Hunter Lybbert Student ID: 2426454 10-28-24 AMATH 567

HOMEWORK 5

Collaborators*:

*Listed in no particular order. And anyone I discussed at least part of one problem with is considered a collaborator.

1: From A&F: 2.6.5

Consider two entire functions with no zeroes and having a ratio equal to unity at infinity. Use Liouville's Theorem to show that they are in fact the same function.

Let's define our two entire functions to be f(z) and g(z). Recall that an entire function is analytic in all of the complex plane. We can focus on the ratio between these two functions $\frac{f(z)}{g(z)}$ since we are also given that f(z) and g(z) have no zeros. Let h(z) be the ratio between f and g

$$h(z) = \frac{f(z)}{g(z)}.$$

If we can use Liouville's theorem to show that h(z) is constant, then f(z) and g(z) are equal everywhere and are thus the same function.

For reference, Liouville's Theorem states that if f(z) is entire and bounded in the z plane (including infinity), then f(z) is a constant. Hence we need to show that h(z)is entire and bounded in the z plane, then h(z) is constant and we will have what we want. We know that the functions f(z) and g(z) are entire. We also know that the function $\frac{1}{z}$ is analytic except when z=0. Since neither f nor g have zeros, then the potential of having 0 in the denominator of h(z) is no longer an issue. Therefore $\frac{1}{z}$, $z \neq 0$ is entire. Therefore h(z) is entire since it is the composition of entire functions.

Now we need to show that h(z) is bounded in the z plane. Since h(z) is entire, then it is analytic interior to and on a simple closed contour C (which we will choose later), then by Theorem 2.6.2, we have

$$h^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi.$$

Now we can use the established inequality (2.6.13 in A & F)

$$\left|h^{(n)}(z)\right| \le \frac{n!M}{R^n}.$$

When n = 1 we have

$$|h'(z)| \le \frac{M}{R}.$$

We can take R to be arbitrarily large to get $|h'(z)| \le 0$ implying h'(z) = 0. Using the fundamental theorem of calculus we can write

$$h(\infty) - h(z) = \int_{z}^{\infty} h'(z) dz = C|_{z}^{\infty} = C - C = 0.$$

This gives $h(\infty) = h(z)$, therefore, by Liouville's Theorem h(z) is constant. From the problem's setup we know $h(\infty) = \frac{f(\infty)}{g(\infty)} = 1$. Hence,

$$h(\infty) = h(z) = 1.$$

Therefore, f(z) and g(z) must be the same function, since their ratio is 1 for all z.

2: From A&F: 2.6.10

... deduce

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\xi)\xi}{\xi - z} d\theta$$

... explain why we have

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\xi)\xi}{\xi - 1/\bar{z}} d\theta$$

... use something to show

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\xi) \left(\frac{\xi}{\xi - z} \pm \frac{\bar{z}}{\xi - \bar{z}} \right) d\theta$$

then ...

Solution:

This is a beast of a problem there are approximately 9 things to show...

3: Suppose Ω is an open simply connected region and $z_0 \in \Omega$. Assume that f(z) is analytic in $\Omega \setminus \{z_0\}$ and satisfies

$$|f(z)| \le M|z - z_0|^{-\gamma}, \quad \gamma < 1.$$

Show that if the a specific choice for $f(z_0)$ is made then f extends to an analytic function on Ω .

(1 part, except maybe if there are multiple things to prove here)
Solution:

4: Establish the following lemma:

Lemma 1

Suppose Ω is an open region and f(z) is continuous on $\overline{\Omega}$. Let Γ be a contour in $\overline{\Omega}$. Suppose a sequence of contours $\Gamma_n \subset \overline{\Omega}$ converge to Γ in the sense that there exists parameterizations z(t) of Γ and $z_n(t)$ of Γ_n defined on [a,b] satisfying

$$z_n(t) \xrightarrow{n \to \infty} z(t)$$
, uniformly on $[a, b]$,

$$z'_n(t) \xrightarrow{n \to \infty} z'(t)$$
, uniformly on $[a, b]$.

Then

$$\int_{\Gamma_n} f(z) dz \stackrel{n \to \infty}{\longrightarrow} \int_{\Gamma} f(z) dz.$$

Hint: Use that f is uniformly continuous on $\overline{\Omega}$.

(1 part, except maybe if there are multiple things to prove here) Solution:

- **5:** for any r, R > 0, let $C = \partial \Sigma$, $\Sigma = \{z \in \mathbb{C} : |\operatorname{Re} z| \le r \text{ and } 0 \le -\operatorname{Im} z \le R, R > 0\}$. In this problem \sqrt{z} denotes the principal branch with $\arg z \in [-\pi, \pi)$.
 - Show that if f(z) is analytic in a region that contains Σ ,

$$\oint_C f(z)\sqrt{z-1}\sqrt{z+1}\mathrm{d}z = 0.$$

(1 part)

Solution:

• Show that if f(z) is analytic in a region that contains Σ

$$\oint_C \frac{f(z)\mathrm{d}z}{\sqrt{z-1}\sqrt{z+1}} = 0.$$

(1 part)

Solution:

6: From A&F: 3.1.1 b,d

In the following we are given sequences. Discuss their limits and whether the convergence is uniform, in the region $\alpha \leq |z| \leq \beta$, for finite $\alpha, \beta > 0$.

$$\left\{\frac{1}{z^n}\right\}_{n=1}^{\infty}$$

(2 parts)

Solution:

$$\left\{\frac{1}{1+(nz)^2}\right\}_{n=1}^{\infty}$$

(2 parts)

Solution:

7: From A&F: 3.1.2 b,d

For each sequence in problem 1, what can be said if

- (a) $\alpha = 0$
- (b) $\alpha > 0$, $\beta = \infty$

(4 parts 2x2) Solution:

8: From A&F: 3.1.3 Compute the integrals

$$\lim_{n \to \infty} \int_0^1 nz^{n-1} dz \quad \text{and} \quad \int_0^1 \lim_{n \to \infty} \left(nz^{n-1} \right) dz$$

and show that they are not equal. Explain why this is not a counter example to Theorem 3.1.1. (A &F pg. 111)

(3 parts) Solution:

There are approximately 25 things to do