Probabilidad condicional

Ejemplo 1

Se arrojan dos dados equilibrados. Sabiendo que el primer resultado es un 4, ¿Cuál es la probabilidad de que la suma de los dos dados de 8?

Resolución

Como ya sabemos que en el primer dado salio un 4, la única forma de que ambos sumen 8 es que en el segundo también haya salido un 4. Por lo tanto la probabilidad de que la suma de los dos dados de 8 dado que en el primero salió un 4 es 1/6.

Otra pregunta:

Sabiendo que la suma dio 8 ¿cuál es la probabilidad de que en el primer dado haya salido un 4?

Resolución

Los resultados posibles son

2 6

3 5

4 4

5 3

6 2

Hay 1 de todos esos en que el primero es 4. Como son equiprobables, la probabilidad de que en el primer dado haya salido un 4 sabiendo que la suma dio 8 es 1/5

En resumen

$$P(\ \{\ \text{en el primer dado salga 4 sabiendo que la suma dio 8}\}) = \frac{\#\{\text{en el primer dado sale 4 y la suma es 8}\}}{\#\{\ \text{la suma es 8}\}}$$

$$= \frac{\#\{\text{en el primer dado sale 4 y la suma es 8}\}/\#\Omega}{\#\{\ \text{la suma es 8}\}/\#\Omega}$$

$$= \frac{P(\{\text{en el primer dado sale 4 y la suma es 8}\})}{P(\{\ \text{la suma es 8}\})}$$

$$= \frac{1}{5}$$

Definición de probabilidad condicional

Sean A y B eventos tales que P(B) > 0, la probabilidad del evento A condicional a la ocurrencia del evento B es

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

En el caso de espacios equiprobables

$$P(A|B) = \frac{\#A \cap B}{\#B}$$

Otra pregunta

Se arrojan dos dados equilibrados. Sabiendo que el primer resultado es un 4, ¿Cuál es la probabilidad de que la suma de los dos dados de 8?

$$P(\text{la suma es 8 dado que el primer resultado es 4})$$

$$= \frac{P(\text{la suma es 8 y el primer resultado es 4})}{P(\text{el primer resultado es 4})}$$

$$= \frac{P(\text{ambos resultados son 4})}{P(\text{el primer resultado es 4})}$$

$$= \frac{1/36}{1/6}$$

$$= \frac{1}{6}$$

Otra forma de responder a la pregunta

Como el espacio es equiprobable

$$P(A|B) = \frac{\#A \cap B}{\#B}$$

P(la suma es 8 dado que el primer resultado es 4)

Resultados posibles en que el primero es 4

41 42 43 44 45

4 6

De ellos hay uno solo en que la suma es 8

 $P(\text{la suma es 8 dado que el primer resultado es 4}) = \frac{1}{6}$

Ejemplo: HIV

Consideremos una población en la que cada individuo es clasificado según dos criterios: es o no portador de HIV y pertenece o no a cierto grupo de riesgo que denominaremos R.

	Portador	No portador	
Pertenece a R	0.003	0.017	0.020
No pertenece a R	0.003	0.977	0.980
	0.006	0.994	1.000

Dado que una persona seleccionada al azar pertenece al grupo de riesgo R , ¿cuál es la probabilidad de que sea portador? LLamamos $A = \{ \text{la persona es portadora} \}$ y $B = \{ \text{la persona pertenece a R} \}$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.003}{0.020} = 0.150$$

Calculemos ahora la probabilidad de que una persona sea portadora de HIV, dado que no pertenece al grupo de riesgo R.

$$P(A \mid B^c) = \frac{P(A \cap B^c)}{P(B^c)} = \frac{0.003}{0.980} = 0.00306$$

Propiedades de la probabilidad condicional

Dado un suceso B fijo tal que P(B) > 0, P(|B) es una probabilidad, en el sentido que satisface los axiomas de probabilidad y por lo tanto todas las propiedades que se deducen a partir de ellos.

Veamos que se cumplen los axiomas

1 -
$$P(A|B) \ge 0$$
 para todo $A \subset B$.

$$2 - P(B|B) = 1.$$

2 - P(D|D) = 1. Dem:

$$P(B|B) = rac{P(B\cap B)}{P(B)} = rac{P(B)}{P(B)} = 1$$

3 - Si $A_1, A_2, ..., A_n$ es una colección de eventos mutuamente excluyentes (es decir, $A_i \cap A_i = \emptyset \ \forall i \neq j$) entonces

$$P\left(\left.\bigcup_{i=1}^{\infty}A_{i}\right|B\right)=\sum_{i=1}^{\infty}P\left(A_{i}|B\right).$$

3 - Si $A_1, A_2, ..., A_n$ es una colección de eventos mutuamente excluyentes (es decir, $A_i \cap A_i = \emptyset \ \forall i \neq i$) entonces

$$P\left(\left.\bigcup_{i=1}^{\infty}A_{i}\right|B\right)=\sum_{i=1}^{\infty}P\left(A_{i}|B\right).$$

Dem:

$$P\left(\bigcup_{i=1}^{\infty} A_{i} \middle| B\right) = \frac{P\left(\left(\bigcup_{i=1}^{\infty} A_{i}\right) \cap B\right)}{P\left(\cap B\right)}$$

$$= \frac{P\left(\bigcup_{i=1}^{\infty} (A_i \cap B)\right)}{P(B)} = \frac{\sum_{i=1}^{\infty} P\left((A_i \cap B)\right)}{P(B)}$$

$$=\sum_{i=1}^{\infty}\frac{P(A_i\cap B)}{P(B)}=\sum_{i=1}^{\infty}P(A_i|B).$$

Otras propiedades

Dado un suceso B fijo tal que P(B) > 0, la función

$$A \mapsto P(A|B)$$

es una probabilidad y por lo tanto satisface todas las propiedades de la probabilidad.

Por ejemplo,

- $P(A^c|B) = 1 P(A|B).$
- $ightharpoonup P(\emptyset|B) = 0.$
- ▶ Dados dos eventos cualesquiera A y C, $P(A \cup C|B) = P(A|B) + P(C|B) - P(A \cap C|B)$

Regla del producto

Dados dos sucesos A y B, tales que P(B) > 0,

$$P(A \cap B) = P(A|B)P(B).$$

Demostración:

Si
$$P(B) > 0$$
,

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

y, por lo tanto

$$P(A \cap B) = P(A|B)P(B).$$

Ejemplo: Bolitas

Consideremos una urna que contiene 4 bolillas rojas y 5 azules. ¿Cuál es la probabilidad de extraer una bolilla roja y una azul, en ese orden?

Rta:

Sea R_1 el evento 'la primera bolilla es roja' y A_2 el evento 'la segunda bolilla es azul'. Queremos calcular $P(R_1 \cap A_2)$.

Aplicando la regla del producto, se tiene

$$P(R_1 \cap A_2) = P(A_2|R_1)P(R_1) = \frac{5}{8}\frac{4}{9} = \frac{20}{72} = \frac{5}{18}$$

Ejemplo: Bolitas (continuación)

¿cómo podemos obtener la probabilidad de que la segunda bolilla extraída sea azul?

Rta:

 $P(A_2) =$

Ejemplo: Bolitas (continuación)

¿cómo podemos obtener la probabilidad de que la segunda bolilla extraída sea azul?
Rta:

$$\Omega = R_1 \cup R_1^c$$

$$P(A_2) = P(A_2 \cap (R_1 \cup R_1^c)) = P((A_2 \cap R_1) \cup (A_2 \cap R_1^c))$$
$$= P(A_2 \cap R_1) + P(A_2 \cap R_1^c)$$

$$= \frac{5}{18} + \frac{4}{8} \frac{5}{9} = \frac{5}{18} + \frac{5}{18} = \frac{5}{9}$$

 $= P(A_2|R_1)P(R_1) + P(A_2|R_1^c)P(R_1^c)$

Definición de partición

Una colección de eventos $A_1,A_2,...,A_k$ constituye una partición del espacio muestral Ω si

$$1 - A_i \cap A_i = \emptyset \ \forall i \neq j$$

$$2 - P(A_i) > 0 \quad \forall i$$

$$3 - \bigcup_{i=1}^k A_i = \Omega$$

Teorema de la probabilidad total

Sea $A_1, A_2, ..., A_k$ una partición del espacio muestral Ω y B un suceso cualquiera. Entonces

$$P(B) = \sum_{i=1}^{k} P(B|A_i) P(A_i)$$

Dem:

$$B = B \cap \Omega = B \cap \left(\bigcup_{i=1}^k A_i\right) = \bigcup_{i=1}^k (B \cap A_i)$$

Como los conjuntos $B \cap A_i$ son todos disjuntos enre si,

$$P(B) = P\left(\bigcup_{i=1}^{k} (B \cap A_i)\right) = \sum_{i=1}^{k} P(B \cap A_i) = \sum_{i=1}^{k} P(B|A_i) P(A_i)$$

Ejemplo: bolitas

Hallar la probabilidad de que la primera haya sido roja, sabiendo que la segunda fue azul

$$P(R_1|A_2) = \frac{P(R_1 \cap A_2)}{P(A_2)} = \frac{P(A_2|R_1)P(R_1)}{P(A_2|R_1)P(R_1) + P(A_2|R_1^c)P(R_1^c)} = \frac{1}{2}$$

Teorema de Bayes

Sea $A_1, A_2, ..., A_k$ una partición del espacio muestral Ω y B un suceso tal que P(B)>0. Entonces

$$P(A_j|B) = \frac{P(B|A_j) P(A_j)}{\sum_{i=1}^k P(B|A_i) P(A_i)}$$

 $P(A_j)$ se llama probabilidad a priori y $P(A_j|B)$ probabilidad a posteriori del evento A_j .

Dem: Ejercicio.

Independencia de eventos

Ejemplo: cartas

Supongamos que sacamos una carta de un mazo de cartas españolas (sin comodines) y nos dicen que es un as, ¿Cuál es la probabilidad de que sea de espadas?

$$P(\text{espadas} \mid \text{as}) = \frac{P(\text{espadas y as})}{P(\text{as})} = \frac{1/48}{4/48} = \frac{1}{4}$$

Es la misma que si no me dicen que es un as!!

$$P(espadas \mid as) = P(espadas)$$

Decimos que los eventos 'sale un as' y 'sale espadas' son idependientes.

Obserar que

$$P(espadas y as) = P(espadas)P(as)$$

Definición de independencia de eventos

Decimos que los eventos A y B son independientes si

$$P(A \cap B) = P(A)P(B)$$

Si $P(B) \neq 0$, la definición de independencia es equivalente a:

Los eventos A y B son independientes si P(A|B) = P(A)

Pues:

Si
$$P(A \cap B) = P(A)P(B)$$
 y $P(B) \neq 0$ entonces

Si
$$P(A \cap B) = P(A)P(B)$$
 y $P(B) \neq 0$ entonce

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Si P(A|B) = P(A) entonces

$$P(A \cap B) = P(A|B)P(B) = P(A)P(B).$$

Propiedades

 Si los sucesos A y B son excluyentes y tanto A como B tienen probabilidad mayor que cero, entonces A y B no son independientes.

Dem:
$$P(A \cap B) = 0$$
 pero $P(A)P(B) \neq 0$

2) Si P(B) = 0, entonces B es independiente de cualquier suceso A tal que P(A) > 0.

Dem: $P(A \cap B) \le P(B) = 0$ por lo tanto $P(A \cap B) = 0$. Como P(B) = 0, P(A)P(B) = 0.

Propiedades (continuación)

3) Si A y B son sucesos independientes, A y B^c también lo son.

Dem: ¿Cómo puedo relacionar $A \cap B$ y $A \cap B^c$?

$$(A \cap B) \cup (A \cap B^c) = A$$

Por lo tanto, como la unión es disjunta,

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

y, entonces

$$P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B) =$$

$$P(A)(1 - P(B)) = P(A)P(B^c)$$

Propiedades (continuación 2)

- 4) Si A y B son sucesos independientes, A y B^c también lo son.
- Dem: Ejercicio.
- 5) Si A y B son sucesos independientes, A^c y B^c también lo son. Dem: Ejercicio.

Independencia de más de dos eventos

Def: Los eventos $A_1, A_2, ..., A_n$ son independientes si para todo k=2,...,n y para todo conjunto de índices $\{i_1,i_2,...,i_k\}$ tales que $1 \leq i_1 < i_2 < ... < i_k \leq n$, se verifica

$$P\left(A_{i_1}\cap A_2,\ldots\cap A_{i_i}\right)=P\left(A_{i_i}\right)\cdot P\left(A_{i_2}\right)\ldots P\left(A_{i_i}\right).$$

Observación: Si los sucesos $A_1, A_2, ..., A_n$ son independientes, entonces son independientes de a pares pero la recíproca no es cierta.

Ejemplo: monedas

Se tiran dos monedas

A =sale cara en la primer moneda

B = las dos monedas muestran la misma cara.

C =sale cara en la segunda moneda.

- 1) Calcular P(A), P(B), P(C).
- 2) Calcular $P(A \cap B)$, $P(A \cap C)$, $P(B \cap C)$.
- 3) Calcular $P(A \cap B \cap C)$.

¿Son independientes los eventos? ¿Son independientes de a pares?

Ejemplo: monedas

Se tiran dos monedas

$$\Omega = \{(C, C), (C, X), (X, C), (X, X)\}$$

A =sale cara en la primer moneda

B = las dos monedas muestran la misma cara.

C =sale cara en la segunda moneda.

$$P(A) = P(B) = P(C) = \frac{1}{2}$$

Ejemplo: monedas (continuación)

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{1}{4}$$

Por lo tanto, los eventos son independientes de a pares Sin embargo,

$$P(A \cap B \cap C) = P(\{(C,C)\}) = \frac{1}{A} \neq P(A)P(B)P(C)$$

Por lo tanto los 3 eventos no son independientes