

Projects

— 02476 Machine Learning Operations Nicki Skafte Detlefsen

The "case"

You are just hired as an MLOps engineer at an start-up.

Your first job:

Develop an MLOps pipeline to solve a specific task for the company

Importantly: You are judged not by how great the model is but how fast you can setup a pipeline to solve the task.

Why you should not care about the model

You do not need to focus on the model, that's the ML researchers job

How to solve the problem

 You already have all the tools for the pipeline, you just need a good starting model.

You base framework is Pytorch

 You turn your attention towards open-source projects build on top of Pytorch

Trying to fast track this part

The Pytorch Ecosystem

Collection of frameworks build to be used in combination with Pytorch

Note: Not a complete list of all frameworks

Framework

My own biased division

Data specific frameworks	Training frameworks	Utility fremeworks
Transformers	fastai	Albumentations
Detectron2	Ray	PySyft
Pytorch geometric	Pytorch Lightning	Pyro
Flair	Horovod	Optuna
AllenNLP	DeepSpeed	Hydra
ParlAl	ONNX Runtime	Pytorch Metric Learning
DGL	skorch	Einops
PyTorch3D	Ignite	
MMF	Polyaxon	
Kornia		

Project case 1: Natural Language Processing

Framework: Transformers

https://github.com/huggingface/transformers

Provides state-of-the-art NLP models for both Pytorch, Jax and Tensorflow.

Project case 2: Computer vision

Framework: Pytorch Image Models

https://github.com/rwightman/pytorch-image-models

Also known as TIMM. Image models, scripts, pretrained weights.

Project case 3: Graphs and points

Framework: Pytorch Geometric

https://github.com/pyg-team/pytorch_geometric

Graph Neural Network Library for PyTorch to work on irregular data such as graphs and points.

How to get an good idea?

How to get an good idea?

Summary

Pick a framework (try running their notebooks/examples!):

- Project 1: Natural Language Processing Project 2: Computer vision Project 3: Graphs and points

Brainstorm a project.

It does not have to be particular big as you only have 4½ full days for working on it

Write a small (max 1 page) project description including:

- What model do intent to implement What data are you going to use How you think the chosen framework can be incorporated

Checklist

Week 1

☐ Create a git repository		
☐ Make sure that all team members have write access to the github repository		
☐ Create a dedicated environment for you project to keep track of your packages (using conda)	You do not need to do everything to	
☐ Create the initial file structure using cookiecutter	pass, the list is meant to be exhaustive.	
☐ Fill out the make_dataset.py file such that it downloads whatever data you need and		
☐ Add a model file and a training script and get that running		
☐ Remember to fill out the requirements.txt file with whatever dependencies that you are using		
☐ Remember to comply with good coding practices (pep8) while doing the project		
$\ \square$ Do a bit of code typing and remember to document essential parts of your code		
☐ Setup version control for your data or part of your data		
☐ Construct one or multiple docker files for your code		
☐ Build the docker files locally and make sure they work as intended		
☐ Write one or multiple configurations files for your experiments		
☐ Used Hydra to load the configurations and manage your hyperparameters		
☐ When you have something that works somewhat, remember at some point to to some profiling and see if you can optimize your		
code		
☐ Use wandb to log training progress and other important metrics/artifacts in your code		
 Use pytorch-lightning (if applicable) to reduce the amount of boilerplate in your code 		

Hands-in: Today no later than 17:00

Exam format

Thursday 20/1 – evaluation by either Nicki or Søren

Group presentation

- 6 minutes of powerpoint showcase 10 minutes of discussion

What you will be evaluated on:

How well you have included what we teach you in the course

What you will NOT be evaluated on

How epic your deep learning model is

A bit of advice

1. Document everything - take screenshots of your work

2. Parallelize the work - many points on the checklist are independent

3. Commit frequently - no merge conflicts

4. Use each others strengths - some are good at coding, other at modelling

Meme of the day

When someone asks why you never stops talking about machine learning

