الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2011

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضــوع الأول

التمرين الأول: (04 نقاط)

نعتبر في مجموعة الأعداد المركبة $\mathbb C$ المعادلة: (E) المعادلة: $z^2-2\sqrt{3}z+4=0$

لمعادلة (E)، ثم اكتب حلولها على الشكل المثلثي.

- الترتيب: المعلم المتعامد و المتجانس $(O;\overline{u},\overline{v})$ نعتبر النقاط C ، B ، A التي لاحقاتها على C الترتيب: C ، C ، C الترتيب: C ، C الترتيب: C ، C ، C الترتيب: C ، C التي لاحقاتها على الترتيب: C ، C
 - أ) اكتب L على الشكل الأسي، الماد L
- ب) أثبت أن: $(z_A z_B = L(z_C z_B))$ ثم استنتج أن A صورة C بتحويل نقطي يطلب تعيينه وتحديد عناصره المميزة.

التمرين الثاني: (06 نقاط)

 (C_f) دالة عددية معرفة على $[0;+\infty[$ كما يلي: $\frac{a+b\ln 2x}{4x^2}$ حيث a و a عددان حقيقيان و a دالة عددية معرفة على a المنحنى الممثل لها في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(0;\bar{i},\bar{j})$

رم عين a و a بحيث يكون المماس في النقطة $A\left(\frac{1}{2};1\right)$ للمنحنى $A\left(\frac{1}{2};1\right)$ موازيا لحامل محور الفواصل. a الدالة العددية المعرفة على a b و a المنحنى الممثل لها في a الدالة العددية المعرفة على a a المستوى المنسوب إلى المعلم السابق.

- اً) احسب $\lim_{x \to \infty} g(x)$ و $\lim_{x \to \infty} g(x)$ فسر النتيجتين هندسيا.
 - ب) ادرس اتجاه تغير الدالة g ثم شكّل جدول تغيراتها.
 - g(x) = 0 المعادلة g(x) = 0 ج
 - $\cdot (C_g)$ انشئ (د)
- h'(x) الدالة العددية المعرفة على المجال $g(x) = \frac{1 + \ln 2x}{2x}$ على المجال $h(x) = \frac{1 + \ln 2x}{2x}$ الدالة العددية المعرفة على المجال $g(x) = \frac{1}{4x^2} + \frac{\ln 2x}{2x^2}$ ب) تحقّق أن: $g(x) = \frac{1}{4x^2} + \frac{\ln 2x}{2x^2}$ ثم استنج دالة أصلية للدالة $g(x) = \frac{1}{4x^2} + \frac{\ln 2x}{2x^2}$

التمرين الثالث: (05 نقاط)

 $u_n = \frac{(n+1)^2}{n(n+2)}$: كما يلي: \mathbb{N}^* كما المتتالية العددية المعرفة على (u_n)

 (u_n) ثم بیّن أنها متقاربة ، احسب نهایة (u_n) ثم بیّن أنها متقاربة ، احسب نهایة

 $p_n = u_1 \times u_2 \times ... \times u_n$ ليكن الجداء p_n المعرف كما يلي: $p_n = u_1 \times u_2 \times ... \times u_n$

. $p_n = \frac{2n+2}{n+2}$ فإن: أثبت بالتراجع أنه من أجل كل عدد طبيعي غير معدوم n

لمتتالية العددية المعرفة على \mathbb{N}^* كما يلي: $v_n = \ln u_n$ دالة اللوغاريتم النيبيري (v_n) /4 عبر بدلالة S_n عبر بدلالة S_n عن S_n حيث: $S_n = v_1 + v_2 + \dots + v_n$ غير بدلالة S_n عن S_n

التمرين الرابع: (05 نقاط) المحمد (0 من الماهندا و عادندا والمدال المعمد والمدال

أجب بصحيح أو خطأ مع التبرير في كل حالة من الحالات الآتية: = ١٠٤٥ مع = ١٠٤٥ المسابقة

/1 المعادلة: 40 = 41 + 14 لا تقبل حلو لا في مجموعة الأعداد الصحيحة الله 21x + 14y = 40

2/ في نظام التعداد ذي الأساس 7 يكون: 5413 = 5421 + 1562

3/ باقى القسمة الإقليدية للعدد: 3²⁰¹¹ + 3 + 3 + 3 + 3 على 7 هو: 6

 $(O; \vec{i}, \vec{j}, \vec{k})$ الفضاء منسوب إلى المعلم المتعامد والمتجانس ($(O; \vec{i}, \vec{j}, \vec{k})$

A(2;1;-1) الذي يشمل النقطة (ρ) الذي يشمل النقطة (zx+y-z+1=0) الذي يشمل النقطة (z,1;-1) الذي يشمل النقطة (z,1;-1;1) و (z,1;1;1) شعاع توجيهه لا يشتركان في أية نقطة.

x-y+z=0 هي: (Q) الذي يشمل مبدأ المعلم Q ويوازي المستوي (Q) هي:

التمرين الأول: (04.5 نقطة)

الفضاء منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر النقط $C \cdot B \cdot A$ و حيث:

C(2;8;-4) $\overrightarrow{CD}(1;-3;7)$ $\overrightarrow{BD}(0;7;3)$ $\overrightarrow{AD}(1;5;2)$

1/ بيّن أن النقط D·B·A تعيّن مستويا.

2/ بيّن أن المستقيم (CD) يعامد المستوي (ABD)

(AB) على المستقيم (B) على المستقيم (B) على المستقيم (AB)

أ) بيّن أن المستقيم (AB) يعامد المستوي (CDI)

ب) عيّن معادلة للمستوي (CDI) واكتب تمثيلا وسيطيا للمستقيم (AB)

ج) استنتج إحداثيات النقطة I

4/ احسب الأطوال AB ، CD ، DI واستنتج حجم رباعي الوجوه ABCD

(مساحة رباعي الوجوه = $\frac{1}{3}$ مساحة القاعدة imes الارتفاع)

التمرين الثاني: (04 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ المستوي منسوب إلى المعلم المتعامد والمتجانس

العدد المركب المعرف كما يلي: $L=\frac{-4\sqrt{2}+i\sqrt{2}}{5+3i}$. لاعدد المركب المعرف كما يلي العدد المركب المعرف كما يلي المعرف كما يلي العدد المركب المركب

1/1 أ) اكتب L على الشكل الجبري ثم على الشكل الأسي.

بين أن: $(-4\sqrt{2}+i\sqrt{2})^{12}+(5+3i)^{12}$: ثم احسب: $(-4\sqrt{2}+i\sqrt{2})^{12}+(5+3i)^{12}$: ثم احسب:

ج) n عدد طبیعی فردی و p عدد طبیعی زوجی أثبت أن: $L^{4n} + L^{4p} = 0$.

النقطتان A و B لاحقتاهما على الترتيب: $z_A = 5 + 3i$ و $z_A = 5 + 3i$ النقطة z_A عين اللاحقة z_A للنقطة (أ A صورة النقطة A بالتشابه المباشر الذي مركزه النقطة B ونسبته $\sqrt{2}$ وزاويته A'

. ABA' عين z_G لاحقة النقطة G مركز ثقل المثلث z_G

التمرين الثالث: (07.5 نقطة)

أ) f الدّالة العددية المعرّفة على مجموعة الأعداد الحقيقية $\mathbb R$ كما يلي:

$$f(x) = 3 - \frac{4}{e^x + 1}$$

، $(O;\vec{i}\,,\vec{j}\,)$ سنجناها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)

1- ادرس تغيرات الدّالة f.

 \cdot (C_f) عيّن المستقيمات المقاربة للمنحنى -2

. عندها، (C_f) عندها، عند أن للمنحنى (C_f) عندها، ω عندها في المنحنى (C_f) عندها،

g(x) = f(x) - x كما يلي: g(x) = f(x) - x كما يلي: g(x) = f(x) - x

أ- ادرس تغيرات الدّالة g.

 $2.7 < \alpha < 2.8$: بيّن أن المعادلة g(x) = 0 تقبل حلا وحيدا α حيث

. f(x)=0 أ- حل في \mathbb{R} المعادلة: 0- 5

y=x ارسم المماس و المستقيم (Δ) الذي معادلته: y=x

 $\cdot 1 \leqslant U_n < \alpha$: فإن الله من أجل كلّ عدد طبيعي n فإن -2

. بيّن أنّ المتتالية (U_n) متز ايدة تماما.

 $\lim_{n\to\infty} U_n = \alpha$: استنتج أن (U_n) متقاربة و بيّن أنّ -4

التمرين الرابع: (04 نقاط)

 $A_n = 2^n + 3^n + 4^n + 5^n + 6^n$ من أجل كل عدد طبيعي n نضع من أجل كل عدد طبيعي

 $A_3 \equiv 6[7]$ تحقّق أن: [7] = 4 ثم بيّن أن: $A_3 \equiv 6[7]$

. 2) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية لكل من العددين "2 و "3 على 7.

3) بيّن أنه إذا كان n فرديا فإن A_n+1 يقبل القسمة على 7 واستنتج باقي القسمة الإقليدية للعدد A_{2011}

 $^{\circ}$ ما هو باقى القسمة الإقليدية للعدد $^{\circ}$ على 4

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2011

المادة : رياضيات الشعبة: تقني رياضي

	العلام	/ 1 km	محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	لموضوع
		الموضوع الأول	
		التمرين الأول: (04 نقاط)	بكل
	0,25×2	$z_2 = \sqrt{3} + i$, $z_1 = \sqrt{3} - i$: (E) alcohological part (E) alcohological part (E)	سي للعدد
	0,5×2	$z_2 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ $z_1 = 2\left[\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})\right]$	سي سدد برکب
	0,3 . 2	$\begin{bmatrix} 2 & 2 & 3 & 6 \\ 6 & 6 & 6 \end{bmatrix}$	وران
	0,5	$L=e^{i\frac{4\pi}{3}} (1)$	
04		ب) إثبات أن $(z_C - z_B) = L(z_C - z_B)$ ومنه A صورة C بالدوران الذي	
	0,25×3	مركزه النقطة B ذات اللاحقة $I+i$ وقيس زاويته B	
	0.5	ABC جيث ABC مثلث متقايس الساقين $AB = BC$ مساحته ABC	
	0,5		
	0,75	$[AC] \frac{1}{2} S = \frac{1}{2} AC \times BH = \sqrt{3}ua$	
	0.5 × 2	التمرين الثاني: (06 نقاط)	
	0,5×2	$b=2$: غب $f'(\frac{1}{2})=0$ ثم من $a=1$ غب $f(\frac{1}{2})=1$ نجد /1	راسة الدالة
	0,25+0.5	$\lim_{x \to \infty} g(x) = -\infty \lim_{x \to \infty} g(x) = 0 (1/2)$	لوغارتمية
- 1	0.25×2	(C_f) و (d_2) و (d_2) عستقیمان مقاربان لـ $y = 0$: (d_1)	دو ال الأصلية
	0,5+0.25	$0 - \frac{1}{2} - +\infty$ وإشارته $g'(x) = \frac{-\ln 2x}{x^3}$ (ب)	رسي
06	0,25	$\left[\frac{1}{2};+\infty\right[$ و متزایدهٔ تماما علی $\left[0;\frac{1}{2}\right]$ و متزایدهٔ تماما علی $\left[0;\frac{1}{2}\right]$	
	0,25		
	5,20	$x \mid 0 \frac{1}{2} +\infty$ جدول التغيرات:	
		g'(x) + -	
		g(x)	
	0,5	$x = \frac{\sqrt{e}}{2}$ تكافئ $g(x) = 0$ (ج	
	0,5	$x = \frac{\sqrt{e}}{2e}$ تكافئ $g(x) = 0$ (ج (C_R) إنشاء (C_R)	
	0,5	$h'(x) = -\frac{\ln 2x}{2x^2} (\frac{1}{3})$	
	0,75+0.25	$G(x) = -\frac{3 + 2 \ln 2x}{4x}$ $g(x) = \frac{1}{4x^2} + \frac{\ln 2x}{2x^2}$ $(x) = \frac{1}{4x^2} + \frac{\ln 2x}{2x^2}$	

نة	العلاه	تابع الإجابة النموذجية المادة: رياضيات الشعبة: تقني رياه	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	محاور الموضوع
		التمرين الثالث: (05 نقاط)	اتجاه تغير متتالية
	0.5×2	$u_n > 1$ ' $u_n = 1 + \frac{1}{n(n+2)}$: $n \in \mathbb{N}$ ' من أجل كل /1	البرهان
	1	\dot{y}	بالنراجع
05		\mathbb{N}^* اجل $x>0$ ومنه (u_n) متناقصة تماما على	نهایهٔ منتالیهٔ
	0.5×2	$\lim_{x\to +\infty} u_n = 1$ ، متناقصة تماما ومحدودة من الأسفل فهي متقاربة ، (u_n)	
		$p_n = \frac{2n+2}{n+2} : it البر هان بالتراجع أن: 2/3$	
	0.25	$p_1 = u_1 = \frac{4}{3}$ ، $n = 1$: من أجل	
	0.75	نفرض $p_{n+1} = p_n \times u_{n+1} = \frac{2n+4}{n+3}$: نفرض $p_n = \frac{2n+2}{n+2}$ نفرض	
		$p_n = \frac{2n+2}{n+2}$: فإن فإن فإن غير معدوم	
	0.5×2	$\lim_{n \to +\infty} s_n = \ln 2 \cdot s_n = \ln p_n /4$	
		التمرين الرابع: (05 نقاط)	
	1	1/ صحيح لأن: PGCD(21;14) = 7 و 7 لا يقسم 40	
	1	2/ خطأ لأن: 5313 = 3421 + 1562	التعداد الموافقة
05	0.5×3	$3^{6k+\alpha} \equiv 3^{\alpha} [7]$ و $1+3+3^2+ +3^{2011} = \frac{3^{2012}-1}{2}$ خطأ لأن:	القواسم
		$\frac{3^{6k+2}-1}{2} = 4[7]$ ومنه $\alpha \in \{0,1,2,3,4,5\}$	هندسة فضائية
	1	4/ أ) صحيح لأن: (n(2;1;-1) شعاع ناظمي لـ (P) و ت شعاع توجيه (d) متعامدان	
	0.5	$(P)\cap(d)=\emptyset$ اذن $A\in(d)$ و (P) و (P) و (P) اذن $A\in(d)$ و عليه (P)	
	0.5	ب) خطأ لأن: معادلة (Q) هي: $0 = x + y - z = 0$ ملحظة: في كل سؤال تمنح 0.25 للاختيار الصحيح والباقي للتبرير.	
			1

الموضوع الثاني التحرين الأول: (0.25×3	مة	العلا	تابع الإجابة النموذجية المادة: رياضيات الشعبة: تقني رياه	
الموضوع الثاني (1.5 من 1.5 م	المجموع	مجزأة	عناصر الإجابة	ناور
0.25×3			الموضوع الثاني	يصوح
0.25×3			التمرين الأول: (04.5 نقطة)	ات
1 (ABD) salaz (CD) $\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$ (\frac		0,25×3	و \overline{BD} غير متوازيين فالنقاط D ، B ، A تعين مستويا \overline{BD} عير متوازيين فالنقاط D ، D	اء
4.5 (CDI) sale (AB) (AB) (aB) (aB) sale (CI) 9 (AB) (ab) sale (CD) (1/3 kg, ab) (CD) (1/3 kg, ab) (CD) (1/3 kg, ab) (CD) (1/3 kg, ab) (CD) (CDI) (CDI		1		
4.5 0.5×2 $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ (AB) $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ (AB) $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ (AB) $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ (AB) $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ (AB) $\lambda \in \mathbb{R}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ y = -2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 + \lambda \\ x = 2\lambda \end{cases}$ $\begin{cases} x = 2 $		0.5		بيطي
$I\left(\frac{1}{6}; \frac{11}{3}; \frac{17}{6}\right) (\Rightarrow$ 0.25×3 $I\left(\frac{1}{6}; \frac{11}{3}; \frac{17}{6}\right) (\Rightarrow$ 0.5×2 $L = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = e^{i\frac{3x}{4}} (\frac{1}{1})$ 0.5×2 0.5×2 0.5×2 0.75 0	4.5	0,5×2	ب) $(x=2+\lambda)$ ناظم للمستوي $(CD1)$ و $(CD1)$ و $\overline{AB}(1;-2;-1)$ ناظم للمستوي $(CD1)$ و $(CD1)$ و $\overline{AB}(1;-2;-1)$ التمثيل الوسيطي (AB) التمثيل الوسيطي (AB) التمثيل الوسيطي (AB) التمثيل الوسيطي السيطي السيط	4
$AB = \sqrt{6} \cdot CD = \sqrt{59} \cdot DI = \frac{\sqrt{50}}{6} \cdot \sqrt{4}$ (billio): $(1 - \sqrt{5}) \cdot (1 - $		0,5		
$L = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = e^{i\frac{3x}{4}} (i/1) (i/2) (i/2$		0.25×3	$AB = \sqrt{6}$ ' $CD = \sqrt{59}$ ' $DI = \frac{\sqrt{354}}{6}$ /4	
$L = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = e^{i\frac{2\pi}{4}} (i/1) (i/2) (i/$			التمرين الثاني: (04 نقاط)	
$(-4\sqrt{2} + i\sqrt{2})^{12} + (5+3i)^{12} = 0$ و $L^{12} + 1 = 0$ منه $L^{12} = -1$ لبه المنتق و إشارته: $C^{4n} + L^{4p} = (-1)^n + (-1)^p = 0$ (ج. $C^{4n} $		0.5×2	$L = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = e^{i\frac{3\pi}{4}} (1/1)$	ئل ئىي،
$L^{4n} + L^{4p} = (-1)^n + (-1)^p = 0$ (ج 0.75 $z_A = -1 - 9i$ (أ/2) 0.5 $z_G = 3 - 3i$ (ب $\frac{lim}{x \to +\infty} f(x) = 3$; $\frac{lim}{x \to -\infty} f(x) = -1$ (1 - أ 0.25×2 $f'(x) = \frac{4e^x}{(e^x + 1)^2} > 0$: المشتق و إشارته : 0.25×2	04	0.5×2	$(-4\sqrt{2}+i\sqrt{2})^{12}+(5+3i)^{12}=0$ ومنه $L^{12}+1=0$ ومنه $L^{12}=-1$	
$z_{A'} = -1 - 9i$ (أ/2) $z_{G} = 3 - 3i$ (ب $\frac{1 - 1}{1 - 1} \frac{1}{1 - 1} \frac{1}{1 - 1}$ 0.25×2		0.75		
$z_{G} = 3-3i$ (ب $\frac{1}{1}$ (0.75		
0.25×2		0.5	$z_G = 3-3i$ (\hookrightarrow	
$f'(x) = \frac{4e^x}{(e^x + 1)^2} > 0 : \text{distribution}$			التمرين الثالث: (07.5 نقطة)	
$f'(x) = \frac{4e^x}{(e^x + 1)^2} > 0$: ما المشتق و إشارته $f'(x) = \frac{4e^x}{(e^x + 1)^2}$		0.25×2	$\lim_{x \to +\infty} f(x) = 3 ; \lim_{x \to -\infty} f(x) = -1 (1 - 1)$	
7.5 x			$f'(x) = \frac{4e^x}{1} > 0$: $0 = \frac{4e^x}{1}$	
			r	

f(x)

0.25×2

y=3, y=-1: معادلتاهما المقاربان المقاربان معادلتاهما - (2

لامة		عناصر الإجابة	محاور
المجموع	مجزأة		لموضوع
	0.5	$+$ 0 - $=$ $\frac{4e^{x}(1-e^{x})}{(e^{x}+1)^{3}}$ (3)	^x) (3 الدوال
	0.25	$\omega(0,1)$ نقطة الإنعطاف	العددية
	0.25	y = x + 1 : nalula il nalula nalul	المتتاليات
	0.25×2	$\lim_{x\to +\infty} g(x) = -\infty$; $\lim_{x\to -\infty} g(x) = +\infty$: g أ- تغيرات (4	
	0.25	$\frac{x - \infty}{g'(x)} - 0 + \infty$ المشتق : $g'(x) = -\left(\frac{e^x - 1}{e^x + 1}\right)^2$: المشتق	
	0.25	$g(x)$ $+\infty$ جدول التغيرات $-\infty$	
	0.25	$g(2,7) \simeq 0,048$ ، $[2,7;2,8]$ على $g(2,7) \simeq 0,048$ هستمرة ومتناقصة تماما على	
	0.25×2	$g(\alpha) = 0$ حسب مبر هنة القيم المتوسطة يوجد α وحيد حيث $g(2,8) = -0,029$	
		2,7 < α < 2,8 9	
	0.25	$x = -\ln 3$ تکافئ $f(x) = 0$ أ- (5	
	0.75	ب- رسم C و المنصف الأول والمماس.	
	0.5	$U_2 \cdot U_1 \cdot U_0 : صثیل -1 (ب$	
		$1\leqslant U_{_{n}} اثبات أن0 - 0 -$	
	0.75	$f(1) \le f(U_n) < f(a)$ نفرض $\alpha > 0$ و α متزاید تماما ومنه	
		n ومنه $\alpha < U_n < \alpha$ ومنه $\alpha < U_n < \alpha$ ومنه $\alpha < U_n < \alpha$ عدد طبيعي 0	
	0.25	$u_{n+1} - u_n = f(u_n) - u_n = g(u_n) > 0$: and it is a similar of U_n and U_n are a similar of U_n .	
	0.25	$1 \leqslant U_{\pi} < \alpha$ لأن	
	0.25×2	$\lim_{n\to +\infty} U_n = \alpha$ متزايدة تماما ومحدودة من الأعلى فهي متقاربة و $U_n = \alpha$	
		التمرين الرابع: (04 نقاط)	
	0.25	4 = -3[7](1	
	0.5	$A_3 \equiv 6[7]$ ومنه $A_3 \equiv -1[7]$ أي $A_3 \equiv 2^3 + 3^3 + (-3)^3 + (-2)^3 + (-1)^3[7]$	الموافقات في Z
04	0.75	$2^{3k+2} \equiv 4[7] \cdot 2^{3k+1} \equiv 2[7] \cdot 2^{3k} \equiv 1[7]$ (2	
04	0.75	$3^{6k+5} \equiv 5[7] \cdot 3^{6k+4} \equiv 4[7] \cdot 3^{6k+3} \equiv 6[7] \cdot 3^{6k+2} \equiv 2[7] \cdot 3^{6k+1} \equiv 3[7] \cdot 3^{6k} \equiv 1[7]$	
	0.75	$A_n \equiv -1[7]$: إذا كان n فرديا فإن $A_n \equiv 2^n + 3^n + (-3)^n + (-2)^n + (-1)^n [7](3)$	
	0.25	ومنه $A_{2011} = 6[7]$ ، 7 منه $A_{2011} = 6[7]$ الباقي هو	
	0.75	$A_{1432} \equiv 6[7]$ ومنه $A_{1432} \equiv 2 \times 2^{3 \times 477 + 1} + 2 \times 3^{6 \times 238 + 4} + 1[7]$ (4	