Scriptum Moderne Experimentalphysik II

gelesen von Martin Wegener WS2013/14

GeTEXt von J. Müller

Inhaltsverzeichnis

1	Kris	talline,	quasikristalline und amorphe Festkörper	2
	1.1	Das pe	eriodische Gitter im Ortsraum	2
		1.1.1	Einführung	2
		1.1.2	Einfache Kristallstrukturen und ihre Bindung	5
	1.2	Das re	ziproke Gitter und Methoden der Strukurbestimmung	9

22.10.2013

1 Kristalline, quasikristalline und amorphe Festkörper

1.1 Das periodische Gitter im Ortsraum

1.1.1 Einführung

24.10.2013

d.h. von den Punkten \vec{r} , \vec{r}' sieht das Gitter gleich aus wenn gilt

$$\vec{r}' = \underbrace{\vec{r} + u\vec{a_1} + v\vec{a_2} + w\vec{a_3}}_{Gitter translation \vec{T}}; \ u, v, w \in \mathbb{Z}$$

Die Wahl von $\vec{a_1}$, $\vec{a_2}$ und $\vec{a_3}$ ist *nicht* eindeutig. Man bezeichnet die Wahl als *primitiv*, wenn durch \vec{T} alle gleichartigen Punkte dargestellt werden können. Eine *primitive Elementarzelle* hat das kleinste Volumen des aufgespannten Parallelepipels

$$V = \left| (\vec{a_1} \times \vec{a_2}) \cdot \vec{a_3} \right|$$

Die *Wiegner-Seitz-Zelle* ist eine spezielle primitive Elementarzelle. Sie hat folgende Konstruktionsvorschrift

Jeder Gitterpunkt kann mit einer Basis von Atomen besetzt werden.

1.1 Das periodische Gitter im Ortsraum

Ein Kristall zeichnet sich durch seine Symmetrien aus:

- Translationen (s.o.)
- Spiegelungen
- Drehsymmetrien

Definition: Eine Drehachse, bei der der Kristall nach Drehung um den Winkel $2\pi/n$ $(n \in \mathbb{N})$ in sich selbst übergeht, heißt n- $z\ddot{a}hlige$ Drehachse

Behauptung: n = 1, 2, 3, 4, 6; sonst keine Werte möglich

Beweis:

$$\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 ist Translationsvektor

$$a_{+} = \begin{pmatrix} \cos(2\pi/n) \\ \sin(2\pi/n) \end{pmatrix}$$
 ist ein blablabla $a_{-} = \begin{pmatrix} \cos(2\pi/n) \\ -\sin(2\pi/n) \end{pmatrix}$ aber auch ein blablabla

1 Kristalline, quasikristalline und amorphe Festkörper

 \Rightarrow auch $\vec{a_+} + \vec{a_-}$ ist ein Gittervektor = $a \binom{\cos(2\pi/n)}{0}$. Wenn \vec{a} kleinster Translationsvektor ist, muss gelten

$$\vec{a_{+}} + \vec{a_{-}} = m\vec{a}; m \in \mathbb{Z}$$

$$\Rightarrow \underbrace{2\cos(2\pi/n)}_{\text{Wann ist dies eine ganze Zahl?}} = m$$

n	$2\cos(2\pi/n)$
1	2
2	-2
3	-1
4	0
5	0,61
6	1
7	1,25
:	÷

graphisch: $\Rightarrow n \in 1, 2, 3, 4, 6$ q.e.d.

In 3D existieren 14 verschiedene Raumgitter, die man als *Bravais-Gitter* bezeichnet. Diese können in sieben verschiedene *Kristallsysteme* eingeordnet werden.

BILD POWERPOINTFOLIE

29.10.2013

Häuufig möchte man Netzebenen bzw. Netzebenenscharen kennen. ⇒ Miller'sche Indizes

Definition: Gegeben seien die Kristallachsen $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ (nicht unbedingt kartesisch, nich unbedingt primitiv). Die Ebene sei aufgespannt durch die drei Vektoren $n_1\vec{a_1}$, $n_2\vec{a_2}$, $n_3\vec{a_3}$; $n_1, n_2, n_3 \in \mathbb{N}$

Die (kleinsten) ganzen Zahlen, die sich verhalten wie die Kehrwerte von n1, n2, n3 bilden die Miller'schen Indizes. *Beispiel*: $(\frac{1}{2}, \frac{1}{3}, \frac{1}{1}) \Rightarrow (3, 2, 6)$. Meist lässt man die Kommata weg, also "(326)". Negative Werte werden durch Balken dargestellt, also z.B (32 $\overline{6}$). Wird eine Achse nicht geschnitten (ist also der Achsenabschnitt = ∞), so ist der zugehörige Miller'sche Index = 0.

Beispiel:

1.1.2 Einfache Kristallstrukturen und ihre Bindung

Natriumchloridstruktur:

Beispiel: NaCl, KCl, MnO, KBr, ...

Bravais-Gitter: kubisch flächenzentriert (fcc)

Basis: ein Na und ein Cl (beim NaCl)

Bindung: ionisch Na hat die Elektronenkonfiguration $1s^22s^22p^63s^1$ Cl $1s^22s^22p^63s^23p^5$ \Rightarrow gibt das Na ein Elektron an das Cl ab, so weisen beide abgeschlossene Schalen auf. Es entsteht ein Na⁺ und Cl⁻ Ion, die sich auf Grund der Coulombkraft anziehen Wir betrachten $N = N_A$ Ionenpaare. Es v die Coulombenergie

$$U^c = N \sum_{j,j \neq i} \frac{\pm e^2}{4\pi \epsilon_0 r_{ij}}$$

+ entspricht Abstoßung Na⁺Na⁺ (i in Na⁺ gewählt)
– entspricht Anziehung Na⁺Cl⁻

Mit der Definition $r_{ij} := p_{ij}r_0$, r_0 ist der Abstand nächster Nachbarn wird hieraus

$$U^{c} = \frac{Ne^{2}}{4\pi\epsilon_{0}r_{0}} \sum_{\substack{j,j\neq i \\ :=-\alpha}} \frac{\pm 1}{p_{ij}}$$

 $[\alpha] = 1, \alpha > 0 \text{ sonst } U^c > 0$

Beispiel: (1D Kette)

BILD

$$\alpha = 2\left(\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \dots\right)$$
 mit $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots$
In 3D ist die Summation im Allgemeinen *viel* schwieriger. Die Reihen konvergieren oft

In 3D ist die Summation im Allgemeinen *viel* schwieriger. Die Reihen konvergieren oft schlecht \Rightarrow "geschickte" umgruppierung der Summanden

Beispiel: (NaCl)

Ionen	Abstand
Na ⁺	0
6Cl ⁻	r_0
12Na+	$\sqrt{2}r_0$
8Cl ⁻	$\sqrt{3}r_0$
6Na+	$\sqrt{4}r_0$
:	÷

$$\Sigma = 6; -2, 48; 2, 133; -0, 86;$$

Es existiert auch eine Abstoßende wechselwirkung auf Grund der überlappenden Elektronenhüllen und des *Pauliverbots*. Dies ist ein quantenmechanischer Effekt. Man setzt *phänomenologisch* an

$$U_i^B = +Be^{r_{ij}/\rho}$$
 Born-Mayer-Potential

B und ρ sind materialspezifische Konstanten. Summation also nur über nächte Nachbarn (NN)

$$U^B = N \cdot z \cdot B \cdot e^{r_{ij}/\rho}$$

N: Zahl der Ionenpaare

z: Zahl der nächsten Nachbarn, auch "Koordinationszahl", z.B. Na⁺ hat z = 6

Die gesamte Energie ist

$$U = U^{C} + U^{B}$$

$$\Rightarrow U = -N \left(\frac{e^{2}}{4\pi\epsilon_{0}} \alpha - z \cdot Be^{r_{0}/\rho} \right)$$

graphisch: BILD

Gleichgewichtslage bei $\frac{dU}{dr_0} = 0$

$$\Rightarrow 0 = -N \left(\frac{-e^2}{4\pi\epsilon_0 r_0^2} \alpha - zB(1/\rho)e^{\frac{-r_0}{\rho}} \right)$$
$$\Rightarrow zBe^{r_0/\rho} = \frac{\rho}{r_0} \frac{e^2}{4\pi\epsilon_0 r_0} \alpha$$

Einsetzen:

$$\Rightarrow U = \frac{-Ne^2}{4\pi\epsilon_0 r_0} \alpha \left(1 - \underbrace{\frac{\rho}{r_0}}_{\ll 1}\right)$$
 Bindungsenergie

Die Bindungsenergie pro Ionenpaar N ist

$$E_B := \frac{U}{N}$$

Beispiel: (NaCl)

$$r_0 = 0,28nm$$
 $\rho = 0,03nm$

$$E_B = 8,23\text{eV (starke Bindung)}$$

Cäsiumchlorid:

Beispiel: CsCl, CnPd, AlNi, AgMg, ...

Bravais-Gitter: einfach kubisch

1 Kristalline, quasikristalline und amorphe Festkörper

Basis: ein Cs und ein Cl

Bindung: ionisch; Cs hat Elektronenkonfiguration $1s^22s^22p^63s^23p^53d^{10}$ $4s^24p^64d^{10}5s^25p^66s^1$, Cl hat Elektronenkonfiguration $1s^22s^22p^6$ $3s^23p^5 \Rightarrow$ analog zum NaCl 31.10.2013

Hexagonal dichteste Kugelpackung:

Beispiel: He, Zn, Co, Opale, *ldots*

Bravais-Gitter: es existieren zwei Möglichkeiten dichtester Kugelpackung (≈ 74%)

1. Hexagonal dichteste Packung (hcp)

BILD

Schichtfolge ABABAB...

- ⇒ hexagonal primitive Elementarzelle mit Basis aus zwei Atomen
- 2. Flächenzentrierte dichteste Packung (fcc)

BILD

Schichtfolge ABCABCABC...

⇒ fcc Elementarzelle mit einatomiger Basis

Bindung: van der Waals Wechselwirkung Edelgasatome (z.B. He, Ne) besitzen bereits abgeschlossene Schalen. Die Bindungsenergie durch die Wechselwirkung ist sehr klein, z.B. bei Neon $E_B = 0,02^{eV}/Atom$

Einfaches Modell: BILD

Näherungen: $M \gg m, r \gg |x_1|, |x_2| \Rightarrow$ quantenmechanische Grundzustandsenergie $= \frac{\hbar}{2} \left(2 \frac{D}{m} - \frac{2}{8} \left(\frac{2e^2 m}{4\pi\epsilon_0 r^3} \right) \right) \propto \frac{1}{r^6} \Rightarrow \hbar = 0 \Rightarrow$ keine Wechselwirkung

Diamantstruktur:

Beispiele: C, Si, Ge, ...

Bravais-Gitter: fcc

Basis: zwei identisch Atome bei (0,0,0) und (1/4,1/4,1/4). Die Raumausfüllung ist sehr schlecht mit 34% (vgl. 74% bei hcp)

Bindung: kovalent; die Elektronenkonfiguration des Kohlenstoffatoms ist $1s^22s^22p^2$, d.h. es fehlen 4 Elektronen um die Schale zu schließen. \Rightarrow tetraedrische Bindung mit vier nächsten Nachbarn.

Typische Bindungsenergien Kohlenstoff $E_B = 3$, 6eV Silizium $E_B = 1$, 8eV. Zwischen der *kovalenten* und der *ionischen* Bindung gibt es einen kontinuierlichen Übergang.

Elemente der Hauptgruppen III, IV und V tendieren zur kovalenten Bindung (z.B GaAs), Elemente mit fast abgeschlossenen Schalen zur ionischen Bindung. Bei der *metallischen Bindung* werden die Elektronen völlig delokalisiert, d.h. feste Ionenrümpfe und ein "Gas" freier Elektronen (⇒ gute Leitfähigkeit)

Kubische Zinksulfidstruktur:

Beispiel: CdS, ZnS, SiC, ...

Bravais-Gitter: fcc

Basis: ein Zn und ein S \Rightarrow keine Inversionssymmetrie ($\vec{r} \not\sim -\vec{r}$)

1.2 Das reziproke Gitter und Methoden der Strukurbestimmung

Beugung von Röntgenstrahlung am Kristall: BILD

Behauptung: Die Beugungsamplitude ist proportional zur Fouriertransformierten der Elektronendichte

Beweis: Voraussetzungen:

- 1. elastische Beugung \Leftrightarrow Energieerhaltung \Leftrightarrow |k| = |k'|
- 2. einmalige Streuung im Kristall
- 3. lokale Amplitude ist proportional zur Elektronendichte $\rho(\vec{r})$

BILD

$$\Delta = \cos(\phi) \cdot |\vec{r}|$$

$$\Delta \phi = \frac{2\pi}{\lambda} entpsricht \text{Phasenverschiebung}$$

$$\Rightarrow \Delta \phi = \frac{2\pi}{\lambda} \cos(\phi) abs \vec{r} = |\vec{k}| \cdot |\vec{r}| \cdot \cos(\phi) = \vec{k} \cdot \vec{r}$$

$$\Delta' = \sin \alpha \cdot |vecr| = \sin(\phi' - 90) \cdot XXXX = -\cos(\phi') \cdot |vecr|$$

$$\Delta \phi_{ges} = (\vec{k} - \vec{k'}) \cdot \vec{r} =: \Delta \vec{k} \cdot \vec{r}$$

1 Kristalline, quasikristalline und amorphe Festkörper

summiere über alle Orte $\vec{r} \rightarrow$ Beugungsamplitude

$$A(\Delta \vec{k}) \propto \int_{-\inf}^{+\inf} \rho(\vec{r}) e^{-i\Delta \vec{k} \cdot \vec{r}} d^3 x$$

KASTEN DRUM oder umgekehrt

$$\rho(\vec{r}) \propto \int_{-\inf}^{+\inf} A(\Delta \vec{k}) e^{+i\Delta \vec{k} \cdot \vec{r}} d^3 x$$

KASTEN DRUM

- Im Allgemeinen werden jedoch Intensitäten gemessen (Betrag des Poyntingvektors); Messung $\Rightarrow |A|^2$ entsprichtIntensitätdruchgestrichernerdoppelpfeil $A \in \mathbb{C} \Rightarrow \rho(\vec{r})$ kann nicht ohne weiteres bestimmt werden
- A ist Funktion von
- Richtungsänderung
- Wellenlänge

Die Ladungsdichte $\rho(\vec{r})$ ist eine Gitterfunktion und bezüglich Translationen von Gittervektoren invariant, d.h. $\rho(\vec{r}) = \rho(\vec{r} + \vec{T})$ mit $\vec{T} = u\vec{a_1} + v\vec{a_2} + w\vec{a_3}$, $u, v, w \in \mathbb{Z}$

$$A(\Delta \vec{k}) \propto \int_{-inf}^{+inf} \rho(\vec{r}) e^{irgendwasvonoben} d^3 x$$

$$= \int_{-inf}^{+inf} \rho(\vec{r} - \vec{T}) e^{sdaf jadslk} d^3 x$$

$$\int_{-inf}^{+inf} \rho(\vec{r}) e^{-i\Delta \vec{k}(\vec{r} - \vec{T})} d^3 x$$