Vzorové riešenie 2. zadania

SYNTÉZA KOMBINAČNÝCH LOGICKÝCH OBVODOV

Navrhnite prevodník číslic 0-9 v kóde BCD8421 do kódu Aiken. Prevodník realizujte s minimálnym počtom členov NAND a NOR.

Vlastné riešenie overte programovými prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) Navrhnite vlastné riešenie pre skupinovú minimalizáciu a odvoďte B-funkcie v tvare MDNF.
- 2) Vytvorte vstupný textový súbor s opisom vstupu pre ESPRESSO.
- 3) Navrhnuté B-funkcie v tvare MDNF overte programom ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 4) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. aj negátory nahraďte logickými členmi NAND).
- 5) Z Karnaughovej mapy odvod'te B-funkcie v tvare MKNF a vytvorte obvod s členmi NOR (výhradne NOR, t.j. aj negátory nahraď te logickými členmi NOR).
- 6) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 7) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov, vstupov obvodu, vhodnosti použitie NAND alebo NOR realizácie).

Riešenie BCD

	В	CD8	34-2	2-1	BCD8421				
#	a	b	c	D	A	В	C	D	
0	0	0	0	0	0	0	0	0	
1	0	1	1	1	0	0	0	1	
2 3	0	1	1	0	0	0	1	0	
3	0	1	0	1	0	0	1	1	
4	0	1	0	0	0	1	0	0	
5	1	0	1	1	0	1	0	1	
6	1	0	1	0	0	1	1	0	
7	1	0	0	1	0	1	1	1	
8	1	0	0	0	1	0	0	0	
9	1	1	1	1	1	0	0	1	

	<u> </u>
d	
	<u> </u>

		0000	xxxx	xxxx	XXXX
	b	0100	0011	0001	0010
		xxxx	xxxx	1001	xxxx
a		1000	0111	0101	0110

A,B,C,D

Kaurgnaughove mapy a DNF

					2	_				(2
			d						d		
				,		1					
		0	x	X	x			0	х	х	X
	b	0	1	0	1		b	0	1	1	0
		X	X	0	X			X	X	1	X
a		0	1	0	1	a	•	0	1	1	0
			С			-			D		

MDNF:

$$A = a\bar{c}\bar{d} + ab$$

$$B = b\bar{c}\bar{d} + \bar{b}d + \bar{b}c$$

$$C = c\bar{d} + \bar{c}d$$

$$D = d$$

Obsah vstupného súboru pre ESPRESSO:

- # prevodník z BCD84-2-1
 doBCD8421
- .i 4
- .0 4
- .ilb a b c d
- .ob A B C D
- .type fr
- .p 10

.е

Výstup programu ESPRESSO:

```
# prevodnik z BCD84-
2-1 do BCD8421
A = (a&!c&!d) | a&b);
B = (b&!c&!d) |
(!b&d) | (!b&c);
C = (c&!d) | (!c&d);
D = (d);
```

Prepis na NAND:

```
A = a\bar{c}\bar{d} + ab
= a\bar{c}\bar{d} + ab
= a\bar{c}\bar{d}.(a\bar{b})
= (a \uparrow (c \uparrow) \uparrow (d \uparrow)) \uparrow (a \uparrow b)
B = b\bar{c}\bar{d} + \bar{b}d + \bar{b}c
= b\bar{c}\bar{d}.(\bar{b}\bar{d}).(\bar{b}\bar{c})
= (b \uparrow (c \uparrow) \uparrow (d \uparrow)) \uparrow ((b \uparrow) \uparrow d) \uparrow ((b \uparrow) \uparrow c)
C = c\bar{d} + \bar{c}d
= c\bar{d}.(\bar{c}\bar{d})
= c \uparrow (d \uparrow) \uparrow ((c \uparrow) \uparrow d)
D = d
\uparrow - Shefferova operácia (NAND)
```

Počet logických členov obvodu: 10

Počet vstupov do logických členov obvodu: 23

Kaurgnaughove mapy a KNF

			d	(<u>c</u>				d		<u> </u>
		0	Х	х	х			0	х	X	Х
	b	0	0	0	0		b	1	0	0	0
		X	X	1	X			X	X	0	X
a	'	1	0	0	0	a	'	0	1	1	1
			A						В		
			d		<u>c</u>				d	(<u> </u>
		0	d	X	x			0	dx	X	<u>x</u>
	b	0 0					b	0			
	b		х	X	х		b		X	X	х
a	b	0	x 1	x 0	x 1	a	b	0	x 1	x 1	x 0

MKNF:

MKNF:

$$A = a \cdot (\bar{d} + b) \cdot (\bar{c} + b)$$

$$B = (\bar{b} + \bar{d}) \cdot (d + c + b) \cdot (\bar{b} + \bar{c})$$

$$C = (d + c) * (\bar{d} + \bar{c})$$

$$D = d$$

Prepis na NOR:

$$A = a \cdot (\bar{d} + b) \cdot (\bar{c} + b)$$

$$= \overline{a \cdot (\bar{d} + b) \cdot (\bar{c} + b)}$$

$$= (a) + (\bar{d} + b) + (\bar{c} + b)$$

$$= (a) \downarrow ((d) \downarrow b) \downarrow ((c) \downarrow b)$$

$$B = (\bar{b} + \bar{d}) \cdot (d + c + b) \cdot (\bar{b} + \bar{c})$$

$$= (\bar{b} + \bar{d}) \cdot (d + c + b) \cdot (\bar{b} + \bar{c})$$

$$= (\bar{b} + \bar{d}) \cdot (d + c + b) \cdot (\bar{b} + \bar{c})$$

$$= ((b) \downarrow (d)) \downarrow (d + c + b) \cdot ((\bar{b} + \bar{d}))$$

$$= ((b) \downarrow (d)) \downarrow (d \downarrow c \downarrow b) \downarrow ((b) \downarrow (c))$$

$$C = (d + c) \cdot (\bar{d} + \bar{c})$$

$$= (\bar{d} + c) \cdot (\bar{d} + \bar{c})$$

$$= (\bar{d} + c) + (\bar{d} + \bar{c})$$

$$= (d \downarrow c) \downarrow ((d) \downarrow (c))$$

$$D = d$$

$$\downarrow - Peirceova operácia (NOR)$$

Počet členov obvodu: 10

Počet vstupov do logických členov obvodu: 24

Zhodnotenie

Mal som za úlohu urobiť prevodník z BCD84-2-1 do BCD8421 MDNF som realizoval pomocou nandu a MKNF pomocou noru a zistil som že Nand je efektívnejší o jeden logicky vstup.