1)	$A)$ $SS_T = SS_{trf} + SS_E$						
	A) $SS_{T} = SS_{trt} + SS_{E}$ $\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{})^{2} = n \sum_{i=1}^{a} (\bar{y}_{i} - \bar{y}_{})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \hat{y}_{ij})^{2}$						
	$\bar{y}_{} = \frac{3.25 + 0.15}{a} = 2$						
	$SS_{\tau} = 9\lambda$						
	SS _{frf} = 25						
	$SS_{\varepsilon} = 67$						
	Sources of Variations	Sums of Squares	degrees of Freedom	Mean Squares	Fo		
	Diet (1,B)	SS ₄₊ = 25	a-1=1	MS _{frt} = 25	F_o $\frac{MS_{h+}}{MS_{\epsilon}} = \frac{25}{4.186} = 5.224$		
	Neight Loss (pounds)	SS€ = 67	N-a = 14	MSE = 4,786			
	Total	SS _T = 92	N-1 = 15	MST = 29.786			
	H_0 : $M_1 = M_2$, M_i is the average weight loss in the i^{th} group.						
	Ha: M. ≠ A2						
	: Given the fact that $F_{0.05.1,14}=4.46$, we can reject the null hypothesis. There appears to be difference in						
	Neight loss depending on the dief.						
	<i>b</i>)						
	SST = SSA++ SSblock + SSE						
	$SS_{\tau} = 12$						
	$SS_{t+1} = dS$						
	SS block = 25						
	SS _E = 42						
	Sources of Variations	Sums of Squares	degrees of freedom		Fo		
	Diet (A,B)	SS _{frt} = 25	A-1 = 1	MS _{frt} = 25	$\frac{MS_{4+}}{MS_{\epsilon}} = \frac{25}{6} = 4.167$		
			6 - (= 7				
	Neight Loss (pounds)						
			N-1 = 15				
	Ho; Mmale = Mfemale						
) on a						

.. Given the critical value $F_{0.05,1,7} = 5.59$, we cannot reject the null hypothesis. There appears to be no difference

Ha; Mmale \neq Mfemale

in the average neight loss between male and female

	C) The first student's report is better because the p-value of Dief in the second student's report is over
	1, which makes the report unveliable since a p-value can hever exceed 1.
٤)	$MS_A = \sum_{i=1}^{\frac{1}{2}} \left(\overline{y}_{i} - \overline{y}_{} \right)^2$
ω)	$MS_B =$

3)	a) $\sum_{i=1}^{a} T_{i} = 0$, $\sum_{j=1}^{b} \beta_{j} = 0$, $\mathcal{E}_{ij} \sim NID(0, T^{2})$
	$\sim iid$, $T_{\eta}^2 \sim iid$, T_{β}^2
	1. Each block contains the same number of units
	2. Each treatment occur the same number of finnes in total
	3. Each pair of treatments occurs tegether the same number of times in total
	b) H_0 : $T_i = 0$
	Ha; T; ≠ O
,	
4)	a) M-50.2 = 69.8-M because 50.2 and 69.8 are 95% confidence interval.
	=> N = 60
	=) The length $ M-50.2 = 69.8-M = t_{0.025}, gn-1 \sqrt{\frac{MS_E}{gn}} = 9.8$
	$ abla^2 = \overline{E}(MS_{\epsilon}) $
	· ~ (r - 6 /

, gn , , gn . a an
b) $E(\overline{Y}_{}) = E(\frac{1}{9n}\sum_{j=1}^{9}\sum_{j=1}^{n}Y_{ij}) = \frac{1}{9n}E(\sum_{i=1}^{9}\sum_{j=1}^{n}A_{i}+T_{i}+\Sigma_{ij})$, since $\sum_{i=1}^{9}T_{i}=\sum_{j=1}^{9}\sum_{j=1}^{n}\Sigma_{ij}=0$
$= \frac{1}{3n} \left(3n / l \right)$
= M = 60
$Var(\bar{Y}_{}) = Var\left(\frac{1}{9n}\sum_{i=1}^{9}\sum_{j=1}^{n}M+T_{i}+\mathcal{E}_{ij}\right)$
$= \frac{1}{9n} \left(n \nabla_{\Gamma}^2 + \Gamma^2 \right)$
$= \frac{1}{gn} \left[E(MS_{fif}) - E(MS_{E}) + E(MS_{E}) \right]$
= in E(MStrf)