Densely Connected Convolutional Networks

Gao Huang¹, Zhuang Liu², Laurens van der Maaten³, Kilian Q. Weinberger¹

¹Cornell University ²Tsinghua University ³Facebook AI Research

• the ℓ^{th} layer receives the featuremaps of all preceding layers,

$$\mathbf{x}_0, \dots, \mathbf{x}_{\ell-1}$$
, as input:

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}]),$$

• Bottleneck layers, compression

Pros

alleviate the vanishing-gradient problem strengthen feature propagation encourage feature reuse substantially reduce the number of parameters

Cons

consume lots of memory

Dense Information Flow for Neural Machine Translation

Yanyao Shen¹, Xu Tan², Di He³, Tao Qin², Tie-Yan Liu²

¹University of Texas at Austin ²Microsoft Research, Asia ³Peking University

Dense Architecture

Figure 1: Comparison of dense-connected encoder and residual-connected encoder. Left: regular residual-connected encoder. Right: dense-connected encoder. Information is directly passed from blue blocks to the green block.

$$h^{l+1} = \mathcal{H}([h^l, h^{l-1}, \cdots, h^0]).$$

Figure 2: Comparison of dense-connected decoder and residual-connected decoder. Left: regular residual-connected decoder. Right: dense-connected decoder. Ellipsoid stands for attention block. Information is directly passed from blue blocks to the green block.

$$z^{l+1} = \mathcal{H}([z^l, a^l, z^{l-1}, a^{l-1}, \cdots, z^1, a^1, z^0])$$

Dense Attention

$$\mathcal{F}(Q, K, V) = \mathtt{Softmax}(Q \times K) \times V,$$

$$a^l = \mathcal{F}\left(\mathcal{L}(z^l), \mathcal{L}\left([\{h^i\}]\right), \mathcal{L}\left([\{h^i\}]\right) + \mathcal{L}(h^0)
ight) \qquad \qquad a^l = \sum_{i=1}^L \mathcal{F}\left(\mathcal{L}(z^l), \mathcal{L}(h^i), \mathcal{L}([h^i, h^0])
ight)$$

Summary Layer

		De-En			Tr-En			Tr-En-morph		
	Embed size Model size (M)	64 8 ± 1	$128\\11\pm1$	$256 \\ 17 \pm 1$	$ \begin{array}{c} 64 \\ 11 \pm 1 \end{array} $	$128\\17\pm1$	$256 \\ 28 \pm 1$	$\begin{matrix} 64 \\ 13 \pm 1 \end{matrix}$	$128 \\ 21 \pm 1$	$256 \\ 36 \pm 1$
4L	BASE-4L	28.97	29.99	30.43	19.80	20.26	20.99	18.90	18.81	20.08
	DenseNMT-4L-1	30.11	30.80	31.26	19.21	20.08	21.36	18.83	20.16	21.43
	DenseNMT-4L-2	29.77	30.01	31.40	19.59	20.86	21.48	19.04	20.19	21.57
8L	BASE-8L	30.15	30.91	31.51	20.40	21.60	21.92	20.21	20.76	22.62
	DenseNMT-8L-1	30.91	31.54	32.08	21.82	22.20	23.20	21.20	21.73	22.60
	DenseNMT-8L-2	30.70	31.17	32.26	21.93	21.98	23.25	21.73	22.44	23.45

Table 1: BLEU score on IWSLT German-English and Turkish-English translation tasks. We compare models using different embedding sizes, and keep the model size consistent within each column.

	Greedy	Beam
MIXER (Ranzato et al., 2015) AC (Bahdanau et al., 2017) NPMT (Huang et al., 2017) NPMT+LM (Huang et al., 2017)	20.73 27.49 27.83	21.83 28.53 28.96 29.16
DenseNMT-8L-2 (word) DenseNMT-8L-1 (BPE) DenseNMT-8L-2 (BPE)	29.11 30.50 30.80	30.33 32.08 32.26

Table 4: Accuracy on IWSLT14 German-English translation task in terms of BLEU score.

	BLEU score
GNMT (Wu et al., 2016)	24.61
ConvS2S (Gehring et al., 2017)	25.16
SliceNet-Full (Kaiser et al., 2017)	25.5
SliceNet-Super (Kaiser et al., 2017)	26.1
DenseNMT-En-De-15	25.52

Table 5: Accuracy on WMT14 English-German translation task in terms of BLEU score.

Deep Layer Aggregation

Fisher Yu, Dequan Wang, Evan Shelhamer, Trevor Darrell

UC Berkeley

Proposed

Figure 5: Evaluation of DLA on ILSVRC. DLA/DLA-X have ResNet/ResNeXT backbones respectively. DLA achieves the highest accuracies with fewer parameters and fewer computation.

Information Aggregation via Dynamic Routing for Sequence Encoding

Jingjing Gong, Xipeng Qiu, Shaojing Wang, Xuanjing Huang
Fudan University

(a) Aggregation via Dynamic Routing

$$\mathbf{m}_{i \to j} = c_{ij} f(\mathbf{h}_i, \theta_j),$$

$$\mathbf{s}_j = \sum_{i=1}^L \mathbf{m}_{i \to j},$$

$$\mathbf{v}_j = \frac{\left\|\mathbf{s}_j\right\|^2}{1 + \left\|\mathbf{s}_j\right\|^2} \frac{\mathbf{s}_j}{\left\|\mathbf{s}_j\right\|}$$

$$c_{ij} = rac{\exp(b_{ij})}{\sum_k \exp(b_{ik})}, \ b_{ij} \leftarrow b_{ij} + \mathbf{v}_j^{\mathrm{T}} f(\mathbf{h}_i, heta_j),$$

$$egin{aligned} c_{ij} &= rac{\exp(b_{ij})}{\sum_k \exp(b_{ik})}, \ b_{ij} &\leftarrow b_{ij} + \mathbf{v}_j^{\mathrm{T}} f(\mathbf{h}_i, heta_j), \end{aligned}$$

Algorithm 1: Dynamic Routing Algorithm

Data: Input Capsules: h_1, h_2, \dots, h_L , Maximum number of Iterations: T

Result: Output Capsules: $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_M$

Initialize $b_{ij} \leftarrow 0$;

for t = 1 to T do

end for

return $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_M$

$$\mathbf{m}_{i \to j} = c_{ij} f(\mathbf{h}_i, \theta_j),$$

$$\mathbf{s}_j = \sum_{i=1}^L \mathbf{m}_{i \to j},$$

$$\mathbf{v}_j = \frac{\left\|\mathbf{s}_j\right\|^2}{1 + \left\|\mathbf{s}_j\right\|^2} \frac{\mathbf{s}_j}{\left\|\mathbf{s}_j\right\|}$$

Hierarchical Dynamic Routing for Long Text

- Split a document into sentences, and apply the proposed dynamic routing mechanism on word and sentence levels separately.
 - first encode each sentence into a fixed-length vector
 - convert the sentence encodings into document encoding.

	Yelp-2013	Yelp-2014	IMDB	SST-1	SST-2
RNTN+Recurrent (Socher et al., 2013)	57.4	58.2	40.0	-	-
CNN-non-static (Kim, 2014)	-	-	-	48.0	87.2
Paragraph-Vec (Le and Mikolov, 2014)	-	-	-	48.7	87.8
MT-LSTM (F2S) (Liu et al., 2015)	-	-	-	49.1	87.2
UPNN(np UP) (Tang et al., 2015)	57.7	58.5	40.5	-	-
UPNN(full) (Tang et al., 2015)	59.6	60.8	43.5	-	-
Cached LSTM (Xu et al., 2016)	59.4	59.2	42.1	-	-
Max pooling	61.1	61.2	41.1	48.0	87.0
Average pooling	60.7	60.6	39.1	46.2	85.2
Self-attention	61.0	61.5	43.3	48.2	86.4
Standard DR-AGG	62.1	63.0	45.1	50.5	87.6
Reverse DR-AGG	61.6	62.5	44.5	49.3	87.2

Table 4: A visualization to show the perspective of a sentence from 3 different upper level capsule. A deeper color indicates more information of the associated word is routed to the corresponding capsule.

⁽¹⁾ so relentlessly wholesome it made me want to swipe something.

⁽²⁾ so relentlessly wholesome it made me want to swipe something.

⁽³⁾ so relentlessly wholesome it made me want to swipe something.