ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE

ODSEK ZA SIGNALE I SISTEME

- 1. U kolu pojačavača sa slike 1 parametri bipolarnog tranzistora su: $\beta_F = \beta_0 = 100$, $V_{\gamma} = V_{BE} = V_{BES} = 0.7 \text{ V}$, $V_{CES} = 0.2 \text{ V}, \quad r_{ce} \rightarrow \infty$, parametri MOSFET-a su $V_T = 1 \text{ V}, \quad B = 1.6 \text{mA/V}^2$, $\lambda \rightarrow 0$, dok je $V_{DD} = 12 \text{ V}$, $R_1 = 330 \,\mathrm{k}\Omega, \ R_2 = 220 \,\mathrm{k}\Omega, \ R_3 = 330 \,\mathrm{k}\Omega \,\mathrm{i} \ R_4 = 5 \,\mathrm{k}\Omega.$ Odrediti:
- a) [3] Jednosmerne struje drejna tranzistora Q_1 , kolektora tranzistora Q_2 i strujnog izvora I_0 , ako je poznato da je jednosmerna komponenta napona na izlazu $V_t = 5 \text{ V}$.
- b) [4] Naponsko pojačanje pojačavača $a = v_i / v_g$.
- c) [3] Ulaznu otpornost pojačavača R_{μ} .
- **2.** a) [4] Nacrtati jedinstven strujni izvor sa bipolarnim tranzistorima i dve ulazne struje I_1 i I_2 , pri čemu je $I_2 = 2 \cdot I_1$. Struje I_1 i I_2 treba da budu što je moguće manje zavisne od koeficijenta strujnog pojačanja tranzistora β_F , a izlazne otpornosti oba strujna ulaza treba da budu što veće.
 - b) [3] Izračunati odnose ulaznih struja strujnog izvora i referentne struje (I_1/I_R i I_2/I_R).
 - c) [3] Izračunati odnos izlaznih otpornosti prvog i drugog strujnog ulaza strujnog izvora (R_{i1}/R_{i2}).
- **3.** a) [4] Nacrtati precizni usmerač sa funkcijom prenosa: $v_I(v_g) = \begin{cases} v_g, v_g < 0 \\ 0, v_g \ge 0 \end{cases}$. Na raspolaganju su jedna dioda sa naponom provodne diode $V_{\rm D}=0.6V$, operacioni pojačavač, otpornik i dve baterije za napajanje.
 - b) [2] Nacrtati dijagram zavisnosti napona na izlazu operacionog pojačavača od napona pobudnog generatora V_g .
 - c) [4] Nacrtati vremenske dijagrame napona na izlazima preciznog usmerača i operacionog pojačavača za sinusoidalni napon pobudnog generatora v_g .
- **4.** U stabilizatoru sa slike 4 ulazni napon je nestabilisan i kreće se u opsegu $12V < v_U < 15V$. Svi tranzistori su identičnih karakteristika sa: $V_{\gamma} = V_{BE} = 0.6 \,\mathrm{V}$ i $\beta_F = 100$, Zener dioda ima napon $V_Z = 6.2 \,\mathrm{V}$ pri $i_Z > 2 \,\mathrm{mA}$, dok je $R_1 = 10 \text{ k}\Omega$, $R_2 = 4.7 \text{ k}\Omega$ i $R_4 = 1.2 \Omega$.
- a) [4] Odrediti otpornost R_3 tako da stabilizator na svom izlazu daje nominalnu vrednost napona $v_P = v_{Pnom} = 10 \text{ V}$ pri svim strujama u opsegu $0 < i_P < 500 \text{mA}$.
- b) [3] Ako se otpornost potrošača menja u opsegu $0 \le R_p < \infty$, odrediti i nacrtati zavisnost $v_p(i_p)$.
- c) [3] Ako je $v_U = 15$ V, a otpornost potrošača se menja u opsegu $0 \le R_P < \infty$, odrediti i nacrtati zavisnost snage koja se disipira na rednom tranzistoru Q_1 od struje potrošača $P_D(i_P)$.

Slika 1. Slika 4.