1. Discrete dynamical systems

introduction

Fixed points theorem

Let:

 $\cdot I \subset \mathbb{R}$ open

 $\cdot f : I \rightarrow I$ differentiable

 $\cdot x \in I$

Then, holds:

 $|f'(x)| < 1 \rightarrow x \text{ attractive}$

 $|f'(x)| > 1 \to x$ repulsive

Demonstration:

demonstration

Attractiveness of periodic points does not involve the chosen point

Let:

 (M, \mathbb{N}, f) functional dynamical system

 $\cdot \, x \in M$ n-periodic point

$$\{x_i\}_{i=1}^r$$
 orbit of x

Then, holds:

$$\cdot x \text{ attractive } \leftrightarrow \forall x' \in o(x) :$$

$$x'$$
 attractive

Demonstration:

$$\forall x' \in o(x) :$$

$$f^{n'}(x') = \prod_{i=1}^{r} f'(x_i) = f^{n'}(x)$$

Partition of attraction set

Let:

 $\cdot \left(M,\mathbb{N},f\right)$ functional dynamical system

 $\cdot x$ n-periodic point

 $\cdot o(x)$ orbit of x

Then, holds:

$$\cdot \forall x' \in o(x)$$
:

 $\exists \mathcal{U} \subset M \text{ open } :$

 $\forall y \in \mathcal{U}$:

$$f^n(y) \xrightarrow{n} x'$$

Demonstration:

demonstration

Homeomorphisms are monotonous

Let:

 $f: \mathbb{R} \to \mathbb{R}$ homeomorphism

Then, holds:

 $\cdot f$ monotonous

Demonstration:

no demonstration

Homeomorphisms and n-periodic points

Let:

 $\cdot \, f \, : \, \mathbb{R} \to \mathbb{R}$ homeomorphism (M,T,ϕ) dynamical system defined

by f

Then, holds:

 $\cdot \ \forall \ n \in \mathbb{N}$:

 $\nexists x \in M$, x n-periodic point

Demonstration:

graphically

Sarkovskii's theorem

Let:

$$f:I \to I$$

$$(M, \mathbb{N}, f)$$
 dynamical system

Then, holds:

$$\cdot \exists x \in M$$
:

$$o(x)$$
 k-period

$$\cdot \rightarrow \forall l \in \mathbb{N} \mid l > k$$
:

$$\exists x' \in M$$
:

$$x'$$
 l-period

Invariance of stability over periods

Let:

 $\cdot \left(\mathbb{R}^{n}, \mathbb{N}, f \right)$ n-D dynamical system

 $\cdot \, p \in \mathbb{R}^n$ k-periodic point

 $\cdot \chi$ character of periodic points

Then, holds:

·
$$\exists \sigma \in Im(\chi)$$
:

$$\forall \ x \in o(p) :$$

$$\chi(x) = \sigma$$

Demonstration:

i will