## **Course Notes**

# **CSCA67 - Discrete Mathematics**



#### **Instructors:**

Dr. Anna Bretscher
Email: bretscher@utsc.utoronto.ca

Office: IC493

Office Hours: Monday 12:10 - 1:30

Wednesday 1:10 - 2:00

Friday 1:10 - 2:00

Dr. Richard Pancer

pancer@utsc.utoronto.ca

IC490

Monday 11:10 - 12:30

Friday 1:30 - 3:00

## 1 Propositions, Implications

#### **Definitions:**

A **proposition** is a statement that evaluates to True or False. In computer science, its often referred to as a **Boolean expression**.

A **compound roposition** is a proposition statement that involves multiple propositions joined by connectives. It takes multiple truth values as input and returns a single truth value as output.

A connective corresponds to English conjunctions such as "and", "or", "not" etc.

#### Basic connectives and truth tables:

| Symbol            | Meaning          | D        |   | $P \wedge Q$ | $P \lor Q$                              | $P \rightarrow Q$ | $P \bowtie O$         |
|-------------------|------------------|----------|---|--------------|-----------------------------------------|-------------------|-----------------------|
|                   | "AND"            | 1        | Q | 1 /\ \Q      | 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | $I \rightarrow Q$ | $I \leftrightarrow Q$ |
| `                 | "OR"             | $\Gamma$ | T | T            | T                                       | $\Gamma$          | $\Gamma$              |
| V                 | 010              | T        | F | F            | Т                                       | F                 | F                     |
| $\rightarrow$     | "IFTHEN"         | F        | т | F            | т                                       | т                 | F                     |
| $\leftrightarrow$ | "IF AND ONLY IF" |          |   | -            |                                         |                   |                       |
| ¬                 | "NOT"            | F        | F | F            | F                                       | T                 | T                     |

### Implication:

#### Different ways of writing $P \rightarrow Q$ :

- 1. If P then Q  $\,$
- 2. If P, Q
- 3. Q, if P
- 4. P only if Q
- 5. P is sufficient for Q
- 6. Q is neccesary for P
- 7. If not Q, then not P
- 8. Not P or Q

