Ontologies et

Web Sémantique

Les Ontologies - Introduction

Plan du cours

- 1. Ontologies : Définitions
- 2. Composants d'une ontologie
- 3. Les différents types d'ontologies
- 4. Cycle de vie d'une ontologies
- 5. Ressources sémantiques avant les ontologies
- 6. Rôles des ontologies
- 7. Quelques exemples et domaines d'application des ontologies

- ➤ Le Web sémantique : Web des Données dans lequel les informations (ressources) possèdent un sens explicite facilitant ainsi aux machines leur traitement et leur intégration.
- Description sous forme de triplets en RDF.
- Exemple : La langue *Korandjé* est parlée à *Tabelbala*. Le nombre d'habitants de cette ville, commune de Béchar, est de *5248* habitants:

- ➤ Le Web sémantique : Web des Données dans lequel les informations (ressources) possèdent un sens explicite facilitant ainsi aux machines leur traitement et leur intégration.
- RDFS, pour donner du vocabulaire et du sens à RDF. Métadonnées.

Rappel - Limites de RDFS

- ➤ Puissance expressive insuffisante, il manque :
 - Cardinalités (min et max)
 - Décomposition (disjoint, exhaustivité)
 - Axiomes
 - Négation
- Problèmes dans RDF/RDFS :
 - Pas de distinction entre classes et instances
 - <Espece, type, Class>
 - <Lion, type, Espece>
 - <Simba, type, Lion>
 - Les propriétés peuvent avoir des propriétés.
 - Pas de distinction entre constructeurs du langage et les termes de l'ontologie.
- ❖ Pour dépasser ces limites, passage à aux ontologies et OWL.

Pile des standards du Web de données W3C®

- ➤ Le Web sémantique : Web des Données dans lequel les informations (ressources) possèdent un sens explicite facilitant ainsi aux machines leur traitement et leur intégration.
- Plus de Métadonnées ? Plus d'expressivité ? Plus de sémantique ?
- > Possibilité de raisonner ? D'inférer de nouvelles connaissances ?

Contrainte : Nombre d'habitants ne peut être < o.

Equivalence : Les propriétés communeDe et villeDe.

Inférer : Tabelbala ville de Béchar et Béchar wilaya de l'Algérie alors Tabelbala fait partie de l'Algérie.

→ Les Ontologies

éthymologie : ontos (l'existant) + logos (l'étude)

- Philosophie :
 - étude de l'être en tant qu'être. Aristote
 - étude de l'existence en général.
- ➤ Informatique/IA:
 - Une multitude de définitions existent dans la littérature.
 - Parmi-elles :
 - « Une ontologie définit les termes et les relations de base du vocabulaire d'un domaine ainsi que les règles qui indiquent comment combiner les termes et les relations de façon à pouvoir étendre le vocabulaire »

[Neches et al., 91]

- « Spécification explicite d'une conceptualisation.» [Gruber, 93]
 - « Spécification formelle d'une conceptualisation partagée.» [Borst et al., 97]
 - « Spécification formelle et explicite d'une conceptualisation partagée.» [Studer et al., 98]
- Conceptualisation : modèle abstrait d'un phénomène dans le monde réel par identification des concepts clefs de ce phénomène. Structuration en concepts.
- Explicite : la définition explicite des concepts utilisés et des contraintes de leurs utilisations. Avec un langage.
- Formelle: lisible par une machine.
- Partagée : connaissance commune. Ne doit pas être la propriété d'un individu, mais un consensus accepté par une communauté d'utilisateurs.

- « Spécification explicite d'une conceptualisation.» [Gruber, 93]
 - « Spécification formelle d'une conceptualisation partagée.» [Borst et al., 97]
 - « Spécification formelle et explicite d'une conceptualisation partgée.» [Studer et al., 98]

« Une ontologie est un ensemble de termes structurés de façon hiérarchique, conçue afin de décrire un domaine et qui peut servir de charpente à une base de connaissances ».

[Swartout et al., 97]

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

1. Les concepts – (Classes) :

- Constituant de la pensée (un principe, une idée, une notion abstraite) sémantiquement évaluable et communicable.
- Possède un (ou plusieurs) terme(s) : les termes permettent de désigner (par un label) le concept.
- Organisés en taxinomie.
- L'ensemble des attributs et des propriétés d'un concept constitue sa compréhension ou son *intension*;
- L'ensemble des êtres (instances) qu'il englobe, son extension.

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

- **2.** Les instances (Individus, objets) :
 - Constituent la définition extensionnelle de l'ontologie;
 - Elles sont utilisées pour représenter des éléments dans un domaine.
 - Exemple : Concept : Groupe Musical ; Instances : The Beatles,
 Gaada Diwane Béchar.

BEATLES

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

- Représentent des interactions entre concepts permettant de construire des représentations complexes de la connaissance du domaine. [Charlet et al., 2004].
- Traduisent les associations existant entre les concepts.
- Elles établissent des liens sémantiques binaires, organisables hiérarchiquement.
- Exemple : les concepts *Réalisateur* et *Film* sont reliés entre eux par la relation sémantique *réalise*(Réalisateur, Film).

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

- a. <u>Les propriétés d'une relation</u>:
- ✓ Les *propriétés algébriques* : symétrie, réflexivité, transitivité.
- ✓ La *cardinalité* : nombre possible de relations de ce type entre les mêmes concepts (ou instances de concept). Les relations portant une cardinalité représentent souvent des attributs.
- ✓ Exemple : une salle a au moins une porte.

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

- b. <u>Les propriétés liant deux relations</u>:
- ✓ Le *lien relationnel*: Il existe un lien relationnel entre une relation R et deux concepts C1 et C2 si, pour tout couple d'instances des concepts C1 et C2, il existe une relation de type R qui lie les deux instances de C1 et C2.
- ✓ La *restriction de relation* : Pour tout concept de type C1, et toute relation de type R liant C1, les autres concepts liés par la relation sont d'un type imposé.

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

- c. <u>Les propriétés liant une relation et des concepts</u>:
- ✓ *L'incompatibilité* : deux relations sont incompatibles si elles ne peuvent lier les mêmes instances de concepts. (être_vert, être_rouge).
- ✓ *L'inverse*: deux relations R1 et R2 sont inverses l'une de l'autre si quand R1 lie 2 instances I1 et I2 alors R2 lie I2 et I1. (a_pour_père, a_pour_enfant).
- ✓ *L'exclusivité* : deux relations R1 et R2 sont exclusives si, quand R1 lie des instances de concepts, R2 ne lient pas ces instances, et vice-versa. L'exclusivité entraîne l'incompatibilité.

<u>Cinq types de composants</u> - [Gomez et Benjamins, 1999] :

- 4. Les fonctions : cas particuliers de relations, dans laquelle un élément de la relation, (le nième) est défini en fonction des N-1 éléments précédents.
- Exemple : *prix-de voiture-usagée qui calcule le prix d'une voiture de seconde main en* fonction du modèle de voiture, de la date de fabrication et du nombre de kilomètres est une fonction ternaire.
- 5. Les axiomes : constituent des assertions logiques acceptées comme vraies.

Quatre types:

- 1. Ontologie de haut niveau / supérieure / générique:
 - Elle exprime des conceptualisations valables dans différents domaines.
 - Concepts très généraux indépendants du problème et/ou du domaine.
 - Ex: l'espace, le temps, la matière, les objets, les évènements, etc.
 - Ces concepts doivent être consensuels à de grandes communautés d'utilisateurs.

Quatre types:

2. Ontologie de domaine :

- Elle exprime des conceptualisations spécifiques à un domaine, elle est pour plusieurs applications de ce domaine.
- Elle régit un ensemble de vocabulaires et de concepts qui décrit un domaine d'application ou monde cible.
- Ces concepts doivent être consensuels à de grandes communautés d'utilisateurs.

Quatre types:

3. Ontologie de tâche:

- Ce type d'ontologies est utilisé pour conceptualiser des tâches spécifiques dans les systèmes, qui concernent la résolution de problèmes.
- Ex : les tâches de diagnostic, de planification, de conception, de configuration, etc.
- Elle régit un ensemble de vocabulaires et de concepts qui décrit une structure de résolution des problèmes inhérente aux tâches et indépendante du domaine.

Quatre types:

4. Ontologie d'application:

- Elle contient des concepts dépendants d'un domaine et d'une application particulière.
- Elle est spécifique et non réutilisable.

- Les ontologies sont destinées à être utilisées comme des composants logiciels dans des systèmes répondant à des objectifs opérationnels différents.
- Leur développement doit s'appuyer sur les mêmes principes que ceux appliqués en génie logiciel.

- Les ontologies sont destinées à être utilisées comme des composants logiciels dans des systèmes répondant à des objectifs opérationnels différents.
- Leur développement doit s'appuyer sur les mêmes principes que ceux appliqués en génie logiciel.

- Analyse et identification des besoins:
 - Une ontologie pour quoi faire ?
 - Utilisations prévues, finalités ?
 - Utilisateurs potentiels de l'ontologie ?
 - ✓ domaines, couvertures « sémantique » : vocation encyclopédique ou spécialisée.
 - ✓ objectifs : informer, normaliser, capitaliser, rechercher, communication inter-logicielles.
 - ✓ utilisateurs : terminologies, sources d'information.
 - ✓ propriétés visées : consensus, cohérentes, consistantes, inférences.

- Les ontologies sont destinées à être utilisées comme des composants logiciels dans des systèmes répondant à des objectifs opérationnels différents.
- Leur développement doit s'appuyer sur les mêmes principes que ceux appliqués en génie logiciel.

- Construction d'une ontologie: 3 phases
 - La conceptualisation: La conceptualisation d'un domaine nécessite l'identification de ses connaissances et le choix des entités à modéliser ainsi que leur organisation en une ontologie.
 - L'ontologisation: formalisation, autant que possible, du modèle conceptuel obtenu à l'étape précédente.
 - L'opérationnalisation: transcription de l'ontologie dans un langage formel et opérationnel de représentation de connaissances.
 - ✓ L'étape d'ontologisation peut être complétée d'une étape d'intégration au cours de laquelle une ou plusieurs ontologies vont être importées dans l'ontologie à construire.

Construction d'une ontologie: 3 phases

Construction d'une ontologie :

- Une construction (et conceptualisation) automatique d'ontologies est difficilement envisageable.
- Une intervention humaine est toujours nécessaire pour le choix de conceptualisation à faire. Il est plus important d'outiller cette intervention que de chercher à la minimiser [Charlet et al., 2003].
- Echanges avec les experts. Si disponibles.
- L'utilisation des textes représentatifs (corpus textuels) de l'expertise.
- Les experts auront aussi pour rôle de valider les connaissances extraites ainsi que leur organisation.

- Méthodologies d'ingénierie:
- Bachimont [2000]:
 - Propose de contraindre l'utilisateur à un *engagement sémantique* en introduisant une <u>normalisation</u> sémantique des termes manipulés dans l'ontologie.
 - Normalisation en 3 étapes :
- 1. Normalisation sémantique :
 - Choisir les termes et les entités du domaine.
 - Les normaliser en explicitant leurs propriétés, les identités, et les différences dans leur voisinage proche.
 - La place d'une *notion* (entité retenue) dans l'ontologie doit être justifiée par rapport à la communauté et la différence avec le père et la fratrie.

- Méthodologies d'ingénierie:
- Bachimont [2000]:
 - Propose de contraindre l'utilisateur à un engagement sémantique en introduisant une <u>normalisation</u> sémantique des termes manipulés dans l'ontologie.
 - Normalisation en 3 étapes :
- 2. Formalisation des connaissances:
 - Désambiguïser les notions de l'ontologie obtenue par l'étape précédente en fonction de leurs sens.
 - Cela peut nécessiter la création de nouveaux concepts, l'ajout de propriétés et d'axiomes.

- Méthodologies d'ingénierie:
- Bachimont [2000]:
 - Propose de contraindre l'utilisateur à un *engagement sémantique* en introduisant une <u>normalisation</u> sémantique des termes manipulés dans l'ontologie.
 - Normalisation en 3 étapes :
- 3. Opérationnalisation des connaissances:
 - Utiliser un langage opérationnel de représentation de connaissances qui possède les caractéristiques nécessaires pour répondre aux besoins exprimés.

- Méthodologies d'ingénierie:
- D'autres méthodologies existent dans la littérature.
- Construction à partir de corpus textuels: Bachimont [2000], METHONTOLOGY, Terminae [Aussenac-Gilles *et al.*, 2003], ect.
- Construction à partir de dictionnaire: Hearst [1992], Rigau [1998].
- Construction à partir de bases de données : Rubin et al. [2002]
- Construction à partir de données semi-structurées: Deitel et al. [2001].
- Construction semi-automatiquement (Apprentissage) des ontologies à partir du corpus : ASIUM *Acquisition of SemantIc knowledge Using Machine learning methods ([Faure & Nédellec, 1999]) et SVETLAN'* [de Chalendar & Grau, 2000].

Ressources sémantiques avant les ontologies

- <u>Taxonomie (ou taxinomie)</u>:
- Du grec taxis : classement et nomos : loi
- Elle est la partie de la biologie visant à établir une classification systématique des êtres vivants en concepts appelés taxons.
- Par extension, on appelle taxonomie une organisation de concepts unis par des relations hiérarchiques.

Assessing theories; Comparison of ideas; Evaluating outcomes; Solving; Judging; EVALUATION Recommending; Rating Using old concepts to create new ideas; Design and Invention; Composing; Imagining; SYNTHESIS Inferring; Modifying; Predicting; Combining Identifying and analyzing patterns; Organisation of ideas; ANALYSIS recognizing trends Using and applying knowledge; Using problem solving methods; APPLICATION Manipulating; Designing; Experimenting Understanding; Translating; COMPREHENSION Summarising; Demonstrating; Discussing Recall of information; Discovery; Observation; KNOWLEDGE Listing; Locating; Naming

La taxonomie de Bloom - Classification des niveaux d'acquisition des connaissances

Ressources sémantiques avant les ontologies

> Thésaurus:

- Une sorte de dictionnaire hiérarchisé, un vocabulaire normalisé sur la base de termes génériques et de termes spécifiques à un domaine.
- Les termes y sont organisés de manière conceptuelle et reliés entre eux par des relations sémantiques.
- Un thésaurus fournit accessoirement des définitions.
- Les relations communément exprimées dans un thésaurus sont :
 - ✓ les relations taxonomiques (de hiérarchie).
 - ✓ les relations d'équivalence (synonymie).
 - ✓ les relations d'association (relations de proximité sémantique, prochede, relié-à, etc.).
- Exemple : UMLS Unified Medical Language System.

Ressources sémantiques avant les ontologies

Les Réseaux Sémantiques:

- Ils ont été conçus à l'origine comme un modèle de la mémoire humaine.
- Un réseau sémantique est un graphe orienté et étiqueté. Les concepts sont représentés sous forme de nœuds et les relations sous forme d'arcs.
- Les relations vont des relations de proximité sémantique aux relations partie-de, cause-effet, parent-enfant, etc.
- L'héritage des propriétés par les liens est matérialisé par un arc (sortede) entre les nœuds.
- Exemple : Le réseau lexical et sémantique WordNet.

Rôles des ontologies

- les rôles et l'intérêt des ontologies au sein des systèmes à base de connaissances (SBC) et du Web Sémantique :
- Représentation des connaissances du domaine d'un SBC :
 - ✓ Elles servent de squelette à la représentation des connaissances dans la mesure où elles décrivent les objets, leurs propriétés et la façon dont ils peuvent se combiner pour constituer des connaissances du domaine complètes.

Figure: source: N. Aussenac-Gilles

Rôles des ontologies

- les rôles et l'intérêt des ontologies au sein des systèmes à base de connaissances (SBC) et du Web Sémantique :
- Représentation des connaissances du domaine d'un SBC :
 - ✓ Elles servent de squelette à la représentation des connaissances dans la mesure où elles décrivent les objets, leurs propriétés et la façon dont ils peuvent se combiner pour constituer des connaissances du domaine complètes.

- L'indexation et la recherche d'information :
 - ✓ Dans le Web Sémantique, les ontologies y sont utilisées pour déterminer les index conceptuels décrivant les ressources sur le Web.

Rôles des ontologies

les rôles et l'intérêt des ontologies au sein des systèmes à base de connaissances (SBC) et du Web Sémantique :

La communication et le partage :

- ✓ Les ontologies peuvent intervenir dans la communication entre personnes, organisations, et logiciels en créant un vocabulaire conceptuel commun .
- ✓ L'ontologie est un puissant moyen pour lever les ambiguïtés dans les échanges.

L'interopérabilité et la réutilisation :

✓ Une spécialisation de la communication qui permet de répertorier les concepts que des applications peuvent s'échanger même si elles sont distantes et développées sur des bases différentes.

Quelques domaines d'application des ontologies

- ➤ Web Sémantique : La description et l'annotation des ressources d'information du Web en offrant plus de vocabulaire.
- ➤ E-Commerce : Description des produits pour une meilleure recherche/requête, recommandation, etc.
- > Traduction automatique.
- Recherche d'information / Information Retrieval.
- Context-awareness
- Gestion et représentation des connaissances, IA, e-learning.
- L'imagerie médicale Imagerie par Résonance Magnétique.
- > Etc.

➤ Friend Of A Friend – Décrire les personnes et les relations sociales de ces dernières . - http://xmlns.com/foaf/spec/

Extrait - Diagramme de Classes

Exemple - Ontologie

Une partie d'ontologie des formes géométriques [Bendaoud, 09]

Extrait – Ontologie - Visualisation : http://visualdataweb.de/webvowl/#foaf

Extrait – Ontologie - Visualisation : http://visualdataweb.de/webvowl/#foaf

Extrait – Ontologie - Visualisation : http://visualdataweb.de/webvowl/#foaf

Références

Linked Data: Evolving the Web into a Global Data Space

✓ Auteur : Christian Bizer, Tom Heath

✓ Éditeur : Morgan & Claypool Publishers

✓ Edition : Février 2011 - 136 pages - ISBN 9781608454310

Learning SPARQL: Querying and Updating with SPARQL

✓ Auteur : Bob DuCharme

✓ Éditeur : O'Reilly Media

✓ Edition: Juillet 2013 – 386pages -ISBN: 9781449306595

Foundations of Semantic Web Technologies

✓ Auteur : Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

✓ Éditeur : CRC Press/Chapman and Hall

✓ Edition: 2009 - 455 pages - ISBN: 9781420090505

Références

- ➤ W3C Semantic Web
 - ✓ https://www.w3.org/2001/sw/wiki/Main_Page
- > INRIA MOOC Fabien Gandon Web Sémantique et Web de Données
 - ✓ https://www.canal-u.tv/producteurs/inria/cours_en_ligne/web_semantique_et_web_de_donnees
- ➤ Manel Kolli Thèse
 - ✓ https://bu.umc.edu.dz/theses/informatique/KOL6033.pdf
- ➤ Noy et McGuinness Ontology Development 101: A Guide to Creating Your First Ontology.
 - ✓ https://protege.stanford.edu/publications/ontology_development/ontology101.pdf/
- Bernard ESPINASSE Cours RDFS
 - $\checkmark \ \, \text{https://pageperso.lis-lab.fr/bernard.espinasse/wp-content/uploads/2021/12/3-Cours-RDFS-BE-4P.pdf}$