

20192 CIVIL ENGINEERING FACULTY - DEPARTMENT OF CIVIL ENGINEERING INS2942 NUMERICAL ANALYSIS FINAL EXAM 16.06.2020

Group	1	2	3	4	Total

Good luck ©

Grading: 25-25-25-25

Duration : 90 minutes (Solution + System Upload)

- Preferably each question should be answered on its own page.
- Solutions must be readable and understandable.
- You must write your name and number at the top of each page, and you must sign the paper.

QUESTIONS

1) Evaluate the integral given by $I = \int_{1}^{7} x^{2} \sin(x) dx$ with 6 uniform subintervals using 3/8 Simpson Rule. Use 3 decimal digits, and fill the table shown below. (25p)

X	$x^2 \sin(x)$	Coefficient

$$\int_{i}^{i+2} f(x) dx \cong \frac{\Delta x}{3} (f_i + 4f_{i+1} + f_{i+2}), \qquad \int_{i}^{i+3} f(x) dx \cong \frac{3\Delta x}{8} (f_i + 3f_{i+1} + 3f_{i+2} + f_{i+3})$$

2-a) Knowing that y = y(x), find a solution to the differential equation given by y'' + 4x - 8 = 0 with the initial conditions y(0) = 2, and y'(0) = 1 in the domain $0 \le x \le 4$ by means of FDM. Use N = 4. (19p)

N: number of subintervals (or "number of segments")

FDM: finite difference method

2-b) Write "true" or "false", for the following statements. (6p)

	Statement	Answer
2-b-1)	FDM is a numerical integration method.	
2-b-2)	Differential equations higher than second order cannot be solved by means of FDM.	
2-b-3)	Boundary conditions should never be used in the solution of differential	
	equations by means of FDM.	

Derivative	Coefficient	i-2	i-1	i	i+1	i+2
y _i '	$\frac{1}{2h}$		-1		+1	
y _i "	$\frac{1}{h^2}$		+1	-2	+1	

3) Knowing that y = y(x), find a solution to the differential equation given by $y'' - y' - 2y = 4 + 3x + x^2$ with the initial conditions y(0) = 0, and y'(0) = -1 using the fourth order Taylor series method (i.e., use 5 terms in the series).

3-a) Write the function y. (20p)

3-b) Use 5 decimal digits, and compute the value of y(0.5). (5p)

$$y(x) = y(x_0) + y'(x_0)x + \frac{1}{2!}y''(x_0)x^2 + \dots + \frac{1}{n!}y^{(n)}(x_0)x^n$$

- 4) A set of data in terms of x and Y where Y = Y(x) is given below.
- **4-a**) Find the Lagrange interpolation polynomial. (5p)
- **4-b**) Using the method of least squares find the straight line $y = a_0 + a_1 x$ which fits the set of data best. (16p)

X	0	1	3	4
Y(x)	0	2	6	5

4-c) Write "true" or "false", for the following statements. (4p)

	Statement	Answer
4-c-1)	The Lagrange interpolation polynomial passes through all the points in	
	the set of data.	
4-c-2)	If $x_0, x_n, f(x_0)$ and $f(x_n)$ are known such that $x_0 < x < x_n$, the	
	estimation of the value of $f(x)$ is called "extrapolation".	

$$P(x) = L_0(x)f_0 + L_1(x)f_1 + L_2(x)f_2 + ...$$

$$L_{i} = \frac{(x - x_{0})(x - x_{1}).....(x - x_{i-1})(x - x_{i+1}).....(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1}).....(x_{i} - x_{i-1})(x_{i} - x_{i+1}).....(x_{i} - x_{n})}$$

$$\begin{bmatrix} N & \sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} & \dots & \dots \\ \sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i}^{3} & \dots & \dots \\ \sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i}^{3} & \sum_{i=1}^{N} x_{i}^{4} & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \dots \\ \dots \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_{i} \\ \sum_{i=1}^{N} Y_{i} x_{i} \\ \dots \\ \dots \end{bmatrix}$$