2013/3/28. Basgnment 4. 垂烟已起走的丽园为: obj: Wi+Xvj+X2+X3+ BX1-4XV. Cons2: X7/. 2. 压问型生品的周为: Oobj 与其形个 constructs 相为 B, 回.对了物本1:图为已经有另一级本:X20 美、其中(-)*为凸的,且有 3.75 90×1, 407 1891: 1° Pis fin= x +> x4 25 (6x5), gux=x 75 1 to gifus) = U/3+2/4) to B Z 用程,图的如=X-Xz的局部, gW=X2的图 权 gcfm)=以-Xi)世为图.

3. 信息起走图的, 图台: 0.对月月初水: $|2X_1+3X_2+X_1|$ \$\text{Pf} |\text{Ph} |\text{F} | \text{Ph} |\text{F} |\text{Ph} ②.对于切束: 4241: 2 gud-over-linear of flay)= - XX, #4 y 70. 4. 图也走出的 图: 0.对于国方此本: 第层—||[JZU+松, X2, 石, 57]||, 二田格特意,第一双五凸. 第一层 = f(gov), 其中gov = 以十七十岁十分日月起了了一条混为日. 知目护动的图 ②. 对于约束: 30年1 (gud -over-17 (X+X2, X3+1) + X1 =7. 其中的初末4: X20 经发出公司 (1) 10 (1) 30年2 (X+X+X)+3X=10, 阿为和多多为图 级第一手(gu), 其中gu = | X1+ 12-15| 为凸且这如何的超点。 故物来也约为图.

5. 1310至美四的国动: DAJ DAJUE: $\frac{1-\frac{X_{1}^{2}+X_{2}^{4}}{X_{2}^{2}+2X_{1}^{2}}-\left(\frac{X_{1}^{2}+X_{2}^{2}}{X_{2}}+\frac{X_{2}^{2}}{X_{1}}\right)^{2}}{X_{2}^{2}+X_{1}^{2}}+\frac{X_{1}^{2}}{X_{2}^{2}}+\frac{X_{2}^{2}}{X_{1}^{2}}+\frac{X_{2}^{2}}{X_{2}^{2}}+\frac{X_{1}^{2}}{X_{1}^{2}}+\frac{X_{2}^{2}}{X_{1}^$ 的物质, 物为图 面由的车引车, 题二者物起过, 故睡不暖气上不为凸 2. XHB USS (5) 本海级高级高级 ③.对于初東: 雅! 李强语为于门山双门 其中的)=从打打打力图上 gux) = x2+1 3 B 12 1/2 X20 Fint 友ghon)为占,且及正 又图的多个人的图里在冬季的了,双手(giha)为图 47 \$2: mux [(X1+2X2)+5X2, X1, X2] =40. 其中《1+2次》十5次为图,从牧物的,故野村的图. Campus

	Date · ·
6. 屋间建造的的国品:	
い max mum mar gm Lane" () おがままるまから起する. アナオ州 H(W, P) = {xilp: wx+ P=0} ・ 研えは下ができ起 max mm	
MAXIN H(W, B) = (XI) P: WX+ P=0] FOR DIF FOREIDSE	
= may mp w7x0+8 + x1(125 490) +6 (more)+	样技
w. p +1, mp w ,	1112.
st. wtx1+ p >0, 1=1,2,m.	5
WT X1+ (-0, 1= m+1, m+p.	
120 MO = 1 w 2	
5.t. b. (w X1+ 81) = 1, 1-1,2, mfg.	10
进行所的优化门产是当门建、故附是也是一个当门起。	13.1
	1
	·/////

Table of Contents

Problem 01	1
Problem 02	2
Problem 03	3
Problem 04	4
Problem 05	6
Problem 06	

```
cvx_begin
   variable x(3);
   obj = (x(1)+x(2))^2 + x(2)^2 + x(3)^2 + 3*x(1) - 4*x(2);
   a = [sqrt(2)*(x(1)+0.25*x(2)), sqrt(31/8)*x(2), 2];
   minimize( obj );
   subject to
       norm(a) + quad over lin(x(1)-x(2)+x(3)+1, x(1)+x(2)) <= 6;
       x >= 1;
cvx end
fprintf('Optimal solution is:')
Calling SeDuMi 1.3.4: 20 variables, 8 equality constraints
  For improved efficiency, SeDuMi is solving the dual problem.
SeDuMi 1.3.4 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta =
0.500
eqs m = 8, order n = 15, dim = 21, blocks = 6
nnz(A) = 28 + 0, nnz(ADA) = 34, nnz(L) = 21
it :
        b*y
                         delta rate t/tP* t/tD*
                                                    feas cg cg prec
                 gap
 0:
                1.62E+01 0.000
      3.11E+00 5.39E+00 0.000 0.3322 0.9000 0.9000
                                                     1.97 1 1 1.8E+00
 2 : -1.31E+00 2.00E+00 0.000 0.3714 0.9000 0.9000
                                                     0.83 1 1 1.7E+00
 3 : -1.99E+00 4.00E-01 0.000 0.1996 0.9000 0.9000 1.17 1 1 4.4E-01
 4 : -1.94E+00 8.76E-02 0.000 0.2190 0.9000 0.9000 1.30 1 1 7.9E-02
 5 : -2.00E+00 3.34E-03 0.000 0.0382 0.9900 0.9900
                                                   1.09 1 1 2.8E-03
 6 : -2.00E+00 2.50E-07 0.314 0.0001 1.0000 1.0000 1.00 1 1 2.1E-07
 7 : -2.00E+00 8.94E-09 0.496 0.0358 0.9904 0.9900 1.00 3 3 7.7E-09
iter seconds digits
                        C^*X
                                          b*y
```

```
0.0 8.0 -1.9999999750e+00 -1.9999999941e+00
|Ax-b| = 2.4e-09, [Ay-c] + = 3.6E-09, |x| = 8.6e+00, |y| = 5.3e+00
Detailed timing (sec)
            IPM
  Pre
                       Post
7.001E-03
          2.900E-02 2.002E-03
Max-norms: ||b||=3, ||c||=6,
Cholesky |add|=1, |skip| = 0, ||L.L|| = 4.00025.
_____
Status: Solved
Optimal value (cvx_optval): +5
Optimal solution is:
x =
   1.0000
   1.0000
   1.0000
Problem 02
```

```
cvx_begin
   variable x(4);
   minimize (x(1)+x(2)+x(3)+x(4));
   subject to
       (x(1) - x(2))^2 + (x(3)+2*x(4))^4 \le 5;
       x(1) + 2*x(2) + 3*x(3) + 4*x(4) <= 6;
       x >= 0;
cvx_end
fprintf('Optimal solution is:')
Calling SeDuMi 1.3.4: 15 variables, 8 equality constraints
SeDuMi 1.3.4 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta =
0.500
eqs m = 8, order n = 13, dim = 16, blocks = 4
nnz(A) = 27 + 0, nnz(ADA) = 44, nnz(L) = 26
               gap delta rate t/tP* t/tD* feas cg cg prec
it: b*y
  0:
                9.02E+00 0.000
  1 : -1.02E+00 3.03E+00 0.000 0.3363 0.9000 0.9000 2.71 1 1 2.2E+00
  2 : -7.10E-01 1.02E+00 0.000 0.3376 0.9000 0.9000 1.82 1 1 1.1E+00
  3 : -1.73E-01 2.10E-01 0.000 0.2047 0.9000 0.9000 1.30 1 1 4.8E-01
  4 : -4.19E-03 6.16E-03 0.000 0.0294 0.9900 0.9900 1.05 1 1 4.7E-01
  5 : -1.13E-08 1.43E-08 0.000 0.0000 1.0000 1.0000 1.00 1 1 4.1E-06
  6 : 8.28E-15 4.71E-15 0.000 0.0000 1.0000 1.0000 1.00 1 1 9.3E-13
iter seconds digits c*x
  6 0.0 Inf 1.8159556866e-16 8.2757120847e-15
```

```
|Ax-b| = 1.2e-14, [Ay-c]_+ = 1.2E-15, |x| = 6.6e+00, |y| = 1.4e+00
Detailed timing (sec)
  Pre
             IPM
                            Post
                         1.006E-03
6.991E-03
           2.100E-02
Max-norms: ||b||=6, ||c||=2,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.
Status: Solved
Optimal value (cvx_optval): +1.81596e-16
Optimal solution is:
x =
   1.0e-14 *
   0.0406
   0.0648
   0.0662
   -0.1534
```

```
cvx_begin
   variable x(3)
   obj1 = abs(2*x(1) + 3*x(2) + x(3));
   obj2 = square_pos(norm(x));
   obj3 = norm([sqrt(2)*(x(1)+x(2)), sqrt(5)*(x(2)+1), 1]);
   minimize (obj1 + obj2 + obj3)
   subject to
       quad_over_lin([x(1), 1], x(2)) + 2*(x(1)+x(2)+0.5*x(3))^2 + 3*x(2)^2 +
 19/2*x(3)^2 <= 7;
       \max([x(1)+x(2), x(3), x(1)-x(3)]) \le 19;
       x(1) >= 0;
       x(2) >= 1;
cvx_end
fprintf('Optimal solution is:')
Calling SeDuMi 1.3.4: 35 variables, 14 equality constraints
  For improved efficiency, SeDuMi is solving the dual problem.
_____
SeDuMi 1.3.4 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta =
eqs m = 14, order n = 26, dim = 36, blocks = 8
nnz(A) = 58 + 0, nnz(ADA) = 98, nnz(L) = 56
       b*y
                       delta rate t/tP* t/tD* feas cg cg prec
it :
                  gap
               3.35E+01 0.000
 0 :
```

```
1 : -2.45E-02 1.24E+01 0.000 0.3694 0.9000 0.9000 2.89 1 1 3.0E+00
 2 : -1.42E+00 5.03E+00 0.000 0.4066 0.9000 0.9000 1.60 1 1 1.3E+00
 3 : -4.41E+00 2.11E+00 0.000 0.4202 0.9000 0.9000 0.85 1 1 8.0E-01
 4 : -6.95E+00 6.15E-01 0.000 0.2908 0.9000 0.9000 0.64 1 1 2.4E-01
 5 : -8.03E+00 1.64E-01 0.000 0.2669 0.9000 0.9000 0.83 1 1 6.8E-02
 6 : -8.45E+00 3.34E-02 0.000 0.2037 0.9000 0.9000 1.02 1 1 1.4E-02
 7 : -8.53E+00 8.13E-03 0.000 0.2432 0.9008 0.9000 1.06 1 1 3.3E-03
 8: -8.53E+00 1.21E-05 0.133 0.0015 0.9000 0.0000 1.03 1 1 9.0E-04
 9: -8.54E+00 1.39E-06 0.000 0.1146 0.9153 0.9000 1.01 1 1.4E-04
 10 : -8.55E+00 1.13E-07 0.000 0.0814 0.9900 0.9902 1.02 1 1 1.2E-05
 11: -8.55E+00 8.99E-09 0.124 0.0794 0.9900 0.9548 1.00 2 3 9.3E-07
 12 : -8.55E+00 1.55E-09 0.175 0.1730 0.9104 0.9000 1.00 1 3 1.5E-07
 13 : -8.55E+00 4.54E-10 0.130 0.2919 0.9240 0.9000 1.00 3 3 4.1E-08
 14 : -8.55E+00 2.11E-11 0.000 0.0465 0.7911 0.9900 1.00 3 3 2.4E-09
iter seconds digits c*x
14 0.0 Inf -8.5505013425e+00 -8.5505013094e+00
|Ax-b| = 6.1e-10, [Ay-c]_{+} = 1.3E-08, |x| = 9.5e+00, |y| = 8.6e+00
Detailed timing (sec)
  Pre IPM
                         Post
7.001E-03
           3.100E-02 9.958E-04
Max-norms: ||b||=1, ||c||=19,
Cholesky |add|=1, |skip| = 0, ||L.L|| = 3.
Status: Solved
Optimal value (cvx_optval): +8.5505
Optimal solution is:
x =
  -0.0000
   1.0000
  -0.4317
```

```
cvx_begin
    variable x(3)
    obj1 = norm([sqrt(2)*(x(1)+x(2)), x(2), x(3), sqrt(7)]);
    obj2 = square_pos(x(1)^2 + x(2)^2 + x(3)^2 + 1);

minimize (obj1 + obj2);
    subject to
         quad_over_lin(x(1)+x(2), x(3)+1) + x(1)^8 <= 7;
          (x(1) + x(2) + x(3))^2 + 3*x(3)^2 <= 10;
          square_pos(abs(x(1)+x(2)-x(3))) <= 20;
          x >= 0;

cvx_end

fprintf('Optimal solution is:')
x
```

```
Calling SeDuMi 1.3.4: 50 variables, 20 equality constraints
  For improved efficiency, SeDuMi is solving the dual problem.
_____
SeDuMi 1.3.4 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta =
0.500
egs m = 20, order n = 37, dim = 51, blocks = 13
nnz(A) = 77 + 0, nnz(ADA) = 128, nnz(L) = 76
                gap delta rate t/tP* t/tD* feas cg cg prec
 it: b*y
               2.11E+01 0.000
 0:
 1 : 2.92E+00 9.20E+00 0.000 0.4358 0.9000 0.9000 3.26 1 1 2.0E+00
 2 : -1.09E+00 4.60E+00 0.000 0.5000 0.9000 0.9000 2.30 1 1 8.6E-01
 3 : -2.46E+00 1.14E+00 0.000 0.2477 0.9000 0.9000 1.73 1 1 2.3E-01
 4 : -2.89E+00 5.58E-01 0.000 0.4899 0.9000 0.9000 0.82 1 1 1.2E-01
 5 : -3.32E+00 2.05E-01 0.000 0.3663 0.9000 0.9000 0.89 1 1 4.6E-02
 6 : -3.51E+00 7.47E-02 0.000 0.3653 0.9000 0.9000 0.89 1 1 1.8E-02
 7 : -3.64E+00 5.25E-03 0.000 0.0702 0.9900 0.9900 1.01 1 1.3E-03
 8: -3.64E+00 7.16E-06 0.000 0.0014 0.9000 0.0000 1.01 1 1 3.5E-04
 9: -3.64E+00 1.58E-06 0.000 0.2213 0.9105 0.9000 1.01 1 1 7.6E-05
 10 : -3.64E+00 4.12E-07 0.000 0.2598 0.9056 0.9000 1.01 1 1.9E-05
 11: -3.65E+00 1.26E-07 0.000 0.3048 0.9035 0.9000 1.01 1 1 5.6E-06
 12: -3.65E+00 2.61E-08 0.000 0.2083 0.9000 0.9010 1.00 1 1 1.4E-06
 13 : -3.65E+00 8.91E-09 0.000 0.3409 0.9000 0.9000 1.00 1 1 4.7E-07
 14: -3.65E+00 2.52E-09 0.000 0.2829 0.9057 0.9000 1.00 1 1 1.3E-07
 15 : -3.65E+00 6.84E-10 0.000 0.2715 0.9000 0.9016 1.00 1 1 3.5E-08
 16 : -3.65E+00 1.79E-10 0.000 0.2615 0.9000 0.8956 1.00 1 1 9.5E-09
                      C^*X
iter seconds digits
                                       b*y
16 0.0 Inf -3.6457509415e+00 -3.6457509267e+00
|Ax-b| = 7.4e-09, [Ay-c]_+ = 4.4E-08, |x| = 4.2e+00, |y| = 9.2e+00
Detailed timing (sec)
 Pre IPM
                         Post
          2.701E-02
7.996E-03
                      9.958E-04
Max-norms: ||b||=1, ||c||=2.100000e+01,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 2297.59.
Status: Solved
Optimal value (cvx_optval): +3.64575
Optimal solution is:
x =
  1.0e-04 *
   0.8288
   0.7660
   0.8844
```

```
cvx_begin
   variable x(3)
   obj0 = square_pos(quad_over_lin(x(1), x(2)) + quad_over_lin(x(2), x(1)));
   obj1 = abs(x(1)+5);
   obj2 = abs(x(2)+5);
   obj3 = abs(x(3)+5);
   minimize( obj0 + obj1 + obj2 + obj3 )
   subject to
       square_pos(square_pos(x(1)^2 + x(2)^2 + x(3)^2 + 1) + 1) + x(1)^4 +
x(2)^4 + x(3)^4 \le 200;
       \max([(x(1)+2*x(2))^2 + 5*x(2)^2, x(1), x(2)]) \le 40;
       x(1) >= 1;
       x(2) >= 1;
cvx_end
fprintf('Optimal solution is:')
Calling SeDuMi 1.3.4: 67 variables, 29 equality constraints
  For improved efficiency, SeDuMi is solving the dual problem.
_____
SeDuMi 1.3.4 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta =
0.500
egs m = 29, order n = 52, dim = 68, blocks = 17
nnz(A) = 108 + 0, nnz(ADA) = 163, nnz(L) = 108
 it: b*y
                  gap
                         delta rate t/tP* t/tD* feas cg cg prec
               7.88E+01 0.000
 0:
 1: 3.79E+01 2.74E+01 0.000 0.3480 0.9000 0.9000 3.83 1 1 1.9E+00
                                                 1.73 1 1 6.1E-01
      4.52E+00 8.91E+00 0.000 0.3249 0.9000 0.9000
 3 : -8.92E+00 2.99E+00 0.000 0.3355 0.9000 0.9000 1.51 1 1 2.5E-01
 4 : -1.37E+01 9.85E-01 0.000 0.3295 0.9000 0.9000 1.20 1 1 6.8E-02
 5 : -1.52E+01 4.53E-01 0.000 0.4594 0.9000 0.9000 0.63 1 1 4.1E-02
      -1.64E+01 2.67E-01 0.000 0.5894 0.9000 0.9000 0.36 1 1 3.0E-02
 7 : -1.73E+01 1.58E-01 0.000 0.5932 0.9000 0.9000 0.28 1 1 2.4E-02
 8: -1.90E+01 5.35E-02 0.000 0.3378 0.9000 0.9000 0.66 1 1 9.8E-03
 9: -1.97E+01 2.17E-02 0.000 0.4062 0.9000 0.9000 0.63 1 1 5.1E-03
 10 : -2.01E+01 4.97E-03 0.000 0.2290 0.9000 0.9000 0.96 1 1 1.2E-03
 11 : -2.02E+01 2.14E-04 0.000 0.0430 0.9900 0.9900 1.00 1 1 6.3E-05
 12 : -2.02E+01 8.71E-09 0.334 0.0000 0.9000 0.0000 1.00 1 1 1.1E-05
 13 : -2.02E+01 2.75E-10 0.000 0.0316 0.9908 0.9900 1.00 1 1 5.4E-07
 14 : -2.02E+01 5.02E-11 0.000 0.1827 0.4775 0.9000 1.00 3 3 1.2E-07
 15 : -2.02E+01 1.33E-11 0.000 0.2656 0.7800 0.9000 1.00 3 3 3.3E-08
 16 : -2.02E+01 1.17E-12 0.000 0.0879 0.9900 0.9900 1.00 3 3 2.9E-09
iter seconds digits
                        C^*X
                                         b*y
16 0.0 Inf -2.0216691566e+01 -2.0216691426e+01
|Ax-b| = 8.6e-10, [Ay-c]_+ = 1.5E-07, |x| = 1.4e+01, |y| = 2.0e+01
```

```
rand('seed',21307140003);
x=rand(40,1);
y=rand(40,1);
class=[2*x<y+0.5]+1;
A1=[x(find(class==1)),y(find(class==1))];
A2=[x(find(class==2)),y(find(class==2))];
plot(A1(:,1),A1(:,2),'*','MarkerSize',6)
hold on
plot(A2(:,1),A2(:,2),'d','MarkerSize',6)
hold on
x = [A1; A2]; % The set of all points.
b = [ones(21,1); -1*ones(19,1)]; % The set of corresponding labels.
cvx_begin
   variable w(3);
   minimize (0.5*(w(1)^2 + w(2)^2));
   subject to
       for i=1:40
           b(i)*([w(1), w(2)]*x(i,:)' + w(3)) >= 1;
       end
cvx_end
fplot(@(x) -1/w(2)*(w(1)*x+w(3)), [0,1])
hold off
fprintf('The maximum-margin line is: fx+fy+f = 0\n', w(1), w(2), w(3));
fprintf('Optimal solution is:')
Calling SeDuMi 1.3.4: 46 variables, 5 equality constraints
  For improved efficiency, SeDuMi is solving the dual problem.
______
SeDuMi 1.3.4 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
```

```
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta =
 0.500
eqs m = 5, order n = 45, dim = 47, blocks = 3
nnz(A) = 126 + 0, nnz(ADA) = 15, nnz(L) = 10
 it :
       b*y
                      delta rate t/tP* t/tD* feas cg cg prec
                 gap
 0:
               4.23E+00 0.000
 1 : -5.63E+00 1.87E+00 0.000 0.4422 0.9000 0.9000 -3.36 1 1 4.4E+01
 2: -1.95E+01 7.10E-01 0.000 0.3793 0.9000 0.9000 -0.95 1 1 1.6E+01
 3 : -4.86E+01 2.45E-01 0.000 0.3453 0.9000 0.9000 0.75 1 1 7.8E+00
 4 : -1.02E+02 9.34E-02 0.000 0.3809 0.9000 0.9000 -0.15 1 1 5.8E+00
 5 : -1.85E+02 4.04E-02 0.000 0.4322 0.9000 0.9000 -0.25 1 1 4.4E+00
 6 : -3.51E+02 1.19E-02 0.000 0.2958 0.9000 0.9000 0.00 1 1 2.0E+00
 7 : -4.62E+02 3.66E-03 0.000 0.3062 0.9000 0.9000 0.36 1 1 8.1E-01
 8: -5.47E+02 1.15E-04 0.000 0.0315 0.9900 0.9900 0.78 1 1 2.8E-02
 9: -5.49E+02 3.16E-06 0.000 0.0274 0.9900 0.9900 1.01 1 1 7.6E-04
 10 : -5.49E+02 1.54E-07 0.000 0.0487 0.9903 0.9900 1.01 1 3.8E-05
 11 : -5.49E+02 4.16E-08 0.000 0.2707 0.9000 0.9052 1.00 1 1 1.0E-05
 12: -5.49E+02 5.96E-10 0.000 0.0143 0.9902 0.9900 1.00 1 1 1.5E-07
 13 : -5.49E+02 1.00E-10 0.000 0.1679 0.9060 0.9000 1.00 1 1 2.5E-08
 14: -5.49E+02 6.31E-12 0.238 0.0631 0.9901 0.9900 1.00 1 1 1.5E-09
iter seconds digits
                      C^*X
                                       b*y
14 0.0 Inf -5.4904627374e+02 -5.4904627334e+02
|Ax-b| = 7.8e-10, [Ay-c]_{+} = 5.4E-10, |x| = 7.4e+02, |y| = 8.7e+02
Detailed timing (sec)
  Pre
            IPM
                          Post
7.001E-03
           2.300E-02
                       2.002E-03
Max-norms: ||b||=5.000000e-01, ||c||=1.000000e+00,
Cholesky |add|=0, |skip|=0, ||L.L||=57.6688.
_____
Status: Solved
Optimal value (cvx_optval): +549.046
The maximum-margin line is: 28.833995x+-16.330747y+-6.376794 = 0
Optimal solution is:
w =
  28.8340
 -16.3307
  -6.3768
```


Published with MATLAB® R2021b