Neural network

Perceptron

Biological motivation

- Perceptron: (roughly) biologically motivated model
- Takes sum of the weighted inputs
- Apply non-linear operation to the sum to determine output

Source: <u>link</u>

output= 0 if
$$\sum_{i=0}^{n} x_i w_i \le \text{threshold}$$

= 1 if $\sum_{i=0}^{n} x_i w_i \ge \text{threshold}$

Single neuron

Neuron of Neural network

- More generic form: added bias (b)
- Use non-linear activation function f()
 - Types of *non-linear functions*: sigmoid, tanh, *ReLU*

Activation function: Sigmoid function

$$[w_0 x_0 + w_1 x_1 + \dots + w_n x_n] = [w_0 \quad w_{01} \quad \dots \quad w_n] \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

```
class Neuron(object):
def forward(self, inputs):
   input_weighted_sum = np.dot(input, weights) + bias
   activation_output = f(input_weighted_sum)
   return activation_output
```

Neural network

- Layer: multiple neurons
- Multiple layers: connecting many layers
- Neurons in each layers are connected
 - Also called FC (fully) connected) layers or MLP (multi-layer perceptron)

 x_0

 \mathcal{X}_1

 W_{02}

 W_{12}

$$\begin{bmatrix} w_{00}x_0 + w_{01}x_1 + w_{02}x_2 \\ w_{10}x_0 + w_{11}x_1 + w_{12}x_2 \\ w_{20}x_0 + w_{21}x_1 + w_{22}x_2 \end{bmatrix} = \begin{bmatrix} w_{00} & w_{01} & w_{02} \\ w_{10} & w_{11} & w_{12} \\ w_{20} & w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$

Neural network playground

- Great way to gain intuition
- http://playground.tensorflow.org

001,475

Activation

Sigmoid

Regularization

Simple neural network example

- Simple 3 layers neural network
- In each layer:
 - Input: vector
 - Output: vector
 - Learned parameters: matrix
 - Operations:
 - Multiply the input vector with weight matrix
 - Apply element-wise non-linear operations:
 ReLU *

- Neural network training
 - Forward propagation
 - Backward propagation
 - Weight update

Forward propagation

Example using a single input

Forward propagation

Mini-batch of 2 input vectors

- For mini-batch inputs
- Matrix-vector multiplication becomes matrix-matrix multiplication

Forward propagation

Compute loss

- Loss function: measure how 'bad' the neural network was
 - Compare the output to the label for each input
- Goal of the training: minimize the loss value
 - Update the weights to reduce the loss
 - Output will be close to the labels

Backward propagation

- Goal: update the layer weights to minimize loss value
- Can be done by "backward propagating" loss through the layers
 - Each layer computes weight gradient, used to update the weights
 - Each layer computes activation gradient, to be back propagated to preceding layer

Backward propagation

- Compute the weight gradient
 - dW: weight gradient (to update weights)
 - *dY*: incoming activation gradient
 - X: input activation (from forward propagation)
- Compute the activation gradient
 - dX: output activation gradient to back propagate to the preceding layer

Weight update

- Optimization step
 - Types of optimization: SGD, Adam, Adagrdad, rmsprop
- Input:
 - Current network weights
 - Weight gradient from backward prop.
- Output: updated weights
- Operations:
 - Update each weight with corresponding weight gradient value
 - Advanced methods:
 - Maintain internal optimization state and use this state to update the weight
- Internal states of advanced method
 - 1 or 2 momentum
 - Each momentum is the same size as weight
 - Size of the state may need 2-6 times as the weight size

SGD: stochastic gradient descent

SGD with momentum, advanced method

Training summary

- Backward compute does ~2x of forward compute
- Backward propagation uses the activations computed during the forward propagation
 - ullet X in the example, and this is computed by a preceding layer
 - This is a major fraction of memory used in training

- Example: Resnet50 training in FP16 at mini-batch size 256:
 - Requires ~ 15GB of memory
 - ~12 GB of the memory is used by activations

Simple PyTorch neural network

Open in Colab

References

- Excellent Neural network introduction book: Neural Networks and Deep Learning
- Simple neural network implementation
- Excellent neural network tutorial