Содержание

1	Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Первое и второе достаточное условие экстремума.	
2	Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Третье достаточное условие экстремума.	
3	Определение функции, выпуклой вверх (вниз). Достаточное условие выпуклости. Определение точки перегиба графика функции. Необходимое условие перегиба.	
4	Определение точки перегиба графика функции. Достаточное условие перегиба. Определение точки перегиба.	6
5	Определение асимптот графика функции (вертикальная, наклонная, горизонтальная). Теорема о наклонных асимптотах. Общая схема исследования графика функции.	
6	Определение интегрируемости функции. Необходимое условие интегрируемости. Лемма Дарбу о верхних и нижних суммах (первые четыре леммы Дарбу).	
7	Определение верхнего и нижнего интегралов Дарбу. Леммы Дарбу о верхнем и нижнем интегралах Дарбу (пятая и шестая леммы). Критерий интегрируемости (в терминах верхних и нижних сумм).	
8	Теорема об интегрируемости непрерывной функции. Достаточное условие интегрируемости функции, имеющей разрывы.	11
9	Теорема об интегрируемости монотонной функции. Интегрируемость композиции функций.	12
10	Основные свойства определенного интеграла (линейность, интегрируемость произведения, интегрируемость на подотрезках, аддитивность). Оценки интегралов (интегрирование неравенств, условие строгой положительности интеграла от неотрицательной функции).	
11	Первая теореме о среднем значении и следствие из нее. Вторая теорема о среднем (без доказательства).	. 14

12	Определение и свойства интеграла с переменным верхним пределом. Основная формула интегрального исчисления (формула Ньютона-Лейби	ница).	15
13	Формулы замены переменной и интегрирования частям в определенном интеграле. Формула Тейлора с остаточным членом в интегральной форме.	16	
14	Определение плоской кривой, простой кривой, параметризуемой кривой. Понятие длины плоской кривой. Теорема о длине дуги кривой, заданной параметрически. Следствие - формула длины кривой, заданной в декартовых и в полярных координатах.	17	
15	Понятие квадрируемости (площади) плоской фигуры. Критерий квадрируемости через приближение простейшими (лемма 1). Площадь криволинейной трапеции.	19	
16	Понятие квадраруемости (площади) плоской фигуры. Критерий квадрируемости через приближение квадрируемыми (лемма 2). Площадь криволинейного сектора.	21	
17	Понятие кубируемости (объема тела). Критерий кубируемости через пирближение простешими (лемма 1). Кубируемость цилиндрических тел.	22	
18	Понятие кубироемости (объема тела). Критерий кубируемости через приближение кубируемыми (лемма 2). Кубируемость тел вращения (вокруг оси Ox).	23	
19	Определение несобственного интеграла (первого и второго рода). Формулы замены переменной и интегрирования по частям для несобственных интегралов первого рода. Критерий Коши и признак сравнения для несобственных интегралов первого рода.	24	
20	Понятие условной и абсолютной сходимости. Признак Абеля (для интегралов первого рода). Главное значение несобственного интеграла (первого и второго рода).	26	
21	Понятие условной и абсолютной сходимости. Признак Дирихле (для интегралов первого рода). Главное значение несобственного интеграла.	27	
22	Метод прямоугольников вычисления определенных интегралов (с выводом оценки погрешности). Метод Симпсона (без вывода, только оценка).	27	

23 Метод трапеций вычисления определенных интегралов (с выводом оценки погрешности).	н- 29

1 Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Первое и второе достаточное условие экстремума.

Опр. Точка x_0 называется строгим локальным максимум (минимумом), если $\exists \varepsilon > 0$, m.ч. $\forall x \in B_{\varepsilon}(x_0) : f(x) < f(x_0) \ (f(x) > f(x_0))$.

Опр. Точка x_0 называется нестрогим локальным максимум (минимумом), если $\exists \varepsilon > 0$, т.ч. $\forall x \in B_{\varepsilon}(x_0) : f(x) \leq f(x_0)$ $(f(x) \geq f(x_0))$.

Теорема (Теорема Ферма, без доказательства). *Если функция дифференцируема в точ* ке экстремума, то ее производная в этой точке равна нулю.

Теорема (Первое достаточное условие экстремума). Пусть функция f непрерывна в окрестности точки c и дифф-ма в ее проколотой окрестности. Тогда

- 1) если $\exists \delta > 0 : f'(x) > 0 \, \forall x \in (c \delta, c) \, u \, f'(x) < 0 \, \forall x \in (c, c + \delta), \, mo \, c$ точка строгого локального максимума.
- 2) если $\exists \delta > 0: f'(x) < 0 \, \forall x \in (c-\delta,c) \, u \, f'(x) > 0 \, \forall x \in (c,c+\delta), \, mo \, c$ точка строгого локального минимума.
- 3) Если $\exists \delta > 0$, т.ч. f' имеет одинаковые знаки на $(c \delta, c)$ и $(c, c + \delta)$, то экстремума в ней нет.

 \mathcal{A} -во. 1) Возьмем $x \in B_{\delta}(c)$ по т. Лагранжа найдется ξ между x и c, т.ч. $f(x) - f(c) = f'(\xi)(x-c)$. Если $x \in (c-\delta,c)$, то $f'(\xi) > 0$, $x-c < 0 \implies f(x) - f(c) < 0$, т.е. f(x) < f(c). Если $x \in (c,c+\delta)$, то $f'(\xi) < 0$, $x-c > 0 \implies f(x) - f(c) < 0$, т.е. f(x) < f(c). Значит c - точка строгого локального максимума.

- 2) Аналогично.
- 3) Пусть, например, $f'(x) > 0 \, \forall x \in B_{\delta}(c)$. f(x) f(c) и x c имеют одинаковый знак, т.е. при

$$x \in (c - \delta, c) : f(x) - f(c) < 0 \implies f(x) < f(c)$$
$$x \in (c, c + \delta) : f(x) - f(c) > 0 \implies f(x) > f(c)$$

 $\implies f$ возрастает в точке c.

Теорема (Второе достаточное условие экстремума). Пусть f дифф-ма в окрестности точки c и существует вторая производная в точке c. Если f'(x) = 0, f''(c) > 0 (< 0), то c - точка строгого локального минимума (максимума).

 \mathcal{A} -во. Пусть, например, f''(c) > 0, тогда f' возрастает в точке $c \implies$

$$\implies \exists \delta > 0$$
, t.y. $f'(x) < f'(c) = 0 \ \forall x \in (c - \delta, c)$
$$f'(x) > f'(c) = 0 \ \forall x \in (c, c + \delta)$$

 $\implies c$ - точка строгого локального минимума (по 1-му достаточному условию экстремума). $\hfill\Box$

2 Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Третье достаточное условие экстремума.

(см. предыдущий билет для определения экстремума и теоремы Ферма)

 \mathcal{A} -во. Случай n=1 уже рассмотрен во 2-м достаточном условии экстремума. Пусть n>3.

Пусть, например, $f^{(n+1)} > 0$. Тогда $f^{(n)}$ возрастает в точке $c \implies$

$$\implies \exists \delta > 0, \text{ т.ч. } f^{(n)}(x) < f^{(n)}(c) \, \forall x \in (c - \delta, c)$$

$$f^{(n)}(x) > f^{(n)}(c) \, \forall x \in (c, c + \delta)$$

Разложим f'(x) по формуле Тейлора с центром в точке c

$$f'(x) = f'(c) + \frac{f''(c)}{1!}(x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-2)!}(x-c)^{n-2} + \frac{f^{(n)}(\xi)}{(n-1)!}(x-c)^{n-1} =$$

$$= \frac{f^{(n)}(\xi)}{(n-1)!}(x-c)^{n-1}$$

Значит, при $x \in (c-\delta,x), \xi \in (c-\delta,c) \Longrightarrow f^{(n)}(\xi) < 0 \Longrightarrow f'(x) < 0$ при $x \in (c,c+\delta), \xi \in (x,x+\delta) \Longrightarrow f^{(n)}(\xi) > 0 \Longrightarrow f'(x) > 0$ точка локального минимума (1-е достаточное условие экстремума).

3 Определение функции, выпуклой вверх (вниз). Достаточное условие выпуклости. Определение точки перегиба графика функции. Необходимое условие перегиба.

Опр. Пусть f дифф-ма на (a,b). График функции на (a,b) имеет выпуклость направленную вверх (вниз), если на (a,b) график лежит не ниже (не выше) касательной, проведенной в любой точке $M(c,f(c)),c\in(a,b)$.

Теорема. Пусть f дважды дифф-ма на (a,b). Если $f''(x) \ge 0 (\le 0) \forall x \in (a,b)$, то f выпукла вниз (вверх).

 \mathcal{A} -во. Пусть $f''(x) \leq 0$.

Уравнение касательной: y = f'(c)(x - c) + f(c). Разложим f по формуле Тейлора:

$$f(x) = f(c) + \frac{f'(x)}{1!}(x-c) + \frac{f''(\xi)}{2!}(x-c)^2 \implies$$

$$y - f(x) = \frac{-f''(\xi)}{2!}(x-c)^2 \ge 0 \implies f$$
 выпукла вниз.

Опр. Пусть f дифф-ма на (a,b), $c \in (a,b)$. Точка c называется точкой перегиба графика функции f, если существует $\delta > 0$, т.ч. f имеет различные направления выпуклости на $(c - \delta, c)$ и $(c, c + \delta)$.

Лемма. Пусть f дифф-ма на (a,b), $c \in (a,b)$, c - точка перегиба. Тогда функция r(x) = f(x) - (f'(c)(x-c) + f(c)) монотонна в точке c (т.е. $\exists \delta > 0$, т.ч. на интервалах $(c-\delta,c)$ и $(c,c+\delta)$ график f лежит по разные стороны от касательной в точке M(c,f(c))).

 \mathcal{A} -60. Пусть $\exists \delta > 0$, т.ч. f выпукла вниз на $(c - \delta, c)$ и выпукла вверх на $(c, c + \delta)$. Графи функции на интервале $(c - \delta, c)$ лежит не ниже касательной в точке (c, f(c)), т.е. $\forall x \in (c - \delta, c) : f(x) \geq f'(c)(x - c) + f(c) \implies r(x) \geq 0 \, \forall x \in (c - \delta, c)$. Аналогично $r(x) \leq 0 \, \forall x \in (c, c + \delta)$. Значит, $r(x) \searrow$ в точке c.

Теорема. Пусть f дифф-ма на (a,b), $c \in (a,b)$ - точка перегиба f. Если $\exists f''(c)$, то f''(c) = 0.

Д-во. r(x) = f(x) - (f'(c)(x-c) + f(c)). Заметим, что r'(c) = f'(c) - f'(c) = 0; $r''(x) = f''(x) \implies r''(c) = f''(c)$. Предположим, что $f''(x) \neq 0$, тогда r'(c) = 0, $r''(c) \neq 0 \implies c$ - точка строгого локального экстремума функции r. Но согласно лемме функция r монотонна. Противоречие. Значит f''(c) = 0.

4 Определение точки перегиба графика функции. Достаточное условие перегиба. Определение точки перегиба.

Теорема (Необходимое условие перегиба, без доказательства). Пусть f дифф-ма на $(a,b), c \in (a,b)$ - точка перегиба f. Если $\exists f''(c), mo \ f''(c) = 0$.

Теорема (1-е достаточное условие перегиба). Пусть f дважды дифф-ма в проколотой окрестности точки c и $\exists f'(c)$. Если найдется $\delta > 0$, т.ч. f'' имеет разные знаки на интервалах $(c - \delta, c)$ и $(c, c + \delta)$, то c - точка перегиба.

 \mathcal{A} -60. Если f'' имеет разные знаки на $(c-\delta,c)$ и на $(c,c+\delta)$, то f имеет различные направления выпуклости на этих интервалах. Значит c - точка перегиба.

Теорема (2-е достаточное условие перегиба). Пусть f дважды дифф-ма на (a,b) и $\exists f'''(c)$. Если f''(c) = 0, $f'''(c) \neq 0$, то c - точка перегиба.

 \mathcal{A} -во. Если $f'''(c) \neq 0$, то f'' монотонна в точке c. При этом $f''(c) = 0 \implies \exists \delta > 0$, т.ч. f'' имеет разные знаки на $(c - \delta, c)$ и $(c, c + \delta) \implies c$ - точка перегиба.

Теорема (3-е достаточное условие перегиба). Пусть f n раз дифф-ма на (a,b), n -четное, $c \in (a,b)$, причем $\exists f^{(n+1)}(c)$. Если $f''(c) = f'''(c) = \cdots = f^{(n)}(c) = 0$ и $f^{(n-1)} \neq 0$, то c - точка перегиба.

 \mathcal{A} -во. Пусть, например $f^{(n+1)}(c)>0$. Тогда $f^{(n)}$ - возрастает в точке $c\implies\exists\delta>0$, т.ч. $f^{(n)}(x)< f^{(n)}(c) \forall x\in (c-\delta,c)$ и $f^{(n)}>f^{(n)}(c) \forall x\in (c,c+\delta)$. Возьмем $x\in B_\delta(c)$ и разложим f''(x) по формуле Тейлора с центром в точке c:

$$f''(x) = f''(c) + \frac{f'''(c)}{1!}(x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-3)!}(x-c)^{n-3} + \frac{f^{(n)}(\xi)}{(n-2)!}(x-c)^{(n-2)}, \ \xi \ \text{между} \ x \ \text{и} \ c.$$

Значит
$$f''(x)=\frac{f^{(n)}(\xi)}{(n-2)!}(x-c)^{n-2}\implies f''(x)<0\ \forall x\in(c-\delta,c)$$
 и $f''(x)>0\ \forall x\in(c,c+\delta)\implies c$ - точка перегиба.

5 Определение асимптот графика функции (вертикальная, наклонная, горизонтальная). Теорема о наклонных асимптотах. Общая схема исследования графика функции.

Опр. Прямая x = a называется вертикальной асимптотой графика функции f, если $f(a+0) = \pm \infty$ u/uли $f(a-0) = \pm \infty$.

Опр. Прямая y = kx + b называется наклонной асимптотой к графику функции f при $x \to +\infty(-\infty)$, если $f(x) = kx + b + \alpha(x)$, где $\alpha(x) \to 0$, при $x \to +\infty(-\infty)$. В частности, при k = 0 прямая y = b называется горизонтальной асимптотой.

Теорема. Прямая y = kx + b является наклонной асимптотой графика f при $x \to \pm \infty \Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = k, \lim_{x \to +\infty} (f(x) - kx) = b$

$$\mathcal{A}$$
-60. $(\Longrightarrow) f(x) = kx + b + \alpha(x), \ \alpha(x) \xrightarrow{x \to \pm \infty} 0$

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} (k + \frac{b}{x} + \frac{\alpha(x)}{x}) = k$$
$$\lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} (b + \alpha(x)) = b$$

(
$$\iff$$
) Если $\exists k,b \in \mathbb{R}: \lim_{x \to \pm \infty} \frac{f(x)}{x} = k, \lim_{x \to \pm \infty} (f(x) - kx) = b,$ то $\lim_{x \to \pm \infty} (f(x) - kx - b) = 0 \implies f(x) - kx - b = \alpha(x) \to 0,$ при $x \to \pm \infty \implies f(x) = kx + b + \alpha(x).$

Общая схема исследования функции

на примере функции $f(x) = \frac{(x+1)^3}{(x-1)^2}$

- 1) $D(f) = \mathbb{R} \setminus \{1\}$
- 2) Четность, периодичность, другая симметрия. Здесь нет.
- 3) Точки разрыва, промежутки непрерывности. x=1 разрыв 2-го рода. Непрерывна на $(-\infty,1)$ и на $(1,+\infty)$.
- 4) Нули, промежутки знакопостоянства, f(0).

$$f(x) = 0, x = -1; f(0) = 1. f(x) < 0$$
 Ha $(-\infty, -1), f(x) > 0$ Ha $(-1, 1) \cup (1, +\infty).$

5) Экстремумы, промежутки монотонности.

$$f'(x) = \frac{(x+1)^2(x-5)}{(x-1)^3}, \ f'(x) = 0, \ x = -1, \ x = 5.$$
 Точка $(5, \frac{27}{2})$ - точка минимума. $f(x) \nearrow$ на $(-\infty, 1)$ и на $[5, +\infty)$; $f(x) \searrow$ на $(1, 5]$.

6) Выпуклость, точки перегиба.

$$f''(x) = \frac{24(x+1)}{(x-1)^4}$$
. Точка $(-1,0)$ - точка перегиба.

f(x) выпукла вниз на [-1,1) и на $(1,+\infty); f(x)$ выпукла вверх на $(-\infty,-1].$

7) Асимптоты.

$$x=1$$
 - вертикальная асимптота.
$$\lim_{x \to \pm \infty} \frac{(x+1)^3}{x(x-1)^2} = 1 = k$$

$$\lim_{x \to \pm \infty} (\frac{(x+1)^3}{(x-1)^2} - x) = 5 = b$$
 $y=x+5$ - наклонная асимптота при $x \to \pm \infty$.

6 Определение интегрируемости функции. Необходимое условие интегрируемости. Лемма Дарбу о верхних и нижних суммах (первые четыре леммы Дарбу).

Опр. Разбиением (неразмеченным) отрезка [a,b] называется (упорядоченное) множество $T=\{x_0,x_1,\ldots,x_n\}$, где $a=x_0< x_1<\cdots< x_n=b$. Разбиение T' называется измельчением разбиения T, если $T\subset T'$. Объединением разбиений T_1 и T_2 называется разбиение $T=T_1\cup T_2$. Обозначим через $\Delta x_k=x_k-x_{k-1}$. Диаметром разбиения T называется величина $\Delta_T=\max_{1\le k\le n}\{\Delta x_k\}$.

Опр. Пусть $T = \{x_0, x_1, \dots, x_n\}$ - разбиение отрезка [a, b], $\xi_k \in [x_{k-1}, x_k]$. Совокупность $V = V(T) = \{x_0, \xi_1, x_1, \xi_2, \dots, \xi_n, x_n\}$ называется размеченным разбиением отрезка [a, b], соответствующее неразмеченному разбиению T. Если V = V(T), то по определению положим, что $\Delta_V = \Delta_T$.

Опр. Пусть функция f определена на [a,b]. Интегральной суммой для функции f, соответствующей размеченному разбиению V, называется $\sigma(V) = \sigma_f(V) = \sum_{k=1}^n f(\xi_k) \Delta x_k$

Опр. Определенный интеграл (Римана) от функции f по отрезку [a,b] называется число I, для которого выполнено: $\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0$, $m.ч. \,\forall V$ - размеченного разбиения $[a,b], \, \Delta_V < \delta : |\sigma_f(V) - I| < \varepsilon$, m.e. число I является приделом интегральной суммы при стремлении диметра разбиения κ нулю ($I = \lim_{\Delta_V \to 0} \sigma(V)$). Если такое число I существует, то говорят, что функция f интегрируема (по Риману) на [a,b]. Будем писать: $f \in R[a,b], \, I = \int_a^b f(x) \, dx$.

Утверждение (Единственность интеграла). Если числа I_1 и I_2 удовлетворяют определению интеграла, то они равны.

Д-60. Пусть $I_1 \neq I_2$, тогда в определении интеграла возьмем $\varepsilon = \frac{|I_1 - I_2|}{2} > 0$. Получили, что $\exists \delta>0$, т.ч. $\forall V$ - размеченного разбиения $[a,b],\ \Delta_V<\delta:|I_1-I_2|=|I_1-\sigma(V)+I_1|$ $|\sigma(V) - I_2| \le |I_1 - \sigma(V)| + |I_2 - \sigma(V)| < 2\varepsilon = |I_1 - I_2|$ - противоречие. Значит $I_1 = I_2$.

Теорема. Пусть $f \in R[a,b]$. Тогда f ограничена на [a,b].

Д-60. Предположим, что f не ограничена на [a,b]. Возьмем произвольное M>0 и $\delta > 0$. Пусть $T = \{x_0, x_1, \dots, x_n\}$ - разбиение $[a, b], \Delta_T < \delta$. Поскольку f не ограничена на [a,b], то существует хотя бы один отрезок $[x_{r-1},x_r]$, на котором f не ограничена. Выберем произвольным образом точки ξ_k на отрезках $[x_{k-1}, x_k]$, где $1 \leq k \leq n, k \neq 1$

r. Обозначим $A = \left| \sum_{k=1, k \neq r}^{n} f(\xi_k) \Delta x_k \right|$. Теперь выберем точку $\xi_r \in [x_{r-1}, x_r]$ так, чтобы $|f(\xi_r)| > \frac{A+M}{\Delta x_r}$. Получим, что $\forall \delta > 0 \, \forall M > 0 \, \exists V = \{x_0, x_1, \dots, x_n, \xi_1, \dots, \xi_n\}$ - разбиение

отрезка
$$[a,b]$$
, т.ч. $\Delta_V < \delta$, но $|\sigma(V)| = \left| \sum_{k=1, k \neq r}^n f(\xi_k) \Delta x_k + f(\xi) \Delta x_r \right| \ge |f(\xi_r)| \Delta x_r - A > M \implies \lim_{\Delta_V \to 0} \sigma(V).$

Опр. Верхней суммой Дарбу функции f на [a,b], соответствующей разбиению T, называется $S(T)=\sum\limits_{k=1}^{n}M_{k}\Delta x_{k}$, нижней суммой Дарбу - величина $\sum\limits_{k=1}^{n}m_{k}\Delta x_{k}$.

Лемма 1. Пусть T - разбиение отрезка [a,b]. $\forall V = V(T)$ - размеченного разбиения: $s(T) \le \sigma(V) \le S(T)$.

$$\mathcal{A}$$
-60. $\forall \xi_k \in [x_{k-1}, x_k] m_k \le f(\xi_k) \le M_k \implies \sum_{k=1}^n \Delta x_k m_k \le \sum_{k=1}^n f(\xi_k) \Delta x_k \le \sum_{k=1}^n \Delta x_k M_k \implies s(T) \le \sigma(V) \le S(T).$

Лемма 2.
$$S(T) = \sup_{V=V(T)} \{\sigma(V)\}, \ s(T) = \inf_{V=V(T)} \{\sigma(V)\}.$$

Уже знаем, что $\sigma(V) \leq S(T)$, $\forall V = V(T)$. Возьмем $\varepsilon > 0$ $M_k = \sup_{[x_{k-1}, x_k]} f(x) \implies \exists \xi_k \in [x_{k-1}, x_k]$, т.ч. $f(\xi_k) > M_k - \frac{\varepsilon}{b-a}$. Тогда $\exists V = \{x_0, x_1, \dots, x_n, \xi_1, \dots, \xi_n\}$, т.ч. $\sigma(V) = \sum_{k=1}^{\infty} f(x) = \sum_{k=1}^{\infty} f(x)$ $\sum_{k=1}^{n} f(\xi_k) \Delta x_k > \sum_{k=1}^{n} (M_k - \frac{\varepsilon}{b-a}) \Delta x_k = \sum_{k=1}^{n} M_k x_k - \frac{\varepsilon}{b-1} \sum_{k=1}^{n} \Delta x_k = S(T) - \varepsilon \implies S(T) =$ $\sup_{V=V(T)} \{\sigma(V)\}.$

Лемма 3. Пусть $T' = T \cup \{x_1', \dots, x_l'\}$ - измельчение T. Тогда $0 \le S(T) - S(T') \le$ $(M-m)l\Delta_T$, $0 < s(T') - s(T) < (M-m)l\Delta_T$.

 Д-во. На примере S(T) и $T'=T\cup\{x'\}$. Пусть $x'\in(x_{k-1},x_k)$. Тогда S(T)-S(T')= $M_k \Delta x_k - \left(\sup_{x_{k-1} < x < x'} f(x)(x' - x_{k-1}) + \sup_{x' < x < x_k} f(x)(x_k - x') \right) \ge M_k x_k - M_k (x_k - x_{k-1}) = 0.$

С другой стороны
$$S(T) - S(T') = M_k \Delta x_k - \left(\sup_{x_{k-1} \le x \le x'} f(x)(x' - x_{k-1}) + \sup_{x' \le x \le x_k} f(x)(x_k - x')\right) \le M \Delta x_k - m(x_k - x_{k-1}) = \Delta x_k (M - m) \le (M - m) \Delta_T.$$

Лемма 4. $\forall T_1, T_2 : s(T_1) \leq S(T_2)$.

$$A$$
-60. $s(T_1) \le s(T_1 \cup T_2) \le S(T_1 \cup T_2) \le S(T_2)$.

7 Определение верхнего и нижнего интегралов Дарбу. Леммы Дарбу о верхнем и нижнем интегралах Дарбу (пятая и шестая леммы). Критерий интегрируемости (в терминах верхних и нижних сумм).

Опр. Верхним интегралом Дарбу называется $I^* = \inf_T \{S(T)\};$ нижним интегралом Дарбу называется $I_* = \sup_T \{s(T)\}.$

Лемма 5. Для любой ограниченной на [a,b] функции f существуют I^* и I_* , причем $I^* \leq I_*$.

 \mathcal{A} -во. f ограничена $\implies \exists m = \inf_{a \leq x \leq b} f(x) \implies \forall T$ - разбиение $[a,b]: S(T) = \sum_{k=1}^n M_k \Delta x_k \geq m \sum_{k=1}^n \Delta x_k = m(b-a)$. Значит множество $\{S(t)\}$ ограничено снизу $\implies \exists \inf_T \{S(T)\}$. Аналогично для $\{s(T)\}$. Предположим, что $I_* > I^*$. Обозначим $\varepsilon = \frac{I_* - I^*}{2} > 0$. $I^* = \inf_T \{S(T)\} \implies \exists T_1$ - разбиение $[a,b]: S(T_1) < I^* + \varepsilon = I^* + \frac{I_* - I^*}{2} = \frac{I_* + I^*}{2}$. $I_* = \sup_T \{s(T)\} \implies \exists T_2$ - разбиение $[a,b]: s(T_2) > I_* - \varepsilon = \frac{I_* + I^*}{2} > S(T_1)$ - противоречие. Значит $I_* \leq I^*$.

Лемма 6 (Основная лемма Дарбу). $I^* = \lim_{\Delta_T \to 0} S(T); \ I_* = \lim_{\Delta_T \to 0} s(T), \ mo \ ecmb \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ m.ч. \ \forall T$ - разбиение $[a,b], \ \Delta_T < \delta : 0 \le S(T) - I^* < \varepsilon; \ 0 \le I_* - s(T) < \varepsilon.$

Д-60. Проведем для первого утверждения, второе аналогично.

Заметим, что если m=M, то f постоянна на $[a,b]\Longrightarrow S(T)=I^*\forall T$ и утверждение становится очевидным. Пусть m< M. Возьмем $\varepsilon>0$. $I^*=\inf_T\{S(T)\}\Longrightarrow\exists T^*=\{x_0^*,x_1^*,\ldots,x_k^*\}$ - разбиение [a,b], т.ч. $0\leq S(T^*)-I^*<\frac{\varepsilon}{2}$. Возьмем $\delta=\frac{\varepsilon}{2(M-m)(k-1)}$. Пусть $T=\{x_0,x_1,\ldots,x_n\}$ - разбиение [a,b], $\Delta_T<\delta$. Обозначим $T'=T\cup T^*$. Тогда (T'-u3 измельчение T) $0\leq S(T)-S(T')\leq (M-m)(k-1)\Delta_T<\frac{\varepsilon}{2}$. Значит $\forall T,\Delta_T<\delta:0\leq S(T)-I^*=\underbrace{S(T)-S(T')}_{<\frac{\varepsilon}{2}}+\underbrace{\frac{\varepsilon}{2}}<\varepsilon$

Теорема (Критерий Римана интегрируемости функции). Пусть f определена и ограничена на [a,b]. Тогда $f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0 \exists T$ - разбиение [a,b], m.ч. $0 \leq S(T) - s(T) < \varepsilon$.

8 Теорема об интегрируемости непрерывной функции. Достаточное условие интегрируемости функции, имеющей разрывы.

Теорема. Пусть $f \in C[a,b]$. Тогда $f \in R[a,b]$.

 \mathcal{A} -во. $f \in C[a,b] \Longrightarrow$ равномерно непрерывна. Возьмем $\varepsilon > 0$. По определению равномерной непрерывности $\exists \delta(\varepsilon) > 0$, т.ч. $\forall x', x'' \in [a,b] \, |x'-x''| < \delta : |f(x')-f(x'')| < \frac{\varepsilon}{b-a}$. Пусть $T = \{x_0, x_1, \ldots, x_n\}$ - размеченное разбиение [a,b], $\Delta_T < \delta$. Тогда $\forall k = 1, \ldots, n: M_k - m_k < \frac{\varepsilon}{b-a}$. Значит $0 \le S(T) - s(T) = \sum_{k=1}^n (M_k \Delta x_k - m_k \Delta x_k) < \frac{\varepsilon}{b-a} \sum_{k=1}^n \Delta x_k = \varepsilon$.

Теорема. Пусть f определена на [a,b]. Если $\forall \varepsilon > 0$ все точки разрыва функции f на [a,b] можно покрыть конечным числом интервалов $I_1, \ldots, I_l, \ m.$ ч. $\sum_{i=1}^l |I_i| < \varepsilon$.

 \mathcal{A} -во. Возьмем $\varepsilon > 0$. Покроем все точки разрыва f на [a,b] интервалами I_1,\ldots,I_l , т.ч. $\sum_{i=1}^l |I_i| < \frac{\varepsilon}{2(M-m)}$ (если m=M, то $f=\mathrm{const} \implies$ интегрируема). Обозначим через $J=[a,b]\setminus\bigcup_{i=1}^l I_i$. Заметим, что $J=\bigcup_{j=1}^r J_j$, где J_j - отрезок, $r\leq l+1$. f непрерывна на каждом из $J_j \implies$ равномерно непрерывна $\implies \exists \delta_j)\varepsilon > 0: \forall x_j', x_j''\in J_j, |x_j'-x_j''|< \delta_j: |f(x_j')-f(x_j'')|< \frac{\varepsilon}{2(b-a)}$. Пусть $\delta=\min_{1\leq j\leq r}\{\delta_j\}, T_j$ - разбиение $J_j, \Delta_{T_j}<\delta$. Обозначим, $T=\bigcup_{j=1}^t T_j\cup a, b.$ $T=\{x_0,\ldots,x_n\}$ - разбиение [a,b]. Тогда $S(T)-s(T)=\sum_{[x_{k-1},x_k]\in\bigcup_{i=1}^l I_i} (M_k-m_k)\Delta x_k+\sum_{[x_{k-1},x_k]\in\bigcup_{i=1}^l I_i} (M_k-m_k)\Delta x_k< (M-m)\frac{\varepsilon}{2(M-m)}+(b-a)\frac{\varepsilon}{2(b-a)}=\varepsilon \implies f\in R[a,b]$. \square

9 Теорема об интегрируемости монотонной функции. Интегрируемость композиции функций.

Теорема. Пусть f определена и монотонна на [a,b]. Тогда $f \in R[a,b]$.

$$\mathcal{A}$$
-во. Пусть $f \nearrow$ на $[a,b]$. Если $f(a) = f(b)$, то $f = \mathrm{const} \implies f \in R[a,b]$. Пусть $f(a) < f(b)$. Возьмем $\varepsilon > 0$. Пусть $\delta = \frac{\varepsilon}{f(b) - f(a)}$. Пусть $T = \{x_0, x_1, \ldots, x_n\}$ - разбиение $[a,b]$, $\Delta_T < \delta$. Тогда $S(T) - s(T) = \sum_{k=1}^n (M_k - m_k) \Delta x_k \le \delta \sum_{k=1}^n (f(x_k) - f(x_{k-1})) = \frac{\varepsilon}{f(b) - f(a)} (f(x_1) - f(x_2) - f(x_1) + \cdots + f(b) - f(x_{n-1})) = \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon \implies f \in R[a,b]$. \square

Опр. Функция g удовлетворяет условию Липшица на отрезке $[\alpha, \beta]$, если $\exists C > 0$, т.ч. $\forall x_1, x_2 \in [\alpha, \beta] : |g(x_1) - g(x_2)| \le C|x_1 - x_2|$. Пишут $g \in \text{Lip}[\alpha, \beta]$. Из условия Липшица следует непрерывность и равномерная непрерывность.

Теорема. Пусть $f \in R[a,b]$, $m = \inf_{a \le x \le b} f(x)$, $M = \sup_{a \le x \le b} f(x)$, $g \in \text{Lip}[m,M]$. Тогда $g(f) \in R[a,b]$.

$$\mathcal{A}$$
-во. Возьмем $\varepsilon > 0$. $f \in R[a,b] \Longrightarrow \exists T$ - разбиение $[a,b]$, т.ч. $S_f(T) - s_f(T) < \frac{\varepsilon}{c}$, где c - постоянная Липшица для функции g . Пусть $M_k \sup_{x_{k-1} \le x \le x_k} f(x), \ m_k = \inf_{x_{k-1} \le x \le x_k} f(x),$ $g \in \operatorname{Lip}[m,M] \Longrightarrow \forall x_k', x_k'' \in [x_{k-1},x_k] : |g(f(x_k')) - g(f(x_k''))| \le c|f(x_k') - f(x_k'')| \le c(M_k - m_k)$ $\Longrightarrow M_k^* - m_k^* \le c(M_k - m_k)$, где $M_k^* = \sup_{x_{k-1} \le x \le x_k} g(f(x)), \ m_k^* = \inf_{x_{k-1} \le x \le x_k} g(f(x)).$ Значит $S_{g(f)}(T) - s_{g(f)}(T) = \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \le c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - s_f(T)) < \varepsilon.$

10 Основные свойства определенного интеграла (линейность, интегрируемость произведения, интегрируемость на подотрезках, аддитивность). Оценки интегралов (интегрирование неравенств, условие строгой положительности интеграла от неотрицательной функции).

Свойства интеграла Римана.

1. Пусть $f,g \in R[a,b] \implies f \pm g \in R[a,b]$, причем $\int_a^b (f(x) \pm g(x)) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$.

$$\mathcal{A}$$
-во. Следует из того, что $\sum_{k=1}^{n} (f(\xi_k) \pm g(\xi_k)) \Delta x_k = \sigma_{f\pm g}(V) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k \pm \sum_{k=1}^{n} g(\xi_k) \Delta x_k = \sigma_f(V) \pm \Sigma_g(V)$.

2. Пусть $f \in R[a,b], \alpha \in \mathbb{R} \implies \alpha f \in R[a,b]$, причем $\int_a^b \alpha f(x) \, dx = \alpha \int_a^b f(x) \, dx$.

$$\mathcal{A}$$
-во. Следует из того, что $\sigma_{\alpha f}(V) = \sum_{k=1}^{n} \alpha f(\xi_k) \Delta x_k = \alpha \sum_{k=1}^{n} f(\xi_k) \Delta x_k = \alpha \sigma_f(V)$.

3. Пусть $f, g \in R[a, b] \implies fg \in R[a, b]$.

Д-во. Пусть
$$h(y) = y^2$$
. Тогда $h \in \text{Lip}[m, M]$, т.к. $|h(y_1) - h(y_2)| = |y_1 - y_2||y_1 + y_2| \le 2 \max\{|m|, |M|\}|y_1 - y_2|, \ c = \max\{|m|, |M|\}$. Пусть $f \in R[a, b]$. Тогда $f^2 = h(f) \in R[a, b]$. Далее $fg = \frac{1}{4}(\underbrace{(f+g)^2}_{\in R[a, b]} - \underbrace{(f-g)^2}_{\in R[a, b]}) \in R[a, b]$.

4. Пусть $f \in R[a,b], a \le c < d \le b$. Тогда $f \in R[c,d]$.

$$\mathcal{A}$$
-во. Возьмем $\varepsilon > 0$, $f \in R[a,b] \Longrightarrow \exists T = \{x_0,x_1,\ldots,x_n\}$ - разбиение $[a,b]$, т.ч. $S(T) - s(T) < \varepsilon$. Обозначим $T' = T \cup \{c,d\}$, $a < x_1 < x_2 < \cdots < x_{m-1} < c \le x_m \cdots < x_{l-1} < d \le x_l < \cdots < x_n$. Тогда $S(T') - s(T') \le S(T) - s(T) < \varepsilon$. Получим, что $T'' = \{c,x_m,\ldots,x_{l-1},d\}$ - разбиение $[c,d]$, причем $S(T'') - s(T'') = \sum_{k=m}^{l} (M_k - m_k) \Delta x_k \le S(T') - s(T') < \varepsilon \implies f \in R[c,d]$.

5. Пусть $a < c < b, f \in R[a,c], f \in R[c,b]$. Тогда $f \in R[a,b]$, причем $\int_a^c f(x) \, dx + \int_c^b f(x) \, dx = \int_a^b f(x) \, dx$.

$$\mathcal{A}$$
-во. Возьмем $\varepsilon > 0$. $\exists T_1$ - разбиение $[a,c]$ и T_2 - разбиение $[c,b]$, т.ч. $S(T_j) - s(T_j) < \frac{\varepsilon}{2}, \ j=1,2$. Пусть $T=T_1 \cup T_2 = \{x_0,x_1,\ldots,x_n\}$ - разбиение $[a,b],\ c=x_m$. $S(T)-s(T)=\sum_{k=1}^n (M_k-m_k)\Delta x_k = \sum_{k=1}^m (M_k-m_k)\Delta x_k + \sum_{k=m+1}^n (M_k-m_k)\Delta x_k = (S(T_1)-s(T_1))+(S(T_2)-s(T_2))<\varepsilon \implies f\in R[a,b].$

Оценки интегралов.

1. Пусть $f \in R[a,b]$. Если $f(x) \ge 0 (\le 0) \, \forall x \in [a,b]$, то $\int_a^b f(x) \, dx \ge 0 (\le 0)$.

$$\mathcal{A}$$
-во. Пусть $f(x) \ge 0 \, \forall x \in [a,b]$. Тогда $\forall V$ - размеченного разбиения $[a,b]: \sigma(V) = \sum_{k=1}^n \underbrace{f(\xi_k)}_{\ge 0} \Delta x_k \ge 0$.

2. Пусть $f,g \in R[a,b]$. Если $f(x) \geq g(x) \, \forall x \in [a,b]$, то $\int_a^b f(x) \, dx \geq \int_a^b f(x) \, dx$.

Д-во.
$$\int_a^b (f(x) - g(x)) dx \ge 0 \implies \int_a^b f(x) dx \ge \int_a^b g(x) dx$$

3. Пусть $f \in R[a,b]$. Если $f(x) \ge 0 \, \forall x \in [a,b], \, \exists x_0 \in [a,b], \, \text{т.ч.} \, f(x_0) > 0$, причем f непрерывна в точке x_0 , то $\int_a^b f(x) \, dx > 0$.

$$\mathcal{A}$$
-во. Обозначим $\varepsilon = \frac{f(x_0)}{2} > 0$. f непрерывна в точке $x_0 \implies \exists \delta > 0$, т.ч. $\forall x \in B_\delta(x) \cap [a,b] : |f(x_0) - f(x)| < \varepsilon \Leftrightarrow \frac{f(x_0)}{2} \leq f(x) \leq \frac{3f(x_0)}{2}$. Пусть h - длина промежутка $B_\delta(x_0) \cap [a,b]$, $h > 0$. Положим $g(x) = \begin{cases} \frac{f(x_0)}{2}, x \in B_\delta(x_0) \cap [a,b] \\ 0, \text{ иначе} \end{cases}$. Тогда $f(x) \geq g(x) \, \forall x \in [a,b] \implies \int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx = \frac{f(x_0)}{2} h > 0$.

- 4. Пусть $f \in C[a,b], f(x) \ge 0 \, \forall x \in [a,b].$ Если $\int_a^b f(x) \, dx = 0$, то $f(x) \equiv 0$.
- 5. Если $f \in R[a,b]$, то $|f| \in R[a,b]$, причем $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$.

 \mathcal{A} -во. Функция $g(y)=|y|\in \mathrm{Lip}[m,M]:||y_1|-|y_2||\leq |y_1-y_2|$. Значит сложная функция $g(f)=|f|\in R[a,b]$.

11 Первая теореме о среднем значении и следствие из нее. Вторая теорема о среднем (без доказательства).

Теорема (1-я теорема о среднем). Пусть $f, g \in R[a, b], m = \inf_{a \le x \le b} f(x), M = \sup_{a \le x \le b} f(x).$

Если $g(x) \ge 0 (\le 0) \, \forall x \in [a,b], \, mo \, \exists \mu \in [m,M], \, m.ч. \, \int_a^b f(x)g(x) \, dx = \mu \int_a^b g(x) \, dx \, (1). \, B$ частности, если $f \in C[a,b], \, mo \, \exists \xi \in [a,b], \, m.ч. \, \int_a^b f(x)g(x) \, dx = f(\xi) \int_a^b g(x) \, dx \, (2).$

 \mathcal{A} -во. Пусть $g(x)>0\ \forall x\in[a,b]$. Поскольку $m\leq f(x)\leq M\ \forall x\in[a,b]$, то $mg(x)\leq f(x)g(x)\leq Mg(x)\implies m\int_a^bg(x)\,dx\leq \int_a^bf(x)g(x)\,dx\leq M\int_a^bg(x)\,dx$. Заметим, что если $\int_a^bg(x)\,dx=0$, то $\int_a^bf(x)g(x)\,dx=0$ в силу двойного неравенства. Если же $\int_a^bg(x)\,dx>0$, то $m\leq \frac{\int_a^bf(x)g(x)\,dx}{\int_a^bg(x)\,dx}\leq M$. Обозначим $\mu=\frac{\int_a^bf(x)g(x)\,dx}{\int_a^bg(x)\,dx}$.

Следствие. Положим в формуле (1) $g(x) \equiv 1$, получим, что для $f \in R[a,b] \exists \mu \in [m,M]$, т.ч. $\int_a^b f(x) \, dx = \mu(b-a)$. В частности, если $f \in C[a,b]$, то $\exists \xi \in [a,b]$, т.ч. $\int_a^b f(x) \, dx = f(\xi)(b-a)$.

Теорема (2-я теорема о среднем, без доказательства). Пусть $f \in R[a,b]$

- 1. Если $g \searrow$ на [a,b] и $g(x) \geq 0 \ \forall x \in [a,b], \ mo \ \exists \xi \in [a,b]: \int_a^b f(x)g(x) \ dx = g(a) \int_a^\xi f(x) \ dx.$
- 2. Ecnu $f \nearrow \text{ Ha } [a,b] \ u \ g(x) \ge 0 \ \forall x \in [a,b], \ mo \ \exists \xi \in [a,b] : \int_a^b f(x)g(x) \ dx = g(b) \int_{\xi}^b f(x) \ dx.$
- 3. Если g монотонна на [a,b], то $\exists \xi \in [a,b] : \int_a^b f(x)g(x) \, dx = g(a) \int_a^\xi f(x) \, dx + g(b) \int_{\xi}^b f(x) \, dx$.

12 Определение и свойства интеграла с переменным верхним пределом. Основная формула интегрального исчисления (формула Ньютона-Лейбница).

Опр. Пусть $f \in R[a,b]$, $x_0 \in [a,b]$. Функция $F(x) = \int_{x_0}^x f(x) \, dx$, $a \le x \le b$ называется интегралом с переменным верхним пределом от функции f на [a,b].

Теорема. Если $f \in R[a,b]$, то $F \in C[a,b]$. Если к тому же f непрерывна в некоторой точке ξ , то F дифференцируема в точке ξ , причем $F'(\xi) = f(\xi)$.

 \mathcal{A} -во. 1) Пусть $s \in [a,b]$. Тогда $\forall \Delta x \in \mathbb{R}, s+\Delta x \in [a,b]$:

$$|F(s + \Delta x) - F(s)| = \left| \int_{x_0}^{s + \Delta x} f(x) \, dx - \int_{x_0}^{s} f(x) \, dx \right| = \left| \int_{s}^{s + \Delta x} f(x) \, dx \right| \le \left| \int_{s}^{s + \Delta x} |f(x)| \, dx \right| \le \left| \int_{s}^{s + \Delta x} M \, dx \right| = M|\Delta x|.$$

Значит F непрерывна в любой точке $s \in [a, b]$, т.е. $F \in C[a, b]$.

2) Пусть f непрерывна в точке $\xi \in [a,b]$. Возьмем $\Delta x \in \mathbb{R}$, т.ч. $\xi + \Delta x \in [a,b]$. Тогда

$$\left| \frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} - f(\xi) \right| = \left| \frac{1}{\Delta x} \int_{\xi}^{\xi + \Delta x} f(t) dt - f(\xi) \right| =$$

$$= \left| \frac{1}{\Delta x} \int_{\xi}^{\xi + \Delta x} f(t) dt - \frac{1}{\Delta x} \int_{\xi}^{\xi + \Delta x} f(\xi) dt \right| =$$

$$= \left| \int_{\xi}^{\xi + \Delta x} (f(t) - f(\xi)) dt \right|.$$

Возьмем $\varepsilon>0$. f непрерывна в точке $\xi\implies\exists \delta(\varepsilon)>0$, т.ч. $\forall t,|t-\xi|<\delta:|f(t)-f(\xi)|<\varepsilon$. Пусть $0<|\Delta x|<\delta$. Тогда

$$\left| \frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} - f(\xi) \right| \le \frac{1}{|\Delta x|} \left| \int_{\xi}^{\xi + \Delta x} \underbrace{|f(t) - f(\xi)|}_{\varepsilon} dt \right| \le \frac{1}{|\Delta x|} \varepsilon |\Delta x| = \varepsilon.$$

Это означает в точности, что

$$\lim_{\Delta x \to 0} \left(\frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} - f(\xi) \right) = 0 \implies F'(\xi) = \lim_{\Delta x \to 0} \frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} = f(\xi).$$

Теорема (Формула Ньютона-Лейбница). Пусть $\int_a^b f(x) dx = \Phi|_a^b = \Phi(b) - \Phi(a)$, где Φ - любая первообразная для f на [a,b].

 \mathcal{A} -во. Пусть $F(x) = \int_a^x f(t) \, dt$. F является первообразной для f на [a,b]. Если Φ - произвольная первообразная для f на [a,b], то $F(x) = \Phi(x) + C$, $\forall x \in [a,b]$. Тогда $\int_a^b f(x) \, dx = F(b) = F(b) - F(a) = \Phi(b) - \Phi(a) = \Phi|_a^b$.

13 Формулы замены переменной и интегрирования частям в определенном интеграле. Формула Тейлора с остаточным членом в интегральной форме.

Теорема (Замена переменной в определенном интеграле). Пусть

1.
$$\varphi \in C^1[\alpha, \beta]$$
.

2.
$$\min_{\alpha \le t \le \beta} \varphi(t) = \varphi(\alpha) = a$$
, $\max_{\alpha \le t \le \beta} \varphi(t) = \varphi(\beta) = b$.

3.
$$f \in C[a,b]$$
.

Το εδα $\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$.

 \mathcal{A} -во. Оба интеграла существуют, так как подынтегральные функции непрерывны $(f(\varphi))$ непрерывна как сложная функция). Пусть F - первообразная для f на [a,b]. Тогда $F(\varphi)$ дифференцируема на $[\alpha,\beta]$ (как сложная функция) и $(F(\varphi(t)))' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t) \, \forall t \in [\alpha,\beta] \implies \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(T) \, dt = F(\varphi(t))|_{\alpha}^{\beta} = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(x) \, dx$.

Теорема (Интегрироание по частям в определенном интеграле). Пусть $f, g \in C^1[a, b]$. Тогда $\int_a^b f(x)g'(x) dx = f(x)g(x)|_a^b - \int_a^b f'(x)g(x) dx$.

 \mathcal{A} -во. Оба интеграла существуют, так как подынтегральные функции непрерывны. Поскольку $(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) \, \forall x \in [a,b], \ f(x)g(x)|_a^b = \int_a^b (f(x)g(x))' \, dx = \int_a^b f(x)g'(x) \, dx + \int_a^b f'(x)g(x) \, dx.$

Следствие (Формула Тейлора с остаточным членов в интегральной форме). Пусть $f \in C^{n+1}(B_{\delta}(a)), \delta > 0$ (т.е. $\exists f^{(n+1)}$ и она непрерывна $\forall x \in B_{\delta}(a)$). Тогда $\forall x \in B_{\delta}(a)$: $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \cdots + \frac{f^{(n)(a)}}{n!}(x-a)^n + \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x-t)^n dt$.

Д-60. Интеграл существует, так как подынтегральная функция непрерывна. Применим формулы интегрирования по частям:

$$\begin{split} &\frac{1}{n!}\int_a^x f^{(n+1)}(t)(x-t)^n\,dx = \\ &= \frac{1}{n!}\int_a^x (x-t)^n\,df^{(n)}(t) = \frac{1}{n!}(x-t)^nf^{(n)}|_a^x - \frac{1}{n!}\int_a^x f^{(n)}\,d(x-t)^n = \\ &= -\frac{1}{n!}(x-a)^nf^{(n)}(a) + \frac{1}{(n-a)!}\int_a^x f^{(n)}(t)(x-t)^{n-1}\,dt = \text{(снова по частям, и т.д.)} = \\ &= -\frac{1}{n!}(x-a)^nf^{(n)}(a) - \frac{1}{(n-1)!}f^{(n-1)}(a) - \dots - \frac{1}{1!}(x-a)f'(a) + \frac{1}{0!}\int_a^x f'(x)(x-t)^0\,dt = \\ &= f(x) - \varphi(a,x). \end{split}$$

14 Определение плоской кривой, простой кривой, параметризуемой кривой. Понятие длины плоской кривой. Теорема о длине дуги кривой, заданной параметрически. Следствие формула длины кривой, заданной в декартовых и в полярных координатах.

Опр. Плоской кривой называется множество $L = \{(x,y) \in \mathbb{R}^2 : x = \varphi(t), y = \psi(t), \alpha \le t \le \beta, \ \varphi, \psi \in C[a,b] \}.$

Опр. Точка (x,y) называется кратной точкой кривой, если $\exists t_1,t_2 \in [\alpha,\beta], t_1 \neq t_2:$ $\begin{cases} \varphi(t_1) = \varphi(t_2) \\ \psi(t_1) = \psi(t_2) \end{cases}$. Точка, не являющаяся кратной, называется простой.

 \dot{K} ривая L называется простой, если y нее нет кратных точек, кроме, возможно, точки (x_0,y_0) , т.ч. $x_0=\varphi(\alpha)=\varphi(\beta)$, $y_0=\psi(\alpha)=\psi(\beta)$. Если единственная кратная точка кривой L - ее начало/конец, то L называется простой замкнутой кривой.

Кривая L называется параметризуемой, если $\exists T = \{t_0, t_1, \dots, t_n\}$ - разбиение $[\alpha, \beta]$, m.ч. на каждом из отрезков $[t_{k-1}, t_k]$ функции φ, ψ задают простую кривую.

Опр. Функция f называется кусочно линейной на $[\alpha, \beta]$, если $f \in C[\alpha, \beta]$, т.ч. на каждом из отрезков $[t_{k-1}, t_k]$ f является линейной функцией. Кривая l называется ломаной, если задающие ее функции являются кусочно линейными.

Опр. Пусть $L = \{(x,y) \in \mathbb{R}^2 : x = \varphi(y), y = \psi(t), \alpha \leq t \leq \beta, \varphi, \psi \in C[\alpha,\beta]\}$, $T = \{t_0, t_1, \ldots, t_n\}$ - разбиение $[\alpha, \beta]$. Ломаная $l = A_0 A_1 \ldots A_n$ вписана в кривую L и соответствует разбиению T, если $A_k(\varphi(t_k), \psi(t_k))$ - вершины ломаной, отрезки $A_{k-1}A_k$ - звенья ломаной. Длина ломаной l - число $|l| = \sum_{k=1}^n |A_{k-1}A_k|$.

Опр. Кривая L называется спрямляемой, если множество длин всех ломаных, вписанных в L ограничено сверху. Длина спрямляемой кривой L - это число $|L| = \sup_{T} \{|l|\}$.

Лемма. Пусть L - плоская кривая, ломанные l и l' вписаны в L и соответствуют разбиениям T и T' соответственно. Если $T \subset T'$, то $|l| \leq |l'|$.

Д-60. Достаточно рассмотреть случай $T' = T \cup \{t'\}$. Пусть $t' \in (t_{k-1}, t_k)$. Обозначим $A_{k-1} = (\varphi(t_{k-1}), \psi(t_{k-1}), A_k = (\varphi(t_k), \psi(t_k)), A' = (\varphi(t'), \psi(t'))$. Тогда $|l'| - |l| = |A_{k-1}A'| + |A'A_k| - |A_{k-1}A_k| \ge 0$ (неравенство треугольника).

Лемма. $\forall a, b \in \mathbb{R} : |\sqrt{a^2 + b^2} - \sqrt{a^2 + c^2}| \le |b - c|$.

Д-60. Если b=c, то утверждение очевидно. Пусть $b^2+c^2\neq 0$. Тогда

$$\begin{split} |\sqrt{a^2+b^2}-\sqrt{a^2+c^2}| &= \frac{|a^2+b^2-a^2-c^2|}{\sqrt{a^2+b^2}+\sqrt{a^2+c^2}} \leq \frac{|b^2-c^2|}{|b|+|c|} = \frac{|b-c||b+c|}{|b|+|c|} \leq \\ &\leq \frac{|b-c|(|b|+|c|)}{|b|+|c|} = |b-c|. \end{split}$$

Теорема. Пусть $\varphi, \psi \in C^1[\alpha, \beta]$. Тогда кривая $L = \{(x, y) \in \mathbb{R}^2 | x = \varphi(t), y = \psi(t), \alpha \le t \le \beta\}$ спрямляема, причем $|L| = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt$.

 \mathcal{A} -во. Проведем для случая простой кривой. Возьмем $\varepsilon > 0$. Функция $\psi' \in C[a,b] \Longrightarrow$ равномерно непрерывна $\Longrightarrow \exists \delta_1(\varepsilon) > 0$, т.ч. $\forall t',t'' \in [a,b], |t'-t''| < \delta_1 : |\psi(t')-\psi(t'')| < \frac{\varepsilon}{4(\beta-\alpha)}$ (1). Обозначим $f(t) = \sqrt{(\varphi'(t))^2 + (\psi'(t))^2}, f \in C[\alpha,\beta] \Longrightarrow f \in R[\alpha,\beta] \Longrightarrow \exists J = \int_{\alpha}^{\beta} f(t) \, dt$. Далее, $\exists \delta_2(\varepsilon) > 0$, т.ч. $\forall V$ - размеченного разбиения $[\alpha,\beta], \Delta_V < \delta_2 : |\sigma_f(V) - J| < \frac{\varepsilon}{4}$ (2). Обозначим $\delta = \min\{\delta_1,\delta_2\}$. Пусть T - разбиение $[\alpha,\beta], \Delta_T < \delta$. Впишем в L ломаную l, соответсвующую разбиению T. Тогда

$$|l| = \sum_{k=1}^{n} \sqrt{(\varphi(t_k - \varphi(t_{k-1})^2 + (\psi(t_k) - \psi(t_{k-1}))^2} = (\text{т. Лагранжа}, \, \xi_k, \eta_k \in [t_{k-1}, t_k]) =$$

$$= \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k)(t_k - t_{k-1}))^2 + (\psi'(\eta_k)(t_k - t_{k-1}))^2} =$$

$$= \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} \Delta t_k. \, (*)$$

Заметим, что $\varphi', \psi' \in C[\alpha, \beta] \implies$ ограничены на $[\alpha, \beta] \implies \exists M_1, M_2$ т т.ч. $|\varphi'(t)| \leq M_1$, $|\psi'(t)| \leq M_2 \, \forall t \in [\alpha, \beta]$. Обозначим $M = \sqrt{M_1^2 + M_2^2}$, тогда $|l| \leq \sum\limits_{k=1}^n M \Delta t_k = M(\beta - \alpha)$. Получили, что множество длин всех ломаных l, вписанных в L и соответствующих разбиению с диаметром $<\delta$, ограничено сверху. Но при измельчении разбиения длина ломаных растет \implies множество длин всех ломаных, вписанных в L, ограничено сверху $\implies L$ спрямляема. Пусть $V = \{t_0, t_1, \ldots, t_n, \xi_1, \ldots, \xi_n\}$ - размеченное разбиение $[\alpha, \beta]$, соответствующее разбиению T, где точки ξ_k взяты из соотношения (*). Тогда

$$||l| - \sigma_f(V)| = \left| \sum_{k=1}^n \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} \Delta t_k - \sum_{k=1}^n \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \Delta t_k \right| \le$$

$$\leq \left| \sum_{k=1}^n \left(\sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \right) \Delta t_k \right| \le$$

$$\leq \sum_{k=1}^n |\psi'(\xi_k) - \psi'(\eta_k)| \Delta t_k < \frac{\varepsilon}{(\beta - \alpha)} \sum_{k=1}^n \Delta t_k = \frac{\varepsilon}{4} (3)$$

Далее, кривая L спрямляема $\Longrightarrow \exists |L|$. По определению $\exists l^*$ - ломаная, вписанная в L и соответствующая разбиению T^* , т.ч. $0 \le |L| - |L^*| < \frac{\varepsilon}{2}$. Пусть T' - измельчение T^* , т.ч. $\Delta_{t'} < \delta$. Тогда $0 \le |L| - |l'| \le |L| - |l^*| < \frac{\varepsilon}{2}$ (4). Объединяя неравенства (2) – (4), получаем, что $\forall \varepsilon > 0 \, \exists \delta(\varepsilon > 0, \, \text{т.ч.} \, \forall l$ - ломаной, вписанной в L и соответствующей разбиению T, $\Delta_T < \delta$:

$$||L| - J| \le \underbrace{||L| - |L||}_{<\frac{\varepsilon}{2}} + \underbrace{||l| - \sigma_f(V)|}_{<\frac{\varepsilon}{4}} + \underbrace{|\sigma_f(V) - J|}_{<\frac{\varepsilon}{4}} < \varepsilon.$$

В силу произвольности выбора $\varepsilon: |L| = J$.

Следствия.

1. Пусть L - график функции y=f(x) в декартовых координатах, $a\leq x\leq b$. Если $f\in C^1[a,b]$, то кривая L спрямляема, причем $|L|=\int_a^b\sqrt{1+(f'(x))^2}\,dx$.

Д-во. Возьмем в теореме
$$\varphi(t)=t, \psi(t)=f(t)$$
. Тогда $|L|=\int_a^b \sqrt{1+(f'(t))^2}\,dt$.

2. Пусть кривая L - график функции $r=r(\theta)$ в полярных координатах, $\theta_1 \leq \theta \leq \theta_2$. Если $r \in C^1[\theta_1,\theta_2]$, то кривая L спрямляема, причем $|L| = \int_{\theta_1}^{\theta_2} \sqrt{(r(\theta))^2 + (r'(\theta))^2} \, dt$.

$$\mathcal{A}$$
-во. Возьмем $\varphi(t)=r(t)\cos(t),\,\psi(t)=r(t)\sin(t).$ Тогда

$$(\varphi'(t))^{2} + (\psi'(t))^{2} = (r'(t)\cos t - r(t)\sin t)^{2} + (r'(t)\sin t + r(t)\cos t)^{2} =$$

$$= (r'(t))^{2}\cos^{2}t - 2r'(t)\cos tr(t)\sin t + (r(t))^{2}\sin^{2}t +$$

$$+ (r'(t))^{2}\sin^{2}t + 2r'(t)\sin tr(t)\cos t + (r(t))^{2}\cos^{2}t =$$

$$= (r'(t))^{2} + (r(t))^{2}.$$

15 Понятие квадрируемости (площади) плоской фигуры. Критерий квадрируемости через приближение простейшими (лемма 1). Площадь криволинейной трапеции.

Опр. Рассмотрим множество \mathbb{R}^2 всех точек плоскости. Будем считать, что на плоскости введена некоторая система координат. Пусть точка $M(x_0, y_0) \in \mathbb{R}^2$. ε -окрестностью точки M называется множество $B_{\varepsilon}(M) = \{(x,y) \in \mathbb{R}^2 | (x-x_0)^2 + (y-y_0)^2 < \varepsilon^2 \}$.

Опр. Пусть $A \subset \mathbb{R}^2$. Точка $M(x_0, y_0)$ - внутрення точка A, если $\exists \varepsilon > 0 : B_{\varepsilon}(M) \subset A$. Точка $M(x_0, y_0)$ называется внешней точкой множества A, если $\exists \varepsilon > 0 : B_{\varepsilon}(M) \subset (\mathbb{R}^2 \setminus A)$. Точка A - граничная, если $\exists \varepsilon > 0 : B_{\varepsilon}(M) \cap A \neq \emptyset$ и $B_{\varepsilon}(M) \cap (\mathbb{R}^2 \setminus A) \neq \emptyset$.

Опр. Множество $A \subset \mathbb{R}^2$ открыто, если все его точки - внутренний. Множество A замкнуто, если его дополнение $(\mathbb{R}^2 \setminus A)$ открыто. Множество A ограничено, если $\exists R > 0 : A \subset B_R(0)$.

Опр. Плоской фигурой назовем произвольное ограниченное множество $F \subset \mathbb{R}^2$.

• Простейшими назовем фигуры, представляющие собой конечное объединение прямоугольников со сторонами, параллельными осям координат. Не ограничивая в общности, можем считать, что эти прямоугольники либо не пересекаются, либо пересекаются по части границы.

- Прямоугольник $\Pi = [a, b] \times [c, d], \ a \leq b, \ c \leq d$ имеет площадь $S(\Pi) = (b a)(d c).$
- Обозначим через S(P) площадь простейшей фигуры P. По определению, если $P = \Pi_1 \cup \dots \cup \Pi_k, \ \Pi_i \cap \Pi_j = \emptyset, \ mo \ S(P) = \sum_{i=1}^k S(\Pi_j).$

Свойства площади:

- 1. $S(P) \ge 0$.
- 2. Если $P_1 = P_2$, то $S(P_1) = S(P_2)$.
- 3. Если $P_1 \subset P_2$, то $S(P_1) \leq S(P_2)$
- 4. Если $P = P_1 \cup \cdots \cup P_m$, $P_i \cap P_j = \emptyset$ при $i \neq j$, то $S(P) = \sum_{k=1}^m S(P_k)$.

Опр. Пусть F - плоская фигура. Ее нижней площадью называется $S_*(F) := \sup_{P \subset F} \{S(P)\}$, верхней площадью - величина $S^*(F) := \inf_{Q \supset F} \{S(Q)\}$, где inf взят по все простейшим фигурам, содержащим F; sup взят по всех простейшим фигурам, содержащимся в F.

Замечание:

- 1. $S_*(F)$ всегда существует, так как F ограничена \Longrightarrow множество $\{S(P)\}, P \subset F$ ограничено сверху константой. $S^*(F)$ существует, так как $S(Q) \ge 0 \, \forall Q$.
- 2. $\forall P,Q,$ если $P\subset F\subset Q,$ то $S(P)\leq S(Q)\implies S_*(F)\leq S^*(F).$

Опр. Фигура F называется квадрируемой, если $S_*(F) = S^*(F)$. По определению площадь квадрируемой фигуры $F: S(F) := S_*(F) = S^*(F)$.

Замечание:

Не \forall ограниченная фигура F является квадрируемой. Например: $F = \{(x,y)|0 \le x \le 1, \ 0 \le y \le 1, \ x,y \in \mathbb{Q}\}, \ S_*(F) = 0, \ S^*(F) = 1.$

Лемма. Фигура F квадрируема $\Leftrightarrow \forall \varepsilon > 0 \,\exists P,Q = n$ ростейшие, т.ч. $P \subset F \subset Q$ и $S(Q) - S(P) < \varepsilon$.

 \mathcal{J} -во. (\Longrightarrow) F - квадрируема \Longrightarrow $S_*(F) = S^*(F) = S(F)$. Возьмем $\varepsilon > 0$. По определению $S(F) = \sup_{P \subset F} \{S(P)\} \implies \exists P \subset F$, т.ч. $S(P) > S(F) - \frac{\varepsilon}{2}$ (1). Аналогично, $S(F) = \inf_{Q \supset F} \{S(Q)\} \implies \exists Q \supset F$, т.ч. $S(Q) < S(F) + \frac{\varepsilon}{2}$ (2). Из (1) и (2) \Longrightarrow $S(Q) - S(P) < \varepsilon$.

(\iff) По определению $\forall P,Q$ - простейших, т.ч. $P \subset F \subset Q: S(P) \leq S_*(F) \leq S^*(F) \leq S(Q)$. По условию $\forall \varepsilon > 0 \,\exists P,Q$ - простейшие: $0 \leq S^*(F) - S_*(F) \leq S(Q) - S(P) < \varepsilon \implies S_*(F) = S^*(F)$.

Опр. Пусть $f \in C[a,b]$, $f(x) \geq 0 \,\forall x \in [a,b]$. Криволинейной трапецией называется фигура F, ограниченная графиком f на [a,b], прямыми x=a, x=b и отрезком [a,b] на оси Ox.

Теорема. Криволинейная трапеция квадрируема и $S(F) = \int_a^b f(x) \, dx$.

16 Понятие квадраруемости (площади) плоской фигуры. Критерий квадрируемости через приближение квадрируемыми (лемма 2). Площадь криволинейного сектора.

(см. все определения предыдущего вопроса)

Пемма. Фигура F квадрируема $\Leftrightarrow \forall \varepsilon > 0 \exists F_1, F_2$ - квадрируемые, т.ч. $F_1 \subset F \subset F_2$ и $S(F_2) - S(F_1) < \varepsilon$.

 \mathcal{A} -60. (\Longrightarrow) Сразу следует из леммы предыдущего вопроса, т.к. любая простейшая фигура квадриурема.

 (\Leftarrow) Возьмем $\varepsilon > 0$. По условию $\exists F_1, F_2$ - квадрируемые, т.ч. $F_1 \subset F \subset F_2$, причем $S(F_2) - S(F_1) < \frac{\varepsilon}{2}$. $\exists P_1, P_2, Q_1, Q_2$ - простейшие, т.ч. $P_k \subset F_k \subset Q_k$, $S(Q_k) - S(P_k) < \frac{\varepsilon}{4}$. Тогда, $P_1 \subset F_1 \subset F \subset F_2 \subset Q_2$, $S(Q_2) - S(P_1) = S(Q_2) - \underbrace{S(F_2)}_{\geq S(P_2)} + \underbrace{S(F_2) - S(F_1)}_{\leq S(Q_1)} + \underbrace{S(F_1) - S(P_1)}_{\leq S(Q_1)} < \underbrace{S(Q_1)}_{\leq S(Q_1)}$

$$\underbrace{S(Q_2) - S(P_2)}_{<\frac{\varepsilon}{4}} + \underbrace{S(Q_1) - S(P_1)}_{<\frac{\varepsilon}{4}} < \varepsilon \implies F \text{ - квадрируема.}$$

Опр. Криволинейным сектором называется фигура, ограниченная графиком $r = r(\varphi)$ в полярных координатах, где $r \in C[\alpha, \beta]$, и лучами $\varphi = \alpha$, $\varphi = \beta$.

Теорема. Криволинейный сектор F - квадрируемая фигура, причем $S(F) = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) \, d\varphi$.

$$\mathcal{A}$$
-во. $r \in C[\alpha, \beta] \implies \frac{1}{2}r^2 \in R[\alpha, \beta]$. Возьмем $\varepsilon > 0$. $\exists T = \{\varphi_0, \varphi_1, \dots, \varphi_n\}$ - разбиение $[\alpha, \beta]$, т.ч. $S(T) - s(T) < \varepsilon$. С другой стороны, $S(T) = \sum_{k=1}^n \frac{1}{2} M_k^2 \Delta \varphi_k = \sum_{k=1}^n S(Q_k) = S(Q)$,

где $M_k = \sup\{r(\varphi)\}$, Q_k - сектор круга с углом $\Delta \varphi_k$ и радиусом M_k , $Q = \bigcup_{k=1}^n Q_k$ - квадрируемая, $Q \subset P$. Аналогично, s(T) = S(P), где $P = \bigcup_{k=1}^n P_k$, P - сектор круга с углом $\Delta \varphi_k$ и радиусом m_k , P - квадрируемая, $P \subset F$. Значит, $P \subset F \subset Q$, $S(Q) - S(P) < \varepsilon \implies F$ - квадрируема. Далее $|| \qquad \qquad || \qquad || \qquad || \qquad || \qquad \qquad ||$

17 Понятие кубируемости (объема тела). Критерий кубируемости через пирближение простешими (лемма 1). Кубируемость цилиндрических тел.

Опр. Пусть $M(x_0, y_0, z_0) \in \mathbb{R}^3$. Ее ε -окрестностью назовем множество $B_{\varepsilon}(M) = \{(x, y, z) \in \mathbb{R}^3 \mid (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 < \varepsilon^2 \}$.

Опр. Множество $A \subset \mathbb{R}^3$ назовем ограниченным, если $\exists R > 0$, т.ч. $A \subset B_R(0)$. Телом будем называть произвольное ограниченное множество $K \subset \mathbb{R}^3$.

Опр. Простейшими назовем тела, представляющие собой конечное объединение прямоугольных параллелепипедов со сторонами, параллельными осям координат. Не ограничивая в общности можем считать, что любые два параллелепипеда не пересекаются (пересекаются по части границ).

Пусть простейшее тело $P = \bigcup_{k=1}^{n} \Pi_{k}$, $\Pi_{i} \cap \Pi_{k} = \emptyset$, $i \neq j$; $\Pi_{k} = [a,b] \times [c,d] \times [e,f]$ - параллелепипед, $a \leq b$, $c \leq d$, $e \leq f$. Тогда объем параллелепипеда $V(\Pi_{k})(b-a)(d-c)(f-c)$. $V(P) = \sum_{k=1}^{n} V(\Pi_{k})$ - объем простешего тела V обладает теми же свойствами, что и площадь.

Опр. Верхним объемом тела K называется $V^*(K) = \inf_{Q \supset K} \{V(Q)\}$, нижним объемом - $V_* = \sup_{P \subset K} \{V(P)\}$, где inf взят по всем простейшим телам, содержащим K; \sup взят по всем простейшим телам, содержащимся в K. Как и в плоском случае, для любого тела $K \exists V^*(K)$ и $V_*(K)$, причем $V_*(K) \leq V^*(K)$.

Опр. Тело K называется кубируемым, если $V_*(K) = V^*(K)$. Объемом кубируемого тела K называется величина $V(K) = V_*(K) = V^*(K)$.

Лемма. Тело K кубируемого $\Leftrightarrow \forall \varepsilon > 0 \, \exists P,Q$ - простейшие, т.ч. $P \subset K \subset Q$ и $V(Q) - V(P) < \varepsilon$.

 \mathcal{A} -во. (\Longrightarrow) K - кубируемо \Longrightarrow $V_*(K) = V^*(K) = V(K)$. Возьмем $\varepsilon > 0$. По определению $V(K) = \sup_{P \subset K} \{V(P)\} \implies \exists P \subset K : V(P) > V(K) - \frac{\varepsilon}{2}$ (1). Аналогично, $V(K) = \inf_{Q \supset K} \{V(Q)\} \implies \exists Q \supset K : V(Q) < V(K) + \frac{\varepsilon}{2}$ (2). Из (1) и (2) \Longrightarrow $V(Q) - V(P) < \varepsilon$. (\Longleftrightarrow) По определению $\forall P, Q$ - простейших, т.ч. $P \subset K \subset Q : V(P) \le V_*(K) \le V^*(K) \le V(Q)$. По условию $\forall \varepsilon > 0 \exists P, Q$ - простейшие: $0 \le V^*(K) - V_*(K) \le V(Q) - V(P) < \varepsilon \implies V_*(K) = V^*(K)$.

Опр. Цилиндрическим телом (цилиндром) будем называть тело $C=F\times [z_1,z_2]$, где F - плоская фигура, лежащая в плоскости Oxy; $[z_1,z_2]$ - отрезок оси Oz. Фигура F называется основанием цилиндра, отрезок $[z_1,z_2]$ - образующей, число $f=z_2-z_1$ - высотой цилиндра.

Теорема. Если основание цилиндра C 0 квадрируемая фигура, то C - кубируемое тело, причем V(C) = S(F)h

18 Понятие кубироемости (объема тела). Критерий кубируемости через приближение кубируемыми (лемма 2). Кубируемость тел вращения (вокруг оси Ox).

(см. все определения прошлого вопроса)

Лемма. Тело K кубируемо $\Leftrightarrow \forall \varepsilon > 0 \, \exists K_1, K_2$ - кубируемые, т.ч. $K_1 \subset K \subset K_2$ и $V(K_2) - V(K_1) < \varepsilon$.

 \mathcal{A} -во. (\Longrightarrow) Сразу следует из леммы предыдущего вопроса, т.к. любое простейшее тело является кубируемым.

 (\Leftarrow) Возьмем $\varepsilon > 0$. По условию $\exists K_1, K_2$ - кубируемые, т.ч. $K_1 \subset K \subset K_2$, причем $V(K_2) - V(K_1) < \frac{\varepsilon}{2}$. $\exists P_1, P_2, Q_1, Q_2$ - простейшие, т.ч. $P_k \subset K_k \subset Q_k$ и $V(Q_k) - V(P_k) < \frac{\varepsilon}{4}$. Тогда $P_1 \subset K \subset Q_2$, причем $V(Q_2) - V(P_1) = V(Q_2) - \underbrace{V(K_2)}_{\geq V(P_2)} + \underbrace{V(K_2) - V(K_1)}_{\leq \varepsilon} + \underbrace{V(K_1) - V(P_1)}_{\leq V(Q_1)} < \varepsilon \implies K$ - кубируемая. \square

Теорема. Пусть $f \in C[a,b]$, тело K ограниченное поверхностью полученной при вращении графика f вокруг оси Ox и плоскостями x=a и x=b. Тогда K кубируемо, причем $V(K)=\pi\int_a^b f^2(x)\,dx$.

 \mathcal{A} -во. $f \in C[a,b] \implies \pi f^2(x) \in R[a,b]$. Возьмем $\varepsilon > 0$. $\exists T = \{x_0,\dots,x_n\}$ - разбиение [a,b], т.ч. $S(T)-s(T) < \varepsilon$. С другой стороны, $s(T) = \sum_{k=1}^n \pi m_k^2 \Delta x_k = \sum_{k=1}^n V(P_k) = V(P)$, где

 P_k - цилиндр с радиусом основания m_k и образующей $[x_{k-1},x_k]; P = \bigcup_{k=1}^n P_k$ - ступенчатое

тело. Значит, $P \subset K$, P - кубируемо. Аналогично, $S(T) = \sum_{k=1}^n \pi M_k^2 \Delta x_k = \sum_{k=1}^n V(Q_k) = V(Q)$, где Q_k - цилиндр с радиусом основания M_k и высотой Δx_k , $Q \supset K$, Q - кубируемо. Получили, что $P \subset K \subset Q$, $V(Q) - V(P) = S(T) - s(T) < \varepsilon \implies$ тело K кубируемо.

 $V(P) \leq V(K) \qquad \leq V(Q)$ Kpome toro $|| \qquad \qquad || \qquad | \qquad$

19 Определение несобственного интеграла (первого и второго рода). Формулы замены переменной и интегрирования по частям для несобственных интегралов первого рода. Критерий Коши и признак сравнения для несобственных интегралов первого рода.

Опр. Пусть f определена на [a,b] и $f\in R[a,A]$ $\forall A>a$. Выражение $\int_a^{+\infty} f(x)\,dx:=\lim_{A\to+\infty}\int_a^A f(x)\,dx$ называется несобственным интегралом первого рода. Если предел правой части существует (конечный), то говорят, что интеграл сходится, иначе расходится Аналогично, $\int_{-\infty}^a f(x)\,dx=\lim_{A\to-\infty}\int_A^a f(x)\,dx$, если $f\in [A,a]$ $\forall A<a$. Наконец, $\int_{-\infty}^{+\infty} f(x)\,dx=\lim_{A_1\to-\infty}\int_{A_1}^a f(x)\,dx+\lim_{A_2\to+\infty}\int_a^{A_2} f(x)\,dx$, если $f\in R[A_1,A_2]$ $\forall A_1< A_2$.

Опр. Пусть функция f определена на [a,b) и $f \in R[a,b-\varepsilon] \, \forall \varepsilon \in (0,b-a)$. Несобственным интегралом второго рода от f на [a,b] называется выражение $\int_a^b f(x) \, dx := \lim_{\varepsilon \to 0+0} \int_a^{b-\varepsilon} f(x) \, dx$, если $f \notin R[a,b]$, b - особая точка. Аналогично, если a - особая точка, то $\int_a^b f(x) \, dx = \lim_{\varepsilon \to 0+0} \int_{a+\varepsilon}^b f(x) \, dx$. Наконец, если особая точка $c \in (a,b)$, то по определению $\int_a^b f(x) \, dx = \lim_{\varepsilon_1 \to 0+0} \int_a^{c-\varepsilon} f(x) \, dx + \lim_{\varepsilon_2 \to 0+0} \int_{c+\varepsilon}^b f(x) \, dx$.

Теорема (Замена переменной в несобственном интеграле 1-го рода). Пусть

1.
$$\varphi: [\alpha, +\infty) \to [a, +\infty)$$
, причем $\varphi \uparrow$ на $[a, b]$, $\varphi(\alpha) = a$, $\lim_{t \to +\infty} \varphi(t) = +\infty$ (биекция)

2.
$$\varphi \in C^1[\alpha, +\infty)$$

3.
$$f \in C[a, +\infty)$$

Тогда $\int_a^{+\infty} f(x) dx = \int_\alpha^{+\infty} f(\varphi(t)) \varphi'(t) dt$ (либо оба расходятся, либо оба сходятся и равны).

 \mathcal{A} -во. Пусть A>a. φ - биекция $\Longrightarrow \exists \beta>a: \varphi(\beta)=A$. При этом $A\to +\infty \Leftrightarrow \beta\to +\infty$. По теореме о замене переменной в определенном интеграле:

$$\underbrace{\int_{a}^{A} f(x) dx}_{\downarrow} = \underbrace{\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt}_{\downarrow}$$
$$\int_{a}^{+\infty} f(x) dx = \int_{\alpha}^{+\infty} f(\varphi(t)) \varphi'(t) dt$$

Теорема (Интегрирование по частям в несобственном интеграл 1-го рода). Пусть $f,g \in C^1[a,+\infty)$ и $\exists \lim_{x \to +\infty} f(x)g(x) = L$. Тогда $\int_a^{+\infty} f(x)g'(x) \, dx = L - f(a)g(a) - \int_a^{+\infty} f'(x)g(x) \, dx$.

 \mathcal{A} -во. $(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\Longrightarrow$ по формуле Ньютона-Лейбница $\forall A>a:\int_a^A f(x)g'(x)\,dx=\int_a^A (f(x)g(x))'\,dx-\int_a^A f(x)g'(x)\,dx.$ Перейдем к приделу при $A\to+\infty$:

$$\underbrace{\int_{a}^{A} f(x)g'(x) dx}_{\downarrow} = \underbrace{\int_{a}^{A} (f(x)g(x))' dx}_{\downarrow} - \underbrace{\int_{a}^{A} f'(x)g(x) dx}_{\downarrow}$$

$$\int_{a}^{+\infty} f(x)g'(x) dx = \underbrace{F(A)g(A)}_{=L} - f(a)g(a) - \int_{a}^{+\infty} f'(x)g(x) dx$$

Теорема (Критерий Коши сходимости несобственного интеграла 1-го рода). *Пусть f* определена на $[a, +\infty)$ и $f \in R[a, A] \forall A > a$. Интеграл $\int_a^{+\infty} f(x) \, dx$ сходится $\Leftrightarrow \forall \varepsilon > 0 \, \exists B(\varepsilon) > a$, т.ч. $\forall A_1, A_2 > B : \left| \int_{A_1}^{A_2} f(x) \, dx \right| < \varepsilon$.

 \mathcal{A} -60. Обозначим $F(A)=\int_a^A f(x)\,dx$. Согласно критерию Коши существования конечного придела функции F при $A\to +\infty$: $\exists \varprojlim_{A\to +\infty} F(A) \Leftrightarrow \forall \varepsilon>0 \exists B(\varepsilon)>a,$ т.ч.

$$\forall A_1, A_2 \in (B, +\infty) : |\underbrace{F(A_2) - F(A_1)}_{\int_{A_1}^{A_2} f(x) \, dx}| < \varepsilon.$$

Теорема (Признак сравнения).

- 1. Пусть $|f(x)| \leq g(x) \, \forall x \in [a, +\infty), \ f, g \in R[a, A] \, \forall A > a.$ Если $\int_a^{+\infty} g(x) \, dx$ сходится, то и $\int_a^{+\infty} f(x) \, dx$ сходится.
- 2. Пусть $0 \le g(x) \le f(x) \forall x \in [a, +\infty), f, g \in R[a, A] \forall A > a$. Если $\int_a^{+\infty} g(x) dx$ расходится, то и $\int_a^{+\infty} f(x) dx$ расходится.

 \mathcal{A} -во. 1) Возьмем $\varepsilon > 0$. $\int_a^{+\infty} g(x) \, dx$ сходится \Longrightarrow (кр. Коши) $\exists B(\varepsilon) > a$, т.ч. $\forall A_1, A_2, B < A_1 < A_2 : \left| \int_{A_1}^{A_2} f(x) \, dx \right| \leq \int_{A_1}^{A_2} |f(x)| \, dx \leq \int_{A_1}^{A_2} g(x) \, dx = \left| \int_{A_1}^{A_2} f(x) \, dx \right| < \varepsilon$.

- 2) Пусть $0 \le g(x) \le f(x) \, \forall x \ge a$. Если бы $\int_a^{+\infty} f(x) \, dx$ не сходился, то согласно пункту 1 сходился бы и интеграл $\int_a^{+\infty} g(x) \, dx$, а это не так.
- 20 Понятие условной и абсолютной сходимости. Признак Абеля (для интегралов первого рода). Главное значение несобственного интеграла (первого и второго рода).

Опр. Интеграл $\int_a^{+\infty} f(x) \, dx$ сходится абсолютно, если сходится интеграл $\int_a^{+\infty} |f(x)| \, dx$. Интеграл $\int_a^{\infty} f(x) \, dx$ сходится условно, если он сходится, а интеграл $\int_a^{+\infty} |f(x)| \, dx$ - нет.

Утверждение. Если сходится интеграл $\int_a^{+\infty} |f(x)| dx$, то сходится и $\int_a^{+\infty} f(x) dx$.

Д-60. Следует из признака сравнения, т.к.
$$|f(x)| \le g(x) = |f(x)|$$
.

Теорема (Признак Абеля сходимости несобственных интегралов 1-го рода). *Пусть*

- 1. $f \in R[a,b] \forall A \geq a \ u \int_a^{+\infty} f(x) dx \ cxo \partial umcs;$
- $2.\ g$ ограничена и монотонна на $[a,+\infty).$

Тогда $\int_{a}^{+\infty} f(x)g(x) dx$ сходится.

 \mathcal{A} -во. Возьмем $\varepsilon > 0$. По условию $\exists C > 0: |g(x)| < C \, \forall x \in [a, +\infty)$. Интеграл $\int_a^{+\infty} f(x) \, dx$ сходится $\implies \exists B(\varepsilon) > a$, т.ч. $\forall A_1', A_2' > B: \left| \int_{A_1'}^{A_2'} f(x) \, dx \right| < \frac{\varepsilon}{2C}$. Тогда $\forall A_1, A_2, B < A_1 < A_2$:

$$\left| \int_{a}^{+\infty} f(x)g(x) \, dx \right| = \left| g(A_1) \int_{A_1}^{\xi} f(x) \, dx + g(A_2) \int_{\xi}^{A_2} f(x) \, dx \right| \le$$

$$\le C \left| \int_{A_1}^{\xi} f(x) \, dx \right| + C \left| \int_{\xi}^{A_2} f(x) \, dx \right| < C \frac{\varepsilon}{2C} + C \frac{\varepsilon}{2C} =$$

$$= \varepsilon.$$

Значит, $\int_a^{+\infty} f(x)g(x) dx$ сходится.

Опр. Пусть $f \in R[-A, A] \, \forall A > 0$. Главным значением (в смысле Коши) несобственного интеграла 1-го рода называется v.p. $\int_{-\infty}^{+\infty} f(x) \, dx = \lim_{A \to +\infty} \int_{-A}^{A} f(x) \, dx$.

Опр. Пусть $f \in R[a,c-\varepsilon) \forall \varepsilon \in (0,c-a)$ и $f \in R[c+\varepsilon,b] \, \forall \varepsilon \in (0,b-c)$, но $f \notin R[a,b]$. Главным значением несобственного интеграла 2-го рода называется v.p. $\int_a^b f(x) \, dx = \lim_{\varepsilon \to 0+0} \left(\int_a^{c-\varepsilon} f(x) \, dx + \int_{c+\varepsilon}^b f(x) \, dx \right)$.

21 Понятие условной и абсолютной сходимости. Признак Дирихле (для интегралов первого рода). Главное значение несобственного интеграла.

(см. определения и утверждение из прошлого вопроса)

Теорема (признак Дирихле сходимости несобственного интеграла 1-го рода). Пусть

1.
$$f \in R[a, A] \forall A > a \ u \ \exists M > 0, \ m.ч. \left| \int_a^A f(x) \, dx \right| \le M \, \forall A > a;$$

2.
$$g(x) \xrightarrow{x \to +\infty} 0$$
; g монотонна на $[a, +\infty)$.

Тогда $\int_a^{+\infty} f(x)g(x) dx$ сходится.

Д-во. Пусть $f \searrow$ (случай $g \nearrow$ - аналогично). Возьмем $\varepsilon > 0$. Поскольку $g(x) \to 0$, то $\exists B(\varepsilon) > a$, т.ч. $\forall x > B: 0 \le g(x) < \frac{\varepsilon}{2M}$. Тогда $\forall A_1, A_2, \ B < A_1 < A_2$:

$$\left| \int_{A_1}^{A_2} f(x)g(x) \, dx \right| = \left| g(A_1) \int_{A_1}^{\xi} f(x) \, dx \right| < \frac{\varepsilon}{2M} \left| \int_{a}^{\xi} f(x) \, dx - \int_{a}^{A_1} f(x) \, dx \right|$$

$$\leq \frac{\varepsilon}{2M} \left(\underbrace{\left| \int_{a}^{\xi} f(x) \, dx \right|}_{\leq M} + \underbrace{\left| \int_{a}^{A_1} f(x) \, dx \right|}_{\leq M} \right) \leq \varepsilon$$

$$\implies \int_a^{+\infty} f(x)g(x) \, dx$$
 - сходится.

22 Метод прямоугольников вычисления определенных интегралов (с выводом оценки погрешности). Метод Симпсона (без вывода, только оценка).

Опр. Пусть функция f определена на [a,b], $a \le x_1 < x_2 < \dots < x_n \le b$, $\lambda_1,\dots,\lambda_n > 0$. Число $c = \frac{\lambda_1 f(x_1) + \dots + \lambda_n f(x_n)}{\lambda_1 + \dots + \lambda_n}$ называется усреднением значений $f(x_1),\dots,f(x_n)$.

Лемма. Пусть $f \in C[a,b]$, $m = \inf_{x \in [a,b]} f(x)$, $M = \sup_{x \in [a,b]} f(x)$. Тогда $\exists \xi \in [a,b] : c = f(\xi)$.

$$M$$
-во. Поскольку $a \leq x_1 < \cdots < x_n \leq b$, то
$$m \leq f(x_1) \leq M \mid *\lambda_1 \mid \ldots \mid + \implies (\lambda_1 + m \leq f(x_n) \leq M \mid *\lambda_n \mid \cdots + \lambda_n) m \leq \lambda_1 f(x_1) + \cdots + \lambda_n f(x_n) \leq (\lambda_1, \ldots, \lambda_n) M \implies m \leq \frac{\lambda_1 f(x_1) + \cdots + \lambda_n f(x_n)}{\lambda_1 + \cdots + \lambda_n} . f \in C[a, b] \implies \exists \xi \in [a, b] : f(\xi) = c.$$

Постановка задачи: приблизительно вычислить $\int_a^b f(x) dx$.

Знаем: если $f \in C[a,b]$, то $\exists \xi \in [a,b]$:

$$\int_{a}^{b} f(x) dx = f(\xi)(b-a) = \frac{\lambda_1 f(x_1) + \dots + \lambda_n f(x_n)}{\lambda_1 + \dots + \lambda_n} (b-a) + R \quad (2)$$

Метод прямоугольников

Пусть $f \in C^2[a,b], T = \{x_0, x_1, \dots, x_n\}$ - разбиение [a,b].

Геометрический смысл: на каждом из отрезков $[x_{k-1}, x_k]$ криволинейную трапецию заменим на прямоугольник.

Вывод: В формуле (2) возьмем $a=-\delta,\,b=\delta,\,n=1,\,x_1=0,\,\lambda_1=1.$ Тогда $\int_{-\delta}^{\delta}f(x)\,dx=2\delta f(0)+R.$ Пусть F - любая их первообразных f на $[a,b],\,\psi(x)=F(x)-F(-x),\,\psi'(x)=F'(x)-F'(-x)=f(x)+f(-x),\,\psi'(0)=2f(0).$ $\int_{-\delta}^{\delta}f(x)\,dx=\psi'(\delta)\delta+R,$ т.е. $R=\psi(\delta)-\psi'(0)\delta.$

Разложим ψ по формуле Тейлора с остаточным членом Лагранжа:

$$\psi(\delta) = \underbrace{\psi(0)}_{=0} + \frac{\psi'(0)}{1!} \delta + \underbrace{\frac{\psi''(0)}{2!} \delta^2}_{=0} + \frac{\psi'''(\xi)}{3!} \delta^3, \ 0 < \xi < \delta.$$

$$\implies R = \psi(\delta) - \psi'(0)\delta = \frac{\psi'''(xi)\delta^3}{3!} = \underbrace{\frac{f''(\xi) + f''(-\xi)}{2}}_{=f''(\widetilde{\xi})} \frac{\delta^3}{3!} = \frac{f''(\widetilde{\xi})}{24} (2\delta)^3.$$

Вернемся к исходной задаче. Разобьем отрезок [a,b] равномерно: $x_k = \frac{b-a}{2n}k + a, k =$

 $0, 1, \ldots, 2n$. Тогда

$$\int_{a}^{b} f(x) \, dx = \sum_{k=1}^{n} \int_{x_{2k-2}}^{x_{2k}} f(x) \, dx = \sum_{k=1}^{n} \left(f(x_{2k-1}) \frac{b-a}{n} + R_{2k-1} \right) =$$

$$= \frac{b-a}{n} (f(x_1) + f(x_3) + \dots + f(x_{2n-1})) + \widetilde{R} - \text{ формула прямоугольников, где}$$

$$\widetilde{R} = R_1 + R_3 + \dots + R_{2n-1} = \frac{(b-a)^3}{24n^3} (f''(\widetilde{\xi}_1) + \dots + f(\widetilde{\xi}_{2n-1})) =$$

$$= \frac{(b-a)^3}{24n^2} \underbrace{\frac{f(\widetilde{\xi}_1) + \dots + f(\widetilde{\xi}_{2n-1})}{n}}_{=f''(\eta), \eta \in [a,b]} = \frac{f''(\eta)(b-a)^3}{24n^2} =$$

$$= \underline{O}\left(\frac{1}{n^2}\right), n \to +\infty$$

Метод Симпсона (метод парабол).

Пусть $f \in C^4[a,b]$. Разобьем отрезок [a,b] на n частей, для каждой положим: $a=-\delta,\ b=\delta,\ n=3,\ x_1=-\delta,\ x_2=0,\ x_3=\delta,\ \lambda_1=\lambda_4=1,\ \lambda_2=4.$

Геометрический смысл: криволинейную трапецию под графиком f заменим на криволинейную трапецию под графиком параболы, проходящей через точки $(-\delta, f(-\delta))$, $(0, f(0)), (\delta, f(\delta))$.

Пусть $x_k = a + \frac{b-a}{2n}k$, $k = 0, 1, \dots, 2n$. Тогда

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{n} \int_{x_{2k-2}}^{x_{2k}} f(x) dx = \sum_{k=1}^{n} \left(\frac{f(x_{2k-2}) + 4f(x_{2k-1}) + f(x_{2k})}{6} \left(\frac{(b-a)}{n} \right)^{5} + R_{2k-1} \right) =$$

$$= \left(\frac{b-a}{n} \right)^{5} \left(\frac{f(a) + f(b)}{6} + \frac{1}{3} \sum_{k=1}^{n-1} f(x_{2k}) + \frac{2}{3} f(x_{2k-1}) \right) + R.$$

$$R = -\frac{f^{(n)}(\eta)(b-a)^{5}}{2880n^{4}} = \underline{O}\left(\frac{1}{n^{4}}\right), n \to +\infty$$

23 Метод трапеций вычисления определенных интегралов (с выводом оценки погрешности).

(см. определение усредненного значения и лемму из прошлого вопроса)

Постановка задачи: приблизительно вычислить $\int_a^b f(x) \, dx$.

Знаем: если $f \in C[a,b]$, то $\exists \xi \in [a,b]$:

$$\int_{a}^{b} f(x) df(xi)(b-a) = \frac{\lambda_1 f(x_1) + \dots + \lambda_n f(x_n)}{\lambda_1 + \dots + \lambda_n} (b-a) + R \quad (2)$$

Метод трапеций

Пусть $f \in C^2[a,b]$. Разбиваем [a,b] на n частей, для каждого из отрезков интегрирования в формуле (2) положим: $a=-\delta,\,b=\delta,\,n=2,\,x_1=-\delta,\,x_2=\delta,\,\lambda_1=\lambda_2=1.$ Тогда $\underbrace{\int_{-\delta}^{\delta} f(x)\,dx}_{=\psi(\delta)} = \underbrace{\frac{f(-\delta)+f(\delta)}{2}2\delta}_{=\psi'(\delta)\delta} + R.$

Геометрический смысл: Криволинейную трапецию заменяем обычной (прямоугольной). Заметим, что (ψ - та же, что в методе прямоугольников):

$$\psi(\delta) = \underbrace{\psi(0)}_{=0} + \frac{\psi'(0)}{1!} \delta + \underbrace{\frac{\psi''(0)}{2!} \delta^2}_{=0} + \frac{1}{2!} \int_0^\delta \psi'''(t) (\delta - t)^2 \, dt.$$

$$\psi'(\delta) = \psi'(0) + \frac{\psi''(0)}{1!} \delta + \frac{1}{1!} \int_0^\delta \psi'''(t) (\delta - t) \, dt.$$

$$R = \psi(\delta) - \psi'(\delta) \delta = \frac{1}{2} \int_0^\delta \psi'''(t) (\delta - t)^2 \, dt - \delta \int_0^\delta \psi'''(t) (\delta - t) \, dt =$$

$$= \int_0^\delta \psi'''(t) \left(\frac{(\delta - t)^2}{2} - \delta(\delta - t) \right) \, dx = \int_0^\delta \left(-\frac{\delta^2}{2} + \frac{t^2}{2} \right) \, dt =$$

$$= (1-\text{Я Т. 0 среднем}) = \psi'''(\xi) \int_0^\delta \frac{t^2 - \delta^2}{2} \, dt = \psi'''(\xi) \left(\frac{\delta^3}{6} - \frac{\delta^3}{2} \right) =$$

$$= -\frac{\psi'''(\xi)}{3} \delta^3 = -\underbrace{\frac{f''(\xi) - f''(-\xi)}{2}}_{=f''(\widetilde{\xi}), |\xi| \le \delta} \underbrace{2\delta^3}_{3} =$$

$$= -\frac{f''(\widetilde{\xi})}{12} (2\delta)^3$$

Для исходной задачи: $x_k = a + \frac{b-a}{n}k, \ k = 0, 1, \dots, n.$

$$\begin{split} \int_{a}^{b} f(x) \, dx &= \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(x) \, dx = \sum_{k=1}^{n} \left(\frac{f(x_{k-1}) + f(x_{k})}{2} \frac{b - a}{n} + R_{k} \right) = \\ &= \frac{b - a}{2n} (f(a) + f(x_{1}) + f(x_{1}) + f(x_{2}) + \dots + f(x_{n-1}) + f(b)) + \widetilde{R} = \\ &= \frac{b - a}{n} \left(f(a) + f(b) + 2 \sum_{k=1}^{n-1} f(x_{k}) \right) + \widetilde{R}, \text{ где} \\ \widetilde{R} &= R_{1} + R_{2} + \dots + R_{n} = -\frac{f''(\widetilde{\xi}_{1}) + \dots + f''(\widetilde{\xi}_{n})}{12} \left(\frac{b - a}{n} \right)^{3} = \\ &= -\frac{f''(\widetilde{\xi}_{1}) + \dots + f''(\widetilde{\xi}_{n})}{n} \frac{(n - a)^{3}}{12n^{2}} = -\frac{f''(\eta)}{12n^{2}} (b - a)^{3} = \\ &= \underline{O}\left(\frac{1}{n^{2}}\right). \end{split}$$