Острый респираторный дистресс-синдром

spbvet.info/zhurnaly/3-2019/ostryy-respiratornyy-distress-sindrom

Автор: Парыгина К. С., ветеринарный врач-реаниматолог. Ветеринарная клиника доктора Сотникова, г. Санкт-Петербург, ул. Репищева, 13.

Список сокращений: ОРДС – острый респираторный дистресс-синдром; ОЛ – отек легких, ДВС-синдром – диссеминированное внутрисосудистое свертывание, ЧМТ – черепно-мозговая травма, ИВЛ – искусственная вентиляция легких, ПДКВ – положительное давление в конце выдоха, ОПЛ – острое повреждение легких.

ОРДС – это клинический синдром, который встречается у пациентов как хирургических, так и терапевтических отделений. Представляет собой некардиогенный отек легких, вызванный воспалением легких, клеточной инфильтрацией и капиллярной утечкой¹⁰.

Причины

У кошек в результате вскрытия было установлено, что причиной ОРДС является тяжелый сепсис, хотя и не был выявлен определенный риск факторов¹. Наиболее часто встречающиеся клинические состояния, ассоциированные с развитием ОРДС, представлены в таблице ¹.

Иногда не выявляются предрасполагающие факторы и отсутствует породная, возрастная или половая предрасположенность.

Причины ОРДС	Прямые	Непрямые
Наиболее частые	Пневмония неаспирационного генеза Аспирационная пневмония	Сепсис Шок Тяжелые травмы Массивные гемотрансфузии
Менее частые	Ингаляция токсичных веществ Ушиб легкого Утопление Заворот доли легкого	Острый панкреатит Острые отравления ДВС-синдром Ожоги 2—3-й степени ЧМТ Искусственное кровообращение Парвовирусный энтерит

<u>Таблица 1. Причины ОРДС².</u> Патофизиология^{2,12,13}

- 1. Начальные стадии характеризуются повреждением альвеолоцитов, нейтрофильной инфильтрацией, нарушением проницаемости альвеолярно-капиллярной мембраны, интерстициальным и альвеолярным ОЛ, образованием гиалиновых мембран в результате инактивации сурфактанта, развитием геморрагий и образованием фибрина.
- 2. Далее происходят преобразование альвеолоцитов II типа в альвеолоциты I типа, разрешение ОЛ, миграция мононуклеарных клеток, пролиферация фибробластов с отложением коллагена.
- 3. За этим следуют интерстициальный фиброз, интраальвеолярный фиброз, фиброз интимы сосудов, формирование гипертрофии мышечного слоя легочных артериол с облитерацией участков сосудистого русла.

Газообмен3

Гипоксемия, вызванная шунтом, рефрактерна к оксигенотерапии даже с очень высокой фракцией О2 во вдыхаемой смеси (FiO2), поэтому в данной ситуации основным методом улучшения оксигенации является создание дополнительного положительного давления в дыхательных путях, что позволяет восстановить вентиляцию в невентилируемых легочных регионах и уменьшить шунт.

Дифференциальная диагностика ¹⁻¹³

Следует исключить:

- 1. кардиогенный отек легких;
- 2. отек вследствие объемной перегрузки;
- 3. легочную тромбоэмболию;
- 4. бактериальную пневмонию;
- 5. ателектаз;
- 6. легочное кровотечение;
- 7. неоплазию.

Чтобы определить основную причину расстройства, потребуются тщательно собранный анамнез, рентген грудной клетки и эхокардиография для оценки функционального состояния сердца, если состояние пациента позволяет это сделать. В большинстве случаев этими методами диагностики пренебрегают до тех пор, пока состояние пациента не стабилизируется.

Критерии²:

- 1. острое начало;
- 2. наличие двусторонних инфильтратов на рентгенограмме органов грудной клетки;
- 3. снижение величины респираторного индекса (соотношение парциального давления кислорода в артериальной крови и его содержания во вдыхаемом воздухе PaO2/FiO2);
- 4. отсутствие признаков левожелудочковой сердечной недостаточности.

Рентгенография грудной клетки

Характерная рентгенологическая находка при ОРДС – появление картины «матового стекла» и диффузных мультифокальных инфильтратов довольно высокой плотности (консолидация) с хорошо очерченными воздушными бронхограммами, т. е. развитие обширного поражения паренхимы легких. Кроме того, зачастую может наблюдаться небольшой плевральный выпот. Рентгенографическую картину ОРДС довольно непросто дифференцировать от кардиогенного отека легких. В пользу ОРДС свидетельствуют более периферическое расположение инфильтративных теней, нормальные размеры сердечной тени и отсутствие или небольшое количество линий Керли В. Необходимо помнить, что терапевтические вмешательства также могут влиять на рентгенологическую картину ОРДС. Так, избыточное введение растворов может усилить альвеолярный отек и степень выраженности рентгенологических изменений, в то время как терапия диуретиками может уменьшить их. ИВЛ (особенно при использовании ПДКВ) повышает среднее давление в дыхательных путях, инфляцию легких, что также может уменьшить регионарную плотность легких и привести к ошибочному впечатлению об улучшении патологического процесса. На поздних этапах развития ОРДС очаги консолидации сменяются интерстициальными изменениями, возможно появление кистозных изменений³. Рис. 1. <u>Рентгенограммы</u> собаки с тахипноэ и одышкой. Наблюдается диффузное альвеолярное повреждение. Рис. 2. <u>Рентгенограммы</u> собаки с тахипноэ и одышкой. Наблюдается диффузное альвеолярное повреждение. Анализ газов крови^{2,10} является одним из важнейших методов диагностики, которые применяют в ветеринарной практике при

ОРДС,

характеризующемся тяжелой гипоксией и (обычно) гипокапнией, что приводит к гипервентиляции.

В терминальной стадии заболевания легких развитие усталости мышц становится причиной гиперкапнии. Молочнокислый ацидоз может возникать из-за сниженной доставки кислорода и анаэробного обмена веществ в тканях.

Три степени ОРДС по величине индекса оксигенации (PaO2/FiO2): Соотношение PaO2/FiO2 – референсный интервал ~ 430–560 мм рт. ст.

- 1. умеренный (РаО2/FiO2 от 300 до 200);
- средней тяжести (PaO2/FiO2 от 200 до 100);
- 3. тяжелый (критический) (PaO2/FiO2 ниже 100).

Индекс оксигенации может быть достоверным предиктором летального исхода 4, 5.

Лабораторные признаки малоспецифичны для ОРДС, большинство из них

системной воспалительной реакции организма на инфекцию или другие факторы, лабораторные параметры отражают данные изменения (лейкоцитоз или лейкопения, анемия). Тромбоцитопения также нередко встречается и отражает либо системную воспалительную реакцию, либо повреждение эндотелия. Поскольку ОРДС часто является проявлением полиорганной недостаточности, лабораторные тесты могут содержать информацию о недостаточности функции печени или почек. При анализе бронхоальвеолярного лаважа (БАЛ) характерной находкой у больных ОРДС в первые дни заболевания является высокое содержание нейтрофилов – более 60 % (в норме – менее 5 %), которое по мере обратного развития заболевания уступает место альвеолярным макрофагам 3 .

Рис. 3. Гистопатология (х20) легких у собаки с острым респираторным дистресссиндромом, патологоанатомическое исследование. Капилляры расширены и заполнены эритроцитами, альвеолы содержат смесь эритроцитов, нейтрофилов, макрофагов и нити фибрина (Wayne Wingfield, Marc Raffe. The Veterinary ICU Book, Teton NewMedia).

Диагностика

Клиническая картина^{3,6}

Развитие ОПЛ/ОРДС происходит чаще всего в первые 12–48 часов (в ряде случаев с ОРДС – спустя 5 дней) от начала развития основного заболевания. На ранних этапах пациент часто возбужден, ажитирован, при прогрессировании нарушений газообмена – заторможен, оглушен. Возможно развитие гипоксемической комы.

Основными клиническими признаками являются:

- 1. Тахипноэ, ортопноэ, сопровождающиеся повышенной работой органов дыхания (участие в дыхании вспомогательных мышц).
- 2. Кашель/кровохарканье розовой пеной (стекание пенистой розовой жидкости в большом объеме из трубки после интубации) (рис. 4).
- 3. Цианоз слизистых оболочек.

Рис. 4.

Характерными аускультативными признаками ОРДС являются диффузная крепитация, жесткое, а иногда и бронхиальное амфорическое дыхание. Частыми клиническими находками у больных с ОРДС также являются гипертермия и артериальная гипотензия, тахикардия, у кошек — брадикардия. Облигатным признаком ОРДС является гипоксемия (SpO2 ниже 90 %, часто ниже 75 %). Больные с ОРДС практически всегда рефрактерны к терапии кислородом, что отражает основной механизм нарушения газообмена при ОРДС — развитие внутрилегочного шунта. Для ранних этапов ОРДС характерно наличие гипокапнии (PaCO2 > 45 мм рт. ст.) и респираторного алкалоза (pH > 7,45), связанных с высокой минутной вентиляцией, однако по мере прогрессирования заболевания, повышения альвеолярного мертвого пространства, высокой продукции СО2 и развития усталости дыхательных мышц происходит нарастание PaCO2 и алкалоз сменяется ацидозом. Лечение

Дополнительный стресс, связанный с этапами диагностики, следует свести к минимуму, чтобы предотвратить потенциально смертельную декомпенсацию состояния животного. В этом случае для кошек и собак подходят6: морфин (0,1-0,3 мг/кг в/м), ацепромазин (0,005-0,02 мг/кг в/м, п/о), диазепам (0,2-0,5 мг/кг в/м, в/в).

Оксигенотерапию начинают немедленно. Кислород должен быть увлажнен, чтобы предотвратить высыхание слизистой оболочки верхних дыхательных путей и дальнейшее нарушение нормальной их проходимости. Длительная терапия с высокой концентрацией кислорода (FiO2 > 0,6 % более 12 часов) является причиной травмы легких вследствие кислородного отравления. Токсические метаболиты кислорода в виде свободных радикалов и молекул супероксида повреждают эндотелиальные и эпителиальные клетки, что приводит к увеличению проницаемости эндотелия, воспалению и смерти клеток. Специфические клинические признаки проявления токсичности кислорода отсутствуют, изменения в легких сходны с таковыми при ОРДС, и их сложно отличить от обострения паренхиматозного заболевания³.

Другие осложнения при длительной кислородной терапии включают подавление эритропоэза, легочную вазодилатацию, системную вазоконстрикцию артериол и ателектазы. Пациентам, которые плохо реагируют на кислородную терапию и продолжают испытывать серьезные проблемы с дыханием, может потребоваться перевод на ИВЛ.

Следует устранить первопричину или первичное повреждение легких, удалить источник постоянной/повторной травмы, если это возможно.

При перегрузке объемом применяют диуретики, в основном фуросемид. Фуросемид является самым мощным и быстродействующим диуретиком. Он ингибирует натрий-калий-хлор-котранспортер (Na+- K+-2Cl) в толстой восходящей петле Генле, в результате чего происходит потеря воды, ионов водорода и электролитов, в том числе натрия, калия, хлора, кальция и магния 8. Как правило, начинают с дозы, равной 0,5–2 мг/кг в/в, в/м каждые 4–12 часов (в зависимости от реакции организма животного на препарат).

Фуросемид можно применять в виде инфузии с постоянной скоростью 0,1—1 мг/кг/ч. Это обеспечивает организм стабильной (постоянной) концентрацией действующего препарата с более мягким, ровным эффектом. ИПС дает лучшие результаты лечения у собак, чем прерывистое применение фуросемида. Раствор для ИПС должен содержать меньший из возможных объем жидкости, чтобы предотвратить перегрузку жидкостью⁷.

Фуросемид противопоказан пациентам с гиповолемией, обезвоживанием или сильным нарушением электролитного баланса⁸. Его также с осторожностью следует использовать у животных, имеющих нарушения функции печени или диабет.

Кошки более чувствительны к фуросемиду, поэтому авторы рекомендуют снижать дозу препарата 8 .

- Коллоидная поддержка при гипопротеинемии может включать свежезамороженную плазму (обеспечивает факторами свертывания и белками острой фазы в дополнение к альбумину), синтетические коллоиды, например «Хетастарч» (Hetastarch), и 25%-й человеческий альбумин ^{4,5,6}.
- Антибиотики используют при необходимости для лечения основного заболевания.

В идеале бактериологический посев должен быть взят до начала антибактериальной терапии. Выбор антибиотика зависит от тяжести заболевания, подозреваемых базовых этиологических агентов и общего состояния пациента¹¹.

- Кортикостероиды рекомендованы в конце перехода в пролиферативную стадию ОРДС (5–7 дней), но эти рекомендации не подкрепляются научными данными ^{4,5,6}.
- Бронходилататоры ^{4,5,6}:
 - Сальбутамол агонист β2-адренорецепторов в виде ингаляций через маску.
 - Теофиллин дают перорально в дозе 15–19 мг/кг 1 раз в 24 часа кошкам и 10 мг/кг 1 раз в 12 часов собакам (препарат не предназначен для внутривенного введения). Теофиллин менее ценен в чрезвычайных ситуациях при тяжелой дыхательной недостаточности у животных.
 - Эуфиллин представляет собой стабильную смесь теофиллина и этилендиамина, его разбавляют и вводят внутривенно медленно (5–10 мг/кг 1 раз в 6–8 часов). Это слабый бронхолитик.
 - Антихолинергические препараты, такие как атропин и гликопирролат, не были изучены при лечении бронхиальных заболеваний у животных.
 - N-ацетилцистеин это муколитическое средство, уменьшающее вязкость гнойных и негнойных выделений дыхательных путей11. Препарат можно вводить внутривенно или перорально в дозе 70 мг/кг каждые 6 ч. N-ацетилцистеин должен быть разбавлен, его вводят медленно внутривенно через фильтр, чтобы избежать гипотензии.

Важно, чтобы у любого пациента с дыхательной недостаточностью был адекватный объем циркулирующей крови для улучшения доставки кислорода к тканям. Однако инфузионная терапия должна проводиться разумно во избежание увеличения легочного отека и появления плеврального выпота. Несмотря на агрессивное лечение, прогноз (согласно ветеринарным отчетам, касающимся больных, перенесших ОРДС) осторожный. У людей смертность изза ОРДС очень высока (40–60 % больных). Генетическая предрасположенность 9

Острый респираторный дистресс-синдром у далматинов вызван мутацией гена ANLN. У пораженных собак белок ANLN полностью отсутствует в легких. Анилин нужен для деления и роста клеток. Согласно мнению доктора Марьо Хитонена,

повреждение легких у пораженных собак является следствием неправильного процесса регенерации бронхоальвеолярного эпителия: «Нахождение гена ANLN связано с манифестацией заболевания».

Наследуется как аутосомно-рецессивное заболевание.

Исследователи изучили материал из архива Ветеринарного образовательного госпиталя, а также образцы из биобанка, взятые у собак, и выяснили, что из 180 далматинцев и 30 пойнтеров (которых проверяли на предмет мутации, связанной с ОРДС) 2 % далматинцев имеют эту мутацию, в то время как у пойнтеров она не была обнаружена.

Генетические тесты производились с помощью системы MyDogDNA. Полное описание исследования можно найти в журнале PLOS Genetics (journals.plos.org).

Литература:

- 1. Brady C., Ono C., Winkle T. et al. Severe sepsis in cats: 29 cases (1988–1998), 2000.
- 2. Интенсивная терапия. Национальное руководство. Краткое издание / Под ред. Б. Р. Гельфанда, А. И. Салтанова. М.: ГЭОТАР-Медиа, 2013.
- 3. Острый респираторный дистресс-синдром. С. Н. Авдеев. НИИ Пульмонологии МЗ и СР РФ, Москва.
- 4. Ferguson N. D., Fan E., Camporota L. et al. The berlin definition of ARDS: an expanded ranionale, justification, and supplementary material // Intensive care Med. 2012, Oct. Vol. 38(10). P. 1573–1582.
- 5. Ranieri V. M., Rubenfeld G. D., Thompson B. T. et al. Acute respiratory distress syndrome: the Berlin definition // JAMA. 2012, Jun. Vol. 307(23). P. 2526–2533.
- 6. Wilkins P.A., Otto S.M., Dunkel B. et al. Acute lung injury and acute respiratory distress syndromes in veterinary medicine: consensus definitions: The Dorothy Russell Havemeyer Working Group on ALI and ARDS in Veterinary Medicine. Vet Emerg Crit Care 2007 17(4): 333–339.
- 7. Adin D., Taylor A., Hili R. et al. Intermittent bolus injection versus continuous infusion of furosemide in normal adult greyhound dogs. Journal of Veterinary Internal Medicine, 17(5), 632–636, 2003.
- 8. Abbott Land Kovacic J. The pharmacologic spectrum of furosemide. Journal of Vetermary Emergency and Crlllcal Care, 2008,18(1), 26-39
- 9. Saila Holopainen, Marjo K. Hytönen, Pernilla Syrjä et al. ANLN truncation causes a familial fatal acute respiratory distress syndrome in Dalmatian dogs. PLOS Genetics, 2017; 13 (2): e1006625
- 10. Bernard G.R., Artigas A., Brigham K.L. et al. Report of the American European Consensus Conference on Acute Respiratory Distress Syndrome: defi nitions, mechanisms, relevant outcomes, and clinical trial coordination . J Crit Care 1994; 9 (1): 72.
- 11. Plumb D. Plumb's veterinary drug handbook, 5th edn, 2005/ Blackwell Publishing Professional, Iowa
- 12. Acute Respiratory Distress Syndrome. Emily K. Thomas, Lori S. Waddell, Philadelphia, Pennsylvania. Jul 18, 2016

