Definition 0.0.1: L'Hopitals regel

Tänk följande $f(x)\mapsto A,\ g(x)\to\infty,\ x\to a$ Om A>0 är ett ändligt nollskillt gränsvärde så gäller följande:

$$A \cdot \infty = \lim_{x \to a} f(x) \cdot g(x)$$

Om ovan kan vi veta något, men vi kan inte veta något om följande fall:

 $\frac{\overline{0}}{\infty}$

Då måste vi använda **L'Hopitals regel**. Exempelvis vid $\frac{0}{0}$:

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$

och att $g'(x) \neq 0$ i en punkterad omgivning till a. Då gäller:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

givet att gränsvärdet existerar eller är lika med $\pm \infty$. Även $a = \pm \infty$ är tillåtet och ensidiga gränsvärden.

Fuskbevis $\frac{0}{0}$: Vi antar att f(a) = g(a) = 0. Vi har då att:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c_f)(x - a)}{g'(c_g)(x - a)}$$

Det sista gäller enligt **medelvärdesatsen** och att $c_g, c_f \in [x, a]$. Vi kan då välja $c_f = c_g = c \implies \frac{f'(c)}{g'(c)}$. Om $x \to a$ så går $c \to a$ som medför följande:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{c \to a} \frac{f'(c)}{g'(c)}$$

V.S.B!