MACHINE LEARNING WORKFLOW

MACHINE LEARNING PIPELINES

Choose pipeline structure and optimize pipeline parameters w.r.t. the estimated prediction error, on an independent test set, or measured by cross-validation.

IMPORTANT TYPES OF FEATURE ENGINEERING

Feature engineering is on the intersection of **data cleaning**, **feature creation** and **feature selection**.

The goal is to solve common difficulties in data science projects, like

- skewed/weird feature distributions.
- ► (high cardinality) categorical features,
- ► functional (temporal) features,
- missing observations,
- high dimensional data,
- ▶ ...

and improve model performance.

WHY FEATURE ENGINEERING IS IMPORTANT

Choice between a simple **interpretable** model with feature engineering or a complex model without.

FEATURE ENGINEERING AND DEEP LEARNING

One argument for deep learning is often the idea of "automatic feature engineering", i.e., that no further preprocessing steps are necessary.

This is mainly true for special types of data like

- Images
- ▶ Texts
- ► Curves/Sequences

Many feature engineering problems for regular **tabular** data are not solved by deep learning.

Furthermore, choosing the architecture and learning hyperparameters poses its own new challenges.