

Reinforcement Learning for Query Pricing in The Graph

Tomasz Kornuta

VP of Engineering/Head of Al

SEMIOTICA BS

Outline

- Introduction
 - About Semiotic Labs
- Automated Price Discovery: AutoAgora
 - Problem Formulation: Dynamic Pricing
- Reinforcement Learning 101
- Agent-Based Modeling for
 - Testing system properties and outcomes
 - Single- and multiple-agent setup
- AutoAgora in production
- Summary

Introduction

About SEMIOTICASS

- Founded in 2020 by AI & Cryptography researchers
- Funding from NSF, DARPA, The Graph Foundation and Infinity Ventures
- Focus on Applied Research
- Core Developer of Protocol
 Developer of Dos the Optimal DEX Aggregator

SEM!OTICs Expertise & Interests

Automated Price Discovery: AutoAgora

Automated Price Discovery: The Scenario

- **Customers** send queries to **The Gateway**
- The Gateway distributes queries between indexers
 - The decision is based on each indexer's price-bid and it's quality of service
- **Indexers** earn money by serving queries
 - **Indexers** can control the prices of served gueries
- **AutoAgora = Dynamic pricing** based on guery volume received by an indexer

Agent Based Modeling

 Price bids expressed as models in DSL called Agora Queries distributed amongst agents depending on their price bids

Queries simulated as a total query volume (q/s)

Assumptions (selected)

- Normalized query volume with noise (additive white Gaussian noise)
- Customers have limited budget that can change over time
- Query serving costs are not considered => agents operate purely on revenue
- Game: Agent's revenue maximization vs Gateway's quality of service

Reinforcement Learning 101

Reinforcement Learning 101

- Agent interacts with the Environment by executing an action
- Agent's actions change the state of the Environment
- Agent gets a reward and observes the new state of the Environment
- Agent updates its policy based on the received reward

Agents and algorithms

- Types of agents used in our simulations
 - Trainable (RL) vs Rule-based (i.e. with predefined behaviors)
 - Deterministic vs Stochastic
- Types of RL algorithms (update rules):

Gaussian bandits

- **Gaussian bandits** = trainable, stochastic agents with:
 - Policy is represented as a gaussian distribution over the possible query prices
 - **Action** is sampled from the **policy distribution** (continuous action space)
 - No internal representation of the environment (bandit)

Testing Properties with Agent-Based Modeling

 Distribution inversely-proportional to price bids (inverse softmax)

 Fixed customer budget, with noise

- Market Conditions: Fixed customer budget
- Bandit property tested: Customer budget discovery

- Query volume + consumer budget (white)
- Agent's initial policy (dashed red)
- Agent's current policy (red)

Query volume served by the agent

- Aggregated query volume served by the agent (red)
- Aggregated volume of unserved queries (cyan)

Agent's revenue

Aggregated agent's revenue

Distribution inversely-proportional to price bids (inverse softmax)

 Dynamic customer budget, with noise

- Market Conditions: Dynamic customer budget
- Bandit property tested: Customer budget discovery

Distribution inversely-proportional to price bids (inverse softmax)

 Dynamic customer budget, with noise

- Market Conditions: No demand
- Bandit property tested: Fallback and recovery

Distribution inversely-proportional to price bids (inverse softmax)

- Market Conditions: Competition with deterministic agents
- Bandit property tested: Discovery of price bids of competitive agents

Distribution inversely-proportional to price bids (inverse softmax)

- Market Conditions: Competition with stochastic agents
- Bandit property tested: Discovery of price bids of competitive agents

Experiment 5.2 time 1

Distribution inversely-proportional to price bids (inverse softmax)

- **Static** customer budget, with noise
- Market Conditions: Competition with Gaussian bandits
- Bandit property tested: Discovery of price bids of competitive agents

On the Expected Outcomes

- **Agents** and **Environment** form a **Game**
 - When Agents' rewards are driven purely by query volume (x price) and
 - Environment naively distributes the queries based on the price bids, then

Race to the bottom is the expected outcome!

- Different outcomes can be achieved in various ways
- The Graph protocol desired features and outcomes (selected):
 - All Indexers should have freedom with their pricing models
 - All Indexers should be able to make (some) profit
 - Conclusion: **The Gateway** should implement the anti-domination rules So happens it already does!

Indexer Selection Algorithm (ISA)

(wrapped one of components of The Graph's Gateway)

- **Static** customer budget, with noise
- Market Conditions: Competition with Gaussian bandits
- Bandit property tested: Discovery of price bids of competitive agents

Experiment 7.4

Experiment 7.5

AutoAgora In Production

AutoAgora in production 1

Gaussian

moves right!

AutoAgora in production 2

Gau<mark>ssian</mark> gets narrower!

AutoAgora In Production 3

AutoAgora In Production 4

Summary

- Agent-based Modelling (ABM) for cryptoeconomics
 - Focus on Dynamic Pricing applied to Automated Price Discovery
 - Focus on agents using reinforcement learning for revenue maximization
- We have shown how to use ABM for
 - Testing the properties of the protocol
 - Discovering (and designing!) the outcomes of the game
- Finally, we have deployed AutoAgora in a real Graph indexer!

Summary 2

Feature works

- Better update rules/policies
- Agents with multiple rewards (taking QoS into account)
- Modelling and putting consumer agents into play
- Redesigning the game (e.g. perfect information)

AutoAgora resources

- A. Asseman (2022): "Automated Query Pricing in The Graph" [blogpost]
- A. Asseman (2022), Special Graph Hack Episode: "Automated Cost Modeling"
 [voutube]
- AutoAgora GitHub Repository (open-source!) [link]

Oct 12th, 10:00am, Matt: "Overview of AMM mechanisms" (ODOS

Oct 12th, 11:30am, Seve: "A SNARK's Tale: A Story of Building SNARK Solutions on Mainnet"

We are hiring | full time & interns | remote & Los Altos, California

- Al Researchers (RL, DL)
- Cryptographers (SNARKs, ZK proofs, FHE)
- Developers (general | web3, Rust, Solidity)
- DevOps Engs (infrastructure, CI, real-time services, AWS)
- Data Scientists (general | arbitrage strategy and capture)
- **BizDev Officers**(general | web3)

contact@semiotic.ai

Thank you!

Tomasz Kornuta (Tom)

tomasz@semiotic.ai

Agent-Based Simulation (in Protocol Economics)

Dynamic Pricing In Competitive Markets

- Dynamic pricing happens where the price is flexible
 - Flexibility: price can be based on demand, supply, competition price, and/or subsidiary product prices
 - Personalization: Price may change from customer-to-customer based on their purchase habits
- Protocols like RAI and Filecoin already rely on Dynamic Pricing
- Reinforcement Learning is often cited as a future option for automated decision-making in web3 protocols

Independent simulations

- Fast: good for rapid prototyping, unit testing etc.
- Huge "sim2real gap": deployment is the actual testing

Multi-fidelity Simulation 1

- Reduction of the sim2real gap
- Modeling off- & on-chain with varying "realism"

Multi-fidelity Simulation 2

