University of Iowa Parking Analysis Dashboard

Project Overview

Purpose:

This Power BI dashboard helps the **University of Iowa's Parking and Transportation Department** monitor, analyze, and optimize parking lot usage across campus. It provides **insights into:**

- Parking trends (entries, exits, duration)
- User behavior (access groups, patterns)
- Peak usage forecasting
- Academic events' impact on parking

This supports **data-driven decisions** for issuing new cards, managing access groups, and optimizing parking policies.

Data Model & Relationships

Core Tables:

Table	Purpose	Key Fields	
CardTransaction	Log of parking card transactions	CardNumber, EntranceDate, ExitDate, LotNumber	
CardAccessGroupAssignment	Card to Access Group mappings	CardNumber, GroupNumber, Priority	
Calendar	Date table for time intelligence	Date, Month, Year, DayOfWeek, IsWeekend	
AcademicCalendar	Academic events (Semester Start, Breaks, Holidays)	Date, Event Type, Description	
DailyPeakUsage	Pre-calculated daily peak usage per lot	Date, LotNumber, Daily Peak	
CardBridge (Bridge Table)	Bridge for CardNumber relationships	CardNumber	

Relationships:

Active Relationship:

• Calendar[Date] → CardTransaction[EntranceDate]

Inactive Relationship:

Calendar[Date] CardTransaction[ExitDate]

Other Key Links:

- CardTransaction[CardNumber] CardBridge[CardNumber]
- CardAccessGroupAssignment[CardNumber] CardBridge[CardNumber]
- Calendar[Date] AcademicCalendar[Date]
- Calendar[Date] DailyPeakUsage[Date]

Why Bridge Table?

The CardBridge enables handling many-to-many relationships (e.g., a card having multiple access groups).

Visualizations & Insights

Page	Key Visuals & Insights	Notes	
Dashboard Overview	Purpose, key metrics, and academic calendar	Entry page with context & navigation	
Parking Access Insights	Total active cards, total lots, access group breakdown, avg. transactions	Slicer for Year/Quarter/Month; Least/Top 10 Access Groups	
Usage by Lots	Lot occupancy by hours, transactions by lot & group by day	Heatmap visuals	
Peak Entry/Exit Days	Total Entries vs. Exits by Day of Week, Anomaly counts (No Entry/Exit, Overnight, Long Stay)	IIDaily usage patterns	
	Transactions during vs. non-events by month, academic event filtering	Event impact analysis	
	Forecasted monthly peak usage, seasonal trends	Line chart + annotations	

Forecasting (2025 Peak Usage)

Methodology:

The forecasted peak parking usage for 2025 is generated using Python Prophet, a popular timeseries forecasting model developed by Facebook.

- Why Prophet?
 - Prophet is robust to:
 - o Seasonal patterns (e.g., academic calendar effects)
 - Holiday effects (e.g., semester start/end, holidays)
 - o Irregular data (missing values, sudden spikes)

Forecast Setup in Power BI:

- Python Script Integration:
 - o Python code embedded directly into Power BI via the Python visual.
 - Historical parking usage data is passed to Prophet for modeling.
- Forecast Variables:
 - Date (monthly level granularity)
 - Peak Usage (simultaneous usage counts or peak transactions)
- Forecast Output:
 - Monthly peak usage predictions for 2025.
 - o Seasonality is captured from academic events and trends in historical data.

Forecast Highlights:

- October 2025 Peak: ~131.2K forecasted peak usage.
- Dips in June/December: Likely due to semester breaks and holidays.
- Forecast Curve: Aligned with academic calendar impact.

Forecast Visual:

- Line Chart showing predicted peak usage per month.
- Tooltips and annotations highlight trends (e.g., "Peak in October").

Sample Forecasted Data:

Thursday, December 4, 2025	4500.51447311401	3837.50207470901	5204.42091099928
Friday, December 5, 2025	4257.11007567798	3591.56183060942	4917.08868195293
Saturday, December 6, 2025	2910.80240384779	2205.56935276725	3633.84775631469
Sunday, December 7, 2025	2900.39244065083	2251.17927398113	3611.45560064266
Monday, December 8, 2025	4340.31320631318	3608.46738320009	5066.17748796187
Tuesday, December 9, 2025	4633.27948793047	3938.97192913596	5310.67157347932
Wednesday, December 10, 2025	4624.23662503126	3890.89146589722	5355.60416574581
Thursday, December 11, 2025	4492.48795610993	3802.77415556172	5203.36106383044
Friday, December 12, 2025	4186.22674841888	3467.19616284414	4871.2552046182
Saturday, December 13, 2025	2774.74165102437	2118.13194926989	3460.84666121522
Sunday, December 14, 2025	2698.48036935446	1963.58044454769	3374.39867822012
Monday, December 15, 2025	4073.56747449214	3318.03877933513	4772.65521930346
Tuesday, December 16, 2025	4304.41073769634	3593.91135584249	4979.7056400742
Wednesday, December 17, 2025	4237.60617553682	3508.8500212969	4893.38962660095
Thursday, December 18, 2025	4054.0225813707	3340.79386555245	4664.22208910861
Friday, December 19, 2025	3703.29251810036	3024.07713080748	4419.60383113036
Saturday, December 20, 2025	2255.97991507261	1583.43238101198	2914.68107409993
Sunday, December 21, 2025	2153.6099899122	1432.41713884617	2831.04046865619
Monday, December 22, 2025	3513.15832259347	2787.94944684399	4202.32187271851
Tuesday, December 23, 2025	3739.63425226911	3091.82989312123	4379.10046125692
Wednesday, December 24, 2025	3679.96940686808	3063.38961069369	4348.90131045135
Thursday, December 25, 2025	3515.09259266789	2815.5449403493	4190.68300850862
Friday, December 26, 2025	3194.41828489739	2518.15023616125	3876.57182828281
Saturday, December 27, 2025	1788.01893524444	1145.37264636017	2473.6506447507
Sunday, December 28, 2025	1736.66669511143	1028.25389017817	2401.38321774699
Monday, December 29, 2025	3156.34106797512	2460.14070823934	3807.62354038406
Tuesday, December 30, 2025	3450.83716458547	2770.91033335597	4155.58901100787

Key Measures & Calculations

Sample **DAX Measures** used:

Measure	Purpose
Peak Usage	Max simultaneous usage per lot/date
Simultaneous Usage	Count of users inside a lot at a point in time
Avg Transactions per Card	Average transactions per access group
No Entry Count / No Exit Count	Anomaly detection for incomplete transactions
% Transactions During Events	Percentage of transactions during academic events
Dynamic Average Transactions	Avg transactions by Day, Month, or Year (button-driven)

These are just sample measures, I have used more than 25 measures.

Filters, Slicers & Interactivity

- Date Slicers: Year, Quarter, Month for time-based filtering.
- LotNumber Slicer: Select individual or multiple lots.
- GroupNumber Slicer: Filter by Access Group.
- Event Type Filter: Academic event categories (Semester Start, Breaks, Holidays).
- Toggle Buttons:
 - o Least 10 / Top 10 Access Groups.
 - o Day/Month/Year views for transaction trends.

Design & User Experience

- Color Theme: University of Iowa branding (yellow & black).
- Navigation: Custom back/forward buttons, clear titles.
- Annotations: Info tooltips for context (e.g., forecast peak explanations).
- Readable Fonts: Large KPIs and clear category labels.

Deployment & Optimization Notes

Data Size Management:

- Dataset ~400MB; optimized by:
 - o Aggregated DailyPeakUsage.
 - o Pre-filtered Calendar table.
 - o Removed unnecessary columns.

Performance:

- Star schema design for efficiency.
- Minimized inactive relationships (only ExitDate).
- Calculated columns for Time Intelligence.

Future Enhancements

Ideas for the next iterations:

- Weather Data Integration for additional context.
- Anomaly Alerts via Power BI subscriptions.
- **User Segmentation**: Advanced clustering of cardholders by behavior.
- Access Management Recommendations: Al-based insights for access policies.