(03/04/2008)

Nome:

R.A.:

1. Para o circuito abaixo determine seu equivalente Thevenin

 $R_{\text{\tiny TH}} =$

 $V_{TH} =$

 Para o mesmo circuito do exercício anterior agora com uma carga R_L (entre a e b) para a máxima transferência de potência, determine essa potência máxima e a corrente i₁

 $P_{\text{máxima}} =$

 $i_1 =$

3. Para o circuito abaixo, $e_A(t)=15sent$, $R_1=R_2=R_4=2\Omega$, , $R_3=4\Omega e$ o AmpOp é ideal. Determine V , I e a potência na fonte $e_A(t)$ com a saída em aberto.

V=

|=

 $P[e_A(t)]=$

4. Repita o solicitado no exercício anterior, agora com uma carga $\mathbf{R}_L = \mathbf{5}\Omega$ (entre \mathbf{a} e \mathbf{b})

V=

1=

 $P[e_A(t)] =$

5. Para o circuito abaixo , determine: as correntes I_A , I_C e as potências em cada uma das 4 fontes, indicando se **F** (fornecida) ou **R** (recebida).

$$I_A = I_C = P(50V) = P(250V) = P(900V) = P(2I_B) =$$

6. Para o circuito abaixo, determine pelo **método de superposição** a parcela da tensão v_1 devido a fonte de 3A e a fonte de 6V.

7. Para o mesmo circuito do exercício anterior, determine a potência total fornecida pelas 3 fontes e a potência total dissipada nos resistores.

$$P_{fontes} = P_{resistores} =$$

 $V_{1(6V)} =$

8. Para o circuito abaixo, usando **equações de correntes em função de tensões de nós** determine a corrente e seu sentido na resistência de 4Ω e a potência na fonte de 11.7A indicando se **F** (fornecida) ou **R** (recebida).

 $i_4 = P(11.7A) =$

9. Para o circuito abaixo, usando as equações de tensões em função de correntes de malhas , determine i_1 e V_1

 $i_1 = v_1 =$

10. Para o circuito abaixo, $R_1=3\Omega$, $R_2=2\Omega e$ a fonte de tensão controlada pela corrente i é $V_A=1.2$ i ; determine seu equivalente Norton

 $R_{\scriptscriptstyle N} = I_{\scriptscriptstyle N} =$