

Step 1: How to design XOR Gate

- a. Construct the truth table for XOR
- b. Obtain the network equation

- a. Construct the truth table for XOR
 - The truth-table for the "XOR" function.

	OR		NAND					XOR			
X	Υ	Z1		X	Y		Z2		х	Υ	Z3
0	0	0		0	0	1	1		0	0	10
0	1	1	AND	0	1		1	=	0		1
1	0	1		1	0	į :	1		1	0	1
1	1	1		1	1	1	0		1	1	0

b. Obtain the network equation

The neural network equation can be created by combining neural equations.

Step 2: Calculate Z1, Z2, and Z3 transfer functions

a. Z1:=X "NAND" Y

$$Z1 := (W0 * C + W1 * X + W2 * Y >= T)$$

Train NAND gate to get w0,w1, W2?

$$Z:=Z1= (W0 * C + W1 * X + W2 * Y >= T)$$

where $T:=1.0$.

Step 2: Calculate Z1, Z2, and Z3 transfer functions

a. Z1:=X "NAND" Y

1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0
C X Y Z
Function
W1=W2=-0.5
WO= 1
Loop 7
11111
1 1 0 1
1 0 1 1
1 0 0 0
CXYIZ
Function
W1=W2=1
Loop 3 W0=0.5

Z1: =
$$(1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)$$

Step 2: Calculate Z1, Z2, and Z3 transfer functions

$$Z2 := (W3 * X + W4 * Y >= T)$$

Train NAND gate to get w3, W4?

$$Z2:=(W3*X+W4*Y>=T)$$

where T := 1.0.

Step 2: Calculate Z1, Z2, and Z3 transfer functions

b. **Z2**:= **X** "or" **Y**

Therefor:

$$W3=W4=1$$

$$Z2: = (1*X + 1*Y >= 1.0)$$

Step 2: Calculate Z1, Z2, and Z3 transfer functions

$$Z3 := (W5 * Z1 + W6 * Z2 >= T)$$

Train the AND gate to get w5, W6

let Z1 := X, and Z2 := Y

$$Z3 := (W5 * X + W6 * Y >= T)$$

where T := 1.0.

Step 2: Calculate Z1, Z2, and Z3 transfer functions

c. Z := Z3 := Z1 "AND" Z2

Desired "AND"	Loop 1 W4=W5=0.5			
Function	Function			
XYIZ	X Y Z			
0 0 1 0	0 0 0			
0 1 0	0 1 0			
1 0 0	1 0 0			
1 1 1 1	1 1 1 1			
1 1 1 1	1 1 1 1			

Therefor:

$$W5=W6=0.5$$

$$Z3: = (0.5* X + 0.5* Y >= 1.0) = (0.5* Z1 + 0.5* Z2 >= 1.0)$$

Step 2: Calculate Z1, Z2, and Z3 transfer functions

D. Complete XOR neural network circuit diagram

Step 3: Prove results

Prove result:

Test cases:

- X=1, Y=1
- X=1, Y=0
- X=0, Y=1
- X=0, Y=0

Test 1: X=1, Y=1	Desired Result
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0) = 1.5-0.5-0.5 := 0	X Y Z
Z2: = (1* X + 1* Y >= 1.0) = 1 + 1 := 1 Z3: = (0.5* Z1 + 0.5* Z2 >= 1.0) = 0.5*0 + 0.5*1 := 0	0 0 0 0 1 1 1 0 1 1 1 0
Test 2: X=1, Y=0	Desired Result
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0) = 1.5-0.5*1-0.5*0 := 1	XOR X Y Z
Z2: = $(1* X + 1* Y >= 1.0)$ = $1*1 + 1*0 := 1$ Z3: = $(0.5* Z1 + 0.5* Z2 >= 1.0)$ = $0.5*1 + 0.5*1 := 1$	0 0 0 0 1 1 1 0 1

Step 3: Prove results

Prove result:

Test cases:

- X=1, Y=1
- X=1, Y=0
- X=0, Y=1
- X=0, Y=0

Test 3: X=0, Y=1	Desired Result
9 1 4 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	XOR
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0))
= 1.5*1.0-0.5*0-0.5*1 := 1	X Y Z
Z2: = (1* X + 1* Y >= 1.0)	0 0 0
= 1*0 + 1*1 := 1	0 1 1
Z3: = (0.5* Z1 + 0.5* Z2 >= 1.0)	1 0 1
= 0.5*1 + 0.5*1 := 1	1 1 0
Test 2: X=0, Y=0	Desired Result
	XOR
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)	
= 1.5 - 0.5 * 0 - 0.5 * 0 := 1	X Y Z
Z2: = (1* X + 1* Y >= 1.0)	0 0 1 0
= 1*0 + 1*0 := 0	0 1 1
Z3: = (0.5* Z1 + 0.5* Z2 >= 1.0)	1 0 1
= 0.5*1 + 0.5*0 := 0	1 1 0

Conclusion:

The test results obtained based on the final parameters agree with the desired values. Hence, for the given XOR gate, below are the final parameters values and the complete ANN circuit diagram.

```
W0 = 1.5
W1=W2=-0.5
W3 = W4 = 1
W5=W6=0.5
                    "XOR" Function
   1.0-->1.5--->1
```