

Comments on DNS Robustness

Mark Allman Reformed IETF Native

Applied Networking Research Workshop July 2018

"Been away so long I hardly knew the place, Gee, it's good to be back home"

Observation #I

Observation #2

Observation #2

How Robust Is DNS?

"Good Enough"

• But, ... um ... ahem ...

How Robust Is DNS?

- What do we mean by "robust"?
 - many dimensions
 - our focus:
 - always able to communicate with an auth server holding the DNS record we seek

DNS Robustness

DNS Robustness

DNS Robustness

How Robust Is DNS?

 Let's measure some facets of the system at the SLD level that bear on robustness

Datasets

Data courtesy of Verisign, Alexa, Emile Aben (RIPE) and Quirin Scheitle (TUM)

Robustness Specifications

 RFC 1034: must have multiple authoritative nameservers for robustness

 RFC 2182: authoritative nameservers must be geographically and topologically diverse

What Is Network Diversity?

- We start cheap & conservative:
 - use /24 address blocks to define diversity
 - two addresses in one /24: no diversity
 - two addresses in two /24s: diversity (but, really, who knows?!)

Future work includes using historical routing data

Spec. vs. Reality

Spec. vs. Reality

Spec. vs. Reality

16

Shared Infrastructure

Shared Infrastructure

Shared Infrastructure

- Hierarchy belies much concentration
- Concentration compounds issues

Perhaps concentration invites trouble

Nameserver-Level Analysis

 For each SLD, determine the number of other SLDs that use the same set of nameservers (by IP address)

Repeat for each month in dataset

Nameserver-Level Analysis

Network-Level Analysis

 For each SLD determine the number of other SLDs whose nameservers fall within the same /24 address blocks

Repeat for each month in dataset

Network-Level Analysis

Top 10 SLD Groups

Rank	Num. SLDs	Num. /24s	Same Last Hop
1	71,472	2	✓
2	69,637	2	
3	15,421	2	✓
4	13,044	2	✓
5	8,347	2	
6	6,111	2	✓
7	5,568	3	×
8	5,076	2	
9	4,788	2	
10	4,611	4	
Total	204,075	23	

> 20% of the popular SLDs the popular SLDs fall within 23 /24 blocks!

edge networks!

Conclusions

- DNS sky is not falling
- But, we have some unhealthy habits ...
 - too little auth server replication
 - too much auth server concentration

Note: concentration is not wholly bad

Questions? Comments?

Draft paper:

https://www.icir.org/mallman/pubs/All18

Mark Allman, mallman@icir.org https://www.icir.org/mallman/ @mallman_icsi