Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

Data set: https://github.com/Kuppusamy104/Machine-Learning/blob/main/Assignment-Regression%20Algorithm/insurance pre.csv

1. Identify your problem statement:

Predict insurance charges based on input parameters (age, sex, BMI, children, smoker).

2.) Tell basic info about the dataset (Total number of rows, columns)

Total Rows :1338Total Coolum's : 6

• Input/ Independent : age, sex, BMI, children, smoker

Output / Dependent : charges (The End goal is predict the charges)

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

- Data set contains categorical data for two columns (sex, smoker)
- Sex : Male / Female –comes under Nominal data
- Smoker: Yes / or comes under Nominal data
- **Using One-hot encoding** method to converts categorical data (Sex,Smoker) into numeric al values to understand machine learning algorithms to create a model.
- Input/Independent: 5 columns age, bmi, children, charges, sex_male, smoker_yes
- Output/ dependent : One column charges

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

I have created the below machine learning regression algorithm to predict best r2 values with various parameter. The Random Forest Model is provided good accuracy compare with other model.

• Multiple Linear Regression R2 value is: 0.789479

```
[37]: r2_score
[37]: 0.7894790349867009
```

• SVM- Support Vector Machine R2 values:

S.No	Hyper	Kernel	Kernel=	Kernel= POLY	Kernel=SIGMOID
	Parameter	=Linear	RBF(Non	R2 Score	R2 Score
		R2 score	linear)		
			R2Score		

1	C 1.0	-0.0101026	-0.083382	-0.075699	-0.07542
2	C 10	0.4624684	-0.03227	0.03871622	0.0393071
3	C 100	0.628879	0.3200317	0.617956	0.527610
4	C 1000	0.7649311	0.810206	0.8566487	0.287470

• Decision Tree

S.No	Criterion	Max Features	Splitter	R2
				Score
1	Squared_error	None	best	0.6958
<mark>2</mark>	squared_error	<mark>sqrt</mark>	<mark>best</mark>	<mark>0.7622</mark>
3	squared_error	log2	best	0.6605
4	squared_error	None	random	0.7173
5	squared_error	sqrt	random	0.6514
6	squared_error	log2	random	0.7370
7	friedman_mse	None	best	0.6973
8	friedman_mse	sqrt	best	0.7006
9	friedman_mse	log2	best	0.7182
10	friedman_mse	None	random	0.6989
11	friedman_mse	sqrt	random	0.6644
12	friedman_mse	log2	random	0.6578
13	absolute_error	None	best	0.6422
14	absolute_error	sqrt	best	0.6435
15	absolute_error	log2	best	0.6777
16	absolute_error	None	random	0.6804
17	absolute_error	sqrt	random	0.5990
18	absolute_error	log2	random	0.6815
19	poisson	None	best	0.7280
20	poisson	sqrt	best	0.746
21	poisson	log2	best	0.7212
22	poisson	None	random	0.7375
23	poisson	sqrt	random	0.5816
24	poisson	log2	random	0.6653

Random Forest

S.No	Criterion	Max Features	n_estimators	R2 Score
1	Squared_error	None	50	0.8498
2	squared_error	sqrt	50	0.8695
3	squared_error	log2	50	0.8695
4	squared_error	None	100	0.8538
5	squared_error	sqrt	100	0.87102
6	squared_error	log2	100	0.87102
7	friedman_mse	None	50	0.85007
8	friedman_mse	sqrt	50	0.87024
9	friedman_mse	log2	50	0.87024
10	friedman_mse	None	100	0.85405
11	friedman_mse	sqrt	100	0.871054
12	friedman_mse	log2	100	0.871054
13	absolute_error	None	50	0.85266

14	absolute_error	sqrt	50	0.870814
15 absolute_error		log2	50	0.87081
16	absolute_error	None	100	0.85200
<mark>17</mark>	absolute_error	<mark>sqrt</mark>	<mark>100</mark>	0.87106858
<mark>18</mark>	absolute_error	log2	<mark>100</mark>	0.87106858
19	poisson	None	50	0.84910
20	poisson	sqrt	50	0.8632
21	poisson	log2	50	0.86323
22	poisson	None	100	0.8526
23	poisson	sqrt	100	0.86801
24	poisson	log2	100	0.8680

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

Please refer point 4.

6.) Mention your final model, justify why you have chosen the same.

Finally the best model is: Random Forest, Random Forest regression algorithm using the parameter settings: criterion=" absolute_error " , max_features ="sqrt", n_estimators=100 & random_state=0.

This indicates that approximately **87.10%** of the variance in the target variable is explained by the model with these settings.

7.) Deployment:

8.) Manual comparison with dataset providing nearest input, The output is matching closely.

4	Α	В	С	D	Е	F	
)	55	female	32.775	2	no	12268.63	
)_	23	male	17.385	1	no	2775.192	ı
L	31	male	36.3	2	yes	38711	
2	22	male	35.6	0	yes	35585.58	