Final Project of Varibale Review text Sentimental Analysis

Yunbai Zhang

11/12/2018

```
library(carData)
library(cluster)
library(car)
library(tidyverse)
## — Attaching packages -
tidyverse 1.2.1
                                0.2.5
## ✓ ggplot2 3.0.0
                       ✓ purrr
## ✓ tibble 1.4.2

✓ dplyr 0.7.7

## ✓ tidyr 0.8.1

✓ stringr 1.3.1

## ✔ readr
             1.1.1
                      ✔ forcats 0.3.0
## - Conflicts -
                                                                                       tidyv
erse_conflicts() --
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                    masks stats::lag()
## * dplyr::recode() masks car::recode()
## # purrr::some() masks car::some()
library(dplyr)
library(ggplot2)
library(forcats)
library(tidyverse)
library(AER)
## Loading required package: lmtest
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
library(GGally)
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
##
      nasa
```

```
library(corrgram)
library(stringr)
library(extracat)
library(sentimentr)
library(plotly)
## Attaching package: 'plotly'
## The following object is masked from 'package:sentimentr':
##
##
       highlight
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
       filter
## The following object is masked from 'package:graphics':
##
##
       layout
```

Compare review text and review title of each product by using sentimental scores.

Compare review text and review title of each product by using sentimental scores.

Compare the sentimental scores of review text and the sentimental scores of review title

data = read.csv('DatafinitiElectronicsProductData.csv', header = TRUE)

```
## The sentimental scores of review text
my_text = get_sentences(as.character(data$reviews.text))
sen_text = sentiment_by(my_text)
## The sentimental scores of review title
my title = get sentences(as.character(data$reviews.title))
sen_title = sentiment_by(my_title)
sentiment_df = data.frame(data$name, sen_text$ave_sentiment, sen_title$ave_sentiment)
colnames(sentiment_df)[1]<-"name"</pre>
colnames(sentiment_df)[2]<-"text_scores"</pre>
colnames(sentiment_df)[3]<-"title_scores"</pre>
sentiment_table <- sentiment_df %>% select(name = name, review_text_scores = text_scores,
eview_title_scores = title_scores)%>% group_by(name) %>% summarise(review_text_scores = sum(r
eview_text_scores),review_title_scores = sum(review_title_scores))
sentiment table<- data.frame(sentiment table)</pre>
tidy_table = sentiment_table %>% gather(`review_text_scores`,`review_title_scores`, key = 'sc
ore_type', value =scores)
theme dotplot <- theme bw(18) +
  theme(axis.text.y = element_text(size = rel(.4)),
        axis.ticks.y = element_blank(),
        axis.title.x = element_text(size = rel(.8)),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_line(size = 0.5),
        panel.grid.minor.x = element_blank())
ggplot(tidy_table, aes(x = scores,
                  y = fct_reorder2(name, score_type, -scores),
                  color = score_type)) +
  geom_point() + ylab("Product Name") + theme_dotplot +
  ggtitle("Sentimental Scores for each product")
```

setwd('/Users/yunbaizhang/Desktop')

Sentimental Scores for each product

- 1. Almost coinside together implies high correlation
- 2. Logitech 915-000224 has the highest rank of review text scores and review title scores.
- 3. No-"super"-negative items

What if we compare the review text scores with reviews frequency?

Sentimental text Scores and the number of reviews for each product

cor(sentiment_table2\$review_text_scores, sentiment_table2\$num_review, method = "pearson", us
e = "complete.obs")

[1] 0.9579697

- There is a pattern between number of reviews of each product and its sentimental scores.
- Very high correlation between the number of reviews and people's feedbacks of given products.
- High-frequency of people's reviews upon some items would bring good remarks of these items.

What about brand instead of product name?

```
senti_brand = data.frame(data$brand, sen_text$ave_sentiment)
colnames(senti_brand)[1]<-"brand"
colnames(senti_brand)[2]<-"text_scores"

sentiment_table3 <- senti_brand %>% select(brand = brand, text_scores = text_scores)%>% group
_by(brand) %>% summarise(text_scores = sum(text_scores))
sentiment_table3<- data.frame(sentiment_table3)

p <- ggplot(data=sentiment_table3, aes(x= reorder(brand, text_scores), y= text_scores)) +
    geom_bar(colour='blue', stat="identity") +
    guides(fill='grey')+coord_flip()

ggplotly(p)</pre>
```


• We can see that logitech was the most popular tech. Sony is on the second rank.

Review's Missing value Analysis

```
miss_table = colSums(is.na(data)) %>%
  sort(decreasing = FALSE)
miss_table
```

```
##
                     id
                                        asins
                                                             brand
##
                      0
                                            0
                                                                 0
                                      colors
                                                         dateAdded
            categories
##
                      0
                                            0
##
           dateUpdated
                                   dimension
                                                         imageURLs
##
                                            0
                      0
##
                                manufacturer
                                               manufacturerNumber
                   keys
##
                   name
                           primaryCategories
                                                     reviews.date
##
                      0
##
      reviews.dateSeen
                         reviews.sourceURLs
                                                     reviews.text
##
                      0
                                                                 0
         reviews.title
                                                        sourceURLs
                            reviews.username
##
                      0
##
                    upc
                                      weight
                                                   reviews.rating
##
                      0
                                            0
                                                               164
##
   reviews.doRecommend
                         reviews.numHelpful
                                                               ean
                   1391
                                                              4348
##
```

```
visna(data, sort = "c")
```


Which kinds of brands are more likely to have missing reviews.doRecommend or reviews.numHelpful?

Which kinds of product are more likely to have missing data?

```
percent_missing_doRecomm <- data %>% group_by(brand) %>%
   summarise(num_product = n(), num_na = sum(is.na(reviews.doRecommend))) %>%
   mutate(percent_na_recommend = round(num_na/num_product, 2)) %>%
   arrange(-percent_na_recommend)

percent_missing_doRecomm = data.frame(percent_missing_doRecomm)

pl <- ggplot(data=percent_missing_doRecomm, aes(x= reorder(brand, percent_na_recommend), y= percent_na_recommend)) +
   geom_bar(colour='green', stat="identity") +
   guides(fill='grey')+coord_flip()+xlab('Brand')+ylab('NA Percentage')+ggtitle('Review Do Recommend Bar chart')
pl</pre>
```

Review Do Recommend Bar chart

#ggplotly(p1)

```
percent_missing_doRecomm_sub<- percent_missing_doRecomm[1:15,]
percent_missing_doRecomm_sub$brand<- droplevels(percent_missing_doRecomm_sub$brand)
ggpairs(percent_missing_doRecomm_sub, aes(color = brand))</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


- JVC has the highest percent of missing recommendation, Motorola is on the second, and Sanus is on the third.
- Of the top 15 of the percentage of the missing recommendation, almost all the brand have similar levels of na percentage and the percentages are between 20% and 35%.

Similar method use for reviews.numHelpful

```
percent_missing_doHelp <- data %>% group_by(brand) %>%
   summarise(num_product = n(), num_na = sum(is.na(reviews.numHelpful))) %>%
   mutate(percent_na_doHelp = round(num_na/num_product, 2)) %>%
   arrange(-percent_na_doHelp)

p2 <- ggplot(data=percent_missing_doHelp, aes(x= reorder(brand, percent_na_doHelp), y= percent_na_doHelp)) +
   geom_bar(colour='red', stat="identity") +
   guides(fill='grey')+coord_flip()

ggplotly(p2)</pre>
```


What if we compare Do-Recommend and Do-Help NA data

```
percent_missing_doRecomm2 <- data %>% group_by(brand) %>%
  summarise(num_product = n(), num_na = sum(is.na(reviews.doRecommend))) %>%
 mutate(percent_na_recommend = round(num_na/num_product, 2))
percent_missing_doRecomm = data.frame(percent_missing_doRecomm2)
percent_missing_doHelp2 <- data %>% group_by(brand) %>%
  summarise(num_product = n(), num_na = sum(is.na(reviews.numHelpful))) %>%
 mutate(percent_na_doHelp = round(num_na/num_product, 2))
percent_missing_doHelp2 = data.frame(percent_missing_doHelp2)
compare_na = data.frame(percent_missing_doHelp2$brand, percent_missing_doHelp2$percent_na_doH
elp, percent_missing_doRecomm$percent_na_recommend)
colnames(compare_na)[1]<-"brand"</pre>
colnames(compare_na)[2]<-"do_Help_na"</pre>
colnames(compare_na)[3]<-"do_Recommend_na"</pre>
cor(compare_na$do_Help_na, compare_na$do_Recommend_na)
```

```
## [1] 0.9903805
```

```
tidy_table3 = compare_na %>% gather(`do_Help_na`,`do_Recommend_na`, key = 'Types', value =Per
centage)
p3 <- ggplot(data=tidy_table3, aes(x=reorder(brand, Percentage), y=Percentage, fill=Types)) +
  geom_bar(stat="identity", position='fill')+coord_flip()+ylab('NA Percentage')+ggtitle('Revi
ew Do Recommend/Help Bar chart')
pЗ
```


#ggplotly(p3)

• Two variables of missing value is almost the same, except brands Lowepro and Microsoft.