Examen à mi-parcours d'Analyse pour l'ingénieur

Mardi 6 novembre 2012 - 1h30

Documents de cours manuscrits et polycopié autorisés.

La rédaction sera prise en compte dans la notation. Toute affirmation doit être justifiée.

Exercice 1 Soit E un ensemble et $f: E \to \mathbb{R}$ une application. On pose d(x,y) = |f(x) - f(y)|.

- 1. Trouver une condition nécessaire et suffisante sur f pour que d soit une distance.
- 2. On pose $E = \mathbb{R}$ et $f : x \in \mathbb{R} \to e^x \in \mathbb{R}$. Montrer que d est une distance et expliciter les boules ouvertes.

Exercice 2 Soit (E, d) un espace métrique et A une partie non vide de E. Pour $x \in E$, on note $d_A(x) = \inf_{y \in A} d(x, y)$ la distance de x à A. Nous avons vu en TD que

$$x \in \overline{A} \iff d_A(x) = 0.$$

1. Pour $\varepsilon > 0$, on pose :

$$V_{\varepsilon}(A) = \{ x \in E, \ d_A(x) < \varepsilon \}.$$

Montrer que

$$\overline{A} = \bigcap_{\varepsilon > 0} V_{\varepsilon}(A).$$

2. Montrer que

$$d_A = d_B \Longleftrightarrow \overline{A} = \overline{B}.$$

Exercice 3 Soit E l'espace vectoriel des fonctions continues de [-1;1] dans \mathbb{R} , muni de la norme :

$$||f||_{\infty} = \sup_{t \in [-1,1]} |f(t)|$$

Soit F l'espace vectoriel des fonctions 2π -périodiques et continues de \mathbb{R} dans \mathbb{R} , que l'on munit soit de la norme N_2 :

$$N_2(f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt\right)^{1/2}$$

soit de la norme N_{∞} :

$$N_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)|$$

Soit $L: E \to F$ l'application définie par $L(f)(t) = f(cos(t)), \forall t \in \mathbb{R}$.

- 1. Montrer que L est bien définie, est linéaire et injective.
- 2. Montrer que L est continue pour chacune des normes N_2 et N_{∞} de F, et calculer pour chacune de ces normes la norme de l'opérateur L, que l'on notera $|||L|||_2$ et $|||L|||_{\infty}$.

Exercice 4 Soient (E,d) et (F,δ) des espaces métriques et $f:E\to F$ une application. On appelle graphe de f:

$$G_f = \{(x, f(x)), x \in E\} \subset E \times F.$$

- 1. Montrer que si f est continue alors le graphe G_f est fermé.
- 2. Montrer que si F est compact, la réciproque est vraie.