Podstawy techniki cyfrowej zima 2015

Wykład

dr inż. Rafał Walkowiak

Literatura

- 1. Podstawy Techniki Cyfrowej, Barry Wilkinson, WKiŁ 2001
- Podstawy Projektowania Układów Cyfrowych, Cezary Zieliński, PWN 2012
- 3. Fundamentals of computer engineering Logic design and microprocessors, H.Lam, J. O, J. Wiley and Sons, 1998
- 4. Język VHDL: projektowanie programowalnych układów logicznych, Kevin Shakill, WNT 2004
- 5. Układy cyfrowe, Zbiór zadań z rozwiązaniami, J.Tyszer, G.Mrugalski, Wydawnictwo PP
- 6. Układy Scalone TTL w systemach cyfrowych, J. Pienkos, J. Turczyński, WkiŁ, 1994
- 7. Cyfrowe układy scalone MOS, P. Gajewski, J.Turczyński, WKiŁ, 1998

Zakres przedmiotu

- Wstęp: arytmetyka binarna, algebra Boole'a, kody binarne, BCD, podstawowe funkcje logiczne, sposoby przedstawiania funkcji logicznych postacie kanoniczne, minimalizacja funkcji logicznych, łączna minimalizacja funkcji logicznych, hazard.
- Technologie CMOS,TTL i ich wpływ na właściwości użytkowe układów, bramki logiczne.
- Układy kombinacyjne: multipleksery i demultipleksery; komparatory, łączenie komparatorów; kodery, dekodery, translatory kodów; sumatory: sumatory binarne, dziesiętne.
- Podstawowe elementy sekwencyjne: zatrzask RS, zatrzask D, przerzutniki: D, JK, T; parametry czasowe, rejestry szeregowe, równoległe, przesuwne, rejestry liczące.
- Liczniki: synchroniczne i asynchroniczne, binarne, dziesiętne; łączenie liczników, synteza liczników, skracanie liczników, taktowanie systemów cyfrowych, częstotliwości maksymalne liczników;
- Automaty synchroniczne: Moora, Mealego, graf i tablica przejść automatu, minimalizacja stanów, kodowanie stanów, funkcje przejść i wyjść i implementacja automatu na przerzutnikach.
- Język opisu sprzętu VHDL: jednostki projektowe, obiekty, typy, typy rozstrzygalne, instrukcje współbieżne i sekwencyjne, komponenty, strukturalny i behawioralny opis układów, przykładowe realizacje układów kombinacyjnych, sekwencyjnych, automatów.
- Układy programowalne: ROM, PLD, PLA, PAL, FPGA.
- Synteza wyższego poziomu: implementacja układów cyfrowych dla realizacji algorytmów przetwarzania danych; , opisy układu: sieć działań algorytmu, diagram synchronicznego układu sekwencyjnego, diagram synchronicznego układu sekwencyjnego ze zintegrowaną ścieżką danych; projekt: schemat strukturalny, opis układu cyfrowego w języku opisu sprzętu.
- Układy mikroprogramowalne w sterowaniu układami cyfrowymi.
- Pamięci: statyczne i dynamiczne, RAM, CAM, łączenie pamięci, parametry, cykle zapisu i odczytu.
- Współpraca układów cyfrowych z otoczeniem; wprowadzanie i wyprowadzanie danych, wyświetlanie statyczne i dynamiczne.
- Sposoby organizacji systemów cyfrowych: iteracja w czasie i przestrzeni.
- Automaty asynchroniczne, minimalizacja liczby stanów i kodowanie stanów, przykłady implementacji.

Systemy cyfrowe

- <u>System cyfrowy</u> to układ powiązanych ze sobą elementów projektowany w celu realizacji takich zadań jak:
 - przetwarzanie informacji (w tym obliczenia)
 - sterowanie urządzeniami i innymi systemami i obiektami (np. silniki, zawory, piece itp.)
- Przetwarzane informacje zapisane są za pomocą wartości z określonego ograniczonego zbioru (np. cyfr w różnych (dla wygody) systemach liczenia).

Systemy liczenia *

- Co już wiemy: [1, str 15-22]
 - Pozycyjne systemy liczenia dziesiętny, dwójkowy, ósemkowy, szesnastkowy
 - Konwersje liczb między systemami, konwersje liczb ułamkowych
- Systemy uzupełnieniowe:
 - Uzupełnienie do K (do podstawy K)- Uzupełnienie liczby N zapisanej w systemie o podstawie K do K (podstawy K) definiujemy:
 - $-K^n-N$
 - Gdzie n jest liczbą cyfr liczby N
 Np. U10(345)=655 U2(10101)=001011
 - Uzupełnienie do K -1 (do podstawy K -1) Uzupełnienie liczby N zapisanej w systemie o podstawie K do (podstawy) K definiujemy:
 - K^n-1-N
 - -345_{10} U9(344)=655= U10(345)=655 10101₂ U1(1010)=U2(1011)

^{*} Literatura: Wilkinson, Strony 15-28

Reprezentacje liczb ze znakiem

- Znak moduł najstarszy bit określa znak liczby, pozostałe bity bez zmiany
- Zastosowanie kodu U2 bit znaku i moduł liczby ujemnej w kodzie U2
- Zastosowanie kodu U1 bit znaku i moduł liczby ujemnej w kodzie U1

N	ZM	U2	U1	N	ZM
-8	-	1000	-		
-7	1111	1001	1000	7	0111
-6	1110	1010	1001	6	0110
-5	1101	1011	1010	5	0101
-4	1100	1100	1011	4	0100
-3	1011	1101	1100	3	0011
-2	1010	1110	1101	2	0010
-1	1001	1111	1110	1	0001
				0	0000

Reprezentacja uzupełnieniowa

Do zapisu liczb ujemnych – użycie kodu U2

- Binarna liczba **dodatnia** jest zapisywana na wystarczającej liczbie pozycji i uzupełniana zerami na pozycjach bardziej znaczących: $(3)_{10}$ = $(011)_2$ = $(0011)_2$
- Binarna liczba **ujemna** jest zapisywana:
 - w uzupełnieniu do 2 i
 - poprzedzona 1 na pozycji najstarszej i
 - uzupełniona jedynkami na pozycjach bardziej znaczących: $(-3)_{10}$ = $(101)_2$ = $(1101)_2$
- Notacja uzupełnieniowa liczb binarnych pozwala na dodawanie liczb dodatnich i ujemnych (realizowane standardowo jak dla liczb binarnych w NKB - sumator).

Dodawanie liczb ujemnych wykorzystanie notacji U2

-3	1101
+(-2)	1110
= -5	(1)1011

-3	1101
+2	0010
= -1	1111

1101	-3
0101	+5
(1)0010	= 2

Przeniesienie ignorowane, przeniesienia na najstarszy bit i z najstarszego bitu są jednakowe.

Odejmowanie liczb – dodawanie liczby przeciwnej

0011 (3d) + 1011 (-5d)	Binarna liczba ujemna uzupełnieniu do 2	a — liczba binarna w
	00010110	= 22 (d)
1110 (-2d)	Wyznaczenie liczby U	2_
,	Medtoda 1:	
0101 (5d)	11101001 negacja bit	tów
+ 1101 (-3d)	111010 10 dodani	e jedynki = -22 (d)
	Metoda 2:	
0010 (2d)	Negacja bitów bardzi starszych niż najmi równy 1.	

Odejmowanie binarne

- D dodatnia
- U ujemna
- D U= D+D=D (sprawdzenie przepełnienia)
- D1 D2 = D gdy (D1>D2) lub U gdy (D1<D2)
- U-D= U + U = U (sprawdzenie przepełnienia)

Dodawanie liczb a przepełnienie

```
0011 (3d)
                                 1101 (-3)
                              + 1101 (-3)
+ 0011 (3d)
  0110 (6d) wynik dodatni –
                                 1010 (-6) wynik ujemny –
  poprawnie
                                 poprawnie
  0101 (5d)
                                 1011 (-5)
+ 0101 (5d)
                              + 1011 (-5)
                                 0110 (6) wynik dodatni -
  1010 -(6d) Wynik ujemny

    niepoprawny

                                 niepoprawny
```

Wynik niepoprawny – przepełnienie – nadmiar - gdy przeniesienia na najwyższą pozycję i z najwyższej pozycji są różne.

Kody dwójkowo-dziesiętne

10 cyfr dziesiętnych (0,1,2,3,4,5,6,7,8,9)
 zakodowanych za pomocą ciągu 4 bitów – 6
 kombinacji (z 16) tych 4 bitów jest
 niewykorzystanych.

- Kody wagowe pozycja binarna posiada przypisaną wagę
- Kody niewagowe pozycja binarna nie posiada wagi

Kody dwójkowo-dziesiętne wagowe

kod	Naturalny NKB		Aikena		
Wagi	8421	2*421	2421	7421	84-2-1
cyfra					
0	0000	0000	0000	0000	0000
1	0001	0001	0001	0001	0111
2	0010	0010	0010	0010	0110
3	0011	0011	0011	0011	0101
4	0100	0100	0100	0100	0100
5	0101	0101	1011	0101	1011
6	0110	0110	1100	0110	1010
7	0111	0111	1101	1000	1001
8	1000	1110	1110	1001	1000
9	1001	1111	1111	1010	1111

Kody dwójkowe niewagowe

Kod cyfra	Z nadmiarem 3	Graya	Wattsa	Johnsona	Wskaźników 7 segmentowych
0	0011	0000	0000	00000	0111111 7
1	0100	0001	0001	00001	0000110 2 6
2	0101	0011	0011	00011	1011011 1
3	0110	0010	0010	00111	1001111 3 5
4	0111	0110	0110	01111	1100110 4
5	1000	0111	1110	11111	1101101
6	1001	0101	1010	11110	1111100
7	1010	0100	1011	11100	0000111
8	1011	1100	1001	11000	1111111
9	1100	1101	1000	10000	1100111

Kody detekcyjne

kod	1 z 10	2 z 5	2 z 7	Bin z Bitem parzystości
Wagi cyfra	9876543210	niewagowy	5043210	8421 0
0	000000001	00011	0100001	0000 0
1	000000010	00101	0100010	0001 1
2	000000100	01001	0100100	0010 1
3	000001000	10001	0101000	0011 0
4	0000010000	00110	0110000	0100 1
5	0000100000	01010	1000001	0101 0
6	0001000000	10010	1000010	0110 0
7	0010000000	01100	1000100	0111 1
8	0100000000	10100	1001000	1000 1
9	100000000	11000	1010000	1001 0

Kody z kontrolą parzystości i ze stałą liczbą jedynek pozwalają na wykrycie pewnych błędów przy przesyłaniu słów kodowych.

Liczby dziesiętne kodowane dwójkowo – kod BCD 8421

- Dziesiętny charakter informacji lecz kodowanie dwójkowe cyfr
- 2345 (10)= 0010 0011 0100 0101(BCD)
- Dodawanie liczb w kodzie BCD realizowane tak jak dodawanie liczb binarnych, lecz:
 - wystąpienie przeniesienia na kolejną pozycję dziesiętną (kolejne 4 bity) podczas dodawania liczb wymaga skorygowania (czyli dodania wartości 6) na tej pozycji, z której przeniesienie wystąpiło
 - wystąpienie wyniku na 4 bitach (pozycji dziesiętnej) spoza zakresu (10-15) wymaga skorygowania wyniku czyli dodania wartości 6 na tej pozycji dziesiętnej, która nie jest poprawna, (może wystąpić przeniesienie, które należy uwzględnić oraz propagacja przeniesienia np. dla liczb) 3456 +6545.

Dodawanie w kodzie BCD

```
89
                1000 1001
+18
          + 0001 1000
107
                1010 0001 przeniesienie
                     0110
                1010 0111 wartość spoza przedziału
                0110
               1 0000 0111
```

Kody alfanumeryczne

- Kody służące do kodowania znaków w systemach cyfrowych, w urządzeniach współpracujących z komputerem, np. drukarki, ekrany alfanumeryczne.
- Przykładami kodów alfanumerycznych są kody: ASCII ISO-7, ISO 8859, Unicode, Windows-1250.
- Kod ASCII ISO-7 7 bitowy pełny zbiór zawiera 128 znaków, pierwsze 33 znaki służą do sterowania systemu drukowania lub wyświetlania, pozostałe znaki to: duże i małe litery, cyfry, znaki przestankowe i inne.

Kod ISO-7 Tablica 2.11 b7 0 0 1 66 0 0 1 0 0 1 b5 0 1 1 0 1 0 b4 b3 b2 b1 0 0 0 0 NUL DLE SPACE2) $0^{2})$ (@1) 1) P 0 0 0 1 SOH DC1 1 1 A Q a 9 0 0 1 0 STX DC2 2 В R Ь r 0 0 1 1 ETX DC3 3 C # S C 0 1 0 0 EOT STOP S1) D T d t 0 1 0 1 ENQ % NAK 5 E U e u 0 1 1 0 ACK SYN & 6 F V f V 0 1 1 1 BEL ETB 7 G W g W 1 0 0 0 BS CAN 8 H X h X 1 0 0 1 HT EM 9 Y 1 0 1 0 LF SUB Z Z 1 0 1 1 VT **ESC** [1) + K (1) k 1 1 0 0 FF FS 1) 11) < 1 1 0 1 CR GS M =] m 1 1 1 0 SO RS N > A 1) _1) n 1 1 1 1 US 0 DEL 0 1) Wymienne, 2) Wyjątki dla kodu karty dziurkowanej: literze b odpowiada brak dziurek, cyfrze 0 odpowiada otwór w kolumnie 0 Objaśnienia: DLE - zmiana znaczenia ciągu znaków - sterowanie urządzeniem 1 NUL — bez informacji DC2 - sterowanie urządzeniem 2 SOH — początek nagłówka STX — początek tekstu DC3 - sterowanie urządzeniem 3 STOP - stop ETX - koniec tekstu NAK - odpowiedź negatywna EOT — koniec transmisji EWQ - zapytanie - synchronizacja - koniec transmisji bloku danych ACK - odpowiedź pozytywna CAN — nieważny, anulowanie BEL - dzwonek - koniec zapisu, koniec nośnika informacji - ruch powrotny, cofanie SUB - zastąpienie, podstawienie - tabulacja pozioma ESC - przełączenie, zmiana zestawu znaków - zmiana wiersza FS - tabulacja pionowa - oddzielenie głównych grup VT GS - oddzielenie grupy informacji FF - zmiana formularza - oddzielenie podgrup (pozycji) CR - powrót wózka US - oddzielenie części grup SO - poza kodem DEL - kasowanie (znak ignorowany) - w kodzie

Kod ISO-7

Algebra Boole'a *

Narzędzie matematyki (algebra logiki) służąca do opisu i projektowania systemów cyfrowych.

Zmienne boolowskie – mogą przyjąć jedna z dwóch wartości – 0 lub 1 – są to zmienne binarne (jednobitowe)

Podstawowe funkcje algebry Boola –

- Iloczyn logiczny I (AND) "·",, ∩",, ∧" (alternatywne oznaczenia)
- Suma logiczna LUB (OR) ,,+",, \cup " (alternatywne oznaczenia)
- Negacja NIE (NOT) "linia nad zmienną" " " (alternatywne oznaczenia)

Funkcja boolowska (logiczna, przełączajaca) – jest działaniem na zmiennych boolowskich i przyjmuje wartości ze zbioru {0,1}.

Algebra Boole'a jest zgodna z następującymi postulatami:

^{*} Literatura Wilkinson 35-53

Postulaty Huntingtona (1)

```
Notacja: Z = \{0,1\} - zbi\'or warto\'sci a, b - dowolne zmienne binarne A1 Domknięcie działań: a + b \subset Z \land B \subset Z
```

A2 Elementy stałe: Istnieją takie 0 i 1 : a+0=a i a·1=a

A3 Przemienność: a+b=b+a a·b= b·a

A4 Rozdzielność: $a \cdot (b+c)=a \cdot b+a \cdot c$ $a+(b\cdot c)=(a+b)\cdot (a+c)$ również mnożenia względem dodawania

A5 Istnienie negacji: dla a istnieje a': a+a'=1 a·a'=0

Postulaty Huntingtona (2)

Zasada dualności:

Wyrażenie dualne powstanie poprzez zamianę operatorów binarnych i stałych: $+\rightarrow\cdot$, $\cdot\rightarrow$ +, $0\rightarrow1$, $1\rightarrow0$

Jeżeli prawdziwe jest pewne wyrażenie A to prawdziwe jest również wyrażenie do niego dualne do A.

np wyrażenie proste: a·(b+c)=a·b+a·c

Wyrażenie dualne: $a+(b\cdot c)=(a+b)\cdot(a+c)$

Przekształcanie funkcji logicznych

- Dla minimalizacji postaci wyrażeń (funkcji) boolowskich służą tożsamości i twierdzenia algebry boole'a.
- Minimalizacja pozwala na uzyskanie prostszej, tańszej implementacji funkcji.

Twierdzenia algebry Boole'a

Idempotentność (łac. taki sam) –

$$a+a=a$$
, $a \cdot a=a$

- Jednoznaczność negacji dla kazdego *a* istnieje tylko jeden element \overline{a}
- Dominacja dla każdego a $a \cdot 0 = 0$ a+1=1
- Podwójna negacja a = a dla kazdego a zachodzi a = a
- Pochłanianie a+(a⋅b)= a a⋅(a+b)= a

Twierdzenia algebry Boole'a

Uproszczenie

$$a + (\overline{a} \cdot b) = a + b$$
 $a \cdot (\overline{a} + b) = a \cdot b$ $a(1+b)+a'b=a+b(a+a')=a+b$

- Minimalizacja $a \cdot b + a \cdot \overline{b} = a$ $(a+b) \cdot (a+\overline{b}) = a$
- Łączność (a+b)+c=a+(b+c) (a⋅b) ⋅c=a ⋅(b ⋅c)
- Konsensus (zgoda) $a \cdot b + a \cdot c + b \cdot c = a \cdot b + a \cdot c$ Wystarczy jedno 0 $a \cdot b + a \cdot c + b \cdot c = a \cdot b + a \cdot c$ wystarczy jedno 0 $(a+b) \cdot (a+c) \cdot (b+c) = (a+b) \cdot (a+c)$

Prawo de Morgana

$$\overline{a+b+c+...} = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{c}$$

$$\overline{a \cdot b \cdot c \cdot ...} = \overline{a+b+c+...}$$

Funkcje logiczne dwóch zmiennychi ich wartości zmienne binarne a b

Wartości	ab	ab	ab	ab	Równanie	Nazwa	Skrót
argumentów	00	01	10	11	funkcji	funkcji	Nazwy
Wartości	0	0	0	0	0	Stała Zero	
funkcji	0	0	0	1	a∙b	Iloczyn logiczny	AND
	0	0	1	0	a∙b′	Zakaz przez b	
	0	0	1	1	a	Identyczna z a	
	0	1	0	0	a'∙b	Zakaz przez a	
	0	1	0	1	b	Identyczna z b	
	0	1	1	0	(a'·b)+(a·b')	Suma modulo	XOR
	0	1	1	1	a+b	Suma logiczna	OR
	1	0	0	0	(a+b)'	Negacja sumy	NOR
	1	0	0	1	(a·b)+(a'·b')	Równoważność	EQU
	1	0	1	0	b'	Negacja b	
	1	0	1	1	a+b'	Implikacja b⇒a	
	1	1	0	0	a'	Implikacja a	
	1	1	0	1	a'+b	Implikacja a⇒b	
	1	1	1	0	(a∙b)'	negacja iloczynu	NAND
	1	1	1	1	1	Stała 1	
							27

Popularne funkcje logiczne

- Szczególnie popularne AND, OR, NAND, NOR, XOR, NOT
- XOR wartość funkcji równa 1 dla różnych argumentów
- Zależności dla XOR:
 - $-a\oplus b=a'b+b'a=(a+b)(a'+b')$
 - $-(a \oplus b)'=a' \oplus b=b' \oplus a=ab+a'b'=(a'+b)(a+b') XNOR$
 - a ⊕1=a′ a ⊕0=a
- Różne interpretacje logiczne wielowejściowych bramek XOR/XNOR. Najczęściej bramka wykrywa nieparzystą liczbę jedynek (XOR) lub parzystą liczbę jedynek XNOR.

System funkcjonalnie pełny - SFP

- Zbiór funkcji pozwalający na przedstawienie Wyrażenie każdej innej funkcji logicznej.
- 3 przykłady S.F.P:
 - {NAND},
 - {OR,AND,NOT},
 - {NOR}

Sposoby przedstawiania funkcji logicznych

Tablica prawdy

 $2^n - 1$

j	$\mathbf{X_0} \mathbf{X_1} \mathbf{X_2} *** \mathbf{X_{n-1}}$	f
0	000***0 000***1	Wartości
1	000***1	funkcji
2		
3		
4		
5		
*		

111***1

np.

nr	we	wy
0	00	1
1	01	1
2	10	1
3	11	0

- Nr kombinacji wejść, wartości kombinacji wejść, odpowiadające wejściu wartości na wyjściu
- Zawiera wszystkie kombinacje zero-jedynkowe zmiennych niezależnych i odpowiadające im wartości funkcji

Sposoby przedstawiania funkcji logicznych

- Tablice Karnaugha
- Kombinacji wejść odpowiada pole tablicy, w polu umieszczmy właściwą dla kombinacji wartość.
- Sąsiednie (w poziomie i pionie także cyklicznie) pola tablicy Karnaugha odpowiadają kombinacji argumentów różniącej się jedną wartością.

Na rysunku zapisano kombinacje wejść – nie wartości

		a				ba			
b		0	1	С		00	01	11	10
	0	00	01		0	000	001	011	010
	1	10	11		1	100	101	111	110

Reprezentacja funkcji logicznych za pomocą tablic Karnaugha

∅ - oznaczenie wartości dowolnej na wyjściu

Sposoby przedstawiania funkcji logicznych

Dysjunkcyjna (alternatywna) postać kanoniczna:

$$Y = f(\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_{n-1}) = \bigcup_{j=0}^{2^{n}-1} a_j \mathbf{I}_j$$

- Gdzie: U to suma
- I_j oznacza iloczyn zmiennych niezależnych dla j-tej kombinacji wartości zmiennych równy 1
 - np. zerowa kombinacja: 0000: iloczyn x₀'x₁'x₂'x₃' (wartość iloczynu dla kombinacji wartości zmiennych wynosi jeden)
- a_j wartość funkcji odpowiadająca j-tej kombinacji zmiennych
- MINTERM- każda kombinacji argumentów (wejść), dla której wartość funkcji jest równa 1

Dysjunkcyjna postać kanoniczna – przykład

iloczyny	abC _{in}	S	Cout
0 a'b'c _{in} '	000	0	0
1 a'b'c _{in}	001	1	0
2 a'bc _{in} '	010	1	0
3 a'bc _{in}	011	0	1
4 ab'c _{in} '	100	1	0
5 ab'c _{in}	101	0	1
6 abc _{in} '	110	0	1
7 abc _{in}	111	1	1

 $S = 0a'b'c_{in}' + 1a'b'c_{in} + 1a'bc_{in}' + 0a'bc_{in} + 1ab'c_{in}' + 0ab'c_{in} + 0ab'c_{in}' + 1abc_{in}'$ $abc_{in}' + 1abc_{in}$

$$S = a'b'c_{in} + a'bc_{in}' + ab'c_{in}' + abc_{in}'$$

 $S = \bigcup (1,2,4,7)$ – gdzie liczby oznaczają numer kolejny iloczynu (minterm) dla którego wartość funkcji =1

Sposoby przedstawiania funkcji logicznych

Koniunkcyjna (iloczynowa) postać kanoniczna:

$$Y = f(\chi_0, \chi_1, ..., \chi_{n-1}) = \prod_{j=0}^{2^{n-1}} (\alpha_j + S_j)$$

- Gdzie:
- S_j oznacza sumę zmiennych niezależnych dla j-tej kombinacji zmiennych równą 0
 - Np. kombinacja wejść : 0000; suma dla tej kombinacji: $x_0+x_1+x_2+x_3$,
- a_j oznacza wartość funkcji odpowiadającej j-tej kombinacji zmiennych.
- MAXTERM każda kombinacji argumentów (wejść), dla której wartość funkcji jest równa 0.

Konjunkcyjna postać kanoniczna - przykład

sumy	abC _{in}	S	Cout
0 a+b+c _{in}	000	0	0
1 a+b+c _{in} '	001	1	0
2 a+b'+c _{in}	010	1	0
3 a+b'+c _{in} '	011	0	1
4 a'+b+c _{in}	100	1	0
5 a'+b+c _{in} '	101	0	1
6 a'+b'+c _{in}	110	0	1
7 a'+b'+c _{in} '	111	1	1

$$S = (0+a+b+c_{in}) (1+a+b+c_{in}')(1+a+b'+c_{in}')(0+a+b'+c_{in}') (1+a'+b+c_{in})(0+a'+b+c_{in}')(0+a'+b'+c_{in}')(1+a'+b'+c_{in}')$$

$$S = (a+b+c_{in}) (a+b'+c_{in}')(a'+b+c_{in}')(a'+b'+c_{in})$$

S=∏(0,3,5,6) – gdzie liczby oznaczają numer kolejny sumy (maxterm) dla której wartość funkcji =0

Minimalizacja wyrażeń logicznych

- Postać kanoniczna nie jest najprostsza
- Kryterium kosztu:
 - Redukcja liczby składników funkcji (liczba bramek)
 - Redukcja liczby literałów (liczba wejść bramek)
- Przekształcanie postaci kanonicznej do postaci równoważnej – tańszej wg przyjętej funkcji kosztu
- Przykład:
 - f(a,b,c,d)= ∪(5,7,13,15)= d'cb'a+d'cba+dcb'a+dcba=ca
 - Minimalizacja liczby składników z 4 do 1 i liczby literałów z 4 do 2
 - Zapis funkcji f()= ∪(5,7,13,15)+d(1,3,4) oznacza brak konkretnego wymagania na wartość funkcji (dowolna wartość 0 lub 1) dla kombinacji wejść 1,3 i 4.

Siatka Karnaugha

- Założenia:
 - waga zmiennych ustalona np. : od najniższej wagi a,b,c,d
- Dla n zmiennych: Prostokątna tablica zawierająca 2ⁿ pól, każde pole reprezentuje jeden minterm (maxterm), mintermy odpowiadające sąsiednim polom różnią się wartością tylko jednej zmiennej.

Twierdzenie o minimalizacji – reguła sklejania

• ab+ab'=a(b+b')=a

$$f(a,b)= = (1,3)= ab'+ab=a$$

Metoda tablic Karnaugha minimalizacji funkcji logicznej

- TABLICE. Przygotowanie tablic dla danej liczby zmiennych i wpisanie wartości w polach. W polach w krtórych wartość jest nieokreslona należy wpisać symbol nieokresloności np. Ø
- SKLEJENIA. Narysować obwiednie łączące pola tworzące możliwie największe obszary. Obwiednie łączą sąsiednie pola z jedynkami (dla postaci sumacyjnej funkcji) [pola z zerami (dla postaci iloczynowej funkcji)]. Sąsiedztwo także cykliczne. Obwiednie pokrywają grupy pól tworzące prostokąt.
- <u>Funkcja.</u> Zapisanie postaci minimalnej funkcji w oparciu o wykonane sklejenia (obwiednie), każdy minterm (maxterm) musi być pokryty przez grupę uwzględnioną w zapisie. Tablica pokrycia.
- Uwaga: Pola ze znakami nieokreśloności można łączyć z dowolnymi innymi polami (jedynek lub zer w zależności od postaci funkcji) dla uzyskania maksymalnych sklejeń.

Minimalizacja – sklejenia dla jedynek i zer, funkcja

dc

dopełnieniowa

ba
dc 00 01 11 10

00 0 1 3 2

01 4 5 7 6

11 12 13 15 14

10 8 9 11 10

Funkcja $f(a,b,c,d) = \cup (0,1,2,3,8,9,10) + d(5,13)$

f=c'd'+c'a'+b'a grupa pozioma, grupa narożna, grupa pionowa f=c'(d'+b'+a')

Terminologia minimalizacji

- Implikant:
 - każdy minterm lub
 - grupa mintermów które można połączyć.
- Implikant prosty: implikant, któego nie można rozszerzyć przez sklejenia w tablicy Karnaugha.
- Implikant istotny: implikant prosty zawierający minterm nie występujący w żadnym implikancie prostym.

Metoda minimalizacji dwupoziomowej

- 1. Wygeneruj wszystkie implikanty proste
- 2. Utwórz pokrycie funkcji (mintermów) za pomocą minimalnej liczby implikantów.

Uwaga: Implikanty istotne są koniecznymi elementami pokrycia funkcji

Przykład 1

- Implikanty proste: ca, dc, db, da'
- Implikanty istotne: ca, da',db
- Implikanty istotne wystarczą do minimalnego pokrycia funkcji
- F(d,c,b,a)= ca+da'+db
- F(d,c,b,a) = (d+c)(a+d)(a'+b)

Przykład 1

- Realizacja funkcji na bramkach NAND bądź NOR
- F(d,c,b,a)= (ca+da'+db)''=((ca)'(da')'(db)')'
- F(d,c,b,a)= (d+c)(a+d)(a'+b)''= ((d+c)'+(a+d)'+(a'+b)')'

Przykład 2 metoda Petricka

- Wyznaczenie minimalnego zbioru implikantów prostych metoda Petricka
- Przykład:
 - Jeden implikant istotny
 - 5 implikantów prostych można wykorzystać do pokrycia 5 mintermów
 - Pokrycie wystąpi, gdy zastosujemy implikanty dla których funkcja
 Petricka przyjmuje wartość jeden
 - $-P_x = 1$ gdy implikant x jest używany, 0 gdy imlikant x nie jest używany
 - $FP = (P_0 + P_1)(P_1 + P_2)(P_2 + P_3)(P_3 + P_4)(P_4 + P_5) = P_1P_3P_5 + P_4P_5$ $P_1P_2P_4 + P_0P_2P_4$

Metoda Quine'a-McCluskeya

- 1. Utwórz grupy mintermów odpowiadające liczbie jedynek w ich reprezentacji binarnych. Utworzenie początkowych implikantów.
- 2. Utwórz wszystkie implikanty przez połączenie implikantów jednej grupy z implikantami kolejnej grupy jest to możliwe jeżeli różnią się wartością jednej zmiennej, zaznacz wykorzystane do łaczenia implikanty.
- 3. Powtarzaj krok 2 bazując na implikantach uzyskanych w poprzedniej iteracji 2 kroku.
- 4. Niewykorzystane w połączeniach implikanty tworzą zbiór implikantów prostych. Wybierz minimalny zbiór implikantów prostych.

Metoda Quine'a-McCluskeya generacja implikantów prostych

wygodna dla funkcji wielu zmiennych Funkcja $f(a,b,c,d) = \cup (0,1,2,3,8,9,10) + d(5,13)$

1	2	3
0 0000 √	0,1 000- √	0,1,2,3 00—
	0,2 00-0 √	0,2,8,10 -0-0
1 0001 √	0,8 -000 √	0,1,8,9 -00-
2 0010 √		
8 1000 √	1,3 00-1 √	1,5,9,13 -01
	1,5 0-01 √	
3 0011 √	1,9 -001 √	Implikanty proste
5 0101 √	2,3 001- √	00- d'c'
9 1001 √	2,10 -010 √	-0-0 c'a'
10 1010 √	8,9 100- √	-00- c'b'
	8,10 10-0 √	01 b'a
13 1101 √	,	
	5,13 -101 √	
	9,13 1-01 √	

Metoda Quine'a-McCluskeya tablica pokrycia mintermów

	0	1	2	3	8	9	10
0,1,2,3 00—	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
0,2,8,10 -0-0	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		\checkmark
0,1,8,9 -00-	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	\checkmark	
1,5,9,13 -01		$\sqrt{}$				\checkmark	

W kolumnach tablicy uwzględniamy tylko mintermy z określonymi dla funkcji wartościami

Implikanty istotne

Mintermy pokryte przez implikanty istotne

Możliwe warianty funkcji o minimalnej liczbie implikantów:

$$F=d'c'+c'a'+c'b'$$

$$F=d'c'+c'a'+b'a$$

Minimalizacja funkcji wielowyjściowych

- Wyznaczenie implikantów prostych dla: funkcji optymalizowanych i wszystkich iloczynów funkcji - (powyżej 6 implikantów prostych w 3 grupach).
- Znajdowanie pokrycia minimalną liczbą spośród wszystkich implikantów (tablica pokrycia): implikant iloczynu dwóch funkcji (zielony) pokrywa mintermy obu funkcji

Komputerowo wspomaganie minimalizacji funkcji logicznych

- Znalezienie pokrycia minimalnego jest problemem NP-trudnym.
- Ze względu na trudność problemu dla dużych instancji stosowane są metody przybliżone.
 - brak generacji wszystkich implikantów
 - zapewnienie pokrycia funkcji przez wybrany zbiór implikantów