62%%183*	
_	שם הסטודנט/ית:
	מספר תעודת זהות <u>:</u>

בוחן אמצע בחישוביות 2.5.2006

- ענו על 10 מתוך 11 השאלות (10 נק' על כל שאלה) או על כל 11
 השאלות (9 נק' על כל שאלה + 1 נקודה בונוס).
 - סמנו את תשובותיכם בטבלה שבעמוד זה. (רק הטבלה תילקח לבדיקה.)
- הקיפו בעיגול את מספר השאלה שבחרתם לא לענות עליה (אם יש כזו).

iv	iii	ii	i	
				1
				2
				3
				4
				5
				6
				7
				8
				9
				10
				11

- - i) כל שפה רגולרית היא יחידת-מצב.
 - ii) כל שפה רגולרית היא איחוד סופי של שפות יחידות-מצב.
- יש שפות רגולריות שאינן איחוד סופי של שפות יחידות-מצב, אך כל שפה רגולרית היא איחוד (iii אינסופי של שפות יחידות-מצב.
 - iv) אף אחת מהתשובות לעיל אינה נכונה.
 - איזו מהטענות הבאות מהוה הוכחה לכך ששפה L היא מהטענות מהוה (2
 - הקשר. שפות חסרות של שתי של איחוד של איחוד ביא המשלים L
 - . חלקית לשפה חסרת הקשר L (ii
 - . מיפות של שפה חסרת הקשר ושפה סופית. L (iii
 - ריות. את למת הניפוח לשפות רגולריות. L (iv

L בשפה עבור שפה f על המלים כשפה כשפה כשפה לנדיר את גדיר (גדיר את ב- f(L) בשפה לפניכם שתי טענות:

- רגולרית. f(L) אם א רגולרית שפה $f:\Sigma \to \Sigma$ הנקציה כל א"ב לכל א"ב לכל א"ב (a
- רגולרית אז ב ל רגולרית אז f(L) אם לכל $f:\Sigma\to\Sigma$ הגולרית אז לכל לכל (b
 - ו) שתי הטענות נכונות.
 - טענה a נכונה, וטענה b טענה (ii
 - טענה a אינה נכונה, וטענה a טענה (iii
 - iv) שתי הטענות אינן נכונות.
 - .L בעל מצבים בעל DFA בעל ויהי אינסופית, שפה שנסופ
 L מצבים עבור (4 אינסופית, מילה $w\mid>n$ ש
 כך ש $w\in L$ מעלה נתונה מילה
 - L-1יש ל-wרישא (שונה מ-w) ב- (i
 - L 2 (שונה מ- שונה (ii) יש ל- שיל (ii)
 - $w \cdot y \in L$ -ש כך ש $\varphi \neq \varepsilon$ (iii)
 - iv) אף אחת מהתשובות לעיל אינה נכונה.

- נתון אובנוסף משתמש במחסנית כך: בנדיר אובנוסף משל במחסנית כך: בנדיר במחסנית מעל במחסנית כך: בכל מעבר שבו נקראת האות A' , a דוחף במחסנית בכל מעבר שבו נקראת האות A' , a
- מהמחסנית. a' מוציא a' מוציא אחרת, a' דוחה. אחרת, a' מהמחסנית בכל מעבר שבו נקראת האות אחרת, אם המחסנית המילה, a' מקבל אמ"מ הוא במצב מקבל.
 - $L(A') = L(A) \cap \{w : \#a < \#b, w \}$ (i
 - $L(A') = L(A) \cap \{w : \#a \ge \#b, w \}$ (ii
 - $L(A') = L(A) \cap \{w : \#a < \#b, w \}$ (iii) בכל סיפא של
 - $L(A') = L(A) \cap \{w : \#a \ge \#b, w \}$ של טיפא (iv
 - $\Delta = 2 \# b$ שבהן שבהן $\Sigma = \{a,b\}$ מעל המילים שפת להמילים שפת (6
- ומהוה דוגמה הקשר, כי בהינתן קבוע ניפוח , המילה המילה מייכת ל-L, ומהוה דוגמה לL (i נגדית לקיום למת הניפוח.
 - הוא שיוצר שיובר, והדקדון חסרת L (ii

 $.S \rightarrow SaSaSbS \mid SaSbSaS \mid SbSaSaS \mid \epsilon$

- $\{a^nb^na^n:n\geq 0\}=L\cap a^*b^*a^*$ כי הקשר חסרת אינה L (iii
 - ועיל אינה נכונה. אף אחת מהתשובות לעיל אינה נכונה.
- w=xyz פירוק פירוק שעבורן שעבורן שפת על המילים שפת ב' שפת ב' שפה רגולרית עהב וותהי עה שפת לכל w=xyz המילים ב' שפת לכל עד אינ ב' עד ב' עד מילים אינ ב' עד ב' ע
 - בהכרח ריקה. L' (i
 - ריקה. בהכרח רגולרית, אך לא בהכרח ריקה. L' (ii
 - לא בהכרח רגולרית. L' (iii
 - בהכרח לא רגולרית. L' (iv
 - (8) איזה ביטוי רגולרי מתאר את השפה של האוטומט הבא:

- $(0+1)^* 00^* 0(0+1)^*$ (i
- $(0^{+}+1^{+})^{+}00(0^{+}+1^{+})1^{+}$ (ii
 - $(0+1)^*00(0^*+1^*)$ (iii
 - $(0^*+1^*)000^*1^*$ (iv

- .wrap(L₁,L₂)={ xyz Σ^* | xz L₁, y L₂} נגדיר את השפה L₁,L₂ Σ^* עבור שפות עבור .wrap(L_1,L_2) C גם L_1,L_2 C אם עבור כל שומרת עיטוף אם נאמר כי נאמר כי נאמר מחלקת שפות עיטוף אם עבור מחלקת ביטוף אם נאמר כי לפניכם שתי טענות:
 - מחלקת השפות הרגולריות שומרת עיטוף. (a
 - שומרת עיטוף. (b) מחלקת השפות חסרות ההקשר שומרת עיטוף.
 - ו) שתי הטענות נכונות.
 - טענה a נכונה, וטענה b טענה (ii
 - נכונה. b טענה a אינה נכונה, וטענה (iii
 - iv) שתי הטענות אינן נכונות.
- יהי כי מספר מחלקות שפות רגולריות מעל א"ב Σ . נניח כי מספר חולקות שפות רגולריות שפות רגולריות שפות רגולריות מעל א"ב $C = \{L_1, \ldots, L_n\}$ יהי על פי מייהיל-נרוד (Myhill-Nerode) של כל אחת מהשפות באוסף הוא $L^m = \{ | \mathbf{w} - \Sigma^* | | C$ שפות שפות שפות לבדיוק $| \mathbf{w} \rangle$ את השפה שפה לב $| \mathbf{m} \rangle$ את השפה עבור בור שייכת לבדיוק

מהו החסם המינימלי שניתן לתת על מספר מחלקות השקילות על פי מייהיל-נרוד (Myhill-Nerode) ? Lm של השפה

- $.km+2^n$ (i $.k2^m$ (ii

 - .kⁿ (iii
 - .∞ (iv
- (כלומר בצד ימין (כלומר בצד ימין (כלומר מזדנב אם בכל כלל גזירה בצד ימין (כלומר בצד הנגזר) יש לכל היותר משתנה אחד, ואם יש משתנה הוא מופיע אחרון.

לדוגמא, הכלל S
ightarrow abcX עשוי להופיע בדקדוק הנמצא בצורה נורמלית של חד משתנה מזדנב אך לא $S \rightarrow XY$ או $S \rightarrow abXc$ כד לגבי הכללים

בהנתן דקדוק חסר הקשר ובו n כללי גזירה נרצה למצוא דקדוק שקול בצורה נורמלית של חד משתנה מזדנב ובו מספר כללי גזירה מינימלי. מהו סדר הגודל של המספר המינימלי של כללי גזירה הדרושים?

- .O(n) (i
- . כללי גזירה O(n^k) עבורו יספיקו אבורו קיים Poly(n) (ii
 - $.2^{O(n)}$ (iii
- iv כלל לא ניתן למצוא לכל דקדוק חסר הקשר דקדוק שקול בצורה נורמלית של חד משתנה מזדנב.