LITERATURE SURVEY

TEAM ID:PNT2022TMID42737

SMART FARMER-IoT ENABLED SMART FARMING APPLICATION.

SNO	PAPER	AUTHOR	YEAR	METHOD AND	ACCURACY/
				ALGORITHM	PRECISION
1	Internet-of- Things (IoT)- Based Smart Agriculture: Toward Making the Fields Talk	Muhammad Ayaz	2019	This article highlights the potential of wireless sensors and IoT in agriculture, as well as the challenges expected to be faced when integrating this technology with traditional farming practices. IoT devices and communication techniques associated with wireless sensors encountered in agriculture applications are analysed in detail. Sensors are available for specific agriculture applications, like soil preparation, crop status, irrigation, and insect and pest detection are listed. This technology helps the growers throughout the crop stages, from sowing to harvesting, packing and transportation.	87%

	InT Fautionad	Samaar Oozi	2022	Smort agriculture techniques	90%
2	IoT-Equipped	Sameer Qazi	2022	Smart agriculture techniques	90%
	and AI-Enabled	and Bilal		have recently seen	
	Next	A. Khawaja		widespread interest from	
	Generation			farmers. This is driven by	
	Smart			several factors, which	
	Agriculture: A			include the widespread	
	Critical Review,			availability of economically-	
	Current			priced, low-powered Internet	
	Challenges,			of Things (IoT) based	
				wireless sensors to remotely	
	and Future			monitor and report	
	Trends			conditions of the field,	
				climate, and crops. This	
				enables efficient	
				management of resources	
				like minimizing water	
				requirements for irrigation	
				and minimizing the use of	
				toxic pesticides.	
				Furthermore, the recent	
				boom in Artificial	
				Intelligence can enable	
				farmers to deploy	
				autonomous farming	
				machinery and make better	
				predictions of the future	
				based on present and past	
				conditions to minimize crop	
				diseases and pest infestation	
				diseases and pest infestation	
3	Internet of	Othmane Friha;	2021	This paper presents a	93%
	Things for the	Mohamed		comprehensive review of	, , , ,
	Future of	Amine Ferrag;		emerging technologies for	
	Smart	Lei Shu;		the internet of things (IoT)-	
	Agriculture: A	Leandros		based smart agriculture. We	
	Comprehensive	Maglaras;		begin by summarizing the	
	Survey of	Xiaochan Wang		existing surveys and	
	Emerging			describing emergent	
	Technologies			technologies for the	
				agricultural IoT, such as	
				unmanned aerial vehicles,	
				wireless technologies, open-	
				source IoT platforms,	
				software defined networking	
				(SDN), network function	
				virtualization (NFV)	
				technologies, cloud/fog	
				computing, and middleware	
				platforms. We also provide a	
				classification of IoT	
				Ciassification of 101	

				applications for smart agriculture into seven categories: including smart monitoring, smart water management, agrochemicals applications, disease management, smart harvesting, supply chain management, and smart agricultural practices. Moreover, we provide taxonomy and a side-by-side comparison of the state-of-the-art methods toward supply chain management based on the blockchain technology for agricultural IoT.	
4	Recent Developments of the Internet of Things in Agriculture	Vippon Preet Kour, Sakshi Arora	2020	this paper contributes towards the recent IoT technologies in the agriculture sector, along with the development of hardware and software systems. The public and private sector projects and startup's started all over the globe to provide smart and sustainable solutions in precision agriculture are also discussed.	80%