Final Exam Content Revision

Johnson Ng

April 22, 2017

Contents

1	Important Theorems	3
2	Important Examples	6
3	FAQ for Self	7
4	Food for Thought	8

List of Theorems

Theorem 1.0.1	Monotone Convergence Theorem	3
Theorem 1.0.2	Nested Interval Theorem	3
Theorem 1.0.3	Intermediate Value Theorem	3
Theorem 1.0.4	Closed Bounded Intervals and Uniform Convergence	3
Theorem 1.0.5	Equivalent Definitions of Integrability	3
Theorem 1.0.6	Continuous Functions are Integrable	4
Theorem 1.0.7	Cauchy Criterion for Uniform Convergence - Sequence of Func-	
tions		4
Theorem 1.0.8	Uniform Convergence, Limits and Continuity	4
Theorem 1.0.9	Equivalent Topological Definitions	4
Theorem 1.0.10	Heine-Borel Theorem	5

Important Theorems

Theorem 1.0.1 (Monotone Convergence Theorem)

Proof

Theorem 1.0.2 (Nested Interval Theorem)

For each $k \in \mathbb{N}$, if each I_k is closed, bounded, and nonempty. If $I_0 \supseteq I_1 \supseteq I_2 \supseteq \ldots$, then $\bigcap I_k \neq \emptyset$. Moreover, if $|I_k| \to 0$ as $k \to \infty$, $\bigcap I_k$ is a single point.

Proof

Theorem 1.0.3 (Intermediate Value Theorem)

Let $a, b \in \mathbb{R}$ with a < b, let $f : [a, b] \to \mathbb{R}$ be continous.

$$\forall y \in \mathbb{R} \ \min\{f(a), f(b)\} \le y \le \max\{f(a), f(b)\} \implies \exists x \in [a, b] \ f(x) = y$$

Proof

Theorem 1.0.4 (Closed Bounded Intervals and Uniform Convergence)

Let $a, b \in \mathbb{R}$ with a < b. If $f : [a, b] \to \mathbb{R}$ is continous, then f is uniformly continuous.

Theorem 1.0.5 (Equivalent Definitions of Integrability)

Let Let $a, b \in \mathbb{R}$ and $f : [a, b] \to \mathbb{R}$. TFAE:

- 1. f is integrable on [a, b].
- 2. $\forall \epsilon > 0 \exists P \text{ that is a partition } U(f,P) L(f,P) < \epsilon$
- 3. U(f) = L(f)

Proof

Theorem 1.0.6 (Continuous Functions are Integrable)

Let $a, b \in \mathbb{R}$. Every continuous function $f : [a, b] \to \mathbb{R}$ is integrable.

Proof

Theorem 1.0.7 (Cauchy Criterion for Uniform Convergence - Sequence of Functions) Let $I \subseteq \mathbb{R}, \ \forall n \in \mathbb{Z}^+ \ f_n : I \to \mathbb{R}$.

$$\exists g: I \to \mathbb{R} \ f_n \to g \ uniformly \ on \ I$$

$$\iff$$

$$\forall \epsilon > 0 \ \exists N \in \mathbb{Z}^+ \ \forall x \in I \ \forall k, l \in \mathbb{Z}^+ \ (k, l \ge N \implies |f_k(x) - f_l(x)| < \epsilon)$$

Proof

Theorem 1.0.8 (Uniform Convergence, Limits and Continuity)

Supposed $f_n \to f$ uniformly on $I \subseteq \mathbb{R}$, where $\forall n \in \mathbb{Z}^+$ $f_n : I \to \mathbb{R}$. If $\lim_{y \to x} f_n(y)$ exists for each n, then

$$\lim_{n \to \infty} \lim_{y \to x} f_n(y) = \lim_{y \to x} \lim_{n \to \infty} f_n(y)$$

Furthermore, if f_n is continuous on I for each n, then f is continuous on I.

Proof

Theorem 1.0.9 (Equivalent Topological Definitions) Let $A \subseteq \mathbb{R}^n$.

- 1. A is closed iff $A' \subseteq A$
- 2. $\bar{A} = A' \cup A$
- 3. A^0 is equal to the set of all interior points of A

4.
$$\partial A = \bar{A} \setminus A^0$$

Proof

Theorem 1.0.10 (Heine-Borel Theorem)

Every subset of \mathbb{R}^n is compact iff it is closed and bounded.

Proof

Important Examples

FAQ for Self

Food for Thought