One-to-one correspondence between deterministic port-based teleportation and unitary estimation

Based on <u>arXiv:2408.11902</u>

Satoshi Yoshida, Yuki Koizumi, Michał Studziński,

Marco Túlio Quintino, Mio Murao

What this talk is about

Port-based teleportation

Teleportation fidelity $F_{
m PBT}$

Estimation fidelity $F_{
m est}$

$$\max F_{\mathrm{PBT}} = \max F_{\mathrm{est}}$$

Constructive proof for the equivalence!

Universal programming of unitary operations

 $--U|d\rangle$ No-programming theorem: Universal programming is impossible $--|\mathcal{P}'_U\rangle$ \rightarrow Probabilistic or non-exact implementation

Storage and retrieval (SAR) of quantum program via teleportation

If the Bell measurement outcome is (i, j), we get

$$UX^iZ^j \mid \xi \rangle$$

 \rightarrow Retrieval succeeds when (i,j) = (0,0)

Success probability = $1/d^2$

Retrieval succeeds when Pauli correction is not needed

Port-based teleportation (PBT)

SAR of quantum program via port-based teleportation (PBT)

- $\varepsilon(\sigma^{in})$ 1. Alice & Bob share 2N-qudit entangled state $|\psi\rangle$
 - 2. Alice measures input state σ^{in} with her share of $|\psi\rangle$
 - 3. Alice sends the measurement outcome i to Bob
 - 4. Bob selects i-th port (no Pauli correction)

Quantum state $(I^{\otimes N} \otimes \mathscr{E}^{\otimes N})(|\psi\rangle\langle\psi|)$ is the program state of \mathscr{E}

Port-based teleportation is quantum teleportation without Pauli correction

M. Sedlák, A. Bisio, M. Ziman, PRL 122, 170502 (2019) A. Bisio et al. PRA 81, 032324 (2010) Y. Yang, R. Renner, G. Chiribella, PRL 125, 210501 (2020)

Optimal protocols for SAR and PBT

Probabilistic exact (pPBT)

Optimal pSAR = pPBT

Optimal probability $p_{\text{PBT}}(N, d) = N/(N - 1 + d^2)$

Deterministic non-exact (dPBT)

Optimal dSAR = unitary estimation ≠ dPBT

Optimal fidelity $F_{PBT}(N, d) = ???$

Is there any connection between unitary estimation and dPBT?

- Definition of the tasks
- Main result
- Applications
- Proof techniques
- Conclusion

Definition of the tasks

Deterministic port-based teleportation (dPBT)

Teleportation channel
$$\Lambda(\rho) = \sum_{a=1}^{N} \mathrm{Tr}_{\mathcal{A}_0 \mathcal{A}^N \overline{\mathcal{B}}_a} [(\Pi_a \otimes I_{\mathcal{B}^N})(\rho \otimes |\phi_{\mathrm{PBT}}\rangle \langle \phi_{\mathrm{PBT}}|)]$$

Figure of merit:
$$F_{\mathrm{PBT}} = f(I_d, \Lambda)$$
 Channel fidelity

Definition of the tasks

Unitary estimation

Guess probability
$$p(\hat{U} \mid U) = \text{Tr}[M_{\hat{U}}(I_{\mathcal{A}^n} \otimes U_{\mathcal{B}^n}^{\otimes n}) \mid \phi_{\text{est}} \rangle \langle \phi_{\text{est}} \mid (I_{\mathcal{A}^n} \otimes U_{\mathcal{B}^n}^{\otimes n})^{\dagger}]$$

Figure of merit:
$$F_{\rm est} = \int {\rm d} U {\rm d} \hat{U} p(\hat{U} \mid U) f(U, \hat{U})$$

- Definition of the tasks
- Main result
- Applications
- Proof techniques
- Conclusion

Main result

d-dim. dPBT with N = n + 1 ports

d-dim. unitary estimation with n queries

One-to-one correspondence between dPBT and unitary estimation

Main result

(a) General protofol for dPBT

(c) General adaptive protocol for unitary estimation

(b) Covariant protocol for dPBT

(d) Parallel covariant protocol for unitary estimation

Conversion of the protocols between dPBT and unitary estimation

- Definition of the tasks
- Main result
- Applications
- Proof techniques
- Conclusion

Asymptotically optimal dPBT

Corollary.
$$F_{\text{PBT}}(N, d) = 1 - \Theta(d^4N^{-2})$$

Optimal unitary estimation obeys Heisenberg limit: $F_{\rm est}(n,d)=1-\Theta(d^4n^{-2})$

- \rightarrow Optimal dPBT also satisfies $F_{\rm PBT}(N,d)=1-\Theta(d^4N^{-2})$
- \blacksquare Improved over the previous result $1-O(d^5N^{-2}) \leq F_{\mathrm{PBT}}(N,d) \leq 1-\Omega(d^2N^{-2})$
- Partially solves an open problem to determine $h(d) = \lim_{N \to \infty} [1 F_{\text{PBT}}(N, d)] N^2 = \Theta(d^4)$

Applications

Optimal unitary estimation for $n \le d-1$

Corollary.
$$F_{\rm est}(n,d) = \frac{n+1}{d^2}$$
 for $n \le d-1$

Optimal PBT for
$$N \leq d$$
: $F_{\text{PBT}}(N,d) = \frac{N}{d^2}$

- \rightarrow Optimal unitary estimation for $n \le d-1$: $F_{\rm est}(n,d) = \frac{n+1}{d^2}$
- $\overline{\mathbf{V}}$ Optimal resource state for PBT = Optimal resource state for unitary estimation

Applications

Optimal unitary inversion for $n \le d-1$

Unitary inversion

- Sequential
- Indefinite causal order

Theorem.
$$F_{\text{inv}}^{(\text{PAR})}(n,d) = F_{\text{inv}}^{(\text{SEQ})}(n,d) = F_{\text{inv}}^{(\text{GEN})}(n,d) = \frac{n+1}{d^2}$$
 for $n \le d-1$

 \square Measure-and-prepare is optimal for $n \leq d-1$ even allowing indefinite causal order

- Definition of the tasks
- Main result
- Applications
- Proof techniques
- Conclusion

Proof techniques

- 1. Symmetry of the problem → Covariant protocol
- 2. Conversion between covariant protocols

Proof techniques

Optimal fidelity of dPBT given by semidefinite programming (SDP)

W.l.o.g. we can consider $|\phi_{\mathrm{PBT}}\rangle = (O_{\mathscr{A}^N} \otimes I_{\mathscr{B}^N}) |\phi^+\rangle_{\mathscr{A}^N\mathscr{B}^N}$,

where ${\rm Tr}[O^{\dagger}O]=d^N$ and $|\phi^+\rangle$ is the maximally entangled state

$$F_{\text{PBT}} = \sum_{a} \text{Tr}[\tilde{\Pi}_{a} \sigma_{a}], \quad \sigma_{a} := |\phi^{+}\rangle_{\mathcal{A}_{0} \mathcal{A}_{a}} \otimes I_{\overline{\mathcal{A}}_{a}} / d^{N-2}$$

$$\tilde{\Pi}_{a} \ge 0, \quad \sum_{a} \tilde{\Pi}_{a} = O^{\dagger}O \otimes I =: X \otimes I$$

$$\max \sum_{a} \operatorname{Tr}[\tilde{\Pi}_{a}\sigma_{a}]$$
s.t. $\tilde{\Pi}_{a} \geq 0$, $\sum_{a} \tilde{\Pi}_{a} = X \otimes I$, $\operatorname{Tr}[X] = d^{N}$

Unitary and symmetric group symmetry of the SDP for dPBT

$$\max \sum_{a} \text{Tr}[\tilde{\Pi}_{a}\sigma_{a}]$$
s.t. $\tilde{\Pi}_{a} \geq 0$, $\sum_{a} \tilde{\Pi}_{a} = X \otimes I$, $\text{Tr}[X] = d^{N}$

$$\sigma_{\pi(a)} \quad \pi^{-1}$$

$$\forall \pi \in \mathfrak{S}_{N}$$

$$[X,\pi] = 0 \quad \forall \pi \in \mathfrak{S}_{N}$$

$$\Longrightarrow X = \sum_{\mu} w_{\mu} P_{\mu} \quad P_{\mu} \text{: Young projector}$$

$$(\mathbb{C}^{d})^{\otimes N} = \bigoplus_{\mu} \mathscr{H}_{\mu} \otimes \mathbb{C}^{m_{\mu}}$$

 μ : Young diagram

 $[X, U^{\otimes N}] = 0 \quad \forall U \in SU(d)$

$$F_{\rm PBT} = \overrightarrow{w}^{\mathsf{T}} M_{\rm PBT} \overrightarrow{w}$$

Y. Yang, R. Renner, G. Chiribella, PRL 125, 210501 (2020)

Unitary group symmetry for unitary estimation

Defining
$$T:=\left[\mathrm{d}\hat{U}T_{\hat{U}},\,T\,\mathrm{satisfies}\,[T,V^{\otimes n}\otimes W^{\otimes n}]=0\quad\forall V,\,W\in\mathrm{SU}(d)\right]$$

$$\sqrt{T} = \sum_{\alpha} v_{\alpha} \Pi_{\alpha} \otimes \Pi_{\alpha}$$

 α : Young diagram

$$F_{\rm est} = \vec{v}^{\mathsf{T}} M_{\rm est} \vec{v}$$

Proof techniques

- 1. Symmetry of the problem → Covariant protocol
- 2. Conversion between covariant protocols

Proof techniques

Conversion between the covariant protocols

Covariant dPBT protocol

Covariant unitary estimation protocol

$$\overrightarrow{v} = R \overrightarrow{w}$$

$$\overrightarrow{w} = R^{\mathsf{T}} \overrightarrow{v}$$

$$\tilde{\phi}_{\mathrm{est}}^{(\vec{v})} = \tilde{M}_{\hat{U}}$$

$$F_{\mathrm{PBT}} = \overrightarrow{w}^{\mathsf{T}} M_{\mathrm{PBT}} \overrightarrow{w}$$

$$(M_{\text{PBT}})_{\mu\nu} = \frac{R(N-1,d)^{\mathsf{T}}R(N-1,d)}{d^2}$$

$$F_{\rm est} = \vec{v}^{\mathsf{T}} M_{\rm est} \vec{v}$$

$$(M_{\text{est}})_{\alpha\beta} = \frac{R(n,d)R(n,d)^{\mathsf{T}}}{d^2} \qquad [R(n,d)]_{\alpha\mu} = \delta_{\mu \in \alpha + \square}$$

$$\max F_{\text{PBT}} = \max \operatorname{eig}(M_{\text{PBT}}) = \max \operatorname{sing}(R)^2/d^2$$

$$\Longrightarrow F_{\text{PBT}}(N, d) = F_{\text{est}}(n, d) \quad \text{for } N = n + 1$$

$$\max F_{\text{est}} = \max \operatorname{eig}(M_{\text{est}}) = \max \operatorname{sing}(R)^2/d^2$$

- Definition of the tasks
- Main result
- Applications
- Proof techniques
- Conclusion

Conclusion

d-dim. dPBT with N = n + 1 ports

d-dim. unitary estimation with n queries

- Explicit construction from one protocol to the other protocol via covariant protocol
- X Covariant protocol may require more resources than non-covariant one (e.g. #qubits)
- E.g. Adaptive unitary estimation using no auxiliary qubits in [J. Haah et al. FOCS (2023)]

Future work: Efficient conversion between unitary estimation and dPBT?

Thank you!