Linear Maps

2024年1月10日

目录

1	The	Vector Space of Linear Maps	1
	1.1	Definition linear map	1
	1.2	Example lihnear maps	1
	1.3	linear maps and basis of domain	1
	1.4	Algebraic Orerations on $L(V, W)$	2
		1.4.1 Definition addition and scalar multiplication on	
		$\mathrm{L}(\mathrm{V},\!\mathrm{W})$	2

1 The Vector Space of Linear Maps

1.1 Definition linear map

A linear map form V to W is a function $T:V\Rightarrow W$ with the following peiperties:

- additivity: T(u+v) = Tu = Tv for all $u,v \in V$;
- homogeneity: $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in F$ and all $v \in V$;

1.2 Example lihnear maps

from R^3 to R^2 define $T \in L(R^3, R^2)$ by

$$T(x, y, z) = (2x - y + 3z, 7x + 5y - 6z)$$

from F^n to F^m

generalizing the previous example, let m and n be positive integers, let $A_{i,k} \in F$ for j=1,...,m and k=1,...,n and define $T \in l(F^n,F^m)$ by $T(x_1,...,x_n)=(A_{1,1}x_1+...+A_{1,n}x_n,...,A_{m,1}x_1+...+A_{m,n}x_n)$ actually every linear map from $F^n to F^m$ is of this form.

1.3 linear maps and basis of domain

Suppose $v_1,...,v_m$ is a basis of the V and $w_1,...,w_n\in W$. then there exists a unque linear map $T:V\to W$ sunch that

$$Tv_j = w_j$$

for each j = 1,...,n.

1.4 Algebraic Orerations on L(V, W)

1.4.1 Definition addition and scalar multiplication on L(V,W)

Suppose $S,T\in L(V,W)$ and $lambda\in F$ the sum S + T and the product λT are the linear maps from V to W defined by

$$(S+T)(v) = S(v) + T(v)$$
 and $(\lambda T)(v) = \lambda (Tv)$

for all $v \in V$

1.4.2 L(V,W) is a vector space

With the operations of addition and scalar multiplication as defined above, L(v,w) is a vector space.

1.4.3 Definition product of linear maps

if T $\in L(U, V)$ ans $S \in L(V, W)$, then the product ST $\in L(U, W)$ is defined by

$$(ST)(u) = S(Tu)$$

for all $u \in U$

1.4.4 linear maps take 0 to 0

Suppose T is a linear map from V to W. then T(0) = 0.