Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Segundo Semestre de 2023

IIC 3263 – Teoría de Modelos Finitos

Tarea 3

Entrega: Viernes 01 de Diciembre hasta las 18:00 hrs. Por correo electronico

Pregunta 1 Un sistema de caminos consta de una relación terciaria T y una relación unaria S. El problema de caminos se trata de computar la mayor cantidad de elementos que cumplan la siguiente condición:

- \blacksquare Todo elemento en S es parte del sistema
- Si existen tres elementos a, b y c en los que a y b son parte del sistema y T tiene una tupla (a, b, c), entonces c es parte del sistema.

Considera el vocabulario $\mathcal{L} = \{T, S\}.$

- 1. Muestra como escribir una oración φ en lógica de primer orden con menor punto fijo tal que una \mathcal{L} -estructura \mathfrak{A} satisface φ si y solo si todos los elementos del dominio de \mathfrak{A} son parte del sistema.
- 2. Muestra como escribir una fórmula $\psi(x)$ (con una variable libre) en lógica infinitaria $\mathcal{L}_{\infty\omega}^{\omega}$ y tal que toda \mathcal{L} -estructura \mathfrak{A} satisface $\psi(a)$ (para un elemento a del dominio de \mathfrak{A}) si y solo si a es parte del sistema.

Pregunta 2 Define LPO^k como las fórmulas en LPO que usan un máximo de k variables. Muestra que dos estructuras finitas están de acuerdo en $\mathcal{L}^k_{\infty\omega}$ si y solo si están de acuerdo en LPO^k.

Pregunta 3 En esta pregunta vamos a demostrar que la lógica $\mathcal{L}^{\omega}_{\infty\omega}$ no puede capturar NP (sobre estructuras arbitrarias), por que no puede expresar todos los problemas NP-completos.

- Considera el grafo completo bipartito $K_{n,m}$, el que representamos como una estructura sobre un vocabulario con una relación binaria. Muestra que $K_{k,k} \equiv_k^{\infty\omega} K_{k,k+1}$: estas dos estructuras juegan el juego con k guijarros.
- Muestra que $K_{n,m}$ es hamiltoniano si y solo si n=m.
- Concluye que $\mathcal{L}^{\omega}_{\infty\omega}$ no puede expresar la propiedad de ser un grafo hamiltoniano