LISTA DE EXERCÍCIOS DE TEORIA DOS NÚMEROS

HEMAR GODINHO DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA

1. Ordem, Raiz Primitiva e Índice

- (1) Seja p = 29 e considere $E(29) = \{1, 2, 3, \dots, 26, 27, 28\}$.
 - (a) Encontre todas as raízes primitivas módulo 29.
 - (b) Para cada divisor positivo de $\phi(29)$ determine T_d , o conjunto de todos os elementos de E(29) de ordem d.
 - (c) Verifique que $\sum_{d} \phi(d) = \phi(2\overline{9})$, onde a soma percorre todos os divisores positivos de $\phi(2\overline{9})$.
 - (d) Escolha uma raíz primitiva g módulo 29 e determine o indice de todos os elementos de E(29) na base g.
- (2) Utilizando os métodos e teoremas descritos nas videoaulas, mostre que a congruência $3x^{35} \equiv 7 \pmod{29}$ tem solução e determine todas as suas soluções.
- (3) Utilize o algoritmo descrito nas videoaulas para determinar uma raiz primitiva módulo 421.
- (4) Use a teoria apresentada nas videoaulas para determinar uma raiz primitiva q_n módulo 17^n para todo $n \in \mathbb{N}$.
- (5) Seja p um primo ímpar. Mostre que se g_1 e g_2 são raizes primitivas módulo p então g_1 g_2 não é raiz primitiva módulo p.
- (6) Seja p um primo tal que $p \equiv 1 \pmod{4}$. Mostre que se g é raiz primitiva módulo p então g também é raiz primitiva módulo p. Verifique isso para p = 17.
- (7) Sejam $a, b, p \in \mathbb{N}$ tais que p é um prime impar e $a \equiv b^2 \pmod{p}$. Mostre que a não é uma raiz primitiva módulo p.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA, BRASÍLIA-DF, BRASIL