

焊盘分类算法设计

张沛阳 **583932508@qq.com**

- 问题描述: 从现有的板子中扫描得到焊盘的坐标数据和器件的坐标数据,给出每个焊盘所对应的器件。
- 输入: 两个数据文件。

• 输出:按顺序给出每个焊盘所对应器件的具体名称。

输入数据:

dfm-0803_Part.txt - ì	己事本			M 45- 00	02 D-1++ 2	1##			
文件(<u>F</u>) 编辑(<u>E</u>) 格式(<u>O</u>)	查看(<u>V</u>) 帮	助(<u>H</u>)		5000 H55 (2000)	03_Pad.txt - ic̄		9571 N		
;PartX PartY	Angle	PartNam	ePackageName	;ROUND	揖(E) 格式(O) PadX	查看(V)帮原 PadY	助(<u>H)</u> PadSize	PartName	e
247.5314 22.4699	180.00	"X1"	"DB9SL"	;RECT	MinX	MinY	MaxX	MaxY	PartName
212.7123 48.4886	0.00	"R46"	"0805-IPC"	;POLY	PadX	PadY	PartName	е	
212.7123 46.0502	0.00	"R23"	"0805-IPC"	POLY	"X1"				
86.2076 83.0453	270.00	"R44"	"0805-IPC"		23.4960				
86.2076 87.2363	270.00	"R16"	"0805-IPC"		23.1023				
231.8487 40.8569	0.00	"R94"	"0805-IPC"		23.1023				
200.7337 77.8650	180.00	"C47"	"0805-IPC"		23.4960				
215.1355 22.7216	0.00	"R43"	"0805-IPC"	242.3851					
211.7446 23.6741	90.00	"C65"	"0805-IPC"	241.5977					
211.7954 27.9921	270.00	"C63"	"0805-IPC"	241.2040	24.2834				
219.4281 22.6962	0.00	"C62"	"0805-IPC"		23.4960				
212.7733 31.4846	0.00	"C61"	"0805-IPC"		23.4960				
190.9450 59.7624	270.00	"C100"	"0805-IPC"	ENDPOL		22.0007	1 5740	11374 II	
212.1723 59.7952	0.00	"C71"	"0805-IPC"	ROUND	244.7615 247.5314		1.5748 1.5748	"X1" "X1"	
208.8490 27.1285		"C70"		ROUND	250.3013		1.5748	"X1"	
	270.00		"0805-IPC"	ROUND	253.0714		1.5748	"X1"	
189.0558 88.8759	90.00	"R92"	"0805-IPC"	ROUND	243.3764		1.5748	"X1"	
187.6334 84.1261	270.00	"R91"	"0805-IPC"	ROUND	246.1466		1.5748	"X1"	
183.1122 89.1299	90.00	"C64"	"0805-IPC"	ROUND	248.9162	21.0500	1.5748	"X1"	
189.0050 95.2767	90.00	"C97"	"0805-IPC"	ROUND	251.6863	21.0500	1.5748	"X1"	
184.2425 62.6250	0.00	"C39"	"0805-IPC"	ROUND	260.0312	22.4699	4.0640	"X1"	3

问题难点分析:

- 1. 给定一个状态,如何给出当前状态是否正确的置信度。
- 2. 如何在短时间内, 高效地搜索优质的可能解。
- 3. 如何避免对称干扰。

难点:

• 计算机无法精确表示浮点数。

• 加工误差和检测误差是普遍存在的。

• 数据可视化的重要性。

策略: 1. 给定一个状态,如何给出当前状态是否正确的置信度。

几何中心和物理中心:

中心偏移距离:

两种中心度量方式的对比:

Min Rect

Bound Rect

两种中心度量方式中心偏移距离的对比:

	data1		da	ta2	data3		
中心偏移距维度.	3	2	5	59	345		
中心偏移距度量方式:	Min rectangle	Bound rectangle	Min rectangle	Bound rectangle	Min rectangle	Bound rectangle	
中心偏移距1范数:	0. 470079	0.001107557	2. 041112	0.001671	17. 91838346	5. 504047715	
中心偏移距无穷范数:	0.468682	8.06384E-05	1. 150023	7. 14E-05	0.635008376	0. 457021633	
中心偏移距分布:	0.468682 0.000176 0.00013 7.43E-05 7.35E-05	8.06384E-05 7.55068E-05 7.48118E-05 7.16058E-05 5.6596E-05	1.150023 0.444494 0.444467 0.000193 0.000163 0.000117	7.14E-05 6.12E-05 5.82E-05 5.76E-05 5.32E-05 5.2E-05	0.366360434 0.366339012 0.366338115 0.000248542 0.000242721 0.000241144	0.456975751 0.456974594 0.456973248 0.000248542 0.00022217 0.000216949	
中心偏移距0范数与维度比:	1/32	0/32	3/59	0/59	40/345	12/345	
物理中心偏移距1范数: 几何中心偏移距1范数:	Emiliar	t: 3.99195636987 .86994287552	physicsDist: 1.65500449398 geoDist: 6.58115113859		physicsDist: 40.5221446289 geoDist: 61.981862542		
混合中心偏移距1范数:	halfDist:	1. 76443150968	halfDist:	4. 11789989952	halfDist: 36.4093616842		

- 2. 如何在短时间内, 高效地搜索优质的可能解。
 - 1.缩小搜索范围
 - 2. 只收集高质量的候选解方案

张沛阳

算法悬赏:

问题描述:给定一串无序数字,以最快的平均时间复杂度求出其中所有正负相反的数字对的绝对值。

如输入: 8-73415-27-36-1

输出731

白羊座的日常

2018年8月5日 11:42 删除

pan/zoom, x=62.5277 y=70.3458

3. 如何避免对称干扰。

Max(min(width , height)) st. dist<1e-3

两种排序的对比:

 $points_list=sorted (points_list, key=lambda \ x: (max (abs (x[0]), abs (x[1])), \\ (abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0])+abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list, key=lambda \ x: (0.9*max (abs (x[0]), abs (x[1]))+0.1*(abs (x[0]), abs (x[1]))), reverse=True) \\ points_list2=sorted (points_list2) \\ points_li$

指标对比:

Max(width, height) st. dist<1e-3

	ACC	DACC	NDR	PCB_Name	Pad_num	Part_num	Time
0	0. 984196	1	0.015804	288	2531	1125	3. 793
1	1	1	0	8XJ038048	1880	546	1. 107
2	0. 638835	0.999662	0.360949	CC0_100500-B	4635	561	8. 535
3	0. 983926	1	0.016074	DVI10_V2. 4. 2_ODB_20180411	3235	743	4. 784
4	0.990654	1	0.009346	MU_V3_A3AASC2_V2	428	167	0.187
5	0.785734	0.998002	0. 212693	n-5180	14622	5411	569. 377
6	0.872204	0.999139	0.127044	T6-532J3701-R (TGZ)	5321	1180	43. 585
7	0.812072	0.99626	0. 184879	USa	14761	2223	88. 872

Max(min(width , height)) st. dist<1e-3

	ACC	DACC	NDR	PCB_Name	Pad_num	Part_num	Time
0	1	1	0	288	2531	1125	4.825
1	1	1	0	8XJ038048	1880	546	1. 351
2	0.961597	0.999776	0.038188	CC0_10050	4635	561	11.246
3	0.998764	1	0.001236	DVI10_V2.	3235	743	6.307
4	0.990654	1	0.009346	MU_V3_A3/	428	167	0.296
5	0. 97579	0. 99881	0.023047	n-5180	14622	5411	432. 599
6	0.942868	0.999203	0.05638	T6-532J37	5321	1180	43. 151
7	0.864508	0.996486	0. 132444	USa	14761	2223	95.614

	ACC	DACC	NDR	PCB_Name	Pad_num	Part_num	Time
0	1	1	0	11504-K1603A9500-01	6533	464	11.401
1	0.99921	1	0.00079	288	2531	1125	6.874
2	1	1	0	8XJ038048	1880	546	1.721
3	1	1	0	AC02IQQ-0323	459	172	0.252
4	0. 907233	0.999423	0.092243	ASY_180902RB-0514	1908	356	3. 3
5	0. 996641	0.999545	0.002905	BackDrill	11015	1167	32. 146
6	1	1	0	BMS_CTL_IF_0426	376	140	0.44
7	0. 989213	1	0.010787	CC0_100500-B	4635	561	13. 243
8	0. 974869	1	0.025131	dfm-0803	955	318	0.573
9	0. 998764	1	0.001236	DVI10_V2. 4. 2_ODB_20	3235	743	6.761
10	0. 984351	0.998413	0.014085	GLN000820C-Routing-	639	243	0.524
11	1	1	0	MU_V3_A3A-0530	428	167	0.17
12	1	1	0	MU_V3_A3AASC2_V2	428	167	0.161
13	0. 975927	0.99888	0.022979	n-5180	14622	5411	579.032
14	0. 980543	0.999237	0.018709	P01BTA-171000-2018.	5345	1313	106.564
15	0. 989213	1	0.010787	ST-TEST09	4635	561	12.794
16	0.94362	0.999204	0.055629	T6-532J3701-R (TGZ)	5321	1180	52.851
17	0.869724	0.998367	0. 128853	USa	14761	2223	116. 336
							945. 143

小技巧:

