CSE 2321 Homework 2

Brendan Whitaker

AU17

- 1. (a) $P \Rightarrow R$
 - i. $P \Rightarrow \neg R$
 - ii. If your number if prime, then it is not evenly divisible by an integer other than 1 and itself.
 - iii. Claim: $P \Leftrightarrow \neg R$.

Proof. Note that \mathbb{P} , the set of all primes is defined as the set of all integers of the form n divisible only by 1 and n. But this is precisely the same set as that defined by R. Let A be the set defined in $\neg R$. Formally, $x \in A \Rightarrow x \in \mathbb{P} \Rightarrow A \subset \mathbb{P}$. Similarly, $x \in \mathbb{P} \Rightarrow x \in A \Rightarrow \mathbb{P} \subset A$.

- (b) $S \Rightarrow Q$.
 - i. $S \Rightarrow \neg Q$.
 - ii. If your number is odd, then it is not even.
 - iii. Claim: $S \Leftrightarrow \neg Q$.

Proof. Observe that $\mathbb{Z} = \{2k : k \in \mathbb{Z}\} \dot{\bigcup} \{2k+1 : k \in \mathbb{Z}\}.$

- (c) $(R \quad S) \Rightarrow P$
 - i. $(\neg R \land S) \Rightarrow P$
 - ii. If your number is not evenly divisible by any integer other than 1 and itself, and it is odd, then it is prime.
 - iii. Claim: $(\neg R \land S) \Leftrightarrow P$.

Proof. By part (a) we know that $\neg R \Leftrightarrow P$. So we must only show that $P \Rightarrow S$. But all the primes other than 2 are odd, and all numbers between 10 and 1,000,000 are greater than 2.

- (d) $S \Rightarrow P$.
 - i. $\neg S \Rightarrow \neg P$.
 - ii. If your number is not odd, then it is not prime.
 - iii. The implication cannot be replaced by a biconditional, since 15 is not prime, but it is odd.
- 2. (a) Some houses don't have electricity.
 - i. $D = \{ \text{the set of all houses} \}.$
 - ii. Let P(x) denote the truth value of the statement "house x has electricity". Then we write $\exists x \in D \ \neg P(x)$.
 - iii. $\forall x \in D \ P(x)$.
 - iv. All houses have electricity.
 - (b) None of the houses have plumbing
 - i. $D = \{ \text{the set of all houses} \}.$

^{*}Professor Close, MWF 12:40pm

- ii. Let P(x) denote the truth value of the statement "house x has plumbing". Then we write $\forall x \in D \neg P(x)$.
- iii. $\exists x \in D \ P(x)$.
- iv. Some houses have plumbing.
- (c) Some cabins have heat but do not have A/C.
 - i. $D = \{ \text{the set of all cabins} \}.$
 - ii. Let P(x) denote the truth value of the statement "cabin x has heat". Let Q(x) denote the truth value of the statement "cabin x has A/C". Then we write $\exists x \in D \ (P(x) \land \neg Q(x))$.
 - iii. $(\neg P(x) \lor Q(x)) \ \forall x \in D$.
 - iv. All cabins either do not have heat, or have A/C.
- (d) At least one cabin does not have heat, and some cabins do not have A/C.
 - i. $D = \{ \text{the set of all cabins} \}.$
 - ii. Let P(x) denote the truth value of the statement "cabin x has heat". Let Q(x) denote the truth value of the statement "cabin x has A/C". Then we write $\exists x, y \in D \neg P(x) \land \neg Q(y)$.
 - iii. $(P(x) \ \forall x \in D) \lor (Q(x) \ \forall x \in D)$.
 - iv. All cabins have heat or all cabins have A/C.
- (e) For every x and y there exists a z such that x + y = z.
 - i. $D = \mathbb{Z}$.
 - ii. Let P(x, y, z) denote the truth value of the equality x + y = z. Then we write $\forall x, y \in D$, $\exists z \in D \ P(x, y, z)$.
 - iii. $\exists x, y \in D \ \neg P(x, y, z) \ \forall z \in D$.
 - iv. There exist x and y such that $x + y \neq z$ for all z.
- (f) For every x and y, $\frac{x}{y} = \frac{y}{x}$.
 - i. $D = \mathbb{Z}$.
 - ii. Let P(x,y) denote the truth value of the equality $\frac{x}{y} = \frac{y}{x}$. Then we write $\forall x,y \in D, P(x,y)$.
 - iii. $\exists x, y \in D, \neg P(x, y)$.
 - iv. There exist x,y such that $\frac{x}{y} \neq \frac{y}{x}$.
- 3. (a) Having a driver's license and car insurance are sufficient conditions for owning a car in Ohio.
 - i. Let P = you have a driver's license, let Q = you have car insurance, and let S = you have a car in Ohio.
 - ii. $(P \wedge Q) \Rightarrow S$.
 - iii. $S \Rightarrow (P \land Q)$. Owning a car in Ohio is a sufficient condition for having a driver's license and car insurance.
 - iv. $\neg S \Rightarrow \neg (P \land Q)$. Not owning a car in Ohio is a sufficient condition for not having a driver's license and not having car insurance.
 - (b) It is necessary for a student to complete assignments and attend class to do well in CSE 2321.
 - i. Let P =the student completes assignments, let Q =the student attends class, and let S =the student does well in CSE 2321.
 - ii. $S \Rightarrow (P \land Q)$.
 - iii. $(P \land Q) \Rightarrow S$. It is necessary for a student to do well in CSE 2321 in order to complete assignments and attend class.
 - iv. $(\neg P \lor \neg Q) \Rightarrow \neg S$. Not completing assignments or not attending class are sufficient conditions for not doing well in CSE 2321.