

Superposition, Thévenin and Norton

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Circuit Analysis Methods

• KVL: KCL: VI
$$\sum_{loop} V_i = 0 \qquad \sum_{node} I_i = 0$$

- Circuit composition rules
- Node method the workhorse of 6.002 KCL at nodes using V's referenced from ground (KVL implicit in " $(e_i e_i)$ G")

Linearity

Consider

Write node equations -

Consider

Write node equations --

$$\frac{e-V}{R_1} + \frac{e}{R_2} - I = 0 \qquad \text{linear in } e, V, I$$

Rearrange --

$$\left[\frac{1}{R_1} + \frac{1}{R_2}\right] e = \frac{V}{R_1} + I$$
 conductance node linear sum matrix voltages of sources

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture 3

Linearity

Write node equations --

$$\frac{e-V}{R_1} + \frac{e}{R_2} - I = 0 \qquad \text{linear in } e, V, I$$

Rearrange --

$$\left[\frac{1}{R_1} + \frac{1}{R_2}\right]e = \frac{V}{R_1} + I$$

conductance matrix

node linear sum voltages of sources

$$e = S$$

 $e = \frac{R_2}{R_1 + R_2} V + \frac{R_1 R_2}{R_1 + R_2} I$

$$e = a_1V_1 + a_2V_2 + \dots + b_1I_1 + b_2I_2 + \dots$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Linearity \Longrightarrow Homogeneity Superposition

Linearity \Longrightarrow Homogeneity Superposition

Homogeneity

Linearity

Homogeneity Superposition

Superposition

$$\begin{array}{c} x_{1a} + x_{1b} \longrightarrow \\ x_{2a} + x_{2b} & \vdots \end{array} \longrightarrow y_a + y_b$$

Linearity \Longrightarrow Homogeneity Superposition

Specific superposition example:

$$V_1 \longrightarrow 0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow 0 \longrightarrow V_2$$

$$\begin{array}{c}
\downarrow \\
V_1 \\
0 \\
+ \\
V_2
\end{array}$$

$$\begin{array}{c}
\downarrow \\
V_1 \\
+ \\
\downarrow V_2
\end{array}$$

Method 4: Superposition method

The output of a circuit is determined by summing the responses to each source acting alone.

independent sources only

Back to the example

Use superposition method

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Back to the example

Use superposition method

$oldsymbol{V}$ acting alone

I acting alone

sum --- superposition

$$e = e_V + e_I = \frac{R_2}{R_1 + R_2}V + \frac{R_1R_2}{R_1 + R_2}I$$

Voilà!

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Yet another method...

Consider

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Or

$$v = v_{TH} + R_{TH}i$$

As far as the external world is concerned (for the purpose of I-V relation),

"Arbitrary network N" is indistinguishable

 $v_{TH} \longrightarrow \text{open circuit voltage}$ at terminal pair (a.k.a. port)

 R_{TH} \longrightarrow resistance of network seen from port $(V_m$'s, I_n 's set to 0)

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Method 4:

The Thévenin Method

Replace network N with its Thévenin equivalent, then solve external network E.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Example:

$$i_1 = \frac{V - V_{TH}}{R_1 + R_{TH}}$$

Example:

$$R_{TH}: \begin{array}{c} & & & & & \\ & & & & \\ R_{TH} & & & & \\ R_{TH} & & & & \\ \end{array}$$

Graphically, $v = v_{TH} + R_{TH}i$

$$v = v_{TH} + R_{TH}i$$

Open circuit
$$(i \equiv 0)$$

$$v = v_{TH} - V_{OC}$$

Short circuit
$$(v \equiv 0)$$

$$i = \frac{-v_{TH}}{R_{TH}}$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture 3

Method 5:

in recitation, see text

The Norton Method

$$I_N = \frac{V_{TH}}{R_{TH}}$$

Summary

■Discretize matter

LMD → LCA

Physics → EE

- R, I, V Linear networks
- Analysis methods (linear)
 KVL, KCL, I V
 Combination rules
 Node method
 Superposition
 Thévenin
 Norton
- NextNonlinear analysisDiscretize voltage

