IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 1. (Currently Amended) A compression connector, comprising: 2 a conductive compression member having a surface for contacting a first 3 electrical device and for compressing to applying a force normal to the surface of the 4 compression member against the first electrical device, the compression member 5 including a predetermined composition of conductive material and an elastomeric 6 material; and 7 an electrostatically dissipative base member including a conductive material for 8 dissipating charge developed on the conductive compression member when the 9 compression member compresses to apply the force to the first electrical device. 2. 1 (Original) The compression connector of claim 1 further comprising a 2 ground connection to dissipate the charge from the electrostatically dissipative base 3 member that is generated when tension is applied to or released from the conductive 4 compression member. 3. 1 (Original) The compression connector of claim 1, wherein the 2 resistance of the conductive compression member is selected to be higher than the 3 resistance of the electrostatically dissipative base member.

by weight of the compression member.

2

3

1 4. (Original) The compression connector of claim 1, wherein the 2 conductive compression member is vulcanized to the electrostatically dissipative base 3 member. 5. The compression connector of claim 1, wherein the 1 (Original) 2 conductive compression member includes a conductive material blended with a base 3 elastomer stock and a cross-linking agent. 1 6. (Original) The compression connector of claim 1, wherein the 2 conductive compression material comprises conductive carbon black material. 7. The compression connector of claim 6, wherein the 1 (Original) 2 conductive carbon black material comprises a concentration of substantially 2.5 percent 3 by weight of the compression member. 1 8. The compression connector of claim 6, wherein the (Original)

conductive carbon black material comprises a concentration of substantially 3.0 percent

1	9. (Currently Amended) A storage device, comprising:
2	a storage element;
3	an electronics assembly, operatively coupled to the storage element, for
4	processing electrical signals for enabling storage of data on the storage element;
5	a magnetic transducer;
6	a cable for providing a signal path between the magnetic transducer and the
7	electronics assembly; and
8	a compression connector having electrostatic discharge dissipative properties, the
9	compression connector compressively engaging the cable and the electronics assembly,
10	the compression connector further comprising:
11	a conductive compression member having a surface for contacting a first
12	electrical device and for compressing to applying a force normal to the surface of the
13	compression member against the first electrical device, the compression member
14	including a predetermined composition of conductive material and an elastomeric
15	material; and
16	an electrostatically dissipative base member including a conductive
17	material for dissipating charge developed on the conductive compression member when
18	the compression member compresses to apply the force to the first electrical device.

electrostatically dissipative base member.

3

- 1 10. The storage device of claim 9 further comprising a ground (Original) 2 connection to dissipate the charge from the electrostatically dissipative base member that 3 is generated when tension is applied to or released from the conductive compression 4 member. 1 11. (Original) The storage device of claim 9, wherein the resistance of the 2 conductive compression member is selected to be higher than the resistance of the
- 1 12. (Original) The storage device of claim 9, wherein the conductive compression member is vulcanized to the electrostatically dissipative base member.
- 1 13. (Original) The storage device of claim 9, wherein the conductive
 2 compression member includes a conductive material blended with a base elastomer stock
 3 and a cross-linking agent.
- 1 14. (Original) The storage device of claim 9, wherein the conductive compression material comprises conductive carbon black material.
- 1 15. (Original) The storage device of claim 14, wherein the conductive 2 carbon black material comprises a concentration of substantially 2.5 percent by weight of 3 the compression member.

Appl. No. 10/698,740 SJO920030059US1/(IBMS.076-0584) Amdt. Dated December 15, 2006 Reply to Office Action of September 27, 2006

- 1 16. (Original) The storage device of claim 14, wherein the conductive
- 2 carbon black material comprises a concentration of substantially 3.0 percent by weight
- 3 of the compression member.

1	17. (Currently Amended) A method for forming a compressive connection
2	with electrostatic discharge dissipative properties, comprising:
3	forming a conductive compression member including a predetermined
4	composition of conductive material and an elastomeric material; and
5	forming an electrostatically dissipative base member, coupled to the conductive
6	compression member, the electrostatically dissipative base member including a
7	conductive material for dissipating charge developed on the conductive compression
8	member
9	forming a conductive compression member of a predetermined composition of
10	conductive material and an elastomeric material and having a surface for contacting a
11	first electrical device;
12	forming an electrostatically dissipative base member including a conductive
13	material;
14	compressing the compression member to apply a force normal to the surface of
15	the compression member against the first electrical device;
16	dissipating, through the electrostatically dissipative base member, a charge
17	developed on the conductive compression member when the compression member
18	compresses to apply the force to the first electrical device.

substantially 3.0 percent by weight.

4

1 18. (Original) The method of claim 17, wherein the forming the 2 conductive compression member and the electrostatically dissipative base member 3 further comprises forming the conductive compression member with a resistance selected 4 to be higher than a resistance of the electrostatically dissipative base member. 19. 1 (Original) The method of claim 17, wherein the forming the 2 conductive compression member further comprises forming the conductive compression 3 member using a conductive carbon black material comprising a concentration of 4 substantially 2.5 percent by weight. 20. 1 (Original) The method of claim 17, wherein the forming the 2 conductive compression member further comprises forming the conductive compression 3 member using a conductive carbon black material comprising a concentration of