CSDS503 / COMP552 – Advanced Machine Learning

Faizad Ullah

Traditional Neural Networks

Speech data

Grid games

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

Graph-structured Data

A lot of real-world data does not "live" on grids

Social Networks

Twitter followers graph

http://allthingsgraphed.com/2014/11/02/twitter-friends-network/

Graph-structured Data

A lot of real-world data does not "live" on grids

Standard CNN and RNN architectures don't work on this data

Graph

- A set of objects, and the connections between them, are naturally expressed as a graph.
- A graph represents the relations (*edges*) between a collection of entities (*nodes*).

Graph

A graph is a pair G = (V, E), where $V = \{1, \dots, n\}$ is a set of n vertices (nodes), and $E = \{(i, j) | i, j \in N\}$ is a set of edges between them.

Undirected edge

 \bigcirc

Directed edge

Graph

- A graph is a pair G = (V, E), where $V = \{1, \dots, n\}$ is a set of n vertices (nodes), and $E = \{(i, j) | i, j \in N\}$ is a set of edges between them.
- ightharpoonup Alternatively, we can define an adjacency matrix A where:

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

If $A^T = A$, we say the graph is undirected.

Images as graphs

Images as graphs

Text as graphs

Molecules as graphs

Molecules as graphs

Social networks as graphs

(Left) Image of a scene from the play "Othello". (Center) Adjacency matrix of the interaction between characters in the play. (Right) Graph representation of these interactions.

Social Network as Graph

Learning Problems on Graphs

Learning Problems on Graphs

Graph-level task

Output: labels for each graph, (e.g., "does the graph contain two rings?")

This is analogous to image classification problems with MNIST and CIFAR, where we want to associate a label to an entire image. With text, a similar problem is sentiment analysis where we want to identify the mood or emotion of an entire sentence at once.

Node-level task

- Node-level tasks are concerned with predicting the identity or role of each node within a graph.
- The prediction problem is to classify whether a given member becomes loyal to either Mr. Hi or John H.

Input: graph with unlabled nodes

Output: graph node labels

Input: graph with unlabled nodes

Output: graph node labels

Edge-level task

 Beyond identifying objects in an image, deep learning models can be used to predict the relationship between them.

Edge-level task

 Beyond identifying objects in an image, deep learning models can be used to predict the relationship between them.

Input: fully connected graph, unlabeled edges

Output: labels for edges

Graph: Neighbours and degrees

The neighborhood \mathcal{N}_i of a node i is defined as the set of nodes sharing an edge with the node:

$$\mathcal{N}_i = \{j \mid A_{ij} = 1\} .$$

$$\mathcal{N}_4 = \{3, 5, 6\}$$
.

Graph: Neighbours and degrees

The size $|\mathcal{N}_i|$ of the neighborhood is called the degree of the node. The degree matrix D is a diagonal matrix containing the degrees:

Features on a graph

• Depending on the application, we can have node features x_i , edge features e_{ij} , or graph features.

Information in the form of scalars or embeddings can be stored at each graph node (left) or edge (right).

 In the simplest case, we associate to each node a vector_i of features, from which we can build a matrix

Recap: MLP

x = {1,
$$x_1$$
, x_2 , ···, }^T
w = { w_0 , w_1 , w_2 , ···, }^T

$$y_{h1} = \mathbf{w}^T \mathbf{x} = \sum_{i} w_i x_i = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

- $h_1^l = z = \sigma(y_{h1})$
- $h_1^{l+1} = \sigma(w_0^l + w_1^l h_1^l + w_2^l h_2^l + \dots + w_n^l h_n^l)$

Convolution as Message Passing

Convolution as Message Passing

$$\mathbf{h}_{i}^{l+1} = w_{1}^{l} \mathbf{h}_{a}^{l} + w_{2}^{l} \mathbf{h}_{b}^{l} + \dots + w_{5}^{l} \mathbf{h}_{i}^{l} + \dots + w_{9}^{l} \mathbf{h}_{h}^{l}$$

Convolution in CNNs

Localized Convolution in GNNs

Convolution in CNNs

Localized Convolution in GNNs

Convolution in CNNs

Localized Convolution in GNNs

Convolution in CNNs

Localized Convolution in GNNs

Graph Neural Network

Graph Neural Network

$$f(\mathcal{D}) = \mathcal{D}$$

Graph Neural Network

update function
$$f =$$

- GNN does not update the connectivity of the input graph
- Output graph of a GNN has the same adjacency and the same number of feature vectors as the input graph.
- But, the output graph has **updated embeddings**, since the GNN has updated each of the node, edge and global-context representations.

Graph Convolutional Neural Network

Kipf and Welling (2017)

Attempt #1:
$$\mathbf{h}_i^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}(i)} W^l \mathbf{h}_j^l \right)$$

Graph Convolutional Neural Network

Kipf and Welling (2017)

Attempt #1:
$$\mathbf{h}_i^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}(i)} W^l \mathbf{h}_j^l \right)$$

Attempt #2:
$$\mathbf{h}_i^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} W^l \mathbf{h}_j^l \right)$$

Normalised propagation matrices

The GC layer remains valid if we replace the adjacency matrix with another matrix having the same sparsity pattern (i.e., 0 for pairs of nodes not connected).

Adjacency matrix with self-loops: $\hat{A} = A + I$ and $[\hat{D}]_{i,i} = \sum_j \hat{A}_{ij}$.

Normalised adjacency matrix (with or without self-loops):

$$L = D - A$$
 or $L = \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2}$

Without self-loop

With self-loop

Some of these matrices can have better properties when training.

Graph Convolutional Neural Network

Kipf and Welling (2017)

Attempt #1:
$$\mathbf{h}_i^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}(i)} W^l \mathbf{h}_j^l \right)$$

Attempt #2:
$$\mathbf{h}_i^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} W^l \mathbf{h}_j^l \right)$$

Attempt #3:
$$\mathbf{h}_i^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \frac{1}{\sqrt{|\mathcal{N}(i)| + 1} \sqrt{|\mathcal{N}(j)| + 1}} W^l \mathbf{h}_j^l \right)$$

Recap: MLP

- $\mathbf{x} = \{1, x_1, x_2, \dots, \}^T$
- $\mathbf{w} = \{w_0, w_1, w_2, \dots, \}^T$
- $z = \sigma(\mathbf{w}^T \mathbf{x})$
- $H^1 = f(X, W)$
- $H^{l+1} = f(H^l, W)$

Graph Layer

We consider graph layers of the form

$$f(X, A, W) = (H, A)$$

 acting on the node features, but keeping the connectivity the same. For simplicity, we can omit the second output and write

$$H = f(X, A, W)$$

A convolution-like operation for graphs

A graph convolutional (GC) layer is defined as:

$$[H]_i = \phi \Big(\sum_{i \in \mathcal{N}_i} A_{ij} W^T \mathbf{x}_j \Big),$$

which can be written compactly as:

$$H = \phi(AXW)$$

The GC layer is easily composable into a multi-layered architecture, e.g., with two layers:

$$f(X,A) = \phi(A\phi(AXW)Z)$$
$$H^{l+1} = \phi(AH^lW^l)$$

A convolution-like operation for graphs

- The GC layer can be understood as a sequence of three operations:
 - ▶ 1. A local **node-wise** operation $\hat{\mathbf{x}}_i = W^T \mathbf{x}_i$.
 - 2. An aggregation with respect to the neighbourhood. This is called the message-passing phase.
 - 3. A standard non-linearity.
- In an image convolution, points (1)-(2) are combined in the filtering operation, because each pixel has a fixed neighbourhood. Here, this is not possible because we cannot easily initialise trainable parameters to weight the neighbourhood.

Summary / Recap

Graph

- A graph is a pair G=(V,E), where $V=\{1,\cdots,n\}$ is a set of n vertices (nodes), and $E=\{(i,j)\,|\,i,j\in N\}$ is a set of edges between them.
- Adjacency matrix A where: $A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$ If $A^T = A$, we say the graph is undirected.
- Neighbourhood $\mathcal{N}_i = \{j \, | \, A_{ij} = 1\}$ Degree $[D]_{i,i} = \sum_i A_{ij}$
 - Adjacency matrix with self-loops: $\hat{A} = A + I$ and $[\hat{D}]_{i,i} = \sum_{i} \hat{A}_{ij}$.
- Normalised adjacency matrix / Laplacian: L = D A or $L = \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2}$

A convolution-like operation for graphs

A graph convolutional (GC) layer is defined as:

$$[H]_i = \phi \Big(\sum_{i \in \mathcal{N}_i} A_{ij} W^T \mathbf{x}_j \Big),$$

which can be written compactly as:

$$H = \phi(AXW)$$

The GC layer is easily composable into a multi-layered architecture, e.g., with two layers:

$$f(X,A) = \phi(A\phi(AXW)Z)$$
$$H^{l+1} = \phi(AH^lW^l)$$

GNN Tasks

- Node Classification: label data samples by taking into account their neighbours.
- Link Prediction: predict most likely links in the graph.

Task #1: Node classification

 For the node classification, we can stack two graph convolutional layer to form a Graph Neural Network. A softmax() applied on each node embedding of the last layer will provide the prediction y.

Task #1: Node classification

Suppose a subset T ⊂ N of nodes has a known class y (e.g., fake or certified users in a social network). We can use a GCN to classify all the nodes of the graph simultaneously:

$$\hat{Y} = \operatorname{softmax}(A\varphi(AXW)Z)$$

We optimise the weights of the network with gradient descent:

$$W^*, Z^* = \arg\min \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \text{cross-entropy}(y_i, \hat{y}_i).$$

Task #2: Link Prediction

- In link prediction, the objective is to predict whether two nodes in a network are likely to have a link.
- We can get the probability for each edge by taking the inner product of the embedding produced by a GNN.

 Also, in this case the model is optimised by minimising the cross-entropy loss function.

Node classification, Graph Classification, Link Prediction

Conclusions

- Deep learning on graphs works and is very effective!
- Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning

GCN for recommendation on 16 billion edge graph!

Conclusions

- Deep learning on graphs works and is very effective!
- Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning

GCN for recommendation on 16 billion edge graph!

- Open problems:
 - Theory
 - Scalable, stable generative models

[Sukhbaatar et al.

NIPS 20161

- Learning on large, evolving data
- Multi-modal and cross-model learning (e.g., sequence2graph)

Visual range

Software Libraries

- Multiple libraries build on standard deep learning frameworks to provide GNN functionalities:
 - Deep Graph Library (framework agnostic, very scalable):
 - https://www.dgl.ai/
 - PyTorch Geometric (great for reproducing results):
 - https://github.com/pyg-team/pytorch_geometric
 - Spektral (TensorFlow, smaller than the other two):
 - https://graphneural.network/