

CENTRE NATIONAL D'ORIENTATION ET DE PREPARATION AUX
CONCOURS D'ENTREE DANS LES GRANDES ECOLES ET FACULTES
DU CAMEROUN

Préparation au Concours d'Entrée Au Second Cycle

Travaux Dirigés

ANALYSE RÉELLE II

Avec Intelligentsia Corporation, Il suffit d'y croire!!!

698 222 277 / 671 839 797 **fb:** Intelligentsia Corporation

email: contact@intelligentsia-corporation.com

"Vous n'êtes pas un passager sur le train de la vie, vous êtes l'ingénieur."

-- Elly Roselle --

Instructions:

Il est recommandé à chaque étudiant de traiter les exercices de ce recueil (du moins ceux concernés par la séance) avant chaque séance car **le temps ne joue pas en notre faveur**.

DEVELOPPEMENTS LIMITES

Exercice 1:

Soit f l'application de $U=]-1,1[\cup]1, +\infty[$ dans \mathbb{R} , définie pour tout $x \in U$ par :

$$f(x) = (x^2 - 1) \ln \left| \frac{1+x}{1-x} \right|$$

- 1. Donner le développement limité de f, à l'ordre 3, dans un voisinage de 0.
 - En déduire que le graphe de f admet une tangente (T) au point d'abscisse 0. Donner une équation cartésienne de (T) et préciser la position du graphe par rapport à (T).
- 2. En utilisant un développement asymptotique de f en $+\infty$, démontrer que le graphe de f admet une asymptote (A).

Donner une équation cartésienne de (A) et préciser la position du graphe de f par rapport à (A).

Exercice 2:

Soit f la fonction définie sur \mathbb{R}^* par :

$$f(x) = \frac{\ln(\cosh(x))}{\sinh(x)}$$

- 1) Déterminer le développement limité de f, au voisinage de 0, à l'ordre 3.
- 2) Montrer que f est prolongeable par continuité en 0 et que ce prolongement est dérivable en 0 (on donnera la valeur de f'(0).

Exercice 3:

Soit a un nombre réel et $f:]a; +\infty[\to \mathbb{R}$ une application de classe C^2 . On suppose f et f' bornées; on pose $M_0 = \sup_{x < a} |f(x)|$ et $M_2 = \sup_{x < a} |f''(x)|$.

- 1. En appliquant une formule de Taylor reliant f(x) et f(x + h), montrer que, pour tout x > a et tout a > 0 on $a: |f'(x)| \le \frac{h}{2}M_2 + \frac{2}{h}M_0$
- 2. En déduire que f' est bornée sur $a; +\infty$.
- 3. Établir le résultat suivant : soit $g:]a; +\infty[\to \mathbb{R}$ une application de classe C^2 à dérivée seconde bornée et telle que $\lim_{x \to +\infty} g(x) = 0$. Alors $\lim_{x \to +\infty} g'(x) = 0$.

Exercice 4:

1. Déterminer le développement limité à l'ordre 4, au voisinage de 0 de la fonction définie par :

$$h(x) = \frac{\sin(x) \sinh(x)}{\sin(x^2)}$$

2. En déduire un équivalent de $h(x)^{-1}$ au voisinage de 0.

Exercice 5:

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^5 , impaire, telle que f'(0) = 0 et : $\forall x \in \mathbb{R}$, $\left| f^{(5)}(x) \right| \leq M$. Montrer qu'il existe une constante λ telle que : $\left| f(x) \frac{x}{3} f'(x) \right| \leq \lambda M |x^5|.$
- 2. Soit $f:[a;b] \to \mathbb{R}$ de classe C^5 telle que $f'(a) = f'(b) = f'\left(\frac{a+b}{2}\right) = 0$ et $\forall x \in \mathbb{R}$, $\left|f^{(5)}(x)\right| \le M$. Montrer que $\left|f(a) f(b)\right| \le \frac{M(b-a)^5}{2880}$.

Exercice 6:

- 1. Déterminer le développement limité à l'ordre 6, au voisinage de 0 de la fonction définie par $g(x) = \ln(1+x^3)$
- 2. Déterminer le développement limité à l'ordre 5, au voisinage de 0 de la fonction définie par : $h(x) = \sqrt{1 + x^2} 1$
- 3. En déduire le développement limité à l'ordre 4, au voisinage de 0 de la fonction définie par $f(x) = \frac{g(x)}{h(x)}$
- 4. Montrer que f est prolongeable par continuité en 0 et que la fonction ainsi prolongée est dérivable, on donnera f'(0).

Déterminer la position de la courbe par rapport à la tangente au voisinage de 0

Exercice 7:

Pour a réel fixé on définit la fonction f_a par $f_a(x) = \arctan\left(\frac{x+a}{1-ax}\right)$

- 1. Soit n un entier. Déterminer un développement limité en 0 à l'ordre 2n-1 de la fonction dérivée f_a' .
- 2. En déduire un développement limité à l'ordre 2n de f_a .

Soit k un entier. En utilisant le théorème de Taylor-Young, déduire de la question précédente la valeur de $f_a^{(k)}(0)$.

Exercice 8:

Donner le développement limité en 0 des fonctions :

- $1. x \mapsto ln(cos(x))$ (à l'ordre 6).
- 2. $x \mapsto tan(x)$ (à l'ordre 7).
- $3. x \mapsto \sin(\tan(x))$ (à l'ordre 7).
- $4. x \mapsto (ln(1+x))^2$ (à l'ordre 4).
- $5. x \mapsto exp(sin(x))$ (à l'ordre 3).
- 6. $x \mapsto \sin^6(x)$ (à l'ordre 9)
- 7. $x \mapsto cosx. ln(1 + x)$ à l'ordre 4.

8. $x \mapsto \frac{1}{\cos x}$ à l'ordre 4.

9. $x \mapsto arcsin(ln(1+x^2))$ à l'ordre 6.

10. $x \mapsto \frac{(\sinh x - x)}{x^3}$ à l'ordre 4.

11. $x \mapsto (1+x)^{\frac{1}{1+x}}$ à l'ordre 3.

Exercice 9:

1. Soit f la fonction définie pour tout $x \in \mathbb{R}$ par

$$f(x) = arctan(x)$$

En calculant le développement limité à l'ordre 4, au voisinage de 0 de la fonction dérivée f', en déduire le développement limité de f à l'ordre 5.

2. Calculer le développement limité à l'ordre 2, au voisinage de 0 de la fonction g définie par

$$g(x) = \frac{\arctan(x) - x}{\sin(x) - x}$$

Exercice 10:

Calculer les limites suivantes (sans présupposer leur existence!).

$$a) \lim_{x \to 0} \frac{\sinh(x)}{\sin(x)}$$

$$b) \lim_{x \to 0} \frac{\sin(3x)}{3x - \frac{3}{2}\sin(2x)}$$

a)
$$\lim_{x \to 0} \frac{\sinh(x)}{\sin(x)}$$
 b) $\lim_{x \to 0} \frac{\sin(3x)}{3x - \frac{3}{2}\sin(2x)}$ c) $\lim_{x \to 0} \frac{1 - \cos(x) + \ln(\cos(x))}{x^4}$

$$d) \lim_{x \to 0} \frac{2 \tan(x) - \sin(2x)}{x(1 - \cos(3x))} \qquad e) \lim_{x \to 0} (\cos(x))^{\frac{1}{x^2}} \qquad f) \lim_{x \to 0} \frac{\ln(\cos(2x))}{\ln(\cos(3x))}$$

$$g) \lim_{x \to 0} \left(\frac{1}{x(e^x - 1)} - \frac{1}{x^2}\right) \qquad h) \lim_{x \to 0} \frac{1}{x} \ln\left(\frac{e^x - 1}{x}\right) \qquad i) \lim_{x \to +\infty} \frac{1}{x} \ln\left(\frac{e^x - 1}{x}\right)$$

$$e) \lim_{x\to 0} (\cos(x))^{\frac{1}{x^2}}$$

$$f) \lim_{x \to 0} \frac{\ln(\cos(2x))}{\ln(\cos(3x))}$$

$$g) \lim_{x \to 0} \left(\frac{1}{x(e^x - 1)} - \frac{1}{x^2} \right)$$

$$h) \lim_{x\to 0} \frac{1}{x} \ln\left(\frac{e^x-1}{x}\right)$$

$$i) \lim_{x \to +\infty} \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right)$$

SUITES DE FONCTIO

Exercice | |:

Pour $x \in \left[0, \frac{\pi}{2}\right]$, on pose $f_n(x) = nsin(x)cos^n(x)$

- a) Déterminer la limite simple de la suite de fonction (f_n)
- b) Calculer

$$I_n = \int_0^{\frac{\pi}{2}} f_n(x) dx.$$

La suite converge-t-elle uniformément?

c) Justifier la convergence uniforme sur tout segment inclus dans $\left|0,\frac{\pi}{2}\right|$

Exercice 12: Convergence simple vers une fonction discontinue

Etudier la convergence, éventuellement uniforme, des suites de fonctions définies par :

- a) $f_n: [0,1] \to \mathbb{R}$ avec $f_n(x) = x^n$
- b) $g_n: [0,1] \to \mathbb{R}$ avec $g_n(x) = \frac{nx}{nx+1}$
- c) $h_n: \mathbb{R} \to \mathbb{R}$ avec $h_n(x) = \frac{1}{(1+x^2)^n}$

Exercice 13:

Soit (f_n) la suite de fonction definie sur \mathbb{R}^+ par

$$f_0(x) = x$$
 et $f_{n+1}(x) = \frac{x}{2 + f_n(x)}$

Etudier la convergence simple et uniforme de la suite $(f_n)_{n\geq 0}$ sur \mathbb{R}^+ .

Exercice 14:

Etudier la convergence simple et uniforme de la suite de fonctions (f_n) définies par :

$$f_n: [0,1] \to \mathbb{R}$$

 $x \mapsto x + \frac{x}{1+x} + \dots + \frac{x}{(1+x)^n} = \sum_{k=0}^n \frac{x}{(1+x)^k}$

Exercice 15:

On désigne par $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur \mathbb{R}^+ par \forall $n \in \mathbb{N}$, $\forall x \in \mathbb{R}^+$, $f_n(x) = nxsin(x)e^{-nx}$.

- 1. Montrer que cette fonction converge simplement sur IR vers la fonction nulle.
- 2. Montrer que le fonction $\phi: t \to \phi(t) = te^{-t}$ est décroissante sur [1;+ ∞ [.
- 3. Montrer que la convergence la suite $(f_n)_{n\in\mathbb{N}}$ vers 0 sur $[\frac{\pi}{2}; +\infty[$ est uniforme.
- 4. On se propose maintenant de montrer que la convergence de la suite $(f_n)_{n\in\mathbb{N}}$ est encore uniforme sur $[0;\frac{\pi}{2}]$.
 - a) Calculer pour tout $n \ge 1$, la dérivée de la fonction f_n .
 - b) Montrer que $Vx \in]0; \ 1/n \]$, $f_n{'}(x) > 0$.
 - c) Montrer que sur l'intervalle] $\frac{1}{n}$; $\frac{\pi}{2}$ [, f_n ' s'annule en un unique point $x_n \in]\frac{1}{n}$; $\frac{\pi}{2}$ [
 - d) En déduire les variations de f_n sur l'intervalle $[0; \frac{\pi}{2}]$.
 - e) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers 0 sur \mathbb{R}^+ .

Exercice 16:

Soit $f_n: \mathbb{R}^+ \to \mathbb{R}$ definie par :

$$f_n(x) = (1 + \frac{x}{n})^{-n}$$

a) Etudier la limite simple de f_n et montrer que $\forall x \in \mathbb{R}^+, f_n(x) \geq \lim f_n(x)$

b) En partant de l'encadrement suivant valable pour tout $t \in \mathbb{R}^+$,

$$t - \frac{t^2}{2} \le \ln(1+t) \le t$$

Justifier que la suite f_n converge uniformément sur tout intervalle $[\mathbf{0}; \mathbf{a}]$ ($\mathbf{avec} \ \mathbf{a} > \mathbf{0}$).

c) Etablir qu'en fait, la suite de fonction (f_n) converge uniformément sur \mathbb{R}^+

Exercice 17:

Pour $n \in N^*$ et $x \in [-1; 1]$ on pose $u_n(x) = \frac{x^n \sin nx}{n}$.

- 1. Montrer que la série $\sum_{n\geq 1} u_n(x)$ converge uniformément sur [-1;1] vers une fonction continue f.
- 2. Justifier la dérivabilité de fsur]-1;1[et calculer f'(x). En déduire f(x).
- 3. En déduire la valeur de $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.

Exercice 18:

Soit $(f_n)_{n\geq 0}$ une suite de fonctions définie par : $f_n(x)=\frac{1}{1+(x+n)^2}$

- 1. Étudier la convergence simple de $(f_n)_{n\geq 0}$ en 0.
- 2. Étudier la convergence uniforme de $(f_n)_{n\geq 0}$ sur \mathbb{R} .
- 3. Étudier la convergence uniforme de $(f_n)_{n\geq 0}$ sur \mathbb{R}^+ .

Exercice 19: Convergence uniforms et integration

Soit $f_n \colon [0,1] \to \mathbb{R}$ définie par :

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{pour } x \in \left[0, \frac{1}{n}\right] \\ 0 & \text{sinon} \end{cases}$$

- 1. Etudier la limite simple de la suite $(f_n)_{n \in \mathbb{N}}$.
- 2. Calculer:

$$\int_0^1 f_n(t)dt$$

Y a-t-il convergence uniforme de la suite de fonction $(f_n)_{n\in\mathbb{N}}$?

Etudier la convergence uniforme sur [a, 1] avec a > 0

PRIMITIVES ET INTEGRALES

Exercice 20:

Soit f une fonction continue sur un intervalle [a, b], $a \le b$.

- 1. Démontrer que si f est positive sur [a, b] alors $\int_a^b f(x) dx \ge 0$.
- 2. Démontrer que si f est positive sur [a,b] et si $\int_a^b f(x) dx = 0$ alors f est nulle sur [a,b].
- 3. Soit g une fonction numérique continue sur [0,1]. On considère la fonction dans un repère orthonormé d'origine O(0,0).

Montrer que la fonction h est impaire dans le nouveau repère d'origine

$$K\left(\frac{\pi}{2},0\right)$$

En déduire que $\int_0^{\pi} h(x) dx = 0$

Exercice 21:

Soit $I_n = \int_0^{\frac{\pi}{2}} sin^n t \, dt$

- 1. Établir une relation de récurrence entre I_n et I_{n+2} .
- 2. En déduire I_{2p} et I_{2p+1} .
- 3. Montrer que $(I_n)_{n\in\mathbb{N}}$ est décroissante et strictement positive.
- 4. En déduire que $I_n \sim I_{n+1}$.
- 5. Calculer nI_nI_{n+1} .
- 6. Donner alors un équivalent simple de I_n .

Exercice 22:

- I- On pose $I_1 = \int_0^{\pi} \sqrt{1 + \cos x} \, dx$ et $I_2 = \int_0^{2\pi} \sqrt{1 + \cos x} \, dx$
 - 1) Démontrer que I_2 =2 I_1
 - 2) En déduire la valeur de I_2
- II- Calculer les intégrales

a)
$$\int_0^e \frac{\arctan(lnx)}{x} dx$$
;

b)
$$\int \frac{x}{(1+x^2)^2} dx$$
;

c)
$$\int_0^1 t^7 Arctan(t) dt$$
;

d)
$$\int x(\cos x)^{2003} \sin x \, dx;$$

e)
$$\int \sqrt{t\sqrt{t\sqrt{t}}} dt$$

Exercice 23:

Calculer les intégrales :

a)
$$\int_0^{\ln 4} \sqrt{e^x - 1} \, dx$$

b)
$$\int \frac{2\cos\theta}{3-2\cos2\theta} d\theta$$

C)
$$\int \frac{du}{\sin^4 u - \cos^4 u}$$

$$d$$
) $\int \frac{\tan x - \tan a}{\tan x + \tan a} dx$

$$e)\int \frac{dx}{th^2x}$$

f)
$$\int \frac{dx}{x\sqrt{x^2+x+1}}$$

$$g) \int \frac{\sqrt[3]{x+1} - \sqrt{x+1}}{x+2} dx$$

$$h) \int \frac{x+1}{\sqrt{-4x^2+4x+1}} \, dx$$

i)
$$\int \frac{xdx}{\cos^2 x}$$

j) $\int \cosh t \sin t \, dt$

$$\mathsf{k}) \int_{1-\frac{\pi^2}{4}}^{1} \cos\left(\sqrt{1-t}\right) dt$$

$$1) \int_{-1}^{1} \sqrt{1 + |x(1 - x)|} \, dx$$

$$m) \int_0^{\frac{\pi}{2}} \cos px \sin qx \, dx$$

$$n) \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^n x} \ n \in \mathbb{N}$$

o)
$$\int_{0}^{2} \frac{dx}{x^{4}+1}$$

Exercice 24:

1) Soient les fonctions

$$f_1(x) = \frac{x^6 - 2x^5 + x^4 - x^3 - 5x^2 - 4x + 1}{x^5 - 3x^4 + 3x^3 - x^2}$$
 et $f_2(x) = \frac{25}{(x+1)^2 (x^2 + 4)}$

Déterminer une primitive de f_1 et f_2

2) Calculer les intégrales

$$J = \int \frac{dx}{4 + \cos x} \quad \text{et} \quad K = \int_0^1 x^2 \sqrt{1 - x^2} \, dx$$

Exercice 25:

Décomposez en éléments simples et calculer les primitives des fractions rationnelles suivantes. On précisera les domaines sur lesquels ces primitives sont calculées.

1.
$$F_1(x) = \frac{4x^7 + 2x^4 - 2}{x^4 - 1}$$

2.
$$F_2(x) = \frac{x^2 - 4x + 3}{x - 2}$$

3. Calculer les primitives suivantes
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x} dx$$
 et $J = \int \frac{x^7}{(1 + x^4)^2} dx$

Exercice 26:

On souhaite calculer $F(x) = \int \frac{x}{\sqrt{x+1} + \sqrt[3]{x+1}} dx$.

- 1) Pour $m \in \mathbb{N}^*$ fixé, effectuer dans F(x) le changement de variable x + 1 = um.
- 2) En choisissant une valeur particulière appropriée de m, en déduire F(x).

Exercise 27: NATURE DES INTEGRALES IMPROPRES

On pose $I = \int_1^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ où α est un réel strictement positif. L'objectif principal de cet exercice est de montrer que l'intégrale I est convergente mais pas absolument convergente. On dit dans ce cas que l'intégrale I est semi-convergente.

- 1. On suppose α> 1. Montrer en utilisant une majoration par une intégrale de Riemann que l'intégrale *l* est absolument convergente. En déduire que l'intégrale *l* est convergente.
- 2. On suppose $0 < \alpha \le 1$. Montrer en utilisant une intégration par parties que l'intégrale l est de même nature que l'intégrale

$$\int_{1}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt$$

En déduire que l'intégrale I est convergente.

3. En déduire que l'intégrale l est toujours convergente.

On va maintenant montrer que l'intégrale I n'est pas absolument convergente

- 4. On suppose que $0 < \alpha \le 1$. Démontrer que $|sint| \ge sin^2t$ pour tout $t \in [1, +\infty[$ et en déduire que $0 \le \frac{sin^2t}{t^\alpha} \le \frac{|sint|}{t^\alpha}$ pour tout $t \in [1, +\infty[$
- 5. Montrer que l'intégrale $\int_1^{+\infty} \frac{\sin^2 t}{t^{\alpha}} dt$ est divergente et en déduire d'après le critère de comparaison que l'intégrale $\int_1^{+\infty} \frac{|sint|}{t^{\alpha}} dt$ est divergente
- 6. En déduire que l'intégrale I est semi-convergente

EQUATIONS DIFFERENTIELLES

Exercice 28:

On considère l'équation différentielle

$$ch(x)y' + sh(x)y = 1 + (2x + 1)e^{2x}$$
 (E)

- 1. Résoudre l'équation homogène sur \mathbb{R} .
- 2. A l'aide de la variation de la constante, trouver une solution particulière de (E)
- 3. Vérifier que $y_p(x) = 2xe^x$ est une solution particulière de (E).
 - 4. Déterminer la solution de (E) telle que y (ln2) = 0.

Exercice 29:

Trouver les solutions réelles des équations différentielles suivantes :

1.
$$(1 + x^2)y' - xy = 0$$

2.
$$y' + ytan x = 0$$
, pour x dans] $-\frac{\pi}{2}$; $\frac{3\pi}{2}$ [

$$3. t^2 y' + y = 1$$

4.
$$xy' - 2y = x^4$$

5.
$$x(1+x^2)y'=y$$

6.
$$(x^2 + 1)y' + (x - 1)^2y = x^3 - x^2 + x + 1$$

7.
$$(e^x - 1)y' + (e^x + 1)y = 3 + 2e^x$$

8.
$$x^2y' - x^2y^2 = xy + 1$$

9.
$$(1-x^2)y'-2xy=x^2$$

10.
$$|x|y' - (x-1)y = x^3$$

Exercice 30:

On considère l'équation différentielle

$$(1 + 2x)y'' + (4x - 2)y' - 8y = 0$$

- 1. Déterminer une solution de l'équation de la forme $y(x) = e^{\alpha x}$ où $\alpha \in \mathbb{R}$
- 2. On pose alors $y(x) = e^{\alpha x} z(x)$. Quelle est alors l'équation différentielle vérifiée par z ?
 - 3. En déduire les solutions de (*E*) sur $]-\frac{1}{2}$; $+\infty[$.
 - 4. Déterminer la solution qui vérifie y(0) = 1 et la tangente en x = 0 coupe l'axe 0x au point d'abscisse x = 1.

Exercice 31:

Intégrer les équations suivantes :

1.
$$y'' - y' - e^{2x}y = e^{3x}$$
 (poser $u = e^x$).

2.
$$y'' - \left(6x + \frac{1}{x}\right)y' + 8x^2y = x^4$$
 (poser $u = x^2$).

- 3. $x(1-2\ln x)y''+(1+2\ln x)y'-\frac{4}{x}y=0$ (chercher une solution de la forme $y=x^{\alpha}$).
- 4. $x^2y'' 2xy' + 2y = 2 + 2x^3 \sin x$ (poser $u = \ln x$).
- 5. x(x+1)y''-y'-2 $y=3x^2$ (chercher une solution de l'équation homogène de la forme $y=x^{\alpha}$).
- 6. $x^2y'' 4xy' + (2 x^2)y = 1$ (poser $y = \frac{u}{x^2}$).
- 7. $(x^2+3)y'' + xy' y = 1$ (chercher les solutions polynomiales).
- 8. xy'' 2y' xy = 0 (dériver deux fois).

Exercice 32: MODEUSATION ET MISE EN EQUATIONS DIFFERENTIEUES

- I. On considère le champ de vecteurs \vec{U} de IR^3 suivant, où $(\vec{i}, \vec{j}, \vec{k})$ est la base orthonormée canonique :
- $\vec{U}(x,y,z) = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$. Les réels a,b et c sont des constantes. On voudrait que \vec{U} soit un champ de gradient qui dérive d'un potentiel scalaire f(x,y,z). On peut alors écrire $\vec{U} = \overrightarrow{grad}f$, où $\overrightarrow{grad}f$ est un vecteur de IR^3
- 1) Déterminer les réels a, b et c tels $que \overrightarrow{rot} \overrightarrow{U} = \overrightarrow{0}$ et écrire le système à dérivées partielles correspondant, issu de la relation $\overrightarrow{U} = \overrightarrow{grad}f$
- 2) Résoudre ce système à dérivées partielles et déterminer la fonction $f: IR^3 \to IR$ telle que f(1,0,-1)=3
- II. Un réservoir d'une capacité de 1000 gallons contient à $t=0\,$ 500 gallons d'une saumure contenant 50 livres de sel. A à t=0, de l'eau pure est ajoutée à un débit de 20 gal/min et la solution obtenue est évacuée avec un débit de 10 gal/min. Soit x(t) la quantité d'eau à un instant quelconque dans le réservoir et Soit y(t) la quantité de sel par gallon dans le réservoir à un instant quelconque. Remarque 1 livre = 453.6 grammes et 1 gallon = 3.8 litres (USA) = 4.5 litres (GB).
- 1) Ecrire l'équation de la variation de la quantité d'eau x(t) en fonction du temps et déterminer le temps au bout duquel le réservoir se remplit.
- 2) Ecrire l'équation de la variation de la quantité de sel y(t) en fonction du temps et déterminer la quantité de sel qu'il aura dans le réservoir quand il commencera à déborder.

Exercice 33:

On considère l'équation différentielle $(E): ax^2y'' + bxy' + cy = 0 \ (a, b, c réels, a \neq 0)$ pour $x \in]0, +\infty[$.

- 1. Soit y une fonction deux fois dérivable sur $]0, +\infty[$. Pour $t \in \mathbb{R}$, on pose $z(t) = y(e^t)$. Vérifier que y est deux fois dérivable sur $]0, +\infty[$ si et seulement si z est deux fois dérivable sur \mathbb{R} .
- 2. Effectuer le changement d'inconnue précédent dans l'équation différentielle (E) et vérifier que la résolution de (E) se ramène à la résolution d'une équation linéaire du second ordre à coefficients constants.

3. Résoudre sur]0, $+\infty$ [, l'équation différentielle $x^2y'' - xy' + y = 0$.

Exercice 34:

1. Soit $m \in \mathbb{R}$. Déterminer la solution de l'équation :

$$(E_m): \ y'' - 2y' + (1+m^2)y = (1+4m^2)\cos mx$$
 qui vérifie $y(0) = 0 \ et \ y'(0) = 1$

2. Trouver les $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivables telles que :

$$\forall x \in \mathbb{R}, f'(x) + f(-x) = x.$$

- 3. Modélisation mathématique
 - a) L'accroissement de la population **P** d'un pays est proportionnel à cette population. La population double tous les 50 ans. En combien de temps triple-t-elle ?
 - b) La vitesse de dissolution d'un composé chimique dans l'eau est proportionnelle à la quantité restante. On place 20g de ce composé, et on observe que 5min plus tard, il reste 10g. Dans combien de temps restera-t-il seulement 1g?

Exercice 35:

On considère la fonction g de la variable réelle x et l'équation différentielle suivante : $\cos^2 x f''(x) + 2\cos x \sin x f'(x) + 2f(x) = x \cos^3(x)$ (E)

On pose $f(x) = g(x) \cos x$

- 1. Montrer que l'équation (E) est équivalente à g''(x) + g(x) = x (E')
- 2. En déduire f(x) sachant que f(0) = f'(0) = 1
- 3. On considère l'équation différentielle $y' 2y = 2(2e^{2x} 1)$ (F). Montrer que la fonction h définie sur \mathbb{R} par h(x) = $4xe^{2x} + 1$ est une solution de (F).
- 4. On pose y = z + h. Montrer que la fonction y est solution de (F) si et seulement si z est solution de l'équation z' 2z = 0.
- 5. Résoudre dans \mathbb{R} l'équation z' 2z = 0 et en déduire les solutions de (F).
- 6. Soit g la fonction définie sur \mathbb{R} par $g(x) = (2x 1)e^{2x} + 1$. Etudier les variations de g et en déduire son signe sur IR
- 7. Calculer l'intégrale $\int_0^{\frac{1}{2}} [1 g(x)] dx$.
- 8. Faire une interprétation graphique des deux dernières questions.

ALGEBRE LINEAIRE

SYSTEMES D'EQUATIONS LINEAIRES

Exercice 1:

Résoudre les systèmes d'équations suivants :

$$(S1): \begin{cases} x+y-z=0 \\ x-y=0 \\ x+4y+z=0 \end{cases}$$

$$(S2): \begin{cases} 3x-y+2z=a \\ -x+2y-3z=b \ (a,b,et \ c \in \mathbb{R}) \\ x+2y+z=c \end{cases}$$

$$(S3): \begin{cases} 3x+2z=0 \\ 3y+z+3t=0 \\ x+y+z+t=0 \\ 2x-y+z-t=0 \end{cases}$$

Exercice 2:

Trouver tous les polynômes $f(x) = ax^2 + bx^3 + cx + d$ satisfaisant f(-1) = 0, f(0) =5, f(1) = 4 et f'(1) = 0.

Exercice 3:

On considère un rectangle satisfaisant les conditions suivantes : Si on augmente de 5m la largeur d'un rectangle et de 4m sa longueur, son aire augmente de $180m^2$. Si on diminue sa largeur de 2m et sa longueur de 3m, l'aire diminue de $72m^2$. Calculez les dimensions du rectangle.

Exercice 4:

Pour chacun des systèmes ci-dessous,

- 7. Déterminer s'il est compatible
- 8. S'il est compatible, donner l'ensemble de ses solutions.
- 9. S'il est compatible, donner une solution particulière et une base de solutions du système homogène associé

$$(S1): \begin{cases} x + 2y + 3z = 10 \\ 2x + y - z = 3 \\ -x + 3y + 2z = 5 \end{cases}$$

$$(S2): \begin{cases} 3x - 4y + 5z = 1 \\ 7x - 2y - 4z = 3 \\ -x - 6y + 14z = 8 \end{cases}$$

$$(S2): \begin{cases} 3x - 4y + 5z = 1\\ 7x - 2y - 4z = 3\\ -x - 6y + 14z = 8 \end{cases}$$

$$(S3):\begin{cases} 6x + 10y + 4z - 7t = -33 \\ 7x + 9y + 10z + 12t = 57 \\ 4x + 5y + 6z + 8t = 38 \end{cases} (S4):\begin{cases} 4x + 5y + 3z + 21t = 18 \\ 3x + 3y + 4z + 27t = 10 \\ 2x + 2y + 3z + 20t = 10 \\ 18x + 22y + 15z + 104t = 85 \end{cases}$$

Exercice 5:

Résoudre les systèmes suivants en fonction des valeurs du paramètre

$$(S1): \begin{cases} x+y+(1-t)s = t+2\\ (1+t)x-y+2z = 0\\ 2x-ty+3s = t+2 \end{cases} (t \in \mathbb{R})$$

$$(S2): \begin{cases} 2x+my-z = -2\\ x-z = -3\\ x+2y+mz = 1 \end{cases} (m \in \mathbb{R})$$

$$(S3): \begin{cases} x+y+mz = 1 \\ x+my+z = 1 \\ mx+y+z = -2 \end{cases} (m \in \mathbb{R}) \quad (S4): \begin{cases} x+my+(m-1)z = m+1 \\ (2-3m)y+(3-2m)z = -3m \\ m(2-m)y+m(3-m)z = m-m^2 \end{cases} (m \in \mathbb{R})$$

ALGEBRE MATRICIELLE

Exercice 6:

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$

- 1. On suppose que $tr(AA^T) = 0$. Que dire de la matrice A.
- 2. On suppose que, pour tout $X\in\mathcal{M}_n(\mathbb{R})$, on a tr(AX)=tr(BX) . Démontrer que A=B.

Exercice 7:

- 1. Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Montrer que $A^2 = 2I_3 A$, en déduire que A est inversible et calculer A^{-1}
- 2. Soit $A=\begin{pmatrix}1&0&2\\0&-1&1\\1&-2&0\end{pmatrix}$. Calculer A^3-A , en déduire que A est inversible puis déterminer A^{-1}
- 3. Soit $A=\begin{pmatrix}0&1&-1\\-1&2&-1\\1&-2&0\end{pmatrix}$. Calculer $A^2-3A+2I_3$, en déduire que A est inversible et calculer A^{-1} .

Exercice 8:

- 1. Déterminer la condition pour que l'inverse de (I A) soit $(I + A + A^2)$.
- 2. Soient A et B deux matrices carrées n*n. Démontrer que si AB=KI, où $k \in \mathbb{R}^*$, alors AB = BA.

Exercice 9:

Déterminer si possible par la méthode de GAUSS-JORDAN les inverses des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Exercice 10:

On considère la matrice carrée M définie par $M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$.

- 1. Vérifier que (M-I)(M+3I)=0. En déduire M^n , pour tout n de \mathbb{N} .
- 2. Vérifier que l'expression obtenue pour M^n est encore valable si n < 0.

Exercice | |:

1. Donner les valeurs possibles du rang des matrices suivantes :

$$\begin{bmatrix} \theta & 3 & -2 \\ 2 & 3 & -1 \\ -1 & -2 & \theta \end{bmatrix} (\theta \in \mathbb{R}) \qquad \begin{bmatrix} 1 & 1 & 1 & \alpha \\ 1 & 1 & \alpha & 1 \\ 1 & \alpha & 1 & 1 \\ \alpha & 1 & 1 & 1 \end{bmatrix} (\alpha \in \mathbb{R}) \quad \begin{bmatrix} 3 & 1 & -4 & 6 \\ 1 & 1 & 4 & 4 \\ 1 & \alpha & -4 & 0 \end{bmatrix} (\alpha \in \mathbb{R})$$

2. Donner la condition d'invisibilité des matrices suivantes :

$$\begin{bmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{bmatrix} \qquad \begin{bmatrix} u & v & v & v \\ v & u & v & v \\ v & v & u & v \\ v & v & v & u \end{bmatrix}$$

Exercice 12:

$$A_{1} = \begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 & 5 & 6 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 0 & 7 & -2 & 4 & 8 & -5 \\ 1 & 0 & 0 & 5 & 2 & 3 \\ 2 & 0 & 0 & 3 & 5 & 4 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} 1 & 0 & 0 & 5 & 5 & 7 \\ 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 5 & 2 & 3 \\ 4 & 0 & 0 & 5 & 0 & 7 \\ 0 & 0 & -8 & 0 & 4 & 3 \end{pmatrix}$$

- 1) Donner les profondeurs des lignes de A_i . La matrice A_i est-elle échelonnée ?
- 2) Calculer un échelonnement M_i de A_i .
- 3) Déterminer les colonnes principales et les colonnes auxiliaires de M_i .
- 4) Donner le rang de A_i .
- 5) Calculer l'échelonnement réduit B_i de A_i

Exercice 13:

1. Déterminer le rang de chacune des matrices suivantes

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 4 & 2 \\ 3 & 4 & 5 & 2 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 2 & 1 & 2 \\ -2 & -3 & 0 & -5 \\ 4 & 9 & 6 & 7 \\ 1 & -1 & -5 & 5 \end{pmatrix} \qquad E = \begin{pmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 7 & -6 \end{pmatrix}$$

2. Déterminer suivant la valeur du réel a le rang de la matrice suivante :

$$F = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 & 1 \\ a^2 & a^3 & 1 & a \\ a^3 & 1 & a & a^2 \end{pmatrix}$$

Exercice 14:

On considère la matrice $A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$

- 1. Montrer que le polynôme $x^2 5x + 4$ est un polynôme annulateur de A.
- 2. En déduire que A est inversible et calculer son inverse.
- 3. Pour $n \ge 2$ déterminer le reste de la division euclidienne de X^n par $x^2 5x + 4$.

En déduire l'expression de A^n pour tout $n \ge 2$.

DETERMINANTS

Exercice 15:

Calculer les déterminants des matrices suivantes :

$$\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix} \quad \begin{bmatrix} 4 & 2a & 2a^2 \\ 2 & b & b^2 \\ 4 & 2c & 2c^2 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & cosc & cosb \\ 1 & cosc & 1 & cosa \\ 1 & cosb & cosa & 1 \end{bmatrix} \qquad \begin{bmatrix} 1+a & b & c \\ a & 1+b & c \\ a & b & 1+c \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ac & bc \end{bmatrix} . \text{ Avec } a,b,c \text{ des nombres réels.}$$

Exercice 16:

Soit $A \in M_n(\mathbb{R})$ telle que $A^3 + A^2 + A + I_n = 0$.

- 1. Montrer que det $(A) \neq 0$ et calculer A^{-1} connaissant A.
- 2. Montrer que $A^2 + I_n$ n'est pas inversible

ESPACES VECTORIELS

Exercice 17:

Considérons les vecteurs de \mathbb{R}^2 : $\vec{u}_1=(1,-1), \vec{u}_2=(2,3), \vec{u}_3=(4,5).$

- 10. Calculer les combinaisons linéaires suivantes : $3\vec{u}_1 + 2\vec{u}_2 \vec{u}_3$, $-\vec{u}_3 + 5\vec{u}_2 4\vec{u}_3$, $2\vec{u}_1 + 9\vec{u}_2 5\vec{u}_3$, $et\ \vec{u}_1 + \vec{u}_2 + 6\vec{u}_3$.
- 11. Déduire d'un calcul précédent que \vec{u}_3 est combinaison linéaire de \vec{u}_1 et \vec{u}_2 . 3. En déduire que vect $(\vec{u}_1, \vec{u}_2, \vec{u}_3) = vect$ (\vec{u}_1, \vec{u}_2) .

Exercice 18:

Parmi les parties suivantes de \mathbb{R}^3 , lesquelles sont des sous-espaces vectoriels de \mathbb{R}^3 ? Pour chacun de ces sous-espaces vectoriels, trouver une famille génératrice.

$$1. A = \{ (x, y, z) \in \mathbb{R}^3 : xyz = 0 \}.$$

$$2.B = \{ (x, y, z) \in \mathbb{R}^3 : 3x + 2y + 5z = 0 \}.$$

$$3.C = \{ (x, y, z) \in \mathbb{R}^3 : x + y + z = 4 \}.$$

$$4.D = \{ (x, y, z) \in \mathbb{R}^3 : x + 2z = 0 \text{ et } y - 3z = 0 \}.$$

Exercice 19:

Posons $V = \{(x, y, z) \in \mathbb{R}^3 : 8x - 18y + 7z = 0\}, \vec{u} = (1,2,4) \text{ et } \vec{v} = (-3,1,6).$

- 1. Vérifier que V est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Vérifier que $\vec{u} \in V$ et $\vec{v} \in V$.
- 3. Montrer que $(\vec{u},\,\vec{v})$ est une famille génératrice de V .

Exercice 20:

On considère l'espace vectoriel $E=\mathcal{C}^\infty(\mathbb{R})$ et les vecteurs $f_1,f_2,f_3,f_4\in E$ donnés par :

$$f_1: x \mapsto ch x$$
, $f_2: x \mapsto sh x$ $f_3: x \mapsto xch x$ $f_4: x \mapsto xsh x$

- 1. Déterminer la dimension du sous-espace vectoriel F de E engendré par la famille $f=(f_1,f_2,f_3,f_4)$.
- 2. Soit $\varphi: f \mapsto f''' 2f'' + f' f$ Montrer que $\varphi \in \mathcal{L}(E)$.
- 3. Déterminer la matrice de ϕ dans la base f .
- 4. φ est-elle un automorphisme de F dans F ? Si oui, déterminer la matrice de φ^{-1} dans la base f.
- 5. Trouver une solution particulière de l'équation différentielle : f''' 2f'' + f' f = shx + xchx

Exercice 21:

Soit $\varphi: P \mapsto XP' + P$ où P est un polynôme.

- 1. Prouver que $\varphi \in \mathcal{L}(\mathbb{R}_3[X])$
- 2. Calculer la matrice de φ dans la base canonique de $\mathbb{R}_3(X)$.
- 3. Démontrer que cette matrice est inversible et calculer son inverse.
- 4. En déduire que φ est bijective et calculer l'image réciproque de chacun des éléments de la base canonique de $\mathbb{R}_2[X]$ par φ

Exercice 22:

Dans le \mathbb{R} – espace vectoriel \mathbb{R}^4 , muni de sa base canonique, on considere les vecteurs :

$$\vec{A} = (1,1,2,1), \ \vec{B} = (1,-1,0,1), \ \vec{C} = (0,0,-1,1), \vec{D} = (1,2,2,0), \vec{V} = (1,1,1,1).$$

- 1. Montrer que les vecteurs \vec{A} , \vec{B} , \vec{C} , \vec{D} forment une base de \mathbb{R}^4 .
- 2. Donner les coordonnées de \vec{V} dans cette base.
- 3. Donner la matrice de passage de cette base à la base canonique de \mathbb{R}^4 .

Exercice 23:

Soit f l'application définie par :

$$f(x, y, z, t) = (x + y + t, x - z + 2t, y + z - t, y + z - t).$$

- 1. Montrer que l'application f est un endomorphisme de \mathbb{R}^4 .
- 2. Ecrire la matrice A de f dans la base canonique de \mathbb{R}^4 .
- 3. Déterminer une base (v1, v2) de Ker f et en déduire sa dimension.
- 4. En déduire le rang de f.
- 5. Montrer que $\mathbb{R}^4 = Im f \oplus Ker f$.
- 6. Montrer qu'il existe $(v_3, v_4) \in Im f \times Im f$ tel que :

$$f(v_3) = -v_3 et f(v_4) = 2v_4.$$

- 7. Montrer que $\{v\} = \{v_1, v_2, v_3, v_4\}$ forme une base de \mathbb{R}^4 .
- 8. On note $\underbrace{f \circ f \circ \dots \circ f = f^n}_{n \ fois}$ la composée n^e de l'application f.

Calculer les matrices de f^2 et f^3 dans la base canonique de \mathbb{R}^4 . En déduire que $f^3 = f^2 + 2f$

Exercice 24:

Soit E un K-espace vectoriel muni d'une base $e=(e_1,e_2,e_3)$. On considère f l'endomorphisme de E dont la matrice dans la base e est $A=\begin{pmatrix} 3 & -2 & -4 \\ 1 & 0 & -2 \\ 1 & -1 & -1 \end{pmatrix}$

- 1. Calculer A^2 . Que peut-on en déduire au sujet de f?
- 2. Déterminer une base de Imf et de Kerf.
- 3. Prouver de deux façons différentes que Imf et Kerf sont supplémentaires dans E.

4. Quelle est la matrice de f relativement à une base adaptée à la supplémentarité de Imf et de Kerf .

Exercice 25:

On considère les vecteurs u=(2,1,-1), v=(1,-1,3), w=(3,3,-5) du \mathbb{R} -espace

Vectoriel \mathbb{R}^3 . Soit $F = vect(\{u, v, w\})$ le sous-espace vectoriel engendré par $\{u, v, w\}$.

- 1. Déterminer une base de F.
- 2. On définit l'application f de l'espace vectoriel \mathbb{R}^3 dans lui-même, en posant, pour tout vecteur $x = (\alpha, \beta, \gamma)$ de \mathbb{R}^3 :

$$f(x) = (3\alpha + \gamma, \alpha - \beta + \gamma, -3\alpha - 3\beta + \gamma)$$

Montrer que f est un endomorphisme de \mathbb{R}^3 .

- 3. Déterminer une base de Ker(f) et une base de Im(f).
- 4. A-t-on $\mathbb{R}^3 = Ker(f) \oplus Im(f)$?
- 5. Les vecteurs u, v, w, sont-ils des éléments de Im(f)?
- 6. Déterminer une base et la dimension de $F \cap Im(f)$.

VALEURS ET VECTEURS PROPRES

Exercice 26:

Soit A une matrice carrée d'ordre n.

On suppose que A est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de A.

- 1. Démontrer que $\lambda \neq 0$.
- 2. Démontrer que si \vec{x} est un vecteur propre de A pour la valeur propre λ alors il est vecteur propre de A^{-1} de valeur propre λ^{-1}

Exercice 27:

Soit M la matrice réelle 3×3 suivantes :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de M.
- 2. Montrer que *M* est diagonalisable.
- 3. Déterminer une base de vecteurs propres et *P* la matrice de passage.
- 4. On a $D = P^{-1}MP$, pour $k \in \mathbb{N}$ exprimer M^k en fonction de D^k , puis calculer M^k

Exercice 28:

Soit M une matrice 5×5 réelle dont le polynôme caractéristique est :

$$P(X) = (X+1)^2(X-2)^3$$

- 1. Quelles sont les valeurs propres de M?
- 2. M est-elle diagonalisable?
- 3. On suppose de plus que les sous-espaces propres sont de dimension 2. Que conclure ?

Exercice 29:

Soit
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

- 1. Déterminer a, b, c et d tels que $det(A xI) = ax^3 + bx^2 + cx + d$.
- 2. En considérant la réponse obtenue en 1), calculer det (A).
- 3. Démontrer que $A^{-1} = \frac{1}{8}(-A^2 + 5A 2I)$
- 4. Utiliser 3) pour déterminer A^{-1} .
- 5. Déterminer les valeurs propres de A.
- 6. Vérifier que $\sum_{i=1}^{3} \lambda_i = Tr(A)$ et que $\prod_{i=1}^{3} \lambda_i = \det(A)$

AUTRES EXERCICES

Exercice 30:

On considère la suite $(u_n)_{n\in \mathbb{N}}$ définie par $u_0=0$, $u_1=1$ et par la relation de récurrence

$$u_{n+1} = \frac{1}{2}(u_n + u_{n-1})$$

1. Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que pour tout $n \geq 1$ on ait

$$\binom{u_{n+1}}{u_n} = A^n \binom{u_1}{u_0}.$$

Justifier.

- 2. Déterminer le polynôme caractéristique $P_A(X)$ de A et calculer ses racines λ_1 et λ_2 .
- 3. Soit $R_n(X) = a_n X + b_n$ le reste de la division euclidienne de X_n par $P_A(X)$.

Calculer a_n et b_n (on pourra utiliser les racines λ_1 et λ_2 .).

1. Montrer que A^n = a_nA + b_nI_2 , en déduire que la matrice A^n converge lorsque n tend vers + ∞ vers une limite A_∞ que l'on déterminera. Calculer $\lim_{n\to\infty}u_n$.

Exercice 31:

On désigne par $B = \{e_1, e_2, e_3\}$ une base de \mathbb{R}^3

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base B est :

$$A = \begin{pmatrix} -8 & -8 & -12 \\ -2 & 0 & -2 \\ 9 & 8 & 13 \end{pmatrix}$$

- 1. Déterminer Ker (f); Donner la dimension et une base de Ker (f).
- 2. Quel est le rang d e f? Donner une base de Im (f).
- 3. Montrer que $\mathbb{R}^3 = Im(f) \oplus Ker(f)$.
- 4. On considère les 3 vecteurs :

$$v_1 = e_1 - e_2 - e_3$$
, $v_2 = -6e_1 + 3e_3$, $v_3 = 2e_1 + e_2 - 2e_3$

Montrer que $\{v_1, v_2, v_3\}$ est une base B' de \mathbb{R}^3 .

5.

a. On pose $w = -4e_1 - 6e_2 + 7e_3$.

Calculer f(w) en fonction de w.

b. Exprimer f (v_1) , f (v_2) , f (v_2) , en fonction de v_1 , v_2 , v_3 .

Donner la matrice A ' de f dans la base B '.

- 6. Ecrire la matrice de passage P de la base B à la base B. Calculer P^{-1}
- 7. Retrouver A ' en utilisant P et P^{-1}

Exercice 32:

 \mathbb{R}^4 est rapporté à sa base canonique $e = \{e_1, e_2, e_3, e_4\}$. f est l'endomorphisme de matrice M dans cette base :

$$M = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 4 & -6 & 4 & 4 \\ 4 & -4 & 2 & 4 \\ 0 & -4 & 4 & 2 \end{pmatrix}$$

- 1. Quelle est la matrice de $g = f^2$ dans la base {e} ?
- 2. Quels sont les vecteurs propres et les valeurs propres de g?
- 3. Montrer que si λ est une valeur propre de f, alors $\mu = \lambda^2$ est valeur propre de g.
- 4. En déduire les seules valeurs propres possibles pour f.
- 5. Pour un vecteur x quelconque de *E*, montrer que :

$$f(x) + 2x \in \ker(f - 2id_E)$$

$$f(x) - 2x \in \ker(f + 2id_E)$$

- 6. Construire un système de générateurs de E formé de vecteurs propres de f.
- 7. Diagonaliser *f*, soit directement, soit en utilisant ce qui précède.

Exercice 33:

- 1. La matrice A définie par $A = \begin{pmatrix} cosacosb & -sina & -cosasinb \\ sinacosb & cosa & -sinasinb \\ sinb & 0 & cosb \end{pmatrix}$ est :
 - a. toujours inversible
 - b. est nilpotente d'indice 4
 - c. diagonalisable
 - d. aucune réponse

- 2. Le rang de la matrice A^k , avec $A = \begin{pmatrix} cosa & -sina \\ sina & cosa \end{pmatrix}$ pour $k \ge 1$ est :
 - a. 3
 - b. 2
 - c. 1
 - d. aucune réponse
- 3. Soit $A \in M_n(\mathbb{R})$ une matrice antisymétrique avec n impair ; Alors le déterminant de A vaut :
 - a. 10
 - b. -1
 - c. 0
 - d. aucune réponse

Exercice 34:

- 1. Considérons l'application det: $\begin{cases} M_n(\mathbb{R}) \to \mathbb{R} \\ A \mapsto \det(A) \end{cases}$ alors cette application est :
 - a. injective
 - b. surjective
 - c. bijective
 - d. aucune réponse
- 2. Soient $A \in M_{np}(\mathbb{R})$ et $B \in M_{pn}(\mathbb{R})$ avec n > p. Alors $\det(AB) =$
 - a. 5
 - b. 1
 - c. 0
 - d. aucune réponse
- 3. Soit $A \in M_n(\mathbb{R})$ telle que : $A^2 + I_n = 0_{M_n(\mathbb{R})}$ alors :
 - a. A est inversible
 - b. A n'admet pas de valeurs propres réelles
 - c. A est diagonalisable
 - d. aucune réponse

Exercice 35:

- 1. Montrer que si A et B sont des matrices carrées inversibles de même ordre, alors AB et BA sont :
 - a. semblables
 - b. équivalentes
 - c. adjointes
 - d. aucune réponse
- 2. L'espace vectoriel de l'ensemble des matrices de trace nulle dans $M_n(K)$ (avec K un corps commutatif) a pour dimension
 - a. n^2
 - b. n-1
 - c. $n^2 1$
 - d. aucune réponse

- 3. La matrice suivante (d'ordre n) $\begin{bmatrix} \begin{pmatrix} 1 & n & n & & n \\ n & 2 & n & \cdots & n \\ n & n & 3 & & n \\ & \vdots & & \ddots & \vdots \\ n & n & n & \cdots & n \end{pmatrix} \end{bmatrix} \text{ a pour déterminant : }$
 - a. $(-1)^{n-1}n!$
 - b. $(-1)^{n-1}(n+2)!$
 - c. $(-1)^{n+1}n!$
 - d. aucune réponse
- 4. La valeur du déterminant $\begin{vmatrix} 3 & 9 & 18 & 30 \\ 6 & 15 & 27 & 39 \\ 12 & 24 & 36 & 45 \\ 21 & 33 & 42 & 48 \end{vmatrix}$ est :
 - a. 554
 - b. 486
 - c. 375
 - d. aucune réponse

Exercice 36:

- Si $A\in M_n(K)$ vérifie $P_A(0)\neq 0$ oû $P_A(X)$ est le polynôme caractéristique de A, alors :
 - 1. A est inversible.
 - 2. On peut calculer $P_{A^{-1}}(X)$ connaissant $P_A(X)$; faites-le