Aulas 24: Dispositivos de E/S. Barramentos.

Dispositivos de E/S

- Comportamento
 - Entrada (apenas leitura)
 - Saída (apenas escrita)
 - Armazenamento (re-leitura e re-escrita)
- Parceiro
 - Ser humano
 - Máquina
- Taxa de transferência de dados
 - De 0,0001 Mbit/s a cerca de 8000,0000 Mbit/s

Dispositivos de E/S: diversidade

Device	Behavior	Partner	Data rate (Mbit/sec)
Keyboard	input	human	0,0001
Mouse	input	human	0,0038
Voice input	input	human	0,2640
Sound input	input	machine	3,0000
Scanner	input	human	3,2000
Voice output	output	human	0,2640
Sound output	output	machine	8,0000
Laser printer	output	human	3,2000
Graphics display	output	human	8000,0000
Modem	input or output	machine	0,0640
Network/LAN	input or output	machine	1000,0000
Network/wireless LAN	input or output	machine	54,0000
Optical disk	storage	machine	80,0000
Magnetic tape	storage	machine	32,0000
Magnetic disk	storage	machine	2560,0000

Dispositivos de E/S: abordagem

- Grande diversidade de dispositivos
 - Impossível estudá-los individualmente
- Solução: estuda-se o que têm em comum
 - Conexão com a CPU e a memória
 - » Interface, barramento e protocolos
 - Comunicação com a CPU
 - » Polling, interrupção, DMA

Módulos de um computador

Módulos de um computador

(N palavras)

Módulos de um computador

(M portas)

Conexão de dispositivos de E/S

Interface de um dispositivo de E/S

Dispositivo:

- Tipicamente inclui componente não digital
- Requer interface digital com a CPU
 - » Mínimo: registradores de "status" e de dados.

Endereçando dispositivos de E/S

- Como identificar um registrador de um dispositivo ?
 - Associar-lhe um endereço de memória
- E/S mapeada em memória
 - Faixa de endereços de memória reservada para E/S (portas).
 - Memória ignora endereço de E/S.
 - Controlador do dispositivo decodifica endereço
- Alternativa
 - Instruções dedicadas de E/S (IA-32)
 - » Espaço de endereçamento independente

Interação com dispositivos de E/S

- Como comandar um dispositivo de E/S ?
 - Endereçar o dispositivo.
 - Enviar palavra(s) de comando.
 - Exemplo:

```
li $s0, data_reg
sw $s1, 0($s0)
```

Interação com dispositivos de E/S

- Como monitorar um dispositivo de E/S ?
 - Endereçar o dispositivo
 - Ler registrador de status
 - Exemplo:

```
li $s0, status_reg
lw $s1, 0($s0)
```

Barramento ("bus")

- Meio de comunicação compartilhado
 - Para conectar subsistemas
 - » CPU, memória, E/S
- Vantagens
 - Versatilidade
 - » Novos dispositivos podem ser conectados
 - Baixo custo
 - » Único conjunto de fios compartilhados

Barramento ("bus")

- Único conjunto de fios
 - Para conectar vários subsistemas
 - Só 2 "conversam" simultaneamente
- Desvantagem
 - Gargalo de comunicação
 - » Limite para o throughput de E/S

Barramento: estrutura

Barramento: estrutura

- Linhas de dados e/ou endereços
 - Transportam informação entre fonte e destino
 - » Dados e endereços
 - » Alternativas: linhas distintas ou compartilhadas
 - Exemplo: escrita de um setor do HD na memória
 - » Endereço destino de memória, os dados do setor
- Linhas de controle
 - Indicam tipo de informação nas linhas de dados
 - » Sinal de requisição ("Request")
 - » Sinal de reconhecimento ("Acknowledgement")
 - Usadas para implementar protocolo

Barramento: transação

- Duas etapas
 - Envio do endereço
 - Envio ou recepção dos dados
- Tipos
 - Entrada
 - » Dado enviado de dispositivo para memória
 - » Onde será lido pela CPU
 - Saída
 - » Dado enviado para dispositivo a partir da memória
 - » Onde foi escrito pela CPU

Barramentos: classificação

- Barramento processador-memória
 - Dedicado
 - Curto: baixo tempo de acesso
 - Casado com o subsistema de memória
 - » Para maximizar bandwidth
- Barramento de E/S
 - De propósitos gerais
 - » Vários dispositivos de vários tipos
 - Longo: alto tempo de acesso
 - Não se conecta diretamente à memória
 - Exemplos: Firewire e USB

Barramentos: classificação

Síncronos

- Uma das linhas de controle é o relógio
- Protocolo fixo baseado no relógio
 - » Resulta em alta velocidade, mas não pode ser longo

Exemplo:

- Barramento processador-memória
- Leitura da memória
- Protocolo:
 - » Endereço e comando de leitura no primeiro ciclo
 - » Memória disponibiliza dado no quinto ciclo

Barramentos: classificação

- Assíncronos
 - Não tem relógio
 - » Podem ser longos
 - » Podem acomodar variedade de dispositivos
 - Protocolo: "handshaking"
 - » Série de etapas
 - » Transição entre etapas: quando transmissor e receptor concordam
- Exemplo:
 - Firewire e USB

O Protocolo "handshaking"

Sinais de controle adicionais

ReadReq

- » Indica requisição de leitura da memória
- » Endereço colocado nas linhas de dados

DataRdy

- » Indica que o dado está pronto
- » Dado colocado nas linhas de dados
- » Acionado pela memória (output) ou por dispositivo de E/S (input)

-Ack

- » Indica o reconhecimento de ReadReq ou DataRdy
- » Acionado pela outra parte

O Protocolo "handshaking"

O Protocolo "handshaking"

Barramentos: hierarquia

- Cenário 0: Barramento único
 - Processador, cache, MP, E/S
- Cenário 1: Dois barramentos
 - Bus 1: Processador e cache (local)
 - Bus 2: MP e E/S
- Cenário 2: Três barramentos
 - Bus 1: Processador e cache (local)
 - -Bus 2: MP (sistema)
 - Bus 3: E/S (expansão)

Barramentos: hierarquia

- Cenário 3: Quatro barramentos
 - Bus 1: Processador e cache (local)
 - Bus 2: MP (sistema)
 - Bus 3: dispositivos rápidos (alta velocidade)
 - » SCSI, interface gráfica, FireWire, rede local
 - Bus 4: dispositivos lentos (expansão)
 - » Modem, interface serial, etc.

Barramentos: tendência

- Múltiplos barramentos
 - Interconectados por pontes
- Conexões seriais
 - Ponto-a-ponto
- Substituindo barramentos paralelos
 - Compartilhados
- Exemplo: Pentium 4
 - "North bridge": barramentos de alta velocidade
 - "South bridge": barramentos de baixa velocidade

Exemplo real: Pentium 4

Exemplo real: Core2 Duo/Quad

Intel® P45 Express Chipset Block Diagram

Fonte: http://www.intel.com/products/chipsets/P45/index.htm (adaptado)