Single Neuron Modeling:Simplified models

Introduction

The Hodgkin-Huxley Model:

$$\begin{split} c\frac{\mathrm{d}V}{\mathrm{d}t} &= -\bar{g}_{\mathrm{Na}} m^3 h \left(V - E_{\mathrm{Na}}\right) - \bar{g}_{\mathrm{K}} n^4 \left(V - E_{\mathrm{K}}\right) - \bar{g}_{\mathrm{L}} \left(V - E_{\mathrm{L}}\right) + I_{\mathrm{ext}}, \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \phi \left[\alpha_n(V)(1-n) - \beta_n(V)n\right] \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \phi \left[\alpha_m(V)(1-m) - \beta_m(V)m\right], \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \phi \left[\alpha_h(V)(1-h) - \beta_h(V)h\right], \\ \alpha_n(V) &= \frac{0.01(V+55)}{1-\exp\left(-\frac{V+55}{10}\right)}, \quad \beta_n(V) = 0.125 \exp\left(-\frac{V+65}{80}\right), \\ \alpha_h(V) &= 0.07 \exp\left(-\frac{V+65}{20}\right), \quad \beta_h(V) = \frac{1}{\left(\exp\left(-\frac{V+35}{10}\right) + 1\right)}, \\ \alpha_m(V) &= \frac{0.1 \left(V+40\right)}{1-\exp\left(-(V+40)/10\right)}, \quad \beta_m(V) = 4 \exp\left(-(V+65)/18\right). \\ \phi &= Q_{10}^{(T-T_{\mathrm{base}})/10} \end{split}$$

Weakness: computationally expensive

Huang YT, et al. PLoS One. 2017

The Leaky Integrate-and-Fire(LIF) Neuron model

• The LIF neuron model

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\mathrm{rest}}) + RI(t)$$
 if $V > V_{\mathrm{th}}$, $V \leftarrow V_{\mathrm{reset}}$ last t_{ref}

$$\uparrow$$
Refractory period

Equivalent circuit: $\begin{array}{c|c} I(t) \\ \hline C \\ \hline \\ V_{\rm rest} \end{array}$

Comparing to the HH model:

 $c\frac{\mathrm{d}V}{\mathrm{d}t} = -\bar{g}_{\mathrm{Na}}m^{3}h\left(V - E_{\mathrm{Na}}\right) - \bar{g}_{\mathrm{K}}n^{4}\left(V - E_{\mathrm{K}}\right) - \bar{g}_{\mathrm{L}}\left(V - E_{\mathrm{L}}\right) + I_{\mathrm{ext}},$

Refractory period(不应期,重置时间,膜电位不会改变)

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\mathrm{rest}}) + RI(t)$$

if
$$V > V_{\text{th}}$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Comparing to the HH model:

The dynamic features of the LIF model

General solution (constant input):
$$V(t) = V_{\text{reset}} + RI_c(1 - e^{-\frac{t-t_0}{\tau}})$$

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\mathrm{rest}}) + RI(t)$$
if $V > V_{\mathrm{th}}$, $V \leftarrow V_{\mathrm{reset}}$ last t_{ref}

Firing frequency:
$$T = -\tau \ln \left(1 - \frac{V_{\rm th} - V_{\rm rest}}{RI_{\rm c}}\right)$$

$$f = \frac{1}{T + t_{\rm ref}} = \frac{1}{t_{\rm ref} - \tau \ln \left(1 - \frac{V_{\rm th} - V_{\rm rest}}{RI_{\rm c}}\right)}$$

Rheobase current (minimal current):

$$I_{\theta} = \frac{V_{\text{th}} - V_{\text{reset}}}{R}$$

- $V_{reset} + RI_c$ 要大于 V_{th} 才能持续放电
- 可以求出 I_c的最小值
- Strengths&weaknesses of the LIF model
 - Strengths:
 - Simple, high simulation Efficiency
 - Intuitive
 - Fits well the subthreshold membrane potential
 - Weakness
 - The shape of action potentials is over-simplified
 - has no memory of the spiking history
 - Cannot reproduce diverse firing patterns

200

t (ms)

300

100

•

- Other Univariate neuron models
 - The Quadratic Integrate-and-Fire (QIF) model:

-50

-60

$$\begin{split} \tau \frac{\mathrm{d}V}{\mathrm{d}t} &= a_0 (V - V_{\mathrm{rest}}) (V - V_{\mathrm{c}}) + RI(t) \\ & \text{if } V > \theta, \quad V \leftarrow V_{\mathrm{reset}} \text{ last } t_{\mathrm{ref}} \end{split}$$

-60

-80

400

• The Theta neuron model:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 - \cos\theta + (1 + \cos\theta)(\beta + I(t))$$

.

• The Exponential Integrate-and-Fire (ExpIF) model:

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -\left(V - V_{\mathrm{rest}}\right) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} + RI(t)$$
if $V > \theta$, $V \leftarrow V_{\mathrm{reset}}$ last t_{ref}

•

Two variables:

• V: membrane potential

• w: adaptation variable

$$\tau_m \frac{\mathrm{d}V}{\mathrm{d}t} = -\left(V - V_{\text{rest}}\right) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} - Rw + RI$$

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \end{split}$$

if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

- A larger w suppresses V from increasing
- ullet w decays exponentially while having a sudden increase when the neuron fires

达到阈值之后w变为(w+b)

firing patterns

Firing patterns of the AdEx model:

Categorization of firing patterns

Markram H, et al. Nat Rev Neurosci. 2004

- Accoring to the steady-state firing time intervals
 - Tonic/regular spiking
 - Adapting
 - Bursting
 - Irregular spiking
- According to the intial-state features:
 - Tonic/classic spiking
 - initial burst
 - Delayed spiking
- Other multivarite neuron models
 - 从二次整合发放演化来的Izhikevich model

• The Izhikevich model:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.04V^2 + 5V + 140 - u + I$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = a \ (bV - u)$$
if $V > \theta$, $V \leftarrow c$, $u \leftarrow u + d$ last t_{ref}

•

• 没有人为的重置(保持连续性)

• The FitzHugh-Nagumo (FHN) model

$$\dot{v}=v-rac{v^3}{3}-w+RI_{
m ext} \
onumber \ au\dot{w}=v+a-bw.$$

•

• (n+2) 个变量

• The Generalized Integrate-and-Fire (GIF) model:

$$\begin{split} \tau \frac{\mathrm{d}V}{\mathrm{d}t} &= -(V - V_{\mathrm{rest}}) + R \sum_{j} I_{j} + RI \\ \frac{\mathrm{d}\Theta}{\mathrm{d}t} &= a \left(V - V_{\mathrm{rest}}\right) - b \left(\Theta - \Theta_{\infty}\right) \\ \frac{\mathrm{d}I_{j}}{\mathrm{d}t} &= -k_{j}I_{j}, \quad j = 1, 2, ..., n \end{split}$$

$$\text{if } V > \Theta, \quad I_{i} \leftarrow R_{i}I_{i} + A_{i}, \quad V \leftarrow V_{\mathrm{cost}}, \quad \Theta \leftarrow \max\left(\Theta_{\mathrm{cost}}, \Theta\right) \end{split}$$

•

对历史有记忆就是前段时间的状态对后面时间有影响

Dynamic analysis: phase-plane analysis

- Phase plane analysis
 - 对两个变量做相平面分析,分析动力学系统为什么会发生这样的行为(假设外部电流恒定, v和w都能确定v和w的梯度。零线一定是和其他线水平或垂直,一侧的方向一定是一致的)
 - 给初始值后, v和w会随着t变化, 就可以画出轨迹(达到vreset即重置)

Analyzes the behavior of a dynamical system with (usually two) variables described by ordinary differential equations

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \end{split}$$

if
$$V > \theta$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Elements:

• Nullclines: dV/dt = 0; dw/dt = 0

• Fixed points: dV/dt = 0 and dw/dt = 0

· The vector field

· The trajectory of variables

Tonic spiking

1. Tonic spiking

$$\begin{split} \tau_{m} \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_{T} \mathrm{e}^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t) \\ \tau_{w} \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \end{split}$$

if
$$V > \theta$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

丰 3 1.	AdEv	档刑女	新生治事	《式对应的	会粉

发放形式	τ	$ au_w$	a	\boldsymbol{b}	V_{reset}	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

Adaptation

2. Adaptation

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \, \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \end{split}$$

表 3.1: AdEx 模型各种发放形式对应的参数

发放形式	τ	$ au_w$	a	b	$V_{\rm reset}$	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

Bursting

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \end{split}$$

if
$$V > \theta$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

表 3.1:	AdEx	模型	各种	发放形	式对	应的参	参数

发放形式	τ	$ au_w$	a	\boldsymbol{b}	$V_{\rm reset}$	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

Transient spiking(瞬态发放)

4. Transient spiking

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \end{split}$$

if
$$V > \theta$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

表 3.1: AdEx 模型各种发放形式对应的参数

发放形式	τ	τ_w	a	b	V_{reset}	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

Dynamic analysis: bifurcation analysis

- Bifurcation analysis
 - 以一个参数为横轴,变化变量求得新的相图的固定点和鞍点、稳定焦点和不稳定焦点

Quantitative analysis of the existence and the properties of fixed points in a dynamical system with a changing parameter

Elements:

- · Lines of fixed points
- · Stability properties of fixed points

bifurcation analysis for 2 variables

Variables: V and w

Parameters: I_{ext}

 $\tau_m \frac{\mathrm{d}V}{\mathrm{d}t} = -\left(V - V_{\text{rest}}\right) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t)$

$$\tau_{w} \frac{\mathrm{d}w}{\mathrm{d}t} = a \left(V - V_{\mathrm{rest}} \right) - w + b \tau_{w} \sum_{t^{(f)}} \delta \left(t - t^{(f)} \right)$$

if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

- 需要将两张图一起看,(以横轴坐标为统一标准)
- 观察stable focus和 unstable focus的区别(会产生突变)鞍点一侧吸引一侧排斥, unstable focus 两侧都是排斥

Subjects: two variables (V and w)

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \\ &\text{if } V > \theta, \quad V \leftarrow V_{\mathrm{reset}} \text{ last } t_{\mathrm{ref}} \end{split}$$

• Extended limit cycle(存在不稳定节点,相平面锁定曲线)

The FitzHugh-Nagumo (FHN) model

$$\dot{v} = v - rac{v^3}{3} - w + RI_{
m ext}$$

 $au \dot{w} = v + a - bw$.

This dynamical system, in certain conditions, exhibits a cyclic pattern of variable changes which can be visualized as a closed trajectory in the phase plane.

- Strengths &weaknesses of the LIF model
 - The Leaky Integrate-and-Fire (LIF) Neuron Model

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\mathrm{rest}}) + RI(t)$$
 if $V > V_{\mathrm{th}}, \quad V \leftarrow V_{\mathrm{reset}}$ last t_{ref}

 The Adaptive Exponential Integrate-and-Fire (AdEx) Neuron Model

$$\begin{split} \tau_m \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + \Delta_T \mathrm{e}^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t) \\ \tau_w \frac{\mathrm{d}w}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right) \\ \mathrm{if} \ V &> \theta, \quad V \leftarrow V_{\mathrm{reset}} \ \mathrm{last} \ t_{\mathrm{ref}} \end{split}$$

• Dynamic analysis: phase-plane analysis

• Dynamic analysis: bifurcation analysis

