Approximation to the Identity
The following theorem underlies many of the important applications of accordantions on R. First some notation:
If e^{n} is any mibble function on \mathbb{R}^{n} & $t>0$, we define e^{n} e
Note: If of the fle "mass" of the becomes concentrated at the origin at too. In fact, we have the fellowing:
Important Obsenction: For any $9>0$, $\int q_{t}(x) dx \to 0 \text{as } t \to 0$ $ x \ge 9$
[This Ellaws immediately from "Smell kills".]
Termiclogy: If $e^{\epsilon L'}$ with $\int e^{\epsilon J}$, the $e^{\epsilon J}$ called an approximate identity.
Theorem (Approximation to the Identity) Suppose $e^{1} \in L^{1}$ with $Se^{1} = 1$.
(i) If f bounded & unif conts, then f # 9/2 -> f uniformly as toot. (ii) If fell, In f # 9/2 -> f in l as t->0t.

Remark: If we Further impose the additional assumption that
10/201 = C (1+1x1)-n-2 for some C, 2>0
the one can conclude that & every fell, fact > face.
[* We do not prove this here.]
Proof of Mearen
(i): Let 2>0. We first note, using Buch that Soft = 1, that
$ \{x \in \mathcal{C}_{k}(x) - f(x) \} \leq \int f(x-s) - f(x) \mathcal{C}_{k}(s) ds. (*)$
Note that 3 7 > 0 s.t. 1f(x-s) - f(x) < 211-11, 7 /51 < 7-
We now write
$\int f(x-y)-f(x) f(y) dy = \int f(x-y)-f(x) f(y) dy + \int f(x-y)-f(x) f(y) dy$
15)2r
$\langle \frac{\varepsilon}{2\eta \eta \eta}, \int q_{\varepsilon} \langle 2M \int q_{\varepsilon}(s) ds$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
P 2 chas II encas la
(ii): let E>O. Integrating (#) above gives
$\int f * \varphi_{\ell}(x) - \xi(x) dx \leq \int \int f(x-x) - \xi(x) \varphi_{\ell}(x) dy dx$
Jonelli = [1926) ([]) f(x-5)-f(x) dx) dy

Since 3 7>0 s.t. (**) < 2/2/19/11, 7 /5/27 (b) Carbinishs) We can argue exactly as above to anchole that () | f * of (x) - f(x) | dx < & provided t is sufficiently small. Applications Carollany 1 Cc (Rn) is dense in L' (Rn) Carellary 2 (Weiershess Approximation Theorem) If fe C([a,b]), the for any \$>0 3 polynomial & such that sup $|f(x) - P(x)| < \varepsilon$. $x \in [a,b]$ Proof of Carollan 1 let fel 8 20. We know 3 g & Ce s.t. IIf-sll, < 5/2, so it suffices to show that 3 heCc s.t. 11g-h11, < 1/2. let 96 Cc with Jel=). We know Thm (ii) above that llg *de -511, < €/2 growided t is soft, small. If thus suffices to establish that gx of 6 Cc 4 6 70, We know, from the Carollan do This 1-3 in the "convalution notes" that godfeco tt too.

