Lab 3: Superposition

Christopher Hunt

October 26, 2022

Abstract

In this weeks lab we are inspecting a R-2R ladder circuit with three 5 volt sources. The goal is to analyze the circuit and show that $V_o = \frac{V_3}{2} + \frac{V_2}{4} + \frac{V_1}{8}$ using superposition. The analytical solution will be compared to values calculated from an LTSpice simulation of the same circuit.

Equipment

• Acer Nitro 5 - OS: Ubuntu 22.04.1 LTS

 \bullet LTspice - Version: 17.0.35.0

Procedure

1. Theoretically derive the voltage at V_o using superposition and confirm that the statement, $V_o = \frac{V_3}{2} + \frac{V_2}{4} + \frac{V_3}{8}$, is true.

2. Simulate the same circuit schematic using LTSpice.

3. Create a data table documenting the output voltage with respect to each possible state of input voltages.

Circuit Diagram

Calculations

Christopher Hunt ENGR 201

Christopher Hunt ENGR 201

From these calculations we derive that:

$$V_{a1} = \frac{V_3}{2} = 2.5V$$
 $V_{a2} = \frac{V_2}{4} = 1.25V$ $V_{a3} = \frac{V_1}{8} = 0.625V$

$$V_o = V_{a1} + V_{a2} + V_{a3} \Rightarrow V_o = 4.375V$$

Data

V_3 , volts	V_2 , volts	V_1 , volts	V_o , volts
0	0	0	0
0	0	5	0.625
0	5	0	1.25
0	5	5	1.875
5	0	0	2.5
5	0	5	3.125
5	5	0	3.75
5	5	5	4.375

Conclusion

Our theoretical calculations matched the simulated results from LTSpice. From this we were able to see that in fact the statement $V_o = \frac{V_3}{2} + \frac{V_2}{4} + \frac{V_1}{8}$ holds true. This leads to further questions regarding the pattern of voltage superposition as more voltages are added to the ladder. The pattern we witness here is $V_o = \sum_{n=1}^m \frac{V_{in}}{2^n}$ where n begins on the ladder rung connected to the point of interest and m is the furthest rung from the point of interest.

Christopher Hunt ENGR 201