Úvod

Poznámka

Mluvilo se o historii \mathbb{C} .

Definice 0.1 (Prostor \mathbb{C})

Prostor \mathbb{C} komplexních čísel je prostor \mathbb{R}^2 , v němž navíc definujeme násobení:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1).$$

Ztotožníme (x,0)=x, neboli $\mathbb{R}\subset\mathbb{C}$. Značíme i:=(0,1) (imaginární jednotka).

Definice 0.2 (Značení (komplexně sdružené číslo, reálná a imaginární slož-ka))

$$z = x + i \cdot y \in \mathbb{C} \implies \overline{z} := x - i \cdot y \land \Re z := x, \Im z := y.$$

Definice 0.3 (Modul / absolutní hodnota)

$$|z| := \sqrt{x^2 + y^2}$$

Tvrzení 0.1 (Vlastnosti)

- $z = (x, y) \in \mathbb{C}$, potom $z = x + i \cdot y$ a $(\pm i)^2 = -1$.
- Násobení · : $\mathbb{C}^2 \to \mathbb{C}$ je asociativní, komutativní a distributivní (vzhledem k +). Navíc · zahrnuje i násobení v \mathbb{R} a násobení skalárem.
- $|z|^2 = z\overline{z}$, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$, $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$, $z + \overline{z} = 2\Re z$, $z \overline{z} = 2i\Im z$, $z, z_1, z_2 \in \mathbb{C}$.
- $\forall z \in \mathbb{C}, z \neq 0 : \exists z^{-1} \in \mathbb{C} : zz^{-1} = 1, \ konkr\'etn\'et z^{-1} = \frac{\overline{z}}{|z|^2}.$
- $(\mathbb{C}, +, \cdot)$ je komutativní těleso.

 P_{020r}

C nelze "rozumně" lineárně uspořádat.

Poznámka (Lineární zobrazení)

Lineární zobrazení $\mathbb{R}^2 \to \mathbb{R}^2$ (\mathbb{R} -lineární zobrazení) jsou reálné matice řádu 2. Lineární zobrazení $\mathbb{C} \to \mathbb{C}$ (\mathbb{C} -lineární) jsou komplexní čísla.

Lineární zobrazení $L=\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ je tedy $\mathbb C$ -lineární právě tehdy, když a=d a b=-c.

Poznámka (Úmluva)

"Funkce" znamená funkci z $\mathbb C$ do $\mathbb C$, není li řečeno jinak.

Definice 0.4 (Značení (okolí, prstencové okolí))

$$z_0 \in \mathbb{C}, \varepsilon > 0 : \mathcal{U}(z_0, \varepsilon) := \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}, \mathcal{P}(z_0, \varepsilon) := \{z \in \mathbb{C} : 0 < |z - z_0| < \varepsilon\}.$$

Definice 0.5 (Limita, spojitost)

$$\lim_{z \to z_0} f(z) = w \in \mathbb{C} \equiv \forall \varepsilon \exists \delta > 0 \forall z \in \mathbb{C} : z \in \mathcal{P}(z_0, \delta) \implies f(z) \in \mathcal{U}(w, \varepsilon).$$

f je spojitá v z_0 , jestliže $\lim_{z\to z_0} f(z) = f(z_0)$.

Definice 0.6 (Derivace)

 $f:\mathbb{R}^2\to\mathbb{R}^2$ je v bodě $z_0\in\mathbb{R}^2$ \mathbb{R} -diferencovatelná, jestliže existuje \mathbb{R} -lineární zobrazení $L:\mathbb{R}^2\to\mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z) - Lh}{|h|} = 0$$

Značíme $L =: df(z_0)$.

$$df(z_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x}(z_0) & \frac{\partial f_1}{\partial y}(z_0) \\ \frac{\partial f_2}{\partial x}(z_0) & \frac{\partial f_2}{\partial y}(z_0) \end{bmatrix}$$

 $f: \mathbb{C} \to \mathbb{C}$ je v bodě $z_0 \in \mathbb{C}$ \mathbb{C} -diferencovatelná, jestliže existuje $f'(z_0) := \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \in \mathbb{C}$. f' nazýváme komplexní derivace funkce.

Poznámka

Pro $(f\pm g)'$, $(f\cdot g)'$, (f/g)', $(f\circ g)'$ platí stejné vzorce jako pro funkce $\mathbb{R}\to\mathbb{R}$.

Věta 0.2 (Cauchy-Riemann)

Nechť f je komplexní funkce definovaná na nějakém okolí bodu $z_0 \in \mathbb{C}$. Pak následující podmínky jsou ekvivalentní:

- Existuje $f'(z_0)$.
- Existuje $df(z_0)$ a $df(x_0)$ je \mathbb{C} -lineární.

• Existuje $df(z_0)$ a platí

$$\frac{\partial f_1}{\partial x}(z_0) = \frac{\partial f_2}{\partial y}(z_0), \frac{\partial f_1}{\partial y}(z_0) = -\frac{\partial f_2}{\partial x}(z_0).$$

(Tzv. Cauchy-Riemannova podmínka.)

Důkaz

Druhý a třetí bod je ekvivalentní z poznámky o lineárních zobrazeních.

$$w=f'(z_0)\Leftrightarrow 0=\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)-wh}{h}.$$
 Vynásobíme $\frac{h}{|h|}:$

$$\Leftrightarrow 0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|} \Leftrightarrow df(z_0)h = wh.$$

Poznámka

Existuje-li $f'(z_0)$, pak $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$.

Cauchy-Riemannova podmínka je ekvivalentní $\frac{\partial f}{\partial x}(z_0) = -i \frac{\partial f}{\partial y}(z_0)$.

Definice 0.7 (Holomorfní funkce)

Nechť $G \subseteq \mathbb{C}$ je otevřená a $f: G \to \mathbb{C}$. Potom f je holomorfní na G, pokud je f \mathbb{C} -diferencovatelná v každém bodě G.

Definice 0.8 (Exponenciála)

$$\exp(z) := e^x \cdot (\cos y + i \cdot \sin y), z = x + y \cdot i \in \mathbb{C}.$$

Tvrzení 0.3 (Vlastnosti exponenciály)

 $\exp |_{\mathbb{R}} \text{ je reálná exponenciála, } \exp(z+w) = \exp(z) \cdot \exp(w), \ \exp'(z) = \exp(z) \ (z \in \mathbb{C}), \\ \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \ \exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}, \ \exp \text{ není prostá na } \mathbb{C} \text{ a je } 2\pi \text{ periodická, dokonce} \\ \exp(z) = \exp(w) \Leftrightarrow \exists k \in \mathbb{Z} : w = z + 2k\pi \cdot i, \text{ nechť } P := \{z \in \mathbb{C} | \Im z \in (-\pi, \pi]\}, \text{ potom } \exp |_P \text{ je prostá a } \exp(P) = \mathbb{C} \setminus \{0\}.$

Definice 0.9 (Logaritmus a hlavní hodnota logaritmu)

Nechť $z \in \mathbb{C} \backslash \{0\}$. Položme

$$Logz:=\left\{ w\in\mathbb{C}|\ \exp w=z\right\} ,$$

 $\log z := \log |z| + i \cdot \arg z.$ (Hlavní hodnota logaritmu.)

Tvrzení 0.4 (Vladstnosti logaritmu)

Nechť $z \in \mathbb{C} \setminus \{0\}$. Potom

- $Log z = \{ \log z + 2k\pi i | k \in \mathbb{Z} \}, \log = (\exp |_P)^{-1}$
- log není spojitá na žádném $z \in (-\infty, 0]$, ale log $\in \mathcal{H}(\mathbb{C} \setminus (-\infty, 0])$. Navíc log' $z = \frac{1}{z}$, $z \in \mathbb{C} \setminus (-\infty, 0]$
- $\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1.$

Pozor

Neplatí $\log \exp z = z$ a $\log(z \cdot w) = \log z + \log w!$

Definice 0.10

Nechť $z \in \mathbb{C} \setminus \{0\}$ a $\alpha \in \mathbb{C}$. Potom hlavní hodnotou α -té mocniny z definujeme

$$z^{\alpha} := \exp(\alpha \log z).$$

Položme

$$M_{\alpha}(z) := \{ \exp(\alpha \cdot w) | w \in Logz \}.$$

Tvrzení 0.5 (Vlastnosti mocniny)

- $e^z = \exp(z \cdot \log e) = \exp(z)$.
- Je-li z > 0 a $\alpha \in \mathbb{R}$, potom z^{α} je definována stejně jako v MA.
- $M_{\alpha}(z) = \{z^{\alpha} \cdot e^{2k\pi \cdot i \cdot \alpha} | k \in \mathbb{Z}\}, z \neq 0.$
- $(z^{\alpha}) = \alpha \cdot z^{\alpha-1}, z \in \mathbb{C} \setminus (-\infty, 0], \alpha \in \mathbb{C}.$
- $(1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n$, |z| < 1, kde

$$\binom{\alpha}{n} := \frac{\alpha \cdot (\alpha - 1) \cdot \ldots \cdot (\alpha - n + 1)}{n!}, \qquad \alpha \in \mathbb{C}.$$

4

Poznámka (Zápočet)

Zápočet dostaneme za aktivní účast na cvičení

Poznámka

Je-li $f: \mathbb{C} \to \mathbb{C}$, potom

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2},$$

tedy f lze rozložit na sudou a lichou část.

Sudá část exponenciely je cosh a lichá sinh.

Definice 0.11 (Goniometrické funkce)

$$e^{iz} = \cos z + i \cdot \sin z$$
,

kde

$$\cos z := \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z := \frac{e^{iz} - e^{-iz}}{2i}, \qquad z \in \mathbb{C}.$$

Tvrzení 0.6 (Vlastnosti)

- cos $i \sin jsou rozšířením funkcí z \mathbb{R} do \mathbb{C}$.
- $\sin' z = \cos z$, $\cos' z = \sin z$.
- sin $i \cos jsou \ 2\pi$ periodické funkce, ale nejsou omezené, platí, že sin $\mathbb{C} = \mathbb{C} = \cos \mathbb{C}$.
- $Plati \sin^2 z + \cos^2 z = 1$.
- $\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$

1 Křivkový integrál

Definice 1.1 (Značení)

Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$. Potom φ je křivka, pokud je φ spojité, φ je regulární křivka, pokud je φ po částech spojitě diferencovatelné tzn. φ je spojitá na $[\alpha, \beta]$ a existuje dělení $\alpha = t_0 < t_1 < \ldots < t_n = \beta$ takové, že $\varphi|_{[t_i, t_n]}$ je diferencovatelné.

Úsečka: Necht $a,b\in\mathbb{C}$, potom $\varphi(t)=a+t\cdot(b-a),\,t\in[0,1]$ je úsečka z a do b. Značíme [a,b].

Řekneme, že křivka φ je lomená čára v \mathbb{C} , existují-li $z_1, \ldots, z_k \in \mathbb{C}$ taková, že

$$\varphi = [z_1, z_2] + [z_2, z_3] + \ldots + [z_{k-1}, z_k].$$

5

Poznámka (Úmluva)

Pokud neřekneme něco jiného, křivkou budeme rozumět regulární křivku v C.

Definice 1.2 (Délka křivky)

$$V(\varphi) = \int_{\alpha}^{\beta} |\varphi'(t)| dt,$$

je-li φ regulární.

Definice 1.3

Necht $\varphi:[\alpha,\beta]\to\mathbb{C}$ je regulární křivka a $f:<\varphi>\to\mathbb{C}$ je spojitá. Potom definujeme

$$\int_{\alpha} f := \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Poznámka

Křivkový integrál konverguje jako Riemannův.

$$\int_{\omega} f(z)dz,$$

Necht $z_0 \in \mathbb{C}$, $r \in (0, +\infty)$ a $\varphi(t) = z_0 + re^{it}$, $t \in [0, 2\pi]$. Potom

$$\int_{\omega} (z - z_0)^n dz = \int_{0}^{2\pi} r^n e^{int} \cdot 2 \cdot r \cdot e^{it} dt = i \cdot r^{n+1} \int_{0}^{2\pi} e^{i(n+1)t} dt =$$

 $2\pi i$, pokud n = -1, 0, pokud $n \in \mathbb{Z}$ a $n \neq -1$.

Tvrzení 1.1 (Vlastnosti křivkového integrálu)

Je- $li \varphi k \check{r}ivka, f a g jsou spojit\'e funkce <math>na < \varphi > a A \in \mathbb{C}$, ptotom

$$\int_{\varphi} (Af + g) = A \int_{\varphi} f + \int_{\varphi} g.$$

Je- $li \varphi k \check{r}ivka a f je spojitá funkce <math>na < \varphi >$, potom

$$\left| \int_{\varphi} f \right| \leqslant \max_{\langle \varphi \rangle} |f| \cdot V(\varphi).$$

Necht $\varphi : [\alpha, \beta] \to \mathbb{C}, \ \psi : [\gamma, \delta] \to \mathbb{C} \ a \ \varphi(\beta) = \psi(\gamma).$ Potom

$$\int_{\omega + \psi} f = \int_{\omega} f + \int_{\psi} f \wedge \int_{-\omega} f = -\int_{\omega} f,$$

6

 $kde(-\varphi)(t) := \varphi(-t), t \in [-\beta, -\alpha] je opačná křivka k \varphi.$

Křivkový integrál nezávisí na parametrizaci křivky: Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je křivka, $\omega: [\gamma, \delta] \to [\alpha, \beta]$ je spojitě diferencovatelné s $\omega' > 0$ a $\psi = \varphi \circ \omega$. Potom $\int_{\psi} f = \int_{\varphi} f$.

 $D\mathring{u}kaz$

Jednoduchý, ukázán na přednášce pro některé body.

Definice 1.4 (Primitivní funkce)

Řekneme, že funkce f má na otevřené $G \subset \mathbb{C}$ primitivní funkci F, pokud F' = f na G.

Věta 1.2 (O výpočtu křivkového integrálu pomocí primitivní funkce)

Necht $G \subset \mathbb{C}$ je otevřená a f má na G primitivní funkci F. Necht $\varphi : [\alpha, \beta] \to G$ je regulární křivka a f je spojitá^a na $< \varphi >$. Potom

$$\int_{\varphi} f = F(\varphi(\beta)) - F(\varphi(\alpha)),$$

je-li navíc φ uzavřená, tzn. $\varphi(\alpha) = \varphi(\beta)$, pak

$$\int_{\varphi} f = 0.$$

^aTohle je zbytečný předpoklad, ale to ještě neumíme dokázat.