Math 234A: Homework 2

Lance Remigio

September 13, 2024

1 Problem 1

Definition (Cauchy Sequence). A sequence (z_n) is called a **Cauchy Sequence** if for all $\varepsilon > 0$, there exists a positive interger \mathbb{N} such that for all $m, n \geq N$,

$$|z_m - z_n| < \varepsilon$$
.

Show that a sequence (z_n) in \mathbb{C} is convergent if and only if it is Cauchy.

Proof. (\Rightarrow) Suppose the sequence (z_n) is convergent. We want to show that (z_n) is Cauchy. Let $\varepsilon > 0$. We want to show that there exists an $N \in \mathbb{Z}^+$ such that whenever $n.m \geq N$, we have

$$|z_n - z_m| < \varepsilon$$
.

Since (z_n) converges, we can find an $N_1 \in \mathbb{Z}^+$ such that whenever $n \geq N_1$, we have

$$|z_n - z| < \frac{\varepsilon}{2}.\tag{1}$$

Likewise, we can find an $N_2 \in \mathbb{Z}^+$ such that whenever $m \geq N_2$, we have

$$|z_m - z| < \frac{\varepsilon}{2}. (2)$$

So, choosing $N = \max N_1, N_2$, we see that for any $m, n \geq N$, we have

$$|z_n - z_m| = |z_n - z + z - z_m|$$

$$\leq |z_n - z| + |z - z_m|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Thus, we conclude that (z_n) is Cauchy.

(\Leftarrow) Suppose (z_n) is Cauchy. Let $\varepsilon > 0$. We want to show that there exists an $N \in \mathbb{Z}^+$ such that for any $n \geq N$, we have

$$|z_n - z| < \varepsilon$$
.

Since (z_n) is Cauchy, we know that (z_n) must be bounded. Thus, (z_n) must contain a subsequence (z_{n_k}) that is convergent. Thus, we can find an $N_1 \in \mathbb{Z}^+$ such that whenever $n_k \geq N_1$, we have

$$|z_{n_k} - z| < \frac{\varepsilon}{2}.\tag{3}$$

Since (z_n) is Cauchy, we can find an $N_2 \in \mathbb{Z}^+$ such that whenever $n, n_k \geq N_2$, we have

$$|z_n - z_{n_k}| < \frac{\varepsilon}{2}. (4)$$

2 Homework 2

Choose $N = \max N_1, N_2$. Then for any $n, n_k \geq N$, we have

$$|z_n - z| = |z_n - z_{n_k} + z_{n_k} - z|$$

$$\leq |z_n - z_{n_k}| + |z_{n_k} - z|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Thus, we conclude that $(z_n) \to z$.

2 Problem 2

(i) Let $z_0 = x_0 + i\zeta_0 \in \mathbb{C}$: Define a sequence (z_n) by $z_{n+1} = \frac{1}{2}(z_n + \frac{1}{z_n}), n \ge 1$, and $z_1 = \frac{1}{2}(z_0 + \frac{1}{z_0})$. Show that

$$\lim_{n \to \infty} z_n = \begin{cases} 1 & \text{if } x_0 > 0 \\ -1 & \text{if } x_0 < 0 \end{cases}$$

Proof.

(ii) Discuss convergence and divergence of

$$z_n = 1 + i \frac{(-1)^n}{n^2}$$
 for $n = 1, 2, \dots$.

Let $\Phi = \operatorname{Arg}(z_n)$. Show that $(\Phi_n) \to 0$.

Proof.

(iii) Assume that $0 < \gamma < 1$. Show that

$$\sum_{n=1}^{\infty} \gamma^n \cos n\theta = \frac{\gamma \cos \theta - \gamma^2}{1 - 2\gamma \cos \theta + \gamma^2}$$

$$\sum_{n=1}^{\infty} \gamma^n \sin n\theta = \frac{\gamma \sin \theta}{1 - 2\gamma \cos \theta + \gamma^2}.$$

Proof.

3 Problem 3

Let (z_n) be a sequence of non-zero complex numbers. Suppose that

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L.$$

Show that $\lim_{n\to\infty} \sqrt[n]{|z_n|} = L$.

Proof.

- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8