

Algoritmos - Expressões Lógicas

Tarefa - Algoritmos - Expressões Lógicas

1 Expressões Lógicas

Expressões lógicas são construídas utilizandos conectivos lógicos. Os conectivos lógicos fundamentais são E (AND), OU (OR) e NÃO (NOT). Tanto no estudo de Lógica quanto no estudo de Eletrônica Digital são empregados símbolos para representar os conectivos lógicos.

Na Lógica, os simbólos para NÃO, E, OU são \neg , \land e \lor respectivamente. Já na eletronica digital é comum representar a negação de uma variável binária A como \bar{A} , o E de duas variáveis binárias A e B como AB e, por fim, o OU como A+B. O ou exclusivo é muito usado, porém possui diferentes símbolos para ser representado, uma possíbilidade é $A \oplus B$.

A saída do conectivo lógico NÃO será o contrário da entrada, NÃO verdade será falso, NÃO falso será verdade. A saída do conectivo AND somente será verdadeira quando todas as entradas forem verdadeiras. A saída do conectivo OR será verdade quando existir pelo menos uma entrada verdadeira.

É comum escrevermos tabelas verdades para expressar os resultados da aplicação dos conectivos lógicos. É mais efetivo entender o sentido dos operadores do que decorar as entradas e saídas em tabelas verdades. Porém, para é importante visualizar as tabelas e seguem as tabelas dos conectivos fundamentais nas três tabelas abaixo.

p	$\neg p$
Т	F
F	Γ

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	T	F
F	F	F

p	q	$p \lor q$
Т	Т	Т
Т	F	Τ
F	Τ	Τ
F	F	F

A linguagem de programação C possui sua própria simbologia e a tabela abaixo ilustra como podem ser escritos os operadores lógicos na linguagem.

Tabela 1: Operadores lógicos em português

Operador	Símbolo	Significado
AND	&&	E (ambos)
OR		OU (pelo menos um)
NOT	!	NÃO (negativo)

Segue um programa que faz a impressão em tela da tabela verdade para o conectivo lógico E.

```
#include <stdio.h>
 int main() {
      // imprimir o cabeçalho da tabela verdade do operador AND
      // \t é um escape sequence que representa uma tabulação
      // \n é um escape sequence que representa uma nova linha
6
      printf("a\tb\ta AND b\n");
      // repare na expressão 0 && 0, ela será avaliad logicamente
      // pelo operador && que representa a operação AND, a saída
9
      // será 0 já que 0 e 0 não são duas verdades.
10
      printf("0\t0\t0\t%d\n", 0 && 0);
      printf("0\t1\t%d\n", 0 && 1);
      printf("1\t0\t%d\n", 1 && 0);
      // nesta linha será impresso o resultado 1 dado que 1 e 1
14
      // representam duas verdades.
      printf("1\t1\t%d\n", 1 && 1);
17
      return 0;
 }
18
```

Programa 1: Programa para escrever a tabela verdade do conectivo E (AND)

Os livros [Paul Deitel, 2022] e [Brian W. Kernighan, 1988] podem ser utilizados para obter mais informações sobre expressões lógicas.

O livro [Souza, 2010] apresenta um estudo sobre lógica. Ele traz conteúdos básicos como operadores, formas normais, equivalência entre expressões lógicas, demonstrações de argumentos lógicos e teoremas.

2 Exercícios

- 1. Escreva um programa para imprimir a tabela verdade do operador NOT
- 2. Escreva um programa para imprimir a tabela verdade do operador OR
- 3. Escreva um programa para imprimir a tabela verdade do operador XOR (ou exclusivo). O xor pode ser obtido utilizando os conectivos fundamentais.
- 4. Escreva um programa que leia um inteiro que represente um ano, imprima 1 se o ano é bissexto ou 0 se ele não é bissexto, não utilize a estrutura de decisão if/else.

Referências

[Brian W. Kernighan, 1988] Brian W. Kernighan, D. M. R. (1988). C Programming Language. Prentice Hall, 2 edition.

[Paul Deitel, 2022] Paul Deitel, H. D. (2022). C How to Program. Pearson, 9 edition.

[Souza, 2010] Souza, J. N. d. (2010). Lógica para Ciência da Computação. Bookman Editora.