Population genomics: Background, tools and programming

Gene-genealogy methods for demographic inferences

April 1st, 2019 - Procida

Mathias Currat

Department of Genetics and Evolution – Anthropology Unit Institute for Genetics and Genomics in Geneva (IGE3) University of Geneva, Switzerland

Outline

- 1. Genetic Diversity and Population Demography
- 2. Demographic Reconstruction
- 3. Coalescent Simulations
- 4. Approximate Bayesian Computation (ABC)
- 5. Practicals

1. Genetic Diversity and Population Demography

Effect of demography on genetic diversity

Evolutionary forces

Observed genetic diversity

Mutation, recombination

Selection

Demography & migration

- Low population size → More genetic drift
- Large population size \rightarrow Less genetic drift
- Few migrations among populations → High genetic differentiation
- Many migrations among populations → Genetic homogenisation
- Temporal dynamics (growth, bottleneck, etc...) → ...
- Spatial dynamics (population expansion or contraction) → ...

It is possible to make inferences on population demography from genetic data using appropriate tools

Course example: coalescent simulations and ABC

The reconstruction of population demographic history requires to overlap the information from a maximum of genetic loci (portions of DNA).

ightarrow Demography affects the whole genome while selection affects a limited number of loci

2. Demographic reconstruction from genetic/genomic data

Modeling/Simulation part

- A model is not a reproduction of the reality but a simplified theoritical representation of the main processes and elements that one wants to better understand
- Many genetic simulation resources available, choose carefully the most adapted to your question.

A (non-exhaustive) list:

https://popmodels.cancercontrol.cancer.gov/gsr/packages/

- · Two main kinds of genetic simulation approaches:
 - 1. Forward-in-time: i.e. Wright-Fisher, ...
 - 2. Coalescent: i.e. Fastsimcoal, SPLATCHE, ...

3 - Coalescent simulation

Arlsumstat: computation of summary statistics

Arlsumstat is a Linux version of Arlequin 3.5 which compute summary statistics from arlequin projects in a very efficient way, specifically designed for ABC.

Excoffier & Lischer, Mol Ecol Res 2010 http://cmpg.unibe.ch/software/arlequin35/

Executable name:					
arlsumstat3522_64bit					
Input data file: *.arp					
Input settings files: arl_run.ars, ssdefs.txt					
Associated Script:					
Launch Arl Sum Stat Modified.sh					

[Profile]				
	Title="A series of simulated samples" NbSamples=1 GenotypicData=1 GameticPhase=0 RecessiveData=0 DataType=DNA LocusSeparator=NONE MissingData='?'			
[Data]				
	[[Samples]]			
		SampleName="Sample 1"		
		SampleSize=25 SampleData= {		
1 1	1	TATTCTAATTCAGCTTCTGAACGTAAGG		
_		TAGTAGTCTGCATAGCGGCGTTGTGCGA		
1_2	1	TAGTCGTCTGCGTATTGGGGTTGTGCAG		
		TAGTCGTCTGCGTATTGGGGTTGTGCAG		
1_3	1	TATGCTAATTCAGCTTCTGATCGTAAGG		
	4	TAGTCGTCTGCATAGTGGCGTTGTGCGA AATGCTAATTCAGCTTCTGATCGTAAGG		
1_4	1	TAGTCGTCTGCATAGTGGCGTTGTGCGA		
1 5	1	TATGCTAATTCAGCTTCTGATCGTAAGG		
·_•	•	TATTCTAATTCAGCTTCTGAACGTAAGG		

4 – Approximate Bayesian Computation (ABC)

ABC main principles

Bayesian framework: $D \rightarrow \text{Data (genetic/genomic)}$ $\theta \rightarrow \text{Model Parameter}$ $M \rightarrow \text{Model (evolutionary scenario)}$ (demographic/biological/...)

 $P(\theta|D) \propto f_M(D|\theta) P(\theta)$

Posterior distribution

Likelihood function

Prior distribution

Probability distribution of θ knowing D

Probability distribution of D given θ , based on model M

Probability distribution of θ before knowing D

Problem: for realistic evolutionary models, analytical solutions of the likelihood function are usually very hard and often impossible to obtain.

Solution: The ABC approach has been designed to bypass the computation of the likelihood function by approximating it using stochastic simulation of the model.

- Using summary statistics S instead of the full data D, with the assumption that P(D|θ) is proportional to P(S|θ).
- Using simulations to approximate the likelihood function P(S|θ).

Tavaré et al, Genetics (1997), Beaumont et al, Genetics (2002)

Tools: many recent developements and several packages to run ABC (DiyABC, PopABC, ABC R package, etc...)

For the practicals, you will use ABCtoolbox, Wegmann et al, Bioinformatics 2010

Validation techniques: model fit

Is the model plausible? Is it capable to reproduced adequately empirical statistics?

ABCtoolbox provides model fit statistics:

Marginal p-value

Tukey p-value.

→ Low p-value indicates poor fit.

Validation techniques: accuracy of estimates

How accurate is the estimation of a parameter?

The **cross-validation** procedure repeats the estimation with the output of one simulation considered as empirical values (pseudo-observed data, *pods*).

TRUE	Estimated			
Pop. Size	Pop. Size Mode	Pop. Size Mean	Pop. Size Quantile	Pop. Size HDI
10070	11987	16920	0	0.75
14386	23494	24055	0.067487	0.749736
46270	29248	31159	0.874571	0.868895
11806	10070	14996	0.001913	0.105752
24072	17741	20153	0.666673	0.689085

Checking for biased posteriors

Kolmogorov-Smirnov test of quantile distribution against an uniform distribution.

Practical difficulties

- 1. Choice of the prior distribution(s)
 - Distribution shape and parameters (uniform, log uniform, normal, etc...)
- Design of the model(s)
 - · Reproduce the main elements but avoid unnecessary complexity
 - · Model's output sufficiently different to be distinguished
- 3. Choice of the summary statistics
 - Enough to capture the main the characteristics of the model and have sufficient power for the estimation
 - · Not too many to avoid random noise
- 4. Choice of the number of simulations to perform
 - Enough to explore the parameter space
- 5. Choice of the tolerance/retained parameter
 - Start between 1% and 5% and check that the results are robust across different values
- 6. Validation of the method
 - Check the capability of the model to reproduce real data and the accuracy of the parameter estimation

Practicals

```
STEP 1: SIMULATION OF DEMOGRAPHIC SCENARIO (fastsimcoal)
```

STEP 2: COMPUTATION OF SUMMARY STATISTICS (Arlsumstat)

STEP 3: USE A PARAMETER PRIOR DISTRIBUTION (ABCtoolbox)

STEP 4: GENERATE ABC SIMULATION DATASETS

(OPTIONAL STEP 5: GENERATE A NEW DATASET WITH TWO PARAMETERS)

STEP 6: MODEL CHOICE WITH ABC

STEP 7: PARAMETER ESTIMATION WITH ABC

(OPTIONAL STEP 8: EXPLORE AN ADDITIONAL SCENARIO)