Exploring Quantum Process Calculi

Gabriele Tedeschi

October 7, 2022

Table Of Contents

- Quantum computing fundamentals
- 2 Linear qCCS
- The problem with probabilistic bisimilarity
- 4 Solution I: Quantum Bisimilarity
- Solution II: mQPA
- 6 Conclusions

Qubits

The simplest quantum system is a **qubit**. Like a bit, a qubit has two separate states, $|0\rangle$ and $|1\rangle$.

Qubits

The simplest quantum system is a **qubit**. Like a bit, a qubit has two separate states, $|0\rangle$ and $|1\rangle$.

A qubit can also be in a linear combination of states, knows as a **superposition**.

$$\left|+\right\rangle = \frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle$$

$$\left|-\right\rangle = \frac{1}{\sqrt{2}} \left|0\right\rangle - \frac{1}{\sqrt{2}} \left|1\right\rangle$$

Measurements

A qubit in superposition cannot be directly observed, because when it get **measured**, it **decays** in one of its basis states.

Measurements

A qubit in superposition cannot be directly observed, because when it get **measured**, it **decays** in one of its basis states.

Measurements

A qubit in superposition cannot be directly observed, because when it get **measured**, it **decays** in one of its basis states.

Interestingly, the same happens when we measure $|0\rangle$ in the +- basis, we get either the outcome $|+\rangle$ either the outcome $|-\rangle$ with the same probability 0.5.

No Cloning theorem

No-Cloning

Quantum information cannot be **duplicated**. That is, given a qubit q_1 in state

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

it is impossible to prepare a qubit q_2 in the same state, without destroying the information in q_1 .

This means that, contrary to classical bits, qubits cannot be freely copied, stored or broadcasted to multiple receivers.

IqCCS

Linear qCCS (lqCCS) is an asynchronous value-passing calculus, equipped with a **linear type system** to regulate quantum communication. It features parallelism, non-determinism and quantum operations.

IqCCS

Linear qCCS (lqCCS) is an asynchronous value-passing calculus, equipped with a **linear type system** to regulate quantum communication. It features parallelism, non-determinism and quantum operations.

$$a?q.(b!q \parallel c!q)$$

IqCCS

Linear qCCS (lqCCS) is an asynchronous value-passing calculus, equipped with a **linear type system** to regulate quantum communication. It features parallelism, non-determinism and quantum operations.

$$c?q.H(q).c!q$$
 $a?q.(b!q || c!q)$ $c?q.H(q).0$

IqCCS

Linear qCCS (lqCCS) is an asynchronous value-passing calculus, equipped with a **linear type system** to regulate quantum communication. It features parallelism, non-determinism and quantum operations.

$$c?q.H(q).c!q$$
 $a?q.(b!q \parallel c!q)$ $c?q.H(q).0$

IqCCS

Linear qCCS (lqCCS) is an asynchronous value-passing calculus, equipped with a **linear type system** to regulate quantum communication. It features parallelism, non-determinism and quantum operations.

$$c?q.H(q).c!q$$
 $a?q.(b!q || c!q)$ $c?q.H(q).0$

Linear qCCS: Linearity

In previous calculi, there were ambiguous processes like

$$P = c?q.X(q).0$$
 $Q = c?q.H(q).0$

Linear qCCS: Linearity

In previous calculi, there were ambiguous processes like

$$P = c?q.X(q).0$$
 $Q = c?q.H(q).0$

Are P and Q observationally equivalent? It depends on what happens to q, different calculi followed different assumptions.

Linear qCCS: Linearity

In previous calculi, there were ambiguous processes like

$$P = c?q.X(q).0$$
 $Q = c?q.H(q).0$

Are P and Q observationally equivalent? It depends on what happens to q, different calculi followed different assumptions.

In IqCCS, the programmer must **explicitly** describe what happens to each qubit

$$P' = c?q.X(q).c!q$$
 $Q' = c?q.H(q).c!q$

$$P'' = c?q.X(q).disc(q)$$
 $Q'' = c?q.H(q).disc(q)$

• Transition system made of **configurations**, of the form $\left\langle \left| \psi \right\rangle ,P\right\rangle$

- Transition system made of **configurations**, of the form $\langle |\psi \rangle, P \rangle$
- Reduction system, without labels

- Transition system made of **configurations**, of the form $\langle |\psi \rangle, P \rangle$
- Reduction system, without labels
- Probabilistic behaviour, a configuration can evolve in a distribution of configurations

- Transition system made of **configurations**, of the form $\langle |\psi \rangle, P \rangle$
- Reduction system, without labels
- Probabilistic behaviour, a configuration can evolve in a distribution of configurations

Saturated Bisimilarity

Two processes are **saturated bisimilar** if they express the same **observable behaviour** under any **context**

Saturated Bisimilarity

Two processes are **saturated bisimilar** if they express the same **observable behaviour** under any **context**

 Observable behaviour (barb): the capability of sending some value on a specific channel

Saturated Bisimilarity

Two processes are **saturated bisimilar** if they express the same **observable behaviour** under any **context**

- Observable behaviour (barb): the capability of sending some value on a specific channel
- Context: a "program" with a hole, like $[-] \parallel R$. We compare P and Q "inside" this context, i.e. we study $P \parallel R$ and $Q \parallel R$.

Saturated Bisimilarity

Two processes are **saturated bisimilar** if they express the same **observable behaviour** under any **context**

- Observable behaviour (barb): the capability of sending some value on a specific channel
- Context: a "program" with a hole, like $[-] \parallel R$. We compare P and Q "inside" this context, i.e. we study $P \parallel R$ and $Q \parallel R$.

The two processes seen before

$$P' = c?q.X(q).c!q$$
 $Q' = c?q.H(q).c!q$

are not bisimilar, because there is a context R which tells them apart

$$R = c?q.M_{01}[q > x].(disc(q) || if x = 0 then a!0 else b!0)$$

Probabilistic Bisimilarity

Thanks to IqCCS, we can compare the existing bisimilarities, and find the more appropriate for the quantum setting.

Probabilistic Bisimilarity

Thanks to IqCCS, we can compare the existing bisimilarities, and find the more appropriate for the quantum setting.

Consider the two configurations

$$C = \langle |+\rangle, M_{01}[q \rhd x].c!q \rangle \rightarrow \langle |0\rangle, c!q \rangle_{\frac{1}{2}} \oplus \langle |1\rangle, c!q \rangle$$
$$C' = \langle |0\rangle, M_{\pm}[q \rhd x].c!q \rangle \rightarrow \langle |+\rangle, c!q \rangle_{\frac{1}{2}} \oplus \langle |-\rangle, c!q \rangle$$

Probabilistic Bisimilarity

Thanks to IqCCS, we can compare the existing bisimilarities, and find the more appropriate for the quantum setting.

Consider the two configurations

$$C = \langle |+\rangle, M_{01}[q \rhd x].c!q\rangle \rightarrow \langle |0\rangle, c!q\rangle_{\frac{1}{2}} \oplus \langle |1\rangle, c!q\rangle$$

$$C' = \langle |0\rangle, M_{\pm}[q \rhd x].c!q\rangle \rightarrow \langle |+\rangle, c!q\rangle_{\frac{1}{2}} \oplus \langle |-\rangle, c!q\rangle$$

According to the usual notion of **probabilistic bisimilarity**, two distributions are bisimilar if they assign the same probability to bisimilar processes. In our example, the two configurations are **not** bisimilar, because they evolve in two non-bisimilar distributions.

Indistinguishable distributions

According to quantum mechanics, it's impossible to distinguish $\mathcal C$ and $\mathcal C'$, if we treat them as two sources of qubits:

```
{\cal C} emits a qubit |0\rangle or |1\rangle with the same probability 0.5 {\cal C}' emits a qubit |+\rangle or |-\rangle with the same probability 0.5
```

Suppose we receive a qubit from either $\mathcal C$ or $\mathcal C'$, and measure it in the 01 basis. If we measure a qubit from $\mathcal C$, it would result in either $|0\rangle$ or $|1\rangle$. If we measure a qubit from $\mathcal C'$, a $|+\rangle$ qubit would decay in either $|0\rangle$ or $|1\rangle$, and a $|-\rangle$ qubit would decay in either $|0\rangle$ or $|1\rangle$ as well.

Indistinguishable distributions

According to quantum mechanics, it's impossible to distinguish $\mathcal C$ and $\mathcal C'$, if we treat them as two sources of qubits:

```
{\cal C} emits a qubit |0\rangle or |1\rangle with the same probability 0.5 {\cal C}' emits a qubit |+\rangle or |-\rangle with the same probability 0.5
```

Suppose we receive a qubit from either $\mathcal C$ or $\mathcal C'$, and measure it in the 01 basis. If we measure a qubit from $\mathcal C$, it would result in either $|0\rangle$ or $|1\rangle$. If we measure a qubit from $\mathcal C'$, a $|+\rangle$ qubit would decay in either $|0\rangle$ or $|1\rangle$, and a $|-\rangle$ qubit would decay in either $|0\rangle$ or $|1\rangle$ as well.

Inadequacy of Probabilistic Bisimilarity

The usual notion of probabilistic bisimilarity is too fine, when comparing distributions of quantum configurations.

Quantum Bisimilarity

We introduce an equivalence relation

$$\equiv \subseteq \mathfrak{D}(\mathit{Conf}) \times \mathfrak{D}(\mathit{Conf})$$

Quantum Bisimilarity

We introduce an equivalence relation

$$\equiv \subseteq \mathfrak{D}(\mathit{Conf}) \times \mathfrak{D}(\mathit{Conf})$$

$$\begin{split} \left\langle \left. \left| + \right\rangle, M_{01}[q \rhd x].c!q \right\rangle \rightarrow \left\langle \left. \left| 0 \right\rangle, c!q \right\rangle_{\frac{1}{2}} \oplus \left\langle \left. \left| 1 \right\rangle, c!q \right\rangle \\ \not\sim \\ \left\langle \left. \left| 0 \right\rangle, M_{\pm}[q \rhd x].c!q \right\rangle \rightarrow \left\langle \left. \left| + \right\rangle, c!q \right\rangle_{\frac{1}{2}} \oplus \left\langle \left. \left| - \right\rangle, c!q \right\rangle \end{split}$$

Quantum Bisimilarity

We introduce an equivalence relation

$$\equiv \subseteq \mathfrak{D}(\mathit{Conf}) \times \mathfrak{D}(\mathit{Conf})$$

$$\left\langle \left|+\right\rangle, M_{01}[q\rhd x].c!q\right\rangle \to \left\langle \left|0\right\rangle, c!q\right\rangle_{\frac{1}{2}} \oplus \left\langle \left|1\right\rangle, c!q\right\rangle \equiv \left\langle \left|+\right\rangle, c!q\right\rangle_{\frac{1}{2}} \oplus \left\langle \left|-\right\rangle, c!q\right\rangle$$

$$\left\langle \left|0\right\rangle, M_{\pm}[q\rhd x].c!q\right\rangle \to \left\langle \left|+\right\rangle, c!q\right\rangle_{\frac{1}{2}} \oplus \left\langle \left|-\right\rangle, c!q\right\rangle \equiv \left\langle \left|+\right\rangle, c!q\right\rangle_{\frac{1}{2}} \oplus \left\langle \left|-\right\rangle, c!q\right\rangle$$

Quantum Bisimilarity

We introduce an equivalence relation

$$\equiv \subseteq \mathfrak{D}(\mathit{Conf}) \times \mathfrak{D}(\mathit{Conf})$$

$$\left\langle \left|+\right\rangle , M_{01}[q\rhd x].c!q\right\rangle \rightarrow \left\langle \left|0\right\rangle , c!q\right\rangle _{\frac{1}{2}}\oplus \left\langle \left|1\right\rangle , c!q\right\rangle \equiv \left\langle \left|+\right\rangle , c!q\right\rangle _{\frac{1}{2}}\oplus \left\langle \left|-\right\rangle , c!q\right\rangle \\ \sim \\ \left\langle \left|0\right\rangle , M_{\pm}[q\rhd x].c!q\right\rangle \rightarrow \left\langle \left|+\right\rangle , c!q\right\rangle _{\frac{1}{2}}\oplus \left\langle \left|-\right\rangle , c!q\right\rangle \equiv \left\langle \left|+\right\rangle , c!q\right\rangle _{\frac{1}{2}}\oplus \left\langle \left|-\right\rangle , c!q\right\rangle$$

Minimal Quantum Process Algebra

We follow a completely different approach, to better represent the dynamics and observable properties of quantum systems.

Minimal Quantum Process Algebra

We follow a completely different approach, to better represent the dynamics and observable properties of quantum systems.

Solution II: mQPA

We introduce a new calculus, equipped with a minimal set of features: communication, non-determinism and quantum measurement. In mQPA, the transitions are of the form

$$\rightarrow \subseteq S \times \mathfrak{D}(S)^{\mathcal{H}}$$

where $\mathfrak{D}(S)^{\mathcal{H}}$ is the set of **quantum distributions**. The probabilistic observable behaviour is **parametric** with respect to an input quantum state.

Minimal Quantum Process Algebra

We follow a completely different approach, to better represent the dynamics and observable properties of quantum systems.

Solution II: mQPA

We introduce a new calculus, equipped with a minimal set of features: communication, non-determinism and quantum measurement. In mQPA, the transitions are of the form

$$\rightarrow \subseteq S \times \mathfrak{D}(S)^{\mathcal{H}}$$

where $\mathfrak{D}(S)^{\mathcal{H}}$ is the set of **quantum distributions**. The probabilistic observable behaviour is **parametric** with respect to an input quantum state.

In mQPA, the previous example can be rewritten as

$$(S_{\mid 0
eals 0}\mid \boxplus S')(\mid +
angle) = S_{\frac{1}{2}} \oplus S' \qquad (S_{\mid +
eals + \mid} \boxplus S')(\mid 0
angle) = S_{\frac{1}{2}} \oplus S'$$

• **IqCCS**, an asynchronous linear calculus inspired by qCCS. It rephrases the syntax e semantics of previous calculi in a more standard formalism, and allows to compare different notions of bisimilarity.

- IqCCS, an asynchronous linear calculus inspired by qCCS. It rephrases
 the syntax e semantics of previous calculi in a more standard
 formalism, and allows to compare different notions of bisimilarity.
- Even though quantum systems exhibit a probabilistic behaviour,
 probabilistic bisimilarity is not really well suited for the quantum setting.

- **IqCCS**, an asynchronous linear calculus inspired by qCCS. It rephrases the syntax e semantics of previous calculi in a more standard formalism, and allows to compare different notions of bisimilarity.
- Even though quantum systems exhibit a probabilistic behaviour,
 probabilistic bisimilarity is not really well suited for the quantum setting.
- Quantum bisimilarity relaxes the conditions of probabilistic bisimilarity, better representing quantum systems.

- IqCCS, an asynchronous linear calculus inspired by qCCS. It rephrases
 the syntax e semantics of previous calculi in a more standard
 formalism, and allows to compare different notions of bisimilarity.
- Even though quantum systems exhibit a probabilistic behaviour,
 probabilistic bisimilarity is not really well suited for the quantum setting.
- Quantum bisimilarity relaxes the conditions of probabilistic bisimilarity, better representing quantum systems.
- mQPA, a minimal calculus, pursuing a foundational, where the probabilistic classical behaviour is parametric with respect to quantum values.

 We will work on non-strong extensions (weak or branching bisimilarity), as for example protocol implementation should be weakly bisimilar to its specification.

- We will work on non-strong extensions (weak or branching bisimilarity), as for example protocol implementation should be weakly bisimilar to its specification.
- From weak transitions, it is possible to define reachability, temporal logics and model checking.

- We will work on non-strong extensions (weak or branching bisimilarity), as for example protocol implementation should be weakly bisimilar to its specification.
- From weak transitions, it is possible to define reachability, temporal logics and model checking.
- Saturated bisimilarity can be cumbersome to prove, it will be interesting to explore how the existing proof techniques adapt to the quantum setting.

- We will work on non-strong extensions (weak or branching bisimilarity), as for example protocol implementation should be weakly bisimilar to its specification.
- From weak transitions, it is possible to define reachability, temporal logics and model checking.
- Saturated bisimilarity can be cumbersome to prove, it will be interesting to explore how the existing proof techniques adapt to the quantum setting.
- We will investigate the relation between mQPA semantics and the usual, configuration-based semantics.

Thank you for your attention!

