Artificial Intelligence
Machine Learning and

My Gurus

Giveback of A

Lead speaker at India book of records event held at SVEW College, Tirupati.

Evolution of Industries

The Four Industrial Revolutions

Industry 1.0

Mechanization and the introduction of steam and water power

Industry 2.0

Mass production assembly lines using electrical power Industry 3.0

Automated production, computers, IT-systems and robotics Industry 4.0

The Smart Factory. Autonomous systems, IoT, machine learning

Industry 4.0

Artificial Intelligence

Al is the new trend.

Hello World. Can I take your bike?

Difference between Data Science and Machine Learning

Sure we do think a lot!
So consider a House example!

Data Science

Data Science is field where it gives a set of insights that can help you make business decisions, such as what type of house to build or whether to invest in renovation

Machine Learning

Here the Machine Learning is Like it doesn't gives the insight but using the data given we could predict the value of the house.

The concept of learning in a ML system

- oLearning = Improving with experience at some task
- Improve over task T,
- With respect to performance measure, P
- Based on experience, E.

Motivating Example Learning to Filter Spam

Spam - is all email the user does not want to receive and has not asked to receive

T(Task): Identify Spam Emails
P(Performance): % of spam emails that were filtered % of spam/ (non-spam) emails that were incorrectly filtered-out
E(Experience): a database of emails that were labelled by users

I am AI - NVIDIA

AI in Industries

Key steps involved in ML system

Collection of DataSets

Train model

Iterate many time until good enough

Deploy model

feedback system

Then What is Computer Vision?

Is it related vision?

Hey People!

This is me With Eyes!

Machine Learning +

Computer Vision

A Deadly Combo to explore

NLP, Sound, Data

Other form of inputs for ML

The Artificial intelligence

Why Al now?

Flood of digital data and Increase in computation power!

Feasible, deployable and effective!

Embedded Al Technologies Matrix

Raspberry PI

Intel UP

Google Coral Al Accelerator

Intel Neural Network Stick 2

Google Coral Dev Board

NVIDIA Jetson Nano

Lets Dig Deep into it!!!

What do you mean by APPLE

Learning (Training)

Color | Shape | Texture

This is how the Machine see!

151	121	1 1	93	165	204	1 14	214	28	235
62	67	17	234	27	1	221	37	189	141
20	168	155	113	178	228	25	130	139	221
236	136	158	230	10	5	165	17	30	155
174	148	93	70	95	186	151	10	160	214
103	126	58	16	138	136	98	202	42	233
235	103	52	37	94	104	173	86	223	113
212	15	179	139	48	232	194	46	174	37
119	81	241	172	95	170	29	210	22	194
129	19	33	253	229	5	152	233	52	44
88	200	194	185	140	200	223	190	164	102
113	16	220	215	143	104	247	29	97	203
9	210	102	246	75	9	158	104	184	129
124	52	76	148	249	107	65	216	187	181
6	251	52	208	46	65	185	38	77	246
150	194	28	206	148	197	208	28	74	93
33	183	248	153	168	205	146	100	254	218
130	53	128	212	61	226	201	110	140	183
165	246	22	102	151	213	40	138	8	93
152	251	101	230	23	162	70	238	75	24
187	105	152	83	167	98	1 125	180	136	121
139	197	55	209	28	124	208	208	104	40
123	19	144	223	62	253	202	108	47	242
220	144	31	16	136	123	227	62	183	163

29	142	142	75	22	109	111	28	1 6	5
137	168	41	206	100	70	219	127	114	191
205	154	226	14	89	86	242	67	203	15
247	47	128	123	253	229	181	251	232	28
68	75	24	99	93	63	215	222	102	180
206	246	85	103	215	3	62	6-4	77	216
126	88	165	149	196	75	186	60	179	193
44	253	164	253	1.4	216	175	30	46	254
137	23	33	203	241	21	144	63	244	188
32	214	142	121	249	109	99	232	183	71
45	36	152	27	190	137	61	1	237	247
1	14	241	70	2	30	151	67	169	205
32	80	102	32	99	169	91	166	73	214
186	219	9	203	209	240	40	249	119	122
177	252	38	203	119	0	217	139	139	157
154	145	49	251	150	185	235	23	230	156
157	168	223	60	247	118	5	180	16	206
102	208	195	246	140	138	54	191	139	79
17	233	85	169	166	24	49	40	160	97
84	242	247	144	203	3	19	24	198	88
67	67	185	98	123	106	168	105	127	153
37	113	214	252	203	80	146	211	7	16
142	241	66	86	214	133	146	253	189	200
67	215	174	111	189	54	144	56 /	-59	- 163

Feature Extraction

Color Image Descriptor

[0.28, 0.66, 0.19]

Texture Image Descriptor

[0.48, 0.33, 0.25]

Shape Image Descriptor

[0.38, 0.76, 0.24]

Feature extraction Techniques

- Color Channel Statistics
- Color Histograms
- Haralick Texture
- Local Binary Pattern
- Histogram of Oriented Gradients
- Keypoint Detectors
- Local Invariant Descriptors
- Binary Descriptors

Challenges faced - Background

Challenges faced - viewpoint

Challenges faced - Scale variation

Challenges faced - Occlusions

Challenges faced - illumination

Challenges - intra-class variation

Categories

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

Supervised Learning

Supervised Learning

Label	Rμ	Gμ	Вμ	Rσ	Gσ	Βσ
Cat	57.61	41.36	132.44	158.33	149.86	93.33
Cat	120.23	121.59	181.43	145.58	69.13	116.91
Cat	124.15	193.35	65.77	23.63	193.74	162.70
Dog	100.28	163.82	104.81	19.62	117.07	21.11
Dog	177.43	22.31	149.49	197.41	18.99	187.78
Dog	149.73	87.17	187.97	50.27	87.15	36.65

UnSupervised Learning

Rμ	Gμ	Вμ	Rσ	Gσ	Βσ
57.61	41.36	132.44	158.33	149.86	93.33
120.23	121.59	181.43	145.58	69.13	116.91
124.15	193.35	65.77	23.63	193.74	162.70
100.28	163.82	104.81	19.62	117.07	21.11
177.43	22.31	149.49	197.41	18.99	187.78
149.73	87.17	187.97	50.27	87.15	36.65

Supervised Learning (Classification Algorithm)

Unsupervised Learning (Clustering Algorithm)

Semi-Supervised Learning

Label	Rμ	Gμ	Вμ	Rσ	Gσ	Βσ
Cat	57.61	41.36	132.44	158.33	149.86	93.33
?	120.23	121.59	181.43	145.58	69.13	116.91
?	124.15	193.35	65.77	23.63	193.74	162.70
Dog	100.28	163.82	104.81	19.62	117.07	21.11
?	177.43	22.31	149.49	197.41	18.99	187.78
Dog	149.73	87.17	187.97	50.27	87.15	36.65

Reinforcement Learning

Work Flow

Linear Classifiers

Linear Classifiers

Classifier Lines

Classifier Margin

What Now?

Non-Linear Classifiers!

Which One?

K-Nearest Neighbour

Decision Tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Random Forest

Machine Learning Algorithms

- K-Nearest Neighbor Classification
- Logistic Regression
- Support Vector Machines
- Decision Trees
- Random Forests
- K-means Clustering
- o and much more..

Forest

Street

Highway

Feature Extraction - Color Channel Statistics

Classifier - SVM

Feature Extraction – Haralick Texture

Usage in Real Life

Endhiran? RaOne? I Robot?

Usage in Real Life

- Spam Email Detection
- Language Translation
- Image Search
- Amazon Recommendations
- Google News

Usage in Real Life

- Fraud Detection Credit card, etc.
- Speech Understanding
- Face Detection Facebook photo tag
- Surveillance
- Automobile, Robot, Space etc etc.

Current Trends

Generative Adversarial Network

Current Trends

Freaking Chat bots

Current Trends

- Autonomous cars
- Marketing Automation
- Al Optimized hardwares
- o and Much more....

Some other examples

- sketch to image
- Text Segmentation
- Sentiment analysis
- Object detection
- Video surveillance / Activity recognition
- Disease identification
- Image captioning
- Music composition and much more

Mislead of Al

Bob: i can i i everything else
Alice: balls have zero to me to
Bob: you i everything else
Alice: balls have a ball to me to me to me to me to me to me
Bob: ii can iii everything else
Alice: balls have a ball to me to me to me to me to me to me
Bob: i
Alice: balls have zero to me to
Bob: you i i i i i everything else
Alice: balls have 0 to me to
Bob: you i i i everything else
Alice: balls have zero to me to

Why Python

- Easy to Use
- Code Effort is less
- Open Source
- Well Python is a snake It can eat anything

Skills Needed

Python

Creativity

Patience

"You can't just copy-pase pseudocode into a program and expect it to work"

Why Python

- Easy to Use
- Code Effort is less
- Open Source
- Well Python is a snake It can eat anything

Python Vs C Vs Java

```
# include <stdio.h>
Int main ()
{
    printf ("Hello World! \n");
    return 0;
}
```

```
Java:
Public class Hello
{
  public static void main (String argv[])
  {
    System.out.println("Hello World!");
  }
}
```

Python Vs C Vs Java

Python:

print "Hello World!"

Libraries of Python used

- o Open CV.
- SciKit-Learn.
- Keras / Tensorflow
- Numpy
- And much more....!

Deep LEARNING

Next level of Artificial Intelligence

I am not afraid of a person who knows 10000 kicks. But I am afraid of a person who knows one kick but practices it for 10000 times.

— Bruce Lee —

Its time!

Any questions?