2000

3

-

3

1

2

M

Fifth Semester B.E. Makeup Examination, January 2020 FORMAL LANGUAGES AND AUTOMATA THEORY

Time: 3 Hours

Max. Marks: 100

Instructions: 1. Answer ANY FIVE full questions from Each UNIT

Assume any missing data

UNIT - I

CO PO

What is Automata? With Neat schematic representation explain the working of Automata?

Construct DFA for the following Languages

(01)(08)

i.

Set of all strings over $\Sigma = \{0,1\}$ starting with substring 01 ii.

Set of all strings over $\Sigma = \{0,1\}$ ending with substring 011 iii.

L= { $|w| \mod 3 \Leftrightarrow 0$, where $w \in \Sigma^*$ for $\Sigma = \{a, b\}$ } L= { $|w| \mod 3 \ge |w| \mod 2$, where $w \in \Sigma^*$ for $\Sigma = \{a, b\}$ }

(03)(01)(03)(12)

OR

Define E-NFA and Construct the E-NFA with four states for the following Language and Compute $\delta^*(q0, aabba)$

 $L = \{a^n \mid n > = 0 \} \ U \{ b^n a \mid n > = 1 \}$

(03)(02)

b. Apply Subset Construction Scheme by lazy evaluation and Convert the following E-NFA into an equivalent DFA

δ	3	a	b	C
$\rightarrow p$	Φ	{p}	{q} ^	{r}
q	{p}	{q}	{r}	Φ
*r	{q}	{r}	Φ	{p}

(03)(01)(12)(12)

M

UNIT - II Define Regular expression and build the Regular expression for the following languages a.

i. To accept a language consisting of strings of a's and b's of odd length.

To accept a language consisting of strings of 0's and 1's that do not end with 01. ii.

iii. $\langle L = \{ \text{wuv} \mid u, v \in \Sigma^* \text{ for } \Sigma = \{a, b\} \text{ and } |v| = 2 \}$

 $L=\{ |w| \mod 3 = |w| \mod 2, \text{ where } w \in \Sigma^* \text{ for } \Sigma=\{a,b\} \}$

Apply State elimination method to identify the Regular Expression for the following finite Automata

(03)(02)(02)(10)

OR

State and prove the Pumping Lemma for Regular Languages. Apply Pumping Lemma and discover 2 that the following language is Non-Regular

 $L = \{ 0^n \mid n \text{ is perfect Square} \}$

(03)(03)(12)(10)

Note: L (Level), CO (Course Outcome), PO (Programme Outcome), M (Marks)

Fifth Semester B.E. Semester End Examination, Dec./Jan. 2019-20

7.	Comester End Examination, De	
Time: 3 Hours	FORMAL LANGUAGES AND AUTOMATA	THEORY

Max. Marks: 100

Instructions: 1. Answer any one full question from each UNIT.

Each full question of a UNIT carries 20 marks

UNIT - I

CO PO M L

Define the following with an example for each.

(i). Alphabet (ii). Strings (iii). Power of an alphabet (iv). Transition table

(v). Transition diagram

(1) (1)(1)(05)

b, Design a DFA to accept the language $L=\{w \mid w \text{ is of even length and begins with } 01\}.$

(3)

C, Design a NFA which accepts strings of 0'and 1's that have the symbol 1 in the second last position. Convert NFA to equivalent DFA.

> (3) (1)(3)(08)

OR

a. Design a NFA to accept strings of 0's and 1's that have 1 in third last position. Define Epsilon closures with an example.

(3)(1)(3)

b. Design a ε-NFA to accept the decimal number consisting of an optional+ or - sign, a string of digits, a decimal point and another string of digits, either this string of digits or string after decimal point can be empty but atleast one of the two strings is nonempty.

(6)

(3)(08)

Design a DFA to accept the language $L=\{awa \mid w \in (a+b)^*\}$

(3)(1)(3)(05)

UNIT - II

 \mathbf{L} COPO M

Prove that, If L=L(A) for some DFA A, then there is a regular expression R such that L=L(R). a.

(3) (2)(1)(06)

b. Convert regular expression (0+1)*1(0+1) to a ε -NFA.

> (3)(2)(1)(06)

Design a NFA which accepts all strings containing 110. Convert it to a regular expression. C.

> (3)(2)(08)

OR

Minimize the following DFA using table filling algorithm.

	δ	0	1
	$\rightarrow A$	В	F
	B *C	G	C
	*C	A	C
	D	C	G
	E	Н	F
1	F	С	G
	G	G	Е
	H	G	C

(10)(6)(1)(2)

Show that $L=\{a^nb^n \mid n\geq 0\}$ is not regular. b.

> (3)(05)(2)(1)

Note: L (Level), CO (Course Outcome), PO (Programme Outcome), M (Marks)

	_		State and Prove Pumping Lemma for regular languages.	(3 1	′ ($\hat{\mathbf{G}}$	1) (05) PO M
	5	a	Define Contact F	for the f	ollowi	ng Lan	640
			Define Context Free Grammar and Construct Context Free Grammar i. Set of strings of a's and b's starting with substring 'ab' ii. L= { a^n b^m c^k n=m+k, for k, m>=0}	(03			(06)
		b	S \rightarrow A B A \rightarrow 0A ϵ				(
			$P \rightarrow OD \cup P$	ina sti	rings		Ę
			Determine leftmost, rightmost derivations and Parse Tree for the follo a) 00101 b) 1001	(03	/	2) (02	2) (10)
		C.	Prove that the family of Context free Languages is under UNION.	(05)) (03	3) (12	2) (04)
			OR		C	etrina (aah 🗪 🦪
•	6	a.	Define Ambiguous Grammar and Prove that the following grammar is	ambigu	ous for	String	dab
			$S \rightarrow aS \mid aSbS \mid \epsilon$	(05)			
		b.	Simplify the following grammar by removing redundancies. $S \rightarrow ASB \mid \epsilon$				
			$A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$	(04)	(03)) (02)) (10) C
Time		_	Organize the following grammar into an equivalent Grammar in Choms	sky Nor	mal Fo	rm – C	NF 🥥
		C.	S→ Aba AB A → aab	•			
			$B \rightarrow b$				
			B - 7 0	(03)	(03)	(03)	(04)
			UNIT - IV	${f L}$	CO	PO	M 🧶
7		a.	Design a turing machine to accept the language $L=\{0^n1^n \mid n>=1\}$.	(6)	(4)	(1)	
		b.	Show that the PDA to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ have } a \in A \text{ for } a \in A \text{ and } b \in A \text{ for } a \in $	ing equ	al num	ber of a	a's d
			b's } is nondeterministic.	(2)	(4)	(1)	(08)
		C.	Define deterministic PDA. OR	(1)	(4)	(1)	(02)
•			Design a turing machine to accept the language consisting of all palindron	mes of (o's and	1's.	
8	4	d.	Design a PDA to accept the language $L(M) = \{wCw^R \mid w \in (a+b)^* \text{ where } v \in (a+b)^* \}$	(6)	(4)	(1)	(10) a final
A. Jan	rengt	400	state.	(6)	(4)	(1)	(10)
			UNIT -V	L	CO	PO	M
9	а		Explain the structure of lex program with an example.	(2)	(5)	(3)	(07)
	b	4	Write a word counting lex program.	(3)	(5)	(3)	(07)
	C	. I	Explain yacc parser with an example.	(2)	(5)	(1)	(06)
			Note: L (Level),CO (Course Outcome), PO (Programme Outcome), M (Marks)				0

(2) (5) (1) (07)

b. What is regular expression? Explain characters that form a regular expression.

(2)

(5) (1) (08)

c. Write lex specification for decimal numbers.

(3) (5) (1) (05)

Fifth Semester B.E. Makeup Examination, January 2019 FORMAL LANGUAGES AND AUTOMATA THEORY

Time: 3 Hours

1

Max. Marks: 100

1. UNIT III & V are Compulsory. Instructions:

Answer any one full question from remaining each UNITS.

UNIT - I

 \mathbf{M} PO CO \mathbf{L}

a. Rephrase the formal definition of DFA.

(2) (1) **(1)**

Design a DFA to accept the language L= {w|w is of the form x01y for some strings x and y b. consisting of 0's and 1's. Compute ô*(q0, 00001111)

(06)**(1)** (3)

Design an NFA which accepts exactly those strings that have the symbol 1 in the second last C. position. Convert NFA to equivalent DFA using Subset Construction scheme by lazy evaluation.

(10)(4)

OR

Design a DFA to accept strings of a's and b's except those containing the substring aab 2 a.

(2) (1)

Design a ϵ -NFA to accept the decimal number consisting of an optional + or - sign, a string of b. digits, a decimal point and another string of digits, either this string of digits or string after decimal point can be empty but atleast one of the two strings is nonempty.

(08)**(2) (4) (1)**

Design a DFA to accept the language L={awa | w ∈ (a+b)*} C.

(06)**(1) (2)** (4)

UNIT - II

 \mathbf{co} PO \mathbf{M} \mathbf{L}

Define regular expression. Find regular expression for the following: 3 a.

i) $L = \{ a^n b^m | (m+n) \text{ is even } \}$

ii) Strings of a's and b's whose 4th symbol from the end is 'b'.

iii) Strings of 0's and 1's having no two consecutive zeros.

(07)(2) **(2)** (3)

Show that the language $L=\{a^n \mid n \text{ is prime }\}$ is not regular. b.

(1) (05)(3)

Translate the following DFA to a regular expression using state-elimination method. c.

δ	0	1
>*q ₀	q_1	q_2
q_1	q_3	q_0
q_2	\mathbf{q}_0	q_3
q_3	q_3	q_3

(1)(08)**(2) (2)**

OR

State and prove pumping lemma for regular languages. a.

(3) (3) (1)(06)

Minimize the following DFA using table-filling algorithm. 0 δ F В -->A C G В C A *C G C D F Η E G C F E G G C G Η (3) Prove that if L and M are regular languages, then so is $L \cap M$. (3) (3)PO CO L Define Context Free Grammar. Obtain a context free grammar to generate the following language. $I = \{a^{n-3} b^n\}_{n=2}^{n-3}\}$ 5 a. (06)(3) $L = \{ a^{n-3} b^n | n \ge 3 \}$ Consider the context free grammar with productions. $E \rightarrow E + E$ $E \rightarrow I$ E→E*E $E \rightarrow (E)$ $I \rightarrow b$ $I \rightarrow a$ $I \rightarrow Ib$ I→Ia I→I1 $I \rightarrow I0$ Write leftmost derivation and parse tree for the string (a101+b1)*(a1+b). (07) (3)Define Useless variables and Eliminate Useless variables from the following grammar. $S \rightarrow aA \mid bB$ $A \rightarrow aA \mid a$ $B \rightarrow bB$ $D \rightarrow ab \mid Ea$ $E \rightarrow aC \mid d$ **(07) € (2) (3) (2)** PO CO \mathbf{L} UNIT - IV Define PDA. Describe the language accepted by PDA. a. (4) (05)**(2)** (12)Design a PDA for the language L={ $a^{2n} b^n | n \ge 1$ }. Draw the transition diagram and also write the b. sequence of ID's for the string for n=3 (10)(3) (4)(3) Define Turing machine. Explain with a neat diagram, the working of a basic Turing machine. **(2) (4)** (12)OR Explain the working of PDA with a diagram. (2)(4) (12)Design a Turing machine to accept the following language $L=L=\{a^n b^n c^n | n>=1 \}.$ Also indicate the moves made by turing machine for the string n=2. (3) **(4)** (3) **UNIT-V** \mathbf{L} CO PO Explain the structure of Lex program with an example. 8 **(2)** (5)(3)Note: L (Level), CO (Course Outcome), PO (Programme Outcome), M (Marks)

- b. Write a word counting Lex program.
- c. Explain shift reduce parsing.

- (2) (5) (3) (05)
- (2) (5) (12 (05)

3	JSN			\top		S 150	CS52/1	6CS	552/1	61852	2
3		Fifth Semester B.E	Seme	ster F	nd Evar	mination	ı. Dec/J	lan i	2018-	19	
3		FORMAL LAN	GUAG	SES A	ND A	UTOM	ATA T	HE	ORY	•	
3	Րime։	3 Hours				•			Max.	Marks:	100
3		Instructions: 1. UNI	T-III an	d UNIT	-V are co	ompulsor	y	+ :			
5		2. Ansv	ver any (one full	question	from ren	naining	units	5		
0	1 _{. a}		JNIT -	ĺ				L	CO	PO	M
0			Languag	ge				(1)	(1)	(12)	(6)
)	b	Design DFA for the following: i) To accept the strings of a's and	d b's end	ling with	ı 'abb'.						
)		ii) L={ w such that w mod 4=0						(3)	(1)	(3)	(7)
)	C.	Convert the following ε-NFA to			1	, , , , , ,	1				
			δ	3	a	{p, r}					
			>p q	{r} Φ	{q} {p}	Φ	_				
			*r	{p,	{r}	{p}					
				q}		I		(3)	(1)	(3)	(7)
		### ### ### ##########################	OR		.			(3)	(1)	(5)	
2	a.	Define finite automata. List the a					1	(1)	(1)	(12)	(5)
	b.	Design a DFA to accept the bina	ry numb	ers whi	ch are di	ivisible b	y 4.				
								(3)	(1)	(3)	(5)
	c.	Design an NFA to accept the stri Convert the same NFA to DFA.	ngs of 0	s and 1	's whose	e 2 nd symb	ool from	the			
			NIT – I	ıı				(3) L	(1) CO	(3) PO	(10) M
3	a.	State and Prove Pumping Lemma			guages.			(2)	(2)	(3)	(6)
	b.	Convert regular expression (0+1)	*1(0+1)) to a ε-	NFA.						(6)
	c.	Design a NFA which accepts all	strings	contair	ning 110	. Conver	t it to a	(2) regu	(2) ılar ex	(3) pressio	
	0.	state elimination method.						(4)	(2)		(8)
			OR					L	CO	PO	M
4	a.	Show that $L=\{a^nb^n \mid n\geq 0\}$ is not	regular.			a.V	-	(3)	(2)	(2)	(5)

	0.	Thin mize the following DFA using table filling algorithm. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				0
		$\rightarrow A$ B F				c
		B G C				
		*C A C D C G				
		D C G E H F	el.			
		F C G				C
		G G E				
		H G C	(3)	(2)	<i></i>	10)
		Prove that If L is a regular language over an alphabet Σ then $\overline{L} = \Sigma^*$ - L is	also a	regular	langua	ge. (5.)
	c.	Prove that II L is a regular language over an alphabet Σ then L = Σ^* - L is	(5)	(2)	(2)	M (
		UNIT - III	L	CO	PO	141
5	a.	Define context-free-grammar(CFG). Construct CFG for the following lar	iguage	es:		•
		1) $L = \{ w \mid w \in (0+1) * 110 \}$				(
		ii) $L = \{ 0^{n+1}1^n \mid n \ge 1 \}$	(2)	(2)	(2)	(6)
	,	W. S. d. J. M. D. D. C.	(3)		()	
	b.	Write the LMD, RMD and parse tree for the string '+*-xyxy' using the gr $E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$	allilla			
		E> TEE TEE TEE X Y	(3)	(2)	(2)	(6)
	c.	Convert the following grammar into CNF.	()			
		S> 0A 1B				
		A> 0AA 1S 1				
		B> 1BB 0S 0	(2)	(3)	(3)	(8)
			(3)	(3) CO	PO	M
_		UNIT - IV	L	CO	10	
6	a.	Define Push Down Automata.	(1)	(4)	(2)	(3)
	b.	Design a PDA to accept the language $L(M)=\{wCw^R \mid w \in (a+b)^* \text{ who}\}$				• •
	υ.	final state.				-
			(3)	(4)	(2)	(8)
	c.	Show that the PDA to accept the language $L(M) = \{w \mid w \in (a,b)^* \text{ and } $	n _a (w)	$> n_b(w)$)	
		nondeterministic.	(-)		(2)	(0)
			(3)		(2)	(9)
		OR	L	CO	PO	M
7	a.	Explain the Programming techniques for Turing machines.	(2)		(2)	(0)
	L	Define Turing machine	(2)) (4)	(2)	(8)
	b.	Define Turing machine.	/1	\ (4)	(2)	(2)
	c.	Design a Turing machine to accept the language consisting of all palin	(1)) (4)		(2)
	C.	Design a furning machine to accept the language consisting of an parti-	(3).			
		UNIT -V	. (3		` '	(10)
0		Explain the structure of Lex with an example.	1	· CC	PO	M
8	a.	Explain the structure of Eex with all example.	C)) (5)	(10)	
	b.	Explain parser-lexer communication.	(,	2) (5)	(12)	(6)
	U.	DAPIANI PAROS. TONOL COMMINIMENTONIA	ľ	2) (5) /1-	
	c.	Write a yacc program to recognize an arithmetic expression involving	ب) Loner:	2) (5 ators ±		()
	C.					d /.
			(3) (5	(3)	(8)