Redes e Comunicacións

Tema 4: Capa de rede

Oscar García Lorenzo

Escola Politécnica Superior de Enxeñería

Índice

- Introducción
- Redes de conmutación de paquetes
- Algoritmos de encamiñamento
- Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- DHCP: Protocolo de configuración dinámica de hosts
- 8 NAT: Traducción de direcciones de rede

Índice

- Introducción
- 2 Redes de conmutación de paquetes
- 3 Algoritmos de encamiñamento
- Encamiñamento na Internet
- 5 Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 3 NAT: Traducción de direcciones de rede

Introducción

Capa de rede

- Encargase de levar os paquetes que lle pasa a capa de transporte do host orixe ao host destino
- Implementada tanto nos sistemas finais coma nos routers

Introducción

Conceptos

- Reenvío (forwarding)
 - Cando chega un paquete a un router, o router fai pasar o paquete á interface de saída apropiada
- Encamiñamento ou rutado (routing)
 - Determinar a ruta que debe seguir un paquete que se envía desde un emisor a un receptor
 - Algoritmos de encamiñamento
- Táboas de reenvío
 - Táboas que almacenan a información necesaria para o reenvío de paquetes
 - Asigna o valor do campo da cabeceira á interface de saída apropiada
 - Os algoritmos de encamiñamento determinan os valores das táboas de reenvío

Índice

- Introducción
- Redes de conmutación de paquetes
- 3 Algoritmos de encamiñamento
- Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 3 NAT: Traducción de direcciones de rede

Redes de conmutación de paquetes

Redes de conmutación de paquetes

Redes de datagramas

- Cada paquete inclúe na cabeceira a IP destino
- Reenvío: o router examina a cabeceira e o coloca na saída máis apropiada (táboa de reenvío)
- Non manteñen información de estado: unha secuencia de paquetes encamíñanse de forma independente

Redes de circuitos virtuais

- Establecese a conexión planificando unha ruta ao destino: un circuito virtual (CV)
- A cada paquete escríbeselle o identificador de CV: os routers o usan para o reenvío
- Os routers manteñen información de estado (táboa de circuitos virtuales)

Redes de datagramas

Introducción

Capa de rede en Internet: IP

- Tipo datagrama: encamiñanse os paquetes en función da dirección destino que conteñen
- Sen estado: cada paquete tratase de forma independente
- Rede non fiábel: servizo de mellor esforzo.
 - Non se garante a entrega de paquetes (nin a orde)
 - Nin a entrega nun tempo determinado
 - Entrega o maior número de paquetes, aínda que algúns se perdan
- Permite a interconexión de redes de diferentes tecnoloxías (interrede)

Redes de circuitos virtuais

Táboa de circuitos virtuais

- Cada nodo mantén unha táboa de encamiñamento coa seguinte información:
 - Interface de entrada do circuito virtual
 - Identificador do circuito virtual VCI
 - Interface de saída pola que os paquetes dese circuito virtual deixan o nodo
 - Identificador de saída do circuito virtual
- Un paquete que chega por unha interface cun VCI, colocase na interface indicada na táboa co novo VCI

Redes de circuitos virtuais

Nodo 1			
Entrada		Salida	
Interfaz	VCI	Interfaz	VCI
2	5	1	9

	Nodo 2			
Entrada		Salida		
Interfaz	VCI	Interfaz	VCI	
3	9	0	7	
	•			

	Nodo 3			
Entrada		Salida		
Interfaz	VCI	Interfaz	VCI	
0	7	3	4	
	•			
•	•			

Redes de circuitos virtuais

Construcción da táboa de VC

- A envía unha Petición de chamada dirixida a B
- Esta chega ao nodo 1 pola interface 2, que debe saber como reenviala para que chegue a B (similar a datagramas)
- O nodo 1 decide marcar esta petición cun VCI de 5 (aleatorio), e a envía pola interface 1
- 2 o recibe, o marca con VCI 9 e o coloca na interface 0; 3 o marca con VCI 7 e o coloca en 3; e B o marca con VCI 4, que identificará os paquetes de A
- B devolve unha Chamada aceptada con VCI 4 ao nodo 3 pola interface 3
- O nodo 3 pode completar a sua entrada na táboa (VCI saída = 4); o mesmo os nodos 2 e 1
- 1 manda o ACK a A que o recibe con VCI 5
 - ⇒ A marca o resto de paquetes a B con VCI 5

Índice

- Introducción
- 2 Redes de conmutación de paquetes
- 3 Algoritmos de encamiñamento
- 4 Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 3 NAT: Traducción de direcciones de rede

Algoritmos de encamiñamento

Conceptos

- Algoritmo de encamiñamento ou rutado: o encargado de atopar o camiño mínimo entre a orixe e o destino
 - Cada host está conectado a un router (router por defecto)
 - O problema limítase a atopar o camiño mínimo entre routers
- Equivalente a atopar o camiño mínimo nun grafo
 - Routers: nodos do grafo
 - Enlaces: aristas do grafo
 - Asignaselles un peso (custo)
 - Custo: distancia, velocidade, carga do enlace, custo económico, etc.

Algoritmos de encamiñamento

Clasificación

- Globais. De estado dos enlaces
 - Cada nodo dispón de toda a información sobre a rede: todos os nodos e o custo de todos os enlaces
 - A partir desta información, cada nodo pode calcular a súa táboa de encamiñamento (ou de rutas)
- Descentralizados. De vector de distancias
 - O cálculo dos camiños mínimos faise en colaboración de todos os nodos
 - Os nodos intercambian información so cos seus veciños
 - So coñecen a distancia aos demáis nodos e por onde empezar

Algoritmos de encamiñamento

Clasificación

- Estáticos ou dinámicos
 - Estáticos: so cambian cando cambia a topoloxía de rede ou modificanse manualmente parámetros
 - Dinámicos: execútanse periódicamente de forma automática. Os usados actualmente en Internet
- Sensíbeis ou insensíbeis á carga
 - Sensíbeis: o custo dos enlaces varía dinámicamente
 - Poden provocar que as mensaxes queden atrapadas nun ciclo
 - En Internet son insensíbeis á carga

Algoritmo de Dijkstra (1959)

- Procura o camiño máis curto entre dous vértices dun grafo pesado
- Variante do algoritmo, forward search:
 - O nodo N quere calcular a súa táboa de routing a partires dos LSP (link state packet) que recibiu
 - Cada nodo ten 2 listas: Confirmado e Provisional
 - Cada elemento das listas indica o custo para alcanzar un nodo e o seguinte salto
 - (M, 5, L), indica que de N alcanzase M a custo 5 a través de
 - Inicializa a táboa Confirmado cunha entrada para N con custo 0 ((N, 0, -))
 - Segue o seguinte algoritmo:

Algoritmo de Dijkstra

- Para o último nodo engadido a Confirmado (nodo S) examina o seu LSP
- Para cada veciño (V) de S, calcula o custo (Custo) para alcanzar V como a suma do custo de N a S e de S a V
 - Se V non está en ningunha lista, engadeo á lista Provisional da forma (V, Cust, SegSalto)
 - Se V está en Provisional, e Custo é menor que o indicado, reemplázao por (V, Cust, SegSalto)
- Se Provisional está baleira, acaba; se non pasa a entrada de Provisional con menor custo a Confirmado
- Volve ao paso 1

Algoritmo de Dijkstra

Destino	Coste	SigSalto
A	10	С
В	5	С
C	2	С

Tabla de routing del nodo D

Paso	Confirmado	Provisional	Comentarios
1	(D,0,-)		D es el único elemento inicial de Confirmado
2	(D,0,-)	(B,11,B) (C,2,C)	El LSP de D dice que puede alcanzar B a coste 11, y C a coste 2. Lo pone en Provisional .
3	(D,0,-) (C,2,C)	(B,11,B)	Pasa el miembro de Provisional con menor coste (C) a Confirmado , y examina su LSP.
4	(D,0,-; (C,2,C)	(B,5,C) (A,12,C)	El coste de alcanzar B a través de C es 5, asi que reemplaza (B,11,B) por (B,5,C). El LSP de C indica qu puede alcanzar A con coste 10+ 2 a través de C.
5	(D,0,-) (C,2,C) (B,5,C)	(A,12,C)	Pasa el miembro de Provisional con menor coste (B) a Confirmado , y examina su LSP.
6	(D,0,-) (C,2,C) (B,5,C)	(A,10,C)	El LSP de B dice que puede alcanzar A a coste 5, así que cambia (A,12,C) por (A,10,C) (el coste D–B es 5 a través de C)
7	(D,0,-; (C,2,C) (B,5,C) (A,10,C)		Pasa el miembro de Provisional con menor coste (A) a Confirmado , y ya está.

Complexidade algorítmica do algoritmo de Dijkstra

Complexidade cadrática, O(n²)

Ventaxas

- Estabilizase rápidamente
- Non xera moito tráfico
- Responde rápidamente a cambios na topoloxía ou fallos de nodos

Inconvintes

- A cantidade de información (LSPs) almacenada en cada nodo pode ser bastante grande ⇒
 - Problemas de escalabilidade

Algoritmo descentralizado

Todos os nodos colaboran

Funcionamento

- Inicialmente, os nodos so coñecen o custo aos seus veciños
- Iterativamente, os nodos comunican aos seus veciños todo o que saben
- Os nodos computan distancias a novos nodos ou actualizan as que teñen con menores valores
- As actualizacións continúan ata que converxe
- A información que un nodo z comunica a os seus veciños son as distancias d_{z,i}
- Almacenase o veciño que enviou dita información (seguinte salto)

Funcionamento

Sexa o nodo x cun veciño z, cuxo enlace ten custo $c_{x,z}$, e que z envía $d_{z,y} \Rightarrow$

$$D_{x,y}(z) = c_{x,z} + d_{z,y}$$

distancia de x custo do distancia
a y a través enlace que de z
da saída z une x con z a y

táboa de distancias do nodo x

		distancia por	
		Z	z'
destino	У	$D_{x,y}(z)$ $D_{x,y'}(z)$	$D_{x,y}(z')$
	y'	$D_{X,V'}(z)$	$D_{X,Y'}(z')$

Exemplo

- Nodos B, C e D envían a A a distancia a F
- A calcula as distancias

$$D_{A,F}(B) = c_{A,B} + d_{B,F} = 2 + 8 = 10$$

 $D_{A,F}(C) = c_{A,C} + d_{C,F} = 5 + 3 = 8$
 $D_{A,F}(D) = c_{A,D} + d_{D,F} = 1 + 3 = 4$

A táboa de distancias para A

Exemplo

- A comunica a os seus veciños a distancia a F,
 d_{A,F} = min_zD_{A,F}(z) = 4
- Despois de certas iteracións, converxe

		distancia por		
		В	С	D
destino	В	2	8	3
	С	5	5	3
	D	4	7	1
	Ε	5	6	2
	F	7	8	4

destino	saída
В	В
D	D
С	D
E	D
F	D

táboa de rutas de A

táboa de distancias de A

Características

- Intercambio de actualizacións cos veciños
 - Periódicamente
 - Cando un cambio na súa táboa ou no custo dun enlace
 - Disminución do custo dun enlace: actualización rápida das táboas
 - Aumento do custo dun enlace: algúns problemas. Resólvese con diversas técnicas:
 - Inverso envenenado: Se X enruta a Y través dun nodo Z, dille a Z que $D_{X,Y}=\infty$, non vale se o problema non é en nodos veciños
 - Horizonte dividido: non se publican as rutas pola interface desde que se aprenderon
- Iterativo: pode precisar moitas iteracións. Peor que EE.
- Menos robusto que EE: se un nodo calcula mal as súas distancias, todos usarán eses valores incorrectos

Encamiñamento xerárquico

Sistemas autónomos (SA)

- Rexións nas que se dividen as redes grandes como Internet
- Operados por empresas u organismos
- Os routers so coñecen un encamiñamento na súa rexión
- Routers pasarela fronteira: centralizan o tráfico de saída do SA

- Dous niveis de encamiñamento:
 - Intradominio: cada SA pode elexir algoritmo
 - Interdominio: común para todos os SA

Índice

- Introducción
- 2 Redes de conmutación de paquetes
- 3 Algoritmos de encamiñamento
- Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 8 NAT: Traducción de direcciones de rede

Encamiñamento na Internet

Protocolos usados na Internet

- Intradominio ou internos ao SA (IGP): RIP y OSPF
- Interdominio ou entre SAs: BGP

Categoría	Protocolo	Tipo	Protocolos transporte/rede
intra-autónomo	RIP	VD	UDP/IP (porto 520)
	OSPF	EE	propio/IP (puerto 89)
inter-autónomo	BGP	VD	TCP/IP (porto 179)

Protocolos da capa de aplicación

RIP (Routing Information Protocol)

Protocolo de información de encamiñamento

- Encamiñamento intradominio basado en vector de distancias
- Considera que o custo dos enlaces é 1 e distancia máxima
 15
- Mensaxes RIP so aos nodos veciños
 - Mensaxes de petición RIP: solicitan información
 - Mensaxes de resposta RIP: lista de ata 25 redes internas ao SA
 - Tamén de forma automática cada 30 s. aos seus veciños. Se non se recibe resposta en 180 s., considerase caído

OSPF (Open Shortest Path First)

Protocolo aberto de primeiro o camiño máis curto

- Aberto: algoritmo libre
- Encamiñamento intradominio baseado en estado dos enlaces
- Máis avanzado que RIP, pensado para reemplazalo
- Mensaxes OSPF difundense a todos os nodos
 - Cando se producen cambios
 - Periódicamente, ao menos cada 30 minutos
 - Cada router obtén información completa do SA
- Mensaxes HELLO a cada veciño, para comprobar que o enlace está OK
- Posibilidade de interrogar a un veciño para obter toda a información
- O custo das mensaxes os pon o administrador

OSPF (Open Shortest Path First)

Protocolo aberto de primeiro camiño máis curto

- Seguridade: implementa un protocolo de transporte propio
 - Con toda-las mensaxes autentificadas
 - So considera os routers autenticados
- Múltiples camiños de mesmo custo: permite repartir o tráfico
- Soporte de xerarquía: permite subdividir os SA en áreas
 - Cada área executa OSPF sobre os routers de esa área
 - As áreas comunicanse entre si mediante os routers de fronteira de área
 - Paquetes con destino fora da área encamiñanse ao router de fronteira de área
 - Interconectados entre si nunha área troncal
 - No SA existe un router de fronteira para sair fora do SA

OSPF (Open Shortest Path First)

BGP (Border Gateway Protocol)

Protocolo de pasarela de fronteira

- Protocolo interdominio estándar na Internet (BGP4)
- Comunica routers pasarela de fronteira

- Cada SA pode usar o protocolo intradominio que desexe
- Dous tipos de comunicacións:
 - Entre routers BGP veciños, pares BGP. Usase E-BGP
 - Entre routers do mesmo SA, considerados veciños lóxicos.
 Usase I-BGP

BGP (Border Gateway Protocol)

Protocolo de pasarela de frontera

- Protocolo similar ao de vector de distancias, intercambianse rutas completas (vector de rutas)
- Cada SA identificase por un número de sistema autónomo único
- Os administradores poden decidir as políticas de encamiñamento

rede destino	métrica
Х	4

rede destino	ruta
Х	SA1/SA2/SA3/S4

Exemplo de mensaxe en RIP

Exemplo de mensaxe en BGP

Índice

- Introducción
- 2 Redes de conmutación de paquetes
- 3 Algoritmos de encamiñamento
- 4 Encamiñamento na Internet
- 6 Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 8 NAT: Traducción de direcciones de rede

IP (Internet Protocol)

Protocolo de Internet

- Protocolo baseado en datagramas: servizo sen conexión
- A fiabilidade recae en capas superiores (TCP)
- Diseñado para interconectar redes diferentes

Compoñentes da capa de rede en Internet

- Protocolo de rede: IP
 - Define o formato das direccións
 - Formato dos datagramas
 - Accións dos routers en base aos campos dos datagramas
- Protocolo de encamiñamento
- Protocolo de mensaxes de control de Internet (ICMP)

IP (Internet Protocol)

Direccionamiento IPv4

- Os nodos nunha rede teñen unha dirección IP por interface
- Interface: a unión dun host ou router cun enlace

Codificación da dirección IP

 En IPv4, cada dirección IP codificase mediante 4 bytes, xeralmente escritos en notación decimal

IP (Internet Protocol)

Proporción redes-máquinas

- Restricción: un campo de rede ou de host non pode estar todo a 1s ou todo a 0s
- Segundo isto temos:
 - Clase A: 126 ($2^7 2$) redes con \approx 16 millóns de estacións cada unha ($2^{24} 2 = 16777214$)
 - Clase B: 16384 (2¹⁴) redes con 65534 (2¹⁶ 2)
 - estacións cada unha
 - Clase C: \approx 2 millóns de redes ($2^{21} = 2097152$) con
 - 254 estacións cada unha $(2^8 2)$

Direccións especiais reservadas

- Identificación de redes: o nº de rede e o resto a 0
- Exemplos:
 - Clase A → 10.0.0.0
 - $\bullet \ \, \text{Clase B} \rightarrow 172.16.0.0$
 - Clase C → 193.144.84.0
- Dirección de broadcast: o nº de rede e o resto a 1
- Exemplos:
 - Clase A → 10.255.255.255
 - Clase B → 172.16.255.255
 - Clase C → 193.144.84.255

Direccións especiais reservadas

- Algunhas direccións reservadas polo IANA:
 - 0.0.0.0 → Esta rede. Para arrincar sistemas sen disco (protocolo DHCP, tamén encamiñamento por defecto)
 - 127.0.0.0–127.255.255.255 → a propia estación (dirección de loopback), soese usar a 127.0.0.1
 - ullet 240.0.0.0–255.255.255.254 ightarrow reservadas para uso futuro
 - 255.255.255.255 → difusión a toda a rede (protocolo DHCP)
- Descritas no RFC 3330

Subredes

- Problema: o número de estaciones nunha rede pode ser demasiado grande ⇒ dificultades de administración
- Solución: dividir a rede en subredes, que se xestionen de forma independente pero que actúen como unha soa de cara ao exterior

Máscara de subrede

- Utilizamos parte do campo estación para indicar a subrede (* actualmente xa non)
- Empleamos máscaras para delimitar a subrede
- Formato de máscara: 32 bits dos que os n máis significativos están a 1 e os 32 – n restantes a 0
- Exemplo: máscara de 27 bits, denotase como sufixo /27 255.255.255.224 = 111111111.1111111111111111111100000

Exemplo de máscara

- Dirección clase C 193.168.17.0/27 (ou máscara 255.255.255.224)
 - Os 24 primeros bits indican a rede (193.168.17)
 - Os 3 seguintes a subrede
 - hoxe en dia os 27 primeiros son a rede
 - Os 5 últimos a posición da estación na subrede
 - Temos $2^3 = 8$ subredes, con $2^5 2 = 30$ estacións por subred
 - hoxe en dia non habería subredes desta forma
 - En total, podemos direccionar $8 \times 30 = 240$ estacións (254 en clase C sen máscara)

Exemplo de máscara

Dirección 193.168.17.0/27 (clase C)

Nº de subrede	Dir. base	Dir. broadcast
0	193.168.17.0	193.168.17.31
1	193.168.17.32	193.168.17.63
2	193.168.17.64	193.168.17.95
3	193.168.17.96	193.168.17.127
4	193.168.17.128	193.168.17.159
5	193.168.17.160	193.168.17.191
6	193.168.17.192	193.168.17.223
7	193.168.17.224	193.168.17.255

Exemplo de subredes

- Dirección 193.168.17.133/27
 - A qué subrede pertence? (*actualmente isto non se ten en conta)

```
Red Subred 4
```

• Que posición ocupa na subrede?

Estación 5

Redes sen clase

- En 1993, suprimense as clases
- Direccións CIDR (Classless Inter-Domain Routing)
 - Sufixo $/s \Rightarrow s$ bits para indicar a rede e 32 -s para indicar a estación ($2^{(32-s)} 2$ estacións)
- Exemplos: 193.168.64.0/18, 130.0.0.0/8
- Tamén se coñecen como superredes
- Exemplo: 193.168.173.253/18
 - Nº de rede: 11000001.10101000.10000000.000000000 = 193.168.128.0
 - Broadcast: 11000001.10101000.101111111.11111111 = 193.168.191.255
 - Nº estación: 11000001.10101000.10101101.11111101 = estación nº 11773
 - Nº total de estacións: $2^{14} 2 = 16382$

Subredes en redes sen clase

- As redes con clase serían: A/8, B/16 y C/24
- O concepto de subredes segue existindo porque as redes poden dividirse

193.144.48.0/20 en dúas subredes				
193	144	0011-0-000	0	subrede 193.144.48.0/21
193	144	0011-1-000	0	subrede 193.144.56.0/21

193.144.48.0/20 en 8 subredes				
193	144	0011-000-0	0	subrede 193.144.48.0/23
193	144	0011-001-0	0	subrede 193.144.48.0/23 subrede 193.144.50.0/23
193	144	0011-111-0	0	subrede 193.144.62.0/23

Exemplo de rede: 3 redes conectadas a un router

Cada interface ten unha dirección IP

táboa de rutas do host A			
destino	interface	gateway	métrica
100.1.1.0/24	eth0 (=100.1.1.1)	*	0
150.1.1.0/24	eth0 (=100.1.1.1)	100.1.1.4	1
200.1.1.0/24	eth0 (=100.1.1.1)	100.1.1.4	1

táboa de rutas do router			
destino	interface	gateway	métrica
100.1.1.0/24	eth0 (=100.1.1.4)	*	0
150.1.1.0/24	eth1 (=150.1.1.11)	*	0
200.1.1.0/24	eth2 (=200.1.1.25)	*	0

Exemplo de rede: táboas de reenvío dos routers					
ROUTER A			ROUTER B		
Red destino	Gateway	Interfaz	Red destino	Gateway	Interfaz
200.1.2.0	200.1.2.1	eth0	200.1.2.0	*	ppp0
200.1.3.0	*	ppp0	200.1.3.0	200.1.3.1	eth0
200.1.4.0	*	ppp1	200.1.4.0	*	ppp1
200.1.5.0	*	ppp0	200.1.5.0	200.1.5.1	fddi0
200.1.6.0	*	ppp1	200.1.6.0	*	ppp1
0.0.0.0	*	ppp1	0.0.0.0	*	ppp1
	ROUTER C			ROUTER D	
Red destino	Gateway	Interfaz	Red destino	Gateway	Interfaz
200.1.2.0	*	ppp0	200.1.2.0	*	ppp0
200.1.3.0	*	ppp1	200.1.3.0	*	ppp0
200.1.4.0	200.1.4.1	eth0	200.1.4.0	*	ppp0
200.1.5.0	*	ppp1	200.1.5.0	*	ppp0
200.1.6.0	*	ppp2	200.1.6.0	200.1.6.1	eth0
0.0.0.0	*	ppp2	0.0.0.0	*	ppp1

Exemplo de rede: táboas de reenvío dun host

Sistema 200.1.3.3

Red destino	Gateway	Interfaz
127.0.0.1	*	lo
200.1.3.0	*	eth0
0.0.0.0	200.1.3.1	eth0

• Consulta das táboas de rutas en linux: route [-n]

táboa de reenvío dos routers

táboa de reenvío dun router				
destino	interface	gateway	métrica	
• • •				
194.24.0.0/21	int _i	*	i saltos	
194.24.8.0/22	int _i	*	j saltos	
194.24.16.0/20	int_k	*	k saltos	
0.0.0.0/0 (por defecto)	int _x	*	x saltos	

- Coincidencia do prefixo máis longo
- Agregación de rutas

Reenvío dun paquete: coincidencia do prefixo máis longo

- Que ocorre cando lle chega un paquete a 194.24.17.4?
 - Coincidencia de prefixo: realizase un AND con cada máscara ata que se produza a coincidencia de prefixo
 - Con 194.24.0.0/21

```
194. 24.00010001.00000100 = 194.24.17.4
255.255.11111000.00000000 = 255.255.248.0
194. 24.00010000.00000000 = 194.24.16.0
```

Non coincide coa dirección base da rede (194.24.0.0)

Con 194.24.16.0/20

```
194. 24.00010001.00000100 = 194.24.17.4
255.255.11110000.00000000 = 255.255.240.0
194. 24.00010000.00000000 = 194.24.16.0
Si coincide coa dirección base da rede (194.24.16.0) \Longrightarrow envíase
```

Si coincide coa dirección base da rede (194.24.16.0) \implies enviase poa interface correspondente

 Se houbese outra coincidencia cun prefixo máis longo (máscara máis grande), reenviaríase pola interface asociada a esa entrada

Datagrama IP

Datagrama IP

Fragmentación

- As redes poden especificar un tamaño máximo para os paquetes ⇒
 - Necesidade de fragmentar os datagramas en unidades máis pequenas
 - MTU: Maximun transmission unit, tamaño máximo de datagrama IP que pode enviarse nunha trama
- Dous niveis de numeración: nº de datagrama e desprazamento dentro do mesmo (en octablocks, de 8 bytes)
 - Uso dun bit MF Máis fragmentos (1 en todos menos o último)
 - Bit NF indica que non se fragmenta
- O reensamblado realizase no sistema destino
- Intentase evitar a fragmentación, facendo que TCP e UDP xeren segmentos pequenos (536 ou 1460 bytes)

Datagrama IP: fragmentación

IP versión 6

- A capacidade de direccionamiento do IP actual (v.4) está no límite (último grupo rexional asignado en 2011)
 - Asia-Pacífico, APNIC: o 15/04/2011
 - América Latina e Caribe, LACNIC: o 10/06/2014
 - América do norte, ARIN: o 24/09/2015
 - África, AfriNIC: o 21/04/2017
 - Europa, Asia Central e Occidental, RIPE NCC: 15/11/2019
- Necesidade de simplificar o protocolo, para que os encamiñadores sexan máis eficientes
- Proporcionar maior seguridade
- Xurde IPv6 como resposta (inicialmente IPng)

Características de IPv6

- Direccións de 128 bits \Rightarrow 3,4 \times 10³⁸ direccións
- Non existen clases
- Permite envío multicast
- Servizos en tempo real
- Servizos de autenticación e seguridade

Direccións IPv6

• Representación con 8 campos de 16 bits en hexadecimal:

```
47CD:1234:4422:AC02:0022:1234:A456:0124
```

Forma compacta se hai cadeas de ceros:

```
47CD:0000:0000:0000:0000:0000:A456:0124 

$\DERROR$ 47CD::A456:0124
```

Direccións IPv4 escritas como IPv6

```
::FFFF:193.144.84.77
```

- Facilitan a transición IPv4 → IPv6
- Uso de máscaras para a parte de rede e de host

```
dirección: 3ffe:ffff:100:1:2:3:4:5/48
máscara: ffff:ffff:0000:0000:0000:0000:0000
rede: 3ffe:ffff:0100:0000:0000:0000:0000:0000
```

 Direccións unicast, multicast (comenzan por ff) y anycast (a cualquier host dunha rede)

cabeceira IPv6

- 40 bytes (desaparece a lonxitude de cabeceira), en 8 campos (menos que IPv4)
- Campos eliminados:
 - Opcións: indicanse en cabeceiras adicionais
 - Fragmentación: non se fragmentan. Se un datagrama é moi grande, devolvese unha mensaxe ICMP
 - Numeración dos paquetes: non se numeran
 - Suma de comprobación: aforrase procesamento nos routers
 - Queda na capa de transporte e posiblemente na de enlace
- Clase de tráfico e Etiqueta de fluxo (8 e 20 bits): relacionados coa QoS

Transición de IPv4 a IPv6

- Debe ser gradual e coexistirán as dúas
- Uso de túneles (tunneling)
 - Cando os paquetes IPv6 deban pasar por routers que non soportan IPv6
 - Encapsular os paquetes IPv6 dentro de paquetes IPv4
 - Engadir cabeceiras IPv4 coas direcciones dos routers que non soportan IPv6
 - Eliminar ditas cabeceiras ao chegar a zonas con routers IPv6

IPv6

VPN: Virtual Private Network

Redes privadas virtuais

- Rede dunha organización que utiliza a rede pública para comunicarse de forma segura
- Usan sistemas de encriptación e autenticación
 - IPsec, protocolo de seguridade de IP para soportar comunicacións seguras e implementar VPNs
 - Tamén se poden implementar mediante túneles IP

VPN: Virtual Private Network

- engade unha cabeceira con destino R2
- R2 o descifra coa súa chave privada e o envía ao destino

Índice

- Introducción
- Redes de conmutación de paquetes
- Algoritmos de encamiñamento
- 4 Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 3 NAT: Traducción de direcciones de rede

ICMP: Internet Control Messages Protocol

Protocolo de mensaxes de control de Internet

- Usase para que hosts e routers poidan informarse sobre erros ou o estado da rede
- Funciona sobre IP, pero non se garante a súa entrega
- Encapsúlase nun datagrama IP

Mensaxes ICMP

- Tipo e código da mensaje
- Os 8 primeiros bytes do datagrama que causou a mensaxe

ICMP: Internet Control Messages Protocol

Tipos de mensaxes ICMP

- Destino inalcanzable: o envía un nodo á estación orixe cando non pode alcanzar o destino ou cando o datagrama non pode fragmentarse e non pode atravesar unha rede (tipo ICMP 3)
- Tempo excedido: cando un nodo destrúe un datagrama porque o seu contador chegou a 0 o manda á estación orixe (tipo ICMP 11)
- Ralentizar fonte: para limitar o número de datagramas que as estacións introducen na rede e evitar a conxestión (tipo ICMP 4)
- Solicitude de eco e Resposta de eco: utilizanse para ver se un destino é alcanzable e atópase activo (uso en ping) (tipos ICMP 8 e 0)

ICMP: Internet Control Messages Protocol

Tipos de mensaxes ICMP

- Problema de parámetro: indica que se detectou un valor ilegal nun campo da cabeceira (tipo ICMP 12)
- Redirixir: utilizase cando un nodo dase conta de que hai un mellor camiño para enviar o datagrama
- Marca de tempo e Resposta a marca de tempo: para medir o retardo da rede
- Petición de máscara de dirección e Resposta de máscara de dirección: empleadas cando se usan subredes, permiten a un computador coñecer a máscara de subrede

Índice

- Introducción
- 2 Redes de conmutación de paquetes
- 3 Algoritmos de encamiñamento
- Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- DHCP: Protocolo de configuración dinámica de hosts
- 3 NAT: Traducción de direcciones de rede

DHCP: Dynamic Host Configuration Protocol

Protocolo de configuración dinámica de hosts

- Asignación de direccións IP aos hosts:
 - Estáticamente: o administrador do equipo
 - Dinámicamente: co protocolo DHCP
 - Cada vez que se inicia, solicita ao servidor unha IP temporal
 - Usado polos ISPs, cando non teñen direccións para todos os seus abonados
 - Tamén usado nas redes inarámicas
- Permite obter información para un host como:
 - a súa dirección IP
 - o gateway por defecto
 - servidores DNS dispoñíbeis

DHCP: Dynamic Host Configuration Protocol

Pasos do protocolo DHCP

- Descubrimento dun servidor DHCP: mensaxe DHCPDISCOVER
 - IP destino 255.255.255.255 (broadcast)
 - IP orixe 0.0.0.0
- Ofrecemento do servizo DHCP: resposta do servidor cunha IP, máscara de rede, etc. e un tempo de concesión
- Petición DHCP: si hai varias ofertas, o cliente solicita unha
- ACK DHCP: o servidor confirma a solicitude

Índice

- Introducción
- 2 Redes de conmutación de paquetes
- Algoritmos de encamiñamento
- 4 Encamiñamento na Internet
- Protocolo de Internet
- 6 ICMP: Protocolo de mensaxes de control de Internet
- 7 DHCP: Protocolo de configuración dinámica de hosts
- 8 NAT: Traducción de direcciones de rede

Direccións sen conexión a Internet

- Direccións especiais para uso en redes privadas:
 - Comunicacións internas dunha empresa
 - Conexión de varias estacións usando una única IP
 - Clase A: 10.0.0.0/8 (10.0.0.0-10.255.255.255)
 - Clase B: 172.16.0.0/12 (172.16.0.0–172.31.255.255)
 - Clase C: 192.168.0.0/16 (192.168.0.0-192.168.255.255)
- Os routers de Internet ignoran os paquetes con estas IPs
- Descritas no RFC 1918

Servidor NAT

- Necesita dúas interfaces e dúas IPs
 - Unha para a IP válida para conectar ao exterior
 - Outra cunha IP privada para conectar á rede interna
- Os computadores da red privada terán como gateway a IP privada do servidor NAT
- Encamiña de forma transparente os paquetes entre a rede interna e a rede externa
- Cambia a IP privada e porto orixe dos paquetes internos pola IP do servidor NAT e un porto libre
- Nunha táboa almacena IP orixe, porto orixe e porto usado
 - Polo porto usado sabe a que máquina enviar a resposta
- Pode combinarse fácilmente con filtrado de paquetes
- NAT traversal e UPnP

