

Transformer

Richard Dirauf, M.Sc. Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) MLTS Exercise, 30.01.2025

MLTS Exercise – Organization

Holiday

Introduction (31.10.2024)

Dynamic Time Warping (12.12.2024)

Bayesian Linear Regression (07.11.2024)

No exercise planned (19.12.2024)

Bayesian Linear Regression (14.11.2024) RNN + LSTM (09.01.2025)

Kalman Filter (21.11.2024) RNN + LSTM (16.01.2025)

Kalman Filter (28.11.2024) RNN + LSTM (23.01.2025)

Dynamic Time Warping (05.12.2024) Transformers (30.01.2025)

Transformers (06.02.2025)

Recap: Recurrent Neural Networks

RNN/LSTM can model:

- Sequences of variable lengths
- Long term dependencies (using LSTMs)

However:

- Non-parallelism -> Long training time
- Large memory usage
- Difficult to train (vanishing/exploding gradients)

Recap: Recurrent Neural Networks

Transformer to the Rescue

Input - Sequences

Time Series

Event Sequence

Text

Harry Potter invented a new spell

Video

Transformer – Input Embedding

Transformer – Positional Encoding

PE of the 1st input

Output

O

Transformer – Encoder

Latent Space Representation

Transformer – Multi-Head Attention

Transformer – Scaled Dot Product Attention

Transformer – Encoder-Only Model

Transformer – Decoder

Transformer – Decoder

Transformer – Decoder - Training

Transformer – Encoder-Decoder Model

Task: understand / encode the input + generate sequence of output tokens

End of generation: fixed length / end token

Examples:

- Machine Translation
- Multivariate time series forecasting

Transformer – Decoder-Only Model

Transformers: pros and cons

Pros:

- Long dependencies
- Multi-head attention can learn complex dependencies

Cons:

- Quadratic time and memory complexity
- Training is insidious
- (Still limited research on time series data.)

WS 2024/25 | Richard Dirauf | MaD Lab | Transformer

