Exercice 1 Commun à tous les candidats

6 points

On considère un cube ABCDEFGH dont la représentation graphique en perspective cavalière est donnée ci-contre.

Les arêtes sont de longueur 1.

L'espace est rapporté au repère orthonormé $(D; \overrightarrow{DA}, \overrightarrow{DC}, \overrightarrow{DH})$.

Partie A

1. Montrer que le vecteur \overrightarrow{DF} est normal au plan (EBG).

Solution : Dans le repère orthonormé $(D; \overrightarrow{DA}, \overrightarrow{DC}, \overrightarrow{DH})$ on a

D(0;0;0), F(1;1;1), E(1;0;1), B(1;1;0) et G(0;1;1)

donc
$$\overrightarrow{DF} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\overrightarrow{EB} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ et, $\overrightarrow{EG} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$

on a alors $\overrightarrow{DF} \cdot \overrightarrow{EB} = 0 + 1 - 1 = 0$ et $\overrightarrow{DF} \cdot \overrightarrow{EG} = -1 + 1 + 0 = 0$

 \overrightarrow{DF} est donc orthogonal à deux vecteurs non colinéaires du plan (EBG), il est bien normal à ce plan

2. Déterminer une équation cartésienne du plan (EBG).

Solution: $\overrightarrow{DF} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur normal au plan (EBG)

donc (EBG) : x+y+z+d=0 or E(1; 0; 1) \in (EBG), d'où $1+1+d=0 \iff d=-2$ finalement une équation de (EBG) est : x+y+z-2=0

3. En déduire les coordonnées du point I intersection de la droite (DF) et du plan (EBG).

Solution : Une représentation paramétrique de (DF) est $\begin{cases} x = t \\ y = t \end{cases} \quad (t \in \mathbb{R})$

Les coordonnées de I doivent donc vérifier le système : {

$$\begin{cases} x = t \\ y = t \\ z = t \end{cases}$$

en résulte
$$3t-2=0 \iff$$

 $t=\frac{2}{3}$.
On a alors $I\left(\frac{2}{3}; \frac{2}{3}; \frac{2}{3}\right)$

On démontrerait de la même manière que le point J intersection de la droite (DF) et du plan (AHC) a pour coordonnées $\left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$.

Partie B

À tout réel x de l'intervalle [0; 1], on associe le point M du segment [DF] tel que $\overrightarrow{DM} = x\overrightarrow{DF}$.

On s'intéresse à l'évolution de la mesure θ en radian de l'angle $\widehat{\text{EMB}}$ lorsque le point M parcourt le segment [DF]. On a $0 \le \theta \le \pi$.

1. Que vaut θ si le point M est confondu avec le point D? avec le point F?

Solution : Si M est confondu avec D alors $\widehat{EMB} = \widehat{EDB} = \frac{\pi}{3}$ car EDB est un triangle équilatéral

Si M est confondu avec F alors $\widehat{EMB} = \widehat{EFB} = \frac{\pi}{2}$ car EFB est un triangle rectangle en F

2. a. Justifier que les coordonnées du point M sont (x; x; x).

Solution:
$$\overrightarrow{DM} = x \overrightarrow{DF}$$
 et $\overrightarrow{DF} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ donc $\overrightarrow{DM} \begin{pmatrix} x \\ x \\ x \end{pmatrix}$ or D(0; 0; 0)
On a donc bien $M(x; x; x)$

b. Montrer que $\cos(\theta) = \frac{3x^2 - 4x + 1}{3x^2 - 4x + 2}$. On pourra pour cela s'intéresser au produit scalaire des vecteurs \overrightarrow{ME} et \overrightarrow{MB} .

Solution:
$$\overrightarrow{ME} \begin{pmatrix} 1-x \\ -x \\ 1-x \end{pmatrix}$$
 et $\overrightarrow{MB} \begin{pmatrix} 1-x \\ 1-x \\ -x \end{pmatrix}$

$$\overrightarrow{ME} \cdot \overrightarrow{MB} = (1-x)^2 - x(1-x) - x(1-x) = (1-x)(1-3x) = 3x^2 - 4x + 1$$
de plus $\overrightarrow{ME} \cdot \overrightarrow{MB} = ME \times MB \times \cos\left(\widehat{EMB}\right)$

$$= \sqrt{(1-x)^2 + (-x)^2 + (1-x)^2} \sqrt{(1-x)^2 + (1-x)^2 + (-x)^2} \times \cos(\theta)$$

$$= \sqrt{3x^2 - 4x + 2} \sqrt{3x^2 - 4x + 2} \times \cos(\theta)$$

$$= (3x^2 - 4x + 2)\cos(\theta)$$
On a donc bien $\cos(\theta) = \frac{3x^2 - 4x + 1}{3x^2 - 4x + 2}$

3. On a construit ci-dessous le tableau de variations de la fonction

$$f: x \longmapsto \frac{3x^2 - 4x + 1}{3x^2 - 4x + 2}.$$

Pour quelles positions du point *M* sur le segment [DF] :

a. le triangle MEB est-il rectangle en M?

Solution : Le triangle est rectangle en M si $cos(\theta) = cos(\widehat{EMB}) = 0$

Il y a donc deux positions du point M:

pour $x = \frac{1}{3}$ et pour x = 1 c'est à dire pour M en J ou pour M en F

b. l'angle θ est-il maximal?

Solution:

l'angle θ est maximal quand son cosinus est minimal c'est à dire quand $x = \frac{2}{3}$ autrement dit quand M est confondu avec I.

Exercice 2 6 points
Commun à tous les candidats

Dans cet exercice, on étudie quelques grandeurs caractéristiques du fonctionnement des parkings d'une ville.

Dans tout l'exercice, les probabilités seront données avec une précision de 10^{-4} .

Les parties A, B, et C sont indépendantes

Partie A - Durée d'attente pour entrer dans un parking souterrain

On appelle durée d'attente le temps qui s'écoule entre le moment où la voiture se présente à l'entrée du parking et le moment où elle franchit la barrière d'entrée du parking. Le tableau suivant présente les observations faites sur une journée.

Durée d'attente en minute	[0; 2[[2; 4[[4; 6[[6; 8[
Nombre de voitures	75	19	10	5

1. Proposer une estimation de la durée d'attente moyenne d'une voiture à l'entrée du parking.

Solution : On assimile chaque intervalle à son centre pour effectuer la moyenne

$$\frac{75 \times 1 + 19 \times 3 + 10 \times 5 + 5 \times 7}{75 + 19 + 10 + 5} = \frac{217}{109} \approx 2$$

Donc la durée moyenne d'attente serait d'environ 2 minutes.

- **2.** On décide de modéliser cette durée d'attente par une variable aléatoire T suivant une loi exponentielle de paramètre λ .
 - **a.** Justifier que l'on peut choisir $\lambda = 0.5$.

Solution : On a
$$E(T) = \frac{1}{\lambda} = 2$$
 donc $\lambda = 0.5$

b. Une voiture se présente à l'entrée du parking. Quelle est la probabilité qu'elle mette moins de deux minutes pour franchir la barrière?

Solution : On cherche
$$P(T \le 2)$$

 $P(T \le 2) = \int_0^2 0.5e^{-0.5t} dt = \left[-e^{-0.5t} \right]_0^2 = 1 - e^{-1} = 1 - \frac{1}{e} \approx 0.6321.$

c. Une voiture attend à l'entrée du parking depuis une minute. Quelle est la probabilité qu'elle franchisse la barrière dans la minute suivante?

Solution : On cherche $P_{T \geqslant 1}(T \leqslant 2)$

T suit une loi exponentielle donc une loi de durée de vie sans vieillissement donc

$$\forall h > 0$$
, $P_{T \geqslant h}(T \geqslant t + h) = P(T \geqslant t)$

donc par passage au complémentaire on a $\forall h>0$, $P_{T\geqslant h}(T\leqslant t+h)=P(T\leqslant t)$

on en déduit $P_{T\geqslant 1}(T\leqslant 2) = P_{T\geqslant 1}(T\leqslant 1+1) = P(T\leqslant 1)$ $P(T\leqslant 1) = \int_0^1 0.5e^{-0.5t} dt = \left[-e^{-0.5t}\right]_0^1 = 1 - e^{-0.5} = 1 - \frac{1}{\sqrt{e}} \approx 0.3935$

Partie B - Durée et tarifs de stationnement dans ce parking souterrain

Une fois garée, la durée de stationnement d'une voiture est modélisée par une variable aléatoire D qui suit la loi normale d'espérance $\mu=70$ min et d'écart-type $\sigma=30$ min.

1. a. Quelle est la durée moyenne de stationnement d'une voiture?

Solution : La durée moyenne de stationnement est $\mu = 70$ min

b. Un automobiliste entre et se gare dans le parking. Quelle est la probabilité que sa durée de stationnement dépasse deux heures?

Solution : On cherche $P(D \ge 120)$

 $P(D \ge 120) \approx 0.0478$

c. À la minute près, quel est le temps maximum de stationnement pour au moins 99 % des voitures?

Solution : On cherche le plus petit t tel que $P(D \le t) \ge 0.99$

à l'aide de la calculatrice, $t\approx 139.8$ donc le temps maximum de stationnement pour au moins 99% des véhicules est d'environ 2 heures et 20 minutes.

2. La durée de stationnement est limitée à trois heures. Le tableau donne le tarif de la première heure et chaque heure supplémentaire est facturée à un tarif unique. Toute heure commencée est due intégralement.

Durée de	Inférieure à 15	Entre 15 min et 1	Heure
stationnement	min	h	supplémentaire
Tarif en euros	Gratuit	3,5	t

Déterminer le tarif t de l'heure supplémentaire que doit fixer le gestionnaire du parking pour que le prix moyen de stationnement d'une voiture soit de 5 euros.

Solution : Soit X la variable aléatoire donnant le tarif de stationnement en euro, la loi de probabilité de X est donnée par le tableau suivant :

	x_i	0	3,5	3,5+t	3,5 + 2t	TOTAL
I	$P(X = x_i)$	$P(D \leq 15) \approx$	$P(15 \leqslant D \leqslant$	$P(60 \leqslant D \leqslant$	<i>P</i> (120 ≤	1
		0,0334	60) ≈	120) ≈	$D \leq 180$) \approx	
			0,3361	0,5828	0,0477	

On a alors
$$E(X) = 5 \iff 3.5 \times 0.3361 + 0.5828 \times (3.5 + t) + 0.0477 \times (3.5 + 2t) = 5$$

$$\iff$$
 3,3831+0,6782t = 5
 \iff $t = \frac{1,6169}{0,6782} \approx 2,38$

Le tarif doit être de 2 euros et 38 centimes par heure supplémentaire pour que le prix moyen soit de 5 euros.

Partie C - Temps d'attente pour se garer dans un parking de centre-ville

La durée de stationnement d'une voiture dans un parking de centre-ville est modélisée par une variable aléatoire T' qui suit une loi normale d'espérance μ' et d'écart-type σ' . On sait que la moyenne du temps de stationnement dans ce parking est égale à 30 minutes et que 75 % des voitures ont un temps de stationnement inférieur à 37 minutes. Le gestionnaire du parking vise l'objectif que 95 % des voitures aient un temps de stationnement entre 10 et 50 minutes. Cet objectif est-il atteint?

Solution : On a $\mu' = 30$ d'après l'énoncé

T' suit donc la loi normale d'espérance $\mu' = 30$ et d'écart type σ' .

On a de plus, $P(T' \le 37) = 0.75$.

Soit $Z = \frac{T' - 30}{\sigma'}$ alors Z suit la loi normale centrée réduite.

$$\sigma'$$

$$T' \leqslant 37 \iff T' - 30 \leqslant 37 - 30 \iff \frac{T' - 30}{\sigma'} \leqslant \frac{7}{\sigma'} \iff Z \leqslant \frac{7}{\sigma'}$$

$$Donc P(T' \leqslant 37) = 0,75 \iff P\left(Z \leqslant \frac{7}{\sigma'}\right) = 0,75$$

Donc
$$P(T' \leqslant 37) = 0.75 \iff P\left(Z \leqslant \frac{7}{\sigma'}\right) = 0.75$$

D'après la calculatrice, $\frac{7}{\sigma'} \approx 0,6745$ soit $\sigma' \approx 10,4$; la variable aléatoire T' suit donc la loi normale de paramètres $\mu' = 30$ et d'écart-type $\sigma' = 10,4$.

On a alors : $P(10 \le T' \le 50) \approx 0.946$ ce qui veut dire qu'on peut estimer qu'il y aura environ 94,6 % des voitures qui auront un temps de stationnement compris entre 10 et 50 minutes.

On peut donc considérer que l'objectif de 95 % n'est pas atteint.

Exercice 3 3 points Commun à tous les candidats

Soit k un réel strictement positif. On considère les fonctions f_k définies sur $\mathbb R$ par :

$$f_k(x) = x + ke^{-x}.$$

On note \mathscr{C}_k la courbe représentative de la fonction f_k dans un plan muni d'un repère orthonormé.

On a représenté ci-dessous quelques courbes \mathcal{C}_k pour différentes valeurs de k.

Pour tout réel k strictement positif, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe \mathcal{C}_k . Il semblerait que, pour tout réel k strictement positif, les points A_k soient alignés. Est-ce le cas?

Solution : Les fonctions f_k sont dérivables sur \mathbb{R}

 $\forall x \in \mathbb{R}, f'_k(x) = 1 - ke^{-x}$ $f'_k(x) = 0 \iff e^x = k \iff x = \ln(k)$ $f_k(\ln(k)) = \ln(k) + 1$

Donc $A_k \left(\ln(k) ; \ln(k) + 1 \right)$

Les points A_k sont donc bien alignés puisque leurs coordonnées vérifient l'équation

Exercice 4 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

L'épicéa commun est une espèce d'arbre résineux qui peut mesurer jusqu'à 40 mètres de hauteur et vivre plus de 150 ans.

L'objectif de cet exercice est d'estimer l'âge et la hauteur d'un épicéa à partir du diamètre de son tronc mesuré à 1,30 m du sol.

Partie A - Modélisation de l'âge d'un épicéa

Pour un épicéa dont l'âge est compris entre 20 et 120 ans, on modélise la relation entre son âge (en années) et le diamètre de son tronc (en mètre) mesuré à 1,30 m du sol par la fonction f définie sur l'intervalle]0; 1[par :

$$f(x) = 30 \ln \left(\frac{20x}{1-x} \right)$$

où x désigne le diamètre exprimé en mètre et f(x) l'âge en années.

1. Démontrer que la fonction f est strictement croissante sur l'intervalle]0; 1[.

Solution : $f = 30 \ln(u)$ avec u définie, continue, dérivable et strictement positive sur]0; 1[. f est donc dérivable sur]0; 1[.

$$f = 30 \ln(u) \implies f' = 30 \times \frac{u'}{u}$$

$$u = \frac{v}{w} \implies u' = \frac{v'w - vw'}{w^2} \text{ avec } \begin{cases} v(x) = 20x \\ w(x) = 1 - x \end{cases} \implies \begin{cases} v'(x) = 20 \\ w'(x) = -1 \end{cases}$$
 alors
$$u'(x) = \frac{20(1-x) + 20x}{(1-x)^2} = \frac{20}{(1-x)^2}$$

$$\forall x \in]0; 1[, f'(x) = 30 \times \frac{20}{(1-x)^2} \times \frac{1-x}{20x} = \frac{30}{x(1-x)} > 0$$

$$f \text{ est donc strictement croissante sur }]0; 1[$$

2. Déterminer les valeurs du diamètre x du tronc tel que l'âge calculé dans ce modèle reste conforme à ses conditions de validité, c'est-à-dire compris entre 20 et 120 ans.

Solution: Deux méthodes:

Par résolution d'équations :

$$f(x) = 20 \Longleftrightarrow \ln\left(\frac{20x}{1-x}\right) = \frac{2}{3} \Longleftrightarrow \frac{20x}{1-x} = e^{\frac{2}{3}} \Longleftrightarrow x\left(20 + e^{\frac{2}{3}}\right) = e^{\frac{2}{3}} \Longleftrightarrow x = \frac{e^{\frac{2}{3}}}{20 + e^{\frac{2}{3}}} = e^{\frac{2}{3}}$$

$$f(x) = 120 \Longleftrightarrow \ln\left(\frac{20x}{1-x}\right) = 4 \Longleftrightarrow \frac{20x}{1-x} = e^4 \Longleftrightarrow x\left(20 + e^4\right) = e^4 \Longleftrightarrow x = \frac{e^4}{20 + e^4} = 6 \approx 0.73$$

f étant strictement croissante, $f(x) \in [20; 120] \iff x \in [\alpha; \beta]$

Par balayage:

$$\overline{\lim_{\substack{x \to 0 \\ x > 0}} \frac{20x}{1 - x}} = 0^+ \text{ par quotient donc en posant } X = \frac{20x}{1 - x} \text{ on a } \lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{X \to 0 \\ X > 0}} \ln(X) = -\infty$$

de même,
$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{X \to +\infty \\ X < +\infty}} \ln(X) + \infty \operatorname{car} \lim_{\substack{x \to 1 \\ x < 1}} \frac{20x}{1-x} = +\infty \operatorname{par} \operatorname{quotient}$$

f est continue et strictement croissante sur]0 ; 1[à valeurs dans] $-\infty$; $+\infty$ [or 20 et 120 appartiennent à l'intervalle] $-\infty$; $+\infty$ [donc d'après le théorème des valeurs intermédiaires, les équations f(x)=20 et f(x)=120 admettent chacune une solution unique

$$\alpha \approx 0.09$$
 et $\beta \approx 0.73$

Donc le diamètre d'un tronc est entre 9 et 73 cm

Partie B

On a relevé la hauteur moyenne des épicéas dans des échantillons représentatifs d'arbres âgés de 50 à 150 ans. Le tableau suivant, réalisé à l'aide d'un tableur regroupe ces résultats et permet de calculer la vitesse de croissance moyenne d'un épicéa.

	A	В	С	D	E	F	G	Н	I	J	K	L	M
1	Âges (en années)	50	70	80	85	90	95	100	105	110	120	130	150
2	Hauteurs (en mètres)	11,2	15,6	18,05	19,3	20,55	21,8	23	24,2	25,4	27,6	29,65	33
3	Vitesse de croissance (en mètres par an- née)		0,22	0,245	0,25								

1. a. Interpréter le nombre 0,245 dans la cellule D3.

Solution : Il s'agit de la moyenne annuelle de croissance en mètres entre les âges de 70 et 80 ans : $\frac{18,05-15,6}{10} = \frac{2,45}{10} = 0,245$.

b. Quelle formule doit-on entrer dans la cellule C3 afin de compléter la ligne 3 en recopiant la cellule C3 vers la droite?

Solution:
$$\ll = (C2-B2) \div (C1-B1) \gg$$

2. Déterminer la hauteur attendue d'un épicéa dont le diamètre du tronc mesuré à 1,30 m du sol vaut 27 cm.

Solution : Il faut d'abord déterminer l'âge de l'épicéa.

$$f(0,27) = 30 \ln \left(\frac{5,4}{0,73} \right) \approx 60$$

Un épicéa de 60 ans devrait mesurer 13,40 m si on considère qu'entre 50 et 70 ans la croissance annuelle moyenne est de 0,22 m.

- **3.** La qualité du bois est meilleure au moment où la vitesse de croissance est maximale.
 - **a.** Déterminer un intervalle d'âges durant lequel la qualité du bois est la meilleure en expliquant la démarche.

Solution : On trouve en E3, F3 et G3 0,25 , puis 0,24 en H3, les valeurs suivantes étant elles aussi inférieures à 0,25. qui est la plus grande valeur. Donc la vitesse de croissance moyenne annuelle est maximale entre 80 ans et 95 ans. Ceci nous donne donc l'intervalle d'âges sur lequel la qualité du bois est la meilleure.

b. Est-il cohérent de demander aux bûcherons de couper les arbres lorsque leur diamètre mesure environ 70 cm?

Solution : L'âge d'un épicéa de diamètre 70 cm est $f(0,7) = 30 \ln \left(\frac{14}{0,3} \right) \approx 115$ ans

Il n'est donc pas cohérent de demander aux bûcherons de couper des épicéa de diamètre 70 cm puisque la qualité du bois n'est plus la meilleure.

Exercice 4 5 points Candidats ayant suivi l'enseignement de spécialité

Un numéro de carte bancaire est de la forme :

 $a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} c$

où $a_1, a_2, ..., a_{15}$ et c sont des chiffres compris entre 0 et 9.

Les quinze premiers chiffres contiennent des informations sur le type de carte, la banque et le numéro de compte bancaire.

c est la clé de validation du numéro. Ce chiffre est calculé à partir des quinze autres.

L'algorithme suivant permet de valider la conformité d'un numéro de carte donné.

Initialisation: I prend la valeur 0

P prend la valeur 0
R prend la valeur 0

Traitement: Pour k allant de 0 à 7:

R prend la valeur du reste de la division euclidienne de $2a_{2k+1}$ par 9

I prend la valeur I + R

Fin Pour

Pour k allant de 1 à 7 :

P prend la valeur $P + a_{2k}$

Fin Pour

S prend la valeur I + P + c

Sortie : Si *S* est un multiple de 10 alors :

Afficher « Le numéro de la carte est correct. »

Sinon:

Afficher « Le numéro de la carte n'est pas correct. »

Fin Si

- 1. On considère le numéro de carte suivant : 5635 4002 9561 3411.
 - **a.** Compléter le tableau en annexe permettant d'obtenir la valeur finale de la variable I.

Solution	:							
k	0	1	2	3	4	5	6	7
a_{2k+1}	5	3	4	0	9	6	3	1
$2a_{2k+1}$	10	6	8	0	18	12	6	2
R	1	6	8	0	0	3	6	2
I	1	7	15	15	15	18	24	26

b. Justifier que le numéro de la carte 5635 4002 9561 3411 est correct.

Solution : P est la somme des 7 premiers chiffres de rang pair P = 6 + 5 + 0 + 2 + 5 + 1 + 4 = 23

S = I + P + c = 26 + 23 + 1 = 50 est un multiple de 10 donc le numéro de carte est correct.

c. On modifie le numéro de cette carte en changeant les deux premiers chiffres. Le premier chiffre (initialement 5) est changé en 6.

Quel doit être le deuxième chiffre a pour que le numéro de carte obtenu $6a35\,4002\,9561\,3411$ reste correct?

Solution : Le changement du premier chiffre change la valeur de I qui devient 27

P prendra la valeur 17 + a

S=28+17+a+1=46+a qui sera un multiple de 10 si et seulement si a=4

2. On connaît les quinze premiers chiffres du numéro d'une carte bancaire. Montrer qu'il existe une clé *c* rendant ce numéro de carte correct et que cette clé est unique.

Solution : Soit u le chiffre des unités de la somme I+PSi u=0 alors seul c=0 convient pour que S soit multiple de 10Si u>0 alors seul c=10-u convient pour que S soit multiple de 10Finalement il existe bien une unique clé c rendant le numéro de carte correct.

3. Un numéro de carte dont les chiffres sont tous égaux peut-il être correct? Si oui, donner tous les numéros de carte possibles de ce type.

Solution : Soit a l'unique chiffre représenté alors les restes R sont tous égaux à 2a si $a \leq 4$

et égaux à 2a - 9 si $a \ge 5$

on a c = a

	$a \leqslant 4$	$a \geqslant 5$
I	16 <i>a</i>	16a - 72
P	7 <i>a</i>	7 <i>a</i>
S = I + P + c	24 <i>a</i>	24(a-3)
$S \equiv 0(10) \iff a =$	0	8

Les numéros de cartes possibles sont donc :

0000 0000 0000 0000

8888 8888 8888 8888

4. On effectue le test suivant : on intervertit deux chiffres consécutifs distincts dans un numéro de carte correct et on vérifie si le numéro obtenu reste correct.

On a trouvé une situation où ce n'est pas le cas, l'un des deux chiffres permutés valant 1.

Peut-on déterminer l'autre chiffre permuté?

Solution: Prenons deux numéros corrects:

1300 0000 0000 0005 et 8100 0000 0000 0002. Pour chacun de ces numéro, on a S = 10

Après l'inversion, ces numéros deviennent :

3100 0000 0000 0005 et 1800 0000 0000 0002. Pour chacun de ces nouveaux numéros, on a S=12

On a la même évolution de S avec deux chiffres a différents, on voit donc que l'on ne peut pas déterminer le chiffre inconnu.