

Idea Presentation

Ahmed Kaddah, Marlon Müller, Shao Jie Hu Chen Edge Computing and the Internet of Things Technische Universität München München, 03.11.2023

Objectives and Motivation

Objectives

- Microcontrollers equipped with microphones for recording bird calls
- Local classification (e.g. of native species) using deep learning
- Aggregated statistics accessible to researchers, hikers etc.

Motivation

- Automation enables efficient data collection, reduced human intervention and real-time monitoring
- Essential for accurately studying bird populations, behaviours,
 migration patterns, and general ecosystem health
- Casual interest: tourism, hiking ...

Requirement Analysis

- Requires local / edge computing to minimize data transmission
- Requires ability to scale for large-scale data collection
- Requires energy-efficient operation due to remote deployment
- Requires embedded and low-level development
- Requires the utilization of sensors and actuators

(Initial) Architecture

Bioacoustic Classification

Kortas M. and MikołajczykA., SOUND-BASED BIRD CLASSIFICATION, Towards Data Science, 2020

Datasets

Available data,

- often crowdsourced (bias!)
- may include environment noise
- typically tailored to location or species

Examples

- Xeno-canto (global, crowdsourced)
- Cornell Lab of Ornithology
- Macaulay Library
- Chernobyl PolandNFC

Xeno-canto

. .

Gantt Chart

Week of	27.10	03.11	10.11	17.11	24.11	01.12	08.12	15.12	22.12	29.12	05.01	12.01	19.01	26.01	02.02	09.02
1. PROJECT DEVELOPMENT																
1.1. Idea conception																
1.2. Hardware + Software Analysis																
1.3. Design and Development																
1.3.1. Sprint 1																
1.3.2. Sprint 2																
1.3.3. Sprint 3																
1.3.4. Sprint 4																
1.4. Documentation																
2. PROTOTYPE																
2.1. Initial Prototype																
2.2. Adjustments to Prototype																
2.3. Prototype Tuning (if any)																
3. MEASUREMENTS																
3.1. Initial Measurements																
3.2. Intermediate Measurements																
3.2. Final Measurements																
4. PRESENTATIONS																
4.1. Interim Demo																
4.2. Final Demo																
4.3. Final Report																

Goals (before Christmas)

Now

- Initial measurements (e.g., CNN size), literature research and architecture design
- Analyse the hardware requirements (RAM, electricity, compatibility, etc.)
- Analyse the software requirements (languages to use, testing methods, etc.)

Sprint 1

- Develop components in isolation (including tests)
- Craft preliminary version of the project prototype

Sprint 2

- Integrate the components (including tests)
- Assemble a fully functional prototype of project (including performance measurements)
- (Construct a rudimentary website)

Goals (after Christmas)

Sprint 3

- Troubleshoot and rectify any issues
- Add non-essential features (including tests)
- Cloud connection
- Finalize website / API

Sprint 4

- Finetuning
- Perform final measurements and in-depth analysis

