# ${\bf DplyrTidyrLab}$

# Sarah Grant

# Exercise 1

#### Question 1

The data set contains 1926 unique songs.

The data set contains 835 unique artists.

The data set contains 59 unique musical genres.

### Question 2

Table 1: Number of Artists per Year

| Year | Number of Distinct Artists |
|------|----------------------------|
| 1998 | 1                          |
| 1999 | 30                         |
| 2000 | 58                         |
| 2001 | 77                         |
| 2002 | 56                         |
| 2003 | 64                         |
| 2004 | 65                         |
| 2005 | 69                         |
| 2006 | 63                         |
| 2007 | 66                         |
| 2008 | 63                         |
| 2009 | 61                         |
| 2010 | 62                         |
| 2011 | 69                         |
| 2012 | 67                         |

| Year | Number of Distinct Artists |
|------|----------------------------|
| 2013 | 64                         |
| 2014 | 70                         |
| 2015 | 69                         |
| 2016 | 75                         |
| 2017 | 86                         |
| 2018 | 81                         |
| 2019 | 73                         |
| 2020 | 3                          |

The most popular artist is Rihanna with 23 songs.

## Question 4

Below is the table showing the minimum, maximum, mean and median tempo as well as the number of songs, for each musical genre:

Table 2: Tempo Statistics by Genre

|                              |         |         |          |                       | Number of |
|------------------------------|---------|---------|----------|-----------------------|-----------|
| Genre                        | MinTem  | oMaxTem | pMeanTem | p <b>M</b> edianTempo | songs     |
| Dance/Electronic             | 75.255  | 179.642 | 125.5075 | 126.0410              | 40        |
| Folk/Acoustic, pop           | 94.931  | 128.945 | 111.9380 | 111.9380              | 2         |
| Folk/Acoustic, rock          | 84.192  | 84.192  | 84.1920  | 84.1920               | 1         |
| Folk/Acoustic, rock, pop     | 138.585 | 138.585 | 138.5850 | 138.5850              | 1         |
| R&B                          | 71.815  | 170.661 | 106.9248 | 100.4600              | 13        |
| World/Traditional,           | 82.803  | 82.803  | 82.8030  | 82.8030               | 1         |
| Folk/Acoustic                |         |         |          |                       |           |
| World/Traditional, hip hop   | 98.077  | 101.993 | 100.0350 | 100.0350              | 2         |
| World/Traditional, pop       | 108.102 | 108.102 | 108.1020 | 108.1020              | 1         |
| World/Traditional, pop,      | 100.380 | 104.833 | 102.6065 | 102.6065              | 2         |
| Folk/Acoustic                |         |         |          |                       |           |
| World/Traditional, rock      | 96.000  | 140.083 | 118.0415 | 118.0415              | 2         |
| World/Traditional, rock, pop | 132.013 | 139.048 | 135.5305 | 135.5305              | 2         |
| country                      | 103.055 | 205.570 | 138.1508 | 136.0020              | 9         |
| country, latin               | 96.055  | 96.055  | 96.0550  | 96.0550               | 1         |
| easy listening               | 157.920 | 157.920 | 157.9200 | 157.9200              | 1         |
| hip hop                      | 64.934  | 179.974 | 116.9894 | 111.6795              | 120       |

| - C                              | ) (t. T. | ) ( T    | ) f                             | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | Number of |
|----------------------------------|----------|----------|---------------------------------|-----------------------------------------|-----------|
| Genre                            | MinTemp  | odMaxTem | p <b>o</b> leanTem <sub>]</sub> | pMedianTempo                            | songs     |
| hip hop, Dance/Electronic        | 95.948   | 190.151  | 135.4297                        | 131.0500                                | 15        |
| hip hop, R&B                     | 100.215  | 151.181  | 121.1220                        | 111.9700                                | 3         |
| hip hop, country                 | 97.984   | 97.984   | 97.9840                         | 97.9840                                 | 1         |
| hip hop, latin, Dance/Electronic | 171.993  | 171.993  | 171.9930                        | 171.9930                                | 1         |
| hip hop, pop                     | 73.003   | 203.911  | 118.9619                        | 119.9750                                | 265       |
| hip hop, pop, Dance/Electronic   | 72.022   | 196.093  | 120.8555                        | 126.0620                                | 75        |
| hip hop, pop, R&B                | 60.019   | 203.862  | 115.2649                        | 107.3310                                | 232       |
| hip hop, pop, R&B,               | 82.820   | 127.901  | 103.9113                        | 101.0130                                | 3         |
| Dance/Electronic                 |          |          |                                 |                                         |           |
| hip hop, pop, R&B, latin         | 82.331   | 100.010  | 91.1705                         | 91.1705                                 | 2         |
| hip hop, pop, country            | 129.370  | 129.370  | 129.3700                        | 129.3700                                | 1         |
| hip hop, pop, latin              | 89.661   | 180.184  | 127.2119                        | 127.0265                                | 14        |
| hip hop, pop, rock               | 84.858   | 179.999  | 123.1123                        | 125.2500                                | 9         |
| hip hop, rock, pop               | 90.052   | 90.052   | 90.0520                         | 90.0520                                 | 1         |
| latin                            | 90.013   | 198.075  | 121.6049                        | 97.0620                                 | 15        |
| metal                            | 79.012   | 147.387  | 106.2089                        | 101.9680                                | 9         |
| pop                              | 65.043   | 195.685  | 120.7527                        | 119.9535                                | 405       |
| pop, Dance/Electronic            | 84.878   | 198.065  | 123.4655                        | 124.0595                                | 213       |
| pop, Folk/Acoustic               | 76.026   | 171.790  | 118.3595                        | 109.9505                                | 8         |
| pop, R&B                         | 68.942   | 210.851  | 117.4385                        | 112.5110                                | 169       |
| pop, R&B, Dance/Electronic       | 84.021   | 176.051  | 112.0338                        | 104.0865                                | 6         |
| pop, R&B, easy listening         | 108.984  | 108.984  | 108.9840                        | 108.9840                                | 1         |
| pop, country                     | 97.865   | 147.905  | 130.5087                        | 136.9250                                | 8         |
| pop, easy listening,             | 135.099  | 135.099  | 135.0990                        | 135.0990                                | 1         |
| Dance/Electronic                 |          |          |                                 |                                         |           |
| pop, easy listening, jazz        | 82.168   | 127.831  | 104.9995                        | 104.9995                                | 2         |
| pop, latin                       | 79.997   | 177.833  | 113.5903                        | 104.2540                                | 28        |
| pop, rock                        | 77.967   | 176.667  | 121.0976                        | 119.0095                                | 26        |
| pop, rock, Dance/Electronic      | 87.016   | 189.857  | 133.9808                        | 135.9875                                | 12        |
| pop, rock, Folk/Acoustic         | 102.961  | 112.960  | 107.9605                        | 107.9605                                | 2         |
| pop, rock, metal                 | 82.952   | 155.827  | 128.9358                        | 134.7165                                | 14        |
| rock                             | 74.989   | 199.935  | 129.5312                        | 123.6960                                | 57        |
| rock, Dance/Electronic           | 127.988  | 127.988  | 127.9880                        | 127.9880                                | 1         |
| rock, Folk/Acoustic, easy        | 122.979  | 122.979  | 122.9790                        | 122.9790                                | 1         |
| listening                        |          |          |                                 |                                         |           |
| rock, Folk/Acoustic, pop         | 80.529   | 80.529   | 80.5290                         | 80.5290                                 | 1         |
| rock, R&B, Folk/Acoustic, pop    | 105.987  | 105.987  | 105.9870                        | 105.9870                                | 1         |
| rock, blues                      | 123.904  | 141.933  | 132.9185                        | 132.9185                                | 2         |
| rock, blues, latin               | 97.911   | 127.981  | 112.9460                        | 112.9460                                | 2         |
| rock, classical                  | 81.663   | 81.663   | 81.6630                         | 81.6630                                 | 1         |

|                             |         |          |                       |                       | Number of |
|-----------------------------|---------|----------|-----------------------|-----------------------|-----------|
| Genre                       | MinTemp | pdMaxTem | pMeanTem <sub>1</sub> | p <b>M</b> edianTempo | songs     |
| rock, easy listening        | 114.999 | 114.999  | 114.9990              | 114.9990              | 1         |
| rock, metal                 | 89.342  | 187.961  | 127.3922              | 120.0555              | 36        |
| rock, pop                   | 68.976  | 184.086  | 123.8996              | 124.9700              | 39        |
| rock, pop, Dance/Electronic | 113.049 | 181.994  | 135.7678              | 127.4480              | 8         |
| rock, pop, metal            | 126.115 | 152.034  | 140.2785              | 141.4825              | 4         |
| rock, pop, metal,           | 105.013 | 105.013  | 105.0130              | 105.0130              | 1         |
| Dance/Electronic            |         |          |                       |                       |           |
| $\operatorname{set}()$      | 68.507  | 184.819  | 120.1329              | 126.9620              | 22        |

Below is the simple dataframe displaying the mean liveness and mean danceability per year:

| # | Α | tibble: | 23 | x 3 |
|---|---|---------|----|-----|
|---|---|---------|----|-----|

|    | year        | ${\tt mean\_liveness}$ | ${\tt mean\_danceability}$ |
|----|-------------|------------------------|----------------------------|
|    | <int></int> | <dbl></dbl>            | <dbl></dbl>                |
| 1  | 1998        | 0.18                   | 0.727                      |
| 2  | 1999        | 0.166                  | 0.669                      |
| 3  | 2000        | 0.181                  | 0.690                      |
| 4  | 2001        | 0.174                  | 0.674                      |
| 5  | 2002        | 0.193                  | 0.675                      |
| 6  | 2003        | 0.163                  | 0.665                      |
| 7  | 2004        | 0.180                  | 0.697                      |
| 8  | 2005        | 0.188                  | 0.673                      |
| 9  | 2006        | 0.198                  | 0.661                      |
| 10 | 2007        | 0.184                  | 0.631                      |
|    |             |                        |                            |

# i 13 more rows

Just for a more "aesthetically pleasing" depiction, below is the dataframe knitted into a table:

Table 3: Mean Liveness and Mean Danceability per Year

| Year | Mean Liveness | Mean Danceability |
|------|---------------|-------------------|
| 1998 | 0.1800000     | 0.7270000         |
| 1999 | 0.1656000     | 0.6689737         |
| 2000 | 0.1805216     | 0.6898243         |
| 2001 | 0.1736685     | 0.6741296         |
| 2002 | 0.1928467     | 0.6752444         |

| Year | Mean Liveness | Mean Danceability |
|------|---------------|-------------------|
| 2003 | 0.1631701     | 0.6648763         |
| 2004 | 0.1796552     | 0.6968333         |
| 2005 | 0.1875663     | 0.6729231         |
| 2006 | 0.1976642     | 0.6608632         |
| 2007 | 0.1836223     | 0.6305213         |
| 2008 | 0.1737474     | 0.6641856         |
| 2009 | 0.2141405     | 0.6251667         |
| 2010 | 0.1986150     | 0.6610748         |
| 2011 | 0.1747636     | 0.6344040         |
| 2012 | 0.2173391     | 0.6373652         |
| 2013 | 0.1908663     | 0.6326404         |
| 2014 | 0.1876317     | 0.6619327         |
| 2015 | 0.1765152     | 0.6512626         |
| 2016 | 0.1583172     | 0.6707071         |
| 2017 | 0.1549054     | 0.6937387         |
| 2018 | 0.1634561     | 0.7250374         |
| 2019 | 0.1615809     | 0.7197640         |
| 2020 | 0.2550000     | 0.7453333         |

Below is graphical depiction of the temporal evolution of both the mean annual liveness and the mean annual danceability.





Side note for professor: This graph is not too "80s vibes" in terms of colour choice I hope!

Exercise 2

#### Question 1

Below we can see the median admission grade for each combination of Target variable and Marital Status:

| Target   | Marital status    | Median admission grade |
|----------|-------------------|------------------------|
| Dropout  | single            | 123.35                 |
| Dropout  | married           | 126.50                 |
| Dropout  | divorced          | 126.50                 |
| Dropout  | widower           | 129.40                 |
| Dropout  | facto union       | 119.40                 |
| Dropout  | legally separated | 112.50                 |
| Graduate | single            | 127.30                 |
| Graduate | married           | 130.00                 |
| Graduate | divorced          | 126.00                 |
| Graduate | widower           | 170.00                 |
| Graduate | facto union       | 120.00                 |
| Graduate | legally separated | 114.80                 |

| Target   | Marital status    | Median admission grade |
|----------|-------------------|------------------------|
| Enrolled | single            | 124.05                 |
| Enrolled | married           | 122.95                 |
| Enrolled | divorced          | 130.20                 |
| Enrolled | widower           | 151.75                 |
| Enrolled | facto union       | 119.70                 |
| Enrolled | legally separated | 119.00                 |

The dataframe in Question 1 isn't the best way that we can show this... Below is the transformation of the previous dataframe with each row corresponding to a specific marital status (which is stated), while the other columns contain the corresponding median grade:

| Marital status    | Dropout | Graduate | Enrolled |
|-------------------|---------|----------|----------|
| single            | 123.35  | 127.3    | 124.05   |
| married           | 126.50  | 130.0    | 122.95   |
| divorced          | 126.50  | 126.0    | 130.20   |
| widower           | 129.40  | 170.0    | 151.75   |
| facto union       | 119.40  | 120.0    | 119.70   |
| legally separated | 112.50  | 114.8    | 119.00   |

#### Question 3

Below is the dataframe showing the conditional median of all variables related to "Curricular units" grouped by gender:

| Curricular             |            |        |            |           |            |                                        |         |        |            |           | Curricular |
|------------------------|------------|--------|------------|-----------|------------|----------------------------------------|---------|--------|------------|-----------|------------|
|                        |            |        |            |           | units      |                                        |         |        |            |           | units      |
|                        | Curricular |        |            |           | 1st        | Curricular                             |         |        |            |           | 2nd        |
| Curricu Comrriculamits |            |        | Curricular |           | sem        | Curricu <b>Cu</b> rricu <b>lam</b> its |         |        | Curricular |           | sem        |
| units                  | units      | 1st    | units      | Curricu   | ul(awrith- | units                                  | units   | 2nd    | units      | Curricu   | (awith-    |
| 1st                    | 1st        | sem    | 1st        | units     | out        | 2nd                                    | 2nd     | sem    | 2nd        | units     | out        |
| sem                    | sem        | (eval- | sem        | 1st       | evalu-     | sem                                    | sem     | (eval- | sem        | 2nd       | evalu-     |
| (cred-                 | (en-       | ua-    | (ap-       | sem       | a-         | (cred-                                 | (en-    | ua-    | (ap-       | sem       | a-         |
| Gen <b>iter</b> l)     | rolled)    | tions) | proved     | d (grade) | tions)     | ited)                                  | rolled) | tions) | proved     | d)(grade) | tions)     |
| Male 0                 | 6          | 8      | 4          | 11.8333   | 3 0        | 0                                      | 6       | 8      | 4          | 11.6360   | 4 0        |
| ${\rm Female} 0$       | 6          | 8      | 6          | 12.5000   | 0 0        | 0                                      | 6       | 8      | 5          | 12.5000   | 0 0        |

Below we can see the transformed data which is more readable, displayed in a knitted table:

Table 7: Conditional Median of Curricular Units by Gender

| Units                                          | Male     | Female |
|------------------------------------------------|----------|--------|
| Curricular units 1st sem (approved)            | 4.00000  | 6.0    |
| Curricular units 1st sem (credited)            | 0.00000  | 0.0    |
| Curricular units 1st sem (enrolled)            | 6.00000  | 6.0    |
| Curricular units 1st sem (evaluations)         | 8.00000  | 8.0    |
| Curricular units 1st sem (grade)               | 11.83333 | 12.5   |
| Curricular units 1st sem (without evaluations) | 0.00000  | 0.0    |
| Curricular units 2nd sem (approved)            | 4.00000  | 5.0    |
| Curricular units 2nd sem (credited)            | 0.00000  | 0.0    |
| Curricular units 2nd sem (enrolled)            | 6.00000  | 6.0    |
| Curricular units 2nd sem (evaluations)         | 8.00000  | 8.0    |
| Curricular units 2nd sem (grade)               | 11.63604 | 12.5   |
| Curricular units 2nd sem (without evaluations) | 0.00000  | 0.0    |