DeepSeek-OCR

Heng-Shiou Sheu 2025 Oct.

Why DeepSeek-OCR Went Viral

Frequently discussed on social media for its concept of Optical Compression.

DeepSeek-OCR: Contexts Optical Compression

Haoran Wei, Yaofeng Sun, Yukun Li

DeepSeek-AI

Information Entropy

How humans compress infinite meanings into finite symbols

The Discovery of Genesis, C.H. Kang and Ethel Nelson, p. 55

Tokenizer

It's how symbols begin to imitate meaning

Table 1: Tokenizer comparisons between original LLaMA and Chinese LLaMA.

	Length	Content			
Original Sentence	28	人工智能是计算机科学、心理学、哲学等学科融合的交叉学科。			
Original Tokenizer	35	'_', '人', '工', '智', '能', '是', '计', '算', '机', '科', '学', '、', '心', '理', '学', '、', '0xE5', '0x93', '0xB2', '学', '等', '学', '科', '0xE8', '0x9E', '0x8D', '合', '的', '交', '0xE5', '0x8F', '0x89', '学', '科', '。'			
Chinese Tokenizer	16	'_','人工智能','是','计算机','科学','、','心理学','、','哲学', '等','学科','融合','的','交叉','学科','。'			

Compression

What happens when we move beyond text?

		Tokens =64	Vision '		
Text Tokens	Precision	Compression	Precision	Compression	Pages
600-700	96.5%	10.5×	98.5%	6.7×	7
700-800	93.8%	$11.8 \times$	97.3%	$7.5 \times$	28
800-900	83.8%	13.2×	96.8%	$8.5 \times$	28
900-1000	85.9%	$15.1\times$	96.8%	$9.7 \times$	14
1000-1100	79.3%	$16.5 \times$	91.5%	$10.6 \times$	11
1100-1200	76.4%	$17.7 \times$	89.8%	11.3×	8
1200-1300	59.1%	19.7×	87.1%	12.6×	4

Beyond the Limits of Language Compression

What if we could encode meaning—not in words—but in the latent space of vision?

How can a model "see" an image?

Vision Tokens — the bridge connecting visual input and language understanding

How can a model "see" an image?

Vision Tokens — the bridge connecting visual input and language understanding

The Trade-off of Vision Tokens

Sequence Explosion and the Compression Bottleneck

Fewer tokens. Same meaning.

A two-stage compression architecture

A two-stage compression framework that enables visual information to retain its full semantic meaning with the fewest possible tokens.

Figure 3 | The architecture of DeepSeek-OCR. DeepSeek-OCR consists of a DeepEncoder and a DeepSeek-3B-MoE decoder. DeepEncoder is the core of DeepSeek-OCR, comprising three

keeping meaning intact, even with minimal visual tokens.

DeepEncoder

Local Information: Detail Extraction with SAM-base

- Windowed Attention → Focus on patch-level details
- 1024×1024 image → 16×16 patches
- 4096 Vision Tokens generated

DeepEncoder

16× Convolutional Compressor: Efficient Dimensionality Reduction

- Using 3×3 kernels (stride 2, padding 1),
- it expands the feature channels from 256 to 1024,
- compressing 4096 patch tokens into just 256.

DeepEncoder

Global Semantic Integration (CLIP-Large)

- Extracts global semantics & context
- Removes patch embedding layer
- Dense global attention for holistic meaning

DeepDecoder

Achieving large-model expressiveness with small-model effic

- Built on the DeepSeekMoE-3B-MoE architecture
- Activates 6 routing experts and 2 shared experts, for a total of approximately 570 million active parameters

$$f_{\text{dec}}: \mathbb{R}^{n \times d_{\text{latent}}} \to \mathbb{R}^{N \times d_{\text{text}}}; \quad \hat{\mathbf{X}} = f_{\text{dec}}(\mathbf{Z}) \quad \text{where } n \leq N$$

Routed Expert Shared Expert

2N-1 2N

K = 3

Output Hidden

1 2 3 4

Multi-Resolution Capability

The DeepSeek-OCR model supports multiple input resolutions.

Token: 64||100

W:1024||1280

- Tiny(512×512, 64 token),
- Small(640×640, 100 token),
- Base(1024×1024, 256 token),
- Large(1280×1280, 400 token)

- Dynamic Modes: *Gundam / Gundam-Master*
- Ultra-high-resolution inputs
- Tiling strategy
- Local details + Global context

Real-World Application Scenarios

Traditional OCR Use Case: Based on the OCR1 dataset

Real-World Application Scenarios

Advanced OCR Scenarios: OCR2 Dataset

(a) Image-text ground truth of chart

(b) Image-text ground truth of geometry

- Chart analysis: Converts visual charts to structured HTML table format
- Chemical formula recognition: Transforms molecular structures to SMILES notation
- Geometric parsing: Processes mathematical figures into structured coordinate systems
- Beyond what traditional OCR can do.

Real-World Application Scenarios

DeepSeek-OCR retains VLM-level generalization using the OCR3 dataset.

<image>\n这是一张

照片,展示了一辆红色的消防住,不可能在色的消防性,是得非常友好和亲切。 治防柱的顶部有一个黑色的 查子,周围有一些金属脚钉。在消防柱的底部,有一个粉红色的脉纸,上面写着"bowtie"。背景中可见看到一条街道,街道上两九辆传放的汽车和一些树木、整体画面给人一种温馨和女好的感觉。

<image>\nDescribe this image in detail.

A green plastic container labeled for food storage purposes. The lid is yellow and appears slightly worn out.

On the front label: - At the top left corner, some Chinese characters.

- In bold black letters near the center-top reads "6月香" (June Fragrance).

- Below that, smaller white font states "鲜甜成香" which translates roughly to "Fresh
Sweet Salty Fragrant."

- Dominating the middle part of the label is large lettering stating "豆瓣酱," meani "Bean Paste Sauce."

- A small circular loop indicating quality assurance ("依语品")

- An illustration showing what seems like a dish made using bean paste sauce.
- Text below the main title says "专注25年,只像原题管 'translating to 'Focusing since 1998, only making authentic fermented bean paste.'
- On the bottom right side, additional product specifications include ''净含量: 500g'

Overall Style/Type:

It looks like commercial packaging designed specifically for preserving food items

within the jar. It has clear labeling intended for easy identification and understanding among consumers who read Mandarin.

Note: There might be slight variations due to handwriting styles but overall maintains readability regarding brand identity and contents description.

君不见,黄河之水天上来

,奔流到梅不夏回。君不见。高堂明镜悲白发,朝如青盆暮成雪。人生得意须尽欢、莫使金樽空对月。天生我材必有用,千金散尽足来。烹羊宰牛且为乐。 会观一饮三百杯。岑夫子,升丘生,将进酒。杯莫停。与君歌一曲。请君为我倾耳听。钟鼓飘玉不足贵,但愿长醉不愿醒。古来圣贤皆寂寞,惟有饮者留其名。陈王昔时宴平乐,斗酒十千苍欢端。主人何为言少钱。径须沾取对君阶。五花马,千金裘,呼几将出换美酒。与尔问情万古卷。

Performance Evaluation

OCR Task Results: Achieving Efficiency Beyond SOTA

		English				Chinese				
Model	Tokens	overall	text	formula	table (order	overall	text	formula	table order
Pipline Models										
Dolphin [11]	-	0.356	0.352	0.465	0.258	0.35	0.44	0.44	0.604	0.367 0.351
Marker [1]	-	0.296	0.085	0.374	0.609	0.116	0.497	0.293	0.688	0.678 0.329
Mathpix [2]	-	0.191	0.105	0.306	0.243	0.108	0.364	0.381	0.454	0.32 0.30
MinerU-2.1.1 [34]	-	0.162	0.072	0.313	0.166	0.097	0.244	0.111	0.581	0.15 0.136
MonkeyOCR-1.2B [18]	-	0.154	0.062	0.295	0.164	0.094	0.263	0.179	0.464	$0.168\ 0.243$
PPstructure-v3 [9]	-	0.152	0.073	0.295	0.162	0.077	0.223	0.136	0.535	0.111 0.11
End-to-end Models										
Nougat [6]	2352	0.452	0.365	0.488	0.572	0.382	0.973	0.998	0.941	1.00 0.954
SmolDocling [25]	392	0.493	0.262	0.753	0.729	0.227	0.816	0.838	0.997	0.907 0.522
InternVL2-76B [8]	6790	0.44	0.353	0.543	0.547	0.317	0.443	0.29	0.701	$0.555\ 0.228$
Qwen2.5-VL-7B [5]	3949	0.316	0.151	0.376	0.598	0.138	0.399	0.243	0.5	$0.627\ 0.226$
OLMOCR [28]	3949	0.326	0.097	0.455	0.608	0.145	0.469	0.293	0.655	$0.652\ 0.277$
GOT-OCR2.0 [38]	256	0.287	0.189	0.360	0.459	0.141	0.411	0.315	0.528	0.52 0.28
OCRFlux-3B [3]	3949	0.238	0.112	0.447	0.269	0.126	0.349	0.256	0.716	$0.162\ 0.263$
GPT4o [26]	-	0.233	0.144	0.425	0.234	0.128	0.399	0.409	0.606	$0.329\ 0.251$
InternVL3-78B [42]	6790	0.218	0.117	0.38	0.279	0.095	0.296	0.21	0.533	$0.282\ 0.161$
Qwen2.5-VL-72B [5]	3949	0.214	0.092	0.315	0.341	0.106	0.261	0.18	0.434	$0.262\ 0.168$
dots.ocr [30]	3949	0.182	0.137	0.320	0.166	0.182	0.261	0.229	0.468	$0.160\ 0.261$
Gemini2.5-Pro [4]	-	0.148	0.055	0.356	0.13	0.049	0.212	0.168	0.439	$0.119\ 0.121$
MinerU2.0 [34]	6790	0.133	0.045	0.273	0.15	0.066	0.238	0.115	0.506	$0.209\ 0.122$
dots.ocr ^{†200dpi} [30]	5545	0.125	0.032	0.329	0.099	0.04	0.16	0.066	0.416	0.092 0.067
		De	epSee	k-OCR (end2e	nd)				
Tiny	64	0.386	0.373	0.469	0.422	0.283	0.361	0.307	0.635	0.266 0.236
Small	100	0.221	0.142	0.373	0.242	0.125	0.284	0.24	0.53	0.159 0.205
Base	256(182)	0.137	0.054	0.267	0.163	0.064	0.24	0.205	0.474	0.1 0.181
Large	400(285)	0.138	0.054	0.277	0.152	0.067	0.208	0.143	0.461	0.104 0.123
Gundam	795	0.127	0.043	0.269	0.134	0.062	0.181	0.097	0.432	0.089 0.103
Gundam-M ^{†200dpi}	1853	0.123	0.049	0.242	0.147	0.056	0.157	0.087	0.377	0.08 0.085

- Small mode: Outperforms GOT-OCR 2.0 using only 100 vision tokens (vs. 256).
- Gundam mode: Outperforms MinerU 2.0 with under 800 tokens (vs. ~7,000).

Tutorial

Github Colab

```
4.1 Free OCR (推薦)
  prompt = "
The attention mask and the pad token id were not set. As a consequence,
e pass your input's `attention mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:None for open-end generation.
_____
BASE: torch.Size([1, 256, 1280])
PATCHES: torch.Size([6, 100, 1280])
 Period Ending | Dec 31, 2008 | Dec 31, 2009 | Dec 31, 2010
  **Assets**
 **Current Assets** |
 Cash And Cash Equivalents | 8,656,672 | 10,198,000 | 13,630,000
 Short Term Investments | 7,189,099 | 14,287,000 | 21,345,000 |
 Net Receivables | 2,928,297 | 3,845,000 | 5,261,000 |
  Inventory | - | - | - |
 Other Current Assets | 1,404,114 | 837,000 | 1,326,000 |
 **Total Current Assets** | 20,178,182 | 29,167,000 | 41,562,000 |
 **Long Term Investments** | 85,160 | 129,000 | 523,000
 Property Plant and Equipment | 5,233,843 | 4,845,000 | 7,759,000 |
 Goodwill | 4,839,854 | 4,903,000 | 6,256,000
 Intangible Assets | 996,690 | 775,000 | 1,044,000 |
 Accumulated Amortization | - | - | - |
 Other Assets | 433,846 | 415,000 | 442,000
 Deferred Long Term Asset Charges | - | 263,000 | 265,000 |
 **Total Assets** | 31,767,575 | 40,497,000 | 57,851,000 |
```

 https://github.com/Heng-xiu/all-things-llm/blob/main/talks/ DeepSeek%20OCR.ipynb