

LOG1810 STRUCTURES DISCRÈTES

TD 11 : ARBRE

A2023

SOLUTIONNAIRE

Exercice 1

Sergio Marquina, plus connu sous le surnom d'El Professor dans la série La Casa de Papel, est le cerveau derrière une collaboration avec une agence de voyage à Barcelone, en Espagne. Sa mission consiste à optimiser les itinéraires touristiques afin de maximiser la rentabilité, tout en tenant compte des coûts identiques pour les trajets aller-retour entre différentes attractions suivantes :

Note: Le coût pour se rendre d'un endroit à un autre est équivalent au coût du retour.

Lieu 1	Lieu 2	Coût (en euros)
Sagrada Família	Casa Milà	5,00
Sagrada Família	Parc Güell	7,50
Sagrada Família	Barri Gòtic	6,00
Sagrada Família	Poble Espanyol	8,00
La Rambla	Casa Batlló	4,50
La Rambla	Parc Güell	5,50
La Rambla	Barri Gòtic	3,00
La Rambla	Port Vell	2,50
Camp Nou	Casa Milà	6,00
Camp Nou	Poble Espanyol	8,50
Camp Nou	Tibidabo	10,00
Camp Nou	Montjuïc	7,00
Parc de Ciutadella	Casa Batlló	3,50
Parc de Ciutadella	Port Vell	5,00
Parc de Ciutadella	Tibidabo	8,00
Parc de Ciutadella	Montjuïc	6,50
Casa Milà	Tibidabo	5,50
Casa Milà	Parc Güell	7,00
Casa Batlló	Tibidabo	6,50
Casa Batlló	Parc Güell	5,00
Poble Espanyol	Barri Gòtic	4,00
Poble Espanyol	Montjuïc	3,50
Port Vell	Barri Gòtic	3,50
Port Vell	Montjuïc	4,00

En considérant aussi la liste des sommets des attractions touristiques sous leur forme abrégée :

SF: Sagrada Família **BG**: Barri Gòtic PV: Port Vell

PG: Parc Güell MJ: Montjuïc PC: Parc de Ciutadella

LR: La Rambla CB: Casa Batlló CM: Casa Milà CN: Camp Nou

TB: Tibidabo PE: Poble Espanyol

a) Construisez un graphe pondéré représentant les connexions entre les attractions touristiques de Barcelone, en utilisant les coûts associés comme poids des arêtes.

Solution:

b) Utilisez l'algorithme de **Prim** pour construire un arbre de poids minimum à partir du graphe que vous avez créé en a). Détaillez toutes les étapes. Quel est son coût ?

Solution:

Deux solutions sont proposées en fonction de la lecture des arcs {PE, BG} et {PV, MJ}.

Solution (I.): Si vous avez considéré l'arc **{PE, BG}**.

Les arcs sont ajoutés dans l'ordre suivant :

$$\{LR, PV\} - \{LR, BG\} - \{PE, BG\} - \{PE, MJ\} - \{LR, CB\} - \{PC, CB\} - \{CB, PG\} - \{SF, BG\} - \{SF, CM\} - \{CM, TB\} - \{CN, CM\} - \{CM, CM\}$$

Le coût de l'arbre est :

$$2,50 + 3,00 + 4,00 + 3,50 + 4,50 + 3,50 + 5,00 + 6,00 + 5,50 + 6,00 = 48,50$$
 euros

Solution (II.): Si vous avez considéré l'arc **{PV, MJ}**. Les arcs sont ajoutés dans l'ordre suivant :

$$\{LR, PV\} - \{LR, BG\} - \{PV, MJ\} - \{PE, MJ\} - \{LR, CB\} - \{PC, CB\} - \{CB, PG\} - \{SF, BG\} - \{SF, CM\} - \{CM, TB\} - \{CN, CM\} - \{CM, CM\}$$

Le coût de l'arbre est :

$$2,50 + 3,00 + 4,00 + 3,50 + 4,50 + 3,50 + 5,00 + 6,00 + 5,00 + 5,50 + 6,00 = 48,50$$
 euros

4

c) Utilisez l'algorithme de **Kruskal** pour construire un arbre de poids minimum à partir du graphe que vous avez créé en a). Détaillez les trois étapes telles que vu en cours. Quel est son coût ?

Solution:

√**Étape 1 :** Trier les arcs en ordre croissant de leur poids

```
o {LR, PV}
                 2,50
o {LR, BG}
                 3,00
○ {PC, CB}
                 3,50
O {PE, MJ}
                 3,50
                 3,50
{PV, BG}
O {PE, BG}
                 4,00
                 4,00
O {PV, MJ}
O {LR, CB}
                 4,50
O {SF, CM}
                 5,00
                 5,00
o {PC, PV}

    (CB, PG)

                 5,00
o {LR, PG}
                 5,50
○ {CM, TB}
                 5,50
SF, BG
                 6,00
                 6,00
o {CN, CM}
                 6,50
o {PC, MJ}
○ {CB, TB}
                 6,50
O {CN, MJ}
                 7,00
o {CM, PG}
                 7,00
o {SF, PG}
                 7,50
O {SF, PE}
                 8,00
○ {PC, TB}
                 8,00
o {CN, PE}
                 8,50
o {CN, TB}
                 10,00
```

Ãtape 2 : Parcourir la liste triée des arcs, en commençant par le premier arc de pois minimum. Ajouter l'arc à l'arbre en construction, s'il ne forme pas de cycle. À titre d'illustration, les arcs qui forment un cycle vont être barrés dans la liste.

√Étape 3 : Arrêter l'algorithme lorsque (n-1) arcs ont été ajoutés à l'arbre en construction, n étant le nom de sommets dans le graphe initial.

```
    ⟨LR, PV⟩
    ⟨LR, BG⟩
    ⟨PC, CB⟩
    ⟨PE, MJ⟩
    ⟨PV, BG⟩
    2,50
    3,00
    ⟨PE, MJ⟩
    3,50
    ⟨PV, BG⟩
    3,50
```


$$2,50 + 3,00 + 3,50 + 3,50 + 4,00 + 4,50 + 5,00 + 5,00 + 5,50 + 6,00 + 6,00 = 48,50$$
 euros

Exercice 2

Soit l'arbre ci-dessous :

a) Donnez l'expression correspondant au parcours préfixe de l'arbre.

Solution:

b) Donnez l'expression correspondant au parcours infixe de l'arbre.

Solution:

c) Donnez l'expression correspondant au parcours postfixe de l'arbre.

Solution:

Exercice 3

Dessinez l'arbre binaire correspondant à chacune des expressions arithmétiques écrites en **notation polonaise inverse** ci-dessous. Ensuite, réécrivez chaque expression en utilisant la notation infixée. Notez que l'opérateur « ^ » représente l'exponentiation.

Solution:

En notation infixé l'expression « $8888+^++8*$ » devient :

Solution:

En notation infixé l'expression « $323^3^3^4 - 232^5 - 642 - / +$ » devient :

$$[[[3 \land [(2 \land 3) \land 3]] - [2 \land [(3 \land 2) \land 2]]] + [6 / (4 - 2)]]$$

Exercice 4

Soit \mathcal{F} une forêt à n sommets et m arêtes dont le nombre de composantes connexes est égal à k. Montrez que m=n-k.

Solution:

Soient $\mathcal{F}_1,\ldots,\mathcal{F}_k$ les composantes connexes de \mathcal{F} , chacune étant un arbre. Soit n_i et m_i le nombre de sommets et d'arrêtes de l'arbre \mathcal{F}_i respectivement, avec $i\in\{1,2,\ldots,k\}$. En vertu de la propriété des arbres,

$$m_i = n_i - 1$$
.

Ainsi, en sommant ces relations pour toutes les composantes connexes :

$$m = \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} (n_i - 1) = \sum_{i=1}^{k} n_i - \sum_{i=1}^{k} 1 = n - (k - 1 + 1) = n - k$$

D'où m = n - k.

Exercice 5

Combien de sommets et combien de feuilles possèdent au maximum un arbre m-aire complet de hauteur h? Justifiez vos réponses.

Solution:

Cet arbre a 1 sommet au niveau 0, m sommets au niveau 1, m^2 sommets au niveau 2, ..., m^h sommets au niveau h.

Il y a donc :
$$1+m+m^2+\cdots+m^h=\frac{m^{h+1}-1}{m-1}$$
 sommets en tout.

Les sommets au niveau h sont les seules feuilles, et donc il y a m^h feuilles.

Exercice 6

Soit le graphe ci-dessous. On désire construire un arbre de poids minimum dans lequel on impose la présence obligatoire des arcs **JK** et **MP**. Construisez l'arbre souhaité en détaillant les étapes suivies. Quel est son coût ?

Solution:

Pour construire l'arbre, on apportera une modification à l'algorithme de Prim ou à l'algorithme de Kruskal. La modification consiste à initialiser les traitements avec les arcs **JK** et **MP**. Les autres étapes des algorithmes sont maintenues. Les arcs **JK** et **MP** seront donc considérés lors de l'évitement de cycle.

Notes: Plusieurs solutions sont possibles.

Avec l'algorithme de Kruskal:

Ãtape 1 : Trier les arcs en ordre croissant de leur poids, à l'exception des arcs JK et MP

- o AB 1
- o AE 1
- o CD 1
- o DH 1
- o AD 2
- \circ AM 2

Ãtape 2 : Parcourir la liste triée des arcs, en commençant par le premier arc de pois minimum. Ajouter l'arc à l'arbre en construction, s'il ne forme pas de cycle. À titre d'illustration, les arcs qui forment un cycle vont être barrés dans la liste.

 $\sqrt{\text{Étape 3}}$: Arrêter l'algorithme lorsque (n-1) arcs ont été ajoutés à l'arbre en construction, n étant le nom de sommets dans le graphe initial.

AB 1 0 ΑE 1 0 CD 1 DH 1 0 **AD** 2 2 **AM** 2 BC-O DP 2 EF 2 0 2 ΕI 0 GH 2 0 LP 2 0 2 0 MN 2 NO 2 OP BF → CG

0	-FG	3
0	FJ	3
0	HL	3
0	IJ	3
0	- IM-	3
0	-KL	3
0	KO	3
0	GK	_4
0	JN	_4