2.5: One-Sided Limits and Continuity

Consider the function

$$f(x) = \begin{cases} x - 1, & x < 0 \\ x + 1, & x \ge 0 \end{cases}$$

What is $\lim_{x\to 0} f(x)$?

Definition. (One-Sided Limits)

The function f has a **right-hand limit** L as x approaches a from the right, written

$$\lim_{x \to a^+} f(x) = L$$

if the values of f(x) can be made as close to L as we please by taking x sufficiently close to (but not equal to) a and to the right of a.

The function f has a **left-hand limit** L as x approaches a from the left, written

$$\lim_{x \to a^{-}} f(x) = M$$

if the values of f(x) can be made as close to L as we please by taking x sufficiently close to (but not equal to) a and to the left of a.

Theorem 3

Let f be a function that is defined for all values of x close to x=a with the possible exception of a itself. Then

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

Example. Using the graph below, evaluate the following limits:

$$\lim_{x \to -2^{-}} f(x) \leq -\infty$$

$$\lim_{x \to -2^+} f(x) = \emptyset$$

$$\lim_{x \to -2} f(x) \qquad \text{pwf}$$

$$\lim_{x \to -1^{-}} f(x) = -1$$

$$\lim_{x \to -1^+} f(x) = \mathcal{O}$$

$$\lim_{x \to -1} f(x) \quad \text{DNF}$$

$$\lim_{x \to 1} f(x) \subset \mathcal{O}$$

$$\lim_{x\to 2} f(x) = -2$$

$$\lim_{x \to \infty} f(x) = |$$

Below are examples where the limit does not exist:

Graph

$$\chi^{2}-3\times +1\neq 0$$

$$\chi \neq \frac{3\pm\sqrt{(-3)^{2}-4(1)(1)}}{2} = \frac{3\pm\sqrt{5}}{2}$$

$$\Rightarrow \frac{Continuous}{on(-\omega, \frac{3-\sqrt{5}}{2})} u(\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}) u(\frac{3+\sqrt{5}}{2}, \infty)$$

Definition. (Continuity of a Function at a Number)

A function f is **continuous** at a if $\lim_{x \to a} f(x) = f(a)$.

Continuity Checklist:

In order for f to be continuous at a, the following three conditions must hold:

1. f(a) is defined (\tilde{a} is in the domain of f),

- 2. $\lim_{x \to a} f(x)$ exists,
- 3. $\lim_{x\to a} f(x) = f(a)$ (the value of f equals the limit of f at a).

Example. Determine the values of x for which the following functions are continuous:

$$\begin{array}{c}
1 : M \\
X \rightarrow -1
\end{array}$$

$$f(x) = 3x_{n}^{3} + 2x_{n+1}^{2+x} x + 10$$

$$= \lim_{x \to -1} \frac{\chi(x_{n+1})}{x_{n+1}}$$

$$= \lim_{x \to -1} \frac{\chi(x_{n+1})}{x_{n+1}}$$

$$= \lim_{x \to -1} \frac{\chi(x_{n+1})}{x_{n+1}}$$

$$= \lim_{x \to 0} \frac{\chi(x_{n+1})}{x_{n+1}}$$

$$= \lim_{x \to 0} \frac{\chi(x_{n+1})}{x_{n+1}}$$

$$= \lim_{x \to 0} \chi(x_{n}) = \lim_{x$$

$$\lim_{x\to 0^+} j(x) = \lim_{x\to 0} x = 0$$

$$h(x) = \frac{4x^3 - 3x^2 + 1}{2}$$

$$(2) = \frac{4x^3 - 3x^2 + 1}{2} = 0 \quad \neq \quad k(2) = -1$$

$$(2) = \frac{1}{2}$$

Example. Determine whether the following are continuous at a:

$$f(x) = x^2 + \sqrt{7 - x}, \ a = 4$$

$$g(x) = \frac{1}{x - 3}, \ a = 3$$

$$h(x) = \begin{cases} \frac{x^2 + x}{x+1}, & x \neq -1\\ 0, & x = -1 \end{cases}, \ a = -1 \qquad j(x) = |x| = \begin{cases} x, & x \geq 0\\ -x, & x < 0 \end{cases}, \ a = 0$$

$$j(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}, \ a = 0$$

$$k(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - x}, & x \neq 2 \\ -1, & x = 2 \end{cases}, a = 2$$

Properties of Continuous Functions

- 1. The constant function f(x) = c is continuous everywhere.
- 2. The identify function f(x) = x is continuous everywhere.

If f and g are continuous at x = a, then

 $[f(x)]^n$, where n is a real number, is continuous at x = a whenever it is defined at that number

 $f \pm g$ is continuous at x = a

fg is continuous at x = a

f/g is continuous at x=a provided that $g(a)\neq 0$

Polynomial and Rational Functions

- 1. A polynomial function is continuous for all x.
- 2. A rational function (a function of the form $\frac{p}{q}$, where p and q are polynomials) is continuous for all x for which $q(x) \neq 0$.

Definition.

A **removable discontinuity** at x = a is one that disappears when the function becomes continuous after defining $f(a) = \lim_{x \to a} f(x)$.

A **jump discontinuity** is one that occurs whenever $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ both exist, but $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$.

A **vertical discontinuity** occurs whenever f(x) has a vertical asymptote.

Theorem 4: Intermediate Value Theorem

Suppose f is continuous on the interval [a, b] and L is a number strictly between f(a) and f(b). Then there exists at least one number c in (a, b) satisfying f(c) = L.

Note: It is important that the function be continuous on the interval [a, b]:

Theorem 5: Existence of Zeros of a Continuous Function

If f is a continuous function on a closed interval [a,b] (and if f(a) and f(b) have opposite signs, then there is at least one solution of the equation f(x) in the interval (a,b).

Example. Check the conditions of the Intermediate Value Theorem to see if there exists a value c on the interval (a, b) such that the following equations hold: Graph

$$x^x - x^2 = \frac{1}{2}$$

on
$$[0, 2]$$

$$\sqrt{x^4 + 25x^3 + 10} = 5 \quad \text{on } [0, 1]$$

$$f(0) = -1$$
 $f(2) = 3$
 $-1 < 1 < 3$

Since f(x) is discontinuous at x=1, we cannot apply the IVT.

$$x + \sqrt{1 - x^2} = 0$$
 on $[-1, 0]$

on
$$[-1, 0]$$

$$\frac{x^2}{x^2+1} = 0$$

on
$$[-1, 1]$$