Term	Description
Pixel	
ile header	
of 8 Calc work	bits per pixel. Sulate an estimate for the file size, giving your answer in mebibytes. Show king.
of 8 Calc work	sulate an estimate for the file size, giving your answer in mebibytes. Show
of 8 Calc work	bits per pixel. Sulate an estimate for the file size, giving your answer in mebibytes. Show king.
of 8 Calc work Wor	bits per pixel. culate an estimate for the file size, giving your answer in mebibytes. Show king.
of 8 Calc work Wor Ansv	bits per pixel. culate an estimate for the file size, giving your answer in mebibytes. Show king. king
of 8 Calc work Wor Anso Identify c	bits per pixel. culate an estimate for the file size, giving your answer in mebibytes. Show king.
of 8 Calc work Wor Anso Identify codescribe	bits per pixel. sulate an estimate for the file size, giving your answer in mebibytes. Show king. king
of 8 Calcon work Work Answ Identify of describe Lossless	bits per pixel. culate an estimate for the file size, giving your answer in mebibytes. Show ting. king

1

(c) One of the colours used in the image has the hexadecimal colour code:

#FC238A

FC	is the amount of red, 23 is the amount of green and $8\mathtt{A}$ is the amount of blue in the colour
(i)	Convert the hexadecimal code FC into denary.
	[1
(ii)	The amount of green in binary is 00100011. This has the denary number 15 added to it to create a second colour.
	Add the denary number 15 to the binary number 00100011 and give your answer in binary.
	Perform the addition in binary. Show your working.
	Working
	Answer (in binary)
	[3
(iii)	Hexadecimal 23 in two's complement representation is 00100011. The denary numbe 10 needs to be subtracted from this value.
	Subtract the denary number 10 from the two's complement representation 00100011.
	Give your answer in binary. Show your working.
	Working
	Answer (in binary)

(d)	Anya made sure that the image was not subject to any copyright before scanning it.
	Describe what is meant by copyright .
	[2]

Utility so	ftware	Description				
		Scans software for errors and repairs the problems				
Disk form	matter	Moves parts of files so that each file is contiguous in memory				
Defragme	entation	Creates a copy of data that is no longer required				
Back	-up	Sets up a disk so it is ready to store files				
Disk re	epair	Scans for errors in a disk and corrects them				
		Creates a copy of data in case the original is lost				

` ' '	plete the following description of the role of the registers in the fetch-execute cycle by g the missing registers.
The .	holds the address of the next instruction
to be	e loaded. This address is sent to the
The.	
This	data is sent to the and the Control Unit
deco	des the instruction's opcode.
The .	is incremented.

A processor has one general purpose register, the Accumulator (ACC), and several special purpose registers.

3

(b) The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Explanation			
Opcode	Operand	Explanation			
LDM	#n	Immediate addressing. Load the number n to ACC			
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC			
LDI	<address></address>	Indirect addressing: The address to be used is at the given address. Load the contents of this second address to ACC			
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC</address>			
LDR	#n	Immediate addressing. Load the number n to IX			
MOV	<register></register>	Move the contents of the accumulator to the given register (IX)			
STO	<address></address>	Store contents of ACC at the given address			
ADD	<address></address>	Add the contents of the given address to the ACC			
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)			
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>			
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>			
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>			
JMP	<address></address>	Jump to the given address			
OUT		Output to the screen the character whose ASCII value is stored in ACC			
END		Return control to the operating system			
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end			
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end			

<address> can be an absolute address or a symbolic address # denotes a denary number, e.g. #123

The current contents of the main memory and selected values from the ASCII character set are shown.

Address	Instruction
200	LDD 365
201	CMP 366
202	JPE 209
203	INC ACC
204	STO 365
205	MOV IX
206	LDX 365
207	OUT
208	JMP 200
209	END
365	1
366	3
367	65
368	66
IX	0

ASCII code table (selected codes only)

ASCII code	Character
65	A
66	В
67	С
68	D

Complete the trace table for the program currently in main memory.

Instruction	466		Memory	address	5	TV	0
address	ACC	365	366	367	368	IX	Output
		1	3	65	66	0	

(c)	(i)	The A	ccumula	ator curr	ently co	ntains tl	he binar	y numb	er:				
			0	0	1	1	0	1	0	1			
		Write instru		itents of	f the Ac	cumulat	or after	the pro	cessor	has exe	ecuted th	e follo	wing
						LSL	#2						
	(ii)	The A	ccumula	ator curr	ently co	ntains t	he binar	y numb	er:				[1]
	()												
			0	0	1	1	0	1	0	1			
				nathema e accun		peration	that the	e follow	ing inst	ruction	will perfo	orm or	the
						LSR	#3						
													 . [1]

Mel	inda and her friends set up a peer-to-peer network between their computers to share data.	
(a)	Describe the key features of a peer-to-peer network.	
(b)	Describe two drawbacks to Melinda and her friends of using a peer-to-peer network.	
	1	
	2	
		 [4
(c)	Melinda connects her laptop to the internet through her router.	
	(i) Tick (✓) one box in each row to identify whether the task is performed by the router not.	OI

4

Task	Performed by router	Not performed by router
Receives packets from devices		
Finds the ID address of a Uniform Description I sector (LIDI)		

Finds the IP address of a Uniform Resource Locator (URL)

Directs each packet to all devices attached to it

Stores the IP and/or MAC address of all devices attached to it

	Wired					
	Wireless					
	Justification					
(d)						[3]
(d)	Melinda sends em	nails from her w	/ebmail account	(email account a		[3]
(d)	Melinda sends em	nails from her w	/ebmail account	(email account a	accessed through a web	[3]
(d)	Melinda sends em Explain whether N	nails from her w Melinda is using	rebmail account	(email account a	accessed through a web	[3] osite).
(d)	Melinda sends em Explain whether N	nails from her w Melinda is using	rebmail account	(email account a	accessed through a web	[3] osite).
(d)	Melinda sends em Explain whether N	nails from her w Melinda is using	rebmail account g the internet, or	(email account a	accessed through a web	[3] osite).
(d)	Melinda sends em Explain whether N	nails from her w Melinda is using	rebmail account g the internet, or	(email account a	accessed through a web	[3] osite).
(d)	Melinda sends em Explain whether N	nails from her w Melinda is using	rebmail account	(email account a	accessed through a web	[3]

(a)	She has an embedded system in her washing machine.
	Describe what is meant by an embedded system , using the washing machine as an example
	[2]
(b)	The washing machine's embedded system makes use of both Random Access Memory (RAM) and Read Only Memory (ROM).
	State the purpose of RAM and ROM within the washing machine's embedded system.
	RAM
	ROM
	[2]
(c)	The temperature in her refrigerator must be kept between 4 and 6 degrees Celsius.
	The microprocessor in the refrigerator turns on the cooling if the temperature is too high, and turns off the cooling if the temperature is too low.
	Explain why the system in the refrigerator is a control and not a monitoring system.
	[2]

5

Kiara has a washing machine and a refrigerator.

Each of the following algorithms performs data validation. 6 State the type of validation check that each of the algorithms performs. (a) INPUT x IF x < 0 OR x > 10 THEN OUTPUT "Invalid" ENDIF (b) INPUT x IF x = "" THEN OUTPUT "Invalid" ENDIF (c) INPUT x IF NOT(x = "Red" OR x = "Yellow" OR x = "Blue") THEN OUTPUT "Invalid"

......[1]

ENDIF

Bob	by a	nd Kim are discussing	databases.		
(a)	Bob	by tells Kim that a file-b	pased approach is	s usually bet	tter than a relational database.
	Ехр	lain why Bobby is incor	rect.		
					[3]
(b)	cust deta	tomers, their payment o	details, orders and counts. The datal	I the produc pase will up	is database will store data about his ts he sells. Customers will have login odate customers' payment and login
	(i)	Give one example of	each of the follow	ing relations	ships from Bobby's database.
		one-to-one			
		one-to-many			
		many-to-many			
					[3]
	(ii)	Tick (/) one how to i	dentify the relatio	onshin that	ری cannot be directly implemented in a
	(11)	normalised relational of		manip that	cannot be unecly implemented in a
			Relationship	Tick (✓)	
			one-to-one		
			one-to-many		

many-to-many

7

(111)	Boddy wants to name his database Shoporders.	
	Write a Data Definition Language (DDL) statement to define a new database with name SHOPORDERS.	the
A da	atabase has a data dictionary.	
Giv	e three items that are stored in a data dictionary.	
1		
2		
3		
		[3]
	A da Giv 1 2	Write a Data Definition Language (DDL) statement to define a new database with

8 Tick (\checkmark) one box in each row to identify the logic gate that each statement describes.

Statement	AND	NAND	NOR	XOR	OR
The output is 1 only when both inputs are 1					
The output is 1 only when both inputs are different					
The output is 1 only when both inputs are 0					