Modeling Ebola: System, Agent, and Spatial Models

Hsuan-Wei Lee, Anzhelika Lyubenko, Yuhang Ma, Emily Meissen, Daniela Velez-Rendon, Nara Yoon

Mentors:

John Peach, Cammey Cole Manning, Christian Gunning

July 22, 2015

Mentors:

John Peach

Cammey Cole Manning

Overview

- Introduction
- Models
 - System-based
 - Agent-based
 - Spatial agent-based
- Comparison
- Summary

Introduction

- Ebola was discovered in 1976
- Early symptoms: headache, fatigue, joint pain
- Later symptoms: abdominal pain, diarrhea, vomiting, rashes
- Diseases like HIV and Malaria have the same symptoms
- The virus is contracted through direct contact with bodily fluids and secretion
- Incubation period may last up to two weeks
- Serious outbreaks in Liberia, Sierra Leone, and Guinea (2014)

Intro **Models** System Agent Summary

Compartment Model of the Ebola Epidemic in Liberia

Assumptions

- Focus on Liberia in 2014-2015
- Closed system
- Everyone who dies has a traditional funeral

System Dynamics Differential Equations

$$\begin{aligned}
\frac{dS}{dt} &= -\frac{\beta_I SI + \beta_H SH + \beta_F SF}{N} \\
\frac{dE}{dt} &= \frac{\beta_I SI + \beta_H SH + \beta_F SF}{N} - \gamma_P E \\
\frac{dI}{dt} &= \gamma_P E - [\gamma_H \theta + \gamma_I (1 - \theta)(1 - \delta_1) + \gamma_D (1 - \theta)\delta_1]I \\
\frac{dH}{dt} &= \gamma_H \theta I - [\gamma_{HF} \delta_2 + \gamma_{IH} (1 - \delta_2)]H \\
\frac{dF}{dt} &= \gamma_D (1 - \theta)\delta_1 I + \gamma_{DH}\delta_2 H - \gamma_F F \\
\frac{dR}{dt} &= \gamma_I (1 - \theta)(1 - \delta_1)I + \gamma_{HR} (1 - \delta_2)H \\
\frac{dD}{dt} &= \gamma_F F
\end{aligned}$$

Model Parameters for Ebola Epidemic in Liberia

Parameter	Value
Incubation Period (t_P)	11 days
Duration of Traditional Funeral (t_F)	2.00 days
Time from Infection to Recovery (t_I)	10.00 days
Time from Infection to Death (t_D)	8.00 days
Case Fatality Rate, Unhospitalized (δ_1)	0.500
Case Fatality Rate, Hospitalized (δ_2)	0.500

Parameter	Pre-intervention	Post-intervention
	(Mar 2014 to Sept 2014)	(Sept 2014 to July 2015)
Contact Rate, Community (β_I)	0.148 (0.0953)	0.0446 (0.0338)
Contact Rate, Hospital (β_H)	0.235 (0.143)	0.0877 (0.0563)
Contact Rate, Funeral (β_F)	0.465 (0.287)	0.283 (0.208)
Time from Infection to Hospitalization (t_H)	4.49 (1.44) days	4.63 (1.43) days
Probability a Case is Hospitalized $(heta)$	0.248 (0.142)	0.233 (0.145)

World Health Organization Data vs. Systems Model

System Model Results: With and Without Intervention

Agent-based model

- ullet System \Longrightarrow agent
- ullet Compartment \Longrightarrow state
- ullet Deterministic \Longrightarrow probabilistic
- Simulation:
 - 1000 individuals; 1 exposed
 - 300 days
 - 100 repetitions

Probability of having an outbreak

outbreak: 2% of population contracts disease

Effects of Ebola outbreak

Trajectories of S, D and R

Results of Intervention

Spatial Agent-Based Model: Overview

- Importance of incorporating the spatial information
 - Distinct contact rates within households, communities and funerals
 - Different travel patterns for cities and villages
- Initialization: an example
- Regions of infection spread
- Available travel routes
- Differences:
 - Hospitalized people are quarantined
 - Transition time between states

An Example for SBAM

Regions of Infection Spread

Available Travel Routes

if he travels...

Trajectories of S, R, D: 100 simulations

Probability of an Outbreak

Summary

- Deterministic and probabilistic approaches give similar results
- Incorporating spatial information is useful
- Intervention has a big effect:
 - Over 90 percent contract the disease
 - About 50 percent dies due to disease
 - Intervention causes these figures to decrease significantly