Московский физико-технический институт

Высшая школа программной инженерии

М1. Полёт камня

Численное моделирование движения тела, брошенного под углом к горизонту

Выполнили студенты Б13-402:

Жердев Егор

Савельев Данил

Долгопрудный

19 сентября 2025 г.

Содержание

Введение	2
Физическая постановка задачи	2
Физические модели	3
Идеальный случай (без сопротивления воздуха)	3
Модель с вязким трением $(F \sim v)$	5
Модель с лобовым сопротивлением $(F \sim v^2)$	8
Численные методы решения	10
Результаты и анализ	11
Сравнение с теоретическими результатами	11
Влияние параметров на траекторию	11
Заклюновио	19

Введение

Задача. Исследование движения камня, брошенного под углом α к горизонту в земном поле тяжести с начальной скоростью $\vec{v_0}$, с учётом различных моделей сопротивления воздуха.

Цель работы: составить программу для численного решения дифференциального уравнения движения камня, рассчитать его траекторию, определить точку падения и исследовать влияние начальных параметров броска и коэффициентов сопротивления на характер траектории.

Физическая постановка задачи

Рассмотрим движение материальной точки массы m в поле тяжести Земли. На точку действуют:

1. Сила тяжести:
$$\vec{F_g}=m\vec{g}$$
, где $\vec{g}=\begin{pmatrix} 0\\ -g \end{pmatrix}$ и $g\approx 9.81~{\rm m/c^2}$

2. Сила сопротивления воздуха: \vec{F}_{conp} , зависящая от модели

Начальные условия при t = 0:

$$\vec{r}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \vec{v}(0) = \begin{pmatrix} v_0 \cos \alpha \\ v_0 \sin \alpha \end{pmatrix}$$

где α – угол броска относительно горизонта, v_0 – начальная скорость.

Физические модели

Идеальный случай (без сопротивления воздуха)

В отсутствие сопротивления воздуха второй закон Ньютона имеет вид:

$$m\frac{d^2\vec{r}}{dt^2} = m\vec{g}$$

или в проекциях на оси:

$$\begin{cases} \frac{d^2x}{dt^2} = 0\\ \frac{d^2y}{dt^2} = -g \end{cases}$$

Решение: Интегрируем систему дифференциальных уравнений.

Горизонтальное движение:

$$\frac{d^2x}{dt^2} = 0$$

Интегрируем первый раз от 0 до t:

$$\int_0^t \frac{d^2x}{dt^2} dt = \int_0^t 0 dt$$

$$\frac{dx}{dt} \Big|_0^t = 0 \quad \Rightarrow \quad \frac{dx}{dt}(t) - \frac{dx}{dt}(0) = 0$$

Из начального условия $\frac{dx}{dt}(0) = v_0 \cos \alpha$ находим:

$$\frac{dx}{dt}(t) = v_0 \cos \alpha$$

Интегрируем второй раз от 0 до t:

$$\int_0^t \frac{dx}{dt} dt = \int_0^t v_0 \cos \alpha dt$$

$$x(t) - x(0) = v_0 \cos \alpha \cdot t$$

Из начального условия x(0) = 0 находим:

$$x(t) = v_0 \cos \alpha \cdot t$$

Вертикальное движение:

$$\frac{d^2y}{dt^2} = -g$$

Интегрируем первый раз от 0 до t:

$$\int_0^t \frac{d^2y}{dt^2} dt = \int_0^t -g dt$$

$$\left. \frac{dy}{dt} \right|_0^t = -gt \Rightarrow \frac{dy}{dt}(t) - \frac{dy}{dt}(0) = -gt$$

Из начального условия $\frac{dy}{dt}(0) = v_0 \sin \alpha$ находим:

$$\frac{dy}{dt}(t) = v_0 \sin \alpha - gt$$

Интегрируем второй раз от 0 до t:

$$\int_0^t \frac{dy}{dt} dt = \int_0^t (v_0 \sin \alpha - gt) dt$$

$$y(t) - y(0) = v_0 \sin \alpha t - \frac{gt^2}{2}$$

Из начального условия y(0) = 0 находим:

$$y(t) = v_0 \sin \alpha t - \frac{gt^2}{2}$$

Уравнение траектории y(x): Исключая время из уравнений движения, получаем уравнение траектории. Из x(t) выражаем время:

$$t = \frac{x}{v_0 \cos \alpha}$$

Подставляем в уравнение для y(t):

$$y(x) = v_0 \sin \alpha \cdot \left(\frac{x}{v_0 \cos \alpha}\right) - \frac{g}{2} \left(\frac{x}{v_0 \cos \alpha}\right)^2 = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$$

Дальность полёта L находим из условия y(L) = 0:

$$L\tan\alpha - \frac{gL^2}{2v_0^2\cos^2\alpha} = 0$$

$$L\left(\tan\alpha - \frac{gL}{2v_0^2\cos^2\alpha}\right) = 0$$

Отличное от нуля решение:

$$\tan\alpha = \frac{gL}{2v_0^2\cos^2\alpha} \Rightarrow L = \frac{2v_0^2\cos^2\alpha\tan\alpha}{g} = \frac{2v_0^2\cos\alpha\sin\alpha}{g} = \frac{v_0^2\sin2\alpha}{g}$$

Максимальную высоту \boldsymbol{H} находим из условия $\frac{dy}{dt}(t_H)=0$:

$$v_0 \sin \alpha - gt_H = 0 \Rightarrow t_H = \frac{v_0 \sin \alpha}{g}$$

Подставляем в уравнение для y(t):

$$H = v_0 \sin \alpha \cdot \frac{v_0 \sin \alpha}{q} - \frac{g}{2} \left(\frac{v_0 \sin \alpha}{q} \right)^2 = \frac{v_0^2 \sin^2 \alpha}{q} - \frac{v_0^2 \sin^2 \alpha}{2q} = \frac{v_0^2 \sin^2 \alpha}{2q}$$

Модель с вязким трением $(F \sim v)$

Сила сопротивления пропорциональна скорости:

$$\vec{F}_{\text{comp}} = -k\vec{v}$$

где k > 0 — коэффициент сопротивления.

Второй закон Ньютона:

$$m\frac{d^2\vec{r}}{dt^2} = m\vec{g} - k\vec{v}$$

или в проекциях:

$$\begin{cases} m\frac{d^2x}{dt^2} = -k\frac{dx}{dt} \\ m\frac{d^2y}{dt^2} = -mg - k\frac{dy}{dt} \end{cases}$$

Введя обозначения $\gamma = \frac{k}{m}$ — коэффициент затухания, получаем:

$$\begin{cases} \frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} = 0\\ \frac{d^2y}{dt^2} + \gamma \frac{dy}{dt} = -g \end{cases}$$

Решение: Решаем систему дифференциальных уравнений.

Горизонтальное движение:

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} = 0$$

Введем обозначение для скорости: $v_x = \frac{dx}{dt}$. Тогда уравнение принимает вид:

$$\frac{dv_x}{dt} + \gamma v_x = 0$$

Разделяем переменные и интегрируем от 0 до t:

$$\int_{v_0 \cos \alpha}^{v_x(t)} \frac{dv_x}{v_x} = -\gamma \int_0^t dt$$

$$\ln \left(\frac{v_x}{v_0 \cos \alpha} \right) = -\gamma t$$

$$v_x(t) = v_0 \cos \alpha \cdot e^{-\gamma t}$$

Интегрируем для нахождения координаты *x*:

$$\int_0^{x(t)} dx = \int_0^t v_0 \cos \alpha \cdot e^{-\gamma t} dt$$
$$x(t) = v_0 \cos \alpha \left[-\frac{e^{-\gamma t}}{\gamma} \right]_0^t = \frac{v_0 \cos \alpha}{\gamma} (1 - e^{-\gamma t})$$

Вертикальное движение:

$$\frac{d^2y}{dt^2} + \gamma \frac{dy}{dt} = -g$$

Введем обозначение для скорости: $v_y = \frac{dy}{dt}$. Тогда уравнение принимает вид:

$$\frac{dv_y}{dt} + \gamma v_y = -g$$

Это линейное неоднородное уравнение первого порядка. Решаем методом вариации постоянной.

Сначала находим общее решение однородного уравнения:

$$\frac{dv_y}{dt} + \gamma v_y = 0$$

Разделяем переменные:

$$\begin{split} \int \frac{dv_y}{v_y} &= -\gamma \int dt \\ \ln |v_y| &= -\gamma t + C \\ v_y^{\text{\tiny OZH}} &= C e^{-\gamma t} \end{split}$$

Теперь ищем решение неоднородного уравнения в виде:

$$v_u(t) = C(t)e^{-\gamma t}$$

Подставляем в исходное уравнение:

$$\frac{d}{dt} \left[C(t)e^{-\gamma t} \right] + \gamma C(t)e^{-\gamma t} = -g$$

$$C'(t)e^{-\gamma t} - \gamma C(t)e^{-\gamma t} + \gamma C(t)e^{-\gamma t} = -g$$

$$C'(t)e^{-\gamma t} = -g$$

$$C'(t) = -ge^{\gamma t}$$

Интегрируем:

$$C(t) = -g \int e^{\gamma t} dt = -\frac{g}{\gamma} e^{\gamma t} + A$$

Подставляем обратно:

$$v_y(t) = \left(-\frac{g}{\gamma}e^{\gamma t} + A\right)e^{-\gamma t} = -\frac{g}{\gamma} + Ae^{-\gamma t}$$

Из начального условия $v_y(0) = v_0 \sin \alpha$:

$$-\frac{g}{\gamma} + A = v_0 \sin \alpha \Rightarrow A = v_0 \sin \alpha + \frac{g}{\gamma}$$

Таким образом:

$$v_y(t) = \left(v_0 \sin \alpha + \frac{g}{\gamma}\right) e^{-\gamma t} - \frac{g}{\gamma}$$

Интегрируем для нахождения координаты y:

$$\int_0^y dy = \int_0^t \left[\left(v_0 \sin \alpha + \frac{g}{\gamma} \right) e^{-\gamma t} - \frac{g}{\gamma} \right] dt$$

$$y(t) = \left(v_0 \sin \alpha + \frac{g}{\gamma} \right) \left[-\frac{1}{\gamma} e^{-\gamma t} \right]_0^t - \frac{g}{\gamma} t$$

$$y(t) = -\frac{1}{\gamma} \left(v_0 \sin \alpha + \frac{g}{\gamma} \right) (e^{-\gamma t} - 1) - \frac{g}{\gamma} t$$

$$y(t) = \frac{1}{\gamma} \left(v_0 \sin \alpha + \frac{g}{\gamma} \right) (1 - e^{-\gamma t}) - \frac{g}{\gamma} t$$

Вывод уравнения траектории y(x):

Из уравнения для горизонтальной координаты:

$$x(t) = \frac{v_0 \cos \alpha}{\gamma} (1 - e^{-\gamma t})$$

Выразим время через координату x:

$$1 - e^{-\gamma t} = \frac{\gamma x}{v_0 \cos \alpha}$$
$$t = -\frac{1}{\gamma} \ln \left(1 - \frac{\gamma x}{v_0 \cos \alpha} \right)$$

Теперь подставим эти выражения в уравнение для вертикальной координаты:

$$y(t) = \frac{1}{\gamma} \left(v_0 \sin \alpha + \frac{g}{\gamma} \right) (1 - e^{-\gamma t}) - \frac{g}{\gamma} t$$

Получаем:

$$y(x) = \frac{1}{\gamma} \left(v_0 \sin \alpha + \frac{g}{\gamma} \right) \cdot \left(\frac{\gamma x}{v_0 \cos \alpha} \right) + \frac{g}{\gamma^2} \ln \left(1 - \frac{\gamma x}{v_0 \cos \alpha} \right)$$

Упрощаем:

$$y(x) = x \tan \alpha + \frac{gx}{\gamma v_0 \cos \alpha} + \frac{g}{\gamma^2} \ln \left(1 - \frac{\gamma x}{v_0 \cos \alpha} \right)$$

Это и есть уравнение траектории для модели с вязким трением.

Проверка предела при $\gamma \to 0$: Используем разложение логарифма в ряд Тейлора:

$$\ln(1-u) = -u - \frac{u^2}{2} - \frac{u^3}{3} - \cdots, \quad \text{где } u = \frac{\gamma x}{v_0 \cos \alpha}$$

Тогда:

$$\begin{split} y(x) &= x \tan \alpha + \frac{gx}{\gamma v_0 \cos \alpha} + \frac{g}{\gamma^2} \left(-\frac{\gamma x}{v_0 \cos \alpha} - \frac{\gamma^2 x^2}{2v_0^2 \cos^2 \alpha} + o(\gamma^3) \right) \\ &= x \tan \alpha + \frac{gx}{\gamma v_0 \cos \alpha} - \frac{gx}{\gamma v_0 \cos \alpha} - \frac{gx^2}{2v_0^2 \cos^2 \alpha} + o(\gamma) \\ &= x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha} + o(\gamma) \xrightarrow{\gamma \to 0} x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha} \end{split}$$

Что совпадает с уравнением траектории для идеального случая.

Модель с лобовым сопротивлением ($F \sim v^2$)

Сила сопротивления пропорциональна квадрату скорости и направлена противоположно вектору скорости:

$$\vec{F}_{\text{comp}} = -c|\vec{v}|\vec{v} = -cv\vec{v}$$

где c>0 — коэффициент лобового сопротивления, $v=|\vec{v}|=\sqrt{v_x^2+v_y^2}$.

Второй закон Ньютона:

$$m\frac{d^2\vec{r}}{dt^2} = m\vec{g} - cv\vec{v}$$

или в проекциях на оси:

$$\begin{cases} m\frac{d^2x}{dt^2} = -c\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot \frac{dx}{dt} \\ m\frac{d^2y}{dt^2} = -mg - c\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot \frac{dy}{dt} \end{cases}$$

Введя обозначение $\beta=\frac{c}{m},$ получаем:

$$\begin{cases} \frac{d^2x}{dt^2} = -\beta v \frac{dx}{dt} \\ \frac{d^2y}{dt^2} = -g - \beta v \frac{dy}{dt} \end{cases}$$

где
$$v = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}.$$

Решение: Данная система не имеет аналитического решения в элементарных функциях и требует численных методов решения.

Приведение к системе первого порядка: Введём переменные:

$$v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}$$

Тогда система принимает вид:

$$\begin{cases} \frac{dx}{dt} = v_x \\ \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = -\beta \sqrt{v_x^2 + v_y^2} \cdot v_x \\ \frac{dv_y}{dt} = -g - \beta \sqrt{v_x^2 + v_y^2} \cdot v_y \end{cases}$$

Начальные условия:

$$x(0) = 0$$
, $y(0) = 0$, $v_x(0) = v_0 \cos \alpha$, $v_y(0) = v_0 \sin \alpha$

Анализ особенностей:

- 1. Система нелинейна из-за члена $\sqrt{v_x^2 + v_y^2}$
- 2. Уравнения связаны через общий множитель $\sqrt{v_x^2 + v_y^2}$
- 3. При $\beta = 0$ система переходит в идеальный случай
- 4. При малых скоростях $(v \to 0)$ система приближается к модели с вязким трением
- 5. **Предельная скорость:** При вертикальном падении $(v_x = 0)$ уравнение движения принимает вид:

$$m\frac{dv_y}{dt} = -mg - cv_y^2$$

Предельная скорость достигается при условии $\frac{dv_y}{dt} = 0$:

$$0 = -mg - cv_y^2 \quad \Rightarrow \quad cv_y^2 = -mg$$

Учитывая, что при падении $v_y < 0$, получаем:

$$v_{
m предел} = -\sqrt{rac{mg}{c}} = -\sqrt{rac{g}{eta}}$$

где $\beta = \frac{c}{m}$. Физически это означает, что сила сопротивления cv^2 уравновешивает силу тяжести mg, и тело движется с постоянной скоростью.

- 6. **Асимметрия траектории:** Траектория становится несимметричной восходящая ветвь более пологая, чем нисходящая, так как на подъёме сила сопротивления направлена против скорости и силы тяжести, а на спуске против скорости, но совместно с силой тяжести
- 7. **Зависимость от начальной скорости:** Влияние сопротивления растет пропорционально квадрату скорости, поэтому при больших начальных скоростях эффект сопротивления становится доминирующим
- 8. Оптимальный угол броска: Угол, обеспечивающий максимальную дальность, становится меньше 45°, поскольку горизонтальная компонента скорости затухает быстрее вертикальной из-за квадратичной зависимости силы сопротивления

Численные методы решения

Для решения системы дифференциальных уравнений второго порядка преобразуем её в систему первого порядка. Введём переменные:

$$v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}$$

Тогда для модели с лобовым сопротивлением получаем систему:

$$\begin{cases} \frac{dx}{dt} = v_x \\ \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = -\beta \sqrt{v_x^2 + v_y^2} \cdot v_x \\ \frac{dv_y}{dt} = -g - \beta \sqrt{v_x^2 + v_y^2} \cdot v_y \end{cases}$$

Для численного интегрирования используем метод Рунге-Кутты 4-го порядка. Шаг алгоритма:

- 1. Задаём начальные условия: x_0, y_0, v_{x0}, v_{y0}
- 2. Выбираем шаг по времени Δt
- 3. На каждом шаге вычисляем коэффициенты k_1, k_2, k_3, k_4 для каждой переменной:
 - k_1 наклон в начале интервала (аппроксимация методом Эйлера)
 - k_2 наклон в средней точке с использованием k_1
 - ullet k_3 улучшенный наклон в средней точке с использованием k_2
 - ullet k_4 наклон в конце интервала с использованием k_3

Эти коэффициенты представляют собой взвешенные оценки производных на разных точках интервала.

4. Обновляем значения переменных по формуле:

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

где коэффициенты 1:2:2:1 обеспечивают оптимальную точность метода 4-го порядка.

5. Повторяем до достижения условия остановки $(y \le 0)$

Результаты и анализ

Сравнение с теоретическими результатами

Для идеального случая и модели с вязким трением численные результаты должны хорошо согласовываться с аналитическими решениями. Погрешность определяется шагом интегрирования Δt . Для модели с лобовым сопротивлением аналитическое решение отсутствует, поэтому валидация проводится путём:

- 1. Проверки сходимости при уменьшении Δt убеждаемся, что решение стабилизируется при $\Delta t \to 0$
- 2. Сравнения с предельными случаями $(\gamma \to 0, \ \beta \to 0)$ проверяем переход к идеальной модели

Влияние параметров на траекторию

Исследуем влияние различных параметров:

1. Угол броска α :

- В идеальном случае максимальная дальность при $\alpha = 45^{\circ}$ (симметричная парабола)
- При наличии сопротивления оптимальный угол меньше 45° (обычно $35^{\circ} 40^{\circ}$)
- С увеличением коэффициента сопротивления оптимальный угол уменьшается
- При $\alpha = 90^\circ$ получаем вертикальный бросок с максимальной высотой

2. Начальная скорость v_0 :

- Увеличение v_0 приводит к увеличению дальности и высоты
- Влияние сопротивления более значительно при больших v_0 (квадратичная зависимость)

3. Коэффициент сопротивления:

- Увеличение коэффициента уменьшает дальность полёта и максимальную высоту
- Траектория становится более крутой и асимметричной (восходящая ветвь положе)

4. Macca тела m:

- Увеличение массы уменьшает относительное влияние сопротивления
- Тяжёлые тела менее чувствительны к сопротивлению воздуха
- Лёгкие тела быстрее достигают предельной скорости

Качественные особенности траекторий:

- Идеальный случай: симметричная парабола
- Вязкое трение: слегка асимметричная траектория, экспоненциальное затухание
- Лобовое сопротивление: сильно асимметричная траектория, быстрое затухание скорости

Заключение

В работе проведено комплексное численное моделирование движения тела, брошенного под углом к горизонту, для трёх различных физических моделей:

- 1. **Идеальный случай** (без сопротивления воздуха) аналитически решаемая модель, служащая эталоном для сравнения
- 2. Модель с вязким трением $(F \sim v)$ учитывает линейную зависимость силы сопротивления от скорости
- 3. Модель с лобовым сопротивлением $(F \sim v^2)$ наиболее реалистичная модель для умеренных и высоких скоростей

Основные достижения работы:

- Разработан универсальный алгоритм на основе метода Рунге-Кутты 4-го порядка для численного интегрирования систем дифференциальных уравнений
- Проведён детальный аналитический вывод уравнений движения для идеального случая и модели с вязким трением
- Получено уравнение траектории y(x) для модели с вязким трением и проведена проверка сходимости к идеальному случаю
- Исследовано влияние основных параметров: угла броска α , начальной скорости v_0 , коэффициентов сопротивления γ и β
- Обнаружены и проанализированы качественные особенности траекторий для различных моделей