- 0. Read Chapters I and II of *Gödel's Proof* (revised edition), by Nagel and Newman. You can find the full book electronically at a link on the Moodle Page (or get a paperback copy for about \$10). You will submit a short reading response on these chapters; I have not determined the exact format of this response but will post it soon.
- 1. (a) In each of the following cases, write down the formula α_t^u associated to the given formula α , variable u and term t (no explanations necessary):

```
i. \alpha is (\forall x)(=xx'), u is x, t is +xx'
```

ii.
$$\alpha$$
 is $(\forall x)(=xx')$, u is x' , t is $+xx'$

iii.
$$\alpha$$
 is $((\forall x)(>xx') \lor (\forall x')(>xx'))$, u is x, t is $+x'x''$

- (b) In each of the cases in part (a), work out whether t is substitutable in α for u, or not. You should explain your answers clearly using the definition of 'substitutable'.
- 2. Write down a deduction for each of the following \mathcal{L}_{NT} -formulas, using the first-order logical axioms and rules of inference.
 - (a) Sx = Sx
 - (b) $((0=0) \lor \neg (0=0)) \to (Sx = Sx)$
 - (c) $(\forall x)(Sx = Sx)$
 - (d) S0 = S0
- 3. Let \mathcal{L} be a first-order language with a unary relation symbol R. Write out an explicit deduction to show that

$$(\forall x)(Rx) \vdash (\forall x')(Rx').$$

- 4. Let Γ be a set of formulas in a first-order language \mathcal{L} . We make the following definition: a formula ϕ in \mathcal{L} is called *decidable by* Γ if either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.
 - (a) Prove that if α is decidable by Γ , then so is $\neg \alpha$. (This doesn't sound like I'm saying anything at all, but there is something subtle to prove. Nonetheless, the proof is not long given what we've already established).
 - (b) Prove that if α and β are both decidable by Γ , then so is $\alpha \vee \beta$.
 - (c) Suppose that every atomic formula in \mathcal{L} is decidable. Prove that any formula with no quantifiers is decidable.

Note In the following problem, you should assume the Deduction Theorem for our full deductive system. It states: for any set of formulas Γ and any two formulas α and β , if α is a sentence, then $\Gamma, \alpha \vdash \beta$ if and only if $\Gamma \vdash \alpha \to \beta$.

- 5. Let Γ be a set of formulas in a first-order language \mathcal{L} . We make the following definitions: Γ is *inconsistent* if there is a formula ϕ such that both $\Gamma \vdash \phi$ and $\Gamma \vdash \neg \phi$. Call Γ explosive if it deductively implies every formula, i.e. $\Gamma \vdash \phi$ for every formula ϕ in \mathcal{L} .
 - (a) Prove that Γ is inconsistent if and only if Γ is explosive. Equivalently: if there is even a single formula ϕ such that $\Gamma \not\vdash \phi$, then Γ is consistent.
 - (b) Prove that if ϕ is a sentence, then $\Gamma \vdash \phi$ if and only if $\Gamma \cup \{\neg \phi\}$ is inconsistent.
 - (c) Prove that if ϕ is a sentence, then ϕ is undecidable from Γ if and only if both $\Gamma \cup \{\phi\}$ and $\Gamma \cup \{\neg \phi\}$ are consistent.