컴퓨터 그래픽스 OpenGL 조명

2017년 2학기

4. OpenGL 조명 내용

- 조명
 - 조명 모델
 - 재질 설정

OpenGL에서 빛:

- 빨간색, 초록색, 파란색의 성분
 - 광원의 색은 광원에서 방출하는 R, G, B 성분의 양에 따라 결정
- 표면의 재질은 표면에 들어왔다가 다양한 방향으로 반사되는 빛의 RGB 성분의 비율로 결정
- 즉, openGL의 조명은 광원 (Lights), 재질(Materials), 면의 법선벡터(Normal)
 에 의해서 결정된다.

• OpenGL에서 지원하는 광원

- 주변 조명 (Ambient light)
 - 빛은 모든 방향에서 고르게 비춘다.
 - 배경 조명

- 방향과 위치를 가짐으로 빛이 비치는 물체의 면이 밝 아지는 조명
- 일정한 방향으로 빛이 들어와서 물체의 표면에서 여러 방향으로 분산된다.
- 빛을 받는 표면은 그렇지 않은 부분에 비해 밝게 보인다.

- 거울반사 조명 (Specular light)

- 특정한 방향으로 들어와서 한 방향으로 완전히 반사되는 빛
- 하이라이트가 생긴다.
- 위의 3종류의 빛을 합쳐서 조명 모델을 결정한다.
- OpenGL에서 한 장면에 동시에 8개의 광원 사용 가능

• 광원 설정

- 광원의 속성은 glLight ()함수에 의해 지정된다.
- 광원은 위치(position)와 색(color)를 갖는다.
- 광원의 강도는 색의 강도에 의해 결정된다.
- 광원은 방향성 광원(directional light, infinite light)이거나 위치성 광원(positional light, local light) 이다.
 - 방향성 광원의 모든 빛은 같은 방향을 갖는다.
 - 위치성 광원은 공간의 특정 지점에서 오는 빛이다.
 - 광원의 위치의 4번째 값이 0이면 방향성 광원이고, 1이면 위치성 광원이다.
- 광원의 위치는 현재 변환에 영향을 받는다.
 - 카메라 변환 후에 지정하는 것이 좋다.
 - 광원은 객체와 같이 변한 행렬에 의해 움직일 수 있다.

• 재질의 속성

- 재질의 속성은 표면이 빛을 어떻게 반사하는지를 나타낸다.
- 조명이 활성화 되면, glColor는 무시되고 재질이 대신 사용된다.

• 조명과 음영 넣기

- 조명 기능 활성화 (Enable lighting)
- 광원 정의 (Specify lights)
- 음영 모드 정의 (Shading mode)
- 법선 벡터 정의 (surface normal)
- 재질 특성 정의 (surface material)
- 조명모델 정의 (lighting model)

- 조명 기능 활성화
 - 조명 기능을 활성화 해야 한다.
 - glEnable (GL_LIGHTING);
 - 조명 사용이 가능하도록 한다.
 - 장면 내에 있는 각 꼭지점의 색상을 결정할 때 재질 속성과 조명 인자를 계산에 넣게 된다.
 - 조명기능이 활성화 되면,
 - » 물체의 색은 광원과 물체의 특성에 의해서 결정
 - » glColor에 의해 정의된 색은 무시
 - 이러한 인자를 지정하는 부분
 - » 그리기가 이루어지기 직전에 수행

- 조명 모델 정의
 - 조명 모델 전반에 관한 변수 조절
- 조명 효과 모델 설정
 - glLightModel: openGL에서 사용하는 조명 모델 인자를 설정, 특정 번호의 조명 이 아니라 전역 설정이므로 장면 전체에 적용
 - glLightModelf (GLenum pname, GLfloat param);
 - glLightModeli (GLenum pname, GLint param);
 - glLightModelfv (GLenum pname, const GLfloat *params);
 - glLightModeliv (GLenum pname, const GLint *params);
 - Parameters:
 - pname: 조명 모델 인자를 지정
 - GL_LIGHT_MODEL_AMBIENT: 전역 주변광 설정 (초기값은 (0.2, 0.2, 0.2, 1.0))
 - » 위의 모델 중 다음 2개만 사용 가능: glLightModelfv, glLightModeliv
 - GL_LIGHT_MODEL_LOCAL_VIEWER: 반사광 각도 계산 (초기값은 GL_FALSE)
 - » 산란반사광의 각도가 -z축 방향으로 평행
 - » GL_FALSE(0.0): 조명이 평행하게 비친다.
 - » GL_TRUE(1.0): 정점의 방향에 따라 비친다.
 - GL_LIGHT_MODEL_TWO_SIDE: 폴리곤의 양면이 조명을 받을지를 결정 (초기값은 GL_FALSE)
 - » GL_FALSE(0.0): 폴리곤의 앞면만 빛을 받는다
 - params: 빛의 값 (RGBA 값)

사용예)
 GLfloat ambientLignt[] = {0.2f, 0.2f, 0.2f, 1.0f};
 glEnable (GL_LIGHTING);
 glLightModelfv (GL_LIGHT_MODEL_AMBIENT, ambientLight);
 glLightModelf (GL_LIGHT_MODEL_LOCAL_VIEWER, 0.0);
 glLightModelf (GL_LIGHT_MODEL_TWO_SIDE, 0.0);

광원 정의

- 광원: 세기, 색, 특정 위치, 방향
- OpenGL에서는 독립적인 광원을 8개까지 사용할 수 있다.
 - 광원 번호: **GL_LIGHTx** (0 ≤ x ≤ 7)
 - 주변광 성분: GLfloatf ambientLight[];
 - 산란반사광 성분: GLfloatf diffuseLight[]
 - 거울반사광 성분: GLfloatf specularLight[]
 - 광원의 위치: GLfloatf lightPos[];
 - 마지막 값이 1.0이면 원점에서 좌표 값을 향하는 벡터 방향의 위치성 광원
 - 마지막 값이 0.0이면 지정된 좌표가 광원의 위치인 방향성 광원

- 광원을 켠다: glEnable (GL_LIGHTx);
- glLight 함수로 광원의 속성을 설정한다.

- glLight: 사용 가능한 8개의 광원 중 하나의 광원 인자 지정
 - glLightf (GLenum lightID, GLenum pname, GLfloat param);
 - glLighti (GLenum lightID, GLenum pname, GLint param);
 - glLightfv (GLenum lightID, GLenum pname, const GLfloat *param);
 - glLightiv (GLenum lightID, GLenum pname, const GLint *param);
 - Parameters:
 - lightID : 어느 광원을 수정할 지 지정한다.
 - GL_LIGHT0 ~ GL_LIGHT7
 - pname: 사용할 조명 인자를 지정
 - GL_AMBIENT: 주변 조명의 세기 (r, g, b, a)를 지정 (초기값은 (0, 0, 0, 0))
 - GL_DIFFUSE: 산란 반사 조명의 세기 (r, g, b, a)를 지정 (초기값은 (1, 1, 1, 1))
 - GL_SPECULAR: 거울 반사 조명의 세기 (r, g, b, a)를 지정 (초기값은 (1, 1, 1, 1))
 - GL_POSITION: 조명의 (x, y, z, w) 값 지정 (초기값은 (0, 0, 1, 0))
 - GL_SPOT_DIRECTION: 스포트라이트의 방향 벡터 (초기값은 (0, 0, -1))
 - GL_SPOT_CUTOFF: 스포트라이트의 확산 각도(초기값은 180.0)
 - GL_SPOT_EXPONENT: 스포트라이트 지수 (초기값은 0)
 - GL_CONSTANT_ATTENUATION: 빛이 점점 흐려지는 감쇠율 (초기값은 1)
 - GL_LINEAR_ATTENUATION: 빛이 점점 흐려지는 감쇠율 (1차 계수, 초기값은 0)
 - GL_QUATRATIC_ATTENUATION: 빛이 점점 흐려지는 감쇠율 (2차 계수, 초기값은 0)
 - param: pname의 값

예) (1, 2, 3)에서 주변조명은 녹색, 산란 반사 조명은 적색, 반사광은 백색인 광원 0를 좌표 (1, 2, 3)에 설치하기

```
GLfloat AmbientLight[] = {0.0f, 1.0f, 0.0f, 1.0f};  // 녹색조명 GLfloat DiffuseLight[] = {1.0f, 0.0f, 0.0f, 1.0f};  // 적색조명 GLfloat SpecularLight[] = {1.0, 1.0, 1.0, 1.0};  // 백색조명 Glfloat lightPos[] = {1.0, 2.0, 3.0. 1.0};  // 위치: (1, 2, 3) ...  // 조명을 사용하도록 설정 glEnable (GL_LIGHTING);  // 조명 설정 glLightfv (GL_LIGHTO, GL_AMBIENT, AmbientLight); glLightfv (GL_LIGHTO, GL_SPECULAR, SpecularLight); glLightfv (GL_LIGHTO, GL_POSITION, lightPos); glEnable (GL LIGHTO);
```

• 음영 모드 정의

- glShadeModel() 함수를 사용하여 쉐이딩을 설정한다.
 - GL_FLAT 또는 GL_SMOOTH 사용하여 쉐이딩 설정
 - 지엘은 플랫 셰이딩과 구로 셰이딩 지원

• 법선 벡터 정의

- 반사광의 세기를 계산하기 위해 법선 벡터 사용
- 정점의 법선 벡터와 표면 법선 벡터는 수동으로 설정해야 한다.

- 법선 벡터 설정
 - glNormal3f (GLfloat x, GLfloat y, GLfloat z);
 - 법선 벡터는 단위벡터라야 한다.
 - 곡선일 때는 각각의 정점에 법선 벡터를 설정한다.
 - 사용 예)
 glBegin (GL_TRIANGLE);
 glNormal3f (0.0, 1.0, 0.0); // 아래의 3개의 정점 모두에 적용
 glVertex3f (0.0, 0.0, -1.0);
 glVertex3f (0.0, 1.0, 0.0);
 glVertex3f (-1.0, 0.0, 0.0);
 glEnd ();
 - 단위벡터로 만들 때: glEnable (GL_NORMALIZED);

물체면 특성 정의 (Material)

- 물체의 특성: 물체면의 색과 물체면의 매끄러움
 - 물체면의 색: 주변조명, 산란반사조명, 거울반사조명 등 반사의 종류별로 물체면 에서 어떤 크기로 빛을 반사하는지를 의미
 - 물체면의 매끄러움: 거울반사광의 광택 계수
- 표면이 어떤 물체로 만들어질 것인가를 결정한다.
- 물체가 얼마나 빛을 반사 할 것인가를 결정한다.
- 적당한 조명 효과를 만들기 위해서 재질의 특성을 결정해야 한다.
 - Ambient: 특정한 방향이 없이 들어오고, 모든 방향으로 반사
 - Diffuse: 특정한 방향에서 들어오고, 모든 방향으로 반사
 - Specular: 특정한 방향에서 들어오고, 특정 방향으로 뚜렷하게 반사
 - Shininess: 특정한 방향에서 들어오고, 특정 방향으로 같은 양이 반사
 - Emissive: 물체 자체가 발산하는 빛

- 물체면의 재질 속성 설정하기
 - glMaterial 함수 사용: 조명 모델에서 사용할 재질 인자를 결정
 - void glMaterialf (GLenum face, GLenum pname, GLfloat param);
 - void glMateriali (GLenum face, GLenum pname, GLint param);
 - void glMaterialfv (GLenum face, GLenum pname, const GLfloat *param);
 - void glMaterialiv (GLenum face, GLenum pname, const GLint *param);
 - face: 재질 속성이 폴리곤의 어디에 적용할지를 결정
 - » GL_FRONT / GL_BACK / GL_FRONT_AND_BACK
 - pname: 재질 속성 설정
 - » GL_AMBIENT: 주변 반사에 대한 물체색 (초기값은 (0.2, 0.2, 0.2, 1.0))
 - » GL_DIFFUSE: 산란 반사에 대한 물체색 (초기값은 (0.8, 0.8, 0.8, 1.0))
 - » GL_SPECULAR: 거울 반사에 대한 물체색 (초기값은 (0.0, 0.0, 0.0, 1.0))
 - » GL_SHINIESS: 거울 반사의 광택 계수 (초기값은 0.0, 0 ~ 128사이의 값)
 - » GL_EMISSION: 자체적 빛 방출 (초기값은 (0.0, 0.0, 0.0, 1.0))
 - » GL_AMBIENT_AND_DIFFUSE: 주변 반사와 산란 반사에 대한 물체색
 - params: pname으로 설정된 인자의 값

```
예)
GLfloat gray[] = \{0.75f, 0.75f, 0.75f, 1.0f\};
GLfloat specref[] = \{ 1.0f, 1.0f, 1.0f, 1.0f \};
glMaterialfy (GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);
glMaterialfv(GL_FRONT, GL_SPECULAR, specref);
glMateriali(GL_FRONT, GL_SHININESS, 64);
glBegin (GL_TRIANGLES);
    glVertex3f (-15.0f, 0.0f, 30.0f);
    glVertex3f (0.0f, 15.0f, 30.0f);
    glVertex3f (0.0f, 0.0f, -50.f);
glEnd ();
```

- glColorMaterial: glMaterial 함수를 호출하지 않고, glColor를 이용하여 재질 색을 설정. 현재 색대로(glColor로 설정된 색상) 재질 속성을 설정.
 - glEnable 함수로 GL_COLOR_MATERIAL 설정하고 사용
 - glColorMaterial (GLenum face, GLenum mode);
 - Parameter:
 - Face: 현재 설정할 면
 - » GL FRONT / GL BACK / GL FRONT AND BACK
 - Mode: 어떤 재질 속성이 현재 색상 설정의 영향을 받을 것인지를 결정
 - » GL_EMISSION / GL_AMBIENT / GL_DIFFUSE / GL_SPECULAR / GL_AMBIENT_AND_DIFFUSE

- 예)

```
GLfloat ambientLight[] = \{1.0f, 1.0f, 1.0f, 1.0f\};
  GLfloat specref[] = \{ 1.0f, 1.0f, 1.0f, 1.0f \};
// 조명 효과를 설정한다.
  glEnable (GL_LIGHTING);
  glLightModelfv (GL_LIGHT_MODEL_AMBIENT, ambientLight);
// 재질 컬러 트래킹을 설정한다.
  glEnable (GL_COLOR_MATERIAL);
  glColorMaterial (GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
  glMaterialfv(GL FRONT, GL SPECULAR, specref);
  qlMateriali(GL_FRONT, GL_SHININESS, 128);
  glColor3f (0.75f, 0.75f, 0.75f);
  glBegin (GL_TRIANGLES);
            glVertex3f (-15.0f, 0.0f, 30.0f);
            glVertex3f (0.0f, 15.0f, 30.0f);
            glVertex3f (0.0f, 0.0f, -50.f);
  glEnd ();
```


모두 합쳐서 조명 모델 사용하기

• 조명을 위한 변수 값 설정하기

```
주변 조명: GLfloat ambientLight[] = {..., ..., ..., ...};
산란반사 조명: GLfloat diffuseLight[] = {..., ..., ..., ...};
거울반사 조명: GLfloat specular[] = {..., ..., ....};
조명 위치: GLfloat lightPos[] = {..., ..., ....};
거울반사 재질값: GLfloat specref[] = {..., ..., ....};
```

• 조명 효과 설정하기

glEnable (GL_LIGHTING)

• 조명모델 중 전역 주변광 설정하기

glLightModelfv (GL_LIGHT_MODEL_AMBIENT, ambientLight);

• 조명 인자 설정하고 켜기 (0 ~ 7): 번호에 따라 조명의 인자값 설정하기

- 조명 설정하기

```
glLightfv (GL_LIGHTx, GL_AMBIENT, ambientLight); // 주변 조명
glLightfv (GL_LIGHTx, GL_DIFFUSE, diffuseLight); // 산란반사 조명
glLightfv (GL_LIGHTx, GL_SPECULAR, specular); // 거울반사 조명
```

- 조명 켜기
 - glEnable (GL_LIGHTx)

모두 합쳐서 조명 모델 사용하기

- 물체 표면의 재질 설정하기
 - 컬러 트랙킹 설정하기
 - glEnable (GL_COLOR_MATERIAL)
 - 현재 색의 트랙킹을 위해서 재질 속성 설정하기
 - glColorMaterial (GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
 - 조명 모델을 위한 재질 변수 값 설정하기
 - 특정 면에 대해 재질 값을 설정한다.
 - 앆면:

```
glMaterialfv (GL_FRONT, GL_AMBIENT, ambientLight);
glMateriali (GL_FRONT, GL_DIFFUSE, diffuseLight);
glMaterialfv (GL_FRONT, GL_SPECULAR, specref);
glMateriali (GL_FRONT, GL_SHININESS, 64);
```

- 뒷면: glMaterialfv (GL_BACK, ..., ...);
- 앞뒷면: glMaterialfv (GL_FRONT_AND_BACK, ..., ...);

실습 29

• 조명 2개 사용

- 실습 21 (다양한 객체) 배경에서 가운데에 피라미드(삼각형을 이용하여 그리기)
 를 그리고 그 주위를 지구가, 지구 주위를 달이 공전한다.
- 화면의 좌우에 조명을 각각 1개씩 놓는다.
 - 각각의 조명의 색을 다르게 설정한다.
- 명령어
 - A/a: 광원의 ambient light를 높게 / 낮게
 - D/d: 광원의 diffuse light를 높게 / 낮게
 - S/s: 광원의 specular light를 높게 / 낮게
 - 1: 1번 조명을 켠다 / 끈다.
 - 2: 2번 조명을 켠다 / 끈다.
- 조명의 위치에 작은 콘을 그려 조명을 표시한다.

실습 30

• 눈 내리는 애니메이션 구현하기

- 원근 투영을 사용한다.
 - 바닥: 평면을 사용하여 바닥을 그린다.
 - 피라미드: 평면에 2개의 피라미드를 그린다.
 - 피라미드 주변을 각각 지구와 달이 공전한다.
- 바닥의 네 꼭지점 위에 4개의 조명을 넣는다.
 - 조명을 각각 조정할 수 있도록 한다.
- 화면의 위 부분에서 눈이 내린다.
 - 눈: 오픈지엘이 제공하는 3차원 도형 사용
 - 눈은 임의의 높이에서 아래로 떨어진다.
 - 눈은 계속 내린다.
- 화면 애니메이션
 - 초기 화면에서 줌인을 (z축으로 이동) 시켜서 가까이 간다.
 - 특정 위치에 도달하면 y축으로 3바퀴 회전한다.
 - 회전이 끝나면 다시 제자리로 줌아웃한다.
- 조명 애니메이션
 - 카메라 애니메이션이 끝나면 조명들이 일제히 시계방향 (또는 반시계방향)으로 회전한다.
- 명령어:
 - 1/2/3/4: 네 개의 조명 각각 켜기/끄기
 - a/A: 전체 조명 켜기/끄기
 - n/N: 법선 벡터 설정/해제
 - i: 초기화
 - y/Y: 바닥의 중점을 기준으로 전체 화면을 시계/반시계 회전

실습 31