Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université de Paris L2 Informatique & DL Bio-Info, Jap-Info, Math-Info Année universitaire 2020-2021

ALGORITHMES POUR LES ENSEMBLES

recherche(x, L)

recherche(x, L)

```
def recherche_sequentielle(x, L) :
  for elt in L :
    if elt == x : return True
  return False

(remarque : c'est ce que fait le test (x in L))
```

recherche(x, L)

```
variante : retourner une position où x apparaît
def recherche_sequentielle(x, L) :
   for (i, elt) in enumerate(L) :
     # liste des couples (position, contenu)
   if elt == x : return i
   return -1
```

recherche(x, L)

```
variante : retourner une position où x apparaît

def recherche_sequentielle(x, L) :
    for (i, elt) in enumerate(L) :
        # liste des couples (position, contenu)
        if elt == x : return i
        return -1

(remarque : c'est très exactement ce que fait L.index(x))
```

occurrences(x, L)

Étant donné une liste L et un élément x, compter les occurrences de x dans L

occurrences(x, L)

Étant donné une liste L et un élément x, compter les occurrences de x dans L

```
def occurrences(x, L) :
    res = 0
    for elt in L :
        if elt == x : res += 1
    return res

(remarque : c'est ce que fait L.count(x))
```

max(L)

Étant donné une liste L contenant des éléments *comparables*, déterminer le plus grand élément qui apparaît dans L

max(L)

Étant donné une liste L contenant des éléments *comparables*, déterminer le plus grand élément qui apparaît dans L

```
def max(L) :
  tmp = L[0]
  for elt in L :
    if elt > tmp : tmp = elt
  return tmp
```

opération(s) élémentaire(s)

- déplacements dans la liste
- comparaisons d'éléments
- (parfois) affectations, incrémentations de compteurs

opération(s) élémentaire(s)

- déplacements dans la liste
- comparaisons d'éléments
- (parfois) affectations, incrémentations de compteurs

toutes effectuées en nombre équivalent

⇒ pour simplifier, on ne compte que les *comparaisons*

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

occurrences(x, L)
$$\Longrightarrow n = \Theta(n)$$
 comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

$$\implies n = \Theta(n)$$
 comparaisons

recherche_sequentielle(x, L)

⇒ selon les cas, entre 1 et n comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

$$\implies n = \Theta(n)$$
 comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

 \implies on ne peut plus parler de « la » complexité

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

$$\implies$$
 $n = \Theta(n)$ comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

- ⇒ on ne peut plus parler de « la » complexité
 - ullet $\Theta(n)$ comparaisons au pire en particulier dans le cas défavorable

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

occurrences(x, L)
$$\Longrightarrow$$
 n =

 \implies $n = \Theta(n)$ comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

- ⇒ on ne peut plus parler de « la » complexité
 - $\Theta(n)$ comparaisons au pire en particulier dans le cas défavorable
 - $\frac{n+1}{2} = \Theta(n)$ en moyenne dans le cas favorable (sous l'hypothèse que la position de l'élément cherché suit la probabilité uniforme)

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

$$\implies n = \Theta(n)$$
 comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

⇒ on ne peut plus parler de « la » complexité

- \bullet $\Theta(n)$ comparaisons au pire en particulier dans le cas défavorable
- $\frac{n+1}{2} = \Theta(n)$ en moyenne dans le cas *favorable*
- Θ(n) comparaisons en moyenne

Peut-on faire mieux que $\Theta(n)$?

max(T)

Étant donné un tableau T $tri\acute{e}$, déterminer le plus grand élément qui apparaît dans T

max(T)

Étant donné un tableau T $tri\acute{e}$, déterminer le plus grand élément qui apparaît dans T

```
def max_si_trie(T) :
   if len(T) == 0 : return None
   return T[-1]
```

max(T)

Étant donné un tableau T $tri\acute{e}$, déterminer le plus grand élément qui apparaît dans T

```
def max_si_trie(T) :
   if len(T) == 0 : return None
   return T[-1]
```

```
\implies \Theta(1) comparaisons
```

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

Idée n° 1 : interrompre la recherche séquentielle

```
def recherche_sequentielle(x, L) :
  for elt in L :
    if elt == x : return True
    else if elt > x : return False
  return False
```

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

Idée n° 1 : interrompre la recherche séquentielle

```
def recherche_sequentielle(x, L) :
  for elt in L :
    if elt == x : return True
    else if elt > x : return False
  return False
```

 \implies cas favorable inchangé, et tout de même $\Theta(n)$ comparaisons au pire et en moyenne dans le cas défavorable

recherche(x, T)

Étant donné un *tableau* T *trié* et un élément x, déterminer si x apparaît dans T

```
Idée n° 2 : la dichotomie (stratégie « diviser pour régner »)
```

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

 $C(n) = 2 + C(\lfloor \frac{n}{2} \rfloor)$ comparaisons (au pire) pour T de taille n

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

$$C(n) = 2 + C(\lfloor \frac{n}{2} \rfloor)$$
 comparaisons (au pire) pour T de taille n

 $\implies \Theta(\log n)$ comparaisons au pire

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

$$C(n) = 2 + C(\lfloor \frac{n}{2} \rfloor)$$
 comparaisons (au pire) pour T de taille n

 $\implies \Theta(\log n)$ comparaisons au pire

mais cette implémentation n'est pas de complexité $\Theta(\log n)$ à cause des recopies de tableaux \implies il faut être plus soigneux

pour éviter les recopies, il faut toujours passer le même tableau en paramètre, ainsi que des indices indiquant quelle est la portion à traiter

convention: debut inclus, fin exclu (comme range par exemple)

(les \ en fin de ligne permettent de poursuivre sur la ligne suivante)

```
def recherche_dicho(x, T, debut=0, fin=None) :
   if fin == None : fin = len(T)
   if fin-debut == 0 : return False
   milieu = (debut+fin) // 2
   return True if x == T[milieu]\
     else recherche_dicho(x, T, debut, milieu) if x < T[milieu]\
     else recherche_dicho(x, T, milieu+1, fin)</pre>
```

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   res = []
   for elt in L :
      if not recherche(elt, res) : res += [elt]
   return res
```

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   res = []
   for elt in L :
      if not recherche(elt, res) : res += [elt]
   return res
```

n tours de boucle, le i^e faisant $\Theta(i)$ comparaisons (au pire)

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   res = []
   for elt in L :
      if not recherche(elt, res) : res += [elt]
   return res
```

n tours de boucle, le i^e faisant $\Theta(i)$ comparaisons (au pire)

```
\Longrightarrow \Theta(n^2) comparaisons (au pire)
```

Supprimer les doublons d'une liste triée

sans_doublons(L)

Étant donné une liste L tri'ee, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

Supprimer les doublons d'une liste triée

sans_doublons(L)

Étant donné une liste L *triée*, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   if len(L) == 0 : return []
   res = [L[0]]
   for elt in L[1:] :
      if elt != res[-1] : res += [elt]
      # res[-1] : dernier élément de res
   return res
```

Supprimer les doublons d'une liste triée

sans_doublons(L)

Étant donné une liste L *triée*, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   if len(L) == 0 : return []
   res = [L[0]]
   for elt in L[1:] :
      if elt != res[-1] : res += [elt]
      # res[-1] : dernier élément de res
   return res
```

 $\Longrightarrow \Theta(n)$ comparaisons dans tous les cas

RÉCAPITULONS...

	liste chaînée		tableau	
	non triée	triée	non trié	trié
minimum/maximum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
test d'appartenance	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
nombre d'occurrences	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
sans doublons	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n})$	$\Theta(n^2)$	$\Theta(\mathfrak{n})$
sélection du ke	Θ(kn)	$\Theta(k)$	$\Theta(kn)$	Θ(1)

RÉCAPITULONS...

	liste chaînée		tableau	
	non triée	triée	non trié	trié
minimum/maximum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
test d'appartenance	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
nombre d'occurrences	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
sans doublons	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n})$
sélection du k ^e	$\Theta(kn)$	$\Theta(k)$	Θ(kn)	Θ(1)

Moralité...

peut-être que ça vaut le coup de trier les listes!

TRIER UNE LISTE

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

TRIER UNE LISTE

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

tri_en_place(L)

Étant donné une liste L d'éléments comparables, réordonner les éléments de L en ordre croissant

(sans création de liste supplémentaire)

Exemple:

3 5 1 7 4 6 2

Exemple:

 $oxed{1}$

Exemple:

 $oldsymbol{1}$

Exemple:

 $oldsymbol{1}iggl]iggl[oldsymbol{2}$

Exemple:

 $egin{bmatrix} m{1} \end{bmatrix} m{2}$

Exemple:

 $egin{bmatrix} m{1} \end{bmatrix} m{2}$

Exemple:

 $egin{array}{c} 1 \ 2 \ 3 \ \end{array}$

Exemple:

 $egin{bmatrix} 1 \ \end{bmatrix} egin{bmatrix} 2 \ \end{bmatrix} egin{bmatrix} 3 \ \end{bmatrix}$

Exemple:

5 7

 $oxed{1} oxed{2} oxed{3} oxed{4}$

Exemple:

 $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$

Exemple:

 $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$

Exemple:

7][6

 $\boxed{1} \boxed{2} \boxed{3} \boxed{4} \boxed{5}$

Exemple:

 $\boxed{1} \boxed{2} \boxed{3} \boxed{4} \boxed{5}$

Exemple:

7

1 2 3 4 5 6

Exemple:

1 2 3 4 5 6 7

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

```
def tri_selection(L) :
  res = []
  while(L != []) :
    m = minimum(L)
    L.remove(m)
    res.append(m)
  return res
```

Tri par sélection

tri_en_place(L)

Étant donné une liste L d'éléments comparables, réordonner les éléments de L en ordre croissant

```
def tri_selection(T) :
  for i in range(len(T)) :
    min = indice_minimum(T, i)
    # indice du plus petit élément de T[i:]
    T[i], T[min] = T[min], T[i]
  return T
```

TRIER UNE LISTE

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

Taille de l'entrée

= longueur de la liste

Opérations élémentaires prises en compte

- comparaisons entre éléments de la liste
- échanges d'éléments de la liste

Exemple:

 $oxed{3} oxed{5} oxed{1} oxed{7} oxed{4} oxed{6} oxed{2}$

```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```



```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

```
5 1 7 4 6 2
```

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

Exemple:

5 1 7 4 6 2

 $oxed{3}$

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

Exemple:

17462

```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

 $oxed{3} oxed{5}$

```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

7 4 6 2

1 3 5

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```



```
oxed{1} oxed{3} oxed{5}
```

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```



```
1 3 5 7
```

```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```



```
\boxed{1}\ \boxed{3}\ \boxed{5}\ \boxed{7}
```

```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

```
1 3 4 5 7
```

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

Exemple:


```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:


```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

Exemple:

```
1 3 4 5 6 7
```

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

```
1 2 3 4 5 6 7
```

```
def tri_insertion(L) :
   res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

1 2 3 4 5 6 7

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

```
def tri_insertion(L) :
    res = []
    for elt in L : insertion_triee(elt, res)
    return res

def insertion_triee(x, L) :
    for elt in L :
        if x < elt : break
    ## insertion de x avant elt dans L
    return res</pre>
```

```
def insertion_triee(x, L) :
  for elt in L :
    if x < elt : break
## insertion de x avant elt dans L
  return res</pre>
```

Cas d'une liste chaînée

insertion par modification du chaînage

Cas d'un tableau

insertion par déplacements multiples

```
def insertion_triee(x, L) :
   for elt in L :
     if x < elt : break
   ## insertion de x avant elt dans L
   return res</pre>
```

Cas d'une liste chaînée

insertion par modification du chaînage

 \implies coût constant

Cas d'un tableau

insertion par déplacements multiples

 \implies coût linéaire

```
3 5 1 7 4 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 5 7 4 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```

```
1 3 5 7 4 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 5 7 4 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 5 4 7 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1345762
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 5 7 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 5 6 7 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 5 6 7 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1345627
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
    1
    3
    4
    5
    2
    6
    7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 2 5 6 7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 2 4 5 6 7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 2 3 4 5 6 7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

Remarque: pour avoir un « meilleur cas » en $\Theta(n)$, il est important d'effectuer le parcours de droite à gauche – sinon la complexité serait $\Theta(n^2)$ dans tous les cas.

COMPLEXITÉ

Tri par sélection $\Theta(n^2)$ comparaisons dans tous les cas

Tri par insertion $\Theta(n^2)$ comparaisons *au pire*

Questions

- peut-on être plus précis pour le tri par insertion?
- peut-on faire mieux que $\Theta(n^2)$ au pire?