Machine Learning Assignment 1 Linear Models & Kernel Method

Submission deadline: October 26, 2023.

Problem 1. Ridge Regression (15 points).

In a regression task, we have vectors $\boldsymbol{x} \in \mathbb{R}^D$, target values $y \in \mathbb{R}$ associated with them, and some model $f(\boldsymbol{x}) : \mathbb{R}^D \to \mathbb{R}$ to predict the target values for arbitrary vectors in \mathbb{R}^D .

Suppose we have a training dataset $\{\Phi, t\}$, where $\Phi_{N \times D}$ is the design matrix in which each row is a feature vector $\phi(x)$ of a training point x, $t_{N \times 1}$ is the vector with target values for the training points. N is the number of points in the training dataset, D is the dimensionality of the feature space. Suppose that each entry in the last column of Φ is equal to 1.

Derive the closed form solution for the optimal parameters of a ridge regression model:

$$f(\boldsymbol{x}) = \boldsymbol{w}^T \phi(\boldsymbol{x})$$

The optimal parameters give the minimum to the following loss function:

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\boldsymbol{x}_n) - t_n)^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

Here $\|\cdot\|$ is the Euclidean norm of a vector; $\phi(\boldsymbol{x}_n)$ and t_n are n-th rows of Φ and \boldsymbol{t} respectively.

Problem 2. Feature engineering (10 points).

Suppose you have the following set S of 2D points, $S_n = (x_n^{(1)}, x_n^{(2)})$

Color denotes the class attribution of a point: blue points belong to the class C_1 , yellow points belong to the class C_2 . Propose the new features for points in S based on $x^{(1)}$ and $x^{(2)}$. In this new feature space, classes C_1 and C_2 should be linearly separable.

Problem 3. Kernel functions (12 points).

Consider the following function $f: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

$$f(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{x} \boldsymbol{x}^T \boldsymbol{y} \boldsymbol{y}^T \boldsymbol{y}$$

Prove that f is a valid kernel or prove the opposite.

The only rules allowed to use without a proof:

 $k: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ is a valid kernel if

$$egin{aligned} k(oldsymbol{x},oldsymbol{y}) &= ck_1(oldsymbol{x},oldsymbol{y}) \ k(oldsymbol{x},oldsymbol{y}) &= k_1(oldsymbol{x},oldsymbol{y}) + k_2(oldsymbol{x},oldsymbol{y}) \ k(oldsymbol{x},oldsymbol{y}) &= oldsymbol{x}^T A oldsymbol{y} \ k(oldsymbol{x},oldsymbol{y}) &= k_3(\phi(oldsymbol{x}),\phi(oldsymbol{y})) \end{aligned}$$

where k_1 and k_2 are valid kernels in \mathbb{R}^D , c > 0 is a constant, ϕ is a function from \mathbb{R}^D to \mathbb{R}^M , k_3 is a valid kernel in \mathbb{R}^M , A is a symmetric positive semidefinite matrix.

Problem 4. SVM (15 points).

Consider the following training data.

Class	x_1	x_2
+	1	1
+	2	2
+	2	0
_	1	-1
_	-1	0
_	0	1

- 1. Plot the six training points. Are the classes $\{+,-\}$ linearly separable?
- 2. Construct the weight vector of the maximum margin hyperplane by inspection and identify the support vectors.
- 3. If you remove one of the support vectors does the size of the optimal margin decrease, stay the same, or increase?
- 4. Is your answer to (3) also true for any dataset? Provide a counterexample or give a short proof.