Index	Revised Model 3	Ulrich et al.
Vehicles	$0 \le v \le V - 1$	$1 \le v \le V$
Customers	$0 \le i, j \le N$	
Jobs	$0 \le p, q \le P, i, j$	$1 \le j \le J$
Tour	$0 \le h \le H - 1$	$1 \le t \le J$
Machines		$1 \le m \le M$

Parameter	Revised Model 3	Ulrich et al.
Job Size	$ d_{ip} $	u_j
Processing Time	$ ho_p$	d_{j}
Machine Setup/Ready Time	σ_{pq}	r_m
Vehicle Setup Time	s_0, s_i	\hat{r}_v , s_j
Vehicle Capacity	c_v	c_v
Travel Time	$ t_{ij} $	t_{ij}
Very Large Number	M	q
Time Windows	a_i, b_i	$w_j, \overline{w_j}$

Variables	Revised Model 3	Ulrich et al.
Job Completion Time	f_p	C_j
All Jobs Completion Time	F	
Trip Start Time	k_{vh}	S_{vt}
Arrival/Delivery Time at Node	α_i	D_j
Delivery Tardiness	l_i	T_j
Job Processing Sequence	x_{pq}	x_{ij}
Job Machine Mapping		y_{mj}
Node, Vehicle and Trip Mapping	y_{ivh}	g_{jvt}
Node Node Vehicle Trip Map	z_{ijvh}	z_{ijvt}
Vehicle Usage	w_v	

Constraint	Revised Model 3	Ulrich et al.
Production Sequence	$\sum_{p=0, p\neq q}^{P} x_{pq} = 1 \forall q = 0, 1, 2, 3, 4P$	$\sum_{j=1}^{J} y_{mj} \le 1 \forall m = 1, 2, 3, \dots M$
	$\sum_{q=0, p\neq q}^{P} x_{pq} = 1 \forall p = 0, 1, 2, 3, 4P$	$\sum_{i=1, i \neq j}^{J+1} x_{ji} \forall j = 1, 2, 3, \dots J$
	$x_{pq} \in \{0,1\}$	$y_{mj} \in \{0,1\}$
		$x_{ij} \in \{0,1\}$
		$\sum_{m=1}^{M} y_{mj} + \sum_{i=1, i \neq j}^{J} x_{ij} = 1 \forall j = 1, 2, 3, \dots J$
Job Completion Time		$C_j \ge y_{mj}(r_m + p_j)$ $\forall j = 1,2,3,J; m = 1,2,3,M$
		$C_j \ge C_i + p_j - q(1 - x_{ij})$ $\forall i, j = 1,2,3,J; i \ne j$
Customer/Job Vehicle Tour Assignment	$\sum_{v=0}^{V-1} \sum_{h=0}^{n-1} y_{ivh} = 1 \forall i = 1, 2, 3, \dots n$	$\sum_{v=1}^{V} \sum_{t=1}^{J} g_{jvt} = 1 \forall j = 1, 2, 3, \dots J$
	$y_{jvh} \in \{0,1\}$	$g_{jvt} \in \{0,1\}$
Empty Tour	$\begin{vmatrix} y_{0vh} \ge y_{ivh} \\ \forall i = 1, 2, 3, \dots n; v = 0, 1, 2, \dots V - 1; \\ \forall h = 0, 1, 2, \dots n - 1 \end{vmatrix}$	$g_{0vt} \ge g_{jvt}$ $\forall j = 1,2,3,J; v = 1,2,3,V;$ $\forall t = 1,2,3,J$
	$\begin{aligned} y_{n+1vh} &\geq y_{ivh} \\ \forall i &= 1,2,3,n; v = 0,1,2,V-1; \\ \forall h &= 0,1,2,n-1 \end{aligned}$	
Active and Empty Tour	$M\sum_{i=1}^{n} y_{ivh} \ge \sum_{j=1}^{n} y_{jvh+1}$	$q\sum_{j=1}^{J} g_{jvt} \ge \sum_{j=1}^{J} g_{jvt+1}$
	$\forall v = 0,1,2,V - 1$ $\forall h = 0,1,2,n - 2$	$\forall v = 1,2,3,V$ $\forall t = 1,2,3,J - 1$
Demand Quantity and Vehicle Capacity	$\sum_{i=1}^{n} \sum_{p=1}^{P} d_{ip} y_{ivh} \le c_{v}$ $\forall v = 0, 1, 2, \dots V - 1$ $\forall h = 0, 1, 2, \dots n - 1$	$\begin{split} \sum_{j=1}^{J} u_{j} g_{jvt} & \leq c_{v} \\ \forall v &= 1, 2, 3, V \\ \forall t &= 1, 2, 3, J \end{split}$
Vehicle Usage	$y_{0vh} \ge w_v$ $\forall v = 0,1,2,V - 1$ $\forall h = 0,1,2,n - 1$	

Constraint	Revised Model 3	Ulrich et al.
Vehicle Routing	$ \begin{vmatrix} z_{0ivh} + z_{0jvh} + y_{ivh} + y_{jvh} \le 3 \\ z_{in+1vh} + z_{jn+1vh} + y_{ivh} + y_{jvh} \le 3 \\ \forall i, j = 1,2,3,n \\ \forall v = 0,1,2,V - 1 \\ \forall h = 0,1,2,n - 1 \end{vmatrix} $ $ \begin{vmatrix} y_{jvh} = \sum_{i=1}^{n} z_{ijvh} \end{vmatrix} $	$g_{jvt} = \sum_{ijvt}^{J} z_{ijvt}$
	$y_{jvh} = \sum_{i=0, i \neq j} z_{ijvh}$ $y_{jvh} = \sum_{i=1, i \neq j} z_{jivh}$ $\forall j = 1, 2, 3, n$ $\forall v = 0, 1, 2, V - 1$ $\forall h = 0, 1, 2, n - 1$	$g_{jvt} - \sum_{i=0, i \neq j} z_{ijvt}$ $g_{jvt} = \sum_{i=1, i \neq j}^{J} z_{jivt}$ $\forall j = 1, 2, 3, J$ $\forall v = 1, 2, 3, V$ $\forall t = 1, 2, 3, J$
	$z_{ijvh} \in \{0,1\}$	$z_{ijvt} \in \{0,1\}$
Vehicle Tour Start Time	$k_{vh} \ge s_0 + F$ $F = \sum_{p=0}^{P} \rho_p \sum_{i=1}^{n} d_{ip} + \sum_{p=0, p \ne q}^{P} \sum_{q=0, p \ne 1}^{P} \sigma_{pq} x_{pq}$ $\forall v = 0, 1, 2, \dots V - 1$ $\forall h = 0, 1, 2, \dots n - 1$	$\begin{split} S_{v1} &\geq \hat{r}_v + s_0 \\ S_{vt} &\geq C_j + s_0 - q(1 - g_{jvt}) \\ \forall j &= 1, 2, 3, J \\ \forall v &= 1, 2, 3, V \\ \forall t &= 1, 2, 3, J \end{split}$
	$\forall v = 0,1,2,V - 1 \forall h = 0,1,2,n - 2$	$S_{vt+1} \ge D_j + s_j + t_{j0} + s_0 - q(1 - g_{jvt})$ $\forall j = 1, 2, 3, J$ $\forall v = 1, 2, 3, V$ $\forall t = 1, 2, 3, J - 1$
	$\begin{vmatrix} k_{vh} \ge 0 \\ F \ge 0 \end{vmatrix}$	
Arrival/Delivery Time	$\begin{aligned} \alpha_i &\geq k_{vh} + t_{0i} - M(1 - y_{ivh}) \\ \forall i &= 1, 2, 3, n \\ \forall v &= 0, 1, 2, V - 1 \\ \forall h &= 0, 1, 2, n - 1 \end{aligned}$	$\begin{aligned} D_{j} &\geq S_{vt} + t_{0j} - q(1 - g_{jvt}) \\ \forall j &= 1, 2, 3, J \\ \forall v &= 1, 2, 3, V \\ \forall t &= 1, 2, 3, J \end{aligned}$
	$ \begin{aligned} \alpha_{j} &\geq \alpha_{i} + s_{i} + t_{ij} - M(1 - z_{ijvh}) \\ \forall i, j &= 1, 2, 3,, i \neq j \\ \forall v &= 0, 1, 2,, V - 1 \\ \forall h &= 0, 1, 2,, n - 1 \end{aligned} $	$\begin{split} D_{j} &\geq D_{i} + s_{i} + t_{ij} - q(1 - z_{ijvt}) \\ \forall i, j &= 1, 2, 3, J; i \neq j \\ \forall v &= 1, 2, 3, V \\ \forall t &= 1, 2, 3, J \end{split}$
	$\alpha_i \ge a_i$ $\forall i = 1, 2, 3, \dots n$	$D_j \ge \underline{w_j}$ $\forall j = 1, 2, 3, \dots J$
	$\alpha_i \ge 0$	
Tardiness	$\begin{aligned} l_i &\geq \alpha_i - b_i \\ l_i &\geq 0 \\ \forall i &= 1, 2, 3, \dots n \end{aligned}$	$T_{j} \ge D_{j} - \overline{w_{j}}$ $T_{j} \ge 0$ $\forall j = 1, 2, 3, \dots J$

Objective	Revised Model 3	Ulrich et al.
Minimise Tardiness	$C^l \sum_{i=1}^n l_i$	$\sum_{j=1}^{J} T_j$
Minimise Processing Time	$C^{\rho} \sum_{i=1}^{n} \sum_{p=1}^{P} \rho_{p} d_{ip}$	$\sum_{j=1}^{J} C_j$
Minimise Manufacturing Cost	$\sum_{p=0, p\neq q}^{P} \sum_{q=1}^{P} C_{pq}^{\sigma} x_{pq}$	
Minimise Vehicle Cost	$C^{\nu} \sum_{\nu=1}^{V} w_{\nu}$	
Transportation Cost	$C^{t} \sum_{i=0, i \neq j}^{n} \sum_{j=1}^{n+1} \sum_{v=1}^{V} \sum_{h=1}^{n} t_{ij} z_{ijvh}$	