

B.TECH FIRST YEAR

ACADEMIC YEAR: 2023-2024

COURSE NAME: EES

COURSE CODE : EE 1002

LECTURE SERIES NO:

CREDITS : 4

MODE OF DELIVERY: (POWER POINT PRESENTATION)

FACULTY

EMAIL-ID

PROPOSED DATE OF DELIVERY:

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

WAT TIES

Integrity, Transparency, Quality, Team Work, Execution with Passion, Humane Touch

OPERATIONAL AMPLIFIER (OP-AMP)

Refernce Book:

1. OPAMPS and Linear Integrated Circuitsby Ramakanth Gayakwad

CONTENTS

- Introduction
- OPAMP Symbol
- Internal block diagram
- Open-loop configuration
- Common mode rejection ratio
- OPAMP equivalent circuit
- OPAMP characteristics

INTRODUCTION

- Operational Amplifier (OPAMP) is a direct coupled high-gain amplifier fabricated on Integrated Circuit (IC)
- Op-amps are linear devices that are ideal for DC and AC amplification and are used often in signal conditioning, filtering.
- Earlier, op-amp were used primarily to perform mathematical operation such as summation, subtraction, differentiation and integration etc. so named as op-amp.
- Typical application of op-amp includes
 - 1. Audio amplifier-voltage amplitude change
 - 2. Signal generators- oscillators,
 - 3. Signal filter circuits
 - 4. Instrumentation circuits---Biomedical Instrumentation

INTRODUCTION

- Advantages of OP-AMP over transistor amplifier
 - Less power consumption
 - Costs less
 - More compact, fabricated in a single chip.
 - More reliable
 - Higher gain can be obtained
 - Easy design

OPAMP TERMINALS

Here, A= Large signal voltage gain

OP-AMP TERMINALS

- If input is applied to non-inverting input terminal, then output will be in-phase with input
- If input is applied to inverting input terminal, then output will be 180 degrees out of phase with input
- If inputs are applied to both terminals, then output will be proportional to difference between the two inputs

OPAMP TERMINALS

- Two DC power supplies (dual) are required
- Magnitudes of both may be same
- The other terminal of both power supplies are connected to common ground
- All input and output voltages are measured with reference to the common ground

OPAMP TERMINALS

Integrated Circuit

- Pin 1 & 5 Offset null
- Pin 2 & 3 input
- Pin 4 & 7 VCC

Pin Diagram

Pin 6 Output

Pin 8 Not connected

INTERNAL BLOCK DIAGRAM

Dual input,
Balanced output

Balanced output

Differential amplifier

Dual input

unbalanced output

Differential amplifier

Such as

emitter follower

Using constant

current source

Complementary

symmetry

push-pull amplifier

INTERNAL BLOCK DIAGRAM

Four stages can be identified –

- Input stage or differential amplifier stage can amplify difference between two input signals; Input resistance is very high; Draws zero current from the input sources
- Intermediate stage (or stages) use direct coupling; provide very high gain
- Level shifter stage shifts the dc level of output voltage to zero (can be adjusted manually using two additional terminals)
- Output stage is a power amplifier stage; has very small output resistance; so output voltage is the same, no matter what is the value of load resistance connected to the output terminal

If $v_1 = 0$, then $v_o = -A_{OL}v_2$ Inverting amplifier If $v_2 = 0$, then $v_o = A_{OL}v_1$ Non- inverting amp

- A_{OL} is the open-loop voltage gain of OPAMP Its value is very high Typical value is 0.5 million
- So, even if input is in micro volts, output will be in volts
- \blacksquare But output voltage cannot cross the value of power supply V_{CC}
- So, if input is in milli volts, output reaches saturation value $V_{sat} = V_{CC}$ (or V_{EE})

- If $v_1 = v_2$, then ideally output should be zero
- But in practical Op-Amp, output is

$$v_o = A_{cm} \left(\frac{v_1 + v_2}{2} \right)$$

Where, A_{CM} is the common-mode gain of Op-Amp

So, final gain equation is:

$$v_o = A_d (v_1 - v_2) + A_{cm} \left(\frac{v_1 + v_2}{2} \right)$$

$$v_o = A_d v_{id} + A_{cm} v_{icm}$$

- Common-mode rejection ratio
 - It is a measure of the ability of Op-Amp to reject the signals common to both input terminals (noise)
 - Defined as

$$CMRR = \frac{A_d}{A_{cm}}$$

$$(CMRR)_{dB} = 20 \log_{10} \left(\frac{A_d}{A_{cm}}\right)$$

PROBLEMS

An OPAMP has differential voltage gain of 100,000 and CMRR of 60 dB. If non inverting input voltage is 150 μV and inverting input voltage is 140 μV, calculate the output voltage of OPAMP

Ans: 1.01 V

■ For an OPAMP, when v1 is 0.5 mV and v2 is -0.5 mV, output voltage is 8 V. For the same OPAMP, when v1 = v2 = 1 mV, output voltage is 12 mV. Calculate the CMRR of the OPAMP

Ans: 56.48 dB

OPAMP equivalent circuit

Practical OPAMP

- Differential mode gain A_d
 - It is the factor by which the difference between the two input signals is amplified by the OPAMP
- Common mode gain A_{cm}
 - It is the factor by which the common mode input voltage is amplified by the OPAMP

- Common mode rejection ratio CMRR
 - Is the ratio of A_d to A_{cm} expressed in decibels

- Input resistance R_i
 - It is the equivalent resistance measured between the two input terminals of OPAMP
- Output resistance R_o
 - It is equivalent resistance measured between output terminal and ground
- Bandwidth
 - It is the range of frequency over which the gain of OPAMP is almost constant

- Output offset voltage V_{oo}
 - It is the output voltage when both input voltages are zero
 - Denoted as V_{oo}
- Input offset voltage V_{io}
 - It is the differential input voltage that must be applied at the input terminals in order to make output voltage equal to zero
 - $V_{io} = |v_{dc1} v_{dc2}|$ for $v_o = 0$

- Input offset current I_{io}
 - It is the difference between the currents in the input terminals when both input voltages are zero
 - $I_{io} = |I_1 I_2|$ when $v_1 = v_2 = 0$
- Input bias current I_{ib}
 - It is the average of the currents in the input terminals when both input voltages are zero
 - $I_{ib} = (I_1 + I_2) / 2$ when $v_1 = v_2 = 0$

- Slew rate *SR*
 - It is the maximum rate of change of output voltage with respect to time
 - Slew rate has to be very high if OPAMP has to operate efficiently at high frequencies

- Supply voltage rejection ratio SVRR
 - It is the maximum rate at which input offset voltage of OPAMP changes with change in supply voltage

- Practical characteristics of 741C
 OPAMP
 - Differential mode gain is 200,000
 - CMRR is 90 dB
 - Input resistance is $2 M\Omega$
 - Output resistance is 75Ω
 - Unity-gain Bandwidth is 1 MHz
 - Slew rate is 0.5 V / μs
 - Output offset voltage is 1 mV
 - Input offset current is 20 nA
 - Input bias current is 80 nA

Ideal OPAMP

- Infinite differential mode gain
- Zero common mode gain
- Infinite CMRR
- Infinite input resistance
- Zero output resistance
- Infinite bandwidth
- Infinite slew rate
- Zero input offset voltage
- Zero input offset current
- Zero output offset voltage