

Máster en Programación avanzada en Python para Big Data, Hacking y Machine Learning

Programación Python para Machine Learning

ÍNDICE

- ✓ Introducción
- Objetivos
- Evaluación de modelos
- Conjuntos de entrenamiento y validación
- ✓ Validación cruzada
- ✓ Métricas de evaluación
- Conclusiones

INTRODUCCIÓN

- √ ¿Cómo saber si un modelo es bueno o malo?
- √ ¿Qué datos utilizar?
- ✓ ¿Qué estrategia seguir?
- √ ¿Cómo cuantificar?

OBJETIVOS

Al finalizar esta lección serás capaz de:

- 1 Conocer la potencialidad de Python y sus módulos en Machine Learning.
- 2 Saber instalar y configurar el ecosistema Python para trabajar en Machine Learning.
- Familiarizarse con los formatos de archivo que contienen los datos en Machine Learning.
- 4 Aprender a cargar conjuntos de datos para Machine Learning en Python.

EVALUACIÓN DE MODELOS

Error muy común en no iniciados: entrenar y evaluar con los mismos datos.

La evaluación del rendimiento siempre con datos que no hayan sido utilizados para generar el modelo o algún aspecto de él.

La evaluación del rendimiento es realmente una estimación, nunca una garantía.

Una vez entrenado el modelo, usar los datos al completo para su puesta en producción.

CONJUNTOS DE ENTRENAMIENTO Y VALIDACIÓN

Dividir el conjunto de datos en dos conjuntos:

- ✓ Entrenamiento
- ✓ Validación

Por instancias, nunca por atributos.

Técnica que no se usa en la práctica.

El resto se fundamentan en ella.

70-30%, 62.5-37.5% o 86.3-13.7%

VALIDACIÓN CRUZADA

Validación cruzada utilizando K-fold

Media Desv. Típica

VALIDACIÓN CRUZADA

Validación cruzada utilizando Leave-One-Out

VALIDACIÓN CRUZADA

Validación cruzada utilizando Monte Carlo

Media Desv. Típica

MÉTRICAS PARA EVALUACIÓN DEL RENDIMIENTO

Valor que cuantifica el rendimiento.

Dependientes del tipo de problema: clasificación o regresión.

MÉTRICAS PARA EVALUACIÓN DEL RENDIMIENTO

CLASIFICACIÓN

Cuidado: La paradoja del falso positivo

$$Exactitud = \frac{TP + TN}{n^{\circ} \ total \ de \ patrones} \qquad Recall = Sensibilidad(Sn) = \frac{TP}{FN + TP}$$

$$Tasa \ de \ FP \ (FPRate) = \frac{FP}{TN + FP} \qquad Especificidad \ (Sp) = \frac{TN}{FP + TN}$$

MÉTRICAS PARA EVALUACIÓN DEL RENDIMIENTO

REGRESIÓN

Raíz del error cuadrático medio (RMSE)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (y - \hat{y})^2}{N}}$$

Comparativa de técnicas

MUCHAS GRACIAS POR SU ATENCIÓN

