Optimizing positional scoring rules for rank aggregation

Ioannis Caragiannis
Xenophon Chatzigeorgiou
George Krimpas
Alexandros Voudouris

University of Patras

AAAI 2017

An application

 Find a pizza place at San Francisco to have lunch

- You can ask a local or ... search in a recommendation website (like tripadvisor and yelp)
- Final decision based on reviews from previous visitors

An application

- Reviews: cardinal information
 - cost-effective? score: 4/5 stars
 - Tasty? score: 4.5/5 ...
- Our study: reviews that contain ordinal information
- A user compares a small number of pizza places and comes up with a ranking of them
- The recommendation website merges the reviewing rankings and presents a ranking of all pizza places to the new user

The basic setting

- A set of *m* alternatives (= pizza places)
- A set of *n* agents (= previous visitors)
- Each agent provides a ranking of some alternatives
 - incomplete ranking of exactly d alternatives

Goal: merge the individual rankings into a single ranking of all alternatives

⇒ use *positional scoring rules*

agents

Iannis

Xenophon

George

pizza places

Montesacro

Victor's

Del Popolo

Delarosa

Uncle Vito's

agents	individual rankings		
lannis	Montesacro Victor's		Del Popolo
Xenophon	Delarosa	Victor's	Uncle Vito's
George	Victor's	Montesacro	Uncle Vito's

pizza places

Montesacro

Victor's

Del Popolo

Delarosa

Uncle Vito's

(positional) scoring rule				
4 2 1				

agents	individual rankings		
lannis	Montesacro	Victor's	Del Popolo
Xenophon	Delarosa	Victor's	Uncle Vito's
George	Victor's	Montesacro	Uncle Vito's

pizza places

Montesacro

Victor's

Del Popolo

Delarosa

Uncle Vito's

(positional) scoring rule				
4 2 1				

agents	individual rankings		
lannis	Montesacro Victor's		Del Popolo
Xenophon	Delarosa	Victor's	Uncle Vito's
George	Victor's	Montesacro	Uncle Vito's

pizza places	scores
Montesacro	
Victor's	
Del Popolo	
Delarosa	
Uncle Vito's	

(positional) scoring rule				
4 2 1				

agents	individual rankings		
lannis	Montesacro Victor's		Del Popolo
Xenophon	Delarosa	Victor's	Uncle Vito's
George	Victor's	Montesacro	Uncle Vito's

pizza places	scores
Montesacro	6
Victor's	7
Del Popolo	1
Delarosa	4
Uncle Vito's	2

(positional) scoring rule				
4 2 1				

agents	individual rankings		
lannis	Montesacro Victor's		Del Popolo
Xenophon	Delarosa	Victor's	Uncle Vito's
George	Victor's	Montesacro	Uncle Vito's

pizza places	scores	final ranking	
Montesacro	6	1 st	Victor's
Victor's	7	2 nd	Montesacro
Del Popolo	1	3 rd	Delarosa
Delarosa	4	4 th	Uncle Vito's
Uncle Vito's	2	5 th	Del Popolo

(positional) scoring rule				
4 2 1				

pizza places	scores	final ranking		
Montesacro	6	1 st	Victor's	
Victor's	7	2 nd	Montesacro	
Del Popolo	1	3 rd	Delarosa	
Delarosa	4	4 th	Uncle Vito's	
Uncle Vito's	2	5 th	Del Popolo	

constraint	weight
Victor's ≻ Montesacro	3
Del Popolo ≻ Uncle Vito's	1
Delarosa ≻ Del Popolo	1

(positional) scoring rule				
4 2 1				

pizza places	scores	final ranking		
Montesacro	6	1 st	Victor's	
Victor's	7	2^{nd}	Montesacro	
Del Popolo	1	3 rd	Delarosa	
Delarosa	4	4 th	Uncle Vito's	
Uncle Vito's	2	5 th	Del Popolo	

		constrain	onstraint		nt		
	Victor'	s ≻ Mont	esacro	3	} —		
	Del Popo	olo ≻ Unc	le Vito's	1			
	Delaro	sa ≻ Del I	Popolo	1		Einal ranki	
	(positional		ositional) scoring rule			Final ranki with the co	
	4		2	1			
pizza places	scores		final ranking				
Montesacro	6	1 st	t Victor's				
Victor's	7	2 nd	Mor	ntesacro			
Del Popolo	1	3 rd	3 rd Delarosa				
Delarosa	4	4 th	4 th Uncle Vito's				
Uncle Vito's	2	5 th	Del	Popolo			

		constraint		weig	ht		
	Victor'	s ≻ Mont	esacro	3			
	Del Pop	olo ≻ Unc	le Vito's	1	-		
	Delaro	sa ≻ Del I	Popolo	1		Einal rankin	a DOEC
	(positional		ositional) scoring rule			Final rankin NOT agree v constraint	_
	4		2 1			CONSCIANT	
pizza places	scores		final ran	king			
Montesacro	6	1 st	Vi	ctor's			
Victor's	7	2 nd	Mor	itesacro			
Del Popolo	1	3 rd	De	larosa			
Delarosa	4	4 th	Unc	le Vito's			
Uncle Vito's	2	5 th	Del	Popolo			

constraint	weight
Victor's ≻ Montesacro	3
Del Popolo ≻ Uncle Vito's	1
Delarosa ≻ Del Popolo	1

Total weight of satisfied constraints = 4

(positional) scoring rule			
4	2	1	

pizza places	scores	final ranking		
Montesacro	6	1 st	Victor's	
Victor's	7	2 nd	Montesacro	
Del Popolo	1	3 rd	Delarosa	
Delarosa	4	4 th	Uncle Vito's	
Uncle Vito's	2	5 th	Del Popolo	

constraint	weight
Victor's ≻ Montesacro	3
Del Popolo ≻ Uncle Vito's	1
Delarosa ≻ Del Popolo	Ī

Total weight of satisfied constraints = 4

Can we do better with a different scoring rule?

(positional) scoring rule			
4	2	1	

pizza places	scores	final ranking			
Montesacro	6	1 st	Victor's		
Victor's	7	2 nd	Montesacro		
Del Popolo	1	3 rd	Delarosa		
Delarosa	4	4 th	Uncle Vito's		
Uncle Vito's	2	5 th	Del Popolo		

The OptPSR problem

Input

- A profile of incomplete rankings of size *d*
- A set C of constraints

Output

• A positional scoring rule

Goal

Maximize the total weight of the satisfied constraints

Theoretical results (overview)

- ✓ Exact algorithm that runs in time $O(|C|^d \cdot poly(|C|, d))$
 - \Rightarrow poly-time when d is constant
- ✓ The **best** t-approval rule is d-approximate
 - always produces a ranking that satisfies at least 1/d of the sum of all weights and there is an example where this is tight)
- ✓ Cannot approximate OptPSR within a constant factor
 - reduce from the well-known APX-hard problem MAX-3-LIN2 [Hastad 2001]

Experiments

The ppl scenario

- A pool of **48** countries
- Assign (randomly) 6 countries per agent
- Each agent orders the countries w.r.t. population

The col scenario

- A pool of **36** cities
- Assign (randomly) 6 cities per agent
- Each agent orders the cities w.r.t. cost of living

Real-world data

Order the cities with respect to the cost of living from more expensive (1) to cheapest (6)

Sydney, Australia
Oslo, Norway
Baghdad, Iraq
Vienna, Austria
Washington, USA
London, UK

Order the countries with respect to population from the largest (1) to the smallest (6)

Greece
Israel
Nigeria
Thailand
China
Mexico

- Data collected from 392 individuals
- Noisy rankings

Synthetic data

• Simulate 392 agents that produce noisy ranking according to specific theoretical noise models

Results

scoring rule	real-world		BT model		PL model	
	ppl	col	ppl	col	ppl	col
opt	81.83	83.97	94.54	93.74	93.19	88.20
Borda	79.87	81.43	93.16	91.03	91.59	84.67
Harmonic	80.94	82.54	92.84	91.34	90.50	83.13
1-approval	77.75	78.09	83.69	87.89	83.90	75.72
2-approval	78.19	79.36	89.71	90.65	88.72	81.23
3-approval	79.43	80.48	91.69	90.93	90.30	83.73
4-approval	77.57	79.68	90.00	89.44	89.70	83.88
5-approval	73.14	72.86	81.08	84.45	82.83	80.66

$$w(x,y) = \begin{cases} 1, & \text{if } u_x > u_y \\ 0, & \text{otherwise} \end{cases}$$

Results

scoring rule	real-world		BT model		PL model	
	ppl	col	ppl	col	ppl	col
opt	95.98	92.93	99.66	98.69	99.48	96.02
Borda	94.56	91.57	99.49	97.66	99.23	93.96
Harmonic	95.42	92.01	99.42	97.80	99.02	92.58
1-approval	94.85	89.84	98.59	96.48	97.86	86.34
2-approval	95.24	90.40	99.29	97.67	98.86	91.50
3-approval	93.68	90.83	99.05	97.70	99.04	93.37
4-approval	92.63	90.06	97.46	96.91	98.38	93.51
5-approval	84.61	82.00	87.94	93.81	91.69	90.99

$$w(x,y) = \begin{cases} u_x - u_y, & \text{if } u_x > u_y \\ 0, & \text{otherwise} \end{cases}$$

Future work

- Can we solve optimally small instances, in reasonable time?
- Approximation algorithms for OptPSR
- Analysis of scoring rules with noisy models

Future work

- Can we solve optimally small instances, in reasonable time?
- Approximation algorithms for OptPSR
- Analysis of scoring rules with noisy models

