2-GROUPS WITH EVERY AUTOMORPHISM CENTRAL

S. P. GLASBY

(Received 12 September 1984)

Communicated by D. E. Taylor

Abstract

An infinite family of 2-groups is produced. These groups have no direct factors and have a non-abelian automorphism group in which all automorphisms are central.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 F 28, 20 D 45.

The automorphisms of a group G which induce the identity on G/Z(G) are called central. This paper investigates groups which admit only central automorphisms. Various authors ([2], [5], [7], [9]) considered non-abelian p-groups with abelian automorphism groups in which necessarily every automorphism is central. Curran [1] and Malone [6] constructed non-abelian p-groups with non-abelian automorphism groups in which every automorphism is central. The groups constructed by Curran and Malone, however, all had direct factors. Malone [6] wondered if this condition were necessary. The groups G_n $(n \ge 4)$ described below show that direct factors are not necessary.

Define G_n to be the group

$$\langle x_1, \dots, x_n | x_i^{2^i} = 1, 1 \le i \le n, [x_i, x_{i+1}] = x_{i+1}^{2^i}, 1 \le i < n,$$

= $[x_i, x_j] = 1, 1 < i + 1 < j \le n \rangle.$

Then G_n has order $2^{n(n+1)/2}$. The group G_3 was first considered by Miller [7] and is group 99 of the Hall and Senior tables [4].

The author gratefully acknowledges the support of a Commonwealth Postgraduate Research Award. © 1986 Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

THEOREM. For $n \ge 3$, G_n has no direct factors and only central automorphisms. The automorphism group of G_n has order $2^{p(n)}$, where $p(n) = (n-1)(2n^2 - n + 6)/6$, and is non-abelian for $n \ge 4$.

PROOF. The centre and derived subgroups of G_n are $\langle x_2^2, x_3^2, \ldots, x_n^2 \rangle$ and $\langle x_2^2, x_3^4, \ldots, x_n^{2^{n-1}} \rangle$, respectively. Let $x(i_1, \ldots, i_n)$ denote $x_1^{i_1} \cdots x_n^{i_n}$. Then every element of G_n may be uniquely represented as $x(i_1, \ldots, i_n)$ with $0 \le i_k < 2^k$. Commutator collection, together with the fact that G_n has class 2, yields the equation

$$x(i_1,\ldots,i_n)^2 = x(0,2i_2(1+i_1),2i_3(1+2i_2),\ldots,2i_n(1+2^{n-2}i_{n-1})).$$

Thus the square of every element is central. Since the centre has exponent 2^{n-1} , G_n has exponent 2^n . All elements of maximal order must have i_n odd.

Suppose G_n is the direct product $A \times B$, where A has exponent 2^n . If $y = x_n^{2^{n-1}}$, then the 2^{n-1} th power of every element of order 2^n is y. Thus y is an element of A, and no element of B has order 2^n . Hence every element of order 2^n is contained in A, and so A contains $x_1x_n, \ldots, x_{n-1}x_n, x_n$ and must therefore equal G_n .

If $i_{k,j}$ are integers, then the map taking x_1 to $x(1,2i_{1,2},4i_{1,3},\ldots,2^{n-1}i_{1,n})$ and x_k to $x(2i_{k,1},\ldots,2i_{k,k-1},2i_{k,k}+1,2^2i_{k,k+1},\ldots,2^{n-k+1}i_{k,n}), 1 < k \le n$, defines a homomorphism of G_n which is the identity on $G_n/Z(G_n)$. Indeed, because the centre of G_n equals the Frattini subgroup, these homomorphisms are automorphisms. There are $2^{p(n)}$ distinct automorphisms of the above form,

As G_n has no abelian direct factors, [8, Theorem 1] may be used to show that G_n has $2^{p(n)}$ central automorphisms. We shall prove by induction that all automorphisms of G_n are central for $n \ge 3$, and thus all have the above form. The case n = 3 is easy because p(3) = 7 and the Miller group, G_3 , has 2^7 automorphisms (see [4, 7]).

Suppose n > 3. The above remarks show that y is fixed by all automorphisms of G_n . There is an isomorphism ' from $G_n/\langle y \rangle$ to $G_{n-1} \times Z$ such that the elements x_1', \ldots, x_{n-1}' generate G_{n-1} , and such that the element x_n' of order 2^{n-1} generates Z. The homomorphism * from $\operatorname{Aut}(G_n)$ to $\operatorname{Aut}(G_{n-1} \times Z)$ and the inductive hypothesis give information about $\operatorname{Aut}(G_n)$.

Let ι be the inclusion map from G_{n-1} to $G_{n-1} \times Z$, π the projection map from $G_{n-1} \times Z$ to G_{n-1} , and ϕ an automorphism of G_n . Then, arguing as in Malone [6], we see that $\iota \phi^* \pi$ is an automorphism of G_{n-1} . So any automorphism of G_n takes x_1 to $x(1, 2i_{1,2}, \ldots, 2^{n-2}i_{1,n-1}, j_{1,n})$ and x_k to $x(2i_{k,1}, \ldots, 2i_{k,k-1}, 2i_{k,k} + 1, 2^2i_{k,k+1}, \ldots, 2^{n-k}i_{k,n-1}, j_{k,n})$, 1 < k < n. But x_k is mapped to an element of order 2^k , so 2^{n-k} divides $j_{k,n}$ for $1 \le k < n$. Since x_n' is central and x_n is not, x_n is mapped to $x(2i_{n,1}, \ldots, 2i_{n,n-1}, 2i_{n,n} + 1)$. Thus all automorphisms of G_n are central, which completes the inductive proof.

Finally, $\operatorname{Aut}(G_n)$ is non-abelian for $n \ge 4$. Let ϕ be the automorphism which maps x_4 to $x_3^2x_4$ and which fixes the remaining generators. Let ψ map x_3 to $x_3x_4^4$ and fix the other generators. Then $(x_4)\phi\psi=x_3^2x_4^9$ and $(x_4)\psi\phi=x_3^2x_4$. Thus ϕ and ψ do not commute, and so the proof of the theorem is complete.

FURTHER EXAMPLES. We exhibit some further examples of 2-groups with all automorphisms central. Let H_n and K_n denote the groups

$$H_n = \left\langle x_1, \dots, x_n | x_i^4 = 1, 1 \le i \le n, [x_i, x_n] = x_{i+1}^2, 1 \le i < n \right\rangle, \text{ and}$$

$$K_n = \left\langle x_0, \dots, x_n | x_0^2 = x_i^4 = x_n^2 = 1, 1 \le i < n, [x_0, x_i] = x_{i+1}^2,$$

$$1 \le i < n - 1, [x_0, x_{n-1}] = x_n \right\rangle,$$

where the commutators $[x_i, x_j]$ $(1 \le i < j \le n)$ not shown above are trivial. A proof of the statements made below appears in [3], a copy of which may be obtained from the author. The groups H_n and K_n have order 2^{2n} , and their automorphism groups are elementary abelian of order 2^{n^2} . Furthermore, H_n and K_n are not isomorphic either to themselves or to any of Jonah and Konvisser's groups [5].

The groups G_n , like the groups H_n and K_n , may be generalized to give different groups whose automorphisms are all central. Let $G(l_1, \ldots, l_n)$ denote the group

$$\langle x_1, \dots, x_n | x_i^{m_i} = 1, 1 \le i \le n, [x_{i-1}, x_i] = x_i^{m_i/2}, 1 < i \le n,$$

$$[x_i, x_j] = 1, 1 < i + 1 < j \le n \rangle,$$

where $n \ge 3$, $m_i = 2^{l_i}$ and $0 < l_1 < \cdots < l_n$. Then every automorphism of $G(l_1, \ldots, l_n)$ is central if and only if $l_1 = 1$ and $l_2 = 2$. The groups G(1, 2, l) are isomorphic to those considered by Struik [9], and the group $G(1, \ldots, n)$ is isomorphic to G_n . Finally, $G(1, 2, \ldots, l_n)$ has no direct factors and, when n > 3, has a non-abelian automorphism group of order 2^p , where $p = 2(n-1) + \sum_{k=3}^n [(l_1 + l_2 + \cdots + l_k) - k + (n-k)(k-1)]$.

References

- M. J. Curran, 'A non-abelian automorphism group with all automorphisms central', Bull. Austral. Math. Soc. 26 (1982), 393-397.
- [2] R. Faudree, 'Groups in which each element commutes with its endomorphic images', Proc. Amer. Math. Soc. 27 (1971), 236-240.
- [3] S. P. Glasby, 2-groups with every automorphism central (preprint, The University of Sydney, 1984).
- [4] M. Hall, Jr. and J. Senior, The groups of order 2ⁿ (n ≤ 6) (Macmillan, New York; Collier-Macmillan, London, 1964).

- [5] D. Jonah and M. Konvisser, 'Some non-abelian p-groups with abelian automorphism groups', Arch Math. (Basel) 26 (1975), 131–133.
 - [6] J. J. Malone, 'p-groups with non-abelian automorphism groups and all automorphisms central', Bull. Austral. Math. Soc. 29 (1984), 35–37.
 - [7] G. A. Miller, 'A non-abelian group whose group of automorphisms is abelian', Messenger Math. 43 (1913/1914), 124–125.
- [8] P. R. Saunders, 'The central automorphisms of a finite group', J. London Math. Soc. 44 (1969), 225-228.
- [9] R. R. Struik, 'Some non-abelian 2-groups with abelian automorphism groups', Arch. Math. (Basel) 39 (1982), 299–302.

Department of Pure Mathematics
The University of Sydney
New South Wales 2006
Australia