

[CSE4152] 고급소프트웨어 실습 I Week 12

서강대학교 공과대학 컴퓨터공학과 교수 임 인 성

코드 최적화 (Code Optimization)

Program optimization (code optimization)

- https://en.wikipedia.org/wiki/Program_optimization#Source_code_level
- Goal
 - Optimize a computer program so that it **executes more rapidly**, or to make it capable of **operating with less memory storage** or **other resources**, or **draw less power**.

Levels of otimization

- Design level
- Algorithms and data structures
- Source code level
- Build level
- Compile level
- Assembly level
- Runtime level

Examples

- Strength reduction (https://en.wikipedia.org/wiki/Strength_reduction)
 - Expensive operations are replaced with equivalent but less expensive

```
operations.
c = 7;
for (i = 0; i < N; i++)
{
    y[i] = c * i;
}
    y[i] = k;
    k = k + c;
}</pre>
```

```
for (i = 0; i < 1048576; i++) {
    A[i] = B[i] / C;
}

double tmp = 1.0 / C;
for (i = 0; i < 1048576; i++) {
    A[i] = B[i] * tmp;
}</pre>
```

Original calculation	Replacement calculation
y = x / 8	y = x >> 3
y = x * 64	y = x << 6
y = x * 2	y = x << 1
y = x * 15	y = (x << 4) - x
$y = x / 10$ (where x is of type uint16_t)	y = ((uint32_t)x * (uint32_t)0xCCCD) >> 19)
$y = x / \pi$ (where x is of type uint16_t)	y = (((uint32_t)x * (uint32_t)0x45F3) >> 16) + x) >> 2)

Cost Comparison of Arithmetic Operations

	Casio E115	Casio E115G 168MHz overclocked	Casio E200	CasioEG800	Compaq iPAQ 3650	TouchPC
os	Windows CE Version 3.0 (build 9348)	Windows CE Version 3.0 (build 9348)	Windows CE Version 3.0 (build 11171)	Windows CE Version 3.0 (build 9348)	Windows CE Version 3.0 (build 9348)	Windows CE Version 3.0 (build 126)
Platform	Pocket PC J580	Pocket PC J582	Pocket PC J710	Pocket PC J670	Compaq iPAQ H3600	uCErfSA1110 SA-1110
Processor	MIPS R4000 PRId 0x460	MIPS R4000 PRId 0x460	StrongArm	MIPS R4000 PRId 0x470	StrongArm	StrongArm
Desktop bits/pixel	16	16	16	16	16	8
Desktop resolution			240x320			
Performance Counter	32,768 Hz	32,768 Hz	3,686,400 Hz	32,768 Hz	1,000,000 Hz	1,000 Hz
Timer speed	40 Hz	23 Hz	468 Hz	422 Hz	499 Hz	40 Hz
Integer Add	18,083,885 Hz	41,956,466 Hz	83,364,993 Hz	37,130,878 Hz	85,833,226 Hz	Inconsistent results
Integer Multiply	18,649,971 Hz	20,537,762 Hz	61,543,084 Hz	20,390,790 Hz	61,563,086 Hz	20,000,000 Hz
Integer Divide	3,494,694 Hz	4,413,793 Hz	6,544,954 Hz	3,873,057 Hz	7,634,928 Hz	7,272,727 Hz
Float Add	793,894 Hz	1,004,537 Hz	818,766 Hz	911,361 Hz	816,876 Hz	1,000,000 Hz
Float Multiply	586,451 Hz	1,001,313 Hz	695,575 Hz	711,806 Hz	693,866 Hz	571,428 Hz
Float Divide	291,984 Hz	345,581 Hz	438,665 Hz	336,582 Hz	437,620 Hz	380,952 Hz

위 테이블의 내용은 오래 전의 자료임. 하지만 아직도 프로세서에 따라 정도는 다르나 float/double 타입의 연산 특히 곱하기와 나누기 연산은 상대적인 부담이 큼.

^{*} NVIDIA GeForce RTX 2080 GPU: Float 10,068 GFLOPS/ Double 314 GFLOPS

Execution Times on Arduino Mega2560 (16 MHz)

From https://forum.arduino.cc/index.php?topic=196522.0

Unit: nanosecond

	uint8	int16	int32	int64	float
+	63	884	1,763	8,428	10,943
*	125	1,449	4,592	57,038	10,422
/	15,859 (13,714)	15,969	41,866 (39,413)	274,809	31,951
sqrt		54,251	54,448	70,884	47,127

참고: 16 MHz = 62.5 nanoseconds per cycle

- Loop-invariant code motion (https://en.wikipedia.org/wiki/Loop-invariant_code_motion)
 - Move statements or expressions which can be moved outside the body of a loop without affecting the semantics of the program.
 - Mostly done by a complier automatically.

```
int i = 0;
while (i < n) {
    x = y + z;
    a[i] = 6 * i + x * x;
    ++i;
}</pre>
```

```
int i = 0;
if (i < n) {
    x = y + z;
    int const t1 = x * x;
    do {
        a[i] = 6 * i + t1;
        ++i;
    } while (i < n);
}</pre>
```

Code Optimization Technique: Loop Unrolling


```
for (int i = 0; i < N; i++) {
    A[i] = B[i] + 2.0 * C[i];
}

A[i+1] = B[i+1] + 2.0 * C[i+1];

A[i+2] = B[i+2] + 2.0 * C[i+2];

A[i+3] = B[i+3] + 2.0 * C[i+3];

}
```

- Increase a program's speed by
 - 1. reducing or eliminating instructions that control the loop, such as pointer arithmetic and "end of loop" tests on each iteration,
 - 2. reducing branch penalties, and
 - 3. hiding latencies, including the delay in reading data from memory.
- Undertaken manually by the programmer or by an optimizing compiler.
- Optimize the execution speed at the expense of its binary size.
 - Often counterproductive, as the increased code size can cause more cache misses.

Intel® 64 and IA-32 Architectures Optimization Reference Manual

3.4.1.7 Loop Unrolling

Benefits of unrolling loops are:

- Unrolling amortizes the branch overhead, since it eliminates branches and some of the code to manage induction variables.
- Unrolling allows one to aggressively schedule (or nineline) the loop to hide latencies. This is useful if

Assembly/Compiler Coding Rule 15. (H impact, M generality) Unroll small loops until the overhead of the branch and induction variable accounts (generally) for less than 10% of the execution time of the loop.

Assembly/Compiler Coding Rule 16. (H impact, M generality) Avoid unrolling loops excessively; this may thrash the trace cache or instruction cache.

Example 3-10. Loop Unrolling

```
Before unrolling:
     doi = 1,100
                                                                                                       for (int i = 0; i < N; i += 4) {
           if ( i mod 2 == 0 ) then a( i ) = x
                                                                                                          A[i] = B[i] + 2.0 * C[i];
                                                        for (int i = 0; i < N; i++) {
                 else a(i) = y
                                                                                                          A[i+1] = B[i+1] + 2.0 * C[i+1];
                                                           A[i] = B[i] + 2.0 * C[i];
     enddo
                                                                                                          A[i+2] = B[i+2] + 2.0 * C[i+2];
After unrolling
                                                                                                          A[i+3] = B[i+3] + 2.0 * C[i+3]:
     doi = 1, 100, 2
           a(i) = v
           a(i+1) = x
      enddo
```

Loop Unrolling 기법을 통한 성능 향상


```
#define NVECTORS 8388608
                                                                강의자료 "1. Loop Unrolling 기법
double *pSVec, *pDVec, pMat[3][3];
                                                                적용을 통한 성능 향상" 절을 읽을 것.
// Listing 1
void TransformVectors_L1(double *pDestVectors, const double (*pMatrix)[3],
        const double *pSourceVectors, int NumberOfVectors) {
 int Counter, i, j;
 for (Counter = 0; Counter < NumberOfVectors; Counter++) {</pre>
   for (i = 0; i < 3; i++) {
                                                            void init_MatVec(void) {
    double Value = 0;
                                                             pSVec = (double *) malloc(sizeof(double)*NVECTORS*3);
    for(j = 0; j < 3; j++) {
                                                             pDVec = (double *) malloc(sizeof(double)*NVECTORS*3);
      Value += pMatrix[i][j] * pSourceVectors[j];
                                                             // initialize the input vectors pointed by pSVec here.
     *pDestVectors++ = Value;
                                                             // initialize the matrix pointed by pMat here.
                         pDestVectors
                                                pSourceVectors
   pSourceVectors += 3;
                                      pMatrix
                                                            void main(void) {
                                                 X
                                                             __int64 start, freq, end;
                                                             float resultTime = 0;
                                                             init_MatVec();
                                                             CHECK_TIME_START:
                                                             TransformVectors_L1(pDVec, pMat, pSVec, NVECTORS);
                                                             CHECK_TIME_END(resultTime);
                                                             printf("TransformVectors_L1: %f(s).\n", resultTime);
```

C. Hecker, "PowerPC Compilers: Still Not So Hot", Game Developers, 1996.

3.4 GHz Intel Core i7 CPU

0.223184초 > 0.116088초

```
void TransformVectors_L5(double *pDestVectors, const double (*pMatrix)[3],
        const double *pSourceVectors, int NumberOfVectors) {
 int Counter:
 double Value0, Value1, Value2;
 for (Counter = 0; Counter < NumberOfVectors; Counter++) {</pre>
   Value0 = pMatrix[0][0] * pSourceVectors[0];
   Value0 += pMatrix[0][1] * pSourceVectors[1];
   Value0 += pMatrix[0][2] * pSourceVectors[2];
   *pDestVectors++ = Value0;
   Value1 = pMatrix[1][0] * pSourceVectors[0];
   Value1 += pMatrix[1][1] * pSourceVectors[1];
   Value1 += pMatrix[1][2] * pSourceVectors[2];
   *pDestVectors++ = Value1;
   Value2 = pMatrix[2][0] * pSourceVectors[0];
   Value2 += pMatrix[2][1] * pSourceVectors[1];
   Value2 += pMatrix[2][2] * pSourceVectors[2];
   *pDestVectors++ = Value2;
   pSourceVectors += 3;
```

컴파일러와 코드 최적화 정도에 따른 수행 속도 비교

Table 1. Transform Cycle Counts						
Compiler	Listing 1	Listing 2	KAPed 1 (not shown)	Listing 4	Listing 5	Listing 6
CodeWarrior	40.7	50.5	50.9	34.3	29.7	19.6
Symantec C++	76.6	94.9	82.8	50.9	31.9	25.7
Motorola C++	34.5	47.4	39.5	33.2	30.8	20.6
Apple's MrCpp	52.0	65.0	56.2	36.1	28.8	19.5
Microsoft VC++	41.6	49.3	42.8	31.9	21.9	22.7

C. Hecker, "PowerPC Compilers: Still Not So Hot", Game Developers, 1996.

```
// Listing 5
void TransformVectors_L5(double *pDestVectors, const double (*pMatrix)[3],
        const double *pSourceVectors, int NumberOfVectors) {
  int Counter:
 double Value0, Value1, Value2;
 for (Counter = 0; Counter < NumberOfVectors; Counter++) {</pre>
   Value0 = pMatrix[0][0] * pSourceVectors[0];
   Value0 += pMatrix[0][1] * pSourceVectors[1];
   Value0 += pMatrix[0][2] * pSourceVectors[2];
   *pDestVectors++ = Value0:
   Value1 = pMatrix[1][0] * pSourceVectors[0];
   Value1 += pMatrix[1][1] * pSourceV
   Value1 += pMatrix[1][2] * pSourceV
   *pDestVectors++ = Value1;
   Value2 = pMatrix[2][0] * pSourceVe
   Value2 += pMatrix[2][1] * pSourceV
   Value2 += pMatrix[2][2] * pSourceV
   *pDestVectors++ = Value2;
   pSourceVectors += 3;
```


_Krr1 += pMatrix[0][1] * pSourceVectors[1];
_Krr2 += pMatrix[1][1] * pSourceVectors[1];
Value += pMatrix[2][1] * pSourceVectors[1];
_Krr1 += pMatrix[0][2] * pSourceVectors[2];
_Krr2 += pMatrix[1][2] * pSourceVectors[2];
Value += pMatrix[2][2] * pSourceVectors[2];

*pDestVectors++ = _Krr1;
*pDestVectors++ = _Krr2;
*pDestVectors++ = Value;
pSourceVectors += 3;

Listing 5	Listing 6
29.7	19.6
31.9	25.7
30.8	20.6
28.8	19.5
21.9	22.7

Why did it make such a big difference? I have no idea, and the only explanation I can come up with is that you need to hold your compiler's hand on any piece of code you care about. The changes I made for Listings 5 and 6 are very obvious (to a human, if not a compiler). I'm basically just stating explicitly where variables are accessed, where possible aliasing can occur, and which variables are constant throughout a loop iteration. These are all things the compiler is supposed to do for us, so we can work on more important stuff, like design and algorithms, or assembly language code for our most inner loops. We're supposed to trust the compiler will do a respectable job, without having to optimize every line of our code (an impossible task for all but the smallest programs).

C. Hecker, "PowerPC Compilers: Still Not So Hot", Game Developers, 1996.

다차원 배열 접근 시 Stride의 크기가 주는 영향

강의자료 "2. 다차원 배열 접근 시 Stride의 크기가 주는 영향" 절을 읽을 것.

http://arstechnica.com/gadgets/2002/07/caching/2

Level	Access Time	Typical Size	Technology	Managed By
Registers	1-3 ns	?1 KB	Custom CMOS	Compiler
Level 1 Cache (on- chip)	2-8 ns	8 KB-128 KB	SRAM	Hardware
Level 2 Cache (off- chip)	5-12 ns	0.5 MB - 8 MB	SRAM	Hardware
Main Memory	10-60 ns	64 MB - 1 GB	DRAM	Operating System
Hard Disk	3,000,000 - 10,000,000 ns	20 - 100 GB	Magnetic	Operating System/User

Single-Precision Floating-Point Number

 $(1.1)_{10} = 1 \times (1.000 \ 1100 \ 1100 \ 1100 \ 1100 \ 1100 \ 1100 \ \dots)_2 \times 2^0$

```
(e = 0)

0011 1111 1000 1100 1100 1100 1101

3 f 8 c c c c d
```


• 특징

- Can represent only a finite number of floating points numbers.
 - At most 2³² for single precision
 - Is $(1.1)_{10}$ a machine number when this format is used?
- Can represent only a *limited range* of floating points numbers.

$$MIN_{single} \le |V| \le MAX_{single}$$

$$MIN_{single} = \begin{cases} (1.00 \cdots 0)_2 \cdot 2^{-126} = 2^{-126} \approx 1.8 \cdot 10^{-38} (N) \\ (0.00 \cdots 1)_2 \cdot 2^{-126} = 2^{-23} \cdot 2^{-126} = 2^{-149} \approx 1.4 \cdot 10^{-45} (SUBN) \end{cases}$$

$$MAX_{single} = (1.11 \cdots 1)_2 \cdot 2^{127} = \{(10.00 \cdots 0)_2 - 2^{-23}\} \cdot 2^{127} = (1 - 2^{-24}) \cdot 2^{128} \approx 3.4 \cdot 10^{38}$$

 The interval between machine numbers increases as the numbers grow in magnitude.

• **Double precision**의 경우 (8 bytes = 64 bits)

Format	Min Subnormal	Min Normal	Max Finite	Sig. Digits in Dec.
Single	1.4E-45	1.2E-38	3.4E38	6 – 9
Double	4.9E-324	2.2E-308	1.8E308	15 - 17

Floating-Point Number를 사용하여 문제를 풀 때

- 다음과 같은 문제 등을 고려해야 함.
 - 컴퓨터가 실수를 정확하게 저장을 못해서 생기는 문제
 - 컴퓨터가 실수 간의 연산을 정확하게 수행을 못해서 생기는 문제
 - 컴퓨터 자체 문제 외에 문제를 푸는 해법, 즉 알고리즘 자체가 본질적으로 unstable (ill-conditioned)해서 생기는 문제
 - 기타
- Floating-Point Arithmetic $x \cdot y \ (x, y \in R)$
 - On computer,
 - ① Store x and y into fl(x) and fl(y), respectively.
 - 2 Compute $fl(x) \cdot fl(y)$ as correctly as possible.
 - 3 Store the result into $fl(fl(x) \cdot fl(y))$.

Normalization and roundoff error

- A bad example (Base = 10, Num. of sig. dig. = 7)

a = 0.1234567E0, b = 0.4711325E4, c = -b

Compute a + b + c.

a + (b + c)

ADD r1, b, c
ADD r2, a, r1 _____ 결과: 0.1234567E0

(a + b) + c

ADD r1, a, b ADD r2, r1, c 결과: 0.123000E0

- ✓ Computer에서는 결합 법칙조차 성립 안 함!
- ✓ 부동 소수점 연산을 하면 할 수록 정확도가 점점 나빠질 확률이 높음.


```
float abc, def, ghi;

abc = 1.1e-38;
printf("abc = %20.8e\n", abc);

def = 1.1e-43;
printf("def = %20.8e\n", def);

ghi = 1.1e-46;
printf("ghi = %20.8e\n", ghi);
```

```
abc = 1.09999996e-038

def = 1.09301280e-043

ghi = 0.00000000e+000

Press any key to continue
```

```
float abc, def, ghi;

scanf("%lf %lf", &abc, &def);
printf("abc = %20.8e, def = %20.8e\n",
abc, def);

ghi = 1.0 - abc*def;
printf("ghi = %20.8e\n", ghi); // 4e-8

ghi = 1.0 - 1.0002*0.9998;
printf("ghi = %20.8e\n", ghi); // 4e-8
```

Intel Core i7 CPU M620

```
1.0002 0.9998

abc = 1.00020003e+000,

def = 9.99800026e-001

ghi = -1.96032914e-008

ghi = 3.99999998e-008

Press any key to continue
```

A cheap SHARP calculator

0.0000004

비슷한 숫자 간의 뺄셈


```
void main () {
  float g, x, y, z;

g = 1.1;
  x = 123456.7890;
  y = x + g;
  z = y - x;
  printf("*** g = %f\n*** z = %f\n", g, z);
}
```

왜 이러한 현상이 발생하였을까?

```
© C:#Windows#system32#cmd.exe

*** g = 1.100000

*** z = 1.101563
계속하려면 아무 키나 누르십시오 . . .
```

$$1.1 \approx (-1)^{0} \times (1.000\ 1100\ 1100\ 1100\ 1100\ 1101)_{2} \times 2^{0}$$
$$123456.7890 \approx (-1)^{0} \times (1.111\ 0001\ 0010\ 0000\ 0110\ 0101)_{2} \times 2^{16}$$


```
큰 수와 작은 수와의 덧셈
                     (e = 0)
q = 1.1 =
                   0011 1111 1000 1100 1100 1100 1100 1101
                     (e = 16)
x = 123456.7890 =
                   0100 0111 1111 0001 0010 0000 0110 0101
                   111 0001 0010 0000 0110 0101
x + q =
                                       1000 1100 1100 1100 1100 1101
                   111 0001 0010 0000 1111 0001(1)
                                                           비슷한 수끼리의 뺄셈
                   0100 0111 1111 0001 0010 0000 1111 0010
                             1111 0001 0010 0000 0110 0101
                   0100 0111 1000 0000 0000 0000 1000 1101
y - x =
                   0011 1111 1000 1101 0000 0000 0000 0000
z =
```

부동소수점 연산 시 주의할 점

• 비슷한 숫자 간의 뺄셈 (Loss of significance)

•
$$-b + \sqrt{b^2 - 4ac} \longrightarrow \frac{-4ac}{b + \sqrt{b^2 - 4ac}}$$
 when $b > 0$ and $b^2 \gg |ac|$

•
$$\sqrt{x+\delta} - \sqrt{x} \longrightarrow \frac{\delta}{\sqrt{x+\delta} + \sqrt{x}}$$
 when $x+\delta, x>0$ and $|\delta| \ll |x|$

•
$$\cos(x+\delta) - \cos x \longrightarrow -2\sin\frac{\delta}{2}\sin(x+\frac{\delta}{2})$$
 when $|\delta| \ll |x|$

•
$$x - \sin x \longrightarrow x - (x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots)$$
 when $|x| \approx 0$

- 아주 큰 수와 아주 작은 수와의 덧셈/뺄셈
- 아주 작은 수로의 나눗셈
- 기타