The **Anisotropic Noise** in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects

Zhanxing Zhu*, Jingfeng Wu*, Bing Yu, Lei Wu, Jinwen Ma.

Peking University Beijing Institute of Big Data Research

June, 2019

The implicit bias of stochastic gradient descent

- Compared with gradient descent (GD), stochastic gradient descent (SGD) tends to generalize better.
- ▶ This is attributed to the noise in SGD.
- ► In this work we study the anisotropic structure of SGD noise and its importance for escaping and regularization.

Stochastic gradient descent and its variants

Loss function $L(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell(x_i; \theta)$.

Gradient Langevin dynamic (GLD)

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta_t) + \eta \epsilon_t, \ \epsilon_t \sim \mathcal{N}\left(0, \sigma_t^2 I\right).$$

Stochastic gradient descent (SGD)

$$\theta_{t+1} = \theta_t - \eta \tilde{\mathbf{g}}(\theta_t), \ \tilde{\mathbf{g}}(\theta_t) = \frac{1}{m} \sum_{\mathbf{x} \in B_t} \nabla_{\theta} \ell(\mathbf{x}; \theta_t).$$

The structure of SGD noise

$$ilde{g}(heta_t) \sim \mathcal{N}\left(\nabla L(heta_t), \Sigma^{\mathsf{sgd}}(heta_t)\right), \ \Sigma^{\mathsf{sgd}}(heta_t) pprox \ rac{1}{m}\left[rac{1}{N}\sum_{i=1}^{N}
abla \ell(x_i; heta_t)
abla \ell(x_i; heta_t)^T -
abla L(heta_t)^T\right].$$

SGD reformulation

$$\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t) + \eta \epsilon_t, \ \epsilon_t \sim \mathcal{N}\left(0, \Sigma^{\mathsf{sgd}}(\theta_t)\right).$$

GD with unbiased noise

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta_t) + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \Sigma_t).$$
 (1)

Iteration (1) could be viewed as a discretization of the following continuous stochastic differential equation (SDE):

$$d\theta_t = -\nabla_\theta L(\theta_t) dt + \sqrt{\Sigma_t} dW_t.$$
 (2)

Next we study the role of noise structure Σ_t by analyzing the continous SDE (2).

Escaping efficiency

Definition (Escaping efficiency)

Suppose the SDE (2) is initialized at minimum θ_0 , then for a fixed time t small enough, the *escaping efficiency* is defined as the increase of loss potential:

$$\mathbb{E}_{\theta_t}[L(\theta_t) - L(\theta_0)] \tag{3}$$

Under suitable approximations, we could compute the escaping efficiency for SDE (2),

$$\mathbb{E}[L(\theta_t) - L(\theta_0)] = -\int_0^t \mathbb{E}\left[\nabla L^T \nabla L\right] + \int_0^t \frac{1}{2} \mathbb{E} \text{Tr}(H_t \Sigma_t) \, dt \quad (4)$$

$$pprox rac{1}{4} \mathrm{Tr} \left(\left(I - e^{-2Ht} \right) \Sigma \right) pprox rac{t}{2} \mathrm{Tr} \left(H \Sigma \right).$$
 (5)

Thus $Tr(H\Sigma)$ serves as an important indicator for measuring the escaping behavior of noises with different structures.

Factors affecting the escaping behavior

The noise scale For Gaussian noise $\epsilon_t \sim \mathcal{N}(0, \Sigma_t)$, we can measure its scale by $\|\epsilon_t\|_{\text{trace}} := \mathbb{E}[\epsilon_t^T \epsilon_t] = \cdots = \text{Tr}(\Sigma_t)$. Thus based on $\text{Tr}(H\Sigma)$, we see that the larger noise scale is, the faster the escaping happens. To eliminate the impact of noise scale, assume that

given time
$$t, Tr(\Sigma_t)$$
 is constant. (6)

The ill-conditioning of minima For the minima with Hessian as scalar matrix $H_t = \lambda I$, the noises in same magnitude make no difference since $\text{Tr}(H_t \Sigma_t) = \lambda \text{Tr} \Sigma_t$.

The structure of noise For the ill-conditioned minima, the structure of noise plays an important role on the escaping!

The impact of noise structure

Proposition

Let $H_{D \times D}$ and $\Sigma_{D \times D}$ be semi-positive definite. If

1. **H is ill-conditioned.** Let $\lambda_1, \lambda_2 \dots \lambda_D$ be the eigenvalues of H in descent order, and for some constant $k \ll D$ and $d > \frac{1}{2}$, the eigenvalues satisfy

$$\lambda_1 > 0, \ \lambda_{k+1}, \lambda_{k+2}, \dots, \lambda_D < \lambda_1 D^{-d}; \tag{7}$$

2. Σ is "aligned" with H. Let u_i be the corresponding unit eigenvector of eigenvalue λ_i , for some projection coefficient a > 0, we have

$$u_1^T \Sigma u_1 \ge a \lambda_1 \frac{Tr\Sigma}{TrH}.$$
 (8)

Then for such anisotropic Σ and its isotropic equivalence $\bar{\Sigma} = \frac{Tr\Sigma}{D}I$ under constraint (6), we have the follow ratio describing their difference in term of escaping efficiency,

$$\frac{Tr(H\Sigma)}{Tr(H\bar{\Sigma})} = \mathcal{O}\left(aD^{(2d-1)}\right), \quad d > \frac{1}{2}. \tag{9}$$

Analyze the noise of SGD via Proposition 1

By Proposition 1, The anisotropic noises satisfying the two conditions indeed help escape from the ill-conditioned minima. Thus to see the importance of SGD noise, we only need to show it meets the two conditions.

- Condition 1 is naturally hold for neural networks, thanks to their over-parameterization!
- ▶ See the following Proposition 2 for the second condition.

SGD noise and Hessian

Proposition

Consider a binary classification problem with data $\{(x_i, y_i)\}_{i \in I}, y \in \{0, 1\}$, and mean square loss, $L(\theta) = \mathbb{E}_{(x,y)} \|\phi \circ f(x;\theta) - y\|^2$, where f denotes the network and ϕ is a threshold activation function,

$$\phi(f) = \min\{\max\{f, \delta\}, 1 - \delta\},\tag{10}$$

 δ is a small positive constant. Suppose the network f satisfies:

- 1. it has one hidden layer and piece-wise linear activation;
- 2. the parameters of its output layer are fixed during training.

Then there is a constant a > 0, for θ close enough to minima θ^* ,

$$u(\theta)^{T} \Sigma(\theta) u(\theta) \ge a\lambda(\theta) \frac{Tr \Sigma(\theta)}{Tr H(\theta)}$$
(11)

holds almost everywhere, for $\lambda(\theta)$ and $u(\theta)$ being the maximal eigenvalue and its corresponding eigenvector of Hessian $H(\theta)$.

Examples of different noise structures

Table: Compared dynamics defined in Eq. (1).

Dynamics	Noise ϵ_t	Remarks
SGD	$\epsilon_t \sim \mathcal{N}\left(0, \Sigma_t^{sgd} ight)$	$\Sigma_t^{ ext{sgd}}$ is the gradient covariance matrix.
GLD	$\epsilon_t \sim \mathcal{N}\left(0, \varrho_t^2 I\right)$	ϱ_t is a tunable constant.
constant		
GLD dy- namic	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t^2 I\right)$	σ_t is adjusted to force the noise share the same magnitude with SGD noise, similarly hereinafter.
GLD di- agonal	$\epsilon_t \sim \mathcal{N}\left(0, diag(\Sigma_t^{sgd}) ight)$	$\operatorname{diag}(\Sigma_t^{\operatorname{sgd}})$ is the diagonal of the covariance of SGD noise $\Sigma_t^{\operatorname{sgd}}$.
GLD leading	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t \tilde{\Sigma}_t\right)$	$\tilde{\Sigma_t}$ is the best low rank approximation of Σ_t^{sgd} .
GLD Hessian	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t ilde{H}_t ight)$	\tilde{H}_t is the best low rank approximation of the Hessian.
GLD 1st eigven(H)	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t \lambda_1 u_1 u_1^T\right)$	λ_1, u_1 are the maximal eigenvalue and its corresponding unit eigenvector of the Hessian.

2-D toy example

Figure: 2-D toy example. Compared dynamics are initialized at the sharp minima. **Left**: The trajectory of each compared dynamics for escaping from the sharp minimum in one run. **Right**: Success rate of arriving the flat solution in 100 repeated runs

One hidden layer network

Figure: One hidden layer neural networks. The solid and the dotted lines represent the value of $\text{Tr}(H\Sigma)$ and $\text{Tr}(H\bar{\Sigma})$, respectively. The number of hidden nodes varies in $\{32, 128, 512\}$.

FashionMNIST experiments

Figure: FashionMNIST experiments. **Left**: The first 400 eigenvalues of Hessian at θ_{GD}^* , the sharp minima found by GD after 3000 iterations.

Middle: The projection coefficient estimation $\hat{a} = \frac{u_1^T \Sigma u_1 \text{Tr} H}{\lambda_1 \text{Tr} \Sigma}$ in Proposition 1. **Right**: $\text{Tr}(H_t \Sigma_t)$ versus $\text{Tr}(H_t \bar{\Sigma}_t)$ during SGD optimization initialized from θ_{GD}^* , $\bar{\Sigma}_t = \frac{\text{Tr} \Sigma_t}{D} I$ denotes the isotropic equivalence of SGD noise.

FashionMNIST experiments

Figure: FashionMNIST experiments. Compared dynamics are initialized at θ_{GD}^* found by GD, marked by the vertical dashed line in iteration 3000. **Left**: Test accuracy versus iteration. **Right**: Expected sharpness versus iteration. Expected sharpness (the higher the sharper) is measured as $\mathbb{E}_{\nu \sim \mathcal{N}(0,\delta^2 I)}\left[L(\theta+\nu)\right]-L(\theta)$, and $\delta=0.01$, the expectation is computed by average on 1000 times sampling.

Conclusion

- We explore the escaping behavior of SGD-like processes through analyzing their continuous approximation.
- We show that thanks to the anisotropic noise, SGD could escape from sharp minima efficiently, which leads to implicit regularization effects.
- Our work raises concerns over studying the structure of SGD noise and its effect.
- Experiments support our understanding.

Poster: Wed Jun 12th $06:30\sim09:00$ PM @ Pacific Ballroom #97

