

COVID-19 DETECTION FROM SCARCE
CHEST X-RAY IMAGE DATA
USING FEW-SHOT DEEP LEARNING
APPROACH

DATASET

dataset-1: Covid-19 Radiography database.lt consists of 1200 COVID-19 positive images, 1341 normal images, and 1345 viral pneumonia images.

dataset-2: This data consists of 317 labeled images into three categories: Viral Pneumonia, Normal, and Covid.

DATA AUGMENTATION TECHNIQUES

Shear

Zoom

Rotation

EVALUATION METRICS

- 1. Accuracy
- 2. Precision
- 3. Recall
- 4. F1 Score
- 5. Silhouette score

- Input: pairs of images and a label whether they belong to same class or not.
- *Hypothesis: If model is trained well and if pair of images are similar then their feature vectors are also similar.
- Propsed network: siamese networks and siamese networks with transfer learning.
- In this paper author took advantage of transfer learning.
- **Output:** Same / not same.

SIAMESE NETWORK

ARCHITECTURE

RESULTS

Model Name	Accuracy	Precision	Recall	F1-score
Logistic Regression	82.4%	0.822	0.828	0.828
Convolutional Neural Network	90.2%	0.912	0.901	0.904
Transfer Learning(VGG16)	93.3%	0.931	0.932	0.928
Siamese Networks	94.6%	0.945	0.941	0.947
Siamese Networks(Transfer Learning)	96.4%	0.965	0.962	0.959

Vgg 16 trained on Imagenet dataset is used as feature extractor in propsed network.

Paper

https://arxiv.org/abs/2102.06285

Code: https://github.com/shruti-jadon/Covid-19-Detection

LINKS