Woods Hole Oceanographic Institution

A Compilation of the Rare Earth Element Composition of Rivers, Estuaries and the Oceans

by

Edward R. Sholkovitz

November 1996

Technical Report

Funding was provided by the Woods Hole Oceanographic Institution.

Approved for public release; distribution unlimited.

DIIC QUALITY INSPECTED

19961125 062

WHOI-96-13

A Compilation of the Rare Earth Element Composition of Rivers, Estuaries and the Oceans

by

Edward R. Sholkovitz

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

November 1996

Technical Report

Funding was provided by the Woods Hole Oceanographic Institution.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as Woods Hole Oceanog. Inst. Tech. Rept., WHOI-96-13.

Approved for public release; distribution unlimited.

Approved for Distribution:

Michael Bacon, Chair

Department of Marine Chemistry and Geochemistry

Table of Contents

	Page No
Abstract	2
Introduction	4
References	8
Acknowledgements	13
Table A1	14
Table A2	18
Table A3	21
Table A5	28
Table A6	31
Table A7	36
Table A8	40
Table A9	47
Table A10	53
Table A11	56
Γable A12	60
Γable A13	65
Гable A14	68

Abstract

This technical report serves as an appendix to a recent article by Byrne and Sholkovitz (1996) in the <u>Handbook on the Physics and Chemistry of Rare Earths</u> (vol. 23, chapter 158, pg. 497-592) edited by K. A. Gschneidner Jr. and L. Eyring and published by Elsevier Science. This article, *Marine Chemistry and Geochemistry of the Lanthanides*, discusses the physical chemistry of the lanthanides in natural waters, describes the major features of the lanthanides in rivers, estuaries and oceans and discusses the chemical and biogeochemical processes controlling the speciation and distribution of the lanthanides in the ocean.

The article by Byrne and Sholkovitz (1996) refers to a large set of published and unpublished data on the rare earth (RE) composition of rivers, estuaries, seawater, marine pore waters and marine hydrothermal waters. In order to conserve space in the Handbook article, a compilation of concentration data for natural waters will be presented in this report. Publications through 1995 are cited.

Introduction

This technical report serves as an appendix to a recent article by Byrne and Sholkovitz (1996) in the <u>Handbook on the Physics and Chemistry of Rare Earths</u> (vol. 23, chapter 158, pg. 497-592) edited by K. A. Gschneidner Jr. and L. Eyring and published by Elsevier Science. This article, *Marine Chemistry and Geochemistry of the Lanthanides*, discusses the physical chemistry of the lanthanides in natural waters, describes the major features of the lanthanides in rivers, estuaries and oceans and discusses the chemical and biogeochemical processes controlling the speciation and distribution of the lanthanides in the ocean. The focus of this article is on rivers, estuaries and the oceans; this includes a discussion of pore waters and hydrothermal waters. The extensive literature on the lanthanide geochemistry of marine sediments is not discussed.

The article by Byrne and Sholkovitz (1996) refers to a large set of published and unpublished data on the rare earth (RE) composition of rivers, estuaries, seawater, pore waters and hydrothermal waters. In order to conserve space in the Handbook, this compilation of data will be presented in this report. Each section of this report corresponds to a section number in the Handbook article of Byrne and Sholkovitz (1996). The identification of tables in both the Handbook article and in this technical report will be the same, that is tables A1 through A14. These tables appear in the same order as they are referred to in the Handbook chapter. After going to press with Byrne and Sholkovitz (1996), it was decided to delete Table A4 from this technical report. Table A4 was meant to sort and to list the various studies of RE in the published literature by ocean basin (e.g., Atlantic, Pacific, Indian). The reference list in this technical report is formatted to cover this type of bibliography.

Most of the data in tables A1-A14 refer to either the dissolved concentrations of rare earths or to the RE concentration of unfiltered seawater. In a few specific cases, data has been reported for the suspended particulate matter. Each table will indicate the type of filtration used to yield the dissolved fraction for RE analyses; most samples refer to filtrates passing through either 0.45 or 0.2 µm membrane filters. All concentration data for water samples (filtered or unfiltered) are given in units of pmol/kg of water. Particulate RE data have units of either pmol/kg of water or ppm with respect to the weight of particles.

The geographical location of the oceanic data presented in this report can be found by referring to the map in figure 1. Each table in this technical report contains a map # which can be traced to the same map # in figure 1. This map appears as figure 13 in the Handbook article.

Microsoft EXCEL (PC, 6.0) files of tables A1-A14 are available on request to the author of this report. Table 1 lists the names of each EXCEL file in the different "A" tables. The EXCEL file name of each sub-table also can be found at the beginning of each section and on each of the printed sub-tables in this report.

Table 1 List of EXCEL File Names in the Tables A1-14.

Table A1: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_DIS.XLS. Compilation of dissolved RE concentrations of river water.

Table A2: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_PART.XLS. Compilation of RE concentrations of river suspended particles and sediments.

Table A3: Section 5.2 of Handbook - The estuarine chemistry of the lanthanides.

File name: GWHALE.XLS. Great Whale River estuary, Quebec

File name: GIRONDE.XLS. Gironde River estuary, France

File name: AMAZON.XLS. Amazon River Estuary, Brazil

File name: CBAYSE.XLS. Surface waters, subsurface waters and shelf waters of Chesapeake Bay

File name: CBAY92.XLS. Chesapeake Bay bottom water time-series

File name: FLY.XLS. Fly River estuary, Papua New Guinea.

File name: ELDERF.XLS. Data from a suite of estuaries presented in Elderfield et al. (1990)

Table A4: Not applicable, see text

Table A5: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: NdSm_A.XLS. Concentration of Nd and Sm only for the Atlantic Ocean.

Table 1 Cont'd

Table A6: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: ASW_CONC.XLS. Concentration of RE in the Atlantic Ocean.

File name: SARG_DIS.XLS. Concentration of dissolved RE in the Sargasso Sea from Sholkovitz et al. (1994)

File name: SARG_PAR.XLS. Concentration of suspended particles in the Sargasso Sea from Sholkovitz et al. (1994). Data on the chemical leaching of particles [acetic acid, strong mineral acid and bomb/strong acid dissolution]. Data in per kg of seawater

Table A7: Handbook section 6.1. Pacific Ocean seawater

File name: PSW_CONC.XLS. Concentration of RE in Pacific Ocean seawater

Table A8: Handbook section 6.1. Indian Ocean seawater

File name: IND_CONC.XLS. Concentration of RE in Indian Ocean seawater

Table A9: Handbook section 6.1. Pacific Ocean seawater

File names: HE1.XLS, HE2.XLS and HE3.XLS

H. Elderfield's unpublished data on the concentration of RE in Pacific Ocean seawater

Table A10: Handbook section 6.1. Arctic Ocean seawater

File name: ARC_CONC.XLS. Concentration of RE in Arctic Ocean seawater (North Atlantic sector)

Table A11: Handbook section 6.1 and 7.1. Mediterranean Sea.

File name: MED_CONC.XLS. Concentration of RE in the Mediterranean Sea, including the anoxic brines of Bannock Basin

Table 1 Cont'd

Table A12: Handbook section 7.1. Anoxic Basins

File name: BLACKSEA.XLS. Concentration of RE in the Black Sea

File name: SAANICH.XLS. Dissolved and suspended concentrations of RE in Saanich Inlet, British Columbia, Canada

File name: CARIACO.XLS. Concentration of RE in the Cariaco Trench.

See also Chesapeake Bay data in Table A3 files

Table A13: Handbook section 7.2. Marine Pore Waters

File name: PW_REE.XLS. Concentration of RE in pore waters

Table A14: Handbook section 7.3. Marine hydrothermal vent waters

File name: VENTS.XLS. Concentration of RE in the hydrothermal waters of the Atlantic and Pacific Oceans.

References Associated with Tables A1-A14

Rivers: Table A1 and A2

Elderfield H., Upstill-Goddard R., and Sholkovitz E.R. (1990) The rare earth elements in rivers, estuaries and coastal sea waters: processes affecting crustal input of elements to the ocean and their significance to the composition of seawater. *Geochim. Cosmochim. Acta*, 54, 971-991.

Goldstein S.J. and Jacobsen S.B. (1988a) Rare earth elements in river waters. Earth Planet. Sci. Lett., 89, 35-47.

Gordeev, V. V., Miklishansky, A. Z., Migdisov, A. A., and Artemyev, V. E. (1985) Rare element distribution in the surface suspended matter of the Amazon River, some of its tributaries and estuary. SCOP/UNEP Sonderband Heft, 58, 225-243.

Martin, J. M., and Meybeck, M. (1979) Elemental mass balance of materials carried by major world rivers. *Marine Chem.*, 7, 173-206.

Martin J.M., Hogdahl O., and Phillippot J.C. (1976) Rare earth element supply to the oceans. J. Geophys. Res., 81, 3119-3124.

Sholkovitz E.R. (1992) Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. *Earth Planet. Sci. Lett.*, 114, 77-84.

Sholkovitz E.R. (1993) The geochemistry of rare earth elements in the Amazon River Estuary. Geochim. Cosmochim. Acta, 57, 2181-2190.

Sholkovitz E.R. (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. *Aquatic Geochem.* 1, 1-34.

Sholkovitz E.R. and Elderfield H. (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem. Cycles, 2, 157-176.

Somayajulu B.L. K., Martin J.M., Eisma D., Thomas A.J., Borole D.V. and Rao K.S. (1993) Geochemical studies in the Godavari estuary, India. *Mar. Chem.* 43, 83-93.

Estuaries: Table A3

Elderfield H., Upstill-Goddard R., and Sholkovitz E.R. (1990) The rare earth elements in rivers, estuaries and coastal sea waters: processes affecting crustal input of elements to the ocean and their significance to the composition of seawater. *Geochim. Cosmochim. Acta*, 54, 971-991.

Goldstein S. J. and S. B. Jacobsen (1988b). REE in the Great Whale River estuary, northwest Quebec. Earth and Planetary Science Letters, 88, 241-252.

Martin J.M., Hogdahl O., and Phillippot J.C. (1976) Rare earth element supply to the oceans. J. Geophys. Res., 81, 3119-3124.

Sholkovitz E.R. (1993) The geochemistry of rare earth elements in the Amazon River Estuary. *Geochim. Cosmochim. Acta*, 57, 2181-2190.

Sholkovitz E.R. and Elderfield H. (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem. Cycles, 2, 157-176.

Sholkovitz E.R., Shaw T.J., and Schneider D.L. (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. *Geochim. Cosmochim. Acta*, *56*, 3389-3402.

ATLANTIC OCEAN: Table A5

Jeandel C. (1993) Concentration and isotopic composition of Nd in the South Atlantic ocean. *Earth Planet. Sci. Lett.* 117, 581-591.

Piepgras D.J. and Wasserburg G.J. (1980). Neodymium isotopic variations in seawater. *Earth Planet. Sci. Lett.* **50**, 128–138.

Piepgras D.J. and Wasserburg G.J. (1983) Influence of the Mediterranean outflow on the isotopic composition of neodymium in waters of the North Atlantic. *J. Geophys. Res.* 88, 5997-6006.

Piepgras D.J. and Wasserburg G.J. (1987) Rare earth transport in the western North Atlantic inferred from Nd isotope observations. *Geochim. Cosmochim. Acta.*, **51**, 1257-1271.

Spivack A.J. and Wasserburg G.J. (1988) Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic. *Geochim. Cosmochim. Acta* 52, 2767-2773.

Stordal M.C. and Wasserburg G.J. (1986) Neodymium isotopic study of Baffin Bay water: sources of REE from very old terrances. *Earth Planet. Sci. Lett.*, 77, 259-272.

ATLANTIC OCEAN: Table A6

Elderfield H. and Greaves M. J.(1982). The rare earth elements in seawater. *Nature*, 296, 214–219.

de Baar, H. J. W., M. P. Bacon and P. G. Brewer (1983) Rare earth distributions with a positive cerium anomaly in the western North Atlantic Ocean. <u>Nature</u>, 301, 324-327.

German C.R., Masuzawa T., Greaves M.J., Elderfield H. and Edmond J.M. (1995) Dissolved rare earth elements in the Southern Ocean: cerium oxidation and the influence of hydrography. *Geochim. Cosmochim. Acta* 59, 1551-1558.

Sholkovitz E.R. and Schneider D.L. (1991) Cerium redox cycles and rare earth elements in the Sargasso Sea. *Geochim. Cosmochim. Acta.*, 55, 2737–2743.

Sholkovitz E.R., Landing W.M., and Lewis B.L. (1994) Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. *Geochim. Cosmochim. Acta* 58, 1567-1580.

PACIFIC OCEAN: Table A7

de Baar H.J. W., Bacon M. P., Brewer P. G. and Bruland K. W. (1985). Rare earth elements in the Atlantic and Pacific Oceans. 49, 1943–1959.

Esser B.K., Volpe A., Kenneally J.M., and Smith D.K. (1994) Preconcentration and Purification of Rare Earth Elements in Natural Waters Using Silica-Immobilized 8-Hydroxyquinoline and a Supported Organophosphorus Extractant. *Anal. Chem.*, 66, 1736-1742.

Klinkhammer, G., Elderfield H. and Hudson A (1983) Rare earth elements in seawater near hydrothermal vents, *Nature*, 305 185-188.

Moller P., Dulski P. and Bau M. (1994) Rare-earth element adsorption in a seawater profile above the East Pacific Rise. *Chem. Erde* 54, 129-154.

Piepgras D. J. and Jacobsen S. B. (1992) The behaviour of rare earth elements in seawater: Precise determinations of variations in the North Pacific water column. *Geochim. Cosmochim. Acta* **56**, 18512-1862.

Shimizu H., Tachikawa K., Masuda A. and Nozaki Y. (1994) Cerium and neodymium isotope ratios and REE patterns in seawater from the North Pacific Ocean. *Geochim. Cosmochim. Acta*, 58, 323-333.

Tanaka M., Shimizu H. and Masuda A. (1990) Features of the heavy rare-earth elements in seawater. *Geochem. J.* 24, 39-46.

Zhang, J., Amakawa H. and Nozaki Y. (1994), The comparative behaviors of Yttrium and Lanthanides in the seawater of the North Pacific, *Geophy. Res. Letts*, 21, 2677-2681.

INDIAN OCEAN: Table A8

Bertram C. J. and Elderfield H. (1993) The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. *Geochim. Cosmochim. Acta*, 57, 1957-1986.

German C. R. and H. Elderfield 1990. Rare earth elements in the NW Indian Ocean. *Geochim. Cosmochim. Acta*, 54, 1929-1940. [Data incorporated into Bertram and Elderfield, 1993].

Arctic Ocean: Table A10

Westerlund S. and Ohman P. (1992), Rare earth elements in the Arctic Ocean, *Deep-Sea Res.*, 39, 1613-1626.

Mediterranean Sea: Table A11

Greaves M.J., Rudnicki M and Elderfield H. (1991) Rare earth elements in the Mediterranean Sea and mixing in the Mediterranean outflow. *Earth Planet. Sci. Lett.* 103, 169-181.

Henry, F., Jeandel C., Dupre B. and Minster J.-F. (1994) Particulate and dissolved Nd in the western Mediterranean Sea: sources, fate and budget. *Mar. Chem.* 45, 283-305.

Spivack A.J. and Wasserburg G.J. (1988) Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic. *Geochim. Cosmochim. Acta* 52, 2767-2773.

Anoxic Basins: Table A12

- De Baar, H. J. W., C. R. German, H. Elderfield, and P. van Gaans (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench, *Geochim. Cosmochim. Acta*, 52, 1203–1219.
- German, C. R. and H. Elderfield (1989). Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. *Geochim. Cosmochim. Acta*, **53**, 2561-2571.
- German, C. R., B. P. Holliday and H. Elderfield (1991). Redox cycling of rare earth elements in the suboxic zone of the Black Sea. *Geochim. Cosmochim. Acta*, 55, 3553-3558.
- Schijf, J. and H. J. W. De Baar (1995) Rare element exchange through the Bosporus: The Black Sea as a net source of REEs to the Mediterranean Sea. *Geochim. Cosmochim. Acta* 59, 3503-3509
- Schijf, J. H. J., W. De Baar, J. R. Wijbrans, and W. M. Landing (1991) Dissolved rare earth elements in the Black Sea, *Deep Sea Res.*, 38(Suppl. 2), S805-S824.
- Schijf, J. H. J., W. De Baar and Millero F. J. (1995) Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea. *Geochim. Cosmochim. Acta* 59, 3285-3299.
- Sholkovitz E.R. and Elderfield H. (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem. Cycles, 2, 157-176 [Data presented in section on Estuaries]
- Sholkovitz E.R., Shaw T.J., and Schneider D.L. (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. *Geochim. Cosmochim. Acta*, **56**, 3389-3402.

 [Data presented in section on Estuaries]

Pore Water: Table A13

- Elderfield, H. and E. R. Sholkovitz (1987). Rare earth elements in the pore waters of reducing nearshore sediments. *Earth Planet. Sci. Lett.*, 82, 280-290.
- German, C. R. and Elderfield H. (1989). Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. *Geochim. Cosmochim. Acta*, 53, 2561-2571.
- Rideout P.S. and Pagett R.M. (1984) A large volume sediment squeezing system for the analysis of rare earth elements in deep ocean pore waters. *Mar. Chem.* 15, 193-201.

Sholkovitz, E. R., D. J. Piepgras and S. B. Jacobsen (1989). The pore water chemistry of rare earth elements in Buzzards Bay sediments. Geochim. Cosmochim. Acta, 53, 2847-2856.

Sholkovitz, E.R., T.J. Shaw and D.L. Schneider (1992). The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. Geochim. Cosmochim. Acta, 56, 3,389-3,402.

Hydrothermal Water: Table A14

German, C. R., G. P. Klinkhammer, J. M. Edmond, A. Mitra and H. Elderfield, (1990) Hydrothermal scavenging of rare earth elements in the ocean. *Nature*, **345**, 516-518.

Klinkhammer, G., H., German C. R., Elderfield H., Greave M.J. and Mitra A. (1994b) Rare earth elements in hydrothermal fluids and plume particles by inductively coupled mass spectrometry. *Mar. Chem.* 45, 179-186.

Klinkhammer, G., H. Elderfield H., Edmond J.M. and Mitra A. (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. *Geochem. Cosmochim. Acta* 58, 5105-5113.

Michard A. (1989) Rare earth element systematics in hydrothermal fluids. *Geochem. Cosmochim. Acta* 53, 745-750

Michard A. and Albarede F. (1986) The REE content of some hydrothermal fluids. *Chem. Geol.* 55, 51-69.

Michard A., Albarede F., Michard G. Minster J.F. and Charlou J.L. (1983) Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 N). *Nature* 303, 795-797.

Mitra A., Elderfield H. and Greaves M. J. (1994) Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. *Mar. Chem.* 46, 217-235.

Piepgras D.J. and Wasserburg G.J. (1985) Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin. Earth Planet. Sci. Lett. 72, 341-356.

Acknowledgments

I would like to thank David Schneider (WHOI) for his help in producing the compilation of data in this report from the data in the literature. Harry Elderfield generously provided his unpublished data from the Pacific Ocean. I would to thank the Woods Hole Oceanographic Institution for financial support during the production of this report.

Table A1: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_DIS.XLS. Compilation of dissolved RE concentrations of river water.

riv_dis.xls	1				I				T	1		
IIV_UIS.XIS			- 4 4:		f Dive	- 14/-	4			 	 	
				ons o					ļ	ļ		
Dissolve	d, Collo	idal	and U	Iltrafi	Itrate	d Fra	ction	S				
									<u> </u>			
		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Er/Nd
					[pmol/k	g]					
	filter size	(um)	***	1								
Martin et al. (1976)												
Garrone & Dordogne	0.45	344	564	363	51.9	9.7	5.4	 	25.1	21	3.7	0.95
Garrone & Dordogne	0.40	044	004	000	01.0	0.7	0.4		20.1	21	0.7	0.33
Orlandain and Issaha	/4000					ļ					ļ	
Goldstein and Jacobs	en (1988a	3)					-		-	 	ļ	
	0.45	532	1514	880	229	52		193	99.3	00.4		0.440
Amazon	0.43	1634	2405		158	25.1	105	68.3	34.4	88.4	F 20	0.113
Great Whale	0.22	20.9	17.2	22.2	4.72		7.69	5.68		33.2	5.38	0.030
Indus Isua-F	0.22	4384	8708		4.72	1.45 71.1	320	223	5.43	0.97	10.4	0.245
		142	69.1	138	29.9	7.3	320	46.5	105	83.2	12.1	0.034
Mississippi. Ohio	0.22	45.4	74.9	74.8	16.9	4.34	 	34.6	39.1 27.1	35.0 20.9	3.31	0.283 0.362
	0.22	30.8	67.7	59.6	16.6	5.39	<u> </u>	23.9	17.5	15.7	3.31	
Pampanga Shinano	0.22	269	596	344	73.1	17.2		74.5	44.1	41	9.14	0.294 0.128
Stilliano	0.22	209	390	344	73.1	17.2		74.5	44.1	41	9.14	0.120
Avg. River		222	460	283	71.9	17.5		70.8	50.5	35.2		0.178
Avg. Niver		222	700	200	71.3	17.5		70.0	30.3	33.2		0.176
Elderfield et al. (1990)		Idato	salinity	ı after nan	ne of ear	h river)						
Amazon	0.45	355	847	570	145	35.3	185	121	65	52.2	6.93	0.114
Connecticut, 27.04.83	1	4130	5450		507	98.4	454	328	170	197	21.7	0.063
Connecticut, 28.04.84	1	2600	4340		422	81.4	348	269	140	132	17.6	0.063
Mullica, 24.04.84	0.45	2410	4970		602	127	0.0	340	247	190	29.4	0.082
Mullica, 24.04.85	0.45	1790	4100	2700	556	125	49.4	363	210	182	28.3	0.078
Delaware, 29.04.84	0.45	215	402	232	50.5	11	61.2	43.7	29.6	40.2	6.01	0.128
Delaware, 29.04.85, 0.05	0.45	135	168	124	28.6	6.69	37.1	33.3	22.3	28.7	4.65	0.180
Tamar, 17.04.85	0.45	310	745	722	176	41.9	182	124	68.5	62.2	10.1	0.095
Tamar, 12.08.85, 0.04	0.45	577	1010	914	238	59.5	255	174	98	95.2	15.6	0.107
Tamar, 12.08.85, 0.043	0.45	540	368	614	162	40.5	191	116	75.6		13.4	0.123
Tamar, 12.08.85, 0.044	0.45	480	497	779	203	50.6	220	145	79.5	73.6	12.1	0.102
Tamar, 12.08.85, 0.049	0.45		640	854	218	53.6		150	82.8	84.5	12.7	0.097
Tamar, 12.08.85, 0.064	0.45	400			319	74.4	333	204	93.6		14.1	
Tamar, 19.08.85, 0.02	0.45		239	260	62.8	15.4	70.6	47.3	30	30.6	5.63	0.115
Tamar, 19.08.85, 0.02	0.45	182	269	268	64	15.4	66.1	47	28.9	30	5.01	0.108
Tamar, 19.08.85, 0.02	0.45	173	258	241	57	13.7	62.4	39.9	24.7	27.3	4.31	0.102
Tamar, 19.08.85, 0.04	0.45		307	212	49.7	11.8		34.4	22	24.6	4.27	0.104
Swale 02.02.86	0.45	2400	4800	3320	810	208	1000	610	267	190	27	0.080
Dove, 02.02.86	0.45	654	1530		330	80	i	250	118	109	16	
Warfe, 02.02.86	0.45	724	1130	755	163	31.7		101	50	41.1	6.1	0.066
Rye, 02.02.86	0.45		1350	725	195	48	206	151	72.3	64.5	11.1	0.100
Nidd, 02.02.86	0.45	664	1250	1650	261	65.6		190	94.4			0.057
Derwent, 02.02.86	0.45	557	1130	670	151	33.2	150	113	59.1	53.9	8.06	0.088
high flow												
Derwent, 08.02.86	0.45	127	297	190	45.6	11.3	54.6	39.2	22.8	18.4	3.2	0.120
low flow												

RIV_DIS.XLS

		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Er/Nd
Elderfield et al. (1990)	-cont'd					1			 -	+	 -	
Ribble, 16.04.86	0.45		2990	2320	526	139	501	362	176	107	19.3	0.076
Hodder, 16.04.86	0.45		3160	1		122	401	340	150	125	18.7	0.070
Conwy, 02.05.86	0.45	189	430	372	115	28.9	10.	0.0	100	57.5	10.7	0.070
Water of Luce, 19.02.87	5	1	1950			53.5	301	200	110	175	 	0.083
Water of Luce, 19.02.87	2	1	1930		271	53.2	293	195	115	175	-	0.086
Water of Luce, 19.02.87	0.45	1	1790		270	55.2	300	199	107	156	 	0.080
Water of Luce, 19.02.87	0.2	 	1250		193	41.6	000	145	79.3	122	<u> </u>	0.086
		<u> </u>			1.00	1	†	1	70.0	·	-	0.000
Sholkovitz (1995)							†		<u> </u>	 		
Mississippi		 					 		-			
Vicksburg (#484)	0.22	59.9	52.5	80	19.9	4.26	27	27.1	25.4	25.3	2.54	0.240
Aug. 1993	0.22	00.5	02.0	- 00	19.9	7.20	21	27.1	25.4	25.3	3.51	0.318
Aug. 1990		 	 			 				ļ		
Sholkovitz (unpubl.)		-								-		
Mississippi, (#595)^	0.22	39	46	64.3	17.1	3.91	23.7	20 6	26.4	22.0	2.00	0.444
COMUS III, 6/4/1994^^	0.22	100	70	04.3	17.1	3.81	23.1	28.6	26.4	22.8	3.06	0.411
30W03 III, 0/4/1334***		ļ	-							ļ		·
Mississippi (#C11)	0.22			70.6	40.6			00.7	00.0	00.0	0.05	
Mississippi, (#611)	0.22			79.6	19.6			29.7	26.0	22.2	2.95	0.327
COMUS III , 3 June 1994						-						
Mississiani (#613)	0.22	ļi		76.0	40.2	4.2	07.0	00.0	05.0	00.5	0.00	
Mississippi, (#612) COMUS III, 6/4/1994	0.22			76.2	18.2	4.3	27.8	28.6	25.9	22.5	3.08	0.340
COMOS III, 6/4/1994												
Acheforda D. (#EOC)	0.22	71.6	75.0	06.0	24.0	E 50	00.7	00.5	40.7	44.0	4.05	
Achafayla R. (#596)	0.22	71.0	75.8	96.8	24.2	5.53	29.7	28.5	19.7	11.9	1.35	0.204
COMUS III, '6 June 1994		 										
A Comple#1D												
^, Sample # I.D. ^^, cruise name, date	***											
, cruise name, date												
Sholkovitz (1993)												
Amazon, Aug. 1989	0.22	373	930	579	146	25	450	400	70.4	50.0	7.05	
Amazon, Aug. 1989	0.22	305	754	471	146 123	35	150	130	70.4	56.8	7.25	0.122
Amazon, Aug. 1909	0.22	303	754	4/1	123	29.8	137	111	61.3	50.2	6.44	0.130
Sholkovitz (unpubl.)												
Fly River (PNG)												
Jan'94 Sta 605 (#562)	0.22	108	252	178	50.3	13.9	55.5	39.6	18.6	12.6	4 7	0.404
Jan'94 Sta 605, (#566)	0.22	108	260	178	51	8.4	57	38.8		13.6	1.7	0.104
Gail 64 Gai Goo; (#666)	U.ZZ	100	200	170		0.4	- 37	30.0	16	13.8	1.09	0.090
Sholkovitz and Elderfie	ld (1988	\										
Susquehanna River	0.22	62.6	103	86.5	21 4	5.25	20.3	32 A	24.3	24.1	4.12	0.201
(Chesapeake Bay)	V.22	02.0		30.0	21.7	0.20	23.3	JZ.U	24.3	24.1	4.12	0.281
Aug. 1985												
			+	\rightarrow								
												
		<u>L</u>										

	-	La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Er/Nd
01-1114-14000 4001	F)	Lä		ecticut		Eu	Gu	Dy		TD	Lu	EMINA
Sholkovitz (1992, 199	o) 		Conn	ecticut	River							
17-Jun-91	0.45	405	000	400	20.0	0.00	20.4	07.0	04.6	07.6	4.67	0.400
#80	0.45	195	292	180	36.0	6.92	38.1	27.9	21.6	27.6	4.67	0.120
#81	0.22	78.8	85.8	82.9	17.0	3.26	22.0	15.9	14.8	22.6	4.08	0.178
#83	0.025 (1	38.8	45.6	49.2	10.9	2.00	16.7	11.8	13.1	21.3	3.87	0.266
#84	0.025 (2	42.6	43.8	48.6	11.1	2.08	16.9	12.1	13.4	21.6	3.94	0.275
22-Sep-91												
#105	0.45	168	222	178	36.4	7.05	40.3	28.9	22.9	30.7	5.36	0.129
#106	0.22	154	196	166	33.5	6.52	37.3	27.2	21.9	30.2	5.11	0.132
#107	0.025	101	122	112	24.4	4.72	29.2	21.4	19.0	27.5	4.83	0.169
#108	0.025	95.3	119	109	23.5	4.61	28.7	21.0	19.1	27.9	4.60	0.175
20 JULY 1992		40.0	40.5	16.1	2.05	0.00	0.57	7.00	0.70	40.7	2.50	0.001
#224	< 5 K*	12.8	13.5	16.1	3.95	0.90	8.57	7.02	9.70	18.7	3.59	0.604
#223	< 50 K	19.1	22.3	25.7	6.33	1.38	11.9	9.35	11.7	21.2	4.04	0.457
#222	0.22	148	184	143	27.6	5.72	29.8	23.0	18.3	27.0	4.44	0.128
17 DEC. 1992	-											
#339	<5K		74.4	87.3	17.1	3.58	27.2	19.1	18.5	29.7	5.00	0.212
#340	< 50 K		163	179	33.0	7.60	50.4	34.6	28.9	40.0	5.60	0.161
#394	0.22 um		680	576	89.4	19.6	114	87.7	59.8	68.0	8.83	0.104
Sholkovitz (1992, 199												
23 Oct. 1992	Ultrafiltra	tes*										
Hudson River												
#289	<5K(1)**		110	111	20.8	5.42	34.5	26.4	22.2	22.4	2.77	0.200
#308	<5K(2)		102	109	21.9	4.31	32.2	24.7	18.0	21.9	2.95	0.165
#303	<50K		213	209	41.4	8.22	60.1	46.5	30.3	34.7	4.00	0.145
#305	0.025		320	310	56.4	12.6	89.9	62.8	39.5	44.1	5.19	0.128
#304	0.22		443	423	78.8	17.0	121	81.6	49.5	52.4	3.91	0.117
	Colloids*	*										
#302	>50K		2843	2547	492	88.1	593	401	227	221	27.9	0.089
#301	>5K(1)**		4142	3903	719	132	981	654	390	363	45.8	0.100
									201	370	47.9	0.100
#309	>5K(2)		4071	3901	719	144	1028	642	391	0.0		
	>5K(2)		4071	3901	719	144	1028	042	391	0,0		
Colloids	>5K(2)		4071	3901	719	144	1028	042	391	0,0		
Colloids Conn R. 20 July 1992		2059						042	331			
Colloids Conn R. 20 July 1992 #225	> 50 K**		2523	1905	354	71.0	324					0.081
Colloids Conn R. 20 July 1992 #225 #226			2523		354			412	253	223	31.4	0.081
Colloids Conn R. 20 July 1992 #225 #226 Conn R. 17 Dec. 1992	> 50 K** > 5 K		2523 4045	1905 3143	354 590	71.0 120	324 544	412	253	223	31.4	0.081
Colloids Conn R. 20 July 1992 #225 #226	> 50 K**		2523 4045 5677	1905	354 590 815	71.0	324					0.081 0.077 0.088
Colloids Conn R. 20 July 1992 #225 #226 Conn R. 17 Dec. 1992 #343 #344	> 50 K** > 5 K > 50K > 50K > 5K	3305	2523 4045 5677 4852	1905 3143 4726 4099	354 590 815 657	71.0 120	324 544 999	412	253 366	223	31.4	0.077
Colloids Conn R. 20 July 1992 #225 #226 Conn R. 17 Dec. 1992 #343 #344 #, I.D number for analy	> 50 K** > 5 K > 50K > 50K > 5K	3305	2523 4045 5677 4852	1905 3143 4726 4099	354 590 815 657	71.0 120	324 544 999	412	253 366	223	31.4	0.077
Colloids Conn R. 20 July 1992 #225 #226 Conn R. 17 Dec. 1992 #343 #344	> 50 K**	3305	2523 4045 5677 4852	1905 3143 4726 4099	354 590 815 657	71.0 120	324 544 999	412	253 366	223	31.4	0.077

Table A2: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_PART.XLS. Compilation of RE concentrations of river suspended particles and sediments.

RIV_PART.XLS

		River	s: Su	spen	ded	Parti	icles	and	Sedi	men	ts				
riv_part.xl	S														
	-	1.0	Co	Pr	Nd	Sm	[ppm]	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Caldata		La	Ce					Gu	10	υу	по		1111	10	Lu
	in and Ja	35	73	9008	33	5.9	1.1	4.2		2.6		1.2		1	0.2
Amazon Gr. Whale	 	52	103		39	5.8	1.1	4.2		2.9		1.5		1.3	0.2
Indus		19	41		19	3.7	0.9	3		2.5		1.2		1.1	0.2
Isua-F		73	143		52	8	1.1	5.5	<u> </u>	3.7		1.5		1.4	0.2
Miss.		44	93		40	7.5	1.5	5.9		5.1		2.4	<u> </u>	2.1	0.3
Ohio		41	84		37	6.9	1.4	5.1		4		1.9		1.5	0.0
Murray		38	71		35	7	1.6	5.7		4.6	•	2.1		1.8	0.3
Pampanga	9	7.7	18		13	3.6	1.1	4.9		4.7		2.9		2.7	0.4
Shinano		29	63		27	5.8	1.2	5.4		4.7		2.5		2.3	0.4
Avg. River		40	81		36	6.9	1.4	5.3		4.2		2		1.7	0.3
· 	1														
Martin e	t al. (197	6), [IN	IAAI												
Amazon	<u> </u>	48	112			9.7	1.8							3.7	0.6
Congo		47	104				1.5		1.6					2.4	0.4
Ganges		42	98		48	9.7	1.2		0.7				0.4	3.2	0.5
Mekong		48	93	8.5	47	5.4	1.5	5.3	0.9		0.9	2.7	0.5	3.6	0.6
Garrone		44	93	8.2	36	6.2	1.1	6.1	0.9		0.9	2.4	0.4	2.8	0.4
Martin a	nd Mayb	eck (1979	, [IN	AA]										
A		40	112			9.7	4.0							2.7	0.0
Amazon		48 50	90			9.7	1.8	2.5	1.6					3.7	0.6
Congo		28	65			6.3	1.5	2.5	0.6					2.6 4.6	0.4
Danube Ganges		42	98		48	9.7	1.2		0.8				0.4	3.2	0.5
Garonne		44	93	8.2	36	6.2	1.1	6.1	0.9		0.9	2.4	0.4	2.8	0.4
Magdelena	<u> </u>	37	30	0.2	-00	6.7	1.4	0.1	0.5		0.0	2.7	0.4	3.7	 0.
Mekong	<u>.</u>	48	93	8.5	47	5.4	1.5	5.3	0.9		0.9	2.7	0.5	3.2	0.6
Parana		50		0.0		9.1	2	0.0			0.0		0.0	3.5	0.6
Somaya	julu et al	. (199	3), [l	NAA]	Ind	ian R	ivers	5							
		10					10								
Godavari	#14	40	78		32	6.2	1.6		0.9					2.7	
Godavari	#13	30	63		26	4.9	1.2		0.8					2	
Gordeev	· et al., (1	9851	r ini	Δ1 /	Δma	zon F	Diver	e							
Gordeev	ciai., (i	J03),	[1147	~~ <u>)</u> (Ailla	2011 1	ZIVEI	3							
Rio Negro		46	112		49	7.6	1.6		2.7				1.3	8.6	1.5
Clear Water	er Rivers	55	132		60	12	2.3	10	2				1	8	1.4
Maderia		44	92		37	5	0.9		1.1				•	3.2	
Amazon		44	114		42	8.7	1.7		1.2				0.5	2.8	0.5
TIMS = the															
INAA = ins	trumental	neutror	n activ	ation	analy	sis									
												-			
		 											1		
		L	i												

RIV_PART.XLS

		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Sholkov	itz (1995,	unp	ubl.)	TIMS	}										
Amazon	ICP,#420	49	99		48	8.7	1.7	7.3		6.4		3.6		3.5	0.5
S'd part.	fusion														
Aug-89															
Miss. R	TIMS, #494	35	74		34	6.2	1.3	6.5		5.1		3.5		2.8	0.4
S'd part.	fusion														
V'sBurg	Aug. 1993														
El. D		0.5	74		٥.	77	4 =	0.7		4.4					-
Fly R	TIMS, #583	35	74		35	7.7	1.5	6.7		4.4		2.6		2.5	0.3
Papua Nev															
	fusion														
Jan-94															
Fly R	TIMS, #581		71		32	7.4	1.4	6.9		5		3		2.8	0.4
river bank	sediment														
Jan-94															
fusion															
0 D		-00	74		- 0.4	0.7	- 4	0.0							
Conn R	TIMS, #550	32	71		34	6.7	1.4	6.2		5.8		3.4		3.2	0.4
S'd part.	fusion														
Jun-91		-													
Sepik R.	ICP, #405	21	47	25	4.7	1.1	4.2	4.2	2.4	2.5	0.4				
Papua Nev	v Guinea														
25 km up r	iver from m	outh													
bottom sec	liment														
fusion															
fucion = tot	lal dissaluti)))	olid L		ob	to 6:									
	tal dissolutio														
ICP = Indu	ctively coup	iea pi	asma	-emis	sion s	pectro	scop	<u> </u>							

Table A3: Section 5.2 of Handbook - The estuarine chemistry of the lanthanides.

File name: GWHALE.XLS. Great Whale River estuary, Quebec

File name: GIRONDE.XLS. Gironde River estuary, France

File name: AMAZON.XLS. Amazon River Estuary, Brazil

File name: CBAYSE.XLS. Surface waters, subsurface waters and shelf waters of Chesapeake Bay

File name: CBAY92.XLS. Chesapeake Bay bottom water time-series

File name: FLY.XLS. Fly River estuary, Papua New Guinea.

File name: ELDERF.XLS. Data from a suite of estuaries presented in Elderfield et al. (1992)

GWHALE.XLS

gwhale.xls			Great V	Vhale Riv	er (Que	bec) Es	tuary			
				and Huc	Ison Ba	у				
Goldstein a	and Jac	obsen ((1988b)							
* 0.22 um fi	Itrate		,							
Salinity	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
				[pr	nol/k	7]				
0.004	1634	2405	1158	158	25.1	105	68.3	34.4	33.2	5.38
0.37	1375	2048	1040	144	22.5	1	59.7	29.4		
1.69	711	1056	540	76.5	12.2		33.4	19.4	18.8	3.00
3.93	542	928	449	69.8	11.0		29.8	17.4		
5.22	384	785	384	60.0	8.56		29.3	19.9	1	
14.9	366	449	239	31.1	5.33		16.9	11.1		
21.9	246	226	139	20.0	4.01		17.3	12.7	14.8	2.12
Hudson i	Зау									
31	170	123	100	15	2.82	13.9	13.2	10.2	10.1	

GIRONDE.XLS

			Gird	nde	Riv	er	(Fra	nce)	Es	tuar	v			
gironde.xls														
Martin et a	 . (1976	5)										<u> </u>		
0.45 um fil														
Salinity	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
						Γ	pmol/	'n						
0.1 [river]	344	564	52.0	263	51.9	9.7	54	7.8		8.7	25.1	3.6	21.0	3.7
0.42	142	228	25.6	96.4	20	3.9							18.5	3.5
7.0	39.6	80.6	10.6	68	8.0	2.4	11.5	1.6	-	2.2			8.7	1.7
28.3	56.1	78.4	6.4	35.4		0.86	6.2	0.80		0.97	4.2	0.72	3.1	0.49
35 [ocean]	24.5	8.6	4.5	19.4	3.0	0.85	4.4	0.88	5.6	1.3	5.2	1.0	4.7	0.86

AMAZON.XLS

	amazon.xls	 				Ama:	zon E	stuary	,			
Challer	44000	ļ			(Am	asSeds I C	ruise - Aug	. 19891	 	 	+	+
	itz (1993)							T	 			┪
0.22 um filtr										-	 	
Surface \		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	 	 _ _
Sta. #	Sal					pmol/k		 	<u> </u>	10	Lu	Ce
								 	 		 	Anoi
I-1-18a	0.3	373	930	579	146	35	150	130	70.4	56.8	7.05	1
I-1-18b	0.3	305	754	471	123	29.8	137	111	61.3	50.2	7.25	1.00
l-1-19	0.84	211	504	346	84.2	20	94:5	72.3	39.4		6.44	0.99
I-1-20	5.5	22.8	36.6	33.5	9.3	2.49	13.3	12.5	39.4	32.0	3.8	0.93
I-1-53	5.8	20.6	34.6	29.4	8.7	2.4	13.3	12.7	8.7	70	4	0.66
l-1-29	6.6	17.9	29.0	26.3	7.6	2.08	11.1	11.2	7.7	7.8	1.07	0.70
I-1-30	9.5	20.1	31.2	27.7	8.0	2.21	11.9	12.3		6.9	0.96	0.66
l-1-30	11.8	22.6	34.5	28.2	7.5	2.21	12.2	12.3	8.9	7.8	1.07	0.65
l-1-21	17.8	27.5	38.2	30.7	7.7	2.03	12.1	12.1	8.8	7.7	1.1	0.67
l-1-22	21.9	29.7	41.5	34.1	8.7	2.45	14.3		44.0	 		0.64
-1-50	24.3	29.4	32.1	33.6	8.8	2.49	14.5	16.0	11.8	9.7	1.34	0.64
-1-35	27.6	35.7	33.3	41.2	10.6	2.98	17.2	18.9	12.3	9.8	1.32	0.50
-1-23, r	33.4	30.0	35.4	35.3	8.8	2.42	14	15.1	14.4	12.0	1.64	0.42
-1-23, r	33.4	29.8	35.1	36.5	9.9	2.43	14.8	15.0	11.4	9.4	1.26	0.53
-1-14, г	34.5	35.5	29.5	40.8	10.4	2.96	17.4	19.8	11.3	9.2	1.25	0.52
-1-14, г	34.5	35.4	30.2	42.4	11.8	2.94	18.3	19.5	14.5 15.2	12.6	1.77	0.38
-1-3	35.5	11.1	13.8	13.6	4.0	0.69	5.0	4.4	3.7	12.6	1.79	0.38
-1-24	36.4	19.0	22.3	24.8	4.3	1.14	6.1	6.6	5.1	3.2	0.44	0.55
-1-12	36.4	10.4	14.3	12.8	3.5	0.63	4.6	0.0	3.1	4	0.54	0.51
-1-9	36.6	15.6	15.6	16.6	4.2	0.77	5.1	4.3	3.4	~ -		0.61
							0.7	7.3	3.4	2.7	0.36	0.47
Deep Wate	ers											
0-16M*	33.9	36.2	33.8	42.3	11.2	2.84	17.2	17.3	40.0			
0-10M	35.0	45.6	38.5	52	14.0	3.47	22.1		12.8	10.6	1.42	0.42
2-10M	35.8	21.6	25.1	27.1	7.6	1.69	10.0	24.3	18.0	15.5	2.09	0.39
3-19M	36.2	55.0	35.1	60.8	15.5	3.93	24.2	9.2	6.2	5.1	0.69	0.51
0-21M	36.5	39.1	36.5	46.7	12.7	3.26		25.3	19.4	15.8	2.11	0.29
				70.7	12.1	3.20	20.0	20.9	15.8	12.8	1.73	0.42
= replicat	es											
Sta # De	pth											

CBAYSE.XLS

cbayse.xis					Ches	apeak	e Bay					
						ıly-Aug '						
Sholkovi	tz and	Elderfi	eld (198	8)			T				<u> </u>	
0.22 um	Sal		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
filtrate							[pmol/kg	9]	 	<u> </u>		
1. Near S	urface	(1 or 2	2 m) San	nples			<u> </u>	Ī			1	
								1		İ		
Sta. #								1				\top
CB-20,a	1.21		17.5			7.07	1.83		13.6	17.0	19.8	3.40
CB-20,b	1.21			21.6	23.1	7.04	1.79	13.5	14.0	16.5	22.5	3.70
CB-19,a	0.09		53.3	95.4	82.1	19.4	4.92	37.9	31.0	23.2	30.0	6.88
CB-19,b	0.06		62.6	103.2	86.5	21.4	5.25	29.3	32.6	24.3	24.1	4.12
CB-18	2.73		14.9	14.7	17.6	5.22	1.39		11.8	15.3	18.5	
CB-17	7.24		6.02	12.7	18.0	5.16	1.34	8.69	10.2	11.9	13.9	1.85
CB-16	8.97		19.5	12.9	16.4	4.43	1.16	6.92	11.5	10.6	19.1	2.45
CB-15	11.6		26.4	11.4	21.4	5.30	1.38		10.5	10.9	13.7	2.39
CB-14,a	14.2		33.4	30.3	23.5	5.39	1.40	8.28	9.03	8.62	10.8	1.98
CB-14,b	14.7			30.1	23.4	5.79	1.39		9.25	8.74	11.0	
CB-12	15.6		14.4	10.2	13.0	3.25	0.89	5.50	7.34	7.10	19.0	1.85
CR-1	15.8		22.2	12.6	20.5	5.85	1.45	13	10.4	9.25	11.5	1.96
CB-10	16.7		15.9	10.0	14.0	3.28	0.87	5.29	6.08	6.06	8.34	1.59
CB-7	20.1		16.0	15.1	15.7	3.81	0.97		7.90	7.38	9.83	1.71
CB-5	23.4			22.1	19	4.45	1.11	7.70	8.91	8.45	9.74	1.83
CB-2	27.0			30.0	23.6	5.34	0.95		10.9	9.75	17.0	
CB-1	30.6			34.7	27.2	6.05	1.46		11.0	9.75	1.47	
									<u> </u>			
	Sal	Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
		(m)					pmol/kg					
2. Subsur	face wa	aters										
		ļ										
CR-1	15.9	5.0	21.4	11.2	17.6	4.39	1.17		8.54	8.42	11.1	2.01
CR-1	16.5	8.7	32.1	25.5	26.1	6.75	1.64	9.69	9.29	8.25	10.3	1.93
CR-1	19	13.0	43.7	36.0	27.7	6.11	1.55	10.1	8.00	7.14	9.89	1.32
CR-1	19.4	16.0	45.8	39.6	29.7	6.49	1.63	9.89	8.53	7.30	8.95	1.59
CR-1	20.4	21.5	51.7	39.3	32.9	6.88	1.73	10.4	9.26	7.61	8.89	1.66
CB-10	21.5	10.0	29.8	29.2	17.7	3.60	0.92	5.13	5.89	5.70	7.42	1.5
CB-12	20.9	22.0	68.3	91.5	47.3	9.27	1.77		15.3	13.5	12.8	2.18
CB-14	19.1	37.0		56.2	34.8	7.34	1.86		10.3	8.63	10	
. Shelf Wa	aters o	utside	of Ches	apeake	Bay							
CS-1 (a)	32.9	2	35.1	18.3	27.9	5.79	1.4	8.08	10.5	8.91	9.18	1.54
CS-1 (b)	32.9	2	30.2	17	25.9	5.38	1.18		10.9	8.37		1.57
CS-1	35.4	90	23.5	10	17.7	3.62	0.9	5.16	5.93	4.97	4.7	0.76
CS-2	33.1	3				4.69	1.5			7.45		3.97
CS-4	32.8	2	32.1	16.7	25	5.17	1.25	T	9.04	7.93	8.11	1.37

CBAY92.XLS

			Chesa	peake E	av Bott	om Wate	er Time	Series	T		
cbay92.xds								Jeries	 	 	
Sholkovitz	et al. (1	992)	 								
0.22 um filtrate									 		-
Sample	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	201		
					pmol/l		- Dy	Ei	Yb	Lu	Ce
10-Feb-88	59.5	32.6	49.8	11.4				<u> </u>			Anom
12-Арг-88	56.6	46.7	47.8		2.95	11.7	19.1	16.3	17.2	2.52	0.28
17-May-88	115	109	79.5	11.7	2.89	17.1	17.4	14.8	15.6	2.33	0.42
14-Jun-88	108	156		18.2	4.55	25.4					0.65
6-Jul-88	81.3	107	85.1	18.6	4.59	24.2	22.6	16.5	15.9	2.37	0.75
26-Jul-88	209		59.9	13.3	3.27	18.5	17.1	13.5	13.9	2.11	0.7
16-Aug-88	249	301	163	30.7	7.95	39.3	35.5	24.9	21.1	2.35	0.73
		380	192	38.6	9.16	48.6	40.3	27.3	22.3	3.04	0.80
21-Sep-88	70.7	68.1	45.8	10.5	2.72	16.2	15.6	12.3	11.6	1.77	0.53
24-Oct-88	52	29.5	41.5	9.90	2.59	15.3	15.5	12.1	12.2		
15-Nov-88								12.1	12.2	1.89	0.29
20-Dec-88	52.5	24.6	46.8	11.4	2.95	17.6	19.0	47.0	48.4		
15-Feb-89	51.7	25.4	46.0	10.6	2.78			17.9	17.1	2.50	0.23
				.0.0	2.70	16.5	18.3	15.6	_ 16.3	2.46	0.25

FLY.XLS

fly.xls			Fly R	liver (P	apua l	Vew C	uine	a) Es	tuar	V	T	T-
					Jan.19			Ť		-		
Sholkovitz	(unpi	ubl.)			7		 	+				
0.22 um filtrates				 	 	+	-	 	+			
SAMPLE	LAB	Sai	La	Ce	Nd	Sm	Eu	Gđ	Pro		<u> </u>	
	#				1		pmol/k		Dy	Er	Yb	Lu
-	-		•	—	-	 	PINOUK	7	 	ļ		<u>L</u>
Sta 605 (R)	562	0	108	252	178		100	 	•	-		-
Sta 605 (R)	566	0.2	108	260		50.3	13.9	55.5	39.6	18.6	13.6	1.70
Sta 610	568	2.6	14.4	38.2	178	51.0	8.4	57.0	38.8	16.0	13.8	1.69
Sta 612	569	4.2	10.5		27.5	10.1	2.2	13.2	8.36	4.95	4.21	0.59
Sta 613	575	5.1	10.3	26.7	21.9	8.54	1.74	11.4	7.23	4.44	3.86	0.55
Sta 614	570	7.4		18.8	20.1	8.05	1.54	10.7	6.67	4.24	3.60	0.57
Sta 616	571	10.3	12.4	24.0	23.1	8.54	1.79	11.7	8.01	4.95	4.26	0.61
Sta 617	572	14.5	11.6	19.9	21.6	8.31	1.69	11.4	7.63	5.01	4.24	0.60
Sta 620	573		16.8	35.1	27.7	9.78	2.34	14.1	10.5	6.85	5.69	0.00
Sta 622	574	21.0	18.5	29.7	29.3	10.5	2.37	15.2	11.4	7.47	6.07	0.85
Sta 589 (R)		27.3	23.8	34.3	33.9	11.8	2.92	17.3	13.4	8.77	0.00	
	561	34.7	25.1	34.9	38.6	12.2	3.30	19.3	15.8	10.5		0.98
Sta 589 (R)	567	34.7	25.8	38.73	37.0	12.7	3.25	18.8	15.5	10.0	8.32	1.14
									.0.0	10.0	0.10	1.09
R= replicates												

ELDERF.XLS

		Dis	solved	Conc	Concentrations			of Estuarine Waters				
elderf.xis											1	
									†			
		†						 		-	<u> </u>	
Elderf	<u> </u>	<u> </u>	///						 	 	-	
Elderi	TATO (et al.	(199	0)		<u> </u>			ļ			
	Sal	La	Ce	Nd	<u> </u>			-	 	3.51	 	
	Jai	La	CE	Nu	Sm	Eu	Gd	Dy	Er	Yb	Lu	
Connection	ut Rive	r [1 um	filtratel		 	[pmol/kg]]		-	ļ	-	
	0	4130	5450	2710	507	98.4	454	328	170	197	24 -	
	0	2600	4340	2240	422	81.4	348	269	140	132	21.7	
										-	1	
	2.6	1280	2580	1370	259	49.9	166	172	94.2	35.8	13.4	
	4.3		2600	1350	253	48.8	160	171	91.1	93.2	13.7	
	4.7	923	1640	898	171	33.1	133	120	61.9	64	9.93	
	7.1	1190	2020	1060	200	37.4	145	135	74.1	71.7	10.5	
	10.3	1030	1790	1660	196	37.7	160	125	68.3	65.5	9.77	
	12.2	1020	1740	885	165	31.8	140	117	65	61.6	8.98	
	16.5	551	876	547	97.1	19.3	72.7	67.7	38	36.3	5.87	
	20.9	475	1070	461	78.8	15.4	73.1	55.5	31.8	30.3	5.5	
	24.5	287	456	265		9.35	65.7	39.8	22	23.5	3.73	
Delware R					<u> </u>							
	0	215	402	232	50.5	11	61.2	43.7	29.6	40.2	6.01	
	0.5	135	168	124	28.6	6.69	37.1	33.3	22.3	28.7	4.65	
	5.8		70.6	52.6	13.7	2.86	22.8	16.9	13.5	17.8	3.32	
	7.9	72.2	25.0	47.7	11.1	2.6	19.6		13.3	17.1	3.81	
	12.6	262	37.8	32.4	7.87	1.97	19.8	14.3	12.2	21.5	3.64	
	12.9	78.9	52.5	39.5	8.98	2.13	18	14.7	12.3	18	3.19	
	17.0	60.9	70.3	42.9	9.3	2.17	20	14.5	13.1	21.9		
	20.9	54.9	65.1	44.8	11.1	2.71	14.8	13.9	13.7	17.5	3.15	
	23.0		80.1	49.5	12.6	3.49	15.4	15.2	13.1	14.7	2.57	
Iuliaa Di	10 45	E14-	4-9									
Iullica Riv												
	< 0.3	2410	4970	3000	602	127		340	247	190	29.4	
	< 0.3	1790	4100	2700	556	125	49.4	363	210	182	28.3	
	9.4	438	991	574	123	27.4	121	94.5	58.1	58.2	9.02	
	11.9	306	583	370	81.8	18.3	77.6	70.1	42.3		6.39	
	17.7	183	316	153	33.6	7.75	36	33.5	22.3	23.7	4.9	
	21.8	85.9	125	80.1	16.8	3.83	27.3	18.7	14.6	15	2.42	
-	22.8 24.4	80.6	94.4	65.7	13.8	3.25	21.9	17.6	14.2	15.7		
	24.4	59.1	83.3	53.9	11.2	2.54	20.1	16.6	11.5	15.4	2.6	
-												

ELDERF.XLS

									T		т
									 		
	Sai	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
Tamar	(Sring Tid	a) Pivor	[0 45	m filamas							
·	toring riu	e) Kivei	[V.45 UI	ii iiitrate	<u> </u>	ļ	<u> </u>	ļ			
	0.02		239	260	62.8	45.4	700	45.0		ļ <u></u>	
	0.02	182	269	268		15.4	70.6	47.3	30	30.6	5.63
	0.02	173	258		64	15.4	66.1	47	28.9	30	5.01
	0.04	173	307	241	57	13.7	62.4	39.9	24.7	27.3	4.31
	4.2	73.9		212	49.7	11.8	<u> </u>	34.4	22	24.6	4.27
	6.95	61	83.1	81.4	20.4	5.19	26.7	18.9	13.4		3.33
	9.25		70	67.3	17	4.36	22.4	14.4	11.9	23	3.28
		56.4	60.7	58.5	14.4	3.73	21.5	11.4	10.7	12.4	2.61
	12.6	60.8	51.4	52.6	12.6	3.24	22	11.8	9.65	12	2.03
	16.5	55	40.2	45.8	10.6	2.72	23.6	12.1	9.13	11.6	2.21
	19.6	39.4	25.2	33.5	7.78	2.04	11.2	9.94	6.45		1.48
	22.8	40.8	<u> </u>	35.2	8.13	2.1	13.4	8.44	7.23	9.43	1.4
				<u></u>							
amar	(Neap Tide			ate]						T	
	0.04	577	1010	914	238	59.5	255	174	98	95.2	15.6
	0.043	540	368	614	162	40.5	191	116	75.6	33.2	13.4
	0.044	480	497	779	203	50.6	220	145	79.5	73.6	12.1
	0.049		640	854	218	53.6		150	82.8	84.5	12.7
	0.064	400			319	74.4	333	204	93.6	04.5	
	11.2	130	158	132	30.3	7.33	34.3	207	19.4	17.4	14.1
	18.7	55	60.6	58.1	13.8	3.43	14.8	15.3	10.2		2.9
	21.6		36.5	41.9	9.86	2.52	12.8	9.97		15.5	1.72
	25.6	39.1	33.7	41.7	9.13	2.32	11.2	9.97 8.78	8.27	9.45	1.58
				7	3.15	2.32	11.2	0.75	7.94	8.91	1.57
mazor	River [0.4	5 um fil	trate]								
	0	355	847	570	145	35.3	185	121	e e	50.0	0.00
	4.16	1690	3820	1690	356	79.6	335	222	65	52.2	6.93
	9.16	406	786	383	82.8	18.9	107		100	78.5	11.8
				500	32.0	10.9	107	58	29	24.9	3.29

Table A5: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: NdSm_A.XLS. Concentration of Nd and Sm only for the Atlantic Ocean.

		AT	LANTIC OC	EAN				
NdSm A.xls			nd Sm Data O		 			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(pmol/kg)	,				
Jeandel (1993)	Map # 5		(pe., g)	Sto	rdal &	Wasser	burg (1	986)
Cruise Name	Depth	Nd	Ma		Depth	Nd	Sm	
SAVE 217	108	8.5	St	a 43	10	34.7	6.32	
	264	9.6			110	27.2	4.99	
	435	9.6			300	21.2	4.06	
	869	10.5			410	21.6	4.19	
	1087	11.7				20.9	3.92	
	1835	14.5			680	22.2	4.26	
	2443	18.4			760	30.8	5.52	
	3454	22.9				30.6		
	4675	25.9	St	a 45	0	39.4	1	
SAVE 302	49	9.2			65	30.1	5.25	
	173	11.8			190	44.4		
	470	10.4	St	a 48	10	40.7		
	795	9.9		- -	150	40.0		
	893	10.1			600	25.1		
	1586	12.7	Sta	113	400	26.1		
	2763	18.9			1200	26.8		
	3156	19.7			1600	31.6		
	3937	28.8			2200	42.8		
	4564	38.2	St	a 53	60	32.0		
SAVE 271	48	8.7		a 87	35	34.8		
BAVE 211	147	10.5	+ 50	40,	135	41.4		
	347	10.9	Ste	104	90	38.4		
	1027	14.4	- Su	1104	180	33.6		
	1434	15.9			160	33.0		
	1973	19.4	Pione	P-	Wasse	hara (1002)	
	2562	27.0	riepg	ras œ		Nd	Sm	
		27.0	A TT 1	00.1	Depth 0		2.50	
	3537		A-II,1			12.5		
	4792 5060	27.7	IVIA	p#9	200	13.9	2.77	
	3060	27.0			500		3.14	
C • 1 0 33/	1 (1000)				800	17.2 16.2	3.51	
Spivak & Wasser					1000		3.45	
TTO TA C OO	Depth	Nd 12.0			1150	18.1	3.54	
TTO-TAS 80	0	13.8			1300	17.3	3.54	
Map # 6	389	13.9			2000	17.1	3.31	
	1152	17.9			3000	19.7	3.70	
	1260	16.3			4000	23.1	4.28	
	1990	17.1						200
	2984	20.2					rburg (1	980)
	4724	26.3			Depth	Nd	Sm	
				63-1-1	300	13.9	3.07	
				63-2-2		17.8	3.43	
			OCE	63-2-3	3400	22.1	4.14	
			1					

Piepgras a	and Was	serbur	1 (1987)				T	1	
Map # 6			,	Depth	Nd	 	1	1	<u> </u>
Hudson	83-036	abrad	Current	100m	32		 	1	
Hudson	83-036	Sta 9		5 m	25				
Tradoon	00 000	- Cta C		1200	18.2			1	<u> </u>
				2550	20			-	
Hudson	83-036	ta. 11		5	21.1				1
				125	21.7				
				500	19.2				
				800	18.2		<u> </u>		
		 		1000	18.1		<u> </u>	1	
				1500	18.1				
				2000	17.7		<u> </u>		
				2500	16.7			1	
		<u> </u>		3000	17.3				
				3500	18.2			†	
				3850	19.4			_	-
Piepgras a	and Wass	serburo	(1987)		Map # 6			<u> </u>	
TTO/NAS		Sta. 142		750	21.4				
1.0,,,,,		Sta. 14		65	14.3		<u> </u>	-	1
		J	•	3750	16.3				
		Sta. 149	9	2800	16.8			1	
		Sta. 16		840	16.5				
				2310	20.6				
All-109-1		Sta. 30		5	14.4			1	
, ,				200	13.6			 	
				400	14.6				
				600	14.6			1	
				800	15.2			<u> </u>	
				1100	18				
				1800	18.4				
				3000	18.9				
				4000	26.3			1	
				4850	62.5			1	
All 109-1		Sta. 39		5	7.9			1	
		Sta. 79		5	9.29				
		Sta. 95		0	12.5				
OCE63		Sta. 1		300	13.9				
		Sta. 2		2000	17.8				
				3400	22.1				
TTO/TAS		Sta. 63	Chelex	0	18.2				
			Extraction	200	15.2				
			data	390	15.5				
				590	14.8			1	
				790	15.9				
				980	16.2				
				1990	17.3				
				2910	18.4				
				3890	25.7				
				4280	26.5				
				4810	30.1				

Table A6: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: ASW_CONC.XLS. Concentration of RE in the Atlantic Ocean.

File name: SARG_DIS.XLS. Concentration of dissolved RE in the Sargasso Sea from Sholkovitz et al. (1994)

File name: SARG_PAR.XLS. Concentration of suspended particles in the Sargasso Sea from Sholkovitz et al. (1994). Data on the chemical leaching of particles [acetic acid, strong mineral acid and bomb/strong acid dissolution]. Data in per kg of seawater

			Atla	antic (Ocear	ı Seav	water			}	1	
asw_con	c.xis	 			T	7	T				<u> </u>	
	T		+	-						 		+
	-	-	+	CC	NC = pm	nol/kg	+		<u> </u>			
Depth	La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*
- Jopan	-	+		-	-	+	 Dy		+			
Shallen		Sobraide	× (1001)Map #		 -	 	-	-	-		-
				JMAP #	3		 					
		64 45'W	-	2.52	0.00	5.20	6.00	1.05	1.10	10.55		
20 40	16.6 16.2	16.3	16.9	3.73	0.99	5.38	6.09	4.85	4.13	0.57	<u> </u>	0.47
	16.2	15.3	17.1 16.5	3.60	0.97	5.21	6.02	4.77	4.09	0.56	4	0.49
60 120	15.8	12.8	16.0	3.55	0.95	5.15			 			0.45
160	16.8	11.5	16.0	3.53	0.95	5.15			-		-	0.39
200	16.4	12.6	16.2	3.59	0.94	5.11	6.00	4.00	4.11	0.54		0.33
	<u> </u>		10.3	3.39	0.97	5.34	6.00	4.80	4.11	0.54	-	0.37
		64 12'W)	150	2.51	0.00	5 22	5.04	454	4.04	10.55	ļ	
15	16.0	15.7	15.9	3.51	0.92	5.33	5.84	4.74	4.04	0.55		0.47
15	15.7	15.1	17.6	4.55	0.93	6.07			ļ			0.44
30	15.5	15.0	15.6	3.49	0.92	5.12	6.02	4.71	4.07	0.56		0.46
45	15.5	14.0	16.0	3.50	0.93	5.10				ļ		0.43
60	15.7	13.5	15.5	3.46	0.91	5.07	5.86	4.77	4.15	0.57		0.41
105	14.9	12.1	15.5	3.46	0.94	5.27	5.89	4.77	4.12	0.56	ļ	0.38
200	15.4	10.8	15.9	3.48	0.88	5.27	5.86	4.75	4.08	0.56	<u> </u>	0.33
255	15.5	11.1	16.8	4.18	0.90	5.83	5.83	4.77	4.09	0.56	ļ <u>.</u>	0.33
340	15.3	9.6	16.2	3.95	0.87	5.57	5.59	4.58	3.98	0.53		0.29
440	15.4	8.2	15.2	3.29	0.88	4.80	5.47	4.56	3.97	0.55	ļ	0.25
550	16.9	6.3	160		ļ						ļ	0.28
750 1000	20.5 24.4	5.1 5.9	16.0	3.27	0.00	7.28	5.15	4.45	4.20	0.52		0.13
1500	26.0	6.8	21.2	5.25	0.88	6.73	5.59	4.94	4.59	0.69	ļ	0.12
2000	23.3	6.3	21.4 19.4	5.41	0.89	6.85	5.71	5.08	4.76	0.70	<u> </u>	0.13
3000	24.8	5.8	20.8	5.10	0.82	6.48	5.40	4.93	4.56	0.66	ļ	0.14
4000	40.8	9.5	31.8	7.21	0.87	6.78 8.71	5.80	4.99	4.68	0.69		
		1			·		7.25	6.11	5.90	0.86		
		reaves (Map #10	<u> </u>						
		N & 25 59		1								
0	36.7	66.3	34.3	6.01	0.62	5.59	5.00	3.63	3.15			0.89
100	13.0	16.8	12.8	2.67	0.64	3.41	4.78	4.07	3.55	ļ		0.62
200	17.0	22.3	15.8	4.52	0.85		5.31	4.62	4.07			0.64
600	22.5	18.4	19.7	3.86	0.80	4.85	5.41	4.58	4.14	ļ		0.41
700	25.2	24.7	21.9	4.23	0.76	5.23	5.43	4.57	4.07		ļ <u>.</u>	0.49
900	20.8	9.6	21.1	4.32	0.82	5.20	5.61	4.94	4.66			0.22
1000	22.0	20.8	22.8	4.51	1.01	5 23	6.00		4.00	ļ		1.22
1500	22.8	9.7	19.0	3.72	0.95	5.31	6.03	5.30	4.99			0.22
2500	29.4	26.1	25.0	4.75	0.90	7.19	6.10	5.09	4.79			0.45
3000 4500	32.6	19.3	25.4	4.69	0.99	5.80	6.14	5.33	5.21	<u> </u>		0.31
4300	54.4	55.1	45.8	8.25	1.22	8.27	6.830	5.34	5.16			0.51
D - D	-4 -1	(1002)				L			<u></u>			
DeBarr		`		Map # 8			(33 58'N		, 			
Depth	La	Се	Pr	Nd	Sm	Eu	Tb	Но	Tm	Yb	Lu	Ce/Ce*
-	-			•	-	•	-	-	-	•	-	-
10	15.0	86	4.5	18.5	3.7	0.78	0.75	1.8	0.74	4.3	0.68	2.53
49	12.0	80	3.0	15.4	3.4	0.75	0.73	1.5	1.00	5.1	0.78	2.90
98	12.3	42	3.0	14.2	3.0	0.60	0.69	1.6	0.68	3.8	0.61	1.55
147	12.9	30	3.4	17.0	3.7	0.75	0.68	1.8	0.93	4.6	0.72	1.00
491	16.7	23	3.4	16.1	3.4	0.70	0.69	1.7	0.76	4.1	0.66	0.67

Donale	Tall	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*
Depth	La	Ce	140	3111	Lu	Gu						
638	17.8	18	4.1	16.2	3.2	0.65	0.68	1.5	0.62	3.9	0.64	0.50
783	21.3	16	4.0	16.1	3.2	0.64	0.79	1.5	0.73	4.1	0.68	0.39
981	22.2	15	4.0	17.2	3.5	0.73	0.77	1.9	0.95	5.1	0.85	0.35
1179	27.2	23	5.3	19.1	3.6	0.76	0.82	1.9	0.88	4.9	0.82	0.45
1379	26.2	15	4.1	14.9	2.8	0.60	0.67	1.8	0.66	3.7	0.83	0.32
1719	26.2	14	3.8	15.4	3.1	0.65	0.65	1.2	0.70	3.9	0.88	0.30
2486			7.2	20.4	3.3	0.72	0.78	1.6	0.89	5.0	1.10	
2874		20	5.3	18.8	3.5	0.80	0.80	1.6	0.90	5.2	1.17	1.42
3264	46.6	16	4.6	21.4	4.5	1.04	0.97	2.0	1.03	6.1	1.36	0.20
4328	83.8	44	10.7	40.8	7.9	1.67	1.57	2.7	1.27	7.3	1.59	0.31
4378	80.8	44	10.4	39.4	7.6	1.66	1.53	2.6	1.21	7.4	1.59	0.32
4427	82.2	55	10.3	39.8	7.8	1.65	1.40	2.5	1.14	7.0	1.54	0.39
									·			ļ
Germai				Map # 2								ļ
Sta 47 (39	00.5'S &	t00 59.2'E										ļ <u></u>
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*
3	10.8	5.56	7.92	1.44	0.39	2.28	2.95	2.74	2.19	0.34		0.27
40	10.9	5.34	7.74	1.45	0.39	2.31	2.91	2.78	2.24	0.34		0.26
78	10.8	5.58	7.97	1.48	0.40	2.43	2.97	2.84	2.32	0.35		0.27
118	11.6	6.31	8.35	1.51	0.41	2.33	2.98	2.80	2.31	0.35		0.29
142	11.0	5.22	8.01	1.48	0.40	3.02	2.38	2.88	2.41	0.37		0.25
166	11.2	5.02	7.80	1.47	0.40	2.33	3.02	2.94	2.47	0.39		0.24
202	12.3	5.58	8.94	1.74	0.47	2.67	3.39	3.22	2.79	0.44		0.24
241	13.2	5.72	9.99	1.96	0.52	3.00	3.70	3.49	3.14	0.50		0.23
286	14.7	5.97	10.7	2.08	0.56	3.12	4.00	3.82	3.53	0.57		0.22
331	13.2	4.56	9.56	1.85	0.50	3.07	3.60	3.61	3.24	0.53		0.18
375		3.99	9.93	1.92	0.56	3.09	3.82	3.68		0.53	<u> </u>	
418	13.3	3.64	9.21	1.76	0.47	2.75	3.53	3.53	3.49	0.58		0.15
495	15.3	3.38	10.2	1.94	0.53	3.38	3.93	3.98	4.00	0.67	<u> </u>	0.12
565	14.8	3.17	9.43	1.78	0.48	3.02	3.82	3.92	3.93	0.68	<u> </u>	0.12
643	16.0	2.98	10.4	1.94	0.53	3.17	4.03	4.31	4.29	0.72		0.10
741	15.7	3.81	10.0	1.94	0.53	3.24	3.99	4.08	4.04	0.66	ļ	0.13
839	17.0	3.56	10.5	1.96	0.54	3.23	4.12	4.24	4.43	0.75	<u> </u>	0.12
936	18.3	3.38	10.9	2.04	0.56	3.45	4.39	4.56	4.78	0.84	-	0.10
1082	19.1	3.80	11.1	2.10	0.57	3.46	4.43	4.60	4.89	0.84	 	0.11
1273	20.3	4.08	12.0	2.23	0.61	3.77	4.69	4.84	5.14	0.89	-	0.11
1466	24.3	4.80	14.4	2.66	0.73	4.59	5.51 5.26	5.56	6.01 5.60	1.02 0.96	ļ	0.11
1657	23.4	5.03	13.9	2.59	0.71	4.61				0.90	 	0.12
1841	23.4	5.17	14.3	2.64	0.72	4.20	5.23	5.16	5.47	0.98	1	0.12
2088	25.8	5.21	15.8	2.96	0.80	4.75 5.22	5.74 6.29	5.58 6.00	6.24	1.05	+	 0.11
2332	27.5	5.43	17.9	3.36	0.91	5.07	6.04	5.60	5.82	0.99	 	0.11
2581	27.5	5.40	17.8	3.30	0.88	4.68	5.43	5.09	5.25	0.97	 	0.11
2832	26.0 30.5	5.42 5.25	16.9	3.11	0.82	5.22	6.16	5.65	5.84	0.98	 	0.09
3082		6.86		3.79	0.93	5.44	6.30	5.78	5.97	1.00		0.12
3330	32.1 37.9	7.09	21.1	4.58	1.18	6.44	7.83	6.70	6.96	+	+	0.10
3532				4.75	1.18	6.76	7.44	6.61	6.91	1.16	-	0.11
3737	39.5	7.78	26.6		1.24	0.70	8.25	6.53	6.70	1.15	-	0.08
3945	38.6	5.59	26.5	4.86	1.24	7.83	8.50	7.33	7.59	1.27	 	0.09
4202	46.3	7.76	32.0	5.89		8.56	9.05	8.10	7.74	1.30	 	0.10
4458	48.9	9.38	34.8	6.42	1.60	7.70	8.39	7.17	7.30	1.21	+	0.12
4700	44.8	10.47	32.9	6.12	1.51					1.34	 	0.12
4995	50.0	14.34	36.8	6.88	1.72	8.50	9.43	7.87	8.14	1.34		0.13

SARG_DIS.XLS

sarg-dis.	xis												
			S	argass	o Seav	vater -	Disso	lved	Conc	entra	tions		
Shalkar	vitz et al.	(1994)	Map	H3									
SHOIKU	ILZ EL AI.	(1774)	Mah	13	 	 				ļ	-		
					[pmol / K	g]						
ID	DEPTH	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce-Anom	Salinity
-	-	-	-	-	-	-	-	-	-	-	-	-	
C-1	15	16.0	15.7	15.9	3.5	0.92	5.3	5.8	4.7	4.0	0.55	0.64	36.6
C-1R	15	15.7	15.1	17.6	4.6	0.93	6.1					0.74	36.6
C-2	30	15.5	15.0	15.6	3.5	0.92	5.1	6.0	4.7	4.1	0.56	0.51	36.59
C-3	45	15.5	14.0	16.0	3.5	0.93	5.1					0.51	36.61
C-4	60	15.7	13.5	15.5	3.5	0.91	5.1	5.9	4.8	4.2	0.57	0.41	36.62
C-7	105	14.9	12.1	15.5	3.5	0.94	5.3	5.9	4.8	4.1	0.56	0.38	36.61
C-11	200	15.4	10.8	15.9	3.5	0.88	5.3	5.9	4.7	4.1	0.56	0.33	36.56
C-12	255	15.5	11.1	16.8	4.2	0.90	5.8	5.8	4.8	4.1	0.56	0.33	36.54
C-13	340	15.3	9.6	16.2	4.0	0.87	5.6	5.6	4.6	4.0	0.53	0.29	36.45
C-14	440	15.4	8.2	15.2	3.3	0.88	4.8	5.5	4.6	4.0	0.55	0.25	36.53
C-15	550	16.9	6.3										35.98
C-17	750	20.5	5.1	16.0	3.3	0.00	7.3	5.1	4.4	4.2	0.52	0.13	35.31
C-19	1000	24.4	5.9	21.2	5.3	0.88	6.7	5.6	4.9	4.6	0.69	0.12	35.06
C-22	1500	26.0	6.8	21.4	5.4	0.89	6.8	5.7	5.1	4.8	0.70	0.13	34.98
C-20	2000	23.3	6.3	19.4	5.1	0.82	6.5	5.4	4.9	4.6	0.66	0.14	34.98
C-21	3000	24.8	5.8	20.8	5.3	0.87	6.8	5.8	5.0	4.7	0.69	0.12	35.08
C-23	4000	40.8	9.5	31.8	7.2	1.27	8.7	7.2	6.1	5.9	0.86	0.12	34.9

SARG_PAR.XLS

sarg_par.xls						T					-
		1	Sar	gasso	Sea	Partic	cles				
				Ī							
Sholkovit	z et a	11. (1	994)								
acetic acid dig				aest: H	bomb	digest					
SAMPLE	La	Ce	Nd	Sm	Eu	Gđ	Dy	Er	Yb	Lu	Ce
Depth/Diges	t	1		ſ	fmol	/ Kq se	awater	1			Anon.
						<u> </u>					
								1.			
60/Ac	194	160	138	21.7	4.4	21.4	13.8	12.6	4.4	0.12	0.44
105/Ac	393	337	264	42.8	9.1	37.4	21.5	10.0	5.2	0.35	0.47
150/Ac	368	909	231	46.4	9.4	1	26.5	10.6	6.3	0.50	1.6
200/Ac	319	968	218	44.7	8.7	38.3	27.0	13.2	7.4	0.74	1.64
255/Ac	375	1083	233	44.9	11.2	44.5	30.0	14.3	8.1	0.57	1.60
255/Strong	61	244	69	18.6	4.7	19.0	16.9	8.8	7.6	0.97	1.83
255/Bomb	147	242	99	15.2	3.9	11.5	9.3	5.6	5.2	0.51	0.90
340/Ac	343	1123	267	52.5	12.1	52.8	36.9	17.3	10.1	1.01	1.70
340/Strong	117	395	111	27.6	6.3	26.1	22.4	11.1	10.1	1.21	1.65
340/Bomb	203	396	139	22.1	4.7	15.8	13.4	7.6	7.3	0.96	1.05
		-				1					-
750/Ac	352	1183	308	61.9	12.5	59.3	42.5	20.0	11.8	1.22	1.68
750/Strong	142	609	183	42.2	9.7	38.7	33.1	17.2	15.6	2.03	1.86
750/Bomb	294	578	203	32.3	6.5	22.7	18.5	10.8	10.5	1.27	1.06
1000/Ac	395	1216	339	64.5	15.3	61.0	45.3	22.9	11.6		1.55
1000/Strong	178	585	195	43.6	9.6	45.4	34.6	17.8	16.0	2.01	1.52
1000/Bomb	348	620	229	36.8	7.5	29.0	23.4	13.6	13.7		0.97
1500/Ac	437	1306	400	80.0	17.6	74.4	53.6	25.3	16.5	1.75	1.48
1500/Strong	166	500	181	36.0	7.8	31.7	25.6	13.1			1.40
1500/Bomb	315	564	219	33.7	6.9	23.8	20.8	12.1	11.8	1.63	0.96
2000/Ac	336	995	321	64.0	13.8	60.3	42.5	21.2	13.6	1.44	1.44
2000/Strong	164	462	158	32.4		48.3	22.4	11.4	9.6	1.18	1.36
2000/Bomb	380	755	280	46.1			26.8	15.9	16.0	1.98	1.05
Blank/Ac	32	35	23	bd	bd	bd	0.6	0.3	bd	bd	
Blank/Strong	bd	33	16	bd	bd	bd	0.4	0.4	bd	bd	ļ
Blank/Bomb	33	26	16	2	bd	bd	0.7	0.7	bd	bd	

Table A7: Handbook section 6.1. Pacific Ocean seawater

File name: PSW_CONC.XLS. Concentration of RE in Pacific Ocean seawater

			1		Pac	ific (Ocea	n Se	awa	ter		1	
psw_conc.	ds					1						-	
						pmol/kg							
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	<u> </u>	Ce/Ce	*
Dianara	ec & I	acobsen	(1002)		Map #	16					T		
TPS 47 39-		acobsen	(1992)	<u> </u>	мар н	10		-		<u> </u>			
3	22.6	8.0	15.9	2.88	0.75	4.01	4.65	4.22	3.52	0.61		0.19	
195	36.3	6.4	22.2	4.09	1.06	5.84	6.72	6.13	6.00	1.07		0.10	
364 600	40.2	6.1 7.7	22.9 24.4	4.12	1.12	5.94 6.62	7.05	6.86	6.80	1.22		0.09	
800	43.1	6.2	25.3	4.70	1.17	6.90	7.89 8.16	7.57 8.08	7.84 8.38	1.42		0.10	-
1249	45.1	5.9	27.3	5.07	1.36	7.97	9.12	9.04	9.51	1.72	 	0.07	
1795	48.4	6.2	29.8	5.54	1.47	8.56	10.2	9.88	10.8	1.96		0.07	
2692 3592	53.7 57.8	5.6 5.6	34.2	6.39 7.31	1.71	9.22	10.9	10.3	11.3	2.01		0.06	
4481	60.1	6.0	42.9	8.14	1.92 2.11	10.5 11.3	11.8	10.6 10.6	11.3	2.03 1.98		0.05	
5408	61.6	8.4	44.4	8.60	2.20	11.7	12.4	10.5	11.1	1.97	-	0.07	
TPS 47 80-1													
5174 TPS 24 76-1	79.5	13.0	62.8	12.6	3.2	15.8	16.8	13.5	14.0	2.44	ļ <u> </u>	0.08	
4621	68.4	5.5	51.7	10.2	2.5	13.7	13.9	11.7	12.3	2.13		0.04	-
TPS 24 271			J1.7	10.2		13.7	13.9	11.7	12.3	2.13	-	0.04	
0	5.8	5.0	5.4	1.14	0.32	1.75	2.10	1.78	1.34	0.21		0.42	
184 381	7.8	4.9 3.4	6.8 7.9	1.43	0.40	2.21	2.70	2.32	1.92	0.31		0.31	
640	24.1	3.4	15.1	2.85	0.47	2.63 4.47	3.22 5.16	2.81 4.76	2.27 4.46	0.81		0.18	
1046	35.3	4.1	20.0	3.65	0.99	5.77	6.78	6.66	6.88	0.61		0.07	
1194	36.3	3.8	20.9	3.80	1.04	5.94	7.23	7.11	7.57	1.32		0.06	
2000 2999	46.9 53.7	4.0	28.2	5.13	1.40	7.75	9.41	9.21	9.97	1.84		0.05	
4195	54.8	5.0	34.9 37.0	6.36	1.72	9.32 9.52	10.8	9.97 9.73	10.70	1.93 2.05		0.05	
5073	52.7	5.7	35.0	6.54	1.71	9.21	10.1	9.19	9.80	1.81		0.03	
TPS 24 351													
5926	52.9	5.0	34.5	6.39	1.69	9.04	10.20	9.32	9.96	1.78		0.05	
Klinkh	ammer	, et. al. (1983)		Map#	19						-	
SE Pacific		, 00, 01, (1700)		wap n								
0	4.9	3.1	3.4	0.56	0.20	1.10	1.30	1.20	0.79			0.34	
2500 NW Pacific	30.0	3.5	16.0	2.70	0.80	5.00	6.30	7.00	7.50			0.07	
O O	8.3	10.0	5.1	1.00	0.33	1.60	2.00	1.70	1.10			0.67	
2500	47.0	9.0	30.0	5.30	1.40	8.20	9.70	9.40	8.00			0.67	-
		al. (198		Map #		Vertex							
Depth	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Ho	Tm	Yb	Lu	
15	19	11.0	3.2	13	2.7	0.70	4.0	0.54	0.97	0.35	2.2	0.35	
45	22	10.0	3.5	16	2.8	0.69	3.7	0.56	0.71	0.40	1.9	0.30	
100	32	10.0	3.3	15	2.6	0.76	4.0	0.58	0.83	0.52	2.8	0.44	
150 200	47 17	25.0 17.0	4.3 2.5	24 13	4.0 2.6	1.23 0.71	6.3	0.91	1.50	0.86	5.8	0.96	
300	19	18.0	3.0	15	2.6	0.71	3.7 4.3	0.55	1.11	0.57	3.5	0.60	
400	22	13.0	2.3	14	2.6	0.71	4.0	0.54	1.20	0.62	4.0	0.68	
500	20	13.0	3.1	15	2.5	0.75	4.2	0.58	1.50	0.66	4.0	0.71	
750 1000	34	7.4	7.6	17 34	3.1 6.4	0.82 1.56	4.1 8.6	0.70 1.41	1.40	0.78	5.5	0.98	
1250	33	4.2	4.5	25	4.5	1.25	7.1	1.13	3.52 2.36	1.84	9.1	2.44 1.63	
1750	49	4.2	7.4	27	6.0	1.47	8.6	1.33	3.30	1.90	13.0	2.40	
2000	46	5.3	5.6	24	5.2	1.30	7.2	1.12	2.80	1.50	11.0	2.00	
2250 2750	67	2.9	8.5 8.9	33 42	6.7 9.0	2.32	9.4	2.01	3.75 4.40	2.00	14.0	2.60	
3000	51	3.4	9.2	49	8.8	2.43	13.0	2.01	4.40	2.50	17.0 15.0	3.10 2.70	
3250	67	2.9	7.0	41	7.7	2.15	12.0	1.81	4.00	1.95	13.0	2.30	
													ļ

			J	<u> </u>				<u> </u>						l
Zha	ang, et	. al. (19	94)		Map #	¥ 12								
Depth	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	470		4.05	400	4.46		4 70		2.45				1.55	
25		 	1.25 0.78	4.99 3.70	1.16	0.32	1.76	0.33	2.45	0.64	2.03 1.99	0.27	1.59 1.45	0.23
99			0.78	3.70	1.43	0.30	1.36	0.32	2.26	0.62	2.05	0.28	1.45	0.22
199			0.90	3.57	1.10	0.30	1.66	0.32	2.45	0.66	2.09	0.29	1.55	0.24
397			1.46	5.81	1.35	0.37	2.05	0.38	2.91	0.79	2.63	0.36	2.13	0.34
695	15.98		3.75	16.1	2.72	0.70	4.13	0.73	5.42	1.49	4.92	0.71	4.58	0.75
993	21.94		3.71	15.7	3.39	0.93	5.10	0.96	7.04	1.98	6.70	1.00	6.58	1.15
1486			4.03	18.7	3.91	1.08	6.01	1.07	8.17	2.32	8.00	1.18	7.98	1.40
1980					4.52	1.18	7.74	1.24	9.26	2.60	9.07	1.38	9.47	1.64
2472			5.01	22.1	5.09	1.39	7.35	1.31	9.88	2.74	9.30	1.41	9.42	1.63
2963 3453			6.13 7.43	25.7 32.5	5.41 6.49	1.43 1.67	7.81 9.13	1.42 1.58	10.6 11.5	2.94 3.07	10.0	1.52	10.3 10.1	1.79 1.72
3433	33.00		7.43	32.3	0.43	1.07	9.13	1.30	11.5	3.07	10.1	1.43	10.1	1./2
Ess	ser. et.	al. (199	94)	Map #	15	 			 	 -	 			
Depth	La	Ce	1	Nd	Sm	Eu	Gd		-	 	Er		Yb	
0	9.6	13.6		11.4	4	0.92	4.5		 	 	2.8		2.4	
- -	- 5.5			† · · · · ·	 	3.32	7.5		 	1			£7	
Tan	aka. et	. al. (19	90)		Map #	17	1							
	Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu			
 	Dopui	LA.		110				رد.	<u></u> '	10				
FK	110	69.0	115	53.1	8.60	2.38	12.7	12.5	8.43	7.29	1.16			
KT	bottom	5.4	20.9	6.0	1.23	0.36	3.64	2.37	2.47	2.27	0.40			
KG 1 SW	0	65.0	67.1	50.5	9.08	2.41	13.4	12.5	9.97	8.06	1.34		-	
KG 1 BW	40	68.0	159	55.6	10.0	2.58	16.5	12.2	8.64	7.51	1.25			
SM 1 SW	0	112.3	134	75.7	9.37	2.70	18.1	15.3	11.07	8.86	1.49			
SM 1 BW	60	87.6	138	65.3	10.1	2.49	19.8	12.4	8.47	7.71	1.24			
SG 1 SW	0	86.4	99.7	55.8	7.27	1.95	12.9	11.1	8.26	7.20	1.17			
SG 1 BW SG 2 SW	40	62.5 49.7	74.3	52.0 39.8	9.78 7.66	2.56 1.86	16.0 19.0	11.0 11.0	7.46	6.46 7.53	1.04			
SG 2 BW	40	69.6	138	57.3	10.0	2.43	12.1	11.4	8.34 7.64	6.94	1.08			
SG 3 SW	0	57.7	94.2	50.4	9.48	2.35	16.6	13.3	9.97	8.62	1.37			
SG 3 BW	75	37.8	91.9	42.8	7.97	2.09	17.4	9.81	6.97	6.64	1.06			
SG 4 SW	0	57.5	84.5	45.7	7.87	1.93	14.8	11.8	9.39	8.53	1.43			
SG 4 BW	70	59.8	126	50.0	9.08	2.30	13.0	11.00	7.64	6.66	1.12			
HW-1	1675	27.43	7.93	19.6	3.85	1.10	5.25	4.70	3.43	3.04	0.47			
S-2 KS-3	4233 5022	47.7 49.8	47.9 33.3	34.8 46.9	6.74 9.55	1.79 2.52	8.41 11.6	8.57 10.9	6.51 7.24	6.20 6.53	1.01 0.99			
K0-3	Depth	La	Ce	Nd	Sm	Eu	Gd		Er	Yb	Lu			
	Берш	La	CE	Nu	SIII	Eu	Ou	Dy	El	10	Lu			
KS4(u)-1	3395	36.1	15.1	30.2	6.19	1.59	8.31	7.16	4.65	4.07	0.60			
KS4(L)-1	3495	37.6	18.6	31.9	6.54	1.80	7.77	7.00	4.29	3.69	0.54			
KS5(u)-1	4945	49.1	26.9	39.4	8.05	2.05	9.32	8.74	5.57	4.93	0.72			
KS5(I)-1	5045	58.2	29.0	47.9	9.99	2.63	12.85	12.67	9.30	8.58	1.20			
		-1 445	04		1000	4.4								
		. al. (19			Map #	14	'							
DE-4 (4	4 40' N	& 177	00. M)											
	0	9.9	32.8	11.5			2.94	3.56	2.74	2.35	0.28			
	50	12.4	31.3	12.6	2.29	0.64	3.21	3.44	3.00	3.01	0.46			
	100	13.2	19.7	15.3	2.99	0.83	3.94	4.93	3.37	3.05	0.52			
	200	20.7	26.1	23.5	4.89	1.51	5.69	7.50	6.08	6.04	1.05			
	300	15.8	26.1	18.6	3.98		5.04	5.29	4.36	3.97	0.75			
	498	13.4	9.3	11.6	2.39	0.67	3.69	4.14	3.52	3.56	0.66			
	997	25.3	18.2	21.6	4.42	1.26	6.34	8.72	6.12	6.48	1.11			
	1494	28.4	24.3	28.8	5.91	1.71	8.20	9.37	8.62	9.13	1.57			
	1991 2588	23.4 23.5	15.7	22.5	4.61 4.75	1.21	6.31	7.10	6.43 7.75	6.91	1.2			
	3750	24.6	19.9	29.4	5.99	1.40	6.45 8.45	9.33	8.33	8.25 8.62	1.47			
	4436	23.3	14.1	30.0	6.36	1.83	9.49	9.10	7.25	7.99	1.41			
	5188	22.7	14.8	30.1	6.86	1.87	8.76	8.59	6.78	7.05	1.27			-
	5809	25.1	12.4	29.8	6.40	1.86			6.48	7.03	1.17		-	

		Т	T	Т	1	T	Т		T	1		Υ		T
Mo	ller et	al. (19	(10	Мар	#12	 	-	-	 	+	 		-	
	ilei et.	ai. (13	34)	IVIAP	# 13	-	 	 	ļ	-	ļ	ļ		
filtered	ļ	_		 		<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		
	Depth	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
mean (6)	10m f.b	20.1	1.89	2.64	12.2	2.33	0.77	4.02	0.65	5.14	1.62	5.82	0.93	7.23
mean (9)	1m f.	29.6	2.41	3.20	14.3	2.71	1.35	5.72	0.82	6.10	1.83	6.37	1.05	8.32
	1			1	+		1		- 5.52	0.10	1.55	0.07	1.00	0.02
	100	5.60	2.15	0.86	3.14	0.91	0.23	1.14	0.23	1.52	0.44	1.43	0.21	1.18
	200		2.58	0.83	4.67	1.36	0.36	1.82	0.29	2.03	0.50	1.63	0.26	1.31
	400	21.4	2.72	1.34	5.94	1.05	0.26	1.60	0.29	2.24	0.69	2.30	0.35	2.27
	500 600	23.7 14.7	3.18	2.08	9.27	1.67	0.40	2.53	0.44	3.45	1.07	3.49	0.61	3.79
	700	18.8	4.07 2.18	2.60 1.89	9.30 8.19	1.90 1.56	0.44	3.10 2.59	0.51	3.64 3.70	1.11	3.86 3.93	0.63	4.29
	800	17.8	3.65	2.63	11	2.17	0.55	3.46	0.43	4.14	1.25	4.46	0.81	4.40 5.11
·	800	10.1	2.54	1.71	7.92	1.57	0.72	2.79	0.54	3.78	1.11	3.92	0.68	5.25
	800	13.6	6.98	3.34	10.4	2.09	0.52	2.48	0.45	3.99	1.19	4.08	0.60	4.43
	1000	43.8	3.66	2.68	11.8	2.10	0.57	3.35	0.51	4.18	1.30	4.58	0.74	5.42
	1200	24.0	3.30	2.08	9.30	1.86	0.44	2.82	0.51	4.26	1.32	4.83	0.82	5.90
	1500	20.9	4.86	2.85	12.6	2.71	0.81	3.99	0.74	5.14	1.58	5.57	0.95	6.58
	1500 1600	58.7 45.6	3.60	3.13	12.9	2.37	0.63	4.12	0.65	5.19	1.59	5.68	0.93	6.70
	1800	40.6	3.48 2.64	2.80	12.8 12.1	2.11	0.64 0.58	3.89 3.80	0.61 0.60	5.53 5.14	1.78 1.60	5.94	0.92	7.14
	2000	27.6	2.49	2.41	11.1	2.11	0.60	3.61	0.64	5.14	1.50	5.79 5.62	0.92	6.72 6.85
	2100	29.2	3.69	3.53	15.0	2.58	0.68	4.28	0.70	5.75	1.73	5.94	0.96	7.09
	2100	35.4	5.59	3.91	17.4	3.46	0.94	6.07	0.83	6.77	1.83	6.43	1.05	7.91
	2250	30.2	2.90	3.50	15.7	2.67	1.00	4.76	0.73	5.92	1.72	6.05	1.01	7.58
	2400	32.1	3.66	3.35	14.1	2.49	0.86	5.28	0.82	6.29	1.85	6.45	1.04	7.70
	2500 2500	14.9 22.3	2.16 4.75	2.20	8.86	1.50	0.50	2.64	0.46	4.07	1.32	4.96	0.79	6.28
	2600	13.6	1.17	2.86 2.11	12.9 9.53	1.95 1.61	0.67 0.57	3.34	0.59	5.03 4.60	1.69 1.51	5.83 5.62	0.90	6.88 6.84
-	2800	17.2	2.94	2.13	9.58	1.63	0.57	2.99	0.32	4.10	1.43	5.15	0.86	6.46
	2800	49.0	3.43	2.76	12.2	2.03	0.60	3.35	0.59	5.01	1.50	5.71	0.92	7.20
							ļ							
										-				
Mol	er et.	al. (199	94)	Map	¥ 13									
unfiltere	d													
	Depth	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	100	21.8	21.5	3.20	9.10	1.55	0.31	1.77	0.25	1.80	0.49	1.57	0.24	1.50
	200	20.8	15.7	2.08	6.90	1.33	0.34	1.64	0.24	1.71	0.47	1.47	0.19	1.41
	200	45.3	24.50	3.11	8.80	0.78	0.20	1.02	0.19	1.45	0.39	1.22	0.14	1.11
	300 400	2.6 8.2	3.20 4.60	0.74 1.59	3.20 6.20	0.81	0.25	1.04	0.20	1.41	0.49	1.62	0.24	1.29
	500	12.7	3.40	1.87	9.40	1.13	0.26 0.43	1.45 2.86	0.29	2.34 3.83	0.67 1.15	2.26 4.05	0.37	2.32
	500	17.7	7.20	2.52	10.5	1.84	0.43	3.00	0.46	3.64	1.13	4.00	0.60	4.29 4.07
	500		10.3	2.83	9.60	1.53	0.53	2.55	0.48	3.47	1.12	3.74	0.62	4.14
	700	27.6	29.6	5.53	19.9	2.64	0.61	3.17	0.60	4.23	1.25	4.27	0.62	5.04
	800	16.3	4.40	2.29	10.8	2.15	0.51	3.02	0.50	3.84	1.23	4.19	0.65	4.69
	800	38.6	29.4	4.85	17.7	2.27	0.60	3.12	0.57	4.54	1.33	4.72	0.72	5.29
	900	28.6 17.0	13.3 7.80	3.34	11.8	1.89	0.49	3.01	0.49	3.93	1.11	4.01	0.65	4.37
	1000	73.8	38.1	6.39	11.8	2.13 2.57	0.59	3.33	0.55 0.55	4.45 4.97	1.28	4.46	0.68	5.30
	1200	36.4	20.7	4.86	19.2	3.70	0.90	4.59	0.83	6.01	1.43	4.85 6.19	0.81 1.05	6.01 7.45
	1600	82.2	34.4	7.22	26.1	3.39	1.02	4.58	0.84	7.16	2.10	7.02	1.10	8.18
	1800	37.1	17.1	9.29	18.9	3.35	0.87	4.86	0.81	6.61	1.96	6.91	1.09	8.48
	2100	44.6	24.0	5.15	21.8	3.76	0.91	5.36	0.85	6.69	2.07	6.15	1.02	7.35
	2100	57.5	36.4	8.28	28.7	3.69	0.97	5.94	0.89	7.16	2.14	6.85	1.07	8.02
	2500 2600	38.4 52.9	5.90 27.8	4.45 6.85	19.9	3.71	1.20	5.90	0.94	7.30	2.05	7.47	1.20	8.44
	2800	31.1	7.80	4.75	26.0 18.3	3.36 3.44	1.08	5.27 4.63	0.86	6.61 6.81	1.95 2.04	6.43 7.20	1.05	8.38
	2800	78.6	24.2	6.18	19.9	3.24	1.07	5.89	0.88	6.83	2.04	7.02	1.18	8.18 8.40
						7.27		0.00	0.00	0.00	2.02	1.02	1.05	0.40

Table A8: Handbook section 6.1. Indian Ocean seawater

File name: IND_CONC.XLS. Concentration of RE in Indian Ocean seawater

					Ind	ian O	cean				
ind_c	onc.xls										
					CC	NC = pm	ol/kg				
De	epth	La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
	-	-	-	-	-	-	-	-	 -	-	-
1. Fi]	ltered W	later S	moles	10.4	um fil	trates	1				
		1002 5					<u> </u>				
Bertrai	m & Eld	erfield	(1993)	Germ	an & I	Elderfi	eld (19	90)	м	ap #	22
	05 14.9'S &		<u> </u>				<u> </u>	T		T	
···· ·	02	15.2	8.0	10.9	2.14	0.60	3.47	4.09	3.73	3.55	0.60
	36	24.0	4.8	14.9	2.93	0.83	4.77	5.61	5.26	5.42	0.96
	500	27.3	5.5	17.1	3.29	0.90		6.48	6.05	6.25	1.57
	953	29.0	7.0	20.9	3.95	1.07	6.70	7.12	6.85	7.37	1.27
	199		4.9	23.3	4.25	1.17		7.74	7.19	7.67	1.2.
	378	39.7	6.0	24.7	4.43	1.18	7.59	7.25	11.27	8.54	1.51
	950	 		27.5	5.05	1.35	7.50	8.56	7.89	8.46	1.31
	12 17.8'S &	£ 53 41.4'E)		1	+			1	0	1.01
	10	8.14	7.35	6.93	1.43	0.43	2.34	2.34	2.47	1.93	0.29
	25	8.38	4	6.97	1.47	0.43	2.41	3.02	2.64	1.92	0.291
	19	8.4	5.43	6.91	1.45	0.44	2.32	2.9	2.64	1.94	0.29
	70		8.43	8.16	0	2.52	3.22	2.75	2.17	2.17	0.35
	72	9.6	5.01	7.42	1.54	0.46	2.54	3.29	3	2.54	0.419
	33	9.57	4.6	7.67	1.5	0.41	2.7	3.27	3.11	2.7	0.457
	94	10.41	4.74	7.82	1.61	0.49	2.6	3.42	3.15	2.85	0.475
	08		4.63	8	1.66	0.495	2.81	3.54	3.26	2.98	0.49
	20	11.31	4.2	8.46	1.75	0.512	2.9	3.67	3.4	3.08	0.52
	25		5.04	<u> </u>	1.67	 			3.21		0.58
	60	10.34	3.82	8.02	1.66	0.49	2.75	3.47	3.21	2.78	0.48
	31	9.9		8.12	1.64	0.472	2.7	3.38	3.22	2.98	0.45
	00	11.33	2.84	8.26	1.69	0.49		3.46	3.44	3.13	0.15
	00		2.71	9.69	1.93	0.55	3.25	3.92	3.9	3.8	
	00	16.24	2.32	10.84	2.14	0.61	3.51	4.31	4.2	4.26	0.74
	00		3.33	11.07	2.13	0.606		4.89		4.25	0.77
7	00	18.38	2.92	11.77	2.35	-	4.34	4.47	4.7	4.61	0.81
7	30		2.75	12.15	2.41	0.66			4.79	4.4	1.08
	00	24		14.02	2.68	0.77	4.23	5.17	4.97	5.14	0.9
	01	21.7	3.3	13.8	2.67	0.766		5.13	5.03	5.16	0.93
11	51	24.26	4.1	15.21	2.93	0.826	4.67	5.54	5.64	5.76	1.03
11	95			18.7	3.19			6.4			
	502	28.5	4.33	16.84	3.19	0.903	5.21	6.12	6.03	6.5	1.18
	750	30.63	4.38	18.93	3.42	0.912	5.44	6.72	6.38	6.81	1.35
	001	33.11	4.44	19.91	3.72	1.01	5.7	6.86	6.61	7.01	1.27
	500	38.05	5.2	23.34	4.22	1.17	6.4	7.59	7.19	7.71	1.38
	701	40.78		23.95	4.32	1.15	6.51	7.59	7.18	7.75	1.36
	000	41.64	5.99	25.88	4.73	1.28	6.79	8.1	7.54	8.1	1.49
	250	38.64	5.81	26.32	4.8	1.32	7.35	8.25	7.78	8.31	1.61
	500	44	5.94	27.16	4.94	1.27	6.97	8.14	7.49	7.9	1.45
	750	43.45	6.19	27.95	5.1	1.35	7.32	8.37	7.7	8.02	1.45
40	002	43.1	5.18	28.13	5.11	1.35	7.11	8.31	7.63	8.14	1.43
40	85			30.55	5.79	1.34		 	7.88		

			1	CC	ONC = pm	ol/kg		T	T	<u> </u>
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
4105			29.04	ļ <u>.</u>			<u> </u>	ļ	3.57	
4250	39.35	5.14	27.39	5	1.31	6.98	7.89	7.17	7.61	1.33
4499	43.35	5.21	28.3	5.17		7.03	8.03	7.33		1.32
4730				5.99	1.05					1.00
CD-1503 (18 36.7'S										
6	9	4.87	8.43	1.87		1.95		2.57	2.35	0.31
50		5.31	7.48	1.58	0.48	2.64	3.54	2.59	1.86	0.28
90	9.27	5.58	8.32	1.63	0.492	2.69	3.34	2.34	2.24	0.35
115	9.39	5.24	7.75	1.64	0.51	2.7	3.48	3.08	2.58	0.42
225		4.57	7.41	1.47	0.466	2.47	3.06	2.89	2.34	0.36
250	8.68	5.17	7.23	1.5	0.44	2.87	3.15	2.83	2.3	0.34
323	10.94	4.29	8.13			2.5	3.34	3.38	2.85	0.47
393		4.28	7.96	1.6	0.463	2.61	3.33	3.17	2.86	0.48
520	11.18	3.46	8.08	1.53	0.433	2.6	3.37	3.28	3.03	0.51
650	12.22	2.64	8.48	1.62		2.75	3.58	3.33	3.41	0.59
799	18.08		11.49	2.13	0.59	3.51	4.3	4.28	4.4	0.77
825	17.71	2.69	10.72	2.07	0.585	3.42	4.31	4.39	4.5	0.83
1000		3.25	12.53	2.31	 	4.53	5.29		5.67	0.94
1392	25.7	3.47	15.17	2.82	0.803	4.62	5.67	5.63	6.02	1.08
1700		5.7	17.91	3.26	0.911	5.11	6.25	6.15	6.59	1.18
2200		5.11	21.67	3.99	1.09	6.1	7.3	6.97	7.44	1.32
2620	38.53	4.29	23.32	4.25	1.17	6.39	7.55	7.12	7.64	1.36
2700	39.94	4.28	23.93	4.32	1.19	6.6	7.76	7.25	7.82	1.35
4002	0	4.89	28.26	5.13	1.38	6.64	8.32	7.56	8.05	1.44
4380	45.99	8.9	29.2	5.36	1.4	7.52	8.46	7.54	8	1.33
4499	13.77	0.5	28.86	5.28	1.37	7.38	8.33	7.39	7.91	1.38
4577	43.1	6.91	29.48	5.4	1.39	7.1	8.73	7.87	8.04	1.44
4630	38.33	6.54	29.34	5.25	1.36	7.38	8.16	7.35	7.7	1.36
CD-1504 (27 00.5'S			27.51	3.23	1.50	7.50	0.10	1.55	1	1.50
11	10.48	8.71	8.23	1.67	0.483	2.57	3.2	2.82	2.15	0.33
25	9.52	7.83	7.91	1.62	0.471	2.51	3.17	2.79	2.11	0.33
60	9.91	7.47	7.91	1.02	0.471	2.31	3.17	2.13	2.11	0.55
77	7.71	7.47						1		
101	9.93	8.13	7.9	1.59	0.46	2.52	3.17	2.82	2.16	0.33
152	8.68	7.17	7.05	1.42	0.418	2.43	3.03	2.71	2.13	0.33
298	10.16	6.03	8.12	1.42	0.418	2.43	3.31	2.71	2.13	0.33
305	10.10	9.98	7.96	1.62	0.406	2.57	3.13	3.09	2.47	0.4
401	12	8.25	9.5	1.88	0.517	2.84	3.13	3.09	2.76	
500	12	4.85	8.36	1.66	0.317	2.95	3.44	3.28	2.76	0.45
	11.00	4.09		1.6		2.93	<u> </u>	ł		0.45
606	11.09		8.23		0.455	2.37	3.41	3.28	2.9	0.48
699	11.38	2.99	8.4	1.61	0.435	2.60	2.51	3.72	3.08	0.55
799	12.33	2.85	8.61	1.67	0.478	2.69	3.51	3.47	3.27	0.55
900	13.37	2.25	9.1	1.74	0.485	2.85	3.69	3.72	3.56	0.64
1000	14.87	2.05	9.82	1.84	0.515	3.5	3.85	3.98	3.92	0.7
1250	17.27	2.92	10.37	1.93	0.543	3.26	4.15	4.25	4.42	0.81
1500	1 26 21	3.28	12.84	2.39	0.668	4.71	4.99	5.15	5.48	0.98
1750	26.31	3.88	15.34	2.78	0.757		6.03	5.69	5.95	1.11
1795	25.41	4.00	14.75	2.63	0.733	4.00	5.5	5.58	5.96	1.1
2000	30	4.36	16.48	3.01	0.834	4.89	5.98	6.05	6.16	1.14

		T	T	CC	DNC = pm	ol/kg	T	T		
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
2005	29.12	4.5	17.64	3.15	0.877	5	6.14	6.01	6.41	1.15
2250	30.83	5.65	19.32	3.45	0.94	5.38	6.4	6.27	6.62	1.19
2451	33.56	4.33	20.52	3.71	0.977	6.32	6.9	6.51	7.01	1.25
2515		6.53	18.99	3.43	0.891	5.26	6.52	6.12	6.21	1.46
2625	39.3	6.67	22.13	4.05	1.1	5.9	7.26	6.82	7.36	1.31
3002			23.17	4.28	1.14	6.6	7.67	7.1	7.53	1.41
3100			24.91	4.62	0.978	6.44	0	7.16	6.55	1.43
3249	38.95	4.21	24.34	4.42	1.2	6.7	7.89	7.17	7.7	1.44
3499	40.81	4.34	25.28	4.59	1.24	6.79	7.97	7.23	7.69	1.37
3691		7.31	27.22	4.83		7	7.89	8.5	7.6	
4250	41.08	7.15	26.59	4.89	1.29	7.02	7.87	7.16	7.65	1.35
4505	42	5.49	27.34	5.02	1.25		9.83	7.07	7.18	1.44
4849	42.05	4.69	27.58	5.1	1.32	6.61	8.07	7.21	7.64	1.36
4876	42.68	6.13	28.13	5.16	1.33	7.2	8.04	7.2	7.68	1.34
5220		6.46	26.46	4.83	1.22	7.19	8.4	8.38	7.27	1.89
CD-1505 (24 36.5'S &	& 57 03.9'I			<u> </u>	-					
10	9.18	6.13	7.67	1.59	0.457	2.5	3.13	2.65	1.99	0.31
60	10.99	10.47	9.07	1.82	0.509	2.7	3.21	2.77	2.1	0.32
90	9.53	7.78	7.75	1.58	0.466	2.5	3.12	2.81	2.09	0.32
125	10.8	11.65	9.3	1.85	0.513	2.67	3.25	2.79	2.13	0.32
245	9.22	6.77	7.65	1.52	0.424	2.32	2.94	2.64	2.06	0.33
450	9.71	5.39	7.51	1.47	0.408	2.29	2.95	2.77	2.36	0.38
652	10.65	3.21	7.75	1.51	0.425	2.47	3.26	3.22	2.92	0.48
875	13.56		9.44	1.81	0.497	2.89	3.79	3.78	3.65	0.63
1150	16.87	2.43	10.28	1.95	0.545	3.23	4.07	4.25	4.31	0.8
CD-1506 (08 27.4'S &						<u> </u>		1		
93	12.7	3.23	9.74	2	0.588	3.24	4.08	3.73	3.6	0.7
100	14.4	2.63	10.41	2.14	0.656	3.34		3.88	3.84	0.67
395		2.06	10.1	2.06		3.23	4.12	3.95	3.91	0.69
695		3.08	11.93	2.35	0.681	3.84	5	4.44	4.52	0.89
957	20.9	4.57	13.43	2.6	0.745	4.06	4.88	4.68	4.87	0.86
1500	28.3	4.46	17.22	3.25	0.905	5.1	6.23	6.01	6.58	1.1
2300	32.4	4.56	19.94	3.66	1.01	5.86	6.71	6.38	6.88	1.23
3000		4.75	24.97	4.54	1.19	8.15	7.85	7.48	8.03	1.5
3398								77.10	9.92	1.5
3500	46.85		29.67	5.4	1.41	7.5	8.35	7.73	8.31	1.48
4000		6.19	27.76		1.27	7.75	8.885	7.7	8.02	1.71
4251	47.47	5.06	28.32	5.22	1.38	7.42	8.46	7.61	8.1	1.45
5128	41.23	5.5	27.18	4.98	1.3	6.87	7.74	6.95	7.38	1.29
CD-1507 (06 09.2'S &		I				0.0.		0.25	7.50	1.27
10	8.21	4.96	6.9	1.4	0.412	2.28	3	2.49	1.81	0.34
25	8.85	5.71	7.32	1.47	0.41	2.24	3.64	3.68	2.05	0.34
50	8.78		7.25	1.43	0.424	2.01	2.96	2.61	2.03	0.28
75	9.29	5.35	7.44	1.51	0.442	2.63	3.02	2.74	2.12	0.32
80	10.79	4.69	7.68	1.57	0.47	2.66	3.38	3.22	2.12	0.49
85	20.17		7.91	1.61	0.47	2.7	3.4	3.15	2.83	0.49
125	12	3.64	8.6	1.74	0.5	2.1	3.58	3.13	3.28	0.56
151	12.1	3.68	9.26	2.17	0.531		3.56	3.61	3.28	00
210	13.63	3.87	9.77	1.96	0.557	2.98	3.65	3.64		0.61
210	15.05	3.07	7.11	1.70	0.557	2.70	3.03	3.04	3.5	0.61

				CC	NC = pmo	ol/kg	1		Ī	1
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
•	-	-	-	-	-	-	-	-	-	-
278			9.85	1.96	0.559	3.22	3.92	3.8	3.67	0.64
345		4.11	10.13	2	0.456	T		3.83	4.5	0.65
370	14.45	2.89	10.05	1.99		3.17	3.69	3.88	3.78	0.67
370	14.61	3.22	9.74	1.89	0.54		3.87	3.8	3.76	0.7
448	15.48	2.67	10.6	2.09	0.602		4.29	4.04	4.05	
550	19.47	4.15	12.56	2.45	0.702	3.85	4.72	4.58	4.65	0.81
601		3.12	11.54	2.24	0.64		4.42	4.31	4.37	0.77
650		2.81	11.39	2.22	0.61			4.52		
785	18.06	3.91	12.95	2.5	0.71	4.4	4.77	4.63	4.71	0.83
880	22.84	4.33	14.84	3	0.81	4.41	5.24	5.02	5.09	0.92
965	23.85	3.8		2.93	0.839				5.38	
1137	25.01	5.3	15.82	3.06	0.87	5.23	5.74	5.48	5.65	1.03
1301	25.6	4.91	16.32	3.09	0.88	4.86	5.83	5.65	5.95	1.07
1506	25.62	5.25	18	3.46				6.13		
1805		4.79	18.03	3.37	0.94		6.41	6.29	6.56	1.22
2003	32.06	4.62	19.5	3.62	1.01	6.23	6.86	6.57	6.95	1.28
2305	35.4	4.68	21.1		1.08	6.93	7.38	6.88	7.41	1.38
2850		4.22	25.43	4.63	1.27	6.55	8.04	7.52	8.13	
3175	43	4.74	25.65	4.63	1.25	6.96	8.24	7.5	7.95	1.6
3451	44.86	6.34	28.07	5.1	1.38	7.36	8.58	7.87	8.38	1.5
4000	46.5	5.19	28.47	5.13	1.37	7.50	8.54	7.79	8.26	1.81
4050	44	3.17	28.41	5.13	1.36	7.32	8.31	7.51	7.99	1.4
4351	45.1	6.78	29.29	5.34	1.4	7.55	8.48	7.57	8.04	1.42
4813	13.1	7.06	29.47	5.39	 •••	7.5	8.93	7.47	8.1	1.4
4845	45.22	5.57	29.56	5.32	1.34	7.71	8.78	7.48	6.89	2.0
CD-1605 (14 25.6'N			27.50	3.52	1.51	1	0.70	7.10	0.03	12.0
4	11.7	13.9	11.4	2.38			3.94	3.09	2.49	0.655
20	12.2	12.2	11.2	2.35	0.653			3.01	2.35	
40	11.2	11.1	11	2.34	0.642	3.41		2.97	2.49	0.416
60		12.1	10.9	2.26	0.631		3.65	3.01		0.443
79	12.8	12.2	11.5	2.41	0.673	3.43	3.79	3.09	2.48	0.386
100	12.3	9.8	11.3	2.4	0.644		3.41		2.64	0.451
100	10.4	9.8	11.1	2.32	0.598			3.39	3.05	
120	15.5	6.2	12.2	2.56	0.73	3.66	4.26	3.67	3.26	0.521
130		7.6	12.6	2.64	0.748	3.78	4.39	3.7	3.41	0.559
140	18	6.7	12.6	2.68	0.764	4.04	4.25	3.74	3.39	0.553
150	20.2	16.3	13	2.69	0.755	4.96	4.48	3.79	3.47	0.646
176	18.8	10.5	12.8	2.58	0.728			3.72	3.44	0.010
201	19	15.6	12.6	2.5	0.699	4.53	4.28	3.68	2	0.646
300		12.7	12.3	2.47	0.67		4.09	3.00	-	0.649
399	15.6	10.2		2.41	0.578					5.5.7
506	15.5	5.2	11.4	2.21	0.570					0.661
700	18.4		12.2	2.41	0.612	3.72		4.02	4.05	0.001
1000	10.1	5.3	14.4	3.77	0.742	4.22	4.54	1.02	4.84	0.863
1490	24.4	4.1	16	3.09	0.862	4.85	5.61	5.42	1.51	1.142
1999	21.7	4.9	17.5	3.37	0.942	5.03	6.6	6.14	6.78	1.302
2500	31.2	5.4	19.2	3.58	1.006	5.62	6.89	6.66	7.35	1.33
2999	31.2	5.7	22.6	4.16	1.136	6.3	7.28	7.2	7.79	1.404
4001		6.7	24.6	4.44	1.130	6.71	7.20	7.52	8.08	1.462
4001		0.7	27.0	7.77	1.24/	U./I	L	1.52	0.00	1.402

				CC	NC = pm	ol/kg			1	
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-		<u> </u>	-	-	-	-	-	-	-	-
CD-1608 (22 29.5'N			<u> </u>		ļ. <u>.</u>	ļ	ļ			
3	12	10.7	10.5	2.18	0.594		3.9	3.31		
15	11.1	9.3	10.5	2.21		2.98				0.388
30	10.4	6.9		1.88	ļ	2.9	3.76	3.2		
50		5.7	8.2	1.74	0.488	2.55	3.13	2.88	2.7	0.466
75	13.8	6.1	9	1.84	0.52	3.02	3.24	2.98	2.8	0.477
100	13.8	6.7	9.8	1.96	0.541	3.23	3.59	3.12	2.96	
125	16	7.4	10.8	2.12	0.593	3.28	3.56	3.26	3.11	0.527
176	15.3	6.5	10.5	2.12	0.597	3.19	3.66	3.36	3.26	0.549
200	15.7	6.5	10.6	2.15	0.605	3.19	3.66	3.55	3.27	0.553
203	14.5	7.3	10.7	2.14	0.605	3.28	3.46	3.58	3.4	0.569
240	15.6	7	10.8	2.19	0.618	3.44	3.59	3.27	3.21	0.557
400	15.4	7.2	10.4	2.09	0.598	3.15	3.75	3.46	3.45	0.594
600	14.8	6.8	9.9	2.03	0.58	3.49	3.6	3.5	3.59	0.676
799	15.7	6.8	10.9	2.19	0.623	3.49	4.02	3.87	4.06	0.827
1000	20	4.1	12.3	2.42	0.659	3.74	4.39	4.35	4.44	0.795
1200		3.6	13.5	2.95	0.743	3.99	4.67	4.52	4.74	0.862
1599	23.1	3.1	14.2	2.8	0.791	4.31	5.03	5.13		
2000	23.4	2.2	14.4	2.84			6.18	6.44	7.64	1
CD-1609 (23 35.4'N	& 58 59.9']									
4	13	11.8	12.9	2.89	0.793	3.66	4	2.5	1.77	0.623
15	12.7	9.7	11.3	2.37	0.645	3.19	2.99	2.16	1.49	0.224
20	11.4	9.2	11.3	2.3	0.61		3.09	2.02	1.47	- 0.22
24		7.7	10.9	2.3	0.629	3.37	3.49	2.5	1.95	0.328
30	13.6	7.4	11.1	2.44	0.694	3.52	3.91	3.18	2.82	0.464
35	13	7.1	10.7	2.4	0.677	3.62	3.76	3.09	2.73	0.462
40		6.3	10.7	2.43	0.69	4.13	3.95	3.28	3.01	0.498
60		4.4	11	2.44	0.686	4.13	4.01	3.37	3.03	0.509
90	13.9	4.4	10.5	2.31	0.65	3.53	3.88	3.28	3.01	0.514
120		6.3	10.7	2.29	0.648	3.68	3.9	3.32	3.11	0.546
141	13.6	5.4	9.7	2.08	0.582	2.97	4.35	3.67	3	0.51
170	13.6	6.6	9.7	2.08	0.593	3.23	3.48	3.1	2.95	0.538
200		7.1	10.4	2.11	0.593	3.41	2.10	ļ	3.04	0.535
300		4	8.9	1.9	0.499	2.9	3.46	3.13	2.89	0.481
400	14.6	4.7	10	2.05	0.579	3.65	3.5	3.3	3.25	0.567
600	14.9	7.2	9.8	2.03	0.585	3.12	3.3	3.5	3.63	0.507
800	17.1	6	11.1	2.24	0.631	3.43	4.03	3.83	3.93	0.699
1000	19.7	3.8	12.4	2.45	0.691	4.03	4.42	4.18	4.32	0.761
2000		2.4	14.8	2.89	0.818	4.53	5.25	7.10	6.36	1.13
2750		3.2	16	2.97	0.010	4.72	5.85	6.58	6.96	1.15
2.50		3.2	10	2.71		7.72	3.63	0.56	0.90	1.10

ind_conc.xls

				CC	NC = pm	ol/kg				
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
		<u> </u>			<u> </u>			ļ	ļ	
Bertram & Eld	derfield	(1993)		2. Pa	rticle RI	EE Data				
				[pme	ol/kg of	water]				
Madagascar Basin (Sta 1504)									
300		0.436	0.135	0.024	0.006	0.032	0.032	0.015	0.014	0.002
500		0.613	0.166	0.033	0.008	0.038	0.029	0.018	0.012	0.002
1180	0.199	0.727	0.146		0.008	0.036		0.019	0.015	0.003
2000		0.850	0.299		0.010	0.048	0.038	0.023	0.019	0.003
2515	0.315	1.140	0.362	0.059	0.012	0.053	0.045	0.026	0.021	0.003
3100	0.280	1.310	0.496		0.012	0.054			0.021	0.003
3691										0.002
4505	0.435	1.400	0.497	0.102	0.017			0.043		
5220	0.515	1.430	0.551	0.107	0.025	0.097	0.081	0.043	0.035	
Somali Basin (Sta 15	i9 7)									
75	0.285	0.123	0.154	0.025	0.001	0.031	0.037	0.026	0.025	0.005
125	0.309	0.504	0.220	0.046	0.010	0.056	0.066	0.041	0.037	0.006
365	0.438	0.969	0.352	0.070	0.010	0.056	0.066	0.041	0.037	0.006
785		1.005	0.473	0.081	0.010	0.080	0.075	0.042	0.037	0.006
1300	0.527	1.031	0.440	0.082	0.019	0.079	0.069	0.041	0.037	0.006
1805	0.384	1.058	0.399	0.068	0.017		0.070	0.036	0.033	0.006
2300		0.981	0.331	0.068	0.011	0.064	0.057	0.032	0.030	0.005
3175	0.383	0.881	0.336	0.066	0.016		·	0.029	0.027	
3999	0.531	1.211	0.692	0.091	0.021	0.117	0.084	0.043	0.032	0.005

Table A9: Handbook section 6.1. Pacific Ocean seawater

File names: HE1.XLS, HE2.XLS and HE3.XLS.

H. Elderfield's unpublished data on the concentration of RE in Pacific Ocean seawater

HE1.XLS

770.	1		rac	IIIC	Ucea	in Se	<u>awate</u>	er Da	ta of	Dr. H	. Elde	rfield	l sin p	rep.	
HE1.	XLS	<u> </u>								T				7.7	+-
	Map #	/ 21								[pmol/	kgl				
D	LAT		LON		Depth	l La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	I
	TEX P										+	1 -5		1.0	
Sta.	33.0	0 N	139.0	o w		5.78	7.95	4.16	0.76	0.21		1.51	1.43	0.88	0.
ГА					20		5.67	3.89	0.73	0.20	1.40	1.54	1.41	0.89	0.
		-		—	60	4.94	3.47	3.75	0.70	0.19	1.20	1.52	1.40	0.87	0.
		+			80	4.72	3.56	3.55	0.67	0.18	1.24	1.53	1.41	0.89	0
		-	ļ	╃—	100	4.39	2.89	3.53	0.67	0.19	1.15	1.59	1.50	0.97	0
		-		-	150	6.87	3.53	4.93	0.97	0.28	1.81	2.24	2.07	1.61	0
		+ -		↓_	290	12.1	4.85	8.04	1.60	0.44	2.80	3.46	3.24	2.77	0
				-	490	23.6	4.24	14.16	2.62		4.20	5.24	4.82	4.47	0.
T5	20.60	NT	140.55										T		1
13	39.60	N	140.77	W	8	7.53	_	5.08	0.87	0.20	1.37	1.55	1.41	0.82	0.
					40	6.21	4.33	3.90	0.65	0.18	1.17	1.45	1.34	0.74	0.
		 		├	80	9.11		5.98	1.06	0.22	1.62	1.82	1.65	1.08	0.
		1			100	10.4	3.27	6.82	1.25	0.35	1.78	2.67	2.44	1.84	0.
					150	14.3		9.40	1.85	0.46	2.50	3.44	3.21	2.63	0.
\dashv					200	14.8	2.24	9.56	1.85	0.51	2.67	3.97	3.61	3.19	0.
\dashv		-			290	17.0	4.18	10.9	2.10	0.59	3.45	4.37	3.99	3.44	0.
-		-			390	22.5	2.28	13.4	2.50	0.27	4.13	5.06	4.76	4.42	0.
		-			490 580	27.5	4.90	15.8	2.90		4.72	5.63	5.19	4.98	0.
+					685	32.1	3.07	18.3	3.28	0.58	5.24	6.18	5.73	5.53	0.
_		-			700	33.1	6.27	19.2	3.47	0.72	8.36	6.46	6.07	5.93	1.0
\neg					890	37.6	3.42 3.94	20.3	3.64	1.00	9.34		6.55	6.52	1.2
\neg					990	37.7	5.27	21.2	3.81	1.03	6.16	7.21	6.81	6.89	1.2
					1230	41.6	5.35	21.0 22.8	3.80	0.97	6.32	7.03	7.54	7.72	1.3
1					1480	42.4	5.03	23.7	4.14	1.13		8.37	7.94	7.98	1.5
				\rightarrow	1700	72.7	3.03	23.7	4.30	1.00	7.38	8.63	8.88	9.24	1.7
6	45.00	N	142.87	w	8	12.1	3.32	7.46	1.34	0.26	2.10	0.45			
					40	13.6	4.85	8.3	1.47	0.36	2.10	2.67	2.41	1.70	0.3
					100	16.8	2.94	11.1	2.14	0.42	2.53	2.83	2.64	1.95	0.3
					150	18.5	2.21	12.2	2.35	0.58	3.36 3.79	4.33	3.82	3.19	
					200	21.3	5.00	13.4	2.54	0.65	4.12	4.62	4.15	3.75	0,6
					290	23.6	2.27	14.3	2.69	0.74	5.21	4.95 5.60	4.52	4.16	0.7
					390	28.3	3.09	16.7	3.09	1.14	4.96	5.80	4.59 5.27	4.55	0.7
						32.0	2.70	18.5	3.40	0.93	5.40	6.31	5.71	5.08	0.9
_						34.3	4.33	19.7	3.62	0.98	6.59	6.62	6.13	5.55	0.9
						37.7	4.10	20.5	3.71	1.00	6.06	6.90	6.52	6.01	1.05
\perp				$\perp \Gamma$	780	37.6	4.64		3.81	0.73	6.22	7.20	6.82	6.91	1.10
						37.3	3.38	20.9	3.80	1.04	6.29	7.24	6.93	6.96	1.24
						39.9	5.65	21.9	3.96	1.09	6.51	7.64	7.43	7.68	1.35
-				_	1230		3.84	23.3	4.24		6.96	8.43	8.16	8.65	1.58
			$-\bot$	-1	480	43.5	5.12	24.1	4.38	1.21	7.32	8.85	8.66	9.34	1.70
+												5.05	3.00	2.34	1.70
\bot												$\overline{}$		 	
+															
															

HE1.XLS

	<u> </u>		Paci	<u>tīc</u>	Ocea	n Se	awate	r Dat	ta of I)r. H.	Elde	rfield	lin p	rep.l	
HE1	XLS	<u> </u>							T	T			I P		+
	Map #	21			1			1		[pmol/k	01	-	 		+-
ID	LAT		LON		Depth	La	Ce	Nd	Sm					 _	+_
VER	TEX Pr	oject					CE	110	Sill	Eu	Gd	Dy	Er	Yb	I
T7	50.00	N	145.00	W	40	12.2	3.90	7.0	1.17	0.22	2.05	1	<u> </u>		↓
			-		80	16.8	3.52	9.9	1.74	0.33	2.07	2.59	2.54	1.93	0.
					100	22.8	2.59	14.6	2.70	0.51	2.99	3.49	3.23	2.66	0.
				1	150	27.7	2.97	16.7	3.07		4.00	5.08	4.58	4.26	0.
					200	27.7	2.57			0.84	4.81	5.75	5.09	4.83	0.
					250	32.9	2.79	17.7 18.2	3.12	0.86	4.88	5.92	5.41	5.22	0.
				<u> </u>	300	33.2	3.72	19.2	3.32	0.90	5.30	6.10	5.56	5.35	0.9
					480	35.0	3.11		3.48	0.94	5.62	6.54	6.00	5.85	1.
					500	37.8	8.10	20.0	3.64	1.00	5.93	6.64	6.36	6.26	1.
					700	38.4	5.04	22.4	4.09	1.09			6.69	6.44	
					800	38.9	3.60	21.6	3.95	1.06	6.49	7.45	7.20	7.32	1.3
					900	40.2		21.5	3.92	1.07	5.63	8.39	7.33	6.48	
					1000	42.3	4.07	22.2	4.05	1.12	6.72	8.35	7.65	6.33	1.5
					1250	43.5	4.12	23.5	4.28	1.18	7.06	8.67	8.20	8.74	2.7
					1230	43.3	4.89	24.7	4.50		7.49	8.99	8.77	9.47	1.7
T8	55.50	N	147.50	w	8	11.4	4.24								
			147.50	**	40		4.34	6.8	1.14	0.35	1.97	2.50	2.33	1.71	0.2
$\neg \uparrow$					80	13.3 25.3	2.87	7.7	1.35	0.38	2.31	2.87	2.72	2.15	0.3
_		_		-	100	28.9	3.26	14.4	2.55	0.76	4.14	4.25		4.04	0.7
	-				150		4.09	16.1	2.86	0.79	4.43	5.26	4.98	4.68	0.8
-					200	31.6	3.52	17.7	3.12	0.86	4.88	5.92	5.41	5.22	0.9
-					250	33.2		18.8	3.31	0.91	5.41	6.37	5.59	5.54	0.9
\dashv					300	31.0	3.45	19.1	3.42	0.82	5.03	6.38	5.97	5.73	1.0
-					485	34.6		19.9	3.62	0.86	5.85	6.86	6.22	6.25	1.10
-		-		-		36.0	4.00	20.5	3.72		5.98	6.95	6.57	6.58	1.13
+		_		-+	500	37.6	5.26	21.8	3.93	1.13	6.35	7.33	6.87	7.00	1.29
					690	38.6	7.63	21.9	4.01	1.10	6.51	7.48	7.16	7.31	1.33
+		-			780	39.4	7.15	22.8	4.18	1.06	7.46	7.92	7.76	7.29	1.43
\dashv				\dashv	890	40.8	4.42	23.3	4.21	1.19	6.89	8.10	7.76	7.99	1.48
+		-		\dashv		41.4	5.23	23.4	4.35	1.19	7.38	8.06	7.93	8.38	1.74
\dashv		+			1240				4.67	1.30	8.21	8.99	8.68	9.18	1.66
					1480	45.3	4.49	26.9	4.92	1.37	8.06	9.59	9.28	9.90	1.81

HE2.XLS

he2.xls	T								1			T	1	T
Map#	21						1		[pmol/k	gl		1	<u> </u>	
ID	LAT		LON		Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb
MARIA	ANAS (I	RAM			[m]			<u> </u>		1				1
	18	3 N	14	5 E	15			6.39	1.13			2.09	1.80	1
<u> </u>					28	8.32	9.91	5.12	1.01	0.33			1.66	1.66
			<u> </u>		490		8.76		1.67					
	1	1_		_	769			16.2			5.41	5.88	5.50	4.76
		 	 		775	26.0	9.10	13.3	2.44	0.70	4.37	4.96	5.07	5.09
		+			1236	20.0	8.63	19.0	3.19	0.88	ļ	7.40	7.46	
	 			+	1676	38.0	 	22.3	4.04	0.94			9.10	-
		┼	+	-	2077	43.7	0.01	25.8	4.67	1.28			9.14	ļ
		+	 	+	2121 2350	45.4	8.81	26.5	4.94	1.32	7.98		9.03	
	-	-	-	+	2506	45.4	5.17	28.1	4.88		ļ			
	 	1	-	-	2554	47.8	 	29.8 30.6	5.39 5.34		 			
		+	+	+	2739	77.0	9.18	29.7	5.54	1.53	0 55	0.02	0.04	ļ
		-	1		2749	49.0	10.00	28.3	5.42	1.28	8.55 8.39	9.93 9.88	9.94	
		\vdash	<u> </u>	+	3109	77.0	8.39	30.6	5.76	1.20	9.04		9.50	-
	 	 	 	+	3168	51.0	3.64	31.1	3.70		9.04	10.10		
			 		3303	31.0	9.53	29.6	5.49	1.43		9.95	9.78	
				1	3604		8.62	30.0	5.77	1.43		10.40	9.75	
					3699		8.70	29.9	5.58	1.36	8.60	10.30	9.71	8.99
			1		3828	49.50		31.7	5.88			10.60	9.87	0.77
					3864		3.41	32.0						
			E (VUL	CAN)										
	22 24.1	S	108 31.	W	1552		6.31	12.4	2.05	0.53		4.85	5.57	4.94
1					2898		7.48	18.3	3.15	0.89		6.73	7.28	7.37
	22.15.0	_												
	22 15.0	S	114 29.	W	1099				1.46					
2					1259			9.41	1.52	0.42		4.29	4.99	4.51
2					1909			14.3	2.28	0.66		5.85	6.31	
2				\vdash	2199 2641			12.0	1.90		3.48	5.42	6.06	
2				\vdash	2853			14.3	1.93			5.50		
				-	2033			15.4	2.37			6.68	7.18	
3	21 22.0	S	114 15.	w	1986	28.60								
3				''	2118	28.10	7.82	13.9	2.16			5.78	6.34	
3					2789	28.00	3.88	15.7	2.10			5.16	0.34	
			-				5.55							
4	20 29.4	S	113 51.	w	1985		7.70	15.0	2.51			6.10	6.60	
4					2632		4.30	15.8	2.59		4.73	6.11	6.87	
4					2737		1.38		2.75		5.41	6.29	7.02	7.54
4					2785		3.10	15.4	2.69			6.44	7.18	7.57
4					3074		12.7	19.8	2.82		6.18	6.40	7.26	8.08
5 2	20 09.0	S	113 44.	W	1975			15.2						

HE2.XLS

he2.xls		Ţ		T		I	T		T	T		T	T	T
Map#	21							1	[pmol/k	<u></u>				-
ID	LAT		LON		Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb
		-												10
5	3	-			2228		7.58	14.9	2.47		5.47	6.05	6.67	
5					2518		3.61	15.0	2.42	 	4.25	6.35	0.07	
5				1	2521	24.8	1	10.0	2.72	<u> </u>	7.23	0.33		-
5	1		1		2643		†	15.0	1		 	+		+
5				1	2727		1	14.7	2.60	 	4.79	6.44	6.76	7.81
5					2802		6.27	15.9	2.82		5.60	6.84	0.70	7.01
5					2804	28.3					2.00	0.01		
6	19 24.5	S	113 32.	w	2175		5.25	15.6	2.65	0.74	3.48	6.16	6.25	7.05
6		-	1	 '''	2350		3.21	16.3	2.77	0.75	4.21	6.33	6.35	7.07
6			†		2465		2.75	15.7	2.70	0.73	4.67	6.21	6.97	7.84
6				†	2656		5.80	16.7	2.82	0.71	4.07	0.21	0.90	1.31
6					2756		5.99	17.4	2.85			6.70	7.33	
7	19 30.0	S	116 34.	W	1514	21.8	8.10	12.3	1.96			4.77	5.69	
	19 29.1	S	123 31.	W	2351									
	17 27.1		123 31.	VV	2331			12.0	2.05			5.60	6.53	
	14 29.1	S	123 29.	W	1597	21.5	4.98	11.0	1.87	0.58	3.64	4.85	5.75	6.51
11					2502	29.7	2.56	13.3				1,122	0.75	0.51
11					2749	24.7	1.26	12.7						
12	12 08.0	S	123 29.	W	2181			13.2	2.16	0.63		5.45	6.45	6.00
12					2484		3.64	13.0	2.10	0.63		5.45 5.54	6.45	6.97
12					2536		2.67	13.4	2.12	0.03		5.41	6.60	7.21
12					2587		2.23	12.6	2.11			5.55	6.31	7.31
12					2683		1.25	12.2	2.07		4.25	5.49	6.36	7.49
?					2685			12.2	2.07		7.43	5.83	6.97	7.48

HE3.XLS

			<u> </u>		1	T	T	T	1	T	1	1
			Paci	fic Se	awate	r Dat	a of I	r. H.	Elde	rfield	lin p	ren.l
HE3.XL	S			T			T	1	1	T	[P	- opej
				Map # 2	21							
SUR	RFACE V	VATER		1			[pmol/kg	3]				
STA	LAT	LON	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
349	24.25	128.40	7.68		6.61	1.11	0.32	1.54		1.72	1.19	0.19
333	24.28	132.80	5.12	4.15	4.84	1.04	0.34	1.65	1.93	1.67	1.20	1.90
275	24.28	150.47			5.41	1.14						
227	24.27	167.97	5.36	3.96	4.56	0.97	0.28	1.43	2.03	1	1.12	0.18
189	24.24	183.25	4.85	3.80	4.42	0.91	0.27	1.42	1.71	1.48	1.01	0.15
181	24.24	186.37		4.45	4.64	0.92	0.26	1.51	1.70	1.52	1.03	0.16
173	23.40	189.26	5.26	3.76	4.61	0.89	0.26	1.32	1.69	1.47	0.97	0.14
157	24.10	192.83	4.59	2.88	4.15	0.85	0.29	1.38	1.65	1.46	0.94	0.15
150	24.50	193.27	4.55	2.70	3.94	0.80	0.27	1.37	1.63	1.46	0.97	0.16
140	25.48	194.27	4.92	3.03	4.29	0.86	0.25	1.39	1.66	1.46	0.95	0.14
128	24.89	198.75	5.38	4.02	5.02	0.98	0.28	1.54	1.71	1.52	1.00	0.18
116	24.24	203.27	5.14	3.73	4.71	0.96	0.29	1.50	1.74	1.49	0.98	0.16
100	24.25	208.69	5.81	3.52	4.87	0.97	0.24	1.27	1.78	1.54	1.00	0.15
88	24.23	213.07	5.86	3.39	4.71	0.96	0.27	1.53	1.75	1.52	1.00	0.16
81	24.23	215.97	7.10	5.07	5.82	1.13	0.32	1.75	2.00	1.69	1.08	0.17
62	24.25	224.38	7.05	4.00	5.24	1.00	0.29	1.20	1.85	1.62	1.06	0.17
56	24.25	226.76	8.43	4.76	6.41	1.26	0.33	1.88	2.07	1.74	1.12	0.18
46	25.20	231.20	11.5	5.94	7.63	1.36	0.36	2.11	2.16	1.84	1.20	0.18
31	29.05	236.13	12.6	6.18	8.69	1.60	0.43	2.20	2.48	2.04	1.28	0.19
28	30.04	237.41	14.1	7.24	10.3	1.88	0.52	2.55	2.72	2.17	1.40	0.21
26	30.49	237.98	12.4	5.89	8.34	1.47	0.40	2.25	3.06		1.21	0.21
24	30.89	238.76	12.3	5.85	8.16	1.51	0.41	2.28	2.44	1.98	1.24	0.19
22	31.24	239.45	15.7	8.54	10.3	1.83	0.50	2.53	2.90	2.52	1.65	0.29
18	31.67	240.29	14.3	6.69	9.75	1.76	0.47	2.58	2.76	2.22	1.47	0.22
16	31.77	240.47	21.9		13.8	2.11	0.52	2.69	2.74	2.21	1.42	0.22
To	55.50	147.5	-11.4	4.04								
T8	55.50	147.5	11.4	4.34	6.76	1.14	0.35	1.97	2.50	2.33	1.71	0.29
T7	50.00	145.0	12.2	3.90	7.00	1.17	0.33	2.07	2.59	2.52	1.93	0.32
T6	45.00	142.9	12.3	3.32	7.46	1.34	0.36	2.10	2.67	2.41	1.70	0.33
T5	39.60	140.8	7.53		5.08	0.87	0.20	1.37	1.55	1.41	0.82	0.13
T4	33.00	139.0	5.78		4.16	0.76	0.21		1.51	1.43	0.88	0.12

Table A10: Handbook section 6.1. Arctic Ocean seawater

File name: ARC_CONC.XLS. Concentration of RE in Arctic Ocean seawater (North Atlantic sector)

		Arctic	Ocea	n (Nortl	n Atlan	tic side	e)			
arc_conc.	xls		1	1		1	1			+
unfiltered				CO	ONC = pr	ol/kg				
Depth	La	Ce	Pr	Nd	Sm	Gd	Dy	Er	Yb	Ce/Ce*
Depth	La	-	-	-	-	- Gu		-	-	Carce
Wester	lund & C	hman (1	992)			-				<u> </u>
		& 31 35.6'		<u></u>		-			-	
10	34.8	38.6	7.8	28.5	4.7	10.2	6.8	6.0	5.2	0.57
20	20.3	12.1	4.3	17.4	4.0	5.7	6.2	4.8	4.0	0.37
100	18.8	10.0	4.3	16.0	4.7	5.1	8.0	4.8	5.2	0.30
200	20.3	12.1	4.3	16.7	3.3	5.7	5.6	3.6	5.2	0.30
300	24.6	21.4	5.0	16.7	4.7	6.4	7.4	3.6	4.0	0.47
400	23.2	12.1	4.3	19.4	2.7	3.8	6.2	4.2	2.9	0.27
500	24.6	20.0	5.0	25.0	3.3	5.1	6.2	4.8	4.6	0.39
600	25.4	20.7	5.7	24.3	4.0	6.4	9.3	4.2	5.2	0.40
		& 31 58.0']			+	0.4	7.5	7.2	3.2	0.40
600	22.5	12.9	4.3	22.9	4.7	7.0	5.6	4.8	5.2	0.27
1000	21.0	14.3	3.5	19.4	3.3	6.4	4.9	4.8	4.0	0.34
1500	21.0	12.1	5.0	20.1	3.3	5.7	6.8	4.2	5.8	0.28
2000	18.8	11.4	3.5	19.4	3.3	4.5	5.6	5.4	4.0	0.29
2500	22.5	8.6	5.0	20.1	4.0	4.5	6.2	4.8	4.0	0.19
2800	23.9	12.1	4.3	23.6	4.7	4.5	7.4	4.8	4.6	0.24
		& 30 34.0'l				1		1.0	1	0.21
10	37.0	16.4	6.4	30.6	5.3	8.9	8.0	6.6	5.2	0.23
20	40.6	15.7	7.8	29.2	4.7	11.5	9.3	6.0	4.6	0.21
300	21.0	10.0	4.3	18.1	2.7	5.1	6.2	4.8	4.0	0.24
800	21.0	10.0	3.5	19.4	2.7	4.5	3.7	4.8	3.5	0.23
1300	21.7	9.3	3.5	14.6	2.7	5.1	5.6	4.8	4.0	0.23
1800	23.2	8.6	3.5	16.0	4.0	5.7	4.9	4.8	4.6	0.20
2300	27.5	14.3	5.0	20.1	4.0	6.4	4.9	4.8	4.0	0.28
3000	23.9	5.7	4.3	17.4	3.3	5.1	5.6	5.4	4.0	0.13
3500	31.2	15.0	5.0	23.6	4.0	5.7	6.2	4.8	4.0	0.25
Sta 362 (8	85 04.0'N &	& 29 21.3'H								
10	30.4	15.0	5.7	27.1	4.7	8.3	8.6	7.2	6.4	0.25
20	34.1	16.4	5.7	26.4	5.3	7.6	8.6	7.2	6.4	0.25
50	26.1	14.3	5.0	27.8	4.7	5.7	7.4	6.0	5.2	0.26
100	31.2	12.1	5.0	26.4	4.0	7.0	8.6	7.2	6.4	0.20
200	21.0	9.3	3.5	16.7	3.3	5.1	6.2	5.4	4.0	0.23
400	23.9	10.0	4.3	18.8	3.3	7.0	6.8	5.4	4.6	0.22
700	18.8	9.3	3.5	16.0	3.3	4.5	5.6	3.6	3.5	0.25
` .		22 46.4'E								
10	31.9	15.0	5.7	27.1	6.7	7.6	10.5	7.2	7.5	0.24
20	30.4	14.3	6.4	22.9	5.3	9.6	11.1	9.0	7.5	0.25
30	33.3	15.7	5.7	27.1	6.0	7.0	8.6	7.2	8.1	0.24
40	34.1	16.4	6.4	28.5	6.0	8.9	9.3	7.2	8.1	0.24
50	34.1	12.9	5.7	29.2	5.3	7.6	9.3	6.0	7.5	0.19
60	30.4	12.9	6.4	28.5	5.3	7.0	8.6	7.2	6.4	0.21
70	33.3	14.3	5.7	25.0	5.3	8.9	9.3	6.6	6.4	0.23
80	36.2	16.4	6.4	28.5	5.3	8.9	7.4	6.6	6.4	0.23
90	37.7	17.9	6.4	29.9	5.3	9.6	9.3	6.6	6.4	0.25
100	29.7	13.6	5.7	30.6	4.7	8.9	8.6	6.0	6.4	0.22
110	29.0	12.1	4.3	23.6	5.3	7.0	8.0	6.0	6.4	0.21

unfiltered	samples			CC	NC = pm	ol/kg				
Depth	La	Ce	Pr	Nd	Sm	Gd	Dy	Er	Yb	Ce/Ce*
-	-	-	-	-	-	-	-	-	-	-
120	28.3	13.6	5.0	21.5	4.7	6.4	6.8	5.4	5.2	0.25
130	26.1	11.4	5.0	23.6	4.7	8.3	7.4	5.4	5.8	0.22
140	28.3	13.6	5.0	20.8	4.7	7.0	9.3	6.0	5.8	0.25
150	42.0	61.4	9.9	39.6	4.7	13.4	9.9	5.4	6.9	0.71
160	24.6	10.7	4.3	25.0	4.7	8.3	8.0	6.0	5.8	0.21
180	27.5	12.1	5.0	22.9	4.0	6.4	8.6	6.0	5.2	0.22
190	30.4	12.9	5.7	22.2	4.7	5.1	8.6	4.8	4.6	0.23
250	23.9	11.4	4.3	18.8	3.3	7.6	7.4	5.4	4.6	0.25
300	22.5	10.0	4.3	18.8	3.3	5.1	5.6	4.8	4.6	0.23
400	25.4	12.1	5.0	21.5	4.7	6.4	8.0	6.0	5.8	0.24
500	23.2	10.0	4.3	16.7	4.0	6.4	6.2	6.0	4.6	0.23
800	23.9	14.3	4.3	21.5	4.0	5.7	6.2	4.2	4.6	0.30
1000	21.0	10.0	4.3	16.7	3.3	5.1	6.2	4.8	4.6	0.25
		<u> </u>	<u> </u>							
		&21 59.2'E								
10	37.7	15.7	7.1	36.1	6.0	9.6	8.6	6.6	8.1	0.20
20	34.8	15.0	6.4	34.0	7.3	8.9	8.6	7.8	6.9	0.21
500	18.8	8.6	3.5	22.2	4.0	7.0	4.9	4.2	2.9	0.21
800	21.0	8.6	3.5	22.2	2.7	6.4	5.6	5.4	4.6	0.19
1000	24.6	9.3	4.3	19.4	3.3	7.0	6.2	4.2	4.0	0.20
1500	23.2	7.1	3.5	18.8	3.3	5.7	6.8	4.8	4.6	0.16
2100	26.1	8.6	4.3	18.8 18.1	3.3	5.1	4.3	4.2	4.6	0.18
2800	23.9	8.6	3.3	5.1	3.7	3.6	3.5	0.19		
10	37.0	21 58.2'E			(7	0.6	10.0			0.10
20		14.3	7.1	40.3	6.7	9.6	12.3	8.4	6.4	0.18
50	34.1	13.6	5.7	27.8	5.3	7.6	10.5	9.6	6.4	0.20
100	31.2 31.2	13.6 13.6	5.7 5.7	28.5 27.1	4.0	8.3	9.3	4.8	5.8	0.22
200	23.2	18.6	5.0	21.5	4.7 2.7	9.6 6.4	8.6	6.6	5.8	0.22
300	23.9	10.7	3.5	18.1	4.7	5.1	7.4 7.4	6.0 4.8	3.5	0.39
400	23.9	10.7	4.3	21.5	4.7	7.6	7.4	5.4	4.6	0.23
600	19.6	7.9	1.4	15.3	3.3	3.8	4.3			0.21
700	19.6	9.3	2.1	19.4	3.3	4.5	5.6	4.8	2.9 4.0	0.21
		₹ 17 14.5'E			3.3	4.5	3.0	4.0	4.0	0.23
10	23.2	12.1	2.1	16.7	4.0	7.0	4.3	4.2	3.5	0.28
20	21.7	10.7	2.1	20.1	4.7	7.6	6.2	6.0	4.6	0.28
500	19.6	10.0	1.4	22.2	4.0	7.0	4.3	3.6	4.0	0.24
1000	22.5	8.6	1.4	19.4	2.7	5.7	4.9	6.0	3.5	0.19
1400	19.6	8.6	1.4	16.7	4.0	6.4	5.6	4.2	4.6	0.13
1800	21.7	7.9	4.3	20.8	3.3	3.8	4.9	4.8	5.2	0.18
2200	22.5	7.1	3.5	18.8	4.0	6.4	4.9	4.2	4.6	0.16
		26 09.8'E)	3668 n							
10	41.3	22.9	7.8	36.8	7.3	9.6	9.9	9.0	6.4	0.28
20	40.6	25.0	7.1	38.9	7.3	9.6	8.6	7.8	8.1	0.30
		25 14.8'E)								
10	32.6	15.7	5.7	25.0	4.0	7.0	8.6	7.8	5.8	0.25
20	34.8	15.7	6.4	29.9	5.3	8.3	8.6	7.8	6.4	0.23

Table A11: Handbook section 6.1 and 7.1. Mediterranean Sea.

File name: MED_CONC.XLS. Concentration of RE in the Mediterranean Sea, including the anoxic brines of Bannock Basin

				1	Med	literran	ean Sea				
med-cor	ıc.xis					-T					ļ
				CONC = pn	ol/kg	 -		-			
Depth	La	Се	Nd	Sm	Eu	Gd	Dy	Er	VL	T	0 (0 1
	-	-	-	 	+	 	- Dy	EI	Yb	Lu	Ce/Ce*
Gre	eaves et	. al. (19	91)	Man #c		<u> </u>		-	-		<u> </u>
		'N & 12 2		map #2	4 0.4 ur	n illtered	samples			-	
13	14.4	12.30	12.4	7.54	 	 					
33	17.7	12.30	12.4	2.54	0.673	3.74	4.49	3.83	3.32	0.522	0.43
58	14.2	12.10	12.6	1.0			4.51	3.78	3.20	0.500	
108	14.1	12.10	12.6	2.60	0.692	3.63	4.67	3.98	3.39	0.535	0.43
208	16.3	9.39		2.66	0.698		4.68	3.93	3.47	0.538	0.43
505	21.4	9.95	14.0	2.88	0.720	3.72	4.98	4.22	3.67	0.603	0.29
708	20.3		17.2	3.32	0.823	4.17	5.13	4.35	4.03	0.642	0.24
307	24.0	6.54	16.1	3.28	0.830	3.76	5.37	4.59	4.21	0.706	0.17
327	19.8	7.33	17.2	3.40	0.875	4.70	5.52	4.66	4.46	0.701	0.16
369	20.4	4.29	15.3	3.14	0.837	4.62	5.58	4.75	4.45	0.719	0.11
13	20.4	5.49	15.9	3.27	0.866	4.46	5.66	4.84	4.48	0.737	0.14
013	20.3	5.54	16.3	3.38	0.901	4.90	5.76	4.91	4.57	0.765	0.14
013	21.3	6.50	16.4	3.39	0.905	4.94	5.71	5.00		0.769	
111	20.2	6.59 5.53	16.6	3.40	0.914		6.21	5.04	4.70	0.763	0.16
212	20.2	4.22	16.4	3.45	0.916	5.26	5.95	5.07	4.65	0.785	0.14
212	21.0		16.3	3.48	0.937	5.11	6.13	5.16	4.76	0.809	
307	20.5	5.47	16.7	3.55			6.10	5.12	4.78	0.810	0.13
307	20.5	4.76	16.6	3.52	0.944	5.10	6.16	5.17	4.69	0.813	0.12
610	21.3	2.04	17.1	3.62		4.93	6.10	5.07	4.96	0.798	
812	21.3	3.84	16.2	3.34	0.885		5.77	4.96	4.74	0.789	0.09
019	21.8	4.58	16.2	3.25	0.860	4.82	5.78	4.85	4.70	0.786	0.11
	(40 15 0)	N & 05 22.	18.2	3.37	0.834	4.74	6.00	4.88	4.83	0.810	
5	26.1								T		
00	28.1	20.90	24.4	5.53	1.470	7.99	8.76	6.78	6.11	1.010	
75		15.90	25.8	5.86	1.570	8.33	9.50	7.50	6.86	1.090	
75	29.0	13.60	26.2	5.98	1.600	8.30		7.63	7.00	1.140	
50	22.0	14.90	26.3	6.03	1.610	8.50	9.77	7.59	7.03	1.160	
0	27.9	15.90	25.4	5.82	1.560	8.13	9.72	7.64	7.05	1.150	
00	25.2	8.14	23.5	5.46	1.480	7.92	8.96	7.40	6.98	1.070	
50		7.27	22.8	5.26	1.440	7.71	8.86	7.00	6.58	1.070	
	20.6	6.17	21.9	5.14	1.420	7.42	8.68	6.83	6.45	1.050	
50	22.6	6.44	20.7	4.95	1.360	7.08	8.43	6.74	6.36	1.050	
50	22.9	6.60	22.0	5.05	1.390	7.38	8.26	6.87	6.57	1.050	
50	22.0	8.78	20.9	4.91	1.330	7.03	8.37	6.80	6.47	1.050	

Spiv	vak & Wa	sserburg	(1988)	Map # 24	0.4 u	m filtered	samples				
Med-15	5 (36 04.8'N	& 05 59.8'	Nd				1				
75			14.1				 	 			
150			27.9				1	 			
250			28.0								
400			32.4				T				<u> </u>
450			30.3								
500			26.6			•					
Med-4	(36 04.81°N	& 05 59.83	W)								
20			30.8								
Med-9	(35 37.2'N č	& 06 03.8'W)								
2			32.2								
ALB-I	(35 55'N &	04 27'W)									
0			16.4								
EMED-	-I										
0			31.5								
TTO-T	AS 80 (27 5	0.0'N & 30 :	32.0'W)								
0			13.8	Station Ou	tside of N	Med. Sea in N	orth Atlant	ic Map # 9			
389			13.9								
1152			17.9								
1260			16.3								
1990			17.1								
2984		ļ	20.2								
4724			26.3								
								<u> </u>		ļ	
				<u> </u>							
	Henry	et al.	(1994) weste:	rn Me	diterran	nean Se	a,			
Sta. Vill	lefranche			unfilt	ered	samples					
M 40m			27.5							†	
80			30.2								
200	1		26.2								
500			29.5					 	ļ	-	
2000			37.7			-	-				
	1		37.7				-				<u>-</u>
O40	-		54.1								
80			35.7	 							
1000	1		32.0				 				
	OR, deep		26.4							1	
Jia. DA	or, ucep	<u> </u>	20.4	11			<u></u>			<u> </u>	

	Schijf e	t al. (199	5): And	xic brine	s of Bran	nock Bas	in M	ap #25	 		
				n filtered			IVI	ap #25			
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	To	
2998	24.3	10.1	21.2	4.79	1.31		+	L.I		Lu	
3300	26.9	12.0	23.4	5.43	1.48		 		6.78		
3306	24.9	10.2	21.9	4.92	1.40		+	7.22	7.25	1.02	
3310		10.8	23.0	5.19	1.44		-	7.32	7.07	1.06	
3315	25.5	10.1	23.0	5.10	1.43			 	7.14		
3323	1038	3750	970	179	42.9	197	144		7.09		
3329	416	1523	360	75.0	19.2	197	144	94.3	75.9	9.27	
3359	292	860	212	43.3	11.4		 	48.0	45.5	7.09	
3377	394	905	221	46.2	11.8	56.6	48.2	29.7		3.64	
3420	224	564	145	32.0	8.35	30.0	48.2	27.4	-	3.4	
470	178	431	114	25.3	0.55			10.4	24.8	2.86	
470	141	425	111	24.3	6.44			19.4	17.4	2.63	
491	193	476	128	27.4	7.47			22.0	20.6	 	
529	322	616	219	45.3	12.0			22.0	20.6	2.75	
580	310	638	234	48.6	12.6			41.8	32.3		
628	364	599	216	44.8	12.0			42.8 39.8	34.5	3.58	
730	326	671	240	48.4	12.5			39.8	31.5	3.31	
730	318	603	220	45.2	11.4	55.1		35.6			
784	330	582	210	43.5	11.7	33.1		34.0	32,3	3.73	

Table A12: Handbook section 7.1. Anoxic Basins

File name: BLACKSEA.XLS. Concentration of RE in the Black Sea

File name: SAANICH.XLS. Dissolved and suspended concentrations of

RE in Saanich Inlet, British Columbia, Canada

File name: CARIACO.XLS. Concentration of RE in the Cariaco Trench.

See also Chesapeake Bay data in Table A3 files

				A	noxic I	Basins					
blackse	a.xls				Black	Sea	Map #	25		-	
								Ī			
				ONC = p	mol/kg					 	
Depti	ı La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce/Ce
Schi	if et a	l. (1991)	+ -	-	 -	0.2	- 614		-		-
		3 N & 34	E)			0.2 11	II Ilitere	d sample	es		
0		30.8	23.2	5.52	1.45			+	1		J
30	33.1	16.5	21.8	4.76	1.43	7.40	10.00	9.2	9.70	1.48	
40		18.1	23.3	5.04	1.38	7.40	10.00	8.8	 	1.28	0.27
40		18.7	23.6	5.03	1.36			9.0	 	1.37	+
50		12.7	22.8	4.42	1.24			8.5	7.50	1.30	+
60		5.36	16.9	3.56	1.04		+		7.50	1.30	+
70		6.03	16.9	3.69	T .				7.10	+	0.12
85		3.54	12.2	2.58	0.76	4.20	6.40	6.6	+	1.11	0.12
100		3.30	7.35	1.55	0.48			5.5	5.80	0.85	+ 5.25
107		3.95	7.23	1.44	0.45	1	4.20	5.3	5.50	0.95	0.14
110	17.3	8.66	10.7	2.31	0.71		5.80	6.2	6.40	1.06	0.28
115		19.2	15.7	3.29	0.96			8.1	8.30	1.21	1
130		28.9	17.3	3.50		5.70	7.40			1.45	†
160	56.4	109	45.0	9.16	2.56			12.7	12.2	1.67	1.00
175	ļ	136	54.6	11.1	3.10				14.1		1
200	64.5	154	63.1	12.7	3.51				14.8	1.70	1.15
225	20.0	180	70.9	14.7	4.15				16.1		
250	90.3	197	77.5	ļ	4.16					2.06	1.10
300	90.7	205	80.5			1					
400 500	89.7 93.4	198	80.7	16.0	4.50			16.8	17.6	1.99	1.10
700	93.4	185	75.0	15.1	4.00		ļ	15.6	14.9	1.90	1.02
1050		159	67.5	13.7	3.75				14.5		
1350	68.8	114	54.5	11.4	3.01				11.8		
1600	00.0	110	51.7	10.2	2.84		<u> </u>	12.0		1.46	0.87
1800	69.0	100	51.4	10.2	2.77			11.8	11.2	1.44	
2172	68.1	100	48.4 47.0	9.86	2.69	<u> </u>	 	11.1	10.9	1.41	0.78
2172	00.1	102	47.0	9.85	2.69			11.0	11.0	1.36	0.81
Germ	an et. a	l. (1991)		0.4 un	n filtere	ed sam	nles				
		4' N & 34	00' E)					 			
6	18.9	22.2	18.6	4.25	1.27	7.29	10.1	9.23	0.15	1.66	0.67
15	19.0	18.4	18.6	4.23	1.26	7.15	10.1	9.23	9.15 9.01	1.56 1.55	0.57
31	19.4	16.8	19.1	4.30	1.27	7.90	9.62	8.86	8.59	1.33	0.47
50	21.5	5.8	18.6	4.09	1.19	7.05	8.60	8.22	8.48	1.47	0.42
65		2.6	14.4	3.10	0.94	5.60	6.98	7.03	7.23	1.29	0.14
70	19.0	2.8	14.7	3.09		6.40	6.77	6.85	7.02	1.26	0.08
76	16.0	1.6	12.2	2.56	0.77	4.83	6.27	6.37	6.77	1.25	0.05
81	15.5	2.1	11.5	2.41		4.53	5.71	6.30	6.81	1.20	0.07
86	15.6	3.1	11.9	2.46	0.74	4.72	6.05	6.29	6.66	1.23	0.10
91	17.2	9.7	12.9	2.68		4.84	6.00	6.45	6.86	1.23	0.30
96	18.9	13.7	14.3	2.97	0.88	5.16	6.76	6.88	7.21	1.28	0.38
100	20.1	16.5	15.2	3.13	0.77	5.46	6.71	7.39	7.40	1.30	0.43
105	20.5	18.8	15.5	3.23	0.97	I	7.02	7.09	7.35	1.40	0.48
110	24.1	27.5	18.4	3.83	0.93		7.86	7.86	7.46	1.41	0.60
115	25.2	31.1	19.3	3.98	1.15	6.39	8.23	7.93	8.16	1.39	0.65

blacksea.xls

			CC	ONC = pm	ol/kg					T	T
Depth	La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce/Ce*
	-	-	-	-	-	-	-	-	-	1	
120	35.0	55.1	27.1	5.56	1.60	8.39	10.7	9.57	9.51	1.62	0.82
125	39.3	63.1	29.9	6.13	1.43	9.08	11.2	10.3	10.0	1.74	0.84
130	37.0	57.4	29.2	6.02	1.72	8.85	11.0	10.0	10.0	1.69	0.80
150	59.6	106	47.8	9.75	2.26	13.0	15.2	12.9	11.7	2.03	0.92
180	76.0	145	59.3	11.9	3.32	16.1	19.3	14.8	13.9	2.26	0.99
500	96.1	181	76.6	15.4		20.3	21.1	16.1	14.3	2.33	0.97
800	83.0	142	64.1	13.0	3.54	17.6	16.0		12.7	2.03	0.89
1500	64.7	105	50.5	10.4		13.4	15.4	11.5	10.5	1.73	0.84
2153	62.1	96.3	48.1	9.88	2.74	12.2	14.6	11:3	10.1	1.66	0.81
2174	58.3	89.6	45.3	9.01	2.42	12.8	14.1	10.8	9.65	1.59	0.80
2185	62.8	52.9	47.6	9.67	2.74	11.8	14.5	11.2	9.30	1.72	0.44
	Schijf ar	nd De Ba	ar (1995)) Data	from B	osporus		0.22 um	filtration	l	
Sta. HKS											
8		31.7	24.4	5.61	1.66				10.2	1.57	
30		16.9	23.5	5.47	1.56			10.6	9.37		
65		13.8	20.2	4.40	1.31				8.13	1.2	

ſ				T		<u> </u>				1	
					A	noxic B	asins				
saanic											
Saar	iich In	let	C	ONC = pr	nol/kg						
Depth	ı La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce/Ce*
		-	-	-	-	-	+	 -	-	- Du	CO/CC
Ge	rman &	& Elderf	ield (198	39)			+		-		+
			& 123 30.		Map #	76		_			
			12000.	1	Wiap #			 		_	
A. 1	Dissolv	ed Sar	nples [0.4 um	filtere	d]					
								† ` -	_		
0	44.5	73.3	28.4	5.59	1.60	7.38	8.06	6.52	6.01	0.97	0.91
10		20.8	29.1	5.61			7.60	6.61		1.05	+
20		19.7	24.8	4.94							
50		ļ	20.6	4.04	1.18		6.10	5.37		1.11	
75	ļ	8.1	17.0								1
100	31.4	6.8	16.1	2.95	0.86		4.33	3.87	3.90		0.12
125	39.4	6.4	13.2	2.25							0.10
140		 	14.3	2.48	0.69	4.55	3.71	3.34	3.48	0.73	
150		7.4	13.1	2.36	0.71		3.58	3.41	3.73	1	
155	33.1	8.0	13.4	2.43	0.70		4.21	3.38		0.57	0.15
160		ļ	19.2	3.53	0.87	5.62	4.66	3.87		0.67	
165	58.2	38.4	23.3	4.29	1.18	6.08	5.24	3.98	4.71	0.65	0.40
170	<u> </u>	ļ	26.2	4.94	1.36		5.75	4.27		0.82	
175		 	26.9	4.95	1.38	6.69	5.78	4.31		0.75	
180		 	27.8	5.22	1.37	6.81	6.77	4.65		0.72	
190			29.2	5.38	1.49	7.55	6.12	4.51	5.57		
200	53.3	50.0	29.9	5.53	1.50		5.94	4.54			
210		58.2	31.7	5.87	1.58		6.81	4.79	4.31	0.70	0.61
215	54.9	60.2	31.8	5.90		7.48	7.41	5.63		0.91	
213	34.9	60.9	33.0	6.16	1.70	7.47	6.82	4.80	4.32	0.71	0.62
S		l Dandini		10 0	<u> </u>						
o. Sus	репаес	Partici	es [pmo	l/kg of v	vater]						
0	6.8	10.9	5.2	1.1	0.3	1.1	0.9	0.4	0.3	0.07	
20	•	19.8	9.3	2.0	0.5	1.9	1.5	0.7	0.5	0.07	
50	24.4	18.7	10.2	2.2	0.6	2.0	1.8	0.9	0.7	0.07 0.10	
75		61.8	31.5	6.9	1.7	6.6	5.3	2.7	2.1	0.10	
100	39.0	86.0	45.6	9.9	2.5	9.3	7.6	3.8	3.0	0.23	
125		60.2	32.2	6.8	1.7	5.8	5.7	2.9	2.3	0.33	
140	30.2	51.0	27.4	5.9	1.5	6.0	5.1	2.7	2.1	0.55	
150	31.0	62.9	31.6	6.7	1.7	6.4	5.3	2.7	2.1	0.29	
160	23.9	44.9	22.9	4.6			4.3	2.0	1.8	0.27	
165		21.7	12.7	2.8	0.7	2.8	2.2	1.1	0.9		
180		7.9	4.3	0.9	0.2		0.9		0.7	0.05	
205	4.9	9.2	4.4	0.9	0.2	0.9	0.7	0.3	0.3	0.04	

CARIACO.XLS

			1	Δnc	xic Ba	eine				 	1
сагіасо.х	ic	-			VAIC DO	191119				<u> </u>	
		-1 (10.4	0137 0 4				<u> </u>				
		ch (104	U'N & 6:	5 35'W)	1	<pre>iap # :</pre>	27	1			
DeBai	rr et. al.	(1988)	1.	0 um f	iltere	d samr	les				
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce/Ce*
	-	-		-		-		 	 		Carce
5	19.4	17.8	19.6	4.78	1.41	5.60	6.85	5.44	4.31	-	-
50	15.5	12.1	14.8	3.27	0.88	4.15	5.36			0.62	0.44
119		10.3	13.6	3.06	0.79	4.13		4.05	3.51	ļ	0.38
150	15.7	9.5	14.0	3.02	0.79	3.80	4.96	4.01	4.13		ļ
256	11.7	4.0	9.5	1.78	0.79		4.59				0.30
278	11.6	4.4	8.4	1.68		2.77	3.44	2.80	2.53	0.43	0.18
288	12.8	20.7	10.2		0.46	2.45	3.15	2.63	2.48	0.40	0.20
292	15.3	30.4	11.6	2.05	0.56	3.05	3.18		2.54	0.41	0.84
302	15.1	29.9	11.6	2.41	0.63	3.14	3.64	2.93		0.44	1.04
322	16.3	36.5		2.39	0.63	3.09	3.50	2.94	2.65	0.40	1.03
327	16.3	33.3	12.8	2.62	0.70		3.83	3.09	2.72		1.16
337	16.9		11.7	2.48	0.66	3.18	3.84	2.97			1.09
357	19.5	35.5	13.5	2.86	0.64	3.34					1.08
377		41.3	14.4	2.91	0.77	-		3.28	2.82		1.12
	21.4	45.8	16.0	3.11	0.82		4.34	3.32	3.09		1.13
496	21.3	53.7	20.4	3.98	0.97	5.22	4.83	3.74	3.67	0.66	1.23
594		55.1	20.1	4.19		5.42	5.40	3.74			
697	23.7	57.7	21.2	4.44	1.17	5.79	6.12	4.61			1.21
994	23.2	48.8	18.9	3.98	1.04		5.24	3.49	2.94	0.45	1.08
1097		55.4	21.1	4.67	1.17	6.71	6.75	3.92	3.17	0.50	1.00
1319	23.3	51.0	19.7	4.16	1.07	5.66	5.17	3.63	3.19	<u> </u>	1.11

Table A13: Handbook section 7.2. Marine Pore Waters

File name: PW_REE.XLS. Concentration of RE in pore waters

		· · · · · · · · · · · · · · · · · · ·										
pw_REE.xls			Pore	Wate	Cond	centr	ation	S				
Sholkovitz e	t al. (19	89), B	uzzard	s Bay,	MA, U	SA						
					p	mol/k	q					
Sample		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce
												Anom.
1 m Water Co	olumn	49.3	95.3	75.3	7.35	1.72	8.02					0.78
5 m Water Co		48.6	81.5	45.2	7.73	1.71	10	11.2	8.85	8.69	1.42	0.82
14 m Water (74	106	76.9	11.7	2.58		14.8	11	10.5		0.68
Overlying Wa		61.8	145	38.3	6.5	1.4	8.76				1.43	1.3
Pore Water*	Depth	(cm)										
0-3		117	428	93.1	19	3.87	20					1.89
3-6	•	269	693	266	51.9	9.6	49.1	46.4	27.3	25.1		1.24
6- 9		379	1248	306	55.8	14.5		47.4				1.7
9-12		631	1531	595	115	21	104					1.19
12-15		842	2070	788	152	27.7	140					1.21
18-21		950	2359	892	175	32.8	150	132	73.4	67.9	10.5	1.22
24-27		1095	2673	1041	204	37.7	190	155	85.4	77.8		1.19
30-33		1059	2448	1031	201	31.2	192	159	87	80	12.6	1.12
33-36		927	2263	895	176	32.9	159		80		12	1.18
36-39		1764	4104	1733	344	63.1	311					1.12
39-42		1216	2915	1214	245	45.5	229	194	109	104	16.2	1.14
42-45		1300	3308	1245	251	47.3	229	201	116	113	18	1.24
45-48		913	2271	888	178	33.7	169	151	91.4	91	14.9	1.21
51-54		1057	2508	1040	210	39.2	198	172	102	103	16.7	1.14
60-66		896	2361	830	167	32.4	160	152	97.1	103	17.5	1.29
66-72		551	1768	512	102	19.8	102	104	75.4	85.3		1.58
* 0.45 um filtered												
Elderfield an	d Shol	kovitz	(1987)	, Buzz	ards B	ay, M	A, US	Α				
		La	Ce	Nd	Sm	Eu	Gđ	Dy	Er	Yb	Lu	
Overlying seawater 1			91.9	27.2	4.7	1.04			5.71	6.26	1.07	
Overlying seawater 2		42.5	106	27.2	4.13	0.92		7.39				
Pore water* depth (c	:m)											
0-1**		51.8	130	65.2	15	3.38	19.5	26.9	19.7	22.7	3.7	
0-1**			320	62.9	14.8	3.2	20.3	25.1	21.2	23.7	4.0	
1-3			757	245	40	8.46		41.9	29.3	32.3	5.17	
3-5		106	227	107	23.4		26.5		21.9			
5-7		44.6	98.6	49	11	2.02			13.7			
7-9		151	264	121	24.7	5.06		26.3			3.07	
9-11		137	268	114	23.4	4.84	27.1	25.3	17.8	18.6		
11-13			608	274	52.5	10.4				28.6		
13-15			912	356	69.8	13.6	59.8	61.4	35.9	34.2	5.49	
17-19		444	898	358		 			36.1			
23-25			1162	486	98.1	19.7	87.3	83.4	48.8	48.5	7.77	
27-29			1910	815	164	30.8		127	73		10.8	
** replicates, * 0.45 (um filtered											

PW_REE.XLS

						1						
German and	Elderfi	eld (19	89) S	aanich	Inlet							
		La	Ce	Nd	Sm	Eu	Gđ	Dy	Er	Yb	Lu	Ce-
Overlying seawater		55	61	33	6.2	1.7		6.8	4.8			Anom.
Pore water*	denth	(cm)										
0-3	<u>acptii</u>	1217	649	344	84.9							
3-6		479	193	127	40.3	12.3		06 0	82.3		-	
6-9		4.5	244	171	46.2	12.3		135	163			
9-12		533	168	113	35.7			119	163			
12-15		49	48	31	8.6	3.25		119	60.1			
15-18		28	18	13	3.4	1.25			68.1			
* 0.4 um filtered		20	10		3.4	1.25			11.7			
							-					
Sholkovitz et	al. (19	92)										
Chesapeake B	ay 0-1	cm Po	re Wat	er*								
Time-Series												
Date												
10-Feb-88												
12-Apr-88		122	256	214	56.2	14.7	152	72.7	55.9	56	8.28	0.79
17-May-88		226	490	328		20.6			30.7	30	0.20	0.89
14-Jun-88		458	1032	599	148	34.5						0.97
6-Jul-88		815	1727	1154	293	69.2		288	173	145	18.5	0.88
26-Jul-88		962	3728	1221	294	68.9		299	177	148	19.4	1.69
16-Aug-88		1040	2382	1188	262	59.8			2.,,	140	23.4	1.04
21-Sep-88		230	395	295	88	18.7		121	78.5	69.4		0.75
24-Oct-88		227	447	274	68	16.9		89.2	67.3		9.17	0.73
15-Nov-88									07.0	04.3	3.17	0.00
20-Dec-88		152	333	223	55.2	13.9	76.5	73.1	56.2	53.9	7.73	0.90
15-Feb-89		147	284	164	39	10.0		47	37	36	5.10	
*0.22 um filtered									<u> </u>		3113	0.03
Ridout and P	agott (1004)										
Great Meteor			347	+:- C-								
Treat Meteor	East,	MOTEN	WETED.	FIC OC	ean		<u> </u>					
Pore water*,	dept	16.4	28.1	22.3	4.35	1.53		5.66	3.63	6.25		
*0.45 um filtered					***					3.23		Ce-
		La	Ce	Nd	Sm	Eu	Gđ	Dy	Er	Yb	Lu	Anom.

Table A14: Handbook section 7.3. Marine hydrothermal vent waters

File name: VENTS.XLS. Concentration of RE in the hydrothermal waters of the Atlantic and Pacific Oceans.

	LS		ļ. <u> </u>		Hydro	therm	al Wa	ters				
Klinkh	ammer	et. a	1. (1	.994a)								-
J	D	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
982	ICPMS	1280	2100	320	1440	280	3400	220	31	120	21	4
982	TIMS	1353	2161		1459	280	3352	244		122		4
		-										
1636-3	ICPMS	1200	2400	360	1720	330	2400	260	34	140	22	6
1636-3	TIMS	1218	2439		1632	329	1915	251		142		5:
1637-3	ICPMS	800	1250	150	550	92	1070	105	15	68	16	3(
1637-3	TIMS	754	1187		506	92	1047	96		67		2
4450 44	ICDMC	500	500									
1150-11 1150-11	ICPMS TIMS	730	590	54	164	16	280	16	3	14	2	
1150-11	TIIVIS	663	551		165	18	259	17		12		
1683-14	ICPMS	2700	6800	090	2000	200	2600	450				
1683-14	TIMS	2549	6606	980	2800 2635	390 413	2600 2391	450	70	240	35	60
1000 14	111110	2343	0000		2033	413	2391	418		239		64
1160-6	ICPMS	2100	3800	480	2100	470	1970	444	65	300	54	11/
1160-6	TIMS	2196	3718	- 100	2108	439	1878	425	0.5	300	- 34	110 94
					2100	432	10,0	723		300		
1635-3	ICPMS	1500	1000	98	340	40	380	42	6	32	5	13
1635-3	TIMS	1472	904		322	41	353	44		33		16
1158-16	ICPMS	1080	1600	167	588	100	1220	120	18	88	18	45
1158-16	TIMS	964	1483		592	85	1163	125		76	1	34
1160-16	ICPMS	2170	4330	550	1690	360	1870	370	50	270	40	90
1160-16	TIMS	2191	4188		2066	400	1802	397		265		87
1683-5	ICPMS	1610	2660	510								
1683-5	TIMS	1689	3660 3560	510	2300	480	2050	360	57	240	32	65
1000-0	TIIVIO	1087	3300		1888	405	2026	348		221		63
1152-7	ICPMS	1500	1610	190	680	132	1240	100	9	40		
1152-7	TIMS	1163	1683	170	637	96	1128	155	9	40 85	6	15 41
****							1120	133		- 65		41
155-18	ICPMS	6900	14200	1420	4900	430	4500	450	61	220	32	88
155-18	TIMS	6528	13640		4715	416	4404	459		213	- 32	74
												
620-1	ICPMS	1440	1560	140	387	52	1500	30	5	17	4	11
620-1	TIMS	1415	1468		345	49	1451	33		11		5
·	-64											
	of two ana											
TIME - 4	inductively hermal ioni	coupled	piasma n	iass spec	trometry							
1 TIVIS - [neimai ioni	zauon m	ass spectr	ometry								
												
	-				-							
						_						
												

3

Klinkham	mer et. a		b)	<u></u>	Conc =	pmol /	Kg				
D	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
HG 1981	2100	3980	510	1980	450	1980	440	56		49	10
HG 1985	1656	2500	332	1440	340	1390	320	46	250	38	8
NGS 1981	2300	4490	650	2500	440	4600	360	45	200	34	78
OBS 1981	1080	1540	166	610	113	1250	126	18	94	18	40
OBS 1985	1310	1760	210	730	170	1190	140	20	94	16	40
SW 1981	750	600	56	169	16	270	17	3	14	2	
SW 1985	1620	1270	123	414	46	416	48	8	33	7	17
13 N #1	3870	7800	1290	6120	1450	5650	1280	168	780	117	250
13 N #2	4510	11700	1760	7660	1700	4000	1120	168		121	340
13 N #3	10800	15800	1590	5730	1040	1990	920	120	700	116	290
11 N #4	6600	13100	1920	8550	1680	7300	1270	150	770	88	200
11 N #5	2600	4880	610	2500	500	3950	280	48	300	58	127
11 N #6	2870	3630	500	2240	580	1471	470	65	350	57	145
MARK I	2822	7110	1030	2930	410	2720	470	73	250	36	63
MARK II	1680	3820	530	2400	500	2140	375	59	250	33	68
E. HILL 1982	880	745	82	225	29	266	17	3	15	3	5
E. HILL 1985	670	620	63	216	31	228	24	4	15	3	5
S. FIELD 1985	1470	1590	143	390	53	1530	30	5.	17	4	11
Marianas	1950	2140	200	770	155	2900	125	16	77	14	31
Escanaba	870	1020	122	490	112	165	93	13	80	26	36
Endeavor	3105	4221	397	1296	216	678	199	29	158	27	60
AVE. FLUID	2643	4491	585	2350	478	2194	387	53	262	41	96
								- 55	202	71	
						-					
German et. al. (1990): T	AG Fi	eld in N	Atlant	tic			(pmol	/Ka)		
ID	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Ho	Er	
TAG:14	1.90	1.83	0.465	1.87	0.474	0.111	0.383	0.065	0.072	0.194	 -
TAG:18	2.68	2.02	0.683	2.81	0.668	0.111	0.559	0.003	0.072		
TAG:19	2.13	1.69	0.528	2.16	0.509	0.130	0.339	0.101	0.113	0.301	
TAG:22	3.96	2.26	1.009	4.09	0.893	0.130	0.753	0.077	0.087	0.469	
TAG:32T	4.14	2.48	1.039	4.20	1.001	0.265	0.733	0.130	0.179		
TAG:32B	1.99	1.97	0.522	2.02	0.456	0.203	0.813	0.149	0.103	0.434	
TAG:35T	3.73	2.14	0.942	3.78	0.872	0.113	0.775	0.009	0.074	0.184	
TAG:35B	1.69	1.78	0.437	1.71	0.377	0.090	0.775			0.413	
TAG:39T	3.70	2.06	0.944	3.85	0.847	0.090	0.313	0.060	0.067	0.174	
TAG:39B	1.49	1.68	0.390	1.62	0.364			0.143	0.165	0.441	
TAG:43T	3.24	2.15	0.823			0.092	0.308	0.055	0.062	0.160	
ΓAG:43B	0.98	1.61	0.823	1.02	0.754	0.213	0.613	0.121	0.138	0.365	
TAG:48T	0.70	1.59				0.057	0.194	0.035	0.035	0.093	
ΓAG:48B	0.65		0.157	0.62	0.127	0.032	0.112	0.017	0.018	0.044	
FAG:53T	0.03	1.46	0.148	0.59	0.122	0.026	0.111	0.017	0.017	0.046	
rag:53B	3.55		0.160	0.63	0.144	0.032	0.133	0.019	0.020	0.056	
Vent fluid	2700	2.34 5800	0.932	3.98	0.884	0.263	0.733	0.145	0.170	0.445	
Sea water	29.35		750	2700	470	2600	390	69	34	70	
na waiti	27.33	7.26	4.87	20.66	4.13	1.047	5.12	0.795	1.554	4.97	
	-										

	T	T		T		1					
Michard (1989): Mid-	Atlantic	Ridge	1	 			 	-		
(2303)	Ce	Nd	Sm	Eu	Gd	D.,	100	W. 22			
HS 88 5 1	2926					Dy	Er	Yb			\dashv
HS 88 10 1	2320			 							
110 00 10 1	2320	1213	239	1040	203	135	5 48	3	5		
Michard & Alba	arede (1	986): E	ast Pac	ific Ris	e				 		_
	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	 		
13 N 14Ti2	13703			5265		972			5		
13 N 20Ti4	13989			5331		997					
13 N 20Ti4-D	13774		3964	5166		777	37.	20	-	_	
13 N 15Ti2	2212		213	737		111	59	1	-		_
13 N 20Ti1	6959		1264	2521	630	308		-	-		
13 N Seawater	10		7	2		11					
21 N SW 1149-2	3104.6		200	303	242	185					-
21 N SW 1157-2	1627.2	485	53	125	76	51					
21 N HG 1160-2	11476	3397	891	1777							
21 N OBS 1158-2	10135	1872	492	1270	509	418 332		-	_		
	10100	1012	432	12/0	309	332	179	191			
Piepgras & V	Vasserbi	irg (198	(5)		21 N Ea	st Pacifi	r Rise		-		-
		Nd	Sm				Liuse	 	 		
1158-6a		528	100						 	-	
1158-6b		540						 	 		
1156-11		420	81					 	 		
1155-14a		2328	381							_	
155-14b		2328									
155-18a		4567									
155-18b		4567	396								
151-14a		1635	313						ļ		
.151-14b			313								
154-6		970	170						<u> </u>		
160-11		1809	404								
149-11		139	17								
159-9		38	5								+
										 	
Michard et. al. (1	983): E	ast Pac	ific Rise	•	(pmol /	(Kg)				-	+
	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb			
4G2	15630	7765	1191	3475	954	542		156		+	+
2G2	22125	7696	1177	2553	865	443	161	150			+
4G0	1142	569	126	118	32	18	15	10		 	
6G2	14131	7037	1363	2599	1030	720	293	283		1	+
8 G 0	6380	3959	791	2488	725	431	167	110			
3G0-L	7144	3993	785	2442	655	449	167	116			
											1
										1.	1
											
											1
	· .							I			

	La	Ce			ic Rid						
Contropia (00 All	La	Le	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	
Snakepit (23 N)											
1683-14 (1986)	2670		2760	432	2500	437	250	67.0	33.5		
1683-5 (1986)	1760	3710	1970	422	2110	362	230	65.6	37.5	3.96	
1683-7 (1986)	2230	3740	1980	425	2120	397	241	73.0	43.0		
2194-1 (1990)	1410	3140	2080	556	2960	440	286	70.6	39.4	3.90	
2192-6 (1990)	1380	2970	1880	480	2850	402	240	63.3	31.7	3.12	
TAG (26 N)										U. 12	
Black Smokers											
2186-3 (1990)	4240	10200	6740	1400	3690	1240	878	336	249	30.6	
2179-5 (1990)	4610	9960	6990	1450	3470	1330	907	325	229	25.8	
2179-9 (1990)	4130	9070	5250	1040	3390	895	635	253	169	21.4	
2191-5 (1990)	3710	8820	5570	1160	3610	938	685	281	196	22.4	
2191-7 (1990)	3760	9020	5550	1170	3680	988	691	282	196	26.0	
White Smokers								202	130	20.0	
2187-1 (1990)	2570	3460	1370	235	9540	159	96.4	43.7	35.5	3.59	
2187-3 (1990)	2650	3410	1370	214	9850	142	98.1	41.5	38.1	3.81	
2187-6 (1990)	2750	4170	2080	305	8740	229	176.0	75.3	58.6	7.52	
2191-1 (1990)	1820	2640	1120	198	6640	123	71.3	29.8	22.7	3.56	
Seawater						.20	7 7.5	23.0	22.1	3.30	
S-pit (3400m)	31.8	2.70	21.9	4.20	1.08	5.74	6.34	5.50	5.34	0.87	
TAG (3300m)	29.0	5.44	21.4	4.13	1.06	6.25	6.36	5.47	5.42		
TAG (3500m)	36.0	6.62	25.5	5.12	1.32	7.13	8.04	7.15	7.17	0.88	

DOCUMENT LIBRARY

Distribution List for Technical Report Exchange - May 1995

University of California, San Diego SIO Library 0175C 9500 Gilman Drive La Jolla, CA 92093-0175

Hancock Library of Biology & Oceanography Alan Hancock Laboratory University of Southern California University Park Los Angeles, CA 90089-0371

Gifts & Exchanges Library Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, B2Y 4A2, CANADA

Commander International Ice Patrol 1082 Shennecossett Road Groton, CT 06340-6095

NOAA/EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Research Library U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822

Marine Resources Information Center Building E38-320 MIT Cambridge, MA 02139

Library Lamont-Doherty Geological Observatory Columbia University Palisades, NY z10964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882 Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library Naval Oceanographic Office Building 1003 South 1002 Balch Blvd. Stennis Space Center, MS, 39522-5001

Library Institute of Ocean Sciences P.O. Box 6000 Sidney, B.C. V8L 4B2 CANADA

National Oceanographic Library Southampton Oceanography Centre European Way Southampton SO14 3ZH UK

The Librarian CSIRO Marine Laboratories G.P.O. Box 1538 Hobart, Tasmania AUSTRALIA 7001

Library Proudman Oceanographic Laboratory Bidston Observatory Birkenhead Merseyside L43 7 RA UNITED KINGDOM

IFREMER Centre de Brest Service Documentation - Publications BP 70 29280 PLOUZANE FRANCE Ý

REPORT DOCUMENTATION PAGE	1. REPORT NO. WHOI-96-13	2.	3. Recipient's A	accession No.
4. Title and Subtitle A Compilation of the R the Oceans	are Earth Element Composition o	f Rivers, Estuaries and	5. Report Date Nover 6.	mber 1996
7. Author(s) Edward R. Sholko	witz			Organization Rept. No.
9. Performing Organization Name and	Address		10. Project/Task	
Woods Hole Oceanographic Woods Hole, Massachusetts	11. Contract(C) (C) (G)	or Grant(G) No.		
12. Sponsoring Organization Name an				ort & Period Covered ical Report
Woods Hole Oceanographic	Institution		14.	Toport
15. Supplementary Notes This report should be cited	as: Woods Hole Oceanog. Inst. Tech. Re	ept., WHOI-96-13.		
16. Abstract (Limit: 200 words)				
lanthanides in natural water chemical and biogeochemic The article by Byrne and composition of rivers, estua Handbook article, a compilare cited.	le, Marine Chemistry and Geochemistry of s, describes the major features of the lanth al processes controlling the speciation and Sholkovitz (1996) refers to a large set of ries, seawater, marine pore waters and mation of concentration data for natural was	nanides in rivers, estuaries d distribution of the lantha published and unplublish arine hydrothermal waters.	and oceans an anides in the oled data on the . In order to co	ad discusses the cean. rare earth (RE) conserve space in the
17. Document Analysis a. Descriptor rare earth elements natural waters	rs	·		
oceanic composition b. Identifiers/Open-Ended Terms				
c. COSATI Field/Group				
18. Availability Statement Approved for public re	elease; distribution unlimited.	19. Security Class (This Re UNCLASSIFIED		21. No. of Pages 76
reproved for public to	acase, distribution unminicu.	20. Security Class (This Pa	ige)	22. Price