Problemas Primer Parcial - Taller

José David Ruiz Álvarez

josed.ruiz@udea.edu.co

Instituto de Física, Facultad de Ciencias Exactas y Naturales

Universidad de Antioquia

7 de septiembre de 2018

1. Problem 1

When a voltage source is connected across a resistor and inductor in series, the voltage across the inductor $V_i(t)$ is predicted to obey the equation:

$$V(t) = V_0 e^{\Gamma t} \tag{1}$$

where t is the time and the decay rate $\Gamma = R/L$ is the ratio of the resistance R to the inductance L of the circuit. Use the above equation to fit the data below.

Data for decay of voltage across an inductor in an RL circuit

time	(ns)	voltage	(volts)
0.0		5.08e+00	
32.8		3.29e+00	
65.6		2.23e+00	
98.4		1.48e+00	
131.2		1.11e+00	
164.0		6.44e-01	
196.8		4.76e-01	
229.6		2.73e-01	
262.4		1.88e-01	
295.2		1.41e-01	
328.0		9.42e-02	
360.8		7.68e-02	

393.6	3.22e-02
426.4	3.22e-02
459.2	1.98e-02
492.0	1.98e-02

Asnwer the following questions:

- Find the best values of Γ and V_0 .
- Make a semi-log (Y-axis in log scale) plot of the data and obtained fit.
- If the resistor has a value of 10.0 $k\Omega$, what is the value of the inductance?

2. Problem 2

Using Euler, improved Euler and odeint scipy methods, solve the following ODEs. Determine if each methods converge in the given range. Make a plot of the numerical soutions and truncate errors. It is up to you to determine the step size.

2.1. Problem 2.1

$$\frac{dy(t)}{dt} = -y(t) + 1; \ y(0) = 0; \ t = [0, 10]$$
(2)

2.2. Problem 2.2

$$5\frac{dy(t)}{dt} = -y(t) + t; \ y(0) = 0; \ t = [0, 10]$$
(3)

2.3. Problem 2.3

$$3\frac{dy(t)}{dt} = -y(t) + t^2; \ y(0) = 0; \ t = [0, 10]$$
(4)