WHAT IS CLAIMED IS:

1	1.	A laser apparatus, comprising:	
2		an elongate laser chamber;	
3		an electrode structure disposed within the chamber, the electrode	
4	structure comprising	an anode spaced apart from a cathode; and	
5		an elongate baffle disposed in the laser chamber, the baffle adapted to	
6	arrest a plurality of pa	articles generated within the chamber.	
1	2.	The laser apparatus as in claim 1, wherein the baffle comprises an	
2	open-celled foam.	and successive and an estimate and construction and	
_	open centra roum.		
1	3.	The laser apparatus as in claim 2 wherein the open-celled foam	
2	comprises an open-ce	elled metal foam.	
1	4.	The laser apparatus as in claim 3 wherein the open-celled metal foam	
2		oup of metal foams consisting essentially of nickel, aluminum, brass,	
3	steel, and copper.	up or menn round consisting coordinately or morely uranimized, crass,	
	ovor,r roppor		
1	5.	The laser apparatus as in claim 1 wherein the baffle comprises an	
2	open-celled ceramic.		
1	6.	The laser apparatus as in claim 1 wherein the elongate baffle is adapted	
2	to at least partially fil		
1	7.	The laser apparatus as in claim 1 wherein the electrode structure	
2	further comprises a plurality of pre-ionization pins, and wherein at least some of the plurality		
3	of particles are generated	ated by the pre-ionization pins.	
1	8.	The laser apparatus as in claim 1 wherein at least some of the plurality	
2	of particles comprise		
	r		
l	9.	The laser apparatus as in claim 1 wherein the laser chamber comprises	
2	an excimer laser.		
l	10.	The laser apparatus as in claim 1 wherein the laser chamber is devoid	
2	of an active filtration	system.	

1	11. T	he laser apparatus as in claim 1 wherein the elongate baffle is	
2	generally parallel to the electrode structure.		
1	12. T	he laser apparatus as in claim 1 further comprising a first end baffle	
2	positioned adjacent a first end of the electrode structure and a second end baffle positioned		
3	adjacent a second end of	f the electrode structure.	
1	13. T	he laser apparatus as in claim 12 wherein the first and second end	
	baffles comprise an oper	•	
2	barries comprise an oper	n-cened loans.	
1	14. T	he laser apparatus as in claim 12 wherein the first and second end	
2	baffles are adapted to control a gaseous flow pattern adjacent the first and second electrode		
3	structure ends.		
1		he laser apparatus as in claim 14 further comprising an optics	
2	package disposed at an end of the laser chamber, and wherein the first end baffle is adapted to		
3	prevent the gaseous flow pattern from washing over the optics package.		
1	16. T	he laser apparatus as in claim 1 wherein the elongate baffle is further	
2	adapted for attenuating a		
2	adapted for attenuating t	acoustic waves.	
1	17. A	laser apparatus, comprising:	
2	a	casing defining a laser chamber cavity;	
3	aı	n electrode structure disposed within the laser chamber cavity, the	
4	electrode structure having first and second ends disposed adjacent corresponding first and		
5	second laser chamber ends;		
6	a	gas circulation mechanism for circulating a gas within the laser	
7	chamber cavity; and		
8	a	baffle system disposed in the laser chamber cavity, the baffle system	
9	adapted for directing the	e gas towards the electrode structure and for providing a non-turbulent	
10	gas flow around the electrode structure first and second ends.		
	<u> </u>		
1	18. T	he laser apparatus as in claim 17 wherein the baffle system comprises	
2	an elongate primary baf	fle positioned generally parallel to the electrode structure.	

1	19.	The laser apparatus as in claim 17 wherein the baffle system comprises	
2	a first end baffle positioned adjacent the first electrode structure end and a second end baffle		
3	positioned adjacent the second electrode structure end.		
1	20.	The laser apparatus as in claim 17 wherein the baffle system is further	
2	adapted to arrest a pl	urality of particles generated within the laser chamber cavity.	
1	21.	The laser apparatus as in claim 17 further comprising an optics	
2	package disposed at	the first laser chamber end, and wherein the baffle system is adapted to	
3	prevent the circulating gas from washing over the optics package.		
1	22.	The laser apparatus as in claim 17 wherein the baffle system comprises	
2	an open-celled foam.		
1	23.	The laser apparatus as in claim 22 wherein the open-celled foam	
2	comprises an open-celled metal foam.		
1	24.	The laser apparatus as in claim 17 wherein the baffle system fills	
2	greater than about one percent (1%) of the laser chamber cavity.		
1	25.	The laser apparatus as in claim 17 wherein the baffle system is adapted	
2	to attenuate at least a	portion of the acoustic energy within the laser chamber cavity during	
3	operation of the laser apparatus.		
1	26.	A method of filtering particulates from a gas in a laser apparatus, the	
2	method comprising:		
3		providing a laser apparatus comprising a chamber, an electrode	
4	structure disposed in the chamber, and a gas circulation system;		
5		inserting a baffle system into the laser chamber, the baffle system	
6	comprising an open-celled foam; and		
7		engaging the gas circulation system to circulate the gas within the laser	
8	chamber, the gas having a plurality of particles disposed therein;		
9		wherein at least some of the particles are arrested by the baffle system.	
1	27.	The method as in claim 26 wherein the baffle system comprises an	

open-celled metal foam.

1	28.	The method as in claim 26 wherein the laser apparatus further	
2	comprises an optics package, and the baffle system is further adapted and positioned to		
3	prevent the circulating gas from washing over the optics package.		
1	29.	The method as in claim 26 wherein the baffle system comprises first	
2	and second end baffle	es disposed adjacent first and second ends of the electrode structure,	
3	respectively, and wherein the first and second end baffles operate to smooth a gas flow		
4	pattern at the first and second electrode structure ends.		
1	30.	An excimer laser comprising:	
2		a laser chamber;	
3		a lasing gas disposed within the chamber;	
4		a pair of lasing electrodes within the chamber; and	
5		an open celled metallic foam disposed in the laser chamber so as to	
6	collect particles generated in the chamber during firing of the laser.		
1	31.	The excimer laser as in claim 30 wherein lasing of the gas between the	
2	electrodes during firing of the laser generates a photoablative laser beam suitable for removal		
3	of corneal tissue so a	s to correct refraction.	
1	32.	The excimer laser as in claim 30 wherein lasing of the gas between the	
2	electrodes during firing of the laser generates a pulsed laser having a wavelength of about		

193 nm.