Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Extension of the Association structure in Joint Models to include Weighted Cumulative Effects: Supplementary Material

Katya Mauff^{a*}, Ewout Steyerberg^b, Giel Nijpels^{cd}, and Amber A.W.A. van der Heijden^e, Dimitris Rizopoulos^a

1. Derivation of Equation 11

As per [14], we have in general, that:

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2} \sum \pi f(\frac{(b-a)}{2}q + \frac{(b+a)}{2})$$

where π and q are prespecified weights and abscissas respectively. For the survival function, we have:

$$\begin{split} S(t) &= \exp\left[-\int_0^{T_i} h_i(s) ds\right] \\ &= \exp\left[-\int_0^{T_i} h_0(s) \, \exp\left\{\boldsymbol{\gamma}^\top \boldsymbol{w}_i(s) + \alpha \int_0^s \varpi(s-u)_+ \, \eta_i(u) \, du\right\} ds\right] \end{split}$$

Defining:

$$\tau_m = \frac{T_i(q_m+1)}{2},$$

$$\psi_{mn} = \frac{\tau_m(q_n+1)}{2}$$

where T_i is the observed failure time, we then have:

^aDepartment of Biostatistics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands, ^bDepartment of Public Health, Erasmus MC, Rotterdam, the Netherlands, ^cDepartment of General Practice, VU Medical Centre, Amsterdam, The Netherlands, ^dEMGO Institute for Health and Care Research, VU Medical Centre, Amsterdam, The Netherlands, ^cDepartment of General Practice and Elderly Care Medicine, VU Medical Center, Amsterdam, the Netherlands

^{*} Correspondence to: Department of Biostatistics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands. E-mail: k.mauff@erasmusmc.nl

$$\exp\left[-\int_{0}^{T_{i}} h_{0}(s) \exp\left\{\boldsymbol{\gamma}^{\top}\boldsymbol{w}_{i}(s) + \alpha \int_{0}^{s} \varpi(s-u)_{+} \eta_{i}(u) du\right\} ds\right]$$

$$\approx \exp\left[-\frac{T_{i}}{2} \sum_{m=1}^{15} \pi_{m} h_{0}(\tau_{m}) \exp\left\{\boldsymbol{\gamma}^{\top}\boldsymbol{w}_{i}(\tau_{m}) + \alpha \int_{0}^{\tau_{m}} \varpi(\tau_{m}-u)_{+} \eta_{i}(u) du\right\}\right]$$

$$\approx \exp\left[-\frac{T_{i}}{2} \sum_{m=1}^{15} \pi_{m} h_{0}(\tau_{m}) \exp\left\{\boldsymbol{\gamma}^{\top}\boldsymbol{w}_{i}(\tau_{m}) + \frac{\alpha \tau_{m}}{2} \sum_{n=1}^{15} \tilde{\pi}_{n} \varpi(\tau_{m}-\psi_{mn}) \eta_{i}(\psi_{mn})\right\}\right]$$

$$= \exp\left[-\frac{T_{i}}{2} \sum_{m=1}^{15} \pi_{m} h_{0}(\tau_{m}) \exp\left\{\boldsymbol{\gamma}^{\top}\boldsymbol{w}_{i}(\tau_{m}) + \frac{\alpha \tau_{m}}{2} \sum_{n=1}^{15} \tilde{\pi}_{n} \varpi\left(\frac{\tau_{m}(1-q_{n})}{2}\right) \eta_{i}(\psi_{mn})\right\}\right]$$

where π_m and $\tilde{\pi}_n$ denote prespecified weights and q_m and q_n prespecified abscissas.

2. Tables

Table S 1. Baseline Characteristics of N=6294 and subset N=1125 patients

Variable	Mean (SD)/ N = 6924 (%)	Mean (SD)/ N = 1125 (%)
Diabetes duration (years)	2.8 (4.8)	3.2 (5.2)
Age (years)	60.5 (11.8)	59.82 (11.8)
Systolic blood pressure	142.9 (20.7)	143 (20.9)
Diastolic blood pressure	81.1 (10.9)	81.5 (11.1)
Lower grade retinopathy	478 (8%)	134 (11.9%)

Table S 2. Candidate Models for DCS

Model	DIC
Current Value	71159.57
Cumulative	71154.04
Weighted Normal	71168.92
Weighted Skewed Normal	71124.42

Statistics in Medicine

Table S 3. Parameter estimates and 95% credibility intervals under the joint modeling analysis for transplantation-free survival (PBC data). Longitudinal outcome is logged serum Bilirubin

	Event Process			
	Current Value Log hazard (2.5% - 97.5%)	p-value	Cumulative Effect Log hazard (2.5% - 97.5%)	p-value
D naniaillamina	,	1	,	1
D-penicillamine	-0.08 (-0.41 - 0.27)	0.59	-0.28 (-0.61 - 0.07)	0.11
Age	0.04 (0.01 - 0.06)	0.00	0.04 (0.01 - 0.06)	0.00
Interaction	0.01 (-0.02 - 0.04)	0.42	0.01 (-0.02 - 0.04)	0.56
Association parameter (α)	1.41 (1.23 - 1.60)	0.00	0.22 (0.18 - 0.27)	0.00
Weighted Normal Weighted Skewe		Weighted Skewed Norn	mal	
	Log hazard (2.5% - 97.5%)	p-value	Log hazard (2.5% - 97.5%)	p-value
D-penicillamine	-0.10 (-0.41 - 0.24)	0.56	-0.11 (-0.44 - 0.22)	0.53
Age	0.04 (0.02 - 0.06)	0.00	0.04 (0.02 - 0.06)	0.00
Interaction	0.01 (-0.02 - 0.04)	0.40	0.01 (-0.02 - 0.04)	0.36
Association parameter (α)	1.37 (1.17 - 1.57)	0.00	1.36 (1.19 - 1.56)	0.00
		Weight 1	Function	
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value
Scale parameter (σ/v)	0.10 (0.04 - 0.19)	0.00	0.10 (0.04 - 0.18)	0.00
Shape parameter (κ)			5.73 (0.16 - 9.73)	0.00

Table S 4. Parameter estimates and 95% credibility intervals under the joint modeling analysis for transplantation-free survival (PBC data). Longitudinal outcome is logged serum Bilirubin, D[i, j] denote the *ij*-element of the covariance matrix for the random effects

		Longitudii	nal Process	
	Current Value Coefficient (2.5% - 97.5%)	p-value	Cumulative Effect Coefficient (2.5% - 97.5%)	p-value
T	· ·	1	· ·	-
Intercept	0.51 (0.40 - 0.62)	0.00	0.51 (0.40 - 0.62)	0.00
ns(years, 2)1	2.30 (1.98 - 2.59)	0.00	2.22 (1.94 - 2.51)	0.00
ns(years, 2)2	2.10 (1.80 - 2.42)	0.00	2.05 (1.76 - 2.35)	0.00
σ_{ϵ}	0.30 (0.29 - 0.32)	0.00	0.30 (0.29 - 0.32)	0.00
D[1, 1]	1.01 (0.86 - 1.20)	0.00	1.02 (0.86 - 1.20)	0.00
D[2, 1]	0.72 (0.37 - 1.11)	0.00	0.69 (0.30 - 1.04)	0.00
D[3, 1]	0.56 (-0.02 - 1.12)	0.05	0.64 (0.16 - 1.18)	0.01
D[2, 2]	4.95 (3.88 - 6.29)	0.00	4.60 (3.53 - 5.86)	0.00
D[3, 2]	2.34 (1.31 - 3.67)	0.00	2.06 (1.10 - 3.17)	0.00
D[3, 3]	4.48 (3.00 - 6.44)	0.00	3.95 (2.68 - 5.71)	0.00
tauBs	453.12 (100.29 - 1103.18)		286.75 (37.35 - 901.96)	
	Weighted Normal		Weighted Skewed Nor	mal
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value
Intercept	0.51 (0.39 - 0.63)	0.00	0.52 (0.40 - 0.63)	0.00
ns(years, 2)1	2.28 (2.01 - 2.57)	0.00	2.28 (1.99 - 2.58)	0.00
ns(years, 2)2	2.09 (1.80 - 2.38)	0.00	2.08 (1.78 - 2.39)	0.00
σ_ϵ	0.30 (0.29 - 0.32)	0.00	0.30 (0.29 - 0.32)	0.00
D[1, 1]	1.01 (0.86 - 1.19)	0.00	1.01 (0.86 - 1.18)	0.00
D[2, 1]	0.73 (0.39 - 1.11)	0.00	0.72 (0.40 - 1.08)	0.00
D[3, 1]	0.59 (0.12 - 1.07)	0.01	0.56 (0.12 - 1.03)	0.02
D[2, 2]	4.96 (3.84 - 6.26)	0.00	4.86 (3.80 - 6.15)	0.00
D[3, 2]	2.31 (1.22 - 3.66)	0.00	2.21 (1.20 - 3.47)	0.00
D[3, 3]	4.32 (2.88 - 6.24)	0.00	4.37 (2.85 - 6.54)	0.00
tauBs	450.74 (65.81 - 1149.31)		414.04 (74.41 - 1056.09)	

Table S 5. Parameter estimates and 95% credibility intervals under the joint modeling analysis for transplantation-free survival (PBC data). Longitudinal outcome is square root serum Cholesterol

	Event Process			-
	Current Value	n voluo	Cumulative Effect	n voluo
	Log hazard (2.5% - 97.5%)	p-value	Log hazard (2.5% - 97.5%)	p-value
D-penicillamine	-0.17 (-0.48 - 0.14)	0.28	-0.19 (-0.51 - 0.13)	0.25
Age	0.03 (0.01 - 0.04)	0.00	0.03 (0.01 - 0.04)	0.00
Association parameter (α)	0.02 (-0.02 - 0.09)	0.37	0.01 (0.00 - 0.02)	0.01
	Weighted Normal Weighted Skewed		Weighted Skewed Nor	mal
	Log hazard (2.5% - 97.5%)	p-value	Log hazard (2.5% - 97.5%)	p-value
D-penicillamine	-0.23 (-0.55 - 0.09)	0.15	-0.22 (-0.53 - 0.10)	0.17
Age	0.03 (0.02 - 0.05)	0.00	0.03 (0.02 - 0.05)	0.00
Association parameter (α)	0.15 (0.07 - 0.24)	0.00	0.15 (0.09 - 0.22)	0.00
		Weight	Function	
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value
Scale parameter (σ/v)	3.13 (1.62 - 4.42)	0.00	3.03 (1.69 - 4.38)	0.00
Shape parameter (κ)			4.81 (0.32 - 9.64)	0.00

Table S 6. Parameter estimates and 95% credibility intervals under the joint modeling analysis for transplantation-free survival (PBC data). Longitudinal outcome is square root serum Cholesterol, D[i, j] denote the *ij*-element of the covariance matrix for the random effects

	Longitudinal Process			
	Current Value Coefficient (2.5% - 97.5%)	p-value	Cumulative Effect Coefficient (2.5% - 97.5%)	p-value
Intercept	18.42 (17.92 - 18.90)	0.00	18.42 (17.95 - 18.94)	0.00
Year	-0.25 (-0.390.11)	0.00	-0.25 (-0.400.12)	0.00
σ_ϵ	1.92 (1.81 - 2.03)	0.00	1.91 (1.80 - 2.02)	0.00
D[1, 1]	15.44 (12.68 - 18.70)	0.00	15.68 (12.93 - 18.96)	0.00
D[2, 1]	-2.18 (-3.131.39)	0.00	-2.21 (-3.121.44)	0.00
D[2, 2]	1.02 (0.72 - 1.39)	0.00	1.01 (0.75 - 1.38)	0.00
	Weighted Normal	1	Weighted Skewed North	
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value
Intercept	18.41 (17.93 - 18.87)	0.00	18.40 (17.93 - 18.88)	0.00
Year	-0.24 (-0.380.11)	0.00	-0.25 (-0.390.11)	0.00
σ_ϵ	1.91 (1.80 - 2.02)	0.00	1.91 (1.81 - 2.01)	0.00
D[1, 1]	15.54 (12.78 - 19.02)	0.00	15.72 (12.93 - 19.11)	0.00
D[2, 1]	-2.09 (-2.991.29)	0.00	-2.15 (-3.151.37)	0.00
D[2, 2]	0.98 (0.72 - 1.32)	0.00	0.99 (0.71 - 1.37)	0.00

Table S 7. Parameter estimates and 95% credibility intervals under the joint modeling analysis for transplantation-free survival (PBC data). Longitudinal outcome is Hepatomegaly (dichotomous)

		Event 1	Process		
	Current Value		Cumulative Effect		
	Log hazard (2.5% - 97.5%)	p-value	Log hazard (2.5% - 97.5%)	p-value	
D-penicillamine	-0.05 (-0.41 - 0.33)	0.80	-0.10 (-0.47 - 0.25)	0.60	
Age	0.03 (0.001 - 0.05)	0.05	0.03 (0.002 - 0.05)	0.04	
Interaction	-0.001 (-0.04 - 0.04)	0.98	-0.01 (-0.04 - 0.03)	0.60	
Association parameter (α)	0.31 (0.22 - 0.40)	0.00	0.07 (0.05 - 0.10)	0.00	
	Weighted Normal Weight		Weighted Skewed Norn	kewed Normal	
	Log hazard (2.5% - 97.5%)	p-value	Log hazard (2.5% - 97.5%)	p-value	
D-penicillamine	-0.08 (-0.42 - 0.27)	0.65	-0.08 (-0.41 - 0.26)	0.65	
Age	0.03 (0.001 - 0.05)	0.04	0.03 (0.001 - 0.05)	0.03	
Interaction	0.002 (-0.04 - 0.03)	0.92	-0.002 (-0.036 - 0.03)	0.90	
Association parameter (α)	0.42 (0.28 - 0.62)	0.00	0.41 (0.29 - 0.58)	0.00	
		Weight	Function		
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value	
Scale parameter (σ/v)	2.11 (0.49 - 4.02)	0.00	1.82 (0.02 - 3.54)	0.00	
Shape parameter (κ)	, , , , , , , , , , , , , , , , , , ,		5.08 (0.23 - 9.70)	0.00	

Table S 8. Parameter estimates and 95% credibility intervals under the joint modeling analysis for transplantation-free survival (PBC data). Longitudinal outcome is Hepatomegaly (dichotomous), D[i, j] denote the *ij*-element of the covariance matrix for the random effects

	Longitudinal Process			
	Current Value	n voluo	Cumulative Effect	n voluo
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value
Intercept	0.15 (-0.27 - 0.56)	0.50	0.13 (-0.34 - 0.61)	0.55
Years	0.19 (0.09 - 0.31)	0.00	0.14 (0.03 - 0.26)	0.02
D[1, 1]	10.87 (7.23 - 15.40)	0.00	14.10 (9.69 - 19.60)	0.00
D[2, 1]	-0.38 (-1.06 - 0.24)	0.22	-1.24 (-2.210.40)	0.00
D[2, 2]	0.53 (0.35 - 0.78)	0.00	0.60 (0.40 - 0.86)	0.00
tauBs	407.51 (66.45 - 1106.75)		251.81 (21.27 - 770.66)	
	Weighted Normal		Weighted Skewed Norn	mal
	Coefficient (2.5% - 97.5%)	p-value	Coefficient (2.5% - 97.5%)	p-value
Intercept	0.13 (-0.32 - 0.56)	0.59	0.12 (-0.31 - 0.58)	0.60
Years	0.16 (0.05 - 0.27)	0.00	0.16 (0.06 - 0.27)	0.00
D[1, 1]	12.22 (8.49 - 17.11)	0.00	12.46 (8.38 - 17.69)	0.00
D[2, 1]	-0.83 (-1.600.17)	0.02	-0.86 (-1.740.10)	0.02
D[2, 2]	0.53 (0.36 - 0.77)	0.00	0.54 (0.35 - 0.77)	0.00
tauBs	453.92 (61.80 - 1169.10)		443.67 (88.74 - 1142.21)	

3. Figures

Figure S 1. Normal density functions for varying values of σ

Skewed Normal Density Functions

Figure S 2. Skewed normal density functions for varying values of the shape (κ) and scale (v) parameters

Figure S 3. Subject-specific longitudinal profiles for HbA1c for a random sample of patients with and without the event of interest (STR). The red line represents the loess smoother

Figure S 4. Kaplan-Meier Survival Curves for the two treatment groups in the PBC data

Figure S 5. Subject-specific longitudinal profiles for log(serum Bilirubin) for patients with and without the event of interest. The red line represents the loess smoother

Figure S 6. Subject-specific longitudinal profiles for sqrt(serum Cholesterol) for patients with and without the event of interest. The red line represents the loess smoother

Longitudinal Profiles for PBC Subjects: Weighted Cumulative Association

Time (years)

Figure S 7. Longitudinal profiles for randomly selected subjects from PBC data, with weighted cumulative effect

Longitudinal Profiles for PBC Subjects: Cumulative Association

Time (years)

Figure S 8. Longitudinal profiles for randomly selected subjects from PBC data, with un-weighted cumulative effect

Comparison of Estimated Weight functions for PBC Analysis: Normal Density

Figure S 9. Estimated normal density weight function under the joint model specification for the risk of transplatation-free survival

Comparison of Estimated Weight functions for PBC Analysis: Skewed Normal Density

Figure S 10. Estimated skewed normal density weight function under the joint model specification for the risk of transplatation-free survival

15

0

Time (years) Figure S 11. Estimated weight function for logged serum Bilirubin under the joint model specification for the risk of transplatation-free survival

10

5

Comparison of Estimated Weight functions for PBC Analysis: Hepatomegaly

Figure S 12. Estimated weight function for Hepatomegaly under the joint model specification for the risk of transplatation-free survival

Normal density: sqrt(serum Cholesterol) Skewed normal density: sqrt(serum Cholesterol) Skewed normal density: sqrt(serum Cholesterol)

Comparison of Estimated Weight functions for PBC Analysis: sqrt(serum Cholesterol)

Figure S 13. Estimated weight function for square rooted serum Cholesterol under the joint model specification for the risk of transplatation-free survival

Time (years)

Figure S 14. Relative AUC calculated for logged serum Bilirubin over several intervals

Figure S 15. Relative AUC calculated for Hepatomegaly over several intervals

Figure S 16. Relative AUC calculated for logged serum Cholesterol over several intervals

Statistics in Medicine

4. Simulation Study

Table S 9. Details of simulation study

Long	Longitudinal Process					
Coefficient Input Bias RMS						
Intercept	0.540	0.050	0.068			
ns(years, 3)1	0.772	-0.195	0.217			
ns(years, 3)2	0.977	0.106	0.207			
ns(years, 3)3	0.805	0.512	0.624			
σ_e	0.286	0.000	0.004			

Table S 10. Details of simulation study. D[i, j] denote the square root of the ij-element of the (diagonal) covariance matrix for the random effects

Event Process						
Coefficient	Input	Bias	RMSE			
Drug	-0.088	0.042	0.242			
Association parameter (α)	2.503	-0.005	0.496			
Scale parameter (σ)	1.000	0.175	0.463			
D[1, 1]	1.002	0.003	0.036			
D[2, 2]	1.254	-0.182	0.202			
D[3, 3]	1.049	0.537	0.571			
D[4, 4]	0.867	2.637	2.680			

5. R Code

```
# LIBRARIES
library(lattice)
library(JMbayes)
library(sn)
# LONGITUDINAL SUB MODEL
lmeFit.origREML <- lme(hba1c_nw ~ ns(fu_years, 2) + diabetesduur + agen +</pre>
                                         base_ret + base_sbpn,
                                         data = subset_long,
                                         random = ~ ns(fu_years, 2) | patientnr,
                                         method = "REML")
# SURVIVAL SUB MODEL
coxFit.2 <- coxph(Surv(year_event, STR_first) ~ 1, data = subset_surv,</pre>
                   x = TRUE)
summary(coxFit.2)
# INITIAL JOINT MODEL: CURRENT VALUE SPECIFICATION
jointFit.origREML <- jointModelBayes(lmeFit.origREML, coxFit.2,</pre>
                                                timeVar = "fu_years",
                                                n.iter = 100000)
plot (jointFit.rootREML)
# CUMULATIVE SPECIFICATION (NO WEIGHTS)
iForm <- list(fixed = ~ 0 + fu_years + ins(fu_years, 2),</pre>
              random = ~ 0 + fu_years + ins(fu_years, 2),
              indFixed = 1:3, indRandom = 1:3)
jointFit.str_c <- update(jointFit.origREML, param = "td-extra",</pre>
                          extraForm = iForm)
summary(jointFit.str_c)
plot(jointFit.str_c)
# WEIGHTED CUMULATIVE ASSOCIATION
```

Statistics in Medicine

```
# NORMAL DISTRIBUTION SINGLE PARAMETER
wf <- function(u, parms, t.max)</pre>
 num \leftarrow dnorm(x = u, sd = parms)
 den \leftarrow pnorm(q = c(0, t.max), sd = parms)
 num / (den[2L] - den[1L])
jointFit.strw_o <- update(jointFit.origREML, estimateWeightFun = TRUE,</pre>
                         weightFun = wf,
                         priorShapes = list(shape1 = dunif),
                         priors = list(priorshape1 = c(0, 5))
summary(jointFit.strw_o)
plot(jointFit.strw_o, which = "weightFun", max.t = max(subset_surv$year_event))
plot (jointFit.strw_o)
# SKEWED NORMAL
wfsn <- function(u, parms, t.max)</pre>
  num \leftarrow dst (x = u, omega = parms[1], alpha = parms[2])
  den <- pst(x = c(0, t.max), omega = parms[1], alpha = parms[2])
 num / (den[2L] - den[1L])
jointFitsn.strw_o <- update(jointFit.origREML, estimateWeightFun = TRUE,</pre>
                           weightFun = wfsn,
                           priorShapes = list(shape1 = dunif, shape2 = dunif),
                           priors = list (priorshape1 = c(0, 5),
                           priorshape2 = c(0, 10))
summary(jointFitsn.strw_o)
plot(jointFitsn.strw_o, which = "weightFun", max.t = max(subset_surv$year_event))
plot (jointFitsn.strw_o)
# CODE FOR HEPATOMEGALY (DICHOTOMOUS RESPONSE IN PBC DATA)
# SURVIVAL & LONGITUDINAL SUB MODELS
lmeFit.hep1 <- glmmPQL(hepatomegaly ~ year, random = ~ year | id,</pre>
                       family = binomial, data = pbc2.na)
coxFit.hep1n <- coxph(Surv(years, status2) ~ drug * agenew, data = pbc2.id.na,</pre>
                     x = TRUE
# INITIAL JOINT MODEL: CURRENT VALUE SPECIFICATION
dLongBin <- function(y, eta.y, scale, log = FALSE, data)</pre>
```

```
dbinom(x = y, size = 1, prob = plogis(eta.y), log = log)
jointFit.hep2n <- jointModelBayes(lmeFit.hep1, coxFit.hep1n, timeVar = "year",</pre>
                                    densLong = dLongBin, n.iter = 60000)
# CUMULATIVE SPCIFICATION (NO WEIGHTS)
iForm \leftarrow list(fixed = ~0 + year + I((year^2)/2),
               random = ^{\sim} 0 + year + I((year^2)/2),
               indFixed = 1:2, indRandom = 1:2)
jointFit.hep_c <- update(jointFit.hep2n, param = "td-extra",</pre>
                            extraForm = iForm)
# WEIGHTED CUMULATIVE ASSOCIATION
# NORMAL DISTRIBUTION SINGLE PARAMETER
wf <- function(u, parms, t.max)</pre>
 num <- dnorm(x = u, sd = parms)
  den \leftarrow pnorm(q = c(0, t.max), sd = parms)
 num / (den[2L] - den[1L])
jointFit.hepw <- update(jointFit.hep2n, estimateWeightFun = TRUE,</pre>
                         weightFun = wf,
                         priorShapes = list(shape1 = dunif),
                         priors = list(priorshape1 = c(0, 4.5))
```