

Fully automated solution for Cervical Vertebral Maturation (CVM) assessment by deep learning approaches

THANH Nguyen Huy, HUONG Pham Thi Thanh, TUAN Nguyen Anh

Introduction

Deep learning approaches have recently used in many studies of CVM (the cervical vertebral maturation) degree classification. Although, some studies showed high precise results, the features that the models learned are difficult to clinically explain. Therefore, it needs to do a lot of effort in improving the model accuracy.

In this study, we developed a fully automated deep learning solution of CVM classification procedure that consistently follow to CVM assessment clinical research.

Aim of the study

This study aimed to establish and evaluate a new AI method for determining classification cervical vertebral maturation (CVM) by analyzing lateral cephalometric radiographs based on clinical research.

Materials and methods

Results

Fig. 6: Output results of Cephalometric landmark detection model

Fig. 7: Average accuracy 99.42%

CVM classification model – Accuracy 92.3%

Fig. 8: Final results of our proposed solution

Fig. 9: Normalized confusion matrix

Conclusion

- We created a fully automated AI solution with clinical acceptant accuracy.
- Thanks to the CVM classification system-based solution (*), our model can use various clinical features to improve classification accuracy instead of the regular deep learning technique.

Contact information

Contact author: Thanh, Nguyen Huy Vietnamese Orthodontic Research Group Email: thanhhn@medbrainlab.com

(*) McNamara, James A., and Lorenzo Franchi. "The Cervical Vertebral Maturation Method: A User's Guide." The Angle Orthodontist 88, no. 2 (March 1, 2018): 133–43. https://doi.org/10.2319/111517-787.1.