Surveillance and Censorship resistant communication

Over the internet

Content

- 1. Introduction
- 2. Literature Review
- 3. Solution
- 4. Methodology & Implementation
- 5. Evaluation
- 6. Demonstration
- 7. Conclusion
- 8. Future works

Introduction

Background

Concerns of modern internet communication

- Privacy
- Surveillance
- Censorship
- Data tracking

Problem

Centralized design architecture of services

Literature Review

Alternative design architectures

- Decentralized architecture
 - Peer to peer
 - Master slave architecture
- Distributed architecture
 - Peer to peer
 - Client server
 - N-tier architecture

Related Works

TOR

- Tor is free and open-source software for enabling anonymous communication.
- Onion routing.
- Decentralized master slave architecture.
- Anonymity over privacy.

Skype peer to peer

- A peer-to-peer IP telephony network.
- Decentralized master slave architecture.
- Three types of nodes (Super node, Ordinary node, Login server).

Bitcoin

- Digital or virtual currency.
- Distributed peer to peer architecture.
- Blockchain technology.
- o Proof of Work consensus mechanism.

Anonymous remailers

- Mail servers that conceal the identity of users.
- Distributed client server.
- Four types (Cypherpunk, Mixmaster, Mixminion, Pseudonymous remailers).

Summary

	Decentralized	Federated	Interactive	Federatable		
Torrents	Y	N	N	Y		
втс	Y	N	N	N		
IPFS/Freenet	Y	N	N	N		
TOR	N	N	N	N		
Usenet	N	Υ	N	N/A		
Skype	Y*	Y*	Υ	N/A		
I2P	Υ	Υ	N	N		
Remailers	Υ	Υ	N	Υ		
Our solution	Υ	Y*	Υ	Y		

Solution

We explores a way of using a hybrid approach for

decentralized communication and utilize this to

establish DTLS tunnels to maintain connectivity among

devices behind NAT.

Reasons for solution

- Avoid single point of failure.
- Exhaustive and inefficient connection establishment in purely distributed systems.
- Hybrid systems, provides
 - Search efficiency of centralized systems.
 - Maintain the reliability of decentralization.

Timeline (as per proposal)

Methodology

Supipi's part

Conceptual Design

Aims of this phase

- Handle dynamic behaviour of super-nodes.
- Decentralized and pseudonymous node discovery.
- NAT navigation of nodes.
- Protect confidentiality of node to node communication.

Implementation

Message Types

Message	Description					
HELLO_S	A connection request from a super-node to another super-node. Sends when a super-node initiates					
CHANGE_S	A super-node cannot directly connect to another super-node. A change in topology is required					
END_S	To end the connection between two super-nodes. Sends when a change of neighbour-nodes is required.					
SEARCH	Search for a node. This is sent when a Node requests a tunnel establishment.					

Message Types

Message	Description
INIT_P	A connection request from a node to a super-node.
FIND_P	A service request to find the location that holds a destination hashed key in a tunnel establishment scenario.
ANONYM_P	Inform a change of public key of a node. This can be utilized by nodes to obtain pseudonymity.
CONNECT_P	Tunnel establishment request sends from a node.

Message Types

- Other types of messages
 - CONNECT_S
 - EXIT_S
 - FOUND
 - o LOCATE_P
 - o LISTEN_P
 - ACCEPT / SUCCESS
 - REJECT / FAIL

Connection establishment - 1

Connection establishment - 2

Tunnel establishment

- 1. Disconnects from the current super-node
- 2. Connects to the destination super-node
- 3. DTLS tunnel is established between the super-nodes utilizing the super-node as a relay agent.

Tunnel establishment

Connection termination

Evaluation

Performance of node discovery

Performance of super-nodes

Demonstration

Conclusions

- Distributes the control of information over multiple nodes.
- The super-node system improve the performance of the node discovery.
- Dynamically changing the topology of the network to keep the
- Allows a node to obtain pseudonymity.
- A node discovery can be done under five seconds, along 18 linearly connected super-nodes.
- The system assumes all super-nodes are trustworthy.

Future Works

Future Directions

- Improve efficiency of node discovery.
- Continuous communication during topology changes.
- Distributed authentication.
- Distributed authorization.

Distributed Authentication

Plan for 8th semester

Deliverable	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15
Literature review															
Design of a new Decentralized authentication mechanism															
Performance analysis					83										
Integrate with the decentralized communication system	240														

QnA