The Scalar Product: Solutions

Ritwik Anand

Summary

Answers to questions relating to the guide on the Scalar Product.

These are the answers to The Scalar Product: Questions. Please attempt the questions before reading these answers!

Answers

Q1

Find the scalar product of \mathbf{u} and \mathbf{v} .

1.1. For
$$\mathbf{u}=\begin{pmatrix} 6\\3\\4 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 1\\4\\2 \end{pmatrix}$, the scalar product is 26.

1.2. For
$$\mathbf{u}=\begin{pmatrix}10\\-7\\4\end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix}3\\-5\\13\end{pmatrix}$, the scalar product is 117.

1.3. For
$$\mathbf{u}=\begin{pmatrix} -4.4\\-1.2\\0.3 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 6.1\\-2.5\\9.3 \end{pmatrix}$, the scalar product is -22.37.

1.4. For
$$\mathbf{u} = \begin{pmatrix} 54 \\ 38 \\ 0 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 32 \\ -55 \\ 13 \end{pmatrix}$, the scalar product is -362.

1.5. For
$$\mathbf{u} = 2\mathbf{i} + 7\mathbf{j} + \mathbf{k}$$
 and $\mathbf{v} = 6\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}$, the scalar product is 48.

1.6. For
$$\mathbf{u} = -3\mathbf{i} + 10\mathbf{j} - 8\mathbf{k}$$
 and $\mathbf{v} = \mathbf{i} - 12\mathbf{j} + 9\mathbf{k}$, the scalar product is -195.

1.7. For
$$\mathbf{u} = 17\mathbf{j} + 23\mathbf{k}$$
 and $\mathbf{v} = 6\mathbf{i} - 23\mathbf{j} - 8\mathbf{k}$, the scalar product is -575.

1.8. For
$$\mathbf{u} = \mathbf{i}$$
 and $\mathbf{v} = \mathbf{j}$, the scalar product is 0.

As the scalar product of $\mathbf{u}=\mathbf{i}$ and $\mathbf{v}=\mathbf{j}$ is 0, they are perpendicular to each other. This is true for any combination of \mathbf{i} , \mathbf{j} , and \mathbf{k} .

Q2

Find the value(s) of λ for which **u** and **v** are perpendicular.

2.1. For
$$\mathbf{u}=\begin{pmatrix}2\\4\\7\end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix}1\\\lambda\\-2\end{pmatrix}$, $\lambda=3$.

2.2. For
$$\mathbf{u}=\begin{pmatrix}0\\1\\\lambda\end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix}1\\2\\3\end{pmatrix}$, $\lambda=-\frac{2}{3}$.

2.3. For
$$\mathbf{u}=\begin{pmatrix} 9\\-2\\11 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} \lambda\\-\lambda\\3 \end{pmatrix}$, $\lambda=$ -3.

2.4. For
$$\mathbf{u} = \begin{pmatrix} \lambda \\ 6 \\ 1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} \lambda \\ \lambda \\ 8 \end{pmatrix}$, $\lambda = -2$ or $\lambda = -4$.

2.5. For
$$\mathbf{u}=\begin{pmatrix} -2\lambda^2\\4\\14 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 3\\2\lambda\\1 \end{pmatrix}$, $\lambda=\frac{7}{3}$ or $\lambda=$ -1.

2.6. For
$$\mathbf{u}=\begin{pmatrix} -5\\9\\2\lambda \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} \lambda\\-2\\\lambda \end{pmatrix}$, $\lambda=\frac{9}{2}$ or $\lambda=$ -2.

2.7. For
$$\mathbf{u}=\begin{pmatrix} -7\\4\\2\lambda \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 2\lambda\\1\\6\lambda \end{pmatrix}$, $\lambda=\frac{2}{3}$ or $\lambda=\frac{1}{2}$.

2.8. For
$$\mathbf{u}=\begin{pmatrix} -25\\ -1\lambda^2\\ -2 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 3\lambda\\ -11\\ 7 \end{pmatrix}$, $\lambda=7$ or $\lambda=-\frac{2}{11}$.

Q3

Find the angle θ in between \mathbf{u} and \mathbf{v} .

3.1. For
$$\mathbf{u}=\begin{pmatrix} -5\\2\\-3 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 2\\-2\\11 \end{pmatrix}$, $\theta=$ 132.2°.

3.2. For
$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\theta = 70.5^{\circ}$.

3.3. For
$$\mathbf{u}=\begin{pmatrix} -8\\1\\-4 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} -1\\-5\\7 \end{pmatrix}$, $\theta=$ 108.7°.

3.4. For
$$\mathbf{u} = \begin{pmatrix} 1.2 \\ -1.4 \\ -3.1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} -5.4 \\ 9.7 \\ -7.5 \end{pmatrix}$, $\theta = 86.2^\circ$.

3.5. For
$$\mathbf{u}=\begin{pmatrix}45\\65\\54\end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix}-19\\-58\\71\end{pmatrix}$, $\theta=95.1^\circ.$

3.6. For
$$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\theta = 90.0^{\circ}$.

3.7. For
$$\mathbf{u} = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}$, $\theta = 43.0^\circ$.

3.8. For
$$\mathbf{u}=\begin{pmatrix} -17\\3\\8 \end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix} 12\\-19\\-16 \end{pmatrix}$, $\theta=137.8^\circ.$