Dynamic Programming Part 1

CS240

Rui Fan

Spring 2023

Algorithmic paradigms

- Greedy Build up a solution incrementally, myopically optimizing some local criterion.
- Divide and conquer Break up a problem into a few sub-problems, solve each sub-problem independently and recursively, and combine solution to sub-problems to form solution to original problem.
- Dynamic programming Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
 - Very powerful and widely used technique in CS, OR, info and control theory.
 - □ Efficiently solves problems that otherwise seem intractable.
 - □ Name comes from dynamic "schedule" of subproblems the algorithm produces.

Algorithmic paradigms

Divide and conquer

Dynamic programming

Weighted interval scheduling

- Recall the interval scheduling problem
 - ☐ Given a set of intervals, pick the largest set of nonoverlapping intervals.
 - For n intervals, solvable by a greedy algorithm in O(n log n) time.
- Weighted interval scheduling generalizes the problem so the intervals have weights.
 - Pick a set of nonoverlapping intervals with the largest combined weight.
 - No known natural greedy algorithm to solve this.

Source: Algorithm Design. Kleinberg, Tardos

Compatible intervals

- Order the intervals by nondecreasing finishing times, as $I_1, I_2, ..., I_n$.
- Given interval I_j , let p(j) be the maximum index k s.t. I_k finishes before I_j starts.
 - □ If no I_k finishes before I_j starts, let p(j) = 0.
- Suppose I_j and I_k are both used in the schedule, and k < j, then $k \le p(j)$.
 - \square Otherwise I_k overlaps with I_j .

ŊA.

A recursive solution

- Let S^* be an optimal solution. Then either $I_n \in S^*$ or $I_n \notin S^*$.
- If $I_n \in S^*$
 - $\square I_j \notin S^*$ for all $j \in (p(n), n)$.
 - $\square S^* \{I_n\}$ is an optimal solution for the intervals $I_1, I_2, ..., I_{p(n)}$.
 - I.e. the intervals in S^* besides I_n are a max weight set of non-overlapping intervals from $I_1, I_2, ..., I_{p(n)}$.
- \blacksquare If $I_n \notin S^*$
 - \square S^* is an optimal solution for the intervals $I_1, I_2, ..., I_{n-1}$.

re.

Optimal substructure

- Optimal substructure property.
 - After making a decision, the rest of the solution should be optimal for the rest of the problem.
 - Ex After deciding whether to include I_n in S^* , the remaining solution $S^* \{I_n\}$ is optimal for the remaining problem (either $I_1, I_2, ..., I_{p(n)}$, or $I_1, I_2, ..., I_{n-1}$).
- Optimal substructure is the key feature of dynamic programming.
 - Allows combining current partial solution and optimal subproblem solution to form optimal overall solution.
- Not all problems have optimal substructure.
 - For some problems, the current solution can't be combined with an optimal solution to a subproblem.

Ŋ.

A recursive solution

- Let OPT(j) be the weight of a max weight non-overlapping subset of $I_1, ..., I_i$.
 - \square We want to find OPT(n).
- Optimal substructure implies, for any $j \le n$
 - □ If $I_j \in S^*$, then $\{I_k \in S^* \mid k < j\}$ is an optimal solution for the intervals $I_1, I_2, ..., I_{p(j)}$.
 - □ If $I_j \notin S^*$, then $\{I_k \in S^* \mid k < j\}$ is an optimal solution for the intervals $I_1, I_2, ..., I_{i-1}$.
- Write these as

$$OPT(j) = \max(v_j + OPT(p(j)), OPT(j-1))$$

□ First part of expression is when $I_j \in S^*$, and second part is when $I_i \notin S^*$.

M

A recursive solution

- Can use following recursive algorithm.

 - \square OPT(0) = 0.
- However, the number of subproblems increases exponentially, so this algorithm takes exponential time.
- But notice many of the calls are the same, e.g. we call OPT(1), OPT(2), ... multiple times.
- Instead of computing OPT(1), OPT(2), ... multiple times, we can compute them once and store their values.
 - □ If already computed OPT(j), then when OPT(k) needs to use OPT(j), look up its value instead of running OPT(j).
 - ☐ This is called memoization (notice there's no "r"), or the table method.

An iterative solution

```
Iterative-Compute-Opt M[0] = 0 For j = 1, 2, ..., n M[j] = \max(v_j + M[p(j)], M[j-1]) Endfor
```

- Use an array M to store the solutions of subproblems we've already solved.
- Solve the subproblems from smallest to largest, i.e. in increasing value of M[j].
- For n intervals, takes O(n) time if we know all the p(j) values.
 - □ Can compute all the p(j) values by sorting and binary search in $O(n \log n)$ time.

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Solution. Calculus \Rightarrow min error is achieved when

$$a = \frac{n\sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a\sum_{i} x_{i}}{n}$$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_1 < x_2 < \ldots < x_n$, find a sequence of lines that minimizes a cost function
- Q. What's a reasonable choice for the cost function?
 - Shall balance accuracy and parsimony

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_1 < x_2 < \ldots$
 - $< x_n$, find a sequence of lines that minimizes E + c L
 - E: the sum of the sums of the squared errors in each segment
 - L: the number of lines
 - c: some positive constant

Dynamic Programming: Multiway Choice

Notation.

- OPT(j) = minimum cost for points $p_1, p_{i+1}, \ldots, p_i$.
- $e(i, j) = minimum sum of squares for points <math>p_i, p_{i+1}, \ldots, p_i$

To compute OPT(j):

- If: last segment uses points p_i , p_{i+1} , . . . , p_j for some i.
- Then: cost = e(i, j) + c + OPT(i-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \left\{ e(i, j) + c + OPT(i - 1) \right\} & \text{otherwise} \end{cases}$$

Segmented Least Squares: Algorithm

```
INPUT: n, p<sub>1</sub>,...,p<sub>N</sub>, c

Segmented-Least-Squares() {
    for j = 1 to n
        for i = 1 to j
            compute the least square error e(i,j) for the segment p<sub>i</sub>,..., p<sub>j</sub>

M[0] = 0
    for j = 1 to n
        M[j] = min 1 ≤ i ≤ j (e(i,j) + c + M[i-1])

    return M[n]
}
```

Running time. $O(n^3)$.

■ Bottleneck = computing e(i, j) for $O(n^2)$ pairs, O(n) per pair using previous formula.

Subset Sum

- Consider a set of n jobs, where job i takes w_i resource (e.g. time or memory) to process.
- We have W resources total to run the jobs on a computer, and want to use as much resource as possible.
- Find a set of jobs $S \subseteq \{1, ..., n\}$ to maximize $\sum_{i \in S} w_i$, subject to $\sum_{i \in S} w_i \leq W$.
- A related problem is Knapsack.
 - □ Each item also has a value, and want to maximize total value of selected objects subject to weight constraint.
 - \square Find $S \subseteq \{1, ..., n\}$ to maximize $\sum_{i \in S} v_i$, s.t. $\sum_{i \in S} w_i \leq W$.
- Greedy algorithm Sort items from largest to smallest. Insert items sequentially, as many as possible.
 - □ Always achieves at least 1/2 the max possible sum.
 - □ Sometimes only achieves $\frac{1}{2} + \epsilon$ fraction of max.
 - Ex $\{\frac{W}{2} + 1, \frac{W}{2}, \frac{W}{2}\}$.

M

Optimal substructure

- Order the items arbitrarily as $w_1, ..., w_n$, and let S be any solution.
- If $w_n \in S$.
 - \square Sum increases by w_n .
 - \square The remaining weight is $W w_n$.
 - $\square S' = S \{w_n\}$ should be a max weight subset of $\{w_1, ..., w_{n-1}\}$ satisfying $\sum_{w_i \in S'} w_i \leq W w_n$, by optimal substructure.
- If $w_n \notin S$.
 - □ Sum doesn't increase.
 - \square The remaining weight is W.
 - \square S should be a max weight subset of $\{w_1, ..., w_{n-1}\}$ satisfying $\sum_{w_i \in S} w_i \leq W$, by optimal substructure.

M

Dynamic programming solution

Let OPT(i, W') be max weight of a subset $S \subseteq \{w_1, ..., w_i\}$, subject to $\sum_{w \in S} w \leq W'$. Then

$$OPT(i, W') = \max(OPT(i - 1, W'), w_i + OPT(i - 1, W' - w_i))$$

- First term in max is where $w_i \notin S$.
 - □ Then we want a max weight subset of $\{w_1, ..., w_{i-1}\}$ with total weight $\leq W'$.
- The second term is where $w_i \in S$.
 - □ Then our sum increases by w_i , and we want a max weight subset of $\{w_1, ..., w_{i-1}\}$ with total weight $\leq W' w_i$.

Table method for Subset Sum

- Solve dynamic programming equation using an $n \times W$ table M.
 - $\square M[i,w] = OPT[i,w].$
 - □ Base case M[0, w] = 0, $\forall w \leq W$.
 - For no items, max sum is 0 regardless of weight limit w.
- M[i, w] depends on M[i 1, w'] for some $w' \le w$.
 - \square Fill in M in order of increasing i and w.
- The solution to the overall problem is M[n, W].
- Memory complexity is O(nW).
- Time complexity is O(nW).
 - □ Filling each entry of M requires looking at two other entries in M, which takes O(1) time.

```
(6.8) If w < w_i then OPT(i, w) = OPT(i - 1, w). Otherwise OPT(i, w) = max(OPT(i - 1, w), w_i + OPT(i - 1, w - w_i)).
```

```
\begin{aligned} & \text{Subset-Sum}(n,W) \\ & \text{Array } M[0\ldots n,0\ldots W] \\ & \text{Initialize } M[0,w] = 0 \text{ for each } w = 0,1,\ldots,W \\ & \text{For } i = 1,2,\ldots,n \\ & \text{For } w = 0,\ldots,W \\ & \text{Use the recurrence (6.8) to compute } M[i,w] \\ & \text{Endfor} \\ & \text{Endfor} \\ & \text{Return } M[n,W] \end{aligned}
```

