BDC223 SA:V

SA:V

```
The ratio of:

* surface area (cm²)

to

* volume (cm³)

i.e. SA/V
```

The 'body plan'

Plants require that the following 'functions' are accomplished: they must capture photons, acquire water and nutrients, distribute these between parts; they must exchange O₂ and CO₂, metabolic wastes, etc.. These operations rely on chemical, physical and biological principles

A limited number of options are available for doing this, and the plant body plan is thus constrained to operate within these limits

The result is a recurring set of themes within which all plant body plans can be organised

General plant structure (organs) - 'higher' plants

- Roots: apical meristem, secondary or lateral roots, anchorage, water & mineral uptake. Fixed position, can't avoid problems cope.
- Stems: apical meristem, nodes and internodes, transport, support leaves, flowers & fruits.
- Leaves: attached at nodes, production.

General plant structure (organs) - algae

- holdfast or hapteron (pl. haptera)
- stipe
- fronds
- together it is called the thallus (pl. thalli)

The macroalgal body plan: the functional-form model

- An hypothesis that links the morphology of a macroalgal thallus to its photosynthetic performance:
 - The functional form model by Litter and Littler (1980);
 - Also explains many other physiological and ecological characteristics ('function') of macroalgae as a function of thallus morphology ('form').

J. Phycol. 18, 307-311 (1982)

PRIMARY PRODUCTIVITY OF MARINE MACROALGAL FUNCTIONAL-FORM GROUPS FROM SOUTHWESTERN NORTH AMERICA'

Mark M. Littler² and Keith E. Arnold³

Littler. Bot. Mar. 22: 161-165 (1980). Littler and Littler. Am. Nat. 116: 25-44 (1980).

Table 1.1. Functional-form groups of macroalgae

Functional-form group	External morphology	Internal anatomy	Texture	Sample genera
Sheet group	Thin, tubular, and sheetlike (foliose)	Uncorticated, one to several cells thick	Soft	Ulva, Enteromorpha, Dictyota
Filamentous group	Delicately branched (filamentous)	Uniseriate, multise- riate, or lightly cor- ticated	Soft	Centroceras, Polysi- phonia, Chaetomor- pha, Microcoleus
Coarsely branched group	Coarsely branched, upright	Corticated	Fleshy-wiry	Laurencia, Chord- aria, Caulerpa, Peni- cillus, Gracilaria
Thick, leathery group	Thick blades and branches	Differentiated, heavily corticated, thick-walled	Leather, rubbery	Laminaria, Fucus, Udotea, Chondrus
Jointed calcareous group	Articulated, calcare- ous, upright	Calcified genicula, flexible intergenic- ula with parallel cell rows	Stony	Corallina, Halimeda, Galaxaura
Crustose group	Prostrate, encrusting	Calcified or uncal- cified parallel rows of cells	Stony or tough	Lithothamnion, Ralf- sia, Hildenbrandia

Source: Littler et al. (1983b), with permission of Journal of Phycology.

Porphyra umbilicalis

Fig. 2. Net apparent photosynthetic performances ($\pm95\%$ CI) of the six functional-form groups measured at San Simeon (S), Newport Beach (N), Laguna Beach (L), San Clemente Island (C), Punta Hipolito (H) and Punta Marquez (M).

Fig. 2. Net apparent photosynthetic performances ($\pm95\%$ CI) of the six functional-form groups measured at San Simeon (S), Newport Beach (N), Laguna Beach (L), San Clemente Island (C), Punta Hipolito (H) and Punta Marquez (M).

Fig. 2. Net apparent photosynthetic performances ($\pm95\%$ CI) of the six functional-form groups measured at San Simeon (S), Newport Beach (N), Laguna Beach (L), San Clemente Island (C), Punta Hipolito (H) and Punta Marquez (M).

Fig. 2. Net apparent photosynthetic performances (±95% CI) of the six functional-form groups measured at San Simeon (S), Newport Beach (N), Laguna Beach (L), San Clemente Island (C), Punta Hipolito (H) and Punta Marquez (M).

Seagrasses: the functional-form model

Walker, D., Dennison, W., Edgar, G., 1999. Status of Australian seagrass research and knowledge. In: Butler, A.J., Jernakoff, P. (Eds.), Seagrass in Australia: Strategic Review and Development of an R&D plan. CSIRO Publishing, Collingwood, Victoria, pp. 1–24.

Seagrasses

Walker, D., Dennison, W., Edgar, G., 1999. Status of Australian seagrass research and knowledge. In: Butler, A.J., Jernakoff, P. (Eds.), Seagrass in Australia: Strategic Review and Development of an R&D plan. CSIRO Publishing, Collingwood, Victoria, pp. 1–24.

1.2 Seagrass plants

Seagrasses are highly specialised marine flowering plants adapted to soft sediments of nearshore environments. Although there are relatively few species of seagrasses globally (< 70 species), these plants have evolved from several lineages of land plants and are adapted to a totally submersed life. Seagrasses are productive, widespread and ecologically significant features of nearshore environments (Phillips and McRoy, 1980; Larkum et al., 1989). Seagrasses indirectly support various coastal fisheries, largely through provision of a nursery habitat for juvenile animals (e.g. Klumpp et al., 1989; Bell and Pollard, 1989). These connections are more fully explored in Chapter 2. Tropical seagrass meadows directly support dugong (Dugong dugon) and green sea turtles (Chelonia mydas) (Lanyon et al., 1989).

Seagrasses are not a monophyletic group of plants; they are not even true grasses (Poaceae). Rather, 'seagrass' is a functional grouping referring to marine flowering plants living entirely submersed and sharing numerous convergent morphological and physiological characteristics (Larkum and den Hartog, 1989). Recent evolutionary studies using DNA sequences of the chloroplast genome have revealed that the present seagrass diversity probably arose from three separate evolutionary events (Waycott and Les, 1996). Thus, convergence of various characteristics of seagrasses has occurred within and between these three groupings (Cymodoceaceae complex, Zosteraceae, Hydrocharitaceae). The outcome of this convergence is a suite of common morphological and physiological characteristics (including internal gas spaces or lacunae, epidermal chloroplasts, lack of stomata, rapid leaf turnover, reduced respiratory tissue, and salt excretion through the plasmalemma).

Seagrasses

http://www.epa.qld.gov.au/nature_conservation/habitats/ marine_habitats/seagrass/ © Paul Kay

The next lecture: Plants Stresses