CURRENTLY PENDING CLAIMS:

- 1. (Withdrawn) An apparatus, comprising:
 - a) a frame;
 - b) a member movable relative to said frame;
 - c) damping means including a volume of a field controllable medium, the field controllable damper interconnected between the frame and the movable member;
 - d) a controller for activating said field controllable damper to generate a damping condition at a predetermined member operating condition; and
 - e) means for activating said damping means at a predetermined operating condition of the moving member during a loss of power to the apparatus.
- 2. (Withdrawn) The apparatus as claimed in claim 1 wherein the device is a washing machine.
- 3. (Withdrawn) The apparatus as claimed in claim 2 wherein the device is a front loading washing machine.
- 4. (Withdrawn) The apparatus as claimed in claim 2 wherein the device is a top loading washing machine.
- 5. (Withdrawn) The apparatus as claimed in claim 1 wherein the device is a centrifuge.
- 6. (Withdrawn) The apparatus as claimed in claim 1 wherein the field controllable medium is a magnetorheological medium.
- 7. (Withdrawn) The apparatus as claimed in claim 6 wherein the magnetorheological medium is a magnetorheological fluid.

- 8. (Withdrawn) The apparatus as claimed in claim 6 wherein the magnetorheological medium is a magnetorheological powder
- 9. (Withdrawn) The apparatus as claimed in claim 1 wherein the damping means is a piston-type damper.
- 10. (Withdrawn) The apparatus as claimed in claim 1 wherein said means for activating said damping means during a loss of power to the apparatus is comprised of a secondary controller and a storage device, said secondary controller being in signal receiving relation with the storage device.
- 11. (Withdrawn) The apparatus as claimed in claim 10 wherein said storage device is comprised of at least one battery.
- 12. (Withdrawn) The apparatus as claimed in claim 10 wherein the storage device is comprised of at least one capacitor.
- 13. (Withdrawn) The apparatus as claimed in claim 1 wherein said means for activating said damping means during a loss of power to the apparatus is comprised of a secondary controller and a means for generating a signal for activating the secondary controller and damping means, said secondary controller being in signal receiving relation with the signal generating means and being in signal transmitting relation with the damping means.
- 14. (Withdrawn) The apparatus as claimed in claim 13 wherein the signal generating means is a storage device.

- 15. (Withdrawn) The apparatus as claimed in claim 14 wherein the storage device is a battery.
- 16. (Withdrawn) The apparatus as claimed in claim 14 wherein the storage device is a capacitor.
- 17. (Withdrawn) The apparatus as claimed in claim 13 wherein the signal generating device is a generator.
- 18. (Withdrawn) The apparatus as claimed in claim 13 wherein the signal generating device is a DC motor.
- 19. (Withdrawn) The apparatus as claimed in claim 13 wherein the signal generating device is comprised of a magnet mounted on the damper and a coil proximate the coil.
- 20. (Canceled)
- 21. (Canceled)
- 22. (Currently amended) A washing machine An apparatus, comprising: a frame; a washing machine drum member movable relative to said frame, a washing machine motor, said washing machine motor distal from said washing machine drum, said washing machine motor moving said washing machine drum with a belt system; a damper including a field controllable medium, the damper interconnected between the frame and the movable washing machine drum member; a controller for activating said damper to generate a damping condition at a predetermined member operating condition; and a brake for limiting vibration in said apparatus during a loss of power to the apparatus, said brake distal from said washing machine motor, said brake comprised of first and second spaced apart members, the second member being movable relative to the first member; a contact member made integral with the second member, said contact member having a contact end proximate the movable washing

machine drum member; biasing means for increasing the distance between the members; and means for limiting the relative displacement between said members, said means for limiting the relative member displacement being activated when power is supplied to the washing machine apparatus and being deactivated when the power to the washing machine apparatus is lost, wherein said brake contact member contacts said washing machine drum distal from said washing machine motor.

- 23. (Original) The apparatus as claimed in claim 22 wherein the biasing means is a spring.
- 24. (Previously presented) The apparatus as claimed in claim 22 wherein the means for limiting the relative displacement of the first and second spaced apart members is a solenoid, said solenoid being in signal receiving relation with said controller.
- 25. (Canceled).
- 26. (Withdrawn) The apparatus as claimed in claim 20 wherein said means for limiting vibration is comprised of a secondary controller in signal receiving relation with a DC motor, said secondary controller being in signal transmitting relation with said damping means.
- 27. (Withdrawn) The apparatus as claimed in claim 20 wherein said means for limiting vibration is comprised of a secondary controller in signal receiving relation with a generator, said secondary controller being in signal transmitting relation with said damping means.
- 28. (Withdrawn) The apparatus as claimed in claim 25 wherein the storage means is a battery.
- 29. (Withdrawn) In an apparatus comprising a frame; a movable member; a damping device including a volume of a field controllable medium, the field controllable damper interconnected between the frame and the movable member; a

controller for activating said field controllable damper to generate a damping condition at a predetermined member operating condition; and means for activating the damping device at a predetermined operating condition of the moving member, the method comprising the steps of upon loss of power to the apparatus, supplying an activating signal to the means for activating the damping device and as required supplying activating signals to the damping device to change the rheology of the field controllable medium in the damping device.

- 30. (Withdrawn) The method of claim 29 further comprising the additional step of sending a signal from the controller to the damper activating means at predetermined intervals.
- 31. (Withdrawn) In an apparatus comprising a frame; a movable member; a damping device interconnected between the frame and the movable member where said damping device is activated in response to a signal; a controller for supplying said signal to activate said damper to generate a damping condition at a predetermined member operating condition; and means for activating the damping device at a predetermined operating condition of the moving member, the method comprising the steps of upon loss of power to the apparatus, supplying an activating signal to the means for activating the damping device and as required supplying activating signals to the damping device to provide the required damping to the apparatus.
- 32. (Withdrawn) The method as claimed in claim 31 wherein the damper comprises a field controllable damper comprising a volume of field controllable material, the method comprising the further step of changing the rheology of the field controllable medium in the damping device when the signal is sent to the damping device.
- 33. (Canceled)
- 34. (Canceled)

35. (Canceled)