

Figure 3. ClustalW multiple sequence alignment (MSA) of human integrin subunits αV (UniProt P06756) and $\beta 3$ (UniProt P05106) from UniProt (full-length sequences) and the corresponding αV and $\beta 3$ extracellular domains from the crystal structure PDB 1L5G. For αV (left), the UniProt sequence contains additional N- and C-terminal residues not present in the 1L5G extracellular domain, but is otherwise identical in the aligned region. For $\beta 3$ (right), the UniProt sequence also has extra N- and C-terminal residues compared to 1L5G, with one notable internal difference of four residues at positions 649-653 (UniProt: GALHD; PDB: EPYMT). Conserved residues are highlighted in red, with the alignment visualized in ESPript.

Figure 4. Chemical structures of the ligands used in the HADDOCK docking simulations. Ligands include the reference cyclic RGD peptide (cRGD), known for its high-affinity binding to αVβ3 integrin, and seven thyroid hormone metabolites: reverse triiodothyronine (rT3), triiodothyroacetic acid (TRIAC), tetraiodothyronine (acid (TETRAC), triiodothyronine (T3), thyroxine (T4), sulfated triiodothyronine (sT3), and sulfated thyroxine (sT4).

rT3

sT3

sT4

T3

l **T**4

TETRAC
TRIAC

Figure 5. Docking of cRGD, rT3, TRIAC, TETRAC, and thyroid hormones (T3, T4, sT3, sT4) to human αVβ3 and predicted sea urchin integrin heterodimers. Left panels: cRGD (red), rT3 (green), TRIAC (light purple), and TETRAC (orange) bound at the RGD-binding site. Right panels: T3 (pink), T4 (cyan), sT3 (blue), and sT4 (yellow) bound at the thyroid hormone-binding site. Integrin dimers are shown as grey ribbons, with Mn²⁺ ions as black spheres.