

Arithmetic Units

KECE207 Digital System Design (Spring 2020)

Prof. Seon Wook Kim
School of EE, Korea University
http://compiler.korea.ac.kr
seon@korea.ac.kr

Contents

- Binary
 - Adders/Subtractors
 - Multipliers
- BCD
 - Adder
- Floating-point (bfloat16)
 - Multiplier
 - Adder

Half Adder (HA)

Add two 1-bit binary inputs

Inp	outs	Out	Outputs	
X	Υ	С	s	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Truth Table of Half Adder

How about using 2-to-4 decoders & 2-to-1 multiplexers?

Full Adder (FA)

Add three 1-bit binary inputs.

Inputs			Out	puts
X	Υ	Z	С	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \overline{X} \overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y} \overline{Z} + XYZ$$
$$= X \oplus Y \oplus Z$$

$$C = XY + XZ + YZ$$

= XY + Z ($X\overline{Y}$ + \overline{X} Y)
= XY + Z ($X \oplus Y$)

Maps for Full Adder

•
$$X = A_i, Y = B_i, Z = C_i, C = C_{i+1}, S = S_i$$

4-bit Binary Ripple Carry Adder (RCA)

- Critical path?
 - 4 FA delays
- How about longer bit adders? Like 32-bit?

Carry Select Adder (CSA)

- Delay = Delay_{ripple_carry(8bit)}/2 + Delay_{MUX}
- Cost = 1.5 * Cost_{ripple_carry(4bit)} + Cost_{MUX}

Extending CSA to multiple blocks

N-bit CSA: Sqrt(N) stages of sqrt(N) bits

- What is the optimal # of blocks and # of bits/block?
 - If # blocks are too large, the delay is dominated by total MUX delay.
 - If # blocks are too small, the delay is dominated by adder delay.

Carry Lookahead Adder (CLA)

PFA (Partial Full Adder)

- Extract carry propagation path from FA's.
- Input: A_i, B_i, C_i
- Output: P_i, G_i, S_i

• Propagate function: $P_i = A_i \square B_i$

- $-P_i = 1$: an incoming carry is propagated through the bit position from C_i to C_{i+1} .
- $-P_i = 0$: carry propagation through the bit position is blocked.

• Generate function: G_i = A_i B_i

- $-G_i = 1$: the carry output from the position is 1, regardless of the value of P_i , so carry has been generated in the position.
- $-G_i = 0$: $C_{i+1} = 0$ if the carry propagated through the position from C_i is also 0.

CLA Boolean Expression

- $C_1 = A_0B_0 + C_0(A_0 \square B_0) = G_0 + C_0P_0$
- $C_2 = A_1B_1 + C_1(A_1 \square B_1) = G_1 + C_1P_1$

$$= G_1 + (G_0 + C_0P_0) P_1$$

$$= G_1 + P_1 G_0 + P_1 P_0 C_0$$

•

•
$$C_n = G_{n-1} + P_{n-1} G_{n-2} + P_{n-1} P_{n-2} G_{n-3} + \dots + P_{n-1} P_{n-2} \dots P_1 G_0 + P_{n-1} P_{n-2} \dots P_1 P_0 C_0$$

4-bit Adder with Carry Lookahead

CLA Generator

4-bit Binary Adder & Subtractor

•
$$A_3A_2A_1A_0 - (B_3B_2B_1B_0) = A_3A_2A_1A_0 + (-B_3B_2B_1B_0)$$

= $A_3A_2A_1A_0 + (B'_3B'_2B'_1B'_0 + 1)$

Decimal Adder (BCD Adder)

- Binary numbers 1010 ~ 1111 need to be corrected
- 1010, 1011, 1100, 1101, 1110, 1111
- If C = K + Z_1Z_3 + Z_2Z_3 , add 0110 to the binary sum

2-bit x 2-bit Unsigned Binary Multiplier

4-bit x 3-bit Unsigned Binary Multiplier

4-bit x 4-bit Unsigned Array Multiplier

Signed Binary Multiplier

Two steps

- Sign extend both integers to twice as many bits.
- 2 Then take the correct number of result bits from the least significant portion of the result.

4-bit examples

$-1 \times -7 = 7$	3 x -5 = -15
1111 1111	0000 0011
x 1111 1001	x 1111 1011
1111111	00000011
0000000	0000011
0000000	0000000
1111111	0000011
1111111	0000011
1111111	0000011
1111111	0000011
1111111	0000011
1 000 <u>0000111</u>	1011110001

Signed Binary Multiplier (why?)

• (-3) x (-2): Ignore the overflow & Expand the dimension!

	111 101
X	111 110
	000 000
1	11 1 01
11	1 10 1
111	101
	
	000 110

Bit Serial Adder: A+B

- A, B are held in shift registers.
- Initially, Carry FF is set to 0.
- Shift A and B right once per clock cycle.
- Take n clock cycles.

Bit Serial Adder (Another Approach)

State Table for Serial Adder

Present State	Inp	uts	Next State	Output	Flip-Flo	p Inputs
Q	x	y	Q	S	JQ	KQ
0	0	0	0	0	0	X
0	0	1	0	1	0	X
0	1	0	0	1	0	X
0	1	1	1	0	1	X
1	0	0	0	1	X	1
1	0	1	1	0	X	0
1	1	0	1	0	X	0
1	1	1	1	1	X	0

Shift-and-Add Multiplier

Algorithm

- Step 1: A ←0, B ←multiplicand, Q ←multiplier
- ② Step 2: If $Q_0 == 1$ then add B to A
- 3 Step 3: Shift A|Q right once.
- 4 Step 4: Repeat Steps 2 and 3 n-1 times.
- 5 Step 5: A|Q has product.

Floating-Point (bfloat16)

• fp32 \leftrightarrow bfloat16

In 1938, Konrad Zuse of Berlin completed the Z1, the first binary, programmable mechanical computer; it uses a 24-bit binary floating-point number representation with a 7-bit signed exponent, a 17-bit significand (including one implicit bit), and a sign bit.

Bfloat16

$$-E_{min} = 01_{H} - 7F_{H} = -126$$

$$-E_{max} = FE_{H} - 7F_{H} = 127$$

- Exponent bias = $7F_H$ = 127

Examples:

- (1) 0 011111111 00000000 = 1
- (2) 1 10000000 00000000 = -2

Exponent	Significand zero	Significand non-zero	Equation
00 _H	zero, -0	subnormal numbers	(−1) ^{signbit} ×2 ^{−126} × 0.significandbits
01 _H ,, FE _H	normalized value		$(-1)^{signbit} \times 2^{exponentbits-127} \times 1.significand bits$
FF _H	±infinity	NaN (quiet, signaling)	

bloat16

Positive and negative infinity

- +inf = 0 11111111 0000000
- --inf = 1 11111111 0000000
- Not a Number (NaN) where at least one of k, l, m, n, o, p, or q is 1.
 - + NaN = 0 111111111 klmnopq
 - -NaN = 1 111111111 klmnopq

Zeros

- +0 = 0 0000000 0000000
- -0 = 1 0000000 0000000

Positive

- Max = 0 111111110 11111111 = $(2^{8}-1) \times 2^{-7} \times 2^{127} = 3.38953139 \times 10^{38}$
- Min = 0 00000001 0000000 = 2^{-126} = 1.175494351 x 10⁻³⁸

Exponent	Significand zero	Significand non-zero	Equation
00 _H	zero, -0	subnormal numbers	(−1) ^{signbit} ×2 ^{−126} × 0.significandbits
01 _H ,, FE _H	normalized value		$(-1)^{signbit} \times 2^{exponentbits-127} \times 1.significand bits$
FF _H	±infinity	NaN (quiet, signaling)	

Multiplication: Algorithm

- $X = (-1)^{Sx} M_x * 2^{Ex} , Y = (-1)^{Sy} M_v * 2^{Ey}$
- $X * Y = ((-1)^{Sx} * (-1)^{Sy}) * (M_X * M_V) * 2^{Ex+Ey}$
- Steps
 - 1 Check Zeros
 - If one or both operands is equal to zero, return the result as zero.
 - 2 Compute the sign of the result, $S_x \square S_v$
 - \bigcirc Multiply mantissa, $M_x^* M_y$
 - 4 Add exponents: $E_x + E_v 127$
 - (5) Normalize the result
 - Left shift the result mantissa & decrease the result exponent (e.g., 0.001xx...)
 - Right shift the result mantissa & increase the result exponent (e.g.,10.1xx...)
 - (6) Check result
 - If larger/smaller than maximum exponent allowed return exponent overflow/underflow

Multiplication: Example

Suppose

- -X = 0.011111111 00000000 = 1
- -Y = 1 10000000 0000000 = -2

Steps

- ① N/A
- ② $S_x \square S_y = 1$
- $M_x = 1.0000000$, $M_y = 1.0000000$. Don't forget the hidden bit.
 - $M_x^* M_y = 1.0000000000000$
- (5) Normalize the result
 - N/A
- (6) N/A
- Result: 1 10000000 0000000 = -2

Addition and Subtraction: Algorithm

- ① Compare the exponent of the two numbers & shift the smaller number to the right until its exponent matches the larger exponent.
- ② Add the mantissas
- ③ Normalize the result
 - Left shift the result mantissa & decrease the result exponent (e.g., 0.001xx...)
 - Right shift the result mantissa & increase the result exponent (e.g.,10.1xx...)
- (4) Check result
 - If larger/smaller than maximum exponent allowed return exponent overflow/underflow
- (5) If the mantissa is zero, then set the exponent to zero

Addition: Example

Suppose

- Y = 0.011111101.00000000 = 0.25

Steps

- ① Set Y = 0 01111111 0100000
- 2 1.0100000 + 0.0100000 = 1.1000000
- (3) **N/A**
- (4) N/A
- (5) **N/A**
- Result: 0 01111111 1000000 = 1.5

More? Divisor.....

