SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Prof. dr. sc. Damir Bakić

Zagreb, 2019.

5

1

9	Ovaj diplomski rad obranjen je dana		pred ispitnim povje-
10	renstvom u sastavu:		
	1.		, predsjednik
11	2.		, član
	3.		, član
12	Povjerenstvo je rad ocijenilo ocjenom		·
13			Potpisi članova povjerenstva:
		1.	
14		2.	
		3.	

15 Albini

Sadržaj

17	Sadržaj	iv
18	$\mathbf{U}\mathbf{vod}$	1
20	v	3 3 9
22	Bibliografija	15

$_{\scriptscriptstyle 23}$ Uvod

24 ...

Poglavlje 1

26 Rijetka rješenja

27 1.1 Rijetsko i sažetost vektora

28 Uvedimo potrebnu notaciju. Neka je [N]oznaka za skup $\{1,2,...,N\}$ gdje je $N\in\mathbb{N}.$

Sa $\operatorname{card}(S)$ označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N],

30 tj.
$$\bar{S} = [N] \backslash S$$
.

Definicija 1.1.1. Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$\operatorname{supp}(\mathbf{x}) := \{ j \in [N] : x_j \neq 0 \}$$

Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := \operatorname{card}(\operatorname{supp}(\mathbf{x})) \le s$$

Primjetimo,

$$\|\mathbf{x}\|_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{x_j \neq 0\}} = \operatorname{card}(\{j \in [N] : x_j \neq 0\}) = \|\mathbf{x}\|_0$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j\neq 0\}}=1$ ako je $x_j\neq 0$ te $\mathbf{1}_{\{x_j\neq 0\}}=0$ ako je $x_j=0$. Drugim riječima, $\|\mathbf{x}\|_0$ je limes p-te potencije ℓ_p -kvazinorme vektora \mathbf{x} kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$$

za neku konstantu $C \geq 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako

ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora,

33 pa je stoga prirodno zahtjevati slabiji uvjet kompresibilnosti.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $\mathbf{x} \in \mathbb{C}^N$ definiramo sa

$$\sigma_s(\mathbf{x})_p := \inf \left\{ \|\mathbf{x} - \mathbf{z}\|_p, \ \mathbf{z} \in \mathbb{C}^N \ je \ s\text{-rijedak} \right\}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $\mathbf{z} \in \mathbb{C}^N$ koji ima nenul elemente koji su jednaki sa s najvećih komponenti vektora \mathbf{x} . Iako takav $\mathbf{z} \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p>0. Neformalno, mogli bi reći da je vektor $\mathbf{x} \in \mathbb{C}^N$ kompresibilan ako greška njegove najbolje s-rijetke aproksimacije brzo konvergira u s. Da bi to formalno iskazali, od koristi će biti ocjena na $\sigma_s(\cdot)_p$. Pošto nam za to neće biti važan poredak elemenata vektora \mathbf{x} , uvodimo sljedeću definiciju koja će nam olaksati račun.

Definicija 1.1.3. Nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ je vektor $\mathbf{x}^* \in \mathbb{R}^{\mathbb{N}}$ takav da

$$x_1^* \ge x_2^* \ge x_3^* \ge \dots \ge 0$$

41 te postoji permutacije $\pi:[N] \to [N]$ takva da $x_j^* = |x_{\pi(j)}|$ za sve $j \in [N]$.

Propozicija 1.1.4. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{1}{s^{1/p-1/q}} \|\mathbf{x}\|_p.$$

Dokaz. Neka je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$. Tada slijedi,

$$\sigma_{s}(\mathbf{x})_{q}^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{p} (x_{j}^{*})^{q-p} \le (x_{s}^{*})^{q-p} \sum_{j=s+1}^{N} (x_{j}^{*})^{p} \le \left(\frac{1}{s} \sum_{j=1}^{s} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=s+1}^{N} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \le \left(\frac{1}{s} \|\mathbf{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\mathbf{x}\|_{p}^{p} = \frac{1}{s^{q/p-1}} \|\mathbf{x}\|_{p}^{q}$$

- Prva nejednakost slijedi iz činjenice da je $x_i^* \leq x_s^*$ za svaki $j \geq s+1$. Druga nejed-
- nakost je također posljedica nerasta komponenti od \mathbf{x}^* . Potenciranjem obje strane s
- 44 1/q slijedi tvrdnja.

Primjetimo da ako je \mathbf{x} iz jedinične ℓ_p -kugle za neki mali p > 0, onda prethodna propozicija garantira kovergenciju od $\sigma_s(\mathbf{x})_q$ u s, gdje ℓ_p -kuglu definiramo kao

$$B_p^N := \left\{ \mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_p \le 1 \right\}$$

- Vratimo se sada ocjeni iz propozicije 1.1.4. Sljedeći teorem daje najmanju konstantu
- 46 $c_{p,q}$ takvu da vrijedi $\sigma_s(\mathbf{x})_q \leq c_{p,q} s^{-1/p+1/q} \|\mathbf{x}\|_p$ te zapravo predstavlja jaču tvrdnju.

Teorem 1.1.5. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{c_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_p$$

gdje je

$$c_{p,q} := \left[\left(\frac{p}{q} \right)^{p/q} \left(1 - \frac{p^{1-p/q}}{q} \right) \right]^{1/p} \le 1.$$

Istaknimo za česti odabir p=1 i q=2

$$\sigma_s(\mathbf{x})_2 \le \frac{1}{2\sqrt{s}} \|\mathbf{x}\|_1$$

47 Dokaz. Neka je \mathbf{x}^* nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ i $\alpha_j := (x_j^*)^p$. Dokazati ćemo 48 ekvivaltenu tvrdnju

$$\left.\begin{array}{l}
\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\
\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1
\end{array}\right\} \implies \alpha_{s+1}^{q/p} + \alpha_{s+2}^{q/p} + \dots + \alpha_{s+N}^{q/p} \le \frac{c_q^q}{s^{q/p-1}} \tag{1.1}$$

Stoga, za r := q/p > 1, problem se svodi na maksimizaciju konveksne funkcije

$$f(\alpha_1, \alpha_2, \dots, \alpha_N) := \alpha_{s+1}^r + \alpha_{s+2}^r + \dots + \alpha_N^r$$

na konveksnom mnogokutu

$$\mathcal{C} := \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N : \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\ i\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1 \right\}$$

- Prema teoremu (todo) f postiže maksimum na nekom od vrhova mnogokuta \mathcal{C} , a
- 50 vrhovi od ${\mathcal C}$ su dani kao sjecišta N hiperplohi koje dobijemo tako da u (1.1) N
- 51 nejednakosti pretvorimo u jednakosti. Mogučnosti su:

1.
$$\alpha_1 = \cdots = \alpha_N \implies f(\alpha_1, \alpha_2, \dots, \alpha_N) = 0.$$

2.
$$\alpha_1 + \cdots + \alpha_N = 1$$
 i $\alpha_1 = \cdots = \alpha_k > \alpha_{k+1} = \cdots = \alpha_N = 0$ za neki $1 \le k \le s \implies f(\alpha_1, \alpha_2, \dots, \alpha_N) = 0$

3.
$$\alpha_1 + \dots + \alpha_N = 1$$
 i $\alpha_1 = \dots = \alpha_k > \alpha_{k+1} = \dots = \alpha_N = 0$ za neki $s+1 \leq k \leq N \implies \alpha_1 = \dots = \alpha_k = 1/k$ te $f(\alpha_1,\alpha_2,\dots,\alpha_N) = (k-s)/k^r$

Dakle, slijedi da

$$\max_{(\alpha_1,\dots,\alpha_N)\in\mathcal{C}} f(\alpha_1,\alpha_2,\dots,\alpha_N) = \max_{s+1\leq k\leq N} \frac{k-s}{k^r}$$

57

Shvatimo sada k kao realnu varijablu i zamjetimo da $g(k) := (k - s)/k^r$ raste do kritične točke $k^* = (r/(r-1))s$ nakon koje opada.

$$\max_{(\alpha_1, \dots, \alpha_N) \in \mathcal{C}} f(\alpha_1, \alpha_2, \dots, \alpha_N) \le g(k^*) = \frac{1}{r} \left(1 - \frac{1}{r} \right)^{r-1} \frac{1}{s^r - 1} = c_{p,q}^q \frac{1}{s^{q/p} - 1}$$

Alternativni način na koji bi mogli definirati pojam kompresibilnosti za vektor $\mathbf{x} \in \mathbb{C}^N$ je da zahtjevamo da je broj

$$\operatorname{card}(\{j \in [N] : |x_j| \ge t\})$$

- tj. broj njegovih značajnih ne-nul komponenti dovoljno mali. Ovaj pristup vodi na definiciju slabih ℓ_p -prostora.
- 60 **Definicija 1.1.6.** Za p > 0, slabi ℓ_p -prostor s oznakom $w\ell_p^N$ definiramo kao prostor 61 \mathbb{C}^N sa kvazinormom

$$\|\mathbf{x}\|_{p,\infty} := \inf \left\{ M \ge 0 : \operatorname{card}(\{j \in [N] : |x_j| \ge t\}) \le \frac{M^P}{t^p}, \ \forall t > 0 \right\}$$
 (1.2)

Da bi pokazali da je (1.2) zapravo kvazinorma, potreban nam je sljedeći rezultat.

Propozicija 1.1.7. Neka su $\mathbf{x}^1, \dots \mathbf{x}^k \in \mathbb{C}^N$. Tada za svaki p > 0 vrijedi

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k^{\max\{1,1/p\}} (\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty})$$

Dokaz. Neka je t>0. Ako je $|x_j^1+\cdots+x_j^k|\ge t$ za neki $j\in[N],$ tada imamo da je $|x_j^i|\ge t/k$ za neki $i\in[k].$ Dakle, vrijedi

$$\left\{j \in [N]: |x_j^1 + \dots + x_j^k| \geq t\right\} \subset \bigcup_{i \in [k]} \left\{j \in [N]: |x_j^i| \geq t/k\right\}$$

pa je stoga

$$\operatorname{card}\left(\left\{j \in [N] : |x_j^1 + \dots + k_j^k| \ge t\right\}\right) \le \sum_{i \in [k]} \frac{\|\mathbf{x}^i\|_{p,\infty}^p}{(t/k)^p}$$
$$= \frac{k^p(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p)}{t^p}$$

Prema definiciji slabe ℓ_p -kvazinorme (1.2) vektora $\mathbf{x}^1 + \cdots + \mathbf{x}^k$ dobivamo

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k \left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p \right)$$

Ako je $p \leq 1,$ uspoređujući ℓ_p i ℓ_1 norme na \mathbb{R}^k slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le k^{1/p-1} \left(\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}\right)$$

te ako je $p \ge 1$ slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le \|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}.$$

- 63 Tvrdnja slijedi kombiniranjem dobivenih ocjena.
- 64 Uzmimo $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$ i neka je $\lambda \in \mathbb{C}$ proizvoljan.
- 1. Neka je $\|\mathbf{x}\|_{p,\infty} = 0$. Iz (1.2) slijedi card $(\{j \in [N] : |x_j| \ge t\}) = 0$ za svaki t > 0 pa je stoga broj ne-nul komponenti on \mathbf{x} jednak nuli, tj. $\mathbf{x} = 0$
- 2. Ako je λ nula, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ vrijedi trivijalno. Za $\lambda \neq 0$, imamo card $(\{j \in [N] : |\alpha x_j| \geq t\}) = \text{card}(\{j \in [N] : |x_j| \geq t/|\alpha|\}) \leq (\alpha M)^p/t^p$ za svaki t > 0. Dakle, opet $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$.
- 70 3. $\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$ je sada direktna posljedica prethodne propozicije.
- 71 Sljedeća propozicija daje alternativni izraz za slabu ℓ_p -kvazinormu.

Propozicija 1.1.8. Za p > 0, vrijedi

$$\|\mathbf{x}\|_{p,\infty} = \max_{k \in [N]} k^{1/p} x_k^*$$

72 gdje je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$.

Dokaz. Primjetimo prvo da iz (1.2) slijedi da je $\|\mathbf{x}\|_{p,\infty} = \|\mathbf{x}^*\|_{p,\infty}$, pa zapravo pokazujemo da je $\|\mathbf{x}\| := \max_{k \in [N]} k^{1/p} x_k^* = \|\mathbf{x}^*\|$. Nadalje, za t > 0 vrijedi da je $\{j \in [N] : x_j^* \ge t\} = [k]$ za neki $k \in [N]$ ili je $\{j \in [N] : x_j^* \ge t\} = \emptyset$. U prvom slučaju $t \le x_k^* \le \|\mathbf{x}\|/k^{1/p}$ pa je card $(\{j \in [N] : x_j^* \ge t\}) = k \le \|\mathbf{x}\|/k^{1/p}$. U drugom slučaju ista nejednakost vrijedi trivijalno. Iz definicije slabe ℓ_p -kvazinorme (1.2) sada dobivamo $\|\mathbf{x}^*\|_{p,\infty} \le \|\mathbf{x}\|$. Pretpostavimo da je $\|\mathbf{x}^*\|_{p,\infty} < \|\mathbf{x}\|$. Tada postoji $\varepsilon > 0$ takav da $(1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty} \le \|\mathbf{x}\|$. Slijedi da je $(1+\varepsilon)\|\mathbf{x}^*\| \le k^{1/p}x_k^*$ za neki $k \in [N]$ pa stoga

$$[k] \subseteq \left\{ j \in [N] : (1+\varepsilon) \|\mathbf{x}^*\|_{p,\infty} / k^{1/p} \le x_j^* \right\}$$

Ponovo iz (1.2) imamo

$$k \le \frac{\|\mathbf{x}^*\|_{p,\infty}^p}{\left((1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty}k^{1/p}\right)^p} = \frac{k}{(1+\varepsilon)^p}$$

73 Kontradikcija, dakle mora vrijediti $\|\mathbf{x}\| = \|\mathbf{x}^*\|_{p,\infty}$.

74 Sada lagano možemo usporediti slabi i jaku ℓ_p normu,

Propozicija 1.1.9. Za svaki p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$,

$$\|\mathbf{x}\|_{p,\infty} \le \|\mathbf{x}\|_p$$

Dokaz. Neka je $k \in [N]$,

$$\|\mathbf{x}\|_p^p = \sum_{j=1}^N (x_j^*)^p \ge \sum_{j=1}^k (x_j^*)^p \ge k(x_k^*)^p$$

Tvrdnja slijedi potenciranjem na 1/p i uzimajući maksimum po k i primjenom prethodne propozicije.

Koristeći propoziciju (1.1.8) možemo dobiti verziju ocjene iz propozicije (1.1.4) sa slabom ℓ_p normom.

Propozicija 1.1.10. Za svaki q > p > 0 i $\mathbf{x} \in \mathbb{C}^N$, vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{d_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_{p,\infty}$$

gdje je

$$d_{p,q} := \left(\frac{p}{q-p}\right)^{1/q}.$$

Dokaz. Bez smanjenja opčenitosti možemo pretpostaviti da je $\|\mathbf{x}\|_{p,\infty} \leq 1,$ pa je $x_k^* \leq 1/k^{1/p}$ za svaki $k \in [N].$ Tada vrijedi,

$$\sigma_s(\mathbf{x})_q^q = \sum_{k=s+1}^N (x_k^*)^q \le \sum_{k=s+1}^N \frac{1}{k^{q/p}} \le \int_s^N \frac{1}{t^{q/p}} dt = -\frac{1}{q/p-1} \frac{1}{t^{q/p-1}} \bigg|_{t=s}^{t=N} \le \frac{p}{q-p} \frac{1}{s^{q/p-1}}.$$

79 Potenciranjem sa 1/q slijedi tvrdnja.

Prethodna propozicija daje da su vektori $\mathbf{x} \in \mathbb{C}^N$ koji su kompresibilni u smislu 81 $\|\mathbf{x}\|_{p,\infty} \leq 1$ za mali p > 0, također kompresibilni u smislu da greška njihove najbolje 82 s-rijetke aproksimacije brzo konvergira sa s. Iskažimo još jedan tehnički rezultat,

вз Lema 1.1.11. Neka su $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$. Tada vrijedi,

$$\|\mathbf{x}^* - \mathbf{y}^*\|_{\infty} \le \|\mathbf{x} - \mathbf{y}\|_{\infty} \tag{1.3}$$

84 Nadalje, $za \ s \in [N]$,

$$|\sigma_s(\mathbf{x})_1 - \sigma(\mathbf{y})_1| \le ||\mathbf{x} - \mathbf{y}||_1 \tag{1.4}$$

i za k > s

$$(k-s)x_k^* \le \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1 \tag{1.5}$$

Dokaz. Za $j \in [N]$, skup indeksa j najvećih komponenti vektora \mathbf{x} ima ne-trivijalni presjek sa skupom od N-j+1 najmanjih komponenti vektora \mathbf{y} . Izaberimo indeks l iz tog presjeka. Tada vrijedi,

$$x_i^* \le |x_l| \le |y_l| + \|\mathbf{x} - \mathbf{y}\|_{\infty} \le z_i^* + \|\mathbf{x} - \mathbf{y}\|_{\infty}$$

Zamjenom uloga od ${\bf x}$ i ${\bf y}$ slijedi (1.3). Neka je ${\bf v}\in\mathbb{C}^N$ najbolja s-rijetka aproksimacija vektora ${\bf y}.$ Tada

$$\sigma_s(\mathbf{x})_1 \le \|\mathbf{x} - \mathbf{v}\|_1 \le \|\mathbf{x} - \mathbf{y}\|_1 + \|\mathbf{y} - \mathbf{v}\|_1 = \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1$$

Ponovno, zbog simetrije slijedi (1.4). Napokon, ocjena (1.5) slijedi iz (1.4) te iz činjenice

$$(k-s)x_k^* \le \sum_{j=s+1}^k x_j^* \le \sum_{j\ge s+1} x_j^* = \sigma_s(\mathbf{x})_1.$$

86

87 1.2 Minimalni broj mjerenja

Problem sažetog uzorkovanja sastoji se od rekonstrukcije s-rijetkog vektora $\mathbf{x} \in \mathbb{C}^N$ iz sustava

$$y = Ax$$

Matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ nazivamo matrica mjerenja. Ako je m < N, za ovakav sustav linearnih jednadžbi kažemo da je neodređen. Iako iz klasične teorije linearne algebre ovakvi sustavi imaju beskonačno mnogo riješenja, pokazati će se da je dodatna pretpostavka rijetkosti vektora x dovoljno za jedinstvenost rješenja. U ovom poglavlju istražiti ćemo koji je minimalni broj mjerenja, tj. m broj redaka matrice \mathbf{A} , koji garantira rekonstrukciju s-rijetkog vektora \mathbf{x} . Zapravo, postoje dva pristupa ovom problemu. Možemo zahtjevati da problem mjerenja rekonstruira sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$ istodobno ili možemo tražiti rekonstrukciju specifičnog, tj. predodređenog

- vektora $\mathbf{x} \in \mathbb{C}^N$. Taj pristup čini se neprirodan, no pokazuje se da je on važan u proučavanju problema gdje matricu \mathbf{A} biramo nasumično.
- Pokažimo da su za danu rijetkost s, matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i s-rijedak vektor $\mathbf{x} \in \mathbb{C}^{N}$, naredne tvrdnje ekvivaltentne:
- 100 1. Vektor \mathbf{x} je jedinstveno s-rijetko rješenje sustava $\mathbf{A}\mathbf{z} = \mathbf{y}$ gdje je $\mathbf{y} = \mathbf{A}\mathbf{x}$, tj. $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$
- \mathbf{x} 2. Vektor \mathbf{x} je jedinstveno rješenje problema minimizacije

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}$$
 (1.6)

103 Ako je $\mathbf{x} \in \mathbb{C}^N$ jedinstveno *s*-rijetko rješenje od $\mathbf{Az} = \mathbf{y}$ takvo da je $\mathbf{y} = \mathbf{Ax}$, onda 104 rješenje x^{\sharp} od (1.6) je *s*-rijetko i zadovoljava $\mathbf{Ax} = \mathbf{y}$ pa je $\mathbf{x}^{\sharp} = \mathbf{x}$. Drugi smjer slijedi 105 trivijalno.

66 Rekonstrukcija svih rijetkih vektora

- Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $S \subset [N]$, sa \mathbf{A}_S označujemo matricu formiranu od stupaca od 108 \mathbf{A} indeksiranih sa S. Slično, sa \mathbf{x}_S označujemo ili vektor iz \mathbb{C}^S koji se sastoji od 109 komponenti vektora \mathbf{x} indeksiranih po S, tj. $(\mathbf{x}_S)_l = x_l$ za sve $l \in S$, ili vektor iz 110 \mathbb{C}^N koji se podudara s \mathbf{x} na komponentama indeksiranim u S i jednak je nula na 111 indeksima koji nisu u S, tj. $(\mathbf{x}_S)_l = x_l$ za $l \in S$ i $(\mathbf{x}_S)_l = 0$ za $l \notin S$. Iz konteksta će 112 uvijek biti jasno na koju definiciju se misli.
- 113 **Teorem 1.2.1.** Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$. Ekvivalentno je:
- 114 (a) Svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ je jedinstveno rješenje od $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$, tj. ako je 115 $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ i ako su \mathbf{x} , \mathbf{z} oboje s-rijetki tada $\mathbf{x} = \mathbf{z}$.
- 116 (b) Jezgra od \mathbf{A} ne sadrži niti jedan 2s-rijedak vektor osim nul-vektora, tj. ker $\mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \le 2s\} = \{\mathbf{0}\}$
- 118 (c) Za svaki $S \subset [N]$ takav da $\operatorname{card}(S) \leq 2s$, podmatrica \mathbf{A}_S je injektivna kao preslikavanje sa \mathbb{C}^S u \mathbb{C}^m .
- (d) Svaki skup od 2s stupaca matrice A je linearno nezavisan skup.
- 121 Dokaz. $(b) \implies (a)$. Neka su \mathbf{x} i \mathbf{z} s-rijetki vektori takvi da $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$. Tada 122 je $\mathbf{x} - \mathbf{z}$ 2s-rijedak i $\mathbf{A}(\mathbf{x} - \mathbf{z}) = \mathbf{0}$. Pošto ker \mathbf{A} ne sadrži 2s-rijetke vektore 123 osim nul-vektora, mora vrijediti $\mathbf{x} = \mathbf{z}$.

125 (a) \Longrightarrow (b). Obratno, pretpostavimo da za svaki s-rijetki vektor $\mathbf{x} \in \mathbb{C}^N$ 126 vrijedi $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$. Neka je $\mathbf{v} \in \ker \mathbf{A}$, 2s-127 rijedak. Tada \mathbf{v} možemo rastaviti kao $\mathbf{v} = \mathbf{x} - \mathbf{z}$ gdje su \mathbf{x} i \mathbf{z} s-rijetki takvi da 128 supp $(\mathbf{x}) \cap \text{supp}(\mathbf{z}) = \emptyset$. Imamo da je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ pa prema pretpostavci vrijedi 129 $\mathbf{x} = \mathbf{z}$. Pošto su nosači od \mathbf{x} i \mathbf{z} disjunktni, mora vrijediti $\mathbf{x} = \mathbf{z} = \mathbf{0}$ pa je stoga 130 i $\mathbf{v} = \mathbf{0}$.

131

(b) \Longrightarrow (c). Pretpostavimo suprotno, ker $\mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \leq 2s\} = \{\mathbf{0}\}$ i da postoji $S \in [N]$ takav da je $\operatorname{card}(S) \leq 2s$ te da \mathbf{A}_s nije injektivna. To znači da postoji vektor $\mathbf{x} \in \mathbb{C}^{\operatorname{card}(S)} \setminus \{\mathbf{0}\}$ takav da je $\mathbf{A}_S \mathbf{x} = \mathbf{0}$. Definiramo vektor $\tilde{\mathbf{x}} \in \mathbb{C}^N$ sa

$$\tilde{x}_j = \begin{cases} x_j & \text{za } j \in S \\ 0 & \text{za } j \in \bar{S} \end{cases}$$

Dakle, imamo $\mathbf{x} \neq \mathbf{0}$, $\|\mathbf{x}\|_0 \leq 2s$ i vrijedi $\mathbf{A}\mathbf{x} = 0$, tj. $\mathbf{x} \in \ker \mathbf{A}$. Kontradikcija s (b).

134 $(c) \implies (d)$. Odaberimo 2s stupaca od \mathbf{A} . Skup indeksa tih stupaca označimo sa S. Prema (c), matrica \mathbf{A}_S je injektivna, a to znači da su njeni stupci linearno nezavisni, pa su stoga i 2s odabranih stupaca matrice \mathbf{A} linearno nezavisni.

 $(d) \implies (b)$. Pretpostavimo da jezgra od \mathbf{A} sadrži 2s-rijedak ne-nul vektor $\mathbf{x} \in \mathbb{C}^N$. Neka je S skup indeksa ne-nul elemenata vektora \mathbf{x} . To znači da je $\mathbf{A}_S \mathbf{x}_S = 0$, i $\mathbf{x}_S \neq \mathbf{0}$. Dakle \mathbf{A}_S nije injektivna, pa stoga i skup stupaca od \mathbf{A} indeksiranih sa S nije linearno nezavisan, što je kontradikcija sa (d).

140141

137

138

139

Uočimo da ako je moguče rekonstruirati svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$, tada vrijedi (a). Prema prošlom teoremu tada vrijedi i tvrdnja (d) pa je stoga $rank(\mathbf{A}) \geq 2s$. Također vrijedi da je $rank(\mathbf{A}) \leq m$ pa imamo

$$m > 2s$$
.

- 142 To znači da je potrebno barem 2s mjerenja da bi rekonstruirali svaki s-rijedak vektor.
- Pokazati ćemo da je, makar u teoriji, dovoljno točno 2s mjerenja.
- 144 **Teorem 1.2.2.** Za svaki $N \geq 2s$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{2s \times N}$ takva da se 145 svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ 146 kao rješenje problema minimizacije (1.6).

147 Dokaz. Fiksirajmo $t_N > \cdots t_2 > t_1 > 0$ i neka je $\mathbf{A} \in \mathbb{C}^{2s \times N}$ dana sa

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_N \\ \vdots & \vdots & \cdots & \vdots \\ t_1^{2s-1} & t_2^{2s-1} & \cdots & t_N^{2s-1} \end{bmatrix}$$
(1.7)

Nadalje, neka je $S = \{j_1 < \cdots < j_{2s}\}$ skup indeksa. Matrica $\mathbf{A}_S \in \mathbb{C}^{2s \times 2s}$ je transponirana $Vandermontova\ matrica$. Prema (TODO) slijedi

$$\det(\mathbf{A}_S) = \prod_{k < l} (t_{j_l} - t_{j_k}) > 0.$$

To znači da je matrica \mathbf{A} invertibilna, pa posebno i injektivna. Tada je zadovoljena tvrdnja (c) teorema (1.2.1), pa je po istom teoremu zadovoljena i tvrdnja (a), tj. svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ zadovoljava $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Stoga je taj vektor moguće jedinstveno rekonstruirati putem minimizacije (1.6).

Zapravo, mnogo matrica zadovoljava uvjet (c) iz teorema (1.2.1). Na primjer, potencije od t_1, \ldots, t_N u (1.7) ne moraju biti uzastopne. Nadalje, brojevi t_1, \ldots, t_N ne moraju biti pozitivni, niti realni sve dok vrijedi $\det(\mathbf{A}_S) \neq 0$. Posebno, možemo uzeti $t_l = e^{2\pi i(l-1)/N}$ za $l \in [N]$, teorem (TODO) garantira da parcijalna Fourierova matrica

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{2\pi i/N} & e^{2\pi i2/N} & \cdots & e^{2\pi i(N-1)/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{2\pi i(2s-1)/N} & e^{2\pi i(2s-1)2/N} & \cdots & e^{2\pi i(2s-1)(N-1)/N} \end{bmatrix}$$

rekonstruira svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^{2s}$. Zapravo može se pokazati da skup $(2s) \times N$ matrica takvih da $\det(\mathbf{A}_S) = 0$ za neki $S \subset [N]$ i $\operatorname{card}(S) \leq 2s$ ima Lebesgueovu mjeru nula, pa stoga gotovo sve $(2s) \times N$ matrice rekonstruiraju svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^{2s}$. Međutim u praksi nije isplativo rješavati problem minimizacije (1.6), što ćemo kasnije i pokazati.

157 Rekonstrukcija zadanog rijetkog vektora

Promatramo problem gdje je s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ unaprijed zadan i poznat, a matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ želimo odabrati tako da ona garantira rekonstrukciju vektora \mathbf{x} iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$. Isprva, ovaka pristup izgleda neprirodan zbog činjenice da je vektor \mathbf{x} apriorno poznat. Ideja je da će uvjeti rekonstrukcije vrijediti za gotovo

- sve $(s+1) \times N$ matrice, što podupire činjenicu da se u praksi matrice mjerenja često odabiru na nasumičan način.
- **Teorem 1.2.3.** Za svaki $N \geq s+1$ i za dani s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{(s+1) \times N}$, takva da se vektor \mathbf{x} može rekonstruirati iz mjerenja 164
- $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ kao rješenje minimizacije (1.6).
- Dokaz.167

Bibliografija

Sažetak

170 Ukratko ...

Summary

172 In this ...

$_{173}$ Životopis

174 Dana ...