

HOCHSCHULE MERSEBURG & ALBERDINGK BOLEY LEUNA GMBH

FACHBEREICH INGENIEUR- UND NATURWISSENSCHAFTEN

Bachelorarbeit

ZUR ERLANGUNG DES AKADEMISCHEN GRADES BACHELOR OF ENGINEERING (B. ENG.)

Thema:

Technische Planung der dosierten Förderung eines hochviskosen Verdickungsmittels

eingereicht von:

Roman-Luca Zank

Betreuer: Prof. Dr. nat. techn. Ulf Schubert

Stefan Münch, B.Eng.

Kontakt: romanzank@mail.de

Inhaltsverzeichnis

1	Einl	eitung
2		setzung und Abgrenzung der Aufgabenstellung
	2.1	3 4 4 4 4 6 4 4 4 4 4 4 4 4 6
	2.2	Abgrenzung der Aufgabenstellung
3	The	eoretische Grundlagen
	3.1	
	3.2	Dosierung von Flüssigkeiten
		3.2.1 Charakterisierung des Dosierstroms
		3.2.2 Dosierpumpen
		3.2.3 Ermittlung des Dosierstroms
	3.3	Chemische Produktion und Prozesssicherheit
		3.3.1 Produktionsweisen in der Chemie
		3.3.2 Industrielle Gebinde für Flüssigkeiten
		3.3.3 Sicherheit von Chemieanlagen
	3.4	Allgemein heuristische Entscheidungsverfahren
	3.5	Technische Planung
		3.5.1 R&I- Fließbild
		3.5.2 Rohrleitungsplanung
		3.5.3 Signalverarbeitungsplanung
	3.6	Stand der Technik zur Dosierung hochviskoser Verdickungsmittel
4	Mat	terial und Methoden
-	4.1	Ist-Analyse
		4.1.1 Åktuelles Dosierverfahren
		4.1.2 Produktionsweise
	4.2	Rechnerische Auslegung
		4.2.1 Berechnung des Druckverlustes für verschiedene Leitungs-
		durchmesser
		4.2.2 Rohrleitungsklassifizierung nach PAS 1057
	4.3	Fachgespräche und Angebotsanfragen
	4.4	Experimentelle Untersuchungen
		4.4.1 Ermittlung der Viskosität nach DIN EN ISO 2555
		4.4.2 Erwärmungsverhalten
		4.4.3 Verdünnungsverhalten
		4.4.4 Pumpversuche
	4.5	Nutzwertanalyse
		4.5.1 Erarbeitung von Lösungsvarianten
		4.5.2 Festlegen und gewichten von Entscheidungskriterien
		4.5.3 Bewertung der Lösungsvarianten
		4.5.4 Gesamtbeurteilung der Varianten
	4.6	Computerunterstützes Zeichnen von Plänen
		4.6.1 Software: AutoCAD
	4.7	Gefährdungsbeurteilung (HAZOP-Verfahren)

5	Erge	ebnisse	19
	5.1	Ist-Zustand der Verdickungsmitteldosierung	20
		5.1.1 Aktuelles Dosierverfahren	20
		5.1.2 Produktionsweise	20
	5.2	Eigenschaften des Verdickungsmittels	20
		5.2.1 Viskositätsmessungen	20
		5.2.2 Verdünnungsverhalten	20
		5.2.3 Erwärmungsverhalten	20
	5.3	Entscheidung für Gebindetyp	20
		5.3.1 Angebotsanfrage	20
		5.3.2 Entscheidungsverfahren	20
	5.4	Entscheidung für Pumpentyps und Leitungsdurchmessers	20
		5.4.1 Berechnung des Druckverlustes	20
		5.4.2 Literaturarbeit	20
		5.4.3 Fachgespräche und Angebotsanfrage	21
		5.4.4 Pumpversuche	21
		5.4.5 Entscheidungsverfahren	21
	5.5	Entscheidung für Messverfahren	21
		5.5.1 Literaturarbeit	21
		5.5.2 Fachgespräche und Angebotsanfrage	21
		5.5.3 Entscheidungsverfahren	21
	5.6	Technische Planung für Verdickungsmitteldosierung	21
		5.6.1 R&I- Fließbild der Verdickerdosierung	21
		5.6.2 Theoretische Rohrleitungsplanung der Verdickerdosierung	21
		5.6.3 Signalverarbeitungsplanung der Verdickerdosierung	21
	5.7	Gefährdungsbeurteilung der geplanten Verdickmitteldosierung	21
6	Disk	kussion	21
7	Zus	ammenfassung und Schlussfolgerungen	21
Lit	teratı	urverzeichnis	23
Δŀ	hildı	ıngsverzeichnis	24
Ta	belle	nverzeichnis	24

Danksagung

Kurzfassung

Abstract

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Seminararbeit selbstständig und nur unter Verwendung der von mir angegebenen Quellen und Hilfsmittel verfasst zuhaben. Sowohl inhaltlich als auch wörtlich entnommene Inhalte wurden als solche kenntlich gemacht. Die Arbeit hat in dieser oder vergleichbarer Form noch keinem anderem Prüfungsgremium vorgelegen.

Merseburg.	den 04.02.2022	Unterschrift:

Sperrvermerk

Die vorliegende Arbeit beinhaltet interne vertrauliche Informationen der Alberdingk Boley Leuna Gmbh. Die Weitergabe des Inhalts der Arbeit im Gesamten oder in Teilen sowie das Anfertigen von Kopien oder Abschriften – auch in digitaler Form - sind ab dem Abgabedatum der Arbeit untersagt. Ausnahmen bedürfen der schriftlichen Genehmigung der Alberdingk Boley Leuna Gmbh. Die Einsichtnahme ist nur dem Verfasser und dem Betreuer zu erlaubt.

Merseburg, den 04.02.2022

1 Einleitung

In der produzierenden Chemie sind eine Reihe von Verfahrenschschritten notwendig um das gewünschte Zielprodukt herzustellen. Für die Produktion von Polymerdispersionen der Farben-, Lack- und Beschichtungsindustrie ist das Fördern von Basischemikalien wie organischen und anorganischen Säuren und Basen, Lösemitteln, Initiatoren, Emulgatoren und Additven elementar. Gerade Additive werden oft in geringen Mengen mit hoher Wirksamkeit eingesetzt, weshalb das Verfahren der Dosierung anzuwenden ist.

2 Zielsetzung und Abgrenzung der Aufgabenstellung

2.1 Zielsetzung der Aufgabenstellung

Für die Herstellung der Acrylat-Copolymerdispersion AC 548 ist die Zugabe eines assoziativen Verdickermittels für die Alberdingk Boley Leuna GmbH als Prozessschritt nötig. Dieses Verdickermittel wird zugegeben, um die Viskosität der hergestellten, wässrigen Polymerlösung zu erhöhen und damit die rheologischen Eigenschaften für die Verwendung in Buntsteinputzen, Lacken und Farben sicherzustellen. Das derzeitig genutzte Verdickermittel macht es möglich, dass die Zugabe durch einen Abwiegeprozess und einem Fass als Dosierbehälter erfolgen kann. Diese Art der Dosierung erfordert jedoch eine gewisse Fließfähigkeit des zuzugebenen Mediums und die Akzeptanz einer kaum quantifizierten Dosierung. Weiterhin wird Personalzeit für Abwiege- und Transportprozesse benötigt.

Im Rahmen der Produktion soll diese Form der Dosierung technisch umgesetzt werden, um somit Personalzeit zu sparen, den Verbrauch an Verdickermittel gering zu halten und das Handling zu erleichtern. Aufgrund der Einstellung der Produktion für das derzeit verwendete Verdickermittel Rheobyk-H 3300 VF der Byk-Chemie Gmbh wird dieses in Zukunft durch TAFIGEL PUR 85 der Münzing Chemie Gmbh ersetzt. Dabei unterscheiden sich beide Verdickermittel grundlegend in ihrer Verarbeitbarkeit. Gerade das neu einzuführende Verdickermittel stellt durch seine hochviskosen Eigenschaften eine Herausforderung für den Dosierprozess dar.

Ziel dieser Arbeit ist es durch Charaktersierung des neuen Verdickermittels verschiedene Möglichkeiten der Dosierung zu recherchieren und zu diskutieren. Infolgedessen soll ein Konzept der Dosierung technisch geplant werden, welches den Forderungen des Unternehmens entspricht. Ausgewhälte Aspekte sind beispielsweise die Dosiergenauigkeit und das Handling durch die Produktion.

2.2 Abgrenzung der Aufgabenstellung

In Abgrenzung zur Aufgabenstellung wird in dieser Arbeit kein Bezug zur realen Umsetzung des vorgestellten Konzeptes genommen. Es werden lediglich Vorbetrachtungen und Möglichkeiten der Dosierung zusammengestellt und diskutiert. Diese Arbeit soll dabei ein gesamtheitliches Bild der Problematik zeichnen und mögliche Lösungen hierfür aufzeigen. Die Entscheidung ob das näherbeschriebene Konzept tatsächlich umgesetzt wird, bleibt an dieser Stelle dem betreuendem Unternehmen überlassen. Somit finden Aspekte der Inbetriebnahme oder Testreihen einer umgesetzten Dosierstation für diese Arbeit keine Bedeutung.

3 Theoretische Grundlagen

3.1 Definition und Gliederung zu Verdickungsmitteln

In der Farben- und Putzindustrie werden Verdickungsmittel als rheologische Additive bezeichnet. Sie erhöhen die Viskosität von Flüssigkeiten und ändern somit ihre rheologischen Eigenschaften, welche die Auftragungs-, Fließ- und Verlaufseigenschaften von Farben und Putzen bestimmen. Verdickungsmittel kommen jedoch auch in der Lebensmittelchemie oder Pharmazie zum Einsatz.

Je nach dem welche Anforderungen an das Verdickermittel gestellt werden, unterscheiden sich diese in ihrer Zusammensetzung (siehe Abb. 1). [BRRS09]

Abb. 1: Einteilung von Verdickungsmitteln nach Zusammensetzung [BRRS09]

Je nach Verdickungsmittel können verschiedene Effekte wie Gelbildung, Solvatation, Ausbildung von Netzstrukturen, Coulomb-Kräfte, Quellung und Wasserstoff-Brückenbindungen, sowie deren gegenseitige Einflussnahme die Erhöhung der Zähflüssigkeit bewirken. [BRRS09]

Betrachtet man speziell die sogenannten assoziativen Verdickungsmittel lassen sich diese den Gruppen der abgewandelten, natürlichen Verdicker und den synthetischen Verdickern zuordnen. Sie spezifizieren sich gegenüber anderen Verdickertypen darin, dass sie neben hydrophilen Gruppen auch hydrophobe Endund Seitengruppen enthalten, welche dem Verdickungsmittel einen Tensidcharakter verleihen. Deshalb bestehen assoziative Verdicker unteranderem aus hydrophob modifizierten Polymerstrukturen (siehe Abb. 2).

Abb. 2: Einteilung von Assoziativ-Verdickern nach chemischer Struktur [BRRS09]

Diese strukturelle Eigenschaft der Assoziativ-Verdicker macht die Bildung von Micellen möglich und es treten neben der Quellung in der Wasserphase sogenannte "Micellbrücken" zwischen Latex-Teilchen der Bindemitteldisperion auf, welche eine zusätzlich Viskositätserhöhung bewirken. [BRRS09]

In Abbildung 3 ist eine schematische Struktur eines solchen assoziativen Polyurethan-Verdickers aufgeführt. Diese beispielhafte Struktur zeigt hydrophile, höher molekulare Polyethersegmente, welche über Urethan-Gruppen verbunden sind und durch hydrophobe Molekülgruppen verknüpft werden. [BRRS09]

$$\begin{array}{c|c} & & & & & & & & & & & & & & & & \\ R^{1} - NH & & & & & & & & & & & & \\ NH & & & & & & & & & & & & \\ NH & & & & & & & & & & & \\ NH - R^{1} & & & & & & & & \\ NH - R^{1} & & & & & & & \\ NH - R^{1} & & & & & & & \\ NH - R^{1} & & & & & & \\ NH - R^{1} & & & & & & \\ NH - R^{1} & & & & & & \\ NH - R^{1} & & & & & \\ NH - R^{1} & & & & & \\ NH - R^{1} & & & & & \\ NH - R^{1} & & & & \\ NH - R^{1} & & & & \\ NH - R^{1} & & \\ NH - R^{1} & & & \\$$

Abb. 3: schematische Struktur eines assoziativen Polyurethan-Verdickers, erstellt nach [BRRS09]

Durch diesen Mix der hydrophoben und hydrophilen Strukturen wird der Tensidcharakter des Verdickungsmittels bestimmt und es ergeben sich Netzstrukturen mit assoziierten "Micellbrücken", wie in Abbildung 4 dargestellt. Zusätzlich ist zu erkennen, dass auch Wechselwirkungen mit bereits vorhandenen Tensidmolekülen in der Dispersion auftreten können und die Struktur somit weiter stabilisieren. [Mez16]

Abb. 4: Netzstruktur durch Verdickermittel in Latex-Dispersion (mit und ohne Tensid), erstellt nach [Mez16]

Aufgrund dieser ausgeprägten Netzstrukturen innerhalb des Verdickungsmittels ist es jedoch auch möglich, dass das Verdickungsmittel selbst eine hohe Viskosität aufweist. Dieser Punkt kann erheblichen Einfluss auf die großtechnische Verarbeitbarkeit des Additives haben und wird im weiteren Verlauf dieser Arbeit näher betrachtet.

3.2 Dosierung von Flüssigkeiten

3.2.1 Charakterisierung des Dosierstroms

Um den Dosierstrom einer Flüssigkeit charakterisieren, ist es zunächst nötigt die Fließeigenschaften beschreiben zu können. Die Wissenschaft der Rheologie beschäftigt sich unter anderem mit dem Fließ- und Deformationsverhalten von Flüssigkeiten und teilt diese zunächst in Newtonsche und Nichtnewtonsche Fluide ein. Grundlage dieser Einteilung sind Untersuchungen von Isaac Newton, welcher sich bei konstanter Temperatur mit der Schergeschwindigkeit D in Abhängigkeit von der Schubspannung τ beschäftigte. Das Ergebnis dieser Arbeit ist das Newtonsche Fließgesetz unter Gleichung (1), welche den Fließwiderstand η einer Flüssigkeit bei gegebener Temperatur als Stoffkonstante benennt. Dieser Fließwiderstand η ist heute unter der Bezeichnung der dynamischen Viskosität bekannt.

$$\tau = \eta \cdot D \tag{1}$$

 $D \dots$ Schergeschwindigkeit

 τ ... Schubspannung

 η ... Dynamische Viskosität

Es sei erwähnt, dass neben der dynamischen Viskosität auch eine kinematische Viskosität ν existiert. Diese beschreibt in Gleichung (2) jedoch lediglich das Verhältnis zwischen der dynamischen Viskosität und der Dichte eines Fluides.

$$\nu = \frac{\eta}{\rho} \tag{2}$$

 $\nu \dots$ kinematische Viskosität

 $\rho \dots$ Dichte

 $\eta \dots$ Dynamische Viskosität

Schlussendlich gilt für die Einteilung der Fluide nach Gleichung (1), dass alle Fluide, welche eine Linearität zwischen Schergeschwindigkeit und Schubspannung ohne Fließgrenze aufweisen als NEWTONSCHE Fluide und diejenigen, die ein nicht-lineares Verhalten und/oder ein Verhalten mit Fließgrenze aufweisen als NICHTNEWTONSCHE Fluide eingeordnet werden. Veranschaulicht wird dies in Abbildung 5 mit einer Auswahl an verschiedenen Rheologieprofilen.

Dilatanz (m>1)

Newton (m=1)

Strukturviskosität (m<1)

Schergeschwindigkeit D

Abb. 5: Fließkurven für verschiedene Fluide, erstellt nach [Hol10]

Abb. 6: Viskositätskurven für verschiedene Fluide, erstellt nach [Mun18]

Zur Bestimmung der Viskosität müssen für ein Newtonsches Fluid laut Gleichung (1) die Schergeschwindigkeit D und die Schubspannung τ bestimmt werden. Eine Möglichkeit hierfür ist die Nutzung eines sogenannten Rotationsviskosimeters. Allgemein beschreiben Rotationsviskosimeter einen Viskosimetertypen, bei dem die zu messende Flüssigkeit zwischen spezifisch geformten Körpern gebracht wird, von denen einer rotiert. Dabei tritt eine Scherung der Flüssigkeit auf und das aufgewendete Drehmoment am Viskosimeter wird gemessen. Neben Rotationsviskosimetern sind auch weitere Viskosimetertypen wie Kappilarviskoskosimeter und Fallkörperviskosimeter bekannt. Diese unterscheiden sich neben dem Aufbau gegenüber dem Rotationsviskosimeter beispielsweise auch darin, dass sie im Regelfall die Viskosität von Nichtnewtonschen Fluiden nicht ausreichend untersucht werden kann. [RRM08]

Nachdem die Viskosität bestimmt ist, lässt sich nun der Dosierstrom des Verdickermittels entsprechend seiner Strömungseigenschaften beschreiben. Hier für wird die sogenannte REYNOLDSZAHL bestimmt. Sie ist eine dimensionslose Kennzahl und beschreibt das Verhältnis zwischen Trägheitskräften zu Reibungskräften in strömenden Flüssigkeiten und ist für durchströmte Rohrleitungen unter Gleichung (3) definiert. [Fot14]

$$Re = \frac{d_H \cdot \rho \cdot \overline{u}}{\eta} \tag{3}$$

 $Re \dots Reynoldszahl$

 η ...dynamische Viskosität des Fluids

 ρ ... Dichte des Fluids

 $d_H \dots$ hydraulischer Rohrdurchmesser

 \overline{u} ... mittlere Strömungsgeschwindigkeit

Anhand der Reynoldszahl lässt sich nun mithilfe der Tabelle 1, die jeweilige Strömungsform zuordnen. Diese Zuordnung ist wichtig, da sich je nach Strömungsform unterschiedliche Einflussgrößen auf den Druckverlust somit auf die Auslegung der Dosierung ergeben. Beispielsweise hat für eine laminare Strömung die Wandrauigkeit der Leitung keinen Einfluss mehr, wohin gegen sie in turbulenten Strömungen maßgebliche Druckverluste hervorrufen kann. In laminaren Strömungen überwiegt hierbei der glättende Einfluss der Viskosität gegenüber den Rohrunebenheiten, während in turbulenten Strömungen weitere Wirbel erzeugt werden. [Bsc18]

Tab. 1: Strömungsformen und ihre Reynoldszahlen [Fot14]

	9	•	
Strömungsform	Laminar	instabiler Bereich	Turbulent
Reynoldszahl	< 2300	2300 bis 4000	> 4000

Nach der Bestimmung der Reynoldszahl lässt sich nun mit Hilfe des NIKURADSE-COLEBROOK-MOODY-Diagramms, nachfolgend MOODY-Diagramm genannt, die Rohrreibungszahl λ bestimmen (siehe Abb. 7). Diese Rohrreibungszahl ist eine dimensionslose Kennzahl und kann zweckmäßig in Gleichung (4) eingesetzt werden. Somit ist es möglich den dimensionslosen Druckverlustbeiwert ζ_R für gerade Rohrleitungen zu bestimmen und ermöglicht daraufhin die Berechnung des durch Reibung verursachten Druckverlustes Δp auf Basis der erweiterten Bernoulli-Gleichung (5). [Bsc18]

$$\zeta_R = \lambda \cdot \frac{L}{d} \tag{4}$$

$$\Delta p = \frac{1}{2} \cdot \zeta_R \cdot \rho \cdot \overline{u}^2 \tag{5}$$

 ζ_R ... Druckverlustbeiwert für gerade Rohrstrecken

L ... Rohrleitungslänge

d ...Rohrdurchmesser

 $\Delta p \dots$ Druckverlust

 ρ ... Dichte des Fluids

 \overline{u} ... mittlere Strömungsgeschwindigkeit

Abb. 7: Nikuradse-Colebrook-Moody-Diagramm [Msi17, @ ① ①

Liegt für eine nicht-kompressible Flüssigkeit eine laminare Strömung vor, so ist es möglich die zuvor beschriebene Vorgehensweise zu vereinfachen und den auftretenden Druckverlust in einer geraden Rohrleitung direkt mit dem Gesetz von Hagen-Poiseuille zu bestimmen. Der Druckverlust wird hierbei in Abhängigkeit vom Volumenstrom, der Rohrleitungslänge, des Rohrdurchmessers und der Viskosität berechnet. Die Definition des Gesetzes, aufgelöst nach dem Druckverlust, findet sich unter Gleichung (6). [Fot05]

$$\Delta p = \frac{8 \cdot \eta \cdot L \cdot \dot{V}}{r^4 \cdot \pi} \tag{6}$$

 $\Delta p \dots$ Druckverlust

 η ...dynamische Viskosität des Fluids

 \dot{V} ... Volumenstrom des Fluids

r ...innerer Radius der Rohrleitung

L ... Rohrleitungslänge

Da das Gesetz von HAGEN-POISEUILLE bereits im MOODY-Diagramm enthalten ist, können beide Vorgehensweisen genutzt werden um die jeweils andere Rechnung zu überprüfen. Sollen Rohrleitungseinbauten wie Armaturen, Ventile oder Bogenstücke einberechnet werden, vereinfacht jedoch aufgrund von tabellierten Druckverlustbeiwerten möglicher Einbauten die erweiterte BERNOULLI-Gleichung die Berechnung des gesamten reibungsbedingten Druckverlustes.

3.2.2 Dosierpumpen

Da Flüssigkeiten keine hohen Abweichungen der Dichte in Abhängigkeit von geringen Druck- und Temperaturschwankungen aufzeigen, kann selbst eine volumenbegrenzte Dosierung sehr genau sein. Durch die fest definierten Abgrenzungsräume ("Kammern") wird eine solche volumenbegrenzte Flüssigkeitsdosierung in aller Regel mit rotierenden oder oszillierenden Verdränger-Dosierpumpen umgesetzt. Sie zeichnen sich im Vergleich zu Kreiselpumpen dadurch aus, dass die Förderhöhe weitestgehend unabhängig vom Förderstrom ist. Da je nach Dreh- oder Hubzahl ein festes Volumen gefördert wird, eignen sie sich gut, wenn ein Dosierverfahren ohne weitere Messeinrichtung vorausgesetzt wird. Dennoch lassen SIe sich auch mit verschiedenen Messverfahren kombinieren, um so die Dosierung so genau wie möglich zu gestalten. Eine genaue Definition für den realen Förderstrom von Verdrängerpumpen findet sich unter Gleichung 7. [Ign15, Vet02]

$$\dot{m} = i \cdot V_K \cdot n \cdot \rho \cdot \eta_V \tag{7}$$

 \dot{m} ... Fördermassenstrom

i ... Anzahl der verdrängbaren "Kammern"

 $V_K \dots$ Kammervolumen

n ... Drehzahl bzw. Hubfrequenz

 ρ ... Dichte der Flüssigkeit

 η_V ... volumetrischer Wirkungsgrad

Da in der Realität die rein geometrische Volumenabgrenzung durch die "Kammern" der Pumpe vom messbaren Förderstrom abweicht wird in Gleichung (7) der volumetrische Wirkungsgrad η_V als Korrekturfaktor genutzt. Dieser unter Gleichung (8) definierte Wirkungsgrad wird von den Eigenschaften des Fluids, sowie von den Betriebsbedingungen und beschreibt dabei das Verhältnis zwischen dem realen Förderstrom \dot{V} und dem theoretisch, geometrischen Förderstrom \dot{V}_{theo} . [Vet02]

$$\eta_V = f(\Delta p, \rho, \nu, E_{\text{geo}}) = \frac{\dot{V}}{\dot{V}_{\text{theo}}}$$
(8)

 \dot{V} ... realer Volumenstrom

 $\dot{V}_{\rm theo}\dots$ theoretischer Volumenstrom

 Δp ... Differenzdruck

u ... kinematische Viskosität der Flüssigkeit

ρ ...Dichte der Flüssigkeit

 E_{geo} ... pumpenspezifische Geometrie

Verursacht werden diese Abweichungen vom theoretischen Förderstrom durch Leckage- und Elastizitätseinflüsse, welche hauptsächlich durch den von der Pumpe geforderten Differenzdruck entstehen. Der Arbeitsraum der Dosierpumpe ist daher so starr und dicht wie möglich auszuführen. Da neben den Fluid- und den Betriebsbedingungen auch die Bauart bzw. die Pumpengeometrie Einfluss auf den volumetrischen Wirkungsgrad nimmt, ist es wichtig sich genauer mit den verschiedenen Arten der Verdrängungspumpen auseinanderzusetzen. Auch Einflüsse, die die Einbindung und Handhabung in der Produktion betreffen, können entscheidend für die Wahl des Pumpentyps sein.

Zum einen gibt es die Kategorie der oszillierenden Dosierpumpen. Diese Pumpen kennzeichnen sich dadurch, dass sie ein Fluid durch Hubbewegungen eines Verdängerkörpers fördern. Dieser verdrängende Körper kann bei einer klassischen Pumpe ein zylindrischer Kolben sein, jedoch sind heutzutage vorrangig Membranpumpen im Einsatz bei der das Fördermedium durch eine spezielle Membran getrennt ist (vgl. Abbildung ??).

Die im Betrieb nutzbaren Stellgrößen bei diesen Pumpen konzentrieren sich aufgrund ihrer Funktionsweise auf die Hublänge und die Hubfrequenz. Durch den geometrisch genau definierten Hubraum und weitestgehend Leckfreien Pumpenventilen und Kolbenabdichtungen, eigenen sich oszillierende Dosierpumpen am günstigsten für die Flüssigkeitsdosierung. Durch das Hubweise fördern der Flüssigkeit ergibt sich jedoch ein digitaler Charakter im Förderstrom. Somit eignen sich diese Pumpen lediglich für diskontinuierliche Dosierung mittels Hubzählung. Der Massenstrom der sich daraus für eine einzylindrige Kolbenpumpe ergibt, ist unter Gleichung (9) zu finden. [Vet02]

$$\dot{m} = h_K \cdot A_K \cdot n \cdot \rho \cdot \eta_V \tag{9}$$

 \dot{m} ... Fördermassenstrom

 $h_K \dots$ Hublänge

 $h_K \dots$ Kolbenquerschnitt

n ... Hubfrequenz

 ρ ... Dichte der Flüssigkeit

 η_V ... volumetrischer Wirkungsgrad

Die Kategorie der rotierenden Dosierpumpen ist im Vergleich zu oszillierenden Dosierpumpen deutlich fassettenreicher. Das hierbei genutzte Verdrängervolumen basiert auf Maßtoleranzen, Spaltmaßen und Elastizitäten des Pumpraumes, welches durch Rotation der Verdrängersystems gefördert wird. Aufgrund dieser Toleranzen treten in rotierenden Verdrängerpumpen für niedrigviskose Flüssigkeiten merkliche, innere Leckagen auf und sind damit weniger genau als oszillierende Verdrängerpumpen. Sie eignen sich daher hauptsächlich für viskose Fluide. Eine Auswahl an typischen, rotierenden Dosierpumpen ist unter Abbildung ?? dargestellt.

Hauptstellgröße dieser Pumpenart ist die Drehzahl. Ebenso wie die Hublänge/Hubfrequenz oszillierender Verdrängerpumpen besteht bei rotierenden Verdrängerpumpen eine

direkte Proportionalität zwischen Drehzahl und Förderstrom. Eine einheitliche Charakteristik des Förderstroms lässt sich für diese Pumpen nicht definieren, da sich trotz Rotationsprinzip die Förderweisen stark unterscheiden. So weisen weißen beispielsweise Schlauchpumpen im Vergleich zu Zahnradpumpen eine viel deutlichere Pulsation des Förderstroms auf obwohl beide Pumpe den Rotationspumpen zugeordnet werden. Demnach lässt sich auch der Dosierstrom lediglich allgemein wie in Gleichung (??) dargestellt beschreiben. Je nach Pumpentyp lässt dann sich die Ausführung der geometrischen Volumenabgrenzung detaillierter ausführen. [Vet02]

fehlender TVergleich zwischen verschiedenen Pumpentypen

3.2.3 Ermittlung des Dosierstroms

Radarfüllstandsmessung

Coriolis-Massendurchflussmesser

Volumetrischer Verdränger

Waage mit Wägezellen

Durchflusskurve der Pumpe

3.3 Chemische Produktion und Prozesssicherheit

3.3.1 Produktionsweisen in der Chemie

3.3.2 Industrielle Gebinde für Flüssigkeiten

Um ein Edukt neu in die Produktion einzubinden sind, nicht nur die chemisch-physikalischen Eigenschaften relevant. Auch der Aspekt der Gebindeform ist maßgeblich für die Einfügung des Eduktes in den Produktionsablauf. Für flüssige Edukte sind im Tagesgeschäft der Alberdingk Boley Leuna Gmbh hauptsächlich Kunststoff-IBCs (Intermediate Bulk Container) und zum Teil Kunststoff-Deckelfässer im Einsatz. Es sei jedoch erwähnt, dass auch weitere Gebinde auf dem Verpackungsmarkt verfügbar sind, wie beispielsweise Flüssig-IBCs, Kanister, Hobbocks oder Metallfässer.

Den IBC als kubisches Gebinde gibt ca. seit den 1960er Jahren und hat sich über eine Richtlinie des VDI aus den frühen 70er-Jahren zu einem Standard der großen Einzelverpackungen entwickelt. Zuvor waren zum Großteil 200 L-Fässer im Einsatz, welche sich neben der geometrischen Form auch maßgeblich im Handling zum IBC unterscheiden. [neu22] So lassen sich Fässer in dieser Größenordnung beispielsweise

vorwiegend als 4er-Packung sicher transportieren und benötigen hierfür zusätzliche Paletten, sowie Schrumpffolie oder Transportbänder um die Behälter zu fixieren. Ein IBC hingegen kann direkt als Gebinde mit einem Hubwagen oder Gabelstapler transportiert werden ohne umfangreiche Vorbereitung. Weitere Punkte im Vergleich zwischen IBC und Fass finden sich unter Tabelle 2.

Tab. 2: Allgemeiner Vergleich der Gebinde IBC und Fass [Kam22]

Two. 2. Tingement vergician der Goomde 120 und 1400 [Ham22]			
	Einzelfass	Fasspalette	IBC
	(1 Fass)	(4 bis 5 Fässer)	(1 Container)
UN- Zertifizierung			
Transportvor- bereitung	evtl. extra Palette mit Schrumpffolie/Transportbänder		keine
$egin{array}{c} ext{Transport} \ ext{(voll)} \end{array}$	schwer mit Fassheber Gabelstapler, Flurf		förderzeuge
$egin{array}{c} { m Transport} \ { m (teilentleert)} \end{array}$	schwer mit Fassheber	schwer mit Gabelstapler, Flurförderzeuge	Gabelstapler, Flurförderzeuge
${f Abf\"{u}llmenge}$	klein	klein bis mittel	mittel bis groß
Lagerkapazität	sehr klein	klein bis mittel	groß
Erwärmbarkeit	möglich	nicht möglich	möglich, aber nicht effektiv
Verwendung	i.d.R einmalig		mehrmals möglich
Stapelbarkeit	schlecht stapelbar		gut stapelbar
Produktreste	> 5 kg		$\leq 5 \mathrm{kg}$
Anschlüsse	Deckel oder Spundloch		Deckel oder Auslaufarmatur

- 3.3.3 Sicherheit von Chemieanlagen
- 3.4 Allgemein heuristische Entscheidungsverfahren
- 3.5 Technische Planung
- 3.5.1 R&I- Fließbild
- 3.5.2 Rohrleitungsplanung
- 3.5.3 Signalverarbeitungsplanung
- 3.6 Stand der Technik zur Dosierung hochviskoser Verdickungsmittel
- 4 Material und Methoden
- 4.1 Ist-Analyse
- 4.1.1 Aktuelles Dosierverfahren
- 4.1.2 Produktionsweise
- 4.2 Rechnerische Auslegung
- 4.2.1 Berechnung des Druckverlustes für verschiedene Leitungsdurchmesser
- 4.2.2 Rohrleitungsklassifizierung nach PAS 1057
- 4.3 Fachgespräche und Angebotsanfragen
- 4.4 Experimentelle Untersuchungen
- 4.4.1 Ermittlung der Viskosität nach DIN EN ISO 2555

Eine Möglichkeit die dynamische Viskosität einer Dispersion zu bestimmen, ist die Messung mit einem Rotationsviskosimeter nach DIN EN ISO 2555. Da in dieser Norm hauptsächlich ein Rotationsviskosimeter mit Einzelzylinder beschrieben ist, wird an dieser Stelle auf die DIN ISO 3219 verwiesen. In dieser Norm werden zusätzlich Rotationsviskosimeter mit koaxialem Zylinder und Kegel-Platte-Viskosimeter näher beschrieben. [DIN13, DIN18]

Das bei Alberdingk Boley Leuna Gmbh verwendete Verfahren zur Viskositätsbestimmung ist angelehnt an die DIN EN ISO 2555 unter Nutzung eines digitalen Brookfield-Rotationsviskosimeters, benannt nach dem Hersteller AMETEK® Brookfield. Diese Viskosimeter haben den Vorteil preisgünstig zu sein und erlauben ein Messen der Viskosität direkt im Probengefäß. Da jedoch durch das direkte Eintauchen in ein theoretisch beliebiges Probengefäß nur eingeschränkte Übertragbarkeiten und Reproduzierbarkeiten möglich sind, können diese Geräte hauptsächlich für Vergleichsmessungen genutzt werden. Der Hersteller gibt hierfür an ein 600 mL Becherglas als Probengefäß zu nutzen, jedoch wird in der DIN EN ISO 2555 darauf hingewiesen, dass die Becherglasgröße freigewählt werden darf. Für den Vergleich von Messungen rät die Norm dennoch jeweils die gleiche Größe des Becherglases zu nutzen. [RRM08, bro, DIN18]

Die Messung mittels digitalem BROOKFIELD-Viskosimeter ist vergleichsweise einfach. Benötigt werden hierfür das Viskosimeter in einer Halterung, ein Becherglas, ein Temperaturmessgerät und eine herstellerspezifische Spindel. Soll die Viskosität bei bestimmten Temperaturen, abweichend der Labortemperatur bestimmt werden, ist zusätzlich ein thermostatisches Flüssigkeitsbad nötig (vgl. Abb. 8).

Abb. 8: Viskositätsmessung mit digitalem BROOKFIELD-Rotationsviskosimeter

Die Messung lässt sich nach dem Aufbau über das Bedienfeld starten in dem Spindel und Drehzahl eingegeben werden. Sobald die Messung startet beginnt sich die Spindel zu drehen.

Das Messprinzip eines solchen Brookfield-Viskosimeters basiert auf der Messung der Winkelabweichung, auch Torsion genannt, zwischen der im Viskosimeter verbauten Welle und einer zweiten darunter angeordneten Spindel-Welle mit fest definierten

geometrischen Körper. Beide Wellen drehen sich dabei mit der selben Drehzahl und sind über eine Federeinheit verbunden. Bei Digital-Viskosimetern wird der Messwert der sich dann durch die Winkelabweichung ergibt direkt über ein Display angezeigt. Entscheidend für die Messung der Viskosität ist bei dieser Messmethode die Auswahl des bereits erwähnten Becherglases, sowie der Spindel und der Drehzahl. Spindel und Drehzahl werden dabei unter Einbezug des Viskositätbereiches der Probe nach der gewünschten Präzision und dem Geschwindigkeitgefälle ausgewählt. [DIN18] Durch Tabellen des Herstellers, welche sowohl Spindel als auch Viskositätsbereich in Abhängigkeit von Drehzahl und Gerätekonstanten berechnen lassen, werden diese Entscheidungen vereinfacht. [bro]

- 4.4.2 Erwärmungsverhalten
- 4.4.3 Verdünnungsverhalten
- 4.4.4 Pumpversuche
- 4.5 Nutzwertanalyse
- 4.5.1 Erarbeitung von Lösungsvarianten
- 4.5.2 Festlegen und gewichten von Entscheidungskriterien
- 4.5.3 Bewertung der Lösungsvarianten
- 4.5.4 Gesamtbeurteilung der Varianten
- 4.6 Computerunterstützes Zeichnen von Plänen
- 4.6.1 Software: AutoCAD
- 4.7 Gefährdungsbeurteilung (HAZOP-Verfahren)

5 Ergebnisse

Verdickerviskosität

Berechnungen Druckverlust

Erwärmungsverhalten

Verdünnungsverhalten

Entscheidung für Pumpentyp und Leitungsdurchmesser mit Druckverlustrechnung Zeichnungen der Dosiervarianten

Zeichnugen im R&I von der Umsetzung

5.1 Ist-Zustand der Verdickungsmitteldosierung

–¿ SAmmeln von Informationen im Werk Kampagne Mitarbeiterkosten sparen Zeitersparnis Einfachheit Ex-Schutz PLS Prozesssicherheit

- 5.1.1 Aktuelles Dosierverfahren
- 5.1.2 Produktionsweise
- 5.2 Eigenschaften des Verdickungsmittels
- 5.2.1 Viskositätsmessungen

−į, nach DIN

5.2.2 Verdünnungsverhalten

–į, Eigenregie

5.2.3 Erwärmungsverhalten

−¿ beim Hersteller angefragt

In der geplanten Dosierung soll auf das Verdickungsmittel TAFIGEL PUR 85 der MÜNZING CHEMIE GMBH zurückgegriffen werden. Laut Hersteller handelt es sich hierbei um einen assoziativen Polyurethan-Verdicker, welcher durch Gerüstbildung zwischen Verdickermolekülen, Bindemittel und Pigmentpartikeln die gewünschte Viskosität hervorruft und stabilisiert. Diese Beschreibung deckt sich mit den vorangegangenen Beschreibung der Assoziativverdicker.[Mun14]

5.3 Entscheidung für Gebindetyp

Preis nachfrage

- 5.3.1 Angebotsanfrage
- 5.3.2 Entscheidungsverfahren
- 5.4 Entscheidung für Pumpentyps und Leitungsdurchmessers
- 5.4.1 Berechnung des Druckverlustes
- 5.4.2 Literaturarbeit

Bücher gelesen für Auswahlhilfe

- 5.4.3 Fachgespräche und Angebotsanfrage
- 5.4.4 Pumpversuche
- 5.4.5 Entscheidungsverfahren
- 5.5 Entscheidung für Messverfahren
- 5.5.1 Literaturarbeit

Bücher gelesen für Auswahlhilfe

- 5.5.2 Fachgespräche und Angebotsanfrage
- 5.5.3 Entscheidungsverfahren
- 5.6 Technische Planung für Verdickungsmitteldosierung
- 5.6.1 R&I- Fließbild der Verdickerdosierung
- 5.6.2 Theoretische Rohrleitungsplanung der Verdickerdosierung
- 5.6.3 Signalverarbeitungsplanung der Verdickerdosierung
- 5.7 Gefährdungsbeurteilung der geplanten Verdickmitteldosierung
- 6 Diskussion
- 7 Zusammenfassung und Schlussfolgerungen

Literatur

- [bro] BROOKFIELD ENGINEERING LABORATORIES, INC. (Hrsg.): BROOKFIELD DV-I PRIME Operating Instructions BROOKFIELD DV-I PRIME Digital Viscometer. https://www.brookfieldengineering.com/-/media/ametekbrookfield/manuals/obsolete%20manuals/dv-i%20prime%20m07-022-d0613.pdf?la=en, Abruf: 31.01.2022
- [BRRS09] Brock, Thomas; RÖMPP-Redaktion; Seibel, Jürgen: Verdickungsmittel. Thieme Gruppe, 2009 https://roempp.thieme.de/lexicon/RD-22-00381
- [Bsc18] BSCHORER, Sabine: Technische Strömungslehre: Lehr- und Übungsbuch. 11., überarbeitete und erweiterte Auflage. Wiesbaden and Heidelberg: Springer Vieweg, 2018 (Lehrbuch). ISBN 978-3-658-20037-4
- [DIN13] DIN DEUTSCHES INSTITUT FÜR NORMUNG E. V.: Kautschuk-Latex Bestimmung der Viskosität nach dem Brookfield-Verfahren (DIN ISO 1652:2011). Berlin, Februar 2013
- [DIN18] DIN DEUTSCHES INSTITUT FÜR NORMUNG E. V.: Kunststoffe Harze im flüssigen Zustand, als Emulsionen oder Dispersionen Bestimmung der scheinbaren Viskosität mit einem Rotationsviskosimeter mit Einzelzylinder (DIN EN ISO 2555:2018). Berlin, September 2018
- [Fot05] FOTH, Hans-Jochen: *Hagen-Poiseuillesches Gesetz*. Thieme Gruppe, 2005 https://roempp.thieme.de/lexicon/RD-08-00189
- [Fot14] FOTH, Hans-Jochen: Reynolds-Zahl. Thieme Gruppe, 2014 https://roempp.thieme.de/lexicon/RD-18-01140
- [Hol10] Holze, Rudolf: Nichtnewtonsche Flüssigkeiten. Thieme Gruppe, 2010 https://roempp.thieme.de/lexicon/RD-14-01075
- [Ign15] IGNATOWITZ, Eckhard: *Chemietechnik.* 12. Aufl., 1. Dr. Haan-Gruiten: Verl. Europa-Lehrmittel Nourney Vollmer, 2015. ISBN 9783808571200
- [Kam22] Kamroth, Markus; Roman-Luca Zank (Hrsg.): Vergleich von IBCs und Fässern: Gespräch. 01.02.2022
- [Mez16] Mezger, Thomas (Hrsg.): Das Rheologie Handbuch: Für Anwender von Rotations- und Oszillations-Rheometern. 5., vollständig überarbeitete Auflage. Hannover: Vincentz Network, 2016. http://dx.doi.org/10.1515/9783748600121. http://dx.doi.org/10.1515/9783748600121. ISBN 9783748600121
- [Msi17] MSIMCA: Reynoldszahl-Diagramm für gerade Rohrleitungen nach Prandtl-Colebrook. https://upload.wikimedia.org/wikipedia/commons/f/f3/R_Rohrreibungsbeiwert.jpg. Version: 14.05.2017, Abruf: 27.01.2022. CC-BY-SA-4.0
- [Mun14] MÜNZING CHEMIE GMBH (Hrsg.): Technisches Datenblatt
 TAFIGEL PUR 85. https://www.munzing.com/static/
 06f130839b44f324b19e0c2d6e8ace93/td_TAFIGEL_PUR_85_DE_
 f12e7b1de6.pdf. Version: März 2014, Abruf: 28.01.2022

- $[Mun18] \begin{tabular}{ll} M\"unzing & Chemie & GmbH & (Hrsg.): & TAFIGEL @ RHEOLOGIEMODIFIZIERER: & Technische & Nachrichten & Nr. \\ 04. & https://docplayer.org/storage/69/60353187/1643642820/\\ Qj1vDFp1hoXznndlj8RBog/60353187.pdf. & Version: 2018, & Abruf: 31.01.2022 \\ \end{tabular}$
- [neu22] NEUE VERPACKUNG: Die Entwicklung des Edelstahl-IBC und seine Einsatzgebiete. https://www.neue-verpackung.de/markt/die-entwicklung-des-edelstahl-ibc-und-seine-einsatzgebiete-11.html. Version: 01.02.2022, Abruf: 01.02.2022
- [RRM08] RÖMPP-REDAKTION; MILLOW, Sieghard: Viskosimeter. Thieme Gruppe, 2008 https://roempp.thieme.de/lexicon/RD-22-00922
- [Vet02] Vetter, Gerhard (Hrsg.): Handbuch Dosieren. 2. Aufl. Essen: Vulkan-Verl., 2002. ISBN 3802721993

Abbildungsverzeichnis

1	Einteilung von Verdickungsmitteln nach Zusammensetzung [BRRS09]	8
2	Einteilung von Assoziativ-Verdickern nach chemischer Struktur	
	[BRRS09]	8
3	schematische Struktur eines assoziativen Polyurethan-Verdickers,	
	erstellt nach [BRRS09]	9
4	Netzstruktur durch Verdickermittel in Latex-Dispersion (mit und oh-	
	ne Tensid),	
	erstellt nach [Mez16]	9
5	Fließkurven für verschiedene	
	Fluide, erstellt nach [Hol10]	0
6	Viskositätskurven für verschiedene Fluide, erstellt nach [Mun18] 1	
7	Nikuradse-Colebrook-Moody-Diagramm [Msi17, © 10] 1	2
8	Viskositätsmessung mit digitalem Brookfield-	
	Rotationsviskosimeter	8
T-11	la museum ai alauria	
rabei	lenverzeichnis	
1	Strömungsformen und ihre Reynoldszahlen [Fot14]	1
2		
\angle	Allgemeiner Vergleich der Gebinde IBC und Fass [Kam22] 1	U

Anhang

Abkürzungsverzeichnis