Chapitre

Fonctions quadratiques

1

Définition 1.1 Un monôme en x de **degré** $n \in \mathbb{N}$ est une expression de la forme ax^n . Deux monômes sont semblables s'ils ont le même degré.

Une somme de monômes est **ordonnée réduite** si les monômes sont rangés par degré décroissant et ne sont pas semblables.

- **Exemple 1.1** 5, 0 sont des termes constants.
- $4x^3$ est un monôme de degré 3. Le coefficient est 4.
- -x est un monôme de degré 1. Le coefficient est -1.
- **Exemple 1.2** 3x + 5 est un polynôme ordonné réduit de degré $1.^{1}$
- $-3x^2 + 2x + 5$ est un polynôme ordonné réduit de degré $2.^2$
- $5x^3 x^2 + 5$ est un polynôme ordonné réduit de degré 3.³

 1 expression **affine** en x

 2 expression ${\bf quadratique}$ en x

 3 expression **cubique** en x

Définition 1.2 Une fonction définie sur \mathbb{R} est une fonction polynôme de degré 2 si il existe $a \neq 0$, b et $c \in \mathbb{R}$ tel que :⁴

pour tout
$$x \in \mathbb{R}$$
 $f(x) = ax^2 + bx + c$

Sa représentation graphique s'appelle une **parabole** (Desmos V1 et V2).

 4 nous dirons fonction quadratique

lacktriangle Exemple 1.3 Représentez les courbes ${\mathscr P}$ données par leur équation.

x	y
-3	
-2	
-1	
0	
1	
2	
3	

 \mathscr{P}_2 : $y = -x^2$

		_ 2	<i>y</i>				-
						-	-
-4 -3	2	1		1	2	- 3	4
		-2-			ļ	-	
		-4-			-	-	-
		-6-			-	-	
		-10					

x	y
-2	-4
-1	
0	
1	
2	
3	-9

x	y
-3	
-2	7
-1	
0	
1	
2	
3	
_	•

\mathscr{P}_6 : $y = (x_0)^2$	$(x+1)^2$			
		10	<i>y</i>	
y		8-		
		6-		
				-
		4-		
		2-		
				_
	-4 -3 -	2 -1	1	2 3

Exemple 1.4 Dans chaque cas, représentez la courbe $\mathscr P$ et la droite d.

 \mathcal{P}_1 : $y = x^2 - x + 3$ et d: y = -x + 3

	x	y
	-3	
	-2	
Ì	-1	
Ì	0	
Ī	1	
	2	
ĺ	3	

 \mathcal{P}_3 : $y = 2x^2 + 5x$ et d: y = 5x

\mathscr{P}_4 :	u	=	$-x^2$	+	x	et	d:	u	=	x
~ 4 .	9				••	00		9		••

x	y
-3	
-2	
-1	
0	
1	
2	
3	
	•

$$\mathscr{P}_5$$
: $y = -x^2 + x + 10$ et d : $y = x + 10$

$$\mathscr{P}_6$$
: $y = x^2 - 2x + 1$ et d : $y = -2x + 1$

x	y
-3	
-2	
-1	
0	
1	
2	
3	

Qu'observez vous?

1.1 La forme canonique

Définition 1.3 Soit $a \neq 0$, $\alpha, \beta \in \mathbb{R}$.

La fonction quadratique définie sur \mathbb{R} par :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - \alpha)^2 + \beta$

est une fonction monotone sur $]-\infty;\alpha]$ et sur $[\alpha;\infty[$.

Démonstration. Cas a > 0

Soit $\alpha < u < v$:

Soft
$$\alpha < u < v$$
.
$$\alpha < u < v$$

$$0 < u - \alpha < v - \alpha$$

$$0 < (u - \alpha)^2 < (v - \alpha)^2$$

$$\Delta = 0$$

$$\beta < f(u) < f(v)$$

$$\Delta = 0$$

$$\Delta =$$

f préserve l'ordre sur $[\alpha; \infty[$, elle est croissante.

Les autres cas se traitent de manière similaire.

Figure 1.1 – Représentation graphique d'une fonction quadratique donné par forme canonique $f(x) = a(x - \alpha)^2 +$ β.Desmos V1 et V2

Proposition 1.1 Soit $a \neq 0$, $\alpha, \beta \in \mathbb{R}$.

La fonction quadratique définie sur \mathbb{R} par $f(x) = a(x - \alpha)^2 + \beta$ a pour représentation graphique une parabole de sommet $S(\alpha;\beta)$, un axe de symétrie vertical $d: x = \alpha$.

Elle est une translation de la parabole d'équation $y = ax^2$.

Exercices

Exercice 1 Pour chaque représentation cochez la fonction quadratique qui correspond.

$$\Box f: x \mapsto -5x^2 - 5x - 4$$

$$\Box f: x \mapsto -5x^2 + 5x - 4$$

$$\Box f: x \mapsto 5x^2 + 5x - 4$$

$$\Box f: x \mapsto -4x^2 - 4x - 3$$

$$\Box f: x \mapsto 4x^2 - 4x - 3$$

$$\Box f: x \mapsto 4x^2 + 4x - 3$$

$$\Box f: x \mapsto -4x^2 + 4x - 3$$

$$\Box f: x \mapsto 5x^2 - 4x + 4$$

$$\Box$$
 $f: x \mapsto 5x^2 - 4x - 4$

$$\Box f: x \mapsto -5x^2 + 4x - 4$$

$$\Box f: x \mapsto 5x^2 + 4x - 4$$

$$\Box f: x \mapsto -3x^2 - 3x + 3$$

$$\Box f: x \mapsto -3x^2 - 3x - 3$$

$$\Box$$
 $f: x \mapsto -3x^2 + 3x - 3$

$$\Box f: x \mapsto -3x^2 + 3x + 3$$

$$\Box f: x \mapsto 5x^2 - 5x + 5$$

$$\Box f: x \mapsto 5x^2 + 5x + 5$$

$$\Box f: x \mapsto -5x^2 - 5x + 5$$

$$\Box f: x \mapsto -5x^2 + 5x + 5$$

$$\Box f: x \mapsto 2x^2 + 2x + 2$$

$$\Box f: x \mapsto -2x^2 + 2x - 2$$

$$\Box f: x \mapsto -2x^2 - 2x + 2$$

$$\Box f: x \mapsto -2x^2 + 2x + 2$$

Exercice 2 Pour chaque représentation cochez la fonction quadratique qui correspond.

$$\Box f: x \mapsto (x+2)^2$$

$$\Box \ f \colon x \mapsto x^2 + 2$$

$$\Box f \colon x \mapsto x^2 - 2$$

$$\Box$$
 $f: x \mapsto 2x^2 - 3$

$$\Box$$
 $f: x \mapsto 3x^2 - 3$

$$\Box$$
 $f: x \mapsto 4x^2 - 3$

 $\Box f: x \mapsto (x-3)^2$

 $\Box f: x \mapsto (-x+3)^2$

 \Box $f: x \mapsto -(x-3)^2$

 $\Box f: x \mapsto -(x+3)^2$

$$\Box f \colon x \mapsto x^2 + 3$$

$$\Box f: x \mapsto (-x)^2 - 3$$

$$\Box f: x \mapsto (-x)^2 + 2$$

$$\Box$$
 $f: x \mapsto -x^2 + 2$

$$\Box f: x \mapsto -(x+2)^2 - 2$$

$$\Box f: x \mapsto -(x-2)^2 - 2$$

$$\Box f \colon x \mapsto (x+2)^2 + 2$$

Année 2022/2023

■ Exemple 1.5 Complétez et retrouvez l'expression réduite de la fonction quadratique représentée ci-dessous.

$$f(x) - \dots = \dots (x - \dots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

La fonction définie sur \mathbb{R} par :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - \alpha)^2 + \beta$

est une fonction quadratique dont la représentation \mathscr{C}_f est une parabole de sommet $S(\alpha; \beta)$.

 \mathscr{C}_f est une translation de la parabole \mathscr{P} : $y = ax^2$.

Exercice 3 Mêmes consignes.

$$f(x) - \ldots = \ldots (x - \ldots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

$$f(x) - \ldots = \ldots (x - \ldots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

$$f(x) - \ldots = \ldots (x - \ldots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

$$f(x) - \ldots = \ldots (x - \ldots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

$$f(x) - \ldots = \ldots (x - \ldots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

$$f(x) - \ldots = \ldots (x - \ldots)^2$$

$$f(x) = \dots (x - \dots)^2 + \dots$$

Défi calculatrice Pouvez-vous retrouver la forme canonique de $2x^2 - 4x + 5$? $x^2 - \sqrt{2}x + 5$?

9

1.2 Complétion au carré et forme canonique

Théorème 1.2 — au programme. Pour tout x et $m \in \mathbb{R}$ on a l'identité :

$$x^{2} + mx = x(x+m) = \left(x + \frac{m}{2}\right)^{2} - \left(\frac{m}{2}\right)^{2}$$

La fonction quadratique donnée par $f(x) = x^2 + mx$:

- admet pour racines x = 0 et -m.
- atteint son extremum en $x = -\frac{m}{2}$ d'après la forme canonique.

Conséquence La fonction quadratique de forme réduite

$$f(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

- $f(0) = f(-\frac{b}{a}) = c$
- atteint son extremum en $x=\alpha=-\frac{b}{2a}$. l'extremum $\beta=f(\alpha)$ est un maximum si a>0, et un minimum si a < 0.

Théorème 1.3 — forme canonique. ⁵ Pour tout fonction quadratique définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, il existe deux réels α et $\beta \in \mathbb{R}$ tel que :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - \alpha)^2 + \beta$

De plus
$$\alpha = -\frac{b}{2a}$$
 et $\beta = f(\alpha)$.

⁵ non exigible

Exercices: Compléter au carré

La complétion au carré est une technique qui permet d'obtenir la forme canonique à partir de la forme réduite d'une fonction quadratique.

■ Exemple 1.6 — complétion au carré cas a = 1. (les — sont parfois à transformer en +)

=

Exercice 4 Retrouvez par complétion au carré la forme quadratique des fonctions suivantes :

$$f_1(x) = x^2 + 4x$$

$$\int f_2(x) = x^2 - 10x$$

$$\int f_3(x) = x^2 + 3x + 1$$

$$f_2(x) = x^2 - 10x$$
 $f_3(x) = x^2 + 3x + 1$ $f_4(x) = x^2 - 5x - 3$

Exemple 1.7 (les - sont parfois à transformer en +)

$$f(x) = 2x^{2} + 3x - 5$$
$$= 2\left[x^{2} + \frac{3}{2}x - \frac{5}{2}\right]$$

$$f(x) = -x^{2} + 12x - 2$$
$$= -[x^{2} \dots 12x \dots 2]$$

$$f(x) = -x^{2} + 10x - 25$$
$$= - [x^{2} \dots 10x \dots 25]$$

Exercice 5 Retrouvez par complétion au carré la forme quadratique des fonctions suivantes :

$$f_1(x) = 3x^2 + 9x + 5$$

$$|f_2(x)| = -2x^2 + 2x + 2$$
 $|f_3(x)| = -x^2 - 8x + 7$ $|f_4(x)| = -x^2 + 2x - 3$

$$f_3(x) = -x^2 - 8x + 7$$

$$\int f_4(x) = -x^2 + 2x - 3$$

Exercice 6 Pour chaque fonction quadratique:

- a) Déterminez la forme canonique par complétion au carré.
- b) Complétez le tableau de variation.
- c) Justifiez le sens de variation sur l'intervalle [1; 2].
- d) Donner selon les valeurs de k le nombre de solutions de l'équation f(x) = k d'inconnue x.

$$f_1(x) = x^2 - \frac{4}{3}x$$

$$f_2(x) = -x^2 + 5x + 2$$

$$\int f_3(x) = 2x^2 + 9x + 11$$

x	$-\infty$	$+\infty$
$f_1(x)$		

x	$-\infty$	$+\infty$
$f_1(x)$		

Exercice 7

a) Complétez pour retrouver l'identité illustrée par la figure ci-contre.

$$x^2 + \dots = \left(\dots \right)^2 - \left(\dots\right)^2$$

- b) Démontrer algébriquement cette identité.
- c) Retrouver la forme canonique de $ax^2 + bx$.

Exercice 8 Suivre la démarche proposée pour trouver la forme réduite de la fonction quadratique f dont la représentation graphique est une parabole de sommet S(-2;3) et passant par A(5,8).

- a) On pose $f(x) = a(x \alpha)^2 + \beta$ la forme canonique de f. Préciser les valeurs de α et β .
- b) Donner une équation vérifiée par a et la résoudre.
- c) Développer la forme canonique et conclure.

Problème 1 Dans le repère orthonormé (O; I, J), soit la droite d: y = 2x + 3 et $M(x; y) \in d$.

- a) Démontrer que $OM^2 = 5x^2 + 12x + 9$. (1)
- b) Déterminer la forme canonique par une complétion au carré.
- c) Quelle est la distance minimale qui sépare la droite d de l'origine du repère?
 - 1. On rappelle que dans un repère orthonormé $AB^2 = (x_A x_B)^2 + (y_A y_B)^2$.

$$solution \ de \ l'exercice \ \rlap/4 \ . \ f_1(x) = (x+2)^2 - 4; \ f_2(x) = (x-5)^2 - 25; \ f_3(x) = \left(x+\frac{3}{2}\right)^2 - \frac{5}{4}; \ f_4(x) = \left(x-\frac{5}{2}\right)^2 - \frac{37}{4}; \ \blacksquare$$

$$solution \ de \ l'exercice \ 5 \ . \ f_1(x) = 3\left(x+\frac{3}{2}\right)^2 - \frac{7}{4}; \ f_2(x) = \frac{5}{2} - 2\left(x-\frac{1}{2}\right)^2; \ f_3(x) = 23 - (x+4)^2; \ f_4(x) = -(x-1)^2 - 2; \\ \blacksquare = \frac{1}{2} \left(x+\frac{3}{2}\right)^2 - \frac{7}{4} \left(x+\frac{3}{2}\right)^2 - \frac{7$$

$$solution \ partielle \ de \ l'exercice \ 11 \ . \ f_1(x) = \left(x - \frac{1}{3}\right)^2 - \frac{1}{9}; \ f_2(x) = (x - 7)^2 - 58; \ f_3(x) = \frac{33}{4} - \left(x - \frac{5}{2}\right)^2; \\ \blacksquare$$

1.3 La forme factorisée

1.3 La forme factorisée

Définition 1.4 Soit f une fonction quadratique définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \neq 0, b, c \in \mathbb{R}$.

f est dite factorisable, s'il existe r_1 et $r_2 \in \mathbb{R}$ tel que :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - r_1)(x - r_2)$

 r_1 et r_2 sont les racines de f :

$$f(r_1) = 0 \qquad f(r_2) = 0$$

■ Exemple 1.8

a)
$$f(x) = (3x - 7)(2x + 5)$$

 $= 3\left(x - \frac{7}{3}\right) \times 2\left(x + \frac{5}{2}\right)$
 $f(x) = 6\left(x - \frac{7}{3}\right)\left(x + \frac{5}{2}\right)$ forme factorisée de la défintion 1.4

b) Pour $f(x) = 2(x-7)^2$, 7 est une racine double : $r_1 = r_2 = 7$.

Figure 1.2 – Représentation graphique d'une fonction quadratique donnée par forme factorisée $f(x) = a(x - r_1)(x - r_2)$.

Proposition 1.4 Une fonction quadratique qui ne s'annule pour aucune valeur de x, n'a pas de forme factorisée.

■ Exemple 1.9 Les fonctions définies par $f(x) = x^2 + 1$ et $g(x) = -(x+5)^2 - 5$ ne sont pas factorisables dans \mathbb{R} .

Exercices : la forme factorisée

Exercice 9 Écrire chaque fonction quadratique sous la forme factorisée $a(x-r_1)(x-r_2)$. Préciser le signe de a, et les racines.

$$f_1(x) = 2(x+3)(x-5)$$
 $f_2(x) = (x-3)(x+3)$ $f_3(x) = (5x-2)(x-4)$ $f_4(x) = (2x-10)(3x+15)$ $f_5(x) = (5x-2)(3x-7)$ $f_8(x) = 5x^2 + 2x$ $f_9(x) = -x^2 + 3x$

■ Exemple 1.10 Représentez schématiquement la fonction quadratique donnée.

Avec une expression factorisée : f(x) = 0

$$(2x-1)(x-3) = 0$$

 $2x-1 = 0$ $x-3 = 0$
 $r_1 = \dots$ $r_2 = \dots$

Avec la forme réduite : on a $a \dots 0$ et f(0) = ...3

Exercice 10 Pour chacune des fonctions quadratiques factorisées, donner la forme réduite, et compléter le schéma en précisant les points d'intersection avec les axes du repère.

1.3 La forme factorisée

Exercice 11

Suivre la démarche proposée pour trouver la forme factorisée $f(x) = a(x - r_1)(x - r_2)$ des fonctions quadratiques représentées ci-dessous.

- a) Donnner par lecture graphique le(s) racine(s) de f.
- b) Donner une équation vérifiée par a et la résoudre.
- c) Donner la forme réduite de la fonction f.

Exercice 12 Pour chaque fonction quadratique ci-dessous :

- a) Déterminez les racines.
- b) Déterminez le signe du coefficient a de x^2 dans la forme réduite.
- c) Complétez le tableau de signe.

$$f_1(x) = 5(x+1)(x-6)$$

$$x -\infty +\infty$$

$$f_1(x)$$

$$f_2(x) = -2(x-2)(x-9)$$

$$x -\infty +\infty$$

$$f_2(x)$$

$f_3(x) =$	-5x(x)	+ 2)	
x	$-\infty$		$+\infty$
$f_3(x)$			
$f_4(x) =$	(2x-7)	(2x+7)	

$f_4(x) = (2x - 7)(2x + 7)$						
x	$-\infty$			$+\infty$		
$f_4(x)$						

Exercice 13 Sans dresser un tableau de signe, résoudre dans \mathbb{R} les inéquations d'inconnue x.

$$(I_1)$$
 $(x-1)(x-4) > 0$

$$(I_2)$$
 $(x-10)(x+5) < 0$

$$(I_3) -2(x+8)(x+7) \geqslant 0$$

$$(I_4) (3x+5)(-2x+1) \leqslant 0$$

Défi Trouvez une (ou plusieurs) fonction quadratique f tel que f(3) = 5 et f(4) = 5.

solution de l'exercice 9.

$$f_1(x) = 2(x-5)(x+3); f_2(x) = (x-3)(x+3); f_3(x) = (x-4)(5x-2); f_4(x) = 6(x-5)(x+5);$$

 $f_5(x) = (3x-7)(5x-2); f_6(x) = -4(x-5)(2x+3); f_7(x) = x(x-5); f_8(x) = x(5x+2); f_9(x) = -x(x-3);$

solution de l'exercice 10.

solution de l'exercice 11.

$$f_1(x) = -(x+2)(x-1) = -x^2 - x + 2$$

$$f_2(x) = x(x+3) = x^2 + 3x$$

$$f_3(x) = \frac{2}{9}(x-3)^2 = \frac{2}{9}x^2 - \frac{4}{3}x + 2$$

$$f_4(x) = 3(x+3)(x+2) = 3x^2 + 15x + 18$$

$$f_5(x) = -(x-3)(x-5) = -x^2 + 8x - 15$$

$$f_6(x) = -\frac{1}{3}(x+1)^2 = -\frac{1}{3}x^2 - \frac{2}{3}x - \frac{1}{3}$$

solution de l'exercice 12.

solution de l'exercice 13.

$$(I_1) \ \mathcal{S}_1 =]-\infty, 1[\ \cup\]4, \infty[$$

$$(I_2) \ \mathcal{S}_2 =]-5, 10[$$

$$(I_4) \ \mathcal{S}_4 = \left[-8, -7\right]$$

$$(I_4) \ \mathcal{S}_4 = \left[-\infty, -\frac{5}{3}\right] \cup \left[\frac{1}{2}, \infty\right[$$

LG Jeanne d'Arc, 1èreSPE

1.4 La forme factorisée : produit et somme des racines

Les exercices de cette section peuvent être écourtés. Soit f fonction quadratique factorisable, de racines r_1 et r_2 :

$$f(x) = a(x - r_1)(x - r_2)$$

$$= a(x^2 - r_1x - r_2x + r_1r_2)$$

$$= ax^2 - a(r_1 + r_2)x + ar_1r_2$$

$$= ax^2 - asx + ap$$

Théorème 1.5 Les racines r_1 et r_2 d'une fonction quadratique f(x) =

- $ax^2 + bx + c$ doivent vérifier :

 La somme des racines $s = r_1 + r_2 = -\frac{b}{a}$.

 Le produit des racines $p = r_1r_2 = \frac{c}{a}$

1.4.1 Exercices : la forme factorisée et somme et produit des racines

Pour x, r_1 et $r_2 \in \mathbb{R}$:

Pour factoriser : $f(x) = 1x^2 - sx + p$

Exemple 1.11 — Cas p>0. Factoriser en cherchant des racines entières r_1 et r_2 de même signe.

$$f(x) = x^2 + 7x + 10$$

$$g(x) = x^2 - 9x + 20$$

Exercice 14 — À vous. Mêmes consignes

$$f_1(x) = x^2 + 6x + 5$$
 $f_3(x) = x^2 - 17x + 16$ $f_5(x) = x^2 + 7x + 10$
 $f_2(x) = x^2 + 10x + 16$ $f_4(x) = x^2 + 6x + 8$ $f_6(x) = x^2 - 7x + 12$

■ Exemple 1.12 — Cas p<0. Factoriser en cherchant des racines entières r_1 et r_2 de signes contraires.

$$f(x) = x^2 + 2x - 3$$

$$g(x) = x^2 - 14x - 15$$

Exercice 15 — À vous. Mêmes consignes

$$f_1(x) = x^2 + x - 6$$
 $f_3(x) = x^2 - 6x - 40$ $f_5(x) = x^2 + 2x - 8$ $f_2(x) = x^2 - 5x - 14$ $f_4(x) = x^2 - x - 12$ $f_6(x) = x^2 + 5x - 24$

Exercice 16 On se donne une fonction quadratique $f(x) = ax^2 + bx + c$, factorisable de racines r_1 et r_2 . Cochez, dans chaque cas la bonne réponse.

	$r_1 \text{ et } r_2 < 0$	$r_1 < 0 < r_2$	$r_1 \text{ et } r_2 > 0$
1/a > 0, b > 0 et c > 0			
2/a > 0, b < 0 et c > 0			
3/a < 0, b > 0 et c < 0			
4/a < 0, b > 0 et c > 0			

■ Exemple 1.13 — racines évidentes. Certaines fonctions quadratiques ont une racine évidente, en déduire la seconde est immédiat.

$$f(x) = 3x^2 + 10x + 8$$

$$g(x) = 3x^2 + 14x + 8$$

$$f(\ldots) = g(\ldots) =$$

Exercice 17 Factoriser les expressions suivantes en identifiant une racine évidente.

$$f_1(x) = 2x^2 - 3x - 2$$
 $\left| f_2(x) = 2x^2 - 5x + 3 \right| \left| f_3(x) = 4x^2 + 5x + 1 \right| \left| f_4(x) = 6x^2 + 2x - 4 \right|$

Soit P(x) un polynôme de degré quelconque. Si r est une racine : P(r) = 0, alors il existe un polynôme Q tel que P(x) = (x - r)Q(x).

Exercice 18 \P Soit la fonction cubique $f(x) = -x^3 + 8x^2 + 11 - 18$.

- a) Montrer que P(-2) = 0.
- b) Développer ordonner et réduire l'expression $(x+2)(ax^2+bx+c)$
- c) Trouver les réels $a,\,b$ et c tel que pour tout $x\in\mathbb{R}$:

$$P(x) = (x+2)(ax^2 + bx + c)$$

- d) On pose $Q(x) = -x^2 + 10x 9$. À l'aide d'une racine évidente, factoriser Q.
- e) Quel est le nombre de racines du polynôme P?

Exercice 19 — entraı̂nement. \P Soit la fonction cubique $f(x) = -2x^3 + 10x^2 - 16 + 8$.

- a) Montrer que P(1) = 0.
- b) Développer ordonner et réduire l'expression $(x-1)(ax^2+bx+c)$
- c) Trouver les réels $a,\,b$ et c tel que pour tout $x\in\mathbb{R}$:

$$P(x) = (x - 1)(ax^2 + bx + c)$$

- d) On pose $Q(x) = -2x^2 + 8x 8$. À l'aide d'une racine évidente, factoriser Q.
- e) Quel est le nombre de racines du polynôme P?

$$solution \ de \ l'exercice \ 14 \ . \ f_1(x) = (x+1)(x+5); \ f_2(x) = (x+2)(x+8); \ f_3(x) = (x-16)(x-1); \ f_4(x) = (x+2)(x+4); \ f_5(x) = (x+2)(x+5); \ f_6(x) = (x-4)(x-3); \ f_7(x) = (x+2)(x+6); \ f_8(x) = (x-8)(x-5); \ \blacksquare$$

solution de l'exercice 15.
$$f_1(x) = (x-2)(x+3)$$
; $f_2(x) = (x-7)(x+2)$; $f_3(x) = (x-10)(x+4)$; $f_4(x) = (x-4)(x+3)$; $f_5(x) = (x-2)(x+4)$; $f_6(x) = (x-3)(x+8)$; $f_7(x) = (x-5)(x+6)$; $f_8(x) = (x-20)(x+1)$;

$$solution \ de \ l'exercice \ 17 \ . \ f_1(x) = (x-2)(2x+1); f_2(x) = (x-1)(2x-3); f_3(x) = (x+1)(4x+1); f_4(x) = 2(x+1)(3x-2); \\ \blacksquare$$

1.5 Exercices classiques : choisir la forme adaptée

Exercice 20 — Grand classique. Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 4x - 16$.

- 1) Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = 2(x+4)(x-2)
- 2) Montrer que pour tout $x \in \mathbb{R}$ on a $f(x) = 2(x+1)^2 18$
- 3) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Complétez le tableau de variation de f:

_		
	x	$-\infty$ $+\infty$
	f(x)	

- b) Résoudre l'équation f(x) = 0, inconnue x.
- c) Calculez f(0).
- d) Quel est le minimum de f sur \mathbb{R} .
- e) Résoudre l'équation f(x) = -16, inconne x.
- f) Résoudre l'inéquation f(x) > 0, inconne x.

Exercice 21 Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 + 14x + 15$ et \mathscr{P} sa représentation graphique.

- 1) Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = (x+3)(3x+5).
- 2) Montrer par complétion au carré que $f(x) = 3\left(x + \frac{7}{3}\right)^2 \frac{4}{3}$
- 3) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Quel est le sommet de la parabole \mathscr{P} .
 - b) Résoudre l'équation f(x) = 0, inconnue x.
 - c) Calculer $f(\sqrt{2})$.
 - d) Quel est le nombre de solutions de l'équation f(x) = -1, inconnue x.
- e) Complétez le tableau de signe :

f) Résoudre l'équation f(x) = 15, inconnue x.

Exercice 22 Soit f la fonction définie sur \mathbb{R} par $f(x) = 4x^2 + 8x + 3$ et \mathscr{P} sa représentation graphique.

- 1) Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = (2x+1)(2x+3).
- 2) Montrer par complétion au carré que $f(x) = 4(x+1)^2 1$
- 3) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Quel est le sommet de \mathscr{P} ?
 - b) Calculer $f(-\sqrt{2})$ et f(0).
 - c) Montrer que pour tout $x, f(x) \ge -1$.
- d) Résoudre l'inéquation f(x) < 0, inconnue x.
- e) Résoudre l'inéquation f(x) < 3, inconnue x.
- f) Résoudre l'équation f(x) = 9, inconnue x.

Exercice 23 Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+5)^2 - (3x-4)(x+5)$.

- 1) Factoriser et montrer que pour tout $x \in \mathbb{R}$, $f(x) = -2(x+5)(x-\frac{9}{2})$.
- 2) Montrer que $f(x) = -2x^2 x + 45$.
- 3) Montrer par complétion au carré que $f(x) = -2\left(x + \frac{1}{4}\right)^2 + 45{,}125.$
- 4) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Calculer f(0) et f(-1).
 - b) Donner l'équation réduite de l'axe de symétrie de la représentation graphique \mathscr{P} .
- c) Résoudre l'inéquation f(x) > 0, inconnue x.
- d) Résoudre l'équation f(x) = 45, inconnue x.
- e) Quel est le maximum de f?

Exercice 24 — Rapidité et sans calculatrice. Associez chaque fonction donnée par son expression à sa représentation. Justifiez votre choix.

$$f_1(x) = (x-1)(x-3)$$

$$f_2(x) = x^2 + 2x - 3$$

$$f_3(x) = (x+1)^2 + 2$$

$$f_4(x) = -x^2 + 2x - 3$$

Exercice 25 — Rapidité et sans calculatrice. Associez chaque fonction donnée par son expression à sa représentation. Justifiez votre choix.

$$f_1(x) = -(x-1)(x+3) + 2$$

$$f_2(x) = -x(x+3) + 2$$

$$\int_{5}^{x} f_3(x) = -(x-3)^2 - 2$$

$$f_4(x) = -x^2 + 3x + 2$$