制造业大数据分析和预测性维护的实践和思考

海洪朴信息科技有限公司 刘龙泽 首席算法科学家

传感器 /数据采集

机器人

云计算

MES/WMS

数据分析算法/ 可视化

数据分析算法/可视化

如何"防患于未然"?

设备预警系统报警,提前检修

设备每天产生10万余条预警数据

模型准确预测六月份的三次设备硬件故障

工程师响应速度 5天之内

Al

模型响应速度实时

如何尽量避免故障?

工程师操作

设备生命周期

检修流程

电气环境

图像自动畸变校正

深度学习智能检测

如何尽量避免故障?

工人操作

设备规格与厂商

运维流程

电站环境

人

机

料

法

环

人工检测:

漏检率: >15%

检测速度: 25~35秒

AI 检测:

漏检率: <1%

检测速度: <2秒

排风门1状态 进风电机状态 进风风量 排风电机状态 排风风量 滚筒电机正转状态 排风门3状态 进风速度 生产状态 滚筒电机反转状态 进风电机频率 物料投放时间 蠕动泵状态 排风电机频率 原材料质量 滚筒转速 (频率) 蠕动泵转速(频率) 浆液质量

A

进风电机状态

[K风门1状态

井风风量

排风电机状态

排风门2次系

排风风量

滚筒电机正转状态

排风门3状态

进风速度

滚筒电机反转状态

进风电机频率

生产状态

需动泵状态

排风电机频率

物料投放时间

加热状态

滚筒转速 (频率)

原材料质量

喷液状态

蠕动泵转速(频率)

浆液质量

利用率提升10%

1500万/年

成本节约

机

料

法

环

- 人脸识别
- 姿态识别
- 错误操作诊断
- 故障预测
- 预测性维护
- 外观缺陷检测
- 棒材计数器
- 良品率智能优化
- 原材料利用率智能优化

• 维护决策支持

- 生产周期智能优化
- 高级排产

工人的操作记录数据 工人的培训数据

机

机器的配置参数 机器的报警数据

料

在制品库存数据 原材料信息

环

温度、湿度、压力 空气质量数据

法

工艺数据 生产计划数据 质量数据 想象一下,如果这些案例,场景融合……

ChamPress	H2Hyd2.Run	NH3.1.Source	H2InnerMO.Push	TMGa2.Source
Rotation	H2Hyd1.Feed	NH3.2.Source	H2OuterMO.Push	TMGa2.Pressure
InnerPowerPercentage	H2Hyd2.Feed	VentMO1.Press	H2Edge.Purge	SiH4.1.Source
Middle1PowerPercentage	N2Hyd.Feed	RunMO1.Press	InnerMO.Source	SiH4.1.Dilute
Middle2PowerPercentage	Pyro.Purge	N2InnerMO.Push	OuterMO.Source	SiH4.1.Inject
OuterPowerPercentage	NH3.1.Run	N2OuterMO.Push	TMGa1.Source	SiH4.1.Pressure
H2Hyd1.Run	NH3.2.Run	N2Edge.Purge	TMGa1.Pressure	SiH4.2.Source

基于统计分析模型的 设备参数智能控制

<

融合图像及统计分析的 缺陷智能追踪

基于机器视觉的 缺陷智能检测

- 错误操作识别与诊断
- 设备故障识别与诊断

基于统计分析模型的 设备参数智能控制 Azure IoT Edge

融合图像及统计分析的 缺陷智能追踪

Azure Auto ML 基于机器视觉的 缺陷智能检测

- 错误操作识别与诊断
- 设备故障识别与诊断

