Data Mining Primitives & DMQL

Dr.M. Venkatesan
Associate Professor
School of Computing Science and
Engineering
VIT University

Outline

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems

Why Data Mining Primitives and Languages?

- Finding all the patterns autonomously in a database? unrealistic because the patterns could be too many but uninteresting
- Data mining should be an interactive process
 - User directs what to be mined
- Users must be provided with a set of primitives to be used to communicate with the data mining system
- Incorporating these primitives in a data mining query language
 - More flexible user interaction
 - Foundation for design of graphical user interface
 - Standardization of data mining industry and practice

What Defines a Data Mining Task?

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization of discovered patterns

Task-Relevant Data (Minable View)

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria

Types of knowledge to be mined

- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering
- Outlier analysis
- Other data mining tasks

Background Knowledge: Concept Hierarchies

- Schema hierarchy
 - E.g., street < city < province_or_state < country</p>
- Set-grouping hierarchy
 - $E.g., \{20-39\} = young, \{40-59\} = middle_aged$
- Operation-derived hierarchy
 - email address: <u>Robert.Gyorodi@ul.ie</u>login-name < department < university < country
- Rule-based hierarchy
 - low_profit_margin (X) <= price(X, P_1) and cost (X, P_2) and (P_1 P_2) < \$50

Measurements of Pattern Interestingness

Simplicity

e.g., (association) rule length, (decision) tree size

Certainty

e.g., confidence, P(A|B) = #(A and B) / #(B), classification reliability or accuracy, certainty factor, rule strength, rule quality, discriminating weight, etc.

Utility

potential usefulness, e.g., support (association), noise threshold (description)

Novelty

not previously known, surprising (used to remove redundant rules, e.g., Canada vs. Vancouver rule implication support ratio)

Visualization of Discovered Patterns

- Different backgrounds/usages may require different forms of representation
 - E.g., rules, tables, crosstabs, pie/bar chart etc.
- Concept hierarchy is also important
 - Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspectives to data
- Different kinds of knowledge require different representation: association, classification, clustering, etc.

A Data Mining Query Language (DMQL)

Motivation

- A DMQL can provide the ability to support ad-hoc and interactive data mining
- By providing a standardized language like SQL
 - Hope to achieve a similar effect like that SQL has on relational database
 - Foundation for system development and evolution
 - Facilitate information exchange, technology transfer, commercialization and wide acceptance

Design

DMQL is designed with the primitives described earlier

Syntax for DMQL

- Syntax for specification of
 - task-relevant data
 - the kind of knowledge to be mined
 - concept hierarchy specification
 - interestingness measure
 - pattern presentation and visualization
- Putting it all together—a DMQL query

Syntax: Specification of Task-Relevant Data

- use database database_name, or use data warehouse data_warehouse_name
- from relation(s)/cube(s) [where condition]
- in relevance to att_or_dim_list
- order by order_list
- group by grouping_list
- having condition

Specification of task-relevant data

Example 4.11 This example shows how to use DMQL to specify the task-relevant data described in Example 4.1 for the mining of associations between items frequently purchased at *AllElectronics* by Canadian customers, with respect to customer *income* and *age*. In addition, the user specifies that she would like the data to be grouped by date. The data are retrieved from a relational database.

```
use database AllElectronics_db
in relevance to I.name, I.price, C.income, C.age
from customer C, item I, purchases P, items_sold S
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID and P.cust_ID = C.cust_ID
    and C.address = "Canada"
group by P.date
```

П

Syntax: Kind of knowledge to Be Mined

Characterization

```
Mine_Knowledge_Specification ::=
    mine characteristics[as pattern_name]
    analyze measure(s)
```

Discrimination

```
Mine_Knowledge_Specification ::=

mine comparison[as pattern_name]

for target_class where target_condition

{versus contrast_class_i where contrast_condition_i}

analyze measure(s)
```

E.g. mine comparison as purchaseGroups for bigSpenders where avg(I.price) >= \$100 versus budgetSpenders where avg(I.price) < \$100 analyze count

Syntax: Kind of knowledge to Be Mined

Association
 Mine_Knowledge_Specification ::=
 mine associations[as pattern_name]
 [matching < metapattern>]
 E.g. mine associations as buyingHabits
 matching P(X:custom, W) ^ Q(X, Y)=>buys(X, Z)

Classification

```
Mine_Knowledge_Specification ::=

mine classification[as pattern_name]

analyze classifying_attribute_or_dimension
```

Other Patterns clustering, outlier analysis, prediction ...

Syntax: Concept Hierarchy Specification

- To specify what concept hierarchies to use use hierarchy < hierarchy > for < attribute_or_dimension >
- We use different syntax to define different type of hierarchies
 - schema hierarchies
 define hierarchy time_hierarchy on date as [date,month quarter,year]
 - set-grouping hierarchies

define hierarchy age_hierarchy for age on customer as

level1: {young, middle_aged, senior} < level0: all</pre>

level2: {20, ..., 39} < level1: *young*

level2: {40, ..., 59} < level1: *middle_aged*

level2: {60, ..., 89} < level1: *senior*

Syntax: Concept Hierarchy Specification

```
    operation-derived hierarchies

    define hierarchy age_hierarchy for age on customer as
     {age_category(1), ..., age_category(5)} := cluster(default,
      age, 5) < all(age)

    rule-based hierarchies

    define hierarchy profit_margin_hierarchy on item as
     level_1: low_profit_margin < level_0: all</pre>
      if (price - cost) < $50
     level_1: medium-profit_margin < level_0: all</pre>
       if ((price - cost) > $50) and ((price - cost) <= $250))
     level_1: high_profit_margin < level_0: all</pre>
       if (price - cost) > $250
```

Specification of Interestingness Measures

 Interestingness measures and thresholds can be specified by a user with the statement:

```
with <interest_measure_name> threshold = threshold_value
```

• Example:

```
with support threshold = 0.05
```

with confidence threshold = 0.7

Specification of Pattern Presentation

Specify the display of discovered patterns

```
display as <result_form>
```

 To facilitate interactive viewing at different concept level, the following syntax is defined:

```
Multilevel_Manipulation ::= roll up on attribute_or_dimension

| drill down on attribute_or_dimension

| add attribute_or_dimension

| drop attribute_or_dimension
```

Putting it all together: A DMQL query

```
use database AllElectronics_db
use hierarchy location_hierarchy for B.address
mine characteristics as customerPurchasing
analyze count%
in relevance to C.age, I.type, I.place_made
from customer C, item I, purchases P, items_sold S, works_at W,
  branch
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID
      and P.cust_ID = C.cust_ID and P.method_paid = ``AmEx"
      and P.empl_ID = W.empl_ID and W.branch_ID =
      B.branch_ID and B.address = ``Canada" and I.price >=
      100
with noise threshold = 0.05
display as table
```

Other Data Mining Languages & Standardization Efforts

- Association rule language specifications
 - MSQL (Imielinski & Virmani'99)
 - MineRule (Meo Psaila and Ceri'96)
 - Query flocks based on Datalog syntax (Tsur et al'98)
- OLEDB for DM (Microsoft'2000)
 - Based on OLE, OLE DB, OLE DB for OLAP
 - Integrating DBMS, data warehouse and data mining
- CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 - Providing a platform and process structure for effective data mining
 - Emphasizing on deploying data mining technology to solve business problems

Designing Graphical User Interfaces Based on a Data Mining Query Language

- What tasks should be considered in the design GUIs based on a data mining query language?
 - Data collection and data mining query composition
 - Presentation of discovered patterns
 - Hierarchy specification and manipulation
 - Manipulation of data mining primitives
 - Interactive multilevel mining
 - Other miscellaneous information

Data Mining System Architectures

- Coupling data mining system with DB/DW system
 - No coupling—flat file processing, not recommended
 - Loose coupling
 - Fetching data from DB/DW
 - Semi-tight coupling—enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system, e.g., sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions
 - Tight coupling—A uniform information processing environment
 - DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods, etc.

Today's lecture ...

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems