PMATH352W18 Complex Analysis - Class Notes

Johnson Ng

January 19, 2018

Contents

1	Lecture 1 Jan 3 2018 1.1 Complex Numbers and Their Properties	4 4
2	Lecture 2 Jan 5th 2018 2.1 Complex Numbers and Their Properties (Continued)	11 11
3	Lecture 3 Jan 8th 2018 3.1 Complex Numbers and Their Properties (Continued 2)	15 15 18
4	Lecture 4 Jan 10th 2018 4.1 Examples for nth Roots of Unity	21 21
5	Lecture 5 Jan 12 2018 5.1 Complex Functions	27 27 27 29
6	Lecture 6 Jan 15th 2018 6.1 Continuity (Continued) 6.2 Differentiability 6.2.1 Cauchy-Riemann Equations	
7	Lecture 7 Jan 17 2018 7.1 Differentiability (Continued)	36 36 36 38
	Lecture 8 Jan 19 2018 8.1 Power Series (Continued)	40

List of Definitions

1.1.1	Complex Number, Complex Plane
1.1.2	Sum and Product
1.1.3	Conjugate
1.1.4	Modulus
3.1.1	Argument of a Complex Number
5.1.1	Convergence
5.1.2	Convergence for Complex Functions
5.1.3	Continuity
6.2.1	Neighbourhood
6.2.2	Differentiable/Holomorphic
7.1.1	Power Series

List of Theorems

Proposition 1.1.1	Basic Inequalities	8
Proposition 3.1.1	nth Roots of a Complex Number	18
Theorem 6.2.1	Cauchy-Riemann Equations	3
Theorem 7.1.1	Conditional Converse of CRE	3'
Theorem 8.1.1	Convergence in the Radius of Convergence	40
Proposition 8.1.1	A Property of limsup	40
Theorem 8.1.2	Power function, holomorphic function, region of convergence.	4

Chapter 1

Lecture 1 Jan 3 2018

1.1 Complex Numbers and Their Properties

Definition 1.1.1 (Complex Number, Complex Plane)

A complex number is a vector in \mathbb{R}^2 . The complex plane, denoted by \mathbb{C} , is a set of complex numbers,

$$\mathbb{C} = \mathbb{R}^2 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

In \mathbb{C} , we usually write

$$0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$i = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad x = \begin{pmatrix} x \\ 0 \end{pmatrix}$$
$$iy = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

where $x, y \in \mathbb{R}$. Consequently, we have that

$$x + iy = x + yi = \begin{pmatrix} x \\ y \end{pmatrix}$$

If for $x, y \in \mathbb{R}$, z = x + iy, then x is called the **real part** of z and y is called the **imaginary part** of z, and we write

$$Re(z) = x \quad Im(z) = y.$$

Note

• It is easy to see how \mathbb{R} is a subset of \mathbb{C} .

- Complex Numbers of the form $\begin{pmatrix} 0 \\ y \end{pmatrix}$ where $y \in \mathbb{R}$ are called **purely imaginary numbers**.
- Certain authors may prefer to denote $i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Definition 1.1.2 (Sum and Product)

We define the sum of two complex numbers to be the usual vector sum, i.e.

$$(a+ib) + (c+id) = \binom{a}{b} + \binom{c}{d}$$
$$= \binom{a+c}{b+d}$$
$$= (a+c) + i(b+d)$$

where $a, b, c, d \in \mathbb{R}$.

We define the product of two complex numbers by setting $i^2 = -1$, and by requiring the product to be **commutative**, **associative**, **and distributive** over the sum. In this setup, we have that

$$(a+ib)(c+id) = ac + iad + ibc + i^{2}bd$$
$$= (ac - bd) + i(ad + bc)$$
(1.1)

Note

It is interesting to note that any complex number times zero is zero, just like what we have with real numbers.

$$\forall z = x + iy \in \mathbb{C} \ x, y \in \mathbb{R} \ 0 \in \mathbb{C}$$
$$z \cdot 0 = (x + iy)(0 + i0) = 0 + i0 = 0$$

Example 1.1.1

Let z = 2 + i, w = 1 + 3i. Find z + w and zw.

$$z + w = (2+i) + (1+3i)$$
$$= 3+4i$$

$$zw = (2+i)(1+3i)$$

= $(2-3) + i(6+1)$ By Equation (1.1)
= $-1 + 7i$

Example 1.1.2

Show that every non-zero complex number has a multiplicative inverse, z^{-1} , and find a formula for this inverse.

Let z = a + ib where $a, b \in \mathbb{R}$ with $a^2 + b^2 \neq 0$. Then

$$z(x+iy) = 1$$

$$\iff (ax - by) + i(ay + bx) = 1$$

$$\iff \begin{pmatrix} ax - by \\ ay + bx \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a \\ -b \end{pmatrix}$$

$$\iff x + iy = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$

Therefore, we have that the formula for the inverse is

$$(a+ib)^{-1} = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$
(1.2)

Notation

For $z, w \in \mathbb{C}$, we write

$$-z = -1z$$
 $w - z = w + (-z)$
 $\frac{1}{z} = z^{-1}$ $\frac{w}{z} = wz^{-1}$

Example 1.1.3 Find $\frac{(4-i)-(1-2i)}{1+2i}$.

$$\frac{(4-i)-(1-2i)}{1+2i} = \frac{3+i}{1+2i}$$
$$= (3+i)(\frac{1}{5}-i\frac{2}{5})$$
$$= 1-i$$

Note

The set of complex numbers is a field under the operations of addition and multiplication. This means that $\forall u, v, w \in \mathbb{C}$,

Since the distributive law holds for complex numbers, note that the **binomial expansion** works for $(w+z)^n$ where $w,z \in \mathbb{C}$ and $n \in \mathbb{N}$. (I did not verify if this is still true for when $n \in \mathbb{R}$.)

Definition 1.1.3 (Conjugate)

If z = x + iy where $x, y \in \mathbb{R}$, then the conjugate of z is given by $\bar{z} = x - iy$

Example 1.1.4

Let z=3+4i. Then the $\bar{z}=3-4i$. Represented in the complex plane, we have the following:

We observe that on the complex plane, the conjugate of a complex number is simply its reflection on the real axis.

Definition 1.1.4 (Modulus)

We define the **modulus** (length, magnitude) of $z = x + iy \in \mathbb{C}, x, y \in \mathbb{R}$, to be

$$|z| = \sqrt{x^2 + y^2} \in \mathbb{R}.\tag{1.3}$$

Note

Note that this definition is consistent with the notion of the absolute value in real numbers when z is a real number, since if y = 0, $|z| = |x + i0| = \sqrt{x^2} = \pm x$.

Note

For $z, w \in \mathbb{C}$ and $n \in \mathbb{N}$, we have

$$\bar{z} = z \qquad z + \bar{z} = 2 \operatorname{Re}(z) \qquad z - \bar{z} = 2i \operatorname{Im}(z)
z\bar{z} = |z|^2 \qquad |z| = |\bar{z}| \qquad \overline{z \pm w} = \bar{z} \pm \overline{w}
\bar{z}\overline{w} = \bar{z}\overline{w} \qquad |zw| = |z| |w| \qquad \bar{z}^n = \bar{z}^{\bar{n}}$$

but note that $|z+w| \neq |z| + |w|$.

Also, note that the last equation is a generalization of the highlighted equation.

Note

While inequalities such as $z_1 < z_2$, where $z_1, z_2 \in \mathbb{C}$, are meaningless unless if both of them are real, $|z_1| < |z_2|$ means that the point z_1 in the complex plane is closer to the origin than the point z_2 .

Proposition 1.1.1 (Basic Inequalities)

- 1. $|\operatorname{Re}(z)| \leq |z|$
- 2. $|\text{Im}(z)| \le |z|$
- 3. $|z+w| \le |z| + |w|$ Triangle Inequality
- 4. $|z+w| \ge ||z|-|w||$ Inverse Triangle Inequality

Proof

Note that $|z|^2 = \text{Re}(z)^2 + \text{Im}(z)^2$ and that we can express $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$. 1 and 2 immediately follows from that.

To prove 3, we have that

$$|z + w|^{2} = (z + w)(\bar{z} + \bar{w})$$

$$= |z|^{2} + |w|^{2} + (w\bar{z} + \bar{w}z)$$

$$= |z|^{2} + |w|^{2} + 2\operatorname{Re}(w\bar{z})$$

$$\leq |z|^{2} + |w|^{2} + 2|w\bar{z}| \quad by \ 1$$

$$= |z|^{2} + |w|^{2} + 2|wz| \quad since \ |w\bar{z}| = |w| |\bar{z}| \quad and \ |z| = |\bar{z}|$$

$$= (|z| + |w|)^{2}$$

To prove 4, note that

$$|z| = |z + w - w| \le |z + w| + |w| \tag{1.4}$$

$$|w| = |w + z - z| \le |z + w| + |z| \tag{1.5}$$

Observe that

Equation (1.4)
$$\Longrightarrow |z| - |w| \le |z + w|$$

Equation (1.5) $\Longrightarrow |w| - |z| \le |z + w|$

Thus, we have that

$$|z+w| \ge ||z| - |w||$$

as required.

Item 3 in Proposition 1.1.1 can be generalized by the means of mathematical induction to sums involving any finite number of terms, as:

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n| \tag{1.6}$$

where $n \in \mathbb{N} \setminus \{0, 1\}$.

To note the induction proof, when n = 2, Equation (1.6) is just Item 3. If Equation (1.6) is true for when n = m where $m \in \mathbb{N} \setminus \{0, 1\}$, n = m + 1 is also true since by Item 3,

$$|(z_1 + z_2 + \ldots + z_m) + z_{m+1}| \le |z_1 + z_2 + \ldots + z_m| + |z_{m+1}|$$

 $\le (|z_1| + |z_2| + \ldots + |z_m|) + |z_{m+1}|.$

The distance between two points $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \in \mathbb{C}, x_1, x_2, y_1, y_2 \in \mathbb{R}$ is $|z_1 - z_2|$, since $|z_1 - z_2| = \sqrt{(x_1 - x_2)^2(y_1 - y_2)^2}$ is our usual notion of the Euclidean distance of two points on a plane.

Also, note that

$$z_1 - z_2 = z_1 + (-z_2)$$

and thus if we apply our knowledge of vector representation, $z_1 - z_2$ is the directed line segment from the point z_2 to z_1 .

With the notion of a "distance" set on the complex plane, we can now explore upon points lying on a circle with a center z_0 and radius R, which satisfies the equation

$$|z - z_0| = R.$$

We may simply refer to this set of points as the circle $|z - z_0| = R$.

10

Example 1.1.5

We may describe a set $\{z \in \mathbb{C} : |z-i| = 1\}$ as follows:

Let $a, b \in \mathbb{C}$ describe the set $\{z \in \mathbb{C} : |z - a| < |z - b|\}.$

Suppose the following coordinates for a and b are arbitrary,

In the above, g is the line segment that connects the points a and b on the complex plane, while f is the perpendicular bisector of the line segment g. The area described by the set $\{z \in \mathbb{C} : |z-a| < |z-b|\}$ is the shaded area which is below f.

Chapter 2

Lecture 2 Jan 5th 2018

2.1 Complex Numbers and Their Properties (Continued)

Example 2.1.1

Let $a \in \mathbb{C}$. Describe the set $\{z \in \mathbb{C} : 1 < |z - a| < 2\}$.

Example 2.1.2

Show that every non-zero complex number has exactly two complex square roots, and find a formula for the square roots.

Let $z = x + iy \in \mathbb{C}, x, y \in \mathbb{R}$, and let $w = u + iv, u, v \in \mathbb{R}$. Then

$$w^{2} = z \iff (u + iv)^{2} = x + iy$$

$$\iff (u^{2} - v^{2}) + i(2uv) = x + iy$$

$$\iff x = u^{2} + v^{2} \quad and$$

$$y = 2uv$$
(2.1)

Square both sides of Equation (2.2), and thus we have $y^2 = 4u^2v^2$.

Multiply Equation (2.1) by $4u^2$, and we get

$$4u^{2}x = 4u^{4} - 4u^{2}v^{2} = 4u^{4} - y^{2}$$

$$\iff 0 = 4u^{4} - 4u^{2}x - y^{2}$$

$$\iff u^{2} = \frac{4x \pm \sqrt{16x^{2} + 16y^{2}}}{8}$$

$$= \frac{x \pm \sqrt{x^{2} + y^{2}}}{2}$$

Suppose $y \neq 0$. Note that $x < \sqrt{x^2 + y^2}$. Thus $u^2 = \frac{x + \sqrt{x^2 + y^2}}{2} \implies u = \left(\frac{x + \sqrt{x^2 + y^2}}{2}\right)^{\frac{1}{2}}$.

Similarly, we can get

$$v = \pm \left(\frac{-x + \sqrt{x^2 + y^2}}{2}\right)^{\frac{1}{2}}$$

Note that all four choices of signs satisfy Equation (2.1). If y > 0, then u and v are either both positive or both negative by Equation (2.2).

Suppose y = 0. Then we have

$$w^2 = z = x$$

Therefore, we get

$$w = \begin{cases} \pm \left[\left(\frac{x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} + i \left(\frac{-x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} \right] & y > 0 \\ \pm \left[\left(\frac{x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} \right] & y < 0 \\ \pm \sqrt{x} & y = 0, x > 0 \\ \pm i \sqrt{x} & y = 0, x < 0 \end{cases}$$

Remark

Let $z \in \mathbb{C}$. The notation \sqrt{z} may represent either one of the square roots of z or both of the square roots, i.e. it is possible that \sqrt{z} represents a set.

Exercise 2.1.1

Is it always okay for complex numbers such that $\sqrt{zw} = \sqrt{z}\sqrt{w}$, for $z, w \in \mathbb{C}$?

No. For example, consider z = w = -1. Then we have

$$\sqrt{zw} = \sqrt{1} = \pm 1$$

while

$$\sqrt{z}\sqrt{w} = i \cdot i = -1$$

and thus

$$\sqrt{zw} \neq \sqrt{z}\sqrt{w}$$
.

Example 2.1.3

Find the values of $\sqrt{3-4i}$.

By Example 2.1.2,

$$\sqrt{3-4i} = \pm \left(\sqrt{\frac{3+\sqrt{9+16}}{2}} - i\sqrt{\frac{-3+\sqrt{9+16}}{2}}\right)$$
$$= \pm (2-i)$$

Remark

The quadratic formula holds for complex polynomials, i.e.

$$\forall a, b, c \in \mathbb{C} \quad a \neq 0 \quad \forall z \in \mathbb{C} \ az^2 + bz + c = 0.$$

the solution for z is given by

$$z_{1,2} = \frac{-b + \sqrt{b^2 - 4ac}}{b} \tag{2.3}$$

The following is a short proof.

Proof

$$az^{2} + bz + c = 0 \iff z^{2} + \frac{b}{a}z + \frac{c}{a} = 0$$

$$\iff z^{2} + \frac{b}{a}z + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} = 0$$

$$\iff \left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$\iff z = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

(Personal Note: where did the - for the supposed \pm go? Or should it really be \pm ?)

Example 2.1.4

Solve $iz^2 - (2+3i)z + 5(1+i) = 0$.

$$z = \frac{2 + 3i + \sqrt{(2+3i)^2 - 4i[5(1+i)]}}{2i}$$

$$= \frac{2 + 3i + \sqrt{-5 + 12i - 20i + 20}}{2i}$$

$$= \frac{2 + 3i + \sqrt{15 + 8i}}{2i}$$

Note that by Example 2.1.2,

$$\sqrt{15 - 8i} = \pm \left[\sqrt{\frac{15 + \sqrt{225 + 64}}{2}} - i\sqrt{\frac{-15 + \sqrt{225 + 64}}{2}} \right]$$
$$= \pm \left[\sqrt{\frac{15 + 17}{2}} - i\sqrt{\frac{-15 + 17}{2}} \right]$$
$$= \pm (4 - i)$$

Thus we have

$$\begin{split} z &= \frac{2 + 3i + \sqrt{15 + 8i}}{2i} \\ &= \frac{2 + 3i \pm (4 - i)}{2i} \\ &= (6 + 2i) \left(-\frac{1}{2}i\right) \ or \ (-2 + 4i) \left(-\frac{1}{2}i\right) \ by \ Example \ 1.1.2 \\ &= (1 - 3i) \ or \ (2 + i) \end{split}$$

Chapter 3

Lecture 3 Jan 8th 2018

3.1 Complex Numbers and Their Properties (Continued 2)

Definition 3.1.1 (Argument of a Complex Number)

Let $z \in \mathbb{C} \setminus \{0\}$. The argument (or the angle) of z, denoted by $\arg z$, $\operatorname{Arg} \overline{z}$, or simply $\theta = \theta(z)$, is the angle modulo 2π (i.e. $0 \le \theta < 2\pi$) between the vector defining z and the positive real axis (in the counterclockwise direction).

Notation

Let $e^{i\theta} := \cos \theta + i \sin \theta$. Note that this definition, called **Euler's formula**, can be derived by the extending the Taylor expansion of $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for when $x \in \mathbb{C}$ (the sum of the real parts of the expansion is the Taylor expansion of cosine while the imaginary part for sine).

Now $e^{i\theta}$ is on the unit circle.

Remark

If z = 0, the coordinate θ is undefined, and so it is implied that $z \neq 0$ whenever we use the polar form.

Example 3.1.1

Some examples of $\theta \in [0, 2\pi)$:

$$\begin{array}{ll} e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} & e^{i\frac{\pi}{2}} = i \\ e^{i\frac{3\pi}{4}} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} & e^{i\pi} + 1 = 0 \end{array}$$

Remark

$$\forall k \in \mathbb{Z} \ \forall \theta \in \mathbb{R} \ e^{i\theta} = e^{i(\theta + 2\pi k)}$$

Remark

The complex number $re^{i\theta}$, where $r > 0, \theta \in [0, 2\pi)$, represents the complex number with modulus r and argument θ .

Therefore, $\forall z \in \mathbb{C}$, we can express

$$z := |z| e^{i \operatorname{Arg} z}. \tag{3.1}$$

With that, we now have two representations of a complex number:

- Cartesian representation: z = x + iy where x = Re(z) and y = Im(z)
- Polar representation: $z = re^{i\theta}$ where r = |z| and $\theta = \operatorname{Arg} z \in [0, 2\pi)$

To convert between the two representations, we have the following equations:

Polar \rightarrow Cartesian:

$$x = r\cos\theta \quad y = r\sin\theta \tag{3.2}$$

Cartesian \rightarrow Polar:

$$r = |z|$$

$$x \neq 0 \implies \tan \theta = \frac{y}{x}$$

$$x = 0 \implies \theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$
(3.3)

On another note,

$$z = re^{i\theta} \implies \bar{z} = re^{-i\theta}$$

and

$$z \neq 0 \implies \frac{1}{z} = \frac{1}{r}e^{-i\theta} \tag{3.4}$$

Remark

$$\forall r_1, r_2 \in \mathbb{R} \ \forall \theta_1, \theta_2 \in [0, 2\pi)$$

 $z_1 := r_1 e^{i\theta_1} \quad z_2 := r_2 e^{i\theta_2}$

Then

$$z_1 z_2 = r_1 r_2 e^{i\theta_1} e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Note that $e^{ix}e^{iy} = e^{i(x+y)}$ is true for all $x, y \in \mathbb{R}$ since

$$e^{ix}e^{iy} = (\cos x + i\sin x)(\cos y + i\sin y)$$

$$= (\cos x \cos y - \sin x \sin y) + i(\cos x \sin y + \cos y \sin x)$$

$$= \cos(x+y) + i\sin(x+y)$$

$$= e^{i(x+y)}.$$

Generalizing the above, we get that

$$\forall n \in \mathbb{Z} \ z = (re^{in}) = r^n e^{in\theta} \tag{3.5}$$

which is commonly known as **deMoivre's Law**. Note that by simply generalizing the above, all we have is that $n \in \mathbb{Z}^+$. But by Equation (3.4), we can have that for $n \in \mathbb{Z}^-$, let m = -n, and thus

$$z^n = \left[\frac{1}{r}e^{i(-\theta)}\right]^m = \left(\frac{1}{r}\right)^m e^{im(-\theta)} = \left(\frac{1}{r}\right)^{-n} e^{i(-n)(-\theta)} = r^n e^{i\theta}$$

This proves that deMoivre's Law also holds for when $n \in \mathbb{Z}^-$.

Observe that if r = 1, Equation (3.5) becomes

$$(e^{i\theta})^n = e^{in\theta} \quad \text{for all } n \in \mathbb{Z} \setminus \{0\}$$
 (3.6)

When written in the form

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \quad (n \in \mathbb{Z} \setminus \{0\})$$
(3.7)

this is known as deMoivre's formula.

Example 3.1.2

Equation (3.7) with n = 2 tells us that

$$(\cos\theta + i\sin\theta)^n = \cos 2\theta + i\sin 2\theta$$

or we can express the equation as

$$\cos^2 \theta - \sin^2 \theta + i2\sin \theta \cos \theta = \cos 2\theta + i\sin 2\theta$$

Equating real and imaginary parts, we have the familiar double angle trigonometric identities

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
, $\sin 2\theta = 2\sin \theta \cos \theta$.

3.1.1 Roots of Complex Numbers

Proposition 3.1.1 (nth Roots of a Complex Number)

$$\forall z = re^{i\theta} \in \mathbb{C} \ r = |z| \in \mathbb{R} \ \theta \in [0, 2\pi)$$
$$\exists w = se^{i\tau} \in \mathbb{C} \ s \in \mathbb{R} \ \tau \in [0, 2\pi)$$
$$\forall n \in \mathbb{Z}$$
$$w^n = (se^{i\tau})^n = z = re^{i\theta}$$

The nth roots of z is described by the set

$$\left\{ r^{\frac{1}{n}} e^{i\left(\frac{\theta + 2\pi k}{n}\right)} : k = 0, 1, ..., n - 1 \right\}$$
(3.8)

Proof

$$s^{n} = r \iff s = r^{\frac{1}{n}}$$

$$e^{in\theta} = e^{i\tau} \iff \theta = \frac{\tau + 2\pi k}{n}$$

Therefore, the set that describes the nth roots of z is

$$\left\{ w = r^{\frac{1}{n}} e^{i\left(\frac{\theta + 2\pi k}{n}\right)} : k = 0, 1, ..., n - 1 \right\}$$

Remark (nth Roots of Unity)

The nth roots of unity is a direct consequence of Proposition 3.1.1 where we solve for the equation $z^n = 1$ for any $z \in \mathbb{C}$, $n \in \mathbb{Z}$.

The set that describes the nth roots of unity is

$$\left\{ e^{i\theta} : \theta = \frac{2\pi k}{n}, k = 0, 1, ..., n - 1 \right\}$$
 (3.9)

It is easy to see how the nth roots of unity partitions the unit circle into n parts.

Example 3.1.3

Find the cubic roots of -2 + 2i.

Let
$$z=-2+2i$$
. Note that $|z|=2\sqrt{2}$ and $\operatorname{Arg} z=\frac{3\pi}{4}$.

Therefore, in polar form, $z = 2\sqrt{2}e^{i\frac{3\pi}{4}}$.

Let $w = re^{i\theta}$, where $\theta \in [0, 2\pi)$, and $w^3 = z$. Then

$$r = (2\sqrt{2})^{\frac{1}{3}}$$
 $\theta = \frac{\frac{3\pi}{4} + 2\pi k}{3}, \ k = 0, 1, 2$

The set that describes the cubic root of -2 + 2i is thus

$$\left\{ (2\sqrt{2})^{\frac{1}{3}}e^{i\theta}: \theta = \frac{\frac{3\pi}{4} + 2\pi k}{3}, k = 0, 1, 2 \right\}$$

Example 3.1.4

Describe the set $\{z \in \mathbb{C} : \left| \operatorname{Arg} z - \frac{\pi}{2} \right| < \frac{\pi}{2} \}$. (Note: $\operatorname{Arg} z \in [0, 2\pi)$)

Exercise 3.1.1

Solve

$$1 \quad z^4 = -1$$

$$Let \ z = re^{i\theta}$$

$$r = |-1| = 1 \quad \theta = \frac{\pi + 2\pi k}{4} = \frac{(2k+1)\pi}{4}, \ k = 0, 1, 2, 3$$

2.
$$z^4 = -1 + \sqrt{3}i$$

$$Let \ z = re^{i\theta}$$

$$r = \left| -1 + \sqrt{3}i \right| = \sqrt{(-1)^2 + 3^2} = \sqrt{10}$$

$$\theta = \frac{\frac{2\pi}{3} + 2\pi k}{4} = \frac{(2k + \frac{2}{3})\pi}{4}, \quad k = 0, 1, 2, 3$$

Chapter 4

$\overline{ m Lecture~4~Jan~10th~2018}$

4.1 Examples for nth Roots of Unity

Recall that the *n*th roots of unity are given by $e^{i\frac{2\pi k}{n}}, k = 0, 1, ..., n - 1$.

Exercise 4.1.1

Let z be any nth root of unity other than 1. Show that

$$z^{n-1} + z^{n-2} + \dots + z + 1 = 0 (4.1)$$

Proof

By the Sum of Finite Geometric Terms,

$$z^{n-1} + z^{n-2} + \ldots + z + 1 = \frac{1 - z^n}{1 - z}.$$

Since $z^n = 1$, RHS is thus zero, which in turn completes the proof.

As an aside, if we wish to remove the restriction that z can also be 1, we may consider that

$$z^{n} - 1 = (z - 1)(1 + z + \dots + z^{n-1})$$

Since $z^n = 1$, LHS is zero. Then either z = 1 or $(1 + z + \ldots + z^{n-1}) = 0$.

Exercise 4.1.2

Consider the n-1 diagonals of a regular n-gon, inscribed in a circle of radius 1, obtained by connecting one vertex on the n-gon to all its other vertices.

For example, if we are given n = 6, we obtain the following diagram.

Figure 4.1: n = 6, where a is an arbitrary vertex on the hexagon

Show that the product of the lengths of these diagonals is equal to n.

Proof

Note that Figure 4.1 can be translated into Figure 4.2.

Figure 4.2: A regular n-gon with the roots of unity on its vertices

Thus the equation that we wish to prove becomes

$$|1 - z_2| |1 - z_3| \dots |1 - z_n| = n \tag{4.2}$$

Note that $z_2, ..., z_n$ are the nth roots of unity other than 1.

Let z be a variable and consider the polynomial

$$P(z) := 1 + z + z^{2} + \dots + z^{n-1}$$
(4.3)

Since the roots of P(z) are the nth roots of unity other than 1, we can factorize Equation (4.3) into

$$P(z) = (z - z_2)(z - z_3) \dots (z - z_n)$$

Now let z = 1 and take the modulus of P(z), and we get Equation (4.2).

Exercise 4.1.3

Let $n \in \mathbb{N}$. Show that $\sum_{j=0}^{n} {3n \choose 3j} = \frac{2^{3n}+2(-1)^n}{3}$.

Proof

Let $\alpha = e^{i\frac{2\pi}{3}}$. Then α is a cubic root of unity, i.e. $\alpha^3 = 1$, and from Exercise 4.1.1, $1 + \alpha + \alpha^2 = 0$.

Consider

$$(1+1)^{3n} = {3n \choose 0} + {3n \choose 1} + {3n \choose 2} + {3n \choose 3} + {3n \choose 4}$$

$$+ {3n \choose 5} + {3n \choose 6} + \dots + {3n \choose 3n}$$

$$(4.4)$$

$$(1+\alpha)^{3n} = {3n \choose 0} + {3n \choose 1}\alpha + {3n \choose 2}\alpha^2 + {3n \choose 3} + {3n \choose 4}\alpha + {3n \choose 5}\alpha^2 + {3n \choose 6} + \dots + {3n \choose 3n}$$

$$(4.5)$$

$$(1+\alpha^2)^{3n} = {3n \choose 0} + {3n \choose 1}\alpha^2 + {3n \choose 2}\alpha + {3n \choose 3} + {3n \choose 4}\alpha^2 + {3n \choose 5}\alpha + {3n \choose 6} + \dots + {3n \choose 3n}$$

$$(4.6)$$

Adding Equation (4.4), Equation (4.5) and Equation (4.6), we observe that the terms with coefficients $\binom{3n}{k}$ where k is not a multiple of 3 sums to 0 as given by $1 + \alpha + \alpha^2 = 0$, and

therefore we obtain

$$2^{3n} + (1+\alpha)^{3n} + (1+\alpha^2)^{3n} = 3\sum_{j=0}^{n} {3n \choose 3j}$$

$$\frac{1}{3} \left[2^{3n} + (1+\alpha)^{3n} + (1+\alpha^2)^{3n} \right] = \sum_{j=0}^{n} {3n \choose 3j}$$

$$\frac{1}{3} \left[2^{3n} + (-\alpha^2)^{3n} + (-\alpha)^{3n} \right] = \sum_{j=0}^{n} {3n \choose 3j} \quad since \ 1 + \alpha + \alpha^2 = 0$$

$$\frac{1}{3} \left[2^{3n} + (-1)^n + (-1)^n \right] = \sum_{j=0}^{n} {3n \choose 3j} \quad since \ \alpha^3 = 1$$

$$\frac{2^{3n} + 2(-1)^n}{3} = \sum_{j=0}^{n} {3n \choose 3j}$$

as required.

Exercise 4.1.4

Note that we can define $\operatorname{Arg} z$ in any interval of length 2π , i.e. it is not necessary that $\operatorname{Arg} z \in [0, 2\pi)$.

For example, if we restrict Arg $z \in [-\pi, \pi]$, then we can write

$$\operatorname{Arg}\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = -\frac{3\pi}{4}$$

Let z be on the unit circle and Arg $z \in [-\pi, \pi]$. Suppose that $z \notin \mathbb{R}$, i.e. $z \neq 1, z \neq -1$. Show that

$$\operatorname{Arg}\left(\frac{z-1}{z+1}\right) = \begin{cases} \frac{\pi}{2} & \operatorname{Im} z > 0\\ -\frac{\pi}{2} & \operatorname{Im} z < 0 \end{cases}$$

Proof

Note that $\forall w_1, w_2 \in \mathbb{C}$, where $\operatorname{Arg} w_1 = \tau_1, \operatorname{Arg} w_2 = \tau_2$ for τ_1, τ_2 in the same 2π -interval,

$$\operatorname{Arg} \frac{w_1}{w_2} = \frac{e^{i\tau_1}}{e^{i\tau_2}} \equiv e^{i(\tau_1 - \tau_2)} = \operatorname{Arg} w_1 - \operatorname{Arg} w_2 \tag{4.7}$$

in modulo 2π .

Suppose Im z > 0. Let $\theta_1 = \text{Arg}(z-1)$ and $\theta_2 = \text{Arg}(z+1)$. Consider Figure 4.3. Note that since both $\theta_1, \theta_2 \in [0, \pi]$, we have that $\theta_1 - \theta_2 \in [-\pi, \pi]$, and thus Equation (4.7) holds

true without the need of the condition of being in modulo 2π . We observe that

$$rac{\pi}{2}= heta_2+\pi- heta_1$$
 $heta_1- heta_2=rac{\pi}{2}$

as desired.

Figure 4.3: (Right) Depicted question, (Left) Translated Angles

Similarly, we can obtain $\theta_1 - \theta_2 = -\frac{\pi}{2}$ for when Im z < 0. This completes the proof.

Exercise 4.1.5

Let $f(z) = e^z$ for $z \in \mathbb{C}$. Let $A = \{z = x + iy \in \mathbb{C} : x \le 1, y \in [0, \pi]\}$. Describe the image of f(A).

Solution

Firstly, note that

$$e^{z} = e^{x+iy}$$
$$e^{x} \in (0, e]$$
$$y \in [0, \pi]$$

Figure 4.4: (Right) Domain of f(A), (Left) Image of f(A)

It is clear that the image will be in on the positive side of the imaginary-axis. Also, since $e^x \in (0, e]$, we get the right graph represented in Figure 4.4. The image of f(A) is described in the left image of Figure 4.4.

Chapter 5

Lecture 5 Jan 12 2018

5.1 Complex Functions

5.1.1 Limits

Definition 5.1.1 (Convergence)

A sequence of complex numbers $z_1, z_2, z_3, ...$ converges to $z \in \mathbb{C}$ if

$$\lim_{n \to \infty} |z_n - z| = 0 \tag{5.1}$$

or we may say

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ |z_n - z| < \epsilon \tag{5.2}$$

Note

If $\{z_n\}_{n\in\mathbb{N}}$ converges to z, we may write $\lim_{n\to\infty} z_n = z$ or $z_n\to z$ (as $n\to\infty$).

Example 5.1.1

For |z| > 1, does $\{\frac{1}{z^n}\}_{n=1}^{\infty}$ converge? Explain.

Solution

We claim that the limit is 0. Since |z| > 1, we have that

$$\lim_{n \to \infty} \left| \frac{1}{z^n} - 0 \right| = \lim_{n \to \infty} \left| \frac{1}{z} \right|^n$$

Another way to prove this, since $|z| > 1 \implies 0 < \left|\frac{1}{z}\right| < 1$,

$$\forall \epsilon = \left| \frac{1}{z} \right| > 0$$

$$\left| \frac{1}{z^n} - 0 \right| = \left| \frac{1}{z} \right|^n < \left| \frac{1}{z} \right| = \epsilon$$

Definition 5.1.2 (Convergence for Complex Functions)

 $\forall \Omega \subseteq \mathbb{C}, \ let \ f : \Omega \to \mathbb{C}. \ We \ say \ that$

$$\lim_{z \to z_0} f(z) = L \tag{5.3}$$

for some $L \in \mathbb{C}$ if for every sequence $\{z_n\}_n \subseteq \Omega$ (not including z_0 if it is in Ω), we have that

$$z_n \to z_0 \implies f(z_n) \to L$$
 (5.4)

Note that L need not be in Ω .

Example 5.1.2

Let $f(z) = \frac{\overline{z}}{z}, z \in \mathbb{C} \setminus \{0\}$. Find $\lim_{z \to 0} f(z)$.

Solution

Suppose $z = x \in \mathbb{R} \setminus \{0\}$. Then $f(z) = f(x) = \frac{x}{x} = 1$.

Suppose $z = iy, y \in \mathbb{R} \setminus \{0\}$. Then $f(z) = f(iy) = \frac{-iy}{iy} = -1$.

Therefore, the limit $\lim_{z\to 0} f(z)$ does not exist.

Exercise 5.1.1

Show that $z_n \to z \iff \operatorname{Re}(z_n) \to \operatorname{Re}(z) \land \operatorname{Im}(z_n) \to \operatorname{Im}(z)$. (Hint: $|\operatorname{Re}(z)|, |\operatorname{Im}(z)| \le |z| \le |\operatorname{Re}(z)| + |\operatorname{Im}(z)|$)

Solution

Suppose $z_n \to z$. Then $\forall \epsilon_0 > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ |z_n - z| < \epsilon$. Note once and for all that

$$Re(z_n - z) = Re(z_n) - Re(z)$$
$$Im(z_n - z) = Im(z_n) - Im(z).$$

Thus

$$|\operatorname{Re}(z_n) - \operatorname{Re}(z)| = |\operatorname{Re}(z_n - z)|$$

$$\leq |z_n - z| < \epsilon$$

$$|\operatorname{Im}(z_n) - \operatorname{Im}(z)| = |\operatorname{Im}(z_n - z)|$$

$$\leq |z_n - z| < \epsilon$$

For the other direction,

$$\forall \frac{\epsilon}{2} > 0 \ \exists N_0 \in \mathbb{N} \ \forall n > N_0 \ |\text{Re}(z_n) - \text{Re}(z)| < \frac{\epsilon}{2}$$
$$\forall \frac{\epsilon}{2} > 0 \ \exists N_1 \in \mathbb{N} \ \forall n > N_1 \ |\text{Im}(z_n) - \text{Im}(z)| < \frac{\epsilon}{2}$$

Therefore,

$$|z_n - z| = |\operatorname{Re}(z_n) + \operatorname{Im}(z_n) - \operatorname{Re}(z) - \operatorname{Im}(z)|$$

$$\leq |\operatorname{Re}(z_n) - \operatorname{Re}(z)| + |\operatorname{Im}(z_n) - \operatorname{Im}(z)|$$

$$\leq \epsilon$$

5.1.2 Continuity

Definition 5.1.3 (Continuity)

 $\forall \Omega \subseteq \mathbb{C}, \ let \ f : \Omega \to \mathbb{C}. \ \ We \ say \ that \ f \ is \ \ continuous \ at \ z_0 \in \Omega \ \ if$

1.
$$\forall \{z_n\}_{n \in \mathbb{N}}$$

 $z_n \to z_0 \implies f(z_n) \to f(z_0)$

2.
$$\forall \epsilon > 0 \ \exists \delta > 0$$

 $|z - z_0| < \delta \implies |f(z) - f(z_0)| < \epsilon$

Remark

- 1. f is continuous on Ω if it is continuous on every point in Ω .
- 2. We may split f into its feal and imaginary parts, i.e.

$$f(z) = f(x,y) = u(x,y) + iv(x,y)$$
(5.5)

where $u, v : \mathbb{R}^2 \to \mathbb{R}$.

Example 5.1.3

Let $f: \mathbb{C} \to \mathbb{C}$ and for $z \in \mathbb{C}$, $f(z) = \frac{\overline{z}}{z}$. To split f into real and imaginary parts:

$$\begin{split} f(z) &= \frac{\bar{z}}{z} \\ &= (x + iy) \left(\frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2} \right) \\ &= \frac{x^2 - y^2}{x^2 + y^2} + i \frac{(-2xy)}{x^2 + y^2} \end{split}$$

and we get

$$u(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
$$v(x,y) = -\frac{2xy}{x^2 + y^2}$$

Chapter 6

Lecture 6 Jan 15th 2018

6.1 Continuity (Continued)

Exercise 6.1.1

Let $f: \Omega \to \mathbb{C}$. Prove that f(z) is continuous at $z_0 = x_0 + iy_0 \in \mathbb{C} \iff$ functions $u, v: \mathbb{R}^2 \to \mathbb{R}$, such that f(z) = u(x, y) + iv(x, y) are both continuous at (x_0, y_0) .

Solution

We shall first prove the forward direction. Suppose that f(z) is continuous at $z_0 = x_0 + iy_0 \in \mathbb{C}$. By Definition 5.1.3, $\forall \{z_n\}_{n\in\mathbb{N}} \subseteq \Omega$, $z_n \to z_0 \implies f(z_n) \to f(z_0)$. By Exercise 5.1.1,

$$z_n \to z_0 \iff \operatorname{Re} z_n \to \operatorname{Re} z_0 \wedge \operatorname{Im} z_n \to \operatorname{Im} z_0$$

 $\iff x_n \to x_0 \wedge y_n \to y_0$ (6.1)

where $z_n = x_n + iy_n$ for $x_n, y_n \in \mathbb{R}$.

Similarly so, and by Equation (5.5),

$$f(z_n) + f(z_0) \iff u(x_n, y_n) \to u(x_0, y_0) \land v(x_n, y_n) \to v(x_0, y_0)$$
 (6.2)

Putting together Equation (6.1) and Equation (6.2), we get

$$(x_n, y_n) \rightarrow (x_0, y_0) \implies u(x_n, y_n) \rightarrow u(x_0, y_0) \land v(x_n, y_n) \rightarrow v(x_0, y_0)$$

as desired.

The proof of the other direction is simply a reversed process of the above. \Box

6.2 Differentiability

Definition 6.2.1 (Neighbourhood)

For $z_0 \in \mathbb{C}, r \in \mathbb{R}$, let

$$D(z_0, r) := \{ z \in \mathbb{C} : |z - z_0| < r \}. \tag{6.3}$$

On the complex plane, this is seen as a open disk centered around the point z_0 with radius r, as shown below.

Figure 6.1: Open disk centered around z_0 with radius r

This open disk is called a **neighbourhood** of z_0 .

Definition 6.2.2 (Differentiable/Holomorphic)

Let f(z) be defined in a neighbourhood of $z_0 \in \mathbb{C}$. We say f is differentiable/holomorphic at z_0 if for some $h \in \mathbb{C}$,

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \tag{6.4}$$

exists. If such a limit exists, we denote the limit by $f'(z_0)$.

Remark

 $h \in \mathbb{C}$: h need not necessarily be real. In this sense, h approaches 0 from any direction around $0 \in \mathbb{C}$.

Example 6.2.1

For $z \in \mathbb{C} \setminus \{0\}$, let $f(z) = \frac{1}{z}$. Let $z_0 \in \mathbb{C} \setminus \{0\}$. Note that

$$\lim_{h \to 0} \frac{\frac{1}{z_0 + h} - \frac{1}{z_0}}{h} = \lim_{h \to 0} \frac{1}{h} \left[\frac{-h}{(z_0 + h)z_0} \right] = -\frac{1}{z_0^2}$$

Thus f is holomorphic at any $z \in \mathbb{C} \setminus \{0\}$, and hence $f'(z) = -\frac{1}{z}$.

Example 6.2.2

For $z \in \mathbb{C}$, let $f(z) = \overline{z}$. Let $z_0 \in \mathbb{C}$. Notice that

$$\lim_{h\to 0}\frac{\overline{z_0+h}-\bar{z}}{h}=\lim_{h\to 0}\frac{\bar{h}}{h}.$$

From Example 5.1.2, we know that such a limit does not exist. Thus f is not holomorphic on any $z \in \mathbb{C}$.

Exercise 6.2.1 (Holomorphic Functions Properties)

If f, g are holomorphic at $z \in \mathbb{C}$, prove that

- 1. f+g is holomorphic and (f+g)'=f'+g'.
- 2. fg is holomorphic and (fg)' = f'g + fg'.
- 3. if $g(z) \neq 0, \frac{f}{g}$ is holomorphic and $(\frac{f}{g})' = \frac{f'g fg'}{g^2}$.

Solution

1. For f + q,

$$\lim_{h \to 0} \frac{f(z+h) + g(z+h) - f(z) - g(z)}{h}$$

$$= \lim_{h \to 0} \left[\frac{f(z+h) - f(z)}{h} + \frac{g(z+h) - g(z)}{g} \right]$$

$$= f'(z) + g'(z)$$

 $\overline{Thus} \, \overline{(f+g)'} = \overline{f'+g'}.$

2. For fg,

$$\lim_{h \to 0} \frac{f(z+h)g(z+h) - f(z)g(z)}{h}$$

$$= \lim_{h \to 0} \frac{f(z+h)g(z+h) + f(z)g(z+h) - f(z)g(z+h) - f(z)g(z)}{h}$$

$$= \lim_{h \to 0} \left[\frac{f(z+h) - f(z)}{h} g(z+h) + f(z) \frac{g(z+h) - g(z)}{h} \right]$$

$$= f'(z)g(z) + f(z)g'(z)$$

Therefore, (fg)' = f'g + fg'.

3. When $\forall z \in \mathbb{C} \ g(z) \neq 0$, for $\frac{f}{g}$,

$$\lim_{h \to 0} \frac{\frac{f(z+h)}{g(z+h)} - \frac{f(z)}{g(z)}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{f(z+h)g(z) - f(z)g(z+h)}{g(z+h)g(z)} \right]$$

$$= \lim_{h \to 0} \frac{1}{g(z+h)g(z)} \left[\frac{f(z+h)g(z) + f(z)g(z) - f(z)g(z) - f(z)g(z+h)}{g} \right]$$

$$= \lim_{h \to 0} \frac{1}{g(z+h)g(z)} \left[\frac{[f(z+h) - f(z)]g(z) - f(z)[g(z+h) - g(z)]}{h} \right]$$

$$= \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}$$

Hence,
$$\frac{f}{g} = \frac{f'g - fg'}{g^2}$$

Note

If we look at the example above from the perspective of f being treated as a real-valued function, i.e. f(z) = u(x,y) + iv(x,y) where $u,v: \mathbb{R}^2 \to \mathbb{R}$ and z = x + iy, observe that $\forall (x,y) \in \mathbb{R}^2, (x,y) \mapsto (x,-y)$, which we see that u and v are partially differentiable in \mathbb{R}^2 .

We will now look into this "discrepancy".

6.2.1 Cauchy-Riemann Equations

Consider the following function taken from Equation (6.4),

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \tag{6.5}$$

While h may approach $0 \in \mathbb{C}$ from infinitely many sides on the complex plane, we will consider 2 cases.

Case 1: $h \rightarrow 0$ via the real axis

In this case, h = x + i(0) and $x \to 0 \in \mathbb{R}$. Then Equation (6.5) gives

$$f'(z_0) = \lim_{x \to 0} \frac{u(x_0 + x, y_0) + iv(x_0 + x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{x}$$

$$= \lim_{x \to 0} \left[\frac{u(x_0 + x, y_0) - u(x_0, y_0)}{x} + i \frac{v(x_0 + x, y_0) - v(x_0, y_0)}{x} \right]$$

$$= \frac{\partial u}{\partial x} \Big|_{(x_0, y_0)} + i \frac{\partial v}{\partial x} \Big|_{(x_0, y_0)}$$
(6.6)

Case 2: $h \rightarrow 0$ via the imaginary axis

In this case, h = 0 + iy and $y \to 0 \in \mathbb{R}$. In a similar fashion, Equation (6.5) becomes

$$f'(z_0) = \lim_{y \to 0} \left[\frac{u(x_0, y_0 + y) - u(x_0, y_0)}{iy} + \frac{v(x_0, y_0 + y) - v(x_0, y_0)}{y} \right]$$

$$= \frac{1}{i} \cdot \frac{\partial u}{\partial y} \Big|_{(x_0, y_0)} + \frac{\partial v}{\partial y} \Big|_{(x_0, y_0)}$$
(6.7)

Note that since $f'(z_0)$ exists, the real and imaginary part of Equation (6.6) and Equation (6.7) must equate. Also note that $\frac{1}{i} = -i$. With that, we obtain the following theorem.

Theorem 6.2.1 (Cauchy-Riemann Equations)

If f(z) is holomorphic at $z_0 = x_0 + iy_0 \in \mathbb{C}$ where $x_0, y_0 \in \mathbb{R}$, then, at (x_0, y_0) ,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$. (6.8)

Chapter 7

Lecture 7 Jan 17 2018

7.1 Differentiability (Continued)

7.1.1 Cauchy-Riemann Equations (Continued)

It is natural to wonder if the **converse** of Theorem 6.2.1 is true. We present the following example.

Example 7.1.1

Let

$$f(z) = \begin{cases} \frac{\bar{z}^2}{z} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Check if

- 1. f is holomorphic at 0.
- 2. Theorem 6.2.1 holds at (0,0).

Proof

1. Observe that by letting $h = x_h + iy_h$ where $x_h, y_h \in \mathbb{R}$,

$$\lim_{h \to 0} \frac{\frac{\overline{0+h}^2}{0+h} - 0}{h} = \lim_{h \to 0} \frac{\overline{h}^2}{h} = \lim_{x_h + iy_h \to 0} \left(\frac{x_h - iy_h}{x_h + iy_h}\right)^2$$

Consider $y_h = kx_h$, for $k \in \mathbb{R} \setminus \{0\}$. Then

$$\lim_{x_h \to 0} \left(\frac{x_h - ikx_h}{x_h + ikx_h} \right)^2 = \left(\frac{1 - ik}{1 + ik} \right)^2,$$

where we see that the limit depends on the value of k. Therefore, the limit DNE. Hence f is not holomorphic at 0.

2. Let z = x + iy for $x, y \in \mathbb{R}$. Then

$$\frac{\bar{z}^2}{z} = \frac{(x - iy)^2}{x + iy} = \frac{(x - iy)^3}{x^2 + y^2} = \frac{x^3 - 3xy^2}{x^2 + y^2} + i\frac{(-3x^2y + y^3)}{x^2 + y^2}$$

Therefore, we obtain

$$u(x,y) = \begin{cases} \frac{x^3 - 3xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
$$v(x,y) = \begin{cases} \frac{y^3 - 3x^2y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Observe that

$$\begin{split} \frac{\partial u}{\partial x}\Big|_{(0,0)} &= \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = 1\\ \frac{\partial v}{\partial y}\Big|_{(0,0)} &= \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y} = 1\\ and \\ \frac{\partial u}{\partial y}\Big|_{(0,0)} &= \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y} = 0\\ \frac{\partial v}{\partial x}\Big|_{(0,0)} &= \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x} = 0 \end{split}$$

satisfies Equation (6.8).

This illustrates that the converse of Theorem 6.2.1 is not true. We will, however, show that the converse will be true given an extra condition.

Theorem 7.1.1 (Conditional Converse of CRE)

Let
$$z_0 = x_0 + iy_0 \in \Omega \subseteq \mathbb{C}, x_0, y_0 \in \mathbb{R}, \text{ and } u, v : \mathbb{R}^2 \to \mathbb{R}, f = u + iv : \Omega \to \mathbb{C}$$
. If

- 1. the partials of u, v exist in a neighbourhood of (x_0, y_0) ,
- 2. the partials of u, v are continuous at (x_0, y_0) , and
- 3. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ at (x_0, y_0) ,

then f is holomorphic at z_0 .

A proof of the theorem is in page 36 of Newman and Bak (recommended text of PMATH352W18). I may include the proof whenever I am free.

7.1.2 Power Series

Definition 7.1.1 (Power Series)

A power series in \mathbb{C} is an infinite series of the form

$$\sum_{n\in\mathbb{N}} c_n z^n,\tag{7.1}$$

where each $c_n \in \mathbb{C}$ is the coefficient of z of the n-th power.

In this subsection, we are interested to see if Equation (7.1) converges.

Recall the notion of convergence in series from \mathbb{R} . Equation (7.1) converges if the sequence of partial sums $\{S_N\}$ converges as $N \to \infty$, where

$$S_N := \sum_{n=0}^N c_n z^n$$

In other words, using the same definition of S_N ,

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \setminus \{0\} \quad \forall n > N$$
$$|S_n - L| < \epsilon$$

where $L \in \mathbb{C}$ is the limit that the sequence converges to.

We also know that Equation (7.1) converges absolutely if $\sum_{n=0}^{\infty} |c_n| |z|^n$ converges. This is a stronger statement (i.e. absolute convergence \implies convergence)

$$\left| \sum_{n=0}^{N} c_n z^n \right| \leq \sum_{n=0}^{N} |c_n| |z|^n \quad \text{for each } N \in \mathbb{N}$$

Example 7.1.2

 $\sum_{n=0}^{\infty} z^n$ converges absolutely for |z| < 1.

Note that the partial sum of a geometric series is

$$\sum_{n=0}^{N} r^n = \frac{1 - r^{N+1}}{1 - r}$$

and so the limit as $N \to \infty$ exists if |r| < 1, and hence we see that

$$\sum_{n=0}^{N} r^n \to \frac{1}{1-r}$$

if |r| < 1 as $N \to \infty$.

However, if |z| = 1, the power series diverges.

Another note that we shall point out is that if Equation (7.1) converges absolutely for some $z_0 \in \mathbb{C}$, then it converges absolutely for any z where $|z| < |z_0|$.

These notions, in turn, begs the question of what is the largest possible $|z_0|$ for the series to converge absolutely.

Chapter 8

Lecture 8 Jan 19 2018

8.1 Power Series (Continued)

Theorem 8.1.1 (Convergence in the Radius of Convergence)

For any power series $\sum_{n\in\mathbb{N}} c_n z^n$, $\exists 0 \leq R < \infty$, such that

- 1. $|z| < R \implies series converges absolutely.$
- 2. $|z| > R \implies series diverges$.

Moreover, R is given by **Hadamard's Formula**:

$$\frac{1}{R} := \limsup_{n \to \infty} |c_n|^{\frac{1}{n}} \tag{8.1}$$

Remark

- 1. R is called the radius of convergence of the series. $\{z \in \mathbb{C} : |z| < R\}$ is called the disk of convergence of the series.
- 2. Recall the definition of the limit supremum

$$\lim_{n \to \infty} \sup a_n := \lim_{n \to \infty} (\sup_{m \ge n} a_m)$$
(8.2)

which we may colloquially say as the "highest peak 'reached' by a_n 's as $n \to \infty$ "

Proposition 8.1.1 (A Property of limsup)

$$\forall \{a_n\}_{n \in \mathbb{N}} \quad L := \limsup_{n \to \infty} a_n \implies$$

$$\forall \epsilon > 0 \quad \exists N > 0 \quad \forall n > N$$

$$L - \epsilon < a_n < L + \epsilon$$

(Proof to be included)

Proof (Theorem 8.1.1)

Let $L := \frac{1}{R} = \limsup_{n \to \infty} |c_n|^{\frac{1}{n}}$. Clearly, $L \ge 0$.

1. Suppose |z| < R. $\exists \epsilon > 0, r := |z| (L + \epsilon)$ such that 0 < r < 1. By Proposition 8.1.1, $\exists N \in \mathbb{N}, \forall n > N, |c_n|^{\frac{1}{n}} < L + \epsilon$.

Now since $L = \frac{1}{R}$,

$$\sum_{n=N}^{\infty} |c_n| |z|^n = \sum_{n=N}^{\infty} (|c_n|^{\frac{1}{n}} |z|)^n < \sum_{n=N}^{\infty} r^n$$

and since 0 < r < 1, the final summation converges (as it is a geometric sum). Thus by comparison test, $\sum_{n=N}^{\infty} |c_n| |z|^n$ converges.

We may also proceed with noticing that the partial sum of $\sum_{n=N}^{\infty} |c_n| |z|^n$ is bounded and monotonic, which shows that the series converges.

2. Suppose |z| > R. $\exists \epsilon > 0, r := |z| (L - \epsilon)$ such that r > 1. By Proposition 8.1.1, $\exists N \in \mathbb{N}, \forall n > N, |c_n|^{\frac{1}{n}} > L - \epsilon$. Then analogous to the proof above,

$$\sum_{n=N}^{\infty} |c_n| |z|^n = \sum_{n=N}^{\infty} (|c_n|^{\frac{1}{n}} |z|)^n > \sum_{n=N}^{\infty} r^n$$

where the final summation diverges, and thus implying that $\sum_{n=N}^{\infty} |c_n| |z|^n$ diverges.

Theorem 8.1.2 (Power function, holomorphic function, region of convergence) Suppose $f(z) = \sum_{n \in \mathbb{N}} c_n z^n$ has a radius of convergence $R \in \mathbb{R}$. Then f'(z) exists and equals

$$\sum_{n=1}^{\infty} n c_n z^{n-1}$$

throughout |z| < R.

Moreover, f' has the same radius of convergence as f.

Proof

Note that f' has the same radius of convergence as f since

$$\limsup_{n \to \infty} |nc_n|^{\frac{1}{n}} = \limsup_{n \to \infty} |n|^{\frac{1}{n}} |c_n|^{\frac{1}{n}} = \limsup_{n \to \infty} |c_n|^{\frac{1}{n}}$$

where note that $\lim_{n\to\infty} |n|^{\frac{1}{n}} = 1$.

Let $|z_0| \le r < R$ and $g(z_0) := \sum_{n=1}^{\infty} nc_n z_0^{n-1}$.

WTS

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = g(z_0)$$

OR

$$|h| < \delta \implies \left| \frac{f(z_0 + h) - f(z_0)}{h} - g(z_0) \right| < \epsilon$$
 (†)

(Note that we would want $\delta > 0$ such that $|z_0 + h| \le r < R$)

WTP (†). $\forall \epsilon > 0$, choose $\delta > 0$. Suppose $|z_0 + h| < |z_0 + \delta| \le r < R$. Write

$$f(z) = \sum_{n=0}^{N} c_n z^n + \sum_{n=N}^{\infty} c_n z^n$$

and let $S_N(z)$ and $E_N(z)$ be the first and second terms respectively. Then we have that

$$S'_{N}(z) = \sum_{n=1}^{N} nc_{n}z^{n-1}$$

Consider

$$\left| \frac{S_N(z_0+h) - S_N(z_0)}{h} + \frac{E_N(z_0+h) - E_N(z_0)}{h} - g(z_0) + S'_N(z_0) - S'_N(z_0) \right|$$

$$\leq \left| \frac{S_N(z_0+h) - S_N(z_0)}{h} - S'_N(z_0) \right| + \left| \frac{E_N(z_0+h) - E_N(z_0)}{h} \right| + \left| S'_N(z_0) - g(z_0) \right|.$$

For the second term, since $a^2-b^2=(a-b)(a^{n-1}+a^{n-2}b+\dots ab^{n-2}+b^{n-1})$ and $|z_0|$, $|z_0+h|< r \le R$, we obtain $(z_0+h)^n-z_0^n \le hnr^{n-1}$. Thus

$$\left| \frac{E_N(z_0 + h) - E_N(z_0)}{h} \right| = \left| \frac{1}{h} \sum_{n=N+1}^{\infty} c_n [(z_0 + h)^n - z_0^n] \right| \le \sum_{n=N+1}^{\infty} n c_n r^{n-1}.$$

(Proof is incomplete, and will be continued in the following lecture)