Ke Mei Ou Laboratory Co., Ltd.

7A, Jiaxiangge, Jiahuixincheng, No.3027, Shennan Rd., Futian, Shenzhen, Guangdong, P.R.China. Zip Code: 518033
Tel: +86 755 83642690 Fax: +86 755 83297077
www.kmolab.com

FCC TEST REPORT

Under FCC 15 Subpart C, Paragraph 15.249

Prepared For:

LANYA ELECTRONIC CO., Ltd.

6th Building, Lijincheng Industrial Park, East Gongye Road, Longhua Town, Bao'an District, Shenzhen, China.

FCC ID: ZG8BCK08

EUT: Bluetooth Car Kit

Model: BCK08A/C

August 9, 2011

Issue Date:

Original Report

Report Type:

Test Engineer: KMO Tester

Review By: Apollo Liu / Manager

The test report consists 26 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Ke Mei Ou Laboratory Corporation. The test result in the report only applied to the tested sample.

TABLE OF CONTENTS

1. General Information	3
1. 1 Notes	3
1. 2 Testing Laboratory	3
1. 3 Details of Applicant	3
1. 4 Application Details	3
1. 5 Test Item	3
1. 6 Test Standards	3
2. Technical Test	4
2. 1 Summary of Test Results	4
3. EUT Modifications	4
4. Conducted Power Line Test	5
4. 1 Test Equipment	5
4. 2 Test Procedure	5
4. 3 Test Setup	5
4. 4 Configuration of the EUT	
4. 5 EUT Operating Condition	7
4. 6 Conducted Power Line Emission Limits	7
4. 7 Conducted Power Line Test Result	
5. Radiated Emission Test	
5. 1 Test Equipment	
5. 2 Test Procedure	
5. 3 Radiated Test Setup	
5. 4 Configuration of the EUT	
5. 5 EUT Operating Condition	
5. 6 Radiated Emission Limit	
5. 7 Radiated Emission Test Result	
6. Band Edge	
6. 1 Test Equipment	
6. 2 Test Procedure	
6. 3 Radiated Test Setup	
6. 4 Configuration of The EUT	
6. 5 EUT Operating Condition	
6. 6 Band Edge FCC 15.249(d) Limit	14
6. 7 Band Edge Test Result	
7. Antenna Requirement	
8. Photos of Testing	
8. 1 EUT Test Photographs	
8. 2 EUT Detailed Photographs	
9. FCC ID Label	
10. Test Equipment	26

1. General Information

1. 1 Notes

The test results of this report relate exclusively to the test item specified in 1.5. The KMO Lab does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the KMO Lab.

1. 2 Testing Laboratory

SinTek Laboratory Co., Ltd.

Site on File with the Federal Communications Commission – United Sates

Registration Number: 963441

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: 7353A

1. 3 Details of Applicant

Name : LANYA ELECTRONIC CO., Ltd.

Address : 6th Building, Lijincheng Industrial Park, East Gongye Road, Longhua Town, Bao'an District,

Shenzhen, China.

Contact : Jian Wang
Tel : 0755-23985181
Fax : 0755-23985835

1. 4 Application Details

Date of Receipt of Application : June 27, 2011 Date of Receipt of Test Item : June 27, 2011

Date of Test : July 7, 2011~July 11,2011

1. 5 Test Item

Manufacturer : LANYA ELECTRONIC CO., Ltd.

Address : 6th Building, Lijincheng Industrial Park, East Gongye Road, Longhua Town,

Bao'an District, Shenzhen, China.

 $\begin{array}{ll} \text{Trade Name} & : \text{N/A} \\ \text{Model No.(Base)} & : \text{BCK08A/C} \end{array}$

Model No.(Extension) : N/A

Description : Bluetooth Car Kit

Additional Information

Frequency : 2402-2480MHz

Number of Channels : 79

Power Supply : DC 3.7V(Power by battery)

 $\begin{array}{ll} \text{Operation Distance} & : \text{N/A} \\ \text{Resolution} & : \text{N/A} \\ \end{array}$

1. 6 Test Standards

FCC 15 Subpart C, Paragraph 15.249

Note: All radiated measurements were made in all three orthogonal planes. The values reported are the maximum values.

2. Technical Test

2. 1 Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.203	Antenna Requirement	PASS	Complies
FCC Part 15, Paragraph 15.207	Conducted Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) and 15.249(b) Limit	Field Strength of Fundamental	PASS	Complies
FCC Part 15, Paragraph 15.209	Radiated Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Measured Band Edges	PASS	Complies.

3. EUT Modifications

No modification by test lab.

4. Conducted Power Line Test

4. 1 Test Equipment

Please refer to Section 10 this report.

4. 2 Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission., the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2003 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

4. 3 Test Setup

For the actual test configuration, Please refer to the related items - Photos of Testing.

4. 4 Configuration of the EUT

The EUT was configured according to ANSI C63.4-2003. EUT was used DC3.7V. The operation frequency is from 2400MHz~2483.5MHz. Enable the signal transmitted from the external antenna from EUT to receiver. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

- 1) Below 1GHz, the channel low, middle, high were pre-tested, The channel low, worst case one, was chosen for conducted and radiated emission test.
- 2) Above 1GHz, the channel low, middle, high were tested individually.

A. EUT

Device Manufacturer		Model #	FCC ID
Bluetooth Car Kit	LANYA ELECTRONIC CO., Ltd.	BCK08A/C	ZG8BCK08

B. Internal Devices

Device	Manufacturer	Model #	FCC ID
N/A			

C. Peripherals

Device	Manufacturer	Model # Serial #	FCC ID/ DoC	Cable
Printer	HP	HP930C	DoC	1.5m unshielded power cord 1.2m unshielded data cable.
Modem	GVC	N/A	DoC	1.5m unshielded power cord 1.2m unshielded data cable.
PC	Dell	2400n	DoC	1.5m unshielded power cord

4. 5 EUT Operating Condition

Operating condition is according to ANSI C63.4 - 2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

4. 6 Conducted Power Line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)							
Frequency Range (MHz)	Class B QP/AV						
0.15 - 0.5	79/66	66-56/56-46					
0.5 - 5.0	73/60	56/46					
5.0 - 30	73/60	60/50					

NOTE: In the above table, the tighter limit applies at the band edges.

4. 7 Conducted Power Line Test Result

The frequency spectrum from $\underline{0.15}$ MHz to $\underline{30}$ MHz was investigated. All readings are quasi -peak values with a resolution bandwidth of $\underline{9}$ KHz.

Temperature : 26 °C
 Humidity : 53 % RH
 Result : PASSED

FCC Part 15 Paragraph 15.207									
Frequency (MHz)	Emission (dBuV) QP AV		LINE/ NEUTRAL	Limit (dBuV) QP AV		Margin (dB) QP AV			
0.154	45.04	31.12	Line	65.78	55.78	-20.74	-24.66		
0.154	39.27	28.17	Neutral	65.78	55.78	-26.51	-27.61		
0.178	40.55	29.52	Line	64.58	54.58	-24.03	-25.06		
0.174	38.14	28.95	Neutral	64.77	54.77	-26.63	-25.82		
0.198	35.90	27.56	Line	63.69	53.69	-27.79	-26.13		
0.194	36.57	27.82	Neutral	63.86	53.86	-27.29	-26.04		

Note: $\overline{NF} = No$ Significant Peak was Found.

Remarks:

- 1.Uncertainty in conducted emission measured is <+/ -2dB.
- 2.QP and AV are abbreviations of quasi-peak and average individually.
- 3. The emission levels of other frequencies were very low against the limit.
- 4.The Quasi-peak emission level also meets average limit and measurement with the average detector is unnecessary.
- 5.Margin Value= Emission Level Limit Value.

Conducted Emission

EN55022

EUT: Bluetooth Car Kit

M/N: BCK08A/C

Manufacturer: LANYA ELECTRONIC CO., Ltd.

Operating Condition: Charging

Test Site:

Operator: Joy Peng

Date: 7.JUL.2011 10:12:39

Test Specification: LIVE&NEUTRAL

Comment:

5. Radiated Emission Test

5. 1 Test Equipment

Please refer to Section 10 this report.

5. 2 Test Procedure

- 1. The EUT was tested according to ANSI C63.4 2003.
- 2. The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high <u>0.8</u> m. All set up is according to ANSI C63.4-2003.
- 3. The frequency spectrum from $\underline{30}$ MHz to $\underline{1}$ GHz was investigated. All readings from $\underline{30}$ MHz to $\underline{1}$ GHz are quasi-peak values with a resolution bandwidth of $\underline{120}$ KHz. All readings are above $\underline{1}$ GHz, peak values with a resolution bandwidth of $\underline{1}$ MHz. Measurements were made at $\underline{3}$ meters.
- 4. The antenna high is varied from $\underline{1}$ m to $\underline{4}$ m high to find the maximum emission for each frequency.
- 5. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4 2003.

5. 3 Radiated Test Setup

For the actual test configuration, please refer to the related items - Photos of Testing.

5. 4 Configuration of the EUT

Same as section 4.4 of this report

5. 5 EUT Operating Condition

Operating condition is according to ANSI C63.4 - 2003.

- A. Setup the EUT and simulators as section 5.4.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

5. 6 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below :

A. FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency	Field Streng	th of Fundame	ntal (3m)	Field Strength of Harmonics (3m)			
(MHz)	mV/m	dBuV/m		uV/m	dBuV/m		
902~928	50	94(Average)	114(Peak)	500	54(Average)	74(Peak)	
2400~2483.5	50	94(Average)	114(Peak)	500	54(Average)	74(Peak)	

Note:

- a) RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- b) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- c) The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

Frequency (MHz)	Distance (m)	Field Strength (dBuV/m)
30 - 88	3	40.0
88 - 216	3	43.5
216 - 960	3	46.0
ABOVE 960	3	54.0

Note:

- (1) RF Voltage (dBuV) = 20 log RF Voltage (uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

5. 7 Radiated Emission Test Result

A. Fundamental Radiated Emission Data

Product : Bluetooth Car Kit Test Mode : CH Low ~ CH High

Test Item : Fundamental Radiated Emission Data Temperature : $25 \,^{\circ}$ C Test Voltage : DC 3.7V(Power by battery) Humidity : 56% RH

Test Result : PASS

CH Low

Freq. (GHz)	Emission (dBuV/m) Peak / Average		HORIZ /VERT	Limits (dBuV/m) Peak / Average		Margin (dB) Peak / Average	
2402.00	71.67	70.22	HORIZ	114.00	94.00	-42.33	-23.78
2402.00	75.96	75.12	VERT	114.00	94.00	-38.04	-18.88

CH Mid

Freq.	Emission (dBuV/m)		HORIZ	Limits (dBuV/m)		Margin (dB)	
(GHz)	Peak / A	Average	/VERT Peak		Peak / Average		Average
2441.00	66.45	64.73	HORIZ	114.00	94.00	-47.55	-29.27
2441.00	71.07	70.03	VERT	114.00	94.00	-42.93	-23.97

CH High

Freq. (GHz)	Emission (dBuV/m) Peak / Average		HORIZ /VERT	Limits (dBuV/m) Peak / Average		Margin (dB) Peak / Average	
2480.00	72.66	71.95	HORIZ	114.00	94.00	-41.34	-22.05
2480.00	64.64	62.63	VERT	114.00	94.00	-49.36	-31.37

Note:

- (1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

B. Harmonics Radiated Emission Data

Product : Bluetooth Car Kit Test Mode : CH Low ~ CH High

Test Item : Fundamental Radiated Emission Data Temperature : $25~^{\circ}$ C Test Voltage : DC 3.7V(Power by battery) Humidity : 56% RH

Test Result : PASS

CH Low

Freq. (MHz)	Emission (dBuV/m) Peak Detector	HORIZ / VERT	Limits (dBuV/m) Peak / Average	Margin (dB)
4804.00	46.48	HORZ	74.0 / 54.0	-27.52
4804.00	47.32	VERT	74.0 / 54.0	-26.68
7206.00	48.12	HORZ	74.0 / 54.0	-25.88
7206.00	48.55	VERT	74.0 / 54.0	-25.45
24020.00	-	HORZ	74.0 / 54.0	-
24020.00	-	VERT	74.0 / 54.0	-

CH Mid

Freq.	Emission (dBuV/m)	HORIZ/	Limits (dBuV/m)	Margin
(MHz)	Peak Detector	VERT	Peak / Average	(dB)
4882.00	47.38	HORZ	74.0 / 54.0	-26.62
4882.00	48.22	VERT	74.0 / 54.0	-25.78
7323.00	47.16	HORZ	74.0 / 54.0	-26.84
7323.00	48.54	VERT	74.0 / 54.0	-25.46
24410.00	-	HORZ	74.0 / 54.0	-
24410.00	-	VERT	74.0 / 54.0	-

CH High

Freq. (MHz)	Emission (dBuV/m) Peak Detector	HORIZ / VERT	Limits (dBuV/m) Peak / Average	Margin (dB)
4960.00	45.64	HORZ	74.0 / 54.0	-28.36
4960.00	46.78	VERT	74.0 / 54.0	-27.22
7440.00	45.74	HORZ	74.0 / 54.0	-28.26
7440.00	47.02	VERT	74.0 / 54.0	-26.98
24800.00	-	HORZ	74.0 / 54.0	-
24800.00	-	VERT	74.0 / 54.0	-

Note:

- (1) All Reading Levels below 1GHz are Quasi-Peak, above are peak and average value.
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss.
- (3) Receiver setting (Peak Detector): RBW=1MHz; VBW=1MHz; Span=100MHz
- (4) Receiver setting (AVG Detector): RBW=1MHz; VBW=30Hz; Span=20MHz
- (5) The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

C. General Radiated Emission Data

Product: Bluetooth Car KitTest Mode: CH LowTest Item: Fundamental Radiated Emission DataTemperature: 30 $^{\circ}$ CTest Voltage: DC 3.7V(Power by battery)Humidity: 46% RH

Test Result : PASS

Freq. (MHz)	Emission (dBuV/m) QP Detector	HORIZ / VERT	Limits (dBuV/m)	Margin (dB)
288.000	36.85	HORZ	46.0	-9.15
132.080	25.35	VERT	43.5	-18.15
800.680	38.76	HORZ	46.0	-7.24
888.920	37.58	VERT	46.0	-8.42
959.760	38.96	HORZ	46.0	-7.04
959.560	38.83	VERT	46.0	-7.17

Note:

- (1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss.

6. Band Edge

6. 1 Test Equipment

Please refer to Section 10 this report.

6. 2 Test Procedure

- 1. The EUT was tested according to ANSI C63.4 2003.
- 2. The EUT, peripherals were put on the turntable which table size is $1 \text{m} \times 1.5 \text{ m}$, table high $\underline{0.8} \text{ m}$. All set up is according to ANSI C63.4-2003.
- 3. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4 2003.

6. 3 Radiated Test Setup

For the actual test configuration, please refer to the related items - Photos of Testing

6. 4 Configuration of The EUT

Same as section 4.4 of this report

6. 5 EUT Operating Condition

Same as section 4.5 of this report.

6. 6 Band Edge FCC 15.249(d) Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 50dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6. 7 Band Edge Test Result

Product : Bluetooth Car Kit Test Mode : CH Low ~ CH High

Test Item : Fundamental Radiated Emission Data Temperature : $25 \, ^{\circ}\text{C}$ Test Voltage : DC 3.7V (Power by battery) Humidity : $56\% \, \text{RH}$

Test Result : PASS

CH Low Horizontal (Peak)

Date: 11.JUL.2011 14:51:29

Horizontal (Average)

Date: 11.JUL.2011 14:59:17

LANYA ELECTRONIC CO., Ltd.

Vertical (Peak)

Date: 11.JUL.2011 15:04:25

Date: 11.JUL.2011 15:07:01

Note:

- (1) The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209.
- (2) The average measurement was not performed when the peak measured data under the limit of average detection.

Date: 11.JUL.2011 15:46:30

Horizontal (Average)

Date: 11.JUL.2011 15:53:14

Vertical (Peak)

Date: 11.JUL.2011 15:59:33

Date: 11.JUL.2011 16:01:41

Note: (1) The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209.

(2) The average measurement was not performed when the peak measured data under the limit of average detection.

7. Antenna Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT no antenna connector for printed antenna. Therefore the EUT complies with Section 15.203 of the FCC rules.

8. Photos of Testing

8. 1 EUT Test Photographs

Radiated emission test view

8. 2 EUT Detailed Photographs

EUT top view

EUT bottom view

EUT inside whole view

Main&RF board component side

Main&RF board solder side

9. FCC ID Label

FCC ID: ZG8BCK08

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Label must not be a stick-on paper label. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT

10. Test Equipment

The following test equipments were used during the radiated & conducted emission test:

Equipment/	Manufacturer	Model #	Serial No.	Due Date
Facilities				
Turntable	SinTek	N/A	N/A	NCR
Antenna Tower	SinTek	N/A	N/A	NCR
OATS	SinTek	N/A	N/A	Oct. 9, 2011
Bilog Antenna	SCHAFFNER	CBL6111C	2775	June 12, 2012
Pre-Amplifier	HP	8449B	3008B00965	June 12, 2012
Horn Antenna	EMCO	3115	9602-4659	June 12, 2012
Horn Antenna	Rohde & Schwarz	AT4560	SB3435/03	May 4, 2012
EMI Test Receiver	Rohde & Schwarz	ESPI7	100013	June 01, 2012
Spectrum Analyzer	Rohde & Schwarz	FSP40	100273	May 27, 2012
Signal Generator	FLUKE	PM5418+Y/C	LO747012	May 27, 2012
Loop Antenna	Rohde & Schwarz	HFH2-Z2	872096/16	Jan. 30, 2012
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	9161-4079	Sep.18, 2011
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	9161-4080	Sep.18, 2011
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-564	Sep.18, 2011
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-565	Sep.18, 2011
AMN	Rohde & Schwarz	ESH3-Z5	100197	May 27, 2012
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	9604	Nov.29, 2011
ISN	SCHWARZBECK	NTFM 8158 CAT3	CAT 3 8158-0010	Nov.19, 2011
ISN	SCHWARZBECK	NTFM 8158 CAT5	CAT 5 8158-0009	Nov.19, 2011
ISN	SCHWARZBECK	NTFM 8158 CAT6	CAT 6 8158-0012	Nov.19, 2011
KMO Shielded Room	KMO	KMO-001	N/A	N/A
Coaxial Cable with N-Connectors	SCHWARZBECK	AK9515H	95549	Sep.18, 2011
SOHO Telephone Switching System	IKE	2000-108C	N/A	NCR
3m Anechoic Chamber	Sintek	KMO-3AC	KMO-3AC-1	May 29, 2012
Temperature Chamber	TABAI	PSL-4GTW	N/A	Feb.10, 2012