Notas Curso Topología II

Cristo Daniel Alvarado

26 de agosto de 2024

Índice general

1.	Metriz	zabilidad	ĺ														2
	1.1. C	onceptos	Fundame	ntales			 			 					 		2

Capítulo 1

Metrizabilidad

1.1. Conceptos Fundamentales

¿Cuándo un espacio topológico es metrizable? Supongamos que tenemos un espacio topológico (X, τ) , queremos una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

La respuesta a esta pregunta es que no siempre será posible encontrar tal métrica. Por ejemplo, tome cualquier espacio topológico que no sea T_1 .

- Pável Urysohn 1898-1924. El Lema de Urysohn fue publicado en 1924 póstumo a la muerte de su autor.
- Primera guerra mundial 28 de julio de 1914 a 11 de noviembre de 1918, inició con el asesinato del Archiduque Franciso de Austria.
- Segunda guerra mundial 1939 a 1945, cuando Hitler invade Polonia.
- En 1950 Bing, Nagata y Morita resuelven el problema de metrizabilidad de espacios topológicos.

Lo que veremos a continuación tiene como base fundamental el siguiente lema:

Lema 1.1.1 (Lema de Urysohn)

Sea (X,τ) espacio topológico. Entonces, (X,τ) es T_4 si y sólo si dados $A,B\subseteq X$ cerrados disjuntos existe una función continua $f:X\to [0,1]$ tal que

$$f(A) = \{0\}$$
 y $f(B) = \{1\}$

Este lema se probó en el curso pasado.

Proposición 1.1.1

Sea (X, τ) un espacio topológico segundo numerable. Entonces

- 1. (X, τ) es primero numerable.
- 2. (X,τ) es de Lindelöf.
- 3. (X,τ) es separable.

Demostración:

Sea $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ una base numerable para τ .

De (1): Sea $x \in X$. Tomemos

$$\mathcal{B}_x = \left\{ B_n \in \mathcal{B} \middle| x \in B_n \right\}$$

este es un conjunto no vacío pues al ser \mathcal{B} base, existe $B \in \mathcal{B}$ tal que $x \in B$. Además es a lo sumo numerable por ser subcolección de \mathcal{B} .

Sea $U \subseteq X$ abierto tal que $x \in U$. Como \mathcal{B} es base de τ , existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$, luego $B \in \mathcal{B}_x$. Por tanto, \mathcal{B}_x es un sistema fundamental de vecindades de x. Al ser el x arbitrario, se sigue que (X, τ) es primero numerable.

De (2): Sea $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I}$ una cubierta abierta de (X, τ) . Dado $x \in X$ existe $A_{\alpha} \in \mathcal{A}$ tal que $x \in A_{\alpha}$, como $A_{\alpha} \in \tau$, existe $B_x \in \mathcal{B}$ tal que

$$x \in B_r \subset A_\alpha$$

Sea

$$\mathcal{K} = \left\{ n \in \mathbb{N} \middle| \exists A_{\alpha} \in \mathcal{A} \text{ tal que } B_n \subseteq A_{\alpha} \right\}$$

por la observación anterior, esta colección es no vacía. Dado $k \in \mathcal{K}$ escogemos un único A_{α_k} tal que

$$B_k \subseteq A_{\alpha_k}$$

Sea

$$\mathcal{A}' = \{A_{\alpha_k}\}_{k \in \mathcal{K}}$$

se tiene que $\mathcal{A}' \subseteq \mathcal{A}$ es numerable. Sea $x \in X$, Como \mathcal{A} es cubierta, existe $A' \in \mathcal{A}$ tal que

$$x \in A' \in \tau$$

luego, al ser \mathcal{B} base existe $B_n \in \mathcal{B}$ tal que

$$x \in B_n \subseteq A'$$

Se sigue pues que $x \in A_{\alpha_n}$. Por ende, $x \in \bigcup_{n \in \mathbb{N}} A_{\alpha_n}$. Así, \mathcal{A} posee una subcubierta a lo sumo numerable. Se sigue que al ser la cubierta abierta arbitraria que el espacio (X, τ) es Lindelöf.

Proposición 1.1.2

Si (X, τ) es metrizable, entonces los coneptos de espacio de Lindelöf, espacio separable y espacio segundo numerable son equivalentes.

Demostración:

Probaremos que Lindelöf implica separabilidad que implica segunda numerabilidad.

Suponga que (X, τ) es metrizable, entonces existe una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

• Suponga que (X,τ) es Lindelöf. Sea $n\in\mathbb{N}$ y tomemos

$$\mathcal{U}_n = \left\{ B_d\left(x, \frac{1}{n}\right) \middle| x \in X \right\}$$

 \mathcal{U}_n es una cubierta abierta de (X, τ) . Como el espacio de Lindelöf, existe \mathcal{V}_n a lo sumo numerable tal que

$$\mathcal{V}_n = \left\{ B_d\left(y, \frac{1}{n}\right) \middle| y \in Y_n \right\}$$

siendo $Y_n \subseteq X$ un conjunto a lo sumo numerable, de tal suerte que \mathcal{V}_n es subcubierta de \mathcal{U}_n . Sea

$$A = \bigcup_{n \in \mathbb{N}} Y_n$$

este es un conjunto a lo sumo numerable. Sea $U \in \tau$ con $U \neq \emptyset$. Como $U \neq \emptyset$, existe $x \in U$, así existe $\varepsilon > 0$ tal que $B_d(x, \varepsilon) \subseteq U$. Sea $m \in \mathbb{N}$ tal que $\frac{1}{m} < \varepsilon$. Tenemos que \mathcal{V}_m es una cubierta de X, luego existe $y \in Y_m$ tal que

$$x \in B_d\left(y, \frac{1}{m}\right)$$

Por tanto, $y \in B_d\left(x, \frac{1}{m}\right) \subseteq B(x, \varepsilon) \subseteq U$, así $y \in U$. Pero como $y \in Y_m$ se tiene que $y \in A$. Por ende

$$U \cap A \neq \emptyset$$

lo que prueba el resultado.

4