

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180403102

FCC REPORT (BLE)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: N5704L, G1, P1, G1+

Trade mark: NUU

FCC ID: 2ADINN5704L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Apr., 2018

Date of Test: 10 Apr., to 29 Apr., 2018

Date of report issued: 08 May, 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 May, 2018	Original

Tested by: Date: 08 May, 2018

Toot Engineer

Reviewed by: Date: 08 May, 2018

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	
3		
4		
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND TEST MODE	6
	5.4 DESCRIPTION OF SUPPORT UNITS	6
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	7
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	8
6	6 TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT:	9
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	13
	6.4 OCCUPY BANDWIDTH	15
	6.5 POWER SPECTRAL DENSITY	17
	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	28
7	7 TEST SETUP PHOTO	33
8	8 EUT CONSTRUCTIONAL DETAILS	35
_		

4 Test Summary

Section in CFR 47	Result
15.203 & 15.247 (c)	Pass
15.207	Pass
15.247 (b)(3)	Pass
15.247 (a)(2)	Pass
15.247 (e)	Pass
15.247 (d)	Pass
15.205 & 15.209	Pass
	15.203 & 15.247 (c) 15.207 15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247 (d)

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	N5704L, G1, P1, G1+
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.72 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-5200mAh
AC adapter:	Model: HJ-0502000N2-US Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mA
Remark:	The No.: N5704L, G1, P1, G1+ were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name for different areas

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE180403102

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an External antenna which cannot replace by end-user, the best-case gain of the antenna is 1.72 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	·	Limit	(dBuV)	
Lillit.	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment Test table/Insulation pla	EMI Receiver	_— AC power	
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m	n Network		
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	2.39		
Middle	2.88	30.00	Pass
Highest	2.84		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.738			
Middle	0.738	>500	Pass	
Highest	0.738			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.050			
Middle	1.050	N/A	N/A	
Highest	1.050			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	1.23		
Middle	1.69	8.00	Pass
Highest	1.51		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oondacted Ennission						
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.Z K	tadiated Emission is	letilou						
Tes	st Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Tes	st Method:	ANSI C63.10: 2013 and KDB 558074						
Tes	st Frequency Range:	2.3GHz to 2.5GHz						
Tes	st Distance:	3m						
Red	ceiver setup:	Frequency Detector RBW VBW					Remark	
		Above 1GHz	Peak		1MHz		MHz	Peak Value
Line	14.	Frequency RMS		Lin	1MHz nit (dBuV/m @3		MHz I	Average Value Remark
Lim	IIC:	•	_	LIII	54.00		A	verage Value
		Above 10	3Hz		74.00			Peak Value
	et Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					ced 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-	
Tes	st setup:	AE (T	urntable)	Ground F	Horn Antenna Amptifier Contr	Antenna T	Tower S	
Tes	st Instruments:	Refer to section	on 5.8 for d	etails	S			
Tes	st mode:	Refer to section 5.3 for details						
Tes	st results:	Passed						

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency Detector RBW VBW I					Remark		
·	30MHz-1GHz	Quasi-p	eak	120KHz	300KHz		Quasi-peak Value	
	Above 1GHz	Peak			3MHz		Peak Value	
		RMS		1MHz	3M	Hz	Average Value	
Limit:	Frequency		Lir	nit (dBuV/m @	3m)		Remark	
	30MHz-88M 88MHz-216N	1		40.0 43.5		Quasi-peak Value		
	216MHz-960N			46.0			luasi-peak Value luasi-peak Value	
	960MHz-1G			54.0			luasi-peak Value	
				54.0			Average Value	
	Above 1GF	lz		74.0			Peak Value	
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the number of find the number of find the number of the emission of the EUT have 10 dE	m(above was rotat liation. was set which was na height I to deter ontal and neasurem suspected hen the additional level sion level ecified, the would bar margin was rotat was margin was rotat was margin was rotat was margin was rotat was	1GH. ed 30 3 mounts is vormined ement. d emented ement is voited ement in with the ement is employed emented e	z) above the 60 degrees to eters away funted on the trained from or ethe maximulical polarizations, the Enna was tuned was turned ding. In was set of Maximum Hore EUT in peresting could boorted. Otherwald be re-tested.	groun or deter rom th op of a ne met um valu ions of UT wa d to he from 0 to Pea old Mo ak moc oe stopp wise th I one b	d at a mine of the intervariate of the area as arraceights degred was ped are e emisy one	table 0.8m(below 3 meter camber. the position of the rference-receiving ble-height antenna four meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 es to 360 degrees ect Function and at 10 dB lower than and the peak values assions that did not using peak, quasi-reported in a data	
Test setup:	EUT	3m 4m				Antenna Search Antenn Test reiver —	ı	

Measurement Data (worst case):

Below 1GHz:

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz									
				annel: Lowe					
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	48.26	30.85	6.80	41.81	44.10	74.00	-29.90	Vertical	
4804.00	47.30	30.85	6.80	41.81	43.14	74.00	-30.86	Horizontal	
			Dete	ctor: Averaç	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)			Polarization	
4804.00	40.23	30.85	6.80	41.81	36.07	54.00	-17.93	Vertical	
4804.00	39.62	30.85	6.80	41.81	35.46	54.00	-18.54	Horizontal	
			Test ch	annel: Mido	lle channel				
-		1		tector: Peak	Value		ı		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	49.26	31.20	6.86	41.84	45.48	74.00	-28.52	Vertical	
4884.00	48.20	31.20	6.86	41.84	44.42	74.00	-29.58	Horizontal	
			Dete	ctor: Averaç	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	38.64	31.20	6.86	41.84	34.86	54.00	-19.14	Vertical	
4884.00	39.61	31.20	6.86	41.84	35.83	54.00	-18.17	Horizontal	
			Test ch	annel: Highe	est channel				
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	49.87	31.63	6.91	41.87	46.54	74.00	-27.46	Vertical	
4960.00	48.51	31.63	6.91	41.87	45.18	74.00	-28.82	Horizontal	
			Dete	ctor: Averaç	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)			Polarization	
4960.00	39.64	31.63	6.91	41.87	36.31	54.00	-17.69	Vertical	
4960.00	38.27	31.63	6.91	41.87	34.94	54.00	-19.06	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.