IA II Comunicação Multi-agentes

Prof^a Carine Webber CCET-UCS

Jacques Ferber, autor do MadKit

Exemplos de agentes

Agente	Dados perceptivos	Ações	Objetivos	Ambiente
Diagnóstico médico	Sintomas, paciente, exames respostas,	Perguntar, prescrever exames, testar	Saúde do paciente, minimizar custos	Paciente, gabinete,
Análise de imagens de satélite	Pixels	imprimir uma categorização	categorizar corretamente	lmagens de satélite
Tutorial de português	Palavras digitadas	Imprimir exercícios, sugestões, correções,	Melhorar o desempenho do estudante	Conjunto de estudantes
Filtrador de mails	mensagens	Aceitar ou rejeitar mensagens	Aliviar a carga de leitura do usuário	Mensagens, usuários
Motorista de taxi	Imagens, velocímetro, sons	brecar, acelerar, dobrar, falar com passageiro,	Segurança, rapidez, economia, conforto,	Ruas, pedestres, carros,
Músico de jazz	Sons seus e de outros músicos, grades de acordes	Escolher e tocar notas no andamento	Tocar bem, se divertir, agradar	Musicos, publico, grades de acordes

Adaptado de Russel & Norvig, 1995, pág. 37.

Justificativa do uso de sistemas multiagentes

- O domínio envolve uma inerente distribuição de:
- dados;
- capacidades para resolução de problemas;
- responsabilidades.
- Há a necessidade de manter a:
- autonomia das subpartes;
- hierarquia organizacional.

Justificativa do uso de sistemas multiagentes

- Inexistência de um ponto central para falhas.
- Evita a necessidade de um único e complexo sistema monolítico.
- Modelos matemáticos da realidade embutidos em cada agente são bem mais simples de projetar, implementar e manter do que modelos de controle baseados em sistemas centralizados.
- Capacidade de reação à dinâmica do ambiente devido a autonomia de cada agente.

Função para Comportamento do Agente

```
function comportamento_agente(percepçao)

static memoria //memória do agente sobre o mundo

memoria ← atualiza_memoria(memoria,percepçao)

ação ← escolhe_melhor_ação(memoria)

memoria ← atualiza_memoria(memoria,ação)

return ação
```

Sociedades de agentes

- Grupos de agentes que interagem de alguma forma:
 - Agentes podem ter diferentes papéis dentro do grupo
 - Os agentes podem ser heterogêneos ou homogêneos.
- Times de agentes compartilham (algumas) metas comuns.

Sociedades de Agentes

- Homogêneas: agentes do mesmo tipo
- Heterogêneas: agentes diferentes
- Fechadas: agentes fixos no ambiente
- Abertas: agentes podem migrar (entrada/saída de agentes)
- Baseadas em leis ou regras explícitas de comportamento para todos os agentes.
- Sem leis sem regras explícitas de comportamento para todos os agentes.

Interações

```
Um sistema multiagentes deve conter um certo número de agentes . . .
```

- . . . que interagem através da comunicação. . .
- . . . são capazes de agir no ambiente. . .
- ... tem diferentes "esferas de influência" ...
- . . . são ligados por relações organizacionais.

Tipos de Interação

Colaboração

Mecanismos de distribuição de tarefas

Cooperação

- Coordenação
 - Planejamento e ações conjuntas
- Negociação
 - Tomadas de decisões conjuntas

Competição

Os recursos são os mesmos para diferentes agentes

Comunicação entre agentes

Capacidade de trocar informações com outras entidades (agentes, humanos, objetos, ambiente)

Eles devem acessar informações sobre o estado atual do ambiente externo, via repositórios dessa informação, que podem ser outros agentes (pedido/levantamento com um simples e conciso conjunto de respostas possíveis ou comunicação complexa com respostas variáveis)

Protocolos de Comunicação

- + Se os agentes interagem em uma rede remota de comunicação, eles devem possuir um protocolo de comunicação.
- + Este protocolo é responsável pelas informações que trafegam pela rede local ou remota.
- + Os protocolos definem os passos de diálogos a serem executados pelos agentes em cada tipo de interação possível numa sociedade de agentes.

Comunicação entre agentes

- Performativos: atos da fala que representam ações
 - Informing (informar)
 - Requesting (solicitar)
 - Promising (prometer)
 - Permitting (permitir)
 - Prohibiting (proibir)
 - Declaring (declarar)
 - Expressing (expressar)

Modelo de mensagem ACL

Parâmetro	Significado	
:sender	Identifica o agente emissor da mensagem.	
:receiver	Identifica o agente receptor da mensagem.	
:content	Especifica o conteúdo da mensagem.	
:reply-with	Refere-se a uma expressão que será usada pelo agente receptor da	
	mensagem em sua resposta, de modo a facilitar a identificação da	
	mensagem original pelo agente emissor.	
:in-reply-to	Refere-se a uma expressão que referencia uma ação anterior para a qual	
	esta mensagem é uma resposta.	
:envelope	Refere-se a uma expressão que fornece informações relevantes sobre a	
	mensagem para o serviço de transporte utilizado para o seu envio.	
:language	Identifica o tipo de linguagem utilizado no conteúdo da mensagem.	
:ontology	Identifica a ontologia utilizada para dar significado aos símbolos presentes	
	na expressão de conteúdo.	
:reply-by	Estabelece o prazo – hora e/ou data – limite em que o agente emissor	
	espera receber uma mensagem de resposta – deadline.	
:protocol	Define o protocolo que está sendo empregado pelo agente emissor	
	visando facilitar a interpretação da mensagem pelo agente receptor.	
:conversation-id	Introduz uma expressão para ser utilizada no sentido de identificar uma	
	Seqüência de atos de comunicação que juntos constituem uma	
	conversação.	

Comunicação: Ontologias

- Ontologia representação de objetos e relacionamentos no mundo
 - Não é a mesma coisa que uma base de conhecimento
 - Uma ontologia é a representação "alto nível" da base de conhecimento contendo axiomas e regras.

Performativos

Ato de Comunicação	Descrição	Conteúdo da Mensagem
accept-proposal	A ação de comunicar a aceitação de uma proposta submetida anteriormente por um agente para a execução de uma ação.	Uma tupla, consistindo de uma expressão de ação especificando a ação a ser executada e uma proposição definindo as condições de acordo.
agree	A ação de concordar em executar alguma ação, possivelmente no futuro.	Uma tupla, consistindo de um agente identificador, uma expressão de ação especificando a ação a ser executada e uma proposição definindo as condições de acordo.
cancel	A ação de cancelar uma ação anteriormente requisitada por outro agente.	Uma expressão de ação especificando a ação a ser cancelada.
cfp	A ação de chamada de propostas para execução de uma determinada ação.	Uma tupla, consistindo de uma expressão de ação especificando a ação a ser executada e uma proposição definindo pré-condições para a sua execução.
inform	O cliente informa o fornecedor que uma proposição é verdadeira.	Uma proposição.
propose	A ação de submeter uma proposta para a execução de uma determinada ação, considerando certas pré-condições.	Uma tupla, contendo uma descrição de ação, representando a ação que o cliente está se propondo a executar, e uma proposição representando as pré- condições para a execução da ação.
query-ref	A ação de questionar a outro agente sobre um objeto referenciado através de uma expressão.	Uma descrição do objeto.
refuse	A ação de recusa em executar uma determinada ação, explicando o motivo.	Um tupla, consistindo de uma expressão de ação e uma proposição descrevendo o motivo para a recusa.
reject-proposal	A ação de rejeitar uma proposta para execução de uma ação durante um processo de negociação.	Uma tupla, contendo uma descrição de ação e uma proposição composta pela proposta original que está sendo rejeitada, e uma proposição adicional descrevendo o motivo para a rejeição.
request	O cliente requisita a execução de uma ação pelo fornecedor.	Uma descrição da ação.

Arquiteturas de comunicação

Duas maneiras diferentes tem sido exploradas:

- a comunicação direta, na qual os próprios agentes tratam de sua própria coordenação
- a coordenação assistida na qual os agentes dependem de um sistema de programas especiais para obter a coordenação desejada.

Exemplo: colaboração

Como os agentes podem colaborar entre si?

Duas abordagens diferentes tem sido exploradas:

- comunicação direta, onde os agentes mesmos cuidam da coordenação
- coordenação assistida, na qual há programas especiais para organizar a coordenação.

Exemplo: negociação

Como agentes devem negociar?

- Um processo de negociação pode visar:
 - Resolver conflitos
 - Alocar recursos limitados
 - Conciliar preferências
 - Buscar solucões globais
 - Modelar as intenções dos demais

Comunicação direta

- Uma desvantagem da comunicação direta é o custo.
- No entanto, se o número de agentes é pequeno, isto não é um problema.
- Outra desvantagem é a complexidade da implementação.
- Na comunicação direta, cada agente é responsável pela negociação com outros agentes e deve conter todo código necessário para que a negociação se efetive.

Arquitetura de Blackboard

Principais componentes

- O blackboard espaço de dados global
- Um conjunto de agentes que atuam sobre o blackboard
- Um mecanismo de controle

Arquitetura de Blackboard

Agentes Deliberativos

Agentes BDI

- Sistemas estão situados em um ambiente dinâmico.
- Recebem contínuas entradas.
- Realizam ações que afetam seu ambiente.

A partir das várias opções e alternativas disponíveis em um certo momento, o agente necessita selecionar a ação ou procedimento apropriado para executar.

A *função de seleção* deve permitir ao sistema atingir seus objetivos, dados:

- Os recursos computacionais do sistema
- □ As características do ambiente onde ele está situado.

Agentes BDI

Tipos de dados de entrada solicitados para a função de seleção:

Beliefs - Crenças:

representam as características do ambiente são atualizadas após cada ação são componentes *informativos* do sistema.

Desejos

contém a informação sobre os objetivos a serem atingidos, as prioridades e custos associados aos objetivos representa o estado *motivacional* do sistema.

Agentes BDI

Intenções

representam a sequência corrente de ações corresponde a saída da função de seleção encapsula o componente *deliberativo do* sistema.

Sistema intencional

As intenções são um problema para os agentes, que necessitam determinar como alcançá-las.

Se eu tenho uma intenção, espera-se que eu vá fazer uso de recursos a fim de decidir como torná-la realidade.

As intenções constituem um tipo de "filtro" para adotar outras intenções, as quais não devem entrar em conflito.

Se eu tenho uma intenção, espera-se que eu adote uma nova intenção que não seja incompatível com a primeira.

Sistema intencional

Os agentes buscam o sucesso de suas intenções, e eles tentam novamente após uma tentativa falha.

Se em sua primeira tentativa um agente falha, então ele tenta um plano alternativo para alcançar a realização de suas intenções.

Sistema intencional

Os agentes acreditam que suas intenções são possíveis de serem realizadas.

Eles acreditam que exista pelo menos uma maneira para realizá-la.

Eles adotam intenções porque eles acreditam que eles possam realizá-las.

Se um agente tem uma intenção, então ele acredita que "sob circunstâncias normais" ele obterá sucesso.

Efeitos colaterais

Os agentes podem não ter a intenção em obter certos efeitos colaterais de suas intenções.

O problema do efeito colateral escapa do controle do agente.

Exemplo: Eu acredito que ir ao dentista envolve sentir dores, e eu posso ter a intenção de ir ao dentista – mas isto não significa que eu tenha a intenção de sentir dores.

Raciocínio Meios-Fins

Planejamento é o projeto necessário à realização de uma seqüência de ações que permitirão ao agente de alcançar uma meta desejada.

Um sistema de planejamento é composto por: (representação de) metas/intenções a alcançar; (representação de) ações que ele pode realizar; e (representação do) ambiente.

Em seguida, gera-se um plano que visa alcançar a meta.

Esta é uma forma de programação automática.

Análise Meios-Fins

- E um processo de resolução de problemas que se baseia na detecção de diferenças entre estados, tentando reduzir estas diferenças.
- Dois passos principais :
 - Compare o estado atual com o estado final. Se forem idênticos, então retorne "sucesso".
 - Reduza a diferença aplicando os seguintes operadores. Selecione um operador aplicável ao estado atual. Se não houver operador, retorne "falha".

Planejamento

Utilidade: custo das ações

- Problema: deliberação e raciocínio meios-fins não são processos instantâneos.
- Ele possuem um custo em termos de tempo.

 Suponha que a deliberação é ótima: o agente seleciona alguma intenção que ele queira realizar, e então esta ação seja a melhor para o agente. (Ela maximiza a utilidade esperada.)

Utilidade: custo das ações

- Porém o agente selecionou uma intenção que seria ótima no momento em que ele observou o mundo.
- Este cálculo é racional.
- Além disso, o mundo pode mudar.
- Deliberação é somente parte do problema: o agente precisa definir ainda como realizar a sua intenção.

Deliberação

- Como um agente delibera ?
 - Ele inicia tentando entender que opções estão disponíveis;
 - Ele escolhe entre elas, e se compromete com alguma.

Deliberação

- A função deliberação pode ser decomposta em duas : geração de opções e filtragem.
- Geração de opções
 - Na qual o agente gera um conjunto de alternativas possíveis.
 - Ela considera as crenças do agente e suas intenções, e a partir delas determina um conjuntos de opções (= desejos).

Deliberação

Filtragem

- Nela o agente escolha entre as alternativas possíveis e se compromete em realizá-las.
- A fim de selecionar dentre as alternativas concorrentes, o agente aplica uma função de filtragem.

Comprometimentos

- Agentes que persistem com suas intenções (enquanto elas puderem ser satisfeitas) são ditos comprometidos com suas intenções.
- O conceito de comprometimento é muito útil na modelagem de sociedades de agentes.

Comprometimentos

- **■** Comprometimento Cego
- ♯ O agente mantém uma intenção até que ele acredite que ela foi realizada.

- **■** Comprometimento Dirigido
- ➡ O agente mantém uma intenção até que ele acredite que ela foi realizada, ou enquanto ele acreditar que possa realizá-la.

Reconsiderando intenções

- O agente deve reconsiderar suas intenções cada vez que ele chegar ao final do loop de controle, ou seja :
 - Quando ele executou o plano previsto, ou;
 - Ele acredita ter realizado as intenções previstas, ou;
 - Ele acredita que as intenções esperadas não podem ser realizadas.

Reconsiderando intenções

 Reconsideração de suas intenções é altamente custoso.

Multiagentes

- Precisa de um modelo de ambiente no qual. . . .
 - agentes simultaneamente escolhem uma ação para realizar, e como resultado das ações, eles observam mudanças (consequencias);
 - O <u>resultado atual depende da combinação de ações;</u>
 - Suponha que cada agente tenha duas ações possíveis que ele possa realizar C ("coopera") e "D" ("não coopera").

Função de Transformação

- Função de transformação do estado:
 - -T(i,j)
- Ambiente é sensível as ações de ambos os agentes :
 T(D,D)=w1; T(D,C)=w2; T(C,D)= w3; T(C,C)=w4
- Nenhum dos dois tem influência sobre o ambiente : T(D,D)=w1; T(D,C)=w1; T(C,D)= w1; T(C,C)=w1
- O agente j controla o ambiente :
 T(D,D)=w1; T(D,C)=w2; T(C,D)= w1; T(C,C)=w2

Interpretador Básico

```
basic-interpreter
                                          estado interno
       initialize-state();
       do
         options := option-generator (event-queue, S);
         selected-options := deliberate (options, S);
         update-state (selected-options, S);
"intenções"
         execute (S);
         event-queue := get-new-events();
       until quit.
```

Interpretador BDI

```
BDI-interpreter
initialize-state();
do
```

execute (I);

until quit.

```
Crenças, desejos (metas),
                                   e intenções
options := option-gen (event-queue, B, G, I);
selected-options := deliberate (options, B, G, I);
update-intentions (selected-options, I);
event-queue := get-new-events();
drop-successful-attitudes (B, G, I);
                                            crenças, metas, e
                                            intenções
drop-impossible-attitudes (B, G, I); ←
                                            satisfeitas ou
```

não realizáveis