ALGORITMOS DE GRAFOS

75.41 - ALGORITMOS Y PROGRAMACIÓN II

FLOYD-WARSHALL

ENCUENTRA EL CAMINO MÍNIMO ENTRE TODOS LOS PARES DE VERTICES

MATRIZ DE DISTANCIAS

	1	2	3	4
1	0	2	8	2
2	7	0	9	2
3	8	1	0	∞
4	8	∞	3	0

TOMO UN VERTICE V0 Y OTRO PAR DE VERTICES V1 Y V2. ME QUEDO CON LA MENOR DISTANCIA ENTRE V1 \Rightarrow V2 Y V1 \Rightarrow V0 \Rightarrow V2.

COMO 1 ES NUESTRO VERTICE INTERMEDIO, NO ME INTERESAN LAS ARISTAS QUE SALEN O LLEGAN DE EL.

-	1	2	3	4
1	0	2	00	2
2	7	0	9	2
3	00	1	0	∞
4	8	∞	3	0

$$\dot{2} \Rightarrow 1 \Rightarrow 3 < 2 \Rightarrow 3$$
?

	1	2	3	4
1	0	2	00	2
2	7	0	9	2
3	00	1	0	∞
4	8	∞	3	0

$$\dot{c}^2 \Rightarrow 1 \Rightarrow 4 < 2 \Rightarrow 4?$$

<u>.</u>	1	2	3	4
1	0	2	8	2
2	7	0	9	2
3	00	1	0	∞
4	8	∞	3	0

-	1	2	3	4
1	0	2	00	2
2	7	0	9	2
3	000	1	0	∞
4	8	∞	3	0

-	1	2	3	4
1	0	2	00	2
2	7	0	9	2
3	00	1	0	©
4	8	∞	3	0

-	1	2	3	4
1	0	2	00	2
2	7	0	9	2
3	00	1	0	00
4	8	10	3	0

$$\dot{c}4 \Rightarrow 1 \Rightarrow 3 < 4 \Rightarrow 3$$
?

	1	2	3	4
1	0	2	∞	2
2	7	0	9	2
3	∞	1	0	∞
4	8	10	3	0

	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	∞	1	0	∞
4	8	10	3	0

<u>.</u>	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	∞	1	0	∞
4	8	10	3	0

-	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	8	1	0	∞
4	8	10	3	0

	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	8	1	0	3
4	8	10	3	0

$$\dot{c}4 \Rightarrow 2 \Rightarrow 1 < 4 \Rightarrow 1?$$

_	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	8	1	0	3
4	8	10	3	0

$$\dot{c}4 \Rightarrow 2 \Rightarrow 3 < 4 \Rightarrow 3$$
?

_	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	8	1	0	3
4	8	10	3	0

$$\dot{c}4 \Rightarrow 2 \Rightarrow 3 < 4 \Rightarrow 3$$
?

_	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	8	1	0	3
4	8	10	3	0

_	1	2	3	4
1	0	2	11	2
2	7	0	9	2
3	8	1	0	3
4	8	4	3	0

-	1	2	3	4
1	0	2	5	2
2	7	0	5	2
3	8	1	0	3
4	8	4	3	0

PRIM

COMENZANDO POR UN VERTICE ARBITRARIO, MARCARLO COMO VISITADO E IR AGREGANDO LA ARISTA DE MENOR PESO QUE CONECTA UN VERTICE YA VISITADO CON UNO NO VISITADO.

KRUSKAL

CREO UN ARBOL SEPARADO PARA CADA VERTICE.
VOY TOMANDO CADA ARISTA DE FORMA ASCENDENTE Y ME QUEDO CON LAS QUE UNEN 2 ARBOLES.

¿PREGUNTAS?

