SCALING UP COMPUTATION: CLOUD ECONOMICS & AUTOMATION

Chee Wei Tan

Cloud Computing

Cloud Resource Allocation and Pricing

Cloud Pricing

Usage-based cloud pricing

Auction-based cloud pricing

Amazon's Elastic Compute Cloud (EC2) spot instances

Spot Instance

Step 1: Choose the instance type

Amazon Linux	Memory optimized	r3.large	2	15	1 x 32 (SSD)	_	Moderate
Free tier eligible				30.5	, ,	Yes	Moderate
Red Hat Free tier eligible	Memory optimized	r3.xlarge	4	30.5	1 x 80 (SSD)	res	Moderate
	Memory optimized	r3.2xlarge	8	61	1 x 160 (SSD)	Yes	High
	Memory optimized	r3.4xlarge	16	122	1 x 320 (SSD)	Yes	High
SUSE Linux	Memory optimized	r3.8xlarge	32	244	2 x 320 (SSD)	-	10 Gigabit

Step 2: Configure the instance details

Number of instances & bid price

Spot Pricing

Spot price history for an r3.xlarge instance in the US Eastern region on September 09, 2014

Our Questions

Question #1

How might the cloud provider set the price?

Question #2

What prices should users bid?

Our Questions

Question #1
 How might the cloud provider set the price?

Question #2What prices should users bid?

L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang & X. Wang, How to bid the cloud? **ACM SIGCOMM**, 2015

Our Solution

Cloud Provider Model

Cloud Provider Model

Bid Types

One-time user bid

- > Submitted once and then exit the system once they fall below the current spot price.
- > Job interrupted without completing

Persistent user bid

- Resubmitted in each time period until the job finishes or is manually terminated by the user.
- > Longer waiting and completion time.

Placing One-time Bids

Placing Persistent Bids

Bidding MapReduce Jobs

One-time Bids

User costs are reduced by up to 91%, without any interruptions.

Persistent Bids

bid price (time) of persistent bids – bid price (time) of one-time bids

bid price (time) of one-time bids

A lower optimal bid price.

A longer completion time.

Persistent Bids

The overall costs are further reduced.

MapReduce Jobs

The cost is reduced by up to 92.6% with just a 14.9% completion time increase.

- Scientific computing is the holy grail of cloud computing
- Major recent breakthroughs in scientific discovery
 - Four Color Theorem
 - Fermat's Last Theorem

How to make bucks selling Theorems?!

Introduction

- Proving an information inequality is a crucial step in establishing the converse results in coding theorems.
- An information inequality involving many random variables is difficult to be proved manually.
- [Yeung 1997] developed a framework that uses linear programming for verifying linear information inequalities.

S. Ho, C. W. Tan and R. W. Yeung, Proving and disproving information inequalities, IEEE ISIT 2014

To Prove:

- $ITIP("H(U) \le H(R)", "I(U;X) = 0"; "H(U|RX) = 0")$
- True. The inequality follows from
- H(U) + H(R) = (-H(U,X) + H(U,R,X)) + (H(R) + H(X) H(R;X)) + $\{-H(U) - H(X) + H(U;X)\} + \{H(R;X) - H(U;R;X)\}$ >= 0;
- where (\cdot) is non-negative as it is either conditional entropy or conditional mutual information. All $\{\cdot\}$ are equal to 0 due to the given constraints. Equality holds iff all (\cdot) are equal to 0.

To Disprove:

- $ITIP("I(A;B|CD) + I(B;D|AC) \le I(A;B|D) + I(B;D|A) + H(A) + I(B;D|C)")$
- Not provable by ITIP.
- It can be disproved by a probability distribution satisfying all the following Shannon's information measures equal to zero:

```
H(A|B,C,D); H(C|A,B,D), H(D|A,B,C), I(A;B|C), I(A;B|D), I(A;C|D), I(A;D), I(B;C|A), I(B;D|A), I(B;D|C), I(C;D|A).
```

From the above output from ITIP, we can deduce the following counterexample. Let X; Y and Z be three independent binary random variables with entropy equal to 1.

```
Let (A, B, C, D) = (X \oplus Y, X, Y \oplus Z, Z).

I(A;B|D) + I(B;D|A) + H(A) + I(B;D|C) - I(A;B|CD) - I(B;D|CA)

= -1 < 0.
```

Scale Up Computation

- Automation of Information Theory Prover
 - Computational algorithms (optimization based)
 - Cloud-computing (scale-up no. of random variables)
- Distributed data storage and security applications
 - Secured Storage Code
 - Privacy of data by information leakage to eavesdroppers during repair
 - Hybrid repair (gap with functional repair), when
 - Storage Network Topology Optimization
 - All prior work assumes a complete connectivity topology for storage network, however practical networks have different communication capacities and diverse (sparse) network topology
 - Information-theoretic Security and Network Security
 - Application-specific equality constraints in LP most interesting (Markov chain, security)

← → C 130.211.240.38/html/

Conclusion

- Model for cloud provider's setting of the spot prices.
- Bidding strategies: Tradeoff between prices and times
 - One-time bids: bidding higher prices to avoid interruptions .
 - Persistent bids: bidding lower prices to save money.
- Application to the MapReduce jobs.
- Temporal correlations, risk-awareness, task dependence, collective user behavior, etc.
- Scaling up Scientific Computing as a Service

Thank you!

- L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang & X. Wang, How to bid the cloud? ACM SIGCOMM,
 2015
- S. Ho, C. W. Tan and R. W. Yeung, Proving and disproving information inequalities, IEEE ISIT 2014

Backup Slides

Cloud provider revenue maximization.

maximize
$$\beta \log \left(1 + L(t) \frac{\bar{\pi} - \pi(t)}{\bar{\pi} - \underline{\pi}}\right)$$

 $+\pi(t)L(t) \frac{\bar{\pi} - \pi(t)}{\bar{\pi} - \underline{\pi}}$
subject to $\underline{\pi} \leq \pi(t) \leq \bar{\pi}$.

$$\pi^{\star}(t) = h(\Lambda(t)) = \frac{1}{2} \left(\bar{\pi} - \frac{\beta}{1 + \frac{1}{\theta} \Lambda(t)} \right)$$

Validation from Historical Spot Prices

Real-life Spot Instance Example

Mozilla Amazon EC2 usage got cheaper by using spot instance with fixed-price bidding in 2013-2014.

September: cost-effective m3.xlarge on-demand instances.

October: m3.xlarge spot instances with unexpected interruptions.

December: upgrading to use cheaper c3.xlarge on-demand instances.

February: a mix of c3.xlarge on-demand and m3.xlarge spot instances.

March: the majority of workload switched to spot instances.

April: Amazon further drops its spot prices.

EC2 Instance Types

Single-Instance One-time Bids

Optimal bid prices for one-time bids that run for one hour.

	On-demand	One-time bid			
Instance type	price	Optimal price	Actual price		
r3.xlarge	\$0.35	\$0.0374	\$0.033		
r3.2xlarge	\$0.70	\$0.0795	\$0.066		
r3.4xlarge	\$1.40	\$0.1430	\$0.130		
c3.4xlarge	\$0.84	\$0.1669	\$0.128		
c3.8xlarge	\$1.68	\$0.2903	\$0.256		

Single-Instance One-time Bids

Optimal bid prices for one-time bids that run for one hour.

		One-time bid				
Instance type	On-demand price	Optimal price	Offline retrospective price	Actual price		
r3.xlarge	\$0.35	\$0.0374	\$0.0324	\$0.033		
r3.2xlarge	\$0.70	\$0.0795	\$0.0644	\$0.066		
r3.4xlarge	\$1.40	\$0.1430	\$0.1304	\$0.130		
c3.4xlarge	\$0.84	\$0.1669	\$0.1324	\$0.128		
c3.8xlarge	\$1.68	\$0.2903	\$0.2640	\$0.256		

Single-Instance Persistent Bids

Optimal bid prices with different recovery times.

		Persistent bid			
Instance type	On-demand price	Optimal price (t _r =10s)	Optimal price (t _r =30s)		
r3.xlarge	\$0.35	\$0.0332	\$0.0355		
r3.2xlarge	\$0.70	\$0.0661	\$0.0711		
r3.4xlarge	\$1.40	\$0.1327	\$0.1422		
c3.4xlarge	\$0.84	\$0.1322	\$0.1413		
c3.8xlarge	\$1.68	\$0.2648	\$0.2831		

Longer recovery times yield higher bid prices.

Single-Instance Persistent Bids

Bidding at the 90th percentile price yields either higher bid prices and lower completion times or lower bid prices and longer completion times.

Single-Instance Persistent Bids

Our bid prices are optimal for minimizing users' costs.

MapReduce Jobs

Optimal bid prices and actual costs for a MapReduce job.

	Master node			Slave nodes			
Client Setting	Instance Type	Bid prices	Actual cost	Instance type	Bid prices	Node numbers	Actua l cost
CS1	c3.xlarge	\$0.133	\$0.10	m3.2xlarge	\$0.070	5	\$0.90
CS2	m3.xlarge	\$0.101	\$0.13	m3.2xlarge	\$0.070	5	\$1.03
CS3	m3.xlarge	\$0.102	\$0.13	r3.2xlarge	\$0.071	3	\$0.51
CS4	r3.xlarge	\$0.042	\$0.13	m3.2xlarge	\$0.070	5	\$0.58
CS4	r3.xlarge	\$0.042	\$0.13	r3.2xlarge	\$0.071	3	\$0.64