COMPUTER SCIENCE Database Management System Query Language Lecture_6 Vijay Agarwal sir

SQL Clauses

SQL Operators

Reletional Algebra.

SQL

SQL clayer.

SELECT FROM WHERE GROUP RY HAVING Set operations
UNION & UNION ALL
Intersect & Intersect ALL
MINUS & MINUS ALL.

ANY

STUDENT By, Nome. Branch, Morles)

(B) W.A.Q (write A Querry) to Reterive Sid of the Student Who secured (Ist Highest) Highest Morks?

> · RA · SAL · Max.

STUDENT

2	LD	Name	Branch	Mosly
	S	Khughi	CS	80
	Sz	Devay	TT	28
	53	Rachit	CS	97
	Sy	Bhavya	IT	92

Sy

CT2. marks.

T2 80 5 857 92 92

Using Max Bunction

Select Sid From Student

WHERE marks = (Select max (marks))
From Student

.

Triginers Sig who mades Not MUMINI Minimum Conditional Relational Algebra Toin Rename Student Theid (Student) marks > M 80 80 Sid 92 sid ST SN ST Bo 25 97 sie 92 (Jome marc

STUDENT By, Name, Branch, Morles)

Q

W.A.9 (write A Querry) to Referive Sid of the Student Who secured (II'm Highest) 2nd Highest Morks?

> RA SQL Mex.

STUDENT

ID Name	Banch	Mouly
SI Khughi	CS	80
Se Devamph	IT	28
S3 Rachit	CS	97
Sy Bhavya	IT	92

Supplier (Sid Sname Rating) Posts (Pid Prame Calar) Catalog (Sid Pid Cost) (B) W.A.Q to Referive Sid whose Pouts Cost greenter

SFLECT Sid FROM Catalog WHERE Gost >90000.

than 90,000?

Supplier (Sid Sname Roting) Bests (Pid Prame Celer) Catalog (Sid Pid Cost) (B) M.A.Q to Refereive Pid of Red Color Parts?

SELECT Pid
FROM Palts
WHERE Glur='Red'

1

Supplier (Sid Sname Rating)
- Poets (Pid Prame Celler)
- Catalog (Sid Pid Cost)

Rename operator

As MACE

(30) M.A.Q to Referive Sid ab 1Red Color Part?

SELECT Sid FROM Buts P. Catalog As C WHERE P. Pid = C. Pid AND P. Calur = Red

.

- Suppleier (Sid Sname Rosting) , Posts (Pid Prame Calor) · Catalog (Sid Pid Cost) (8) W.A.Q to Referive Sname who supplied Red Color ? SELECT Sname From Supplier S, Parts P, Catalog C WHERE P.Pid = C.Pid AND C.sid = S.sid AND Color- Red.

Subplier (Sid Sname Rating)
Poets (Pid Prame Calar)
Catalog (Sid Pid Cost)

Supplier (Sid Sname Rating)

Poets (Pid Prame Calar)

Catalog (Sid Pid Cost)

Rating >5, => Progree.

Supplier (<u>Sid</u>, Sname, Rating) Parts (<u>Pid</u>, Pname, Color) Catalog (<u>Sid</u>, <u>Pid</u>, Cost)

Catalog

Sid	Pid
S ₁	P_1
S_1	P ₂
S ₂	P_3
S ₄	P ₄

Parts

Pid	Color
P_1	Red
P ₂	Green
P ₃	Red
P ₄	Yellow

Supplier (<u>Sid</u>, Sname, Rating) Parts (<u>Pid</u>, Pname, Color) Catalog (<u>Sid</u>, <u>Pid</u>, Cost)

Catalog

Sid	Pid
S_1 .	P ₁
S_1	P ₂
S ₂ .	P_3
S ₄	P ₄

SI Any

Parts

Pid	Color
P ₁	Red
P ₂	Green
P_3	Red
P ₄	Yellow

Retrieve Sid of the Supplier who supplied some Red Color

Query I:

Select

From

Sid

Catalog C, Parts P

output

 S_1

 S_2

FROM

WHERE

WHERE

Color = Red

one to Mary Comparison In: In operator is used to Compare a value with list of value.

Member Ship Set.

a=47 X:[1,2,3,5]

a In X: False

(P=2) PInX: True.

Supplier (<u>Sid</u>, Sname, Rating) Parts (<u>Pid</u>, Pname, Color) Catalog (<u>Sid</u>, <u>Pid</u>, Cost)

Catalog

Sid	Pid
S_1	P_1
S_1	P ₂
(S_2)	P ₃
S ₄	P ₄

Parts

Pid	Color
P ₁	Red
P ₂	Green
P ₃	Red
P ₄	Yellow

Query III: Sid Select Catalog FROM WHERE Pid Pid P1 P3): True P1 P2 (IN) (P1, P3): False P3 (IN) (P1, P3): True

PL (NOT IN) [P1 P3]: False By (NOT IN) [P1, P3]: True

NOT IN.

P3 (NOT IN) (P, P3): Falge (S)
P4 (NOT IN) (P, P3): True

Query III:

Select Sid

FROM Catalog

WHERE Pid

- 1 Normal
- 2 IN NOT IN
- 3 EXIST NOT EXIST.

EXISTS: (Checks): Return True if Inner Query Result Not Empty

NOT EXIST: Return True if Inner Result Empty

Correlated Nested Query: Inner Query Using attribute defined in Outer Query

Select C.Sid

FROM <u>Catalog</u> C ← WHERE EXISTS

Select *
FROM Part P
WHERE P.Pid = C.Pid

AND Color = Real

EXISTS: (Checks): Return True if Inner Query Result Not Empty

NOT EXIST: Return True if Inner Result Empty

Correlated Nested Query Inner Query Using attribute defined in Outer Query

Select C.Sid FROM Catalog C WHERE EXISTS

Select *
FROM Part P
WHERE P.Pid = CPid

Select oven FRom WHERE Select FROM WHERE Query

Nested Query

(Independent) Querry

Execution Sequence:

Inner - outer query

Bottom -> Tob)

2 Co-related Nested Nested Query.

Execution sequence:

Outer - Inner - outer away.

TOP -> Bottom -> Top.

for(i-1); i <= n; i++) for(j-1); j <= m; j++)

j=1 m j=1 m j=1 m j=1 m j=1

Corelated Nested Query

Select C.sid

FROM Catalog

WHERE EXISTS

Inner Query using Attributes defined in the Outer Query

Select*
FROM Parts P

WHEREP P.Pid = C.Pid

AND Color = Red

Nested Queries

(Independent) Normal Nest Query

Inner → Outer

Bottom \rightarrow Top

Corelated Nested Query

Outer \rightarrow Inner \rightarrow Outer

 $Top \rightarrow Bottom \rightarrow Top$

Ist Iteration:

[Pid Match & color = Red]

1 Tuple Return

IInd Iteration:

[Pid Match but color not Red]

0 Tuple Return

IIIrd Iteration:

[Pid Match & Color Red]

1 Tuple Return

IVth Iteration:

[Pid Match but color not Red]

0 Tuple Return

EXISTS

o/p

Sid S₁

If NOT EXIST then output

Sid S₁ S₄

Before EXIST & NOT EXISTS No Attribute is required.

Before IN & NOT IN Attribute is Required.

Q.

Given Relative Schema

Emp(Eid, Ename, Salary)

Department(Eid. dname, code)

Retrieve Employee ID who have no Department?

Which is true?

A)
$$Q_1 \checkmark Q_2 \times$$

B)
$$Q_2 \checkmark Q_1 \times$$

C)
$$Q_1 \checkmark Q_2 \checkmark$$

D)
$$Q_1 \times Q_2 \times$$

Query I: Select Eid

FROM Emp E, Dep D

WHERE E.Eid <> D.Eid

Query II: Select Eid

FROM Emp E

WHERE NOT EXISTS

Query I:

$$E_1 <> E_1 \rightarrow F$$

$$E_1 \iff E_1 \to F$$

$$E_1 \iff E_2 \implies T$$

$$E_2 <> E_1 \rightarrow T$$

$$E_2 <> E_1 \rightarrow T$$

$$E_2 \iff E_2 \implies F$$

$$E_3 <> E_1 \rightarrow T$$

$$E_3 <> E_1 \rightarrow T$$

$$E_3 <> E_2 \rightarrow T$$

$$E_4 \iff E_1 \to T$$

$$E_4 <> E_1 \rightarrow T$$

$$E_4 <> E_2 \rightarrow T$$

Output of Query I

Eid

$$E_1$$

$$E_2$$

$$E_2$$

$$E_3$$

$$E_3$$

$$E_3$$

$$E_4$$

$$E_4$$

$$E_4$$

MCQ

The following relation records the age of 500 employees of a company,

where empNo {indicating the employee number} is the key:

Consider the following relational algebra expression:

lempNo(empAge ⋈(age>age1) PempNo1,age1(empAge))

What does the above expression generate?

[GATE-2020-CS: 1M]

- Employee numbers of only those employees whose age is the maximum
- Employee numbers of only those employees whose age is more than the age of exactly one other employee
- Employee numbers of all employees whose age is not the minimum
- Employee numbers of all employees whose age is the minimum

