Раздел 8. Экстремальные задачи в ЛНП

Лекция 16 Экстремальные задачи в ЛНП.

Определения экстремумов.

 $\Phi: X \to E^1$ – функционал, $M \subset X$ – подмножество.

 x_0 – точка локального максимума Φ на M, если $x_0 \in M$ и

$$\exists r > 0 \, \forall x \in S_r(x_0) \cap M : \Phi(x) \leq \Phi(x_0)$$

(для минимума $\Phi(x) \ge \Phi(x_0)$).

Если M=X – безусловный экстремум (минимум, максимум), если $M\varsubsetneq X$ – условный.

Глобальный максимум:

$$\forall x \in M : \Phi(x) \leq \Phi(x_0)$$

(для минимума $\Phi(x) \ge \Phi(x_0)$). Опять может быть условный и безусловный.

В приведённых выражениях неравенства нестрогие, экстремум тоже нестрогий. Если заменить строгими неравенствами при $x \neq x_0$ – будут строгие экстремумы.

Таким образом, экстремумы бывают: максимум и минимум; локальный и глобальный; строгий и нестрогий; условный и безусловный. Любые сочетания.

Как всегда, "точка" = элемент пространства (например, функция).

Замечание. В матанализе различается точка экстремума (эта точка должна быть внутренней) и наибольшее (наименьшее) значение функции. Здесь мы не будем этого различия, и допускается, что x_0 – граничная точка M.

Замечание. Задачи на поиск экстремума (максимума, минимума) называются задачами оптимизации. В частности, различают задачи безусловной и условной оптимизации (поиск безусловного и условного экстремума).

Замечание. Изолированные точки M — точки локального минимума и максимума одновременно. Дальше не рассматриваем.

Замечание. Если M – единичная сфера или единичный замкнутый шар, а функционал Φ линейный, то значение этого функционала в точке максимума (если она существует) – это его норма. Если $\Phi(x) = \|Ax\|$, где A – линейный ограниченный оператор, то то значение такого функционала в точке максимума на M (если она существует) – это норма оператора A.

Необходимое условие экстремума.

Пусть x(t) – абстрактная функция, $x(0)=x_0, \forall t\in [0,1]: x(t)\in M$. Образ функции – кривая в M, начинающаяся в точке x_0 . Рассмотрим числовую функцию $\varphi(t)=\Phi(x(t))$. Если x_0 – точка локального максимума (минимума) Φ , то функция φ при t=0 также должна иметь локальный максимум (минимум). Если функция φ имеет одностороннюю производную $\varphi'_+(0)$ при t=0, то эта производная должна быть неположительна (неотрицательна).

Пусть теперь M – выпуклое множество. Тогда в качестве x(t) можно взять функцию x_0+th , где $h=z-x_0,\,z\in M$, образом которой при $t\in [0,1]$ является отрезок, соединяющий x_0 и z и, в силу выпуклости M, целиком лежащий в этом множестве. В этом случае

$$\varphi'_{+}(0) = \frac{\partial \Phi(x)}{\partial h} \Big|_{x=x_0} = ||h|| \operatorname{Var}[\Phi(x_0, h^0)],$$

где $h^0 = h/\|h\| = (z-x_0)/\|z-x_0\|$ – единичный вектор в направлении $z-x_0$. Отсюда вытекает, что необходимым устовием того, что x_0 является точкой локального максимума (минимума) функционала Φ , является неположительность (неотрицательность) его вариаций вдоль всех допустимых направлений, для которых такие вариации существуют.

Замечание. Допустиме направления – направления, ведущие из x_0 в точки, принадлежащие M.

Если функционал дифференцируем по Фреше в точке x_0 , то

$$\frac{\partial \Phi(x)}{\partial h}\Big|_{x=x_0} = \Phi'(x_0)(h) = ||h||\Phi'(x_0)(h^0).$$

Назовём точку x_0 внутренней точкой M, если наряду с произвольным допустимым направлением h^0 также допустимым будет и противоположное ему направление $-h^0$.

(!!! Замечание. Это **не соответствует** определению внутренней точки множества, данному ранее. Например, для продпространства, согласно новому определению, все точки будут внутренними, а по старому — все точки граничные, если подпространство не совпадает с X: любая окрестность содержит точки из дополнения.)

В этом случае, поскольку $\Phi'(x_0)(-h) = -\Phi'(x_0)(h)$, мы получаем, что во внутренней точке экстремума

$$\Phi'(x_0)h = 0$$

для произвольного допустимого вектора h. Такое условие называется условием стационарности, а точка x_0 , в которой оно выполняется – стационарной точкой функционала Φ на M или, если h любое, на всём X.

Замечание. Если M=X (безусловный экстремум), то отсюда следует $\Phi'(x_0)=O$.

Замечание. Если M представляет собою некоторую гиперповерхность в X (невыпуклое, вообще говоря, множество), то h – касательные направления. Множество касательных векторов образует касательное подпространство в пространстве X.

Частный случай: гильбертово пространство. Действие функционала $\Phi'(x_0)$ на элемент h представляется в виде скаларного произведения

$$\Phi'(x_0)(h) = (\operatorname{grad} \Phi(x_0), h).$$

Необходимое условие максимума (минимума) — неположительность (неотрицательность) (grad $\Phi(x_0), h$) в допустимых направлениях. Для внутренних точек необходимое условие экстремума — равенство (grad $\Phi(x_0), h$) = 0. В случае безусловного экстремума grad $\Phi(x_0) = 0$.

Элементы вариационного исчисления.

Пусть $X = C^1[a, b]$, а Φ – интегральный функционал вида

$$\Phi(x) = \int_a^b f(s, x(s), \dot{x}(s)) ds.$$

Классическое вариациационное исчисление занимается, в частности, задачами на поиск максимума или минимума функционалов такого вида.

Замечание. Раньше переменную интегрирования всегда незывали t, но сейчас t у нас занято, поэтому используем s.

 Φ ункцию f(s,u,v) будем считать достаточно гладкой. Нам потребуется непрерывность по первой переменной, непрерывная дифференцируемость по второй и третьей, причём частные производные будем считать равномерно липшицевыми:

$$|f'_u(s, u_1, v_1) - f'_u(s, u_2, v_2)| \le L(|u_1 - u_2| + |v_1 - v_2|)$$

$$|f'_v(s, u_1, v_1) - f'_v(s, u_2, v_2)| \le L(|u_1 - u_2| + |v_1 - v_2|)$$

(постоянная Липшица L не зависит от s, u u v). В этом случае

$$f(s, u + \xi, v + \eta) - f(s, u, v) = f'_u(s, u, v)\xi + f'_v(s, u, v)\eta + \omega(s, u, v, \xi, \eta),$$

где $|\omega(s, u, v, \xi, \eta)| \le L(|\xi| + |\eta|)^2$ (докажите!)

Замечание. Штрихи при производных будем опускать: $f'_u = f_u$, $f'_v = f_v$.

Замечание. Часто вместо f_u и f_v пишут f_x и $f_{\dot{x}}$.

Утверждение. Функционал Φ дифференцируем по Фреше. Действительно,

$$\begin{split} \Phi(x+h) &= \Phi(x) = \\ &= \int_a^b f(s,x(s)+h(s),\dot{x}(s)+\dot{h}(s))\,ds - \int_a^b f(s,x(s),\dot{x}(s))\,ds = \\ &= \int_a^b [f(s,x(s)+h(s),\dot{x}(s)+\dot{h}(s)) - f(s,x(s),\dot{x}(s))]\,ds = \\ &= \int_a^b [f_x(s,x(s),\dot{x}(s))h(s) + f_{\dot{x}}(s,x(s),\dot{x}(s))\dot{h}(s) + \omega(s,x(s),\dot{x}(s),h(s),\dot{h}(s))]\,ds = \\ &= \int_a^b [f_x(s,x(s),\dot{x}(s))h(s) + f_{\dot{x}}(s,x(s),\dot{x}(s))\dot{h}(s)]\,ds + \hat{\omega}(x,h) = \\ &= d\Phi(x,h) + \hat{\omega}(x,h)\,, \end{split}$$

где

$$d\Phi(x,h) = \int_{a}^{b} [f_{x}(s,x(s),\dot{x}(s))h(s) + f_{\dot{x}}(s,x(s),\dot{x}(s))\dot{h}(s)] ds -$$

непрерывный линейный относительно h функционал, дифференциал Фреше, а

$$\hat{\omega}(x,h) = \int_a^b \omega(s,x(s),\dot{x}(s),h(s),\dot{h}(s)) \, ds -$$

поправочное слагаемое,

$$|\hat{\omega}(x,h)| \le L(b-a) ||h||_{C^1[a,b]}^2 = o(||h||_{C^1[a,b]}).$$

(Замечание. Липшицевость является несколько избыточным требованием, но оно удобно для получения оценок и почти всегда выполняется.)

Теперь мы переходим к рассмотрению задачи на поиск экстремума функционала Φ либо на всём пространстве (задача безусловной оптимизации), либо на некотором множестве M (задача условной оптимизации). В этом случае необходимым условием экстремума является обращение в нуль дифференциала Φ реше либо на всех функциях $h \in C^1[a,b]$, либо на допустимых, определяемых конкретным видом множества M (в последнем случае речь идёт о внутренних точках множества в оговоренном выше смысле, в противном случае нужно рассматривать неравенства для вариаций).

Далее мы рассмотрим две задачи классического вариационного исчисления: задачу с закремлёнными концами и задачу со свободными концами. Либо одну, либо другую обычно называют "простейшей задачей вариационного исчисления но разные авторы делают разный выбор (одна проще по постановке, другая с точки зрения решения), поэтому мы не будем пользоваться этой формулировкой.

Задача со свободными концами: найти точки экстремума функционала $\Phi(x)$ среди всех $x \in C^1[a,b]$. Это задача на безусловный экстремум, и необходимым условием такого экстремума является выполнение равенства

$$\int_{a}^{b} [f_x(s, x(s), \dot{x}(s))h(s) + f_{\dot{x}}(s, x(s), \dot{x}(s))\dot{h}(s)] ds = 0$$

при всех $h \in C^1[a,b]$.

Задача с закреплёнными концами: найти точки экстремума функционала $\Phi(x)$ среди всех $x\in C^1[a,b]$, удовлетворяющих краевым условиям

$$x(a) = A, \qquad x(b) = B,$$

где A и B — заданные числа. Это уже задача условной оптимизации, множество M — множество функций из $C^1[a,b]$, удовлетворяющих краевым условиям. Если хотя бы одно из чисел A или B отлично от нуля, условия неоднородные, и это не подпространство. Гиперплоскость, смещённое подпространство. Выпуклое множество (проверить!).

Ограничения на h: функция x+h должна удовлетворять краевым условиям:

$$x(a) + h(a) = A$$
, $x(b) + h(b) = B$.

Поскольку сама функция x должна этим условиям удовлетворять, отсюда следует, что

$$h(a) = h(b) = 0.$$

Это условие уже однородно и определяет подпространство $C_0^1[a,b]$ (замкнутое – проверить). Соответственно, интеграл, являющийся дифференциалом Фреше, должен обращаться в нуль на любом элементе этого подпространства $h \in C_0^1[a,b]$.

Для того, чтобы двинуться дальше в рассмотрении этих двух задач, нам понадобится доказать несколько важных вспомогательных утверждений.

Лемма Лагранжа.

Пусть $u \in C[a,b]$, и для любого $h \in C_0^1[a,b]$ справедливо равенство

$$\int_a^b u(s)h(s)\,ds = 0.$$

Тогда функция u тождественно равна нулю.

(Замечание. Использованная здесь буква u не имеет отношения к формальному параметру функции f.)

Докажем, что для произвольной функции $u \in C[a,b]$, не равной нулю тождественно, найдётся функция $h \in C_0^1[a,b]$ такая, что интеграл не будет равен нулю.

Действительно, пусть $u(s_0) \neq 0$, где s_0 – некоторая внутренняя точка. Тогда в силу непрерывности u найдётся окрестность этой точки $(\alpha, \beta) \subset (a, b)$, в которой u имеет тот же знак, что и $u(s_0)$. Строим функцию $h \in C_0^1[a, b]$, локализованную на (α, β) и положительную на этом интервале (такие существуют – например, квадратичный сплайн – построить!). Произведение непрерывно и знакопостоянно на (α, β) , нуль за пределами интервала, интеграл не равен нулю.

Если s_0 , где $u(s_0) \neq 0$ – граничная точка, то по непрерывности найдётся и внутренняя. Лемма доказана.

Лемма Дюбуа-Реймона.

Пусть $v \in C[a,b]$, и для любого $h \in C_0^1[a,b]$ справедливо равенство

$$\int_a^b v(s)\dot{h}(s)\,ds = 0.$$

Тогда функция v – константа.

(Замечание. Использованная здесь буква v не имеет отношения к формальному параметру функции f.)

Убедимся сначала, что для константы интеграл равен нулю. Действительно, если $v=C,\,$ то

$$\int_a^b C\dot{h}(s) ds = Ch|_a^b = 0.$$

Теперь приступим к доказательству. Заметим, что если g – некоторая функция на [a,b] то

$$\exists h_g \in C_0^1[a,b] : g(s) = \dot{h}_g(s) \Leftrightarrow g \in C[a,b] \wedge \int_a^b g(s) \, ds = 0.$$

Действительно, если $g(s)=\dot{h}_g(s),$ то $g\in C[a,b]$ в силу непрерывной дифференцируемости $h_g,$ и

$$\int_{a}^{b} g(s) ds = \int_{a}^{b} \dot{h}_{g}(s) ds = h_{g}|_{a}^{b} = 0.$$

Обратно, если g – непрерывная функция с нулевым средним, то

$$h_g(s) = \int_a^s g(\tau) d\tau \in C_0^1[a, b],$$

поскольку эта функция непрерывно дифференцируема и обращается в нуль на границах.

Теперь обозначим

$$C = \frac{1}{b-a} \int_{a}^{b} v(s) \, ds -$$

среднее значение функции v на отрезке, и

$$g(s) = v(s) - C -$$

непрерывная функция с нулевым средним (проверить!). Тогда для любого $h \in C_0^1[a,b]$, согласно условию леммы,

$$\int_{a}^{b} g(s)\dot{h}(s) ds = \int_{a}^{b} (v(s) - C)\dot{h}(s) ds = \int_{a}^{b} v(s)\dot{h}(s) ds = 0.$$

Выберем $h(s) = h_g(s)$, тогда

$$\int_{a}^{b} g(s)\dot{h}_{g}(s) ds = \int_{a}^{b} g^{2}(s) ds = 0,$$

Поскольку подынтегральная функция непрерывна и неотрицательна, отсюда следует, что она тождественно равна нулю на отрезке [a,b], т.е.

$$g^{2}(s) = (v(s) - C)^{2} = 0$$
,

откуда

$$v(s) = C$$
,

что и требовалось доказать.

Обобщённая лемма Дюбуа-Реймона.

(Замечание. Некоторые авторы под леммой Дюбуа-Реймона понимают именно эту лемму.)

Пусть $u,v\in C[a,b]$, и для любого $h\in C^1_0[a,b]$ справедливо равенство

$$\int_{a}^{b} (u(s)h(s) + v(s)\dot{h}(s)) ds = 0.$$

Тогда функция $v \in C^1[a,b]$, и

$$u(s) = \dot{v}(s)$$
.

Убедимся сначала, что в случае $u(s)=\dot{v}(s)$ интеграл действительно обращается в нуль. Действительно,

$$\int_{a}^{b} (u(s)h(s) + v(s)\dot{h}(s)) ds = \int_{a}^{b} (\dot{v}(s)h(s) + v(s)\dot{h}(s)) ds =$$

$$= \int_{a}^{b} (v(s)h(s)) ds = (v(s)h(s))|_{a}^{b} = 0.$$

Теперь приступим к доказательству. Обозначим

$$w(s) = \int_{a}^{s} u(\tau) d\tau,$$

тогда $u(s) = \dot{w}(s)$, и $\forall h \in C_0^1[a,b]$:

$$\int_{a}^{b} (u(s)h(s) + v(s)\dot{h}(s)) ds = \int_{a}^{b} (\dot{w}(s)h(s) + v(s)\dot{h}(s)) ds =$$

$$= (w(s)h(s))|_{a}^{b} + \int_{a}^{b} (-w(s)\dot{h}(s) + v(s)\dot{h}(s)) ds = \int_{a}^{b} (-w(s) + v(s))\dot{h}(s) ds = 0.$$

Тогда, согласно лемме Рюбуа-Реймона,

$$-w(s) + v(s) = C,$$

т.е.

$$v(s) = w(s) + C.$$

Тогда $v \in C^1[a,b]$, как сумма $w \in C^1[a,b]$ и конствиты. Продифференцировав полученное равенство, получаем:

$$\dot{v}(s) = \dot{w}(s) = u(s) \,,$$

что и требовалось доказать.

Замечание. Если бы было заранее известно, что $v \in C^1[a,b]$, доказательство можно было бы сократить:

$$\begin{split} & \int_a^b (u(s)h(s) + v(s)\dot{h}(s)) \, ds = \\ & = \left. (v(s)h(s)) \right|_a^b + \int_a^b (u(s)h(s) - \dot{v}(s)h(s)) \, ds = \\ & = \int_a^b (u(s) - \dot{v}(s))h(s) \, ds = 0 \, , \end{split}$$

и тогда по лемме Лагранжа

$$u(s) - \dot{v}(s) = 0.$$

Теперь возвращаемся к рассмотрению задачи с закреплёнными концами. Необходимое условие экстремума в этой задаче в точности повторяет условия из обобщённой леммы Дюбуа-Реймона при

$$u(s) = f_x(s, x(s), \dot{x}(s)),$$

 $v(s) = f_{\dot{x}}(s, x(s), \dot{x}(s)).$

Поэтому в силу результата леммы имеем:

$$\frac{d}{ds}f_{\dot{x}}(s,x(s),\dot{x}(s)) = f_x(s,x(s),\dot{x}(s)).$$

Принято это уравнение, именуемое уравнением Эйлера (или уравнением Эйлера-Лагранжа) записывать в виде

$$-\frac{d}{ds}f_{\dot{x}}(s, x(s), \dot{x}(s)) + f_x(s, x(s), \dot{x}(s)) = 0.$$

Произвольное решение этого уравнения (независимо от того, удовлетворяет ли оно кравевым условиям) называют экстремалью исходного функционала.

Производная $\frac{d}{ds}$ по переменной s – полная, учитывающая зависимость от s всех аргументов:

$$\frac{d}{ds} f_{\dot{x}}(s, x(s), \dot{x}(s)) =$$

$$= f_{s\dot{x}}(s, x(s), \dot{x}(s)) + f_{x\dot{x}}(s, x(s), \dot{x}(s))\dot{x} + f_{\dot{x}\dot{x}}(s, x(s), \dot{x}(s))\ddot{x}$$

(эта формула справедлива, если все производные в правой части существуют). Как мы видим, уравнение Эйлера – обыкновенное дифференциальное уравнение второго порядка относительно x(s), для которой, с учётом условий x(a)=A, x(b)=B мы получаем первую краевую задачу, решение которой (в принципе оно может быть не одно) незывается допустимой экстремалью (т.е. экстремалью, допустимой по ограничению) и является

стационарной точкой функционала на множестве M и кандидатом на роль условного экстремума. Чтобы выяснить, доставляет ли найденная функция экстремум функционалу, а если да, то какой именно (максимум или минимум), требуется дальнейший анализ, который иногда по трудоёмкости превосходит собственно процесс решения краевой задачи.

Пепейдём к рассмотрению задачи со свободными концами, т.е. задачи безусловной оптимизации, когда на функцию x(s) не накладывается никаких ограничений. В этом случае дифференциал Фреше $d\Phi$ должен обращаться в нуль на любых элементах $h \in C^1[a,b]$, в том числе и на $h \in C^1_0[a,b]$. Отсюда, опять применяя обобщённую лемму Дюбуа-Реймона, мы снова приходим к уравнению Эйлера. Таким образом, любое решение оптимизационной задачи без ограничений является экстремалью функционала Φ .

Для того, чтобы дополнить уравнение Эйлера краевыми условиями, снова выполним интегрирование по частям, теперь уже не считая, что $h \in C_0^1[a,b]$:

$$\int_{a}^{b} (f_{x}(s, x(s), \dot{x}(s))h(s) + f_{\dot{x}}(s, x(s), \dot{x}(s))\dot{h}(s)) ds =$$

$$= (f_{\dot{x}}(s, x(s), \dot{x}(s))h(s))|_{a}^{b} +$$

$$+ \int_{a}^{b} \left(f_{x}(s, x(s), \dot{x}(s)) - \frac{d}{ds} f_{\dot{x}}(s, x(s), \dot{x}(s)) \right) h(s) ds =$$

$$= f_{\dot{x}}(b, x(b), \dot{x}(b))h(b) - f_{\dot{x}}(a, x(a), \dot{x}(a))h(a) = 0.$$

Последний интеграл исчез, так как подынтегральная функция тождественно равна нулю в силу уравнения Эйлера, осталась подстановка, которая также должна обращаться в нуль при произвольных $h \in C_0^1[a,b]$. Поочерёдно подставляя в последнее равенство функцию h(s) = s - a и h(s) = s - b, мы получим, что

$$f_{\dot{x}}(a, x(a), \dot{x}(a)) = f_{\dot{x}}(b, x(b), \dot{x}(b)) = 0.$$

Эти условия носят название условий трансверсальности или, в другой терминологии, естественных граничных условий (естественных в том смысле, что мы их не накладываем при постановке задачи, как в задаче с закреплёнными концами, а они выполняются на экстремальном элементе сами собой). Решив краевую задачу для уравнения Эйлера, получим стационарную точку функционала на всём пространстве $C_0^1[a,b]$ (или несколько таких точек). Каждое из решений затем, как и в задаче с закреплёнными концами, нужно исследовать на экстремальность.

Замечание. Условия трансверсальности возникают в качестве краевых условий для уравнения Эйлера и при поиске экстремума функционалов более общего вида, содержащих, наряду с интегральным слагаемым, также слагаемые, зависящие от значений функции x в граничных точках. Для таких функционалов условия трансверсальности имеют более сложный вид.