Recall: Let A be a nonempty open subset of \mathbb{R} . $x_0 \in A$. Then we say f is differentiable at x_0 if the limit

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

exists.

• **Definition:** Let D be a nonempty open subset of \mathbb{C} . $z_0 \in D$. Then f is differentiable at z_0 if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

exists. The value of the limit is denoted by $f'(z_0)$ and is called the derivative of f at the point z_0 .

- Let $f(z) = z^2$. Then $f(z + h) f(z) = 2zh + h^2$ and hence the above limit is 2z. In general, $\frac{d}{dz}(z^n) = nz^{n-1}$, $n \in \mathbb{N}$.
- If $g(z) = \overline{z}$ then the function g is not differentiable anywhere in \mathbb{C} . As

$$\lim_{h\to 0}\frac{g(z+h)-g(z)}{h}=\lim_{h\to 0}\frac{\overline{h}}{h}$$

does not exist.

• If f is differentiable at z_0 then f is continuous at z_0 .

Proof: Since
$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 it follows that
$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0) + f(z_0) = f(z_0).$$

Derivative of a constant function is zero.

Suppose f,g be differentiable at z_0 and $\alpha,\beta\in\mathbb{C}$. Then

• If
$$h(z) = f(z)g(z)$$
, then $h'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$

• If
$$f(z) = \frac{g(z)}{h(z)}$$
 and $h(z_0) \neq 0$, then

$$f'(z_0) = \frac{g'(z_0)h(z_0) - g(z_0)h'(z_0)}{[h(z_0)]^2}.$$

• (Chain Rule) $\frac{d}{dz}f(g(z)) = f'(g(z))g'(z)$ whenever all the terms make sense.

Let D be an open subset of $\mathbb C$ and $f:D\to\mathbb C$ such that

$$f(z) = f(x + iy) = u(x, y) + iv(x, y).$$

Let $z_0 = x_0 + iy_0 \in D$ then

•
$$u_x(x_0, y_0) = \lim_{h \to 0} \frac{u(x_0 + h, y_0) - u(x_0, y_0)}{h}$$
.

•
$$u_y(x_0, y_0) = \lim_{k \to 0} \frac{u(x_0, y_0 + k) - u(x_0, y_0)}{k}$$
.

Analogously one can define $v_x(x_0, y_0)$, $v_y(x_0, y_0)$ and higher order partial derivatives of u and v at (x_0, y_0) .

Theorem Suppose that f(z) = f(x + iy) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$. Then the partial derivatives of u and v exist at the point $z_0 = (x_0, y_0)$ and

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) = v_y(x_0, y_0) - iu_y(x_0, y_0).$$

Thus equating the real and imaginary parts we get

$$u_x = v_y$$
, $u_y = -v_x$, at $z_0 = x_0 + iy_0$ (Cauchy Riemann equations).

Proof. Since f is differentiable at z_0 letting $h = h_1 + ih_2$ tending to 0 in two different paths we get the same limit.

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h_1, y_0) - u(x_0, y_0) + i[v(x_0 + h_1, y_0) - v(x_0, y_0)]}{h}$$

$$= u_x(x_0, y_0) + iv_x(x_0, y_0), \quad [h_1 \to 0, h_2 = 0]$$

and

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0, y_0 + h_2) - u(x_0, y_0) + i[v(x_0, y_0 + h_2) - v(x_0, y_0)]}{ih}$$

$$= \lim_{h \to 0} \frac{v(x_0, y_0 + h_2) - v(x_0, y_0)}{h} - i \lim_{h \to 0} \frac{u(x_0, y_0 + h_2) - u(x_0, y_0)}{h}$$

$$= v_y(x_0, y_0) - iu_y(x_0, y_0) \quad [h_1 = 0, h_2 \to 0].$$

Thus equating the real and imaginary parts of $f'(z_0)$ we get

$$u_x(x_0, y_0) = v_y(x_0, y_0), \ u_y(x_0, y_0) = -v_x(x_0, y_0),$$
 (Cauchy Riemann equations).

Summary:

- f is differentiable at z₀ ⇒ partial derivatives of u and v exist at the point z₀ and f satisfies Cauchy Riemann equations.
- The partial derivatives of u and v exist at the point z₀ = (x₀, y₀) but f
 DOES NOT satisfy Cauchy Riemann equations ⇒ f is NOT differentiable at z₀.
- Take $f(z) = |z|^2$. Let $z_0 = (x_0, y_0) \neq (0, 0)$. Here $u(x, y) = x^2 + y^2$ and V(x, y) = 0. Then

$$u_x(x_0, y_0) = 2x_0, u_y(x_0, y_0) = 2y_0, v_x(x_0, y_0) = 0 = v_y(x_0, y_0)$$

f does NOT satisfy Cauchy Riemann equations and hence not differentiable at z_0 .

• f satisfies Cauchy Riemann equations at $z_0 \implies f$ is differentiable at z_0 .

Example: Let

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{(x, y) \to (0, 0)} \frac{\left(\frac{x^3 - 3xy^2}{x^2 + y^2} + i \frac{y^3 - 3x^2y}{x^2 + y^2}\right) - 0}{x + iy - 0}$$

Let z approach 0 along the x-axis. Then, we have

$$\lim_{(x, 0)\to(0, 0)} \frac{x-0}{x-0} = 1.$$

Let z approach 0 along the line y = x. This gives

$$\lim_{(x, x) \to (0, 0)} \frac{-x - ix}{x + ix} = -1.$$

Since the limits are distinct, we conclude that f is not differentiable at the origin.

$$u_x(0, 0) = \lim_{x \to 0} \frac{u(x, 0) - u(0, 0)}{x - 0} = \lim_{x \to 0} \frac{x - 0}{x} = 1.$$

In a similar fashion, one can show that

$$u_y(0, 0) = 0,$$
 $v_x(0, 0) = 0$ and $v_y(0, 0) = 1$.

Hence the function satisfies the Cauchy-Riemann equations $u_x = v_y$, $u_y = -v_x$ at the point z = 0.

Cauchy-Riemann equation in polar form

• Let $f(z) = f(re^{i\theta}) = u(r,\theta) + iv(r,\theta)$. The polar form of Cauchy Riemann equation can be obtained as follows:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

• **Result:** Let D be a domain in \mathbb{C} . If $f:D\subseteq\mathbb{C}\to\mathbb{C}$ is such that f'(z)=0 for all $z\in D$, then f is a constant function.

Sufficient condition for Differentiability

Theorem Let the function f = u + iv be defined on $B(z_0, r)$ such that u_x, u_y, v_x, v_y exist on $B(z_0, r)$ and are continuous at z_0 . If u and v satisfies CR equations then $f'(z_0)$ exist and $f'(z_0) = u_x(z_0) + iv_x(z_0)$.

Exercise: Using the above result we can immediately check that the functions

$$(x + iy) = e^{-y} \cos x + ie^{-y} \sin x$$

are differentiable everywhere in the complex plane.