

3D models of fungal chromosomes to enhance visual integration of omics data

Thibault Poinsignon, Mélina Gallopin, Pierre Grognet, Fabienne Malagnac, Gaëlle Lelandais* and Pierre Poulain*

New article published in NAR Genomics and Bioinformatics

https://academic.oup.com/nargab/article/5/4/lgad104/7458894

https://doi.org/10.1093/nargab/lgad104

3D fungal chromosome models from public HiC data

➤ Three different species:

Example of SCERE genome: (HiC data from public database)

Poinsignon et al. (2023)

Methods to reconstruct 3D models of genome organization

- In the last decade, several strategies have been presented in the literature (reviewed in Oluwadare et al., 2019).
- In this work, we chose to use the Pastis-NB method, which is a probability-based method, recently published (Varoquaux et al., 2023).
- We explored the potential of using 3D models as complementary information to Hi-C contact maps, to better understand the spatial organization of fungal chromosomes and to improve the visual integration of omics data.

Three examples are presented in the article

Detailed view of chromosome organization

Poinsignon et al. (2023)

General view of chromosome organization

> SCERE

<u>Example #1</u>: Spatial alignment of cohesin binding sites along chromosomes in *S. cerevisiae*.

HiC (WT and mutant) + ChIPseq

> SPOMBE

<u>Example #2</u>: Oscillations in coiling of chromosome arms during the cell cycle in *S. pombe*.

HiC (WT only, at several time points)

NCRASSA

<u>Example #3</u>: Massive relocalisation of histone marks in *N. crassa* heterochromatin regulator mutants.

HiC (WT and mutant) + ChIPseq

Re-analysis of a large omics dataset

➤ More than 40 FASTQ files were collected:

Model	Fungal species (genome version)	Strain	Hi-C data sources	SRA IDs	Final number of valid read pairs	Number of beads in the final model	Figure (model resolution in bp)
1	N. crassa (nc14)	WT	Rodriguez et al. 2022 (31)	SRR14362684	107 636 304	3976	2 (10 000)
	, ,			SRR14362685			
				SRR16761088			
				SRR16761089			
				SRR16761090			
				SRR16761091			
				SRR16761092			
2		WT	Galazka et al. 2016 (30)	SRR2105869	5 030 121	800	5 (50 000)
				SRR2105870			
				SRR2105871			
				SRR2105872			
3		hpo		SRR2105876	2 922 526	808	
				SRR2105877			
				SRR2105878			
ŀ	S. pombe (ASM294v2.19)	WT	Tanizawa <i>et al</i> . 2017 (27)	SRR5149251	15 511 107	1223	4 (10 000)
				SRR5149252			
5				SRR5149253	14 377 600	1211	
				SRR5149254			
5				SRR5149255	14 394 280	1204	
				SRR5149256			
7				SRR5149257	15 497 423	1200	
				SRR5149258			
8				SRR5149259	19 035 344	1213	
				SRR5149260			
				SRR5942526			
9				SRR5149261	13 841 928	1224	
				SRR5149263	24 02 (220	1201	
10				SRR5149264	21 936 238	1201	
				SRR5149265			
11				SRR5942527	21 727 (25	1100	
				SRR5149266	21 727 635	1189	
				SRR5149267			
2	S. cerevisiae (R64, S288C)	WT	Costantino et al. 2020 (64)	SRR5942528 SRR11893084	16 847 912	2332	2 and 3 (5000
	3=300/			SRR11893085			
13		Mcd1 depleted		SRR11893086	14 180 445	2323	
		depleted		SRR11893087			

The sources of Hi-C data (original articles and SRA identifiers) are given. All datasets were obtained on wild type strains, with the exception of models #3 and #13 which correspond to the N. crassa hop mutant (used in Figure 5) and S. cerevisiae mcd1 depleted (used in Figure 3). The number of valid pairs of reads gives an estimation of the overall quality of the data and indicates the density of the contact frequencies measured in the experiment. The number of beads in the 3D model is determined by the chosen resolution during Hi-C data analysis and the length of the reference genome.

Poinsignon et al. (2023)

Standardized bioinformatics protocols for the creation of 3D models:

Workflow 3D genome builder (3DGB)

The workflow 3DGB

- It automatically performs the critical bioinformatics steps required to:
 - (i) compute Hi-C contact frequencies,
 - (ii) infer associated 3D models of the chromatin organization,
 - (iii) annotate and control the quality of the 3D models.
- It also adds further processing of the 3D model output as PDB files, suitable for advanced visualization with molecular viewer software (Mol*, PyMol, etc.).
- It is available to other scientists who whish to add 3D models to their analyses of Hi-C data.
 - It requires only four basic inputs to be specified (FASTQ files, a FASTA file, restriction sites, targeted resolutions).

A link is available from the Integrative Bioinformatics platform of the I2BC

https://bioi2.i2bc.paris-saclay.fr/tools/dna-rna-genomes/

Contact: gaelle.lelandais@universite-paris-saclay.fr

THANK YOU FOR YOUR ATTENTION