

IDENTIFICACIÓN DE PLACAS VEHICULARES EN COLOMBIA A PARTIR DE RECONOCIMIENTO ÓPTICO DE CARACTERES ROC

REALIZADO POR:

JUAN MANUEL AYA PERLAZA

LAURA MARÍA JOAQUI MUÑOZ

VICTOR HUGO MUNERA ROJAS

CONTENIDO

- 1. Problemática
- 2. Objetivos
- 3. Propuesta de solución
- 4. Diagrama de bloques
- 5. Diagramas de Flujos
- Apartado de Procesamiento de imágenes
- Apartado de Inteligencia Artificial
- 6. Demostración y resultados
- 7. Conclusiones

PROBLEMÁTICA

OBJETIVO GENERAL

• Implementar un sistema que permita reconocer los caracteres presentes en placas vehiculares colombianas.

OBJETIVOS ESPECÍFICOS CURSO PROCESAMIENTO DE IMÁGENES

- Identificar en la imagen la región donde se encuentra la placa del vehículo.
- Segmentar la placa en los diferentes caracteres que la componen.
- Extraer características de cada recorte para utilizar posteriormente como entrenamiento/predicción.

OBJETIVOS ESPECÍFICOS CURSO INTELIGENCIA ARTIFICIAL

- Escoger las mejores características para el entrenamiento del modelo y posterior predicción de letras.
- Utilizar un algoritmo de reconocimiento óptico de caracteres para obtener las letras y números de la placa.
- Realizar una comparación entre los distintos modelos de predicción para ver con cuál se obtienen mejores resultados.

PROPUESTA DE SOLUCIÓN

DIAGRAMA DE BLOQUES

Inicio (Imagen de vehículo) Entrenamiento de los modelos de ML Identificación de la placa en la imagen Segmentación de placa en sus 6 caracteres alfanuméricos. Nο Contador_caracteres < 6 Visualización del Extracción de resultado de la características de predicción de la placa caracter n (Firma, Hu, Radon) Fin Predicción a partir de los modelos de ML Contador_caracteres += 1 Sistema general

DIAGRAMA DE FLUJO GENERAL

DIAGRAMA DE FLUJO PROCESAMIENTO DE IMÁGENES Y VISIÓN

Inicio (Imagen de placas) No Contador_muestras < Max_muestra Segmentar X en Segmentación de conjuntos de train/test placa en sus 6 caracteres alfanuméricos. Escalizar características a partir del conjunto de train Nο Contador_caracteres < Entrenamiento de los Sí modelos de ML Extracción de características de cada caracter n Fin Anexar características al dataset de X y la etiqueta a Y Contador_caracteres += 1 Entrenamiento modelos MI

DIAGRAMA DE FLUJO INTELIGENCIA ARTIFICIAL

DEMOSTRACIÓN Y RESULTADOS

Predicciones:

KNN | SVM | NN ATC74F | ATL74P | WT03JG

Predicciones:

KNN | SVM | NN DLL7DL | DLL44L | WHNY4T

Predicciones:

KNN |SVM |NN ZZKPLL |L7KVLL |3CJU18

CONCLUSIONES

Método	Accuracy en conjunto de test
Momentos de Hu	38%
Transformada de Radón	66%
Firma	66%
Concatenación de todos	66%

De los distintos métodos para identificar los posibles contornos de placas en una imagen, se decidió utilizar el área, alto y ancho de contornos para poder distinguirlos de los demás. Además, como las imágenes eran de diferentes tamaños, era preciso definir unos umbrales relativos al tamaño de esta, no absolutos.

iGRACIAS POR SU ATENCIÓN!