Name : Study program : ID. NR. :

- 1. For each of the following sub-questions, you are asked to provide a *short but essential* answer. You should not need more than five sentences per answer.
- a. Explain shortly how Bayes rule relates to machine learning. In your answer, you may assume a model \mathcal{M} with prior distribution $p(\mathcal{M})$ and an observed data set D.
- b. Explain the relation between Bayesian estimation, Maximum a Posteriori (MAP) estimation and Maximum Likelihood (ML) estimation. You may assume a context of a given model structure with unknown parameters θ and an observed data set D.

The following two sub-questions relate to a (Factor Analysis) model $x_n = \Lambda z_n + v_n$ for an observed data set $D = \{x_1, \dots, x_N\}$. The modeling assumptions include $z_n \sim \mathcal{N}(0, I)$, $v_n \sim \mathcal{N}(0, \Psi)$ and $\varepsilon[z_n v_n^T] = 0$.

- c. Show that the covariance matrix of the observed data x_n is equal to $\Lambda\Lambda^T + \Psi$.
- d. Why is this model not interesting for unconstrained Ψ ? How does probabilistic PCA handle this problem?
- e. Which of the following statements are justified? You can pick more than one and read the sign ' \sim ' as: 'is similar to'. (Just pick the correct statements; no explanation needed).
 - 1: discriminative classification \sim density estimation
 - 2: generative classification \sim density estimation
 - 3: hidden Markov model \sim factor analysis through time
 - 4: Kalman filtering ~ unsupervised regression through time
 - 5: clustering \sim supervised classification
- **2.** (EM for 2-component Gaussian mixture). Consider an observed IID data set $D = \{x_1, \ldots, x_N\}$ and a proposed model,

$$p(x_n) = \sum_{k=0}^{1} p(x_n, z_n = k | \pi)$$

$$= p(z_n = 1 | \pi) p(x_n | z_n = 1) + p(z_n = 0 | \pi) p(x_n | z_n = 0)$$

$$= \pi \mathcal{N}_1(x_n) + (1 - \pi) \mathcal{N}_0(x_n)$$

where we used shorthand notation $\mathcal{N}_k(x_n) \equiv (2\pi\sigma_k^2)^{-1/2} \exp\left(-(x_n - \mu_k)^2/(2\sigma_k^2)\right)$ for the Gaussian distribution. We assume that the parameters $\theta = (\mu_0, \sigma_0^2, \mu_1, \sigma_1^2)$ are known, but the mixing proportion parameter π is unknown. The random variable $z_n \in \{0, 1\}$ is an unobserved 'cluster label'. In this question we will derive an EM-algorithm for maximum likelihood estimation of π . Let's assume that a estimate $\hat{\pi} = \pi^{(j)}$ is available from the previous iteration. We will now focus on the (j+1)-th iteration in the EM algorithm.

a. Describe shortly the E- and M-steps in the (j+1)-th iteration of the EM-algorithm. In particular, complete the following equation set (fill in the stars) for the (j+1)-th iteration and shortly describe the meaning of the equations: (Note: the expression $\langle f(x) \rangle_{p(x)}$ stands for the expectation of f(x) w.r.t. probability distribution p(x).)

$$\begin{split} q_n^{(j+1)} &= p(\star|\star) \quad \text{(E-step)} \\ \pi^{(j+1)} &= \arg\max_{\pi} \langle \star \rangle_{\star} \quad \text{(M-step)} \end{split}$$

- b. Work out $p(x_n, z_n = 1|\pi)$ (hint: use product rule). Work out $p(x_n, z_n = 0|\pi)$. And now work out the joint distribution $p(x_n, z_n|\pi)$ to a Bernoulli distribution (as in eq.A1, see formula cheat sheet). In this question, you need to work out the probabilities in terms of z_n , $\mathcal{N}_0(x_n)$, $\mathcal{N}_1(x_n)$ and π .
- c. Show that the complete-data log-likelihood $\ell_c(\pi) = \sum_n \log p(x_n, z_n | \pi)$ can be worked out to

$$\ell_c(\pi) = \sum_n z_n \log \frac{\pi \mathcal{N}_1(x_n)}{(1-\pi)\mathcal{N}_0(x_n)} + \sum_n \log(1-\pi)\mathcal{N}_0(x_n)$$
 (1)

To finalize the E-step, we now take the expectation of the complete-data log-likelihood with respect to the posterior distribution $p(z_n|x_n,\pi^{(j)})$. It follows from Eq.1 that we need to compute the expected value of z_n . We'll compute the expected value of z_n in two stages:

d. First show that the expectation $\sum_{\{z_n\}} z_n \cdot p(z_n|x_n,\pi^{(j)})$ can be worked out as follows:

$$\sum_{\{z_n\}} z_n p(z_n | x_n, \pi^{(j)}) = p(z_n = 1 | x_n, \pi^{(j)})$$

e. And now use Bayes rule to work out an expression for $p(z_n = 1 | x_n, \pi^{(j)})$ in terms of $\pi^{(j)}$, $\mathcal{N}_0(x_n)$ and $\mathcal{N}_1(x_n)$.

If we use shorthand notation $\zeta_n = p(z_n = 1|x_n, \pi^{(j)})$, then the expected complete-data log-likelihood can be written as

$$\langle \ell_c(\pi) \rangle = \sum_n \zeta_n \log \frac{\pi \mathcal{N}_1(x_n)}{(1-\pi)\mathcal{N}_0(x_n)} + \sum_n \log(1-\pi)\mathcal{N}_0(x_n)$$

- f. Set $\partial \langle \ell_c(\pi) \rangle / \partial \pi = 0$ and obtain an expression for $\pi^{(j+1)}$ in terms of $\pi^{(j)}$, $\mathcal{N}_0(x_n)$ and $\mathcal{N}_1(x_n)$ (i.e. write down the (j+1)-th iteration of the M-step).
- **3.** You observe some data x^n . You ask two experts to explain the data.

Expert A uses a data compression system that needs 1537 bits to describe the parameters of the model and 438 bits to describe the data given the model.

Expert B gives you a system that needs 1325 bits for the parameters and 650 bits for the data, given the model.

- a. Which expert's result do you prefer?
 Explain (briefly) why you select that experts result.
- b. You ask two additional experts.

Expert C gives you a model with a parameter description length of 1471 bits and a data description that needs 450 bits.

Expert D gives you a model with a parameter description length of 1464 bits and a data description that needs 543 bits.

Of the four experts A to D, which result do you prefer, and why?

4. Let *X* be a real valued random variable with probability density

$$p_X(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}, \text{ for all } x.$$

Also Y is a real valued random variable with conditional density

$$p_{Y|X}(y|x) = \frac{e^{-(y-x)^2/2}}{\sqrt{2\pi}}$$
, for all x and y .

a. Give an (integral) expression for $p_Y(y)$. Do not try to evaluate the integral.

b. Approximate $p_Y(y)$ using the Laplace approximation.

Give the detailed derivation, not just the answer.

Hint: You may use the following results.

Let

$$g(x)=\frac{e^{-x^2/2}}{\sqrt{2\pi}},\quad \text{and}$$

$$h(x)=\frac{e^{-(y-x)^2/2}}{\sqrt{2\pi}},\quad \text{for some real value }y.$$

Then

$$\frac{\partial}{\partial x}g(x) = -xg(x)$$

$$\frac{\partial^2}{\partial x^2}g(x) = (x^2 - 1)g(x)$$

$$\frac{\partial}{\partial x}h(x) = (y - x)h(x)$$

$$\frac{\partial^2}{\partial x^2}h(x) = ((y - x)^2 - 1)h(x)$$

5. We implement an e-mail spam filter using two features that we can extract from an e-mail. A feature can be the occurrence of a particular word or phrase in the e-mail.

Given an e-mail E we denote the extracted features by F and G.

F=1 means that feature F is present in the e-mail E.

F=0 means that feature F is absent. And likewise for feature G.

The variable C indicates whether E is spam (C = 1) or not (C = 0).

We are given 247 e-mails that are already classified. The following table shows how many e-mails contained certain features and the classification.

1	7 (G	C	nr of e-mails
	0	0	0	15
	0	0	1	28
	0	1	0	18
	0	1	1	25
	1	0	0	8
	1	0	1	75
	1	1	0	10
	1	1	1	68

a. From the table given above you can determine probability estimates using the maximum likelihood estimates. e.g. the probability P(C=1), i.e. the probability that an email will be spam, is approximated by:

$$P(C=1) = \frac{\text{\# of e-mails with } C=1}{\text{total \# of e-mails}} = \frac{196}{247} = 0.7935.$$

Note that the method using a beta prior would be better suited but we'll use the maximum likelihood because it is simpler.

Determine the following estimates.

$$\begin{split} P(F=1|C=0), P(F=1|C=1), \\ P(G=1|C=0), P(G=1|C=1), \\ P(F=0,G=0|C=0), P(F=0,G=1|C=0), \\ P(F=1,G=0|C=0), P(F=1,G=1|C=0), \\ P(F=0,G=0|C=1), P(F=0,G=1|C=1), \\ P(F=1,G=0|C=1), P(F=1,G=1|C=1). \end{split}$$

Model M_1 for e-mail does not consider any feature. So P(C) can be used to estimate the probability that the next e-mail will be spam or not. We will write that as $P(C|M_1)$.

- b. Model M_2 considers only feature F to predict whether the next e-mail will be spam or not. Use Bayes rule and the probability estimates determined in the previous question to determine an estimate for $P(C|M_2) = P(C|F)$.
 - Model M_3 considers feature G only and model M_4 considers both F and G. Model M_5 also considers both F and G but assumes that F and G are independent given the classification C.
- c. Use Bayes rule again to show how you would calculate $P(C|M_5)$.
- d. The models M_1, M_2, \ldots, M_5 all have a certain number of free parameters. Determine the number of free parameters for each of the five models.
- e. Given the training set of the 100 e-mail as shown in the table above, which of the five models would you prefer? Use an MDL argument in your answer.
 - HINT: You will need to calculate an estimate for the email entropy for each model. For model M_1 you make an estimate of H(C) using the maximum likelihood estimate P(C=1)=0.7935. Likewise you calculate for M_2 the entropy H(C,F) and thus you'll need to compute P(C,F). For M_3 you must compute the entropy H(C,G); for M_4 you calculate H(C,F,G) and for M_5 also H(C,F,G) although this will be a different calculation than for M_4 .

Appendix: formula sheet

The Bernoulli distribution is a discrete distribution having two possible outcomes labeled by x=0 and x=1 in which x=1 ("success") occurs with probability θ and x=0 ("failure") occurs with probability $1-\theta$. It therefore has probability function

$$p(x|\theta) = \theta^x (1-\theta)^{1-x} \tag{A.1}$$

The Gaussian distribution with mean μ and variance σ^2 is defined as

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Points that can be scored per question:

Question 1: each sub-question 2 points. Total 10 points.

Question 2: a) 2 points; b) 2 points; c) 2 points; d) 1 point; e) 1 point; f) 2 points. Total 10

points.

Question 3: a) 3 points; b) 3 points. Total 6 points.

Question 4: a) 3 points; b) 3 points. Total 6 points.

Question 5: a) 1 point; b) 1 point; c) 2 points; d) 2 points; e) 2 points. Total 8 points.

Max score that can be obtained: 40 points.

The final grade is obtained by dividing the score by 4 and rounding to the nearest integer.