Fire Protection of Process Equipment

API 521 6th edition

Colin Deddis, April 2014

This document is created for general illustration only and is not intended as a substitute for specialist advice in relation to any particular situation. All liability is expressly disclaimed.

Fire Protection of Process Equipment

- Relief and depressuring systems as fire protection.
- Emergency depressurisation design key features
- API empirical fire model & its limitations
- Introduction to analytical fire model
- Advantages of analytical model

Relief and Blowdown Systems

Emergency Depressurisation (Blowdown)

- Used to prevent incident escalation:
 - Increases survivability time and potentially mitigates failure of pressurised equipment due to high temperatures from external fire, exothermic reactions etc.
 - Minimises release of fuel from a leak (reduces likelihood and impact of a resultant fire/explosion)

Emergency Depressurisation – Depressuring Rate

- Depressurisation targets for fire case if flare system capacity not limiting:
 - If wall thickness <25 mm lower of 6.9 barg or 50% design pressure in 15 minutes
 - If wall thickness >25 mm 50% of design pressure in 15 minutes
- Depressurisation targets if flare system capacity is limiting:
 - Detailed analyses
 - Passive fire protection requirements
- Depressuring rate = rate of vapour formation (liquid containing systems) + rate required to reduce pressure

Emergency Depressurisation – Fire Case

Typical Carbon Steel (SA-515, Grade 70) Internal Pressure Versus Pool Fire Exposure Time to Minimize Potential for Vessel Rupture

API 521 - Empirical Fire Model

Relief device sizing

$$Q = C_1 F A_{ws}^{0.82}$$

Where:

Q is the total heat absorption (input) to the wetted surface, expressed in W C_I is a constant F is an environment factor A_{ws} is the total wetted surface, expressed in m²

Limitations:

- Open pool fire (global average heat flux)
- Liquid filled systems only
- Underestimates local peak heat flux
- Relief device sizing only

Emergency Depressurisation – Fire Case

Guidelines for design and protection of pressure systems to withstand severe fires, Institute of Petroleum, 2003

Analytical method - Heat absorbed API 521 6th Edition

$$q_{absorbed} = \sigma \cdot \alpha_{surfrace} \varepsilon_{fire} T_{fire}^{4} - \sigma \cdot \varepsilon_{surface} T_{surface}^{4} + h \left(T_{gas} - T_{surface} \right)$$

Radiative heat flux to equipment

Convective heat transfer between combustion gases and equipment surface

where:

 $q_{absorbed}$ is the absorbed heat flux from the fire (W/m²)

 σ is the Stephan-Boltzmann's constant

 $lpha_{\it surfrace}$ is the equipment absorptivity

 $\mathcal{E}_{\it fire}$ is the fire emissivity

 $\mathcal{E}_{surface}$ is the equipment emissivity

 $T_{\it fire}$ is the fire temperature (K)

 T_{surface} is the equipment temperature (K)

 $T_{\it gas}$ is the equipment temperature of air/fire in contact with the equipment (K)

h is the convection heat transfer coefficient of air/fire in contact with equipment (W/m 2 K)

Analytical method Recommended range of parameter values – pool fire

Parameter	Description	Pool Fire		
		Surface Average Heat Flux	Local Peak Heat Flux	
<i>E</i> fire	Hydrocarbon flame emissivity	0.6 to 1.0	0.6 to 1.0	
£surface	Equipment emissivity	0.3 to 0.8		
$\alpha_{ m surface}$	Equipment absorptivity	0.3 to 0.0		
h	Convective heat transfer coefficient between equipment and surrounding air	10 W/m²·K to 30 W/m²·K (1.76 Btu/h·ft²·°R to 5.28 Btu/h·ft²·°R)		
$T_{\sf gas}$	Temperature of combustion gases flowing over the surface	773 K to 1173 K (500 °C to 900 °C) 1392 °R to 2112 °R (932 °F to 1652 °F)	1173 K to 1423 K (900 °C to 1150 °C)	
T_{fire}	Fire temperature	873 K to 1273 K (600 °C to 1000 °C) 1572 °R to 2292 °R (1112 °F to 1832 °F)	2112 °R to 2562 °R (1652 °F to 2102 °F)	
T _{surface}	Equipment temperature	Note 3		
σ	Stefan-Boltzmann constant	$5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ (0.1713 x $10^{-8} \text{ Btu/h} \cdot \text{ft}^{2.\circ} \text{R}^4$)		
q_{fire}	Note 1	30 kW/m² to 100 kW/m² 60 kW/m² to 200 kW/m² (9510 Btu/h·ft² to 31,700 Btu/h·ft²) (19,020 Btu/h·ft² to 63,400 l		
9absorbed	Note 2	25 kW/m² to 75 kW/m² 45 kW/m² to 150 kW/m² (7925 Btu/h·ft² to 23,775 Btu/h·ft²) (14,265 Btu/h·ft² to 47,750 Btu/h·ft² to 47,75		

NOTE 1 Typical range in fire heat flux. A wider range of heat fluxes is possible. The fire heat flux is found by ignoring the reradiation (by setting $\varepsilon_{\text{surface}} = 0$), setting $\omega_{\text{surface}} = 1$, and setting the equipment temperature < 323 K (582 °R).

NOTE 3 The equipment temperature is a variable that increases as the surface heats up.

API 521 6th Ed, Table A2

NOTE 2 Typical range in absorbed heat flux at start of fire [i.e. at wall temperatures of < 323 K (582 °R)]. A wider range of heat fluxes is possible.

Analytical method Recommended range of parameter values – jet fire

Parameter	Description	Jet fire				
		Surface Average Heat Flux		Local Peak Heat Flux		
Leak rates Note 5		>2 kg/s (>4.41 lb/s) (large jet)	≤2 kg/s (≤4.41 lb/s) (small jet)	>2 kg/s (>4.41 lb/s) (large jet)	≤2 kg/s (≤4.41 lb/s) (small jet)	
<i>E</i> fire	Hydrocarbon flame emissivity	0.6 to 1.0	NA	0.6 to 1.0	0.6 to 1.0	
$\varepsilon_{ m surface}$	Equipment emissivity	0.3 to 0.8	NA	0.3 to 0.8	0.3 to 0.8	
$lpha_{ m surface}$	Equipment absorptivity	0.3 10 0.8	NA			
h	Convective heat transfer coefficient between equipment and surrounding air	10 W/m ² ·K to 100 W/m ² ·K (1.76 Btu/h·ft ² ·°R to 17.6 Btu/h·ft ² ·°R)	NA	50 W/m ² ·K to 150 W/m ² ·K (8.8 Btu/h·ft ² ·°R to 26.4 Btu/h·ft ² ·°R)	50 W/m ² ·K to 150 W/m ² ·K (8.8 Btu/h·ft ² ·°R to 26.4 Btu/h·ft ² ·°R)	
$T_{\sf gas}$	Temperature of combustion gases flowing over the surface	573 K to 1173 K (300 °C to 900 °C) 1032 °R to 2112 °R (572 °F to 1652 °F)	NA	1173 K to 1523 K (900 °C to 1250 °C)	1123 K to 1473 K (850 °C to 1200 °C)	
T_{fire}	Fire temperature	773 K to 1273 K (500 °C to 1000 °C) 1392 °R to 2292 °R (932 °F to 1832 °F)	NA	2112 °R to 2742 °R (1652 °F to 2282 °F)	2022 °R to 2652 °R (1562 °F to 2192 °F)	
T _{surface}	Equipment temperature	Note 3				
σ	Stefan-Boltzmann constant	5.67 x 10 ⁻⁸ W/m ² ·K ⁴ (0.1713 x 10 ⁻⁸ Btu/h·ft ² ·°R ⁴)				
<i>9</i> fire	Note 1	40 kW/m ² to 150 kW/m ² (12,680 Btu/h·ft ² to 47,550 Btu/h·ft ²)	NA	150 kW/m ² to 400 kW/m ² (47,550 Btu/h·ft ² to 126,800 Btu/h·ft ²)	150 kW/m² to 300 kW/m² (47,550 Btu/h·ft² to 95,100 Btu/h·ft²)	
qabsorbed	Note 2	30 kW/m ² to 120 kW/m ² (9510 Btu/h·ft ² to 38,040 Btu/h·ft ²)	NA	120 kW/m ² to 320 kW/m ² (38,040 Btu/h-ft ² to 101,440 Btu/h-ft ²)	120 kW/m² to 250 kW/m² (38,040 Btu/h·ft² to 79,250 Btu/h·ft²)	

API 521 6th Ed, Table A4

Analytical method Stress calculations

$$\sigma_{hoop}(t) = \frac{P(t) \cdot OD}{2 \cdot wt}$$

$$\sigma_{axial}(t) = \frac{P(t) \cdot OD}{4 \cdot wt}$$

$$\sigma_{von_Mises} = \sqrt{\sigma_{hoop}^2 + \sigma_{axial}^2 - \sigma_{hoop} \cdot \sigma_{axial}}$$

where:

 σ_{hoop} is the hoop stress

 σ_{axial} is the axial (longitudinal) stress

 σ_{von_Mises} is the equivalent (total) stress

P is the system pressure

OD is the outer diameter wt is the wall thickness

Y GENESIS

Example of Analytical Method

Example of Analytical Method

Advantages of Analytical Model

- Applicable for all types of fires
- Time dependent properties of flame can be incorporated in the analysis
- Handles vapour/dense phase systems
- Allows optimisation of depressuring targets during design

Thank-you

Any questions?

