L1-MATH- SUITES ET FONCTIONS

FEUILLE DE TRAVAUX DIRIGÉS N° 5

Calcul des intégrales

Enseignant: H. El-Otmany

A.U.: 2014-2015

Exercice n°1 Déterminer les primitives des fonctions suivantes :

(a)
$$f(x) = \frac{1}{(1-2x)^3}$$

$$(b) \quad f(x) = 3\cos(x)\sin(x) \quad ($$

(c)
$$f(x) = \arctan(x)$$

(d)
$$f(x) = \frac{1}{\operatorname{ch}(x)} + \frac{3}{x^2}$$

$$(e) \quad f(x) = x\sin^3(x)$$

$$(f) \quad f(x) = x\sqrt{1 + 2x^2}$$

(a)
$$f(x) = \frac{1}{(1-2x)^3}$$
 (b) $f(x) = 3\cos(x)\sin(x)$ (c) $f(x) = \arctan(x)$
(d) $f(x) = \frac{1}{\cosh(x)} + \frac{3}{x^2}$ (e) $f(x) = x\sin^3(x)$ (f) $f(x) = x\sqrt{1+2x^2}$
(g) $f(x) = \frac{1}{x+x\ln^2(x)}$ (h) $f(x) = \cosh(x)\cos(x)$ (i) $f(x) = \frac{x^2}{1+x^2}$
(j) $f(x) = \frac{x}{\sqrt{x+1}}$ (k) $f(x) = \operatorname{Argsh}(3x)$ (l) $f(x) = \ln(1+x^2)$
(m) $f(x) = \ln(x+\sqrt{x^2-1})$ (n) $f(x) = \frac{\sin(x)}{\cos^2(x)}$ (p) $f(x) = 2 \operatorname{th}(x)$

$$(h) \quad f(x) = \operatorname{ch}(x)\cos(x)$$

(i)
$$f(x) = \frac{x^2}{1 + x^2}$$

$$(j) \quad f(x) = \frac{x}{\sqrt{x+1}}$$

$$(k) \quad f(x) = \operatorname{Argsh}(3x)$$

$$(l) \quad f(x) = \ln(1+x^2)$$

$$(m)$$
 $f(x) = \ln(x + \sqrt{x^2 - 1})$

$$f(x) = \frac{\sin(x)}{\cos^2(x)}$$

$$(p) \quad f(x) = 2\operatorname{th}(x)$$

Exercice n°2

- 1. Soit x un réel strictement positif. Calculer $\sum_{k=0}^{n-1} e^{kx/n}$ en fonction de x.
- 2. Montrer que la limite de $\left(\frac{x}{n}\sum_{k=0}^{n-1}e^{kx/n}\right)$ lorsque n tend vers l'infini existe.
- 3. En déduire que $\int_{[0,x]} e^s ds = e^x 1, \forall x > 0.$
- 1. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Établir les deux égalités suivantes :

$$\sum_{k=1}^{n} \sin\left(\frac{x}{2n}\right) \sin\left(\frac{kx}{n}\right) = \frac{1}{2} \left(\cos\left(\frac{x}{2n}\right) - \cos\left(\frac{2n+1}{2n}x\right)\right)$$
$$\sum_{k=1}^{n} \sin\left(\frac{x}{2n}\right) \cos\left(\frac{kx}{n}\right) = -\frac{1}{2} \left(\sin\left(\frac{x}{2n}\right) - \sin\left(\frac{2n+1}{2n}x\right)\right)$$

2. Utiliser ces résultats pour établir les formules :

$$\int_{[0,x]} \sin(s) \, ds = 1 - \cos(x); \quad \int_{[0,x]} \cos(s) \, ds = -\sin(x), \, \forall x > 0.$$

Exercice n°3 Pour tout x > 0, on pose :

$$F(x) = \int_{1}^{x} \frac{\ln t}{1 + t^2} dt.$$

- 1. Donner signe de F sur \mathbb{R}_+^* .
- 2. Étudier la continuité et la dérivabilité de F sur \mathbb{R}_+^* . Calculer F'(x).
- 3. Donner le DL de F au voisinage de x = 1 à l'ordre 4.

Exercice n°4 Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction continue périodique, de période T > 0. En utilisant le changement de variables, montrer que l'intégrale $\int_{\alpha}^{\alpha+T} f(x) dx$ ne dépend pas de α .

Exercice n°5 Calculer les intégrales suivantes par les changements de variables : $t = \ln(x)$ pour I_1 , I_2 , I_3 , $t = e^x$ dans I_4 , $x = \sin(t)$ dans I_5 , x = 1/t dans I_6 , $t = \sin(x)$ dans I_7).

$$I_{1} = \int_{1}^{2} \frac{\ln(x)}{x} dx; \quad I_{2} = \int_{e}^{3} \frac{1}{x(\ln(x))^{3}} dx; \quad I_{3} = \int_{e}^{e^{2}} \frac{1}{x(\ln(x) + 1)} dx;$$

$$I_{4} = \int_{0}^{1} e^{x} \cos(e^{x}) dx; \quad I_{5} = \int_{0}^{1} \sqrt{1 - x^{2}} dx; \quad I_{6} = \int_{1/2}^{2} \frac{\ln(x)}{1 + x^{2}} dx;$$

$$I_{7} = \int_{0}^{\pi/2} \sin(x)^{2} \cos(x) dx; \quad I_{8} = \int_{0}^{\pi/2} \sin(x)^{4} \cos(x)^{3} dx; \quad I_{9} = \int_{0}^{\pi/2} \sin(x)^{3} \cos(x)^{2} dx;$$

Exercice n°6 Calculer les intégrales suivantes par l'intégration par parties :

$$J_{1} = \int_{0}^{2} (x - 2)e^{-x} dx; \quad J_{2} = \int_{0}^{1} \arctan(x) dx; \quad J_{3} = \int_{0}^{1} (x^{2} + 1)\cos(x) dx;$$

$$J_{4} = \int_{1}^{5} \left(3x^{2} + x + 2\right) \ln(x) dx; \quad J_{5} = \int_{0}^{\pi/2} x \sin(x) dx; \quad J_{6} = \int_{1}^{3} x \ln(x) dx;$$

$$J_{7} = \int_{0}^{1} (x + 1)^{2} \cos(x) dx; \quad J_{8} = \int_{0}^{1} \frac{1}{x^{2}} e^{1/x} dx; \quad J_{9} = \int_{0}^{2} (x^{2} + 3x - 1)e^{x} dx;$$

Exercice n°7 (Pas de technique spéciale pour les fractions rationnelles ou autres) Calculer les intégrales suivantes :

$$I_{1} = \int_{0}^{1} (x-2)(x+1)^{5} dx \qquad I_{2} = \int_{1}^{e} x^{2} (\ln x)^{3} dx \qquad I_{3} = \int_{0}^{\frac{\ln 2}{2}} \frac{e^{2x}}{e^{2x}+2} dx$$

$$I_{4} = \int_{0}^{2\pi} \cos^{2}(x) dx \qquad I_{5} = \int_{e}^{e^{2}} \frac{1}{x (\ln(x))^{2}} dx \qquad I_{6} = \int_{0}^{1} \frac{x}{1+x^{4}} dx$$

$$I_{8} = \int_{0}^{\ln(2)} \cosh^{2}(x) \sinh^{2}(x) dx \qquad I_{9} = \int_{0}^{\frac{\pi}{2}} e^{x} \cos(x) dx \qquad I_{10} = \int_{1}^{e} x \ln^{2}(x) dx$$

$$I_{11} = \int_{0}^{\frac{\pi}{2}} x^{2} \sin^{2}(x) dx \qquad I_{12} = \int_{0}^{1} \frac{1}{(1+x^{2})^{2}} dx \qquad I_{13} = \int_{0}^{1} x^{2} \sqrt{1-x} dx$$

$$I_{14} = \int_{1}^{e} \frac{\ln(x)}{x} dx \qquad I_{15} = \int_{1}^{e} \frac{\ln(x)}{\sqrt{x}} dx \qquad I_{16} = \int_{0}^{1} \frac{x^{3}}{\sqrt{x+1}} dx$$

Exercice n°8 (Des techniques spéciales pour les fractions rationnelles) Calculer les intégrales et primitives suivantes :

$$I_{1} = \int_{2}^{3} \frac{1}{x(x+1)} dx \qquad I_{2} = \int_{0}^{2} \frac{2x+1}{x^{2}-3x-4} dx \qquad I_{3} \int_{0}^{\frac{1}{2}} \frac{x+1}{(x^{2}+1)(x-2)} dx$$

$$I_{4} \int_{0}^{\pi} \frac{x \sin(x)}{1+\cos^{2}(x)} dx \qquad I_{5} \int_{0}^{1} \frac{x}{(x^{4}+x^{2}+1)^{2}} dx \qquad I_{6} \int \frac{\cos(x)-\sin(x)}{1+\cos^{2}(x)} dx$$

Exercice n°9 Nous nous intéressons à montrer par l'absurde que π est un nombre irrationnel. Supposons que $\pi = \frac{p}{q}$, et posons $P_n(X) = \frac{1}{n!} X^n (p - qX)^n$, et $I_n = \int_0^\pi P_n(t) \sin(t) \ dt$.

- 1. Montrer que, $\forall n \in \mathbb{N}, P_n(X \pi) = P_n(X)$.
- 2. Montrer que, $\forall n \in \mathbb{N}, I_n \geqslant 0$.
- 3. Montrer que, $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, P_n^{(k)}(0) \in \mathbb{Z}, \text{ et } P_n^{(n)}(\pi) \in \mathbb{Z}.$
- 4. Montrer que, $\forall n \in \mathbb{N}$, $I_n \in \mathbb{N}$ (on pourra procéder à des intégrations par parties successives).
- 5. Montrer que $\lim_{n\to +\infty}I_n=0$. En déduire que l'hypothèse initiale est absurde.

Exercice n°10 (Problème : Intégrales de Wallis et formule de Stirling)

- Pour tout entier n, on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.
 - 1. Calculer I_0 et I_1 .
 - 2. Montrer que, $\forall n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.
 - 3. À l'aide d'une intégration par partie, déterminer une relation entre I_{n+2} et I_n .
 - 4. En déduire les valeurs de I_{2p} et I_{2p+1} (on les exprimera à l'aide de factorielles).
 - 5. Déterminer la monotonie de la suite (I_n) puis prouver sa convergence.
 - 6. En déduire $\lim_{n\to+\infty} \frac{I_n}{I_{n+1}}$.
 - 7. Montrer que, $\forall n \in \mathbb{N}, (n+1)I_{n+1}I_n = \frac{\pi}{2}$.
 - 8. Déterminer un équivalent simple de I_n .
- un résultat technique : Soit f une fonction concave sur un segment [a;b] et $M=\sup_{x\in [a;b]}|f''(x)|$. On note g la fonction affine vérifiant f(a)=g(a) et f(b)=g(b).
 - 1. Expliquer (sans calcul!) pourquoi $\int_a^b f(t) \ dt \geqslant \int_a^b g(t) \ dt$.
 - 2. Montrer que, $\forall t \in [a;b], f(t) g(t) \leqslant M \frac{(t-a)(b-t)}{2}$ (on pourra introduire la fonction h(x) = f(x) g(x) K(x-a)(x-b), où K est une constante choisie pour assurer h(t) = 0).
 - 3. En déduire que $\int_a^b f(t) \ dt \int_a^b g(t) \ dt \leqslant \frac{M(b-a)^3}{12}$.
 - 4. Appliquer ce résultat à la fonction \ln pour prouver que $0 \leqslant \left(n + \frac{1}{2}\right) \left(\ln(n+1) \ln(n)\right) 1 \leqslant \frac{1}{12n^2}$.
- Formule de Stirling : On introduit les deux suites $u_n = \ln(n^{n+\frac{1}{2}}e^{-n}) \ln(n!)$ et $v_n = u_n + \frac{1}{12(n-1)}$.
 - 1. Montrer que les deux suites (u_n) et (v_n) sont adjacentes (on pourra bien sûr exploiter les résultats des deux premières parties de l'exercice).
 - 2. Montrer que leur limite commune est égale à $-\frac{1}{2}\ln(2\pi)$ (on pourra s'intéresser à la limite de $2u_n-u_{2n}$).
 - 3. En déduire un équivalent de n!.