

Linear Algebra Done Right Solution

Sheldon Axler

Date: June 7, 2024

Contents

Chapte	r 2 Finite-dimensional vector space	1
A	Span and Linear independence	1
В	Bases	1
C	Dimension	2
Chapte	r 3 Linear maps	3
A	The vector space of linear maps	3
В	Null space and Range	3
C	Matrix	6
D	Invertibility and Isomorphic Vector spaces	8
E	Products and Quotients of Vector Spaces	11
F	Duality	12
Chapte	r 5 Eigenvalues, eigenvectors, and invariant subspaces	16
A	Invariant Subspaces	16
В	Eigenvectors and Upper-Triangular Matrices	19
C	Eigenspaces and Diagonal Matrices	20
Chapter 6 Inner product spaces		22
A	Inner products and Norms	22
Chapter 7 Operators on inner product spaces		23
A	Self-adjoint and Normal Operators	23
В	The spectral theorem	23
C	Positive Operators and Isometries	24
D	Polar Decomposition and Singular Value Decomposition	24

Chapter 2 Finite-dimensional vector space

A Span and Linear independence

B Bases

Exercise 2.B.1 Find all vector spaces that have exactly one basis.

Proof

Consider all lines passing through origin.

- **Exercise 2.B.2**
 - (a) Let U be the subspace of \mathbb{R}^5 defined by

$$U = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = 7x_4$$

Find a basis of U.

- (b) Extend the basis in part (a) to a basis of \mathbb{R}^5 .
- (c) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \oplus W$.

Proof

- (a) We can verify that (3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1) is a basis of U, and it spans U. Idea: We start from the basis of \mathbb{R}^5 and try to fit it into the given condition.
- (b) (3,1,0,0,0), (0,0,7,1,0), (0,0,0,0,1), (0,1,0,0,0), (0,0,1,0,0)Idea: Downgrade all vector to one dimensional (to obtain the basis of \mathbb{R}^5).
- (c) $span\{(0,0,0,0,1), (0,1,0,0,0)\}$

Idea: Refer to the definition of direct sum.

Exercise 2.B.3 Prove or disprove: there exists a basis p_0, p_1, p_2, p_3 of $\mathcal{P}_3(\mathbb{F})$ such that none of the polynomials p_0, p_1, p_2, p_3 has a degree 2.

Proof Consider

$$p_0 = a_1$$

$$p_1 = a_2 x$$

$$p_2 = a_3 x^3$$

$$p_3 = a_4 x^2 + a_5 x^3$$

It is easy to verify that they are linearly independent, and span $\mathcal{P}_3(\mathbb{F})$

Exercise 2.B.4 Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis of V.

Proof We could obtain v_1, v_2, v_3 with the following operation

$$v_3 + v_4 - v_4 = v_3 (2.1)$$

$$v_2 + v_3 - (v_3 + v_4 - v_4) = v_2 (2.2)$$

$$v_1 + v_2 - (v_2 + v_3 - (v_3 + v_4 - v_4)) = v_1$$
(2.3)

Which suggests that $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$, v_4 also spans V.

Next, we prove that they are linearly independent.

$$a(v_1 + v_2 + b(v_2 + v_3) + c(v_3 + v_4) + dv_4$$
(2.4)

$$=av_1 + (a+b)v_2 + (b+c)v_3 + (c+d)v_4$$
(2.5)

Since v_1, v_2, v_3, v_4 is a basis, we have a = b = c = d = 0. This implies that $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is also linearly independent.

Exercise 2.B.5 Suppose U and W are subspaces of V such that $V = U \oplus W$. Suppose also that u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Prove that

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

is a basis of V.

Proof The linear independency of $u_1, \ldots, u_m, w_1, \ldots, w_n$ is directly come from the definition of direct sum since $U \cap W = 0$. Since u_1, \ldots, u_m is a basis of U. We can write any $u \in U$ as a linear combination of u_1, \ldots, u_m . Similarly, we can write any $w \in W$ as a linear combination of w_1, \ldots, w_n . Therefore, we can write any $v \in V$ as a linear combination of $u_1, \ldots, u_m, w_1, \ldots, w_n$.

C Dimension

Exercise 2.C.1 Suppose V is finite-dimensional and U is a subspace of V such that $\dim U = \dim V$. Prove that U = V.

Proof Let u_1, \ldots, u_n be a basis of U. Since U is a subspace of V, we can extend the basis of U to a basis of V. Since $\dim U = \dim V$, every independent list of right length is also a base suggests that u_1, \ldots, u_n also spans V. Therefore, U = V.

Exercise 2.C.2 Show that the subspaces of \mathbb{R}^2 are precisely the zero subspace, all lines in \mathbb{R}^2 through the origin, and \mathbb{R}^2 itself.

Proof dim $\mathbb{R}^2 = 2 \implies$ dim subspaces of $\mathbb{R}^2 \le 2$

When
$$\dim U = 0$$
, $U = \{0\}$. (2.6)

$$\dim U = 1,$$
 U is a line passing through origin. (2.7)

$$\dim U = 2, U = \mathbb{R}^2. (2.8)$$

Chapter 3 Linear maps

A The vector space of linear maps

Exercise 3.A.1 Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz).$$

Show that T is a linear map if and only if b = 0 and c = 0.

Proof Consider T(1,1,1) = T(1,0,0) + T(0,1,1)

$$T(1,1,1) = (1+b,6+c)$$

$$T(1,0,0) = (2+b,6)$$

$$T(0,1,1) = (-1+b,0)$$

Therefore, b = 0, c = 0

B Null space and Range

- Exercise 3.B.1 Give an example of a linear map T such that dim null T=3 and dim range T=2. Proof Consider $T: \mathcal{P}(4) \mapsto \mathcal{P}(1)$, $T(az^4+bz^3+cz^2+dz+e)=(dz+e)$. Then dim null T=3 and dim range T=2.
- **Exercise 3.B.2** Suppose v_1, \ldots, v_m is a list of vectors in V. Define $T \in \mathcal{L}(\mathbb{F}^m, V)$ by

$$T(z_1,\ldots,z_m)=z_1v_1+\cdots+z_mv_m.$$

- (a) What property of T corresponds to v_1, \ldots, v_m spanning V.
- (b) What property of T corresponds to v_1, \ldots, v_m being linearly independent.
- (a) **Proof** $\forall v \in V$, we have $T(z_1, \ldots, z_m) = v$, which means v_1, \ldots, v_m span V. This suggests that range T is equal to V. Hence, T is surjective.
- (b) **Proof** If v_1, \ldots, v_m are linearly independent, then $T(z_1, \ldots, z_m) = 0$ implies $z_1 = \cdots = z_m = 0$. This suggests that null $T = \{0\}$, hence T is injective.
- Exercise 3.B.3 Show that

$$T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \dim \operatorname{null} T > 2$$

is not a subspace of $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$

Proof Suppose dim null T > 2, by F.T. of linear maps,

$$\dim T = 5 = \dim \operatorname{null} T + \dim \operatorname{range} T$$

$$> 2 + \dim \operatorname{range} T$$

$$\dim \operatorname{range} T < 3$$

Hence, $T \notin \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$, and thus not a subspace of $\mathcal{L}(R^5, R^4)$.

Exercise 3.B.4 Give an example of a linear map $T: \mathbb{R}^4 \to \mathbb{R}^4$ such that

range
$$T = \text{null } T$$
.

Proof Consider $T: \mathbb{R}^4 \to \mathbb{R}^4$, $T(x_1, x_2, x_3, x_4) = (x_3, x_4, 0, 0)$. Then range T = null T.

Exercise 3.B.5 Prove that there does not exist a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ such that range T = null T.

Proof Suppose there exists a linear map $T: \mathbb{R}^5 \mapsto \mathbb{R}^5$ such that range $T = \operatorname{null} T$. Then by F.T. of linear maps, we have $\dim \operatorname{range} T = \dim \operatorname{null} T$, which implies $\dim \operatorname{range} T = 5 - \dim \operatorname{range} T$, or $\dim \operatorname{range} T = 2.5$, which is not an integer. Hence, such a linear map does not exist.

Exercise 3.B.6 Suppose V and W are finite-dimensional with $2 \le \dim V \le \dim W$. Show that $\{T \in \mathcal{L}(V, W) : T \text{ is not injective } \}$ is not a subspace of $\mathcal{L}(V, W)$.

Proof T is not injective suggests that dim null V > 0. Then By the F.T. of linear maps, we have

$$\dim V = \dim \operatorname{null} V + \dim W$$

$$> 1 + \dim W > 1 + \dim V$$

Contradicts! Hence, $T \notin \mathcal{L}(V, W) \implies$ not a subspace.

Exercise 3.B.7 Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n is linearly independent in V. Prove that Tv_1, \ldots, Tv_n is linearly independent in W.

Proof T is injective \implies null $T = \{0\}$. Therefore, we have

$$T(\lambda_1 v_1 + \dots + \lambda_n v_n) \iff \lambda_i = 0$$

where $j \in \{1, ..., n\}$. Since $v_1, ..., v_n$ are linearly independent. It follows that $Tv_1, ..., Tv_n$ are linearly independent.

Exercise 3.B.8 Suppose v_1, \ldots, v_n spans V and $T \in \mathcal{L}(V, W)$. Prove that the list Tv_1, \ldots, Tv_n spans range T. **Proof** Suppose v_1, \ldots, v_n spans V. Then $\forall v \in V$, we have $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then

$$T(v) = T(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 T v_1 + \dots + \lambda_n T v_n.$$

This suggests that range $(T) \subset \operatorname{span}(Tv_1, \dots, Tv_n)$. Also, $\operatorname{span}(Tv_1, \dots, Tv_n)$ is the smallest containing subspace of W implying that it is a subset of range W, hence range $T = \operatorname{span}(Tv_1, \dots, Tv_n)$.

Exercise 3.B.9 Suppose S_1, \ldots, S_n are injective linear maps such that $S_1 S_2 \ldots S_n$ makes sense. Prove that $S_1 S_2 \ldots S_n$ is injective.

Proof By F.T. of linear maps, we have

$$\dim S_1 = \dim \operatorname{null} S_1 + \dim \operatorname{range} S_1$$
$$= 0 + \dim \operatorname{range} S_1 = \dim \operatorname{range} S_1$$

It follows that

$$\dim S_1 = \dim \operatorname{range} S_1 = \dim S_2 = \cdots = \dim S_n = \dim \operatorname{range} S_n$$

Hence, dim null $S_1 S_2 \dots S_n = 0 \iff S_1 S_2 \dots S_n$ is injective.

Exercise 3.B.10 Suppose that V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $\mathrm{null}\, T = U$ and

$$U \cap \operatorname{range} T = \{0\}.$$

Proof Let u_1, \ldots, u_n be a basis for null T. Then $\mathrm{span}(u_1, \ldots, u_n)$ is a subspace of V. Since it is linear independent, it can be extended to a basis of V, say $u_1, \ldots, u_n, v_1, \ldots, v_m$. Then V is the direct sum of the spanning of u_1, \ldots, u_n and v_1, \ldots, v_m . Take $U = \mathrm{span}(v_1, \ldots, v_m)$

Exercise 3.B.11 Suppose T is a linear map from \mathbb{F}^4 to \mathbb{F}^2 such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$$

Prove that T is surjective.

Proof A basis of $\operatorname{null} T$ is

$$\{(5,1,0,0),(0,0,7,1)\}$$

Then by F.T. of linear maps, we have

$$\dim \operatorname{range} T = 4 - \dim \operatorname{null} T = 4 - 2 = 2$$

Therefore, range $T = \mathbb{R}^2 \implies T$ is surjective.

Exercise 3.B.12 Suppose U is a 3-dimensional subspace of \mathbb{R}^8 and that T is a linear map from \mathbb{R}^8 to \mathbb{R}^5 such that null T = U. Prove that T is surjective.

Proof By F.T. of linear maps, we have

$$\dim \operatorname{range} T = 8 - \dim \operatorname{null} T = 8 - 3 = 5$$

This suggests that range $T = \mathbb{R}^5 \implies T$ is surjective.

Exercise 3.B.13 Prove that there does not exist a linear map from \mathbb{F}^5 to \mathbb{F}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

Proof Suppose there exists such a linear map, then, by F.T. of linear maps, we have

$$\dim \operatorname{range} T = 5 - \dim \operatorname{null} T = 5 - 2 = 2$$

Contradicts!

Exercise 3.B.14 Suppose there exists a linear map on V whose null space and range are both finite-dimensional. Prove that V is finite dimensional.

Proof WLOG, let dim null T = m and dim range T = n. Then by F.T. of linear maps, we have

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = m + n < \infty$$

Exercise 3.B.15 Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if $\dim V \leq \dim W$.

Proof (\Longrightarrow) Suppose there is an injective linear map $T:V\mapsto W$. By F.T. of linear maps, we have

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
$$= 0 + \dim \operatorname{range} T = \dim \operatorname{range} T$$

(\iff) Suppose dim $V \le \dim W$. Then there exists a basis of V that can be extended to a basis of W. Let v_1, \ldots, v_n be a basis of V and w_1, \ldots, w_n be a basis of W. Define $T: V \mapsto W$ by $T(v_i) = w_i$. Then T is injective.

Exercise 3.B.16 Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists

$$T \in \mathcal{L}(V, W)$$

such that null T = U if and only if $\dim U \ge \dim V - \dim W$.

Proof (\Longrightarrow) Suppose there exists $T \in \mathcal{L}(V, W)$ such that $\operatorname{null} T = U$. Since range T is a subspace of W, we have $\dim Range \leq \dim W$. The rest of the proof follows by the F.T. of linear maps.

$$(\longleftarrow)$$
 Suppose $\dim U \ge \dim V - \dim W$, we have

$$\dim U + \dim W \ge \dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Of course we could find such a T.

Exercise 3.B.17 Suppose W is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V.

Proof (\Longrightarrow) T is injective \iff dim null T=0. Then there exists a basis of V that can be extended to a basis of W. Let v_1,\ldots,v_n be a basis of V and w_1,\ldots,w_n be a basis of W. Define $S:W\mapsto V$ by $S(w_i)=v_i$ and $T:V\mapsto W$ by $T(v_k)=w_k$ Then

$$ST(v) = ST(a_1v_1 + \dots + a_nv_n)$$

$$= S(a_1w_1 + \dots + a_nw_n)$$

$$= a_1v_1 + \dots + a_nv_n$$

$$= v$$

(\iff) Since v_k is a basis, $\text{null } T = \{0\}$. This suggests that T is injective.

C Matrix

- **Exercise 3.C.1** Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Show that with respect to each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.
 - **Proof** Follows from the F.T. of linear maps, we have $\dim \operatorname{range} T = \dim W \dim \operatorname{null} T$. Since $\operatorname{null} T$ becomes all the zero entries, therefore the matrix of T has at least $\dim \operatorname{range} T$ nonzero entries.
- **Exercise 3.C.2** Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Dp = p'. Find a basis of $\mathcal{P}_3(\mathbb{R})$ and a basis of $\mathcal{P}_2(\mathbb{R})$ such that the matrix of D with respect to these bases is

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Proof Easy to verify that $\frac{1}{3}x^3$, $\frac{1}{2}x^2$, x, 1 is a list of basis of $\mathcal{P}_3(\mathbb{R})$, and its derivative is x^2 , x, 1 which is a basis of $\mathcal{P}_2(\mathbb{R})$.

- Exercise 3.C.3 Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that there exists a basis of V and a basis of W such that with respect to these bases, all entries of $\mathcal{M}(T)$ are zero except for the entries in row j, column j, equal 1 for $1 \le j \le \dim \operatorname{range} T$.
 - **Proof** Let v_1, \ldots, v_n be a basis of V such that $\forall i \in 1, \ldots, k, Tv_i = 1$, where $k = \dim \operatorname{range} T$. Of course, it is a basis of range T. Expressing this as a matrix gives the desired result.
- Exercise 3.C.4 Suppose v_1, \ldots, v_m is a basis of V and W is finite-dimensional. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis w_1, \ldots, w_n of W such that all entries in the first column of $\mathcal{M}(T)$ (with respect to the bases v_1, \ldots, v_m and w_1, \ldots, w_n) are 0 except for possibly a 1 in the first column.
 - **Proof** Let v_1, \ldots, v_m be the trivial basis of V. Then Tv_1, \ldots, Tv_m spans range T. After finite steps of procedure, we can obtain a list, Tv_1, \ldots, Tv_m which is a basis of W, say w_1, \ldots, w_m . Then the first column of $\mathcal{M}(T)$ is the desired result.
- Exercise 3.C.5 Suppose w_1, \ldots, w_n is a basis of W and V is finite-dimensional. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis v_1, \ldots, v_m of V such that all entries in the first row of $\mathcal{M}(T)$ (with respect to the bases v_1, \ldots, v_m and w_1, \ldots, w_n) are 0 except for possibly a 1 in the first row.
 - **Proof** We could always find a basis of V such that $\exists i \in \{1, ..., n\}, v_i = (1, ..., 0)$ For list $v_1, ..., v_m$, if $m \le n$, we obtain the desired result. Otherwise, we could let the $v_{m+1}, ..., v_n$ be the basis of null T.
- Exercise 3.C.6 Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that $\dim \operatorname{range} T = 1$ if and only if there exists a basis of V and a basis of W such that with respect to these bases, all entries of $\mathcal{M}(T)$ equal 1.
 - **Proof** (\Longrightarrow) Suppose dim range T=1, then for v_1,\ldots,v_n , a basis of $V,Tv_1,\ldots,Tv_n\in \operatorname{range} T$ suggests that they are linearly dependent to each other. Hence, we could obtain the desire by letting $Tv_1,\ldots,Tv_n=(1,\ldots,1)$

- (\iff) Suppose there exists a basis of V and a basis of W such that with respect to these bases, all entries of $\mathcal{M}(T)$ equal 1. Then, $\dim \operatorname{range} T = 1$.
- **Exercise 3.C.7** Suppose A is an m-by-n matrix and C is an n by p matrix. Prove that

$$(AC)_{j,\cdot} = A_{j,\cdot}C$$

for $1 \le j \le m$. In other words, show that row j of AC equals (row j of A) times C.

$$(AC)_{j,i} = \sum_{k=1}^{n} A_{j,k} C_{k,i} = (A_{j,k} C)_{i}$$

D Invertibility and Isomorphic Vector spaces

- **Exercise 3.D.1** Suppose $T \in \mathcal{L}(U,V)$ and $S \in \mathcal{L}(V,W)$ are both invertible linear maps. Prove that ST is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.
 - **Proof** The proof for the invertibility is trivial, since U, V, W are bijective to each other. Then we only have to prove the equation. It follows from the fact that $STT^{-1}S^{-1} = I = T^{-1}S^{-1}ST$
- Exercise 3.D.2 Suppose V is finite-dimensional and $\dim V > 1$. Prove that the set of non-invertible operators on V is not a subspace of $\mathcal{L}(V)$.
 - **Proof** Suppose T, S are non-invertible operators on V. Then $\operatorname{null} T \neq \{0\}$ and $\operatorname{null} S \neq \{0\}$. Then $\operatorname{null} T + \operatorname{null} S \neq \{0\}$, which suggests that T + S is not invertible.
- **Exercise 3.D.3** Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that Tu = Su for ever $u \in U$ if and only if S is injective.
 - **Proof** (\Longrightarrow) This is obvious since T is bijective.
 - (\iff) Suppose S is injective. Then we could extend u_1, \ldots, u_n to a basis of V. Then we could define T by $Tu_i = Su_i$ for $i = 1, \ldots, n$.
- Exercise 3.D.4 Suppose W is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\operatorname{null} T_1 = \operatorname{null} T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(W)$ such that $T_1 = ST_2$
 - **Proof** (\Longrightarrow) Suppose null T_1 = null T_2 , this implies that range T_1 = range T_2 . Let $w_1, \ldots w_m$ be a basis of range T_1 and range T_2 . Then we could define S by $Sw_i = T_1v_i$ for $i = 1, \ldots, m$.
 - (\iff) Suppose there exists an invertible operator $S \in \mathcal{L}(W)$ such that $T_1 = ST_2$. Since S is invertible, this suggests that it has to be injective such that $\text{null } S = \{0\}$. Then $\text{null } T_1 = \text{null } T_2$.

- Exercise 3.D.5 Suppose V is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that range $T_1 = \operatorname{range} T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(V)$ such that $T_1 = T_2S$
 - **Proof** (\Longrightarrow) Suppose range $T_1 = \operatorname{range} T_2$. This suggests that there exists a basis w_1, \ldots, w_n of range T_1 and range T_2 . For such a basis, we could always find a corresponding list v_1, \ldots, v_m with which T_2 maps onto w_1, \ldots, w_n we could define S by $Su_i = v_i$ for $i = 1, \ldots, m$.
 - (\iff) Suppose there exists an invertible operator $S \in \mathcal{L}(V)$ such that $T_1 = T_2S$. Since S is bijective, this implies that range $T_1 = \operatorname{range} T_2$.
- Exercise 3.D.6 Suppose V and W are finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that there exist invertible operators $R \in \mathcal{L}(V)$ and $S \in \mathcal{L}(W)$ such that $T_1 = ST_2R$ if and only if dim null $T_1 = \dim \operatorname{null} T_2$.

 Proof The same with question 4.
- **Exercise 3.D.7** Suppose V and W are finite-dimensional. Let $v \in V$. Let

$$E = \{ T \in \mathcal{L}(V, W) : Tv = 0 \}.$$

- (a) Show that E is a subspace of $\mathcal{L}(V, W)$.
- (b) Suppose $v \neq 0$. What is dim E
- (a) **Proof** $0(v) \in E$ therefore E is not empty, and $T_1v = T_2v = 0$ implies $(T_1 + T_2)v = 0$. Tv = 0 implies $\lambda Tv = 0$ for all $\lambda \in \mathbb{F}$. Hence, E is a subspace of $\mathcal{L}(V, W)$.
- (b) Proof Suppose $v \neq 0$. Then there is a basis v_1, \ldots, v_n of V extended from v, and we can choose a basis w_1, \ldots, w_m of W. Since $\mathcal{L}(V, W)$ is isomorphic to $\mathbb{F}^{m,n}$ and Tv = 0 implies that the first column of $\mathcal{M}(T)$ is zero. Hence, dim E = m(n-1).

Exercise 3.D.8 Suppose V is finite-dimensional and $T:V\to W$ is a surjective linear map of V onto W. Prove that there is a subspace U of V such that $T|_U$ is an isomorphism of U onto W.

Proof Since T is surjective, any $w \in W$ we could find a $v \in V$ such that Tv = w. Define $x_1 \sim x_2 : \iff T(x_1) = T(x_2)$. We could define $U = \{[v] : \forall v \in V\}$. As such $T|_U$ is bijective, henceforth an isomorphism.

Exercise 3.D.9 Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if both S and T are invertible.

Proof (\Longrightarrow) Suppose ST is invertible. Then $(ST)^{-1} = T^{-1}S^{-1}$, this suggests that S and T are invertible. (\leftrightarrows) Suppose S and T are invertible. Then $S^{-1}T^{-1} = (ST)^{-1}$, this suggests that ST is invertible.

- Exercise 3.D.10 Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I Proof Directly from the definition of inverse.
- Exercise 3.D.11 Suppose V is finite-dimensional and $S, T, U \in \mathcal{L}(V)$ and STU = I. Show that T is invertible and that $T^{-1} = US$.

Proof The associativity implies that both S and U are invertible. Then $T = S^{-1}IU^{-1} = S^{-1}U^{-1}$. Hence, $T^{-1} = US$.

Exercise 3.D.12 Show that the result in the previous exercise can fail without the hypothesis that V is finite-dimensional.

Proof TODO: 3.D.12 Pending.

Exercise 3.D.13 Suppose V is a finite-dimensional vector space and $R, S, T \in \mathcal{L}(V)$ are such that RST is surjective. Prove that S is injective.

Proof Since RST is surjective, this suggests that R is surjective. Then R is injective, hence S is injective.

Exercise 3.D.14 Suppose v_1, \ldots, v_n is a basis of V. Prove that the map $T: V \to \mathbb{F}^{n,1}$ defined by

$$Tv = \mathcal{M}(V)$$

is an isomorphism of V onto $\mathbb{F}^{n,1}$; here $\mathcal{M}(v)$ is the matrix of $v \in V$ with respect to the basis v_1, \ldots, v_n .

Proof T is injective: $\forall v_i \in V, Tv = 0 \iff v = 0 \iff v = (0, \dots, 0)$

T is surjective: $\forall (w_1, \dots, w_n) \in \mathbb{F}^{n,1}$, $T(a_1v_1 + \dots + a_nv_n) = (a_1, \dots, a_n)$ since v_1, \dots, v_n is a basis of V. Henceforth, T is an isomorphism.

Exercise 3.D.15 Prove that every linear map from $\mathbb{F}^{n,1}$ to $\mathbb{F}^{m,1}$ is given by a matrix multiplication. In other words, prove that if $T \in \mathcal{L}(\mathbb{F}^{n,1},\mathbb{F}^{m,1})$, then there exists an m-by-n matrix A such that Tx = Ax for every $x \in \mathbb{F}^{n,1}$

Proof Let e_1, \ldots, e_n be the standard basis of $\mathbb{F}^{n,1}$ and w_1, \ldots, w_m be the standard basis of $\mathbb{F}^{m,1}$. Then $T(e_i) = a_{1i}w_1 + \ldots + a_{mi}w_m$. Then T(x) = Ax.

Exercise 3.D.16 Suppose V is finite-dimensional and \mathcal{E} is a subspace of $\mathcal{L}(V)$ such that $ST \in \mathcal{E}, TS \in \mathcal{L}(V)$ for all $S \in \mathcal{L}(V)$ and all $T \in \mathcal{E}$. Prove that $\mathcal{E} = \{0\}$ or $\mathcal{E} = \mathcal{L}(V)$

Proof

Exercise 3.D.17 Suppose V is finite-dimensional and \mathcal{E} is a subspace of $\mathcal{L}(V)$ such that $ST \in \mathcal{E}$ for all $S \in \mathcal{L}(V)$ and all $T \in \mathcal{E}$. Prove that $\mathcal{E} = \{0\}$ or $\mathcal{E} = \mathcal{L}(V)$

Proof Suppose $\mathcal{E} \neq \mathcal{L}(V)$. The supposition suggests that there exists some linear mapping in $\mathcal{L}(V)$ which is not in \mathcal{E} . We denote it by φ . Now, note that $\varphi \in \mathcal{L}(V)$, we have $\varphi T \in \mathcal{E}$

Suppose $\mathcal{E} \neq \{0\}$, we will show that $\mathcal{E} = \mathcal{L}(V)$. Suppose \mathcal{E} contains the identity map, then the prove is completed, so we assume identity map is not in \mathcal{E} .

Exercise 3.D.18 Show that V and $\mathcal{L}(\mathbb{F}, V)$ are isomorphic vector spaces.

Proof $\dim \mathcal{L}(\mathbb{F}, V) = \dim \mathbb{F} * \dim V = 1 * \dim V = \dim V$

- **Exercise 3.D.19** Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is such that T is injective and $\deg Tp \leq \deg p$ for every nonzero polynomial $p \in \mathcal{P}(\mathbb{R})$.
 - (a) Prove that T is surjective.
 - (b) Prove that $\deg Tp = \deg p$ for every nonzero $p \in \mathcal{P}(\mathbb{R})$
 - (a) Proof $\deg Tp = \deg p$ implies that $\dim T = \dim \mathcal{P}(\mathbb{R})$. Hence, T is surjective.
 - (b) Proof We prove it by induction: $\deg Tp = \deg p$ for $\dim p = 1$ (T is injective). Suppose it holds for $\dim p = n$, then, due to T is surjective, every $p \in \mathcal{P}(\mathbb{R})$ can be expressed as T(p) uniquely. For p = n + 1, suppose that $\deg Tp < \deg p$, then this implies that T is not injective, which is a contradiction. Hence, $\deg Tp = \deg p$ for all $n \in \mathbb{N}$.

E Products and Quotients of Vector Spaces

Exercise 3.E.1 Suppose T is a function from V to W. The **graph** of T is the subset of $V \times W$ defined by

$$\operatorname{graph} T = \{(v, Tv) : v \in V\}.$$

Prove that T is a linear map if and only if the graph of T is a subspace of $V \times W$.

Proof Since T is a well-defined function, the graph of T is not empty. Then, due to the properties of linear maps and vector space, T is also a subspace of $V \times W$. Hence, the graph of T is a subspace of $V \times W$.

Exercise 3.E.2 Suppose V_1, \ldots, V_m are vector spaces such that $V_1 \times \cdots \times V_m$ is finite-dimensional. Prove that each V_i is finite-dimensional.

Proof Suppose $\exists \dim V_i = \infty (i \in \{1, ..., m\})$. Then it follows that $\dim(V_1 \times \cdots \times V_m) = \sum \dim V_i = \infty$. This is a contradiction. Hence, each V_i is finite-dimensional.

Exercise 3.E.3 Give an example of a vector space V and subspaces U_1, U_2 of V such that $U_1 \times U_2$ is isomorphic to $U_1 + U_2$ but $U_1 + U_2$ is not a direct sum.

Proof TODO: 3.E.3 Give an example Pending.

Exercise 3.E.4 Suppose V_1, \ldots, V_m are vector spaces. Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic.

Proof Clearly, for all $T(v_1, \ldots, v_m) = w(w \in W)$, $T \in \mathcal{L}(V_1 \times \cdots \times V_m, W)$. Then we could define a map $S : \mathcal{L}(V_1 \times \cdots \times V_m, W) \to \mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ by $S(T) = (T_1, \ldots, T_m)$ where $T_i(v_i) = T(0, \ldots, v_i, \ldots, 0)$. We will verify that S is an isomorphism.

First we show that S is injective: Suppose S(T) = 0, then $T_i = 0$ for all $i \in \{1, ..., m\}$. Then T = 0.

Then we show that S is surjective: This is obvious since for every $(T_1, \ldots, T_m) \in \mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$, we could defin $T(v_1, \ldots, v_m) = (T_1v_1, \ldots, T_mv_m)$, where $S(T) = (T_1, \ldots, T_m)$.

Hence, S is an isomorphism and $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ is isomorphic to $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$.

Exercise 3.E.5 Suppose W_1, \ldots, W_m are vector spaces. Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ is isomorphic to $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$.

Proof Define $S: \mathcal{L}(V, W_1 \times \cdots \times W_m) \mapsto \mathcal{L}(V, W_m)$ by $S(T) = (T_1, \dots, T_m)$ where $T_i(v) = (0, \dots, T(v), \dots, 0)$. We will verify that S is an isomorphism by constructing an inverse function of S: define $S^{-1}(T_1(v), \dots, T_m(v)) = T_1(v) + \dots + T_m(v)$. $S \circ S^{-1} = \operatorname{id}(T)$

Exercise 3.E.6 For n a positive integer, define V_n by

$$V^n = \underbrace{V \times \cdots \times V}_{n}$$

Prove that V^n and $\mathcal{L}(\mathbb{F}^n, V)$ are isomorphic vector spaces.

Proof Define $S(v_1, \ldots, v_n) = T(\lambda_1, \ldots, \lambda_n)$ where $T \in \mathcal{L}(\mathbb{F}^n, V)$, we will show that S is an isomorphism by constructing an inverse function of S. Let $S^{-1}(T(\lambda_1, \ldots, \lambda_n)) = (T_1(\lambda), \ldots, T_n(\lambda))$ where $T_i(\lambda) = (0, \ldots, T(\lambda), \ldots, 0)$. $S \circ S^{-1} = \mathrm{id}$. Hence, They are isomorphic.

Exercise 3.E.7 Suppose v, x are vectors in V and U, W are subspaces of V such that v + U = x + W. Prove that U = W

Proof Rearrange the equation,

$$v + U = x + W$$

$$v - x + U = W$$

This implies that U = W.

Exercise 3.E.8 Prove that a nonempty subset A of V is an affine subset of V if and only if $\lambda v + (1 - \lambda)w \in A$ for all $v, w \in A$ and all $\lambda \in \mathbb{F}$

Proof (\Longrightarrow) For all affine subset in the form t+S, every element can be expressed as t+s. Then for all $t+s_1, t+s_2 \in t+S$, $\lambda(t+s_1)+(1-\lambda)(t+s_2)=t+\lambda s_1+(1-\lambda)s_2 \in t+S$ for all $t,s_1,s_2 \in t+S$ and all $\lambda \in \mathbb{F}$ since S is a subspace.

(\iff) If $\lambda v + (1 - \lambda)w \in A$ holds for all $v, w \in A$ and all $\lambda \in \mathbb{F}$. Rearrange the formula we get $\lambda v + (1 - \lambda)w = v + (1 - \lambda)(v + w)$. This implies that A is an affine subset.

F Duality

Exercise 3.F.1 Explain why every linear functional is either surjective or the zero map.

Proof Suppose f is not surjective, the dim range $f < \dim \mathbb{F}$ which could only be 0. Therefore, f is the zero map.

Suppose f is not the zero map, then dim range $f = \dim \mathbb{F}$, which implies that f is surjective.

Exercise 3.F.2 Give three distinct examples of linear functional on $\mathbb{R}^{[0,1]}$.

Proof TODO: 3.F.2 Give three distinct examples Pending.

- **Exercise 3.F.3** Suppose V is finite-dimensional and $v \in V$ with $v \neq 0$. Prove that there exists $\varphi \in V'$ such that $\varphi(v) = 1$.
 - **Proof** Since $v \neq 0$, we could extend v to a basis v_1, \ldots, v_n of V. Define $\varphi(v) = 1$ and $\varphi(v_i) = 0$ for $i \neq 1$. Then φ is a linear functional.
- **Exercise 3.F.4** Suppose V is finite-dimensional and U is a subspace of V such that $U \neq V$. Prove that there exists $\varphi \in V'$ such that $\varphi(u) = 0$ for every $u \in U$ but $\varphi \neq 0$.
 - **Proof** Let u_1, \ldots, u_m be a basis of U and extend to $u_1, \ldots, u_m, v_1, \ldots, v_n$ a basis of V. Define $\varphi(u_i) = 0$ for $i = 1, \ldots, m$ and $\varphi(v_i) = 1$ for $i = 1, \ldots, n$. Then φ is a linear functional.
- **Exercise 3.F.5** Suppose V_1, \ldots, V_m are vector spaces. Prove that $(V_1 \times \cdots \times V_m)'$ and $V_1' \times \cdots \times V_m'$ are isomorphic vector spaces.
 - **Proof** Define $S(f) = (f_1, \ldots, f_m)$ where $f_i(v_1, \ldots, v_m) = (0, \ldots, f_i, \ldots, 0)$. And let $S^{-1}(f_1, \ldots, f_m) = f_1 + \cdots + f_m$. Then S is an isomorphism.
- **Exercise 3.F.6** Suppose V is finite-dimensional and $v_1, \ldots, v_m \in V$. Define a linear map $\Gamma: V' \mapsto \mathbb{F}^m$ by

$$\Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m)).$$

- (a) Prove that v_1, \ldots, v_m spans V if and only if Γ is injective.
- (b) Prove that v_1, \ldots, v_m is linearly independent if and only if Γ is surjective.
- (a) **Proof** (\Longrightarrow) Suppose v_1, \ldots, v_m spans V, then for all $\varphi \in V'$, $\Gamma(\varphi) = 0$ implies that $\varphi(v_1) = \cdots = \varphi(v_m) = 0$, that is, $\varphi = 0$. Hence, Γ is injective.
 - (\iff) Suppose Γ is injective, then $\varphi(v_1) = \cdots = \varphi(v_m) = 0$ implies that $\varphi = 0$. Hence, v_1, \ldots, v_m is surjective, that is, spanning V.
- (b) **Proof** (\Longrightarrow) Suppose v_1, \ldots, v_m is linearly independent. Then for all $(\lambda_1, \ldots, \lambda_m) \in \mathbb{F}^m$, $\lambda_1 \varphi(v_1) + \cdots + \lambda_m \varphi(v_m) = 0$ implies that $\lambda_1 = \cdots = \lambda_m = 0$ or $\forall v_i = 0$. Therefore, for each $\varphi(v_i)$, φ spans \mathbb{F} . Hence, Γ is surjective.
 - (\iff) Suppose Γ is surjective, then for all $v_i, \varphi \neq 0$. That is, v_1, \ldots, v_m is linearly independent. Otherwise, suppose v_1, \ldots, v_m is linearly dependent. Let v_k be the one can be expressed by all other v's. Then $\dim \Gamma(\varphi) < m = \dim \mathbb{F}^m$, suggesting that Γ is not surjective, contradiction! Therefore, v_1, \ldots, v_m is linearly independent.
- Exercise 3.F.7 Suppose m is a positive integer. Show that the dual basis of the basis $1, x, \ldots, x^m$ of $\mathcal{P}_m(\mathbb{R})$ is $\varphi_0, \varphi_1, \ldots, \varphi_m$, where $\varphi_j(p) = \frac{p^{(j)}(0)}{j!}$. Here $p^{(j)}$ denotes the j^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.
 - **Proof** Since $1, x, ..., x^m$ is a basis of $\mathcal{P}_m(\mathbb{R})$, let $p = a_1 + a_2 x + \cdots + a_m x_m$. Note that $\frac{p^j(0)}{j!} = a_j$, then $\varphi_j(p) = a_j$ if and only if i = j. Hence, $\varphi_0, \varphi_1, ..., \varphi_m$ is the dual basis of $1, x, ..., x^m$.
- \triangle Exercise 3.F.8 Suppose m is a positive integer.
 - (a) Show that $1, x 5, \dots, (x 5)^m$ is a basis of $\mathcal{P}_m(\mathbb{R})$.
 - (b) What is the dual basis of the basis in part(a)?
 - (a) **Proof** This is obvious since we can generate an upper-triangle matrix with $1, x 5, \dots, (x 5)^m$
 - (b) **Proof** The dual basis is $\varphi_0, \varphi_1, \ldots, \varphi_m$ where $\varphi_j(p) = \frac{p^{(j)}(5)}{j!}$
- **Exercise 3.F.9** Suppose v_1, \ldots, v_n is a basis of V and $\varphi_1, \ldots, \varphi_n$ is the corresponding dual basis of V'. Suppose $\psi \in V'$. Prove that

$$\psi = \psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n$$

Proof Notice that

$$(\psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n)(v_1) = \psi(v_1)$$

$$\vdots$$

$$(\psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n)(v_n) = \psi(v_n)$$

Therefore, $\psi = \psi(v_1)\varphi_1 + \cdots + \psi(v_n)\varphi_n$ as they coincide at a basis of V.

- **Exercise 3.F.10** Suppose A is an m-by-n matrix with $A \neq 0$. Prove that the rank of A is 1 if and only if there exist $(c_1, \ldots, c_m) \in \mathbb{F}^m$ and $(d_1, \ldots, d_n) \in \mathbb{F}^n$ such that $A_{j,k} = c_j d_k$ for every $j = 1, \ldots, m$ and every $k = 1, \ldots, n$
 - **Proof** (\Longrightarrow) Suppose the rank of A is 1. Then there exists a
- **Exercise 3.F.11** Show that the dual map of the identity map on V is the identity map on V'.
 - **Proof** Let $id_V : V \mapsto V$ be the identity map on V. Then the dual map of id_V is the linear map $id'_V(\varphi) := \varphi \circ id_V = \varphi$ where $\varphi \in \mathcal{L}(V, \mathbb{F})$. Hence, the dual map of the identity map on V is the identity map on V'.
- Exercise 3.F.12 Suppose W is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T' = 0 if and only if T = 0. Proof (\Longrightarrow) Suppose T' = 0. By definition, it suggests that $T'(\varphi) = \varphi(T(v)) = 0$ for all $\varphi \in \mathcal{L}(V, \mathbb{F})$ and $v \in V$. Therefore, it implies that T = 0.
 - (\iff) Suppose T=0. By definition and with the fact that all linear maps map 0 to 0, it suggests that T'=0.
- **Exercise 3.F.13** Suppose V and W are finite-dimensional. Prove that the map that takes $T \in \mathcal{L}(V, W)$ to $T' \in \mathcal{L}(W', V')$ is an isomorphism.
 - **Proof** Since dim $\mathcal{L}(V, W) = \dim(W', V')$, the identity map is bijective. Hence, the map is an isomorphism.
- **Exercise 3.F.14** Suppose $U \subset V$. Explain why $U^0 = \{ \varphi \in V' : U \subset \text{null } \varphi \}$
 - **Proof** By definition, of course that the zero map 0 is in null space.

- Exercise 3.F.15 Suppose V is finite-dimensional and $U \subset V$. Show that $U = \{0\}$ if and only if $U^0 = V'$.

 Proof (\Longrightarrow) Suppose $U = \{0\}$. Then it suggests that $\forall \varphi \in \mathcal{L}(U, \mathbb{F}), \varphi(u) = 0$. That is, $U^0 = V'$. (\Longleftrightarrow) Directly came from the definition.
- Exercise 3.F.16 Suppose V is finite-dimensional and U is a subspace of V. Show that U = V if and only if $U^0 = \{0\}$

Proof (\Longrightarrow) Suppose U=V. Then $U^0=V^0:=\mathcal{L}(V,\mathbb{F})$. For a vector space, this could only happen when $V=\{0\}$

 $(\longleftarrow) U^0 = \{0\}$ suggests that $\dim U = \dim V$. That is, U = V

- **Exercise 3.F.17** Suppose U and W are subsets of V with $U \subset W$. Prove that $W^0 \subset U^0$. **Proof** Since $U \subset W$, this suggests that $\forall \varphi \in W^0, \varphi(u) = 0$ for all $u \in U$. Hence, $W^0 \subset U^0$.
- **Exercise 3.F.18** Suppose V is finite-dimensional and U and W are subspaces of V with $W^0 \subset U^0$. Prove that $U \subset W$.

Proof Following from $W^0 \subset U^0$, it suggests that dim $U > \dim W$. Henceforth, $U \subset W$.

Exercise 3.F.19 Suppose U, W are subspaces of V. Show that $(U + W)^0 = U^0 \cap W^0$ **Proof** Let u_1, \ldots, u_m be a basis of U and $u_1, \ldots, u_m, w_1, \ldots, w_n$ be a basis of W. Then

Chapter 5 Eigenvalues, eigenvectors, and invariant subspaces

A Invariant Subspaces

- **Exercise 5.A.1** Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.
 - (a) Prove that if $U \subset \operatorname{null} T$, then U is invariant under T.
 - (b) Prove that if range $T \subset U$, then U is invariant under T.

Proof

- (a) Let $u \in U$. Then $T(u) \in \text{null } T$ because $u \in \text{null } T$. Therefore, $T(u) \in U$.
- (b) Let $u \in U$. Then $T(u) \in U$ because $T(u) \in \operatorname{range} T \subset U$.
- Exercise 5.A.2 Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that $\operatorname{null} S$ is invariant under T. Proof We have $ST(\operatorname{null} S) = T(S(\operatorname{null} S)) = T(0) = 0$. This implies that $T(\operatorname{null} S) \subset \operatorname{null} S$.
- Exercise 5.A.3 Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that range S is invariant under T. Proof TODO: 5.A.12 Pending.
- **Exercise 5.A.4** Suppose that $T \in \mathcal{L}(V)$ and $U_1, \dots U_m$ are subspaces of V invariant under T. Prove that $U_1 + \dots + U_m$ is invariant under T.

Proof

$$T(U_1 + \dots + U_m) = T(U_1) + \dots + T(U_m)$$

$$T(U_1) \subset U_1 \subset U_1 + \dots + U_m$$

$$\dots$$

$$T(U_m) \subset U_m \subset U_1 + \dots + U_m$$

Since $U_1 + \cdots + U_m$ is still a subspace, $T(U_1 + \cdots + U_m) \subset U_1 + \cdots + U_m$.

Exercise 5.A.5 Suppose $T \in \mathcal{L}(V)$. Prove that the intersection of every collection of subspaces of V that are invariant under T is invariant under T.

Proof Every invariant subspace contains $\{0\}$, and also which is the smallest one. Hence, the intersection is $\{0\}$ and is trivially invariant under T.

Exercise 5.A.6 Prove or give a counterexample: if V is a finite-dimensional vector space and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Proof Because every operator on V leaves $\{0\}$ invariant, the question turns to prove the existence of an operator under which only $\{0\}$ and V is invariant.

The case where $\dim V \leq 1$ is trivial. Suppose $\dim V \geq 2$. We could always construct such an operator U. Suppose there exists an invariant subspace U_1 of V under an operator T that is neither $\{0\}$ nor V for which $\dim U_1 < \dim V$. Define T which rotates U_1 to W, where $W \oplus U_1 = V$. $\forall u \in U_1, T(u)$ have some component in W, which is not in U_1 . Thus, U is not invariant under U, which is a contradiction. Therefore, $U = \{0\}$ or U = V.

Exercise 5.A.7 Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$$

- (a) Find all Eigenvalues and eigenvectors of T.
- (b) Find all invariant subspaces of T.

Proof

- (a) **Proof** the eigenvalues and the corresponding eigenvectors are i and $(0, \ldots, x_i, \ldots, 0)$
- (b) **Proof** The invariant subspaces are $\{0\}$, \mathbb{F}^n , and the subspaces spanned by the eigenvectors.

Exercise 5.A.8 Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbb{R}))$ by

$$(Tp)(x) = xp'(x)$$

for all $x \in \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

Proof

$$\lambda p(x) = Tp(x)$$

$$\lambda a_4 x^4 + \lambda a_3 x^3 + \lambda a_2 x^2 + \lambda a_1 x + \lambda a_0 = x(4a_4 x^3 + 3a_3 x^2 + 2a_2 x + a_1)$$

$$= 4a_4 x^4 + 3a_3 x^3 + 2a_2 x^2 + a_1 x$$

The eigenvalues and eigenvectors are i and ix^i respectively.

Exercise 5.A.9 Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in F$. Prove that there exists $\alpha \in \mathbb{F}$ such that $|\alpha - \lambda| < \frac{1}{1000}$ and $T - \alpha I$ is invertible.

Proof We only need to make α not be an eigenvalue of T. We could achieve this by the following procedure: suppose λ is an eigenvalue of T, then $T - \lambda I$ is not invertible. We could then choose $\alpha = \lambda + \frac{1}{1000+i}$, where $i \in \{1, \ldots, \dim V + 1\}$, which is not an eigenvalue of T.

Exercise 5.A.10 Suppose $V = U \oplus W$, where U and W are nonzero subspaces of V. Define $P \in \mathcal{L}(V)$ by P(u+w) = u for $u \in U$ and $w \in W$. Find all eigenvalues and eigenvectors of P.

Proof The eigenvalues are 1 and 0, and the eigenvectors are u and w respectively.

- **Exercise 5.A.11** Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible.
 - (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
 - (b) What is the relationship between the eigenvectors of T and those of $S^{-1}TS$?
 - (a) Proof Let λ be a eigenvalue of T and v be the corresponding eigenvector. Then $T(v) = \lambda v$. Now we will verify that λ is also an eigenvalue of $S^{-1}TS$. $S^{-1}(T)S(S^{-1}(v)) = S^{-1}(\lambda v) = \lambda S^{-1}(v)$ since S is invertible. Therefore, eigenvalue for T is also an eigenvalue of $S^{-1}TS$. Similarly, let λ be an eigenvalue of $S^{-1}TS$ and v be the corresponding eigenvector such that $S^{-1}TS(v) = \lambda v$. Notice that $S(S^{-1}TS)S^{-1} = T$. Hence, an eigenvalue for $S^{-1}TS$ is also an eigen value for $S^{-1}TS$. Therefore, the eigenvalues are the same.
 - (b) **Proof** The eigenvectors of $S^{-1}TS$ are $S^{-1}v$.
- **Exercise 5.A.12** Suppose V is a complex vector space, $T \in \mathcal{L}(V)$, and the matrix of T with respect to some basis of V contains only real entries. Show that if λ is an eigenvalue of T, then so is $\bar{\lambda}$.

Proof Suppose λ is an eigenvalue of T,

Exercise 5.A.13 Show that the operator $T \in \mathcal{L}(\mathbb{C}^{\infty})$ defined by

$$T(z_1, z_2, \ldots) = (0, z_1, z_2, \ldots)$$

has no eigenvalues.

Proof Suppose λ is an eigenvalue of T, and $(0, z_1, z_2, ...)$ be the corresponding eigenvector. Then $T(z_1, z_2, ...) = \lambda(0, z_1, z_2, ...)$. This implies that $z_1 = 0$, and $z_2 = \lambda z_1 = 0$, and so on. Therefore, the eigenvector is (0, 0, 0, ...), which is not an eigenvector.

Exercise 5.A.14 Suppose n is a positive integer and $T \in \mathcal{L}(\mathbb{F}^n)$ is defined by

$$T(x_1,...,x_n) = (x_1 + \cdots + x_n,...,x_1 + \cdots + x_n)$$

in other words, T is the operator whose matrix (with respect to the standard basis) consists of all 1's. Find all eigenvalues and eigenvectors of T.

Proof The eigenvalues are n and 0, and the eigenvectors are $(1, \ldots, 1)$, and $\{(x_1, \ldots, x_n) \in \mathbb{F}^n / \{0\} : x_1 + \cdots + x_n = 0\}$ respectively.

TODO: Sec.A 20 and beyond

B Eigenvectors and Upper-Triangular Matrices

- **Exercise 5.B.1** Suppose $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$
 - (a) Prove that I T is invertible and that

$$(I-T)^{-1} = I + T + \dots + T^{n-1}.$$

- (b) Explain how you would guess the formula above.
- (a) **Proof** Notice that

$$(I-T)(I+T+\cdots+T^{n-1})=(I+T+\cdots+T^{n-1})(I-T)=I-T^n=I$$

- (b) **Proof**
- Exercise 5.B.2 Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I)=0. Suppose λ is an eigenvalue of T. Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$

Proof Suppose (T-2I)(T-3I)(T-4I)=0, this implies that T is upper triangular. Therefore, the eigenvalues are either 2, 3, or 4.

- Exercise 5.B.3 Suppose $T \in \mathcal{L}(V)$ and $T^2 = I$ and -1 is not an eigenvalue of T. Prove that T = I.

 Proof Suppose $T^2 = I$. Following from $T^2 * T = T$, we have $T^{2n} = I$. Now if $T \neq I$, then a matrix of T with respect to some basis which is upper triangular has eigenvalues 1 and -1. This is a contradiction.
- Exercise 5.B.4 Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{Range } P$.

 Proof $P^2 = P$ implies that P is invariant under V. Therefore, $V = \text{null } P \oplus \text{Range } P$.
- **Exercise 5.B.5** Suppose $S, T \in \mathcal{L}(V)$ and S is invertible. Suppose $p \in \mathcal{P}(\mathbb{F})$ is a polynomial. Prove that

$$p(STS^{-1}) = Sp(T)S^{-1}$$

Proof From the properties of polynomials, we have

$$p(STS^{-1}) = a_0I + a_1STS^{-1} + \dots + a_n(STS^{-1})^n$$

$$= a_0I + a_1STS^{-1} + \dots + a_nSTS^{-1}STS^{-1} \dots STS^{-1}$$

$$= a_0I + a_1STS^{-1} + \dots + a_nST^nS^{-1}$$

$$= Sp(T)S^{-1}$$

Exercise 5.B.6 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V invariant under T. Prove that U is invariant under p(T) for every polynomial $p \in \mathcal{P}(\mathbb{F})$

Proof From the properties of polynomials, we have

$$p(T)(U) = a_0 I + a_1 T + \dots + a_n T^n(U)$$
$$= a_0 I(U) + a_1 T(U) + \dots + a_n T^n(U)$$
$$= U$$

Exercise 5.B.7 Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigenvalue of T^2 if and only if 3 or -3 is an eigenvalue of T.

Proof The upper triangle matrix of T^2 with respect to some basis has 9 on the diagonal, namely eigenvalue, therefore, the eigenvalues of T are $\sqrt{9}=\pm 3$

Exercise 5.B.8 Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -1$.

Proof

Exercise 5.B.9 Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $v \in V$ with $v \neq 0$. Let p be a nonzero polynomial of smallest degree such that p(T)v = 0. Prove that every zero of p is an eigenvalue of T.

Proof Suppose $\lambda \in \mathbb{F}$ is a zero of p. Then by the fundamental theorem of algebra, we have $p(x) = (x - \lambda)q(x)$,

where q(x) is a polynomial of degree n-1. Therefore, $p(T)v = (T-\lambda I)q(T)v = 0$. Since p is of smallest degree, $q(T)v \neq 0$. Hence, λ is an eigenvalue of T.

Exercise 5.B.10 Suppose $T \in \mathcal{L}(V)$ and v is an eigenvetor of T with eigenvalue λ . Suppose $p \in \mathcal{P}(\mathbb{F})$. Prove that $p(T)v = p(\lambda)v$

Proof

$$p(T)v = a_0v + a_1Tv + \dots + a_nT^nv$$
$$= a_0v + a_1\lambda v + \dots + a_n\lambda^n v$$
$$= p(\lambda)v$$

Exercise 5.B.11 Suppose $\mathbb{F} = \mathbb{C}$, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbb{C})$ is a polynomial, and $\alpha \in \mathbb{C}$. Prove that α is an eigenvalue of p(T) if and only if $\alpha = p(\lambda)$ for some eigenvalue λ of T.

Proof Suppose α is an eigenvalue of p(T), we have $p(T) = (T - \lambda I)q(T)$.

C Eigenspaces and Diagonal Matrices

- Exercise 5.C.1 Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V = \text{null } T \oplus \text{Range } T$.

 Proof Since T is diagonalizable, V has a basis of eigenvectors of T. Therefore, $V = \text{null } T \oplus \text{Range } T$.
- **Exercise 5.C.2** Prove the converse of the statement in the exercise above or give a counterexample to the converse.

Proof

- **Exercise 5.C.3** Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that the following are equivalent:
 - (a) $V = \text{null } T \oplus \text{range } T$
 - (b) V = null T + range T
 - (c) $\operatorname{null} T \cap \operatorname{range} T = \{0\}$

Proof (a) \iff (b): This is trivial.

(b) \rightarrow (c): Suppose V = null T + range T. By Theorem, we have

$$\dim V = \dim(\operatorname{null} T + \operatorname{range} T)$$

$$= \dim \operatorname{null} T + \dim \operatorname{range} T + \dim(\operatorname{null} T \cap \operatorname{range} T)$$

Exercise 5.C.4 Give an example to show that the exercise above is false without the hypothesis that V is finite-dimensional.

Proof

Exercise 5.C.5 Suppose V is a 1finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Prove that T is diagonalizable if and only if

$$V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I)$$

for every $\lambda \in \mathbb{C}$

Proof Suppose T is diagonalizable, the eigenvectors of T form a basis of V. This implies that $T - \lambda I$ has same dimension to V. That is, $V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I)$.

Exercise 5.C.6 Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, and $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.

Proof Since S and T have the same eigenvectors. Then S and T are diagonalizable, and this implies that ST = TS.

- Exercise 5.C.7 Suppose $T \in \mathcal{L}(\mathbb{F}^5)$ and $\dim E(8,T)=4$. Prove that T-2I or T-6I is invertible. Proof Suppose $\dim E(8,T)=4$, then we have 4 independent eigenvectors of T with eigenvalue 8. And the diagonal matrix will have 4 8's on the diagonal. Therefore, Suppose T-2I or T-6I is not invertible, that is, 2 or 6 is an eigenvalue of T. the upper-triangular matrix of T will have 2 or 6 on the diagonal since $\dim T \leq 5$, which is a contradiction.
- **Exercise 5.C.8** Suppose $T \in \mathcal{L}(V)$ is invertible. Prove that $E(\lambda T) = E(\frac{1}{\lambda}, T^{-1})$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.

Chapter 6 Inner product spaces

A Inner products and Norms

Exercise 6.A.1 Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^3

Proof For
$$((1,1),(1,1)),((-1,-1),(1,1)) \in \mathbb{R}^2 \times \mathbb{R}^2$$
, we have

$$|1 \cdot 1| + |1 \cdot 1| = 2$$

for both two vectors. But on the same hand, we also have

$$((1,1),(1,1)) + ((-1,-1),(1,1)) = ((0,0),(1,1))$$

= $|0 \cdot 1| + |0 \cdot 1| = 0$

This could not be an inner product since it violates the additivity property of inner products.

Exercise 6.A.2 Show that the function that takes $((x_1, x_2, x_3), (y_1, y_2, y_3)) \in \mathbb{R}^3 \times \mathbb{R}^3$ to $x_1y_1 + x_3y_3$ is not an inner product on \mathbb{R}^3

Proof It take (0,1,0) to zero while $(0,1,0) \neq 0$

Exercise 6.A.3 Suppose $\mathbb{F} = \mathbb{R}$ and $V \neq \{0\}$. Replace the positivity condition (which states that $\langle v, v \rangle \geq 0$ for all $v \in V$) in the definition of an inner product with the condition that $\langle v, v \rangle > 0$ for some $v \in V$. Show that this new definition of an inner product does not change the set of functions from $V \times V$ to \mathbb{R} that are inner products on V.

Proof We show that the two condition are equivalent on the given space. Suppose the positivity condition is satisfied, then the new condition is obviously true for some $v \in V$.

Now we suppose the new condition is satisfied, then for all $v \in V$, we have

$$\langle v, v \rangle =$$

Exercise 6.A.4 aa

Chapter 7 Operators on inner product spaces

A Self-adjoint and Normal Operators

Exercise 7.A.1 Suppose n is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(z_1,\ldots,z_n)=(0,z_1,\ldots,z_{n-1}).$$

Find a formula for $T^*(z_1, \ldots, z_n)$

Proof By definition, we have

$$\langle T(z_1, \dots, z_n), (x_1, \dots, x_n) \rangle$$
=\langle (0, z_1, \dots, z_{n-1}), (z_1, \dots, z_n) \rangle
=0 \cdot x_1 + z_1 \cdot x_2 + \dots + z_{n-1} \cdot x_n
=z_1 \cdot 0 + z_1 \cdot x_2 + \dots + z_{n-1} \cdot x_n + z_n \cdot 0
=\langle (z_1, \dots, z_n), (x_2, x_3, \dots, 0) \rangle

Therefore, $T^*(z_1, ..., z_n) = (z_2, ..., z_n, 0)$.

Exercise 7.A.2 Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .

Proof Suppose λ is an eigenvalue of T, and choose $v \in V$ be the eigenvector. Then, we have

$$\begin{aligned} \langle T(v), v \rangle &= \langle \lambda v, v \rangle \\ &= \lambda \langle v, v \rangle \\ &= \langle v, \overline{\lambda} v \rangle \\ &= \langle v, T^*(v) \rangle \end{aligned}$$

Therefore, λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^*

Exercise 7.A.3 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Proof Choose $v \in U$ and $w \in U^{\perp}$, suppose U is invariant under T. Then, since $T(v) \in U$, we have

$$0 = \langle T(v), w \rangle = \langle v, T^*(w) \rangle$$

. This implies that $T^*(w) \in U^{\perp}$. Therefore, T^* is invariant under U^{\perp} .

- **Exercise 7.A.4** Suppose $T \in \mathcal{L}(V, W)$. Prove that
 - (a) T is injective if and only if T^* is surjective;
 - (a) T is surjective if and only if T^* is injective.
 - (a) **Proof** Suppose T is injective.

B The spectral theorem

Exercise 7.B.1 True or false (and give a proof of your answer): There exists $T \in \mathcal{L}(R_b^3)$ such that T is not self-adjoint (with respect to the usual inner product) and such that there is a basis of \mathbb{R}^3 consisting of eigenvectors of T

Proof The statement is false: suppose there is a basis of \mathbb{R}^3 consisting of eigenvectors of T. Then we could find a diagonal matrix with respect the basis consisting of eigenvectors of T. Clearly a diagonal matrix

equals its transpose. Hence, $T = T^*$, that is, T is self-adjoint.

Exercise 7.B.2 Suppose that T is a self-adjoint operator on a finite-dimensional inner product space and that 2 and 3 are the only eigenvalues of T. Prove that $T^2 - 5T + 6I = 0$

Proof Suppose T is self-adjoint, then we could find an eigenvector or T with $\|u\|=0$. Let $U=\operatorname{span} u$, then U and U^{\perp} is invariant under T, $T|_{U}\in L(U)$ and $T|_{U}\in L(U)$ are self-adjoint. We could choose an orthonormal basis in both and the new list created by combining them is also an orthonormal basis consisting of eigenvectors. For any $v\in V$, we could decompose v onto the orthonormal basis. Then, following from $(T^2-5T+6I)v=(T-2I)(T-3I)v$. Since $\lambda\in\{2,3\}$, one of them must be zero. Therefore, $T^2-5T+6I=0$ as desired.

Exercise 7.B.3 Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^3)$ such that 2 and 3 are the only eigenvalues of T and $T^2 - 5T + 6I \neq 0$.

Proof Consider T such that there doesn't exist an orthonormal basis consisting of eigenvectors of T. Then we could find a $v \in V$ such that v cannot expressed as $a_1\lambda_1 + \cdots + a_n\lambda_n$ where λ_n are eigenvectors of T. Then T(v) does not equals to 0.

C Positive Operators and Isometries

Exercise 7.C.1 Prove or give a counterexaples: If $T \in \mathcal{L}(V)$ is self-adjoint and there exists an orthonormal basis e_1, \ldots, e_n of V such that $\langle Te_j, e_j \rangle \geq 0$ for each j, then T is a positive operator.

Proof TODO: Pending

Exercise 7.C.2 Suppose T is a positive operator on V. Suppose $v, w \in V$ are such that

$$Tv = w$$
and $Tw = v$

Prove that v = w.

Proof Suppose T is a positive operator. Then we have

$$\langle T(v-w), v-w \rangle > 0$$

On the other hand, we have

$$\langle T(v-w), v-w \rangle = \langle Tv - Tw, v-w \rangle$$

= $-\langle v-w, v-w \rangle < 0$

Therefore, $\langle v - w, v - w \rangle = 0$ implies v = w.

Exercise 7.C.3 Suppose T is a positive operator on V and U is a subspace of V invariant under T. Prove that $T|_U$ is a positive operator on U.

Proof Suppose T is a positive operator on V and U is invariant under T. Then, by definition, for any $u \in U$, $T|_U$ defines a operator in $\mathcal{L}(U)$ and for any $u \in U \subseteq V$, we have

$$\langle Tu, u \rangle \geq 0$$

. Therefore, $T|_{U}$ is a positive operator on U.

D Polar Decomposition and Singular Value Decomposition

Exercise 7.D.1 Fix $u, x \in V$ with $u \neq 0$. Define $T \in \mathcal{L}(V)$ by

$$Tv = \langle v, u \rangle x$$

for every $v \in V$. Prove that

$$\sqrt{T^*T}v = \frac{\|x\|}{\|u\|} \langle v, u \rangle u$$

for every $v \in V$.

Proof First we need to find the T^* . By definition, we have

$$\langle v, T^*w \rangle = \langle Tv, w \rangle$$

$$= \langle \langle v, u \rangle x, w \rangle$$

$$= \langle v, u \rangle \langle x, w \rangle$$

$$= \langle v, \langle w, x \rangle u \rangle$$

$$T^*v = \langle v, x \rangle u$$

Then

$$T^*Tv = T^*\langle v, u \rangle x$$

$$= \langle v, u \rangle T^*x$$

$$= \langle v, u \rangle \langle x, x \rangle u$$

$$= \langle v, u \rangle \|x\|^2 u$$

Notice that the first two terms are scalars, the eigenvector could only be u and its eigenvalue is $\langle u,u\rangle \|x\|^2=1$ $\left\|u\right\|^2 \left\|x\right\|^2.$

Thus,
$$\sqrt{T^*T}v = \frac{T^*Tv}{\sqrt{\lambda}} = \frac{\langle v, u \rangle ||x||^2 u}{||u|| ||x||} = \frac{||x||}{||u||} \langle v, u \rangle u$$

Thus, $\sqrt{T^*T}v = \frac{T^*Tv}{\sqrt{\lambda}} = \frac{\langle v,u\rangle \|x\|^2u}{\|u\|\|x\|} = \frac{\|x\|}{\|u\|} \langle v,u\rangle u$ **Exercise 7.D.2** Find a singular values of the differentiation operator $D\in\mathcal{P}(\mathbb{R}^2)$ defined by Dp=p', where the inner product on $\mathcal{P}(\mathbb{R}^2)$ is $\langle p,q \rangle = \int_{-1}^1 p(x) q(x) \mathrm{d}x$