Área personal ► Mis cursos ► InfoC++ ► Clase 11 ► Guía 11 (NON STABLE)

Comenzado el viernes, 26 de octubre de 2018, 11:23							
Estado	Estado Finalizado						
Finalizado en	lunes, 12 de noviembre de 2018, 21:16						
Tiempo empleado	17 días 9 horas						
Calificación	10,00 de 10,00 (100 %)						

Guía 11 (NON STABLE)

http://lev2.efn.uncor.edu/mod/guiz/review.php?a...

Complete el cuerpo de la función entero_validado para que solicite un numero entero

Correcta

Puntúa 1,00 sobre 1,00

Complete el cuerpo de la función entero_validado para que solicite un número entero por teclado y valide que sea mayor que cero y menor o igual que la constante global N.

La función debe devolver un número entero ingresado por teclado que se encuentre en el rango válido.

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
int entero_validado();
7
8
     int main()
9 ▼
    {
         float A[N];
10
         int n;
11
12
13
         n = entero_validado();
14
         for(int i=0; i<n; i++ )</pre>
15
16 v
17
             cin >> A[i];
         }
18
19
20
21
         for(int i=0; i<n; i++ )</pre>
22 •
23
              cout << A[i];</pre>
             if(i!=n-1)
24
25
                  cout << ", ";
26
27
              }
28
              else
29
                  cout << ")";
30
31
32
         }
33
34
35
    int entero_validado()
36 ▼
37
         //complete el cuerpo de la funcion
38
         int enterov;
39
         do
40
41
                cin>>enterov;
42
43
         while(enterov<1||enterov>N);
         return enterov;
44
45
46
47
```

Æ)	Input	Expected	http://lev2.efn.uncor.edu/mod/quiz/review.php?a.
	✓	-1	(4.123, -132.4,	6.3)
	·	-1		
		-1		
		0		
		0		
		0		
		0		
		0		
		0		
		11		
		11		
		11		
		11		
		11		
		3		
		4.123		
		-132.4		
		6.3		
		0.0		
	4	0	(6.123, -234.4,	87.123, -152.3, 987.12)
	,	0		
		Θ		
		0		
		5		
		6.123		
		-234.4		
		87.123		
		-152.3		
		987.12		
	√	0	(64.12)	
		0		
		0		
		0		
		0		
		0		
		0		
		0		
		0		
		0		
		0		
		11		
		11		
		11		
		11		
		11		
		11		
		11		
		11		
		1		
		64.12		
				12/11/18 21.2

Guía 11 (NON STABLE)	Input Expected http://lev2.efn.u						n.unco	.uncor.edu/mod/quiz/review.php?a			
				24 E	4F 6	F6 7	67.7	70.0	90	00.7	76
✓	0	(12.3,	23.4,	34.5,	45.6,	56.7,	67.7,	70.9,	09,	90.7,	70.
	0										
	0 0										
	0										
	0										
	0										
	11										
	11										
	11										
	11										
	11										
	11										
	11										
	11										
	11										
	10										
	12.3										
	23.4										
	34.5										
	45.6										
	56.7										
	67.7										
	78.9										
	89.0										
	98.7										
	76.1										

Todas las pruebas superadas. 🗸

Question author's solution:

```
Guía 11 (NON STABLE)#include <iostream>
                      using namespace std;
                      const int N = 10;
                      int entero_validado();
                      int main()
                      {
                          float A[N];
                          int n;
                          n = entero_validado();
                          for(int i=0; i<n; i++)
                          {
                              cout << "Ingrese el elemento "<< i << " del arreglo: "<<e</pre>
                      ndl;
                              cin >> A[i];
                          }
                          cout << "El arreglo es: (";</pre>
                          for(int i=0; i<n; i++)
                              cout << A[i];
                              if(i!=n-1)
                                   cout << ", ";
                              }
                              else
                              {
                                  cout << ")";
                              }
                          }
                      }
                      int entero_validado()
                      { int n;
                          cout << "Ingrese n: "<< endl;</pre>
                          cin >> n;
                          while(n<1 \mid \mid n>N)
                              cout << "Ingrese n: "<< endl;</pre>
                              cin >> n;
                          }
                          return n;
                      }
```

Correcta

Guía 11 (NON STABLE)
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Escriba la definición de una función de tipo entero, llamada entero_valido, que acepta

Correcta

Puntúa 1,00 sobre 1,00

Escriba la definición de una función de tipo entero, lamada entero valido, que acepta un entero como parámetro por valor llamado N. La función debe solicitar que se ingrese por teclado un valor entero, luego debe comprobar que el valor ingresado esté en el rango [1,N). En caso de que el valor ingresado no cumpla con la condición se debe volver a solicitar, tantas veces como sea necesario.

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
1
    int entero_valido(int N)
2 🔻
        //complete el cuerpo de la funcion
3
        //solicita que se ingrese por teclado un valor entero, luego com
4
5 🔻
        //ingresado esté en el rango [1,N)
6
        int enterov;
7
        do
8 •
9
               cin>>enterov;
10
11
        while(enterov<1||enterov>=N);
12
        return enterov;
13
```

Test

Test

```
int x;
x = entero_valido(5);
cout << endl << "El valor es: " << x;</pre>
```

```
int x;
x = entero_valido(100);
cout << endl << "El valor es: " << x;</pre>
```

Guía 11 (NON STABLE)

Test

```
✓ int x, y, z, w;

  x = entero_valido(100);
  y = entero_valido(100);
  z = entero_valido(100);
  w = entero_valido(100);
```

```
Test
```

```
int x, y, z, w;
x = entero_valido(10);
y = entero_valido(10);
z = entero_valido(10);
w = entero_valido(10);
cout << endl << "Los valeres son: " << x <<", "<<y<<", "<<z<<",</pre>
```

Guía 11 (NON STABL Question author's solution:http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

```
int entero_valido(int N)
{
    int n;
    do
    {
        cout << "Ingrese n:" << endl;
        cin >> n;
    }while(n<1 || n>=N);
    return n;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Guía 11 (NON STABLE)

http://lev2.efn.uncor.edu/mod/guiz/review.php?a...

Complete el cuerpo de la función rellenar_arreglo para que rellene el arreglo "arr" con

"cant" elementos de tipo float ingresados por teclado.

Correcta

Puntúa 1,00 sobre 1,00

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
1
2
    using namespace std;
3
4
    const int N=10;
5
    void rellenar_arreglo(float [], int n);
6
7
8
    int main()
9 ▼
10
         float A[N];
11
         float M;
12
         do
13 ▼
         {
              //cout << "Ingrese M: "<<endl;</pre>
14
15
              cin >> M;
         }while(M<1 || M>N);
16
17
         rellenar_arreglo(A, M);
18
19
         cout << "El arreglo es: ";</pre>
20
         for(int i=0; i<M; i++)</pre>
21
22 •
              if(i!=M-1)
23
24
                  cout << A[i] << ", ";
25
26
              }
27
              else
28
29
                  cout << A[i];</pre>
30
31
         }
32
33
34
         return 0;
35
36
37
    void rellenar_arreglo(float arr[] , int cant)
38
39 ▼
         //Complete el cuerpo de la funcion
40
41
         for(int i=0;i<cant;i++)</pre>
42
43
                 cin>>arr[i];
44
45
       return;
46
```

Input Expected 12/11/18 21:20

Æ)	Input	Expected http://lev2.efn.uncor.edu/mod/quiz/review.p
	/	0	El arreglo es: 14.2, -14.3, 87.3
	,	0	
		0	
		0	
		0	
		0	
		0	
		0	
		11	
		11	
		11	
		12	
		100	
		14	
		12	
		11	
		3	
		14.2	
		-14.3	
		87.3	
	✓	0	El arreglo es: 65.12, -987.254, 89.1, 56.312
		0	
		0	
		-1	
		-1	
		-1	
		11	
		11	
		11	
		12	
		901	
		4	
		65.12	
		-987.254	
		89.1	
		56.312	
			N

7653.2 987.2

Guía 11 (NON STAE	BLE)	Input	Expected	http://lev2.efn.uncor.edu/mod/quiz/review.php?	'n.
-------------------	------	-------	----------	--	-----

E)	Input	Expected		http://lev2.efn.uncor.edu/mod/quiz/review.ph
/	0	El arreglo	es: 65	.2
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	11			
	11 11			
	11			
	11			
	11			
	11			
	11			
	1			
	65.2			

Todas las pruebas superadas. 🗸

Question author's solution:

```
Guía 11 (NON STABLE)#include <iostream>
                      using namespace std;
                      const int N=10;
                      void rellenar_arreglo(float [], int n);
                      int main()
                      {
                          float A[N];
                          int M;
                          do
                          {
                              cout << "Ingrese M: "<<endl;</pre>
                              cin >> M;
                          }while(M<1 || M>N);
                          rellenar_arreglo(A, M);
                          cout << endl << "El arreglo es: ";</pre>
                          for(int i=0; i<M; i++)</pre>
                          {
                              if(i!=M-1)
                              {
                                   cout << A[i] << ", ";
                              }
                              else
                              {
                                   cout << A[i];
                              }
                          }
                          return 0;
                      }
                      void rellenar_arreglo(float arr[] , int cant)
                          for(int i=0; i<cant; i++)</pre>
                          {
                              cout << "Ingrese el elemento ("<<i<"): "<<endl;</pre>
                              cin >> arr[i];
                          }
                      }
```

Correcta

Puntos para este envío: 1,00/1,00.

Guía 11 (NON STABLE)

http://lev2.efn.uncor.edu/mod/guiz/review.php?a...

Complete el cuerpo de la función rellenar_arreglo para que rellene el arreglo "arr" con

Correcta

Puntúa 1,00 sobre 1,00

"cant" elementos de tipo float ingresados por teclado. Cada elemento debe ser validado para garantizar de que sea mayor que cero, en caso de que se ingrese un valor que no cumpla con la condición volver a pedirlo tantas veces como sea necesario.

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
1
2
     using namespace std;
3
4
    const int N=10;
5
6
     void rellenar_arreglo(float [], int n);
7
8
    int main()
9 ▼
         float A[N];
10
         int M;
11
12
         do
13
14
              cout << "Ingrese M: "<<endl;</pre>
              cin >> M;
15
16
         }while(M<1 || M>N);
17
         rellenar_arreglo(A, M);
18
19
20
         cout << endl << "El arreglo es: ";</pre>
21
         for(int i=0; i<M; i++)</pre>
22
              if(i!=M-1)
23
24
                  cout << A[i] << ", ";</pre>
25
26
              else
27
28
                  cout << A[i];</pre>
29
30
              }
31
         }
32
33
34
         return 0;
35
36
37
38
     void rellenar_arreglo(float arr[] , int cant)
39
40
         //Complete el cuerpo de la funcion
41
         for(int i=0;i<cant;i++)</pre>
42
         {
43
                do
44
               {
45
                  cin>>arr[i];
46
47
               while(arr[i]<=0);</pre>
48
         }
                                                                           12/11/18 21:20
49
50
         return;
```

51

	Input	Expected
✓	0	El arreglo es: 14.2, 22.31, 87.3
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	11	
	11	
	11	
	12	
	100	
	14	
	12	
	11	
	3	
	14.2	
	-14.3	
	22.31	
	87.3	
√	0	El arreglo es: 65.12, 9874.12, 89.1, 56.312
	0	
	0	
	-1	
	-1	
	-1	
	11	
	11	
	11	
	12	
	901	
	4	
	65.12	
	-987.254	
	9874.12	
	89.1	
	0	
	0	
	0	
	-12.32	
	56.312	

Guía 11 (NON STAE	BLE)	Input	Ex	pected		http	://lev2.	efn.unc	or.edu/	mod/qu	ıiz/revie	ew.php?a
		√	0			o es:	65.12,	54.2.	24.1.	65.2.	43.2.	98.3.	 76
			0		u og _		,	J,	,	001-7	,	00.0,	. •
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			0										
			11										
			11										
			11										
			11										
			11										
			11										
			11										
			11										
			11										
			11										
			11 11										
			11										
			11										
			11										
			11										
			10										
			-123.23										
			0										
			0										
			0										
			65.12										
			54.2										
			24.1										
			-542.1 65.2										
			43.2										
			-543.12										
			98.3										
			7653.2										
			987.2										
			-765.2										
18 de 54			-65.4									12/1	1/18 21:20
			-123.2										

ıía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.edu/mod/quiz/review.php?
	654.12	
	987.1	
√	0	El arreglo es: 65.2
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	11	
	11	
	11	
	11	
	11	
	11	
	11	
	11	
	1	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	-12.3	

Todas las pruebas superadas. 🗸

65.2

Question author's solution:

```
using namespace std;
const int N=10;
void rellenar_arreglo(float [], int n);
int main()
{
    float A[N];
    int M;
    do
    {
        cout << "Ingrese M: "<<endl;</pre>
        cin >> M;
    }while(M<1 || M>N);
    rellenar_arreglo(A, M);
    cout << endl << "El arreglo es: ";</pre>
    for(int i=0; i<M; i++)</pre>
    {
        if(i!=M-1)
        {
             cout << A[i] << ", ";
        }
        else
        {
             cout << A[i];
        }
    }
    return 0;
}
void rellenar_arreglo(float arr[] , int cant)
    for(int i=0; i<cant; i++)</pre>
    {
        cout << "Ingrese el elemento ("<<i<"): "<<endl;</pre>
        cin >> arr[i];
        while(arr[i]<=0)
             cout << "Ingrese el elemento ("<<i<"): "<<endl;</pre>
             cin >> arr[i];
        }
    }
}
```

Correcta 12/11/18 21:20

Guía 11 (NON STABLE)

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Complete el cuerpo de la función rellenar_matriz para que rellene el arreglo "mát" con de "fil" filas y "col" columnas con elementos de tipo float ingresados por teclado.

Correcta

Puntúa 1,00 sobre 1,00

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
1
2
    #include <iomanip>
3
    using namespace std;
4
5
    const int N=10;
6
7
    void rellenar_matriz(float [N][N], int, int);
8
9
    int main()
10 ▼ {
11
         float A[N][N];
12
         int f, c;
13
         do
14
              cout << "Ingrese la cantidad de filas: "<<endl;</pre>
15
16
             cin >> f;
17
         }while(f<1 || f>N);
18
19
         do
20 •
         {
21
              cout << "Ingrese la cantidad de columnas: "<<endl;</pre>
22
              cin >> c;
23
         }while(c<1 || c>N);
24
         rellenar_matriz(A, f, c);
25
26
         cout << endl << "La matriz es: " << endl;</pre>
27
         for(int i=0; i<f; i++)</pre>
28
29 1
30
              for(int j=0; j<c; j++)</pre>
31
32
                  cout << setw(8) << A[i][j];</pre>
33
34
              cout << endl;</pre>
35
         }
36
37
38
         return 0;
39
40
41
42
    void rellenar_matriz(float mat[N][N] , int fil, int col)
43
44
         // complete el cuerpo de la función
45
         for(int i=0;i<fil;i++)</pre>
46
47
              for(int j=0;j<col;j++)</pre>
48
                  cout<<"Ingrese el elemento ("<<i<<","<<j<<"):"<<endl;</pre>
49
50
                  cin>>mat[i][j];
              }
51
                                                                          12/11/18 21:20
52
         }
```

53

return;

Input	Expected	Got
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de filas:	Ingres
11	Ingrese la cantidad de filas:	Ingres
11	Ingrese la cantidad de filas:	Ingres
11	Ingrese la cantidad de filas:	Ingres
12	Ingrese la cantidad de filas:	Ingres
100	Ingrese la cantidad de filas:	Ingres
14	Ingrese la cantidad de filas:	Ingres
12	Ingrese la cantidad de filas:	Ingres
11	Ingrese la cantidad de filas:	Ingres
3	Ingrese la cantidad de filas:	Ingres
0	Ingrese la cantidad de columnas:	Ingres
0	Ingrese la cantidad de columnas:	Ingres
11	Ingrese la cantidad de columnas:	Ingres
11	Ingrese la cantidad de columnas:	Ingres
4	Ingrese la cantidad de columnas:	Ingres
15.41	Ingrese el elemento (0,0):	Ingres
32.64	Ingrese el elemento (0,1):	Ingres
31.31	Ingrese el elemento (0,2):	Ingres
-38.95	Ingrese el elemento (0,3):	Ingres
-26.94	Ingrese el elemento (1,0):	Ingres
28.02	Ingrese el elemento (1,1):	Ingres
-10.93	Ingrese el elemento (1,2):	Ingres
25.96	Ingrese el elemento (1,3):	Ingres
-18.44	Ingrese el elemento (2,0):	Ingres
41.73	Ingrese el elemento (2,1):	Ingres
35.37	Ingrese el elemento (2,2):	Ingres
-27.22	Ingrese el elemento (2,3):	Ingres
	La matriz es:	La mat
	15.41 32.64 31.31 -38.95	15.
	-26.94 28.02 -10.93 25.96	-26.
	-18.44 41.73 35.37 -27.22	-18.

Guía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.edu/mod/qui	z/ zcyj ew.php?a
✓	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	-1	Ingrese la cantidad de filas:	Ingres
	-1	Ingrese la cantidad de filas:	Ingres
	-1	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	12	Ingrese la cantidad de filas:	Ingres
	901	Ingrese la cantidad de filas:	Ingres
	4	Ingrese la cantidad de filas:	Ingres
	Θ	Ingrese la cantidad de columnas:	Ingres
	0	Ingrese la cantidad de columnas:	Ingres
	0	Ingrese la cantidad de columnas:	Ingres
	5	Ingrese la cantidad de columnas:	Ingres
	13.92	Ingrese el elemento (0,0):	Ingres
	31.74	Ingrese el elemento (0,1):	Ingres
	34.92	Ingrese el elemento (0,2):	Ingres
	31.06	<pre>Ingrese el elemento (0,3):</pre>	Ingres
	47.08	Ingrese el elemento (0,4):	Ingres
	-22.53	<pre>Ingrese el elemento (1,0):</pre>	Ingres
	28.24	<pre>Ingrese el elemento (1,1):</pre>	Ingres
	-33.42	<pre>Ingrese el elemento (1,2):</pre>	Ingres
	-21.03	<pre>Ingrese el elemento (1,3):</pre>	Ingres
	-7.16	Ingrese el elemento (1,4):	Ingres
	47.08	Ingrese el elemento (2,0):	Ingres
	-19.75	Ingrese el elemento (2,1):	Ingres
	39.87	Ingrese el elemento (2,2):	Ingres
	33.63	Ingrese el elemento (2,3):	Ingres
	-19.76	(, ,	Ingres
	33.01	Ingrese el elemento (3,0):	Ingres
	-0.17	Ingrese el elemento (3,1):	Ingres
	-16.3	Ingrese el elemento (3,2):	Ingres
	-44.03	() ,	Ingres
	-31.46	Ingrese el elemento (3,4):	Ingres
		La matriz es:	La mat
		13.92 31.74 34.92 31.06 47.08	13.
		-22.53 28.24 -33.42 -21.03 -7.16	-22.
		47.08 -19.75 39.87 33.63 -19.76	47.(
		33.01 -0.17 -16.3 -44.03 -31.46	33.

Guía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.edu/mod/qui	z/ revi ew.php?a
✓	0	Ingrese la cantidad de filas:	Ingres
	Θ	Ingrese la cantidad de filas:	Ingres
	Θ	Ingrese la cantidad de filas:	Ingres
	Θ	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	Θ	Ingrese la cantidad de filas:	Ingres
	Θ	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	10	Ingrese la cantidad de filas:	Ingres
	3	Ingrese la cantidad de columnas:	Ingres
	4.06	Ingrese el elemento (0,0):	Ingres
	26.78	Ingrese el elemento (0,1):	Ingres
	-31.55 43.42	<pre>Ingrese el elemento (0,2): Ingrese el elemento (1,0):</pre>	Ingres
	37.92	Ingrese el elemento (1,0). Ingrese el elemento (1,1):	Ingres:
	4.47	Ingrese el elemento (1,1):	Ingres
	12.3	Ingrese el elemento (1,2):	Ingres
	48.59	Ingrese el elemento (2,1):	Ingres
	33.06	Ingrese el elemento (2,1):	Ingres
	4.19	Ingrese el elemento (3,0):	Ingres
	-3.63	Ingrese el elemento (3,1):	Ingres
	-24.4	Ingrese el elemento (3,2):	Ingres
	23.8	Ingrese el elemento (4,0):	Ingres
	-49.9	Ingrese el elemento (4,1):	Ingres
24 de 54	8.58	Ingrese el elemento (4,2):	1 12 /gl/16/18821:20
	-10.13	Ingrese el elemento (5,0):	Ingres

Guía 11 (NON STABLE)	Input	Expected	http://lev2.efn.uncor.edu/mod/qui	z/ revi ew.php?a
	39.66	Ingrese el elem	mento (5,1):	Ingres
	42.54	Ingrese el eler	mento (5,2):	Ingres
	-22.21	Ingrese el eler	mento (6,0):	Ingres
	-18.27	Ingrese el eler	mento (6,1):	Ingres
	5.34	Ingrese el eler	mento (6,2):	Ingres
	42.21	Ingrese el elem	mento (7,0):	Ingres
	-44.5	Ingrese el elem	mento (7,1):	Ingres
	-32.04	Ingrese el eler	mento (7,2):	Ingres
	-15.55	Ingrese el eler	mento (8,0):	Ingres
	9.27	Ingrese el eler	mento (8,1):	Ingres
	33.41	Ingrese el eler	mento (8,2):	Ingres
	38.71	Ingrese el eler	mento (9,0):	Ingres
	16.84	Ingrese el eler	mento (9,1):	Ingres
	35.17	Ingrese el eler	mento (9,2):	Ingres
		La matriz es:		La mat
		4.06 26.	78 -31.55	4.(
		43.42 37.9	92 4.47	43.
		12.3 48.5	59 33.06	12
		4.19 -3.0	63 -24.4	4.:
		23.8 -49	.9 8.58	23
		-10.13 39.0	66 42.54	-10.:
		-22.21 -18.2	27 5.34	-22.:
		42.21 -44	.5 -32.04	42.:
		-15.55 9.2	27 33.41	-15.
		38.71 16.8	84 35.17	38.

Guía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.ed	u/mod/quiz/ &yį ew.php?a
✓	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	0	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	11	Ingrese la cantidad de filas:	Ingres
	2	Ingrese la cantidad de filas:	Ingres
	6	Ingrese la cantidad de columnas:	Ingres
	26.06	<pre>Ingrese el elemento (0,0):</pre>	Ingres
	-9.41	<pre>Ingrese el elemento (0,1):</pre>	Ingres
	16.99	Ingrese el elemento (0,2):	Ingres
	-35.11	Ingrese el elemento (0,3):	Ingres
	37.35	Ingrese el elemento (0,4):	Ingres
	-0.64	Ingrese el elemento (0,5):	Ingres
	-21.19	Ingrese el elemento (1,0):	Ingres
	-34.6	<pre>Ingrese el elemento (1,1):</pre>	Ingres
	-8.73	Ingrese el elemento (1,2):	Ingres
	4.41	Ingrese el elemento (1,3):	Ingres
	27.79	Ingrese el elemento (1,4):	Ingres
	16.89	Ingrese el elemento (1,5):	Ingres
		La matriz es:	La mat
		26.06 -9.41 16.99 -35.11 37.39	
		-21.19 -34.6 -8.73 4.41 27.79	

Todas las pruebas superadas. 🗸

Question author's solution:

```
#include <iomanip>
using namespace std;
const int N=10;
void rellenar_matriz(float [N][N], int, int);
int main()
{
    float A[N][N];
    int f, c;
    do
    {
        cout << "Ingrese la cantidad de filas: "<<endl;</pre>
        cin >> f;
    }while(f<1 || f>N);
    do
    {
        cout << "Ingrese la cantidad de columnas: "<<endl;</pre>
        cin >> c;
    }while(c<1 || c>N);
    rellenar_matriz(A, f, c);
    cout << endl << "La matriz es: " << endl;</pre>
    for(int i=0; i<f; i++)
    {
        for(int j=0; j<c; j++)
        {
             cout << setw(8) << A[i][j];</pre>
        cout << endl;</pre>
    }
    return 0;
}
void rellenar_matriz(float mat[N][N] , int fil, int col)
{
    for(int i=0; i<fil; i++)</pre>
        for(int j=0; j<col; j++)</pre>
        {
             cout << "Ingrese el elemento ("<<i<", "<<j<<"): "<<en</pre>
dl;
             cin >> mat[i][j];
        }
    }
                                                                   12/11/18 21:20
}
```

Puntos para este envío: 1,00/1,00.

Guía 11 (NON STABLE)
Pregunta 6 STABLE)

Complete el cuerpo de la función todos_bisiestos que retorna true si todas las

Correcta

Puntúa 1,00 sobre 1,00

componentes de arreglo son números positivos que corresponden a años bisiesto o false en caso contrario.

Por ejemplo:

Input	Resultado
1904	Todos los anios en el arreglo son bisiestos
1908	
1912	
1916	
1920	
1924	
1928	
1932	
1936	
1940	
1904	No todos los anios en el arreglo son bisiestos
1908	
1912	
1916	
1920	
1924	
1928	
1932	
1936	
2018	

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
1
2
    using namespace std;
3
4
    const int N=10;
5
    bool es_bisiesto(int);
6
7
    bool todos_bisiestos(int[]);
8
9
    int main()
10
         int A[N];
11
12
         for(int i=0; i<N; i++)</pre>
13
14
             cin>>A[i];
15
         if (todos_bisiestos(A))
16
             cout<<"Todos los anios en el arreglo son bisiestos"<<endl;</pre>
17
18
        else
19
             cout<<"No todos los anios en el arreglo son bisiestos"<<end
20
                                                                      12/11/18 21:20
21
         return 0;
22
```

Guía 11 (NON STABLE	http://lev2.efn.uncor.edu/mod/quiz/review.php?	a

	Input	Expected	Got
/	1904	Todos los anios en el arreglo son bisiestos	Todos los
,	1908		
	1912		
	1916		
	1920		
	1924		
	1928		
	1932		
	1936		
	1940		

30 de 54 12/11/18 21:<mark>2</mark>0

1908 1912 1916 1920 1924 1938 2018 V 1904 1908 1912 1916 1920 1924 1928 2018 1932 1936 V 2002 1924 1928 2018 1932 1936 V 2002 1908 1912 1916 1920 1924 1928 2018 1932 1936	uía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.edu/mod/d	review.p
1912	✓	1904	No todos los anios en el arreglo son bisiestos	No todos
1916 1920 1924 1932 1936 2018 ✓ 1904		1908		
1920 1924 1928 1932 1936 2018 1904 1908 1912 1916 1920 1924 1928 2018 1932 1936 2002 No todos los anios en el arreglo son bisiestos No todos 1912 1916 1920 1924 1928 2018 1932 1936 2002 1908 1912 1916 1920 1924 1928 2018 1932 1936 1912 1916 1920 1924 1928 2018 1932 1936 1952 1956 1960 1964		1912		
1924 1928 1932 1936 2018 V 1904 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 2018 V 2002 No todos los anios en el arreglo son bisiestos No todos 1912 1936 1912 1916 1920 1924 1928 2018 1932 1936 V 1952 Todos los anios en el arreglo son bisiestos Todos los 1960 1964				
1928 1932 1936 2018 ✓ 1904 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos 1908 1919 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1936 ✓ 1952 1936 ✓ 1952 1956 1960 1964				
1932 1936 2018 ✓ 1904 1908 1912 1916 1920 1924 1932 2018 1912 1916 1920 1924 1998 1912 1916 1920 1924 1998 1912 1916 1920 1924 1938 ✓ 2002 1924 1928 2018 1932 1936 ✓ 1952 1956 1960 1964				
1936 2018 ✓ 1904 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 2082 1918 1920 1924 1928 2018 1932 1936 ✓ 1952 1956 1960 1964				
2018				
✓ 1904 No todos los anios en el arreglo son bisiestos No todos				
1908 1912 1916 1920 1924 1928 2018 1932 1936 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936 1928 2018 1932 1936 1955 1966 1960 1964		2018		
1912 1916 1920 1924 1928 2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1936 ✓ 1952 1956 1960 1964	│	1904	No todos los anios en el arreglo son bisiestos	No todos
1916 1920 1924 1928 2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1936 ✓ 1952 1956 1960 1964		1908		
1920 1924 1928 2018 1932 1936 ✓ 2002 1908 1912 1916 1920 1924 1928 2018 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1936 ✓ 1952 1956 1960 1964		1912		
1924 1928 2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1936 ✓ 1952 1956 1960 1964		1916		
1928 2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1936 ✓ 1952 1956 1960 1964		1920		
2018 1932 1936 ✓ 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1956 1960 1964 Todos los anios en el arreglo son bisiestos Todos los				
1932 1936 ✓ 2002 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 1956 1960 1964				
1936 ✓ 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1966 1960 1964				
✓ 2002 No todos los anios en el arreglo son bisiestos No todos 1908 1912 1916 1920 1924 1928 2018 1932 1936				
1908 1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964		1936		
1912 1916 1920 1924 1928 2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1960 1964	✓	2002	No todos los anios en el arreglo son bisiestos	No todos
1916 1920 1924 1928 2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964		1908		
1920 1924 1928 2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964		1912		
1924 1928 2018 1932 1936 ✓ 1952 1956 1960 1964 Todos los anios en el arreglo son bisiestos Todos los		1916		
1928 2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964		1920		
2018 1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964		1924		
1932 1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964		1928		
1936 ✓ 1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964				
1952 Todos los anios en el arreglo son bisiestos Todos los 1956 1960 1964				
1956 1960 1964		1936		
1956 1960 1964		1952	Todos los anios en el arreglo son bisiestos	Todos los
1960 1964			· · · · · · · · · · · · · · · · · · ·	
1964				

Guía 11 (NON STAB	LE)	Input	Expected	http://lev2.efn.uncor.edu/mod/que/review.p	hp?a

E)	Input	Expected http://lev2.efn.uncor.edu/mod/d	u ėz r eview.ph
✓	2052	Todos los anios en el arreglo son bisiestos	Todos los
	2056		
	2060		
	2064		
	2068		
	2072		
	2076		
	2080		
	2084		
	2088		
1	2005	No todos los anios en el arreglo son bisiestos	No todos
`	2009		
	2013		
	2017		
	2021		
	2025		
	2029		
	2033		
	2037		
	2041		
	2041		

Todas las pruebas superadas. 🗸

Question author's solution:

```
Guía 11 (NON STABLE)#include <iostream>
                     using namespace std;
                     const int N=10;
                     bool es_bisiesto(int);
                     bool todos_bisiestos(int[]);
                     int main()
                     {
                         int A[N];
                         for(int i=0; i<N; i++)</pre>
                             cin>>A[i];
                         if (todos_bisiestos(A))
                             cout<<"Todos los anios en el arreglo son bisiestos"<<endl</pre>
                         else
                             cout<<"No todos los anios en el arreglo son bisiestos"<<
                     endl;
                         return 0;
                     }
                     bool es_bisiesto(int anio)
                         return ((anio % 4) == 0) && (!((anio % 100) == 0) || ((anio %
                     400) == 0));
                     }
                     bool todos_bisiestos(int arr[])
                         for(int i=0; i<N; i++)</pre>
                             if (!es_bisiesto(arr[i]))
                                 return false;
                         return true;
                     }
```

Correcta

Puntos para este envío: 1,00/1,00.

Guía 11 (NON STABLE)

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Complete el cuerpo de la función ultimo_primo para que dado un arreglo como

Correcta

Puntúa 1,00 sobre 1,00

TComplete el cuerpo de la función ultimo_primo para que dado un arregio como la viste alguno) o argumento retorne la ultima posición en la que hay un número primo (si existe alguno) o -1 en caso contrario.

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
1
2
    using namespace std;
3
4
    const int N=10;
5
6
    bool es_primo(int);
7
    int ultimo_primo(int []);
8
9
    int main()
10 ▼
         int A[N];
11
12
         for(int i=0; i<N; i++)</pre>
13
14
             cin>>A[i];
15
16
         int ultimo_primo_indice = ultimo_primo(A);
17
         if (ultimo_primo_indice == -1)
             cout<<"No hay numeros primos en el arreglo"<<endl;</pre>
18
19
         else
             cout<<"El numero "<<A[ultimo primo indice]<<" es el ultimo n</pre>
20
21
22
         return 0;
23
24
25
    bool es_primo(int num)
26
27
         if (num<2)
28
             return false;
29
         for(int i=2; i < num; i++)</pre>
30
31
             if( num % i == 0 )
                  return false;
32
33
34
         return true;
35
36
37
    int ultimo_primo(int arr[])
38 •
39
         // complete el cuerpo de la función
40
         int f;
41
         f=-1;
         for(int i=0;i<N;i++)</pre>
42
43
44
               if(es_primo(arr[i]))
45 ▼
                  {
                     f=i;
46
47
                  }
48
                                                                        12/11/18 21:20
49
         return f;
```

50

	Input	Expected	Got
✓	1 2 3 4 5 6 7 8 9	El numero 7 es el ultimo numero primo del arreglo.	El n
✓	837 998 461 854 697 415 960 744 412 797	El numero 797 es el ultimo numero primo del arreglo.	El n
✓	810 267 415 317 7 958 590 5 836 541	El numero 541 es el ultimo numero primo del arreglo.	Eln
✓	290 316 940 842 149 637 375 715 907	El numero 907 es el ultimo numero primo del arreglo.	El n

Guía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.edu/mod/quiz/re	ev ey .php?
√	7	El numero 2 es el ultimo numero primo del arreglo.	El n
	2		
	4		
	6		
	8		
	10		
	12		
	14		
	18		
	20		
√	2	El numero 5 es el ultimo numero primo del arreglo.	El n
•	4	LI Hamero o es el alcimo hamero primo del arregio.	
	6		
	8		
	10		
	12		
	14		
	16		
	18		
	5		
	100	No. hour numerous surieurs on all annuals	No
✓	100	No hay numeros primos en el arreglo	No
	200		

Todas las pruebas superadas. 🗸

Question author's solution:

```
Guía 11 (NON STABLE)#include <iostream>
                     using namespace std;
                     const int N=10;
                     bool es_primo(int);
                     int ultimo_primo(int []);
                     int main()
                     {
                         int A[N];
                         for(int i=0; i<N; i++)</pre>
                             cin>>A[i];
                         int ultimo_primo_indice = ultimo_primo(A);
                         if (ultimo_primo_indice == -1)
                             cout<<"No hay numeros primos en el arreglo"<<endl;</pre>
                         else
                             cout<<"El numero "<<A[ultimo_primo_indice]<<" es el ultim</pre>
                     o numero primo del arreglo."<<endl;
                         return 0;
                     }
                     bool es_primo(int num)
                         if (num<2)
                             return false;
                         for(int i=2; i < num; i++)
                             if( num \% i == 0 )
                                  return false;
                         return true;
                     }
                     int ultimo_primo(int arr[])
                         for(int i=N-1; i>=0; i--)
                             if (es_primo(arr[i]))
                                  return i;
                         return -1;
                     }
```

Correcta

Puntos para este envío: 1,00/1,00.

Guía 11 (NON STABLE)

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Complete el cuerpo de la función ultimo_primo_matriz para que dada una matriz como

Correcta

Puntúa 1,00 sobre 1,00

Complete el cuerpo de la función ultimo_primo_matriz para que dada una matriz como argumento retorne la ultima posición (fila y columna) en la que hay un número primo (si existe alguno) o -1 en caso contrario (tanto en la fila como la columna).

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
1
2
    using namespace std;
3
4
    const int N=5, M=4;
5
6
    bool es_primo(int);
7
    void ultimo_primo_matriz(int[N][M], int &, int &);
8
9
    int main()
10
         int A[N][M];
11
12
13
         for(int i=0; i<N; i++)</pre>
14
             for(int j=0; j<M; j++)</pre>
                  cin>>A[i][j];
15
16
17
         int fil,col;
18
         ultimo_primo_matriz(A,fil,col);
19
         if (fil == -1 || col == -1)
             cout<<"No hay numeros primos en la matriz"<<endl;</pre>
20
21
         else
             cout<<"El numero "<< A[fil][col] <<" es el ultimo numero pri
22
23
24
         return 0;
25
26
27
    bool es_primo(int num)
28 •
29
         if(num == 0 || num == 1)
             return false; //0 y 1 no son primos
30
31
         for(int i=2; i < num; i++)</pre>
32
33
             if( num % i == 0 )
34
                  return false;
35
36
         return true;
37
38
39
    void ultimo_primo_matriz(int arr[N][M], int& f, int& c)
40
41
         //complete la función
         f=-1;
42
43
         c = -1;
         for(int i=0;i<N;i++)</pre>
44
45 ▼
46
             for(int j=0;j<M;j++)</pre>
47 ▼
48
               if(es_primo(arr[i][j]))
                                                                        12/11/18 21:20
49
50
                     f=i;
```

51

c=j;

	Input	Expected	Go
<u> </u>	1	El numero 19 es el ultimo numero primo de la matriz.	El
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19		
	20		
√	4	No hay numeros primos en la matriz	No
	6		
	8		
	10		
	12		
	14		
	16		
	18		
	20		
	22		
	24		
	26		
	28		
	30		
	32		
	34		
	36		
	38		

Guía 11 (NON STAB	BLE)	Input	Expected http://lev2.efn.uncor.edu/mod/quiz/rev	i gy php?a
	✓	810 267 415 317 7 958 590 5 836 541	El numero 2 es el ultimo numero primo de la matriz.	El
	•	217 462 54 69 482 845 234 764 18 160 276 304 495 414 671 905 54 897 822 95	No hay numeros primos en la matriz	No
40 de 54		709 127 192 699 405 126 674 519 869 210 884 150 809 407 626 117 477 657 313 273	El numero 313 es el ultimo numero primo de la matriz.	E1 /11/18 21:20

V 2	Guía 11 (NON STABLE)	Input	Expected http://lev2.efn.uncor.edu/mod/quiz/reviewphp?a
14 25 10 18 20 6 22 18 7 29 19 4 5 10 11 11 11 19	✓		El numero 19 es el ultimo numero primo de la matriz. El
25 10 18 20 6 22 18 7 29 19 4 5 10 19 11 11 11 11 19			
10 18 20 6 22 18 7 7 29 19 4 5 10 19 11 11 19			
20 6 22 18 7 29 19 4 5 10 19 11 11 11 19 ✓ 52 34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
6 22 18 7 29 19 4 5 10 19 11 11 19		18	
22 18 7 29 19 4 5 10 19 11 11 11 19		20	
18 7 29 19 4 5 10 19 11 11 11 19 ✓ 52 34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65		6	
7 29 19 4 5 10 19 11 11 11 19			
29 19 4 5 10 19 11 11 11 19 ✓ 52 34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
19 4 5 10 19 11 11 11 19			
4 5 10 19 11 11 11 19 ✓ 52			
5 10 19 11 11 19			
10 19 11 11 11 19 ✓ 52 34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
19 11 11 19 ✓ 52 S2 El numero 31 es el ultimo numero primo de la matriz. El 34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
11			
11			
52 El numero 31 es el ultimo numero primo de la matriz. El 34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65		19	
34 22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65		F.2	El numoro 21 os el ultimo numoro primo de la matriz. El
22 78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65	~		El numero 31 es el ulcimo numero primo de la matriz.
78 51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
51 33 48 22 51 58 39 73 21 66 16 31 50 33 65			
33 48 22 51 58 39 73 21 66 16 31 50 33 65			
22 51 58 39 73 21 66 16 31 50 33 65		33	
51 58 39 73 21 66 16 31 50 33 65		48	
58 39 73 21 66 16 31 50 33 65		22	
39 73 21 66 16 31 50 33 65			
73 21 66 16 31 50 33 65			
21 66 16 31 50 33 65			
66 16 31 50 33 65			
16 31 50 33 65			
31 50 33 65			
50 33 65			
33 65			
65			
♥▼		54	

Todas las pruebas superadas.

Question author's solution:

```
Guía 11 (NON STABLE)#include <iostream>
                     using namespace std;
                     const int N=5, M=4;
                     bool es_primo(int);
                     void ultimo_primo_matriz(int[N][M], int &, int &);
                     int main()
                     {
                          int A[N][M];
                          for(int i=0; i<N; i++)</pre>
                              for(int j=0; j<M; j++)</pre>
                                  cin>>A[i][j];
                          int fil, col;
                          ultimo_primo_matriz(A, fil, col);
                          if (fil == -1 || col == -1)
                              cout<<"No hay numeros primos en la matriz"<<endl;</pre>
                          else
                              cout<<"El numero "<< A[fil][col] <<" es el ultimo numero</pre>
                     primo de la matriz."<<endl;</pre>
                          return 0;
                     }
                     bool es_primo(int num)
                     {
                          if(num == 0 || num == 1)
                              return false; //0 y 1 no son primos
                          for(int i=2; i < num; i++)</pre>
                              if(num \% i == 0)
                                  return false;
                          return true;
                     }
                     void ultimo_primo_matriz(int arr[N][M], int& f, int& c)
                     {
                          for(f = N-1; f >= 0; f --)
                              for(c = M-1; c>=0; c--)
                                  if (es_primo(arr[f][c]))
                                      return;
                          f=-1;
```

Correcta

}

c=-1;

Puntos para este envío: 1,00/1,00.

Guía 11 (NGN STABLE)

Pregunta 9 http://lev2.efn.uncor.edu/mod/guiz/review.php?a...

http://lev2.efn.uncor.edu/mod/guiz/review.php?a... matrices son transpuestas o false en caso contrario.

Correcta

Puntúa 1,00 sobre 1,00

Por ejemplo:

Input	Resultado
1	Las matrices son transpuestas
2	
3	
4	
5	
6	
7	
8	
9	
1	
4	
7	
2	
5	
8	
3	
6	
9	
1	Las matrices no son transpuestas
2	
3	
4	
5	
6	
7	
8	
9	
1	
4	
7	
2	
5	
2	
3	
9	
6	

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

```
#include <iostream>
2
   using namespace std;
3
4
   const int N=3;
                                                                   12/11/18 21:20
5
```

bool transpuestas(double [N][N], double [N][N]);

Guía 11 (NON STABLE)	Immust	http://lev2.efr	n. g pçor.edu/mod/quiz/review.php?a
		•	
✓	1	Las matrices son transpuestas	Las matrices son transpu
	2		
	3		
	4 5		
	6		
	7		
	8		
	9		
	1		
	4		
	7		
	2		
	5		
	8		
	3		
	6 9		
	9		
✓	1	Las matrices no son transpuestas	Las matrices no son tran
	2		
	3		
	4		
	5		
	6		
	7 8		
	9		
	1		
	4		
	7		
	2		
	5		
	2		

uía 11 (NON STABLE)	Input	Expected http://lev2.efs	n. un çor.edu/mod/quiz/review.php?
✓	0.61	Las matrices son transpuestas	Las matrices son transpu
	1.00		
	0.04		
	0.22		
	0.20		
	0.45		
	0.49		
	0.87		
	0.08		
	0.61		
	0.22		
	0.49		
	1.00		
	0.20		
	0.87		
	0.04		
	0.45		
	0.08		
✓	0.45	Las matrices son transpuestas	Las matrices son transpu
	0.69		
	0.04		
	0.33		
	0.74		
	0.09		
	0.92		
	0.94		
	0.13		
	0.45		
	0.33		
	0.92		
	0.69		
	0.74		
	0.94		

0.04 0.09 0.13

Guía 11 (NON STABLE)	Input	http://lev2.efn.appor.edu/mod/quiz/review.php
	√	0.45	Las matrices no son transpuestas Las matrices no son tran
		0.69	
		0.04	
		0.33	
		0.74	
		0.09	
		0.92	
		0.94	
		0.13	
		0.45	
		0.33	
		0.92	
		0.69	
		0.74	
		0.94	
		0.14	
		0.09	
		0.13	

Todas las pruebas superadas. 🗸

Question author's solution:

```
Guía 11 (NON STABLE)#include <iostream>
                      using namespace std;
                      const int N=3;
                      bool transpuestas(double [N][N], double [N][N]);
                      int main()
                      {
                          double A[N][N], B[N][N];
                          for(int i=0; i<N; i++)</pre>
                               for(int j=0; j<N; j++)</pre>
                                   cin>>A[i][j];
                           for(int i=0; i<N; i++)</pre>
                              for(int j=0; j<N; j++)</pre>
                                   cin>>B[i][j];
                          if (transpuestas(A,B))
                               cout<<"Las matrices son transpuestas"<<endl;</pre>
                          else
                               cout<<"Las matrices no son transpuestas"<<endl;</pre>
                          return 0;
                      }
                      bool transpuestas(double m[N][N], double n[N][N])
                      {
                          for(int i=0; i<N; i++)</pre>
                               for(int j=0; j<N; j++)
                                   if (m[i][j] != n[j][i])
                                       return false;
                          return true;
                      }
```

Correcta

Puntos para este envío: 1,00/1,00.

Guía 11 (NON STABLE) http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Correcta

Puntúa 1,00 sobre 1,00

Complete el cuerpo de la función maximos fila para que dada una matriz y un arregió ver como argumento, escriba en el arreglo los máximos de cada fila de la matriz. Es decir el arreglo en la posición i-esima deberá contener el valor máximo de la fila i-esima.

Por ejemplo:

Input	Resultado	
1	El maximo de la fila 0 es 4	
2	El maximo de la fila 1 es 8	
3	El maximo de la fila 2 es 12	
4	El maximo de la fila 3 es 16	,
5	El maximo de la fila 4 es 20	
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Respuesta: (penalty regime: 0 %)

Reiniciar respuesta

24

```
#include <iostream>
1
2
    using namespace std;
3
4
    const int N=5, M=4;
5
    void maximos_fila(int[][M], int []);
6
7
8
    int main()
9 ▼
10
         int A[N][M], max[N];
11
12
         for(int i=0; i<N; i++)</pre>
13
             for(int j=0; j<M; j++)</pre>
                  cin>>A[i][j];
14
15
16
         maximos_fila(A, max);
17
18
         for(int i=0; i<N; i++)</pre>
             cout<<"El maximo de la fila " << i << " es " << max[i] << en</pre>
19
20
         return 0;
21
22
                                                                         12/11/18 21:20
23
```

	Input	Ex	pected							Go	t						
√	1	El	maximo	de	la	fila	0	es	4	El	maximo	de	la	fila	0	es	4
	2	El	maximo	de	la	fila	1	es	8	El	maximo	de	la	fila	1	es	8
	3	El	maximo	de	la	fila	2	es	12	El	maximo	de	la	fila	2	es	1
	4	El	maximo	de	la	fila	3	es	16	El	maximo	de	la	fila	3	es	1
	5	El	maximo	de	la	fila	4	es	20	El	maximo	de	la	fila	4	es	2
	6																
	7																
	8																
	9																
	10																
	11																
	12																
	13																
	14																
	15																
	16																
	17																
	18																
	19																
	20																

Guía 11 (NON STABLE)	Input	Expected	http://lev2.efmuncor.edu/mod/quiz/review.php?a
		<u> </u>	
✓	4	El maximo de la fila	
	6	El maximo de la fila	
	10	El maximo de la fila El maximo de la fila	
	12	El maximo de la fila	
	14	LI MAXIMO GC IG TIIG	4 CS SS EI MAXIMO de la l'IIA 4 CS S
	16		
	18		
	20		
	22		
	24		
	26		
	28		
	30		
	32		
	34		
	36		
	38 19		
	20		
✓	810	El maximo de la fila	
	267	El maximo de la fila	
	415	El maximo de la fila	
	317	El maximo de la fila El maximo de la fila	
	958	EI IIIAXIIIO UE IA IIIA	4 es -1 El maximo de la lila 4 es -
	590		
	5		
	836		
	541		
	-15		
	-12		
	-300		
	100		
	200		
	-7		
	-1		
	-2		
	-3		
	-10		

Guía 11 (NON STABLE)	Input	Expected	http://lev2.efn.uncor.edu/mod/quiz/review.php?
	217	El maximo de la fila (0 es 462 El maximo de la fila 0 es 4
✓	462	El maximo de la fila :	
	54	El maximo de la fila 2	
	69	El maximo de la fila 3	
	482	El maximo de la fila 4	
	845		
	234		
	764		
	18		
	160		
	276		
	304		
	495		
	414		
	671		
	905		
	54		
	897		
	822		
	95		
✓	709	El maximo de la fila (0 es 709 El maximo de la fila 0 es 7
	127	El maximo de la fila :	
	192	El maximo de la fila 2	2 es 884 El maximo de la fila 2 es 8
	699	El maximo de la fila 3	3 es 809 El maximo de la fila 3 es 8
	405	El maximo de la fila 4	4 es 657 El maximo de la fila 4 es 6
	126		
	674		
	519		
	869		
	210		
	884		
	150		
	809		
	407		
	626		
	117		
	477		
	657		
	313		
	273		

Square S	Corio 11 (NIONI CTARLE)		1	http://loss2.cfg.upg.ars.als.fss.als.is.fss.
24	Guia II (NON STABLE)	Input	Expected	nttp://levz.em.uncor.edu/mod/quiz/review.pnp?a
14 El maximo de la fila 2 es 29 El maximo de la fila 3 es 19 El maximo de la fila 3 es 19 El maximo de la fila 4 es 19 El maximo de la fila 9 es 78 El maximo de la fila 1 es 51 El maximo de la fila 1 es 51 El maximo de la fila 2 es 73 T8 El maximo de la fila 3 es 66 El maximo de la fila 4 es 65 El maximo de la fila 3 es 6 El maximo de la fila 2 es 7 El maximo de la fila 4 es 6 El maximo de la fila 4 es 6		√ 2	El maximo de la fila 6	0 es 25 El maximo de la fila 0 es 2
El maximo de la fila 3 es 19 El maximo de la fila 4 es 19 El maximo de la fila 0 es 78 El maximo de la fila 1 es 51 El maximo de la fila 1 es 51 El maximo de la fila 2 es 73 El maximo de la fila 2 es 73 El maximo de la fila 3 es 66 El maximo de la fila 4 es 65 El maximo de la fila 5 es 73 El maximo de la fila 6 es 78 El maximo de la fila 1 es 5 El maximo de la fila 1 es 5 El maximo de la fila 4 es 65 El maximo de la fila 2 es 7 El maximo de la fila 4 es 65 El maximo de la fila 9 es 7 El maximo de la fila 9		24	El maximo de la fila 1	1 es 20 El maximo de la fila 1 es 2
10		14	El maximo de la fila 2	2 es 29 El maximo de la fila 2 es 2
18		25	El maximo de la fila 3	3 es 19 El maximo de la fila 3 es 1
20 6 22 18 7 29 19 4 5 10 11 11 11 19		10	El maximo de la fila 4	4 es 19 El maximo de la fila 4 es 1
6 22 18 7 7 29 19 4 5 5 10 19 11 19		18		
22 18 7 29 19 4 5 10 19 11 11 11 19 52 El maximo de la fila 0 es 78 El maximo de la fila 1 es 51 22 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 3 es 66 51 Baximo de la fila 4 es 65 33 48 22 51 58 39 73 21 66 16 31 50 33 65				
18				
7 29 19 4 5 10 19 11 11 11 19				
29 19 4 5 10 19 11 11 11 19 32 El maximo de la fila 0 es 78 El maximo de la fila 1 es 51 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 El maximo de la fila 4 es 65 133 48 22 51 58 39 73 21 66 16 31 50 33 65				
19 4 5 5 10 10 19 11 11 11 19				
4 5 10 19 11 11 11 19				
5 10 19 11 11 11 19 32 El maximo de la fila 0 es 78 El maximo de la fila 1 es 51 22 El maximo de la fila 1 es 51 23 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 33 48 22 51 58 39 73 21 66 16 31 50 33 65				
10 19 11 11 11 19 52 El maximo de la fila 0 es 78 El maximo de la fila 1 es 51 22 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 El maximo de la fila 4 es 65 51 58 39 73 21 66 16 31 50 33 65				
19 11 11 11 19 52 El maximo de la fila 0 es 78 El maximo de la fila 1 es 51 22 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 61 33 48 22 51 58 39 73 21 66 16 31 50 33 65				
11 11 11 19 ✓ 52 El maximo de la fila 0 es 78 34 El maximo de la fila 1 es 51 22 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 El maximo de la fila 4 es 65 El maximo de la fila 4 es 6 El maximo de la fila 3 es 6 El maximo de la fila 4 es 6				
11				
19				
52 El maximo de la fila 0 es 78 34 El maximo de la fila 1 es 51 22 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 33 48 22 51 58 39 73 21 66 16 31 50 33 65				
34 El maximo de la fila 1 es 51 22 El maximo de la fila 2 es 73 78 El maximo de la fila 3 es 66 51 El maximo de la fila 4 es 65 51 El maximo de la fila 4 es 65 51 El maximo de la fila 4 es 65 51 El maximo de la fila 4 es 65 51 El maximo de la fila 3 es 6 El maximo de la fila 3 es 6 El maximo de la fila 4 es 6 El maximo de la fila 1 es 5 El maximo de la fila 2 es 7 El maximo de la fila 2 es 6 El maximo de la fila 2 es 7 El maximo de la fila 4 es 65 El maximo de la fila 4 es 65				
El maximo de la fila 2 es 73 El maximo de la fila 3 es 66 El maximo de la fila 3 es 65 El maximo de la fila 4 es 65 El maximo de la fila 3 es 6 El maximo de la fila 2 es 7 El maximo de la fila 3 es 6 El maximo de la fila 2 es 7 El maximo de la fila 3 es 6 El maximo de la fila 2 es 7 El maximo de la fila 3 es 6 El maximo de la fila 2 es 7 El maximo de la fila 4 es 6 El maximo de	•	'		
78				
51 El maximo de la fila 4 es 65 El maximo de la fila 4 es 6 33 48 22 51 58 39 73 21 66 16 31 50 33 65				
33 48 22 51 58 39 73 21 66 16 31 50 33 65				
48 22 51 58 39 73 21 66 16 31 50 33 65			EI maximo de la fila 2	4 es 65 El maximo de la filla 4 es 6
22 51 58 39 73 21 66 16 31 50 33 65				
51 58 39 73 21 66 16 31 50 33 65				
58 39 73 21 66 16 31 50 33 65				
39 73 21 66 16 31 50 33 65				
73 21 66 16 31 50 33 65				
21 66 16 31 50 33 65				
66 16 31 50 33 65				
16 31 50 33 65				
50 33 65				
33 65		31		
65		50		
		33		
54		65		
		54		

Todas las pruebas superadas.

Question author's solution:

Guía 11 (NON STABLE)#include <iostream> http://lev2.efn.uncor.edu/mod/quiz/review.php?a... using namespace std; const int N=5, M=4; void maximos_fila(int[][M], int []); int main() { int A[N][M], max[N]; for(int i=0; i<N; i++)</pre> for(int j=0; j<M; j++)</pre> cin>>A[i][j]; maximos_fila(A, max); for(int i=0; i<N; i++)</pre> cout<<"El maximo de la fila " << i << " es " << max[i] <</pre> endl; return 0; } void maximos_fila(int matriz[][M] , int maximos[]) for(int i=0; i<N; i++)</pre> { int max_fila = matriz[i][0]; for(int j=1; j<M; j++)</pre>

Correcta

}

}

Puntos para este envío: 1,00/1,00.

■ Recursos Adicionales Clase 10

Ir a...

if (max_fila<matriz[i][j])
 max_fila = matriz[i][j];</pre>

maximos[i] = max_fila;

Guía de Ejercicios 11 ▶