```
In [81]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import collections
import seaborn as sns
%matplotlib inline
In [82]:
movies df = pd.read csv("movies.csv")
movies df.head(3)
Out[82]:
   movield
                         title
                                                          genres
                 Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
        2
                  Jumanji (1995)
                                           Adventure|Children|Fantasy
1
               Grumpier Old Men
2
        3
                                                  Comedy|Romance
                        (1995)
In [83]:
# inspecting various genres
genres = movies df['genres']
genres.head()
Out[83]:
0
     Adventure | Animation | Children | Comedy | Fantasy
1
                        Adventure | Children | Fantasy
2
                                     Comedy|Romance
3
                              Comedy|Drama|Romance
4
                                              Comedy
Name: genres, dtype: object
In [84]:
genre list = ""
for index,row in movies df.iterrows():
        genre list += row.genres + "|"
#split the string into a list of values
genre_list_split = genre_list.split('|')
#de-duplicate values
new list = list(set(genre list split))
#remove the value that is blank
new_list.remove('')
#inspect list of genres
new_list
Out[84]:
['Drama',
 'Action',
 'Adventure',
 'Western',
 'War',
 'Romance',
 'Fantasy',
 'Film-Noir',
 'Animation',
 'Comedy',
 'Mystery',
 '(no genres listed)',
 'Thriller',
 'Sci-Fi',
 'Horror',
```

```
'Documentary',
 'Children',
  'Musical',
  'IMAX',
 'Crime']
In [85]:
#Enriching the movies dataset by adding the various genres columns.
movies with genres = movies df.copy()
for genre in new_list :
     movies_with_genres[genre] = movies_with_genres.apply(lambda _:int(genre in _.genres), axis = 1)
In [86]:
movies with genres.head()
Out[86]:
   movield
               title
                                                 genres Drama Action Adventure Western War Romance Fantasy ... My
               Toy
                    Adventure|Animation|Children|Comedy|Fantasy
                                                                   0
 0
              Story
                                                             0
                                                                                     0
                                                                                          0
                                                                                                   0
              (1995)
             Jumanii
                                  Adventure|Children|Fantasy
 1
         2
                                                             0
                                                                   0
                                                                             1
                                                                                     0
                                                                                          0
                                                                                                   0
                                                                                                           1 ...
             (1995)
           Grumpier
 2
            Old Men
                                         Comedy|Romance
                                                             0
                                                                   0
                                                                             0
                                                                                     0
                                                                                          0
                                                                                                           0
              (1995)
             Waiting
 3
         4 to Exhale
                                    Comedy|Drama|Romance
                                                                   0
                                                                             0
                                                                                     0
                                                                                          0
                                                                                                    1
                                                                                                           0 ...
                                                             1
              (1995)
            Father of
            the Bride
         5
                                                             0
                                                                   0
                                                                             0
                                                                                     0
                                                                                          0
                                                                                                   0
                                                                                                           0 ...
                                                 Comedy
              Part II
              (1995)
5 rows × 23 columns
4
In [87]:
genre df = pd.DataFrame(movies df['genres'].str.split('|').tolist(), index = movies df['movieId']).
genre_df = genre_df.reset_index([0, 'movieId'])
genre df.columns = ['movieId', 'genres']
genre df.head(5)
Out[87]:
   movield
              genres
 0
         1 Adventure
 1
         1 Animation
 2
             Children
 3
         1
             Comedy
             Fantasy
```

```
In [88]:
```

```
ratings_data = pd.read_csv('ratings.csv')
ratings_data.head(3)
```

Out[88]:

```
useriu movielu raimy
                       umeatamp
   userld movield
                rating
                     1112486027
_
                  3.5 1112484676
 1
             29
       1
             32
                  3.5 1112484819
In [89]:
ratings df = ratings data.iloc[:1000000,:]
In [90]:
R df = ratings df.pivot(index = 'userId', columns = 'movieId', values = 'rating').fillna(0)
R df.head()
Out[90]:
 movield 1 2 3 4 5 6 7 8 9 10 ... 129350 129354 129428 129707 130052 130073 130219 130462 130490
  userld
                                                                                               0.0
     1 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
                                                                                                     0.0
                                                  0.0
                                                        0.0
                                                               0.0
                                                                     0.0
                                                                            0.0
                                                                                  0.0
                                                                                        0.0
     0.0
                                                               0.0
                                                                     0.0
                                                                            0.0
                                                                                  0.0
                                                                                        0.0
                                                                                               0.0
                                                                                                     0.0
                                                  0.0
     0.0
                                                                                                     0.0
                                                  0.0
                                                        0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                  0.0
                                                                                        0.0
     4 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 4.0 ...
                                                  0.0
                                                        0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                  0.0
                                                                                        0.0
                                                                                               0.0
                                                                                                     0.0
     0.0
                                                        0.0
                                                               0.0
                                                                     0.0
                                                                            0.0
                                                                                  0.0
                                                                                        0.0
                                                                                               0.0
                                                                                                     0.0
5 rows × 13950 columns
4
In [91]:
R = R df.as matrix()
user ratings mean = np.mean(R, axis = 1)
R_demeaned = R - user_ratings_mean.reshape(-1, 1)
print(R demeaned)
C:\Users\Mahesh\Anaconda3\lib\site-packages\ipykernel launcher.py:1: FutureWarning: Method
.as matrix will be removed in a future version. Use .values instead.
  """Entry point for launching an IPython kernel.
 [[-0.04695341 \quad 3.45304659 \quad -0.04695341 \quad \dots \quad -0.04695341 \quad -0.04695341 ] 
  -0.046953411
 [-0.01749104 -0.01749104 \ 3.98250896 \ \dots \ -0.01749104 \ -0.01749104
  -0.017491041
 [ 3.94473118 -0.05526882 -0.05526882 ... -0.05526882 -0.05526882
  -0.05526882]
 [\ 3.98089606\ -0.01910394\ -0.01910394\ \dots\ -0.01910394\ -0.01910394
  -0.019103941
 [-0.00637993 -0.00637993 -0.00637993 ... -0.00637993 -0.00637993
  -0.00637993]
 [\ 3.95189964 \ \ 2.95189964 \ \ \ldots \ -0.04810036 \ \ -0.04810036
  -0.04810036]]
In [92]:
\textbf{from scipy.sparse.linalg import} \ svds
U, sigma, Vt = svds(R demeaned, k = 40)
In [93]:
```

sigma = np.diag(sigma)

In [94]:

```
a= np.dot(np.dot(U, sigma), Vt)
In [951:
Out[95]:
array([[ 2.41509819e-01, 5.78733093e-01, -1.09100617e-01, ...,
         -4.36291925e-02, -3.55178729e-02, -4.45711236e-02],
       [ 1.02445223e+00, 1.61417266e-01, 2.56404718e-01, ...,
        -1.57224318e-02, -1.15934980e-02, -2.03722657e-02],
       [ 1.56739099e+00, 6.46318865e-01, -2.54342028e-01, ...,
        -4.77301009e-02, -4.30731942e-02, -5.61806399e-02],
       [ 2.47055295e+00, 1.67294205e-01, -8.62565327e-03, ...,
        -1.87575383e-02, -2.58865345e-02, -1.60058753e-02],
       [ 5.13571138e-01, -8.58154449e-02, -4.10802131e-01, ..., -1.19769189e-03, -1.08907895e-02, -3.90409010e-04], [ 4.01643834e+00, 2.35048783e+00, 1.85342661e+00, ...,
        -5.39784336e-02, -4.48139004e-02, -5.94621263e-02]])
In [96]:
 user ratings mean.reshape(-1, 1)
Out[96]:
array([[0.04695341],
       [0.01749104],
       [0.05526882],
       [0.01910394],
       [0.00637993],
       [0.04810036]])
In [97]:
all user predicted ratings = np.dot(np.dot(U, sigma), Vt) + user ratings mean.reshape(-1, 1)
print(all user predicted ratings)
[[ 2.88463224e-01 6.25686498e-01 -6.21472122e-02 ... 3.32421252e-03
   1.14355321e-02 2.38228146e-03]
 [ 1.04194327e+00 1.78908305e-01 2.73895757e-01 ... 1.76860765e-03
   5.89754143e-03 -2.88122632e-03]
 [ 1.62265981e+00 7.01587683e-01 -1.99073211e-01 ... 7.53871632e-03
   1.21956231e-02 -9.11822661e-04]
 -6.78259188e-03 3.09806734e-03]
 [ 5.19951067e-01 -7.94355166e-02 -4.04422203e-01 ... 5.18223642e-03
  -4.51086121e-03 5.98951931e-03]
 [ 4.06453870e+00 2.39858819e+00 1.90152697e+00 ... -5.87807521e-03
   3.28645805e-03 -1.13617678e-02]]
In [98]:
preds df = pd.DataFrame(all user predicted ratings, columns = R df.columns)
preds df.head()
Out[98]:
movield
                                             5
                                                    6
                                                                                   10 ... 129350
                                                                                                  129354
     0 0.288463 0.625686 0.062147 0.100269 0.293077 0.529618 0.335913 0.046073 0.133599 0.009705 ... 0.011139 0.000930 (
     1 1.041943 0.178908 0.273896 0.081557 0.193555 0.152205 0.397419 0.006470 0.062602 0.065872 ... 0.001868 0.007790 0
     2 1.622660 0.701588 0.199073 0.034604 0.151640 0.498565 0.091586 0.029022 0.105952 0.028441 ... 0.003473 0.019103 (
```

```
1 0.626432 0.394443 0.028005 0.288115 0.670836 0.061897 0.086608 0.181399 0.856339 ... 129350
      4 2.378414 1.211986 1.289963 0.099752 1.211267 0.823061 1.442084 0.136348 0.224241 1.585773 ... 0.000469
5 rows × 13950 columns
                                                                                                                   F
```

```
In [99]:
```

```
def recommend movies (predictions df, userId, movies df, original ratings df, num recommendations=5)
    # Get and sort the user's predictions
    user_row_number = userId - 1 # UserID starts at 1, not 0
    sorted_user_predictions = predictions_df.iloc[user_row_number].sort_values(ascending=False) # U
serID starts at 1
    # Get the user's data and merge in the movie information.
    user_data = original_ratings_df[original_ratings_df.userId == (userId)]
    user full = (user data.merge(movies df, how = 'left', left on = 'movieId', right on = 'movieId'
                     sort values(['rating'], ascending=False)
    print('User {0} has already rated {1} movies.'.format(userId, user full.shape[0]))
    print('Recommending highest {0} predicted ratings movies not already
rated.'.format(num recommendations))
    # Recommend the highest predicted rating movies that the user hasn't seen yet.
    recommendations = (movies_df[~movies_df['movieId'].isin(user_full['movieId'])].
        merge(pd.DataFrame(sorted user predictions).reset index(), how = 'left',
               left on = 'movieId',
               right_on = 'movieId').
         rename(columns = {user row number: 'Predictions')).
         sort_values('Predictions', ascending = False).
                      iloc[:num_recommendations, :-1]
    return user full, recommendations
```

In [100]:

```
already_rated, predictions = recommend_movies(preds_df, 2, movies_df, ratings_df, 10)
```

User 2 has already rated 61 movies. Recommending highest 10 predicted ratings movies not already rated.

In [101]:

```
already_rated.head(10)
```

Out[101]:

	userld	movield	rating	timestamp	title	genres
60	2	3959	5.0	974820659	Time Machine, The (1960)	Action Adventure Sci-Fi
15	2	1196	5.0	974821014	Star Wars: Episode V - The Empire Strikes Back	Action Adventure Sci-Fi
33	2	1974	5.0	974820598	Friday the 13th (1980)	Horror Mystery Thriller
45	2	3450	5.0	974820846	Grumpy Old Men (1993)	Comedy
1	2	62	5.0	974820598	Mr. Holland's Opus (1995)	Drama
46	2	3513	5.0	974820659	Rules of Engagement (2000)	Drama Thriller
26	2	1748	5.0	974821014	Dark City (1998)	Adventure Film-Noir Sci-Fi Thriller
23	2	1544	5.0	974820943	Lost World: Jurassic Park, The (1997)	Action Adventure Sci-Fi Thriller
22	2	1356	5.0	974820598	Star Trek: First Contact (1996)	Action Adventure Sci-Fi Thriller
21	2	1327	5.0	974820846	Amityville Horror, The (1979)	Drama Horror Mystery Thriller

```
In [102]:
predictions
Out[102]:
      movield
                                                   title
                                                                          genres
 1159
         1200
                                            Aliens (1986)
                                                        Action|Adventure|Horror|Sci-Fi
 1194
         1240
                                    Terminator, The (1984)
                                                                Action|Sci-Fi|Thriller
 2448
         2571
                                        Matrix, The (1999)
                                                                Action|Sci-Fi|Thriller
  30
           32
                    Twelve Monkeys (a.k.a. 12 Monkeys) (1995)
                                                               Mystery|Sci-Fi|Thriller
 1909
         2028
                                 Saving Private Ryan (1998)
                                                                  Action|Drama|War
                    Star Wars: Episode I - The Phantom Menace
 2505
         2628
                                                              Action|Adventure|Sci-Fi
                 Raiders of the Lost Ark (Indiana Jones and the...
                                                                   Action|Adventure
 1157
         1198
 345
          356
                                      Forrest Gump (1994)
                                                        Comedy|Drama|Romance|War
                              E.T. the Extra-Terrestrial (1982)
                                                               Children|Drama|Sci-Fi
 1061
         1097
 756
          780
                         Independence Day (a.k.a. ID4) (1996) Action|Adventure|Sci-Fi|Thriller
In [103]:
#Just taking the required columns
ratings = ratings_data[['userId', 'movieId', 'rating']]
In [104]:
ratings.shape
Out[104]:
(20000263, 3)
In [105]:
ratings = ratings.iloc[:1000000,:]
In [106]:
#get ordered list of movieIds
item indices = pd.DataFrame(sorted(list(set(ratings['movieId']))),columns=['movieId'])
#add in data frame index value to data frame
item indices['movie index']=item indices.index
#inspect data frame
item indices.head()
Out[106]:
   movield movie_index
0
                     0
         1
 1
         2
                     1
2
         3
                     2
 3
         4
                     3
         5
In [107]:
#get ordered list of movieIds
user indices = pd.DataFrame(sorted(list(set(ratings['userId']))),columns=['userId'])
#add in data frame index value to data frame
user indices['user_index'] = user_indices.index
#inspect data frame
user indices head()
```

```
user_indices.nead()
```

Out[107]:

	userld	user_index
0	1	0
1	2	1
2	3	2
3	4	3
4	5	4

In [108]:

```
#join the movie indices
df_with_index = pd.merge(ratings,item_indices,on='movieId')
#join the user indices
df_with_index=pd.merge(df_with_index,user_indices,on='userId')
#inspec the data frame
df_with_index.head()
```

Out[108]:

	userId	movield	rating	movie_index	user_index
0	1	2	3.5	1	0
1	1	29	3.5	28	0
2	1	32	3.5	31	0
3	1	47	3.5	46	0
4	1	50	3.5	49	0

In [109]:

```
#import train_test_split module
from sklearn.model_selection import train_test_split
#take 80% as the training set and 20% as the test set
df_train, df_test= train_test_split(df_with_index,test_size=0.2)
print(len(df_train))
print(len(df_test))
```

800000 200000

In [110]:

```
df_train.head()
```

Out[110]:

	userld	movield	rating	movie_index	user_index
84976	1568	7022	3.5	6571	1567
801399	5133	8228	3.5	7267	5132
400699	1667	2936	4.0	2774	1666
575717	3821	316	3.5	310	3820
55808	982	6858	3.5	6425	981

In [111]:

```
df_test.head()
```

Out[111]:

	userld	movield	rating	movie_index	user_index
177220	3251	38038	3.0	9039	3250
361392	6366	3105	4.0	2935	6365
639998	5726	3683	5.0	3467	5725
847599	4484	1284	4.0	1227	4483
548242	2918	1939	4.0	1797	2917

In [112]:

```
n_users = ratings.userId.unique().shape[0]
n_items = ratings.movieId.unique().shape[0]
print(n_users)
print(n_items)
```

6743 13950

In [113]:

```
#Create two user-item matrices, one for training and another for testing
train_data_matrix = np.zeros((n_users, n_items))
    #for every line in the data
for line in df_train.itertuples():
    #set the value in the column and row to
    #line[1] is userId, line[2] is movieId and line[3] is rating, line[4] is movie_index and
line[5] is user_index
    train_data_matrix[line[5], line[4]] = line[3]
train_data_matrix.shape
```

Out[113]:

(6743, 13950)

In [114]:

```
#Create two user-item matrices, one for training and another for testing
test_data_matrix = np.zeros((n_users, n_items))
    #for every line in the data

for line in df_test[:1].itertuples():
    #set the value in the column and row to
    #line[1] is userId, line[2] is movieId and line[3] is rating, line[4] is movie_index and
line[5] is user_index
    #print(line[2])
    test_data_matrix[line[5], line[4]] = line[3]
    #train_data_matrix[line['movieId'], line['userId']] = line['rating']
test_data_matrix.shape
```

Out[114]:

(6743, 13950)

In [115]:

```
pd.DataFrame(train_data_matrix).head()
```

Out[115]:

	0	1	2	3	4	5	6	7	8	9	 13940	13941	13942	13943	13944	13945	13946	13947	13948	13949
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	4.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

F ----- v 420E0 --!-----

```
In [116]:
df_train['rating'].max()
Out[116]:
5.0
In [117]:
from sklearn.metrics import mean squared error
from math import sqrt
def rmse(prediction, ground truth):
    #select prediction values that are non-zero and flatten into 1 array
    prediction = prediction[ground truth.nonzero()].flatten()
    #select test values that are non-zero and flatten into 1 array
    ground truth = ground truth[ground truth.nonzero()].flatten()
    #return RMSE between values
    return sqrt (mean_squared_error(prediction, ground_truth))
In [118]:
\#Calculate the rmse sscore of SVD using different values of k (latent features)
rmse list = []
for i in [1,2,5,20,40,60,100,200]:
    #apply svd to the test data
    u,s,vt = svds(train data matrix,k=i)
    #get diagonal matrix
    s diag matrix=np.diag(s)
    #predict x with dot product of u s diag and vt
    X pred = np.dot(np.dot(u,s diag matrix),vt)
    #calculate rmse score of matrix factorisation predictions
    rmse score = rmse(X pred, test data matrix)
    rmse list.append(rmse score)
    print("Matrix Factorisation with " + str(i) +" latent features has a RMSE of " + str(rmse score
))
Matrix Factorisation with 1 latent features has a RMSE of 2.4970794033324313
Matrix Factorisation with 2 latent features has a RMSE of 2.1618495099787776
Matrix Factorisation with 5 latent features has a RMSE of 1.8733869001830206
Matrix Factorisation with 20 latent features has a RMSE of 1.7853130663941765
Matrix Factorisation with 40 latent features has a RMSE of 2.6168758523072304
Matrix Factorisation with 60 latent features has a RMSE of 2.66013353235069
Matrix Factorisation with 100 latent features has a RMSE of 1.8426839656094136
Matrix Factorisation with 200 latent features has a RMSE of 1.918122414192567
In [119]:
#Convert predictions to a DataFrame
mf pred = pd.DataFrame(X_pred)
mf pred.head()
Out[119]:
        0
                        2
                                3
                                               5
                                                       6
                                                               7
                                                                       8
                                                                               9 ... 13940 13941
                                                                                                 13942
0 0.218255 1.313368 0.246001 0.023728 0.155889 0.852599 0.054993 0.074503 0.020425 0.421483 ...
                                                                                      0.0
                                                                                           0.0 0.003133 0.0
1 0.449365 0.110443 0.883769 0.013483 0.309498 0.459796 0.258331 0.022881 0.112002 0.391264 ...
                                                                                      0.0
                                                                                           0.0 0.027892 0.0
2 3.343079 0.131079 0.031574 0.265863 0.368169 0.339018 0.326889 0.034546 0.034879 0.074379 ...
                                                                                      0.0
                                                                                           0.0
                                                                                               0.007011 0.0
```

3 0.212770 0.607811 0.298388 0.008983 0.127687 1.495635 0.111081 0.082198 0.072506 2.220253 ...

0.0

0.010224 0.0

0.0 0.009203 0.0

10050

```
5 rows × 13950 columns
```

4

In [120]:

```
df_names = pd.merge(ratings,movies_df,on='movieId')
df_names.head()
```

Out[120]:

	userld	movield	rating	title	genres
0	1	2	3.5	Jumanji (1995)	Adventure Children Fantasy
1	5	2	3.0	Jumanji (1995)	Adventure Children Fantasy
2	13	2	3.0	Jumanji (1995)	Adventure Children Fantasy
3	29	2	3.0	Jumanji (1995)	Adventure Children Fantasy
4	34	2	3.0	Jumanji (1995)	Adventure Children Fantasy

In [121]:

```
#choose a user ID
user_id = 2
#get movies rated by this user id
users_movies = df_names.loc[df_names["userId"]==user_id]
#print how many ratings user has made
print("User ID : " + str(user_id) + " has already rated " + str(len(users_movies)) + " movies")
#list movies that have been rated
users_movies
```

User ID : 2 has already rated 61 movies

Out[121]:

	userld	movield	rating	title	genres
12071	2	260	5.0	Star Wars: Episode IV - A New Hope (1977)	Action Adventure Sci-Fi
25092	2	541	5.0	Blade Runner (1982)	Action Sci-Fi Thriller
26619	2	589	5.0	Terminator 2: Judgment Day (1991)	Action Sci-Fi
34185	2	924	5.0	2001: A Space Odyssey (1968)	Adventure Drama Sci-Fi
46020	2	1196	5.0	Star Wars: Episode V - The Empire Strikes Back	Action Adventure Sci-Fi
53763	2	1214	5.0	Alien (1979)	Horror Sci-Fi
61214	2	1249	5.0	Femme Nikita, La (Nikita) (1990)	Action Crime Romance Thriller
62860	2	1259	5.0	Stand by Me (1986)	Adventure Drama
81161	2	2291	2.0	Edward Scissorhands (1990)	Drama Fantasy Romance
125843	2	3	4.0	Grumpier Old Men (1995)	Comedy Romance
126494	2	62	5.0	Mr. Holland's Opus (1995)	Drama
127485	2	70	5.0	From Dusk Till Dawn (1996)	Action Comedy Horror Thriller
128142	2	110	4.0	Braveheart (1995)	Action Drama War
130809	2	242	3.0	Farinelli: il castrato (1994)	Drama Musical
130871	2	266	5.0	Legends of the Fall (1994)	Drama Romance War Western
131640	2	469	3.0	House of the Spirits, The (1993)	Drama Romance
131722	2	480	5.0	Jurassic Park (1993)	Action Adventure Sci-Fi Thriller
134701	2	891	2.0	Halloween: The Curse of Michael Myers (Hallowe	Horror Thriller
134796	2	908	4.0	North by Northwest (1959)	Action Adventure Mystery Romance Thriller
135582	2	1121	3.0	Glory Daze (1995)	Drama
135591	2	1210	5.0	Star Wars: Episode VI - Return of the Jedi (1983)	Action Adventure Sci-Fi
137945	2	1270	5.0	Back to the Future (1985)	Adventure Comedy Sci-Fi
140030	2	1327	5.0	Amityville Horror, The (1979)	Drama Horror Mystery Thriller
140180	2	1356	5.0	Star Trek: First Contact (1996)	Action Adventure Sci-Fi Thriller

141153	userld	movield	rating	Lost World: Jurassic Park, The (1987)	Action Adventure Sci-FilThriller
141890	2	1580	4.0	Men in Black (a.k.a. MIB) (1997)	Action Comedy Sci-Fi
143714	2	1673	4.0	Boogie Nights (1997)	Drama
144410	2	1748	5.0	Dark City (1998)	Adventure Film-Noir Sci-Fi Thriller
144986	2	1965	3.0	Repo Man (1984)	Comedy Sci-Fi
145317	2	1969	2.0	Nightmare on Elm Street 2: Freddy's Revenge, A	Horror
145550	2	1971	2.0	Nightmare on Elm Street 4: The Dream Master, A	Horror Thriller
145652	2	1972	2.0	Nightmare on Elm Street 5: The Dream Child, A	Horror
145734	2	1973	3.0	Freddy's Dead: The Final Nightmare (Nightmare	Horror
145810	2	1974	5.0	Friday the 13th (1980)	Horror Mystery Thriller
146002	2	1986	2.0	Halloween 5: The Revenge of Michael Myers (1989)	Horror
146052	2	2454	4.0	Fly, The (1958)	Horror Mystery Sci-Fi
146219	2	2455	4.0	Fly, The (1986)	Drama Horror Sci-Fi Thriller
146724	2	2791	2.0	Airplane! (1980)	Comedy
147627	2	2858	3.0	American Beauty (1999)	Comedy Drama
149861	2	2948	5.0	From Russia with Love (1963)	Action Adventure Thriller
150209	2	2951	4.0	Fistful of Dollars, A (Per un pugno di dollari	Action Western
150570	2	3150	4.0	War Zone, The (1999)	Drama Thriller
150589	2	3159	3.0	Fantasia 2000 (1999)	Animation Children Musical IMAX
150809	2	3173	4.0	Any Given Sunday (1999)	Drama
151012	2	3450	5.0	Grumpy Old Men (1993)	Comedy
151300	2	3513	5.0	Rules of Engagement (2000)	Drama Thriller
151416	2	3534	3.0	28 Days (2000)	Drama
151651	2	3555	4.0	U-571 (2000)	Action Thriller War
151993	2	3565	3.0	Where the Heart Is (2000)	Comedy Drama
152087	2	3703	4.0	Road Warrior, The (Mad Max 2) (1981)	Action Adventure Sci-Fi
152502	2	3753	4.0	Patriot, The (2000)	Action Drama War
153137	2	3917	4.0	Hellraiser (1987)	Horror
153247	2	3918	3.0	Hellbound: Hellraiser II (1988)	Horror
153302	2	3923	4.0	Return of the Fly (1959)	Horror Sci-Fi
153324	2	3926	4.0	Voyage to the Bottom of the Sea (1961)	Adventure Sci-Fi
153353	2	3927	5.0	Fantastic Voyage (1966)	Adventure Sci-Fi
153432	2	3928	5.0	Abbott and Costello Meet Frankenstein (1948)	Comedy Horror
153479	2	3930	5.0	Creature from the Black Lagoon, The (1954)	Adventure Horror Sci-Fi
153529	2	3937	4.0	Runaway (1984)	Sci-Fi Thriller
153556	2	3959	5.0	Time Machine, The (1960)	Action Adventure Sci-Fi

61 rows × 5 columns

In [122]:

```
user_index = df_train.loc[df_train["userId"]==user_id]['user_index'][:1].values[0]
#get movie ratings predicted for this user and sort by highest rating prediction
sorted_user_predictions = pd.DataFrame (mf_pred.iloc[user_index].sort_values(ascending=False))
#rename the columns
sorted_user_predictions.columns=['ratings']
#save the index values as movie id
sorted_user_predictions['movieId']=sorted_user_predictions.index
print("Top 10 predictions for User " + str(user_id))
#display the top 10 predictions for this user
pd.merge(sorted_user_predictions, movies_df, on = 'movieId')[:10]
```

Out[122]:

	ratings	movield	title	genres
0	5.117545	254	Jefferson in Paris (1995)	Drama
1	5.108069	470	House Party 3 (1994)	Comedy
2	4.726569	1155	Invitation, The (Zaproszenie) (1986)	Drama
3	4.713203	1142	Get Over It (1996)	Drama
4	4.687417	577	Andre (1994)	Adventure Children Drama
5	4.156220	531	Secret Garden, The (1993)	Children Drama
6	4.120356	1159	Love in Bloom (1935)	Romance
7	3.901330	107	Muppet Treasure Island (1996)	Adventure Children Comedy Musical
8	3.609280	1489	Cats Don't Dance (1997)	Animation Children Musical
9	2.787896	2697	My Son the Fanatic (1997)	Comedy Drama Romance

In []: