click here for link

概率图模型

inference-> P(Z|X)->积分问题(MCMC)

GMM: 样本之间是独立同分布

HMM: Dynamic Model

y: System state 隐变量

• state 离散: HMM

state 线性: Kalman Filterstate 非线性: Particle Filter

$$\lambda = (\pi)$$
 初始 $probdist, A$ 状态转移矩阵, B)
 状态变量 $i:i_1,i_2,\cdots i_t\cdots o Q=q_1,q_2,\cdots,q_m$
 观测变量 $o:o_1,o_2,\cdots o_t\cdots o V=v_1,v_2,\cdots,v_m$
 $A=[a_{ij}]$, $a_{ij}=P\left(i_{t+1}=q_i|i_t=q_i\right)$
 $B=[b_{jk}]$, $b_{jk}=P\left(Q_t=v_k|i_t=q_j\right)$

transition 和 emission probability 是independent

两个假设:

• 齐次Markov 假设

$$P(i_{t+1}|i_t,t_{t-1},\cdots,t_1,o_t,o_{t-1},\ldots,o_1)=p(i_{t+1}|i_t)$$

• 观察独立假设

$$P(o_t|i_t, t_{t-1}, \cdots, t_1, o_t, o_{t-1}, \dots, o_1) = p(o_t|i_t)$$

三个问题:

- 1. Evaluation: $P(O|\lambda) \Rightarrow$ 前向后向 Forward-backward
- 2. learning $\lambda = \arg \max P(O|\lambda)$ EM algorithm\baum welch
- 3. Decoding $\lambda = \arg \max_i P(I|O)$
 - 1. 预测: $P(i_{t+1}|o_1,o_2,\cdots,o_t)$
 - 2. 滤波: $P(i_t|o_1, o_2, \dots, o_t)$

HMM-Evaluation

$$Give\lambda, 求P(O|\lambda)$$

$$P(O|\lambda) = \sum_{1} P(I,O|\lambda) = \sum_{1} P(O|I,\lambda) \cdot P(I|\lambda)$$

$$P(I|\lambda) = P\left(i_{1},i_{2},\cdots,i_{T-1}|\lambda\right) = \underbrace{P\left(i_{T}|i_{t},i_{2},\cdots,i_{T-1},\lambda\right)}_{P(i_{T}|i_{T-1})=a_{i_{T-1},i_{T}}} P(i_{1},i_{2},\cdots,i_{T-1}|\lambda) = a_{i_{T-1},i_{T}} \cdot a_{i_{T-2},i_{T-1}} \cdots a_{i_{1},i_{2}} \cdot \pi(i_{1})$$

$$\pi \text{ 是初始分布}$$

$$= \pi\left(a_{i}\right) \cdot \prod_{t=2}^{T} a_{i_{t-1},i_{t}}$$

$$----$$

$$P(O|I,\lambda) = \prod_{t=1}^{T} b_{i_{t}}\left(O_{t}\right)$$

PPT

