Professional English 2025 Presentation

From Speaker to Dubber: Movie Dubbing with Prosody and Duration Consistency Learning

WangGuokang YunXin YangYihui

School of Computer Science and Technology in USTC

2025年4月25日

- Background
- 2 Paper Overview
- 3 MTSP
- 4 PCL

- **5** DCR
- **6** Experiments
- 7 Summary

- Background
- 2 Paper Overview
- 3 MTSP
- 4 PCL

- **5** DCR
- **6** Experiments
- Summary

Uniqueness of Movie Dubbing Task

Background

Movie dubbing: Convert scripts to speeches, aligning with clip in timing and emotion, while preserving reference audio's timbre.[5]

- Traditional VC/TTS: Rely on the input text for modeling.
- Movie dubbing: Align with clip in emotion, rate, lip movements; preserve vocal timbre.
- Transformed to one-to-one mapping.

Figure 1: Movie dubbing vs. traditional VC/TTS

Background

Objectives of Movie Dubbing Task

The model needs to adapt to changes in emotion and speech speed to keep pronunciation accurate.

- > **Timbre**: Match dubbed speech to reference audio.
- **Emotion & Rate**: Align with movie characters' performance.
- Lip Sync: Match phoneme duration to lip movements.

Related Work

Background

The Visual Voice Cloning (V2C) task [1] requires the generated dubbing to align with the video content in terms of lip movements, emotions, and duration, which makes traditional speech synthesis methods inapplicable.

- > Speech Synthesis: FastSpeech[3] series excel in speech synthesis but lack video content alignment, making them unsuitable for V2C.
- ➤ Visual Voice Cloning (V2C): Requires lip sync, emotion, and duration alignment with video, increasing task complexity.[1]
- ➤ Pre-training in TTS: Strategies like MP-BERT [4] and PLBERT [2] enhance speech naturalness via phoneme-level modeling, adopted in V2C to improve dubbing quality.

- Background
- 2 Paper Overview
- **3** MTSP
- 4 PCL

- 6 DCR
- 6 Experiments
- Summary

Task Objective Description

Task Goal: Generate dubbing that matches reference audio's timbre and aligns with movie clip's emotions and lip movements.

- > Timbre Matching: Align with reference audio.
- **Emotion & Lip Sync:** Match movie clip's emotions and lip movements.
- **Accurate Pronunciation:** Adapt to emotional and pacing variations.

Task Description with Formula for Movie Dubbing Task:

$$\tilde{A}_{Dub} = Model(A_{Ref}, T_s, V_{Ref}) \tag{1}$$

 Paper Overview
 MTSP
 PCL
 DCR
 Experiments
 Summary
 References

 00 ● 0
 00000
 00000
 0000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Overall Method Framework Overview

Main Framework:

- ➤ MTSP: Multi-Task Speaker Pre-training. Includes TTS task and MLM task
- **Dubbing Training:** Includes PCL (Prosody Consistency Learning) and DCR (Duration Consistency Reasoning).

Figure 2: Main architecture of the two-stage dubbing method.

Detailed Description of the Overall Method Framework

- Stage 1: Multi-Task Speaker Pre-training (MTSP)
 - TTS Task: Learn accurate pronunciation using FastSpeech2[3] to predict target speech mel-spectrogram.
 - MLM Task: Predict masked phonemes to capture phoneme context for unseen text.
- > Stage 2: Dubbing Training
 - PCL: Enhance audiovisual consistency by aligning movie clip emotions with phoneme-level prosody.
 - **DCR:** Ensure dubbing duration matches video content by reasoning phoneme-lip alignment.

- Background
- 2 Paper Overview
- 3 MTSP
- 4 PCL

- 6 DCR
- 6 Experiments
- Summary

Multi-task Speaker Pre-training (MTSP)

Goal: Improve pronunciation clarity and naturalness via multi-task learning.

- > TTS Task: Learn accurate pronunciation from text-to-speech corpus.
- **MLM Task:** Capture phoneme context to handle unseen text.

Figure 3: Illustration of MTSP

TTS Task in MTSP

Objective: Learn accurate pronunciation from text-to-speech corpus using FastSpeech2-like architecture.

Convert text to phoneme sequence:

$$T_p = G2P(T_o)$$

> Extract phoneme embeddings:

$$T_e = \text{PhonemeEncoder}(T_p)$$

Model prosody attributes:

$$T_{\text{mel}} = \text{VarianceAdaptor}(E_{\text{ph}}, D_{\text{ph}}, P_{\text{ph}}, E_{\text{ph}})$$

Figure 4: FastSpeech2 Architecture

Then predict the mel-spectrogram of the target speech and calculate the loss for the TTS task.

MLM Prediction Task in MTSP

The MLM prediction task helps the model learn contextual relationships between phonemes.

- > Input: Randomly masked phoneme sequence.
- **Processing:** Input to the phoneme encoder to predict the masked phonemes.
- **Output:** Predict the masked phonemes using linear projection and softmax function.

MLM Prediction Task:

> Predict the masked phonemes:

$$L_{\text{MLM}} = \text{CE}(\text{PhonemeEncoder}(T_{\text{masked}}), T_{\text{target}})$$
 (2)

Summary of MTSP

- > MTSP combines TTS and MLM tasks to enhance pronunciation quality and expressiveness.
- > Total loss function integrates losses of both tasks:

$$\mathcal{L}_{MTSP} = \alpha_1 \cdot \mathcal{L}_{TTS} + \alpha_2 \cdot \mathcal{L}_{MLM}, \tag{3}$$

where α_1 and α_2 are hyperparameters adjusting task weights.

- Background
- 2 Paper Overview
- **3** MTSP
- 4 PCL

- 6 DCR
- 6 Experiments
- Summary

ground Paper Overview MTSP PCL DCR Experiments Summary References o 0000 00000 00000 0000 0

Overview of Prosody Consistency Learning (PCL)

Objective: Enhance audiovisual consistency of dubbing.

➤ **Method:** Model phoneme-level prosody using emotional facial expressions. Key components:

- Emotion-Prosody Alignment: Align character emotions with phoneme-level prosody via cross-modal attention.
- **Timbre Consistency:** Maintain reference audio's timbre using TALN.

Figure 5: PCL module illustration

ekground Paper Overview MTSP PCL DCR Experiments Summary References

Prosody Consistency Learning (PCL)

- (1) Alignment of Emotion and Prosody Attributes
 - **Objective:** Align character emotions with phoneme-level prosody (pitch and energy) while maintaining reference audio's timbre.
 - > Steps:
 - **1)** Extract Emotion Features: Detect faces with S3FD, encode emotions with EmoFAN.
 - **2** Cross-modal Attention: Align emotion features with phoneme prosody.
 - **3 Predict Phoneme Attributes:** Embed predicted pitch and energy into phoneme sequence.
 - > Step 1: Emotion Feature Extraction
 - Detect facial regions using S3FD:

$$V_{\text{face}} = S^3 FD(V_{\text{Ref}}) \in \mathbb{R}^{L_v \times H_{\text{face}} \times W_{\text{face}} \times C}$$
(4)

• Encode emotions using EmoFAN:

$$V_{\text{emo}} = \text{EmoFAN}(V_{\text{face}}) \in \mathbb{R}^{L_{v} \times d_{m}}$$
 (5)

Prosody Consistency Learning (PCL)

(1) Alignment of Emotion and Prosody Attributes

> Step 2: Cross-modal Attention Mechanism

• Use multi-head cross-modal attention to align the emotional features of the character with the prosody attributes of each phoneme:

$$\xi_{\text{pho,pitch}}^{k} = \operatorname{softmax}\left(\frac{Q^{\top}K_{p}}{\sqrt{d_{m}}}\right)V_{p} \in \mathbb{R}^{L_{p} \times \frac{d_{m}}{n_{\text{head}}}}$$
 (6)

$$\xi_{\text{pho,energy}}^{k} = \operatorname{softmax}\left(\frac{Q^{\top} K_{e}}{\sqrt{d_{m}}}\right) V_{e} \in \mathbb{R}^{L_{p} \times \frac{d_{m}}{n_{\text{head}}}}$$
 (7)

Where:

$$Q = W_j^Q T_e^{\mathsf{T}}, \quad K_p = W_j^{K_p} V_{\text{emo}}^{\mathsf{T}}, \quad V_p = W_j^{V_p} V_{\text{emo}}^{\mathsf{T}}$$
 (8)

$$K_e = W_i^{K_e} V_e^{\mathsf{T}}, \quad V_e = W_i^{V_e} V_{\rm emo}^{\mathsf{T}} \tag{9}$$

Prosody Consistency Learning (PCL)

(1) Alignment of Emotion and Prosody Attributes

> Step 3: Prediction of Phoneme Pitch and Energy

• Use pitch and energy predictors to predict the pitch and energy of each phoneme, convert them into pitch and energy embeddings, and then add them to the phoneme sequence:

$$\tilde{P}_{\text{pho}}, \tilde{E}_{\text{pho}} = \text{Predictor}(\xi_{\text{pho,pitch}}, \xi_{\text{pho,energy}}) \in \mathbb{N}^{L_p}$$
 (10)

• Add pitch and energy embeddings to the phoneme sequence:

$$T_a = T_e + \text{PitchEmb}(\tilde{P}_{pho}) + \text{EnergyEmb}(\tilde{E}_{pho})$$
 (11)

Prosody Consistency Learning (PCL)

- (2) Timbre Consistency
 - **Objective:** Replicate reference audio's timbre accurately.
 - ➤ **Method:** Use TALN to integrate timbre features into phoneme encoding and mel-spectrogram generation.
 - > Formula:

$$TALN(x, E_{timbre}) = gain(E_{timbre}) \frac{x - \mu}{\sigma} + bias(E_{timbre})$$
 (12)

- **Parameters:**
 - *x*: Input sequence.
 - E_{timbre} : Timbre feature.
 - μ , σ : Mean and variance of x.
 - $gain(\cdot)$, $bias(\cdot)$: Predicted gain and bias.
- > Application: Apply TALN to each FFT block of phoneme encoder and mel-decoder.

- Background
- 2 Paper Overview
- **3** MTSP
- 4 PCL

- **5** DCR
- **6** Experiments
- Summary

Overview of Duration Consistency Alignment

Objective: Enhance temporal consistency of dubbed audio.

Module Composition:

- Lip Motion-Phoneme Alignment: Extract lip motion features and align with phoneme features.
- Phoneme Duration Expansion: Use dynamic programming to optimize phoneme durations.
- Mel-Spectrogram Duration Expansion: Adjust mel-spectrogram length based on audio duration.

Figure 6: DCR module illustration

Duration Consistency Alignment (DCR)

(1) Lip Motion-Phoneme Alignment

> Step 1: Lip Motion-Phoneme Alignment

- **Objective:** Extract lip motion features from the reference video and align them with phoneme features.
- Steps:
 - 1 Extract the lip motion region from the video:

$$V_{\text{lip}} \in \mathbb{R}^{L_{\nu} \times H_{\text{lip}} \times W_{\text{lip}} \times C} \tag{13}$$

2 Obtain the lip motion representation using a lip motion encoder:

$$E_{\text{lip}} \in \mathbb{R}^{L_{\nu} \times d_{\text{model}}} \tag{14}$$

Duration Consistency Alignment (DCR)

(2) Phoneme Duration Expansion

> Step 2: Phoneme Duration Expansion

- **Objective:** Expand phoneme durations to match lip motion features.
- Steps:
 - 1 Similarity Matrix Calculation: Compute the similarity matrix between phoneme-level acoustic features and lip motion features.

$$S_{\text{pho,lip}} = \text{Similarity}(T_a^i, E_{\text{lip}}^j) \tag{15}$$

2 Dynamic Programming Alignment: Use dynamic programming to find the optimal alignment.

$$A_{i,j} = \begin{cases} \text{None,} & \text{if } i > j \text{ or } j - i < L_p - L_p \\ \max(A_{i-1,j}, A_{i-1,j-1}) + s_{i,j}, & \text{otherwise} \end{cases}$$
 (16)

Duration Consistency Alignment (DCR)

(3) Mel-Spectrogram Duration Expansion

> Step 3: Mel-Spectrogram Duration Expansion

- **Objective:** Expand the length of the mel-spectrogram to match the audio duration.
- Steps:
 - Fixed Ratio Relationship: Expand the length of the mel-spectrogram based on audio duration.

$$n = \frac{L_{\text{mel}}}{L_0} = \frac{sr/hs}{FPS} \in \mathbb{N}^*$$
 (17)

2 Mel-Spectrogram Generation: Use a length regulator to generate the mel-spectrogram of the desired length:

$$\tilde{A}_{\text{Dub}} = \text{Vocoder}(\text{MelDecoder}(LR(T_a, A^* \times n), E_{\text{imbr}}))$$
 (18)

- Background
- 2 Paper Overview
- **3** MTSP
- 4 PCL

- **6** DCR
- **6** Experiments
- Summary

Rackground Paper Overview MTSP PCL DCR Experiments Summary References 0000 0000 0000 0000 0

Experimental Results: Comparison with SOTA

> Key metrics maintain high levels across multiple datasets

Figure 7: V2C-A Dataset Test Results

Dataset	V2C-Animation			GRID		
Methods	NMOS †	SMOS †	CMOS †	NMOS †	SMOS †	CMOS †
GT	4.52±0.13		+0.23	4.69±0.07		+0.14
GT Mel + Vocoder	4.39±0.16	4.41±0.18	+0.21	4.66±0.08	4.53±0.10	+0.16
StyleSpeech [34]	3.34±0.13	3.37±0.14	-0.22	3.56±0.14	3.60±0.19	-0.25
Zero-shot TTS [62]	3.38±0.14	3.50±0.19	-0.26	3.57±0.12	3.54±0.13	-0.23
StyleSpeech* [34]	3.31±0.21	3.35±0.12	-0.20	3.50±0.10	3.58±0.11	-0.24
Zero-shot TTS* [62]	3.40±0.12	3.47±0.18	-0.24	3.58±0.21	3.52±0.15	-0.21
V2C-Net [4]	3.54±0.16	3.51 ± 0.18	-0.21	3.62±0.06	3.67 ± 0.11	-0.19
HPMDubbing [6]	3.57±0.17	3.54±0.12	-0.18	3.77±0.20	3.74±0.13	-0.14
Face-TTS [26]	3.18±0.13	3.24±0.16	-0.37	3.39±0.21	3.32 ± 0.17	-0.32
Our	2.02+0.10	2.87+0.14	0.00	4.03+0.00	4.05+0.11	0.00

Figure 9: Zero-shot Test

Figure 8: GRID Dataset Test Results

Method	Visual	SECS ↑	WER	NMOS ↑	SMOS †	CMOS 1
StyleSpeech [34]	X	55.81	93.40	3.49±0.17	3.52±0.21	-0.19
Zero-shot TTS [62]	X	57.23	31.47	3.53 ± 0.16	3.56 ± 0.11	-0.18
StyleSpeech* [34]	1	58.71	105.64	3.51±0.12	3.52±0.23	-0.21
Zero-shot TTS* [62]	1	61.12	35.10	3.54 ± 0.21	3.57 ± 0.12	-0.16
V2C-Net [4]	1	39.43	143.54	3.61 ± 0.22	3.64±0.17	-0.14
HPMDubbing [6]	1	49.31	106.45	3.62 ± 0.16	3.61±0.23	-0.11
FaceTTS [26]	1	33.80	231.63	3.46 ± 0.09	3.51 ± 0.17	-0.29
Ours	1	73.44	16.05	3.85±0.12	3.87±0.09	0.0

Figure 10: Subjective Evaluation Results

Experimental Results: Qualitative Analysis of Mel Spectrograms

Figure 11: Comparison of Mel Spectrograms of Audio Generated by Different Models

> Analysis Results:

- Red Box: the model better maintains phoneme and pause durations, especially in V2C-Animation benchmark.
- White Box: the model shows clearer and more natural pronunciation details.

ackground Paper Overview MTSP PCL DCR **Experiments** Summary References 000 0000 0000 0000 0000 0

Experimental Results: Ablation Study

The ablation study results fully demonstrate the necessity of each module.

Figure 12: Comparison of Ablation Study Results

- **PCL Module:** Enhances timbre cloning and emotional consistency.
- ➤ MTSP Module: Reduces WER, improves pronunciation quality.
- **DCR Module:** Reduces MCD-DTW-SL, enhances duration consistency.

- Background
- 2 Paper Overview
- 3 MTSP
- 4 PCL

- 6 DCR
- **6** Experiment
- 7 Summary

Summary of the Paper

Research Contributions:

- Proposed a two-stage movie dubbing method enhancing timbre, emotion, and duration alignment via MTSP and dubbing training.
- PCL module improves emotional consistency by aligning emotions with phoneme-level prosody.
- DCR module achieves precise duration matching by aligning lip motion with phoneme features.

Technical Innovations:

- MTSP integrates TTS and MLM tasks, improving pronunciation quality and contextual understanding.
- TALN integrates timbre features into phoneme encoding and mel-spectrogram generation, ensuring timbre consistency.

Experimental Results:

• Method outperforms state-of-the-art methods on V2C-Animation and GRID datasets.

Reflections on the Paper

Learning Method from 'Simple' to 'Complex':

- Uses a two-stage framework: pre-trains on TTS data for clear pronunciation, then fine-tunes on dubbing data for emotion and lip-sync alignment.
- Addresses data scarcity and complexity, improving dubbing quality.

> Implications for Practical Applications:

- Pre-training on general data followed by fine-tuning on specialized data enhances model performance.
- Provides insights for multimodal alignment tasks like virtual anchors and customer service.

> Future Research Directions:

- Optimize two-stage learning by adding more modalities (e.g., gestures, facial expressions) during pre-training.
- Introduce user feedback mechanisms to further optimize dubbing effects.

> References:

- [1] Qi Chen, Mingkui Tan, Yuankai Qi, Jiaqiu Zhou, Yuanqing Li, and Qi Wu. V2c: Visual voice cloning. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21242–21251, 2022.
- [2] Yinghao Aaron Li, Cong Han, Xilin Jiang, and Nima Mesgarani. Phoneme-level bert for enhanced prosody of text-to-speech with grapheme predictions. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2023.
- [3] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast and high-quality end-to-end text to speech. arXiv preprint arXiv:2006.04558, 2020.
- [4] Guangyan Zhang, Kaitao Song, Xu Tan, Daxin Tan, Yuzi Yan, Yanqing Liu, Gang Wang, Wei Zhou, Tao Qin, Tan Lee, et al. Mixed-phoneme bert: Improving bert with mixed phoneme and sup-phoneme representations for text to speech. *arXiv* preprint arXiv:2203.17190, 2022.
- [5] Zhedong Zhang, Liang Li, Gaoxiang Cong, Haibing Yin, Yuhan Gao, Chenggang Yan, Anton van den Hengel, and Yuankai Qi. From speaker to dubber: movie dubbing with prosody and duration consistency learning. In *Proceedings* of the 32nd ACM International Conference on Multimedia, pages 7523–7532, 2024.

