

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCE in Mechanics M1 (WME01) Paper 01

Jan 2020 WME01 Final

Question Number	Scheme	Marks	6
1(a)	$P(m_1) \bigodot V \bigodot Q(m_2)$ $\downarrow V \bigodot \frac{1}{3}u$		
	$\pm m_2 \left(\frac{1}{3}uu\right)$ $\underline{4m_2u}$	M1 A1	
	$\frac{4m_2u}{3}$	A1	(3)
(b)	CLM: $m_1 u - m_2 u = -m_1 v + m_2 \frac{1}{3} u$ OR $\frac{4m_2 u}{3} = m_1 (vu)$	M1 A1	
	$\frac{u(4m_2 - 3m_1)}{3m_1} \text{oe}$	A1	
(c)	$\frac{u(4m_2 - 3m_1)}{3m_1} > 0$	M1	(3)
	$(4m_2 - 3m_1) > 0 \implies 4m_2 > 3m_1 \implies m_2 > \frac{3}{4}m_1 * Given answer$	A1*	
	N.B. If they use $-v$ in (b), can score M1 for $-v < 0$ and possibly A1. Notes for question 1	(2)	(8)
1(a)	M1 for impulse-momentum principle applied to Q ; condone sign errors but must be using m_2 for mass and subtracting momenta M0 if it's dimensionally incorrect e.g if g is included.		
	First A1 for $\pm m_2 \left(\frac{1}{3} uu \right)$		
	A1 Correct answer, must be positive and a single term (Allow fraction replaced by a decimal to at least 2 SF)		
(b)	M1 CLM, with usual rules (allow consistent extra g 's), or impulse-momentum principle applied to P , using their answer from (a) which must be in terms of m_2 and u (but allow consistent extra g 's)		
	A1 Correct equation (allow consistent use of $-v$ instead of v) A1 Correct answer only. Any equivalent expression with m_2 terms		
	collected (Allow fraction replaced by a decimal to at least 2 SF) M1 Correct inequality for their <i>v</i> , containing <i>u</i>		
(c)	N.B. Their first statement must include u and > 0 or < 0 as appropriate		
	A1* Correct given answer correctly obtained. N.B. $\frac{3}{4}m_1 < m_2$ is A0		

Question Number	Scheme	Marks
2.	1.5 m $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(a)	T + (T + 20) = W $M(A), 4.5(T + 20) = 2.625W$ Any two of these $M(G), 2.625T = 1.875(T + 20)$ $M(C), 4.5T = 1.875W$	M1 A1
	M(B), $6T+1.5(T+20)=3.375WN.B. The A marks and the DM1 can only be scored if the candidate is using T and T+20 or T and T-20 in both equations.$	
	N.B. Can score M1A1 for a correct vertical resolution, even if T and $T+20$ are the wrong way round.	
	N.B. If they just use T_A and T_C , can score max M1A0 M1A0DM0A0 If they assume that $T_A = T_C$, can score max M1A0 M1A0DM0A0 If they assume that the tensions are T and 20, can score max M1A0 M1A0 DM0A0 If they use T and 20 T , can score max M1A0 M1A0DM0A0	
	N.B. If it's not clear from their working which way round they have the two tensions, use their diagram to decide.	
	Solve for W $W = 120$	DM1 A1 (6)
(b)	The beam remains straight,or rigid, or in a straight line or 1-dimensional or it doesn't bend	B1 (1) (7)
	Notes for question 2	
(a)	M1 First equation (vertical resolution or moments) with usual rules	
	A1 Correct equation (T may be replaced by $T-20$)	
	M1 Second equation (vertical resolution or moments) with usual rules	
	A1 Correct equation (T may be replaced by $T-20$)	
	DM1 Dependent on previous two M marks, for solving for W	
	A1 cao	
(b)	B1 any appropriate comment. N.B. Penalise incorrect extras.	

Question Number	Scheme	Marks
3.	Allow a numerical value of g used anywhere apart from the final A marks in (a) and (b) but penalise use of $g = 9.81$ once for whole question	
(a)	$0^2 = U^2 - 2gH$	M1
	$H = \frac{U^2}{2g}$	A1
		(2)
(b)	$s_{P} = \frac{1}{2}gt^{2}$ $s_{Q} = \frac{1}{2}Ut - \frac{1}{2}gt^{2}$ $s_{Q} = \frac{1}{2}U(t - \frac{U}{g}) - \frac{1}{2}g(t - \frac{U}{g})^{2}$	M1A1
	$s_{Q} = \frac{1}{2}Ut - \frac{1}{2}gt^{2}$ $s_{Q} = \frac{1}{2}U(t - \frac{U}{g}) - \frac{1}{2}g(t - \frac{U}{g})^{2}$	M1A1
	$s_P + s_Q = H \qquad \qquad s_P = s_Q$	
	$\Rightarrow \frac{1}{2}Ut = \frac{U^2}{2g} \qquad \Rightarrow Ut - \frac{1}{2}gt^2 = \frac{1}{2}U(t - \frac{U}{g}) - \frac{1}{2}g(t - \frac{U}{g})^2$ $t = \frac{U}{g} \qquad \text{Answer} = (t - \frac{U}{g}) = \frac{U}{g}$	M1
	$t = \frac{U}{g}$ Answer = $(t - \frac{U}{g}) = \frac{U}{g}$	A1
		(6)
(c)	$S_{P} = \frac{1}{2}g\left(\frac{U}{g}\right)^{2}$ $S_{P} = U\left(\frac{2U}{g}\right) - \frac{1}{2}g\left(\frac{2U}{g}\right)^{2}$	M1 A1
	or $s_{Q} = \frac{1}{2}U\left(\frac{U}{g}\right) - \frac{1}{2}g\left(\frac{U}{g}\right)^{2}$ or $s_{Q} = \frac{1}{2}U\left(\frac{U}{g}\right) - \frac{1}{2}g\left(\frac{U}{g}\right)^{2}$	
	Collide at the point O or at the point of projection.	A1
	(At the same level as O is A0)	(3)
		(11)
	Notes for question 3	\
3(a)	M1 Complete method to find an equation in <i>H</i> , <i>U</i> and <i>g only</i> .Condone sign errors	
	A1 Correct expression for H in terms of U and g . (A0 if they use h or s in their answer but allow for the M mark)	
	N.B. When awarding marks, must use EITHER the LH column OR the RH column, not a mixture of both. Award as many marks as possible.	
3(b)	M1 Complete method to find s_p in terms of t , where $t = 0$ is when Q is	
	projected upwards. The alternative arises when $t = 0$ is taken to be when P is projected <i>upwards</i> . Condone sign errors.	
	A1 Correct equation (using their <i>H</i> where it is used)	
	Allow: $s_p = \frac{1}{2}gt^2 \text{ or } s_p = -\frac{1}{2}gt^2 \text{ or } s_p = H - \frac{1}{2}gt^2 \text{ or } s_p = -(H - \frac{1}{2}gt^2)$	

Question Number	Scheme	Marks
	or $s_P = U(t + \frac{U}{g}) - \frac{1}{2}g(t + \frac{U}{g})^2$	
	M1 Complete method to find s_Q in terms of t . Condone sign errors.	
	A1 Correct equation (using their H where it is used)	
	Allow: $s_Q = \frac{1}{2}Ut - \frac{1}{2}gt^2$ or $s_Q = -(\frac{1}{2}Ut - \frac{1}{2}gt^2)$	
	Or $s_Q = H - (\frac{1}{2}Ut - \frac{1}{2}gt^2)$ or $s_Q = -(H - (\frac{1}{2}Ut - \frac{1}{2}gt^2))$	
	M1 Use of $s_P + s_Q = H$ oe \mathbf{OR} $s_P = s_Q$ oe	
	to obtain a CORRECT equation in t, U and g only	
	A1 Correct expression for t in terms of U and g .	
3(c)	M1 Sub their t value, provided it's POSITIVE, into their equation for s_P or s_O	
	~	
	A1 Correct <u>unsimplified</u> expression A1 Correct conclusion	
	AT COTTECT CONCIUSION	
		+

Question Number	Scheme	Marks
4(a)	$2T\sin\beta = 3mg$ OR $\frac{T}{\sin(90^\circ - \beta)} = \frac{3mg}{\sin 2\beta}$	M1
	$T = \frac{3mg}{2\sin\beta}$ OR $T = \frac{3mg\cos\beta}{\sin 2\beta}$	A1
		(2)
	For A or B: (\uparrow) $R = mg + T \sin \beta$	
(b)	OR For whole system: $(\uparrow) 2R = 3mg + mg + mg$	M1 A1
	OR For AC or BC : (\uparrow) $R + T \sin \beta = mg + 3mg$	
	R = 2.5mg	A1
		(3)
(c)	$F = T \cos \beta$	M1A1
	$F = \frac{4}{5} \times 2.5mg$	B1 ft
	Eliminate T and solve for $\tan \beta$	M1
	$\tan \beta = \frac{3}{4}$	A1
	1	(5)
		(10)
4(-)	Notes for question 4	
4(a)	M1 Resolve vertically for C with usual rules or use triangle of forces A1 Answer. Allow $\cos(90^{\circ} - \beta)$ for $\sin \beta$ or $\sin(90^{\circ} - \beta)$ for $\cos \beta$	
	M1 Resolve vertically for A or B, for whole system or for AC or BC with	
4(b)	usual rules	
	A1 Correct equation	
	A1 Correct answer	
4(c)	M1 Resolve horizontally for A with usual rules	
	A1 Correct equation	
	B1 ft for $F = \frac{4}{5} \times$ their R (allow magnitude if $R < 0$) seen anywhere	
	(B0 for just $F = 4/5 R$)	
	M1 Eliminate T and solve for $\tan \beta$ correctly.	
	A1 $\frac{3}{4}$ oe	
	4	

Question Number	Scheme	Marks
5(a)	40 0 15 15 + T	B1 shape B1 40, 15, 15+T Correctly Placed (2)
5 (b)	$A0 - At$ \rightarrow $t - 10$	
5(b)	$\begin{array}{c c} 40 = 4t_1 \implies t_1 = 10 \\ \hline 60 \text{ (m s}^{-1}) \end{array}$	M1 A1 (2) B1
5(c)	$60 \text{ (m s}^{-1})$ $60 + T \text{ (m s}^{-1})$	B1 ft
	$\frac{1}{2} \times 15 \times 60 + \frac{1}{2}T(60 + 60 + T) = 40(15 + T)$ OR $\frac{1}{2} \times 15 \times 60 + 60T + \frac{1}{2}T \times T = 40(15 + T)$ OR $\frac{1}{2}(T + T + 15) \times 60 + \frac{1}{2}T \times T = 40(15 + T)$	M1 A2
	$T^2 + 40T - 300 = 0$; $(k = 40)$	A1
		(6) (10)
	Notes for question 5	
5(a)	B1 Correct graph shapes on same axes with intersection, a horizontal line and 2 lines, both with positive gradient, the second less steep than the first and both ending at the same <i>t</i> -value. B0 for a solid vertical line at the end but allow intermediate solid vertical lines.	
	B1 Figs. correctly placed. Allow appropriate delineators.	
5(b)	M1 Complete method to give an equation in t_1 only	
5(c)	A1 $t_1 = 10$ B1 60 m s ⁻¹ seen B1 ft 60 + T seen or <u>implied</u> ; ft on their graph (i.e. on their interpretation of T) N.B. If they use $s = ut + \frac{1}{2}at^2$, 60 + T is not needed	
	M1 Equating distances to give an equation in T only, with correct structure (e.g. M0 if a '½' is omitted or a 'section' is omitted but give BOD where possible e.g. treat middle term below as an attempt at a trapezium, with 60 and T as the parallel sides $\frac{1}{2} \times 15 \times 60 + \frac{1}{2} T(60 + T) = 40(15 + T)$ B1B0M1A1A0A0)	
	A2 Correct unsimplified equation -1 e.e. A1 Correct quadratic with <i>k</i> = 40	
	N.B. If they take T to be the end of the time period (instead of $15 + T$), can score max: (a) B1B0 (b) M1A1 (c) B1B1ft M1A0A0A0 where T is replaced consistently by $(T-15)$ in the scheme above.	

Question Number	Scheme	Mar	ks
6(a)	Magnitude = $\sqrt{10^2 + 1^2} = \sqrt{101}$ (N)	M1A1	
		(2)	
6(b)	$\tan \alpha = \frac{1}{10}$	M1	
	45°	B1	
	Angle = $45^{\circ} - \alpha = 39.289$ Accept 39° or better	M1 A	1 (4)
	ALTERNATIVE 1 Scalar Product		
	$(10\mathbf{i} + \mathbf{j}).(\mathbf{i} + \mathbf{j}) = \sqrt{10^2 + 1^2}.\sqrt{1^2 + 1^2}\cos\theta$	M1	
	$(10\mathbf{i} + \mathbf{j}).(\mathbf{i} + \mathbf{j}) = 11$	B1	
	$11 = \sqrt{10^2 + 1^2} \cdot \sqrt{1^2 + 1^2} \cos \theta$	M1	
	$\theta = 39^{\circ}$ or better	A1	(4)
			()
	ALTERNATIVE 2 Cosine Rule		
	$(10^2 + 1^2) + (1^2 + 1^2) - 2\sqrt{10^2 + 1^2} \cdot \sqrt{1^2 + 1^2} \cos \theta$	M1	
	(10i + j) - (i + j) = 9i or $(i + j) - (10i + j) = -9i$	B1	
	$9^{2} = (10^{2} + 1^{2}) + (1^{2} + 1^{2}) - 2\sqrt{10^{2} + 1^{2}} \cdot \sqrt{1^{2} + 1^{2}} \cos \theta$	M1	
	$\theta = 39^{\circ}$ or better	A1	(4)
6(c)	$(10\mathbf{i} + \mathbf{j}) + (-15\mathbf{i} + a\mathbf{j}) = -5\mathbf{i} + (a+1)\mathbf{j}$	B1	
	$\frac{a+1}{-5} = \frac{-3}{2}$	M1A1	
	Solve for <i>a</i>	M1	
	a = 6.5	A1	
		(5)	
			(11)
(()	Notes for question 6		
6(a)	M1 Use of Pythagoras A0 if they <i>only</i> give a decimal		
6(b)	M1 For any relevant trig ratio for α or $(90^{\circ} - \alpha)$		
0(0)	B1 45° seen		
	M1 Finding the difference between 45° and α or $(90^{\circ} - \alpha)$ and 45°		
	A1 Accept 39° or better		
6(c)	B1 Adding the two forces and collecting i 's and j 's. Seen or implied.		
	M1 For producing an equation in <i>a only</i> e.g. using ratios from their		
	resultant (M0 if no resultant attempted and M0 if equation comes from		
	equating their resultant to $(2i-3j)$. Condone sign error but M0 if ratio is		
	upside down.		
	A1 Correct equation in a only M1 Solve for a. This is an independent M mark but their equation must		
	have come from a ratio equation obtained from using their resultant		
	A1 $a = 6.5$		

Question Number	Scheme	Marks
7(a)	$1.4 = \frac{1}{2}a \times 2^2$	M1
	$a = 0.7 \text{ (m s}^{-2}) * \text{ GIVEN ANSWER}$	A1*
		(2)
7(b)	Inextensibility of string	B1
-()	2 T 2 0 T (C D)	(1)
7(c)	$3g - T = 3 \times 0.7 \text{(for } B\text{)}$	M1 A1
	Resultant = $2T\cos 45^{\circ}$ OR = $\sqrt{T^2 + T^2}$ OR = $\frac{T}{\cos 45^{\circ}}$	M1
	= 39 or 38.6 (N)	A1
		(4)
7(d)	$T - F = 4 \times 0.7$ (for A) OR $3g - F = 7 \times 0.7$ (whole system)	M1 A1
	$R = 4g \; ; \; F = \mu \times R$	B1; B1
	$27.3 - \mu \times 4g = 4 \times 0.7$ OR $3g - \mu \times 4g = 7 \times 0.7$	D M1
	$\mu = 0.625 \text{ or } 0.63$	A1
		(6)
7(e)	$v = 0.7 \times 2 \text{ or } v = \sqrt{2 \times 0.7 \times 1.4}$	M1
	$-\mu \times 4g = 4a$	M1
	$0^2 = 1.4^2 - 2 \times \frac{5g}{8}s$	M1
	s = 0.16 or 0.159	A1
	$0.16 + 1.4 < 2 \Rightarrow$ Does not reach pulley	A1 cso
		(5)
	ALTERNATIVE for final 3 marks:	(18)
	$v^2 = 1.4^2 - 2 \times \frac{5g}{8} \times 0.6$	M1
	= -5.39 or -5.4488	A1
	Since v^2 must be ≥ 0 , does not reach pulley	A1 cso
	Notes for question 7	
7(a)	M1 Complete method to obtain an equation in a only. Allow verification	
	A1* Given answer correctly obtained or <i>verification completed</i>	
7(b)	Correctly. B1 B0 if any extras given.	
7(c)	M1 Equation of motion for <i>B</i> with usual rules	
, (6)	A1 Correct equation	
	M1 for correct expression in terms of T	
	A1 39 or 38.6 (N)	
7(d)	M1 Equation of motion for A or whole system, with usual rules	
	A1 Correct equation	
	B1 $R=4g$	
	B1 $F = \mu R$	
	DM1 Solving to give equation in μ only. Dependent on first M1	

Question Number	Scheme	Marks
	N.B. DM0 if they use $T = 3g$	
	A1 0.625 or 0.63 (5/8 is A0)	
7(e)	M1 Finding the speed or speed ² of either particle when B hits the floor	
	M1 Equation of motion for A. Allow without the -ve sign.	
	M1 Complete method to find distance moved by A until it stops,	
	condone sign error. N.B. This is an independent M mark but M0 if they	
	have not found a new deceleration.	
	A1 Correct distance	
	A1 cso Correct conclusion correctly reached.	
	Must see ' < 2' or use 2 in their working	
	ALTERNATIVE for final 3 marks:	
	M1 Complete method to find v^2 where v is speed with which it would	
	hit the pulley, condone sign error. N.B. This is an independent M mark	
	but M0 if they have not found a new deceleration	
	A1 Correct value for v^2	
	A1 cso	