TAREA 2: INTEGRAL DEFINIDA

Trabajo individual

1. Trazar la gráfica y hallar el área de la región acotada por debajo de la gráfica de la función f y por arriba del eje x, de x = a a x = b, donde:

a)
$$f(x) = 2x - x^2$$
; $a = 0, b = 2$.

b)
$$f(x) = 4 - x^2$$
; $a = -2, b = 2$.

c)
$$f(x) = xe^{-x^2}$$
; $a = 0, b = 3$.

2. Trazar la gráficas de las funciones f y g y determine el área de la region encerrada entre estas gráficas donde:

a)
$$f(x) = 4 - x^2$$
 y $g(x) = x^2$.

b)
$$f(x) = x + 2 \text{ y } g(x) = x^2$$
.

c)
$$f(x) = 5x - x^2$$
 y $g(x) = x$.

3. Cálcule el índice de Gini para las siguientes curvas de Lorenz e interprete:

a)
$$L(x) = \frac{3}{5}x^2 + \frac{2}{5}x$$
.

b)
$$L(x) = 0.8x^2 + 0.2x$$
.

4. Encuentre el excedente de los consumidores y de los productores bajo equilibrio de mercado de las siguientes funciones de demanda y oferta

a)
$$D(q) = 16 - q^2$$
 y $S(q) = 4 + q$.

b)
$$D(q) = 14 - q^2$$
 y $S(q) = 2q^2 + 2$.

5. Demuestre la convergencia o divergencia de las siguientes integrales:

$$a) \int_{1}^{\infty} \frac{1}{x^3} dx$$

$$b) \int_{1}^{\infty} x^{-3/2} dx$$

1

a)
$$\int_{1}^{\infty} \frac{1}{x^3} dx$$
 b) $\int_{1}^{\infty} x^{-3/2} dx$ c) $\int_{0}^{\infty} \lambda e^{-\lambda x} dx$