Ejercicios Grupos Topológicos

Cristo Daniel Alvarado

12 de marzo de 2024

Índice general

1. Ejercicios Capítulo 1

 $\mathbf{2}$

Capítulo 1

Ejercicios Capítulo 1

Ejercicio 1.0.1

Sea H un subgrupo denso abeliano de un grupo topológico G. Entonces, G es abeliano.

Demostración:

Por la proposición 1.3.2 (4), como ab = ba para todo $a, b \in H$, entonces se sigue que ab = ba para todo $a, b \in \overline{H}$. Como H es denso en G es tiene entonces que $\overline{H} = G$, es decir:

$$ab = ba, \quad \forall a, b \in G$$

por tanto, G es abeliano.

Ejercicio 1.0.2

Suponga que H es un subgrupo denso de un grupo topológico G y $n \in \mathbb{N}$. Pruebe que si $x^n = e_G$ para todo $x \in H$, entonces los elementos del grupo G satisfacen la misma ecuación.

Demostración:

Sea $f:G\to G$ tal que $x\mapsto x^n.$ Esta es una función continua para la que cual se tiene que el conjunto

$$A = f^{-1}(e_G)$$

$$= \left\{ x \in G \middle| f(x) = e_G \right\}$$

$$= \left\{ x \in G \middle| x^n = e_G \right\}$$

es cerrado, pero $H \subseteq A$, luego $G = \overline{H} \subseteq A$, es decir que

$$x^n = e_g, \quad \forall x \in G$$

Definición 1.0.1

Sea G un grupo. Decimos que G es **grupo de torsión** si para todo $g \in G$ existe $n_g \in G$ tal que $g^{n_g} = e_G$.

Ejercicio 1.0.3

Sean G un grupo topológico y H un subgrupo denso de G tal que todo elemento $h \in H$ es de orden finito. ¿Es G de torsión?

Solución:

No creo, pa. Ahí para la otra te contesto, padre.

Ejercicio 1.0.4

Demuestre que si S es denso en un grupo topológico G y O es abierto no vacío en G, entonces $O \cdot S = S \cdot O = G$.

Demostración:

3