МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. И. И. ПОЛЗУНОВА»

А.В. Сорокин

ИСПОЛЬЗОВАНИЕ ПРАВИЛ ПЕТРОВА ДЛЯ РЕШЕНИЯ ЗАДАЧИ УПОРЯДОЧЕНИЯ

Методические указания к практической работе по дисциплине «Моделирование»

УДК 519.8

Сорокин А.В. Использование правил Петрова для решения задачи упорядочения. Методические материалы к практической работе по дисциплине «Моделирование» / А.В. Сорокин; Алт. госуд. технич. ун-т им. И.И. Ползунова.. - Барнаул, 2022. – 16 с.

В методических материалах изложен теория по дисциплине «Моделирование», используемая для выполнения практических заданий. Материал содержит описание задачи упорядочения на основе производственной задачи — обработки определенного количества деталей на более чем двух обрабатывающих станках. Рассматриваются четыре правила предпочтения Петрова. Описываются критерии выбора субоптимальной последовательности запуска п деталей на т станках. Показывается использование правил Петрова для решения задачи с пятью и семью деталями и на семи обрабатывающих станках. Материал снабжен иллюстрационными примерами рассматриваемой задачи упорядочения. Методический материал предназначен для студентов, обучающихся по направлению «Программная инженерия», «Информатика и вычислительная техника».

Содержание

Введение	4
1. Обозначения	4
2. Правила Петрова	5
3. Неопределенности в правилах Петрова	7
4. Выбор оптимальной последовательности	7
5. Примеры	9
6. Вопросы по данной теме	15
7. Список литературы	16

Введение

Рассмотренные ранее задачи упорядочения являются очень простыми и представляют лишь учебный интерес. Назначение рассматриваемых примеров — дать первое знакомство с проблематикой и характером задач упорядочения. Модели реальных задач, учитывающих различные специфические обстоятельства производства - значительно сложнее, и для решения еще не найдены эффективные общие алгоритмы. Более того, как уже отмечалось ранее, еще не найден общий алгоритм и для точного решения даже очень идеализированной задачи Джонсона $n \times m$.

Точное решение задачи Джонсона $n \times m$ может быть найдено лишь для небольших чисел m и n. Для этого можно воспользоваться вместо метода полного перебора вариантов, число которых, как уже отмечалось, равно $(n!)^{m-2}$, несколько более эффективным методом последовательного конструирования, анализа и отсеивания вариантов, а также методом ветвей и границ [4]. Однако трудоемкость применения и этих методов очень быстро растет с увеличением n и m, поэтому эти методы применяются в основном для получения оптимальных решений небольших тестовых задач, а в практике календарного планирования на производстве не используются. Не лучше обстоит дело с применением целочисленного программирования (метода Гомори). Даже одна из самых «экономных» моделей, требует введения $k = nm \left(1 + \frac{n-1}{2}\right)$ целочисленных переменных, что позволяет решать даже на компьютере лишь задачи очень небольших размеров.

В случае больших m и n для задачи C. Джонсона разработаны лишь приближенные методы, не гарантирующие, что найденное решение обязательно будет оптимальным. В качестве примера таких методов рассмотрим правила B.A. Петрова . Их четыре.

1. Обозначения

Для формулировки этих правил введем некоторые понятия и обозначения:

- 1) d_i деталь с номером i (партия деталей с номером i),
- 2) *D* множество деталей (партий), подлежащих упорядочению,
- 3) t_{ij} трудоемкость обработки детали (партии) d_i на станке (рабочем месте) j , (если t_{ij} трудоемкость обработки партии, то t_{ij} определяется по формуле $t_{ij} = \frac{l_i t_{ij}^{um} + T_{ij}^{n_3}}{K_j^e}$, где l_i размер партии деталей i в штуках, t_{ij}^{um} штучное время в нормо-часах, $T_{ij}^{n_3}$ подготовительно-заключительное время в нормо-часах, K_j^e коэффициент выполнения норм на рабочем месте j);

4)
$$P_{i1} = \begin{cases} \sum_{j=1}^{\frac{m}{2}} t_{ij}, & m-\text{четно}; \\ \frac{m+1}{2} \sum_{j=1}^{2} t_{ij}, & m-\text{нечетно}; \end{cases}$$

5)
$$P_{i2} = \begin{cases} \sum_{j=\frac{m}{2}+1}^{m} t_{ij}, & m-\text{четно}; \\ \sum_{j=\frac{m+1}{2}}^{m} t_{ij}, & m-\text{нечетно}; \end{cases}$$

- 6) $\lambda_i = P_{i2} P_{i1}$
- 7) D_1 подмножество деталей d_i , для которых $\lambda_i > 0$;
- 8) D_0 подмножество деталей d_i , для которых $\lambda_i = 0$;
- 9) $D_{1,0}$ подмножество деталей d_i , для которых $\lambda_i \!\!>\!\! 0$, т.е. $D_{1,0} \!\!=\!\! D_1 \!\cup\! D_0$;
- 10) D_2 множество деталей d_i , для которых $\lambda_i < 0$.

Введем следующую таблицу 1, в которой будут записываться соответствующие параметры и найденные по четырем правилам варианты запуска деталей в обработку на станках

Таблица 1

d_i		ста	нки		па	раметр	ы	Варианты последовательностей			
	1 2 m				P_{i1}	P_{i2}	λ_i	1	2	3	4
1	<i>t</i> ₁₁	t_{12}	•••	t_{1m}	P_{11}	P_{12}	λ_1	2	n	n-2	2
2	t_{12}	t ₂₁		t_{2m}	P_{21}	P_{22}	λ_2	1	<i>n</i> -1	n	1
		•••			•••	•••					
n	t_{n1}	t_{n2}		t_{nm}	P_{n1}	P_{n2}	λ_n	n	1	<i>n</i> -1	n

2. Правила Петрова

Правило 1. Первыми обрабатываются детали $d_i \in D_{1,0}$, располагаемые в порядке возрастания P_{i1} , затем детали $d_i \in D_2$, располагаемые в порядке убывания P_{i2} . Правило можно записать символически так:

$$d_{i^*} = \begin{cases} 1. & d_i \in D_{1,0}, & \min \textbf{→} \max P_{i1} \\ 2. & d_i \in D_2, & \max \textbf{→} \min P_{i2} \end{cases}$$
 Правило 2. Детали $d_i \in D$ обрабатываются в порядке убывания параметра λ_i :

$$d_{i^*} = \{d_i \in D, \max \rightarrow \min \lambda_i\}$$

 $d_{i^*} = \! \big\{ d_i \!\!\in\!\! D \,, \quad \max \!\!\!\to\! \min \lambda_i$ **Правило 3.** Первыми обрабатываются детали $d_i \!\!\in\!\! D_1$, располагаемые в порядке P_{i1} , вторыми - детали $d_i \in D_0$, располагаемые в порядке возрастания P_{i1} , третьими детали $d_i {\in} D_2$, располагаемые в порядке убывания P_{i2} :

$$d_{i^{*}} = \begin{cases} 1. & d_{i} \in D_{1}, & \min \to \max P_{i1} \\ 2. & d_{i} \in D_{0}, & \min \to \max P_{i1} \\ 3. & d_{i} \in D_{2}, & \max \to \min P_{i2} \end{cases}$$

Правило 4. Сначала производится попарное упорядочение в пределах подмножества D_1 . Первой деталью первой пары ($i^*=1$) выбирается та, у которой значение P_{i2} наибольшее из всех $d_i \in D_1$. Второй деталью первой пары ($i^* = 2$) выбирается $d_i \in D_1$, у которой значение P_{i1} наименьшее. Аналогично упорядочиваются оставшиеся детали $d_i \in D_1$. В результате пары упорядочиваются по убыванию разности $P_{i,2} - P_{i+1,1}$. Если количество деталей $d_i \in D_1$ четно, то после попарного упорядочения подмножества D_1 переходят к попарному упорядочению подмножества D_0 (или подмножества D_2 , если D_0 - пусто). Если количество деталей $d_i \in D_1$ нечетно, то к оставшейся детали $d_i \in D_1$, которая принимается в качестве первой детали очередной пары, подбирают вторую из подмножества D_0 (или из подмножества D_2 , если D_0 - пусто) по P_{i1} . Затем аналогично упорядочивают оставшиеся детали принципу минимума подмножества D_0 . Если количество элементов подмножества $D_1 \cup D_0$ четно, то после попарного упорядочения подмножеств D_1 и D_0 приступают к попарному упорядочению последнего подмножества D_2 , которое производят аналогично. Если же количество подмножества $D_1 \cup D_0$ нечетно, то в конце упорядочения подмножества элементов остается одна непарная деталь $d_i \in D_0$. В этом случае ее берут в качестве первой детали очередной пары и подбирают к ней вторую из подмножества D_2 по принципу P_{i1} . Затем продолжают попарное упорядочение оставшихся минимума подмножества D_2 . Если количество всех упорядоченных деталей (число n элементов множества D) нечетно, то в конце попарного упорядочения остается одна непарная деталь. Эту деталь, которую обозначим d_x , вклинивают между соседними парами деталей $(d_{i'}, d_{i'+1})$ и $(d_{i'+2}, d_{i'+3})$ (не разбивая самих пар), для которых выполняется условие

$$\max(\lambda_{\varepsilon}, \lambda_{\varepsilon+1}) \ge \lambda_{\varepsilon} \ge \min(\lambda_{\varepsilon+2}, \lambda_{\varepsilon+2})$$

Символически правило 4 может быть записано следующим образом:

$$d_{i^{*}} = \begin{cases} i^{*} = 1 & \max P_{i2}, \\ i^{*} = 2 & \min P_{i1}, \\ i^{*} = 3 & \max P_{i2} & \operatorname{среди оставшихся в текущем подмножестве деталей;} \\ i^{*} = 4 & \min P_{i1} & \operatorname{среди оставшихся в текущем подмножестве деталей;} \\ \dots & \dots \end{cases}$$

$$(\lambda_{i^{*}} > 0) \rightarrow (\lambda_{i^{*}} \geqslant 0) \rightarrow (\lambda_{i^{*}} = 0) \rightarrow (\lambda_{i^{*}} \leqslant 0) \rightarrow (\lambda_{i^{*}} \leqslant 0)$$

$$|D| - \operatorname{Heyetho}, d_{x} \rightarrow (d_{i^{*}}, d_{i^{*}+1}), d_{x}(d_{i^{*}+2}, d_{i^{*}+3}) :$$

$$\max\left(\lambda_{i^*},\lambda_{i^*+1}\right) \ \geqslant \ \lambda_x \ \geqslant \ \min\left(\lambda_{i^*+2},\lambda_{i^*+3}\right)$$

Подход В.А. Петрова приближенного решения задачи Джонсона $n \times m$ заключается в составлении четырех вариантов последовательностей (по правилам 1,2,3,4), в вычислении для каждого из вариантов значения T_{mq} - длительности технологического цикла (время окончания обработки последней детали на последнем станке) и выбора из полученных вариантов последовательностей запуска той, у которого T_{mq} окажется наименьшей.

3. Неопределенности в правилах Петрова

При использовании правил В.А. Петрова могут возникать следующие неопределенности:

- 1. При применении правила 1 может оказаться, что несколько деталей имеют одинаковые параметры P_{i1} или P_{i2} . В этом случае критерием выбора будет параметр λ_i (правило 2): детали d_i располагаются в порядке убывания λ_i (max \rightarrow min λ_i)
- 2. При применении правила 2 может оказаться, что несколько деталей имеют одинаковый параметр λ_i . Здесь неопределенность разрешается по правилу 3:
 - 1. В случае $\bar{\lambda}_i \ge 0$ по возрастанию P_{i1}
 - 2. В случае $\lambda_i < 0$ по убыванию P_{i2} ,
 - 3. Если и здесь у некоторых деталей оказываются одинаковыми параметры P_{i1} и P_{i2} , то порядок их следования в подходе Петрова безразличен и может быть выбран случайно.

4. Выбор оптимальной последовательности

Для того, чтобы выбрать из составленных четырех последовательностей лучшую, необходимо для каждой из них определить длительность технологического цикла T_{mq} . Последовательность, соответствующую наименьшему значению T_{mq} , можно будет принять за решение задачи Джонсона. Это решение не обязательно будет оптимальным, но оно во всяком случае, как утверждает В.А.Петров, будет достаточно близким к нему.

Для определения T_{mq} можно воспользоваться графиками Ганта или матричным методом, который рассмотрим подробно. Для этого введем обозначения:

1. T_{ij} — время окончания обработки i-ой детали на j-ом станке (конечные сроки занятости станка j на операциях i) вычисляемое по формулам:

$$T_{ij} = t_{ij} + \max(T_{i-1j}; T_{ij-1})$$
 если t_{i-1j} и $t_{ij-1} > 0$.

Данная формула следует из таблицы:

$d_i \setminus$ станки	<i>j</i> -1	j
<i>i</i> -1	$t_{i-1,j-1}/T_{i-1,j-1}$	$t_{i-1,j} / T_{i-1,j}$
i	$t_{i,j-1} / T_{i,j-1}$	$t_{i,j} / T_{i,j}$

Время окончания обработки i-ой детали на j-ом станке $T_{i,j}$ получается как $T_{i-1,j}+t_{i,j}$, если $T_{i-1,j}>T_{i,j-1}$ (т. е. если время окончания обработки предыдущей делали d_{i-1} на станке j больше, чем время окончания обработки текущей детали d_i на станке j-1, $T_{i,j-1}$). Или время окончания обработки i-ой детали на j-ом станке $T_{i,j}$ получается как $T_{i,j-1}+t_{i,j}$, если $T_{i,j-1}>T_{i-1,j}$ (т. е. если время окончания обработки текущей детали d_i на станке j-1 больше, чем время окончания обработки предыдущей делали d_{i-1} на станке j, $T_{i-1,j}$). Отсюда и вытекает предыдущая формула.

В общем случае если $t_{i-1,j}$ или $t_{i,j-1} = 0$, то формулу можно записать следующим образом

$$T_{ij} = t_{ij} + \max(T_{z_i,j}; T_{iz_i}),$$

где z_i - наибольшее целое в диапазоне 1...i-1, такое что $t_{z_i,j} \neq 0$, z_j - наибольшее целое в диапазоне 1...j-1, такое что $t_{i,z_i} \neq 0$

2. T_i^{np} время простоя j-го станка определяется по формуле

$$T_{j}^{np} = T_{nj} - \sum_{i=1}^{n} t_{ij}$$
;

3. T^{np} — суммарное время простоя всех станков определяется по формуле

$$T^{np} = \sum_{j=1}^{n} T_{j}^{np} \quad ;$$

4. T_i^{osc} — время ожидания (пролеживания) *i*-ой детали перед обработкой определяется по формуле

$$T_i^{oxc} = T_{mi} - \sum_{j=1}^m t_{ij} ;$$

5. T^{osc} — суммарное время ожидания (пролеживания) всех деталей перед обработкой определяется по формуле

$$T^{osc} = \sum_{i=1}^{n} T_{i}^{osc} ;$$

Для каждой из 4-х последовательностей запуска построим указанную ниже таблицу 2 с рассчитанными параметрами

					Таблица 2
d_i \ станки	1	2	•••	m	T_i^{osc}
1	t_{11} / T_{11}	t_{12} / T_{12}		t_{1m} / T_{1m}	$T_1^{o \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
2	t_{21} / T_{21}	t_{22} / T_{22}		t_{2m} / T_{2m}	$T_2^{o \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
n	t_{n1} / T_{n1}	t_{n2} / T_{n2}		t_{nm} / T_{nm}	$T_n^{\ o \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
T_j^{np}	T_1^{np}	T_2^{np}	•••	T_m^{np}	$T^{np}\setminus T^{occ}$

Если t_{ij} нулевое, то параметр T_{ij} не рассчитываем, т.е. оставляем пустое место.

Оптимальная последовательность обработки деталей, будет иметь самое минимальное время длительности технологического цикла $T_{nm} = T_{mq}$, т.е. минимальное конечное время обработки n-й детали на m-м станке. Если таких последовательностей несколько, то среди них выбирают последовательность с наименьшим суммарным временем ожидания деталей перед обработкой $T^{\circ m}$. Если и эта величина совпадает, с наименьшим суммарным временем простоя всех станков T^{ip} .

5. Примеры

Пример 5.1. Рассмотрим пример применения правил В.А. Петрова с 5-ю деталями, имеющими однонаправленные технологические маршруты, и 7-ю станкам

							Таблица 3
d_i \ станки	1	2	3	4	5	6	7
1	11	3	0	21	8	0	1
2	1	9	0	6	11	1	9
3	2	19	8	0	9	19	1
4	1	0	11	27	0	0	11
5	9	10	0	12	14	6	8

Рассчитаем соответствующие параметры и запишем их в таблицу

Таблица 4

d_i	станки							Параметры			Варианты последовательностей			
	1	2	3	4	5	6	7	P_{i1}	P_{i2}	λ_i	1	2	3	4
1	11	3	0	21	8	0	1	35	30	-5				
2	1	9	0	6	11	1	9	16	27	11				
3	2	19	8	0	9	19	1	29	29	0				
4	1	0	11	27	0	0	11	39	38	-1				
5	9	10	0	12	14	6	8	31	40	9				

Определим последовательности запуска.

Упорядочение по правилу 1. Подмножество $D_{1,0}$ состоит из деталей $\{2,3,5\}$. Упорядочиваем их по возрастанию P_{i1} : 16 < 29 < 31 . Это соответствует порядку 2,3,5 . Затем упорядочиваем подмножество D_2 по убыванию P_{i2} : 38 > 30 . Получаем последовательность 4,1 . Таким образом, упорядочение по правилу 1 дает последовательность 2,3,5,4,1.

Упорядочение по правилу 2. Упорядочиваем множество D по убыванию λ_i : 11 > 9 > 0 > -1 > -5 . Получаем последовательность 2,5,3,4,1.

Упорядочение по правилу 3. Подмножество D_1 состоит из деталей $\{2,5\}$. Их упорядочение по возрастанию P_{i1} дает порядок 2,5. Подмножество D_0 содержит одну деталь $\{3\}$. Приписав ее справа, получаем последовательность 2,5,3. Упорядочение D_2 , как и в случае применения правила 1, дает 4,1. Таким образом, по правилу 3 получаем последовательность 2,5,3,5,1.

Упорядочение по правилу 4. Подмножество D_1 состоит из двух деталей $\{2,5\}$ В качестве первой детали первой пары выбираем деталь 5, так как у нее P_{52} =40 больше, чем P_{22} =27 . Деталь 2 становится поэтому второй деталью первой пары. На этом упорядочение подмножества D_1 заканчивается. Так как подмножество D_1 состоит всего из одной детали $\{3\}$, то эту деталь выбираем в качестве первой детали второй пары.

В качестве второй детали второй пары выбираем ту деталь из подмножества D_2 , у которой меньше P_{i1} , т.е. деталь 1. Оставшуюся непарную деталь 4 размещаем между первой и второй парами, так как λ_4 =-1 , $\max{(\lambda_5,\lambda_2)}$ =11 $\min{(\lambda_3,\lambda_1)}$ =-5 :

$$\max(\lambda_5, \lambda_2) > \lambda_4 > \min(\lambda_3, \lambda_1)$$
.

Таким образом, правило 4 нам дает последовательность 5,2,4,3,1, что и показано в правой части табл.4'.

Таблица 4'

d_i	станки						Па	рамет	ры	Варианты последовательностей				
	1	2	3	4	5	6	7	P_{i1}	P_{i2}	C_{i}	1	2	3	4
1	11	3	0	21	8	0	1	35	30	-5	2	2	2	5
2	1	9	0	6	11	1	9	16	27	11	3	5	5	2
3	2	19	8	0	9	19	1	29	29	0	5	3	3	4
4	1	0	11	27	0	0	11	39	38	-1	4	4	4	3
5	9	10	0	12	14	6	8	31	40	9	1	1	1	1

Сформируем матричным методом несколько вариантов таблицы 2 для последовательностей, полученных по правилам Петрова

Таблица 5

<i>d_i</i> \	1	2	3	4	5	6	7	$T_i^{o\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
2	1 / 1	9 / 10	0 /	6 / 16	11 / 27	1 / 28	9 / 37	0
3	2/3	19 / 29	8 / 37	0 /	9 / 46	19 / 65	1 / 66	8
4	9 / 12	10 / 39	0/39	12 / 51	14 / 65	6 / 71	8 / 79	20
5	1 / 13	0 /	11 / 48	27 / 78	0 /	0 /	11 / 90	40
1	11 / 24	3 / 42	0 /	21 / 99	8 / 107	0 /	1 / 108	64
T_j^{np}	0	1	29	33	65	45	78	251\132

Таблица 6

<i>d_i</i> \	1	2	3	4	5	6	7	T_i^{orc}
2	1 / 1	9 / 10	0 /	6 / 16	11 / 27	1 / 28	9 / 37	0
5	9 / 10	10 / 20	0 /	12 / 32	14 / 46	6 / 52	8 / 60	1
3	2 / 12	19 / 39	8 / 47	0 /	9 / 56	19 / 75	1 / 70	12
4	1 / 13	0 /	11 / 58	27 / 85	0 /	0 /	11 / 96	46
1	11 / 24	3 / 42	0 /	21 / 106	8 / 114	0 /	1 /115	71
T_j^{np}	0	11	39	40	72	49	85	296\130

							,	Таблица 7
<i>d_i</i> \ станки	1	2	3	4	5	6	7	$T_i^{o\!\!\:\!$
5	9/9	10 / 19	0 /	12 / 31	14 / 45	6 / 51	8 59	0
2	1 / 10	9 / 28	0 /	6/37	11 / 56	1 / 57	9 / 68	31
4	1 / 11	0 /	11 / 22	27 / 64	0 /	0 /	11 / 79	29
3	2/13	19 / 47	8 / 55	0 /	9 / 65	19 / 84	1 / 85	27
1	11 / 24	3 / 50	0 /	21 / 85	8 / 93	0/	1 / 94	50
T_j^{np}	0	9	36	19	51	58	64	237\137

 $T_{\it mu} \! = \! T_{\it 17} \! = \! 108$. Если выполнить расчет $T_{\it mu}$ Из табл. 5 получаем, что последовательности, полученной по правилу 2, то получим $T_{mu} = T_{17} = 115$ (см. табл.6).

Так как по правилу 3 получили ту же последовательность, что и по правилу 2, то остается T_{mu} лишь для последовательности, полученной по правилу 4 (см. табл.7). Получаем, что для этой последовательности $T_{mu} = T_{17} = 94$

Итак в данном примере наилучшей из рассмотренных является последовательность 5,2,4,3,1 полученная по правилу 4. Она и принимается за приближенное решение данной задачи Джонсона 5×7. На рис. 1 показаны графики Ганта, соответствующий табл. 7.

Графики Ганта

деталь, ---- простой станков

Рис.1 Графики Ганта для последовательности, полученной по 4-му правилу

Пример 5.2. Рассмотрим пример 7-ю деталями и 7-ю станками

Таблина 8

	Тиолици										
$d_i ackslash$ станки	1	2	3	4	5	6	7				
1	10	8	5	12	11	0	6				
2	3	0	6	10	13	2	7				
3	4	5	15	0	20	3	1				
4	7	10	0	8	11	9	12				
5	9	11	3	7	0	5	4				
6	5	7	11	3	13	10	0				
7	3	6	7	5	10	9	4				

Рассчитаем соответствующие параметры и запишем их в таблицу

Таблица 9

d_i	станки							Па	рамет	ры	Варианты последовательностей			
	1	2	3	4	5	6	7	P_{i1}	P_{i2}	C_i	1	2	3	4
1	10	8	5	12	11	0	6	35	29	-6	2	4	2	4
2	3	0	6	10	13	2	7	19	32	13	7	2	7	2
3	4	5	15	0	20	3	1	24	24	0	3	7	4	7
4	7	10	0	8	11	9	12	25	40	15	4	3	3	3
5	9	11	3	7	0	5	4	30	16	-14	6	6	6	1
6	5	7	11	3	13	10	0	26	26	0	1	1	1	6
7	3	6	7	5	10	9	4	21	28	7	5	5	5	5

Подмножества D_i будут следующими:

$$D_1 = \{2,4,7\}, D_0 = \{3,6\}, D_{1,0} = \{2,4,7,3,6\}, D_2 = \{1,5\}.$$

Упорядочим по правилу 1: детали 2,7,3,4,6 - расположены по возрастанию P_{i1} , детали 1, 5 - расположены по убыванию P_{i2} . Таким образом имеем последовательность: 2,7,3,4,6,1,5

Упорядочим по правилу 2: детали 4,2,7,3,6,1,5 - расположены по убыванию λ_i . Отметим, что у деталей 3, 6 одинаковый параметр λ_i =0 , поэтому они были упорядочены по правилу 3 по возрастанию параметра P_{i1} .

Упорядочим по правилу 3: детали подмножества D_1 : 2,7,4 - расположены по возрастанию P_{i1} , детали подмножества D_0 3,6 - расположены по возрастанию P_{i1} , детали 1, 5 подмножества D_2 - расположены по убыванию P_{i2} . Таким образом имеем последовательность: 2,7,4,3,6,1,5.

Упорядочим по правилу 4: Упорядочим попарно (4,2) — первая пара из подмножества

 D_1 , вторая пара формируется из детали 7 подмножества D_1 и детали 3 подмножества D_0 : (7,3). Третья пара формируется из детали 6 подмножества D_0 и детали 5 подмножества D_2 : (6,5). Итак имеем три пары деталей с соответствующими параметрами λ_i :

пары:
$$(4,2), (7,3), (6,5)$$

 λ_i : 15,13, 7, 0, 0,-14

Непарная деталь 1 с $\lambda_i = -6$ может быть вклинена только между парами (7,3),(6,5) в силу выполнения условия:

$$\max(7,0) \ge -6 \ge \min(0,-14) \quad \Leftrightarrow \quad 7 \ge -6 \ge -14$$
.

Таким образом имеем следующую последовательность: 4,2,7,3,1,6,5. Все полученные последовательности записаны в правую часть таблицы 9.

Рассчитаем матричным методом совокупную длительность цикла для полученных последовательностей. Получим 4-е таблицы

1-я последовательность:

Таблица 10

$d_i \setminus$ станки	1	2	3	4	5	6	7	T_i^{osc}
2	3 / 3	0 /	6/9	10 / 19	13 / 32	2/34	7 / 41	0
7	3 / 6	6 / 12	7 / 19	5 / 24	10 / 42	9 / 51	4 / 55	11
3	4 / 10	5 / 17	15 / 34	0 /	20 / 62	3 / 65	1 / 66	18
4	7 / 17	10 / 27	0 /	8 / 35	11 / 73	9 / 82	12 / 94	37
6	5 / 22	7 / 34	11 / 45	3 / 48	13 / 86	10 / 96	0 /	47
1	10 / 32	8 / 42	5 / 50	12 / 62	11 / 97	0 /	6 / 103	51
5	9 / 41	11 / 53	3 / 56	7 / 69	0 /	5 / 101	4 / 107	68
T_j^{np}	0	6	9	24	19	63	73	194\232

2-я последовательность:

Таблица 11

<i>d_i</i> \ станки	1	2	3	4	5	6	7	T_i^{ose}
4	7/7	10 / 17	0 /	8 / 25	11 / 36	9 / 45	12 / 57	0
2	3 / 10	0 /	6 / 16	10 / 35	13 / 49	2/51	7 / 64	23
7	3 / 13	6 / 23	7 / 30	5 / 40	10 / 59	9 / 68	4 / 72	28
3	4 / 17	5 / 28	15 / 45	0 /	20 / 79	3 / 82	1 / 83	35
6	5 / 22	7 / 35	11 / 56	3 / 59	13 / 92	10 /102	0 /	53
1	10 / 32	8 / 43	5 / 61	12 / 73	11 / 103	0 /	6 /109	57
5	9 / 41	11 / 54	3 / 64	7 / 80	0 /	5 /107	4 /113	74
T_j^{np}	0	7	17	35	25	69	79	232\270

3-я последовательность:

Таблица 12

<i>d_i</i> \ станки	1	2	3	4	5	6	7	T_i^{ose}
2	3/3	0 /	6/9	10 / 19	13 / 32	2/34	7 / 41	0
7	3 / 6	6 / 12	7 / 19	5 / 24	10 / 42	9 / 51	4 / 55	11
4	7 / 13	10 / 23	0 /	8 / 32	11 / 53	9 / 62	12 / 74	17
3	4 / 17	5 / 28	15 / 43	0 /	20 / 73	3 / 76	1 / 77	29
6	5 / 22	7 / 35	11 / 54	3 / 57	13 / 86	10 / 96	0 /	47
1	10 / 32	8 / 43	5 / 59	12 / 71	11 / 97	0 /	6 /103	51
5	9 / 41	11 / 54	3 / 62	7 / 78	0 /	5 /101	4 /107	68
T_j^{np}	0	7	15	33	29	63	45	192\223

4-я последовательность:

Таблица 13

<i>d_i</i> \ станки	1	2	3	4	5	6	7	T_i^{ose}
4	7 / 7	10 / 17	0 /	8 / 25	11 / 36	9 / 45	12 / 57	0
2	3 / 10	0 /	6 / 6	10 / 25	13 / 49	2/51	7 / 64	23
7	3 / 13	6 / 23	7/30	5 / 35	10 / 59	9 / 68	4 / 72	28
3	4 / 17	5 / 28	15 / 45	0 /	20 /79	3 / 82	1 / 83	35
1	10 / 27	8 / 36	5 / 50	12 / 62	11 / 90	0 /	6 / 96	49
6	5 / 32	7 / 43	11 / 61	3 / 65	13 / 103	10 /113	0 /	64
5	9/31	11 / 54	3 / 64	7 / 72	0 /	5 /118	4 /122	83
T_j^{np}	0	7	17	27	35	80	88	254\282

Из таблиц 10-13 видно, что имеется две последовательности с наименьшим значением $T_{mq} = T_{57} = 107$. Однако выбрать надо только одну. Дополнительным критерием выбора в этом случае будет наименьшее суммарное время пролёживания (ожидания) деталей перед обработкой. Таким образом оптимальной будет последовательность, полученная по правилу 3: 2,7,4,3,6,1,5 , так как у нее $T^{ox} = 223$ меньшее, чем суммарное время ожидание у последовательности, полученной по правилу 1: $T^{ox} = 232$.

6. Вопросы по данной теме

- 1. Какие показатели производственного процесса можно выделить при решении задачи упорядочения, с использованием правил Петрова?
- 2. Какие ограничения имеются в задаче упорядочения, решаемой с помощью правил Петрова?
- 3. В чем суть подхода решения задачи упорядочения с использованием правил Петрова?
- 4. Как определяются параметры $P_{i1},\ P_{i2}$, λ_i при решении упорядочения с использованием правил Петрова?
- 5. В чем суть правил Петрова?
- 6. Как избавиться от неопределенностей в правилах Петрова?
- 7. Какими способами можно определить время окончания обработки последней детали последовательности запуска на последнем станке?
- 8. Как определить время простоя станка с использованием матричного метода?
- 9. Как определить время ожидания (пролеживания) детали перед обработкой с использованием матричного метода?
- 10.С каким экономическим показателем связана величина время ожидания детали перед обработкой?
- 11.Сколько вариантов последовательностей запуска деталей в обработку может быть в задаче упорядочения для m станков и n деталей?
- 12. Достоинства и недостатки алгоритма с использованием правил Петрова по сравнению с алгоритмом Джонсона?

7. Список литературы

- 1. Шукис А.А. Задачи упорядочения: исследование операций. Учебное пособие. Барнаул: АПИ. 1982. 68 с.
- 2. Астахова А.В. Методические указания "Моделирование производственных процессов на механообрабатывающих участках".- Барнаул: АПИ, 1988. 22 с.
- 3. Дегтярев Ю.И. Исследование операций. М: Радио и связь, 1986. 430 с.
- 4. Первозванский А.А. Математические модели в управлении производством. М.: Наука, 1975. 616 с.