Making it easier to be tidy

Session 8

Kieran Healy Statistical Horizons, September 2021

Load the packages, as always

```
library(here)
                   # manage file paths
## here() starts at /Users/kjhealy/Documents/courses/data wrangling
library(socviz)
                 # data and some useful functions
##
## Attaching package: 'socviz'
## The following object is masked from 'package:kjhutils':
##
###
      %nin%
library(tidyverse) # your friend and mine
                                                                – tidyverse 1.3.1 —
## -- Attaching packages -
## √ ggplot2 3.3.5
                   √ purrr 0.3.4
## \checkmark tibble 3.1.4 \checkmark dplyr 1.0.7
## √ tidyr 1.1.3 √ stringr 1.4.0
## / readr 2.0.1
                      √ forcats 0.5.1
## -- Conflicts ---
                                                          - tidyverse conflicts() --
                            masks testthat::edition_get()
## x readr::edition get()
## x dplyr::filter()
                            masks stats::filter()
## x purrr::is null()
                            masks testthat::is null()
## x dplyr::lag()
                            masks stats::lag()
## x readr::local edition() masks testthat::local edition()
## x dplyr::matches()
                            masks tidyr::matches(), testthat::matches()
library(haven)
                   # for Stata, SAS, and SPSS files
```

library(broom)

tidy model summaries

MOWE TO THE ahead

Some helpful things

The RStudio Community

The reprex package

Reference

Articles ▼

Overview

Prepare reprexes for posting to GitHub issues, StackOverflow, in Slack messages or snippets, or even to paste into PowerPoint or Keynote slides. What is a reprex? It's a reproducible example, as coined by Romain François.

Given R code on the clipboard, selected in RStudio, as an expression (quoted or not), or in a file ...

- runitvia rmarkdown::render(),
- with deliberate choices re: render() arguments, knitr options, and Pandoc options.

Get resulting runnable code + output as

- Markdown, suitable for GitHub or Stack Overflow or Slack, or as
- R code, augmented with commented output, or as
- Plain HTML or (experimental) Rich Text

The result is returned invisibly, written to a file and, if possible, placed on the clipboard. Preview an HTML version in RStudio viewer or default browser.

Installation

Links

Download from CRAN at

https://cloud.r-project.org/

package=reprex

Browse source code at

https://github.com/tidyverse/reprex/

Report a bug at

https://github.com/tidyverse/reprex/

issues

License

Full license

MIT + file LICENSE

Community

Contributing guide

Code of conduct

Developers

Best demonstrated live

When asking for help, make a reproducible example

7 Corellia Human

8 Coruscant Human

排 10 Kashyyyk Wookiee

... with 48 more rows

Kaminoan

9 Kamino

2 2.30

2 2.30

2 2.30

2 2.30

```
library(reprex)
library(tidyverse)
starwars %>%
  count(homeworld, species) %>%
  mutate(pct = n / sum(n) * 100) %>%
  arrange(desc(pct))
## # A tibble: 58 × 4
     homeworld species
                          n pct
                       <int> <dbl>
     <chr>
               <chr>
   1 Tatooine Human
                          8 9.20
   2 Naboo
                      5 5.75
              Human
   3 <NA>
              Human
                      5 5.75
   4 Alderaan Human
                       3 3.45
   5 Naboo
              Gungan
                          3 3.45
   6 <NA>
              Droid
                          3 3.45
```

The usethis package

usethis 2.0.1.9000

Setup Reference

e Articles -

News ▼

Search...

usethis

usethis is a workflow package: it automates repetitive tasks that arise during project setup and development, both for R packages and non-package projects.

Installation

Install the released version of usethis from CRAN:

install.packages("usethis")

Or install the development version from GitHub with:

install.packages("devtools")
devtools::install_github("r-lib/usethis")

Usage

Most use_*() functions operate on the *active project*: literally, a directory on your computer. If you've just used usethis to create a new package or project, that will be the active project. Otherwise, usethis verifies that current working directory is or is below a valid project directory and that becomes the active project. Use proj_get() or proj_sitrep() to manually query the project and read more in the docs.

A few usethis functions have no strong connections to projects and will expect you to provide a path.

Links

Download from CRAN at https://cloud.r-project.org/package=usethis

Browse source code at https://github.com/r-lib/usethis/

Report a bug at https://github.com/r-lib/usethis/issues

License

Full license

MIT + file LICENSE

Community

Contributing guide

Code of conduct

Developers

Hadley Wickham

Author (D)

Jennifer Bryan

Author, maintainer (i)

Malcolm Barrett

The packages that made these slides

Never paste tables into a slide again!

```
# Never .kjh-orange[copy and paste] code to a slide again!
.pull-left[
![:scale 100%](img/xaringan-sample.png)
.pull-right[
```{r}
Oh no, its the GSS
gss_sm %>%
 count(bigregion, religion)
```

religion	Northeast	Midwest	South	West
Protestant	158	325	650	238
Catholic	162	172	160	155
Jewish	27	3	11	10
None	112	157	170	180
Other	28	33	50	48
NA	1	5	11	1

### Tables, tables, tables

The **gtsummary** package is very powerful. There are a number of other very good tidy table-making options too.

```
library(gtsummary)
trial
A tibble: 200 × 8
 age marker stage grade response death ttdeath
 trt
##
 <chr> <dbl> <dbl> <fct> <fct>
 <int> <int>
 <dbl>
 1 Drug A
 23 0.16 T1
 II
 24
 1.11 T2
 2 Drug B
 24
 3 Drug A
 31 0.277 T1
 24
 4 Drug A
 NA 2.07 T3
 III
 17.6
 5 Drug A
 51 2.77 T4
 III
 16.4
 6 Drug B
 39 0.613 T4
 15.6
 7 Drug A
 37 0.354 T1
 II
 24
 8 Drug A
 32 1.74 T1
 18.4
 31 0.144 T1
 9 Drug A
 TT
 24
10 Drug B
 34 0.205 T3
 10.5
... with 190 more rows
```

### Tables, tables, tables

The **gtsummary** package is very powerful. There are a number of other very good tidy table-making options too.

```
trial %>%
 tbl_summary(
 by = trt, # split table by group
 missing = "no" # don't list missing data separately
) %>%
 add_n() %>% # add column with total number of non-missing observations
 add_p() %>% # test for a difference between groups
 modify_header(label = "**Variable**") %>% # update the column header
 bold_labels()
```

### Tables, tables

Variable	N	<b>Drug A,</b> N = 98 <sup>1</sup>	<b>Drug B</b> , N = 102 <sup>1</sup>	p-value <sup>2</sup>	
Age	189	46 (37, 59)	48 (39, 56)	0.7	
Marker Level (ng/mL)	190	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)	0.085	
T Stage	200			0.9	
T1		28 (29%)	25 (25%)		
T2		25 (26%)	29 (28%)		
T3		22 (22%)	21 (21%)		
T4		23 (23%)	27 (26%)		
Grade	200			0.9	
I		35 (36%)	33 (32%)		
II		32 (33%)	36 (35%)		
III		31 (32%)	33 (32%)		
<b>Tumor Response</b>	193	28 (29%)	33 (34%)	0.5	
<b>Patient Died</b>	200	52 (53%)	60 (59%)	0.4	
Months to Death/Censor	200	23.5 (17.4, 24.0)	21.2 (14.6, 24.0)	0.14	
<sup>1</sup> Median (IQR); n (%) <sup>2</sup> Wilcoxon rank sum test; Pearson's Chi-squared test					

### Tables, tables, tables

#### gtsummary() straight out of the box:

```
gss_sm %>%
 select(race, degree, marital) %>%
 drop_na() %>%
 tbl_summary(
 by = race, # split table by group
 missing = "no" # don't list missing data separately
) %>%
 add_n() %>% # add column with total number of non-missing observations
modify_header(label = "**Variable**") %>% # update the column header
 bold_labels()
```

### Tables, tables, tables

Variable	N	<b>White</b> , N = 2,096 <sup>1</sup>	<b>Black,</b> N = 487 <sup>1</sup>	<b>Other,</b> N = 276 <sup>1</sup>
degree	2,859			
Lt High School		197 (9.4%)	60 (12%)	71 (26%)
High School		1,057 (50%)	292 (60%)	112 (41%)
Junior College		166 (7.9%)	33 (6.8%)	17 (6.2%)
Bachelor		426 (20%)	71 (15%)	39 (14%)
Graduate		250 (12%)	31 (6.4%)	37 (13%)
marital	2,859			
Married		979 (47%)	121 (25%)	110 (40%)
Widowed		196 (9.4%)	35 (7.2%)	18 (6.5%)
Divorced		363 (17%)	93 (19%)	39 (14%)
Separated		55 (2.6%)	27 (5.5%)	20 (7.2%)
Never Married		503 (24%)	211 (43%)	89 (32%)
¹ n (%)				

### Tables, tables

#### With a bit more work ...

### Tables, tables

Characteristic	<b>Drug A,</b> N = 98	<b>Drug B</b> , N = 102
Age		
N	91	98
Mean (SD)	47 (15)	47 (14)
Median (IQR)	46 (37, 59)	48 (39, 56)
Range	6, 78	9, 83
Marker Level (ng/mL)		
N	92	98
Mean (SD)	1.02 (0.89)	0.82 (0.83)
Median (IQR)	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)
Range	0.00, 3.87	0.00, 3.64

#### Similar to earlier, but simpler:

```
library(gapminder)
Fit as a function, for clarity
fit_ols <- function(df) {</pre>
 lm(lifeExp ~ log(gdpPercap), data = df)
out le <- gapminder %>%
 filter(continent %nin% "Oceania") %>%
 group by(continent) %>%
 nest() %>%
 mutate(model = map(data, fit ols),
 mod sum = map(model, glance),
 mod_terms = map(model, tidy, conf.int = TRUE),
) %>%
 unnest(cols = c(mod terms))
```

```
A tibble: 8 × 11
Groups: continent [4]
 continent data
##
 model mod sum term estimate std.error statistic
 p.value
<fct>
 <list> <lis> <list> <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 9.58 2.71
1 Asia <tibbl... <lm> <tibble... (Inte...
 3.54 4.46e- 4
 0.331 18.9 3.73e- 57
2 Asia
 <tibbl... <lm> <tibble... log(g...
 6.25
3 Europe <tibbl... <lm> <tibble... (Inte... 13.0
 1.92 6.76 5.52e- 11
 30.8 8.06e-103
 6.31
4 Europe <tibbl... <lm> <tibble... log(g...
 0.205
5 Africa <tibbl... <lm> <tibble... (Inte...
 7.60
 2.63
 2.89 4.03e- 3
6 Africa
 <tibbl... <lm> <tibble... log(g...
 5.69
 0.361
 15.8 1.86e- 47
7 Americas <tibbl... <lm> <tibble... (Inte...
 -19.1 4.82
 -3.95 9.65e- 5
 17.4 2.51e- 47
8 Americas <tibbl... <lm> <tibble... log(g...
 9.72
 0.558
... with 2 more variables: conf.low <dbl>, conf.high <dbl>
```

out\_le

The printy package is by T.J. Mahr

#### text\_ready

```
A tibble: 8 × 5
Groups: continent [4]
 continent term
##
 estimate se
 сi
 <fct>
##
 <chr>
 <chr>
 <chr> <glue>
1 Asia
 (Intercept)
 9.58
 2.706 [4.26, 14.90]
2 Asia
 log(gdpPercap) 6.25
 0.331 [5.60, 6.90]
3 Europe
 (Intercept)
 12.97
 1.917 [9.19, 16.74]
4 Europe
 log(gdpPercap) 6.31
 0.205 [5.91, 6.71]
5 Africa
 (Intercept)
 7.60
 2.632 [2.43, 12.77]
6 Africa
 log(gdpPercap) 5.69
 0.361 [4.98, 6.40]
7 Americas (Intercept)
 -19.07
 4.824 [-28.56, -9.58]
8 Americas log(gdpPercap) 9.72
 0.558 [8.62, 10.82]
```

#### Now ...

```
stats <- text_ready %>%
 mutate(term = janitor::make_clean_names(term)) %>%
 printy::super_split(continent, term) # Thanks again, TJ Mahr
```

#### Why are we doing this?

```
stats
$Africa
$Africa$intercept
A tibble: 1 × 5
Groups: continent [1]
 continent term estimate se ci
<fct> <chr> <chr
1 Africa intercept 7.60 2.632 [2.43, 12.77]
##
$Africa$log_gdp_percap
A tibble: 1 × 5
Groups: continent [1]
 continent term
 estimate se
 сi
 <fct> <chr> <chr
1 Africa log_gdp_percap 5.69 0.361 [4.98, 6.40]
##
##
$Americas
$Americas$intercept
A tibble: 1 × 5
Groups: continent [1]
....
```

```
The Intercept term for Africa was 'r stats$Africa$intercept$estimate' 'r stats$Africa$intercept$ci'.

For Europe it was 'r stats$Europe$intercept$estimate' 'r stats$Europe$intercept$ci'
```

The Intercept term for Africa was 7.60 [2.43, 12.77].

For Europe it was 12.97 [9.19, 16.74].

For more, see this post by TJ Mahr:

https://www.tjmahr.com/lists-knitr-secret-weapon/

```
countries <- read csv(here("data", "countries.csv"))</pre>
countries
A tibble: 213 × 4
 iso3
 iso2 continent
###
 cname
 <chr>
 <chr> <chr> <chr>
 1 Afghanistan AFG
 Asia
 2 Algeria
 DZA
 Africa
 DΖ
 3 Armenia
 ARM
 Asia
 4 Australia
 AUS
 Oceania
 5 Austria
 AUT
 Europe
 6 Azerbaijan
 AZE
 Asia
 ΑZ
 7 Bahrain
 BHR
 Asia
 8 Belarus
 Europe
 BLR
```

9 Belgium

## # ... with 203 more rows

## 10 Brazil

BEL

Europe

South America

```
get stmf <- function(url = "https://www.mortality.org/Public/STMF/Outputs",</pre>
 fname = "stmf",
 date = lubridate::today(),
 ext = "csv",
 dest = "data-raw/data",
 save_file = c("n", "y"),
 ...) {
 save file <- match.arg(save file)</pre>
 target <- fs::path(url, fname, ext = ext)</pre>
 message("target: ", target)
 destination <- fs::path(here::here("data-raw/data"),</pre>
 paste0(fname, " ", date), ext = ext)
 tf <- tempfile(fileext = ext)</pre>
 curl::curl download(target, tf)
 switch(save file,
 y = fs::file copy(tf, destination),
 n = NULL
 janitor::clean names(read csv(tf, ...))
```

```
stmf raw <- get stmf(skip = 2) %>%
 rename(deaths total = d total, rate total = r total) %>%
 select(country code:sex, deaths total, rate total, split:forecast, everything()) %>%
 pivot longer(
 cols = d0 14:r85p,
 names_to = c("measure", "age_group"),
 names_pattern = "(r|d)(.*)"
) %>%
 pivot wider(names from = measure,
 values from = value) %>%
 mutate(age group = stringr::str_replace(age_group, "_", "-"),
 age group = stringr::str replace(age group, "p", "+")) %>%
 rename(death count = d, death rate = r) %>%
 mutate(approx date = paste0(year, "-", "W",
 stringr::str_pad(week, width = 2, pad = "0"), "-", "7"),
 approx date = ISOweek::ISOweek2date(approx date)) %>%
 select(country code:sex, split:forecast, approx date,
 age group:death rate, deaths total, rate total) %>%
 mutate(country code = replace(country code, country code == "AUS2", "AUS"),
 country code = replace(country code, country code == "NZL NP", "NZL"))
```

stmf\_raw

```
A tibble: 534,255 × 13
 country code year week sex
 split split_sex forecast approx_date age_group
##
###
 <chr>
 <dbl> <dbl> <dbl> <dbl>
 <dbl>
 <dbl> <date>
 <chr>
 1 AUS
 2015
 1 m
 0 2015-01-04
 0 - 14
 0
 2 AUS
 2015
 1 m
 0 2015-01-04 15-64
 3 AUS
 2015
 1 m
 0 2015-01-04 65-74
4 AUS
 2015
 1 m
 0 2015-01-04 75-84
 5 AUS
 2015
 1 m
 0 2015-01-04 85+
4F4F
 6 AUS
 2015
 1 f
 0 2015-01-04 0-14
 7 AUS
 2015
 1 f
 0 2015-01-04
 15-64
 1 f
8 AUS
 2015
 0 2015-01-04 65-74
9 AUS
 2015
 1 f
 0 2015-01-04 75-84
 0
 1 f
10 AUS
 2015
 0 2015-01-04 85+
... with 534,245 more rows, and 4 more variables: death count <dbl>,
 death rate <dbl>, deaths total <dbl>, rate total <dbl>
#
```

```
md ccodes <- tibble(country code = unique(stmf raw$country code)) %>%
 left join(countries, by = c("country code" = "iso3")) %>%
 mutate(cname = replace(cname, country code == "DEUTNP", "Germany"),
 iso2 = replace(iso2, country code == "DEUTNP", "DE"),
 continent = replace(continent, country code == "DEU", "Europe"),
 cname = replace(cname, country code == "FRATNP", "France"),
 iso2 = replace(iso2, country code == "FRATNP", "FR"),
 continent = replace(continent, country code == "FRA", "Europe"),
 cname = replace(cname, country code == "GBRTENW", "England and Wales"),
 cname = replace(cname, country code == "GBR SCO", "Scotland"),
 cname = replace(cname, country code == "GBR NIR", "Northern Ireland"),
 continent = replace(continent, country code %in% c("GBRTENW", "GBR SCO", "GBR NIR"), "Europe")
) %>%
 left join(countries)
stmf <- left_join(stmf_raw, md_ccodes) %>%
 select(country code, cname:iso3, everything()) %>%
 mutate(iso3 = replace(iso3, iso2 == "DE", "DEU"),
 iso3 = replace(iso3, iso2 == "FR", "FRA"))
```

#### stmf

```
A tibble: 534,255 × 17
 country_code cname
 iso2 continent iso3
 year week sex
 split split sex
##
###
 <chr>
 <chr>
 <chr> <chr>
 <chr> <dbl> <dbl> <chr> <dbl>
 <ld>>
 1 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 m
 1
 0
 2 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 m
 3 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 m
 0
4 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 m
 0
5 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 m
 6 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 f
 7 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 f
 1 f
 8 AUS
 Australia AU
 Oceania
 AUS
 2015
4⊧4⊧
9 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 f
10 AUS
 Australia AU
 Oceania
 AUS
 2015
 1 f
... with 534,245 more rows, and 7 more variables: forecast <dbl>,
 approx date <date>, age group <chr>, death count <dbl>, death rate <dbl>,
##
 deaths total <dbl>, rate total <dbl>
#
```

### Use testthat to implement some checking

### Use testthat to implement some checking

### testthat in practice

Oriented towards package development

Consider packaging your datasets! Benefits to documentation/codebooks etc

One-table example: uscenpops

More extensive: covdata

How R packages work: Wickham & Bryan