MA 515-001, Fall 2017, Homework 6

Due: Fri Dec 01, 2017, in-class.

Problem 1. Let X be a normed space. Given $\bar{x} \in X$, show that there exists a bounded linear function $\Phi: X \to \mathbb{R}$ such that

$$\|\Phi(\bar{x})\| = \|\bar{x}\|.$$

Problem 2. Let X be a normed space. If f(x) = f(y) for all $f \in X^*$, show that x = y.

Problem 3. Let Y be a subspace of a normed space of X and let $\Lambda: X \to \mathbb{R}^n$ be a bounded linear operator from Y into the Euclidean space \mathbb{R}^n . Show that Λ can be extended to a linear operator $\tilde{\Lambda}: X \to \mathbb{R}^n$ such that

$$\|\tilde{\Lambda}\|_{\infty} \leq \sqrt{n} \cdot \|\Lambda\|_{\infty}$$
.

Problem 4. Given a Banach space X, let $\varphi \in X^*$ and $\{\varphi_n\}_{n\geq 1} \subset X^*$ be such that

$$\|\varphi_n\|_{\infty} = \sup_{\|x\| \le 1} \|\varphi_n(x)\| \le M$$

for some constant M > 0. Assume that there exists a dense $S = \{y_1, y_2, ..., y_k, ...\}$ in X such that for every $y_k \in S$ it holds

$$\lim_{n \to \infty} \varphi_n(y_k) = \varphi(y_k).$$

Show that φ_n is weakly star convergent to φ in X^* and $\|\varphi\|_{\infty} \leq M$.

Problem 5. Let X be a finite dimensional normed space. Consider a weakly convergent sequence $x_n \rightharpoonup x$. Prove that the sequence converges strongly.

Problem 6. In the space l^p of sequences of real numbers such that consider unit vectors

$$e_1 = (1,0,0,\ldots), \quad e_2 = (0,1,0,\ldots), \quad e_3 = (0,0,1,\cdots), \quad \text{etc} \ldots$$

Prove that

- (i) For $1 , then the sequence <math>\{e_n\}_{n \geq \infty}$ weakly converges to 0 in l^p .
- (ii) In the space, the sequence $\{e_n\}_{n\geq n}$ does not admit any weakly convergent subsequence.

Problem 7. Let $(X, \|\cdot\|)$ be a Banach space such that the parallelogram identity holds

$$||x - y||^2 + ||x + y||^2 = 2 \cdot ||x||^2 + 2 \cdot ||y||^2 \quad \forall x, y \in X.$$

Show that

$$\langle x, y \rangle \doteq \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

is an inner product on X, which yields the same norm $\|\cdot\|$.

Problem 8. Prove that

- (i) In \mathbb{R}^2 , the norm $||x||_1 = |x_1| + |x_2|$ is not generalized by an inner product.
- (ii) On the space of real-valued continuous function C([0,1]), the norm

$$||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$$

is not generalized by an inner product.

Problem 9. Given a sequence $\{x_n\}_{n\geq 1}$ in a Hilbert space H, show that the strong convergence $||x_n - x|| \to 0$ if and only if

$$x_n \rightharpoonup x$$
 and $\lim_{n \to +\infty} ||x_n|| = ||x||$.

Problem 10. Let H be a Hilbert space. Show that

- (i) If $\{e_n\}_{n\geq 1}$ be an orthonormal sequence then e_n is weakly convergent to 0.
- (ii) For a given $x \in H$ with $||x|| \le 1$, construct a sequence of $\{x_n\}_{n \ge 1} \subset H$ with $||x_n|| = 1$ such that x_n is weakly convergent to x.

Problem 11. Let $\{v_n\}_{n\geq 1}$ be orthonormal and unit vectors. Show that

$$\sum_{n\geq 1} \alpha_n v_n \text{ converges if and only if } \sum_{n=1}^{\infty} |\alpha_n|^2 < +\infty.$$

Problem 12. Let H be a Hilbert space, and let $\Omega \subset H$ be closed, convex subset.

(i) Prove that $x \in H$, there exists a unique point $y \in \Omega$ such that

$$||x - y|| = d_{\Omega}(x) \doteq \min_{w \in \Omega} ||x - w||.$$

This point of minimum distance $y = \pi_{\Omega}(x)$ is called the perpendicular projection of x into Ω .

(ii) Show that $y = \pi_{\Omega}(x)$ if and only if $\langle w - y, y - x \rangle \geq 0$ for all $w \in \Omega$.