The Winding Number of a Closed Curve

Jorge Carrasco and Juan Antonio Montalbán

Formalisation project in LEAN4

January 21, 2025

Complex curves in LEAN

2 Definition of the winding number in LEAN

3 Some results formalised

The winding number is an integer

5 Future work

Conclusion

Reminder on complex curves

Definition

A curve is a map

$$\gamma: [0,1] \longrightarrow \mathbb{C}$$

which is continuously differentiable, i.e., $\gamma \in \mathcal{C}^1([0,1])$. The curve is said to be **closed** if $\gamma(0) = \gamma(1)$.

In LEAN4, we have defined it as follows:

structure curve where

 $\mathtt{toFun}:\,\mathbb{R}\to\mathbb{C}$

class_c1 : ContDiff $\mathbb R$ 1 toFun

instance:

CoeFun curve fun $_\mapsto \mathbb{R} \to \mathbb{C} := \langle \mathtt{fun} \ \mathtt{f} \mapsto \mathtt{f.toFun} \rangle$

structure closed_curve **extends** curve **where** closed: toFun 0 = toFun 1.

Definition of ω , the winding number

Definition

Let γ be a closed curve and $z_0 \in \mathbb{C}$ satisfying $z_0 \notin \operatorname{im} \gamma$. The **winding number** of γ around z_0 is given by

$$\omega(z_0,\gamma)=\frac{1}{2\pi i}\int_{\gamma}\frac{dw}{w-z_0}=\int_0^1\frac{\gamma'(t)}{\gamma(t)-z_0}dt.$$

 $\textbf{noncomputable def} \ \ \omega \ \ (\textbf{\textit{z}} : \mathbb{C}) \ (\gamma : \texttt{closed_curve}) : \mathbb{C} :=$

$$\frac{1}{2 \cdot \texttt{Real.pi} \cdot \texttt{Complex.I}} \int \texttt{t} \text{ in I, } \frac{\texttt{deriv } \gamma(t)}{\gamma(t) - z}.$$

A list of useful lemmas

- A list of useful lemmas
- The interior and exterior of a curve

Winding numbers in the circle

Winding numbers in the circle

Theorem (Winding outside the circle)

Let
$$\gamma(t)=e^{2\pi it}$$
 and $z_0\in\mathbb{C}$ satisfying $\|z_0\|>1$. Then,

$$\omega(z_0,\gamma)=0.$$

Winding numbers in the circle

Theorem (Winding outside the circle)

Let
$$\gamma(t)=e^{2\pi it}$$
 and $z_0\in\mathbb{C}$ satisfying $\|z_0\|>1.$ Then,

$$\omega(z_0,\gamma)=0.$$

Theorem (Winding inside the circle)

Let
$$\gamma(t)=e^{2\pi it}$$
 and $z_0\in\mathbb{C}$ satisfying $\|z_0\|<1$. Then,

$$\omega(z_0,\gamma)=1.$$

Theorem

$$\omega(z_0,\gamma)\in\mathbb{Z}.$$

Theorem

Let γ be a closed curve and $z_0 \in \mathbb{C}$ satisfying $z_0 \notin \text{im} \gamma$. Then,

$$\omega(z_0,\gamma)\in\mathbb{Z}.$$

① Define $g(t) = \int_0^t \frac{\gamma'(s)}{\gamma(s)-z_0} ds$, $\psi(t) = e^{-g(t)} \cdot (\gamma(t)-z_0)$.

Theorem

$$\omega(z_0,\gamma)\in\mathbb{Z}.$$

- **1** Define $g(t) = \int_0^t \frac{\gamma'(s)}{\gamma(s) z_0} ds, \psi(t) = e^{-g(t)} \cdot (\gamma(t) z_0).$
- **2** Prove $\psi'(t) = 0, \forall t \in [0, 1].$

Theorem

$$\omega(z_0,\gamma)\in\mathbb{Z}.$$

- **1** Define $g(t) = \int_0^t \frac{\gamma'(s)}{\gamma(s) z_0} ds, \psi(t) = e^{-g(t)} \cdot (\gamma(t) z_0).$
- **2** Prove $\psi'(t) = 0, \forall t \in [0, 1].$
- **3** (2) + ψ continuous $\implies \psi(0) = \psi(1)$.

Theorem

$$\omega(z_0,\gamma)\in\mathbb{Z}.$$

- **1** Define $g(t) = \int_0^t \frac{\gamma'(s)}{\gamma(s) z_0} ds, \psi(t) = e^{-g(t)} \cdot (\gamma(t) z_0).$
- **2** Prove $\psi'(t) = 0, \forall t \in [0, 1].$
- **3** (2) + ψ continuous $\implies \psi(0) = \psi(1)$.
- $e^{-g(1)} = 1.$

Theorem

$$\omega(z_0,\gamma)\in\mathbb{Z}.$$

- **1** Define $g(t) = \int_0^t \frac{\gamma'(s)}{\gamma(s) z_0} ds, \psi(t) = e^{-g(t)} \cdot (\gamma(t) z_0).$
- **2** Prove $\psi'(t) = 0, \forall t \in [0, 1].$
- **3** (2) + ψ continuous $\implies \psi(0) = \psi(1)$.
- $e^{-g(1)} = 1.$
- $(4) \implies \exists k \in \mathbb{Z}, g(1) = 2k\pi i$, and so

$$\omega(z_0,\gamma)=rac{g(1)}{2\pi i}=k\in\mathbb{Z}.$$

Future work

Theorem (Winding number is continuous)

The function $z \mapsto \omega(z, \gamma)$ is continuous in $\mathbb{C} \setminus \text{im}\gamma$.

Future work

Theorem (Winding number is continuous)

The function $z \mapsto \omega(z, \gamma)$ is continuous in $\mathbb{C} \setminus \text{im}\gamma$.

Theorem

The winding number of the **reverse curve** is equal to the winding number of the original curve, but with opposite sign.

Conclusion

Conclusion

Thank you for listening!