Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Институт информационных технологий, математики и механики

Отчет по лабораторной работе

«Функции»

Выполнил:

студент группы 3821Б1ПМ2 Трофимов В.В.

Проверил:

преподаватель каф. МОСТ, Волокитин В.Д.

Нижний Новгород 2022

Содержание

Постановка задачи	3
Метод решения	2
Руководство пользователя	
Описание программной реализации	6
Подтверждение корректности	7
Результаты экспериментов	8
Заключение	17
Приложение	18

Постановка задачи

Целями данной работы были:

- 1) Вычисление указанных основных арифметических функций с помощью рядов Маклорена ;
 - 2) Замеры ошибки при вычислении;
 - 3) Замеры необходимой для вычисления памяти;

Метод решения

Программа заполняет массив данными по определённому правилу. Пока n-1 элемент массива > DBL_MIN — минимального положительного числа типа double функция продолжает перевыделять память и заполнять массив. Для синуса и косинуса выполняется признак Лейбница сходимости знакочередующихся рядов, т.к для $b_n = \frac{x^{2n-1}}{(2n-1)!}$

1.
$$b_n \geq b_{n+1}$$
, начиная с некоторого номера ($n \geq N$),

$$2.\lim_{n\to\infty}b_n=0.$$

Для экспоненты можно использовать признак Раабе сходимости числовых рядов.

$$R = \lim_{n \to \infty} n \left(\frac{n+1}{x} - 1 \right) = \infty > 1$$

Для логарифма можно использовать расходимость гармонического ряда, чтобы доказать, что последовательность расходится, однако очень медленно.

Радиус сходимости числового ряда
$$R = \frac{-z + \lim_{n \to \infty} (\frac{n+1}{n})}{0} = oo(1-z) => z = \{-1;1\}$$

После заполнения массива достаточным количеством элементов происходит его суммирование выбранным пользователем способом.

Руководство пользователя

После запуска программы появляется интерфейсное меню с шестью вариантами выбора. Пять из них выполняют вычисление указной математической функции, вариант ноль позволяет выйти из программы.

После выбора функции пользователю предлагается ввести значение аргумента типа double, после этого- выбрать тип суммирования.

После этого на экран выводится «"название функции" = "эталонное значение" ~ "вычисленное значение" :abs = "величина абсолютной погрешности";rel = "величина относительной погрешности"». После этого пользователю снова предлагается выбрать функцию.

Описание программной реализации

Программа состоит из одного файла с данными подпрограммами:

void dir(int n, double a*) функции суммирования набора элементов

void rev(int n, double a*) 1)последовательным; 2)обратным;

void cross(int n, double a*) 3) перекрестным(n+(n-`1)). Получает на вход указатель и длину массива

double pix() функция, вычисляющая число пи/6 через ряд Маклорена арксинуса.

double sinx(double x) функция, создающая и заполняющая массив n элементов ряда по правилу $\frac{(-1)^n x^{2n+1}}{(2n+1)!}$ и суммирующая одним из выш*еописанных способов

double $\cos x$ (double x) функция, создающая и заполняющая массив п элементов ряда по правилу $(-1)^n \frac{x^{2n}}{(2n)!}$ и суммирующая одним из вышеописанных способов

double sinxcosx(double x) функция, выполняющая подсчет синуса или косинуса с помощью формул приведения сужением аргумента до x<=|pi/2| вызовом вышеописанных функций

double expx(double x) функция, создающая и заполняющая массив n элементов ряда по правилу $\frac{x^n}{n!}$ и суммирующая одним из вышеописанных способов

double $\ln x$ (double x) - функция, создающая и заполняющая массив п элементов ряда вспомогательной переменной $z = \frac{x-1}{x+1}$ по правилу $\frac{z^n}{n}$ и суммирующая одним из вышеописанных способов. Из-за расхождения функции массив значений ограничен 1024 элементами

Подтверждение корректности

Для подтверждения корректности в программе значение вычисленной функции сравнивается с эталонном этой функции из библиотеки math.h, находится абсолютная и относительная погрешность

Результаты экспериментов

Для замера ошибок и размера выделяемой памяти поставлен следующий эксперимент. Аргумент менялся от минус ста до ста с шагом 0.1 для тригонометрических функций, от -13 до 13 с шагом 0.05 для экспоненты, от 0.1 до 140 для логарифма 0.1 до 140 с шагом 0.2. Данные интервалы были выбраны из-за ошибки округления, делающей вычисления невалидными. После этого в файлы записывается размер массива, абсолютная и относительная погрешность. На основе полученных данных строится график в графическом калькуляторе Desmos. Синим цветом обозначен размер массива, зелёным — результат прямого суммирования, фиолетовым — результат обратного суммирования, красным — перекрёстный.

1. **Sin(x)**

Рис.1. Число элементов массива

Рис.2. Абсолютная ошибка

Рис.3.Относительная ошибка

2. **Cos(x)**

Рис. 5. Абсолютная ошибка

Рис. 6. Относительная ошибка

3. **SinCos**(**x**)

Рис.7. Число элементов массива

Рис. 8. Абсолютная ошибка

Рис. 9. Относительная ошибка

b Cos(x)

Рис.11. Абсолютная ошибка

Рис.12.Относительная ошибка

Рис.13. Число элементов массива

100

50

-100

Рис.15.Относительная ошибка

5. **Log(x)**

Рис.18.Относительная ошибка

Заключение

В ходе лабораторной работы были реализованы функции вычисления синуса, косинуса, экспоненты и логарифма. Выполнены замеры ошибки измерения и количество памяти, выполненное при каждом из вычислений. Поставлены эксперименты, показывающие отклонение от эталона.

Приложение

https://github.com/SirTruber/mp1-3821B1PM2