Оглавление

Введение	2
Основная терминология для последовательностей	3
Процесс экстраполяции Ричардсона	8
Методы преобразования последовательностей	9
1. ρ – алгоритм Винна и обобщения	9
1.1. ρ – алгоритм Винна	9
1.2. Модификации ρ — алгоритма	14
2. 9 – алгоритм Брезински	15
Заключение	16
Список литературы	17

Введение

Ускорение сходимости последовательностей и суммируемых рядов является важной задачей в численных вычислениях. Применение специальных алгоритмов и преобразований к рядам позволяет значительно сократить количество итераций, необходимых для достижения желаемой точности, сохраняя при этом значение суммы.

Одним из таких методов является р-алгоритм, разработанный Питером Винном в 1956 году. Этот численный метод предназначен для ускорения сходимости последовательностей, особенно чередующихся рядов. р-алгоритм основан на использовании разностных схем и применяется для последовательностей, сходящихся к пределу логарифмически. Его обобщения включают модификации и расширения исходного алгоритма для улучшения эффективности и применимости в различных ситуациях.

Другим важным методом является 9-алгоритм, открытый Клодом Брезински в 1971 году. Данный метод также предназначен для ускорения сходимости и является обобщением р-алгоритма Винна. 9-алгоритм используется для численного вычисления пределов и сумм бесконечных рядов и основан на итерационном процессе, включающем различные шаги специальной трансформации для улучшения скорости сходимости и повышения точности расчетов.

Обобщенные версии р-алгоритма Винна и 9-алгоритма Брезински могут включать дополнительные модификации, такие как улучшенные стратегии выбора параметров, оптимизированные процедуры вычислений и другие методы, направленные на улучшение производительности и точности численных вычислений.

Основная терминология для последовательностей

Обозначения множеств:

 \mathbb{N} – множество натуральных чисел, $\mathbb{N} = \{1, 2, 3, ...\}$

 \mathbb{N}_0 – множество натуральных чисел с нулем, \mathbb{N}_0 = \mathbb{N} U $\{0\}$

 \mathbb{R} – множество действительных чисел

 \mathbb{C} – множество комплексных чисел

Последовательности и порядок сходимости:

 $\{S_n\}$ — последовательность частичных сумм, где S_n определяется как сумма первых n членов последовательности $\{a_n\}$, $n \in \mathbb{N}_0$. Если n < 0, то $S_n = 0$.

 $S_n = \sum_{i=0}^n a_i \ (n=0,1,...)$ – частичная сумма бесконечной последовательности $\{a_n\}$

 $S = \sum_{j=0}^{\infty} a_j \; (n=0,1,...)$ — предел последовательности частичных сумм, или сумма последовательности

Скорость и порядок сходимости последовательностей определяются следующим образом: последовательность $\{x_n\}$, сходящаяся к S, имеет порядок сходимости $q \ge 1$ и скорость сходимости μ , если $\lim_{n\to\infty} \frac{|x_{n+1}-S|}{|x_n-S|^q} = \mu$.

Асимптотическое поведение функций:

Пусть f(z) и g(z) – функции, определенные в области $D \subset \mathbb{C}$ и пусть $z_0 \in D$, тогда

$$f(z) = O(g(z)), \qquad z \to z_0$$

обозначает, что существует константа A>0 и окрестность $\mathrm{U}(z_0)$ точки z_0 такие, что $\forall \ z \in U(z_0) \cap D$ выполняется:

$$|f(z)| \le A|g(z)|$$

Следствие: Если $g(z) \neq 0$ на $U \cap D$, то $\frac{f(z)}{g(z)}$ ограничена на $U \cap D$.

Пусть f(z) и g(z) – функции, определенные в области $D \subset \mathbb{C}$ и пусть $z_0 \in D$, тогда

$$f(z) = o(g(z)), \qquad z \to z_0$$

обозначает, что существует константа $\varepsilon \in \mathbb{R}$ и окрестность $\mathrm{U}(z_0)$ точки z_0 такие, что $\forall \ z \in \mathrm{U}(z_0) \cap D$ выполняется:

$$|f(z)| \le \varepsilon |g(z)|$$

Следствие: Если $g(z) \neq 0$ на $U \cap D$, то $\frac{f(z)}{g(z)} \rightarrow 0$ при $z \rightarrow z_0$.

Асимптотические последовательности и разложения:

Последовательность функций $\{\Phi_n(z)\}\ (n\ \epsilon\ \mathbb{N}_0)$, определенная в области $D\subset\mathbb{C}$ и такая, что $\Phi_n(z)\neq 0$, кроме, возможно, точки z_0 , называется асимптотической последовательностью при $z\to z_0$, если $\forall\ n\ \epsilon\ \mathbb{N}_0$

$$\Phi_{n+1} = o(\Phi_n(z)), \qquad z \to z_0$$

Формальный ряд $f(z) \sim \sum_{n=0}^{\infty} c_n \Phi_n(z)$ называется асимптотическим разложением f(z) относительно асимптотической последовательности $\{\Phi_n(z)\}$ $(n \in \mathbb{N}_0)$ по определению Пуанкаре, если $\forall m \in \mathbb{N}_0$

$$f(z) - \sum_{n=0}^{\infty} c_n \Phi_n(z) = o(\Phi_m(z)), \qquad z \to z_0$$

Если такое разложение существует, то оно единственно, а также его коэффициенты c_m могут быть вычислены при помощи рекуррентной формулы:

$$c_m = \lim_{z \to z_0} \frac{f(z) - \sum_{n=0}^{m-1} c_n \Phi_n(z)}{\Phi_m(z)}, \qquad m \in \mathbb{N}_0$$

Остаток последовательности и его оценка:

Пусть $\{S_n\}$ либо сходится к некоторому пределу S, либо если она расходиться — может быть просуммирована подходящим методом для получения S.

Тогда элемент последовательности S_n может $\forall n \in \mathbb{N}_0$ быть разбит на предел, или антипредел, S и остаток r_n в соответствие с $S_n = S + r_n$.

Так как S_n – частичные суммы ряда, $S_n = \sum_{k=0}^n a_k$, то остатки имеют вид: $r_n = -\sum_{k=n+1}^\infty a_k$.

Преобразования последовательностей различаются в зависимости от предположений о поведении остатков r_n как функций от n. Эти предположения приводят к различным стратегиям частичного исключения остатков r_n .

Пусть у функции f(z) есть асимптотическое разложение по асимптотической последовательности $\{\Phi_n(z)\}$ при $n \in \mathbb{N}_0$. Тогда первый член ряда $\Phi_0(z)$ называется ведущим членом и обозначается как $f(z) \sim \Phi_0(z)$, что означает:

$$\frac{f(z)}{\Phi_0(z)} \rightarrow c_0$$
 при $z \rightarrow z_0$

В рассматриваемых трансформациях используются ω_0 :

$$\frac{r_n}{\omega_n} \sim \sum_{k=0}^{\infty} c_k \varphi_k(n), n \to \infty$$

где $\{\varphi_n(z)\}$ – подходящая асимптотическая последовательность.

Сходящиеся и расходящиеся последовательности:

Если последовательность $\{S_n\}$ сходится, то число, к которому она стремится, называется пределом. В случае, когда последовательность $\{S_n\}$ расходится, число S называется антипределом, если существует метод, позволяющий суммировать $\{S_n\}$ к этому значению. Значение антипредела зависит от характера расходящейся последовательности, и поэтому точного определения для него нет.

Важные утверждения о расходящихся последовательностях:

• Расходящиеся последовательности могут быть интерпретированы таким образом, что им можно сопоставить некоторые значения, называемые антипределами.

- Для аппроксимации антипределов могут использоваться экстраполяционные методы, позволяющие оценить значения, к которым расходящиеся последовательности могли бы сходиться при определенных условиях.
- о Могут быть обработаны так же, как и сходящиеся, как с вычислительной, так и с теоретической точки зрения.

Виды сходимости:

Поведение многих сходящихся последовательностей $\{S_n\}$, сходящихся к некоторому пределу S можно охарактеризовать асимптотическим условием:

$$\lim_{n\to\infty} \frac{s_{n+1}-s}{s_n-s} = \lim_{n\to\infty} \frac{r_{n+1}}{r_n} = \rho$$

Последовательность $\{S_n\}$ сходится:

- \circ Линейно, если $0 < |\rho| < 1$
- \circ Логарифмически, если $\rho = 1$
- \circ Гиперлинейно, если $\rho = 0$

При $|\rho| > 1$ последовательность расходится.

Класс $F^{(m)}$:

Мы говорим, что функция A(y), определённая для $y \in (0,b]$ (b>0), где у дискретная или непрерывная переменная, принадлежит множеству $F^{(m)}$ ($m \in \mathbb{N}$), если существуют функции $\phi_k(y)$ и $\beta_k(y)$ (k=1,2,...,m) и константа А такие, что

$$A(y) = A + \sum_{k=1}^{m} \phi_k(y) \beta_k(y)$$

Функции $\phi_k(y)$ определены для $y \in (0, b]$ и функции $\beta_k(\xi)$ (ξ - непрерывная переменная), которые непрерывны на $[0, \xi_0]$ ($\xi_0 \le b$), и имеют асимптотическое разложение:

$$eta_k(\xi) \sim \sum_{i=0}^\infty eta_{ki} \xi^{ir_k}$$
 при $\xi o 0+, k=1,...,m, \qquad r_k > 0-$ константы

Утверждение: Пусть $A_1(y) \in F^{(m_1)}$, предел или антипредел которой равен A_1 , и $A_2(y) \in F^{(m_2)}$, предел или антипредел которой равен A_2 . Тогда функция $A_1(y) + A_2(y) \in F^{(m)}$ и её предел или антипредел равен $A_1 + A_2$, причём $m \le m_1 + m_2$.

<u>Класс $A_0^{(\gamma)}$ </u>:

Функция $\alpha(x)$ определённая для сколь угодно больших x > 0, принадлежит множеству $A_0^{(\gamma)}$, если у неё есть асимптотическое разложение формы:

$$\alpha(x) \sim \sum_{i=0}^{\infty} \alpha_i x^{\gamma-i}$$
 при $x \to \infty$, $\gamma \in \mathbb{C}$

Если $\alpha_0 \neq 0$, то $\alpha(x) \in A_0^{(\gamma)}$ строго.

Класс $b^{(m)}$:

Последовательность $\{a_n\}$ принадлежит множеству $b^{(m)}$, если она удовлетворяет линейному однородному разностному уравнению порядка m:

$$a_n = \sum_{k=1}^m p_k(n) \Delta^k a_n$$

 $p_k \in A_0^{(k)}$ k = 1, ..., m так, что $p_k \in A_0^{(i_k)}$ строго для некоторого целого числа $i_k \le k$.

Утверждение: Если $\{a_n\} \in b^{(m)}$, тогда $\{a_n\} \in b^{(q)}$ для каждого q > m.

Классы последовательностей:

1. Логарифмически сходящиеся:

$$\{S_n\} \in b^{(1)}/LOG$$
, если

$$S_n \sim S + \sum_{i=0}^{\infty} \alpha_i \, n^{\gamma-i}$$
 при $n \to \infty, \gamma \neq 0, 1, ..., \alpha_0 \neq 0.$

2. Линейно сходящиеся:

 $\{S_n\} \in b^{(1)}/LIN$, если

$$S_n \sim S + \zeta^n \sum_{i=0}^{\infty} \alpha_i \, n^{\gamma-i}$$
 при $n \to \infty, \zeta \neq 1, \alpha_0 \neq 0.$

3. Факториально сходящиеся:

$$\{S_n\} \in b^{(1)}/FAC$$
, если

$$S_n \sim S + (n!)^{-r} \zeta^n \sum_{i=0}^{\infty} \alpha_i \, n^{\gamma-i}$$
 при $n \to \infty, r \neq 0, 1, \dots, \alpha_0 \neq 0.$

4. Факториально расходящиеся:

$$\{S_n\} \in b^{(1)}/FACD$$
, если

$$S_n \sim (n!)^r \zeta^n \sum_{i=0}^\infty \alpha_i \, n^{\gamma-i}$$
 при $n o \infty$, целое число $r > 0$

Преобразование последовательности:

Последовательность $\{S_n\}$, которая либо расходится, либо сходится настолько медленно, что её применение становится практически невозможным, преобразовывается с помощью функции T в новую последовательность $\{S_n'\}$, которая сходится быстрее:

$$T: \{S_n\} \rightarrow \{S'_n\}, n \in \mathbb{N}_0$$

Вычислительные алгоритмы могут выполнять только конечное число операций, поэтому будут работать лишь с конечными подмножествами последовательностей, содержащими последовательные элементы $\{S_n, S_{n+1}, ..., S_{n+l}\}$, где l — порядок преобразования.

Преобразование T представляется как функция:

$$T: \mathbb{R}^{l+1} \to \mathbb{R}$$
.

Каждое преобразование может быть записано в виде двумерной таблицы $T_k^{(n)}$, где верхний индекс n указывает строку, а нижний индекс k — столбец:

$$T_0^{(0)}$$
 $T_1^{(0)}$ $T_2^{(0)}$... $T_n^{(0)}$... $T_n^{(1)}$... $T_0^{(1)}$ $T_1^{(1)}$ $T_2^{(1)}$... $T_n^{(1)}$... $T_n^{(2)}$...

Последовательность $P=\{(n_j,\,k_j)\}$ упорядоченных пар целых чисел $n_j,\,k_j\in\mathbb{N}_0$ называется путем, если $n_0=k_0=0$ и для всех $j\in\mathbb{N}_0$ выполняется $n_{j+1}\geq n_j$ и $k_{j+1}\geq k_j$, причем хотя бы одно из отношений $n_{j+1}=n_j+1$ и $k_{j+1}=k_j+1$ должно быть истинным.

Преобразование T является регулярным на пути P, если для любой сходящейся последовательности $\{S_n\}$ выполняется:

$$\lim_{j \to \infty} T_{k_j}^{(n_j)} = S$$

Функция T называется ускоряющей сходимость, если:

$$\lim_{j \to \infty} \frac{T_{k_j}^{(n_j)} - S}{S_{n_j} - S} = 0$$

Иначе говоря, T ускоряет сходимость последовательности $\{S_n\}$ при преобразовании в $\{S'_n\}$, если $\{S'_n\}$ сходится к S быстрее, чем $\{S_n\}$, то есть:

$$\lim_{n\to\infty} \frac{|S_n' - S|}{|S_n - S|} = 0$$

Символ Похгаммера:

Пусть $\Omega(z)$ — функция, стремящаяся к нулю при $z \to \infty$. Факториальный ряд для $\Omega(z)$ представляет собой разложение следующего типа:

$$\Omega(z) = \frac{b_0}{z} + \frac{b_1 1!}{z(z+1)} + \frac{b_2 2!}{z(z+1)(z+2)} + \dots = \sum_{v=0}^{\infty} \frac{b_v v!}{(z)_{v+1}}$$

Символы Похгаммера (растущие факториалы) выражаются операцией

$$(z)_{v+1} = \frac{\Gamma(z+v+1)}{\Gamma(z)} = z(z+1)...(z+v)$$

В общем случае $\Omega(z)$ будет иметь простые полюса в точках z=-m, где $m\in\mathbb{N}_0$

Процесс экстраполяции Ричардсона

Методы преобразования последовательностей

Алгоритм ρ Винна предназначен для вычисления четных сходящихся интерполирующих дробей Тиле и их экстраполяции к бесконечности.

Интерполирующая дробь Тиля, или четная сходящаяся дробь, имеет вид рациональных функций:

$$S_{2k}(x) = \frac{a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0}{b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + b_0}, \qquad k \in \mathbb{N}_0,$$
 (1)

где отношение $\frac{a_k}{b_k}$ представляет собой приближение к пределу. Четные порядки конвергентов являются рациональными функциями, представленными в виде частного двух полиномов. Алгоритм Винна выполняет вычисление интерполирующей рациональной функции и ее экстраполяцию к бесконечности с меньшим количеством арифметических операций по сравнению с аналогичными рекурсивными алгоритмами.

Метод ρ ускоряет сходимость логарифмических последовательностей в $b^{(1)}/LOG$ и очень эффективен для последовательностей $\{S_n\}$ таких, что:

$$S_n \sim S + \sum_{i=1}^{\infty} \delta_i \ n^{-i}$$
 при $n \to \infty$

Поскольку $S_n = h(n) \in A_0^{(0)}$, h(n) ведет себя плавно при $n \to \infty$. Следовательно, вблизи $n = \infty$ h(n) можно очень эффективно аппроксимировать рациональной функцией от n, R(n), со степенью числителя, равной степени знаменателя, а $\lim_{n \to \infty} R(n)$ может служить как хорошее приближение для $S = \lim_{n \to \infty} h(n) = \lim_{n \to \infty} S_n$. В частности, R(n) можно выбрать для интерполяции h(n) в 2k+1 точках.

Как указали Смит и Форд, ρ -алгоритм Винна хорошо работает с некоторыми логарифмическими последовательностями, но не работает с другими логарифмическими последовательностями, поэтому объясним этот факт.

Процесс экстраполяции Ричардсона состоит в пропускании интерполяционного полинома степени k через k+1 пары $(x_n,S_n),...,(x_{n+k},S_{n+k})$ с использованием формулы Невилла-Эйткена, затем вычисляют значение этого полинома при x=0. Алгоритм ρ состоит из передачи рациональной интерполяционной дроби, числитель и знаменатель которой представляют собой многочлены степени k, через 2k+1 пары точек $(x_n,S_n),...,(x_{n+2k},S_{n+2k})$, используя интерполяционную формулу Тиле, а затем вычисляя значение этой рациональной дроби по x.

Поскольку ρ -алгоритм — частный случай <u>взаимных разностий</u>, начнем с их определения. Пусть f(x) — функция, взаимные разности которой с аргументами x_0, x_1, \ldots определяются рекурсивно:

$$\rho_0(x_0) = f(x_0), (2a)$$

$$\rho_1(x_0, x_1) = \frac{x_0 - x_1}{\rho_0(x_0) - \rho_0(x_1)},\tag{2b}$$

$$\rho_k(x_0, \dots, x_k) = \rho_{k-2}(x_1, \dots, x_{k-1}) + \frac{x_0 - x_k}{\rho_{k-2}(x_1, \dots, x_{k-1}) - \rho_k^{(n)}}, \qquad k = 2, 3, \dots$$
 (2c)

Заменив x_0 на x в (2c) получим следующую цепную дробь:

$$f(x) = f(x_1) + \frac{x - x_1}{\rho_1(x_1, x_2) + \frac{x - x_2}{\rho_2(x_1, x_2, x_3) - \rho_0(x_1) + \frac{x - x_2}{\cdot}}}$$
(3a)

Последние две составляющие простейшие дроби в формуле (3а) цепной дроби имеют следующий вид:

$$\frac{x - x_{l-1}}{\rho_{l-1}(x_1, \dots, x_l) - \rho_{l-3}(x_1, \dots, x_{l-2}) + \frac{x - x_l}{\rho_l(x, x_1, \dots, x_l) - \rho_{l-2}(x_1, \dots, x_{l-1})}}$$
(3b)

Равенство (3) справедливо при $x = x_1, ..., x_l$. Правая часть равенства (3) называется интерполяционной формулой Тиля.

Рассмотрим функцию $f(x_n)$, значение S_n которой известно в некотором числе точек x_n при $n \in \mathbb{N}_0$. ρ -алгоритм Винна определяется заменой S_n вместо $f(x_n)$ и $\rho_k^{(n)}$ вместо $\rho_k(x_n,...,x_{n+k})$ во взаимной разности:

$$\rho_0^{(n)} = S_n, \tag{4a}$$

$$\rho_1^{(n)} = \frac{x_n - x_{n+1}}{\rho_0^{(n)} - \rho_0^{(n+1)}},\tag{4b}$$

$$\rho_2^{(n)} = \rho_0^{(n+1)} + \frac{x_n - x_{n+2}}{\rho_1^{(n)} - \rho_1^{(n+1)}},\tag{4c}$$

$$\rho_k^{(n)} = \rho_{k-2}^{(n+1)} + \frac{x_n - x_{n+k}}{\rho_{k-1}^{(n)} - \rho_{k-1}^{(n+1)}},\tag{4d}$$

Покажем, что рациональная дробь R(x), числитель и знаменатель которой представляют собой полиномы степени k и такая, что

$$R(x_p) = S_p \ \forall \ p = n, \dots, n + 2k \tag{5}$$

находится в виде:

$$R(x) = \frac{\rho_{2k}^{(n)} x^k + a_1 x^{k-1} + \dots + a_k}{x^k + b_1 x^{k-1} + \dots + b_k}$$
(6)

Тогда получаем, что $\lim_{n\to\infty} R(x) = \rho_{2k}^{(n)}$ и позволяет взять эту величину $\rho_{2k}^{(n)}$ как аппроксимацию предела последовательности $\{S_n\}$ при $n\to\infty$. Расчет $\rho_{2k}^{(n)}$ осуществляется с использованием расширенной формы ρ -алгоритма, который представляет собой не что иное, как расчет взаимных разностей.

Нелинейная рекурсивная стандартная схема алгоритма ρ Винна выглядит следующим образом:

$$\rho_{k+1}^{(n)} = \rho_{k-1}^{(n+1)} + \frac{x_{n+k+1} - x_n}{\rho_k^{(n+1)} - \rho_k^{(n)}}, \quad k, n \in \mathbb{N}_0,$$
(7)

учитывая, что $\rho_{-1}^{(n)}=0$ и $\rho_{0}^{(n)}=S_{n},\ n\in\mathbb{N}_{0}.$

Данный метод работает с последовательностью строго возрастающих и неограниченных с ростом n интерполяционных точек $\{x_n\}$, которые должны быть положительными и различными $\forall n \in \mathbb{N}_0$:

$$0 < x_0 < x_1 < x_2 < \dots < x_m < x_{m+1} < \dots, \lim_{n \to \infty} x_n = \infty$$
 (8)

Видно, что структура ρ -алгоритма идентична структуре ϵ -алгоритма Винна, но отличается наличием самой последовательности интерполяционных точек. Только элементы с четным порядком $\rho_{2k}^{(n)}$ в методе ρ используются для аппроксимации предела, тогда как элементы $\rho_{2k+1}^{(n)}$ нечетного порядка служат вспомогательными величинами и могут расходиться, если вся последовательность сходится, то есть величины с нечетным нижним индексом являются лишь промежуточными расчетами и не имеют никакого значения.

Несмотря на формальное сходство, алгоритмы Винна ϵ и ρ существенно различаются по способности ускорять сходимость. Алгоритм ρ Винна эффективен для логарифмически сходящихся последовательностей, но не подходит для линейно сходящихся или расходящихся последовательностей, в случае которых выгоднее будет применять ϵ алгоритм.

Поскольку дроби четного порядка $S_{2k}(x)$ интерполяционной цепной дроби построены таким образом, что они удовлетворяют условиям интерполяции 2k+1, то

$$S_{2k}(x_{n+j}) = S_{n+j}, 0 \le j \le 2k \tag{9}$$

Теорема.

Если применить ρ -алгоритм к последовательности $\{S_n\}$:

$$S_n = \frac{Sx_n^k + a_1x_n^{k-1} + \dots + a_k}{x_n^k + b_1x_n^{k-1} + \dots + b_k},$$
(10)

то преобразование $\rho_{2k}^{(n)} = S \ \forall \ n \in \mathbb{N}_0.$

Доказательство.

Покажем верность этого утверждения при помощи интерполирующей дроби Тиля, подразумевающей следующую непрерывную дробь:

$$S_n = S_m + \frac{n - m}{\rho_1^{(m)} + \frac{n - m - 1}{\rho_2^{(m)} - \rho_0^{(m)} + \frac{n - m - 2}{\rho_3^{(m)} - \rho_1^{(m)} + \cdots}}$$
(11a)

Учитывая значение для 2k + 1 дроби в цепочке дроби Тиля

$$\frac{n-m-2k}{\rho_{2k+1}^{(m)}-\rho_{2k-1}^{(m)}+\frac{n-m-2k-1}{\cdot \cdot \cdot}}$$
(11b)

$$S_n = \frac{\rho_{2k}^{(m)} n^k + a_1 n^{k-1} + \dots + a_k}{n^k + b_1 n^{k-1} + \dots + b_k}$$
(11c)

Соответственно, $\rho_{2k}^{(m)} = S \ \forall \ m \in \mathbb{N}_0$. Таким образом, ρ -алгоритм представляет собой рациональную экстраполяцию, точную на последовательности, удовлетворяющей условию (11c)

Свойства ρ -алгоритма:

Некоторые свойства ρ - и ϵ - алгоритмов Винна схожи.

Свойство 1.

$$\rho_{2k}^{(n)} = \frac{\begin{vmatrix} 1 & S_n & x_n & x_n S_n & \cdots & x_n^{k-1} & x_n^{k-1} S_n & x_n^k S_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & S_{n+2k} & x_{n+2k} & x_{n+2k} S_{n+2k} & \cdots & x_{n+2k}^{k-1} & x_{n+2k}^{k-1} S_{n+2k} & x_{n+2k}^k S_{n+2k} \end{vmatrix}}{\begin{vmatrix} 1 & S_n & x_n & x_n S_n & \cdots & x_n^{k-1} & x_n^{k-1} S_n & x_n^k S_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & S_{n+2k} & x_{n+2k} & x_{n+2k} S_{n+2k} & \cdots & x_{n+2k}^{k-1} & x_{n+2k}^{k-1} S_{n+2k} & x_{n+2k}^k \end{vmatrix}}$$

Свойство 2. (Алгебраические)

2.1. Если применение ρ -алгоритма на $\{S_n\}$ и $\{aS_n+b\}$ дает соответственно величины $\rho_k^{(n)}$ и $\bar{\rho}_k^{(n)}$, тогда:

$$\bar{\rho}_{2k}^{(n)} = a\rho_{2k}^{(n)} + b, \ \ \bar{\rho}_{2k+1}^{(n)} = \frac{\rho_{2k}^{(n)}}{a}$$

2.2. Если применение ρ -алгоритма на $\{S_n\}$ и $\{\frac{aS_n+b}{cS_n+d}\}$ дает соответственно величины $\rho_k^{(n)}$ и $\bar{\rho}_k^{(n)}$, тогда:

$$\bar{\rho}_{2k}^{(n)} = \frac{a\rho_{2k}^{(n)} + b}{c\rho_{2k}^{(n)} + d}$$

Итак, р-алгоритм представляет собой рациональную экстраполяцию, точную на последовательности, имеющей асимптотическое разложение вида:

$$S_n \sim S + n^{\theta} \left(c_0 + \frac{c_1}{n} + \frac{c_2}{n^2} + \dots \right), \quad n \to \infty$$

где θ — отрицательное целое число, а c_i — константы, не зависящие от n.

<u>Теорема</u>. (Асимптотическое поведение р-алгоритма)

. . .

Примечание:

 ρ -алгоритм — алгоритм экстраполяции рациональной дроби, числитель и знаменатель которой имеют одинаковую степень. Можно рассматривать это как частный случай метода Булирша и Стоера, где степени числителя и знаменателя произвольны.

Причины применения р-алгоритма Винна для логарифмически сходящихся рядов:

1. Преобразование интерполяционных точек

Алгоритм ρ Винна включает последовательность интерполяционных точек $\{x_n\}$, что позволяет более гибко подходить к обработке ряда. Логарифмически сходящиеся ряды характеризуются тем, что их члены уменьшаются медленно, и традиционные методы ускорения сходимости могут оказаться неэффективными. Интерполяционные точки дают возможность алгоритму адаптироваться к медленной сходимости, обеспечивая более точное аппроксимирование предела.

2. Адаптация к логарифмической сходимости

ho-алгоритм Винна строит последовательность рациональных функций, которая учитывает форму логарифмически сходящихся рядов. Он использует четные порядки элементов $ho_{2k}^{(n)}$ для аппроксимации предела, что позволяет лучше учитывать особенности поведения логарифмически сходящихся рядов.

3. Комплементарные свойства

Алгоритм ρ Винна дополняет ϵ алгоритм Винна, который эффективен для линейно сходящихся последовательностей, но не может ускорить логарифмическую сходимость. В то время как ϵ алгоритм эффективен для суммирования чередующихся расходящихся рядов, алгоритм ρ Винна специально разработан для работы с логарифмически сходящимися рядами, что делает его эффективным инструментом в таких случаях.

4. Устойчивость к осцилляциям и расходимости

Логарифмически сходящиеся ряды часто не демонстрируют осцилляционного поведения, характерного для некоторых других типов рядов. ρ -алгоритм Винна, учитывая свою структуру и использование интерполяционных точек, обеспечивает устойчивость к осцилляциям и помогает избежать расходимости, эффективно аппроксимируя пределы таких рядов.

1.2. Модификации ρ – алгоритма

2. 9 – алгоритм Брезински

$$\vartheta_{-1}^{(n)}=0, \qquad \vartheta_0^{(n)}=S_n,$$

$$\vartheta_{2k+1}^{(n)} = \vartheta_{2k-1}^{(n+1)} + \frac{1}{\Delta \vartheta_{2k}^{(n)}},$$

$$\vartheta_{2k+2}^{(n)} = \vartheta_{2k}^{(n+1)} + \frac{ [\Delta \vartheta_{2k}^{(n+1)}] [\Delta \vartheta_{2k+1}^{(n+1)}]}{\Delta^2 \vartheta_{2k+1}^{(n)}}, \qquad k,n = 0,1, \dots$$

Заключение

Список литературы

- 1. Brezinski, C. (1977). Acceleration de la Convergence en Analyse Numerique. Springer-Verlag.
- 2. Osada, Naoki. Acceleration Methods for Slowly Convergent Sequences and Their Applications. January 1993.
- 3. Weniger, E. J. (2003). Nonlinear Sequence Transformations for the Acceleration of Convergence and the Summation of Divergent Series. *Computer Physics Repor*ts, 1(1), 1-123.
- 4. Brezinski, C., & Redivo Zaglia, M. (2003). *Extrapolation Methods: Theory and Practice*. Amsterdam: North-Holland.
- 5. Sidi, A. (2003). *Practical Extrapolation Methods: Theory and Applications*. Cambridge: Cambridge University Press.
- 6. Van Tuyl, A. H. (1994). Acceleration of Convergence of a Family of Logarithmically Convergent Sequences. *Mathematics of Computation*, 63(207), 229-246. American Mathematical Society.
- 7. Weniger, E. J. (1990). On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series. *Institut für Physikalische und Theoretische Chemie, Universität Regensburg*, W-8400 Regensburg, Germany.
- 8. Borghi, R., & Weniger, E. J. (2015). Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Dipartimento di Ingegneria, Università "Roma Tre", I-00144 Rome, Italy and Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany.