Venous return

From physiology to the bedside

Prof. Xavier MONNET

Medical Intensive Care Unit
Paris-Sud University Hospitals

xavier.monnet@aphp.fr

Venous return

From physiology to the bedside

What is the basic physiology?

Prof. Xavier MONNET

Medical Intensi How do we assess it at the bedside?

Paris-Sud University Hospitals

How is it useful in practice?

xavier.monnet

The Guytonian

modet

The Guytonian

Am J Physiol Heart Circ Physiol 285: H2510-H2515, 2003. First published August 7, 2003; 10.1152/ajpheart.00604.2003.

Static filling pressure in patients during induced ventricular fibrillation

J. D. Schipke, G. Heusch, A. P. Sanii, E. Gams, and J. Winter Research Group Experimental Surgery and Clinic of Thoracic and Cardiocoscular Surgery, Department of Surgery I, University Hospital Duesseldorf, Dusseldorf D 40225; "Institute of Pathophysiology, University Hospital Essen, D 45147 Essen, Germany; and Department of Radiology, Tulane University, New Orleans, Louisiana 70118

Submitted 26 June 2003; accepted in final form 30 July 2003

10 patients
External cardioverter

Mean circulatory pressure

The Guytonian

The Guytonian

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves¹

ARTHUR C. GUYTON

January 1955

The Guytonian

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves¹

ARTHUR C. GUYTON

January 1955

The Guytonian

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves¹

ARTHUR C. GUYTON

January 1955

The Guytonian

The Guytonian

The Guytonian

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves¹

ARTHUR C. GUYTON

January 1955

105 anesthesized dogs

Measurement of mean circulatory pressure

Venous return

From physiology to the bedside

What is the basic physiology?

Prof. Xavier MONNET

Medical Intensi How do we assess it at the bedside?

Paris-Sud University Hospitals

How is it useful in practice ?

xavier.monnet

Heart-lung interactions

Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients*

Jacinta J. Maas, MD; Bart F. Geerts, MD; Paul C. M. van den Berg, MD, PhD; Michael R. Pinsky, MD; Jos R. C. Jansen, PhD

Crit Care Med 2009

12 cardiac surgery post-op patients Psm estimated through heart-lung interactions

End inspiratory hold

End expiratory hold

Heart-lung interactions

Am J Physiol Heart Circ Physiol 309: H1003–H1007, 2015. First published July 25, 2015; doi:10.1152/ajpheart.00413.2015.

Value and determinants of the mean systemic filling pressure in critically ill patients

Xavier Repessé,¹ Cyril Charron,¹ Julia Fink,¹ Alain Beauchet,⁴ Florian Deleu,¹ Michel Slama,⁵ Guillaume Belliard,¹ and Antoine Vieillard-Baron^{1,2,3}

202 dying ICU patients

Equivalent methods?

Am J Physiol Heart Circ Physiol 311: H794 H806, 2016.First published July 15, 2016; doi:10.1152/ajpheart.00931.2015.

Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return

David Berger,¹ Per W. Moller,^{1,2} Alberto Weber,³ Andreas Bloch,¹ Stefan Bloechlinge Matthias Haenggi,¹ Soren Sondergaard,² Stephan M. Jakob,¹ Sheldon Magder,⁵ and

Pigs

Ventilatory holds vs. Inflation of a RA balloon

The respiratory holds method might overestimate Psm cmH₂O, n = 8 cmH₂O, n = 6 cmH₂O, n = 8 might overestimate Psm cmH₂O, n = 6 cmH₂O, n = 8 msFP_{RAO}; mmHg 13.0 (2.8) 10.9 (2 ... but not its changes MSFP_{insp_hold}; mmHg 15.9 (3.7) 11.9 (2.0) 19.7 (9.8)

Venous return

From physiology to the bedside

What is the basic physiology?

Prof. Xavier MONNET

EAGULTÉ

Medical Intensi How do we assess it at the bedside?

Paris-Sud University Hospitals

How is it useful in practice?

xavier.monnet

Bedside applications of venous return

To better understand the complex haemodynamic problems and the effects of treatments

Haemodynamic effects of MV

Effects of norepinephrine

Hypovolaemia and fluid loading

Effects of fluid loading

Effects of other vasoactive drugs

Effects of fluid

Effects of fluid

Effects of fluid

applications Preload responsive

Preload unresponsive

Effects of fluid

Preload unresponsive

Message #2

In fluid non-responders, CVP must increase

If not, it means that preload did not increase

Bedside applications of venous return

To better understand the complex haemodynamic problems and the effects of treatments

Haemodynamic effects of MV

Effects of norepinephrine

Passive leg raising and fluid loading

Fluid challenge

Effects of other vasoactive drugs

Fluid challenge

Hemodynamic Effect of Different Doses of Fluids for a Fluid Challenge: A Quasi-Randomized Controlled Study

Hollmann D. Aya, MD¹; Andrew Rhodes, MD(Res)¹; Irina Chis Ster, PhD²; Nick Fletcher, MD¹; R. Michael Grounds, MD(Res)¹; Maurizio Cecconi, MD(Res)¹ 80 patients after cardiac surgery IV infusion of 1, 2, 3, or 4 mL/Kg Psm estimated by brachial occlusion

Fluid challenge

Mini-fluid Challenge of 100 ml of Crystalloid Predicts Fluid Responsiveness in the Operating Room

Matthieu Biais, M.D., Ph.D., Hugues de Courson, M.D., Romain Lanchon, M.D., Bruno Pereira, Ph.D., Guillaume Bardonneau, M.D., Marion Griton, M.D., Musa Sesay, M.D., Karine Nouette-Gaulain, M.D., Ph.D.

ANESTHESIOLOGY 2017

Bedside applications of venous return

To better understand the complex haemodynamic problems and the effects of treatments

Haemodynamic effects of MV

Effects of norepinephrine

Passive leg raising and fluid loading

Fluid challenge

Effects of other vasoactive drugs

Effects of norepinephrine

Effects of norepinephrine

Effects of norepinephrine

Romain Persichini, MD; Serena Silva, MD; Jean-Louis Teboul, MD, PhD; Mathieu Jozwiak, MD; Denis Chemla, MD, PhD; Christian Richard, MD; Xavier Monnet, MD, PhD

Crit Care Med 2012

16 septic shock patients

Norepinephrine administration

Psm through respiratory holds

Effects of norepinephrine

Cardiac Output Response to Norepinephrine in Postoperative Cardiac Surgery Patients: Interpretation With Venous Return and Cardiac Function Curves*

Crit Care Med 2013

Jacinta J. Mass, MD¹; Michael R. Pinsky, MD, MCCM³; Rob B. de Wilde, PhD¹; Evert de Jonge, MD, PhD²; Jos R. Jansen, MS, PhD² 16 patients after cardiac surg.

→ norepinephrine

Psm through respiratory holds

Effects of norepinephrine

Effects of norepinephrine

FALPIPALICATIONS

Open Access

Early versus delayed administration of norepinephrine in patients with septic shock

Xlaowu Bai, Wenkui Yu^{*}, Wu Ji, Zhiliang Lin, Shanjun Tan, Kaipeng Duan, Yi Dong, Lin Xu and Ning Li^{*}

Retrospective analysis
213 septic shock patients

Effects of norepinephrine

HALPHANIEN LIONS

Open Access

Early versus delayed administration of norepinephrine in patients with septic shock

Xiaowu Bai, Wenkui Yu^{*}, Wu Ji, Zhiliang Lin, Shanjun Tan, Kaipeng Duan, Yi Dong, Lin Xu and Ning Li^{*}.

Retrospective analysis
213 septic shock patients

Characteristic	<2 hours (number = 86)	≥2 hours (number = 127)	P value
24-hour norepinephrine administration (mg)	29.4 ± 9.7	32.8 ± 10.0	0.013
Time to initial antimicrobial treatment (h)	1.6 ± 1.4	1.7 ± 1.5	0.126
Volume of intravenous fluids within 24 h (L)	6.2 ± 0.6	6.9 ± 0.7	<0.001

Early administration of NE may \(\sqrt{luid balance} \)

Venous return

From physiology to the bedside

What is the basic physiology?

Prof. Xavier MONNET

FACULTÉ

Medical Intensi How do we assess it at the bedside?

Paris-Sud University Hospitals

PARIS-SACLAY

How is it useful in practice?

xavier.monnet@aprip.ii

Vengus return What is the basic physiology?

- In the Guyton's theory, the heart's role is to lower RAP and to generate the pressure gradient of venous return
 - How do we assess it at the bedside?
 - Although imperfect, there are methods that can be used at the bedside to estimate Psm and Rvr
 - How is it useful in practice?

Dedicated to the reasearch area, these methods help better understand complex diseases and treatments