Physik 1 (PH1-B-REE1)

Michael Erhard

12.3 Trägheitsmomente (Wiederholung)

Abbildung	Beschreibung	Trägheitsmoment
$r \qquad \omega$	Ein Massepunkt um eine Drehachse	$J = m r^2$
$r \longrightarrow \omega$	Zylindermantel oder Ring	$J = m r^2$
r	Vollzylinder oder runde Scheibe	$J = \frac{m}{2} r^2$
$\frac{1}{r}$	Hohle Kugel	$J = \frac{2m}{3} r^2$
$\frac{1}{r}$	Volle Kugel	$J = \frac{2m}{5} r^2$

Quelle: Folien R. Hess

2

12.4 Satz von Steiner

Wenn Drehachse nicht durch SP geht, gilt für das Trägheitsmoment

Satz von Steiner

$$J = m r_{\rm S}^2 + J_0$$

 $r_{\rm S}$... senkrechter Abstand Schwerpunkt - Drehachse

 J_0 ... Trägheitsmoment bzgl. Schwerpunkt

Herleitungsskizze (Vektoren nur senkrechte Komponenten bzgl. Drehachse)

$$J = \sum_{i} m_{i} (\underline{r}_{S} + \underline{r}_{i})^{2} = m_{\text{ges}} \underline{r}_{S}^{2} + 2\underline{r}_{S} \sum_{i} m_{i} \underline{r}_{i} + \sum_{i} m_{i} \underline{r}_{i}^{2}$$

$$+ \sum_{i \text{ Schwerpunkt}} m_{i} \underline{r}_{i}^{2} + \sum_{i \text{ Schwerpunkt}} m_{i} \underline{r}_{i}^{2}$$

Inhalt

13 Allgemeine Kinematik starrer Körper (Überblick)

- 13.1 Translation und Rotation
- 13.2 Rotation und Drehimpuls
- 13.3 Ausblick: Kraft auf freie starre Körper

14 Schwingungen 1 (ungedämpfte Schwingungen)

- 14.1 Einleitung
- 14.2 Bewegungungsgleichung
- 14.3 Allgemeine DGL und Lösung
- 14.4 Beispiele

13. Allgemeine Kinematik starrer Körper

Allgemein kann die Bewegung eines starren Körpers als Kombination aus Translation und Rotation beschrieben werden

Translation

Rotation

Rotation

HAW HAMBURG

13.2 Allgemeine Rotation

Der allgemeine Drehgeschwindigkeitsvektor gibt die Geschwindigkeit eines Punktes bzgl. eines Drehpunktes wie folgt an

$$\underline{v} = \underline{\omega} \times \underline{r}$$

Für einen starren Körper

Rechte-Hand-Merkregel

- Daumen in Drehvektorrichtung
- Gekrümmte Finger geben Drehsinn an

13.2 Drehimpuls und Drehimpulserhaltung

Analog dem Impuls kann ein **Drehimpuls** (bzgl. einer Achse) definiert werden

$$p = m v \implies$$

$$p = m v \Rightarrow L = J \omega$$

$$[L] = \frac{\text{kg m}^2}{\text{s}}$$

Es gilt dann

$$\dot{p} = F \implies$$

$$\dot{p} = F \quad \Rightarrow \qquad \dot{L} = M$$

Für ein System ohne externes Drehmoment gilt Drehimpulserhaltung

(folgt wie bei der Impulserhaltung aus actio=reactio).

13.2 Allgemeiner Drehimpuls

Ausblick: Allgemein gilt für den Drehimpuls (nicht notwendigerweise parallel zur Rotation)

$$\underline{L} = \underline{\underline{J}}\,\underline{\omega}$$

Bewegungsgleichung

$$\underline{\dot{L}} = \underline{M}$$

$$\underline{M} = \underline{\dot{L}} = \underline{\omega}_{\rm pr} \times \underline{L}$$

13.3 Ausblick: Kraft auf freien starren Körper

Freier starrer Körper mit Kraftangriffspunkt am Schwerpunkt

Für Schwerpunkt gilt Newton

$$m_{\text{ges}} \, \underline{a}_{\text{SP}} = m_{\text{ges}} \, \underline{\ddot{x}}_{\text{SP}} = \underline{F}$$

 Die Drehbewegung (um den Schwerpunkt) bleibt erhalten, es wirkt kein Drehmoment (vgl. Herleitung Schwerpunkt)

$$\underline{\omega} = \text{const.} \quad \Leftrightarrow \quad \underline{\dot{\omega}} = 0$$

13.3 Ausblick: Kraft auf freien starren Körper

Freier starrer Körper mit Kraftangriffspunkt *nicht* am Schwerpunkt

1.

3.

14. Schwingungen

Schwingung: physikalische Größe, die sich periodisch ändert

Periodendauer = kleinste Zeitspanne T, für die gilt x(t) = x(t+T)

Frequenz
$$f = \frac{1}{T}$$
 Einheit $[f] = \frac{1}{s} = 1 \, \mathrm{Hz}$ (Hertz)

Mathematische Beschreibung

Kreisfrequenz
$$\omega_0=2\pi f=rac{2\pi}{T}$$
 Einheit $[\omega_0]=1rac{1}{s}=1rac{\mathrm{rad}}{s}$

Spitzen/Scheitelwert \hat{x} Anfangsphasenwinkel $arphi_0$

Allgemeine mathematische Beschreibung

$$x(t) = \hat{x}\sin(\omega_0 t + \varphi_0)$$

Mittelwert

$$\bar{x} = \frac{1}{T} \int_0^T x(t) \, \mathrm{d}t = 0$$

Effektiv-Wert / RMS-Wert (root-mean-square)

$$x_{ ext{eff}} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt} = \frac{\hat{x}}{\sqrt{2}}$$
 (mit $T = \frac{2\pi}{\omega_0}$)

Beispiel: Feder-Masse-Schwinger

14.2 Bewegungsgleichung

An Tafel

- Herleitung Bewegungsgleichung
- Eigenschaften: linear, konst. Koeff., zweite Ordn.

14.3 Lösung der Bewegungsgleichung

An Tafel

14.4 Beispiele für ungedämpfte^(*) Schwingungen

(*) in der Realität sind natürlich auch diese Schwingungen gedämpft, werden aber in guter Näherung als ungedämpfte Schwingungen betrachtet!

14.4.1 Feder-Masse-Schwinger

Beispiel 1: Feder-Masse-Schwinger (an Tafel)

- Wiederholung DGL
- EXP1: Messung Federkonstante mit 2 Massen
- EXP2: Messung Frequenz für 2 Massen

14.4.2 Mathematisches Pendel

Beispiel 2: mathematisches Pendel (an Tafel)

- DGL aufstellen
- Experiment: 2 Längen

Klausur

Termin: geplant am 24.1.2019, 11:00 Uhr, Ankündigungen des FSB bzgl. Raum und evtl. Änderungen beachten!!!

Hilfsmittel:

- "dummer" Taschenrechner (kein Tablet, kein Smartphone o.ä.)
- 2 handgeschriebene Seiten A4 (zweiseitig)

Hinweis:

Aufgaben sind symbolisch zu bearbeiten, den Hauptteil der Punkte gibt es für die Ergebnisformel nicht für das Einsetzen der Zahlen!

