

What is PSP-Nx-v4

PSP-Nx-v4 is a digital interface to connect SONY® Playstation 2 controller to NXT.

When used with wireless controller, it acts as programmable remote control for NXT.

The PS2 controller has two analog joysticks and 16 buttons. Using PSP-Nx-v4 interface, values of all 16 buttons and 2 joysticks can be read by the NXT over the wireless link.

Connections

Using a standard NXT cable, connect the PSP-Nx-v4 to any one of the four ports of NXT.

Attach wireless receiver to PSP-Nx. Please refer the section below on how to mount Play station-2 controller receiver on PSP-Nx-v4 interface.

Mounting Playstation 2 receiver on PSP-Nx-v4

You can insert the Play station 2 wireless controller receiver in the socket on PSP-Nx-v4 interface. The receiver socket can be inserted only in one orientation, note the rounded corners to match orientation before inserting.

NOTE

A LED blinking in Blue color on PSP-Nx-v4 (one blink per second) indicates that the receiver is not connected correctly to PSP-Nx-v4. When connected properly, this blinking stops.

Mounting PSP-Nx-v4 on your contraption

The holes on the PSP-Nx-v4 enclosure are designed for tight fit of Technic pins (or axles) with '\(\dagger' cross section. The holes however are not designed for repeated insertions/removals of these pins.

To mount PSP-Nx-v4 on your contraption we suggest that you use two dark gray 'Technic Axle 3 with Stud' as shown.

Insert axles from the top of the PSP-Nx-v4 and secure with a bushing on the back or mount it on your contraption directly.

Alternately, you may use blue 'Technic Axle Pin with Friction', as shown.

While disassembling contraption, leave the pins on PSP-Nx-v4.

MOUNTING TIP

If you are mounting it on LEGO/NXT/EV3 Plastic robots, mount the PSP-Nx and dongle at the undercarriage of the robot, between the wheels, (so that it doesn't entice users to hold it as a handle).

If you are mounting on FTC/ VEX robots, you should mount the PSP-Nx dongle protected from the impacts the robot is going to take. (those robots take impacts as high as a car-crash).

Project Ideas Using PSP-Nx

Be innovative in designing and creating your project!

If you need guidance and ideas for project, please visit LEGO

Mindstorms Community website at following url:

http://us.mindstorms.lego.com/en-

us/Community/NXTLog/DisplayProjectList.aspx?tag=pspnx

Programming Techniques for PSP-Nx-v4

EV3 Method:

To use capabilities of the sensor, please download EV3 blocks available at following URL:

Installation instructions for EV3 block are available at: http://www.mindsensors.com/content/13-how-to-install-blocks-inev3

Download EV3 sample program from following URL and modify it to suit your needs.

http://www.mindsensors.com/index.php? controller=attachment&id_attachment=159

NXT-G Method:

Please download **PSP-Nx-v4.zip** NXT block from following URL and import it into your NXT-G IDE.

http://www.mindsensors.com/index.php? controller=attachment&id_attachment=263 Installation instructions for NXT-G are available at: http://www.mindsensors.com/content/21-nxt-g-blocks-how-to-install-blocks

Also download sample programs from following url and modify them to suit your needs.

http://www.mindsensors.com/index.php? controller=attachment&id attachment=35

∧ NOTE

Ensure to use latest LEGO firmware on NXT (1.29 or higher).

RobotC Method:

You can use example program in C and robotC compiler to use PSP-Nx-v4 on your NXT robot. Download sample program from following URL: https://github.com/botbench/robotcdriversuite

NXC Method:

Download the library file and sample programs from following URL, and modify the sample programs to suit your needs.

http://www.mindsensors.com/index.php? controller=attachment&id_attachment=39

If you need to use PSP-Nx-v4 in your existing program, at the top of your NXC program file, include the library with following directive:

#include "PSP-Nx-v4-lib.nxc"

∧ NOTE

Ensure to use latest LEGO firmware on NXT (1.29 or higher).

LabVIEW Method:

There are two interfaces provided to program using LabVIEW.

Remote Programs, where LabVIEW instrument written on PC, can be compiled and downloaded to your NXT. Download the LabVIEW library file from following URL, and unzip on your PC.

http://www.mindsensors.com/index.php? controller=attachment&id_attachment=314

Download the PSP-Nx-v4 Direct control and Remote Program examples from following location, and modify to suite your needs. http://www.mindsensors.com/index.php?
controller=attachment&id attachment=72

LED Indications:

The blinking of LED on PSP-Nx-v4 indicates following:

LED state	Situation
LED blinks Green	LED will blink Green momentarily when it receives a packet from Wireless Controller.
LED Blinks Blue at about 1 second interval.	Wireless Receiver Dongle is not attached correctly to PSP-Nx-v4
LED blinks Red (For Models equipped with Referee Signal Receiver).	The Referee has sent a signal that disables Controller input to your NXT program. i.e. Joystick value changes or button presses will not be received by your program.

Trouble Shooting Connectivity

If you are having trouble connecting PSP-Nx-v4 with wireless Joystick, please refer to Connectivity Guide at following URL:

http://mindsensors.com/pdfs/PSP-Nx-v4-Connectivity-Guide.pdf

Controller Button Layout

Picture below shows the layout of buttons on one of the controllers. Shape/location of buttons on your controller may vary slightly.

Advanced Information

Supported Commands

Following table lists the commands for use and setup:

Command	ds	Action
ASCII	Hex	
I	0x49	Initialize the Playstation 2 Wireless Receiver
		dongle (attached to PSP-Nx)

I2C Registers:

Register	Read	Write
0x00-0x07	Software version - V4.01	-
0x08-0x0f	Vendor Id - mndsnsrs	-
0×10-0×17	Device ID - PSPNX	-
0×41	Mode	Command
0x42	Button Set 1	-
0x43	Button Set 2	-
0×44	X-Left joystick	-
0×45	Y-Left joystick	-
0x46	X-Right joystick	-
0×47	Y-Right joystick	-
0x4A	Pressure Exerted on button:	
0x4B	Pressure Exerted on button:	
0x4C	Pressure Exerted on button:	
0x4D	Pressure Exerted on button:	
0x4E	Pressure Exerted on button: L2	
0x4F	Pressure Exerted on button: R2	
0x50	Pressure Exerted on button: L1	
0x51	Pressure Exerted on button:	
0x52	Pressure Exerted on button: \triangle	
0x53	Pressure Exerted on button:	
0x54	Pressure Exerted on button: X	

0x55	Pressure Exerted on button:		
		•	

Pressure value:

The Pressure value is an integer between 0 and 255, where 0 indicates no pressure (the button is not pressed), and 255 indicates maximum pressure.

Bit information for Button Sets:

The Button Set 1 and 2 are one byte long values, in which each bit represents state of Joystick buttons as follows (the bit is zero when the button is pressed):

Value	Button Set 1	Button Set 2	Binary Value	Integer Value
Bit 1	(01111111	127
Bit 2	4	×	10111111	191
Bit 3	→	0	11011111	223
Bit 4	1	\triangle	11101111	239
Bit 5	-	Rl	11110111	247
Bit 6	R3	Ll	11111011	251
Bit 7	L3	R2	11111101	253
Bit 8	-	L2	11111110	254

Current Consumption

Average measured current profile is as follows:

Current Consumption	Duration
12m <i>A</i>	Continuous

I2C Bus address

Factory Default Address: 0x02

Changing the I2C Address:

The I2C address of PSP-Nx-v4 can be changed.

To change address, send following sequence of data on command register. Write this data without any break in sequence (or without any read operation in-between). The new address becomes effective immediately.

The new address should be an even number between 2 and 254 (hex 0x02 and 0xFE).

Data Sequence:

0xA0, 0xAA, 0xA5, <new I2C address>

Note: Send these commands with no break/read operation in between. This new address is effective immediately. Please note down your address carefully for future reference.

Instructions for changing the I2C address can be found at:

NXT and EV3

 $\frac{http://www.mindsensors.com/blog/how-to/change-i2c-device-address.}{}$