Data Preparation

Get to Know about data

How would it be arranged for analytics?

What is the data format?

Data table

- Same terminology
 - Sample
 - Row
 - Instance
 - Record
 - Observation
 - Example
 - Variables
 - Features
 - Attribute
 - Field
 - Column
 - Dimension

Variable types

• DATE

String

- Categorical data
 - Color
 - Gender
 - Product Category
- Number
 - Temperature
 - Rainfall
 - Height
 - Age

Get to Know about data

Will data be in perfect form?

Is there any missing or errorless data?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	24	0.1
2	2016-06-18	52	26	3,678.9
3	2010-06-19	50	26	0.0
4	2010-06-20	54	25	0.0

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	👆
2	2016-06-18	52	78	
3	2010-06-19		78	0.1
4	2010-06-20	54	77	🗸

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Name	Address
Angela	430 Park Drive
Sidney	780 ★❖◎◆) ew Street
Ratan	12443 Mountain Avenue
Kiril	1220 Mill Avenue
ZhČou	4345 Apple Lane

Data visualization

How would we visualize the data?

Is the data perfect or noisy?

Pie Plot

- represent the percentage share of different categories
 - implicit and assumed that the category is exhaustive

Bar Plot

- category vs the count or percentage of each category
 - Show top category

Statistical View

- Histogram
 - Distribution of Data
 - Probability
 - Statistical values
 - Mean
 - Standard deviation

Statistical View

- Histogram
 - Distribution of Data
 - Probability
 - Statistical values
 - Skewness
 - kurtosis

Box Plot

• Distribution of data

Scale 100 Upper Extreme 90 -80 -Upper Quartile 70 60 -Median 50 -40 Lower Quartile 30 -Whisker 20 -10 -Lower Extreme Outlier/single data point

alize data

 Relationship of box plot vs distribution of data

0

Scale 100 Upper Extreme 90 -80 -Upper Quartile 70 60 -Median 50 -40 Lower Quartile 30 Whisker 20 -10 -Lower Extreme Outlier/single data point 0

alize data

Distribution Shape and The Boxplot

 Relationship of box plot vs distribution of data

Symmetric

Positive Skew

- Line Plot
 - Sequential data (Time series data)
 - Trends Prediction

- Scatter Plot
 - Relationship between 2 variables
 - Correlation

Trend

Outlier

 Scatter plots of two variables (features)

> Show Correlation between them

 Scatter plots of multi-variables (features)

> Show Correlation between a pair of them

How to make data valid

Should data be changed or transformed?

How to correct any missing or errorless data?

Incomplete Data

- Missing Data
- Duplicate Data
- Different measure
- Different scaling
- Invalid
- Noisy
- Outliers

Name	Age	Income
Angela	34	80
Sidney		<i>56</i>
Ratan	10	
Kiril	<i>68</i>	
Zhou	45	120

Problem Solving: Remove all records containing missing data

Good point: Simple

Critical point: may not have enough data

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Problem Solving: Replace missing data with 0

Good point: Simple

Critical point: Lead to mislead and become outlier

May not be allowed especially for regression application

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Name	Age	Income
Angela	34	80
Sidney	39	56
Ratan	10	80
Kiril	68	80
Zhou	45	120

Problem Solving: Replace missing data with some values

Ex. Mean / Median / Most occurrence / History value / Regression prediction / center of the cluster

Good point: Better representation

Critical point: Need Historical Data and Higher Computation

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Name	Address
Sidney	7800 West View Street
Sid	7800 West View Street
Kiril	45 East 5th St
Kiril	1220 Mill Avenue

Problem Solving: Delete Old record -> Replace with New one or by defined rules

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Problem Solving:

Ex: Distribution Shifting and Scaling
Normalization / Log transform

Note: scaling method selection depends on the domain problem.

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Problem Solving:

Ex: Removing / Filtering

Note: Removing carefully.

- Incomplete Data
 - Missing Data
 - Duplicate Data
 - Different measure
 - Different scaling
 - Invalid
 - Noisy
 - Outliers

Problem Solving:

Ex: Removing

Replacing with specify value such as most frequent value or trend of its group

Note: Removing carefully.

https://paginas.fe.up.pt/~ec/files_1112/week_02_descriptive_statistics.pdf

Exercise

[13, -, 15, 16, 16, -, 19, 20, 21, 0, 22, 25, 0, 33, 1000, 35, 36, 40, -, 45]

Perform Data Cleaning

Calculate

- sorting from min to max
- mean / median / min / max
- normalized value in rage of 0 to 1 ([0,1])
- z-normalized value

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010	0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048	0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823	2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985	2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170	2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379	2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611	2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867	2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451	2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776	2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121	3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483	3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859	3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247	3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641	3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998