STUDIO DI FUNTIONE

DOMINIO =

SOLITAMENTE LIMITATO DA RADICE, FLATIONE O LOGARITMO

SIMMETRIE E PERIODICITA' =

PARI (- n) = (- n)

DISPARI (-x) = - P(x)

PERIODICITA: DA TROVARE NELLE FUNZIONI TRIGONOMETRICHE

JEGNO E INTERSEZIONI CON GLI ASSI

SEGNO: P(25) = 0 OPPURE P(2) 50

INTERSETIONI: $\begin{cases} y = f(x) \\ y = 0 \end{cases}$ $\begin{cases} y = f(x) \\ x = 0 \end{cases}$

LIMITE E ASINTOTI

ASINTOTI ORIZZONTALI

lim (1(x) = L & R

ASINTOIL VERTICALI

 $\lim_{x\to 0^+} f(x) = \pm \Delta$ $\lim_{x\to 0^+} f(x) = \pm \Delta$ $\lim_{x\to 0^+} f(x) = \pm \Delta$

SE A ±00 POSSIEDE

UN! ASINTOTO ORIZZONIACE

NON PUÓ AVERNE UNO

OBLIQUO.

IL FATO CHE A +00

NE POSSEGGA UNO ORIZZON

TALE PON ESCLUBE CHE

A -00 CE NE SIA UNO

OBLIQUO

ASINTOTI OBLIQUI

$$\lim_{X\to\pm\infty}\frac{f(x)}{x}=m\neq0\in\mathbb{R}$$

DERIVA BILITA'

SI PUD' DIRE CHE UNA FUNCTIONE DERIVABILE IN

- 1 SE COMPOSITIONE DI FUNZIONI DERIVABILI
- 2 FACENDONE IL LIMITE DEL RAPPORTO INCREMENTALE IL CUI RISULTATO DEVE ESSERE FINITO
- 3 FACENDO IL LIMITE DELLA DERIVATA IL CUI RISULTATO DEVE ESSERE FINITO

MASSIMI, MINIMI & HONDTONIA

PONENDO ((21) =0 TROVO POSSIBILI MASSIMI O MINIMI LOCACI, SE LA FUNZIONE SI TROVA IN UN INTERVA LLO APERTO, ANCHE GLI ESTREMI SONO POSSIBILI PUNTI. PER ASSICURARCI CHE LO SIANO STUDIAMO IL SEGNO DELLA DERIVATA

DOVE LA DERIVATA É POSITIVA LA FUNZIONE CRESCE

DOVE É NE GATIVA LA FUNTIONE DECRESCE SE I PUNTI IN CUI LA MOND TOMA CAMBIA COINCIDOND CON I PUNTI TROVATI ANNULLANDO LA DERIVATA, ALLOZA SOND MINIMI D MASSIMI LOCACI.

PER VEDERE SE X_s É MINIMO/MINIMO ASSOLUTO BASTA PORRE $f(X_s) \ge f(n)$, SE QUESTA VALE SEMPRE ALLON LO É.

CONCAUTA & FLESSI

PONENDO ("(") =0 TROVO POSSIBILI FLESSI.
PER ASSICURARCI CHE LO JANO STUDIAMO IL
SEGNO DELLA DEZIVATA.

 $\rho'(\lambda) \leq 0$ $\rho'(\lambda) \leq 0$

DOVE LA DERIVATA É POSITIVA LA FUNZIONE E CONCAVA

SE I PUNTI IN CUI LA CONCAUTA' CAMBIA COINCIDOND CON I PUNTI TROVATI ANNULLANDO LA DERIVATA, ALLOZA SONO PUNTI DI FLESSO

INTEGRALI

· INDEFINITI / DEFINITI

- · PER. PARTI . Slang (nILL = langen) + Slangen de
- · SOSTITUTIONE
- · PAPPORTO TRA POLINOMI

$$\int \frac{N(n)}{D(n)} dn$$

DIVISIONE THE POLINOMI

$$= > \int Q(x) dx + \int \frac{R(n)}{D(n)} dx$$

· IMPROPRI

- · CON ESTREMO A + P
- . CON ESTREMO IN PONTO DE NON DENIV.

COMPLESSI

$$\begin{aligned}
\xi &= a + i 5 & i^2 &= -1 & \overline{t} &= a - i 5 \\
2 &= \beta \left(\cos \theta + i \sin \theta \right) & \beta &= \sqrt{a' + b^2} \\
\xi &= \beta e^{i \theta}
\end{aligned}$$

FORMULA PER POTENTE:
$$Z^m = \int_{-\infty}^{\infty} \left(\cos(\vartheta m) + i \sin(\vartheta m) \right)$$

FORMULA PER RADICI: $\sqrt[m]{2} = \sqrt[m]{2} \left(\cos(\frac{\vartheta + k\pi}{m}) + i \sin(\frac{\vartheta + k\pi}{m}) \right)$

SERIE NUMERICHE

SERIE A TERMINI POSITUNI

- · CONFRONTO
- · CONFRONTO ASINTOTIO
- · CRMERIO DEC RAPPORTO
- · CRTERIO DEL CONFROINTO

SERIE GEDNETRICHE

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}$$

SERIE A SEGNI ALTERNANTI

2 (dm) m É MONOTONA DECRESCENTE

=> on converte