

Institutionen för elektro- och informationsteknik

Formler och Tabeller

Digital signalbehandling

Bengt Mandersson

Lund 2012

Department of Electrical and Information Technology, Lund University, Sweden

Innehåll

1	Gru	ındläggande samband	2
	1.1	Trigonometriska formler	2
	1.2		3
	1.3		4
	1.4	Några ofta förekommande samband	4
	1.5	9	5
	1.6		5
	1.7		6
	1.8		7
	1.9		8
2	Tra	nsformer	9
	2.1	Laplacetransform	9
		•	9
		2.1.2 Enkelsidig Laplacetransform av icke-kausala signaler 10	
	2.2	Fouriertransform för tidskontinuerlig signal	
	2.3	Z-transformen	
	2.0	2.3.1 Z-transform av kausala signaler	
		2.3.2 Enkelsidig Z-transform av icke kausala signaler	
	2.4		
	2.4 2.5	Fouriertransform för tidsdiskret signal	
	۷.5		
		O	
	0.0	2.5.2 Diskret tid	
	2.6	Diskreta Fouriertransformen (DFT)	
		2.6.1 Definition	
		2.6.2 Cirkulär faltning	
		2.6.3 Icke-cirkulär faltning med DFT	
		2.6.4 Relation till Fouriertransformen $X(f)$:	
		2.6.5 Relation till Fourierserier	
		2.6.6 Parsevals teorem	9
		2.6.7 Några egenskaper hos DFT	
	2.7	Några fönsterfunktioner och deras Fouriertransform	J
3	Sam	npling av analoga signaler 2	2
	3.1	Sampling och rekonstruktion	2
	3.2	Distorsionsmått	4
		3.2.1 Vikningsdistorsion vid sampling	4
		3.2.2 Periodiserings distorsion vid rekonstruktion	4
	3.3	Kvantiseringsdistorsion	5
	3.4	Decimering och interpolering	
4	Ana	aloga filter 20	6
	4.1	Filterapproximationer av ideala LP-filter	6
		4.1.1 Butterworthfilter	
		4.1.2 Chebyshevfilter	
		v	

	4.2	4.1.3 Besselfilter	
5		sdiskreta filter	33
	5.1	FIR-filter och IIR-filter	33
	5.2	FIR-filter med fönstermetoden	33
	5.3	Ekvirippel FIR-filter	36
	5.4	FIR-filter med minstakvadratmetoden	36
	5.5	IIR-filter	37
		5.5.1 Impulsinvarians	37
		5.5.2 Bilinjär transformation	37
		5.5.3 Koefficientkvantisering	38
	5.6	Latticefilter	38
6	Spe	ktralskattning	40

1 Grundläggande samband

1.1 Trigonometriska formler

$$\begin{array}{ll} \sin\alpha = \cos(\alpha-\pi/2) & \sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta \\ \cos\alpha = \sin(\alpha+\pi/2) & \cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \cos^2\alpha + \sin^2\alpha = 1 & 2\sin\alpha\sin\beta = \cos(\alpha-\beta) - \cos(\alpha+\beta) \\ \cos^2\alpha - \sin^2\alpha = \cos2\alpha & 2\sin\alpha\cos\beta = \sin(\alpha+\beta) + \sin(\alpha-\beta) \\ 2\sin\alpha\cos\alpha = \sin2\alpha & 2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta) \\ \sin(-\alpha) = -\sin\alpha & \sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos(-\alpha) = \cos\alpha & \cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha = \frac{1}{2}(1+\cos2\alpha) & \end{array}$$

$$\cos\alpha = \frac{1}{2} (e^{j\alpha} + e^{-j\alpha}), \quad \sin\alpha = \frac{1}{2j} (e^{j\alpha} - e^{-j\alpha}), \quad e^{j\alpha} = \cos\alpha + j \sin\alpha$$

$$A\cos\alpha + B\sin\alpha = \sqrt{A^2 + B^2} \cos(\alpha - \beta)$$

$$\mathrm{d\ddot{a}r} \cos\beta = \frac{A}{\sqrt{A^2 + B^2}}, \quad \sin\beta = \frac{B}{\sqrt{A^2 + B^2}}$$

$$\mathrm{och} \beta = \begin{cases} \arctan\frac{B}{A} & \text{om } A \geq 0 \\ \arctan\frac{B}{A} + \pi & \text{om } A < 0 \end{cases}$$

$$A\cos\alpha + B\sin\alpha = \sqrt{A^2 + B^2} \sin(\alpha + \beta)$$

$$\mathrm{d\ddot{a}r} \cos\beta = \frac{B}{\sqrt{A^2 + B^2}}, \quad \sin\beta = \frac{A}{\sqrt{A^2 + B^2}}$$

$$\mathrm{och} \beta = \begin{cases} \arctan\frac{A}{B} & \text{om } B \geq 0 \\ \arctan\frac{A}{B} + \pi & \text{om } B < 0 \end{cases}$$

Grader	Rad	sin	cos	tan	cot
0 30 45	$\begin{array}{c} 0 \\ \frac{\pi}{6} \\ \frac{\pi}{4} \end{array}$	$\begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$	$ \begin{array}{c} 1\\ \frac{\sqrt{3}}{2}\\ \frac{1}{\sqrt{2}} \end{array} $	0 $\frac{1}{\sqrt{3}}$ 1	$\begin{array}{c} \pm \infty \\ \sqrt{3} \\ 1 \end{array}$
60 90	$\frac{\pi}{3}$ $\frac{\pi}{2}$	$\begin{array}{ c c } \hline \frac{\sqrt[3]{3}}{2} \\ 1 \\ \hline \end{array}$	$\frac{1}{2}$	$\sqrt{3}$ $\pm \infty$	$\begin{array}{c} \frac{1}{\sqrt{3}} \\ 0 \end{array}$

1.2 Matristeori

Beteckning av matris A och vektor x

En matris A av ordningen mxn och en vektor x med dimensionen n definieras av

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrisen **A** är symmetrisk om $a_{ij} = a_{ji} \ \forall \ ij$. **I** betecknar enhetsmatrisen.

Transponering av matris A

$$\mathbf{B} = \mathbf{A}^T \, \operatorname{där} \, b_{ij} = a_{ji}$$
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

Determinant av matris A

$$det \mathbf{A} = |\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} det \mathbf{M}_{ij}$$

där \mathbf{M}_{ij} är den matris som erhålles om rad i och kolumn j i matrisen \mathbf{A} strykes.

$$det\mathbf{AB} = det\mathbf{A} \cdot det\mathbf{B}$$

Speciellt gäller för en 2x2 matris:

$$det \mathbf{A} = a_{11}a_{22} - a_{12}a_{21}$$

Invers av matris A

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I} \quad (\text{om } det\mathbf{A}\#0)$$

$$\mathbf{A}^{-1} = \frac{1}{det\mathbf{A}} \cdot \mathbf{C}^{T}$$

där C definieras av

$$c_{ij} = (-1)^{i+j} \cdot det \mathbf{M}_{ij}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$$

Speciellt gäller för en 2x2 matris:

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

Egenvärden och egenvektorer

Egenvärdena $(\lambda_i, i = 1, 2, ..., n)$ och egenvektorerna $(\mathbf{q}_i, i = 1, 2, ..., n)$ är lösningar till ekvationssystemet

$$\mathbf{A}\mathbf{q} = \lambda \mathbf{q} \text{ eller } (\mathbf{A} - \lambda \mathbf{I})\mathbf{q} = 0$$

Egenvärdena kan beräknas som lösningar till karakteristiska ekvationen (sekularekvationen) till ${\bf A}$

$$det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_0 = 0$$

 $det(\lambda \mathbf{I} - \mathbf{A})$ kallas karakteristiska polynomet (sekularpolynomet) till \mathbf{A} .

1.3 Kurvformer

$$u(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}$$
 Impuls
funktion
$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \# 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$\int_{-\infty}^{\infty} x(t) \delta(t) dt = x(0)$$
 Rektangel
funktion
$$p(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$
 Sinc-funktion
$$\sin c \ x = \frac{\sin \pi x}{\pi x}$$
 Periodisk sinc-funktion
$$diric(x, N) = \frac{\sin \left(\frac{Nx}{2}\right)}{N \sin \left(\frac{x}{2}\right)}$$
 Komplex sinus
$$e^{st} = e^{\sigma t} e^{j\Omega t}$$
 Komplex odämpad sinus
$$e^{j\Omega t} = \cos \Omega t + j \sin \Omega t$$

1.4 Några ofta förekommande samband

Summa av geometrisk serie

$$\sum_{n=0}^{N-1} a^n = \begin{cases} N & \text{om } a = 1\\ \frac{1-a^N}{1-a} & \text{om } a \neq 1 \end{cases}$$

Summation av sinussignal över jämnt antal perioder

$$\sum_{n=0}^{N-1} e^{j2\pi \ kn/N} = \begin{cases} N & \text{om } k = 0, \pm N, \dots \\ 0 & \text{f.\"o.} \end{cases}$$

1.5 Korrelation

Korrelation, korskorrelation, spektrum, korspektrum och koherens mellan in- och utsignal

Normalfördelade stok.var. $X_i \in N(m_i, \sigma_i)$

$$E\{X_1X_2X_3X_4\} = E\{X_1X_2\} E\{X_3X_4\} + E\{X_1X_3\} E\{X_2X_4\} + E\{X_1X_4\} E\{X_2X_3\} - 2m_1m_2m_3m_4$$

1.6 Kretsmodeller (en insignal, en utsignal)

1) Kanonisk form (direkt form II)

2) Differensekvation

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

3) Tillståndsbeskrivning

$$\begin{cases} \mathbf{v}(n+1) &= \mathbf{F}\mathbf{v}(n) + \mathbf{q} \cdot x(n) \\ y(n) &= \mathbf{g}^{\mathbf{T}}\mathbf{v}(n) + d \cdot x(n) \end{cases}$$

där

$$\mathbf{F} = \begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & & 0 & 1 \\ -a_k & -a_{k-1} & \dots & -a_2 & -a_1 \end{pmatrix} \quad ; \quad \mathbf{q} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$\mathbf{g}^{\mathbf{T}} = (b_k, \dots, b_2, b_1) - b_0(a_k, \dots, a_2, a_1)$$
; $d = b_0$

4) Systemfunktion

$$\mathcal{H}(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

1.7 Några beräkningsmetoder

1) Faltning

$$y(n) = h * x = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$$

2) Tillståndsekvation

a) Direkt lösning

$$y(n) = \mathbf{g}^{\mathbf{T}} \cdot \mathbf{F}^{n} \mathbf{v}(0) + \sum_{k=0}^{n-1} \mathbf{g}^{\mathbf{T}} \cdot \mathbf{F}^{n-1-k} \mathbf{q} x(k) u(n-1) + dx(n)$$

b) Impulssvar

$$h(n) = \mathbf{g}^{\mathbf{T}} \cdot \mathbf{F}^{n-1} \mathbf{q} u(n-1) + d\delta(n)$$

c) Systemfunktion

$$\mathcal{H}(z) = \mathbf{g}^{\mathbf{T}}[z\mathbf{I} - \mathbf{F}]^{-1}\mathbf{q} + d$$

1.8 Analog sinussignal genom linjärt, kausalt filter

1) Komplex, icke-kausal insignal

$$x(t) = e^{j\Omega_0 t} = (\cos(\Omega_0 t) + j \sin(\Omega_0 t)) - \infty < t < \infty$$

$$y(t) = \int_{\tau=0}^{\infty} h(\tau)x(t-\tau)d\tau = \int_{\tau=0}^{\infty} h(\tau)e^{j\Omega_0(t-\tau)}d\tau = \underbrace{H(s)|_{s=j\Omega_0} e^{j\Omega_0 t}}_{\text{station\"{a}r}}$$

2) Komplex, kausal insignal

$$x(t) = e^{j\Omega_0 t} u(t) = (\cos(\Omega_0 t) + j \sin(\Omega_0 t)) u(t); X(s) = \frac{1}{s - j\Omega_0}$$

$$Y(s) = H(s)X(s) = \frac{T(s)}{N(s)} \frac{1}{s - j\Omega_0} = \underbrace{\frac{T_1(s)}{N(s)}}_{\text{transient}} + \underbrace{H(s)|_{s = j\Omega_0} \frac{1}{s - j\Omega_0}}_{\text{station\"{a}r}}$$

$$y(t) = \text{transient} + \underbrace{H(s)|_{s = j\Omega_0} e^{j\Omega_0 t}}_{\text{station\"{a}r}}$$

3) Reell, icke-kausal insignal

$$x(t) = Re\{e^{j\Omega_0 t}\} = \cos(\Omega_0 t) - \infty < t < \infty$$

$$y(t) = \int_{\tau=0}^{\infty} h(\tau)x(t-\tau)d\tau = \int_{\tau=0}^{\infty} h(\tau)\frac{1}{2}(e^{j\Omega_0(t-\tau)} + e^{-j\Omega_0(t-\tau)})d\tau =$$

$$= \underbrace{|H(s)|_{s=j\Omega_0} \cos(\Omega_0 t + arg\{H(s)|_{s=j\Omega_0}\})}_{\text{stationär}}$$

4) Reell, kausal insignal

$$x(t) = Re\{e^{j\Omega_0 t}\} \ u(t) = \cos(\Omega_0 t) \ u(t); \qquad X(s) = \frac{s}{s^2 + \Omega_0^2}$$

$$Y(s) = H(s)X(s) = \frac{T(s)}{N(s)} \frac{s}{s^2 + \Omega_0^2} = \underbrace{\frac{T_1(s)}{N(s)}}_{\text{transient}} + \underbrace{\frac{C_1 s + C_0}{s^2 + \Omega_0^2}}_{\text{station\"{a}r}}$$

$$H(s)|_{s=j\Omega_0} = A e^{j\theta}; \ C_1 = A \cos(\theta); \ C_0 = -A\Omega_0 \sin \theta$$

$$y(t) = \text{transient} + \underbrace{C_1 \cos(\Omega_0 t) + \frac{C_0}{\Omega_0} \sin(\Omega_0 t)}_{\text{station\"{a}r}} = \text{transient} + \underbrace{|H(s)|_{s=j\Omega_0} \cos(\Omega_0 t + arg\{H(s)|_{s=j\Omega_0}\})}_{\text{station\"{a}r}}$$

1.9 Tidsdiskret sinussignal genom linjärt, kausalt filter

1) Komplex, icke-kausal insignal

$$x(n) = e^{j\omega_0 n} = (\cos(\omega_0 n) + j \sin(\omega_0 n)) - \infty < n < \infty$$

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=0}^{\infty} h(k)e^{j\omega_0(n-k)} = \underbrace{H(z)|_{z=e^{j\omega_0}} e^{j\omega_0 n}}_{\text{station \"{a}r}}$$

2) Komplex, kausal insignal

$$x(n) = e^{j\omega_0 n} u(n) = (\cos(\omega_0 n) + j \sin(\omega_0 n)) u(n); \qquad X(z) = \frac{1}{1 - e^{j\omega_0} z^{-1}}$$

$$Y(z) = H(z)X(z) = \frac{T(z)}{N(z)} \frac{1}{1 - e^{j\omega_0} z^{-1}} = \underbrace{\frac{T_1(z)}{N(z)}}_{\text{transient}} + \underbrace{H(z)|_{z=e^{j\omega_0}} \frac{1}{1 - e^{j\omega_0} z^{-1}}}_{\text{station\"{a}r}}$$

$$y(n) = \text{transient} + \underbrace{H(z)|_{z=e^{j\omega_0}} e^{j\omega_0 n}}_{\text{station\"{a}r}}$$

3) Reell, icke-kausal insignal

$$x(n) = Re\{e^{j\omega_0 n}\} = \cos(\omega_0 n) - \infty < n < \infty$$

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=0}^{\infty} h(k)\frac{1}{2}(e^{j\omega_0(n-k)} + e^{-j\omega_0(n-k)}) =$$

$$= \underbrace{|H(z)|_{z=e^{j\omega_0}} \cos(\omega_0 n + arg\{H(z)|_{z=e^{j\omega_0}}\})}_{\text{stationär}}$$

4) Reell, kausal insignal

$$x(n) = Re\{e^{j\omega_0 n}\} \ u(n) = \cos(\omega_0 n) \ u(n); \qquad X(z) = \frac{1 - \cos\omega_0 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}}$$

$$Y(z) = H(z)X(z) = \frac{T(z)}{N(z)} \ \frac{1 - \cos\omega_0 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}} = \underbrace{\frac{T_1(z)}{N(z)}}_{\text{transient}} + \underbrace{\frac{C_0 + C_1 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}}}_{\text{station\"{a}r}}$$

$$H(z)|_{z=e^{j\omega_0}} = A \ e^{j\theta}; \ C_0 = A\cos(\theta); \ C_1 = -A(\sin\omega_0 \sin\theta + \cos\omega_0 \cos\theta)$$

$$y(n) = \text{transient} + \underbrace{C_0 \cos(\omega_0 n)}_{\text{sin}(\omega_0)} + \underbrace{\frac{C_1 + C_0 \cos(\omega_0)}{\sin(\omega_0)}}_{\text{station\"{a}r}} \sin(\omega_0 n) = \underbrace{\frac{1 - \cos\omega_0 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}}}_{\text{station\"{a}r}}$$

$$= \text{transient} + \underbrace{|H(z)|_{z=e^{j\omega_0}} \cos(\omega_0 n + arg\{H(z)|_{z=e^{j\omega_0}}\})}_{\text{station\"{a}r}}$$

2 Transformer

2.1 Laplacetransform

2.1.1 Laplacetransform av kausala signaler

I nedanstående tabell är f(t) = 0 för t < 0 (dvs $f(t) \cdot u(t) = f(t)$).

1.
$$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} \mathcal{F}(s) e^{st} ds$$

$$\longleftrightarrow \mathcal{F}(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

$$2. \quad \sum_{\nu} a_{\nu} f_{\nu}(t)$$

$$\longleftrightarrow \sum_{\nu} a_{\nu} \mathcal{F}_{\nu}(s)$$
 Linjäritet

$$3. \quad f(at)$$

$$\longleftrightarrow \frac{1}{a} \mathcal{F}(\frac{s}{a})$$
 Skalning

4.
$$\frac{1}{a} f(\frac{t}{a})$$

$$\longleftrightarrow \mathcal{F}(as) \ a > 0 \text{ Skalning}$$

5.
$$f(t-t_0); t \ge t_0$$

$$\longleftrightarrow \mathcal{F}(s) \ e^{-st_0} \ \mathrm{Tidsf\"{o}rskjutning}$$

6.
$$f(t) \cdot e^{-at}$$

$$\longleftrightarrow \mathcal{F}(s+a)$$
 Frekvensförskjutning

7.
$$\frac{d^n f}{dt^n}$$

$$\longleftrightarrow s^n \mathcal{F}(s)$$
 Derivering

8.
$$\int_{0-}^{t} f(\tau) d\tau$$

$$\longleftrightarrow \frac{1}{s} \mathcal{F}(s)$$
 Integrering

9.
$$(-t)^n f(t)$$

$$\longleftrightarrow \frac{d^n \mathcal{F}(s)}{ds^n} \text{ Derivation i}$$
 frekvensplanet

10.
$$\frac{f(t)}{t}$$

$$\longleftrightarrow \int_s^\infty \mathcal{F}(z)dz$$
 Integration i frekvensplanet

11.
$$\lim_{t\to 0} f(t) = \lim_{s\to\infty} s \cdot \mathcal{F}(s)$$

Begynnelsevärdesteoremet

12.
$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s \cdot \mathcal{F}(s)$$

Slutvärdesteoremet

13.
$$f_1(t) * f_2(t) =$$

$$\int_0^t f_1(\tau) f_2(t - \tau) d\tau =$$

$$\int_0^t f_1(t - \tau) f_2(\tau) d\tau$$

$$\longleftrightarrow \mathcal{F}_1(s) \cdot \mathcal{F}_2(s)$$
Faltning i tidsplanet

14.
$$f_1(t) \cdot f_2(t)$$

$$\longleftrightarrow \frac{\frac{1}{2\pi j}}{\frac{1}{2\pi j}} \mathcal{F}_1(s) * \mathcal{F}_2(s) = \frac{\frac{1}{2\pi j}}{\int_{\sigma - j\infty}^{\sigma + j\infty} \mathcal{F}_1(z) \cdot \mathcal{F}_2(s - z) \cdot dz}$$
Faltning i frekvensplanet

15.
$$\int_{0-}^{\infty} f_1(t) \cdot f_2(t) dt = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} \mathcal{F}_1(s) \cdot \mathcal{F}_2(-s) ds$$

Parsevals relation

16.
$$\delta(t) \longleftrightarrow 1$$

17.
$$\delta^n(t) \longleftrightarrow s^n$$

18. 1
$$\longleftrightarrow \frac{1}{8}$$

19.
$$\frac{1}{n!} t^n \longleftrightarrow \frac{1}{s^{n+1}}$$

20.
$$e^{-\sigma_0 t}$$
 $\longleftrightarrow \frac{1}{s + \sigma_0}$

21.
$$\frac{1}{(n-1)!} t^{n-1} e^{-\sigma_0 t} \longleftrightarrow \frac{1}{(s+\sigma_0)^n}$$

22.
$$\sin \Omega_0 t \longleftrightarrow \frac{\Omega_0}{s^2 + \Omega_0^2}$$

23.
$$\cos \Omega_0 t \longleftrightarrow \frac{s}{s^2 + \Omega_0^2}$$

24.
$$t \cdot \sin \Omega_0 t \longleftrightarrow \frac{2\Omega_0 s}{(s^2 + \Omega_0^2)^2}$$

25.
$$t \cdot \cos \Omega_0 t$$
 $\longleftrightarrow \frac{s^2 - \Omega_0^2}{(s^2 + \Omega_0^2)^2}$

26.
$$e^{-\sigma_0 t} \sin \Omega_0 t \longleftrightarrow \frac{\Omega_0}{(s+\sigma_0)^2 + \Omega_0^2}$$

27.
$$e^{-\sigma_0 t} \cos \Omega_0 t \longleftrightarrow \frac{s + \sigma_0}{(s + \sigma_0)^2 + \Omega_0^2}$$

28.
$$e^{-\sigma_0 t} \sin(\Omega_0 t + \phi) \longleftrightarrow \frac{(s + \sigma_0) \sin \phi + \Omega_0 \cos \phi}{(s + \sigma_0)^2 + \Omega_0^2}$$

2.1.2 Enkelsidig Laplacetransform av icke-kausala signaler

Beteckning

$$\mathcal{F}^+(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

$$\mathcal{F}(s) = \mathcal{F}^+(s)$$

Enkelsidig Laplacetransform, f(t) ej nödvändigtvis kausal. För kausala signaler

Vid derivering av f(t) erhålles

$$\frac{d}{dt} f(t) \longleftrightarrow s \cdot \mathcal{F}^+(s) - f(0-)$$

Derivering en gång

$$\frac{d^n}{dt} f(t) \longleftrightarrow s^n \mathcal{F}^+(s) - s^{n-1} f(0-)$$
$$-s^{n-2} f^{(1)}(0-) - \dots f^{(n-1)}(0-) \text{ Derivering } n \text{ gånger}$$

2.2 Fouriertransform för tidskontinuerlig signal

$$\Omega = 2\pi F$$

1.
$$w(t) = \mathcal{F}^{-1}\{W(F)\} = \bigoplus_{\int_{-\infty}^{\infty} W(F)e^{j2\pi Ft}dF} \longleftrightarrow W(F) = \mathcal{F}\{w(t)\} = \lim_{\int_{-\infty}^{\infty} W(t)e^{-j2\pi Ft}dt} \longleftrightarrow \lim_{t \to \infty} W(F) = \mathcal{F}\{w(t)\} = \lim_{t \to \infty} W(F) = \lim_{t$$

2.
$$\sum_{\nu} a_{\nu} w_{\nu}(t)$$
 $\longleftrightarrow \sum_{\nu} a_{\nu} W_{\nu}(F)$

3.
$$w^*(-t) \longleftrightarrow W^*(F)$$

4.
$$W(t) \longleftrightarrow w(-F)$$

5.
$$w(at) \longleftrightarrow \frac{1}{|a|} W\left(\frac{F}{a}\right)$$

6.
$$w(t-t_0) \longleftrightarrow W(F) \cdot e^{-j2\pi F t_0}$$

7.
$$w(t) \cdot e^{j2\pi F_0 t} \longleftrightarrow W(F - F_0)$$

8.
$$w^*(t) \longleftrightarrow W^*(-F)$$

9.
$$\frac{d^n w(t)}{dt^n} \longleftrightarrow (j2\pi F)^n W(F)$$

10.
$$\int_{-\infty}^{t} w(\tau)d\tau$$
 $\longleftrightarrow \frac{1}{j2\pi F} W(F) \text{ om } W(F) = 0 \text{ för } F = 0$

11.
$$-j2\pi t \ w(t)$$
 $\longleftrightarrow \frac{dw}{dF}$

12.
$$w_1(t) * w_2(t) \longleftrightarrow W_1(F) \cdot W_2(F)$$

13.
$$w_1(t) \cdot w_2(t) \longleftrightarrow W_1(F) * W_2(F)$$

14.
$$\int_{-\infty}^{\infty} |w(t)|^2 dt = \int_{-\infty}^{\infty} |W(F)|^2 dF$$
 Parsevals relation

15.
$$\int_{-\infty}^{\infty} w_1(t) \cdot w_2(t) dt = \int_{-\infty}^{\infty} W_1(F) \cdot W_2^*(F) dF$$
 $w_1(t), w_2(t)$ reella

16.
$$\delta(t) \longleftrightarrow 1$$

17. 1
$$\longleftrightarrow \delta(F)$$

18.
$$u(t) \longleftrightarrow \frac{1}{j2\pi F} + \frac{1}{2} \delta(F)$$

19.
$$e^{-at}u(t)$$
 $\longleftrightarrow \frac{1}{a+i\Omega}$

$$20. \quad e^{-a|t|} \qquad \longleftrightarrow \quad \frac{2a}{a^2 + \Omega^2}$$

21.
$$e^{j2\pi F_0 t} \longleftrightarrow \delta(F - F_0)$$

22.
$$sin2\pi F_0 t$$
 $\longleftrightarrow j \frac{1}{2} \{\delta(F + F_0) - \delta(F - F_0)\}$

23.
$$sin2\pi F_0t \cdot u(t)$$
 $\longleftrightarrow \frac{\Omega_0}{\Omega_0^2 - \Omega^2} + j \frac{1}{4} \left\{ \delta(F + F_0) - \delta(F - F_0) \right\}$

24.
$$\cos 2\pi F_0 t$$
 $\longleftrightarrow \frac{1}{2} \left\{ \delta(F + F_0) + \delta(F - F_0) \right\}$

25.
$$\cos 2\pi F_0 t \cdot u(t)$$
 $\longleftrightarrow \frac{j\Omega}{\Omega_0^2 - \Omega^2} + \frac{1}{4} \{ \delta(F + F_0) + \delta(F - F_0) \}$

26.
$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-t^2/2\sigma^2} \longleftrightarrow e^{-(\Omega\sigma)^2/2}$$

27.
$$e^{-at}sin2\pi F_0t \cdot u(t)$$
 $\longleftrightarrow \frac{\Omega_0}{(j\Omega+a)^2+(\Omega_0)^2}$

28.
$$e^{-a|t|}sin2\pi F_0|t|$$
 $\longleftrightarrow \frac{2\Omega_0(\Omega_0^2 + a^2 - \Omega^2)}{(\Omega^2 + a^2 - \Omega_0^2)^2 + 4a^2\Omega_0^2}$

29.
$$e^{-at}cos2\pi F_0t \cdot u(t)$$
 $\longleftrightarrow \frac{j\Omega + a}{(j\Omega + a)^2 + (\Omega_0)^2}$

30.
$$e^{-a|t|}cos2\pi F_0 t$$
 $\longleftrightarrow \frac{2a(\Omega_0^2 + a^2 + \Omega^2)}{(\Omega^2 + a^2 - \Omega_0^2)^2 + 4a^2\Omega_0^2}$

31.
$$rect(at) = \begin{cases} 1 \text{ för } |t| < \frac{1}{2a} \\ 0 \text{ för f.ö.} \end{cases} \longleftrightarrow \frac{1}{a} sinc(\frac{F}{a}) \quad a > 0$$

32.
$$sinc(at) = \frac{sin(\pi at)}{\pi at}$$
 $\longleftrightarrow \frac{1}{a} rect(\frac{F}{a}) \ a > 0$

33.
$$rep_T(w(t)) = \sum_{m=-\infty}^{\infty} w(t - mT) \longleftrightarrow \frac{1}{|T|} comb_{1/T}(W(F))$$

34.
$$|T|comb_T(w(t)) = \longleftrightarrow rep_{1/T}(W(F))$$

 $|T| \sum_{m=-\infty}^{\infty} w(mT)\delta(t-mT)$

35.
$$\sum_{n=-\infty}^{\infty} c_n \delta(t - nT) \qquad \longleftrightarrow \sum_{n=-\infty}^{\infty} \frac{1}{T} c_n \delta(F - \frac{n}{T}) = \sum_{n=-\infty}^{\infty} c_n \delta(F - \frac{n}{T$$

2.3 Z-transformen

2.3.1 Z-transform av kausala signaler

1.
$$\mathcal{X}(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Transform

2.
$$x(n) = Z^{-1}[\mathcal{X}(z)] = \frac{1}{2\pi j} \int_{\Gamma} \mathcal{X}(z) z^{n-1} dz$$

Inverstransform

3.
$$\sum_{\nu} a_{\nu} x_{\nu}(n) \longleftrightarrow \sum_{\nu} a_{\nu} \mathcal{X}_{\nu}(z)$$

Linjäritet

4.
$$x(n-n_0) \longleftrightarrow z^{-n_0} \mathcal{X}(z)$$

Skift (n_0 positivt eller negativt heltal)

5.
$$nx(n) \longleftrightarrow -z \frac{d}{dz} \mathcal{X}(z)$$

Multiplikation med n

6.
$$a^n x(n) \longleftrightarrow \mathcal{X}\left(\frac{z}{a}\right)$$

Skalning

7.
$$x(-n) \longleftrightarrow \mathcal{X}\left(\frac{1}{z}\right)$$

Spegling av tidsföljden

8.
$$\left[\sum_{\ell=-\infty}^n x(\ell)\right] \longleftrightarrow \frac{z}{z-1} \mathcal{X}(z)$$

Summering

9.
$$x * y \longleftrightarrow \mathcal{X}(z) \cdot \mathcal{Y}(z)$$

Faltning

10.
$$x(n) \cdot y(n) \longleftrightarrow \frac{1}{2\pi j} \int_{\Gamma} \mathcal{Y}(\xi) \mathcal{X}\left(\frac{z}{\xi}\right) \xi^{-1} d\xi$$

Produkt

11.
$$x(0) = \lim_{z\to\infty} \mathcal{X}(z)$$
 (om gränsvärdet existerar)

Begynnelsevärdesteoremet

12.
$$\lim_{n\to\infty} x(n) = \lim_{z\to 1} (z-1)\mathcal{X}(z)$$
 (om ROC inkluderar enhetscirkeln)

Slutvärdesteoremet

13.
$$\sum_{\ell=-\infty}^{\infty} x(\ell)y(\ell) = \frac{1}{2\pi j} \int_{\Gamma} x(z)y\left(\frac{1}{z}\right)z^{-1}dz$$

Parsevals teorem för reellvärda tidsföljder

14.
$$\sum_{\ell=-\infty}^{\infty} x^2(\ell) = \frac{1}{2\pi i} \int_{\Gamma} \mathcal{X}(z) \mathcal{X}(z^{-1}) z^{-1} dz$$

- --

Talföljd
$$\longleftrightarrow$$
 Transform
$$x(n) \longleftrightarrow \mathcal{X}(z)$$
15. $\delta(n) \longleftrightarrow 1$
16. $u(n) \longleftrightarrow \frac{1}{1-z^{-1}}$
17. $nu(n) \longleftrightarrow \frac{z^{-1}}{(1-z^{-1})^2}$
18. $\alpha^n u(n) \longleftrightarrow \frac{1}{1-\alpha z^{-1}}$
19. $(n+1)\alpha^n u(n) \longleftrightarrow \frac{1}{(1-\alpha z^{-1})^2}$
20. $\frac{(n+1)(n+2)\dots(n+r-1)}{(r-1)!}\alpha^n u(n) \longleftrightarrow \frac{1}{(1-\alpha z^{-1})^r}$
21. $\alpha^n \cos \beta n u(n) \longleftrightarrow \frac{1-z^{-1}\alpha \cos \beta}{1-z^{-1}2\alpha \cos \beta + \alpha^2 z^{-2}}$
22. $\alpha^n \sin \beta n u(n) \longleftrightarrow \frac{z^{-1}\alpha \sin \beta}{1-z^{-1}2\alpha \cos \beta + \alpha^2 z^{-2}}$
23. $\mathbf{F}^n u(n) \longleftrightarrow (\mathbf{I} - z^{-1}\mathbf{F})^{-1}$

2.3.2 Enkelsidig Z-transform av icke kausala signaler

Beteckning

$$\mathcal{X}^+(z) = \sum_{n=0}^\infty x(n) z^{-n}$$
 Enkelsidig Z-transform, $x(n)$ ej nödvändigtvis kausal För kausala signaler

Vid skift av x(n) erhålles:

i) skift ett steg

$$x(n-1) \longleftrightarrow z^{-1}\mathcal{X}^+(z) + x(-1)$$

 $x(n+1) \longleftrightarrow z\mathcal{X}^+(z) - x(0) \cdot z$

ii) skift n_0 steg $(n_0 \ge 0)$

$$x(n - n_0) \longleftrightarrow z^{-n_0} \mathcal{X}^+(z) + x(-1)z^{-n_0+1} + x(-2)z^{-n_0+2} + \dots + x(-n_0)$$
$$x(n + n_0) \longleftrightarrow z^{n_0} \mathcal{X}^+(z) - x(0)z^{n_0} - x(1)z^{n_0-1} - \dots - x(n_0 - 1)z$$

2.4 Fouriertransform för tidsdiskret signal

1.
$$X(f) = \mathcal{F}(x(n)) =$$

= $\sum_{\ell=-\infty}^{\infty} x(\ell)e^{-j2\pi f\ell}$ $\omega = 2\pi f$

Transform

2.
$$x(n) = \int_{-1/2}^{1/2} X(f) e^{j2\pi f n} df =$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} X(f) e^{j\omega n} d\omega$

Inverstransform

3.
$$\sum a_{\nu}x_{\nu}(n)$$

$$\longleftrightarrow \sum_{\nu} a_{\nu} X_{\nu}(f)$$
 Linjäritet

4.
$$x(n-n_0)$$

$$\longleftrightarrow X(f) \cdot e^{-j2\pi f n_0}$$
 Skift

5.
$$x(n)e^{j2\pi f_0 n}$$

$$\longleftrightarrow X(f-f_0)$$
 Frekvenstranslation

6.
$$x(n) \cdot \cos 2\pi f_0 n$$

$$\longleftrightarrow \frac{1}{2} \left[X(f - f_0) + X(f + f_0) \right]$$

Modulation

7.
$$x(n) \cdot \sin 2\pi f_0 n$$

$$\longleftrightarrow \frac{1}{2j} [X(f - f_0) - X(f + f_0)]$$
Modulation

8.
$$x * y$$

$$\longleftrightarrow X(f) \cdot Y(f)$$
 Faltning

9.
$$x \cdot y$$

$$\longleftrightarrow \int_{-1/2}^{1/2} X(\lambda) \cdot Y(f-\lambda) d\lambda$$
 Produkt

10.
$$\sum_{\ell=-\infty}^{\infty} x(\ell)y(\ell) =$$

= $\int_{-1/2}^{1/2} X(f)Y^*(f)df$

11.
$$X(f) = \mathcal{X}(e^{j\omega})$$

Om
$$x(n) = 0$$
 för $n < n_0$ och
$$\sum_{\ell=-\infty}^{\infty} |x(\ell)|^2 < \infty$$
 (Gäller t.ex.: 18,19,20,21 och 22 i Z-transformtabellen för $|\alpha| < 1$)

12.
$$\delta(n)$$

$$\longleftrightarrow$$
 1

13.
$$\delta(n-n_0)$$

$$\longleftrightarrow e^{-j\omega n_0}$$

14.
$$1 \forall n$$

$$\longleftrightarrow \sum_{p=-\infty}^{\infty} \delta(f-p)$$

15.
$$u(n)$$

$$\longleftrightarrow \frac{1}{2} \sum_{p=-\infty}^{\infty} \delta(f-p) + \frac{1}{2} + \frac{1}{j \cdot 2 \cdot \tan(\pi f)}$$

16.
$$2f_1 \cdot sinc(2f_1 \cdot n) = 2f_1 \frac{\sin(2\pi f_1 n)}{2\pi f_1 n}$$

$$\longleftrightarrow rect_p\left(\frac{f}{2f_1}\right) = \begin{cases} 1 & |f - n| < f_1 < 1/2, \ n \text{ heltal} \\ 0 & \text{f.\"o.} \end{cases}$$

Idealt LP-filter

17. $4f_1 sinc(2f_1 n) \cos(2\pi f_0 n)$

$$\longleftrightarrow rect_p\left(\frac{f-f_0}{2f_1}\right) + rect_p\left(\frac{f+f_0}{2f_1}\right)$$
 Idealt BP-filter

18. $\frac{2\pi f_1 n \cos 2\pi f_1 n - \sin 2\pi f_1 n}{\pi n^2}$

$$\longleftrightarrow (j2\pi f)_p = \left\{ \begin{array}{ll} j2\pi (f-n) & |f-n| < f_1 < 1/2 \;, \; n \; \mathrm{heltal} \\ \\ 0 & \mathrm{f.\ddot{o}.} \end{array} \right.$$

Deriverande"krets

19.
$$\cos(2\pi f_0 n) \longleftrightarrow \frac{1}{2} \sum_{p=-\infty}^{\infty} [\delta(f - f_0 - p) + \delta(f + f_0 - p)]$$

20.
$$\alpha^{|n|} \longleftrightarrow \frac{1 - \alpha^2}{1 + \alpha^2 - 2\alpha \cos 2\pi f}$$

21. $\alpha^{|n|} \cos(2\pi f_0 n)$

$$\longleftrightarrow \frac{1-\alpha^2}{2} \left[\frac{1}{1+\alpha^2 - 2\alpha\cos 2\pi (f+f_0)} + \frac{1}{1+\alpha^2 - 2\alpha\cos 2\pi (f-f_0)} \right]$$

22.
$$p_r(n) = \begin{cases} 1 & |n| \le \frac{M-1}{2} \\ 0 & \text{f.\"o.} \end{cases}$$
 M udda

$$\longleftrightarrow P_r(f) = \frac{\sin(\pi f M)}{\sin(\pi f)}$$
 Rektangulärt fönster

2.5 Fourierserieutveckling

2.5.1 Kontinuerlig tid

En periodisk funktion med perioden T_0 , dvs $f(t) = f(t - T_0)$, kan uttryckas i en serieutveckling enligt

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

där

$$c_k = \frac{1}{T_0} \int_{T_0} f(t)e^{-j2\pi kF_0 t} dt \; ; F_0 = \frac{1}{T_0}$$

Om f(t) reell kan detta också uttryckas

$$f(t) = c_0 + 2\sum_{k=1}^{\infty} |c_k| \cos(2\pi k F_0 t + \theta_k) =$$

$$= a_0 + \sum_{k=1}^{\infty} a_k \cos 2\pi k F_0 t - b_k \sin 2\pi k F_0 t$$

där

$$a_{0} = c_{0} = \frac{1}{T_{0}} \int_{T_{0}} f(t)dt$$

$$a_{k} = 2|c_{k}|\cos\theta_{k} = \frac{2}{T_{0}} \int_{T_{0}} f(t)\cos(2\pi kF_{0}t)dt$$

$$b_{k} = 2|c_{k}|\sin\theta_{k} = \frac{-2}{T_{0}} \int_{T_{0}} f(t)\sin(2\pi kF_{0}t)dt$$

Effekten ges av (Parsevals relation)

$$P = \frac{1}{T_0} \int_{T_0} |f(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

För reella signaler gäller också att

$$P = c_0^2 + 2\sum_{k=1}^{\infty} |c_k|^2 = a_0^2 + \frac{1}{2}\sum_{k=1}^{\infty} (a_k^2 + b_k^2)$$

2.5.2 Diskret tid

En periodisk funktion med perioden N, dvs f(n) = f(n - N), kan uttryckas i en serieutveckling enligt

$$f(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi k \ n/N}$$

där

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{-j2\pi k \ n/N}, \quad k = 0, \dots, N-1$$

Serieutvecklingen betecknas ofta med DTFS (discrete-time Fourier series).

Om f(n) reell kan detta också uttryckas

$$f(n) = c_0 + 2\sum_{k=1}^{L} |c_k| \cos\left(2\pi \frac{kn}{N} + \theta_k\right) =$$
$$= a_0 + \sum_{k=1}^{L} \left(a_k \cos\left(2\pi \frac{kn}{N}\right) - b_k \sin\left(2\pi \frac{kn}{N}\right)\right)$$

där

$$a_0 = c_0$$

$$a_k = 2|c_k|\cos(\theta_k)$$

$$b_k = 2|c_k|\sin(\theta_k)$$

$$L = \begin{cases} \frac{N}{2} & \text{om } N \text{ j\"{a}mn} \\ \frac{N-1}{2} & \text{om } N \text{ udda} \end{cases}$$

Effekten ges av

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |f(n)|^2 = \sum_{k=0}^{N-1} |c_k|^2$$

och energin över en period ges av

$$E_N = \sum_{n=0}^{N-1} |f(n)|^2 = N \sum_{k=0}^{N-1} |c_k|^2$$

2.6 Diskreta Fouriertransformen (DFT)

2.6.1 Definition

$$X_k = DFT \ (x_n) = \sum_{n=0}^{N-1} x_n e^{-j2\pi nk/N} \quad k = 0, 1, \dots, N-1$$
 Transform $x_n = IDFT \ (X_k) = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j2\pi nk/N} \quad n = 0, 1, \dots, N-1$ Inversion

OBS:

$$\sum_{n=0}^{N-1} e^{j2\pi} \frac{k - k_0}{N} \cdot n = N \cdot \delta(k - k_0, (\text{modulo } N))$$

2.6.2 Cirkulär faltning

$$x_n \ N \ y_n = \sum_{\ell=0}^{N-1} x_\ell y_{n-\ell} \stackrel{\text{DFT}}{\longleftrightarrow} X_k Y_k$$
 Cirkulär faltning

där \sum står för cirkulär faltning. Detta betyder att x_n - och y_n -sekvenserna skall upprepas periodiskt före summationen, dvs utanför intervallet $n = 0, 1, \ldots, N - 1$ gäller vid summationen att $x_{n-\ell N} = x_n$ och $y_{n-\ell N} = y_n$ ($\ell = \text{heltal}$) dvs index beräknas modulo N. Cirkulär faltning betecknas också x(n) * y(n).

2.6.3 Icke-cirkulär faltning med DFT

Om x(n) = 0 för $n \neq [0, L - 1]$ och y(n) = 0 för $n \neq [0, M - 1]$ så är x * y = 0 för $n \neq [0, N - 1]$ där $N \geq L + M - 1$.

Faltningen kan beräknas ur

$$x * y = \begin{cases} x N y = IDFT(X_k Y_k) & n = 0, 1, \dots, N - 1 \\ 0 & \text{f.\"o.} \end{cases}$$

där

$$X_k = DFT(x(n))$$

 $Y_k = DFT(y(n))$

2.6.4 Relation till Fouriertransformen X(f):

$$\begin{array}{lll} X(k/N) &=& X_k = DFT(x(n)) \text{ om } x(n) = 0 \text{ för } n \neq [0,N-1] \\ X(k/N) &=& X_k = DFT(x_p(n)) \text{ allmänt } x(n) \text{ där } x_p(n) = \sum_{\ell=-\infty}^{\infty} x(n-\ell N) \end{array}$$

2.6.5 Relation till Fourierserier

$$X\left(\frac{k}{N}\right) = X_k = DFT(x(n)) = N \cdot c_k$$

om

$$x(n) = x_p(n), \quad 0 \le n \le N - 1$$

där

$$x_p(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi \frac{nk}{N}} - \infty < n < \infty$$

och

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi \frac{nk}{N}} \quad k = 0, 1, \dots, N-1$$

2.6.6 Parsevals teorem

$$\sum_{n=0}^{N-1} x(n)y^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_k Y^*(k)$$

2.6.7 Några egenskaper hos DFT

Tid	Frekvens
x(n), y(n)	X(k), Y(k)
x(n) = x(n+N)	X(k) = X(k+N)
x(N-1)	X(N-k)
$x((n-1))_N$	$X(k)e^{-j2\pi k1/N}$
$x(n)e^{j2\pi 1n/N}$	$X((k-1))_N$
$x^*(n)$	$X^*(N-k)$
$x_1(n) N x_2(n)$	$X_1(k)X_2(k)$
$x(n) N y^*(-n)$	$X(k)Y^*(k)$
$x_1(n)x_2(n)$	$\frac{1}{N} X_1(k) N X_2(k)$
$\sum_{n=0}^{N-1} x(n)y^*(n)$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) Y^*(k)$

2.7 Några fönsterfunktioner och deras Fouriertransform

i) Fönsterfunktionerna centrerade kring origo (M udda) dvs funktionerna är skilda från 0 bara för $-(M-1)/2 \le n \le (M-1)/2$ Rektangelfönster:

$$w_{rect}(n) = 1$$

$$W_{rect}(f) = M \cdot \frac{sin(\pi f M)}{M sin(\pi f)}$$

Hanningfönster:

$$w_{hanning}(n) = 0.5 + 0.5cos\left(\frac{2\pi n}{M-1}\right)$$

$$W_{hanning}(f) = 0.5 W_{rect}(f) + \\ +0.25 W_{rect}\left(f - \frac{1}{M-1}\right) + \\ +0.25 W_{rect}\left(f + \frac{1}{M-1}\right)$$

Hammingfönster:

$$w_{hamming}(n) = 0.54 + 0.46cos\left(\frac{2\pi n}{M-1}\right)$$

$$W_{hamming}(n) = 0.54 \ W_{rect}(f) + \\ +0.23 \ W_{rect}\left(f - \frac{1}{M-1}\right) + \\ +0.23 \ W_{rect}\left(f + \frac{1}{M-1}\right)$$

Blackmanfönster:

$$w_{blackman}(n) = 0.42 + 0.5\cos\frac{2\pi n}{M-1} + 0.08\cos\frac{4\pi n}{M-1}$$

$$\begin{split} W_{blackman}(f) &= 0.42 \ W_{rect}(f) + \\ &+ 0.25 \ W_{rect} \left(f - \frac{1}{M-1} \right) + \\ &+ 0.25 \ W_{rect} \left(f + \frac{1}{M-1} \right) + \\ &+ 0.04 \ W_{rect} \left(f - \frac{2}{M-1} \right) + \\ &+ 0.04 \ W_{rect} \left(f + \frac{2}{M-1} \right) \end{split}$$

Bartlettfönster (triangelfönster):

$$\begin{split} w_{triangel}(n) &= 1 - \frac{|n|}{(M-1)/2} \\ W_{triangel}(f) &= \frac{M}{2} \left(\frac{\sin \frac{\pi f M}{2}}{\frac{M}{2} \sin(\pi f)} \right)^2 \approx \frac{2}{M} \ W_{rect}^2 \left(\frac{f}{2} \right) \ \text{för små} \ f \end{split}$$

ii) Fönsterfunktioner definierade för $0 \le n \le M-1$ (M udda) Hanning

$$w_{hanning}(n) = 0.5 \left(1 + \cos \frac{2\pi \left(n - \frac{M-1}{2} \right)}{M-1} \right) =$$

$$= 0.5 \left(1 - \cos \left(2\pi \frac{n}{M-1} \right) \right)$$

Hamming

$$w_{hamming}(n) = 0.54 + 0.46 \cos \frac{2\pi \left(n - \frac{M-1}{2}\right)}{M-1} =$$

= 0.54 - 0.46 \cos \frac{2\pi n}{M-1}

Blackman

$$w_{blackman}(n) = 0.42 + 0.5 \cos \frac{2\pi \left(n - \frac{M-1}{2}\right)}{M-1} + 0.08 \cos \frac{4\pi \left(n - \frac{M-1}{2}\right)}{M-1} = 0.42 - 0.5 \cos \frac{2\pi n}{M-1} + 0.08 \cos \frac{4\pi n}{M-1}$$

Triangelfönster (Bartlett)

$$w_{triangel}(n) = 1 - \frac{\left(n - \frac{M-1}{2}\right)}{\frac{M-1}{2}}$$

3 Sampling av analoga signaler

3.1 Sampling och rekonstruktion

Fouriertransformer

Tidskontinuerlig signal:

$$\begin{cases} X_a(F) = \int_{-\infty}^{\infty} x_a(t)e^{-j2\pi Ft}dt \\ x_a(t) = \int_{-\infty}^{\infty} X_a(F)e^{j2\pi Ft}dF \end{cases}$$

Tidsdiskret signal:

$$\begin{cases} X(f) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi f n} \\ x(n) = \int_{-1/2}^{1/2} X(f)e^{j2\pi f n} df \end{cases}$$

Samplingsteoremet

För bandbegränsad $x_a(t)$, dvs $X_a(F) = 0$ för $|F| \ge 1/2T$ gäller

$$x_a(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin \frac{\pi}{T} (t - nT)}{\frac{\pi}{T} (t - nT)}$$

Samplingsfrekvens $F_s = 1/T$.

Sampling

$$x(n) = x_a(nT); \quad T = \frac{1}{F_s}$$

$$X(f) = X\left(\frac{F}{F_s}\right) = F_s \sum_{k=-\infty}^{\infty} X_a(F - kF_s)$$

$$\Gamma(f) = \Gamma\left(\frac{F}{F_s}\right) = F_s \sum_{k=-\infty}^{\infty} \Gamma_a(F - kF_s)$$

Rekonstruktion (idealt)

$$x_a(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin \frac{\pi}{T} (t - nT)}{\frac{\pi}{T} (t - nT)}$$

$$X_a(F) = \frac{1}{F_s} X \left(\frac{F}{F_s}\right) \quad |F| \le \frac{F_s}{2}$$

$$\Gamma_a(F) = \frac{1}{F_s} \Gamma \left(\frac{F}{F_s}\right) \quad |F| \le \frac{F_s}{2}$$

Rekonstruktion med sample-and-hold

$$X_{a}(F) = \frac{1}{F_{s}} X\left(\frac{F}{F_{s}}\right) \cdot \frac{\sin(\pi FT)}{\pi FT} e^{-j2\pi F \frac{T}{2}} \cdot H_{LP}(F)$$

$$\Gamma_{a}(F) = \frac{1}{F_{s}} \Gamma\left(\frac{F}{F_{s}}\right) \left|\frac{\sin(\pi FT)}{\pi FT}\right|^{2} \cdot |H_{LP}(F)|^{2}$$

Blockschema över D/A omvandling

Ideal rekonstruktion

$$y_a(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin \frac{\pi}{T} (t - nT)}{\frac{\pi}{T} (t - nT)}$$

$$Y_a(F) = \frac{1}{F_s} X \left(\frac{F}{F_s}\right) \quad |F| \le \frac{F_s}{2}$$

Rekonstruktion med sample-and-hold

$$Y_a(F) = \frac{1}{F_s} X\left(\frac{F}{F_s}\right) \cdot \frac{\sin(\pi FT)}{\pi FT} e^{-j2\pi F \frac{T}{2}} \cdot H_{LP}(F)$$

3.2 Distorsionsmått

3.2.1 Vikningsdistorsion vid sampling

Spektrum efter antivikningsfilter:

$$\Gamma_{in}(F)$$

Vikningsdistorstion:

$$D_A = 2 \cdot \int_{F_s - F_p}^{\infty} \Gamma_{in}(F) dF$$

Nyttig signaleffekt:

$$D_s = 2 \int_0^{F_p} \Gamma_{in}(F) dF$$

$$\mathrm{d\ddot{a}r}\ 0 \le F_p \le F_s/2$$

Signaldistorsionsförhållande:

A:
$$SDR_A = \frac{D_S}{D_A} = \frac{\int_0^{F_p} \Gamma_{in}(F)dF}{\int_{F_s - F_p}^{\infty} \Gamma_{in}(F)dF}$$

B:
$$SDR_A^0 = \min_{|F| \le F_p} \frac{\Gamma_{in}(F)}{\Gamma_{in}(F_s - F)}$$

Vid monotont avtagande spektrum blir

$$SDR_A^0 = \frac{\Gamma_{in}(F_p)}{\Gamma_{in}(F_s - F_p)}$$

3.2.2 Periodiserings distorsion vid rekonstruktion

Periodiserings distorsion:

$$D_P = 2 \cdot \int_{F_s/2}^{\infty} \Gamma_{ut}(F) dF$$

Nyttig signaleffekt:

$$D_S = 2 \cdot \int_0^{F_s/2} \Gamma_{ut}(F) dF$$

Signaldistorsionsförhållande:

A:
$$SDR_P = \frac{D_S}{D_P} = \frac{\int_0^{F_S/2} \Gamma_{ut}(F) dF}{\int_{F_S/2}^{\infty} \Gamma_{ut}(F) dF}$$

B:
$$SDR_P^0 = \min_{|F| < F_s/2} \frac{\Gamma_{ut}(F)}{\Gamma_{ut}(F_s - F)}$$

Ett bra mått ges ofta av

$$SDR_P^0 = \frac{\Gamma_{ut}(F_p)}{\Gamma_{ut}(F_s - F_p)}$$

där \mathcal{F}_p svarar mot högsta frekvenskomponenten hos den samplade signalen.

3.3 Kvantiseringsdistorsion

$$D_Q \simeq \frac{\Delta^2}{12}$$
 linjär kvantisering, Δ litet

$$SDR_Q = \frac{\text{Signaleffekt}}{D_q}$$

Kvantiseringsdistorsion vid sinussignal, maximal utstyrning, r bitar

$$SDR_O = 1.76 + 6 \cdot r[dB]$$

Kvantiseringsdistorsion, utstyrning uttryckt i topp- och RMS-värde, r bitar

$$SDR_Q = 6 \cdot r + 1.76 - 10^{10} \log \left(\frac{A_{peak}}{A_{RMS} \cdot \sqrt{2}} \right)^2 - 10^{10} \log \left(\frac{V}{A_{peak}} \right)^2$$

där [-V, V] är kvantiserarens utstyrningsområde.

3.4 Decimering och interpolering

Nedsampling med en faktor M

$$\downarrow M \quad y(n) = \{\dots u(0), u(M), u(2M) \dots\}$$
$$Y(f) = \frac{1}{M} \sum_{i=0}^{M-1} U\left(\frac{f-i}{M}\right)$$

Uppsampling med en faktor L

$$\uparrow L \quad w(n) = \{\dots x(0), \underbrace{0, 0, \dots,}_{\text{L-1 st}} x(1), \underbrace{0, 0, \dots,}_{\text{L-1 st}} x(2) \dots \}$$

$$W(f) = X(fL)$$

4 Analoga filter

4.1 Filterapproximationer av ideala LP-filter

Allmän form på approximationens amplitudfunktion

$$|H(\Omega)| = \frac{K}{\sqrt{1 + g_N \left(\left(\frac{\Omega}{\Omega_p}\right)^2\right)}} \qquad \Omega = 2\pi F$$

där

$$g_N\left(\left(\frac{\Omega}{\Omega_p}\right)^2\right) \left\{ \begin{array}{ll} \ll 1 & \left|\frac{\Omega}{\Omega_p}\right| < 1 \\ \gg 1 & \left|\frac{\Omega}{\Omega_p}\right| > 1 \end{array} \right.$$

och Ω_p är filtrets gränsvinkelfrekvens.

Ibland kan det vara lämpligt att normera vinkelfrekvensen med Ω_p . Detta svarar mot att man sätter $\Omega_p = 1$ i detta avsnitt.

4.1.1 Butterworthfilter

$$|H(\Omega)| = \frac{K}{\sqrt{1 + \left(\frac{\Omega}{\Omega_p}\right)^{2N}}}$$

 $K = \text{amplitud funktionens maximiv \"{a}rde}.$

 $K = \text{amplitud funktionens värde för } \Omega = 0.$

Systemfunktionens nämnare är Butterworthpolynom om $\Omega_p=1$. Dessa polynom finns i Tabell 2.1. För allmänt Ω_p gäller

$$\mathcal{H}(s) = \frac{K}{\left(\frac{s}{\Omega_p}\right)^N + a_{N-1} \left(\frac{s}{\Omega_p}\right)^{N-1} + \dots + a_1 \left(\frac{s}{\Omega_p}\right) + 1}$$

där a_1, \ldots, a_{N-1} erhålles ur Tabell 4.1.

Tabell 4.1 Koefficienter a_{ν} i Butterworthpolynom $s^N + a_{N-1}s^{N-1} + \ldots + a_1s + 1$

N	a_1	a_2	a_3	a_4	a_5	a_6	a_7
1							
2	$\sqrt{2}$						
3	2	2					
4	2.613	3.414	2.613				
5	3.236	5.236	5.236	3.236			
6	3.864	7.464	9.141	7.464	3.864		
7	4.494	10.103	14.606	14.606	10.103	4.494	
8	5.126	13.138	21.848	25.691	21.848	13.138	5.126

Tabell 4.2

Faktoriserade Butterworthpolynom för $\Omega_p = 1$. För $\Omega_p \neq 1$ låt $s \to s/\Omega_p$.

$$\begin{array}{|c|c|c|c|}\hline N \\\hline 1 & (s+1)\\ 2 & (s^2+\sqrt{2}s+1)\\ 3 & (s^2+s+1)(s+1)\\ 4 & (s^2+0.76536s+1)(s^2+1.84776s+1)\\ 5 & (s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)\\ 6 & (s^2+0.5176s+1)(s^2+\sqrt{2}s+1)(s^2+1.9318s+1)\\ 7 & (s+1)(s^2+0.4450s+1)(s^2+1.2465s+1)(s^2+1.8022s+1)\\ 8 & (s^2+0.3896s+1)(s^2+1.1110s+1)(s^2+1.6630s+1)(s^2+1.9622s+1)\\ \end{array}$$

4.1.2 Chebyshevfilter

$$|H(\Omega)| = \frac{K}{\sqrt{1 + \varepsilon^2 T_N^2 \left(\frac{\Omega}{\Omega_p}\right)}}$$

Ripple = $10 \cdot \log(1 + \varepsilon^2)$ dB.

 $K = \text{amplitud} \text{funktionens maximiv} \ddot{\text{arde}}.$

 $K \neq$ amplitud
funktionens värde för $\Omega = 0$ då N är jämn.

 $T_N(\frac{\Omega}{\Omega_p})$ är Chebyshevpolynom. (Betecknas även med $C_N(\frac{\Omega}{\Omega_p})$). Dessa finns i Tabell 4.3 för $\Omega_p = 1$. För $\Omega_p \neq 1$ låt $\Omega \to \frac{\Omega}{\Omega_p}$ i Tabell 4.3.

Systemfunktionen

$$\mathcal{H}(s) = \frac{K \cdot a_0 \cdot \begin{cases} \frac{1}{\sqrt{1+\varepsilon^2}} & N \text{ udda} \\ \frac{1}{\sqrt{1+\varepsilon^2}} & N \text{ jämn} \end{cases}}{\left(\frac{s}{\Omega_p}\right)^N + a_{N-1} \left(\frac{s}{\Omega_p}\right)^{N-1} + \dots + a_0}$$

där $\varepsilon, a_0, \dots, a_{N-1}$ erhålles ur Tabell 4.4.

Pollägena till $\mathcal{H}(s)$ finns i Tabell 4.5 för $\Omega_p = 1$. För $\Omega_p \neq 1$ multipliceras pollägena med Ω_p .

Tabell 4.3

Chebyshevpolynom.

$$T_N(\Omega) = \begin{cases} \cos(N \ arccos\Omega) & |\Omega| \le 1\\ \cos(N \ arccosh\Omega) & |\Omega| \ge 1 \end{cases}$$

eller

$$T_N(\Omega) = \frac{\left(\Omega + \sqrt{\Omega^2 - 1}\right)^N + \left(\Omega + \sqrt{\Omega^2 - 1}\right)^{-N}}{2} \quad |\Omega| \ge 1$$

Rekursiv beräkning

$$T_{N+1}(\Omega) = 2\Omega T_N(\Omega) - T_{N-1}(\Omega)$$

N	$T_N(\Omega)$
0	1
1	Ω
2	$2\Omega^2 - 1$
3	$4\Omega^3 - 3\Omega$
4	$8\Omega^4 - 8\Omega^2 + 1$
5	$16\Omega^5 - 20\Omega^3 + 5\Omega$
6	$32\Omega^6 - 48\Omega^4 + 18\Omega^2 - 1$
7	$64\Omega^7 - 112\Omega^5 + 56\Omega^3 - 7\Omega$
8	$128\Omega^8 - 256\Omega^6 + 160\Omega^4 - 32\Omega^2 + 1$
9	$256\Omega^9 - 576\Omega^7 + 432\Omega^5 - 120\Omega^3 + 9\Omega$
10	$512\Omega^{10} - 1280\Omega^8 + 1120\Omega^6 - 400\Omega^4 + 50\Omega^2 - 1$

Tabell 4.4. Koefficienterna a_{ν} i Chebyshevfilter.

0.5dB ripple ($\varepsilon = 0.349, \ \varepsilon^2 = 0.122$).

N	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								2.863
2							1.426	1.516
3						1.253	1.535	0.716
4					1.197	1.717	1.025	0.379
5				1.172	1.937	1.309	0.752	0.179
6			1.159	2.172	1.589	1.172	0.432	0.095
7		1.151	2.413	1.869	1.648	0.756	0.282	0.045
8	1.146	2.657	2.149	2.184	1.148	0.573	0.152	0.024

1-dB ripple ($\varepsilon = 0.509, \ \varepsilon^2 = 0.259$).

N	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								1.965
2							1.098	1.102
3						0.989	1.238	0.491
4					0.953	1.454	0.743	0.276
5				0.937	1.689	0.974	0.580	0.123
6			0.928	1.931	1.202	0.939	0.307	0.069
7		0.923	2.176	1.429	1.357	0.549	0.214	0.031
8	0.920	2.423	1.655	1.837	0.447	0.448	0.107	0.017

2-dB ripple ($\varepsilon = 0.765, \ \varepsilon^2 = 0.585$).

N	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								1.307
2							0.804	0.823
3						0.738	1.022	0.327
4					0.716	1.256	0.517	0.206
5				0.705	1.499	0.693	0.459	0.082
6			0.701	1.745	0.867	0.771	0.210	0.051
7		0.698	1.994	1.039	1.144	0.383	0.166	0.020
8	0.696	2.242	1.212	1.579	0.598	0.359	0.073	0.013

3-dB*) ripple ($\varepsilon = 0.998, \ \varepsilon^2 = 0.995$).

o-ur	J TIPP	$c \in C - c$	0.000, c	- 0.00	,0).			
N	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								1.002
2							0.645	0.708
3						0.597	0.928	0.251
4					0.581	1.169	0.405	0.177
5				0.575	1.415	0.549	0.408	0.063
6			0.571	1.663	0.691	0.699	0.163	0.044
7		0.568	1.911	0.831	1.052	0.300	0.146	0.016
8	0.567	2.161	0.972	1.467	0.472	0.321	0.056	0.011

^{*)} Tabellen är uträknad för "exakt"3dB, ej för $20 \cdot \log \sqrt{2} \approx 3.01$ dB. Därav $\varepsilon \neq 1$ och $a_0 \neq 1$ för N = 1.

Tabell 4.5. Pollägen för Chebyshevfilter.

0.5dB ripple ($\varepsilon = 0.349, \ \varepsilon^2 = 0.122$).

,	,				
2 3	4	5	6	7	8
3 -0.626	-0.175	-0.362	-0.078	-0.256	-0.044
4	$\pm j1.016$		$\pm j1.008$		$\pm j1.005$
-0.313	-0.423	-0.112	-0.212	-0.057	-0.124
$\pm j1.022$	$\pm j0.421$	$\pm j1.011$	$\pm j0.738$	$\pm j1.006$	$\pm j0.852$
		-0.293	-0.290	± 0.160	-0.186
		$\pm j0.625$	$\pm j0.270$	$\pm j0.807$	$\pm j0.570$
				-0.231	-0.220
				$\pm j0.448$	$\pm j0.200$
	-0.626 04 -0.313	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1-dB ripple ($\varepsilon = 0.509, \ \varepsilon^2 = 0.259$).

- ab 11p	r (•		000).				
N=1	2	3	4	5	6	7	8
-1.965	-0.549	-0.494	-0.139	-0.289	-0.062	-0.205	-0.035
	$\pm j0.895$		$\pm j0.983$		$\pm j0.993$		$\pm j0.996$
		-0.247	-0.337	-0.089	-0.170	-0.046	-0.100
		$\pm j0.966$	$\pm j0.407$	$\pm j0.990$	$\pm j0.727$	$\pm j0.995$	$\pm j0.845$
				-0.234	-0.232	-0.128	-0.149
				$\pm j0.612$	$\pm j0.266$	$\pm j0.798$	$\pm j0.564$
						-0.185	-0.176
						$\pm j0.443$	$\pm j0.198$

2-dB ripple ($\varepsilon = 0.765, \ \varepsilon^2 = 0.585$).

N=1	2	3	4	5	6	7	8
-1.307	-0.402	-0.369	-0.105	-0.218	-0.047	-0.155	-0.026
	$\pm j0.813$		$\pm j0.958$		$\pm j0.982$		$\pm j0.990$
		-0.184	-0.253	-0.067	-0.128	-0.034	-0.075
		$\pm j0.923$	± 0.397	$\pm j0.973$	± 0.719	$\pm j0.987$	$\pm j0.839$
				-0.177	-0.175	-0.097	-0.113
				$\pm j0.602$	$\pm j0.263$	$\pm j0.791$	$\pm j0.561$
						-0.140	-0.133
						$\pm j0.439$	$\pm j0.197$

3-dB*) ripple ($\varepsilon = 0.998, \ \varepsilon^2 = 0.995$).

o db 11	PPIC (C —	0.000, 0	0.000).				
N=1	2	3	4	5	6	7	8
-1.002	-0.322	-0.299	-0.085	-0.177	-0.038	-0.126	-0.021
	$\pm j0.777$		$\pm j0.946$		$\pm j0.976$		± 0.987
		-0.1493	-0.206	-0.055	-0.104	-0.028	-0.061
		$\pm j0.904$	$\pm j0.392$	$\pm j0.966$	± 0.715	$\pm j0.983$	$\pm j0.836$
				-0.144	-0.143	-0.079	-0.092
				$\pm j0.597$	$\pm j0.262$	$\pm j0.789$	$\pm j0.559$
						-0.114	-0.108
						$\pm j0.437$	$\pm j0.196$

^{*)} Se anmärkning Tabell 4.4.

4.1.3 Besselfilter

Besselfilter ger en maximalt flat grupplöptid. Koefficienter till Besselpolynom.

n	a_0	a_1	a_2	a_3	a_4	a_5
1	1					
2	3	3				
3	15	15	6			
$\mid 4 \mid$	105	105	45	10		
5	945	945	420	105	15	
6	10395	10395	4725	1260	210	21

Rötter till Besselpolynom.

n						
1	-1.0000					
2	-1.5000	$\pm j0.8660$				
3	-2.3222	-1.8389	$\pm j1.7544$			
4	-2.8962	$\pm j0.8672$	-2.1038	$\pm j2.6574$		
5	-3.6467	-3.3520	$\pm j1.7427$	-2.3247	$\pm j3.5710$	
6	-4.2484	$\pm j0.8675$	-3.7357	$\pm j2.6263$	-2.5159	$\pm j4.4927$

Faktoriserade Besselpolynom

```
\begin{array}{|c|c|c|c|c|}\hline n\\ \hline 1 & s+1\\ 2 & s^2+3s+3\\ 3 & (s^2+3.67782s+6.45944)(s+2.32219)\\ 4 & (s^2+5.79242s+9.14013)(s^2+4.20758s+11.4878)\\ 5 & (s^2+6.70391s+14.2725)(s^2+4.64934s+18.15631)(s+3.64674)\\ 6 & (s^2+8.49672s+18.80113)(s^2+7.47142s+20.85282)\\ & & & (s^2+5.03186s+26.51402) & 10395\\ \hline \end{array}
```

4.2Frekvenstransformationer av analoga filter

- 1. Utgå från frekvenserna för kravspecifikationen i det analoga högpass-, bandpass- eller bandspärrfiltret. I det färdiga filtret blir $\Omega_1\Omega_2=$ $\Omega_l\Omega_u$.
- 2. Transformera till LP-filtrets frekvenser $\Omega_p = 1$, Ω_r .
- 3. Sök LP-filtrets koefficienter.
- 4. Transformera tillbaka till ursprungsfiltret (HP, BP, BS) genom att byta s i H(s) enligt nedan. För BP, BS transformeras lämpligen polerna direkt om H(s) ska ges faktoriserad i 2:a-gradspolynom. Beräkna eventuellt nytt värde på Ω_1 eller Ω_2 (om $A \neq B$).

Framåt

LP-HP
$$\Omega'_r = \Omega_u/\Omega_r$$

LP-BP
$$\Omega_{av} = (\Omega_{u} - \Omega_{l})/2 \qquad \Omega_{r} = min(|A|, |B|)$$

$$\Omega_{1} = \sqrt{\Omega_{r}^{2}\Omega_{av}^{2} + \Omega_{l}\Omega_{u}} - \Omega_{av}\Omega_{r} \qquad A = (-\Omega_{1}^{2} + \Omega_{l}\Omega_{u})/[\Omega_{1}(\Omega_{u} - \Omega_{l})]$$

$$\Omega_{2} = \sqrt{\Omega_{r}^{2}\Omega_{av}^{2} + \Omega_{l}\Omega_{u}} + \Omega_{av}\Omega_{r} \qquad B = (+\Omega_{2}^{2} - \Omega_{l}\Omega_{u})/[\Omega_{2}(\Omega_{u} - \Omega_{l})]$$

$$s_{BP} = S_{LP}\Omega_{av} \pm \sqrt{(S_{LP}\Omega_{av})^{2} - \Omega_{u}\Omega_{l}}$$

LP-BS
$$\Omega_{av} = (\Omega_{u} - \Omega_{l})/2 \qquad \Omega_{r} = min(|A|, |B|)$$

$$\Omega_{1} = \sqrt{\Omega_{av}^{2}/\Omega_{r}^{2} + \Omega_{l}\Omega_{u}} - \Omega_{av}/\Omega_{r} \qquad A = \Omega_{1}(\Omega_{u} - \Omega_{l})/(-\Omega_{1}^{2} + \Omega_{l}\Omega_{u})$$

$$\Omega_{2} = \sqrt{\Omega_{av}^{2}/\Omega_{r}^{2} + \Omega_{l}\Omega_{u}} + \Omega_{av}/\Omega_{r} \qquad B = \Omega_{2}(\Omega_{u} - \Omega_{l})/(-\Omega_{2}^{2} + \Omega_{l}\Omega_{u})$$

$$s_{BP} = \Omega_{av}/S_{LP} \pm \sqrt{(\Omega_{av}/S_{LP})^{2} - \Omega_{u}\Omega_{l}}$$

 $\Omega_r = \Omega_u/\Omega_r'$

$$\Omega_r = min(|A|, |B|)$$

$$A = (-\Omega_1^2 + \Omega_l \Omega_u) / [\Omega_1(\Omega_u - \Omega_l)]$$

$$B = (+\Omega_2^2 - \Omega_l \Omega_u) / [\Omega_2(\Omega_u - \Omega_l)]$$

$$\Omega_r = \min(|A|, |B|)$$

$$A = \Omega_1(\Omega_u - \Omega_l)/(-\Omega_1^2 + \Omega_l\Omega_u)$$

$$B = \Omega_2(\Omega_u - \Omega_l)/(-\Omega_2^2 + \Omega_l\Omega_u)$$

5 Tidsdiskreta filter

5.1 FIR-filter och IIR-filter

FIR-filter

$$\mathcal{H}(z) = b_0 + b_1 z^{-1} + \dots + b_M z^{-M}$$

$$h(n) = \begin{cases} b_n & 0 \le n \le M \\ 0 & \text{för \"{o}} \text{vrigt} \end{cases}$$

IIR-filter

$$\mathcal{H}(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}}$$
$$h(n) = Z^{-1} \{ \mathcal{H}(z) \}$$

5.2 FIR-filter med fönstermetoden

Impulssvar

$$h(n) = h_d(n) \cdot w(n)$$

med önskad impulssvar $h_d(n)$ och spektrum $H_d(\omega)$ (i $0 \le \omega \le \pi$) och tidsfönster w(n)

Lågpass:

$$h_d(n) = \frac{\omega_c}{\pi} \frac{\sin \omega_c \left(n - \frac{M-1}{2}\right)}{\omega_c \left(n - \frac{M-1}{2}\right)}$$

$$H_d(\omega) = \begin{cases} e^{-j\omega \ (M-1)/2} & |\omega| < \omega_c \\ 0 & \text{för övrigt} \end{cases}$$

Bandpass:

$$h_d(n) = 2\cos\left(\omega_0\left(n - \frac{M-1}{2}\right)\right) \cdot \frac{\omega_c}{\pi} \frac{\sin\omega_c\left(n - \frac{M-1}{2}\right)}{\omega_c\left(n - \frac{M-1}{2}\right)}$$

$$H_d(\omega) = \begin{cases} e^{-j\omega \ (M-1)/2} & \omega_0 - \omega_c < |\omega| < \omega_0 + \omega_c \\ 0 & \text{för övrigt} \end{cases}$$

Högpass:

$$h_d(n) = \delta\left(n - \frac{M-1}{2}\right) - \frac{\omega_c}{\pi} \frac{\sin\omega_c\left(n - \frac{M-1}{2}\right)}{\omega_c\left(n - \frac{M-1}{2}\right)}$$

$$H_d(\omega) = \begin{cases} e^{-j\omega \ (M-1)/2} & |\omega| > \omega_c \\ 0 & \text{för övrigt} \end{cases}$$

Filtrets spektrum $H(\omega) = H_d(\omega) * W(\omega)$ och vid gränsfrekvensen ω_c är dämpningen 6dB.

Vid dimensionering av filter ger nedanstående tabeller en grov approximation av erforderlig längd M.

Tabell 5.1
Storlek på huvudlob och sidolob för några vanliga fönsterfunktioner.

	A	01
	Approximativ	$\operatorname{St\"{o}rsta}$
Fönster	bredd av	$\operatorname{sidolob}$
	huvudlob	(dB)
Rectangular	$4\pi/M$	-13
Bartlett	$8\pi/M$	-27
Hanning	$8\pi/M$	-32
Hamming	$8\pi/M$	-43
Blackman	$12\pi/M$	-58

Tabell 5.2
Storlek på övergångszon och sidolob för några fönsterfunktioner.

Fönster	Övergångszonens	Största sidolob
	bredd (Hz)	(dB)
Rektangulärt	0.6/M	-21
Hamming	1.7/M	-55
Blackman	3/M	-75

En bättre approximation erhålles med utnyttjande av sambandet (f litet, M stort)

$$\frac{\sin(\pi f M)}{M \sin(\pi f)} \approx \frac{\sin(\pi f M)}{\pi f M}$$

(f litet, M stort.)

H(f) som funktion av $x = (f - f_c) \cdot M$ med M = 99, $f_c = 0.1$ för rektangelfönster, hammingfönster och blackmanfönster ges i figuren på nästa sida.

Dämpningskurvor för fönsterfilter

Övergångszon för FIR-filter, konstruerade med fönstermetoden, M=99 och $f_c=0.1$. x-axel graderad med $x=(f-f_c)M$. För högpassfilter använd $x=-(f-f_c)M$. Ger en användbar approximation för M>10. Bättre approximation för stora M. Den lilla figuren visar området runt x=0.

Filtren konstruerade med Rektangelfönster Hammingfönster Blackmanfönster

5.3 Ekvirippel FIR-filter

Dimensionering av ekviripplefilter enligt Remez algoritmen. Approximativt enligt Kaiser.

$$N = \frac{D_{\infty}(\delta_p, \delta_s)}{\Delta f} + 1$$

$$\Delta f = f_s - f_p$$

$$D_{\infty}(\delta_p, \delta_s) = \frac{-20 \log \sqrt{\delta_p \delta_s} - 13}{14.6}$$

5.4 FIR-filter med minstakvadratmetoden

Minimering av

$$\mathcal{E} = \sum_{n} [x(n) * h(n) - d(n)]^2$$

ger

$$\sum_{n=0}^{M-1} h(n)r_{xx}(n-\ell) = r_{dx}(\ell) \quad \ell = 0, \dots, M-1$$

och

$$\mathcal{E}_{\min} = r_{dd}(0) - \sum_{k=0}^{M-1} h(k) r_{dx}(k)$$

där $r_{xx}(\ell)$ är korrelationsfunktionen för x(n) och $r_{dx}(\ell)$ är korskorrelationen mellan d(n) och x(n).

I matrisform kan detta skrivas

$$\mathbf{R}_{xx} \cdot \mathbf{h} = \mathbf{r}_{dx}$$

$$\mathbf{h} = \mathbf{R}_{xx}^{-1} \cdot \mathbf{r}_{dx}$$

$$\mathcal{E}_{\min} = r_{dd}(0) - \mathbf{h}^T \cdot \mathbf{r}_{dx}$$

5.5 IIR-filter

Bestämning av IIR-filter utgående från analoga filter.

5.5.1 Impulsinvarians

$$h(n) = h_a(nT)$$

1.

$$h_a(t) = e^{-\sigma_0 t} \longleftrightarrow \mathcal{H}_a(s) = \frac{1}{s + \sigma_0}$$

$$\Rightarrow \mathcal{H}(z) = \frac{1}{1 - e^{-\sigma_0 T} z^{-1}}$$

2.

$$h_a(t) = e^{-\sigma_0 t} \cos \Omega_0 t \longleftrightarrow \mathcal{H}_a(s) = \frac{s + \sigma_0}{(s + \sigma_0)^2 + \Omega_0^2}$$
$$\Rightarrow \mathcal{H}(z) = \frac{1 - z^{-1} e^{-\sigma_0 T} \cos \Omega_0 T}{1 - 2z^{-1} e^{-\sigma_0 T} \cos \Omega_0 T + z^{-2} e^{-2\sigma_0 T}}$$

3.

$$h_a(t) = e^{-\sigma_0 t} \sin \Omega_0 t \longleftrightarrow \mathcal{H}_a(s) = \frac{\Omega_0}{(s + \sigma_0)^2 + \Omega_0^2}$$
$$\Rightarrow \mathcal{H}(z) = \frac{z^{-1} e^{-\sigma_0 T} \sin \Omega_0 T}{1 - 2z^{-1} e^{-\sigma_0 T} \cos \Omega_0 T + z^{-2} e^{-2\sigma_0 T}}$$

5.5.2 Bilinjär transformation

Frekvenstransformation (prewarp")

$$F_{prewarp} = \frac{1}{T} \frac{\tan(\pi f)}{\pi}$$

Analog filterkonstruktion i variabeln $\Omega_{prewarp}$.

$$\mathcal{H}(z) = \mathcal{H}_a(s) \text{ där } s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

T är en normeringsfaktor (kan oftast väljas = 1).

5.5.3 Koefficientkvantisering

Polförflyttning då koefficienterna a_1,\ldots,a_k ändras $\Delta a_1,\ldots,\Delta a_k$

$$\Delta p_i \approx \frac{\partial p_i}{\partial a_1} \ \Delta a_1 + \dots + \frac{\partial p_i}{\partial a_k} \ \Delta a_k$$

Vid normalform (direktform II) gäller

$$\frac{\partial p_i}{\partial a_j} = \underbrace{\frac{-p_i^{k-j}}{(p_i - p_1)(p_i - p_2)\dots(p_i - p_k)}}_{k-1 \text{ st faktorer}}$$

 $(p_i - p_i)$ skall ej tas med

5.6 Latticefilter

Lattice-ladder

$$A_0(z) = B_0(z) = 1$$

$$\begin{cases} A_m(z) = A_{m-1}(z) + K_m z^{-1} B_{m-1}(z) \\ B_m(z) = K_m A_{m-1}(z) + z^{-1} B_{m-1}(z) \end{cases}$$

$$A_{m-1}(z) = \frac{1}{1 - K_m^2} \left(A_m(z) - K_m B_m(z) \right)$$

där

$$A_m(z) = Z\{\alpha_m(n)\} \text{ med } K_m = \alpha_m(m)$$

 $B_m(z) = Z\{\beta_m(n)\}$

Samband mellan $A_m(z)$ och $B_m(z)$

$$B_m(z) = z^{-m} A_m(z^{-1}) \text{ och }$$

 $\beta_m(k) = \alpha_m(m-k)$

Lattice-FIR

$$H(z) = A_{M-1}(z)$$

Lattice-all pole IIR

$$H(z) = \frac{1}{A_N(z)}$$

Lattice-ladder

$$H(z) = \frac{C_N(z)}{A_N(z)} = \frac{c_0 + c_1 z^{-1} \dots c_N z^{-N}}{A_N(z)}$$

där

$$C_m(z) = C_{m-1}(z) + v_m B_m(z)$$

 och

$$c_m(m) = v_m \quad m = 0, 1, \dots, N$$

6 Spektralskattning

Spektralskattning

$$\gamma_{xx}(m) = E\{x(n)x(n+m)\}$$
 autokorrelation
$$\Gamma_{xx}(f) = \sum_{n=0}^{\infty} \gamma_{xx}e^{-j2\pi f m} \text{ effektspektrum}$$

Periodogram

$$r_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-m-1} x(n)x(n+m) \quad 0 \le m \le N-1 \quad \text{autokorrelation (estimat)}$$

$$P_{xx}(f) = \sum_{m=-N+1}^{N-1} r_{xx}(m)e^{-j2\pi fm} = \frac{1}{N} \left| \sum_{m=0}^{N-1} x(m)e^{-j2\pi fm} \right|^2$$
effektspektrum (estimat)

$$E\{r_{xx}(m)\} = \left(1 - \frac{|m|}{N}\right) \gamma_{xx}(m) \to \gamma_{xx}(m) \text{ då } N \to \infty$$

$$var(r_{xx}(m)) \approx \frac{1}{N} \sum_{n=-\infty}^{\infty} [\gamma_{xx}^2(n) + \gamma_{xx}(n-m)\gamma_{xx}(n+m)] \to 0 \text{ då } N \to \infty$$

$$E\{P_{xx}(f)\} = \int_{-1/2}^{1/2} \Gamma_{xx}(\alpha) W_B(f-\alpha) d\alpha$$

där $W_B(f)$ är Fouriertransformen av Bartlettfönstret $\left(1 - \frac{|m|}{N}\right)$

$$var(P_{xx}(f)) = \Gamma_{xx}^2(f) \left[1 + \left(\frac{sin2\pi fN}{Nsin2\pi f} \right)^2 \right] \rightarrow \Gamma_{xx}^2(f) \, då \, N \rightarrow \infty$$

om x(n) Gaussisk.

Periodogram med DFT:

$$P_{xx}\left(\frac{k}{N}\right) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n)e^{-j2\pi \frac{nk}{N}} \right|^2 \quad k = 0, \dots, N-1$$

Medelvärdesbildning av periodogram

Quality factor

$$Q = \frac{[E\{P_{xx}(f)\}]^2}{var(P_{xx}(f))}$$

Relativ varians $\frac{1}{Q}$ $Q \approx$ tid-bandbreddsprodukt.

Upplösning Δf beräknad i -3dB punkterna från fönstrets huvudlob.