A.A. 2023-2024

Appunti di Meccanica Analitica

Riccardo Franchi

Collegio Superiore - Università di Bologna

Indice

1.	Richiami e notazioni di meccanica	3
	1.1. Lavoro ed energia	4
	1.2. Momenti della quantità di moto e della forza	
	1.3. Meccanica newtoniana di sistemi di particelle	8
2.	Sistemi ad un grado di libertà	13
	2.1. Studio qualitativo delle equazioni del moto	14
	2.2. Casi riconducibili ad un grado di libertà	21
	2.3. Studio qualitativo di un campo centrale	23
	2.4. Problema di Keplero	25
3.	Meccanica Lagrangiana	28
	3.1. Applicazione alla meccanica	32
4.	Cenni di geometria differenziale	38
	4.1. Vettori e spazi tangenti	
	4.2. Differenziale di una funzione fra varietà	41
5.	Meccanica lagrangiana per sistemi vincolati	
	5.1. Principio di D'Alembert	44

1. Richiami e notazioni di meccanica

Si indica la legge oraria come:

che è una funzione da un sottoinsieme di \mathbb{R} a un sottoinsieme di \mathbb{R}^3 . Essa non deve essere confusa con la *traiettoria* di un punto, che è l'immagine di $\boldsymbol{r}(t)$. Si definisce poi $\boldsymbol{v}(t) \coloneqq \dot{\boldsymbol{r}}(t)$ la velocità della legge oraria $\boldsymbol{r}(t)$, e $\boldsymbol{a}(t) \coloneqq \ddot{\boldsymbol{r}}(t)$.

Si ha come equazione della meccanica newtoniana di una particella

$$oldsymbol{a} = rac{oldsymbol{F}_{tot}}{m}$$

che dà un'equazione differenziale (ordinaria):

$$\ddot{\boldsymbol{r}}(t) = \frac{\boldsymbol{F_{tot}}(\boldsymbol{r}(t), \dot{\boldsymbol{r}}(t), t)}{m}.$$

Si assumerà sempre che esiste unica una soluzione di quest'ultima equazione differenziale, con condizioni iniziali "sensate"

$$\begin{cases} \boldsymbol{r}(t_0) =: \boldsymbol{r_0} \\ \dot{\boldsymbol{r}}(t_0) =: \boldsymbol{v_0} \end{cases}$$

Spesso la soluzione r(t) dell'equazione differenziale sarà globale, ovvero definita $\forall t \in \mathbb{R}$.

Si può trasformare un'equazione differenziale lineare di secondo ordine vettoriale, come quella appena vista, in due equazioni differenziali lineari del primo ordine. Si pone $\boldsymbol{v}(t) \coloneqq \dot{\boldsymbol{r}}(t)$. Allora l'equazione è equivalente a

$$egin{cases} \dot{m{r}}(t) = m{v}(t) \ \dot{m{v}}(t) = rac{m{F}_{tot}(m{r}(t),\dot{m{r}}(t),t)}{m} \end{cases}$$

Si definisce $f:\mathbb{R}^3 imes\mathbb{R}^3 imes\mathbb{R} o\mathbb{R}^3 imes\mathbb{R}^3$

$$m{f}(m{r},m{v},t)\coloneqq\left(m{v},rac{m{F}_{tot}(m{r}(t),\dot{m{r}}(t),t)}{m}
ight)$$

$$\mathbf{e} \ \boldsymbol{y} : \mathbb{R} \to \mathbb{R}^3 \times \mathbb{R}^3$$

$$y(t) := (r(t), v(t)).$$

Il sistema diventa quindi

$$\dot{\boldsymbol{y}}(t) = \boldsymbol{f}(\boldsymbol{y}(t), t).$$

Utilizzando la notazione vettoriale,

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \boldsymbol{r}(t) \\ \boldsymbol{v}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{v}(t) \\ \frac{\boldsymbol{F}_{tot}(\boldsymbol{r}(t), \dot{\boldsymbol{r}}(t), t)}{m} \end{pmatrix}.$$

Si è quindi passati da un'equazione di secondo grado con tre gradi di libertà ad una equazione di primo grado con sei gradi di libertà.

1.1. Lavoro ed energia

Data una forza F (che non è necessariamente la forza totale che agisce su una particella) e uno spostamento infinitesimo dr, il lavoro infinitesimo dF lungo dr è

$$dW = \mathbf{F} \cdot \mathbf{dr}$$

Data una forza F(r(t), v(t), t) è una legge oraria $r(t), t \in [t_1, t_2]$ il lavoro della forza lungo la r(t) è definito come

$$W = \int_{t_1}^{t_2} \boldsymbol{F} \cdot \mathbf{d}\boldsymbol{r} = \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{r}(t), \boldsymbol{v}(t), t) \cdot \boldsymbol{v}(t) \, \mathrm{d}t \, .$$

Se \boldsymbol{F} dipende solo dalla traiettoria allora si può risolvere anche il primo integrale, svolgendo il prodotto scalare, ma se \boldsymbol{F} dipende anche dal tempo t questo procedimento non si può utilizzare. Il passaggio dal primo integrale al secondo equivale, a livello matematico, ad un cambio di variabile. Il secondo integrale è utile per notare esplicitamente che il lavoro non è la somma di tanti piccoli spostamenti, ma può dipendere anche dalla velocità e dall'intervallo di tempo.

Come accennato prima, se la forza è di tipo F(r), cioè dipende solo dalla posizione della particella (campo posizionale), allora il lavoro W dipende solo da F e dalla traiettoria $\gamma = \text{Im}(r)$ e si può scrivere

$$W = \int_{\gamma} \boldsymbol{F} \cdot \mathbf{dr}$$
.

Dimostrazione: si considera un'altra parametrizzazione di γ :

$$q:[s_1,s_2]\to\gamma.$$

Sotto certe ipotesi, illustrate sotto, si può scrivere

$$r(t) = q(\phi(t))$$

con ϕ biettiva e derivabile.

Si è cioè definita una funzione q(s) che al tempo s corrisponde al valore della funzione r(t) al tempo t, e si è definita un'altra funzione $\phi(t)$ tale che $\phi(t)=s$.

Le ipotesi sono

- $r:[t_1,t_2] \rightarrow \gamma$ biettiva
- $q:[s_1,s_2]\to \gamma$ biettiva

Si noti che:

$$r = q \circ \phi \Leftrightarrow \phi = q^{-1} \circ r$$
.

Si deve quindi compiere un moto in cui la particella non è mai ferma e non torna mai indietro lungo la sua traiettoria.

Si hanno due casi, ϕ crescente o decrescente. Si dimostra il caso in cui è crescente, mentre l'altro, analogo, è lasciato come esercizio.

Si ha l'integrale

$$\int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{r}) \cdot \boldsymbol{v}(t) dt = \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{q}(\phi(t))) \cdot \frac{d}{dt} \boldsymbol{q}(\phi)(t) dt = \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{q}(\phi(t))) \cdot \dot{\boldsymbol{q}}(\phi(t)) \dot{\phi}(t) dt$$

Facendo il cambio di variabile

$$\begin{split} s \coloneqq \phi(t) \\ \Rightarrow \mathrm{d}s &= \dot{\phi}(t)\,\mathrm{d}t, \\ s_1 \coloneqq \phi(t_1), s_2 \coloneqq \phi(t_2) \\ \Longrightarrow \int_{t_1}^{t_2} \pmb{F}(\pmb{q}(\phi(t))) \cdot \dot{\pmb{q}}(\phi(t)) \dot{\phi}(t)\,\mathrm{d}t = \int_{s_1}^{s_2} \pmb{F}(\pmb{q}(s)) \cdot \dot{\pmb{q}}(s)\,\mathrm{d}s\,. \end{split}$$

L'energia cinetica T vale

$$T(\boldsymbol{v}) = \frac{1}{2} m v^2$$

espressa come funzione generica di v, mentre lungo una legge oraria r(t):

$$T(t) = T(\dot{r}(t)).$$

Si noti che, per semplicità, si è indicato ugualmente con T una funzione che ha come parametro un vettore e una funzione che prende uno scalare.

Proposizione 1.1: il lavoro W della *forza totale* agente su una particella lungo una legge oraria $r(t), t \in [t_1, t_2]$ è pari alla variazione dell'energia cinetica in $[t_1, t_2]$, indicata con $\Delta T = T(t_2) - T(t_1)$.

Dimostrazione:

$$\frac{\mathrm{d}}{\mathrm{d}t}T(t) = \frac{\mathrm{d}}{\mathrm{d}t}\frac{m}{2}\dot{\boldsymbol{r}}(t)\cdot\dot{\boldsymbol{r}}(t) = m\dot{\boldsymbol{r}}(t)\cdot\ddot{\boldsymbol{r}}(t) = \boldsymbol{F_{tot}}(\boldsymbol{r}(t),\dot{\boldsymbol{r}}(t),t)\cdot\dot{\boldsymbol{r}}(t)$$

$$\Longrightarrow W_{\mathrm{tot}} = \int_{t_1}^{t_2} \boldsymbol{F_{tot}}\cdot\dot{\boldsymbol{r}}(t)\,\mathrm{d}t = \int_{t_1}^{t_2} \frac{\mathrm{d}T(t)}{\mathrm{d}t}\,\mathrm{d}t = T(t_2) - T(t_1).$$

Definizione 1.1: un campo di forza posizionale F = F(r) si dice conservativo se esiste una funzione a valori scalari U(r) tale che

$$\boldsymbol{F}(\boldsymbol{r}) = -\boldsymbol{\nabla} U(\boldsymbol{r}) = -\bigg(\frac{\partial U}{\partial x}(\boldsymbol{r}), \frac{\partial U}{\partial y}(\boldsymbol{r}), \frac{\partial U}{\partial z}(\boldsymbol{r})\bigg)$$

dove r = (x, y, z). La funzione U(r) è detta energia potenziale.

Si noti la differenza tra U(r) e U(r(t)), come per l'energia cinetica. Si noti anche che U è definita a meno di una costante: con

$$U_c(\mathbf{r}) \coloneqq U(\mathbf{r}) + c,$$

 $U_c(\mathbf{r})$ ha le stesse proprietà fisiche di $U(\mathbf{r})$.

Proposizione 1.2: il lavoro compiuto da un campo conservativo lungo una legge oraria $r(t), t \in [t_1, t_2]$ (ma si potrebbe anche dire lungo la traiettoria data da r) è pari all'opposto della variazione dell'energia potenziale

$$W = -\Delta U = U(t_1) - U(t_2).$$

Dimostrazione: per U(r), r(t) funzioni differenziabili

$$\frac{\mathrm{d}}{\mathrm{d}t}U(\mathbf{r}(t)) = \nabla U(\mathbf{r}(t)) \cdot \dot{\mathbf{r}}(t).$$

Allora si può scrivere

$$W = \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \dot{\boldsymbol{r}}(t) \, \mathrm{d}t = -\int_{t_1}^{t_2} \boldsymbol{\nabla} U(\boldsymbol{r}(t)) \cdot \dot{\boldsymbol{r}}(t) \, \mathrm{d}t = -\int_{t_1}^{t_2} \frac{\mathrm{d}}{\mathrm{d}t} U(t) \, \mathrm{d}t = -\Delta U \, .$$

Definizione 1.2: per una particella sottoposta (soltanto) ad un campo conservativo ($F=F_{tot}$) l'energia totale è definita ome

$$E(\boldsymbol{r}, \boldsymbol{v}) := T(\boldsymbol{v}) + U(\boldsymbol{r}).$$

Una notazione utilizzata è

$$E(t) = E(\mathbf{r}(t), \dot{\mathbf{r}}(t)).$$

Teorema 1.1 (conservazione dell'energia totale): l'energia totale E(t) di una particella sottoposta (soltanto) ad un campo conservativo è costante.

 ${\it Dimostrazione}\colon$ nell'intervallo di tempo $[t_0,t]$ vale

$$\begin{split} T(t) - T(t_0) &= W_{\text{tot}} = W_{\pmb{F}} = U(t_0) - U(t) \\ \Longrightarrow T(t) + U(t) &= T(t_0) + U(t_0). \end{split}$$

1.2. Momenti della quantità di moto e della forza

Si indica con $m{p}=mm{v}$ la quantità di moto. Dato un punto (o un vettore) $m{r_0}$ fissato, si definisce

$$L = (r - r_0) \times p$$

momento della quantità di moto $oldsymbol{p}$ e

$$N = (r - r_0) \times F$$

momento della forza F.

Con $\boldsymbol{L}(t) = \boldsymbol{r}(t) \times (m\dot{\boldsymbol{r}}(t))$, ponendo $\boldsymbol{r_0} = 0$,

$$\dot{\boldsymbol{L}}(t) = m\dot{\boldsymbol{r}}(t) \times \dot{\boldsymbol{r}}(t) + m\boldsymbol{r}(t) \times \ddot{\boldsymbol{r}}(t) = \boldsymbol{N_{tot}}(\boldsymbol{r}) = \boldsymbol{r} \times \boldsymbol{F_{tot}}$$

Si lascia come esercizio rifare il conto per $r_0 \neq 0$.

Definizione 1.3: un campo di forze *centrale* è un campo posizionale F(r) tale che

$$m{F}(m{r}) = f(r) rac{m{r}}{r} = f(r) \hat{m{r}}$$

per una funzione $f:[0,+\infty)\to\mathbb{R}$.

Proposizione 1.3: un campo centrale è conservativo con energia potenziale $U(\mathbf{r}) = -g(r)$, dove g è una primitiva di f (definita sopra):

$$g(r) = \int_{r_0}^r f(\rho) \,\mathrm{d}\rho \,.$$

Dimostrazione: si mostra che $F(r) = -\nabla U(r)$:

$$-\boldsymbol{\nabla} U(\boldsymbol{r}) = \boldsymbol{\nabla} g(r) = g'(r) \boldsymbol{\nabla} r = g'(r) \frac{\boldsymbol{r}}{r} = \boldsymbol{F}(\boldsymbol{r})$$

(si è fatto uso di un lemma dell'analisi matematica che vale per funzioni differenziabili). Si mostra che $\nabla r = \hat{r}$:

$$\begin{aligned} r &= (x,y,z) \\ \Longrightarrow r &= \sqrt{x^2 + y^2 + z^2} \\ \Longrightarrow \frac{\partial r}{\partial x} &= \frac{2x}{2\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r} \end{aligned}$$

$$\Longrightarrow \mathbf{\nabla} r = \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right) = \frac{r}{r}.$$

Proposizione 1.4: se una particella è sottoposta ad un campo centrale F essa conserva il momento della quantità di moto rispetto all'origine.

Dimostrazione:

$$\dot{\boldsymbol{L}}(t) = \boldsymbol{N_{tot}} = \boldsymbol{r}(t) \times \boldsymbol{F}(\boldsymbol{r}(t)) = 0$$

dato che $\boldsymbol{F} \parallel \boldsymbol{r}$ dato che la forza è centrale.

1.3. Meccanica newtoniana di sistemi di particelle

Dato un sistema con N particelle, con posizioni e velocità r_i, v_i , ponendo

$$\underline{\boldsymbol{r}} = (\boldsymbol{r_1},...,\boldsymbol{r_N}) \in \mathbb{R}^{3N}$$

$$\underline{\boldsymbol{v}} = (\boldsymbol{v_1},...,\boldsymbol{v_N}) \in \mathbb{R}^{3N}$$

$$\underline{\boldsymbol{p}}=(\boldsymbol{p_1},...,\boldsymbol{p_N})\in\mathbb{R}^{3N},$$

e chiamandoli vettori globali, allora

$$\underline{F} = \dot{\underline{p}}$$

con

$$\underline{F} = (F_1, ..., F_N)$$

e F_i è la forza totale agente sulla particella i-esima. Si può quindi riscrivere il secondo principio della dinamica per tutto il sistema come

$$\underline{F} = \underline{Ma}$$

dove \underline{a} è il vettore globale delle accelerazioni e \underline{M} è la matrice diagonale $3N \times 3N$ delle masse:

$$\begin{bmatrix} m_1\mathbb{I}_3 & & \\ & \ddots & \\ & & m_n\mathbb{I}_3 \end{bmatrix}$$

dove con $m_i\mathbb{I}_3$ si indica la massa i-esima moltiplicata per la matrice identità 3×3 :

$$m_i\mathbb{I}_3=\begin{bmatrix}m_i\\&m_i\\&m_i\end{bmatrix}$$

Definizione 1.4: si definisce energia cinetica totale

$$T(\underline{v}) = \frac{1}{2} \langle \underline{v}, \underline{\underline{M}} \underline{v} \rangle.$$

Si mostra facilmente che, con questa definizione,

$$T(\underline{\boldsymbol{v}}) = \sum_{i=1}^N \frac{m_i}{2} v_i^2 = \sum_{i=1}^N T(\boldsymbol{v_i}).$$

L'energia cinetica totale è quindi la somma delle energie cinetiche individuali.

Se il sistema totale di forze è posizionale, ossia

$$\underline{F} = (F_1(\underline{r}), ..., F_N(\underline{r}))$$

dove la forza che agisce su ogni particella dipende solo dalle posizioni di tutte le particelle, ed esiste una funzione $U(r), U : \mathbb{R}^{3N} \to \mathbb{R}$, tale che

$$\underline{\boldsymbol{F}}(\underline{\boldsymbol{r}}) = -\boldsymbol{\nabla}_{\underline{\boldsymbol{r}}}U(\underline{\boldsymbol{r}}) = -\Big(\boldsymbol{\nabla}_{\boldsymbol{r}_1}U(\underline{\boldsymbol{r}}),...,\boldsymbol{\nabla}_{\boldsymbol{r}_N}U(\underline{\boldsymbol{r}})\Big) = -\Big(\frac{\partial U(\underline{\boldsymbol{r}})}{\partial x_1},\frac{\partial U(\underline{\boldsymbol{r}})}{\partial y_1},\frac{\partial U(\underline{\boldsymbol{r}})}{\partial z_1},...\Big)$$

allora il sistema di particelle si dice conservativo e U è detta energia potenziale totale.

Esempio 1.1: Considerate le forze

$$oldsymbol{F_i} = -oldsymbol{
abla_{r_i}} U(oldsymbol{r_i})$$

Si dimostra che il sistema è conservativo per

$$U(\underline{\boldsymbol{r}}) = \sum U_i(\boldsymbol{r_i}),$$

infatti,

$$\boldsymbol{\nabla_r}U(\underline{\boldsymbol{r}}) = \left(\boldsymbol{\nabla_{r_1}}U(\underline{\boldsymbol{r}})\right),...,\boldsymbol{\nabla_{r_N}}U(\underline{\boldsymbol{r}}))$$

con

$$\begin{split} \boldsymbol{\nabla_{r_i}} U(\underline{r}) &= \boldsymbol{\nabla_{r_i}} \Biggl(\sum_{k=1}^N U_k(\boldsymbol{r_k}) \Biggr) = \boldsymbol{\nabla_{r_i}} U_{i(\boldsymbol{r_i})} = -\boldsymbol{F_i}(\boldsymbol{r_i}) \\ \Longrightarrow &- \boldsymbol{\nabla_{\underline{r}}} U(\underline{r}) = (\boldsymbol{F_1}(\boldsymbol{r_i}), ..., \boldsymbol{F_N}(\boldsymbol{r_N})) = \underline{\boldsymbol{F}}(\underline{r}). \end{split}$$

Definizione 1.5: l'energia totale del sistema è data da

$$E(\mathbf{r}, \mathbf{v}) = T(\mathbf{v}) + U(\mathbf{r})$$

Per una legge oraria r(t),

$$E(t) = E(\mathbf{r}(t), \dot{\mathbf{r}}(t)).$$

Teorema 1.2 (conservazione dell'energia totale): in un sistema conservativo, l'energia totale si conserva: E(t) = costante.

La dimostrazione è lasciata per esercizio.

1.3.1. Forze esterne e interne

Generalmente, la forza totale agente su una particella, può essere scomposta in una componente esterna e una interna:

$$oldsymbol{F_i} = oldsymbol{F_i}^{ ext{ext}} + \sum_{\substack{j=1 \ j
eq i}}^N oldsymbol{F_{ij}}$$

dove con $oldsymbol{F_{ij}}$ si indica la forza che la particella j-esima esercita sulla i-esima, e

$$F_i^{\text{ext}} = F_i^{\text{ext}}(r_i, v_i, t),$$

$$F_{ij} = F_{ij}(r_i, v_i, r_j, v_j).$$

Inoltre, in molti casi,

$$oldsymbol{F_{ij}} = oldsymbol{F_{ij}} ig(ig\lVert oldsymbol{r_i} - oldsymbol{r_j} ig
Vert$$

e, in particolare,

$$\boldsymbol{F_{ij}} = f_{ij} \big(\big\| \boldsymbol{r_i} - \boldsymbol{r_j} \big\| \big) \frac{\boldsymbol{r_i} - \boldsymbol{r_j}}{\big\| \boldsymbol{r_i} - \boldsymbol{r_j} \big\|}$$

con $f_{ij}=f_{ji}, f_{ij}:\mathbb{R}^+_0\to\mathbb{R}$. Come conseguenza di quest'assunzione, si ha $F_{ij}=-F_{ji}$, ed entrambe sono parallele a r_i-r_j . Si tratta di un'espressione della *forma forte* della terza legge di Newton. Sotto queste ultime ipotesi, il campo di forze interne è conservativo.

Definizione 1.6 (centro di massa):

$$\boldsymbol{R} = \frac{\sum_{i=1}^{N} m_i \boldsymbol{r_i}}{\sum_{i=1}^{N} m_i} \in \mathbb{R}^3.$$

Spesso si indica $M = \sum_{i=1}^N m_i$. Vale che, sotto l'ipotesi che $m{F_{ij}} = -m{F_{ji}}$,

$$M\ddot{\pmb{R}} = \sum_i m_i \ddot{r_i} = \sum_i \pmb{F_i} = \sum_i \pmb{F_i}^{\text{ext}} + \sum_{i \neq j} \pmb{F_{ij}} = \sum_i \pmb{F_i}^{\text{ext}}.$$

Quindi è come se la forza esterna totale agente sul sistema agisse sul centro di massa.

Definizione 1.7 (quantità di moto totale):

$$P = \sum_{i=1}^{N} p_i$$
.

10

Si ha che ${m P}$ si conserva nel caso in cui $\sum_i {m F_i}^{
m tot} = 0.$

Definizione 1.8 (momento angolare totale e momento della forza totale): si definisce, per un punto di riferimento $r_0 \in \mathbb{R}^3$,

$$L = \sum_i L_i = \sum_i (r_i - r_0) \times p_i$$

e

$$oldsymbol{N} = \sum_i oldsymbol{N_i} = \sum_i (oldsymbol{r_i} - oldsymbol{r_0}) imes oldsymbol{F_i}.$$

Vale che

$$\dot{m{L}} = \sum_i \dot{m{L}}_i = \sum_i m{N}_i$$

se $oldsymbol{F_i} = oldsymbol{F_i}^{ ext{tot}}$, nell'ipotesi che $oldsymbol{F_{ij}} = -oldsymbol{F_{ji}}$,

$$\dot{L} = \sum_i (r_i - r_0) \times F_i^{ ext{ ext}} + \sum_{i \neq j} (r_i - r_0) \times F_{ij}.$$

Ora, si mostra che il secondo termine della somma è nullo:

$$\sum_{i \neq j} (\boldsymbol{r_i} - \boldsymbol{r_0}) \times \boldsymbol{F_{ij}} = \sum_{i < j} (\boldsymbol{r_i} - \boldsymbol{r_0} - \boldsymbol{r_j} + \boldsymbol{r_0}) \times \boldsymbol{F_{ij}} = \sum_{i < j} (\boldsymbol{r_i} - \boldsymbol{r_j}) \times \boldsymbol{F_{ij}} = 0$$

dato che $r_i - r_j$ è parallelo a F_{ij} .

Si mostra che un sistema con forze interne del tipo

$$F_{ij} = f_{ij} \big(\big\lVert \boldsymbol{r_k} - \boldsymbol{r_j} \big\rVert \big) \frac{\boldsymbol{r_k} - \boldsymbol{r_j}}{ \big\lVert \boldsymbol{r_k} - \boldsymbol{r_j} \big\rVert}$$

è conservativo con energia potenziale

$$U^{\mathrm{int}}(\underline{\boldsymbol{r}}) - U(\underline{\boldsymbol{r}}) = -\sum_{i < j} g_{ij} \big(\big\| \boldsymbol{r_i} - \boldsymbol{r_j} \big\| \big)$$

con

$$g_{ij}(r) = \int_{r_0}^r f_{ij}(\rho) \,\mathrm{d}\rho.$$

Si ha che

$$-\boldsymbol{\nabla}_{\underline{r}}U(\underline{r}) = -\Big(\boldsymbol{\nabla}_{\boldsymbol{r}_1}U(\underline{r}),...,\boldsymbol{\nabla}_{\boldsymbol{r}_N}U(\underline{r})\Big),$$

dove ogni gradiente vale

$$-\boldsymbol{\nabla_{r_k}}U(\underline{r}) = \sum_{\substack{i < j \\ i = k \lor j = k}}^{N} \boldsymbol{\nabla_{r_k}} g_{ij} \big(\big\| \boldsymbol{r_i} - \boldsymbol{r_j} \big\| \big) = \sum_{\substack{j = 1 \\ j \neq k}}^{N} g_{kj}' \big(\big\| \boldsymbol{r_k} - \boldsymbol{r_j} \big\| \big) \frac{\boldsymbol{r_k} - \boldsymbol{r_j}}{\big\| \boldsymbol{r_k} - \boldsymbol{r_j} \big\|} = \sum_{j \neq k} \boldsymbol{F_{kj}} = \boldsymbol{F_k^{int}}.$$

Esempio 1.2: con N=4, il potenziale è, omettendo gli argomenti delle funzioni,

$$U(\underline{r}) = g_{12} + g_{13} + g_{14} + g_{23} + g_{24} + g_{34}.$$

Ponendo k=3,

$$\boldsymbol{\nabla_{r_3}}U(\underline{\boldsymbol{r}}) = \boldsymbol{\nabla_{r_3}}g_{31} + \boldsymbol{\nabla_{r_3}}g_{32} + \boldsymbol{\nabla_{r_3}}g_{34}.$$

2. Sistemi ad un grado di libertà

Intendiamo sistemi di una particella soggetta ad una forza posizionale, descritti quindi da equazioni della forma:

$$\ddot{x}(t) = f(x(t)),$$

ricordando che una forza posizionale in $\mathbb R$ è sempre conservativa (se la funzione forza è integrabile). Infatti,

$$U(x) = -\int_{x_0}^x f(s) \,\mathrm{d} s$$

è un potenziale per f. Come visto, vale anche che

$$\frac{\left(\dot{x}(t)\right)^2}{2} + U(x(t)) = E(t) = \text{costante}.$$

Esempio 2.1 (oscillatore armonico): posto

$$\ddot{x} = -x$$
.

La soluzione generale è della forma

$$x(t) = b\sin t + a\cos t,$$

per condizioni iniziali

$$\begin{cases} x(0) = 0\\ \dot{x}(0) = 1 \end{cases}$$

Si trova quindi la soluzione particolare, date le condizioni iniziali:

$$\dot{x}(t) = b\cos t - a\sin t$$

$$\Longrightarrow \begin{cases} x(0) = a = 0 \\ \dot{x}(0) = b = 1 \end{cases}$$

$$\implies x(t) = \sin t$$

$$\implies v(t) = \dot{x}(t) = \cos t.$$

Allora, l'energia totale è

$$E(t) = \frac{(v(t))^2}{2} + \frac{(x(t))^2}{2} = E(0) = \frac{1}{2}$$

scegliendo come potenziale per f(x)=-x, $U(x)=\frac{1}{2}x^2.$

2.1. Studio qualitativo delle equazioni del moto

Si può trasformare l'equazione differenziale del secondo ordine

$$\ddot{x}(t) = f(x(t))$$

in due equazioni differenziali del primo ordine accoppiate tra loro, introducendo una nuova variabile:

$$\begin{cases} \dot{x} = v \\ \dot{v} = f(x) \end{cases}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \binom{x}{v} = G(x, v) = \binom{v}{f(x)}.$$

Si utilizza inoltre un piano x,v detto piano di fase o piano delle fasi. In generale, l'equazione differenziale vettoriale $\dot{x} = G(x(t)), G : \mathbb{R}^d \to \mathbb{R}^d$ si può visualizzare sullo spazio di fase \mathbb{R}^d , graficando su di esso il campo vettoriale G.

Risolvere un'equazione differenziale è equivalente a trovare una x(t) a valori nello spazio di fase tale che per ogni t la derivata di x(t) è uguale al campo vettoriale G in x(t).

Esempio 2.2: nell'esempio dell'oscillatore armonico,

$$\boldsymbol{F}(x,v) = (v, -x).$$

La traiettoria delle soluzioni è allora costituita da cerchi concentrici percorsi in senso orario.

Con le condizioni iniziali dette,

$$\begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

$$\begin{pmatrix} x(0) \\ v(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Per un generale sistema meccanico posizionale in una dimensione, le traiettorie delle leggi orarie (note anche come *curve di fase*) sono determinabili a partire dalla conservazione dell'energia

$$E(v,x) = \frac{v^2}{2} + U(x).$$

In particolare, per potenziali non patologici, gli insiemi di livello dell'energia

$$\Sigma_E = \left\{ (x,v) \in \mathbb{R}^2 : \frac{v^2}{2} + U(x) = E \right\}$$

sono generalmente curve, e le curve di fase sono loro sottoinsiemi.

I punti \bar{x} tali che $f(\bar{x}) = 0$, (corrispondenti a punti critici dell'energia potenziale), sono detti posizioni di equilibrio.

Definizione 2.1: le posizioni di equilibrio sono dette stabili se dopo una piccola perturbazione delle condizioni iniziali di equilibrio $(x(t) = \bar{x}, v(t) = 0)$ si ha che x(t) rimane vicino a $\bar{x}, \forall t$.

Figura 1: Curve di livello relative a differenti energie meccaniche E_i . Quella¹ corrispondente ad E_2 è detta $\it curva separatrice$.

Si fanno ora alcune osservazioni.

- 1. Le curve di livello dell'energia sono simmetriche rispetto all'asse x, infatti E(x, v) = E(x, -v).
- 2. Nel semipiano superiore del piano di fase le traiettorie vanno verso destra (nel verso positivo delle x), mentre nel semipiano inferiore vanno verso sinistra:

$$|v(t)| = \sqrt{2(E - U(x(t)))} \tag{1}$$

e il segno dipende dal semipiano in cui si trova il punto considerato.

- 3. Gli unici punti del piano di fase per cui la traiettoria (di fase) rimane nel punto sono quelli del tipo $(\bar{x},0)$, con $f(\bar{x})=0$.
- 4. Al di fuori dei punti $(\bar{x},0)$, con $f(\bar{x})=0$ (posizioni di equilibrio), le curve di livello dell'energia sono curve lisce, assumendo U due volte differenziabile, con U'' continua. Dire Σ_{E_0} è liscia significa che per ogni punto $(\hat{x},\hat{y})\in\Sigma_{E_0}$ esiste un intorno rettangolare Υ tale che $\Sigma_{E_0}\cap\Upsilon$ è il grafico di una funzione v=g(x) o x=g(x) con y=g(x) con y=g(

$$\frac{\partial E}{\partial x} = U'(x) = -f(x)$$
$$\frac{\partial E}{\partial v} = v$$

¹L'Arnold osserva che ad una separatrice corrispondono 3 curve di livello. Vedi il problema a pag. 25.

e, al di fuori delle posizioni di equilibrio, almeno una di queste due derivate parziali è non nulla. Si può allora applicare il teorema di Dini alla funzione

$$F(x,v) = E(x,v) - E_0.$$

Possono esistere soluzioni non globali anche per le equazioni differenziali della meccanica. Infatti

$$\ddot{x} = 2x^3 \Longleftrightarrow \begin{pmatrix} \dot{x} \\ v \end{pmatrix} = \begin{pmatrix} v \\ 2x^3 \end{pmatrix}$$

ha come soluzione non globale

$$x(t) = \frac{1}{t - 1}$$

che tende a $+\infty$ per $t \to 1$.

Per i sistemi unidimensionali, non solo sono note le traiettorie (utilizzando il fatto che sono contenute negli insiemi di livello dell'energia), ma, almeno indirettamente, è possibile conoscere l'intera legge oraria. Vale infatti il seguente

Teorema 2.1: sia $x(t), t \in [t_1, t_2]$ una parte di legge oraria, con condizioni iniziali $x(t_0) = x_0$, $v(t_0) = v_0, t_0 \in [t_1, t_2]$ tale che, o

$$\dot{x}(t) \geq 0, \forall t \in [t_1, t_2]$$

oppure

$$\dot{x}(t) \leq 0, \forall t \in [t_1, t_2]$$

(rispettivamente si ha un moto verso destra o sinistra), allora vale che, $\forall t \in [t_1, t_2]$,

$$t - t_0 = \int_{x_0}^x \frac{\mathrm{d}\xi}{\pm \sqrt{2(E - U(\xi))}}$$

con il segno + nel caso $\dot{x} \geq 0$ e — nel caso $\dot{x} \leq 0$; con x = x(t) e $E = E(x_0, v_0)$ (che corrisponde all'energia della legge oraria considerata).

Questo metodo è detto *per quadratura* e permette di ricavare t(x), cioè t come funzione di x, ovvero l'inversa di x(t), per tratti di tempo in cui la velocità non cambia segno.

Sperabilmente poi è possibile invertire la t(x) e ottenere la x(t) su un intervallo in cui il segno di $\dot{x}(t)$ è costante fino al prossimo tempo (diciamo t_2) in cui la velocità si annulla, detto tempo di inversione. A quel punto, conoscendo t_2 e $x_2=x(t_2)$, si può studiare il problema con lo stesso metodo su $[t_2,t_3]$, dove t_3 è il successivo tempo di inversione, sperando di riuscire a invertire t(x) tra x_2 e $x_3=x(t_3)$, e così via (quando si dice sperabilmente, si intende che si possa fare un conto esplicito per ricavare x(t) su un certo intervallo di tempo, ma gli argomenti di cui sopra in ogni caso identificano univocamente la legge oraria, anche nel caso non si riuscisse a scriverne una forma esplicita).

Esempio 2.3: si ricava nuovamente la legge oraria dell'oscillatore armonico, con condizioni iniziali $t_0=0, x(t_0)=0, \dot{x}(t_0)=1$

$$\implies E \coloneqq E(t) = E(0) = \frac{1}{2}.$$

Dato che nel primo tratto (per t vicini a t_0) la particella va a destra, si usa la formula

$$t = t - t_0 = \int_0^x \frac{\mathrm{d}\xi}{\sqrt{2(E - U(\xi))}} = \int_0^x \frac{\mathrm{d}\xi}{\sqrt{1 - \xi^2}} = \left[\arcsin\xi\right]_0^x = \arcsin x$$

da cui $t = t(x) = \arcsin x$

$$\implies x(t) = \sin t.$$

Tuttavia, per quanto se ne sa, questa formula vale soltanto su $[t_1,t_2]$ dove t_1 è il primo tempo di inversione per tempi $t < t_0$, e t_2 è il primo tempo di inversione per $t > t_0$. Svolgendo il calcolo solo su t_2 (il caso con t_1 è analogo), il punto di inversione è chiaramente $x_1=1$, e quindi t_1 è il primo tempo maggiore di t_0 in cui la particella raggiunge $x_1=1$, e cioè $t_1=\frac{\pi}{2}$.

Ora, si ripete il calcolo per tempi $t \geq t_1 = \frac{\pi}{2}$, sotto l'ipotesi che $\dot{x}(t) \leq 0$:

$$t - \frac{\pi}{2} = t - t_1 = \int_1^x \frac{\mathrm{d}x}{-\sqrt{1 - \xi^2}} = \left[\arccos \xi\right]_1^x = \left[-\arcsin \xi\right]_1^x = \frac{\pi}{2} - \arcsin x$$

$$\Longrightarrow t-\pi = -\arcsin x \Longleftrightarrow x = \sin(\pi-t) = \sin t$$

e quindi anche nell'intervallo $[t_1, t_2]$ vale $x(t) = \sin t$.

Ma quanto vale t_2 , corrispondente al prossimo tempo di inversione? Si può vedere che t_2 è il primo tempo $t>t_1$ per cui $x(t_2)=-1$ (corrispondente al punto di inversione). Oppure si considera $\dot{x}(t)=$ costante e si cerca il primo $t_2>\frac{\pi}{2}$ per cui $\dot{x}(t_2)=0$. In entrambe le maniere si ottiene $t_2=\frac{3}{2}\pi$. E così via per i successivi tempi di inversione.

Prima di darne una dimostrazione, si presenta una giustificazione del precedente teorema.

Si può riscrivere la (1) come

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \pm \sqrt{2(E - U(x))}.$$

Quindi

$$\mathrm{d}t = \frac{\mathrm{d}x}{\pm\sqrt{2(E - U(x))}}.$$

Integrando e sapendo che $x_0 = x(t_0), x = x(t)$, si ottiene

$$t-t_0 = \int_{x_0}^x \frac{\mathrm{d}\xi}{\pm \sqrt{2(E-U(\xi))}}$$

Si dimostra ora rigorosamente il teorema:

Dimostrazione: per evitare confusione fra x come funzione di t e x come numero, si indica con x la funzione e ξ il numero. Quindi, $\xi = x(t)$ e $t = x^{-1}(\xi)$; e la (1) si riscrive come

$$\dot{x}(t) = \pm \sqrt{2(E - U(x(t)))}$$

$$\implies \dot{x}(x^{-1}(\xi)) = \pm \sqrt{2(E - U(\xi))}$$

$$\Longrightarrow \frac{\mathrm{d} x^{-1}(\xi)}{\mathrm{d} \xi} = \left(x^{-1}\right)'(\xi) = \frac{1}{x'(x^{-1}(\xi))} = \frac{1}{\pm \sqrt{2(E-U(\xi))}}.$$

Chiamando $\xi_0=x(t_0), \xi_1=x(t_1),$ si ha

$$\int_{\xi_0}^{\xi_1} \pm \frac{1}{\sqrt{2(E-U(\xi))}} \,\mathrm{d}\xi = \int_{\xi_0}^{\xi_1} \frac{\mathrm{d}x^{-1}(\xi)}{\mathrm{d}\xi} \,\mathrm{d}\xi = x^{-1}(\xi_1) - x^{-1}(\xi_0) = t_1 - t_0$$

che è essenzialmente quanto asserito dal teorema, riscritto con una notazione più precisa.

Definizione 2.2: una *separatrice* è una traiettoria di fase (altrimenti detta curva di fase), non riducibile ad un punto, la cui energia corrisponde ad un massimo locale del potenziale.

Si chiama così perché separa due tipi di moti sostanzialmente diversi, cioè non vicini fra loro (almeno come leggi orarie).

Proposizione 2.1: se \bar{x} è un punto di massimo locale tale che $U''(\bar{x}) < 0$, allora per ogni separatrice corrispondente a $(\bar{x}, 0)$ nel piano di fase, vale

$$\lim_{t \to +\infty} x(t) = \bar{x}$$

con $x(t) \neq \bar{x}$, $\forall t$. Cioè, la traiettoria (fisica) converge a \bar{x} o nel futuro o nel passato (o in entrambi i casi), senza mai raggiungerlo.

Imprecisamente, questa situazione è talvolta descritta come "x(t) raggiunge \bar{x} in un tempo infinito".

 $\label{eq:definizione} \mbox{Dimostrazione: per definizione, l'energia corrispondente alla separatrice è $E=U(\bar{x})$. Siccome $U''(\bar{x})<0$, per ogni punto (x,v) sulla separatrice, molto vicino a, ma non coincidente con, $(\bar{x},0)$, vale$

$$T(v) = E - U(x) > 0$$
$$\implies v \neq 0$$

e quindi (o andando avanti o indietro nel tempo, a seconda dei casi) il punto materiale non si può fermare in un punto \hat{x} vicino ma diverso da \bar{x} . Quindi è immediato che

$$\lim_{t \to \pm \infty} x(t) = \bar{x}.$$

La parte non banale della proposizione è dimostrare che \bar{x} non è mai raggiunto. A riguardo si possono avere due argomenti, il primo è elegante ma poco intuitivo, mentre il secondo è più quantitativo.

Assumendo che l'equazione differenziale che regola il moto

$$\frac{\mathrm{d}}{\mathrm{d}t}(x,v) = G(x,v) = (v,f(x))$$

abbia la proprietà di esistenza e unicità delle soluzioni (per cui basta assumere che G sia Lipschitziana in un intorno di $(\bar{x},0)$), allora non può esistere una soluzione x(t) non costante con $x(\bar{t})=\bar{x}$ per qualche \bar{t} , perché altrimenti il problema di Cauchy considerato

$$\begin{cases} \dot{(x,v)} = G(x,v) \\ \dot{(x(\bar{t}),v(\bar{t}))} = (\bar{x},0) \end{cases}$$

avrebbe sia la soluzione $t\mapsto (x(t),\dot{x}(t))$, che la soluzione $t\mapsto (\bar{x},0)$, e queste sono diverse tra loro.

Il secondo argomento è invece il seguente. Sia $-a = U''(\bar{x})$ (a > 0). Essendo \bar{x} un punto di massimo locale, in un intorno di \bar{x} ,

$$\begin{split} U(x) \sim U(\bar{x}) + U'(\bar{x})(x - \bar{x}) + \frac{1}{2}U''(\bar{x})(x - \bar{x})^2 &= E - \frac{a}{2}(x - \bar{x})^2 \\ \Longrightarrow \sqrt{2(E - U(x))} \sim \sqrt{a}|x - \bar{x}|. \end{split}$$

Quindi per un tempo t_1 tale che $x_1=x(t)$ sia nell'intorno in cui vale l'approssimazione citata,

$$t - t_1 = \int_{x_1}^x \pm \frac{1}{\sqrt{2(E - U(\xi))}} \,\mathrm{d}\xi \sim \pm \frac{1}{\sqrt{a}} \int_{x_1}^x \frac{1}{|\xi - \bar{x}|} \,\mathrm{d}\xi \,.$$

La funzione $|\xi - \bar{x}|^{-1}$ non è integrabile in ξ attorno a \bar{x} e quindi, per $x \to \bar{x}$, l'integrale va a $\pm \infty$, a seconda dei casi, ovvero $t - t_1 \to \pm \infty$, e quindi anche $t \to \pm \infty$.

Esempio 2.4: risolvere il problema unidimensionale $\ddot{x} = -2x + 2x^3$, con condizioni iniziali $x(0) = 0, \dot{x}(0) = 1$, con il metodo delle quadrature.

Si prende

$$U(x) = -\int_0^x (-2\xi + 2\xi^3) \,\mathrm{d}\xi = x^2 - \frac{x^4}{2}.$$

Inoltre,

$$\begin{split} E - E(0) &= \frac{\left(\dot{x}(0)\right)^2}{2} + \left(x(0)\right)^2 - \frac{\left(x(0)\right)^4}{2} = \frac{1}{2} \\ \Longrightarrow 2(E - U(x)) &= 2\left(\frac{1}{2} - x^2 + \frac{x^4}{2}\right) = 1 - 2x^2 + x^4 = \left(1 - x^2\right)^2 \end{split}$$

da cui, usando che x=0 per t=0, si ricava t(x) da t=0 fino al primo tempo di inversione (se finito):

$$t = \int_0^x \frac{\mathrm{d}\xi}{\sqrt{2(E - U(\xi))}} = \int_0^x \frac{\mathrm{d}\xi}{1 - \xi^2} = \left[\frac{1}{2}\ln\frac{1 + \xi}{1 - \xi}\right]_0^x = \frac{1}{2}\ln\frac{1 + x}{1 - x}$$

La funzione $\frac{1}{2} \ln \frac{1+x}{1-x}$ si chiama anche $\operatorname{arctanh}(x)$, ed è la funzione inversa di

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Quindi si ha che $t = \operatorname{arctanh}(x) \Longrightarrow x(t) = \tanh(t)$.

Si vede che il primo tempo di inversione è $+\infty$, come in effetti ci si poteva aspettare dalla forma del potenziale che mostra che la curva studiata è in effetti una separatrice.

$$\lim_{t \to +\infty} x(t) = 1, x(t) < 1, \forall t.$$

Esempio 2.5: data una traiettoria chiusa, simmetrica rispetto all'asse x, sul piano di fase con energia E, e sia S(E) l'area racchiusa dalla curva di fase. Dimostrare che il periodo $T=\frac{\mathrm{d}S}{\mathrm{d}E}$, se tale derivata esiste finita.

Si ha, per simmetria, che

$$T = 2 \int_{x_1}^{x_2} \frac{1}{\sqrt{2(E - U(\xi))}} d\xi$$
.

Per quanto riguarda S, sempre per simmetria,

$$S = 2 \int_{x_1}^{x_2} v(\xi) \, \mathrm{d}\xi = 2 \int_{x_1}^{x_2} \sqrt{2(E - U(\xi))} \, \mathrm{d}\xi \,.$$

Avendo una funzione del tipo $F(x_1(E), x_2(E), E)$,

$$\frac{\mathrm{d}F}{\mathrm{d}E} = \partial_1 F \frac{\mathrm{d}x_1}{\mathrm{d}E} + \partial_2 F \frac{\mathrm{d}x_2}{\mathrm{d}E} + \partial_3 F$$

E dunque

$$\frac{1}{2}\frac{\mathrm{d}S}{\mathrm{d}E} = -\sqrt{2(E-U(x_1(E)))}\frac{\mathrm{d}x_1}{\mathrm{d}E} + \sqrt{2(E-U(x_2(E)))}\frac{\mathrm{d}x_2}{\mathrm{d}E} + \int_{x_1}^{x_2} \frac{1}{\sqrt{2(E-U(\xi))}}\,\mathrm{d}\xi$$

L'ultimo termine è $\frac{T(E)}{2}$, e quindi in un intorno di E si ha che tale espressione è limitata uniformemente in E, e dunque è giustificato il fatto di portare la derivata all'interno dell'integrale, applicando il corollario del teorema della convergenza dominata. I primi due termini della somma sono invece nulli, in quanto $E=U(x_1)=U(x_2)$.

Esempio 2.6 (limite di piccole oscillazioni): sia $E \gtrsim U(\bar{x})$, con \bar{x} un punto di equilibrio stabile, tale che la traiettoria di fase corrispondente a E è chiusa, di periodo T(E). Dimostrare che

$$\lim_{E \to U(\bar{x})} T(E) = \frac{2\pi}{\sqrt{U''(\bar{x})}}.$$

Si approssima

$$U(x) \simeq U(\bar{x}) + \frac{1}{2}U''(\bar{x})(x - \bar{x})^2.$$

Tale approssimazione migliora con $E \to U(\bar x)^+$. Detta $E_0 = U(\bar x)$, la conservazione dell'energia implica che

$$E = \frac{v^2}{2} + E_0 + \frac{a}{2}(x - \bar{x})^2 \Longrightarrow \varepsilon = \frac{v^2}{2} + \frac{(x - \bar{x})^2}{\frac{2}{a}}$$

dove $\varepsilon = E - E_0$ e $a = U''(\bar{x})$

$$\implies \frac{(x-\bar{x})^2}{2\frac{\varepsilon}{a}} + \frac{v^2}{2\varepsilon} = 1$$

che corrisponde all'equazione di un'ellisse del piano di fase. Allora

$$S(E) = 2\pi \frac{\varepsilon}{\sqrt{a}} = 2\pi \frac{E - E_0}{\sqrt{a}}$$

$$\implies T = \frac{\mathrm{d}S}{\mathrm{d}E} = \frac{2\pi}{\sqrt{U''(\bar{x})}}.$$

Questa proprietà vale per qualsiasi potenziale quadratico (isocronia dell'oscillatore armonico).

2.2. Casi riconducibili ad un grado di libertà

Tutti quei sistemi che sono completamente separabili sono riconducibili a sistemi a un grado di libertà. Un esempio notevole è l'oscillatore armonico in d dimensioni:

$$\boldsymbol{F}(\boldsymbol{x}) = -k\boldsymbol{x}, \quad k > 0$$

$$\implies m\ddot{x} = -kx$$

che si può separare, componente per componente, in d equazioni differenziali indipendenti tra loro $\ddot{x}_i = -\frac{k}{m}x_i$.

Esercizio 2.1: mostrare che se si sa risolvere (trovare la legge oraria per ogni condizione iniziale) $\ddot{r} = -r$, allora si sa risolvere $\ddot{x} = -\omega^2 x$.

Un altro caso riconducibile a sistemi a un grado sono i campi centrali,

$$\boldsymbol{F}(\boldsymbol{r}) = f(\|\boldsymbol{r}\|) \frac{\boldsymbol{r}}{\|\boldsymbol{r}\|}$$

ricordando che essi sono conservativi con potenziali $U(r)=u(\|r\|)$, con -u'(r)=f(r).

In tre dimensioni, il moto in un campo centrale (in cui il centro del campo è l'origine) avviene tutto nel piano passante per l'origine e perpendicolare a L, che si conserva. Utilizzando le coordinate polari nel piano del moto (x, y)

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

con versori ortonormali $\hat{e}_r, \hat{e}_{\omega}$, che definiscono un sistema di riferimento mobile:

$$\hat{e}_r = \hat{e}_r(\varphi) = (\cos \varphi, \sin \varphi)$$

$$\hat{\boldsymbol{e}}_{\varphi} = \hat{\boldsymbol{e}}_{\varphi}(\varphi) = (-\sin\varphi,\cos\varphi).$$

Lemma 2.1: se r(t) è la legge oraria del sistema espressa come $(r(t), \varphi(t))$, allora

$$\dot{\mathbf{r}}(t) = \dot{r}(t)\hat{\mathbf{e}}_{\mathbf{r}}(\varphi(t)) + r(t)\dot{\varphi}(t)\hat{\mathbf{e}}_{\varphi}(\varphi(t)).$$

Dimostrazione: Per come si sono definiti i versori polari,

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{e}}_{\boldsymbol{r}}(\varphi(t)) = \dot{\varphi}(t)(-\sin\varphi(t),\cos\varphi(t)) = \dot{\varphi}(t)\hat{\boldsymbol{e}}_{\boldsymbol{\varphi}}(\varphi(t))$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{e}}_{\varphi}(\varphi(t)) = \dot{\varphi}(t)(-\cos\varphi(t), -\sin\varphi(t)) = -\dot{\varphi}(t)\hat{\boldsymbol{e}}_{\boldsymbol{r}}(\varphi(t))$$

Vale che

$$r(t) = r(t)\hat{e}_r(\varphi(t))$$

$$\Longrightarrow \dot{\boldsymbol{r}}(t) = \dot{\boldsymbol{r}}(t)\hat{\boldsymbol{e}}_{\boldsymbol{r}}(\varphi(t)) + \boldsymbol{r}(t)\dot{\varphi}(t)\hat{\boldsymbol{e}}_{\boldsymbol{\varphi}}(\varphi(t)).$$

Come già fatto, si pone la massa m=1 e si trascurano le unità di misura. Dunque

$$\boldsymbol{L} = \boldsymbol{r} \times \dot{\boldsymbol{r}} = \boldsymbol{r} \times \left(\dot{r} \hat{\boldsymbol{e}}_{\boldsymbol{r}} + r \dot{\varphi} \hat{\boldsymbol{e}}_{\boldsymbol{\varphi}} \right) = r^2 \dot{\varphi} \hat{\boldsymbol{e}}_{\boldsymbol{r}} \times \hat{\boldsymbol{e}}_{\boldsymbol{\varphi}} = r^2 \dot{\varphi} \hat{\boldsymbol{e}}_{\boldsymbol{z}}.$$

La conservazione del momento angolare in tre dimensioni corrisponde quindi, in realtà, a tre equazioni di conservazione, trattandosi di un'equazione vettoriale.

Si giustifica geometricamente l'espressione di $\dot{\boldsymbol{r}}(t)$. Considerato un punto in un piano con coordinate polari, in un piccolo intervallo di tempo Δt il punto si sposta dalla posizione $\boldsymbol{r}(t)$ a $\boldsymbol{r}(t+\Delta t)$. Quindi $\Delta \boldsymbol{r} = \boldsymbol{r}(t+\Delta t) - \boldsymbol{r}(t)$ e $\Delta \varphi = \varphi(t+\Delta t) - \varphi(t)$.

Tramite osservazioni geometriche si può approssimare

$$\Delta r \simeq \Delta r \,\hat{e}_r + r \,\Delta \varphi \,\hat{e}_{\omega}$$

Figura 2: Argomento geometrico del Lemma 2.1

da cui

$$\frac{\Delta r}{\Delta t} = \frac{\Delta r}{\Delta t} \hat{\boldsymbol{e}}_{\boldsymbol{r}} + r \frac{\Delta \varphi}{\Delta t} \hat{\boldsymbol{e}}_{\boldsymbol{\varphi}} \rightarrow \dot{r} \hat{\boldsymbol{e}}_{\boldsymbol{r}} + r \dot{\varphi} \hat{\boldsymbol{e}}_{\boldsymbol{\varphi}}$$

D'ora in avanti si assumerà che il modulo del momento angolare sia non nullo ($L \neq 0$), altrimenti non si avrebbe un moto bidimensionale.

Nota: assumendo $L \neq 0$, φ è monotona (altrimenti si avrebbe L = 0 per un certo t), crescente se L > 0 e decrescente se L < 0.

Si osserva che vale la seconda legge di Keplero: in un campo centrale la velocità areolare s(t) è costante. La velocità areolare è la derivata rispetto al tempo dell'area spazzata dal raggio vettore. Infatti, l'area spazzata in un tempo infinitesimo è

$$\frac{1}{2}r^2(t)\,\mathrm{d}\varphi$$

e dunque

$$s(t) = \frac{1}{2}r^2(t)\dot{\varphi}(t) = \frac{1}{2}L.$$

2.3. Studio qualitativo di un campo centrale

Dato un campo centrale $F(r) = f(r)\hat{e}_r$, che è conservativo con potenziale U(r) = u(r), con u'(r) = -f(r). Si vuole trovare $r(t) = (r(t), \varphi(t))$.

Teorema 2.2: la "legge oraria" r(t) è la stessa che si otterrebbe studiando il problema unidimensionale dato dal *potenziale efficace*

$$V(r) = u(r) + \frac{L}{2r^2}, \quad r > 0$$

dove L è il modulo (conservato) di L.

Dimostrazione: si deriva in t la formula

$$\begin{split} \dot{r} &= \dot{r} \hat{e}_r + r \dot{\varphi} \hat{e}_{\varphi}. \\ \ddot{r} &= \ddot{r} \hat{e}_r + \dot{r} \dot{\varphi} \hat{e}_{\varphi} + \dot{r} \dot{\varphi} \hat{e}_{\varphi} + r \ddot{\varphi} \hat{e}_{\varphi} - r \dot{\varphi}^2 \hat{e}_r \\ \\ &\Longrightarrow \ddot{r} = (\ddot{r} - r \dot{\varphi}^2) \hat{e}_r + (2 \dot{r} \dot{\varphi} + r \ddot{\varphi}) \hat{e}_{\varphi} \end{split}$$

Ma $\ddot{r} = -u'(r)\hat{e}_r$, e dunque vale che

$$\ddot{r} - r\dot{\varphi}^2 = -u'(r) \tag{2}$$

$$2\dot{r}\dot{\varphi} + r\ddot{\varphi} = 0\tag{3}$$

Allora, da (2),

$$\ddot{r} = -u'(r) + r\frac{L^2}{r^4} = -\frac{\mathrm{d}}{\mathrm{d}r} \left(u(r) + \frac{L^2}{2r^2} \right)$$

Ma $u(r)+\frac{L^2}{2r^2}$ è proprio V(r).

Questo problema può essere affrontato per quadrature:

$$\mathrm{d}t = \pm \frac{\mathrm{d}r}{\sqrt{2(E - V(r))}}.$$

Avendo r(t), $\varphi(t)$ si trova facilmente, da

$$\dot{\varphi} = \frac{L}{r^2}$$

$$\Longrightarrow \varphi(t) = \varphi_0 + \int_{t_0}^t \frac{L}{r^2} \, \mathrm{d}t \, .$$

Spesso, però, r(t) è difficile da trovare. In alcuni casi si è però interessati soltanto, ad esempio, a trovare l'immagine di r(t) (cioè l'orbita), cercando allora $r(\varphi)$. Sotto le ipotesi in cui ci si trova, con $L \neq 0$, ciò è possibile, perché $\varphi(t)$ è monotona (e quindi invertibile). Allora, chiamando $r(\varphi)$ la funzione inversa di $\varphi(t)$, $r(\varphi) = r(t(\varphi))$.

Dall'equazione (3) si risale nuovamente al principio di conservazione del momento angolare:

$$L=r^2\dot{\varphi}$$

$$\implies 0 = \dot{L} = r(2\dot{r}\dot{\varphi} + r\ddot{\varphi}).$$

Si osserva anche che l'energia totale ${\cal E}_V$ del nuovo problema unidimensionale in r, che vale

$$E_V = \frac{\dot{r}^2}{2} + V(r)$$

è uguale all'energia totale del problema originario in due dimensioni E_U :

$$E_U = \frac{\|\boldsymbol{r}\|^2}{2} + U(\boldsymbol{r}).$$

Infatti,

$$\frac{\|\boldsymbol{r}\|^2}{2} = \frac{1}{2} \|\dot{r}\hat{e}_{r} + r\dot{\varphi}\hat{e}_{\varphi}\|^2 = \frac{\dot{r}^2 + r^2\dot{\varphi}^2}{2} = \frac{\dot{r}^2}{2} + \frac{L^2}{2r^2}.$$

E, per definizione, $u(r) = u(\|r\|) = U(r)$.

Si può studiare, come visto, solo la traiettoria $r(\varphi)=r(t(\varphi))$, dove $t(\varphi)$ esiste perché $\varphi(t)$ è invertibile, e non la legge oraria. Dato che

$$\begin{split} \dot{r} &= \pm \sqrt{2(E-V(r))} \\ \dot{\varphi} &= \frac{L}{r^2} \\ \Longrightarrow \frac{\mathrm{d}\varphi}{\mathrm{d}r} &= \frac{\mathrm{d}\varphi}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}r} = \pm \frac{L}{r^2\sqrt{2(E-V(r))}}. \end{split}$$

Si può fare uno studio qualitativo considerando il grafico di V(r), spesso si ha che la funzione tende a $+\infty$ per $r\to 0$, dovuto al termine $\frac{L^2}{2r^2}$. Detti r_{\min} e r_{\max} i due punti in cui una particella oscilla per un certo valore di energia totale (vedi Figura 3), a meno di non trovarsi su una separatrice, si ha allora, nel problema originario bidimensionale, che l'orbita è compresa tra le due circonferenze di raggio r_{\min} e r_{\max} (i cui punti sono rispettivamente *pericentri* e *apocentri*). In altre parole, $r(\varphi)$ è una funzione periodica, di periodo non necessariamente 2π , e dunque l'orbita non forma necessariamente ellissi chiuse.

Figura 3: Particella sul piano delle configurazioni che oscilla tra r_{\min} e r_{\max}

In un intervallo di monotonia di $r(\varphi)$ vale

$$\varphi-\varphi_0=\pm\int_{r_0}^r\frac{L}{\rho^2\sqrt{2(E-V(\rho))}}\,\mathrm{d}\rho$$

e dunque il semiperiodo (differenza angolare tra pericentro e apocentro) Φ di $r(\varphi)$ vale

$$\Phi = \int_{r_{\rm min}}^{r_{\rm max}} \frac{L}{\rho^2 \sqrt{2(E-V(\rho))}} \, \mathrm{d}\rho \,. \label{eq:phin}$$

Figura 4: Grafico di r in funzione di φ

Quindi il periodo dell'orbita è 2Φ . Ora, l'orbita nel piano delle configurazioni è chiusa (e periodica) se e solo se 2Φ è un multiplo razionale di 2π .

Vale il seguente teorema, la cui dimostrazione si trova nell'Arnold.

Teorema 2.3: Solo in due casi tutte le orbite nel piano delle configurazioni sono chiuse:

1.
$$u(r) = ar^2$$
, $a > 0$

$$^{2.}\ u(r)=-\frac{k}{r},\quad k>0.$$

Si osserva che, se la traiettoria è aperta, allora è densa nella corona circolare.

2.4. Problema di Keplero

Quando $u(r) = -\frac{k}{r}$, con k > 0,

$$V(r)=-\frac{k}{r}+\frac{L^2}{2r^2}$$

e si trova che il punto di minimo è

$$\left(\frac{L^2}{k}, -\frac{k^2}{2L^2}\right)$$

(la cui derivazione è lasciata come esercizio), quindi

$$\varphi(r) = \pm \int_{r_0}^r \frac{\frac{L}{\rho^2} \,\mathrm{d}\rho}{\sqrt{2(E-V(\rho))}} = \pm \int_{r_0}^r \frac{\frac{L}{\rho^2} \,\mathrm{d}\rho}{\sqrt{2E+2\frac{k}{\rho}-\frac{L^2}{\rho^2}}}.$$

Completando il quadrato,

$$2E + 2\frac{k}{\rho} - \frac{L^2}{\rho^2} = 2E + \frac{k^2}{L^2} - \left(\frac{L}{\rho} - \frac{k}{L}\right)^2,$$

e chiamando

$$\begin{split} a \coloneqq \sqrt{2E + \frac{k^2}{L^2}} \\ \Longrightarrow \varphi(r) = \pm \int_{r_0}^r \frac{\frac{L}{\rho^2} \, \mathrm{d}\rho}{\sqrt{a^2 - \left(\frac{L}{\rho} - \frac{k}{L}\right)^2}}. \end{split}$$

Si prende un'energia compresa in $-\frac{k^2}{2L^2} \le E \le 0$, e facendo il cambio di variabile con $x := \frac{L}{\rho} - \frac{k}{L}$, per cui $\mathrm{d}x = -\frac{L}{\rho^2}\,\mathrm{d}\rho$ (che, a meno del segno, corrisponde con il numeratore della funzione integranda), si ottiene

$$\varphi(r) = \mp \int_{x_0}^x \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}}.$$

Assumendo di avere il segno positivo,

$$\varphi(r) = \arcsin\!\left(\frac{\frac{L}{r} - \frac{k}{L}}{\sqrt{2E + \frac{k^2}{L^2}}}\right) + \varphi_0.$$

Chiamando, per convenienza, $p:=\frac{L^2}{k}$, $e:=\sqrt{1+\frac{2EL^2}{k^2}}$, e dunque si ottiene, moltiplicando a numeratore e denominatore per $\frac{r}{k}$,

$$\begin{split} \varphi(r) &= \arcsin\!\left(\frac{\frac{L^2}{kr}-1}{\sqrt{1+\frac{2EL^2}{k^2}}}\right) + \varphi_0 = \arcsin\!\left(\frac{\frac{p}{r}-1}{e}\right) + \varphi_0 \\ \\ &\Longrightarrow \sin(\varphi-\varphi_0) = \frac{\frac{p}{r}-1}{e} \\ \\ &\Longrightarrow r = \frac{p}{1+e\sin(\varphi-\varphi_0)}. \end{split}$$

A meno di effettuare una ritraslazione degli angoli, si sceglie $\varphi_0=-\frac{\pi}{2}$, ottenendo

$$r = \frac{p}{1 + e\cos\varphi}.$$

Assumendo invece di avere il segno negativo,

$$\varphi(r) = \arccos\left(\frac{\frac{L}{r} - \frac{k}{L}}{\sqrt{2E + \frac{k^2}{L^2}}}\right) + \varphi_0.$$

E si procede analogamente al caso precedente, scegliendo infine $\varphi_0=0$, e trovando la medesima formula.

p è detto parametro dell'ellisse, ed e è detta eccentricità, compresa in [0,1). Infatti E è negativa, e vale, al minimo, $-\frac{k}{2L^2}$.

Si può mostrare che la formula ottenuta è quella di un'ellisse, passando alle coordinate cartesiane:

$$r + re\cos\varphi = p$$

$$\Rightarrow (re\cos\varphi - p)^2 = r^2$$

$$\Rightarrow (ex - p)^2 = x^2 + y^2.$$

Si ha che $r=r_{\min}$ per $\varphi=0$ e che $r=r_{\max}$ per $\varphi=\pi$, e si ha quindi fissato l'origine degli angoli nel pericentro. In particolare,

$$r_{\min} = \frac{p}{1+e}$$

$$r_{\max} = \frac{p}{1-e}$$

E infatti, per $E \to E_{\min}$, $e \to 0$ e dunque r_{\min} e r_{\max} tendono a coincidere, avendo un'orbita circolare; mentre per $E \to 0^-$, l'orbita si allunga, con $r_{\max} \to +\infty$.

Esercizio 2.2: dimostrare, a partire dalle ultime considerazioni fatte, la terza legge di Keplero.

3. Meccanica Lagrangiana

Un funzionale è un'applicazione da uno spazio di funzioni ad uno scalare (tipicamente \mathbb{R}) ($\Phi: S \to \mathbb{R}$, dove S è un insieme di funzioni; ad esempio $C^1[t_0,t_1]$, cioè l'insieme di tutte le funzioni $f:[t_0,t_1]\to \mathbb{R}$, derivabili e con derivate prime continue).

Esempio 3.1:

$$\Phi(f) = f(\bar{t})$$

con $\bar{t} \in [t_0, t_1]$ fissato.

Esempio 3.2:

$$\Phi(f) = \int_{t_0}^{t_1} f(t) \, \mathrm{d}t$$

Esempio 3.3:

$$\Phi(f) = \int_{t_0}^{t_1} \sqrt{1 + (f'(t))^2} \, \mathrm{d}t$$

che rappresenta la lunghezza della curva data dal grafico di f nel dominio $[t_0, t_1]$.

Esempio 3.4: Considerata $L: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ differenziabile,

$$\Phi(f) = \int_{t_0}^{t_1} L(f(t), f'(t), t) \,\mathrm{d}t$$

Si noti che i primi due esempi sono applicazioni lineari, mentre gli altri funzionali non sono lineari (il terzo è in realtà un caso particolare del quarto).

Definizione 3.1: il funzionale $\Phi: S \to \mathbb{R}$ si dice differenziabile nel punto $f \in S$ se $\forall h \in S$,

$$\Phi(f+h) - \Phi(f) = \big(D\Phi_f\big)(h) + o(h),$$

per $h \to 0$, dove $D\Phi_f$ è un'applicazione lineare da S in \mathbb{R} , detta differenziale di Φ nel punto f.

Con $h \to 0$, si intende $||h||_{C^1} \to 0$, ove

$$\|h\|_{C^1} = \max_{t \in [t_0,t_1]} \{|h(t)|,|h'(t)|\}.$$

E infine, dire che R(h) = o(h) equivale a dire che

$$\lim_{\|h\|_{C^1} \to 0} \frac{|R(h)|}{\|h\|_{C^1}} = 0.$$

Si dice quindi che $h \to 0$ quando è uniformemente piccola la funzione nel suo dominio, ed è anche uniformemente piccola la sua derivata.

Esercizio 3.1: quale che sia la definizione esatta di "h piccolo", mostrare che, se Φ è un funzionale lineare, allora $D\Phi_f = \Phi, \forall f \in S$.

Il quarto esempio fatto in precedenza, è il più generale che servirà in questo corso, generalizzandolo a più dimensioni.

Considerando una funzione $L:\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}\to\mathbb{R}$. Si assume L differenziabile e C^1 (tutte le derivate parziali prime sono continue). Gli argomenti di L si indicano come $(\boldsymbol{x},\boldsymbol{v},t)$, con $\boldsymbol{x}=(x_1,...,x_d), \boldsymbol{v}=(v_1,...,v_d)$. Si definisce, con $\boldsymbol{x}:[t_0,t_1]\to\mathbb{R}^d$,

$$\Phi(\boldsymbol{x}) = \int_{x_0}^{x_1} L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \, \mathrm{d}t,$$

definito su $S = \{x : [t_0, t_1] \to \mathbb{R}^d, x \in C^1\}$ (ci si potrebbe dover restringere a funzioni x tali che (x, \dot{x}, t) appartengano al dominio di L). Questo funzionale è detto funzionale d'azione.

Teorema 3.1: il funzionale Φ , definito come sopra, è differenziabile $\forall x \in S$, e il suo differenziale è

$$\begin{split} D\Phi_{\boldsymbol{x}}(\boldsymbol{h}) &= \sum_{i=1}^d \Biggl\{ \int_{t_0}^{t_1} \biggl(\frac{\partial L}{\partial x_i}(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t), t) - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i}(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t), t) \biggr) \boldsymbol{h}_i(t) \, \mathrm{d}t \\ &+ \biggl[\frac{\partial L}{\partial v_i}(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t), t) \boldsymbol{h}_i(t) \biggr]_{t_0}^{t_1} \Biggr\} \end{split}$$

con $h(t)=(h_1(t),...,h_d(t))\in C^1([t_0,t_1])$, dove la norma C^1 , che era stata definita per funzioni a valori scalari, è definita in maniera simile:

$$\left\lVert \boldsymbol{h} \right\rVert_{C^1} = \max_{\substack{t \in [t_0,t_1]\\i \in \{1,\dots,d\}}} \left\{ |\boldsymbol{h_i}|(t), \left| \dot{\boldsymbol{h_i}}(t) \right| \right\}.$$

In forma abbreviata, si può scrivere

$$D\Phi_{\boldsymbol{x}}(\boldsymbol{h}) = \sum_{i=1}^d \left\{ \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} \right) h_i \, \mathrm{d}t + \left[\frac{\partial L}{\partial v_i} h_i \right]_{t_0}^{t_1} \right\}$$

oppure

$$D\Phi_{\boldsymbol{x}}(\boldsymbol{h}) = \int_{t_0}^{t_1} \left(\boldsymbol{\nabla}_{\boldsymbol{x}} L - \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\nabla}_{\boldsymbol{v}} L\right) \cdot \boldsymbol{h} \, \mathrm{d}t + \left[\boldsymbol{\nabla}_{\boldsymbol{v}} L \cdot \boldsymbol{h}\right]_{t_0}^{t_1}.$$

Dimostrazione: dalla definizione di differenziale di L, si ha

$$\begin{split} L(\boldsymbol{x} + \Delta \boldsymbol{x}, \dot{\boldsymbol{x}} + \Delta \boldsymbol{v}, t + \Delta t) - L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) &= \sum_{i=1}^d \left\{ \frac{\partial L}{\partial x_i} (\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \, \Delta x_i + \frac{\partial L}{\partial v_i} (\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \, \Delta v_i \right\} \\ &+ \frac{\partial L}{\partial t} (\boldsymbol{x}, \boldsymbol{v}, t) \, \Delta t + o(|\Delta x_i \, \Delta v_i \, \Delta t|) \end{split}$$

$$\Longrightarrow \Phi(\boldsymbol{x}+\boldsymbol{h}) - \Phi(\boldsymbol{x}) = \int_{t_0}^{t_1} L\Big(\boldsymbol{x}+\boldsymbol{h}, \dot{\boldsymbol{x}}+\dot{\boldsymbol{h}}, t\Big) - L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \, \mathrm{d}t$$

$$= \int_{t_0}^{t_1} \sum_{i=1}^d \biggl\{ \frac{\partial L}{\partial x_i}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) h_i(t) + \frac{\partial L}{\partial v_i}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \dot{h}_i(t) + o\Bigl(|h_i(t)|, \left|\dot{h}_i(t)\right|\Bigr) \biggr\} \, \mathrm{d}t, \forall i \in \{1, ..., d\}.$$

Si osserva che, tramite integrazione per parti,

$$\int_{t_0}^{t_1} \frac{\partial L}{\partial v_i} \dot{h}_i \, \mathrm{d}t = \left[\frac{\partial L}{\partial v_i} h_i \right]_{t_0}^{t_1} - \int_{t_0}^{t_1} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} h_i \, \mathrm{d}t \, .$$

Si considera $R(h) = o(\|\mathbf{h}\|_{C^1})$, che implica che $R(h)(t) \leq \varepsilon \|\mathbf{h}\|_{C^1}$

$$\Longrightarrow \left|\int_{t_0}^{t_1} R(\boldsymbol{h})(t) \, \mathrm{d}t\right| \leq \int_{t_0}^{t_1} R(\boldsymbol{h})(t) \, \mathrm{d}t \leq \int_{t_0}^{t_1} \varepsilon \|\boldsymbol{h}\|_{C^1} \, \mathrm{d}t = \varepsilon (t_1 - t_0) \|\boldsymbol{h}\|_{C^1}.$$

Infine, sostituendo,

$$\Phi(\boldsymbol{x}+\boldsymbol{h}) - \Phi(\boldsymbol{x}) = \sum_{i=1}^{d} \left\{ \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} \right) h_i \, \mathrm{d}t + \left[\frac{\partial L}{\partial v_i} h_i \right]_{t_0}^{t_1} \right\} + o\Big(\left\| \boldsymbol{h} \right\|_{C_1} \Big)$$

che è quanto si voleva dimostrare, per definizione di differenziale.

Si considera l'insieme di funzioni

$$S_{\boldsymbol{x_0}, \boldsymbol{x_1}} = \left\{ \boldsymbol{x} : [t_0, t_1] \to \mathbb{R}^d, \boldsymbol{x} \in C^1, \boldsymbol{x}(t_0) = \boldsymbol{x_0}, \boldsymbol{x}(t_1) = \boldsymbol{x_1} \right\}$$

Che non è un insieme lineare (se $x \in S_{x_0,x_1}$, generalmente non vale che $2x \in S_{x_0,x_1}$).

Definizione 3.2: una funzione $x\in S_{x_0,x_1}$ è detta estremale del funzionale Φ ristretto a S_{x_0,x_1} , se vale

$$\Phi(x+h) - \Phi(x) = o(h)$$

ogni volta che ${\pmb x} + {\pmb h}$ appartiene a $S_{{\pmb x}_0,{\pmb x}_1}$, cioè ${\pmb h}(t_0) = {\pmb h}(t_1) = {\pmb 0}.$

Teorema 3.2 (equazioni di Eulero-Lagrange): una funzione $x \in S_{x_0,x_1}$ è estremale di Φ ristretto a S_{x_0,x_1} se e solo se, $\forall i \in \{1,...,d\}$,

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial v_i}(\boldsymbol{x}(t),\dot{\boldsymbol{x}}(t),t) - \frac{\partial L}{\partial x_i}(\boldsymbol{x}(t),\dot{\boldsymbol{x}}(t),t) = 0.$$

In forma vettoriale, le equazioni di Eulero-Lagrange si possono scrivere come

$$\frac{\mathrm{d}}{\mathrm{d}t} \nabla_{v} L - \nabla_{x} L = 0.$$

Con una notazione impropria, si usa anche scrivere

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}_i} - \frac{\partial L}{\partial x_i} = 0;$$

è una notazione impropria perché, con $\frac{\partial}{\partial v_i}$ si intende la derivata parziale rispetto al secondo parametro di L, mentre $\dot{x_i}$ porta a pensare alla derivata di qualcosa.

Lemma 3.1: sia $f:[t_0,t_1]\to\mathbb{R}^d$ continua. Se vale che, $\forall h:[t_0,t_1]\to\mathbb{R}^d$ continua,

$$\int_{t_0}^{t_1} \boldsymbol{f}(t) \cdot \boldsymbol{h}(t) \, \mathrm{d}t = 0$$

Allora f = 0.

 $\it Dimostrazione$: Si procede per assurdo, supponendo $f \neq 0$. Allora, $\exists \bar{i}: f_{\bar{i}} \neq 0,$

$$\exists \bar{t} \in [t_0, t_1] : f_{\bar{i}}(\bar{t}) \neq 0.$$

Si può allora assumere che $\bar{t}\in(t_0,t_1)$ (per continuità di f). Si suppone che $f_{\bar{i}}(\bar{t})>0$, e quindi

$$\exists \delta, c>0: \big(\bar{t}-\delta, \bar{t}+\delta\big) \subset [t_0,t_1]: \forall t \in \big(\bar{t}-\delta, \bar{t}+\delta\big), f_{\bar{i}}(t) \geq c.$$

Si sceglie $h_{\bar i}>0$ continua, nulla al di fuori dell'insieme $(\bar t-\delta,\bar t+\delta)$, con $\int_{t_0}^{t_1}h_{\bar i}(t)\,\mathrm{d}t>0$, quindi

$$\int_{t_0}^{t_1} h_{\bar{i}}(t) \,\mathrm{d}t = \int_{\bar{t}-\delta}^{\bar{t}+\delta} h_{\bar{i}}(t) \,\mathrm{d}t \,.$$

Si prende poi $h_i=0, \forall i \neq \bar{i}.$ Infine,

$$0 = \int_{t_0}^{t_1} \sum_{i=1}^d f_i(t) h_i(t) \, \mathrm{d}t = \int_{\bar{t}-\delta}^{\bar{t}+\delta} f_{\bar{i}}(t) h_{\bar{i}}(t) \, \mathrm{d}t \geq c \int_{\bar{t}-\delta}^{\bar{t}+\delta} h_{\bar{i}}(t) > 0.$$

Dimostrazione del teorema precedente: vale, $\forall h \in S$ (quindi anche S_{x_0,x_1}),

$$\Phi(\boldsymbol{x}+\boldsymbol{h}) - \Phi(\boldsymbol{x}) = \sum_{i=1}^d \Biggl\{ \int_{t_0}^{t_1} \biggl(\frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} \biggr) h_i \, \mathrm{d}t + \biggl[\frac{\partial L}{\partial v_i} h_i \biggr]_{t_0}^{t_1} \Biggr\} + o(\boldsymbol{h}).$$

Ma, dato che $m{h} \in S_{m{x_0}, m{x_1}}$, si ha soltanto

$$\Phi(\boldsymbol{x}+\boldsymbol{h}) - \Phi(\boldsymbol{x}) = \sum_{i=1}^d \int_{t_0}^{t_1} \biggl(\frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} \biggr) h_i \, \mathrm{d}t + o(\boldsymbol{h}).$$

Per ipotesi, nel caso (⇐) anche la funzione integranda è nulla, e quindi

$$\Phi(x+h) - \Phi(x) = o(h).$$

Per quanto riguarda il caso (\Rightarrow), si ha che, $\forall h \in C^1$, con $h(t_0) = \mathbf{0} = h(t_1)$, per il lemma precedente,

$$\begin{split} \int_{t_0}^{t_1} \sum_{i=1}^d & \left(\frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} \right) h_i \, \mathrm{d}t = 0. \\ \Longrightarrow & \frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v_i} = 0. \end{split}$$

Esempio 3.5: ci si chiede quali siano le funzioni estremali di Φ definito da $L(x,v,t)=\sqrt{1+v^2}$ (in una dimensione). Utilizzando il teorema precedente, si risolve l'equazione di Eulero-Lagrange. Si ha

$$\frac{\partial L}{\partial x} = 0$$

e

$$\frac{\partial L}{\partial v} = \frac{v}{\sqrt{1+v^2}}$$

$$\implies 0 = \frac{\mathrm{d}}{\mathrm{d}t} \frac{v(t)}{\sqrt{1+v(t)^2}} = \frac{\dot{v}(t)}{\left(1+v(t)^2\right)^{\frac{3}{2}}}$$

$$\iff \dot{v}(t) = 0 \iff v(t) = a \iff f(t) = at + t_0$$

e si è ottenuta la funzione estremale che minimizza la lunghezza della funzione x, ossia una funzione lineare.

3.1. Applicazione alla meccanica

Si hanno problemi del tipo

$$m\ddot{\pmb{r}}(t) = -rac{\mathrm{d}}{\mathrm{d}r}U(\pmb{r}(t))$$

Teorema 3.3 (principio di minima azione di Hamilton): le leggi orarie dell'equazione sopracitata coincidono con gli estremali di

$$\Phi(\boldsymbol{r}) = \int_{t_0}^{t_1} L(\boldsymbol{r}(t), \dot{\boldsymbol{r}}(t), t) \, \mathrm{d}t$$

su
$$S_{{\bm r_0},{\bm r_1}}:[t_0,t_1]\to\mathbb{R}^d\in C^1$$
, con ${\bm r}(t_0)={\bm r_0},r(t_1)={\bm r_1}$, ove

$$L(\mathbf{r}, \dot{\mathbf{r}}) = T(\dot{\mathbf{r}}) - U(\mathbf{r}).$$

La funzione L è detta lagrangiana, e non dipende esplicitamente da t.

Dimostrazione: si scrive l'equazione (in forma vettoriale) di Eulero-Lagrange, per tale $L=L({m r},\dot{{m r}})$:

$$\nabla_{\dot{r}}L = \nabla_{\dot{r}}T = m\dot{r}$$

$$\Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\nabla_{\dot{r}}L = m\ddot{r}.$$

$$\nabla_{r}L = -\nabla_{r}U$$

$$\Longrightarrow m\ddot{r} = -\nabla_{r}U.$$

Si osserva che la lagrangiana non è unica, ossia, la forma data non è l'unica per cui gli estremali di Φ coincidono con le leggi della meccanica. Infatti, vanno bene tutte quelle funzioni che soddisfano le equazioni di Eulero-Lagrange.

Esempio 3.6: Un esempio banale è il moto libero, per cui (U=0). La lagrangiana vale allora (con massa unitaria)

$$\begin{split} L(\dot{\boldsymbol{r}}) &= T(\dot{\boldsymbol{r}}) = \frac{\|\dot{\boldsymbol{r}}\|^2}{2} \\ \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\nabla}_{\dot{\boldsymbol{r}}} L &= \boldsymbol{\nabla}_{\boldsymbol{r}} L = 0 \\ \Longleftrightarrow \ddot{\boldsymbol{r}} &= 0 \Longleftrightarrow \boldsymbol{r}(t) = \boldsymbol{v_0} t + \boldsymbol{r_0}. \end{split}$$

Le variabili da cui non dipende la lagrangiana sono dette *cicliche*, e ad ognuna di esse è associato un principio di conservazione (in questo caso la velocità/quantità di moto).

Esempio 3.7: Si considera la lagrangiana

$$L(\boldsymbol{r}) = \|\dot{\boldsymbol{r}}\|,$$

essa non è differenziabile in tutto \mathbb{R}^3 , dato che ha dei punti angolosi.

$$\Phi(\dot{\boldsymbol{r}}) = \int_{t_0}^{t_1} ||\dot{\boldsymbol{r}}(t)|| \, \mathrm{d}t \,.$$

Essa fornisce l'espressione della lunghezza del cammino parametrizzato r(t). Vale

$$\begin{split} \boldsymbol{\nabla}_{\boldsymbol{r}} L &= 0, \\ \boldsymbol{\nabla}_{\dot{\boldsymbol{r}}} L &= \frac{\dot{\boldsymbol{r}}}{\|\dot{\boldsymbol{r}}\|} \\ \Longrightarrow 0 &= \frac{\mathrm{d}}{\mathrm{d}t} \frac{\dot{\boldsymbol{r}}}{\|\dot{\boldsymbol{r}}\|} = \frac{\|\dot{\boldsymbol{r}}\|^2 \ddot{\boldsymbol{r}} - (\dot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}}) \dot{\boldsymbol{r}}}{\|\dot{\boldsymbol{r}}\|^3} \\ \iff \|\dot{\boldsymbol{r}}\|^2 \ddot{\boldsymbol{r}} - (\dot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}}) \dot{\boldsymbol{r}} = 0 \end{split}$$

applicando a tutti i termini il prodotto scalare per \ddot{r} ,

$$\begin{aligned} \|\dot{\boldsymbol{r}}\|^2 \|\ddot{\boldsymbol{r}}\|^2 &= (\dot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}})^2 \\ \Longrightarrow \|\dot{\boldsymbol{r}}\| \|\ddot{\boldsymbol{r}}\| &= |\dot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}}| \end{aligned}$$

e dunque \dot{r} e \ddot{r} sono collineari. Si ha quindi un cammino lineare. Nota: attenzione ai punti di non differenziabilità di L!

3.1.1. Cambio di coordinate

Si suppone di voler descrivere \mathbb{R}^d (o un suo sottoinsieme) tramite un sistema di coordinate diverso da quelle "naturali" r, denotato con q, le cui coordinate sono date dalla funzione biettiva

$$q = q(r) = (q_1(r_1, ..., r_d), ..., q_d(r_1, ..., r_d))$$

relativamente alle r. L'inversa, naturalmente, è indicata con r(q).

Si suppone di conoscere una legge oraria r(t) nelle coordinate r. Essa può essere espressa nelle coordinate q: q(r(t)). La velocità è espressa nelle q come

$$\dot{q}(t) = (\dot{q}_1(t), ..., \dot{q}_d(t))$$

con

$$\dot{q}_i(t) = \frac{\mathrm{d}}{\mathrm{d}t}q_i(r_1(t),...,r_d(t)) = \sum_{j=1}^d \frac{\partial q_i}{\partial r_j}(\boldsymbol{r}(t))\dot{r_j}(t) = \sum_{j=1}^d \left[\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{r}}(\boldsymbol{r}(t))\right]_{ij}\dot{r_j}(t)$$

dove $\left[\frac{\partial q}{\partial r}(r(t))\right]$ è la matrice Jacobiana $d\times d$, dove l'elemento (i,j)-esimo è $\frac{\partial q_i}{\partial r_j}$. Quindi

$$\dot{\boldsymbol{q}}(t) = \left[\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{r}}(\boldsymbol{r}(t)) \right] \dot{\boldsymbol{r}}(t).$$

Esercizio 3.2: dimostrare che $\forall r$,

$$\left[\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{q}}(\boldsymbol{q}(\boldsymbol{r}))\right]\!\left[\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{r}}(\boldsymbol{r}(\boldsymbol{q}))\right] = \mathbb{I}_d.$$

Vale il seguente principio:

Principio 3.1: la lagrangiana va vista come una quantità fisica dello spazio delle fasi, dipende cioè dalle posizioni e dalle velocità fisiche delle particelle e non dalle loro rappresentazioni numeriche.

Definizione 3.3: in seguito ad un cambio di coordinate $r\mapsto q$ nello spazio delle configurazioni, la funzione lagrangiana nelle q diventa

$$\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = L\bigg(\boldsymbol{r}(\boldsymbol{q}), \bigg[\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{r}}(\boldsymbol{r})\bigg]\dot{\boldsymbol{r}}, t\bigg).$$

Un corollario al principio di minima azione di Hamilton è il seguente:

Corollario 3.1: sia q un (altro) sistema di coordinate sullo spazio delle configurazioni \mathbb{R}^d , rispetto al quale la funzione lagrangiana sia \mathcal{L} come sopra definito. In queste coordinate le leggi del moto soddisfano

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0$$

Dimostrazione: Si nota che, per costruzione,

$$\int_{t_0}^{t_1} L(\boldsymbol{r}(t), \dot{\boldsymbol{r}}(t), t) dt = \int_{t_0}^{t_1} \mathcal{L}(\boldsymbol{q}(t), \dot{\boldsymbol{q}}(t), t) dt$$

si conclude con il fatto che, per il principio di minima azione di Hamilton, se l'integrale è un estremale, allora valgono le equazioni di Eulero-Lagrange per \mathcal{L} . Per definizione di estremale,

$$\Phi(\boldsymbol{r} + \boldsymbol{h}) - \Phi(\boldsymbol{r}) = o(\|\boldsymbol{h}\|_{C^1})$$

$$\tilde{\Phi}(\boldsymbol{q}+\boldsymbol{l}) - \tilde{\Phi}(\boldsymbol{q}) = o\Big(\|\boldsymbol{l}\|_{C_1}\Big)$$

ma

$$oldsymbol{q}(t) = oldsymbol{q}(oldsymbol{r}(t))$$

$$\boldsymbol{l}(t) = \boldsymbol{q}(\boldsymbol{r} + \boldsymbol{h}(t)) - \boldsymbol{q}(\boldsymbol{r})$$

e dunque
$$o_{\boldsymbol{r}} \big(\left\| \boldsymbol{h} \right\|_{C^1} \big) = o_{\boldsymbol{q}} \big(\left\| \boldsymbol{l} \right\|_{C^1} \big).$$

Esempio 3.8 (applicazione del corollario): si considera un moto in un campo centrale planare. Si descrive il problema tramite il formalismo lagrangiano nelle coordinate polari $q=(r,\varphi)$. Si esprime L=T-U nelle coordinate (r,φ) . In coordinate polari, l'energia potenziale vale u(r), mentre l'energia cinetica vale

$$T'(r,\varphi,\dot{r},\dot{\varphi}) = \frac{m}{2} \big(\dot{r}^2 + r^2 \dot{\varphi}^2\big) = T'(r,\dot{r},\dot{\varphi})$$

$$\Longrightarrow \mathcal{L}(r,\varphi,\dot{r},\dot{\varphi}) = \frac{m}{2} \big(\dot{r}^2 + r^2 \dot{\varphi}^2\big) - u(r) = \mathcal{L}(r,\dot{r},\dot{\varphi})$$

e quindi la funzione lagrangiana non dipende esplicitamente da φ .

Per trovare le leggi del moto, si impostano le equazioni di Eulero-Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{r}} - \frac{\partial \mathcal{L}}{\partial r} = 0$$

$$\Longrightarrow \frac{\mathrm{d}(m\dot{r})}{\mathrm{d}t} - mr\dot{\varphi}^2 + \frac{\mathrm{d}u(r)}{\mathrm{d}r} = 0$$

$$\iff m\ddot{r} = mr\dot{\varphi}^2 - \frac{\mathrm{d}u(r)}{\mathrm{d}r}.$$

La seconda equazione invece esprime il principio di conservazione del momento angolare:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\dot{\varphi}} - \frac{\partial\mathcal{L}}{\partial\varphi} = 0$$

$$\Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \big(m r^2 \dot{\varphi} \big) = 0.$$

Si illustra ora la terminologia generale per alcune grandezze studiate in questo capitolo:

- un oggetto del tipo $\frac{\partial L}{\partial q_i}$ è detto impulso (o momento) generalizzato;
 una variabile q_i da cui L non dipende è detta variabile ciclica. In questo caso, l'impulso generalizzato $\frac{\partial L}{\partial \dot{q}_i}$ si conserva, perché $\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_i}=\frac{\partial L}{\partial q_i}=0$.

3.1.2. Lagrangiana per un potenziale generalizzato

Si è "tradotto" in termini lagrangiani il problema

$$m\ddot{\boldsymbol{r}} = -\boldsymbol{\nabla}_{\boldsymbol{r}}U(\boldsymbol{r})$$

usando le seguenti

1.
$$\frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{r}} T = m \ddot{r}$$

$$\nabla_{m}T = \mathbf{0}$$

3.
$$\nabla_{\dot{r}}U = 0 \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\nabla_{\dot{r}}U = 0$$

4.
$$\nabla_{\mathbf{r}}U = \mathbf{F}(\mathbf{r})$$

Da cui

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\nabla}_{\dot{\boldsymbol{r}}} - \boldsymbol{\nabla}_{\boldsymbol{r}}\right)T = m\ddot{\boldsymbol{r}}$$

e

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\nabla}_{\dot{\boldsymbol{r}}}-\boldsymbol{\nabla}_{\boldsymbol{r}}\right)\boldsymbol{U}=\boldsymbol{F}$$

se
$$L = T - U$$
.

$$\Longrightarrow \left(rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{
abla}_{\dot{r}}-oldsymbol{
abla}_{r}
ight)L=\mathbf{0}$$

Ma se ora si avesse un caso di forza dipendente anche da velocità e tempo ${m F}({m r},\dot{{m r}},t)$ tale per cui esiste una funzione $U({m r},\dot{{m r}},t)$ con

$$\nabla_{\dot{r}}U(r,\dot{r},t) - \nabla_{r}U(r,\dot{r},t) = F(r,\dot{r},t),$$

allora, ugualmente a come appena mostrato, si risale alle equazioni di Eulero-Lagrange, per L=T-U. In questi casi, $U(\mathbf{r}, \mathbf{v}, t)$ è detto potenziale generalizzato.

Un esempio notevole di integrale generalizzato è dato dal campo elettromagnetico.

Esempio 3.9: la forza di Lorentz generalizzata è infatti, con ${m E}={m E}({m r},t),$ ${m B}={m B}({m r},t),$

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}).$$

Si sa che esistono due funzioni $\Phi(\mathbf{r},t)$ e $\mathbf{A}(\mathbf{r},t)$ dette, rispettivamente, potenziale elettrico e potenziale magnetico, tali per cui

$$oldsymbol{E} = -oldsymbol{
abla}_{oldsymbol{r}} \Phi - rac{\partial oldsymbol{A}}{\partial t}$$

$$B = \nabla_{r} \times A$$
.

In questo caso, si può trovare un potenziale generalizzato, mostrando che

$$U(\mathbf{r}, \dot{\mathbf{r}}, t) = q(\Phi(\mathbf{r}, t) - \mathbf{A}(\mathbf{r}, t) \cdot \dot{\mathbf{r}})$$

è un potenziale generalizzato, cioè vale la relazione presentata in precedenza:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial U}{\partial v_x} - \frac{\partial U}{\partial x} = F_x$$

con

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial U}{\partial v_x} = -q\frac{\mathrm{d}A_x}{\mathrm{d}t} = -q\left(\frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_z}{\partial z}\dot{z} + \frac{\partial A_x}{\partial t}\right)$$

e

$$\begin{split} \frac{\partial U}{\partial x} &= q \left(\frac{\partial \Phi}{\partial x} - \frac{\partial A_x}{\partial x} v_x - \frac{\partial A_y}{\partial x} v_y - \frac{\partial A_z}{\partial x} v_z \right) \\ \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial U}{\partial v_x} - \frac{\partial U}{\partial x} &= q \left(v_y \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) + v_z \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z} \right) - \frac{\partial \Phi}{\partial x} - \frac{\partial A_x}{\partial t} \right) = \\ &= q \left(\left(\boldsymbol{v} \times \boldsymbol{B} \right)_x + E_x \right) = F_x \end{split}$$

Con un procedimento analogo per le altre componenti, si trova proprio l'espressione vettoriale della forza di Lorentz generalizzata.

4. Cenni di geometria differenziale

Si considera $M \subseteq \mathbb{R}^N$ (che può essere ad esempio di dimensione inferiore).

Definizione 4.1: dato $A \subseteq M$ si dice aperto/chiuso in M (tecnicamente si dice "nella topologia di M") se si può scrivere come

$$A = B \cap M$$

con B aperto/chiuso di \mathbb{R}^N .

Si immagina ora che M abbia dimensione $d \leq N$ (si noti che non si è ancora data una definizione formale di dimensione).

Definizione 4.2: una *carta* per M è un omeomorfismo (funzione continua invertibile con inversa continua) $\varphi: U \to V$ fra un aperto di \mathbb{R}^d e un aperto nella topologia di M.

L'argomento di φ è detto coordinata locale per M.

Una carta spesso si indica (U, φ) , mettendo in evidenza anche il suo dominio.

Definizione 4.3: due carte $\varphi_i:U_i\to V_i$, con U_i e V_i rispettivamente aperti di \mathbb{R}^d e M, sono dette compatibili se

$$V = V_1 \cap V_2 \neq \emptyset$$

2.
$$\varphi_2^{-1} \circ \varphi_{1 \mid \varphi_1^{-1}(V)} : \varphi_1^{-1}(V) \to \varphi_2^{-1}(V)$$

è un diffeomorfismo (funzione differenziabile invertibile con inversa differenziabile).

Una funzione del tipo $\varphi_2^{-1} \circ \varphi_1 \mid_{\varphi_1^{-1}(V)}$ è un cambio di coordinate. Se due carte sono compatibili, si deve necessariamente avere che U_1 e U_2 sono sottoinsiemi dello stesso spazio \mathbb{R}^d , dato che il cambio di coordinate è una funzione invertibile.

Definizione 4.4: un *atlante* per M è una collezione di carte $\{(U_{\alpha}, \varphi_{\alpha})\}$, che devono essere a due a due compatibili se $V_{\alpha} \cap V_{\beta} \neq \emptyset$, tali che

$$\bigcup_{\alpha} \varphi(U_{\alpha}) = \bigcup_{\alpha} V_{\alpha} = M.$$

Similmente a un atlante geografico, un atlante in geometria è un insieme di carte che mappa completamente M.

Definizione 4.5: una varietà differenziabile (immersa in \mathbb{R}^n) è un $M \subseteq \mathbb{R}^N$ che possiede un atlante.

Data una circonferenza, non è possibile trovare un unica carta (un insieme aperto e un omeomorfismo) che mappino l'intera sfera: si potrebbe parametrizzare una circonferenza unitaria S' con

$$r:[0,2\pi)\to S'$$

$$\varphi \mapsto (\cos \varphi, \sin \varphi)$$

Questa r non è però un omeomorfismo, in quanto l'inversa non è continua in (1,0), oltre al fatto che il dominio non è un aperto di \mathbb{R} .

Analogamente, anche una sfera non può essere mappata con un'unica carta, nonostante potrebbe sembrare che lo si possa fare mediante i due angoli delle coordinate sferiche. Prendendo

$$r(\varphi, \theta) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$$

con $(\varphi,\theta)\in(0,2\pi)\times(0,\pi)$, si riesce a mappare quasi tutta la sfera, escludendo il meridiano corrispondente a $\varphi=0$. Tuttavia, è possibile utilizzare due carte per mappare interamente una sfera, come si può vedere tramite due proiezioni stereografiche: un piano π_1 è tangente al polo nord della sfera. Si può far vedere che esso può mappare tutti i punti eccetto il polo sud. Considerando allora un piano π_2 , esso mappa ogni punto eccetto il polo nord.

Si noti che non si è mai usato, nelle precedenti definizioni, che M è sottoinsieme di \mathbb{R}^N . La geometria differenziale infatti ha valenza molto astratta, purché le definizioni valgano su un sottoinsieme dotato di una topologia (abbia definizioni di aperti e chiusi).

Si considera un rettangolo in \mathbb{R}^2 in cui si impone che i punti sul lato superiore coincidono con quelli sul lato inferiore, e analogamente i punti sul lato sinistro coincidono con i punti sul lato destro. Questo insieme può essere visualizzato in \mathbb{R}^3 come un toro. Si vuole sapere se si tratta di una varietà differenziale. Si deve quindi trovare un atlante, ossia una collezione di carte che mappano tutta la superficie del rettangolo.

4.1. Vettori e spazi tangenti

Senza definire formalmente il significato di vettore tangente ad una varietà differenziale M, si utilizzerà l'idea di vettore tangente, che è intuitiva per varietà immerse in \mathbb{R}^N .

Definizione 4.6: lo spazio tangente a $M \subseteq \mathbb{R}^N$ in r è definito come

$$T_{m{r}}M = \{m{v} \in \mathbb{R}^N : m{v} \ \mbox{è tangente a} \ M \ \mbox{in} \ m{r}\}$$

Nelle applicazioni pratiche, è importante saper indicizzare i vettori di uno spazio tangente, al variare del punto di tangenza $r \in M$, cioè trovare una funzione biunivoca fra \mathbb{R}^d e un determinato spazio tangente, o fra un sottinsieme di $\mathbb{R}^d \times \mathbb{R}^d$ e una porzione dell'insieme di tutti i vettori tangenti in tutti i punti di M. Si può effettuare tale indicizzazione mediante le carte di M.

Si suppone, per adesso, che ogni carta $\varphi:U\subseteq\mathbb{R}^d\to V\subseteq M\subseteq\mathbb{R}^N$ sia differenziabile. Inoltre, si suppone che il differenziale $D\varphi_q$, che è un'applicazione lineare da \mathbb{R}^d a \mathbb{R}^N , abbia rango massimo, uguale a d (perché $d\le N$). Quindi $D\varphi_q$ è biettiva. Intuitivamente, si può dire che l'immagine del differenziale della carta è lo spazio tangente. Allora i vettori dello spazio tangente $T_{\varphi(q)}M$ sono tutti e soli i vettori del tipo $D\varphi_q(u)$, con $u\in\mathbb{R}^d$, dato che il differenziale è un'applicazione lineare biettiva. Quindi il differenziale indicizza tutti gli elementi di T_rM . Questa relazione, in fisica si scrive spesso come

$$\mathrm{d} m{r} = \left[rac{\partial m{r}}{\partial m{q}}(m{q})
ight] \mathrm{d} m{q} \, .$$

Se si usa un'altra carta $\varphi':U'\to V'$, con $r\in V'$, la mappatura data sopra cambia e diventa

$$D\varphi'_{\boldsymbol{a}'}(\boldsymbol{u}') = \boldsymbol{v}$$

$$\operatorname{con} \boldsymbol{q}' = \left(\varphi'\right)^{-1}(\boldsymbol{r}).$$

Nota: se u, u' sono due maniere diverse di indicizzare lo stesso vettore $v \in T_rM$ (date rispettivamente dalle carte $\varphi \in \varphi'$) allora valgono

$$\begin{split} \boldsymbol{q}' &= \left(\varphi'\right)^{-1}(\boldsymbol{r}) = \left(\left(\varphi'\right)^{-1} \circ \varphi\right)(\boldsymbol{q}) \\ \boldsymbol{u}' &= D\left(\left(\varphi'\right)^{-1} \circ \varphi\right)_{\boldsymbol{q}}(\boldsymbol{u}). \end{split}$$

In meccanica lagrangiana è utile lavorare con l'insieme di tutti i vettori tangenti a M, in un qualunque suo punto. Questo si chiama fibrato tangente di M.

Definizione 4.7: si definisce fibrato tangente

$$TM = \left\{ (\boldsymbol{r}, \boldsymbol{v}) \in \mathbb{R}^N \times \mathbb{R}^N : \boldsymbol{r} \in M, \boldsymbol{v} \in T_{\boldsymbol{r}}M \right\}$$

Proposizione 4.1: il fibrato tangente di una varietà differenziale M con atlante $\{(U_\alpha, \varphi_\alpha)\}$ di dimensione d è una varietà differenziale con atlante $\{(\tilde{U}_\alpha, \tilde{\varphi}_\alpha)\}$, dove

•
$$\tilde{U}_{\alpha} = U_{\alpha} \times \mathbb{R}^d$$

$$\begin{array}{l} {}^{\bullet} \ \ \tilde{\varphi}_{\alpha} : \tilde{U}_{\alpha} \rightarrow \tilde{V}_{\alpha} = \big\{ (\boldsymbol{r}, \boldsymbol{v}) \in \mathbb{R}^{N} \times \mathbb{R}^{N} : \boldsymbol{r} \in V_{\alpha}, \boldsymbol{v} \in T_{\boldsymbol{r}}M \big\} \\ (\boldsymbol{q}, \boldsymbol{u}) \mapsto (\varphi_{\alpha}(\boldsymbol{q}), (D\varphi_{\alpha})(\boldsymbol{u})) \end{array}$$

Evidentemente, al variare di \boldsymbol{q} e \boldsymbol{u} , $\tilde{\varphi}_{\alpha}(\boldsymbol{q},\boldsymbol{u}) = \left(\varphi_{\alpha}(\boldsymbol{q}), \left(D\varphi_{\alpha}\right)_{\boldsymbol{q}}(\boldsymbol{u})\right)$ indicizza tutte le coppie date da un punto \boldsymbol{r} su M e il vettore tangente a M in \boldsymbol{r} , per $\boldsymbol{r} \in V_{\alpha}$.

4.2. Differenziale di una funzione fra varietà

Si considerano due varietà differenziabili $M\subseteq\mathbb{R}^m$, $N\subseteq\mathbb{R}^n$ di dimensioni rispettivamente d ed e. Si definisce una mappa $f:M\to N$. Come si può definire la differenziabilità di f? Si vuole cioè definire un'applicazione lineare

$$Df_{\mathbf{r}}: T_{\mathbf{r}}M \to T_{f(\mathbf{r})}M.$$

Più generalmente, $Df:TM \to TN$.

Definizione 4.8: f come sopra, si dice differenziabile se, per ogni carta $(U_{\alpha}, \varphi_{\alpha})$ di $M, f \circ \varphi_{\alpha}$ è una funzione differenziabile da $U_{\alpha} \subseteq \mathbb{R}^d$ a \mathbb{R}^n .

Definizione 4.9: il differenziale di f come sopra è la funzione

$$\begin{split} Df: TM \to TN \\ (\boldsymbol{r}, \boldsymbol{v}) \mapsto \Big(f(\boldsymbol{r}), D(f \circ \varphi_{\alpha})_{\varphi_{\alpha}^{-1}(\boldsymbol{r})}(\boldsymbol{u}) \Big) \end{split}$$

dove ${\pmb u}$ è l'unico vettore $(\varphi_{\alpha}$ è biettiva) di ${\mathbb R}^d$ tale che $D(f\circ \varphi_{\alpha})_{\varphi_{\alpha}^{-1}({\pmb r})}({\pmb u})={\pmb v}.$

5. Meccanica lagrangiana per sistemi vincolati

Si presentano alcuni esempi di sistemi meccanici vincolati.

Esempio 5.1: un anello vincolato ad un filo di ferro fisso in \mathbb{R}^3 : si tratta di un sistema a un grado di libertà.

Esempio 5.2: due particelle in \mathbb{R}^3 collegate da una sbarra inestensibile (considerata priva di massa).

Esempio 5.3: un corpo rigido, vale a dire un sistema di particelle in cui la distanza tra ogni particella è fissata.

Esempio 5.4: un disco verticale che rotola senza strisciare lungo una traiettoria rettilinea.

Esempio 5.5: una sfera che rotola senza strisciare su un piano.

Esempio 5.6: una o più particelle vincolate a muoversi dentro un contenitore.

Si dà una classificazione dei vincoli. Essi possono essere dati da equazioni o disequazioni nello *spazio di fase esteso*, ossia lo spazio delle $(r_1,...,r_n,v_1,...,v_n,t)$. Considerando l'Esempio 5.1, il filo di ferro può cambiare posizione nel tempo, e dunque si ha anche una dipendenza diretta dal tempo.

I vincoli dati da equazioni sono detti *bilateri*, mentre quelli dati da disequazioni sono detti *unilateri*. Nell'Esempio 5.6, se $r_i = (x_i, y_i), x_i \in [0, a]$ e $y_i \in [0, b]$, con due particelle si hanno otto vincoli unilateri. Gli altri esempi invece hanno soltanto vincoli bilateri.

Nell'Esempio 5.4 e nell'Esempio 5.5 si usa il principio generale che la velocità di una particella nel momento in cui si trova nel punto di contatto con il corpo esterno contro cui avviene il rotolamento è nulla.

I vincoli sono detti *olonomi* se sono bilateri e dipendono solo da posizione e tempo, *anolonomi* negli altri casi. Tra gli olonomi, si dicono *reonomi* quelli esplicitamente dipendenti dal tempo, e *scleronomi* gli altri.

unilateri			disequazioni
	anolonomi		equazioni che non dipendono solo da posizione e tempo
bilateri	olonomi	reonomi	equazioni che dipendono da posizione e tempo
		scleronomi	equazioni che dipendono solo dalla posizione

Tabella 1: Schema riassuntivo della classificazione dei vincoli meccanici.

L'Esempio 5.1 nel caso in cui il filo è fisso è un vincolo scleronomo, mentre se si muovesse sarebbe reonomo. I primi tre esempi presentati hanno vincoli olonomi; l'Esempio 5.4 che può sembrare avere un vincolo anolonomo, ha in realtà anch'esso un vincolo olonomo. Infine, l'Esempio 5.5, ha un vincolo anolonomo.

Naturalmente, possono coesistere vincoli olonomi e anolonomi, così come unilateri e bilateri.

Si assumerà sempre che la totalità dei vincoli olonomi si possa riassumere dicendo che il vettore globale delle configurazioni \underline{r} appartenga a una varietà differenziabile dello spazio delle configurazioni, che può dipendere dal tempo. Si assumerà inoltre che le carte di questa varietà, che possono anch'esse dipendere dal tempo, siano "sufficientemente lisce", ossia che siano differenziabili n volte. Nel linguaggio fisico si dirà che, almeno localmente, tutte le possibili configurazioni sono espresse da

$$\underline{\boldsymbol{r}} = \underline{\boldsymbol{r}}(q_1,...,q_d,t) = \underline{\boldsymbol{r}}_t(\boldsymbol{q})$$

dove q è un vettore libero in \mathbb{R}^d , può variare in un aperto $U\subseteq\mathbb{R}^d$, e le $\underline{r}_t:U\to V\subseteq M_t$ sono funzioni biettive e sufficientemente lisce. Per r fuori da V si applicheranno altre funzioni \underline{r}_t :

$$r=\underline{\boldsymbol{r}}_t(\boldsymbol{q}'),\boldsymbol{q}'\in U',\boldsymbol{r}\in V'.$$

Le q sono spesso dette coordinate generalizzate.

Esempio 5.7: si considera un punto vincolato a muoversi su un filo di ferro sul piano (x, z), riprendendo l'Esempio 5.1, descritto dall'equazione

$$z = 10 + \sin x, x \in [0, 6\pi].$$

Si può usare la mappatura $r(q)=(q,0,10+\sin q)$, con $q\in(0,6\pi)$. Si vede che allora il vincolo è scleronomo.

Esempio 5.8: considerando sempre la configurazione dell'Esempio 5.1, si considera un filo di ferro che si muove verso l'alto di moto uniformemente accelerato:

$$z = ax + \frac{b}{2}t^2,$$

allora in questo caso si pone

$$m{r}(q) = \left(q, 0, aq + rac{b}{2}t^2
ight), q \in \mathbb{R}.$$

Un punto su questa retta allora risente di una forza tangente al filo di modulo $b \sin \theta$, dove θ è l'angolo che il filo forma con l'asse x.

Esempio 5.9: riprendendo l'Esempio 5.4, fissando gli assi cartesiani (x,y), se il disco ha raggio a, il centro si trova in ogni istante alla posizione (x,a). Per determinare anche la rotazione del disco in ogni istante, si può misurare l'angolo φ formato da un certo raggio con la verticale. La velocità radiale (diretta lungo l'asse x) della particella del disco a contatto con la superficie di strisciamento è $-a\dot{\varphi}$. Il vincolo è pertanto dato dall'equazione, indicando con \dot{x} la velocità del centro del disco,

$$\dot{x} = -a\dot{\varphi}.$$

Integrando, con $x(0) = x_0$ e $\varphi(0) = \varphi_0$,

$$x - x_0 = a(\varphi - \varphi_0).$$

Ecco che il vincolo è allora olonomo, con un grado di libertà. In particolare, questo tipo di vincolo è detto *vincolo olonomo integrabile*.

5.1. Principio di D'Alembert

D'ora in avanti, non si utilizzerà più la notazione \underline{r} e $\underline{\underline{M}}$ per indicare le posizioni e le masse dei sistemi di particelle, ma si utilizzerà $r \in \mathbb{R}^n$ e $m \in \mathbb{R}$. Si tratta in realtà di un cambio di notazione, perché i calcoli sono analoghi.

I vincoli sono sempre dovuti a forze. Si può esprimere il secondo principio della meccanica distinguendo tra forze attive F e reazioni vincolari R:

$$m\ddot{\mathbf{r}} = \mathbf{F} + \mathbf{R}.$$

Si vuole trovare F senza conoscere necessariamente R.

Definizione 5.1: uno spostamento virtuale $\delta r = (\delta r_1, ..., \delta r_2)$ è un "cambiamento infinitesimo" della configurazione r del sistema, compatibile con i vincoli del sistema ad un dato tempo t.

Principio 5.1 (di D'Alembert): la reazione vincolare R compie lavoro nullo sugli spostamenti virtuali:

$$\mathbf{R} \cdot \delta \mathbf{r} = 0.$$

Come conseguenza del principio di D'Alembert, $\forall \delta r$,

$$m\ddot{\mathbf{r}} \cdot \delta \mathbf{r} = \mathbf{F} \cdot \delta \mathbf{r} \,. \tag{4}$$

Vale che, indicando tra parentesi quadre la matrice Jacobiana,

$$\delta r = \left[\frac{\mathrm{d}r}{\mathrm{d}q}(q) \right] \delta q. \tag{5}$$

Allora

$$m\ddot{\mathbf{r}} \cdot \delta \mathbf{r} = m\ddot{\mathbf{r}} \cdot \left[\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{q}} \delta \mathbf{q} \right] = m \left[\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{q}} \right]^{\mathsf{T}} \ddot{\mathbf{r}} \cdot \delta \mathbf{q} \,.$$
 (6)

Ma, si ha che

$$\[\left[\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\boldsymbol{q}} \right]^{\mathsf{T}} \ddot{\boldsymbol{r}} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\left[\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\boldsymbol{q}} \right]^{\mathsf{T}} \dot{\boldsymbol{r}} \right) - \left(\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\boldsymbol{q}} \right]^{\mathsf{T}} \right) \dot{\boldsymbol{r}}. \tag{7}$$

Se le r(q,t) sono funzioni lisce (regolari), allora

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{q}} \right] = \frac{\mathrm{d}\dot{\mathbf{r}}}{\mathrm{d}\mathbf{q}},\tag{8}$$

infatti,

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\mathrm{d}r_i}{\mathrm{d}q_j} = \sum_{k=1}^d \frac{\partial^2 r_i}{\partial q_k \partial q_j} \dot{q_k} + \frac{\partial^2 r_i}{\partial t \partial q_j} = \sum_{k=1}^d \frac{\partial^2 r_i}{\partial q_j \partial q_k} \dot{q_k} + \frac{\partial^2 r_i}{\partial q_j \partial t} = \frac{\partial}{\partial q_j} \left(\frac{\mathrm{d}}{\mathrm{d}t} r_i\right). \tag{9}$$

Per definizione, vale anche che

$$\left[\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{q}}\right] = \left[\frac{\mathrm{d}\dot{\mathbf{r}}}{\mathrm{d}\dot{\mathbf{q}}}\right].\tag{10}$$

Infatti la trasformazione $(\boldsymbol{q},\dot{\boldsymbol{q}},t)\mapsto\dot{\boldsymbol{r}}$ è definita in maniera che valga

$$\dot{\mathbf{r}} = \left[\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{q}}\right]\dot{\mathbf{q}} + \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}.\tag{11}$$

Utilizzando le (7), (10) in (6),

$$m\ddot{\boldsymbol{r}} \cdot \delta \boldsymbol{r} = m \left(\frac{\mathrm{d}}{\mathrm{d}t} \left(\left[\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\boldsymbol{q}} \right]^{\mathsf{T}} \dot{\boldsymbol{r}} \right) - \left(\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\boldsymbol{q}} \right]^{\mathsf{T}} \right) \dot{\boldsymbol{r}} \right) \cdot \delta \boldsymbol{q} \,. \tag{12}$$

Si esprime ora l'energia cinetica nelle coordinate (q, \dot{q}, t) , ossia $T(q, \dot{q}, t) = T(\dot{r}(q, \dot{q}, t))$,

$$\begin{split} \frac{\mathrm{d}T}{\mathrm{d}\dot{q}_{j}} &= \sum_{i=1}^{n} \frac{\mathrm{d}T}{\mathrm{d}\dot{r}_{i}} \frac{\mathrm{d}\dot{r}_{i}}{\mathrm{d}\dot{q}_{j}} = m \sum_{i=1}^{n} \dot{r}_{i} \frac{\mathrm{d}\dot{r}_{i}}{\mathrm{d}\dot{q}_{j}} = m \left[\frac{\mathrm{d}\dot{\boldsymbol{r}}}{\mathrm{d}\dot{\boldsymbol{q}}} \right]^{\mathsf{T}} \dot{\boldsymbol{r}} \\ &\Longrightarrow \boldsymbol{\nabla}_{\dot{\boldsymbol{q}}} T = m \left[\frac{\mathrm{d}\dot{\boldsymbol{r}}}{\mathrm{d}\dot{\boldsymbol{q}}} \right]^{\mathsf{T}} \dot{\boldsymbol{r}}. \end{split}$$

Analogamente, sostituendo $\dot{q_j}$ con q_j , si ottiene

$$\nabla_{\boldsymbol{q}} T = m \left[\frac{\mathrm{d} \dot{\boldsymbol{r}}}{\mathrm{d} \boldsymbol{q}} \right]^{\mathsf{T}} \dot{\boldsymbol{r}}.$$

La (12) diventa quindi

$$m\ddot{\pmb{r}}\cdot\delta\pmb{r}=\left(rac{\mathrm{d}}{\mathrm{d}t}ig(m{
abla}_{\dot{m{q}}}Tig)-m{
abla}_{m{q}}T
ight)\cdot\delta\pmb{q}\,.$$

Si introduce la forza generalizzata $G(q, \dot{q}, t)$

$$\boldsymbol{G}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = \left\lceil \frac{\mathrm{d}\boldsymbol{q}}{\mathrm{d}\boldsymbol{a}} \right\rceil^\mathsf{T} \boldsymbol{F}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t).$$

Dall'ultima espressione trovata, si ha che

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}(oldsymbol{
abla}_{oldsymbol{q}}T) - oldsymbol{
abla}_{oldsymbol{q}}T
ight) \cdot \delta oldsymbol{q} = oldsymbol{F} \cdot \delta oldsymbol{r} = oldsymbol{F}igg[rac{\mathrm{d}oldsymbol{r}}{\mathrm{d}oldsymbol{q}}igg]^{\mathsf{T}}oldsymbol{F} \cdot \delta oldsymbol{q} = oldsymbol{G} \cdot oldsymbol{q}.$$

Se si hanno soltanto vincoli olonomi, allora i δq sono vettori liberi, e dunque in quest'ultima equazione si può usare qualsiasi $\delta q \in \mathbb{R}^d$:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\nabla_{\dot{q}}T) - \nabla_{q}T = G.$$

Se, inoltre, ${m F}$ è un campo di forze conservativo, ${m F}({m r}) = -{m \nabla}_{m r} U({m r},t)$, allora si può esprimere l'energia come $U({m q},t) = U({m r}({m q},t),t)$ e osservare che

$$\mathbf{\nabla}_{m{q}} U = \left[rac{\mathrm{d} m{r}}{\mathrm{d} m{q}}
ight]^{\mathsf{T}} \mathbf{\nabla}_{m{r}} U = - \left[rac{\mathrm{d} m{r}}{\mathrm{d} m{q}}
ight] m{F} = - m{G}.$$

Si ha llora che, per L = T - U,

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\nabla}_{\dot{q}}L-\boldsymbol{\nabla}_{q}L=0.$$