1 Connectivity

1.1 Menger's theorem

1.2 3-connected graphs

Lemma 1. Every 3-connected graph G where $G \neq K_4$ has an edge e such that G/e is 3-connected.

Proof. Suppose no edge e exists. Then every edge G/xy contains a separator of at most 2 vertices. Since G is 3-connected, then the contracted vertex y is in S, and |S|=2. Call the separator $S=\{v_{xy},z\}$. Then any two vertices separated by S in G/xy is also separated by $T:=\{x,y,z\}$ in G. Since no proper subset of T separates G, every vertex in T has a neighbour in every component C of G-T. Now choose the edge xy, vertex z and component C so that |C| is small as possible. Pick a neighbour v of z in C. By assumption G/zv is not 3-connected, so there is a vertex w such that $\{z,v,w\}$ separates G. As x,y are adjacent, $G-\{z,v,w\}$ has a component D such that $D\cap\{x,y\}=\emptyset$. Then every neighbour of v in D lies in C so $D\cap C\neq\emptyset$ and so D is a proper subset of C. But this contradicts the minimality of C.