

R V College of Engineering Department of Computer Science and Engineering CIE - III(Improvement): Scheme

Subject : (Code)

Database Management Systems (CD252IA)

Semester: 5THBE

S.N	Code)		PART-A		M	BT	Co
1.	What is the difference between lossless and lossy decomposition in DBMS?					L2	3
	Lossless Lossy						
	The decompositions R1, R2, R2Rn for a relation schema R are said to be Lossless if there natural join results the original relation R. The decompositions R1, R2, R2Rn for a relation schema R are said to be Lossy if there natural join results into addition of extraneous tuples with the original relation R.						
	R2, R3 R decompositi	et R be a relation and R1, Rn be it's decomposition, the on is lossless if – R3 ⋈ Rn = R	Formally, Let R be a relation and R1, R2, R3 Rn be its decomposition, the decomposition i lossy if – R \subset R1 \bowtie R2 \bowtie R3 \bowtie Rn				
2.	List the two conditions for checking the Binary decomposition? • The FD $((R1 \cap R2) \rightarrow (R1 - R2))$ is in F+, • The FD $((R1 \cap R2) \rightarrow (R2 - R1))$ is in F+						2
3.	The FD ((R1 \cap R2) \rightarrow (R2 – R1)) is in F+ Define the Condition of 3NF? Third normal form (3NF) is based on the concept of transitive dependency. A functional dependency X \rightarrow Y in a relation schema R is a transitive dependency if					L1	2
	there exis	ere exists a set of attributes Z in R that is neither a candidate key nor a subset of my key of R, and both $X \rightarrow Z$ and $Z \rightarrow Y$ hold.					
4.	Define a Transaction with example. A transaction is an executing program that forms a logical unit of database processing. A transaction includes one or more database access operations—these caninclude insertion, deletion, modification, or retrieval operations. Ex: airline reservation systems					L1	1
5.	Elaborate a	Elaborate and Define ACID properties:					1
	Atomicity,	, Consistency, Isolation	, Durability0.5m each PART-B				
1a	Discuss the condition for two functional dependencies to be equivalent? Check whether relation R(A,B,C,D) having two FD sets FD1 = {A->B, B->C, AB->D} and FD2 = {A->B, B->C, A->C, A->D} are equivalent or not?					L3	2
	Therefore FD in F conditions	e, equivalence means can be inferred fr s—E covers F and F	conal dependencies E and F are equivalent that every FD in E can be inferred from E; that is, E is equivalent covers E—hold1m FDs of FD1 are present in FD2	ed from F, and every			
	 A->B in set FD1 is present in set FD2. B->C in set FD1 is also present in set FD2. 						

	 AB->D is present in set FD1 but not directly in FD2 but we will check whether we can derive it or not. For set FD2, (AB)+ = {A, B, C, D}. It means that AB can functionally determine A, B, C, and D. So AB->D will also hold in set FD2. As all FDs in set FD1 also hold in set FD2, FD2 FD1 is true. Step 2: Checking whether all FDs of FD2 are present in FD1 A->B in set FD2 is present in set FD1. B->C in set FD2 is also present in set FD1. A->C is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set FD1, (A)+ = {A, B, C, D}. It means that A can functionally determine A, B, C, and D. SO A->C will also hold in set FD1. A->D is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set FD1, (A)+ = {A, B, C, D}. It means that A can functionally determine A, B, C, and D. SO A->D will also hold in set FD1. As all FDs in set FD2 also hold in set FD1, FD1 FD2 is true. As FD2 FD1 and FD1 FD2 both are true FD2 =FD1 is true. These two FD sets are semantically equivalent4m 			
1b	Explain any 5 reasons for failure of transaction.	5	L2	
	A transaction or system error Local errors or exception conditions detected by the transaction, A computer failure (system crash). Concurrency control enforcement. Disk failure. Physical problems and catastrophesany 5 from above1m each			
2a	 Explain the steps for finding Minimal Cover for Functional Dependencies. For the given set of FDs {A->C, AC->D, E->H, E->AD} find the minimal cover. Steps: we define a set of functional dependencies F to be minimal if it satisfies the following conditions: 1. Split the right-hand attributes of all FDs:Every dependency in F has a single attribute for its right-hand side. 2. Remove all redundant FDs. 3. Find the Extraneous attribute and remove it Example: Minimize {A->C, AC->D, E->H, E->AD} Step 1: {A->C, AC->D, E->H, E->A} Here Redundant FD: {E->D} Step3:{AC->D}{A}+={A,C} Therefore C is extraneous and is removed. {A->D} Minimal Cover = {A->C, A->D, E->H, E->A} 	7	L3	2
2b	Write the algorithm for Testing whether a schedule is serializable or not.	3		

	Algorith	nm 21.1. Testi	ng Conflict Seriali	zability of a Schedule	S					
	1. For each transaction T_i participating in schedule S, create a node labeled T_i									
		in the precedence graph. 2. For each case in S where T executes a read item(X) after T executes a								
	2. For each case in S where T_j executes a read_item(X) after T_i executes a write_item(X), create an edge ($T_i \rightarrow T_j$) in the precedence graph.									
	3. F	 3. For each case in S where T_i executes a write_item(X) after T_i executes a read_item(X), create an edge (T_i → T_j) in the precedence graph. 4. For each case in S where T_j executes a write_item(X) after T_i executes a write_item(X), create an edge (T_i → T_j) in the precedence graph. 								
	4. F									
		5. The schedule S is serializable if and only if the precedence graph has no cycles.								
3a		Explain the properties of Attribute preservation and dependency preservation?						5	L2	3
	Attribute preservation2.5m									
3b	Dependency preservation-2.5m Given a relational schema R = { SSN, ENAME, PNUMBER, PNAME,						5	L3		
<i>30</i>						table R1 = {			23	
						, PNAME, PLO				
						E, PLOCATIO				
					ther the give	en decomposition	n of R, R1			
			s or lossy de	composition?						
	Matrix	1	ENIANCE	DMIMDED	DNIANCE	DI OCATIONI	HOLIDG			
i	D 1	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS			
	R1 R2	0	a	0	0	a	0			
	KZ	a		a	a	a	a			
	Final n	natrix								
		SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS			
i	R1	b	a	b	b	a	b			
ı	R2	a	b	a	a	a	a			
	It's a lossy decomposition									
4a	Given a relation R(A, B, C, D) and Functional Dependency set FD = $\{AB \rightarrow CD, \}$						5	L3	1	
	$B \rightarrow C$ }, determine whether the given R is in 2NF? If not convert it into 2 NF.									
						endent on Cand				
	Since R has 4 attributes: - A, B, C, D, and Candidate Key is AB, Therefore, prime attributes (part of candidate key) are A and B while a non-prime attribute are C									
	and D									
	a) FD: AB → CD satisfies the definition of 2NF, that non-prime attribute(C and D)									
	are fully dependent on candidate key AB									
	b) FD: $\mathbf{B} \to \mathbf{C}$ does not satisfy the definition of 2NF, as a non-prime attribute(C) is									
	partially dependent on candidate key AB(i.e. key should not be broken at any cost)									
	As FD B \rightarrow C, the above table R(A, B, C, D) is not in 2NF3M									
	Conversion to 2NF:									
	a) R1(B, C)									
	b) R2(A, B, D)2M									
b	With a	transition d	liagram explai	in the states for	transaction ex	xecution		5	L2	2
	<u> </u>							<u> </u>		

