Solving O.D.F. Note indefinite integral only defined so if dy = x2. Jely = Pocodsc. = 200 + 0 Second Order O. D.E. Differential of a differential. $\frac{d}{ds}\left(\frac{df(sc)}{dsc}\right) = \frac{d^2f(sc)}{dsc} = \frac{f''(sc)}{dsc}$ Maxima and minima --- or 5 --

In both case cly =0

clsc

cls

is -ve it is a may
is O can be max or min,
or point of inflection.

For escample y= oc² +/oc

 $\frac{dy}{dsc} = 2sc + 2 = 0 \ \text{a min.}$

$$\frac{d^2y}{dx^2} = \frac{2}{3c = -1}$$
 ie tve je min

 $\frac{d^2 sc}{dt^2} = F(sc)$ $\frac{d^2 sc}{dt} = F(sc)$ $\frac{d V(sc)}{dt} = V(sc)$

Now	consider			
		F		
	spring const k		Frictionles	8
//	essee	M		
///		1		
)C	X-		
	=0		tve	
	= 00	ilibrium.	><	
	= ega	morium.		

$$F = -kx$$
.
 $2^{nd} haw \frac{d^2x}{dt^2} = F = -kxc$.

So lets try
$$3c = \cos \omega t$$

$$\frac{dsc}{dt} = -\omega \sin \omega t$$

$$\frac{d^2sc}{dt^2} = -\omega^2 \cos \omega t$$

So
$$= m \omega^{2} \cos \omega + = -k \cos \omega +$$

$$= 1 > \omega^{2} = \frac{k}{m}$$
or $\omega = \sqrt{\frac{k}{m}}$

