Hao Zhou

Address: New Orleans, LA 70112 | Cell: (504) 300-3134 | 952774178z@gmail.com

LinkedIn: shorturl.at/cyBL0

SUMMARY

Master student seeking data-related opportunities, with strong background in **mathematics**, **statistics**, and sufficient experience in **machine learning** and **data analytics**. Solid programming skills in **Python**, **SQL**, and a keen interest in deep learning.

EDUCATION

Tulane University New Orleans, LA Expected May 2025

Master of Science in Biostatistics

Nanjing University Nanjing, China June 2022

Bachelor of Science in Statistics

SKILLS

Programming and Tools: Python, SQL, SPSS, Spark, PyTorch, Tableau **Machine Learning**

- Classical Linear Models, Decision Tree, Random Forest, Gradient Boosting Decision Tree, K Nearest Neighbors (KNN), Support Vector Machines (SVM), Recommendation System, Neural Network
- Clustering, Natural Language Processing (NLP), Latent Dirichlet Allocation (LDA)
- Exploratory Data Analysis, Data Preprocessing, Data Visualization, Principal Component Analysis (PCA), Regularization, Feature Engineering, Model Evaluation

Statistics Analysis: Parameter Estimation, Hypothesis Testing, Analysis of Variance (ANOVA), Time Series

PROJECTS

Bird Image Classification using Convolutional Neural Network

- Built a Convolutional Neural Network model using PyTorch to classify 90K images spanning 525 bird species.
- Implemented Data Augmentation and Data Normalization.
- Utilized pretrained models including AlexNet and ResNet, fine-tuning them to adapt to the output requirements for the classification task.
- Evaluated the model on test data and identified the best model with an accuracy of 98%.

Anime Recommendation System based on Matrix Factorization

- Implemented a recommendation model in PySpark to suggest anime likely to interest users.
- Conducted Online Analytical Processing (OLAP) with Spark SQL.
- Trained Alternating Least Squares (ALS) model for Matrix Factorization to provide personalized recommendations, and developed user-based and item-based algorithms to handle cold start problems.
- Tuned model hyperparameters through cross validation and achieved the optimal model with an RMSE of 1.2 in a user rating range of 1-10.

Natural Language Processing on ChatGPT Prompts

• Clustered ChatGPT prompts into groups, unveiling common scenarios where users engage with the model.

- Preprocessed the text data through tokenization, stemming, and TFIDF feature extraction.
- Employed K-means clustering and Latent Dirichlet Analysis (LDA) for unsupervised learning, identifying different prompt patterns and topics.
- Applied t-SNE for dimensionality reduction and visualized clustering results.

Employment Prediction for Graduates from a Campus

- Developed a model in Python to predict whether students would get placed after graduation based on grades, degree specialization and work experience.
- Conducted comprehensive data preprocessing, including data cleaning, categorical feature transformation, and data standardization.
- Established Logistic Regression, Random Forest, KNN and SVM models, and used Grid Search based on 5-fold cross validation to find optimal model hyperparameters.
- Evaluated the models on test data and selected the best model based on AUC (best AUC: 0.96).

Stock Price Forecast Based on Time Series Analysis

- Developed a model in Python to predict stock prices for the upcoming week.
- Processed over four years of historical data and established dummy variables to account for the impact of the COVID-19 pandemic.
- Trained models including ARIMA and XGBoost to forecast stock price for a week.
- Evaluated model performance on test data with a minimal RMSE of 2.7.

California Housing Price Prediction

- Developed algorithms in Python for predicting California housing prices and determined the importance of each feature in the model.
- Created interactive maps visualizing housing quantities and prices across different regions in California.
- Implemented feature engineering based on geospatial analysis and trained models such as Random Forest, Gradient Boosting, and Multilayer Perceptron (MLP) to predict housing prices.
- Evaluated model performance and analyzed feature importance to identify the top 5 factors influencing housing prices.