电子线路设计项目 红外发射接收器

姓名: 车凯威

学号: 2016110110

日期: 2019年5月25日

目录

计划	书	1
7174	目标阐述	
	关键问题	
	具体任务]
	具体方案和关键技术	1
原理	图	3
	项目原理图	3
	线路原理图	4
仿真		<i>6</i>
	红外发射 Multisim 仿真电路	<i>6</i>
	红外接收 Multisim 仿真电路	8
PCB.		. 11
	红外发射 PCB 板	. 11
	红外接收 PCB 板	. 13
	关键元器件参数	. 14
	所有元器件列表	. 16
	管脚数量	. 17
	进一步查看	. 17

第1章 计划书

计划书中包含目标阐述、关键问题、具体任务和具体方案。

1.1 目标阐述

红外遥控是利用近红外光进行数据传输的一种控制方式。近红外光波长 0.76um-1.5um, 红外遥控收发器件波长一般为 0.8um-0.94um, 具有传输效率高, 成本低, 电路实现简单, 抗干扰强等特点, 在家用电器上被广泛使用。此处设计一个 **红外发射接收器与红外接收器, 能够实现通过按按钮而发出不同的红外波段, 以达到控制的功能。**

1.2 关键问题

- 1. 按按钮发出不一样的红外波段
- 2. 红外发射和接收稳定,不易受外界波段的干扰
- 3. 具有可移植接口,方便进一步开发

1.3 具体任务

- 1. 通过开关控制阻值,以实现不同的射频
- 2. 加上滤波和放大,以减少外界波段的干扰
- 3. 采取模块化设计,留有接口

1.4 具体方案和关键技术

详细解释了选用的芯片和原理。

1.4.1 NE555

使用 NE555 产生红外光线。因为 NE555 时基电路(集成电路)性价比高,且价格低廉,外围元件少,根据应用需要可设计不同功能,应用十分广泛。

由 NE555 芯片手册可知,通过控制 RA 和 RB 的比例即可控制频率和占空比。

Pin numbers shown are for the D, JG, P, PS, and PW packages.

NOTE A: Decoupling CONT voltage to ground with a capacitor can improve operation. This should be evaluated for individual applications.

Figure 13. Typical Astable Waveforms

Figure 12. Circuit for Astable Operation

图 1.1 NE555 芯片手册

比方说: 使用 NE555 产生 38kHz, 占空比为 1/3 的方波信号。

产生方波的频率 = 0.693((RA+2RB)*C), 占空比 = RB/(RA+2RB)

因为红外发射管最佳的占空比是 1/3, C 一般为 0.01uF, 所以计算之后 RA = RB = 1.2k

此处,由于我们需要控制发射频率,因此我们把 RA 变成可调的电阻。

1.4.2 光电二极管

接收我们使用光电二极管用于接收产生的红外信号。光电二极管是一种能够 将光根据使用方式,转换成电流或者电压信号的光探测器。管芯常使用一个具有 光敏特征的 PN 结,对光的变化非常敏感,具有单向导电性,而且光强不同的时候 会改变电学特性,因此,可以**利用光照强弱来改变电路中的电流**。

1.4.3 BC848B 和 2SC1815 三极管

使用此两款三极管以用于放大和解调。

第2章 原理图

包括项目原理图和电路原理图

2.1 项目原理图

图 2.1 项目原理图

无线遥控器的原理就是发射机把控制的电信号**先编码,然后再调制**,红外调制或者无线调频、调幅,转换成无线信号发送出去。

接收机收到载有信息的无线电波**接收,放大,解码**,得到原先的控制电信号,把这个电信号再进行功率放大用来驱动相关的电气元件,实现无线的遥控。

2.2 线路原理图

2.2.1 红外发射线路原理图

图 2.2 红外发射线路原理图

红外发射电路采用 NE555 接成振荡电路,如图所示。振荡频率由 SA1~SA3 开关控制,改变开关位置,即改变接入振荡电路的电阻 RP1~RP3,调节 RP1~RP3,可以调节每一通道的具体频率。振荡脉冲由 3 号引脚输出,驱动红外发光二极管发射红外光,即实现了用振荡脉冲对红外光的调制。

2.2.2 红外接收线路原理图

图 2.3 红外接收线路原理图

利用光电二极管接收上述红外发射电路发射的红外线,利用光照强弱来改变电路中的电流,通过 BC848B 和 2SC1815 三极管的放大和解调,输出得到期望的电压

第3章 仿真

在 Multisim 中,依据电路原理图搭建电路进行仿真测试

3.1 红外发射 Multisim 仿真电路

图 3.1 红外发射 Multisim 仿真电路

参数分析:

此处,我们使得 RB 为 1k,为了产生使用 NE555 产生 38kHz 的方波信号。由下式可知:

频率 = 0.693((RA+2RB)*C) 占空比 = RB/(RA+2RB)

将 RB=1k, C=0.01u 带入得到

RA=1.7, 因此我们需要 1.7k 的电阻。

此时输出的期望信号为38kHz、26.4%占空比的方波。

其中 U7 为发光二极管, 其参数如下:

PHOTO_DIODE_RATED

Label	Display	Value	Pins	Variant		
Anima	ation slow	vdown f	actor:		5	
Light	channel (integer)	:		1	
On cu	rrent (Ior	ո)։			5m	A
Rever	se breakd	lown vo	ltage:		60	V
Maxim	num rateo	d power	(Watts):	250m	

图 3.2 U7 参数

测量其输出电压波形如下:

图 3.3 红外发射整体波形

图 3.4 红外发射周期

图 3.5 红外发射占空比

3.2 红外接收 Multisim 仿真电路

图 3.6 红外接收 Multisim 仿真电路

其中 U5 为发光二极管, 其参数如下:

图 3.7 U5 参数

测量其输出电压波形如下:

图 3.8 红外接收整体波形

图 3.9 红外接收周期

图 3.10 红外接收占空比

结果分析:

期望信号为38kHz、26.4%占空比的方波。

实际红外发射信号周期为: 26.607us,即频率为37.584kHz,误差为1.10%实际红外发射信号占空比为: 7.257us/26.607us,即为27.27%,误差为3.30%实际红外发射信号电压大小: 10V

当以实际红外发射信号发射时,分析实际红外接收信号。

实际红外接收信号周期为: 26.260us, 即频率为 38.08kHz, 误差为 1.30% 实际红外接收信号占空比为: 8.375us/26.260us, 即为 31.89%, 误差为 16.94% 实际红外接收信号电压大小: -20V, 放大了-2 倍

并且此时接收信号反映稍微的延时。因此实际占空比误差应该更小均在误差允许范围之内,据此进行 PCB 的制作和设计结果分析。

第4章 PCB

通过仿真证明可以完整实现红外发射和接收任务,在此设计两块 PCB 板以将其实现。

4.1 红外发射 PCB 板

图 4.1 Top Layer

图 4.2 Bottom Layer

4.2 红外接收 PCB 板

图 4.3 Top Layer

图 4.4 Bottom Layer

4.3 关键元器件参数

NE555 参数:

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V	Supply voltage	NA555, NE555, SA555	4.5	16	٧
V _{CC}	Supply voltage	SE555	4.5	18	v
VI	Input voltage	CONT, RESET, THRES, and TRIG		V _{CC}	V
Io	Output current			±200	mA
		NA555	-40	105	
Τ.	Operating free air temperature	NE555	0	70	°C
TA	Operating free-air temperature	SA555	-40	85	C
		SE555	-55	125	

图 4.5 NE555 参数

2SC1815 参数:

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current	I _{CBO}	V _{CB} = 60 V, I _E = 0	_	_	0.1	μА
Emitter cut-off current	I _{EBO}	$V_{EB}=5\ V,\ I_C=0$	_	_	0.1	μА
DC current gain	h _{FE (1)} (Note)	V _{CE} = 6 V, I _C = 2 mA	70	_	700	
	h _{FE} (2)	$V_{CE} = 6 \text{ V}, I_C = 150 \text{ mA}$	25	100	_	
Collector-emitter saturation voltage	V _{CE (sat)}	$I_C=100\;mA,\;I_B=10\;mA$	_	0.1	0.25	V
Base-emitter saturation voltage	V _{BE (sat)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$	_	_	1.0	V
Transition frequency	f _T	$V_{CE} = 10 \text{ V}, I_C = 1 \text{ mA}$	80	_	_	MHz
Collector output capacitance	C _{ob}	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1 \text{ MHz}$	_	2.0	3.5	pF
Base intrinsic resistance	r _{bb'}	V _{CE} = 10 V, I _E = -1 mA f = 30 MHz	_	50	_	Ω
Noise figure	NF	$V_{CE}=6$ V, $I_{C}=0.1$ mA $f=1$ kHz, $R_{G}=10$ k Ω	_	1.0	10	dB

Note: hFE classification O: 70~140, Y: 120~240, GR: 200~400, BL: 350~700

图 4.6 2SC1815 参数

BC848B 参数:

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CEO}	collector-emitter voltage	open base	-	-	30	V
Ic	collector current		-	-	100	mA
h _{FE}	DC current gain	$V_{CE} = 5 V;$ $I_C = 2 mA$				
	BC848B		200	290	450	
	BC848W		110	-	800	

图 4.7 BC848B 参数

4.4 所有元器件列表

4.4.1 红外发射 PCB 板元器件列表

Bill o	f Mate	rials	Bill of Materials For PC	B Document [Infrared Emission.PcbDoc	ı
Source Data	From:	Infrared Emiss	ion.PcbDoc		
Project:		Infrared Emiss	ion_Project.PrjPCB		
Variant:		None			
Creation Date:	5/23/2019	5:17:35 PM			
Print Date:	43608	43608.72153	_		
Footprint	Comment	LibRef	Designator	Description	Quantity
RAD-0.3	Сар	Сар	C1, C2	Capacitor	
POLAR0.8	Cap Pol2	Cap Pol2	C3	Polarized Capacitor (Axial)	
LED-0	LED0	LED0	D1	Typical INFRARED GaAs LED	
AXIAL-0.4	Res2	Res2	R1, R2	Resistor	
AXIAL-0.6	Res Adj2	Res Adj2	R3, R4, R5	Variable Resistor	
SPST-2	SW-PB	SW-PB	S1, S2, S3	Switch	
D008_N	NE555D	NE555D	U1	Precision Timer	
					1

图 4.8 红外发射 PCB 板元器件列表

4.4.2 红外接收 PCB 板元器件列表

Bill o	f Mate	rials	Bill of Materials For PCB Doc	ument [Infrared Reception_PCB.Pc	bDoc]
Source Data	From:	Infrared Recep	otion_PCB.PcbDoc		
Project:		Infrared Recep	otion_Project.PrjPCB		
Variant:		None			
Creation Date:	5/23/2019	5:18:51 PM			
Print Date:	43608	43608.73336			
Footprint	Comment	LibRef	Designator	Description	Quantity
<u> </u>	Comment Cap	LibRef Cap	Designator C2, C3, C4	Description Capacitor	Quantity
RAD-0.3				· ·	Quantity
RAD-0.3 POLAR0.8	Сар	Сар	C2, C3, C4	Capacitor	Quantity
POLAR0.8 TO-92A	Cap Cap Pol2	Cap Cap Pol2	C2, C3, C4 C7	Capacitor Polarized Capacitor (Axial)	Quantity
Footprint RAD-0.3 POLAR0.8 TO-92A TO-92A AXIAL-0.4	Cap Cap Pol2 BC848B	Cap Cap Pol2 2N3904	C2, C3, C4 C7 Q1	Capacitor Polarized Capacitor (Axial) NPN General Purpose Amplifier	Quantity

图 4.9 红外接收 PCB 板元器件列表

4.4.3 管脚数量

(a) 红外发射 PCB 板管脚数量

(b) 红外接收 PCB 板管脚数量

图 4.10 管脚数量

统计得到管脚数量为64根。

4.4.4 进一步查看

欢迎老师进行进一步的查看, 附录中有:

- 0. 论文写作的所有文件。以证明文章的原创性,需要使用 Latex 打开。
- 1. 原始版本的计划书。
- 2. AD 原理图以及 PCB。里面有两个文件,分别时发射和接收,内有 PCB 和原理图源文件。
- 3. Multisim 仿真及结果。里面有大量图片,均是仿真后的原图,文件需要使用 Multisim14 打开。
 - 4. 关键元器件手册。含有三个关键器件的芯片手册。

非常希望老师能给出宝贵意见。随时可以联系我: 812079716@qq.com。非常感谢老师!