

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁵ : H04B 3/56	A1	(11) Numéro de publication internationale: WO 93/08653 (43) Date de publication internationale: 29 avril 1993 (29.04.93)
--	----	---

(21) Numéro de la demande internationale: PCT/FR92/00976 (22) Date de dépôt international: 15 octobre 1992 (15.10.92) (30) Données relatives à la priorité: 91/12821 17 octobre 1991 (17.10.91) FR (71) Déposant (<i>pour tous les Etats désignés sauf US</i>): ELECTRICITE DE FRANCE [FR/FR]; 2, rue Louis-Murat, F-75008 Paris (FR). (72) Inventeur; et (75) Inventeur/Déposant (<i>US seulement</i>): CHAFFANJON, Daniel [FR/FR]; 18, rue Molière, F-91230 Montgeron (FR). (74) Mandataires: FRECHEDE, Michel etc. ; Cabinet Plasseaud, 84, rue d'Amsterdam, F-75009 Paris (FR).	(81) Etats désignés: FI, NO, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE). Publiée <i>Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i>
--	---

(54) Title: DIRECTIVE SEPARATOR/COUPLER CIRCUIT FOR MEDIUM FREQUENCY CARRIER CURRENTS ON A LOW VOLTAGE ELECTRIC LINE

(54) Titre: CIRCUIT SEPARATEUR-COUPLEUR DIRECTIF POUR COURANTS PORTEURS A FREQUENCE MOYENNE SUR LIGNE ELECTRIQUE A BASSE TENSION

(57) Abstract

A directive separator/coupler circuit for medium frequency carrier currents on a low voltage AC line comprises a parallel CL resonant circuit on the electric line and an emission/reception circuit E for carrier currents which are voltage coupled to the resonant circuit by a connecting circuit D. The connecting circuit also comprises a series connecting leg L_d, C_d providing current coupling of the emission/reception circuit E and the medium frequency line, as well as decoupling.

(57) Abrégé

L'invention est relative à un circuit séparateur-coupleur directif pour courant porteur à fréquence moyenne sur une ligne électrique du réseau alternatif basse tension. Il comprend un circuit résonnant parallèle C, L inséré sur la ligne électrique et un circuit d'émission-réception E des courants porteurs couplés en tension au circuit résonnant par un circuit de raccordement D. Le circuit de raccordement comprend également une branche de raccordement série L_d, C_d permettant d'assurer un couplage en courant du circuit d'émission-réception E et de la ligne à la fréquence moyenne et un découplage.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie	GA	Gabon	MW	Malawi
BB	Barbade	GB	Royaume-Uni	NL	Pays-Bas
BE	Belgique	GN	Guinée	NO	Norvège
BF	Burkina Faso	GR	Grèce	NZ	Nouvelle-Zélande
BG	Bulgarie	HU	Hongrie	PL	Pologne
BJ	Bénin	IE	Irlande	PT	Portugal
BR	Brésil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	LK	Lichtenstein	SK	République slovaque
CI	Côte d'Ivoire	LU	Sri Lanka	SN	Sénégal
CM	Cameroon	MC	Luxembourg	SU	Union soviétique
CS	Tchécoslovaquie	MG	Monaco	TD	Tchad
CZ	République tchèque	ML	Madagascar	TC	Togo
DE	Allemagne	MN	Mali	UA	Ukraine
DK	Danemark			US	Etats-Unis d'Amérique
ES	Espagne			VN	Viet Nam
FI	Finlande				

CIRCUIT SEPARATEUR-COUPLEUR DIRECTIF POUR COURANTS PORTEURS
A FREQUENCE MOYENNE SUR LIGNE ELECTRIQUE A BASSE TENSION

L'invention concerne un circuit séparateur-coupleur directif pour courants porteurs à fréquence moyenne sur ligne électrique du réseau alternatif basse-tension.

La transmission d'information sur les réseaux de distribution et d'alimentation en énergie électrique basse tension est actuellement effectuée au moyen de circuits émetteurs-récepteurs à courants porteurs E, lesquels sont couplés au réseau, ainsi que représentés en figure 1a, par l'intermédiaire d'un circuit séparateur-coupleur D, de façon à assurer un couplage maximum au réseau basse tension et une perturbation minimale tant du réseau lui-même, dit réseau amont, que du réseau aval, consistant le plus souvent en l'installation d'alimentation d'un client abonné. Ce type de circuit séparateur coupleur doit, d'une part, assurer l'adaptation du circuit émetteur-récepteur E, et, d'autre part, le découplage entre le réseau amont et le réseau aval. Dans ce but, on a jusqu'ici utilisé comme circuit séparateur-coupleur, ainsi que représenté en figure 1b, un couplage en tension, au moyen d'un transformateur émetteur de couplage ; les circuits à basse tension et à courants porteurs étant ainsi complètement séparés galvaniquement. De tels circuits donnent satisfaction quant au découplage en courant continu ou homopolaire, mais ils ne permettent cependant pas de réaliser un véritable circuit coupleur directif.

La présente invention a pour objet la mise en œuvre d'un circuit séparateur-coupleur directif permettant d'assurer un découplage maximum entre l'émetteur-récepteur E et le réseau aval B alors que le couplage entre le même émetteur-récepteur E et le réseau amont A est optimum.

Un autre objet de la présente invention est la mise en œuvre d'un circuit séparateur-coupleur directif dans

lequel le sens de la directivité précitée peut être inversé, découplage maximum entre émetteur-récepteur E et réseau amont A et couplage optimum entre émetteur-récepteur E et réseau aval B.

5 Un autre objet de la présente invention est également la mise en oeuvre d'un circuit séparateur-coupleur permettant d'assurer un filtrage efficace des signaux parasites, provenant du réseau aval B, et susceptibles de se propager vers le réseau amont A et l'émetteur-récepteur E
10 ou réciproquement.

Le circuit séparateur-coupleur directif pour courants porteurs à fréquence moyenne sur une ligne électrique du réseau alternatif basse tension, objet de la présente invention, comprend un circuit résonnant parallèle inséré 15 sur la ligne électrique, dont la fréquence de résonance est voisine de la fréquence centrale de la bande passante des courants porteurs à fréquence moyenne et un circuit d'émission-réception desdits courants porteurs couplés en tension audit circuit résonnant par un circuit de raccordement. Il est remarquable en ce que le circuit de raccordement comprend également une branche de raccordement série 20 permettant d'assurer un couplage en courant du circuit d'émission-réception et de la ligne à la fréquence moyenne et un découplage du circuit d'émission-réception de la ligne à la fréquence du réseau basse tension.
25

Le circuit séparateur-coupleur directif objet de l'invention trouve application à la réalisation de systèmes de transmission d'informations par courants porteurs à fréquence moyenne sur les réseaux d'alimentation en énergie 30 électrique basse tension.

Une description plus détaillée d'un circuit séparateur-coupleur directif, objet de la présente invention, sera maintenant donnée ci-après en liaison avec les dessins dans lesquels outre les figures 1a et 1b, relatives à des 35 circuits séparateurs-coupleurs de l'art antérieur,

- la figure 2 représente un circuit séparateur-coupleur directif conforme à l'objet de la présente invention,

5 - la figure 3 représente une première variante de réalisation du circuit séparateur-coupleur directif selon l'invention tel que représenté en figure 2,

- la figure 4 représente un diagramme de couplage d'un enroulement supplémentaire mis en oeuvre dans le mode de réalisation de la figure 3 en fonction de la fréquence,

10 - les figures 5a et 5b représentent une deuxième variante de réalisation du circuit séparateur-coupleur directif selon l'invention dans laquelle un accroissement de la bande passante aux fréquences moyennes est obtenu.

Une description plus détaillée d'un circuit 15 séparateur-coupleur directif conforme à l'objet de la présente invention sera maintenant donnée en liaison avec la figure 2.

Ainsi que représenté sur la figure 2 précitée, le circuit séparateur-coupleur directif, objet de la présente 20 invention, est destiné à assurer la transmission de courants porteurs à fréquence moyenne sur une ligne électrique du réseau alternatif basse tension.

Il comprend un circuit résonnant parallèle formé par une inductance L, une capacité C et une résistance R ce 25 circuit résonnant étant inséré sur la ligne électrique précitée. La fréquence de résonance du circuit résonnant parallèle est voisine de la fréquence centrale de la bande passante des courants porteurs à fréquence moyenne. En fonctionnement, un circuit d'émission-réception E des courants porteurs est couplé en tension au circuit résonnant par un circuit de raccordement. Conformément à un aspect particulièrement avantageux de la présente invention, le circuit de raccordement comprend également une branche de raccordement série, formée par une inductance Ld et une 30 capacité Cd connectées en série, la branche de raccordement 35

en série étant connectée directement à un enroulement de l'inductance L et le couplage en tension étant réalisé par couplage mutuel de l'inductance L et de l'inductance L_d . Le circuit d'émission-réception E est alors connecté par un 5 couplage en courant entre la capacité C_d et la tension de référence ou de masse du dispositif et du réseau. La branche de raccordement en série permet d'assurer un couplage en courant du circuit d'émission-réception E et de la ligne à fréquence moyenne et un découplage du circuit d'émission-10 réception E de la ligne, à la fréquence du réseau basse tension, ainsi qu'il sera expliqué ci-après dans la présente description.

Selon un aspect particulièrement avantageux du circuit séparateur coupleur objet de la présente invention, le 15 circuit de raccordement est formé par l'inductance auxiliaire L_d couplée par inductance mutuelle avec l'inductance L du circuit résonnant parallèle, cette inductance auxiliaire L_d assurant ainsi le couplage en tension du circuit émetteur E au circuit résonnant précité. En outre, une 20 capacité auxiliaire C_d assure la liaison entre une première extrémité de l'inductance auxiliaire L_d et le circuit d'émission-réception E . Enfin un circuit de liaison électrique continu est prévu entre l'autre extrémité de l'inductance auxiliaire L_d et le point milieu de l'inductance L 25 du circuit résonnant parallèle.

Ainsi, le circuit de liaison électrique continu, l'inductance auxiliaire L_d et la capacité auxiliaire C_d constituent la branche de raccordement en série du circuit d'émission-réception du réseau de distribution d'énergie en 30 basse tension.

Le fonctionnement du circuit séparateur-coupleur directif objet de la présente invention peut être résumé de la façon ci-après :

A L'EMISSION :

35 L'émetteur est représenté par une force électromotrice E et son impédance interne notée Z_d . La tension disponible au point g , c'est-à-dire au point d'entrée

du séparateur-coupleur objet de la présente invention, est appliquée au réseau électrique au point c point milieu de l'inductance principale L formant le circuit résonnant parallèle intercalé dans le réseau de distribution basse tension. 5 La tension disponible au point g est appliquée au point milieu c précité par l'intermédiaire du condensateur C_d et de l'inductance auxiliaire L_d .

Le condensateur C_d est choisi de façon à isoler partiellement l'émetteur-récepteur E des effets dus à la 10 présence de la tension à 50 Hz délivrée par le réseau d'alimentation, le courant dû à la composante à 50 Hz dans la branche de raccordement et en particulier dans l'impédance interne du générateur E pouvant alors être rendu inférieur à 150 mA.

15 L'inductance auxiliaire L_d induit dans l'inductance principale L, connectée entre les points a et b représentés en figure 2, une tension à fréquence moyenne $V_a - V_c$ proportionnelle au courant à moyenne fréquence noté i_3 sur la figure 2.

20 Les extrémités de l'inductance auxiliaire L_d étant notées respectivement f et e, l'extrémité f étant connectée par la connexion continue au point milieu c de l'inductance principale L, une composition vectorielle, d'une part, de la tension $V_a - V_c$ et de la tension $V_f - V_e$, et, d'autre 25 part, de la tension $V_b - V_c$ avec la tension $V_f - V_e$ permet, pour des valeurs convenables en grandeur et en signe des coefficients d'induction et d'induction mutuelle M et notamment du couplage mutuel M_0 en les deux demi-inductances L_{ac} et L_{cb} de l'inductance principale L, du couplage mutuel 30 M entre d'une part la demi-inductance principale L_{ac} et l'inductance auxiliaire L_d et d'autre part la demi-inductance principale L_{cb} et l'inductance auxiliaire L_d , d'annuler la tension résultante à fréquence moyenne au point b c'est-à-dire à l'entrée du réseau aval, alors que cette 35 tension résultante atteint un maximum au point a c'est-à-dire à l'entrée du réseau amont.

On notera que le circuit séparateur-coupleur objet de la présente invention permet de combiner le couplage en tension et le couplage en courant pour assurer le caractère de directivité précédemment mentionné.

5 On rappellera que le couplage en tension prévaut lorsque l'impédance du réseau est relativement élevée, supérieure à 10 ohms, alors que le couplage en courant est préféré en présence de faibles valeurs de cette impédance, soit inférieure à 5 ohms.

10 On notera également que, même pendant un temps très court, le réseau basse tension fluctue parfois très fortement en matière de valeur d'impédance, de quelques dixièmes à quelques dizaines d'ohms, et on comprend donc que le couplage mixte offre une adaptation particulièrement 15 propice à l'usage envisagé. En outre, le circuit séparateur-coupleur objet de la présente invention permet de conférer à la transmission des courants porteurs un caractère directif dans une large bande de fréquences. En effet, d'une part, il est possible de renforcer jusqu'à 20 + 3dB la puissance émise en direction du réseau amont, et, d'autre part, il est possible d'éliminer, sensiblement avec une atténuation de -20dB, les signaux indésirables provenant du réseau aval. Bien entendu on notera que sur changement du sens d'enroulement relatif de l'inductance 25 principale L et de l'inductance auxiliaire L_d la directivité de la transmission peut être modifiée vers le réseau aval respectivement le réseau amont.

En définitive le circuit séparateur-coupleur directif objet de la présente invention permet d'obtenir une 30 performance notablement accrue, notamment en ce qui concerne le rapport signal/bruit local, lequel est supérieur à 20 dB.

A LA RÉCEPTION :

Le réseau amont basse tension se comporte comme un 35 générateur de force électromotrice e et d'impédance interne R_g . Il délivre une tension V_g et un courant d'intensité i_A

à l'entrée du circuit séparateur-coupleur objet de la présente invention.

Tous les phénomènes électromagnétiques mis en jeu dans le coupleur-séparateur objet de la présente invention étant réciproques, les propriétés de directivité et d'adaptation décrites relativement à l'émission s'appliquent également à la réception en tenant compte du fait que l'impédance d'entrée Z_d du récepteur est choisie de façon à présenter une valeur beaucoup plus importante que celle de l'émetteur, 100 ohms au lieu de 10 ohms par exemple, afin de perturber le moins possible l'impédance résultante du réseau basse tension. En effet, alors qu'à un instant donné un seul appareil émet, tous les autres sont au contraire placés en position de réception et donc quasiment en parallèle.

Le principe de superposition des états d'équilibre appliqué au circuit séparateur-coupleur objet de la présente invention, tel que représenté en figure 2, relativement au courant i_1 circulant dans la demi-inductance L_{ac} de l'inductance principale L , i_2 circulant dans la demi-inductance L_{cb} de l'inductance principale L , i_3 circulant dans le circuit de raccordement et en particulier dans l'inductance auxiliaire L_d , i circulant dans le réseau aval symbolisé par une résistance de charge R_C en considération d'une première maille formée par le réseau amont, une impédance Z' formée par la capacité C constituant le circuit résonnant parallèle et une résistance R' d'atténuation, et le réseau aval, une deuxième maille formée par le réseau amont, la première demi-inductance L_{ac} de l'inductance principale L , le circuit de liaison électrique continu et le circuit d'émission-réception E compte tenu de son impédance interne Z_d , et enfin une troisième maille formée par le même circuit de liaison électrique continu et le circuit d'émission-réception E compte tenu de son impédance interne Z_d , et le réseau aval symbolisé par la résistance de charge R_C permet d'établir l'équation matricielle ci-après :

5

$$\begin{bmatrix} E \\ E \\ -e \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \\ i \end{bmatrix}$$

Dans la relation précitée on notera les valeurs respectives :

$$\begin{aligned} a_{11} &= (R_g, 0) \\ 10 \quad a_{12} &= (-(R_g+x), -y) \\ a_{13} &= (R_g+R_C+x, y) \\ a_{21} &= (R_g, (L/4+2M+M_0)\Omega) \\ a_{22} &= (-R_g, (L/4-2M+M_0)\Omega) \\ a_{23} &= (R_C+R_g, 0) \\ 15 \quad a_{31} &= (Z_d, (L/4+2M+L_d)\Omega-1/C_d\Omega) \\ a_{32} &= (x-Z_d, (M_0-L_d)\Omega+1/C_d\Omega) \\ a_{33} &= (-(R_C+x), -y). \end{aligned}$$

Dans les relations précitées on notera que :
 x et y désignent respectivement la partie réelle et
 20 la partie imaginaire de z' formée par R'//C, Ω désignant la pulsation des courants porteurs.

Les relations précédentes permettent d'établir la condition pour laquelle le couplage est tel que la tension résultant en b est sensiblement annulée alors que la tension atteint un maximum au point a.
 25

Dans un mode de réalisation pratique on notera que le circuit résonnant est un circuit à bande relativement large, ce circuit résonnant présentant un coefficient de surtension $Q < 5$. Ceci permet d'éviter de recourir à une valeur d'inductance prohibitive vis-à-vis des effets produits sur la tension à 50 Hz, une inductance de valeur 5 fois supérieure devant être utilisée pour obtenir la même impédance tampon dans le cas où aucun circuit résonnant ou circuit d'accord n'est utilisé. En outre, l'utilisation 30 d'un circuit accordé à bande relativement large permet de 35

limiter des effets inhérents à une résonance trop accentuée, de tolérer une dispersion de l'ordre de $\pm 30\%$ des caractéristiques magnétiques et électriques, en particulier des caractéristiques des noyaux magnétiques des inductances utilisées, et enfin d'accepter la transmission correcte de signaux dont le spectre est relativement large, de l'ordre de 10 kHz, lesquels possèdent de bonnes propriétés vis-à-vis des parasites très nombreux et de toute nature encombrant le réseau électrique de distribution.

Selon un mode de réalisation, l'inductance auxiliaire L_d et l'inductance principale L du circuit résonnant, couplées mutuellement sont formées par un transformateur à enroulement secondaire à point milieu. Les bornes de l'enroulement secondaire sont reliées en série au réseau amont respectivement réseau aval, au niveau des points a et b et en parallèle à la capacité C formant circuit résonnant. L'une des bornes de l'enroulement primaire est connectée par une liaison électrique en continu au point milieu précité. Bien entendu, l'enroulement primaire constitue l'inductance auxiliaire L_d .

Une description plus détaillée d'une variante de réalisation du circuit séparateur-coupleur objet de la présente invention sera maintenant donnée en liaison avec la figure 3.

Dans le mode de réalisation précité, la capacité C constituant le circuit résonnant est isolée galvaniquement de la ligne basse tension, la capacité C étant couplée à l'enroulement secondaire du transformateur à point milieu par l'intermédiaire d'un enroulement supplémentaire formant inductance supplémentaire L_s . Une telle disposition permet de soustraire le condensateur C et la résistance d'amortissement R' au courant fort 50 Hz. L'enroulement supplémentaire L_s peut être réalisé en fil fin par exemple.

Toujours afin d'assurer un isolement galvanique avec le réseau à basse tension, un petit transformateur à

pot ou tore en ferrite peut être inséré entre le point g et le point de masse du réseau afin d'assurer la liaison avec le circuit d'émission-réception ainsi que représenté en figure 3. Avec un flux de fuite presque nul, il est ainsi possible de traduire correctement dans le secondaire les valeurs très distinctes des impédances de l'émetteur et du récepteur. Un nombre de spires limité permet de réduire encore le transfert de puissance résiduelle à 50 Hz vers le récepteur.

L'accroissement de la bande passante par l'utilisation d'une résistance d'amortissement, la résistance R' , présente l'inconvénient de ne pas modifier l'allure générale de la courbe de réponse du circuit accordé, ce qui a pour effet de défavoriser relativement les composantes latérales du spectre vis-à-vis de la partie centrale de celui-ci.

Afin de remédier à l'inconvénient précité, la courbe amplitude fréquence du circuit résonnant couplé en tension au circuit de raccordement présente deux extrema sensiblement symétriques par rapport à la fréquence centrale de la bande passante du circuit résonnant, afin de renforcer la contribution des fréquences latérales du spectre de fréquence vis-à-vis de la fréquence centrale de celui-ci. La courbe amplitude fréquence du circuit résonnant est dans ce cas représenté en figure 4. La courbe à extrema symétriques précitée est obtenue par couplage surcritique de l'inductance L , l'inductance auxiliaire L_d respectivement à l'enroulement supplémentaire L_s . Le transformateur peut être réalisé par un transformateur à circuit magnétique à entrefer large, à pot de ferrite. La courbe précitée est obtenue en ménageant un entrefer d'épaisseur substantielle dans le circuit magnétique. Cet entrefer permet essentiellement d'exploiter le circuit au mieux des possibilités eu égard au courant à 50 Hz d'intensité > 95 ampères tendant à saturer. Dans ces conditions, le flux de fuite interne

au pot de ferrite par exemple est alors mis à profit pour découpler partiellement deux circuits accordés, ainsi que représenté en figure 5a, chaque circuit étant accordé sur un demi-circuit magnétique. Le complément de découplage est alors assuré par une connexion électrique précisément ajustée entre les deux circuits résonnantes, tels que représentés sur la figure 5a précitée. Le circuit résonnant est alors subdivisé en un premier et un deuxième circuit résonnant élémentaire L_1 , C_1 L_2 , C_2 . Chacun est accordé sur une fréquence f_1 respectivement f_2 , avec $f_1 < f_2$, les fréquences f_1 , f_2 ayant respectivement sensiblement la valeur correspondante des deux extrema symétriques. Le deuxième circuit résonnant élémentaire est en outre amorti par une résistance de valeur R_2 et les bornes du premier et deuxième circuit résonnant élémentaire sont reliées par une capacité de liaison C_3 , les bornes aval du premier et du deuxième circuit résonnant élémentaire étant reliées par une liaison continue.

Ainsi qu'on l'a en outre représenté en figure 5b, le pot en ferrite comporte avantageusement deux demi-coquilles en forme de E formant un entrefer large au niveau de la zone centrale formée par les deux demi-coquilles assemblées. Le logement périphérique à la zone centrale ainsi formé comporte successivement, à partir de l'axe central de la zone centrale, les enroulements L_1 , L_2 des premier et deuxième circuits résonnantes élémentaires disposés symétriquement par rapport à l'entrefer. L'enroulement de l'inductance auxiliaire L_d est intercalé entre les enroulements des premier et deuxième circuits résonnantes élémentaires. L'enroulement de l'inductance L du circuit résonnant ou inductance principale vient ensuite sur les enroulements L_1 , L_2 et L_d .

On a ainsi décrit un dispositif séparateur-coupleur directif particulièrement performant dans la mesure où celui-ci permet d'assurer un découplage maximum entre le

réseau aval et l'émetteur-récepteur à courant porteur alors que, au contraire, il permet d'assurer un couplage maximum de ce même émetteur-récepteur vers le réseau amont par exemple. Un simple changement de sens d'enroulement d'une 5 bobine sur le circuit magnétique du séparateur-coupleur directif objet de la présente invention précédemment décrit permet d'inverser le sens de la directivité. Au demeurant il est également possible de disposer deux circuits magnétiques complémentés, l'un couplant vers le réseau amont 10 l'autre vers le réseau aval, chacun aboutissant vers un émetteur-récepteur qui lui est propre, sans sortir du cadre de l'objet de la présente invention.

15

20

25

30

35

REVENDICATIONS

1) Circuit séparateur-coupleur directif pour courants porteurs à fréquence moyenne sur une ligne électrique du réseau alternatif basse tension, comprenant un circuit résonnant parallèle inséré sur la ligne électrique, dont la fréquence de résonance est voisine de la fréquence centrale de la bande passante des courants porteurs à fréquence moyenne, et un circuit d'émission-réception (E) desdits courants porteurs couplé en tension audit circuit résonnant par un circuit de raccordement, caractérisé en ce que ledit circuit de raccordement comprend également une branche de raccordement série (L_d , C_d) permettant d'assurer un couplage en courant du circuit d'émission-réception (E) et de la ligne à la fréquence moyenne et un découplage dudit circuit d'émission-réception (E) de la ligne à la fréquence du réseau basse tension.

2) Circuit selon la revendication 1, caractérisé en ce que ledit circuit résonnant comportant une capacité (C) en parallèle sur une inductance (L), ledit circuit de raccordement est formé par :

- une inductance auxiliaire (L_d) couplée par inductance mutuelle avec ladite inductance (L) du circuit résonnant parallèle, ladite inductance auxiliaire (L_d) assurant le couplage en tension du circuit émetteur audit circuit résonnant,
- une capacité auxiliaire (C_d) assurant la liaison entre une première extrémité de ladite inductance auxiliaire et ledit circuit d'émission-réception ;
- un circuit de liaison électrique continue entre l'autre extrémité de ladite inductance auxiliaire et le point milieu de ladite inductance (L) du circuit résonnant parallèle, ledit circuit de liaison électrique continue, ladite inductance auxiliaire (L_d) et ladite capacité auxiliaire (C_d) constituant la branche de raccordement série du circuit d'émission-réception à la ligne.

3) Circuit selon la revendication 1 ou 2,

caractérisé en ce que ledit circuit résonnant présente un coefficient de surtension $Q < 5$.

4) Circuit selon l'une des revendications précédentes, caractérisé en ce que ladite inductance auxiliaire 5 (L_d) et ladite inductance (L) du circuit résonnant, couplées mutuellement, sont formées par un transformateur à enroulement secondaire à point milieu, les bornes dudit enroulement secondaire étant reliées en série à la ligne et en parallèle à ladite capacité (C) formant circuit résonnant, l'une des bornes de l'enroulement primaire étant connectée par une liaison électrique en continu audit point milieu.

5) Circuit selon la revendication 4, caractérisé en ce que ladite capacité (C) constituant ledit circuit résonnant est isolée galvaniquement de la ligne basse tension, 15 ladite capacité (C) étant couplée audit enroulement secondaire dudit transformateur à point milieu par l'intermédiaire d'un enroulement supplémentaire.

6) Circuit selon l'une des revendications 1 à 5, 20 caractérisé en ce que la courbe amplitude-fréquence du circuit résonnant, couplé en tension audit circuit de racordement, présente deux extrema, sensiblement symétriques par rapport à la fréquence centrale de la bande passante dudit circuit résonnant, afin de renforcer la contribution 25 des fréquences latérales du spectre de fréquence vis-à-vis de la fréquence centrale de celui-ci.

7) Circuit selon les revendications 4 et 6, caractérisé en ce que ladite courbe à extrema symétriques est obtenue par couplage surcritique de l'inductance, l'inductance auxiliaire, respectivement l'enroulement supplémentaire, ledit transformateur étant un transformateur à circuit magnétique à entrefer large à pot de ferrite.

8) Circuit selon la revendication 7, caractérisé en ce que ledit circuit résonnant est subdivisé en un premier 35 et un deuxième circuit résonnant élémentaire (L_1, C_1) ;

(L₂, C₂), chacun accordé sur une fréquence f₁, respectivement f₂, avec f₁ < f₂, les fréquences f₁, f₂ ayant respectivement sensiblement la valeur correspondante des deux extrema symétriques, le deuxième circuit résonnant élémentaire étant, en outre, amorti par une résistance de valeur R₂, les bornes amont du premier et du deuxième circuit résonnant élémentaire étant reliées par une capacité de liaison (C₃) et les bornes aval du premier et du deuxième circuit résonnant élémentaire étant reliées par une liaison 10 continue.

9) Circuit selon les revendications 7 et 8, caractérisé en ce que ledit pot en ferrite comporte : deux demi-coquilles en E formant un entrefer large au niveau de la zone centrale formée par les deux demi-coquilles assemblées, le logement périphérique à la zone centrale ainsi formée comportant successivement à partir de l'axe central de ladite zone centrale :

- les enroulements L₁, L₂, desdits premier et deuxième circuit résonnant élémentaire, disposés symétriquement par rapport à l'entrefer, l'enroulement de l'inductance auxiliaire L_d étant intercalé entre lesdits enroulements desdits premier et deuxième circuit résonnant élémentaire,
- l'enroulement de l'inductance L du circuit résonnant.

FIG.1a. (ART ANTERIEUR)

FIG.1b. (ART ANTERIEUR)

FIG.2.

FIG.3.

FIG.4.

FIG.5a.

FIG.5b.

FEUILLE DE REMplacement

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. 5: H04B 3/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl. 5: H04B; H03H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US, A, 4 903 006 (BOOMGAARD) 20 February 1990 see column 1, line 33 - column 2, line 4 see column 2, line 30 - column 3, line 39; figures 1,2 -----	1
A	EP, A; 0 141 673 (EMLUX) 15 May 1985 see page 1, line 14 - line 17 see page 4, line 7 - line 30; figures 1-4 -----	1
A	FR, A, 2 306 572 (PHILIPS) 29 October 1976 see page 2, line 18 - page 3, line 18; figures 1,2 -----	2,5,6

 Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
22 FEBRUARY 1993 (22.02.93)Date of mailing of the international search report
26 FEBRUARY 1993 (26.02.93)Name and mailing address of the ISA/
EUROPEAN PATENT OFFICE

Authorized officer

Facsimile No.

Telephone No.

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

FR 9200976
SA 66746

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 22/02/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-4903006	20-02-90	DE-A-	4003653	23-08-90
		FR-A-	2643199	17-08-90
		JP-A-	2241233	25-09-90
EP-A-0141673	15-05-85	GB-A-	2148643	30-05-85
		DE-A-	3475037	08-12-88
FR-A-2306572	29-10-76	NL-A-	7504004	06-10-76
		DE-A,C	2613990	14-10-76
		GB-A-	1508714	26-04-78
		JP-C-	1065966	30-09-81
		JP-A-	51123039	27-10-76
		JP-B-	56006722	13-02-81

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous) ?

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

CIB 5 H04B3/56**II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE****Documentation minimale consultée⁸**

Système de classification	Symboles de classification
CIB 5	H04B ; H03H

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porte⁹**III. DOCUMENTS CONSIDERÉS COMME PERTINENTS¹⁰**

Catégorie ¹¹	Identification des documents cités, avec indication, si nécessaire ¹² des passages pertinents ¹³	No. des revendications visées ¹⁴
A	US,A,4 903 006 (BOOMGAARD) 20 Février 1990 voir colonne 1, ligne 33 - colonne 2, ligne 4 voir colonne 2, ligne 30 - colonne 3, ligne 39; figures 1,2 ----	1
A	EP,A,0 141 673 (EMLUX) 15 Mai 1985 voir page 1, ligne 14 - ligne 17 voir page 4, ligne 7 - ligne 30; figures 1-4 ----	1
A	FR,A,2 306 572 (PHILIPS) 29 Octobre 1976 voir page 2, ligne 18 - page 3, ligne 18; figures 1,2 ----	2,5,6

¹¹ Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier.
- "&" document qui fait partie de la même famille de brevets

IV. CERTIFICATIONDate à laquelle la recherche internationale a été effectivement achevée
22 FEVRIER 1993Date d'expédition du présent rapport de recherche internationale
26.02.93Administration chargée de la recherche internationale
OFFICE EUROPEEN DES BREVETSSignature du fonctionnaire autorisé
BOSSEN M.

**ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF A LA DEMANDE INTERNATIONALE NO.**

FR 9200976
SA 66746

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.
Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

22/02/93

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US-A-4903006	20-02-90	DE-A- 4003653 FR-A- 2643199 JP-A- 2241233	23-08-90 17-08-90 25-09-90
EP-A-0141673	15-05-85	GB-A- 2148643 DE-A- 3475037	30-05-85 08-12-88
FR-A-2306572	29-10-76	NL-A- 7504004 DE-A,C 2613990 GB-A- 1508714 JP-C- 1065966 JP-A- 51123039 JP-B- 56006722	06-10-76 14-10-76 26-04-78 30-09-81 27-10-76 13-02-81