IB Physics Name : YuliaDichenko

Exam 1. Corrections

$$F_g = \frac{mMG}{r^2}$$

Description	Symbol	Quantity
Gravitational Constant	G	$6.67 \times 10^{-11} \text{N} \cdot \text{m}^2/\text{kg}^2$
Mass of Earth	m_{earth}	$5.98 \times 10^{24} \text{kg}$
Mass of Moon	m_{moon}	$7.36 \times 10^{22} \text{kg}$
Radius of Earth	R_{earth}	$6.38 \times 10^{6} \text{m}$
Radius of Moon	R_{moon}	$1.74 \times 10^{6} \text{m}$
Orbital Radius of Earth	r_{earth}	$1.50 \times 10^{11} \text{m}$
Orbital Radius of Moon	r_{moon}	$3.84 \times 10^8 \mathrm{m}$
Period of Earth's Orbit	T_{earth}	365.24 days
Period of Moon's Orbit	T_{moon}	27.3 days

Table 1: A list of physical quantities.

The first question of the exam is worth 30 points. The above table is required.

- 1) Consider the earth moving around the sun.
- a. Determine the orbital angular velocity of the earth.

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2*3.14}{365.24*24*60*60}$$

$$\omega = 1.99 \times 10^{-7} \frac{\text{rad}}{\text{sec}}$$

b. Determine the speed of the earth relative to the sun.

$$V = \frac{2r\pi}{T}$$

$$V = r\omega = (1.99 * 10^{-7}) * 1.5 * 10^{11} \frac{\text{m}}{\text{sec}}$$

c. Determine centripetal acceleration of the earth relative to the sun.

$$a = \frac{v^2}{r} = \frac{(3*10^4)^2}{1.5*10^4} = 6.0*10^{-3} \frac{\text{m}}{\text{sec}^2}$$

d. Determine the net force on the earth considering this acceleration.

$$F = ma = 5.98 * 10^{24} * 6.0 * 10^{-3} = 3.6 * 10^{22} \text{N}$$

e. Determine the mass of the sun from the above.

$$F = \frac{mMG}{r^2}$$

$$M = \frac{Fr^2}{mG} = \frac{3.6*10^{22}*(1.5*10^4)^2}{5.98*10^{24}*6.67*10^{-4}} = 2.0*10^{30} \text{kg}$$

The second question is worth 30 points. The table is required.

- 2) Consider gravitation at the surface of the moon.
- a. Determine the acceleration due to gravity on the surface of the moon.

$$F = \frac{mMG}{r^2} = am$$

$$a = \frac{MG}{r^2}$$

$$a = \frac{7.36*10^{22}*6.67*10^{-11}}{(1.74*10^6)^2} = 1.62\frac{\text{m}}{\text{s}^2}$$

b. Determine the launch velocity for circular orbit.

$$a = \frac{V^2}{r}$$

$$v_1 = \sqrt{aR}$$

$$v_1 = \sqrt{1.62*1.74*10^6} = 1680\frac{\text{m}}{\text{s}}$$

c. Determine the launch velocity for escape from the moon's gravity.

$$v_3 = \sqrt[2]{\frac{2 * 7.36 * 10^{22} * 6.87 * 10^{-11}}{1.74 * 10^6}}$$
$$v = 2370 \frac{\text{m}}{\text{s}}$$

d. Determine the result of launching an object at 2000 m/s into the moon's horizon.

Question three is worth 40 points.

- 3) Consider a capacitor. Two very large parallel conducting plates are connected to the leads of a 9 Volt battery.
- a. Determine the separation between the plates to generate a 30.0 $\frac{N}{C}$ electric field.

$$E = 30\frac{\mathrm{N}}{\mathrm{C}}$$

b. Determine the force of this electric field on a 0.012 Coulomb charge.

$$E = \frac{-\Delta V}{x} = \frac{9}{30}$$

c. Determine the change in potential energy for the 0.012 C charge moving from the 9V plate to the 0V plate.

$$E = qE \Rightarrow \text{always true}!!! = 0.012 * 30 = 0.36\text{N}$$

d. Draw the parallel plates and the electric field between them.