

Towards Stable and Efficient Adversarial Training against l_1 Bounded Adversarial Attacks

Byte Dance

Yulun Jiang*, Chen Liu*, Zhichao Huang, Mathieu Salzmann, Sabine Süsstrunk

CONTRIBUTION

For adversarial training against l_1 -norm bounded attacks

- We demonstrate the problem of catastrophic overfitting (CO) as a result of overfitting to sparse perturbations.
- We propose **Fast-EG-** l_1 , an efficient and stable single-step adversarial training method without CO.

BACKGROUND

Optimization problem of l_1 adversarial training

$$\min_{\theta} \sum_{i=1}^{N} \max_{\Delta \in \mathcal{S}_{\epsilon}^{(p)}} \mathcal{L}(\theta, \boldsymbol{x}_i + \Delta) . \tag{1}$$

with adversarial budget $S_{\epsilon}^{(p)} := \{\Delta \mid ||\Delta||_p \leq \epsilon\}$ and p = 1.

• Existing methods are based on K-hot coordinate descent

$$\Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon}^{(1)}} \left[\Delta + \alpha / K \cdot \mathbb{1} \{ i \in \text{topk}(\nabla \mathcal{L}) \} \right] \tag{2}$$

with the problem of efficiency (multi-iters) and stability (CO).

ANALYSIS OF CO

Our analysis shows:

- Coordinate descent incurs a strong biased in generating sparse perturbations.
- Model might **overfit to sparse perturbations** and become vulnerable to relatively dense attacks.
- → CO, training unstable and inefficient.

METHOD

Our method \mathbf{Fast} - \mathbf{EG} - l_1 generates l_1 bounded perturbations based on Euclidean geometry:

$$\Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon_{train}}^{(1)}} \left(\Delta + \alpha \cdot \nabla \mathcal{L} / \|\nabla \mathcal{L}\|_{2} \right) \tag{3}$$

Still project Δ into the l_1 -norm budget.

- Setting: larger training budget $\epsilon_{train} \geq \epsilon$, stepsize $\alpha = \sqrt{\epsilon}$.
- Advantages: efficient and stable, w/o CO, no memory overhead or extra hyper-parameters.

EXPERIMENTS

Comparison with existing methods

Setting of **Fast-EG-** l_1 : $\alpha = \sqrt{\epsilon}$ and $\epsilon_{train} = 2\epsilon$ on all datasets.

Method	CIFAR10 ($\epsilon = 12$)		CIFAR100 ($\epsilon = 6$)		ImageNet100 ($\epsilon = 72$)	
	AA (%)	Time (h)	AA (%)	Time (h)	AA (%)	Time (h)
AutoPGD	55.77	2.58	42.18	2.58	-	_
FGSM-RS	36.29	$ 0.7\overline{6}$ $ -$	33.23	$ 0.7\overline{1}$ $-$	-36.64	$-2\overline{2}.\overline{12}$
ATTA	46.57	0.67	33.74	0.68	-	-
AdaAT	31.84	0.88	28.64	0.84	28.62	26.96
Grad-Align	36.38	1.52	33.19	1.52	-	-
N-FGSM	44.21	0.65	35.79	0.66	30.28	23.53
NuAT	48.35	1.01	36.46	1.05	45.82	29.18
Fast-EG- l_1	50.27	0.67	38.03	0.67	46.74	22.11

Ablation Study on α **and** ϵ (CIFAR10)

Ablation Study on ϵ_{train} with $\epsilon=12$ (CIFAR10)

ϵ_{train}	ϵ	1.5ϵ	2ϵ	2.5ϵ	3ϵ
Clean (%)	69.70	78.35	76.14	72.77	70.05
Robust (%)					

