

School of Biomedical Engineering Department of Medical Instrumentations

Course of Medical Design (BM017IU)

Semester 1, 2024-2025

Instructor: Dr. Tran Le Giang
LAB 3 HANDOUT

1. Objectives

- Introduction to installation of IDE for ESP32
- Getting Started with GitHub and Git
- Introduction to State Machine

2. Lab contents

2.1.Introduction to installation of IDE for ESP32 (Arduino IDE and PlatformIO)

To install the Arduino IDE on Windows, you can follow these steps:

1. Go to Arduino.cc

- 2. Hover over Software and click Downloads
- 3. Click the **Download Link** for the Windows installer
- 4. Open the downloaded file
- 5. Agree to the license agreement
- 6. Select what to install
- 7. Choose the installation path
- 8. Click Install
- 9. Wait for the installation to finish
- 10. Click Close to end the setup wizard

School of Biomedical Engineering Department of Medical Instrumentations

Installing ESP32 Add-on in Arduino IDE

To install the ESP32 board in your Arduino IDE, follow these next instructions:

1. In your Arduino IDE, go to File> Preferences

2. Enter the following into the "Additional Board Manager URLs" field:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Then, click the "OK" button:

School of Biomedical Engineering Department of Medical Instrumentations

Note: if you already have the ESP8266 boards URL, you can separate the URLs with a comma as follows:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

3. Open the Boards Manager. Go to **Tools** > **Board** > **Boards Manager...**

4. Search for ESP32 and press install button for the "ESP32 by Espressif Systems":

School of Biomedical Engineering Department of Medical Instrumentations

5. That's it. It should be installed after a few seconds.

Installing PlatformIO on Visual Studio Code

https://docs.platformio.org/en/latest/integration/ide/vscode.html

School of Biomedical Engineering Department of Medical Instrumentations

- <u>Download</u> and install official Microsoft Visual Studio Code. PlatformIO IDE is built on top of it
- 2. **Open** VSCode Package Manager
- 3. **Search** for the official platformio ide extension
- 4. **Install** PlatformIO IDE.

Setting Up the Project

Click on "PlatformIO Home" button on the bottom PlatformIO Toolbar Click on "New Project", select a board and create new PlatformIO Project

School of Biomedical Engineering Department of Medical Instrumentations

Open main.cpp file from src folder and replace its contents with your code:

Build your project with ctrl+alt+b hotkey (see all Key Bindings in "User Guide" section below) or using "Build" button on the PlatformIO Toolbar

2.2.Getting Started with GitHub and Git

This guide will walk you through the basics of using Git and GitHub for version control and collaboration.

School of Biomedical Engineering Department of Medical Instrumentations

2.2.1. Setting Up Your Environment

Install Git: Download and install the latest version of Git from the official website (https://git-scm.com/downloads).

Create a GitHub Account: If you don't already have one, sign up for a free GitHub account at https://github.com/.

2.2.2. Understanding Git Basics

Git is a distributed version control system that tracks changes to your files over time. Here are some key concepts:

2.2.3. Initializing a Git Repository

Create a new repository:

On GitHub: Click the "+" button in the top right corner of the GitHub website and select "New repository."

Locally: Open your terminal or command prompt, navigate to your project directory, and run git init.

Connect your local repository to GitHub:

Copy the remote repository URL from GitHub.

In your terminal, run git remote add origin <remote repository url>.

2.2.4. Making Changes and Tracking Them with Git

- 1. Stage changes: After making changes to your files, use git add <filename> or git add. (to stage all changes) to stage them for commitment.
- 2. Commit changes: Use git commit -m "Your commit message" to create a commit with a descriptive message.

2.2.5. Working with Branches

- 3. Create a new branch: Use git branch <branch_name>.
- 4. Switch to a different branch: Use git checkout <branch_name>.
- 5. Merge branches: Use git merge
 to merge the specified branch into your current branch.

2.2.6. Collaborating with GitHub

School of Biomedical Engineering Department of Medical Instrumentations

- 6. **Push your changes:** Use git push origin
 branch_name> to push your local commits to the remote repository.
- 7. **Pull changes from others:** Use git pull origin
 branch_name> to download changes from the remote repository to your local copy.
- 8. **Fork a repository:** Create your own copy of someone else's repository to experiment with changes or contribute to their project.
- 9. **Create a pull request:** Propose changes to someone else's repository by submitting a pull request.

2.2.7. Useful Git Commands

git status: Shows the status of your working directory and staging area.

git log: Displays the commit history.

git diff: Shows the differences between your working directory and the last commit.

git checkout -- <filename>: Discards changes to a specific file.

git reset HEAD <filename>: Unstages a file.

GitHub Help: https://help.github.com/

Git Documentation: https://git-scm.com/doc

Pro Git Book: https://git-scm.com/book/en/v2

2.3.Introduction to State Machine

controlLED.cpp

School of Biomedical Engineering Department of Medical Instrumentations

```
* Output
              : None
    * Return
              : None
    * Attention
              : Modify last time 18/09/2023
    *************************
    void setupModeLED(void)
     // Setup
     pinMode(LED1_PIN,OUTPUT);
     pinMode(LED2_PIN,OUTPUT);
     pinMode(LED3_PIN,OUTPUT);
     pinMode(BUTTON1_PIN,INPUT);
    ******
    * Function Name: blinkingLED
    * Description :
    * Input
             : time delay to change the state of LED
    * Output
              : None
    * Return
              : None
              : Modify last time 18/09/2023
    * Attention
    *************************
    void blinkingLED(unsigned int timeDelay)
     static uint16_t cnt=0, stateOfLED;
     switch(stateOfLED)
      case LED STATE1: // this state make LED on
       digitalWrite(LED1_PIN,LOW);
```


School of Biomedical Engineering Department of Medical Instrumentations

```
digitalWrite(LED2_PIN,LOW);
        digitalWrite(LED3_PIN,LOW);
        delay(1);
        cnt++;
        if(cnt==timeDelay)
         cnt=0;
         stateOfLED = LED_STATE2;
        }
       break;
       case LED_STATE2: // this state make LED off
        digitalWrite(LED1_PIN,HIGH);
        digitalWrite(LED2_PIN,HIGH);
        digitalWrite(LED3_PIN,HIGH);
        delay(1);
        cnt++;
        if(cnt==timeDelay)
         cnt=0;
         stateOfLED = LED_STATE1;
        }
       break;
      }
     *****
     * Function Name: alternateLED
     * Description :
     * Input
               : time delay to change the state of LED
     * Output
                : None
     * Return
                : None
```


School of Biomedical Engineering Department of Medical Instrumentations

```
* Attention : Modify last time 18/09/2023
***********************
void alternateLED(unsigned int timeDelay)
 static uint16_t cnt=0, stateOfLED;
 switch(stateOfLED)
  case LED_STATE1:
   digitalWrite(LED1_PIN,LOW);
   digitalWrite(LED2_PIN,HIGH);
   digitalWrite(LED3_PIN,LOW);
   delay(1);
   cnt++;
   if(cnt==timeDelay)
   cnt=0;
    stateOfLED = LED_STATE2;
   }
  break;
  case LED_STATE2:
   digitalWrite(LED1_PIN,HIGH);
   digitalWrite(LED2_PIN,LOW);
   digitalWrite(LED3_PIN,HIGH);
   delay(1);
   cnt++;
   if(cnt==timeDelay)
    cnt=0;
    stateOfLED = LED_STATE1;
```


School of Biomedical Engineering Department of Medical Instrumentations

break;		
}		
}		

controlLED.h

```
* controlLED.h
* Purpose:
* Created on: Sept 18, 2023
     Author: Tran Ngoc Viet
* Note(s): Belong to School of Biomedical Engineering - International University
                     - Vietnam National University, HCMC
*/
#ifndef CONTROL_H__
#define CONTROL_H__
#include <Arduino.h>
// define macro
//#define LED1_PIN 18 //static int ledPin = 18;
//#define LED2 PIN 19
//#define LED3_PIN 21
//// function prototype
//void setupModeLED(void);
//void blinkLED(unsigned int t);
//void alternateLED(unsigned int t);
// Define macro
#define LED1_PIN 18
#define LED2_PIN 19
#define LED3_PIN 21
#define BUTTON1_PIN 26
#define CHECK_BUTTON 0
```


School of Biomedical Engineering Department of Medical Instrumentations

```
#define BLINK_LED 1
#define ALTERNATE_LED 2

#define LED_STATE1 0
#define LED_STATE2 1

// Function prototype
void delay_ms(uint16_t timeDelay);
void setupModeLED(void);
void alternateLED(unsigned int timeDelay);
void blinkingLED(unsigned int timeDelay);

#endif
```

Main_code

```
#//
#include "controlLED.h"

// declare globle variables
unsigned char stateOfMachine;
void setup()
{
    Serial.begin(115200);
    setupModeLED();
}

void loop()
{
    // blinkingLED(500);
    if(digitalRead(BUTTON1_PIN)==0)
    {
```


School of Biomedical Engineering Department of Medical Instrumentations

```
while(!digitalRead(BUTTON1_PIN));
if(stateOfMachine==BLINK_LED)
  stateOfMachine=ALTERNATE_LED;
  Serial.println("ALTERNATE_LED");
 }
else
  Serial.println("BLINK_LED");
  stateOfMachine=BLINK_LED;
switch(stateOfMachine)
case BLINK_LED:
 blinkingLED(200);
 break;
 case ALTERNATE_LED:
 alternateLED(200);
 break;
```

3. Lab activities & work submission

- Run the current code using state machine for LED
- Create your own repository on GitHub
- Upload and push file to GitHub using GitHub Desktop

4. Manual Information

This manual is developed by: Dr. Tran Le Giang (Instructor)

School of Biomedical Engineering Department of Medical Instrumentations

Do Vy Ngoc (Teaching assistant)

Ta Minh Tri (Teaching assistant)

Nguyen Nhat Minh (Teaching assistant)

Last updated: Semester 1, 2024-2025