Determine the degrees of freedom for the window mechanism shown below

Mechanism to open and close a window

Associated Kinematic diagram

Exercise 1 Solution

$$n = 6, j = 7$$

$$F = 3n - 2j - 3$$
$$= 3(6) - 2(7) - 3$$
$$= 1$$

The planar robot arm is an open loop kinematic chain that consists of four links and three joints. Determine its degree-of-freedom

Exercise 2- Solution

$$n = 4, j = 3$$

$$F = 3n - 2j - 3$$

$$= 3(4) - 2(3) - 3$$

$$= 3$$

Shown below in Figure is a planar robot arm with two revolute joints and one prismatic joint. Using the geometric parameters and joint displacements, obtain the kinematic equations relating the endeffecter position and orientation to the joint displacements.

ri 2017

Exercise 3-Solution

• Given the desired end effector position, calculate the parameters d and θ for the robot arm shown

Exercise 4-Solution

Ans:

Forward kinematics:

$$\begin{bmatrix} x_e \\ y_e \end{bmatrix} = \begin{bmatrix} L_1 + L_2 \cos \theta \\ d + L_2 \sin \theta \end{bmatrix}$$

Hence,

$$x_e = L_1 + L_2 \cos \theta \rightarrow$$

$$\theta = \cos^{-1}\left(\frac{x_e - L_1}{L_2}\right) \text{ for } y_e > d \qquad \text{and} \qquad \theta = -\cos^{-1}\left(\frac{x_e - L_1}{L_2}\right) \text{ for } y_e < d$$

Since d is also an actuation and no limit is set in this situation, we can set $y_e > d$.

Hence,
$$\theta = \cos^{-1}\left(\frac{x_e - L_1}{L_2}\right)$$
.

And also, $y_e = d + L_2 \sin \theta \rightarrow d = y_e - L_2 \sin \theta$

• Obtain the joint angles of the dog's legs, given the body position and orientation (x_B , y_B , θ_B , x_{Link4} , x_{Link2})

Exercise 5-Solution

The inverse kinematics problem:

Step 1 Given $x_{\rm B},\,y_{\rm B},\,\phi_{\rm B}$, find $x_{\rm A},\,y_{\rm A}$ and $x_{\rm C},\,y_{\rm C}$

Step 2 Given x_A , y_A , find θ_1 , θ_2

Step 3 Given x_C , y_C , find θ_3 , θ_4

$$\alpha_A = \alpha_B + BA Cos \Phi_B$$

$$\beta_A = \beta_B + BA sin \Phi_B S_C = \beta_A$$

