МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Машинное обучение»

Тема: Частотный анализ

Студент гр. 6307	 Трофимов Н.И.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами частотного анализа из библиотеки MLxtend.

Ход работы

1. Загрузка данных.

Был загружен датасет, данные в котором представляют информацию о том, какой покупатель что и когда покупал. Сформируем датасет подходящий для частотного анализа, слив все товары одного чека в список.

2. Подготовка данных.

Закодируем данные в виде матрицы с помощью TransactionEncoder. Получим датафрейм, в котором значение в строке і, столбце ј означает, была ли сделана покупка в чеке с іd і товара с именованием ј. Далее приведена часть датафрейма на рисунке 1:

	all- purpose	aluminum foil	bagels	beef	butter	cereals	cheeses	coffee/tea	dinner rolls	dishwashing liquid/detergent
0	True	True	False	True	True	False	False	False	True	False
1	False	True	False	False	False	True	True	False	False	True
2	False	False	True	False	False	True	True	False	True	False
3	True	False	False	False	False	True	False	False	False	False
4	True	False	False	False	False	False	False	False	True	False

Рисунок 1 Готовый датафрейм

3. Ассоциативный анализ с использованием алгоритма Apriori

Применим алгоритм apriori к подготовленному датафрейму с минимальным уровнем поддержки 0.3. Получим все комбинации товаров, которые встречаются в 30 процентах покупок подготовленного датафрейма. Результаты представлены далее на рисунке 2.

```
itemsets length
 support
                                      (all- purpose)
0.374890
                                     (aluminum foil)
0.384548
0.385426
                                            (bagels)
                                                           1
0.374890
                                              (beef)
                                                           1
0.367867
                                            (butter)
                                                           1
0.395961
                                           (cereals)
0.390694
                                           (cheeses)
0.379280
                                        (coffee/tea)
0.388938
                                      (dinner rolls)
0.388060
                      (dishwashing liquid/detergent)
0.389816
                                              (eggs)
0.352941
                                             (flour)
                                            (fruits)
0.370500
                                         (hand soap)
0.345917
0.398595
                                         (ice cream)
0.375768
                                  (individual meals)
                                             (juice)
0.376646
0.371378
                                           (ketchup)
                                 (laundry detergent)
0.378402
0.395083
                                        (lunch meat)
0.380158
                                              (milk)
0.375768
                                             (mixes)
0.362599
                                      (paper towels)
0.371378
                                             (pasta)
0.355575
                                              (pork)
0.421422
                                           (poultry)
0.367867
                                     (sandwich bags)
0.349429
                                   (sandwich loaves)
0.368745
                                           (shampoo)
0.379280
                                              (soap)
0.390694
                                              (soda)
0.373134
                                   (spaghetti sauce)
0.360843
                                             (sugar)
                                      (toilet paper)
0.378402
0.369622
                                         (tortillas)
0.739245
                                        (vegetables)
                                           (waffles)
0.394205
0.384548
                                            (yogurt)
                         (aluminum foil, vegetables)
0.310799
0.300263
                                (bagels, vegetables)
0.310799
                               (cereals, vegetables)
0.309043
                               (cheeses, vegetables)
0.308165
                          (vegetables, dinner rolls)
0.306409 (vegetables, dishwashing liquid/detergent)
0.326602
                                  (eggs, vegetables)
0.302897
                             (vegetables, ice cream)
                     (laundry detergent, vegetables)
0.309043
0.311677
                            (lunch meat, vegetables)
0.331870
                               (vegetables, poultry)
0.305531
                                  (soda, vegetables)
0.315189
                               (waffles, vegetables)
0.319579
                                (vegetables, yogurt)
```

Рисунок 2 примененный алгоритм apriori

Затем был применен дважды тот же алгоритм с тем же уровнем поддержки, однако было выставлено значение для максимального размера, равного 1, а потом 2.

Построим график зависимости количества полученных наборов от уровня поддержки. Начнем с уровня поддержки = 0.05, шаг будет равен 0.01. Отметим на графике значения уровней поддержки, при которых перестают генерироваться наборы размеров 1,2,3 и т.д. Результаты представлены на рисунке 3.

Рисунок 3. Зависимость количества наборов от уровня поддержки

Как можно заметить, начиная с уровня поддержки = 0.74 наборы перестают генерироваться.

Был построен датасет только из тех элементов, которые попадают в наборы размером 1 при уровне поддержки 0.38. Затем полученный датасет был приведен к формату, который можно обработать и проведен ассоциативный анализ при уровне поддержки 0.3. Отличием от исходного датасета является то, что в новом появились наборы состоящие из 1 элемента с минимальным уровнем поддержки = 0.38 (См рис.4).

```
support
                                            itemsets length
0.384548
                                     (aluminum foil)
0.385426
                                            (bagels)
0.395961
                                           (cereals)
0.390694
                                           (cheeses)
0.388938
                                      (dinner rolls)
0.388060
                     (dishwashing liquid/detergent)
0.389816
                                              (eggs)
0.398595
                                         (ice cream)
                                        (lunch meat)
0.395083
0.380158
                                              (milk)
0.421422
                                           (poultry)
0.390694
                                              (soda)
                                        (vegetables)
0.739245
                                           (waffles)
0.394205
0.384548
                                            (yogurt)
                         (aluminum foil, vegetables)
0.310799
0.300263
                                (bagels, vegetables)
0.310799
                               (cereals, vegetables)
                               (cheeses, vegetables)
0.309043
                          (vegetables, dinner rolls)
0.308165
0.306409 (vegetables, dishwashing liquid/detergent)
0.326602
                                  (eggs, vegetables)
0.302897
                             (vegetables, ice cream)
0.311677
                            (lunch meat, vegetables)
0.331870
                               (vegetables, poultry)
0.305531
                                  (soda, vegetables)
0.315189
                               (waffles, vegetables)
0.319579
                                (vegetables, yogurt)
                                            itemsets length
support
                        (aluminum foil, vegetables)
0.310799
0.300263
                               (bagels, vegetables)
                                                           2
0.310799
                               (cereals, vegetables)
                                                           2
0.309043
                               (cheeses, vegetables)
                                                           2
0.308165
                          (vegetables, dinner rolls)
0.306409 (vegetables, dishwashing liquid/detergent)
0.326602
                                  (eggs, vegetables)
0.302897
                             (vegetables, ice cream)
                     (laundry detergent, vegetables)
0.309043
                            (lunch meat, vegetables)
0.311677
0.331870
                               (vegetables, poultry)
                                  (soda, vegetables)
0.305531
                               (waffles, vegetables)
0.315189
0.319579
                                (vegetables, yogurt)
```

Рисунок 4 Уровень поддержки 0.38 и 0.3 сравнение

Далее был проведен ассоциативный анализ при уровне поддержки 0.15 для нового датасета и выведены все наборы, размер которых больше 1 и в котором есть "yogurt" или "waffles". Результат представлен на рисунке 5.

	support	itemsets	length	contains
27	0.169447	(aluminum foil, waffles)	2	True
28	0.177349	(aluminum foil, yogurt)	2	True
40	0.159789	(bagels, waffles)	2	True
41	0.162423	(bagels, yogurt)	2	True
52	0.160667	(cereals, waffles)	2	True
53	0.172081	(cereals, yogurt)	2	True
63	0.172959	(cheeses, waffles)	2	True
64	0.172081	(cheeses, yogurt)	2	True
73	0.169447	(waffles, dinner rolls)	2	True
74	0.166813	(yogurt, dinner rolls)	2	True
82	0.175593	(waffles, dishwashing liquid/detergent)	2	True
83	0.158033	(yogurt, dishwashing liquid/detergent)	2	True
90	0.169447	(eggs, waffles)	2	True
91	0.174715	(eggs, yogurt)	2	True
97	0.172959	(waffles, ice cream)	2	True
98	0.156277	(yogurt, ice cream)	2	True
103	0.184372	(lunch meat, waffles)	2	True
104	0.161545	(lunch meat, yogurt)	2	True
108	0.167691	(yogurt, milk)	2	True
111	0.166813	(waffles, poultry)	2	True
112	0.180860	(yogurt, poultry)	2	True
114	0.177349	(soda, waffles)	2	True
115	0.167691	(soda, yogurt)	2	True
116	0.315189	(waffles, vegetables)	2	True
117	0.319579	(vegetables, yogurt)	2	True
118	0.173837	(waffles, yogurt)	2	True
119	0.152766	(aluminum foil, vegetables, yogurt)	3	True
128	0.157155	(eggs, vegetables, yogurt)	3	True
130	0.157155	(lunch meat, waffles, vegetables)	3	True
131	0.152766	(yogurt, vegetables, poultry)	3	True

Рисунок 5. кол-во элементов больше 1 и есть товар

Далее построен датасет из тех элементов, которые не попали в датасет в п. 6. Полученный датасет закодирован в виде матрицы и проведен ассоциативный анализ при минимальном уровне поддержки 0.3. Результаты представлены на рисунке 6.

	support	itemsets	length
0	0.374890	(all- purpose)	1
1	0.374890	(beef)	1
2	0.367867	(butter)	1
3	0.379280	(coffee/tea)	1
4	0.352941	(flour)	1
5	0.370500	(fruits)	1
6	0.345917	(hand soap)	1
7	0.375768	(individual meals)	1
8	0.376646	(juice)	1
9	0.371378	(ketchup)	1
10	0.378402	(laundry detergent)	1
11	0.375768	(mixes)	1
12	0.362599	(paper towels)	1
13	0.371378	(pasta)	1
14	0.355575	(pork)	1
15	0.367867	(sandwich bags)	1
16	0.349429	(sandwich loaves)	1
17	0.368745	(shampoo)	1
18	0.379280	(soap)	1
19	0.373134	(spaghetti sauce)	1
20	0.360843	(sugar)	1
21	0.378402	(toilet paper)	1
22	0.369622	(tortillas)	1

Рисунок 6 Новые данные

Были написаны два правила:

- 1. Вывод всех наборов, в которых хотя бы два элемента начинаются на "s".
- 2. Вывод всех наборов, для которых уровень поддержки изменяется от 0.1 до 0.25.

Результаты представлены на рисунках 7 и 8.

```
results['rule_with_s'] = results['itemsets']\
    .apply(lambda tpl: len([name for name in tpl if name.startswith('s')]) >= 2)
results[results['rule_with_s'] == True]
```

	support	itemsets	length	rule_with_s
675	0.137840	(sandwich bags, sandwich loaves)	2	True
676	0.146620	(sandwich bags, shampoo)	2	True
677	0.158911	(sandwich bags, soap)	2	True
678	0.162423	(sandwich bags, soda)	2	True
679	0.147498	(sandwich bags, spaghetti sauce)	2	True
680	0.131694	(sandwich bags, sugar)	2	True
686	0.150132	(shampoo, sandwich loaves)	2	True
687	0.158033	(soap, sandwich loaves)	2	True
688	0.141352	(soda, sandwich loaves)	2	True
689	0.150132	(sandwich loaves, spaghetti sauce)	2	True
690	0.136962	(sugar, sandwich loaves)	2	True
696	0.151010	(soap, shampoo)	2	True
697	0.150132	(soda, shampoo)	2	True
698	0.139596	(shampoo, spaghetti sauce)	2	True
699	0.147498	(sugar, shampoo)	2	True
705	0.174715	(soda, soap)	2	True
706	0.160667	(soap, spaghetti sauce)	2	True
707	0.154522	(sugar, soap)	2	True
713	0.167691	(soda, spaghetti sauce)	2	True
714	0.162423	(soda, sugar)	2	True
720	0.144864	(sugar, spaghetti sauce)	2	True
1351	0.115013	(sandwich bags, vegetables, sandwich loaves)	3	True
1352	0.122915	(sandwich bags, shampoo, vegetables)	3	True
1353	0.129939	(sandwich bags, soap, vegetables)	3	True
1354	0.129061	(sandwich bags, soda, vegetables)	3	True

Рисунок 7 Правило №1

results.query("support >= .1 and support <=.25 ")

	support	itemsets	length	rule_with_s
38	0.157155	(aluminum foil, all- purpose)	2	False
39	0.150132	(bagels, all- purpose)	2	False
40	0.144864	(beef, all- purpose)	2	False
41	0.147498	(butter, all- purpose)	2	False
42	0.151010	(cereals, all- purpose)	2	False
1401	0.135206	(waffles, vegetables, toilet paper)	3	False
1402	0.130817	(yogurt, vegetables, toilet paper)	3	False
1403	0.121159	(tortillas, waffles, vegetables)	3	False
1404	0.130817	(tortillas, vegetables, yogurt)	3	False
1405	0.146620	(waffles, vegetables, yogurt)	3	False

Рисунок 8 Правило №2

Вывод

В ходе работы были изучены методы частотного анализа с использованием библиотеки mlxtend. Основным используемым алгоритмом в данной работе был аргіогі. Его основная задача — поиск наиболее часто встречающихся наборов значений. Уровень поддержки в этом алгоритме определяет частоту встречаемости набора данных для попадания в итоговую выборку. Чем больше данный параметр, тем меньше наборов будет сгенерировано.