PROJECT OVERVIEW [SKIP IF FAMILIAR]

PROJECT CARD

GOAL:

 The objective of this case study is to predict the health insurance cost incurred by Individuals based on their age, gender, BMI, number of children, smoking habit and geolocation.

TOOL:

AWS SageMaker Autopilot

PRACTICAL REAL-WORLD APPLICATION:

 This project can be effectively used by insurance companies to predict healthcare insurance cost, increase revenues and reduce costs.

DATA:

- · INPUTS:
 - age, gender, BMI, number of children, smoking habit and geo-location
- OUTPUT:
 - Insurance Charges

DATA OVERVIEW

The available features are:

- sex: insurance contractor gender
- bmi: Body mass index (ideally 18.5 to 24.9)
- children: Number of children covered by health insurance / Number of dependents
- smoker: Smoking
- region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.

Target (output):

charges: Individual medical costs billed by health insurance

Data Source: https://www.kaggle.com/mirichoi0218/insurance

DATA OVERVIEW

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030
1338 rows × 7 columns							

TARGET COLUMN

ADVANCED

AMAZON SAGEMAKER

- Amazon SageMaker is a fully-managed machine learning workflow platform that provides services on data labeling, model building, training, tuning and deployment.
- SageMaker allows data scientists and developers to build scalable AI/ML models easily and efficiently.
- Models could be deployed in production at a much faster rate and with a fraction of the cost.
- Let's explore SageMaker: https://aws.amazon.com/sagemaker/#

BUILD

- SageMaker offers data labeling service
- Prebuilt available notebooks with state-of-the-art algorithms on AWS marketplace

TRAIN

- Train models using EC2 instances (on-demand and spot)
- Manage environments for training
- Hyperparameters optimization for model tuning

DEPLOY

- Easily deploy and scale models
- Autoscaling with 75% savings

Check this out: https://aws.amazon.com/sagemaker/autopilot/

AMAZON SAGEMAKER AUTOPILOT DEMO

RUN THIS SCRIPT

Check this out: https://aws.amazon.com/sagemaker/autopilot/

2. PROVIDE A NAME FOR THE EXPERIMENT

AFTER CREATING EXPERIMENT, YOU SHOULD SEE SOMETHING LIKE THIS.

IT WOULD TAKE AROUND 2
HOURS TO COMPLETE.
THIS IS BECAUSE BYDEFAULT IT WOULD RUN
250 TUNING JOBS TO
FIGURE-OUT THE BEST
HYPER-PARAMETER

Once first 2 steps are completed, you can view candidate generation notebook and data exploration notebook.

CLICK ON THESE TO OPEN RESPECTIVE NOTEBOOKS.

NOTE: GENERATED NOTEBOOKS FROM OUR EXPERIMENT ARE PROVIDED FOR REFERENCE.

ONCE THE JOB IS
COMPLETED, YOU CAN
SELECT THE BEST
MODEL AND THEN
CLICK ON DEPLOY
MODEL TO DEPLOY.

PROVIDE THE NAME FOR END-POINT

SELECT THE INSTANCE TYPE
AND THE NUMBER OF INSTANCE

CLICK TO DEPLOY THE MODEL

DELETE ENDPOINT [IMPORTANT]

DELETE ENDPOINT [IMPORTANT]

FINAL END-OF-DAY CAPSTONE PROJECT

PROJECT OVERVIEW

- The goal of this project is to use AWS SageMaker Autopilot to build, train, test machine learning models to predict bike rental usage using inputs such as temperature, humidity, wind speed..etc.
- This project can be effectively used by bike rental shops to predict demand and expected future sales and understand key factors that contribute to generating revenue.

MODEL OVERVIEW

Photo Credit: https://commons.wikimedia.org/wiki/File:Neural_network.svg

PROJECT TASKS

Please complete the following:

- 1. Load the "bike_sharing_daily.csv" dataset
- 2. Train a machine learning models using AWS SageMaker Autopilot
- 3. Assess trained models' performance
- 4. Explore the candidate notebooks
- 5. Deploy the best model as an endpoint