Optimization algorithms

9/10 points (90%)

Item

Quiz, 10 questions

~	Congra	atulations! You passed!	Next
	✓	1/1	
		points	
		notation would you use to denote the 3rd layer's activations the 7th example from the 8th minibatch?	ons when the
		$a^{[8]\{7\}(3)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corr	rect	
		$a^{[3]\{7\}(8)}$	
		$a^{[8]\{3\}(7)}$	
		1/1	
		points	
	2. Which with?	of these statements about mini-batch gradient descent d	o you agree
		Training one epoch (one pass through the training set) to batch gradient descent is faster than training one epoch batch gradient descent.	_
		You should implement mini-batch gradient descent with explicit for-loop over different mini-batches, so that the	

processes all mini-batches at the same time (vectorization).

 \bigcirc

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

Correct

1/1 points

3.

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Correct

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

Un-selected is correct

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

Un-selected is correct

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the $Optimization_{u}$ algorithm's, looks like this:

9/10 points (90%)

Quiz, 10 questions

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			
	Whether you're using batch gradient descent or mini-batch			

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

Jan 2nd:
$$\theta_2 10^{\circ} C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

Correct

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \ \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \alpha_0$ Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

0/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

This should not be selected

False.

Increasing β will shift the red line slightly to the right.

This should be selected

Decreasing β will create more oscillation within the red line.

Optimization algorithms

9/10 points (90%)

Quiz, 10 questions

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

	(1) is gradient descent with momentum (small eta). (2) is gradient
	descent. (3) is gradient descent with momentum (large β)
Optimization alg	descent. (3) is gradient descent with momentum (large eta) $\operatorname{corithms}$

Quiz, 10 questions

9/10 points (90%)

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

	Try tuning the learning rate $lpha$					
Correct						
	Try initializing all the weights to zero					
Un-selected is correct						
Corre	Try better random initialization for the weights					
Corre	Try using Adam					
Corre	Try mini-batch gradient descent					

Optimization₀algorithms

9/10 points (90%)

Quiz, 10 questions Which of the following statements about Adam is False?

- We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)

 Adam combines the advantages of RMSProp and momentum
- The learning rate hyperparameter α in Adam usually needs to be tuned.
- Adam should be used with batch gradient computations, not with mini-batches.

Correct

