(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) . Int. Ci. ⁷ CO4B 35/03

(11) 공개번호 목2002 - 0087144

(43) 공개일자 2002년11월22일

(21) 출원번호

10 - 2001 - 0026056

(22) 출원일자

2001년05월14일

(71) 출원인

한국과학기술연구원

서율 성북구 하월곡2동 39-1

(72) 발명자

박재화

서울특별시마포구연남동246-15

박재판

서울특별시노원구충계동505롯데아파트11 - 504

김윤호

서울특별시노원구공통2동254번지태룡우성아파트6동803호

(74) 대리인

이재화

심사청구 : 있음

(54) 저온소성 다충기관용 유전체 세라믹 조성물의 제조방법

요약

본 발명은 1100° C 부근의 낮은 온도범위에서 소성이 가능한 고유전율의 $MgO-CaO-TiO_2$ 계 세라믹 조성물의 제조방법에 관한 것이다. 이 조성물은 세라믹 저온소성다충기판 내부에 사용되는 고유전율 층에 사용하기에 적합하다.

본 발명에 따르면, $MgO-CaO-TiO_2$ 계 소성분말에 대하여 BaO, ZnO, PbO, B_2O_3 , SiO_2 등을 적량 첨가하였을 때 마이크로파 유전특성과 소결특성이 우수하였다. 따라서 본 발명의 방법에 따라 제조된 세라믹조성물은 가격이 저렴한 Ag 또는 Ag-Pd전극과함께 저온소성다층기판의 제조에 사용될 수 있다.

색인어

고유전율 세라믹 조성물, 저온소성, 다충기판, 마이크로파 특성, 세라믹 모듈, LTCC

명세서

발명의 상세한 설명

발명의 목적

- 1 -

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 유전체 세라믹 조성물의 제조방법에 관한 것으로, 특히 1100℃ 정도의 낮은 온도범위에서 소성이 가능한 MgO-CaO-TiO2계(MCT) 저온소성 다충기판용 고유전율 유전체 세라믹 조성물의 제조방법에 관한 것이다.

저온소성 다충기판이란 소자 및 회로가 인쇄된 세라믹 후막 그린 시이트(green sheet)들을 적충하고, 비어(via) 및 측면 인터커넥션(interconnection)을 구성하여 회로를 3차원적으로 연결한 후, 이를 대략 1000℃ 이하의 저온에서 동시소성하여 구현하는 일체화된 세라믹 모듈을 말한다.

통신기기의 발전은 부품의 고성능화, 소형화, 저가격화 및 모듈화로 나타나고 있으며, 특히 수동소자를 하나로 모듈화할 수 있는 패시브 인테그레이션(passive integration) 기술에 관한 많은 연구가 되고 있는 바, 이를 구현하기 위해 여러 층의 세라믹 후막을 적충하는 저온동시소성 세라믹기판 (Low Temperature Cofired Ceramic : 이하 LTCC)이 연구되고 있다.

종래에는 세라믹스의 소성온도가 1300°C를 넘었으므로 내부 전국의 경우도 역시 1300°C 이상의 온도에서 견딜 수 있는 W, Mo 등을 사용하게 되므로 전기전도도가 나빠서 고주파에서 사용하기는 매우 어려운 단점이 있었다. 따라서 전기전도도가 우수한 Ag, Ag/Pd 내부전국을 사용할 수 있는 온도인 900~1100°C에서 소성 가능한 LTCC가 필요하게되었다. LTCC 조성은 유전율이 6-9 사이 정도인 저유전율 조성과 유전율이 15 이상인 고유전율 조성으로 대별할 수 있으며 고유전율 조성은 마이크로파 필터 및 안테나 등을 구현하기에 적합한 조성이다. 유전율이 6-9 사이 정도인 저유전율 LTCC 조성물은 여러 업체를 통해 개발되어 있으나 유전율이 15 이상인 고유전율 조성은 현재 거의 개발되어 있지 않다.

LTCC를 사용하면 인덕터, 캐패시터, 저항을 하나의 모듈안에 리드선없이 구현할 수 있으므로 패키지의 크기를 현저하게 줄일 수 있을 뿐 아니라, 기생성분에 의한 특성저하를 방지할 수 있으므로 초고주파용 디바이스에 매우 유용하게 활용될 수 있다.

그러나. 현재 LTCC의 기술은 단순히 3차원 배선의 개념으로 발전하고 있으며 그 내부에 고유전율 유전체 충을 형성하여 대용량 캐패시터를 구현하는 기술에 관한 연구는 거의 이루어지지 않고 있다. 그 이유는, 고유전율 세라믹 조성물 가운데 Ag의 소성온도인 1100℃이하에서 소성이 가능한 것이 현재로서는 거의 없기 때문이다.

본 발명자들은 이러한 사정을 감안하여, 마이크로파 특성이 우수하지만 소성은도가 1350℃정도로 상당히 높은 MgO - CaO - TiO₂계 유전체 세라믹에 관하여 예외 연구한 결과, 이 세라믹 조성물에 특정의 소성은도 저하용 산화물을 첨가 함으로써 소성은도를 1100℃ 이하로 낮출 수 있다는 사실을 발견하여 본 발명을 완성하게 되었다.

발명이 이루고자 하는 기술적 과제

따라서, 본 발명의 목적은 마이크로파 특성이 우수하고 소성온도가 1100℃ 이하여야 한다는 LTCC용 유전체 세라믹의 조건에 부합할 수 있도록 1100℃ 정도의 낮은 온도 범위에서 소성이 가능한 고유전율을 갖는 MgO - CaO - TiO 2 유전체 세라믹 조성물의 제조방법을 제공하고자 하는 것이다

발명의 구성 및 작용

이러한 목적을 달성하기 위하여, 본 발명에 따르면, MgO, CaO, 및 TiO 2의 원료분말을 정량비로 칭량하여 볼밀링한 다음 하소하여 MgO - CaO - TiO2계의 조성을 갖는 유전체 하소분말을 얻는 단계, 상기 하소분말에 소결조제로서 보로 실리케이트(Boro silicate)계 유리 산화물을 첨가한 후 분쇄 혼합하여 혼합분말을 얻는 단계, 상기 혼합분말을 성형하여 성형체를 얻는 단계, 및 상기 성형체를 1050∼1100℃의 온도범위에서 소결하는 단계를 포함하는 MgO - CaO - TiO 2계유전체 세라믹 조성물의 제조방법이 제공된다.

상기 보로 실리케이트(Boro silicate)계 유리는 B $_2O_3$, SiO $_2$ 의 혼합 산화물로 구성되며, 그 첨가량은 유전체 세라믹 조성물의 전체 중량에 대하여 2-10%가 바람직한데, 그 이유는 2% 미만을 첨가하면 저온소성 효과가 떨어져서 소성온도의 저하효과를 실실적으로 기대하기 어렵고, 10%를 초과하면 품질계수 및 유전율 등 유전특성이 저하되기 때문이다.

한편, 보로 실리케이트(Boro silicate)계 유리는 전기적 특성은 우수하나 녹는 온도가 비교적 높기 때문에 저온소결 조제로 사용하기 위해서는 알칼리 산화물을 첨가하여 유리형성온도를 낮추는 것이 필요하다. 따라서 본 발명에서는 소성 온도를 더욱 저하시키면서도 양호한 전기적 물성을 확보하기 위해, 상기 보로 실리케이트(Boro silicate)계 유리 산화물에 알카리(alkali) 산화물을 더 첨가하는 것이 바람직한데 알카리(alkali) 산화물의 종류로는 BaO, ZnO, 및 PbO에서 선택된 적어도 1종을 사용할 수 있다.

특히 바람직하기로는, 상기 혼합 산화물의 소결조제는 소결성과 유전특성을 고려하여 BaO, B_2O_3 , 및 SiO_2 로 이루어지는 혼합 산화물이며 그 구성비율은몰비로 BaO: B_2O_3 : SiO_2 = 30: 60: 10가 바람직하다.

그리고, 상기 혼합 산화물의 소결조제의 첨가량은 유전체 세라믹 조성물의 전체 중량에 대하여 2 - 10%인 것이 바람직하다.

(실시예)

이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다.

마이크로파 조성물 가운데서 마이크로파 특성이 우수한 조성이 (Mg_{0.93} Ca_{0.07})TiO₃ 계이다. MgTiO₃에 7 mol%의 CaTiO₃가 첨가되었을 경우 유전율 20, 품질계수 60000 그리고 공진주파수의 온도계수가 0 ppm/℃로 알려져 있으며, (Mg_{0.93} Ca_{0.07})TiO₃계의 소성은 약 1350°C의 온도를 필요로 한다. 본 발명에서는 1100°C 미만에서의 저온 소결을 위하여 보로 실리케이트(boro silicate)계 유리를 첨가하였다.

(Mg_{0.93} C_{a_{0.07}}) TiO₃ 계의 조성을 갖는 세라믹 조성물을 제조하기 위하여 우선, 원료분말로서 고순도의 MgO, CaO, 및 TiO₂ (99.9%) 각각의 원료들을 정량비로 칭량한 후 탈이온수와 지르코니아 불을 이용하여 24 시간 불밀링하고 10 0℃이상의 온도에서 충분히 건조하였다. 건조가 끝난 분말은 300℃/h의 숭온 속도로 1100℃에서 2 시간동안 하소하여 유전체 세라믹 분말을 합성하였다.

하소한 분말에 저온소결용 조제로 BaO, ZnO, PbO, B $_2$ O $_3$, SiO $_2$ 등과 같은 보로 실리케이트(Boro silicate)계 유리 산화물과 알카리(alkali) 산화물을 세라믹 조성물의 전체중량에 대하여 4 및 8중량%로 첨가량을 변화시켜, 표 1에 나타낸 바와 같은 조성비로 첨가한 후, 24시간 동안 분쇄 혼합하였다.

이와 같이 합성된 분말에 성형성을 향상시키기 위하여 2중량%의 PVA(poly - vinyl alcohol)을 결합제(binder)로 청가한 후 체거름을 통하여 조립화한 다음, 상기 혼합분말을 성형하여 성형체를 얻는 후 5℃/min의 속도로 1100℃에서 2시간 소결하였으며 그 결과를 표 2에 나타내었다.

[표 1]본 발명 소결조제의 조성.

성분 code	BaO	ZnO	РъО	B ₂ O ₃	SiO ₂	
BBS	30	•		60	10	
ZBS		60	•	30	10	
PBS	·	•	30	60	10	

상기 표 1에 나타난 BBS는 BaO를 B_2O_3 , SiO_2 에 첨가한 조성이며, ZBS는 ZnO를 B_2O_3 , SiO_2 에 첨가한 조성이며, PBS는 PbO를 B_2O_3 , SiO_2 에 첨가한 조성을 각각 의미한다.

[丑 2]

조성	첨가량(wt%)	분위기	소결온도(♡)	수축율(%)	겉보기밀도(g/cm³)
MCT+BBS	4	Air	3'001'1	17.3	3.7707
	8			16.8	3.7426
MCT+ZBS	4			11	3.0517
	8			14.3	3.2931
MCT+PBS	4			16.9	3.7522
	8			17.1	3.7695

표 2로부터, 순수한 MCT의 경우 1350℃에서 수축율이 15%인 것에 비해 BBS 글래스(glass)를 첨가한 것과 PBS 글래스(glass)를 첨가한 경우 약 2% 더 높은 수축율을 나타내었고, MCT+BBS를 제외하고 MCT+ZBS와 MCT+PBS는 글래스(glass)의 첨가량이 많을수록 수축율과 겉보기밀도가 증가하는 것을 확인할 수 있었다. 위의 결과를 통해 BBS 글래스(glass)의 첨가가 저온소성에는 가장 효과적임을 알 수 있었다.

이상의 결과를 토대로 표 3에 나타낸 바와 같이, 소결온도를 1000-1100℃ 범위로 하고 소결조제의 첨가 범위도 좀 더 광범위하게 해 보았다. 그 결과를 보면, 1100℃에서 소성한 결과는 소성수축율이 17% 이상으로서 종래의 1350℃에서 소결조제의 첨가 없이 소성한 경우보다 더 우수한 소성 수축율을 나타내었으나, 1000℃에서 소성한 결과는 약 6% 정도로서 다소 미흡한 결과를 보여주었다. 이를 통해서 최적의 소성 온도범위는 1000℃를 초과하는 약 1050-1100℃의 범위인 것으로 판단된다. 그리고 소결조제의 첨가범위는 약 2-10%, 바람직하게는 4-5% 정도로 판단되며, 그 이상 청가될 경우에는 오히려 수축율 및 소결일도가 감소하였다.

[표 3]BBS 첨가에 대하여 1000/1100℃ 온도에서 2시간 소성한 결과 소성거동.

조성	참가량(wt%)	소성온도(°C)	수축율(%)	밀도(g/cm³)
MCT+BBS	0	1100	4.1	2.34
	2		12.2	3.21
	4		17.3	3.77
	8		16.8	3.74
	15		15.5	3.68
	0	1000	1.5	2.11
	2		3.0	2.33
	4		5.8	2.56
	8		5.0	2.51
	15		4.7	2.44

한편, BBS 첨가에 대하여 1100℃에서 소결한 경우 마이크로파 유전특성을 표 4에 나타내었는데, 유전율이 20과 21로, 공진주파수의 온도계수가 0 ppm/℃에 가까운 양호한 특성을 확인할 수 있었다. [五4]

조성	첨가량(wt%)	품질계수(Q*f)	공진주파수의온도계수τ cf (ppm/℃)	유전율K
MCT+BBS	4	11000	1.4	21
	8	9100	1.6	20

발명의 효과

본 발명에 따르면, 1100℃ 부근의 낮은 온도 범위에서도 양호한 소성특성 및 유전특성을 갖는 저온소성다층기판용 고 유전율 세라믹 조성물을 얻을 수 있으며, 이를 통해 Ag 전극을 사용한 저온소성다층기판용 고유전율 세라믹 조성물로 서 활용이 충분히 가능한 것으로 판단된다.

(57) 청구의 범위

청구항 1.

MgO, CaO, 및 TiO_2 의 원료분말을 정량비로 칭량하여 뵬밀링한 다움 하소하여 MgO - CaO - TiO_2 계의 조성을 갖는 유전체 하소분말을 얻는 단계,

상기 하소분말에 소결조제로서 보로 실리케이트(Boro silicate)계 유리 산화물을 첨가한 후 분쇄 혼합하여 혼합분말을 얻는 단계,

상기 혼합분말을 성형하여 성형체를 얻는 단계, 및

상기 성형체를 1050~1100℃의 온도범위에서 소결하는 단계를 포함하는 MgO-CaO-TiO 2 계 유전체 세라믹 조성물의 제조방법.

청구항 2.

제1항에 있어서, 상기 보로 실리케이트계 유리 산화물은 B_2O_3 , SiO_2 의 혼합 산화물로 구성되는 것을 특징으로 하는 유전체 세라믹 조성물의 제조방법.

청구항 3.

제2항에 있어서, 상기 산화물은 유전체 세라믹 조성물의 전체 중량에 대하여 2 - 10%인 것을 특칭으로 하는 유전체 세라믹 조성물의 제조방법.

청구항 4.

제1항에 있어서, 상기 소결조제는 보로 실리케이트계 유리 산화물에 알카리 산화물이 더 첨가되는 혼합 산화물인 것을 특징으로 하는 유전체 세라믹 조성물의 제조방법,

청구항 5.

제4항에 있어서, 상기 알카리 산화물은 BaO, ZnO, 및 PbO에서 선택된 적어도 1종인 것을 특징으로 하는 유전체 세라 믹 조성물의 제조방법.

청구항 6.

제4항에 있어서, 상기 혼합 산화물의 소결조제는 몰비로 BaO : B $_2$ O $_3$: SiO $_2$ =30 : 60 : 10인 것을 특징으로 하는 유전체 세라믹 조성물의 제조방법.

청구항 7.

제4항에 있어서, 상기 혼합 산화물의 소결조제는 유전체 세라믹 조성물의 전체 중량에 대하여 2 - 10%인 것을 특징으로 하는 유전체 세라믹 조성물의 제조방법.

청구항 8.

제1항에 있어서, 상기 MgO - CaO - TiO $_2$ 계는 (Mgo.93 $_2$ Cao.07) TiO $_3$ 의 조성인 것을 특징으로 하는 유전체 세라믹 조성물의 제조방법.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.