1 Variables

2 root

	var	symbol	documentation	type	units	eqs
8	$F_{N,A}$	F_N_A	fudamental incidence matrix	network		
5	t	t	time	frame	s	
6	t^o	to	starting time	frame	s	4
7	t^e	te	end time	frame	s	5
1	#	value	numerical value	constant		
2	1	one	numerical value one	constant		1
3	0	zero	numerical value zero	constant		2
4	0.5	onehalf	numerical value one half	constant		3

3 physical

	var	symbol	documentation	type	units	eqs
9	$P_{N,A}$	P_N_A	projection from node to arc for arc properties	projection		
32	$P_N S_A S_{NS,AS}$	P_NS_AS	projection node species to arc species	projection		
33	$P_{KN}K_{K,NK}$	P_K_NK	projection of conversion to node conversion	projection		
34	$P_{SN}S_{S,NS}$	P_S_NS	projection species to node species	projection		
35	$P_{NN}K_{N,NK}$	P_N_NK	projection node to node conversion	projection		
36	$P_N S_K S_{NS,KS}$	P_NS_KS	projection node species to conversion species	projection		
37	$P_{AN}S_{A,NS}$	P_A_NS	projection arc to node species for conductivity	projection		
10	r_{xN}	r_x	x-coordinate	frame	m	
11	r_{yN}	r_y	y-coordinate	frame	m	
12	r_{zN}	r_z	z coordinate	frame	m	
13	U_N	U	fundamental state – internal energy	state	$kg m^2 s^{-2}$	
14	S_N	S	fundamental state – entropy	state	$kg m^2 K^{-1} s^{-2}$	
15	V_N	V	fundamental state – volume	state	m^3	
16	n_{NS}	n	fundamental state – molar mass	state	mol	
20	H_N	Н	enthalpy	state	$kg m^2 s^{-2}$	9
21	A_N	A	Helmholtz energy	state	$kg m^2 s^{-2}$	10
22	G_N	G	Gibbs free energy	state	$kg m^2 s^{-2}$	11
23	C_N	charge	fundamental state – charge	state	As	
24	A^v	Avogadro	Avogadro number	constant	mol^{-1}	
25	$k^B{}_N$	Boltzmann	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	12
26	R_N	GasConstant	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-}$	2 13
17	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	6
18	T_N	Т	temperature	effort	K	7

Continued on next page

	var	symbol	documentation	type	units	eqs
19	μ_{NS}	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	8
27	UC_N	UC	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	14
28	v_{xN}	v_x	velocitiy in x-direction	secondaryState	ms^{-1}	15
29	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	16
30	v_{zN}	V_Z	velocity in z-direction	secondaryState	ms^{-1}	17

4 control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

5 reactions

	var	symbol	documentation	type	units	eqs
31	$N_{S,K}$	N	soichiometric matrix	constant		
38	$K^o{}_K$	Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
39	$E^a{}_{N,NK}$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	18 19

6 material

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

7 macroscopic

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

8 solid

var symbol documentation	type	units	eqs
--------------------------	------	-------	-----

9 fluid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

10 liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

11 gas

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

12 control-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

13 gas-liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

14 gas-gas

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

15 liquid-liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

16 gas-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

17 solid-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

18 liquid-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

19 material-material

	var	symbol	documentation	type	units	eqs	
--	-----	--------	---------------	------	-------	-----	--

20 reactions—reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

21 control–reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

22 reactions-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

23 control-material

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

24 material-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

${\bf 25} \quad {\bf control-macroscopic}$

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

26 macroscopic-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

27 reactions-material

	var	symbol	documentation	type	units	eqs	
--	-----	--------	---------------	------	-------	-----	--

28 material-reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

29 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

$30 \quad {\rm macroscopic-reactions}$

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

material-macroscopic

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

32 macroscopic-material

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

33 Equations

34 Generic

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical value 1	root
2	0 := Instantiate(#, #)	numerical value zero	root
3	0.5 := Instantiate(#, #)	numerical value one half	root
4	$t^o := \text{Instantiate}(t, \#)$	starting time	root
5	$t^e := \text{Instantiate}(t, \#)$	end time	root
6	$p_N := \left(-\frac{\partial U_N}{\partial V_N} \right)$	thermodynamic pressure	physical
7	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
8	$\mu_{NS} := rac{\partial U_N}{\partial n_{NS}}$	chemical potential	physical
9	$H_N := U_N - p_N \cdot V_N$	enthalpy	physical
10	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	physical
11	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
12	$k^B{}_N := \operatorname{Instantiate}(S_N, \#)$	Boltzmann constant	physical
13	$R_N := A^v \cdot k^B{}_N$	gas constant	physical
14	$UC_N := (C_N)^{-1} \cdot U_N$	electrical potential – voltage	physical
15	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocitiy in x-direction	physical
16	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y direction	physical

Continued on next page

no	equation	documentation	layer
17	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	physical
18	$E^{a}_{N,NK} := P_{NN}K_{N,NK} \stackrel{N}{\star} R_{N} . T_{N}$	Arrhenius activation energy	reactions
19	$E^{a}_{N,NK} := \text{Instantiate}(E^{a}_{N,NK}, \#)$	Arrhenius activation energy	reactions