Hazel MetaPhi: 9-type-aliases

July 3, 2021

introduction

f

Issues

Issue 1: Algorithmic rules are not "officially" algorithmic

Since we are going all out to Do It Right^{TM}, it should be noted that the declarative/algorithmic bifurcation is not complete with :: $(\Delta; \Phi \vdash \tau :: \kappa)$.

For example, kind analysis is premissed on $\lesssim (\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2)$ at KAASubsume, which is itself premissed on $\equiv (\Delta; \Phi \vdash \tau_1 \stackrel{\kappa}{\equiv} \tau_2)$ at KCRespectEquiv, which is itself premissed on :: $(\Delta; \Phi \vdash \tau :: \kappa)$ at KCESingEquiv.

Explicitly algorithmic counterparts to \lesssim and \equiv need to be defined. Suggested notation: \lesssim and \iff (faintly reminiscent of Stone and Harper).

Not Issues -- but worth mentioning

Nibwm 1: In the presence of higher order types/type constructors, type equivalence depends on the kind at which the types are compared if extensionality is desired

Without "real" subkinding, examples are a bit more contrived.

From Stone and Harper (2006):

$$\vdash \lambda t :: \texttt{Type}.t \stackrel{\texttt{S(Int)} \to \texttt{Type}}{\equiv} \lambda t :: \texttt{Type}. \texttt{Int}$$

should be derivable but

$$\vdash \lambda t :: \texttt{Type}.t \stackrel{\texttt{Type} \to \texttt{Type}}{\equiv} \lambda t :: \texttt{Type}. \texttt{Int}$$

should not, where $\vdash \mathsf{Type} \to \mathsf{Type} \lesssim \mathtt{S}(\mathsf{Int}) \to \mathsf{Type}$ Interestingly

$$\vdash \lambda t :: \texttt{Type}.t \stackrel{\texttt{S(Int)} \to \texttt{S(Int)}}{\equiv} \lambda t :: \texttt{Type}. \texttt{Int}$$

should also be derivable, where $\vdash S(Int) \rightarrow S(Int) \lesssim S(Int) \rightarrow Type$ With "real" subkinding, this behavior is more serious.

From Aspinall (1995), using singleton types and Nat \leq Int ("real" subtyping):

$$\vdash \lambda x {:} \mathtt{Int.if} \ x \geq 0 \ \mathtt{then} \ x \ \mathtt{else} \ 2 * x \overset{\mathtt{Nat} \rightarrow \mathtt{Int}}{\equiv} \lambda x {:} \mathtt{Int.x}$$

should be derivable but

$$\vdash \lambda x \text{:Int.if } x \geq 0 \text{ then } x \text{ else } 2 * x \stackrel{\text{Int} \to \text{Int}}{\equiv} \lambda x \text{:Int.} x$$

should not.

Attachments

9-type-aliases marked up with preliminary declarative statics notes ${\bf Attachment} \ {\bf 1}$

 $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$ κ_1 is a consistent subkind of κ_2

$$\begin{tabular}{lll} {\tt KCHoleL} & {\tt KCHoleR} & {\tt KCRespectEquiv} \\ \hline $\Delta;\Phi\vdash{\tt KHole}\lesssim\kappa$ & $\Delta;\Phi\vdash\kappa\lesssim{\tt KHole}$ & $\frac{\Delta;\Phi\vdash\kappa_1\equiv\kappa_2}{\Delta;\Phi\vdash\kappa_1\lesssim\kappa_2}$ \\ & {\tt KCSubsumption} \\ \hline $\alpha;\Phi\vdash\tau\rightleftarrows{\tt Ty} \\ \hline $\Delta;\Phi\vdash{\tt S}(\tau)\lesssim{\tt Ty}$ \end{tabular}$$

t valid t is a valid type variable

t is valid if it is not a built in-type or keyword, begins with an alpha char or underscore, and only contains alpha numeric characters, underscores, and primes.

 $\Delta; \Phi \vdash \kappa \text{ kind}$ $\kappa \text{ forms a kind}$

$$\frac{\text{KFTy}}{\Delta; \Phi \vdash \text{Ty kind}} \qquad \frac{\text{KFHole}}{\Delta; \Phi \vdash \text{KHole kind}} \qquad \frac{\Delta; \Phi \vdash \tau \Leftrightarrow \text{Ty}}{\Delta; \Phi \vdash \text{S}(\tau) \text{ kind}} \qquad \frac{43.7}{\Delta}$$

Attachment 1

$$\begin{array}{c} \boxed{\Delta;\Phi \vdash \kappa_1 \equiv \kappa_2} \\ \hline \Delta;\Phi \vdash \kappa_1 \equiv \kappa_2 \\ \hline \Delta;\Phi \vdash \kappa_1 \equiv \kappa_3 \\ \hline \\ \hline KESingEquiv \\ \hline \Delta;\Phi \vdash \tau_1 \equiv \tau_2 \\ \hline \Delta;\Phi \vdash \tau_1 \Rightarrow \kappa_1 \\ \hline \\ KSConst \\ \hline \Delta;\Phi \vdash \tau_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_2 \Rightarrow \kappa_2 \\ \hline \\ \hline \\ \Delta;\Phi \vdash \tau_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Leftrightarrow \kappa_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Leftrightarrow \kappa_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Leftrightarrow \kappa_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Leftrightarrow \kappa_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Leftrightarrow \kappa_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_1 \Leftrightarrow \kappa_2 \Rightarrow \kappa_2 \\ \hline \\ \Delta;\Phi \vdash \tau_2 \Rightarrow \kappa_3 \\ \hline \\ \Delta;\Phi \vdash \tau_3 \Rightarrow \kappa_3 \\ \hline \\ \Delta;\Phi \vdash \tau_3 \Rightarrow \kappa_3 \\ \hline \\ \Delta;\Phi \vdash \tau_3 \Rightarrow \kappa_3 \Rightarrow$$

Attachment 1

 $\boxed{\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta} \quad \hat{\tau} \text{ synthesizes kind } \kappa \text{ and elaborates to } \tau$

TElabSConst

$$\overline{\Phi \vdash c \Rightarrow S(c) \rightsquigarrow c \dashv \cdot}$$

$$\frac{\Phi \vdash \hat{\tau}_1 \Leftarrow \mathsf{Ty} \leadsto \tau_1 \dashv \Delta_1 \qquad \Phi \vdash \hat{\tau}_2 \Leftarrow \mathsf{Ty} \leadsto \tau_2 \dashv \Delta_2}{\Phi \vdash \hat{\tau}_1 \oplus \hat{\tau}_2 \Rightarrow \mathsf{S}(\tau_1 \oplus \tau_2) \leadsto \tau_1 \oplus \tau_2 \dashv \Delta_1 \cup \Delta_2}$$

$$\label{eq:total_total_total_total_total_total} \frac{\Phi \vdash \hat{\tau} \Leftarrow \mathsf{Ty} \leadsto \tau \dashv \Delta}{\Phi \vdash \mathsf{list}(\hat{\tau}) \Rightarrow \mathsf{S}(\mathsf{list}(\tau)) \leadsto \mathsf{list}(\tau) \dashv \Delta} \qquad \frac{t : \kappa \in \Phi}{\Phi \vdash t \Rightarrow \mathsf{S}(t) \leadsto t \dashv \cdot}$$

TElabSUVar

$$\frac{t \not\in \mathsf{dom}(\Phi)}{\Phi \vdash t \Rightarrow \mathsf{KHole} \leadsto (\!\!\mid t \!\!\mid)^u \dashv u :: \mathsf{KHole}} \qquad \frac{\mathsf{TElabSHole}}{\Phi \vdash (\!\!\mid)^u \Rightarrow \mathsf{KHole} \leadsto (\!\!\mid)^u \dashv u :: \mathsf{KHole}}$$

$$\frac{\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta}{\Phi \vdash (\hat{\tau})^u \Rightarrow \text{KHole} \leadsto (|\tau|)^u \dashv \Delta, u :: \text{KHole}}$$

 $\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau \dashv \Delta$ $\hat{\tau}$ analyzes against kind κ_1 and elaborates to τ

TElabASubsume

$$\frac{\hat{\tau} \neq (\!(\!)^u \qquad \hat{\tau} \neq (\!(\hat{\tau}'\!)\!)^u \qquad \Phi \vdash \hat{\tau} \Rightarrow \kappa' \leadsto \tau \dashv \Delta \qquad \Delta; \Phi \vdash \kappa' \lesssim \kappa}{\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau \dashv \Delta}$$

$$\frac{\text{TElabAEHole}}{\Phi \vdash (\!\!|)^u \Leftarrow \kappa \leadsto (\!\!|)^u \dashv u :: \kappa} \qquad \frac{\frac{\text{TElabANEHole}}{\Phi \vdash \hat{\tau} \Rightarrow \kappa' \leadsto \tau \dashv \Delta}}{\Phi \vdash (\!\!|\hat{\tau}|\!\!)^u \Leftarrow \kappa \leadsto (\!\!|\tau|\!\!)^u \dashv \Delta, u :: \kappa}$$

 $\Phi_1 \vdash \tau : \kappa \rhd \rho \dashv \Phi_2$ ρ matches against $\tau : \kappa$ extending Φ if necessary

 $\Gamma; \Phi \vdash e \Rightarrow \hat{\tau} \leadsto d \dashv \Delta$ e synthesizes type τ and elaborates to d

ESDefine

$$\begin{split} & \Phi_1 \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta_1 \\ & \Phi_1 \vdash \tau : \kappa \rhd \rho \dashv \Phi_2 \qquad \Gamma; \Phi_2 \vdash e \Rightarrow \tau_1 \leadsto d \dashv \Delta_2 \\ \hline & \Gamma; \Phi_1 \vdash \mathsf{type} \ \rho = \hat{\tau} \ \mathsf{in} \ e \Rightarrow \tau_1 \leadsto \mathsf{type} \ \rho = \tau : \kappa \ \mathsf{in} \ d \dashv \Delta_1 \cup \Delta_2 \end{split}$$

 $\Delta; \Gamma; \Phi \vdash d : \tau$ d is assigned type τ

$$\begin{split} & \overset{\text{DEDefine}}{\Phi_1 \vdash \tau_1 : \kappa \rhd \rho \dashv \Phi_2} & \Delta; \Gamma; \Phi_2 \vdash d : \tau_2 \\ & \frac{\Delta; \Gamma; \Phi_1 \vdash \text{type } \rho = \tau_1 : \kappa \text{ in } d : \tau_2} \end{split}$$

Theorem 1 (Well-Kinded Elaboration)

(1) If
$$\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta \ then \ \Delta; \Phi \vdash \tau \Rightarrow \kappa$$

(2) If
$$\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau \dashv \Delta \ then \ \Delta; \Phi \vdash \tau \Leftarrow \kappa$$

This is like the Typed Elaboration theorem in the POPL19 paper.

Theorem 2 (Elaborability)

- (1) $\exists \Delta$ s.t. if Δ ; $\Phi \vdash \tau \Rightarrow \kappa$ then $\exists \hat{\tau}$ such that $\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta$
- (2) $\exists \Delta \ s.t. \ if \ \Delta; \Phi \vdash \tau \Leftarrow \kappa \ then \ \exists \hat{\tau} \ such \ that \ \Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau \dashv \Delta$

This is similar but a little different from Elaborability theorem in the POPL19 paper. Choose the Δ that is emitted from elaboration and then there's an $\hat{\tau}$ that elaborates to any of the τ forms. Elaborability and Well-Kinded Elaboration implies we can just rely on the elaboration forms for the premises of any rules that demand kind synthesis/analysis.

Theorem 3 (Type Elaboration Unicity)

(1) If
$$\Phi \vdash \hat{\tau} \Rightarrow \kappa_1 \rightsquigarrow \tau_1 \dashv \Delta_1$$
 and $\Phi \vdash \hat{\tau} \Rightarrow \kappa_2 \rightsquigarrow \tau_2 \dashv \Delta_2$ then $\kappa_1 = \kappa_2$, $\tau_1 = \tau_2$, $\Delta_1 = \Delta_2$

(2) If
$$\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau_1 \dashv \Delta_1$$
 and $\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau_2 \dashv \Delta_2$ then $\tau_1 = \tau_2$, $\Delta_1 = \Delta_2$

This is like the Elaboration Unicity theorem in the POPL19 paper.

Theorem 4 (Kind Synthesis Precision) If $\Delta; \Phi \vdash \tau \Rightarrow \kappa_1 \text{ and } \Delta; \Phi \vdash \tau \Leftarrow \kappa_2 \text{ then } \Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$

Kind Synthesis Precision says that synthesis finds the most precise kappa possible for a given input type. This is somewhat trivial, but interesting to note because it means we can expect singletons wherever possible.

Theorem 5.1 (Kind Analysis Soundness)
If Ajett = K then Ajett:: K

Theorem S.Z (Kind Analysis Completeners)

IF DJETT:: K then DJETT = K

5.1 Induction on complexity