Functions

- **3.27.** Let $W = \{a, b, c, d\}$. Decide whether each set of ordered pairs is a function from W into W.
 - (a) $\{(b,a), (c,d), (d,a), (c,d) (a,d)\}$ (c) $\{(a,b), (b,b), (c,d), (d,b)\}$
 - (b) $\{(d,d), (c,a), (a,b), (d,b)\}\$ (d) $\{(a,a), (b,a), (a,b), (c,d)\}\$
 - (a) \ (b) \ no b in the domain
 - (c) ✓ (d) X

OR use arrow diagram

One-to-one, onto and invertible

3.5. Let the functions $f: A \to B$, $g: B \to C$, $h: C \to D$ be defined by Fig. 3-9. Determine if each function is: (a) onto, (b) one-to-one, (c) invertible.

Fig. 3-9

- **3.7.** Consider functions $f: A \to B$ and $g: B \to C$. Prove the following:
 - (a) If f and g are one-to-one, then the composition function $g \circ f$ is one-to-one.
 - (b) If f and g are onto functions, then $g \circ f$ is an onto function.
- (a) Let $(a, b) \in f$ and $(b, c) \in g$,

 then $(a, c) \in g \circ f$.

 Suppose $g \circ f(d) = C$, since g is one-to-one

 only g(b) = C, thus f(d) = b. We also know

 that f is one-to-one, it means a = d. Therefore $g \circ f$ is one-to-one.
- (b) Suppose c is an arbitrary element in C.

 Since g is onto, we can always find a b

 such that gcb) = C. Similarly, since f is onto,

 we also can always find an a such that

 f(a) = b. Therefore gof(a) = C. Note that

 we choose c arbitrarily, thus V c & C is

 the image of some element of A, gof is

 onto.

Modular Arithmetil and Logarithms

k (mod M)

$$k = Mg + r$$
 where $0 \le r < M$
What if k is negative?
 $-35 \pmod{11}$ $-240 \pmod{42}$

$$f(x) = a^{x}$$
 $g(x) = \log_{a} x$

$$2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, \dots, 2^{10}$$
 $\log_{2} 32 = \underline{}$

$$3^{\circ}$$
, 3^{1} , 3^{2} , ...
 $\log_{3} 27 =$ _____