Types of Morphisms in Bicategories

The Clowder Project Authors

July 22, 2025

In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 14.1 and 14.2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.

Arguably, the notion that best captures these concepts is that of a *pseudomonic morphism* (Definition 14.1.10.1.1) and of a *pseudoepic morphism* (Definition 14.2.10.1.1), although the other notions introduced in Sections 14.1 and 14.2 are also interesting on their own.

Contents

14.1	Monom	orphisms in Bicategories	2
	14.1.1	Representably Faithful Morphisms	2
	14.1.2	Representably Full Morphisms	3
	14.1.3	Representably Fully Faithful Morphisms	4
	14.1.4	Morphisms Representably Faithful on Cores	5
	14.1.5	Morphisms Representably Full on Cores	6
	14.1.6	Morphisms Representably Fully Faithful on Cores	6
	14.1.7	Representably Essentially Injective Morphisms	8
	14.1.8	Representably Conservative Morphisms	8
	14.1.9	Strict Monomorphisms	9
	14.1.10	Pseudomonic Morphisms	9
14.2	Epimor	phisms in Bicategories	11
	14.2.1	Corepresentably Faithful Morphisms	11
	14.2.2	Corepresentably Full Morphisms	12
	14.2.3	Corepresentably Fully Faithful Morphisms	13
	14.2.4	Morphisms Corepresentably Faithful on Cores	

		Strict Epimorphisms	
A	14.2.10	1 1	18

19J 14.1 Monomorphisms in Bicategories

019K 14.1.1 Representably Faithful Morphisms

Let *C* be a bicategory.

Definition 14.1.1.1. A 1-morphism $f: A \to B$ of C is representably faithful¹ if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is faithful.

Remark 14.1.1.1.2. In detail, *f* is representably faithful if, for all diagrams in *C* of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

- **Example 14.1.1.3.** Here are some examples of representably faithful morphisms.
- 1. Representably Faithful Morphisms in Cats₂. The representably faithful morphisms in Cats₂ are precisely the faithful functors; see Categories, Item 2 of Definition 11.6.1.1.2.
- 2. *Representably Faithful Morphisms in* **Rel**. Every morphism of **Rel** is representably faithful; see **Relations**, **Item 1** of **Definition 8.5.11.1.1**.

¹Further Terminology: Also called simply a faithful morphism, based on Item 1 of

019R 14.1.2 Representably Full Morphisms

Let *C* be a bicategory.

Definition 14.1.2.1.1. A 1-morphism $f: A \to B$ of C is **representably full**² if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{Hom}_C(X, A) \to \operatorname{Hom}_C(X, B)$$

given by postcomposition by f is full.

Remark 14.1.2.1.2. In detail, f is representably full if, for each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta: f \circ \phi \Longrightarrow f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of *C*, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

- **619U Example 14.1.2.1.3.** Here are some examples of representably full morphisms.
- 1. Representably Full Morphisms in Cats₂. The representably full morphisms in Cats₂ are precisely the full functors; see Categories, ?? of Definition 11.6.2.1.2.
- 2. *Representably Full Morphisms in* **Rel**. The representably full morphisms in **Rel** are characterised in Relations, Item 2 of Definition 8.5.11.1.1.

Definition 14.1.1.1.3.

²Further Terminology: Also called simply a full morphism, based on Item 1 of

019X 14.1.3 Representably Fully Faithful Morphisms

Let C be a bicategory.

- **Definition 14.1.3.1.1.** A 1-morphism $f: A \to B$ of C is **representably fully faithful**³ if the following equivalent conditions are satisfied:
- 019Z 1. The 1-morphism f is representably faithful (Definition 14.1.1.1) and representably full (Definition 14.1.2.1.1).
- 01A0 2. For each $X \in Obi(C)$, the functor

$$f_* : \operatorname{Hom}_C(X, A) \to \operatorname{Hom}_C(X, B)$$

given by postcomposition by *f* is fully faithful.

- **Remark 14.1.3.1.2.** In detail, *f* is representably fully faithful if the conditions in Definition 14.1.1.1.2 and Definition 14.1.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in Obi(C)$ and each 2-morphism

$$\beta: f \circ \phi \Longrightarrow f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-morphism

$$\alpha: \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

Definition 14.1.2.1.3.

³Further Terminology: Also called simply a **fully faithful morphism**, based on Item 1 of Definition 14.1.3.1.3.

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

- **Example 14.1.3.1.3.** Here are some examples of representably fully faithful morphisms.
- 1. Representably Fully Faithful Morphisms in Cats₂. The representably fully faithful morphisms in Cats₂ are precisely the fully faithful functors; see Categories, Item 6 of Definition 11.6.3.1.2.
- 2. *Representably Fully Faithful Morphisms in* **Rel**. The representably fully faithful morphisms of **Rel** coincide (Relations, Item 3 of Definition 8.5.11.1.1) with the representably full morphisms in **Rel**, which are characterised in Relations, Item 2 of Definition 8.5.11.1.1.
- 01A5 14.1.4 Morphisms Representably Faithful on Cores

Let C be a bicategory.

Definition 14.1.4.1.1. A 1-morphism $f: A \to B$ of C is **representably faithful on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f_*: \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$$

given by postcomposition by f is faithful.

Remark 14.1.4.1.2. In detail, *f* is representably faithful on cores if, for all diagrams in *C* of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

01A8 14.1.5 Morphisms Representably Full on Cores

Let *C* be a bicategory.

Definition 14.1.5.1.1. A 1-morphism $f: A \to B$ of C is representably full on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_C(X, A)) \to \mathsf{Core}(\mathsf{Hom}_C(X, B))$$

given by postcomposition by f is full.

Remark 14.1.5.1.2. In detail, f is representably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \quad X \stackrel{f \circ \phi}{\underbrace{\qquad \qquad \qquad }} B$$

of *C*, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad X \stackrel{\phi}{\underbrace{\qquad \qquad }} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

01AB 14.1.6 Morphisms Representably Fully Faithful on Cores

Let *C* be a bicategory.

- O1AC **Definition 14.1.6.1.1.** A 1-morphism $f: A \to B$ of C is **representably fully faithful on cores** if the following equivalent conditions are satisfied:
- 01AD 1. The 1-morphism f is representably faithful on cores (Definition 14.1.5.1.1) and representably full on cores (Definition 14.1.4.1.1).

Olak 2. For each $X \in \text{Obj}(C)$, the functor

$$f_*: \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by *f* is fully faithful.

- NAF Remark 14.1.6.1.2. In detail, f is representably fully faithful on cores if the conditions in Definition 14.1.4.1.2 and Definition 14.1.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of *C*, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad \qquad }} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha$$
.

01AG 14.1.7 Representably Essentially Injective Morphisms

Let *C* be a bicategory.

Definition 14.1.7.1.1. A 1-morphism $f: A \to B$ of C is **representably essentially injective** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is essentially injective.

- **Remark 14.1.7.1.2.** In detail, f is representably essentially injective if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ of C, the following condition is satisfied:
 - (\star) If $f \circ \phi \cong f \circ \psi$, then $\phi \cong \psi$.

01AK 14.1.8 Representably Conservative Morphisms

Let C be a bicategory.

Definition 14.1.8.1.1. A 1-morphism $f: A \to B$ of C is **representably conservative** if, for each $X \in \text{Obj}(C)$, the functor

$$f_*: \operatorname{Hom}_C(X, A) \to \operatorname{Hom}_C(X, B)$$

given by postcomposition by f is conservative.

Q1AM Remark 14.1.8.1.2. In detail, f is representably conservative if, for each pair of morphisms ϕ , ψ : $X \Rightarrow A$ and each 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\psi} A$$

of C, if the 2-morphism

$$\mathrm{id}_f \star \alpha \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\stackrel{f \circ \phi}{\underset{f \circ \psi}{\sqcup}}}_{f \circ \psi} B$$

is a 2-isomorphism, then so is α .

01AN 14.1.9 Strict Monomorphisms

Let *C* be a bicategory.

Definition 14.1.9.1.1. A 1-morphism $f: A \to B$ of C is a **strict monomorphism** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_*: \operatorname{Obj}(\operatorname{Hom}_C(X, A)) \to \operatorname{Obj}(\operatorname{Hom}_C(X, B))$$

is injective.

Remark 14.1.9.1.2. In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

- **O1AR Example 14.1.9.1.3.** Here are some examples of strict monomorphisms.
- 01AS 1. Strict Monomorphisms in Cats₂. The strict monomorphisms in Cats₂ are precisely the functors which are injective on objects and injective on morphisms; see Categories, Item 1 of Definition 11.7.2.1.2.
- 2. *Strict Monomorphisms in* **Rel**. The strict monomorphisms in **Rel** are characterised in Relations, Definition 8.5.10.1.1.

01AU 14.1.10 Pseudomonic Morphisms

Let *C* be a bicategory.

Definition 14.1.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudomonic** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is pseudomonic.

Q1AW Remark 14.1.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudomonic if it satisfies the following conditions:

01AX 1. For all diagrams in *C* of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

Olay 2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \qquad X \stackrel{f \circ \phi}{\underbrace{\beta \downarrow}} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\biguplus} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha.$$

- **O1AZ** Proposition 14.1.10.1.3. Let $f: A \rightarrow B$ be a 1-morphism of C.
- 01B0 1. *Characterisations*. The following conditions are equivalent:
- 01B1 (a) The morphism f is pseudomonic.
- 01B2 (b) The morphism f is representably full on cores and representably faithful.

01B3 (c) We have an isocomma square of the form

$$A \stackrel{\text{eq.}}{\cong} A \stackrel{\leftrightarrow}{\times}_B A, \quad \text{id}_A \downarrow \qquad \stackrel{\text{id}_A}{\swarrow} \qquad A \downarrow_F$$

$$A \stackrel{\text{eq.}}{\longrightarrow} B$$

in *C* up to equivalence.

- 01B4 2. *Interaction With Cotensors*. If C has cotensors with $\mathbb{1}$, then the following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) We have an isocomma square of the form

$$A \stackrel{\text{eq.}}{\cong} A \stackrel{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \qquad A \stackrel{F}{\longleftarrow} \mathbb{1} \pitchfork A$$

$$A \stackrel{\text{eq.}}{\cong} A \stackrel{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \qquad A \stackrel{F}{\longleftarrow} \mathbb{1} \pitchfork A$$

$$B \stackrel{\text{eq.}}{\longleftarrow} \mathbb{1} \pitchfork B$$

in *C* up to equivalence.

Proof. Item 1, Characterisations: Omitted. *Item 2, Interaction With Cotensors*: Omitted.

01B5 14.2 Epimorphisms in Bicategories

01B6 14.2.1 Corepresentably Faithful Morphisms

Let *C* be a bicategory.

Definition 14.2.1.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is faithful.

Remark 14.2.1.1.2. In detail, *f* is corepresentably faithful if, for all diagrams in *C* of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\biguplus} X,$$

if we have

$$\alpha \star id_f = \beta \star id_f$$

then $\alpha = \beta$.

- **Example 14.2.1.1.3.** Here are some examples of corepresentably faithful morphisms.
- 1. Corepresentably Faithful Morphisms in Cats₂. The corepresentably faithful morphisms in Cats₂ are characterised in Categories, Item 5 of Definition 11.6.1.1.2.
- 2. *Corepresentably Faithful Morphisms in* **Rel**. Every morphism of **Rel** is corepresentably faithful; see Relations, Item 1 of Definition 8.5.13.1.1.
- **01BC** 14.2.2 Corepresentably Full Morphisms

Let *C* be a bicategory.

Definition 14.2.2.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably full** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is full.

Q1BE Remark 14.2.2.1.2. In detail, f is corepresentably full if, for each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta: \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \xrightarrow{\phi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\phi \atop \psi} X = A \underbrace{\beta \downarrow}_{\psi \circ f} X$$

$$\beta = \alpha \star id_f$$
.

- **O1BF Example 14.2.2.1.3.** Here are some examples of corepresentably full morphisms.
- 01BG 1. Corepresentably Full Morphisms in Cats₂. The corepresentably full morphisms in Cats₂ are characterised in Categories, Item 7 of Definition 11.6.2.1.2.
- 2. *Corepresentably Full Morphisms in* **Rel**. The corepresentably full morphisms in **Rel** are characterised in Relations, Item 2 of Definition 8.5.13.1.1.

01BJ 14.2.3 Corepresentably Fully Faithful Morphisms

Let *C* be a bicategory.

- O1BK Definition 14.2.3.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful⁴ if the following equivalent conditions are satisfied:
- 01BL 1. The 1-morphism f is corepresentably full (Definition 14.2.2.1.1) and corepresentably faithful (Definition 14.2.1.1.1).
- 01BM 2. For each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is fully faithful.

- **Remark 14.2.3.1.2.** In detail, *f* is corepresentably fully faithful if the conditions in Definition 14.2.1.1.2 and Definition 14.2.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$
,

then $\alpha = \beta$.

⁴Further Terminology: Corepresentably fully faithful morphisms have also been called **lax epimorphisms** in the literature (e.g. in [Adá+01]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

2. For each $X \in Obj(C)$ and each 2-morphism

$$\beta: \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \xrightarrow{\phi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

- **Example 14.2.3.1.3.** Here are some examples of corepresentably fully faithful morphisms.
- 1. Corepresentably Fully Faithful Morphisms in Cats₂. The fully faithful epimorphisms in Cats₂ are characterised in Categories, Item 10 of Definition 11.6.3.1.2.
- 2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Relations, Item 3 of Definition 8.5.13.1.1) with the corepresentably full morphisms in Rel, which are characterised in Relations, Item 2 of Definition 8.5.13.1.1.
- 01BS 14.2.4 Morphisms Corepresentably Faithful on Cores

Let C be a bicategory.

Definition 14.2.4.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^*: \mathsf{Core}(\mathsf{Hom}_C(B,X)) \to \mathsf{Core}(\mathsf{Hom}_C(A,X))$$

given by precomposition by f is faithful.

Remark 14.2.4.1.2. In detail, *f* is corepresentably faithful on cores if, for all diagrams in *C* of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\underset{h}{\bigoplus}} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star id_f = \beta \star id_f$$

then $\alpha = \beta$.

01BV 14.2.5 Morphisms Corepresentably Full on Cores

Let *C* be a bicategory.

Definition 14.2.5.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably full on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is full.

Remark 14.2.5.1.2. In detail, f is corepresentably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta: \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\biguplus} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

$$\beta = \alpha \star id_f$$
.

01BY 14.2.6 Morphisms Corepresentably Fully Faithful on Cores

Let C be a bicategory.

- O1BZ **Definition 14.2.6.1.1.** A 1-morphism $f: A \to B$ of C is **corepresentably fully faithful on cores** if the following equivalent conditions are satisfied:
- 01C0 1. The 1-morphism f is corepresentably full on cores (Definition 14.2.5.1.1) and corepresentably faithful on cores (Definition 14.2.1.1.1).
- 01C1 2. For each $X \in \text{Obj}(C)$, the functor

$$f^*: \mathsf{Core}(\mathsf{Hom}_C(B,X)) \to \mathsf{Core}(\mathsf{Hom}_C(A,X))$$

given by precomposition by f is fully faithful.

- **Remark 14.2.6.1.2.** In detail, *f* is corepresentably fully faithful on cores if the conditions in Definition 14.2.4.1.2 and Definition 14.2.5.1.2 hold:
 - 1. For all diagrams in *C* of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star id_f = \beta \star id_f$$

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} X$$

of *C* such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

$$\beta = \alpha \star id_f$$
.

01C3 14.2.7 Corepresentably Essentially Injective Morphisms

Let *C* be a bicategory.

Definition 14.2.7.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably essentially injective** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is essentially injective.

- **Remark 14.2.7.1.2.** In detail, f is corepresentably essentially injective if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ of C, the following condition is satisfied:
 - (\star) If $\phi \circ f \cong \psi \circ f$, then $\phi \cong \psi$.

01C6 14.2.8 Corepresentably Conservative Morphisms

Let *C* be a bicategory.

Definition 14.2.8.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably conservative** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is conservative.

Q1C8 Remark 14.2.8.1.2. In detail, f is corepresentably conservative if, for each pair of morphisms ϕ , ψ : $B \Rightarrow X$ and each 2-morphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\biguplus} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \qquad A \xrightarrow{\alpha \star \mathrm{id}_f} X$$

$$\psi \circ f \longrightarrow \psi \circ f$$

is a 2-isomorphism, then so is α .

01C9 14.2.9 Strict Epimorphisms

Let *C* be a bicategory.

Definition 14.2.9.1.1. A 1-morphism $f: A \to B$ is a **strict epimorphism in** C if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_*: \operatorname{Obj}(\operatorname{Hom}_C(B,X)) \to \operatorname{Obj}(\operatorname{Hom}_C(A,X))$$

is injective.

O1CB Remark 14.2.9.1.2. In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

- **O1CC Example 14.2.9.1.3.** Here are some examples of strict epimorphisms.
- 1. *Strict Epimorphisms in* Cats₂. The strict epimorphisms in Cats₂ are characterised in Categories, Item 1 of Definition 11.7.3.1.2.
- 2. *Strict Epimorphisms in* **Rel**. The strict epimorphisms in **Rel** are characterised in Relations, Definition 8.5.12.1.1.

01CF 14.2.10 Pseudoepic Morphisms

Let *C* be a bicategory.

Definition 14.2.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudoepic** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is pseudomonic.

Q1CH Remark 14.2.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudoepic if it satisfies the following conditions:

01CJ 1. For all diagrams in *C* of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$
,

then $\alpha = \beta$.

01CK 2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \stackrel{\phi \circ f}{\biguplus_{\psi \circ f}} X$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\biguplus} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

O1CL Proposition 14.2.10.1.3. Let $f: A \rightarrow B$ be a 1-morphism of C.

- **1.** *Characterisations.* The following conditions are equivalent:
- **O1CN** (a) The morphism f is pseudoepic.
- 01CP (b) The morphism f is corepresentably full on cores and corepresentably faithful.

01CQ (c) We have an isococomma square of the form

$$B \stackrel{\text{eq. }}{\cong} B \stackrel{\leftrightarrow}{\coprod}_A B, \quad \text{id}_B \qquad A \qquad B \stackrel{\text{id}_B}{\swarrow} \qquad B \qquad F \qquad B \stackrel{\text{eq. }}{\longleftarrow} A$$

in *C* up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Appendices

A Other Chapters

1. Introduction

Preliminaries

2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes

References 21

References

[Adá+01] Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: *Theory Appl. Categ.* 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on p. 13).