Problem F - Game of Words

John is playing a simple words game with his friend. There are 2 password strings, called S_1 and S_2 , that are critical for John online accounts. John won't tell these to his friend, though, because they are too valuable. Instead, he will give out two modified strings, M_1 and M_2 . John goes through two steps to transform the password strings into the modified strings. First, he shuffles the characters within each password string. Then, he picks a single character and replaces it with the next or previous letter in the alphabet.

John is interested in measuring how different the modified strings M_1 and M_2 are from the original strings S_1 and S_2 . First, he translates each letter in the string into an integer, where a = 1, b = 2, ..., z = 26. Then, for each character in the string, he computes the absolute difference between the values at each index (e.g. the difference between b and b is 3). He computes the difference b between b and b is 3). He computes the difference b between b and b is 3. Finally, he defines the total distance b as the sum of b and b.

As an example:

- Let the 2 original passwords be: $S_1 = \{ccf\}$, and $S_2 = \{cd\}$
- After shuffling letters: $\{cfc\}, \{dc\}$
- John randomly selects $\{cfc\}$ to have a modified character
- John picks the second c to be modified, replacing it with a d: $\{cfd\}$
- Now John has constructed $M_1 = \{cfd\}$ and $M_2 = \{dc\}$
- $D_1 = \text{Distance } (\{cfd\}, \{ccf\}) = 5$
- $D_2 = \text{Distance } (\{cd\}, \{dc\}) = 2$
- $X = D_1 + D_2 = 5 + 2 = 7$

For security purposes, John wants to know how hard to find the original passwords. Given the 2 modified passwords M_1 and M_2 and the total distance X, compute the number of possible original pairs of passwords. Note that $S_1 = \{ce\}, S_2 = \{ec\}$ and $S_1 = \{ec\}, S_2 = \{ce\}$ are considered two different pairs of passwords.

Input Specification:

The input begins with an integer $T \leq 100$, the number of testcases. Each testcase consists of one line containing two strings, M_1 and M_2 (separated by a space), and a non-negative integer X, where $X \leq 10^5$. Both strings M_1 and M_2 consist of English lower case letters (except \mathbf{a}, \mathbf{z}). Neither M_1 nor M_2 will have length exceeding 10.

Output Specification:

For each testcase, output a single line of output with a single integer: the number of possible original pairs of passwords.

Sample Input:

2 c g 1 fdj dc 15

Sample Output:

4 16