Cours NSI	Thème : Processus Exercices	Date :	
-----------	------------------------------	--------	--

Dans cette série d'exercices, nous serons amené à **comparer** différents algorithmes d'ordonnancement. La mesure de comparaison est le **temps moyen d'attente** des processus.

Vocabulaire

Le **quantum** est une unité arbitraire de temps, durée allouée à l'exécution d'une instruction.

<u>Durée du processus</u> (ou durée d'exécution sur le coeur) : Durée en quantum q nécessaire à l'exécution du processus.

<u>Date d'arrivée</u> (ou temps de soumission) : temps où le processus arrive dans la file d'attente.

<u>Date de terminaison</u> pour un processus P: durée écoulée entre le temps 0 et le temps où le processus est terminée P.

<u>Temps d'exécution</u> (ou temps de séjour) : différence entre la date de terminaison de P et la date d'arrivée de P.

<u>Temps d'attente</u> d'un processus *P* : différence entre le *temps d'exécution* et la *durée du processus*.

<u>Temps moyen d'attente</u> : moyenne des temps d'attente de tous les processus.

Exercice 1. Ordonnancement par FIFO

Processus	P1	P2	Р3
Durée en quantum	8	3	9
Date d'arrivée	8	5	0

Représenter l'ordonnancement des processus ci-dessus à l'aide de l'algorithme d'ordonnancement FIFO (First In First Out).

Exercice 2. Ordonnancement par SJF

Processus	P1	P2	Р3	P4
Durée en quantum	8	5	9	2
Date d'arrivée	4	0	3	7

Représenter l'ordonnancement des processus ci-dessus à l'aide de l'algorithme d'ordonnancement SJF (Shortest Job First).

Enseignant: M. BODDAERT Page: 1

Cours NSI	Thème : Processus Exercices	Date :
-----------	------------------------------	--------

Exercice 3. Ordonnancement par Round Robin

Processus	P1	P2	Р3
Durée en quantum	8	5	9
Date d'arrivée	1	0	3

Représenter l'ordonnancement des processus ci-dessus à l'aide de l'algorithme d'ordonnancement Round Robin (méthode du tourniquet).

Exercice 4. SJF et RR

Les trois processus suivants doivent être exécutés simultanément sur un ordinateur à un seul microprocesseur. Chaque instruction dure 1 quantum. Nous les noterons P1, P2 et P3.

Processus 1
Ligne 1
Ligne 2
Ligne 3
Ligne 4
Ligne 5

Processus 2
Ligne 1
Ligne 2
Ligne 3

Processus 3
Ligne 1
Ligne 2
Ligne 3
Ligne 4
Ligne 5
Ligne 6

1. L'ordonnanceur du système d'exploitation utilise la méthode SJF « plus court d'abord ». Schématiser l'ordre de traitement des instructions des 3 processus.

2. L'ordonnanceur du système d'exploitation utilise la méthode du **tourniquet**. Schématiser l'ordre de traitement des instructions des 3 processus. Au départ, on supposera que P1 est exécuté, puis P2, puis P3.

Enseignant: M. BODDAERT Page: 2

Cours NSI	Thème : Processus Exercices	Date :	
-----------	------------------------------	--------	--

Exercice 5. Comparatif des algorithmes d'ordonnancement

5 processus, P1, P2, P3, P4, P5 sont dans une file d'attente dans cet ordre (P1 est le premier, P5 est le dernier). Ils arrivent tous en même temps pour être traité. Leur exécution demande un temps total de service exprimé en unités arbitraires (quantum).

Processus	P1	P2	Р3	P4	P5
Durée en quantum	10	1	2	1	5

1. Décrire l'exécution des processus (schéma + tableau) dans le cadre des algorithmes d'ordonnancement FIFO, SJF, RR (avec un quantum de 1).

FIFO:

Processus	P1	P2	Р3	P4	P5
Durée en quantum	10	1	2	1	5
Date d'arrivée	0	0	0	0	0
Date de terminaison					
Temps d'exécution					
Temps d'attente					
Temps d'attente moyen		•	•		•

SJF:

Processus	P1	P2	Р3	P4	P5
Durée en quantum	10	1	2	1	5
Date d'arrivée	0	0	0	0	0
Date de terminaison					
Temps d'exécution					
Temps d'attente					
Temps d'attente moyen		•			•

Enseignant : M. BODDAERT

Cours NSI	Thème : Processus Exercices	Date :
-----------	------------------------------	--------

<u>RR</u>:

Processus	P1	P2	Р3	P4	P5
Durée en quantum	10	1	2	1	5
Date d'arrivée	0	0	0	0	0
Date de terminaison					
Temps d'exécution					
Temps d'attente					
Temps d'attente moyen		•			

Quel est de ces trois algorithmes, celui qui correspond à un temps minimal d'attente moyen par processus ?

