

Sistemas Operacionais

Aula 10 – DIN00023 Capítulo 8 (MACHADO; MAIA, 2014) Gerência do Processador

Prof. Dr. Jonathan Ramos jonathan@unir.br

Departamento Acadêmico de Ciências de Computação - DACC Núcleo de Tecnologia - NT

Sumário

- 1 Introdução
- 2 Funções Básicas
- 3 Critérios de Escalonamento
- 4 Tipos de Escalonamento
 - Não Preemptivos e Preemptivos
 - First-In-First-Out (FIFO)
 - Shortest-Job-First (SJF)
 - Cooperativo
 - Circular
 - Por Prioridades
 - Circular com Prioridades
- 5 Política de Escalonamento
 - Sistemas de Tempo Compartilhado
 - Sistemas de Tempo Real
- 6 Exercícios

Sistemas Operacionais

Sumário

1 Introdução

- 2 Funções Básica
- 3 Critérios de Escalonamento
- 4 Tipos de Escalonamento
 - Não Preemptivos e Preemptivos
 - First-In-First-Out (FIFO)
 - Shortest-Job-First (SJF)
 - Cooperativo
 - Circula
 - Por Prioridades
 - Circular com Prioridades
- 5 Política de Escalonamento
 - Sistemas de Tempo Compartilhado
 - Sistemas de Tempo Real
- 6 Exercícios

Introdução

Sistemas multi-programáveis:

Diversos processos concorrem ao uso da UCP.

Gerência do Processador:

Tornou-se uma das atividades mais importantes.

Processos prontos:

Deve haver critérios para execução: política de escalonamento.

Veremos os critérios e tipos de escalonamento nesta aula.

- 2 Funções Básicas
- - Não Preemptivos e Preemptivos

 - Shortest-Job-First (SJF)
- - Sistemas de Tempo Compartilhado

Funções Básicas

Funções Básicas

Umas das principais funções do SO é implementar os critérios da política de escalonamento:

Em um sistema multiprogramável:

O escalonador (scheduler) é crucial: o compartilhamento da UCP dependente desta rotina.

Dispatcher:

Responsável pela troca de contexto dos processos:

 Latência do dispatcher: O período de tempo que leva na troca de um processo em execução por outro.

Tipos de escalonamento:

- Apenas Processos: realizado com base nos processos prontos para execução.
- Com Threads: consideram threads no estado de pronto.

Sumário

- 1 Introdução
- 2 Funções Básicas
- 3 Critérios de Escalonamento
- 4 Tipos de Escalonamento
 - Não Preemptivos e Preemptivos
 - First-In-First-Out (FIFO)
 - Shortest-Job-First (SJF)
 - Cooperativo
 - Circula
 - Por Prioridades
 - Circular com Prioridades
- 5 Política de Escalonamento
 - Sistemas de Tempo Compartilhado
 - Sistemas de Tempo Real
- 6 Exercícios

Critérios de Escalonamento

Depende de cada tipo de sistema, em geral segue os critérios:

- Utilização do processador: deve ficar ocupado a maior parte do tempo:
 - Utilização na faixa dos 30% indica subutilização da UCP.
 - Utilização na faixa de 90% indica sobrecarga no sistema.
- **2** Throughput: número de processos executados em um intervalo de tempo:
 - Quanto maior, mais tarefas são executadas.
- Tempo de Processador / Tempo de UCP: tempo que um processo leva no estado de execução durante seu processamento;
- Tempo de Espera: tempo total que um processo permanece na fila de pronto durante seu processamento;
- **Tempo de** *Turnaround*: tempo que um processo leva da criação até o término;
- Tempo de Resposta: tempo decorrido entre uma requisição ao sistema ou à aplicação e o instante em que a resposta é exibida

Em geral:

O escalonador busca **otimizar a utilização do processador**, aumentar o *throughput* e diminuir *turnaround*, tempo de espera e de resposta.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/20

Sumário

- 1 Introdução
- 2 Funções Básicas
- 3 Critérios de Escalonamento
- 4 Tipos de Escalonamento
 - Não Preemptivos e Preemptivos
 - First-In-First-Out (FIFO)
 - Shortest-Job-First (SJF)
 - Cooperativo
 - Circular
 - Por Prioridades
 - Circular com Prioridades
- 5 Política de Escalonamento
 - Sistemas de Tempo Compartilhado
 - Sistemas de Tempo Real
- 6 Exercícios

Não Preemptivos e Preemptivos

Indica se o processo pode ou não ser interrompido:

Não Preemptivos

Quando um processo está em execução **nenhum evento externo** pode ocasionar a perda do uso do processador.

Preemptivos

O SO pode interromper um processo em execução e passá-lo para o estado de pronto.

Atualmente, a maioria dos sistemas operacionais implementa políticas de escalonamento preemptivas

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 12 /

First-In-First-Out (FIFO)

Figura: Escalonamento FIFO: não preemptivo.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 13 /

First-In-First-Out (FIFO)

Figura: Escalonamento FIFO: não preemptivo.

Desvantagem:

- não preemptivo;
- 2 Não melhora o tempo médio de espera dos processos;
- Processos CPU-bound levam vantagem no uso do processador sobre processos I/O-bound

Prof. Dr. Jonathan Ramos

Shortest-Job-First (SJF)

Seleciona o processo que tiver o menor tempo de UCP para executar:

Figura: Escalonamento SJF (exemplo): não preemptivo.

Desvantagem:

- não preemptivo;
- Processos longos podem sofrer starvation
- 3 O que mais?

Cooperativo

Aumentar o grau de multiprogramação em escalonadores não preemptivos:

Um processo em execução:

Pode voluntariamente liberar o processador.

 o processo em execução verifica periodicamente uma fila de mensagens para determinar se existem outros processos na fila de pronto

Algumas situações indesejadas podem acontecer:

- SO não gerencia a verificação: fica a cargo do processo em execução;
- E se o processo em execução não fazer a verificação?

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 15 /

es Básicas Critérios de Escalonamento Tipos de Escalonamento Política de Escalonamento Exercícios 00 0000000000 000 000 000

Circular

Figura: Escalonamento circular: preemptivo. Projetado especialmente para sistemas de tempo compartilhado

Similar ao FIFO:

Porém, quando um processo passa para o estado de execução existe um tempo-limite para o uso contínuo do processador:

- fatia de tempo (time-slice) ou quantum;
- preempção por tempo (varia entre 10 e 100 ms).
- Vantagem? Desvantagem?

Prof. Dr. Jonathan Ramos

Circular

Desvantagem:

- Caso a fatia de tempo tenha um valor muito alto, este escalonamento tenderá a ter o mesmo comportamento do escalonamento FIFO;
- Caso o valor do time-slice seja pequeno, a tendência é que haja um grande número de preempções, o que ocasionaria excessivas mudanças de contexto, prejudicando o desempenho do sistema e afetando o tempo de turnaround dos processos.
- Processos CPU-bound são beneficiados no uso do processador em relação aos processos I/O-bound;
- Os processos CPU-bound tendem a utilizar por completo a fatia de tempo, enquanto os processos I/O-bound têm mais chances de passar para o estado de espera antes de sofrerem preempção por tempo;

Vantagem:

- Não permitir que um processo monopolize a UCP;
- o escalonamento circular é adequado para sistemas de tempo compartilhado.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022

Circular: refinamento

Uma lista extra mantém processos que saem do estado de espera e vão para uma fila de pronto:

Figura: Escalonamento circular virtual: refinamento do escalonamento circular. Os processos da fila auxiliar possuem preferência no escalonamento em relação à fila de pronto. o escalonador só seleciona processos na fila de pronto quando a fila auxiliar estiver vazia

Apesar da maior complexidade na implementação, esta abordagem apresenta resultados mais equilibrados: mecanismo adaptativo.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 18 / 33

Por Prioridades

Cada processo possui um valor que representa sua prioridade de execução:

Figura: Escalonamento por prioridades: preemptivo. Processos com valores iguais são escalonados seguindo o critério de FIFO. O conceito de fatia de tempo não existe.

A perda do uso do processador só ocorrerá no caso de uma mudança voluntária para o estado de espera ou quando um processo de prioridade maior passa para o estado de pronto: preempção por prioridade: implementada com interrupção de clock.

Desvantagem?

 Prof. Dr. Jonathan Ramos
 Sistemas Operacionais
 06/12/2022
 19 / 33

Por Prioridades

Cada processo possui um valor que representa sua prioridade de execução:

Figura: Escalonamento por prioridades: preemptivo. Processos com valores iguais são escalonados seguindo o critério de FIFO. O conceito de fatia de tempo não existe.

A perda do uso do processador só ocorrerá no caso de uma mudança voluntária para o estado de espera ou quando um processo de prioridade maior passa para o estado de pronto: preempção por prioridade: implementada com interrupção de clock.

Desvantagem? Starvation!

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 19

Circular com Prioridades

Adiciona fatias de tempo a cada processo:

Fila dos processos no estado de pronto

Figura: Escalonamento circular com prioridades.

Atualmente é amplamente utilizado no sistemas Unix (Linux) e Windows.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 20 / 3:

Sumário

- - Não Preemptivos e Preemptivos

 - Shortest-Job-First (SJF)
- 5 Política de Escalonamento
 - Sistemas de Tempo Compartilhado
 - Sistemas de Tempo Real

Sistemas de Tempo Compartilhado

Caracterizam-se pelo processamento interativo

Usuários interagem com as aplicações exigindo tempos de respostas baixos:

 Leva em consideração o compartilhamento dos recursos de forma equitativa para possibilitar o uso balanceado da UCP entre processos.

Figura: Multi-task ou time-sharing.

Vantagens:

Resposta rápida, CPU menos ociosa

Desvantagem:

 Usa muitos recursos, necessita de hardware mais potente, maiores preocupações com segurança e comunicacão.

Atualmente, a maioria dos SOs de tempo compartilhado utiliza o escalonamento circular com prioridades dinâmicas

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 22

Funções Básicas Critérios de Escalonamento Tipos de Escalonamento Política de Escalonamento Exercícios
000 00 0000000000 00 00 00000000000

Sistemas de Tempo Real

Algumas aplicações específicas exigem respostas imediatas para a execução de determinadas tarefas

SO de tempo real:

É garantida a execução de processos dentro de limites rígidos de tempo, sem o risco de a aplicação ficar comprometida.

Exemplos?

Sistemas de Tempo Real

Algumas aplicações específicas exigem respostas imediatas para a execução de determinadas tarefas

SO de tempo real:

É garantida a execução de processos dentro de limites rígidos de tempo, sem o risco de a aplicação ficar comprometida.

Exemplos?

Controle de tráfego aéreo, Robótica, Visão Computacional, etc

Escalonamento:

Deve levar em consideração a importância relativa de cada tarefa na aplicação:

- O escalonamento por prioridades é o mais adequado;
- Cada processo tem uma prioridade que é associada em função da importância do processo dentro da aplicação;
- Não deve existir o conceito de fatia de tempo, e a prioridade de cada processo deve ser estática
- em algumas sub-faixas de prioridade não há preempção por tempo.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 23 /

Sumário

- 1 Introdução
- 2 Funções Básicas
- 3 Critérios de Escalonamento
- 4 Tipos de Escalonamento
 - Não Preemptivos e Preemptivos
 - First-In-First-Out (FIFO)
 - Shortest-Job-First (SJF)
 - Cooperativo
 - Circula
 - Por Prioridades
 - Circular com Prioridades
- 5 Política de Escalonamento
 - Sistemas de Tempo Compartilhado
 - Sistemas de Tempo Real
- 6 Exercícios

Exercícios I

- O que é política de escalonamento de um sistema operacional?
- Quais as funções do escalonador e do dispatcher?
- 3 Quais os principais critérios utilizados em uma política de escalonamento?
- Diferencie os tempos de processador, espera, turnaround e resposta.
- 5 Diferencie os escalonamentos preemptivos e não preemptivos.
- Qual a diferença entre os escalonamentos FIFO e circular?
- Descreva o escalonamento SJF e o escalonamento por prioridades.
- Qual a diferença entre preempção por tempo e preempção por prioridade?
- O que é um mecanismo de escalonamento adaptativo?
- Que tipo de escalonamento aplicações de tempo real exigem? Justifique.

Exercícios II

Considere que cinco processos sejam criados no instante de tempo 0 (P1, P2, P3, P4 e P5) e possuam as características descritas na tabela a seguir:

Processo	Tempo de UCP	Prioridade		
P1	10	3		
P2	14	4		
P3	5	1		
P4	7	2		
P5	20	5		

Desenhe um diagrama ilustrando o escalonamento dos processos e seus respectivos tempos de *turnaround*, segundo as políticas especificadas a seguir. O tempo de troca de contexto deve ser desconsiderado.

- FIFO
- 2 SJF
- 3 Prioridade (número menor implica prioridade maior)
- 4 Circular com fatia de tempo igual a 2 u.t.

Exercícios III

Considere um sistema operacional com escalonamento por prioridades onde a avaliação do escalonamento é realizada em um intervalo mínimo de 5 ms. Neste sistema, os processos A e B competem por uma única UCP. Desprezando os tempos de processamento relativo às funções do sistema operacional, a tabela a seguir fornece os estados dos processos A e B ao longo do tempo, medido em intervalos de 5 ms (E = execução, P = pronto e W = espera). O processo A tem menor prioridade que o processo B.

	00-04	4 05-0	9 10-	14 15	-19 2	20-24	25-29	30-34	35-39	40-44	45-49
Processo A Processo B	P E	P E	E W	-	E W	E P	P E	P E	P E	E W	W
	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	90-94	95-99	100-105

- Em que tempos A sofre preempção?;
- 2 Em que tempos B sofre preempção?
- Refaça a tabela anterior supondo que o processo A é mais prioritário que o processo B.

Laboratório com o Simulador SOsim: Atividade 1: Escalonamento Circular

Práticas de simulação: Execute o simulador SOsim e configure-o para trabalhar com Escalonamento Circular: janela Console SOsim/Opções/Parâmetros do Sistema na guia Processador.

2 Análise prática:

- Crie dois processos com a mesma prioridade (um CPU-bound e outro I/O-bound): janela Gerência de Processos / Criar – janela Criação de Processos / Criar.
- Na janela Gerência de Processos, observe o tempo de processador de cada processo durante dois minutos e as mudanças de estado. Após esse período, anote o tempo de processador de cada processo. Analise o balanceamento no uso do processador pelos dois processos.
- Na janela Gerência de Processos, finalize os dois processos.
- Na janela Gerência de Processador, aumente a fatia de tempo movimentando a barra de Fatia de Tempo.
- Na janela Gerência de Processos, observe mais uma vez o tempo de processador de cada processo durante dois minutos e as mudanças de estado. Após esse período, anote o tempo de processador de cada processo. Compare os tempos anotados nas duas e analise o resultado do balanceamento no uso do processador pelos dois processos. Identifique as causas da variação.
- Questão teórica para responder com a ajuda do simulador: Considere a concorrência, nesse tipo de escalonamento, com dois processos CPU-bound que não realizam operações de E/S. Qual o efeito da variação da fatia de tempo sobre o balanceamento no uso do processador?

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 28 / 33

Laboratório com o Simulador SOsim: Atividade 2: Escalonamento Circular com Prioridades Estáticas I

- Práticas de simulação: Execute o simulador SOsim e configure-o para trabalhar com Escalonamento Circular com Prioridades Estáticas: janela Console SOsim/Opcões/Parâmetros do Sistema na guia Processador.
- 2 Análise prática:
 - Crie um processo CPU-bound com prioridade 3 e um outro I/O-bound com prioridade 4: janela Gerência de Processos/Criar – janela Criação de Processos/Criar.
 - Na janela Gerência de Processos, observe o tempo de processador de cada processo durante dois minutos e as mudanças de estado. Após esse período anote o tempo de processador de cada processo.
 - Verifique a preempção por prioridade que ocorre toda vez que o processo *I/O-bound* de maior prioridade passa para o estado de pronto.
 - Analise o balanceamento no uso do processador pelos dois processos comparativamente à Atividade 1.
- Questão teórica para responder com a ajuda do simulador: Quais devem ser os critérios para determinar as prioridades dos processos? Caso, nesse escalonamento, todos os processos sejam criados com a mesma prioridade, qual o benefício dessa política sobre o Escalonamento Circular?

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022 29 / 33

Laboratório com o Simulador SOsim: Atividade 3: Escalonamento Circular com Prioridades Estáticas II

- Práticas de simulação: Execute o simulador SOsim e configure-o para trabalhar com Escalonamento Circular com Prioridades Estáticas: janela Console SOsim/Opções/Parâmetros do Sistema na guia Processador.
- Análise prática:
 - Crie um processo CPU-bound com prioridade 4 e um outro I/O-bound com prioridade 3: janela Gerência de Processos/Criar – janela Criação de Processos/Criar.
 - Na janela Gerência de Processos, observe o escalonamento dos dois processos.
 Analise o problema do starvation.
- Questão teórica para responder com a ajuda do simulador: Por que o problema do starvation pode ocorrer? Cite duas ações que o administrador do sistema pode realizar quando é identificada a situação de starvation em um processo.

 Prof. Dr. Jonathan Ramos
 Sistemas Operacionais
 06/12/2022
 30 / 33

- Práticas de simulação: Execute o simulador SOsim e configure-o para trabalhar com Escalonamento Circular com Prioridades Dinâmicas: ianela Console SOsim/Opcões/Parâmetros do Sistema na guia Processador. Habilite as janelas de log e estatísticas: janela Console SOsim/Janelas. Na janela Gerência do Processador desloque a barra Frequência clock para a metade da escala.
- Análise prática:
 - Crie um processo CPU-bound com prioridade base 3 e mais três processos I/O-bound com prioridade base 4, porém com perfis diferentes (tipo 1, 2 e 3): janela Gerência de Processos/Criar — janela Criação de Processos/Criar.
 - Observe as prioridades base e dinâmica dos quatro processos na janela Gerência de Processos.
 - Identifique os motivos de as prioridades dinâmicas dos processos variarem ao longo do tempo.
 - Observe na janela de log o valor do incremento recebido na prioridade de cada processo.
 - Identifique o porquê das diferencas nos valores do incremento.
 - Observe na janela de estatísticas o percentual de utilização da UCP.
 - Suspenda o processo CPU-bound: janela Gerência de Processos/Suspender.
 - Observe na janela de estatísticas as mudanças no percentual de utilização da UCP e identifique a razão.
 - Libere o processo CPU-bound do estado de suspenso: janela Gerência de Processos/Prosseguir.
- 3 Questão teórica para responder com a ajuda do simulador: Qual o critério utilizado pelo sistema operacional para determinar diferentes valores de incremento à prioridade-base de um processo quando há uma mudanca do estado de espera para pronto?

Sistemas Operacionais Prof. Dr. Jonathan Ramos

Referências I

MACHADO, F. B.; MAIA, L. P. **Arquitetura de Sistemas Operacionais**. 5a. ed. [S.I.]: Ed. LTC, 2014.

Prof. Dr. Jonathan Ramos Sistemas Operacionais 06/12/2022

jonathan@unir.br

Prof. Dr. Jonathan Ramos