

Vorhersage der Dauer chirurgischer Schritte in der Laparoskopie

Roman Ungefuk

Institut für Anthropomatik und Robotik, Humanoids and Intelligence Systems Labs

Motivation

- Warum ist die Dauervorhersage der Schritte nützlich?
 - Um die für den nächsten Operationsschritt benötigten Instrumente vorzubereiten.
 - Um den nächsten Patienten für die Operation vorzubereiten.
 - Zum Trainingszweck.

Einleitung

Bild 1: Keine Trokare,

Quelle:http://www.endogyn.de/db/img/atlas/keinetrokareD1.jpg

Rektumresektion

- Operationstechniken
 - totale mesorektale Rektumresektion
 - tiefe anteriore
 Rektumresektion
 - abdomino-perineale Rektumresektion

Bild 2: Rectum,
Quelle:https://en.wikipedia.org/wiki/Rectum

Rektumresektion am Phantom

Phasen:

- Diagnostic Laparoscopy
- Mobilization of colon
- Vessel resection
- Dissection of the rectum
- Resection of rectum
 - transect rectum
 - salvage rectum
 - visual inspectation lesser pelvis

Methoden zur Dauerbestimmung

- Durchschnittsmethode
- Linearregressionsmethode
- Random-Forest-Methoden
 - Trainingsdaten enthalten Dauer der vorherigen Schritte
 - Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte und ihrer Reihenfolge in der OP
 - Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte

Methode zur Evaluation

Leave-One-Out-Kreuzvalidierung

Methode zur Evaluation

Leave-One-Out-Kreuzvalidierung

Durchschnittsmethode

$$ar{x}_{ ext{arithm}} = rac{1}{n} \sum_{i=1}^n x_i = rac{x_1 + x_2 + \cdots + x_n}{n}$$

- Gesamtfehlerdurchschnitt
- Durchschnitt der Test-OPs

Linearregressionsmethode

$$y = bx + a$$

$$Kor(2;9) = 0,7478$$

Linearregressionsmethode

Random Forest

Bild 3: Random Forest,

Quelle:http://cdn-ak.f.st-hatena.com/images/fotolife/k/kazoo04/20131204/20131204173330.png

Trainingsdaten enthalten Dauer der vorherigen Schritte

Trainingsdaten enthalten Dauer der vorherigen Schritte

■ Gesamtfehlerdurchschnitt 13 OPs

Gesamtfehlerdurchschnitt 17 OPs

Durchschnitt der 13 Test-OPs: 25,96 min

Durchschnitt der 17 Test-OPs: 25,38 min

Trainingsdaten enthalten Dauer der vorherigen Schritte

- Gesamtfehlerquote 13 OPs
- Gesamtfehlerquote 17 OPs

Durchschnitt der 13 Test-OPs: 25,96 min

Durchschnitt der 17 Test-OPs: 25,38 min

Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte und ihre Reihenfolge in der OP

2. Random-Forest-Methode Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte und ihre Reihenfolge in der OP

Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte

delineating of vessels

Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte

Zusammenfassung

- Durchschnittsmethode
- Linearregressionsmethode
- Random-Forest-Methoden
 - Trainingsdaten enthalten Dauer der vorherigen Schritte
 - Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte und ihre Reihenfolge in der OP
 - Trainingsdaten enthalten Dauer der linearzusammenhängenden Schritte
- Leave-One-Out-Kreuzvalidierung

Zusammenfassung

- Beste Gesamtfehlerquote: 26,36%, Random-Forest-Methode, Dauer von 5 Schritten, 17 OPs
- Schlechteste Gesamtfehlerquote: 33,16%, Linearregressionsmethode, 13 OPs

Ausblick

- Kombination von obengenannten Methoden
- Implementierung von multivariater Regression
- Erweiterung von Trainingsdaten des Random Forest mit den Stress-, Müdigkeits- und Erfahrungswerten von Chirurgen
- Konstruktion von Trainingsdaten des Random Forest mit der Korrelationsinformation von mehreren Schritten

Fragen?

Vielen Dank für Ihre **Aufmerksamkeit!**