Problems completed: All.

Exercise 1 (§51 #1). If $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Collaborators: None.

Suppose $h\simeq h'$ via H and $k\simeq k'$ via K, then we claim that $k\circ h\simeq k'\circ h'$ via the map

$$F: X \times I \to Z$$
$$(x,t) \mapsto K(H(x,t),t).$$

At t=0, $F(x,0)=K(H(x,0),0)=K(h(x),0)=(k\circ h)(x)$. Similarly, at t=1, $F(x,1)=K(H(x,1),1)=K(h'(x),1)=(k'\circ h')(x)$. Finally, F is continuous since it is the composition of continuous functions: Let $H'=(H,\pi_2)$, then H' is continuous and $F=K\circ H'$.

Exercise 2 (§51 #3). X is contractible if i_X is nulhomotopic.

- a. I = [0, 1] and \mathbb{R} are contractible.
- b. A contractible space is path connected.
- c. If Y is contractible, then for any X, the set [X, Y] (the set of homotopy classes of maps of X into Y) has a single element.
- d. If X is contractible and Y is path connected, then [X,Y] has a single element.

Collaborators: None.

- a. If a space is convex, then any two paths are homotopic via the straight line homotopy. Since I and \mathbb{R} are both convex, they are both contractible.
- b. Suppose X is contractible and $x, y \in X$. Since X is contractible, i_X and some constant function $\tilde{f}(x) = c$ are homotopic via some F. Since F is continuous by definition,

$$f_x \cdot F(x, \cdot)$$
$$f_y \cdot F(y, \cdot)$$

are both continuous. Then f_x is a path from x to c, and f_y is a path from y to c. Then $f:[0,2]\to X$ given by

$$f(t) \doteq \begin{cases} f_x(t) & t \le 1\\ f_y(2-t) & t \ge 1 \end{cases}$$

is a path from x to y. Thus X is path connected.

- c. Since Y is contractible, i_Y and some constant function $y\mapsto c$ are homotopic via some G. Let $f:X\to Y$ be arbitrary, then F(x,t)=G(f(x),t) is a homotopy from f to \tilde{f} , where $\tilde{f}(x)=c$. Since f was arbitrary, this means that all maps from X to Y are homotopic to \tilde{f} . Since homotopy is an equivalence relation, this means all such maps are homotpic to each other, i.e. [X,Y] has one element.
- d. Fix $y \in Y$. Since X is contractible, i_X and some constant function $x \mapsto c$ are homotopic via some G. Then for all maps $f: X \to Y$, the map F(x,t) = f(G(x,t)) is a homotopy from f to the constant function $x \mapsto f(c)$. Now since Y is path connected, there is a path γ from f(c) to y. Then $H(x,t) = \gamma(t)$ is a homotopy from $x \mapsto f(c)$ to $x \mapsto y$. Composing these two homotopies shows $f \simeq x \mapsto y$. But since f was arbitrary, this means all maps from X to Y are homotopic to the same constant function. Since homotopy is an equivalence relation, this means [X,Y] has one element.