Abstract Algebra

EDs, PIDs, UFDs, and Polynomial Rings

(Lessons 12, 13 and 14)

- **1.** Let R be an integral domain. Prove that if two elements d and d' of R generate the same principal ideal, i.e., $\langle d \rangle = \langle d' \rangle$, then d' = ud for some $u \in R^{\times}$. Conclude that if d and d' are both greatest common divisors of a and b, then d' = ud for some $u \in R^{\times}$.
- 2. Consider the ring

$$R = \mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right] = \left\{m + n\frac{1+\sqrt{-d}}{2} \mid m, n \in \mathbb{Z}\right\}$$
$$= \left\{\frac{a+b\sqrt{-d}}{2} \mid a, b \in \mathbb{Z}, a \equiv b \pmod{2}\right\}$$

where *d* is square-free and $d \equiv 3 \pmod{4}$. Let $N(r) = r\bar{r}$, where \bar{r} is the conjugate of *r*.

- (i) Suppose that for any complex number z, there exists $\xi \in R$ such that $N(z \xi) < 1$. Show that N is a Euclidean function on R. Conclude that R is a Euclidean domain.
- (ii) Show that $R = \mathbb{Z}\left\lceil \frac{1+\sqrt{-3}}{2} \right\rceil$ is a Euclidean domain.
- 3. Prove that every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal.
- 4. Prove that any two nonzero elements of a P.I.D. have a least common multiple.
- **5.** Let *R* be an integral domain and suppose that every prime ideal in *R* is principal. Prove that every ideal of *R* is principal. i.e., *R* is a P.I.D.
- **6.** Show that the ideal $I = \langle 3, x^3 x^2 + 2x 1 \rangle$ in $\mathbb{Z}[x]$ is not principal.
- 7. Find the greatest common divisor (GCD) of the polynomials $g = x^3 + x^2 + x 3$ and $f = x^4 x^3 + 3x^2 + x 4$ in $\mathbb{Q}[x]$ using the Euclidean algorithm.
- **8.** Let $R = \mathbb{Z}[\sqrt{-5}]$.
 - (i) Prove that 2, $\sqrt{-5}$, and $1 + \sqrt{-5}$ are irreducible in R.
 - (ii) Prove that *R* is not a unique factorization domain (UFD).
 - (iii) Provide an explicit ideal in *R* that is not principal.
- 9. Show that the polynomial

$$(x-1)(x-2)\cdots(x-n)-1$$

is irreducible over \mathbb{Z} for all $n \geq 1$.

10. Show that the polynomial

$$(x-1)(x-2)(x-n) + 11$$

is irreducible over \mathbb{Z} for all $n \geq 1$, $n \neq 4$.

11. Let A[[x]] denote the set of sequences $(a_i)_{i \in \mathbb{Z}^+}$ of elements of A, without any restriction. Define the addition and multiplication of two elements $(a_i)_{i \in \mathbb{Z}^+}$ and $(b_i)_{i \in \mathbb{Z}^+}$ of A[[x]] as follows:

$$(a_i)_{i \in \mathbb{Z}^+} + (b_i)_{i \in \mathbb{Z}^+} = (a_i + b_i)_{i \in \mathbb{Z}^+}$$

and

$$(a_i)_{i\in\mathbb{Z}^+}(b_i)_{i\in\mathbb{Z}^+}=(c_k)_{k\in\mathbb{Z}^+},$$

where $c_k = \sum_{i+j=k} a_i b_j$. Show that these operations make A[[x]] a commutative ring and that A[x] is a subring of A[[x]]. The ring A[[x]] is called the *ring of formal power series* in x: this name comes from the fact that, if we set $x = (0, 1, 0, \dots) \in A[[x]]$, then every element $(a_i)_{i \in \mathbb{Z}^+}$ of A[[x]] can be formally written as:

$$\sum_{i=0}^{\infty} a_i x^i.$$

- **12.** Prove that $x^3 + nx + 2$ is irreducible in $\mathbb{Z}[x]$ for all integers $n \neq 1, -3, -5$.
- **13.** Determine whether the following polynomials are irreducible in the rings indicated. For those that are irreducible, determine their factorization into irreducibles.
 - (i) $x^3 + x + 1$ in $\mathbb{Z}_3[x]$.
 - (ii) $x^5 + 1$ in $\mathbb{Z}_5[x]$.
 - (iii) $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$.
- **14.** Apply Eisenstein's criterion to establish the irreducibility of each of the following polynomials over Q:

(i)
$$x^3 + 6x^2 + 2x + 2$$
,

(iv)
$$x^7 - 31$$
,

(ii)
$$x^5 - 2x^3 + 10$$
,

(v)
$$2x^4 - 27x^3 + 6x^2 - 9x + 6$$
,

(iii)
$$x^4 + 6$$
,

(vi)
$$x^3 + 5x^2 + 25x + 5$$
.

15. Let *A* be a ring. Prove that

$$\frac{A[x,y]}{\langle x-y\rangle}\cong A[x]\cong A[y].$$

2