4.2 Functional Limits

Definition 4.2.1 (Functional Limit) $V_{\epsilon}(L)$.

Let $f:A \supseteq \mathbb{R}$, and let c be a limit point of the domain A. We say that $\lim_{x \to c} f(x) = L$ provided that, $\forall \epsilon > 0$, $\exists \epsilon > 0$ s.t. whenever $0 < |x - c| < \delta$ and $x \in A$, it follows that $|f(x) - L| < \epsilon$

- · Known as the "E-8" version of the definition for functional limits ehallerge/response: challenge mode w/ E, response with 8
- Recall that $|f(x)-L| < \varepsilon > f(x) \in V_{\varepsilon}(L)$ and $|x-c| < \varepsilon < x \in V_{\varepsilon}(c)$
- The additional restriction 041x-c1 just means $x \neq c$ -remember that c is a limit point
- Definition 4.2.18 (Functional Limit-Topological Version) Let c be a limit point of the domain of $f:A \to IR$. We say $z \to c f(x) = L$ provided that, for every $V_E(L)$, there exists a $V_S(c)$ with the property that $\forall x \in V_S(c) \ x \neq c \ x \in A$, it follows that $f(x) \in V_E(L)$

Ex 4.2.2

- (i) Prove that if f(x) = 3x + 1, then $x \to 2 f(x) = 7$ $|f(x) - 7| < \mathcal{E} \Leftarrow > |3x + 1 - 7| < \mathcal{E} \Leftarrow > 3|x - 2| < \mathcal{E} > |x - 2| < \mathcal{E}/3$. So choose $S = \mathcal{E}/3$, and then |x - 2| < S implies $|f(x) - 7| < \mathcal{E}$, so $x \to 2 f(x) = 7$
- (ii) Prove $x \to 29(x) = 4$ when $9(x) = x^2$. $|9(x)-4| = |x^2-4| = |x+2||x-2|$. If we agree that $S \le 1$, then x can be no larger than 3. This gives an upper bound $|x+2| \le 5$, so $|x+2||x-2| \le 5|x-2|$. Now choose $S = \min\{1, \frac{\epsilon}{5}\}$ and let $|x-2| \le \delta$. Then $|9(x)-4| = |x+2||x-2| < 5(\frac{\epsilon}{5}) = \epsilon$.

Theorem 4.2.3 (Sequential Criterion For Functional Limits)

Given a function 5: A > IR and a limit point c of A, the following 2

Statements are equivalent:

(i) 200 f(x) = [

(ii) For all sequences $(x_n) \subseteq A$ satisfying $x_n \neq c$ and $(x_n) \rightarrow c$, it follows that $f(x_n) \rightarrow L$

Proof:

(=>) Assume $x \Rightarrow c f(x) = L$, and bet $(x_n) \in A$ with $x_n \ne c$ and $(x_n) \Rightarrow c$. By the limit of a sequence, $\exists N \in \mathbb{N}$ s.t. $\forall n \ge \mathbb{N}$, $|x_n - c| < \delta$. And since $x_n \in A$, then by the definition of functional limits $\forall n \ge \mathbb{N}$. $|f(x_n) - L| \le \varepsilon$. This implies that $f(x_n) - L$ ((=). Proof by contrapositive. Suppose $x \Rightarrow c f(x) \ne L$ and assume for

(=). Proof by contrapositive. Suppose $\chi \to c^{\frac{1}{2}(X)} \neq L$ and assume for contradiction that (ii) holds. This means $\exists E_0 \text{ s.t. } \forall S, \exists \chi \in V_B(c)$ with $\chi \neq C$ for which $f(\chi) \neq V_{E_0}(L)$. Now let $f(\chi) = V_0$ and then for each $h \in \mathbb{N}$ pick $\chi \in V_0$ (c) with $\chi \in V_0$. This yields $(\chi_n) \leq A$, $\chi_n \neq C$, $(\chi_n) \to C$ with $\lim_{x \to C} f(\chi_n) \neq L$, contradicting (ii). Thus, (ii) => (i) D

Corollary 4.2.4 (Algebraiz Limit Theorem for Functional Limits)

Let f and g be functions on $A \subseteq IR$, and assume $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ for some $\lim_{x\to c} f(x) = L$ (i) $\lim_{x\to c} Kf(x) = KL \ \forall K \in IR$ (ii) $\lim_{x\to c} [f(x)+g(x)] = L+M$ (iii) $\lim_{x\to c} [f(x)g(x)] = LM$ (iv) $\lim_{x\to c} f(x)/g(x) = L/M$, provided $M \neq 0$

Proof: Exercise 4.2.1

Corollong 4.2.5 (Divergence Criterion for Functional Limits)
Let f be a function defined on A, and let c be a limit point of A.

If there exist 2 sequences (χ_n) and (y_n) in A with $\chi_n \neq c$ and $y_n \neq c$ and $\lim \chi_n = \lim y_n = c$ but $\lim f(\chi_n) \neq \lim f(y_n)$, then we conclude that the functional limit $\lim_{n \to c} f(x)$ does not exist.

Ex 4.2.6

Show $\lim_{x\to 0} \sin(\sqrt{x})$ does not exist.

If $\chi_n = \sqrt{2\pi n}$ and $y_n = \sqrt{(2\pi n + \sqrt{n})}$, then $\lim_{x\to 0} (\sqrt{2n}) = \lim_{x\to 0} \lim_{x\to 0} \sin(\sqrt{x}) = 0$.

But $\sin(\sqrt{x}n) = 0$ and $\sin(\sqrt{y}n) = 1$ then N. So $\lim_{x\to 0} \sin(\sqrt{x}) = 0$.

4.2 Exercises

X = incorrect
O = no idea, looked it up
it = looked for Lints

a) Show how 4.2.A(ii) follows from Thm 4.2.3 and the AZT for sequences

Free:
Let f, g be functions on $A \subseteq \mathbb{R}$ sit. $x \to c$ f(x) = L and $a \to c g(x) = M$, for some limit point c of A. By theorem A:a:3, suppose (an) and (bn) are arbitrary sequences contained in A with $\lim an = \lim bn = c$ such that $\lim f(an) = L$ and $\lim g(bn) = M$. Then by the ACT for sequences it. Follows that $\lim [f(an) + g(bn)] = L+M$. Since (an) and (bn) are arbitrary, we can conclude that $\lim_{n \to \infty} [f(x) + g(x)] = L+MD$

b) from (ii) again directly from Def 4.2.1 without Thm 4.2.3

Front: Let $f,g: A \leq \mathbb{R}$ s.t. $x \to z \leq f(x) = L$ and $x \to c g(x) = M$ for some l impt. $c \in A$. By definition 4.2.1, we can say that whenever $G < 1x - c \mid Z \leq g$, it follows that |f(x) - L| < E/2 and |g(x) - M| < E/2. By the triangle measurable, |(f(x) + g(x)) - (L + M)| < |f(x) - L| + |g(x) - M| < E/2 + E/2 = E, so again by definition <math>|f(x)| = |f(x)| + |g(x)| = |f(x)| = |

2) For each stated limit, find the largest possible 6-neighborhood that is a proper response to the E challenge.

- b) $\frac{1}{2-94} \sqrt{12} = 2$, E = 1 $|\sqrt{3}-2| < 1 = > |\sqrt{52} < 3 = > |\sqrt{2} < 9|$. We wont to find $8 \le 1$, |2-4| < 8implies |22 < 9|. Now |2-4| < 8 = > 4-8 < 2 < 4+8, $|5| < 8 = min <math>\{3, 5\} = 3$.
- 5. Use Definition 4.2.1 to prove the following
 - a) $\frac{1}{x-2}(3x+4) = 10$ Let $S = \frac{\epsilon}{3}$. Then whenever $0 < |x-2| < \frac{\epsilon}{3}$, it follows that $3|x-2| < \epsilon = > |3x-6| < \epsilon = > |(3x+4)-10| < \epsilon_0$
 - b) $x \to 0$ $\chi^3 = 0$ Choose $\delta = \min\{1, \epsilon\}$. If ϵ^3 , then $\delta = 1$, and so whenever $|\chi| < 1 < \epsilon$; if follows that $|\chi^3| < |\chi| < \epsilon > |\chi^3| < \epsilon$. If $\epsilon \leq 1$, then $\delta = \epsilon$. Whenever $|\chi| < \epsilon < 1$, if follows that $|\chi^3| < |\chi| < \epsilon > |\chi^3| < |\chi^3|$
 - c) $\lim_{x\to 2} (x^2 + x 1) = 5$ Choose $\delta = \min\{1, \frac{\epsilon}{6}\}$. This means that whenever $|x-2| < \delta_1^{-3} | < x < 3$, and so $|x+3| \le 6$. This is useful in just a second. If $\epsilon/6 > 1$, then $\delta = 1$, and $|x+3| \le 6$ and |x-2| < 1. Thus $|x+3| | x-2| = |(x+3)(x-2)| = |x^2 + x - 1 - 5| < \epsilon$ because $\epsilon > 6$ and |x+3| | x-2| < 6. If $\epsilon/6 \le 1$, then $\delta = \epsilon/6$. Then $|x+3| |x-2| < 6(\frac{\epsilon}{6}) = \epsilon$
 - d) $x \to 3^{-1}/2 = \frac{1}{3}$ Choose $\delta = \min \{1, 12 \in \}$. If $12 \in \}1$, then $\delta = 1$ and $\delta > \frac{1}{2}$ and so |x - 3| < 1. $|x - 3| < 1 = \} \times < 4$, so we also com say |3x| < 12. Now rewrite $|\frac{1}{2}x - \frac{1}{3}|$ as |x - 3| / |3x|, and we come conclude that $|x - 3| / |3x| < \frac{1}{2} < \epsilon$. If $|2\epsilon < 1|$, then $\delta = |2\epsilon|$ and $|x - 3| < |2\epsilon|$. From before, we still have $|3x| < |2\epsilon|$, so $|x - 3| / |3x| < |2\epsilon| / |2\epsilon| = \epsilon$

- 6) Decide if true or false, and give justifications
 - a) If a particular & has been constructed as a response to a particular E challenge, then any smaller positive & will also suffice.

True. Suppose we have some VE(L) for which VS(c) is a suitable response, and let 0 < S' < S. Because $VS'(c) \subseteq VS(c)$, then it is always true that $x \in VS'(c) = F(x) \in VE(L)$.

- b) If $x \ni a f(x) = L$ and a is in the domain of f, then L = f(a).

 False. Consider $f(x) = \begin{cases} x & \text{if } x \neq 0 \\ \text{lim } f(x) = 0 \end{cases}$, and 0 is in the domain of f(x), but $f(0) = 10 \neq 0$.
- c) If $x \Rightarrow a f(x) = L$, then $x \Rightarrow a 3[f(x)-2]^2 = 3(L-2)^2$

True. Expand $3[f(x)-2]^2 \Rightarrow 3[f(x)^2-4f(x)+4]$ and apply ALT to get $3[L^2-4L+4]=3(L-2)^2$

d) If $x \to a f(x) = 0$, then $x \to a f(x)g(x) = 0$ for any function g with domain equal to that of f.

False. Let f(x) = x and $g(x) = \begin{cases} \frac{1}{2}x & x \neq 0 \\ 0 & x \geq 0 \end{cases}$. Fand g have the same domain and $g = x \neq 0$. But $f(x)g(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x \geq 0 \end{cases}$ and so g(x) = 1.

- 9) $x \to 0$ $x^2 = \infty$ makes sense. To write a rigorous definition for an infinite limit like this, the $\epsilon > 0$ challenge is replaced with an orbitrarily large M > 0 challenge. Definition: $x \to c$ $f(x) = \infty$ means that $\forall M > 0 \exists \delta > 0$ s.t. whenever $0 < |x c| < \delta$, it follows that f(x) > M
 - a) Show $\frac{1}{x-50} \frac{1}{x^2} = \infty$ with the above definition.

Choose 8 = Im. Then if |x| < m, => x2< / => \frac{1}{22} > M

b) Construct a definition for the statement xis p(x) = L. Show $\lim_{x\to\infty} 1/x = 0$

 $x \to \infty$ f(x) = L means $\forall \in >0$, $\exists M > 0$ such that whenever x > M, it follows that $|f(x)-L| \le 1$.

Choose M= = Then x> 1/6 => |x|>1/6 => |1/x | LE.

C) Write a rigorous definition for $x \to \infty f(x) = \infty$. Give on example $\lim_{x\to\infty} f(x) = \infty$ means $\forall N > 0$, $\exists M > 0$ such that whenever x > M = > f(x) > N.

1:m Jx = 10 becouse we can choose M=N2, so x>N2=> Jx>N.

- 10) The "right-hand limit" of a function is informably defined as the limit obtained by "letting x approach a from the right-hand side"
 - a) Give a proper definition in the style of Definition 4.2.1 for the right/left-hand limits: lim f(x)=L and lim f(x)=M
 x-at f(x)=L

follows that If(x)-L/KE.

1:m f(x)=1 means HE70, IS70 s.t. whenever 0<c-x<8, it Follows that IS(x)-LIXE

b) Prove that x=a f(x)=L iff x=rat f(x)=L= 1:m f(x).

Proof:

(=>). Suppose $x \rightarrow a f(x) = L$. Then $\forall \in \forall 0, \exists \delta \Rightarrow 0, \exists t, \text{ whenever}$ $0 < |x - a| < \delta, |f(x) - L| < \in Lf \text{ we restrict } x > a, \text{ then } |x - a| = x - a,$ and $0 < x - a < \delta = > |f(x) - L| < \in , \text{ so } |f(x)| = L. \text{ Sim. Harry, if we restrict } x < a, \text{ then } |x - a| = a - x \text{ and } 0 < a - x < \delta = > |f(x) - L| < \in , \text{ so } |f(x)| = L < |f(x) - L| < \in , \text{ so } |f(x)| = L < |f(x)|$