6 Теорема Рисса-Фишера

Лемма 6.1. Пусть $\{e_k\}_{k=1}^{\infty}$ - ортонормированная система в евклидовом (унитарном) пространстве $u f = \sum_{k=1}^{\infty} c_k e_k$. Тогда $c_k = (f, e_k)$.

Доказательство. По условию $S_N = \sum_{j=1}^N c_j e_j \to f$. Поэтому

$$(f, e_k) = \lim_{N \to \infty} (S_N, e_k) = \lim_{N \to \infty} \left(\sum_{j=1}^N c_j e_j, e_k \right) = \lim_{N \to \infty} c_k = c_k.$$

Лемма доказана.

Теорема 6.1. (Теорема Рисса-Фишера) Пусть $\{e_k\}_{k=1}^{\infty}$ – ортонормированная система в H и $\{c_k\}_{k=1}^{\infty} \in \ell_2$ (то есть ряд $\sum_{k=1}^{\infty} |c_k|^2$ сходится).

Tогда существует такой элемент $g \in H$, что

$$c_k = (g, e_k)$$
 и $\sum_{k=1}^{\infty} |c_k|^2 = ||g||^2$.

Доказательство. Положим $S_n = \sum_{k=1}^n c_k e_k$. Заметим, что для всякого $\varepsilon > 0$ существует $N = N(\varepsilon)$ такое, что

$$||S_{n+p} - S_n||^2 = \sum_{k=n+1}^{n+p} |c_k|^2 < \varepsilon \quad \forall n \geqslant N, \quad \forall p \geqslant 1.$$
 (6.1)

Поэтому последовательность $\{S_n\}_{n=1}^{\infty}$ фундаментальна. Значит, существует элемент

$$g = \lim_{n \to \infty} S_n = \sum_{k=1}^{\infty} c_k e_k.$$

В силу леммы 6.1 $c_k = (g, e_k)$. Равенство Парсеваля для g дает $\sum_{k=1}^{\infty} |c_k|^2 = \|g\|^2$. Теорема доказана.

Следствие 6.1. Пусть $\{e_k\}_{k=1}^{\infty}$ - ортонормированная система в гильбертовом пространстве H. Тогда для всякого элемента $f \in H$ его ряд Фурье $\sum_{k=1}^{\infty} (f, e_k) e_k$ сходится κ некоторому элементу $g \in H$, причем

$$||f - g||^2 = ||f||^2 - \sum_{k=1}^{\infty} |(f, e_k)|^2.$$
 (6.2)

Доказательство. Из неравенства Бесселя следует, что $\{(f,e_k)\}_{k=1}^{\infty}\in \ell_2$. Поэтому в силу теоремы Рисса-Фишера существует элемент $g\in H$ такой, что

$$g = \sum_{k=1}^{\infty} (f, e_k)e_k = \lim_{N \to \infty} S_N(f).$$

Переходя к пределу в равенстве

$$||f - S_N(f)||^2 = ||f||^2 - \sum_{k=1}^N |(f, e_k)|^2,$$

приходим к равенству (6.2).

Следствие доказано.

Следствие 6.2. Пусть $\{e_k\}_{k=1}^{\infty}$ – ортонормированная система в гильбертовом пространстве H. Тогда для $f \in H$ элемент $g = \sum_{k=1}^{\infty} (f, e_k) e_k$ является ортогональной проекцией f на $L = [\operatorname{span}(\{e_k\}_{k=1}^{\infty})]$.

Доказательство. Достаточно увидеть, что $h = f - g \perp L$. Это действительно так, поскольку

$$(h, e_k) = (f, e_k) - (g, e_k) = 0 \quad \forall k \ge 1.$$

Значит

$$\left(h, \sum_{k=1}^{\infty} c_k e_k\right) = \lim_{N \to \infty} \left(h, \sum_{k=1}^{N} c_k e_k\right) = \lim_{N \to \infty} \sum_{k=1}^{N} \overline{c}_k(h, e_k) = 0.$$