Lect 3 Week 1.

Linear combination of vectors.

Suppose $u_i, u_2 \dots u_k$ are k rectors with n-components each

 $\Rightarrow \quad \mathcal{U}_{i} = \begin{pmatrix} \mathcal{U}_{i_1} \\ \mathcal{U}_{i_2} \\ \vdots \\ \mathcal{U}_{i_{m_i}} \end{pmatrix} \text{ for } i = 1, 2 - \dots k$

Let $\alpha_1, \alpha_2 \ldots \alpha_k$ be scalars. We for $i = 1, \ldots k$ are real vectors and α_i $i = 1 \ldots k$ are real The vector $v = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_k u_k$

is called the linear combination of the k-vectors $u_i, u_2 \cdots u_k$.

Suppose
$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$V = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \alpha_1 u_1 + \alpha_2 u_2$$

$$= V_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + V_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$E_{K}: \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Suppose $\alpha_1 = \alpha_2 = \dots = \alpha_k = 1$. $\alpha_1 + \alpha_2 u_2 + \dots + \alpha_k u_k \Rightarrow 0$ $v = |u_1 + |u_2 + \dots + |u_k|$

 \Rightarrow $V = U_1 + U_2 + \dots + U_k$. V : Sum of the vectors.

Ex:
$$u_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 $u_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 $v_2 \mid u_1 + \mid u_2 = 1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + l \begin{pmatrix} 1 \\ 2 \end{pmatrix} \neq \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

.

Suppose we have $u_1, u_2 - u_n$ all n-component vectors Let $\alpha_1, \alpha_2 \dots \alpha_n$ be scalars Such that $\alpha_1 = \alpha_2 = \dots = \alpha_n = \frac{1}{n}$ $V = \alpha_1 U_1 + \alpha_2 U_2 + \cdots + \alpha_n U_n$ $= \frac{1}{n} (U_1) + \frac{1}{n} (U_2) + \cdots + \frac{1}{n} U_n$

 $\frac{3}{n}\left(u_1+u_2+\cdots+u_n\right)$

=> Average of the vectors.

If the coefficients or the scalars add up to 1, we call such combinations

•

as the affine combination

Suppose the coefficients in an affine combination are all non-negative, we call this combination

- (i) CONVEX Combination
- (ii) WEIGHTED AVERAGE.

Suppose $\alpha_1 = \alpha_2 = \cdots = \alpha_{i-1} = 0$, $\alpha_{i=1}$, $\alpha_{i+1} = \cdots = \alpha_k = 0$

the l.c.

2, U, + 22 4 -- + xiui + -- + xelle

Results in the vector Vi

Suppose we want to study the effect of a "transformation" on a vector space, what strategy do we adopt to do this?

Consider $u_1, u_2 \dots u_n$ to be n-component vectors.

Look at that linear combination of the u-vectors that results in the n-comp zero vector.

Let $\alpha_1, \alpha_2 \dots \alpha_n$ be real Scalars

The linear combination of u-vectors is given by

$$\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n = D_n$$

$$\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n = 0$$

Ex:
$$u_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 $u_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $u_3 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$.

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 1 \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 1 \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

There are multiple possibilities to get the ovector by choosing different scalars

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Linear dependence/Linearly dep. vector

Suppose $u_1, u_2 \cdots u_n$ are vectors and $\alpha_1, \alpha_2 \cdots \alpha_n$ are scalars then

 $\alpha_1 U_1 + \alpha_2 U_2 + \cdots + \alpha_n U_n = O_n$ Such that not all α_i 's are O, we say that U_1 , $U_2 \cdots U_n$ are linearly dependent A set of vectors, is Said to be linearly dep if for scalars $d_1, d_2 \dots d_n$

there exists a l·c $\alpha, \mu, \rho \dots + \alpha n \mu n$

Such that not all xils are

Any set that contains the zero Vector is a linearly dependent set.

 $S = \{u_1, u_2, u_3, \dots, u_{k}, 0\}$

then

Linearly Dep Set > REDUNDANCY.