```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
  ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
   9.4 PairGrid
   9.5 JointGrid
   9.6 joinplot
```

```
1 seaborn简介
```

seaborn: 带着定制主题和高级界面控制的Matplotlib扩展包,兼容Numpy与Pandas数据结构;

官网地址: http://seaborn.pydata.org/index.html (http://seaborn.pydata.org/index.html)

1.1 主要特征:

- 基于matplotlib绘图风格,增加了绘图模式
- 增加调色板功能, 色彩更加丰富
- 绘图接口功能强大,能够处理更加复杂图形绘制
- 用数据子集绘制与比较单变量和双变量分布的功能
- 用聚类算法可视化矩阵数据
- 灵活运用处理时间序列数据
- 利用网格建立复杂图像集

一句话概括: seaborn能够使用最简单的代码,将数据进行更好的展示;

1.2 seaborn安装

```
anaconda下不需要安装,其他环境安装:
```

```
pip install seaborn
```

seaborn验证:

```
In [1]:

1 import seaborn as sns
2 sns.__version__
```

Out[1]: '0.9.0'

• 如果版本为0.8可以使用下面命令升级:

```
python -m pip install seaborn==0.9.0
```

1.3 seaborn主要内容

- 图表风格,颜色,线条等基本设置
- seaborn常用的数据集
- seaborn常用图表详解

2 seaborn基本设置

目标:

- 掌握seaborn风格设置
- 掌握颜色设置与色板使用

2.1 第一个案例

```
In [1]:

1 import matplotlib.pyplot as plt
2 #导入seaborn
3 import seaborn as sns
4 import numpy as np
5 import pandas as pd
6 %matplotlib inline
7 #使用lineplot绘制直线
8 sns.lineplot(x=[1,2,3], y=[1,2,3])
```

Out[1]: <matplotlib.axes._subplots.AxesSubplot at 0x2427f777978>

2.2 seaborn相关设置

- 图表大小
- 风格
- 颜色

2.3 图表大小: context

- sns.set_context(context=None, font_scale=1, rc=None)
- context值: paper, notebook, talk, poster
- font_scale: 字体缩放
- 设置之后在jupyter中一直生效

```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求: 不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
   9.4 PairGrid
```

9.5 JointGrid

9.6 joinplot

```
In [3]:
               1 \mid \mathbf{x} = [1, 2, 3]
               2 \mid y = [1, 2, 3]
               3 sns.set_context('notebook', font_scale=1)
               4 sns. lineplot(x, y)
               5 sns. lineplot(x, y)
```

Out[3]: <matplotlib.axes. subplots.AxesSubplot at 0x2613fd84588>

2.4 设置风格

- sns.set_style(style=None, rc=None)
- style: darkgrid, whitegrid, dark, white, ticks
- rc: 字典格式,设置seaborn其他样式,例如:字体,子大小等

```
In [2]:
              1 \mid x = [1, 2, 3]
              2 | y = [1, 2, 3]
              3 #改变风格
              4 sns. set_style('darkgrid')
              5 sns. lineplot (x, y)
```

Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x2427f7a3dd8>

2.4.1 获取当前风格:

方法: sns.axes_style(style=None, rc=None)

```
In [3]:
             1 sns.axes_style()
Out[3]: {'axes.axisbelow': True,
           axes.edgecolor': 'white',
           'axes.facecolor': '#EAEAF2',
            axes.grid: True,
           'axes.labelcolor': '.15',
           'axes.spines.bottom': True,
           'axes.spines.left': True,
           'axes.spines.right': True,
           'axes. spines. top': True,
           'figure.facecolor': 'white',
           'font.family': ['sans-serif'],
           'font.sans-serif': ['Arial',
            'DejaVu Sans',
            'Liberation Sans',
            'Bitstream Vera Sans',
            'sans-serif'],
           'grid.color': 'white',
           grid.linestyle': '-'
           'image.cmap': 'rocket',
           'lines.solid_capstyle': 'round',
           'patch.edgecolor': 'w',
           'patch.force_edgecolor': True,
           'text.color': '.15',
           'xtick.bottom': False,
           'xtick.color': '.15',
           'xtick.direction': 'out',
           'xtick.top': False,
           'ytick.color': '.15',
           'ytick.direction': 'out',
           'ytick.left': False,
           'ytick.right': False}
```

2.4.2 设置字体与支持中文

```
1 sns. pointplot([1, 2, 3], [4, 5, 6], xlable="123")
In [4]:
             2 plt. xlabel('表格')
             3 sns. set_style({"font.sans-serif":['simhei', 'Droid Sans Fallback']})
           6.0
```


2.4.3 移除坐标轴

sns.despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False)

```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
```

9.4 PairGrid9.5 JointGrid

9.6 joinplot

```
sns. set_style({"font. sans-serif":['simhei', 'Droid Sans Fallback']})
sns. despine()

40
45
40
45
40
2.4.4 设置临时格式
• sns.axes_style(style=None, rc=None)
```

1 sns. pointplot([1, 2, 3], [4, 5, 6], xlable="123")

2 plt. xlabel('表格')

```
In [7]: 

def myplot():
    sns.lineplot([1,2,3],[1,2,3])
    #设置临时风格

v 4 with sns.axes_style("whitegrid"):
    plt.subplot(211)
    myplot()
    7 plt.subplot(212)
    myplot()
```


2.5 设置调色板

- sns.set_palette(palette, n_colors=None, desat=None, color_codes=False)
- palette:'deep', 'muted', 'pastel', 'bright', 'dark', 'colorblind'或者hls, husl
- n_colors: 颜色数量
- 作用:调色板,使用plot方法绘制时,颜色使用深度不一样

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x2427ffc64a8>


```
In [9]: v 1 #设置hls, n_colors颜色种类
2 sns.set_palette('hls', n_colors=3)
3 lines = np.arange(0,40).reshape(20,2)
v 4 for line in lines:
5 plt.plot(line)
```


2.6 set方法

- sns.set(context='notebook',style='darkgrid',palette='deep',font='sans-serif',font_scale=1,color_codes=True,rc=None,)
- 上面方法的集合体

```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
  ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
  ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求: 不同时间点消费均值
    6.1.2 新需求: 不同时间点, 不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼ 7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
   9.4 PairGrid
```

9.5 JointGrid

9.6 joinplot

```
In [10]: ▼ 1 #设置默认值
            2 sns. set()
            3 \mid x = y = \text{np. array}([1, 2, 3])
            4 sns. lineplot(x, y)
            5 sns. lineplot (x, y+1)
Out[10]: <matplotlib.axes. subplots.AxesSubplot at 0x2427ff67470>
          4.0
          3.5
          3.0
          2.5
          2.0
          1.5
          1.0
                  1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
         3 调色板
         颜色类别:
          • 分类: 彼此间差异较大
           • 连续: 颜色按照顺序渐变
           • 离散:中间颜色浅,两端颜色深
         主要方法:
         获取颜色: sns.color_palette(palette=None, n_colors=None, desat=None)
         显示颜色: sns.palplot(pal, size=1)
         3.1 分类色板 (qualitative)
         3.1.1 默认主题
         默认6中颜色: deep, muted, pastel, bright, dark, colorblind;
         当palette设置为以上几种颜色, n_colors设置值超过deep颜色种类是, 使用重复颜色;
In [13]: ▼ 1 #产生颜色
            2 | cls = sns.color_palette(palette='deep')
            3 #使用palplot绘制颜色
            4 sns. palplot (cls)
            5 #颜色实质: RGB组成的元祖
            6 cls
Out[13]: [(0.2980392156862745, 0.4470588235294118, 0.6901960784313725),
          (0.8666666666666667, 0.5176470588235295, 0.3215686274509804),
          (0.7686274509803922, 0.3058823529411765, 0.3215686274509804),
          (0.5058823529411764, 0.4470588235294118, 0.7019607843137254),
          (0.5764705882352941, 0.47058823529411764, 0.3764705882352941),
          (0.8549019607843137, 0.5450980392156862, 0.7647058823529411),
          (0.5490196078431373, 0.5490196078431373, 0.5490196078431373),
          (0.8, 0.7254901960784313, 0.4549019607843137),
          (0.39215686274509803, 0.7098039215686275, 0.803921568627451)]
         3.1.2 hls色圈系统
         在一个色圈空间内使用均匀分布的颜色;
         主要方法:
           • 通用方法: cls = sns.color palette(palette='hls',)/cls = sns.color palette(palette='husl',)
          • 设置hls饱和度等: sns.hls_palette(n_colors=6, h=0.01, l=0.6, s=0.65)
            1 | cls = sns.color_palette(palette='hls', n_colors=20)
            2 sns. palplot (cls)
```

```
In [15]:

| 1 | cls = sns. color_palette (palette='hls', n_colors=20) |
| 2 | sns. palplot (cls) |
| 1 | cls = sns. color_palette (palette='husl', n_colors=20) |
| 2 | sns. palplot (cls) |
| 1 | cls = sns. hls_palette (n_colors=20, h=0.2, l=0.6, s=0.65) |
| 2 | sns. palplot (cls) |
```

3.1.3 使用xkcd颜色来命名颜色

- xkcd: 色板, 名称, RGB值
- xkcd链接: https://xkcd.com/color/rgb/)
- 获取名称对应的RGB值:字典sns.xkcd_rgb
- 通过xkcd获取颜色: sns.xkcd_palette(colors)

```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
  ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
  ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
  ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼ 7 分布图
  ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
   9.4 PairGrid
```

9.5 JointGrid 9.6 joinplot

In [18]:

In [21]:

In [22]:

1 sns.palplot(sns.xkcd_palette(["purple", "violet", "greyish", "aqua", "green"])) 3.2 连续调色板 3.2.1 Color Brewer 可以通过设置无效值,通过错误信息查看可以设置值主要值如下: Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_ r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r, Oranges, Or anges_r, PRGn, PRGn_r, Paired, Paired_r, Pastell, Pastell_r, Pastel2, Pastel2_r, PiYG, PiYG_ r, PuBu, PuBuGn, PuBuGn r, PuBu r, PuOr, PuOr r, PuRd, PuRd r, Purples, Purples r, RdBu, RdB u_r, RdGy, RdGy_r, RdPu, RdPu_r, RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r, Set1, Set 1_r, Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu, YlGnB u_r, Y1Gn_r, Y1OrBr, Y1OrBr_r, Y1OrRd, Y1OrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary, binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis, cividis_r, cool, cool_r, coolwarm, coolwarm_r, copper, copper_r, cubehelix, cubehelix_r, flag, flag_r, gist_earth, gist_earth_ r, gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow, gis t_rainbow_r, gist_stern, gist_stern_r, gist_yarg, gist_yarg_r, gnuplot, gnuplot2, gnuplot2_ r, gnuplot r, gray, gray r, hot, hot r, hsv, hsv r, icefire, icefire r, inferno, inferno r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r, ocean, ocean_r, p ink, pink r, plasma, plasma r, prism, prism r, rainbow, rainbow r, rocket, rocket r, seismi c, seismic_r, spring, spring_r, summer, summer_r, tab10, tab10_r, tab20, tab20_r, tab20b, ta b20b r, tab20c, tab20c r, terrain, terrain r, twilight, twilight r, twilight shifted, twilig ht_shifted_r, viridis, viridis_r, vlag, vlag_r, winter, winter_r 使用Color Brewer颜色 • 末尾加r可翻转色板 • 末尾加d可变暗 In [19]: ▼ 1 #产生颜色,通过设置n colors产生一系列不重复的颜色 2 | cls = sns.color_palette(palette='Blues_r', n_colors=50) 3 sns. palplot (c1s) 3.2.2 cubehelix_palette调色板 • 主要方法: • sns.cubehelix palette(n colors=6,start=0,rot=0.4,gamma=1.0,hue=0.8,light=0.85,dark=0.15,reverse=False,as 1 | sns.palplot(sns.cubehelix_palette(10, start=.3, rot=-.5)) 3.2.3 单一颜色调色板 sns.light_palette(color,n_colors=6,reverse=False,as_cmap=False,input='rgb',) • sns.dark palette(color,n colors=6,reverse=False,as cmap=False,input='rgb',) 1 sns. palplot (sns. light palette ('green', n colors=20)) 3.3 离散色板 • Color Brewer色板 • diverging_palette:sns.diverging_palette(h_neg,h_pos,s=75,l=50,sep=10,n=6,center='light',as_cmap=False) 主要参数: • s与I: 明暗 • n: 控制数量 • sep: 中间色的宽度 • center控制中间色 1 sns.palplot(sns.color_palette("BrBG", 10))

4 seaborn内置数据集

seaborn内置开源的数据集,网络下载地址: https://github.com/mwaskom/seaborn-data (https://github.com/mwaskom/seaborn-data)

- 获取数据集名称列表: sns.get_dataset_names()
- 导入数据集:sns.load_dataset(name, cache=True, data_home=None, **kws)

4.1 数据集介绍

seaborn中内置数据集是非常好的,做分析入门的数据集,常用的数据集;

```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
```

9.4 PairGrid9.5 JointGrid9.6 joinplot

```
      数据集名称
      描述

      flights
      1949年到1960年期间,每个月的航班乘客的数量

      geyser
      间歇泉喷发的间隔时间

      iris
      鸢尾花

      tips
      小费

      titanic
      泰坦尼克获救数据
```

4.2 获取数据集列表

```
In [25]:
              1 sns.get dataset names()
Out[25]: ['anscombe',
            'attention',
            'brain networks',
            'car_crashes',
            'diamonds',
            'dots',
            'exercise',
            'flights',
            'fmri',
            'gammas',
            'geyser',
            'iris',
            'mpg',
            'planets',
           'tips',
           'titanic']
```

4.2.1 导入数据集

返回值为DataFrame对象

244 rows × 7 columns

5 seaborn常用的图表

- seabron支持图表格式比较丰富
- 文档描述: https://seaborn.apachecn.org/ (https://seaborn.apachecn.org/)
- seaborn图表相关方法使用方式与参数类似 常用图表类型如下

6 分类图表

6.1 barplot方法

• sns.barplot(x=None,y=None,hue=None,data=None,order=None,hue_order=None,estimator=<function mean at 0x000001C71D259288>,ci=95,...)

主要参数

说明	参数
x轴数据或者data中的列名	х,у
data中的列名,用于分类	hue
数据	data
绘制类别变量的顺序	order/hue_order
统计量方法,默认mean	estimator
估计值周围的置信区间大小	ci
计算置信区间需要迭代次数	n_boot
v/h,绘图的方向	orient
元素的颜色	color
不同级别hue变量的颜色	palette
指定axes	ax

6.1.1 一个需求:不同时间点消费均值

• 常规思路:根据time进行分组,并计算total_bill的均值,使用sns可视化

```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
```

9.4 PairGrid9.5 JointGrid9.6 joinplot

```
20.0 -
17.5 -
15.0 -
12.5 -
10.0 -
7.5 -
5.0 -
2.5 -
0.0 -

time
```

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x1c72907bb08>

1 pdata.groupby('time')['total_bill'].mean().plot.bar()

• 使用sns.barplot方法

In [56]:

```
In [57]: 1 sns.barplot(x='time', y='total_bill', data=pdata)
```

Out[57]: <matplotlib.axes._subplots.AxesSubplot at Ox1c728f51448>

6.1.2 新需求: 不同时间点, 不同性别消费均值

• 需求升级: 不同时间点, 不同性别消费均值

• 理解需求:根据time分类,在time分类中在根据sex分类

• 使用前面所学知识点如何实现? 如何可视化?

• 解决方式:使用barplot中的hue参数

```
In [59]: 1 sns.barplot(x='time', y='total_bill', data=pdata, hue = 'sex')
```

Out[59]: <matplotlib.axes._subplots.AxesSubplot at Ox1c7293c0988>


```
In [65]: ▼ 1 #设置颜色
2 sns.barplot(x='time', y='total_bill', data=pdata, hue = 'sex', palette='seismic')
```

Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x1c72a705988>

6.1.3 箱状图

提问: 为什么使用箱状图?

• 展现与类别相关的数据分布状况

• 使用四分位数表示数据分布情况,可以标识异常数据

• 箱状图方法: sns.boxplot(x=None, y=None,hue=None,data=None) 主要参数:

参数	说明
fliersize	表示异常值观察的标记的大小
whis	超过高低四分位数时 IOR 的比例

问题:用户来消费,总体消费水平如何? 使用箱状图进行表示:

```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
```

9.4 PairGrid9.5 JointGrid9.6 joinplot

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x219db1a09c8>

- 不同性别消费情况
 - x: 指定性别
- y:指定消费金额

```
In [27]: 1 sns.boxplot(x='sex', y='total_bill', data=pdata, orient='v')

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x219db201888>
```


- 不同性别,不同饭点消费情况
- x: 指定性别
- y: 指定消费金额
- hue: 指定为time
- In [28]: 1 sns.boxplot(x='sex', y='total_bill', hue='time', data=pdata, orient='v')
- Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x219db280f08>

- 指定不同whis
- 异常值: 默认大于上四分位数1.5或者小于下四分位数的1.5
- 通过指定whis可以控制异常区间

In [34]: 1 sns.boxplot(x='sex', y='total_bill', hue='time', data=pdata, orient='v', whis=1.5)

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x219db5b2bc8>

问题: 箱状图可以表述数据分布, 但是每个分组数量如何展示?

6.1.4 分类散点图

主要方法:

- 点可以重复: sns.swarmplot(x=None,y=None,hue=None,data=None,...)
- 点不能重复: sns.stripplot(x=None,y=None,hue=None,data=None,...)
- 上面两个方法与boxplot参数类似,直接使用

```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
   9.4 PairGrid
```

9.5 JointGrid9.6 joinplot

```
In [56]:

1     sns. set_palette(sns. color_palette('husl'))
2     plt. figure(figsize=(16, 4))
3     ax1 = plt. subplot(1, 2, 1)
4     sns. swarmplot(x='sex', y='total_bill', hue='time', data=pdata, ax=ax1, dodge=True)
5     ax2 = plt. subplot(1, 2, 2)
6     sns. stripplot(x='sex', y='total_bill', hue='time', data=pdata, ax=ax2, dodge=True)
7

0.4     [56]

1     sns. set_palette(sns. color_palette('husl'))
2     plt. figure(figsize=(16, 4))
3     ax1 = plt. subplot(1, 2, 1)
4     sns. swarmplot(x='sex', y='total_bill', hue='time', data=pdata, ax=ax1, dodge=True)
5     ax2 = plt. subplot(1, 2, 2)
6     sns. stripplot(x='sex', y='total_bill', hue='time', data=pdata, ax=ax2, dodge=True)
7     [56]

1     sns. set_palette(sns. color_palette('husl'))
2     plt. figure(figsize=(16, 4))
3     ax1 = plt. subplot(1, 2, 1)
4     sns. swarmplot(x='sex', y='total_bill', hue='time', data=pdata, ax=ax1, dodge=True)
5     ax2 = plt. subplot(1, 2, 2)
6     sns. stripplot(x='sex', y='total_bill', hue='time', data=pdata, ax=ax2, dodge=True)
7     [56]
8          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9          [56]
9
```

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x219dd438408>

箱状图与分类散点图结合 获取数据分布更加详细信息

```
In [58]:
1     sns.set_palette(sns.color_palette('husl'))
2     sns.swarmplot(x='sex', y='total_bill', hue='time', data=pdata, dodge=True)
3     sns.set_palette('dark')
4     sns.boxplot(x='sex', y='total_bill', hue='time', data=pdata)
```

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x219dd45dd48>

6.2 数量统计

• 数量统计: sns.countplot(x=None,y=None,hue=None,data=None,...)

需求:

- 不同性别消费次数
- 不同性别不同饭点消费次数

7 分布图

7.1 直方图

- 直方图: sns.distplot(a,bins=None,hist=True,kde=True, rug=False,fit=None,...)
- 主要参数:

```
a Series对象或者一维列表bins 直方图 bins (柱)的数目hist 是否显示直方图kde 是否显示kde图rug 实现显示观测竖线hist_kws,kde_kws,rug_kws 不同图形设置项fit 控制拟合的参数分布图形方法
```

```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
  ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
```

9.4 PairGrid9.5 JointGrid

9.6 joinplot

vertical 显示方向 norm_hist True:显示数量,而不是密度

7.1.1 使用直方图查看用户消费额度分布

7.1.2 设置不同颜色

7.1.3 设置bins

In [81]:	1	<pre>sns.distplot(pdata['total_bill'], bins=10, color='g', rug=True)</pre>

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x1c72b01b308>

7.2 KDE图

- 拟合并绘制单变量或双变量核密度估计图
- sns.kdeplot(data,data2=None,shade=False,vertical=False,kernel='gau',...)
- 主要参数:

方法	说明
data, data2	一维数据
shade	是否显示阴影
vertical	方向
kernel	核函数: gau,cos,biw,epa,tri,triw

bw KDE的带宽bandwidth:scott,silverman,scalar,pair of scalars

```
In [83]: 1 sns.kdeplot(pdata.total_bill, color='r')
```

 $Out \cite{Mathematical Normal Norma$

• 双变量核密度: 消费与小费

```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
```

9.4 PairGrid

9.5 JointGrid9.6 joinplot

10 8 6 4 2 0 0 10 20 30 40 50 total_bill

8 关系图

需求:得到一组数据后,查看数据关系:线性关系,类别关系或者其他关系,如何处理?

8.1 散点图

• sns.scatterplot(x=None,y=None,hue=None,style=None,size=None,data=None,palette=None,hue_order=None,

•

8.1.1 鸢尾花数据集

三种鸢尾花数据集,主要字段:

字段	说明
sepal_length	花萼长度
sepal_width	花萼宽度
petal_length	花瓣长度
petal_width	花瓣宽度
species	分类

```
In [91]: ▼ 1 #导入数据:
2 iris = sns. load_dataset('iris')
```

8.1.2 根据花萼花瓣长宽,对数据可视化

```
In [93]: ▼ 1 #花萼长宽 2 sns.scatterplot(x='sepal_length', y = 'sepal_width', hue='species', data=iris)
```

 ${\tt Out[93]:} \ \ \langle {\tt matplotlib.axes._subplots.AxesSubplot} \ \ \, {\tt at} \ \ \, {\tt 0x219df18e988} \rangle$


```
In [94]: ▼ 1 #花瓣长宽 sns. scatterplot(x='petal_length', y = 'petal_width', hue='species', data=iris)
```

Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x219df24da08>

花瓣长宽有一定线性与聚类关系关系

8.2 线性回归图

- 拟合数据集回归模型的绘图方法
- Implot: sns.Implot(x,y,data,hue=None,col=None,row=None,...)

```
Contents ₽ ❖
▼1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
     4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
   9.2 relplot
   9.3 FacetGrid
   9.4 PairGrid
```

9.5 JointGrid9.6 joinplot

1 sns.lmplot(x='petal_length', y = 'petal_width', hue='species', data=iris)

9 其他常用图表

9.1 catplot

In [96]:

- 将分类图绘制到 FacetGrid 上图级别接口
- 在不同的图表中对数据进行展示,支持多种展示方式
- seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None,...)
- 返回: FacetGrid

主要参数:

说明	参数
data中的列名	x,y,hue
data中列名,行与列的网络分面	row, col
统计函数	estimator
图表格式	kind

图表格式:

kind名称	说明
strip	stripplot()
swarm	swarmplot()
box	boxploat()
violin	violinplot()
boxen	boxenplot()
point	pointplot()
bar	barplot()
count	countplot()


```
In [122]: | #定col: 2 | sns.catplot(x="sex", y="total_bill", hue="smoker", data=tips, kind="box", col = 'time')
```

Out[122]: <seaborn.axisgrid.FacetGrid at 0x219e1341548>


```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
```

▼ 8.1 散点图

8.1.1 鸢尾花数据集

8.2 线性回归图 ▼ 9 其他常用图表 9.1 catplot 9.2 relplot 9.3 FacetGrid 9.4 PairGrid 9.5 JointGrid 9.6 joinplot

8.1.2 根据花萼花瓣长宽,对数据可视化

2 sns.catplot(x="sex", y="total_bill", hue="smoker", data=tips, kind="box", row = 'time')

In [123]: ▼ 1 #定row:

Out[123]: <seaborn.axisgrid.FacetGrid at 0x219e3d6f588>

9.2 relplot

• 功能与catplot类似,用与显示两个变量的关系

kind类型:

9.3 FacetGrid

- 根据设置条件生成多个图表,效果与catplot, relplot类似
- g = sns.FacetGrid(data, row=None, col=None, hue=None, col_wrap=None,...)
- g.map(func, *args, **kwargs): 绘制图表

Contents **₽** ❖

- ▼ 1 seaborn简介

 - 1.1 主要特征:
 - 1.2 seaborn安装 1.3 seaborn主要内容
- ▼ 2 seaborn基本设置
- 2.1 第一个案例
- 2.2 seaborn相关设置 2.3 图表大小: context
- ▼ 2.4 设置风格
 - 2.4.1 获取当前风格:
 - 2.4.2 设置字体与支持中文
 - 2.4.3 移除坐标轴
- 2.4.4 设置临时格式
- 2.5 设置调色板
- 2.6 set方法 ▼ 3 调色板
- ▼ 3.1 分类色板 (qualitative)
- 3.1.1 默认主题
 - 3.1.2 hls色圈系统
 - 3.1.3 使用xkcd颜色来命名颜色
- ▼ 3.2 连续调色板
 - 3.2.1 Color Brewer
 - 3.2.2 cubehelix_palette调色板
 - 3.2.3 单一颜色调色板
- 3.3 离散色板
- ▼ 4 seaborn内置数据集 4.1 数据集介绍
- ▼ 4.2 获取数据集列表
- 4.2.1 导入数据集 5 seaborn常用的图表
- ▼ 6 分类图表
- ▼ 6.1 barplot方法
 - 6.1.1 一个需求:不同时间点消费均值
 - 6.1.2 新需求:不同时间点,不同性别消费均值
 - 6.1.3 箱状图
- 6.1.4 分类散点图 6.2 数量统计
- ▼7 分布图
- ▼ 7.1 直方图 7.1.1 使用直方图查看用户消费额度分布
 - 7.1.2 设置不同颜色
- 7.1.3 设置bins
- 7.2 KDE图
- ▼ 8 关系图
- ▼ 8.1 散点图 8.1.1 鸢尾花数据集
 - 8.1.2 根据花萼花瓣长宽,对数据可视化
- 8.2 线性回归图
- ▼ 9 其他常用图表
 - 9.1 catplot 9.2 relplot
 - 9.3 FacetGrid
 - 9.4 PairGrid
 - 9.5 JointGrid 9.6 joinplot

In [150]: 1 g = sns.FacetGrid(tips, row='sex', col='day') 2 g. map(plt. hist, 'total_bill')

Out[150]: <seaborn.axisgrid.FacetGrid at 0x219e9958608>

9.4 PairGrid

- 数据集中成对关系的子图
- 将数据集中每个变量映射到多个子图中,两两交叉
- g = sns.PairGrid(data,hue=None,hue_order=None,palette=None,hue_kws=None,vars=None,...)
- g.map_diag(func, **kwargs): 绘制对角线图表
- g.map_offdiag(func, **kwargs): 绘制非对角线图表

主要参数:

说明	参数
hue参数	hue_kws
选中列名	vars
x轴列名与y轴列名	x, y_vars

Contents **₽** ❖ ▼ 1 seaborn简介 1.1 主要特征: 1.2 seaborn安装 1.3 seaborn主要内容 ▼ 2 seaborn基本设置 2.1 第一个案例 2.2 seaborn相关设置 2.3 图表大小: context ▼ 2.4 设置风格 2.4.1 获取当前风格: 2.4.2 设置字体与支持中文 2.4.3 移除坐标轴 2.4.4 设置临时格式 2.5 设置调色板 2.6 set方法 ▼ 3 调色板 ▼ 3.1 分类色板 (qualitative) 3.1.1 默认主题 3.1.2 hls色圈系统 3.1.3 使用xkcd颜色来命名颜色 ▼ 3.2 连续调色板 3.2.1 Color Brewer 3.2.2 cubehelix_palette调色板 3.2.3 单一颜色调色板 3.3 离散色板 ▼ 4 seaborn内置数据集 4.1 数据集介绍 ▼ 4.2 获取数据集列表 4.2.1 导入数据集 5 seaborn常用的图表 ▼ 6 分类图表 ▼ 6.1 barplot方法 6.1.1 一个需求:不同时间点消费均值 6.1.2 新需求:不同时间点,不同性别消费均值 6.1.3 箱状图 6.1.4 分类散点图 6.2 数量统计 ▼7 分布图 ▼ 7.1 直方图 7.1.1 使用直方图查看用户消费额度分布 7.1.2 设置不同颜色 7.1.3 设置bins 7.2 KDE图 ▼ 8 关系图 ▼ 8.1 散点图 8.1.1 鸢尾花数据集 8.1.2 根据花萼花瓣长宽,对数据可视化 8.2 线性回归图 ▼ 9 其他常用图表

9.1 catplot 9.2 relplot 9.3 FacetGrid 9.4 PairGrid 9.5 JointGrid 9.6 joinplot

9.5 JointGrid

- 绘制双变量与边际单变量图表
- g = sns.JointGrid(x, y, data=None, height=6, ratio=5, space=0.2, dropna=True, xlim=None, ylim=None,
- g.plot(joint_func, marginal_func, annot_func=None) #绘制联合图表与边缘图表
- g.plot_joint(func, **kwargs) #绘制联合图表
- g.plot_marginals(func, **kwargs) #绘制边缘图表

```
In [162]:
              1 g.plot_marginals?
In [164]:
              1 | g = sns. JointGrid(x="total_bill", y="tip", data=tips)
              2 #绘制回归图与直方图
              3 g. plot(sns. regplot, sns. distplot)
Out[164]: <seaborn.axisgrid.JointGrid at 0x219ef7209c8>
```


• 相关格式设置

```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
```

8.1.1 鸢尾花数据集

8.2 线性回归图 ▼ 9 其他常用图表 9.1 catplot 9.2 relplot 9.3 FacetGrid 9.4 PairGrid 9.5 JointGrid 9.6 joinplot

8.1.2 根据花萼花瓣长宽,对数据可视化

g = sns. JointGrid(x="total_bill", y="tip", data=tips)
g = g.plot_joint(plt.scatter, color="y", edgecolor="white")

9.6 joinplot

In [170]:

In [168]:

1 import numpy as np

• 绘制变量的双变量及单变量图

1 tips = sns.load_dataset("tips")

• g = sns.jointplot(x, y, data=None,kind='scatter',stat_func=None,color=None,...)

```
2 g = sns. jointplot(x="total_bill", y="tip", data=tips)
```



```
Contents ₽ ❖
▼ 1 seaborn简介
   1.1 主要特征:
   1.2 seaborn安装
   1.3 seaborn主要内容
▼ 2 seaborn基本设置
   2.1 第一个案例
   2.2 seaborn相关设置
   2.3 图表大小: context
 ▼ 2.4 设置风格
    2.4.1 获取当前风格:
    2.4.2 设置字体与支持中文
    2.4.3 移除坐标轴
    2.4.4 设置临时格式
   2.5 设置调色板
   2.6 set方法
▼ 3 调色板
 ▼ 3.1 分类色板 (qualitative)
    3.1.1 默认主题
    3.1.2 hls色圈系统
    3.1.3 使用xkcd颜色来命名颜色
 ▼ 3.2 连续调色板
    3.2.1 Color Brewer
    3.2.2 cubehelix_palette调色板
    3.2.3 单一颜色调色板
   3.3 离散色板
▼ 4 seaborn内置数据集
   4.1 数据集介绍
 ▼ 4.2 获取数据集列表
    4.2.1 导入数据集
 5 seaborn常用的图表
▼ 6 分类图表
 ▼ 6.1 barplot方法
    6.1.1 一个需求:不同时间点消费均值
    6.1.2 新需求:不同时间点,不同性别消费均值
    6.1.3 箱状图
    6.1.4 分类散点图
   6.2 数量统计
▼7 分布图
 ▼ 7.1 直方图
    7.1.1 使用直方图查看用户消费额度分布
    7.1.2 设置不同颜色
    7.1.3 设置bins
   7.2 KDE图
▼ 8 关系图
 ▼ 8.1 散点图
    8.1.1 鸢尾花数据集
    8.1.2 根据花萼花瓣长宽,对数据可视化
   8.2 线性回归图
▼ 9 其他常用图表
   9.1 catplot
```

9.2 relplot9.3 FacetGrid9.4 PairGrid

9.5 JointGrid9.6 joinplot

1 sns.jointplot("total_bill", "tip", data=tips, kind="hex")

In [172]:


```
[n [ ]: 1
```