Nome: Mariana Barreto - Matrícula: 1820673

Nome: Paulo de Tarso - Matrícula:

Nome: Thiago Levis - Matrícula: 1812899

Sistema de Recomendação baseado no dataset da Amazon 2018

Para o segundo trabalho da disciplina, foi pedido para elaborar um sistema de recomendação baseado no dataset da Amazon de 2018, utilizando qualquer modelo que foi apresentado nas aulas. O grupo decidiu então utilizar um subset do dataset apresentado, conforme acordado com o professor, para conseguir prosseguir com o trabalho sem muitos problemas de performance. Com isso, foi utilizado os produtos da categoria *Automotive*¹.

Tal subset possui os mesmos atributos que o dataset recomendado, porém ocupa menos espaço (possui cerca de 1,7 milhões de linhas). Isso facilitou bastante para conseguir rodar os modelos de interesse, já que o tempo para testar diferentes hipóteses para melhorar o modelo mesmo para o subset encontrado era longo (por exemplo, o ajuste de hiperparâmetros).

Análise e Limpeza dos Dados

Em primeiro lugar, foi feita uma análise e uma limpeza em cima do dataset. Para o sistema de recomendação, havia diversas colunas que não eram interessantes, como o timestamp em que a review foi feita em *unix time* ou o nome do usuário (*reviewerName*). Esses atributos foram descartados.

Foi observado também algumas informações gerais, como o número de linhas (1,711,519) e a quantidade de valores nulos para cada coluna (não havia nenhum valor nulo para as colunas de interesse). Outro detalhe também foi a quantidade de usuários (193,651) e de produtos (79,437).

Depois, verificamos a quantidade de reviews/avaliações feitas por produto, limitando a um número de 200 (de forma comparada esse número fica bastante baixo). Essa distribuição pode ser visualizada pelo gráfico da figura abaixo. Como é possível notar, a grande maioria dos produtos foram avaliados entre 0 e 25 vezes.

¹https://jmcauley.ucsd.edu/data/amazon_v2/categoryFilesSmall/

Figura 1: Distribuição do número de avaliações/reviews por produto

Outro gráfico também apresentado e utilizado para análise foi o da distribuição de avaliações, para verificar o comportamento dos usuários durante a avaliação. De acordo com a figura abaixo, percebe-se que a quantidade de 5 estrelas é muito mais comum do que as demais. Isso pode ser pelo fato de que a própria Amazon incentiva a classificação dos seus produtos e a nota 5 é mais fácil de ser dada quando a opção aparece.

Figura 2: Distribuição do total de avaliações/review por nota

Tal diferença é notável ao comparar com outros datasets conhecidos de avaliação, como o MovieLens². Nesse caso, a média fica bastante próxima do 3, o que diz muito

_

² https://www.kaggle.com/code/redroy44/movielens-dataset-analysis

sobre o incentivo da avaliação. Esse incentivo (ou até cobrança) por parte da Amazon pode ser visto na maneira que o dispositivo Alexa pergunta ao usuário a avaliação de um determinado produto³.

Além das distribuições, um dos interesses da equipe era analisar o campo do texto da review para ver se ela seria um bom atributo para um filtro colaborativo. Por isso, foram geradas nuvens de palavras para cada possibilidade de avaliação (1 a 5).

Figura 3: Nuvem de palavras para avaliações com nota igual a 1

Figura 4: Nuvem de palavras para avaliações com nota igual a 2

Figura 5: Nuvem de palavras para avaliações com nota igual a 3

https://bigtechquestion.com/2021/01/04/online/amazon/stop-alexa-asking-for-reviews/

Figura 6: Nuvem de palavras para avaliações com nota igual a 4

Figura 7: Nuvem de palavras para avaliações com nota igual a 5

Nesse caso, o texto sofreu apenas de uma limpeza e as stopwords foram removidas. O stemming não foi aplicado porque com o tanto de palavras no dataframe, um erro de memória acabava sendo gerado que impedia que a nuvem fosse exibida. O problema com memória foi tanto que o grupo precisou utilizar um outro computador para conseguir executar a nuvem de palavras da nota 5.

Ao avaliar o resultado, o grupo achou melhor não seguir com a abordagem de um filtro colaborativo utilizando o texto do review, pois a avaliação parece ser uma boa substituta do que o texto representa. É importante mencionar que o texto possui alguns detalhes que a nota não apresenta, já que dois usuários podem gostar de um mesmo produto por causa de aspectos diferentes. No entanto, pela nuvem de palavras, é possível ver que as reviews não parecem enfatizar tanto esses aspectos diferentes, mas sim seguir a tendência da nota (*great* é a palavra mais comum na nota 5 e palavras como *don't* (*do not*) e *junk* estão presentes na nota 1).

• SVD para filtro colaborativo

A ideia para o SVD é que ele é um dos modelos mais clássicos para sistemas de recomendação e pode ser utilizado para um filtro colaborativo a partir das notas. No entanto, nenhuma feature engineering foi aplicada, então é possível que o resultado não seja tão bom. O ideal para a recomendação dos produtos nesse caso seria fazer uso de

mais alguma informação além do id do produto, id do usuário e da avaliação, mas isso será discutido posteriormente. De qualquer forma, o grupo decidiu trazer apenas para comparar os resultados.

Um fato importante para mencionar é que o filtro colaborativo possui um problema inerente da abordagem chamado de *cold start*. Isso acontece quando o produto ou um usuários são novos na plataforma e formam zero ou poucas interações usuário-produto. No caso do *item cold start*, os produtos mais velhos, que têm mais chance de ter um maior número de interações, tendem a ser mais recomendados. Mas não somente os mais velhos, como os pouco populares. Pela figura 1 é possível perceber que a grande parte dos produtos possuem poucas reviews, então pode existir uma preferência pelos produtos mais populares (problema aqui conhecido também como *popularity bias*)⁴.

A biblioteca *surprise* foi utilizada para poder testar o resultado do SVD. Como dito anteriormente, o dataset utiliza apenas as colunas com o ID do usuário, o ID do produto e a avaliação. Um outro filtro que foi feito para deixar a matriz menos esparsa é utilizar apenas os produtos que foram avaliados mais de 50 vezes, deixando com aproximadamente 800 mil tuplas de avaliações.

Foram avaliados principalmente o RMSE e o MSE para comparar os resultados. A princípio, o RMSE foi de 0.93, o que é um resultado bastante alto. Para tentar contornar o resultado, o grupo tentou fazer o tuning de hiperparâmetros, com diferentes valores para o *n_factors*. No entanto, por mais que o *n_factors* desse um resultado diferente do valor default, o RMSE continuava praticamente o mesmo. Isso foi um detalhe curioso que o time notou, como o tuning acabou sendo de pouca ajuda, diferentemente dos trabalhos anteriores nos modelos de classificação, em que o tuning ajudava significativamente a acurácia do modelo.

No entanto, é importante esclarecer que o tuning para o SVD em filtros colaborativos pode parecer superior de acordo com os scores mais clássicos (RMSE e MSE) porém ter um desempenho pior quando comparado a outras métricas. De acordo com Neil Chandarana (2019), o tuning pode levar a recomendações menos diversas e com menos acertos⁵.

Outra alternativa usada para tentar melhorar o valor foi a utilização do SVD++, algoritmo feito em cima do SVD disponibilizado pela biblioteca surprise. Os resultados aqui reforçaram que o ideal seria apelar para outra abordagem, pois o RMSE apresentou o mesmo resultado: 0.93. O tuning de hiperparâmetros não foi considerado para essa alternativa porque o SVD++ leva mais tempo do que o SVD e o tuning do SVD já estava

https://arxiv.org/abs/2208.09517#:~:text=Popularity%20bias%20is%20the%20idea,when%20recommending%20artists%20to%20users.

⁴

https://towardsdatascience.com/svd-where-model-tuning-goes-wrong-61c269402919

levando bastante tempo, então como provavelmente o tuning não iria melhorar significativamente o resultado, o grupo partiu direto para outra abordagem.

• kNN (k-Nearest Neighbors) para filtro baseado em conteúdo

Com o kNN, nós desejamos recomendar um produto baseado na coluna summary (um resumo do Review Text) de outro produto. Se tivermos, por exemplo, dois produtos e o texto em summary de um deles seja próximo ao texto do outro (usando kNN), um recomenda o outro e vice-versa. É interessante notar que o dataset da categoria de livros teria sido uma escolha mais interessante para essa aplicação, pois o summary dos livros faz referência a suas temáticas/gêneros e isso geraria recomendações mais autênticas. Acabamos não usando porque o de livros era consideravelmente mais pesado.

Primeiramente, os textos da summary precisam ser tratados para podermos usar o kNN. Estamos considerando apenas produtos com mais de 50 reviews porque senão a matriz ficaria muito esparsa. Isso afetaria bastante a performance das recomendações. Juntamos todos os textos relacionados a um produto em um vetor, que será o valor de summary associado. Daí removemos whitespaces (exceto entre diferentes palavras) e transformamos todas as letras em minúsculas.

Para terminar o tratamento dos textos, utilizamos stemming. Usando a função importada porter_stemmer, podemos pegar uma palavra derivada e encontrar sua raíz. Por exemplo, como dá para ver no notebook, "works" é transformado em "work". Isso facilita bastante encontrar similaridade entre summaries de diferentes produtos. Esses textos tratados ficam armazenados numa nova coluna summaryAll.

A função CountVectorizer do sklearn permite transformar as palavras em vetores e criar uma matriz com a contagem de cada uma⁶. Nessa função, passamos parâmetros selecionando apenas as 500 palavras mais frequentes dos textos e escolhendo o idioma das stopwords para inglês. As stopwords são palavras consideradas irrelevantes para análise, como aquelas de uso comum que indicariam erroneamente similaridade de texto. Por exemplo, "is" ou "like". A biblioteca do sklearn já possui uma lista de palavras consideradas stopwords para o inglês e a usam para remover do countVector⁷.

² https://scikit-learn.org/stable/modules/feature extraction.html#stop-words

	10	12	150	1500	20	2001	2002	2003	2004	2005	 wonder	work	worth	wow	wrangler	wrench	wrong	ye	year	yellow
0	0	0	0	0	0	0	0	0	0	0	 0	7	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	 0	2	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	0	0	0	 0	7	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	3	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	 0	32	0	0	0	0	0	2	4	0
5	0	0	0	0	0	0	0	0	0	0	 0	16	0	0	0	0	0	0	1	0
6	0	0	0	0	0	0	0	1	0	0	 1	5	0	0	0	0	0	1	5	0
7	1	0	0	0	0	0	0	0	0	0	 0	40	1	1	0	0	0	0	2	0
8	0	0	0	0	0	0	0	0	0	0	 0	19	2	0	0	0	0	0	0	0
9	3	2	0	0	0	0	0	0	0	0	 1	30	0	0	0	0	0	0	6	0
10	0	0	0	0	0	0	0	0	0	0	 0	17	0	0	0	0	0	1	0	0
11	2	0	0	0	0	0	0	0	0	0	 6	58	1	1	1	0	0	1	1	2
12	1	0	0	0	1	0	0	0	0	0	 1	27	2	1	0	0	0	0	2	1
13	1	1	0	0	0	0	0	0	0	0	 1	44	2	2	0	0	2	0	5	0
14	2	0	0	0	0	0	0	0	0	0	 0	7	0	0	0	0	0	0	0	0

Figura 8: countVector

Depois repetimos os mesmos passos de implementação para o Term Frequency - Inverse Document Frequency (TF-IDF), que literalmente multiplica a frequência de um termo com o IDF, que é log((1 + número total de documentos no set) / (1 + número total de documentos no set com o termo especificado)) + 1. Os vetores resultantes dessa operação são ainda normalizados pela norma Euclidiana⁸. Portanto, apesar de ser semelhante ao countVector, os resultados de frequência são mais precisos.

	10	12	150	1500	20	2001	2002	2003	2004	2005	 wonder	work	worth	wow	wrangler
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.174118	0.000000	0.000000	0.000000
1	0.000000	0.032203	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.018784	0.000000	0.000000	0.000000
2	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.087497	0.021221	0.000000	0.000000
3	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.055284	0.000000	0.000000	0.000000
4	0.017751	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.201843	0.000000	0.000000	0.000000
5	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.159706	0.000000	0.000000	0.000000
6	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.016907	0.000000	0.000000	 0.015409	0.026505	0.000000	0.000000	0.000000
7	0.014828	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.210762	0.008945	0.014995	0.000000
8	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.111607	0.019945	0.000000	0.000000
9	0.038748	0.031474	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.013341	0.137690	0.000000	0.000000	0.000000
10	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.111819	0.000000	0.000000	0.000000
11	0.028714	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.088974	0.295898	0.008661	0.014519	0.017035
12	0.030001	0.000000	0.000000	0.000000	0.036082	0.000000	0.000000	0.000000	0.000000	0.000000	 0.030987	0.287841	0.036198	0.030340	0.000000
13	0.008325	0.010143	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.008598	0.130159	0.010044	0.016837	0.000000
14	0.046714	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.058098	0.000000	0.000000	0.000000

Figura 9: TF-IDF

Usando 75% dos dados para treinamento e 25% para teste, finalmente aplicamos o modelo k-Nearest Neighbors, considerando 3 vizinhos como parâmetro. Dentre esses vizinhos, o modelo calcula o produto mais relacionado com o resto.

⁸ https://scikit-learn.org/stable/modules/feature extraction.html#tfidf-term-weighting

Para a predição da recomendação (ou rating) de um produto, usamos a coluna overall (rating de um produto) como target. Após realizar o split nos dados com as mesmas porcentagens do kNN entre treinamento e teste, transformamos esses valores em inteiro porque o rating é um valor numérico inteiro. Usando kNN novamente para a predição do rating dos produtos, tivemos um bom resultado na acurácia do modelo: 0.86 pelo f1-score (média harmônica entre precision e recall). Também resolvemos observar o Root Mean Squared Error do modelo, que deu 0.388, um valor um tanto longe do ideal 0.

Conclusão

Para esse exemplo, vimos que o filtro baseado em conteúdo obteve um resultado melhor do que o filtro colaborativo. Não só porque modelos diferentes foram utilizados, como também porque o kNN utiliza uma informação importante do produto, que é a sua descrição, enquanto o SVD utiliza as interações usuário-produtor que podem gerar certos problemas, como o *cold start* e o *popularity bias*, conforme descritos anteriormente. Com uma abordagem baseada em conteúdo em cima do texto da descrição, produtos similares podem ser recomendados ao usuário.

Existem diversos detalhes que o grupo gostaria de ter feito no projeto para deixar ele ainda melhor. O primeiro era buscar novas tentativas para um resultado melhor no filtro colaborativo, como novos modelos ou parâmetros diferentes para o tuning. No entanto, esse acabou não sendo o foco do projeto porque o kNN obteve um resultado melhor.

Outro desejo era ter conseguido fazer com o dataset completo, com todos os produtos, ao invés de uma única categoria. Isso porque nós poderíamos fazer um estudo de sumarização, para verificar como é o comportamento do usuário em relação às categorias, se ele costuma comprar com frequência dentro de uma mesma categoria ou não. Depois, poderíamos avaliar se vale a pena fazer a recomendação dentro deste subproblema. No entanto, isso acabou não sendo possível pelo desempenho de trabalhar com esse grande volume de dados. O próprio dataset utilizado ofereceu problemas de performance que não haviam sido encontrados anteriormente, então com o dataset completo não seria possível prosseguir com o andamento do trabalho.

Por fim, é importante ressaltar que esse sistema, baseado apenas em compras, é difícil de avaliar o quão bem ele funciona. Existem diversas outras interações usuário-produto que vão além da compra e elas servem como boas métricas também para as recomendações. Por exemplo, é muito mais interessante para a Amazon investigar se a recomendação de produtos mais caros porém que são mais desejados vale mais a pena em termos econômicos do que produtos que já são comprados toda semana.

Dessa forma, nota-se que existem muitos cenários diferentes que podem servir como objeto de análise para sistemas de recomendação. O problema envolvido no trabalho é de um tema bastante vasto, mas o grupo acredita que conseguiu a partir de pesquisa e com o material da disciplina entender um pouco mais por trás dos sistemas de recomendação.