Welcome!

Introduction to Computer Architecture

(Computer Organization and Design: ARM Edition)

Instructor:

Abu Asaduzzaman (Zaman) +1-316-978-5261 Abu.Asaduzzaman@wichita.edu Hello, College of Engineering,

We are excited to partner with you for the Engineering & I.T. Career Fair! Please help spread the word to your students.

Wichita State engineering

and IT students have an

exciting opportunity to

connect with employers

looking to hire interns.

co-op students, and

full-time employees.

Enginee
Date: Otation: 2
Location
Student
Are you upcomin opportu actively
I.T. Care

ENGINEERING & IT

COSEEN TOUS

OCTOBER 10, 2024 | 2 - 5 P.M.

RSC 3RD FLOOR

O

We curr

See atta

We look

Thanks! Kim

Kim Kul

Assistar

Shocker

316-978 kim.kuf WICHITA.EDU/ENGINEERINGFAIR

Shocker Career Accelerator Marcus Welcome Center, Suite 139 (316) 978-3688 | wichita.edu/Career SCA@wichita.edu

Engineering & I.T. Career Fair October 10, 2024 2- 5 p.m. RSC Third Floor

Employer Attendees

- Air Force Sustainment Center Tinker
 AFB
- 2. Airbus
- ArcBest
- 4. Barhnart Crane & Rigging
- Bass Pro Shops, Cabela's, and White River Marine Group
- BHC
- 7. Blue Cross and Blue Shield of Kansas
- 8. Bombardier
- 9. Building Controls and Services, Inc.
- 10. Burns & McDonnell
- 11. CED
- 12. Chance Rides LLC
- 13. Deloitte
- 14. DMG MORI USA, Inc.
- 15. Evergy
- 16. Federal Aviation Administration
- 17. Garmin
- 18. Gulfstream Aerospace Corporation
- 19. HF Sinclair
- 20. Hormel Foods Corporation
- 21. ICM
- 22. INTRUST Bank
- 23. J.B. Hunt Transport
- 24. Kansas Department of Health & Environment
- 25. Koch Industries, Inc.
- 26. MKEC Engineering, Inc.
- 27. NetApp
- 28. Netsmart
- 29. NIAR Automation Research Center (ARC)
- 30. NorthWind Technical Services
- 31. Novacoast
- 32. OGE Energy Corp.
- 33. ONE Gas. Inc.
- 34. Professional Engineering Consultants
- 35. Qualus
- 36. SNC
- 37. Southern Star Central Gas Pipeline
- 38. Spirit AeroSystems
- 39. Standard Motor Products

40. Sunflower Electric Power Corporation

- 41. SYSRS IT SERVICES
- 42. Textron Aviation
- 43. The Bradbury Group
- 44. US Navy Officer Programs
- 45. USMC Officers Program Oklahoma
- 46. Viega LLC
- 47. Wichita Public Schools USD 259
- 48. WSU Ennovar

as the time job tners ng and

Lecture 6

Reading: See Reading Assignments on Blackboard

Tests: HW-2 (Week 3), Quiz-1 (Week 4), Exam-1 (Week 5), ...

- Quiz and Exam; zyBook Ch 1 (Introduction to Computers);
- Intro to Structured Computer Organization (Handout 2a)
 - > 1.1.1: Languages, Levels, and Virtual Machines
 - > 1.1.2: Contemporary Multilevel Machines
 - > 1.1.3 Evolution of Multilevel Machines
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - > 1.3: The Computer Zoo
 - > 1.4: Example Computer Families

Plan for Next Weeks

■ Week of 9/09

- > Tuesday 9/10 In-person class/lecture (TA)
- ➤ Thursday 9/12 In-person Quiz-1 and class/lecture (TA)
- > Office/Students Hours:
 - No In-Person 303-WH Hours
 - Email: Abu.Asaduzzaman@wichita.edu
 - Call: +1-561-843-2231

■ Week of 9/16

- ➤ Tuesday 9/17 In-person class/lecture (DRZ)
- ➤ Thursday 9/19 In-person class/lecture (DRZ)
- > Office/Students Hours In-Person 303-WH Hours

General Discussion on Quiz / Exam

Quiz and Exam

- In-person in classroom, at the beginning of the class
- Closed book, by definition.
- One-page (8.5 by 11 inches) both-sided personal notes is recommended.
- Bring your pen/pencil, calculator, etc. (no connected device)
- Read/understand <u>all questions</u>.
- Tell the exam proctor your concerns; don't ask others.
- Make <u>reasonable</u> assumptions if needed.
- Answer <u>right to the point</u>.
- Show <u>all steps</u> with your solutions for <u>full/partial credits</u>.
- PRINT your <u>name and WSU ID</u> on test papers.
- Submit your papers on time. Very Important!!!

One month is:

28 days

29 days

30 days

31 days

Regarding Quiz-1

- 30 points, 30 minutes; class after quiz
- Includes Lectures 2-7
 - Important Topics from lectures
 - ✓ Major steps to execute an instruction
 - ➤ Important Topics from Introduction to Computers (Ch. 1 from zyBooks)
 - ✓ Ch. 1 >> 1.1-1.9
- Questions: Short questions (HW), Math-related, True/False, ...
- Any not-allowed activities → Zero, etc. (applies to all tests)

If you do not return your papers right after the STOP time, I will not accept/grade your papers.

Clock cycle time = 1 / Clock rate

Clock rate = 1 / Clock cycle time

1.6 Performance

- **■** CPU performance and its factors
 - > CPU execution time for a program = CPU clock cycles for a program × Clock cycle time
 - ightharpoonup CPU execution time for a program = $\frac{\text{CPU clock cycles for a program}}{\text{Clock rate}}$
- Let's solve a problem.

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program. What clock rate should we tell the designer to target?

> To run the program in 6 seconds, B must have twice the clock rate of A. ['A' 2 GHz, 'B' 4 GHz]

CPU execution time for a program = CPU clock cycles for a program \times Clock cycle time

1.6 Performance

Clock cycle time = 1 / Clock rate

- Instruction performance
 - > CPU clock cycles = Instructions for a program × Average clock cycles per instruction
 - ➤ Clock cycles per instruction (CPI): Average number of clock cycles per instruction for a program
- Let's solve a problem.

Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?

$${\rm CPU\; clock\; cycles}_A = I \times 2.0$$

$${\rm CPU\; clock\; cycles}_B = I \times 1.2$$

$$\begin{aligned} \text{CPU time}_A &= \text{CPU clock cycles}_A {\times} \text{Clock cycle time} \\ &= I \times 2.0 \times 250 \text{ ps} = 500 \times I \text{ ps} \end{aligned}$$

CPU time_B =
$$I \times 1.2 \times 500 \text{ ps} = 600 \times I \text{ ps}$$

$$\frac{\text{CPU performance}_A}{\text{CPU performance}_B} = \frac{\text{Execution time}_B}{\text{Execution time}_A} = \frac{600 \times I \text{ ps}}{500 \times I \text{ ps}} = 1.2$$

Computer A is 1.2 times as fast as computer B for this program.

CPU execution time for a program = CPU clock cycles for a program × Clock cycle time

1.6 Performance

Cłock cycle time = 1 / Clock rate

- The classic CPU performance equation
 - > CPU time = Instruction count × CPI× Clock cycle time

ightharpoonup CPU time = $\frac{Instruction\ count \times CPI}{Clock\ rate}$

Instruction count: The number of instructions executed by the program.

- Let's solve a problem.
 - > Three types of instructions ...
 - > Which program
 - (a) is faster?
 - (b) executes the most instructions?
 - (c) has higher overall CPI?

	Туре А	Туре В	Type C
CPI	1	2	3
Program 1	2	1	2
Program 2	4	1	1

$$ext{CPU clock cycles} = \sum_{i=1}^n (ext{CPI}_i imes ext{C}_i)$$

CPU clock cycles₁ =
$$(2 \times 1) + (1 \times 2) + (2 \times 3) = 2 + 2 + 6 = 10$$
 cycles

$$\text{CPU clock cycles}_2 = (4 \times 1) + (1 \times 2) + (1 \times 3) = 4 + 2 + 3 = 9 \text{ cycles}$$

$$CPI_1 = \frac{CPU \ clock \ cycles_1}{Instruction \ count_1} = \frac{10}{5} = 2.0$$

$$CPI_2 = \frac{CPU \; clock \; cycles_2}{Instruction \; count_2} = \frac{9}{6} = 1.5$$

1.7 The power wall

Suppose we developed a new, simpler processor that has 85% of the capacitive load of the more complex older processor. Further, assume that it can adjust voltage so that it can reduce voltage 15% compared to processor B, which results in a 15% shrink in frequency. What is the impact on dynamic power?

- \blacksquare We know, $Power \propto 1/2 \times Capacitive\ load \times Voltage^2 \times Frequency\ switched$
- Find power for the old and new processors, then compare

$$\frac{\text{Power}_{\textit{new}}}{\text{Power}_{\textit{old}}} = \frac{\langle \text{Capacitive load} \times 0.85 \rangle \times \langle \text{Voltage} \times 0.85 \rangle^2 \times \langle \text{Frequency switched} \times 0.85 \rangle}{\text{Capacitive load} \times \text{Voltage}^2 \times \text{Frequency switched}}$$

Thus the power ratio is

$$\frac{\mathrm{Power}_{new}}{\mathrm{Power}_{old}} = \boxed{0.85^4 = 0.52}$$

Hence, the new processor uses about half the power of the old processor.

1.8 From uniprocessors to multiprocessors

■ Growth in processor performance in 1980-2018

1.8 From uniprocessors to multiprocessors

Slowing in uniprocessor performance has led to a switch to multiprocessor systems.

Lecture 6

Reading: See Reading Assignments on Blackboard

Tests: HW-2 (Week 3), Quiz-1 (Week 4), Exam-1 (Week 5), ...

- Quiz and Exam; zyBook Ch 1 (Introduction to Computers);
- Intro to Structured Computer Organization (Handout 2a)
 - > 1.1.1: Languages, Levels, and Virtual Machines
 - > 1.1.2: Contemporary Multilevel Machines
 - > 1.1.3 Evolution of Multilevel Machines
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - > 1.3: The Computer Zoo
 - > 1.4: Example Computer Families

Computer: A Multilevel Machine

https://www.youtube.com/watch?v=hYZUzoSxg7c

??

Dhannoba d (ধন্যবাদ)

- Different Languages
- Natural Languages
- Interpretation/Translation
- Computer Languages
- Programming Languages
- Interpretation/Translation

Multilevel Machines

- A <u>digital computer</u> solves problems by carrying out instructions.
- A <u>program</u> is a sequence of instructions describing how to perform/solve a certain task/problem.
- Programs (Instructions) and Data: (5) W.B. (3) O.F. (3) **O.F.** CPU A7'A7...A0 (5) W.B. D7.....D0 Address Data Registers Registers 31 16 8 0 Start 31...16....8..0 1: I.F. 15....8..0 ??...16....8..0 Unit 2: I.D.

- Programs are written (by people) using a <u>programming language</u>.
- Machine language is a limited set of primitive instructions that are used by people to communicate with a computer.

Multilevel Machines (+)

PROBLEM

We want the machine language to be very simple so as to reduce the complexity and the cost of electronics => becomes tedious for people.

We want to make it convenient for people to use the computer=> needs complex electronics.

Multilevel Machines (+)

Problem: We want (1) the machine language to be very simple so as to reduce the complexity/cost ... and (2) convenient for people ...

POSSIBLE SOLUTION

Form a language (L2) of instructions that are more convenient to use by people than the built-in machine language (L1).

How can a program written in L2 be executed by the computer?

Multilevel Machines (+)

How can a program written in L2 be executed by the computer?

TRANSLATION

Replace each instruction in the L2 program by an equivalent sequence of instructions in L1. The new L1 program is then executed by the computer.

Multilevel Machines (+)

How can a program written in L2 be executed by the computer?

INTERPRETATION

An L1 program examines the L2 program instruction by instruction and executes the equivalent sequence of L1 instructions directly.

Multilevel Machines

- It is convenient to imagine the existence of a virtual machine with machine language L2.
- L1 and L2 must not be too different =>L2 is far from ideal for most applications.
- Invent another set of instructions that is more peopleoriented.
- Call the language formed by this set L3.
- This can be extended to as many levels as needed so as to make it convenient for most application programmers.

A (n+1)-level Machine (n > 1)

Level below?

A Six-Level Machine Level up?

A Six-Level Machine GUI-Tools

Solid State Physics

Multilevel Machines

- In 1940s, two-level computer
 - > ISA level (software)
 - Digital logic level (hardware)
- In 1950s, three-level computer
 - > ISA level (software)
 - > Microarchitecture level
 - Simplified hardware, complicated logic, design rectification, bug fix, cheap, flexible
 - Digital logic level (hardware)

Multilevel Machines

- In 1960s, four-level computer
 - > Operating system machine level, 1960s, OS
 - Automate the operator's job (scheduling & load balancing)
 - More instructions/functionalities
 - Input / Output (I/O) operations
 - Multitasking (time-sharing)
 - ➤ ISA level (software), 1940s, machine's instruction set
 - > Microarchitecture level, 1950s, registers, ALU, data path
 - Simplified hardware, complicated logic, design rectification, bug fix, cheap, flexible
 - Digital logic level (hardware), 1940s, gates

9:23 AM

Dr. Zaman; WSU-5261

Example to Practice

- Name the levels of a six-level machine
 - > (L5) Problem-oriented language level
 - > (L4) Assembly language level
 - > (L3) Operating system machine level
 - > (L2) Instruction set architecture level
 - > (L1) Microarchitecture level
 - > (L0) Digital logic level
- Which of L0, L1, and L2 levels came last?
 - > (1940s) Instruction Set Architecture level
 - ➤ (1950s) Microarchitecture level
 - ➤ (1940s) Digital logic level (hardware)

Example → **Practice**

■ Consider a computer with identical interpreters at levels 1, 2, and 3. It takes an interpreter n (say, n > 1) instructions to fetch, decode, and execute one instruction. A <u>level 1 instruction</u> takes k (say, k > 1) nanoseconds to execute. How long does it take for an instruction at levels 2 and 3?

Example → **Practice**

Consider a computer with identical interpreters at levels 1, 2, and 3. It takes an interpreter n instructions to fetch, decode, and execute one instruction. A <u>level 1</u> <u>instruction</u> takes k nanoseconds to execute. How long does it take for an instruction at levels 2 and 3?

1 instr.) ? (kn²) v 3 - Interpretation

1 instr. at level 3

1 instr.) ? (kn²) v 2 - vn instrs. at level 2

1 instr.) k nsee v 1 - vn instrs. at level 1

at 1-1 / k nsee v 1 - vn instrs. at level 1

9:23 AM

Dr. Zaman; WSU-5261

Computer Architecture: A Multilevel Approach

- ✓ The Tanenbaum and Austin book (Structured Computer Organization)
- √ Higher (human friendly) to lower (machine friendly)
- ✓ Multilevel Computers: https://users.cs.fiu.edu/ ~downeyt/cop3402/levels.html

COMPUTER ARCHITECTURE: A Quantitative Approach

- √ The Hennessy and Patterson book
- ✓ Quantitative principles of computer design: to make the common case fast.
- ✓ To quantify the principles → Amdahl's Law, CPU performance, Principle of Locality, Advantage of Parallelism, etc.
- ✓ Quantitative Principles of Computer Design: http://www.brainkart.com/article/ Quantitative-Principles-of-Computer-Design_8830/

Computer Architecture: "Old" and "Real" views

- "Old" view of computer architecture:
 - ➤ Instruction Set Architecture (ISA) design, i.e., decisions regarding registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, and instruction encoding
- "Real" computer architecture:
 - > Specific requirements of the target machine
 - Design to maximize performance within constraints: cost, power, and availability
 - > Includes ISA, microarchitecture, hardware

Lecture 6

Reading: See Reading Assignments on Blackboard

Tests: HW-2 (Week 3), Quiz-1 (Week 4), Exam-1 (Week 5), ...

- Quiz and Exam; zyBook Ch 1 (Introduction to Computers);
- Intro to Structured Computer Organization (Handout 2a)
 - > 1.1.1: Languages, Levels, and Virtual Machines
 - > 1.1.2: Contemporary Multilevel Machines
 - > 1.1.3 Evolution of Multilevel Machines
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - **→ 1.3: The Computer Zoo**
 - > 1.4: Example Computer Families

Milestones in Computer Architecture

1834, 1936, 1951, 1952, 1961

Year	Name	Made by	Made by Comments	
1834	Analytical Engine	Babbage First attempt to build a digital computer		
1936	Z1 Zuse First working relay calculating machine			
1943	COLOSSUS	British gov't	ov't First electronic computer	
1944	Mark I	Aiken	First American general-purpose computer	
1946	ENIAC I	Eckert/Mauchley	Modern computer history starts here	
1949	EDSAC	Wilkes	First stored-program computer	
1951	Whirlwind I	M.I.T.	First real-time computer	
1952	IAS	Von Neumann	Most current machines use this design	
1960	PDP-1	DEC	First minicomputer (50 sold)	
1961	1401	IBM	Enormously popular small business machine	
1962	7094	IBM	Dominated scientific computing in the early 1960s	
1963	B5000	Burroughs	First machine designed for a high-level language	
1964	360	IBM	First product line designed as a family	

Milestones in Computer Architecture (+)

1974, 1983, 1985, 1987

Year	Name	Made by	Comments	
1965	PDP-8	DEC	First mass-market minicomputer (50,000 sold)	
1970	PDP-11	DEC	Dominated minicomputers in the 1970s	
1974	8080	Intel	First general-purpose 8-bit computer on a chip	
1974	CRAY-1	Cray	First vector supercomputer	
1978	VAX	DEC	First 32-bit superminicomputer	
1981	IBM PC	IBM	Started the modern personal computer era	
1981	Osborne-1	Osborne	First portable computer	
1983	Lisa	Apple	First personal computer with a GUI	
1985	386	Intel	First 32-bit ancestor of the Pentium line	
1985	MIPS	MIPS	First commercial RISC machine	
1987	SPARC	Sun	First SPARC-based RISC workstation	
1990	RS6000	IBM	First superscalar machine	
1992	Alpha	DEC	First 64-bit personal computer	
1993	Newton	Apple	First palmtop computer	

Computer Generations

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 – 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- More Generations? (we'll see)

ECE 394

Introduction to Computer Architecture

Tentative Schedule

remaine defication				
Week Tue	Note	Important topics/readings, assignments, due dates, and reminders are listed here so that you can organize your time and academic work.		
1 08/20		ECE 394: Intro to Computer Architecture, Syllabus; K-probe; zyBook 1.1 (Intro to Computers); Homework, Quiz, and Exam;		
2 08/27	HW-1	HW-1 Discussion; zyBook 1.2-1.5 (eight ideas, processors); HW-1 (due on Blackboard); zyBook 1.6 (performance);		
3 09/03	HW-2	9/02 (Labor Day) No Class/Lab; HW-2 (Bb); zyBook 1.7-1.9 (uni- and multiprocessors, Core i7);		
4 09/10	Quiz-1	Quiz-1 Discussion; Handout: Multilevel Computers; Quiz-1 (class test, 30-min / 30-pts, closed book);		
5 09/17	Exam-1	Exam-1 Discussion; Handout: Computer Generations; Exam-1 (class test, 65-min / 65-pts, closed book);		
6 09/24	Update	zyBook: 3.1 (The Processor: Introduction); zyBook: 3.2-3.3 (The Processor: Datapath, Pipelining);		
7 10/01	HW-3	zyBook 3.4-3.5 (Data hazards: Forwarding versus stalling); HW-3 (Bb); zyBook 3.6 (Data hazards and Control hazards);		
8 10/08	Mid-Pt HW-4	zyBook 3.7 (Parallelism via instructions); HW-4 (Bb); zyBook 3.8 (Going faster: ILP and matrix multiply);		
9	Fal-Brk	10/12 (Sat) to 10/15 (Tue) (Fall Break) No Class;		
10/15	Quiz-2	Quiz-2 (class test, 30-min / 30-pts, closed book);		
10 10/22	Exam-2	Exam-2 Discussion; zyBook 4.1 (Memory Hierarchy: Introduction); Exam-2 (class test, 65-min / 65-pts, closed book);		
11 10/29	Update	zyBook 4.2-4.3 (Memory Hierarchy: Caches); zyBook 4.4-4.5 (Memory Hierarchy: Virtual memory);		
12 11/05	HW-5	zyBook 5.1 (Parallel Processors: Introduction); HW-5 (Bb); zyBook 5.2 (Difficulty of Parallel Processing);		
13 11/12	HW-6	zyBook 5.3 (SISD, MIMD, SIMD, SPMD, and vector); HW-6 (Bb); zyBook 5.4 (Hardware multithreading);		
14 11/19	Quiz-3	zyBook 5.5-5.6 (Multicore processors, graphics processing units); Quiz-3 (class test, 30-min / 30-pts, closed book);		
15 11/26	Thx-Brk	Future of Computers (selected materials); 11/27 (Wed) to 12/01 (Sun) (Thanksgiving Break) No Class;		
16 12/03	Exam-3	Exam-3 Discussion; Exam-3 (class test, 65-min / 65-pts, closed book);		
Finals		None!		
Note: A	Note: A date in Column 1 indicates the Tuesday of that week. Here, 12/03 is Tueday of Week 16.			