Amended Claims

- (Previously presented) A combination preparation, comprising as pharmaceutically active
 ingredients at least one active compound component A and at least one active compound
 component B, characterized in that the active compound component A is a PDE inhibitor, and the
 active compound component B is an antilipemic.
- 2. (Cancelled).
- 3. (Cancelled).
- 4. (Cancelled).
- 5. (Currently amended) The combination preparation as claimed in claim 1, characterized in that the active compound components A and B are present as a functional unit, in particular in the form of wherein said unit is selected from a mixture, a mix or a blend.
- 6. (Currently amended) The combination preparation as claimed in claim 1, characterized in that the active compound components A and B are (spatially) separated, in particular as a kit-of-parts.
- 7. (Previously presented) The combination preparation as claimed in claim 1, characterized in that the antilipemic (active compound component B) is selected from the group consisting of (a) HMG-CoA-reductase inhibitors; (b) squalene synthase inhibitors; (c) bile acid sequestrants; (d) fibric acid and its derivatives; (e) nicotinic acid and its analogs; (f) ω3-fatty acids.
- 8. (Previously presented) The combination preparation as claimed in claim 7, characterized in that the antilipemic (active compound component B) is an HMG-CoA-reductase inhibitor.
- 9. (Previously presented) The combination preparation as claimed in claim 8, characterized in that the antilipemic (active compound component B) is atorvastatin or its salt, hydrate, alkoxide, ester and tautomer.
- 10. (Previously presented) The combination preparation as claimed in claim 8, characterized in that the antilipemic (active compound component B) is cerivastatin or its salt, hydrate, alkoxide, ester and tautomer.
- 11. (Previously presented) The combination preparation as claimed in claim1, characterized in that the PDE inhibitor (active compound component A) is a cGMP PDE inhibitor and is selected from the group consisting of pyrazolopyrimidones of the general formula below

- R¹ represents hydrogen; C₁-C₃-alkyl; C₁-C₃-perfluoroalkyl; or C₃-C₅-cycloalkyl;
- R^2 denotes hydrogen; C_1 - C_6 -alkyl, optionally substituted by C_3 - C_6 -cycloalkyl; C_1 - C_3 -perfluoroalkyl; or C_3 - C_6 -cycloalkyl;
- R³ is C₁-C₆-alkyl, optionally substituted by C₃-C₆-cycloalkyl; C₁-C₆-perfluoroalkyl, C₃-C₅-cycloalkyl; C₃-C₆alkenyl; or C₃-C₆-alkinyl;
- represents C₁-C₄-alkyl, optionally substituted by OH, NR⁵R⁶, CN, CONR⁵R⁶ or CO₂R⁷; C₂-C₄-alkenyl, optionally substituted by CN, CONR⁵R⁶ or CO₂R⁷; C₂-C₄-alkanoyl, optionally substituted by NR⁵R⁶; (hydroxy)-C₂-C₄-alkyl, optionally substituted by NR⁵R⁶, (C₂-C₃-alkoxy)-C₁-C₂-alkyl, optionally substituted by OH or NR⁵R⁶, CO₂R⁷; halogen; NR⁵R⁶, NHSO₂NR⁵R⁶; NHSO₂R⁸; SO₂NR⁹R¹⁰; or phenyl, pyridyl, pyrimidinyl, imidazolyl, oxazolyl, thiazolyl, thienyl or triazolyl, each of which is optionally substituted by methyl;
- R^5 and R^6 each independently of one another denote hydrogen or C_1 - C_4 -alkyl; or together with the nitrogen atom to which they are attached form a pyrrolidinyl, piperidino, morpholino, 4- $N(R^{11})$ -piperazinyl or imidazolyl group, where this group is optionally substituted by methyl or OH;
- R⁷ is hydrogen or C₁-C₄-alkyl;
- R⁸ represents C₁-C₃-alkyl, optionally substituted by NR⁵R⁶;
- R^9 and R^{10} together with the nitrogen atom to which they are attached form a pyrrolidinyl, piperidino, morpholino, 4-N(R^{12})-piperazinyl group, where this group is optionally substituted by C_1 - C_4 -alkyl, C_1 - C_3 -alkoxy, $NR^{13}R^{14}$ or $CONR^{13}R^{14}$:

- R¹¹ denotes hydrogen, C_1 - C_3 -alkyl, optionally substituted by phenyl; (hydroxy)- C_2 - C_3 -alkyl; or C_1 - C_4 -alkanoyl;
- R¹² is hydrogen, C₁-C₆-alkyl, (C₁-C₃-alkoxy)-C₂-C₆-alkyl; (hydroxy)-C₂-C₆-alkyl; (R¹³R¹⁴N)-C₂-C₆-alkyl; (R¹³R¹⁴NOC)-C₁-C₆-alkyl; CONR¹³R¹⁴; CSNR¹³R¹⁴, or C(NH)NR¹³R¹⁴; and
- R^{13} and R^{14} each independently of one another represent hydrogen; C_1 - C_4 -alkyl; $(C_1$ - C_3 -alkoxy)- C_2 - C_4 -alkyl; or (hydroxy)- C_2 - C_4 -alkyl,

and their respective salts, hydrates, alkoxides and tautomers.

12. (Previously presented) The combination preparation as claimed in claim 1, characterized in that the PDE inhibitor (active compound component A) is a cGMP PDE inhibitor and is selected from the group consisting of 2-phenyl-substituted imidazotriazinones of the general formula

- R¹ represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms;
- R² represents straight-chain alkyl having up to 4 carbon atoms;
- R³ and R⁴ are identical or different and represent hydrogen or represent straight-chain or branched alkenyl or alkoxy having in each case up to 8 carbon atoms, or represent a straight-chain or branched alkyl chain having up to 10 carbon atoms which is optionally interrupted by an oxygen atom and which is optionally mono- to polysubstituted by identical or different substituents from the group consisting of trifluoromethyl, trifluoromethoxy, hydroxyl, halogen, carboxyl, benzyloxycarbonyl, straight-chain or branched alkoxycarbonyl having up to 6 carbon atoms or by radicals of the formulae -SO₃H, -(A)a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

in which

a and b are identical or different and represent a number 0 or 1,

- A represents a radical CO or SO₂,
- R⁷, R⁷, R⁸ and R⁸ are identical or different and represent hydrogen, or represent cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms, a 5- to 6-membered unsaturated, partially unsaturated or saturated optionally benzo-fused heterocycle having up to 3 heteroatoms from the group consisting of S, N and O, where the abovementioned ring systems are optionally mono- to polysubstituted by identical or different substituents from the group consisting of hydroxyl, nitro, trifluoromethyl, trifluoromethoxy, carboxyl, halogen, straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms or by a group of the formula -(SO₂)_c-NR¹²R¹³,

in which

c represents a number 0 or 1,

 R^{12} and R^{13} are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms,

or

R⁷, R⁸ and R⁸ represent straight-chain or branched alkoxy having up to 6 carbon atoms, or represent straight-chain or branched alkyl having up to 8 carbon atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of hydroxyl, halogen, aryl having 6 to 10 carbon atoms, straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, or by a group of the formula -(CO)_d-NR¹⁴R¹⁵,

in which

 R^{14} and R^{15} are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,

and

d represents a number 0 or 1,

or

R⁷ and R⁸ or R^{7'} and R^{8'} together with the nitrogen atom form a 5- to 7-membered saturated heterocycle which may optionally contain a further heteroatom from the group consisting of S and O or a radical of the formula -NR¹⁶,

in which

R¹⁶ represents hydrogen, aryl having 6 to 10 carbon atoms, benzyl, a 5- to 7membered aromatic or saturated heterocycle having up to 3 heteroatoms from the
group consisting of S, N and O, which heterocycle is optionally substituted by
methyl, or

represents straight-chain or branched alkyl having up to 6 carbon atoms which is optionally substituted by hydroxyl,

R⁹ represents aryl having 6 to 10 carbon atoms, or represents straight-chain or branched alkyl having up to 4 carbon atoms,

R¹⁰ and R¹¹ are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,

or the alkyl chain listed above under R³/R⁴ is optionally substituted by cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or by a 5- to 7-membered partially unsaturated, saturated or unsaturated optionally benzo-fused heterocycle which may contain up to 4 heteroatoms from the group consisting of S, N; O or a radical of the formula -NR¹⁷.

in which

R¹⁷ represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl or alkoxy having in each case up to 4 carbon atoms, or represents straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- to polysubstituted by identical or different substituents from the group consisting of hydroxyl and straight-chain or branched alkoxy having up to 6 carbon atoms,

and where aryl and the heterocycle are optionally mono- to polysubstituted by identical or different substituents from the group consisting of nitro, halogen, -SO₃H, straight-chain or branched alkyl or alkoxy having in each case up to 6 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy or by a radical of the formula -SO₂NR¹⁸R¹⁹,

in which

 R^{18} and R^{19} are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms,

or

R³ or R⁴ represent a group of the formula -NR²⁰R²¹,

in which

R²⁰ and R²¹ have the meaning of R¹⁸ and R¹⁹ given above and are identical to or different from this meaning,

or

R³ or R⁴ represent adamantyl, or represent radicals of the formulae

$$H_3C$$
 C_6H_5
 C_6

or represent cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or represent a 5- to 7-membered partially unsaturated, saturated or unsaturated optionally benzo-fused heterocycle which may contain up to 4 heteroatoms from the group consisting of S, N; O or a radical of the formula -NR²²,

in which

R²² has the meaning of R¹⁶ given above and is identical to or different from this meaning, or represents carboxyl, formyl or straight-chain or branched acyl having up to 5 carbon atoms,

and where cycloalkyl, aryl or the heterocycle are optionally mono- to polysubstituted by identical or different substituents from the group consisting of halogen, triazolyl, trifluoromethyl, trifluoromethoxy, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 6 carbon atoms, nitro, or by groups of the formulae -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷),

in which

- e represents a number 0 or 1,
- R²³ represents a radical of the formula

represents cycloalkyl having 3 to 7 carbon atoms, or

represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by cycloalkyl having 3 to 7 carbon atoms, benzyloxy, tetrahydropyranyl, tetrahydrofuranyl, straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, carboxyl, benzyloxycarbonyl or phenyl which for its part may be mono- to polysubstituted by identical or different substituents from the group consisting of straight-chain or branched alkoxy having up to 4 carbon atoms, hydroxyl and halogen,

or alkyl is optionally substituted by radicals of the formulae -CO-NR²⁸R²⁹ or -CO-R³⁰,

in which

R²⁸ and R²⁹ are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 8 carbon atoms, or

 R^{28} and R^{29} together with the nitrogen atom form a 5- to 7-membered saturated heterocycle which may optionally contain a further heteroatom from the group consisting of S and O,

and

R³⁰ represents phenyl or adamantyl,

 R^{24} and R^{25} have the meaning of R^{18} and R^{19} given above and are identical to or different from this meaning,

 R^{26} and R^{27} have the meaning of R^{10} and R^{11} given above and are identical to or different from this meaning

or cycloalkyl, aryl or the heterocycle are optionally substituted by straight-chain or branched alkyl having up to 6 carbon atoms which is optionally substituted by hydroxyl, carboxyl, by a 5-to 7-membered heterocycle having up to 3 heteroatoms from the group consisting of S, N and O or by groups of the formula -SO2-R31, P(O)(OR³²)(OR³³) or -NR³⁴R³⁵,

in which

R³¹ is hydrogen or has the meaning of R⁹ given above and is identical to or different from this meaning,

 R^{32} and R^{33} have the meaning of R^{10} and R^{11} given above and are identical to or different from this meaning,

R³⁴ and R³⁵ are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms which is optionally substituted by hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms, or

 R^{34} and R^{35} together with the nitrogen atom form a 5- to 6-membered saturated heterocycle which may contain a further heteroatom from the group consisting of S and O or a radical of the formula -NR³⁶,

R³⁶ represents hydrogen, hydroxyl, straight-chain or branched alkoxycarbonyl having up to 7 carbon atoms or straight-chain or branched alkyl having up to 5 carbon atoms which is optionally substituted by hydroxyl,

or

R³ and R⁴ together with the nitrogen atom form a 5- to 7-membered unsaturated or saturated or partially unsaturated optionally benzo-fused heterocycle which may optionally contain up to 3 heteroatoms from the group consisting of S, N, O or a radical of the formula -NR³⁷,

in which

represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl, alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, or represents straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- to polysubstituted by identical or different substituents from the group consisting of hydroxyl, trifluoromethyl, carboxyl, straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms or by groups of the formula - (D)_f-NR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ or -P(O)(OR⁴²)(OR⁴³),

in which

g and h are identical or different and represent a number 1, 2, 3 or 4,

and

- f represents a number 0 or 1,
- D represents a group of the formula -CO or -SO₂,

 R^{38} and R^{39} are identical or different and have the meaning of R^7 and R^8 given above,

R⁴⁰ represents straight-chain or branched alkyl having up to 6 carbon atoms,

R⁴¹ represents straight-chain or branched alkyl having up to 6 carbon atoms,

R⁴² and R⁴³ are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,

or

R³⁷ represents a radical of the formula - (CO)_i-E,

in which

- i represents a number 0 or 1,
- represents cycloalkyl having 3 to 7 carbon atoms or benzyl, represents aryl having 6 to 10 carbon atoms or a 5- to 6-membered aromatic heterocycle having up to 4 heteroatoms from the group consisting of S, N and O, where the ring systems listed above are optionally mono- to polysubstituted by identical or different substituents from the group consisting of nitro, halogen, SO₃H, straight-chain or branched alkoxy having up to 6 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy or by a radical of the formula -SO₂-NR⁴⁴R⁴⁵,

in which

R⁴⁴ and R⁴⁵ have the meaning of R¹⁸ and R¹⁹ given above and are identical to or different from this meaning,

or

E represents radicals of the formulae

and the heterocycle listed under R³ and R⁴, which is formed together with the nitrogen atom, is optionally mono- to polysubstituted by identical or different substituents, if appropriate also geminally, by hydroxyl, formyl, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 6 carbon atoms, nitro and groups of the formulae -P(O)(OR⁴⁶)(OR⁴⁷),

$$= NR^{48} \text{ or } -(CO)_{j}NR^{49}R^{50},$$

in which

 R^{46} and R^{47} have the meaning of R^{10} and R^{11} given above and are identical to or different from this meaning,

R⁴⁸ is hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms,

j is a number 0 or 1,

and

 R^{49} and R^{50} are identical or different and have the meaning of R^{14} and R^{15} given above,

or the heterocycle listed under R³ and R⁴, which is formed together with the nitrogen atom, is optionally substituted by straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- to polysubstituted by identical or different substituents from the group consisting of hydroxyl, halogen, carboxyl, cycloalkyl or cycloalkyloxy having in each case 3 to 8 carbon atoms, straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms or by a radical of the formula -SO₃H, -NR⁵¹R⁵² or P(O)OR⁵³OR⁵⁴,

R⁵¹ and R⁵² are identical or different and represent hydrogen, phenyl, carboxyl, benzyl or straightchain or branched alkyl or alkoxy having in each case up to 6 carbon atoms,

R⁵³ and R⁵⁴ are identical or different and have the meaning of R¹⁰ and R¹¹ given above,

or the alkyl is optionally substituted by aryl having 6 to 10 carbon atoms which for its part may be mono- to polysubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, straight-chain or branched alkoxy having up to 6 carbon atoms, or by a group of the formula -NR⁵¹'R⁵²',

in which

 R^{51} and R^{52} have the meaning of R^{51} and R^{52} given above and are identical to or different from this meaning,

or the heterocycle listed under R³ and R⁴, which is formed together with the nitrogen atom, is optionally substituted by aryl having 6 to 10 carbon atoms or by a 5- to 7-membered saturated, partially unsaturated or unsaturated heterocycle having up to 3 heteroatoms from the group consisting of S, N and O, if appropriate also attached via an N-function, where the ring systems for their part may be substituted by hydroxyl or by straight-chain or branched alkyl or alkoxy having in each case up to 6 carbon atoms,

or

R³ and R⁴ together with the nitrogen atom form radicals of the formulae

R⁵ and R⁶ are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms, hydroxyl or represent straight-chain or branched alkoxy having up to 6 carbon atoms.

and their respective salts, hydrates, alkoxides and tautomers.

- 13. (Previously presented) The combination preparation as claimed in claim 1, characterized in that the PDE inhibitor (active compound component A) is a cGMP PDE inhibitor and is selected from the group consisting of (a) 5-[2-ethoxy-5-(4-methyl-1-piperazinylsulfonyl)-phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d]-pyrimidin-7-one and its salts, hydrates, alkoxides and tautomers; and (b) 2-[2-ethoxy-5-(4-ethyl-piperazine-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f]-[1,2,4]-triazin-4-one and its salts, hydrates, alkoxides and tautomers.
- 14. (Previously presented) The combination preparation as claimed in claim 13, in that the PDE inhibitor (active compound component A) is 5-[2-ethoxy-5-(4-methyl-1-piperazinylsulfonyl)-phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d]-pyrimidin-7-one citrate or 2-[2-ethoxy-5-(4-ethylpiperazine-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one hydrochloride trihydrate.
- 15. (Previously presented) A method for enhancing the activity of PDE inhibitors by administering an effective amount of an antilipemic.
- 16. (Previously presented) A method for the treatment of sexual dysfunction in men and women comprising administering to a host in need thereof an effective amount of the combination preparation of claim 1.
- 17. (Previously presented) The method of claim 16, characterized in that the antilipemic and the PDE inhibitor are administered either simultaneously or else successively.

- 18. (Currently amended) The method of claim 16, characterized in that the antilipemic and the PDE inhibitor are present as a functional unit, in particular in the form of wherein said unit is selected from a mixture, a mix or a blend.
- 19. (Currently amended) The method of claim 16, characterized in that the antilipemic and the PDE inhibitor are present (spatially) separated, in particular as a kit-of-parts.
- 20. (Previously presented) The method of claim 16, characterized in that the antilipemic is selected from the compounds defined in claims 7 to 10.
- 21. (Previously presented) The method of claim 16, characterized in that the PDE inhibitor is selected from the compounds defined in claims 11 to 14.
- 22. (Previously presented) The combination preparation of claim 1 characterized in that the PDE inhibitor is a cGMP PDE inhibitor.
- 23. (Previously presented) The combination preparation of claim 8, characterized in that the HMG-CoA-reductase inhibitor is a statin.
- 24. (Previously presented) The combination preparation of claim 23, characterized in that the statin is selected from the group consisting of atorvastatin, cerivastatin, fluvastatin, lovastatin, pravastatin, itavastatin, simvastatin and (+)-(3R,5S)-bis-(7-(4-(4-fluorophenyl)-6-isopropyl-2-(N-methyl-N-methanesulfonylamino)-pyrimidin-5-yl)-3,5-dihydroxy-6(E)-heptenoic acid, and their respective salts, hydrates, alkoxides, esters and tautomers.
- 25. (Previously presented) The method of claim 15, characterized in that the PDE inhibitor is a cGMP PDE inhibitor.
- 26. (Previously presented) The method of claim 16, characterized in that the sexual dysfunction is erectile dysfunction.