

Aula 05

Imagens rasterizadas

Sumário

- Dispositivos de rasterização
- Imagens, pixels e geometria
- Cores em RGB
- Composição em alfa

Sumário

- Dispositivos de rasterização
- Imagens, pixels e geometria
- Cores em RGB
- Composição em alfa

Dispositivos de rasterização

- Pixel é um acrônimo de "Picture element"
- Para que uma imagem seja visualizada, são utilizados valores de vermelho (*Red*), verde (*Green*) e azul (*Blue*) para formar diferentes cores.
- Uma imagem é uma lista que armazena os valores de pixels, individualmente. Os valores dos pixels são compostos por três argumentos: RGB.

Dispositivos de rasterização

- Outra forma de se representar imagens é por meio de imagens por vetor (imagens vetorizadas).
 - Descrições de formas, áreas coloridas, linhas, curvas e ângulos.
 - Imagens independentes de pixels
 - Devem ser rasterizadas a cada vez que forem exibidas em um dispositivo.

Dispositivos de rasterização

- Existem diferentes tipos de dispositivos para imagens rasterizadas
- Apresentação (Output)
 - Monitor de cristal líquido (Liquid Crystal Display LCD)
 - Monitor diodo emissor de luz (Light Emitting Diode LED)
- Captura (Input)
 - Câmeras digitais
 - Escâner de mesa

Dispositivos de apresentação

- Monitores são descritos como dispositivos de apresentação que contêm pixels dispostos em linhas e colunas.
- Podem ser classificados em:
 - Emissores de luz: cada um dos pixels emitem luz.
 - Transmissores de luz: permitem que quantidades controladas de cores passem por eles. Necessitam de um emissor interno de luz.

Emissores de luz

- Monitor diodo emissor de luz (Light Emitting Diode – LED) é um exemplo de emissor de luz.
- Cada pixel é composto por um ou mais LEDS que emitem luz com a sua devida cor.
- O pixel tem três subpixels emissores: RGB.

Transmissores de luz

- Monitor de cristal líquido (Liquid Crystal Display - LCD) é um exemplo de transmissor de luz.
- Uma luz interna é emitida e existe uma estrutura molecular do cristal líquido, que rotaciona e permite (ou não) que faixas de cores passem por ela.

LCD

Dispositivos de apresentação

- A resolução dos dispositivos (monitores) é definida pela quantidade unidades que os compõem.
- Exemplo: um monitor que tem 1920 x 1200 pixels contém 2.304.000 pixels dispostos em 1920 colunas e 1200 linhas.

Outros dispositivos de apresentação

- Impressoras a jato de tinta e por tom (toner) são outros exemplos de dispositivos de apresentação.
- A medida de resolução não é definida somente por pixels, pois envolve a capacidade de se imprimir uma quantidade de unidades por polegada.
- Jato de tinta: DPI dots per inch
- Toner: PPI pixels per inch

Dispositivos de captura

- Imagens que não foram geradas procedimentalmente foram, potencialmente, capturadas por algum dispositivo.
- Câmeras digitais e escâneres de mesa são exemplos de dispositivos de captura.

Câmera digital

- Câmeras fazem um mapeamento de pixels do ponto de vista que será capturado e armazena os pixels em algum formato de imagem.
- Os valores mapeados em pixels seguem a sequência RGB.
- A resolução da imagem capturada depende da grade de sensores presentes na câmera. Uma câmera que contém 3000 sensores nas colunas e 2000 sensores nas linhas gera uma imagem com 6 milhões de pixels (6 MP).

Escâner de mesa

- Os escâneres capturam imagens por meio de um sensor que; diferente da câmera, que tem linhas e colunas; tem apenas uma dimensão.
- O sensor percorre a superfície que deve ser capturada. A resolução de um escâner depende da quantidade de pixels mapeados por polegada (pixels per inch).

Sumário

- Dispositivos de rasterização
- Imagens, pixels e geometria
- Cores em RGB
- Composição em alfa

- Uma imagens rasterizada é uma grande lista de pixels que contêm informações sobre as suas cores e posições na grade.
- Podemos abstrair imagens como:

$$I_{(x,y)} = R -> V$$

onde, $R \subseteq \mathbb{R}^2$: R está contido nos pares reais e forma um retângulo e V é o conjunto de possíveis valores de pixels.

 O caso mais simples é aquele em que os pixels estão em escala de cinza, portanto, apenas um valor é dado como argumento. Esse valor é o brilho.

 Em imagens coloridas, com valores para vermelho, verde e azul, em cada pixel, V representa o conjunto de elementos formado, cada um, por três valores reais para cada pixel:

$$V = (\mathbb{R}^+)^3$$

 Para todos os efeitos, consideramos uma imagem como um conjunto de pares (i,j), onde i indica a linha e j indica a coluna a qual nos referimos. O ponto de origem será mencionado como aquele que fica no canto inferior esquerdo.

- A representação da posição do ponto de origem pode diferir, dependendo do contexto.
- Por exemplo, no OpenGL, o ponto de origem fica no centro da janela. No OpenCV, o ponto de origem fica no canto superior esquerdo.

Valores de pixels

Pixels podem ser representados por diferentes valores, dependendo do propósito da imagem que se quer aplicar.

Os valores dos argumentos podem variar de 0 a 255. Para tanto, são necessários 8 bits (28).

- 1 bit de escala de cinza
- 8 bits RGB (24 bits = 3*8): web e email
- 32 bits de valores reais em RGB: imagens HDR
 - High Dynamic Range

Sumário

- Dispositivos de rasterização
- Imagens, pixels e geometria
- Cores em RGB
- Composição em alfa

- Existem diferentes espaços de cores, discutidos em computação gráfica, processamento de imagens, visão computacional, visão humana, etc.
- Entre os espaços, encontram-se CMYK, CIE, YIQ e RGB.
- Nesta disciplina, abordamos apenas o espaço de cores RGB, sem maiores detalhes.

- Em RGB, temos as cores são definidas por diferentes valores de vermelho, verde e azul.
- Diferentes misturas são possíveis:
 - Vermelho + verde = amarelo
 - Verde + azul = ciano
 - Azul + vermelho = magenta
 - Vermelho + verde + azul = branco

http://3.bp.blogspot.com/_Lvl3hpeWF_Y/TUEwSNFd2HI/AAAAAAAAAAZY/8Ck8UuZYUfk/s1600/Aditivo.jpg

- Podemos ilustrar as cores como valores que vão de totalmente ligados (1) até totalmente desligados (zero), em cada um dos argumentos RGB.
- Dessa forma, todas as cores possíveis de serem representadas em um monitor podem ser idealizadas como um cubo com valores zeros e uns, nos extremos.

- As cores dos extremos do cubo são:
 - Preto = (0,0,0)
 - Vermelho = (1,0,0)
 - Verde = (0,1,0)
 - Azul = (0,0,1)
 - Amarelo = (1,1,0)
 - Magenta = (1,0,1)
 - Ciano = (0,1,1)
 - Branco = (1,1,1)

- As cores podem ser dadas por valores em escala de cinza, com um único valor, atribuído a todos os argumentos.
- Com cores, podemos misturar cada uma das cores indicadas em RGB.
- Os valores a serem adotados são números inteiros compostos por um byte (8 bits).
- Assim, obtermos 256 valores (28). Nesse sistema, cada cor é composto por 24 bits (3*8).
- Com 24 bits, podemos representar, aproximadamente 16 milhões de cores, pois combinamos 256 valores em cada argumento RGB.

Sumário

- Dispositivos de rasterização
- Imagens, pixels e geometria
- Cores em RGB
- Composição em alfa

- Por vezes, queremos compor uma imagem pela combinação de duas outras imagens: uma como imagem de fundo e outra como imagem de primeiro plano.
- Em casos de pixels opacos, apenas inserimos os pixels de primeiro plano em substituição aos pixels da imagem de fundo.
- Porém, existem casos em que se quer passar transparência, ou seja, pixels da imagem de fundo são parcialmente substituídos.
- Ao compor uma imagem por meio de duas outras, devemos fazer uma composição em alfa.

http://encyclopedia2.thefreedictionary.com/Alpha+compositing

- A informação mais importante para misturar duas imagens é a cobertura da imagem, ilustrada pelo canal alfa (α).
- Alfa ilustra o quanto que os pixels do fundo são cobertos pelos pixels de primeiro plano.

$$I_{final} = I_{Back}^* (1-\alpha) + I_{foreground} \cdot \alpha$$

http://www.scratchapixel.com/old/lessons/3d-basic-lessons/lesson-5-colors-and-digital-images/creating-saving-and-reading-digital-images/

Sumário

- Dispositivos de rasterização
- Imagens, pixels e geometria
- Cores em RGB
- Composição em alfa

Aula de hoje

Shirley, Peter, Michael Ashikhmin, and Steve Marschner. Fundamentals of computer graphics. CRC Press, 3rd Edition, 2009.

Capítulo 3

Fim da Aula 05

André Luiz Brandão

