How are real numbers represented by a computer?

Overview

- Problem
- Floating Point Format
- Properties
- Python/C++
- Links

Real Numbers

"Real numbers can be thought of as points on an infinitely long line"

Problem:

- There are an infinite number of real numbers
- Many do not have finite representation: □, sqrt(2)

- But computers have a finite amount of memory
 - How are computers able store such numbers?

Scientific Notation

- Quite familiar with standard scientific notation of numbers. Able to represent a wide range of numbers
 - \circ 1.528535047 × 10⁵ orbital period of Jupiter's moon Io
 - \circ 6.67408 × 10⁻¹¹ Newton's gravitation constant
- More generally a number can be written as:
 - significand x base^{exponent}
- Quite used to working in base 10 but computers only understand binary (base-2)

Floating Point & IEEE

- Floating point is most common way to represent real numbers
 - Name comes from the fact you have a decimal point that can "float"
- IEEE standardizes the idea of a floating point formats:
 - o binary32, binary64, binary128, binary256 ...
- An evolving standard: IEEE 754-1985, IEEE 854-1987, IEEE 754-2008
 - Portable and provably consistent
 - To be conformant many mathematical identities must hold true
 - Every floating point number must be unique
 - Every floating point number must have an opposite
 - Specifies algorithms for addition, subtraction etc

Floating Point Format

- Most common for us are float (binary32) & double (binary64)
- 32/64 indicate the amount of memory used to store a variable of that type
- Take float as an example. What can we do with 32 bits?
- Format is similar to scientific notation. A float is comprised
 - Sign = 1 bit: determines the sign
 - Exponent = 8 bits: sets the scale
 - Mantissa = 23 bits (actually gives 24 bit precision): determines the precision

$$x = -1^s \times 2^e \times 1.m$$

Floating Point Format Details: Normalization

- A floating point number is considered normalized when the integer part of the mantissa is 1
- Example: 13.25 = 1101.01 (binary). Normalize this

```
    1101.01 * (2^0)
    = 110.101 * (2^1)
    = 11.0101 * (2^2)
    = 1.10101 * (2^3) → normalized form
```

• By always storing normalized numbers we can avoid storing the leading **1** and therefore a 23-bit mantissa actually represents 24-bits of precision

Exponents: Special Numbers

- How would you express 1.0 in this format?
 - $\qquad \text{Naively, (-1)}^0 \ (2^0) \ 1.(0) = [0] \ [000000000] \ 1.[00000000000000000000000]$
 - But this looks a lot like how you would store 0! (remember the 1. is implicit)
 - Solution is to modify how the exponent part is stored and treat 0.0 as a special case
 - Exponent in binary32 is encoded by shifting it by -127.
- Special cases:
 - 0 (all exponent & mantissa bits 0)
 - \circ Inf = 1/0 (all exponent bits 1, all mantissa bits 0)
 - NaN = 0/0, $0 \times \infty$ (all exponent bits 1, any mantissa bits non zero)
- Special cases reduce the range of representable numbers slightly

Floating Point Properties

- Cannot exactly represent all numbers within a fixed amount of memory
 - \circ Calculations most often produce unrepresentable numbers \rightarrow rounding error
- Next representable-number is found by flipping least-significant bit in mantissa
 - $\qquad \qquad [0][01111111] \ \overline{1.[0000000000000000000000]} = 1.0000001192092896$
 - The difference between this and 1.0 is defined as epsilon
 - Useful for programming "almost equals" calculations
- Other properties:
 - \circ min/max \sim [1.18 x 10⁻³⁸, 1.7 x 10⁺³⁸]
 - significant decimal digits: ~7

Floating Point Properties

- Representation is not uniform between numbers, i.e.
 - each number is not epsilon apart
 - Most precision between 0.0 1.0
 - o precision falls away after this
- This can be a good reason to scale calculations to 0.0-1.0 especially for long running computations

Double Precision

- Most programming languages also support the binary64 float or double
- Defined simply as using 64 bits to store a "real" number
- Properties:
 - \circ Sign = 1 bit
 - \circ Exponent = 11 bits
 - Mantissa = 52 bits (actually gives 53 bit precision)
- Many more bits used for mantissa to extend the precision and sacrifice range:
 - \circ epsilon<double> ~ 2.22 x 10^{-16}
 - \circ range $\sim [2.22 \times 10^{-308}, 1.78 \times 10^{308}]$

C++/Python

- C++ defines numeric traits various types in <numeric_limits>
 - http://en.cppreference.com/w/cpp/types/numeric_limits
 - e.g. std::numeric_limits<double>::epsilon, std::numeric_limits<double>::min,
 std::numeric limits<double>::max
- Python has some definitions in sys module:
 - https://docs.python.org/3/library/sys.html
 - sys.float_info returns a struct holding similar information to that in <numeric_limits>
 - o numpy also has similar information in numpy.finfo

Comments

- Beware computations where exponents are very different
- If you know the scale of various values try to perform computation in sections where you keep numbers of ~ equivalent size together
- Order of floating point arithmetic can matter
 - Multi-threading can have an effect here if the order of calculations is not guaranteed to be the same

Links

- https://en.wikipedia.org/wiki/Single-precision_floating-point_format
 - Good examples of how to convert between decimal and binary
- Demystifying Floating Point https://www.youtube.com/watch?v=k12BJGSc2Nc
- What Every Computer Scientist Should Know About Floating-Point Arithmetic https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html