5.1 Uniform Convergence

Prove a function converges pointwise

Consider the function
$$f_k[0,1] \to \mathbb{R}$$
, $f_k = \begin{cases} 0, x \in \left[\frac{1}{k}, 1\right] \\ -kx + 1, x \in \left[0, \frac{1}{k}\right] \end{cases}$

Show that the function converges to f = 0.

Proof.

Fix $x \in [0,1]$, then by Archimedean principle, $\exists K$ such that $\frac{1}{K} < x$. Therefore, $\forall k > K, f_k(x) = 0 = f$. Therefore, $f_k \to f$ pointwise.

However, f_k does not converge to f uniformly.

Fix $\varepsilon_0 = \frac{1}{3}$. We can easily show that by fixing $x = \frac{1}{2k}$ thus $x < \frac{1}{k}$. We have $f_k(x) = \frac{1}{2}$ and f(x) = 0. Therefore, $|f_k(x) - f(x)| > \varepsilon_0$.

QED

Uniform Convergence Preserves Continuity

Statement: Let $f_k(x): A \to N$ be a sequence of continuous function and let $f_k(x) \to f(x)$ uniformly. Prove that f is continuous on A.

Proof.

Fix f_k and $x \in A$. We know that f_k is continuous. Therefore, fixing $\varepsilon > 0, \exists \delta$. Fixing $y \in D(x, \delta)$, we have $\rho(f(x), f(y)) < \varepsilon/3$.

Also from uniform convergence, with the fixed $\varepsilon > 0$, $\exists K$ such that $\forall k > K$, $\rho(f_k(x) - f(x)) < \varepsilon/3 \ \forall x$. We have the following triangular inequality

$$\rho(f(y), f(x)) \leq \rho(f_k(y), f(x)) + \rho(f(y), f_k(x)) + \underbrace{\rho(f_k(y), f_k(x))}_{\text{Bounded by uniform convergence}} + \underbrace{\rho(f_k(y), f_k(x))}_{\text{Bounded by continuity}}$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3$$

$$< \varepsilon$$

Therefore, f is continuous.

QED

5.2 Cauchy Criterion

Uniformly Cauchy ⇔ Uniform Convergence

Statement: Let $(N\rho)$ be a complete GMS, $f_k:A\to N$. Then $f_k\to f$ uniformly on A iff f_k is uniformly Cauchy, i.e. $\forall \varepsilon>0, \exists L$ such that $\forall j,k>L, \rho(f_j(x),f_k(x))<\varepsilon \ \forall x\in A.$

 \Leftarrow

This direction is rather trivial.

Proof.

Suppose that f_k uniformly converges to f, then $\forall \varepsilon, \exists K$ such that $\forall j, k > K$,

$$\rho(f_k, f) < \varepsilon/2$$

$$\rho(f_j, f) < \varepsilon/2$$

Therefore,

$$\rho(f_k, f_j) \le \rho(f_k, f) + \rho(f_j, f)$$

$$< \varepsilon/2 + \varepsilon/2$$

$$< \varepsilon$$

Therefore, f_k uniformly Cauchy.

QED

 \Rightarrow

Proof.

Step 1: Show the existence of point-wise limit

Fix $\tilde{x} \in A$, $\{f_n(\tilde{x})\}$ is a sequence in N. Since f_n uniformly Cauchy, $\{f(\tilde{x})\}$ is a Cauchy sequence in N. Assuming N is complete, $\exists f(\tilde{x}) \in N$ such that $\{f(\tilde{x})\} \to f(\tilde{x})$.

Step 2: Show $f_n(x) \to f(x)$

From uniformly Cauchy, I know that $\forall \varepsilon > 0, \exists L \text{ such that } \forall i, j > L,$

$$\rho(f_i(x), f_j(x)) < \varepsilon/2$$

Since $\forall x \in A, f_j(x) \to f(x), \exists L_x$, in particular, picking $L_x \geq L$, such that $\forall j > L_x, \rho(f_j(x), f(x)) > \varepsilon/2$. Therefore,

$$\rho(f_n, f(x)) \leq \underbrace{\rho(f_n, f_{L_x}(x))}_{\text{From Uniformly Cauchy}} + \underbrace{\rho(f_{L_x}(x), f(x))}_{\text{From pointwise limit}}$$

$$< \varepsilon/2 + \varepsilon/2$$

$$< \varepsilon$$

Therefore, $f_n \to f$ uniformly.

QED

5.3 Integration and Differentiation with Uniform Convergence

Uniform Convergence preserves Integrability

Statement: Suppose that $f_n : [a, b] \to \mathbb{R}$ be integrable, $f_n \to f$ uniformly on [a, b]. Then f is integrable and

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$$

or

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx$$

Proof.

Show that f is integrable

We know that $f_n \to f$ uniformly. By definition, $\forall \varepsilon > 0$, $\exists N$ such that $\forall n > N$, $|f_n - f| < \varepsilon \forall x$.

Therefore, fixing any k > K, for any particular sub-interval, if α is an upper bound for the set $\{f_k(x)|x \in [x_j,x_{j+1}]\}$. Then $\alpha + \varepsilon$ should be an upper bound for $\{f(x)|x \in [x_j,x_{j+1}]\}$. This applies to the least upper bound for any partition P and for any k > K:

$$\sup\{f(x)|x \in [x_j, x_{j+1}]\} \le \{f_k(x)|x \in [x_j, x_{j+1}]\} + \varepsilon$$

$$U(f, P) \le U(f_k, P) + \varepsilon(b - a)$$

$$\inf_P\{U(f, P)\} \le \inf_P\{U(f_k, P) + \varepsilon(b - a)\}$$

$$\overline{\int}_a^b f(x)dx \le \overline{\int}_a^b f_k(x)dx + \varepsilon(b - a)$$

$$\overline{\int}_a^b f(x)dx \le \int_a^b f_k(x)dx + \varepsilon(b - a)$$

By similar idea,

$$L(f,P) \ge U(f_k,P) - \varepsilon(b-a)$$

$$\sup_{P} \{L(f,P)\} \ge \sup_{P} \{(f_k,P) - \varepsilon(b-a)\}$$

$$\underbrace{\int_{a}^{b} f(x)dx}_{p} \ge \underbrace{\int_{a}^{b} f_k(x)dx}_{p} - \varepsilon(b-a)$$

$$\underbrace{\int_{a}^{b} f(x)dx}_{p} \ge \underbrace{\int_{a}^{b} f_k(x)dx}_{p} - \varepsilon(b-a)$$

Therefore,

$$\left| \overline{\int}_{a}^{b} f(x) dx - \underline{\int}_{a}^{b} f(x) dx \right| \leq 2\varepsilon (b - a)$$

$$\lim_{\varepsilon \to 0} \left| \overline{\int}_{a}^{b} f(x) dx - \underline{\int}_{a}^{b} f(x) dx \right| \leq \lim_{\varepsilon \to 0} 2\varepsilon (b - a)$$

 $\int_{a}^{b} f(x)dx$ and $\int_{a}^{b} f(x)dx$ are squeezed by $\varepsilon(b-a)$,

$$\lim_{\varepsilon \to 0} \underline{\int_{a}^{b}} f(x) dx = \lim_{\varepsilon \to 0} \overline{\int_{a}^{b}} f(x) dx$$

Therefore, f is integrable.

Step 2: Show that: $\int_a^b f(x)dx = \lim_{k\to\infty} \int_a^b f_k(x)dx$

All f_k are integrable on compact domain implies that $\exists M$ such that

$$\left| \int_{a}^{b} f(x) dx \right| \le M(b-a)$$

Since f_k converges to f uniformly, given $\varepsilon > 0$, choose N such that $\forall k \geq N$ implies $|f_k(x) - f(x)| < \varepsilon/(b-a)$. Then

$$\left| \int_{a}^{b} f_{k}(x)dx - \int_{a}^{b} f(x)dx \right| = \left| \int_{a}^{b} f_{k}(x) - f(x)dx \right|$$
$$< \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon$$

Therefore, $\int_a^b f(x)dx = \lim_{k\to\infty} \int_a^b f_k(x)dx$

Eventually, I conclude that uniform convergence preserves integrability.

QED

Corollary 5.3.2

Statement: Suppose that $g_k : [a, b] \to \mathbb{R}$ are Riemann integrable an $d\sum_{k=1}^{\infty} g_k$ converges uniformly on [a, b]. Then,

$$\int_{a}^{b} \left(\sum_{k=1}^{\infty} g_k(x) \right) dx = \sum_{k=1}^{\infty} \left(\int_{a}^{b} g_k(x) dx \right)$$

Let $f_n = \sum_{k=1}^n g_k$, then $f_n \to f = \sum_{k=1}^\infty g_k$ uniformly. By 5.3.1, $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Uniform Convergence preserves Differentiability

Statement: Let $f_n:[a,b]\to\mathbb{R}$ be differentiable, converging pointwise to $f:[a,b]\to\mathbb{R}$. Consider the sequence $\{f'_n(x)\}$, if it is

- 1. Continuous
- 2. Uniformly convergence to some function g

Then,

$$\lim_{n \to \infty} \frac{d}{dx} f_n(x) = \frac{d}{dx} \lim_{n \to \infty} f_n(x)$$
$$g(x) = f'(x)$$

Proof.

Since f'_n continuous, by Fundamental Theorem of Calculus, for some $x_0 \in [a, b]$,

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t)dt$$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x_0) + \lim_{n \to \infty} \int_{x_0}^x f'_n(t)dt$$

$$f(x) = f(x_0) + \lim_{n \to \infty} \int_{x_0}^x f'_n(t)dt$$

$$= f(x_0) + \int_{x_0}^x \lim_{n \to \infty} f'_n(t)dt \quad \text{By 5.3.1}$$

$$= f(x_0) + \int_{x_0}^x g(t)dt$$

$$\frac{d}{dx}f(x) = \frac{d}{dx}\left(f(x_0) + \int_{x_0}^x g(t)dt\right)$$

$$f'(x) = 0 + g(x)$$

QED

5.5 Space of Continuous Functions

Convergence in functional space and Uniform Convergence

Suppose that $f: A \to N$. Define $||f||_{\mathcal{C}_b} = \sup\{||f(x)||_N | x \in A\}$.

Statement: $f_k \to f$ in C_b iff $f_k(x) \to f(x)$ uniformly.

Proof.

 \Rightarrow

Suppose that $f_k \to f \in \mathcal{C}_b$. Fix any $x \in A$,

$$||f_k(x) - f(x)||_N = ||(f_k - f)(x)||_N$$

 $\leq ||f_k - f||_{\mathcal{C}_h}$ As LUB

Since $||f_k - f||_{\mathcal{C}_b}$ converges to 0, then $||f_k(x) - f(x)||_N$ converges.

 \Leftarrow If fixing ε and $||f_k(x) - f(x)|| < \varepsilon$, then taking the supremum of both sides,

$$\sup\{\|f_k(x) - f(x)\|_N | x \in A\} < \sup\{\varepsilon | x \in A\}$$
$$\|f_k - f\|_{\mathcal{C}_b} < \varepsilon$$

Therefore, $f_k \to f$ in C_b .

QED

Defining Functional Metrics

Suppose that $(M,d),(N,\rho)$ are both metric spaces, $A\subset M$. Suppose that $f,g:A\to N$. Defining the functional metrics $d_{\mathcal{C}_b}(f,g)=\sup\{\rho(f(x),g(x))_N|x\in A\}$.

Statement: $(C_b(A, N), d_{C_b})$ is a well-defined metric space. **Proof.**

Positive Definite

This is trivial as ρ is a well-defined distance that is positive definite. All $\rho(f(x), g(x))_N \geq 0$. Therefore, the supremum has to be greater than equal to 0. Also, for $d_{\mathcal{C}_b}(f,g) = 0$. By definition, $\sup\{\rho(f(x), g(x))_N | x \in A\} = 0$, that is, $\rho(f(x), g(x))_N = 0 \forall x \in A$. This is equivalent as saying f = g. Therefore, $d_{\mathcal{C}_b}(f, g)$ is positive definite.

Interchangeable

This is also trivial as $\rho(f(x), g(x)) = \rho(g(x), f(x))$.

Triangular inequality

Suppose that $f, g, h \in C_b$

$$d_{\mathcal{C}_b}(f,g) = \sup\{\rho(f(x),g(x))_N | x \in A\}$$

Since

$$\rho(f(x), g(x))_N \le \rho(f(x), h(x))_N + \rho(h(x), g(x))_N$$

$$\sup \{ \rho(f(x), g(x))_N | x \in A \} \le \sup \{ \rho(f(x), h(x))_N + \rho(h(x), g(x))_N | x \in A \}$$

Also,

$$\sup\{\rho(f(x), h(x))_N + \rho(h(x), g(x))_N | x \in A\} \le \sup\{\rho(f(x), h(x))_N | x \in A\} + \sup\{\rho(g(x), h(x))_N | x \in A\}$$

Therefore,

$$\sup\{\rho(f(x), g(x))_N | x \in A\} \le \sup\{\rho(f(x), h(x))_N | x \in A\} + \sup\{\rho(g(x), h(x))_N | x \in A\}$$
$$d_{\mathcal{C}_h}(f, g) \le d_{\mathcal{C}_h}(f, h) + d_{\mathcal{C}_h}(h, g)$$

QED

Remark: Same with Norm, i.e. if N is a normed space, then so is $C_b(A, N)$

Completeness of $C_b(A, N)$

Statement: If N is complete, then $C_b(A, N)$ is complete.

Use Cauchy Convergence

Proof.

Suppose that $\{f_k\} \in \mathcal{C}_b$ to be a Cauchy sequence. Then $\forall \varepsilon, \exists K$ such that $\forall i, j > K$,

$$||f_i - f_j||_{\mathcal{C}_b} < \varepsilon$$

$$||f_i(x) - f_j(x)||_N < \varepsilon \quad \forall x \in A$$

Therefore, $\{f_k\}$ is uniformly Cauchy in N. Since N is complete, this implies that f_k uniformly converges to some f. Since uniform convergence preserves continuity, then f is continuous.

Next, I need to show that f is bounded, fixing any $x \in A$, I have the following inequality:

$$||f(x)||_N \le ||f_k(x) - f(x) + f_k(x)||_N$$

$$||f(x)||_N \le ||f_k(x) - f(x)||_N + ||f_k(x)||_N$$

Fixing any ε , $\exists K$ such that the first term is bounded by ε . Also, $f_k \in \mathcal{C}_b$ means that all f_k are bounded. Therefore, the second term $||f_k(x)||_N$ is finite. All implies that $||f(x)||_N$ is bounded above by a finite number. Therefore, $f \in \mathcal{C}_b$. Eventually, the limit is in the metric space implies that the metric space $\mathcal{C}_b(A, N)$ is complete.

QED

5.7 Contract Mapping

Proof of Contract Mapping Principle

Observe two consecutive points x_{n+1}, x_n .

$$\begin{split} d(x_{n+1},x_n) &= d(\Phi(x_n),\Phi(x_{n-1})) \\ &\leq kd(x_n,x_{n-1}) = kd(\Phi(x_{n-1}),\Phi(x_{n-2})) \\ &\leq k^2d(x_{n-1},x_{n-2}) \\ &\vdots \\ &\leq k^nd(x_1,x_0) \end{split}$$

Observe any two points, that is, for some $p \in \mathbb{N}^+$, by triangular inequality:

$$d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\le k^n d(x_1, x_0) + \dots + k^{n+p-1} d(x_1, x_0)$$

$$\le \sum_{j=1}^{p-1} k^{n+j} d(x_1, x_0)$$

$$\le \frac{k^n}{1-k} d(x_1, x_0)$$

$$\lim_{n \to \infty} d(x_n, x_{n+p}) \le \lim_{n \to \infty} \frac{k^n}{1-k} d(x_1, x_0)$$

$$\le 0 \quad \text{Since } k \in (0, 1)$$

Therefore, the distance between any two points when indices get sufficiently large approaches to 0. This implies that $\{x_n\}$ is Cauchy. Since M is complete, Cauchy sequence converges, i.e. $\exists x \in M$ such that $x_n \to x$.

Claim: x is a fixed point.

Observe that $d(\Phi(x), \Phi(y)) \leq kd(x, y) \ \forall x, y \in M$ implies that Φ is Lipschitz which implies continuity.

Observe the mapping:

$$x_{n+1} = \Phi(x_n)$$

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \Phi(x_n)$$

$$= \Phi\left(\lim_{n \to \infty} x_n\right) \quad \text{Since } \Phi \text{ is continuous}$$

$$x = \Phi(x)$$

Therefore, x is a fixed point.

Claim: x is the unique fixed point.

Suppose not, that $\exists y \in M, y \neq x$, and $\Phi(y) = y$. Then d(x,y) > 0, and $d(\Phi(x), \Phi(y)) < 0$

d(x,y) holds with strict inequality. Since both are fixed points, $\Phi(x)=x$ and $\Phi(y)=0$. Therefore, $d(\Phi(x),\Phi(y))=d(x,y)$. Then we have

$$d(x,y) < d(x,y)$$

which is a contradiction to the basic assumption of defining distance. Therefore, x = y.