MONDAY, JULY 3

what is geography to a machine?, coordinate reference systems, projections, geopandas, spatial joins, choropleths, plotting geography

STEP ONE OPEN UP YOUR BEACH BALL AND BLOW IT UP

STEP TWO DRAW A LARGE STAR ON YOUR BEACH BALL

STEP TWO.5 MARK TWO POINTS ON YOUR BALL WITH (1) AND (2)

STEP THREE MARK THE DISTANCE BETWEEN THE POINTS ON PAPER

STEP FOUR CREATE TWO COORDINATES TO REPRESENT (1), AND TWO COORDINATES TO REPRESENT (2)

LIKE, I DUNNO, THINK ABOUT LATITUDE/LONGITUDE IF YOU WANT

STEP FIVE GIVE YOUR FRIEND GROUP THE COORDINATES: CAN THEY LOCATE THE RIGHT LOCATIONS?

STEP SIX HOLD THE BEACH BALLS NEXT TO EACH OTHER. ARE THEY THE SAME SIZE AND SHAPE?

YOUR SHAPE IS DIFFERENT THAN THE OTHER GROUP'S

THIS IS THE SPHEREOID AND THE DATUM

WHAT'S THE SHAPE OF THE EARTH?

EVERY MEASUREMENT OF THE EARTH MAKES ASSUMPTIONS.

...AND THEY'RE WRONG, BUT IT'S IMPOSSIBLE TO DO RIGHT.

STEP SEVEN CUT APART AND/OR STRETCH YOUR BEACH BALL TO MAKE IT AS FLAT AS POSSIBLE

THIS IS A PROJECTION

PAPER IS FLAT BUT GLOBES AREN'T 😞

PROJECTION DISTORTIONS

Area: how big is something?

Form: what is something's shape?

Distance: how far apart are 2 things?

Direction: shortest path between points?

DISTANCE

DIRECTIONS

TISSOT ELLIPSES

TECHNICALLY TISSOT INDICATRICES BUT...

WHERE IS YOUR DATA? COORDINATE REFERENCE SYSTEM — CRS

PROJECTION + DATUM + SPHEROID.
...AND PROBABLY MORE.

```
PROJCS["CGCS2000 / Gauss-Kruger CM 93E",
    GEOGCS["China Geodetic Coordinate System 2000",
         DATUM["China 2000",
              SPHEROID["CGCS2000",6378137,298.257222101,
                  AUTHORITY["EPSG","1024"]],
              AUTHORITY["EPSG","1043"]],
         PRIMEM["Greenwich",0,
              AUTHORITY["EPSG","8901"]],
         UNIT["degree", 0.0174532925199433,
              AUTHORITY["EPSG","9122"]],
         AUTHORITY["EPSG","4490"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",93],
    PARAMETER["scale_factor",1],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
         AUTHORITY["EPSG","9001"]],
    AUTHORITY["EPSG","4505"]]
```

```
PROJCS["WGS 84 / Pseudo-Mercator",
    GEOGCS["WGS 84",
         DATUM["WGS_1984",
              SPHEROID["WGS 84",6378137,298.257223563,
                  AUTHORITY["EPSG","7030"]],
              AUTHORITY["EPSG","6326"]],
         PRIMEM["Greenwich",0,
              AUTHORITY["EPSG","8901"]],
         UNIT["degree", 0.0174532925199433,
             AUTHORITY["EPSG","9122"]], HORITY["EPSG","4326"]], ON["Mercator_1SP"],
         AUTHORITY["EPSG","4326"]],
    PROJECTION["Mercator_1SP"],
    PARAMETER["central_meridian",0],
    PARAMETER["scale_factor",1],
    PARAMETER["false_easting",0],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
         AUTHORITY["EPSG","9001"]],
    AXIS["X",EAST],
    AXIS["Y", NORTH],
    EXTENSION["PROJ4","+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@
    AUTHORITY["EPSG","3857"]]
```

LET'S GET TO WORK.

13-classwork.zip from #foundations, open it up in Jupyter