Sparsity and Connectivity

Introduction to Network Science Carlos Castillo Topic 05

Contents

- Degree
- Sparsity
- Bi-partite networks
- Connectedness

Sources

- Albert László Barabási: Network Science.
 Cambridge University Press, 2016.
 - Follows almost section-by-section chapter 02
- URLs cited in the footer of specific slides

Real networks are sparse

• Theoretically
$$L_{\max} = {N \choose 2} = \frac{N(N-1)}{2}$$

• Most real networks are sparse, i.e., $L \ll L_{\rm max}$

How sparse are some networks?

Network	[V]	[E]	Max E
Zachary's Karate Club	34	78	561
Les Misérables	77	254	2962
E-mail exchanges	868	25K	376K
US companies ownership	1351	6721	911K
Marvel comics	6K	167K	17M

Example: protein interaction network

(N=2K, L=3K)

6

Example: dolphins

(N=62, L=318)

Why are networks sparse?

- Different mechanisms, think about it from the node perspective:
 - How many items could the node be connected to
 - Would it be realistic to connect to a large fraction of them?
- In social networks, Dunbar's number (\approx 150)

Example: actual friends in Twitter vs people you follow in Twitter

Weighted networks

- In weighted networks, instead of $A_{ij} \in [0,1]$
- We have that $A_{ij} \in \mathbb{R}$
- Weights may represent different tie strengths

Example: weighted networks

EU imports (top) and exports (bottom) of wine

Bipartite networks

A bipartite graph is a graph
 G = (V,E) such that

$$V = V_L \cup V_R, V_L \cap V_R = \emptyset, E \subseteq V_L \times V_R$$

Exercise: project a bipartite network

?

Left projection:
graph where nodes
are 1, 2, ..., 7 and
nodes are connected
if they share a
neighbor

Draw in Nearpod Collaborate https://nearpod.com/student/ Code to be given during class

?

Right projection: graph where nodes are A, B, ..., D and nodes are connected if they share a neighbor

network artite

Clique and Bi-partite clique

- A clique is a complete (sub)graph: $E = (V \times V)$
- An **n-clique** is a complete graph of n nodes
- A bi-partite clique is such that

$$V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset, E = (V_1 \times V_2)$$

• A (n₁, n₂)-clique is a bipartite clique such that

$$|V_1| = n_1, |V_2| = n_2$$

The word "clique" in popular culture

In some parts of Latin America, a "clika" or "clica" means a close group of friends, sometimes a gang

Photo credit: @astro_jr

Paths and distances

Paths

- A path is a sequence of edges from E
- The destination of each edge is the origin of the next edge
- The length of the path is the number of edges on it
- Example: a path marked in orange, having length 5

Connectedness

- If a path exists between two nodes i, j:
 - those nodes are part of the same connected component
- A graph that has only one connected component is called a connected graph

Connected graphs

A disconnected graph has an adjacency matrix that can be arranged in block diagonal form

Distance

- If two nodes i, j are in the same connected component:
 - the distance between i and j, denoted by d_{ij} is the length of the shortest path between them

Diameter

- The diameter of a network is the maximum distance between two nodes on it, d_{max}
- The effective diameter (or effective-90% diameter) is a number d such that 90% of the pairs of nodes (i,j) are at a distance smaller than d
- The average distance is <d>, and is measured only for nodes that are in the same connected component

Summary

Things to remember

- Definitions:
 - Degree, in-degree, out-degree
 - Bi-partite graph, clique
 - Sparse vs dense graph
- Distance, diameter, effective diameter
- Connected components

Practice on your own

- Measure the sparsity of a graph $L/L_{
 m max}$
- Compute the distance between two nodes
- Compute the diameter of a graph
- Identify connected components