

 $\underline{\text{S. 196 Aufgabe 2:}}$ Berechnen Sie für die natürliche Exponentialfunktion an den Stellen $-2,\ 0$ und 2 die Funktionswerte und die Ableitungen. Skizzieren Sie damit den Graphen der Funktion

$f(x) = e^x$		$f'(x) = e^x$	
×	-2	0	2
f(x)	0, 14	1	7,39
$J(\omega)$	0,11	1	1,00

S. 196 Aufgabe 3: Zeichnen Sie zunächst den Graphen der natürlichen Exponentialfunktion f mit $f(x)=e^{x}.$ Skizzieren Sie damit den Graphen von

- (a) f_1 mit $f_1(x) = e^x + 1$ (a) f_2 mit $f_2(x) = 2e^x$ (a) f_3 mit $f_3(x) = e^{x-1}$

- S. 196 Aufgabe 4: Gegeben ist der Graph K der natürlichen Exponentialfunktion.
- (a) Bestimmen Sie die Gleichung der Tangenten an K im Punkt A(1|e) und $B(-1|\frac{1}{e})$
- (b) Berechnen Sie den Schnittpunkt der Tangente an K im Punkt A mit der x-Achse.

Wir erinern uns daran, dass die Tangente eine lineare Funktion ist. Das bedeutet die Funktion erfüllt folgende Form: t(x) = mx + b.

Dabei entspricht $\mathbf m$ der **Steigung** der Tangente und $\mathbf b$ gibt den y-Achsenabschnitt der Tangente an.

(a) Wir beginnen mit der Tangente $t_A(x)$ an K durch den Punkt A(1|e). Hierfür berechnen wir zunächst die Steigung $(f'(x_p))$ im geforderten Punkt $(x_p|y_p)$.

$$f(x) = e^x$$

 $f'(1) = e$
 $\Rightarrow m = e$

Wir wissen, die Tangente t_A hat die Steigung e. Zudem wissen wir, dass die Tangente durch den Punkt A(1|e) verläuft. Also $t_A(1)=e$.

$$t_A(x) = e \cdot x + b$$

$$e = t_A(1) = e \cdot 1 + b$$

$$e = e \cdot 1 + b$$

$$0 = b$$

Damit ergibt sich für die Tangente an K durch den Punkt A(1|e): $t_A(x)=ex$.

Das gleiche Vorgehen wählen wir, um die Tangente $t_B(x)$ an K durch den Punkt $B(-1|\frac{1}{e})$ zu bestimmen. Als Erstes berechnen wir wieder die Steigung $(f'(x_p))$ im geforderten Punkt $(x_p|y_p)$.

 $f(x) = e^x \Rightarrow f'(x) = e^x$

$$f(x) = e^x$$

$$\Rightarrow f'(x) = e^x$$

$$\Rightarrow m = \frac{1}{e}$$

Wir wissen, die Tangente t_B hat die Steigung $\frac{1}{e}$. Zudem wissen wir, dass die Tangente durch den Punkt $B(-1|\frac{1}{e})$ verläuft. Also $t_B(-1)=\frac{1}{e}$.

$$t_b(x) = \frac{1}{e} \cdot x + b$$

$$\frac{1}{e} = t_B(-1) = \frac{1}{e} \cdot (-1) + b$$

$$\frac{1}{e} = \frac{1}{e} \cdot (-1) + b$$

$$|+\frac{1}{e}|$$

$$\frac{2}{e} = b$$

Damit ergibt sich für die Tangente an K durch den Punkt $B(-1|\frac{1}{e})$: $t_B(x)=\frac{1}{e}x+\frac{2}{e}$.

(b) Für den Schnittpunkt der Tangente $t_A(x)$ an K durch den Punkt A(1|e) mit der x-Achse müssen wir die Nullstelle eben dieser bestimmen.

Also $\mathbf{t_A}(\mathbf{x}) = \mathbf{0}$.

$$t_A(x) = ex$$

$$0 = ex$$

$$x = 0$$

Das heißt, der Schnittpunkt der Tangente $t_A(x)$ an K durch den Punkt A(1|e) schneidet die x-Achse an der Stelle x=0 . Also im Koordinatenursprung.