Classification problems. y is discreet, either 0 or 1. Example: spam classification in emails, flag if online transaction is fraudulent, tumor. $y \in 0, 1$, where 0 is negative and 1 is positive.

Look at cancer problem. Fit a linear regression straight line, and set threshold classifier output $h_{\theta}(x) = 0.5$

 $h_{\theta}(x) \geq 0.5$, predict y = 1, i.e. yes malignant

 $h_{\theta}(x) < 0.5$, predict y = 0, i.e. not malignant.

Logistic regression. $0 \le h_{\theta}(x) \le 1$. $h_{\theta}(x) = g(\theta^T x)$, where $g(z) = \frac{1}{1 + e^{-z}}$. g is called the moid or logistic function. Then sigmoid or logistic function. Then,

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Interpretation of hypothesis output. $h_{\theta}(x)$ is estimated probability that y=1 on input x.

Example: if $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \frac{1}{\text{tumor size}}$, we get $h_{\theta}(x) = 0.7$. Tell patient that 70% chance that tumor being malignant

 $h_{\theta}(x) = \mathbb{P}(y=1|x;\theta)$, probability that y=1 given x parameterized by θ .

Decision Boundary. Suppose predict y = 1 if $h_{\theta}(x) \ge 05$, predict y = 0 if $h_{\theta}(x) < 0.5$. For sigmoid function, $g(z) \ge 0.5$ when $z \ge 0$, cross 0.5 in when z = 0. This implies that

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5 \implies \theta^T x \ge 0$$

and

$$h_{\theta}(x) = g(\theta^T x) < 0.5 \implies \theta^T x < 0$$

Example:
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
. Let $\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$, predict $y = 1$ if $-3 + x_1 + x_2 \ge 1$

 $0 \implies x_1 + x_2 \ge 3$. Note that we obtain this from $\theta^T x$. When graphing, everything greater than 3 corresponds to those that have y = 1. The line is called *Decision Boundary*.

Non-linear decision boundaries. Negatives around the origin, positive around. $h_{\theta}(x) =$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2). \text{ Set } \theta = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}. \text{ Gives:}$$

$$\text{predict } y = 1 \text{ if } -1 + x_1^2 + x_2^2 \ge 0 \implies x_1^2 + x_2^2 \ge 1. \text{ This is equation of a circle.}$$

Example. $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$ Cost Function. Training set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$. m examples, where

feature vector
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
. $x_0 = 1, y \in 0, 1$. $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$. How to choose θ ?

Cost function

linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^i), y^{(i)})$ where $cost(h_{\theta}(x^i), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^2$. The cost function for logistic regression is non-convex, jigsaw convex shape.

Logistic Regression Cost Function.
$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x))ify = 1 \\ -log(1 - h_{\theta}(x))if \ y = 0 \end{cases}$$
. We look at the graph of $-log$ for the case that $y = 1$. $Cost = 0$ if $y = 1, h_{\theta}(x) = 1$, but as

 $h_{\theta}(x) \to 0, cost \to \infty.$

Captures intuition that if $h_{\theta}(x) = 0$, i.e. predict $\mathbb{P}(y = 1|x;\theta)$, but y = 1 we will penalize learning algorithm by a very large cost.

For the case that y = 0, flip -log vertically, i.e. y approaches there is a vertical asymptote at x = 1, and y = 0, x = 0. So, penalizes largely if y = 1 when it is actually zero.

Simplified Cost Function and Gradient Descent.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{i}), y^{(i)})$$

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x))ify = 1\\ -log(1 - h_{\theta}(x))if \ y = 0 \end{cases}$$

Note y = 0, 1 always. Above is equivalent to

$$cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1 - y)log(1 - h_{\theta}(x))$$

We have,

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \left[-\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} logh_{\theta}(x^{(i)}) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right] \right]$$

principle of maximum likelihood, efficiently find parameters data for different models, convex.

Gradient Descent. To fit parameters θ , want to minimize $J(\theta)$.

Repeat:
$$\{\theta_j - \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \implies \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)} x_j^{(i)}) \}$$
 (simultaneously update

$$\text{all } \theta_j) \text{ and } \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_3 \\ \vdots \\ \theta_n \end{bmatrix}$$

Note that boxed algorithm looks identical to linear regression. For linear regression, $h_{\theta}(x) = \theta^T x$. For logistic regression, $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$.

Advanced Optimization Algorithms. Cost function $J(\theta)$, want to minimize this. Given θ , we have code that can compute $J(\theta)$, $\frac{\partial}{\partial \theta_i} J(\theta)$.

- 1. Gradient descent: repeat $\theta_j := \theta_j \alpha \frac{\partial}{\partial \theta_j J(\theta)}$
- 2. Conjugate gradient
- 3. BFGS
- 4. L-BFGS

2-4 algorithms have many advantages: no need to manually pick α (has inner loop called line to pick different α for each iteration), often faster than gradient descent. disadvantages: more complex.

Example:
$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$
, $J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$. We have,
$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$
$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$

The code is as follows,

```
\begin{array}{lll} function [jVal\,,\;gradient\,] &= costFunction(theta)\\ jVal &= (theta(1)-5)^2 + \langle ldots + (theta(2)-5)^2;\\ gradient(1) &= 2*(theta(1)-5);\\ gradient(2) &= 2*(theta(2)-5); \end{array}
```

Call advanced optimization function called fminunc,

Essentially, we will have,

function [jVal, gradient] = costFunction (theta)

$$\begin{split} jVal &= [J(\theta)] \\ gradient(1) &= \frac{\partial}{\partial \theta_0} J(\theta) \\ gradient(2) &= \frac{\partial}{\partial \theta_1} J(\theta) \\ &\vdots \\ gradient(n+1) &= \frac{\partial}{\partial \theta_n} J(\theta) \end{split}$$

Multiclass Classification. Email foldering/tagging: work, friends, family, hobby, where each is y. Medical diagram: not ill, cold, flu. Weather: Sunny, cloudy, rain, snow.

One-vs-all, three class case: $h_{\theta}^{(1)}(x), h^{(2)}(x), h^{(3)}(x)$. Train a logistic regression classifier $h_{\theta}^{i}(x)$ for each class i to predict the probability that y = i. On a new input x, to make a prediction, pick the class i that maximizes $h_{\theta}^{(i)}x$

Overfitting. Underfit, high bias: fitting straight line to data. Just right. Overfit, high variance: fit high order polynomial to data, $J(\theta) \approx 0$, but fails to generalize.

Address overfitting.

- 1. Reduce number of features. a) Manually select which features to keep b) model selection algorithm
- 2. Regularization. a) keep all the features, but reduce magnitude/values of parameters θ_j . b) works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization. Small realues for parameters $\theta_0, \theta_1, \dots, \theta_n$. Have simpler hypothesis, less prone to overfitting.

Example (housing). Features: x_1, x_2, \ldots, x_100 , parameters: $\theta_0, \theta_1, \theta_2, \ldots, \theta_100$.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Want to minimize $J(\theta)$. λ called regularization parameter, controls the goal of fitting well and overfitting.

What if λ is big? Penalize all variables, that is fitting $h_{\theta}(x) = \theta_0$ to data, thus under fit.

Gradient Descent for Regularized Linear Regression.

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$

This is equivalent to

$$\theta_j = \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Normal Equation.

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

 θ that minimize $J(\theta)$:

$$\theta = (X^T X_{\theta} \begin{bmatrix} 0 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix})^{-1} X^T y$$

The matrix is $(n+1) \times (n+1)$.

Gradient Descent for Regularized Logistic Regression.

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$

But
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
.

Advanced optimization.

function [jVal, gradient] = costFunction (theta)

where
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$

$$\begin{split} JVal &= J(\theta) \\ J(\theta) &= \left[-\frac{1}{m} \sum_{i=1}^m y^{(i)} log h_{\theta}(x^{(i)}) + (1-y^{(i)}) log (1-h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2 \\ gradient(1) &= \frac{\partial}{\partial \theta_0} J(\theta) \\ \frac{\partial}{\partial \theta_0} J(\theta) &= \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ gradient(2) &= \frac{\partial}{\partial \theta_1} J(\theta) \\ \frac{\partial}{\partial \theta_1} J(\theta) &= \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(1)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_1 \vdots \\ gradient(n+1) &= \frac{\partial}{\partial \theta_n} J(\theta) \end{split}$$