Recommender Systems

Dimensionality Reduction

E0 259: Data Analytics Lecture 2

User-Item Matrix

- Step 1: Number of rows and columns can be order of millions to billions! How can we reduce this dimension for efficient storage and computation?
- Step 2: How do we find nearest neighbors efficiently.

We will first focus on Step 1

Dimensionality Reduction

In large data sets orders of magnitude reduction in dimensions possible

Matrix Rank

Movie/User	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4	4	4		
Bob	3	3	3		
Charlie				2	2
Doug				5	5

- Only 2 dimensions needed to represent this
- [1,1,1,0,0] and [0,0,0,1,1].
- Any row in matrix is linear combination of these 2 (extreme case)
- Rank of matrix is 2!

What If?

Movie/User	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4	4	4		1
Bob	3	3	3		
Charlie				2	2
Doug				5	5

- [1,1,1,0,0] and [0,0,0,1,1] cannot represent this!
- But ... if we did, error is small!
- Idea behind dimensionality reduction

How Does Reducing Dimensions Help?

- Remove redundant features
- Discover hidden correlations
 - o If 2 features are exactly correlated, can be represented with one less dimension
- Lower storage and compute costs to find similar items/users

Singular Value Decomposition

$$\mathbf{A_{mXn}} = \mathbf{U_{mXr}} \mathbf{\Sigma_{rXr}} \mathbf{V_{rXn}^T}$$

- A: m X n matrix users to items ratings matrix
- **U**: m X r matrix Left Singular Vector matrix: users to 'latent factors' or perhaps genres matrix
 - Represents user affinity to latent factors
- Σ: r X r matrix Singular Values: strength of 'latent factors' or perhaps genres.
 - How strong or important each 'latent factor' is
- V: r X n matrix Right Singular Vector matrix: 'latent factors' to items matrix
 - o Represents mixture of 'latent factors' in item

SVD - Visually

SVD (contd.)

- We can apply SVD on any real matrix
- U, Σ and V are unique
- U^TU and $V^TV = I$ (identity matrix)
 - For any two columns in U, $u_i^T u_i = 0$, if i and j different
 - For any two columns in V, $v_i^T v_j^T = 0$, if i and j different
- Σ is a diagonal matrix
 - Entries are positive
 - Entries are in decreasing order

User/Movie	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4	4	4		1
Bob	3	3	3		
Charlie				2	2
Doug				5	5

User/LF	LF1	LF2	LF3
Alice	0.79	-0.15	0.59
Bob	0.57	-0.18	-0.8
Charlie	0.08	0.36	-0.02
Doug	0.21	0.9	-0.05

Marvel DC LF/LF LF1 LF2 LF3 LF1 8.75 0 0 7.56 LF2 0 0 LF3 0 0.42 0

Σ: r X r

Can ignore LF3

U: m X r

Iron Man Superman LF/Movie Dr. Thor Batman Strange LF1 0.56 0.56 0.56 0.13 0.23 -0.15 0.67 LF2 -0.15 -0.15 0.69 LF3 0.7 -0.04 -0.04 -0.04 -0.7

 V^T : r X n

User/LF	LF1	LF2	⊮F3
Alice	0.79	-0.15	0.59
Bob	0.57	-0.18	-0.8
Charlie	0.08	0.36	-0.02
Doug	0.21	0.9	-0.05

LF/LF	LF1	LF2	LF3
LF1	8.75	0	0
LF2	0	7.56	0
LF3	0	0	0.42

U: m X r

Σ: r X r

LF/Movie	Iron Man	Dr. Strange	Thor	Superman	Batman
LF1	0.56	0.56	0.56	0.13	0.23
LF2	-0.15	-0.15	-0.15	0.69	0.67
₫F3	-0.04	-0.04	-0.04	-0.7	0.7

 V^T : r X n

LF1	LF2
0.79	-0.15
0.57	-0.18
0.08	0.36
0.21	0.9
	0.79 0.57 0.08

LF/LF	LF1	LF2
LF1	8.75	0
LF2	0	7.56

LF/Movie	Iron Man	Dr. Strange	Thor	Superman	Batman
LF1	0.56	0.56	0.56	0.13	0.23
LF2	-0.15	-0.15	-0.15	0.69	0.67

User/Movie	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4	4	4		1
Bob	3	3	3		
Charlie				2	2
Doug				5	5
User/Movie	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4.04	4.04	4.04		0.83
Bob	2.99	2.99	2.99	-0.29	0.23

-0.01

800.0

1.97

4.93

1.98

4.98

If you want to minimize mean square error, start removing from smallest singular value

-0.01

0.008

Charlie

Doug

-0.01

0.008

Best Low Rank Approximation

Theorem. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$, where $\Sigma : \sigma_1 \geq \sigma_2, \ldots$, and $rank(\mathbf{A}) = \mathbf{r}$, then $\mathbf{A} = \mathbf{U}_{\mathbf{k}} \mathbf{\Sigma}_{\mathbf{k}} \mathbf{V}_{\mathbf{k}}^{\mathbf{T}}$, is a best rank k approximation to \mathbf{A} where, $S_k = \sigma_1, \ldots, \sigma_k$, U_k is first k columns of U and V_k is the first k columns of V.

Best implies that $\mathbf{B} = \min_{\mathbf{B}} ||\mathbf{A}_{\mathbf{B}}||_{\mathbf{F}}$ where $rank(\mathbf{B}) = \mathbf{k}$

In practice try to capture 80 - 90% of the original variance. Gives good dimensionality reduction

SVD Complexity - $O(n^2m)$ or $O(m^2n)$

CUR Decomposition

- Complexity of computing SVD O(n²m) or O(m²n)
- Can we do better?

CUR Decomposition

Step 1: Picking *k* Columns

- Assume you want to reduce dimension to k
- Total energy in matrix $A = \sum_{i,j} A_{ij}^2$
- Energy in column $j = \sum_i A_{ij}^2$
- Probability of picking column j, $P_j = \frac{\sum_i A_{ij}^2}{\sum_{i,j} A_{ij}^2}$
- If column j is picked, normalize values of column j to $\frac{A_{ij}}{\sqrt{(kP_j)}}$

Same trick for picking rows

Step 2: Figuring out *U*

• Pick intersecting rows and columns of C and R. Let this be W

• Do SVD on
$$W = X\Sigma Y^T$$

• $U = \text{pseudo inverse of } W, U = Y\Sigma^+X^T$

Step 2: Figuring out *U* (contd.)

- i.e., Σ^+ is reciprocal of non zero singular values
- $W^{-1} = (Y^T)^{-1} \Sigma^{-1} X^{-1}$
- But $X^TX = I$ and $Y^YY = I$
- $\Sigma_{ii}^+ = \frac{1}{\Sigma_{ii}}$ Can only use non zero values.
- Therefore $U = Y\Sigma^+X^T$

Theorem Drineas et. al

• Let A_k be k rank SVD approximation of A

Theorem. CUR is O(nm) and achieves

•
$$||A - CUR|| \le ||A - A_k|| + \epsilon ||A|| \ w.p \ge 1 - \delta$$

- by picking $O(k \frac{\log(1/\delta)}{\epsilon^2})$ columns and
- $O(k^2 \frac{\log(^31/\delta)}{\epsilon^6})$

In practice pick 4k rows and columns

CUR Method vs SVD

- SVD -
 - U and V dense
 - Σ sparse
- m and n can be billions
 - Storage explodes
- High computational complexity

- CUR -
 - C and R sparse,
 - U dense
- Storage small
- Low computational time
- Can pick duplicates tricks around this

DBLP Dataset

Falustos et. al, 2007

Latent Factor Models

- Problem with SVD,
 CUR etc.
 - Treats unrated items as
 0, rather than trying to
 predict them well.
 - Each time new users, items etc come in, need to reurn!

User/Movi e	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4	4	4		1
Bob	3	3	3		
Charlie				2	2
Doug				5	5

User/Movi e	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4.04	4.04	4.04		0.83
Bob	2.99	2.99	2.99	-0.29	0.23
Charlie	-0.01	-0.01	-0.01	1.97	1.98
Doug	0.008	0.008	0.008	4.93	4.98

Take a Machine Learning Approach

User/Movie	Iron Man	Dr. Strange	Thor	Superman	Batman
Alice	4	4	4		1
Bob	3	3	3		
Charlie				2	2
Doug				5	5

Training Data

Test Data

Latent Factor Model

Relating back to SVD

$$U = P,$$
 $\Sigma V^T = Q^T$

- For a given k, SVD minimizes RMSE
- Latent Factor Model Loss Function
 - minimize Mean Square Error
 - Use only cells with ratings

Latent Factor Model - Loss Function

Avoid Overfitting and apply Gradient Descent

$$\min_{\mathbf{P}, \mathbf{Q}} \sum_{(\mathbf{u}, \mathbf{i}) \in \mathbf{A}} (\mathbf{r}_{\mathbf{u}\mathbf{i}} - \mathbf{q}_{\mathbf{u}}.\mathbf{p}_{\mathbf{i}}^{\mathbf{T}})^{2} + \lambda (\sum_{\mathbf{u}} \|\mathbf{q}_{\mathbf{u}}\|^{2} + \sum_{\mathbf{i}} \|\mathbf{p}_{\mathbf{i}}\|^{2})$$

• When λ small, then overfitting!

When λ large, underfitting!

λ is hyperparameter to tune for best fit

Use Gradient Descent to Find best Q and P

$$\mathbf{P_{t+1}} = \mathbf{P_t} - \epsilon \nabla \mathbf{P_t}$$

$$\mathbf{Q_{t+1}} = \mathbf{Q_t} - \epsilon \nabla \mathbf{Q_t}$$

$$\nabla q_{uk} = \sum_{ui} -2(r_{ui} - q_u p_i^T)p_{ik} + 2\lambda q_{uk}$$

$$\nabla p_{ik} = \sum_{ui} -2(r_{ui} - q_u p_i^T) q_{uk} + 2\lambda p_{ik}$$

- Can iteratively converge to good solution
- Can deal with dynamics of new user ratings
- Alternate Least Squares!

But after all this, we still have...

- Most user feedback is implicit (no explicit ratings) and ...
- The Cold Start Problem

