Interpretable Mechanistic Representations for Meal-level

Glycemic Control in the Wild

Our health application

Type-2 diabetes disease subtyping

ML problem

How do we learn a physiologically-grounded embedding space to describe glycemic control?

Our constraints (common in healthcare)

Unlabeled data

"Small data" regime

Real-world self-reported data with missingness

Want to incorporate prior expert knowledge

Code on GitHub

Follow me atherealalexwang

Our model

Result: A physiologically interpretable embedding space

Noninvasive, inexpensive Adaptable to new data Physiologically Interpretable Robust to in-the-wild data (TIR, MAGE, ...) ODE features network features features (ours) Yes Yes Yes No Yes Yes Yes No Yes Yes No Yes Yes

Hybrid VAE

Result: Embedding space agrees with clinical standard HbA1C (unseen)

Result: Inferring effective carbs makes model robust to errors in self-reported meal data

Result: Quantitatively better clustering than other methods

	NMI	AMI	Hom.	Comp.
Raw CGM $(d = 60)$	0.41	0.39	0.36	0.47
Raw CGM + DTW (d = 60)	0.54	0.53	0.62	0.51
Expert features $(d = 10)$	0.25	0.25	0.61	0.21
$\overline{\text{TCL} + \text{Average } (d = 32)}$	0.24	0.21	0.19	0.33
$TCL + Concat (d = 3 \times 32)$	0.29	0.27	0.24	0.38
Black-box VAE $(d = 32)$	0.21	0.19	0.22	0.21
Mechanistic ODE $(d=7)$	0.14	0.12	0.14	0.14
Hybrid VAE $(d=7)$	0.54	0.53	0.51	0.58

More accurate and more interpretable