

EE697 Graduate Project Image Caption Generation using Transfer learning

Under the guidance of Dr. Leon Jololian, Associate Chair, Dept. of Electrical and Computer Engineering

Manish Shetty

Table of contents

- 1. Introduction
- 2. Architecture
- 3. Methodology
- 4. Results
- **5.** Conclusion and Future Works
- 6. References

1. Introduction

- Humans have the ability to interpret the environment around them without having to undergo vigorous training.
- For a machine learning algorithm to do the same task, it has to be trained with large dataset.
- With the help of Computer Vision (CV), machines can now interpret their surroundings from images or videos and mimic the complexity of human vision system.

Figure 1 Basic Image captioning block diagram

- The deep learning model should be powerful to detect and understand the objects in the image and express the relation between the objects in a natural language.
- Image captioning algorithm combines two major fields of artificial intelligence: Natural Language Processing(NLP) and Computer Vision (CV).
- Figure 1 shows the simple block diagram of an Image captioning Process.

- In an Image captioning model, a Convolutional neural network (CNN) extracts the image feature from an image present.
- The model uses Recurrent neural network (RNN), to generate a description for the image with the help of the feature extracted from the CNN.
- The dataset used in this project is 'Flickr8k dataset'. It contains 8000 images that are paired with 5 different captions for each image.
- The image captioning model, when combined with a Text-To-Speech (TTS) can be used to aid the visually impaired.
- Text-To-Speech conversion of the caption generated is implemented in this project using 'pyttsx3' which is a text-to-speech conversion library in Python.

2. Architecture

- With advancements in Deep learning models, state-of-the-art image captioning models are developed.
- An image captioning model uses an encoder-decoder architecture for caption generation.
- The architecture of the image captioning model is discussed below.

Figure 2 Merge model architecture

Merge model

- The encoder-decoder neural network uses merge model to generate captions.
- Merge model combines the encoded input image with the encoded text description.
- In this model, the CNN handles only the image vector and the RNN deals with the caption prefix.
- The image vector and the caption prefix are then merged in a separate layer which generates the caption.

Photo feature extractor

- The encoder system extracts the feature of the image which interprets the content in the photo.
- A pre-trained model VGG16 is used to pre-compute the photo features.
- The extracted features are saved to a file which is later accessed while training the model.

Long Short-Term Memory (LSTM)

- LSTM is a special type of recurrent neural network which is used to model the sequence data.
- A RNN is used to predict a text sequence based on the previous input.
- Since typical RNNs cannot store input for a long time, LSTM is used to help the RNN.
- LSTM contains computer like memory which can read, write and delete information from its memory based on its significance.

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
blockl_pcol (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pcol (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pcol (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pcol (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pcol (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Platten)	(None, 25088)	0
fcl (Dense)	(None, 4096)	102764544
fc2 (Dense)	(None, 4096)	16781312
predictions (Dense)	(None, 1000)	4097000

Figure 3 VGG16 model summary

Dense Layer

- It is a layer of neural networks where each neuron receives inputs from all the neurons in the previous layer forming a dense layer.
- All the neurons in the present layer are connected to the neurons in the previous layer.
- The dense layer changes the dimensions of your vector by applying rotation, scaling, translation transform to the vector.

Embedding Layer

- It is used to process textual data in neural network models.
- Embedding layer converts the into numbers before applying to the model.
- One-hot encoding each word in a sentence would not be efficient.
- Each word is translated into a fixed size vector.

3. Methodology

- It may take days or hours to compute the photo every time the model is trained.
- Transfer learning process is used to extract the photo feature.
- It is a shortcut process where a machine learning model trained on a problem is used to a train a second model with similar problem statement or result.
- A pre-trained model VGG16 is used to extract the features from the image.
- The dataset used is Flickr8k dataset which contains 8000 images and its corresponding descriptions.
- The images in the dataset are reshaped to a size of 224x244 pixel image which is the preferred size for the VGG16 model.
- The VGG16 model extracts the image features from the photos in the dataset and stores them in a file which is used later to train the model.
- The computed features are a 1-dimensional 4096 element vectors.

Figure 4 Feature extraction map

- The descriptions in the dataset also needs to be pre-processed before the model is trained.
- . The texts in the description are cleaned in the following way to reduce the size of the vocabulary to work with:
 - All the punctuations are removed.
 - All the characters are converted to lowercase.
 - Remove all the numbers.
 - Remove all words that are one character in length.
- The images in the dataset have their own unique identifiers. The cleaned descriptions are stored in a file with one image identifier and description per line.
- LSTM predicts the next word in the sequence based on the previous input. Two tokens 'startseq' and 'endseq' are used to start and end the generation process respectively.
- The descriptions are encoded by the embedded layer and is loaded in the model as an input.
- The pre-computed photo features are also loaded into the model as a second input.
- The image captioning model used in this project is based on 'Merge Model' where the images and the text description are handled by two different neural networks.
- CNN computes the photo feature and RNN encodes the text description.
- The convolutional network expects the input to be a vector of 4096 elements.

- A dense layer processes this extracted feature and produce a 256 element image representation.
- The input text descriptions are fed to an embedding layer which has a pre-defined length of 34 words.
- The output from the embedding layer is given to LSTM which produces a 256 element vector.
- A dropout rate of 50% is used to reduce the overfitting of the training dataset.
- The outputs from both input model are merged by a decoder using an addition operation.
- The output from the decoder is fed to a dense 256 neuron layer and then to a final dense layer which makes a softmax prediction of the caption.
- Figure 5 gives the general idea of the layers in the Image captioning model.
- The model is trained for 6 epochs to obtain maximum performance from the model.
- The model with the lowest loss value is used in generating caption for a new image.

Layer (type)	Output Shape	Param #	Connected to
input_2 (InputLayer)	[(None, 34)]	0	
input_1 (InputLayer)	[(None, 4096)]	0	
embedding (Embedding)	(None, 34, 256)	1940224	input_2[0][0]
dropout (Dropout)	(None, 4096)	0	input_1[0][0]
dropout_1 (Dropout)	(None, 34, 256)	0	embedding[0][0]
dense (Dense)	(None, 256)	1048832	dropout[0][0]
1stm (LSTM)	(None, 256)	525312	dropout_1[0][0]
add (Add)	(None, 256)	0	dense[0][0] lstm[0][0]
dense_1 (Dense)	(None, 256)	65792	add[0][0]
dense_2 (Dense)	(None, 7579)	1947803	dense_1[0][0]

Figure 5 Image captioning model summary

- The quality of the caption generated by the trained model is evaluated using a metric Bilingual Evaluation Understudy Score (BLEU).
- It is implemented using python's Natural Language Toolkit Library (NLTK).
- It evaluates the caption generated by the trained model against a set of reference sentences.
- A score closer to 1.0 is a good result and a score closer to 0.0 is a bad result.
- The following BLEU scores were obtained for the trained model which had a low loss:
 - BLEU-1: 0.559516
 - BLEU-2: 0.308131
 - BLEU-3: 0.208197
 - BLEU-4: 0.094835

4. Results

- The feature extraction function of the VGG16 model is redesigned to extract the feature from a single photo.
- A single image is fed to the model which then generates a caption.
- Figure 6 shows the caption generated for an image in the test dataset in the Flickr8k dataset.
- Figure 7 and Figure 8 shows the generated caption for a new image which is used to test the accuracy of the model.

startseq dog is running through the grass endseq

Figure 6 Caption generated for image in test dataset

startseq man climbing up rock face endseq

Figure 7 Caption generated for a random image

- The loss of the model improves with each epoch.
- Figure 9 shows the accuracy and the loss value performance of the trained model in each epoch.
- The accuracy of the trained model increases with each epoch. In contrary to the accuracy the loss value decreases with each epoch.
- At the end of the 6th epoch, the accuracy of the trained model was 31% and the loss value was 3.31.

startseq two men are playing soccer endseq

Figure 8 Caption generated for a new image

Figure 9 accuracy vs epoch and loss vs epoch plot

5. Conclusion and Future Works

- An end-to-end neural network is presented which can takes an image as an input an generates a reasonable description.
- To increase efficiency of the model, we use transfer learning method.
- Convolutional neural network is used to encode the image into a feature representation and a recurrent neural network is used to generate captions.
- The accuracy of this model is about 30% which is not a great accuracy level.
- One way to increase the accuracy is to use visual attention mechanism. The attention mechanism decides what part of the detail in the image is relevant and worth paying attention.
- Another way to improve the caption is to implement pre-trained word embeddings. These word embeddings can increase the performance of the Natural Language Processing model.
- Google's Word2Vec and Stanford's GloVe are the two most popular word-level pre-trained word embeddings.

References

- 1. L. Skovajsová, "Long short-term memory description and its application in text processing," 2017 Communication and Information Technologies (KIT), Vysoke Tatry, 2017, pp. 1-4, doi: 10.23919/KIT.2017.8109465.
- 2. Tanti, M., Gatt, A., & Damp; Camilleri, K. (2017, August 25). What is the Role of Recurrent Neural Networks (RNNs) in an Image Caption Generator? Retrieved November 27, 2020, from https://arxiv.org/abs/1708.02043v2
- 3. V. Kesavan, V. Muley and M. Kolhekar, "Deep Learning based Automatic Image Caption Generation," 2019 Global Conference for Advancement in Technology (GCAT), BANGALURU, India, 2019, pp. 1-6, doi: 10.1109/GCAT47503.2019.8978293.
- 4. Hodosh, Micah, Peter Young, and Julia Hockenmaier. "Framing image description as a ranking task: Data, models and evaluation metrics." Journal of Artificial Intelligence Research 47 (2013): 853-899.
- 5. Kishore Papineni IBM T. J. Watson Research Center, et al. BLEU: a Method for Automatic Evaluation of Machine Translation. 1 July 2002, dl.acm.org/doi/10.3115/1073083.1073135.
- 6. Xu, Kelvin, et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. 19 Apr. 2016, arxiv.org/abs/1502.03044.
- 7. Bengio, Yoshua. Deep Learning of Representations for Unsupervised and Transfer Learning. 27 June 2012, proceedings.mlr.press/v27/bengio12a.html.

Thank you!