Nonhomogeneous LDE Undetermined Coefficients

Dr. Md. Manirul Alam Sarker Professor Dept. of Mathematics, BUET

INTRODUCTION To solve a nonhomogeneous linear differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = g(x),$$
 (1)

we must do two things:

- find the complementary function y_c and
- find any particular solution y_p of the nonhomogeneous equation (1).

Then, as was discussed in Section 4.1, the general solution of (1) is $y = y_c + y_p$. The complementary function y_c is the general solution of the associated homogeneous DE of (1), that is,

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0.$$

Method of Undetermined Coefficient The first of two ways we shall consider for obtaining a particular solution y_p for a nonhomogeneous linear DE is called the **method of undetermined coefficients** The underlying idea behind this method is a conjecture about the form of y_p , an educated guess really, that is motivated by the kinds of functions that make up the input function g(x). The general method is limited to linear DEs such as (1) where

- the coefficients a_i , i = 0, 1, ..., n are constants and
- g(x) is a constant k, a polynomial function, an exponential function e^{αx}, a sine or cosine function sin βx or cos βx, or finite sums and products of these functions.

Note Strictly speaking, g(x) = k (constant) is a polynomial function. Since a constant function is probably not the first thing that comes to mind when you think of polynomial functions, for emphasis we shall continue to use the redundancy "constant functions, polynomials,"

That is, g(x) is a linear combination of functions of the type

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$
 $P(x) e^{\alpha x}, P(x) e^{\alpha x} \sin \beta x,$ and $P(x) e^{\alpha x} \cos \beta x,$

where n is a nonnegative integer and α and β are real numbers. The method of undetermined coefficients is not applicable to equations of form (1) when

$$g(x) = \ln x$$
, $g(x) = \frac{1}{x}$, $g(x) = \tan x$, $g(x) = \sin^{-1}x$,

and so on. Differential equations in which the input g(x) is a function of this last kind will be considered in Section 4.6.

EXAMPLE 1 General Solution Using Undetermined Coefficient

Solve
$$y'' + 4y' - 2y = 2x^2 - 3x + 6$$
. (2)

SOLUTION Step 1. We first solve the associated homogeneous equation y'' + 4y' - 2y = 0. From the quadratic formula we find that the roots of the auxiliary equation $m^2 + 4m - 2 = 0$ are $m_1 = -2 - \sqrt{6}$ and $m_2 = -2 + \sqrt{6}$. Hence the complementary function is

$$y_c = c_1 e^{-(2+\sqrt{6})x} + c_2 e^{(-2+\sqrt{6})x}.$$

Step 2. Now, because the function g(x) is a quadratic polynomial, let us assume a particular solution that is also in the form of a quadratic polynomial:

$$y_p = Ax^2 + Bx + C.$$

We seek to determine *specifi* coefficients A, B, and C for which y_p is a solution of (2). Substituting y_p and the derivatives

$$y_p' = 2Ax + B$$
 and $y_p'' = 2A$

into the given differential equation (2), we get

$$y_p'' + 4y_p' - 2y_p = 2A + 8Ax + 4B - 2Ax^2 - 2Bx - 2C = 2x^2 - 3x + 6.$$

Because the last equation is supposed to be an identity, the coefficients of like powers of x must be equal:

That is, -2A = 2, 8A - 2B = -3, 2A + 4B - 2C = 6.

Solving this system of equations leads to the values A = -1, $B = -\frac{5}{2}$, and C = -9. Thus a particular solution is

$$y_p = -x^2 - \frac{5}{2}x - 9.$$

Step 3. The general solution of the given equation is

$$y = y_c + y_p = c_1 e^{-(2+\sqrt{6})x} + c_2 e^{(-2+\sqrt{6})x} - x^2 - \frac{5}{2}x - 9.$$

EXAMPLE 2

Particular Solution Using Undetermined Coefficient

Find a particular solution of $y'' - y' + y = 2 \sin 3x$.

SOLUTION A natural first guess for a particular solution would be $A \sin 3x$. But because successive differentiations of $\sin 3x$ produce $\sin 3x$ and $\cos 3x$, we are prompted instead to assume a particular solution that includes both of these terms:

$$y_p = A \cos 3x + B \sin 3x$$
.

Differentiating y_p and substituting the results into the differential equation gives, after regrouping,

$$y_p'' - y_p' + y_p = (-8A - 3B)\cos 3x + (3A - 8B)\sin 3x = 2\sin 3x$$

or

 $-8A - 3B \cos 3x + 3A - 8B \sin 3x = 0 \cos 3x + 2 \sin 3x.$

2/24/2022 11:29 PM

From the resulting system of equations,

$$-8A - 3B = 0$$
, $3A - 8B = 2$,

we get $A = \frac{6}{73}$ and $B = -\frac{16}{73}$. A particular solution of the equation is

$$y_p = \frac{6}{73}\cos 3x - \frac{16}{73}\sin 3x.$$

As we mentioned, the form that we assume for the particular solution y_p is an educated guess; it is not a blind guess. This educated guess must take into consideration not only the types of functions that make up g(x) but also, as we shall see in Example 4, the functions that make up the complementary function y_c .

EXAMPLE 3

Forming y_p by Superposition

Solve
$$y'' - 2y' - 3y = 4x - 5 + 6xe^{2x}$$
. (3)

SOLUTION Step 1. First, the solution of the associated homogeneous equation y'' - 2y' - 3y = 0 is found to be $y_c = c_1 e^{-x} + c_2 e^{3x}$.

Step 2. Next, the presence of 4x - 5 in g(x) suggests that the particular solution includes a linear polynomial. Furthermore, because the derivative of the product xe^{2x} produces $2xe^{2x}$ and e^{2x} , we also assume that the particular solution includes both xe^{2x} and e^{2x} . In other words, g is the sum of two basic kinds of functions:

$$g(x) = g_1(x) + g_2(x) = polynomial + exponentials.$$

Correspondingly, the superposition principle for nonhomogeneous equations (Theorem 4.1.7) suggests that we seek a particular solution

$$y_p = y_{p_1} + y_{p_2},$$

where $y_{p_1} = Ax + B$ and $y_{p_2} = Cxe^{2x} + Ee^{2x}$. Substituting

$$y_p = Ax + B + Cxe^{2x} + Ee^{2x}$$

into the given equation (3) and grouping like terms gives

$$y_p'' - 2y_p' - 3y_p = -3Ax - 2A - 3B - 3Cxe^{2x} + (2C - 3E)e^{2x} = 4x - 5 + 6xe^{2x}.$$
 (4)

From this identity we obtain the four equations

$$-3A = 4$$
, $-2A - 3B = -5$, $-3C = 6$, $2C - 3E = 0$.

The last equation in this system results from the interpretation that the coefficient of e^{2x} in the right member of (4) is zero. Solving, we find $A = -\frac{4}{3}$, $B = \frac{23}{9}$, C = -2, and $E = -\frac{4}{3}$. Consequently,

$$y_p = -\frac{4}{3}x + \frac{23}{9} - 2xe^{2x} - \frac{4}{3}e^{2x}.$$

Step 3. The general solution of the equation is

$$y = c_1 e^{-x} + c_2 e^{3x} - \frac{4}{3}x + \frac{23}{9} - \left(2x + \frac{4}{3}\right)e^{2x}.$$

EXAMPLE 4

A Glitch in the Method

Find a particular solution of $y'' - 5y' + 4y = 8e^x$.

SOLUTION Differentiation of e^x produces no new functions. Therefore proceeding as we did in the earlier examples, we can reasonably assume a particular solution of the form $y_p = Ae^x$. But substitution of this expression into the differential equation yields the contradictory statement $0 = 8e^x$, so we have clearly made the wrong guess for y_p .

The difficulty here is apparent on examining the complementary function $y_c = c_1 e^x + c_2 e^{4x}$. Observe that our assumption Ae^x is already present in y_c . This means that e^x is a solution of the associated homogeneous differential equation, and a constant multiple Ae^x when substituted into the differential equation necessarily produces zero.

What then should be the form of y_p ? Inspired by Case II of Section 4.3, let's see whether we can find a particular solution of the form

$$y_p = Axe^x$$
.

Substituting $y'_p = Axe^x + Ae^x$ and $y''_p = Axe^x + 2Ae^x$ into the differential equation and simplifying gives

$$y_p'' - 5y_p' + 4y_p = -3Ae^x = 8e^x.$$

From the last equality we see that the value of A is now determined as $A = -\frac{8}{3}$. Therefore a particular solution of the given equation is $y_p = -\frac{8}{3}xe^x$.

In Table 4.4.1 we illustrate some specific examples of g(x) in (1) along with the corresponding form of the particular solution. We are, of course, taking for granted that no function in the assumed particular solution y_p is duplicated by a function in the complementary function y_c .

TABLE 4.4.1 Trial Particular Solutions

g(x)	Form of y_p
1. 1 (any constant)	A
2. $5x + 7$	Ax + B
3. $3x^2 - 2$	$Ax^2 + Bx + C$
4. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5. $\sin 4x$	$A\cos 4x + B\sin 4x$
6. $\cos 4x$	$A\cos 4x + B\sin 4x$
7. e^{5x}	Ae^{5x}
8. $(9x - 2)e^{5x}$	$(Ax + B)e^{5x}$
9. x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11. $5x^2 \sin 4x$	$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
12. $xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

Form Rule for Case I The form of y_p is a linear combination of all linearly independent functions that are generated by repeated differentiations of g(x).

EXAMPLE 5

Forms of Particular Solutions — Case I

Determine the form of a particular solution of

(a)
$$y'' - 8y' + 25y = 5x^3e^{-x} - 7e^{-x}$$
 (b) $y'' + 4y = x \cos x$

$$\mathbf{(b)} \ y'' + 4y = x \cos x$$

SOLUTION (a) We can write $g(x) = (5x^3 - 7)e^{-x}$. Using entry 9 in Table 4.4.1 as a model, we assume a particular solution of the form

$$y_p = (Ax^3 + Bx^2 + Cx + E)e^{-x}.$$

Note that there is no duplication between the terms in y_p and the terms in the complementary function $y_c = e^{4x}(c_1 \cos 3x + c_2 \sin 3x)$.

(b) The function $g(x) = x \cos x$ is similar to entry 11 in Table 4.4.1 except, of course, that we use a linear rather than a quadratic polynomial and cos x and sin x instead of $\cos 4x$ and $\sin 4x$ in the form of y_p :

$$y_p = (Ax + B)\cos x + (Cx + E)\sin x.$$

Again observe that there is no duplication of terms between y_p $y_c = c_1 \cos 2x + c_2 \sin 2x.$

EXAMPLE 5

Forms of Particular Solutions — Case I

Determine the form of a particular solution of

(a)
$$y'' - 8y' + 25y = 5x^3e^{-x} - 7e^{-x}$$
 (b) $y'' + 4y = x \cos x$

SOLUTION (a) We can write $g(x) = (5x^3 - 7)e^{-x}$. Using entry 9 in Table 4.4.1 as a model, we assume a particular solution of the form

$$y_p = (Ax^3 + Bx^2 + Cx + E)e^{-x}.$$

Note that there is no duplication between the terms in y_p and the terms in the complementary function $y_c = e^{4x}(c_1 \cos 3x + c_2 \sin 3x)$.

(b) The function $g(x) = x \cos x$ is similar to entry 11 in Table 4.4.1 except, of course, that we use a linear rather than a quadratic polynomial and $\cos x$ and $\sin x$ instead of $\cos 4x$ and $\sin 4x$ in the form of y_p :

$$y_p = (Ax + B)\cos x + (Cx + E)\sin x.$$

Again observe that there is no duplication of terms between y_p and $y_c = c_1 \cos 2x + c_2 \sin 2x$.

If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in Example 3) the assumption for a particular solution y_p consists of the sum of the trial forms $y_{p_1}, y_{p_2}, \ldots, y_{p_m}$ corresponding to these terms:

$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_m}$$

EXAMPLE 6

Forming y_p by Superposition—Case I

Determine the form of a particular solution of

$$y'' - 9y' + 14y = 3x^2 - 5\sin 2x + 7xe^{6x}.$$

SOLUTION

Corresponding to $3x^2$ we assume $y_{p_1} = Ax^2 + Bx + C$.

Corresponding to $-5 \sin 2x$ we assume $y_{p_2} = E \cos 2x + F \sin 2x$.

Corresponding to $7xe^{6x}$ we assume $y_{p_3} = (Gx + H)e^{6x}$.

The assumption for the particular solution is then

$$y_p = y_{p_1} + y_{p_2} + y_{p_3} = Ax^2 + Bx + C + E\cos 2x + F\sin 2x + (Gx + H)e^{6x}$$
.

No term in this assumption duplicates a term in $y_c = c_1 e^{2x} + c_2 e^{7x}$.

In Problems 1–26 solve the given differential equation by undetermined coefficients.

1.
$$y'' + 3y' + 2y = 6$$

2.
$$4y'' + 9y = 15$$

3.
$$y'' - 10y' + 25y = 30x + 3$$

4.
$$y'' + y' - 6y = 2x$$

5.
$$\frac{1}{4}y'' + y' + y = x^2 - 2x$$

6.
$$y'' - 8y' + 20y = 100x^2 - 26xe^x$$

7.
$$y'' + 3y = -48x^2e^{3x}$$

8.
$$4y'' - 4y' - 3y = \cos 2x$$

9.
$$y'' - y' = -3$$

10.
$$y'' + 2y' = 2x + 5 - e^{-2x}$$

Thanks a lot ...