MATB42: Assignment #8

1. (a) Let $f, g : \mathbb{R}^n \to \mathbb{R}$; $\mathbf{F}, \mathbf{G} : \mathbb{R}^n \to \mathbb{R}^n$; and define Δ , the Laplacian, by $\Delta f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$.

Verify the following identities

(i) $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$.

$$\operatorname{div}(\boldsymbol{F} + \boldsymbol{G}) = \sum_{i=1}^{n} \frac{\partial (F_i + G_i)}{\partial x_i} = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i} + \frac{\partial G_i}{\partial x_i} = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i} + \sum_{i=1}^{n} \frac{\partial G_i}{\partial x_i} = \operatorname{div} \boldsymbol{F} + \operatorname{div} \boldsymbol{G}$$

(ii) $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \operatorname{grad} f$.

$$\operatorname{div}(f\mathbf{F}) = \sum_{i=1}^{n} \frac{\partial f F_{i}}{\partial x_{i}} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} F_{i} + \frac{\partial F_{i}}{\partial x_{i}} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} F_{i} + f \sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{i}} = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$$

(iii) $\Delta(fg) = f\Delta g + g\Delta f + 2(\text{grad}f) \cdot (\text{grad}g)$.

$$\begin{split} \Delta(fg) &= \sum_{i=1}^n \frac{\partial^2 fg}{\partial^2 x_i} \\ &= \sum_{i=1}^n \frac{\partial}{\partial x_i} \left[\frac{\partial f}{\partial x_i} g + \frac{\partial g}{\partial x_i} f \right] \\ &= \sum_{i=1}^n \left[\frac{\partial f}{\partial^2 x_i} g + \left(\frac{\partial f}{\partial x_i} \cdot \frac{\partial g}{\partial x_i} \right) + \frac{\partial g}{\partial^2 x_i} f + \left(\frac{\partial f}{\partial x_i} \cdot \frac{\partial g}{\partial x_i} \right) \right] \\ &= g \sum_{i=1}^n \frac{\partial f}{\partial^2 x_i} + 2 \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \cdot \frac{\partial g}{\partial x_i} \right) + f \sum_{i=1}^n \frac{\partial g}{\partial^2 x_i} \\ &= g \Delta f + 2 [\nabla f \cdot \nabla g] + f \Delta g \end{split}$$

(b) Let $f,g:D\subset\mathbb{R}^3\to\mathbb{R}$ be of class C^1 . If R is a solid region contained in D then

$$\iiint_R \nabla f \cdot \nabla g \, dV = \iint_{\partial R} f \nabla g \cdot \boldsymbol{n} \, dS - \iiint_R f \nabla^2 g \, dV$$
$$(\nabla^2 g = \text{div } (\nabla g)).$$

- 2. Use the Divergence Theorem to verify your asswer to question 7 on assignment 8.
- 3. Let $\mathbf{F}(x,y,z) = (x,y^2,e^{yz})$ and let R be a cube centered at the origin with sides of length 2. Evaluate $\int_S \operatorname{div} \mathbf{F} \, dV$ directly and by using the Divergence Theorem. Directly:

$$\int_{S} \operatorname{div} \mathbf{F} \, dV = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} 1 + 2y + y e^{yz} \, dx \, dz \, dy$$
$$= \int_{-1}^{1} \int_{-1}^{1} 2 + 4y + 2y e^{yz} \, dz \, dy$$
$$= \int_{-1}^{1} 4 + 8y + \left[e^{yz} \right]_{-1}^{1} dy$$

- 4. Let B be the pyramid with top vertex (0,0,1) and base vertices (0,0,0), (1,0,0), (0,1,0) and (1,1,0). Let S be the 2-dim closed surface bounding B, oriented in the outward direction. Use Gauss' theorem to calculate $\int_{S} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = (x^2y, 3y^2z, 9z^2x)$.
- 5. Use the Divergence Theorem to evaluate $\int_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = \left(z^2x, \frac{y^3}{3} + \tan z, x^2z + y^2\right)$ and S is the top half of the unit sphere $x^2 + y^2 + z^2 = 1$, oriented by the unit normalwhich points away from the origin.
- 6. Let the electric field from a point source at the origin be given by $E(x) = \frac{x}{\|x\|^3}$
 - (a) What is the outward flux of \boldsymbol{E} across the surface $\frac{x^2}{3} + \frac{2y^2}{5} + z^2 = 7$.
 - (b) Show that the flux of E across that part of the sphere $x^2 + y^2 + z^2 = 25$ with $z \ge 3$ is equal to the flux across that part of the plane z = 3 with $x^2 + y^2 \le 16$.
- 7. Let $f:\mathbb{R}^n\to\mathbb{R}$ be given by $f(x,y,z)=x^2yz$ and let η be the 2-form on \mathbb{R}^3 given by

$$\eta = (\sin x) \, dx \, dy + (e^y + xyz) \, dx \, dz + (x^2y^2) \, dy \, dz.$$

- (a) Compute df and $d\eta$.
- (b) Evaluate $df \wedge \eta$.