Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #12: Primes, GCDs, and Representations

Today's Topics

Primes & Greatest Common Divisors

- Prime representations
- Important theorems about primality
- Greatest Common Divisors
- Least Common Multiples
- Euclid's algorithm

Once and for all, what are prime numbers?

Definition: A prime number is a positive integer p that is divisible by only 1 and itself. If a number is not prime, it is called a composite number.

Mathematically: p is prime $\Leftrightarrow \forall x \in \mathbb{Z}^+ [(x \neq 1 \land x \neq p) \rightarrow x \not\mid p]$

Examples: Are the following numbers prime or composite?

- **2**3
- 42
- 17
- 3
- 9

Any positive integer can be represented as a unique product of prime numbers!

Theorem (The Fundamental Theorem of Arithmetic): Every positive integer greater than 1 can be written uniquely as a prime or the product of two or more primes where the prime factors are written in order of non-decreasing size.

Examples:

- $100 = 2 \times 2 \times 5 \times 5 = 2^2 \times 5^2$
- 641 = 641
- $999 = 3 \times 3 \times 3 \times 37 = 3^3 \times 37$

Note: Proving the fundamental theorem of arithmetic requires some mathematical tools that we have not yet learned.

This leads to a related theorem...

Theorem: If n is a composite integer, then n has a prime divisor less than or equal to √n.

Proof:

- If n is composite, then it has a positive integer factor a with 1 < a < n by definition. This means that n = ab, where b is an integer greater than 1.
- Assume a > $\int n$ and b > $\int n$. Then ab > $\int n \int n = n$, which is a contradiction. So either a $\leq \int n$ or b $\leq \int n$.
- Thus, n has a divisor less than or equal to √n.
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than or equal to $\int n$.

Applying contraposition leads to a naive primality test

Corollary: If n is a positive integer that does not have a prime divisor less than equal to $\int n$, then n is prime.

Example: Is 101 prime?

- The primes less than or equal to √101 are 2, 3, 5, and 7
- Since 101 is not divisible by 2, 3, 5, or 7, it must be prime

Example: Is 1147 prime?

- The primes less than or equal to √1147 are 2, 3, 5, 7, 11,
 13, 17, 23, 29, and 31
- 1147 = 31 \times 37, so 1147 must be composite

This approach can be generalized

The Sieve of Eratosthenes is a brute-force algorithm for finding all prime numbers less than some value *n*

Step 1: List the numbers less than n

2	3		5	7	\approx		\approx	11
	13	\Rightarrow		17		19	\Rightarrow	
	23	i		\Rightarrow	\Rightarrow	29	\Rightarrow	31
		\Rightarrow		37	$\overset{\boldsymbol{<}}{\boldsymbol{<}}$			41
	43			47				
	53					59		61
				67				71

Step 2: If the next available number is less than √n, cross out all of its multiples

Step 3: Repeat until the next available number is > √n

Step 4: All remaining numbers are prime

How many primes are there?

Theorem: There are infinitely many prime numbers.

Proof: By contradiction

- Assume that there are only a finite number of primes $p_1, ..., p_n$
- Let Q = $p_1 \times p_2 \times ... \times p_n + 1$
- By the fundamental theorem of arithmetic, Q can be written as the product of two or more primes.
- Note that no p_j divides Q, for if $p_j \mid Q$, then p_j also divides $Q p_1 \times p_2 \times ... \times p_n = 1$.
- Therefore, there must be some prime number not in our list. This
 prime number is either Q (if Q is prime) or a prime factor of Q (if
 Q is composite).
- This is a contradiction since we assumed that all primes were listed. Therefore, there are infinitely many primes. □

In-class exercises

Problem 1: What is the prime factorization of 984?

Problem 2: Is 157 prime? Is 97 prime?

Problem 3: Is the set of all prime numbers countable or uncountable? If it is countable, show a 1-to-1 correspondence between the prime numbers and the natural numbers.

THI CONTROL OF THE CO

Greatest common divisors

Definition: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b, denoted by gcd(a, b).

Note: We can (naively) find GCDs by comparing the common divisors of two numbers.

Example: What is the GCD of 24 and 36?

- Factors of 24: 1, 2, 3, 4, 6, 8, (12) 24
- Factors of 36: 1, 2, 3, 4, 6, 9, 12 18, 36
- : gcd(24, 36) = 12

Sometimes, the GCD of two numbers is 1

Example: What is gcd(17, 22)?

- Factors of 17: 1, 17
- Factors of 22: 1, 2, 11, 22
- : gcd(17, 22) = 1

Definition: If gcd(a, b) = 1, we say that a and b are relatively prime, or coprime. We say that $a_1, a_2, ..., a_n$ are pairwise relatively prime if $gcd(a_i, a_j) = 1$ $\forall i, j$.

Example: Are 10, 17, and 21 pairwise coprime?

- Factors of 10: 1, 2, 5, 10
- Factors of 17: 1, 17
- Factors of 21: 1, 3, 7, 21

We can leverage the fundamental theorem of arithmetic to develop a better algorithm

Let:
$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$ **Then**:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$$

a and b

Greatest multiple of p_1 in both Greatest multiple of p_2 in both a and b

Example: Compute gcd(120, 500)

- $120 = 2^3 \times 3 \times 5$
- $500 = 2^2 \times 5^3$
- So gcd(120, 500) = $2^2 \times 3^0 \times 5 = 20$

Better still is Euclid's algorithm

Observation: If a = bq + r, then gcd(a, b) = gcd(b, r)

Proved in section 4.3 of the book

So, let $r_0 = a$ and $r_1 = b$. Then:

$$r_0 = r_1 q_1 + r_2$$

$$r_1 = r_2 q_2 + r_3$$

• ...

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$

 $r_{n-1} = r_n q_n$

$$0 \le r_2 < r_1$$

$$0 \le r_3 < r_2$$

$$0 \leq (r_n) \leq r_{n-1}$$

$$gcd(a, b) = r_n$$

STORES TO A

Examples of Euclid's algorithm

Example: Compute gcd(414, 662)

$$\bullet$$
 662 = 414 \times 1 + 248

$$\bullet$$
 414 = 248 \times 1 + 166

$$\bullet$$
 248 = 166 \times 1 + 82

•
$$166 = 82 \times 2 + 2$$
 gcd(414, 662) = 2

$$\bullet$$
 82 = 2 \times 41

Example: Compute gcd(9888, 6060)

$$\bullet$$
 9888 = 6060 \times 1 + 3828

$$\bullet$$
 6060 = 3828 \times 1 + 2232

$$\bullet$$
 3828 = 2232 \times 1 + 1596

$$\bullet$$
 2232 = 1596 \times 1 + 636

$$\bullet$$
 1596 = 636 \times 2 + 324

$$\bullet$$
 636 = 324 \times 1 + 312

gcd(9888, 6060) = 12

$$\bullet$$
 312 = 12 \times 26

REPORT OF THE PARTY OF THE PART

Least common multiples

Definition: The least common multiple of the integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted lcm(a, b).

Example: What is lcm(3,12)?

- Multiples of 3: 3, 6, 9, 12, 15, ...
- Multiples of 12: 12, 24, 36, ...
- So lcm(3,12) = 12

Note: lcm(a, b) is guaranteed to exist, since a common multiple exists (i.e., ab).

We can leverage the fundamental theorem of arithmetic to develop a better algorithm

Let:
$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

Then:

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

Greatest multiple of p_1 in either Greatest multiple of p_2 in a or b

either a or b

Example: Compute lcm(120, 500)

- $120 = 2^3 \times 3 \times 5$
- \bullet 500 = 2² ×5³
- So $lcm(120, 500) = 2^3 \times 3 \times 5^3 = 3000 << 120 \times 500 = 60,000$

STUPES TO STUPE STORY

LCMs are closely tied to GCDs

Note: $ab = lcm(a, b) \times gcd(a, b)$

Example:
$$a = 120 = 2^3 \times 3 \times 5$$
, $b = 500 = 2^2 \times 5^3$

- $120 = 2^3 \times 3 \times 5$
- $500 = 2^2 \times 5^3$
- $lcm(120, 500) = 2^3 \times 3 \times 5^3 = 3000$
- $gcd(120, 500) = 2^2 \times 3^0 \times 5 = 20$
- lcm(120, 500) ×gcd(120, 500)

PRSITION OF THE PROPERTY OF TH

In-class exercises

Problem 4: Use Euclid's algorithm to compute gcd(92928, 123552).

Problem 5: Compute gcd(24, 36) and lcm(24, 36). Verify that $gcd(24, 36) \times lcm(24, 36) = 24 \times 36$.

Final Thoughts

- Prime numbers play an important role in number theory
- There are an infinite number of prime numbers
- Any number can be represented as a product of prime numbers; this has implications when computing GCDs and LCMs
- Next time: Proof by Induction