某厂生产 I、Ⅲ、Ⅲ三种产品,均要经过A、B两道工序加工。设有两种规格的设备A1、A2能完成 A 工序;有三种规格的设备B1、B2、B3能完成 B 工序。 I 可在A、B的任何规格的设备上加工;Ⅲ 可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工。数据如表。问:为使该厂获得最大利润,应如何制定产品加工方案?

	产	品单件工	时	设备的	满负荷时的
设备	I	II	III	有效台时	设备费用
$\mathbf{A_1}$	5	10		6000	300
\mathbf{A}_2	7	9	12	10000	321
\mathbf{B}_{1}	6	8		4000	250
\mathbf{B}_2	4		11	7000	783
\mathbf{B}_3	7			4000	200
原料(元/件)	0.25	0.35	0.50		
售价(元/件)	1.25	2.00	2.80		

解:设 x_{ijk} 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数量。建立如下的数学模型:

s. t.
$$5x_{111} + 10x_{211}$$
 ≤ 6000 (设备 A_1) $7x_{112} + 9x_{212} + 12x_{312} \leq 10000$ (设备 A_2) $6x_{121} + 8x_{221}$ ≤ 4000 (设备 B_1) $4x_{122}$ $+ 11x_{322} \leq 7000$ (设备 B_2) $7x_{123}$ ≤ 4000 (设备 B_3) $x_{111} + x_{112} - x_{121} - x_{122} - x_{123} = 0$ (I 产品在A、B工序加工的数量相等) $x_{211} + x_{212} - x_{221}$ $= 0$ (II 产品在A、B工序加工的数量相等) $x_{312} - x_{322} = 0$ (II 产品在A、B工序加工的数量相等) 等)

目标函数为计算利润最大化,利润的计算公式为:

利润 = [(销售单价 - 原料单价)*产品件数]之和 - (每台时的设备费用*设备实际使用的总台时数)之和。 这样得到目标函数:

经整理可得:

Maxz=0. $75x_{111}$ +0. $7753x_{112}$ +1. $15x_{211}$ +1. $3611x_{212}$ +1. $9148x_{312}$ -0. $375x_{121}$ -0. $5x_{221}$ -0. $4475x_{122}$ -1. $2304x_{322}$ -0. $35x_{123}$

3.1 单纯形法的矩阵描述

3.1 单纯形法的矩阵描述

• 设线性规划的矩阵形式为

$$\max z = CX$$
 max $z = CX + C_S X_S$
$$\begin{cases} AX \le b \\ X \ge 0 \end{cases}$$

$$\begin{cases} AX + IX_S = b \\ X, X_S \ge 0 \end{cases}$$
 (3-1)

•这里I为m阶单位阵, $b\geq 0$. 设基变量 $X_B=X_S$,系数矩阵 (A,I)=(B,N),其中B、N分别是基变量和非基变量的系数矩阵,则

$$(X, X_S) = \begin{pmatrix} X_B \\ X_N \end{pmatrix}, (C, C_S) = (C_B, C_N);$$

中山大學智能工程学院 SUN YAT-SEN UNIVERSITY SCHOOL OF INTELLIGENT S

目标函数
$$\max z = CX = (C_B, C_N) \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

$$=C_B X_B + C_N X_N \tag{3-2}$$

约束条件
$$(B,N)$$
 $\begin{pmatrix} X_B \\ X_N \end{pmatrix} = BX_B + NX_N = b \quad (3-3)$

非负条件
$$X_B$$
, $X_N \ge 0$ (3-4)

由(3-3)式知
$$BX_B = b - NX_N$$

$$X_B = B^{-1}b - B^{-1}NX_N \qquad (3-5)$$

上式代入(3-2)式得

$$z = C_B (B^{-1}b - B^{-1}NX_N) + C_N X_N$$
$$= C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N \quad (3-6)$$

3.1 单纯形法的矩阵描述

基可行解 $X^{(1)} = (B^{-1}b, 0)^T$,目标函数值 $z = C_B B^{-1}b$

最小规则的表达式是

$$\theta = \min_{i} \left[\frac{(B^{-1}b)_{i}}{(B^{-1}P_{k})_{i}} | (B^{-1}P_{k})_{i} > 0 \right] = \frac{(B^{-1}b)_{l}}{(B^{-1}P_{k})_{l}}$$

4) 非基矩阵: B-1N

$$z = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$
 (3-6)

- (1) 在初始状态,基变量 X_s 的检验数为 $(C_B C_B B^{-1}B) = 0$; 迭代运算后, X_s 的部分元素属于基变量,其检验数仍为0,属于非基变量的元素,其检验数非0.

•若将Z看作不参与基变换的基变量,它与 $x_1,x_2,...,x_m$ 的系数构成一个基,这时可采用行初等变换将 $c_1,c_2,...,c_m$ 变换为零,使其对应的系数矩阵为单位矩阵。得到

-z	x_1	x_2	• • •	x_m	x_{m+1}	• • •	\boldsymbol{x}_n	b	
0	1	0	• • •	0	$a_{1,m+1}$	• • •	a_{1n}	b_1	
0	0	1	• • •	0	$a_{2,m+1}$	• • •	a_{2n}	b_2	
•	•			•	•		• • •	:	
0	0	0	• • •	0	$a_{m,m+1}$	• • •	a_{mn}	b_m	
1	0	0	•••	0	$c_{m+1} - \sum_{i=1}^{m} c_i a_{i,m+1}$	•••	$c_n - \sum_{i=1}^{m} c_i a_{in}$	$-\sum_{i=0}^{m}c_{i}b_{i}$	
					i=1		i=1	i=1	

单纯形表与矩阵表示的关系

由
$$(3-5)$$
、 $(3-6)$ 式知
$$X_B + B^{-1}NX_N = B^{-1}b$$

$$-z + (C_N - C_B B^{-1}N)X_N = -C_B B^{-1}b$$

上两式用矩阵表示为

$$\begin{bmatrix} 0 & I & B^{-1}N \\ 1 & 0 & C_N & -C_BB^{-1}N \end{bmatrix} \begin{bmatrix} -z \\ X_B \\ X_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ -C_BB^{-1}b \end{bmatrix}$$

		基变量 X_B		非基实	$ ar{\pm} X_N $	RHS)
初始	系数 矩阵	X_{S}	В	N		b
表	检验 数		C_B	C_N		(-z)=0
迭代	系数 矩阵	X_{B}	$I=B^{-1}B$	$B^{-1}N$	$B^{-1}P_{sj\in\mathbb{N}}$	$B^{-1}b$
后	检验 数		C_B - $C_BB^{-1}B$	C_N - $C_BB^{-1}N$	$(-C_BB^{-1})_{j\in\mathbb{N}}$	$(-z) = -C_B B^{-1} b$

3.2 单纯形法的矩阵计算

(改进单纯形法)

- 单纯形法的迭代过程实质上是从一组基到另一组基的变换.
- 在每次迭代过程中不必要地计算了很多与迭代无关的数字,影响了计算效率.
- 而每次迭代中真正有用的数字是基变量列数字、基的逆矩阵、非基变量检验数,以及最大正检验数所对应的非基变量系数列向量。

引例

$$\max Z=6 x_1 + 8 x_2$$

 $2 x_1 + x_2 \le 12$
 $x_1 + 4x_2 \le 20$
 $x_i \ge 0$

标准化得:
$$max Z=6 x_1 + 8 x_2$$
 $2 x_1 + x_2 + x_3 = 12$
 $x_1 + 4x_2 + x_4 = 20$
 $x_i \ge 0$

• 求解

			_				
	C_{i}		6	8	0	0	θ
$C_{\rm B}$	$X_{\rm B}$	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	
0	$0 x_3 12$		2	1	1	0	12/1=12
0			1	4	0	1	20/4=5
	σ		6	8	0	0	
0	X ₃	7	7/4	0	1	-1/4	7/(7/4)=4
8	X_2	5	1/4	1	0	1/4	5/(1/4)=20
σ			4	0	0	-2	
6	\mathbf{X}_1	4	1	0	4/7	— 1/7	
8	\mathbf{X}_2	4	0	1	— 1/7	2/7	
	σ		0	0	-16/7	-10/7	

$$\max Z=6 x_1 + 8 x_2$$

$$2 x_1 + x_2 + x_3 = 12$$

$$x_1 + 4x_2 + x_4 = 20$$

$$x_j \ge 0$$

第二步迭代中:

基变量
$$X_B=(x_3, x_2)$$

基矩阵
$$B_2 = (P_3, P_2) = \begin{pmatrix} 1 & 1 \\ 0 & 4 \end{pmatrix}$$

$$\mathbf{B}_{2}^{-1} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 4 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & -\frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} \end{pmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{1}{4} \end{bmatrix}$$

$$\mathbf{B}_2^{-1} = \begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{pmatrix}$$

正是X₃、X₄在第二步 迭代表中的系数

$$\max Z=6x_1 + 8x_2$$

$$2 x_1 + x_2 + x_3 = 12$$

$$x_1 + 4x_2 + x_4 = 20$$

$$x_i \ge 0$$

	C_{i}		6	8	0	0	θ
$C_{\rm B}$	$X_{\rm B}$	b	\mathbf{X}_1	X_2	X_3	X_4	
0	X_3	12	2	1	1	0	12/1=12
0	X_4	20	1	4	0	1	20/4=5
	σ		6	8	0	0	
0	X_3	7	7/4	0	1	-1/4	7/(7/4)=4
8	X_2	5	1/4	1	0	1/4	5/(1/4)=20
	σ		4	0	0	-2	
6	\mathbf{X}_1	4	1	0	4/7	-1/7	
8	X_2	4	0	1	-1/7	2/7	
	σ		0	0	-16/7	-10/7	

•根据矩阵理论,第二步迭代表中的任何数都可由B2-1左 乘原始数据得到

$$p'_{3} = B_{2}^{-1} p_{3} = \begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$p'_{4} = B_{2}^{-1} p_{4} = \begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$$

b' =
$$B_2^{-1}$$
 b = $\begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 12 \\ 20 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$

	C_{i}		6	8	0	0	θ
$C_{\rm B}$	$X_{\rm B}$	b	\mathbf{X}_1	X_2	X ₃	X_4	
0	\mathbf{X}_3	12	2	1	1	0	12/1=12
0	X_4	20	1	4	0	1	20/4=5
	σ		6	8	0	0	
0	X ₃	7	7/4	0	1	-1/4	7/(7/4)=4
8	X_2	5	1/4	1	0	1/4	5/(1/4)=20
	σ		4	0	0	-2	
6	\mathbf{X}_1	4	1	0	4/7	-1/7	
8	\mathbf{X}_2	4	0	1	— 1/7	2/7	
	σ		0	0	-16/7	-10/7	

检验数
$$\sigma_{j} = C_{j} - C_{B}B^{-1}P_{j}$$

$$\sigma_{1} = C_{1} - C_{B}B_{2}^{-1}P_{1} = 6 - (0 \ 8)\begin{bmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{bmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$= 6 - 2 = 4$$

$$\sigma_4 = C_4 - C_B B_2^{-1} P_4 = 0 - (0 \ 8) \begin{bmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{bmatrix} \begin{pmatrix} 0 \\ 1 & 0 \end{bmatrix}$$

$$= 0 - 2 = -2$$

令
$$Y = C_B B_2^{-1}$$

称 单纯形乘子

• /							
	C_{i}		6	8	0	0	θ
$C_{\rm B}$	$X_{\rm B}$	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	
0	X_3	12	2	1	1	0	12/1=12
0	X_4	20	1	4	0	1	20/4=5
	σ		6	8	0	0	
0	X_3	7	7/4	0	1	— 1/4	7/(7/4)=4
8	\mathbf{X}_2	5	1/4	1	0	1/4	5/(1/4)=20
	σ		4	0	0	-2	
6	\mathbf{X}_1	4	1	0	4/7	— 1/7	
8	X ₂	4	0	1	— 1/7	2/7	
	σ		0	0	-16/7	-10/7	

第三步迭代中:

基变量
$$X_B=(x_1, x_2)$$

基矩阵 $B_3=(P_1, P_2)=$ $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$

$$\mathbf{B}_{3}^{-1} \longrightarrow \begin{pmatrix} 2 & 1 | 1 & 0 \\ 1 & 4 | 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 | \frac{4}{7} & -\frac{1}{7} \\ 0 & 1 | -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \qquad \frac{\Box}{0}$$

$$\mathbf{B}_{3}^{-1} = \begin{pmatrix} \frac{4}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix}$$

正是X₃、X₄在第三步 迭代表中的系数

	C_{i}		6	8	0	0	θ
$C_{\rm B}$	$X_{\rm B}$	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	
0	\mathbf{X}_3	12	2	1	1	0	12/1=12
0	X_4	20	1	4	0	1	20/4=5
	σ		6	8	0	0	
0	X ₃	7	7/4	0	1	— 1/4	7/(7/4)=4
8	X_2	5	1/4	1	0	1/4	5/(1/4)=20
	σ		4	0	0	-2	
6	\mathbf{X}_1	4	1	0	4/7	-1/7	
8	X ₂	4	0	1	-1/7	2/7	
	σ		0	0	-16/7	-10/7	

根据矩阵理论,第三步迭代表中的任何数都可由 B_3^{-1} 左乘原始数据得到

$$p'_1 = B_3^{-1} p_1 = \begin{pmatrix} \frac{4}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

b' = B₃⁻¹b =
$$\begin{pmatrix} \frac{4}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \begin{pmatrix} 12 \\ 20 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

检验数 $\sigma_j = C_j - C_B B^{-1} P_j$ $\sigma_1 = C_1 - C_B B_3^{-1} P_1$

$$= 6 - (6 \ 8) \begin{bmatrix} \frac{4}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{bmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= 6 - 6 = 0$$

	C_{i}		6	8	0	0	θ
$C_{\rm B}$	$X_{\rm B}$	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	
0	\mathbf{X}_3	12	2	1	1	0	12/1=12
0	X_4	20	1	4	0	1	20/4=5
	σ	•	6	8	0	0	
0	X_3	7	7/4	0	1	-1/4	7/(7/4)=4
8	\mathbf{X}_2	5	1/4	1	0	1/4	5/(1/4)=20
	σ		4	0	0	-2	
6	\mathbf{X}_1	4	1	0	4/7	— 1/7	
8	\mathbf{X}_2	4	0	1	-1/7	2/7	
	σ		0	0	-16/7	-10/7	

- •可以看出在单纯形法中关键在于求B-1
- 定理
 - 在单纯形法的相邻两次迭代中, 没迭代前的可行基为 $B=(P_1, P_2, ..., P_{r-1}, P_r, P_{r+1}, ..., P_m)$, 经过换基运算后, 得到另一个可行基 $B_{new}=(P_1, P_2, ..., P_{r-1}, P_r, P_{r+1}, ..., P_m)$
 - 则迭代后所得基 B_{new} 的逆矩阵为 $B_{\text{new}}^{-1} = EB^{-1}$,其中 $E = (e_1, \dots, e_{l-1}, \xi, e_{l+1}, \dots, e_m)$

$$P_1 = egin{pmatrix} a_{1k} \\ dots \\ a_{lk} \\ dots \\ a_{mk} \end{pmatrix}$$
 $\Rightarrow \xi = egin{pmatrix} -a_{1k} / a_{lk} \\ dots \\ 1 / a_{lk} \\ dots \\ -a_{mk} / a_{lk} \end{pmatrix}$

■ 改进单纯形法的步骤:

- (1)据LP问题的标准型,确定初始基变量和初始可行基B。求逆矩阵B-1,得初始基本可行解 $X_B=B^{-1}b,X_N=0$
 - (2)计算单纯形乘子 $\pi=C_BB^{-1}$ 和目标函数值 $Z=C_BB^{-1}b=\pi b$
- (3)计算非基变量检验数 $\sigma_N = C_N C_B B^{-1} N = C_N \pi N$,若 $\sigma_N \leq 0$,则已得最优解,停止计算;否则转下一步。
- (4)据 $\max\{\sigma_j/\sigma_j>0\}=\sigma_k$,确定 x_k 为换入变量,计算 $B^{-1}P_k$,若 $B^{-1}P_k\leq 0$,则问题没有有限最优解,停止计算,否则转下一步。

$$(5)据 \min \left\{ \frac{(B^{-1}b)_i}{(B^{-1}P_k)_i} / (B^{-1}P_k)_i > 0 \right\} = \frac{(B^{-1}b)_l}{(B^{-1}P_k)_l} , 确定 劝换出变量。$$

(6)用 P_l 替代 P_k 得新基 B_1 ,由变换公式 $B_1^{-1}=E_{lk}B^{-1}$ 计算 B_1^{-1} ,求出新的基本可行解。

其中E1k为变换矩阵,构造方法:

将换入变量Xk对应的系数列向量B-1Pk做如下变形,主元素ark(应在主对角线上)取倒数,其他元素除以主元素ark并取相反数。然后用它替换单位矩阵出发,把换出变量X,在基B中的对应列的单位向量。

重复(2)~(6)直至求得最优解。

例:用改进单纯形法求解

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + 2x_2 + x_3 &= 8 \\ 4x_1 &+ x_4 &= 16 \\ 4x_2 &+ x_5 &= 12 \end{cases}$$

解: 第1步(1)确定初始基和初始基变量

$$X_{B_0} = (x_3, x_4, x_5)^T, B_0 = (P_3, P_4, P_5) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix};$$
 $B_0^{-1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad X_{N_0} = (x_1, x_2)^T$

(2) 计算非基变量的检验数,确定换入变量。

$$\sigma_{N_0} = C_{N_0} - C_{B_0} B_0^{-1} N_0 \quad (N_0 = (P_1, P_2))$$

$$= (2,3) - (0,0,0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 0 \\ 0 & 4 \end{pmatrix} = (2,3) \Rightarrow (x_1, x_2)$$

(3) 确定换出变量

表示选择>0的元素

$$\theta = \min \left(\frac{\left(B_0^{-1} b \right)_i}{\left(B_0^{-1} P_2 \right)_i} \middle| B_0^{-1} P_2 > 0 \right)^{-1}$$

$$= \min\left(\frac{8}{2}, -, \frac{12}{4}\right) = 3 \Rightarrow x_5$$

(4) 基变换 新基
$$B_1 = (P_3, P_4, P_2) \Rightarrow$$

$$\boldsymbol{B}_{0}^{-1}\boldsymbol{P}_{2} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} \Rightarrow \xi_{1} = \begin{pmatrix} -1/2 \\ 0 \\ 1/4 \end{pmatrix};$$

$$B_1^{-1} = E_1 B_0^{-1} = \begin{pmatrix} 1 & -1/2 \\ & 1 & 0 \\ & & 1/4 \end{pmatrix} \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}$$

(5) 计算非基变量的系数矩阵 $X_{N_1} = (x_1, x_5)^T$

$$N_{1} = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} \Rightarrow B_{1}^{-1} N_{1} = \begin{pmatrix} 1 & -1/2 \\ 1 & 0 \\ 1/4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & -1/2 \\ 4 & 0 \\ 0 & 1/4 \end{pmatrix}$$

(6) 计算RHS

$$B_1^{-1}b = \begin{pmatrix} 1 & -1/2 \\ 1 & 0 \\ 1/4 \end{pmatrix} \begin{pmatrix} 8 \\ 16 \\ 12 \end{pmatrix} = \begin{pmatrix} 2 \\ 16 \\ 3 \end{pmatrix}$$

• 第1步计算结束后的结果

基
$$B_1 = (P_3, P_4, P_2);$$

基变量 $X_{B_1} = (x_3, x_4, x_2)^T;$
非基变量 $X_{N_1} = (x_1, x_5)^T;$
价值系数 $C = (C_{B_1}, C_{N_1}) = ((0,0,3), (2,0))$

- 重复(2)~(6)
- (2) 计算非基变量的检验数。

$$\sigma_{N_1} = C_{N_1} - C_{B_1}B_1^{-1}N_1$$
 (注: $N_1 = (P_1, P_5)$) $X_{N_1} = (x_1, x_5)^T$

$$= (2,0) - (0,0,3) \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 4 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= (2,-3/4) \Rightarrow_{\overline{M}} (x_1, x_5)$$
換入变量

(3) 确定换出变量
$$\theta = \min \left(\frac{\left(B_1^{-1}b\right)_i}{\left(B_1^{-1}P_1\right)_i} \middle| B_1^{-1}P_1 > 0 \right)$$

$$= \min\left(\frac{2}{1}, \frac{16}{4}, \frac{3}{0}\right) = 2 \Rightarrow x_3$$

(4) 由此得到新的基。 $B_2 = (P_1, P_4, P_2)$

$$\boldsymbol{B}_{1}^{-1}\boldsymbol{P}_{1} = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix} \Rightarrow \boldsymbol{\xi}_{2} = \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix}$$

$$B_{2}^{-1} = E_{2}B_{1}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1/2 \\ -4 & 1 & 2 \\ 0 & 0 & 1/4 \end{pmatrix}$$

(4)计算RHS。

$$B_2^{-1}b = \begin{pmatrix} 1 & 0 & -1/2 \\ -4 & 1 & 2 \\ 0 & 0 & 1/4 \end{pmatrix} \begin{pmatrix} 8 \\ 16 \\ 12 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 3 \end{pmatrix}$$

• 第2步计算结束后的结果

基
$$B_2 = (P_1, P_4, P_2);$$

基变量 $X_{B_2} = (x_1, x_4, x_2)^T;$
非基变量 $X_{N_2} = (x_3, x_5)^T;$
价值系数 $C = (C_{B_2}, C_{N_2}) = ((2,0,3), (0,0))$

• 第3步: 重复第2步的步骤。 $X_{N_2} = (x_3, x_5)^T$

$$\sigma_{N_2} = C_{N_2} - C_{B_2} B_2^{-1} N_2 \quad (N_2 = (P_3, P_5))$$

(2)计算非基变量的检验数。

$$= (0,0) - (2,0,3) \begin{pmatrix} 1 & 0 & -1/2 \\ -4 & 1 & 3 \\ 0 & 0 & 1/4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$=$$
 $\left(-2, 1/4\right) \Rightarrow \left(x_3, x_5\right)$

(3)确定换出变量

$$\theta = \min \left(\frac{\left(B_2^{-1} b \right)_i}{\left(B_2^{-1} P_5 \right)_i} \middle| B_2^{-1} P_5 > 0 \right)$$

$$= \min\left(\frac{2}{-1/2}, \frac{8}{2}, \frac{3}{1/4}\right) = 4 \Rightarrow x_4$$

• (5)由此得到新的基 $B_3 = (P_1, P_5, P_2)$;

$$B_{2}^{-1}P_{5} = \begin{pmatrix} 1 & 0 & -1/2 \\ -4 & 1 & 2 \\ 0 & 0 & 1/4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 2 \\ 1/4 \end{pmatrix} \Rightarrow \xi_{3} = \begin{pmatrix} 1/4 \\ 1/2 \\ -1/8 \end{pmatrix}$$

$$B_3^{-1} = E_3 B_2^{-1} = \begin{pmatrix} 1 & 1/4 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1/8 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1/2 \\ -4 & 1 & 2 \\ 0 & 0 & 1/4 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{pmatrix}$$

• 计算非基变量的检验数 $X_{N_3} = (x_{3,}x_{4})^T$

$$\sigma_{N_3} = C_{N_3} - C_{B_3} B_3^{-1} N_3 \quad (N_3 = \begin{pmatrix} P_3, P_4 \end{pmatrix})$$

$$= \begin{pmatrix} 0, 0 \end{pmatrix} - (2, 0, 3) \begin{pmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -3/2, & -1/8 \end{pmatrix}$$

•已无正的检验数

•最优解为

$$X^* = \begin{pmatrix} x_1 \\ x_5 \\ x_2 \end{pmatrix} = B_3^{-1}b = \begin{pmatrix} 0 & 1/4 & 8 \\ -2 & 1/2 & 16 \\ 1/2 & -1/8 & 12 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$$

• 最优值为

$$z^* = C_{B_3} B_3^{-1} b = (2,0,3) \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix} = 14$$

最优基矩阵 $B=(p_3,p_1,p_2)$

	c_j	7	15	0	0	0		
$C_{\mathbf{B}}$	X _B	X ₁	X ₂	X ₃	X ₄	X ₅	$\mathbf{b_i}$	θ_{i}
0	\mathbf{x}_3	1	1	1	0	0	6	6/1
0	$\mathbf{X_4}$	1	2	0	1	0	8	8/2
0	X ₅	0	1	$\left \begin{array}{c} 0 \end{array} \right $	0	1	3	3/1
0	5 _j	7	15	0	0	0	0	
0	X ₃	1	0	1	0	-1	3	3/1
0	X ₄	1	0	0	1	-2	2	2/1
15	\mathbf{X}_2	0	1	0	0	1	3	
	_	7	0	0	0	-15	45	5
0	X ₃	0	0	1	-1	1	1	
7	X ₁	1	0	0	1	_2	2	
15	\mathbf{x}_2	0	1	0	0	1	3	
0			0	0	7	_1	59)
	J	J	•	U -				

二、单纯形法矩阵描述的应用

1 检查计算是否正确 例1

$$\max z = 7x_1 + 15x_2$$

$$\mathbf{x}_1 + \mathbf{x}_2 \leq 6$$

$$x_1 + 2x_2 \le 8$$

$$x_2 \leq 3$$

$$x_1, x_2 \ge 0$$

单位矩阵

 $B^{-1}b$

最优基矩阵的逆矩阵B-1

$$B = \begin{pmatrix} p_3 & p_1 & p_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

常数项:

$$X_{B} = B^{-1}b = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 7 & 15 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \end{pmatrix} - \begin{pmatrix} 7 & 1 \end{pmatrix} = \begin{pmatrix} -7 & -1 \end{pmatrix}$$

目标函数值:

$$z = C_B B^{-1} b$$

$$= \begin{pmatrix} 0 & 7 & 15 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 59$$

2 由最终表反推出初始表

例2: 设用单纯形法求解某个线性规划问题的最终表如下(目标max, 约束 为≤形式, x₃,x₄,x₅为松弛变量), 试写出原始线性规划模型。

	X ₃	0	0	1	-1	1	1	
	X ₁	1	0	0	1	-2	2	
	X ₂	0	1	0	0	1	3	
σ	4	0	0	0	_7	-1		

松弛变量的价值系数为0

故:

 x_1 、 x_2 的价值系数设为 c_1 、 c_2

$$B = (B^{-1})^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = (p_3 \quad p_1 \quad p_2) \qquad \begin{cases} \mathbf{0} - \mathbf{c_1} = -7 & \longrightarrow & \mathbf{c_1} = \mathbf{7} \\ \mathbf{0} + 2\mathbf{c_1} - \mathbf{c_2} = -1 & \mathbf{c_2} = \mathbf{15} \end{cases}$$

$$\begin{cases} 0 - c_1 = -7 & c_1 = 7 \\ 0 + 2c_1 = -1 & c_2 = 15 \end{cases}$$

$$N = B(B^{-1}N) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p_4 & p_5 \end{pmatrix}$$

$$\max z = 7x_{1} + 15x_{2}$$

$$\begin{cases} x_{1} + x_{2} \leq 6 \\ x_{1} + 2x_{2} \leq 8 \\ x_{2} \leq 3 \end{cases}$$

$$b = B(B^{-1}b) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 3 \end{pmatrix}$$