4 mai 2017 Durée: 2 heures

HLIN612 : Calculabilité et Complexité Examen 16 Mai 2017

Seul les documents de cours et travaux dirigés sont autorisés. La note prendra en compte la clarté des explications.

1 Partie calculabilité

Exercice 1

- 1. Soit $F = \{f_1, f_2, ..., f_i ...\}$ une suite de fonctions totales de \mathbb{N} dans \mathbb{N} . Donner une fonction totale de \mathbb{N} dans \mathbb{N} qui n'appartient pas à cette suite.
- 2. Soient deux suites quelconques d'ensembles D et E. Construire un ensemble qui n'appartient à aucune des deux suites.

Exercice 2

Soit P le prédicat suivant : Soit q une procédure, P(q) est VRAI si et seulement si il existe x tel que q(x) est impair.

- 1. Montrer de deux façons différentes que P est indécidable.
- 2. Soit $E = \{q | P(q) \text{ est } VRAI\}$. Montrer que E n'est pas calculable mais qu'il est récursivement énumérable en donnant sa fonction semi-caractéristique.
- 3. Donner un algorithme qui affiche tous les éléments de E.
- 4. Soit R le prédicat suivant R(q) est VRAI si et seulement si quelque soit x q(x) n'est pas impair. Soit $F = \{q | R(q) \text{ est } VRAI\}$. Pourquoi F n'est ni calculable, ni récursivement énumérable.

2 Complexité

Exercice 3 Vrai ou faux : justifier par une phrase vos réponses

- 1. tout problème polynomial est un problème de \mathcal{NP} .
- 2. tout problème polynomial est un problème \mathcal{NP} -complet.
- 3. tout problème de \mathcal{NP} est un problème polynomial.
- 4. tout problème \mathcal{NP} -complet est un problème polynomial.

1

- 5. tout problème de \mathcal{NP} est un problème \mathcal{NP} -complet.
- 6. tout problème \mathcal{NP} -complet est un problème de \mathcal{NP} .

Exercice 4

A votre avis, quelle est la complexité du problème suivant, en justifiant votre réponse.

Nombre de feuilles (MF)

Données : G = (V, E) un graphe non orienté et $k \ge 0$.

Question : Existe-t'il un arbre couvrant qui admet au plus k feuilles?

Exercice 5

On dit qu'un sous-ensemble D des sommets d'un graphe G=(V,E) est dominant si tout sommet de G est soit dans D soit relié à un sommet de D par une arête. Dom est l'ensemble des couples (G,k) où G est un graphe possédant un sous-ensemble dominant de taille au plus k.

On dit que $S \subseteq E$ est une couverture G si, pour toute arête (u, v) de E, au moins une de ses extrémités (u et v) appartient à S. Le problème Vertex - Cover est l'ensemble des couples (G, k) tels que G est un graphe ayant une couverture de sommets de taille inférieure ou égale à k.

- 1. Si G = (V, E) est un graphe et S un Vertex-Cover de G, que pouvez-vous dire de l'ensemble de sommets $V \setminus S$ dans G?
- 2. Montrer que l'appartenance de Dom est \mathcal{NP} -complet.

Aide: Soit G = (V, E) un graphe. On construit un graphe G' = (V', E') de la façon suivante : V' est l'ensemble V, moins les sommets isolés (n'appartenant à aucune arête), et auquel on ajoute des nouveaux sommets u_e pour chaque arête $e \in E$; $E' = E \cup \{(x, u_e) | x \text{ est une extrémité de } e\}$. Montrer que G a une couverture de sommets de taille au plus k ssi G' a un ensemble dominant de taille au plus k.