WES 检测报告

2018-08-05

Pan

一、 样本信息

本次分析使用数据为 KPGP(韩国人基因组计划) 编号 KPGP-00245。

表 1-1 样本信息

KPGP 编号	类型	上传时间	性别	检测平台	
KPGP-00245	外显子	2015-03-10	男	Illumina	

二、 数据质量统计

2.1 测序数据情况汇总

使用 ReSegTools (He W, et al.) 进行统计。

表 2-1 测序情况汇总

Sample Name	Raw reads	Raw data(G)	Depth(x)	Q20(%)	Q30(%)	GC(%)
KPGP- 00245	36924736	5.8	63.0	97.35	93.70	48.08

注:

- (1) Sample Name:对应样本的编号;
- (2) Raw reads: 原始序列双端 reads pair 总数 (reads 对数);
- (3) Raw data(G): 样本数据量;
- (4) Depth: 比对后, 测序覆盖区域的平均深度;
- (5) Q20(%): 计算 phred 数值大于 20 的碱基占总碱基数的比例,数据值为 read1 和 read2 的平均值;
- (6) Q30(%): 计算 phred 数值大于 30 的碱基占总碱基数的比例,数据值为 read1 和 read2 的平均值;
- (7) GC(%): 计算 G 和 C 的数量占总碱基数的比例,数据值为 read1 和 read2 的平均值。

2.2 测序质量分布图

使用 FastQC(Andrews S, et al.)以及 MultiQC(Ewels P, et al.)统计。

FastQC: Mean Quality Scores

图 2-1 测序质量分布

横坐标为碱基在 reads 中的位置,纵坐标为 phred 得分。

2.3 GC 含量图

使用 FastQC(Andrews S, et al.) 以及 MultiQC(Ewels P, et al.) 统计。

图 2-2 GC 含量图

横坐标为碱基在 reads 中的位置,纵坐标为碱基含量。

2.4 测序深度统计

将测序数据通过 BWA(Li H and Durbin R)与参考基因组(human_g1k_v37_decoy.fasta)进行比对,比对结果使用 samtools(Li H)进行排序,再使用 GATK4 复序列进行标记以及质量校正。将得到的结果使用 QualiMap(García-Alcalde F, et al.)以及 MultiQC(Ewels P, et al.)统计。

图 2-3 Coverage 图 横坐标为统计平均深度,纵坐标为对应深度得到的 reads 数。

图 2-4 达到深度比例图 横坐标为统计深度,纵坐标为达到对应深度的百分比。

三、 变异检测结果

3.1 SNV、InDel 检测与统计

在比对结果的基础上,使用 GATK4 进行 SNP 位点识别,并使用 Annovar(Kai Wang, et al.)进行结果注释。

表 3-1 SNV、InDel 统计

	*** = -*** * **** *****													
Sample	nple exonic intr	intronic	intronic UTR3	LITR3	LITR3 I	intronic LITR3	UTR5	intergen	ncRNA_	ncRNA_i	upstrea	downstr	splicing	ncRNA_
Jampic				01110	ic	exonic	ntronic	m	eam	Splicing	splicing			
KPGP-	21620	E0E41	22124	2740	0.4051	E363	71.41	1020	1600	1.40	20			
00245	21638	52541	23134	3748	24851	5262	7141	1930	1623	143	29			

注:

(1) Sample: 样本名称;

(2) exonic: 外显子编码区域;

(3) intronic: 内含子区域;

(4) UTR3: 3'UTR 区域;

(5) UTR5: 5'UTR 区域;

(6) intergenic: 基因间区域;

(7) ncRNA_exonic: 非编码 RNA 外显子区域;

(8) ncRNA_intronic: 非编码 RNA 内含子区域;

(9) upstream:转录起始位点上游 1Kb 区域;

(10) downstream:转录起始位点下游 1Kb 区域;

(11) splicing: 剪切区域;

(12) ncRNA_splicing: 非编码 RNA 剪切区域。

3.2 不同类型变异位点数统计

表 3-2 编码区上不同类型变异位点数

Sample	synonymous	missense	stopgain	stoploss	unknown
KPGP-00245	10785	9944	96	10	437

注:

(1) Sample: 样本名称;

(2) synonymous: 同义突变;

(3) missense: 错义突变;

(4) stopgain: 同一碱基发生替换,导致该碱基所在密码子变为终止密码子;

(5) stoploss: 同一碱基发生替换, 导致该碱基所在终止密码子变为非终止密码子;

(6) unknown:未知功能位点。

3.3 基因型分布统计

表 3-3 基因型分布

	Sample	all	het	hom	novel	novel%
Ī	KPGP-00245	142194	79298	62896	8147	5.73

注:

(1) Sample: 样本名称;
 (2) all: 所有变异数目;
 (3) het: 杂合基因型数目;
 (4) hom: 纯合基因型数目;

(5) novel: 未被 dbsnp 注释的变异数目, 使用的 dbsnp 版本为 v150 (2017-04-04);

(6) novel%:未被 dbsnp 注释的变异数目占所有变异数目的百分比。

四、 高级分析结果

对位点进行过滤分析。

4.1 Clinvar 提示致病或可能致病的位点

筛选结果共64个,此处列出前5个。

表 4-1 Clinvar 提示致病的位点

Sample	Chr	Start	End	Ref	Alt	Gene	Info
KPGP-00245	1	152277475	152277475	G	Т	FLG	Het
KPGP-00245	3	185237074	185237074	G	Т	LIPH	Het
KPGP-00245	5	150227998	150227998	С	Т	IRGM	Hom
KPGP-00245	8	11606312	11606312	Т	С	GATA4	Hom
KPGP-00245	8	11617240	11617240	Α	Т	GATA4	Het

4.2 基于低频的筛选

此次筛选选择 exonic 以及 splicing 区域,去除 clinvar 报道良性的位点,去除同义突变位点,再根据 1000g2015_all 选择突变频率小于 0.01 的位点。得到结果 416 个,此处列出前5 个。

表 4-2 基于低频的筛选

KI LEI MANIME										
Sample	Chr	Start	End	Ref	Alt	Gene	Info			
KPGP-00245	1	1354551	1354551	С	Α	ANKRD65	Het			
KPGP-00245	1	3800118	3800118	Α	G	DFFB	Het			
KPGP-00245	1	12414000	13414080	А	С	PRAMEF10;P	Het			
KPGP-00245		13414080			C	RAMEF33				
KPGP-00245	VDCD 0024E 1 12414001 1241400	13414081	G	٨	PRAMEF10;P	l lot				
KPGP-00245	1	13414081	13414001	G	А	RAMEF33	Het			
KPGP-00245	1 1341	13414152 13414152	10414150	А	т	PRAMEF10;P	Het			
			10414102		l	RAMEF33				

4.3 基于预测软件的筛选

对上述低频结果的软件注释进行分析,选择其中 REVEL(大于 0.45)以及 MCAP(大于 0.025)预测软件认为有害的位点。得到结果 100 个,此处列出前 5 个。

Sample	Chr	Start	End	Ref	Alt	Gene	Info			
KPGP-00245	2	242035520	242035520	С	G	MTERF4	Het			
KPGP-00245	9	88961359	88961359	С	Т	ZCCHC6	Het			
KPGP-00245	12	6933705	6933705	G	А	GPR162	Het			
KPGP-00245	11	6291558	6291558	G	А	CCKBR	Het			
KPGP-00245	16	88729481	88729481	G	С	MVD	Het			

表 4-3 基于预测软件的筛选

4.4 基于临床信息的筛选

可以进一步对上述结果进行基于临床信息的筛选。由于数据来源没有提供临床信息,因此无法进行此步骤。

4.5 富集分析

对候选基因进行富集分析。由于未有临床信息,候选基因不能明确寻找,这里使用基于预测软件筛选的基因进行分析。

图 4-1 GO 细胞组件富集散点图

图 4-2 GO 生物学途径富集散点图

图 4-3 GO 分子功能富集散点图

五、 参考文献

- 1. An ethnically relevant consensus Korean reference genome is a step towards personal reference genomes. Cho YS, et al. Nat Commun. 2016 Nov 24;7:13637. doi: 10.1038/ncomms13637.
- 2. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis. He W, et al. Genet Mol Res. 2013 Dec 4;12(4):6275-83. doi: 10.4238/2013.December.4.15.
- 3. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Leggett RM, et al. Front Genet. 2013 Dec 17;4:288. doi: 10.3389/fgene.2013.00288. Review
- 4. MultiQC: summarize analysis results for multiple tools and samples in a single report. Ewels P, et al. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16.
- Fast and accurate short read alignment with Burrows-Wheeler transform. Li
 H and Durbin R Bioinformatics. 2009 Jul 15;25(14):1754-60. doi:
 10.1093/bioinformatics/btp324. Epub 2009 May 18.
- 6. The Sequence Alignment/Map format and SAMtools. Li H , et al. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8.
- 7. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. McKenna A, et al. Genome Res. 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110. Epub 2010 Jul 19.
- 8. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Okonechnikov K, et al. Bioinformatics. 2016 Jan 15;32(2):292-4. doi: 10.1093/bioinformatics/btv566. Epub 2015 Oct 1.
- 9. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Wang K, et al. Nucleic Acids Res. 2010 Sep;38(16):e164. doi: 10.1093/nar/gkq603. Epub 2010 Jul 3.
- 10. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Ioannidis NM, et al. Am J Hum Genet. 2016 Oct 6;99(4):877-885. doi: 10.1016/j.ajhg.2016.08.016. Epub 2016 Sep 22.
- 11. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Jagadeesh KA, et al. Nat Genet. 2016 Dec;48(12):1581-1586. doi: 10.1038/ng.3703. Epub 2016 Oct 24.
- 12. Gene Ontology Consortium: going forward. Gene Ontology Consortium Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56. doi: 10.1093/nar/gku1179. Epub 2014 Nov 26.
- 13. clusterProfiler: an R package for comparing biological themes among gene clusters. Yu G, et al. OMICS. 2012 May;16(5):284-7. doi: 10.1089/omi.2011.0118. Epub 2012 Mar 28.