Mecánica Computacional - Recuperatorio 1er Parcial 2023

TEORÍA

Ejercicio 1. Diferencias Finitas

La deflexión transversal "u" de un cable de longitud "L", el cual está fijo en ambos extremos, está dado como solución de la siguiente ecuación diferencial:

$$\frac{d^2u}{dx^2} = \frac{Tu}{R} + \frac{qx(x-L)}{2R}$$

donde T es la tensión del cable, R es la rigidez flexural y q es una carga transversal distribuida uniformemente.

Considerar los extremos del cable como L_1 =0 y L_2 =1.5 [m]. T=10000 [N]. R = 50000 [Nm²]. q =15000 [N/m].

- a) Expresar el stencil de un nodo genérico interior utilizando una aproximación de segundo orden centrada.
- b) Dado un tamaño de paso h=0.375 [m], el valor de deflexión transversal en el centro del cable es: (seleccione la opción correcta)
 - b.1) 0.017800
 - b.2) 0.021782
 - b.3) 0.019809
 - b.4) Ninguna de las anteriores
- c) Analice la convergencia del método, corroborando la disminución del error en el nodo central, considerando que se utilizó una aproximación de segundo orden.

PRÁCTICA

Se desea resolver un problema de transferencia de calor sobre la geometría mostrada a continuación. En dicho dominio también son expresadas las condiciones de borde. Considerar un problema de difusión con fuente, estacionario. Datos: k = 2; G = 100; c = 0.

La malla de arriba describe un cuadrado de 1x1 (dx=dy=0.20).

Consignas:

- 1. Informar y graficar los perfiles de temperatura sobre las diagonales (0,0) (1,1) y (0,1) (1,0).
- 2. Si la condición inicial fuese T = 0 para todo el dominio, graficar la evolución de la temperatura en el punto (0.5,0.5) utilizando un esquema implícito con dt = 0.1 seg. Informe el tiempo total requerido para llegar al estado estacionario si la tolerancia del error es 1e-4.
- 3. Informar el valor de la temperatura sobre el borde derecho de la placa (x = 1), al cumplirse los 5 segundos de evolución temporal.