LISTA 3

Secao 14.1: 1,3,7,9,17,19,21,33,35,71

$$\int f(x,y) = \frac{x^2y}{2x-y^2}$$

a)
$$f(1,3) = \frac{1.3}{2-9} = -\frac{3}{7}$$

c)
$$f(x+h,y) = \frac{(x+h)^2 y}{2(x+h)^2 y} = \frac{(x^2+2xh+h^2)y}{2x+2h-y^2} = \frac{x^2y+2xyh+h^2y}{2x+2h-y^2}$$

of
$$f(x,x) = \frac{x^2-x}{2x-x^2} = \frac{x(x-1)}{2(2-x)} = \frac{x-1}{2-x}, x \neq 0.$$

9 of(x,y) =
$$\sqrt{x} + \sqrt{4 - 4x^2 - y^2}$$

a) f(73,178) = 1,9 m² lárea da superficie do carpo de uma pessoa com 73 kg e 1,78 m de altera. b) —

l 9

Velocidade do vento (km/h)

	T v	5	10	15	20	25	30	40	50	60	70	80
6	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
n maradar	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
1	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

w=f(t,v)

~) f(-16,40) = -27.C

Uma temperatura -15°C com ventes de 40Km/h egnivale a uma temperatura de -27°C sem ventes.

b) Para gral faixa de volores da relecidade dos vertes fatem a temperatura de 20°C tec a sensação térmica de -30°C?

Podemos pegos uma forixa ISKulh-25Kulh. (monis oxate ses ia uma vizinhança de 20Kulh).

c) Para qual faixa de temperaturas juntamente com uma velocidade do vento de 20 km/h tem a sensação térmica de -49°C

Poderos pegos a faixa na vizinhança de

d) una função da relacidade de verte que retornom uma sensação térmico para uma temperatura de -5°C. e) una função do temperatura que retor na una sensação termica para una relocida de do vento do SOKNIM.

Duração (horas)

٦١)

(h)	v t	5	10	15	20	30	40	50		
(km/h)	20	0,6	0,6	0,6	0,6	0,6	0,6	0,6		
Velocidade do vento	30	1,2	1,3	1,5	1,5	1,5	1,6	1,6		
	40	1,5	2,2	2,4	2,5	2,7	2,8	2,8		
le de	60	2,8	4,0	4,9	5,2	5,5	5,8	5,9		
idac	80	4,3	6,4	7,7	8,6	9,5	10,1	10,2		
eloc	100	5,8	8,9	11,0	12,2	13,8	14,7	15,3		
>	120	7,4	11,3	14,4	16,6	19,0	20,5	21,1		

h=f(v,+)

a) f(40,15) = 24m. hertos saprando a 40 km/h per 15h em mor aberte produtem ondas de 2,4n de altura.

b) Uma função do tempe que retas na o tomanho dos ondos quando ventes de 30 Km/h sopom em mor abesto.

c) uma função dos rentos que reterna o tomanhe dos ordos quando inciden en mor obes to pos 30h.

F) f(-3,3) ≈ 55

Ta) f(3,-2)≈36
Ta) O gráfico possui
cortes aredanda dos da função a há uma concentração re pente (0,-3), or seja, resse

porto a função é ingrene e quante maior o y, maior o espaçamente dos cortes.

F) f(160,10) x 49
[A) f(180,5) = 18

Destogne o gráfico de fing duas unidades
para sima

b) Estique o gráfico 2 retes na
vertical

c) Inverta o gráfico em relação
as plano XY.

d) Inverta o gráfico em relação as
plano XY e deslege duas unidades para
cima.

Seção 14.2: 1,5,7,9,11,13,15,17,19,21,23, 25,31,33,41,43,45

- 1) I) Norda

 Tal Se fé continua: lim flag = f(3,1) = 6

 (x/y) -> (3,1)
- (5) lim (x²y²-4y³) => função polivormal => substi-(x,y) > (3,2) tuicão direta. Leop, lim (x²y²-4y³) = 9.8-4.4=5b
- (2) lim x²y-xy² =) 0 porte (-3,1) está vo (x,y)=1-3,1) x²y+2 demínia =) substituição
 - diretor him $\frac{x^2y-xy^3}{x^2y+2} = \frac{9.(-(-3).(-2-2))}{(-3)-1+2} = \frac{42}{-2}$
- (9) lim y ser(x-y) => Porte (\(\pi\) \(\pi\) està ro

 (x,y) → (\(\pi\),\(\pi\)2) y deminio

lim y sen (x:y) = m sen(m) = 1/2 (x,y) + (\overline{\pi}, \overline{\pi}) 2 (\overline{\pi}) = \overline{\pi}

(11)
$$\lim_{(x_1y_1)\to(x$$

$$\frac{y^{2}}{(x,y)\rightarrow(0,0)} = \frac{y^{2}}{x^{2}+y^{2}} = 0$$

$$y = Q = \frac{y^{2}}{y^{2}} = 0$$

$$y = Q = \frac{y^{2}}{y^{2}} = 0$$

Caminhos diferentes alcan resultades diferentes.

(15)
$$\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2-y^2} = 1$$
 $x=9: \frac{y^2}{y^2} = 1$
 $x=y: \frac{4x^2}{2x^2} = 2$

Conintos diferentes ducan resultados diferentes.

Comintos diferentes alcon resultados diferentes.

(19)
$$\lim_{(x,y)\to(-1,-2)} (x^{2}y - xy^{2} + 3)^{3} = 1$$
 feli vernicl
=) $(1.(-2) - (-1).4 + 3)^{3} = (-2 + 4 + 3)^{3} = 125$

$$\frac{3x-2y}{(x_1y)^{-3(2,3)}} = \frac{3\cdot2-2\cdot3}{4x^2-y^2} = \frac{3\cdot2-2\cdot3}{4\cdot4-\alpha} = 0$$

Comintos diferentes ducan resultades diferentes.

$$\frac{x^{2}+y^{2}}{(x_{1}y_{1})^{2}(0_{1}0)} = \lim_{(x_{1}y_{1})^{2}(0_{1}0)} \frac{x^{2}+y^{2}+1-1}{(x_{1}y_{1})^{2}(0_{1}0)} = \sqrt{0+0+1} + 1 = 2$$

=)
$$-xy \leq xy \cdot sen\left(\frac{1}{x^2+y^2}\right) \leq xy$$

$$\frac{1}{(x_1y_1)\rightarrow 10101} \times y \cdot \frac{1}{x_1^2+y_1^2} = Q$$

(43)
$$F(x,y) = \frac{1+x^2+y^2}{1-x^2-y^2} = \int x^2+y^2 \neq 1$$

(45) Gr(x,y) = \(\times + \lambda \tau - \times^2 - \times^2 + \lambda^2 - \times^2 + \lambda^2 - \times^2 -