April 27, 2022

1 Ejercico 1-2 Prueba de bondad de ajuste

1.1 Enunciado

Se realizan 1000 ensayos de arrojar cinco (5) monedas y se registra el número de caras obtenidas. A continuación, se detallan las cantidades obtenidas:

Numero de Caras Obtenidas	Frecuencia Observada
0	38
1	144
2	342
3	287
4	164
5	25

1.2 Declaraciones de variables y bibliotecas

1.2.1 Bibliotecas necesarias

```
[]: from scipy.stats import binom, chi2
import numpy as np
import matplotlib.pyplot as plt
from tabulate import tabulate
```

1.2.2 Declaraciones de Variables

1.3 Representación Gráfica

1.4 Cálculos

Repeticiones | Frecuencia Observadas |

```
|------|
| 0 | 38 |
| 1 | 144 |
| 2 | 342 |
| 3 | 287 |
| 4 | 164 |
| 5 | 25 |
```

```
[]: prob_intervalos = []
  prob_acumulada = 0

for(i) in range(len(clases[1])):
    prob = binom.pmf(clases[0][i], n, prob_exito_muestra)
    print('P(X = ', clases[0][i], ') = ', prob)
    prob_intervalos.append(prob)
    prob_acumulada += prob

prob_acumulada += prob

print("Acumulado Total = {m}".format(m=prob_acumulada))

valores_esperados = []
for(i) in prob_intervalos:
    valores_esperados.append(i*ensayos)
```

```
[]: tableData = list(zip(repeticiones, valores_observados, prob_intervalos, valores_esperados))

print(tabulate(tableData, ['Repeticiones', 'Valores', 'Prob', 'Esperado'], valores', 'Prob', 'Prob'
```

	Repeticiones		Valores	Prob	1	Esperado
		- -			- -	
	0		38	0.03125	1	31.25
	1		144	0.15625	1	156.25
	2		342	0.3125		312.5
	3		287	0.3125	1	312.5
	4		164	0.15625		156.25
	5		25	0.03125	1	31.25

```
[]: chiDePrueba = 0
for(i) in range(len(valores_esperados)):
      chiDePrueba += ((valores_esperados[i] - valores_observados[i])**2)/
      valores_esperados[i]

print("Chi de Prueba = {m}".format(m=chiDePrueba))
```

Chi de Prueba = 8.918400000000002

```
[]: chi2Critico = chi2.ppf(1-alfaChi2, len(valores_esperados)-1)

print("Chi2 Critico = {m}".format(m=chi2Critico))
```

Chi2 Critico = 9.236356899781123

1.5 Conclusión

```
[]: if chiDePrueba > chi2Critico:
    print("Se rechaza la hipotesis nula")
else:
    print("No se puede rechazar la hipotesis nula")
```

No se puede rechazar la hipotesis nula