FIC with a nonparametric candidate - a new strategy for FIC construction -

Original vs. new FIC

Martin Jullum

Norwegian Computing Center jullum@nr.no

May 9, 2016

- The FIC idea
- 2 The original FIC
- The new FIC
- Original vs. new FIC
- **5** Summary and concluding remarks

The general FIC idea

Classical model selection

- AIC, BIC, DIC,...
- Overall measuring information criterion

- What you want to learn from the data analysis should reflect your
- Assumes the purpose of the analysis is to estimate a specific focus
- Model selection problem \rightarrow Best estimator for μ

Original vs. new FIC

Classical model selection

- AIC. BIC. DIC....
- Overall measuring information criterion

Focused Information Criterion (FIC)

- What you want to learn from the data analysis should reflect your choice of model
- Assumes the purpose of the analysis is to estimate a specific focus parameter μ
- Model selection problem \rightarrow Best estimator for μ
- Performance measure: Risk of μ -estimator (typically MSE-type)
- The FIC score is an estimate of the this risk
- Models/estimators are ranked by their FIC scores

Original vs. new FIC

- Assume all candidate models are parametrically nested (i.i.d. data)
 - Wide model (θ : free, γ : free), density: $f(y; \theta, \gamma)$, focus: $\widehat{\mu}_{\text{wide}} = \mu(\widehat{\theta}_{\text{wide}}, \widehat{\gamma}_{\text{wide}})$
 - Narrow model (θ : free, γ : fixed = γ_0), density: $f(y; \theta, \gamma_0)$, focus: $\widehat{\mu}_{narr} = \mu(\widehat{\theta}_{narr}, \gamma_0)$
 - All other models assumed to lie between these, with different portions of the full γ parameter estimated/fixed
- Relies on a local misspecification framework:
- True value of μ is $\mu_{\text{true }n} = \mu(\theta_0, \gamma_0 + \delta/\sqrt{n})$
- Under this framework, for each submodel S:

$$\Lambda_{S,n} = \sqrt{n}(\widehat{\mu}_S - \mu_{\mathrm{true},n}) \to_d \Lambda_S \sim \mathrm{N}(\mathsf{bias}_S(\delta), \mathsf{var}_S(\delta))$$

The original FIC (I)

- Assume all candidate models are parametrically nested (i.i.d. data)
 - Wide model (θ : free, γ : free), density: $f(y; \theta, \gamma)$, focus: $\widehat{\mu}_{\text{wide}} = \mu(\widehat{\theta}_{\text{wide}}, \widehat{\gamma}_{\text{wide}})$
 - Narrow model (θ : free, γ : fixed = γ_0), density: $f(y; \theta, \gamma_0)$, focus: $\widehat{\mu}_{narr} = \mu(\widehat{\theta}_{narr}, \gamma_0)$
 - All other models assumed to lie between these, with different portions of the full γ parameter estimated/fixed
- Relies on a local misspecification framework: $g_n(y) = f(y; \theta_0, \gamma_0 + \delta/\sqrt{n})$
- True value of μ is $\mu_{\text{true }n} = \mu(\theta_0, \gamma_0 + \delta/\sqrt{n})$
- Under this framework, for each submodel S:

$$\Lambda_{S,n} = \sqrt{n}(\widehat{\mu}_S - \mu_{\mathrm{true},n}) \to_d \Lambda_S \sim \mathrm{N}(\mathsf{bias}_S(\delta), \mathsf{var}_S(\delta))$$

The original FIC

Original vs. new FIC

- Assume all candidate models are parametrically nested (i.i.d. data)
 - Wide model (θ : free, γ : free), density: $f(y; \theta, \gamma)$, focus: $\widehat{\mu}_{\text{wide}} = \mu(\widehat{\theta}_{\text{wide}}, \widehat{\gamma}_{\text{wide}})$
 - Narrow model (θ : free, γ : fixed = γ_0), density: $f(y; \theta, \gamma_0)$, focus: $\widehat{\mu}_{narr} = \mu(\widehat{\theta}_{narr}, \gamma_0)$
 - All other models assumed to lie between these, with different portions of the full γ parameter estimated/fixed
- Relies on a local misspecification framework: $g_n(y) = f(y; \theta_0, \gamma_0 + \delta/\sqrt{n})$
- True value of μ is $\mu_{\text{true }n} = \mu(\theta_0, \gamma_0 + \delta/\sqrt{n})$
- Under this framework, for each submodel S:

$$\Lambda_{S,n} = \sqrt{n}(\widehat{\mu}_S - \mu_{\mathrm{true},n}) \to_d \Lambda_S \sim \mathrm{N}(\mathsf{bias}_S(\delta),\mathsf{var}_S(\delta))$$

The original FIC (II)

Original vs. new FIC

• Risk: MSE of the limiting distribution of $\sqrt{n}(\widehat{\mu}_S - \mu_{\text{true},n})$ under the local misspecification framework, i.e. for submodel S:

$$\mathsf{risk}_S = \mathsf{mse}(\Lambda_S) = \mathsf{bias}_S^2(\delta) + \mathsf{var}_S(\delta)$$

$$\mathsf{FIC}_S = \widehat{\mathsf{risk}}_S = \mathsf{bias}_S^2(\delta) + \widehat{\mathsf{var}_S(\delta)}$$

- - I.i.d. and standard regression models
 - Variable selection for Cox's prop. haz. Aalen's lin. haz. regression (with
 - Parametric time series models
 - etc.

The original FIC (II)

Original vs. new FIC

• Risk: MSE of the limiting distribution of $\sqrt{n}(\widehat{\mu}_S - \mu_{\text{true},n})$ under the local misspecification framework, i.e. for submodel S:

$$\mathsf{risk}_S = \mathsf{mse}(\Lambda_S) = \mathsf{bias}_S^2(\delta) + \mathsf{var}_S(\delta)$$

Estimates the risk

$$\mathsf{FIC}_S = \widehat{\mathsf{risk}}_S = \widehat{\mathsf{bias}}_S^2(\delta) + \widehat{\mathsf{var}}_S(\delta)$$

- - I.i.d. and standard regression models
 - Variable selection for Cox's prop. haz. Aalen's lin. haz. regression (with
 - Parametric time series models
 - etc.

The original FIC (II)

Original vs. new FIC

• Risk: MSE of the limiting distribution of $\sqrt{n}(\hat{\mu}_S - \mu_{\text{true},n})$ under the local misspecification framework, i.e. for submodel S:

$$\mathsf{risk}_S = \mathsf{mse}(\Lambda_S) = \mathsf{bias}_S^2(\delta) + \mathsf{var}_S(\delta)$$

Estimates the risk

The original FIC

$$\mathsf{FIC}_S = \widehat{\mathsf{risk}}_S = \widehat{\mathsf{bias}}_S^2(\delta) + \widehat{\mathsf{var}_S(\delta)}$$

- Constructed for
 - I.i.d. and standard regression models
 - Variable selection for Cox's prop. haz. Aalen's lin. haz. regression (with censoring)
 - Parametric time series models
 - etc.

The FIC idea

- Local misspecification approach has been criticized
 - "Unrealistic theoretical framework"
 - "Not to yielding a valid environment for model selection"
 - Results cannot be trusted if the true model is far from the wide model
- The original FIC cannot compare:
 - non-nested parametric models
 - differently structured nonparametric and semiparametric type models

Motivated by the 'weaknesses' and critique of the original FIC

Properties of the new FIC

The FIC idea

- Able to select between differently structured models (parametric vs. semi-/nonparametric models)
- No need for parametric models to be nested or in any way related to each other
- Derived without relying on a local misspecification framework
- Carries with it an additional insurance mechanism against misspecification of (all) parametric models
- May be viewed as multiple focused hypothesis test of the adequacy of the parametric models, with a theoretically chosen significance level
- Carried out for:
 - Parametric vs. nonparametric for i.i.d. data
 - Semiparametric Cox regression vs. fully parametric proportional regression
 - Parametric vs. nonparametric dependency modelling for time series

- Motivated by the 'weaknesses' and critique of the original FIC
- Properties of the new FIC

The FIC idea

- Able to select between differently structured models (parametric vs. semi-/nonparametric models)
- No need for parametric models to be nested or in any way related to each other
- Derived without relying on a local misspecification framework
- Carries with it an additional insurance mechanism against misspecification of (all) parametric models
- May be viewed as multiple focused hypothesis test of the adequacy of the parametric models, with a theoretically chosen significance level
- Carried out for:
 - Parametric vs. nonparametric for i.i.d. data
 - Semiparametric Cox regression vs. fully parametric proportional regression
 - Parametric vs. nonparametric dependency modelling for time series

- Motivated by the 'weaknesses' and critique of the original FIC
- Properties of the new FIC

The FIC idea

- Able to select between differently structured models (parametric vs. semi-/nonparametric models)
- No need for parametric models to be nested or in any way related to each other
- Derived without relying on a local misspecification framework
- Carries with it an additional insurance mechanism against misspecification of (all) parametric models
- May be viewed as multiple focused hypothesis test of the adequacy of the parametric models, with a theoretically chosen significance level
- Carried out for:
 - Parametric vs. nonparametric for i.i.d. data
 - Semiparametric Cox regression vs. fully parametric proportional regression
 - Parametric vs. nonparametric dependency modelling for time series

The new FIC for i.i.d. data

- Assume data Y_1, \ldots, Y_n stems from some fixed unknown distribution G
- Focus parameter defined through a functional mapping $\mu = T(\cdot)$ with $\mu_{\rm true} = T(G)$
 - Typical focus parameters: Smooth functions of means and quantiles
- Estimate μ by plug-in estimation for each model S: $\widehat{\mu}_S = T(G_S)$
 - Nonparametric: $\widehat{\mu}_{np} = T(\widehat{G}_n)$ with \widehat{G}_n the empirical distribution
 - Parametrics (generic): $\widehat{\mu}_{pm} = T(F_{\widehat{\theta}})$ with $\widehat{\theta}$ the MLE
- Performance measure:

$$\operatorname{risk}_S = \operatorname{mse}(\widehat{\mu}_S) = \operatorname{E}\{(\widehat{\mu}_S - \mu_{\operatorname{true}})^2\} = \operatorname{bias}^2(\widehat{\mu}_S) + \operatorname{var}(\widehat{\mu}_S)$$

Approximate the risk by using asymptotic theory:

$$\operatorname{risk}_S = \widetilde{\operatorname{mse}}(\widehat{\mu}_S) = \operatorname{bias}^2(\widehat{\mu}_S) + \widetilde{\operatorname{var}}(\widehat{\mu}_S)$$

The FIC score estimates the approximated risk

$$\mathsf{FIC}_S = \widehat{\widetilde{\mathrm{mse}}}(\widehat{\mu}_S) = \widecheck{\mathrm{bias}}^2(\widehat{\mu}_S) + \widehat{\mathrm{var}}(\widehat{\mu}_S)$$

FIC with a nonparametric candidate, - a new strategy for FIC construction -

- Assume data Y_1, \ldots, Y_n stems from some fixed unknown distribution G
- Focus parameter defined through a functional mapping $\mu = T(\cdot)$ with $\mu_{\rm true} = T(G)$
 - Typical focus parameters: Smooth functions of means and quantiles
- Estimate μ by plug-in estimation for each model S: $\widehat{\mu}_S = T(\widehat{G}_S)$
 - Nonparametric: $\widehat{\mu}_{np} = T(\widehat{G}_n)$ with \widehat{G}_n the empirical distribution
 - Parametrics (generic): $\widehat{\mu}_{pm} = T(F_{\widehat{\theta}})$ with $\widehat{\theta}$ the MLE
- Performance measure:

$$\operatorname{risk}_S = \operatorname{mse}(\widehat{\mu}_S) = \operatorname{E}\left\{(\widehat{\mu}_S - \mu_{\operatorname{true}})^2\right\} = \operatorname{bias}^2(\widehat{\mu}_S) + \operatorname{var}(\widehat{\mu}_S)$$

Approximate the risk by using asymptotic theory:

$$\operatorname{risk}_S = \widetilde{\operatorname{mse}}(\widehat{\mu}_S) = \operatorname{bias}^2(\widehat{\mu}_S) + \widetilde{\operatorname{var}}(\widehat{\mu}_S)$$

The FIC score estimates the approximated risk

$$\mathsf{FIC}_S = \widehat{\widetilde{\mathrm{mse}}}(\widehat{\mu}_S) = \widecheck{\mathrm{bias}}^2(\widehat{\mu}_S) + \widehat{\mathrm{var}}(\widehat{\mu}_S)$$

The new FIC for i.i.d. data

- ullet Assume data Y_1,\ldots,Y_n stems from some fixed unknown distribution G
- Focus parameter defined through a functional mapping $\mu = T(\cdot)$ with $\mu_{\rm true} = T(G)$
 - Typical focus parameters: Smooth functions of means and quantiles
- Estimate μ by plug-in estimation for each model $S\colon \widehat{\mu}_S = T(\widehat{G}_S)$
 - Nonparametric: $\widehat{\mu}_{np} = T(\widehat{G}_n)$ with \widehat{G}_n the empirical distribution
 - Parametrics (generic): $\widehat{\mu}_{pm} = T(F_{\widehat{\theta}})$ with $\widehat{\theta}$ the MLE
- Performance measure:

$$\operatorname{risk}_S = \operatorname{mse}(\widehat{\mu}_S) = \operatorname{E}\left\{(\widehat{\mu}_S - \mu_{\operatorname{true}})^2\right\} = \operatorname{bias}^2(\widehat{\mu}_S) + \operatorname{var}(\widehat{\mu}_S)$$

Approximate the risk by using asymptotic theory:

$$\operatorname{risk}_S = \widetilde{\operatorname{mse}}(\widehat{\mu}_S) = \operatorname{bias}^2(\widehat{\mu}_S) + \widetilde{\operatorname{var}}(\widehat{\mu}_S)$$

• The FIC score estimates the approximated risk

$$FIC_S = \widehat{\widetilde{\mathrm{mse}}}(\widehat{\mu}_S) = \widecheck{\mathrm{bias}}^2(\widehat{\mu}_S) + \widehat{\mathrm{var}}(\widehat{\mu}_S)$$

- ullet Assume data Y_1,\ldots,Y_n stems from some fixed unknown distribution G
- Focus parameter defined through a functional mapping $\mu = T(\cdot)$ with $\mu_{\mathrm{true}} = T(G)$
 - Typical focus parameters: Smooth functions of means and quantiles
- Estimate μ by plug-in estimation for each model S: $\widehat{\mu}_S = T(\widehat{G}_S)$
 - Nonparametric: $\widehat{\mu}_{np} = T(\widehat{G}_n)$ with \widehat{G}_n the empirical distribution
 - Parametrics (generic): $\widehat{\mu}_{pm} = T(F_{\widehat{\theta}})$ with $\widehat{\theta}$ the MLE
- Performance measure:

$$\operatorname{risk}_S = \operatorname{mse}(\widehat{\mu}_S) = \operatorname{E}\left\{(\widehat{\mu}_S - \mu_{\operatorname{true}})^2\right\} = \operatorname{bias}^2(\widehat{\mu}_S) + \operatorname{var}(\widehat{\mu}_S)$$

Approximate the risk by using asymptotic theory:

$$\widetilde{\operatorname{risk}}_S = \widetilde{\operatorname{mse}}(\widehat{\mu}_S) = \operatorname{bias}^2(\widehat{\mu}_S) + \widetilde{\operatorname{var}}(\widehat{\mu}_S)$$

• The FIC score estimates the approximated risk

$$\mathsf{FIC}_S = \widehat{\widetilde{\mathrm{mse}}}(\widehat{\mu}_S) = \widehat{\widetilde{\mathrm{bias}}^2}(\widehat{\mu}_S) + \widehat{\widetilde{\mathrm{var}}(\widehat{\mu}_S)}$$

FIC construction: Derivation details (I)

The new FIC

• Let (generically) $\mu_{0,\mathrm{pm}} = T(F_{\theta_0})$ be the least false focus parameter value with θ_0 be the least false parameter value of θ

Under weak regularity conditions:

- Nonparametric: $\Psi_{\rm np,\it n} = \sqrt{n}(\widehat{\mu}_{\rm np} \mu_{\rm true}) \rightarrow_d \Psi_{\rm np} \sim N(0,v_{\rm np})$
- Parametric $\Psi_{\mathrm{pm},n} = \sqrt{n}(\widehat{\mu}_{\mathrm{pm}} \mu_{0,\mathrm{pm}}) \rightarrow_d \Psi_{\mathrm{pm}} \sim \mathrm{N}(0,v_{\mathrm{pm}})$

Nonparametric:
$$\operatorname{mse}(\widehat{\mu}_{np}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}v_{np}$$

where
$$b = \mu_{0,pm} - \mu_{true}$$

Summary and concluding remarks

FIC construction: Derivation details (I)

• Let (generically) $\mu_{0,\mathrm{pm}} = T(F_{\theta_0})$ be the least false focus parameter value with θ_0 be the least false parameter value of θ

Under weak regularity conditions:

- Nonparametric: $\Psi_{\rm np,n} = \sqrt{n}(\widehat{\mu}_{\rm np} \mu_{\rm true}) \rightarrow_d \Psi_{\rm np} \sim N(0, v_{\rm np})$
- Parametric $\Psi_{\mathrm{pm},n} = \sqrt{n}(\widehat{\mu}_{\mathrm{pm}} \mu_{0,\mathrm{pm}}) \rightarrow_d \Psi_{\mathrm{pm}} \sim \mathrm{N}(0,v_{\mathrm{pm}})$

Large sample approximate risks

Nonparametric: $\operatorname{mse}(\widehat{\mu}_{np}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}v_{np}$

Parametric:
$$\operatorname{mse}(\widehat{\mu}_{\mathrm{pm}}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{\mathrm{pm}}) = b^2 + \frac{1}{n}v_{\mathrm{pm}}$$

where $b = \mu_{0,pm} - \mu_{true}$

FIC construction: Derivation details (II)

The convergence in distribution also holds jointly:

$$\sqrt{n} \begin{pmatrix} \widehat{\mu}_{\rm np} - \mu_{\rm true} \\ \widehat{\mu}_{\rm pm} - \mu_{0,\rm pm} \end{pmatrix} \rightarrow_d \mathcal{N}_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{\rm np} & v_{\rm c} \\ v_{\rm c} & v_{\rm pm} \end{pmatrix} \end{pmatrix}$$

- $\Rightarrow \sqrt{n}(\widehat{b} b) \rightarrow_d \mathrm{N}(0, v_b)$, with $\widehat{b} = \widehat{\mu}_{\mathrm{pm}} \widehat{\mu}_{\mathrm{np}}$ and $v_b = v_{\mathrm{pm}} + v_{\mathrm{np}} 2v_c$
- $\bullet \ \Rightarrow \mathsf{E}\{(\widehat{b})^2\} = (\mathsf{E}\{\widehat{b}\})^2 + \mathsf{Var}(\widehat{b}) \approx b^2 + \frac{1}{n}v_b$

General estimates of risk components

- Squared parametric bias: b^2 estimated by $\max\{0, \hat{b}^2 \frac{1}{n} \hat{v}_b\}$
- ullet Variances: $v_{
 m np}$ estimated by $\widehat{v}_{
 m np}$, and $v_{
 m pm}$ estimated by $\widehat{v}_{
 m pm}$

FIC scores

Nonparametric:
$$FIC(\widehat{\mu}_{np}) = \widehat{mse}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}\widehat{v}_{np}$$

Parametric:
$$FIC(\widehat{\mu}_{pm}) = \widehat{mse}(\widehat{\mu}_{pm}) = \max\{0, (\widehat{b})^2 - \frac{1}{n}\widehat{v}_b\} + \frac{1}{n}\widehat{v}_{pm}$$

The convergence in distribution also holds jointly:

$$\sqrt{n} \begin{pmatrix} \widehat{\mu}_{\rm np} - \mu_{\rm true} \\ \widehat{\mu}_{\rm pm} - \mu_{0,\rm pm} \end{pmatrix} \rightarrow_d \mathcal{N}_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{\rm np} & v_{\rm c} \\ v_{\rm c} & v_{\rm pm} \end{pmatrix} \end{pmatrix}$$

- $\bullet \Rightarrow \sqrt{n}(\widehat{b}-b) \rightarrow_d N(0,v_b)$, with $\widehat{b} = \widehat{\mu}_{pm} \widehat{\mu}_{np}$ and $v_b = v_{\rm pm} + v_{\rm np} - 2v_c$
- $\bullet \Rightarrow \mathsf{E}\{(\widehat{b})^2\} = (\mathsf{E}\{\widehat{b}\})^2 + \mathsf{Var}(\widehat{b}) \approx b^2 + \frac{1}{n}v_b$

General estimates of risk components

- Squared parametric bias: b^2 estimated by $\max\{0, \hat{b}^2 \frac{1}{n}\hat{v}_b\}$
- Variances: $v_{\rm np}$ estimated by $\widehat{v}_{\rm np}$, and $v_{\rm pm}$ estimated by $\widehat{v}_{\rm pm}$

Nonparametric:
$$FIC(\widehat{\mu}_{np}) = \widehat{mse}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}\widehat{v}_{np}$$

Parametric:
$$FIC(\widehat{\mu}_{pm}) = \widehat{mse}(\widehat{\mu}_{pm}) = \max\{0, (\widehat{b})^2 - \frac{1}{n}\widehat{v}_b\} + \frac{1}{n}\widehat{v}_{pm}$$

FIC construction: Derivation details (II)

The convergence in distribution also holds jointly:

$$\sqrt{n} \begin{pmatrix} \widehat{\mu}_{\rm np} - \mu_{\rm true} \\ \widehat{\mu}_{\rm pm} - \mu_{0,\rm pm} \end{pmatrix} \rightarrow_d \mathcal{N}_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{\rm np} & v_{\rm c} \\ v_{\rm c} & v_{\rm pm} \end{pmatrix} \end{pmatrix}$$

- $\Rightarrow \sqrt{n}(\widehat{b} b) \rightarrow_d N(0, v_b)$, with $\widehat{b} = \widehat{\mu}_{pm} \widehat{\mu}_{np}$ and $v_b = v_{pm} + v_{np} 2v_c$
- $\bullet \ \Rightarrow \mathsf{E}\{(\widehat{b})^2\} = (\mathsf{E}\{\widehat{b}\})^2 + \mathsf{Var}(\widehat{b}) \approx b^2 + \frac{1}{n}v_b$

General estimates of risk components

- Squared parametric bias: b^2 estimated by $\max\{0, \hat{b}^2 \frac{1}{n} \widehat{v}_b\}$
- \bullet Variances: $v_{\rm np}$ estimated by $\widehat{v}_{\rm np}$, and $v_{\rm pm}$ estimated by $\widehat{v}_{\rm pm}$

FIC scores

Nonparametric: $FIC(\widehat{\mu}_{np}) = \widehat{mse}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}\widehat{v}_{np}$

Parametric: $FIC(\widehat{\mu}_{pm}) = \widehat{mse}(\widehat{\mu}_{pm}) = \max\{0, (\widehat{b})^2 - \frac{1}{n}\widehat{v}_b\} + \frac{1}{n}\widehat{v}_{pm}$

Average/weighted FIC

(The new FIC)

- Generalisation of FIC, allowing selection with a (weighted) set of focus parameters (as for the original FIC)
- Performance measure:

$$\operatorname{risk} = \int \operatorname{mse}(\widehat{\mu}_S(t)) \, \mathrm{d}W(t) = \int \operatorname{E}\left[\left\{\widehat{\mu}_S(t) - \mu_{\mathsf{true}}(t)\right\}^2\right] \, \mathrm{d}W(t)$$

Average FIC (AFIC) score:

$$\mathsf{AFIC}_S = \int \widehat{\mathrm{mse}}(\widehat{\mu}_S(t)) \, \mathsf{d}W(t) = \int \mathrm{FIC}(\widehat{\mu}_S(t)) \, \mathsf{d}W(t)$$

The FIC idea

FIC/AFIC asymptotics

Consider one of the parametric model $S: F_{\theta}$ with least false model specification F_{θ_0} and least false focus parameter value $\mu_{0,pm}$:

- If S is biased $(\mu_{\text{true}} \neq \mu_{0,\text{pm}})$
 - $Pr(FIC/AFIC \text{ selects } S) \rightarrow 0$
- If S is fully correct $(G = F_{\theta_0})$
 - Pr (FIC selects S over nonparametric) $\rightarrow \chi_1^2(2) \approx 0.843$
 - No general results for AFIC (depends on μ and weight W)
 - AFIC for parametric with focus on all $\mu(y) = G(y)$ and $W = F_{\theta \alpha}$
 - Re-invents the Cramér-von Mises goodness-of-fit test, with a threshold
- - Insurance mechanism against parametric misspecification

FIC/AFIC asymptotics

Consider one of the parametric model $S: F_{\theta}$ with least false model specification F_{θ_0} and least false focus parameter value $\mu_{0,pm}$:

- If S is biased $(\mu_{\text{true}} \neq \mu_{0,\text{pm}})$
 - $\Pr(\mathsf{FIC}/\mathsf{AFIC} \; \mathsf{selects} \; S) \to 0$
- If S is fully correct $(G = F_{\theta_0})$
 - Pr (FIC selects S over nonparametric) $\rightarrow \chi_1^2(2) \approx 0.843$
 - No general results for AFIC (depends on μ and weight W)
 - AFIC for parametric with focus on all $\mu(y) = G(y)$ and $W = F_{\theta_0}$
 - Re-invents the Cramér-von Mises goodness-of-fit test, with a threshold value found by the theory itself
- - Insurance mechanism against parametric misspecification

The new FIC

FIC/AFIC asymptotics

Consider one of the parametric model $S: F_{\theta}$ with least false model specification F_{θ_0} and least false focus parameter value $\mu_{0,pm}$:

- If S is biased $(\mu_{\text{true}} \neq \mu_{0,\text{pm}})$
 - $Pr(FIC/AFIC \text{ selects } S) \rightarrow 0$
- If S is fully correct $(G = F_{\theta_0})$
 - Pr (FIC selects S over nonparametric) $\rightarrow \chi_1^2(2) \approx 0.843$
 - No general results for AFIC (depends on μ and weight W)
 - AFIC for parametric with focus on all $\mu(y) = G(y)$ and $W = F_{\theta_0}$
 - Re-invents the Cramér-von Mises goodness-of-fit test, with a threshold value found by the theory itself

⇒ If all parametric candidate models are biased: $Pr(FIC/AFIC \text{ selects nonparametric}) \rightarrow 1$

• Insurance mechanism against parametric misspecification

Other data types (I)

Censoring

- Semiparametric Cox regression vs. fully parametric proportional hazard regression models
 - $G = (A(\cdot), \beta)$ corresponding to the hazard rate function: $\alpha(s) \exp(x^t \beta)$, with α unspecified baseline hazard and A its cumulative
 - Semiparametric Cox regression: $\widehat{\beta}_{cox}$ via Cox's partial likelihood, $\widehat{A}_{cox}(\cdot) =$ Breslow estimator
 - Parametric estimation: Joint ML estimation of θ, β , with a parametric hazard rate function α_{θ} (exponential, Weibull, Gompertz, ...)
 - Typical focus parameters: Survival probabilities, quantiles and cumulative hazards, conditional on covariate values
- Without covariates: Nelson–Aalen or Kaplan–Meier estimators vs. parametric survival models

The FIC idea

Dependency modelling in stationary Gaussian time series models

- G = Unknown spectral measure/distribution
- Nonparametric estimation: Integrated periodogram $\widehat{G}_n(\omega) = \int_{-\pi}^{\omega} I_n(u) du$ for I_n the periodogram
- Parametric estimation: Typically ARMA-models, but also more general parametric models for the spectral distribution
- Typical focus parameters: Differences in spectral distribution, covariance lags and correlation lags

- Density estimation for i.i.d. data
- Standard regression

The FIC idea

Other data types (II)

Dependency modelling in stationary Gaussian time series models

- G = Unknown spectral measure/distribution
- Nonparametric estimation: Integrated periodogram $\widehat{G}_n(\omega) = \int_{-\pi}^{\omega} I_n(u) du$ for I_n the periodogram
- Parametric estimation: Typically ARMA-models, but also more general parametric models for the spectral distribution
- Typical focus parameters: Differences in spectral distribution, covariance lags and correlation lags

Slightly different strategies

- Density estimation for i.i.d. data
- Standard regression

Original vs. new FIC scores

Original vs. new FIC

- Assume for comparison that all parametric models are nested between a wide (θ, γ) both free) and narrow (θ) free, γ fixed) model
- Original FIC scores:

$$\begin{split} \mathsf{IC}_{\text{wide,orig}} &= \widehat{v}_{\text{wide}} \\ &\mathsf{FIC}_{S,\text{orig}} &= \max\{0, \widehat{Z}_S^2 - (\widehat{v}_{\text{wide}} - \widehat{v}_S)\} + \widehat{v}_S \end{split}$$

ullet Z_S is the natural estimator of the bias of

$$\begin{split} &\Lambda_S \stackrel{d}{=} \lim_{n \to \infty} \sqrt{n} (\widehat{\mu}_S - \mu_{\text{true},n}) \\ &(\widehat{Z}_S = \widehat{\omega}^{\text{t}} (I_q - \widehat{G}_S) D_n \text{ in C&H (2008) notation)} \end{split}$$

• New FIC scores (scaled by n to ease comparison):

$$FIC_{np,new} = \widehat{v}_{np}$$

$$\begin{aligned} \mathsf{FIC}_{\mathsf{wide},\mathsf{new}} &= \max\{0, (\sqrt{n}\widehat{b}_{\mathsf{wide}})^2 - (\widehat{v}_{\mathsf{np}} + \widehat{v}_{\mathsf{wide},\mathsf{new}} - 2\widehat{v}_{c,\mathsf{wide}})\} + \widehat{v}_{\mathsf{wide},\mathsf{new}} \\ \mathsf{FIC}_{S,\mathsf{new}} &= \max\{0, (\sqrt{n}\widehat{b}_{S})^2 - (\widehat{v}_{\mathsf{np}} + \widehat{v}_{S,\mathsf{new}} - 2\widehat{v}_{c,\mathsf{S}})\} + \widehat{v}_{S,\mathsf{new}} \end{aligned}$$

Original vs. new FIC scores

- Assume for comparison that all parametric models are nested between a wide (θ, γ) both free) and narrow (θ) free, γ fixed) model
- Original FIC scores:

$$\begin{split} \text{FIC}_{\text{wide,orig}} &= \widehat{v}_{\text{wide}} \\ &\text{FIC}_{S,\text{orig}} &= \max\{0, \widehat{Z}_S^2 - (\widehat{v}_{\text{wide}} - \widehat{v}_S)\} + \widehat{v}_S \end{split}$$

ullet \widehat{Z}_S is the natural estimator of the bias of

$$\begin{split} &\Lambda_S \stackrel{d}{=} \lim_{n \to \infty} \sqrt{n} (\widehat{\mu}_S - \mu_{\text{true},n}) \\ &(\widehat{Z}_S = \widehat{\omega}^{\text{t}} (I_q - \widehat{G}_S) D_n \text{ in C&H (2008) notation)} \end{split}$$

• New FIC scores (scaled by n to ease comparison):

$$\mathsf{FIC}_{\mathrm{np,new}} = \widehat{v}_{\mathrm{np}}$$

$$\begin{aligned} & \mathsf{FIC}_{\mathsf{wide},\mathsf{new}} = \max\{0, (\sqrt{n}\widehat{b}_{\mathsf{wide}})^2 - (\widehat{v}_{\mathsf{np}} + \widehat{v}_{\mathsf{wide},\mathsf{new}} - 2\widehat{v}_{c,\mathsf{wide}})\} + \widehat{v}_{\mathsf{wide},\mathsf{new}} \\ & \mathsf{FIC}_{S,\mathsf{new}} = \max\{0, (\sqrt{n}\widehat{b}_S)^2 - (\widehat{v}_{\mathsf{np}} + \widehat{v}_{S,\mathsf{new}} - 2\widehat{v}_{c,S})\} + \widehat{v}_{S,\mathsf{new}} \end{aligned}$$

Original vs. new FIC scores

- Assume for comparison that all parametric models are nested between a wide (θ, γ) both free) and narrow (θ) free, γ fixed) model
- Original FIC scores:

$$\begin{split} \mathsf{FIC}_{\text{wide},\mathsf{orig}} &= \widehat{v}_{\mathsf{wide}} \\ &\mathsf{FIC}_{S,\mathsf{orig}} &= \max\{0, \widehat{Z}_S^2 - (\widehat{v}_{\mathsf{wide}} - \widehat{v}_S)\} + \widehat{v}_S \end{split}$$

ullet \widehat{Z}_S is the natural estimator of the bias of

$$\begin{split} &\Lambda_S \stackrel{d}{=} \lim_{n \to \infty} \sqrt{n} (\widehat{\mu}_S - \mu_{\text{true},n}) \\ &(\widehat{Z}_S = \widehat{\omega}^{\text{t}} (I_q - \widehat{G}_S) D_n \text{ in C&H (2008) notation)} \end{split}$$

• New FIC scores (scaled by n to ease comparison):

$$\begin{split} & \mathsf{FIC}_{\mathrm{np,new}} = \widehat{v}_{\mathrm{np}} \\ & \mathsf{FIC}_{\mathsf{wide,new}} = \max\{0, (\sqrt{n}\widehat{b}_{\mathsf{wide}})^2 - (\widehat{v}_{\mathrm{np}} + \widehat{v}_{\mathsf{wide,new}} - 2\widehat{v}_{c,\mathsf{wide}})\} + \widehat{v}_{\mathsf{wide,new}} \\ & \mathsf{FIC}_{S.\mathsf{new}} = \max\{0, (\sqrt{n}\widehat{b}_S)^2 - (\widehat{v}_{\mathrm{np}} + \widehat{v}_{S.\mathsf{new}} - 2\widehat{v}_{c,S})\} + \widehat{v}_{S.\mathsf{new}} \end{split}$$

Original vs. new FIC

$$\begin{split} & \operatorname{FIC}_{\operatorname{wide,orig}} \overset{d}{\to} \operatorname{FIC}_{\operatorname{wide,orig}}^{\lim} = v_{\operatorname{wide}}, \\ & \operatorname{FIC}_{S,\operatorname{orig}} \overset{d}{\to} \operatorname{FIC}_{S,\operatorname{orig}}^{\lim} = \max\{0, Z_S^2 - (v_{\operatorname{wide}} - v_S)\} + v_S \end{split}$$

• $Z_S = \lim_{n \to \infty} \widehat{Z}_S$ (= $\omega^{\rm t}(I_q - G_S)D$ in C&H (2008) notation)

$$FIC_{np,new} \stackrel{d}{\to} FIC_{np,new}^{lim} = v_{np},$$

$$FIC_{wide,new} \stackrel{d}{\to} FIC_{wide,new}^{lim} = \max\{0, Z_0^2 - (v_{np} - v_{wide})\} + v_{wide}$$

$$FIC_{S,new} \stackrel{d}{\to} FIC_{S,new}^{lim} = \max\{0, (Z_S - Z_0)^2 - (v_{np} - v_S)\} + v_{wide}^{lim}$$

- $Z_0 \stackrel{d}{=} \lim_{n \to \infty} \sqrt{n} (\widehat{\mu}_{np} \widehat{\mu}_{wide})$, is zero-mean normal and stochastically
- New FIC has an additional uncertainty level (Z_0) , uses nonparametric
- Original and new FIC asymptotically equivalent when $v_{\rm np} = v_{\rm wide}$

Original vs. new FIC

Limit of original FIC scores

$$FIC_{\text{wide,orig}} \stackrel{d}{\to} FIC_{\text{wide,orig}}^{\text{lim}} = v_{\text{wide}},$$

$$FIC_{S,\text{orig}} \stackrel{d}{\to} FIC_{S,\text{orig}}^{\text{lim}} = \max\{0, Z_S^2 - (v_{\text{wide}} - v_S)\} + v_S$$

• $Z_S = \lim_{n \to \infty} \widehat{Z}_S$ $(= \omega^t (I_q - G_S)D$ in C&H (2008) notation)

Limit of new FIC scores

$$\begin{aligned} & \operatorname{FIC}_{\mathrm{np,new}} \overset{d}{\to} \operatorname{FIC}_{\mathrm{np,new}}^{\lim} = v_{\mathrm{np}}, \\ & \operatorname{FIC}_{\mathrm{wide,new}} \overset{d}{\to} \operatorname{FIC}_{\mathrm{wide,new}}^{\lim} = \max\{0, Z_0^2 - (v_{\mathrm{np}} - v_{\mathrm{wide}})\} + v_{\mathrm{wide}}, \\ & \operatorname{FIC}_{S,\mathrm{new}} \overset{d}{\to} \operatorname{FIC}_{S,\mathrm{new}}^{\lim} = \max\{0, (Z_S - Z_0)^2 - (v_{\mathrm{np}} - v_S)\} + v_S \end{aligned}$$

- $Z_0 \stackrel{d}{=} \lim_{n \to \infty} \sqrt{n} (\widehat{\mu}_{np} \widehat{\mu}_{wide})$, is zero-mean normal and stochastically independent of all Z_S
- New FIC has an additional uncertainty level (Z_0) , uses nonparametric
- Original and new FIC asymptotically equivalent when $v_{\rm np} = v_{\rm wide}$

Asymptotic comp. under local misspecification Limit of original FIC scores

$$\begin{split} & \operatorname{FIC}_{\operatorname{wide,orig}} \stackrel{d}{\to} \operatorname{FIC}_{\operatorname{wide,orig}}^{\lim} = v_{\operatorname{wide}}, \\ & \operatorname{FIC}_{S,\operatorname{orig}} \stackrel{d}{\to} \operatorname{FIC}_{S,\operatorname{orig}}^{\lim} = \max\{0, Z_S^2 - (v_{\operatorname{wide}} - v_S)\} + v_S \end{split}$$

• $Z_S = \lim_{n \to \infty} \widehat{Z}_S$ $(= \omega^{\mathrm{t}} (I_q - G_S) D$ in C&H (2008) notation)

Limit of new FIC scores

$$\begin{aligned} & \operatorname{FIC}_{\mathrm{np,new}} \overset{d}{\to} \operatorname{FIC}_{\mathrm{np,new}}^{\lim} = v_{\mathrm{np}}, \\ & \operatorname{FIC}_{\mathrm{wide,new}} \overset{d}{\to} \operatorname{FIC}_{\mathrm{wide,new}}^{\lim} = \max\{0, Z_0^2 - (v_{\mathrm{np}} - v_{\mathrm{wide}})\} + v_{\mathrm{wide}}, \\ & \operatorname{FIC}_{S,\mathrm{new}} \overset{d}{\to} \operatorname{FIC}_{S,\mathrm{new}}^{\lim} = \max\{0, (Z_S - Z_0)^2 - (v_{\mathrm{np}} - v_S)\} + v_S \end{aligned}$$

- $Z_0 \stackrel{d}{=} \lim_{n \to \infty} \sqrt{n} (\widehat{\mu}_{np} \widehat{\mu}_{wide})$, is zero-mean normal and stochastically independent of all Z_S
- New FIC has an additional uncertainty level (Z_0) , uses nonparametric (model robust) estimates instead of wide model variances
- \bullet Original and new FIC asymptotically equivalent when $v_{\rm np} = v_{\rm wide}$

- New FIC construction strategy attempting to avoid 'weaknesses' of the original approach
 - Do not rely on local asymptotics
 - Able to handle non-nested parametric models
 - Allow comparison of parametrics and semi-/nonparametrics
- May be viewed as model robust version of the original FIC
- Carries with it an insurance mechanism against parametric misspecification
- Developed for a wide range of data types where few alternative model selection procedures are available
- Simulation experiments indicate performance better than AIC/BIC for moderate to large n
- Model averaging scheme also developed
- Possibly more difficult to generalize than the original FIC