

ETF3231/5231: Business forecasting

Week 12: Revision

https://bf.numbat.space/

Outline

- 1 Assignment 1
- 2 Review of topics covered
- 3 Exam

Student Evaluation of Teaching and Units

See link in Moodle

or

■ https://www.monash.edu/ups/setu

Outline

- 1 Assignment 1
- 2 Review of topics covered
- 3 Exam

Assignment 1: forecast the following series

- Google closing stock price on 20 March 2024.
- 2 Maximum temperature at Melbourne airport on 10 April 2024.
- The difference in points (Collingwood minus Essendon) scored in the AFL match between Collingwood and Essendon for the Anzac Day clash. 25 April 2024.
- The seasonally adjusted estimate of total employment for April 2024 in ('000). ABS CAT 6202, to be released around mid May 2024.
- Google closing stock price on 22 May 2024.

For each of these, give a point forecast and an 80% prediction interval.

Assignment 1: forecast the following series

- Google closing stock price on 20 March 2024.
- 2 Maximum temperature at Melbourne airport on 10 April 2024.
- The difference in points (Collingwood minus Essendon) scored in the AFL match between Collingwood and Essendon for the Anzac Day clash. 25 April 2024.
- The seasonally adjusted estimate of total employment for April 2024 in ('000). ABS CAT 6202, to be released around mid May 2024.
- Google closing stock price on 22 May 2024.

For each of these, give a point forecast and an 80% prediction interval.

Prize: \$AU100 Amazon gift voucher

Forecasting competition: scoring

$$y = \text{actual}, \hat{y} = \text{point forecast}, [\hat{\ell}, \hat{u}] = \text{prediction interval}$$

Point forecasts:

Absolute Error =
$$|y - \hat{y}|$$

- Rank results for all students in class
- Add ranks across all five items

Prediction intervals:

Interval Score =
$$(\hat{u} - \hat{\ell}) + 10(\hat{\ell} - y)_{+} + 10(y - \hat{u})_{+}$$

- Rank results for all students
- Add ranks across all five items

and the winner is...

Congratulations: Tony

Stock price forecasting (Q1 and Q5)

- Hard to beat naïve forecast
- Random walk model says forecast variance = $h\sigma^2$.

Stock price forecasting (Q1 and Q5)

- Hard to beat naïve forecast
- Random walk model says forecast variance = $h\sigma^2$.

Maximum temperature at Melbourne airport (Q2)

- Weather is relatively stationary over similar time of year and recent years.
- So take mean and var of max temp in April over last 10 years.

Difference in points in AFL match (Q3)

- Teams vary in strength from year to year.
- Could look at distribution of for-against points from last few years across all games for each team. Assume distributions independent.

9

Difference in points in AFL match (Q3)

- Teams vary in strength from year to year.
- Could look at distribution of for-against points from last few years across all games for each team. Assume distributions independent.

Seasonally adjusted estimate of total employment (Q4)

- Probably locally trended.
- Perhaps use drift method based on average monthly change in last 2 years.

Outline

- 1 Assignment 1
- 2 Review of topics covered
- 3 Exam

Topics

- Introduction to forecasting and R (1, Appendix)
- Time series graphics (2)
- Time series decomposition (3, 4)
- The forecasters' toolbox (5)
- Exponential smoothing (8)
- ARIMA models (9)
- Multiple regression (7)
- Dynamic regression models (10)

1. Introduction to forecasting and R

- Time series data and tsibble objects.
- What makes things hard/easy to forecast.

1. Introduction to forecasting and R

- Time series data and tsibble objects.
- What makes things hard/easy to forecast.

Exam preparation

- Reading R code.
- Interpreting R output.

2. Time series graphics

- Time plots
- Seasonal plots
- Seasonal subseries plots
- Lag plots
- ACF
- White noise

3: Time series decomposition

- Describing a time series: seasonality, trend, cycles, changing variance, unusual features
- Transformations (and adjustments)
- Difference between seasonality and cyclicity
- Moving averages
- Classical and STL (advantages/disadvantages)
- Interpreting a decomposition
- Seasonal adjustment
- Forecasting and decomposition

■ Four benchmark methods: naïve, seasonal naïve, drift, mean.

- Four benchmark methods: naïve, seasonal naïve, drift, mean.
- Forecasting involves distributions of future observations.
- Residual diagnostics: white noise, ACF, LB test.

- Four benchmark methods: naïve, seasonal naïve, drift, mean.
- Forecasting involves distributions of future observations.
- Residual diagnostics: white noise, ACF, LB test.
- Problem of over-fitting.
- Out-of-sample accuracy. Training/test sets.
- Measures of forecast accuracy: MAE, MSE, RMSE, MAPE, MASE, RMSSE.
- Time series cross-validation.

- Four benchmark methods: naïve, seasonal naïve, drift, mean.
- Forecasting involves distributions of future observations.
- Residual diagnostics: white noise, ACF, LB test.
- Problem of over-fitting.
- Out-of-sample accuracy. Training/test sets.
- Measures of forecast accuracy: MAE, MSE, RMSE, MAPE, MASE, RMSSE.
- Time series cross-validation.
- One-step prediction intervals based on RMSE from residuals.

8: Exponential smoothing

- Simple exponential smoothing.
- Holt's local trend method.
- Damped trend methods.
- Holt-Winters seasonal method (additive and multiplicative versions).
- ETS state space formulation.

8: Exponential smoothing

- Simple exponential smoothing.
- Holt's local trend method.
- Damped trend methods.
- Holt-Winters seasonal method (additive and multiplicative versions).
- ETS state space formulation.
- Interpretation of output in R.
- Computing forecasts by setting future ε_t to 0.
- Assumptions for prediction intervals.
- You have access to formula in the exam.

9: ARIMA models

- Stationarity.
 - Transformations
 - ▶ Differencing (first- and seasonal-differences). What to use when.

9: ARIMA models

- Stationarity.
 - Transformations
 - Differencing (first- and seasonal-differences). What to use when.
- White noise, random walk, random walk with drift, AR(p), MA(q), ARMA(p,q), ARIMA(p,d,q), ARIMA(p,d,q), ARIMA(p,d,q), ARIMA(p,d,q)
- ACF, PACF. Model identification.
- ARIMA models, Seasonal ARIMA models

9: ARIMA models

- Stationarity.
 - Transformations
 - ▶ Differencing (first- and seasonal-differences). What to use when.
- White noise, random walk, random walk with drift, AR(p), MA(q), ARMA(p,q), ARIMA(p,d,q), ARIMA(p,d,q), ARIMA(p,d,q), ARIMA(p,d,q)
- ACF, PACF. Model identification.
- ARIMA models, Seasonal ARIMA models
- Order selection and goodness of fit (AICc)
- Interpretation of output in R.

9: ARIMA models (cont'd)

- Backshift operator notation.
- Expanding out an ARIMA model for forecasting.
- Finding point forecasts for given ARIMA process.

9: ARIMA models (cont'd)

- Backshift operator notation.
- Expanding out an ARIMA model for forecasting.
- Finding point forecasts for given ARIMA process.
- Assumptions for prediction intervals.
- One-step prediction intervals based on RMSE.
- Effect of (p,q) and (c,d) on forecasts.
- ARIMA vs ETS.

■ Interpretation of coefficients and R output and residual diagnostics.

- Interpretation of coefficients and R output and residual diagnostics.
- Dummy variables, seasonal dummies, interventions, piecewise linear trends.
- Harmonic regression.

- Interpretation of coefficients and R output and residual diagnostics.
- Dummy variables, seasonal dummies, interventions, piecewise linear trends.
- Harmonic regression.
- Variable selection.
- AIC, AICc, BIC, R^2 , adjusted R^2 .

- Interpretation of coefficients and R output and residual diagnostics.
- Dummy variables, seasonal dummies, interventions, piecewise linear trends.
- Harmonic regression.
- Variable selection.
- AIC, AICc, BIC, R^2 , adjusted R^2 .
- Ex ante vs ex post forecasts.
- Scenario forecasting.

- Interpretation of coefficients and R output and residual diagnostics.
- Dummy variables, seasonal dummies, interventions, piecewise linear trends.
- Harmonic regression.
- Variable selection.
- AIC, AICc, BIC, R^2 , adjusted R^2 .
- Ex ante vs ex post forecasts.
- Scenario forecasting.
- (Matrix formulation.)

10: Dynamic regression models

- Problems with OLS and autocorrelated errors.
- Regression with ARIMA errors.
- Difference between (regression) residuals and ARIMA (innovation) residuals.

10: Dynamic regression models

- Problems with OLS and autocorrelated errors.
- Regression with ARIMA errors.
- Difference between (regression) residuals and ARIMA (innovation) residuals.
- Dynamic harmonic regression (and other specifications). Review the last lecture examples.
- Stochastic vs deterministic trends.

10: Dynamic regression models

- Problems with OLS and autocorrelated errors.
- Regression with ARIMA errors.
- Difference between (regression) residuals and ARIMA (innovation) residuals.
- Dynamic harmonic regression (and other specifications). Review the last lecture examples.
- Stochastic vs deterministic trends.
- Forecasting for dynamic regression models with ARIMA errors.

Outline

- 1 Assignment 1
- 2 Review of topics covered
- 3 Exam

Five Sections, all to be attempted.

A Short answers/explanations. Write about 1/4 page on four topics (out of six possible topics). Nuanced answers required.

Five Sections, all to be attempted.

- A Short answers/explanations. Write about 1/4 page on four topics (out of six possible topics). Nuanced answers required.
- **B** Describing a time series, decomposition, choosing a forecasting method.

Five Sections, all to be attempted.

- A Short answers/explanations. Write about 1/4 page on four topics (out of six possible topics). Nuanced answers required.
- B Describing a time series, decomposition, choosing a forecasting method.
- C, D, E Benchmarks, ETS models, ARIMA models, Dynamic regression models, forecast evaluation.

Five Sections, all to be attempted.

- A Short answers/explanations. Write about 1/4 page on four topics (out of six possible topics). Nuanced answers required.
- **B** Describing a time series, decomposition, choosing a forecasting method.
- C, D, E Benchmarks, ETS models, ARIMA models, Dynamic regression models, forecast evaluation.

Sections B, C, D and E require interpretation of R output, but no coding.

Five Sections, all to be attempted.

- A Short answers/explanations. Write about 1/4 page on four topics (out of six possible topics). Nuanced answers required.
- **B** Describing a time series, decomposition, choosing a forecasting method.
- C, D, E Benchmarks, ETS models, ARIMA models, Dynamic regression models, forecast evaluation.

Sections B, C, D and E require interpretation of R output, but no coding.

- Closed book
- Calculator
- 1 A4 double-sided sheet of notes

- 5 working sheets
- 2 hours 10 mins + (30 mins to upload images).

Preparing for the exam

- Exams from 2021–2023 on website.
- Solutions to follow soon.

Preparing for the exam

- Exams from 2021–2023 on website.
- Solutions to follow soon.
- Exercises. Make sure you have done them all (especially the last two topics - revise the lecture examples)!

Preparing for the exam

- Exams from 2021–2023 on website.
- Solutions to follow soon.
- Exercises. Make sure you have done them all (especially the last two topics revise the lecture examples)!
- Identify your weak points and practice them.
- Write your own summary of the material.
- Practice explaining the material to a class-mate.

Help available

- See us during the consultation times (for details refer to the website).
- Discuss on the Ed Discussion forum. I/we will monitor but will not answer every post. This is mostly for you to use between yourselves.

Useful resources for forecasters

Organization:

International Institute of Forecasters.

Annual Conference:

- International Symposium on Forecasting
 - Dijon, France, June 30- July 3, 2024.
 - Student members (\$45).

Journals:

- International Journal of Forecasting
- Foresight (the practitioner's journal)

Links to all of the above at www.forecasters.org

IIF Best Student Award

- https://forecasters.org/programs/researchawards/students/
- US\$100
- A certificate of achievement from the IIF
- One year free membership of the Institute with all attendant benefits. Subscriptions to:
 - the International Journal of Forecasting
 - the practitioner journal: Foresight
 - The Oracle newsletter

Discounts on conference and workshop fees, and links to a worldwide community of forecasters in many disciplines.

Happy forecasting

Good forecasters are not smarter than everyone else, they merely have their ignorance better organised.

Anonymous

Happy forecasting

Good forecasters are not smarter than everyone else, they merely have their ignorance better organised.

Anonymous

Please fill in your SETUs