Statistical Computing: Homework 6

凌浩东 18307110171

Question 1 Prove the following results about conjugate priors in Bayesian analysis.

(a) Beta distribution is the conjugate prior for the success probability parameter p of a geometric distribution. That is, let the prior of p be $Beta(\alpha, \beta)$. Given n independent and identically distributed random samples X_1, \dots, X_n from the geometric distribution with parameter p, then the posterior distribution of p is still Beta. Recall that the probability density function of $Beta(\alpha, \beta)$ is

$$f(y) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}, \ 0 \le y \le 1 \ and \ \alpha, \ \beta > 0$$

Answer 1(a)

The poterior distribution of p is

$$P(p \mid X_1, \dots, X_n) \propto \pi(p) f(X_1, \dots, X_n \mid p)$$

$$= \pi(p) \prod_{i=1}^n f(X_i \mid p)$$

$$\propto p^{\alpha - 1} (1 - p)^{\beta - 1} \prod_{i=1}^n (1 - p)^{X_1} p$$

$$= p^{\alpha + n - 1} (1 - p)^{\beta - 1 + \sum_i X_i}$$

$$\Rightarrow Beta \left(\alpha + n, \beta + \sum_{i=1}^n X_i \right)$$

which is still Beta.

(b) Inverse Gamma (IG) distribution is the conjugate prior for variance parameter σ^2 of a normal distribution with known mean parameter μ_0 . That is, let the prior of σ^2 be $IG(\alpha, \beta)$. Given n independent and identically distributed random samples X_1, \dots, X_n from $N(\mu_0, \sigma^2)$, then the posterior distribution of σ^2 is still IG. Recall that the probability density function of Inverse $Gamma(\alpha, \beta)$ is

$$f(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{y}\right)^{\alpha+1} e^{-\frac{\beta}{y}}, \ y > 0 \ and \ \alpha, \ \beta > 0$$

Answer 1(b)

The posterior distribution of σ^2 is

$$P(\sigma^{2}|X_{1}, \dots, X_{n}) \propto \pi(\sigma^{2}) f(X_{1}, \dots, X_{n}|\sigma^{2})$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} e^{-\frac{\beta}{\sigma^{2}}} \frac{1}{\left(\sqrt{2\pi\sigma^{2}}\right)^{n}} exp\left\{-\frac{\sum_{i} (X_{i} - \mu_{0})^{2}}{2\sigma^{2}}\right\}$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{\alpha+\frac{n}{2}+1} e^{-\frac{2\beta + \sum_{i} (X_{i} - \mu_{0})^{2}}{2\sigma^{2}}}$$

$$\sim IG\left(\alpha + \frac{n}{2}, \beta + \frac{\sum_{i} (X_{i} - \mu_{0})^{2}}{2}\right)$$

which is still IG.

Question 2 Consider the Bayesian estimation of the success probability parameter for a rare

event. Suppose n i.i.d. Bernoulli experiments with success probability $\theta \in [0,1]$ are conducted. Then the number of successes y follows a binomial distribution $Bin(n,\theta)$. Our interest is in estimating θ . Take Beta(a,b) as a prior for θ .

(a) Derive the posterior distribution $\theta | y$.

Answer 2(a)

The posterior distribution is

$$P(\theta|y) \propto \pi(\theta)f(y|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1}\theta^{y}(1-\theta)^{n-y}$$

$$= \theta^{\alpha+y-1}(1-\theta)^{n-y+\beta-1}$$

$$\sim Beta(\alpha+y, n-y+\beta)$$

which is still Beta dstribution.

(b) Express the posterior mean of $\theta|y$ as a linear combination of the sample average $\overline{y} = \frac{y}{n}$ and the prior expectation of θ .

Answer 2(b)

the prior expectation of θ is $\mathbb{E}(\theta) = \frac{\alpha}{\alpha + \beta}$.

$$\mathbb{E}(\theta|y) = \frac{\alpha + y}{\alpha + \beta + n}$$

$$= \frac{(\alpha + \beta)\mathbb{E}(\theta) + n\overline{y}}{\alpha + \beta + n}$$

$$= \frac{\alpha + \beta}{\alpha + \beta + n}\mathbb{E}(\theta) + \frac{n}{\alpha + \beta + n}\overline{y}$$

(c) Comment on the effect of \overline{y} on the shift of the posterior from the prior.

Answer 2(c)

if $\overline{y} > \mathbb{E}(\theta)$, i.e. the mean success ratio of the n i.i.d. Bernoulli experiments greater than the expected success probability of prior, which shows that the experiemnt result is more "positive" than prior guess, the expectation of posterior will increase;

if $\overline{y} < \mathbb{E}(\theta)$, the expectation of $\theta | y$ will decrease.