Name:

Let (a_n) and (b_n) be sequences of real numbers and suppose that

$$\lim_{n\to\infty}a_n=l \ and \ \lim_{n\to\infty}b_n=m.$$

Set

$$c_n = a_n + 6b_n.$$

- (a) Does the sequence (c_n) converge? If so what is $\lim_{n\to\infty}c_n?$ The sequence (c_n) converges to l + 6m
- (b) Use the definition of a limit to prove carefully that your answer in part (a) is correct (do not use the limit rules). Let $\varepsilon > 0$. Since $\lim_{n \to \infty} \alpha_n = l$ there exists an N_1 so that if $n \ge N_1$ then $|\alpha_n l| < \varepsilon/2$. Since $\lim_{n \to \infty} b_n = m$ there exists an N_2 so that if $n \ge N_2$ then $|b_n m| < \varepsilon/12$. Set $N = max\{N_1, N_2\}$. Then if $n \ge N$ we have

$$|a_n + 6b_n - (l + 6m)| \le |a_n - l| + |6b_n - 6m|$$

= $|a_n - l| + 6|b_n - m|$
< $\varepsilon/2 + 6(\varepsilon/12)$
= $\varepsilon/2 + \varepsilon/2 = \varepsilon$.