

Security Operations Analyst

SOC Concepts and Security Frameworks

Lesson Overview

SOC Main Functions and Roles

Objectives

- Describe the main functions and roles within a SOC
- Describe the main challenges within a SOC

What Is a SOC?

Security
Operations
Center

Threat Monitoring	Continuous monitoring for security events and compromise indicators	
Threat Detection	Analyzing data for patterns and anomalies, and identifying malicious activities	
Incident Response	Swiftly responding, investigating, containing, and restoring from security incidents	
Threat Hunting	Proactively searching for hidden threats using advanced techniques	
Vulnerability Management	Identifying and prioritizing vulnerabilities, patching, and configuration	
Threat Intelligence	Gathering, analyzing, and sharing emerging threat information	
Reporting and Documentation	Documenting incidents, preparing reports, and tracking metrics	
Compliance and Regulations	Ensuring adherence to industry-specific regulations	

SOC Roles

SOC Managers

- Assign resources
- Create guidelines and policies

Security Engineers

 Design, configure, and maintain security infrastructure

Threat Hunters

Actively seek out threats or signs of threats in the network

Incidents Response & Forensic Analysts

- Create, manage, and update incidents and events
- Collect and analyze evidence to determine impact

SOC Analysts

 Analyze data and identify deviations from normal behavior

Vulnerability Management Specialists

 Assess risk levels and identify vulnerabilities

Threat Intelligence Analysts

- Identify and analyze cyberthreats
- Recommend mitigations

Teams Within a SOC

Red Team

Vulnerability
Assessment
Penetration Tests
Social Engineering
Security Research

Purple Team
TTP creation

Security Improvements

> Design Exercises

Blue Team

Security Monitoring
Threat Hunting
Security Controls
Forensics

Red team simulates adversaries

- Attempts to exploit vulnerabilities
- Conducts penetration tests and vulnerability assessments
- Performs security research

Blue team defends against adversaries

- Identifies, responds to, and mitigates security incidents
- Performs security monitoring, threat hunting, and forensics
- Detects, responds to and recovers from incidents

Purple team orchestrates knowledge sharing

- Bridges the gap between red and blue teams
- Facilitates knowledge transfer
- Designs exercises
- Improves organizational security posture
- Creates TTP mapping

Reasons Why SOCs Fail or Succeed

saccess
ഗ

-ailure

Scope	Technology	Implementation
Focused requirements and use cases Realistic expectations Appropriate application (current and future) Compliant with regulations	 Strong understanding of the market and technology Meets current and future requirements, and in-scope processes High-fidelity outputs 	 Resources allocated Required skills identified and planned for Impact on SOC playbooks understood
Shallow and narrow coverage Unrealistic expectations Wrong focus (threat vector) Non-compliance with regulations	 Lack of understanding of how tools work Too many events (poor sources or poor tech) Solution didn't deliver 	 Too small—no team Lacking key skills No playbook—no process Inconsistent responses

SOC Maturity

Forward-Leaning

Established

Establishing

Greenfield

SOC Productivity Optimization

Threat Hunting and Incident Response

Enhanced Near-Real-Time Threat Detection

Real-Time Monitoring and Operations

Knowledge Check

- 1. Which SOC role is responsible for investigating logs to identify problems?
- √A. SOC analyst
 - B. Threat hunter
- 2. What is the role of the red team in a SOC?
 - A. To gather and analyze evidence, and determine scope of impact
- √B. To assess and exploit vulnerabilities

Lesson Progress

SOC Main Functions and Roles

Attack Frameworks Overview

Fortinet SOC Environment Benefits

Objectives

- Identify the challenges that can be solved by the Fortinet SOC
- Describe the Fortinet SOC solution workflow

Benefits of the Fortinet SOC Environment

Fortinet SOC Solution Workflow

Integration Examples

- Connectors allow playbooks to interact with devices in the Security Fabric and standalone devices
 - They determine which actions can be performed by playbook tasks

- Event handlers generate events when a rule is matched
 - FortiAnalyzer contains many predefined (default) event handlers for many Fortinet devices
 - You can also create your own event handlers

An Example of Automation With a Playbook

Knowledge Check

- 1. What determines the possible actions a playbook task can perform?
 - A. The event handler
- ✓ B. The connector

Lesson Progress

SOC Main Functions and Roles

Fortinet SOC Environment Benefits

Attack Frameworks Overview

Attack Frameworks Overview

Objectives

- Describe the MITRE ATT&CK Matrix for Enterprise
- Describe the Cyber Kill Chain

MITRE ATT&CK Overview

ATT&CK = Adversarial Tactics, Techniques, and Common Knowledge

- Detailed mapping of adversary behavior framework
- Threat intelligence and adversary emulation use cases
- Guidelines for classifying and describing cyberattacks and intrusions
- 14 tactics categories consisting of "technical objectives" of an adversary
- Categories broken down further into specific techniques and subtechniques
- Created by the <u>MITRE Corporation</u> in 2013

Note: Not all tactics and techniques are shown

MITRE ATT&CK Overview (Contd)

Note: To see all 14 tactics, access the ATT&CK Navigator:

https://mitre-attack.github.io/attack-navigator/

subtechniques

MITRE ATT&CK Procedure, Mitigation, and Detection

- Procedure examples include information about known bad actors who use a technique
- Mitigations represent security concepts and classes of technology that may prevent the successful execution of a technique or subtechnique
- Detection covers high-level security concepts and classes of technology that can detect the execution of a technique or subtechnique

Procedure Examples			
ID	ID Name Description		
G0007	APT28	APT28 has performed large-scale scans in an attempt to find vulnerable servers. [2]	
G0016	APT29	APT29 has conducted widespread scanning of target environments to identify vulnerabilities for exploit. [3]	

Mitigations		
ID	Mitigation	Description
M1056	Pre- compromise	This technique cannot be easily mitigated with preventive controls since it is based on behaviors performed outside of the scope of enterprise defenses and controls. Efforts should focus on minimizing the amount and sensitivity of data available to external parties.

Detection			
ID	Data Source	Data Component	Detects
DS0029	Network Traffic	Network Traffic Content	Monitor and analyze traffic patterns and packet inspection associated to protocol(s) that do not follow the expected protocol standards and traffic flows (e.g extraneous packets that do not belong to established flows, gratuitous or anomalous traffic patterns, anomalous syntax, or structure). Consider correlation with process monitoring and command line to detect anomalous processes execution and command line arguments associated to traffic patterns (e.g. monitor anomalies in use of files that do not normally initiate connections for respective protocol(s)).
		Network Traffic Flow	Monitor network data for uncommon data flows. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious.

Note: Procedure, Mitigation, and Detection examples can be found at: https://attack.mitre.org/

D = + = = +: = :=

MITRE ATT&CK Framework Matrices in FortiAnalyzer

Cybersecurity tactics and techniques organized into matrices

Incidents & Events > MITRE ATT&CK > Coverage 110 Event Handlers - 41% Coverage Resource

Note: Not all tactics and techniques are shown

Cyber Kill Chain Overview

- Framework developed by Lockheed Martin
- Identifies what adversaries have to complete in order to achieve their objectives on a target
- Derived from a military concept called kill chain
- Provide visibility and understanding of sophisticated attacks and attacker's tactics, techniques, and procedures
- Consists of seven steps that represent stages of advanced persistent threats (APT)

Reconnaissance	Gather information about the target
Weaponization	Use the gathered information to embed malware
Delivery	Transmission of the malware
Exploitation	Target system vulnerability
Installation	Malware is installed
Command & Control	Connection to an outside server is established
Actions on Objective	Attack on the network commences

Cyber Kill Chain in FortiAnalyzer

Training Institute

 In FortiAnalyzer, the predefined threat report is mapped to the Cyber Kill Chain stages for correlation and pattern identification

Adversary Behavior—MITRE ATT&CK vs. Cyber Kill Chain

Scenario: Group ABC initially *probes* the potential target's email systems in search of valid email accounts.

Knowledge Check

- 1. Which model or framework allows for a more detailed mapping of adversary behavior?
- ✓ A. MITRE ATT&CK
 - B. Lockheed Martin's Cyber Kill Chain
- 2. Which one is a MITRE ATT&CK tactic?
- ✓ A. Initial access
 - B. Exploitation

Lesson Progress

SOC Main Functions and Roles

Fortinet SOC Environment Benefits

Attack Frameworks Overview

Review

- Describe the main functions and roles within a SOC
- ✓ Identify the main challenges within a SOC
- ✓ Identify the challenges that can be solved by the Fortinet SOC
- ✓ Describe the MITRE ATT&CK Matrix for Enterprise
- Describe the Cyber Kill Chain

