§ 14.

Stammfunktionen

In diesem Paragraphen sei stets: $\emptyset \neq G \subseteq \mathbb{R}^n$, G ein Gebiet und $f = (f_1, \ldots, f_n) : G \to \mathbb{R}^n$ stetig.

Definition

Eine Funktion $\varphi: G \to \mathbb{R}$ heißt eine **Stammfunktion (SF) von** f **auf** $G: \iff \varphi$ ist auf Gpartiell differenzierbar und grad $\varphi = f$ auf G. Also: $\varphi_{x_j} = f_j$ auf G (j = 1, ..., n).

- Bemerkung: (1) Ist φ eine Stammfunktion von f auf $G \implies \operatorname{grad} \varphi = f \implies \varphi \in C^1(G, \mathbb{R}) \stackrel{5.3}{\implies} \varphi$ ist auf G differenzierbar und $\varphi' = f$ auf G.
 - (2) Sind φ_1, φ_2 Stammfunktionen von f auf $G \stackrel{(1)}{\Longrightarrow} \varphi_1' = \varphi_2'$ auf $G \stackrel{6.2}{\Longrightarrow} \exists c \in \mathbb{R} : \varphi_1 = \varphi_2 + c$ auf G
 - (3) Ist $n=1 \implies G$ ist ein offenes Intervall. AI, 23.14 \implies jedes stetige $f: G \to \mathbb{R}$ besitzt auf G eine Stammfunktion! Im Falle $n \geq 2$ ist dies nicht so.

Beispiele:

(1) $G = \mathbb{R}^2$, f(x,y) = (y, -x).

Annahme: f besitzt auf \mathbb{R}^2 die Stammfunktion φ . Dann: $\varphi_x = y, \ \varphi_y = -x$ auf $G \implies$ $\varphi \in C^2(\mathbb{R}^2, \mathbb{R})$ und $\varphi_{xy} = 1 \neq -1 = \varphi_{yx}$. Widerspruch zu 4.1. Also: f besitzt auf \mathbb{R}^2 keine Stammfunktion.

(2) $G = \mathbb{R}^2$, f(x, y) = (y, x - y).

Ansatz für eine Stammfunktion φ von $f: \varphi_x = y \implies \varphi = xy + c(y)$, c differenzierbar, $\Rightarrow \varphi_y \stackrel{!}{=} x + c'(y) = x - y \implies c'(y) = -y$, etwa $c(y) = -\frac{1}{2}y^2$. Also: $\varphi(x, y) = xy - \frac{1}{2}y^2$. Probe: $\varphi_x = y$, $\varphi_y = x - y$, also: grad $\varphi = f$. φ ist also eine Stammfunktion von f auf \mathbb{R}^2 .

Satz 14.1 (Hauptsatz der mehrdimensionalen Integralrechnung)

f besitzt auf G die Stammfunktion φ ; $\gamma:[a,b]\to\mathbb{R}^n$ ein ein stückweise stetig differenzierbarer Weg mit $\Gamma_{\gamma} \subseteq G$. Dann:

$$\int_{\gamma} f(x) \cdot dx = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

Das heißt: $\int_{\gamma} f(x) \cdot dx$ hängt nur vom Anfangs- und Endpunkt von γ ab.

Ist γ geschlossen, das heißt $\gamma(a)=\gamma(b)$, dann gilt $\int_{\gamma}f(x)\cdot dx=0$.

Beweis

O.B.d.A.: γ ist stetig differenzierbar. $\Phi(t) := \varphi(\gamma(t)), t \in [a, b]$. Φ ist stetig differenzierbar und $\Phi'(t) = \varphi'(\gamma(t)) \cdot \gamma'(t) = f(\gamma(t)) \cdot \gamma(t)$ Dann: $\int_{\gamma} f(x) \cdot dx \stackrel{\text{13.1}}{=} \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} \Phi'(t) dt \stackrel{\text{AI}}{=} \Phi(b) - \Phi(a) = \varphi(\gamma(b)) - \varphi(\gamma(a))$.

Hilfssatz 14.2

Es seien $x_0, y_0 \in G$. Dann existiert ein stückweise stetig differenzierbarer Weg γ mit: $\Gamma_{\gamma} \subseteq G$ und Anfangspunkt von $\gamma = x_0$ und Endpunkt von $\gamma = y_0$.

Beweis

G Gebiet $\implies \exists z_0, z_1, \dots, z_m \in G : S[z_0, \dots, z_m] \subseteq G, z_0 = x_0, z_m = y_0.$

$$\gamma_j(t) := z_{j-1} + t(z_j - z_{j-1}), (t \in [0,1]), (j = 1, ..., n).$$
 Dann: $\Gamma_{\gamma_j} = S[z_{j-1}, z_j] \implies \Gamma_{\gamma_1} \cup ... \cup \Gamma_{\gamma_m} = S[z_0, ..., z_m] \subseteq G.$ 13.4 $\implies \exists \gamma \in AH(\gamma_1, ..., \gamma_m)$ stückweise stetig differenzierbar $\implies \Gamma_{\gamma} = S[z_0, ..., z_m] \subseteq G.$

Definition

 $\int f(x) \cdot dx$ heißt **in G wegunabhängig** (wu) : \iff für je zwei Punkte $x_0, y_0 \in G$ gilt: für jeden stückweise stetig differenzierbaren Weg $\gamma: [a,b] \to \mathbb{R}^n$ mit $\Gamma_{\gamma} \subseteq G, \ \gamma(a) = x_0 \ \text{und} \ \gamma(b) = y_0$ hat das Integral $\int_{\gamma} f(x) \cdot dx$ stets denselben Wert. In diesem Fall: $\int_{x_0}^{y_0} f(x) \cdot dx := \int_{\gamma} f(x) \cdot dx$.

14.1 lautet dann: besitzt f auf G die Stammfunktion $\varphi \implies \int f(x) \cdot dx$ ist in G wegunabhängig und $\int_{x_0}^{y_0} = \varphi(y_0) - \varphi(x_0)$ (Verallgemeinerung von Analysis 1, 23.5).

Satz 14.3 (Wegunabhängigkeit, Existenz von Stammfunktionen)

f besitzt auf G eine Stammfunktion $\iff \int f(x) \cdot dx$ ist in G wegunabhängig. In diesem Fall: ist $x_0 \in G$ und $\varphi : G \to \mathbb{R}$ definiert durch:

$$\varphi(z) = \int_{x_0}^{z} f(x) \cdot dx \ (z \in G)$$
 (*)

Dann ist φ eine Stammfunktion von f auf G.

Beweis

": 14.1 ", \Leftarrow ": Sei $x_0 \in G$ und φ wie in (*). Zu zeigen: φ ist auf G differenzierbar und $\varphi' = f$ auf G. Sei $z_0 \in G$, $h \in \mathbb{R}^n$, $h \neq 0$ und $\|h\|$ so klein, dass $z_0 + th \in G \ \forall t \in [0,1]$. $\gamma(t) := z_0 + th \ (t \in [0,1])$, $\Gamma_{\gamma} = s[z_0, z_0 + h] \subseteq G$. $\rho(h) := \frac{1}{\|h\|} (\varphi(z_0 + h) - \varphi(z_0) - f(z_0) \cdot h)$. Zu zeigen: $\rho(h) \to 0 \ (h \to 0)$. 14.2 \Longrightarrow es existieren stückweise stetig differenzierbare Wege γ_1, γ_2 mit: $\Gamma_{\gamma_1}, \Gamma_{\gamma_2} \subseteq G$. Anfangspunkt von $\gamma_1 = x_0$ =Anfangspunkt von γ_2 . Endpunkt von $\gamma_1 = z_0$, Endpunkt von $\gamma_2 = z_0 + h$. Sei $\gamma_3 \in AH(\gamma_1, \gamma)$ stückweise stetig differenzierbar (13.4!). Dann:

$$\underbrace{\int_{\gamma_3} f(x) \cdot dx}_{=\varphi(z_0+h)} = \underbrace{\int_{\gamma_1} f(x) \cdot dx}_{=\varphi(z_0)} + \int_{\gamma} f(x) \cdot dx$$

 $\int f(x) \cdot dx$ ist wegunabhängig in $G \implies$

$$\int_{\gamma_3} f(x) \cdot dx = \int_{\gamma_2} f(x) \cdot dx = \varphi(z_0 + h) \implies \varphi(z_0 + h) - \varphi(z_0) = \int_{\gamma} f(x) \cdot dx$$

Es ist:

$$\int_{\gamma} f(z_0) \cdot dx = \int_{0}^{1} f(z_0) \cdot \underbrace{\gamma'(t)}_{=h} dt = f(z_0) \cdot h$$

$$\implies \rho(h) = \frac{1}{\|h\|} \int_{\gamma} (f(x) - f(z_0)) dx$$

$$\implies |\rho(h)| = \frac{1}{\|h\|} \left| \int_{\gamma} f(x) - f(z_0) dx \right|$$

$$\leq \frac{1}{\|h\|} \underbrace{L(\gamma) \max\{\|f(x) - f(z_0)\| : x \in \Gamma_{\gamma}\}}_{=\|f(x_0) - f(z_0)\|}$$

wobei $x_n \in \Gamma_{\gamma} = S[z_0, z_0 + h] \implies |\rho(h)| \le ||f(x_n) - f(z_0)||$. Für $h \to 0 : x_n \to z_0 \xrightarrow{\text{f stetig}} ||f(x_n) - f(z_0)|| \to 0 \implies \rho(h) \to 0$.

Satz 14.4 (Integrabilitätsbedingungen)

Sei $f = (f_1, \ldots, f_n) \in C^1(G, \mathbb{R}^n)$. Besitzt f auf G die Stammfunktion $\varphi \implies$

$$\frac{\partial f_j}{\partial x_k} = \frac{\partial f_k}{\partial x_j}$$
 auf $G(j, k = 1, \dots, n)$

(Integrabilitätsbedingungen (IB)). Warnung: Die Umkehrung von 14.4 gilt im Allgemeinen nicht (\rightarrow Übungen!).

Beweis

Sei φ eine Stammfunktion von f auf $G \Longrightarrow \varphi$ ist differenzierbar auf G und $\varphi_{x_j} = f_j$ auf G (j = 1, ..., n). $f \in C^1(G, \mathbb{R}^n) \Longrightarrow \varphi \in C^2(G, \mathbb{R})$

$$\implies \frac{\partial f_j}{\partial x_k} = \varphi_{x_j x_k} \stackrel{4.7}{=} \varphi_{x_k x_j} = \frac{\partial f_k}{\partial x_j} \text{ auf G.}$$

Definition

Sei $\emptyset \neq M \subseteq \mathbb{R}^n$. M heißt **sternförmig** : $\iff \exists x_0 \in M : S[x_0, x] \subseteq M \ \forall x \in M$.

Beachte:

- (1) Ist M konvex $\Longrightarrow M$ ist sternförmig
- (2) Ist M offen und sternförmig $\Longrightarrow M$ ist ein Gebiet

Satz 14.5 (Kriterium zur Existenz von Stammfunktionen)

Sei G sternförmig und $f \in C^1(G, \mathbb{R}^n)$. Dann: f besitzt auf G eine Stammfunktion : $\iff f$ erfüllt auf G die Integrabilitätsbedingungen

Beweis

 \Rightarrow ": 14.1 \Rightarrow ": G sternförmig $\Rightarrow \exists x_0 \in G : S[x_0, x] \subseteq G \ \forall x \in G$. OBdA: $x_0 = 0$.

Für $x = (x_1, ..., x_n) \in G$ sei $\gamma_x(t) = tx, t \in [0, 1]$.

$$\varphi(x) := \int_{\gamma_x} f(z) \cdot dz \ (x \in G)$$

$$= \int_0^1 f(tx) \cdot x dt$$

$$= \int_0^1 (f_1(tx) \cdot x_1 + f_2(tx) \cdot x_2 + \dots + f_n(tx) \cdot x_n) dt$$

Zu zeigen: φ ist auf G partiell differenzierbar nach x_j und $\varphi_{x_j} = f_j$ (j = 1, ..., n). OBdA: j = 1. Später (in 21.3) zeigen wir: φ ist partiell differenzierbar nach x_1 und:

$$\varphi_{x_1}(x) = \int_0^1 \frac{\partial}{\partial x_1} (f_1(tx)x_1 + \dots + f_n(tx) \cdot x_n) dt$$

Für
$$k = 1, ..., n : g_k(x) = f_k(tx) \cdot x_k$$
.
 $k = 1 : g_1(x) = f_1(tx)x_1 \Longrightarrow \frac{\partial g_1}{\partial x_1}(x) = f_1(tx) + t \frac{\partial f_1}{\partial x_1}(tx)x_1$
 $k \ge 2 : g_k(x) = f_k(tx)x_k \Longrightarrow \frac{\partial g_k}{\partial x_1}(x) = t \frac{\partial f_k}{\partial x_1}(tx)x_k \Longrightarrow$

$$\varphi_{x_1}(x) = \int_0^1 (f_1(tx) + t(\frac{\partial f_1}{\partial x_1}(tx)x_1 + \dots + \frac{\partial f_n}{\partial x_1}(tx)x_n))dt$$

$$\stackrel{\text{IB}}{=} \int_0^1 (f_1(tx) + t(\frac{\partial f_1}{\partial x_1}(tx)x_1 + \frac{\partial f_1}{\partial x_2}(tx)x_2 + \dots + \frac{\partial f_1}{\partial x_n}(tx)x_n))dt$$

$$= \int_0^1 (f_1(tx) + tf'_1(tx) \cdot x)dt$$

Sei $x \in G$ (fest), $h(t) := t \cdot f_1(tx)$ ($t \in [0,1]$). h ist stetig differenzierbar und $h'(t) = f_1(tx) + tf'_1(tx) \cdot x \implies \varphi_{x_1}(x) = \int_0^1 h'(t) dt \stackrel{\text{Al}}{=} h(1) - h(0) = f_1(x)$.