Maths Problem Set 2

Shekhar Kumar* † July 01 , 2018

$$\begin{aligned} \mathbf{Ex} \ \mathbf{3.1} \quad &(\mathbf{i}) \quad \langle x,y \rangle = \frac{1}{4}(||x+y||^2 - ||x-y||^2) \\ &= \frac{1}{4}(\langle x+y,x+y \rangle - \langle x-y,x-y \rangle) \\ \text{We note we are on a real inner product space so we can write:} \\ &= \frac{1}{4}(\langle x,x \rangle + \langle y,y \rangle + 2\langle x,y \rangle - \langle x,x \rangle - \langle y,y \rangle + 2\langle x,y \rangle) \\ &= \frac{1}{4}(4\langle x,y \rangle) \\ &= \langle x,y \rangle \\ \end{aligned} \\ &(\mathbf{ii}) \\ ||x||^2 + ||y||^2 = \frac{1}{2}(||x+y||^2 + ||x-y||^2) \\ \text{Again because we in a real space we can write:} \\ &= \frac{1}{2}(\langle x,x \rangle + \langle y,y \rangle + 2\langle y,x \rangle + \langle x,x \rangle + \langle y,y \rangle - 2\langle y,x \rangle) \\ &= \langle x,x \rangle + \langle y,y \rangle \\ &= ||x||^2 + ||y||^2 \\ \mathbf{Ex} \ \mathbf{3.2} \\ &\langle x,y \rangle = \frac{1}{4}(||x+y||^2 - ||x-y||^2 + i||x-iy||^2 - i||x+iy||^2) \\ \text{Using the proof from above we can write this as:} \\ &= \mathcal{R}\langle x,y \rangle + \frac{1}{4}i(\langle x-iy,x-iy \rangle - \langle x+iy,x+iy \rangle) \\ &= \mathcal{R}\langle x,y \rangle \\ &= \langle x,y \rangle \end{aligned}$$

^{*}University of Chicago, OSM Boot Camp 2018, +91-801-702-544, shekharkhetan@gmail.com.

[†]I thank Yung-Hsu Tsui for sharing the basic latex file as well as Navneeraj and Keshav for helping understand the problems and Matt for his generous help.

$$=\frac{1/7}{\sqrt{1/33}}$$

Therefore the angle is 34.84 degrees.

$$cos(\theta) = \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^4 dx} \sqrt{\int_0^1 x^8 dx}}$$
$$= \frac{1/7}{\sqrt{1/45}}$$

Therefore the angle is 16.6 degrees.

Ex 3.8

(i)

A set is orthonormal if the inner products of the combinations of elements of the set satisfy:

- $\langle x_i, x_j \rangle = 1$ if i = j
- $\langle x_i, x_j \rangle = 0$ if $i \neq j$

Checking the first condition:

Firstly for
$$\cos(t)$$
, $\cos(t)$

$$\langle \cos(t), \cos(t) \rangle = \frac{1}{\pi} int_{-\pi}^{\pi} \cos(t)^{2} dt$$

$$= \frac{1}{\pi} \left[\frac{x}{2} + \frac{\sin(2x)}{4} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} (\pi)$$

We can also see that this result will hold for $\cos(2t)$, $\cos(2t)$ as well. (The evaluated sin functions in the integral will still be zero).

Now checking $\sin(t)$, $\sin(t)$, and by virtue of the argument above, $\sin(2t)$, $\sin(2t)$ as well.

$$\langle \cos(t), \cos(t) \rangle = \frac{1}{\pi} int_{-\pi}^{\pi} sin(t)^{2} dt$$

= $\frac{1}{\pi} [\frac{x}{2} - \frac{1}{4} sin(2x)]_{-\pi}^{\pi}$
= 1

Now we need to check the cross terms, and verify that their inner product is zero.

$$\langle \cos(t), \sin(t) \rangle = \frac{1}{\pi} [\sin(t)^2]_{-\pi}^{\pi}$$

= 0

And we note that this also holds for the combinations of $\cos(2t)$, $\sin(t)$ and also $\cos(t)$, $\sin(2t)$.

$$\langle \cos(t), \cos(2t) \rangle = \frac{1}{\pi} \left[\frac{\sin(t)}{2} + \frac{\sin(3t)}{6} \right]_{-\pi}^{\pi}$$
$$= 0$$

$$\langle sin(t), sin(2t) \rangle = \frac{1}{\pi} \left[\frac{sin(t)^3}{1.5} \right]_{-\pi}^{\pi}$$
$$= 0$$

Therefore the set is orthonormal.

(ii)

$$\begin{aligned} ||t||^2 &= \frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt \\ &= \left[\frac{t^3}{3} \right]_{-\pi}^{\pi} \\ &= \left[\frac{\pi^3}{3} + \frac{\pi^3}{3} \right] \\ &= 2 \frac{\pi^3}{3} \end{aligned}$$

Therefore $||t|| = (\frac{2\pi^3}{3})^{0.5}$

(iii)

Because we are dealing with an orthnormal set we can write:

$$Proj_{x}(cos(3t)) = \sum_{i} \langle S_{i}, cos3t \rangle s_{i}$$

$$= \langle cos(t), cos(3t) \rangle cos(t) + \langle cos(2t), cos(3t) \rangle cos(2t) + \langle sin(t), cost(3t) \rangle sin(t) + \langle sin(2t), cos(3t) \rangle sin(2t)$$

After substituting in the integrals we get

= 0

i.e. $\cos(3t)$ is orthogonal to all the elements in S, as its projection matrix is a zero matrix.

(iv)

$$Proj_{x}(t) = \sum_{i} \langle S_{i}, t \rangle s_{i}$$

$$= \langle cos(t), t \rangle cos(t) + \langle cos(2t), t \rangle cos(2t) + \langle sin(t), t \rangle sin(t) + \langle sin(2t), t \rangle sin(2t)$$

$$= 0 + 0 + 2sin(t) - sin(2t)$$

$$= 2sin(t) - sin(2t)$$

Ex 3.9

We use the fact that we can convert the rotation transformation into a matrix in the standard basis, which we call Q. Then, we know that if $Q^TQ = I$ then the transformation is orthonormal.

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

So,

$$QQ^{T} = \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta & 0\\ 0 & \cos^{2}\theta + \sin^{2}\theta \end{bmatrix}$$

$$QQ^T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Ex 3.10

(i)

First we show that if Q is orthonormal then $QQ^H = I$.

If Q is an orthonormal matrix, then it preserves the inner product of two vectors. i.e.

$$\langle m, n \rangle = \langle Qm, Qn \rangle$$

Which we can rewrite as:

$$m^H n = (Qm)^H (Qn)$$

$$m^H n = m^H (Q^H Q) n$$

Therefore, since this has to hold for all m and n:

$$Q^hQ = I$$

Now we can show that if $QQ^H = I$, then Q is orthonormal.

If
$$QQ^H = I$$

Then:

$$\langle Qm,Qn\rangle=(Qm)^H(Qn)$$

$$= m^H Q^H Q n$$

$$= \langle m, n \rangle$$

(ii)

$$||Qx|| = \sqrt{\langle Qx, Qx \rangle}$$

By the definition of what a orthonormal matrix is (it preserves the inner product), we can write:

$$=\sqrt{\langle x,x\rangle}$$

$$= ||x||$$

(iii)

If Q is orthonormal we can write:

$$QQ^H = I$$

i.e.
$$Q^H = Q^{-1}$$

 Q^H is clearly orthonormal because $(Q^H)^H = Q$, therefore so is Q^{-1} .

(iv)

If Q is orthonormal we know that $G = Q^H Q = I$

For some element of G, we can write that:

$$G_{i,j} = \langle q_i, q_j \rangle$$

Where q_i is the i'th column of Q.

By the definition of orthornomality, we know that:

$$\langle q_i, q_j \rangle = 1 \text{ if } i = j$$

and

$$\langle q_i, q_i \rangle = 0 \text{ if } i \neq j$$

So we can see that when i = j we are on the diagonal of Q, so clearly $\langle q_i, q_j \rangle = 1$ if i = j. And similarly, everywhere else $i \neq j$, and have zero entries, so $\langle q_i, q_j \rangle = 0$ if $i \neq j$.

(v)

We can find a counterexample to show that not all matrices with determinant equal to 1 are orthonormal.

$$D = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

We can see that: det(D) = 1 But, if we test for orthonormality,

$$DS^H = \begin{bmatrix} 4 & 0 \\ 0 & 0.25 \end{bmatrix} \neq I$$

(vi)

Checking if the product of the two matrices is an orthonormal matrix:

$$(Q_1Q_2)(Q_1Q_2)^H = Q_1Q_2Q_2^HQ_1^H$$

Then using the fact that Q_1 and Q_2 are orthonormal we can write:

$$Q_1 Q_2 Q_2^H Q_1^H = Q_1 Q_1^H = I$$

So the product of the matrices is orthonormal.

Ex 3.11

Proof. Suppose, WLOG, that for 2 < k < N, $\{x_i\}_{i=1}^{k-1}$, linearly independent. That also means that $\{q_i\}_{i=1}^{k-1}$ are linearly independent (Showing this is very trivial!)

However, if $\{x_i\}_{i=1}^k$ are linearly dependent, then $x_k \in Span(\{x_i\}_{i=1}^{k-1})$, and $q_k = 0$. This is contradictory to the assumption that $\{q_1, ..., q_N\}$ are linearly dependent.

Ex 3.16

(i) Let $A \in \mathbb{M}_{mxn}$ where $\operatorname{rank}(A) = n \leq m$. Then there exist orthonormal $Q \in \mathbb{M}_{mxn}$ and upper triangular $R \in \mathbb{M}_{mxn}$ such that A = QR. Since $\tilde{Q} = -Q$ is still orthonormal $(-Q(-Q)^H = -Q(-Q^H) = QQ^H = I$ and similarly one shows $(-Q)^H(-Q) = I)$ and $\tilde{R} = -R$ is still upper triangular, $A = QR = \tilde{Q}\tilde{R}$. Therefore QR-decomposition is not unique.

(ii) Now take a reduced QR-decomposition $A = \hat{Q}\hat{R}$, where $\hat{Q} \in \mathbb{M}_{mxn}$ is orthonormal and $\hat{R} \in \mathbb{M}_{nxn}$ is upper triangular. Since A has full column rank, \hat{R} has full rank and is therefore nonsingular. Then,

$$A^{H}Ax = A^{H}b \implies$$

$$(\hat{Q}\hat{R})^{H}\hat{Q}\hat{R}x = (\hat{Q}\hat{R})^{H}b \implies$$

$$\hat{R}^{H}\hat{Q}^{H}\hat{Q}\hat{R}x = \hat{R}^{H}\hat{Q}^{H}b,$$

and premultiplying both LHS and RHS of the last equation by \hat{R}^{-1} gives $\hat{R}x = \hat{Q}^Hb$.

Ex 3.17

Proof.
$$A^HAX = A^Hb \leftrightarrow (\hat{Q}\hat{R})^H(\hat{Q}\hat{R})x = (\hat{Q}\hat{R})^Hb \leftrightarrow \hat{R}^H(\hat{Q}^H\hat{Q})\hat{R}x = \hat{R}^H\hat{Q}^Hb \leftrightarrow \hat{R}^H\hat{R}x = \hat{R}^H\hat{Q}^Hb$$

Note that \hat{R}^H is invertible. Thus, $\hat{R}^H x = \hat{Q}^H b$. You can proceed in the other way around to complete your proof. Q.E.D

Ex 3.23

Proof. Let z := x - y. Then, by triangle inequality, the following is satisfied:

$$||z + y|| \le ||z|| + ||y|| \leftrightarrow ||x|| \le ||x - y|| + ||y|| \leftrightarrow ||x|| - ||y|| \le ||x - y||$$

In the same way, $||y|| - ||x|| \le ||x - y||$. Thus, the statement holds. Q.E.D

Ex 3.24

(i)

$$||f||_{L^1} = \int_a^b |f(t)|dt > 0 \text{ for } f(t) \neq 0$$

$$\|\alpha f\|_{L^1} = \int_a^b |\alpha f(t)| dt \int_a^b |\alpha| |f(t)| dt = |\alpha| \int_a^b |f(t)| dt = |\alpha| \|f\|_{L^1}$$

$$\|f+g\|_{L^1} = \int_a^b |f(t)+g(t)|dt \le \int_a^b (|f(t)|+|g(t)|dt \le \int_a^b |f(t)|)dt + \int_a^b |g(t)|dt = \|f\| + \|g\|$$

(ii)

$$||f||_{L^2} = (\int_a^b |f(t)|^2 dt)^{1/2} > 0 \text{ for } f(t) \neq 0$$

$$\|\alpha f\|_{L^2} = (\int_a^b |\alpha f(t)|^2 dt)^{1/2} = (|\alpha|^2 \int_a^b |f(t)|^2)^{1/2} = |\alpha| (\int_a^b |f(t)|^2)^{1/2} = |\alpha| \|f\|$$

$$||f + g||_{L^{2}} = \left(\int_{a}^{b} |f(t) + g(t)|^{2} dt\right)^{1/2} \le \left(\int_{a}^{b} |f(t)|^{2} + |g(t)|^{2} dt\right)^{1/2} \le \left(||f||^{2} + |g||^{2}\right)^{1/2} \le \sqrt{||f||^{2}} + \sqrt{||g||^{2}} = ||f|| + ||g||$$

(iii)

$$||f||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x)| > 0 \text{ for } f(t) \neq 0$$

$$\|\alpha f\|_{L^{\infty}} = \sup_{x \in [a,b]} |\alpha f(x)| = \sup_{x \in [a,b]} |\alpha| |f(x)| = |\alpha| \sup_{x \in [a,b]} |f(x)| = |\alpha| \|f\|$$

$$||f+g||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x)+g(x)| \le \sup_{x \in [a,b]} (|f(x)|+|g(x)|) \le \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)| = ||f|| + ||g||$$

Ex 3.26

Proof. Let $a \sim b$ if $\exists m, M > 0$ and $m \leq M$ for vector space X s.t $m||x||_a \leq ||x||_b \leq M||x||_a \ \forall x \in X$

1. Reflexivity

If m = M = 1, then $m||x||_a \le ||x||_a \le M||x||_a$

2. Symmetry

Suppose $a \sim b$. Then, $m||x||_a \leq ||x||_b \leq M||x||_a$. This leads to the following inequalities; $\frac{1}{M}||x||_b \leq ||x||_a \leq \frac{1}{m}||x||_b$. So, as long as m = M, the symmetry property can be satisfied!

3. Transitivity

Suppose $a \sim b$ and $b \sim c$

Then, $m||x||_a \le ||x||_b \le M||x||_a$ and $m^*||x||_b \le ||x||_c \le M^*||x||_b$

Then, this leads to: $m\|x\|_a \leq \|x\|_b \leq \frac{1}{m^*} \|x\|_c \leq \frac{M}{m^*} \|x\|_b \leq \frac{M^2}{m^*} \|x\|_a \to m\|x\|_a \leq \frac{1}{m^*} \|x\|_c \leq \frac{M^2}{m^*} \|x\|_a$

Thus, $a \sim c$

Take $x \in \mathbb{R}^n$ Notice that

$$\sum_{i=1}^{n} |x_i|^2 \le \left(\sum_{i=1}^{n} |x_i|^2 + 2\sum_{i \ne j} |x_i| |x_j|\right) = \left(\sum_{i=1}^{n} |x_i|\right)^2$$

and that

$$\sum_{i=1}^{n} |x_i| \cdot 1 \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} 1^2\right)^{1/2} = \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$

prove that $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$.

Also notice that

$$\max_{i} |x_{i}| = \left(\max_{i} |x_{i}|^{2}\right)^{1/2} \le \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} =$$

and

$$\sum_{i=1}^{n} |x_i|^2 \le n \cdot \max_i |x_i|^2$$

prove that $||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty}$.

Ex 3.28

(i) Notice that (applying the results of the previous exercise)

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sqrt{n} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \ge \sup_{x \neq 0} \frac{||Ax||_2}{||x||_1} \ge \frac{1}{\sqrt{n}} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

imply that $\frac{1}{\sqrt{n}}||A||_2 \le ||A||_1 \le ||A||_2$.

(ii) Notice that

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \le \sup_{x \neq 0} \frac{\sqrt{n}||Ax||_{\infty}}{||x||_{\infty}},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \ge \sup_{x \neq 0} \frac{||Ax||_{\infty}}{\sqrt{n}||x||_{\infty}}.$$

Ex 3.29

Pf of 1. $||Q||_p := \sup_{x \neq 0} \frac{||Qx||_p}{||x||_p} = \sup_{x \neq 0} \frac{||x||_p}{||x||_p} = \sup_{x \neq 0} 1 = 1$ (By orthonormal transformation).

Pf of 2.

Now let $R_x : \mathbb{M}_n(\mathbb{F}) \to \mathbb{F}^n, A \mapsto Ax$ for every $x \in \mathbb{F}^n$.

$$||R_x|| = \sup_{x \neq 0} \frac{||Ax||}{||A||} = \sup_{x \neq 0} \frac{||Ax||||x||}{||A||||x||}$$

Ex 3.30

(i) $||AB||_S = ||SABS^{-1}|| = ||SAS^{-1}SBS^{-1}|| \le ||SAS^{-1}|| ||SBS^{-1}|| = ||A||_S ||B||_S$ (ii) $||A||_S ||x|| = ||SAS^{-1}|| ||x|| = (\sup_{x \neq 0} \frac{||SAS^{-1}x||}{||x||}) ||x|| \ge ||S|| ||A|| ||S^{-1}|| ||x|| = ||A|| ||x|| \ge ||Ax||$ Other basic properties of norm can be proved in the exactly same way as vector norm! Q.E.D

Ex 3.37

Answer Note that according to the Riesz Representation theorem, $L[q] = \langle q, q \rangle = \int_0^1 q^2(x) dx = q'(1)$. Let $q(x) := a + bx + cx^2$. Then,

$$L[1] = 0 = \langle q, 1 \rangle = \int_0^1 q(x)dx = a + \frac{1}{2}b + \frac{1}{3}c$$

$$L[x] = 1 = \langle q, x \rangle = \int_0^1 xq(x)dx = \frac{1}{2}a + \frac{1}{3}b + \frac{1}{4}c$$

$$L[x^2] = 2 = \langle q, x^2 \rangle = \int_0^1 x^2q(x)dx = \frac{1}{3}a + \frac{1}{4}b + \frac{1}{5}c$$

If we solve this 3 equations with three unknowns (a, b, c), then $q(x) = 24 - 168x + 180x^2$

Ex 3.38

The matrix representation of differential operator is

$$D_m := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The adjoint matrix is the following;

$$D_m := \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Ex 3.39

(i) By definition of adjoint and linearity of inner products,

$$<(S+T)^*w, v>_V = < w, (S+T)v>_W =$$
 $< w, Sv + Tv>_W = < w, Sv>_W + < w, Tv>_W =$
 $< S^*w, v>_V + < T^*w, v>_V = < S^*w + T^*w, v>_V.$

Then $(S+T)^* = S^* + T^*$. Also,

$$<(\alpha T)^*w, v>_V = < w, (\alpha T)v>_W =$$

 $< w, \alpha Tv>_W = \alpha < w, Tv> =$
 $\alpha < T^*w, v> = < \bar{\alpha}T^*w, v>$

thus $(\alpha T)^* = \bar{\alpha} T$.

(ii) By the definition of adjoint of S and the properties of inner products we have that

$$< w, Sv>_W = < S^*w, v>_V = \overline{< v, S^*w>_V} = \overline{< S^{**}v, w>_W} = < w, S^{**}v>_W$$

for all $v \in V$ and $w \in W$. Therefore S = S * *.

(iii) By the definition of adjoint we have

$$<(ST)^*v', v>_V = < v', (ST)v>_V = < v', S(Tv)>_V = < S^*v', Tv>_V = < T*S*v', v>_V$$

thereby proving that $(ST)^* = T^*S^*$.

(iv) Using (iii) we have $T^*(T^*)^{-1} = (TT^{-1})^* = I^* = I$.

Ex 3.40

(i) Let $B, C \in \mathbb{M}_n(\mathbb{F})$. By definition of Frobenious inner product

$$\langle B, AC \rangle_F = \operatorname{tr}(B^H AC) = \operatorname{tr}((A^H B)^H C) = \langle A^H B, C \rangle_F.$$

(ii) By definition of Frobenious norm and the properties of the trace we have

$$< A_2, A_3 A_1>_F = \operatorname{tr}(A_2^H A_3 A_1) = \operatorname{tr}(A_1 A_2^H A_3) = \operatorname{tr}((A_2 A_1^H)^H A_3) = < A_2 A_1^H, A_3>_F = < A_2 A_1^*, A_$$

(iii) Given $B, C \in \mathbb{M}_n(\mathbb{F})$, we have $\langle B, AC - CA \rangle = \langle B, AC \rangle - \langle B, CA \rangle$. Applying (ii) to the second term we get $\langle B, CA \rangle = \langle BA^*, C \rangle$. On the other hand,

$$< B, AC > = \operatorname{tr}(B^H AC) = \operatorname{tr}((A^H B)^H C) = < A^H B, C > = < A^* B, C > .$$

Putting all together we obtain that $T_A^* = T_{A^*}$.

Ex 3.44

Suppose there exists an $x \in \mathbb{F}^n$ such that Ax = b. Then, for every $y \in \mathcal{N}(A^H)$,

$$\langle y, b \rangle = \langle y, Ax \rangle = \langle A^H y, x \rangle = \langle 0, x \rangle = 0.$$

Now suppose that there exists a $y \in \mathcal{N}(A^H)$ such that $\langle y, b \rangle \neq 0$. Then $b \notin \mathcal{N}(A^H)^{\perp} = \mathcal{R}(A)$. Therefore for no $x \in \mathbb{F}^n$, Ax = b.

Let $A \in \operatorname{Sym}_n(\mathbb{R})$ and $B \in \operatorname{Skew}_n(\mathbb{R})$. Then

$$< B, A > = \text{Tr}(B^T A) = \text{Tr}(AB^T) = \text{Tr}(A^T (-B)) = - < A, B > .$$

We conclude that $\langle A, B \rangle = 0$ and $\operatorname{Skew}_n(\mathbb{R}) \subset \operatorname{Sym}_n(\mathbb{R})^{\perp}$. Now suppose $B \in \operatorname{Sym}_n(\mathbb{R})^{\perp}$. As for any other matrix, $B + B^T \in \operatorname{Sym}_n(\mathbb{R})$. Thus,

$$0 = \langle B + B^T, B \rangle = \text{Tr}((B + B^T)B) = \text{Tr}(BB + B^TB) = \text{Tr}(BB) + \text{Tr}(B^TB),$$

which implies $\langle B^T, B \rangle = \langle -B, B \rangle$ and so $B^T = -B$. Therefore $\operatorname{Sym}_n(\mathbb{R})^{\perp} = \operatorname{Skew}_n(\mathbb{R})$.

Ex 3.46

- (i) if $x \in \mathcal{N}(A^H A)$, $0 = (A^H A)x = A^H (Ax)$ and $Ax \in \mathcal{N}(A^H)$. Also, Ax is in the range of A by definition.
- (ii) Suppose $x \in \mathcal{N}(A)$. Then Ax = 0. Premultiplying by A^H both sides of the equation we obtain $A^HAx = A^H0 = 0$ and so $x \in \mathcal{N}(A^HA)$. On the other hand, suppose $x \in \mathcal{N}(A^HA)$. Then $||Ax|| = x^HA^HAx = x^H0 = 0$, so that Ax = 0 and $x \in \mathcal{N}(A)$
- (iii) By the rank-nullity theorem we have $n = \text{Rank}(A) + \text{Dim}\mathcal{N}(A)$ and $n = \text{Rank}(A^H A) + \text{Dim}\mathcal{N}(A^H A)$. Then by (ii) it follows that $\text{Rank}(A) = \text{Rank}(A^H A)$.
- (iv) By (iii) and the assumption on A we have that $n = \text{Rank}(A) = \text{Rank}(A^H A)$. Since $A^H A \in \mathbb{M}_n$, it is nonsingular.

Ex 3.47

(i) Notice that

Shekhar Kumar

$$P^{2} = (A(A^{H}A)^{-1}A^{H})(A(A^{H}A)^{-1}A^{H}) = A(A^{H}A)^{-1}A^{H}A(A^{H}A)^{-1}A^{H} = A(A^{H}A)^{-1}A^{H} = P.$$

(ii) Notice that

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H} = (A^{H})^{H}(A^{H}A)^{-H}A^{H} = A(A^{H}A)^{-1}A^{H} = P.$$

(iii) A has rank n, therefore P has at most rank n. Take y in the range of A. Then there exists an $x \in \mathbb{F}^n$ such that y = Ax. Then

$$Py = A(A^{H}A)A^{H}y = A(A^{H}A)^{-1}A^{H}Ax = Ax = y$$

shows that y is also in the range of P. Therefore $\operatorname{Rank}(P) \geq \operatorname{Rank}(A)$ and so P has rank p

Ex 3.48

(i) Let $A, B \in \mathbb{M}_n(\mathbb{R})$ and $x \in \mathbb{R}$. Then

$$P(A+xB) = \frac{(A+xB) + (A+xB)^T}{2} = \frac{A+A^T + x(B+B^T)}{2} = P(A) + xP(B).$$

Thus P is a linear transformation.

(ii) Now notice that

$$P^{2}(A) = \frac{\frac{A+A^{T}}{2} + \frac{A^{T}+A}{2}}{2} = \frac{\frac{2A+2A^{T}}{2}}{2} = \frac{2A+2A^{T}}{2} = P(A).$$

(iii) By definition of adjoint we have $< P^*(A), B> = < A, P(B)>$. Then, notice that

$$< A, P(B) > = < A, (B + B^T)/2 > = < A, B/2 > + < A, B^T/2 > =$$

$$\operatorname{Tr}(A^T B/2) + \operatorname{Tr}(A^T B^T/2) = \operatorname{Tr}(A^T/2B) + \operatorname{Tr}(BA/2) =$$

$$\operatorname{Tr}(A^T/2B) + \operatorname{Tr}(A/2B) = < (A + A^T)/2, B > = < P(A), B > .$$

Thus $P = P^*$.

(iv) Suppose $A \in \mathcal{N}(P)$. Then $0 = P(A) = (A + A^T)/2$ implies $A^T = -A$, thus $\mathcal{N}(P) \subset \text{Skew}(\mathbb{R})$. Now suppose $A \in \text{Skew}(\mathbb{R})$. Then $A^T = -A$ and so $P(A) = (A + A^T)/2 = 0$. Thus $\text{Skew}(\mathbb{R}) \subset \mathcal{N}(P)$.

(v) Let $A \in \mathbb{M}_n(\mathbb{R})$. Then $P(A) = (A + A^T)/2 = (A^T + A)/2 = P(A)^T$ and so $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$. Now let $A = \operatorname{Sym}(\mathbb{R})$. Thus $A = A^T$ and $P(A) = (A + A^T)/2 = (A + A)/2 = A$ and so $A \in \mathcal{R}(P)$. This shows that $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$.

(vi) Notice that

$$||A - P(A)||_F^2 = \langle A - P(A), A - P(A) \rangle = \langle A - \frac{A + A^T}{2}, A - \frac{A + A^T}{2} \rangle =$$

$$\langle \frac{A - A^T}{2}, \frac{A - A^T}{2} \rangle = \operatorname{Tr}\left(\left(\frac{A - A^T}{2}\right)^T \frac{A - A^T}{2}\right) =$$

$$\operatorname{Tr}\left(\frac{A^T - A A - A^T}{2}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2 - (A^T)^2 + AA^T}{4}\right) =$$

$$\operatorname{Tr}\left(\frac{A^T A - A^2 - A^2 + A^T A}{4}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2}{2}\right) = \frac{\operatorname{Tr}(A^T A) - \operatorname{Tr}(A^2)}{2}.$$

Therefore $||A - P(A)||_F = \sqrt{\frac{\text{Tr}(A^T A) - \text{Tr}(A^2)}{2}}$

Ex 3.50

We want to estimate $y^2 = 1/s + rx^2/s$ via OLS. We rewrite the model in the form Ax = b where $b_i = y_i^2$, $A_i = (1 \ x_i)$ and $x = (\beta_1 \ \beta_2)^T$ where $\beta_1 = 1/s$ and $\beta_2 = r/s$. Then the normal equations are $A^H A \hat{x} = A^H b$, where

$$A^{H}A\hat{x} = \begin{bmatrix} \sum_{i} 1 & \sum_{i} x_{i}^{2} \\ \sum_{i} x_{i}^{2} & \sum_{i} x_{i}^{4} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{bmatrix} = \begin{bmatrix} n\hat{\beta}_{1} - \hat{\beta}_{2} \sum_{i} x_{i}^{2} \\ \hat{\beta}_{1} \sum_{i} x_{i}^{2} - \hat{\beta}_{2} \sum_{i} x_{i}^{4} \end{bmatrix}$$

and

$$A^H b = \begin{bmatrix} \sum_i y_i^2 \\ \sum_i x_i^2 y_i^2 \end{bmatrix}.$$