El, definin a partir de

$$\begin{cases} P_n(x) = 1 \\ P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left[ (x^2 - 1)^n \right], & n \ge 1 \end{cases}$$

Objeven jue

$$P_{2}(x) = \frac{1}{4.2} \frac{d^{2}}{dx^{2}} \left[ (x^{2} - 1)^{2} \right] = \frac{1}{7} (nx^{2} - 4) = \frac{3}{2} x^{2} - \frac{1}{2}$$

2) Et coefrient de pron maxim de In(x) 2'

$$\frac{1}{2^{n}n!}(2n)(2n-1)-(2n-(n-1))=\frac{(2n)!}{2^{n}(n!)^{2}}$$

Paparició: la Comilia & Professor à artegoral en [-1,1] respecte

de la finat per who =1, i.e.

$$(P_n, P_j) = \int_{-1}^{1} P_n(x_1) P_j(x_2) = \begin{cases} 2 & \text{i.e.} \\ 2 & \text{i.e.} \end{cases}$$

$$(P_n, P_j) = \int_{-1}^{1} P_n(x_1) P_j(x_2) P_j(x_2)$$

Paro. No à restricti symar pre jen. Définim fixs = (x2-1)), g(x)=(x2-1)

$$2^{n+j} n! j! (P_n, P_j) = \int_{-1}^{1} (g(x))^{(n)} (F(x))^{(n)} dx = 0$$

$$prof$$

$$v = (F(x))^{(n)} dx$$

$$dv = (g(x))^{(n)} dx$$

$$= (f(x_1)^{\binom{1}{3}}) f(x_1)^{\binom{1}{3}} = (f(x_1)^{\binom{1}{3}}) f(x_1)^{\binom{1}{3}} = (f(x_1)^{\binom{1}{3}}) f(x_1)^{\binom{1}{3}} = (f(x_1)^{\binom{1}{3}}) f(x_1)^{\binom{1}{3}} = (f(x_1)^{\binom{1}{3}}) f(x_1)^{\binom{1}{3}} f$$

Crésien Vien la france

$$\int_{hy}^{hy} dx = \frac{-hi^{m-1} \times cn \times}{m} + \frac{m-1}{m} \int_{hy}^{hy} ch^{m-2} \times dx$$

$$=\frac{2n-1}{2n+1}$$
  $=\frac{2n-2}{2n-1}$   $=\frac{2n-2}{2n-1}$   $=\frac{2n-2}{2n-1}$ 

An column la removembre: (on 
$$f_{1}(y-P_{1}(x))$$
) A21

Y  $f_{1}(x) = \alpha f_{1}(x-f_{1}) + f_{2}(x) - f_{3}(x) + f_{3}(x)$ ,  $f_{2} = 0$ 

orb  $\alpha f_{1} = \frac{A_{1}f_{1}}{A_{1}}$ ;  $f_{2} = \frac{(f_{3},x+f_{1})}{(f_{3},f_{3})}$ ;  $f_{3} = \frac{\alpha f_{3}(f_{3},f_{3})}{\alpha f_{3}(f_{3},f_{3})}$ ,  $f_{$ 

Exemple Preven f(x) = ex a [-1,1] i l'promien per polisonis de losendre (soben pue els polisonis son ortgands respecte de la funció per w(x)=1, prevent el moducte endor (fig) = for for gradx

 $(P_k, P_j) = \left(\frac{2}{2j+1} + \frac{2}{2j+1}\right)$ i soben fra

Horm (proximation minim-fractional dera:  $P_{n}^{*}(x) = \sum_{j=0}^{n} c_{j}^{*} P_{j}(x) \quad \text{on} \quad c_{j}^{*} = \frac{2j+1}{2} \int_{-1}^{1} e^{x} P_{j}(x) dx$ 

- Si preven per exemple n=3 obtenin

C1 = 1,10363732 Co = 1,17520119

(3 = 0, 07045563 C2\* = 0,35781435

té la probie (grossmadouent) La funcir error ex-px(x)



la norma de

-Si when what l'error =  $||e^{x} - 2n^{*}(x)||_{2}^{2} = ||e^{x}||_{2}^{2} - ||P_{n}^{*}(x)||_{2}^{2}$ 

Exercici : y Fen els calvals. 2) Generals plot mostret a classe

NOM S. I = (25), U(x)=1 et plinni, de pondre 4 (x) s'obteuen des phismis de Gendre a [-1,1] a hors d'un consi de variable  $\frac{x-a}{b-a} = \frac{t-(-1)}{2} = \frac{x-a+\frac{b-a}{2}(1+a)}{2} = \frac{2}{b-a} = \frac{2}{2} (x-\frac{a+b}{2})$ xe[a,b], tel-1,1]  $x \circ 4 \rightarrow (x) = P_{j} \left(\frac{2}{b-a} \left(x - \frac{a+b}{2}\right), j \ge 0\right)$ Se soblé la remmencia dépoient. en tet-1,17] Pj+(t) = ZJH + Pj(t) - j+ Pj+(h)  $P_{jn}\left(\frac{2}{J-9}\left(x-\frac{9+6}{2}\right)\right) = \frac{2j+1}{j+1}\frac{2}{J-9}\left(x-\frac{9+6}{2}\right)P_{j}\left(\frac{2}{J-9}\left(x-\frac{9+6}{2}\right)\right) - \frac{2}{J-9}\left(x-\frac{9+6}{2}\right)$ (x) - j Pj-1 (2 (x 0,46)) 4 (x) = 2jH 2 (x= 0+6) + (x) - j+1 + (x). / j=1

Alter exemple de politionis ortgand:

· Polissuis de Txely, xer: and funcir per unes 1 a [4,1]

A-231

re el poducte sodor s'

$$(3.1) = \int_{-1}^{1} \frac{g(x)h(x)}{\sqrt{n-x^2}} dx$$

(veure Unita de moslems)

. Polinami d'Hermite: w(x) = e-x2 a (-0,0)

fue sobria la recurencia

· Polinano Semolitat de Laguerre: L'a ; W/4 = x de x

$$(5, h) = \int_{0}^{\infty} \int_{0}^{\infty} (x) h(x) x^{\alpha} e^{-x} dx$$

(1) déhiert per a la relair de reminie son:

$$\alpha_{j} = -\frac{1}{j+1}$$
,  $\beta_{j} = 2j+\alpha+1$ ,  $\beta_{j} = \frac{j+\alpha}{j+1}$ .

Apprimació tiponometica

Syrem pre la finite pre volem que obre exella open fermen 2n-peròdic. En aprest con sero natural prende com a finis Sangus vidgendent:

40(x) = 1, 4(x) = cox, 4(x) = mix, 4, (x) = colx, 4 (x) = mi2x, --

4 = (x) = cn nx, + (x) = ninx

Egyptians

le function of (my ) of my mod tent en el con contin

con el discret. Et te

(i) on contain.

(ii) on contain.

(iii) on contain.

(ii) At con discret: preven  $x_k = \frac{2nk}{m+1}$ ,  $k = \frac{9}{9} - \frac{1}{9}m$ ,  $2n \leq m$  $(t_j, t_l)_m = \sum_{k=0}^{m} t_l (x_k) t_l (x_k) t_l (x_k) t_l (x_k) t_l (x_k) = \sum_{k=0}^{m} t_l (x_k) t_l (x_k)$ 

 $= \begin{cases} 0 & \text{si} & \text{fil} = 0 : 2n \\ \frac{m+1}{4} & \text{si} & \text{fil} = 0 : 2n \\ \frac{m+1}{2} & \text{si} & \text{fil} = 1 : 2n \end{cases}$ 

Crement, for example 
$$\int_{0}^{\infty} f(x) = crijx$$
,  $f(x) = crilx$   

$$f(x) = crilx$$

$$f$$

$$\int_{0}^{2\pi} \int_{0}^{2\pi} dx = \frac{\pi}{2}$$

. Let 
$$j = l > 0$$
  $\int_{0}^{2\pi} (m^{2}j \times dx) = \int_{0}^{2\pi} (\frac{1}{2} + \frac{cn^{2}j \times}{2}) dx = \pi$ 

(Araby and Airjx)

. Analy ont la reta de com

(ii) Al a discret:

· Si / the penew per exemple to (x) = cnj x, y (x1 = cnl x  $(Y_j, Y_l)_m = \sum_{k=0}^m c_0 j \times_k c_0 l \times_k = \frac{1}{2} \sum_{k=0}^m c_0 (j-l) \times_k + c_0 (j+l) \times_k$ 

About de septie, with hom.

 $\frac{m}{\sum_{k=0}^{m} cnkA} + i \sum_{k=0}^{m} \frac{m}{k} = \frac{1-e^{i(m+1)A}}{1-e^{iA}} = \frac{1-e^{iA}}{1-e^{iA}}$ 

 $= \frac{2}{\cos(\omega + 1)A} - 1 + i \sin(\omega + 1)A - i \sin A = \frac{2}{\cos(\omega + 1)A} - i \sin A$   $= \frac{2}{\cos(\omega + 1)A} - 1 + i \sin A$ 

(2-1)(cnA-1)-5 + i (-2+1) + i

 $\left( \frac{(\omega + 1)A - 1}{(\omega + 1)A - 1} \right) - \frac{(\omega + 1)A \sin A}{(\omega + 1)A \sin A} + \frac{(\omega + 1)A \sin A}{(\omega + 1)A \cos A}$   $= \frac{2(1 - \omega + 1)}{2(1 - \omega + 1)}$ 

A-26

$$\sum_{k=0}^{m} m \left( \frac{j+k}{2n} \right) 2n = \frac{1}{4} \left( \frac{(n(j+k)2n-1)}{(nA-1)} - \frac{1}{4} \right) \left( \frac{(nA-1)}{4} - \frac{1}{4} \right) \left( \frac{(nA-1)}{2n} - \frac{1}{4} \right) \left( \frac{(nA-1)$$

$$\int_{1}^{\infty} \int_{1}^{\infty} \int_{1$$

A-28 Th = { tn(x) = ao + = (a; cn(jx) + b; hin (jx)), Has, oj, b; EIR} El poblema d'proprimació tiponimedica per minimo fuedoto -DI con continu: donada [:[0,20] -12 continua, f(0)-[(27) volen tr & Fr 12 11 f - tn 11 2 = min / f - tn 1/2 to EF i f: In - IR, - Ol ca diroet, donal w≥ 2n  $I_{h} = \left\{ \begin{array}{l} x_{k} = kh, \quad \text{omb} \quad h = \frac{2n}{m+1}, \quad k = 0 = m \right\}$ volen tn & Fn { 11 f - tn 1/2 = min 11 f - tn 1/2
tn 6 Fr lon pre la furción l'origina són original, el sistema defusión, sera diagnol i por tent la solució trit ve smeda per  $\frac{1}{2} \left( x \right) = \frac{a_0 x}{2} + \sum_{i=1}^{n} \left( a_i^* c_{ij} x + b_i^* hij x \right)$ on ast, and vener donade per:

$$\alpha_{j}^{*} = \frac{(\omega_{j} \times f)}{(\omega_{j} \times \omega_{j} \times f)} = \frac{1}{n} \int_{0}^{2n} f(x_{j} \omega_{j} \times dx_{j})$$

NOTA-1. Si preven f:R-R 2n-perodice continue podem
substituir protevol interal de la forma [a, a+2n) per
[0,2n] serce aller (proprima is.

2 Column l'error
$$\|f - f_n^*\|_{L^2}^2 \|f\|_{L^2}^2 - \|f_n^*\|_{L^2}^2 = \sum_{k=0}^{m} f_k^2 - \frac{m+1}{2} \left[\frac{a_0^*}{2} + \sum_{j=1}^{m} (q_j^2 + b_0^2)\right]$$
with

3. Wont  $e^{ix} = C_0 \times tihnix \quad C_0 \times = \frac{e^{ix} + e^{-ix}}{2i} \quad hinx = \frac{e^{-ix} - e^{-ix}}{2i}$   $C_0 = C_0 \times tihnix \quad C_0 \times = \frac{e^{-ix} + e^{-ix}}{2i} \quad (ix \times e^{-ix}) = (ix \times e^{-ix})$   $C_0 = C_0 \times tihnix \quad (ix \times e^{-ix}) = (ix \times e^{-ix})$ 

re la representair de Torner complexa:

on 
$$C_0 = \frac{a_0}{2}$$
,  $C_j = \frac{1}{2} \left( a_j - ib_j \right)$ ,  $C_j = C_j = \frac{1}{2} \left( a_j + ib_j \right)$ ,  $C_j = C_j = \frac{1}{2} \left( a_j + ib_j \right)$ 

o a l'inveres

$$a_0 = 2c_0, a_1 = c_1 + c_2 = c_1 + c_2 = 2 Re(c_1)$$

$$b_1 = i(c_1 - c_2) = i(c_2 - c_2) = -2 Im(c_1)$$

annerets cochcient de Forres real, o complexos

En electe)

$$C_0 = \frac{\alpha_0}{2}$$
 $C_1 = \frac{\alpha_0}{2}$ 
 $C_2 = \frac{\alpha_0}{2}$ 
 $C_3 = \frac{\alpha_0}{2}$ 
 $C_4 = \frac{\alpha_0}{2}$ 

femi 
$$(j \in i)^{\times} + (-j \in i)^{\times} = ((\alpha_j \times + i)^{\times}) + ((\alpha_j \times -i)^{\times})^{\times} = ((j + (-j)^{\times})^{\times})^{\times} + ((j + (-j)^{\times})^{\times})^{\times} = ((j + (-j)^{\times})^{\times})^{\times} + ((j + (-j)^{\times})^{\times})^{\times} = ((j + (-j)^{\times})^{\times})^{\times} = ((j + (-j)^{\times})^{\times})^{\times}$$

$$= ((j + (-j)^{\times})^{\times})^{\times} + (((j + (-j)^{\times})^{\times})^{\times} = ((j + (-j)^{\times})^{\times})^{\times}$$

$$= ((j + (-j)^{\times})^{\times})^{\times} + (((j + (-j)^{\times})^{\times})^{\times} = ((j + (-j)^{\times})^{\times})^{\times}$$

Are be 
$$G_j = G_j + G_j = G_j + G_j = 2Re(g_j)$$

Ry

 $G_j = G_j + G_j = G_j + G_j = 2Re(g_j)$ 

(Note -  $G_j + G_j \in R$ 
 $G_j + G_j \in R$ 

20 electe

 $G_j + G_j \in R$ 
 $G_j = G_j$ 

· Exemple M=F

Xi 0 27/9 47/9 27/3 1/9 107/9 47/3 147/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 167/9 1,1477 -91/82

Somlem

$$t_n = \frac{q_0}{2} + \frac{2}{2} \left( q_j + q_j + b_j +$$

Oftenin  $q_{s}^{*} = 4,00022$ ,  $q_{s}^{*} = 0,99998$ ,  $q_{s}^{*} = 0,00029$ 

Error = 900031 (De let els volus & his presus sin una pertorbació de  $f(x) = 2 + ax + 3ni2 \times$ )