

planetmath.org

Math for the people, by the people.

derivation of properties of regular open set

 ${\bf Canonical\ name} \quad {\bf Derivation Of Properties Of Regular Open Set}$

Date of creation 2013-03-22 17:59:24 Last modified on 2013-03-22 17:59:24

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Derivation Classification msc 06E99 Recall that a subset A of a topological space X is regular open if it is equal to the interior of the closure of itself.

To facilitate further analysis of regular open sets, define the operation $^\perp$ as follows:

$$A^{\perp} := X - \overline{A}.$$

Some of the properties of $^\perp$ and regular openness are listed and derived:

- 1. For any $A \subseteq X$, A^{\perp} is open. This is obvious.
- 2. \perp reverses inclusion. This is also obvious.
- 3. $\emptyset^{\perp} = X$ and $X^{\perp} = \emptyset$. This too is clear.
- 4. $A \cap A^{\perp} = \emptyset$, because $A \cap A^{\perp} \subseteq A \cap (X A) = \emptyset$.
- 5. $A \cup A^{\perp}$ is dense in X, because $X = \overline{A} \cup A^{\perp} \subseteq \overline{A} \cup \overline{A^{\perp}} = \overline{A \cup A^{\perp}}$.
- 6. $A^{\perp} \cup B^{\perp} \subseteq (A \cap B)^{\perp}$. To see this, first note that $A \cap B \subseteq A$, so that $A^{\perp} \subseteq (A \cap B)^{\perp}$. Similarly, $A^{\perp} \subseteq (A \cap B)^{\perp}$. Take the union of the two inclusions and the result follows.
- 7. $A^{\perp} \cap B^{\perp} = (A \cup B)^{\perp}$. This can be verified by direct calculation:

$$A^{\perp} \cap B^{\perp} = (X - \overline{A}) \cap (X - \overline{B}) = X - (\overline{A} \cup \overline{B}) = X - \overline{A \cup B} = (A \cup B)^{\perp}.$$

- 8. A is regular open iff $A = A^{\perp \perp}$. See the remark at the end of http://planetmath.org/Derivaentry.
- 9. If A is open, then A^{\perp} is regular open.

Proof. By the previous property, we want to show that $A^{\perp \perp \perp} = A^{\perp}$ if A is open. For notational convenience, let us write A^- for the closure of A and A^c for the complement of A. As $^{\perp} = ^{-c}$, the equation now becomes $A^{-c-c-c} = A^{-c}$ for any open set A.

Since $A \subseteq A^-$ for any set, $A^{-c} \subseteq A^c$. This means $A^{-c-} \subseteq A^{c-}$. Since A is open, A^c is closed, so that $A^{c-} = A^c$. The last inclusion becomes $A^{-c-} \subseteq A^c$. Taking complement again, we have

$$A \subseteq A^{-c-c}. \tag{1}$$

Since $^{\perp} = ^{-c}$ reverses inclusion, we have $A^{-c-c-c} \subseteq A^{-c}$, which is one of the inclusions. On the other hand, the inclusion (1) above applies to any open set, and because A^{-c} is open, $A^{-c} \subseteq A^{-c-c-c}$, which is the other inclusion.

10. If A and B are regular open, then so is $A \cap B$.

Proof. Since A, B are regular open, $(A \cap B)^{\perp \perp} = (A^{\perp \perp} \cap B^{\perp \perp})^{\perp \perp}$, which is equal to $(A^{\perp} \cup B^{\perp})^{\perp \perp \perp}$ by property 7 above. Since $A^{\perp} \cup B^{\perp}$ is open, the last expression becomes $(A^{\perp} \cup B^{\perp})^{\perp}$ by property 9, or $A \cap B$ by property 7 again.

Remark. All of the properties above can be dualized for regular closed sets. If fact, proving a property about regular closedness can be easily accomplished once we have the following:

(*) A is regular open iff X - A is regular closed.

Proof. Suppose first that A is regular open. Then $\overline{\operatorname{int}(X-A)} = \overline{X-\overline{A}} = X - \operatorname{int}(\overline{A}) = X - A$. The converse is proved similarly.

As a corollary, for example, we have: if A is closed, then $\overline{X-A}$ is regular closed.

Proof. If A is closed, then X-A is open, so that $(X-A)^{\perp}=X-\overline{X-A}$ is regular open by property 9 above, which implies that $X-(X-A)^{\perp}=\overline{X-A}$ is regular closed by (*).