First Order Differential Equations

1).Separable form

1.
$$\frac{dy}{dx} = \sin 5x$$

2.
$$\frac{dy}{dx} = (x+1)^2$$

$$3. dx + e^{3x} dy = 0$$

3.
$$dx + e^{3x}dy = 0$$
 4. $dy - (y - 1)^2 dx = 0$

5.
$$x \frac{dy}{dx} = 4y$$

$$6. \frac{dy}{dx} + 2xy^2 = 0$$

$$7. \frac{dy}{dx} = e^{3x+2y}$$

8.
$$e^{x}y \frac{dy}{dx} = e^{-y} + e^{-2x-y}$$

9.
$$y \ln x \frac{dx}{dy} = \left(\frac{y+1}{x}\right)^2$$
 10. $\frac{dy}{dx} = \left(\frac{2y+3}{4x+5}\right)^2$

10.
$$\frac{dy}{dx} = \left(\frac{2y+3}{4x+5}\right)^{2}$$

$$11. \csc y \, dx + \sec^2 x \, dy = 0$$

12.
$$\sin 3x \, dx + 2y \cos^3 3x \, dy = 0$$

13.
$$(e^y + 1)^2 e^{-y} dx + (e^x + 1)^3 e^{-x} dy = 0$$

14.
$$x(1 + y^2)^{1/2} dx = y(1 + x^2)^{1/2} dy$$

2).Linear Differential Equations of order one: $\frac{dy(x)}{dx} + P(x)y(x) = Q(x)$

$$1. \frac{dy}{dx} = 5y$$

$$2. \frac{dy}{dx} + 2y = 0$$

$$3. \frac{dy}{dx} + y = e^{3x}$$

4.
$$3\frac{dy}{dx} + 12y = 4$$

5.
$$y' + 3x^2y = x^2$$

6. $y' + 2xy = x^3$
7. $x^2y' + xy = 1$
8. $y' = 2y + x^2 + 5$

6.
$$y' + 2xy = x'$$

7.
$$x^2y' + xy = 1$$

8.
$$y' = 2y + x^2 + 5$$

9.
$$x \frac{dy}{dx} - y = x^2 \sin x$$
 10. $x \frac{dy}{dx} + 2y = 3$

10.
$$x \frac{dy}{dx} + 2y = 3$$

11.
$$x \frac{dy}{dx} + 4y = x^3 - x$$

11.
$$x \frac{dy}{dx} + 4y = x^3 - x$$
 12. $(1+x) \frac{dy}{dx} - xy = x + x^2$

13.
$$x^2y' + x(x+2)y = e^x$$

14.
$$xy' + (1 + x)y = e^{-x} \sin 2x$$

15.
$$y dx - 4(x + y^6) dy = 0$$

16.
$$y dx = (ye^y - 2x) dy$$

17.
$$\cos x \frac{dy}{dx} + (\sin x)y = 1$$

3).

Bernoulli's Equation The differential equation

$$\frac{dy}{dx} + P(x)y = f(x)y^n,$$

In Problems 15-20 solve the given differential equation by using an appropriate substitution.

15.
$$x \frac{dy}{dx} + y = \frac{1}{y^2}$$
 16. $\frac{dy}{dx} - y = e^x y^2$

$$16. \ \frac{dy}{dx} - y = e^x y^2$$

$$17. \ \frac{dy}{dx} = y(xy^3 - 1)$$

17.
$$\frac{dy}{dx} = y(xy^3 - 1)$$
 18. $x\frac{dy}{dx} - (1 + x)y = xy^2$

19.
$$t^2 \frac{dy}{dt} + y^2 = ty$$

19.
$$t^2 \frac{dy}{dt} + y^2 = ty$$
 20. $3(1+t^2) \frac{dy}{dt} = 2ty(y^3-1)$

In Problems 21 and 22 solve the given initial-value problem.

21.
$$x^2 \frac{dy}{dx} - 2xy = 3y^4$$
, $y(1) = \frac{1}{2}$

22.
$$y^{1/2} \frac{dy}{dx} + y^{3/2} = 1$$
, $y(0) = 4$

4). Exact Differential Equations: Check whether the following equations are exact or not and hence get the solution

1.
$$(2x - 1) dx + (3y + 7) dy = 0$$

2.
$$(2x + y) dx - (x + 6y) dy = 0$$

3.
$$(5x + 4y) dx + (4x - 8y^3) dy = 0$$

4.
$$(\sin y - y \sin x) dx + (\cos x + x \cos y - y) dy = 0$$

5.
$$(2xy^2 - 3) dx + (2x^2y + 4) dy = 0$$

9.
$$(x - y^3 + y^2 \sin x) dx = (3xy^2 + 2y \cos x) dy$$

10.
$$(x^3 + y^3) dx + 3xy^2 dy = 0$$

In Problems 21-26 solve the given initial-value problem.

21.
$$(x + y)^2 dx + (2xy + x^2 - 1) dy = 0$$
, $y(1) = 1$

22.
$$(e^x + y) dx + (2 + x + ye^y) dy = 0$$
, $y(0) = 1$

23.
$$(4y + 2t - 5) dt + (6y + 4t - 1) dy = 0$$
, $y(-1) = 2$

24.
$$\left(\frac{3y^2 - t^2}{y^5} \frac{dy}{dt} + \frac{t}{2y^4} = 0, \quad y(1) = 1\right)$$

25.
$$(y^2 \cos x - 3x^2y - 2x) dx$$

+ $(2y \sin x - x^3 + \ln y) dy = 0$, $y(0) = e$

5). Homogeneous DE: $\left(\frac{dy}{dx} = f\left(\frac{y}{x}\right)\right)$

1.
$$(x - y) dx + x dy = 0$$

1.
$$(x - y) dx + x dy = 0$$
 2. $(x + y) dx + x dy = 0$

3.
$$x dx + (y - 2x) dy = 0$$
 4. $y dx = 2(x + y) dy$

4.
$$y dx = 2(x + y) dy$$

5.
$$(y^2 + yx) dx - x^2 dy = 0$$

6.
$$(y^2 + yx) dx + x^2 dy = 0$$

$$7. \ \frac{dy}{dx} = \frac{y - x}{y + x}$$

$$8. \ \frac{dy}{dx} = \frac{x+3y}{3x+y}$$

$$9. -y dx + \left(x + \sqrt{xy}\right) dy = 0$$

10.
$$x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}, \quad x > 0$$

Second Order Linear Differential Equations

In Problems 1-14 find the general solution of the given second-order differential equation.

1.
$$4y'' + y' = 0$$

2.
$$y'' - 36y = 0$$

3.
$$y'' - y' - 6y = 0$$

3.
$$y'' - y' - 6y = 0$$
 4. $y'' - 3y' + 2y = 0$

5.
$$y'' + 8y' + 16y = 0$$

6.
$$y'' - 10y' + 25y = 0$$

7.
$$12y'' - 5y' - 2y = 0$$
 8. $y'' + 4y' - y = 0$

8.
$$v'' + 4v' - v = 0$$

9.
$$y'' + 9y = 0$$
 10. $3y'' + y = 0$

10.
$$3y'' + y = 0$$

11.
$$y'' - 4y' + 5y = 0$$
 12. $2y'' + 2y' + y = 0$

12.
$$2y'' + 2y' + y = 0$$

13.
$$3y'' + 2y' + y = 0$$
 14. $2y'' - 3y' + 4y = 0$

14.
$$2y'' - 3y' + 4y = 0$$

Method of Undetermined Coefficients: (Method for solving-Second Order Non-homogeneous Linear DEs): y''(x) + a y'(x) + b y(x) = g(x), a and b are constants.

Trial Particular Solutions

Form of y_p
A
Ax + B
$Ax^2 + Bx + C$
$Ax^3 + Bx^2 + Cx + E$
$A\cos 4x + B\sin 4x$
$A\cos 4x + B\sin 4x$
Ae^{5x}
$(Ax + B)e^{5x}$
$(Ax^2 + Bx + C)e^{5x}$
$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

Find general solutions of the following Des:

1.
$$y'' + 3y' + 2y = 6$$

2.
$$4y'' + 9y = 15$$

3.
$$y'' - 10y' + 25y = 30x + 3$$

4.
$$y'' + y' - 6y = 2x$$

5.
$$\frac{1}{4}y'' + y' + y = x^2 - 2x$$

6.
$$y'' - 8y' + 20y = 100x^2 - 26xe^x$$

7.
$$y'' + 3y = -48x^2e^{3x}$$

8.
$$4y'' - 4y' - 3y = \cos 2x$$

9.
$$y'' - y' = -3$$

10.
$$y'' + 2y' = 2x + 5 - e^{-2x}$$

11.
$$y'' - y' + \frac{1}{4}y = 3 + e^{x/2}$$

12.
$$y'' - 16y = 2e^{4x}$$

13.
$$y'' + 4y = 3 \sin 2x$$

14.
$$y'' - 4y = (x^2 - 3) \sin 2x$$

15.
$$y'' + y = 2x \sin x$$

Method of Variation of Parameters: Method to find solution of the following class of DEs

$$y'' + P(x)y' + Q(x)y = f(x)$$

In Problems 1-18 solve each differential equation by variation of parameters.

1.
$$y'' + y = \sec x$$

2.
$$y'' + y = \tan x$$

3.
$$y'' + y = \sin x$$

4.
$$y'' + y = \sec \theta \tan \theta$$

5.
$$y'' + y = \cos^2 x$$
 6. $y'' + y = \sec^2 x$

6.
$$y'' + y = \sec^2 x$$

7.
$$y'' - y = \cosh x$$

7.
$$y'' - y = \cosh x$$
 8. $y'' - y = \sinh 2x$

9.
$$y'' - 4y = \frac{e^{2x}}{x}$$
 10. $y'' - 9y = \frac{9x}{e^{3x}}$

$$10. \ y'' - 9y = \frac{9x}{e^{3x}}$$

11.
$$y'' + 3y' + 2y = \frac{1}{1 + e^x}$$

12.
$$y'' - 2y' + y = \frac{e^x}{1 + x^2}$$

13.
$$y'' + 3y' + 2y = \sin e^x$$

14.
$$y'' - 2y' + y = e^t \arctan t$$

15.
$$y'' + 2y' + y = e^{-t} \ln t$$

16.
$$2y'' + 2y' + y = 4\sqrt{x}$$

17.
$$3y'' - 6y' + 6y = e^x \sec x$$

18.
$$4y'' - 4y' + y = e^{x/2}\sqrt{1 - x^2}$$