МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Машинное обучение»

Студентка гр. 6307	Кичерова А. Д.
Преподаватель	Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами ассоциативного анализа из библиотеки MLxtend

Выполнение

1. Загрузка данных

1.1 Загрузили датасет по ссылке

https://www.kaggle.com/irfanasrullah/groceries

```
In [3]: all_data = pd.read_csv('groceries - groceries.csv')
print(all_data)
              Item(s)
                                    Item 1
                                                        Item 2
                                                                          Item 3
                           citrus fruit semi-finished bread
                                                                      margarine
                         tropical fruit yogurt
whole milk NaN
pip fruit yogurt
                   3
                                                                          coffee
                                                                             NaN
                                                                    cream cheese
                  4
                  4
        9830
                  17
        9832
        9833
        9834
                         Item 4 Item 5
ready soups NaN
NaN NaN
meat spreads NaN
akery product NaN
                                                              Item 6 \
                                                                 NaN
                                                                 NaN
                                                                 NaN
              long life bakery product
                                                 NaN
                                                                 NaN
```

1.2 Переформировали данные, удалив все значения NaN. Получили список всех уникальных товаров и их количество.

```
In [4]: np_data = all_data.to_numpy()
np_data = [[elem for elem in row[1:] if isinstance(elem,str)] for row in np_data]

In [5]: unique_items = set()

for row in np_data:
    for elem in row:
        unique_items.add(elem)

print('KOAWYECTBO YHMKANDHHEX TOBADOB: ', len(unique_items), '\n')

print(unique_items)

KOAWYECTBO YHMKANDHHEX TOBADOB: ', len(unique_items), '\n')

print(unique_items)

KOAWYECTBO YHMKANDHHEX TOBADOB: 169

{'flour', 'pork', 'grapes', 'preservation products', 'make up remover', 'specialty bar', 'misc. beverages', 'fish', 'salad dressing', 'white wine', 'dessert', 'candy', 'dish cleaner', 'hygiene articles', 'brandy', 'berries', 'canned beer', 'neat', 'rum', 'cream cheese', 'nut snack', 'chocolate', 'ready soups', 'organic products', 'cereals', 'cookware', 'whisky', 'soda', 'mayonnai se', 'specialty vegetables', 'seasonal products', 'dental care', 'chewing gum, 'hhard cheese', 'herbs', 'sparkling wine', abra sive cleaner', 'dishes', 'photo/film', 'fmale sanitary products', 'land', 'bags', 'sope,', 'frozen fish', 'liquor (appettize r)', 'syrup', 'frozen chicken', 'sweet spreads', 'mustard', 'dog food', 'oil', 'rice', 'salty snack', 'tea', 'other vegetable s', 'nuts/prunes', 'napkins', 'semi-finished bread', 'onions', 'cling film/bags', 'specialty fat', 'whipped/sour cream', 'ice c ream', 'candles', 'flower (seeds)', 'frozen meals', 'meat spreads', 'soups', 'frozen vegetables', 'Instant food products', 'rol products', 'yogurt', 'baby food', 'red/blush wine', 'sound storage medium', 'house keeping products', 'bottled beer', 'potted plants', 'waffles', 'newspapers', 'popcorn', 'detergent', 'sliced cheese', 'salt', 'specialty chocolate', 'curd', 'cocoa drink s', 'buttern inith', 'canned fruit', 'male cosmetics', 'turkey', 'instant food products', 'rol vegetables', 'butter', 'soft cheese', 'flower soul/fertilizer', 'potato products', 'honey', 'pickled wegetables', 'warg', 'butter', 'soft cheese', 'flower soul/fertilizer', 'potato products', 'honey', 'pickled wegetables', 'warg', 'soundesded milk',
```

2. FPGrowth

2.1 Преобразовали данные к виду, который удобен для анализа и провели ассоциативный анализ, используя алгоритм FPGrowth.

```
te = TransactionEncoder()
te_array = te.fit(np_data).transform(np_data)
data = pd.DataFrame(te_array, columns = te.columns_)
data
```

	Instant food products	UHT- milk	abrasive cleaner	artif. sweetener	baby cosmetics	baby food	bags	baking powder	bathroom cleaner	beef	 turkey	vinegar	waffles
0	False	False	False	False	False	False	False	False	False	False	 False	False	False
1	False	False	False	False	False	False	False	False	False	False	 False	False	False
2	False	False	False	False	False	False	False	False	False	False	 False	False	False
3	False	False	False	False	False	False	False	False	False	False	 False	False	False
4	False	False	False	False	False	False	False	False	False	False	 False	False	False
9830	False	False	False	False	False	False	False	False	False	True	 False	False	False
9831	False	False	False	False	False	False	False	False	False	False	 False	False	False
9832	False	False	False	False	False	False	False	False	False	False	 False	False	False
9833	False	False	False	False	False	False	False	False	False	False	 False	False	False
9834	False	False	False	False	False	False	False	False	False	False	 False	True	False
9835 r	rows × 169	colum	ns										

(

FPGrowth

```
result = fpgrowth(data, min_support = 0.03, use_colnames = True)
result['length'] = result['itemsets'].apply(lambda x: len(x))
result
```

h	lengt	itemsets	support	
1		(citrus fruit)	0.082766	0
1		(margarine)	0.058566	1
1		(yogurt)	0.139502	2
1		(tropical fruit)	0.104931	3
1		(coffee)	0.058058	4
2		(whole milk, pastry)	0.033249	58
2		(root vegetables, other vegetables)	0.047382	59
2		(root vegetables, whole milk)	0.048907	60
2		(rolls/buns, sausage)	0.030605	61
2		(whole milk, whipped/sour cream)	0.032232	62

63 rows × 3 columns

2.2 Определили минимальные и максимальные значения для уровня поддержки для набора из 1,2 и т.д объектов

```
for leng in range(1, result['length'].max() + 1):
    print ('length', leng, ':')
    print ('min :', result[result['length'] == leng]['support'].min())
    print ('max :', result[result['length'] == leng]['support'].max())
    print ('\n')

length 1 :
    min : 0.03040162684290798
    max : 0.25551601423487547

length 2 :
    min : 0.030096593797661414
    max : 0.07483477376715811
```

3. FPMax

3.1 Провели аналогичный анализ для FPMax

```
result = fpmax(data, min_support=0.03, use_colnames = True)
result['length'] = result['itemsets'].apply(lambda x: len(x))
 result
                                          itemsets length
       support
  0 0.030402
                               (specialty chocolate)
   1 0.031012
                                          (onions)
  2 0.032944
                                  (hygiene articles)
   3 0.033249
                                          (berries)
  4 0.033249
                                 (hamburger meat)
   5 0.033452
                                        (UHT-milk)
  6 0.033859
                                           (sugar)
   7 0.037112
                                          (dessert)
   8 0.037417
                          (long life bakery product)
   9 0.037824
                                      (salty snack)
 10 0.038434
                                          (waffles)
  11 0.039654
                                   (cream cheese)
for leng in range(1, result['length'].max() + 1):
     print ('length', leng, ':')
print ('min :', result[result['length'] == leng]['support'].min())
print ('max :', result[result['length'] == leng]['support'].max())
length 1 :
min: 0.03040162684290798
max: 0.09852567361464158
length 2 :
min: 0.030096593797661414
max : 0.07483477376715811
```

3.2 Сравнили полученные результаты.

FPMах в результате своей работы возвращает максимальные множества, те не существует множест большего размера, в которые они входят.

3.3 Построили гистограмму для каждого товара

3.4 Преобразовали набор данных и провели анализ FPGrowth и FPMax для нового набора данных.

3.5 Построили график изменения количества получаемых правил от уровня поддержки

```
supports = np.arange(0.01, 1, 0.01)
point_growth = pd.Series(dtype='float64')
border_growth = pd.Series(dtype='float64')
k_growth = None
point_fpmax = pd.Series(dtype='float64')
border_fpmax = pd.Series(dtype='float64')
k_fpmax = None
for support in supports:
     result_fpmax = fpmax(data, min_support = support, use_colnames = True)
     point_fpmax[support] = len(result_fpmax)
     result_growth = fpgrowth(data, min_support = support, use_colnames = True)
     point_growth[support] = len(result_growth)
     length_fpmax = result_fpmax['itemsets'].apply(lambda x: len(x))
     length_growth = result_growth['itemsets'].apply(lambda x: len(x))
     if k_growth is None:
          k_growth = length_growth.max()
     else:
          while k_growth > 0 and len(length_growth[length_growth == k_growth] == 0):
               border_growth[support] = len(result_growth)
               k_growth -= 1
     if k fpmax is None:
          k_fpmax = length_fpmax.max()
     else:
          while k_fpmax > 0 and len(length_fpmax[length_fpmax == k_fpmax] == 0):
               border_fpmax[support] = len(result_fpmax)
               k_fpmax -= 1
     if point_growth[support] == 0:
          border_growth[support] = len(result_growth)
          break
     if point_fpmax[support] == 0:
          border_fpmax[support] = len(result_fpmax)
          break
plt.scatter(border_growth.index, border_growth, c = 'r')
plt.plot(point_growth.index, point_growth, c = 'r', label = 'FPGrowth')
plt.scatter(border_fpmax.index, border_fpmax, c = 'b')
plt.plot(point_fpmax.index, point_fpmax, c = 'b', label = 'FPMax')
legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large')
plt.show()
plt.show()
```


4. Ассоциативные правила

4.1 Сформировали набор данных из определенных товаров так, чтобы размер транзакций был 2 и более.

```
np_data = all_data.to_numpy()
np_data = [[elem for elem in row[1:] if isinstance(elem,str) and elem in items] for row in np_data]
np_data = [row for row in np_data if len(row) > 1]

te = TransactionEncoder()
te_ary = te.fit(np_data).transform(np_data)
data = pd.DataFrame(te_ary, columns=te.columns_)
```

	bottled beer	bottled water	canned beer	citrus fruit	other vegetables	pastry	pork	rolls/buns	root vegetables	sausage	shopping bags	soda	tropical fruit
0	False	False	False	False	False	False	False	False	False	False	False	False	True
1	False	False	False	False	True	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False
3	True	False	False	False	True	False	False	True	False	False	False	False	False
4	False	True	False	False	True	False	False	False	False	False	False	False	True
4961	False	False	False	False	True	False	False	False	False	False	False	True	True
4962	False	False	False	True	False	False	False	False	True	True	False	False	False
4963	False	False	False	True	True	False	False	True	False	False	False	False	False
4964	True	True	False	False	False	False	False	False	False	False	False	True	False
4965	False	False	False	False	True	False	False	False	False	False	True	False	True

4966 rows × 16 columns

4.2 Получили частоты наборов используя алгоритм FPGrowth

itemsets	support	
(yogurt)	0.241240	0
(tropical fruit)	0.185884	1
(whole milk)	0.421889	2
(other vegetables)	0.335079	3
(rolls/buns)	0.296214	4
(bottled beer)	0.113371	5
(bottled water)	0.185461	6
(citrus fruit)	0.148395	7
(soda)	0.287217	8
(root vegetables)	0.196335	9
(canned beer)	0.082763	10
(sausage)	0.187539	11
(shopping bags)	0.166935	12
(whipped/sour cream)	0.124245	13
(pork)	0.099476	14
(pastry)	0.150624	15
(whole milk, yogurt)	0.110954	16
(yogurt, soda)	0.054168	17
(rolls/buns, yogurt)	0.068063	18
(other vegetables, yogurt)	0.085985	19
(tropical fruit, yogurt)	0.057994	20
(tropical fruit, other vegetables)	0.071083	21
(tropical fruit, whole milk)	0.083770	22
(whole milk, other vegetables)	0.148208	23
(rolls/buns, other vegetables)	0.084374	24
(rolls/buns, whole milk)	0.112163	25

4.3 Провели ассоциативный анализ и узнали, что означает каждая колонка в полученном результате.

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
)	(tropical fruit)	(yogurt)	0.185864	0.241240	0.057994	0.312026	1.293423	0.013156	1.102890
	(yogurt)	(tropical fruit)	0.241240	0.185864	0.057994	0.240401	1.293423	0.013156	1.071797
	(root vegetables)	(other vegetables)	0.196335	0.335079	0.093838	0.477949	1.426378	0.028050	1.273671
	(other vegetables)	(root vegetables)	0.335079	0.196335	0.093838	0.280048	1.426378	0.028050	1.116276
	(root vegetables)	(whole milk)	0.196335	0.421869	0.096859	0.493333	1.169400	0.014031	1.141049
	(whole milk)	(root vegetables)	0.421889	0.196335	0.096859	0.229594	1.169400	0.014031	1.043171
	(rolls/buns)	(sausage)	0.298214	0.167539	0.060612	0.204623	1.221342	0.010985	1.046624
	(sausage)	(rolls/buns)	0.167539	0.296214	0.060612	0.381779	1.221342	0.010985	1.102730
	(whole milk)	(whipped/sour cream)	0.421889	0.124245	0.063834	0.151313	1.217858	0.011419	1.031894
	(whipped/sour cream)	(whole milk)	0.124245	0.421889	0.063834	0.513776	1.217858	0.011419	1.189023
	(other vegetables)	(whipped/sour cream)	0.335079	0.124245	0.057189	0.170673	1.373683	0.015557	1.055983
	(whipped/sour cream)	(other vegetables)	0.124245	0.335079	0.057189	0.460292	1.373683	0.015557	1.232002
1. antecedents - антецедент (причина) 2. consequetns - консежвент (вывод) 3. antecedent support - поддержка антецедента 4. consequetns support - поддержка консежвента 5. support - поддержка отношения [0,1] 6. confidence вероятность увидеть консеквент при условиии, что так же содержится антецедент (отношение поддержки отнения и поддержки антецедента (0,1] 7. lift - отношение поддержки отношения и поддержки консеквента[0, inf] 8. leverage - разница между поддержкой отношения и поддержки антецедента и консеквента, если бы они были независимыми 1.11									

Соnfidence – вероятность увидеть консеквент в транзакции при условии, что также содержится антецедент. Confidence = 1 – максимальная для правила $A \to B$, если консеквент и антецедент всегда встречаются вместе.

Lift — насколько чаще предшествующее и последующее действие правила $A \rightarrow B$ встречаются вместе, чем ожидалось, если бы они были статически независимыми. Если A и B независимы, то Lift = 1.

Leverage – разница между наблюдаемой частой появления A и B вместе и частотой, которую можно было бы ожидать, если бы A и B были независимы. Если A и B независимы, то Levarage = 1.

Conviction – насколько консеквент сильно зависит от антецедента. Если A и B независимы, Conviction = 1.

4.4 Провели построение ассоциативных правил для различных метрик.

Смысл: разница между транзакциями, где антецедент и консеквент присутсвуют вместе, и транзакцмиями где они независимы

4.5 Рассчитали среднее значение, медиану и СКО для каждой из метрик.

rules_res.iloc[:,2:].describe()											
	antecedent support	consequent support	support	confidence	lift	leverage	conviction				
count	20.000000	20.000000	20.000000	20.000000	20.000000	20.000000	20.000000				
mean	0.202567	0.388445	0.080608	0.401486	1.102829	0.005754	1.060662				
std	0.073939	0.059815	0.029413	0.062088	0.157823	0.009841	0.098881				
min	0.124245	0.241240	0.053363	0.309446	0.837619	-0.012801	0.894062				
25%	0.163311	0.335079	0.058901	0.355662	1.021735	0.001391	1.014848				
50%	0.185663	0.378474	0.088955	0.386548	1.079290	0.007340	1.056824				
75%	0.207561	0.421869	0.094593	0.453011	1.181515	0.011093	1.102770				
max	0.421869	0.421869	0.148208	0.513776	1.426378	0.028050	1.273871				

4.6 Построили и проанализировали граф

```
rules = association_rules(result, min_threshold = 0.4, metric='confidence')

digraph = nx.DiGraph()

for i in range(rules.shape[0]):
    digraph.add_edge(
        rules.iloc[i].antecedents,
        rules.iloc[i].consequents,
        weight=rules.iloc[i].support,
        label=round(rules.iloc[i].confidence,2)

plt.figure(figsize=(12, 12))
pos = nx.spring_layout(digraph)
nx.draw(
    digraph,
    pos,
    labels={node: ','.join(node) for node in digraph.nodes()},
    width=rules['support'] * 25,
    node_size=2000,
    node_color='#909090',
    font_size=16
)
nx.draw_networkx_edge_labels(
    digraph,
    pos,
    edge_labels=nx.get_edge_attributes(digraph, 'label'),
    font_size=16
)
plt.show()
```

