FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2012. május 17. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok sz	záma
Tisztázati	
Piszkozati	

NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 1212 2 / 16 2012. május 17.

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

1. Egy <u>nem</u> elhanyagolható tömegű, azaz súlyos, lágy rugót egyik végénél felfüggesztünk, majd a rögzítést feloldjuk. Hogyan változik a rugó hossza az esés kezdeti szakaszában?

- A) Rövidül.
- **B)** Nem változik a hossza.
- C) Megnyúlik.

2. Két forró téglát hűtünk le szobahőmérsékleten. Mikor hűlnek le gyorsabban? Ha egymásra, vagy ha egymás mellé tesszük őket?

C) Egyforma gyorsan hűlnek le mindkét esetben.

2 pont

3. Egy, a levegőben 2 dioptriás gömbtükröt víz alatt használunk. Hány centiméteres lesz a tükör fókusztávolsága a víz alatt?

- A) A tükör fókusztávolsága a víz alatt is 50 cm marad.
- B) A tükör fókusztávolsága a víz alatt kevesebb mint 50 cm lesz.
- C) A tükör fókusztávolsága a víz alatt több mint 50 cm lesz.

2 pont

Azonosító								
jel:								
J								

- 4. Egy egyenes autópályán gépkocsioszlop alakul ki, melyben az autók minden sávban egyformán 120 km/h sebességgel, egyenletesen haladnak, a követési távolság közöttük 70 méter. Hirtelen felhőszakadás következtében az autók pontosan egyszerre, azonos lassulással lelassítanak 60 km/h sebességre. Hogyan alakul közöttük a követési távolság?
 - A) A követési távolság megnő.
 - B) A követési távolság lecsökken.
 - C) A követési távolság változatlan marad.

5. Egy elektronmikroszkóp segítségével különböző tárgyakról készítettünk képeket. Melyik kép készítésénél volt az elektronnyaláb gyorsító feszültsége a legnagyobb?

1.

2.

3.

- A) Az első felvétel készítésénél.
- **B)** A második felvétel készítésénél.
- C) A harmadik felvétel készítésénél.

6. Egy kör alakú, szigeteletlen vezető drótot az ábrának megfelelően 8-as formájúra hajtunk. Hogyan változik az ellenállása "A" és "B" pont között a kezdeti ellenálláshoz képest?

- A) Az ellenállás nő.
- B) Az ellenállás csökken.
- C) Az ellenállás változatlan marad.

2 pont

Fizika —	emelt	szint

Azonosító								
jel:								

7. Az arkhimédészi csigasor egy álló és több mozgócsigából áll. A súlyerőnél hányszor kisebb erőt kell alkalmazni egy teher felemeléséhez, ha a mozgócsigák száma három? A csigák, kötelek súlya, valamint a csigák tengelysúrlódása elhanyagolható.

- **A)** 3-szor.
- **B)** 6-szor.
- **C)** 8-szor.
- **D)** 9-szer.

8. Egy ideális gáz állapotát egy folyamat kezdetén p_1 nyomással és V_1 térfogattal jellemezhetjük. A gázt először állandó hőmérsékleten hagyjuk tágulni, majd adiabatikusan összenyomjuk az eredeti térfogatára. Nyomása ebben a végső, harmadik állapotban p_3 . Mit mondhatunk a teljes folyamat során a belső energia ΔE megváltozásáról, illetve a p_3 nyomásról?

- **A)** $p_3 > p_1$; $\Delta E > 0$
- **B)** $p_3 > p_1$; $\Delta E < 0$
- C) $p_3 < p_1; \Delta E > 0$
- **D)** $p_3 < p_1; \Delta E < 0$

9. A földfelszín közelében tiszta időben, sík terepen az elektromos térerősség körülbelül $150\frac{\mathrm{N}}{\mathrm{C}}$ nagyságú és lefelé mutat. Egy gólya éppen a földön áll, míg egy pacsirta elrepül fölötte a magasban. Melyik madár van magasabb elektromos potenciálú helyen?

- A) A gólya.
- B) A pacsirta.
- C) Azonos potenciálú helyen van a két madár.

Fizik	a — emelt szint	Azonosító jel:										
]	Az ábrán egy ideális gáz körfokezdetben az A-val jelölt, legr volt. Az állapotváltozások a n zajlottak. Mit mondhatunk a hőfelvételéről?	nagyobb nyom yílnak megfel	ású á elő ira	llap ányb	otba an	Į	, 1	(A	\)
	 A) A gáz által felvett hő nag B) A gáz által felvett hő egy C) A gáz által felvett hő kise 	enlő a leadott h	ővel.						pont		V	7
]] 1	Egy drótdarabot feltekercseli hosszúságú hengerre, másods hosszúságú hengerre. A heng nagyobb a <u>B</u> mágneses induká áram folyik?	zor pedig egy erek átmérője	<i>L</i> /2 e egyf									
	 A) Az L hosszúságú tekercst B) Egyforma lesz <u>B</u> nagyság C) Az L/2 hosszúságú tekerc 	a a két tekercsl	oen.									
								2	pont			
;	Egy adott időpontban két, kü aktivitása azonos, a bennük lé mintában található ekkor töb	évő izotópok f	elezés							K		

Abban, amelyikben a hosszabb felezési idejű izotóp van. **A**)

Abban, amelyikben a rövidebb felezési idejű izotóp van. B)

Azonos a két mintában lévő radioaktív magok száma. C)

2 pont	
--------	--

Fizika —	emelt szint	jel:										
nyor közö figye	ovics János és Hell Mi non a Vénusz Nap előtti ott. Azért utaztak a sark elhetetlen jelenséget láthas ven évszak volt ekkor az eg	átvonulását körön túlra, ssák.	hely hog	i idő y az E	szer	int	este	9 6	és ha	ajna	ıli 3	3 óra
A) B) C)	Nyár. Tél. A megadott adatok alapjár	n nem lehet el	dönt	eni.								
									2 pc	ont		
keri Az e	utherford-modell szerint a ngenek az atommag körül gyik kisebb, a másik nagy ringési ideje?	. Egy atom k	ét el	ektron	ját v	izs	gálju	k a	mod	dell		
A) B) C)	A kisebb sugarú körpályár A nagyobb sugarú körpály A két érték egyenlő.			_								
									2 pc	ont		
zajlo a jel	újságban ezt olvashattuk: ott. A város fényeitől távol e enség. Ezután hamar besöt engja misztikus ragyogásba	lhelyezkedő e étedett, s a cs	rdei apat	tisztás hazafe	on k elé in	ülöi idul	nösei lt. A	n sz	ép v	olt		itt
A) B) C) D)	Igen, mert a Hold ekkor éj Nem, mert újhold volt, s a Nem, mert teljes napfogya Igen, mert csak a telihold	Hold hamar l tkozás csak d	enyı élbe	igodott 1 lehet.								
									2 pc	ont		

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. A mozgó töltések és a mágneses tér

Lorentz a századforduló (19. század vége) méltán egyik legnépszerűbb és legnagyobb nemzetközi tekintélynek örvendő fizikusa, bár mind a relativitáselmélet Einstein által adott értelmezésével, mind a Planck-féle kvantumelmélettel szemben igen nehezen adta fel tartózkodó magatartását.

Simonyi Károly: A fizika kultúrtörténete. Budapest, 1981.

H. A. Lorentz

Mozgó töltésekkel mágneses teret kelthetünk. Ismertesse az árammal átjárt hosszú, egyenes vezető és a hosszú, egyenes tekercs mágneses terének sajátságait. Vázlatos ábrán szemléltesse az indukcióvonalak rendszerét! Mutassa be, hogyan függ az áram irányától a keletkező mágneses tér iránya! Ismertesse a mágneses indukció nagyságát leíró összefüggéseket!

A mágneses tér hat a benne mozgó töltésekre. Mutassa be a homogén mágneses mezőben mozgó elektromos töltésre ható erőt! Készítsen a jelenséget bemutató ábrát! Ismertesse, hogyan függ a töltésre ható erő a töltés előjelétől, sebességvektorának az indukcióvonalakkal bezárt szögétől! Indokolja meg, mely irányok esetén maximális, és mikor minimális az erő! Ismertessen két olyan gyakorlati példát vagy természeti jelenséget, amelyben a mágneses térben mozgó töltésre ható erő alapvető szerepet játszik!

Mutassa be, hogyan magyarázható a Lorentz-erő segítségével a mágneses térben mozgatott fémrúd végei között megjelenő feszültség! Készítsen ábrát! Ismertesse, hogy milyen tényezőktől függ a rúd végei között mérhető feszültség nagysága! Néhány alapesetre szorítkozva mutassa be, hogyan befolyásolja a kialakuló feszültséget a mágneses tér, a rúd, illetve a mozgás iránya!

Azonosító								
jel:								

2. A víz és gőze

Ha pedig e tért a gőzre nézve még egyszer akkorára tesszük. a vízből még egyszer annyi gőz fejlik ki, mely az előbbivel egyenlő feszerejű és sűrűségű lesz. A gőznek tehát minden hőmérsékletre nézve szabatosan meghatározott legnagyobb feszereje és sűrűsége van, melyet mindig elér, mégpedig az üres, vagy légritkult térben hamarább, mint a léggel töltöttben, ha a gőznemző anyag elegendő mennyiségű.

Schirkhuber Móricz: Elméleti és tapasztalati természettan. Pesten, 1851.

Ismertesse a párolgás jelenségét! Térjen ki annak bemutatására, hogy milyen tényezőktől függ egy folyadék párolgásának sebessége! A párolgás jelenségét és a párolgás sebességét befolyásoló tényezőket értelmezze az anyag részecskemodelljének segítségével!

Adja meg a párolgáshő fogalmát és mértékegységét! Mutassa be, hogyan következtethetünk a párolgáshő mértékéből arra az átlagos energiára, amely ahhoz szükséges, hogy egyetlen részecskét kiszakítsunk a folyadékból!

Ismertesse az abszolút és a relatív páratartalom fogalmát! Miért ajánlott télen a fűtött szobában vizet párologtatni? Mutassa be a harmatképződés folyamatát.

írásbeli vizsga 1212 9 / 16 2012. május 17.

Azonosító								
jel:								

3. A radioaktív bomlástörvény

A fiatal tanár büszkélkedett, kivette zsebéből a tokot, és kitartotta maga elé.

Hosszúkás tubus tengelye táján halvány, kékes fénypontocska világol. Ez a betokozott, vastagon körülzárt rádium emanációja: a piciny fémdarab rettenetes fényenergiája keresztülvilágítja az ujjnyi acéllemezt.

Az asszony nézte, hitetlenkedett, bámult. A tanár is felizgult, szédítő számokat vágott ki, rémítgette a feleségét.

— ...Harmincezer kalória... tudod-e, mennyi az?... Az emanáció másodpercenkint millió és millió részecskét lövell ki ebből a parányi elemből....

Karinthy Frigyes: A lift feljebb megy (1921)

Marie Sklodowska Curie

A radioaktív bomlások statisztikus jellegűek. Miben nyilvánul meg ez a statisztikus jelleg egy atommagra nézve, illetve az atommagok sokaságára vonatkoztatva?

Milyen radioaktív sugárzásokat ismer? Milyen részecskék hagyják el az atommagot az egyes sugárzások során? Ismertesse, hogy az egyes sugárzásokban megváltozik-e az atommag összetétele, és ha igen, hogyan!

Írja föl a radioaktív bomlástörvényt, ábrázolja diagramon a radioaktív atommagok számának alakulását az idő függvényében! Értelmezze a bomlástörvényben szereplő mennyiségeket! Ismertesse az aktivitás, az elnyelt dózis és a dózisegyenérték fogalmát és mértékegységét! Mutasson be három egymástól eltérő jellegű példát a radioaktív sugárzások gyakorlati alkalmazására, vagy természeti megjelenésére!

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

Azonosító								
jel:								

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy műhold az Egyenlítő fölött körpályán kering a Föld körül. A teljes egyenlítői tartomány fölötti elhaladáshoz 8 órára van szüksége.
 - a) Mekkora a műhold keringési ideje, ha egy irányban kering a Föld forgásával?
 - b) Mekkora lenne a műhold keringési ideje, ha ellentétes irányban keringene a Föld forgásával?
 - c) Milyen magasan kering a műhold a Föld felszíne felett az a) esetben? Milyen magasra kellene följuttatni a b) esetben?

a Föld sugara $R_{F\"{o}ld} = 6370 \,\mathrm{km}$.

a)	b)	c)	Összesen
2 pont	2 pont	8 pont	12 pont

Azonosító								
jel:								

2. Egy d=0.05 m szélességű térrészben $E=2\cdot10^4$ V/m térerősségű homogén elektromos tér van. A térbe az erővonalakkal párhuzamosan, irányukkal ellentétesen $v=10^6$ m/s sebességű protont lövünk be.

- a) Mekkora sebességgel lép ki a proton a térből?
- b) Milyen széles tér fékezné le teljesen a protont?
- c) Hogyan módosulnak az eredményeink, ha proton helyet alfarészecskét használunk?

(Az α-részecske tömegét tekintsük négy proton tömegével azonosnak, a részecskékre ható gravitációs erőtől tekintsünk el!)

A proton tömege: $m_p = 1,67 \cdot 10^{-27}$ kg, a proton töltése: $q_p = 1,6 \cdot 10^{-19}$ C.

a)	b)	c)	Összesen
5 pont	3 pont	6 pont	14 pont

3. Az alábbi táblázat a vízpárával teljesen telített levegő (azaz a 100%-os relatív páratartalmú levegő) páratartalmát mutatja a hőmérséklet függvényében, normál nyomáson.

°C	g/m ³	°C	g/m ³	°C	g/m ³	°C	g/m ³
-20	1,2	+1	5,2	13	11,4	25	23,1
-10	2,2	3	6,0	15	12,9	27	25,8
-5	3,3	5	6,8	17	14,5	29	28,7
-3	3,8	7	7,8	19	16,3	30	30,0
-1	4,5	9	8,8	21	18,4	35	38,0
0	4,8	11	10,0	23	20,6	40	50,0

- a) Egy sátorban a levegő hőmérséklete 30 °C, a lehűlés során telítetté 5 °C-on válik (harmatpont). Mekkora a sátorban a relatív páratartalom?
- b) Hány vízmolekula található 1 liternyi sátorbeli levegőben?
- c) Hány gramm víz csapódik ki a zárt sátor levegőjének egy köbméteréből, ha a sátor 0 °C-ra hűl le?

(A víz moláris tömege 18 g/mol.)

a)	b)	c)	Összesen
6 pont	3 pont	3 pont	12 pont

- 4. Élelmiszerek tartósítására használhatunk nagy energiájú elektromágneses sugárzást is. Ha például a romlékony nyers hús 2000 gray röntgensugár dózist nyel el, akkor elpusztulnak benne a baktériumok, és (megfelelően lezárva) sokáig eltartható marad.
 - a) Hány 5 MeV energiájú röntgenfotont kell egy 30 dkg tömegű hússzeletnek elnyelnie ahhoz, hogy elérjük a 2000 gray-es dózist?
 - b) Mennyivel növeli meg a hús hőmérsékletét az elnyelt energia?

A hús fajhője
$$c=4200\frac{\mathrm{J}}{\mathrm{kg}\cdot^{\circ}\mathrm{C}}$$
, 1 eV = 1,6·10⁻¹⁹ J, 1 Gy = 1 J/kg

a)	b)	Összesen
6 pont	3 pont	9 pont

Fizika	em	elt	szint

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

Az írásbeli vizsgarész pontszáma	100	
III. Összetett feladatok	47	
II. Esszé: kifejtés módja	5	
II. Esszé: tartalom	18	
I. Feleletválasztós kérdéssor	30	
	maximális pontszám	elért pontszám

	elért pontszám egész számra kerekítve	programba beírt egész pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár	jegyző

Dátum: Dátum: