Optimal Measurement of Field Properties with Quantum Sensor Networks

March Meeting 2021 March 16, 2021

Based on arXiv:2011.01259 (Accepted as PRA Letter)

Problem Statement

Given a quantum sensor network coupled to a field $f(\vec{x}; \vec{\theta})$ parameterized by $\vec{\theta}$ what is the minimal attainable variance of some analytic function $q(\vec{\theta})$?

Problem Statement

Given a quantum sensor network coupled to a field $f(\vec{x}; \vec{\theta})$ parameterized by $\vec{\theta}$ what is the minimal attainable variance of some analytic function $q(\vec{\theta})$?

Key point: We include correlations between measured field amplitudes!

A quantum sensor network is a collection of localized sensors each coupled to a local field amplitude.

E.g. qubit sensors coupled via: $H = H_c(t) + \frac{1}{2} \sum_{i=1}^{a} f_i(\vec{\theta}) \sigma_i^{(z)}$

Task: Optimally measure an analytic function $q(\vec{\theta})$.

Information Theory Match

- Bounds on variance of estimate for $q(\vec{\theta})$
- Cramer-Rao bounds/Fisher Information

Protocol Design

 Choose an initial state, control Hamiltonian, measurements

Possible Bounds

Possible Protocols

Without entanglement:

$$\operatorname{Var}[f_i] = \frac{1}{t^2}$$

$$\operatorname{Var}[q] = \sum_{i} \alpha_i^2 \operatorname{Var}[f_i]^2 = \frac{||\vec{\alpha}||^2}{t^2}$$

Without entanglement:

$$\operatorname{Var}[f_i] = \frac{1}{t^2}$$

$$\operatorname{Var}[q] = \sum_{i} \alpha_i^2 \operatorname{Var}[f_i]^2 = \frac{||\vec{\alpha}||^2}{t^2}$$

With entanglement:

$$\operatorname{Var}[q] = rac{||ec{lpha}||_{\infty}^2}{t^2}$$
If f_i independent

If f_i independent, this is provably optimal!

Without entanglement:

$$\operatorname{Var}[f_i] = \frac{1}{t^2}$$

$$\operatorname{Var}[q] = \sum_{i} \alpha_i^2 \operatorname{Var}[f_i]^2 = \frac{||\vec{\alpha}||^2}{t^2}$$

With entanglement:

$$\operatorname{Var}[q] = \frac{||\vec{\alpha}||_{\infty}^{2}}{t^{2}}$$
 If f_{i} independent, this is provably optimal!

Example: Calculate an average.

$$\alpha_i = \frac{1}{\sqrt{d}} \quad \forall i$$

$$||\vec{\alpha}||^2 = 1$$
$$||\vec{\alpha}||_{\infty}^2 = \frac{1}{d}$$

Entanglement gives advantage!

Without entanglement:

$$\operatorname{Var}[f_i] = \frac{1}{t^2}$$

$$\operatorname{Var}[q] = \sum_{i} \alpha_i^2 \operatorname{Var}[f_i]^2 = \frac{||\vec{\alpha}||^2}{t^2}$$

With entanglement:

$$\operatorname{Var}[q] = \frac{||\vec{\alpha}||_{\infty}^2}{t^2}$$
 If f_i independent, this is provably optimal!

Can generalize to analytic functions $q(\vec{f})$ in two steps:

- 1. Spend negligible fraction of time to estimate \vec{f}
- 2. Linearize q around estimates of f_i and use optimal linear protocol

Assumptions: enough sensors to measure $\vec{\theta}$ (essentially $d \geq k$) and functions $f_i(\vec{\theta})$ are given.

Vector of k unknown parameters

Still want to measure some analytic $q(\vec{f}(\vec{\theta})) = q(\vec{\theta})$

Assumptions: enough sensors to measure $\vec{\theta}$ (essentially $d \geq k$) and functions $f_i(\vec{\theta})$ are given.

Vector of k unknown parameters

Still want to measure some analytic $q(\vec{f}(\vec{\theta})) = q(\vec{\theta})$

Motivating example:

Suppose
$$f_1= heta_1$$
 $f_2= heta_2$ $f_3= heta_1+ heta_2$

Want to measure

$$q(\vec{\theta}) = f_1 = \theta_1$$

Approach: Try linear protocol

Assumptions: enough sensors to measure $\vec{\theta}$ (essentially $d \geq k$) and functions $f_i(\vec{\theta})$ are given.

Vector of k unknown parameters

Still want to measure some analytic $q(\vec{f}(\vec{\theta})) = q(\vec{\theta})$

Motivating example:

Suppose
$$f_1= heta_1$$
 $f_2= heta_2$ $f_3= heta_1+ heta_2$

Want to measure $q(\vec{\theta}) = f_1 = \theta_1$

Could consider measuring many different linear combinations.

e.g.
$$q(\vec{\theta}) = f_1 + 0f_2 + 0f_3 \implies \text{Var}(q) = \frac{1}{t^2}$$

Assumptions: enough sensors to measure $\vec{\theta}$ (essentially $d \geq k$) and functions $f_i(\vec{\theta})$ are given.

Vector of k unknown parameters

Still want to measure some analytic $q(\vec{f}(\vec{\theta})) = q(\vec{\theta})$

Motivating example:

Suppose
$$f_1= heta_1$$
 $f_2= heta_2$ $f_3= heta_1+ heta_2$

Want to measure $q(\vec{\theta}) = f_1 = \theta_1$

Could consider measuring many different linear combinations.

or
$$q(\vec{\theta}) = \frac{3}{4}f_1 - \frac{1}{4}f_2 + \frac{1}{4}f_3 \implies \text{Var}(q) = \frac{9}{16t^2}$$

$$Var[q] = \frac{||\vec{\alpha}||_{\infty}^2}{t^2}$$

Assumptions: enough sensors to measure $\vec{\theta}$ (essentially $d \geq k$) and functions $f_i(\vec{\theta})$ are given.

Vector of k unknown parameters

Still want to measure some analytic $q(\vec{f}(\vec{\theta})) = q(\vec{\theta})$

Motivating example:

Suppose
$$f_1= heta_1$$
 $f_2= heta_2$ $f_3= heta_1+ heta_2$

Want to measure $q(\vec{\theta}) = f_1 = \theta_1$

Could consider measuring many different linear combinations.

or $q(\vec{\theta}) = \frac{1}{2}f_1 - \frac{1}{2}f_2 + \frac{1}{2}f_3 \implies Var(q) = \frac{1}{4t^2}$

$$Var[q] = \frac{||\vec{\alpha}||_{\infty}^2}{t^2}$$

Assumptions: enough sensors to measure $\vec{\theta}$ (essentially $d \geq k$) and functions $f_i(\vec{\theta})$ are given.

Vector of k unknown parameters

Still want to measure some analytic $q(\vec{f}(\vec{\theta})) = q(\vec{\theta})$

Motivating example:

Suppose
$$f_1= heta_1$$
 $f_2= heta_2$ $f_3= heta_1+ heta_2$

Want to measure

$$q(\vec{\theta}) = f_1 = \theta_1$$

Could consider measuring many different linear combinations.

 $q(\vec{\theta}) = \frac{1}{2}f_1 - \frac{1}{2}f_2 + \frac{1}{2}f_3 \implies \text{Var}(q) = \frac{1}{4t^2}$ Optimal?

Var
$$[q] = rac{||ec{lpha}||_{\infty}^2}{2}$$

That is, our guess for the optimal protocol requires solving the protocol problem.

The Protocol Problem (Informal)

What is the best way to linearily combine our field amplitudes to estimate $q(\vec{\theta})$?

Recall, to prove optimality we must derive a lower bound on the variance of $q(\vec{\theta})$ from the information theory side.

Possible Bounds Possible Protocols

Our tool: single parameter bound

$$\operatorname{Var}(q) \ge \frac{1}{\mathcal{F}_Q} \ge \frac{1}{t^2 ||h_q||_s^2}$$

Our tool: single parameter bound

$$Var(q) \ge \frac{1}{\mathcal{F}_Q} \ge \frac{1}{t^2 ||h_q||_s^2}$$

This bound applies when one parameter controls the evolution of the state. But we have k as our evolution depends on $\vec{\theta}$

Imagine fixing k-1 degrees of freedom. This can only help! Gives us the bound problem.

Our tool: single parameter bound

$$\operatorname{Var}(q) \ge \frac{1}{\mathcal{F}_Q} \ge \frac{1}{t^2 ||h_q||_s^2}$$

This bound applies when one parameter controls the evolution of the state. But we have k as our evolution depends on $\vec{\theta}$

Imagine fixing k-1 degrees of freedom. This can only help! Gives us the bound problem.

The Bound Problem (Informal)

What choice of fixing extra degrees of freedom gives us the least information about $q(\vec{\theta})$?

Boixo et. al., PRL, 98 090401 (2007)

It so happens the solution to the protocol problem and the bound problem are the same!

So the protocol is optimal and the bound is tight!

Questions?

Based on arXiv:2011.01259 (Accepted as PRA Letter)

Email: jbringew@umd.edu

Backup Slides

Formal Statements

Bound problem: Given a non-zero vector $\alpha \in \mathbb{R}^k$ and a real $d \times k$ matrix G, compute $u = \max_{\beta} \frac{1}{||G\beta||_1}$ under the condition $\alpha \cdot \beta = 1$.

Protocol problem: Given a non-zero vector $\alpha \in \mathbb{R}^k$ and a real $d \times k$ matrix G, compute $u' = \min_{\boldsymbol{w}} ||\boldsymbol{w}||_{\infty}$ under the condition $G^T \boldsymbol{w} = \alpha$.

Dual protocol problem: Given a non-zero vector $\alpha \in \mathbb{R}^k$ and a real $d \times k$ matrix G, compute $u'' = \max_{\boldsymbol{v}} \alpha \cdot \boldsymbol{v}$ under the condition $||G\boldsymbol{v}||_1 \leq 1$.