HW 6

Samuel Lindskog

March 27, 2025

Proposition 0.1. If B is the set of upper bounds of a set R, and Y is the set of convergent points of all convergent sequences in B, B = Y

Proof: Suppose $(b_n)_{n=0}^{\infty}$ is a sequence in B, the set of all upper bounds of R, and let $(b_n)_{n=0}^{\infty}$ converge to $L \in \mathbb{R}$. Then for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that n > N implies $|a_n - L| < \epsilon$. If there exists $r \in R$ such that r > L, then r = L + a for some $a \in \mathbb{R}^+$. But there exists $M \in \mathbb{N}$ such that n > M implies $|b_n - L| < a/2$, so

$$L - a/2 < b_n < L + a/2 < L + a < c$$

 $b_n < c$,

a contradiction. Therefore $Y \subseteq B$.

If $b \in B$, the sequence $(b_n = b)_{n=0}^{\infty}$ is ϵ -close to b for all $\epsilon > 0$, and thus converges to b. Thus $B \subseteq Y$.

Problem 1

(a) If a nonempty set $R \subseteq \mathbb{R}$ has an upper bound then it has a least upper bound (supremum).

Proof: Let R be a nonempty set with an upper bound. Let B be the set of all upper bounds of R. Suppose to the contrary that for all decreasing sequences $(b_n)_{n=0}^{\infty}$ in B,

$$\exists b \in B, \, \forall N \in \mathbb{N}, \, \exists n \in \mathbb{N} (n > N \land b_n > b). \tag{1}$$

The constant sequence $(b_n = b)_{n=0}^{\infty}$ in B contradicts claim (1). Thus there exists a decreasing sequence $(b'_n)_{n=1}^{\infty}$ in B such that

$$\forall b \in B, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n > N \Rightarrow b'_n \le b). \tag{2}$$

It follows from proposition 6.3.8 (Tao) that any decreasing sequence in \mathbb{R} bounded below converges. Because for all $b \in B$ and all $r \in R$, b > r, B is bounded below. Thus $(b'_n)_{n=0}^{\infty}$ converges (by proposition 0.1) to some $l \in B$. Because the sequence is decreasing, for all $n \in \mathbb{N}$, $b'_n \geq l$. It then follows from equation (2) that for all $b \in B$, $l \leq b$. Thus $\sup R$ exists.

(b) If a nonempty subset of \mathbb{R} has an infimum, then it is bounded.

Proof: Let $R \subseteq \mathbb{R}$, and $l = \inf R$. Then R is bounded below by l, i.e.

$$\forall r \in R, r > l.$$

If there exists $l' \in \mathbb{R}$ with $l' \geq 0$ such that $\forall r \in R, |r| \leq l'$, then

But r can be arbitrarily large, so this is not necessarily true. Therefore the statement is false. A correct statement could be "If a nonempty set of \mathbb{R} has an infimum and a supremum, then it is bounded."

- (c) Every nonempty bounded subset of \mathbb{R} has a maximum and a minimum.
 - Proof: If R = [0,1), then for all $\epsilon > 0$ there exists $r \in R$ such that $|1-r| < \epsilon$, and $1 \notin R$. Because for all $r \in R$ we have r < 1, |1-r| = 1 r > 0. Therefore for any r, there exists a = r + (1-r)/2 = r/2 + 1/2 < 1, so a > r and $a \in \mathbb{R}$. |r| < 2 for all $r \in R$, so R is bounded. Therefore, the bounded set R has no maximum and the statement is false.
- (d) Let S be a nonempty subset of \mathbb{R} . If $m = \inf S$ and m' < m then m' is a lower bound of S.

Proof: Because $m = \inf S$, m is a lower bound for S, and thus for all $s \in S$, $s \ge m$. Because m' < m, it follows from elementary properties of the ordering of the reals that for all $s \in S$, $s \ge m > m'$, so the statement is true.

Problem 2

- (a) The interval I = (0, 4] has supremum 4, and infimum 0. For any upper (lower) bound smaller (greater) than 4 (0), there exists $i \in I$ such that i is greater (lesser) than that upper (lower) bound. The maximum is 4, and no minimum, because supremum S is an element of S, but infimum S is not. The set is bounded because it is both bounded above and below by its supremum and infimum
- (b) The set $A = \{1/n \mid n > 0, n \in \mathbb{N}\}$ has supremum 1, and an infimum 0. The supremum of A is 1 because 1 is the maximum value of A. As n increases, 1/n is strictly larger than zero and becomes arbitrarily close to zero. Thus for any number a greater than 0, there exists n such that 1/n < a, so zero is the infimum. $0 \notin A$, so the set has no minimum. The set is bounded because it is both bounded above and below by its supremum and infimum.