Sprawozdanie

Temat: Wyznaczenie stałej siatki dyfrakcyjnej.

1.Cel

Wyznaczenie stałej siatki dyfrakcyjnej

- 2. Zestaw doświadczalny
- Siatka dyfrakcyjna
- płyta CD
- sztywne pudełko o wymiarach 25 cm x 35 z naklejonym arkuszem papieru milimetrowego oraz otworkiem znajdującym się dokładnie na wysokości środka poziomej średnicy płyty CD
- Wskaźnik laserowy
- taśma bezbarwna do zablokowania wyłącznika lasera
- zestaw książek
- kawałek plasteliny
- linijka
- 3.Rysunek

4.Realizacja

Kartonowe pudełko jest naszym ekranem. W połowie długości pudelka od strony naklejonego arkusza papieru (ekranu) znajduje się otworek dokładnie na wysokości środka poziomej średnicy płyty CD umieszczonej w opakowaniu. Uruchamiamy laser a następnie blokujemy jego wyłącznik za pomocą taśmy bezbarwnej. Na jednej linii ustawiamy układ optyczny złożony z lasera, pudełka z otworem i płyty CD (ekran ustawiony w stronę płyty), tak, aby promień lasera przechodząc przez otwór w pudełku, padał prostopadle do powierzchni płyty na jej poziomą średnicę w miejscu gdzie znajdują się rowki. Płyta CD i ekran powinny być względem siebie równoległe. Dobieramy odległość płyty CD od ekranu w ten sposób, aby na ekranie pojawiło się pięć plamek świetlnych. Prawidłowe ustawienie poznajemy po tym, że zerowy prążek interferencyjny (środkowa plamka) oświetla otwór, a prążki boczne tworzą poziomą linię i są ułożone symetrycznie po obu stronach otworu. Aby uzyskać prawidłowe ustawienie, korygujemy położenie płyty CD i lasera za pomocą odpowiednich podkładek z plasteliny. Kilkakrotnie mierzymy odległości (prążka pierwszego rzędu) i (prążka drugiego rzędu) ich środków od prążka zerowego oraz odległość płyty CD od ekranu. Na wskaźniku laserowym odczytujemy długość fali. Niepewności pomiarów d_1 , d_2 , l przyjmujemy równe wartości działki elementarnej przyrządu pomiarowego. Wyniki zapisujemy w tabeli pomiarowej.

5.Teoria

Siatka dyfrakcyjna – przyrząd do przeprowadzania analizy widmowej światła. Tworzy ją układ równych, równoległych i jednakowo rozmieszczonych szczelin.

Stała siatki dyfrakcyjnej to parametr charakteryzujący siatkę dyfrakcyjną. Wyraża on rozstaw szczelin siatki (odległość między środkami kolejnych szczelin).

6.Wzory

- 3. Obliczamy odległość a pomiędzy rowkami płyty CD:
 - dla k=1 (prążka rzędu pierwszego):

$$a_1 = \lambda \sqrt{1 + \left(\frac{l_{\&r.}}{d_{1\&r.}}\right)^2}$$

➤ dla k=2 (prążka rzędu drugiego):

$$a_2 = \lambda \sqrt{1 + \left(\frac{l_{\&r.}}{d_{2\&r.}}\right)^2}$$

Obliczamy niepewności Δa₁i Δa₂ korzystając z metody NKP:

$$\Delta a_{1} = \frac{1}{2} \left[(\lambda + \Delta \lambda) \sqrt{1 + \frac{(l_{\$r.} + \Delta l_{\$r.})^{2}}{(d_{1\$r.} - \Delta d_{1\$r.})^{2}}} \right] - \frac{1}{2} \left[(\lambda - \Delta \lambda) \sqrt{1 + \frac{(l_{\$r.} - \Delta l_{\$r.})^{2}}{(d_{1\$r.} + \Delta d_{1\$r.})^{2}}} \right]
\Delta a_{2} = \frac{1}{2} \left[(\lambda + \Delta \lambda) \sqrt{1 + \frac{(l_{\$r.} + \Delta l_{\$r.})^{2}}{(d_{2\$r.} - \Delta d_{2\$r.})^{2}}} \right] - \frac{1}{2} \left[(\lambda - \Delta \lambda) \sqrt{1 + \frac{(l_{\$r.} - \Delta l_{\$r.})^{2}}{(d_{2\$r.} + \Delta d_{2\$r.})^{2}}} \right]$$

7.Pomiary

		TABELA	POMIA	ROWA –	PŁYTA	CD		
Wielkość mierzona	Nr pomiaru							
	1	2	3	4	5	6	7	8
d 1[m]								
$m{d_2}[m]$								
l [m]								
$\Delta \boldsymbol{d_1}[m]$								
$\Delta \boldsymbol{d_2}[m]$								
Δ l [m]								
λ [nm]								
Δλ [nm]								
	TABEL	A POMIA	AROWA -	- SIATK	A DYFR	AKCYJN	A	
Wielkość mierzona	Nr pomiaru							
	1	2	3	4	5	6	7	8
d ₁ [m]								
d ₂ [m]							ļ	
<i>l</i> [m]								
$\Delta \boldsymbol{d_1}[m]$								
$\Delta d_2[m]$								
Δ l [m]								
λ [nm]								
Δλ [nm]								
Liczba rys na 1mm								

8. Wnioski

Stała siatki dyfrakcyjnej, otrzymanej do zadania, wynosi Długość fali świetlnej, przepuszczanej przez dany filtr, wynosi ... nm. Wiadomym nam było, że dany filtr przepuszcza fale świetlną bliską ... nm, co potwierdza nasze ćwiczenie. Świadczy to o poprawności wykonania ćwiczenia. Duży błąd bezwzględny (ok ... %) wynika z trudności oszacowania ostrości obrazu, przez człowieka.