Esercizio 1 (11 punti).

#BL=ADR/128

Sia data una CPU con processore a **4GHz** e **4 CPI** (Clock per Instruction) che adoperi indirizzi da 32 bit e memoria strutturata su due livelli di **cache** (L1, L2), il cui setup è come segue:

L1 è una cache set-associativa a 2 vie con 4 set e blocchi da 2 word; adopera una politica di rimpiazzo LRU. Ricordiamo che consideriamo il set come l'insieme del blocco in cache con tag e bit di validità, mentre la linea è il gruppo di set con il medesimo indice.

L2 è una cache direct-mapped con 4 linee e blocchi da 32 word.

1) Supponendo che all'inizio nessuno dei dati sia in cache, indicare quali degli accessi in memoria indicati di seguito sono HIT o MISS in ciascuna delle due cache. Per ciascuna MISS indicare se sia di tipo Cold Start (Cold), Capacità (Cap) o Conflitto (Conf). Utilizzare la tabella sottostante per fornire i risultati ed

Indicare la metodologia di calcolo più in basso.														
	Address	2048	2040	2032	2024	2060	192	200	208	290	2048	2024	200	
	Block#	2 56	255	254	253	257	24	25	26	3 6	256	253	25	
	Index	0	3	2 1		J	٥	1	2	0	O	ı	I	
L1	Tag	64	63	63 63		64	6	6	6	9	64	63	6	
	HIT/MISS	Miss	Miss	Miss	MISS	MISS	W122	WIZZ	MISS	WIZZ	WIZZ	4122	ΗΠ	
	Miss type	COLV	COLV	COLD	COLV	COLV	COLV	COLD	COLV	COLD	CONF	CONF		
	Block#	# 16		15	15	16	1	1	١	۷	16	15		
	Index	0	3	3	3	0	ı	1	l	Z	0	3		
L2	Tag	4	3	3 3		l,	0	0	0	0	4	3		
	HIT/MISS	MISS	MISS	HIT	HIT	1117	NISS	HIT	H IT	WIZZ	HIT	HIT		
	Miss type	COLD	COLD				(01)			COLD				

- 2) Calcolare le dimensioni in bit (compresi i bit di controllo ed assumendo che ne basti uno per la LRU) delle due cache: (a) L1 e (b) L2.
- 3) Assumendo che gli accessi in **memoria** impieghino **400 ns**, che gli **hit** nella cache **L1** impieghino **1 ns** e gli **hit** nella cache **L2** impieghino **40 ns**, calcolare (a) il **tempo totale** per la sequenza di accessi, (b) il tempo **medio** per la sequenza di accessi, e (c) **quante istruzioni** vengono svolte nel tempo medio calcolato.
- 4) Calcolare il word offset del sesto indirizzo (192) per la cache L2 spiegando i calcoli effettuati.
- 5) Supponendo che gli indirizzi nella tabella siano virtuali e la memoria virtuale consti di **512 pagine** di **1KiB** ciascuna, indicarne i numeri di pagina virtuale. Si assume che la cache sia a monte della memoria virtuale.

8	assu	me c	ne	ia ca	ache	sia	a mo	onte	aell	a m	emo	rıa v	rirtua	ile.		_			_					_					_			_			
		L		Add	ress		20	48		204	0	2	032		202	24		2060	ו	•	192		20	0		208		2	90		2048		20	24	200
				Pa	age#	ŧ																							T						
(2)	LI L2	Ξ		Z,	. 2	•	(6	۷, ۰	+ 1	4	4	Z	ઢે) =		7	5 2		b ;	Ł	6	4 : = \ = t	. Ы Ин:t	000	8 =	ta	3						
		L 2		=		4	•	(1	0 4	2 4	+	1 +	Z	3)	=	Z	, 1	97	2	bi	Ł			0 2 i = V 23 -	.b ta	ь I о Е	c c c								
(3)		1	_		4	· /_	0	0	+		+		7 .	Z. 6) .		I S	81	1 1	15															
		MP																																	
		GH																																	
		GN	1		12.	T R	•	=	4	C	. (<u>(</u> .	4	7	5 1	RI	J 2	101	11	1	Ý	A	((M E	DI	0	;		5	6	. 1	۲5		
G)		15	72		%		1.	2 2	3	=		6 4	, -1					6	4	=(Û		4-	- 1	N 0	RD		(of f	SE	T			
																				4															
_	+	+	+	+		+				+	+								_																_

