Courants invariants par des groupes de transformations

Abdelhak Abougateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

R.N.G.D.A. 2018 Faculté des Sciences Ben M'sik Casa - 13 et 14 juillet 2018

Le problème de déterminer les distributions invariantes sur sur une variété différentiable par un groupe de Lie a été initié par divers auteurs : Methée, de Rham, Gärding, Tengstrand, Zhu, Ziemian, Herz · · ·

Nous nous proposons de discuter l'étude des sections-distributions invariantes par une action propre d'un groupe de Lie.

- Nous nous proposons de discuter l'étude des sections-distributions invariantes par une action propre d'un groupe de Lie.
- ▶ Nous allons étudier le cas des *G*-fibrés vectoriels $E \rightarrow M$.

- Nous nous proposons de discuter l'étude des sections-distributions invariantes par une action propre d'un groupe de Lie.
- ▶ Nous allons étudier le cas des G-fibrés vectoriels $E \to M$. Lorsqu'on a une action différentiable $G \to \mathrm{Diff}(M)$, Le fibré tangent $TM \to M$ et le fibré produit extérieur $\bigwedge^p T^*M \to M$ en sont des exemples.

- ► Nous nous proposons de discuter l'étude des sections-distributions invariantes par une action propre d'un groupe de Lie.
- ▶ Nous allons étudier le cas des G-fibrés vectoriels $E \to M$. Lorsqu'on a une action différentiable $G \to \mathrm{Diff}(M)$, Le fibré tangent $TM \to M$ et le fibré produit extérieur $\bigwedge^p T^*M \to M$ en sont des exemples.
- ▶ Il s'agit de déterminer l'espace $(C_c^{\infty}(E))'_G$ des formes linéaires continues G-invariantes.

Topologie de Schwartz

Soit $E \xrightarrow{\pi} M$ un fibré vectoriel C^{∞} au-dessus d'une variété différentiable de dimension m. Désignons par $C^{\infty}(E)$ l'espace de toutes les sections C^{∞} muni de la topologie C^{∞} , celle-ci en fait un espace de Fréchet (i.e. espace vectoriel topologique localement convexe séparé métrisable et complet).

Topologie de Schwartz

Soit $E \xrightarrow{\pi} M$ un fibré vectoriel C^{∞} au-dessus d'une variété différentiable de dimension m. Désignons par $C^{\infty}(E)$ l'espace de toutes les sections C^{∞} muni de la topologie C^{∞} , celle-ci en fait un espace de Fréchet (i.e. espace vectoriel topologique localement convexe séparé métrisable et complet).

▶ $C_c^{\infty}(E)$ désignera l'espace des sections C^{∞} à support compact muni de sa topologie usuelle (de Schwartz) : Une suite (σ_n) converge pour cette topologie vers σ si, et seulement si, il existe un compact A de V tel que $supp(\sigma) \subset A$, $supp(\sigma_n) \subset A$ pour tout n, et $\sigma_n \rightarrow \sigma$ au sens de la topologie C^{∞} .

Topologie de Schwartz

Soit $E \xrightarrow{\pi} M$ un fibré vectoriel C^{∞} au-dessus d'une variété différentiable de dimension m. Désignons par $C^{\infty}(E)$ l'espace de toutes les sections C^{∞} muni de la topologie C^{∞} , celle-ci en fait un espace de Fréchet (i.e. espace vectoriel topologique localement convexe séparé métrisable et complet).

 $ightharpoonup C_c^{\infty}(E)$ désignera l'espace des sections C^{∞} à support compact muni de sa topologie usuelle (de Schwartz) : Une suite (σ_n) converge pour cette topologie vers σ si, et seulement si, il existe un compact A de V tel que $supp(\sigma) \subset A$, $supp(\sigma_n) \subset A$ pour tout n, et $\sigma_n \rightarrow \sigma$ au sens de la topologie C^{∞} . Il s'agit en fait d'une topologie limite inductive stricte d'espaces de Fréchet, qui est plus fine que la topologie C^{∞} et fait de $C_{c}^{\infty}(E)$ un espace vectoriel topologique localement convexe séparé et complet (non métrisable en général) souvent appelé espace L.F.

Sections-distributions

Une forme linéaire continue sur $C_c^{\infty}(E)$ est dite section-distribution du fibré $E \xrightarrow{\pi} M$.

Sections-distributions

Une forme linéaire continue sur $C_c^{\infty}(E)$ est dite **section-distribution** du fibré $E \xrightarrow{\pi} M$. Dans le cas particulier du fibré $\Lambda^{m-p}T^*(M)$ (produit extérieur (n-p)-fois du fibré cotangeant $T^*(M)$ à la variété M), on obtient la notion de p-courant (de De-Rham) sur la variété M (ou **distribution** (de Schwartz) sur M en prenant le fibré trivial $E = M \times \mathbb{R}$)

Sections-distributions

Une forme linéaire continue sur $C_c^{\infty}(E)$ est dite **section-distribution** du fibré $E \xrightarrow{\pi} M$. Dans le cas particulier du fibré $\Lambda^{m-p}T^*(M)$ (produit extérieur (n-p)-fois du fibré cotangeant $T^*(M)$ à la variété M), on obtient la notion de p-courant (de De-Rham) sur la variété M (ou **distribution** (de Schwartz) sur *M* en prenant le fibré trivial $E = M \times \mathbb{R}$): On note $\Omega_c^{m-p}(M)$ l'espace des m-p-formes différentielles à support compact; un élément Tdu dual topologique $C^p(M)$ de $\Omega^{m-p}_c(M)$ est appelé p-courant (ou courant de degré p) sur M; l'évaluation de T sur ω sera noté $< T, \omega >$.

Soit $E \xrightarrow{\pi} M$ un G-fibré vectoriel (La projection π est G-équivariante et l'action de G sur E est par des isomorphismes linéaires entre fibres.

Soit $E \xrightarrow{\pi} M$ un G-fibré vectoriel (La projection π est G-équivariante et l'action de G sur E est par des isomorphismes linéaires entre fibres.

▶ L'action induite de G sur $C_c^{\infty}(E)$ (et sur $C^{\infty}(E)$) est décrite par

Soit $E \xrightarrow{\pi} M$ un G-fibré vectoriel (La projection π est G-équivariante et l'action de G sur E est par des isomorphismes linéaires entre fibres.

▶ L'action induite de G sur $C_c^{\infty}(E)$ (et sur $C^{\infty}(E)$) est décrite par : pour $g \in G$ et σ une section du fibré, $g\sigma$ est la section donnée par :

$$(g\sigma)(x) = g\sigma(g^{-1}x) \quad \forall x \in M$$

Soit $E \xrightarrow{\pi} M$ un G-fibré vectoriel (La projection π est G-équivariante et l'action de G sur E est par des isomorphismes linéaires entre fibres.

▶ L'action induite de G sur $C_c^{\infty}(E)$ (et sur $C^{\infty}(E)$) est décrite par : pour $g \in G$ et σ une section du fibré, $g\sigma$ est la section donnée par :

$$(g\sigma)(x) = g\sigma(g^{-1}x) \quad \forall x \in M$$

Définition

 σ est dite G-invariante si pour tout $g \in G$, $g \cdot \sigma = \sigma$

Soit $E \xrightarrow{\pi} M$ un G-fibré vectoriel (La projection π est G-équivariante et l'action de G sur E est par des isomorphismes linéaires entre fibres.

▶ L'action induite de G sur $C_c^{\infty}(E)$ (et sur $C^{\infty}(E)$) est décrite par : pour $g \in G$ et σ une section du fibré, $g\sigma$ est la section donnée par :

$$(g\sigma)(x) = g\sigma(g^{-1}x) \quad \forall x \in M$$

Définition

 σ est dite G-invariante si pour tout $g \in G$, $g \cdot \sigma = \sigma$

Si X_h désigne un champ fondamental sur M associé à $h \in \mathcal{G}$, et $\sigma \in C^{\infty}(E)$, la dérivé de Lie $L_{X_h}\sigma$ est la section :

$$(L_{X_h} \sigma)(x) = \frac{d}{dt}_{|_{t=0}} ((\exp th)\sigma)(x) \quad \forall x \in M$$
17

Actions propres

Definition

Une action de G sur M est **propre** si pour tout compact C de M l'ensemble

$$\{g \in G/gC \cap C \neq \emptyset\}$$

est compact.

Actions propres

Definition

Une action de G sur M est **propre** si pour tout compact C de M l'ensemble

$$\{g \in G/gC \cap C \neq \emptyset\}$$

est compact.

Exemple.

- Soit E un espace euclidien. Le groupe $G = O(E) \ltimes E$ des isométries de E opérant sur E par : $(u,b) \cdot x = u(x) + b$. Cette action est propre.
- Le groupe $\operatorname{Aut}(U,J)$ des transformations bi-holomorphes d'un ouvert borné simplement connexe de $\mathbb C$ opère proprement sur U.

Définition équivalente

On rappelle qu'une application $f:M\to N$ est dite propre si l'image réciproque d'un compact est un compact. Proposition.

Définition équivalente

On rappelle qu'une application $f:M\to N$ est dite propre si l'image réciproque d'un compact est un compact.

Proposition. Les propriétés suivantes sont équivalentes :

- lacktriangle L'action de G sur M est propre.
- 2 L'application $G \times M \ni (g, x) \longmapsto (g \cdot x, x) \in M \times M$, est propre

Définition équivalente

On rappelle qu'une application $f:M\to N$ est dite propre si l'image réciproque d'un compact est un compact.

Proposition. Les propriétés suivantes sont équivalentes :

- lacktriangle L'action de G sur M est propre.
- 2 L'application $G \times M \ni (g, x) \longmapsto (g \cdot x, x) \in M \times M$, est propre
- **③** Pour tout compact C de M, l'application $G \times C \ni (g, x) \longmapsto g \cdot x \in M$, est propre.

Remarques

• Si G est compact, toute G-action est propre.

Remarques

- Si G est compact, toute G-action est propre.
- Si M est compact et $G \to \mathrm{Diff}(M)$ une action propre, alors G est compact.

Remarques

- Si G est compact, toute G-action est propre.
- Si M est compact et $G \to \mathrm{Diff}(M)$ une action propre, alors G est compact.
- Une condition nécessaire et suffisante pour qu'une action soit propre est la suivante :

Pour toute suite $(g_n, x_n) \in G \times M$, telle que $g_n \cdot x_n \to y$ et $x_n \to x$, la suite $(g_n)_n$ admet une sous-suite convergente.

 Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.

- Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact.

- Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact. Alors l'action induite de H sur M est propre.

- Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact. Alors l'action induite de H sur M est propre. Par exemple l'action

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}$$

de $SL(2, \mathbb{R})$ sur le demi-plan de Poincaré \mathbb{H} est transitive et le groupe d'isotropie en i est SO(2) donc cet action est propre.

Moyennisation.

Soit $(E \xrightarrow{\pi} M)$ un *G*-fibré vectoriel propre, *G* un groupe de Lie connexe et unimodulaire.

Pour tout $\sigma \in C_c^\infty(E)$ et pour tout $x \in M$, l'ensemble $\{g \in G \mid g^{-1}x \in supp(\sigma)\}$ est un compact de G, à l'extérieur duquel l'application $g \longmapsto (g\sigma)(x)$ est nulle. D'où l'existence de l'intégrale $\int_G (g \cdot \sigma)(x) dg$. On obtient ainsi une application linéaire

$$m: \begin{array}{ccc} C_c^{\infty}(E) & \longrightarrow & C^{\infty}(E) \\ \sigma & \longmapsto & m\sigma \end{array}$$

donnée par :

$$(m\sigma)(x) = \int_G (g \cdot \sigma)(x) dg$$

L'espace des sections à support G-compact

Le support d'une section G-invariante est G-stable par l'action. L'espace vectoriel de toutes les sections τ (qui sont C^{∞} et non nécessairement à support compact) telles que $supp(\tau)$ soit G-stable par l'action et $supp(\tau)/G$ soit compact, sera désigné par $\overline{C}^{\infty}(E)$. Celui-ci coïncide avec $C^{\infty}(E)$ si l'espace des orbites M/G est compact, et n'est autre que $C^{\infty}_{c}(E)$ si le groupe G est compact.

Une topologie d'espace L.F. sur $\overline{C}^{\infty}(E)$

Notons \mathcal{B} la famille des sous-ensembles fermés B de M tels que B soit G-stable et B/G soit compact. Pour tout B dans cette famille, l'espace $C_B^\infty(E)$ des sections à support dans B, muni de la topologie C_B^∞ (:= celle induite par la topologie C^∞) est un espace de Fréchet (puisqu'il est fermé dans $C^\infty(E)$). On munira alors l'espace

$$\overline{C}^{\infty}(E) = \bigcup_{B \in \mathcal{B}} C_B^{\infty}(E)$$

de la topologie limite inductive stricte des topologies C_B^∞ ; on obtient ainsi un espace L.F. : Une suite $(\tau_n)_n$ dans $\overline{C}^\infty(E)$ converge vers τ si, et seulement si, il existe $B \in \mathcal{B}$ tel que $supp(\tau_n) \in B$, $supp(\tau) \in B$ et $\tau_n \rightarrow \tau$ au sens de la topologie C^∞ .

L'espace $\overline{C}_G^{\infty}(E)$ des sections τ qui sont G-invariantes telles que $supp(\tau)/G$ soit compact, sera muni de la topologie induite de celle de $\overline{C}^{\infty}(E)$. 32

Cas des courants

Dans le cas du G-fibré vectoriel $\Lambda^p T^*(M)$, nous utiliserons la notation $\overline{\Omega}^p_G(M)$. Un courant $T \in C^p(M)$ est alors dit G-invariants si, pour toute forme $\omega \in \Omega^{m-p}_c(M)$ et tout $g \in G$, on a $< T, g\omega > = < T, \omega >$ (où $g\omega$ désigne la transposée de la forme ω par le difféomorphisme associé à l'élément g). Le sous espace de $C^p(M)$ des p-courants G-invariants sur M sera désigné par $C^p_G(M)$.

E → *M* un *G*-fibré vectoriel propre avec *G* connexe unimodulaire

L'opérateur de moyennisation

$$m: C_c^{\infty}(E) \longrightarrow C^{\infty}(E)$$
 $\sigma \longmapsto m\sigma$

définie par :

$$(m\sigma)(x) = \int_{\Omega} (g\sigma)(x)dg$$
 pour $x \in V$.

Théorème

- en tant qu'application de $C_c^{\infty}(E)$ vers $\overline{C}_G^{\infty}(E)$, m est continue et ouverte.
- Le noyau ker(m) est le sous-espace de $C_c^{\infty}(E)$ engendré par les éléments L_{XT} où X est un champ fondamental.

Théorème

Soit $E \stackrel{\pi}{\to} V$ un G- fibré vectoriel propre avec G connexe et unimodulaire.

Alors l'espace vectoriel topologique $(C_c^{\infty}(E))'_G$ des formes linéaires continues G-invariantes sur $C_c^{\infty}(E)$ est isomorphe au dual de $\overline{C}_G^{\infty}(E)$.

Corollaire

Soient G un groupe de Lie compact connexe et $E \xrightarrow{\pi} M$ un G-fibré vectoriel. Désignons par F l'un des espaces $C_c^{\infty}(E)$ ou $C^{\infty}(E)$. Alors on la décomposition topologique

$$F = F^G \oplus L_G F$$

 $(L_GF$ étant le sous-espace de F engendré par les éléments L_{X^T} pour X champ fondamental).

Corollaire

Soit $G \to \operatorname{Diff}(M)$ une action différentiable propre avec G connexe et M/G compact. Alors l'espace des p-courants G-invariants sur M s'identifie au dual topologique de $(\Omega^{m-p}(M))^G$, espace de toutes les (m-p)-formes G-invariantes sur M muni de la topologie C^{∞} .

Formes G-invariantes et courants G-invariants sur G/H

• L'espace $(\Omega^k(G/H))^G$ des formes différentielles G-invariantes est isomorphe à l'espace $(\bigwedge^k (G/H)^*)^H$. L'action de H sur $\bigwedge^k (G/H)^*$ étant définie par :

$$(a \cdot \lambda)(u_1 + \mathcal{H}, \cdots, u_k + \mathcal{H}) =$$
$$\lambda(\operatorname{Ad}_{(a^{-1})}(u_1) + \mathcal{H}, \cdots, \operatorname{Ad}_{(a^{-1})}(u_k) + \mathcal{H}).$$

② Lorsque H est **compact**, l'espace des p-courants G-invariants sur G/H est isomorphe à $(\bigwedge^{m-p}(\mathcal{G}/\mathcal{H})^*)^H$.

L'inclusion de $\overline{C}_G^{\infty}(E)$ dans l'image de m?

Soit τ une section G-invariante de support B tel que B/G soit compact.

L'inclusion de $\overline{C}_G^{\infty}(E)$ dans l'image de m?

Soit τ une section G-invariante de support B tel que B/G soit compact. Il existe un compact A tel que B=GA.

L'inclusion de $\overline{C}_{G}^{\infty}(E)$ dans l'image de m?

Soit au une section G-invariante de support B tel que B/G soit compact. Il existe un compact A tel que B=GA. En effet : Soit $(V_i)_i$ un recouvrement localement fini de B par des ouverts relativement compacts; on peut alors écrire $B/G = \cup_{j \in J} p(V_j)$ où J est un sous ensemble fini d'indices et $p: V \to V/G$ la projection canonique. Le compact $A = \cup_{j \in J} \overline{V_j}$ répond alors à la question.

L'inclusion de $\overline{C}_G^{\infty}(E)$ dans l'image de m?

Soit τ une section G-invariante de support B tel que B/G soit compact. Il existe un compact A tel que B = GA. En effet : Soit $(V_i)_i$ un recouvrement localement fini de B par des ouverts relativement compacts; on peut alors écrire $B/G = \bigcup_{i \in J} p(V_i)$ où J est un sous ensemble fini d'indices et $p: V \to V/G$ la projection canonique. Le compact $A = \bigcup_{i \in I} \overline{V_i}$ répond alors à la question. Considérons ensuite une fonction C^{∞} positive, $\psi: M \to \mathbb{R}$, à support compact telle que $\psi = 1$ sur A; soit U un voisinage ouvert de A sur lequel ψ est strictement positive.

La section $\psi\tau$ est alors à support compact inclus dans GA; de plus puisque τ est G-invariante, il est facile de vérifier l'égalité :

$$m(\psi \tau) = (M_{\psi})\tau$$

où $M_{\psi}:V \to {\rm I\!R}$ est la fonction donnée par : $(M_{\psi})(x)=\int_{\mathcal{G}}\psi(g^{-1}x)dg$.

La section $\psi \tau$ est alors à support compact inclus dans GA; de plus puisque τ est G-invariante, il est facile de vérifier l'égalité :

$$m(\psi \tau) = (M_{\psi})\tau$$

où $M_{\psi}: V \to \mathbb{R}$ est la fonction donnée par : $(M_{\psi})(x) = \int_G \psi(g^{-1}x)dg$. Pour tout $x \in U$, la fonction : $g \in G \mapsto \psi(g^{-1}x)$ est positive sur l'ouvert $\rho_x^{-1}(U)$ de G (avec $\rho_x: g \in G \mapsto (g^{-1}x) \in V$), on en déduit que : $(M_{\psi})(x) > 0$ pour tout $x \in U$. De plus, il est facile de vérifier que M_{ψ} est une fonction G-invariante (i.e.

 $(M_{\psi})(ax) = (M_{\psi})(x) \ \forall a \in G, \ \forall x \in V)$. D'où : M_{ψ} est strictement positive sur le saturé GU de l'ouvert U.

Considérons alors la section $J_A \tau$ donnée par :

$$(*) \hspace{1cm} (J_{\mathcal{A}}\tau)(x) = \left\{ \begin{array}{ll} (\frac{\psi}{M_{\psi}}\tau)(x) & \text{si } x \in \mathsf{G}U \\ \text{o} & \text{sinon} \end{array} \right.$$

Considérons alors la section $J_A \tau$ donnée par :

$$(*) \hspace{1cm} (J_A\tau)(x) = \left\{ \begin{array}{ll} (\frac{\psi}{M_\psi}\tau)(x) & \text{si } x \in GU \\ o & \text{sinon} \end{array} \right.$$

Cette section est bien définie sur l'ouvert GU de M, et nulle à l'extérieur du fermé GA de M (puisque $GA = supp(\tau)$), donc $J_A\tau$ est une section C^{∞} , qui est clairement à support compact ($supp(J_A\tau) \subset supp(\psi)$).

On vérifie ensuite facilement l'égalité : $m(J_A \tau) = \tau$. Ainsi $m : C_{\infty}^{\infty}(E) \to \overline{C}_{C_{\infty}}^{\infty}(E)$ est surjective.