(19)日本国特許庁(JP)

⁽¹²⁾公開特許公報 (A)

(11)特許出願公開番号

特開平5-121902

(43)公開日 平成5年(1993)5月18日

(51) Int. Cl. 5

識別記号 庁内整理番号

FΙ

技術表示箇所

H01P 1/18

審査請求 有 請求項の数6

(全9頁)

(21)出願番号

特願平3-305543

(22)出願日

平成3年(1991)10月25日

(71)出願人 000232287

日本電業工作株式会社

東京都千代田区神田岩本町1番地 岩本町

ビル

(72)発明者 畠中 博

埼玉県富士見市諏訪2-2-41

(74)代理人 弁理士 清沢 宗司

(54) 【発明の名称】移相器

(57)【要約】

【目的】伝送信号の位相を連続的に変化させることができ、又、遠隔制御の可能な移相器を実現する。

【構成】外部導体1及び内部導体2より成る同軸線路の一端から、固体誘電体より成る可動簡体3を外部導体1 と内部導体2の間において軸方向に滑動可能に挿入して 形成したスタブの入力端を、方向性結合器、サーキュレ ータ又はハイブリッド回路等の結合回路4に接続したも のである。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】外部導体及び内部導体より成る同軸線路の 一端から、固体誘電体より成る可動筒体を前記外部導体 と内部導体間において軸方向に滑動可能に挿入して成る スタブを備えたことを特徴とする移相器。

【請求項2】スタブが開放型スタブである請求項1に記 戯の移相器。

【請求項3】スタブが短絡型スタブである請求項1に記 載の移相器。

【請求項4】外部導体及び内部導体より成る同軸線路の 10 一端から、固体誘電体より成る可動簡体を前配外部導体 と内部導体間において軸方向に滑動可能に挿入して成る スタブと、

前記スタブの入力端が接続される方向性結合器とを備え たことを特徴とする移相器。

【請求項5】外部導体及び内部導体より成る同軸線路の 一端から、固体誘電体より成る可動筒体を前記外部導体 と内部導体間において軸方向に滑動可能に挿入して成る スタブと、

前記スタブの入力端が接続されるサーキュレータとを備 20 えたことを特徴とする移相器。

【請求項6】外部導体及び内部導体より成る同軸線路の 一端から、固体誘電体より成る可動筒体を前配外部導体 と内部導体間において軸方向に滑動可能に挿入して成る スタブと、

前記スタブの入力端が接続されるハイブリッド回路とを 備えたことを特徴とする移相器。

【発明の詳細な説明】

[0001]

波帯における各種電気又は電子機器回路における移相器 に関するものである。

[0002]

【従来の技術】超短波ないしマイクロ波帯における各種 電気又は電子機器回路において従来用いられている移相 器、例えばビームチルトアンテナを構成する各素子アン テナの給電位相を変化させるために用いられる移相器 は、互いに長さの異なる例えば4本の伝送線を、切換え スイッチの切換えによって選択的に給電線に挿入するよ うに構成されている。

[0003]

【発明が解決しようとする課題】上記従来の移相器にお いては、互いに長さの異なる伝送線及び切換えスイッチ を各複数個必要とするから構成が複雑大形となるばかり でなく、給電位相を連続的に変化させることができな い。

[0004]

【課題を解決するための手段】本発明は、外部導体及び 内部導体より成る同軸線路の一端から、固体誘電体より

成る可動簡体を前配外部導体と内部導体間において軸方 向に滑動可能に挿入して成るスタプと、前記スタブの入 力端が接続される方向性結合器、サーキュレータ又はハ イプリッド回路等の結合回路とを備えた移相器を実現す ることによって、従来の欠点を除こうとするものであ

[0005]

【作用】同軸線路を形成する外部導体と内部導体間への 固体誘電体より成る可動筒体の挿入長を変えると、スタ プにおける入力反射係数の位相角が変化し、したがっ て、本発明移相器を伝送線路に結合すると、伝送信号の 位相が変化する。

100061

【実施例】図1は、本発明の一実施例の要部を示す一部 断面を有する図で、1は筒形の外部導体、2は棒状又は 比較的細い簡形の内部導体で、両導体によって同軸線路 が形成される。外部導体1及び内部導体2の横断面にお ける輪郭形状は、何れも円形又は何れも角形或は何れか 一方を円形、他方を角形に形成して本発明を実施するこ とができる。3は固体誘電体より成る可動筒体で、その 横断面における外周縁の形状を外部導体1の横断面にお ける内周縁の形状にほぼ一致させ、固体誘電体より成る 可動筒体3の横断面における内周縁の形状を内部導体2 の横断面における外周緑の形状にほぼ一致させると共 に、固体誘電体より成る可動筒体3の肉厚を適当にし て、固体誘電体より成る可動简体 3 が外部導体 1 と内部 導体2の間において軸方向に滑動自在なように形成して ある。4は外部回路との結合回路で、例えば方向性結合 器、サーキュレータ又はハイブリッド回路等より成る。 【産業上の利用分野】本発明は、超短波ないしマイクロ 30 図1には示していないが、固体誘電体より成る可動筒体 3の外端部に、例えばラック及びピニオンを介して例え ばパルスモータを結合し、パルスモータの正方向又は逆 方向回転に応じて固体誘電体より成る可動簡体3を前進 又は後退させ、外部導体1及び内部導体2の間への固体 誘電体より成る可動筒体3の挿入軸長を連続的に微細に 制御できるように構成する。

> 【0007】外部導体1及び内部導体2の間に固体誘電 体より成る可動筒体3が挿入されることなく空気が介在 している部分の軸長をLA、特性インピーダンスをZA、特 40 性アドミタンスをYA、基本マトリクスを [FA] で表すと 共に、固体誘電体より成る可動筒体3の挿入されている 部分の軸長をLo、特性インピーダンスを2o、特性アドミ タンスをYo、基本マトリクスを [Fo] で表すと、外部導 体1、内部導体2及び固体誘電体より成る可動筒体3よ り成るスタブの基本マトリクス [Fnu] は、次式で表さ れる。

[0008]

【数1】

式(1)において、

 $m_{\Lambda} = 2 \pi / \lambda_{\Lambda}$

λ、: 固体誘電体より成る可動簡体3が挿入されていな い部分における管内波長

 $m_D = 2 \pi / \lambda_D$

え。: 固体誘電体より成る可動筒体3が挿入されている*
$$\Gamma = \frac{A \ Z_L + jB - jC \ Z_0 \ Z_L - D \ Z_0}{A \ Z_L + jB + jC \ Z_0 \ Z_L + D \ Z_0}$$

負荷22を無限大にした場合、すなわち、外部導体1及び 内部導体2の各右端部間を開放した場合における複素反 射係数 Γ 。は、次式で求められる。式(2)における右 辺の分子及び分母をこで割ると、

【数3】

$$\Gamma = \frac{A + j \frac{B}{Z_L} - jC Z_O - \frac{D Z_O}{Z_L}}{A + j \frac{B}{Z_L} + jC Z_O + \frac{D Z_O}{Z_L}}$$

$$\Gamma_O = \frac{A - jC Z_O}{A + jC Z_O}$$
**

複素反射係数Γ。の位相角θ。は、次式で表される。

【数5】

*部分における管内波長

【0009】スタブを形成する外部導体1及び内部導体 2の各右端部(図1に向かって右側の端部)に負荷2.を 接続した場合における複素反射係数 Γは、電源インピー ダンスをZuとすると次式で求められる。

【数2】

• • • • (3)

※上式の2.を無限大とすると、

【数4】

$$\theta_{o} = \arg \left(\frac{A - jC Z_{o}}{A + jC Z_{o}} \right)$$

$$= \arg \left(A - jC Z_{o} \right) - \arg \left(A + jC Z_{o} \right)$$

$$= 2 \tan^{-1} \left(\frac{-C Z_{o}}{A} \right)$$
....

上記各式から明らかなように、固体誘電体より成る可動 簡体3の挿入長Loを変えると、複素反射係数 Γ。の絶対 値は1で、位相角θ。のみ変えることができる。すなわ ることができる。

【0010】図2は、図1に示した結合回路4を方向性 結合器、例えば出力相互の位相差が90°で、結合度がほ ぼ3dB の方向性結合器で構成した場合における結合回路*

$$[S] = \begin{vmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{vmatrix}$$

*4の電気的特性を説明するための図で、図2において、 DCP は方向性結合器、T₁は入力端子、T₂はダイレクト端 子、Taは結合端子、Taはアイソレーション端子である。 ち、反射損失を伴うことなく、反射波の位相のみを変え 10 方向性結合器DCP の電圧結合係数をCcc、結合線路部の電 気角をθ c とすると、この方向性結合器のスキャッタリ ングマトリックス[S]は、次式で表される。

> [0011] 【数6】

$$= \begin{bmatrix} 0 & \frac{jC_{c}\sin\theta_{c}}{D_{c}} & \sqrt{1-C_{c}^{2}} & 0 \\ \frac{jC_{c}\sin\theta_{c}}{D_{c}} & 0 & 0 & \frac{\sqrt{1-C_{c}^{2}}}{D_{c}} \\ \frac{\sqrt{1-C_{c}^{2}}}{D_{c}} & 0 & 0 & \frac{jC_{c}\sin\theta_{c}}{D_{c}} \\ 0 & \frac{\sqrt{1-C_{c}^{2}}}{D_{c}} & \frac{jC_{c}\sin\theta_{c}}{D_{c}} & 0 \end{bmatrix}$$

式(5)において、 【数7】

$$D_{c} = \sqrt{1 - C_{c}^{2}} \cos \theta_{c} + i \sin \theta_{c}$$

【0012】端子T」に入力電圧E」を印加した場合におけ る端子T」ないしTaの各出力電圧Eoa、Eoz 、Eos およびE 01 は、次式で求められる。

• (5)

40 【数8】

$$\begin{bmatrix} E_{01} \\ E_{02} \\ E_{03} \\ E_{04} \end{bmatrix} = \begin{bmatrix} O & \frac{jC_{c}\sin\theta_{c}}{D_{c}} & \sqrt{1-C_{c}^{2}} & O \\ \frac{jC_{c}\sin\theta_{c}}{D_{c}} & O & O & \sqrt{1-C_{c}^{2}} \\ O & \sqrt{1-C_{c}^{2}} & O & O & \frac{jC_{c}\sin\theta_{c}}{D_{c}} \\ O & \sqrt{1-C_{c}^{2}} & O & O & \frac{jC_{c}\sin\theta_{c}}{D_{c}} \\ O & \sqrt{1-C_{c}^{2}} & \frac{jC_{c}\sin\theta_{c}}{D_{c}} & O \\ O & \sqrt{1-C_{c}^{2}} & O & O & O \\ \end{bmatrix} \begin{bmatrix} E_{1} \\ O \\ O \\ O \\ O \end{bmatrix}$$

$$= \begin{bmatrix} O \\ \frac{jC_{c}\sin\theta_{c}}{D_{c}} & E_{1} \\ O \\ O \\ O \end{bmatrix}$$

$$(6)$$

【0013】図3は、図1の等価回路図、すなわち、図 構成した場合の等価回路図で、STB は図1における外部 導体1、内部導体2及び固体誘電体より成る可動筒体3 より成るスタブで、他の符号は図2と同様である。方向*

*性結合器DCP の端子T,に入力電圧E,を印加すると、端子 1の結合回路4を図2について説明した方向性結合器で 30 T₂及びT₃には次式に示す反射電圧E_{2R}及びE_{3R}が現れ

【数9】

$$E_{2R} = \frac{jC_{c}\sin\theta_{c}}{D_{c}}\Gamma_{o} E_{i} \qquad (7)$$

$$E_{2R} = \frac{\sqrt{1-C_c^2}}{D_c} \Gamma_o E_i \qquad (8)$$

【0014】 したがって、端子T,に入力電圧E,を印加し 40 Eo2s、Eo3s及びEo4sは、次式で求められる。 た場合における端子T」ないしTaの各出力電圧Eous、 【数10】

$$\begin{bmatrix} E_{018} \\ E_{028} \\ E_{038} \end{bmatrix} = \begin{bmatrix} O & \frac{jC_{c}\sin\theta_{c}}{D_{c}} & \sqrt{1-C_{c}^{2}} & O \\ \frac{jC_{c}\sin\theta_{c}}{D_{c}} & O & O & \sqrt{1-C_{c}^{2}} \\ \frac{J_{1}-C_{c}^{2}}{D_{c}} & O & O & \frac{jC_{c}\sin\theta_{c}}{D_{c}} \\ O & \sqrt{1-C_{c}^{2}} & O & O & \frac{jC_{c}\sin\theta_{c}}{D_{c}} \\ O & \sqrt{1-C_{c}^{2}} & \frac{jC_{c}\sin\theta_{c}}{D_{c}} & O & O \end{bmatrix} \begin{bmatrix} O \\ E_{2R} \\ E_{3R} \\ O & \frac{J_{1}-C_{c}^{2}}{D_{c}} & O & O \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{1 - C_c^2} & E_{3R} + jC_c \sin\theta_c & E_{2R} \\ D_c & & & \\ 0 & & & \\ \sqrt{1 - C_c^2} & E_{2R} + jC_c \sin\theta_c & E_{3R} \\ D_c & & & \\ \end{bmatrix}$$

$$(9)$$

【0015】式(7)、式(8)及び式(9)から端子 DCP の電圧結合係数C。を、

*と置くと共に、方向性結合器DCP における結合線路部の T1及びT4の出力電圧E01S及びE04Sを求め、方向性結合器 30 電気角 θ c を90°として、出力電圧E01S及びE04Sを表す 式を整理すると、出力電圧Eors及びEorsは次式で表され

$$|E_{01S}| = \left| \frac{(1 - Cc^2) - Cc^2 \sin^2 \theta c}{Dc^2} E_1 \Gamma_0 \right| = 0$$

$$|E_{04S}| = \left| \frac{j2\sqrt{(1 - Cc^2)} Cc \sin \theta c}{Dc^2} E_1 \Gamma_0 \right| = |E_1 \Gamma_0|$$

すなわち、端子T、(又はTa) に加えられた電圧は、損失 を伴うことなく、位相のみが θ。だけ変化して端子T a(又はT₁)に現れ、端子T₁(又はT₄)に反射電圧が現 れることはない。

【0016】図4は、本発明の他の実施例の要部を示す 断面図(図5のX-X断面図)、図5は背面図で、両図 において、1は外部導体、2は内部導体、3は固体誘電 50 体より成る可動筒体、4は結合回路、5は短絡導体で、

外部導体1及び内部導体2の各外端部間を電気的に短絡 する。6は切込みで、固体誘電体より成る可動筒体3の 側壁のうち、短絡導体5を設けた箇所に対応する側壁部 分の外端部から適宜軸長に亙って設けると共に、切込み 6の幅を短絡導体5の幅に比し適宜大にしてある。この 実施例においては、外部導体1、内部導体2及び固体誘 電体より成る可動筒体3によって短絡型スタブが形成さ れ、固体誘電体より成る可動筒体3の側壁に設けた切込 み6が短絡導体5の位置に対応すると共に、切込み6の 幅が短絡導体5の幅に比し適宜大であるから、固体誘電*10

$$\Gamma_{s} = \frac{jB-D}{jB+D} \frac{Z_{o}}{Z_{o}} = \frac{D}{D} \frac{Z_{o}-jB}{D} \frac{J}{Z_{o}+jB}$$

$$\theta_{s} = \arg \left(\frac{-D}{D} \frac{Z_{o}+jB}{D} \right)$$

$$= 180^{\circ} + \arg \left(\frac{D}{D} \frac{Z_{o}-jB}{Z_{o}+jB} \right)$$

$$= 180^{\circ} + \arg \left(D \frac{Z_{o}-jB}{D} \right) - \arg \left(D \frac{Z_{o}+jB}{D} \right)$$

$$= 180^{\circ} + 2 \tan^{-1} \left(\frac{-B}{D} \frac{B}{D} \right)$$

$$(1)$$

この実施例においては、式 (10) 及び式 (11) における 複素反射係数 Γ 。を Γ 。で置換えることによって、出力 電圧Eo1s及びEo4sを求めることができる。

【0018】図6は、図1、図4及び図5に示した各実 施例における固体誘電体より成る可動筒体3の挿入長と 複素反射係数 Г。の位相角 в 。との関係の一例及び固体 誘電体より成る可動筒体3の挿入長と複素反射係数 Γs 基づいて示した曲線図で、横軸は固体誘電体より成る可 動簡体3の挿入長L₁(mm)、縦軸は位相角 θ 。又は θ s (d eg) である。位相角 θ 。の変化を示す曲線及び位相角 θ s の変化を示す曲線の何れの曲線も、外部導体1及び内 部導体2の各軸長を400mm 、特性インピーダンス2_人を50 Ω、固体誘電体より成る可動筒体3の比誘電率を2.3、 使用周波数を750MHzとして求めたものである。

【0019】図7もまた本発明の他の実施例、すなわ ち、図1における結合回路4をサーキュレータで形成し た実施例の等価回路図で、CCL はサーキュレータ、STB 40 【図1】本発明の一実施例の要部を示す一部断面を有す は図1について説明したと同様の開放型スタブである。 サーキュレータCCL の入力端子Tc1 に加えられた電圧 は、出力端子Tc2 から開放型スタブSTB に加えられ、開 放型スタブSTB における反射波は端子Tc2 を介してサー キュレータCCL に加えられ、アイソレーション端子Tcax から出力される。端子Tcs から出力される電圧は、損失 を伴うことなく、位相のみが複素反射係数 Γ 。 の位相角 θ。だけ変化すること図1に示した実施例と同様であ る。図7における開放型スタブSTB を、図4及び図5に ついて説明した短絡型スタブに置換えても本発明を実施 50 る。

*体より成る可動筒体3の軸方向への滑動が阻害されるお それはない。この実施例においても、固体誘電体より成 る可動筒体3の外端部に軸方向の駅動素子を設けること 前実施例と同様である。

12

【0017】この実施例におけるスタブは短絡型スタブ であるから、式(2)における負荷2」は零で、したがっ て、この場合の複素反射係数 Γ s 及び複素反射係数 Γ s の位相角 θ s は、それぞれ次式で表される。

【数13】

$$\cdots$$
 (12)

できること勿論である。

- 【0020】図1における結合回路4として上記のよう な結合回路を用いる他、例えばTEM伝送線路又は準TEM 伝送線路で形成した方向性結合器或はTEM 伝送線路又は 準TEM 伝送線路で形成したハイブリッド回路等を用いて もよい。又、以上は例えばラック、ピニオン及びパルス モータによって固体誘電体より成る可動簡体3を軸方向 の位相角θ。との関係の一例を、それぞれ理論計算値に 30 に駆動するように構成した場合について説明したが、手 動的に駆動するようにしてもよい。

[0021]

【発明の効果】本発明移相器は、構成が比較的簡潔で、 入力電圧の位相を連続的に変化させることが可能であ り、又、固体誘電体より成る可動簡体3の駆動を遠隔地 点から制御できる等の特長を有するもので、各種電気又 は電子機器回路における移相器として用いて効果甚だ大 である。

【図面の簡単な説明】

る図である。

【図2】本発明移相器における結合回路の特性の一例を 説明するための図である。

【図3】本発明移相器の等価回路図である。

【図4】本発明の他の実施例の要部を示す一部断面を有 する図である。

【図5】本発明の他の実施例の要部を示す背面図であ

【図6】本発明移相器の特性の一例を示す曲線図であ

K 000410

13

【図7】本発明の他の実施例を示す等価回路図である。

【符号の説明】 1 外部導体

2 内部導体

3 固体誘電体より成る可動筒体

4 結合回路

DCP 方向性結合器

T, 入力端子

T₂ ダイレクト端子

Ta 結合端子

T₁ アイソレーション端子

14

STB スタブ

5 短絡導体

6 切込み

CCL サーキュレータ

Tea 入力端子

Tc2 出力端子

Tcs アイソレーション端子

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

[図7]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.