

Europäisches Patentamt
European Patent Office
Office européen des brevets

04

⑪ Publication number:

0 115 627
A1

BEST AVAILABLE COPY

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: 85113070.3

⑭ Int. Cl.³: A 61 K 37/02

⑮ Date of filing: 29.12.83

PHARMACEUTICAL
PHARMA COMPNSN. CONTG. CALCITONIN AND SURFACTANT
+ FOR PROLONGED INTRANASAL ADMIN. WITH BONE
METABOLISM DISORDERS

⑯ Priority: 29.12.82 US 454128

⑰ Applicant: Armour Pharmaceutical Company, 303 South Broadway, Tarrytown New York 10591 (US)

⑱ Date of publication of application: 15.08.84
Bulletin 84/33

⑲ Inventor: Mufson, Daniel, 24 Hillside Drive, Thiells, N.Y.
(US)
Inventor: Hanson, Musetta A., 1 Consulate Drive,
Tuckahoe, N.Y. (US)

⑳ Designated Contracting States: AT BE CH DE FR GB IT
LI LU NL SE

㉑ Representative: Patentanwälte Grünacker, Dr.
Kinkeldey, Dr. Stockmair, Dr. Schumann, Jakob, Dr.
Bezold, Meister, Hilgers, Dr. Meyer-Pitth,
Maximilianstrasse 58, D-8000 München 22 (DE)

㉒ Enhancement of intranasal absorption of calcitonin by formulation with surfactants.

㉓ A pharmaceutical composition for the treatment of disorders of bone metabolism which comprises an aqueous or non-aqueous medium suitable for intranasal administration and containing a therapeutically effective amount of calcitonin and a surface active agent.

563

202637

0115627

- 7 -

1 ENHANCEMENT OF INTRANASAL ABSORPTION OF
CALCITONIN BY FORMULATION WITH SURFACTANTS

5 The present invention relates to a novel method of
administering calcitonin to patients and to formulations
adapted for nasal administration.

10 Calcitonin is a polypeptide hormone isolated from
different organs in different species, including man and
salmon, or obtained via synthetic routes. Calcitonin is
recognized as being effective in diminishing hypercalcemia
and decreasing plasma phosphate concentrations in patients
with hyperparathyroidism, idiopathic hypercalcemia of
infancy, vitamin D intoxication, and osteolytic bone
metastases. While direct renal effects and actions on the
gastrointestinal tract are recognized, calcitonin is best
15 known for its effect on bone. Its use has proved to be
effective in diseases characterized by increased skeletal
resorption and abnormal bone formation, such as occurs for
example, in Paget's disease.

20 The method of administration of calcitonin is
predominantly by injection, although efforts were made in the
prior art to use other modes of administration, especially
for the treatment of localized conditions. While injectable
administration by physicians of calcitonin is proper for
short-term therapy, administration of calcitonin by injection
25 to patients in need of long-term calcitonin therapy has a
serious problem. Not only is it costly to patients to have
physicians do the administration of calcitonin for extended
periods of time but it is also painful and inconvenient. Nor

30 564

202637

0115627

1 can calcitonin be given orally to patients as it will be destroyed by the digestive juices in the gastrointestinal tract.

5 In view of the foregoing, it is apparent that a serious need exists for a different route of delivery of calcitonin to patients suffering from conditions that require prolonged calcitonin therapy.

0 Nasal preparations are known in the prior art. Generally, nasal preparations comprise an oil-in-water or water-in-oil emulsion or an oily solvent base suitable for use on the mucous membranes, such as mineral or vegetable oils and fatty acid esters and one or more chemicals which are soluble in the base. Such preparations usually contain one or more active drugs intended to alleviate or mitigate a condition in the body by their adsorption into the blood stream through the mucous membrane of the nose.

) While small molecules such as propranolol are efficiently absorbed intranasally, large molecules such as calcitonin show little if any absorption. The purpose of this invention is to find agents capable of increasing the bioavailability of calcitonin so that cost of therapy is reasonable. The prior art has also recognized that the nasal absorption of certain drugs may be facilitated by the use of surfactants in such nasal preparation. For example, insulin and polypeptides were found to have an improved absorption rate when used in a solution containing a surfactant.

565

202637

0115627

1 It has now been found that hypercalcemia, Paget's
disease and other disorders of bone metabolism can be
advantageously treated by intranasal application of
calcitonin contain in a nasal preparation having an
5 absorption promoter and a buffer as essential ingredients.
Such preparations possess enhanced absorption across the
nasal mucosa when applied intranasally, but causes no
irritation or discomfort on extended use.

10 The present invention relates to a method for the
treatment of a mammal suffering from a disorder characterized
by high serum calcium which comprises intranasal application
of a nasal preparation containing a peptide having calcitonin
activity and an absorption promoting agent to effect control
of said disorders by transepithelial action.

15 According to the invention, calcitonin is
intranasally administered to a mammal via a novel dosage
form, such as a solution, ointment, or gel.

20 Calcitonin is a peptide hormone of 32 amino acids
with a disulfide bond at 1-7 in the amino terminus of the
molecule. These first seven amino acids with the disulfide
bond seem essential for activity and this sequence is
preserved from species to species. Calcitonin, as used
herein, means not only peptides having a structure
corresponding to one of the naturally occurring hormones, and
25 which may be naturally or synthetically produced, but also
related peptides having calcitonin activity.

The amount of calcitonin contained in the
preparation of the present invention may vary according to
various parameters, such as the nature of the preparation,

30 566

202637

35

0115627

1 the particular kind or activity of calcitonin employed and
the condition or ailment to be treated with the preparations.
In general, the concentrations are somewhat higher than those
found in compositions for the systemic administration of
5 calcitonin. It has been found that a concentration level of
1 to 150 micrograms per ml and preferably 2 to 30 micrograms
per ml achieve the desired result. The levels of
administration of calcitonin also vary somewhat from those
used systemically. In the case of human patients, for
10 example, amounts of from 0.7 to 70 micrograms, particularly
from 1 to 25 micrograms, are usually appropriate for single
dosages given and repeated as often as the physician finds it
necessary and such dosages correspond generally to about 0.01
to 1 micrograms, and particularly 0.03 to 0.35 micrograms,
15 per kilogram of body weight. (The above concentration and
dosage levels of calcitonin apply to calcitonin with a
potency of about 4000 International Units per mg and may be
adjusted pro rata for calcitonin of other potencies.)

The diluent base or vehicle used in accordance with
20 the present invention may be non-aqueous or aqueous. In the
former case the group of diluents is the physiologically
acceptable polar solvents. Preferred compounds of this type
are those with which it is possible to make a solution of
adequate concentration of dissolved calcitonin. Examples of
25 these compounds include dimethylsulphoxide, dimethyl
formamide, dimethyllauramide, polyhydroxy alcohols, vegetable
and mineral oils. If desired, such non-aqueous media may be
mixed with water to form the diluent of the preparation.

30

567

202637

0115627

1 However, the degree of physiological acceptability of the
non-aqueous diluents is generally less than that of aqueous
media and the preferred diluent is therefore water without
the addition of organic solvents.

5 In the preparations of the present invention,
calcitonin is used in combination with an absorption
promoter. Such absorption promoters include the
physiologically acceptable surface active agents. The amount
of such an agent may be in the range from about 0.01 to about
10 10% w/v or higher and preferably about 0.05 to about 1.0%
w/v, the amount depending on the specific surfactant used.
The amount is generally kept as low as possible since above a
certain level no further enhancement of absorption can be
achieved and also too high of a surfactant level may cause
irritation of the nasal mucosa. Such surface active agents
15 include:

- a. Bile salts, such as sodium taurocholate, sodium cholate,
sodium deoxycholate and sodium glycholate;
- b. Cationics, such as the long chain amine condensates with
ethylene oxide and quaternary ammonium compounds, for example
20 cetyl trimethyl ammonium bromide and dodecyl dimethyl
ammonium bromide;
- c. Anionics, such as alkylbenzenesulfonates,
N-acyl-n-alkyltaurates, α -olefin sulfonates, sulfated
25 linear primary alcohols and sulfated polyoxyethylenated
straight-chain alcohols;
- d. Nonionics, such as polyoxyethylenated alkylphenols,
polyoxyethylenated straight chain alcohols, long chain
carboxylic acid esters including glycerol ester of natural
30 fatty acids, propylene glycol, sorbitol, and
polyoxyethylenated sorbitol esters;

568

202637

0115627

- 1 e. Amphoteric, such as imidazoline carboxyslates,
sulfonates and the like; and
f. Phospholipids, such as phosphotidyl choline and the like.

5 The preparations of the present invention
preferably contain a phosphate or acetate buffer in the range
of 0.01 M to 0.5 M and preferably in the range of 0.05 M to
0.2 M. This concentration was found effective to provide
stability of the dissolved calcitonin in the diluent base or
vehicle.

10 The preparations of the present invention may also
contain other additives, such antioxidants, stabilizers,
tonicity adjusters, viscosity builders, preservatives, and
the like. The concentration of these additives may vary
according to the particular additive used and the desired
result sought. In general, the concentrations for these
15 additives will be in the range as follows:

<u>Additives</u>	<u>% W/V</u>
Antioxidants	0.01 - 0.2
Stabilizers	0.01 - 2.0
Tonicity Adjuster	0.01 - 0.5
Viscosity Builders	0.1 - 2.0
Preservatives	0.001 - 2.0

25 While the use of the kind and concentration of
additives will be well within the ability of the skilled
artisan, the following will serve as illustration for two
additives generally used in pharmaceutical preparations
intended for similar purposes.

569

30 202637

011562?

	<u>Preservatives</u>	% W/V
1	Benzalkonium chloride	0.004 - 0.02
	Disodium Ethylene	
	Diamine Tetraacetate	0.01 - 0.2
5	Thimerosal	0.001 - 0.01
	Chlorobutanol	0.5 - 1.0
	Methyl and/or Propyl Paraben	0.01 - 0.2
	Phenethyl Alcohol	0.25 - 0.75
10	Cyclohexidine	0.01 - 0.1
	<u>Viscosity Agents</u>	% W/V
	Methyl Cellulose	0.1 - 2.0
	Hydroxyethyl Cellulose	0.1 - 2.0
15	Hydroxypropyl Cellulose	0.1 - 2.0
	Polyvinylprrolidone	0.5 - 2.0

20 In preparing the formulations of the present invention, calcitonin is dissolved in the vehicle or diluent after which the additional ingredients are added in accordance with customary formulation procedures known in the pharmaceutical industry.

25 Examples of typical intranasal formulations are set forth below. However, it is to be understood that these examples are given by way of illustration only and are not to be construed as limiting the invention either in spirit or in scope as many modifications will be apparent to those skilled in the art.
570

202637

30

35

1

EXAMPLE 1 % W/V

5

Calcitonin	0.009
Sodium Taurocholate	0.5
Gelatin	1.0
Purified Water Q.S.	100

10

EXAMPLE 2 % W/V

15

Calcitonin	0.009
Miranol C2M	1.0
Gelatin	1.0
Purified Water Q.S.	100

20

EXAMPLE 3 % W/V

Calcitonin	0.009
Miranol C2M	0.05
Sodium Acetate .3H ₂ O	1.36
Acetic Acid	0.6
Purified Water Q.S.	100

25

EXAMPLE 4 % W/V

30

Calcitonin	0.009
Polysorbate 80	1.0
Sodium Acetate .3H ₂ O	1.36
Acetic Acid	0.6
Purified Water Q.S.	100

35

571

202637

0115627

EXAMPLE 5 % W/V

Calcitonin	0.003
Brij 30	1.0
Sodium Acetate .3H ₂ O	1.36
Acetic Acid	0.6
Purified Water Q.S.	100

EXAMPLE 6 % W/V

Calcitonin	0.009
Myrj 59	1.0
Sodium Acetate	1.36
Acetic Acid	0.6
Purified Water Q.S.	100

EXAMPLE 7 % W/V

Calcitonin	0.009
Miranol C2M	1.0
Sodium Phosphate	2.40
Citric Acid	0.34
Thimerasol	0.002
Purified Water Q.W.	100

572

202637

0115627

<u>EXAMPLE 8</u>	<u>% W/V</u>
Calcitonin	0.009
Sodium Taurocholate	0.5
Sodium Acetate .3H ₂ O	1.36
Acetic Acid	0.6
Benzalkonium Chloride	0.01
DiSodium ethylenediamine tetraacetate	0.1
Purified Water Q.S.	100

<u>EXAMPLE 9</u>	<u>% W/V</u>
Calcitonin	0.009
Sodium Taurocholate	0.5
Sodium Acetate .3H ₂ O	1.36
Acetic Acid	1.36
Chlorobutanol	0.1
Phenethyl Alcohol	0.2
Purified Water Q.S.	100

<u>EXAMPLE 10</u>	<u>% W/V</u>
Calcitonin	0.003
Miranol C2M	1.0
Sodium Phosphate	2.40
Citric Acid	0.34
Thimerasol	0.002
Purified Water Q.S.	100

573

202637

0115627

The gelatin used in the above formulations is a standard hydrolyzed animal gelatin prepared for pharmaceutical use and routinely used as a diluent for peptides.

According to the present invention, it has been found that calcitonin can be administered intranasally from a vehicle containing absorption promoters with results considerably superior to those obtained with the administration of calcitonin without absorption promoters. The following studies were undertaken to examine the bioavailability of calcitonin from the formulations of the present invention, dependency of intranasal absorption of calcitonin on the level of absorption promoters and stability of calcitonin in the presence of absorption promoters.

PROTOCOL

Male rats weighing 150-250 g were weighed and anesthetized with sodium pentobarbital, 50/mg/kg. by intraperitoneal injection. Once anesthetized the nasopalatine process was occluded with glue. The animals were randomly placed into groups of 5-7 rats with the number of groups being dependent upon the number of intranasal formulations to be tested. Supplemental pentobarbital anesthesia was administered as necessary throughout the study.

Prior to administration of the test material, blood was collected by cardiac puncture using a 25G 5/8" needle. Fifty (50) microliters of the salmon calcitonin-containing surfactant solution was then instilled into the nasal septum using polyethylene tubing (PE 20, Peterson Technics, Monmouth Junction, N.J.) connected to a 1 ml syringe; the tubing was inserted about 1 cm into the nasal septum. One and three

574

202637

0115627

1 hours after nasal instillation, blood was again collected by
cardiac puncture.

Biochemical Analysis

5 Blood samples were allowed to clot at room temperature and were then refrigerated for 30-60 minutes to provide maximum clot-retraction. The samples were centrifuged at 4°C., 5000 rpm for 10 minutes (Beckman Model J2-21 Centrifuge, Beckman Instruments, Palo Alto, CA). Serum calcium was quantitated using a Calcette (Model 4008, 10 Precision Systems, Sudbury, MA).

Data Analysis

15 Serum calcium values at 0, 1 and 3 hours were expressed as mean \pm standard deviation. In addition, the absolute change and the percent change from the pretreatment (0 time) value at 1 and 3 hours was also calculated. Statistical analysis consisted of comparison of the serum calcium values at 0 and 1 hour, 0 and 3 hours, and 1 and 3 hours using a t test.

20 : 575

202637

25

30

35

REASOS

0115627

EXAMPLE 11

This example illustrates decrease in serum calcium in blood samples obtained in accordance with the above protocol when: a. calcitonin is administered alone; b. calcitonin is administered in formulations containing various absorption promoters; and c. no calcitonin is present in the formulations.

Table 1 shows the result obtained.

202637

576

5

0

5

35

30 25 20 15 10 5 1

TABLE I

Calicitonin U/kg body weight vehicle/surfactant	0 hour mg/dl	TIME AFTER DOSE		
		1 hour mg/dl.	% decr.	3 hour mg/dl. % decrease
2U 1% gel -	8.8	9.5	NONE	9.9
5U 1% gel -	8.5	7.9	7.1	9.5
5U 1% gel -	9.2	7.6	17.4	9.7
7U 10U .1M Acetate -	8.8	6.3	28.4	9.0
- 1% gel 1% Miranol C2N (1)	8.9	8.8	NONE	9.2
- 1% gel 1% Taurocholate	9.1	9.5	NONE	9.8
3U 1% gel 1% Miranol C2N (1)	8.9	6.7	24.7	7.6
8.8	6.5	26.1	8.5	3.4
8.7	6.8	21.8	8.9	2.3
3U 0.1M Acet. 1% Miranol C2N (1)	8.7	6.8	21.8	8.9
10U 1% gel 1% Miranol C2N (1)	9.5	6.1	35.8	8.8
9.1	7.5	17.6	6.6	27.5
8.9	7.1	20.2	7.1	20.2
10U 0.1M Acet. 1% Miranol C2N (1)	9.3	6.1	34.4	6.5
9.2	6.8	26.1	8.4	8.7
3U 1% gel 1% Taurocholate	9.1	7.0	23.1	6.4
10U 1% gel 1% Taurocholate	9.3	7.1	23.7	6.3
8.6	6.1	29.1	5.9	31.4
10U 0.1M Acet. 1% Taurocholate	9.1	6.5	28.6	5.7
8.3	6.2	25.3	8.7	NONE
3U 1% gel 1% Tween 80 (Polysorbate 80)	8.9	7.1	20.2	9.2
				NONE

(1) Dienthydroxylated fatty imidazoline or dicarboxylic coconut derivative,

202637

-14-

0115627

0115627

TABLE I (Cont'd.)

Calcitonin U/kg body weight vehicle/surfactant	0 hour mg/dl	TIME AFTER DOSE			<u>mg/dl</u> <u>% decrease</u>
		1 hour mg/dl	% decr.	3 hour mg/dl	
10U 1% gel 1% Tween 80 (Polysorbate)	8.7	6.6	24.2	7.3	16.1
3U 1% gel 0.5% Benzal- konium Chloride	8.9	6.7	24.7	8.4	5.6
	8.7	5.9	32.2	6.3	27.6
10U 1% gel 0.5% Benzal- konium Chloride	8.9	6.5	26.9	9.0	NONE
	8.5	7.2	15.3	7.9	7.1
3U 1% gel 1% Saponin (Sapogenin Glycoside)	9.0	6.0	33.3	6.2	31.0
	8.6	7.3	15.1	7.3	15.1
10U .1M Acet. 1% NaL Saf	8.7	6.5	25.9	8.1	6.9
10U .1N Acet. 1% Brij 30	8.7	6.5	25.9	6.5	25.9
Polyoxyethylene (4) lauryl ether)					
10U .1N Acet. 1% Myrj 59	8.5	6.2	27.1	8.4	1.2
(Polyoxyethylene (100) Stearate)					
10U .1M Acet. 1% Tween 80	8.7	7.5	13.8	7.1	18.4
10U .1N Acet. 1% Aer OT	9.1	6.6	27.5	7.6	16.5
Sodium dioctyl sulfosuccinate)					

578

202637

C115627

1

EXAMPLE 12

This example illustrates that the enhancement of intranasal absorption depends on the level of absorption promoter present in the formulation.

5

Table II shows the result obtained.

202637

10

579

15

20

25

30

35

0115627

1

5

10

15

20

25

30

35

580

202637

TABLE II

<u>10U Calcitonin/kilo in 0.1M Acetate with</u>	<u>0 hour mg/dl</u>	<u>1 hour mg/dl</u>	<u>3 hour %</u>
1% Taurocholate	9.1	6.5	28.6
0.5%	9.0	6.1	32.2
0.25%	9.1	6.8	25.3
0.1%	8.9	6.5	27.0
0.05%	9.0	7.6	15.5

10U calcitonin/kilo
in 0.1M Acetate with

<u>1% Miranol C2N (dicarboxylic coconut derivative, sodium salt)</u>
0.5%
0.25%
0.1%
0.5%

0115627

1

EXAMPLE 13

This example illustrates that calcitonin maintains its activity level in the formulations of the present invention on storage at room temperatures.

5

Table III shows the results obtained.

202637

581

10

15

20

25

30

35

0115527

1
5
10
15
20
25
30
35

TABLE III

58 10U calcitonin in 1% gel		0 hour		1 hour		$\frac{mg/dl}{mg/dl}$ hour	
Initial		8.9	7.1	20.2	7.1	20.2	
2 wks @ RT		9.1	7.2	20.9	6.4	29.7	
4 wks @ RT		9.1	6.0	34.1	6.9	24.2	
10U calcitonin in 1% gel with 1% Tween 80 (Polysorbate 80)							
Initial		8.9	6.7	24.7	8.4	5.6	
2 wks @ RT		8.8	6.7	23.9	8.3	6.0	
4 wks @ RT		8.8	6.3	28.4	6.7	23.9	

202637

0115627

DOCUMENTS CONSIDERED TO BE RELEVANT			EP 83113070.3
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 7)
A	<p><u>US - A - 4 241 051</u> (CHRISTIE et al.)</p> <p>* Claims 3,4,5,7-10; column 1, line 45 - column 4, line 46-*</p> <p>--</p>	1,6	A 61 K 37/02
A	<p><u>GB - A - 1 548 984</u> (CIBA-GEIGY AG)</p> <p>* Claims, especially claim 5; page 1, line 9 - page 3, line 66 *</p> <p>--</p>	1,2,5	
A	<p><u>DE - A1 - 2 254 061</u> (HOECHST AG)</p> <p>* Claim 1,4; pages 1,2 *</p> <p>-----</p>		
			TECHNICAL FIELDS SEARCHED (Int. Cl. 7)
			A 61 K 37/00
584			
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
VIENNA	30-03-1984	STÖCKLMAYER	
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone	T : theory or principle underlying the invention		
Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after the filing date		
A : technological background	D : document cited in the application		
O : non-written disclosure	L : document cited for other reasons		
P : intermediate document	& : member of the same patent family, corresponding document		

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.