		Time Complexity		Space Complexity	
Sorting Algorithm	Best	Average	Worst	Worst	Sidble
Quicksort	O(n log n)	O(n log n)	O(n^2)	O(log n)	No
Merge Sort	O(n log n)	O(n log n)	O(n log n)	O(n)	Yes
Heapsort	O(n log n)	O(n log n)	O(n log n)	0(1)	No
Timsort	O(n)	O(n log n)	O(n log n)	O(n)	Yes
Bubble Sort	O(n)	O(n^2)	O(n^2)	0(1)	Yes
Insertion Sort	O(n)	O(n^2)	O(n^2)	0(1)	Yes
Selection Sort	O(n^2)	O(n^2)	O(n^2)	0(1)	No *
Shellsort	O(n log n)	(depends on gap sequence)	O(n^2)	0(1)	No
Bucket Sort	O(n + k)	O(n + k)	O(n^2)	O(nk)	Yes
Radix Sort	O(nk)	O(nk)	O(nk)	O(nk)	Yes
Counting Sort	O(n + k)	O(n + k)	O(n + k)	O(k)	Yes

minimum value is inserted into the first position and the intervening values shifted up. However, this modification either *Selection sort can be implemented as a stable sort if, rather than swapping the minimum value with its current value, the requires a data structure that supports efficient insertions or deletions, such as a linked list, or it leads to O(n^2) writes.