BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE- PILANI, HYDERABAD CAMPUS SECOND SEMESTER 2022-2023

Date: 12/01/2023

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE G552

Course Title : Advanced Transport Phenomena

Instructor-in-Charge : Dr. Balaji Krishnamurthy/Dr. Nandini Bandaru

1. Scope & Objective

Transport phenomena is one of the basic subjects of chemical engineering and includes study of fluid dynamics, heat and mass transfer. The governing equations for the aforementioned transport processes are analogous in nature as the underlying molecular mechanisms are very closely related. The objective of this course is to cover advance topics in this area like the transport of momentum, heat and mass in turbulent flow, creeping flows, flow through porous media, flow over flat plates and curved surfaces, interphase transport, etc. A balanced overview and fundamental equations for transport processes would be provided along with illustrations regarding solving relevant problems. Further, some special cases which are frequently encountered would also be covered. The non-exam portion of the course will be for 40%. This will include projects, assignments and suprize quizzes.

2. Course Description: Viscosity, thermal conductivity and diffusivity, Shell momentum and energy balance, equations of change for isothermal and non-isothermal systems, Concentration distribution in solids and laminar flows, momentum, thermal and concentration boundary layers near walls, origin of turbulence, length scales in turbulent flows, Reynolds (RANS) equations, estimates of Reynolds stress (k-epsilon and k-omega type models), turbulent shear flow near a wall, turbulent flow in pipes and channels, turbulent heat transfer, Introduction to large eddy simulations models, rheology and material functions, non-Newtonian viscosity and generalized Newtonian models, Linear and non-linear visco-elasticity, radiation heat transfer, multi-component systems, Coupled heat and mass transfer, evaporation, boiling and condensation, chemical reactions, Special topics: Flow through porous media, compressible flows, multiphase flow, Transport phenomena in biochemical systems.

3. Text Books

- 1. Bird, Stewart and Lightfoot, 'Transport Phenomena', John Wiley & Sons, 2002, 2nd edition
- 2. Joel Plawsky, "Transport Phenomena Fundamentals", CRC Press, 2010, 2nd edition

4. Reference Books

1. L. Gary Leal, "Advanced Transport Phenomena", Cambridge University Press, 2007

- 2. Ronald G. Larson, "The structure and rheology of complex fluids", Oxford University Press, USA, (1999)
- 3. Michael Rubinstein and Ralph H. Colby, "Polymer Physics", Oxford University Press, Oxford, (2003)
- 4. William M. Deen, "Analysis of Transport Phenomena", Oxford University Press, Indian Edition, 2008
- 5. John C. Slattery, "Advanced Transport Phenomena", Cambridge University Press, 1999

5. Course Plan:

Lecture	Learning Objectives	Topics to be covered	Chapter	
1-2	Review of Shell Momentum Balance Equations of change for isothermal systems	Shell Momentum Balances and Boundary Conditions, The Equations of Change in Terms of the Substantial Derivative, Use of the Equations of change to Solve Flow Problems	Ch. 1-3 (T1)	
3-4	Review of Shell Energy balances, Equations of change for non-isothermal systems	Shell Energy Balances and boundary conditions, Free and forced convection, Use of the Equations of Change to Solve Steady-State Problems	Ch-9-11 (T1)	
5-6	Review of Concentration Distributions in Solids and in Laminar Flow	Shell mass balances, Boundary conditions, Diffusion through a stagnant gas film, with a chemical reaction, Diffusion and chemical reaction inside a porous catalyst	Ch-18 (T1)	
	Convective Transport on a	Laminar hydrodynamic, thermal	Ch 12-14 (T2)	
	flat plate, Convective	and mass transfer boundary layers,		
	Transport over systems	flow over cylinders, spheres, turbulent		
7-9	with curvature	boundary layers		
	Creeping Flow – Two-	Nondimensionalization and the	Ch 5-7 (R4)	
	Dimensional and	Creeping-Flow Equations, Two-		
	Axisymmetric Problems,	Dimensional Creeping Flows,		
	Thin gap approximation-	Axisymmetric Creeping Flows, Basic		
10-12	lubrication problem	Equations of Lubrication Theory		
	Velocity Distributions in Turbulent Flow	Time-Smoothed Equations of Change for Incompressible Fluids, The Time-Smoothed Velocity Profile near a Wall, Empirical Expressions for the Turbulent Momentum Flux, Turbulent flow in pipes and channels, Eddy diffusivity	Ch. 5 (T1) Ch 13 (R4)	
13-15		models		
	Temperature distributions	Time-Smoothed Equations of Change	Ch-13 (T1)	
	in	for Incompressible Nonisothermal Flow,		
	Turbulent flow	The Time-Smoothed Temperature		
		Profile near a Wall, Empirical		
15-17		Expressions for the Turbulent Heat Flux,		

		Temperature Distribution for Turbulent	
		Flow in Tubes and jets	
	Equations of Change for	Multicomponent equations of change,	Ch 19 (T1)
	Multicomponent Systems	multicomponent fluxes, use of the	Ch 11 (R4)
18-20		equations of change for mixtures	
	Concentration Distributions	Time-smoothing of the equation of	Ch 21 (T1)
	in Turbulent Flow	continuity, Enhancement of mass	
		transfer by a first-order reaction in	
		turbulent flow, Turbulent mixing and	
		turbulent flow with second-order	
21-23		reaction	
	Rheology of complex	Fundamentals of rheology, types of	Ch 1, 3 (R2)
	fluids, Linear and non-	complex fluids, origins of Non-	
	linear viscoelasticity	Newtonian behavior Non-Newtonian	Ch (R4)
24-26	Behavior of polymeric	viscosity and generalized Newtonian	
	melts	models, elasticity and linear viscoelastic	Ch 8 (T1)
		models, unentangled and entangled	
27-29		polymer melts	Ch 8-9 (R3)
	Coupled heat and mass	Coupled diffusion and reaction, coupled	Ch 5 (T2)
	transfer	heat and momentum transport	
30-31			
	Interphase transport in non-	Heat Transfer Coefficients for Forced	Ch 14, 22 (T1)
	isothermal systems and	Convection, Free and Mixed	
	mixtures	Convection, Heat Transfer Coefficients	
		for Condensation of Pure Vapors on	
		Solid Surfaces, Definition of transfer	
		coefficients in two phases, Effects of	
		interfacial forces on heat and mass	
32-35		transfer	
	Energy transport by	Absorption and emission at solid	Ch 16 (T1)
	radiation	surfaces, Planck's distribution law,	Ch 15 (T2)
		Wien's displacement law, and the	
		Stefan-Boltzmann law, Radiation	
		between non-black bodies at	
36-37		different temperatures	
	Special topics: Flow	Heat and mass transfer using extended	Ch 8-9 (T2)
	through	surfaces, diffusion and reaction in	Ch 12 (R1)
	porous media, multiphase	catalyst pellets Multidimensional	
	flow, Hydrodynamic	effects, potential functions and fields	
38-39	Stability		

5. Evaluation Scheme:

S.No.	Component	Duration	Weightage	Date and Time	Nature of the Component
1	Mid	90 min	25%	15/03	СВ
				2.00-3.30PM	
2	Projects		20%		OB
3	Surprise quizzes		10%		OB
4	Comprehensive	3 h	35%	13/05 FN	CB - 10%
					OB - 30%

- **6. Chamber Consultation Hour:** To be announced in the class.
- **7. Notices:** All notices concerning this course will be uploaded on Moodle.
- **8. Make-up Policy:** Make-up is granted only for genuine cases with valid justification and prior permission of Instructor-in-charge.
- **9.Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable

Instruction-in-Charge CHE G552