Accelerated intersection of geometric objects *

Alberto Paoluzzi

May 21, 2017

Abstract

This module contains the first experiments of a parallel implementation of the intersection of (multidimensional) geometric objects. The first installment is being oriented to the intersection of line segment in the 2D plane. A generalization of the algorithm, based on the classification of the containment boxes of the geometric values, will follow quickly.

Contents

1	Introduction	2
2	Implementation	2
	2.1 Construction of independent buckets	2
	2.2 Brute force intersection within the buckets	4
	2.3 Generation of LAR representation of split segments	6
	2.4 Biconnected components of a 1-complex	7
	2.5 2D cells from biconnected components	9
	2.6 Transformation of an array of lines in a 2D LAR complex	13
	2.7 Pruning LAR models from parts out of proper resolution	15
3	Exporting the module	20
4	Examples	21
A	Code utilities	3 4

^{*}This document is part of the *Linear Algebraic Representation with CoChains* (LAR-CC) framework [CL13]. May 21, 2017

1 Introduction

An easily parallelizable implementation of the accelerated intersection of geometric objects is given in this module. Our first aim is to implement a specialized version for simplices, that generalizes the nD-trees of points (that are 0-simplices), to (d-1)-dimensional simplices in d-space, starting with the intersection of line segments in the plane. Our plan is to follow with an implementation for intersection of general $non\ convex$ sets.

2 Implementation

The first implementation of this module concerns the computation of the intersection points among a set of line segment in the 2D plane. The containment boxes of the input segments are iteratively classified against the 1-dimensional centroid of smaller and smaller buckets of data.

At the end of the classification, where the same geometric object may be inserted in several different buckets, a *brute-force* intersection is applied to each final subset. Finally, the duplicated intersection points are removed, and a 1-dimensional LAR data structure is generated, with 1-cells given by the split line segments.

A complete LAR of the plane partition generated by the arrangment of lines is then computed by: (a) generating the maximal 2-connected components of such 1-dimensional graph; and (b) by traversing in counter-clockwise order the generated subgraphs to report the 2-dimensional cells of the plane partition.

The splitting algorithm may be easily parallelized, since both during their generation and at the end of this one, the various buckets of data can be dispatched to different processors for independent computation, followed by elimination of duplicates. In particular, a standard *map-reduce* software infrastructure may be used for this parallelization purpose.

2.1 Construction of independent buckets

Containment boxes Given as input a list randomLineArray of pairs of 2D points, the function containment2DBoxes returns, in the same order, the list of containment boxes of the input lines. A containment box of a geometric object of dimension d is defined as the minimal d-cuboid, equioriented with the reference frame, that contains the object. For a 2D line it is given by the tuple (x1, y1, x2, y2), where (x1, y1) is the point of minimal coordinates, and (x2, y2) is the point of maximal coordinates.

```
⟨Containment boxes 2a⟩ ≡

""" Containment boxes """

def containment2DBoxes(randomLineArray):
    boxes = [eval(vcode(4)([min(x1,x2),min(y1,y2),max(x1,x2),max(y1,y2)]))
        for ((x1,y1),(x2,y2)) in randomLineArray]

return boxes
```

 \Diamond

Macro referenced in 20.

Splitting the input above and below a threshold

```
⟨Splitting the input above and below a threshold 2b⟩ ≡
""" Splitting the input above and below a threshold """
def splitOnThreshold(boxes, subset, coord):
    theBoxes = [boxes[k] for k in subset]
    threshold = centroid(theBoxes, coord)
    ncoords = len(boxes[0])/2
    a = coord%ncoords
    b = a+ncoords
    below, above = [],[]
    for k in subset:
        if boxes[k][a] <= threshold: below += [k]
    for k in subset:
        if boxes[k][b] >= threshold: above += [k]
    return below, above
```

Macro referenced in 20.

Iterative splitting of box buckets

```
\langle Iterative splitting of box buckets 3a \rangle \equiv
     """ Iterative splitting of box buckets """
     def splitting(bucket,below,above, finalBuckets,splittingStack):
         if (len(below)<4 and len(above)<4) or len(set(bucket).difference(below))<7 \
              or len(set(bucket).difference(above))<7:</pre>
              finalBuckets.append(below)
              finalBuckets.append(above)
         else:
              splittingStack.append(below)
              splittingStack.append(above)
     def geomPartitionate(boxes,buckets):
         geomInters = [set() for h in range(len(boxes))]
         for bucket in buckets:
             for k in bucket:
                  geomInters[k] = geomInters[k].union(bucket)
         for h,inters in enumerate(geomInters):
              geomInters[h] = geomInters[h].difference([h])
         return AA(list)(geomInters)
     def boxBuckets(boxes):
```

```
bucket = range(len(boxes))
splittingStack = [bucket]
finalBuckets = []
while splittingStack != []:
    bucket = splittingStack.pop()
    below,above = splitOnThreshold(boxes,bucket,1)
    below1,above1 = splitOnThreshold(boxes,above,2)
    below2,above2 = splitOnThreshold(boxes,below,2)
    splitting(above,below1,above1, finalBuckets,splittingStack)
    splitting(below,below2,above2, finalBuckets,splittingStack)
    finalBuckets = list(set(AA(tuple)(finalBuckets)))
parts = geomPartitionate(boxes,finalBuckets)
return AA(sorted)(parts)
```

2.2 Brute force intersection within the buckets

Intersection of two line segments

```
\langle Intersection of two line segments 3b \rangle \equiv
     """ Intersection of two line segments """
     def segmentIntersect(boxes,lineArray,pointStorage):
         def segmentIntersectO(h):
             p1,p2 = lineArray[h]
             line1 = '['+ vcode(4)(p1) +','+ vcode(4)(p2) +']'
              (x1,y1),(x2,y2) = p1,p2
              B1,B2,B3,B4 = boxes[h]
              def segmentIntersect1(k):
                  p3,p4 = lineArray[k]
                  line2 = '['+ vcode(4)(p3) +','+ vcode(4)(p4) +']'
                  (x3,y3),(x4,y4) = p3,p4
                  b1,b2,b3,b4 = boxes[k]
                  if not (b3<B1 or B3<b1 or b4<B2 or B4<b2):
                  #if True:
                      m23 = mat([p2,p3])
                      m14 = mat([p1,p4])
                      m = m23 - m14
                      v3 = mat([p3])
                      v1 = mat([p1])
                      v = v3-v1
                      a=m[0,0]; b=m[0,1]; c=m[1,0]; d=m[1,1];
                      det = a*d-b*c
                      if det != 0:
                          m_{inv} = mat([[d,-b],[-c,a]])*(1./det)
                          alpha, beta = (v*m_inv).tolist()[0]
```

```
#alpha, beta = (v*m.I).tolist()[0]
                          if -0.0<=alpha<=1 and -0.0<=beta<=1:
                              pointStorage[line1] += [alpha]
                              pointStorage[line2] += [beta]
                              return list(array(p1)+alpha*(array(p2)-array(p1)))
                  return None
             return segmentIntersect1
         return segmentIntersect0
Macro referenced in 20.
Brute force bucket intersection
\langle Brute force bucket intersection 4\rangle \equiv
     """ Brute force bucket intersection """
     def lineBucketIntersect(boxes,lineArray, h,bucket, pointStorage):
         intersect0 = segmentIntersect(boxes,lineArray,pointStorage)
         intersectionPoints = []
         intersect1 = intersect0(h)
         for line in bucket:
             point = intersect1(line)
              if point != None:
                  intersectionPoints.append(eval(vcode(4)(point)))
         return intersectionPoints
Macro referenced in 20.
Accelerate intersection of lines
\langle Accelerate intersection of lines 5\rangle \equiv
     """ Accelerate intersection of lines """
     def lineIntersection(lineArray):
         lineArray = [line for line in lineArray if len(line)>1]
         from collections import defaultdict
         pointStorage = defaultdict(list)
         for line in lineArray:
             p1,p2 = line
             key = '['+ vcode(4)(p1) +','+ vcode(4)(p2) +']'
             pointStorage[key] = []
         boxes = containment2DBoxes(lineArray)
         buckets = boxBuckets(boxes)
         intersectionPoints = set()
         for h,bucket in enumerate(buckets):
              pointBucket = lineBucketIntersect(boxes,lineArray, h,bucket, pointStorage)
```

intersectionPoints = intersectionPoints.union(AA(tuple)(pointBucket))

```
frags = AA(eval)(pointStorage.keys())
params = AA(COMP([sorted,list,set,tuple,eval,vcode(4)]))(pointStorage.values())
return intersectionPoints,params,frags ### GOOD: 1, WRONG: 2 !!!
```

2.3 Generation of LAR representation of split segments

The function lines2lar is used to generate a 1-dimensional LAR complex from an array of lines, i.e. of pairs of 2D points. For every *line* in frags is computed an *ordered* list outline of *symbolic* intersection points, including the first and last vertex of the line, and every interior point generated by the list params[k].

Then, for every symbolic representation key of a point in outline, a dictionary vertex is either created or retrieved, and a corresponding edge is orderly created, using the index of the point. At the same time, the vertices created in this way are accumulated within the V array. Finally, each edge in EV is extended to contain a second vertex index using the subsequent edge.

The third stage finalizes the vertex set of the output LAR, by identifying the closest vertices, i.e. those at distance less or equal to the current resolution, set to 10**(-PRECISION), by searching via the scipy.spatialKDTree the pairs of vertices at less than this distance.

A fourth stage identifies the possibly duplicated edges. Some of these could appear, e.g., when importing a set of adjacent boxes from some drawing program, to generate an array of lines, to be mutually intersected and transformed into a LAR data structure.

Create the LAR of fragmented lines

```
edge = []
for key in outline:
    if vertDict.get(key,defaultValue) == defaultValue:
        index += 1
        vertDict[key] = index
        edge += [index]
        V += [eval(key)]
    else:
        edge += [vertDict[key]]
    EV.extend([[edge[k],edge[k+1]] for k,v in enumerate(edge[:-1])])

model = (V,EV)
if normalize == True:
    model = larModelNormalization(model)
return larSimplify(model)
```

2.4 Biconnected components of a 1-complex

An implementation of the Hopcroft-Tarjan algorithm [HT73] for computation of the biconnected components of a graph is given here.

Biconnected components

```
⟨Biconnected components 6b⟩ ≡

""" Biconnected components """

⟨Adjacency lists of 1-complex vertices 7a⟩

⟨Main procedure for biconnected components 7b⟩

⟨Hopcroft-Tarjan algorithm 8a⟩

⟨Output of biconnected components 8b⟩

◇

Macro referenced in 20.
```

Adjacency lists of 1-complex vertices

```
⟨ Adjacency lists of 1-complex vertices 7a⟩ ≡

""" Adjacency lists of 1-complex vertices """

import larcc
def vertices2vertices(model):

    V,EV = model
    csrEV = larcc.csrCreate(EV)
    csrVE = larcc.csrTranspose(csrEV)
    csrVV = larcc.matrixProduct(csrVE,csrEV)
    cooVV = csrVV.tocoo()
```

```
data,rows,cols = AA(list)([cooVV.data, cooVV.row, cooVV.col])
triples = zip(data,rows,cols)
VV = [[] for k in range(len(V))]
for datum,row,col in triples:
    if row != col: VV[col] += [row]
return AA(sorted)(VV)
```

Main procedure for biconnected components

```
\langle Main procedure for biconnected components 7b\rangle \equiv
     """ Main procedure for biconnected components """
     def biconnectedComponent(model):
         W_{,-} = model
         V = range(len(W))
         count = 0
         stack, out = [],[]
         visited = [None for v in V]
         parent = [None for v in V]
         d = [None for v in V]
         low = [None for v in V]
         for u in V: visited[u] = False
         for u in V: parent[u] = []
         VV = vertices2vertices(model)
         for u in V:
              if not visited[u]:
                  DFV_visit( VV,out,count,visited,parent,d,low,stack, u )
         return W,[component for component in out if len(component) > 1]
```

Hopcroft-Tarjan algorithm

Macro referenced in 6b.

```
\(\text{Hopcroft-Tarjan algorithm 8a} \) \( = \)
\(\text{""" Hopcroft-Tarjan algorithm """} \)
\(\text{def DFV_visit( VV,out,count,visited,parent,d,low,stack,u ):} \)
\(\text{visited[u] = True} \)
\(\text{count += 1} \)
\(\delta[u] = \text{count} \)
\(\left{low[u] = d[u]} \)
\(\text{for v in VV[u]:} \)
\(\text{if not visited[v]:} \)
\(\text{stack += [(u,v)]} \)
\(\text{parent[v] = u} \)
\(\text{visited[v]:} \)
\(\text{stack} \)
\(\text{parent[v] = u} \)
\(\text{visited[v]:} \)
\(\text{stack} \)
\(\text{parent[v] = u} \)
\(\text{visited[v]:} \)
\(
```

```
DFV_visit( VV,out,count,visited,parent,d,low,stack, v )
    if low[v] >= d[u]:
        out += [outputComp(stack,u,v)]
    low[u] = min( low[u], low[v] )
    else:
        if not (parent[u]==v) and (d[v] < d[u]):
            stack += [(u,v)]
            low[u] = min( low[u], d[v] )</pre>
```

Output of biconnected components

```
⟨ Output of biconnected components 8b⟩ ≡
    """ Output of biconnected components """
    def outputComp(stack,u,v):
        out = []
        while True:
            e = stack.pop()
            out += [list(e)]
            if e == (u,v): break
        return list(set(AA(tuple)(AA(sorted)(out))))
```

Macro referenced in 6b.

Macro referenced in 6b.

2.5 2D cells from biconnected components

It is very easy, using the LAR representation of topology, to compute the 2-cells of the plane partitions (see Figures 1b and 1c) induced by the biconnected components extracted from a graph (1-complex).

In particular, let us consider the CSR (Compressed Sparse Row) representation of the characteristic matrix M_1 , here usually denoted as EV, in order to remark that we represent the edges on the rows, and the vertices on the columns of the matrix. As such it is a binary matrix. So, we can readily reconstruct the topology of 2-cells by associating to each non-zero (sparse) matrix element $\mathtt{angle}.\mathsf{EV}(h,k)$ the angle in radians that the edge e_h forms with the orizontal line, when it incides on the vertex v_k .

```
Of course, if e_h = (v_{k_1}, v_{k_2}), then it will be
```

```
\mathtt{angle\_EV}(h, k_2) = \mathtt{angle\_EV}(h, k_1) + \pi = -\mathtt{angle\_EV}(h, k_1)
```

Therefore, the columns of angle_EV, i.e. the rows of angle_VE := angle_EV^t, after being sorted on their angles α , and associated with the angle differences $\Delta \alpha$, will provide a basis of elementary 1 - cochains that evaluate to zero for each closed 1-cochain, i.e. for every cycle supported by the linear space of 1-chains on the given line arrangement.

Figure 1: Two random line arrangements, and the biconnected components extracted by their LAR 1-complexes.

Slope of edges

Circular ordering of edges around vertices

```
\langle Slope of edges 10 \rangle \equiv
     """ Circular ordering of edges around vertices """
     from larcc import *
     def edgeSlopeOrdering(model):
         V,EV = model
         VE,VE_angle = larcc.invertRelation(EV),[]
         for v, ve in enumerate(VE):
             ve_angle = []
              if ve != []:
                  for edge in ve:
                      v0,v1 = EV[edge]
                                     x,y = list(array(V[v1]) - array(V[v0]))
                      if v == v0:
                      elif v == v1: x,y = list(array(V[v0]) - array(V[v1]))
                      angle = math.atan2(y,x)
                      ve_angle += [180*angle/PI]
             pairs = sorted(zip(ve_angle,ve))
             #VE_angle += [TRANS(pairs)[1]]
             VE_angle += [[pair[1] for pair in pairs]]
         return VE_angle
Macro referenced in 20.
```

Ordered incidence relationship vertices to edges. As we have seen, the VE_angle list of lists reports, for every vertex in V, the list of incident edges, counterclockwise ordered around the vertex. Therefore the ordered_csrVE function, given below, returns the "compressed sparse row" matrix, row-indexed by vertices and column-indexed by edges, and such that in position (v,e) contains the index ℓ of the next edge (after e, say) in the counterclockwise ordering of edges around v.

Faces from biconnected components Since edges in the plane partition induced by a line arrangement are (d-1)-cells, they are located on the boundary of $two\ d$ -cells (faces) of the partition. Hence, the traversal algorithm of the data structure storing the relevant information may be driven by signing the two extremes (vertices) of each edge as either already visited or not.

```
\langle Faces from biconnected components 11b \rangle \equiv
     """ Faces from biconnected components """
     def firstSearch(visited):
         for edge,vertices in enumerate(visited):
             for v,vertex in enumerate(vertices):
                  if visited[edge,v] == 0.0:
                      visited[edge,v] = 1.0
                      return edge, v
         return -1,-1
     def facesFromComps(model):
         V, EV = model
         # Remove zero edges
         EV = list(set([ tuple(sorted([v1,v2])) for v1,v2 in EV if v1!=v2 ]))
         VE_angle = edgeSlopeOrdering((V,EV))
         csrEV = ordered_csrVE(VE_angle).T
         visited = zeros((len(EV),2))
         edge,v = firstSearch(visited)
         vertex = EV[edge][v]
         fv = []
         while True:
             if (edge,v) == (-1,-1):
                  break #return [face for face in FV if face != None]
             elif (fv == []) or (fv[0] != vertex):
                  fv += [vertex]
                  nextEdge = csrEV[edge,vertex]
                  v0, v1 = EV[nextEdge]
                  try:
                      vertex, = set([v0,v1]).difference([vertex])
                  except ValueError:
                      print 'ValueError: too many values to unpack'
                      break
                  if v0==vertex: pos=0
                  elif v1==vertex: pos=1
```

```
if visited[nextEdge, pos] == 0:
          visited[nextEdge, pos] = 1
          edge = nextEdge
else:
     FV += [fv]
     fv = []
     edge,v = firstSearch(visited)
     vertex = EV[edge][v]
FV = [face for face in FV if face != None]
return V,FV,EV
```

Txample The ordered csrVE (vertex-edge) matrix generated by the example of file test/py/inters/test07.py is shown in dense format in the example script below. Let us notice the each non-zero element csrVE(k,h) stores the index of the previous edge inciding on the vertex v_k before the edge e_h . The traversal of the data structure is made accordingly, in order to extract the vertices of all the faces (minimal edge cycles) generated by a line arrangement in the plane.

 \langle Example of VE matrix with nextEdge indices 12 \rangle \equiv

```
csr2DenseMatrix(csrVE)
>>> array([
     [12,
                                                                                    0],
                                      0,
                                           0,
                                                0,
                      Ο,
                                                               Ο,
     [ 1,
            2,
                 0,
                            0,
                                 0,
                                      0,
                                           0,
                                                0,
                                                     0,
                                                          0,
                                                                     0,
                                                                          0,
                                                                               0,
                                                                                    0],
     [ 0, 14,
                                           0,
                            0,
                                      0,
                                                0,
                      0,
                                 0,
                                                     0,
                                                          0,
                                                               0,
                                                                                    0],
                                           Ο,
     [ 0,
            0,
                 6.
                      5,
                            0,
                                 2,
                                      3,
                                                0,
                                                     0,
                                                          0.
                                                               0,
                                                                     0,
                                                                               0,
                                                                                    0],
     [ 0,
            Ο,
                 0, 10,
                            Ο,
                                 0,
                                      0,
                                           0,
                                                0,
                                                     3,
                                                          9,
                                                               0,
                                                                                    0],
                                           Ο,
                                                Ο,
                                                               Ο,
                                                                               Ο,
     [ 0,
            Ο,
                 0,
                      0, 15,
                                 0,
                                      0,
                                                     0,
                                                          0,
                                                                     0,
                                                                          0,
                                                                                    4],
     [ 0,
                          12,
                                                0,
            0,
                 0,
                      0,
                                 4,
                                      0,
                                           0,
                                                     0,
                                                               0,
                                                                          0,
                                                                                    0],
                 Ο,
                            Ο,
                                 Ο,
                                                          Ο,
                                                               Ο,
                                                                          Ο,
                                                                               Ο,
     [ 0,
            0.
                      0,
                                      7,
                                           8,
                                                6,
                                                     0.
                                                                                    07.
                                                                     0,
     [ 0,
                                                0,
                      0,
                            0,
                                 0,
                                      0,
                                           7,
                                                     0,
                                                          0,
                                                               0,
            Ο,
     [ 0,
                 0,
                      Ο,
                            Ο,
                                 0,
                                      0,
                                           0, 10,
                                                     0,
                                                          8,
                                                               0,
                                                                     0,
                                                                          0,
                                                                               0,
                                                                                    0],
                                      Ο,
                                           Ο,
     [ 0,
            0,
                      0,
                            0,
                                 0,
                                                0,
                                                     9,
                                                          0,
                                                               0,
                                                                    0,
                                                                                    0],
                                                Ο,
     [ 0,
                 0,
                      Ο,
                           Ο,
                                 Ο,
                                      Ο,
                                           Ο,
                                                     Ο,
                                                          0, 13,
                                                                    0, 14, 11,
                                 0,
                                      0,
                                           0,
                                                0,
                                                     0,
                                                          0,
                                                                    0, 15,
```

Macro never referenced.

2.6 Transformation of an array of lines in a 2D LAR complex

Transformation of an array of lines in a 2D LAR complex The whole transformation of an array of lines into a two-dimensional LAR complex is executed by the function

larFromLines. The function returns the model triple V, FV, EV. The last element in FV is the ordered boundary chain. just notice that

 \langle Transformation of an array of lines in a 2D LAR complex 13 \rangle

```
""" Transformation of an array of lines in a 2D LAR complex """
def larFromLines(lines,normalize=False):
    def larPairSimplify((V,EV)):
        V,EVs = biconnectedComponent((V,EV))
        EV = CAT(EVs)
        V,EV = larRemoveVertices(V,EV)
        return V,EV
    V,EV = lines2lar(lines,normalize)
    V,EV = larPairSimplify((V,EV)) #TODO: toggle to check the generated FV
    V,polygons,EV = larPair2Triple((V,EV))
    FV = AA(list)(AA(set)(AA(CAT)(polygons)))
    return V,FV,EV,polygons
def normalize(lines):
   vs = CAT(lines)
   xs,ys = TRANS(vs)
   w0, w1, w2, w3 = [min(xs), min(ys), max(xs), max(ys)]
   # viewport aspect-ratio checking, setting a computed-viewport 'v'
   ar = (w2-w0)/(w3-w1)
   if ar >1 : v0,v1,v2,v3 = 0,0,1,1./ar
   else: v0, v1, v2, v3 = 0, 0, ar, 1
   a,b,c,d = v2*w0, v3*w1, w2-w0, w3-w1
  M = mat(
   [[ v2/c, 0, 0 ],
    [0, v3/d, 0],
    [-a/c,-b/d, 1]
   ws = [[x,y,1] \text{ for } x,y \text{ in } vs]
   W = (array(ws) * M)[:,:2].tolist()
   myLines = [[W[2*k], W[2*k+1]]  for k in range(len(W)/2)]
   return myLines, M
def larFromLines(lines,normal=False):
    def larPairSimplify((V,EV)):
        V,EVs = biconnectedComponent((V,EV))
        EV = CAT(EVs)
        V,EV = larRemoveVertices(V,EV)
        return V,EV
    theLines,M = normalize(lines)
```

```
V,EV = lines2lar(theLines,False)
V,EV = larPairSimplify((V,EV)) #TODO: toggle to check the generated FV
V,polygons,EV = larPair2Triple((V,EV))
FV = AA(list)(AA(set)(AA(CAT)(polygons)))
if not normal:
    W = (array([v+[1.0] for v in V]) * M.I)[:,:2].tolist()
else: W = V
return W,FV,EV,polygons
```

2.7 Pruning LAR models from parts out of proper resolution

Pruning of clusters of too close vertices is executed by taking a LAR model as input, executing the following computations, and producing a new simplified LAR model.

Pruning away clusters of close vertices First, reduce the array of vertices pts to its quotient set with respect to the transitive closure of the relation of "nearness". Two vertices are "near" when their (Euclidean) distance is less than a given RADIUS. The subgraphs of the graph of this relation are contracted in a single point, set to the centroid of the vertices of the subgraph. The function W takes as input the array pts of vertex points, and returns: (a) the array newV of new vertices; (b) the list of lists close of sorted indices of pairs of close vertices, removed from duplicates; (c) the list of clusters of pts indices; (d) the integer vmap array, mapping old vertex indices to new vertex indices.

```
\langle Pruning away clusters of close vertices 15a \rangle \equiv
     """ Pruning away clusters of close vertices """
     from scipy.spatial import cKDTree
     def pruneVertices(pts,radius=0.001):
         tree = cKDTree(pts)
         a = cKDTree.sparse_distance_matrix(tree,tree,radius)
         #print a.keys()
         close = list(set(AA(tuple)(AA(sorted)(a.keys()))))
         import networkx as nx
         G=nx.Graph()
         G.add_nodes_from(range(len(pts)))
         G.add_edges_from(close)
         clusters, k, h = [], 0, 0
         subgraphs = list(nx.connected_component_subgraphs(G))
         V = [None for subgraph in subgraphs]
         vmap = [None for k in xrange(len(pts))]
         for k,subgraph in enumerate(subgraphs):
```

```
group = subgraph.nodes()
if len(group)>1:
    V[k] = CCOMB([pts[v] for v in group])
    for v in group: vmap[v] = k
        clusters += [group]
else:
    oldNode = group[0]
    V[k] = pts[oldNode]
        vmap[oldNode] = k
return V,close,clusters,vmap
```

Export a simplified LAR model Next, update the arrays of compressed characteristic matrices of a Linear Algebraic Representation. The standard approach is to read row-wise the arrays of matrices of incidence of cells on vertices; translate every index using the vmap array, mapping old vertex indices to new ones; remove repeated indices and substitute them with a single instance; check if the new index list has length greater or equal to the number of vertices of the simplex of the proper dimension. Finally, write an output cell if and only if the previous test is true.

```
\langle Return a simplified LAR model 15b\rangle \equiv
     """ Return a simplified LAR model """
     def larSimplify(model,radius=0.001):
         if len(model)==2: V,CV = model
         elif len(model)==3: V,CV,FV = model
         else: print "ERROR: model input"
         W,close,clusters,vmap = pruneVertices(V,radius)
         celldim = DIM(MKPOL([V,[[v+1 for v in CV[0]]],None]))
         newCV = [list(set([vmap[v] for v in cell])) for cell in CV]
         CV = list(set([tuple(sorted(cell)) for cell in newCV if len(cell) >= celldim+1]))
         CV = sorted(CV,key=len) # to get the boundary cell as last one (in most cases)
         if len(model)==3:
             celldim = DIM(MKPOL([V,[[v+1 for v in FV[0]]],None]))
             newFV = [list(set([vmap[v] for v in facet])) for facet in FV]
             FV = [facet for facet in newFV if len(facet) >= celldim]
             FV = list(set(AA(tuple)(AA(sorted)(FV))))
             areas = integr.signedSurfIntegration((V,CV,FV),signed=False)
             CV = [CV[k] for k in range(len(CV)) if not isclose(areas[k],0.0)]
             return W,CV,FV
         else: return W,CV
```

Macro referenced in 20.

Test of pruning clusters of close vertices Here a list of random 2D points is generated. Then the set of vertices is pruned by updating it to its quotient set with respect to the transitive closure of a relation of "nearness" within an Euclidean distance of given RADIUS. The pruning of vertices is performed by the pruneVertices function, with input the array pts of points. The dictionary vmap

Test for exporting a simplified LAR model

```
"test/py/inters/test14.py" 17a \equiv
     """ Test for exporting a simplified LAR model """
     from larlib import *
     filename = "test/svg/inters/closepoints.svg"
     lines = svg2lines(filename)
     V,EV = lines2lar(lines)
     VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,EV))))
     pts = V
     RADIUS = 0.05
     V,close,clusters,vmap = pruneVertices(pts,RADIUS)
     circles = [T([1,2])(pts[h])(CIRCUMFERENCE(RADIUS)(18)) for h,k in close]
     convexes = [JOIN(AA(MK)([pts[v] for v in cluster])) for cluster in clusters]
     W = COLOR(CYAN)(STRUCT(AA(MK)(V)))
     VIEW(STRUCT(AA(COLOR(RED))(convexes)+AA(MK)(pts)+AA(COLOR(YELLOW))(circles)+[W]))
     V,FV,EV,polygons = larFromLines(lines)
     VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,FV+EV)) + AA(MK)(V)))
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
```

```
VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FV],submodel,0.5))
"test/py/inters/test15.py" 17b \equiv
     """ Testing containments between non intersecting cycles """
     from larlib import *
     filename = "test/svg/inters/facade.svg"
     lines = svg2lines(filename)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     V,EV = lines2lar(lines)
     V,EVs = biconnectedComponent((V,EV))
     # candidate face
     FVs = AA(COMP([list,set,CAT]))(EVs)
     latticeArray = computeCycleLattice(V,EVs)
     for k in range(len(latticeArray)):
         print k,latticeArray[k]
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FVs],submodel,0.15))
"test/py/inters/test16.py" 18a \equiv
     """ Generating the LAR of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/inters/')
     from test15 import *
     cells = cellsFromCycles(latticeArray)
     CV = AA(COMP([list,set,CAT]))(EVs)
     EVdict = dict(zip(EV,range(len(EV))))
     FE = [[EVdict[edge] for edge in cycle] for cycle in EVs]
     edges = [CAT([FE[cycle] for cycle in cell]) for cell in cells]
     FVs = [[CV[cycle] for cycle in cell] for cell in cells]
     FV = AA(CAT)(FVs)
     n = len(cells)
     chains = allBinarySubsetsOfLenght(n)
     cycles = STRUCT(MKPOLS((V,EV)))
     csrBoundaryMat = larBoundary(FV,EV)
     for chain in chains:
```

```
chainBoundary = COLOR(RED)(STRUCT(MKPOLS((V, [EV[e]
                              for e in chain2BoundaryChain(csrBoundaryMat)(chain)])))
         VIEW(STRUCT([cycles, chainBoundary]))
     \Diamond
"test/py/inters/test17.py" 18b \equiv
     """ Generating the LAR of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/inters/')
     from test16 import *
     lar = (V, FV, EV)
     bcycles,_ = boundaryCycles(range(len(EV)),EV)
     polylines = [[V[EV[e][1]] if e>0 else V[EV[-e][0]] for e in cycle ] for cycle in bcycles]
     polygons = [polyline + [polyline[0]] for polyline in polylines]
     complex = SOLIDIFY(STRUCT(AA(POLYLINE)(polygons)))
     csrBoundaryMat = larBoundary(FV,EV)
     for chain in chains:
         chainBoundary = COLOR(RED)(STRUCT(MKPOLS((V, [EV[e]
                              for e in chain2BoundaryChain(csrBoundaryMat)(chain)])))
         VIEW(STRUCT([complex, chainBoundary]))
"test/py/inters/test18.py" 19a \equiv
     """ Orienting a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/inters/')
     from test17 import *
     cells,bridgeEdges = connectTheDots((V,EV))
     CVs = orientBoundaryCycles((V,EV),cells)
     print "\nCVs =",CVs
"test/py/inters/test19.py" 19b \equiv
     """ Generating the LAR of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/inters/')
     from test17 import *
     W,EW = boundaryCycles2vertexPermutation( (V,EV) )
     VIEW(EXPLODE(1.2,1.2,1.2)(MKPOLS((W,EW))))
```

```
"test/py/inters/test20.py" 19c \equiv
     """ Generating the Triangulation of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/inters/')
     from test17 import *
     triangleSet = larTriangulation( (V,EV) )
     VIEW(STRUCT(AA(JOIN)(AA(AA(MK))(CAT(triangleSet)))))
     VIEW(SKEL_1(STRUCT(AA(JOIN)(AA(AA(MK))(CAT(triangleSet))))))
     model = V,EV
     W,FW = lar2boundaryPolygons(model)
     polygons = [[W[u] for u in poly] for poly in FW]
     VIEW(STRUCT(AA(POLYLINE)(polygons)))
     triangleSet,triangledFace = [],[]
     for polygon in polygons:
         triangledPolygon = []
         polyline = []
         for p in polygon:
             polyline.append(Point(p[0],p[1]))
         cdt = CDT(polyline)
         triangles = cdt.triangulate()
         trias = [[[t.a.x,t.a.y,0],[t.c.x,t.c.y,0],[t.b.x,t.b.y,0]] for t in triangles ]
         triangleSet += [AA(REVERSE)(trias)]
```

3 Exporting the module

```
"larlib/larlib/inters.py" 20 =

""" Module for pipelined intersection of geometric objects """

from larlib import *

from triangulation import *

from scipy import mat

\(\langle \text{Coding utilities 34a}\rangle \langle \text{Generation of random lines 35a}\rangle \langle \text{Containment boxes 2a}\rangle \langle \text{Splitting the input above and below a threshold 2b}\rangle \text{Box metadata computation ?}\rangle \text{(Iterative splitting of box buckets 3a}\rangle \langle \text{Intersection of two line segments 3b}\rangle
```

```
⟨Brute force bucket intersection 4⟩
⟨Accelerate intersection of lines 5⟩
⟨Create the LAR of fragmented lines 6a⟩
⟨Biconnected components 6b⟩
⟨Slope of edges 10⟩
⟨Ordered incidence relationship of vertices and edges 11a⟩
⟨Faces from biconnected components 11b⟩
⟨SVG input parsing and transformation 28⟩
⟨Simplified SVG parsing and normalization 27⟩
⟨LAR 2D model normalization 29⟩
⟨Transformation of an array of lines in a 2D LAR complex 13⟩
⟨Pruning away clusters of close vertices 15a⟩
⟨Return a simplified LAR model 15b⟩
```

4 Examples

Generation of random line segments and their boxes

```
"test/py/inters/test01.py" 21a ==
    """ Generation of random line segments and their boxes """
    from larlib import *

    randomLineArray = randomLines(200,0.3)
    VIEW(STRUCT(AA(POLYLINE)(randomLineArray)))

    boxes = containment2DBoxes(randomLineArray)
    rects= AA(box2rect)(boxes)
    cyan = COLOR(CYAN)(STRUCT(AA(POLYLINE)(randomLineArray)))
    yellow = COLOR(YELLOW)(STRUCT(AA(POLYLINE)(rects)))
    VIEW(STRUCT([cyan,yellow]))
```

Split segment array in four independent buckets

```
"test/py/inters/test02.py" 21b =
    """ Split segment array in four independent buckets """
    from larlib import *

    randomLineArray = randomLines(200,0.3)
    VIEW(STRUCT(AA(POLYLINE)(randomLineArray)))
    boxes = containment2DBoxes(randomLineArray)
    bucket = range(len(boxes))
    below,above = splitOnThreshold(boxes,bucket,1)
    below1,above1 = splitOnThreshold(boxes,above,2)
    below2,above2 = splitOnThreshold(boxes,below,2)
```

```
cyan = COLOR(CYAN)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in below1)))
     yellow = COLOR(YELLOW)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in above1)))
     red = COLOR(RED)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in below2)))
     green = COLOR(GREEN)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in above2)))
     VIEW(STRUCT([cyan,yellow,red,green]))
Generation and random coloring of independent line buckets
```

```
"test/py/inters/test03.py" 21c \equiv
     """ Generation and random coloring of independent line buckets """
     from larlib import *
     lines = randomLines(200,0.3)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     boxes = containment2DBoxes(lines)
     buckets = boxBuckets(boxes)
     colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GRAY, GREEN, ORANGE, BLACK, BLUE, PURPLE, BROWN]
     sets = [COLOR(colors[k%12])(STRUCT(AA(POLYLINE)([lines[h]
                 for h in bucket]))) for k,bucket in enumerate(buckets) if bucket!=[]]
     VIEW(STRUCT(sets))
```

Construction of LAR = (V,EV) of random line arrangement

```
"test/py/inters/test04.py" 22a \equiv
     """ LAR of random line arrangement """
     from larlib import *
     lines = randomLines(30,0.2)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     intersectionPoints,params,frags = lineIntersection(lines)
     marker = CIRCLE(.005)([4,1])
     markers = STRUCT(CONS(AA(T([1,2]))(intersectionPoints))(marker))
     VIEW(STRUCT(AA(POLYLINE)(lines)+[COLOR(RED)(markers)]))
     V,EV = lines2lar(lines)
     marker = CIRCLE(.01)([4,1])
     markers = STRUCT(CONS(AA(T([1,2]))(V))(marker))
```

```
#markers = STRUCT(CONS(AA(T([1,2]))(intersectionPoints))(marker))
polylines = STRUCT(MKPOLS((V,EV)))
VIEW(STRUCT([polylines]+[COLOR(MAGENTA)(markers)]))
```

Splitting of othogonal lines

Macro referenced in 22b, 23b, 25a.

Figure 2: Splitting of orthogonal lines: (a) exploded input; (a) exploded output; (c) biconnected components.

Random coloring of the generated 1-complex LAR

"test/py/inters/test06.py" $23a \equiv$

```
""" Random coloring of the generated 1-complex """
from larlib import *

lines = randomLines(800,0.2)
VIEW(STRUCT(AA(POLYLINE)(lines)))

V,EV = lines2lar(lines)
colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GRAY, GREEN, ORANGE, BLACK, BLUE, PURPLE, BROWN]
sets = [COLOR(colors[k%12])(POLYLINE([V[e[0]],V[e[1]]])) for k,e in enumerate(EV)]

VIEW(STRUCT(sets))
```


Figure 3: Splitting of intersecting lines: (a) random input; (a) splitted and colored LAR output.

Biconnected components from orthogonal LAR model

```
"test/py/inters/test07.py" 23b =
    """ Biconnected components from orthogonal LAR model """
    from larlib import *
    colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GREEN, ORANGE, BLACK, BLUE, PURPLE]
    ⟨Orthogonal example 22c⟩
    model = V,EV
    V,EVs = biconnectedComponent(model)
```


Figure 4: The intersection of 5000 random lines in the unit interval, with scaling parameter equal to 0.1

```
HPCs = [STRUCT(MKPOLS((V,EV))) for EV in EVs]
sets = [COLOR(colors[k%10])(hpc) for k,hpc in enumerate(HPCs)]
VIEW(STRUCT(sets))
VIEW(STRUCT(MKPOLS((V,CAT(EVs)))))
#V,EV = larRemoveVertices(V,CAT(EVs))
```

2-complex from orthogonal line segments

```
"test/py/inters/test08.py" 25a \upsilon
    """ 2-complex from orthogonal line segments """
    from larlib import *
    colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GREEN, ORANGE, BLACK, BLUE, PURPLE]
    \( \text{Orthogonal example 22c} \)
    model = V,EV
    V,EVs = biconnectedComponent(model)
    HPCs = [STRUCT(MKPOLS((V,EV))) for EV in EVs]

    sets = [COLOR(colors[k%10])(hpc) for k,hpc in enumerate(HPCs)]
    VIEW(STRUCT(sets))
```

```
EV = sorted(CAT(EVs))
VIEW(STRUCT(MKPOLS((V,EV))))

V,FV,EV = facesFromComps((V,EV))

areas = surfIntegration((V,FV,EV))
boundaryArea = max(areas)
FV = [FV[f] for f,area in enumerate(areas) if area!=boundaryArea]
VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,FV+EV)) + AA(MK)(V)))
```


Figure 5: LAR complex generation random lines. (a) the input random lines; (b) maximal biconnected graph extracted from the 1D LAR of intersected lines; (c) 2D cells of such *regularized* 2-complex; (d) 2-cells, drawn exploded; (e) boundaries of 2D cells; (f) regularized cellular 2-complex extracted from lines.

Biconnected components from random LAR model

[&]quot;test/py/inters/test09.py" $25b \equiv$

```
""" Biconnected components from orthogonal LAR model """
from larlib import *
colors = [CYAN, MAGENTA, YELLOW, RED, GREEN, ORANGE, PURPLE, WHITE, BLACK, BLUE]
lines = randomLines(100,.8)
V,EV = lines2lar(lines)
model = V,EV
VIEW(STRUCT(AA(POLYLINE)(lines)))
V, EVs = biconnectedComponent(model)
HPCs = [STRUCT(MKPOLS((V,EV))) for EV in EVs]
sets = [COLOR(colors[k%10])(hpc) for k,hpc in enumerate(HPCs)]
VIEW(STRUCT(sets))
EV = CAT(EVs)
V,EV = larRemoveVertices(V,EV)
V,FV,EV = facesFromComps((V,EV))
areas = surfIntegration((V,FV,EV))
boundaryArea = max(areas)
FV = [FV[f] for f, area in enumerate(areas) if area!=boundaryArea]
polylines = [[V[v] for v in face+[face[0]]] for face in FV]
 VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,EV)) + AA(MK)(V) + AA(FAN)(polylines))) 
colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GRAY, GREEN, ORANGE, BLACK, BLUE, PURPLE, BROWN]
sets = [COLOR(colors[k%12])(FAN(pol)) for k,pol in enumerate(polylines)]
VIEW(STRUCT(sets))
VIEW(EXPLODE(1.2,1.2,1)((AA(FAN)(polylines))))
VIEW(EXPLODE(1.2,1.2,1)((AA(POLYLINE)(polylines))))
VV = AA(LIST)(range(len(V)))
submodel = STRUCT(MKPOLS((V,EV)))
VIEW(larModelNumbering(1,1,1)(V,[VV,EV],submodel,0.1))
```

Simplified SVG parsing and normalization The easiest method for the input of SVG primitives, to be transformed into a *line soup*, in order to subsiquently generate a 2D cellular complex, mainly oriented to sudent use, is to drag a SVG file into the input window of the web service http://cvdlab.github.io/svg2lines. The file is transformed into quadruples of comma-separated numbers, each corresponding to the pair of extreme point coordinates of a line. This text may be saved into a text file, possibly decorated with the suffix .lines, to be read and normalized into the coordinate space $[0,1] \times [0,1]$ by the

Figure 6: LAR complex generation from SVG file. (a) the input set of lines; (b) imported in pyplasm environment; (c) the extracted regularized 2-complex, drawn exploded.

following function lines2lines, and then used by other larlib functions (for example, by lines2lar (see test/py/inters/test10.py).

```
\( \text{Simplified SVG parsing and normalization 27} \) \( = \)
\( \text{""" Simplified SVG parsing and normalization """ } \)
\( \text{def lines2lines(filename):} \)
\( \text{stringLines} = [\text{line.strip() for line in open(filename)}] \)
\( \text{lines} = [\text{[AA(eval)(string.split(',')) for string in stringLines}] } \)
\( \text{lines} = [[[x1,-y1],[x2,-y2]] for x1,y1,x2,y2 in lines] # overturning y axis \)
\( \text{def stretch(line):} \)
\( \text{c} = CCOMB(line) \)
\( \text{L} = \text{mat(line)} \)
\( \text{return (((L-c)*1.001)+c).tolist()} \)
\( \text{lines} = [\text{stretch(line) for line in lines}] \)
\( \text{#V,EV} = \text{lines2lar(lines,normalize=True)} \)
\( \text{#lines} = [[\text{eval(vcode(5)(V[u])), eval(vcode(5)(V[v]))} ] \) \) \( \text{for u,v in EV]} \)
\( \text{return lines} \)
\( \text{$\lefta} \)
\( \text{def} \)
\( \text{volume of the code of th
```

Macro referenced in 20.

SVG input parsing and transformation We postulate here that the input file test/py/inters/test.svg should contain only primitives, so we skip any other content. Such primitives are parsed by matching against regular expressions, and their x1,y1,x2,y2 attributes are extracted and stored into the lines variable. An isomorphic window-viewport transformation is then performed, to transform the data within the standard unit 2D square [0, 1]². The input vertices are finally set to a fixed resolution, using the vcode(4) function.

```
\langle SVG input parsing and transformation 28\rangle \equiv
            """ SVG input parsing and transformation """
            from larlib import *
            import re # regular expression
            def svg2lines(filename,containmentBox=[],rect2lines=True):
                     stringLines = [line.strip() for line in open(filename)]
                     # SVG <line> primitives
                     lines = [string.strip() for string in stringLines if re.match("<line ",string)!=None]</pre>
                     outLines = ""
                     for line in lines:
                               search(0bj = re.search( r'(< line )(.+)(" x1=")(.+)(" y1=")(.+)(" x2=")(.+)(" y2=")(.+)(" y2=")(.+)(" y1=")(.+)(" y1=")(" y1=")(
                               if searchObj:
                                        outLines += "[["+searchObj.group(4)+","+searchObj.group(6)+"], ["+searchObj.group(
                     if lines != \Pi:
                               lines = list(eval(outLines))
                     # SVG <rect> primitives
                     rects = [string.strip() for string in stringLines if re.match("<rect ",string)!=None]</pre>
                     outRects,searchObj = "",False
                     for rect in rects:
                               if searchObj:
                                        outRects += "[["+searchObj.group(2)+","+searchObj.group(4)+"], ["+searchObj.group(
                     if rects != []:
                               rects = list(eval(outRects))
                               if rect2lines:
                                        lines += CAT([[[[x,y],[x+w,y]],[[x+w,y],[x+w,y+h]],[[x+w,y+h],[x,y+h]],[[x,y+h],[x,y+h]])
                                        lines += [[[x,y],[x+w,y+h]] for [x,y],[w,h] in rects]
                     lines = [[[p1[0], -p1[1]], [p2[0], -p2[1]]] for [p1, p2] in lines] # overturning y axis
                     #< SVG input normalization transformation #>
                     #V,EV = larModelNormalization(lines2lar(lines))
                     #lines = [[V[u],V[v]]] for u,v in EV]
                     containmentBox = box
                     return lines
Macro referenced in 20.
```

LAR 2D model normalization

```
\langle LAR 2D \text{ model normalization } 29 \rangle \equiv
     """ LAR 2D model normalization """
     def larModelNormalization(model):
         V,EV = model
         xs,ys = TRANS(V)
         box = [min(xs), min(ys), max(xs), max(ys)]
         # viewport aspect-ratio checking, setting a computed-viewport 'b'
         b = [None for k in range(4)]
         if (box[2]-box[0])/(box[3]-box[1]) > 1:
              b[0]=0; b[2]=1;
              bm = (box[3] - box[1])/(box[2] - box[0]);
              b[1]=.5-bm/2; b[3]=.5+bm/2
         else:
              b[1]=0; b[3]=1;
              bm = (box[2] - box[0]) / (box[3] - box[1]);
              b[0]=.5-bm/2; b[2]=.5+bm/2
         # isomorphic 'box -> b' transform to standard unit square
         W = [[((x1-box[0])*(b[2]-b[0]))/(box[2]-box[0]),
                 ((y1-box[1])*(b[3]-b[1]))/(box[1]-box[3]) + 1]
              for [x1,y1] in V]
         return W,EV
     def larModelNormalization(model):
         V,EV = model
         xs,ys = TRANS(V)
         w0, w1, w2, w3 = [min(xs), min(ys), max(xs), max(ys)]
         # viewport aspect-ratio checking, setting a computed-viewport 'v'
         ar = (w2-w0)/(w3-w1)
         if ar >1: v0,v1,v2,v3 = 0,0,1,1./ar
         else: v0, v1, v2, v3 = 0, 0, ar, 1
         a,b,c,d = v2*w0, v3*w1, w2-w0, w3-w1
         W = [[(v2*x - a)/c, (v3*y - b)/d] \text{ for } x,y \text{ in } V]
         return W,EV
```

SVG input normalization transformation The normalization transformation maps the input lines to the $[0,1]^2$ viewport, i.e. to the standard unit square.

```
\langle SVG input normalization transformation 30 \rangle = """ SVG input normalization transformation """
```

```
# window-viewport transformation
xs,ys = TRANS(CAT(lines))
box = [min(xs), min(ys), max(xs), max(ys)]
# viewport aspect-ratio checking, setting a computed-viewport 'b'
b = [None for k in range(4)]
if (box[2]-box[0])/(box[3]-box[1]) > 1:
   b[0]=0; b[2]=1; bm=(box[3]-box[1])/(box[2]-box[0]); b[1]=.5-bm/2; b[3]=.5+bm/2
else:
   b[1]=0; b[3]=1; bm=(box[2]-box[0])/(box[3]-box[1]); b[0]=.5-bm/2; b[2]=.5+bm/2
# isomorphic 'box -> b' transform to standard unit square
lines = [[[
((x1-box[0])*(b[2]-b[0]))/(box[2]-box[0]),
((y1-box[1])*(b[3]-b[1]))/(box[1]-box[3]) + 1], [
((x2-box[0])*(b[2]-b[0]))/(box[2]-box[0]),
((y2-box[1])*(b[3]-b[1]))/(box[1]-box[3]) + 1]]
     for [[x1,y1],[x2,y2]] in lines]
# line vertices set to fixed resolution
lines = eval("".join(['['+ vcode(4)(p1) +','+ vcode(4)(p2) +'], ' for p1,p2 in lines]))
```

Macro never referenced.

2-complex extraction from svg file The input lines arrangments produces a 1-dimensional complex stored into the LAR model V, EV. Then the *dangling edges* are removed from EV_, and the whole data set is renumbered, in order to remove the unused vertices, using the larRemoveVertices function. Finally the 2-cells are computed and stored in FV, and the positive areas of every 2cells are computed, so allowing for identify and removal of the exterior face, corresponding to the boundary of the complex. The polygonal boundary of the complex is finally drawn.

```
"test/py/inters/test10.py" 31 =
    """ Biconnected components from orthogonal LAR model """
    from larlib import *

filename = "test/svg/inters/plan.svg"
    #filename = "test/py/inters/building.svg"
    #filename = "test/py/inters/complex.svg"
    print
    lines = svg2lines(filename)
    VIEW(STRUCT(AA(POLYLINE)(lines)))

V,FV,EV,polygons = larFromLines(lines)
    VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,FV[:-1]+EV)) + AA(MK)(V)))
```

```
VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FV[:-1]],submodel,0.05))
     verts,faces,edges = polyline2lar([[ V[v] for v in FV[-1] ]])
     VIEW(STRUCT(MKPOLS((verts,edges))))
"test/py/inters/test10a.py" 32a \equiv
     """ Biconnected components from orthogonal LAR model """
     from larlib import *
     print "\n drag your SVG file to http://cvdlab.github.io/svg2lines"
     print "then save it to <path/filename>.lines"
     filename = raw_input('filename =')
     #filename = "test/svg/inters/plan.lines"
     #filename = "test/py/inters/building.svg"
     #filename = "test/py/inters/complex.svg"
     lines = lines2lines(filename)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     V,FV,EV,polygons = larFromLines(lines)
     VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,FV[:-1]+EV)) + AA(MK)(V)))
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FV[:-1]],submodel,0.05))
     verts,faces,edges = polyline2lar([[ V[v] for v in FV[-1] ]])
     VIEW(STRUCT(MKPOLS((verts,edges))))
"test/py/inters/test11.py" 32b \equiv
     """ Fast Polygon Triangulation based on Seidel's Algorithm """
     # data generated by test10.py on file polygon.svg
     from larlib import *
     V,FV,EV = ([[0.222, 0.889],
       [0.722, 1.0],
       [0.519, 0.763],
       [1.0, 0.659],
```


Figure 7: LAR complex generation from SVG file. (a) the input set of lines parsed from an SVG file; (b) the intersection of lines; (c) the extracted *regularized* 2-complex, drawn exploded; (d) the boundary LAR.

```
[0.859, 0.233],
       [0.382, 0.119],
       [0.519, 0.348],
       [0.296, 0.53],
       [0.0, 0.059]],
      [[0, 1, 2, 3, 4, 5, 6, 7, 8]],
      [[2, 3], [6, 7], [0, 8], [3, 4], [1, 2], [7, 8], [4, 5], [5, 6], [0, 1]])
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV],submodel,0.5))
     xord = TRANS(sorted(zip(V,range(len(V)))))[1]
     trapezoids = zip(xord[:-1],xord[1:])
     vert2forw_trap = dict()
     vert2back_trap = dict()
     for k,(a,b) in enumerate(trapezoids[1:-1]):
         print k,(a,b)
         vert2back_trap[a]=k
         vert2forw_trap[a]=k+1
         vert2back_trap[b]=k+1
         vert2forw_trap[b]=k+2
     vert2forw_trap[trapezoids[0][0]] = 0
     vert2back_trap[trapezoids[-1][1]] = len(trapezoids)-1
"test/py/inters/test12.py" 33 \equiv
     """ Biconnected components from orthogonal LAR model """
     from larlib import *
```

```
V = [[0.395, 0.296], [0.593, 0.0], [0.79, 0.773], [0.671, 0.889], [0.79, 0.0], [0.593, 0.296],
FV = [[0, 5, 4, 1], [1, 9, 0], [8, 7, 0, 9], [7, 8, 3, 2, 4, 5, 6]]
EV = [[0, 1], [8, 9], [6, 7], [4, 5], [1, 4], [3, 8], [5, 6], [2, 3], [1, 9], [0, 9], [0, 5],
polylines = [[V[v] for v in face+[face[0]]] for face in FV]
VIEW(EXPLODE(1.1,1.1,1)(MKPOLS((V,EV)) + AA(MK)(V) + AA(FAN)(polylines)))

VV = AA(LIST)(range(len(V)))
submodel = STRUCT(MKPOLS((V,EV)))
VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FV],submodel,.6))
VIEW(EXPLODE(1.1,1.1,1)(AA(POLYLINE)(polylines)))
```

A Code utilities

Coding utilities Some utility fuctions used by the module are collected in this appendix. Their macro names can be seen in the below script.

```
⟨Coding utilities 34a⟩ ≡

""" Coding utilities """

⟨Generation of all binary subsets of lenght n 34b⟩
⟨Generation of a random point 35b⟩
⟨Generation of a random line segment 35c⟩
⟨Transformation of a 2D box into a closed polyline 36a⟩
⟨Computation of the 1D centroid of a list of 2D boxes 36b⟩
⟨Pyplasm XOR of FAN of ordered points 36c⟩

⋄
```

Generation of all binary subsets of lenght n

Example

Macro referenced in 34a.

Macro referenced in 20.

```
In [9]: allBinarySubsetsOfLenght(3)
Out[9]: [[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]]
```

Generation of random lines The function randomLines returns the array randomLineArray with a given number of lines generated within the unit 2D interval. The scaling parameter is used to scale every such line, generated by two randow points, that could be possibly located to far from each other, even at the distance of the diagonal of the unit square.

The arrays xs and ys, that contain the x and y coordinates of line points, are used to compute the minimal translation v needed to transport the entire set of data within the positive quadrant of the 2D plane.

```
⟨Generation of random lines 35a⟩ ≡
    """" Generation of random lines """

def randomLines(numberOfLines=200,scaling=0.3):
    randomLineArray = [redge(scaling) for k in range(numberOfLines)]
    [xs,ys] = TRANS(CAT(randomLineArray))[:2]
    xmin, ymin = min(xs), min(ys)
    v = array([-xmin,-ymin])
    randomLineArray = [[list(v1[:2]+v), list(v2[:2]+v)] for v1,v2 in randomLineArray]
    return randomLineArray
    ◊

Macro referenced in 20.
```

Generation of a random point A single random point, codified in floating point format, and with a fixed (quite small) number of digits, is returned by the rpoint2d() function, with no input parameters.

Generation of a random line segment A single random segment, scaled about its centroid by the scaling parameter, is returned by the redge() function, as a tuple of two random points in the unit square.

```
⟨Generation of a random line segment 35c⟩ ≡
    """ Generation of a random line segment """

def redge(scaling):
    v1,v2 = array(rpoint2d()), array(rpoint2d())
    c = (v1+v2)/2
    pos = rpoint2d()
    v1 = (v1-c)*scaling + pos
    v2 = (v2-c)*scaling + pos
    return tuple(eval(vcode(4)(v1))), tuple(eval(vcode(4)(v2)))
    ◊
```

Macro referenced in 34a.

Transformation of a 2D box into a closed polyline The transformation of a 2D box into a closed rectangular polyline, given as an ordered sequence of 2D points, is produced by the function box2rect

```
⟨Transformation of a 2D box into a closed polyline 36a⟩ ≡
    """ Transformation of a 2D box into a closed polyline """
    def box2rect(box):
        x1,y1,x2,y2 = box
        verts = [[x1,y1],[x2,y1],[x2,y2],[x1,y2],[x1,y1]]
        return verts
        ◊
```

x or y) is chosen depending on the value of the xy parameter.

Computation of the 1D centroid of a list of 2D boxes The 1D centroid of a list of 2D boxes is computed by the function given below. The direction of computation (either

```
⟨ Computation of the 1D centroid of a list of 2D boxes 36b⟩ ≡
""" Computation of the 1D centroid of a list of 2D boxes """
def centroid(boxes,coord):
    delta,n = 0,len(boxes)
    ncoords = len(boxes[0])/2
    a = coord%ncoords
    b = a+ncoords
    for box in boxes:
        delta += (box[a] + box[b])/2
    return delta/n
```

Macro referenced in 34a.

Macro referenced in 34a.

Pyplasm XOR of FAN of ordered points

```
⟨ Pyplasm XOR of FAN of ordered points 36c⟩ ≡

""" XOR of FAN of ordered points """

def FAN(points):
    pairs = zip(points[1:-2],points[2:-1])
    triangles = [MKPOL([[points[0],p1,p2],[[1,2,3]],None]) for p1,p2 in pairs]
    return XOR(triangles)

if __name__=="__main__":
    pol = [[0.476,0.332],[0.461,0.359],[0.491,0.375],[0.512,0.375],[0.514,0.375],
    [0.527,0.375],[0.543,0.34],[0.551,0.321],[0.605,0.314],[0.602,0.307],[0.589,
    0.279],[0.565,0.244],[0.559,0.235],[0.553,0.227],[0.527,0.239],[0.476,0.332]]
```

```
VIEW(EXPLODE(1.2,1.2,1)(FAN(pol)))
```

Macro referenced in 34a.

References

- [CL13] CVD-Lab, *Linear algebraic representation*, Tech. Report 13-00, Roma Tre University, October 2013.
- [HT73] John Hopcroft and Robert Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Commun. ACM 16 (1973), no. 6, 372–378.