

this is the general role: D5L mill) = Di.4(4-5i) seeds: 79 14 55 13 $MI(U) = \begin{cases} 98-100 \Rightarrow -48+V \\ 50-98 \Rightarrow +2+V \end{cases}$ 98-100 🕽 soil-to-fertilizer map:) $(40.00) = (0.15 \Rightarrow 39 + V)$ $(5.52 \Rightarrow -15 + V)$ $(52.54 \Rightarrow -15 + V)$ 37 52 2 0-15 39 0 15 $M = M2(MI(V)) = \begin{cases} 0 - 15 - 39 + 1 \\ 15 - 50 + -15tV \\ 50 - 52 + -13tV \\ 52 - 59 - 13tV \\ 54 - 98 - 2+V \end{cases}$ boot fertilizer-to-water map: 0-15 49 53 8 +5-50 0 11 42 50 98 52-54 4207 5774 98-100 water-to-light map: 0-K 88 18 7 minimize M 15-50 18 25 70 15-50 m(0) = 39 G light-to-temperature map: 50-52 (M(15) = 0)-52 98 45 77 23 m(40) = 37 81 45 19 52-50 52-54 68 64 13 m (52) = 39 54-88 temperature-to-humidity map: M(54)= = 56 98-100 0 69 1 m (98)=-50 1069 $^{\sim}$ humidity-to-location map: geed 15 has 60 56 37 Une Lowest 56 93 4 "fertilizer requirement 1 = (a, b) a, b) bo = a, (disp.) (a,bo) (a,b) a, < a, < b, < b, (a, a) (a, b) (b, b) a= a, < b < b. (a0, b0)(b0, b1) $a_b < a_o < b_o < b_i$ (a., a_o)(a_o, b_o)(b_o, b_i) (a0, b0) (a1, b.) p/ b0 (= a, (disjoint) 42001 (ao, a) (a, bo) (bo, b) (a, a,) (a, b,) (b, b,) (a, a,) (a, b,) (b, b,) Tr sor YI CYO 11 0x0 $\rightarrow (a_1, a_0)(a_0, b_1)(b_1, b_0)$ sometime involved mages (or) inclidy pull ranges (xxx) ANA (PENOM of (o'p) v(o'n'p'') partition 1 sort except for landand i=n it= m (a,b,) (a,b) ... (a,b) (a,b) (ame,b) (ame, b)... partition $(a_1b_1)...(a_n,b_n)$ partition: is disjoint?

Televin separet to rengs

for each ms of RI RZ RD Emax button present Time: 7 15 30 Distance: 9 40 200 A max Ar Immyus CX. RI 4 H # H V H H H 11 d=+-3 H H H 4 1+ 5 det-tyx th aztt-ta 6 5 4 3 2 X X X X 1 2 3 4 5 ex. Pl th=1 4mm 8mm 2 8 5 mm d(th): 7.3-12 6 8,9,8 d(2) = 7.2 - 4 = 106 10 13 12 10 / d(0)=0 7.6 1-6 = 0 d(x)=0 t 2 = 7. th () 3 2 = -61 /62 you -th +7th -9 d= -3 + 172-4(1)(-9) -7+113 d= ->=1/49-36 - 7 _ V 13 -2 -7+3.6 :-3.4 [(3) 2 -2 -2 -7 -3.6 2 -10.6 25.3 > 6 -2 -2 6-24 Rd Rd Rd **R** 85 75 82 d 208 1412 1257 1410 aztt-th R1. a (th) = 46 tn - th2 dri-dri 46.th-th-2-208 (der-dren)(0) = -46 + 14.(-1)(-208) -tmax + 4(-1)(-dr) -46+14.208 - 1 4dr 81 [8.57] = 9
- 2 [37.4] - 37 R3 { -751 \4×1257 21 R R3 t 46 85 75 d 208 1412 1257 R4 82 [2.04] = 2 72-2-70 [22.9] = 72 -82 ± 14× 1410 -2 -2 -2 -2 -2 -3.4<7 = 4 [78.5] = 78 78-4=74

games: triple 2 par par 5 nles hypather's: make from 5 400 40+ 1X 4X+1Y 3X+1J+1Y 40L 3X+1Y+15 4X+1Y+05 2X+1Y+25

	1)													
S	Q o														
\mathcal{N}_{c}															
		C	ΧEγγ	phe.				1							
L	R														
									Se .	Xm	,				
11	A	æ	(.	113	, 💢	(X)			1	4.		۲۲		M	
11	В	=	()		(, 1·	17)			4	17	, 2			^	
41	ł	Ξ	(1	18	, ×	XX			11A	L	22A		1119	L -	» L
22		~	(2	20	X	xX)			118		208		116	3R=	>1
	UB	=							1172	L	33 C			しう	
	C	=	(3	RT'	22 , 23	22)			1113	R	3 72			BR7 LL7	
2 a		2	(3c	LB	\mathcal{L}_{α}	16)			112		338				
XX	(X	=	X	XX	, X ?	×χ			IB	R	33 6		22		
				·					IH		æt		22R		
								'							
	6.		. 0			~ \0	m.	255	_						
(_	. 848		IIA	Ht	ЗЖ	gns.	del	324	14						
9	M	0	•												
	118		0	_											
	117			0	0										
	35U				0	_									
	3 86					0	6								
	MC						V	_							
	F16							0	h						
	XX								•						

 $M_1(v) = a_1 + v$ $M_2(v) = a_2 + v$ $M_1(v) = a_2 + v$ $M_2(v) = a_2 + v$ $M_2(v) = a_3 + v$ $M_3(v) = a_4 + v$ $M_4(v) = a_$ $m_n(v) = a_n + v$ m2(m,w)) = a2+ a,+v $m_n(...m_2(M_1(v))) = a_n + a_n \cdot a_n + v$