毕业论文答辩 模型性能改进

王贤义

2025年5月12日

王贤义

研究背景与意义

- 草原生态系统在环境保护中的重要性
 - 占全球陆地总面积 26% 至 40%
 - 防风固沙、涵养水源、调节气候、维持生物多样性
- 草原退化问题
 - 植被覆盖率下降、土壤沙化、水资源减少
 - 传统修复方法效率低、成本高
- 无人机技术优势
 - 机动性强、成本低、可远程操作
 - 适用于复杂地形和偏远区域

王贤义 毕业论文答辩 2025 年 5 月 12 日

研究难点与挑战

- 无人机能源限制
 - 电池续航能力有限
 - 载重能力受限
- 修复效率优化
 - 如何在有限能源条件下最大化修复面积
 - 播种负载与能耗之间的复杂关系
- 多无人机协同
 - 任务分配与路径规划问题
 - 动态调度与实时决策

王贤义 毕业论文答辩 2025 年 5 月 12 日 3/12

模型构建 - 草原修复问题

- 草原建模为无向图 G = (V, E)
 - V = {v₀, v₁, ..., v_N} 表示修复区域
 - vo 为地面信息融合中心
 - 每个区域有位置、退化度、面积属性
- 无人机特性
 - 起飞能量: E_{max}草种重量: Q
 - 退化程度范围: [0.3, 0.8]

图 1: 无人机草原修复区域示意

无人机能量消耗模型

$$P(ar{q}_{ij}) = (M + ar{q}_{ij})^{rac{3}{2}} \sqrt{rac{g^3}{2
ho\varsigma h}}$$
 (功率方程)
$$E_f = \sum_{i=0}^N \sum_{j \neq i}^N e^f_{ij} d_{ij} x_{ij} \quad (飞行能耗)$$

$$E_s = \sum_{i=1}^N \sum_{j \neq i}^N \sigma_i e_i x_{ij} \quad (播种能耗)$$

$$E_{ap} = e_{ap} \sum_{i=1}^N \sum_{j \neq i}^N x_{ij} \sigma_i \quad (信息采集能耗)$$

- M = W + m: 无人机框架与电池重量
- q̄ij: 无人机当前载荷重量
- σ_i: 在区域 i 修复的单位圆数量
- x_{ij}: 0-1 变量,表示路径选择

优化目标与约束条件

• 优化目标: 最大化加权修复面积

$$C = \sum_{i=1}^{N} (I_i + 0.7) \cdot \sigma_i$$

- 核心约束条件
 - 能量约束: 总能耗不超过最大能量容量 Emax
 - 载荷约束: 携带的草种必须在返回前全部播撒完毕
 - 路径约束: 无人机最多进入每个区域一次
 - 面积约束: 修复面积不超过区域最大面积
- 问题复杂性: 多变量组合优化问题, 直接求解困难

多无人机协同调度算法

算法 1 多无人机协同调度算法

```
Require: 参数序列 Parms,无人机修复地图集合 M_u,无人机状态集合 S_u
Ensure: 无人机访问的节点序列 O_p, 修复面积 O_a, 剩余能量 O_e
 1: M', ← 初始化(Mu)
 2: P''<sub>u</sub> ← 初始化(P<sub>u</sub>)
 3: while M_{ii} \neq \emptyset do
         E_{u}^{rel} \leftarrow 路径规划(M_{u}, P_{u}^{self})
         上报中心(Su, Mu, E<sup>rel</sup>)
         M<sup>tmp</sup> ← 更新地图(M<sup>global</sup>, P<sup>self</sup>)
         下发新地图(M<sub>u</sub><sup>Ptmp</sup>
         E_{ii}^{r2} \leftarrow 路径规划(M_{ii}^{tmp}, P_{ii}^{self})
         上报中心(E<sup>r2</sup>, Area<sup>r2</sup>)
10:
          if \sum_{u=1}^{U} Area_u^{r2} \ge \sum_{u=1}^{U} Area_u^{r1} then
11:
               下发新地图(Mtmp)
12:
               M_u \leftarrow M_u^{tmp}
13.
          end if
          \sigma_u^{\max} - P \leftarrow 決策修复面积(E_u, M_u) 执行修复与采集(\sigma_u^{\max} - P, C_{\max} - P, P_u^{\max} - P) 从地图移除(M_u, P_u^{\max} - P)
14:
15:
16:
17:
          P_{ii}^{\max - p} \leftarrow  飞往下一个点(P_{ii}^{benefit})
18:
          更新信号量(P;;;;;;;;;;)
19: end while
```

▷ 根据初始化方法(如 K-means)分配初始地图 ▷ 初始化无人机信号量以决定优先级

▷ 第一次路径规划

▷ 第一次上报中心

▷ 下发新地图

▷ 第二次路径规划

▷ 选择修复面积更多的地图

▷ 无人机返回起点

2025 年 5 月 12 日

20: 返回起点(P₁₁)

基于深度强化学习的求解方法

图 2: 训练过程中修复面积变化

图 3: 训练过程中修复面积变化

实验结果 - 路径规划可视化

图 4: 多无人机草原修复路径规划对比

实验结果 - 算法性能对比

表 1: 路径长度与修复面积对比 (DRL 与 CHAPBILM)

区域数	草原边长	无人机数	路径长度			修复面积		
			DRL	CHAPBILM	Gap(%)	DRL	CHAPBILM	Gap(%)
60		4	9396.35	12648.21	-25.68	267.00	194.00	37.63
	500	6	21348.69	19110.48	11.71	258.00	205.00	25.85
		8	26118.19	27145.66	-3.79	304.00	218.00	39.45
		4	13339.68	16255.96	-17.92	271.00	223.00	21.52
	600	6	26523.73	27174.68	-2.39	294.00	206.00	42.72
		8	31186.17	31494.13	-0.98	257.00	224.00	14.73
		4	17622.78	22103.46	-20.27	282.00	291.00	-3.09
	700	6	28252.23	28539.91	-1.01	270.00	218.00	23.85
		8	37585.42	36859.35	1.97	238.00	254.00	-6.30
80		4	10221.88	17217.03	-40.60	370.00	315.00	17.46
	500	6	22135.76	25252.45	-12.37	375.00	240.00	56.25
		8	30491.72	31922.23	-4.48	306.00	267.00	14.61
		4	15973.03	22825.91	-30.02	363.00	314.00	15.61
	600	6	29742.35	28044.73	6.05	406.00	282.00	44.00
		8	39943.98	40845.86	-2.21	399.00	269.00	48.33
		4	22577.68	26113.54	-13.56	335.00	267.00	25.47
	700	6	33566.63	34738.58	-3.38	380.00	298.00	27.52
		8	44308.24	42493.45	4.28	355.00	311.00	14.14

研究结论与展望

• 研究结论

- 提出基于深度强化学习的多无人机草原修复方法
- 构建 Transformer+ 指针网络架构, 采用 Actor-Critic 训练
- 实验验证优于传统方法, 修复面积提升最高可达 40%

未来展望

- 考虑地形、气候等环境因素对无人机性能的影响
- 进一步探索算法在更复杂环境下的适应性
- 结合实际场景验证, 提高算法实用性
- 扩展至更多类型的生态修复任务

Thanks for Listening!

Questions & Comments Welcome