4. Запаметяващи устройства

Васил Георгиев

is. fmi. uni-sofia. bg/t3/

v. georgi ev@fmi . uni -sofi a. bg

Йерархия на паметите – фиг. 4.3.

- Процесорни регистри
- → cache
- → Основна памет адресен достъп 32 разр. адр. = 4GW
- Външна памет
 - → вторична памет файлов/блоков достъп
 - ▶ третична памет асиметричен достъп
- Характеристики
 - \rightarrow време за достъп (t→s);
 - \rightarrow размер (V \rightarrow B);
 - ⇒ цена на байт (Р→¢/В);
 - → пропускателна способност (b \rightarrow MB/s);
- 4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

3

Съдържание

- ⋆ Електронна, магнитна и оптична памет
- → Вторична и третична памет организация, ускорен достъп, грешки и възстановяване

4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

2

Организация на йерархичната памет

- Регистри и Cache.
 - управление от компилатора
 - → скоростта се определя от ЦПУ обикновено в рамките на един такт
- - → управлява се от MMU (memory management unit) транслация ВА/ФА
- Основна памет.
 - ▶ DRAM чипове ~2^10 Mb.
 - управлява се от ММU и ОС
 - → Понякога има йерархична структура от поднива, разширения.
- Външни носители.
 - Управляват се от ОС и потребителя.
 - → Енергонезависими.
 - → Магнитни и оптични дискове (дискови пакети) те са най-голямата по размер памет за работа в реално време (on-line) - за ОС, системен и потребителски SW и данни
- Третична памет
 - ▶ работят автономно (off-line)
 - → за дублиране, резервиране и архив (backup)
 - → ленти, дискове, наследени устройства
 - 4. Запаметяващи ФМИ/СУ * ИС * РИТАрх устройства

Технологии електонна памет

тип	енергоза- висимост	презапис	дума на презапис	кратност на запис	стойност (отн.)	скорост (отн.)	
SRAM	не	да	В	неогр.	скъпа	бърза	
DRAM	не	да	В	неогр.	средна	средна	
[Masked] ROM	да	не			евт.	бърза	
PROM	да	1, с устройство	-	-	средна	бърза	
EPROM	да	да, с устройство	чип	огр.	средна	бърза	
EEPROM	да	да	В	огр.	скъпа	асим.	
Flash/SSD (solid state disks)	да	да	сектор	10E5÷10E6	средна	асим.	

4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

Развитие на параметрите на HDD

	1987	2004	Коеф. на нарастване
производителност CPU	1 MIPS	2 000 000 MIPS	2 000 000
капацитет ОП	16 KB	1 GB	100 000
обмен ОП	100 uS	2 nS	50 000
капацитет HDD	20 MB	300 GB	15 000
обмен HDD	60 mS	5.3 mS	11

4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

Магнитни дискови пакети HDD

- Организация 4.6.1.
- \rightarrow синхронни двулицеви магнитни дискове (d=2.5",3.5" или 5") и подвижни маг. глави (от магнитната повърхност се ползва приблизително само външния инч)
- по-малките дискове са с по-бързо време за достъп на главите и по-висока скорост на въртене (заради по-доброто охлаждане)
- → цилиндри, писти/пътеки (tracks), сектори и празни полета (gaps)
- блокове за еднократен достъп (логическо понятие) = 1+ сектора
- типични конструктивни параметри (4.6.2.):
 - → 7200RPM / 8.3mS преход между два последователни сектора (latency, rotation time)
 - 2 диска / 4 глави
 - → 2¹⁴ (=16384) цилиндри
 - → 2⁷ (=128) сектора в писта
 - 2¹² (=4096) байта в сектор
 - » време на главите за позициониране (**seek time**)
 - → старт+стоп 1mS и
 - ⇒ преход между два съседни цилиндъра 1µS

 - 🔹 аксиалната и радиална плътност на запис б/инч и капацитета на даден модел магнитен дисков пакет
 - времето за преход между последователни сектора от една писта
 - 4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

HDD - устройство (4.8)

4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

8

6

Паралелни HDD интерфейси

- остарели, с наследено приложение
- паралелен ATA (Advanced Technology Attachment), IDE (Integrated Drive Electronics)
 - къс паралелен плосък кабел
 - директен паралелен интерфейс към 16-битова магистрала или посредством драйвер – към 32-битова
 - → 28b адрес на сектор т.е. 28220=256Мсектора*512B=128 GB (Enhanced IDE)
- → SCSI (Small Computer System Interface, "Scuzzy")
 - универсален паралелен интерфейс ~60 линии (сега със серийна версия SAS) за свързване на до 16 периферни устройства по специален команден поротокол
 - → включва арбитриращ прототкол за достъп + TCP/IP
 - приложение RAID сървери (Redundant Arrays of Independent Disks дискови масиви за надеждни репликирани данни или паралелен достъп с висока производителност

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх устройства

Серийни HDD интерфейси

→ сериен ATA (SATA)

- → сериен буфериран обмен висока скорост, дистанция и надеждност 3Gb/S
- освен физическото ниво дефинира потребителски ориентирани протоколи
- поддържа конкурентни транзакции с възстановяване след грешка

Fiber Channel

- → оптичен интерфейс предимно към HDD SAN (Storage Area Network)
- сериен обмен протокола се поддържа и върху усукана двойка проводници
- модели на свързване (4.10)
 - ⇒ FC-P2P за 2 устройства
 - → FC-AL (Arbitrated Loop) с прекъсване на пръстена или с концентратор (hub); token-ring протокол, което го различава от P2P на 2 устройства
 - FC-SF (Switched Fabric) арбитрищ концентратор за множествен достъп (аналог на Ethernet)

SAS (Serial Attached SCSI)

- сериен интерфейс с асоцииран Initiator/Target (HDD/RAID) протокол
- → без арбитриране Р2Р
- → високи скорости без фазово отместване (skewing)
- → наборът команди поддържа не само HDD/CD/DVD но и скенери, принтери...
- → по-скъпи устройства от SATA за сърверни приложения
- → други стандартни серийни интерфейси като USB и IEEE1394 (FireWire) се свързват към HDD SAS или SATA посредством буфериращ мост (bridge=layer2switch; repeater/bridge/qateway)
 - 4. Запаметяващи ФМИ/СУ * ИС * РИТАрх 10 устройства

Ускорен достъп до HDD

- при обработката в ИС част от контекста е във вторичната или дори третичната памет
 - скоростта на обработка се опр. не толкова от алгоритъма в основната памет, а от операциите за пренос на данни в йерархията т.е. от броя операции за запис и четене на блокове
 - → необх. от ефективна орагнизация на достъпа
 - → размер на блока (ниво ОС/СУБД)
 - организация на данните многомерните таблици се записват във файлове и блокове със последователен достъп
- приложенията се организират с оглед минимизиране на операциите за достъп до вторичната памет – обичайно две фази:
 - разделна обаработка на подобластите от контекста в основната памет и запис на резултатите във вторичната памет (обикновено алокация в нови блокове)
 - → интегриране на резултата за отделните подобласти
 - → възможен многофазен йерархичен вариант
 - → напр. алгоритми за сортиране или търсене

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх 12 устройства

Размер на блока

- → плътността на записа нараства с промяна на магнитната глава и вертикалния запис (Nobel Prize Physics 2007) – 4.13.
- фактори за по-голям блок
 - пре-позиционирането на главите (seek time + rotation time) е 10ки пъти по-бавно от операцията на обмен (Ч/3)
 - → напр. обмен на блок при BS=16KB е ~0.1mS; пре-позициониране на главите е средно 5-10mS
- фактори за по-малък блок
 - → размера на информация в 1 писта/сектор
 - ◆ блок с повече от 1 сектор не е ефективен по време за достъп
 - големи части от блоковете може да остават незаети (контекстна зависимост)

4. Запаметяващи устройства

ФМИ/СУ * ИС * РИТАрх

13

Репликиране на данните

- поддържане на няколко копия на данните в различни дискове (mirrors)
- ускорени операции и отказоустойчивост
- при паралелен достъп до различни блокове данни планирането на операциите може да е динамично и да се използва диска с най-близко текущо разположение на главите
- ускорява четенето на ниво блок ~ n пъти (по боря копия)
- → не ускорява записа, но не го и забавя

 4. Запаметяващи
 ФМИ/СУ * ИС * РИТАрх
 15

 устройства
 15

Методи за ускорен достъп до HDD

- разполагане на свързаните данни в блокове на един и същ цилиндър: премахва времето за радиално позициониране (seek time) и възможно редуциране на времето за аксиално позициониране (rotation time a.k.a. latency)
- у къс ход (short stroking) неизползване на пълния капацитет за по-бърз достъп – 4.14. – в ОС чрез дялове (partitioning)
- разпределяне на данните между няколко диска с паралелен достъп
- репликиране/дублиране (mirroring) на данните на един и същи диск или на няколко диска – за защита освен за ускорен достъп
- планиране на операциите ниво ОС или СУБД определя реда на няколко конкурентни заявки за достъп до блокове, така че закъсненията между последователните заявки се минимизират – само при възможност на пренареждане на последователността
 - → "асансьорен алгоритъм" (elevator algorithm) заявките се пренареждат по реда на цилиндрите

14

☀ предварително зареждане на блокове в ОП – напр. съседни на заявения

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх устройства

Надеждност на информацията в HDD

- контролни и коригиращи кодове
- контролно кодиране с информационен излишък напр. контролни суми (checksum)
 - → проверка по четност (parity check) на битовете от сектора
 - ightharpoonup еднобитова сума ightharpoonup 50% вероятност за откриване на грешка
 - → повече контролни битове за "дълги грешки"; напр. 8 контролни бита по един за всеки от последователните битове в байтовете; вероятност за откриване = 28/(28-1) (т.е. 1-1/256)
- → репликиране на данните mirroring (обикновено се прилага дублиране)
- ▶ групова защита в дисков масив за паралелен достъп до различни блокове "RAID Level 4" – фиг. 4.16
 - при запис на блок в един диск от масива е необходимо преизчисляване на контролния бит чрез предварително контролно четене на старата стойност и корекция в контролния диск
 - освен откриване на грешки възможност за корекция при повреда на диск чрез възстановяване на информацията
 - → RAID Level 5 и 6 се отнасят до повреда на два и повече диска

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх 16 устройства

Спецификация на параметрите

Specifications	1 TB1	750 GB ¹	500 GB ¹	250 GB1
Model Number	ST31000340NS ST31000640SS	ST3750330NS ST3750630SS	ST3500320NS ST3500620SS	ST3250310NS
Interface	SATA 3Gb/s, 1.5Gb/s SAS 3Gb/s	SATA 3Gb/s, 1.5Gb/s SAS 3Gb/s	SATA 3Gb/s, 1.5Gb/s SAS 3Gb/s	SATA 3Gb/s, 1.5Gb/s
External Transfer Rate (Gb/s)	3.0	3.0	3.0	3.0
Performance				
Transfer Rate Maximum Internal (Mb/s) Maximum Sustained (MB/s)	1287 105	1287 105	1287 105	1287 105
Cache, Multisegmented (MB) SATA SAS	32 16	32 16	32 16	32
Average Latency (msec)	4.16	4.16	4.16	4.16
Spindle Speed (RPM)	7200	7200	7200	7200
Seek Time Average Read/Write (msec) Track-to-Track Read/Write (msec)	8.5/9.5 0.8/1.0	8.5/9.5 0.8/1.0	8.5/9.5 0.8/1.0	8.5/9.5 0.8/1.0
Configuration/Organization				
Bytes per Sector SATA SAS	512 512, 520, 524, 528	512 512, 520, 524, 528	512 512, 520, 524, 528	512 —
Reliability/Data Integrity				
Mean Time Between Failures (MTBF, hours)	1.2 million	1.2 million	1.2 million	1.2 million
Reliability Rating at Full 24x7 Operation (AFR)	0.73%	0.73%	0.73%	0.73%
Nonrecoverable Read Errors per Bits Read	1 sector per 10E15	1 sector per 10E15	1 sector per 10E15	1 sector per 10E15
Error Control/Correction (ECC)	10 bit	10 bit	10 bit	10 bit
Interface Ports SATA SAS	Single Dual	Single Dual	Single Dual	Single —
Limited Warranty (years)	5	5	5	5

Картиране на LBA с CHS

- → ОС адресират с LBA (по прост и по-обхатен адрес)
- → LBA = C*Num_Head*Num_Sec + H*Num_Sec + (S-1)
 - ▶ Num_Sec = бр. сектори в писта
 - (броя цилиндри не е от значение за конверсията)
 - * LBA $0 \rightarrow H 0, C 0, S 1$
- Адресирането на съвременните дискове се поддържа от ОС с LBA, на базата на ECHS (<u>Extended CHS</u>) като се използват резервните стойности на *H*
- → Задание: разгледайте стандартните процедури, които се интерпретират от <u>INT13 на BIOS</u>

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх 19 устройства

Адресиране в HDD - CHS и LBA

- BIOS поддържа логическо адресиране по блокове (LBA Logical Block Address) и физическо адресиране по цилиндри и сектори (CHS - Cylinder Head Sector)
- достъпът (т.е. конверсията) се поддържа от функции на BIOS, които са достъпни чрез програмно прекъсване INT 13h
- ➤ LBA е последовтелно номериране [0, MaxBlock] настолен BIOS понастоящем с 32 b за всеки дял (partition); обикн. блок=сектор (512B) → възм. управление на дискове до 2ТВ (2048 GB); extended BIOS - 64b
- СНS формата се поддържа от настолен BIOS понастоящем с 24 битово адресиране (за 512 В-сектор максимален диск 8 GB):
 - → цилиндър [0 1023] 10b;
 - → глава [0 255] 8b;
 - → сектор [1 63] 6b

4. Запаметяващи устройства ФМИ/СУ * ИС * РИТАрх

18

20

Логическо разделяне на HDD - дялове

- дялът (partition) е логическа структура от последователни сектори; всеки сектор принадлежи най-много на един дял
- различните ОС се разполагат в различни дялове и достъпът до сетори от друг дял е невъзможен чрез INT 13h, но е възможен чрез адресиране на логическите дискове, обхващащи тези сектори
- наследено, но незадължително изискване е дяловете обхващат цели цилиндри, освен първия (най-външен) от който е отделен само нулевия сектор C/H/S=0/0/1 резервиран за MBR (Master Boot Record – 512 В сектор в началото на многоделен HDD)
 - → така първия дял стартира от C/H/S=0/1/1 (вместо от нов цилиндър 1/0/1)
 - MBD
 - съдържа таблицата с дяловете на диска
 - съдържа изпълним код при начално зареждане на ОС от диск
 - 32-битов идентификатор на HDD
- дялов сектор (partition sector) описва всеки дял: начален и краен сектор, тип (първичен, вторичен, с ОС инсталация - bootable) и др.
- ОС-сектор (boot sector) в началото на дял, който се използва за зареждане на
 - съдържа програма, която стартира зареждането на ядрото на съответната ОС
 - в MS-OS само primary partition може да е bootable т.е. съдържа ОС-сектор; останалата част от диска се обобсобява като един вторичен (secondary/extended) дял, който може да бъде разделен на няколко логически дискове (drive, volume)

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх устройства

Оптични носители на данни

- лазерен запис и светлинно четене (фотодиод) върху алуминиев диск – първоначално аналогов звуков формат, впоследствие универсален цифров запис на данни, структурирани във файлове
- пистата за едностранен сериен запис и четене на диска съдържа вдлъбнатини от лазерно облъчване с размери (данни за CD-стандарт!):
 - → дълбочина * ширина * дължина : ~100 * 500 * 850 nm
 - → дистанция между съседни писти 1500 nm
 - → дължина λ на вълната на лазерната емисия –780 nm (IR-сектор)
 - → дълбочината на вдлъбнатините е ~0.2*λ
- запис на данни последователно:
 - CIRC (Cross-interleaved Reed-Solomon coding) за откриване и корекция на грешка (1 конторлен байт на 3 байта данни)

21

- 8/14 модулация
- → NRZI-кодиране (non-return to zero, inverted) 2 нива
- → възстановяване при четене в обратен ред

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх устройства

Оптична глава

- → състои се от:
 - лазерен източник
 - ⇒ в режим четене ~5mW
 - → [опция] в записващ режим 100÷225mW
 - записващият лазер е в импулсен режим и енергията му варира приблизително двойно по време на запис
 - високите скорости на запис и форматите с по-висока плътност изискват по-високоенергийни лазери поради краткото време на въздействие
 - фокусираща леща
 - фотодиод
- електромагнитен серво-контрол на дистанцията от повърхността
- електродвигател за радиалното отместване

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх 23 устройства

Стандартни цифрови оптични носители

- → CD-ROM (780 nm лазер IR) само четене
- → CD-R (от recordable) еднократен запис
- ☀ CD-RW многократен запис
- → DVD-ROM (650 nm лазер червен) само четене
- → DVD-R и DVD+R еднократен запис
- → DVD-RAM, DVD-RW и DVD+RW многократен запис
- → BD, BD-R, BD-RE (Blue-ray Disc 405 nm лазер син) –
 четене, запис, презапис
- HD DVD [HD DVD-ROM, HD DVD-R, HD DVD-RW (High-Definition DVD – 405 nm лазер)

 4. Запаметяващи
 ФМИ/СУ * ИС * РИТАрх
 22

 устройства
 22

Оптичен запис

- на -ROM (т.е. фабричен запис) механично щамповане на пистата върху гладка повърхност едновременно се записва цял диск
- → на ±R (т.е. еднократен запис) лазерно (т.е. в случая топлинно) необратимо последователно прогаряне на непрозрачни области в прозрачен органичен слой върху рефлектиращата АІ-повърхност
- на ±RW, -RAM (т.е. с презапис) прогарянето е в прозрачна кристална сплав, която минава обратимо в аморфна непрозрачна фаза
- еднослоен запис (масовият стандарт) спираловидна прозрачна писта се гравивира фабрично в поликарбонатното покрите над рефлектиращата повърхност за запис; чрез нея се коригира и синхронизира треакторията на главата в режим запис
- двустранен запис възможен, но непрактичен поради необходимост от обръщане на диска в устройството при четене
- двуслоен запис на различна дълбочина чрез промяна на фокусното разстояние на лещата
 - горната рефлекторна повърхност е полупрозрачна
 - и двата слоя имат своя спираловидна водеща писта над съответната рефлекторна повърхност за запис; за горния слой пистата стартира отвътре навън, за долния – отвън навътре
- 4. Запаметяващи ФМИ/СУ * ИС * РИТАрх 24 устройства

Скорости на оптичен запис

- маркировка за скоростта на запис е спрямо стандартната скорост на четене от CD
 - → 12x/10x/32x означава

 - → запис CD-RW 10* (1.46 MB/s)
 - → четене от CD 32* (4.69 MB/s)
- оптичинят запис на данни има характериситката на изосинхронен режим поради постоянната скорост и посока на въртене - без връщане назад
- ⇒ за целта денните за запис се подготвят в буфери в основната памет
- по-нископроизводителни компютри могат да изпаднат в състояние на празен записващ буфер
 - загуба на носител или
 - рестартиране на целия запис

4. Запаметяващи устройства ФМИ/СУ * ИС * РИТАрх

25

Приложение на оптичните носители

- архивиране на данни backup носителите с еднократен запис са оптимални по отн. функционалност/цена
- компактни носители с голям капацитет
- приложения, толериращи ниска скорост на запис (неподходящи за вторична памет)
- » "DVD-R..." и "DVD+R...": +R е подобрена версия по отношение на
 - • метод но синхронизиране на четенето спрямо контролната писта → по-малко грешки при по високи скорости (Ч и 3)
 - при презапис +RW поддържа произволен достъп за презапис, докато -RW само презапис на цялото съдържание
 - съвременните устройства поддържат и двата формата
- » "...-RAM" и "...-RW":
 - RAM е с по-бързо четене (особено на къси файлове) поради запис в концентричин писти (цилиндри), докато при RW записът е в една спирална писта
 - → и при двата формата размера на сектор е 2048 В удобен и за къси файлове
 - → RAM директно се поддръжка от пове4ето ОС, докато RW изисква специализирани програми
 - ▶ RAM е с по-бавен запис от RW
 - → RAM е с много повече цикли на презапис от RW (100 000 : 1 000).
 - RAM поддържа едновременни операции върху няколко файла, вкл. едновременно четене и запис
 - RAM-носителите са по-скъпи

4. Запаметяващи ФМИ/СУ * ИС * РИТАрх устройства

27

Оптично четене

- електромагнитния сервомеханизъм поддържа съответната фокусна дистанция от рефлекторната повърхност
- радиално-въздействащия елдвигател поддържа главата върху записаната спирална писта
- → четене
 - на механични вдлъбнатини от ROM: базира се на гасящата интерференция на падащия и отразения от вдлъбнатината лъч (дълбочината на вдлъбнатината е кратна на дължината на вълната)
 - при прогорените непрозрачни петна в R/RAM падащият лъч изобщо не се отразява
 - наличието или отсъствието на отразен лъч се детектира от четящият фотодиод

4. Запаметяващи устройства ФМИ/СУ * ИС * РИТАрх

26

Данни върху CD-ROM/RW

- → една спирална писта (отвтре навън така се допускат различни диаметри и форми на CD) с ширина 500 nm и междупистова дистанция 1.5 um
- кодирането поддържа EFM (eight-fourteen modulation, конверсия от 8- към 14-битови думи), в която се гарантират "1" при дълги последователности от "0" за да не може четящият лазер да загуби
- защита: коригиращ код срещу еднократна (1 бит) грешка
- [при audio CD]:
 - допълнителна информация за абсолютното разположение на озаглавени части от записа, както и текущото положение на главата, се добавят в кода (sub-coding), което позоволява бърз преход по заглавия
 - срещу групова грешка (напр. одраскване) се прилага размесване на данните (interleaving) непоследователен запис, т.е. данните, прочетени при последователни обороти, се преподреждат - загубите се отразяват на QoS
- ◆ CD-R[OM] и CD-RW
 - поддържат по-сложни коригиращи кодове за възстановяване на грешка 3. ниво CIRC (Cross-interleaved Reed-Solomon coding) – за откриване и корекция на грешка (1 конторлен байт на 3 байта данни)
 - поддържат файлова система и планиране на файловете върху пистата, които обаче са неподходящи за презапис на малки файлове (при -RW)
 - формат на данните:
 - кадри (frames) по 24 В
 - → сектори от 94 кадъра т.е. 2352 В, от които
 - → Mode-1 (за данни) 2048 В данни (останалите за коригиращ код)
 - → Mode-2 (аудио-видео файлове) 2336 В данни (къса корекция)
 - → 333000 сектора (или блока) в единствената писта; Mode-1 CD-ROM = 682 MB

4. Запаметяващи устройства ФМИ/СУ * ИС * РИТАрх

28

Съвместимост на устройства и носители

Устрой- ство	CD ROM	CD-R	CD- RW	DVD ROM	DVD-R	DVD+R	DVD- RW	DVD+ RW	DVD+ R DL	BD ROM	BD-R	BD- RE
Audio CD	R	R	R	N	N	N	N	N	N	N	N	N
CD ROM	R	R	R	N	N	N	N	N	N	N	N	N
CD-R	R	W	R	N	N	N	N	N	N	N	N	N
CD-RW	R	w	w	N	N	N	N	N	N	N	N	N
DVD ROM	R	R	R	R	R	R	R	R	R	N	N	N
DVD-R	R	w	w	R	W	R	R	R	R	N	N	N
DVD-RW	R	W	w	R	W	R	w	R	R	N	N	N
DVD+R	R	W	W	R	R	W	R	R	R	N	N	N
DVD+RW	R	w	w	R	R	W	R	W	R	N	N	N
DVD±RW	R	W	W	R	W	W	w	W	R	N	N	N
DWD+R DL	R	W	W	R	W	W	W	W	w	N	N	N
BD ROM	R	R	R	R	R	R	R	R	R	R	R	R
BD-R	R	w	w	R	W	W	w	W	w	R	W	R
BD-RE	R	W	W	R	W	W	W	W	W	R	W	W

4. Запаметяващи устройства ФМИ/СУ * ИС * РИТАрх

29

Терабайтови оптични носители

- → Холографни оптични дискове и карти (HVD/C Holographic Versatile Disc/Card) 4.30.1
 - → R/W лазер (532 nm зелен) и позициониращ лазер (650 nm червен)
 - → съотв. 2 повърхности холографна повърхност данни и водеща рефлекторна повърхност
- → 3D оптични носители 4.30.2
 - → няколко повече от 2 слоя данни, достъпни чрез промяна на фокусното разстояние (т.е. интензивността на св. лъч) на четящия лазер

4. Запаметяващи устройства ФМИ/СУ * ИС * РИТАрх

30