Softwareentwicklung für iOS mit Objective-C und Xcode

APP KATALOG

Universität Heidelberg

Sommersemester 2014

NILS FISCHER

Aktualisiert am 5. Mai 2014 Begleitende Dokumente auf der Vorlesungsseite: http://ios-dev-kurs.github.io

Inhaltsverzeichnis

1	Übe	r dieses Dokument	3
2	Hell	o World	4
	2.1	Das erste Xcode Projekt	4
		@"Hello World!"	
	2.3	@"Hello World!" on Device	6
	2.4	Grundlagen der Programmierung	7
	2.5	Objektorientiertes @"Hello World!"	9
	2.6	Graphisches @"Hello World!"	15

Kapitel 1

Über dieses Dokument

Dieser App Katalog enthält Schritt-für-Schritt Anleitungen für die im Rahmen unseres Kurses erstellten Apps sowie die wöchentlich zu bearbeitenden Übungsaufgaben und wird im Verlauf des Semesters kapitelweise auf der Vorlesungsseite [1] zur Verfügung gestellt.

Er dient jedoch nur als Ergänzung zum parallel verfügbaren **Skript**, auf das hier häufig verwiesen wird. Dort sind die Erläuterungen zu den verwendeten Technologien, Methoden und Begriffen zu finden.

Beispiellösungen zu den Übungsaufgaben sind ebenfalls auf der Vorlesungsseite zu finden.

¹http://ios-dev-kurs.github.io/

Kapitel 2

Hello World

Was ist schon ein Programmierkurs, der nicht mit einem klassischen *Hello World* Programm beginnt? Wir werden jedoch noch einen Schritt weitergehen und diesen Gruß vom iOS Simulator oder, soweit vorhanden, direkt von unseren eigenen iOS Geräten ausgeben lassen. Außerdem wird in die objektorientierte Programmierung eingeführt.

Relevante Kapitel im Skript: Xcode, Objective-C

2.1 Das erste Xcode Projekt

- 1. Mit # + 1 + N rufen wir zunächst den Dialog zur Erstellung eines neuen Projekts auf und wählen das Template OS Application Singe View Application.
- 2. Tragt im erscheinenden Konfigurationsdialog entsprechend der Konventionen den Product Name helloworld, euren Vor- und Nachnamen als Organization Name und de.uni-hd.deinname als Company Identifier ein (s. S. 4, Abb. 2.1). Das führt zu der Bundle ID de.uni-hd.deinname.helloworld. Einen Class Prefix benötigen wir erstmal nicht. Speichert das Projekt in einem Verzeichnis eurer Wahl.

Abbildung 2.1: Damit es keine Konflikte zwischen verschiedenen Apps gibt, gibt es Konventionen bei der Konfiguration

3. Wir sehen nun Xcodes Benutzeroberfläche und können sie mit den Schaltflächen rechts in der Toolbar anpassen. Verwendet zunächst die Konfiguration mit eingeblendetem Navigator, verstecktem Debug-Bereich und Inspektor und Standard-Editor. Wählt im Project Navigator das Projekt selbst aus (s. S. 5, Abb. 2.2).

Abbildung 2.2: Wird das Projekt ausgewählt, sehen wir im Editor die Projekt- und Targetkonfiguration.

- 4. Im Editor wird die Projekt- und Targetkonfiguration angezeigt. Hier können wir bspw. die Bundle ID unserer App anpassen, die wir zuvor bei der Erstellung des Projekts aus Product Name und Company Identifier zusammengesetzt haben.
- 5. Links in der Toolbar sind die Steuerelemente des Compilers zu finden. Wählt das gerade erstellte Target und ein Zielsystem aus, bspw. den iPhone Retina (3.5-inch) Simulator, und klickt die Build & Run Schaltfläche. Das Target wird nun kompiliert und generiert ein Product, also unserer App, die im Simulator ausgeführt wird. Das kann bei der ersten Ausführung durchaus etwas dauern oder einen Fehler generieren. In Xcode kann mit #+ . die Ausführung gestoppt und mit #+ R (Tastenkürzel für Build & Run) dann neu gestartet werden.

2.2 @"Hello World!"

- 1. Besonders spannend ist diese App natürlich noch nicht. Das ändern wir jetzt spektakulär, indem wir eine Ausgabe hinzufügen. Wählt die Datei *AppDelegate.m* im Project Navigator aus.
- 2. Die Methode application: didFinishLaunchingWithOptions: wird zu Beginn der Ausführung der App aufgerufen. Zwischen den geschweiften Klammern ist bisher noch nicht viel zu finden:

3. Ersetzt den Kommentar mit einem Befehl zur Ausgabe von Text in der Konsole:

4. Wenn wir unsere App nun erneut mit Build & Run kompilieren und ausführen, sehen wir den Text Hello World! in der Konsole. Dazu wird der zweigeteilte Debug-Bereich unten automatisch eingeblendet (s. S. 6, Abb. 2.3). Ist der Konsolenbereich zunächst versteckt, kann er mit der Schaltfläche in der rechten unteren Ecke angezeigt werden. Außerdem wird links automatisch zum Debug Navigator gewechselt, wenn eine App ausgeführt wird, in dem CPU- und Speicherauslastung überwacht werden können und Fehler und Warnungen angezeigt werden, wenn welche auftreten.

Abbildung 2.3: In der Konsole des Debug-Bereichs werden Ausgaben der laufenden App angezeigt

2.3 @"Hello World!" on Device

1. Nun möchten wir unsere neue App natürlich auch auf einem realen iOS Gerät anstatt des Simulators testen. Im Skript findet ihr eine Anleitung, wie ihr mit euren iOS Geräten unserem Developer Team der Uni Heidelberg beitreten könnt.

2. Habt ihr die Schritte befolgt und euren freigeschalteten Apple Developer Account in den Xcode-Accounteinstellungen hinzugefügt, öffnet ihr wieder die Project- und Targetkonfiguration im Project Navigator und wählt dort unser Developer Team (s. S. 7, Abb. 2.4) aus. Nun wird automatisch das richtige Provisioning Profile für die Bundle ID des Targets verwendet.

Abbildung 2.4: Mit der Wahl des zugehörigen Developer Teams in der Project- und Targetkonfiguration verwendet Xcode automatisch das passende Provisioning Profile

3. Verbindet euer iOS Gerät mit eurem Mac und wählt es in der Toolbar als Zielsystem aus. Mit einem *Build & Run* wird die App nun kompiliert, auf dem Gerät installiert und ausgeführt. In der Konsole erscheint wieder die Ausgabe Hello World!, diesmal direkt vom Gerät ausgegeben.

2.4 Grundlagen der Programmierung

- 1. Wir können nun beginnen, Objective-C Code zu schreiben. Öffnet dafür wieder die Datei *AppDelegate.m.*
- In der Methode application:didFinishLaunchingWithOptions:, die wir schon zuvor verwendet haben, können wir nun zunächst die Grundlagen der Programmierung wie im Skript beschrieben ausprobieren.

Übungsaufgaben

1. Fibonacci

a) Schreibt einen Algorithmus, der alle Folgenglieder ${\cal F}_n < 1000$ der Fibonaccifolge

$$F_n = F_{n-1} + F_{n-2} (2.1)$$

$$F_1 = 1, F_2 = 2 (2.2)$$

in der Konsole ausgibt.

b) Extra: Bei jeder geraden Fibonaccizahl F_j ist der Abstand $\Delta n=j-i$ zum vorherigen geraden Folgenglied F_i auszugeben.

2. Primzahlen

Schreibt einen Algorithmus, der alle Primzahlen $p_n < 1000$ in der Konsole ausgibt.

Hinweis: Mit dem Modulo-Operator % kann der Rest der Division zweier Integer gefunden werden:

1 int a = 20%3 // a ist jetzt 2

2.5 Objektorientiertes @"Hello World!"

- 1. Nun versuchen wir uns an der objektorientierten Programmierung und möchten den Hello World! Gruß von virtuellen Repräsentationen einzelner Personen ausgeben lassen. Dazu brauchen wir zunächst eine neue Klasse Person und schreiben diese am besten in eine neue Datei. Mit dem Tastenkürzel # N rufen wir den New File Dialog auf.
- 2. Wählt hier OS Cocoa Touch Objective-C class aus. Im nächsten Dialog können wir unsere neue Klasse konfigurieren. Wählt zunächst NSObject als Superklasse und gebt der Klasse den Namen Person (s. S. 9, Abb. 2.5).

Abbildung 2.5: Der New File Dialog hilft bei der Konfiguration einer neuen Klasse

- 3. Stellt sicher, dass das Target *helloworld* im daraufffolgenden Speicherdialog ausgewählt ist und speichert die Klasse im Projektverzeichnis.
- 4. Im Project Navigator sind nun zwei neue Dateien erschienen: Die Main- und die Header-Datei der neuen Klasse. Klickt auf die Main-Datei *Person.m*, um sie im Editor zu öffnen. Wenn ihr in der Toolbar nun anstatt des Standard- den Assistant-Editor auswählt, erscheint die Header-Datei *Person.h* automatisch auf der rechten Seite des Editors. Andernfalls klickt ihr auf die Jump bar des Assistant-Editors und wählt *Counterparts* aus, sodass die Header-Datei angezeigt wird (s. S. 10, Abb. 2.6).
- 5. Die neue Klasse soll Personen repräsentieren, die jeweils einen Namen besitzen. Die Header-Datei rechts im Assistant enthält das Interface der Klasse, also deren öffentliche Beschreibung. Hier definieren wir, dass jedes Objekt der Klasse 'Person' eine Variable name des Typs NSString haben soll. Außerdem soll die Klasse eine Methode mit dem Namen sayHello ohne Rückgabewert implementieren, die später den Gruß ausgeben soll:

Abbildung 2.6: Der Assistant-Editor zeigt automatisch die Header-Datei zu einer geöffneten Main-Datei an, wenn die Option *Counterparts* gewählt wird

6. Um zu bestimmen, was bei der Ausführung der Methode passiert, müssen wir sie noch implementieren. Dies geschieht in der Main-Datei *Person.m* links im Editor. Wir schreiben:

```
#import "Person.h"

dimplementation Person

- (void)sayHello {
    NSLog(@"Hello World! My name is %@.", self.name);
}

dend
```

Es wird also zusätzlich zu dem bekannten Gruß noch der Wert der Variable name in der Konsole ausgegeben. Dazu verwenden wir die dot-Syntax der Getter-Methode, die durch die Definition des Attributs name im Interface automatisch generiert wird.

- 7. Unsere Klasse ist jetzt einsatzbereit und wir können Objekte nach ihrem Bauplan erstellen. Öffnen wir also wieder die Datei *AppDelegate.m*, in der wir auch zuvor die Grundlagen der Programmierung ausprobiert haben.
- 8. Damit wir die Klasse verwenden können, müssen wir zunächst ihr Interface importieren. Fügt also den Befehl #import "Person.h" direkt über dem Beginn der Implementierung @implementation AppDelegate ein.
- 9. Nun können wir Personen-Objekte erstellen. Wir verwenden wieder die Methode application:didFinishLaunchingWithOptions und schreiben:
- 1 #import "AppDelegate.h"

```
2
   #import "Person.h" // Das Klasseninterface muss importiert werden, damit
          die Klasse hier verfügbar ist
   @implementation AppDelegate
5
6
   - (BOOL)application:(UIApplication *)application
7
          didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
8
      Person *aPerson = [[Person alloc] init]; // Ein neues Objekt der
9
             Klasse Person wird erstellt
      aPerson.name = @"Alice"; // Der Variable name dieses Objekts wird der
             Wert @"Alice" zugewiesen.
      [aPerson sayHello]; // Die Methode sayHello dieses Objekts wird
11
             aufgerufen, in der auf die Variable zugegriffen wird
12
      // Es können weitere, unabhängige Objekte nach dem gleichen Bauplan
13
             der Klasse erstellt werden
      Person *anotherPerson = [[Person alloc] init];
14
      anotherPerson.name = @"Bob";
15
      [anotherPerson sayHello];
16
17
      return YES;
18
   }
19
20
  @end
21
```

10. Mit einem *Build & Run* führen wir die App aus und werden in der Konsole von Alice und Bob freundlich gegrüßt:

```
1 Hello World! My name is Alice.
2 Hello World! My name is Bob.
```

11. Natürlich können wir unsere Klasse nun noch erweitern und Objekte miteinander interagieren lassen. Fügen wir also dem Interface der Klasse Person noch eine weitere Methode sayHelloTo: hinzu und implementieren sie:

```
// in der Header-Datei
   @interface Person: NSObject
3
   @property (strong, nonatomic) NSString *name;
5
6
   – (void)sayHello;
7
   – (void)sayHelloTo:(Person *)otherPerson;
8
   @end
10
11
   // in der Main-Datei
12
13
   #import "Person.h"
14
15
   @implementation Person
16
17
   - (void)sayHello {
      NSLog(@"Hello World! My name is %@.", self.name);
```

```
20 }
21
22 - (void)sayHelloTo:(Person *)otherPerson {
23    NSLog(@"Hi %@! My name is %@.", otherPerson.name, self.name);
24 }
25
26 @end
```

Die neue Methode nimmt ein Argument in Form eines anderen Objekts der Klasse Person an und gibt dessen Wert der Variable name zusätzlich in der Konsole aus.

12. In der application:didFinishLaunchingWithOptions-Methode fügen wir nun einen Aufruf dieser Methode hinzu:

Ausgabe:

```
    Hello World! My name is Alice.
    Hello World! My name is Bob.
    Hi Alice! My name is Bob.
```

13. Abgesehen von den primitiven Datentypen, die wir bereits kennengelernt haben, sind viele Grundelemente der Programmierung in Objective-C Objekte. Im Skript werden einige wichtige beschrieben. Dazu gehört das (statische) NSArray und sein (veränderbares) Pendant NSMutableArray. Mit Arrays können wir Listen von Objekten erstellen:

```
NSArray *persons = @[aPerson, anotherPerson]; // Erstellt ein Objekt der
    Klasse NSArray mit den gegebenen Person—Objekten

for (Person *person in persons) { // Die Objekte im Array persons werden
    durchgegangen (enumerated)

[person sayHello];
}

oder:

NSArray *names = @[@"Alice", @"Bob", @"Cindy", @"Bruce", @"Chris", @"Bill
    ", @"Susan"];

NSMutableArray *persons = [[NSMutableArray alloc] init]; // Ein verä
    nderbares Array wird erstellt
```

Übungsaufgaben

3. Scientists

- a) Erstellt eine weitere Klasse Scientist als Subklasse von Person.
- b) Wissenschaftler können rechnen, fügt dieser Klasse also eine Methode sayPrimeNumbersUpTo : hinzu, die ein Argument des Datentyps int annimmt und alle Primzahlen bis zu dieser Zahl in der Konsole ausgibt. Verwendet dazu den Algorithmus aus der vorherigen Übungsaufgabe (s. S. 8, Übungsaufgabe 2).
- c) Wir wollen uns vergewissern, dass die Klasse Scientist die Attribute und Methoden ihrer Superklasse Person erbt. Erstellt ein Scientist-Objekt, gebt ihm einen Namen und lasst den Hello World-Gruß ausgeben.
- d) Nach dem Prinzip der **Polymorphie** soll ein Wissenschaftler einen anderen Gruß ausgeben als eine normale Person. Informiert euch über Polymorphie im Skript und überschreibt in der Scientist-Klasse die Methode sayHello, sodass zusätzlich I know all prime numbers! ausgegeben wird.

4. Emails

a) Erweitert die Klasse Person zunächst um ein Freundschaftssystem

Jede Person besitzt ein (privates) Attribut NSMutableArray*friends, das eine Liste ihrer Freunde darstellt. Das Aufrufen einer Instanzmethode makeFriendsWith: fügt eine Person dieser Liste hinzu. Freundschaften werden immer in beide Richtungen geschlossen, also sollte die Methode makeFriendsWith: dieselbe Methode der anderen Person aufrufen.

Hinweis: Um hier Endlosschleifen zu verhindern kann die Instanzmethodecontains0bject : von NSArray hilfreich sein, die testet, ob ein Objekt bereits in der Liste enthalten ist. Beachtet außerdem, dass einer Liste erst erstellt werden muss, bevor ihr Objekte hinzugefügt werden können:

- b) Erstellt eine neue Klasse Email: NSObject. Wir simulieren nun das Senden und Weiterleiten von Emails. Die neue Klasse Email benötigt nur eine Instanzmethode sendTo:, die eine Liste von Personen NSArray*recipients als Argument annimmt. Die Implementierung dieser Methode ruft receiveEmail: auf jedem Objekt der Liste auf.
- c) Erweitert die Klasse Person um die Instanzmethoden sendEmail und receiveEmail :

sendEmail sendet eine neue Email an die Liste der Freunde der Person. receiveEmail : akzeptiert ein Argument Email *email und leitet die Email an alle Freunde weiter.

Hinweis: Damit die Klassen Email und Person in der jeweils anderen Klasse verfügbar sind, müssen die Header gegenseitig importiert werden. Verwendet das Prinzip der Forward Declaration, damit dies nicht zu einer Endlosschleife führt.

d) Verwendet die bekannte Methode application: didFinishLaunchingWithOptions:, um die Simulation zu starten. Erstellt eine Person Person *me mit eurem eigenen Namen und eine Liste NSMutableArray*persons mit weiteren Personen, beispielsweise mit den zuvor im Beispiel verwendeten Namen.

Stellt eine Freundschaftsverbindung zwischen me und jeder Person aus persons her, sowie zwischen solchen Personen mit gleichem Anfangbuchstaben.

Hinweis: Die Instanzmethode characterAtIndex: von NSString gibt den entsprechenden Buchstaben als Datentyp char zurück und kann einfach mit dem Operator == mit einem anderen verglichen werden.

Fügt in den verschiedenen Methoden Konsolenausgaben hinzu, damit ihr den Verlauf der Simulation nachvollziehen könnt. Ein Aufruf [me sendEmail] soll nun die Simulation starten. Nach dem *Build & Run* könnte das Tastenkürzel # zum Stoppen der Ausführung sinnvoll sein...

Hinweis: Wenn die Simulation in einer Endlosschleife läuft, steht nach einer Weile nicht mehr genug Speicherplatz zur Verfügung, um den nächsten Methodenaufruf auszuführen [1]. Ihr erhaltet dann den berüchtigten EXC_BAD_ACCESS Fehler und die Ausführung der App bricht ab. In anderen Situationen, in denen keine Endlosschleife ausgeführt wird, ist dieser Fehler ein Hinweis auf fehlerhaftes Speichermanagement. Dazu gehört bspw. der Zugriff auf ein Objekt, das bereits (möglicherweise aufgrund der Kennzeichnung des Attributs als weak) aus dem Speicher entfernt wurde.

e) Extra: Überlegt euch eine Erweiterung, sodass Emails sinnvoll als Spam erkannt und verworfen werden und nicht endlos weitergeleitet werden.

¹http://en.wikipedia.org/wiki/Stack_overflow

2.6 Graphisches @"Hello World!"

Natürlich wird ein Benutzer unserer App von den Ausgaben in der Konsole nichts mitbekommen. Diese dienen bei der Programmierung hauptsächlich dazu, Abläufe im Code nachzuvollziehen und Fehler zu finden. Unsere App ist also nur sinnvoll, wenn wir die Ausgaben auch auf dem Bildschirm darstellen können.

- 1. Zur Gestaltung der Benutzeroberfläche oder User Interface (UI) verwenden wir den in Xcode integrierten Interface Builder (IB). Wir haben bei der Projekterstellung dieser App das Single View-Template ausgewählt und konfiguriert, dass sowohl iPhone als auch iPad unterstützt werden soll (Universal). Daher enthält das Projekt bereits ein Storyboard für beide Gerättypen. Wählt im Project Navigator die Datei Main_iPhone.storyboard aus.
- 2. Der Editor-Bereich zeigt nun den Interface Builder an. In diesem Modus möchten wir häufig eine angepasste Konfiguration des Xcode-Fensters verwenden, es bietet sich also an, mit #+ T einen neuen Tab zu öffnen. Blendet dann mit den Schaltflächen in der Toolbar den Navigator- und Debug-Bereich aus und den Inspektor ein. Wählt dort außerdem zunächst den Standard-Editor (s. S. 15, Abb. 2.7).

Abbildung 2.7: Für den Interface Builder verwenden wir eine angepasste Fensterkonfiguration mit dem Inspektor anstatt des Navigators

- 3. Unser UI besteht bisher nur aus einer einzigen Ansicht, oder Scene. Ein Pfeil kennzeichnet die Scene, die zum Start der App angezeigt wird. Im Inspektor ist unten die Object Library zu finden. Wählt diesen Tab aus, wenn er noch nicht angezeigt wird.
- 4. Durchsucht die Liste von Interfaceelementen nach einem Objekt der Klasse UILabel, indem ihr das Suchfeld unten verwendet, und zieht ein Label irgendwo auf die erste Scene. Doppelklickt auf das erstellte Label und tippt Hello World!.

- 5. Ein Build & Run mit einem iPhone-Zielsystem zeigt diesen Gruß nun statisch auf dem Bildschirm an.
- 6. Habt ihr das Label im Interface Builder ausgewählt, zeigt der Inspektor Informationen darüber an. Im *Identity Inspector* könnt ihr euch vergewissern, dass das Objekt, was zur Laufzeit erzeugt wird und das Label darstellt, vom Typ UILabel ist. Im *Attributes Inspector* stehen viele Optionen zur Auswahl, mit denen Eigenschaften wie Inhalt, Schrift und Farbe des Labels angepasst werden können.
- 7. Natürlich möchten wir unser UI zur Laufzeit mit Inhalt füllen und den Benutzer mit den Interfaceelementen interagieren lassen können. Zieht ein UIButton- und UI TextField-Objekt auf die Scene und positioniert sie passend (s. S. 16, Abb. 2.8). Mit dem Attributes Inspector könnt ihr dem Button nun den Titel Say Hello! geben und für das Text Field einen Placeholder Name einstellen.

Abbildung 2.8: Mit einem Text Field, einem Button und einem Label erstellen wir ein simples UI

- 8. Nun müssen wir zur Laufzeit der App auf die erstellten Objekte zugreifen und auf Benutzereingaben reagieren können. Dazu verwenden wir sog. **IBOutlets** und **IBActions**. Blendet den Inspektor aus und wählt stattdessen den Assistant-Editor in der Toolbar. Stellt den Modus in der Jump bar auf *Automatic*. Im Assistant wird automatisch die Main-Datei des übergeordneten View Controllers eingeblendet.
- 9. Da auf die Interfaceelemente nicht von außerhalb der Klasse zugegriffen werden muss, können wir das private Interface oben in der Main-Datei verwenden. Schreibt dort:

```
dinterface ViewController ()

deproperty (strong, nonatomic) IBOutlet UITextField *nameTextfield;
deproperty (strong, nonatomic) IBOutlet UILabel *helloLabel;

- (IBAction)sayHelloButtonPressed:(id)sender;

dend
```

Wir definieren also mit IBOutlet gekennzeichnete Attribute für das Text Field und das Label, die zur Laufzeit der App unsere erstellten Interfaceelemente halten sollen. Auf den Button müssen wir nicht zugreifen sondern nur das Event abfangen, wenn ein Benutzer darauf drückt. Also benötigen wir nur eine mit IBAction gekennzeichnete Methode, die ausgeführt wird, wenn das Event eintritt.

- 10. Nun zieht mit gedrückter [ctrl]-Taste eine Linie von dem Text Field und dem Button im Interface Builder auf das jeweilige Attribut im Code. Die Codezeile wird dabei blau hinterlegt. Zieht außerdem genauso eine Line von dem Button auf die eben definierte Methode. Im Connection Inspector könnt ihr die IBOutlets und IBActions eines ausgewählten Objekts betrachten und wieder entfernen.
- 11. Wenn der Benutzer auf den Button drückt wird nun die Methode sayHelloButtonPressed : ausgeführt. Diese müssen wir jedoch erst implementieren:

```
#import "Person.h"
   @implementation ViewController
3
   - (IBAction)sayHelloButtonPressed:(id)sender {
5
      Person *newPerson = [[Person alloc] init];
6
      newPerson.name = self.nameTextfield.text;
7
      [newPerson sayHello];
8
   }
9
10
   @end
11
```

Die Klasse UITextField besitzt ein Attribut text des Typs NSString. Wir verwenden hier ihre Getter-Methode in der Dot-Syntax, um den Inhalt des Text Fields zu erhalten.

Nach einem Build & Run könnt ihr im Text Field einen Namen eintippen und werdet in der Konsole von einer virtuellen Person diesen Namens begrüßt. Entfernt vorher am besten den Code in der application:didFinishLaunchingWithOptions:, wenn ihr es noch nicht getan habt, damit diese Ausgaben nicht stören.

- 12. Damit der Gruß auf dem Bildschirm ausgegeben werden kann, benötigen wir eine Methode, die den Gruß nicht in der Konsole ausgibt sondern als Rückgabewert zurückgibt. Dazu wechseln wir wieder in die Konfiguration mit Project Navigator und ausgeblendetem Inspektor und wählen die *Person.m* Datei.
- 13. Fügt dem Interface der Klasse Person die Definition der neuen Methode helloString mit Rückgabetyp NSString hinzu:

```
1 - (NSString *)helloString;
```

Diese müssen wir in der Main-Datei implementieren:

```
#import "Person.h"
   @implementation Person
3
   - (NSString *)helloString {
      return [NSString stringWithFormat:@"Hello World! My name is %@.", self
6
   }
7
8
   - (void)sayHello {
9
      // Um nicht zwei nahezu gleiche Methoden implementiert zu haben, rufen
10
             wir hier stattdessen die neue Methode auf
      NSLog([self helloString]);
11
   }
12
13
   @end
```

Die Klasse NSString besitzt eine Klassenmethode stringWithFormat:, die ein neues NSString-Objekt nach dem gleichen String-Formatierungs-Prinzip zurückgibt, das wir bereits aus NSLog() kennen.

14. Wählt nun im Project Navigator die Datei *ViewController.m.* Hier haben wir zuvor die Methode sayHelloButtonPressed: implementiert. Nun setzen wir jedoch anstatt sayHello aufzurufen den angezeigten Text des Labels auf den Rückgabewert der neuen helloString Methode:

```
1   - (IBAction)sayHelloButtonPressed:(id)sender {
2     Person *newPerson = [[Person alloc] init];
3     newPerson.name = self.nameTextfield.text;
4     self.helloLabel.text = [newPerson helloString];
5 }
```

15. Mit einem Build & Run erhalten wir unser erstes interaktives User Interface (s. S. 19, Abb. 2.9)!

Übungsaufgaben

5. Scientists 2

Überlegt euch, wie die Subklasse Scientist von Person angepasst werden muss, damit die Methoden sayHello und helloString die richtigen Ergebnisse liefern. Ändert die Klasse des Objekts, das bei Drücken des Buttons erzeugt wird, zu Scientist.

Hinweis: Die Instanzmethode stringByAppendingString: von Objekten der Klasse NSString gibt ein neues NSString-Objekt zurück, das aus dem Text des Empfänger-objekts mit angefügtem Text des Arguments besteht:

Hello World! My name is Alice.

Abbildung 2.9: Drücken wir auf den Button, grüßt uns eine virtuelle Person mit dem angegebenen Namen. Sehr praktisch!

- 1 NSString *combinedString = [@"first" stringByAppendingString:@"second"];
- 2 // Wert von combinedString: firstsecond

Das gleiche Resultat lässt sich aber auch mit stringWithFormat: erzielen.

6. Simple UI

Erstellt ein neues Projekt und schreibt eine App mit einigen Interfaceelementen, die etwas sinnvolles tut.

Lasst eurer Kreativität freien Lauf oder implementiert eines der folgenden Beispiele.

Counter Auf dem Bildschirm ist ein Label zu sehen, das den Wert einer Property int count anzeigt, wenn eine Methode updateLabel aufgerufen wird. Buttons mit den Titeln +1, -1 und *Reset* ändern den Wert dieser Property entsprechend und rufen die updateLabel-Methode auf.

BMI Nach Eingabe von Gewicht m und Größe l wird der Body-Mass-Index $[^2]$ $BMI = m/l^2$ berechnet und angezeigt. Als Erweiterung kann die altersabhängige Einordnung in die Gewichtskategorien angezeigt werden.

²http://de.wikipedia.org/wiki/Body-Mass-Index

RGB In drei Textfelder kann jeweils ein Wert zwischen 0 und 255 für die Rot-, Grün- oder Blau-Komponenten eingegeben werden. Ein Button setzt die Hintergrundfarbe self.view.backgroundColor entsprechend und ein weiterer Button generiert eine zufällige Hintergrundfarbe. Ihr könnt noch einen UISwitch hinzufügen, der einen Timer ein- und ausschaltet und damit die Hintergrundfarbe bei jedem Timerintervall zufällig wechselt (s. Hinweis).

Hinweise:

- Achtet darauf, dass ihr bei/nach der Projekterstellung in der Targetkonfiguration die Bundle ID de.uni-hd.deinname.productname mit productname z.B. counter, bmi oder rgb eingestellt und unser Developer Team ausgewählt habt, damit die Ausführung der App auf euren eigenen Geräten funktioniert!
- Es ist ausreichend, das User Interface entweder für iPhone oder iPad zu konfigurieren.
- NSString besitzt Instanzmethoden wie floatValue zur Umwandlung von Text in Zahlenwerte.
- Die Klassenmethode colorWithRed:green:blue:alpha: von UIColor nimmt Werte zwischen 0 und 1 an.
- Die Funktion arc4random_uniform(n) gibt eine Pseudozufallszahl x mit 0 <= x < n aus.
- Wenn ein UISwitch betätigt wird, sendet dieser ein Event UIControlEventValueChanged
 , so wie ein UIButton das Event UIControlEventTouchUpInside sendet. Dieses
 Event kann genauso mit einer IBAction verbunden werden. Mit einem Klassenattribut NSTimer*randomTimer können wir dann die Methode für das zufällige
 Wechseln der Hintergrundfarbe implementieren: