A FinTech SQL Database Project

Project Objective

The core objective of this project was to design a robust and scalable database system that simulates real-world operations in a financial technology (FinTech) environment. This wasn't just about creating tables and storing data, it was about building a clean, connected system where data flows smoothly from point of entry to analysis and can power both internal operations and user-facing services.

I used a FinTech company (Sproutly Africa) as a case study to structure the project around realistic business processes such as onboarding, wallet creation, transactions, and internal fund transfers.

Project Scope and Highlights

Core Objectives:

- Create a normalized, relational database to simulate FinTech operations.
- Ensure data integrity and clean relational flow between entities.
- Use stored procedures to mimic backend business logic.
- Perform realistic user and transaction analysis using SQL queries.
- Prepare the database for future integration with analytics platforms like Power BI.

Tables and Relationships:

- Users: Stores basic user information.
- Wallets: Linked 1:1 with users; tracks balances and wallet types.
- Transactions: Logs all credits, debits, and internal transfers.
- Schools & Businesses: Optional for specialized wallet types.
- All tables are normalized to at least 3NF (Third Normal Form).

Key Stored Procedures

Name	Description
create_user_and_wallet	Onboards a new user and automatically creates a linked wallet.
process_transaction	Processes a transaction (credit or debit) and updates wallet balance accordingly.

Transfers funds from one wallet to another and ensures proper balance updates for both parties.

Realistic Use Case Simulations

To ensure the database was not only well-structured but functional, I simulated realistic user activities:

- 1. User Onboarding A user signs up and a wallet is created automatically.
- 2. Wallet Credit Another user sends money, and the wallet is credited.
- 3. Internal Transfer The user sends money to another wallet (peer-to-peer transfer).
- 4. Transaction Logs & Balances Queries were used to validate that wallet balances, transaction records, and user activity data were updated correctly.

SQL Analysis Queries

To test data flow and usability, I created SQL queries grouped in phases:

- Phase 1 General Overview: Total users, wallet distribution, average balance, etc.
- Phase 2 Transaction Insights: Total value transferred, top transfer sources, internal transfer breakdown.
- Phase 3 User Activity: Top users by transaction count, inactive users, engagement patterns.

Reflections

This project helped reinforce core SQL and database management concepts while stretching into real-world system modeling. From normalization to backend logic via stored procedures, it reflects the kind of structured data foundation that powers live financial applications. This also clarified the critical role a database plays not just in storing information, but in ensuring accurate, secure, and real-time responses for both internal systems and users.