COMS 4236: Computational Complexity (Fall 2018) Problem Set #3

Wenbo Gao - wg2313@columbia.edu

December 21, 2018

Problem 1

Problem. Problem 11.5.18 on page 275 of CC: Show that, if $NP \subseteq BPP$, then RP = NP. (That is, if SAT can be solved by randomized machine, then it can be solved by randomized machines with no false positives, presumably by computing a satisfying truth as in Example 10.3.)

Goal. Prove SAT \in NP-complete \subseteq NP \subseteq RP.

Proof.

Let A be a machine in BPP that decides SAT, L(A) = SAT,

Given.

$$\forall x \in SAT \Rightarrow [Pr]_{y \in \{0,1\}^{q(n)}} [D(x,y) = 1] \ge \frac{2}{3}$$

$$\forall x \notin SAT \Rightarrow [Pr]_{y \in \{0,1\}^{q(n)}} [D(x,y) = 1] \le \frac{1}{3}$$

 $\forall w \in SAT$, where w is binary encoding of a boolean formula Φ , where $w = \langle \lambda x_1, x_2, \dots, x_n.\Phi(x_1, x_2, \dots, x_n) \rangle$, construct a DTM, D, as the following,

- 1. Initialize counter i=1
- 2. Simulate both $\lambda x_{i+1}, \ldots, x_n \cdot \Phi(x_1, \ldots, T, x_{i+1}, \ldots, x_n)$ and $\lambda x_{i+1}, \ldots, x_n \cdot \Phi(x_1, \ldots, F, x_{i+1}, \ldots, x_n)$ on A
- 3. If $(A(\Phi(x_1,\ldots,T,x_{i+1},\ldots,x_n)), A(\Phi(x_1,\ldots,F,x_{i+1},\ldots,x_n))$
 - $\bullet = (0,0)$, then reject
 - = (1,0), then keep $x_i = T$, increment counter i = i + 1, and repeat step 2
 - \bullet = (0,1), then keep $x_i = F$, increment counter i = i + 1, and repeat step 2
 - = (1,1), then keep $x_i = T$ (or $x_i = F$, the choice doesn't matter), increment counter i = i + 1, and repeat step 2.

- 4. Once we have an assignment of Φ , verify the assignment
 - If $\Phi(x_1, x_2, \dots, x_n) = 1$, then accept;
 - otherwise, reject.

This way we guarantee that if $w \notin SAT$, our machine D always rejects. If $w \in SAT$, there is $\geq (\frac{2}{3})^n$ chance that the machine A is correct in all n iterations. We can amplify this probability to be $\geq \frac{1}{2}$ by repeating this experiment polynomial times. Therefore, $L(D) = \text{SAT } \wedge L(D) \in \text{RP}$, and thus $\text{SAT} \in \text{RP}$.

Problem 2

Problem. Let $0 < \epsilon_1 < \epsilon_2 < 1$ denote two constants. Let $D(\cdot, \cdot)$ be a deterministic polynomial-time computable Boolean function, and let L be a language (the setting so far is exactly the same as the definition of BPP.) D and L satisfy the following property: Given any $x \in \{0,1\}^n$, if y is sampled uniformly at random from $\{0,1\}^m$ for some m polynomial in n, then

$$x \in L \Rightarrow \Pr_{y \in \{0,1\}^m}[D(x,y) = 1] \ge \epsilon_2 \text{ and } x \notin L \Rightarrow \Pr_{y \in \{0,1\}^m}[D(x,y) = 1] \le \epsilon_1.$$

Show that $L \in BPP$. (Note that ϵ_2 can be smaller than 1/2. Use the Chernoff bound.)

Problem 3

Problem. Similar to P/poly, one can define P/log n, where the advice string is of length only $O(\log n)$ for input size n. Show that, if SAT \in P/log n, then P = NP. (Hint: Self-reducibility.)

Problem 4

Problem. Show that, if PSPACE \subseteq P/poly, then PSPACE $= \Sigma_2^P$. (Hint: Use self-reducibility to "implicitly" build a winning strategy for the existential player in the TQBF game.)