Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

• $f^{-1}(f(x)) = x$ for all x in the domain of f.

Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

- $f^{-1}(f(x)) = x$ for all x in the domain of f.
- $f(f^{-1}(y)) = y$ for all x in the domain of f^{-1} .

Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

- $f^{-1}(f(x)) = x$ for all x in the domain of f.
- $f(f^{-1}(y)) = y$ for all x in the domain of f^{-1} .

If
$$f(x) = 2x$$
, then $f^{-1}(x) =$

Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

- $f^{-1}(f(x)) = x$ for all x in the domain of f.
- $f(f^{-1}(y)) = y$ for all x in the domain of f^{-1} .

If
$$f(x) = 2x$$
, then $f^{-1}(x) = \frac{x}{2}$.

Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

- $f^{-1}(f(x)) = x$ for all x in the domain of f.
- $f(f^{-1}(y)) = y$ for all x in the domain of f^{-1} .

If
$$f(x) = 2x$$
, then $f^{-1}(x) = \frac{x}{2}$.
If $f(x) = \frac{x}{5} - 7$, then $f^{-1}(x) = \frac{x}{2}$

Recall that for a function f, it's inverse function f^{-1} is a function that "undoes" what f did. Or in other words:

- $f^{-1}(f(x)) = x$ for all x in the domain of f.
- $f(f^{-1}(y)) = y$ for all x in the domain of f^{-1} .

If
$$f(x) = 2x$$
, then $f^{-1}(x) = \frac{x}{2}$.
If $f(x) = \frac{x}{5} - 7$, then $f^{-1}(x) = (x + 7) \cdot 5$.

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

$$AA^{-1} = I_n$$

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $AA^{-1} = I_n$
- $A^{-1}A = I_n$

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $AA^{-1} = I_n$
- $ightharpoonup A^{-1}A = I_n$

Example

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

▶ What is *A*?

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $AA^{-1} = I_n$
- $ightharpoonup A^{-1}A = I_n$

Example

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

▶ What is A? Vertical expansion by factor of 5.

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $ightharpoonup AA^{-1} = I_n$
- $A^{-1}A = I_n$

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

- ▶ What is A? Vertical expansion by factor of 5.
- ► How do we undo *A*?

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $AA^{-1} = I_n$
- $ightharpoonup A^{-1}A = I_n$

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

- ▶ What is A? Vertical expansion by factor of 5.
- ▶ How do we undo A? Vertical compression by factor of 5.

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $AA^{-1} = I_n$
- $ightharpoonup A^{-1}A = I_n$

Example

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

- ▶ What is A? Vertical expansion by factor of 5.
- ▶ How do we undo A? Vertical compression by factor of 5.

So:

Let $A \in \mathbb{R}^{n \times n}$. The inverse matrix if it exists, is denoted A^{-1} and is the unique matrix such that:

- $AA^{-1} = I_n$
- $A^{-1}A = I_n$

Example

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

- ▶ What is A? Vertical expansion by factor of 5.
- ▶ How do we undo A? Vertical compression by factor of 5.

So:

$$A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$$

Definition

Elementary Matrices: An elementary matrix is one attainable by performing one row operation on an identity matrix.

Definition

Elementary Matrices: An elementary matrix is one attainable by performing one row operation on an identity matrix.

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$

Definition

Elementary Matrices: An elementary matrix is one attainable by performing one row operation on an identity matrix.

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Definition

Elementary Matrices: An elementary matrix is one attainable by performing one row operation on an identity matrix.

Example

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

We can also find E_2^{-1} and E_3^{-1} !

Definition

Elementary Matrices: An elementary matrix is one attainable by performing one row operation on an identity matrix.

Example

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

We can also find E_2^{-1} and E_3^{-1} !

$$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Definition

Elementary Matrices: An elementary matrix is one attainable by performing one row operation on an identity matrix.

Example

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

We can also find E_2^{-1} and E_3^{-1} !

$$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_2^{-1}E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_2^{-1}E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Recall

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Are we done?

Recall

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_{2}^{-1}E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \checkmark$$

Are we done? No! Need to show $E_2E_2^{-1}=I_3!$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{2}E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{2}E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \checkmark$$

Inverse Properties

Let $A,B\in\mathbb{R}^{n\times n}$ such that both are invertible. Then we know that

Inverse Properties

Let $A, B \in \mathbb{R}^{n \times n}$ such that both are invertible. Then we know that

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1}$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1}$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1}$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1}$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1}$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

$$B^{-1}A^{-1}(AB)$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

$$B^{-1}A^{-1}(AB) = B(AA^{-1})B^{-1}$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

$$B^{-1}A^{-1}(AB) = B(AA^{-1})B^{-1} = B(I_n)B^{-1}$$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

$$B^{-1}A^{-1}(AB) = B(AA^{-1})B^{-1} = B(I_n)B^{-1}$$

= $(BI_n)B^{-1}$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

$$B^{-1}A^{-1}(AB) = B(AA^{-1})B^{-1} = B(I_n)B^{-1}$$

= $(BI_n)B^{-1} = BB^{-1}$

- $ightharpoonup A^{-1}$ is invertible and $(A^{-1})^{-1} = A$
- ► AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$A^{-1}A = I_n$$

$$AA^{-1} = I_n$$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$$

= $(AI_n)A^{-1} = AA^{-1} = I_n$

$$B^{-1}A^{-1}(AB) = B(AA^{-1})B^{-1} = B(I_n)B^{-1}$$

= $(BI_n)B^{-1} = BB^{-1} = I_n$

$$\left(A^{\top}\right)^{-1} = \left(A^{-1}\right)^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$${\it A}^{ op}\left({\it A}^{-1}
ight)^{ op}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} \left(A^{-1}
ight)^{\top} = \left(A
ight)^{\top} \left(A^{-1}
ight)^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} \left(A^{-1} \right)^{\top} = \left(A \right)^{\top} \left(A^{-1} \right)^{\top} = \left(A^{-1} A \right)^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} \left(A^{-1} \right)^{\top} = \left(A \right)^{\top} \left(A^{-1} \right)^{\top} = \left(A^{-1} A \right)^{\top} = I_n^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} (A^{-1})^{\top} = (A)^{\top} (A^{-1})^{\top} = (A^{-1}A)^{\top} = I_n^{\top} = I_n$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} (A^{-1})^{\top} = (A)^{\top} (A^{-1})^{\top} = (A^{-1}A)^{\top} = I_n^{\top} = I_n$$

$$(A^{-1})^{\top} A^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} (A^{-1})^{\top} = (A)^{\top} (A^{-1})^{\top} = (A^{-1}A)^{\top} = I_n^{\top} = I_n$$

$$(A^{-1})^{\top} A^{\top} = (A^{-1})^{\top} (A)^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} (A^{-1})^{\top} = (A)^{\top} (A^{-1})^{\top} = (A^{-1}A)^{\top} = I_n^{\top} = I_n$$

$$(A^{-1})^{\top} A^{\top} = (A^{-1})^{\top} (A)^{\top} = (AA^{-1})^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} (A^{-1})^{\top} = (A)^{\top} (A^{-1})^{\top} = (A^{-1}A)^{\top} = I_n^{\top} = I_n$$

$$(A^{-1})^{\top} A^{\top} = (A^{-1})^{\top} (A)^{\top} = (AA^{-1})^{\top} = I_n^{\top}$$

$$\left(A^{ op}
ight)^{-1} = \left(A^{-1}
ight)^{ op}$$

$$A^{\top} (A^{-1})^{\top} = (A)^{\top} (A^{-1})^{\top} = (A^{-1}A)^{\top} = I_n^{\top} = I_n$$

$$\left(A^{-1}\right)^{\top}A^{\top}=\left(A^{-1}\right)^{\top}\left(A\right)^{\top}=\left(AA^{-1}\right)^{\top}=I_{n}^{\top}=I_{n}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

1.
$$R_2 = R_2 - 2R_3$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

1.
$$R_2 = R_2 - 2R_3$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix},$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix},$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$A = E_3 E_2 E_1$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$\begin{array}{lll}
E_{R_3} \\
d R_2
\end{array}
\qquad
E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{-1} = E_1^{-1} E_2^{-1} E_3^{-1}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2

$$E_1 =$$

$$E_1 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2 = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}, E_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 5 \end{bmatrix}$$

3.
$$R_3 = 5R_3$$
.

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2
- 3. $R_3 = 5R_3$.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Write A as a product of elementary matrices.

- 1. $R_2 = R_2 2R_3$
- 2. Swap R_1 and R_2

$$E_1 =$$

$$E_1 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}, E_2 = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}, E_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 5 \end{bmatrix}$$

3. $R_3 = 5R_3$.

$$A = E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & \frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$

We can perform Gaussian Elimination on $[A \mid I_n]!$

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

 $ightharpoonup \left[A \mid I_n \right]$ is row equivalent to $\left[I_n \mid A^{-1} \right]$

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

- $ightharpoonup \left[\begin{array}{c|c} A & I_n \end{array} \right]$ is row equivalent to $\left[\begin{array}{c|c} I_n & A^{-1} \end{array} \right]$
- ▶ Otherwise, A^{-1} doesn't exist!

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

- $ightharpoonup \left[A \mid I_n \right]$ is row equivalent to $\left[I_n \mid A^{-1} \right]$
- ightharpoonup Otherwise, A^{-1} doesn't exist!

$$[A \mid I_n]$$

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

- $ightharpoonup \left[A \mid I_n \right]$ is row equivalent to $\left[I_n \mid A^{-1} \right]$
- ▶ Otherwise, A^{-1} doesn't exist!

$$\left[\begin{array}{c|cccc}A & I_n\end{array}\right] = \left[\begin{array}{ccccc}0 & 1 & -2 & 1 & 0 & 0\\1 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right]$$

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

- $ightharpoonup \left[A \mid I_n \right]$ is row equivalent to $\left[I_n \mid A^{-1} \right]$
- ightharpoonup Otherwise, A^{-1} doesn't exist!

$$\left[\begin{array}{c|cccc}A \mid I_n\end{array}\right] = \left[\begin{array}{ccccc}0 & 1 & -2 & 1 & 0 & 0\\1 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow \left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 1 & 0\\0 & 1 & -2 & 1 & 0 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right]$$

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

- ▶ Otherwise, A^{-1} doesn't exist!

$$\left[\begin{array}{c|ccccc}A & I_n\end{array}\right] = \left[\begin{array}{cccccc}0 & 1 & -2 & 1 & 0 & 0\\1 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow \left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & 1 & 0\\0 & 1 & -2 & 1 & 0 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow \left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & 1 & 0\\0 & 1 & -2 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & \frac{1}{5}\end{array}\right]$$

We can perform Gaussian Elimination on $[A \mid I_n]!$ If A is row equivalent to I_n (IE we reduce the left part to I_n), then

- ▶ Otherwise, A^{-1} doesn't exist!

$$\left[\begin{array}{c|ccccc}A & I_n\end{array}\right] = \left[\begin{array}{cccccc}0 & 1 & -2 & 1 & 0 & 0\\1 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow \left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & 1 & 0\\0 & 1 & -2 & 1 & 0 & 0\\0 & 0 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow \left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & 1 & 0\\0 & 1 & -2 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & \frac{1}{5}\end{array}\right]$$

$$\rightarrow \left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & \frac{2}{5} \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{5} \end{array}\right]$$

How to Compute A^{-1} Practice 3×3

If possible, find the inverse of the given matrices.

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \\ -4 & 0 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 1 & -3 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_1} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 1 & -3 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_1} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = -\frac{R_2}{2}} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$A = egin{bmatrix} 1 & 0 & 3 \ 0 & -2 & -2 \ 1 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 1 & -3 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_1} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = -\frac{R_2}{2}} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{R_3 = R_3 + 3R_2} \left[\begin{array}{ccc|ccc|c} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -1 & -\frac{3}{2} & 1 \end{array} \right]$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 1 & -3 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_1} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = -\frac{R_2}{2}} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{R_3 = R_3 + 3R_2} \left[\begin{array}{ccc|ccc|c} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -1 & -\frac{3}{2} & 1 \end{array} \right] \xrightarrow{R_2 = R_2 - R_3} \left[\begin{array}{cccc|c} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & -\frac{3}{2} & 1 \end{array} \right]$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 1 & -3 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_1} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & 1 & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = -\frac{R_2}{2}} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{R_3 = R_3 + 3R_2} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -1 & -\frac{3}{2} & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - R_3} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & -\frac{3}{2} & 1 \end{bmatrix}$$

$$\xrightarrow{R_1 - 3R_3} \begin{bmatrix} 1 & 0 & 0 & 4 & \frac{9}{2} & -3 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & -\frac{3}{2} & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \\ -4 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & 1 & 0 \\ -4 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 + 2R_1} \begin{bmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \\ -4 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & 1 & 0 \\ -4 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 + 2R_1} \begin{bmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Can't find the inverse!

How to Compute A^{-1} Practice 2×2

If possible, find the inverse of the given matrices.

$$\begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 6 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - \frac{R_1}{3}} \begin{bmatrix} 3 & 6 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 6 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - \frac{R_1}{3}} \begin{bmatrix} 3 & 6 & 1 & 0 \\ 0 & 0 & -\frac{1}{3} & 1 \end{bmatrix}$$

Can't find the inverse!

$$A = \begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 4 & 1 & 0 \\ -3 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - \frac{3R_1}{2}} \begin{bmatrix} -2 & 4 & 1 & 0 \\ 0 & -5 & -\frac{3}{2} & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 4 & 1 & 0 \\ -3 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - \frac{3R_1}{2}} \begin{bmatrix} -2 & 4 & 1 & 0 \\ 0 & -5 & -\frac{3}{2} & 1 \end{bmatrix} \xrightarrow{R_1 = \frac{-R_1}{2}} \begin{bmatrix} 1 & -2 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{10} & -\frac{1}{5} \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 4 & 1 & 0 \\ -3 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - \frac{3R_1}{2}} \begin{bmatrix} -2 & 4 & 1 & 0 \\ 0 & -5 & -\frac{3}{2} & 1 \end{bmatrix} \xrightarrow{R_1 = \frac{-R_1}{2}} \begin{bmatrix} 1 & -2 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{10} & -\frac{1}{5} \end{bmatrix}$$

$$\xrightarrow{R_1 = R_1 + 2R_2} \begin{bmatrix} 1 & 0 & \frac{1}{10} & -\frac{2}{5} \\ 0 & 1 & \frac{3}{10} & -\frac{1}{5} \end{bmatrix}$$

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

 $A\mathbf{x} = \mathbf{b}$

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \rightarrow A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

1. Write our system as $A\mathbf{x} = \mathbf{b}$.

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

- 1. Write our system as $A\mathbf{x} = \mathbf{b}$.
- 2. find A^{-1}

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

- 1. Write our system as $A\mathbf{x} = \mathbf{b}$.
- 2. find A^{-1}
 - 2.1 If we cannot, then we must use GE as normal

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

- 1. Write our system as $A\mathbf{x} = \mathbf{b}$.
- 2. find A^{-1}
 - 2.1 If we cannot, then we must use GE as normal
 - 2.2 If we can, then continue

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

- 1. Write our system as $A\mathbf{x} = \mathbf{b}$.
- 2. find A^{-1}
 - 2.1 If we cannot, then we must use GE as normal
 - 2.2 If we can, then continue
- 3. Multiply both sides of (1) by A^{-1} .

Let's say we know A^{-1} . How can we solve linear systems like $A\mathbf{x} = \mathbf{b}$?

$$A\mathbf{x} = \mathbf{b} \to A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \to \mathbf{x} = A^{-1}\mathbf{b}$$

This gives us our potential method as

- 1. Write our system as $A\mathbf{x} = \mathbf{b}$.
- 2. find A^{-1}
 - 2.1 If we cannot, then we must use GE as normal
 - 2.2 If we can, then continue
- 3. Multiply both sides of (1) by A^{-1} .
- 4. Solution is $\mathbf{x} = A^{-1}\mathbf{b}$