# **Data Mining**

#### Ying Liu, Prof., Ph.D

School of Computer Science and Technology
University of Chinese Academy of Sciences
Data Mining and High Performance Computing Lab

#### Welcome

#### Ying Liu

- Computer Engineering, Ph.D,
   Northwestern University, USA
- Research interests
  - Data Mining
  - Artificial Intelligence
  - High Performance Computing
- Email: yingliu@ucas.ac.cn



#### **Useful Information**

- Teaching Assistants
  - Jiang, Wen
  - Cui, Zhenyu
  - Wang, Wei
- Class: Monday & Wednesday 8:30 10:10, 教 1-101
- Website: http://sep.ucas.ac.cn

#### **Textbook and References**

#### Textbook

 Data Mining, Concepts and Techniques. Jiawei Han and Micheline Kamber, Morgan Kaufmann, 2011 (Third Edition)

#### References

Research papers. To be announced in class.



#### **Prerequisites**

- Data Structure
- Algorithm
- Database
- Programming: C/C++ (preferred), Python, Java

#### **A Mini Survey**

- How many people were major in computer science?
- How many people took machine learning courses before?
- How many people took statistics courses before?
- How many people took database courses before?

# **Grading Scheme**

- Assignments (30%)
  - 3 homework assignments
- Course Project (30%)
  - Group project (4 students/group)
  - Solve a real problem: propose an algorithm/approach and implement it
- Final Exam (40%)
  - In class, closed book

# **About the Project**

- Option 1: 2020 CCF大数据与计算智能大赛
  - 题目——风电机组异常数据识别与清洗 (https://www.datafountain.cn/competitions/451)
  - Read through some related research papers and fully understand them
  - Develop and implement the method
  - To be evaluated by the ranking or feedback from the contest





| 赛制规则 | 数据与评测 | 排行榜 | 参赛队伍 | 交流讨论 | 常见问题 |  | 报名参赛 |
|------|-------|-----|------|------|------|--|------|
|      |       |     |      |      |      |  |      |

大赛介绍

#### 主题方向

赛题名称

赛题背景

赛题任务

组织架构

赛程信息

参赛奖励

激励机制

大赛规则

参赛交流

#### 赛题名称

风电机组异常数据识别与清洗

#### 赛题背景

风能是一种环境友好且经济实用的可再生能源。中国是世界排名第一的风力发电国家、新装风力发电设备装机容量最大的国家,并且保持快速增长。由于风力发电正处于飞速发展阶段,风电场数量和规模不断扩大,然而受地理条件和环境因素限制,风电场多位于偏僻遥远的平原、山区或海上,因此为风电公司引入SCADA系统(数据采集与监视控制系统)对风电场群的日常运行进行集中监控、调度和管理,但风电机组受设备、环境、运行状态等因素影响,SCADA系统实时采集的风机运行数据会存在有大量异常值和缺失值,这些"脏数据"的存在严重影响后续的风电机组状态分析、故障诊断等功能。因此,识别并排除风电机组的异常数据具有重要的探究意义。

#### 赛题任务

依据提供的8台风力电机1年的10min间隔SCADA运行数据,包括时间戳信息、风速信息和功率信息等,利用机器学习相关技术,建立鲁棒的风电机组异常数据检测模型,用于识别并剔除潜在的异常数据,提高数据质量。

此任务未给出异常数据标签,视为聚类任务,为引导选手向赛题需求对接,现简单阐述异常数据定义。异常数据是由风机运行过程与设计运行工况出现较大偏离时产生,如风速仪测风异常导致采集的功率散点明显偏离设计风功率。



## **About the Project**

- Option 2: in-class competition
  - 题目:天体光谱智能识别分类
  - 光谱天文望远镜每个观测夜晚都能采集万余条光谱, 使得传统的人工或半人工的利用模板匹配的方式不 能很好应对,需要高效而准确的天体光谱智能识别 分类算法。
  - 利用14万个天体的光谱数据进行模型训练,把测试集中的未知天体分成行星(star),星系(galaxy)和类星体(qso)三类。
  - Read through some related research papers and fully understand them
  - Develop and implement the method
  - To be evaluated by the ranking in class

## **About the Project**

- Option 3: in-class competition
  - 题目: Foreign Object Detection on Roadways
  - Given an input image, an algorithm is expected to produce a set of tight boxes around objects with classification labels.
  - We provide 766 images, taken on the road at the Zhongguancun Campus. The foreign objects in the images include yellow/black clippers, screws and small wrenches for screwing.
  - Read through some related research papers and fully understand them
  - Develop and implement the method
  - <sup>2020</sup>To⁴be evaluated by the ranking in class



# How to Do a Good Project?

- Start early
  - It takes time to understand and think
- Discuss with me
  - Maybe I can give some suggestions or ideas
- Implement concretely
- Think creatively

## Why Take This Course?

- Data mining is hot
  - Solve many interesting problems in real applications, e.g. business management, WWW, science exploration
  - Turn raw data into knowledge
  - Promising in research of many disciplines
  - Data miners' job market: many well-paid positions
    - > Data Mining is very useful!

## Syllabus (Tentative)

- Introduction
- Data warehouse
- Data pre-processing
- Classification
- Clustering
- Association rules
- Applications
- Big data mining

#### **Objectives of This Course**

- Introduce the motivation of data mining
- Outline principles, major algorithms
- Introduce applications
- Introduce advanced topics
- Enhance independent research capability

#### **Policies**

- Students are expected to attend all classes
- No late homework will be accepted
- All work must be efforts of your own (individual assignment) or of your approved team (group assignment)

#### No Plagiarism!

## What Motivated Data Mining?

- The explosive growth of data
  - Data collection and data availability
    - Computer hardware & software develop dramatically
    - The amount of data collected and stored doubles/triples per year vs. CPU speed increases 15% per year (till 2003)
- Many types of databases
  - Object-oriented, spatial, temporal, time-series, text, multimedia, Web

# What Motivated Data Mining – Business World

- Tremendous of data being collected and stored
  - E-commerce
  - Transactions
  - Stocks
  - Credit card transactions
- Strong competitive pressure to extract and use the knowledge hidden in the data to provide customized CRM







# What Motivated Data Mining – Scientific World

- Tremendous of data being collected and stored
  - Remote sensing
  - Bioinformatics (Microarrays)
  - Scientific simulation
- Scientists need strong data analysis to assist research, such as classification, segmentation, etc.







# What Motivated Data Mining?

- We are drowning in data, but starving for knowledge!
  - Data rich, knowledge poor
  - Decision makers, domain experts have biases or errors
- Automated analysis of massive data sets

## What is Data Mining?

Data mining — Discover valid, novel, useful, and understandable patterns in massive datasets



## What is Data Mining?

- Cross Disciplines
  - Databases
  - Machine learning: decision tree, Bayesian classifier, etc.
  - Statistics: regression, etc.
  - Neural networks
  - Parallel/Distributed computing



Database Technology, Parallel Computing, Distributed Computing

# Why Not Traditional Data Analysis?

- Tremendous amount of data
  - Algorithms must be highly scalable to handle such as tera-bytes of data



- High-dimensionality of data
  - DNA sequences may have tens of thousands of dimensions



# Why Not Traditional Data Analysis?

- High complexity of data
  - Data streams and sensor data
  - Time-series data, sequence data
  - Graphs, social networks

Spatial, multimedia, text and Web data

New and sophisticated applications





# Why Not Traditional Data Analysis?

#### Database

- Storage-oriented
- Provide simple queries
- Data warehouse
  - Subject-oriented
  - A multidimensional view of data
  - Operations to access summarized data
- Statistical algorithms
  - Based on many hypothesis
  - Find patterns in small number of samples

#### Data mining

Discover knowledge from data in databases

Advanced data analysis tools

Less hypothesis

Find patterns in large number of samples

Abnormal patterns

# **Characteristics of Data Mining**

- Massive dataset
- Automatically searching for interesting patterns from historical data
- Fast
- Scalable
- Update easily
- Practical
- Decision support

#### **Exercises**

1. Could you present an application of data mining in business domain?

2. Could you present an application of data mining in scientific domain?



#### **Association Rules Mining**

Detect sets of attributes or items that frequently co-occur in many database records and rules among them



On Thursdays, during 4-11pm customers often purchase diapers and beers together!





#### Ex. 1: Production Recommendation

- Where does the data come from?
  - supermarket transactions, membership cards, discount coupons
- Discover individual products, or groups of products that tend to occur together in transactions
- Determine recommendations and cross-sell and up-sell opportunities
- Improve the efficiency of a promotional campaign

#### Classification

75K

90K

Married

Single

No

No

No

Yes

Build a model of classes on training dataset, and then, assign a new record to one of several predefined classes



The splitting attribute at a node is determined based on the Gini index.

Decision Tree

rule 1: if (Refund='no') and (MarSt = 'Single, Divorced') and (TaxInc >= 80K) then "Cheat"

#### **Ex.2 Credit Scoring**



Decision Tree

rule 1: if (Income<=\$40k) and (Debt=0) then "good" rule 2: if (Income>\$40K) and (Debt<10% of Income) then "good"

2020-09-14 34

# **Ex.2 Credit Scoring**

- Where does the data come from?
  - Credit card transactions, credit card payments, loan payments, demographic data
- Predict the probability to bankrupt or chargeoff
- Reduce the credit risk to the banks
- Increase the profitability of the banks

# **Clustering**

Partition the dataset into groups such that elements in a group have lower inter-group similarity and higher intra-group similarity



#### Ex.3 Scientific Simulation

- Cosmological simulation
  - Simulate the formation of the galaxy
  - Enormous particles at each evolution stage, beyond the capability of human being to analyze



# **Sequence Mining**

 Given a set of sequences, find the complete set of frequent subsequences



Marketing stragegy: recommend a new CPU for the customer 9 months after his first purchase

# **Anomaly Detection**

- What are anomalies?
  - The set of objects are considerably dissimilar from the remaining of the data
- Given a set of *n* objects, and *k*, the number of expected anomalies, find the top *k* objects that are considerably dissimilar or inconsistent with the remaining data

Anomalies may be valuable!

(·)

# **Social Analysis**

- Social media mining
  - Detect communities
  - Communities evolution









# **Recommender Systems**

- Recommend products that would be interesting to individuals
  - Build a function,  $f: U \times I \to \mathbb{R}$ , for user set U and item set I

#### **Product**

























Movie

**Customers Who Viewed This Item Also Viewed** 





















《情书》——献给总是 美丽的你



□ 这些歌陪伴我的悠 闲时光



Music

日本动画中的反乌托邦 童言

#### **Exercises**

1. Can you describe other possible kind of knowledge that needs to be discovered by data mining methods but not been mentioned in class yet?

#### On What Kinds of Data?

- Database-oriented data sets and applications
  - Relational database, data warehouse, transactional database
- Advanced database applications
  - Data streams
  - Spatial data
  - Text database
  - Multimedia data
  - Time-series
  - Bio-medical data
  - Network traffic data

#### **Relational Databases**

- Structured data
  - Table records attributes
  - Accessed by queries, SQL
- Online transactional processing (OLTP)
  - Insert a student "Ying Liu" into class "Introduction to Data Mining", fall 2014

| Name     | Time        | Course                      | score | Room |
|----------|-------------|-----------------------------|-------|------|
| Ying Liu | Fall 2014   | Introduction to Data Mining | 90    | 002  |
| Tom      | Fall 2014   | Math                        | 85    | 001  |
| Merlisa  | Spring 2014 | Compiler                    | 70    | 001  |
| George   | Fall 2014   | Graphics                    | 92    | 001  |

#### **Data Warehouses**

- A subject-oriented, integrated, cleaned collection of data in support of management's decision making process
- Data from multiple databases
- Consistency checking in data warehouses
- Data warehouses can answer OLAP queries efficiently
  - Online analytical processing (OLAP)
  - Find the average class score of "Ying Liu" in the last 3 years, grouped by semesters
- Many patterns are summarization of data
  - Roll-up, drill-down

## **Data Warehouses**



#### **Transactional Databases**

- =  $I=\{x_1, ..., x_n\}$  is the set of items
- An itemset is a subset of I
- A transaction is a tuple (tid, X)
  - Transaction ID tid
  - Itemset X
- A transactional database is a set of transactions

| Tid  | Itemset                                 |  |  |
|------|-----------------------------------------|--|--|
| T100 | Milk, bread, beer, diaper               |  |  |
| T200 | Beer, cook, fish, potato, orange, apple |  |  |
|      |                                         |  |  |

# **Spatial Data**

#### Spatial information

- Geographic databases (map)
- VLSI chip design databases
- Satellite/remote sensing image databases
- Medical image database

#### Spatial patterns

- Find characteristics of homes near a given location
- Change in trend of metropolitan poverty rates based on distances from major highways

| 编号 | 中心  | 正右方 | 右上方 | 面积  |
|----|-----|-----|-----|-----|
| 1  | 居民地 | 绿地  | 水体  | 100 |
| 2  | 绿地  | 水体  | 水体  | 50  |
| 3  | 水体  | 居民地 | 居民地 | 600 |
| 4  | 水体  | 绿地  | 绿地  | 54  |
|    |     |     |     |     |

#### **Time Series**

- A sequence of values that change over time
  - Sequences of stock price at every 5 minutes
  - Daily temperature
  - Power supply
  - Electrocardiogram
- Typical operations
  - Similarity search
  - Trend analysis
  - Periodic pattern discovery



time

#### Text Databases & Multimedia Databases

- HTML web documents
- XML documents
- Digital libraries
- Annotated multimedia databases
  - Image, audio and video data
  - Typical operations
    - Similarity-based pattern matching
    - Deep learning









#### **Data Streams**

- Data in the form of continuous arrival in multiple, rapid, time-varying, possibly unpredictable and unbounded streams
  - Dynamically changing patterns, high volume, infinite, quick response, no re-scan
- Many applications
  - Stock exchange, network monitoring, telecommunications data management, web application, sensor networks, etc.

#### **Biomedical Data**

- Bio-sequences
  - DNA: very long sequences of nucleotides
  - Similarity search
  - Identify sequential patterns that play roles in various diseases
  - Association analysis: co-occurring gene

sequences



#### **World-Wide Web**

- The WWW is huge, widely distributed, global information service center for
  - Information services: news, advertisements, consumer information, financial management, education, government, ecommerce, etc.
  - Hyper-link information
  - Access and usage information
- WWW provides rich sources for data mining
- Challenges
  - Too huge for effective data warehousing and data mining
  - Too complex and heterogeneous: no standards and structure

#### **World-Wide Web**

- Web Usage: Logs and IP package header streams
  - Mine Weblog records to discover user accessing patterns of Web pages
- Web Content
  - Extract knowledge from a Web documents, automatic categorization
- Web Structure
  - Identifying interesting graph patterns among different
     Web pages

## Internet graph



The images are downloaded from http://www.maths.bris.ac.uk/~maarw/graphs/graph.html and http://www.netdimes.org/new/?q=node/17

#### Citation graph



The images are downloaded from http://www.emeraldinsight.com/fig/2780600403005.png and www.bordalierinstitute.com/target1.html

## Friendship graph



The images are downloaded from http://www.thenetworkthinker.com/ and http://myweb20list.com/blog/2008/03/23/ new-amazing-facebook-photo-mapper/my-facebook-friend-graph/

#### Protein interaction graph



The images are downloaded from http://bioinformatics.icmb.utexas.edu/lgl/Images/rsomZoom.jpg



2020 07 17

# **Knowledge Discovery (KDD) Process**



# **Key Steps in KDD Process**

- Learning the application domain
  - relevant prior knowledge and goals of application
- Creating a target data resource
- Data cleaning and preprocessing: (may take 60% of effort!)
- Data reduction and transformation
  - Find useful features, dimensionality/variable reduction, invariant representation
- Choosing the mining algorithm(s) to search for patterns of interest
- Pattern evaluation and knowledge presentation
  - visualization, transformation, removing redundant patterns, etc.
- Use of discovered knowledge

# Are All the "Discovered" Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
- Interestingness measures
  - A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm
- Objective vs. subjective interestingness measures
  - Objective: based on statistics and structures of patterns, e.g., support, confidence, etc.
  - Subjective: based on user's belief in the data, e.g., unexpectedness, novelty, actionability, etc.

## Find All and Only Interesting Patterns?

- Find all the interesting patterns: Completeness
  - Can a data mining system find all the interesting patterns? Do we need to find all of the interesting patterns?
  - Heuristic vs. exhaustive search
- Search for only interesting patterns: An optimization problem Challenging
  - Can a data mining system find only the interesting patterns?
  - Approaches
    - First generate all the patterns and then filter out the uninteresting ones
    - Guide and constrain the discovery process

# Research Issues in Data Mining

#### Mining methodology

- Mining different kinds of knowledge from diverse data types, e.g., Web, graph, bio, stream, image, audio
- Performance: efficiency, effectiveness, and scalability
- Parallel, distributed and incremental mining methods
- Handling noise and incomplete data
- Pattern evaluation: the interestingness problem

Incorporation of background knowledge

# Research Issues in Data Mining

- User interaction
  - Data mining query languages
  - Expression and visualization of data mining results
- Applications and social impacts
  - Domain-specific data mining
  - Protection of data security, integrity, and privacy

## **Important Resources**

- Data mining conferences
  - ACM SIGKDD, IEEE ICDM, SIAM DM, PKDD, PAKDD
- Database conferences
  - ACM SIGMOD, VLDB, ACM PODS, IEEE ICDE, EDBT, ICDT
- Important journals
  - ACM Data Mining and Knowledge Discovery
  - IEEE Transactions on Knowledge and Data Engineering
  - Knowledge and Information Systems