Examen¹ la Geometrie I, seria 10, 02.09.2023

	I. Decideți dacă următoarele afirmații sunt adevărate sau false, justificând pe scurt alegerea:	
1.	Punctul $P=(2,\sqrt{2})$ se află în interiorul elipsei de ecuație $\mathcal{E}:\frac{x^2}{9}+\frac{y^2}{5}=1.$	(0,5p)
2.	Distanța dintre dreptele $d_1: 2x-y-\alpha=0$ și $d_2: -4x+2y+5=0$ nu depinde de parametrul $\alpha\in\mathbb{R}$.	(0,5p)
3.	Dacă în spațiul real \mathbb{R}^3 avem $d: \left\{ \begin{array}{ccccc} 2x & - & 3y & + & z & - & 1 & = & 0 \\ x & & & + & 3z & & = & 0 \end{array} \right.$ și $\pi: 4x - 2y + 2z - 3 = 0$,	
		(0,5p)
4.	Imaginea unei elipse printr-o omotetie este o elipsă de aceeași excentricitate.	(0,5p)
5 .	Dacă conica $\Gamma: ax^2 + bxy + cy^2 + dx + ey + f = 0$ este o hiperbolă echilateră, atunci $b = 0$ și $a + c = 0$.	(0,5p)
	II. Redactaţi rezolvările complete:	
1.	În planul euclidian \mathbb{R}^2 , fie punctele $A=(2,-6), A'=(-4,4), B=(-5,0), B'=(-2,-5)$ și dreapta $d:x+4y+1$	+5=0
a)	Arătați că $AA' \parallel BB'$.	(0,5p
b)	Arătați că există o simetrie axială $f: \mathbb{R}^2 \to \mathbb{R}^2$ astfel încât $f(A) = A'$ și $f(B) = B'$. Determinați axa de simetrie a lui f .	(0,5p)
c)	Calculați $f(d)$.	(0,5p)
d)	Fie d_f axa de simetrie a lui f , aflată anterior. Arătați că $\angle(d,d_f)=45^\circ$.	(0,5p)
2.	În planul euclidian \mathbb{R}^2 , fie conica $\Gamma_\alpha: x^2+4xy+\alpha y^2-4x+2y+\alpha=0$ și mulțimea	
	$M_{\alpha} = \{ f : \mathbb{R}^2 \to \mathbb{R}^2 \mid f \text{ izometrie}, f(\Gamma_{\alpha}) = \Gamma_{\alpha} \}.$	
a)	Determinați $\alpha \in \mathbb{R}$ pentru care Γ_{α} este nedegenerată.	(0,5p)
b)	Demonstrați că există un unic $\alpha \in \mathbb{R}$ pentru care Γ_α este o parabolă.	(0,5p)
c)	Pentru $\alpha=2$, determinați centrele de simetrie ale lui Γ_{α} (sau demonstrați că nu are centru).	(0,5p)
d)	Pentru $\alpha=2$, dați exemplu de $f\in M_{\alpha}, f\neq \mathrm{Id}_{\mathbb{R}}^2,$ scriind expresia lui f în coordonate.	(0,5p)
e)	Pentru orice $\alpha \in \mathbb{R}$, decideți dacă M_{α} este un grup împreună cu compunerea funcțiilor. Justificați răspunsul.	(0,5p)
f)	Decideți dacă există $\alpha \in \mathbb{R}$ pentru care $\Gamma_{\alpha} \neq \emptyset$ și M_{α} este infinit. Justificați răspunsul.	(0,5p)
	Fie \mathcal{H} o hiperbolă în planul euclidian \mathbb{R}^2 . Se numește coardă a lui \mathcal{H} orice segment cu capetele pe \mathcal{H} . emonstrați că mijloacele a orice trei coarde paralele sunt coliniare pe o dreaptă care trece prin centrul hiperbolei.	(1,5p)

Nume și prenume: _____

Grupa: ____

¹Se acordă 1 punct din oficiu. Timp de lucru: 3 ore. Succes!