Introduction to Networking

Packet Switching

The History of Networks and History of the Internet

- history of how messages were communicated in past
- concepts
- Telephone end of 19 century, Bell
- Licklider Intergalactic Network
 - Research program at DARPA (Defense Advanced Research Projects Agency)
- ARPANET
 - single, closed, proprietary network, 1969

What is packet switching?

- predecesor
 - · circuit switching
 - used in telephone network (wired)
 - history: telephone -> dedicated wire -> switching board operator -> telephone
 - Very phone call has its own dedicated 64 kilobits per second circuit (no sharing)
 - Characteristics
 - call has its private, isolated, guaranteed data rate from end-to-end
 - a call has 3 phases
 - Establish circuit from end-to-end = dialing
 - Communicate
 - Close circuit = tear down
 - · Originally, a circuit was an end-to-end physical wire
 - Nowadays, a circuit is like a virtual private wire
 - Problems with it when we use it with Internet

- · Inefficient burst X silence
- Divergent rates for different application
- · state management every switch along the way maintain state
- · packet switching
 - no dedicated circuit to carry data
 - Network: host, links, packet switches
 - · Different times of packet switch
 - routers, ethernet switches
 - they have buffers
 - switch has to hold one packet before it holds the other
 - Packets are routed individually, by looking up address in router's local table
 - all packets share the full capacity of a link
 - the routers maintain no per-communication state
- Why does internet use packet switching?
 - · efficient use of links
 - Originally: links are expensive, bursty flows can share same links
 - Resilience to failure of links and routers
 - one router breaks -> different path
 - Internet was originally designed as an interconnection of the existing networks

Terminology, End to End Delay and Queueing Delay

- Propagation delay
 - the time it takes a single bit to travel over a link at propagation speed c
 - Determined by how long link is
 - · c is close to speed of light
 - it doesn't matter if link is running at 1kb/s or 1 Gb/s
- Packetization Delay

- The time from when the first to the last bit of a packet is transmitted
- r how fast we can put bits on the link, data rate
 - link is 1 kb/s -> we can put 1000 new bits onto the link every second
 - p=64*8=512
- End-to-end delay
 - time from when we send the first bit on the first link until last bit of the packet arrives at the destination
- how to compute it end to end delay
 - switch s1 is going to wait until last packet arrives
 - · cut though switching
 - Switch send packet forward as soon as it gets header
 - Switches generally don't do it
- Sharing link
 - several packet arrive to switch -> wait in the router's queue (packet buffer)
 - · link is congested
 - if there is no packet buffer we have to drop packet every time two packets arrive at the same time
- end to end delay is unpredictable
 - Ping 168.32.56.34
 - Measure trip time

Playback Buffers

- real time applications care about queueing delay
 - Application can't be sure they will have a voice or video sample in time to deliver it to user
 - Playback buffer
- first example
 - Axis

- Horizontal axis is the delay
- Vertical axis tells how many bits are buffered right now in network
- Horizontal (received by laptop playback = how long time packet have been buffered)
- Biggest component in delay
 - Propagation and packatization delay
 - Fixed
- lower bound Overall delay can't be less than propagation and packatization delay
- Upper bound buffers have maximum size
 - not useful, can be large
- · Right hand size is non decreasing
- we didn't wait long enough until we started to play video
- Buffer goes empty
 - no bytes to decode = deficit
 - rebuffering freezing the screen, waiting for bytes to accumulate

Simple Deterministic Queue Model

- simple model of a router queue
 - Q(t) at time t queue has Q packets
 - A(t) A packets arrived to router up until t
 - D(t) D packets departed up until time t
 - · R deterministic and fixed rate of r
- Graph
 - Green line
 - arrival rate of bytes on the incoming link
 - bytes in packets so there are "teeth" in graph
 - p length of packet in bytes

- Yellow line
 - Departure process
 - Works at rate R
- we can tell value of Q = (A D)
- Delay through queue (horizontal)
- small packets can reduce end to end delay
 - when we send whole message
 - it has to be transferred over first link before it can start on the second link
 - · When we send packets we can send other packets parallel
- Example
 - Rate R all links -> outgoing link would be overwhelmed -> we will be dropping them at a rate of N
 - Benefit the statistical multiplexing gain
 - Benefit that we are getting from summing up arriving rates
 - ration of the rate that we need in to prevent packet loss
 - 2 definitions one consider buffer and second one doesn't
- Statistical multiplexing
 - Arriving rates A and B, draining rate C

Queueing Model Properties

- Network is set of queues interconnected by some links
 - Process of packet arrival is complicated
 - so we think of it as random event
- Queueing Theory
 - · study of random arrival processes
- Circled arrow
 - you can't have a negative queue occupancy

- Bustiness increases delay
- Determinism minimizes delay
 - Random arrivals wait longer on average than simple periodic arrivals
- Little's result
 - Lambda arrival rate
 - L average number of queues in system (+currently being serviced)
 - D average delay of packets that arrived until they completed service
 - Valid if there are no packets that are lost or dropped
- Poisson process
 - models aggregation of many independent random events
 - · packet that arrives are not Poisson
- M/M/1 Queue
 - M Markovian arrival process (Poisson process), exponential
 - it assumes a nice simple Poisson arrival

Packet Switching 1

- Generic packet switch
 - · 3 stages of packet switch
 - look up the address
 - Destination address -> where to go next
 - egress link = the port that it is going to
 - Update header
 - · decrement TTL, update checksum
 - Queue the packet
 - if congestion -> buffer
- Ethernet switch
 - Example of packet switch, dealing with ethernet frames

- 4 operations
 - examine header of each arriving frame
 - Forward packet if Ethernet DA is in the forwarding table
 - Broadcast the frame to all ports if the Ethernet DA is not in the forwarding table
 - Except the one the frame arrived
 - entries in the table are learned by examining the Ethernet SA of arriving packets
- Internet router
 - · Process IP addresses instead
 - 7 operations
 - Checks if the Ethernet DA of the arriving frame belongs to the router, accept the frame
 - Everything else is dropped
 - examine the IP version number and length of the datagram
 - Decrement TTL and update IP header checksum
 - check to see if TTL=0
 - if the IP DA is in the forwarding table, forward to the correct egress port(s0 for the next hop
 - find the Ethernet DA for the next hop router
 - create a new Ethernet frame and send it
- Lookup address
 - how is address looked up in forwarding table
 - Ethernet switches
 - It stores addresses in the hash table (maybe 2-way hash)
 - look in the exact match in the hash table
 - that is because there can be many entries
 - IP switches

- we don't look up exact match
- we look up on what's called a longest prefix match
- find match -> it gets address of next router -> find equivalent Ethernet address
- Longest prefix match
 - binary trees
 - we use binary trees to find longest prefix match
 - Ternary content addressable memory TCAM
 - brute force
 - 1 bit matters, 0 bit doesn't matter
 - Generic lookup

Packet Switching 2

- Output switch
 - Worst case
 - N ports
 - Running rate R
 - R switch reading rate
 - So: N*R writing rate to queue
 - So: memory run an aggregate a total rate of up to (N+1)*R
- Input switch
 - Packets are held at the input side of the switch
 - so its speed is reduced from (N+1)*R to 2R
 - · are more scalable
 - Head of line blocking
 - Problem
 - unused outputs
 - virtual output queues

- each input maintains a separate queue for each output
- Output queued packet switch
 - the average delay that a packet would experience as a function of the load
- main properties of output queued switches
 - Work conserving
 - output line is never idle when there is a packet in the system waiting to go to it
 - · Throughput is maximized
 - you cannot have a higher throughput than keeping all the lines busy whenever there's packet available for them
 - we lose 58% of the performance of the system as a consequence of the head of line blocking

Rate Guarantees

- FIFO queue
 - First in first out
 - free for all
 - Whoever sends the most packets will receive the highest usage of this output link
 - Encourages bad behavior
- Strict priorities
 - decision based on bits in the header
 - in IP header: type of service field ToS
 - it is always going to take packets from the high priority if they are there
 - it will only serve the low priority if there is nothing in the high priority queue
 - use it when there is small amount of high priority traffic
- Weighted priorities
 - Twice as many opportunities to send

- · each flow has guaranteed service rate
 - Scheduling packets in order of their bit-by-bit finishing times

Delay Guarantees

- weighted for queueing
 - delay through router will be bounded by the size of the buffer divided by R1
- How we can control the delay of packets
 - the rate at which a queue is served
 - · the size of each queue
- packets arrives at such a rate that it overflows the buffer
- if we know the size of a queue and the rate at which it is served than we can bound the delay through it
- we can pick the size of the queue and WFQ (weighted fair queueing) lets us pick the rate at which it is served
- Therefore we just need a way to prevent packets being dropped along the way
 - For this we can use leaky bucket regulator
- we can therefore bound the end to end delay