EAS-502 Project 1

Team Members:

Nabeel Khan
 Vijaya Rana
 106

The **experiment starts at t = 0 (d>0)**. Let T be the time at which the distance between Robot and object is zero (d=0). Experiment ends when the **robot and the object land on the same spot, or when they cross each other**.

We define:

 A_d : The event that **initially** the robot and the object are **d** units apart

 B_d : The event that **after one second** the robot and object are **d** units apart

Strategy 1: At each unit of time, the robot will move 1 unit toward the object regardless of the object movement.

Analytical Solution

For the initial distance d there are 3 cases which are mentioned below considering robot moves 1 unit towards object:

Case	е	Object movement	Robot movement	Distance	Probability
	1	Left	Right	d-2	р
	2	Right	Right	d	р
	3	Stationary	Right	d-1	1-2p

Where p = Probability of movement of Object

Breaking $E[T|A_d]$ by using Total expectation theorem for above 3 cases:

$$E[T|A_d] = P(B_d|A_d)E[T|A_d \cap B_d] + P(B_{d-1}|A_d)E[T|A_d \cap B_{d-1}] + P(B_{d-2}|A_d)E[T|A_d \cap B_{d-2}] \rightarrow \underline{\text{Equation 1}}$$

For simplification considering: $E[T|A_d] = E_d \& P_{OM} = p$

Simplifying further Equation 1

$$E_d = p(1+E_d) + (1-2p)(1+E_{d-1}) + p(1+E_{d-2})$$

Rearranging for Ed

$$E_d = (p + (1-2p)(1+E_{d-1}) + p(1+E_{d-2}))/(1-p)$$

→ This is *General term for the Strategy 1*

We calculate $E[T|A_1]$ using the <u>General term for the Strategy 1</u> and then we used this result to compute $E[T|A_2]$. We'll use MATLAB to calculate $E[T|A_d]$ for the relevant values of d.

```
E_1 = 1-p+p (Ed) + p
E_2 = (2-3p)/((1-p)^2)
```

Now using this we can calculate E₃ to E₁₉

MATLAB Code for Strategy 1:

```
function [final expected vals] = strategy 1()
% = 1000 Function to calculate expected values of time for P om from .1 to .5
    final expected vals = [];
    % Using P om from .1 to .5
    for p om = (1:5)/10
        % Starting with the E1 and E2 calculated manually using general term
        exp_vals = [1/(1-p_om), (2-3*p_om)/((1-p_om)*(1-p_om))];
        % Calculating E3 to E19 using general equation
        for d = 3:19
            E d = (p om + (1-2*p om)*(1+ exp vals(d-1)) + p om*(1+ exp vals(d-2)))/(1-p om);
            exp vals(d) = E d;
        end
        % Now calculating the expected value using conditional expectation
        % Using pmf of d (uniform distribution with Pd = 0.1)
        expected total = 0;
        for d = 10:19
            expected total = expected total + 0.1*exp vals(d);
        end
        disp(expected total);
        final_expected_vals(end + 1) = expected_total;
    end
end
```

Analytical Result for Strategy 1:

Probability of Object Movement	Expected Value of Time	
(P _{om} or p)	(E _T)	
0.1	14.60	
0.2	14.70	
0.3	14.80	
0.4	14.90	
0.5	15.00	

Strategy 3: At each unit of time, the robot will move 1 unit toward the object if the object moves to either left or right, and the robot will stop if the object stops. Analytical Solution:

For the initial distance d there are 3 cases which are mentioned below considering robot moves 1 unit towards object:

Case	Object movement	Robot movement	Distance	Probability
1	Left	Right	d-2	р
2	Right	Right	d	р
3	Stationary	Stationary	d	1-2p

Where p = Probability of movement of Object

Breaking $E[T|A_d]$ by using Total expectation theorem for above 3 cases:

 $E[T|A_d] = P(Object\ moves\ right\) E[T|A_d\cap B_d] + P(Object\ stationary) E[T|A_d\cap B_d] + P(Object\ moves\ left) E[T|A_d\cap B_{d-2}]$

For simplification considering $E[T|A_d] = E_d \& P_{OM} = p$

Simplifying further:

$$E_d = p (1+ E_{d-2}) + p(1+E_d) + (1-2p) (1+E_d)$$

Now after solving for E_{d} , we get

$$E_d = (1+pE_{d-2})/p$$
 \rightarrow This is General term for the Strategy 3

We calculate $E[T|A_1]$ using the <u>General term for the Strategy 3</u> and then we used this result to compute $E[T|A_2]$. We'll use MATLAB to calculate $E[T|A_d]$ for the relevant values of d.

$$E_1 = 1/p$$

$$E_2 = 1/p$$

Now using this we can calculate E₃ to E₁₉

MATLAB Code for Strategy 3:

```
function [final expected vals] = strategy 3()
\mbox{\%} Function to calculate expected values of time for P om from .1 to .5
    final expected vals = [];
    % Using P_om from .1 to .5
    for p_om = (1:5)/10
        % Starting with the E1 and E2 calculated manually
        exp vals = [1/(p om), 1/(p om)];
        % Calculating E3 to E19 using general term
        for d = 3:19
            E d = (1 + (p om)*(exp vals(d-2)))/(p om);
            exp vals(d) = E d;
        end
        % Now calculating the expected value using conditional expectation
        % Using pmf of d (uniform distribution with Pd = 0.1)
        expected total = 0;
        for d = \overline{10:19}
            expected_total = expected_total + 0.1*exp vals(d);
        end
        disp(expected total);
        final expected vals(end + 1) = expected total;
    end
end
```

Analytical Result for Strategy 3:

Probability of Object Movement (P _{OM} or p)	Expected Value of Time (E _T)
0.10	75.00
0.20	37.50
0.30	25.00
0.40	18.75
0.50	15.00

Strategy 2*: At each unit of time, the robot will move 1 unit toward the object (with the probability of 1.5 P_{OM} or will stop (with the probability of 1-1.5 P_{OM}) regardless of the object movement.

For the initial distance d there are 6 cases which are mentioned below considering robot moves 1 unit towards object:

Case	Robot movement	Object movement	Distance	Probability
1	Still	Left	d-1	(1-q)p
2	Still	Right	d+1	(1-q)p
3	Still	Still	d	(1-q)(1-2p)
4	Right	Left	d-2	qp
5	Right	Right	d	qp
6	Right	Still	d-1	q(1-2p)

Where p = Probability of movement of Object, and q = Probability of movement of robot

$$\begin{split} E[T|A_d] &= P(Robot\ still, Object\ moves\ Left) E[T|A_d \cap B_{d-1}] + P(Robot\ still, Object\ moves\ Right) E[T|A_d \cap B_{d+1}] + \\ P(Robot\ still, Object\ Still) E[T|A_d \cap B_d] + P(Robot\ moves\ right, Object\ moves\ Right) E[T|A_d \cap B_{d-1}] + \\ P(Robot\ moves\ right, Object\ moves\ Right) E[T|A_d \cap B_d] + P(Robot\ moves\ right, Object\ Still) E[T|A_d \cap B_{d-1}] \end{split}$$

Simplifying above equation considering $E[T|A_d] = E_d$

$$E_{d=}(1+(p+q-3pq))E_{d-2}+(3pq-2p-q)E_{d-1}+(pq)E_{d-3})/p(q-1)$$

Where q=1.5p, solving we get

$$E_d = (1+(2.5p-4.5p^2)E_{d-2} + ((4.5*p^2) - 3.5*p)E_{d-1} + (1.5 p^2) E_{d-3}))/p(1.5p-1)$$
 \Rightarrow This is General term for the Strategy 2

Using General term for the Strategy 2 we calculate E₁, E₂, E₃ for respective values of p shown in table

	E ₁	E ₂	E ₃
p=0.1	7.109830201	13.74703778	20.41566273
p=0.2	3.832148359	7.090836764	10.4353403
p=0.3	2.796251249	4.870194275	7.130718951
p=0.4	2.349754291	3.736455736	5.51786687
p=0.5	2.194335081	2.971675407	4.664041954

MATLAB Code for Strategy 2:

```
function [final expected vals] = strategy 2()
% Function to calculate expected values of time for P om from .1 to .5
    initial E = [7.109830200957157 13.747037779905098 20.415662725586326
                  3.8321483594592816 \ 7.090836763705904 \ 10.435340300715005
                  2.7962512487710653 \ \ 4.870194275499013 \ \ \ \ 7.130718950732399
                  2.3497542908541056 3.736455736129949 5.5178668695576
                  2.1943350814194544 2.9716754070972726 4.664041954066908];
    final expected vals = [];
    % Using P om from .1 to .5
    for iter count = (1:5)
        % Using P om from .1 to .5
        p om = iter count/10;
        % Starting with the E1, E2, and E3 calculated manually
        E = initial E(iter count,:);
        % Calculating E4 to E19 using general equation
        for d = 4:19
             E(d) = (1 + (2.5*p \text{ om} - 4.5*p \text{ om} - 2)*E(d-2) + ((4.5*p \text{ om} - 2) - 3.5*p \text{ om})*E(d-1)
             +(1.5*(p_om*^2)*E(d-3)))/(p_om*(1.5*p_om - 1));
        end
        % Now calculating the expected value using conditional expectation
        % Using pmf of d (uniform distribution with Pd = 0.1)
        expected total = 0;
        for d = \overline{10:19}
             expected total = expected total + 0.1*E(d);
        end
        disp(expected total);
        final expected vals(end + 1) = expected total;
    end
end
```

Analytical Result for Strategy 2:

Probability of Object Movement	Expected Value of Time
(P _{om} or p)	(E _⊤)
0.10	97.082
0.20	48.767
0.30	32.678
0.40	24.651
0.50	19.856

Conclusion

We used simulation for 10000 iterations to arrive at the same results as concluded in the table below

Strateg	_			Si	mulation
у	P_om	Analytical Expected Value	Iterations	Total Time	Simulated Expected Value
Stg_1	0.10	14.600	10000	146042	14.6042
Stg_1	0.20	14.700	10000	146760	14.676
Stg_1	0.30	14.800	10000	147276	14.7276
Stg_1	0.40	14.900	10000	149199	14.9199
Stg_1	0.50	15.000	10000	149503	14.9503
Stg_2	0.10	97.082	10000	967419	96.7419
Stg_2	0.20	48.767	10000	489432	48.9432
Stg_2	0.30	32.678	10000	327241	32.7241
Stg_2	0.40	24.651	10000	245996	24.5996
Stg_2	0.50	19.856	10000	198819	19.8819
Stg_3	0.10	75.000	10000	749603	74.9603
Stg_3	0.20	37.500	10000	375690	37.569
Stg_3	0.30	25.000	10000	251017	25.1017
Stg_3	0.40	18.750	10000	188280	18.828
Stg_3	0.50	15.000	10000	150856	15.0856

Python Code for simulation

```
import numpy as np
import random
import pandas as pd

table_results = []

for p_om in [.1, .2, .3, .4, .5]:
    robot_position = 0
    obj_position = np.random.choice(range(10,20))
    robot_mvmts = np.array([0,1])
    obj_mvmts = np.array([-1,0,1])
    obj_mvmt_probs = np.array([p_om, 1-2*p_om, p_om])
    robot_mvmt_probs = np.array([1-1.5*p_om, 1.5*p_om])

# strategy 1
    stg_1_times = []
```

```
for sim count in range (10000):
        time count = 0
        while robot position < obj position:
            robot position += 1
            obj position += np.random.choice(obj mvmts, 1,p=obj mvmt probs)[0]
            time count += 1
        robot position = 0
        obj_position = np.random.choice(range(10,20))
        stg 1 times.append(time count)
    print(sum(stg 1 times)/len(stg 1 times))
    table results.append(['Stg 1', p om, sum(stg 1 times) ])
    # strategy 2
    stg 2 times = []
    for sim count in range(10000):
        time count = 0
        while robot position < obj position:
            robot position += np.random.choice(robot mvmts,
1,p=robot mvmt probs)[0]
            obj position += np.random.choice(obj mvmts, 1,p=[p om, 1-2*p om,
p om])[0]
            time count += 1
        robot position = 0
        obj position = np.random.choice(range(10,20))
        stg 2 times.append(time count)
    print(sum(stg 2 times)/len(stg 2 times))
    table results.append(['Stg 2', p om, sum(stg 2 times) ])
    # strategy 3
    stg 3 times = []
    for sim count in range (10000):
        time count = 0
        while robot position < obj position:
            obj movement = np.random.choice([-1,0,1], 1,p=[p_om, 1-2*p_om,
p_om])[0]
```

```
obj_position += obj_movement

robot_position += abs(obj_movement)

time_count += 1

robot_position = 0

obj_position = np.random.choice(range(10,20))

stg_3_times.append(time_count)

print(sum(stg_3_times)/len(stg_3_times))

table_results.append(['Stg_3', p_om,sum(stg_3_times)])
```