Homework 10 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

April 30, 2024

- 1. (a) $f'(0) = \lim_{h \to 0} \frac{f(h) f(0)}{h} = \lim_{h \to 0} 1 + 2h \sin(\frac{1}{h}) = 1.$
 - (b) $\lim_{x\to 0} f(x) = \lim_{h\to \infty} \frac{1}{h} + 2\frac{\sin(h)}{h^2} = 0$. Thus, f is continuous on 0. And for any x close to 0, $|f(x+h)-f(x)| \le |h| + 2|(x+h)^2| + 2|x^2| \to 0$ as $h, x\to 0$, f is continuous on a small interval I_1 . Since $f'(x) = 1 + 2(2x\sin(\frac{1}{x}) \cos(\frac{1}{x}))$, there exsits x in any interval contains 0 s.t. f'(x) < 0. Therefore, f is neither increasing nor decreasing and not one to one in any interval contains 0. Thus, f is not invertible near 0.
 - (c) This is not contradict to inverse function theorem since f' is not continuous.

2.

$$||f(x_1) - f(x_2) - (x_1 - x_2)|| = ||x_1 + g(x_1) - (x_2 + g(x_2)) - (x_1 - x_2)||$$

$$= ||g(x_1) - g(x_2)||$$

$$\leq a||x_1 - x_2||$$

And for any $x \in \mathbb{R}^n$, $||Df(x)|| = ||I + Dg(x)|| \ge (1 - a)$, then $||f(x) - f(y)|| = ||x - y|| - ||f(x) - f(y)| - (x - y)|| \ge (1 - a)||x - y|| > 0$ for $x, y \in \mathbb{R}^n$, $x \ne y$ and c on the line between x, y. Thus, $f(x) \ne f(y)$ implies that f is one to one.

Let $h_y(x) = y - g(x)$, then $||h_y(x_1) - h_y(x_2)|| = ||g(x_1) - g(x_2)|| \le a||x_1 - x_2||$. Thus, h_y is contraction mapping and exsits unique fixed point x^* s.t. $x^* = h_y(x^*) = y - g(x^*)$.

Then, for any y, exsits x^* s.t. $y = x^* + g(x^*) = f(x^*)$. Therefore, f is surjective. Hence, f is bijective.

3. Since $||f(x) - f(y)|| \ge C||x - y||$ and C > 0, if $x \ne y$, $||f(x) - f(y)|| \ge C||x - y|| > 0$. Then, f is injective. And since f is continuous, $f(\mathbb{R}^n)$ is closed since \mathbb{R}^n is closed.

Now proof $f(\mathbb{R}^n)$ is open. For any x_0 and $\varepsilon \in (0,C)$, since f is differentiable, there exsits h s.t. $||f(x_0+h)-f(x_0)-Df(x_0)(h)|| < \varepsilon ||h||$. Then, since $||f(x_0+h)-f(x_0)|| - ||Df(x_0)(h)|| \le ||f(x_0+h)-f(x_0)|| - ||Df(x_0)(h)|| \le ||f(x_0+h)-f(x_0)(h)|| < \varepsilon ||h|| < C ||h||$. Thus, $||Df(x_0)(h)|| > 0$. Therefore, by inverse function theorem, there exsits a neighborhood U near x_0 s.t. f(U) is open. Then, $f(\mathbb{R}^n)$ is open.

Therefore, f is bijective and then f is invertible. And by inverse function theorem, f^{-1} is differentiable and continuous on \mathbb{R}^n .