

ORGANIZAÇÃO DE COMPUTADORES LEIC

Conjunto de Exercícios V

Caches - Introdução

Versão 1.0

2022/2023

Exercício 1

1.1. For a direct-mapped cache design with a 32-bit address, the following bits of the address are used to access the cache:

Tag	Index	Offset
31-10	9-4	3-0

- (a) What is the cache line size (in 32-bit words)?
- (b) How many lines does the cache have?
- (c) What is the ratio between the total bits required to implement this cache over the number of data bits effectively stored in the cache?
- **1.2.** Starting from power on, the following byte-addressed cache references are recorded:

Address	0x0	0x4	0x10	0x84	0xE8	0xA0	0x400	0x1E	0x8C	0xC1C	0xB4	0x884
---------	-----	-----	------	------	------	------	-------	------	------	-------	------	-------

- (a) How many blocks are replaced?
- (b) What is the hit ratio?

Exercício 2

For this exercise, refer to the following stream of 32-bit memory address references.

Address	3	180	43	2	191	88	190	14	181	44	186	253	
---------	---	-----	----	---	-----	----	-----	----	-----	----	-----	-----	--

- (a) Show the final cache contents for a fully associative cache with two-word blocks and a total size of 8 words. Use LRU replacement. For each reference, identify the index bits, the tag bits, the block offset bits, and if it is a hit or a miss.
- (b) What is the miss rate for this cache using LRU replacement?

Exercício 3

Uma nova versão de um processador de 16 bits (cujos endereços também têm 16 bits) vai incluir uma pequena cache de instruções para melhorar o desempenho do processador. A cache, só para instruções, terá capacidade para 8 palavras, blocos de 2 palavras e mapeamento directo. A memória é endereçável à palavra (de 16 bits). As especificações dos sistemas de memória actual (sem cache) e futuro (com cache) são as seguintes:

	Sistema actual	Sistema futuro
Tempo de acesso a memória (directo)	100 ns	100 ns
Tempo de acesso à cache em hit	-	20 ns
Tempo de acesso à cache em <i>miss</i> (inclui verificação da cache e acesso à memória)	-	120 ns

Avalie o desempenho do processador ao executar um troço de código que gera a sequência de acessos a memória indicada na tabela seguinte (F - instruction fetch, R - read data, W - write data).

Endereço [h]	Tipo
8010	F
1000	R
8011	F
8012	F
8013	F
8014	F
8017	F
8018	F
2000	W
8019	F
801A	F
801B	F
801C	F
801D	F

- (a) Qual é a distribuição de leituras e escritas na memória no processador actual?
- (b) Calcule o tempo médio de acesso à memória do processador actual (sem cache).
- (c) Indique a estrutura dos endereços tal como são interpretados pela cache.
- (d) Calcule o hit rate na cache de instruções do processador futuro.
- (e) Calcule o tempo médio de acesso à memória do processador futuro.
- (f) Qual é o *speedup* do novo processador ao executar este programa? (Considere que o desempenho do processador resulta directamente do tempo de resposta do sistema de memória.)
- (g) É possível que, ao executar outro programa (que gere uma sequência de acessos diferente da indicada na tabela) o processador com cache tenha um desempenho inferior ao do processador original? Se sim, em que condições?

References

[1] David Patterson and John Hennessy. *Computer Organization and Design: The Hardware/Software Interface*. Morgan Kaufmann, 4th edition, 2011.