Core:

Given a game $v \in G^N$, the core of v is the set of all imputations x in I(c) such that $x(S) \ge v(s)$ for all non-empty coalitions $S \subset N$. The core of a game $v \in G^N$ is denoted by C(v).

Example 1

coalitions	v()
Ø	0
{1}	$v(\{1\})=0$
{2}	$v(\{2\})=0$
{3}	$v(\{3\})=0$
$\{1, 2\}$	$v(\{1,2\})=1$
$\{1, 3\}$	$v(\{1,3\})=1$
{2,3}	$v({2,3}) = 1$
$\{1, 2, 3\}$	$v(\{1,2,3\})=3$

We want to find the core allocation of the above coalition game.

We have
$$v(\{1\}) = 0 \le x_{A_1}$$
, $v(\{2\}) = 0 \le x_{A_2}$, $v(\{3\}) = 0 \le x_{A_3}$. $v(\{1,2\}) = 1 \le x_{A_1} + x_{A_2}$, $v(\{1,3\}) = 1 \le x_{A_1} + x_{A_3}$, $v(\{2,3\}) = 1 \le x_{A_2} + x_{A_3}$. $v(\{1,2,3\}) = 3 \le x_{A_1} + x_{A_2} + x_{A_3}$.

Substituting
$$v(\{2,3\}) = 1 \le x_{A_2} + x_{A_3}$$
 in $v(\{1,2,3\}) = 3 = x_{A_1} + x_{A_2} + x_{A_3}$. We have $2 \ge x_{A_1}$, similarly we get $2 \ge x_{A_2}$ and $2 \ge x_{A_3}$. Therefore, core allocations are $2 \ge x_{A_1} \ge 0$, $2 \ge x_{A_2} \ge 0$, $2 \ge x_{A_3} \ge 0$ and $3 = x_{A_1} + x_{A_2} + x_{A_3}$. It is shown in figure 1 and 2.

Example 2

coalitions	v()
Ø	0
{1}	$v(\{1\})=1$
{2}	$v(\{2\})=1$
{3}	$v({3}) = 1$
$\{1, 2\}$	$v(\{1,2\})=2$
$\{1, 3\}$	$v(\{1,3\})=2$
$\{2, 3\}$	$v({2,3}) = 2$
$\{1, 2, 3\}$	$v(\{1,2,3\}) = 3$

We want to find the core allocation of the above coalition game.

We have
$$v(\{1\}) = 1 \le x_{A_1}$$
, $v(\{2\}) = 1 \le x_{A_2}$, $v(\{3\}) = 1 \le x_{A_3}$. $v(\{1,2\}) = 2 \le x_{A_1} + x_{A_2}$, $v(\{1,3\}) = 2 \le x_{A_1} + x_{A_3}$, $v(\{2,3\}) = 2 \le x_{A_2} + x_{A_3}$. $v(\{1,2,3\}) = 3 \le x_{A_1} + x_{A_2} + x_{A_3}$.

Substituting
$$v(\{2,3\}) = 2 \le x_{A_2} + x_{A_3}$$
 in $v(\{1,2,3\}) = 3 = x_{A_1} + x_{A_2} + x_{A_3}$. We have $1 \ge x_{A_1}$, similarly we get $1 \ge x_{A_2}$ and $1 \ge x_{A_3}$.

And we have

$$v(\{1\}) = 1 \le x_{A_1}, \ v(\{2\}) = 1 \le x_{A_2}, \ v(\{3\}) = 1 \le x_{A_3}.$$

Therefore, core allocation is $(x_{A_1}, x_{A_2}, x_{A_3}) = (1, 1, 1)$. See figure 3 and 4.

Example 3

l l	
coalitions	v()
Ø	0
{1}	$v(\{1\})=1$
{2}	$v({2}) = 1$
{3}	$v({3}) = 1$
$\{1, 2\}$	$v(\{1,2\})=2$
$\{1, 3\}$	$v(\{1,3\})=2$
$\{2, 3\}$	$v({2,3}) = 2$
$\{1, 2, 3\}$	$v({1,2,3}) = 4$

We want to find the core allocation of the above coalition game.

We have
$$v(\{1\}) = 1 \le x_{A_1}$$
, $v(\{2\}) = 1 \le x_{A_2}$, $v(\{3\}) = 1 \le x_{A_3}$. $v(\{1,2\}) = 2 \le x_{A_1} + x_{A_2}$, $v(\{1,3\}) = 2 \le x_{A_1} + x_{A_3}$, $v(\{2,3\}) = 2 \le x_{A_2} + x_{A_3}$. $v(\{1,2,3\}) = 4 \le x_{A_1} + x_{A_2} + x_{A_3}$.

Substituting
$$v(\{2,3\})=2\leq x_{A_2}+x_{A_3}$$
 in $v(\{1,2,3\})=4=x_{A_1}+x_{A_2}+x_{A_3}$. We have $2\geq x_{A_1}$, similarly we get $2\geq x_{A_2}$ and $2\geq x_{A_3}$.

And we have

$$v(\{1\}) = 1 \le x_{A_1}, \ v(\{2\}) = 1 \le x_{A_2}, \ v(\{3\}) = 1 \le x_{A_3}.$$

Therefore, core allocation are

$$2 \ge x_{A_1} \ge 1$$
, $2 \ge x_{A_2} \ge 1$, $2 \ge x_{A_3} \ge 1$ and $4 = x_{A_1} + x_{A_2} + x_{A_3}$ It is shown in figure 5 and 6.

Example 4

Suppose one person A owns an old car which values nothing to him. There are two potential buyers, Buyer B values it at 1000 and buyer C values it at 1050. The trade between these people can be analysed based on coalition formation.

Coalitions	Value or worth of coalitions
{ <i>A</i> }	0
{ <i>B</i> }	0
{ <i>C</i> }	0
$\{A,B\}$	1000
{ <i>A</i> , <i>C</i> }	1050
{ <i>B</i> , <i>C</i> }	0
$\{A,B,C\}$	1050
$\{\emptyset\}$	0

What is the core allocation?

We have
$$x_A \ge 0$$
, $x_B \ge 0$, $x_C \ge 0$, $x_A + x_B \ge 1000$, $x_A + x_C \ge 1050$, $x_B + x_C \ge 0$ $x_A + x_B + x_C \ge 1050$.

Substituting
$$x_A + x_C \ge 1050$$
 in $x_A + x_B + x_C = 1050$, we get $x_B \le 0$. We have $x_B \ge 0$, thus $x_B = 0$. Substituting $x_A + x_B \ge 1000$ in $x_A + x_B + x_C = 1050$, we get $x_C \le 50$. We have $x_C \ge 0$, thus $50 \ge x_C \ge 0$. From this we get the core allocation as $C(v) = \{(x_A, x_B, x_C) = (1050 - d, 0, d) | 0 < d < 50\}$.