

Round 2 2009

A. Crazy Rows

B. A Digging Problem

C. Stock Charts

D. Watering Plants

Contest Analysis

Questions asked

Submissions

Crazy Rows

6pt Not attempted 1837/2092 users correct (88%)

10pt | Not attempted 1605/1744 users correct (92%)

A Digging Problem

9pt Not attempted 193/388 users correct (50%)

Not attempted 70/152 users correct (46%)

Stock Charts

7pt Not attempted 741/1384 users correct (54%)

21pt Not attempted 355/537 users correct (66%)

Watering Plants

5pt Not attempted 1251/1420 users correct (88%)

Not attempted 64/226 users correct (28%)

Top Scores	
ACRush	100
winger	100
iwi	100
wata	100
bwps	100
natalia	100
Burunduk1	100
AS1	100
Khuc.Anh.Tuan	100
Nerevar	100

Problem A. Crazy Rows

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the <u>Quick-Start Guide</u> to get started.

Small input 6 points

Solve A-small

Large input 10 points

Solve A-large

Problem

You are given an ${\bf N}$ x ${\bf N}$ matrix with 0 and 1 values. You can swap any two *adjacent* rows of the matrix.

Your goal is to have all the 1 values in the matrix below or on the main diagonal. That is, for each X where $1 \le X \le N$, there must be no 1 values in row X that are to the right of column X.

Return the minimum number of row swaps you need to achieve the goal.

Input

The first line of input gives the number of cases, \mathbf{T} . \mathbf{T} test cases follow. The first line of each test case has one integer, \mathbf{N} . Each of the next \mathbf{N} lines contains \mathbf{N} characters. Each character is either 0 or 1.

Output

For each test case, output

Case #X: K

where ${\bf X}$ is the test case number, starting from 1, and ${\bf K}$ is the minimum number of row swaps needed to have all the 1 values in the matrix below or on the main diagonal.

You are guaranteed that there is a solution for each test case.

Limits

 $1 \le \mathbf{T} \le 60$

Small dataset

 $1 \le N \le 8$

Large dataset

 $1 \le N \le 40$

Sample

Input Output 3		
2	Input	Output
3 001 100 010 4 1110 1100 1100	2 10 11 3 001 100 010 4 1110 1100	Case #2: 2

