11. előadás

2020. november 23.

$\mathbb{R}^2 o \mathbb{R}$ típusú függvények feltételes szélsőértékei

Motiváló példák

1. példa. Pont és egyenes távolsága.

A probléma így <u>is</u> felfogható:

$$\overline{OP} = \sqrt{x^2 + y^2}$$

$$\min_{P \in e} \overline{OP} = 2$$

Feladat: Adott: $f(x,y) := x^2 + y^2 \ \left((x,y) \in \mathbb{R}^2 \right)$

$$g(x,y) := x + 2y - 4 \ ((x,y) \in \mathbb{R}^2)$$

$$H_g := \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = 0\}$$
 (az egyenes pontjai)

 $\underline{\mathrm{Keress}\,\ddot{\mathrm{u}}\mathrm{k}}$ az f függvény minimumát a H_g halmazon.

$$H_g := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

Feladat: Adott: $f(x,y) := 4xy \ ((x,y) \in \mathbb{R}^2)$

$$g(x,y) := x^2 + y^2 - 1 \ \left((x,y) \in \mathbb{R}^2 \right)$$

$$H_g := \left\{ (x,y) \in \mathbb{R}^2 \ \middle| \ g(x,y) = 0 \right\}$$
 (a körvonal pontjai)

1

 $\underline{\mathrm{Keress\ddot{u}k}}$ az f függvény maximumát a H_g halmazon.

 $\underline{\text{Elemi megold\'as}}\colon xy \leq \frac{x^2+y^2}{2} \Longrightarrow \text{n\'egyzet}.$

Általánosan

Feladat: Adott: • $U \subset \mathbb{R}^2$ nyílt halmaz,

• $f: U \to \mathbb{R}$ (célfüggvény),

• $g: U \to \mathbb{R}$ (feltételfüggvény),

$$H_g := \{(x, y) \in U \mid g(x, y) = 0\} \neq \emptyset.$$

Keressük az f függvény szélsőértékeit a H_g halmazon, azaz határozzuk meg az $f_{|H_g}$ függvény szélsőértékeit.

A problémát az alábbi ábrákon szemléltetjük:

 $\mathbf{Megjegyz\acute{e}s.}$ "Jó esetben" a $H_g \subset \mathbb{R}^2$ halmaz egy síkbeli "görbe".

Például, ha

$$g(x,y) := x^2 + y^2 - 1 \quad ((x,y) \in \mathbb{R}^2),$$

akkor a ${\cal H}_g$ halmaz az origó középpntú 1 sugarú körvonal.

Ηа

$$g(x,y) := (x^2 + y^2)^2 - x(x^2 + y^2) - y^2 \quad ((x,y) \in \mathbb{R}^2),$$

akkor H_g a korábban már megemlített kardioid. \Box

Definíciók: Legyen $U\subset\mathbb{R}^2$ nyílt halmaz. Tegyük fel, hogy $f,g:U\to\mathbb{R}$ adott függvények és

$$a \in H_g := \{ z \in U \mid g(z) = 0 \} \neq \emptyset.$$

Azt mondjuk, hogy az f függvénynek a g=0 feltétel mellett az a pontban

• feltételes abszolút maximuma van, ha

$$f(x) \le f(a), \quad \forall a \in U \cap H_g;$$

• feltételes lokális maximuma van, ha

$$\exists K(a) \subset U : f(x) \leq f(a), \quad \forall x \in K(a) \cap H_g.$$

A **minimum**mal kapcsolatban hasonló fogalmakat kapunk, ha a fentiekben a \leq egyenlőtlenség helyett \geq -t írunk.

A korábbiakkal összhangban használjuk f(a)-ra a feltételes abszolút (lokális) maximum (minimum), illetve szélsőérték, továbbá a-ra a feltételes abszolút (lokális) maximumhely (minimumhely), illetve szélsőértékhely elnevezést is.

A továbbiakban csak **lokális** szélsőértékekre fogalmazunk meg eredményeket.

- 1. megjegyzés. Az $f_{|H_g} \in \mathbb{R}^2 \to \mathbb{R}$ függvény szélsőértékeire nem alkalmazhatók az előző előadáson megfogalmazott tételek. Azokban ui. mindig feltettük, hogy a vizsgált pont az értelmezési tartomány belső pontja. Könnyen látható azonban, hogy a H_g halmaznak egyetlen pontja sem belső pont.
- 2. megjegyzés. A feltételes szélsőértékek vizsgálatára alkalmazható módszer kitalálója Joseph Louis Lagrange (1736–1813) francia matematikus. Ezért a szóban forgó módszert Lagrange-szorzók (vagy Lagrange-féle multiplikátorok) módszerének nevezzük.

Szükséges feltétel a feltételes lokális szélsőértékre. Tegyük fel, hogy

- (a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a parciális deriváltjaik és ezek folytonosak az U halmazon;
- (b) $az(x_0, y_0) \in U$ pontban az f függvénynek a g = 0 feltételre vonatkozóan feltételes lokális szélsőértéke van;

(c)
$$g'(x_0, y_0) = (\partial_1 g(x_0, y_0), \partial_2 g(x_0, y_0)) \neq (0, 0).$$

Ekkor van olyan $\lambda \in \mathbb{R}$ valós szám (ezt **Lagrange-szorzónak** szokás nevezni), hogy az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvénynek (x_0, y_0) stacionárius pontja, azaz

$$\mathcal{L}'(x_0, y_0) = (\partial_x \mathcal{L}(x_0, y_0), \partial_y \mathcal{L}(x_0, y_0)) = (0, 0).$$

A tétel alkalmazása:

 1^o Képezzük az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange függvényt.

 2^{o} Az x, y, λ ismeretlenekre megoldjuk a következő egyenletrendszert:

$$\partial_x \mathcal{L}(x,y) = \partial_x f(x,y) + \lambda \partial_x g(x,y) = 0,$$

$$\partial_y \mathcal{L}(x,y) = \partial_y f(x,y) + \lambda \partial_y g(x,y) = 0,$$

$$g(x,y) = 0.$$

Az így kapott (x_0, y_0) pont(ok)ban lehet(nek) a feltételes lokális szélsőértékhelyek.

Megjegyzés. Az $\mathcal{L}'(x_0, y_0) = (0, 0)$ csak szükséges, de nem elégséges feltétel a feltételes lokális szélsőértékre.

Másodrendű elégséges feltétel a feltételes lokális szélsőértékre. Tegyük fel, hogy

- (a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a másodrendű parciális deriváltjaik és ezek folytonosak az U halmazon;
 - (b) $az(x_0, y_0) \in U$ pontban $a \lambda_0 \in \mathbb{R}$ számmal teljesül a szükséges feltétel.

Tekintsük ezzel a λ_0 számmal az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvényt. Legyen

$$D(x_0, y_0; \lambda_0) := \det \begin{bmatrix} 0 & \partial_1 g(x_0, y_0) & \partial_2 g(x_0, y_0) \\ \partial_1 g(x_0, y_0) & \partial_{11} \mathcal{L}(x_0, y_0) & \partial_{12} \mathcal{L}(x_0, y_0) \\ \partial_2 g(x_0, y_0) & \partial_{21} \mathcal{L}(x_0, y_0) & \partial_{22} \mathcal{L}(x_0, y_0) \end{bmatrix}$$

(a mátrixot kibővített Hesse-mátrixnak szokás nevezni).

Ekkor,

1° ha $D(x_0, y_0; \lambda_0) > 0 \Longrightarrow (x_0, y_0)$ feltételes lokális **maximumhely**,

 2° ha $D(x_0, y_0; \lambda_0) < 0 \Longrightarrow (x_0, y_0)$ feltételes lokális **minimumhely**.

- 1. megjegyzés. A fentiekben két változó és egy egyenlőségi feltétel mellett vizsgáltuk a feltételes szélsőérték-problémát. Az eredmények **kiterjeszthetők** arra az esetre is, amikor az f célfüggvény n-változós $(2 < n \in \mathbb{N})$, és ekkor az egyetlen g = 0 feltétel helyett több egyenlőségi feltételt is előírhatunk. \square
- 2. megjegyzés. A gyakorlat felvet számos olyan szélsőérték-problámát, amelyekben a változókra tett korlátozó feltételek nem egyenlőségekkel, hanem egyenlőtlenségekkel adottak. Az ilyen típusú feladatokat (lineáris) programozási problémáknak hívják. Vizsgálatukhoz nem az analízis, hanem a lineáris algebra eszköztárát lehet felhasználni.
- 3. megjegyzés. Tekintsük a g(x,y)=0 egyenletetet. Tegyük fel, hogy ebből (például) az y változó kifejezhető az x változó függvényeként, azaz létezik olyan $\varphi\in\mathbb{R}\to\mathbb{R}$ függvény, amelyre $g\big(x,\varphi(x)\big)=0$ teljesül. A $H_g=\big\{(x,y)\mid g(x,y)=0\big\}\subset\mathbb{R}^2$ halmaz tehát a φ függvény garfikonja, ami "jó" esetben egy síkbeli "görbe". Az f függvénynek a H_g halmaz pontjaiban felvett értékeit a $h(x):=f\big(x,\varphi(x)\big)$ valós-valós függvénnyel lehet kifejezni. A kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát a szóban forgó esetben a h egyváltozós függvény szélsőérték-problémájára lehet visszavezetni.

Az esetek "többségében" a g(x,y) = 0 egyenletből nem lehet (például) az y változót kifejezni az x változó explicit függvényeként (vagy lehet, de csak nagyon bonyolult módon).

Vannak és fontosak azonban azok az eredmények (az ún. **implicitfüggvény-tételek**), amelyek az egyenlet $megoldhat \acute{o}s \acute{a}g \acute{a}ra$, vagyis a fentiekben megemlített φ függvénynek a $l\acute{e}tez \acute{e}s \acute{e}re$ adnak feltételeket, és φ explicit alakjáról semmit sem állítanak.

Példa. Tekintsük az

$$f(x,y) := x^2 + y^2$$
, $g(x,y) := x^2 + xy + y^2 - 3$ $((x,y)^2 \in \mathbb{R}^2)$

 $f\ddot{u}gqv\acute{e}nyeket$, és határozzuk meg az f feltételes lokális szélsőértékeit a q=0 feltétel mellett.

Megoldás.

A szükséges feltételre vonatkozó tétel feltételei teljesülnek, mert $f,g \in C^1(\mathbb{R}^2)$ és

$$g'(x,y) = (\partial_1 g(x,y), \partial_2 g(x,y)) = (2x + y, x + 2y) \neq (0,0)$$

 $\forall (x,y) \in \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = 0\}$ pontban.

A feladat Lagrange-függvénye:

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) = x^2 + y^2 + \lambda(x^2 + xy + y^2 - 3) \qquad ((x,y) \in \mathbb{R}^2).$$

A feltételes lokális szélsőértékre vonatkozó szükséges feltétel az x, y, λ ismeretlenekre az alábbi egyenletrendszert adja:

$$\partial_1 \mathcal{L}(x, y) = 2x + 2\lambda x + \lambda y = 0,$$

$$\partial_2 \mathcal{L}(x, y) = 2y + \lambda x + 2\lambda y = 0,$$

$$g(x, y) = x^2 + xy + y^2 - 3 = 0.$$

Az első- és a második egyenlet összegéből azt kapjuk, hogy

$$2(x+y) + 3\lambda(x+y) = (x+y)(2+3\lambda) = 0.$$

Ez két esetben teljesülhet:

- (i) Ha $\lambda = -\frac{2}{3}$. Ekkor az első egyenletből x = y, ezt felhasználva a harmadikból $x = \pm 1$ adódik. A $P_1(1,1)$ és a $P_2(-1,-1)$ pontok tehát lehetséges lokális szélsőértékhelyek.
- (ii) Ha x+y=0, akkor a harmadik egyenlet alapján $x=\pm\sqrt{3}$. Tehát a $P_3(\sqrt{3},-\sqrt{3})$ és a $P_4(-\sqrt{3},\sqrt{3})$ pontok is lehetséges szélsőértékhelyek. Ebben az esetben $\lambda=-2$.

Az elégséges feltétel. Minden $(x,y) \in \mathbb{R}^2$ pontban

$$\partial_1 g(x,y) = 2x + y, \qquad \partial_2 g(x,y) = x + 2y;$$

$$\partial_{11} \mathcal{L}(x,y) = 2 + 2\lambda, \quad \partial_{12} \mathcal{L}(x,y) = \lambda = \partial_{21} \mathcal{L}(x,y), \quad \partial_{22} \mathcal{L}(x,y) = 2 + 2\lambda,$$

ezért

$$D(x, y; \lambda) = \det \begin{bmatrix} 0 & 2x + y & x + 2y \\ 2x + y & 2 + 2\lambda & \lambda \\ x + 2y & \lambda & 2 + 2\lambda \end{bmatrix}.$$

$$P_1(1,1), \lambda = -\frac{2}{3}:$$

$$D(1,1;-\frac{2}{3}) = \det \begin{bmatrix} 0 & 3 & 3 \\ 3 & \frac{2}{3} & -\frac{2}{3} \\ 3 & -\frac{2}{3} & \frac{2}{3} \end{bmatrix} = (-3) \cdot (2+2) + 3 \cdot (-2-2) = -24 < 0,$$
ezért a $P_1(1,1)$ pont feltételes lokális minimumhely.

 $P_2(-1,-1), \lambda = -\frac{2}{3}$:

$$D(-1, -1; -\frac{2}{3}) = \det \begin{bmatrix} 0 & -3 & -3 \\ -3 & \frac{2}{3} & -\frac{2}{3} \\ -3 & -\frac{2}{3} & \frac{2}{3} \end{bmatrix} = D(1, 1; -\frac{2}{3}) = -24 < 0,$$

ezért a $P_2(-1, -1)$ pont is feltételes lokális minimumhely.

 $P_3(\sqrt{3}, -\sqrt{3}), \lambda = -2$: Mivel $D(\sqrt{3}, -\sqrt{3}; -2) = 24 > 0$, ezért a $P_3(\sqrt{3}, -\sqrt{3})$ pont feltételes lokális maximumhely.

 $P_4(-\sqrt{3}, \sqrt{3}), \lambda = -2$: Mivel $D(-\sqrt{3}, \sqrt{3}; -2) = 24 > 0$, ezért a $P_4(-\sqrt{3}, \sqrt{3})$ pont feltételes lokális maximumhely.

Összefoglalva:

$$P_1(1,1)$$
 és $P_2(-1,-1)$

feltételes lokális minimumhelyek és f(1,1) = f(-1,-1) = 2 a feltételes lokális minimum,

$$P_3(\sqrt{3}, -\sqrt{3})$$
 és $P_4(-\sqrt{3}, \sqrt{3})$

pedig feltételes lokális maximumhelyek és $f(\sqrt{3}, -\sqrt{3}) = f(-\sqrt{3}, \sqrt{3}) = 6$ a feltételes lokális maximum.

1. megjegyzés. A feltételes lokális szélsőértékre vonatkozó elégséges feltételt bizonyos esetekben egyszerűen is ellenőrizhetjük. Tegyük fel, hogy az (x_0, y_0) pontban a λ_0 Lagrangeszorzóval teljesül a szükséges feltétel, és tekintsük az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \quad ((x,y) \in U)$$

Lagrange-függvényt.

Ha sikerül egyszerűen belátnunk azt, hogy ennek a függvénynek az $(x_0, y_0) \in \text{int } U$ pont lokális (feltétel nélküli) szélsőértékhelye, akkor ez nyilván egyúttal f-nek a g = 0 feltétel melletti feltételes lokális szélsőértékhelye is.

Ez a helyzet az előbbi feladatnál is.

Vegyük először a $\lambda_0 = -2$ Lagrange-szorzóval képzett Lagrange-függvényt:

$$\mathcal{L}(x,y) = x^2 + y^2 - 2(x^2 + xy + y^2 - 3) = -(x+y)^2 + 6 \qquad ((x,y) \in \mathbb{R}^2).$$

Nyilvánvaló, hogy \mathcal{L} -nek az y=-x egyenletű egyenes minden pontja abszoút maximumhely. A $g(x,y)=x^2+xy+y^2-3=0$ egyenletű halmaznak a szóban forgó egyeneshez tartozó pontjai $P_3(\sqrt{3},-\sqrt{3})$ és $P_4(-\sqrt{3},\sqrt{3})$. Így \mathcal{L} -nek ezek a pontok is abszolút maximumhelyei, következésképpen P_3 és P_4 az f függvény g=0 fetétel melletti abszolút (egyúttal lokális) feltételes maximumhelyei.

Ha $\lambda_0 = -2/3$, akkor

$$\mathcal{L}(x,y) = x^2 + y^2 - \frac{2}{3}(x^2 + xy + y^2 - 3) = \frac{2}{3}(x-y)^2 + 2$$
 $((x,y) \in \mathbb{R}^2).$

Az előzőekhez hasonlóan azt kapjuk, hogy a $P_1(1,1)$ és a $P_2(-1,-1)$ pont az f függvény g=0 fetétel melletti abszolút (egyúttal lokális) feltételes minimumhelyei. \square

2. megjegyzés. Rajzoltassuk fel egy programmal a korlátozó feltétel által meghatározott

$$H := \{(x,y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 - 3 = 0\}$$

síkbeli alakzatot. Ez egy ellipszis amelynek a "nevezetes" pontjai éppen az előzőekben megkapott pontok. Ezt szemlélteti a az alábbi ábra:

A feladat geometriailag azt jelenti, hogy keressük a korlátozó feltétel által leírt ellipszis pontjai és az origó közötti távolságok közül lokálisan a legkisebbet, illetve a legnagyobbat.

A $H \subset \mathbb{R}^2$ halmaz korlátos és zárt, az f függvény folytonos H-n, ezért Weierstrass tétele szerint f-nek H-n léteznek **abszolút** szélsőértékei, amelyek egyúttal az f függvénynek a g=0 feltétel mellett **lokális** szélsőértékei is. A példában ezek a P_1, P_2, P_3, P_4 pontok, így az **abszolút** feltételes szélsőértékek:

$$f(P_1) = f(1,1) = f(P_2) = f(-1,-1) = 2,$$

 $f(P_3) = f(\sqrt{3}, -\sqrt{3}) = f(P_4) = f(-\sqrt{3}, \sqrt{3}) = 6.$

Implicit függvények (egyenletek megoldása)

Probléma. Adott: $f \in \mathbb{R}^2 \to \mathbb{R}$ olyan függvény, amelyre $H := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\} \neq \emptyset$. Kérdés:

$$\left\{
\begin{aligned}
&\text{Megoldható-e az} \\
&f(x,y) = 0 \\
&\text{egvenlet } y\text{-ra?}
\end{aligned}
\right\} \iff \left\{
\begin{aligned}
&\text{Van-e olyan } \varphi \in \mathbb{R} \to \mathbb{R}: \\
&f(x,\varphi(x)) = 0?
\end{aligned}
\right\}$$

Ha létezik olyan $I \subset \mathbb{R}$ nyílt intervallum és $\varphi: I \to \mathbb{R}$ függvény, hogy

$$f(x, \varphi(x)) = 0 \quad (\forall x \in I),$$

akkor azt mondjuk, hogy a φ függvény az f(x,y) = 0 implicit alakban van megadva; másképpen fogalmazva: φ megoldása az f(x,y) = 0 implicit egyenletnek.

A probléma vizsgálata: Legyen $f(x,y) := x^2 + y^2 - 1$ $((x,y) \in \mathbb{R}^2)$.

- Csak lokális tétel várható.
- C környezetében $\exists \varphi$.
- A(-1,0) és B(1,0)környezetében $\not\equiv \varphi$.

Mi jellemzi A-t és B-t?

<u>Észrevétel</u>: $\partial_2 f(x,y) = 2y \Longrightarrow \partial_2 f(A) = \partial_2 f(B) = 0$. A többi C pontban (ahol $\exists \varphi) \partial_2 f(C) \neq 0$.

Szerencse: az általános esetben is ezen múlik a φ függvény létezése.

Egyváltozós implicitfüggvény-tétel. Legyen $\Omega \subset \mathbb{R}^2$ nyílt halmaz és $f: \Omega \to \mathbb{R}$. Tegyük fel, hogy

- (a) f folytonosan deriválható Ω -n,
- (b) $az(a,b) \in \Omega$ pointban f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$.

Ekkor

 1^o van olyan K(a) =: U és K(b) =: V nyílt halmaz \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$;

 2° az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n és

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$
 $(x \in U).$

- **1.** megjegyzés. Világos, hogy $\varphi(a) = b$. A φ függvényt az $f(x, \varphi(x)) = 0$ $(x \in U)$ egyenlőség "implicit" (= nem kifejtett, burkolt, rejtett) módon definiálja. Innen származik a tétel neve.
- **2.** megjegyzés. Másként fogalmazva: Ha $f \in C^1(\mathbb{R}^2)$, akkor az f(x,y) = 0 egyenlet megoldható y-ra x függvényében minden olyan (a,b) pont valamely környezetében, amelyben f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$.

Implicitfüggvény-tétel az általános esetben. Legyenek $\Omega_1 \subset \mathbb{R}^{n_1}$, $\Omega_2 \subset \mathbb{R}^{n_2}$ nyílt halma-zok $(n_1, n_2 \in \mathbb{N})$ és $f: \Omega_1 \times \Omega_2 \to \mathbb{R}^{n_2}$. Tegyük fel, hogy,

- (a) f folytonosan deriválható az $\Omega_1 \times \Omega_2$ halmazon,
- (b) $az(a,b) \in \Omega_1 \times \Omega_2 \ pontban \ f(a,b) = 0 \ és \ \det \partial_2 f(a,b) \neq 0.$

Ekkor

1° létezik a-nak olyan $K(a) =: U_1 \subset \Omega_1$ és b-nek olyan $K(b) =: U_2 \subset \Omega_2$ környezete, hogy minden $x \in U_1$ ponthoz létezik egyetlen $\varphi(x) \in U_2$, amelyre $f(x, \varphi(x)) = 0 \in \mathbb{R}^{n_2}$;

 2^o az így definiált $\varphi:U_1\to U_2$ függvény folytonosan deriválható $U_1\text{-en}$ és

$$\varphi'(x) = -\left[\partial_2 f(x, \varphi(x))\right]^{-1} \cdot \partial_1 f(x, \varphi(x)) \qquad (x \in U_1).$$

1. megjegyzés. A tételben $\partial_2 f(a,b)$ jelöli az f függvény második változócsoport szerinti parciális deriváltját az (a,b) pontban. Ez az alábbi módon definiált $n_2 \times n_2$ -típusú mátrix:

$$\partial_2 f(a,b) := (\mathbb{R}^{n_2} \supset \Omega_2 \ni y \mapsto f(a,y) \in \mathbb{R}^{n_2})'_{y=b} \in \mathbb{R}^{n_2 \times n_2}$$

A $\partial_1 f(a,b)$ derivált definíciója hasonló. \square

2. megjegyzés. A tételnek egyenletrendszerek megoldhatóságával kapcsolatos értelmezés is adható. Legyen $n_1, n_2 \in \mathbb{N}$, $x = (x_1, x_2, \dots, x_{n_1}) \in \mathbb{R}^{n_1}$, $y = (y_1, y_2, \dots, y_{n_2}) \in \mathbb{R}^{n_2}$ és $f = (f_1, f_2, \dots, f_{n_2}) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}$.

Tekintsük az f(x,y)=0 egyenletrendszert, amelyet komponensekre bontott alakban így írhatunk fel:

$$f_1(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$f_2(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$\vdots$$

$$f_{n_2}(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0.$$

Itt az $y_1, y_2, \ldots, y_{n_2}$ számok az ismeretlenek és $x_1, x_2, \ldots, x_{n_1}$ a paraméterek. Feltesszük, hogy ismerjük ennek egy megoldását, azaz tudjuk, hogy az

 $a=(a_1,a_2,\ldots,a_{n_1})$ paraméter esetén $b=(b_1,b_2,\ldots,b_{n_2})$ egy megoldás, vagyis f(a,b)=0. A fenti egyenletrendszerből szeretnénk kifejezni az y_1,y_2,\ldots,y_{n_2} ismeretleneket az x_1,x_2,\ldots,x_{n_1} paraméterek függvényében. A 2. tétel szerint ez minden a-hoz közeli x esetén megtehető, ha f folytonosan deriválható és $\partial_2 f(a,b) \neq 0$; a megoldások egyértelműek és x-nek folytonosan deriválható függvényei. \square

Inverz függvények ($\mathbb{R}^n o \mathbb{R}^n$ függvények)

Emlékeztető. Valós-valós függvények invertálhatóságára és az inverz függvény deriválhatóságára egy globális tételt ismertünk meg. A bizonyításhoz a monotonitás és a derivált kapcsolatára vonatkozó eredményeket kell felhasználni. Többváltozós függvények monotonitását nem lehet értelmezni, ezért ezen az úton az invertálhatóságot nem lehet vizsgálni. Sőt: úgy tűnik, hogy nincs olyan természetes, könnyen ellenőrizhető feltétel, amely többváltozós függvény invertálhatóságát biztosítaná.

Az imént jelzett globális tételből azonban egyszerűen következik az alábbi **lokális** jellegű tétel (ez már kiterjeszthető a többváltozós esetre is):

Tegyük fel, hogy az $f:I\to\mathbb{R}$ $(I\subset\mathbb{R}$ nyílt intervallum) függvény folytonosan deriválható I-n és egy $a\in I$ pontban $f'(a)\neq 0$. Ekkor

 $1^o\ f\ lokálisan\ invertálható,\ azaz\ \exists\ K(a)=:\ U\ és\ \exists\ K(f(a))=:\ V,\ f_{|U}:\ U\to V\ f\"{u}ggvény\ bijekció\ (k\"{o}vetkezésképpen\ invertálható),$

 2^o az f^{-1} inverz függvény folytonosan deriválható V-n és

(*)
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad (y \in V). \ \Box$$

A többváltozós esetben az értelemszerű módosításokkal hasonló állítás igazolható.

Inverzfüggvény-tétel. Legyen $\Omega \subset \mathbb{R}^n$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. Tegyük fel, hogy,

- (a) f folytonosan deriválható Ω -n,
- (b) $az \ a \in \Omega \ pontban \ \det f'(a) \neq 0.$

Ekkor

1° f lokálisan invertálható, azaz van olyan K(a) =: U és K(f(a)) =: V, hogy az $f_{|U}: U \to V$ bijekció (következésképpen invertálható),

 $2^o~az~f^{-1}~inverz~f\ddot{u}ggv\acute{e}ny~folytonosan~deriv\acute{a}lhat\acute{o}~V$ -n és

$$(**) (f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} (y \in V).$$

- 1. megjegyzés. Az inverz függvény létezésének és a deriválhatóságának a bizonyítása a többváltozós esetben $minőségileg\ bonyolultabb$ az egyváltozós esetnél; ez tehát egy olyan pont, ahol az egyváltozós analógia létezik ugyan, az immár nem elegendő. \Box
- 2. megjegyzés. Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet; viszont (**) alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók. \square
- 3. megjegyzés. A tételnek egyenletrendszerek megoldásával kapcsolatos értelmezés is adható. Legyen $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ és $y=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$. Jelölje $f_i\in\mathbb{R}^n\to\mathbb{R}$ $(i=1,2,\ldots,n)$ az f függvény koordinátafüggvényeit: $f=(f_1,f_2,\ldots,f_n)\in\mathbb{R}^n\to\mathbb{R}^n$. Tekintsük az

$$f(x) = y$$

egyenletet. A komponensekre bontott alakba írva kapjuk az n egyenletből álló

$$f_1(x_1, x_2, \dots, x_n) = y_1,$$

 $f_2(x_1, x_2, \dots, x_n) = y_2,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = y_n$

egyenletrendszert, amelyben az y_1, \ldots, y_n számokat paramétereknek tekintjük, és x_1, \ldots, x_n az ismeretlenek.

Legyen $a=(a_1,a_2,\ldots,a_n)\in\mathcal{D}_f$ és $b=(b_1,b_2,\ldots,b_n):=f(a)$. Tegyük fel, hogy f folytonosan deriválható az a pont egy $K(a)\subset\mathcal{D}_f$ környezetében, továbbá teljesül (a könnyen ellenőrizhető) det $f'(a)\neq 0$ feltétel. Ekkor a fenti tétel azt állítja, hogy az egyenletrendszer megoldható az x_1,x_2,\ldots,x_n ismeretlenekre az y_1,y_2,\ldots,y_n paraméterek függvényében, ha az x és az y pontokat a és b elegendően kicsiny környezetére korlátozzuk; a megoldás egyértelmű és folytonosan differenciálható. \square