

TABELAS DE VIGAS:

Deslocamentos e Momentos de Engastamento Perfeito

Revisão e adaptação:

Libânio Miranda Pinheiro Bruna Catoia Thiago Catoia

Colaboração:

Marcos Vinicius Natal Moreira

São Carlos, fevereiro de 2010

TABELA, 3.1a				
DESLOCAMENTOS ELÁSTICOS EM VIGAS				
CASO	VINCULAÇÃO E CARREGAMENTO	FLECHA	х	EQUAÇÃO DA ELÁSTICA
1	p P x ℓ	$\frac{\mathbf{w_{max}}}{\frac{1}{8}} \frac{\mathbf{p}\ell^4}{\text{EI}}$	0	$\frac{p\ell^4}{24EI} \left(\alpha^4 - 4\alpha + 3\right)$
2	p _{\ell}	$\frac{1}{30} \frac{p\ell^4}{EI}$	0	$\frac{p\ell^4}{120EI} \left(\alpha^5 - 5\alpha + 4\right)$
3	P ℓ	$\frac{11}{120} \frac{\mathrm{p}\ell^4}{\mathrm{EI}}$	0	$\frac{p\ell^4}{120EI} \left(-\alpha^5 + 5\alpha^4 - 15\alpha + 11\right)$
4	P↓ ℓ	$\frac{1}{3} \frac{P\ell^3}{EI}$	0	$\frac{P\ell^3}{6EI} \left(\alpha^3 - 3\alpha + 2 \right)$
5	M l	$\frac{1}{2} \frac{M\ell^2}{EI}$	0	$\frac{M\ell^2}{2EI}(1-\alpha)^2$
6	p → _x ℓ	$\frac{5}{384} \frac{\mathrm{p}\ell^4}{\mathrm{EI}}$	0,5ℓ	$\frac{p\ell^4\alpha}{24EI}\left(\alpha^3-2\alpha^2+1\right)$
7	p ℓ	$\frac{3}{460} \frac{\mathrm{p}\ell^4}{\mathrm{EI}}^{(*)}$	0,519ℓ	$\frac{p\ell^4\alpha}{360EI} \left(3\alpha^4 - 10\alpha^2 + 7\right)$
8	p ℓ	$\frac{1}{120} \frac{p\ell^4}{EI}$	0,5ℓ	$\frac{p\ell^4\alpha}{960EI} \left(16\alpha^4 - 40\alpha^2 + 25\right)^{(**)}$
9	$ \begin{array}{c c} P \downarrow \\ \Delta \underline{\ell} & \underline{\ell} & \underline{\Delta} \end{array} $	$\frac{1}{48} \frac{P\ell^3}{EI}$	0,5ℓ	$\frac{P\ell^3\alpha}{48EI}\left(-4\alpha^2+3\right)^{(**)}$
10	$ \begin{array}{c c} P \downarrow \\ \Delta & b \Delta \\ \mapsto_X \end{array} $	$(a \ge b)$ $\frac{Pb}{3EI\ell} \sqrt{\left(\frac{\ell^2 - b^2}{3}\right)^3}$	$\sqrt{\left(\frac{\ell^2 - b^2}{3}\right)}$	$x < a: \frac{Pbx}{6EI\ell} \left(\ell^2 - b^2 - x^2\right)$ $x = a: \frac{Pa^2b^2}{3EI\ell}$ $x > a: \frac{Pa(\ell - x)}{6EI\ell} \left(2\ell x - a^2 - x^2\right)$
11	M △ ℓ △	$\frac{1}{9\sqrt{3}}\frac{M\ell^2}{EI}$		$\frac{M\ell^2\alpha}{6EI}\left(\alpha^2-3\alpha+2\right)$
12		$(a \ge 0.423\ell)$ $\frac{M}{3EI\ell} \sqrt{\left(\frac{\ell^2}{3} - b^2\right)^3}$	$\sqrt{\left(\frac{\ell^2}{3} - b^2\right)}$	$x < a: \frac{Mx}{6EI\ell} (\ell^2 - 3b^2 - x^2)$ $x > a: \frac{M(\ell - x)}{6EI} (x^2 + 3a^2 - 2\ell x)$

(**) $\alpha \le 0.5$

Extraída de ISNARD; GREKOW; MROZOWICZ (1971) e de SCHIEL (1976). Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.

$$\alpha = x \, / \, \ell$$
 (*) Valor aproximado

TABELA 3.1b					
DESLOCAMENTOS ELÁSTICOS EM VIGAS VINCULAÇÃO E FLECHA FOLIAÇÃO DA FLÁSTICA					
CASO	CARREGAMENTO	W _{max}	х	EQUAÇÃO DA ELÁSTICA	
13	$\overset{M}{\varprojlim}_{x} \overset{M}{\varprojlim}$	$\frac{\mathrm{M}\ell^2}{8\mathrm{EI}}$	0,5ℓ	$\frac{M\ell^2\alpha}{2EI}(1-\alpha)$	
14	p → _x ℓ	$\frac{3}{554} \frac{\mathrm{p}\ell^4}{\mathrm{EI}} ^{(*)}$	0,422ℓ	$\frac{p\ell^4}{48EI} \Big(2\alpha^4 - 3\alpha^3 + \alpha \Big)$	
15	p _{\ell}	$\frac{3}{1258} \frac{\mathrm{p}\ell^4}{\mathrm{EI}} ^{(*)}$	0,447ℓ	$\frac{p\ell^4}{120EI} \left(\alpha^5 - 2\alpha^3 + \alpha\right)$	
16	P ℓ	$\frac{1}{328} \frac{\mathrm{p}\ell^4}{\mathrm{EI}} ^{(*)}$	0,402ℓ	$\frac{p\ell^4}{240EI} \left(-2\alpha^5 + 10\alpha^4 - 11\alpha^3 + 3\alpha \right)$	
17	M e	$\frac{\mathrm{M}\ell^2}{27\mathrm{EI}}$	$\frac{1}{3}\ell$	$\frac{M\ell^2}{4EI} \Big(\alpha^3 - 2\alpha^2 + \alpha \Big)$	
18	p \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$\frac{1}{384} \frac{p\ell^4}{EI}$	0,5ℓ	$\frac{p\ell^4}{24EI} \left(\alpha^4 - 2\alpha^3 + \alpha^2 \right)$	
19	P	$\frac{1}{764} \frac{p\ell^4}{EI} $ (*)	0,525ℓ	$\frac{p\ell^4}{120EI} \left(\alpha^5 - 3\alpha^3 + 2\alpha^2\right)$	
20	p e	$\frac{7}{3840} \frac{p\ell^4}{EI}$	0,5ℓ	$\frac{p\ell^4}{960EI} \left(16\alpha^5 - 40\alpha^3 + 25\alpha^2 \right)^{(**)}$	
21	$\begin{array}{c c} P \downarrow \\ \frac{\ell}{2} & \frac{\ell}{2} \end{array}$	$\frac{1}{192} \frac{P\ell^3}{EI}$	0,5ℓ	$\frac{P\ell^3}{48EI} \left(-4\alpha^3 + 3\alpha^2\right)^{(**)}$	
22	$ \begin{array}{c} p \\ a $	$\frac{pa}{24EI} \left(6a^{2}\ell + 3a^{3} - \ell^{3}\right)$ $\frac{p\ell^{2}}{384EI} \left(5\ell^{2} - 24a^{2}\right)$	- a 0,5ℓ	$x < 0:$ $\frac{px}{24EI} \left(x^3 + 4ax^2 + 6a^2x + \ell^3 - 6a^2\ell \right)$ $0 < x < \ell:$ $\frac{px}{24EI} \left(x^3 - 2\ell x^2 + 6a^2x - 6a^2\ell + \ell^3 \right)$	
23	$ \begin{array}{c c} P \downarrow & P \downarrow \\ \hline a \triangle_{\ell} \triangle_{a} \end{array} $	$\frac{Pa^2}{6EI}(2a+3\ell)$ $-\frac{Pa\ell^2}{8EI}$	-a 0,5ℓ	$x < 0: \frac{Px}{6EI} \left(x^2 + 3ax - 3a\ell\right)$ $0 < x < \ell: \frac{Pa}{2EI} x \left(x - \ell\right)$	

Extraída de ISNARD; GREKOW; MROZOWICZ (1971) e de SCHIEL (1976). Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.

 $\alpha = x \, / \, \ell \qquad \qquad \text{(*) Valor aproximado} \qquad \qquad \text{(**)} \ \alpha \leq 0.5$

TABELA 3.1c					
DESLOCAMENTOS ELÁSTICOS EM VIGAS VINCULAÇÃO E FLECHA					
CASO	VINCULAÇÃO E CARREGAMENTO	Wmax	X		
24		$\frac{p}{24EI} \left(3\ell^4 - 4b^3\ell + b^4 \right)$	0		
25	p a b	$\frac{pa}{120EI} \Big(20\ell^3 - 10a\ell^2 + a^3 \Big)$	0		
26	$ \begin{array}{c c} & c/2 & c/2 \\ & + & + & + \\ \hline & & & & + \\ \hline & & & & a & b \end{array} $	$\frac{pc}{6EI} \left[\frac{ab}{\ell} \left(2a\ell - 2a^2 - \frac{c^2}{4} \right) \right] + \frac{c^3}{64} $ (*)	a		
27	$ \begin{array}{cccc} P & P \\ & a \\ & b \\ & a \\ \end{array} $	$\frac{\mathrm{Pa}}{24\mathrm{EI}} \left(3\ell^2 - 4\mathrm{a}^2 \right)$	0,5 ℓ		
28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{23}{648} \frac{\mathrm{P}\ell^3}{\mathrm{EI}}$	0,5ℓ		
29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{19}{384} \frac{P\ell^3}{EI}$	0,5ℓ		
30	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{63}{1000} \frac{\mathrm{P}\ell^3}{\mathrm{EI}}$	0,5ℓ		
31	$ \begin{array}{c c} & P \\ & \downarrow \\ & \frac{\ell}{2} & \frac{\ell}{2} \end{array} $	$\frac{\sqrt{5}}{240} \frac{\mathrm{P}\ell^3}{\mathrm{EI}}$	0,447ℓ		
32		$\frac{1}{24} \frac{Pa^2b}{EI}$	0,5ℓ		
33	$\begin{array}{c} p \\ \downarrow \\ a \\ \downarrow \\ \downarrow \\ \chi \end{array}$	$\frac{pa}{24EI} \left(3a^3 + 4a^2\ell - \ell^3\right)$	- a		
34	$\begin{array}{c} p \\ \hline a \bigwedge_X \ell \end{array} \triangleq$	$\frac{p\ell}{360\text{EI}(a+\ell)} \left(20a^4 - 15a^2\ell^2 - 7a\ell^3 + 12\right)$	- a		
35	$ \stackrel{\text{P}}{\longleftarrow}_{x} \ell \stackrel{\triangle}{=} $	$\frac{Pa^2}{3EI}(a+\ell)$	- a		
36	p a \triangle ℓ	$\frac{pa}{48EI} \left(6a^3 + 6a^2\ell - \ell^3\right)$	- a		
37	P↓ a △ ℓ	$\frac{\mathrm{Pa}^{2}}{6\mathrm{EI}}\big(4\mathrm{a}+3\big)$	- a		
38	M ¬a △ ¬ ℓ	$\frac{\text{Ma}}{4\text{EI}}\big(\ell+2a\big)$	- a		

Extraída de ISNARD; GREKOW; MROZOWICZ (1971).

Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.

(*) Não corresponde necessariamente ao deslocamento máximo

	TABELA 3.2a					
MOMENTOS DE ENGASTAMENTO PERFEITO						
	455564M5N76					
CARREGAMENTO		A ℓ B	Ċ	C D		
		M _{BA}	M _{CD}	M _{DC}	M _{EF}	
1	p	$-rac{\mathrm{p}\ell^2}{8}$	$\frac{\mathrm{p}\ell^2}{12}$	$-\frac{\mathrm{p}\ell^2}{12}$	$\frac{\mathrm{p}\ell^2}{8}$	
2	<u> </u>	$-\frac{\mathrm{pc}}{16\ell} \left(3\ell^2 - \mathrm{c}^2 \right)$	$\frac{pc}{24\ell} \left(3\ell^2 - c^2 \right)$	$-\frac{\mathrm{pc}}{24\ell} \left(3\ell^2 - \mathrm{c}^2 \right)$	$\frac{\mathrm{pc}}{16\ell} \left(3\ell^2 - \mathrm{c}^2 \right)$	
3	p	$-\frac{\mathrm{pc}^2}{8\ell^2} \left(2\ell^2 - \mathrm{c}^2\right)$	$\frac{pc^2}{12\ell^2} \Big(6b^2 + 4bc + c^2\Big)$	$-\frac{pc^2}{12\ell^2}\left(4bc+c^2\right)$	$\frac{pc^2}{8\ell^2}(\ell+b)^2$	
4	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	$-\frac{7}{120}\mathrm{p}\ell^2$	$\frac{11}{192}p\ell^2$	$-\frac{5}{192}p\ell^2$	$\frac{9}{128}$ p ℓ^2	
5	p → a → c →	$-\frac{pc^2}{2a^2}(\ell+a)^2$	$\frac{192^{2}}{12\ell^{2}}\left(4ac+c^{2}\right)$	$-\frac{pc^2}{12\ell^2}(6a^2+4ac+c^2)$	$\frac{pc^2}{8\ell^2} \left(2\ell^2 - c^2\right)$	
6	p	$-\frac{9}{120}$ p ℓ^2	$\frac{5}{100}$ p ℓ^2	$-\frac{11}{192}\mathrm{p}\ell^2$	$\frac{7}{120}$ p ℓ^2	
7	p	$-\frac{pa^{2}}{4\ell}(3\ell-2a)$	$\frac{pa^2}{6\ell}(3\ell-2a)$	$-\frac{\mathrm{pa}^2}{6\ell}(3\ell-2\mathrm{a})$	$\frac{pa^2}{4\ell}(3\ell - 2a)$	
8	p — p — m	$-\frac{\operatorname{pa}^{2}}{4\ell}(3\ell-2a)$	$\frac{pa^2}{2\ell^2}(\ell-a)^2$	$-\frac{pa^2}{2\ell^2}(\ell-a)^2$	$\frac{pa^2}{4\ell}(3\ell-2a)$	
9	P b b	$-\frac{Pab}{2\ell^2}\big(\ell+a\big)$	$\frac{\mathrm{Pab}^2}{\ell^2}$	$-\frac{\mathrm{Pa}^2\mathrm{b}}{\ell^2}$	$\frac{\text{Pab}}{2\ell^2} (\ell + b)$	
10	P	$-\frac{3P\ell}{16}$	$\frac{\mathrm{P}\ell}{8}$	$-\frac{\mathrm{P}\ell}{8}$	3P <i>ℓ</i> 16	
11	P P P P P P P P P P P P P P P P P P P	$-\frac{3\text{Pa}}{2\ell}\big(\ell-a\big)$	$\frac{\mathrm{Pa}}{\ell}(\ell-\mathrm{a})$	$-\frac{\mathrm{Pa}}{\ell}(\ell-\mathrm{a})$	$\frac{3Pa}{2\ell}(\ell-a)$	
12	$\begin{array}{c c} P & P \\ \hline \ell/3 & \ell/3 & \ell/3 \end{array}$	$-\frac{\mathrm{P}\ell}{3}$	$\frac{2P\ell}{9}$	$-\frac{2P\ell}{9}$	$\frac{\mathrm{P}\ell}{3}$	
13	P P P P P P P P P P P P P P P P P P P	$-\frac{15P\ell}{32}$	<u>5Pℓ</u> 16	$-\frac{5P\ell}{16}$	$\frac{15P\ell}{32}$	
14		$-\frac{P\ell}{8n}(n^2-1)$	$\frac{P\ell}{12n} \Big(n^2 - 1 \Big)$	$-\frac{P\ell}{12n}\Big(n^2-1\Big)$	$\frac{P\ell}{8n}(n^2-1)$	
15	M a b b	$-\frac{M}{2\ell^2}\Big(\ell^2-3a^2\Big)$	$\frac{Mb}{\ell^2} \big(3b - 2\ell \big)$	$-\frac{\mathrm{Ma}}{\ell^2}\big(2\ell-3\mathrm{a}\big)$	$\frac{M}{2\ell^2} \Big(3b^2 - \ell^2\Big)$	
16	P P P P (*) a/2 a a a a/2	$-\frac{P\ell}{16n}(2n^2+1)$	$\frac{P\ell}{24n} \left(2n^2 + 1\right)$	$-\frac{P\ell}{24n}(2n^2+1)$	$\frac{P\ell}{16n} \left(2n^2 + 1\right)$	

Extraída de SOUZA; ANTUNES (1983), JIMENES MONTOYA; GARCIA MESEGUER; MORAN CABRE (1973) e de SCHREYER (1965). Convenção de GRINTER. (*) $n=\ell/a$

Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.

TABELA 3.2b					
MOMENTOS DE ENGASTAMENTO PERFEITO					
ARREGAMENTO	$A \ell B$	C		E F	
	M _{BA}	M _{CD}	M _{DC}	M _{EF}	
p p	$-\frac{p\ell^2}{15}$	$\frac{\mathrm{p}\ell^2}{30}$	$-\frac{p\ell^2}{20}$	$\frac{7p\ell^2}{120}$	
p p	$-7p\ell^2$	$\frac{p\ell^2}{20}$	$\mathrm{p}\ell^2$	$\frac{p\ell^2}{15}$	
P		$\frac{p\ell^2}{30}$	$-\frac{3}{160}p\ell^2$	$\frac{41}{960} p\ell^2$	
p	$-\frac{41}{960}p\ell^2$		$-\frac{p\ell^2}{30}$	$\frac{17}{480} p\ell^2$	
p	$-\frac{53}{1920}p\ell^2$	$\frac{7}{960}$ p ℓ^2	$-\frac{23}{960}p\ell^2$	$\frac{37}{1920}p\ell^2$	
p	$-\frac{37}{1920}p\ell^2$	$\frac{23}{960}p\ell^2$	$-\frac{7}{960}p\ell^2$	$\frac{53}{1920} p\ell^2$	
p	$-\frac{5}{64}p\ell^2$	$\frac{5}{96}p\ell^2$	$-\frac{5}{96}p\ell^2$	$\frac{5}{64}$ p ℓ^2	
p p p	$-\frac{3}{64}p\ell^2$	$\frac{p\ell^2}{32}$	$-\frac{p\ell^2}{32}$	$\frac{3}{64}p\ell^2$	
parábola p	$-\frac{11}{120}p\ell^2$	$\frac{{\tt p}\ell^2}{20}$	$-\frac{p\ell^2}{15}$	$ \frac{p\ell^2}{12} $ $ \frac{p\ell^2}{30} $	
parábola p	$-\frac{p\ell^2}{24}$	60	30	$\frac{p\ell^2}{30}$	
parábola p	$-\frac{p\ell^2}{10}$	$\frac{\mathrm{p}\ell^2}{15}$	$-\frac{p\ell^2}{15}$	$\frac{p\ell^2}{10}$	
parábola p p p p p p p p p p p p p p p p p p p	$-\frac{7}{80}p\ell^2$	$\frac{7}{120}p\ell^2$	$-\frac{7}{120}p\ell^2$	$\frac{7}{80}\mathrm{p}\ell^2$	
	$+\frac{3a}{\ell^2}EI$	$+\frac{6a}{\ell^2}EI$	$+\frac{6a}{\ell^2}EI$	$+\frac{3a}{\ell^2}EI$	
α	$+\frac{3\alpha}{\ell}EI$	$+\frac{2\alpha}{\ell}EI$	$+\frac{4\alpha}{\ell}EI$		
α		ℓ	Ł	$-\frac{3\alpha}{\ell}$ EI	
t h		$-\frac{EI}{h}\alpha_t\Delta t$	$+\frac{EI}{h}\alpha_t\Delta t$	$-\frac{3EI}{2h}\alpha_{t}\Delta t$ RAN CABRE (1973)	
	p P P P P P P P P P P P P P P P P P P P	ARREGAMENTO A ℓ M _{BA} - $\frac{p\ell^2}{15}$ - $\frac{7p\ell^2}{120}$ - $\frac{17}{480}$ p ℓ^2 - $\frac{41}{960}$ p ℓ^2 - $\frac{6}{960}$ p ℓ^2 - $\frac{17}{960}$ p ℓ^2 - $\frac{17}{960}$ p ℓ^2 - $\frac{17}{960}$ p ℓ^2 - $\frac{37}{1920}$ p ℓ^2 - $\frac{37}{1920}$ p ℓ^2 - $\frac{37}{1920}$ p ℓ^2 - $\frac{5}{64}$ p ℓ^2 - $\frac{3}{64}$ p ℓ^2 - $\frac{11}{120}$ p ℓ^2 - $\frac{p}{24}$ - $\frac{p\ell^2}{10}$ - $\frac{p\ell^2}{10}$ - $\frac{p\ell^2}{10}$ - $\frac{3\alpha}{\ell}$ EI - $\frac{3\alpha}{\ell}$ EI - $\frac{3\alpha}{\ell}$ EI - $\frac{3\alpha}{\ell}$ EI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Extraída de SOUZA; ANTUNES (1983), JIMENES MONTOYA; GARCIA MESEGUER; MORAN CABRE (1973) e de SCHREYER (1965). Convenção de GRINTER.
Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.

TABELA 3.2c					
MOMENTOS DE ENGASTAMENTO PERFEITO					
C	CARREGAMENTO				
	p p	$M_{BA} = -\frac{p}{8\ell^2} \left[a^4 - (a+c)^4 + 2c\ell^2 (2a+c) \right]$			
33		$M_{CD} = \frac{p}{12\ell^2} \left\{ 4\ell \left[(b+c)^3 - b^3 \right] - 3 \left[(b+c)^4 - b^4 \right] \right\}$			
33	a c b	$M_{DC} = -\frac{p}{12\ell^2} \left\{ 4\ell \left[(a+c)^3 - a^3 \right] - 3 \left[(a+c)^4 - a^4 \right] \right\}$			
		$M_{EF} = \frac{p}{8\ell^2} \left[b^4 - (b+c)^4 + 2c\ell^2 (2b+c) \right]$			
	P P P P P P P P P P	$M_{BA} = -\frac{pc}{108\ell^2} (3a + 2c) \left[9(\ell^2 - a^2) - 12ac - c^2 \left(4 + \frac{45a + 28c}{30a + 20c} \right) \right]$			
34		$M_{CD} = \frac{pc}{540\ell^2} \left[10(3b+c)^2 (3a+2c) - 15c^2 (3b-\ell) - 17c^3 \right]$			
		$M_{DC} = -\frac{pc}{540\ell^2} \left[10(3b+c)(3a+2c)^2 - 15c^2(3a-\ell) - 28c^3 \right]$			
		$M_{EF} = \frac{pc}{108\ell^2} (3b+c) \left[9(\ell^2 - b^2) - 6bc - c^2 \left(1 + 9 \frac{45b + 17c}{270b + 90c} \right) \right]$			
	р	$M_{BA} = -\frac{pc}{108\ell^2} (3a+c) \left[9(\ell^2 - a^2) - 6ac - c^2 \left(1 + 9 \frac{45a + 17c}{270a + 90c} \right) \right]$			
35		$M_{CD} = \frac{pc}{540\ell^2} \left[10(3a+c)(3b+2c)^2 - 15c^2(3b-\ell) - 28c^3 \right]$			
		$M_{DC} = -\frac{pc}{540\ell^2} \left[10(3a+c)^2 (3b+2c) - 15c^2 (3a-\ell) - 17c^3 \right]$			
		$M_{EF} = \frac{pc}{108\ell^2} (3b + 2c) \left[9(\ell^2 - b^2) - 12bc - c^2 \left(4 + \frac{45b + 28c}{30b + 20c} \right) \right]$			
36		$M_{BA} = -\frac{p}{30\ell^2}c^2(5\ell^2 - 3c^2)$			
		$M_{CD} = \frac{p}{30\ell^2} c^2 (10\ell^2 - 15c\ell + 6c^2)$			
		$M_{DC} = -\frac{p}{20\ell^2}c^2(5c\ell - 4c^2)$			
		$M_{EF} = \frac{P}{120\ell^2} c^2 (40\ell^2 - 45c\ell + 12c^2)$			
Extraída de SCHREYER (1965). Convenção de GRINTER.					

Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.

TABELA 3.2d					
MOMENTOS DE ENGASTAMENTO PERFEITO					
	CARREGAMENTO				
		$M_{BA} = -\frac{p}{120\ell^2}c^2(40\ell^2 - 45c\ell + 12c^2)$			
37		$M_{CD} = \frac{p}{20\ell^2} c^2 (5c\ell - 4c^2)$			
		$M_{DC} = -\frac{p}{30\ell^2}c^2(10\ell^2 - 15c\ell + 6c^2)$			
		$M_{EF} = \frac{p}{30\ell^2} c^2 (5\ell^2 - 3c^2)$			
		$M_{BA} = -\frac{p}{120\ell^2}c^2(20\ell^2 - 15c\ell + 3c^2)$			
38	p a p c p	$M_{CD} = \frac{p}{60\ell^2} c^2 (5c\ell - 3c^2)$			
		$M_{DC} = -\frac{p}{60\ell^2}c^2(10a\ell + 3c^2)$			
		$M_{EF} = \frac{p}{120\ell^2} c^2 \left(10\ell^2 - 3c^2 \right)$			
	p	$M_{BA} = -\frac{p}{120\ell^2}c^2(10\ell^2 - 3c^2)$			
39		$M_{CD} = \frac{p}{60\ell^2} c^2 (10b\ell + 3c^2)$			
		$M_{DC} = -\frac{p}{60\ell^2} c^2 (5c\ell - 3c^2)$			
		$M_{EF} = \frac{p}{120\ell^2} \left(20\ell^2 - 15c\ell + 3c^2 \right)$			
		$M_{BA} = -\frac{p}{8\ell} \Big(\ell^3 - 2a^2\ell + a^3 \Big)$			
40		$M_{CD} = \frac{p}{12\ell} \left(\ell^3 - 2a^2\ell + a^3 \right)$			
		$M_{DC} = -\frac{p}{12\ell} \Big(\ell^3 - 2a^2\ell + a^3 \Big)$			
		$M_{EF} = \frac{p}{8\ell} \left(\ell^3 - 2a^2 \ell + a^3 \right)$			
Extraída de SCHREYER (1965). Convenção de GRINTER.					
Revista e adaptada por Libânio M. Pinheiro, Bruna Catoia e Thiago Catoia.					

REFERÊNCIAS BIBLIOGRÁFICAS

- ISNARD, V.; GREKOW, A.; MROZOWICZ, P. Formulario del ingeniero: metodos practicos de calculo de obras de ingenieria. Bilbao, Urmo, 1971.
- JIMENES MONTOYA, P.; GARCIA MESEGUER, A.; MORAN CABRE, F. Hormigon Armado, 2v. 7.ed. Barcelona, Gustavo Gili, 1973.
- PINHEIRO, L. M. **Concreto armado: tabelas e ábacos**. São Carlos, Escola de Engenharia de São Carlos, 1986.
- SCHIEL, F. Introdução à resistência dos materiais. v.1. 6.ed. São Carlos, Escola de Engenharia de São Carlos, 1976.
- SCHREYER, H. Estática das construções. v.2. Porto Alegre, Globo, 1965.
- SOUZA, João Carlos A. O.; ANTUNES, Helena M. C. C. **Estática das estruturas: temas complementares**. São Carlos, Escola de Engenharia de São Carlos, 1983.