

EEDG/CE 6370 Design and Analysis of Reconfigurable Systems Homework 4 – Physical design

Student Name: Prathamesh Sanjay Gadad Student email: psg220003@utdallas.edu

Part I – Design Implementation and timing analysis

a.) Follow the instructions in the lab sheet and synthesize the design without replacing any LUT in Chip Planner. Report the logic utilization (ALMs/ALUTs), total registers, pins, block memory, DSP blocks and DLLs used using the fitter report. Include a screenshot of the report too.

Marks	
2	

ALMs/ALUTs	FFs	IOs	DSPs	BRAM	DLLs
49/84	77	241	0	0	0

ALMs, Registers, Pins I/Os, DLLs, BRAM, DSP:

Fitter Summary

<<Filter>>

Fitter Status Successful - Sun Sep 29 20:17:15 2024

Quartus Prime Version 22.1std.2 Build 922 07/20/2023 SC Lite Edition

Revision Name DE1_SoC_i2sound

Top-level Entity Name DE1_SoC_i2sound

Family Cyclone V

Device 5CSEMA5F31C6

Timing Models Final

Logic utilization (in ALMs) 49 / 32,070 (< 1 %)

Total registers 77

Total pins 241 / 457 (53 %)

Total virtual pins 0

Total block memory bits 0 / 4,065,280 (0 %)

Total RAM Blocks 0 / 397 (0 %)
Total DSP Blocks 0 / 87 (0 %)

Total HSSI RX PCSs 0

Total HSSI PMA RX Deserializers 0

Total HSSI TX PCSs 0

Total HSSI PMA TX Serializers 0

Total PLLs 0 / 6 (0 %)
Total DLLs 0 / 4 (0 %)

ALUTs:

84	
1	
16	
7	
16	
44	
6	
	1 16 7 16 44

b.) Open the Timing analyzer and report the maximum frequency. Include screenshot.

Marks
2

Maximum Frequency: 276.01MHz

	Fmax	Restricted Fmax	Clock Name	Note
1	276.01 MHz	276.01 MHz	CLOCK_50	

c.) Annotate here the 5 longest critical paths from Timing analyzer and annotate here their delay and slack. Include screenshot.

Marks	
2	

Critical Path	Data Delay	Delay	Slack
1	2.470	14.554	16.377
2	2.258	12.897	16.584
3	2.213	12.772	16.629
4	2.192	12.687	16.655
5	2.168	12.631	16.674

Slack:

Delay:

Co	mmand Info	Summary of F	Paths
	Delay	From Node	To Node
1	14.554	i2c:u2 SDO	FPGA_I2C_SDAT
2	12.897	i2c:u2 NTER[3]	FPGA_I2C_SCLK
3	12.772	i2c:u2 NTER[1]	FPGA_I2C_SCLK
4	12.687	i2c:u2 NTER[0]	FPGA_I2C_SCLK
5	12.631	i2c:u2 NTER[2]	FPGA_I2C_SCLK

e.) Change the sdc constraint file setting the clock constraint to a period of 2ns (500Mhz) instead of 20ns (50Mhz). Reopen the Timing analyzer and report the 5 longest critical paths and their slack. Compare with the results in c). What did you notice? (include screenshot of the delays)

Marks	
2	

Critical Path	Delay	Slack	Data Delay
1	13.002	-1.630	2.404
2	12.986	-1.423	2.172
3	12.943	-1.378	2.127

4	12.774	-1.352	2.082
5	12.615	-1.333	2.461

Slack:

Delay:

Cor	mmand Info	Summary of F	Paths		
	Delay	From Node		To N	lode
1	13.002	i2c:u2 NTER[1]	FPGA	I2C_SCLK	
2	12.986	i2c:u2LICATE	FPGA	I2C_SCLK	
3	12.943	i2c:u2 NTER[3]	FPGA	I2C_SCLK	
4	12.774	i2c:u2 NTER[3]	FPGA	I2C_SCLK	
5	12.615	i2c:u2LICATE	FPGA	I2C_SCLK	

Observation:

- Delay: for 20ns constraints the longest delay was 14.554ns whereas for 2ns it became 13.002ns.
- Slack: for 20ns constraints all slacks were positive whereas for 2ns all slacks became negative.
- Result: The negative slack indicates that the design cannot meet the new timing requirements, which
 means that the circuit cannot operate correctly at 500MHz.

Part II - Chip Planner

a.) Change back the sdc clock constraint to 20ns. Move the resources explained in the lab sheet (top and bottom left) using the Chip planner and re-compile the program.

Report the 5 longest critical paths from Timing Analyzer after the replacement. How did this affect the critical path? Compare the results with the original placement results. Explain why.

Ma	arks
	6

	Critical Paths Original	Critical Paths New (moved)			
1	CLOCK_500:u1 COUNTER_500[0]	CLOCK_500:u1 COUNTER_500[0]			
	to	to			
	CLOCK_500:u1 COUNTER_500[9]	CLOCK_500:u1 COUNTER_500[9]			
2	CLOCK_500:u1 COUNTER_500[2]	CLOCK_500:u1 COUNTER_500[9]			
	to	to			
	CLOCK_500:u1 COUNTER_500[9]	CLOCK_500:u1 COUNTER_500[9]			
3	CLOCK_500:u1 COUNTER_500[4]	CLOCK_500:u1 COUNTER_500[2]			
	to	to			
	CLOCK_500:u1 COUNTER_500[9]	CLOCK_500:u1 COUNTER_500[9]			
4	CLOCK_500:u1 COUNTER_500[1]	CLOCK_500:u1 COUNTER_500[1]			
	to	to			
	CLOCK_500:u1 COUNTER_500[9]	CLOCK_500:u1 COUNTER_500[9]			
5	CLOCK_500:u1 COUNTER_500[6]	CLOCK_500:u1 COUNTER_500[9]			
	to	to			
	CLOCK_500:u1 COUNTER_500[9]	CLOCK_500:u1 COUNTER_500[10]			

Critical Path Original

Cor	nmand Info	Summary of Paths						
	Slack	From Node	To Node	Launch Clock	Latch Clock	Relationship	Clock Skew	Data Delay
1	16.377	CLOCK_5500[0]	CLOCK_5500[9]	CLOCK_50	CLOCK_50	20.000	-0.843	2.470
2	16.584	CLOCK_5500[2]	CLOCK_5500[9]	CLOCK_50	CLOCK_50	20.000	-0.848	2.258
3	16.629	CLOCK_5500[4]	CLOCK_5500[9]	CLOCK_50	CLOCK_50	20.000	-0.848	2.213
4	16.655	CLOCK_5500[1]	CLOCK_5500[9]	CLOCK_50	CLOCK_50	20.000	-0.843	2.192
5	16.674	CLOCK_5500[6]	CLOCK_5500[9]	CLOCK_50	CLOCK_50	20.000	-0.848	2.168

Critical Path New

Changes in .qsf file after placement:

```
set_location_assignment FF_X27_Y80_N28 -to
"CLOCK_500:u1|COUNTER_500[0]"
set_location_assignment LABCELL_X1_Y77_N0 -to "CLOCK_500:u1|Add2~1"
set location assignment LABCELL X1 Y77 N3 -to "CLOCK 500:u1|Add2~37"
```

Observation:

- Moving the components altered the physical distance between connected elements, affecting signal propagation times.
- As the new placement forced the router to use different paths, optimizing some connections while making others longer.
- While the specific timings changed, the fundamental timing-critical section of the circuit remained similar. This suggests that the manual placement adjustments had a limited impact on the overall timing performance of the design.

These are changes that were made in Quartus prime QSF File while the cells were moved in the chip planner

```
set_location_assignment FF_X27_Y80_N28 -to "CLOCK_500:u1|COUNTER_500[0]" set_location_assignment LABCELL_X1_Y77_N0 -to "CLOCK_500:u1|Add2~1" set_location_assignment LABCELL_X1_Y77_N3 -to "CLOCK_500:u1|Add2~37"
```

b.) Create a YouTube video showing the working designs and showing how you measured the information reported int this homework

Marks
6

Link: https://youtu.be/z4V1cA9y1s4