McKay correspondence

Jacob Fjeld Grevstad

7. februar 2019

Finite subgroups of SL(2,C)

characters and irreducible representations

Recall that the trace of a matrix is defined to be the sum of its diagonal element and that the trace satisfies two important equations. Namely

$$tr(A+B) = tr(A) + tr(B)$$
 and $tr(AB) = tr(BA)$

For a given representation of G, $\rho: G \to GL_n(\mathbb{C})$ we define its characther by $\chi_{\rho}: G \to \mathbb{C}$, $\chi_{\rho}(g) = tr(\rho(g))$.

Proposition. Conjugate elements in G take the same value under a character.

Bevis. Let g and g' be in the same conjugacy class. Then there exists an element h such that $h^{-1}gh = g'$. Then we have

$$\chi(g') = \chi(h^{-1}gh) = tr(\rho(h)^{-1}\rho(g)\rho(h)) \stackrel{*}{=} tr(\rho(g)\rho(h)\rho(h)^{-1}) = tr(\rho(g)) = \chi(g)$$

In (*) we use the fact that $tr(AB) = tr(BA)$.

Proposition. The dimension of the representation with character χ is $\chi(1)$.

Bevis.

$$\chi(1) = tr \left(\begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \right) = n$$

Lemma. For a finite abelian group G any irreducible representation must be 1-dimensional.

Bevis. Let $\rho: G \to GL(V)$ be an irreducible representation. Since G is abelian we have that $\rho(g)\rho(h)v = \rho(h)\rho(g)v$, and thus $\rho(g)$ is a homomorphism of G-representations. Then by Schur's lemma $\rho(g)$ must be a scalar multiplication. This implies that ρ can be written as a direct sum of 1-dimensional representations, but since ρ is irreducible ρ must be 1-dimensional.

The McKay quiver

Skew algebra S#G indecomposable projectives

Definition. If G is a subgroup of $GL_n(\mathbb{C})$, we can extend the group action of G to $\mathbb{C}[x_1, \dots, x_n]$. We then define the skew algebra $\mathbb{C}[x_1, \dots, x_n] \# G$ to be the algebra generated by elements of the form $f \cdot g$ with $f \in \mathbb{C}[x_1, \dots, x_n]$ and $g \in G$, and we define the multiplication by

$$(f_1 \cdot g_1) \cdot (f_2 \cdot g_2) = (f_1 \cdot f_2^{g_1}) \cdot (g_1 \cdot g_2)$$

Where f^g denotes the image of f under the action of g.

Theorem. We have an isomorphism of rings

$$e\mathbb{C}[x,y]\#Ge\simeq\mathbb{C}[x,y]^G$$

where $e = \frac{1}{|G|} \sum_{g \in G} g$.

Bevis. Let f^g denote the image of f under the action of g. Then if we let f(x,y)g be an element of the skew algebra we get that $ef(x,y)ge = f(x,y)^e \cdot ege = f(x,y)^e \cdot e$. It then follows that $e\mathbb{C}[x,y]\#Ge$ is isomorphic to the image of e. Since ge = g for all $g \in G$ it is clear that the image of e is contained in the fixed ring. For the converse you just need to notice that the fixed ring is fixed under e and thus is contained in the image.

 S^G -direct summands of $End_{S^G}(S)$