```
for data analysis

In [1]: import pandas as pd import numpy as np

for data visualization

In [3]: import seaborn as sns import matplotlib.pyplot as plt

In [35]: df= pd.read_csv("/Users/Hp/AppData/Roaming/Microsoft/Windows/Start Menu/Programs/Anaconda3 (64-bit)/Data_Visualization_with_Python_s2-main/vw.csv") display(df.shape) print('number of rows=',df.shape[0]) print('number of columns=',df.shape[1]) display(df)
```

(15157, 8)number of rows= 15157 number of columns= 8 model year price transmission mileage fuelType mpg engineSize **0** T-Roc 2019 25000 Automatic 13904 Diesel 49.6 2.0 **1** T-Roc 2019 26883 4562 Diesel 49.6 2.0 Automatic **2** T-Roc 2019 20000 Manual 7414 Diesel 50.4 2.0 4825 **3** T-Roc 2019 33492 Petrol 32.5 2.0 Automatic 4 T-Roc 2019 22900 Semi-Auto Petrol 39.8 6500 1.5 15152 Eos 2012 5990 Manual 74000 Diesel 58.9 2.0 1.2 15153 1799 88102 Fox 2008 Manual Petrol 46.3 Fox 2009 Petrol 42.0 15154 1590 Manual 70000 1.4 1.2 15155 1250 82704 Petrol 46.3 Fox 2006 Manual Fox 2007 1.2 15156 Manual 74000 Petrol 46.3

15157 rows × 8 columns

print(df)

	model	year	price	transmission	mileage	fuelType	mpg	engineSize
0	T-Roc	2019	25000	Automatic	13904	Diesel	49.6	2.0
1	T-Roc	2019	26883	Automatic	4562	Diesel	49.6	2.0
2	T-Roc	2019	20000	Manual	7414	Diesel	50.4	2.0
3	T-Roc	2019	33492	Automatic	4825	Petrol	32.5	2.0
4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	39.8	1.5
15152	Eos	2012	5990	Manual	74000	Diesel	58.9	2.0
15153	Fox	2008	1799	Manual	88102	Petrol	46.3	1.2
15154	Fox	2009	1590	Manual	70000	Petrol	42.0	1.4
15155	Fox	2006	1250	Manual	82704	Petrol	46.3	1.2
15156	Fox	2007	2295	Manual	74000	Petrol	46.3	1.2

[15157 rows x 8 columns]

In [6]: display(df.head())

	model	year	price	transmission	mileage	fuelType	mpg	engineSize
0	T-Roc	2019	25000	Automatic	13904	Diesel	49.6	2.0
1	T-Roc	2019	26883	Automatic	4562	Diesel	49.6	2.0
2	T-Roc	2019	20000	Manual	7414	Diesel	50.4	2.0
3	T-Roc	2019	33492	Automatic	4825	Petrol	32.5	2.0
4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	39.8	1.5

value counts()

In [8]: display(df["transmission"].value_counts())

Manual 9417 Semi-Auto 3780 Automatic 1960

Name: transmission, dtype: int64

Pie-Chart

import matplotlib.pyplot as plt
import seaborn as sns
df["transmission"].value_counts().plot(kind="pie",autopct='%1.2f%%',startangle=90)
plt.title("Percentage of Transmission of Cars")
plt.ylabel("")
plt.show()

Automatic

12.93%

24.94% Semi-Auto

Percentage of Transmission of Cars

Creating DataFrame

dframe=pd.DataFrame(df["transmission"].value_counts())
display(dframe)

	transmission
Manual	9417
Semi-Auto	3780
Automatic	1960

transmission type number of cars

Manual 9417

Semi-Auto 3780

Automatic 1960

dframe["percentage of cars"]=(dframe["number of cars"]/df.shape[0])*100
display(dframe.round(2))

	transmission type	number of cars	percentage of cars
0	Manual	9417	62.13
1	Semi-Auto	3780	24.94
2	Automatic	1960	12.93

Bar-plot

plt.show()

sns.barplot(x="transmission type",y="percentage of cars",data=dframe,alpha=0.50,color="green")
plt.title("Percentage of Transmission of Cars")

Comparison

The pie-chart gives a clear indication that manual type holds greater percentage alone than the the other two types combined. If needed, percentages can also be shown as annotations in the bar-chart but the pie-chart shows this comparison even without annotations. On the other hand, x and y-labels in the bar-graph presents a more detailed picture than the pie-chart as labels arev not used in pie-charts.

So, for a more detailed picture, bars can be helpful while pie-charts are applicable to make visualizations in an easier,faster way

In []: