Mechatronics System Design EC4.404 - M2023

Nagamanikandan Govindan

Robotics Research Center, IIIT Hyderabad. nagamanikandan.g@iiit.ac.in

Problems in Kinematics

Dimensions

Joint Parameters

End Effector Coordinates

Forward Kinematics

Known: Dimensions, Joint Parameters

Solve for: End Effector Coordinates

Inverse Kinematics

Known: Dimensions, End Effector Coordinates

Solve for: Joint Parameters

Synthesis

Known: End Effector Coordinates

Solve for: Dimensions, Joint Parameters

Graphical and Analytical

- Graphical
 - Have limitations of accuracy
 - Not suitable for computer simulation
 - Parameters are not easily manipulated to create new solutions

- Analytical
 - Graphical techniques are essential at the initial phases of kinematic synthesis.
 - Suitable for computer simulation

Graphical Position Analysis

- For fourbar one parameter is required to completely specify all the links
- ightharpoonup The typical parameter is the crank angle $heta_2$
- \blacktriangleright Given the link lengths, find $heta_3$ and $heta_4$

3

Graphical Position Analysis

These two arcs will have two intersections at B and B' that define the two solutions to the position problem for a fourbar linkage which can be assembled in two configurations

CIRCUITS In Linkages

all possible orientations of the links that can be realized without disconnecting any of the joints

Position Analysis – Fourbar mechanism

$$\gamma_{2} (\omega_{2} + \gamma_{3} (\omega_{3} = \gamma_{4} (\omega_{4} + \gamma_{1} + \gamma_{2} (\omega_{2} + \gamma_{3} (\omega_{3} = \gamma_{4} (\omega_{4} + \gamma_{1} + \gamma_{2} (\omega_{2} + \gamma_{3} (\omega_{3} = \gamma_{4} (\omega_{4} + \gamma_{1} - \gamma_{2} (\omega_{2} + \gamma_{3} (\omega_{3} = \gamma_{4} (\omega_{4} + \gamma_{1} - \gamma_{2} (\omega_{2} + \gamma_{3} (\omega_{4} + \gamma_{2} + \gamma_{2} (\omega_{2} + \gamma_{3} + \gamma_{4} + \gamma_{2} (\omega_{2} + \gamma_{3} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{2} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} (\omega_{4} + \gamma_{4} + \gamma$$

9

Position Analysis – Fourbar mechanism

$$t^{2}(K_{1}C\theta_{2} + K_{3} + C\theta_{2} - K_{1}) + t$$

$$(-2S\theta_{2}) + t$$

$$(k_{2}C\theta_{2} + K_{3} - C\theta_{2} + K_{1}) = 0$$

$$(k_{2}C\theta_{2} + K_{3} - C\theta_{2} + K_{1}) = 0$$

$$t_{1,2} = -B + \int_{C}^{B} -4AC$$

$$t_{1,2} = -B + \int_{C}^{B} -4AC$$

distinct D70, real noots D=0, real) represented waster

Types of solution

If the discriminant under the radical is negative:

- link lengths chosen are not capable of connection for the chosen value of the input angle θ_2
- non-Grashof linkage, when the input angle is beyond a toggle limit position.

Otherwise, the solution will usually be real and unequal:

- There are two values of θ_4 corresponding to any one value of θ_2
- These are referred to as the crossed and open configurations of the linkage and also as the two circuits of the linkage.

FOURBAR CRANK SLIDER POSITION Analysis

Shder- orank

FOURBAR CRANK-SLIDER POSITION SOLUTION

SLIDER-CRANK POSITION SOLUTION

POSITION OF ANY POINT ON A LINKAGE

Watt's Six bar mechanism

