Análisis de algoritmos

Aplicaciones del Teorema Maestro

Mora Alba, María Fernanda 000103596

Román García, Luis Manuel 000117077

15 de octubre de 2015

Encuentra el orden de los siguientes tiempos de ejecución

1. $T(n) = 7 \cdot T(n/4) + n$

Tenemos que $a=7,\,b=4,$ de modo que hay que comparar f(n)=n con $n^{log_47}\approx n^{1,4036}$

Como $n < n^{1,4036}$ entonces tenemos el Caso 1, de modo que $T(n) \in \Theta(n^{\log_4 7})$.

 $2. T(n) = 4 \cdot T(n/5) + n$

Tenemos que $a=4,\,b=5,$ de modo que hay que comparar f(n)=n con $n^{log_54}\approx n^{0.86}$

Como $n > n^{0.86}$ entonces tenemos el Caso 3, de modo que $T(n) \in \Theta(n)$.

3. $T(n) = 2 \cdot T(n/2) + n^2$

Tenemos que $a=2,\,b=2,$ de modo que hay que comparar $f(n)=n^2$ con $n^{log_22}=n$

Como $n^2 > n \forall n \in \mathbb{N}$ entonces tenemos el Caso 3, de modo que $T(n) \in \Theta(n^2)$.

 $4. T(n) = 3 \cdot T(n/3) + n$

Tenemos que $a=3,\,b=3,$ de modo que hay que comparar f(n)=n con $n^{\log_3 3}=n$

Como f(n)=n, entonces tenemos el Caso 2, de modo que $T(n)\in\Theta(nlogn).$

5. $T(n) = 2 \cdot T(n/2) + 10$

Tenemos que $a=2,\ b=2,$ de modo que hay que comparar f(n)=10n con $n^{\log_2 2}=n$

Como f(n) = 10n = n salvo constantes, entonces tenemos el Caso 2, de modo que $T(n) \in \Theta(nlogn)$.