Integrals for General Measurable Functions

Consider $f: \Omega \to [-\infty, \infty]$. Write $f = f^+ - f^-$ where $f^+ = \max\{f, 0\}$ and $f^- = -\min\{f, 0\}$.

Note.

- 1) $f^+, f^- \ge 0$.
- 2) $|f| = f^+ + f^-$.

Definition: integrable

 $f:\Omega \to [-\infty,\infty]$ is **integrable** if f^+,f^- are integrable. In this case,

$$\int_A f \ d\mu = \int_A f^+ \ d\mu - \int_A f^- \ d\mu.$$

Note. f^{\pm} integrable $\Rightarrow f^{\pm}$ measurable $\Rightarrow f$ is measurable.

Theorem

Suppose f is measurable. Then f is integrable if and only if |f| is integrable.

Proof

(\Rightarrow): Suppose f is integrable, then $\int f^+ \ d\mu < \infty$ and $\int f^- \ d\mu < \infty$ so $\int |f| \ d\mu = \int f^+ \ d\mu + \int f^- \ d\mu < \infty$.

(\Leftarrow): Suppose |f| is integrable, then |f| is measurable. Write $f^+ = \frac{1}{2}(f + |f|) \Rightarrow f^+$ is measurable. Moreover,

$$f^+ \le |f| \Rightarrow \int f^+ d\mu \le \int |f| d\mu < \infty.$$

So f^+ is integrable. Likewise f^- is integrable. So $f = f^+ - f^-$ is integrable. \Box

Claim. If f, g are measurable, then

- 1) $\min\{f,g\}, \max\{f,g\}$ are measurable. Think $\{\omega: \max(f(\omega),g(\omega)) \leq x\}.$
- 2) -f is measurable.

Remark. Billingsley defines the integral as

$$\int f d\mu = \sup \sum_{i=1}^{\infty} \left[\inf_{A_i} f \right] \mu(A_i).$$

where the sup is taken of all finite partitions of Ω into \mathcal{F} -sets A_i .

Adventure in "Almost Everywhere" Properties

Definition: almost everywhere

A property holds **almost everywhere** if it holds for all sets except for possible some sets of measure zero.

- 1) f = 0 a.e. $\Rightarrow \int f d\mu = 0$ (need f measurable).
- 2) f = g a.e. $\Rightarrow \int f d\mu = \int g d\mu$.
- 3) $f \leq g$ a.e., f, g measurable $\Rightarrow \int f d\mu \leq \int g d\mu$.
- 4) Suppose f is integrable and $\int_A f \ d\mu \ge 0$ for every $A \in \mathcal{F}$. Then $f \ge 0$ a.e.

Proof

Let $B = {\omega : f(\omega) < 0}$. We want to show that $\mu(B) = 0$. Then we have

$$I_B(\omega) = \begin{cases} 0 & \text{if } f(\omega) \ge 0\\ f(\omega) & \text{if } f(\omega) < 0 \end{cases}$$

So $f(\omega)I_B(\omega) \leq f(\omega)$. Since $f(\omega)I_B$ is non-positive, we have

$$nf(\omega)I_B(\omega) \le f(\omega) \ \forall \ n \in \mathbb{N}$$

$$\int nfI_B \ d\mu \le \int f \ d\mu$$

$$\int_B f \ d\mu \le \frac{1}{n} \int f \ d\mu$$

Taking $n \to \infty$, we have $\int_B f d\ \mu \le 0$. Since by assumption, $\int_B f\ d\mu \ge 0$, we have $\int_B f\ d\mu = 0$. And since we define $f(\omega) < 0 \ \forall \ \omega \in B$, it must be that $\mu(B) = 0 \Rightarrow f \ge 0$ a.e.

20: Random Variables

 (Ω, \mathcal{F}, P) .

Definition: random variable

A random variable is a measurable function $X: \Omega \to \mathbb{R}$.

Definition: random vector

A random vector X is a measurable function $X:\Omega\to\mathbb{R}^k$. It necessarily has the form

$$X(\omega) = (X_1(\omega), \dots, X_k(\omega)).$$

Claim. X is a random vector if and only if each X_i is measurable.

Theorem: 20.1

Let $X = (X_1, \dots, X_k)$ be a random vector.

- (i) $\sigma(X) = \sigma(X_1, \dots, X_k)$ consists precisely of the sets $\{\omega : X(\omega) \in H\} \ \forall \ H \in \mathcal{B}(\mathbb{R}^k)$.
- (ii) A r.v. Y is measurable wrt $\sigma(X)$ if and only if there exists a measurable $f: \mathbb{R}^k \to \mathbb{R}$ such that $Y(\omega) = f(X_1(\omega), \dots, X_k(\omega)) \ \forall \ \omega \in \Omega$.

Note. This is Theorem 5.1 but with general random variables.

Proof

- (i) same as 5.1 by defining $\mathcal{G}=\{X^{-1}(H):H\in\mathcal{B}(\mathbb{R}^k)\}$ and show equivalence.
- (ii) (\Leftarrow) Suppose there exists a measurable $f: \mathbb{R}^k \to \mathbb{R}$ such that $Y(\omega) = f(X(\omega)) \ \forall \ \omega \in \Omega$. Then by Theorem 13.1 (ii), composite measurable function is measurable $\Rightarrow Y$ measurable wrt $\sigma(X)$.
 - $(\Rightarrow)\colon$ Suppose $Y:\Omega\to\mathbb{R}$ is measurable wrt $\sigma(X).$ Consider the following cases:
 - Case (1). Y is simple, i.e. $Y(\omega) = \sum_{i=1}^{n} a_i I_{A_i}$ where A_i s are disjoint. We want to find a f measurable $\mathcal{B}(\mathbb{R}^k)$ such that $Y(\omega) = f(X(\omega)) \ \forall \ \omega \in \Omega$.

Y is measurable wrt $\sigma(X)$ implies that

$$A_i = Y^{-1}(\{a_i\}) \in \sigma(X).$$

By part (i) of this theorem, we know A_i has the form

$$A_i = \{\omega : X(\omega) \in H_i\} \text{ for some } H_i \in \mathcal{B}(\mathbb{R}^k).$$

Now let's define $f: \mathbb{R}^k \to \mathbb{R}$ to be

$$f(x) = \sum_{i=1}^{n} a_i I_{H_i}(x).$$

Note that f is measurable (since the inverse image would give us H_i or \emptyset , both in $\mathcal{B}(\mathbb{R}^k)$). Therefore,

$$f(X(\omega)) = \sum_{i=1}^{n} a_i I_{H_i}(X(\omega))$$
$$= \sum_{i=1}^{n} a_i I_{A_i}(\omega)$$
$$= Y(\omega)$$

Case (2). Y is simple. Then we want to approximate Y with simple functions Y_n , i.e. $0 \le Y_n(\omega) \nearrow Y(\omega)$ if $Y(\omega) \ge 0$ and $0 \ge Y_n(\omega) \searrow Y(\omega)$ if $Y(\omega) < 0$ (see details in Theorem 13.5). We can use Case 1 to find measurable $f: \mathbb{R}^k \to \mathbb{R}$ such that $f_n(X(\omega)) = Y_n(\omega) \ \forall \ \omega \in \Omega$.

Now consider the set $A = \{x : f_n(x) \text{ converges}\}$. Then by the theorem right after 13.4 ($A = \{\lim \inf_n f_n(x) = \limsup_n f_n(x)\}$ where LHS and RHS are both measurable), we know $A \in \mathcal{B}(\mathbb{R}^k)$. Let's define $f : \mathbb{R}^k \to \mathbb{R}$ as

$$f(x) = \begin{cases} \lim_{n \to \infty} f_n(x) &, x \in A \\ 0 &, x \notin A \end{cases}$$

Note that $f = \left(\lim_{n \to \infty} f_n\right) \cdot I_A = \lim_{n \to \infty} (f_n \cdot I_A)$. Since f_n, I_A are measurable, $f_n \cdot I_A$ is also measurable, and the limit is also measurable by 13.4. Thus we showed that f is measurable and thus $f(X(\omega)) = Y(\omega)$ is what we seek.