COMP90038 Algorithms and Complexity

Lecture 19: Warshall and Floyd algorithms (with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

On the previous lecture

- We discussed **Dynamic Programming**, a bottom-up problem solving technique
 - We divide the problem into smaller, overlapping ones
 - Partial results are stored and used to find the complete solution
 - Algorithms usually involve a recursive relationship
- DP is often used to solve **combinatorial optimization** problems
 - Find the best possible combination subject to some constraints
- We demonstrated algorithms for three problems:
 - Coin row problem
 - Knapsack problem
 - Message passing in a tree problem

Today's lecture

- We apply dynamic programming principles to two graph problems:
 - Computing the **transitive closure** of a directed graph
 - Finding shortest distances in weighted directed graphs

- Warshall's algorithm computes the transitive closure of a directed graph
 - An edge (a,d) is in the transitive closure of graph G if and only if there is a path in G from a to d

 $\left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right]$

- Warshall's algorithm computes the transitive closure of a directed graph
 - An edge (a,d) is in the transitive closure of graph G if and only if there is a path in G from a to d


```
\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
```

- Warshall's algorithm computes the transitive closure of a directed graph
 - An edge (a,d) is in the transitive closure of graph G if and only if there is a path in G from a to d
- Transitive closure is important in applications where we need to reach a "goal state" from some "initial state"


```
\left[\begin{array}{ccccc}
0 & 1 & 1 & \mathbf{1} \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
```

• Assuming that the nodes of graph G are numbered from 1 to n, can we answer the question:

Is there a path from node i to node j using nodes $[1 \dots k]$ as **stepping** stones?

• Assuming that the nodes of graph G are numbered from 1 to n, can we answer the question:

Is there a path from node i to node j using nodes $[1 \dots k]$ as **stepping** stones?

- Such path exists if and only if we can:
 - step from i to j using only nodes $[1 \dots k-1]$, or
 - step from i to k using only nodes $[1 \dots k-1]$, and then step from k to j using only nodes $[1 \dots k-1]$

• If G's adjacency matrix is A then we can express the recurrence relation as:

$$R[i,j,0] = A[i,j]$$

$$R[i,j,k] = R[i,j,k-1] \ \mathbf{or} \ (R[i,k,k-1] \ \mathbf{and} \ R[k,j,k-1])$$

• If G's adjacency matrix is A then we can express the recurrence relation as:

$$R[i,j,0] = A[i,j]$$

$$R[i,j,k] = R[i,j,k-1] \ \ {\bf or} \ \ (R[i,k,k-1] \ \ {\bf and} \ \ R[k,j,k-1])$$
 Use the existing path created in the previous step

• If G's adjacency matrix is A then we can express the recurrence relation as:

$$R[i,j,0] = A[i,j]$$

$$R[i,j,k] = R[i,j,k-1] \ \ \mbox{or} \ (R[i,k,k-1] \ \mbox{and} \ R[k,j,k-1])$$

Or create a new path using \boldsymbol{k} as intermediate step

• If G's adjacency matrix is A then we can express the recurrence relation as:

$$R[i,j,0] = A[i,j]$$

$$R[i,j,k] = R[i,j,k-1] \text{ or } (R[i,k,k-1] \text{ and } R[k,j,k-1])$$

• This gives us an algorithm with a dynamic programming flavour:

```
\begin{aligned} & \textbf{function} \ \ \text{Warshall}(A[\cdot,\cdot],n) \\ & R[\cdot,\cdot,0] \leftarrow A \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & R[i,j,k] \leftarrow R[i,j,k-1] \ \textbf{or} \ (R[i,k,k-1] \ \textbf{and} \ R[k,j,k-1]) \\ & \textbf{return} \ R[\cdot,\cdot,n] \end{aligned}
```

- If we allow A to be used for the output, we can simplify things
 - If R[i,k,k-1] (that is, A[i,k]) is 0 then we do nothing

- If we allow A to be used for the output, we can simplify things
 - If R[i,k,k-1] (that is, A[i,k]) is 0 then we do nothing
 - But if A[i,k] is 1 and if A[k,j] is also 1, then A[i,j] gets set to 1

```
\begin{array}{c} \mathbf{for}\ k \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{for}\ j \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{if}\ A[i,k]\ \mathbf{then} \\ \mathbf{if}\ A[k,j]\ \mathbf{then} \\ A[i,j] \leftarrow 1 \end{array}
```

- If we allow A to be used for the output, we can simplify things
 - If R[i,k,k-1] (that is, A[i,k]) is 0 then we do nothing
 - But if A[i,k] is 1 and if A[k,j] is also 1, then A[i,j] gets set to 1
- A[i,k] does not depend on j, so testing it can be moved outside the innermost loop

```
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
if A[i,k] then
if A[k,j] then
A[i,j] \leftarrow 1
```

- If we allow A to be used for the output, we can simplify things
 - If R[i,k,k-1] (that is, A[i,k]) is 0 then we do nothing
 - But if A[i,k] is 1 and if A[k,j] is also 1, then A[i,j] gets set to 1
- A[i,k] does not depend on j, so testing it can be moved outside the innermost loop
 - This leads to a simpler version of the algorithm

```
\begin{array}{c} \mathbf{for}\ k \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \hline \mathbf{if}\ A[i,k]\ \mathbf{then} \\ \mathbf{for}\ j \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{if}\ A[k,j]\ \mathbf{then} \\ A[i,j] \leftarrow 1 \end{array}
```

• Let's examine this algorithm. Let our graph be

• Let's examine this algorithm. Let our graph be

• Then, the adjacency matrix is:

```
\begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```


For k=1, all the elements in the column are zero, so this if statement does nothing.

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

if A[i,k] then

for j \leftarrow 1 to n do

if A[k,j] then

A[i,j] \leftarrow 1
```

```
\begin{bmatrix} \mathbf{0} & 1 & 0 & 0 & 1 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 0 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 0 & 0 & 0 & 1 & 1 \\ \mathbf{0} & 0 & 1 & 0 & 0 & 0 & 0 \\ \mathbf{0} & 1 & 0 & 0 & 0 & 1 & 0 \\ \mathbf{0} & 0 & 0 & 1 & 0 & 0 & 1 \\ \mathbf{0} & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```

• For k=2, we have A[1,2] = 1 and A[5,2] = 1, and A[2,3]=1

```
\begin{array}{c} \mathbf{for}\ k \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{if}\ A[i,k]\ \mathbf{then} \\ \mathbf{for}\ j \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{if}\ A[k,j]\ \mathbf{then} \\ A[i,j] \leftarrow 1 \end{array}
```

```
\begin{bmatrix} 0 & \mathbf{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```

• For k=2, we have A[1,2] = 1 and A[5,2] = 1, and A[2,3]=1

```
\begin{array}{c} \mathbf{for}\ k \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{if}\ A[i,k]\ \mathbf{then} \\ \mathbf{for}\ j \leftarrow 1\ \mathbf{to}\ n\ \mathbf{do} \\ \mathbf{if}\ A[k,j]\ \mathbf{then} \\ A[i,j] \leftarrow 1 \end{array}
```

There are '1's on this same row and column

• For k=2, we have A[1,2] = 1 and A[5,2] = 1, and A[2,3]=1

```
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
if A[i, k] then
for j \leftarrow 1 to n do
if A[k, j] then
A[i, j] \leftarrow 1
```


- For k=2, we have A[1,2] = 1 and A[5,2] = 1, and A[2,3]=1
 - Then, we can make A[1,3] = 1 and A[5,3] = 1

```
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
if A[i, k] then
for j \leftarrow 1 to n do
if A[k, j] then
A[i, j] \leftarrow 1
```

```
\begin{bmatrix} 0 & 1 & \mathbf{1} & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```

For k=3, we have A[1,3], A[2,3], A[4,3], A[5,3], A[3,6] and A[3,7] equal to 1

```
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
if A[i, k] then
for j \leftarrow 1 to n do
if A[k, j] then
A[i, j] \leftarrow 1
```

```
\begin{bmatrix} 0 & 1 & \mathbf{1} & 0 & 1 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```

For k=3, we have A[1,3], A[2,3], A[4,3], A[5,3], A[3,6] and A[3,7] equal to 1

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

if A[i, k] then

for j \leftarrow 1 to n do

if A[k, j] then

A[i, j] \leftarrow 1
```


For k=3, we have A[1,3], A[2,3], A[4,3], A[5,3], A[3,6] and A[3,7] equal to 1

```
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
if A[i,k] then
for j \leftarrow 1 to n do
if A[k,j] then
A[i,j] \leftarrow 1
```


- For k=3, we have A[1,3], A[2,3], A[4,3], A[5,3], A[3,6] and A[3,7] equal to 1
 - Then, we can make *A*[1,6], *A*[2,6], *A*[4,6], *A*[1,7], *A*[2,7], *A*[4,7], and *A*[5,7] equal to 1

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

if A[i, k] then

for j \leftarrow 1 to n do

if A[k, j] then

A[i, j] \leftarrow 1
```

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```

$$k=4$$

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```

Let's look at the next steps:

```
k=4
```

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```


In row 4 there is a '1' on this column

```
k=4
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```


$$k=4$$

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
```


$$k=4$$

```
 \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}   In Column 4 there is a '1' on this row
```

$$k=4$$

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
Also on this row
```

$$k=4$$

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```

```
k=4 \qquad \qquad k=5
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```


Let's look at the next steps:

```
k=4
k=5
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```

There are no changes

```
k=4 \qquad \qquad k=5 \qquad \qquad k=6
\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```

Let's look at the next steps:

```
 k=4 \qquad \qquad k=5 \qquad \qquad k=6 
 \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```

• For k=7 there are no changes either...

- This algorithm's complexity is $\Theta(n^3)$
 - There is **no difference** between the best, average, and worst cases.

- This algorithm's complexity is $\Theta(n^3)$
 - There is **no difference** between the best, average, and worst cases.
- The algorithm has a tight inner loop, making it ideal for dense graphs
- However, it is not the best transitive-closure algorithm to use for sparse graphs

- This algorithm's complexity is $\Theta(n^3)$
 - There is **no difference** between the best, average, and worst cases.
- The algorithm has a tight inner loop, making it ideal for dense graphs
- However, it is not the best transitive-closure algorithm to use for sparse graphs
 - For sparse graphs, it may be better doing DFS from each node v, keeping track of which nodes are reached from v

- Floyd's algorithm solves the all-pairs shortest-path problem for weighted graphs with positive weights.
 - It works for directed as well as undirected graphs
- We assume we are given a **weight matrix** W that holds all the edges' weights
 - If there is no edge from node i to node j, we set $W[i,j] = \infty$

$$\begin{bmatrix}
\infty & 3 & 3 & \infty \\
1 & \infty & \infty & 2 \\
\infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty
\end{bmatrix}$$

- Floyd's algorithm solves the all-pairs shortest-path problem for weighted graphs with positive weights.
 - It works for directed as well as undirected graphs
- We assume we are given a **weight matrix** W that holds all the edges' weights
 - If there is no edge from node i to node j, we set $W[i,j] = \infty$

$$\begin{bmatrix}
\infty & 3 & 3 & \mathbf{5} \\
1 & \infty & \infty & 2 \\
\infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty
\end{bmatrix}$$

- Floyd's algorithm solves the all-pairs shortest-path problem for weighted graphs with positive weights.
 - It works for directed as well as undirected graphs
- We assume we are given a **weight matrix** W that holds all the edges' weights
 - If there is no edge from node i to node j, we set $W[i,j] = \infty$
- We will construct the **distance matrix** D, step by step

$$\left[\begin{array}{cccc}
\infty & 3 & 3 & \mathbf{5} \\
1 & \infty & \infty & 2 \\
\infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty
\end{array}\right]$$

• As we did in the Warshall's algorithm, assume nodes are numbered 1 to n. We try to answer the question:

What is the shortest path from node i to node j using nodes $[1 \dots k]$ as stepping stones?

• As we did in the Warshall's algorithm, assume nodes are numbered 1 to n. We try to answer the question:

What is the shortest path from node i to node j using nodes $[1 \dots k]$ as stepping stones?

- Such path will exist if and only if we can:
 - step from i to j using only nodes $[1 \dots k-1]$, or
 - step from i to k using only nodes $[1 \dots k-1]$, and then step from k to j using only nodes $[1 \dots k-1]$.

• If G's weight matrix is W then we can express the recurrence relation as:

$$D[i, j, 0] = W[i, j]$$

$$D[i, j, k] = \min (D[i, j, k - 1], D[i, k, k - 1] + D[k, j, k - 1])$$

 If G's weight matrix is W then we can express the recurrence relation as:

$$D[i, j, 0] = W[i, j]$$

$$D[i, j, k] = \min (D[i, j, k - 1], D[i, k, k - 1] + D[k, j, k - 1])$$

• A simpler version updating *D*:

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

• Let's examine this algorithm. Let our graph be

 Let's examine this algorithm. Let our graph be

• Then, the weight matrix is:

$$\begin{bmatrix} 0 & 9 & \infty & \infty & 7 & \infty & \infty \\ 9 & 0 & 5 & \infty & 4 & \infty & \infty \\ \infty & 5 & 0 & 6 & \infty & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & 4 & \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}$$

• For k=1 there are no changes

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & \infty & \infty & 7 & \infty & \infty \\ 9 & 0 & 5 & \infty & 4 & \infty & \infty \\ \infty & 5 & 0 & 6 & \infty & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & 4 & \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}
```

• For k=2, D[1,2] = 9 and D[2,3]=5; and D[5,2] = 4 and D[2,3]=5

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & \mathbf{9} & \infty & \infty & 7 & \infty & \infty \\ \mathbf{9} & 0 & \mathbf{5} & \infty & \mathbf{4} & \infty & \infty \\ \infty & \mathbf{5} & 0 & 6 & \infty & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & \mathbf{4} & \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}
```

• For k=2, D[1,2] = 9 and D[2,3]=5; and D[5,2] = 4 and D[2,3]=5

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```


• For k=2, D[1,2] = 9 and D[2,3]=5; and D[5,2] = 4 and D[2,3]=5

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```


- For k=2, D[1,2] = 9 and D[2,3]=5; and D[5,2] = 4 and D[2,3]=5
 - Hence, we can make D[1,3]=14 and D[5,3]=9

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & 14 & \infty & 7 & \infty & \infty \\ 9 & 0 & 5 & \infty & 4 & \infty & \infty \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & 4 & 9 & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}
```

- For k=2, D[1,2] = 9 and D[2,3]=5; and D[5,2] = 4 and D[2,3]=5
 - Hence, we can make D[1,3]=14 and D[5,3]=9
 - Note that the graph is undirected, which makes the matrix symmetric

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & 14 & \infty & 7 & \infty & \infty \\ 9 & 0 & 5 & \infty & 4 & \infty & \infty \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & 4 & 9 & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}
```

• For k=3, we can reach all other nodes in the graph

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & 14 & \infty & 7 & \infty & \infty \\ 9 & 0 & 5 & \infty & 4 & \infty & \infty \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & 4 & 9 & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}
```

• For k=3, we can reach all other nodes in the graph

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

 $\begin{bmatrix} 0 & 9 & 14 & \infty & 7 & \infty & \infty \\ 9 & 0 & 5 & \infty & 4 & \infty & \infty \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ \infty & \infty & 6 & 0 & \infty & 7 & 6 \\ 7 & 4 & 9 & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 7 & 4 & 0 & 7 \\ \infty & \infty & 6 & 6 & \infty & 7 & 0 \end{bmatrix}$

These and all infinites will be gone...

• For k=3, we can reach all other nodes in the graph

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & 14 & 20 & 7 & 16 & 20 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ 20 & 11 & 6 & 0 & 15 & 7 & 6 \\ 7 & 4 & 9 & 15 & 0 & 4 & 15 \\ 16 & 7 & 2 & 7 & 4 & 0 & 7 \\ 20 & 11 & 6 & 6 & 15 & 7 & 0 \end{bmatrix}
```

- For k=3, we can reach all other nodes in the graph
 - However, these may not be the shortest paths

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & 14 & 20 & 7 & 16 & 20 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ 20 & 11 & 6 & 0 & 15 & 7 & 6 \\ 7 & 4 & 9 & 15 & 0 & 4 & 15 \\ 16 & 7 & 2 & 7 & 4 & 0 & 7 \\ 20 & 11 & 6 & 6 & 15 & 7 & 0 \end{bmatrix}
```

- For k=3, we can reach all other nodes in the graph
 - However, these may not be the shortest paths
- There will be no changes for k=4

```
\begin{aligned} & \textbf{function} \ \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

```
\begin{bmatrix} 0 & 9 & 14 & 20 & 7 & 16 & 20 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ 20 & 11 & 6 & 0 & 15 & 7 & 6 \\ 7 & 4 & 9 & 15 & 0 & 4 & 15 \\ 16 & 7 & 2 & 7 & 4 & 0 & 7 \\ 20 & 11 & 6 & 6 & 15 & 7 & 0 \end{bmatrix}
```

```
      0
      9
      14
      20
      7
      16
      20

      9
      0
      5
      11
      4
      7
      11

      14
      5
      0
      6
      9
      2
      6

      20
      11
      6
      0
      15
      7
      6

      7
      4
      9
      15
      0
      4
      15

      16
      7
      2
      7
      4
      0
      7

      20
      11
      6
      6
      15
      7
      0
```



```
      0
      9
      14
      20
      7
      11
      20

      9
      0
      5
      11
      4
      7
      11

      14
      5
      0
      6
      9
      2
      6

      20
      11
      6
      0
      15
      7
      6

      7
      4
      9
      15
      0
      4
      15

      11
      7
      2
      7
      4
      0
      7

      20
      11
      6
      6
      15
      7
      0
```

			k	=5				k=6													
	0	9	14	20	7	11	20		0	9	14	20	7	11	$\begin{bmatrix} 20 \\ 11 \\ 6 \end{bmatrix}$						
	9	0	5	11	4	7	11		9	0	5	11	4	7	11						
	14	5	0	6	9	2	6		14	5	0	6	9	2	6						
l	20	11	6	0	15	7	6		20	11	6	0	15	7	6 15 7						
	7	4	9	15	0	4	15		7	4	9	15	0	4	15						
l	11	7	2	7	4	0	7		11	7	2	7	4	0	7						
	20	11	6	6	15	7	0		20	11	6	6	15	7	7 0						


```
k=5
                                     k=6
           20
                  11
                      20
                                              11
                                                  18
       14
                               9 13
                      11
              4 7
           11
                            9
       5
                               0 \quad 5
                                       11
                                                  11
                           13
       6 0 15 7
20
                           18
       9 15
              0 	 4
                           11
20
              15
```

k=5								k=6								k=7								
ſ	. 0	9	14	20	7	11	20	0	9	13	18	7	11	18	Γ C		9	13	18	7	11	18 11		
	9	0	5	11	4	7	11	9	0	5	11	4	7	11	9		0	5	11	4	7	11		
	14	5	0	6	9	2	6	13	5	0	6	6	2	6	1	3	5	0	6	6	2	6		
	20	11	6	0	15	7	6	18	11	6	0	11	7	6	18	3	11	6	0	11	7	6		
	7	4	9	15	0	4	15	7	4	6	11	0	4	11	7		4	6	11	0	4	11		
	11	7	2	7	4	0	7	11	7	2	7	4	0	7	1	Ļ	7	2	7	4	0	7		
	20	11	6	6	15	7	0	18	11	6	6	11	7	0	$\lfloor 18$	3	11	6	6	11	7	6 6 11 7 0		

Let's look at the next steps:

$$k=5$$

$$k=6$$

$$k=7$$

$$\begin{bmatrix} 0 & 9 & 14 & 20 & 7 & 11 & 20 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 14 & 5 & 0 & 6 & 9 & 2 & 6 \\ 20 & 11 & 6 & 0 & 15 & 7 & 6 \\ 7 & 4 & 9 & 15 & 0 & 4 & 15 \\ 20 & 11 & 6 & 6 & 15 & 7 & 0 \end{bmatrix} \begin{bmatrix} 0 & 9 & 13 & 18 & 7 & 11 & 18 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 13 & 5 & 0 & 6 & 6 & 2 & 6 \\ 18 & 11 & 6 & 0 & 11 & 7 & 6 \\ 7 & 4 & 6 & 11 & 0 & 4 & 11 \\ 11 & 7 & 2 & 7 & 4 & 0 & 7 \\ 20 & 11 & 6 & 6 & 15 & 7 & 0 \end{bmatrix} \begin{bmatrix} 0 & 9 & 13 & 18 & 7 & 11 & 18 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 13 & 5 & 0 & 6 & 6 & 2 & 6 \\ 18 & 11 & 6 & 0 & 11 & 7 & 6 \\ 7 & 4 & 6 & 11 & 0 & 4 & 11 \\ 11 & 7 & 2 & 7 & 4 & 0 & 7 \\ 20 & 11 & 6 & 6 & 15 & 7 & 0 \end{bmatrix} \begin{bmatrix} 11 & 7 & 2 & 7 & 4 & 0 & 7 \\ 18 & 11 & 6 & 6 & 11 & 7 & 0 \end{bmatrix} \begin{bmatrix} 0 & 9 & 13 & 18 & 7 & 11 & 18 \\ 9 & 0 & 5 & 11 & 4 & 7 & 11 \\ 13 & 5 & 0 & 6 & 6 & 2 & 6 \\ 18 & 11 & 6 & 0 & 11 & 7 & 6 \\ 7 & 4 & 6 & 11 & 0 & 4 & 11 \\ 11 & 7 & 2 & 7 & 4 & 0 & 7 \\ 18 & 11 & 6 & 6 & 11 & 7 & 0 \end{bmatrix}$$

• For k=7, D is unchanged. So we have found the best paths

• For DP to be applicable, the problem must have a **sub-structure** that allows for a compositional solution

- For DP to be applicable, the problem must have a **sub-structure** that allows for a compositional solution
 - Shortest-path problems have this property

- For DP to be applicable, the problem must have a **sub-structure** that allows for a compositional solution
 - Shortest-path problems have this property
 - For example, if $\{x_1, x_2, ..., x_i, ..., x_n\}$ is a shortest path from x_1 to x_n then $\{x_1, x_2, ..., x_i\}$ is a shortest path from x_1 to x_i

- For DP to be applicable, the problem must have a **sub-structure** that allows for a compositional solution
 - Shortest-path problems have this property
 - For example, if $\{x_1,x_2,\ldots,x_i,\ldots,x_n\}$ is a shortest path from x_1 to x_n then $\{x_1,x_2,\ldots,x_i\}$ is a shortest path from x_1 to x_i
- Longest-path problems don't have this property

- For DP to be applicable, the problem must have a **sub-structure** that allows for a compositional solution
 - Shortest-path problems have this property
 - For example, if $\{x_1,x_2,...,x_i,...,x_n\}$ is a shortest path from x_1 to x_n then $\{x_1,x_2,...,x_i\}$ is a shortest path from x_1 to x_i
- Longest-path problems don't have this property
 - For example, $\{1,2,5,6,7,4,3\}$ is a longest path from 1 to 3, but $\{1,2\}$ is not a longest path from 1 to 2, i.e., $\{1,5,6,7,4,3,2\}$ is longer

Next lecture

- Greedy techniques
 - Prim's algorithm (Levitin Section 9.1)
 - Dijkstra's algorithm (Levitin Section 9.3)