

General information

Designation

Nitrile rubber / Acrylonitrile butadiene copolymer (NBR) : 25-33% carbon black filled, 5-10% oil/plasticizer

Tradenames

Buna-N, Perbunan, Krynac, Baymod N, NBR Nipol, Breon, Chemigum, Europrene N, Hycar, Nysyn, KER, Humex, JSR, Kosyn KNB, Nitriflex N, Arnipol, Chemaprene, Paracril, Polyblack

Typical uses

Automotive, seals, fuel and oil hose,

Composition overview

Compositional summary

Copolymer of 50-82% butadiene and 18-50% acrylonitrile (ACN), (CH2CH=CHCH2)n, (CH2CH(CN))m. Most common ACN content is 32-35%.

Properties on this datasheet are for a representative compound with NBR (34% ACN), 25-33% carbon black, 5-10% plasticizer.

Material family	Elastomer (thermoset, rubber)				
Base material	NBR (Nitrile butadiene rubber)				
% filler (by weight)	25 - 33 %				
Filler/reinforcement	Carbon				
Filler/reinforcement form	Particulate				
Additive	Plasticizer/oil				
Polymer code	NBR-CD30-P				

Composition detail (polymers and natural materials)

Polymer	57	-	70	%
Plasticizer/oil	5	-	10	%
Carbon (powder)	25	-	33	%

Price

Price	* 1.44	- 1.9	USD/lb	
-------	--------	-------	--------	--

Physical properties

Density	0.0402	-	0.0404	lb/in^3		
---------	--------	---	--------	---------	--	--

Mechanical properties

Young's modulus	7.11e-4	-	0.00116	10^6 psi
Yield strength (elastic limit)	2.18	-	3.63	ksi
Tensile strength	2.18	-	3.63	ksi
Tensile stress at 100% strain	0.203	-	0.508	ksi
Tensile stress at 300% strain	1.45	-	2.18	ksi
Elongation	350	-	700	% strain

Elongation at yield	350	-	700	% strain
Compressive modulus	* 7.11e-4	-	0.00116	10^6 psi
Compressive strength	* 2.61	-	4.35	ksi
Flexural modulus	7.11e-4	-	0.00116	10^6 psi
Flexural strength (modulus of rupture)	* 4.05	-	6.2	ksi
Shear modulus	2.32e-4	-	3.92e-4	10^6 psi
Bulk modulus	* 0.218	-	0.29	10^6 psi
Poisson's ratio	0.48	-	0.495	
Shape factor	1.6			
Hardness - Shore D	* 19	-	25	
Hardness - Shore A	65	-	75	
Fatigue strength at 10^7 cycles	* 0.87	-	1.45	ksi
Mechanical loss coefficient (tan delta)	* 0.1	-	0.2	
Compression set at 23°C	* 5	-	15	%
Compression set at 70°C	* 5	-	15	%
Compression set at 100°C	17	-	56	%
Tear strength	* 171	-	286	lbf/in

Impact & fracture properties

· · · · · · · · · · · · · · · · · · ·				
Fracture toughness	0.219	-	0.36	ksi.in^0.5
Impact strength, notched 23 °C	0.361	-	0.367	BTU/in^2
Impact strength, notched -30 °C	* 0.361	-	0.367	BTU/in^2

Thermal properties

•				
Glass temperature	-40	-	-22	°F
Maximum service temperature	230	-	248	°F
Minimum service temperature	-22	-	-4	°F
Thermal conductivity	* 0.116	-	0.347	BTU.ft/hr.ft^2.°F
Specific heat capacity	* 0.358	-	0.406	BTU/lb.°F
Thermal expansion coefficient	* 100	-	111	µstrain/°F

Electrical properties

Electrical resistivity	1e10	-	1e16	µohm.cm
Galvanic potential	0.07	-	0.15	V

Magnetic properties

Optical properties

Transparency	Transparency	Opaque
--------------	--------------	--------

Absor	ption &	permea	bility
-------	---------	--------	--------

Water absorption @ 24 hrs	* 0.05	-	0.2	%
Permeability (O2)	* 91.4	-	381	cc.mil/day.(100.in^2).atm

Processing properties

Polymer injection molding	Acceptable
Polymer extrusion	Acceptable
Polymer thermoforming	Unsuitable

Durability

,	
Water (fresh)	Excellent
Water (salt)	Excellent
Weak acids	Acceptable
Strong acids	Unacceptable
Weak alkalis	Excellent
Strong alkalis	Excellent
Organic solvents	Limited use
Oils and fuels	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 5.07e4	-	5.59e4	BTU/lb
CO2 footprint, primary production	* 2.92	-	3.22	lb/lb
Water usage	* 2.8e3	-	3.1e3	in^3/lb

Processing energy, CO2 footprint & water

Polymer molding energy	* 7.02e3	-	7.74e3	BTU/lb
Polymer molding CO2	* 1.31	-	1.44	lb/lb
Polymer molding water	* 321	-	482	in^3/lb
Grinding energy (per unit wt removed)	* 1.91e3	-	2.11e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.333	-	0.368	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	0.1			%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 1.53e4	-	1.61e4	BTU/lb
Combustion CO2	* 3.09	-	3.24	lb/lb

Landfill	✓
Biodegrade	×

Notes

Other notes

Strengths: Resistance to aliphatic hydrocarbon oils and fuels up to 100-120 C. Wear resistance, resilience. Limitations: Weathering, oxidation/ozone attack, aromatic oils, modest strength. Effect of composition: Acrylonitrile content increases strength, chemical resistance, Tg and heat resistance; it reduces low temperature flexibility, resilience, die swell, and gas permeability. ACN & Tg: 20%, -60C; 34%, -35C; 48%, -10C.

Links

ProcessUniverse			
Producers			
Reference			
Shape			