A Rate-Distortion Approach to Information Relevance

Saurabh Shintre Tiago Vinhoza Joao Barros Sidharth Jaggi

Novelty of Information Theory

Information as random process

 Communication as reproduction of the process at some other space-time point

Loss-less or lossy

Limits on storage and transmission capacities

Loss-less storage

Entropy

Asymptotic limit of loss-less compression

• Other measures: Renyi entropy, ε - δ entropy

Further compression if loss is allowed

How to define loss?

• Distortion function (Hamming, Mean-square)

Cost of misrepresentation

• Compress so that the overall cost is limited (or the other way around)

Rate-Distortion Theory

Bounded distortion function

$$d(x,\hat{x}) \in \Re^+$$

Distortion between sequences

$$d(X, \hat{X}) = \frac{1}{n} \sum_{j=1}^{n} d(x_j, \hat{x}_j)$$

 \hat{X} is the reproduction sequence

• Overall distortion of code is the average distortion overall source sequences.

$$d(\chi, \hat{\chi}) = E_{p(X,\hat{X})} d(X, \hat{X})$$

Rate-Distortion Code

• A Rate-Distortion pair (R,D) is said to be achievable if there exists a $(2^{nR}, n)$ code (f_n, g_n) such that:

$$\lim_{n\to\infty} Ed(X, g_n(f_n(X))) \le D$$

• Rate-distortion function R(D) is the infimum of all achievable rates R for a given distortion D

Rate-Distortion Theorem

$$R(D) = \min_{p(\hat{x}|x): \sum_{(x,\hat{x})} p(x)p(\hat{x}|x)d(x,\hat{x}) \leq D} I(X;\hat{X})$$

Is Relevance the same as R-D?

• Consider a dice throwing experiment.

• Bettor *i* bets on the number *i* from $\{1,2,3,4,5,6\}$ and wins if *i* is the outcome.

• Only the event X=i or $X=i^C$ is of relevance.

• Consider uniform distribution.

Comparison of methods

(a) Equal relevance

(b) Unequal relevance

Intuition

• This happens as each user *i* can incur error in the outcomes other than *i*.

• We define relevance of an outcome as the error that can be incurred in its representation.

• Different from R-D as per-letter criteria.

Mathematical modeling

- Bounded distortion function $d(x,\hat{x})$
- $I(x, \omega_i)$ is a binary indicator variable for each outcome ω_i
- Distortion between a sequence and its reproduction is:

$$d_{i}(X,\hat{X}) = \frac{1}{N_{i}(X)} \sum_{j=1}^{n} d(x_{j},\hat{x}_{j}).I(x_{j},\omega_{i})$$

• $N_i(X)$ is the number of occurrences of ω_i in X

Rate-Relevance Code

• A Rate-Relevance pair $(R, e_1, e_2, \dots, e_m)$ is said to be achievable if there exists a $(2^{nR}, n)$ code (f_n, g_n) such that :

$$\lim_{n\to\infty} Ed_i(X, g_n(f_n(X))) \le e_i \qquad \forall i \in \{1, 2, ..., m\}$$

• Rate-relevance function $R(e_1, e_2, \dots, e_m)$ is the infimum of all achievable rates for a given relevance vector $\{e_1, e_2, \dots, e_m\}$.

Claim:

$$R(e_1, e_2, ..., e_m) = \min_{p(\hat{x}|x): \sum_{(x,\hat{x})} p(x,\hat{x}) d(x,\hat{x}) I(x,\omega_i) \le p_i e_i} I(X; \hat{X})$$

We already have the converse; achievability needs further work.

Difference with R-D

• Per letter criteria gives higher control over distortion.

• Some applications may not allow error in a particular outcome, which implies the cost corresponding to that outcome should be kept infinite, but R-D theory has problems with unbounded distortion functions. (I guess ©)

• What is the channel coding equivalent?

The way ahead

• Finish this ©

• Performance with joint representation and meaning of terms like independent relevance.

• Application to channel coding. (UEP exists but doesn't seem right)

Non-linear constraints

Questions for me?

Mathematical inaccuracies

Philosophical questions (why am I doing this?)

• Where does this apply to?

Questions for the guests

• Does it make sense?

• Has it been thought about/solved already?

• Issues, if any?

• Does it REALLY make sense?