# Resolución de Ejercicios: Descenso del Gradiente

Alumno: Eddy Kennedy Mamani Hallasi

# Repositorio

El código fuente y los archivos relacionados con estos ejercicios pueden encontrarse en el siguiente repositorio de GitHub:

https://github.com/MetodosDeOptimizacion/Descenso-del-Gradiente.git

# Ejercicio 1: Mínimo de una Función Cuadrática en 1D

### Concepto

El objetivo es minimizar una función cuadrática simple  $g(x)=(x-5)^2$  utilizando el método de descenso del gradiente. Este método consiste en actualizar iterativamente el valor de x en la dirección opuesta al gradiente de la función, con una tasa de aprendizaje  $\eta$  que determina el tamaño del paso.

Minimizar la función  $g(x) = (x - 5)^2$  comenzando en  $x_0 = 10$  con una tasa de aprendizaje  $\eta = 0.2$ . Se realizan 5 iteraciones manuales siguiendo:

$$x_{k+1} = x_k - \eta \frac{d}{dx} g(x_k).$$

### Resolución Paso a Paso

1. Derivada de q(x):

$$\frac{d}{dx}g(x) = 2(x-5).$$

2. Punto inicial y tasa de aprendizaje:

$$x_0 = 10, \quad \eta = 0.2.$$

3. Iteración 1:

Gradiente en 
$$x_0$$
:  $\frac{d}{dx}g(10) = 2(10 - 5) = 10$ .  
 $x_1 = x_0 - \eta \cdot 10 = 10 - 0.2 \cdot 10 = 8$ .  
 $g(x_1) = (8 - 5)^2 = 9$ .

4. Iteración 2:

Gradiente en 
$$x_1$$
:  $\frac{d}{dx}g(8) = 2(8-5) = 6$ .  
 $x_2 = x_1 - \eta \cdot 6 = 8 - 0.2 \cdot 6 = 6.4$ .  
 $g(x_2) = (6.4 - 5)^2 = 1.96$ .

### 5. Iteración 3:

Gradiente en 
$$x_2$$
:  $\frac{d}{dx}g(6.4) = 2(6.4 - 5) = 2.8$ .  
 $x_3 = x_2 - \eta \cdot 2.8 = 6.4 - 0.2 \cdot 2.8 = 5.12$ .  
 $g(x_3) = (5.12 - 5)^2 = 0.0144$ .

### 6. Iteración 4:

Gradiente en 
$$x_3$$
:  $\frac{d}{dx}g(5.12) = 2(5.12 - 5) = 0.24$ .  
 $x_4 = x_3 - \eta \cdot 0.24 = 5.12 - 0.2 \cdot 0.24 = 5.024$ .  
 $g(x_4) = (5.024 - 5)^2 = 0.000576$ .

### 7. Iteración 5:

Gradiente en 
$$x_4$$
:  $\frac{d}{dx}g(5.024) = 2(5.024 - 5) = 0.048$ .  
 $x_5 = x_4 - \eta \cdot 0.048 = 5.024 - 0.2 \cdot 0.048 = 5$ .  
 $g(x_5) = (5 - 5)^2 = 0$ .

### Resultados Tabulados

| Iteración $(k)$ | $x_k$ | $g(x_k)$ |
|-----------------|-------|----------|
| 0               | 10.00 | 25.00    |
| 1               | 8.00  | 9.00     |
| 2               | 6.40  | 1.96     |
| 3               | 5.12  | 0.0144   |
| 4               | 5.024 | 0.000576 |
| 5               | 5.00  | 0.00     |

Table 1: Resultados por iteración.



Figure 1: Ejercicio 1: Minimización de g(x)

# Ejercicio 2: Ajuste de una recta mediante descenso del gradiente

### Concepto

Dados los puntos de entrenamiento:

$$(x_i, y_i) \in \{(1, 2), (2, 2.8), (3, 3.6), (4, 4.5), (5, 5.1)\},\$$

queremos ajustar la recta  $h(x) = \beta_0 + \beta_1 x$  minimizando la función de costo:

$$J(\beta_0, \beta_1) = \sum_{i=1}^{5} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

Utilizando descenso del gradiente, realizamos al menos 3 iteraciones con tasa de aprendizaje  $\eta = 0.01$ .

### Resolución Paso a Paso

1. Gradientes de la función de costo:

$$\frac{\partial J}{\partial \beta_0} = -2\sum_{i=1}^5 \left(y_i - (\beta_0 + \beta_1 x_i)\right), \quad \frac{\partial J}{\partial \beta_1} = -2\sum_{i=1}^5 x_i \left(y_i - (\beta_0 + \beta_1 x_i)\right).$$

- 2. **Inicialización**: Tomamos  $\beta_0 = 0$  y  $\beta_1 = 0$  como valores iniciales.
- 3. Iteraciones:
- Iteración 1:

Errores: 
$$\epsilon_i = y_i - (\beta_0 + \beta_1 x_i) = y_i$$
.  

$$\frac{\partial J}{\partial \beta_0} = -2 \sum_{i=1}^5 \epsilon_i = -36.$$

$$\frac{\partial J}{\partial \beta_1} = -2 \sum_{i=1}^5 x_i \epsilon_i = -106.4.$$

$$\beta_0^{(1)} = \beta_0^{(0)} - \eta \frac{\partial J}{\partial \beta_0} = 0 - 0.01(-36) = 0.36.$$

$$\beta_1^{(1)} = \beta_1^{(0)} - \eta \frac{\partial J}{\partial \beta_1} = 0 - 0.01(-106.4) = 1.064.$$

• Iteración 2:

Errores: 
$$\epsilon_i = y_i - (0.36 + 1.064x_i)$$
.  

$$\frac{\partial J}{\partial \beta_0} = -2 \sum_{i=1}^5 \epsilon_i = -4.74.$$

$$\frac{\partial J}{\partial \beta_1} = -2 \sum_{i=1}^5 x_i \epsilon_i = -5.78.$$

$$\beta_0^{(2)} = \beta_0^{(1)} - \eta \frac{\partial J}{\partial \beta_0} = 0.36 - 0.01(-4.74) = 0.4074.$$

$$\beta_1^{(2)} = \beta_1^{(1)} - \eta \frac{\partial J}{\partial \beta_1} = 1.064 - 0.01(-5.78) = 1.1218.$$

### • Iteración 3:

Errores: 
$$\epsilon_i = y_i - (0.4074 + 1.1218x_i)$$
.  

$$\frac{\partial J}{\partial \beta_0} = -2 \sum_{i=1}^5 \epsilon_i = -1.392.$$

$$\frac{\partial J}{\partial \beta_1} = -2 \sum_{i=1}^5 x_i \epsilon_i = -1.78.$$

$$\beta_0^{(3)} = \beta_0^{(2)} - \eta \frac{\partial J}{\partial \beta_0} = 0.4074 - 0.01(-1.392) = 0.4213.$$

$$\beta_1^{(3)} = \beta_1^{(2)} - \eta \frac{\partial J}{\partial \beta_1} = 1.1218 - 0.01(-1.78) = 1.1396.$$

### 4. Resultados Tabulados:

| Iteración | $\beta_0$ | $\beta_1$ | Costo $J(\beta_0, \beta_1)$ |
|-----------|-----------|-----------|-----------------------------|
| 1         | 0.3600    | 1.064     | 3.1494                      |
| 2         | 0.4074    | 1.1218    | 1.9805                      |
| 3         | 0.4213    | 1.1396    | 1.5673                      |

Table 2: Resultados por iteración.

### Gráfica



Figure 2: Ejercicio 2: Reducción de Costo  $J(\beta_0,\beta_1)$ 

# Ejercicio 3: Clasificación Logística con Descenso del Gradiente

### Concepto

Dado el conjunto de datos con dos características  $(x_1, x_2)$  y etiqueta binaria y:

| Muestra | $x_1$ | $x_2$ |
|---------|-------|-------|
| y       |       |       |
| 1       | 0.5   | 1.0   |
| 0       |       |       |
| 2       | 1.5   | 2.0   |
| 0       |       |       |
| 3       | 2.0   | 2.5   |
| 1       |       |       |
| 4       | 3.0   | 3.5   |
| 1       |       |       |

queremos ajustar un modelo de clasificación logística definido como:

$$\sigma(w^{\top}x) = \frac{1}{1 + e^{-w^{\top}x}},$$

donde  $w = (w_0, w_1, w_2)$  incluye el sesgo  $w_0$ , y minimizar la función de costo logístico:

$$J(w) = -\frac{1}{N} \sum_{i=1}^{N} \left[ y_i \log(\sigma(w^{\top} x_i)) + (1 - y_i) \log(1 - \sigma(w^{\top} x_i)) \right].$$

Aplicamos descenso del gradiente para 3 iteraciones con tasa de aprendizaje  $\eta=0.1$ , comenzando con w=(0,0,0).

### Resolución Paso a Paso

### 1. Inicialización:

$$w^{(0)} = (0, 0, 0), \quad \eta = 0.1.$$

### 2. Iteración 1:

Predicción:  $\sigma(w^{\top}x_i) = \frac{1}{1 + e^{-w^{\top}x_i}} = 0.5$ , para todos los datos (inicialización).

Gradiente: 
$$\frac{\partial J}{\partial w_0} = \frac{1}{4} \sum_{i=1}^{4} \left( \sigma(w^{\top} x_i) - y_i \right),$$
$$\frac{\partial J}{\partial w_1} = \frac{1}{4} \sum_{i=1}^{4} \left( \sigma(w^{\top} x_i) - y_i \right) x_{1i},$$
$$\frac{\partial J}{\partial w_2} = \frac{1}{4} \sum_{i=1}^{4} \left( \sigma(w^{\top} x_i) - y_i \right) x_{2i}.$$

Sustituyendo:

$$\frac{\partial J}{\partial w_0} = \frac{1}{4}(0.5 - 0 + 0.5 - 0 + 0.5 - 1 + 0.5 - 1) = -0.25,$$

$$\frac{\partial J}{\partial w_1} = \frac{1}{4} (0.5 \cdot 0.5 + 0.5 \cdot 1.5 + (-0.5) \cdot 2 + (-0.5) \cdot 3) = -0.625,$$

$$\frac{\partial J}{\partial w_2} = \frac{1}{4} (0.5 \cdot 1 + 0.5 \cdot 2 + (-0.5) \cdot 2.5 + (-0.5) \cdot 3.5) = -0.875.$$

Actualización:

$$w_0^{(1)} = 0 - 0.1(-0.25) = 0.025, \quad w_1^{(1)} = 0 - 0.1(-0.625) = 0.0625, \quad w_2^{(1)} = 0 - 0.1(-0.875) = 0.0875.$$

#### 3. Iteración 2:

Predicción actualizada:  $\sigma(w^{\top}x_i) = \frac{1}{1 + e^{-(0.025 + 0.0625x_1 + 0.0875x_2)}}$ . Gradientes recalculados:  $\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}$ .

Sustituyendo valores, se obtiene:

$$\frac{\partial J}{\partial w_0} = -0.17, \quad \frac{\partial J}{\partial w_1} = -0.43, \quad \frac{\partial J}{\partial w_2} = -0.61.$$

Actualización:

$$w_0^{(2)} = 0.025 - 0.1(-0.17) = 0.042, \quad w_1^{(2)} = 0.0625 - 0.1(-0.43) = 0.105, \quad w_2^{(2)} = 0.0875 - 0.1(-0.61) = 0.0105, \quad w_2^{(2)} = 0.0105, \quad w$$

### 4. Iteración 3:

Predicción actualizada:  $\sigma(w^{\top}x_i) = \frac{1}{1 + e^{-(0.042 + 0.105x_1 + 0.148x_2)}}$ . Gradientes recalculados:  $\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}$ .

Nuevos valores:

$$\frac{\partial J}{\partial w_0} = -0.12, \quad \frac{\partial J}{\partial w_1} = -0.31, \quad \frac{\partial J}{\partial w_2} = -0.44.$$

Actualización:

$$w_0^{(3)} = 0.042 - 0.1(-0.12) = 0.054, \quad w_1^{(3)} = 0.105 - 0.1(-0.31) = 0.136, \quad w_2^{(3)} = 0.148 - 0.1(-0.44) = 0.136$$

### 5. Resultados Tabulados:

| Iteración | $w_0$  | $w_1$  | $w_2$  |
|-----------|--------|--------|--------|
| 1         | 0.0250 | 0.0625 | 0.0875 |
| 2         | 0.0420 | 0.1050 | 0.1480 |
| 3         | 0.0540 | 0.1360 | 0.1920 |

Table 3: Resultados por iteración.



Figure 3: Ejercicio 3: Reducción de Costo Logístico

# Ejercicio 4: Descenso Estocástico en Minibatches

### Concepto

Consideremos un problema de regresión multivariable con 1000 observaciones  $\{(x_i, y_i)\}_{i=1}^{1000}$ , donde queremos ajustar un modelo lineal utilizando la función de costo:

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - w^{\top} x_i)^2.$$

Dividimos los datos en minibatches de tamaño 50 y empleamos el método de descenso estocástico del gradiente (SGD) con una tasa de aprendizaje  $\eta=0.01$ . Este enfoque actualiza los parámetros w después de cada minibatch, lo que permite una convergencia más rápida en la práctica.

### Resolución Paso a Paso

1. Inicialización:

$$w^{(0)} = (0, 0, \dots, 0), \quad \eta = 0.01.$$

Dividimos las 1000 observaciones en 20 minibatches de tamaño 50 cada uno.

2. Gradiente para un minibatch: Para un minibatch de índices  $B_k = \{i_1, i_2, \dots, i_{50}\}$ , el gradiente es:

$$\nabla J_B(w) = -\frac{2}{50} \sum_{i \in B_k} (y_i - w^{\top} x_i) x_i.$$

Los parámetros se actualizan como:

$$w^{(k+1)} = w^{(k)} - \eta \nabla J_B(w^{(k)}).$$

3. Iteración 1 (Primer Minibatch): Supongamos que el primer minibatch contiene 50 observaciones con características  $x_i$  y valores  $y_i$ . Inicialmente,  $w^{(0)} = (0, 0, ..., 0)$ , por lo que:

$$\nabla J_B(w^{(0)}) = -\frac{2}{50} \sum_{i \in B_1} y_i x_i.$$

Sustituyendo los valores promedio:

$$\nabla J_B(w^{(0)}) \approx (-1.2, -0.8, -1.0).$$

Actualización:

$$w^{(1)} = w^{(0)} - \eta \nabla J_B(w^{(0)}) = (0, 0, 0) - 0.01 \cdot (-1.2, -0.8, -1.0) = (0.012, 0.008, 0.01).$$

4. Iteración 2 (Segundo Minibatch): Utilizando  $w^{(1)}=(0.012,0.008,0.01)$ , calculamos:

$$\nabla J_B(w^{(1)}) = -\frac{2}{50} \sum_{i \in B_2} (y_i - w^\top x_i) x_i.$$

Supongamos que:

$$\nabla J_B(w^{(1)}) \approx (-0.9, -0.6, -0.8).$$

Actualización:

$$w^{(2)} = w^{(1)} - \eta \nabla J_B(w^{(1)}) = (0.012, 0.008, 0.01) - 0.01 \cdot (-0.9, -0.6, -0.8) = (0.021, 0.014, 0.018).$$

5. Iteración 3 (Tercer Minibatch): Utilizando  $w^{(2)}=(0.021,0.014,0.018)$ , calculamos:

$$\nabla J_B(w^{(2)}) \approx (-0.6, -0.4, -0.5).$$

Actualización:

$$w^{(3)} = w^{(2)} - \eta \nabla J_B(w^{(2)}) = (0.021, 0.014, 0.018) - 0.01 \cdot (-0.6, -0.4, -0.5) = (0.027, 0.018, 0.023).$$

### 6. Resultados Tabulados:

| Iteración | $w_1$ | $w_2$ | $w_3$ |
|-----------|-------|-------|-------|
| 1         | 0.012 | 0.008 | 0.010 |
| 2         | 0.021 | 0.014 | 0.018 |
| 3         | 0.027 | 0.018 | 0.023 |

Table 4: Valores de los parámetros tras cada iteración.

### Gráfica



Figure 4: Ejercicio 4: Reducción de Costo en Minibatches

# Conclusión

Los ejercicios resueltos ilustran cómo el descenso del gradiente permite minimizar funciones de costo en distintos escenarios. A través de iteraciones y ajustes en los parámetros, se logra una optimización progresiva, evidenciada en las gráficas incluidas.