1

$$W(n+1) = W(n) + \mu \text{ sign} \{e(n)\} X(n)$$

$$E \{ W(n+1) \} = E \{ W(n) + \mu \} \frac{2}{516e^{2}(n)} E \{ X(n) e(n) \}$$
where $6e^{2}(n) = E \{ e^{2}(n) \}$

$$E \{ X(n) e(n) \} = E \{ X(n) (d(n) - X^{(n)} W(n) \}$$

$$= E \{ X(n) d(n) \} - E \{ X(n) X^{(n)} W(n) \}$$

Using the independence assumption, This simplifies to $E\{X(n)e(n)\} = P(n) - R(n) E\{W(n)\}$

Where $P_{XA}(n)$ and $P_{XX}(n)$ denote the cross correlation vector betwee of X(n) and d(n), and the autocorrelation ation matrix of X(n), respectively.

= $r_{d}(n) - 2r_{Xd}(n) + F_{X}(n) + F_{X}(n) p_{X}(n) W(n)$ again using the independence assumption. We will assume that the step size is small that the Nariance of W(n) is negligible. With this assumption,

 $\sigma_e^2(n) = r_{dd}(n) - 2P_{Xd}^T(n) \in \{\underline{W}(n)\} + \epsilon\{\underline{W}(n)\}P_{XX}^n +$

with
$$E \{ W(n) \} = E \{ W(n) \} + M \sqrt{\frac{2}{\pi 6^2 (n)}} \left(P_{Xd}(n) - P_{XX}(n) E \{ W(n) \} \right)$$

We notice that the evolution equation is similar to that of the LMS adaptive filter. For the same μ , the speed of convergence at any time is faster or shower than that of the LMS adaptive filter, depending on whether

2 Ji 5e2(n) is larger than or smaller

than 1. In general, one should expect faster convergence behavior near steady state than away from it.

2. Since $H(z) = \frac{1}{(1-1.2z^{-1}+0.36z^{-2})(1-1.6z^{-1}+0.6tz^{-2})}$ $= \frac{1}{1-2.8z^{-1}+2.92z^{-2}-1.344z^{-3}+0.2304z^{-1}}$ we have that x(n-i) $x(n) = \frac{1}{2}(n) + \frac{1}{2.8z^{-1}+2.92z^{-2}-1.344z^{-3}+0.2304z^{-1}}$ implying that the MMSE predictor is $\frac{1}{2}(n) = \frac{1}{2.6z^{-1}+0.36z^{-2}}(n-1) + \frac{1}{2.344z^{-3}+0.2304z^{-1}}$ $x(n-1) = \frac{1}{2}(n) + \frac{1}{2.8z^{-1}+2.92z^{-2}-1.344z^{-3}+0.2304z^{-1}}$ $x(n) = \frac{1}{2}(n) + \frac{1}{2.8z^{-1}+2.92z^{-2}-1.344z^{-3}+0.2304z^{-1}}$ $x(n) = \frac{1}{2}(n) + \frac{1}{2}(n)$

 $\frac{1}{2}(n) = 2.8 \times (n-1) - 2.92 \times (n-2) + 1.344 \times (n-3)$ $-0.2304 \times (n-4)$

It is now straightforward to convert this direct form system to a lattice structure using the conversion equations are derived in the class. The details are omitted. (Of course, this is a privilege you don't have!!)

$$\frac{1}{\chi(n)} = \begin{cases} \chi(n) \\ \chi(n-1) \\ \vdots \\ \chi(n-M) \\ \chi(n-1) \\ \chi($$

The augmented input vector is given by

$$\frac{X}{2} = \begin{bmatrix} \chi(n) \\ \chi(n-1) \\ \chi(n-M_{\overline{4}}) \end{bmatrix} = \begin{bmatrix} \chi(n) \\ d(n-1) \end{bmatrix} \begin{bmatrix} \chi(n) \\ \chi(n-M_{\overline{4}}) \end{bmatrix}$$

where I is an permutation matrix. Note that are used to rearrange the lements so that d(n-1) and X(n-M-1) and X(n-M-1) tally in the right place

 $JJ^{T} = J^{T}J = I$ as we did in class.

attramediately follows that

We already know from the discussion in the class that the solution has the form

 $W(n) = W(n-1) + k(n) \in (n)$

Where

$$W(n) = \begin{bmatrix} b(n) & b(n) & ... & ... & ... & ... \\ b(n) & b(n) & ... & ... & ... \\ \end{bmatrix}$$

and

$$k(n) = R_{xx}^{-1}(n) \times (n)$$

Where

$$R_{XX}(n) = \sum_{k=1}^{n} \lambda^{n-k} X(k) X^{T}(k)$$

We also lenow, that Har kin estimates I using (from the form)

X(m).

We follow the same procedure as before (for the single channel case) to update k(n). That is, we find the augmented gain vector and use it to estimate update k(n).

 $\frac{1}{aug}$ (n) = $k(n) \times (n+1) + estimate of 1 using new information in <math>\left[\frac{x(n)}{d(n-1)}\right]$

The new information is the forward prediction error in estimating [2000) don-13] using X(n-1). Note that A(n), the forward predictor is now a matrix containing N+M+1 rows and 2 Columns. Thus

Set $E_{ang}(n)$ correspond to the coefficients associated with $\begin{bmatrix} z(n) \\ d(n-1) \end{bmatrix}$. That is $\underbrace{X(n-1)}$

$$\frac{1}{aug} = \frac{\lambda}{k} \frac{T}{n} \left[\frac{2(n)}{d(n-1)} \right]$$

$$\frac{1}{aug} \left[\frac{\lambda}{\chi(n-1)} \right]$$

$$= \underbrace{k}_{ang}^{T}(n) \underbrace{T}_{I}^{T} \underbrace{J}_{d(n-1)} \underbrace{X(n-1)}_{X(n-1)}$$

$$= \underbrace{k}_{ang}^{T}(n) \underbrace{T}_{I}^{T} \underbrace{X(n-1)}_{Ang}^{T}$$

$$= \underbrace{k}_{ang}^{T}(n) \underbrace{J}_{I}^{T} \underbrace{X(n-1)}_{Ang}^{T}$$

kang)

Which implies that

 $k_{ang}(n) = I_1 k_{ang}(n)$

Let

$$\eta(n) = \begin{bmatrix} \alpha(n) \\ d(n-1) \end{bmatrix} - \underline{A}^{T}(n-1) \times (n-1)$$

It is not difficult to show that

$$\underline{A}(n) = \underline{A}(n-1) + \underline{k}(n-1) \gamma^{T}(n)$$

Going back to Substituting this result in A) on page 2, we get

$$\frac{K}{\text{aug}}(n) \quad J_{1}^{T} \underline{X}_{\text{ang}}(n) = \underline{K}(n-1) \underline{X}(n-1) + \underline{\ell}(n) \\
\left(\begin{bmatrix} \underline{\alpha}(n) \\ \underline{d}(n-1) \end{bmatrix} - \underline{A}^{T}(n) \underline{\alpha} \underline{X}(n-1) \right)$$

 $= \begin{bmatrix} e(n) \\ k(n-i) - A(n)e(n) \end{bmatrix} J_1 \underbrace{X}_{ang}(n)$ implying that $\underline{k}_{ang}(n) = \underline{J}_{1} \left(\underline{k}(n-1) - \underline{A}(n) \underline{f}(n) \right)$ The two-element coefficient vector YP(n) has yet to be calculated. I (n) will have the form $f(n) = \alpha(n)f(n)$ where $f(n) = (a(n)) - A(n) \times (n-1)$ and $\chi(n) = \lambda \underline{\chi}(n-1) + f(n) \eta^{T}(n)$ (The derivation of this part is similar to the scalar case) To do the update for k(n), we proceed in a Similar way. $\Rightarrow \left[\frac{1}{\text{ang}}(n) = \frac{1}{\text{k}}(n) \times (n) + \frac{1}{\text{k}}(n) \left[\frac{1}{\text{k}}(n-M-1) - \frac{1}{\text{k}}(n) \times (n) \right] \right]$ Where we have to derive an expression for 500) and G(n) is given by $G(n) = G(n-1) + k(n) p^{T}(n)$

$$\oint(n) = \left[\frac{\chi(n-M-i)}{d(n-N-i)}\right] - \underbrace{G}(n-i) \underline{\chi}(n)$$

Rearranging terms in B,

$$\widehat{1}_{aug}(m) = \underbrace{k}_{aug}(n) \left[\underbrace{X(n)}_{x(n-M-1)} \right]$$

$$= \begin{bmatrix} k(n) & -G(n) & T \\ & & \end{bmatrix}$$

$$= \begin{bmatrix} k(n) & -G(n) & T \\ & & \end{bmatrix}$$

$$= \begin{bmatrix} 1 & X_{ang}(n) \\ & & \end{bmatrix}$$

$$= \frac{1}{k} \left[\frac{k(n) - G(n) \cdot S(n)}{G(n)} \right]$$

We find k(n) by first rearranging kang(n) calculated earlier using $\overline{J_2}$ as

$$\hat{k}_{aug}(n) = J_2^T k_{aug}(n)$$

Last two elements of Eary (n). Then

	Since we need k(n) to solve for update G(n) and G(n) to update k(n), we must simultaneously solve for k(n) and G(n). We write the two
Ø ⇒	$k(n) - G(n) = k_{ang}(n)$
	$-\underline{k}(n)\underline{\phi}^{T}(n) + G(n) = \underline{G}(n-1)$
	Post-maltiplying the last equation with 5(n), we get
⑤ →	$-\frac{1}{2}(n)\phi^{T}(n)\phi^{T}(n)+\frac{1}{2}(n)\phi^{T}($
	Adding @ and D we get
	$\underline{k}(n)\left(1-\phi^{T}(n)\zeta(n)\right) = \underline{\hat{k}}_{ang}(n) - \underline{G}(n-1)\zeta(n)$
	This gives
	k(n) = kang(n) - kang(n)
	(1- \$ (n) {(n)}
	We now have all the en relationships needed to
	update the equation error, LS IIR filter. The
	equations are tabulated on the next page.
	the grest of the questions can be answered as we discussed in class.

$$\frac{\gamma(n)}{\Delta(n-1)} = \begin{bmatrix} \frac{\alpha(n-1)}{\Delta(n-1)} \end{bmatrix} - \underbrace{A^{T}(n-1)} \underbrace{X(n-1)}$$

$$\underline{A(n)} = \underbrace{A(n-1)} + \underbrace{K(n-1)} \underbrace{\gamma^{T}(n)}$$

$$\underline{f(n)} = \begin{bmatrix} \frac{\alpha(n-1)}{\Delta(n-1)} \end{bmatrix} - \underbrace{A^{T}(n)} \underbrace{X(n-1)}$$

$$\underline{A(n)} = \underbrace{A^{T}(n-1)} + \underbrace{\gamma(n)} \underbrace{f^{T}(n)}$$

$$\underline{C(n)} = \underbrace{A^{T}(n)} \underbrace{f^{T}(n)}$$

$$\underline{C(n)} = \underbrace{A^{T}(n)} \underbrace{f^{T}(n)}$$

$$\underline{C(n)} = \underbrace{A^{T}(n)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n)} = \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n-1)} = \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n)} = \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n-1)} = \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n-1)} = \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n-1)} = \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)} - \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)}$$

$$\underline{C(n)} = \underbrace{A^{T}(n-1)} + \underbrace{K_{ang}(n)} + \underbrace{K_{ang}(n)} - \underbrace{A^{T}(n-1)} \underbrace{K_{ang}(n)} + \underbrace{K_{ang}(n)$$

Set
$$\frac{R}{R} = \begin{bmatrix} r_{00} & P^{T} \\ P & R' \end{bmatrix}$$

where r_{00} is the first entry of R, P^{T} represents
the first row without the first element and R' denstes the matrix obtained by removing the
first row and first column of R.

Then
$$\left[-W(m) \right] = r_{00} - 2W^{T}(m)p + W^{T}(m)R^{T}W^{T}(m)$$

$$\frac{\partial J(n)}{\partial W(n)} = \left\{ \left(\frac{1}{100} - 2 \underline{W}(n) \underline{P} + \underline{W}(n) \underline{R}' \underline{W}(n) \right) \left(-2 \underline{P} + 2 \underline{R}' \underline{W}(n) \right) \right\}$$

$$= \left\{ \left(\frac{1}{100} \underline{M}(n) - 2 \underline{M}'(n) \underline{M}(n) \right) \left(-2 \underline{P} + 2 \underline{R}' \underline{M}(n) \right) \right\}$$

$$= -\frac{2 e(n) \chi(n)}{\left(-\frac{1}{W(n)}\right)^T R\left(-\frac{1}{W(n)}\right)} - \frac{2e^2(n) \left(\frac{R'W(n) - P}{R'W(n)}\right)}{\left(\frac{1}{W(n)}\right)^T R\left(-\frac{1}{W(n)}\right)^T R\left(-\frac{1}{W(n)}\right)}$$

Let
$$\overline{e}(n) = \frac{e(n)}{\left(-\underline{w}(n)\right)^T R\left(-\underline{w}(n)\right)}$$

Then
$$T(n) = -2\overline{e}(m)X(n) - \overline{e}^{2}(n)\left(\underline{R}'\underline{W}(n) - \underline{P}\right)$$

$$\underline{W(n+i)} = \underline{W(n)} + \mu \in (n) \left\{ \underline{X(n)} + \underline{e(n)} \left(\underline{R(M(n)} - \underline{P} \right) \right\}$$