NFA-∆'er Kleenes sætning Frokost Minimering Java projekt

2. Seminar EVU RegAut

Sigurd Meldgaard

26. January 2009

NFA-Λ'er

Kleenes sætning

Frokost

Minimering

► For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere

- ► For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

- ▶ For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

- ► For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

► Automaten "bestemmer selv" om den vil følge Λ-transitionen Eksempel: strengen 011 accepteres

En nondeterministisk endelig automat med Λ -transitioner (NFA- Λ) er et 5-tupel $(Q, \Sigma, q_0, A, \delta)$ hvor

▶ Q er en endelig mængde af tilstande

- ▶ Q er en endelig mængde af tilstande
- Σ er et alfabet

- ▶ Q er en endelig mængde af tilstande
- Σ er et alfabet
- ▶ $q_0 \in Q$ er en starttilstand

Formel definition af NFA- Λ

- ▶ Q er en endelig mængde af tilstande
- Σ er et alfabet
- ▶ $q_0 \in Q$ er en starttilstand
- $ightharpoonup A \subseteq Q$ er accepttilstande

- ▶ Q er en endelig mængde af tilstande
- Σ er et alfabet
- ▶ $q_0 \in Q$ er en starttilstand
- $ightharpoonup A \subseteq Q$ er accepttilstande
- ▶ $\delta: Q \times (\Sigma \cup \Lambda) \rightarrow 2^Q$ er en transitionsfunktion

► Hvor kan man komme til ved kun at bruge Λ-transitioner?

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- ▶ Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- ▶ Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
- ▶ $S \in \Lambda(S)$

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- ▶ Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
- \triangleright $S \in \Lambda(S)$
- $\forall q \in \Lambda(S) : \delta(q,\Lambda) \in \Lambda(S)$

Sproget for en NFA-∧

▶ Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$, definer den udvidede transitionsfunktion $\delta^* : Q \times \Sigma^* \to 2^Q$ ved

Sproget for en NFA-A

▶ Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$, definer den udvidede transitionsfunktion $\delta^* : Q \times \Sigma^* \to 2^Q$ ved

$$\delta^*(q,x) = egin{cases} \Lambda(q) & \text{hvis } x = \Lambda \\ \Lambda(\bigcup_{r \in \delta^*(q,y)} \delta(r,a)) & \text{hvis } x = y \cdot a \end{cases}$$

▶ Hvad er $\delta^*(q_0, 01)$ for denne NFA- Λ ?

- $\blacktriangleright \delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$

- $\begin{array}{l} \bullet \ \delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \\ \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\} \end{array}$

- $\blacktriangleright \delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$
- $\begin{array}{l} \bullet \ \delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \\ \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\} \end{array}$
- ▶ d.v.s. strengen 01 bliver accepteret af automaten.

Enhver NFA kan oversættes til en NFA-Λ

▶ Med den grafiske repræsentation er det trivielt

Enhver NFA kan oversættes til en NFA-Λ

- Med den grafiske repræsentation er det trivielt
- Med de formelle definitioner: Givet en NFA $M=(Q,\Sigma,q_0,A,\delta_M)$, definer en NFA- Λ $N=(Q,\Sigma,q_0,A,\delta_N)$ hvor $\delta_N(q,a)=\delta M(q,a)$ for alle $q\in Q$ og $a\in \Sigma$ $\delta_N(q,\Lambda)=$ for alle $q\in Q$ Bevis for at L(N)=L(M): induktion...

• Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,

- ▶ Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- ▶ definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved

- ▶ Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- ▶ definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved
- $\delta_1(q,a) = \delta^*(q,a)$

- ▶ Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- ▶ definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved

$$A_1 = \begin{cases} A \cup \{q_0\} & \text{hvis } \Lambda(\{q_0\}) \cap A \neq \emptyset \\ A & \text{ellers} \end{cases}$$

- ▶ Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- ▶ definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved

- ▶ Der gælder nu: L(M1) = L(M)

► NFA-Λ:

- NFA-Λ:
- ▶ Find $\delta^*(q, a)$ for alle $q \in Q$ og $a \in \Sigma$

- NFA-Λ:
- ▶ Find $\delta^*(q, a)$ for alle $q \in Q$ og $a \in \Sigma$
- ▶ Se om $\Lambda(\{q_0\}) \cap A \neq \emptyset$

- NFA-Λ:
- ▶ Find $\delta^*(q, a)$ for alle $q \in Q$ og $a \in \Sigma$
- ▶ Se om $\Lambda(\{q_0\}) \cap A \neq \emptyset$

	q	$\delta(q, \Lambda)$	$\delta(q,0)$	$\delta(q,1)$	$\delta^*(q,0)$	$\delta^*(q,1)$
	Α	{ <i>B</i> }	{ <i>A</i> }	{}	$\{A,B,C,D\}$	{}
•	В	$\{D\}$	{ <i>C</i> }	{}	{C,D}	{}
	C	{}	{}	{ <i>B</i> }	{}	{B,D}
	D	{}	$\{D\}$	{}	{D}	{}

NFA-A'er

Kleenes sætning

Frokost

Minimering

 $NFA-\Lambda$ 'er

Kleenes sætning

Frokost

Minimering

NFA-Λ'er

Kleenes sætning

Frokost

Minimering

NFA-Λ'er

Kleenes sætning

Frokost

Minimering