MATH 373 Project 1 (100 points)

Due on 10:50 AM of Feb 14, 2025 Please submit your report, source codes, and envroment which TA can run your codes

Here we consider two numerical differentiation formulas,

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 (1)
 $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} \tag{2}$$

Study and compare the two formulas for $f(x) = \sin x$ and x = 1 as $h \to 0$.

- 1) Find truncation error bounds for (1) and (2).
- 2) Find rounding error bounds for (1) and (2).
- 3) On the two graphs for (1) and (2), plot truncation error bound, rounding error bound and total error using a log-scale; the axes in the plot should be $\log_{10} |\text{error}|$ versus $\log_{10} h$ as $h = 10^{-k}, k = 1, \dots 16$.
 - 4) Discuss the optimal values h and the relations between errors.
 - 5) Compare (1) and (2) for your conclusion.