Changement de base

Exercice 1 [01276] [correction]

Soit

$$A = \left(\begin{array}{rrr} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{array}\right)$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est A.

On pose $\varepsilon_1 = (1, 1, 1), \varepsilon_2 = (1, -1, 0), \varepsilon_3 = (1, 0, 1)$ et $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$.

- a) Montrer que \mathcal{B}' constitue une base de \mathbb{R}^3 .
- b) Ecrire la matrice de f dans cette base.
- c) Déterminer une base de $\ker f$ et de $\operatorname{Im} f$.

Exercice 2 [01277] [correction]

Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B} = (i, j, k)$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{array}\right)$$

- a) Calculer A^2 . Qu'en déduire sur f?
- b) Déterminer une base de $\operatorname{Im} f$ et $\ker f$.
- c) Quelle est la matrice de f relativement à une base adaptée à la supplémentarité de ${\rm Im}\, f$ et ${\rm ker}\, f$?

Exercice 3 [01278] [correction]

Soit

$$A = \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right)$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est A.

- a) Déterminer $\ker f$ et $\mathrm{Im} f$. Démontrer que ces sous-espaces sont supplémentaires dans \mathbb{R}^3 .
- b) Déterminer une base adaptée à cette supplémentarité et écrire la matrice de f dans cette base.
- c) Décrire f comme composée de transformations vectorielles élémentaires.

Exercice 4 [00716] [correction]

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ représenté dans la base canonique \mathcal{B} par :

$$\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)$$

- a) Soit $C = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ avec $\varepsilon_1 = (1, 0, 1), \varepsilon_2 = (-1, 1, 0), \varepsilon_3 = (1, 1, 1)$. Montrer que C est une base.
- b) Déterminer la matrice de f dans C.
- c) Calculer la matrice de f^n dans \mathcal{B} pour tout $n \in \mathbb{N}$.

Exercice 5 [01282] [correction]

Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{array}\right)$$

Soit $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ la famille définie par

$$\begin{cases} \varepsilon_1 = e_1 + e_2 - e_3 \\ \varepsilon_2 = e_1 - e_3 \\ \varepsilon_3 = e_1 - e_2 \end{cases}$$

- a) Montrer que \mathcal{B}' est une base de E et former la matrice D de f dans \mathcal{B}' .
- b) Exprimer la matrice de passage P de \mathcal{B} à \mathcal{B}' et calculer P^{-1} .
- c) Quelle relation lie les matrices A, D, P et P^{-1} ?
- d) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 6 [01283] [correction]

Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{ccc} 3 & -2 & 2\\ 1 & 2 & 0\\ 1 & 1 & 1 \end{array}\right)$$

a) Montrer qu'il existe une base $\mathcal{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de E dans laquelle la matrice représentative de f est une matrice diagonale D de coefficients diagonaux : 1, 2 et 3.

- b) Déterminer la matrice de passage P de \mathcal{B} à \mathcal{C} . Calculer P^{-1} .
- c) Quelle relation lie les matrices A, D, P et P^{-1} ?
- d) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 7 [01284] [correction]

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. On considère les matrices

$$A = \begin{pmatrix} 4 & -2 & -2 \\ 1 & 0 & -1 \\ 3 & -2 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est A.

- a) Montrer qu'il existe une base $C = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de E telle que la matrice de f dans C soit D.
- b) Déterminer la matrice P de $GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$. Calculer P^{-1} .
- c) Calculer A^n pour tout $n \in \mathbb{N}$.
- d) En déduire le terme général des suites $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par :

$$\begin{cases} x_0 = 1 \\ y_0 = 0 \text{ et } \forall n \in \mathbb{N}, \\ z_0 = 0 \end{cases} \begin{cases} x_{n+1} = 4x_n - 2(y_n + z_n) \\ y_{n+1} = x_n - z_n \\ z_{n+1} = 3x_n - 2y_n - z_n \end{cases}$$

Exercice 8 [03212] [correction]

Soient b=(i,j) et B=(I,J) deux bases d'un \mathbb{R} -espace vectoriel de dimension 2 et P la matrice de passage de b à B.

Pour $x \in E$, notons

$$v = \mathrm{Mat}_{b} x$$
 et $V = \mathrm{Mat}_{B} x$

- a) Retrouver la relation entre v et V.
- b) Soient $f \in \mathcal{L}(E)$ et

$$m = \operatorname{Mat}_b f$$
 et $M = \operatorname{Mat}_B f$

Retrouver la relation entre m et M.

c) Par quelle méthode peut-on calculer m^n lorsqu'on connaît deux vecteurs propres non colinéaires de f.

Corrections

Exercice 1 : [énoncé]

a) Aisément la famille \mathcal{B}' est libre, puis c'est une base car formée de trois vecteurs en dimension 3.

b) $f(\varepsilon_1) = \varepsilon_1, f(\varepsilon_2) = 2\varepsilon_2, f(\varepsilon_3) = 0$ donc

$$Mat_{\mathcal{B}'}f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

c) On observe que $\varepsilon_3 \in \ker f$ et $\varepsilon_1, \varepsilon_2 \in \operatorname{Im} f$.

Le théorème du rang permet de conclure : (ε_3) est une base de ker f et $(\varepsilon_1, \varepsilon_2)$ est une base de $\mathrm{Im} f$.

Exercice 2 : [énoncé]

a)

$$A^2 = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{array}\right) = A$$

donc f est une projection vectorielle.

b) En résolvant les équations f(x) = x et f(x) = 0 on obtient que (u, v) forme une base de $\operatorname{Im} f$ et (w) forme une base de $\operatorname{ker} f$ avec u = i + j, v = i + k et w = i + j + k.

c)

$$Mat_{(u,v,w)}f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercice 3: [énoncé]

a) $\ker f = \text{Vect}(u)$ avec u = (1, 1, 1). Im f = Vect(v, w) avec v = (2, -1, -1), w = (-1, 2, -1).

Comme C = (u, v, w) est libre on peut conclure que ker f et Im f sont supplémentaires dans \mathbb{R}^3 .

b) \mathcal{C} est une base adaptée à la supplémentarité de ker f et Imf.

$$Mat_{\mathcal{C}}f = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array} \right)$$

c) f est la composée, commutative, de l'homothétie vectorielle de rapport 3 avec la projection vectorielle sur $\text{Im}\,f$ parallèlement à $\ker f$.

Exercice 4 : [énoncé]

- a) On vérifie aisément que famille \mathcal{C} est libre et c'est donc une base de \mathbb{R}^3 .
- b) $f(\varepsilon_1) = \varepsilon_1$, $f(\varepsilon_2) = \varepsilon_2$ et $f(\varepsilon_3) = \varepsilon_1 + \varepsilon_3$ donc

$$Mat_{\mathcal{C}}f = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

c) Par récurrence :

$$\operatorname{Mat}_{\mathcal{C}}(f^n) = \left(\begin{array}{ccc} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Par changement de bases avec

$$P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

on obtient

$$\operatorname{Mat}_{\mathcal{B}}(f^n) = \left(\begin{array}{ccc} n+1 & n & -n \\ 0 & 1 & 0 \\ n & n & 1-n \end{array}\right)$$

Exercice 5 : [énoncé]

a) \mathcal{B}' est libre et formée de trois vecteurs en dimension 3, c'est une base de E. $f(\varepsilon_1) = \varepsilon_1, f(\varepsilon_2) = 2\varepsilon_2, f(\varepsilon_3) = 3\varepsilon_3$ donc D = diag(1,2,3).

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$

c) Par formule de changement base

$$A = PDP^{-1}$$

d) Puisqu'il est facile de calculer D^n

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} + 2^{n} \begin{pmatrix} -1 & -1 & -2 \\ 0 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix} + 3^{n} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercice 6 : [énoncé]

a) En recherchant des vecteurs tels que f(x) = x, f(x) = 2x et f(x) = 3x on observe que $\varepsilon_1 = (-1, 1, 2)$, $\varepsilon_2 = (0, 1, 1)$ et $\varepsilon_3 = (1, 1, 1)$ conviennent. De plus ces trois vecteurs forment une famille libre et donc une base de \mathbb{R}^3 .

$$P = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$

c) Par changement base

$$A = PDP^{-1}$$

d) Sachant calculer D^n on obtient

$$A^{n} = \begin{pmatrix} 3^{n} & 1 - 3^{n} & -1 + 3^{n} \\ -2^{n} + 3^{n} & -1 + 3 \cdot 2^{n} - 3^{n} & 1 - 2 \cdot 2^{n} + 3^{n} \\ -2^{n} + 3^{n} & -2 + 3 \cdot 2^{n} - 3^{n} & 2 - 2 \cdot 2^{n} + 3^{n} \end{pmatrix}$$

qu'on peut encore écrire

$$A^{n} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{pmatrix} + 2^{n} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 3 & -2 \\ -1 & 3 & -2 \end{pmatrix} + 3^{n} \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Exercice 7 : [énoncé]

- a) En résolvant les équations : f(u) = 0, f(u) = u et f(u) = 2u on trouve que $\varepsilon_1 = e_1 + e_2 + e_3$, $\varepsilon_2 = e_2 e_3$ et $\varepsilon_3 = e_1 + e_3$ sont des vecteurs tels que $f(\varepsilon_1) = 0$, $f(\varepsilon_2) = \varepsilon_2$, $f(\varepsilon_3) = 2\varepsilon_3$.
- On vérifie aisément que la famille $\mathcal C$ est libre et c'est donc une base de E, celle-ci convient.
- b) On a

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}, P^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$

c) Par changement de base

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 2^{n+1} & -2^{n} & -2^{n} \\ 1 & 0 & -1 \\ 2^{n+1} - 1 & -2^{n} & 1 - 2^{n} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix} + 2^{n} \begin{pmatrix} 2 & -1 & -1 \\ 0 & 0 & 0 \\ 2 & -1 & -1 \end{pmatrix}$$

d) Posons $X_n = {}^t (x_n \ y_n \ z_n)$. On observe $X_{n+1} = AX_n$. Par récurrence $X_n = A^n X_0$.

Avec $X_0 = {}^t \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ on obtient

$$\begin{cases} x_n = 2^{n+1} \\ y_n = 1 \\ z_n = 2^{n+1} - 1 \end{cases}$$

Exercice 8 : [énoncé]

- a) P est la matrice de l'application Id_E dans les bases B au départ et b à l'arrivée. La relation $x=\mathrm{Id}_E(x)$ donne matriciellement v=PV.
- b) La relation $f = \operatorname{Id}_E^{-1} \circ f \circ \operatorname{Id}_E$ donne matriciellement $M = P^{-1}mP$.
- c) Dans une base de vecteurs propres, la matrice de f est diagonale et ses puissances sont alors faciles à calculer. Par changement de base, on en déduit m^n .