Blatt 6: Funktionen & Stetigkeit

1 Verhalten von Funktionen anschaulich.

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion. Wie sehen die Graphen der folgenden Funktionen im Vergleich zu jenem von f aus? Veranschauliche deine Aussagen durch Skizzen. Hinweis. Suche dir ein f aus, an dem die Effekte der entsprechenden Operationen gut sichtbar werden. Das Experimentieren mit einem Funktionenplotter ist nachdrücklich empfohlen!

(a)
$$|f|: \mathbb{R} \to \mathbb{R}, x \mapsto |f(x)|$$

(b)
$$\check{f}: \mathbb{R} \to \mathbb{R}, x \mapsto f(-x)$$

(c)
$$-f: \mathbb{R} \to \mathbb{R}, x \mapsto -f(x)$$

(d)
$$g: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) + 2$$
 (oder allgemeiner $g: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) + c$ mit $c \in \mathbb{R}$ beliebig)

(e)
$$h: \mathbb{R} \to \mathbb{R}, x \mapsto f(2x)$$

(oder allgemeiner $h: \mathbb{R} \to \mathbb{R}, x \mapsto f(\lambda x)$ mit $\lambda \in \mathbb{R}$ beliebig)

(f)
$$i: \mathbb{R} \to \mathbb{R}, x \mapsto f(x-a)$$
 (oder allgemeiner $i: \mathbb{R} \to \mathbb{R}, x \mapsto f(x-\lambda)$ mit $\lambda \in \mathbb{R}$ beliebig)

2 Stetigkeit 1.

Zeige direkt aus der Definition der Stetigkeit, dass

(a)
$$f: [-1,1] \to \mathbb{R}, x \mapsto \begin{cases} x+1 & x \le 0 \\ -x+1 & x \ge 0 \end{cases}$$
 stetig auf ganz $[-1,1]$ ist.

(b)
$$g:[-1,1] \to \mathbb{R}, x \mapsto \left\{ \begin{array}{ll} x^2-1 & x \leq 0 \\ -x^2+1 & x>0 \end{array} \right.$$
 unstetig in $x_0=0$ ist.

Tipp: Schreibe f mit Hilfe der Betragsfunktion und fertige Skizzen an!

3 Hyperbelfunktionen.

In Vo. $\boxed{2}$ 1.19(ii) haben wir den hyperbolischen Sinus, sinh : $\mathbb{R} \to \mathbb{R}$ und den hyperbolischen Cosinus, cosh : $\mathbb{R} \to \mathbb{R}$ definiert durch

$$\sinh(x) := \frac{\exp(x) - \exp(-x)}{2} \qquad \cosh(x) := \frac{\exp(x) + \exp(-x)}{2}.$$

- (a) Wiederhole, warum sinh und cosh stetig auf \mathbb{R} sind.
- (b) Zeige die Formel $\cosh^2(x) \sinh^2(x) = 1$ (daher also Hyperbelfunktionen!)
- (c) Zeige eines der beiden Additionstheoreme $(x, y \in \mathbb{R})$

$$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$$

$$\sinh(x+y) = \cosh(x)\sinh(y) + \sinh(x)\cosh(y).$$

Hinweis: Das einzig vernünftig zur Verfügung stehende Werkzeug ist die Funktionalgleichung der Exponentialfunktion bzw. deren Eigenschaften. Damit kommst du aber auch schon ins Ziel.

4 Grundoperationen für Funktionen anschaulich.

Analog zu Aufgabe 1 seien f und g Funktionen von \mathbb{R} nach \mathbb{R} . Wie sehen die Graphen der folgenden Funktionen im Vergleich zu jenen von f und g aus? Veranschauliche deine Aussagen durch Skizzen.

Hinweis. Suche dir f und g so aus, dass die Effekte der entsprechenden Operationen gut sichtbar werden. Das Experimentieren mit einem Funktionenplotter ist nachdrücklich empfohlen!

(a)
$$f + g : \mathbb{R} \to \mathbb{R}$$

(b)
$$f - g : \mathbb{R} \to \mathbb{R}$$

(c)
$$\lambda f : \mathbb{R} \to \mathbb{R}$$
 für $\lambda \in \mathbb{R}$ beliebig

(d)
$$fg: \mathbb{R} \to \mathbb{R}$$

(e)
$$\frac{f}{g}: D \to \mathbb{R}$$
, wobei $D = \{x \in \mathbb{R}: g(x) \neq 0\}$

5 Stetigkeit der Grundoperationen.

Beweise die restlichen Fälle von Vo. 2 Prop. 1.17(i). Genauer zeige, dass für stetige Funktionen $f,g:D\to\mathbb{R}$

- (a) $f \cdot g : D \to \mathbb{R}$ stetig ist.
- (b) $\frac{f}{g}: D' \to \mathbb{R}$ stetig ist, wobei $D' := \{x \in D: \ g(x) \neq 0\}.$

Tipp: Folgenstetigkeit und Grenzwertsätze!

6 Stetigkeit 2.

An welchen Stellen sind die folgenden Funktionen stetig bzw. unstetig? Begründe deine Aussagen (keine Beweise!).

(a)
$$f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}, f(x) = 1/(x+1)$$

(b)
$$g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, g(x) = (x^2 - 1)/(x + 1)$$

- (c) Inwiefern unterscheiden sich f und g nahe $x_0 = -1$?
- (d) $\operatorname{sgn} : \mathbb{R} \to \mathbb{R}$, $\operatorname{sgn}(x) := x/|x| \ x \neq 0 \text{ und } \operatorname{sgn}(0) := 0$.

Hinweis: Das Anfertigen von Skizzen ist ist explizit erwünscht!

7 Stetigkeit 3.

Seien $f,g:D\to\mathbb{R}$ Funktionen. Wir definieren die Funktionen $\varphi:=\max(f,g):D\to\mathbb{R}$ [phi] und $\psi:=\min(f,g):D\to\mathbb{R}$ [psi] punktweise, d.h. durch

$$\varphi(x) := \max\{f(x), g(x)\} \qquad \psi(x) := \min\{f(x), g(x)\}.$$

- (a) Skizziere von φ und ψ für (sinnvoll) gegebenes f und g.
- (b) Zeige, dass φ und ψ stetig auf D sind, falls nur f und g stetig auf D sind.

Tipp: Verwende Blatt 0, Aufgabe $\boxed{3}$ (a),(b).