

m⁶A 甲基化测序 (MeRIP-seq)

客户手册

欧易生物技术支持部

目录

一、前言	4
二、欧易服务优势	6
三、实验流程	7
四、数据分析流程	9
五、数据分析结果展示	11
5.1 测序序列统计与质控测序数据质量评估	11
5.1.1 测序数据质量预处理	11
5.1.2 污染检测	11
5.2 参考基因组序列比对	12
5.2.1 Reads 比对结果统计(参考基因组)	12
5.2.2 Reads 在基因组上的分布	13
5.2.3 Reads 比对结果可视化	14
5.3 RIP-seq QC	14
5.3.1 Reads 富集位置	15
5.3.2 已发布数据的典型度量值比较	15
5.4 甲基化峰检出	16
5.4.1 甲基化峰检出情况	16
5.4.2 甲基化峰在染色体上的分布	17
5.4.3 甲基化峰的宽度分布	17
5.5 甲基化峰注释	18
5.5.1 甲基化峰在基因功能元件上的分布	18
5.5.2 甲基化峰相关基因 GO 功能分析	19
5.5.3 甲基化峰相关基因 KEGG 功能分析	
5.6 Motif 序列分析	
5.6.1 Motif 序列预测	
5.6.2 MEME 预测序列注释	21

5.6.3 Drem 预测序列注释	22
5.7 参考文献	22
六、样本要求	23
6.1 样本采集与处理	23
6.2 包装过程中的注意事项	24
6.3 样品运输	24
6.4 RNA 质量要求	24
七、m ⁶ A 后续验证	24
7.1 miCLIP	24
7.2 SCARLET	26
八、m ⁶ A 研究思路	27
联系我们	29

一、前言

1.1 m⁶A 定义

已知 RNA 存在超过 100 种修饰。在真核生物中,5'端的 Cap 以及 3'的 ployA 修饰在转录调控中起到了十分重要的作用,而 mRNA 的内部修饰则用于维持 mRNA 的稳定性。mRNA 最常见的内部修饰包括 N6-腺苷酸甲基化(m^6A),N1-腺苷酸甲基化(m^1A),胞嘧啶羟基化(m^5C)等。

 m^6A 是真核生物 mRNA 最常见的一种转录后修饰,占到 RNA 甲基化修饰的 80%。其功能包括加速 mRNA 的代谢和翻译,以及在细胞分化,胚胎发育和压力应答等过程中起重要作用。

图一 不同转录调控过程存在的可逆修饰

1.2 m⁶A 功能

已知绝大部分真核生物中,mRNA 在 5°Cap 处存在甲基化修饰,作用包括维持 mRNA 稳定性、mRNA 前体剪切、多腺苷酸化、mRNA 运输与翻译起始等。而 3° polyA 发生的修饰有助于出核转运、翻译起始以及与 polyA 结合蛋白一起维持 mRNA 的结构稳定。

已知 tRNA 上发生碱基修饰的比例较高,会有各种各样的碱基修饰行为。tRNA 修饰有

助于提高翻译效率,维持其三叶草折叠二级结构的稳定性。人类的核糖体 RNA (rRNA)上有超过 200 个碱基修饰位点,而剪切体 RNA (spliceosomal RNA)上也有超过 50 个碱基修饰位点。

1.3 m⁶A 甲基化酶

大多数RNA甲基化酶的识别位点为RRACH,也有报道为[G/A/U][G>A]m6AC[U>A>C]。
m6A 这种甲基化修饰被证明是可逆化的,由甲基化转移酶(Writers)去甲基化酶(Erasers)
和甲基化阅读蛋白(Readers)等共同参与。

图二 RNA 的 m⁶A 修饰。

图三 已报道的 m6A 甲基化酶

二、欧易服务优势

- 1 样品处理: 欧易拥有十余年高通量测序样品处理经验, 客户只需提供组织, 细胞样品或者 RNA, 欧易完成 RNA 抽提及富集, 免疫沉淀, 文库制备, 上机测序及数据分析全部流程。
- 2 实验流程:采用 Synaptic Systems, Abcam 等国际主流抗体品牌,并进行严格质检和效价分析;针对不同样本优化实验流程,提高 IP 效率和特异性。
- 3 数据质量:采用 illumina 原装试剂盒,提高数据稳定性和 mapping 率。
- 4 分析内容:专业的生物信息团队,提供个性化分析报告;可根据客户需求提供定制服务,

结合转录组测序等其他高通量数据进行联合分析,对数据进行全面挖掘。

三、实验流程

在mRNA中,大约有 0.1—0.4%的Adenine发生甲基化,平均每条mRNA有3-5个m⁶A位点。早在上世纪70年代,人们已经在真核生物的mRNA和IncRNA中发现了m⁶A修饰。但是受到技术手段的限制,检测m⁶A尤其是对m6A进行定量,甚至是从单碱基水平鉴定m⁶A,一直进展缓慢。随着高通量测序技术(next generation sequencing, NGS)的发展以及液相色谱灵敏度的提高,科学家们在此基础上发展了多种m⁶A检测方法。目前,对RNA m⁶A主流的检测技术为MeRIP-seq(Methylated RNA Immunoprecipitation sequening,MeRIP-seq)。利用甲基化RNA免疫共沉淀结合高通量测序技术,可以对RNA转录后甲基化修饰图谱进行全面研究,是表观转录组学研究的关键技术。

m⁶A特异性抗体对细胞内具有m⁶A修饰的RNA片段进行免疫共沉淀,将富集下来的RNA 片段进行高通量测序。另外需要单独构建一个普通的转录组文库作为对照。结合生物信息学 分析,即可在转录组范围内对m⁶A修饰进行系统研究。最后将2个测序文库放在一起进行生 物信息学分析,得到m6A甲基化程度较高的区域,也叫做m⁶A peak。 这种方法优点是方便 快捷成本低廉,可以对发生高甲基化的mRNA区域进行一个定性分析。

用 Trizol 试剂提取总 RNA 后,使用 Oligo-dT 磁珠对 total RNA 带有 polyA 的 mRNA 进行富集。对磁珠进行富集,得到带有 polyA 的 mRNA。之后加入片段化试剂,将完整的 mRNA 进行片段化,片段化长度约为 50 - 100 nt。将片段化后的 RNA 分成两份。一份加入带有 m6A 抗体的免疫磁珠,对含有 m⁶A 甲基化的 mRNA 片段进行富集。另一份作为对照,直接构建常规的转录组测序文库。对 m⁶A 抗体免疫磁珠进行富集,带有 m⁶A 的 mRNA 片段进行回收后,按照转录组的建库流程构建常规的测序文库。将构建好的 2 个测序文库,即 m⁶A-seq library 和 RNA-seq library,分半进行高通量测序,测序平台为 Hiseq

2500,测序模式为 PE100。

四、数据分析流程

首先 Cutadapt [1] 以及本地 perl 脚本会去除低质量序列、污染序列以及测序仪接头序列, 得到 CleanData。接下来使用 FastQC 软件对 CleanData 进行质控。使用 bowtie [2] 的默认参数将 reads 比对到参考基因组上(拉丁文:Homo sapiens ,基因组版本:GRCh38.p10)。MACS2 [3] 和 ChIPseeker [5] 进行 Peak calling 和 Peak 注释。最后使用 MEME [4] 对富集区域进行 motif 分析。

Reference:

- [1] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *Embnet Journal* 17 (2011).
- [2] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9, 357–359 (2012).

- [3] Zhang, Y., et al. Model-based analysis of ChIP-seq (MACS). *Genome Biology*. 9(9), R137. (2008).
- [4] Timothy L. Bailey, *et al.* MEME Suite: tools for motif discovery and searching. *Nucleic Acids Research*. 37.Web Server issue:202-8. (2009).
- [5] Yu, G., *et al.* ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. *Bioinformatics*. 31.14:2382. (2015).

五、数据分析结果展示

以下仅展示部分结果,详细分析内容请参阅报告模板。

5.1 测序序列统计与质控测序数据质量评估

为了保证数据质量,要在信息分析前对原始数据进行质量评估,并且通过数据预处理去除低质量的片段。

5.1.1 测序数据质量预处理

测序产生的原始数据 (raw data)需要进行预处理,使用 cutadpter 以及 perl scripts in house 过滤掉不合格的序列以及接头序列后得到有效数据(clean data),再进行下一步分析,

具体处理步骤如下:

- (1) 去除质量值 ≤10 的低质量 reads (Q≤10 的碱基数量占整个 read 的 20% 以上);
- (2) 去除含 N 的碱基比例超过 5% 的 reads;
- (3) 去除接头和被接头污染的序列 (默认 15 bp 的 overlap, 设置为 15);

Sample	raw_reads	raw_bases	clean_reads	clean_bases	valid_bases	Q30	GC
mouse_input	16.44M	2.47G	16.17M	2.20G	89.21%	96.13%	48.97%
mouse_IP	16.55M	2.48G	16.21M	2.23G	89.95%	95.61%	49.31%

表格参数说明:

1) Raw reads:统计每个样本的测序 raw reads 的总数。

2) Raw bases:统计每个样本测序所获碱基的总数。

3) Clean reads: 计算方法同 Raw Reads, 为过滤后的测序数据。后续的生物信息分析都是基于 Clean reads。

4) Clean bases:统计 clean reads 的碱基总数,并将结果转化为以G为单位的数值。

5) Q30(%): 计算原始数据中 Phred 数值大于 30 的碱基数量占总碱基数量的百分比。

6) GC content(%): 计算原始数据中碱基 G 和 C 的数量总和占总碱基数量的百分比。

5.1.2 污染检测

在后续信息分析前,要对得到的数据进行污染检测,作为样本是否受到污染的参考。判

断样品是否被污染要根据具体情况具体分析。对于污染了未知基因组物种的核酸序列,可能无法准确评估。从测序样本的数据中随机抽取 25 万对 Reads(50 万条),这里我们利用 blast 软件与 NT 库 (ftp://ftp.ncbi.nih.gov/blast/db) 进行比对,取 E 值小于 1e-10,coverage 大于 80%的最好的一条结果。

图 5.1 比对上 reads 最多的 10 个物种统计

结果说明:不同的颜色表示比对至不同的物种,不同区域大小表示比对到该物种 reads 的数量。

5.2 参考基因组序列比对

5.2.1 Reads 比对结果统计(参考基因组)

我们利用Hisat2^[2]将Clean Reads与指定的参考基因组进行序列比对,获取在参考基因组或基因上的位置信息,以及测序样品特有的序列特征信息。在比对结果中可能存在较高的multiple率,在后续分析中会剔除多重比对Reads,只保留唯一比对Reads进行后续分析。

表5.1 与参考基因组比对率统计结果(部分)

Sample	mouse_IP	mouse_input
Total reads	15687381	15698952
Total mapped reads	15687381(100.00%)	15698952(100.00%)
Multiple mapped	975196(6.22%)	1048951(6.68%)
Uniquely mapped	14712185(93.78%)	14650001(93.32%)
Read-1	7357269(46.90%)	7325951(46.67%)

Read-2	7354916(46.88%)	7324050(46.65%)
Reads map to '+'	7360399(46.92%)	7330046(46.69%)
Reads map to '-'	7351786(46.86%)	7319955(46.63%)
Non-splice reads	10454392(66.64%)	10237572(65.21%)
Splice reads	4257793(27.14%)	4412429(28.11%)
Reads mapped in proper pairs	14265308(90.93%)	14196976(90.43%)

表格参数说明:

- (1) Total reads:测序序列经过测序数据过滤后的数量统计(Clean reads);
- (2) Total mapped:能定位到基因组上的测序序列的数量的统计;一般情况下,如果不存在污染并且参考基因组选择合适的情况下,这部分数据的百分比大于70%;
- (3) Multiple mapped: 在参考序列上有多个比对位置的测序序列的数量统计;
- (4) Uniquely mapped: 在参考序列上有唯一比对位置的测序序列的数量统计;
- (5) Read-1, Read-2:分别为 left reads 和 right reads 比对到参考基因组上的数量统计;
- (6) Reads map to '+', Reads map to '-': 测序序列比对到基因组上正链和负链的统计;
- (7) Splice reads: Total mapped reads 中,分段比对到两个外显子上的测序序列(也称为 Junction reads)的统计, Non-splice reads 为整段比对到外显子的将测序序列的统计, Splice reads 的百分比取决于测序片段的长度;
- (8) Reads mapped in proper pairs:双端比对上的测序序列数量统计。

5.2.2 Reads 在基因组上的分布

对比对到基因组上各个染色体(分正负链)的密度进行统计,以图形的形式直观展示 reads 在参考基因组各个位置的分布情况,同时展示各个位置基因的分布情况。

图 5.2 reads 在参考基因组上的分布

结果说明:示例图中共有五层圈图,按照从外到里的顺序,最外圈为基因组长度标尺,单位为 kb,按照物种的不同而有很大不同。最内圈为基因在基因组上的分布热图,其他各圈为各 IP 样本中 reads 在基因组正负链上的分布直方图。

5.2.3 Reads 比对结果可视化

我们提供 Reads 在基因组上比对结果的 bigwig 格式文件,推荐使用 IGV (Integrative Genomics Viewer) 浏览器对 bigwig 文件进行可视化浏览。

图 5.3 Reads 比对结果 igv 可视化

5.3 RIP-seq QC

为了验证 RIP-seq 实验的效率,我们采用 R-package—Trumpet[3]对基因组比对结果数据进行 QC。Trumpet 是针对 MeRIP-seq 测序分析开发的质控软件,可以进行多指标质量控制,辅助验证实验结果可信度。

5.3.1 Reads 富集位置

m6A 位点普遍富集于 mRNA 的 3[°]端附近,对 reads 的富集位置进行统计,可以辅助判断 IP 实验的富集效率与实验成败,富集结果可视化展示如下:

图 5.4 Reads 富集位置统计

结果说明: 横坐标为 mRNA 区间,纵坐标为 reads 富集密度。对于 IP 样品。reads 富集主要集中在 3'UTR 附近, input 样品则不会表现出此特征。

5.3.2 已发布数据的典型度量值比较

虽然已知在不同细胞类型中的 m⁶A 水平有很大不同,但是因为缺乏广泛认同的数据库来作为衡量标准,很难断言数据集是否具有合理的质量,甚至没有提供这些指标。为了解决这一难题,我们从最近的高影响研究中收集了 61 个 MeRIP-seq IP 样本(包括 59 个相应的

Input 样本),并计算了三个指标,即甲基化峰富集区域大小,甲基化峰富集区域 reads 读数高低和比例因子(比例因子定义为 IP 样品与 input 样品的 ESES 信号差的极值)高低作为参考的阳性对照,将这些度量计算的结果与三个密度图中已知的 61 MeRIP-seq IP 样本的结果进行比较,每个图中的样品垂直线表示用户的 IP 样本(要评估的数据)。在下面的图中显示:

图 5.4 典型度量值比较密度图

结果说明:横轴为不同的指标范围,纵轴为各自的密度曲线.在这部分中,我们根据不同条件下不同细胞系的已知实验数据 给出合理范围的 IP 样品富集信号 enrichment region,reads count 和 scale factor 的参考范围分别为 12%~25%,87%~95%和 0.08~0.3。

5.4 甲基化峰检出

我们利用 MACS2^[4]软件 (Yong Zhang, Tao Liu et al., 2008) (阈值为 qvalue<=0.05)完成 峰检分析 (peak calling), 并对峰的个数、宽度、分布等进行统计,筛选出峰的相关基因。

5.4.1 甲基化峰检出情况

为了了解检出峰的情况,我们对每个样本中检出峰的个数,总宽度,平均宽度,宽度中位数以及峰占基因组的比例进行了统计,结果见下表:

表4.1峰检出数量统计

Sample Name	mouse
Number of Peaks	5540
Total Length of Peaks(bp)	79305762

Average Length of Peaks(bp)	14315.12
Median Length of Peaks(bp)	5201
Percentage of Genome(%)	2.76

结果说明:

Sample Name: 样本名称;

Number of Peaks: 峰个数;

Total Length of Peaks: 检出峰宽度总和,单位bp;

Average Length of Peaks:检出峰平均宽度,单位bp;

Median_Length_of_Peaks(bp): 检出峰的中位宽度,单位bp;

Percentage_of_Genome(%):峰占基因组长度的百分比。

5.4.2 甲基化峰在染色体上的分布

将甲基化峰位置分布在染色体水平进行展示,反映存在高度甲基化区域的分布情况。分

布统计柱状图如下所示:

图5.5 峰在染色体上的分布图

结果说明:横坐标为染色体的坐标,纵坐标为 peaks 的数量,右侧方块内容为染色体编号

5.4.3 甲基化峰的宽度分布

甲基化峰的宽度,表示存在甲基化位点的 mRNA 序列的长度。峰的宽度分布统计小提琴图如下所示:

图5.6 峰宽度统计小提琴图

结果说明:横坐标表示样品名称,纵坐标代表峰宽(log10)。

5.5 甲基化峰注释

5.5.1 甲基化峰在基因功能元件上的分布

对检出峰在基因功能元件上的分布情况进行注释,统计结果下图:

图5.7 峰在基因功能元件区域注释饼图

结果说明:图中不同颜色区域为peak在不同基因元件上的分布,横坐标为各个范围内峰 所占比例。

对检出峰在基因功能元件上的分布情况进行注释,考虑到峰对应的基因元件注释结果可能存在重叠情况,我们提供基因功能元件分布韦恩饼图及UpSet图,如下图所示:

图5.8 峰在基因功能元件区域注释韦恩饼图及UpSet图

结果说明:左下图为UpSet图,图中中不同颜色的条形图表示不同类型注释数目。黑色点表示该位置有数据,灰色的点表示没有,不同点连线表示存在交集,各个点或者点连线对应峰数目可以看上面的黑色条形图。右上图为韦恩饼图,各种不同颜色为不同类型注释。

5.5.2 甲基化峰相关基因 GO 功能分析

我们对甲基化峰相关基因(任何位置与峰有重叠的基因,都算作是有峰基因)进行GO 富集分析,对其功能进行描述(结合GO注释结果)。统计每个GO条目中所包括的峰相关基 因个数,并用超几何分布检验方法计算每个GO条目中峰相关基因富集的显著性。

图5.9 GO富集分析图

结果说明:图中横坐标为基因数目,纵轴为GO条目名称。

图 5.10 峰相关基因在 GO Level2 水平分布图

5.5.3 甲基化峰相关基因 KEGG 功能分析

利用 KEGG^[6]数据库对峰相关基因进行 Pathway 分析,并用超几何分布检验的方法计算每个 Pathway 条目中峰相关基因富集的显著性。

图 5.11 KEGG 富集 top20 气泡图

结果说明:图中 X 轴 Enrichment Score 为富集分值,气泡越大的条目包含的峰相关基因数目越多,气泡颜色由紫-蓝-绿-红变化,其富集 pvalue 值越小,显著程度越大。

图 5.12 KEGG level2 富集气泡图

5.6 Motif 序列分析

我们使用MEME-ChIP套件来分析检测peak序列中Motif序列情况。该软件采用MEME与Drem软件检测peak序列中显著Motif序列,同时采用Tomtom软件将得到的Motif序列与已知Motif数据库进行比对,利用已知Motif对其进行相应注释。

5.6.1 Motif 序列预测

以序列表示图 (sequence logo)的方式展示长 Motif (8~30)与短 Motif (~8)结合位点中不同位置的碱基倾向性。结果示例如下:

图5.13 MEME鉴定出的长Motif序列

图5.14 Drem鉴定出的短Motif序列

5.6.2 MEME 预测序列注释

对 MEME^[7]检测到的 Motif 序列采用 Tomtom 与已知 Motif 数据库进行比对,采用序列表示图(sequence logo)的方式展示 MEME 检测到的 Motif 与已知 Motif 的比对结果:

图5.15 MEME鉴定出的长Motif序列注释

5.6.3 Drem 预测序列注释

对 Drem^[8]检测到的 Motif 序列采用 Tomtom 与已知 Motif 数据库进行比对,采用序列表示图(sequence logo)的方式展示 Dreme 检测到的 Motif 与已知 Motif 的比对结果:

图5.16 Drem鉴定出的短Motif序列注释

5.7 参考文献

- 1 Meyer, K., & Jaffrey, S. R. (2017). Rethinking m6A Readers, Writers, and Erasers. Annual Review of Cell & Developmental Biology, 33(1), 319.
- 2 Meyer, K., & Jaffrey, S. R. (2014). The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nature Reviews Molecular Cell Biology, 15(5), 313.
- 3 Fu, Y., Dan, D., Rechavi, G., & He, C. (2014). Gene expression regulation mediated through reversible m6A RNA methylation. Nature Reviews Genetics, 15(5), 293-306.
- 4 Roundtree, I. A., Evans, M. E., Pan, T., & He, C. (2017). Dynamic RNA Modifications in Gene Expression Regulation. Cell, 169(7), 1187.
- 5 Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G., & Suzuki, T. (2016). RNA modifications: what have we learned and where are we headed? Nature Reviews Genetics, 17(6), 365-372.

- 6 Yang, Y. et al. (2015). Dynamic m6A modification and its emerging regulatory role in mRNA splicing. Science Bulletin, 60(1), 21-32.
- 7 Helm, M., & Motorin, Y. (2017). Detecting RNA modifications in the epitranscriptome: predict and validate. Nature Reviews Genetics, 18(5), 275.
- 8 Alarcón, C. R., *et al.* (2015). N6-methyladenosine marks primary microRNAs for processing. Nature, 519(7544), 482.
- 9 Alarcón, C. R., et al. (2015). HNRNPA2B1 is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell, 162(6), 1299-1308.
- 10 Lence, T., et al. (2016). m6A modulates neuronal functions and sex determination in *Drosophila*. Nature, 540(7632), 242-247.
- 11 Li Z., et al. (2017). FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase. Cancer Cell, 31(1), 127.
- 12 Zhao, BS., *et al.* (2017). m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 542(7642), 475-478

六、样本要求

6.1 样本采集与处理

- (1) 样品类型:细胞、新鲜组织或RNA样品,其他样本类型请电询。
- (2) 细胞样品培养诱导结束后,去除培养液,加入适量的 TRIzol 试剂,投入液氮冷冻,然后于液氮中存放或转入 -80°C 超低温冰箱保存;
- (3) 动物组织准确切取所需组织后,在 RNase-free 的生理盐水中迅速漂洗样本,以去除血渍和污物。用准备好的铝箔或冷冻保存管装载包裹组织,迅速投入液氮冷却。后于液氮中存放或转入-80°C 超低温冰箱保存;
- (4) 临床标本准确切取所需组织后,用准备好的铝箔或冷冻保存管装载包裹组织,立即投入液氮冷冻。后于液氮中存放或转入 -80°C 超低温冰箱保存;
- (5) 植物组织准确取得所需组织后,立即放入进口冻存管中,投入液氮冷冻,然后于液氮

中存放或转入 -80°C 超低温冰箱保存;

6.2 包装过程中的注意事项

- (1) 冷冻保存管表面,用油性记号笔标明样本编号及样本类型,并且不要与乙醇等有机溶剂接触;
- (2) 不要用纱布、纸张直接包裹样本,而是用冷冻保存管包裹后再装入样本袋中;
- (3) 不要把标签纸或其他纸制的说明性文件放入样本袋内,因为纸张在液氮中是易碎的;
- (4) 不要用玻璃容器在液氮中保存样本,样本包装中不要使用透明胶带;
- (5) 标签纸应该贴于样本袋绳上,不要贴于容器表面以免脱落造成样本混乱;
- (6) 不要在一只样本袋中放过多的样本,以防无法放入液氮罐或无法从液氮罐中取出。样本袋在使用前先在液氮中预冷;
- (7) 客户在填写《样本登记单》时应当详细描述样本的类型、处理方法、储存条件以及储存时间等相关细节,以便技术人员确定合理的实验方案。

6.3 样品运输

样品运输建议采取干冰保存下的超低温运输。

6.4 RNA 质量要求

- (1) 样品纯度: OD 260/280值应在 1.8 2.2 之间;
- (2) 样本完整性: Agilent 2100 score ≥ 7;
- (3) 样品总量 :RNA 样品请提供 200 μg 以上的总 RNA ,细胞样品请提供至少 1×10^8 个细胞 , 组织样品请提供至少 5 g 的组织块或切片。

七、m⁶A 后续验证

目前能够达到单碱基分辨率的 m⁶A 检测技术手段包括基于紫外交联的 miCLIP 和基于TLC 薄层层析技术的 SCARLET。

7.1 miCLIP

miCLIP 方法能够对 m⁶A 做到单碱基的分辨率。这种方法也会用到 m⁶A 抗体,但是会

使用紫外交联的方法进行免疫共沉淀。

miCLIP 流程图

如上图所示,**第一步**依旧是对富集完的 mRNA 进行片段化。**第二步,**使用带有 m⁶A 抗体免疫磁珠与带有 m⁶A 的 mRNA 片段进行结合。**第三步** 使用紫外交联进行免疫共沉淀后,在 mRNA 片段的 3'端连上接头序列,在 5'端加上 P32 放射性标记后进行移膜。**第四步**,根据放射性标记进行切膜回收后,对 mRNA 片段进行反转录和纯化回收。**第五步**,对反转录组的 cDNA 进行环化。第六步,对环化的 cDNA 进行复线性化,然后构建测序文库上机测序。

当某个位点发生甲基化时,反转录会有一定的几率停止反应或者在 m^6A 位点的下一个碱基处发生 $C \to T$ 的突变。最后对片段进行环化,通过分析 mRNA 序列断裂或是发生 $C \to T$ 突变的位置,鉴定 m^6A 位点。如下图所示:

miCLIP-seq 结果示意图

7.2 SCARLET

SCARLET (Site-specific Cleavage And Radioactive-Labeling followed by ligation-assisted Extraction and Thin-layer chromatography)

通过结合位点特异性的 RNA 酶 H、放射标记和 TLC (薄层层析)的方法,对 RNA 甲基化修饰进行检测,该方法是从单基因通量下检测 RNA 的甲基化修饰。

总结: 两种方法都需要用到同位素 32 P,流程比较复杂。区别在于 mi CLIP 可以通过高 通量测序对全部 mi A 位点进行鉴定,而 mi SCARLET 只能对单个基因进行检测。

参考文献:

- 1 George, H. and J. Ule, et al. (2017). Illustrating the Epitranscriptome at Nucleotide Resolution Using Methylation-iCLIP (miCLIP). Methods Mol. Biol. 1562: 91-106.
- 2 Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772.
- 3 König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

八、m⁶A 研究思路

总体来看,以 RNA 甲基化修饰为主题的基金申请还是一个蓝海,因此如果想选 RNA 甲基化修饰作为研究方向设计课题,可以从以下五种思路着手:

- 1. 寻找 m⁶A 相关酶在某一体系(疾病)中的异常表达情况。研究 RNA 甲基化修饰过程中的参与者(Writer、Eraser 和 Reader)分子在疾病或者某一生命过程中的功能。比如:Mettl3介导 m⁶A 甲基化修饰调控慢性炎性疼痛机制研究。
- 2. 通过 m⁶A-seq和 RNA-seq的结合 ,寻找 m⁶A 含量变化和 RNA 分子数量变化最大的 mRNA。 这部分工作对生物信息学的要求较高。
- 3. 通过 MeRIP-Seq/miCLIP 等方法首先揭示疾病或者某一生命过程中 RNA 甲基化修饰的变化,即揭示疾病特异性 m⁶A 甲基化图谱。
- 4. 细胞及动物的表型实验,通过敲低和过表达该 m⁶A 修饰酶,检测细胞的变化,包括细胞增殖,凋亡,衰老等指标。或通过酵母双杂交,IP 等方法鉴定参与 RNA 甲基化修饰的新分子,或者建立研究 RNA 甲基化修饰的新方法。
- 5. 揭示疾病或者某一生命过程中某一基因的特定 RNA 甲基化修饰与疾病的关系。即:RNA 甲基化修饰——基因转录后调控(比如选择性剪接或者翻译,再或者 microRNA 的产生过程)

——基因表达异常——疾病或者某一生命过程。

参考文献:

- 1 Deng X, Su R, Weng H, Huang H, Li Z, Chen J. (2018).RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research. 28(5):507-517. doi:10.1038/s41422-018-0034-6.
- 2 Xiao, C. L. and S. Zhu, et al. (2018). "N-Methyladenine DNA Modification in the Human Genome." Mol. Cell 71 (2): 306-318.e7.
- 3 Roundtree IA, Evans ME, Pan T, He C. (2017). Dynamic RNA modifications in gene expression regulation. Cell 169(7): 1187-1200. doi:10.1016/j.cell.2017.05.045.
- 4 Zhang, S., Zhao, B. S., Zhou, A., Lin, K., Zheng, S., Lu, Z., ... Huang, S. (2017). The m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-Like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell, 31(4), 591–606.e6.
- 5 Alarcón, C. R., et al. (2015).N6-methyladenosine marks primary microRNAs for processing. Nature 519.7544:482.

联系我们

公司总部:上海市闵行区浦江镇新骏环路 138 号 2 幢 4 层

服务热线:4006-4008-26

欧易官网: www.oebiotech.com

市场联络邮箱: market@oebiotech.com

技术服务咨询邮箱:service@oebiotech.com

微信:

