarbon(3•), carbyne ≡CH, methylidyne −CH=, methanylylidene −CH<, methanetriyl	CH+, λ^2 -methanylium, hydridocarbon(1+)	CH ⁻ , λ ² -methanide, hydridocarbonate(1–) CH ³⁻ , methanetriide, hydridocarbonate(3–)	CH ⁻ , λ ² -methanido, hydridocarbonato(1–) CH ³⁻ , methanetriyl, methanetriido, hydridocarbonato(3–)
CHN	HCN, hydrogen cyanide HCN = [CHN], methanenitrile, hydridonitridocarbon; formonitrile >C=NH, carbonimidoyl =C=NH, iminomethylidene, carbonimidoylidene			
CHNO	HCNO = [N(CH)O], formonitrile oxide, (hydridocarbonato)oxidonitrogen HNCO = [C(NH)O], (hydridonitrato)oxidocarbon; isocyanic acid HOCN = [C(OH)N], hydroxidonitridocarbon; cyanic acid HONC = [NC(OH)], hydroxidonitridocarbon; cyanic acid chonc = [NC(OH)], hydroxidonitridocarbon; cyanic acid carbidohydroxidonitrogen		HNCO•-, (hydridonitrato)oxido⇔ carbonate(•1-) HOCN•-, hydroxidonitridocarbonate(•1-)	HNCO*-, (hydridonitrato)oxido⇔ carbonato(•1-) HOCN*-, hydroxidonitridocarbonato(•1-)

CHINOS		HONCS ^{●−} ,	HONCS [●] -,
		(hydroxidonitrato)sulfido	(hydroxidonitrato)sulfido
		carbonate(•1−)	carbonato(•1−)
		HOSCN*,	HOSCN•1,
		(hydroxidosulfato)nitrido	(hydroxidosulfato)nitrido
		carbonate(•1−)	carbonato(•1−)
$CHNO_2$		HOOCN*-,	HOOCN*-,
		HONCO•	carbonato(•1−)
		(hydroxidonitrato)oxido	HONCO**,
		carbonate(•1−)	(hydroxidonitrato)oxido
			carbonato(•1−)
CHINS	$HCNS = HC \equiv N^{+}S^{-}$		
	=[N(CH)S],		
	(methylidyneammoniumyl)		
	(incur) inclination of the control o		
	santanto,		
	(hydridocarbonato)sulfidonitrogen		
	HNCS = [C(NH)S],		
	(hydridonitrato)sulfidocarbon;		
	isothiocyanic acid		
	HSCN = [CN(SH)],		
	nitridosulfanidocarbon;		
	thiocyanic acid		
	HSNC = [NC(SH)],		
	λ^2 -methylidenethiohydroxylamine,		
	carbidosulfanidonitrogen		

Table IX Continued

Formula for uncharged atom or group		Name	e.	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
CHNSe	HCNSe = HC≡N+Se ⁻ = [N(CH)Se], (methylidyneammoniumyl) \bigcirc selanide, (hydridocarbonato)selenidonitrogen HNCSe = [C(NH)Se], (hydridonitrato)selenidocarbon; isoselenocyanic acid HSeCN = [CN(SeH)], nitridoselanidocarbon; selenocyanic acid HSeCN = [CN(SeH)], λ²-methylideneseleno \bigcirc hydroxylamine, carbidoselanidonitrogen			
СНО	HCO•, oxomethyl, hydridooxidocarbon(•) —CH(O), methanoyl, formyl			
CHOS_2	HOCS ₂ •, hydroxidodisulfidocarbon(•)			
$ m CHO_2$	HOCO•, hydroxidocarbon(•)			

CHO_3	$HOCO_2^{\bullet}$,			HCO_3^- ,
	hydroxidodioxidocarbon(•)		hydroxidodioxidocarbonate $(1-)$;	hydroxidodioxidocarbonato(1–);
	HOOCO,		hydrogencarbonate	hydrogencarbonato
	(dioxidanido)oxidocarbon(•)			
CH_2	$CH_{2,\lambda}^2$ -methane		CH_2^{2-} , methanediide,	>CH ₂ , methanediyl, methylene
	CH ₂ ^{2•} , methylidene,		dihydridocarbonate(2-)	$=CH_2$, methylidene
	dihydridocarbon(2•); carbene		$-CH_2^-$, methanidyl	CH_2^{2-} , methanediido,
	>CH ₂ , methanediyl, methylene			dihydridocarbonato(2-)
	=CH ₂ , methylidene			
CH_2N	H_2CN^{\bullet} ,			
	dihydridonitridocarbon(•)			
CH_2NO	H_2NCO^{\bullet} ,			
	(dihydridonitrato)oxidocarbon(•)			
	HNCOH•,			
	(hydridonitrato)hydroxido			
	carbon(•)			
CH_3	CH ₃ , methyl	CH ₃ +, methylium,	CH_3^- , methanide,	CH_3^- , methyl, methanido,
	$-CH_3$ or $-Me$, methyl	trihydridocarbon(1+)	trihydridocarbonate(1-)	trihydridocarbonato(1-)
CH_4	CH ₄ , methane (parent hydride	$CH_4^{\bullet+}$, methaniumyl,	$CH_4^{\bullet-}$, methanuidyl,	
	name), tetrahydridocarbon	tetrahydridocarbon(•1+)	tetrahydridocarbonate(•1-) ^e	
CH_5		CH_5^+ , methanium,		
		pentahydridocarbon(1+)		
CN	CN*, nitridocarbon(*); cyanyl	methylium,	CN^{-} , nitridocarbonate(1–);	nitridocarbonato (general)
	-CN, cyano	nitridocarbon(1+)	cyanide	CN^{-} , nitridocarbonato(1–);
	-NC, isocyano			cyanido =
				[nitridocarbonato(1 $-$)- κ C]
CN_2			NCN^{2-} , dinitridocarbonate(2-)	NCN^{2-} , dinitridocarbonato(2-)
CNO	OCN [●] , nitridooxidocarbon(•)		OCN ^T ,	OCN ⁻ ,
	-OCN, cyanato		nitridooxidocarbonate $(1-)$;	nitridooxidocarbonato $(1-)$;
	-NCO, isocyanato		cyanate	cyanato
	-ONC,		ONC^- , carbidooxidonitrate(1-);	ONC ⁻ , carbidooxidonitrato(1–);
	λ^2 -methylideneazanylylideneoxy		fulminate	fulminato
	$(0 \times 0.7^{\circ})$ -azanylidyne)methyl		nitridooxidocarbonate(•2–)	
	,			

Table IX Continued

Formula for uncharged atom or group		Name		
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
CNS	SCN [•] , nitridosulfidocarbon(•) –SCN, thiocyanato –NCS, isothiocyanato –SNC, λ²-methylidene⇔ azanylylidenesulfanediyl –CNS, (sulfanylidene-λ⁵- azanylidyne)methyl		SCN ⁻ , nitridosulfidocarbonate(1–); thiocyanate SNC ⁻ , carbidosulfidonitrate(1–)	SCN ⁻ , nitridosulfidocarbonato(1–); thiocyanato SNC ⁻ , carbidosulfidonitrato(1–)
CNSe	SeCN*, intridoselenidocarbon(•) —SeCN, selenocyanato —NCSe, isoselenocyanato —SeNC, λ²-methylidene azanylylideneselanediyl —CNSe, (selanylidene-λ⁵- azanylidyne)methyl		SeCN ⁻ , nitridoselenidocarbonate(1–); selenocyanate SeNC ⁻ , carbidoselenidonitrate(1–)	SeCN ⁻ , nitridoselenidocarbonato(1 ⁻); selenocyanato SeNC ⁻ , carbidoselenidonitrato(1 ⁻)
00	CO, carbon mon(o)oxide >C=O, carbonyl =C=O, carbonylidene	CO ²⁺ , oxidocarbon(•1+) CO ²⁺ , oxidocarbon(2+)	CO**, oxidocarbonate(•1-)	CO, oxidocarbon, oxidocarbonato (general); carbonyl = oxidocarbon-κC (general) CO ^{◆+} , oxidocarbon(•1+) CO ^{◆-} , oxidocarbonato(•1−)
COS	C(O)S, carbonyl sulfide, oxidosulfidocarbon			
CO_2	CO ₂ , carbon dioxide, dioxidocarbon		CO ₂ **, oxidooxomethyl, dioxidocarbonate(•1-)	CO ₂ , dioxidocarbon CO ₂ •, oxidooxomethyl, dioxidocarbonato(•1–)

CO ₃			$CO_3^{\bullet-}$, trioxidocarbonate(•1–), OCOO $^{\bullet-}$.	CO_3^{2-} , trioxidocarbonato(2-); carbonato
			(dioxido) oxidocarbonate(•1−), oxidoperoxidocarbonate(•1−) CO ₃ ^{2−} , trioxidocarbonate(2−); carbonate	
CS	carbon monosulfide >C=S, carbonothioyl; thiocarbonyl =C=S, carbonothioylidene	CS*+, sulfidocarbon(*1+)	CS ^{●−} , sulfidocarbonate(•1−)	CS, sulfidocarbon, sulfidocarbonato, thiocarbonyl (general); CS**, sulfidocarbon(•1+) CS**, sulfidocarbonato(•1-)
${ m CS}_2$	CS ₂ , disulfidocarbon, carbon disulfide		CS ₂ *, sulfidothioxomethyl, disulfidocarbonate(•1-)	CS ₂ disulfidocarbon CS ₂ sulfidothioxomethyl, disulfidocarbonato(•1−)
CS_3			CS_3^{2-} , trisulfidocarbonate(2-)	CS_3^{2-} , trisulfidocarbonato(2-)
C_2	C_2 , dicarbon	C_2^+ , dicarbon(1+)	C_2^- , dicarbide(1–) C_2^{2-} , dicarbide(2–), ethynediide, acetylenediide; acetylide	dicarbido (general) C_2^{2-} , dicarbido(2), ethynediido, ethyne-1,2-diyl
$\mathrm{C}_2\mathrm{H}$	HCC [•] , ethynyl, hydridodicarbon(•)			
C_2N_2	NCCN, ethanedinitrile, bis(nitridocarbon)(C — C); oxalonitrile		$NCCN^{\bullet-}$, bis(nitridocarbonate)($C-C$)(\bullet 1 $-$)	
C ₂ N ₂ O ₂	NCOOCN, dioxidanedicarbonitrile, bis[cyanidooxygen](<i>O</i> — <i>O</i>)		NCOOCCN*-, bis[cyanidooxygenate](<i>O</i> — <i>O</i>)(•1-)* OCNNCO*-, bis(carbonyInitrate)(<i>N</i> — <i>N</i>)(•1-)*	NCOOCCN*-, bis[cyanidooxygenato](<i>O</i> — <i>O</i>)(•1-) OCNNCO*-, bis(carbonyInitrato)(<i>N</i> — <i>N</i>)(•1-)
$C_2N_2S_2$	NCSSCN, disulfanedicarbonitrile, bis[cyanidosulfur](S—S)		NCSSCN $^{\bullet-}$, bis[cyanidosulfate](S — S)(\bullet 1 $-$) $^{\circ}$	NCSSCN*-, bis[cyanidosulfato](S—S)(•1-)
$C_{3}O_{2}$	C ₃ O ₂ , tricarbon dioxide O=C=C=C=O, propa-1,2-diene-1,3-dione			
$C_{12}O_{9}$	C ₁₂ O ₉ , dodecacarbon nonaoxide			

Table IX Continued

Formula for uncharged atom or group		Name	on the state of th	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
Ca	calcium	calcium (general) Ca ²⁺ , calcium(2+)	calcide	calcido
Cd	cadmium	cadmium (general) Cd^{2+} , cadmium(2+)	cadmide	cadmido
Ce	cerium	cerium (general) Ce ³⁺ , cerium(3+) Ce ⁴⁺ , cerium(4+)	ceride	cerido
Cf	californium	californium	californide	californido
CI	chlorine (general) CI*, chlorine(**), monochlorine —CI, chloro	chlorine (general) $Cl^+, chlorine(1+)$	chloride (general) Cl ⁻ , chloride(1–); chloride	chlorido (general) CI ⁻ , chlorido(1–); chlorido
CIF	CIF, fluoridochlorine, chlorine monofluoride	CIF+, fluoridochlorine(1+)		
CIF_2			CIF_2^- , difluoridochlorate(1–)	CIF_2^- , diffuoridochlorato(1–)
CIF_4		CIF_4^+ , tetrafluoridochlorine(1+)	CIF_4^- , tetrafluoridochlorate(1–)	CIF_4^- , tetrafluoridochlorato(1–)
CIH, see HCI				
CIHIN			NHCl ⁻ , chloroazanide, chloridohydridonitrate(1–)	NHCl ⁻ , chloroazanido, chloridohydridonitrato(1–)
СІНО	HOCl, chloranol, hydroxidochlorine ^f ; hypochlorous acid		HOCl [●] -, hydroxidochlorate(•1−)	
${ m CIHO}_2$	HOClO, hydroxy-λ³-chloranone, hydroxidooxidochlorine; chlorous acid			
	cincions acid			

CIHO ₃	HOCIO ₂ ,			
	hydroxy-λ ³ -chloranedione, hydroxidodioxidochlorine; chloric acid			
CIHO4	HOCIO ₃ , hydroxy-λ ⁷ -chloranetrione, hydroxidotrioxidochlorine; perchloric acid			
Cl_2	Cl ₂ , dichlorine	$\operatorname{Cl}_2^{\bullet+}$, dichlorine(\bullet 1+)	$\operatorname{Cl}_2^{\bullet-}$, dichloride($\bullet 1-$)	Cl ₂ , dichlorine Cl ₂ **, dichlorido(•1–)
Cl ₂ OP	$-PCl_2(O)$, dichlorooxo- λ^5 -phosphanyl, phosphorodichloridoyl			
CI_4		Cl_4^+ , tetrachlorine(1+)		
Cm	curium	curium	curide	curido
Co	cobalt	cobalt (general) Co^{2+} , cobalt(2+) Co^{3+} , cobalt(3+)	cobaltide	cobaltido
Ċ.	chromium	chromium (general) Cr^{2+} , chromium(2+) Cr^{3+} , chromium(3+)	chromide	chromido
CrO	CrO, chromium mon(o)oxide, chromium(II) oxide			
CrO_2	CrO ₂ , chromium dioxide, chromium(IV) oxide			
${ m CrO_3}$	CrO ₃ , chromium trioxide, chromium(VI) oxide			
CrO_4	[Cr(O ₂) ₂], diperoxidochromium		CrO ₄ ²⁻ , tetraoxidochromate(2-); chromate CrO ₄ ³⁻ , tetraoxidochromate(3-) CrO ₄ ⁴⁻ , tetraoxidochromate(4-)	CrO_4^{2-} , tetraoxidochromato(2-); chromato CrO_4^{3-} , tetraoxidochromato(3-) CrO_4^{4-} , tetraoxidochromato(4-)
CrO_5	[CrO(O ₂) ₂], oxidodiperoxidochromium			

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
CrO_6			$CrO_2(O_2)^{2^2}$, dioxidodiperoxidochromate(2–)	
${ m CrO_8}$			$Cr(O_2)_4^{2-}$, tetraperoxidochromate(2-) $Cr(O_2)_4^{3-}$, tetraperoxidochromate(3-)	
$\mathrm{Cr}_2\mathrm{O}_3$	Cr ₂ O ₃ , dichromium trioxide, chromium(III) oxide			
Cr_2O_7			$Cr_2O_7^{2-}$, heptaoxidodichromate(2–)	$Cr_2O_7^{2-}$, heptaoxidodichromato(2-)
			O_3 CrOCrO $_3^{2-}$, μ -oxido- bis(trioxidochromate)(2-); dichromate	O ₃ CrOCrO ₃ ²⁻ , µ-oxido- bis(trioxidochromato)(2-); dichromato
Cs	caesium	caesium	caeside	caesido
Cu	copper	copper (general) Cu^+ , $copper(1+)$ Cu^{2+} , $copper(2+)$	cupride	cuprido
D, see H				
D_2 , see H_2				
D_2O , see H_2O				
Db	dubnium	dubnium	dubnide	dubnido
Ds	darmstadtium	darmstadtium	darmstadtide	darmstadtido
Dy	dysprosium	dysprosium	dysproside	dysprosido
Er	erbium	erbium	erbide	erbido

Ę,			000000000000000000000000000000000000000	000000000000000000000000000000000000000
CJ	CHISCEIIIUIII		cinstennae	cinstennao
Eu	europium	europium	europide	europido
F	fluorine	fluorine (general)	fluoride (general)	F^- , fluorido(1–); fluorido
	F [•] , fluorine(•), monofluorine		F^- , fluoride(1–); fluoride	
	-F, fluoro			
FH, see HF				
FHO	HOF, fluoranol,			
	fluoridohydridooxygen			
FNS	NSF, fluoridonitridosulfur			
FN_3	FNNN,			
	fluorido-1kF-trinitrogen(2 N—N)			
FO, see OF				
F_2	F ₂ , difluorine	F_2^+ , difluorine(•1+)	F_2^- , difluoride(•1–)	F_2 , difluorine
F_2N_2	FN=NF,			
	difluorido- $1\kappa F, 2\kappa F$ -			
	dinitrogen(N-N),			
	difluorodiazene			
Fe	iron		ferride	ferrido
		Fe^{2+} , iron(2+)		
		Fe^{3+} , iron(3+)		
Fm	fermium	fermium	fermide	fermido
Fr	francium	francium	francide	francido
Ga	gallium	gallium	gallide	gallido
GaH_2	-GaH ₂ , gallanyl			
GaH_3	GaH ₃ , gallium trihydride			
	[GaH ₃], gallane (parent hydride			
	name), trihydridogallium			
PS	gadolinium	gadolinium	gadolinide	gadolinido
Ge	germanium		germide (general)	germido (general)
	>Ge<, germanetetrayl	Ge^{2+} , germanium(2+)	Ge ⁴⁻ , germide(4-); germide	Ge^{4-} , germido(4-); germido
	=Ge=, germanediylidene	Ge ⁴⁺ , germanium(4+)		
GeH	>GeH-, germanetriyl			
	=GeH−, germanylylidene ≡GeH. germylidyne			

Table IX Continued

Formula for uncharged atom or group		Name	a,	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
GeH ₂ GeH ₃	>GeH ₂ , germanediyl =GeH ₂ , germylidene -GeH ₃ , germyl		GeH ₃ ⁻ , germanide,	GeH ₃ ⁻ , germanido,
GeH ₄	GeH ₄ , germane (parent hydride name),	trihydridogermanium(1+)	trihydridogermanate(1–)	trihydridogermanato(1–)
$\operatorname{Ge}_{\scriptscriptstyle{A}}$	tettanytiituogennamum		$G_{e_4}^{4-}$, tetragermide(4-)	
H HAt HBr	hydrogen H*, hydrogen(*), monohydrogen (natural or unspecified isotopic composition) H*, protium(*), monoprotium 2H* = D*, deuterium(*), monodeuterium 3H* = T*, tritium(*), monotritium HAt, hydrogen astatide [HAt], astatidohydrogen HBr, hydrogen bromide [HBr], bromane (parent hydride name), bromidohydrogen	hydrogen (general) H+, hydrogen(1+), hydron (natural or unspecified isotopic composition) H+, protium(1+), proton ² H+=D+, deuterium(1+), deuteron ³ H+=T+, tritium(1+), triton	hydride (general) H', hydride (natural or unspecified isotopic composition) 'H', protide 2H' = D', deuteride 3H' = T', tritide	hydrido protido deuterido tritido
HCO, see CHO				

		FHF ⁺ , fluorofluoranuide, μ-hydridodifluorate(1 ⁻), difluoridohydrogenate(1 ⁻)				HOIO2 • -, hydroxidodioxidoiodate(• 1 -)			$\text{HMnO}_4^- = [\text{MnO}_3(\text{OH})]^-,$ hydroxidotrioxidomanganate(1–)
HCl ⁺ , chloraniumyl, chloridohydrogen(•1+)	HF+, fluoraniumyl, fluoridohydrogen(•1+)								
HCl, hydrogen chloride [HCl], chlorane (parent hydride name), chloridohydrogen	HF, hydrogen fluoride [HF], fluorane (parent hydride name), fluoridohydrogen		HI, hydrogen iodide [HI], iodane (parent hydride name), iodidohydrogen	HOI, iodanol, hydroxidoiodine ^f ; hypoiodous acid	HOIO, hydroxy- λ^3 -iodanone, hydroxidooxidoiodine; iodous acid	HOIO ₂ , hydroxy- λ^5 -iodanedione, hydroxidodioxidoiodine; iodic acid	HOIO ₃ , hydroxy-λ ⁷ -iodanetrione, hydroxidotrioxidoiodine; periodic acid		$HMnO_4 = [MnO_3(OH)],$ hydroxidotrioxidomanganese
HCI	HF	HF_2	H	OIH	HIO ₂	HIO_{3}	HIO_{4}	H_nN_m , see N_mH_n	$HMnO_4$

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
ONH	HNO = [NH(O)], azanone, hydridooxidonitrogen HON ² •, hydroxidonitrogen(2•) >NH(O), oxo- λ^5 -azanediyl; azonoyl = NH(O), oxo- λ^5 -azanylidene; azonoylidene >N-OH, hydroxyazanediyl = N-OH, hydroxyazanylidene; hydroxyimino	$HNO^{\bullet+} = [NH(O)]^{\bullet+},$ hydridooxidonitrogen(•1+)	HON ²⁻ , hydroxidonitrate(2-)	HON ²⁻ , hydroxidonitrato(2–)
2	HNO ₂ = [NO(OH)], hydroxidooxidonitrogen; nitrous acid >N(O)(OH), hydroxyoxo- λ^5 -azanediyl; hydroxyazoryl =N(O)(OH), hydroxyoxo- λ^5 -azanylidene; hydroxyazorylidene			
HNO_3	$HNO_3 = [NO_2(OH)],$ hydroxidodioxidonitrogen; nitric acid $HNO(O_2) = [NO(OOH)],$ dioxidanidooxidonitrogen, peroxynitrous acid			

			1-olate,	KIGO-2KO- -)	$O)NO_2^-$,	cido- $((N-N)(1-))$	do-1κ <i>O</i> - (•1-)	HO ⁻ , oxidanido; hydroxido											te(1-) hydridooxidosulfato(1-)				
		[HON=NO] ⁻ ,	2-hydroxydiazen-1-olate,	hydroxido-1 κU -0 κ ido-2 κU -dinitrate(N - N)(1-)	$HN_2O_3^- = N(H)(O)NO_2^-,$	hydrido-1 κ H-trioxido- $1\kappa O$, $2\kappa^2 O$ -dinitrate($N-N$)(1–)	$ HON_3 \stackrel{\bullet}{\longrightarrow} , \text{ hydroxido-1}_KO-trinitrate(2 N-N)(\bullet 1-) $	HO ⁺ , oxidanylium, HO ⁻ , oxidanide,	•••	hydroxylium hydroxide								HSO ⁻ , sulfanolate,	hydridooxidosulfate(1–)				
$HNO_4 = [NO_2(OOH)],$ (dioxidanido)dioxidonitrogen; peroxynitric acid $>S(=NH)$ imino- λ^4 -sulfanedivl:	Sulfinimidoyl	-NHNO ₂ , nitroazanyl,	nitroamino					HO*, oxidanyl, HO*	(•); hydroxyl		HPO = [P(H)O], phosphanone,	>PH(O), oxo- λ^5 -phosphanediyl;	phosphonoyl	=PH(O), oxo- λ^5 -phosphanylidene;	phosphonoylidene	=P-OH,	hydroxyphosphanylidene	$-SH(O)$, oxo- λ^4 -sulfanyl	-SOH, hydroxysulfanyl	-OSH, sulfanyloxy	$-SeH(O)$, oxo- λ^4 -selanyl	-SeOH, hydroxyselanyl	-OSeH selanylovy
HNO ₄	CMILI	HN_2O_2			HN_2O_3		HN ₃ O	ОН			НОР							SOH			HOSe		

Table IX Continued

Formula for uncharged		Name	9	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
HO_2	HO ₂ •, dioxidanyl, hydridodioxygen(•) –OOH, dioxidanyl; hydroperoxy	HO_2^+ , dioxidanylium, hydridodioxygen $(1+)$	HO_2^- , dioxidanide, hydrogen(peroxide)(1-)	HO_2^- , dioxidanido, hydrogen(peroxido)(1 $-$)
HO ₂ P	P(O)(OH), hydroxyphosphanone, hydroxidooxidophosphorus >P(O)(OH), hydroxyoxo-λ ⁵ -phosphanediyl; hydroxyphosphoryl =P(O)(OH), hydroxyoxo-λ ⁵ -phosphanylidene; hydroxyoxo-λ ⁵ -phosphanylidene; hydroxyphosphorylidene		HOPO [•] -, hydroxidooxidophosphate(•1–) HPO ₂ ²⁻ , hydridodioxidophosphate(2–)	HOPO•*, hydroxidooxidophosphato(•1–) HPO ₂ ^{2–} , hydridodioxidophosphato(2–)
HO ₂ S	HOOS*, hydrido-1κ <i>H</i> -sulfido-2κ <i>S</i> -dioxygen(*) HOSO*, hydroxidooxidosulfur(*) HSOO*, (hydridosulfato)dioxygen(*) -S(O)(OH), hydroxyoxo-λ ⁴ -sulfanyl; hydroxysulfinyl, sulfino -S(O) ₂ H, dioxo-λ ⁶ -sulfanyl		HOSO ⁻ , hydroxysulfanolate, hydroxidooxidosulfate(1 ⁻)	HOSO ⁻ , hydroxysulfanolato, hydroxidooxidosulfato(1–)

	-	_	
HO_2Se	-Se(O)(OH),		
	hydroxyoxo- λ^4 -selanyl;		
	hydroxyseleniny], selenino		
	$-Se(O)_2H$, dioxo- λ^6 -selanyl		
НО3	HO3. hydridotrioxygen(•)		
	nood, unoxidanyi, nyanao-		
	IKH-trioxygen(2 0—0)(•) -OOOH, trioxidanyl		
HO ₃ P	P(O) ₂ (OH),	HOPO ₂ •-,	HOPO₂ [•] -,
	hydroxy- λ^5 -phosphanedione,	hydroxidodioxidophosphate(•1-)	$hydroxidodioxidophosphato(\bullet 1-)$
	hydroxidodioxidophosphorus	PHO_3^{2-} ,	$PHO_3^{2-},$
		hydridotrioxidophosphate(2–);	hydridotrioxidophosphato $(2-)$;
		phosphonate	phosphonato
		$ \text{HPO}_3^{2-} = \text{PO}_2(\text{OH})^{2-},$	$HPO_3^{2-} = PO_2(OH)^{2-},$
		hydroxidodioxidophosphate(2–);	hydroxidodioxidophosphato(2–);
		hydrogenphosphite	hydrogenphosphito
HO_3S	$-S(O)_2(OH),$	HSO_3^- ,	HSO_3^- ,
	hydroxydioxo- λ^6 -sulfanyl,	hydroxidodioxidosulfate $(1-)$,	hydroxidodioxidosulfato $(1-)$,
	hydroxysulfonyl; sulfo	hydrogensulfite	hydrogensulfito
HO_3Se	HOSeO ₂ *,	$HSeO_3^-$,	$HSeO_3^-$,
	hydroxidodioxidoselenium(•)	hydroxidodioxidoselenate(1-)	hydroxidodioxidoselenato(1–)
	$-\mathrm{Se}(\mathrm{O})_2(\mathrm{OH}),$		
	hydroxydioxo- λ^{o} -selanyl, hydroxyselenonyl; selenono		
HO_4P		$HOPO_3^{\bullet-} = PO_3(OH)^{\bullet-},$	$HOPO_3^{\bullet-} = PO_3(OH)^{\bullet-},$
		hydroxidotrioxidophosphate(•1-)	hydroxidotrioxidophosphato(•1-)
		$ \text{HPO}_4^{2-} = \text{PO}_3(\text{OH})^{2-},$	HPO_4^{2-} ,
		hydroxidotrioxidophosphate $(2-)$;	hydroxidotrioxidophosphato(2–);
		hydrogenphosphate	hydrogenphosphato
HO_4S	HOSO ₃ *, hydro-	HSO_4^- ,	HSO_4^- ,
	xidotrioxidosulfur(•)	hydroxidotrioxidosulfate $(1-)$;	hydroxidotrioxidosulfato $(1-)$;
	$-OS(O)_2(OH),$	hydrogensulfate	hydrogensulfato
	hydroxysultonyloxy; sultooxy		

Table IX Continued

Formula for uncharged atom or group		Name	ar a	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
HO₄Se			HSeO ₄ ⁻ , hydroxidotrioxidoselenate(1-)	$HSeO_4^-$, hydroxidotrioxidoselenato(1–)
НО ₅ Р				PO ₂ (OH)(OO)••, (dioxido)hydroxidodioxido⊃ phosphato(•1-)
HO ₅ S	$HOSO_4^{\bullet} = [SO_2(OH)(OO)]^{\bullet},$ (dioxido)hydroxidodioxidosulfur(\bullet)			
HS	-SH, sulfanyl HS [•] , sulfanyl, hydridosulfur(•)	HS+, sulfanylium, hydridosulfur(1+)	HS ⁻ , sulfanide, hydrogen(sulfide)(1-)	HS ⁻ , sulfanido, hydrogen(sulfido)(1-)
HS ₂	-SSH, disulfanyl		HSS ⁻ , disulfanide	HSS ⁻ , disulfanido
HS_3	-SSSH, trisulfanyl		HSSS ⁻ , trisulfanide	HSSS ⁻ , trisulfanido
HS_4	-SSSSH, tetrasulfanyl		HSSSS ⁻ , tetrasulfanide	HSSSS ⁻ , tetrasulfanido
HS ₅	-SSSSSH, pentasulfanyl		HSSSSS ⁻ , pentasulfanide	HSSSSS ⁻ , pentasulfanido
HSe	HSe*, selanyl, hydridoselenium(*)		HSe ⁻ , selanide,	HSe ⁻ , selanido,
	-SeH, selanyl	hydridoselenium(1+)	hydrogen(selenide)(1-)	hydrogen(selenido)(1–)
HSe_2	-SeSeH, diselanyl		HSeSe ⁻ , diselanide	HSeSe ⁻ , diselanido
НТе	HTe*, tellanyl,		HTe ⁻ , tellanide,	
	hydridotellurium(•) —TeH, tellanyl	hydridotellurium(1+)	hydrogen(tellanide)(1–)	
HTe ₂	-TeTeH, ditellanyl		HTeTe ⁻ , ditellanide	HTeTe ⁻ , ditellanido
H ₂		$H_2^{\bullet+}$, dihydrogen(\bullet 1+)		
	mm	1 H ₂ $^{-+}$, diprotium(•1+)		
	T_2 , ditritium	D_2^{-+} , dideuterium(•1+) T_2^{-+} ditritium(•1+)		
		12 , diumum(*1⊤)		

	-			
H_2Br	H_2Br^{\bullet} , λ^3 -bromanyl,	H_2Br^+ , bromanium,		
	dihydridobromine(•)	dihydridobromine(1+)		
H_2CI	H_2Cl^{\bullet} , λ^3 -chloranyl,	H_2Cl^+ , chloranium,		
	dihydridochlorine(•)	dihydridochlorine(1+)		
H_2F	H_2F^{\bullet} , λ^3 -fluoranyl,	H_2F^+ , fluoranium,		
	dihydridofluorine(•)	dihydridofluorine(1+)		
H_2I	H_2I^{\bullet} , λ^3 -iodanyl,	H_2I^+ , iodanium,		
	dihydridoiodine(•)	dihydridoiodine(1+)		
H_2IO_2	$-I(OH)_2$, dihydroxy- λ^3 -iodanyl			
H_2MnO_4	$H_2MnO_4 = [MnO_2(OH)_2],$			
	dihydroxidodioxidomanganese			
H_2N_m , see N_mH_2				
H_2NO	H_2NO^{\bullet} , aminooxidanyl,		HONH ⁻ , hydroxyazanide,	NHOH ⁻ , hydroxyazanido,
	dihydridooxidonitrogen(•);		hydridohydroxidonitrate(1–)	hydridohydroxidonitrato(1-)
	aminoxyl		H_2NO^- , azanolate,	H_2NO^- , azanolato,
	HONH*, hydroxyazanyl,		aminooxidanide,	aminooxidanido,
	hydridohydroxidonitrogen(•)		dihydridooxidonitrate(1-)	dihydridooxidonitrato(1-)
	-NH(OH), hydroxyazanyl,			
	hydroxyamino			
	-ONH ₂ , aminooxy			
	$-NH_2(O)$, oxo- λ^5 -azanyl;			
	azinoyl			
H_2NOS	$-S(O)NH_2$,			
	azanyloxo- λ^4 -sulfanyl;			
	aminosulfinyl			
H_2NO_2S	$-S(O)_2NH_2$,			
	azanyldioxo- λ^6 -sulfanyl;			
	aminosulfonyl; sulfamoyl			
H_2NO_3		$[NO(OH)_2]^+,$		
		$\frac{1}{2}$		
H_2NS	-SNH ₂ , azanylsulfanyl;			
	aminosulfanyl			
	$-NH_2(S),$			
	sulfanylidene- λ^3 -azanyl;			
	azmoanoj.			

Table IX Continued

Formula for uncharged atom or group		Name	ıe	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
H_2N_m , see N_mH_2				
$ m H_2O$	H_2O , dihydrogen oxide; water $H_2O = [OH_2]$, oxidane (parent hydride name), dihydridooxygen 1H_2O , diprotium oxide; 1H_2O , diprotium oxide; 1H_2O = 2H_2O , dideuterium oxide; 2H_2O water 2H_2O = 3H_2O , ditritium oxide; ${}^3H_2)$ water 3H_2			H ₂ O, aqua
$ m H_2OP$	$-PH_2O$, oxo- λ^5 -phosphanyl; phosphinoyl		PH_2O^- dihydridooxidophosphate(1–); phosphinite	PH_2O^- , dihydridooxidophosphato(1–); phosphinito
H_2OSb	-SbH ₂ O, oxo- λ^5 -stibanyl, stibinoyl			
$ m H_2O_2$	H ₂ O ₂ , dihydrogen peroxide; hydrogen peroxide HOOH, dioxidane (parent hydride name), bis(hydridooxygen)(<i>O</i> — <i>O</i>)	$HOOH^{ullet^+}$, dioxidaniumyl, bis(hydridooxygen) $(O-O)(ullet^+)$		HOOH, dioxidane
$ m H_2O_2P$	 -P(OH)₂, dihydroxyphosphanyl -PH(O)(OH), hydroxyoxo-λ⁵-phosphanyl 		$\mathrm{PH}_2\mathrm{O}_2^-$, dihydridodioxidophosphate(1–); phosphinate	$PH_2O_2^-$, dihydridodioxidophosphato(1–); phosphinato

$ m H_2O_3B$			$H_2BO_3^- = [BO(OH)_2]^-,$ dihydroxidooxidoborate(1–); dihydrogenborate	$H_2BO_3^- = [BO(OH)_2]^-,$ dihydroxidooxidoborato(1–); dihydrogenborato
$\mathrm{H}_2\mathrm{O}_3\mathrm{P}$	$-P(O)(OH)_2$, dihydroxyoxo- λ^5 -phosphanyl; dihydroxyphosphoryl, phosphono		[PHO ₂ (OH)] ⁻ , hydridohydroxidodioxido \bigcirc phosphate(1–); hydrogenphosphonate [PO(OH) ₂] ⁻ , dihydroxidooxidophosphate(1–); dihydrogenphosphite	[PHO₂(OH)] ⁻ , hydridohydroxidodioxido⇔ phosphato(1−); hydrogenphosphonato [PO(OH)₂] ⁻ , dihydroxidooxidophosphato(1−); dihydroxeenphosphito
$\rm H_2O_4P$	$(HO)_2PO_2^{\bullet}$, (dihydroxido)dioxidophosphorus(\bullet)		nosphate(1–);	H ₂ PO ₄ ⁻ , dihydroxidodioxidophosphato(1–); dihydrogenphosphato
$\mathrm{H}_{2}\mathrm{O}_{5}\mathrm{P}_{2}$			$P_2H_2O_5^{2-} = [PH(O)_2OPH(O)_2]^{2-},$ μ -oxido- bis(hydridodioxidophosphate)(2-); diphosphonate	$P_2H_2O_5^2 = [PH(O)_2OPH(O)_2]^2$, μ -oxido-bis(hydridodioxidophosphato)(2-); diphosphonato
H_2PS	$-PH_2(S)$, sulfanylidene- λ^5 -phosphanyl; phosphinothioyl			
H ₂ Po	H ₂ Po, dihydrogen polonide H ₂ Po = [PoH ₂], polane (parent hydride name), dihydridopolonium			
H ₂ S	H_2S , dihydrogen sulfide; hydrogen sulfide $H_2S = [SH_2]$, sulfane (parent hydride name), dihydridosulfur	$H_2S^{\bullet+}$, sulfaniumyl, dihydridosulfur($\bullet 1+$) $-SH_2^+$, sulfaniumyl	$H_2S^{\bullet-}$, sulfanuidyl, dihydridosulfate($\bullet 1-$) ^e	H ₂ S, sulfane
H_2S_2	H ₂ S ₂ , dihydrogen disulfide HSSH, disulfane (parent hydride name), bis(hydridosulfur)(S—S)	HSSH•+, disulfaniumyl, bis(hydridosulfur)(S—S)(•1+)	HSSH [●] -, disulfanuidyl, bis(hydridosulfate)(<i>S</i> — <i>S</i>)(•1−) ^e	HSSH, disulfane
$\mathrm{H}_2\mathrm{S}_3$	H ₂ S ₃ , dihydrogen trisulfide HSSSH, trisulfane (parent hydride name)			HSSSH, trisulfane

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
$ m H_2S_4$	H ₂ S ₄ , dihydrogen tetrasulfide HSSSSH, tetrasulfane (parent hydride name)			HSSSSH, tetrasulfane
H ₂ S ₅	H ₂ S ₅ , dihydrogen pentasulfide HSSSSSH, pentasulfane (parent hydride name)			HSSSSSH, pentasulfane
$ m H_2Se$	H ₂ Se, dihydrogen selenide; hydrogen selenide H ₂ Se = [SeH ₂], selane (parent hydride name), dihydridoselenium	H ₂ Se•+, selaniumyl, dihydridoselenium(•1+) −SeH ₂ +, selaniumyl	$H_2Se^{\bullet-}$, selanuidyl, dihydridoselenate(•1–) ^e	H ₂ Se, selane
$ m H_2Se_2$	H ₂ Se ₂ , dihydrogen diselenide HSeSeH, diselane (parent hydride name), bis(hydridoselenium)(Se—Se)	HSeSeH ^{●+} , diselaniumyl, bis(hydridoselenium)(Se—Se)(•1+)	HSeSeH [•] , diselanuidyl, bis(hydridoselenate)(Se—Se)(•1−) ^e	HSeSeH, diselane
$ m H_2Te$	H ₂ Te, dihydrogen tellanide; hydrogen tellanide H ₂ Te = [TeH ₂], tellane (parent hydride name), dihydridotellurium	H ₂ Te•+, tellaniumyl, dihydridotellurium(•1+) −TeH ₂ +, tellaniumyl	H_2Te^{-} , tellanuidyl, dihydridotellurate(•l-) ^e	H ₂ Te, tellane
H ₃ H ₃ N,,, see		H_3^+ , trihydrogen(1+)		
N_mH_3				

H_3NO	HONH ₂ , azanol, dihydridohydroxidonitrosen:	HONH ₂ *, hydroxyazaniumyl, dihydridohydroxidonitrogen(*1+)		HONH ₂ , azanol, dihydridohydroxidonitrogen:
	hydroxylamine (parent name for organic derivatives)			hydroxylamine
$ m H_3NP$	$-PH_2(=NH)$, imino- λ^5 -phosphanyl; phosphinimidoyl			
$_{ m H_3O}$		H ₃ O ⁺ , oxidanium, trihydridooxygen(1+), aquahydrogen(1+); oxonium (not hydronium)		
H ₃ OS	$H_3OS^+ = [SH_3(O)]^+,$ $oxo-\lambda^5$ -sulfanylium, trihydridooxidosulfur(1+)			
H ₃ OSi	-OSiH ₃ , silyloxy			
H_3O_4S		$[SO(OH)_3]^+ = H_3SO_4^+,$ trihydroxidooxidosulfur(1+), trihydrogen(tetraoxidosulfate)(1+)		
$ m H_3O_5P$	[PO(OH) ₂ (OOH)], (dioxidanido)dihydroxido⇔ oxidophosphorus; peroxyphosphoric acid, phosphoroperoxoic acid			
H_3S	H_3S^{\bullet} , λ^4 -sulfanyl, trihydridosulfur(\bullet)	ı, 1+)	H_3S^- , sulfanuide, trihydridosulfate $(1-)$	
H_3 Se	H_3Se^{\bullet} , λ^4 -selanyl, trihydridoselenium(\bullet)	H ₃ S ⁺ , selanium, trihydridoselenium(1+)	H ₃ Se ⁻ , selanuide, trihydridoselenate(1–)	
$ m H_3Te$	H_3Te^{\bullet} , λ^4 -tellanyl, trihydridotellurium(\bullet)	H_3Te^+ , tellanium, trihydridotellurium $(1+)$	H_3Te^- , tellanuide, trihydridotellurate(1–)	
H_4N_m , see N_mH_4				
H₄NO		NH ₂ OH ₂ +, aminooxidanium, aquadihydridonitrogen(1+) NH ₂ OH ⁺ , hydroxyazanium.		
		trihydridohydroxidonitrogen(1+); hydroxyammonium		

Table IX Continued

Formula for uncharged atom or group		Name	o	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
H_4O		H_4O^{2+} , oxidanediium, tetrahydridooxygen(2+)		
H ₅ IO ₆	IO(OH) ₅ , pentahydroxy- λ^7 -iodanone, pentahydroxidooxidoiodine; orthoperiodic acid			
H ₅ N ₂ , see N ₂ H ₅				
$\mathrm{H}_5\mathrm{O}_2$		[H(H ₂ O) ₂]+, μ-hydrido- bis(dihydridooxygen)(1+), diaquahydrogen(1+)		
H ₆ N ₂ , see N ₂ H ₆				
H_nN_m , see N_mH_n				
Не	helium	helium (general) He ^{•+} , helium(•1+)	helide	helido
НеН		HeH ⁺ , hydridohelium(1+)		
He_2		He_2^+ , dihelium(1+) He_2^{2+} , dihelium(2+)		
Hf	hafnium	hafnium	hafnide	hafnido
Hg	mercury	mercury (general) Hg^{2+} , mercury(2+)	mercuride	mercurido
Hg_2		Hg_2^{2+} , dimercury(2+)		
Но	holmium	holmium	holmide	holmido

Hs	hassium	hassium	hasside	hassido
I	iodine (general) I*, iodine(*), monoiodine -I, iodo	iodine (general) I ⁺ , iodine(1+)	iodide (general) I', iodide(1 ⁻); iodide	Γ , iodido(1 $-$); iodido
ICl ₂	ICl ₂ $^{\bullet}$, dichloridoiodine($^{\bullet}$) -ICl ₂ , dichloro- λ^3 -iodanyl	ICl ₂ ⁺ , dichloroiodanium, dichloridoiodine(1+)		
IF	IF, iodine fluoride [IF], fluoridoiodine			
IF_4		IF ₄ ⁺ , tetrafluoro- λ^3 -iodanium, tetrafluoridoiodine(1+)	IF_4^- , tetrafluoro- λ^3 -iodanuide, tetrafluoridoiodate(1–)	IF ₄ ⁻ , tetrafluoro- λ^3 -iodanuido, tetrafluoridoiodato(1-)
IF_{6}			IF_6^- , hexafluoro- λ^5 -iodanuide, hexafluoridoiodate(1–)	F_6^- , hexafluoro- $λ^5$ -iodanuido, hexafluoridoiodato(1–)
IH, see HI				
I_2	I ₂ , diiodine	$I_2^{\bullet+}$, diiodine($\bullet 1+$)	$I_2^{\bullet-}$, diiodide(•1–)	I ₂ , diiodine
I_3	I ₃ , triiodine		I_3^- , triiodide(1–); triiodide	I_3^- , triiodido(1–); triiodido
In	indium	indium	indide	indido
InH_2	-InH ₂ , indiganyl			
InH_3	InH ₃ , indium trihydride			
	[InH ₃], indigane (parent hydride name), trihydridoindium			
Ir	iridium	iridium	iridide	iridido
K	potassium	potassium	potasside	potassido
KO_2	KO_2 , potassium dioxide(1–);			
	potassium superoxide			
$\overline{\mathrm{KO}_3}$	KO_3 , potassium trioxide(1–); potassium ozonide			
K_2O	K ₂ O, dipotassium oxide			
K_2O_2	K_2O_2 , dipotassium dioxide(2–);			
	potassium peroxide			
Kr	krypton	krypton	kryptonide	kryptonido
La	lanthanum	lanthanum	lanthanide ^d	lanthanido
Li	lithium	lithium (general) Li+. lithium(1+)	lithide (general) Li ⁻ . lithide(1–): lithide	lithido Li ⁻ . lithido(1–): lithido
			, , , , , , , , , , , , , , , , , , , ,	

Table IX Continued

Formula for uncharged atom or group		Name	9	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
LiAl LiBe	[LiAl], aluminidolithium [LiBe], beryllidolithium			
LiCl	LiCl, lithium chloride [LiCl], chloridolithium	LiCl ⁺ , chloridolithium(1+)	LiCl ⁻ , chloridolithate(1–)	LiCl ⁻ , chloridolithato(1–)
ГІН	LiH, lithium hydride [LiH], hydridolithium	LiH+, hydridolithium(1+)	LiH ⁻ , hydridolithate(1–)	LiH ⁻ , hydridolithato(1–)
LiMg	LiMg, lithium monomagneside	LiMg ⁺ , magnesidolithium(1+)		
Li_2	Li ₂ , dilithium	$\operatorname{Li}_{2}^{+}$, dilithium($\bullet 1+$)	Li_2^- , dilithide(•1-)	Li_2^- , dilithido(\bullet 1 $-$)
Lr	lawrencium	lawrencium	lawrencide	lawrencido
Lu	lutetium	lutetium	lutetide	lutetido
Md	mendelevium	mendelevium	mendelevide	mendelevido
Mg	magnesium	magnesium (general)	magneside (general)	magnesido
		Mg^+ , magnesium(1+) Mg^{2+} , magnesium(2+)	Mg ⁻ , magneside(1–)	Mg ⁻ , magnesido(1–)
Mn	manganese	manganese (general) Mn^{2+} , manganese(2+) Mn^{3+} , manganese(3+)	manganide	manganido
MnO	MnO, manganese mon(o)oxide, manganese(II) oxide			
MnO_2	MnO ₂ , manganese dioxide, manganese(IV) oxide			
MnO_3		MnO ₃ +, trioxidomanganese(1+)		

MnO_4			MnO ₄ ⁻ , tetraoxidomanganate(1-), permanganate MnO ₄ ² , tetraoxidomanganate(2-), manganate(VI) MnO ₄ ³ -, tetraoxidomanganate(3-), manganate(V)	MnO ₄ ⁻ , tetraoxidomanganato(1-), permanganato MnO ₄ ²⁻ , tetraoxidomanganato(2-), manganato(VI) MnO ₄ ³⁻ , tetraoxidomanganato(3-), manganato(V) manganato(V)
$\mathrm{Mn}_2\mathrm{O}_3$	Mn_2O_3 , dimanganese trioxide, manganese(III) oxide			
$\mathrm{Mn_2O_7}$	Mn ₂ O ₇ , dimanganese heptaoxide, manganese(VII) oxide [O ₃ MnOMnO ₃],			
$\mathrm{Mn}_3\mathrm{O}_4$	μ-oxido-bis(trioxidomanganese) Mn ₃ O ₄ , trimanganese tetraoxide Mn ^{II} Mn ^{III} ₂ O ₄ , manoanese(II III) retraoxide			
Mo Mt	molybdenum meitnerium	molybdenum meitnerium	molybdenide meitheride	molybdenido meitnerido
N N	Mu [*] = μ ⁺ e , muonum nitrogen N•, nitrogen(•), mononitrogen −N<, azanetriyl; nitrilo −N=, azanylylidene ≡N, azanylidyne	$Mu^{+} = \mu^{+}$, muon nitrogen (general) N^{+} , nitrogen(1+)	Mu = μ^+ (e) ² , muonide nitride (general) N³-, nitride(3-), azanetriide; nitride = N-, azanidylidene; amidylidene -N²-, azanediidyl	N ³⁻ , nitrido(3), azanetriido
NCO, see CNO NCS, see CNS				
NCl ₂			NCl ₂ ⁻ , dichloroazanide, dichloridonitrate(1–)	NCl ₂ ⁻ , dichloroazanido, dichloridonitrato(1-)
NF			NF ² -, fluoroazanediide, fluoridonitrate(2–)	NF ² -, fluoroazanediido, fluoridonitrato(2-)

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
${ m NF}_3$	NF ₃ , nitrogen trifluoride [NF ₃], trifluoroazane, trifluoridonitrogen			NF ₃ , trifluoroazane, trifluoridonitrogen
NF_4		NF_4^+ , tetrafluoroammonium, tetrafluoroazanium, tetrafluoridonitrogen $(1+)$		
HN	NH ² •, azanylidene, hydridonitrogen(2•); nitrene >NH, azanediyl =NH, azanylidene; imino	NH ⁺ , azanyliumdiyl, hydridonitrogen(1+) NH ²⁺ , azanebis(ylium), hydridonitrogen(2+)	NH ⁻ , azanidyl, hydridonitrate(1 ⁻) NH ²⁻ , azanediide, hydridonitrate(2 ⁻); imide -NH ⁻ , azanidyl; amidyl	NH ^{2–} , azanediido, hydridonitrato(2–); imido
NH_2	NH ₂ •, azanyl, dihydridonitrogen(•); aminyl −NH ₂ , azanyl; amino	$\mathrm{NH}_2^+,$ azanylium, dihydridonitrogen(1+)	NH_2^- , azanide, dihydridonitrate(1–); amide	NH_2^- , azanido, dihydridonitrato(1–), amido
$ m NH_3$	NH ₃ , azane (parent hydride name), amine (parent name for certain organic derivatives), trihydridonitrogen; ammonia	NH ₃ ^{•+} , azaniumyl, trihydridonitrogen(•1+) -NH ₃ +, azaniumyl; ammonio	$NH_3^{\bullet-}$, azanuidyl, trihydridonitrate($\bullet 1-$) ^e	$ m NH_3$, ammine
NH_4	NH_4^{\bullet} , λ^5 -azanyl, tetrahydridonitrogen(\bullet)	NH ₄ +, azanium; ammonium		

Ox	NO, nitrogen mon(o)oxide (not nitric oxide) NO $^{\bullet}$, oxoazanyl, oxidonitrogen($^{\bullet}$); nitrosyl $^{-}$ N($^{-}$ O, oxoazanyl; nitroso $^{-}$ N($^{-}$ O) $^{-}$, oxo- $^{\lambda}$ 5-azanetriyl; azoryl $^{-}$ N($^{-}$ O) $^{-}$, oxo- $^{\lambda}$ 5-azanylylidene; azorylidene $^{-}$ N($^{-}$ O), oxo- $^{\lambda}$ 5-azanylidyne; azorylidyne $^{-}$ O+ $^{-}$ N($^{-}$	NO ⁺ , oxidonitrogen(1+) (not nitrosyl) NO ²⁺ , oxidonitrogen(•2+)	NO ⁻ , oxidonitrate(1–) NO ^{(2•)-} , oxidonitrate(2•1–)	NO, oxidonitrogen (general); nitrosyl = oxidonitrogen-κN (general) NO ⁺ , oxidonitrogen(1+) NO ⁻ , oxidonitrato(1-)
NO_2	NO ₂ , nitrogen dioxide NO ₂ *= ONO*, nitrosooxidanyl, dioxidonitrogen(*); nitryl -NO ₂ , nitro -ONO, nitrosooxy	NO ₂ +, dioxidonitrogen(1+) [not nitryl]	NO_2^- , dioxidonitrate(1–); nitrite $NO_2^{\bullet 2-}$, dioxidonitrate($\bullet 2-$)	NO_2^- , dioxidonitrato(1–); nitrito $NO_2^{\bullet 2-}$, dioxidonitrato($\bullet 2-$)
NO_3	NO ₃ , nitrogen trioxide NO ₃ • = O ₂ NO°, nitrooxidanyl, trioxidonitrogen(•) ONOO°, nitrosodioxidanyl, oxidoperoxidonitrogen(•) -ONO ₂ , nitrooxy		NO ₃ ⁻ , trioxidonitrate(1–); nitrate NO ₃ ⁻²⁻ , trioxidonitrate(•2–) [NO(OO)] ⁻ , oxidoperoxidonitrate(1–); peroxynitrite	NO ₃ ⁻ , trioxidonitrato(1–); nitrato NO ₃ * ⁻ , trioxidonitrato(*2–) [NO(OO)] ⁻ , oxidoperoxidonitrato(1–); peroxynitrito
NO_4		1	$NO_2(O_2)^-$, dioxidoperoxidonitrate(1–); peroxymitrate	$NO_2(O_2)^-$, dioxidoperoxidonitrato(1–); peroxynitrato
NS	NS, nitrogen monosulfide NS*, sulfidonitrogen(*) -N=S, sulfanylideneazanyl; thionitroso	NS+, sulfidonitrogen(1+) (not thionitrosyl)	NS ⁻ , sulfidonitrate(1–)	NS, sulfidonitrogen, sulfidonitrato, thionitrosyl (general) NS+, sulfidonitrogen(1+) NS ⁻ , sulfidonitrato(1-)

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
$ m N_2$	N ₂ , dinitrogen =N ⁺ =N ⁻ , (azanidylidene)azaniumylidene; diazo =NN=, diazane-1,2-diylidene; hydrazinediylidene -N=N ⁻ , diazene-1,2-diyl; azo	$N_2^{\bullet+}$, dinitrogen(\bullet 1+) N_2^{2+} , dinitrogen(2+) $-N^+\equiv N$, diazyn-1-ium-1-yl	N_2^{2-} , dinitride(2–) N_2^{4-} , dinitride(4–), diazanetetraide; hydrazinetetraide	N_2 , dinitrogen N_2^{2-} , dinitrido(2–) N_2^{4-} , dinitrido(4–), diazanetetraido; hydrazinetetraido
N_2H		N≡NH+, diazynium	N=NH ⁻ , diazenide NNH ³⁻ , diazanetriide, hydrazinetriide	N=NH ⁻ , diazemido NNH ³⁻ , diazanetriido, hydrazinetriido
$ m N_2H_2$	HN=NH, diazene "N=NH ₂ +, diazen-2-ium-1-ide H ₂ NN ² •, diazanylidene, hydrazinylidene =NNH ₂ , diazanylidene; hydrazinylidene *HNNH [*] •, diazane-1,2-diyl; hydrazine-1,2-diyl -HNNH [*] –, diazane-1,2-diyl; hydrazine-1,2-diyl	HNNH ²⁺ , diazynediium	HNNH ²⁻ , diazane-1,2-diide, hydrazine-1,2-diide H_2NN^{2-} , diazane-1,1-diide, hydrazine-1,1-diide	HN=NH, diazene N=NH ₂ +, diazen-2-ium-1-ido HNNH ² -, diazane-1,2-diido, hydrazine-1,2-diido H ₂ NN ² -, diazane-1,1-diido, hydrazine-1,1-diido
$ m N_2H_3$	H₂NNH•, diazanyl, trihydridodinitrogen(N—N)(•); hydrazinyl −NHNH₂, diazanyl; hydrazinyl ²-NNH3+, diazan-2-ium-1,1-diide	$\mathrm{HN} = \mathrm{NH}_2^{-1}$, diazenium	H ₂ NNH ⁻ , diazanide, hydrazinide	2-NNH3+, diazan-2-ium-1,1-diido H ₂ NNH ⁻ , diazanido, hydrazinido

$ m N_2H_4$	H ₂ NNH ₂ , diazane (parent hydride name), hydrazine (parent name for organic derivatives) ¬NHNH ₃ +, diazan-2-ium-1-ide	H ₂ NNH ₂ •+, diazaniumyl, bis(dihydridonitrogen)(N—N)(•1+); hydraziniumyl H ₂ N=NH ₂ ²⁺ , diazenediium		H ₂ NNH ₂ , diazane, hydrazine ¬NHNH ₃ +, diazan-2-ium-1-ido
$ m N_2H_5$		$H_2NNH_3^+$, diazanium, hydrazinium		
$ m N_2H_6$		H ₃ NNH ₃ ²⁺ , diazanediium, hydrazinediium		
N_2O	N_2O , dinitrogen oxide (<i>not</i> nitrous oxide)		$N_2O^{\bullet-}$, oxidodinitrate(•1–)	N ₂ O, dinitrogen oxide (general) NNO, oxidodinitrogen(<i>N</i> — <i>N</i>)
	NNO, oxidodinitrogen(N — N) $-N(O)=N-$, azoxy			$N_2O^{\bullet-}$, oxidodinitrato(•1–)
N_2O_2	N_2O_2 , dinitrogen dioxide ONNO, bis(oxidonitrogen)(<i>N</i> — <i>N</i>)		$N_2O_2^{2-}$, diazenediolate, bis(oxidonitrate)(N — N)(2 $-$)	$N_2O_2^{2-}$, bis(oxidonitrato)($N-N$)(2-)
N_2O_3	N ₂ O ₃ , dinitrogen trioxide		$N_2O_3^{2-} = [O_2NNO]^{2-},$	
	O_2 NNO, trioxido-1 κ^2 0,2 κ 0-		trioxido-1 K^-U , ZKU -dinitrate(N — N)(2 $-$)	
	dinitrogen(N—N)			
	$NO^+NO_2^-$, oxidonitrogen(1+)			
	dioxidonitrate(1-)			
	ONONO, dinitrosooxidane, u-oxido-bis(oxidonitrogen)			
N_2O_4	N ₂ O ₄ , dinitrogen tetraoxide			
	O_2NNO_2 , bis(dioxidonitrogen)($N-N$)			
	ONOONO,			
	1,2-dinitrosodioxidane,			
	bis(nitrosyloxygen)(O — O),			
	2,5-diazy-1,3,4,6-			
	tetraoxy-[6]catena			
	$NO^+NO_3^-$, oxidonitrogen(1+)			
	trioxidonitrate(1-)			

Table IX Continued

Formula for uncharged atom or group		Name	a.	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
N_2O_5	N ₂ O ₅ , dinitrogen pentaoxide O ₂ NONO ₂ , dinitrooxidane, μ-oxido- bis(dioxidonitrogen)(<i>N</i> — <i>N</i>) NO ₂ +NO ₃ -, dioxidonitrogen(1+) trioxidonitrate(1-)			
N_3	N_3^{\bullet} , trinitrogen(\bullet) $-N=N^+=N^-$, azido		N_3^- , trinitride(1–); azide	N_3^- , trinitrido(1–); azido
N_3H	N ₃ H, hydrogen trinitride(1–); hydrogen azide [NNNH], hydrido-1 <i>kH</i> -trinitrogen(2 <i>N</i> — <i>N</i>)			
N_3H_2 N_3H_4	-NHN=NH, triaz-2-en-1-yl -NHNHNH, triazan-1-yl			
N_5		N_5^+ , pentanitrogen(1+)		
N_6			$N_6^{\bullet-}$, hexanitride(\bullet 1 $-$)	$N_6^{\bullet-}$, hexanitrido(\bullet 1 $-$)
Na	sodium	sodium (general) Na ⁺ , sodium(1+)	sodide (general) Na ⁻ , sodide(1–); sodide	sodido Na ⁻ , sodido(1-); sodido
NaCl	NaCl, sodium chloride [NaCl], chloridosodium	NaCl ⁺ , chloridosodium(1+)	NaCl ⁻ , chloridosodate(1–)	
Na_2	Na ₂ , disodium	Na_2^+ , disodium(1+)	Na_2^- , disodide(1–)	Na_2^- , disodido(1–)
Nb	niobium	niobium	niobide	niobido
PN	neodymium	neodymium	neodymide	neodymido

ואפ	пеоп	neon (general) Ne ⁺ , neon(1+)	neomae	neomido
NeH		NeH ⁺ , hydridoneon(1+)		
NeHe		NeHe ⁺ , helidoneon(1+)		
ij	nickel	nickel (general) Ni ²⁺ , nickel(2+) Ni ³⁺ sickel(2+)	nickelide	nickelido
No	nobelium		nobelide	nobelido
dN	neptunium	ı	neptunide	neptunido
${ m NpO}_2$	NpO ₂ , neptunium dioxide	NpO_2^+ , dioxidoneptunium(1+) [not neptuny](1+)		
		$InpO_2^{2+}$, dioxidonepumnum(2+) [not neptunyl(2+)]		
0	oxygen (general)		oxide (general)	O^{2-} , oxido
	O, monooxygen	<u></u>	$O^{\bullet-}$, oxidanidyl, oxide($\bullet 1-$)	
	O ² •, oxidanylidene,		O^{2-} , oxide(2-); oxide	
	monooxygen(2•)		-O-, oxido	
	>0, oxy, epoxy (in rings)			
	=0, oxo			
OBr	OBr, oxygen (mono)bromide ^f OBr*, bromidooxygen(*) ^f ;	OBr^+ , bromidooxygen $(1+)^f$ (not bromosyl)	OBr ⁻ , bromidooxygenate(1-) f ; oxidobromate(1-) f , hypobromite	OBr ^{$^-$} , bromidooxygenato(1-) f ; oxidobromato(1-) f , hypobromito
	bromosyl			
	-BrO, oxo- λ^3 -bromanyl; bromosyl			
	-OBr, bromooxy			
OCN, see CNO				
OCI	OCI, oxygen (mono)chloridef OCI*, chloridooxygen(*) ^f ;		OCI ⁻ , chloridooxygenate(1–) f ; oxidochlorate(1–) f , hypochlorite	OCI $^-$, chloridooxygenato(1 $^-$) t ; oxidochlorato(1 $^-$) t , hypochlorito
	chlorosyl			
	$-\text{CIO}$, oxo- λ^3 -chloranyl; chlorosyl			
OD, see H ₂ O	-OCI, CIIIOLOOAJ			
002, 300 1120				

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
OF OF ₂	OF, oxygen (mono)fluoride OF [•] , fluoridooxygen(•) −FO, oxo-λ³-fluoranyl; fluorosyl OF ₂ , oxygen difluoride	OF+, fluoridooxygen(1+)	OF ⁻ , fluoridooxygenate(1–)	
$ \begin{array}{c} OH_n, \text{ see } H_nO\\ (n=1-4) \end{array} $	[OF ₂], difluoridooxygen			
O^1H_2 , see H_2O	4		30 17 11 11 11 11 11	3 17
OI	OI, oxygen (mono)iodide ^t OI°, iodidooxygen(•) ^t , iodosyl –IO, oxo-λ ³ -iodanyl; iodosyl –OI, iodooxy	OI+, iodidooxygen(1+) [†] (not iodosyl)	OI ⁻ , iodidooxygenate(1-) ^t ; oxidoiodate(1-) ^t , hypoiodite OI ^{•2-} , iodidooxygenate(•2-) ^t	OI ⁻ , iodidooxygenato $(1-)^{t}$; oxidoiodato $(1-)^{t}$, hypoiodito
ONC, see CNO				
OT_2 , see H_2O				
O_2	O_2 , dioxygen $O_2^{2\bullet}$, dioxidanediyl,		ide	dioxido (general) O ₂ , dioxygen
	dioxygen(2•) -OO-, dioxidanediyl; peroxy	O_2^{2+} , dioxidanebis(ylium), dioxygen(2+)	(not hyperoxide) O_2^{2-} , dioxidanediide, dioxide(2-); peroxide	$O_2^{\bullet-}$, dioxido(•1-); superoxido O_2^{2-} , dioxidanediido, dioxido(2-); peroxido
O ₂ Br	O ₂ Br, dioxygen bromide ^f BrO ₂ •, dioxidobromine(•) -BrO ₂ , dioxo-λ ⁵ -bromanyl; bromyl -OBrO, oxo-λ ³ -bromanyloxy	BrO_2^+ , dioxidobromine(1+) (not bromyl)	BrO_2^- , dioxidobromate(1–); bromite	BrO_2^- , dioxidobromato(1–); bromito

0 ₂ CI	O ₂ Cl, dioxygen chloride ^f ClO ₂ •, dioxidochlorine(•) ClOO•, chloridodioxygen(<i>O</i> — <i>O</i>)(•) —ClO ₂ •, dioxo- λ 5-chloranyl; chloryl —OClO, oxo- λ 3-chloranyloxy	ClO ₂ +, dioxidochlorine(1+) (not chloryl)	CIO ₂ ⁻ , dioxidochlorate(1–); chlorite	CIO ₂ ⁻ , dioxidochlorato(1–); chlorito
O_2CI_2		O ₂ Cl ₂ ⁺ , (dioxygen dichloride)(1+) ^f		
$ m O_2F_2$	O ₂ F ₂ , dioxygen difluoride FOOF, difluorodioxidane, bis(fluoridooxygen)(<i>O</i> — <i>O</i>)			
0_2 I	O ₂ I, dioxygen iodide ^f IO ₂ •, dioxidoiodine(•) -IO ₂ , dioxo- λ^5 -iodanyl; iodyl -OIO, oxo- λ^3 -iodanyloxy	IO ₂ +, dioxidoiodine(1+) (not iodyl)	10_2^- , dioxidoiodate(1–); iodite	10_2^- , dioxidoiodato(1–); iodito
O_3	O ₃ , trioxygen; ozone -OOO-, trioxidanediyl		O ₃ •-, trioxidanidyl, trioxide(•1-); ozonide	O ₃ , trioxygen; ozone O ₃ —, trioxido(•1—); ozonido
O ₃ Br	O ₃ Br, trioxygen bromide ^f BrO ₃ •, trioxidobromine(•) –BrO ₃ , trioxo-λ ² -bromanyl; perbromyl –OBrO ₂ , dioxo-λ ⁵ -bromanyloxy	BrO ₃ +, trioxidobromine(1+) (not perbromyl)	BrO_3^- , trioxidobromate(1–); bromate	BrO_3^- , trioxidobromato(1–); bromato
0³CI	O ₃ Cl, trioxygen chloride ^f ClO ₃ •, trioxidochlorine(•) –ClO ₃ , trioxo-λ ² -chloranyl; perchloryl –OClO ₂ , dioxo-λ ⁵ -chloranyloxy	ClO ₃ +, trioxidochlorine(1+) (not perchloryl)	CIO_3^- , trioxidochlorate(1–); chlorate	CIO_3^- , trioxidochlorato(1–); chlorato
O ₃ I	O ₃ I, trioxygen iodide ^f IO ₃ •, trioxidoiodine(•) –IO ₃ , trioxo-λ ⁷ -iodanyl; periodyl –OIO ₂ , dioxo-λ ⁵ -iodanyloxy	IO ₃ +, trioxidoiodine(1+) (not periodyl)	IO_3^- , trioxidoiodate(1–); iodate	IO_3^- , trioxidoiodato(1–); iodato
O_4 Br	O ₄ Br, tetraoxygen bromide ^f BrO ₄ •, tetraoxidobromine(•) -OBrO ₃ , trioxo-λ ⁷ -bromanyloxy		BrO_4^- , tetraoxidobromate(1–); perbromate	BrO_4^- , tetraoxidobromato(1–); perbromato

Table IX Continued

Formula for uncharged atom or group		Name	a.	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
O ₄ CI	O ₄ Cl, tetraoxygen chloride ^f ClO ₄ •, tetraoxidochlorine(•) -OClO ₃ , trioxo-λ ⁷ -chloranyloxy		CIO_4^- , tetraoxidochlorate(1–); perchlorate	CIO_4^- , tetraoxidochlorato(1–); perchlorato
O ₄ I	O ₄ I, tetraoxygen iodide ^f IO ₄ •, tetraoxidoiodine(•) —OIO ₃ , trioxo-λ ⁷ -iodanyloxy		IO_4^- , tetraoxidoiodate(1–); periodate	IO_4^- , tetraoxidoiodato(1–); periodato
O_5I			10_5^{3-} , pentaoxidoiodate(3-)	10_5^{3-} , pentaoxidoiodato(3-)
$ m I^9O$			IO_6^{5-} , hexaoxidoiodate(5-); orthoperiodate	IO_6^{5-} , hexaoxidoiodato(5-); orthoperiodato
O_9I_2			$I_2O_9^{4-}$, nonaoxidodiiodate(4-) $[O_3I(\mu - O)_3IO_3]^{4-}$, tri- μ -oxido-bis(trioxidoiodate)(4-)	$I_2O_9^{4-}$, nonaoxidodiiodato(4–) $[O_3I(\mu-O)_3IO_3]^{4-}$, tri- μ -oxido-bis(trioxidoiodato)(4–)
Os	osmium	osmium	osmide	osmido
А	phosphorus (general) P*, phosphorus(*), monophosphorus >P-, phosphanetriyl	phosphorus (general) P+, phosphorus(1+)	phosphide (general) P ⁻ , phosphide(1–) P ³⁻ , phosphide(3–), phosphanetriide; phosphide	P³-, phosphido, phosphanetriido
PF			PF ²⁻ , fluorophosphanediide, fluoridophosphate(2-)	PF ²⁻ , fluorophosphanediido, fluoridophosphato(2-)
PF_2			PF_2^- , difluorophosphanide, difluoridophosphate(1–)	PF_2^- , difluorophosphanido, difluoridophosphato(1–)
PF_3	PF ₃ , phosphorus trifluoride [PF ₃], trifluorophosphane, trifluoridophosphorus			

PF_4		PF ₄ +, tetrafluorophosphanium, tetrafluoridophosphorus(1+)	PF ₄ ⁻ , tetrafluorophosphanuide, tetrafluoridophosphate(1–)	PF ₄ ⁻ , tetrafluorophosphanuido, tetrafluoridophosphato(1–)
PF_5	PF ₅ , phosphorus pentafluoride [PF ₅], pentafluoro- λ^5 -phosphane, pentafluoridophosphorus			
PF_6			anuide, e(1–)	PF_6^- , hexafluoro- λ^5 -phosphanuido, hexafluoridophosphato(1–)
PH	PH ² •, phosphanylidene, hydridophosphorus(2•) >PH, phosphanediyl =PH, phosphanylidene	PH•+, phosphanyliumyl, hydridophosphorus(•1+) PH²+, phosphanebis(ylium), hydridophosphorus(2+)	PH [•] , phosphanidyl, hydridophosphate(•1−) PH ^{2−} , phosphanediide, hydridophosphate(2−)	PH ²⁻ , phosphanediido, hydridophosphato(2–)
PH_2	PH ₂ •, phosphanyl, dihydridophosphorus(•) —PH ₂ , phosphanyl	PH_2^+ , phosphanylium, dihydridophosphorus(1+)	$\mathrm{PH_2}^-$, phosphanide, dihydridophosphate(1–)	PH_2^- , phosphanido, dihydridophosphato(1–)
PH_3	PH ₃ , phosphorus trihydride [PH ₃], phosphane (parent hydride name), trihydridophosphorus	PH₃ ⁺ , phosphaniumyl, trihydridophosphorus(•1+) −PH₃ ⁺ , phosphaniumyl	PH ₃ $^{\bullet}$, phosphanuidyl, trihydridophosphate($^{\bullet}1$ -) $^{\circ}$	PH ₃ , phosphane
PH_4	−PH₄, λ⁵-phosphanyl	PH ₄ +, phosphanium, tetrahydridophosphorus(1+)	$\mathrm{PH_4}^-$, phosphanuide, tetrahydridophosphate(1–)	PH_4^- , phosphanuido, tetrahydridophosphato(1–)
PH_{S}	PH ₅ , phosphorus pentahydride [PH ₅], λ ⁵ -phosphane (parent hydride name), pentahydridophosphorus			
PN	P=N, nitridophosphorus $>$ P=N, azanylidyne- λ^5 -phosphanediyl; phosphoronitridoyl			

Table IX Continued

Formula for uncharged atom or group		Name	в	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
PO	PO $^{\bullet}$, oxophosphanyl, oxidophosphorus($^{\bullet}$), phosphorus mon(o)oxide; phosphoryl >P(O) $^{-}$, oxo- λ^5 -phosphanetriyl; phosphoryl =P(O) $^{-}$, oxo- λ^5 -phosphanylylidene; phosphorylidene \equiv P(O), oxo- λ^5 -phosphanylidyne; phosphorylidyne	PO+, oxidophosphorus(1+) (not phosphoryl)	PO ⁻ , oxidophosphate(1–)	
PO_2	$-P(O)_2$, dioxo- λ^5 -phosphanyl		PO_2^- , dioxidophosphate(1–)	PO_2^- , dioxidophosphato(1–)
PO_3			PO ₃ ⁻ , trioxidophosphate(1–) PO ₃ ⁻² , trioxidophosphate(•2–) PO ₃ ⁻³ , trioxidophosphate(3–); phosphite (PO ₃ ⁻) _n = (P(O) ₂ O) _n ⁿ , catena-poly[(dioxidophosphate- μ - oxido)(1–)]; metaphosphate -P(O)(O ⁻) ₂ , dioxidooxo- λ ⁵ -phosphanyl; phosphonato	PO ₃ ⁻ , trioxidophosphato(1–) PO ₃ • ² -, trioxidophosphato(•2–) PO ₃ ³ -, trioxidophosphato(3–); phosphito

PO_4			PO ₄ •2-, tetraoxidophosphate(•2-) PO ₄ 3-, tetraoxidophosphate(3-);	PO ₄ 3-, tetraoxidophosphato(3-);
PO_5			Proof. P	$PO_5^{3-} = PO_3(OO)^{3-}$, trioxidoneroxidonhocuhoto(3-):
			$PO_5^{3-} = PO_3(OO)^{3-}$	uroxidoperoxidopnospuato(5–), peroxyphosphato,
			trioxidoperoxidophosphate(3–); peroxyphosphate,	phosphoroperoxoato
PS	PS*, sulfidophosphorus(*); -PS, thiophosphoryl	PS+, sulfidophosphorus(1+) (not thiophosphoryl)	prosperor de la company de la	
PS_4			PS_4^{3-} ,	PS_4^{3-} ,
			tetrasulfidophosphate(3–)	tetrasulfidophosphato $(3-)$
P_2	P ₂ , diphosphorus	P_2^+ , diphosphorus(1+)	P_2^- , diphosphide(1–)	P ₂ , diphosphorus
			P_2^{2-} , diphosphide(2-)	P_2^- , diphosphido(1–) P_2^{2-} , diphosphido(2–)
Р,Н			HP=P dinhosphenide	HP=P dinhosphenido
7 -			PPH ³⁻ , diphosphanetriide	PPH ³⁻ , diphosphanetriido
P_2H_2	HP=PH, diphosphene (parent		HPPH ²⁻ , diphosphane-1,2-diide	HP=PH, diphosphene
	hydride name)		H_2PP^{2-} , diphosphane-1,1-diide	HPPH ²⁻ , diphosphane-1,2-diido
	H ₂ PP ² •, diphosphanylidene =PPH ₂ , diphosphanylidene -HPPH diphosphane-1 2-diyl			H ₂ PP ²⁻ , diphosphane-1,1-diido
P_2H_3	H ₂ PPH [•] , diphosphanyl,		H ₂ PPH ⁻ , diphosphanide	H ₂ PPH ⁻ , diphosphanido
1	trihydridodiphosphorus(<i>P</i> — <i>P</i>)(•) —HPPH ₂ , diphosphanyl			•
P_2H_4	H ₂ PPH ₂ , diphosphane (parent hydride name)			H ₂ PPH ₂ , diphosphane
P_2O_6			$O_3PPO_3^{3-}$, bis(trioxidophosphate)($P-P$)(4–); hypodiphosphate	$O_3PPO_3^{3-}$, bis(trioxidophosphato)($P-P$)(4-); hypodiphosphato
P_2O_7			$O_3POPO_3^{4-}$, μ -oxido- bis(trioxidophosphate)(4-); diphosphate	O ₃ POPO ₃ ⁴⁻ , μ-oxido- bis(trioxidophosphato)(4-); diphosphato
			apricoprime	arbino branco

Table IX Continued

Formula for uncharged atom or group		Name	a,	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
P_2O_8			O_3 POOPO O_3^{4-} , μ -peroxido- $I\kappa O_2 \kappa O'$ -bis(trioxidophosphate)(4-); peroxydiphosphate	$O_3POOPO_3^{4-}$, μ -peroxido- $1\kappa O,2\kappa O'$ -bis(trioxidophosphato)(4-); peroxydiphosphato
P_4	P ₄ , tetraphosphorus			P ₄ , tetraphosphorus
Pa	protactinium	protactinium	protactinide	protactinido
Pb	lead	lead (general) $Pb^{2+}, lead(2+)$ $Pd^{4+}, lead(4+)$	plumbide	plumbido
PbH_{4}	PbH ₄ , plumbane (parent hydride name), tetrahydridolead, lead tetrahydride			
Pb ₉			Pb_9^{4-} , nonaplumbide(4-)	
Pd	palladium	palladium (general) Pd ²⁺ , palladium(2+) Pd ⁴⁺ , palladium(4+)	palladide	palladido
Pm	promethium	promethium	promethide	promethido
Po	polonium	polonium	polonide	polonido
PoH_2 , see H_2Po				
Pr	praseodymium	praseodymium	praseodymide	praseodymido
Pt	platinum	platinum (general) Pt ²⁺ , platinum(2+) Pt ⁴⁺ , platinum(4+)	platinide	platinido

Pu	plutonium	plutonium	plutonide	plutonido
${\sf PuO}_2$	PuO ₂ , plutonium dioxide	PuO ₂ +, dioxidoplutonium(1+) [not plutonyl(1+)] PuO ₂ ²⁺ , dioxidoplutonium(2+) [not plutonyl(2+)]		
Ra	radium	radium	radide	radido
Rb	rubidium	rubidium	rubidide	rubidido
Re	rhenium	rhenium	rhenide	rhenido
${ m ReO_4}$			ReO ₄ ⁻ , tetraoxidorhenate(1–) ReO ₄ ²⁻ , tetraoxidorhenate(2–)	ReO_4^- , tetraoxidorhenato(1–) ReO_4^{-2} , tetraoxidorhenato(2–)
Rf	rutherfordium	rutherfordium	rutherfordide	rutherfordido
Rg	roentgenium	roentgenium	roentgenide	roentgenido
Rh	rhodium	rhodium	rhodide	rhodido
Rn	radon	radon	radonide	radonido
Ru	ruthenium	ruthenium	ruthenide	ruthenido
S	sulfur (general)	sulfur (general)	sulfide (general)	sulfido (general)
	S, monosulfur	S^+ , sulfur(1+)	S ^{•−} , sulfanidyl, sulfide(•1−)	$S^{\bullet-}$, sulfanidyl, sulfido($\bullet 1-$)
	=S, sulfanylidene; thioxo		S^{2-} , sulfanediide, sulfide(2-);	S^{2-} , sulfanediido, sulfido $(2-)$
	-S-, sulfanediyl		sulfide _S sulfido	
SCN, see CNS				
SH, see HS				
SH_2 , see H_2S				
SNC, see CNS				
SO	SO, sulfur mon(o)oxide		SO [•] -, oxidosulfate(•1−)	[SO], oxidosulfur
	[SO], oxidosulfur	(not sulfinyl or thionyl)		
SO,			SO, • · dioxidosulfate(•1−)	[SO ₂], dioxidosulfur
1	[SO ₂], dioxidosulfur		SO_2^{2-} , dioxidosulfate(2-),	SO_2^{2-} , dioxidosulfato(2-),
	$>SO_2$, dioxo- λ^6 -sulfanediyl;		sulfanediolate	sulfanediolato
	sulfuryl, sulfonyl			

Table IX Continued

Formula for uncharged atom or group		Name	an	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands°
${ m SO_3}$	SO_3 , sulfur trioxide		SO ₃ •*, trioxidosulfate(•1-) SO ₃ 2-, trioxidosulfate(2-); sulfite -S(O) ₂ (O ⁻), oxidodioxo- λ 6-sulfanyl; sulfonato	SO_3^{2-} , trioxidosulfato(2-); sulfito
SO_4	-OS(O) ₂ O-, sulfonylbis(oxy)		SO ₄ **, tetraoxidosulfate(•1-) SO ₄ 2*, tetraoxidosulfate(2-); sulfate	SO_4^{2-} , tetraoxidosulfato(2); sulfato
SO ₅			$SO_5^{\bullet-} = SO_3(OO)^{\bullet-}$, trioxidoperoxidosulfate($\bullet I-$) $SO_5^{2-} = SO_3(OO)^{2-}$, trioxidoperoxidosulfate($2-$); peroxysulfate, sulfuroperoxoate	$SO_5^{2-} = SO_3(OO)^{2-}$, trioxidoperoxidosulfato(2-); peroxysulfato, sulfuroperoxoato
S ₂	S_2 , disulfur $-SS-$, disulfanediyl $>S=S$, sulfanylidene- λ^4 -sulfanediyl;	S ₂ *, disulfur(•1+)	S ₂ ⁻ , disulfanidyl, disulfide(•1−) S ₂ ^{2−} , disulfide(2−), disulfanediide -SS ⁻ , disulfanidyl	S ₂ ² -, disulfido(2–), disulfanediido
S_2O	$>S(=O)(=S)$, oxosulfanylidene- λ^6 -sulfanediyl; sulfonothioyl			

S_2O_2	$S_2O_2^{2-} = OSSO^{2-},$	$S_2O_2^{2-} = OSSO^{2-},$
	disulfanediolate,	disulfanediolato,
	bis(oxidosulfate)(S—S)(2—)	bis(oxidosulfato)(S-S)(2-)
	$S_2O_2^{2-} = SOOS^{2-}$	$S_2O_2^{2-} = SOOS^{2-},$
	dioxidanedithiolate,	dioxidanedithiolato,
	peroxybis(sulfanide),	peroxybis(sulfanido),
	bis(sulfidooxygenate)(<i>O</i> — <i>O</i>)(2–)	
	$S_2O_2^{2-} = SO_2S^{2-}$	
	$\frac{1}{2} dioxido - 1 k^2 O - disulfate(S-S)(2-),$	
	dioxidosulfidosulfate(2-);	dioxidosulfidosulfato(2–);
	thiosulfite, sulfurothioite	thiosulfito, sulfurothioito
S_2O_3	$S_2O_3^{\bullet-} = SO_3S^{\bullet-}$	$S_2O_3^{2-} = SO_3S^{2-},$
	trioxido- $1\kappa^3 O$ -disulfate(S — S	trioxido- $1\kappa^3O$ -disulfate $(S-S)(\bullet 1-)$, trioxido- $1\kappa^3O$ -disulfato $(S-S)(2-)$,
	trioxidosulfidosulfate(•1−)	trioxidosulfidosulfato $(2-)$;
	$S_2O_3^{2-} = SO_3S^{2-},$	thiosulfato, sulfurothioato
	trioxido- $1\kappa^3 O$ -disulfate($S-S$)($2-$),	- , —
	trioxidosulfidosulfate(2–);	
	thiosulfate, sulfurothioate	
S_2O_4	$S_2O_4^{2-} = O_2SSO_2^{2-},$	$S_2O_4^{2-} = O_2SSO_2^{2-},$
	bis(dioxidosulfate)($S-S$)($2-$);	bis(dioxidosulfato)(S — S)(2 —);
	dithionite	
S_2O_5	$S_2O_5^{2-} = O_3SSO_2^{2-}$, pentaoxido-	o- $S_2O_5^{2-} = O_3SSO_2^{2-}$, pentaoxido-
	$1\kappa^3 O, 2\kappa^2 O$ -disulfate(S—S)(
	$S_2O_5^{2-} = O_2SOSO_2^{2-},$	
	μ -oxido-bis(dioxidosulfate)(2-)	μ-oxido-bis(dioxidosulfato)(2–)
S_2O_6	$S_2O_6^{2-} = O_3SSO_3^{2-},$	$S_2O_6^{2-} = O_3SSO_3^{2-},$
	bis(trioxidosulfate)($S-S$);	bis(trioxidosulfato)(S — S)(2—);
	dithionate	dithionato
S_2O_7	$S_2O_7^{2-} = O_3SOSO_3^{2-},$	$S_2O_7^{2-} = O_3SOSO_3^{2-},$
	μ -oxido-bis(trioxidosulfate)(2-);); µ-oxido-bis(trioxidosulfato)(2–);
	disulfate	disulfato

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
\$20 ₈			$S_2O_8^{2-} = O_3SOOSO_3^{2-}$, μ -peroxido- $1\kappa O$, $2\kappa O'$ -bis(trioxidosulfate)(2-); peroxydisulfate	$S_2O_8^{2-} = O_3SOOSO_3^{2-}$, μ -peroxido-1 $\kappa O_2 \kappa O'$ -bis(trioxidosulfato)(2-); peroxydisulfato
S_3	S ₃ , trisulfur –SSS-, trisulfanediyl >S(=S) ₂ , bis(sulfanylidene)- λ ⁶ - sulfanediyl; sulfonodithioyl, dithiosulfonyl	S ₃ ²⁺ , trisulfur(2+)	S3*-, trisulfide(•1-) SSS*-, trisulfanidyl S3 ²⁻ , trisulfide(2-) SSS ²⁻ , trisulfianediide	S3*-, trisulfido(•1-) SSS*-, trisulfanidyl S3 ²⁻ , trisulfido(2-) SSS ²⁻ , trisulfanediido
S_4	S ₄ , tetrasulfur –SSSS–, tetrasulfanediyl	S_4^{2+} , tetrasulfur(2+)	S_4^{2-} , tetrasulfide(2-) SSSS ²⁻ , tetrasulfanediide	S ₄ ²⁻ , tetrasulfido(2-) SSSS ²⁻ , tetrasulfanediido
S_4O_6			$S_4O_6^{2-} = O_3SSSSO_3^{2-}$, disulfanedisulfonate, bis[(trioxidosulfato)sulfate] \simeq $(S-S)(2-)$; tetrathionate $S_4O_6^{\bullet 3-} = O_3SSSSO_3^{\bullet 3-}$, bis[(trioxidosulfato)sulfate] \simeq $(S-S)(\bullet 3-)$	$S_4O_6^2 = O_3SSSSO_3^2$, disulfanedisulfonato, bis[(trioxidosulfato)sulfato] $(S-S)(2-)$; tetrathionato $S_4O_6^{\bullet 3} = O_3SSSSO_3^{\bullet 3}$, bis[(trioxidosulfato)sulfato] $(S-S)(\bullet 3-)$
${ m S}^2$	S ₅ , pentasulfur		S_5^{2-} , pentasulfide(2-) SSSSS ²⁻ , pentasulfanediide	S_5^{2-} , pentasulfido(2-) SSSSS ²⁻ , pentasulfanediido
S_8	S ₈ , octasulfur	S ₈ ²⁺ , octasulfur(2+)	S ₈ ² -, octasulfide(2–) S[S] ₆ S ²⁻ , octasulfanediide	S ₈ , octasulfur S ₈ ²⁻ , octasulfido(2-) S[S] ₆ S ²⁻ , octasulfanediido

antimony antimonide (general) Sb4^+, stibanebis(ylium), Sb4^2-, antimonide(3-), stibanediide, hydridoantimony(2+) hydridoantimony(2+) Mene Sb4, stibanylium, Sb42, stibanide, hydridoantimonate(2-) Sb4, stibanylium, Sb43, stibanide, dihydridoantimonate(1-) Trihydride (sb43, stibaniumy), sb43, stibanide, stipanide, stipaniumy) Trihydride (sb43, stibaniumy), sb43, stibaniumy) Sb44, stibaniumy Sb44, stibanium, tetrahydridoantimony(1+) For antimony scandium selenide (general) Trihydride (general)					
SbH2*, stibanylidene, SbH3*, stibanebis(ylium), SbH3*, stibanediide, hydridoantimony(2*) hydridoantimony(2*) hydridoantimony(2*) hydridoantimony(2*) hydridoantimony(2*) SbH3*, stibany SbH3*, stibany SbH3*, stibany SbH3*, stibany SbH3*, stibany SbH3**, stibany ScH3**, stibany Sc	Sb	antimony >Sb-, stibanetriyl		antimonide (general) Sb ³⁻ , antimonide(3-), stibanetriide; antimonide	antimonido (general) Sb³-, antimonido, stibanetriido
SbH ₂ +, stibanyl, dihydridoantimony(+) dihydridoantimony(+) dihydridoantimony(+) dihydridoantimony(+) dihydridoantimony(+) dihydridoantimony(+) dihydridoantimony(+) dihydridoantimony sbH ₃ +, stibaniumyl scandium scandium scandium scandium scandium scandium scandium scandide; selenium scandide; selenium scandide scandium scandide; selenium scandide scandium scandide scandium scandium scandide scandium scandium scandide scandium scandide scandium sc	SbH	SbH ^{2•} , stibanylidene, hydridoantimony(2•) >SbH, stibanediyl =SbH, stibanylidene	um),	SbH ²⁻ , stibanediide, hydridoantimonate(2-)	SbH ²⁻ , stibanediido, hydridoantimonato(2–)
SbH3, antimony trihydride SbH3, **, stibaniumyl, SbH3, **, stibanuidyl, ISbH3, stibane (parent hydride Irihydridoantimony -SbH3, **, stibaniumyl -SbH4, **, stibaniumyl -SbH3, **, stibanyl -SbH4, **, stibanium	SbH_2	SbH ₂ •, stibanyl, dihydridoantimony(•) -SbH ₂ , stibanyl		SbH_2^- , stibanide, dihydridoantimonate(1–)	SbH_2^- , stibanido, dihydridoantimonato(1–)
SbH ₄ , λ ² -stibanyl tetrahydridoantimony(1+) SbH ₅ , antimony pentahydride [SbH ₅], λ ² -stibane (parent hydride name), pentahydridoantimony scandium scandium Sc (general) Sc (general) Sc, monoselenium >Sc, selanylidene; selenoxo SeO, selenium mon(o)oxide [SeO], oxidoselenium >SeO, seleniumly SeO, seleninyl SeO, seleninyl	SbH_3	SbH ₃ , antimony trihydride [SbH ₃], stibane (parent hydride name), trihydridoantimony	SbH ₃ •+, stibaniumyl, trihydridoantimony(•1+) −SbH ₃ +, stibaniumyl	$SbH_3^{\bullet-}$, stibanuidyl, trihydridoantimonate($\bullet 1-$) ^e	SbH ₃ , stibane
SbHs, antimony pentahydride [SbHs], λ^5 -stibane (parent hydride name), pentahydridoantimony scandium Se (general) Se, monoselenium Se, selanylidene; selenoxo SeO, selenium mon(o)oxide [SeO], oxidoselenium SeO, seleninyl Se, autimony pentahydride Seandium Seandium Selenium	SbH ₄	−SbH ₄ , λ ⁵ -stibanyl	SbH_4^+ , stibanium, tetrahydridoantimony(1+)		
scandiumscandiumscandideSe (general)seleniumselenide (general)Se, monoseleniumSe, selanidyl, selenide(•1-)>Se, selanediylSe²-, selanidyl, selenide(•1-)= Se, selanylidene; selenoxoselenide Se Seo, selanide Se Seo, selenium mon(o)oxide SeOl, oxidoseleniumSeO, seleninyl	${ m SbH}_5$	SbH ₅ , antimony pentahydride [SbH ₅], λ ⁵ -stibane (parent hydride name), pentahydridoantimony			
Se (general) Se, monosclenium Se, monosclenium Se, monosclenium Se, monosclenium Se, selanidyl, selenide(•1-) Se ²⁻ , selanidyl, selenide(2-); Se ²⁻ , selanidyl, selenide(2-); Selenide SeO, selenium mon(o)oxide [SeO], oxidoselenium SeO, seleninyl	Sc	scandium	scandium	scandide	scandido
SeO, selenium mon(o)oxide [SeO], oxidoselenium > SeO, seleninyl	Se	Se (general) Se, monoselenium >Se, selanediyl =Se, selanylidene; selenoxo		selenide (general) Se•-, selanidyl, selenide(•1–) Se²-, selanediide, selenide(2–); selenide	selenido (general) Se*, selanidyl, selenido(•1-) Se²-, selanediido, selenido(2-)
SeO, selenium mon(o)oxide [SeO], oxidoselenium > SeO, seleninyl	SeCN, see CNSe				
SeO, selenium mon(o)oxide [SeO], oxidoselenium > SeO, seleninyl	SeH ₂ , see H ₂ Se				
	SeO	SeO, selenium mon(o)oxide [SeO], oxidoselenium > SeO, seleninyl			[SeO], oxidoselenium

Table IX Continued

Formula for uncharged atom or group		Name	ie	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	$Ligands^c$
SeO_2	SeO ₂ , selenium dioxide [SeO ₂], dioxidoselenium >SeO ₂ , selenonyl		SeO_2^{2-} , dioxidoselenate(2-)	[SeO ₂], dioxidoselenium SeO ₂ ²⁻ , dioxidoselenato(2-)
SeO_3	SeO ₃ , selenium trioxide		SeO ₃ $^{\bullet-}$, trioxidoselenate($^{\bullet}$ I $)$ SeO ₃ $^{2-}$, trioxidoselenate($^{2-}$); selenite	SeO ₃ ²⁻ , trioxidoselenato(2-); selenito
SeO ₄			SeO_4^{2-} , tetraoxidoselenate(2-); selenate	SeO_4^{2-} , tetraoxidoselenato(2); selenato
Sg	seaborgium	seaborgium	seaborgide	seaborgido
Si	silicon	silicon (general)	silicide (general)	silicido (general)
	>Si<, sılanetetrayl =Si=, sılanediylidene	Si ⁺ , silicon(•1+) Si ⁴⁺ , silicon(4+)	Si , silicide(•1-) Si ⁴⁻ , silicide(4-); silicide	Si , silicido(•l-) Si ⁴⁻ , silicido(4-); silicido
SiC	SiC, silicon carbide [SiC], carbidosilicon	SiC+, carbidosilicon(1+)		
SiH		SiH+, silanyliumdiyl, hydridosilicon(1+)	SiH ⁻ , silanidediyl, hydridosilicate(1–)	
SiH_2	SiH ₂ ² *, silylidene, dihydridosilicon(2•) > SiH ₂ , silanediyl = SiH ₂ , silylidene			
$\mathrm{SiH_3}$	SiH ₃ •, silyl, trihydridosilicon(•) -SiH ₃ , silyl	SiH ₃ +, silylium, trihydridosilicon(1+)	SiH_3^- , silanide, trihydridosilicate(1–)	SiH ₃ ⁻ , silanido

SiH ₄	SiH ₄ , silicon tetrahydride			
	name), tetrahydridosilicon			
SiO	SiO, oxidosilicon, silicon mon(o)oxide	SiO+, oxidosilicon(1+)		
SiO_2	SiO ₂ , silicon dioxide			
SiO_3			$SiO_3^{\bullet-}$, trioxidosilicate(•1-) $(SiO_2^{\circ-}) = \pm Si(O) \cdot O_2^{\circ 2n-}$	$SiO_3^{\bullet-}$, trioxidosilicato(•1–)
			$catena$ -poly[(dioxidosilicate- μ -oxido)(1-)]; metasilicate	
SiO ₄			SiO_4^{4-} , tetraoxidosilicate(4-); silicate	SiO_4^{-} , tetraoxidosilicato(4–); silicato
Si_2	Si ₂ , disilicon	Si ₂ ⁺ , disilicon(1+)	Si_2^- , disilicide(1–)	
$\mathrm{Si}_2\mathrm{H}_4$	>SiHSiH ₃ , disilane-1,1-diyl -SiH ₂ SiH ₂ -, disilane-1,2-diyl =SiHSiH ₃ , disilanylidene			
$\mathrm{Si}_2\mathrm{H}_5$	$Si_2H_5^{\bullet}$, disilanyl, pentahydridodisilicon($Si-Si$)(\bullet) $-Si_2H_5$, disilanyl	$\mathrm{Si}_{2}\mathrm{H}_{5}^{+}$, disilanylium	$\mathrm{Si}_{2}\mathrm{H}_{5}^{-}$, disilanide	Si ₂ H ₅ ⁻ , disilanido
$\mathrm{Si}_{2}\mathrm{H}_{6}$	Si ₂ H ₆ , disilane (parent hydride name)			Si ₂ H ₆ , disilane
$\mathrm{Si}_2\mathrm{O}_7$			$Si_2O_7^{6-}$, μ -oxido-bis(trioxidosilicate)(6-); disilicate	$Si_2O_7^{6-}$, μ -oxido-bis(trioxidosilicato)(6-); disilicato
Si_4			Si_4^{4-} , tetrasilicide(4-)	
Sm	samarium	samarium	samaride	samarido
Sn	tin	tin (general) Sn ²⁺ , tin(2+) Sn ⁴⁺ , tin(4+)	stannide	stannido
$SnCl_3$			SnCl ₃ ⁻ , trichloridostannate(1-)	SnCl ₃ ⁻ , trichloridostannato(1-)
SnH_4	SnH ₄ , tin tetrahydride [SnH ₄], stannane (parent hydride name), tetrahydridotin			

Table IX Continued

Formula for uncharged atom or group		Name	e	
	Uncharged atoms or molecules (including zwitterions and radicals) or substituent groups ^a	Cations (including cation radicals) or cationic substituent groups ^a	Anions (including anion radicals) or anionic substituent groups ^b	Ligands ^c
Sn_{5}			Sn_5^{2-} , pentastannide(2-)	Sn_5^{2-} , pentastannido(2-)
Sr	strontium	strontium	strontide	strontido
T, see H				
T_2 , see H_2				
T_2O , see H_2O				
Ta	tantalum	tantalum	tantalide	tantalido
Tb	terbium	terbium	terbide	terbido
Тс	technetium	technetium	technetide	technetido
TcO_4			TcO_4^- , tetraoxidotechnetate(1–) TcO_4^{-2} , tetraoxidotechnetate(2–)	TcO_4^- , tetraoxidotechnetato(1–) TcO_4^{-2} tetraoxidotechnetato2–)
Te	tellurium	tellurium	telluride (general)	tellurido (general)
	>Te, tellanediyl		Te [•] -, tellanidyl, telluride(•1−)	Te [•] , tellanidyl, tellurido(•1−)
	=Te, tellanylidene; telluroxo		Te ²⁻ , tellanediide, telluride(2-); telluride	Te ²⁻ , tellanediido, tellurido(2-)
TeH, see HTe				
TeH_2 , see H_2Te				
TeO_3			TeO ₃ • trioxidotellurate(•1-)	$TeO_3^{\bullet-}$, trioxidotellurato($\bullet 1-$)
TeO ₄			TeO_{4}^{2} , tetraoxidotellurate(2–);	TeO_{4}^{2} , tetraoxidotellurato(2–);
			tellurate	tellurato
${ m TeO_6}$			TeO_6^{6-} , hexaoxidotellurate(6-);	TeO_6^{6-} , hexaoxidotellurato(6-);
			orthotellurate	orthotellurato
Th	thorium	thorium	thoride	thorido

Τ	titanium	titanium	titanide	titanido
TiO	TiO, titanium(II) oxide	TiO^{2+} , oxidotitanium(2+)		
II	thallium	thallium	thallide	thallido
TIH_2	-TIH ₂ , thallanyl			
TIH_3	TIH ₃ , thallium trihydride			
	[TlH ₃], thallane (parent hydride			
	name), trihydridothallium			
Tm	thulium	thulium	thulide	thulido
Ω	uranium	uranium uranium	uranide	uranido
UO_2	UO_2 , uranium dioxide	UO_2^+ , dioxidouranium(1+)		
		[not uranyl(1+)]		
		UO_2^{2+} , dioxidouranium(2+)		
		[not uranyl(2+)]		
Λ	vanadium	vanadium	vanadide	vanadido
VO	VO, vanadium(II) oxide,	VO^{2+} , oxidovanadium(2+)		
	vanadium mon(o)oxide	(not vanadyl)		
VO_2	VO_2 , vanadium(IV) oxide,	VO_2^+ , dioxidovanadium(1+)		
	vanadium dioxide			
W	tungsten	tungsten	tungstide	tungstido
Xe	xenon	xenon	xenonide	xenonido
Y	yttrium	yttrium	yttride	yttrido
Yb	ytterbium	ytterbium	ytterbide	ytterbido
Zn	zinc	zinc	zincide	zincido
Zr	zirconium	zirconium	zirconide	zirconido
ZrO	ZrO, zirconium(II) oxide	ZrO^{2+} , oxidozirconium(2+)		

when the element appears as an electropositive constituent in the construction of a stoichiometric name (Sections IR-5.2 and IR-5.4). Names of homoatomic cations a Where an element symbol occurs in the first column, the unmodified element name is listed in the second and third columns. The unmodified name is generally used In selected cases, examples are given in the Table of specific cation names, such as gold(1+), gold(3+); mercury(2+), dimercury(2+). In such cases, the unmodified consisting of the element are also constructed using the element name, adding multiplicative prefixes and charge numbers as applicable (Sections IR-5.3.2.1 to IR-5.3.2.3). element name appears with the qualifier '(general)'.

TABLES TABLE IX

erride, etc.). The 'ide' form of the element name is generally used when the element appears as an electronegative constituent in the construction of a stoichiometric name (Sections IR-5.2 and IR-5.4). Names of homoatomic anions consisting of the element in question are also constructed using this modified form, adding multiplicative prefixes and charge numbers as applicable (Sections IR-5.3.3.1 to IR-5.3.3.3). Examples are given in the Table of names of some specific anions, e.g. arsenide(3-), chloride(1-), oxide(2-), dioxide(2-). In certain cases, a particular anion has the 'ide' form itself as an accepted short name, e.g. arsenide, chloride, oxide. If specific anions are named, the 'ide' form of the element name with no further modification is given as the first entry in the fourth column, with the qualifier '(general)'. ^c Ligand names must be placed within enclosing marks whenever necessary to avoid ambiguity, cf. Section IR-9.2.2.3. Some ligand names must always be enclosed. For example, if 'dioxido' is cited as is it must be enclosed so as to distinguish it from two 'oxido' ligands; if combined with a multiplicative prefix it must be enclosed because and 'carbonato'. In this table, however, these enclosing marks are omitted for the sake of clarity. Note that the ligand names given here with a charge number can generally also be used without if it is not desired to make any implication regarding the charge of the ligand. For example, the ligand name '[dioxido(•1-)]' may be used if Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, and 'lanthanoid' as a collective name for the elements La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu (cf. Section Where an element symbol occurs in the first column, the fourth column gives the element name appropriately modified with the ending 'ide' (argentide, americide, it starts with a multiplicative prefix itself. A ligand name such as 'nitridocarbonato' must always be enclosed to avoid interpreting it as two separate ligand names, 'nitrido' d The ending 'ide' in 'actinide' and 'lanthanide' indicates a negative ion. Therefore, 'actinoid' should be used as the collective name for the elements Ac, Th, Pa, U, Np, one wishes explicitly to consider the ligand to be the species dioxide(•1-), whereas the ligand name '(dioxido)' can be used if no such implications are desirable.

446 (2000). Firstly, the exceptional status of anion radicals consisting of hydrogen and only one other element has been lifted. For example, the coordination-type additive name of BH3 • is 'trihydridoborate(•1-)' (not '-boride'). Secondly, concatenation of ligand names, such as in 'hydridodioxido' (meaning the ligand 'dioxidanido'), which is otherwise never used in additive nomenclature, is not recommended here. Thirdly, additive names of dinuclear compounds are based here on selecting the most e The radical names in the present recommendations sometimes differ from those given in "Names for Inorganic Radicals", W.H. Koppenol, Pure Appl. Chem., 72, 437– centrally placed atoms in the molecule as central atoms (see the general principles described in Section IR-7.1.2), e.g. NCSSCN^{•-} is named here 'bis[cyanidosulfur](S-S)($\bullet 1-$)' rather than 'bis(nitridosulfidocarbonate)(S-S)($\bullet 1-$)'.

respectively, has been reversed relative to traditional names. This applies to binary stoichiometric names such as dioxygen chloride (cf. Section IR-5.2) and to additive names for the hypohalites, where the rules for selecting central atoms (Section IR-7.1.2) dictate the selection of oxygen rather than the halide. However, because of the additive names for the last three members of the series OX^- , XO_2^- , XO_3^- , XO_4^- (X = CI, Br, I), namely dioxidohalogenate(1-), trioxidohalogenate(1-) and f Due to the strict adherence in these recommendations to the element sequence in Table VI, the order of oxygen and the elements chlorine, bromine and iodine, tetraoxidohalogenate(1-) (the halogen is chosen as the central atom because it has the central position in the structure), the additive names oxidochlorate(1-), oxidobromate(1-) and oxidoiodate(1-) are acceptable alternatives to the systematic 'oxygenate' names. Similar remarks apply to HOCI, $HOCI^{\bullet-}$, etc.

Table X Anion names, 'a' terms used in substitutive nomenclature and 'y' terms used in chains and rings nomenclature

Element name	Anion name ^a	'a' term	'y' term
actinium	actinate	actina	actiny
aluminium	aluminate	alumina	aluminy
americium	americate	america	americy
antimony	antimonate	stiba ^b	stiby ^b
argon	argonate	argona	argony
arsenic	arsenate	arsa	arsy
astatine	astatate	astata	astaty
barium	barate	bara	bary
berkelium	berkelate	berkela	berkely
beryllium	beryllate	berylla	berylly
bismuth	bismuthate	bisma	bismy
bohrium	bohrate	bohra	bohry
boron	borate	bora	bory
bromine	bromate	broma	bromy
cadmium	cadmate	cadma	cadmy
caesium	caesate	caesa	caesy
calcium	calcate	calca	calcy
californium	californate	californa	californy
carbon	carbonate	carba	carby
cerium	cerate	cera	cery
chlorine	chlorate	chlora	chlory
chromium	chromate	chroma	chromy
cobalt	cobaltate	cobalta	cobalty
copper	cuprate ^c	cupra ^c	cupry ^c
curium	curate	cura	cury
darmstadtium	darmstadtate	darmstadta	darmstadty
deuterium	deuterate	deutera	deutery
dubnium	dubnate	dubna	dubny
dysprosium	dysprosate	dysprosa	dysprosy
einsteinium	einsteinate	einsteina	einsteiny
erbium	erbate	erba	erby
europium	europate	europa	europy
fermium	fermate	ferma	fermy
fluorine	fluorate	fluora	fluory
francium	francate	franca	francy
gadolinium	gadolinate	gadolina	gadoliny
gallium	gallate	galla	gally
germanium	germanate	germa	germy
gold	aurate ^d	aura ^d	aury ^d
hafnium	hafnate	hafna	hafny
hassium	hassate	hassa	hassy
helium	helate	hela	hely
holmium	holmate	holma	holmy
hydrogen	hydrogenate	-	hydrony
indium	indate	inda	indy
iodine	iodate	ioda	iody
iridium	iridate	irida	iridy
iron	ferrate ^e	ferra ^e	ferry
krypton	kryptonate	kryptona	kryptony
lanthanum	lanthanate	lanthana	lanthany
lawrencium	lawrencate	lawrenca	lawrency

TABLES TABLE X

Table X Continued

Element name	Anion name ^a	'a' term	'y' term
lead	plumbate ^f	plumba ^f	plumby ^f
lithium	lithate	litha	lithy
lutetium	lutetate	luteta	lutety
magnesium	magnesate	magnesa	magnesy
manganese	manganate	mangana	mangany
meitnerium	meitnerate	meitnera	meitnery
mendelevium	mendelevate	mendeleva	mendelevy
mercury	mercurate	mercura	mercury
molybdenum	molybdate	molybda	molybdy
neodymium	neodymate	neodyma	neodymy
neon	neonate	neona	neony
neptunium	neptunate	neptuna	neptuny
nickel	nickelate	nickela	nickely
niobium	niobate	nioba	nioby
nitrogen	nitrate	aza ^g	azy ^g
nobelium	nobelate	nobela	nobely
osmium	osmate	osma	osmy
oxygen	oxygenate	oxa	oxy
palladium	palladate	pallada	pallady
phosphorus	phosphate	phospha	phosphy
platinum	platinate	platina	platiny
plutonium	plutonate	plutona	plutony
polonium	polonate	polona	polony
potassium	potassate	potassa	potassy
praseodymium	praseodymate	praseodyma	praseodymy
promethium	promethate	prometha	promethy
protactinium	protactinate	protactina	protactiny
protium	protate	prota	proty
radium	radate	rada	rady
radon	radonate	radona	radony
rhenium	rhenate	rhena	rheny
rhodium	rhodate	rhoda	rhody
roentgenium	roentgenate	roentgena	roentgeny
rubidium	rubidate	rubida	rubidy
ruthenium	ruthenate	ruthena	rutheny
rutherfordium	rutherfordate	rutherforda	rutherfordy
samarium	samarate	samara	samary
scandium	scandate	scanda	scandy
seaborgium	seaborgate	seaborga	seaborgy
selenium	selenate	selena	seleny
silicon	silicate	sila	sily
silver	argentate ^h	argenta ^h	argenty ^h
sodium	sodate	soda	sody
strontium	strontate	stronta	stronty
sulfur	sulfate	thia ⁱ	sulfy
tantalum	tantalate	tantala	tantaly
technetium	technetate	techneta	technety
tellurium	tellurate	tellura	tellury
terbium	terbate	terba	terby
thallium	thallate	thalla	thally
thorium	thorate	thora	thory
thulium	thulate	thula	thuly
ananum	ununuu	uiuia	aiuiy

Table X Continued

Element name	Anion name ^a	'a' term	'y' term
tin	stannate ^j	stanna ^j	stanny ^j
titanium	titanate	titana	titany
tritium	tritate	trita	trity
tungsten	tungstate	tungsta	tungstyk
uranium	uranate	urana	urany
vanadium	vanadate	vanada	vanady
xenon	xenonate	xenona	xenony
ytterbium	ytterbate	ytterba	ytterby
yttrium	yttrate	yttra	yttry
zinc	zincate	zinca	zincy
zirconium	zirconate	zircona	zircony

^a Modified element name used in additive names for heteroatoamic anions containing the element as the central atom.

^b From the name stibium.

^c From the name cuprum.

^d From the name aurum.

^e From the name ferrum.

f From the name plumbum.

g From the name azote.

^h From the name argentum.

ⁱ From the name theion.

^j From the name stannum.

^k 'Wolframy' was used in "Nomenclature of Inorganic Chains and Ring Compounds", E.O. Fluck and R.S. Laitinen, *Pure Appl. Chem.*, **69**, 1659–1692 (1997)" and in Chapter II-5 of *Nomenclature of Inorganic Chemistry II, IUPAC Recommendations 2000*, eds. J.A. McCleverty and N.G. Connelly, Royal Society of Chemistry, 2001.

Subject Index

Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, only the more informative references may be indexed.

A	trigonal prismatic species, 190
'a' terms	R/S convention, 185–187
element ordering, 42-43	tetrahedral species, 186
names of organometallics of group	trigonal pyramidal species, 186
13-16 elements, 231	skew-lines convention, 185, 191–193
table, 337–339	Acetylide, 293
use with parent hydrides	Acidium, 132 (see footnote d)
heteronuclear acyclic compounds,	Acids (see inorganic acids)
94–95	Actinide, 281
heteronuclear monocyclic	Actinoids (vs. actinides), 51–52,
compounds, 96–98	336 (see footnote d)
heteronuclear polycyclic compounds,	metallocenes, 227
100–101	Acyclic parent hydrides, 86-87, 101
homonuclear monocyclic	heteronuclear compounds, 94-95
compounds, 87-89	chains and rings nomenclature, 95
homonuclear polycyclic compounds,	homonuclear compounds, 86-87
89	with non-standard bonding numbers,
Abbreviations of ligand names, 63,	86–87
153–154	with standard bonding numbers, 86
construction, 63, 261	Acyclic unsaturated hydrides, 87
enclosing marks, 21	Addition compounds, 12
table, 261–268	additive names, 81
Absolute configuration of chelate ring	compositional nomenclature, 80-81
conformations, 35-36, 191-193, 259	formulae, 12, 56, 62
Absolute configuration of coordination	use of centre dots, 28
compounds, 185-198	hydrates, 80–81
C/A convention, 185, 187–191	indication of composition, 27, 31
octahedral species, 185, 189-190	names, 12, 80–81
pentagonal bipyramidal species, 191	order of components, 41, 80-81
see-saw species, 188	stoichiometric descriptors, 33, 80-81
square pyramidal species, 188	stoichiometric ratios, 23, 27
tetrahedral species, 185–186	Additive nomenclature, 5, 7, 111–123
trigonal bipyramidal species, 187	addition compounds, 81

and arabic numerals, 38	Pearson notation, 49–51
chains and rings, 7, 118-122	with definite molecular formula, 49
choice of central atoms, 112	with indefinite structure, 51
coordination compounds, 147-148, 150	solid amorphous modifications, 51
general naming procedure, 149, 168	Alphabetical order
general characteristics, 111-112	atomic symbols in formulae, 58
heteronuclear chains, 95	central atoms in oxoacids, 125
heteropolyatomic anions, 74-75	ligand names in coordination
heteropolyatomic cations, 71–72	compounds, 150, 168
inorganic acids, 7, 124, 126-134	ligands
functional replacement derivatives,	bridging vs. terminal, 163, 211
139–140	derivatives of parent hydrides, 60
ions and radicals, 112	in formulae, 11, 40-41, 43-44, 153,
radical anions, 10-11	168
ligand representation, 112, 151	in polynuclear compounds, 161–166
mononuclear entities, 113-114, 150	nuclide symbols, 64
non-symmetrical dinuclear entities,	in salts, 40
116–117, 166–167	Aluminium vs. aluminum, 249
oligonuclear compounds, 117-118,	Amide, 74, 106, 314
167–174	Amido, 138, 314
order of prefixes, 16–17	Amino, 109, 314
organometallics, 7	Aminyl, 109, 314
of group 1 and 2 elements, 228-230,	Ammine, 151, 314
232	Ammonia and derived ions and radicals,
of group 3-12 elements, 201-228,	314
232–233	Ammonio, 314
polynuclear entities, 11, 114-118,	Ammonium, 71, 105, 314
161–174	Anion names
order of central atoms, 42, 162	additive names of heteropolyatomic
comparison with substitutive names,	anions, 74–75
83–84, 113–118	'ate' forms of element names, 337-339,
for parent hydride derivatives,	changed recommendations, 8, 10
102–103	compositional names, 8, 72-75
symmetrical dinuclear entities,	homopolyatomic anions, 73-74
114–116, 166	coordination compounds, 162
table of names, 280–336	of elements, 72–74
Affixes, 16	homoatomic anions, 336 (see
geometrical, 259	footnote b)
structural, 259	endings, 72
Agostic interactions, 224	of ligands, 10-11, 112, 151-152
Aims of nomenclature, 3–4	oxoacids
Alkali metals, 51	hydrogen names, 137
Alkaline earth metals, 51	simplified names, 137
Allotropes, 48–51	from parent hydrides, 72, 106-108
Bravais lattices, 50	homopolyatomic, 74
crystalline modifications, 49-51	radicals, 10-11, 73-75

stoichiometric names, 72-75	alphanumeric, 54, 58
substitutive names of heteropolyatomic	B vs. C, 60
anions, 74	based on electronegativity, 58-59
table, 280–336	Hill order, 54, 60
Antimonic acid, 129	tables, 248–250
Antimonous acid, 129	Auride, 285
Antimony compounds	Azide, 73, 318
names of hydrides, 331	Azinic acid, 128
oxoacids, 129	Azonic acid, 128
Antiphase boundary, 244	
Aqua, 151, 306	В
Aquo, obsolete ligand name (see aqua)	Bidentate coordination, 146–147
Arabic numerals	vs. didentate, 258
in formulae, 31–32	and skew-lines convention, 191-193
as locants, 32, 38-40	Binary compounds and species
in names, 32–34	charge numbers, 70, 73
and number of hydrogen atoms in	element ordering, 42
boranes, 90, 99	formulae, 58–59
arachno-boranes, 90-93, 99, 259	multiplicative prefixes, 69-70
Arsenic acid, 129	name construction, 5
Arsenic compounds	oxidation number, 70
oxoacids, 129	separation of components, 30
table of names, 282-284	stoichiometric names, 69–70
Arsenous acid, 129	table of names, 280-336
Arsine, obsolete name for arsane, 85 (see	Binuclear (see dinuclear)
footnote e)	Bipyramidal complexes
Arsinic acid, 129	absolute configuration, 190–191
Arsinous acid, 129	trigonal species, 187
Arsonic acid, 129	configuration index, 184-185
derivatives, 125-126, 138	specifying configuration, 184–185
Arsonous acid, 129	pentagonal species, 185
Arsoric acid, 129	trigonal species, 184
Arsorous acid, 129	'bis' vs. 'di' as multiplicative prefixes, 37
Assemblies, in chains and rings	76, 101, 113, 150–151, 258
nomenclature, 118-119	Bis(bidentate) complexes, skew-lines
Asterisks, in formulae, 36	convention, 191–193
Atom names, 46–47	Bis(tridentate) complexes, stereoisomers
of new elements, 47, 250	and priming convention, 195-196
tables, 248–250	Bond indicators, in line formulae,
Atomic number, 47–48	26–27
nuclides, 32	Bonds between central atoms, italicized
tables, 248–250	symbols, 115
Atomic symbols, 46–47, 248–250	Boranes (see boron hydrides)
and isotopic modification, 44, 48	Borate, 127, 285
for new elements, 47, 250	Boric acid, 127
order in formulae, 58–63	Borinic acid, 12

Boron compounds	coordination compounds, 148
order of components of addition	polynuclear species, 163-165
compounds, 12, 81	hydrogen in boranes, 28, 35, 93-94
oxoacids, 127, 137	heteroboranes, 99-100
table of names, 285	substitution, 104-105
Boron hydrides	in organometallic compounds, 203,
bridging hydrogen atom distribution, 28,	211–212
35, 93–94	bridge index, 43-44, 208-209
heteroboranes, 99-100	vs. chelation, 203, 208–209
catena prefix for chains, 91-92	position in names, 25
common structure types, 90	in symmetrical dinuclear entities,
arachno, 90–93, 99, 259	115–116
closo, 90-92, 99-100, 259	use of µ symbol, 36, 163, 259
hypho, 90, 259	multiplicity, 32–33
klado, 90, 99–100	Bromic acid, 131, 287
nido, 90–94, 99–100, 259	Bromide, 287
relationships, 90–92	Bromido, 138, 287
cyclic compounds, 92	Bromine compounds and species, names,
cyclo prefix, 92	287, 298, 319–321
Hantzsch–Widman system, 92	Bromo
electron counting in clusters, 90	obsolete ligand name (see bromido)
hydrogen substitution, 104–105	prefix in substitutive nomenclature, 101,
indicated hydrogen, 35, 93–94	138, 287
number of boron atoms, 89	Bromous acid, 131, 287
number of hydrogen atoms, 34, 90	Bromous deld, 131, 207
in heteroboranes, 99	C
numbering polyhedral clusters, 92–93	C/A convention and absolute configuration,
closo vs. nido, 92	185, 187–191
order of symbols in carbaboranes, 60	bipyramidal complexes, 190–191
positions of supplanting heteroatoms,	pentagonal species, 191
99–100	trigonal species, 187
replacement nomenclature, 99	general considerations, 187
skeletal replacement, 98–100	octahedral complexes, 189–190
stoichiometric names, 89–90	polydentate ligands, 190
structural descriptor names, 90–92	
-	priming convention, 190
substituent groups, 104–105	see-saw centres, 188
Boronic acid, 127	square pyramidal complexes, 188
Braces, in formulae and names, 24	trigonal prismatic complexes, 190
Bravais lattice, and allotrope names, 50	Caesium vs. cesium, 249
Bridging index, 43–44	Cahn, Ingold, Prelog (CIP) rules for
organometallic compounds, 208–209	coordination compounds, 44, 180,
polynuclear coordination compounds,	194–195
148, 163–165	octahedral species, 189
Bridging ligands	trigonal prismatic species, 190
citation vs. terminal ligands, 43–44,	Carbaboranes, 99–100
163–164	order of B and C in formulae, 60

Carbene, 109, 291	Cesium vs. caesium, 249
Carbide, 287	Chain compounds, formulae, 61
Carbon compounds	Chains and rings nomenclature, 7, 118–122
oxoacids, 127, 137	assemblies, 118–119
table of names, 287-293	catena compounds, 118, 121-122, 128,
Carbonate, 127, 293	133
Carbonic acid, 127	catenacycles, 118-119, 121-122
Carbonyl, 112, 151, 154, 292	catenate compounds, 121, 128-129
Casey, Evans, Powell (CEP) system for	catenium compounds, 121
polynuclear compounds, 33,	charge number, 121–122
172–174	connectivity, 118
descriptors, 172-173	construction of names, 121-122
Catena compounds, 118–119, 121–122,	cyclate compounds, 121-122
128, 133	cycles, 118–119, 121–122, 129, 134
catena prefix, 259	cyclium compounds, 121
and borane chains, 91–92	heteronuclear acyclic parent hydrides,
and oxoacids, 127-129	95
Catenacycles, 118-119, 121-122	locants, 119
Catenate compounds, 121, 128–129	modules, 118
Catenium compounds, 121	nodal descriptors, 20, 29, 119-120
Cation names	oligonuclear compounds, 117
additive names of heteropolyatomic	oxoacids, 128-130, 133-134
cations, 71–72	and polynuclear cluster, 174
changed recommendations, 8	radicals, 121
compositional names, 70-72	skeletal atoms, 121
coordination compounds, 149	numbering, 42, 119
heteropolyatomic species, 71-72	order of citation, 41–42
homopolyatomic species, 71	symmetrical dinuclear entities, 116
monoatomic species, 70-71	'y' terms, 121
of elements, 70–71	table, 337–339
and parent hydride names, 105-106	Chalcogens, 51–52
radicals, 70–74	Charge
stoichiometric names, 70-72	in formulae, 57–58
substitutive names of heteropolyatomic	indication for ions, 25-26, 70-75
cations, 71–72	of nuclides, 47–48
table, 280–336	in solids, 27, 240-241
Central atoms	Charge number, 17
choice in additive names, 112	in binary compounds, 70, 73
in coordination entities, 145, 162	chain and ring compounds, 121-122
in polynuclear organometallic	and coordination compounds, 152-153
compounds, 232–233	enclosing marks, 23
Central structural unit	and generalized stoichiometric names,
polynuclear clusters, 172-174	77–78
CEP (Casey, Evans, Powell) system for	in hydrogen nomenclature, 12
polynuclear compounds, 33, 172–174	ions and radicals, 70-75
descriptors, 172–173	and parent hydride names, 72

Chelate rings	cis-bis(bidentate) complexes, absolute
conformation and skew-lines	configuration and skew-lines
convention, 193	convention, 191-193
symbols for absolute configuration,	closo-boranes, 90-92, 99-100, 259
35–36, 259	Clusters
Chelating ligands	boranes, 90
vs. bridging, 203, 208–209	numbering, 92–93
in organometallics, 202–203, 209–210	structural descriptors, 170, 172–174
κ convention, 210–211	central structural units, 172–174
Chelation	Cobaltocene, 225
in coordination compounds, 146	Colons
and κ convention, 156–160	and central atom locants, 164
vs. monodentate bonding, 147	in names, 28
in organometallic compounds, 202	Commas in formulae and names, 29
Chemical composition of solids,	Commensurate structures, 242–243
237–238	Composition of non-stoichiometric
Chemical twinning, 244–245	compounds, 21
Chiral centres, 36	Compositional nomenclature, 5–6, 68–82
Chloric acid, 295	addition compounds, 80–81
Chloride, 294	generalized stoichiometric names,
Chlorido, 138, 294	75–80
Chlorine compounds and species, names,	vs. hydrogen nomenclature for
294–295, 299, 319, 312–322	inorganic acids, 136
Chloro	of ions, 70–75
obsolete ligand name (see chlorido)	heteropolyatomic anions, 74–75
prefix in substitutive nomenclature, 138,	heteropolyatomic cations, 71–72
294	homopolyatomic anions, 8, 73–74
Chlorous acid, 131, 294	homopolyatomic cations, 71
Choice	monoatomic anions, 72–73
between geometries for coordination	monoatomic cations, 70–71
compounds, 179	order of constituents, 41
of central atom in additive names,	of radicals, 70–75
112	anions, 73–75
of nomenclature system, 7–9	cations, 70–72
of parent hydride names, 101	stoichiometric names, 68–70
principal chain, 103–104	binary compounds, 69–70
Chromium oxides, names, 295–296	elements, 69
Chromocene, 225	Configuration of coordination entities, 149,
CIP (Cahn, Ingold, Prelog) rules for	174–193
coordination compounds, 44,	absolute configuration, 185–198
180, 194–195	coordination geometry, 175–179
octahedral species, 189	ligand priority, 193–198
trigonal prismatic species, 190	relative configuration, 179–185
<i>cis</i> prefix, 67, 179, 259	Configuration index, 33–34, 144, 179–180
and octahedral geometry, 182	bipyramidal systems, 184–185
and square planar geometry, 180	CIP rules, 180

and diastereoisomers, 179-180	formulae, 59-61, 153-154
octahedral systems, 182–183	construction, 59
reference axis, 182	enclosing marks, 18–19, 153
priming convention, 195–198	and ionic charge, 153–154
priority numbers, 180–181, 193–195	ligand abbreviations, 154
see-saw systems, 185	oxidation number, 153–154
square planar systems, 180–181	sequence of symbols, 153
square pyramidal systems, 183–184	square brackets, 113–117
T-shaped systems, 185	κ convention, 155–160
trigonal prismatic systems, 190	and η convention, 161
Connectivity	use of superscripts, 156
•	* *
in chain and ring compounds, 118	ligand priority, 193–198
in organometallic compounds, 201–203,	priority numbers, 180–181, 193–195
216	names, 144, 150–153
Constitution of coordination compounds,	numbering of ligands, 150–151
149–174	order of ligands and central atoms,
formulae, 153–154	150
names, 150–153	representing ligands, 151–152
polynuclear species, 161–174	naming procedure, 149–150, 168
specifying donor atoms, 154–161	flowchart, 149–150
Coordination compounds and entities,	polyhedral symbols, 33–34, 144,
142–199	175–179
absolute configuration, 185–198	polynuclear clusters, 172–174
<i>C/A</i> convention, 185, 187–191	central structural unit, 172-174
distinguishing enantiomers, 185–193	CEP descriptors, 172–174
general considerations, 185	polynuclear compounds, 161–174
octahedral species, 189–190	bridging ligands, 148, 163–165
R/S convention, 185–186	metal-metal bonding, 165-166
see-saw species, 188	specifying configuration, 179–185
skew-lines convention, 185, 191–193	bipyramidal species, 184–185
square pyramidal species, 188	configuration index, 179–180
tetrahedral species, 186	distinguishing diastereoisomers,
trigonal bipyramidal species, 187	179–185
trigonal pyramidal species, 186	general methods, 179-180
CIP rules, 44, 180, 194–195	octahedral species, 182-183
configuration, 149, 174-193	square planar species, 180-181
general considerations, 174-175	square pyramidal species, 183-184
polyhedral symbols, 175–178	T-shaped species, 185
configuration index, 33-34, 144,	specifying donor atoms, 154-161
179–180	italicized element symbols, 155-156
priming convention, 195-198	trinuclear species, 167–172
constitution, 149–174	Coordination nomenclature, 7, 147-148
definitions, 144–148	Coordination number
dinuclear species, 166-167	in organometallics, 201-202
symmetrical, 166	polyhedral symbols, 176
unsymmetrical, 166-167	Coordination polyhedra, 145–146, 176–178

Crystal systems and polymorphism,	Dihydrogenphosphate, 128, 137, 307
245–246	Dihydrogenphosphite, 128, 137, 307
Crystalline modification of allotropes,	Dinuclear compounds
49–51	non-symmetrical compounds, 114-116,
Crystallographic shear structures, 244	166–167
Crystallographic sites, 239–240	symmetrical compounds, 114-116,
Cyanate, 127, 291	166
Cyanato, 291	Diphosphonate, 129, 307
Cyanic acid, 127, 288	Diphosphonic acid, 129
Cyanide, 291	Diphosphoric acid, 129, 133
Cyanido, 138, 291	Disilicate, 128, 333
Cyano	Disilicic acid, 128
obsolete ligand name (see cyanido)	Disordered twin planes, 244
prefix in substitutive nomenclature, 138,	Disulfate, 130, 329
291	Disulfite, 130
Cyanyl, 291	Disulfuric acid, 130
Cyclate compounds, 121-122	Disulfurous acid, 130
Cycles, in chains and rings nomenclature,	Dithionate, 130, 329
118–119, 121–122, 129, 134	Dithionic acid, 126, 130
Cyclium compounds, 121	Dithionite, 130, 329
cyclo prefix for monocyclic coordination	Dithionous acid, 130
compounds, 129, 133, 171-172, 259	Donor atoms
cyclo prefix, 259	position in formulae, 153
for cyclic boron hydrides, 92	specification in coordination
for homonuclear monocyclic parent	compounds, 154-161
hydrides, 87–88	symbols in names, 155, 161
for saturated rings with alternating	symbol placement in formulae, 41
skeletal atoms, 96–98	use of primes, 36–37
Cyclooctatetraene compounds, 227–228	Dots
	in formulae, 21, 23, 27-28, 70-75
D	of radicals, 66
δ (delta), and absolute configuration of	to indicate effective charge in solids, 27
chelate ring conformation, 35, 259	240
Δ (Delta), and absolute configuration, 35,	in names, 28, 70–75
259	of radicals, 28, 112
Defect clusters, 22, 241	
Denticity of ligands, 146	E
Deuterium, atomic symbol, 48, 249	Effective charge, in solids, 27, 240-241
Deuteron, 48, 298	Electron counting, in boron hydride
'di' vs. 'bis' as multiplicative prefixes, 37,	structures, 90
76, 101, 113, 150–151, 258	Electronegativity, and order of atomic
Diastereoisomers of coordination	symbols, 58–59
complexes, 175	Elements, 46–52
and configuration index, 179-180	allotropes, 48-51
Didentate vs. bidentate, 258	atomic numbers, 248-250
Dihydrogenborate, 127, 137	with indefinite molecular formula, 48

isotopes, 48	Enclosing marks
names, 46-47, 248-250, 280-336,	for abbreviations, 21
337–339	changed recommendations, 12
naming procedure, 46	and η convention, 216–217
nuclides, 47–48	in formulae, 18-22, 24, 55-56
atomic number, 47–48	of coordination entities, 153
charge, 47–48	structural, 55–56
mass number, 47–48	in hydrogen names, 24
periodic table, 51–52	to indicate site symmetry in solids, 240
groups, 51–52	for ligand names, 113, 150–151, 153,
stoichiometric names, 69–74	336 (see footnote c)
anions, 72–74	in names, 19–20, 22–24
cations, 70–71	nesting order, 17, 24, 55, 150, 153
symbols, 46–47, 248–250	for oxidation number, 23
new elements, 47	Endings, 16
tables	for anion names, 72, 112
atomic numbers, 248-249	for Hantzsch-Widman names, 96
names, 248–250, 280–336, 337–339	tables, 251–257
symbols, 248–250	Eta (η) convention, 32, 35, 259
temporary names and symbols, 47, 250	and agostic interactions, 224
Element order	for coordination compounds, 155
and 'a' terms, 42–43	enclosing marks, 216–217
on basis of periodic table, 10, 42-43,	and κ convention, 161, 202, 216–217,
260	221–223, 232
binary compounds, 42	for ligands without carbon atoms,
central atoms of polynuclear	223–224
compounds, 10, 42	dihydrogen, 224
in chains and rings, 42	for organometallic compounds, 202,
changed recommendations, 10	216–225
in Hantzsch-Widman names, 42	use with κ convention, 202, 216,
in intermetallic compounds, 10	221–223, 232
oxygen vs. halogens, 10,	use of locants, 220-221
336 (see footnote f)	Ewens-Bassett number (see charge number)
symbols in formulae, 58-63	Excited states, 36
Element sequence table, 260	formulae, 67
Elisions, 31, 69	
'Em' dashes	F
in formulae of addition compounds,	fac prefix, 179
80–81	and octahedral geometry, 182-183
in formulae and names, 26	Ferrocene, 225–227
and metal-metal bonds, 148, 165-166,	Ferrocenium, 227
212	Flowcharts
Empirical formulae, 54	general guidelines for naming
Enantiomers, of coordination compounds,	compounds, 8–9
175	for naming coordination compounds,
absolute configuration, 185-193	149–150

Fluoride, 297	locants
Fluorido, 138, 297	arabic numerals, 32, 38-40
Fluoro	letters, 40
obsolete ligand name (see fluorido)	molecular formulae, 54
prefix in substitutive nomenclature, 138	multiplicative prefixes, 37
Formulae, 53–67	non-stoichiometric phases, 236
addition compounds, 12, 56, 62	optically active compounds, 66
alphabetical order, 40–41	order of ligands, 11
arabic numerals, 31–32	order of symbols, 58–63
asterisks, 36	alphanumeric, 54, 58
binary species, 58–59	B vs. C, 60
bond indicators, 26–27	electronegativity, 58-59
braces, 24	Hill order, 54, 60
chain compounds, 61	oxidation states, 34, 65-66
commas, 29	oxoacids, 61
of coordination compounds, 59–61,	parentheses, 20–22
153–154	plus and minus signs, 25-26
construction, 59	primes, 36–37
dinuclear species, 153	radicals, 66
donor atom symbols, 155	use of dots, 66
order of bridging and terminal	semicolons, 30
ligands, 163–164	solid state structures, 56–57
order of ligands and central atoms,	square brackets, 18-19
163	structural formulae, 55–56
position of donor atoms, 153	descriptors, 67
sequence of symbols, 153	of ligands, 261–268
dots, 27–28, 66, 70–75	Four-coordination, 175–176
'em' dashes, 26	idealized geometries, 179
	Fulminate, 291
metal–metal bonds, 148, 165–166, 212	Fulminic acid, 132 (see footnote b)
	Functional replacement nomenclature, 84
empirical formulae, 54	derivatives of oxoacids, 126, 137–140
enclosing marks, 18–22, 24, 55–56, 153	operations, 138
nesting order, 17	Fusion of monocycles in polycyclic parent
excited states, 67	hydrides
generalized salts, 61–62	heteronuclear names, 100-101
Greek letters, 35–36	homonuclear names, 89
hyphens, 24–25	numbering when substituent groups,
and ionic charge, 57–58, 153–154	204–205
isotopic labelling, 64–65	
selective, 65	G
specific, 64–65	Generalized salts, order of ions in
isotopic substitution, 64	formulae, 61–62
isotopically modified compounds, 64–65	Generalized stoichiometric names, 69,
italic letters, 35	75–80
ligand abbreviations, 63	multiple monoatomic vs.
ligand order, 40–41, 43–44	homopolyatomic constituents, 78–80

order of constituents, 75–76	skeletal atom positions, 38-39
proportion of constituents, 76-80	for up to ten-membered rings, 88,
charge numbers, 77–78	96–98
multiplicative prefixes, 76–77	Hapticity
oxidation numbers, 77–78	and organometallics, 216–217
Geometrical affixes, 259	use of η symbol, 32, 35
Germanide, 298	Heteronuclear compounds, parent hydride
Germanium compounds and species, table	names, 94–101
of names, 297–298	acyclic compounds, 94-95
Germide, 297,	monocyclic compounds, 95-98
Greek letters, 35–36	polycyclic compounds, 100-101
and skew-lines convention, 191-192	Hill order in formulae, 54, 60
Group 1 and 2 element organometallics,	History of nomenclature, 2–3
228–230, 232	Homoatomic species, table of names,
Group 3–12 element organometallics,	280–336
201–228, 232–233	Homologous solids, 243-244
Group 13-16 element organometallics,	Homonuclear compounds, parent hydride
228, 230–233	names, 86–89
λ convention, 230	acyclic compounds, 86-87
	monocyclic compounds, 87-89
H	polycyclic compounds, 89
η (see Eta)	Hydrates, 80–81
H designator	Hydrazine and derived ions and radicals,
for bridging hydrogen atoms in boron	83, 105–108, 317
hydrides, 35, 93–94	Hydride names, parent, 84-101
and indicated hydrogen in heterocycles,	Hydro
39, 96	obsolete ligand name (see hydrido)
Halogens	prefix in substitutive nomenclature
atomic symbols, order vs. oxygen, 10,	order in names, 10
336 (see footnote f)	use with Hantzsch-Widman system,
oxoacids, 131	96, 101
Hantzsch-Widman names	Hydrogen
cyclic boranes, 92	in boron hydrides
heteronuclear monocyclic parent	as bridging atom, 93-94
hydrides, 95–98	designation of number of atoms, 24
heteronuclear polycyclic parent	substitution, 104–105
hydrides, 100-101, 103	isotopes, 48, 249 (see footnote f),
homonuclear monocycles, 87-89	298
numbering, 89	ligand names, 151
indicated hydrogen, 39	Hydrogen names, 75
monocyclic organometallics of group	abbreviated names for anions, 137
13–16 elements, 231–232	cf. compositional names, 136
order of hetero atoms, 42, 96	construction, 136
parent name endings, 85, 251-257	general requirements, 136,
table, 96	for inorganic acids, 125, 134-137
priorities, 89	polynuclear oxoacids, 135

and tautomers, 135	for organic compounds, 94
use of enclosing marks, 24	tautomers of heteronuclear parent
Hydrogenborate, 127, 137, 285	hydrides, 96
Hydrogencarbonate, 127, 137, 291	Indigane, 311
Hydrogenphosphate, 128, 137, 303	Infinitely adaptive structures, 245
Hydrogenphosphite, 128, 137, 303	Infixes, functional replacement
Hydrogenphosphonate, 128, 137, 307	nomenclature, 138
Hydrogensulfate, 129, 137, 303	Inorganic acids (see also oxoacids),
Hydrogensulfite, 130, 137, 303	124–141
Hydron usage, 71, 105-106, 135	acceptable common names, 127-132,
and hydrogen isotopes, 48, 298	134
Hydronium, obsolete name (see	additive names, 7, 124, 126-134
oxonium)	derivatives, 137–140
Hydroxide, 301	additive names, 139-140
Hydroxido, 301	common names, 139-140
Hydroxo, obsolete ligand name	functional replacement names,
(see hydroxido)	137–140
Hydroxy, prefix in substitutive	general principles of nomenclature,
nomenclature, 101, 109, 301	126
Hydroxyl, 109, 301	hydrogen names, 125, 134-137
Hydroxylamine, 128, 309	abbreviated anion names, 137
Hydroxylium, 301	names, 11–12
Hyperoxide, obsolete name (see	tables, 127-132, 139-140
superoxide)	transition metal compounds, 137
Hyphens in formulae and names,	Insertion in solids, 245
24–25	Intercalation, 245
hypho boranes, 90, 259	Intermetallic compounds, element
Hypobromite, 131, 319	sequence, 10
Hypobromous acid, 131, 287	Interstitial sites, 239
Hypochlorite, 131, 319	Iodate, 131, 321
Hypochlorous acid, 131, 294	Iodic acid, 131, 299
Hypodiphosphoric acid, 129	Iodide, 311
Hypoiodite, 131, 320	Iodido, 138, 311
Hypoiodous acid, 131, 299	Iodine compounds and species, names,
Hyponitrite, 132 (see footnote f)	311, 320–322
Hyponitrous acid, 132 (see footnote f)	Iodite, 131, 321
	Iodo
I	obsolete ligand name (see iodido)
Imide, 106, 314	prefix in substitutive nomenclature, 101,
Imido, 314	138
Imino, 314	Iodous acid, 131, 299
Incommensurate structures, 242–243	Ions
Indicated hydrogen method	additive names, 112
for boron hydrides, 35, 93-94	indication of charge, 25-26, 70-75
bridging hydrogen, 93-94	in formulae, 57-58, 153-154
and Hantzsch-Widman names, 39	order in salts, 40

from parent hydrides, 105-108	use of superscripts, 156–158
radicals, 109-110	in non-symmetrical dinuclear
proportion in coordination compounds,	compounds, 116-117
152–153	for organometallics, 202, 210-211
table of names, 280-336	bridging ligands, 211-212
Isocyanic acid, 127, 288	and η convention, 161, 202,
Isofulminic acid, 132 (see footnote b)	216–217, 221–223, 232
Isoselenocyanic acid, 290	polynuclear compounds, 211
Isothiocyanic acid, 140, 289	and polynuclear entities, 11
Isotopes of hydrogen, 48, 249 (see	klado-boranes, 90, 99-100
footnote f), 298	Kröger-Vink notation, 238-241
Isotopic modification, and atomic symbols,	complex defect clusters, 22
44, 48	crystallographic sites, 239–240
Isotopically labelled compounds	in defect clusters, 241
formulae, 64–65	indication of charge, 240-241
order of nuclide symbols, 44, 64	effective charge, 27, 240–241
separation of labelled atoms, 29	use of primes, 37
use of enclosing marks, 19–20, 24	quasi-chemical reactions, 238, 239,
Isotopically substituted compounds,	241
formulae, 64	site occupancy, 239
Italic letters, 34	
geometrical and structural affixes,	L
259	λ (lambda)
as locants in names, 35	absolute configuration of chelate ring
and nomenclature of solids	conformation, 36, 259
to designate crystal system, 246	convention for non-standard bonding
generic mineral names, 237	numbers, 33, 38, 84, 98, 259
indication of site occupancy, 239	and group 13-16 organometallics,
Pearson symbols, 242	230
Italicized element symbols	mononuclear acyclic parent hydrides,
to denote ligating atoms, 155, 210	86–87, 101
for bonds between central atoms,	Λ (Lambda), and absolute configuration,
115	36, 259
metal-metal bonds, 165-166,	Lanthanide, 311
212	Lanthanoids (vs. lanthanides), 51-52,
	336 (see footnote d)
K	metallocenes, 227
Kalide, obsolete name (see potasside)	Lattice parameters, and allotrope
Kappa (κ) convention, 36, 259	symbols, 51
and coordination compounds, 145,	Ligand names for organometallic
154–161	compounds, 203
order of symbols, 155	acceptable alternatives, 205-206, 208,
polynuclear species, 11, 162-165	214, 217–218
tridentate chelation, 156–157	as anions, 203, 205-208
use with μ symbol, 164	bridging ligands, 211-212
use of primes, 156, 159–160	vs. multiple bonding, 208–209
	=

chelating ligands, 209–210	priority numbers, 144, 193–195
κ convention, 210–211	representation in names, 112, 151-152
with metal-carbon multiple bonds,	enclosing marks, 113
213–215	structural formulae, 269-279
with several single metal-carbon bonds,	unsaturated molecules or groups,
207–212	215–225
bridge vs. terminal bonding, 208–209	table, 217–218
with single metal-carbon bonds,	Locants
205–206	for anions derived from parent hydrides
as substituent groups, 203-208	by hydride addition, 107
tables of names, 205–206, 208, 214,	by hydron loss, 106–107
217–218	arabic numerals, 32, 38–40
unsaturated molecules or groups,	in boron hydrides, to indicate
215–225	supplanting heteroatoms, 99–100
as anions, 217–218	for cations derived from parent hydrides
as neutral ligands, 217-218	by hydride loss, 105–106
Ligands, 145	by hydron addition, 105–106
abbreviations of names, 63, 153-154,	substitution, 106
261–268	for central atoms in polynuclear
construction, 63, 261	compounds, 28, 164-174, 211-212
use of enclosing marks, 21	in central structural unit, 173
bridging multiplicity, 32-33, 42-43	in clusters, 173-174
citation of bridging vs. terminal ligands,	trinuclear and larger species, 167–172
43–44, 163–164	unsymmetrical dinuclear species, 167
forming metal-carbon multiple bonds,	in chains and rings nomenclature, 119
213–215	and η convention, 220-221
table, 214	for heteroatoms
forming one metal-carbon single bond,	in acyclic parent hydrides, 94
203–207	in group 13-16 organometallics, 231
table, 205–206	in ionic radicals, 109-110
forming several metal-carbon single	in κ convention, 157, 159
bonds, 207–212	letters, 40
table, 208	italicized capitals, 35
names	for ligand donor atoms, 156
of anions, 10-11, 112, 151-152	and point of ligation, 159, 163, 213
enclosing marks, 113, 150-151, 153,	for ligands forming several
336 (see footnote c)	metal-carbon bonds, 207
and sites of substitution, 36-37	for metal-metal bonds, 165-166
table, 280–336	in parent hydride substitutive names,
order in polynuclear compounds, 161	102–104
in formulae, 162	derived radicals, 108-109
ordering	derived substituent groups, 108-109,
in additive names, 41, 43-44,	204
150–151, 168	position of substituent groups,
with central atoms, 7, 113	102–103
in formulae, 11, 40–41, 43–44, 153, 168	position of unsaturation, 87

20	3.61.0
use of commas, 29	Misfit structures, 243
use of hyphens, 35	Modulated structures, 242–243
	Modules, in chains and rings
M	nomenclature, 118
μ (see Mu)	Molecular formulae, 54
Main group elements, organometallic	Mononuclear entities
compounds, 228–232	additive names, 113–114
Manganese oxides, names, 312–313	parent hydride names, 84–86
'Manganocene', 226	endings in Hantzsch-Widman
Mass number, 32, 47–48	system, 96
nuclides, 64	Mu (μ), symbol for bridging, 32–33, 36,
mer prefix, 179	259
and octahedral geometry, 182-183	in coordination compounds, 163
Metaborate, 127, 285	in dinuclear species, 115-117
Metaboric acid, 127	in formulae, 67
Metal-metal bonds	and hydrogen atoms in boron hydrides.
in coordination compounds, 148,	28, 93–94
165–166, 173	substitution, 104-105
designation in names, 23, 26	in organometallics, 211-212
in organometallics, 212	bridging vs. terminal ligands, 203,
Metallocene nomenclature, 225–228	208–209
and cyclooctatetraene compounds,	unsaturated hydrocarbon ligands,
227–228	222–223
di(ligand) derivatives, 227	and η convention, 222–223
functional names, 225–226	and κ convention, 222–223
lanthanoids, 226	Multiple bonding, numbering in
oxidized species, 226-227	substitutive nomenclature, 87
prefix nomenclature, 225–226	Multiplicative prefixes, 5, 258
s- and p-block elements, 226, 229	in binary names, 69–70
substituent group names, 225–226	and coordination entities, 150–151
substituents on cyclopentadienyl rings,	and donor atom symbol, 155
226	and κ convention, 156
Metaphosphate, 324	number of ligands, 150-151, 161,
Metaphosphoric acid, 129	163
Metasilicate, 128, 333	to simplify names of dinuclear
Metasilicic acid, 127	species, 166–167
Methanido vs. methyl, ligands, 78,	'di' vs. 'bis', 37, 76, 101, 113, 150–151
203–205	258
Methods of nomenclature, 4–8	in generalized stoichiometric names,
choice of system, 7–8	76–77
general guidelines, 8	for ligands in additive names, 113
flowchart, 8	in non-symmetrical dinuclear
Methylidene <i>vs.</i> methylene ligands,	compounds, 116
208–209	and number of boron atoms in boron
Mineral names, 237	hydrides, 89
Minus signs in formulae and names, 25–26	and proportion of ions, 152–153
	and proportion of fond, 152 155

and substitutive names for parent	semicolons, 28–29
hydrides, 101–104	solidus, 27
table, 258	spaces, 30
'tri' vs. 'tris', 37, 76, 150-151, 258	substitutive nomenclature, 84
triiodide vs. tris(iodide), 79	Names of coordination compounds, 144,
trisulfide vs. tris(sulfide), 79	150–153
Muon symbol, 48, 313	dinuclear species, 166–167
Muonide, 313	order of bridging and terminal ligands,
Muonium symbol, 48, 313	163–164
·	stepwise naming procedure, 149–150
N	Naming procedure for new elements,
Name construction, 4–5	46–47
abbreviations for ligands, 63, 261	Natride, obsolete name (see sodide)
for acids, 126	Nickelocene, 225
affixes, 16	nido-boranes, 90-94, 99-100, 259
arabic numerals, 32–34	Nitramide, 139
binary species, 5	Nitrate, 128, 315
chains and rings, 121–122	Nitric acid, 128
colons, 28–29	Nitride, 313
commas, 29	Nitrite, 128, 315
dinuclear compounds,	Nitrogen compounds
non-symmetrical, 116–117	oxoacids, 128
symmetrical, 114–116	derivatives, 139
dots, 28, 70–75	table of names, 300-301, 313-318
element ordering, 42–43	oxides, 315, 317–318
elisions, 31	Nitrosyl, 315
'em' dashes, 26	Nitrous acid, 128
enclosing marks, 19-20, 22-24	Nitryl, 315
braces, 24	Nodal descriptors, in chains and rings
parentheses, 22–24	nomenclature, 20, 29, 119–121
square brackets, 19–20	Nomenclature
general principles, 16–17	of organometallic compounds
Greek letters, 35–36	main group elements, 228–232
hyphens, 24–25	polynuclear compounds, 232–233
italic letters, 34–35	transition metals, 201–228, 232
locants	in other areas of chemistry, 13
arabic numerals, 38-40	Nomenclature systems
letters, 40	additive nomenclature, 5, 7, 111–123
metal-metal bonds, 23, 26	for inorganic chains and rings, 7,
mononuclear compounds, 113-114	118–122
multiplicative prefixes, 37	compositional nomenclature, 5-6,
oligonuclear compounds, 117–118	68–82
order of ligands, 41, 43–44	names of (formal) addition
plus and minus signs, 25–26	compounds, 80–81
primes, 36–37	stoichiometric names, 68–70
Roman numerals, 34	coordination nomenclature, 7, 147–148

element names, 46-47	Nuclear reactions, symbols, 48
functional replacement nomenclature,	Nuclides, 47–48
137–140	mass and atomic numbers, 32, 64
general remarks, 5	Numbering
parent hydride-based nomenclature,	boron atoms in boranes, 33
83–110	central atoms in polynuclear
substitutive nomenclature, 6-7, 83-100	compounds, 167
Non-commensurate structures, 242–243	clusters, 173
Non-standard bonding numbers, 33, 84	of ligands with several points of
and group 13-16 organometallics, 230	attachment, 213
heteronuclear monocyclic parent	of metals in dinuclear organometallics,
hydrides, 98	211
hydrogen placement in parent hydrides,	polyhedral borane clusters, 92-93
38	skeletal atoms in chains and rings, 42,
λ convention, 33, 38, 84, 86–87, 98, 259	119
and mononuclear acyclic parent	in substituted parent hydrides, 102-104
hydrides, 86–87, 101	Numerals
Non-stoichiometric phases, 236, 242-245	arabic
antiphase boundary, 244	in formulae, 31–32
chemical twinning, 244-245	in names, 32–34
commensurate structures, 242-243	Roman, in formulae and names, 34
composition, 21	
crystallographic shear structures, 244	0
disordered twin planes, 244	'Ocene' nomenclature, 225-228
homologous compounds, 243-244	Octahedral complexes
incommensurate structures, 242-243	absolute configuration, 185, 189-193
infinitely adaptive structures, 245	C/A convention, 185, 189–190
intercalation, 245	CIP rules, 189
misfit structures, 243	cis-bis(bidentate) complexes,
modulated structures, 242-243	191–193
non-commensurate structures, 242-243	skew-lines convention, 185, 191-193
Pearson notation, 241–242	tris(bidentate) complexes, 191-192
phase nomenclature, 241-242	specifying configuration, 182-183
shear planes, 244	configuration index, 182-183
solid mixtures, 236	stereoisomers
solid solutions, 236	bis(tridentate) complexes, 195-196
unit cell twinning, 244-245	priming convention, 195-197
use of formulae, 236	Oligonuclear compounds, additive names,
variable composition, 236	117–118
Non-symmetrical dinuclear compounds,	Optically active compounds
additive names, 116–117	formulae, 66
for different central atoms, 116	sign of rotation, 22, 26
for identical central atoms, 116	Order
κ convention, 116–117	in addition compounds, 41
multiplicative prefixes, 116	alphabetical, 40-41
order of central atoms, 116-117	of atomic symbols in formulae, 58-63

alphanumeric, 54, 58	of ligands in formulae, 11, 40–41,
B vs. C, 60	43–44, 153, 168
based on electronegativity, 58-59	of ligands in polynuclear compounds,
oxygen vs. halogens, 10, 336 (see	161, 163–165
footnote f)	bridging vs. terminal, 163-164
based on periodic table, 10, 42-43, 260	of modifications to parent hydride
of bridging vs. terminal ligands, 211	names, 109–110
of central atoms	of multiple bridging ligands, 163-164
in additive names, 112	parent hydrides, 43
in dinuclear complexes, 166	prefixes
and ligands in formulae, 153	in additive names, 16-17
and ligands in names, 113, 150	in substitutive names, 16-17, 101
in metal-metal bonds, 165-166	punctuation marks, 44
in non-symmetrical compounds, 116	stereochemistry, 44
in oxoacids, 125	CIP rules, 44
in polynuclear complexes, 42,	in substitutive names, 43
168–169	of symbols within formulae, 153
in polynuclear organometallics,	Organometallic compounds, 200-234
232–233	with bridging ligands, 203, 211-212
chains and rings nomenclature, skeletal	connectivity, 201-203, 216
atoms, 41	group 1 and 2 elements, 228-230, 232
characteristic groups, 43	aggregates, 229
components in addition compounds, 41,	group 3-12 elements, 201-228,
80–81	232–233
of boron, 12, 41	group 13-16 elements, 228, 230-232
components in salts, 40, 44	with atoms of groups 1-12, 232-233
in compositional names, 41, 121	order of central atoms, 233
constituents in stoichiometric names, 6,	with metal-carbon multiple bonds,
75–76	213–215
of elements	metallocenes, 225–228
in binary compounds, 42	oxidation number, 203
in Hantzsch-Widman names, 42	polynuclear compounds, 232–233
in metal-metal bonds, 212	with several single metal-carbon bonds,
in polynuclear compounds, 162	207–212
in stoichiometric names, 69	bridge vs. terminal bonding, 208–209
and enclosing marks, 17, 24	bridging ligands, 211–212
of heteroatoms, in Hantzsch-Widman	chelation, 209–210
names of parent hydrides, 96	κ convention, 210–211
of ions in generalized salts, 61–62	metal-metal bonding, 212
and isotopic labelling, 44, 64	μ convention, 208–209
nuclide symbols, 44, 64	with single metal-carbon bonds,
of κ symbols, 155	203–207
of ligand names, 149	ligand names, 203–206
of ligands in additive names, 41, 43–44,	with unsaturated molecules or groups,
150, 168	215–225
and derivatives of parent hydrides, 60	Orthoboric acid, 132 (see footnote a)

Orthoperiodate, 131, 322	Oxygen
Orthoperiodic acid, 131, 310	order of atomic symbol vs. halogens, 10
Orthophosphoric acid, 131 (see	336 (see footnote f)
footnote a)	table of compound names, 319-322
Orthosilicic acid, 132 (see footnote a)	Ozone, 321
Orthotellurate, 130, 334	Ozonide, 321
Orthotelluric acid, 130	
Osmocene, 225–226	P
Oxidation number, 17	Parent hydride-based nomenclature, 6,
in binary compounds, 70	83–110
in coordination compounds, 152–154	'a' terms, 87–89, 94–98, 100–101
enclosing marks, 23	acyclic compounds, 86–87
and generalized stoichiometric names,	anionic derivatives, 72, 106–108
77–78	by hydride addition, 107
and organometallics, 203	by hydron loss, 74, 106–107
Oxidation state,	substitution, 107–108
definition, 147	anions, 72
in formulae, 34, 65–66	formation of names, 8
in names, 34	homopolyatomic, 74
Oxides	radicals, 10
of chromium, 295–296	branched structures, 103
of potassium, 311	cationic derivatives, 105–106
Oxido, 319	by hydride loss, 105–106
Oxo	by hydron addition, 105
obsolete ligand name (see oxido)	substitution, 106
prefix in substitutive nomenclature,	and charge numbers, 72
319	choice of parent, 101
Oxoacids	for group 13–16 organometallics,
acceptable common names, 127–132	230–233
additive names, 127–134	element order, 233
chains and rings nomenclature,	Hantzsch–Widman endings, 251–257
128–130, 133–134	heteronuclear acyclic compounds,
derivatives	94–95
acceptable common names, 139–140	chains of alternating skeletal atoms,
additive names, 139–140,	95
functional replacement names, 84,	chains and rings nomenclature, 95
126, 137–140	with four or more heteroatoms, 94
hydrogen names, 125, 134–137	with less than four heteroatoms, 94
ordering formulae, 61	heteronuclear compounds, 94–101
of phosphorus, 128–129, 133–134, 137	polycyclic compounds, 100–101
derivatives, 139	heteronuclear monocyclic compounds,
polynuclear compounds, 135	95–98
of sulfur, 126, 129–130, 133, 137	Hantzsch–Widman names, 95–98
derivatives, 139–140	indicated hydrogen, 96
tables of names, 127–132, 139–140	order of citation of heteroatoms, 96
Oxonium, 71, 105, 309	tautomers, 96
J. 100, 207	tuatoment, 70

homonuclear monocyclic compounds,	homonuclear polycyclic parent
87–89	hydrides, 89
choice of naming method, 88	substituent groups, 101-104, 108-110
Hantzsch-Widman names, 87-89	substitution, 109
use of the prefix cyclo, 87	substituted derivatives, 101–104
homonuclear polycyclic compounds, 89	branched structures, 103-104
and fusion of monocycles, 89	choice of principal chain, 103-104
Hantzsch-Widman system, 89	locants, 102–104
skeletal replacement, 89	numbering, 102–104
von Baeyer notation, 89	use of prefixes, 101–104
homopolynuclear acyclic compounds,	use of suffixes, 101–104
86–87	Parentheses
with non-standard bonding numbers,	in formulae, 20-22
86–87	in names, 22–24
with standard bonding numbers, 86	strike-through parentheses and
ions, 105–108	polymers, 22, 56, 61
radicals, 109–110	Pearson notation, 57, 241–242
mononuclear compounds, 84-86	crystalline allotropes, 49-51
with non-standard bonding numbers,	Perbromate, 131, 321
84–86	Perbromic acid, 131, 287
with standard bonding numbers,	Perchlorate, 131, 322
84–85	Perchloric acid, 131, 295
table, 85	Periodate, 131, 322
non-standard bonding numbers, 38, 84,	Periodic acid, 131, 299
86–87	Periodic table, 51–52, (see also inside from
numbering skeletal atoms, 38	cover)
order of citation of modifications,	element groups, 51
109–110	Peroxide, 73, 320
precedence in names	Peroxido, 320
cation vs. anion vs. radical,	Peroxo
109–110	infix in functional replacement names,
radicals, 105, 108–110	138
derivatives, 108–110	obsolete ligand name (see peroxido)
ions, 10, 109–110	Peroxy, 138
replacement prefixes	Peroxy acids, 139
heteronuclear monocyclic	Phase nomenclature, 241–242
compounds, 86–89	Phosphate, 128, 325
heteronuclear polycyclic compounds,	Phosphine, obsolete name for phosphane,
100–101	85 (see footnote e)
homonuclear monocyclic	Phosphinic acid, 129
compounds, 87–89	Phosphinous acid, 129
homonuclear polycyclic compounds,	Phosphite, 128, 324
89	Phosphonate, 128, 303
skeletal replacement nomenclature, 6	Phosphonic acid, 128
heteronuclear polycyclic parent	Phosphonous acid, 128
hydrides, 100-101	Phosphoric acid, 125, 128

Phosphoric acid derivatives, 125	order of ligands, 161, 163–165
Phosphorous acid, 128	bridging vs. terminal, 163-164
Phosphorus compounds	organometallics
oxoacids, 128-129, 133-134, 137	metal-metal bonds, 212
derivatives, 139	order of central atoms, 232-233
names, 301-304, 322-326	Polyoxometallates, 40
Phosphoryl, 139, 324	Potasside, 311
Plus signs in formulae and names, 25–26	Potassium oxides, names, 311
Pnictogens (vs. pnicogens), 51-52	Prefix nomenclature, for metallocenes,
Point defect notation (see Kröger-Vink	225–226
notation), 238–241	Prefixes (see also multiplicative prefixes),
Polycyclic parent hydrides	16, 251–257
heteronuclear compounds, 100-101	in additive names, 16-17
homonuclear compounds, 89	in functional replacement nomenclature,
Polyhedral symbols for coordination	138, 140
compounds, 33-34, 144, 175-179	geometrical, 34
choice between related geometries, 179	ligands in coordination entity, 112,
geometrical structures, 177-178	150–151
idealized geometries, 176, 179	structural, 34
octahedral species, 182-183	in substitutive names of parent hydride
square planar species, 180-181	derivatives, 101–104
table, 176	Primes
Polymers	for configuration index and polydentate
formulae, use of strike-through	ligands, 180
parentheses, 56, 61	in formulae and names, 36-37
repeat units and enclosing marks, 22	to indicate effective charge in solids, 240
Polymorphs, 245–246	and indication of donor atom symbols,
elements, 49	156
formulae, 56–57	and ligand donor atoms, 159
Polynuclear compounds	use in κ convention, 156, 159–160
additive names, 11, 114-118	for organometallic compounds,
atom order in additive names, 42	210–211
central atom locants, 28, 164-174,	Priming convention, 194
211–212	C/A assignment for polydentate ligands,
CEP descriptors, 37	190
coordination compounds, 161-174	and configuration index, 195-198
bridging ligands, 148, 163-165	for stereoisomers, 195-198
general naming procedure, 168	bis(tridentate) complexes, 195-196
κ convention, 11, 162–165	with hexadentate ligands, 197
metal-metal bonding, 165-166	with linear tetradentate ligands, 196
numbering central atoms, 39	in non-octahedral structures,
symmetrical central structural units,	197–198
172–174	with pentadentate ligands, 197
element sequence, 10-11	Priority
hydrogen names of oxoacids, 135	of atoms in non-symmetrical dinuclear
indication of metal-metal bonds, 23, 26	compounds, 116–117

and C/A convention, 187–191	Replacement nomenclature
of donor atoms and configuration index,	for oxoacid derivatives, 139-140
180	for polyboranes, 99
square planar complexes, 180-181	use of arabic numerals, 38
in Hantzsch-Widman names, 95-98	Replacement prefixes for parent hydride
in parent hydride names, cation vs.	names
anion vs. radical, 109–110	chains of alternating skeletal atoms, 95
and R/S convention, 186	heteronuclear monocyclic compounds,
Priority numbers, for donor atoms in	86–89
stereoisomers, 193–195	heteronuclear polycyclic compounds,
assignment, 194–195	100–101
CIP rules, 194–195	homonuclear monocyclic compounds,
Proton, 48, 298	87–89
Punctuation marks, hierarchy, 44	homonuclear polycyclic compounds, 89
, , , , , , , , , , , , , , , , , , ,	Ring compounds (see also chains and rings
	nomenclature)
Q	boron hydrides, 92
Quasi-chemical reactions in solids,	catenacycles, 118–119, 121–122
238–239, 241	chelate rings
	absolute configuration and
R	conformation, 35–36, 259
R/S convention and absolute configuration,	skew-lines convention, 193
185–187	cyclate compounds, 121–122
tetrahedral compounds, 186	cyclium compounds, 121
trigonal pyramidal compounds, 186	cyclo prefix for coordination
Radicals	compounds, 129, 133, 171–172, 259
additive names, 112	cyclo prefix, 87–88, 92, 96–98, 259
anion names, 10–11, 73–75	Hantzsch–Widman names
cation names, 70–72	heteronuclear monocyclic parent
chains and rings nomenclature, 121	hydrides, 95–98
compositional names, 70–75	heteronuclear polycyclic parent
derived from parent hydrides, 105,	hydrides, 100–101, 103
108–110	homonuclear monocyclic
ions, 10, 109–110	compounds, 87–89
shortened names, 109	monocylic group 13–16
dinuclear compounds, 115–117	organometallics, 231–232
formulae, 66	parent name endings, 85, 96,
names	251–257
changed recommendations, 336 (see	parent hydrides
footnote e)	fusion of monocyclic compounds,
table, 280–336	89, 100–101
Radical dot, 12	heteronuclear compounds, 94–101
enclosing marks, 21, 23	heteronuclear monocyclic
in formulae, 27, 66	compounds, 86–89, 95–98
in names, 28, 112	homonuclear monocyclic
Rare earth metals, 51	compounds, 87–89

yon Baeyer notation heteronuclear polycyclic parent hydrides, 100–101 homonuclear polycyclic parent hydrides, 89 Roman numerals, in formulae and names, 34 Ruthenocene, 225 Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selenate, 130, 332 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Selenocyanate, 292 Selenocyanate, 292 Selenocyanate, 292 Selenocomaic, 138 Selenocyanate, 292 Shear structures, 244 Silicate, 127, 333 Silicica cid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6 Skew-lines convention, 185, 191–193 conformation of chelate rings, 193 tris(bidentate) complexes, 191–192 Sodide, 318 Solids, 235–247 allotropes amorphous modifications, 51 crystalline modifications, 49–51 antiphase boundary, 244 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 commensurate structures, 244 defect clusters, 22, 241 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 interstitial sites, 239 intercalation compounds, 245 interstitial sites, 239 intercalation of charge, 27, 240–241 indication of charge, 27, 240–241 indi	homonuclear polycyclic compounds, 89	heteronuclear polycyclic parent hydrides, 100–101
heteronuclear polycyclic parent hydrides, 100–101 homonuclear polycyclic parent hydrides, 89 Roman numerals, in formulae and names, 34 Ruthenocene, 225 Ratthenocene, 225 Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, and C/A convention, 188 specifying configuration, 185 Selencia caid, 130 Selenia caid, 130 Selenia caid, 130 Selenium oxoacids, 130 Selenous acid, 130 Semicolons in mames, 29 Shear structures, 244 Siliciae acid, 127 Silicion, table of compound names, 332–333 Silte occupancy, solids, 239–240 Skeletal replacement nomenclature, 6, 84 hydrides, 89 in substitutive nomenclature, 6 Skew-lines convention, 185, 191–193 conformation of chelar rings, 193 tris(bidentate) complexes, 191–192 Sodide, 235–247 allotropes amorphous modifications, 51 crystalloraphous defications, 51 crystalloraphous modifications, 51 crystalloraphous modificati		•
hydrides, 100–101 homonuclear polycyclic parent hydrides, 89 Roman numerals, in formulae and names, 34 Ruthenocene, 225 Ruthenocene, 225 Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenic acid, 130 Seleninic acid, 130 Seleninic acid, 130 Selenony acid, 290 Selenoons acid, 130 Selenoons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Silicon, table of compound names, 332–333 Silicon, table of compound names, 332–333 Skeletal replacement nomenclature, 6, 84 In substitutive nomenclature, 6 Skew-lines convention, 185, 191–193 conformation of chelate rings, 193 tris(bidentate) complexes, 191–193 conformation of chelate rings, 193 tris(bidentate) complexes, 191–192 Sodide, 318 Solids, 235–247 allotropes amorphous modifications, 51 crystalline modifications, 51 crystalline modifications, 51 crystalline modifications, 49–51 antiphase boundary, 244 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 commensurate structures, 242–243 crystallographic shear structures, 244 defect clusters, 22, 241 effective charge, 27, 240–241 effective charge, 27, 240–241 infinitely adaptive structures, 245 insertion, 245 insertion, 245 insertion, 245 interstitial sites, 239 intercalation compounds, 247 indication of charge, 27, 240–241 quasi-chemical reactions, 237 misfit structures, 243 mixitures, 236		
homonuclear polycyclic parent hydrides, 89 Roman numerals, in formulae and names, 34 Ruthenocene, 225 Ruthenocene, 225 Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Seleno, 138 Selenocyanate, 292 Selenocyanate, 292 Selenocyanic acid, 130 Selenonic acid, 130 Selenonic acid, 130 Selenonic acid, 130 Selenonic acid, 130 Selenora areid, 130 Selenosyanic acid, 290 Selenonic acid, 130 Selenonic acid, 130 Selenosyanic acid, 290 Selenonic acid, 130 Selenosyanic acid, 290 Selenonic acid, 130 Selenosyanic acid, 290 Selenosyanic aci		•
cis-bis(bidentate) complexes, 191–193 conformation of chelate rings, 193 tris(bidentate) complexes, 191–192 conformation of chelate rings, 193 tris(bidentate) complexes, 191–192 Sodide, 318 Solids, 235–247 allotropes Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenicia acid, 130 Selenicia acid, 130 Selenotyanic acid, 290 Selenotyanate, 292 Selenocyanate, 292 Selenocyanate, 292 Selenocyanate, 290 Selenonic acid, 130 Selenocyanic acid, 290 Selenonic acid, 130 Selenos acid, 290 Selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 130 Selenos acid, 130 Selen	•	
Roman numerals, in formulae and names, 34 Ruthenocene, 225 Ruthenocene, 225 Sodide, 318 Solids, 235–247 Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Selenour acid,		
Ruthenocene, 225 Ruthenocene, 225 Sodide, 318 Solids, 235–247 allotropes amorphous modifications, 51 crystalline modifications, 49–51 antiphase boundary, 244 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 Selentic acid, 130 Selentic, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenium oxoacids, 130 Selenoyanate, 292 Selenocyanic acid, 290 Selenous acid, 130 Selenous	· ·	
Ruthenocene, 225 Sodide, 318 Solids, 235–247 allotropes Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Selenous		
Solids, 235–247 allotropes amorphous modifications, 51 crystalline modifications, 49–51 antiphase boundary, 244 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenic, 130, 332 Selenic moxoacids, 130 Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenoic acid, 130 Selenos acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal replacement nomenclature, 6, 84 Solids, 235–247 allotropes amorphous modifications, 51 crystalline modifications, 49–51 antiphase boundary, 244 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 commensurate structures, 244 defect clusters, 22, 241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 tropochemical, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 misfit structures, 243 misfit structures, 243 mixtures, 236		
Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selenotic acid, 130 Selenic acid, 130 Selenic acid, 130 Seleno, 138 Selenovanate, 292 Selenovanate, 292 Selenovanate, 292 Selenovanate, 290 Selenonic acid, 130 Selenosyanic acid, 290 Selenonic acid, 130 Selenosyanic acid, 130 Selenosyanic acid, 130 Selenosyanic acid, 290 Selenosyanic acid, 130 Selenosyanic acid, 130 Selenosyanic acid, 290 Selenosyanic type, 22 crystallographic shear structures, 244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 topochemical, 245 Selenosyanic type, 22 crystallographic siles, 239 intercalation compounds, 245 Kröger-Vink notation, 238-241 crystallographic siles, 239 intercalation compounds, 245 Kröger-Vink notation, 238-241 crystallographic siles, 239 intercalation of charge, 27, 240-241 quasi-chemi	Ruthenocene, 225	•
Salts, order of ions, 40 Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenic acid, 130 Selenoyanate, 292 Selenocyanate, 292 Selenocyanic acid, 130 Selenous acid, 290 Selenous acid, 130 Selenous acid, 290 S		
Sandwich structure, 225 See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Seleninic acid, 130 Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenocyanate, 292 Selenoius acid, 130 Selenos acid, 130 Selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Approximate formulae, 237 chemical twinning, 244–245 chemical composition, 237–248 chemical composition, 237–248 chemical twinning, 244–245 commensurate structures, 244 defect clusters, 22, 241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236		allotropes
See-saw complexes absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenium oxoacids, 130 Selenocyanate, 292 Selenoic acid, 130 Selenocyanate, 292 Selenoic acid, 130 Selenoit with a selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Skeletal atoms, positions in Hantzsch-Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 antiphase boundary, 244 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 chemical twinning, 244–245 chemical twinning, 244–245 commensurate structures, 244 defect clusters, 22, 241 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 insertion, 245 interstitial sites, 239 intercalation compounds, 245 Kröger-Vink notation, 238–241 crystallographic sites, 239 intercalation compounds, 245 Kröger-Vink notation, 238–241 crystallographic sites, 239–240 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Salts, order of ions, 40	_
absolute configuration, and C/A convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenim oxoacids, 130 Selenoyanate, 292 Selenovanic acid, 290 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 chemical composition, 237–238 approximate formulae, 237 chemical twinning, 244–245 commensurate structures, 244 seproximate formulae, 237 chemical twinning, 244–245 commensurate structures, 244 seproximate formulae, 245 commensurate structures, 244 defect clusters, 22, 241 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 topochemical, 245 topochemical, 245 sinterstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic shear structures, 245 insertior, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic shear structures, 245 insertior, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Sandwich structure, 225	crystalline modifications, 49–51
convention, 188 specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenite, 130, 332 Selenium oxoacids, 130 Selenoyanate, 292 Selenocyanate, 292 Selenocyanic acid, 130 Selenous acid, 130 Selenicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Selenoical twinning, 244–245 commensurate structures, 244 defect clusters, 22, 241 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	See-saw complexes	antiphase boundary, 244
specifying configuration, 185 Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenite, 130, 332 Selenite, 130 Selenite, 130, 332 Selenite, 130 Seleno, 138 Selenocyanate, 292 Selenocyanate, 292 Selenocyanic acid, 290 Selenoic acid, 130 Selenoic acid, 130 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicia caid, 127 Silicion, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch-Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Selenoic acid, 120 Selenoic acid, 127 Selenocyanate, 292 Shear structures, 244 Silicia caid, 127 Silicon, table of compound names, 332–333 Skeletal replacement nomenclature, 6, 84 Selenoical twinning, 244–245 commensurate structures, 244 defect clusters, 22, 241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 245 topochemical, 245 topochemi	absolute configuration, and C/A	chemical composition, 237–238
Selective isotopic labelling, 64–65 Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Seleninic acid, 130 Seleninic acid, 130 Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenocyanate, 292 Selenocyanic acid, 130 Selenos acid, 130 Selenos acid, 130 Selenous acid, 130 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Skeletal atoms, positions in Hantzsch—Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Commensurate structures, 242 crystall type, 22 crystall type, 22 crystallographic shear structures, 244 defect clusters, 22, 241 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 kröger–Vink notation, 238–241 crystallographic sites, 239 defect clusters, 241 crystallographic shear structures, 244 sintercial type, 22 crystallographic shear structures, 244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 kröger–Vink notation, 238–241 crystallographic sites, 239 defect clusters, 241 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 intercalation compounds, 245 Kröger–Vink notation, 238–241 site occupancy, 239 misfit structures, 243 misfit structures, 243 mixtures, 236	convention, 188	approximate formulae, 237
Selenate, 130, 332 Selenic acid, 130 Selenic acid, 130 Selenite, 130, 332 Selenot, 138 Selenocyanate, 292 Selenocyanate, 292 Selenocyanic acid, 290 Selenocyanic acid, 130 Selenonic acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Crystal type, 22 crystallographic shear structures, 244 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 245 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 topochemical, 245 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 misfit structures, 243 misfit structures, 243 mixtures, 236	specifying configuration, 185	chemical twinning, 244-245
Selenic acid, 130 Seleninic acid, 130 Seleninic acid, 130 Seleninic acid, 130 Selenite, 130, 332 Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenocyanate, 292 Selenocyanic acid, 290 Selenonic acid, 130 Selenoid acid, 130 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Selenium oxoacids, 130 effective charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 243–244 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239 intercalation compounds, 245 site occupancy, 239–240 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Selective isotopic labelling, 64–65	commensurate structures, 242-243
Seleninic acid, 130 Selenite, 130, 332 Selenite, 130, 332 Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 290 Selenous a	Selenate, 130, 332	crystal type, 22
Selenite, 130, 332 Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 130 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicia acid, 127 Silicon, table of compound names, 332–333 Skeletal atoms, positions in Hantzsch-Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Hantzsch-Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 ferctive charge, 27, 240–241 enclosing marks and site symbols, 19, 21 formulae, 56–57 homologous compounds, 245 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 interstitial sites, 239 intercalation compounds, 245 Kröger-Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 guasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Selenic acid, 130	crystallographic shear structures, 244
Selenium oxoacids, 130 Seleno, 138 Selenocyanate, 292 Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Homologous compounds, 243 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Seleninic acid, 130	defect clusters, 22, 241
Seleno, 138 Selenocyanate, 292 Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 130 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch-Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 formulae, 56–57 homologous compounds, 245 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topochemical, 245 topochemical, 245 Kröger-Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Selenite, 130, 332	effective charge, 27, 240-241
Selenocyanate, 292 Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 homologous compounds, 245 infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 misfit structures, 243 mixtures, 236	Selenium oxoacids, 130	enclosing marks and site symbols, 19, 21
Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Seleno, 138	
Selenocyanic acid, 290 Selenonic acid, 130 Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Infinitely adaptive structures, 245 insertion, 245 topochemical, 245 topochemical, 245 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Selenocyanate, 292	homologous compounds, 243-244
Selenous acid, 130 Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 topochemical, 245 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 misfit structures, 243 mixtures, 236	Selenocyanic acid, 290	infinitely adaptive structures, 245
Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 misfit structures, 243 misfit structures, 243 mixtures, 236	Selenonic acid, 130	insertion, 245
Semicolons in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 topotactic, 245 interstitial sites, 239 intercalation compounds, 245 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	Selenous acid, 130	topochemical, 245
in formulae, 30 selectively labelled compounds, 65 in names, 29 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Stee occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 interstitial sites, 239 interstitial sites, 2	Semicolons	_
in names, 29 Kröger–Vink notation, 238–241 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Silicon, table of compound names, 38–39 Skeletal atoms, positions in mineral names, 237 Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	in formulae, 30	*
in names, 29 Kröger–Vink notation, 238–241 Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Silicon, table of compound names, 38–39 Skeletal atoms, positions in mineral names, 237 Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Kröger–Vink notation, 238–241 crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236	selectively labelled compounds, 65	intercalation compounds, 245
Shear structures, 244 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Crystallographic sites, 239–240 defect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236		
Silicate, 127, 333 Silicate, 127, 333 Silicic acid, 127 Silicon, table of compound names, 332–333 Site occupancy, solids, 239–240 Skeletal atoms, positions in Mantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 Mefect clusters, 241 indication of charge, 27, 240–241 quasi-chemical reactions, 238–239, 241 site occupancy, 239 mineral names, 237 misfit structures, 243 mixtures, 236		
Silicic acid, 127 indication of charge, 27, 240–241 Silicon, table of compound names, 332–333 241 Site occupancy, solids, 239–240 site occupancy, 239 Skeletal atoms, positions in mineral names, 237 Hantzsch–Widman names, 38–39 misfit structures, 243 Skeletal replacement nomenclature, 6, 84 mixtures, 236		
Silicon, table of compound names, 332–333 quasi-chemical reactions, 238–239, 241 site occupancy, solids, 239–240 site occupancy, 239 skeletal atoms, positions in mineral names, 237 misfit structures, 243 Skeletal replacement nomenclature, 6, 84 mixtures, 236		
332–333 Site occupancy, solids, 239–240 Site occupancy, 239 Skeletal atoms, positions in mineral names, 237 Hantzsch–Widman names, 38–39 Skeletal replacement nomenclature, 6, 84 mixtures, 236		•
Site occupancy, solids, 239–240 site occupancy, 239 Skeletal atoms, positions in mineral names, 237 Hantzsch–Widman names, 38–39 misfit structures, 243 Skeletal replacement nomenclature, 6, 84 mixtures, 236	-	*
Skeletal atoms, positions in mineral names, 237 Hantzsch-Widman names, 38–39 misfit structures, 243 Skeletal replacement nomenclature, 6, 84 mixtures, 236		
Hantzsch-Widman names, 38–39 misfit structures, 243 Skeletal replacement nomenclature, 6, 84 mixtures, 236		•
Skeletal replacement nomenclature, 6, 84 mixtures, 236	_	
•		
boron nyariaco, 70 100 midulated situetures, 2727273	÷	
and group 13–16 organometallics, 231 non-commensurate structures, 242–243	· · · · · · · · · · · · · · · · · · ·	
heteronuclear acyclic parent hydrides, non-stoichiometric phases, 236,		
94–95 242–245		_

Pearson notation, 57, 241–242	Stiboric acid, 129
phase composition, 237-238	Stiborous acid, 129
variation, 35, 238	Stock number (see oxidation number)
phase nomenclature, 241-242	Stoichiometric descriptors, for addition
point defect notation (see Kröger-Vink	compounds, 33, 80-81
notation), 238–241	Stoichiometric names (see also generalized
polymorphism, 245–246	stoichiometric names), 6, 69-75
polytypes, 246	binary compounds, 69-70
use of crystal systems, 246	boron hydrides, 89–90
site type, 19, 21, 29	ions, 70–75
solutions, 236	anions, 72–75
structural type, 34	cations, 70–72
unit cell twinning, 244-245	order of components, 6, 75-76
Vernier structures, 242–243	order of elements, 69
Solidus, in names of addition compounds,	table, 280–336
27	Stoichiometric phases, 236
Spaces in names, 30	Strike-through parentheses, in formulae of
Specific isotopic labelling, 64–65	polymers, 22, 56, 61
Square brackets	Structural affixes, 259
in formulae, 17–19	Structural descriptors, 166, 168
to enclose coordination entity,	in boron hydride nomenclature, 90–92
17–19, 59, 113–117	in formulae, 67
to enclose structural formulae, 19	for polynuclear clusters, 170, 172–174
isotopically labelled compounds, 64-65	Structural formulae
in names, 17, 19–20	enclosing marks, 55-56
Square planar complexes, configuration	of ligands, 261–268
index, 180–181	Subscripts
Square pyramidal complexes, specifying	to indicate atomic number, 32, 47–48
configuration, 183–184	Substituent groups
Standard bonding numbers, 84	in boron hydrides, 104–105
and mononuclear acyclic parent	derived from metallocenes, 225–226
hydrides, 86	derived from parent hydrides, 101-104,
Stereochemical priorities, CIP rules, 44	108–110
Stereochemistry, atom numbering, 40	and enclosing marks, 22-23
Stereochemical descriptors (or	ligands forming multiple metal-carbon
stereodescriptors), 144	bonds, 213–215
and enclosing marks, 22–24	in organometallics, 203
polyhedral symbols, 175–179	named from parent hydrides, 204, 207
Stereoisomers of coordination compounds,	table of names, 280–336
175	Substitutive nomenclature, 6–7, 83–110
Stibine, obsolete name for stibane, 85 (see	vs. additive nomenclature, 83-84,
footnote e)	113–118
Stibinic acid, 129	for parent hydrides, 102-103
Stibinous acid, 129	boron hydrides
Stibonic acid, 129	hydrogen atom distribution,
Stibonous acid, 129	93–94

hydrogen substitution, 104-105	names, 30, 327–330
numbering of clusters, 92–93	oxides, 327–330
skeletal replacement, 98–100	Sulfuric acid, 129
stoichiometric names, 89–90	Sulfurous acid, 129
structural descriptor names,	Sulfuryl, 140, 327
90–92	Superoxide, 73, 320
for group 13-16 organometallics,	Superscripts
230–233	charge, 47
heteropolyatomic anions, 74	to indicate mass number, 32, 47
heteropolyatomic cations, 71-72	Symbols for elements, 46-47, 248-250
numbering of multiple bonds, 87	Symmetrical dinuclear compounds,
name construction, 84	additive names, 114-116
order	Systems of nomenclature, 5-8
of characteristic groups, 43	choice of system, 7–8
of functional groups, 43	
of prefixes, 16–17, 101	T
oxoacids, 125-126	T-shaped complexes, specifying
parent hydride names, 83-110	configuration, 185
derivatives, 101–104	Tautomers
ions, 105–108	of heteronuclear monocyclic
heteronuclear compounds, 94-98,	compounds, 96
100–101	and hydrogen names, 135
homonuclear compounds, 84-89	Tellurate, 130, 334
radicals, 105, 108-110	Telluric acid, 130
subtractive operations, 7	Tellurinic acid, 130
suffixes and prefixes, 101-104	Tellurium oxoacids, 130
table of 'a' terms, 337–339	Telluro, 138
table of names, 280–336	Telluronic acid, 130
Suffixes,	Tellurous acid, 130
in name construction, 5	Terminal ligands, citation vs. bridging
in substitutive names of parent hydride	ligands, 43–44, 163–164
derivatives, 101–104	Tetradentate ligands, diastereoisomeric
table, 251–257	compounds, 179
Sulfamic acid, 140	'tetra' vs. 'tetrakis', 37, 150–151, 258
Sulfate, 129, 328	Tetrahedral complexes, absolute
Sulfenic acid, 132 (see footnote k)	configuration and R/S convention, 185
Sulfido, 327	Tetrathionate, 330
Sulfinic acid, 130	Tetrathionic acid, 126, 130, 132 (see
Sulfinyl, 327	footnote m)
Sulfite, 130, 328	Thio
Sulfonic acid, 129	infix or prefix in functional replacement
Sulfonyl, 327	names, 138, 249 (see footnote n)
Sulfoxylic acid, 132 (see footnote k)	obsolete ligand name (see sulfido)
Sulfur compounds	Thiocyanate, 292
oxoacids, 126, 129-130, 133, 137	Thiocyanic acid, 140, 289
derivatives, 139–140	Thionyl, 140, 327

Thiosulfate, 139, 329 'tris' vs. 'tri' as multiplicative prefixes, 37, Thiosulfite, 140, 329 76, 150-151, 258 Thiosulfuric acid, 139 Tris(bidentate) complexes, skew-lines Thiosulfurous acid, 139 convention and absolute Three-coordination, idealized geometries, configuration, 191-192 Trithionic acid, 126, 132 (see footnote b) 'Titanocene', 226-227 Trithionous acid, 132 (see footnote b) Topochemical insertion, 245 Tritium, atomic symbol, 48, 249 Topotactic insertion, 245 Triton, 48, 298 trans maximum difference, and Twinning, 244–245 configuration index for square planar geometry, 181 U trans prefix, 67, 179, 259 Unit cell and octahedral geometry, 182 and names of allotropes, 50 and square planar geometry, 180 twinning, 244-245 'Uranocene', 227 structural descriptor in formulae, 67 Transition metal organometallics, 201-228, 232-233 Vanadocene, 225 'tri' vs. 'tris' as multiplicative prefixes, 37, 76, 150-151, 258 Vernier structures, 242-243 triiodide vs. tris(iodide), 79 von Baeyer notation trisulfide vs. tris(sulfide), 79 and arabic numerals, 39 Trigonal bipyramidal complexes, C/A heteronuclear polycyclic parent convention and absolute hydrides, 100-101 configuration, 187 homonuclear polycyclic parent Trigonal prismatic complexes, C/A hydrides, 89 convention and absolute Y configuration, 190 'y' terms, 121 Trinuclear complexes, 167–172 Triphosphoric acid, 129 catena-triphosphoric acid, 129, 134 cyclo-triphosphoric acid, 129, 133-134 Zeise's salt, 215