Approaches to Effective Sample Size Estimation for Trend Detection in Time Series

Chris Comiskey, Alix Gitelman, Charlotte Wickham

Oregon State University

August 11, 2015

Introduction: Trend Detection

Which AR(1) time series has trend?

Introduction: Trend Detection

Trick question... neither!

Trend is Tricky

Autocorrelation Autocorrelation Autocorrelation

- Autocorrelation complicates trend detection
 - Trend = change in the mean
- Effective Sample Size (ESS)

•
$$ESS_{\mu} = \frac{n^2}{\mathbf{1}'\Sigma_{\rho}\mathbf{1}} = n\left(\frac{n}{\mathbf{1}'\Sigma_{\rho}\mathbf{1}}\right)$$

- [Bayley and Hammersley(1946)]
- For *iid* observations: $Var(\bar{x}) = \frac{\sigma^2}{n}$
- For positively correlated observations: $Var(\bar{x}) > \frac{\sigma^2}{n}$
- Use ESS to modify trend detection tests
 - ESS for the mean

Focus on AR(1) Time Series

A series of observations X_1, X_2, \dots, X_{100} , where

$$X_t = \alpha X_{t-1} + Z_t.$$

- 0 ≤ α < 1
 - Stationary
- $Z_t \stackrel{iid}{\sim} N(0,1)$
- $X_t \sim N\left(0, \frac{1}{1-\alpha^2}\right)$
- $X_t | X_{t-1} \sim N(\alpha X_{t-1}, 1)$

Effective Sample Size

- Attempt to quantify information content
- As autocorrelation increases, ESS decreases.

Can we estimate ESS effectively?

Effective Sample Size: MLE Estimation

• For every correlation parameter α , 100 simulated AR(1) series, and 100 estimates $\hat{\alpha}_{MLE}$

[Thiébaux and Zwiers(1984)]

Effective Sample Size: Fisher Information

- Back to drawing board...
- Could Fisher Information serve as a proxy?

Let's take a look.

Effective Sample Size: Fisher Information

- Back to drawing board...
- Could Fisher Information serve as a proxy for ESS?

Sure could.

Effective Sample Size: Fisher Information

- Is estimation any easier?
- More simulations.

Drumroll...

Effective Sample Size: Fisher Information Estimation

- For every α , 100 simulated AR(1) series
- 100 MLE estimates of FI.

Results virtually identical. Why?

AR(1) Correlation Parameter: α

•
$$X_t = \alpha X_{t-1} + Z_t$$

• The asymptotic distribution of $\hat{\alpha}_{MLE}$ for an AR(1) series of length n is:

$$\hat{\alpha}_n \xrightarrow{d} N\left(\alpha, \frac{1-\alpha^2}{n}\right).$$

- Too large for practical use.
- Back to the drawing board...

Bayesian Paradigm

- We have "Prior Information"
 - No shortage of hydrologic data
- Thomas Bayes to the rescue!
- The Bayesian posterior distribution for α given **X** is:

$$f(\alpha|\mathbf{X}) \propto f(\mathbf{X}|\alpha) f(\alpha)$$

• $f(\alpha)$ can incorporate prior information

Beta Priors on α

- Beta family is natural choice for prior on α , with [0, 1) support.
- For $\alpha \sim \textit{Beta}(\alpha_1, \beta_1)$, we have

$$E[\alpha] = \frac{\alpha_1}{(\alpha_1 + \beta_1)}$$

$$Var[\alpha] = \frac{\alpha_1 \beta_1}{(\alpha_1 + \beta_1)^2 (\alpha_1 + \beta_1 + 1)}$$

Beta Priors on α

- Suppose data indicates $\alpha = 0.25$
- Three Beta priors—same mean, different variance

How much better do we do?

How much better do we do?

How much better do we do?

Victory! ...Victory? Not exactly.

Bayesian Estimation of ESS – The Catch

There is no such thing as a free lunch.

- Beta priors are shifting to have mean equal to true mean
- Of course we do better
- Key point: we do a lot better with a little help

Bayesian Space-Time Hierarchical Models

- Streams exist in networks
- Networks are spatially and temporally correlated
- Key point: we can use this information

G.V. Bayley and J.M. Hammersley.

The "effective" number of independent observations in an autocorrelated time series.

Supplement to the Journal of the Royal Statistical Society, 8(2):184–197, 1946,

H. J. Thiébaux and F. W. Zwiers.

The interpretation and estimation of effective sample size. Journal of Climate and Applied Meteorology, 23(5): 800-811, 2014/10/31 1984.