Correction du QCM THL — Théorie des Langages

EPITA - Promo 2009

Juillet 2007

Il y a toujours exactement une seule réponse valable. Lorsque plusieurs réponses sont possibles, prendre la plus restrictive.

Le langage $\{a^n \mid n \in \mathbb{N}\}$ est

- × fini
- × non reconnaissable par automate fini
- \rightarrow rationnel
- × vide

Le langage $\{a^n b^n \mid n < 51^{42} - 1\}$ est

- × infini
- × non rationnel
- → reconnaissable par automate fini
- × vide

Le langage $\{(ab)^n \mid n \in \mathbb{N}\}$ est

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $\{a^nb^m \mid n, m \in \mathbb{N}\}$, est

- × fini
- \rightarrow rationnel
- $\times\,\,$ non reconnaissable par automate fini
- × vide

L'expression rationnelle étendue [a - zA - Z][a - zA - Z0 - 9] * n'engendre pas :

- \rightarrow _exit
- \times exit
- \times exit_
- × e

Un automate fini déterministe...

- × n'est pas un automate nondéterministe
- × n'est pas un automate nondéterministe à transitions spontanées
- → n'a pas plusieurs états initiaux
- × n'a pas plusieurs états finaux

Le langage $\{a^nb^n \mid n \in \mathbb{N}\}$ est

- × fini
- \rightarrow non rationnel
- × reconnaissable par automate fini
- × vide

Quelle est la classe la plus stricte de la grammaire suivante?

$$\begin{array}{cccc} S & \rightarrow & N \mid L \\ N & \rightarrow & \operatorname{ceriel} \mid \operatorname{dick} \mid \operatorname{noam} \\ L & \rightarrow & E \mid N C L \\ C E & \rightarrow & \operatorname{and} E \\ \operatorname{and} E & \rightarrow & \operatorname{and} N \\ C & \rightarrow & ',' \end{array}$$

- × Rationnelle (Type 3)
- × Hors contexte (Type 2)
- → Sensible au contexte (Type 1)
- × Monotone (Type 1)

Quelle est la classe la plus stricte de la grammaire suivante?

$$S \rightarrow \text{inst ';'} S$$

 $S \rightarrow \text{inst ';'}$

- → Rationnelle (Type 3)
- × Hors contexte (Type 2)
- × Sensible au contexte (Type 1)
- × Monotone (Type 1)

Quelle propriété de cette grammaire est vraie?

$$S \rightarrow aSc$$

- × Linéaire à gauche
- × Linéaire à droite
- → Hors contexte
- × Ambigüe

Quelle propriété de cette grammaire est vraie?

$$\begin{array}{ccc} S & \to & SpS \\ S & \to & n \end{array}$$

- × Linéaire à gauche
- × Linéaire à droite
- × Rationnelle
- → Ambigüe

Un langage quelconque...

- × est toujours inclus dans un langage sensible au contexte
- × est toujours inclus dans un langage hors-contexte
- × peut ne pas être inclus dans un langage défini par une grammaire
- → est toujours inclus dans un langage rationnel

Soit L_r est un langage rationnel. Si $L \subset L_r$, alors

- \times L est rationnel
- \times L est hors-contexte
- \times L est sensible au contexte
- \rightarrow L peut ne pas être définissable par une grammaire

LL(k) signifie

- \times lecture en deux passes de gauche à droite, avec k symboles de regard avant
- \rightarrow lecture en une passe de gauche à droite, avec k symboles de regard avant
- \times lecture en une passe de gauche à droite, avec une pile limitée à k symboles
- \times lecture en deux passes de gauche à droite, avec une pile limitée à k symboles

Si une grammaire est LL(1), alors

- × elle est rationnelle
- × elle n'est pas rationnelle
- × elle est ambigüe
- → elle n'est pas ambigüe

Si un parseur LALR(1) a des conflits, alors sa grammaire

- \rightarrow n'est pas LR(0)
- \times est LR(0)
- × n'est pas ambigüe
- × est ambigüe

Si une grammaire hors contexte est non ambigüe

- \times elle est LL(1)
- \times elle est LL(k)
- → elle n'est pas nécessairement LL
- \times elle est LR(k)

Quelle forme de l'arithmétique est LL(1)?

× LL(1) ne permet pas de traiter l'arithmétique

×

$$E \rightarrow E + E \mid E * E \mid n$$

X

$$\begin{array}{ccc} E & \rightarrow & E + T \mid T \\ T & \rightarrow & T * F \mid F \\ F & \rightarrow & n \end{array}$$

 \rightarrow

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid T$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid F$$

$$F \rightarrow n$$

Lex/Flex sont des

- → générateurs d'analyseurs lexicaux
- × générateurs d'analyseurs syntaxiques
- × analyseurs lexicaux
- × analyseurs syntaxiques

Yacc repose sur l'algorithme

- \times GLR
- \times ANTLR(k)
- \times LR(k)
- \rightarrow LALR(1)