For all questions, answer choice (E) NOTA means that none of the given answers is correct. Good Luck!

1. Find the minimum value of $7\cos a - 24\sin a + 9\cos b + 40\sin b + 10$.

$$(A) -56$$

(B)
$$-66\sqrt{3}$$

(E) NOTA

2. What is the phase shift of $-6\sin(4x-\frac{\pi}{8})$?

(A)
$$\frac{\pi}{8}$$

(B)
$$-\frac{\pi}{32}$$

(C)
$$-\frac{\pi}{8}$$

(D)
$$\frac{\pi}{2}$$

(E) NOTA

3. Convert the polar equation r = 8 to a Cartesian equation.

(A)
$$x^2 + y^2 = 64$$
 (B) $x^2 + y^2 = 1$

(B)
$$x^2 + y^2 = 1$$

(C)
$$x^2 + y^2 = 8$$
 (D) $x + y = 8$

(D)
$$x + y = 8$$

(E) NOTA

4. Find $\sin 18^{\circ}$.

(A)
$$\frac{1+\sqrt{5}}{4}$$

(B)
$$\frac{\sqrt{6} - \sqrt{4}}{2}$$
 (C) $\frac{\sqrt{6} + \sqrt{4}}{2}$

(C)
$$\frac{\sqrt{6} + \sqrt{4}}{2}$$

(D)
$$\frac{-1+\sqrt{5}}{4}$$

(E) NOTA

5. Find the product of the real parts of the roots of the polynomial $f(x) = x^5 + x^4 + x^3 + x^2 + x + 1$.

(A)
$$\frac{1}{16}$$

(C)
$$\frac{-1}{16}$$

(D)
$$\frac{1}{8}$$

(E) NOTA

6. Let vector $\underline{a} = i - x^2 j - 4k$ and vector b = 3xi - j + k. Find the sum of all values of x such that the angle between a and b is $\frac{\pi}{2}$

(A)
$$\frac{2\sqrt{3}}{3}$$

(B)
$$-4$$

(D)
$$-3$$

(E) NOTA

7. Find the centroid of a triangle with vertices (4, 5, -3), (-5, -7, 5) and (3, -5, 4).

(A)
$$(4, -7, 4)$$

(B)
$$(4, \frac{17}{3}, 4)$$

(C)
$$(1, \frac{-7}{2}, 3)$$

(B)
$$(4, \frac{17}{3}, 4)$$
 (C) $(1, \frac{-7}{2}, 3)$ (D) $(\frac{2}{3}, \frac{-7}{3}, 2)$

(E) NOTA

8. How many petals does $r = 4\sin(6\theta)$ have?

(E) NOTA

9. Find the projection of $v = (6\sqrt{2}, 4)$ onto $w = (2, 2\sqrt{2})$.

(A)
$$(8\sqrt{2}, \frac{2}{3})$$

(B)
$$6\sqrt{3}$$

(C)
$$(5\sqrt{66}, \frac{10}{3})$$

(D)
$$(15\sqrt{2}, 10\sqrt{2})$$

(E) NOTA

10. Evaluate $4(\sin(15^{\circ}) + \cos(15^{\circ}))^4$.

(E) NOTA

11. What is the closest integer to $\frac{2020^3}{1^2+2^2+\cdots+2020^2}$?

(A) 1

$$(C)$$
 3

(E) NOTA

12. Given that $x = \frac{\pi}{7}$, compute

$$\left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}\right)^2 + \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}\right)^2.$$

(C)
$$\pi$$

(D)
$$-1$$

(E) NOTA

(E) NOTA

13.	In triangle ABC , $\angle A = 60^{\circ}$, $\angle B = 75^{\circ}$, and side length BC is 4. Find the length of AB .				
	$(A) \ \frac{8\sqrt{3}}{3}$	$(B) \frac{4\sqrt{6}}{3}$	(C) $2\sqrt{2}$	$(D) \frac{8\sqrt{2}}{3}$	(E) NOTA
14.	. Eric has a hat that is bounded by $y = -5$, $y = 6$, and $y = 7 - x $. Find the area of Eric's hat.				
	(A) $\frac{231}{2}$	(B) 121	(C) 132	(D) 143	(E) NOTA
15.	Tanmay and Ananya run from Rickards High School at the same time. Tanmay runs 45° east of due south at 6 miles per hour and Ananya runs due north at 2 miles per hour. What is the square of the distance between Tanmay and Ananya after 150 minutes?				
			(C) $15\sqrt{2}$	(D) $5 + 15\sqrt{2}$	(E) NOTA
16.	16. Let $f(x) = \sin(x) + \cos(x)$. Compute $f(x) + f'(x) + f''(x) + f'''(x) + f'''(x)$.				
	(A) $f(x)$	(B) $f'(x)$	(C) $f''(x)$	(D) $f'''(x)$	(E) NOTA
17. Compute the absolute maximum of the function $g(x) = \frac{x}{x^2+4}$.					
	(A) 0	(B) 0.25	(C) 0.5	(D) 1	(E) NOTA
18	3. Calculate the derivative of $x^5 + 4x^2$ evaluated at $x = 0.1$.				
10.	(A) 0.8001	(B) 0.8003	(C) 0.8005	(D) 0.8007	(E) NOTA
4.0	5π				
19.	Evaluate $\sin(\frac{5\pi}{12})$.				
	$(A) \frac{\sqrt{2} + \sqrt{6}}{4}$	$(B) \frac{\sqrt{3} + \sqrt{5}}{9}$	(C) $\frac{\sqrt{3} + \sqrt{7}}{4}$	$(D) \frac{\sqrt{5} + \sqrt{7}}{9}$	(E) NOTA
20.	0. Compute the derivative (with respect to x) of the function $f(x) = 1 + x + x^2 + x^3 + \dots$, evaluated at $x = x^2 + x^3 + \dots$				
	(A) 4	(B) 8	(C) 12	(D) 16	(E) NOTA
21.	1. Let M be the absolute minimum of $f(x) = \sin(x^4) + \cos(x^4)$. Let N be the absolute minimum of $g(x) = \sin^4(x)$. Compute $\left(\frac{M}{N}\right)^2$				
	(A) 1	(B) 2	(C) 4	(D) 8	(E) NOTA
20	2. Let θ be an angle such that $3\sin\theta + 4\cos\theta = 5$. Compute $4\sin\theta + 3\cos\theta$.				
22.	Let θ be an angle such t (A) $\frac{18}{5}$	$ \begin{array}{l} \text{flat } 3\sin\theta + 4\cos\theta = 5. \\ \text{(B) } 4 \end{array} $	Compute $4 \sin \theta + 3 \cos \theta$. (C) $\frac{24}{5}$	(D) 6	(E) NOTA
23.	Evaluate the following series: 1 2 3 4 5				
	$\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \cdots$				
	(A) $\frac{7}{4}$	(B) $\frac{15}{8}$	(C) 2	(D) $\frac{9}{4}$	(E) NOTA
24.	Which of the following functions is not differentiable over all real numbers?				
	(A) $\cos(x^2)$	(B) $\frac{1}{x^2+1}$	(C) $\sec(1+0.5\sin x)$	(D) $\sec(1+2\sin x)$	(E) NOTA

25. Given that vector P is $(2,3,5\sqrt{5})$ and vector Q is $(4,3\sqrt{2},7)$, calculate the dot product of these two vectors.

(A) $7 + 8\sqrt{3} + 28\sqrt{3}$ (B) $3 + 7\sqrt{2} + 28\sqrt{5}$ (C) $9 + 2\sqrt{3} + 35\sqrt{3}$ (D) $8 + 9\sqrt{2} + 35\sqrt{5}$

26. Given that $\sin x + \cos x = \frac{1}{5}$ and $\frac{\pi}{2} < x < \pi$, calculate $\tan x$.

- (A) $\frac{3}{4}$
- (B) $-\frac{3}{4}$
- (C) $\frac{4}{3}$
- (D) $-\frac{4}{3}$

(E) NOTA

27. Given that $i = \sqrt{-1}$, find the value of $-(1-i)^{12}$.

- (A) 32
- (B) 64

- (C) 128
- (D) 256

(E) NOTA

28. Assume that the solution to the expression $\left(\frac{\sqrt{3}}{4} - \frac{1}{4}i\right)^8$ can be expressed as $\frac{-a}{b} + \frac{c}{d}i$ where a, b, and d are positive integers and both fractions are simplified. Compute a - c.

- (A) $1 + \sqrt{3}$
- (B) $1 \sqrt{3}$
- (C) $3 + \sqrt{3}$
- (D) $3 \sqrt{3}$

(E) NOTA

29. Find the transpose of the following matrix: $\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$

(A) 4

(B) 5

(C) 8

(D) 10

(E) NOTA

30. One of the solutions to the equation $4(x+1)^3 = 3x + 3.5$ can be expressed as $-a + \cos(b^\circ)$ where a, b are positive integers and a + b is minimized. Compute a + b. (Hint: $\cos(3x) = 4\cos^3(x) - 3\cos(x)$.)

- (A) 19
- (B) 20

- (C) 21
- (D) 22
- (E) NOTA