

資料科學導論 Competition 1 說明

A general model for **B**inary **C**lassification (ABC)

Competition 1 (CP1) 競賽時程

- 10/21 (Mon) CP1 announce
- 10/23 (Wed) Form your team
- 11/23 (Sat) Upload Predictions at Website
- 11/24 (Sun) Release of private leaderboard ranking
- 11/27 (Wed) Upload Report and Code at Moodle
- 12/2 (Mon) CP1 Award Ceremony & Invite top-5 teams for presentations

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

任務說明

本次競賽中,我們會提供許多資料集,同學們需要對我們提供的資料集進行分析、建模,並產生對應的預測結果。最終分數會是模型在每個資料集上的預測表現之加權平均,因此同學們設計的資料處理流程與模型必須具有通用性,能夠在大多數資料集上具有好的表現。

資料集個數: 49

任務類型: 二分類

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

● 本次競賽所使用的資料集為49個二分類任務之小資料集(資料筆數小於10000)

名稱	修改日期	類型	大小
X_test	2024/10/2 <mark>1</mark> 上午 12:14	Microsoft Excel	48 KB
X_train	2024/10/21 上午 12:14	Microsoft Excel	72 KB
y_predict	2024/10/21 上午 12:15	Microsoft Excel	1 KB
y_train	2024/10/21 上午 12:14	Microsoft Excel	1 KB

資料集內有X_train, X_test, y_train, y_predict四個csv檔案 y_predict為同學們需要透過模型預測產生的, 此處原有的 y_predict僅為格式參考, 不為正確答案

A	В	С	D	Е	F	G	Н	I	J	K	L	M	ı	N	0	P	Q	R	S		T
1 Feature_1	Feature_2	Feature_3	Feature_4	Feature_5	Feature_6	Feature_7	Feature_8	Feature_9	Feature_10	Feature_1	1 Feature	_12 Featur	e_13 F	eature_1	4 Feature_	15 Feature	_16 Feature	_17 Feature	_18 Feature	_19 Feat	ure_20
2 0.79165	-0.4461	-0.89421	-0.79165	-1.06757	4.45096	4.14061	1	7	4		2	3	7	()	2	0	0	0	0	4
3 -0.17998	3 1.067571	0.080683	-0.56589	0.018889	1.067571	0.539817	6	1	4		3	6	8	()	0	2	1	0	1	5
4 -0.3186	2.247148	-0.36603	-0.18002	1.216977	-1.06757	-1.46524	6	6	2		2	6	4	()	0	2	0	1	3	7
5 0.166808	3 -1.47573	-0.56589	-2.24E-07	-0.72859	0.119611	0.180045	4	11	0		0	0	1	()	0	0	0	0	0	5
6 -1.46526	0.791639	-0.36603	-0.18002	-0.82298	-1.06757	-0.79174	0	9	1		0	4	5	()	0	3	1	0	0	1
7 -0.6364	-0.4461	1.190714	0.348363	1.216977	0.636138	0.927461	3	6	2		2	5	4	()	0	0	1	0	0	3
8 1.46439.	0.791639	-0.36603	-0.18002	0.018889	-1.06757	-0.79174	0	1	4		3	4	8	()	0	3	1	0	0	1
9 0.166808	0.565949	0.56597	0.876128	-0.3932	-0.79164	-0.79174	6	4	1		1	2	4	()	0	0	1	0	0	3
10 -1.06756	1.465234	-1.80273	-1.34872	-5.19934	0.216532	-0.11932	6	10	2		0	6	1	()	1	0	0	0	0	7
11 0.166808	-0.4461	-0.89421	-0.79165	0.018889	4.45096	4.14061	1	1	3		3	3	8	()	2	0	0	0	0	4
12 -0.3661.	L -1.06757	0.366114	-0.3661	1.067571	1.291795	-0.11932	6	0	1		1	6	4	()	0	2	1	0	0	7
13 1.46439.	1.15672	0.080683	1.067564	-0.83987	-0.13469	-0.11932	6	6	4		2	3	6	()	0	2	1	1	1	7
14 0.565979	0.366106	0.080683	1.067564	0.473478	2.189352	4.342817	6	3	4		3	6	6	()	0	1	1	0	0	0
15 -0.3186	4.48E-07	0.463721	0.876128	-1.06757	1.241868	0.180045	6	7	2		2	6	7	()	3	2	1	0	2	7
16 0005	7 0 4 4 6 1	A 6020A0	A 701 FO#	A 0A0700	1 16000	1 16706	c	0	2		2	6	0	,	1	1	2	Λ	1	^	2

X_train

				4			數值	型資	資料	類別	別型)	資料		<u> </u>					1
A	ь	L	<u>и</u>	E	P	U	п	.vv.	N.	K	L	M	IN	U r	Ų	K	-5	1	τ
1 Feature_	1 Feature_2	Feature_3	Feature_4	Feature_5	Feature_6	Feature_7	eature_8	Feature_9	Feature_10 F	eature_11 F	eature_12 Fe	ature_13 Fea	ture_14 Feati	ure_15 Feature	_16 Feature	_17 Feature	_18 Feature_	_19 Featur	e_20
2 0.79165	56 -0.4461	-0.89421	-0.79165	-1.06757	4.45096	4.14061	1	7	4	2	3	7	0	2	0	0	0	0	4
3 -0.1799	98 1.067571	0.080683	-0.56589	0.018889	1.067571	0.539817	6	1	4	3	6	8	0	0	2	1	0	1	5
4 -0.3186	54 2.247148	-0.36603	-0.18002	1.216977	-1.06757	-1.46524	6	6	2	2	6	4	0	0	2	0	1	3	7
5 0.16680	08 -1.47573	-0.56589	-2.24E-07	-0.72859	0.119611	0.180045	4	11	0	0	0	1	0	0	0	0	0	0	5
6 -1.4652	26 0.791639	-0.36603	-0.18002	-0.82298	-1.06757	-0.79174	0	9	1	0	4	5	0	0	3	1	0	0	1
7 -0.636	54 -0.4461	1.190714	0.348363	1.216977	0.636138	0.927461	3	6	2	2	5	4	0	0	0	1	0	0	3
8 1.46439	91 0.791639	-0.36603	-0.18002	0.018889	-1.06757	-0.79174	0	1	4	3	4	8	0	0	3	1	0	0	1
9 0.16680	0.565949	0.56597	0.876128	-0.3932	-0.79164	-0.79174	6	4	1	1	2	4	0	0	0	1	0	0	3
10 -1.0675	56 1.465234	-1.80273	-1.34872	-5.19934	0.216532	-0.11932	6	10	2	0	6	1	0	1	0	0	0	0	7
11 0.16680	0.4461	-0.89421	-0.79165	0.018889	4.45096	4.14061	1	1	3	3	3	8	0	2	0	0	0	0	4
12 -0.3663	11 -1.06757	0.366114	-0.3661	1.067571	1.291795	-0.11932	6	0	1	1	6	4	0	0	2	1	0	0	7
13 1.46439	91 1.15672	0.080683	1.067564	-0.83987	-0.13469	-0.11932	6	6	4	2	3	6	0	0	2	1	1	1	7
14 0.5659	79 0.366106	0.080683	1.067564	0.473478	2.189352	4.342817	6	3	4	3	6	6	0	0	1	1	0	0	0
15 -0.3186	54 4.48E-07	0.463721	0.876128	-1.06757	1.241868	0.180045	6	7	2	2	6	7	0	3	2	1	0	2	7
16 0.000	O 4461	A 6020A0	A 701 F04	A 000700	1 14002	1 14704	c	^	2	2	4	2	۸	1	2	^	1	^	2

X_train

6	~] : [× <	$fx \vee \int f x $	eature_1																	
4	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	g		R s	Т	
1 Feat	ture_1	Feature_2	Feature_3	Feature_4	Feature_5	Feature_6	Feature_7	Feature_8	Feature_9	Feature_10	Feature_11	Feature_12 I	eature_13	Feature_1	4 Feature_	15 Featur	e_16 Featur	e_17 Feati	re_18 Featur	e_19 Featur	e_20
2 0.1	166808	4.48E-07	-0.89421	-1.34872	0.75451	-0.51335	-0.51728	2	4	1	1	3	7	()	0	1	0	0	2	2
3 -1	.06756	1.988124	-0.17994	-0.71244	0.565949	-0.33438	-0.11932	6	1	4	3	6	0	()	0	4	1	0	0	2
4 1.4	464391	1.083141	-0.17994	0.791584	-0.18001	-0.24104	-0.11932	6	11	3	0	6	8	()	0	1	1	0	1	4
5 1.4	464391	1.083141	-0.17994	0.791584	0.018889	-0.24104	-0.11932	6	1	1	3	6	8	()	0	1	1	0	1	4
6 -0	.31864	1.067571	0.080683	-0.56589	0.366106	1.067571	0.539817	6	9	0	0	6	6	()	0	2	1	0	1	5
7 -0	.31864	-1.47573	-0.56589	-2.24E-07	-0.18912	0.119611	0.180045	4	3	1	3	0	5	()	0	0	0	0	0	5
8 -0	.96741	0.791639	-0.36603	-0.18002	-0.82298	-1.06757	-0.79174	0	9	2	0	4	5	()	0	3	1	0	0	1
9 _	0.6364	0.565949	0.56597	0.876128	1.216977	-0.79164	-0.79174	6	6	2	2	2	4	()	0	0	1	0	0	3
10 0.1	166808	4.48E-07	-0.89421	-1.34872	1.216977	-0.51335	-0.51728	2	6	2	2	3	4	()	0	1	0	0	2	2
11 1.4	464391	4.48E-07	-0.89421	-1.34872	-0.35113	-0.51335	-0.51728	2	1	1	3	3	2	()	0	1	0	0	2	2
12 1.4	464391	-0.4461	1.190714	0.348363	0.565949	0.636138	0.927461	3	1	2	3	5	0	()	0	0	1	0	0	3
13 4	.21305	-1.47573	1.190714	1.465243	0.018889	1.465235	0.927461	5	1	4	3	1	8	1		0	1	1	0	0	6
14 -1	.06756	0.565949	0.56597	0.876128	-0.3932	-0.79164	-0.79174	6	4	4	1	2	4	()	0	0	1	0	0	3
15 0.1	166808	0.366106	-1.24188	-0.63747	-1.06757	-0.18001	-0.11932	6	7	3	2	6	7	()	2	0	0	0	0	6
16 01	166808	1.067571	A 080683	J) 56589	∆ 82298	1.067571	∩ 539817	6	q	3	Λ	6	5	- ()	Λ	2	1	Λ	1	5

X_test

y_train

y_predict

此處原有的y_predict僅為格式參考, 不為正確答案

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

資料切割

かります。

train: 60%

test: 40%

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

評估指標排名方式

Score = AUC

競賽可實作的方法

- 上課介紹過的方法
 - 各種監督式學習方法
 - 訓練技巧(資料前處理、類別不平行處理方式、特徵選擇, etc.)
- 上課沒介紹過的方法
 - 自行找state-of-the-art的二元分類方法 (進階神經網路方法)
- **自行設計新方法** (須於報告具體說明)

若最終方法有採用或修改他人的方法, 請務必於報告中明確引用paper/github

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

範例程式說明

Read All Dataset CSV

```
In [39]:
          import os
          import csv
          import pandas as pd
          import numpy as np
In [40]:
          dataset names=[]
          X trains=[]
          y trains=[]
          X tests=[]
          for folder name in os.listdir("./Competition data"):
              # print(folder name)
              dataset names.append(folder name)
              X_trains.append(pd.read_csv(f"./Competition_data/{folder_name}/X_train.csv",header=0))
              y_trains.append(pd.read_csv(f"./Competition_data/{folder_name}/y_train.csv",header=0))
              X tests.append(pd.read csv(f"./Competition data/{folder name}/X test.csv",header=0))
```

Data Preprocessing & Feature Engineering

```
In [41]: ## your code here
```

範例程式說明

train test split & build Model

由於此次競賽的評估指標是以AUC為主, 因此可以改為嘗試AUC來印出模型表現

```
You can select an appropriate model and perform corresponding hyperparameter tuning.
In [42]:
          from sklearn.model selection import train test split
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import accuracy score, f1 score, precision score
In [43]:
          models=[]
          for i in range(len(dataset names)):
              tmp X train, tmp X test, tmp y train, tmp y test = train_test_split(X trains[i], /y trains[i], test_size=0.2, random_stat
              model = KNeighborsClassifier(n neighbors=3)
              model.fit(tmp X train, tmp y train.squeeze())
              tmp y predict = model.predict(tmp X test)
              acc=accuracy score(tmp y test, tmp y predict)
              precision=precision score(tmp y test, tmp y predict)
              f1=f1 score(tmp y test, tmp y predict)
              # print(f"{dataset names[i]}: accuracy={round(acc,3)}, precision={round(precision,3)}, f1={round(f1,3)}\n")
              models.append(model)
```

範例程式說明

Inference Model

```
In [58]:
    y_predicts=[]
    for i in range(len(dataset_names)):
        y_predict=models[i].predict(X_tests[i])
        df = pd.DataFrame(y_predict, columns=['target'])
        y_predicts.append(df)
```

Save result

```
In [59]:
    for idx,dataset_name in enumerate(dataset_names):
        df=y_predicts[idx]
        df.to_csv(f'./Competition_data/{dataset_name}/y_predict.csv', index=False,header=True)
In []:
```

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

上傳格式

將模型對於每個資料集的預測結果之y_predict.csv寫回,也就是如同以下路徑/Competition_data/對應的資料集名稱資料夾/y_predict.csv

	X_test.csv
۵	X_train.csv
	y_predict.csv
۵	y_train.csv

最後將整個Competition_data資料夾壓縮成"Group_組別編號.zip"並上傳

上傳格式

檔案架構如下

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

分組資訊

- 請於10/23 23:59前填寫分組資訊 (每組至多3人,可1人):
 https://forms.gle/jHDEb1aztQ71HLGT6
- 分組進行兩次競賽與期末專題
- 若需協助找人組隊,可單人填寫後備註
- 每一組可註冊一個帳號
- 分組完成後,會請大家提供 "帳號--隊名" 的 mapping

記得登入	
可存置人	A
登入	

http://140.116.246.240/

今天也要◆

選擇壓縮檔

Choose Files No file chosen

到時候你們的結果會在這裡

- 頁面會持續改進, 陸續提供新功能。
- 一組一個帳號
- 不要亂上傳檔案

- ·任務說明
- ·資料介紹
- ·資料切割
- ·評估指標排名方式
- ·範例程式說明
- ·上傳格式
- ·平台使用
- · Public / Private leaderboards 介紹

Public / Private Leaderboards 介紹

本次競賽也會有 public / private leaderboard的機制, 會將 test data分成兩部分 (public與private), 同學們上傳的y_predict中, 一部分的預測結果會當成計算 public score rank的依據, 並將分數與排名顯示在 public leaderboard上, 而另一部分的預測結果則是當成計算 private score rank的依據, 但 private leaderboard只有在競賽結束後才會公布, 競賽進行期間是隱藏起來的。且我們不會公布 public與private之切分方式!

Public / Private Leaderboards 介紹

- 大家需要根據自己上傳後, 在競賽平台 public leaderboard上顯示的排名與評估指標 (AUC)來得知此次上傳的結果, 並以此為依據來對自己的模型與演算法進行優化。
- public leaderboard僅代表同學在測試集內的一部份資料的表現,請大家不要為了追求在 public leaderboard上的高排名 (也就是overfit了public leaderboard),而用一些不夠具有泛用性的方式來建模與處理資料 (儘管public與private leaderboard的排名是高度相關,但些微的差異就足以造成排名的變化)
- 一個好的資料處理流程與 AI模型應該要能在 public與private測試資料上都有好的表現
- 最終排名會以競賽結束後公布的 private leaderboard為主

Leaderboard上面會有一些我們提供的 baselines,也佔據著排名, 請同學們努力打敗這些 baselines ↔

歡迎協助平台debug,有任何建議或發現問題,請讓助教知道,我們會努力開發讓平台更obust,被採用有機會酌量bonus!!! 😂

祝大家競賽順利, 謝謝大家!!

