Engenharia de Software

Professor:

Zady Castaneda Salazar

Aula 13 - Cronograma

Prazo é prazo!

 O cronograma é uma representação gráfica do tempo investido em uma determinada tarefa ou projeto, segundo as tarefas que devem ser executadas no âmbito desse projeto.

Um cronograma é um "mapa do tempo", ele mostra quando as atividades do projeto serão desenvolvidas e, com isso, permite avaliar se o projeto vai terminar no prazo esperado.

- A utilização de cronogramas é bastante comum em projetos de pesquisa.
- Exemplo:

ETAPAS	Abr	Maio	Jun	Jul	Ago	Set
1 - Elaboração e apresentação do projeto ao Orientador	XXX					
2 - Entrega e defesa do projeto junto à comissão examinadora		XXX				
3 - Pesquisa bibliográfica e documental		XXX				
4 - Coleta de dados		XXX	XXX			
5 - Redação da dissertação				XXX		
6 - Revisão por parte do orientador				XXX		
7 - Elaboração do texto final da dissertação					XXX	
8 - Encaminhamento à banca examinadora e defesa						XXX

Se você deseja que um conjunto de atividades que dependem umas das outras terminem num prazo específico, o cronograma é a ferramenta mais importante do seu trabalho.

É claro que antes de definir atividades (ou tarefas) é preciso pensar em:

Escopo, ou seja, O QUE se quer fazer.

O COMO se vai fazer.

QUANDO cada atividade será feita.

Objetivo:

Pode-se usá-lo com o objetivo de medir o desempenho das equipes multidisciplinares envolvidas no projeto, e ainda desenvolver meios eficazes para melhorar a sua evolução.

Uma **linha do tempo**, apresenta:

- todas as atividades a serem realizadas, seus prazos de início e fim,
- relações de dependência entre elas,
- recursos e escopo de cada atividade com bastante clareza,
- saber a duração total do projeto.

Por isso, pode ser considerada uma das ferramentas de gestão dos projetos e relacionamentos com os clientes, porque no cronograma as ações podem ser facilmente conectadas e compreendidas por todos os envolvidos.

O cronograma normalmente é baseado no **Gráfico de Gantt**, que é uma ferramenta gráfica para visualização do trabalho ao longo do tempo.

Desenvolvido em 1917 pelo engenheiro mecânico Henry Gantt, esse gráfico é utilizado como uma ferramenta de

controle de produção.

Fonte: http://ganttlegal.com.au/henry-gantt/

Nele podem ser visualizadas as tarefas de cada membro de uma equipe, bem como o tempo utilizado para cumpri-la. Assim, pode-se analisar o empenho de cada membro no grupo, desde que estejam associados, à tarefa, como um recurso necessário ao desempenho dela.

Exemplo:

Consideramos a fabricação de uma polia e um eixo. A primeira providência é listar as tarefas, dependências e tempo envolvidos.

TAREFAS	DESCRIÇÃO	DEPENDE DE	TEMPO/DIAS
A	preparar desenhos	-	1
	e lista de materiais		
В	obter materiais	A	2
	para o eixo		
С	tornear o eixo	В	2
D	fresar o eixo	C	2
E	obter materiais	A	3
	para a polia		
F	tornear a polia	E	4
G	montar o conjunto	DeF	1
H	balancear o conjunto	G	0,5

polia e um eixo

O diagrama de Gantt é um auxiliar importante do planejador e do programador, pois apresenta facilidade em controlar o tempo e em reprogramá-lo. Apesar desta facilidade, o diagrama de Gantt não resolve todas as questões, tais como:

- Quais tarefas atrasariam se por exemplo, a terceira tarefa (C) se atrasar um dia?
- Como colocar de forma clara os custos no diagrama?
- Quais tarefas são críticas para a realização de todo o trabalho?

Para resolver as questões que o diagrama de Gantt não consegue solucionar, foram criados os métodos:

- métodos PERT (Program Evoluation and Review Technique – Programa de Avaliação e Técnica de Revisão)
- CPM (Critical Parth Method Método do Caminho Crítico)

Ambos criados em 1958.

Os dois métodos são quase idênticos; porém, as empresas, em termos de manutenção, adotam basicamente o CPM.

O Método do Caminho Crítico (**CPM**) foi criado na empresa norte-americana Dupont com o objetivo de realizar as paradas de manutenção no menor prazo possível e com o nível constante de utilização dos recursos.

O grande segredo do cronograma é a identificação do **Caminho Crítico**, pois apenas com essa técnica o Gerente de Projetos têm a possibilidade de aplicar técnicas de controle que aumentem a probabilidade de entregar o projeto no prazo estipulado.

Calcula datas teóricas de início e término mais cedo, e de início e término mais tarde, de todas as atividades do cronograma, sem considerar quaisquer limitações de recursos, realizando uma análise do caminho de ida e uma análise do caminho de volta pelos caminhos de rede do cronograma do projeto.

Caminho Crítico: é o caminho mais longo de um diagrama de rede. Possui folga total nula e, portanto, determina o maior tempo para conclusão do projeto.

Atividades críticas: são as atividades do cronograma em um caminho crítico.

Importante:

- Primeira Data de Início (PDI): Primeira data possível de se iniciar uma atividade;
 - Primeira Data de Término (PDT):

PDT = PDI + duração da atividade;

Última Data de Término (UDT): Última data possível de se terminar uma atividade

Última Data de Início (UDI):

UDI = UDT - duração da atividade.

Notação:

Importante:

Folga total: é o atraso total permitido para a data de inicio de uma atividade do cronograma sem atrasar a data de término do projeto ou violar uma restrição do cronograma.

Ela pode ser calculada através das seguintes relações:

Folga Total = UDI - PDI = UDT - PDT

Exercício:

Seguindo a tabela de atividades do projeto, encontre o caminho crítico

Atividade	Sucessora	Duração
Α	B,C,D	7
В	E	15
С	F	10
D	G	3
E	G	1
F	G	12
G		5

Exemplo:

Caminho Crítico

Método do Caminho Crítico (CPM)

Passo 1: Colocar as atividades e duração

A primeira data de início (PDI) de cada atividade é a primeira data de término (PDT) de sua predecessora.

 No caso de uma atividade possuir mais de uma predecessora, adota-se o maior valor.

PDI = máx(PDT predecessora)

Passo 2: Calculo da primeira data de termino PDT

Se percorre de forma reversa a rede, **percorrendo-a de trás para frente**.

 Atribui-se como termino do projeto o mesmo valor final e esse valor é transferido para as atividades finais (aquelas sem sucessoras) como a última data de término(UDT)

Passo 3: Calculo da ultima data de inicio UDI

Passo 4: Colocar a ultima data de inicio no ultima data de termino antecessor

A UDI é transferida para as predecessoras como UDT.

 Caso uma atividade tenha mais de uma sucessora, a UDI é a menor das UDT das sucessoras ou seja:

UDI = min (**UDT** sucessora)

Passo 5: Calcula-se a UDI de cada atividade por meio da fórmula: UDI = UDT - D

Passo 6: A folga total (FT) é calculada pela fórmula: FT = UDI – PDI

Recomendações para fazer Cronogramas

☐ Mesmo nos projetos mais simples, identifique o caminho crítico; Cronograma desatualizado não serve para nada; O cronograma deve ser distribuído às equipes do projeto, senão não saberão que atividade fazer na sequencia; ☐ Atividades não devem ser maiores que 40 horas, nem menores que 4 horas; O cronograma por si só não garante entregas no prazo, para isso dependemos das pessoas; ☐ Use uma ferramenta de apoio para geração e controle de cronograma, fazer no Excel geralmente não compensa o trabalho.

Etapas para fazer Cronogramas

- 1. Definir o escopo do projeto;
- 2. Montar a EAP (Estrutura Analítica do Projeto);
- 3. Estimar duração das atividades;
- 4. Definir os Recursos das atividades;
- 5. Definir dependências entre as atividades;
- 6. Identificar e analisar o caminho crítico;
- 7. Traçar uma linha de base.

Cronograma.Ferramenta

Existem muitas ferramentas para o auxilio da gestão de projetos e e elaboração de cronogramas:

Nome do Software	Versão e Ano atual	Valor da Licença	Gratuito	Fabricante / Desenvolvedor	Site para mais informações
OpenProj	2008	(4)	Sim	Projity Incorporayed	http://www.serena.com/index.php/en/product s/pod-update/
MS Project	Project 2016	A partir de R\$ 30,60 usuário/mês	Não	Microsoft	https://products.office.com/pt- br/project/project-and-portfolio-management- software
Project Primavera	Primavera P6 Professional Project Management	R\$8,676.00 / Utilizador	Não	Oracle	https://www.oracle.com/applications/primave ra/index.html
Gantt Project	GanttProject 2.8.1 2016	-	Sim	Dmitry Barashev	http://www.ganttproject.biz/
Project Planner	Planner v0.14.6 2011	ST.	Sim	Gnome.org	https://wiki.gnome.org/action/show/Apps/Pla nner?action=show&redirect=Planner
Open Workbench	Open Workbench 1.1.6 2011	ST.	Sim	CA Technologies	http://www3.ca.com/br/collateral/demos/na/c a-open-workbench.aspx
dotRroiect	dotProject v2.1.2 2008	84	Sim	licença GNU-GPL	http://www.dotproject.net/
WBS Schedule	2016	\$349,00 por licença	Não	Critical Tools	http://www.criticaltools.com.br/
Pro		ı	Engenha	<u>ria de Softwar</u>	е

Ferramenta

É fundamental termos os seguintes dados e recursos para a elaboração de um cronograma utilizando as ferramentas:

- Recursos humanos do projeto (nome e atividade)
- Nome do projeto
- Fases do projeto
- Tarefas do projeto
- Tempo de execução das tarefas
- Boa distribuição de tarefas entre os recursos do projeto

- Utilizando a ferramenta Project faça o seguinte cronograma de atividades de projeto:
- Determine o caminho critico.

Atividade	Dependência	Duração	Responsável
Α	-	3	Carlos
В	Α	6	Juliana
С	В	4	Vinícius
D	Α	7	Vinícius
E	D	5	Juliana

- Utilizando a ferramenta Project faça o seguinte cronograma de atividades de projeto:
- Determine o caminho critico.

Atividade	Dependência	Duração	Responsável
Α	-	3	Andréa
В	Α	5	Elaine
С	Α	1	Elaine
D	B, C	2	Andréa
E	D	1	Daniel
F	E	1	Daniel

- Utilizando a ferramenta Project faça o seguinte cronograma de atividades de projeto:
- Determine se há incompatibilidade de tempo na alocação de pessoal.

Atividade	Dependência	Duração	Responsável
Α	-	6	Celina
В	Α	2	Laura
С	Α	3	Mário
D	В	2	Mário
E	В	6	Laura
F	C, D	2	Mário

- Utilizando a ferramenta Project faça o seguinte cronograma de atividades de projeto:
- Determine se há incompatibilidade de tempo na alocação de pessoal.

Atividade	Dependência	Duração	Responsável
Α	-	5	Nádia
В	-	8	Rodrigo
С	Α	8	Paulo
D	Α	7	Tito
E	В	9	Nádia
F	В	7	Paulo
G	C, D	4	Nádia
Н	E, F	7	Rodrigo

Engenharia de software

Bibliografia

- Paulo Filho, Wilson de Pádua. Engenharia de Software. LTC, 2003
- Pressman, Roger S. Engenharia de Software. 6^a edição. McGraw-Hill,2006.
- Sommerville, Ian. Engenharia de Software. 8ª edição. Pearson Education,
 2007.
- Carvalho, Ariadne M. B. Rizzoni & Chiossi, Thelma C. dos Santos.
 Introdução à Engenharia de Software. Unicamp, 2001.