#### Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа                                | M3215          | К работе допущен |
|---------------------------------------|----------------|------------------|
| Студент Васильков Д.А., Лавренов Д.А. |                | Работа выполнена |
| Преподаватель                         | Тимофеева Э.О. | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе № 3.11

# Вынужденные электромагнитные колебания в последовательном колебательном контуре

#### 1. Цели работы

- 1. Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
- 2. Построение резонансной кривой и определение резонансной частоты.
- 3. Определение активного сопротивления и добротности колебательного контура.

#### 2. Задачи, решаемые при выполнении работы

- Выполнить прямые измерения.
- Проанализировать полученные данные.
- Построить графики по полученным данным.
- Построить резонансную кривую и определить резонансную частоту.
- Определить активное сопротивление и добротность колебательного контура.

#### 3. Объект исследования

Колебательный контур.

### 4. Метод экспериментального исследования

Расчетно-аналитический.

### 5. Рабочие формулы и исходные данные

$$Q=rac{\Omega_0}{\Delta\Omega}$$
 
$$rac{u_{C_{res}}}{arepsilon}=rac{\sqrt{LC}}{RC}=rac{1}{R}\sqrt{rac{L}{C}}=Q$$
  $R=75~\mathrm{Om}$  
$$L=100~\mathrm{mTh}$$
  $f_{res}=rac{1}{2\pi\sqrt{LC}}$   $\Omega_{res}^2=\left(rac{1}{L}\right)\cdotrac{1}{C}-rac{R^2}{4L^2}$ 

### Схема установки



Рисунок 1. Схема лабораторной установки

# 6. Расчет результатов прямых измерений (таблицы, примеры расчетов)

$$f_{\text{расч.}}$$
 (резонансная) = 1591.5 Гц

$$\Omega_{\rm res} \, ({\rm C} = 1 \, {\rm H}\Phi) = 12390 \, \Gamma$$
ц  $\Omega_{\rm res} \, ({\rm C} = 3 \, {\rm H}\Phi) = 7600 \, \Gamma$ ц  $\Omega_{\rm res} \, ({\rm C} = 10 \, {\rm H}\Phi) = 3990 \, \Gamma$ ц  $\Omega_{\rm res} \, ({\rm C} = 30{\rm H}\Phi) = 2280 \, \Gamma$ ц  $\Omega_{\rm res} \, ({\rm C} = 300 \, {\rm H}\Phi) = 1220 \, \Gamma$ ц  $\Omega_{\rm res} \, ({\rm C} = 300 \, {\rm H}\Phi) = 660 \, \Gamma$ ц

| <i>f,</i> Гц | $U_0$ , м ${ m B}$ | <i>f</i> , Гц | $U_0$ , м ${ m B}$ |
|--------------|--------------------|---------------|--------------------|
| 600          | 288                | 1400          | 704                |
| 700          | 2,16               | 1500          | 592                |
| 800          | 100                | 1600          | 496                |
| 900          | 50                 | 1700          | 416                |
| 1000         | 400                | 1800          | 368                |
| 1100         | 648                | 1900          | 320                |
| 1200         | 880                | 2000          | 300                |
| 1300         | 832                |               |                    |

# 7. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

$$\Omega = f_{\text{эксп.}} = 1200 \ \Gamma$$
ц

$$\Delta\Omega = 391$$
 Гц

$$Q = \frac{\Omega_0}{\Lambda\Omega} = \frac{1200}{391} = 3,069$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{75} \sqrt{\frac{100 \cdot 10^{-3}}{0, 1 \cdot 10^{-6}}} = 13,333$$

$$L = \frac{153512100}{10^9} \cdot 10^3 = 153,512 \pm 23,3 \text{ M}\Gamma\text{H}$$

$$153508 = \frac{R^2}{2}$$
  $R = 554,091 \pm 29,37 \text{ Om}$ 

## 8. Графики





### 9. Окончательные результаты

$$\Omega_{res\ (теор.)}$$
 = 1591,5 Гц  $\Omega_{res\ (эксп.)}$  = 1200 Гц

$$Q_{\text{(Teop.)}} = 3,069$$
  $Q_{\text{(ЭКСП.)}} = 13,333$ 

$$R_{(MCX.)} = 75 \text{ Om}$$
  $R_{(9KCII.)} = 554,091 \pm 29,37 \text{ Om}$ 

$$L$$
 (исх.) = 100 м $\Gamma$ н  $L$  (эксп.) = 153,512  $\pm$  23,3 м $\Gamma$ н

### 10. Выводы и анализ результатов работы

В данной лабораторной работе мы изучали вынужденные колебания резонанс напряжений в последовательном колебательном контуре. Построив резонансную кривую, мы определили резонансную частоту.

Также определили активное сопротивление и добротность колебательного контура. Получившиеся погрешности связаны с тем, что при экспериментальном расчёте индуктивности катушки и сопротивления в цепи мы использовали коэффициент затухания  $\beta$ , а при теоретическом — нет. Также можно учесть нагревание проводника, и как следствие изменение его сопротивления.