My Studies

Ryo Ochi

$\mathrm{July}\ 15,\ 2018$

Contents

1	character 1.1 C*-algebra 1.2 von Neumann algebra 1.3 example	4 4 4
2	Takesaki2.1 Egorov and Lusin2.2 universal representation2.3 Polar decomposition2.4 amplification2.5 semifinite	4 4 4 5 5 6
3	fundamental theory of C*-algebras(not only ozbr) 3.1 completely positive	6 7 7 7 7
4	crossed product	8
5	Stable Rank	8
6	modular theory 6.1 Left Hilbert algebra 6.2 weight 6.3 KMS-condition and noncommutative Radon-Nikodym derivative 6.4 Pedersen-Takesaki construction 6.5 Connes' inverse problem 6.6 continuous decomposition 6.7 Existence of conditional expectation	9 10 11 13 15 15
7	KMS-state7.1 definition of KMS-state7.2 Cuntz algebra \mathcal{O}_n	16 16
8	Group von Neumann algebra 8.1 Fourie algebras	16 17 17

10	ultraproduct	18
11	filter	19
12	Groupoid C*-algebras 12.1 groupoid	19 19 20 21
13	Cuntz-Pimsner algebra 13.1 Construction of Toeplitz-Pimsner algebra and Cuntz-Pimsner algebra	22 22
14	K-theory	22
15	Boundary 15.1 injective envelope	22 22 23 23
16	Trees 16.1 amalgamated products and a seqment 16.2 Amalgamated products and trees 16.3 Fundamental groups of a graph of groups 16.4 Universal covering relative to a graph of groups 16.5 ping-pong lemma 16.6 Amenabilty and hyperbolic element	24 24 25 25 27 27 28
17	Group	29
	Locally compact groups 18.1 topological gropus	30 30 31 31 31
	19.1 Induced Representations	32
20	Modules	33
21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 33 34 35 35 35
22	Cuntz algebra \mathcal{O}_n	36
23	22.1 Haar measure	36 36
	Subjects	36
	Problem	37
		٠.

26 need	37
27 comment bibliography	37

1 character

1.1 C*-algebra

simple, completely positive map, K-group, masa, Cartan subalgebra, representation, norm on tensor(faithful), embedding, hereditary subalgebra left ideal,

1.2 von Neumann algebra

trace, factor, GNS, spectral decomposition, M_p , weight, modular automorphism, spectrum, solid, amenable, rigid,

1.3 example

 $M_n(\mathbb{C})$ L(G) $C_r(G)$, C(G) \mathcal{R} $M \rtimes G$ ultraproduct GNS AF-algebra Toeplitz algebra Powers factor

2 Takesaki

2.1 Egorov and Lusin

Thm 2.1 (Egorov's lemma). Let be $(\Omega, \mathcal{F}, \mu)$ a finite measure space. Let be $\{f_n\}_{n\in\mathbb{N}}$ and f measurable functions. Suppose $\{f_n\}_{n\in\mathbb{N}} \to f$ a.e. Then, for each $\epsilon > 0$, There exists $\mathcal{F} \subset A$ s.t. $\mu(\Omega - A) < \epsilon$ and $\{f_n\}_{n\in\mathbb{N}}$ convergent f uniformly on A.

Thm 2.2 (Lusin's theorem). Same assumption. Then, for each $\epsilon > 0$, There exists $\mathcal{F} \subset A$ s.t. $\mu(\Omega - A) < \epsilon$ and f is continuous on A.

Thm 2.3 (noncommutative Egorov's theorem). Let (M,H) be von Neumann algebra and $A \subset M$ be a bounded subset. Suppose any $a \in \overline{A}^s$, any $\varphi \in M_{*,+}$, any $e \in P(M)$, any $\epsilon > 0$. Then, there exists $e_0 \in P(M)$ s.t. $e_0 \le e$ and a sequence $\{a_n\}_{n \in \mathbb{N}} \subset A$ s.t. $\lim_{n \to \infty} ||(a-a_n)e_0|| = 0$, $\varphi(e-e_0) < \epsilon$.

Thm 2.4 (noncommutative Lusin's theorem). Let A be a C*-algebra. Suppose $M = \overline{A}^s$. Suppose $0 \neq \varphi \in M_{*,+}, 0 \neq e \in P(M), \epsilon, \delta > 0$.

- For each $a \in M$, there exists $e \ge e_0 \in P(M)$ and $a_0 \in A$ s.t. $ae_0 = a_0e_0$ and $||a_0|| \le (1+\delta)||ae_0||$.
- For each $a \in M_{sa}$, there exsists $e \ge e_0 \in P(M)$ and $a_0 \in A_{sa}$ s.t. $ae_0 = a_0e_0$, $||a_0|| \le \min\{2(1 + \delta)||ae_0||, ||a|| + \delta\}$.
- Let $1 \in A$. For each $a \in \mathcal{U}(M)$, there exists $e \ge e_0 \in P(M)$ and $a_0 \in \mathcal{U}(A)$ s.t. $ae_0 = a_0e_0$, $||a_0 1|| \le ||a 1|| + \delta$.

If $\varphi = \text{Tr}$, the following theorem is followed.

Thm 2.5 (Transitivity theorem). Let A be a irredusible C^* -algebra on H. For each finite projection $e \in P(M)$, Ae = B(H)e.

Ω	M
\mathcal{F}	P(M)
μ	$\varphi \ (\in M_{*,+})$
measurable function	M
$f:\Omega\to\mathbb{C}$	$a:M\to M$

2.2 universal representation

Thm 2.6. Let A be a C^* -algebra and (π,H) be a representation of A.

2.3 Polar decomposition

Thm 2.7. closed left invariant subspace $\longleftrightarrow \sigma$ -w closed right ideal $M_* \supset V = J^0 = M_*e \longleftrightarrow M \supset J = V^0 = (1-e)M$

Ex 1. $l^2(\mathbb{Z})$

Thm 2.8. Let X and Y be Banach sp.s. Let B_X be a unit open ball. If $T(B_X) = B_Y$, then injective.

Thm 2.9. Let A < B be C^* -algebras. Let $E : B \to A$ be a surjective map, which statisfies E(a) = a $(a \in A)$, $||E(x)|| \le ||x||$. Then, it is conditional expectation.

- $E(x^*x) \ge 0 (x \in B)$
- $E(axb) = aE(x)b (a, b \in A, x \in B)$
- $E(x)^*E(x) \le E(x^*x)$

Thm 2.10. ω is normal \Leftrightarrow for all $\{p_n\} \subset P(M)$, $\omega(\sum p_n) = \sum \omega(p_n)$.

Thm 2.11. $\varphi \in M_*$. There exist unique $v \in M$ and $\omega \in M_{*,+}$ s.t. $\varphi = v\omega$, $v^*v = s(\omega) = s_r(\varphi)$, $vv^* = s_l(\varphi)$.

Def 2.1. Let (M_i, τ_i) be tracial von Neumann algebras.

 (M,τ) is called free product von Neumann algebra, if it satisfies the following properties. $\varphi_i: M_i \to M$ are how and $\tau_i = \tau \circ \varphi_i$, $\varphi_i(M_i)$ are free with respect to /tau, and generates M. von Neumann subalgebras M_i of von Neumann algebraM is free with respect to faithful normal state, if for each $x_i \in M_{k_i}$ with $k_1 \neq \cdots \neq k_n$, $\tau(x_i) = 0$, $\tau(x_1 \cdots x_n) = 0$.

Thm 2.12. Let (M_i, τ_i) be tracial von Neumann algebras. Let (M, τ) be its free product von Neumann algebra. Let Q be deffuse von Neumann subalgebra of M_1 . Then, $Q' \cap M \subset M_1$. Specially, $Z(M) \subset Z(M_1)$, therefore if M_1 is a H_1 factor, so is M.

Proof. A masa of tracial deffuse von Neumann algebra is deffuse, since conditinal expectation. separable abelian diffuse von Neumann algebra is isomorphic to $L^{\infty}([0,1],\mu)(\mu:\text{Leb})$, and faithful state is given by integration, so $u_n = exp(2\pi int)$ is $\tau(u_n) = 0$, and $w - \lim u_n = 0$ (Riemann-Lebesgue).

It suffices to show $x \in \ker(\tau_1)$ is 0.

Since E_{M_1} is faithful, it suffices to show $E_{M_1}(x * x) = 0$.

For each $x, y \in M$ with $E_{M_1}(x) = 0$ and $E_{M_2}(y) = 0$, it suffices to show $\lim ||E_{M_1}(xu_ny)|| = 0$. Since $ker(\tau_1)$ ideal, $E_{M_1}(xu_ny) = \tau_1(bu_nd)x_1acy_1$. Because b, d are $ker(\tau_1) \cup \{1\}$, QED.

Thm 2.13. Let (M, τ) be a tracial von Neumann algebra, $e_B \in P(L^2(M))$ be a projection onto $L^2(B)$. Suppose $B = \langle B, e_B \rangle$.

• $B = M \cap \{e_B\}'$;

2.4 amplification

Thm 2.14. Let $\{M_1, H_1\}$ and $\{M_2, H_2\}$ be vN algebras.

If π is a normal hom of M_1 onto M_2 , then there exists a Hilbert sp. K, $e' \in \mathcal{P}(M'_1 \otimes B(K))$ and isometry U

of $e'(H_1 \otimes K)$ onto $H_2s.t.$ $\pi(x) = U(x \otimes 1_K)_{e'}U^*(x \in M_1).$

$$e'(H_1 \otimes K) \xrightarrow{(x \otimes 1_K)_{e'}} e'(H_1 \otimes K)$$

$$\downarrow U \qquad \qquad \downarrow U$$

$$H_2 \xrightarrow{\pi(x)} H_2$$

Proof. Let $\{\xi_i\} \subset H_2$ be a maximal family s.t. $H_{2,i}[\pi(M_1)\xi_i]$ are mutually orthogonal. Then, $H_2 = \bigoplus_i H_{2,i}$. Let K_i be a separable infinite dimensional Hilbert sp, K be a $\otimes K_i$ and π_1 be a amplification of M_1 . Since ${}^t\pi(\omega_{\xi_i}) \in M_*^+$, there exists $\zeta_i \in H \otimes K_i$ s.t. ${}^t\pi_1(\omega_{\zeta_i}) = {}^t\pi(\omega_{\xi_i})$.

Let e' be a projection of $H \otimes K$ onto $\bigotimes_i [\pi_1(M_1)\zeta_i]$, which by elongs to $\pi_1(M_1)'$.

Let isometry U_i be a extention of $[\pi_1(M_1)\zeta_i]$ onto H_i and $U=\oplus_i U_i$.

2.5 semifinite

Prop 2.1. Let M be a von Neumann algebra with faithful normal semifinite trace. If N < M is a von Neumann subalgebra and $\tau|_N$ is semifinite, there exists faithful normal conditional expectation E of M onto N s.t. $\tau = \tau \circ E$.

3 fundamental theory of C*-algebras(not only ozbr)

3.1 completely positive

Def 3.1. $\varphi: A \to B$ is completely positive(c.p.), if for all $n, \varphi \otimes id_n: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is positive. contractive c.p.(c.c.p.)

Thm 3.1. Let A be unital C^* -algebras and $\varphi: A \to B(H)$ be a unital *-hom. Then, there exist a Hilbert space \hat{H} , $\pi: A \to B(\hat{H})$ and $V: H \to \hat{H}$ s.t. $\varphi = V^*\pi(a)V$ $(a \in A)$:

$$\begin{array}{ccc} H & \xrightarrow{\varphi(a)} & H \\ \downarrow V & & \downarrow V \\ \hat{H} & \xrightarrow{\pi(a)} & \hat{H} \end{array}$$

Proof. We define inner product on \hat{H} by $\langle \sum a_i \otimes \xi_i, \sum b_i \otimes \zeta_i \rangle := \sum_{i,j} \langle \varphi(b_j^* a_i) \xi_i, \zeta_j \rangle$. We denote a completion of $A \odot H/N$ by \hat{H} , where $N = \{a \in A \odot H | \varphi(a^*a) = 0\}$.

We define V by a extension of $\xi \to 1_A \otimes \xi$. We define π by a extension of $a_i \otimes \xi_i \to aa_i \otimes \xi_i$. We remark $V^*(a \otimes xi) = \varphi(a)\xi$.

Prop 3.1. Let π be a non-zero homomorphism. Then, π is a *-homomorphism iff $||\pi|| = 1$.

Proof. At first, we show that $x \in B(H)$ is unitarty iff $||x|| = ||x^{-1}|| = 1$. Only if:it follows x is isometric. We suffices to show for $u \in \mathcal{U}(H)$, $\pi(u)$ is unitary.

Thm 3.2. Let A be a unital C*-algebra and $E \subset A$ be an operator subsystem. Then, every c.c.p. map $\varphi : E \to B(H)$ extends to a c.c.p. map $\overline{\varphi} : A \to B(H)$.

Prop 3.2. Let A be a unital C^* -algebra. A map $\varphi: A \to M_m(\mathbb{C})$ is c.p. if and only if $\hat{\varphi}$ is positive on $M_n(\mathbb{C})$, where $\hat{\varphi}((a_{ij})) = \sum \varphi(a_{ij})$. $CP(A, M_n(\mathbb{C}))\varphi \mapsto \hat{\varphi} \in M_n(\mathbb{C})^*_+$ is a bijective correspondence.

Def 3.2 (nuclear). Let A, B be a C^* -algebras. Let $\theta: A \to B$ be a map. φ is called nuclear if there exist c.c.p. maps $\varphi_n: A \to M_{k(n)}$ and $\psi_n: M_{k(n)} \to B$ s.t. $\psi_n \circ \varphi_n \to \theta$ in the point-norm topology.

Thm 3.3. Let A be a C^* -algebra. A is nuclear if and only if A has a property $(T):||\cdot||_{max}=||\cdot||_{min}$

Proof. φ

3.2 Kadison-Schwartz inequality

Thm 3.4 (Kadison-Scwartz inequality [Kad52]). Let A be a C^* -algebra. Let φ be a positive linear map from A to B(H) s.t. $\|\varphi\| \leq 1$.. Then, for each $a \in A_h$,

$$\varphi(a^2) \ge \varphi(a)^2$$
.

Proof. We may assume A is unital. We may assume $A = C(\Omega)$, where Ω is a compact Hausdorff space. By the GNS construction, there exists a injective *-homomorphism from A to B(K). $C(\Omega)$ is abelian, the above map is u.c.i and φ is u.c.p. By the injectivity, there exists a u.c.p map $B(K) \to B(H)$ extending φ , we continue to denote by φ . We suffices to show that for $\alpha_i \in \mathbb{R}$ and characteristic functions E_i of disjoint borel subsets of X,

$$\varphi((\sum \alpha_i E_i)^2) \ge (\varphi(\sum \alpha_i E_i))^2.$$

By disjointness,

$$\varphi(\sum \alpha_i^2 E_i) \ge (\varphi(\sum \alpha_i E_i))^2.$$

So, we suffices to show $\varphi(E_i) \ge \varphi(E_i)^2$. Since $||E_i|| = 1$ and $||\varphi|| \le 1$, $\varphi(E_i) \le 1$. Also, φ is positive, $\varphi(E_i)$ is self-adjoint. So, $\varphi(E_i) \ge \varphi(E_i)^2$.

3.3 operator system

Thm 3.5 ([CE77]). Let R be an injective envelope system and completely isometoric map $R \to B(H)$. Then, there exists a unital complete order isomorphism of R onto an essentially unique unital C^* -algebra. The latter is conditionally complete, i.e. any increasing net in R_h ehich is bounded above hs a least upper bound in R_h .

Espesially, the C^* -algebra may be faithfully represented as a AW^* -algebra.

Furthermorem, if R is a σ -weakly closed, then the C*-algebra may be faithfully represented as a von Neumann algebra.

3.4 implimitivity theorem

Thm 3.6. Let Γ be a discrete group and Λ be a subgroup of Γ . Then,

$$c_0(\Gamma/\Lambda) \rtimes_r \Gamma \cong \mathbb{K}(l^2(\Gamma/\Lambda)) \otimes C_r^*(\Gamma)$$

https://math.dartmouth.edu/dana/cpcsa/draft-31Jan06.pdf

3.5 Gelfand Duality

Prop 3.3 ([Suz18]). Let X, Y be locally compact spaces. Let $\varphi: C_0(X) \to C_0(Y)$ be a isometric *-homomorphism s.t. $\varphi(C_0(X))C_0(Y) \subset C_0(Y)$ is norm-dense. Then, $\varphi *: Y \to X$ is a proper quotient map.

Proof. Proper: Let K be a compact subset of X. By compactness, finite relative compact open subsets, whose closure relative comapact open subset, covers K. So, we may assume there exist $f \in C_c(X)$ s.t. K = supp(f).

$$supp(\varphi(f)) = \{ y \in Y : 0 \neq y(\varphi(f)) = (y \circ \varphi)(f) = \varphi^*(y)(f) \}$$
$$= (\varphi^*)^{-1}(supp(f)).$$

Quatient: surjectivity is OK. Since $\varphi(C_0(X))C_0(Y) \subset C_0(Y)$ is norm-dense, We can think one-point compactification and $\varphi(\infty_Y) = \infty_X$. Then,

$$C_0(X) \xrightarrow{\varphi} C_0(Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\tilde{X}) \xrightarrow{\tilde{\varphi}} C(\tilde{Y})$$

and $\tilde{\varphi}^*|_Y = \varphi^*$. Since $\tilde{\varphi}^*$ is a cntinuous surjective map from a compact space to compact space, it is an open map. So, a quotient topology on Y w.r.t. φ^* correspondens to an original topology on Y.

Rem 3.6.1. Let X be a locally compact space. Then, $y_i \to \infty \Leftrightarrow \text{for any } f \in C_0(Y), f(y_i)/\text{rightarrow}0.$

4 crossed product

Def 4.1. Let (X, μ) be a measure space, G be a countable discrete group. We define $\mathcal{A} = L^{\infty}(X, \mu)$ and $H = L^{2}(X, \mu)$. Let α be a action on \mathcal{A} , or $\alpha : G \to Aut(\mathcal{A})$ is a homomorphism.

- α is free $\Leftrightarrow \alpha_q$ is free, in other words $xa = a\alpha_q(a) \Rightarrow a = 0$;
- α is ergodic \Leftrightarrow there is no invariant projection in A under $\alpha(G)$ other than 0 or 1.

Let $K = H \otimes l^2(G)$. We define $\pi : A \to B(K)$ by $\pi(a)\xi(g) = \alpha_g^{-1}(a)\xi(g)$. The von Neumann algebra generated by $\pi(A)$ and $\{\lambda_q\}$ is called crossed product of A by G w.r.t. α , and we denote $A \rtimes_{\alpha} G$ or $A \rtimes G$.

Thm 4.1. • $\pi(A)$ is masa in $A \rtimes G \Leftrightarrow \alpha$ is free.

• $A \rtimes G$ is a factor $\Leftrightarrow \alpha$ is free and ergodic.

Prop 4.1. $x = \sum \pi(a_g)\lambda_g$, $y = sum\pi(b_g)\lambda_g$.

- $\lambda_q \pi(f) \lambda_{q^{-1}} = \pi(\alpha_q(f));$
- $xy = \sum_{g' \in G} \sum_{h \in G} \pi(a_{g'h^{-1}}\alpha_{g'h^{-1}}(b_n))\lambda_{g'};$
- $x^* = \sum \pi(\alpha_g(\overline{a_{g^{-1}}}))\lambda_g$:

Prop 4.2. There exists a faithful normal conditional expextation E of M onto A s.t. $E(\sum_{fin.} \pi(a_g)\lambda_g) = a_e$. When X is a finite measure space and , we define state τ by $\langle \cdot (1 \otimes \delta_e), 1 \otimes \delta_e \rangle$. It satisfies $\mu \circ E = \tau$.

5 Stable Rank

Def 5.1. Let A be a unital C^* -algebra. For each $n \in \mathbb{N}$, define

$$Lg_n(A) := \{(a_1, a_2, \dots, a_n) \in A^n | Aa_1 + Aa_2 + \dots + Aa_n = A\}.$$

Then the stable rank of A is defined to be the value

$$\min\{n \in \mathbb{N} | \operatorname{Lg}_n(A) \text{ is norm dense in } A\}.$$

Prop 5.1 ([Rie83], Proposition 3.1). A unital C^* -algebra has stable rank one if and only if the set of invertible elements of A is norm dense in A.

Def 5.2. Let A be a C^* -algebra. Denoted by ZD(A) the set of two-sided zero divisor in A, i.e., the set of elements x in A for which ax = xb = 0 for some non-zero elements a and b in A.

Prop 5.2 ([Rør91], proposition 3.2). For each unital C^* -algebra A, $\overline{\mathrm{ZD}}(A)$ consists precisely of all elements x in A that are not one-sided invertible.

Proof. Let X be a set of all elements x in A that are not one-sided invertible. At first, we show that $\mathrm{ZD}(A) \subset X$. Let $x \in \mathrm{ZD}(A)$. Since $\mathcal{R}(x) \neq H$ and $\ker(x) \neq H$, $x \in X$. We show that X is closed. Suppose $a, x \in A$ and $x_n \in X$ s.t. ax = 1 and $x_n \to x$. There exists n s.t. $||ax_n - 1|| < 1$. So, $ax_n \in \mathrm{GL}(A)$, this is contradiction. So, we suffices to show that $\overline{\mathrm{ZD}}(A) \supset X$. Let $x \in X$ and $\varepsilon > 0$. Then, neither |x| nor $|x^*|$ is invertible (since if |x| is invertible, $x^*x = |x|^2$ is invertible). Suppose $f_{\varepsilon}, g : \mathbb{R}_+ \to \mathbb{R}_+$ be continuous functions s.t.

$$f(x) := \begin{cases} 0 & (x \in [0, \varepsilon] \\ x - \varepsilon & (x \in [\varepsilon, \infty) \end{cases}, g : \begin{cases} g(0) = 1 \\ \operatorname{supp}(g) \subset [0, \varepsilon]. \end{cases}$$

Let x = v|x| by polar decomposition. Let $a := g(|x^*|), b := g(|x|)$ and $x_{\varepsilon} := vf_{\varepsilon}(|x|)$. Then, $ax_{\varepsilon} = 0 = x_{\varepsilon}b$. Since $0 \in \sigma(|x)$ and $0 \in \sigma(|x^*|), a, b \neq 0$. So, $x_{\varepsilon} \in \mathrm{ZD}(A)$. Since $||x - x_{\varepsilon}|| \leq \varepsilon, x \in \overline{\mathrm{ZD}}(A)$.

6 modular theory

6.1 Left Hilbert algebra

Def 6.1. Let A be a complex involution \sharp algebra.

Let H be a completion of A.

A is called by left Hilbert algebra, if it satisfies the following properties.

- For each $\xi \in A$, $A \ni \eta \to \xi \eta$ is continuous;
- For any $\xi, \eta, \zeta \in A$, $\langle \xi \eta, \zeta \rangle = \langle \eta, \xi \zeta \rangle$;
- $A^2 \subset A$ is dense;
- $A \ni \xi \to \xi^{\sharp}$:preclosed:

Def 6.2. S^A is defined by the closure of $A \ni \xi \to \xi^{\sharp}$.

We often write S instead of S^A .

Def 6.3. $\mathcal{L}(A) := \overline{span\{L_{\xi}|\xi \in A\}}^{w}$.

Prop 6.1. • For any $\eta \in \mathcal{D}_{S^*}$, $A \ni \xi \to \xi \eta$ is preclosed and we call it R_{η} ;

• Then, $(R_{\eta})^*\xi = L_{\xi}S^*\eta(\xi \in A);$

Cor 6.0.1. If $\eta \in A'$, then $S^*\eta \in A'$ and $S^*(S^*\eta) = \eta$, $R_{S^*\eta} = (R_{\eta})^*$.

Cor 6.0.2. If $\eta_1, \eta_2 \in A'$ and $x' \in \mathcal{L}(A)'$, then $R_{\eta_1} x' \eta_2 \in A'$ and $S^* R_{\eta_1} x' (\eta_2) = R_{S^* \eta_2} x'^* S^* \eta_1$, $R_{R_{\eta_1} x' (\eta_2)} = R_{\eta_1} x' R_{\eta_2}$.

Cor 6.0.3. If $\eta \in \mathcal{D}_{S^*}$, then there exists $\{\eta_n\}, \{\zeta_n\} \subset A'$, s.t. $R_{\eta_n}\zeta_n \to \eta$ and $S^*R_{\eta_n}\zeta_n \to S^*\eta$.

Def 6.4. $A' := \{ \eta \in \mathcal{D}_{S^*} | R_{\eta} is bounded \}$

Prop 6.2. Suppose $\eta, \zeta \in H$ and $x' \in B(H)$. The following are equivalent.

- 1. $\eta \in A', S^*\eta = \zeta, R_{\eta} = x';$
- 2. for any $\xi \in A$, $L_{\xi}\eta = x'\xi$, $L_{\xi}\zeta = x'^*\xi$:

By the above proposition, we get a right Hilbert module A', which is endowed the operations

- $\eta_1 \eta_2 = R_{\eta_2} \eta_1;$
- $\eta^{\flat} = S^* \eta$:

Thm 6.1. Let A_1 be a dense subalgebra of right Hilbert algebra A_2 . Then, A_1 is a right Hilbert subalgebra of A_2 . Moreover, the followins are equivalent.

- $A_1' = A_2';$
- $A_1'' = A_2'';$
- $S^{A_1} = S^{A_2}$:

6.2 weight

Prop 6.3. Let M be a vN algebra with cyclic separating vector ξ_0 . For each $\xi \in H$, We define $\mathcal{D}_{L_{\xi}^o}$, $L_{\xi}^o(x'\xi_0) = x'\xi$. Then,

$$\mathfrak{P} := \{ \xi \in H | L_{\xi}^{o} : positive \}$$

$$= \{ \xi \in H | \omega'_{\xi, \xi_{0}} \ge 0 \}$$

$$= \{ A\xi_{0} | A : positive \ selfadjoint \ affiliated \ toM, \xi_{0} \in \mathcal{D}_{A} \}$$

Proof. Friedrichs extention.

Lem 6.1. Let M be a vN algebra with cyclic separating vector ξ_0 .

Then, for any $\phi \in M_*^+$, there exists an unique $\xi \in \mathfrak{P}_S$ s.t. $\phi = \omega_{\xi}$. Specially, there exists positive selfadjoint operator A affiliated to M s.t. $\phi = \omega_{A\xi_0}$.

Proof. There exists
$$\zeta \in H$$
 s.t. $\phi = \omega_{\xi}$. $\omega_{\zeta,\xi_0} = v' |\omega_{\zeta,\xi_0}|$. $\xi = v'^* \zeta$.

Thm 6.2. Let $A \subset H$ be a left Hilbert algebra. Then,

- JA'' = A', JA' = A'';
- $S^*J\xi = JS\xi(\xi \in A'');$
- $SJ\eta = JS^*\eta(\eta \in A');$
- $R_{J\varepsilon} = JL_{\varepsilon}J$, $L_{J\eta} = JR_{\eta}J$:

Def 6.5. We call $\varphi: M^+ \to [0, \infty]$ weight, when it is \mathbb{R}_{\geq} -linear.

- $fatithful\ if\ \varphi(a) = 0 \Leftrightarrow a = 0;$
- semifinite if $\mathfrak{M}_{\varphi}^+ = \mathfrak{N}_{\varphi} = \{x \in M^+ | \varphi(x) < \infty\};$
- normal if sum of M_{*}^{+} :

Prop 6.4. Let φ be a weight on M. The followings are equivalent.

- commute with σ -w sum;
- commute with increasing net;
- lower σ -w semicontinuous;
- $sup of M_*^+;$
- sum of M_*^+ :

Proof. $(2 \Rightarrow 5)$: Connes' inverse theorem.

Thm 6.3. Let $A \subset B$ be a left Hilbert algebra. We define weight φ_A on M^+ by

$$\varphi_A(a) = \begin{cases} ||\xi||^2 & (\exists \xi \in A'' s.t. a^{\frac{1}{2}} = L_{\xi}) \\ \infty & otherwise \end{cases}$$

Then, φ is a semifinite faithful normal weight.

By the following lemma, increading and additive follows.

Lem 6.2. Let $a, b \in M^+$ s.t. $a \ge b$.

We define $v: [b^{\frac{1}{2}}H] \oplus [b^{\frac{1}{2}}H]^{\perp} \xrightarrow{\mathcal{H}} by \ b^{\frac{1}{2}}\eta + \theta \mapsto a^{\frac{1}{2}}\eta.$

Then, v belongs to M and $b^{\frac{1}{2}}v^*a^{\frac{1}{2}} = a$.

Proof. (additive) Let $a^{\frac{1}{2}} = L_{\xi}$ and $b^{\frac{1}{2}} = L_{\xi}$. Then, $v^*v + w^*w$ is a projection. $(a+b)^{\frac{1}{2}} = L_{v^*\xi + w^*\zeta}$.

Lem 6.3. Let $A \subset H$ be a left Hilbert algebra. Then, there exist σ -finite projections $\{e_i\} \subset \mathcal{L}(A)^+$ s.t.

- $\sum e_i = 1$;
- For each i, there exist increasing sequence $\{a_{i,n}\}\subset \mathfrak{M}^+$ converging e_i ;
- For each n and each $r \in \mathbb{Q}$, there exists m(n,r) s.t. $\sigma_r(a_{i,n}) \leq a_{i,m(n,r)}$:

Proof. Numbering \mathbb{Q} and iikanji net.

Suppose $a_{1,i}^{\frac{1}{2}} = L_{\xi_1}$ and $(a_{n,i}^{\frac{1}{2}} - a_{1,n-1}^{\frac{1}{2}})^{\frac{1}{2}} = L_{\xi_n}$. We define $\varphi' = \sum_i \sum_n \omega_{\xi_{i,n}}$. $J\varphi'J$ is faithful semifinite normal weight and satisfies the following properties.

- $\varphi \leq \varphi_A$;
- $\varphi(a) = \varphi_A(a)a \in \mathfrak{M}_A^+;$
- $\varphi(\sigma_t(a)) = \varphi(a)a \in \mathcal{L}(A)^+$:

In fact, It is same as φ_A .

Def 6.6. We define Tomita algebra by the following way.

$$\mathfrak{T} := \left\{ \xi \in \cap_{\alpha \in \mathbb{C}} \mathcal{D}_{\triangle^{\alpha}} \middle| \begin{array}{l} \textit{for each}, \ \alpha \in \mathbb{C}, \triangle^{\alpha} \xi \in \mathcal{A}' \cap \mathcal{A}''(\textit{In fact, we only need it.}), \\ \mathcal{D}_{\triangle^{\alpha} L_{\xi} \triangle^{-\alpha}} = \mathcal{D}_{\triangle^{-\alpha}}, \triangle^{\alpha} L_{\xi} \triangle^{-\alpha} \subset L_{\triangle^{\alpha} \xi}, \\ \mathcal{D}_{\triangle^{\alpha} R_{\xi} \triangle^{-\alpha}} = \mathcal{D}_{\triangle^{-\alpha}} \textit{and } \triangle^{\alpha} R_{\xi} \triangle^{-\alpha} \subset R_{\triangle^{\alpha} \xi} \end{array} \right\}$$

Thm 6.4. Let $\mathfrak{A} \subset H$ be a left Hilbert algebra. Then, \mathfrak{T} is a left Hilbert subalgebra of \mathfrak{A}'' . and $\mathfrak{T}' = \mathfrak{A}'$, $\mathfrak{T}'' = \mathfrak{A}''$. Moreover,

6.3 KMS-condition and noncommutative Radon-Nikodym derivative

Def 6.7. Let φ be a weight on M and $\{\pi_t\}$ be a one-parameter group of *-automorphism of M.

- varphi satisfies the Kubo-Martin-Schwinger condition (KMS-condition) for $x, y \in \mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^*$ w.r.t $\{\pi_t\}$, if there exists an 1-c.a. function $F_{x,y}$ s.t. $F(it) = \varphi(x\pi_t(y))$ and $F(it+1) = \varphi(\pi_t(y)x)$.
- Moreover, $\{\phi, \pi_t\}$ satisfies the modular condition, if it satisfies KMS-condition for any two elements in $\mathcal{N}_{\varphi} \cap \mathcal{N}_{\varphi}^*$ and $\{\pi_t\}$ leaves invariant the weight φ .

Thm 6.5. • $\{\varphi, \sigma_t^{\varphi}\}$ satisfies the modular condition.

• Conversely, if $\{\varphi, \pi_t\}$ satisfies the modular condition $(\mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^* \to (\mathfrak{M}_{\varphi})^2)$, $\sigma_t^{\varphi} = \pi_t$.

Thm 6.6. Let A be C^* -algebra, φ be a faithful state on A and σ_t^{φ} be a one-parameter automorphism group on A. If σ_t^{φ} satisfies KMS-condition with rispect to φ , we can extend φ and σ_t^{φ} to $\tilde{\varphi}$ and $\tilde{\sigma}_t^{\varphi}$ on $\pi_{\varphi}(A)''$ and $\tilde{\varphi}$ is a faithful normal state.

Proof. Use KMS and cyclicvector.

Def 6.8. • $M^{\varphi}_{\infty} := \{x \in M | it \mapsto \sigma^{\varphi}_{t}(x) \text{ has an entire analytic extension}\};$

• $M_0^{\varphi} := \{x \in M | \sigma_t^{\varphi}(x) = x \forall t\}$:

Thm 6.7 (A.Connes). Let M be a von Neumann algebra. Let φ and ψ be a faithful semifinite normal weight. Then, there exsits one-parameter group $\{u_t\} \subset \mathcal{U}(M)$ s.t.

- $u_{t+s} = u_t \sigma_t^{\varphi}(u_s);$
- $u_t^* = \sigma_t^{\varphi}(u_{-t});$
- $\sigma_t^{\psi}(x) = u_t \sigma_t^{\varphi}(x) u_t^*$:

Proof. We define faithful normal semifinite weight θ on $M_2(\mathbb{C})$ by $\theta((a_{i,j})) = \varphi(a_{1,1}) + \psi(a_{2,2})$. By u =

 $e_{11} - e_{22} \in M_0^{\theta}, \ e_{11} \text{ and } e_{22} \text{ belong to } M_0^{\theta}.$ Using KMS-condition, $\sigma_t^{\theta} \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sigma_t^{\varphi}(x) & 0 \\ 0 & 0 \end{pmatrix}$. Similarly, σ_t^{ψ} .

$$\sigma_t^{\theta}(e_{21}) = \begin{pmatrix} 0 & 0 \\ u_t & 0 \end{pmatrix}.$$

Rem 6.7.1. $\sigma_t^{\theta(\varphi,\varphi)} = \sigma_t^{\varphi} \otimes \mathrm{id}_2$

Thm 6.8. u_t in above Theorem is uniquely determined by the above property and the following condition: for all $x \in \mathfrak{N}_{\psi} \cap \mathfrak{N}_{\varphi}^*$ and $y \in \mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\psi}^*$, there exists 1-c.a. function F s.t. $F(it) = \varphi(xu_t\sigma_t^{\varphi}(y))$ and $F(1+it) = \psi(\sigma_t^{\psi}(y)u_t^*x).$

In fact, the above two theorem is $\operatorname{true}(u_t u_t^* = s(\psi) = u_0, u_t^* u_t = \sigma_t^{\varphi}(s(\psi)), x \to xs(\psi) y \to s(\psi) y$ in the additional condition), when ψ is normal semifinite weight.

Proof.

$$(x_{ij}) \in \mathfrak{N}_{\theta}(\cap \mathfrak{N}_{\theta}^*) \Leftrightarrow \begin{cases} x_{11} \in \mathfrak{N}_{\varphi}(\cap \mathfrak{N}_{\varphi}^*) \\ x_{22} \in \mathfrak{N}_{\psi}(\cap \mathfrak{N}_{\psi}^*) \\ x_{12} \in \mathfrak{N}_{\psi}(\cap \mathfrak{N}_{\varphi}^*) \\ x_{21} \in \mathfrak{N}_{\varphi}(\cap \mathfrak{N}_{\psi}^*) \end{cases}$$

We denote u_t by $[D\psi:D\varphi]$.

Cor 6.8.1. Let $\varphi \in W_{nsf}(M)$ and $\psi_1, \psi_2 \in W_{ns}(M)$. Then, $[D\psi_1:D\varphi]=[D\psi_2:D\varphi]$ Leftrightarrow $\psi_1=\psi_2$.

Proof. We only prove if part.

 $s(\psi_1) = [D\psi_1 : D\varphi]_0 = [D\psi_2 : D\varphi]_0 = s(\psi_2).$

Since $[D\psi_2 : D\psi_1]_t[D\psi_1 : D\varphi]_t = [D\psi_2 : D\varphi], [D\psi_2 : D\psi_1]_t = 1.$

We may prove that if φ , $\psi \in W_{nsf}(M)$ and $[D\varphi : D\psi] = 1$, $\varphi = \psi$. Since $\sigma_t^{\theta(\varphi,\psi)} = \sigma_t^{\theta(\varphi,\varphi)}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{C})^{\theta(\varphi,\psi)}$,

$$\varphi(x) = \theta(\varphi, \psi) \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \theta(\varphi, \psi) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$$

$$= \psi(x).$$

Thm 6.9. Let $\varphi \in W_{nsf}(M)$ and $\psi \in W_{ns}(M)$. The followings are equivalent.

1.
$$\psi \circ \sigma_t^{\varphi} = \psi$$
;

2. $u_t := [D\psi : D\varphi]_t \in M^{\psi}$:

- 3. $[D\psi:D\varphi]_t\in M^{\varphi}$;
- 4. $\{[D\psi:D\varphi]\}_{t\in\mathbb{R}}$ is a s-continuous group of unitary elements in $\mathcal{U}(M_{s(\psi)})$;
- 5. there exists a positive self-adjoint A affiliated to M^{φ} s.t. $\psi = \varphi_A$:

Furthermore, if ψ is faithful, then also the following statement is equivalent to those above:

•
$$\varphi \circ \sigma_t^{\psi} = \varphi$$
.

 $\begin{aligned} & \operatorname{Proof.} \ (1 \Rightarrow 2) \colon \psi(u_t x u_t^*) = \psi(u_t \sigma_t^{\psi}(\sigma_{-t}^{\varphi}(x))) = \psi(x). \\ & \psi(u_t^* x u_t) = \psi(u_t \sigma_t^{\varphi}(\sigma_{-t}^{\psi}(x))) = \psi(\sigma_t^{\varphi}(x) u_{-t}^*) = \psi(u_{-t} \sigma_t^{\varphi}(x) u_{-t}^*) = \psi(\sigma_t^{\psi}(x)) = \psi(x). \\ & (2 \Leftrightarrow 3 \Rightarrow) \colon \sigma_t^{\varphi}(u_t) = u_t^* \sigma_t^{\psi}(u_t) u_t = \sigma_t^{\psi}(u_t) = u_t \\ & (3 \Rightarrow 4) \colon u_t^* u_t = \sigma_t^{\varphi}(s(\psi)). \\ & (4 \Rightarrow 2) \colon \operatorname{Since} \ u_s^* u_s \ \operatorname{is} \ \sigma_t^{\varphi} - \operatorname{invariant}, \ u_{s+t} = u_s \sigma_t^{\varphi}(u_t), \ \operatorname{so} \ u_t = \sigma_s^{\varphi}(U_t). \\ & (3 \Leftrightarrow 4 \Rightarrow 5) \colon [D\varphi_A : D\varphi]_t = A^{it} = [D\psi : D\varphi]_t. \ \text{ By the above corollary, } \varphi_A = \psi. \\ & (5 \Rightarrow 1) \colon \operatorname{Since} \ A^{it} \ \operatorname{affiliated to} \ M^{\varphi_A}, \ \psi \circ \sigma_t^{\varphi}(x) = \varphi_A \circ \sigma_t^{\varphi}(x) = \lim \varphi((Ae_n)^{\frac{1}{2}} \sigma_t^{\varphi}(x)(Ae_n)^{\frac{1}{2}}) = \lim \varphi(\sigma_t^{\varphi}((Ae_n)^{\frac{1}{2}} x (Ae_n)^{\frac{1}{2}})) = \lim \varphi((Ae_n)^{\frac{1}{2}} x (Ae_n)^{\frac{1}{2}}) = \varphi_A(x). \end{aligned}$

Def 6.9. If the above conditions are satisfied, we say that ψ commutes with φ .

6.4 Pedersen-Takesaki construction

Def 6.10. Let φ be a normal semifinite weight and a be a positive element in M^{φ} . We define $\varphi_a := \varphi(a^{\frac{1}{2}} \cdot a^{\frac{1}{2}})$.

Rem 6.9.1. • $\mathfrak{N}_{\varphi} \subset \mathfrak{N}_{\varphi_a}$, $\mathfrak{M}_{\varphi} \subset \mathfrak{M}_{\varphi_a}$;

- φ_a is a normal semifinite weight;
- If φ is fatithful and a is invertible, φ_a is fatihful and $\mathfrak{N}_{\varphi} = \mathfrak{N}_{\varphi_a}$, $\mathfrak{M}_{\varphi} = \mathfrak{M}_{\varphi_a}$:

Thm 6.10. Let a be invertible and φ be faithful. Then, $H_{\varphi} = H_{\varphi_a}$, $S_{\varphi_a} = S_{\varphi}$, $\pi_{\varphi} = \pi_{\varphi_a}$ and $\sigma_t^{\varphi_a}(x) = a^{it}\sigma_t^{\varphi}(x)a^{-it}$.

Proof. $\langle x,y\rangle_{\varphi_a}=\langle x,J_{\varphi}\pi_{\varphi}(a)J_{\varphi}y\rangle_{\phi}$. Since, $||a^{-1}||^{-1}\leq J_{\varphi}\pi_{\varphi}(a)J_{\varphi}||a||$, $H_{\varphi}=H_{\varphi_a}$. The assertions without the last one are clear,

Adjoint of S_{φ_a} w.r.t. $\langle \cdot, \cdot \rangle_{\varphi_a} S_{\varphi_a}^*$ is $J_{\varphi} \pi_{\varphi}(a)^{-1} J_{\varphi} S_{\varphi}^* J_{\varphi} \pi_{\varphi}(a) J_{\varphi}$. So, $\triangle_{\varphi_a} = J_{\varphi} \pi_{\varphi}(a)^{-1} J_{\varphi} \pi_{\varphi}(a) \triangle_{\varphi}$. Since $J_{\varphi} \pi_{\varphi}(a)^{-1} J_{\varphi}$, $\pi_{\varphi}(a)$ and \triangle_{φ} commute with each other,

$$\begin{split} \pi_{\varphi_a}(\sigma_t^{\varphi_a}(x)) &= \triangle_{\varphi_a}^{it} \pi_{\varphi_a}(x) \triangle_{\varphi_a}^{-it} \\ &= J_{\varphi} \pi_{\varphi}(a)^{it} J_{\varphi} \pi_{\varphi}(a)^{it} \triangle_{\varphi}^{it} \pi_{\varphi_a}(x) \triangle_{\varphi}^{-it} \pi_{\varphi}(a)^{-it} J_{\varphi} \pi_{\varphi}(a)^{-it} J_{\varphi} \\ &= J_{\varphi} \pi_{\varphi}(a)^{it} J_{\varphi} \pi_{\varphi}(a^{it} \sigma_t^{\varphi}(x) i a^{-it}) J_{\varphi} \pi_{\varphi}(a)^{-it} J_{\varphi} \\ &= \pi_{\varphi}(a^{it} \sigma_t^{\varphi}(x) i a^{-it}). \end{split}$$

$$M \xrightarrow{\sigma_t^{\varphi_a}} M$$

$$\downarrow^{\pi_{\varphi_a}} \qquad \downarrow^{\pi_{\varphi_a}}$$

$$\uparrow^{\Delta_{\varphi_a}^{it} \cdot \Delta_{\varphi_a}^{-it}} \qquad \downarrow^{\pi_{\varphi_a}}$$

$$\pi_{\varphi_a}(M) \xrightarrow{\longrightarrow} \pi_{\varphi_a}(M).$$

Prop 6.5. Let φ be a semifinite normal weight and A, B be a positive self-adjoint affiliated to M^{φ} , then $\varphi_A + \varphi_B = \varphi_{A+B}$.

Proof.
$$u := w - \lim_{\varepsilon \to 0} A^{\frac{1}{2}} (A + B + \varepsilon)^{-\frac{1}{2}} \in M^{\varphi}.$$

Def 6.11. Let A_k , A, B be a self-adjoint positive op's.

- $A \le B \Leftrightarrow (1+B)^{-1} \le (1+A)^{-1}$;
- $A_k \uparrow A \Leftrightarrow (1+A_k)^{-1} \downarrow (1+A)^{-1}$.

Rem 6.10.1. • ;;;;

Thm 6.11. Let A and increasing net $\{A_i\}_{i\in I}$ be a positive self-adjoint op's on H s.t. $A_i \leq A$. Then, there exists positive self-adjoint op. B s.t. $A_i \uparrow B$.

This follows from the following proposition.

Prop 6.6. Let $\{A_i\}$ be an increasing net of positive self-adjoint operators. There exists a positive selfadjoint op. A s.t. $A_i \uparrow A$ if and only if $D = \{\xi \in H | \lim_i ||A_i^{\frac{1}{2}}\xi|| < \infty\}$ is dense in H. In this case, $D = D_{A^{\frac{1}{2}}}$.

Thm 6.12. Let φ be a normal semifinite weight and A be a positive s.a. op. affiliated to M^{φ} . We define $\varphi_A(x) := \lim_n \varphi((Ae_n)^{\frac{1}{2}}x(Ae_n)^{-\frac{1}{2}})$. Then, $\varphi_A \in W_{ns}(M)$ and $\sigma_t^{\varphi_A} = A^{it}\sigma_t^{\varphi}(x)A^{-it}$ $(x \in M_{s(A)})$.

Cor 6.12.1. $[D\varphi_A : D\varphi]_t = A^{it}$.

Proof. Let
$$B = \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$$
.

Then, $\begin{pmatrix} 0 & 0 \\ [D\varphi_A : D\varphi]_t & 0 \end{pmatrix} = \sigma_t^{\theta(\varphi,\varphi_A)}(\begin{pmatrix} 0 & 0 \\ s(A) & 0 \end{pmatrix}) = \sigma_t^{\theta(\varphi,\varphi)_B}(\begin{pmatrix} 0 & 0 \\ s(A) & 0 \end{pmatrix}) = B^{it}\sigma_t^{\theta(\varphi,\varphi)}(\begin{pmatrix} 0 & 0 \\ s(A) & 0 \end{pmatrix})B^{-it}$.

Prop 6.7. Let φ be a semifinite weight and $v \in M$ be a partial isometry s.t. $vv^* \in M^{\varphi}$. Then, $\varphi_v := \varphi(v \cdot v^*) \in W_n(M)$.

Proof. Let $e_i \in \mathfrak{M}_{\varphi}$ be $e_i \nearrow 1$. We define $v^*v =: p$ and $vv^* =: q$. Since $qe_iq \in \mathfrak{M}_{\varphi}$, $1-p+v^*e_iv \in \mathfrak{M}_{\varphi_a}$. \square

Thm 6.13. Let φ be a normal semifinite faithful weight $v \in M$ be a partial isometry s.t. $vv^* \in M^{\varphi}$. Then, $\sigma_t^{\varphi_v}(x) = v^* \sigma_t^{\varphi}(vxv^*)v$ $(x \in M_{v^*v})$.

Proof. modular condition. \Box

Thm 6.14. Let φ be a normal semifinite faithful weight $v \in M$ be a partial isometry s.t. $vv^* \in M^{\varphi}$. Then, $[D\varphi_v : D\varphi] = v^*\sigma_t^{\varphi}(v)$ and $\sigma_t^{\varphi}(v) = v[D\varphi_v : D\varphi]$.

Proof. Let
$$u = \begin{pmatrix} 1 & 0 \\ 0 & v \end{pmatrix}$$
.

Then,

$$\begin{split} \begin{pmatrix} 0 & 0 \\ [D\varphi_u:D\varphi]_t & 0 \end{pmatrix} &= \sigma_t^{\theta(\varphi,\varphi_v)}(\begin{pmatrix} 0 & 0 \\ s(\varphi_v) & 0 \end{pmatrix}) \\ &= \sigma_t^{\theta(\varphi,\varphi)_u}(\begin{pmatrix} 0 & 0 \\ v^*v & 0 \end{pmatrix}) \\ &= \begin{pmatrix} 1 & 0 \\ 0 & v^* \end{pmatrix} \sigma_t^{\theta(\varphi,\varphi)}(\begin{pmatrix} 1 & 0 \\ 0 & v \end{pmatrix} \begin{pmatrix} 0 & 0 \\ v^*v & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & v^* \end{pmatrix}) \begin{pmatrix} 1 & 0 \\ 0 & v \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ v^*\sigma_t^{\varphi}(v) & 0 \end{pmatrix} \end{split}$$

Connes' inverse problem 6.5

Def 6.12. Let G be a locally compact group and $\sigma: G \to \operatorname{Aut}(M)$. σ -cocycle Leftrightarrow $w: G \to M$, s^* -conti s.t.

- $w(gh) = w(g)\sigma_g(w(h));$
- $w(g^{-1}) = \sigma_g^{-1}(w(g)^*)$:

We denote all σ -cocycle by $Z_{\sigma}(G; M)$.

• $w(g)w(g)^* = w(e), w(g)^*w(g) = \sigma_g(w(e)).$ Rem 6.14.1.

• $[D\psi : D\varphi]$ is a σ^{φ} -cocycle.

Thm 6.15. For all $\varphi \in W_{nsf}(M)$ and for all $w \in Z_{\sigma}(G; M)$, there only exists $\psi \in W_{ns}(M)$ s.t. $[D\psi : D\varphi]$. Proof. $L^2(\mathbb{R}) \cong l^2(\mathbb{Z})$.

 $\Phi(x) := \sum \varphi(x_{ii})$ is a normal semifinite faithful weight and $\sigma_t^{\Phi} \overline{\otimes} \iota$.

Let $u_t \in B(L)$ be a left regular representation. By Stone's theorem, there exisits A aff to $(M \otimes B(l^2(\mathbb{Z})))^{\Phi}$ s.t.1 $\otimes u_t = A^{it}$. $\Phi' := \Phi_A$. Then, $\sigma_t^{\Phi'} = \sigma_t^{\varphi} \overline{\otimes} \mathrm{Ad} u_t$.

We define $W \in M \overline{\otimes} B(L^2(\mathbb{R}))$ by $W\zeta(t) := w(t)\zeta(t)$. Then, $\sigma_t^{\Phi'}(W*)(s) = \sigma_t^{\varphi}(w(s-t)^*)$, so $W\sigma_t^{\Phi'}(W*)(s) = w(t)$, so $W\sigma_t^{\Phi'}(W*) = w(t) \otimes 1$. Since $\sigma_t^{\Phi'}(W*W)$, $\Psi := \Phi'(W^* \cdot W) \in W_{ns}(M)$ and $\sigma_t^{\Psi} = \operatorname{Ad}(w(t)) \circ$ $\sigma_t^{\varphi} \overline{\otimes} \mathrm{Ad}(u_t).$

Similarly, we define $\Psi' := \Psi_{A^{-1}}$. Then, $\sigma_t^{\Psi'} = \operatorname{Ad}(w(t)) \circ \sigma_t^{\varphi} \overline{\otimes} \iota$. Let $p \in P(B(l^2(\mathbb{Z})))$ be a minimal projection. Since $M \cong (1 \otimes p)(M \overline{\otimes} B(l^2(\mathbb{Z})))$, we define $\psi' := \Psi'_{(1 \otimes p)}$. Then, $\sigma_t^{\psi'}(x) = \sigma_t^{\psi'}(x \otimes p) = \operatorname{Ad}(w(t)) \circ \sigma_t^{\varphi}(x)$.

Let $w'(t) := [D\psi' : D\varphi]_t$ and $a(t) := w'(t)^*w(t)$. Since $\mathrm{Ad}(w(t)) \circ \sigma_t^{\varphi} = \sigma_t^{\varphi'} = \mathrm{Ad}(w(t)) \circ \sigma_t^{\varphi}$, a(t) belongs to (U)(Z(M)) and is s-continuous. So, there exists A affiliated to M^{ψ} . $\psi := \psi_A'$. Then,

$$[D\psi : D\phi]_t = [D\psi : D\psi']_t [D\psi' : D\varphi]_t$$
$$= a(t)w'(t) = w'(t)a(t) = w(t)$$

continuous decomposition

Rem 6.15.1. If $e, f \in M^{\varphi}$, $\varphi(pxp) + \varphi((f-p)x(f-p)) = \varphi(fxf)$.

Existence of conditional expectation 6.7

Thm 6.16 ([Tak72]). Let M be a von Neumann algebra and N be a subalgera of M. Let φ be a nsff weight on M and $\varphi|_N$ be a semifinite weight on N. Then, the following conditions are equivalent.

- (1) N is invariant for σ_t^{φ} ;
- (2) there exists a normal conditinal expectation ε from M onto N s.t. $\dot{\varphi}(x) = \dot{\varphi} \circ \varepsilon(x)$ $x \in \mathfrak{M}$:

Rem 6.16.1. By modular condition and (2), $\sigma_t^{\varphi} = \sigma_t^{\varphi \circ \epsilon}$ on N. $\triangle^{it}\eta_{\varphi}(x) = \eta_{\varphi}(\sigma_t^{\varphi}(x)).$

Proof. We assume (1). Let $A = \mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^*$ and H be a completion of A. Let $B = \mathfrak{N}_{\varphi|_N} \cap \mathfrak{N}_{\varphi|_N}$ and K be a completion of B. Let E be a orthogonal projection from H onto K. Then, $B = A \cap N$.

Since $\triangle_A^{it}\eta_{\varphi}(x) = \eta_{\varphi}(\sigma_t^{\varphi}(x)) = \eta_{\varphi}(\sigma_t^{\varphi|_N}(x)) = \triangle_B^{it}\eta_{\varphi}(x) \ (x \in \mathfrak{N} \cap N), \ \triangle_B^{it}\xi = \triangle_A^{it}\xi \ (\xi \in K).$ Since E

commutes with \triangle_A , $\triangle_B = \triangle_A|_K$ and $J_B = J_A|_K$. $A \cap K = B$ and $A' \cap K = B'$. Indeed, $A' \cap K \subset B' \Rightarrow A \cap K = J(A' \cap K) \subset JB' = B$. Let $\rho : \mathcal{L}(B) \to \mathcal{A}$ $x \mapsto \pi_M \circ \pi_N^{-1}(x)$ and $\rho' : \mathcal{L}(B)' \to \mathcal{A}' \ x \mapsto J\pi_M \circ \pi_N^{-1}(JxJ)J$. Then, $\rho(L_\xi^B) = L_\xi^A \ (\xi \in B)$ and $\rho'(L_\xi^{B'}) = L_\xi^{A'}$ $(\xi \in B')$.

Therefore, $B_0 = A_0 \cap K$, where A_0 and B_0 are Tomita algebras.

Also, B = EA, B' = EA', $B_0 = EA_0$, $E(\xi \eta) = \xi E(\eta)$ ($\xi \in B, \eta \in A$) and $E(\xi \eta) = E(\xi)\eta$ ($\xi \in A', \eta \in B'$). Since $L_{E\xi}^B = EL_{\xi}^A E$ (ξinA), $\mathcal{L}(B) = E\mathcal{L}(A)E|_K$, we can define $\varepsilon(x) := \pi_N^{-1}(E\pi_M(x)E)$

For $x \in \mathfrak{M}^+$, $\varphi(x) = \sup\{\langle \pi_M(x)\eta, \eta \rangle | \eta \in B', ||L_{\eta}^{B'}|| \leq 1\}$. (geq part follows from semifinite). By semifiniteness, ε is faithful.

We assume (2). Then, $E\eta(x) = \eta \circ \varepsilon(x)$ $(x \in \mathfrak{N})$. So, EA = B. Since $E\xi^{\sharp} = (E\xi)^{\sharp}$ $(\xi \in A)$, $ES\xi = SE\xi$ $(\xi \in \mathcal{D}_S)$.

By S = (1 - 2E)S(1 - 2E) and $S^* = (1 - 2E)S^*(1 - 2E)$, $\triangle = (1 - 2E)\triangle(1 - 2E)$. So, E and E commute. So, E and E commute. So, E and E commute.

7 KMS-state

7.1 definition of KMS-state

Def 7.1. Let \mathcal{A} be a C^* -algebra. Let α be a representation of \mathbb{R} as a automorphism on \mathcal{A} s.t. $t \mapsto \alpha_t(A)$ continuous. For $0 \leq \beta < \infty$, we say that an invariant state φ of \mathcal{A} is a β -KMS state if $\varphi(\alpha_t(A)B) = \varphi(B\alpha_{t+i\beta}(A))$ for $A \in \mathcal{A}^a$ and $B \in \mathcal{A}$, where \mathcal{A}^a is a set of all analytic elements i.e. $t \mapsto \alpha_t(a)$ has a analytic extension on \mathbb{C} .

When $\beta = 0$, φ is called chaotic state. When $\beta = 1$, φ is called $\{\alpha_t\}$ -KMS state.

Rem 7.0.1. It definition is equivalent to KMS condition of modular theory.

Prop 7.1. Let $A = M_n(\mathbb{C})$, A > 0 and $\alpha_t(x) = A^{it}xA^{-it}$. Then, φ is a $\{\alpha_t\}$ -KMS state if and only if $\varphi(x) = \frac{\operatorname{Tr}(A^{-1}x)}{\operatorname{Tr}(A^{-1})}$.

Proof. We may assume $Tr(A^{-1}) = 1$.

"only if" part follows from that $z \mapsto \text{Tr}(A^{-1}xA^{z}yA^{-z})$ is analytic.

Let ψ be an another $\{\alpha_t\}$ -KMS state. Then, there exists a positive matrix B s.t. $\psi = \text{Tr}(B \cdot)$. By KMS condition, for $x, y \in M_n(\mathbb{C})$,

$$\begin{split} \operatorname{Tr}(BxA^{i(t+i)}y^{-i(t+i)}) &= \operatorname{Tr}(BA^{it}yA^{-it}x), \\ \operatorname{Tr}(A^{-1}yAB(A^{-it}xA^{it})) &= \operatorname{Tr}(ByA^{it}xA^{it}). \end{split}$$

Since $\operatorname{Tr}((A^{-1}yAB - By)A^{-it}xA^{it}) = 0$, $A^{-1}yAB = By$. So, $AB \in M_n(\mathbb{C})'$.

7.2 Cuntz algebra \mathcal{O}_n

[OP78] For $t \in \mathbb{R}$, let ρ_t be an automorphism of \mathcal{O}_n s.t. $\rho_t(S_i) = e^{it}S_i$.

Thm 7.1. The C*-dynamical system $(\mathcal{O}_n, \mathbb{T}, \rho)$ has exactly one KMS state. Furthermore, the onlyaddmissible β -value is $\log n$ if $n < \infty$, amd ∞ if $n = \infty$.

Proof. We only prove $n < \infty$. otherwise is yokuwakaran. Let $\varphi_n = \tau_n \circ E_0$, where τ_n is a unique tracial state on \mathcal{F}_n . Since $P_n \subset \mathcal{O}_n^a$ and P_n is dense in \mathcal{O}_n , by Phragmen-Lindelöf, we suffices to show the case in P_n . By unique decomposition, we may assume $A = S^{k*}a$, $B = bS^k$, where $a, b \in \mathcal{F}_n$. $\varphi_n(\rho_t(A)B) = n^k e^{-ikt} \varphi_n(ab)$, $\varphi_n(B\rho_{t+i\beta}(A)) = n^k e^{-i(t+i\beta)k} \varphi_n(ab)$.

8 Group von Neumann algebra

Let G be a locally von Neumann algebra and $\triangle = \triangle_G$ be a modular function. Let $\mu = \mu_G$ be a left Haar measure on G.

Lem 8.1. Let H be a open subgroup of G. Then, $\mu|_H$ is also a left Haar measure.

Proof. Suppose $K \subset G$ is a compact subset s.t. $\mu(K) > 0$. By $G = \sqcup g_i H$ and compactness of K, $K \subset \bigcup_{k=1}^n g_k H$. $\mu(K) \leq \sum \mu(K) = 0$. Contradiction.

Def 8.1. We define a group von Neumann algebra L(G) by the weak closure of $\lambda(G)$, where λ is a left regular representation.

When λ is a right regular representation, we denote R(G).

 $C_c(G)$ is a left Hilbert algebra [21.3]. Then, modular operator $\triangle_{C_c(G)}$ of $C_c(G)$ and modular function \triangle_G are correspondence. So, L(G) has a J-map.

Def 8.2 ([Tak13]). The weight on L(G) associated with the full Hilbert algebra is called the Plancherel weight and denoted by ψ_G .

8.1 Fourie algebras

Def 8.3 ([Tak13]). $A(G) := \{\xi * \eta^{\vee} | \xi, \eta \in L^2(G)\}$ is called the Fourie algebra, where $\xi^{\vee}(g) = \xi(g^{-1})$. Identifying A(G) with $L(G)_*$ under the correspondence $\overline{\eta} * \xi^{\vee} \leftrightarrow \omega_{\xi,\eta}$, A(G) is a commutative Banach algebra.

We remark that existence of J-map implies $M_* = \{\omega_{\xi,\eta} | \xi, \eta \in H\}.$

Thm 8.1. A(G) is a dense *-subalgebra of $C_0(G)$.

Lem 8.2. For ξ , $\eta \in L^2(G)$, $\xi * \eta \in C_0(G)$, and $\langle \lambda(g)\xi, \eta \rangle = (\overline{\eta} * \xi^{\vee})(g)$.

Proof. In the case of $C_c(G)$, OK. $|\langle \lambda(g)\xi, \eta \rangle - \langle \lambda(g)\xi_n, \eta_n \rangle|$ convergences to 0 uniformly.

proof of theorem. We only prove multiplicative. We define $W: L^2(G \times G) \to L^2(G \times G)$ by $(W\xi)(g,h) = \xi(g,gh)$. Then, $W \in L^{\infty}(G) \overline{\otimes} L(G)$ and $W^*(\lambda(g) \otimes 1)W = \lambda(g) \otimes \lambda(g)$.

We deine $\pi: L(G) \to B(L^2(G \times G))$ by $x \mapsto W^*(x \otimes 1)W$. By the previous remark, $\omega_{\xi,\eta} = t \pi(\omega_{\xi_1,\eta_1} \otimes \omega_{\xi_2,\eta_2})$, for $\xi_1, \xi_2, \eta_1 \eta_2 \in L^2(G)$. $\overline{\eta_1} * \xi_1^{\vee}(g)\overline{\eta_2} * \xi_2^{\vee}(g) = \overline{\eta} * \xi^{\vee}(g)$.

8.2 Hecke algebras

Let G be a locally compact totally disconnected group (i.e. locally profinite group) and μ be a Haar measure on G.

Def 8.4. For compact open subset K, we define the averaging projection p_K associated to K by

$$p_K := \frac{1}{\mu(K)} \int_K \lambda_G(k) d\mu(k).$$

Let K be a compact open subgroup of G.

Def 8.5. A Hecke algebra $C_c(G, K)$ associated to a Hecke pair (G, K) is defined by $\chi_K * C_c(G) * \chi_K \subset Cc(G)$ or $p_K C_c p_K \subset L(G)$.

A Hecke von Neumann algebra L(G,K) associated to a Hecke pair (G,K) by $p_KL(G)p_K$.

Rem 8.1.1. Since p_K is left K invariant, $C_c(G,K) = \chi_K * C_c(G) * \chi_K = \{f \in C_c(G) | f(kgk') = f(g) \text{ for all } k,k' \in K\}.$

Rem 8.1.2. Since the above remark, $\dim C_c(G, K) = |K \setminus G/K|$.

Rem 8.1.3. $p_K \lambda_G(g) p_K = \chi_{KqK} \text{ in } L(G).$

Proof. Since K is a compact open subgroup,

$$KgK = \bigcup_{k \in K} kgK = \bigcup_{fin} kgK = \bigcup_{i=1}^{N} k_i gK$$

by proposition 17.1. Then, $\mu(KgK) = N\mu(K)$. There exist compact open sebsets K_i of K s.t. $K_igK = k_igK$, since $K \ni k \mapsto kgK \in KgK$ is continuous. Then, $K_i = K \cap k_igKg^{-1}$ and $\mu(K_i) = \frac{1}{N}\mu(K)$, since $k_ik_i^{-1}: K_j \to K_i$ is bijective.

$$\begin{split} p_{K}\lambda_{G}(g)p_{K} &= \int_{K} \int_{K} \lambda(kgk')d\mu(k')d\mu(k)\frac{1}{\mu(K)^{2}} \\ &= \sum_{i=1}^{N} \int_{K_{i}} \int_{K} \lambda(kgk')d\mu(k')d\mu(k)\frac{1}{\mu(K)^{2}} \\ &= \sum_{i=1}^{N} \int_{K\cap(k_{i}g)^{-1}Kg} \int_{K} \lambda(k_{i}ghk')d\mu(k')d\mu(h)\frac{1}{\mu(K)^{2}} \\ &= \sum_{i=1}^{N} \lambda(k_{i}g) \int_{K\cap(k_{i}g)^{-1}Kg} \lambda(h) \int_{K} \lambda(k)d\mu(k')d\mu(h)\frac{1}{\mu(K)^{2}} \\ &= \sum_{i=1}^{N} \lambda(k_{i}g) \int_{K\cap(k_{i}g)^{-1}Kg} (\lambda(h)p_{K})(=p_{K})d\mu(h)\frac{1}{\mu(K)} \\ &= \sum_{i=1}^{N} \lambda(k_{i}g)p_{K}\frac{1}{N}. \end{split}$$

$$\chi_{KgK} = \frac{1}{\mu(KgK)} \int_{KgK} \lambda(h) d\mu(h)$$

$$= \frac{1}{N\mu(K)} \sum_{i=1}^{N} \int_{k_i gK} \lambda(h) d\mu(h)$$

$$= \frac{1}{N\mu(K)} \sum_{i=1}^{N} \lambda(k_i g) \int_{K} \lambda(h) d\mu(h)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \lambda(k_i g) p_K.$$

9 Amalgamated free product von Neumann algevras

[Ued99]

Thm 9.1. For each n.s.f.f. weight φ on N, we have

$$\sigma_t^{\varphi \circ E} = \underset{s \in S}{*_N} \sigma_t^{\varphi \circ E_s} \ for \ (t \in \mathbb{R}).$$

10 ultraproduct

Let $\omega \in \beta \mathbb{N} \backslash \mathbb{N}$ be a free ultrafilter.

Def 10.1. $\mathcal{J}_{\omega}(M) := \{(x_{\nu}) \in l^{\infty}(M) | \lim_{\nu \to \omega} x_{\nu} = 0\};$ $\mathcal{M}^{\omega}(M) := \{x \in l^{\infty}(M) | x \mathcal{J}_{\omega}(M) + \mathcal{J}_{\omega}(M) x \subset \mathcal{J}_{\omega}(M)\};$ $(ultraproduct\ von\ Neumann\ algebra) M^{\omega}(M) := \mathcal{M}^{\omega}(M) / \mathcal{J}_{\omega}(M):$

11 filter

Def 11.1. A \mathcal{F} is called by a free ultrafilter if it satisfies the followings.

- $\mathcal{F} \neq \emptyset$ and $\mathcal{F} \neq \mathcal{P}(X)$;
- $A \in F, A \subset B \Rightarrow B \in \mathcal{F}$;
- $A, B \in \mathcal{F}, \exists C \in \mathcal{F}s.t.C \subset A \cap C$;
- (ultra) $A \subset \mathcal{P}(X)$, either $Aor X \setminus A$;
- (free) $\cap \mathcal{F} = \emptyset$:

Prop 11.1. $\beta \mathbb{N} \setminus \mathbb{N} \ni \omega \leftrightarrow \mathcal{F} : freeultrafilteron \mathbb{N}.$

 $\mathcal{F} := \{ S \cap \mathbb{N} | S \subset \beta \mathbb{N}, \omega \in S^i \}.$

 $\{\omega\} := \cap \{\overline{S} | S \in \mathcal{F}\}.tabunatterukedoayashii.$

Rem 11.0.1. $\lim_{n\to\omega}(x_n)_{n\in\mathbb{N}}=\alpha \Leftrightarrow \forall \varepsilon>0, \exists U\in\mathcal{F}_\omega, \forall V\subset U, |x_n-\alpha|<\varepsilon(n\in V).$

Rem 11.0.2. If $x_n = (-1)^n$, $\lim_{n \to \omega} (x_n)_{n \in \mathbb{N}}$ exists 1 or -1, but $\lim_{n \to \infty} (x_n)_{n \in \mathbb{N}}$ dose not exist.

12 Groupoid C*-algebras

12.1 groupoid

Def 12.1. An G is a groupoid if G is a set, has a subset $G^{(0)}$ of G (called by a unit space), maps $s, r: G \to G^{(0)}$ and

$$G^{(2)} \to G, (x, y) \mapsto xy,$$

where $G^{(2)} := \{(x,y)|s(x) = r(y)\}$, and satisfies the following properties:

- 1. for each $x \in G^{(0)}$, x = s(x) = r(x);
- 2. for each $(x,y) \in G^{(2)}$, s(xy) = s(y) and r(xy) = r(x);
- 3. for each $(x,y) \in G^{(2)}$ and $(y.z) \in G^{(2)}$, (xy)z = x(yz);
- 4. for each $x \in G$, r(x)x = x = xs(x);
- 5. for each $x \in G$, there exists the unique x^{-1} s.t. $xx^{-1} = r(x)$ and $x^{-1}x = s(x)$:

Rem 12.0.1. Let Γ be a group and X be a Γ -space. Then, $X \rtimes \Gamma$ is a groupoid under the multiplication $(x,g)(y,h)=(y,gh),\ s(x,g)=x$ and r(x,g)=g.x.

We assume G is a locally compact étale groupoid and $G^{(0)}$ is compact open.

Def 12.2 ([Suz17]). Let C be a compact subset of G and $\varepsilon > 0$. Let K be a compact subgroupoid of G containing the unit space $G^{(0)}$. We say that K is (C, ε) -invariant if the following inequality holds for all $s \in G^{(0)}$.

$$\frac{\sharp(CKs\backslash Ks)}{\sharp(Ks)}<\varepsilon.$$

Def 12.3 ([Suz17]). We say that a groupoid G is almost finite if it satisfies teh following conditions.

- 1. The union of all compact open G-sets covers G.
- 2. For any compact subset $C \subseteq G$ and $\varepsilon > 0$, there is a (C, ε) -invariant elementary subgroupoid K of G.

Prop 12.1. Let $G = X \rtimes \Gamma$, where X is a compact space and Γ is a discrete group. If G is alamost finite, then Γ is amenable.

Proof. We show that Γ has Følner condition. Let E be a compact subset of Γ and $\varepsilon > 0$. Let $p: X \times \Gamma \to \Gamma$ be a projection onto Γ . By almost fintieness of G, there exists a $(X \times (E \cup E^{-1}), \varepsilon)$ -invariant elementary subgroupoid K of G. So, for all $s \in G^{(0)}$.

$$\frac{\sharp((X\times(E\cup E^{-1}))Ks\backslash Ks)}{\sharp(Ks)}<\varepsilon.$$

Let F := p(Ks). Then, $\sharp(Ks) = \sharp(F)$. Let $s \in G^{(0)}$ and $t \in E$. Then, we remark $\sharp((X \times \{t\})Ks) = \sharp(tF)$ and $\sharp(Ks\setminus((X \times \{t\})Ks)) = \sharp(((X \times \{t^{-1}\})Ks)\setminus Ks)$.

$$\frac{\sharp((X\times\{t\})Ks\backslash Ks)}{\sharp(Ks)}\leq \frac{\sharp((X\times E)Ks\backslash Ks)}{\sharp(Ks)}<\varepsilon$$

and

$$\frac{\sharp(Ks\backslash((X\times\{t\})Ks))}{\sharp(Ks)}=\frac{\sharp((X\times\{t^{-1}\})Ks\backslash Ks)}{\sharp(Ks)}<\varepsilon$$

12.2 groupoid C*-algebras

We construct the C*-algebra from a groupoid. We assume G is a locally compact $\acute{e}tale$ groupoid and $G^{(0)}$ is compact open.

We consider $C_c(G)$. For $x \in G^{(0)}$, we define

$$G_x := \{ y \in G | s(y) = x \} \text{ and } G^x := \{ y \in G | r(y) = x \}.$$

For $f, g \in C_c(G)$, we define

$$f*g(x) := \sum_{yz=x} f(y)g(z) = \sum_{\beta \in G_x} f(x\beta^{-1})g(\beta).$$

Prop 12.2. Let Γ be a discrete group and X be a compact Γ -space. Then,

$$C_r^*(G) = C(X) \rtimes \Gamma.$$

Proof.

$$C(X) \rtimes \Gamma \to C_r^*(G),$$

 $f \mapsto \varphi(f),$
 $s \mapsto 1 \otimes \delta_s,$

where

$$\varphi(f) := \begin{cases} f(x) & (x \in G^{(0)} = X \times \{e\}) \\ 0 & (x \notin G^{(0)}) \end{cases}$$

Rem 12.0.2. When X is a locally compact space including a non-compact case, the map

$$fu_s \mapsto \varphi(f)(1 \otimes \delta_e)$$

gives an isomorphism from $C_0(X) \rtimes \Gamma$ onto $C_r^*(X \rtimes \Gamma)$.

12.3 orbit equivalence relation groupoid

Let X be a locally compact space and Γ be a contable discrete group.

Def 12.4. We define a orbit equivalence relation groupoid associated to $\Gamma \curvearrowright X$, dneoted by $\mathcal{R}_{\Gamma \curvearrowright X}$ or \mathcal{R} .

$$\mathcal{R} := \{ (\gamma \Gamma_x, x) | x \in X, \ \gamma \in \Gamma \},$$

$$\mathcal{R}^0 = \{ (\Gamma_x, x) | x \in X \},$$

and for each $(\gamma \Gamma_x, x) \in \mathcal{R}$, $(\gamma \Gamma_x, x)^{-1} = (\gamma^{-1} \Gamma_{\gamma x}, \gamma x)$

Rem 12.0.3. This groupoid is principal.

As below, we consider a orbit equivalnce relation groupoid $\mathcal{R}_{\Gamma \curvearrowright X}$.

Lem 12.1. Let C, C_1 , C_2 be compact subsets of X and γ , $\tau \in \Gamma$. Then,

$$\chi_{C \times \{\gamma\}}^* = \chi_{\gamma C \times \{\gamma^{-1}\}}$$

$$\chi_{C_1 \times \{\gamma\}} * \chi_{C_2 \times \{\tau\}} = .$$

Espesially, when X is compact, $\chi_{X\times\{\gamma\}}$ is a unitary and $\chi_{X\times\{\gamma\}} * \chi_{X\times\{\tau\}} = \chi_{X\times\{\gamma\tau\}}$.

Proof. Let $\xi, \eta \in C_c(G)$. Let $V = \chi_{C \times \{\gamma\}}$ and $W = \chi_{\gamma C \times \{\gamma^{-1}\}}$. For $x \in X$,

$$\langle V\xi, \eta \rangle(x) = \sum_{\beta \in \mathcal{R}_x} \overline{(V\xi)}(\beta) \eta(\beta)$$
$$= \sum_{\beta \in \mathcal{R}_x} \sum_{\alpha \in \mathcal{R}_{s(\beta)=x}} \chi_{C \times \{\gamma\}}(\beta \alpha^{-1}) \overline{\xi}(\alpha) \eta(\beta)$$

Let $\beta = (x, \sigma \Gamma_x)$ and $\alpha = (x, \theta \Gamma_x)$. Then, $\beta \alpha^{-1} = (\theta x, \sigma \theta^{-1} \Gamma_{\theta x})$. Therefore,

$$\beta \alpha^{-1} \in C \times \{\gamma\} \Leftrightarrow \theta x \in C \text{ and } \sigma \theta^{-1} \Gamma_{\theta x} = \gamma \Gamma_{\theta x}$$
$$\Leftrightarrow \theta x \in C \text{ and } \sigma \Gamma_{x} = \gamma \theta \Gamma_{x}.$$

So,

$$\langle V\xi, \eta \rangle(x) = \sum_{\sigma \in \Gamma/\Gamma_{-}} \overline{\xi}(x, \gamma^{-1}\sigma\Gamma_{x})\eta(x, \sigma\Gamma_{x})\chi_{C}(\gamma^{-1}\sigma x).$$

Similarily,

$$\langle \xi, W \eta \rangle(x) = \sum_{\beta \in \mathcal{R}_x} \sum_{\alpha \in \mathcal{R}_x} \overline{\xi}(\beta) \chi_{\gamma C \times \{\gamma^{-1}\}}(\beta \alpha^{-1}) \eta(\alpha)$$

Then,

$$\beta \alpha^{-1} \in \gamma C \times \{\gamma^{-1}\} \Leftrightarrow \theta x \in \gamma C \text{ and } \sigma \theta^{-1} \Gamma_{\theta x} = \gamma^{-1} \Gamma_{\theta x}$$
$$\Leftrightarrow \gamma^{-1} \theta x \in C \text{ and } \sigma \Gamma_x = \gamma^{-1} \theta \Gamma_x.$$

So,

$$\begin{split} \langle \xi, W \eta \rangle (x) &= \sum_{\sigma \in \Gamma/\Gamma_x} \overline{\xi}(x, \sigma \Gamma_x) \eta(x, \gamma \sigma \Gamma_x) \chi_C(\sigma x) \\ &= \sum_{\theta = \gamma \sigma \in \Gamma/\Gamma_x} \overline{\xi}(x, \gamma^{-1} \theta \Gamma_x) \eta(x, \theta \Gamma_x) \chi_C(\gamma^{-1} \theta x). \end{split}$$

So, $\langle V\xi, \eta \rangle = \langle \xi, W\eta \rangle$ and therefore $V^* = W$.

13 Cuntz-Pimsner algebra

13.1 Construction of Toeplitz-Pimsner algebra and Cuntz-Pimsner algebra

Def 13.1. Let A be a C^* -algebra. An A-B C^* -correspondence is a (right) Hilbert B-module H with a faithful *-representation $\pi_H: A \to B(H)$, where B(H) is a all of adjointable B-linear bounded maps. In paticular, we call C^* -correspondence over A if A = B.

Let $\mathcal{F}(H) := \bigoplus_{n \geq 0} H^{\otimes_A n}$, where $H^{\otimes_A 0} = A$. Let $\pi_{\mathcal{F}(H)}(a) = T_a \oplus (\bigoplus_{n \geq 0} \pi_H(a) \otimes id^{\otimes n})$, where T_a is a left multiplication. Then, $\mathcal{F}(H)$ is a C*-correspondence over A.

For $\xi \in H$, we define $T_{\xi} \in B(\mathcal{F}(H))$ by $T_{\xi}(\hat{a}) = \xi a \in H$ and $T_{\xi}(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$.

Def 13.2. $\mathcal{T}(H) = C^*(A \cup \{T_{\xi} | \xi \in H\})$ is called a Toeplitz-Pimsner algebra.

Let $I_H = A \cap K(H)$, where $K(H) = C^*(\{\theta_{\xi,\eta} | \xi, \eta \in H\})$ $(\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle)$, which is an ideal of A. Let $K(\mathcal{F}(H)I_H)$ is a ideal of $B(\mathcal{F}(H)I_H)$ and contained in $\mathcal{T}(H)$. Let $Q_I : B(\mathcal{F}(H)I_H) \to B(\mathcal{F}(H)I_H)/K(\mathcal{F}(H)I_H)$ be a quatient map.

Def 13.3. $\mathcal{O}(H) := Q_I(\mathcal{T}(H))$ is called a Cuntz-Pimsner algebra.

14 K-theory

15 Boundary

We assume G is discrete group.

15.1 injective envelope

Def 15.1. Let S be a operator system, i.e. a unital self-adjoint subspace of a unital C*-algebra.

We say G-operator system if there is a homomorphism from G into the group of order isomorphism on S that sends the identity element of G to the unit of S.

A G-operator system \mathcal{U} is G-injective if for every unital c.i. G-equivariant map $\iota: \mathcal{S} \to \mathcal{T}$ and every unital c.p. G-equivariant map $\psi: \mathcal{S} \to \mathcal{U}$, there exists unital c.p. G-equivariant map $\hat{\varphi}: \mathcal{T} \to \mathcal{U}$ s.t. $\hat{\varphi} \circ \iota = \psi$

A G-extension of S is a pair (\mathcal{T}, ι) consisting of a G-operator space \mathcal{T} and c.i. G-equivariant $\iota : S \to \mathcal{T}$. A G-extension (\mathcal{U}, ι) is G-injective.

It is G-essensial if for every unital c.p. G-equivarinat map $\varphi: \mathcal{U} \to \mathcal{T}$ s.t. $\varphi \circ \iota$ is c.i. on \mathcal{S} is necessarily c.i.

$$\mathcal{S} \xrightarrow{\iota(c.i.)} \mathcal{U} \bigvee_{\varphi(c.p. \Rightarrow c.i.)} \varphi(c.p. \Rightarrow c.i.)$$

It is G-rigid if for every unital c.p. G-equivarinat map $\varphi: \mathcal{U} \to \mathcal{U}$ s.t. $\varphi \circ \iota = \iota$ on \mathcal{S} , φ is necessarily the identity map on \mathcal{U} .

It is G-injective envelope of S if it is G-injective and G-essential.

Rem 15.0.1. [Ham79] Every G-injective envelope of S is G-rigid.

Rem 15.0.2. Unital completely isometric map is unital completely positive.

Thm 15.1 (Hamana). Let G be a discrete group, and S be a G-operator system. Then, S has a G-injective envelope $(I_G(S), \kappa)$. This injective envelope is uniwal, un the sense that for every G-injective envelope (\mathcal{U}, ι) of S, there exists a uc.i. G-equivarent map $\varphi: I_G(S) \to \mathcal{U}$ s.t. $\varphi \circ \kappa = \iota$.

For an injective C*-algebra \mathcal{A} , $I_G(\mathcal{A})$ is injective C*-algebra w.r.t the Choi-Effros product.

15.2 Furstenberg boundary

Def 15.2. Let G be a discrete group. The Hamana boundary $\partial_H G$ of G is the compact space s.t. $I_G(\mathbb{C}) = C(\partial_H G)$. By contravariance, the G-action on $C(\partial_H G)$ induces a G-action on $\partial_H G$ which we will refer to as the G-action on $\partial_H G$).

Thm 15.2. $\partial_H G$ is a point if and only if G is amenable.

Def 15.3. Let G be a group and X be a compact G-space.

The G-action on X is minimal if for every x in X, the G-orbit Gx is dense in X.

The G-action on X is strongly proximal if for every probability measure $\nu \in \mathcal{P}(X)$, the weak* closure of the G-orbit $G\nu$ contains a point mass δ_x for some $x \in X$.

X is a G-boundary if the G-action on X is both minimal and strongly proximal, i.e. for every probability measure $\nu \in \mathcal{P}(X)$, $\overline{G\nu}^{w*} \supset X$.

Rem 15.2.1. The Hamana boundary is a G-boundary.

Proof. ne \Box

Rem 15.2.2. ∂F_2 is a F_2 -boundary, but $\partial \mathbb{Z}$ is not a \mathbb{Z} -boundary.

Lem 15.1. Let G be a group, let M be a minimal compact G-space and let B be a compact G-boundary. There is at most one unital positive G-equivariant map from C(B) to C(M), and if such a map exists, then it is a unital injective *-homomorphism.

Thm 15.3. Let G be a discrete group. Then, $\partial_F G \cong \partial_H G$.

Prop 15.1. The map taking a probability measure $\nu \in \mathcal{P}(\partial_F G)$ to $P_{\nu}(C(\partial_F G))$ is a bijection between $\mathcal{P}(\partial_F G)$ and the collection of unital isometoric G-equivarinat copies of $C(\partial_F G)$ in $l^{\infty}(G)$. The image $P_{\nu}(C(\partial_F G))$ is a C^* -subalgebra if and only if ν is a point mass.

Thm 15.4. Let G be a discrete group. Then G is exact if and only if the G-action on $\partial_F G$ is amenable.

15.3 C*-simplicity

Thm 15.5. Let G be a discrete group. There is a canonical nuclear C^* -algebra $N(C_r^*(G)) = C(\partial_F G) \rtimes_r G$ s.t.

$$C_r^*(G) \subset N(C_r^*(G) \subset I(C_r^*(G)),$$

where $I(C_r^*(G))$ denotes the injective envelope of $C_r^*(G)$. The algebra $N(C_r^*(G))$ is simple if $C_r^*(G)$ is simple, and prime if and only if $C_r^*(G)$ is prime.

Def 15.4. Let G be a discrete group, and let X be a compact G-space.

The G-action on X is topologically free if for every $s \in G \setminus \{e\}$, the set

$$X \backslash X^s = \{ x \in X | sx \neq x \}$$

is dense in X.

Thm 15.6. Let G be a discrete group. Then the followings are equivalent:

- 1. The group G is C^* -simple.
- 2. $C(\partial_F G) \rtimes_r G$ is simple.
- 3. $C(B) \rtimes_r G$ is simple for some G-boundary B.
- 4. The G-action on $\partial_F G$ is topologically free.
- 5. The G-action on some G-boundary is topologically free.

16 Trees

Def 16.1. A graph Γ consists of a set $Vert\Gamma$, a set $Y=Edge\Gamma$ and two maps $Y\to X\times X$, $y\mapsto (o(y),t(y))$ and $Y\to Y$, $y\mapsto \overline{y}$ (inversion) satisfying $y=\overline{\overline{y}}$, $y\neq \overline{y}$ and $o(y)=t(\overline{y})$.

Def 16.2. Let T be a tree i.e. a connected graph with no loop.

- For vertices $x, y \in V(T)$, we define a distance d(x, y) by a length of a geodesic path (i.e. a path with no loop) from x to y.
- A map $\varphi: T \to T$ is called automorphism if it is isometric bijective and we denote Aut(T) by all automorphisms.
- For $x, y \in V(T)$, d(x, y) = the length of the geodesic from x to y. We define the topology on T by this distance.
- Two geodesic paths $(x(n))_n$, $(y(n))_n$ are equivalent if there is $m_0, n_0 \in \mathbb{N}$ s.t. $x(n+n_0) = y(n+m_0)$.
- The ideal bouldary ∂T of T is defined as the set of all equivalent classes of infinite geodesic paths.
- For $x \in \overline{T} := T \cup \partial T$ and a finite set $F \subset T$, we define $U_{x,F} := \{y \in \overline{T} | [x,y] \cap F = \emptyset\}$. $\{U_{x,F}\}$ is a basis of the topology on \overline{T} .

Rem 16.0.1. • \overline{T} is compact.

• Aut(T) is totally desconnected.

Def 16.3. Let $G \cap X$ with no $inversion(\Rightarrow G \cdot y \neq \overline{G \cdot y})$. Let $V(G \setminus T) = G \setminus V(X)$, $E(G \setminus X) = G \setminus E(X)$, $V(G \setminus E(X)) \to V(G \setminus X) \oplus V(G \setminus X)$ $G \cdot y \mapsto (G \cdot o(y), G \cdot t(y))$, and $E(G \setminus X) \to E(G \setminus X)$ $G \cdot y \mapsto \overline{G \cdot y}$. Then, $G \setminus X = (V(G \setminus X), E(G \setminus X))$ is a graph.

As below, we assume $G \curvearrowright X$ with no inversion.

16.1 amalgamated products and a segment

Thm 16.1. Let X be a graph, which is $G \setminus X \cong$ a segment $T = (\{P,Q\}, \{y,\overline{y}\}) < X$. Then, the followings are equivalent.

- X is a tree;
- A homomorphism $\varphi: G_P *_{G_y} G_Q \to G$ induced by $G_P(G_Q) \hookrightarrow G_y$ is an isomorphism.

Rem 16.1.1. There is no element $g \in G$ s.t. gP = Q. Indeed, if not, $V(G \setminus X)$ is a point.

This theorem follows from the two following lemmas.

Lem 16.1. X is connected iff φ is surjective.

Proof. Let X' be a connected component of X containing T. Let $G' := \{g \in G \mid gX' = X'\}$. Let G'' be a subgroup generated by G_P and G_Q . We prove G' = G''.

For $g \in G_P \cup G_Q$, y and gy have a common vertex. So, gX' = X'. Thus, $G'' \subset G'$.

Since G''T and (G - G'')T are disjoint, $X' \subset G''T$. For $g \in G'$, $gT \subset gX' \subset G''T$, so there exists a $h \in G''$ s.t. either gP = hP or gQ = hQ by the above remark. we may assume gP = hP. Then, $h^{-1}gP = P$, so $h^{-1}g \in G_P$. Hence, $g = hh^{-1}g \in G''$. So, $G' \subset G''$. Therefore, G' = G''.

X is connected $\Leftrightarrow X = X' \Leftrightarrow G = G' \Leftrightarrow G = G''$.

Lem 16.2. X has no loop iff φ is injective.

Proof. Assume X has a loop $c:=(c_1,\ldots,c_n)$. We may assume $c_1=y$. Let $P_k:=t(c_k)$ $(k\geq 1)$. There exist a $g_k\in G$ and a $y_i\in\{y,\overline{y}\}$ s.t. $c_k=g_ky_k$ By the above remark, $y_{k+1}=\overline{y_k}$. Hence, $h_k:=g_{k+1}^{-1}g_k\in G_{t(y_k)}$. If $h_k\in G_y$, it is contradiction to $y_{k+1}=\overline{y_k}$. So, $h_k\notin G_y$. $P=t(c)=t(g_ny_n)=g_1h_1^{-1}\cdots h_n^{-1}P$. Since $g_1=1$, $h_1^{-1}\cdots h_n^{-1}\in G_P$. There exists a $k\in G_P$ s.t. $kh_1\cdots h_n=1$. This is contradiction to $kh_1\cdots h_n\neq 1$, by the definition 17.2 of amalgamated free product.

16.2 Amalgamated products and trees

Def 16.4. A graph of groups is consisting of a connected nonempty graph Y and groups G_P $(P \in V(Y))$ $(resp.G_y (y \in E(Y)))$, and denoted by (G,Y) s.t. $G_y \to G_{t(y)}$, which is denoted by $a \mapsto a^y$, and $G_y = G_{\overline{y}}$. For a graph of groups (G,Y), we denote $\lim (G,Y)$ by G_T .

Thm 16.2. Let (G, Y) be a graph of groups. There exists a graph X on which G_T acts s.t. T is a fundamental domain of X with respect to G_T and $(G_T)_P = G_P(P \in V(T))(resp. (G_T)_y = G_y(y \in E(Y)))$. Moreover, X is a tree.

Thm 16.3. Let G be a group acting on a graph X. Let T be a tree whose fundamental domain with respect to G is a tree T. Let $\varphi: G_T \to G$ be a homomorphism induced by $G_P \to G$, which is surjective, since X is connected. Let $\psi: \tilde{X} \to X$ be a homomorphism which is uniquely determined by $T \to T$ and φ . The followings are equivalent.

- X is a tree.
- ψ is an isomorphism.
- φ is an isomorphism.

16.3 Fundamental groups of a graph of groups

Def 16.5. Let (G, Y) be a graph of groups.

We denote F(G,Y) by the quotient of $*_{P \in V(T)} *_F F$ by the normal subgroup generated by $y\overline{y}$ and $ya^yy^{-1}(a^{\overline{y}})^{-1}(y \in E(Y), a \in G_y)$, where F is a free group generated by E(Y). For $P_0 \in V(Y)$,

$$\pi_1(G, Y, P_0) := \left\{ |c, \mu| := r_0 y_1 r_1 \cdots y_n r_n \middle| c = (y_1, y_2, \dots, y_n) \text{ is path in } Y \right\}.$$

$$s.t. o(y_1) = t(y_n), r_i \in G_{t(y_i)}$$

For a maximal tree T < Y, we denote $\pi_1(G, Y, T)$ by the quotient F(G, Y) by the normal subgroup generated by y = 1 $(y \in E(T))$. Then, we denote g_y by the image in $\pi_1(G, Y, T)$ of $y \in E(Y)$.

Rem 16.3.1. F(G,Y) has the relation $ya^yy^{-1} = a^{\overline{y}}$ $(y \in E(Y), a \in G_y)$. $\pi_1(G,Y,T)$ has the above relation and the relation $g_y = 1$ $y \in E(T)$.

Rem 16.3.2. $\pi_1(G, Y, P_0)$ and $\pi_1(G, Y, T)$ are isomorphic, so denoted by $\pi_1(G, Y)$. This follows from the following proposition.

Lem 16.3. $p: F(G,Y) \to \pi_1(G,Y,T)$ induces an isomorphism $\overline{p}: \pi_1(G,Y,P_0) \to \pi_1(G,Y,T)$.

Proof. For $P \in V(T)$, we define $c_P = (y_1, \ldots, y_n)$ by the path from P_0 to P with no backtracking and $\gamma_P := y_1 \cdots y_n$. For $x \in G_P$ and $y \in E(Y)$, let $x' := \gamma_P x \gamma_P^{-1} \in \pi_1(G, Y, P_0)$ and $y' := \gamma_{o(y)} y \gamma_{t(y)}^{-1} \in \pi_1(G, Y, P_0)$. Then, for $y \in E(T)$, either $c_{t(y)} = (c_{o(y)}, y)$ or $c_{o(y)} = (c_{t(y)}, \overline{y})$ is satisfied, so y' = 1. Also, $\overline{y}' = \gamma_{o(\overline{y})} \overline{y} \gamma_{t(\overline{y})}^{-1} = \gamma_{t(y)} \overline{y} \gamma_{o(y)}^{-1}$, so $y' \overline{y}' = \overline{y}' y' = 1$. For $y \in E(Y)$ and $a \in G_y$,

$$y'(a^{y})'y'^{-1} = \gamma_{o(y)}y\gamma_{t(y)}^{-1}\gamma_{t(y)}a^{y}\gamma_{t(y)}^{-1}\gamma_{t(y)}y^{-1}\gamma_{o(y)}^{-1}$$
$$= \gamma_{o(y)}a^{\overline{y}}\gamma_{o(y)}^{-1}$$
$$= (a^{\overline{y}})'.$$

So, there exists a unique homomorphism $f: \pi_1(G, Y, T) \to \pi_1(G, Y, P_0)$ s.t. $f(\overline{x}) = x'$ and $f(\overline{y}) = y'$. Since $p \circ f = \mathrm{id}$, \overline{p} is injective. By the construction, \overline{p} is surjective.

Ex 2. If $G_y = \{e\}$, $\pi_1(G, Y, T) = *_{P \in V(Y)} G_P * F$.

Ex 3. If Y is a segment, $\pi_1(G, Y, T) = G_P *_{G_y} G_Q$.

Ex 4. If Y is a loop, $\pi_1(G, Y, T) = HNN$ -extension. It is generated by G_P and g_y , and satisfies the relation $g_y a^y g_y^{-1} = a^{\overline{y}}$

Def 16.6. Let (G, Y) be a graph of groups and X < Y be a (connected) subgraph.

We define (G, Y/X) as below.

 $V(Y/X) := V(Y) \sqcup \{V(X)\}, E(Y/X) := E(Y) \backslash E(X)$ and

$$o(y) := \begin{cases} o(y) \ (o(y) \notin V(X)) \\ V(X) \ (o(y) \in V(X)) \end{cases}, o(y) := \begin{cases} t(y) \ (t(y) \notin V(X)) \\ V(X) \ (t(y) \in V(X)). \end{cases}$$

 $G_{\{X\}} := \pi_1(G, X).$

Rem 16.3.3. $\pi_1(G, Y) = \pi_1(G, Y/X)$.

Rem 16.3.4 (cf. Rem.17.1.1). Let (G,Y) be a graph of groups. Let T < Y be a maximal tree in Y.

Then, Y' := Y/T is an order-rank $(\pi_1(Y))$ bouquet graph and $\pi_1(Y) \cong \pi_1(Y')$.

Let \tilde{T} be a universal covering of Y' and its covering map is denoted by π .

We define (G, \tilde{T}) by $G_{\tilde{P}} := G_{\pi(\tilde{P})}$ $(\tilde{P} \in V(\tilde{T}))$ $(resp. \ G_{\tilde{y}} := G_{\pi(\tilde{y})} \ (\tilde{y} \in E(\tilde{T})).$

Then, $\pi_1(Y')$ acts on \tilde{T} by the deck transformation $Deck(\tilde{T}/Y') \cong \pi_1(Y')$, so $\pi_1(Y')$ acts on $\pi_1(G,\tilde{T})$. We define $\Theta: \pi_1(G,Y') \to \pi_1(G,\tilde{T}) \rtimes \pi_1(Y')$ by

$$\pi_1(G, Y', P_0) \to \pi_1(G, \tilde{T}, \tilde{T}) \rtimes \pi_1(Y'),$$

 $r_0 y_1 r_1 \cdots y_n r_n \mapsto (r_0 \cdots r_n, y_1 \cdots y_n),$

where $Q_0 \in V(\tilde{T})$ and $r_0 \in G_{Q_0}, r_1 \in G_{y_1(Q_0)}, r_2 \in G_{y_1y_2(Q_0)}, \cdots, r_n \in G_{y_1\cdots y_n(Q_0)}$. Θ is isomorphism. We define a homomorphism $\pi_1(G, \tilde{T}, \tilde{T}) \rtimes \pi_1(Y') \to \pi_1(G, Y', P_0)$ by

$$(r_0 \cdots r_n, y) \mapsto r_0 \pi(\gamma_1) r_1 \cdots \pi(\gamma_n) r_n \pi(\zeta),$$

where for $r_i \in G_{P_i}$ $(P_0 = Q)$, γ_i is a geodedic from P_i to P_{i+1} in T and ζ is a geodedic from P_n to Q in T. In conclusion, $\pi_1(G, Y) = \pi_1(G, Y') \cong \pi_1(G, \tilde{T}) \rtimes \pi_1(Y)$.

Def 16.7. Let (G,Y) be a graph of groups. For the path $c := (y_1,\ldots,y_n)$, and $\mu = (r_0,\ldots,r_n)$ $(a_i \in G_{t(y_i)}, r_0 \in G_{o(y_1)})$, we define

$$|c,\mu| := r_0 y_1 r_2 \cdots r_n y_n$$

One says that (c, μ) is reduced if it satisfies the following condition: If n = 0 one has $r_0 \neq 0$; if $n \leq 1$ one has $r_i \notin G^{y_i}_{y_i} := \operatorname{Im}(G_{y_i} \to G_{t(y_i)})$ for each index i s.t. $y_{i+1} = \overline{y_i}$.

Thm 16.4. If (c, μ) is a reduced word, the associated element $|c, \mu|$ of F(G, Y) is $\neq 1$.

The following corollary follows from $\pi_1(G, Y, P_0) \cong \pi_1(G, Y, T)$.

Cor 16.4.1. Let T < Y be a maximal tree and let (c, μ) be a reduced word whose type c is a closed path. Then, $\overline{|c, \mu|} \neq 1$ in $\pi_1(G, Y, T)$.

16.4 Universal covering relative to a graph of groups

Let (G, Y) be a graph of groups. Let T < Y be a maximal tree. Let A < Y be an orientation (i.e. $Y = A \sqcup \overline{A}$). For $y \in E(Y)$,

$$|y| := \begin{cases} y & (y \in A) \\ \overline{y} & (y \notin A) \end{cases}, \ e(y) := \begin{cases} 0 & (y \in A) \\ 1 & (y \notin A) \end{cases}.$$

We construct the following objects.

- graph $\tilde{X} = \tilde{X}(G, Y, T)$;
- $\pi := \pi_1(G, Y, T)$ acts on \tilde{X} ;
- $p: \tilde{X} \to Y$ induces an isomorphism $\pi \backslash \tilde{X} \cong Y$;
- sectios $V(Y) \to V(\tilde{X})$ and $E(Y) \to E(\tilde{X})$ of p, which is denoted by $P \mapsto \tilde{P}$ and $y \mapsto \tilde{y}$;
- $\pi_{\tilde{P}} = G_P, \, \pi_{\tilde{y}} = G_{\overline{|y|}}^{\overline{|y|}}$:

Let $V(\tilde{X}) := \sqcup_{P \in V(Y)} \pi / \pi_P$ and $E(\tilde{X}) := \sqcup_{y \in E(Y)} \pi / \pi_y$, where $\pi_P := G_P$ $(P \in V(Y))$ and $G_y := G_{\overline{|y|}}$ $(y \in E(Y))$.

We denote the image of 1 in π/π_P (resp. π/π_y) by \tilde{P} (resp. \tilde{y}). For $g \in \pi$ and $y \in E(Y)$,

$$\begin{split} \overline{g}\widetilde{y} &:= g\widetilde{\overline{y}}, \\ o(g\widetilde{y}) &:= gg_y^{-e(y)} o(\widetilde{y}), \\ t(g\widetilde{y}) &:= gg_y^{1-e(y)} t(\widetilde{y}). \end{split}$$

Then, $\pi_y = \pi_{\overline{y}}$. Also, for $h \in \pi_{\tilde{y}}$, $hg_y^{-e(y)}o(\tilde{y}) = g_y^{-e(y)}o(\tilde{y})$.

Thm 16.5. The above graph \tilde{X} is a tree.

Proof. Connectedness is ganbaru.

We show that X have no closed path with no backtracking.

16.5 ping-pong lemma

In this section, we consider a tree as a connected set in \mathbb{R}^2 .

Def 16.8. Let γ be a isometric bijection of a tree T. We define $l(\gamma) := \inf_{x \in T} d(x, \alpha x)$

- If γ fix a point in T, then γ is called elliptic;
- If γ does not fix any point in T, then γ is called hyperbolic:

Rem 16.5.1. For γ , Fix(γ) is a tree.

Prop 16.1. Let γ be a hyperbolic element. Then, there exist the unique γ -invariant line. We denote this line by $Axis(\gamma)$.

Rem 16.5.2. Suppose there exist $x \in T$ s.t. $d(x, \gamma^2 x) = 2d(x, \gamma x)$. γx is in $[x, \gamma^2 x]$, since γ is hyperbolic. $[x, \gamma x, \gamma^2 x]$ generate a γ -invariant line.

Proof. Let $y \in T$. If $x \in [\gamma x, \gamma^2 x]$, then it contradicts hyperbolicity. If $\gamma x \in [x, \gamma^2 x]$, then it is what we want. So, we may assume $x, \gamma x, \gamma^2 x$ are common points. we remark $\gamma x \neq \gamma^2 x$.

Let α (resp. β) be geodesic from x to γx (resp. $\gamma^{-1}x$). Let n be a maximal number which satisfies $\alpha(k) = \beta(k)$ ($1 \le k \le n$) and let $a = \alpha(n) = \beta(n)$, which is the crux of a triangle with vertecies x, γx , $\gamma^{-1}x$. Let $b = \gamma a$ and $c = \gamma^{-1}a$, which is not a by hyperbolicity. Then, b in $[x, \gamma x]$, since a in $[x, \gamma^{-1}x]$. If d(b, x) < d(x, a), then x in $[x, \gamma x]$, so a, γa , $\gamma^{-1}a$ is on the same line. So, we may assume d(b, x) > d(x, a). Similarly, we may assume c in $[x, \gamma^{-1}]$ and d(c, x) < d(x, a). So, $d(\gamma^{-1}a, \gamma a) = 2d(\gamma^{-1}a, a)$.

Rem 16.5.3. For isometry g, $gAxis(\gamma) = Axis(g\gamma g^{-1})$

Prop 16.2. Let γ , $\delta \in Aut(T)$.

- 1. If γ , δ are elliptic and $Fix(\gamma) \cap Fix(\delta) = \emptyset$, then $\gamma \delta$ is hyperbolic with $l(\gamma \delta) = 2d(Fix(\gamma), Fix(\gamma))$.
- 2. If γ , δ are hyperbolic and $\operatorname{Axis}(\gamma) \cap \operatorname{Fix}(\delta) = \emptyset$, then $\gamma \delta$ is hyperbolic with $l(\gamma \delta) l(\gamma) + l(\delta) + 2d(\operatorname{Axis}(\gamma), \operatorname{Axis}(\delta))$ and $\operatorname{Axis}(\gamma \delta)$ intersects $\operatorname{Axis}(\gamma)$ and $\operatorname{Axis}(\delta)$.

Proof. There exist $x \in \text{Fix}(\gamma)$ and $y \in \text{Fix}(\delta)$ s.t. $d(x,y) = d(\text{Fix}(\gamma), \text{Fix}(\delta))$. Let α be a geodesic from x to y. Then, $\alpha \cup \overline{\delta \alpha}$ is a geodesic from δx to y. Also, $\delta \alpha$ is a geodesic path form $\delta \text{Fix}(\gamma)$ to $\text{Fix}(\delta)$. Indeed, if $\delta \alpha \cap \alpha = [y, z]$ is not a vertex, that is $y \neq z$, this is contradiction to $\text{Fix}(\gamma) \cap \text{Fix}(\delta) = \emptyset$. So, $d(x, (\gamma \delta)^2 x) = 2d(x, \gamma \delta x)$.

There exist $x \in \text{Axis}(\gamma)$ and $y \in \text{Axis}(\delta)$ s.t. $d(x,y) = d(\text{Axis}(\gamma), \text{Axis}(\delta))$.

$$\begin{aligned} \operatorname{Axis}(\gamma) \to & \operatorname{Axis}(\delta) \to \operatorname{Axis}(\delta) \to \gamma \operatorname{Axis}(\delta) \to \gamma \operatorname{Axis}(\delta) \to \delta \gamma \operatorname{Axis}(\delta) = \delta \operatorname{Axis}(\gamma) \\ x \to & y \to & \gamma y \to & \gamma x \to & \delta \gamma x \to \delta \gamma y \end{aligned}$$

So, $d(x, (\delta \gamma)^2 x) = 2d(x, \delta \gamma x)$.

Lem 16.4. Let $e, e' \in E(T)$ and an isometry γ s.t. $\gamma e = e'$. Let x = o(e) and y = t(e). If $d(x, \gamma x) = d(y, \gamma y)$, then γ is hyperbolic.

$$Proof.$$
?

Lem 16.5 (ping-pong lemma). Let γ , δ be hyperbolic elements whose axes has a intersection. If this intersection is compact, there exist $n \in \mathbb{N}$ s.t. γ^n and δ generate a free group of rank 2.

Proof. Let
$$K := Axis(\gamma) \cap Axis(\delta)$$
. $n = |K|$.

16.6 Amenabilty and hyperbolic element

Thm 16.6 ([Neb88]). Let T be a locally finite tree and $G < \operatorname{Aut}(T)$ be a closed subgroup. Then, G is amenable if and only if one of the followinf statements holds

- G fixes a vertex;
- G stabilize an edge;
- G fix a point in ∂T ;
- G stabilize a pair of points in ∂T :

Prop 16.3. Let $G < \operatorname{Aut}(T)$ be a closed non-amenable subgroup. There exists a hyperbolic element in G.

Lem 16.6. If for any $g, h \in G$, $Fix(g) \cap Fix(h) \neq \emptyset$, then $\bigcap_{fin} Fix(g) \neq \emptyset$.

Proof. We remark Fix(g) is a tree. If $Fix(g) \cap Fix(h) \cap Fix(k) = \emptyset$, there exists a cycle. Contradiction. \square

proof of proposition. We assume G has no hyperbolic element. If there exist elliptic elements $g, h \in G$ s.t. $\operatorname{Fix}(g) \cap \operatorname{Fix}(h) = \emptyset$, there exist a hyperbolic element. So, for any $g, h \in G$, $\operatorname{Fix}(g) \cap \operatorname{Fix}(h) \neq \emptyset$. Since \overline{T} is a complete metric space,

$$\bigcap_{g \in G} \operatorname{Fix}_{\overline{T}}(g) \neq \emptyset.$$

It is contradiction to non-amenability of G.

17 Group

Def 17.1 (amalgamated product). Let Γ_i be a group and Λ be a group with homomorphisms φ_i : Λ into each Γ_i . We denote by N a normal subgroup generated by $\varphi_1(\gamma)\varphi_2(\gamma)^{-1}$. $\Gamma_1 * \Gamma_2/N$ is called amalgamated product.

Def 17.2 (amalgamated free product). Let Γ_i be a group and Λ be a common subgroup (i.e. Λ come with an injective homomorphism $\varphi_i : \Lambda$ into each Γ_i). Then, the amalgamated free product $\Gamma = \Gamma_1 *_{\Lambda} \Gamma_2$ is the group satusfyubg the following properties:

- Γ contains Γ_1 and Γ_2 as subgroups and Γ is generated by Γ_1 and Γ_2 ;
- $\Gamma_1 \cap \Gamma_2 = \Lambda$ in Γ ;
- $s_1 \cdots s_n a \neq e$ whenever $n \geq 1$, $a \in \Lambda$ and $s_k \in \Gamma_{i_k} \setminus \Lambda$ with $i_k \neq i_{k+1}$ for $1 \leq k < n$;
- if we choose systems S_i of representatives of Γ_i/Λ and let $S_i^0 = S_i \setminus \{e\}$ (we always assume that the representative of the coset Λ is e), then any element s in Γ can be uniquely written as $s = s_1 \cdots s_n a$, where $a \in \Lambda$ and $s_k \in S_{i_k}^0$ such that $i_k \neq i_{k+1}$ for $1 \leq k < n$:

Rem 17.0.1. $\Gamma_1 *_{\Lambda} \Gamma_2 = \Gamma_1 * \Gamma_2/(the \ smallest \ normal \ subgroup \ containig \ \varphi_1(\lambda)^{-1}\varphi_2(\lambda)).$

Rem 17.0.2 (universality). If

$$N \xrightarrow{\varphi_1} \Gamma_1$$

$$\downarrow^{\varphi_2} \circlearrowleft \qquad \downarrow^{f_1}$$

$$\Gamma_2 \xrightarrow{f_2} \Gamma,$$

then,

Prop 17.1. Let G be a group and H be a subgroup. Then, for $g_1, g_2 \in G$, $g_1H = g_2H \Leftrightarrow g_1H \cap g_2H \Leftrightarrow g_1^{-1}g_2 \in H$.

Thm 17.1. Let G be a group and A be a subgroup of G. Let $\theta: A \to G$ be a injective homomorphism. Then, there exist a group G' which is generated by G and s s.t. $\theta(a) = sas^{-1}$ $(a \in A)$.

Proof.

Amlgamation is as above. Let $G_n = G$ $(n \in \mathbb{Z})$. Let $u : G_n \to G_{n+1}$ be a canonical isomorphism. Let $H_n := *_{A_{k=-n}}^n G_k$ $(n \in \mathbb{N})$. We define $\varphi_n : H_n \to H_{n+1}$ by $g \mapsto 1 * 1 * u(g)$.

Since the above diagram is commutative, there exist a $\sigma: *_A G \to *_A G$ s.t. $\sigma(a) = \theta(a)$ $(a \in A)$. Since \mathbb{Z} acts on $*_A G$ by $n \mapsto \sigma^n$, $G' := *_A G \rtimes \mathbb{Z}$. Actually,

$$(e,1)(a,0)(e,1)^{-1} = (e,1)(a,-1) = (\sigma(a),0) = (\theta(a),0).$$

Def 17.3. The above G' is called the HNN extension of G relative to θ and denoted by $G*_{\theta}$.

Rem 17.1.1. In the sense of the above construction, $G*_{\theta} = *_A G \rtimes \mathbb{Z} \cong G * \mathbb{Z}/(sas^{-1} = \theta(a))$, where s is a generator of \mathbb{Z} .

Proof. A homomorphism $G * \mathbb{Z}/(sas^{-1} = \theta(a)) \to *_A G \rtimes \mathbb{Z}$ is definef by the universality. A homomorphism $\varphi: *_A G \times \mathbb{Z} \to G * \mathbb{Z}/(sas^{-1} = \theta(a))$ is defined by

$$(g_1g_2\cdots g_n,r)\mapsto k_1g_1(k_2-k_1)g_2\cdots(k_n-k_{n-1})g_n(r-k_n),$$

where $g_i \in G_{k_i}$.

By the above calculation, the definition is well-defined.

18 Locally compact groups

18.1 topological gropus

Thm 18.1. Let G be a connected topological group. Let U be a neighborhoff of e s.t. $U = U^{-1}$. Then, for any $g \in G$, there exists g_1, \ldots, g_k s.t. $g = g_1 \ldots g_k$.

Thm 18.2. Let G be a compact group acting on topological space X. Then, a quotient map $\pi: X \to G \setminus X$ is proper (i.e. $\pi^{-1}(cpt.) = cpt.$).

Proof. Let $F \subset X \setminus G$ be a compact subset. Let $\{U_i\}_{i \in I}$ be a open covering of F.

For $x \in \pi^{-1}(F)$, there exist a $i_x \in I$ s.t. $\pi(x) \in U_{i_x}$. For $g \in G$, there exist a open neighborhood $V_{x,g} \subset G$ of g and a open neighborhood $W_{x,g}$ of x s.t. $V_{x,g} \cdot W_{x,g} \subset U_{i_x}$.

By compactness of G, $G = \bigcup_{fin.} V_{x,g_n}$. Let $W_x := \bigcap W_{x,g_n}$. Then, $G \cdot W_x \subset U_{i_x}$. Since $F \subset \bigcup_{x \in \pi^{-1}(F)} \pi(GW_x)$ and $G \cdot W_x$ is open, $F \subset \bigcup_{fin.} \pi(G \cdot W_x)$.

So,
$$\pi^{-1}(F) \subset \bigcup_{fin.} G \cdot W_x \subset \bigcup_{fin.} U_{i_x}$$
.

Prop 18.1. Let G be a topological group and H be a topological subgroup of G with finite index. G is topologically finitely generated if ond only if so is H.

Proof. We assume H is topologically finitely generated. Let F be a finite generator of H. Then, G = \sqcup_{fin}, g_iH . So, $F \cup \{g_i\}$ is a finite generator of G.

We assume G is topologically finitely generated. Let Y be a finite generator of G. Let $[\cdot]: G \to G$ $g \mapsto [g]$ be a left H-invariant map. We may assume e = [e]. We have, for any $g \in G$

$$g[g]^{-1} \in H$$
, $[[g]h] = [gh]$, $[g] = [[g]]$.

 $T = \{[g]y[[g]y]^{-1}|g \in G, y \in Y\}$ is finite and generator of H. Finiteness is follows from finite index. Indeed, suppose $h = g_1g_2 \cdots g_r \in H$ $(g_i \in Y)$. For simplicity, r = 3.

$$h = g_1[g_1]^{-1} \cdot [g_1]g_2[[g_1]g_2]^{-1} \cdot [[g_1]g_2]g_3[[[g_1]g_2]g_3]^{-1}.$$

Each element belongs to T.

18.2 locally compact group

Let G be a locally comapct group. Let $\mu(=\mu_G)$ be a left Haar measure on G. Let $\Delta(=\Delta_G)$ be a modular function on G.

Cor 18.2.1. H be a compact subgroup. A quotient map $\pi: G \to G/H$ is proper.

Prop 18.2. Then, G is totally disconnected iff G has a fundamental system of neighborhoods for a unit e consisting of compact open subgroups.

18.3 Haar measure

Prop 18.3. Let K be a compact open subgroup of G. Then, $\ker(\triangle_G)$ is a clopen normal subgrop containing K.

Def 18.1. We denote $\ker(\triangle_G)$ by G_0 .

Prop 18.4. Let G be a totally disconnected. Let K be a compact normal subgroup of G. Let $\mu = \mu_K$. Then, μ is invariant under the conjugation action of G.

Proof. We suffies to show that for any open subgroup H < K and for any $g \in G$, $\mu(H) = \mu(gHg^{-1})$, since a borel set is generated by open subsets and a topological group has fundamental system of neighborhoods of e.

Suppose $\mu(H) < \mu(gHg^{-1})$. $K = \sqcup_{fin.} k_i H$, since H is a open subgroup.

$$\mu(K) = \sum_{i} \mu(H) < \sum_{i} \mu(gHg^{-1}) = \sum_{i} \mu((gk_ig^{-1})gHg^{-1}) = \mu(gKg^{-1}) = \mu(K),$$

which is contradiction.

Rem 18.2.1. This proposition is satisfied in the case of general locally compact groups.

Proof. For $g \in G$, $\mu_q := \mu(g \cdot g^{-1})$ is a left Haar measure. By the uniqueness of a Haar measure, $\mu = \mu_q$. \square

Prop 18.5. Let G_i be a locally compact group and K be a common open subgroup. Then, $G_1 *_K G_2$ is a locally comapct group with respect to the topology generated by K. Moreover, if G_i is unimodular, $G_1 *_K G_2$ is unimodular.

Proof. Let $\mu := \mu_{G_1 *_K G_2}$. We suffices to show that $\mu(gEg^{-1}) = \mu(E)$ for all $g \in G_i$ and $E \subset K$, because $gE = \sqcup_{g_i} g_j E_i$ $(g \in G_i, E_i \subset K)$. It follows from unimodularity of G_i .

18.4 Amenability

Def 18.2. G is amenable if it has a left invariant mean, that is a left invariant state on $L^{\infty}(G,\mu)$.

Prop 18.6. Let G be a group acting on (X, ν) . Assume X has a G-invarinat mean, the action is measure preserving and the satabilizer subgroup G_x is amenable for a.e. $x \in X$. Then, G is amenable.

Proof. Let μ_X be a left invarinat mean on G_x . Let μ_X be a G-invarinat mean on X. Let $X = \sqcup_i G \cdot x_i$. For $x \in X$, there exist a $g_x \in G$ s.t. $x = g_x x_i$. For, $f \in L^{\infty}(G)$ and $x \in X$, $\theta(f)(x) := \mu_{x_i}((g_x^{-1}.f)|_{G_{x_i}})$. For $g \in G_{x_i}$, $\mu_{x_i}(((g_x g)^{-1}.f)|_{G_{x_i}}) = \mu_{x_i}(g^{-1}.f)|_{G_{x_i}}) = \mu_{x_i}((g_x^{-1}.f)|_{G_{x_i}})$, so it is well-defined. We define μ by $\mu(f) := \mu_X(\theta(f))$.

For $g, h \in G$, $\theta(h.f)(gx_i) = \mu_{x_i}(g_x^{-1}.(h.f)|_{G_{x_i}}) = \mu_{x_i}((h^{-1}g_x)^{-1}f)|_{G_{x_i}}) = (h.\theta(f))(x)$. So, μ is a left invariant mean.

Cor 18.2.2. Let G be a locally compact group which is an extension of N by H. Assume N and H are amenable group. Then, G is amenable.

Ex 5 (amenale). • abelian groups;

- compact groups;
- $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, since extension;

Ex 6 (non-amenable). • \mathbb{F}_2 ,

• $\mathbb{Z}/n\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$ $(n \geq 2, m \geq 3)$, like \mathbb{F}_2 ;

Thm 18.3 ([BO08]). Let G be a countable discrete group. Then, the followings are wquivalent.

- 1. G is amenabale;
- 2. G satisfies the Følner condition (i.e., for any finite subset $E \subset G$ and $\varepsilon > 0$, there exist a finite subset $F \subset G$ s.t.

$$\max_{s \in E} \frac{|sF \triangle F|}{|F|} < \varepsilon$$

);

- 3. the trivial representation τ_0 is weakly contained in the regular representation λ (i.e., there exist unit vectors $\xi_i \in l^2(G)$ s.t. $\|\lambda_s(\xi_i) \xi_i\| \to 0$ for all $s \in G$);
- 4. there exists a net (φ_i) of finitely supported positive definite functions on G s.t. $\varphi_i \to 1$ pointwise;
- 5. $C^*(G) = C_r^*(G);$
- 6. $C_r^*(G)$ has a character (i.e., one-dimensional representation);
- 7. for any finite subset $E \subset G$, we have

$$\left\| \frac{1}{|E|} \sum_{s \in E} \lambda_s \right\| = 1;$$

- 8. $C_r^*(G)$ is nuclear;
- 9. L(G) is semidiscrete.

19 Representations

19.1 Induced Representations

We assume G is discrete group. Let H < G be a subgroup of G. In the case of locally compact groups, if H is open or compact open, probably OK. Let σ be a unitary representation of H. Let $q: G \to G/H$ be a quotient map.

$$\mathcal{F}_0 := \{ f \in C_c(G, H_\sigma) | q(supp(f)) : compact, f(y\xi) = \sigma(\xi^{-1}) f(y) \ (y \in G, \ \xi \in H) \}.$$

For $f, g \in \mathcal{F}_0$,

$$\langle f, g \rangle := \int_{G/H} \langle f(x), g(x) \rangle_{\sigma} d\mu(xH).$$

We define \mathcal{F} by the completion of \mathcal{F}_0 w.r.t. this inner product. G acts on \mathcal{F} by left transformation, denoted by $\operatorname{ind}_{H}^{G}(\sigma)$

Rem 19.0.1. If σ is a trivial representation, $\operatorname{ind}_H^G(\sigma)$ is the natural representation of G on $l^2(G/H)$ by left transformation.

Prop 19.1. $\operatorname{ind}_{H}^{G}(\lambda_{H}) \cong \lambda_{G}$.

Proof.

$$\mathcal{F} := \{ f \in l^2(G, l^2(H_\sigma)) | ||f|| < \infty(not \ l^2), \ f(y\xi)(s) = f(y)(\xi s) \ (y \in G, \xi, s \in H) \}.$$

We define $\Phi: l^2(G) \to \mathcal{F}$ by $\Phi(f)(y)(\xi) := f(y\xi)$ for $f \in l^2(G), y \in G, \xi \in H$). linear is OK. Surjectivity: For $f \in \mathcal{F}$, g(y) := f(y, e). Inner product preserving: For $f, g \in l^2(G)$,

$$\begin{split} \langle \Phi(f), \Phi(g) \rangle &= \int_{G/H} \langle \Phi(f)(x), \Phi(g)(x) \rangle_{\sigma} d\mu_{G/H}(xH) \\ &= \int_{G/H} \int_{H} \Phi(f)(x,s) \overline{\Phi(g)(x,s)} d\mu_{H}(s) d\mu_{G/H}(xH) \\ &= \int_{G/H} \int_{H} f(xs) \overline{g(xs)} d\mu_{H}(s) d\mu_{G/H}(xH) \\ &= \int_{G} f(x) \overline{g(x)} d\mu_{G}(x) = \langle f, g \rangle \end{split}$$

We suffices to check the following diagram is commutative.

$$\begin{array}{c} l^2(G) \xrightarrow{\lambda_G} l^2(G) \\ \downarrow^{\Phi} & \downarrow^{\Phi} \\ \mathcal{F} \xrightarrow{\operatorname{ind}_{H}^{G}(\lambda_{H})} \mathcal{F}. \end{array}$$

Let $\sigma = \operatorname{ind}_{H}^{G}(\lambda_{H})$. For $f \in l^{2}(G), g, y \in G, \xi \in H$,

$$(\sigma(g) \circ \Phi)(f)(y,\xi) = \sigma(g)(\Phi(f))(y,\xi) = \Phi(f)(g^{-1}y,\xi) = f(g^{-1}y\xi),$$

$$(\Phi \circ \lambda_G(g))(f)(y,\xi) = \Phi(\lambda_G(g)(f))(y,\xi) = (\lambda_G(g)(f))(y\xi) = f(g^{-1}y\xi).$$

20 Modules

Def 20.1. Let N, M be von Neumann algebras. A Hilbert space H is called N-M bimodule if it is a left N module and a right M module satisfying n(xm) = (nx)m.

21 example

21.1 memo

• $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{F}_2$ is not weakly amenable but has the Haagerup property and AP(broz373)

21.2 $M_n(\mathbb{C})$

Prop 21.1. $M_n(\mathbb{C}) = L(\mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/n\mathbb{Z}).$

Proof. It follows from Takesaki, since $L^{\infty}(\mathbb{Z}/n\mathbb{Z})$ is atomic and the action is free and ergodic.

Thm 21.1. Let φ be a normalized trace and ψ be a functional on $M_n(\mathbb{C})$. Then, there exists positive matrix A s.t. $\psi = \varphi(A \cdot) = \langle \cdot A^{\frac{1}{2}}, A^{\frac{1}{2}} \rangle_{HS}$.

Proof.
$$\varphi(e_{ij}) = a_{ij}$$
.

Thm 21.2. $\triangle_{\varphi} = L_A R_{A^{-1}}$. $\triangle_{\varphi}^{it} = L_{A^{it}} R_{A^{-it}}$. $Jx = \triangle_{\varphi}^{\frac{1}{2}} x^* \triangle_{\varphi}^{-\frac{1}{2}}$.

Prop 21.2. Let $A = M_n(\mathbb{C})$. $\alpha_t(x) = A^{it}xA^{-it}$. Then, φ is a $\{\alpha_t\}$ -KMS state if and only if $\varphi(x) = \frac{\operatorname{Tr}(A^{-1}x)}{\operatorname{Tr}(A^{-1})}$.

Proof. at KMS state.
$$\Box$$

Thm 21.3. Let $y \in M_n(\mathbb{C})$ be a Jy = y. There exists $c \in M_n(\mathbb{C})_{sa}$ s.t. $y = A^{\frac{1}{4}}cA^{-\frac{1}{4}}$. Furthermore, $\mathfrak{P} = A^{\frac{1}{4}}\mathfrak{P}_SA^{-\frac{1}{4}} = \{A^{\frac{1}{4}}xA^{-\frac{1}{4}}|x \text{ is a self-adjoint positive}\}.$

Thm 21.4. If A's eigenvalues are different, $M_n(\mathbb{C})_0^{\varphi} = diagonal \ operators$.

Thm 21.5. Let
$$A = M_{2^n}(\mathbb{C})$$
, $A = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ and $\varphi_n := \otimes \frac{1}{1+\lambda} \operatorname{Tr} \left(\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \cdot \right) (0 < \lambda < 1)$. Then, $M_0^{\varphi_n} = \bigoplus_{k=0}^n M_n C_k(\mathbb{C})$.

Prop 21.3. Let $k_1+k_2+\cdots+k_m=n$, $p_jM_n(\mathbb{C})p_j=M_{k_j}$. $E:M_n(\mathbb{C})\to M_{k_1}\oplus\cdots\oplus M_{k_m}$ $E(a):=\sum p_{k_j}ap_{k_j}$ is a conditional expectation.

21.3
$$(C_c(G), \mu) \curvearrowright L^2(G, \mu)$$

This is a left Hilbert algebra.

Ex 7. $G = \mathbb{R}_+^* \rtimes \mathbb{R}$ is not unimodular.

 $\frac{1}{x^2}dxdy$ is a left invariant Haar measure.

$$\triangle: G \to \mathbb{R}^* \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \mapsto |x| \text{ is a modular function.}$$

Let \triangle be a modular function.

The following lemma followed by Lebaesgue dominated theorem.

Lem 21.1. Suppose $f \in C(G)$ and $h, f \in L^2(G, \mu)$. The following are equivalent.

- h = gf;
- there exists $f_n \in C_c(G)$ s.t. $f_n \to f$ and $gf_n \to gf$.

Thm 21.6. • $\mathcal{D}_S := \{ \xi \in L^2(G, \mu) | \Delta^{\frac{1}{2}} \xi(s) \in L^2(G, \mu) \} \text{ and } S\xi(s) := \overline{\xi(s^{-1})} \Delta(s)^{-1} \};$

- $\mathcal{D}_{S^*} := \{ \xi \in L^2(G, \mu) | \triangle^{\frac{1}{2}} \xi(s) \in L^2(G, \mu) \} \text{ and } S^*\xi(s) := \overline{\xi(s^{-1})} \};$
- Its modular operator is a modular map;
- $J: \triangle^{\frac{1}{2}}(s)\xi(s) \mapsto \overline{\xi(s^{-1})} \triangle(s)^{-1}$:

Lem 21.2. If $f \in L^1(G)$, then f * is a bounded linear operator on $B(L^2(G))$.

Since a modular map does not have zero and continuous, so for any compact set K of G, there exists $\varepsilon > 0$ s.t. $|f(x)| \ge 0$ $(x \in K)$. Therefore,

Thm 21.7. $C_c(G) \subset \mathfrak{T}$.

$$e^{-\triangle^2}\xi \in \mathfrak{T}$$
?

21.4 Araki-Woods factor

$$\mathcal{A}_n := \bigotimes_{j=1}^n M_{k_j} (= M_{k_1 \cdots K_n}).$$

$$\mathcal{A} := \overline{\bigcup_n \mathcal{A}_n}.$$

Let ϕ_n be a state on M. There exists $T_n \in M_{k_n}(\mathbb{C})$ s.t. $\phi_n = tr(T_n \cdot)$. We can define state $\phi^{(n)}$ on M by $\phi^{(n)} := tr((\otimes_{j=1}^n T_j \cdot))$. By $tr(T_n) = 1$, $\phi^{(n+1)}|_{\mathcal{A}_n} = \phi^{(n)}$.

Thm 21.8. $\phi = \lim \phi^{(n)}$ is a factorial state.

Proof. Suppose $Q \in Z(\pi_{\phi}(\mathcal{A})'')$. By Kaplansky density theorem, there exist $\{\mathcal{A}_n\} \subset \mathcal{A}_{\infty} = \cup_n \mathcal{A}_n$ s.t. $||\pi_{\phi}(A_k)|| \leq ||Q||$ and $\pi_{\phi}(A_k) \to^s Q$. B_k = $\int_{\mathcal{U}(\mathcal{A}_n)} U A_k U^* dU$. Then, $\pi_{\phi}(B_k) \to^s Q$. For each $C_1, C_2 \in \mathcal{A}_n$, $\langle \pi_{\phi}(C_1)x_{\phi}, Q\pi_{\phi}(C_2)x_{\phi} \rangle = \lim \phi(C_1^*C_2B_k) = \langle x_{\phi}, Qx_{\phi} \rangle \langle \pi_{\phi}(C_1)x_{\phi}, \pi_{\phi}(C_2)x_{\phi} \rangle$, because $B_k \in \mathcal{A}_n' \cap \mathcal{A}_m = \mathbb{C}I \otimes (\otimes_{i=n+1}^m M_{k_i}(\mathbb{C}))$.

21.5 Powers factor

When $k_j = 2$ and ϕ_n is a tensor state of $\frac{1}{1+\lambda} \operatorname{Tr} \left(\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \cdot \right) (0 < \lambda < 1)$, we call this Araki-Woods factor Powers factor. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$.

21.6 crossed product

$$x = \sum \pi(a_g)\lambda_g = \pi(a)\lambda_g, \ y = \sum \pi(b_h)\lambda_h = \pi(b)\lambda_h.$$

When X is a finite measure space and, we define state τ by $\langle \cdot (1 \otimes \delta_e), 1 \otimes \delta_e \rangle$. It satisfies $\mu \circ E = \tau$.

Thm 21.9.
$$\triangle(\hat{x}) = \sum \pi(\widehat{\frac{d\mu}{d\mu \circ \alpha_{g^{-1}}}} a_g) \lambda_g$$
.

Proof.
$$E(yx^*) = \sum \overline{a_g} b_g$$
. $E((\triangle x)^*y) = \sum \alpha_{g^{-1}} (a_g' b_g)$. Since $\langle Sx, Sy \rangle = \langle y, \triangle x \rangle$, $\sum \mu(\overline{a_g} b_g) = \sum \mu \circ \alpha_{g^{-1}} (a_g' b_g) = \sum \mu(\frac{d\mu \circ \alpha_{g^{-1}}}{d\mu} \overline{a_g} b_g)$.

Let ρ be a right regular representation, $\xi_0 = 1 \otimes \delta_e$ and $x = \pi(\alpha_g(a_g))\lambda_g$. Then, $x\xi_0 = a_g \otimes \delta_g$. Then,

$$\Delta x \xi_0 = \frac{d\mu \circ \alpha_g}{d\mu} a \otimes \delta_g;$$

$$\Delta^{it} x \xi_0 = \left(\frac{d\mu \circ \alpha_g}{d\mu}\right)^{it} a \otimes \delta_g;$$

$$J x \xi_0 = \alpha_g \left(\left(\frac{d\mu \circ \alpha_g}{d\mu}\right)^{-\frac{1}{2}} \overline{a}\right) \otimes \delta_{g^{-1}}$$

$$= \left(\frac{d\mu \circ \alpha_g}{d\mu}\right)^{\frac{1}{2}} \alpha_g(\overline{a}) \otimes \delta_{g^{-1}} =: u_g(\overline{a}) \otimes \delta_{g^{-1}};$$

$$\sigma_t^{\varphi}(\pi(f)) = \pi(f), \ \sigma_t^{\varphi}(\lambda_h) = \pi\left(\left(\frac{d\mu \circ \alpha_g}{d\mu}\right)^{it}\right) \lambda_h;$$

$$J\pi(f)J = \overline{f} \otimes 1, \ J\lambda_h J = u_h \otimes \rho_h :$$

 $\mu \circ \alpha_g =: g^{-1}\mu.$ canonical implementation?

Thm 21.10. $M_0^{\varphi} \supset L^{\infty}(X)$.

Especially, if for all $g \in G$, α_g is probability measure presearving, $M_0^{\varphi} = M$.

22 Cuntz algebra \mathcal{O}_n

[OP78]

Def 22.1. For $2 \le n \in \mathbb{N}$, Cuntz algebras \mathcal{O}_n is the universal C*-algebra generated by isometries S_1 , S_2 , ..., S_n s.t. $\sum S_i S_i^* = 1$.

Moreover, for $n = \infty$, Cuntz algebra \mathcal{O}_{∞} is the universal C*-algebra generated by isometries S_1, S_2, \ldots, S_n s.t. $\sum S_i S_i^* \leq 1$.

The universal C*-algebra is the disjoint union of all elements which satisfies same property.

Prop 22.1 (Universality). Let S_i be generators of \mathcal{O}_n and T_i be isometries which satisfies $\sum T_i T_i^* = 1$. There exists a *-homomorphism $\phi : \mathcal{O}_n \to \mathfrak{O} := C^*(\{T_i\})$ s.t. $\phi(S_i) = T_i$.

Proof. Let p be a noncommutative 2n-variable polynomial. $A := p(T_1, \ldots, T_n, T_1^*, \ldots, T_n^*)$. By GNS construction, there exists a representation π s.t. $||\pi(A)|| = ||A||$. $||A|| = ||\pi(A)|| \le ||p(S_1, \ldots, S_n, S_1^*, \ldots, S_n^*)||$.

Rem 22.0.1. For $t \in \mathbb{R}$, there exists $\rho_t : \mathcal{O}_n \to \mathcal{O}_n$ s.t. $\rho_t(S_i) = e^{it}S_i$.

Thm 22.1. $K_0(\mathcal{O}_n) = \mathbb{Z}/(n-1)\mathbb{Z}, K_1(\mathcal{O}_n) = 0.$

Prop 22.2. $M_{n^{\infty}} \cong \mathcal{F}_n \subset \mathcal{O}_n$. There exists a conditinal expectation $E_n:\mathcal{O}_n \to M_{n^{\infty}}$, which in obtained by an integration.

Def 22.2. Let $\alpha = (\alpha_1, \alpha_2, \dots, alpha_k) \in \{1, 2, \dots, n\}^k$. We define S^{α} by $S_{\alpha_1} S_{\alpha_2} \cdots S_{\alpha_k}$. $l(\alpha) := k$. We define \mathcal{F}_n by the C^* -subalgebra generated by $S_{\alpha} S_{\beta}^*$'s, where $l(\alpha) = l(\beta)$. We denote by \mathcal{P}_n a *-algebra generated by S_i 's.

Proof. We define φ by a isomorphism $\mathcal{F}_n \to M_{n^{\infty}}$ s.t. $\varphi(S_{\alpha}S_{\beta}^*) = e_{\alpha_1\beta_1} \otimes e_{\alpha_2\beta_2} \otimes \cdots \otimes e_{\alpha_k\beta_k} \otimes 1 \otimes \cdots$ for α, β .

For $A \in \mathcal{P}_n$, there exist unique $A_k \in \mathcal{F}_n \cap \mathcal{P}_n$ s.t. $A = \sum_k S_1^{k*} A_{-k} + A_0 + \sum_k A_k S_1^k$. Let $E_0 : \mathcal{O}_n \to \mathcal{F}_n$ be a isomorphism s.t $E_0(A) = A_0$ $(A \in \mathcal{P}_n)$. Then, for $A \in \mathcal{O}_n$,

$$E_0(A) = \int_0^{2\pi} \rho_t(A)dt.$$

22.1 Haar measure

Let F be a p-adic field. Let μ be a left Haar measure on GL(F). $\triangle(t_1,\ldots,t_n):=|t_1|^{-n+1}|t_2|^{-n+3}\cdots|t_n|^{n-q}$.

23 boyaki

Riemann-Lebesgue ext to finite measure space? abelian compact group? Connes-Takesaki module

24 Subjects

- flow
- rigidity
- core

25 Problem

- Riemann-Lebesgue extension?
- Let u_t be a left regular rep. By Stone's theorem, there exists a positive self-adjpint op. A on $L^2(\mathbb{R})$. What is A?
- Tomita algebra example
- various spectrum of modular op.
- Naimark's problem: C*algebra with only irreducible representation up to unitary equivalence, this is compact op. It is solved when including sep. C*-algebra and type C*-algebra. 1708.04368
- pure extention problem
- modular theory for abelian von Neumann algebra
- Connes' bicentralizer property:
- locally compact case $C_r^*(G) = C^*(G)$.
- locally compact case amenable radical

26 need

- e_{ξ} ;
- semifinite factor \otimes ;

27 comment bibliography

[OP78] There exists the exactly one KMS-state for an action $\rho_t(S_i) = e^{it}S_i$ of Cuntz algebra \mathcal{O}_n . Later $\phi \in \mathcal{O}_n$

References

- [BO08] Nathanial Patrick Brown and Narutaka Ozawa. C*-algebras and finite-dimensional approximations, volume 88. American Mathematical Soc., 2008.
- [CE77] Man-Duen Choi and Edward G Effros. Injectivity and operator spaces. *Journal of functional analysis*, 24(2):156–209, 1977.
- [Ham79] Masamichi Hamana. Injective envelopes of c*-algebras. Journal of the Mathematical Society of Japan, 31(1):181–197, 1979.
- [Kad52] Richard V Kadison. A generalized schwarz inequality and algebraic invariants for operator algebras. Annals of Mathematics, pages 494–503, 1952.
- [Neb88] C. Nebbia. Amenablitz and kunze-stein property for groups acting on a tree. *Pacific Journal of Mathematics*, 135(2), 1988.
- [OP78] Dorte Olesen and GERT KJÆRGÅRD PEDERSEN. Some c*-dynamical systems with a single kms state. *Mathematica Scandinavica*, 42(1):111–118, 1978.
- [Rie83] Marc A Rieffel. Dimension and stable rank in the k-theory of c*-algebras. *Proceedings of the London Mathematical Society*, 3(2):301–333, 1983.

- [Rør91] Mikael Rørdam. On the structure of simple c*-algebras tensored with a uhf-algebra. *Journal of functional analysis*, 100(1):1–17, 1991.
- [Suz17] Yuhei Suzuki. Almost finiteness for general etale groupoids and its applications to stable rank of crossed products. arXiv preprint arXiv:1702.04875, 2017.
- [Suz18] Yuhei Suzuki. Complete descriptions of intermediate operator algebras by intermediate extensions of dynamical systems. arXiv preprint arXiv:1805.02077, 2018.
- [Tak72] Masamichi Takesaki. Conditional expectations in von neumann algebras. *Journal of Functional Analysis*, 9(3):306–321, 1972.
- [Tak13] Masamichi Takesaki. Theory of operator algebras II, volume 125. Springer Science & Business Media, 2013.
- [Ued99] Yoshimichi Ueda. Amalgamated free product over cartan subalgebra. *Pacific Journal of Mathematics*, 191(2):359–392, 1999.