Concours commun Mines-Ponts

PREMIÈRE ÉPREUVE, FILIÈRE MP

A. Formes bilinéaires symétriques plates

1) Soit $x \in \mathbb{R}^n$. L'application $y \mapsto \phi(x,y)$ est une forme linéaire sur l'espace euclidien \mathbb{R}^n . D'après l'isomorphisme canonique entre un espace euclidien et son dual, on sait qu'il existe un unique vecteur de \mathbb{R}^n , dépendant de x et que l'on note donc $\mathfrak{u}(x)$, tel que pour tout $y \in \mathbb{R}^n$, $\phi(x,y) = \langle \mathfrak{u}(x), y \rangle$. On a ainsi uniquement défini une application \mathfrak{u} de \mathbb{R}^n dans lui-même.

Vérifions que $\mathfrak u$ est linéaire. Soient $(x,x')\in (\mathbb R^n)^2$ et $(\lambda,\mu)\in \mathbb R^2$. Pour tout $\mathfrak y$ de $\mathbb R^n$,

$$\begin{split} \langle u\left(\lambda x + \mu x'\right), y \rangle &= \phi(\lambda x + \mu x', y) = \lambda \phi(x, t) + \mu \phi(x', y) = \lambda \langle u(x), y \rangle + \mu \langle u(x'), y \rangle \\ &= \langle \lambda u(x) + \mu u(x'), y \rangle. \end{split}$$

Par suite, pour tout y de \mathbb{R}^n , $\langle u(\lambda x + \mu x') - \lambda u(x) - \mu u(x'), y \rangle = 0$ et donc $u(\lambda x + \mu x') - \lambda u(x) - \mu u(x') \in (\mathbb{R}^n)^{\perp} = \{0\}$. On en déduit que $u(\lambda x + \mu x') = \lambda u(x) + \mu u(x')$.

L'application \mathfrak{u} est donc un endomorphisme de \mathbb{R}^n .

Soit $(x, y) \in (\mathbb{R}^n)^2$.

$$\langle x, u(y) \rangle = \langle u(y), x \rangle = \varphi(y, x) = \varphi(x, y) = \langle u(x), y \rangle.$$

Par suite, $\mathfrak u$ est symétrique. D'après le théorème spectral, $\mathfrak u$ est diagonalisable dans une base orthonormée. Soit $(e_i)_{1\leqslant i\leqslant n}$ une base orthonormée de vecteurs propres de $\mathfrak u$ associée à la famille de valeurs propres $(\lambda_i)_{1\leqslant i\leqslant n}$. Pour $i\neq j$,

$$\varphi(e_i, e_j) -= \langle u(e_i), e_j \rangle = \lambda_i \langle e_i, e_j \rangle = 0.$$

Ceci montre que φ est diagonalisable.

2) $(x,y) \mapsto a(x) \otimes b(y)$ est linéaire par rapport à chacune de ses variables et donc est bilinéaire.

 $a \otimes b$ est symétrique si et seulement si pour tout $(x,y) \in \mathbb{R}^n$, a(x)b(y) = a(y)b(x). Cette condition est en particulier réalisée si a est nulle. Supposons dorénavant $a \neq 0$. Il existe $y_0 \in \mathbb{R}^n$ tel que $a(y_0) \neq 0$.

$$\alpha\otimes b \text{ sym\'etrique} \Rightarrow \forall x\in\mathbb{R}^n, \ \alpha(x)b(y_0)=\alpha(y_0)b(x) \Rightarrow \forall x\in\mathbb{R}^n, \ b(x)=\frac{b\ (y_0)}{\alpha\ (y_0)}\alpha(x) \Rightarrow \exists \lambda\in\mathbb{R}/\ b=\lambda\alpha.$$

Réciproquement, s'il existe $\lambda \in \mathbb{R}$ tel que $\mathfrak{b} = \lambda \mathfrak{a}$, alors pour tout $(x,y) \in (\mathbb{R}^n)^2$,

$$a \otimes b(y, x) = a(y)b(x) = \lambda a(x)a(y) = a(x)b(y) = \varphi(x, y),$$

et donc $a \otimes b$ est symétrique. En résumé, $a \otimes b$ est symétrique si et seulement si a = 0 ou il existe λ tel que $b = \lambda a$ ou encore

 $a \otimes b$ est symétrique si et seulement si (a, b) est liée.

3) D'après la question 1), φ est diagonalisable. Soit $(e_i')_{1 \leqslant i \leqslant n}$ une base de diagonalisation de φ . La matrice $(\varphi(e_i',e_j'))_{1 \leqslant i \leqslant n}$ est alors une matrice diagonale de rang 1. Quite à renuméroter les vecteurs e_i' , on peut supposer que cette matrice s'écrit diag $(\lambda,0,\ldots,0)$ avec λ réel non nul.

Soit
$$\mathscr{B} = \left(\frac{1}{\sqrt{|\lambda|}}e_1, e_2, \dots, e_n\right)$$
. \mathscr{B} est une base de \mathbb{R}^n et la matrice de φ dans \mathscr{B} est diag $(\pm 1, 0, \dots, 0)$. Pour tout

$$x = \sum_{i=1}^{n} x_i e_i \text{ et tout } y = \sum_{i=1}^{n} y_i e_i,$$

$$\varphi(x,y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{1 \leq i,j \leq n} x_i y_j \varphi(e_i, e_j) = \pm x_1 y_1 = \pm e_1^*(x) e_1^*(y).$$

Donc, $\varphi = \pm e_1^* \otimes e_1^*$. Par suite, il existe $\varepsilon \in \{-1, 1\}$ et $f \in \mathbb{R}^{n*}$ tels que $\varphi = \varepsilon f \otimes f$.

4) Soient $(x, y, z, w) \in (\mathbb{R}^n)^4$.

$$\langle \varphi(x,y), \varphi(z,w) \rangle = \varphi(x,y), \varphi(z,w) = \varepsilon f(x) f(y) \varepsilon f(z) f(w) = f(x) f(y) f(z) f(w) = \varphi(x,w) \varphi(z,y) = \langle \varphi(x,w), \varphi(z,y) \rangle.$$

Ainsi, φ est plate.

5) Soit ϕ une forme bilinéaire symétrique plate non nulle. Soit $(e_i)_{1\leqslant i\leqslant n}$ une base de diagonalisation de ϕ . La matrice $(\phi(e_i,e_j))_{1\leqslant i,j\leqslant n}$ est de la forme $\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$.

S'il existe deux indices i et j distincts tels que $\lambda_i \neq 0$ et $\lambda_j \neq 0$ alors

- $\langle \varphi(e_i, e_i), \varphi(e_j, e_j) \rangle = \varphi(e_i, e_i), \varphi(e_j, e_j) = \lambda_i \lambda_j \neq 0$,
- $\langle \varphi(e_i, e_j), \varphi(e_j, e_i) \rangle = \varphi(e_i, e_j), \varphi(e_j, e_i) = 0.$

Donc, φ n'est pas plate.

Par contraposition, si ϕ est plate, au plus un des λ_i est non nul puis exactement un des λ_i est non nul car ϕ est non nulle. Finalement, ϕ est de rang 1.

B. Diagonalisation simultanée

6) Si l'un des sous-espaces propres de u_{i_0} , noté $E_{\lambda}(u)$, est de dimension n, alors $E = \operatorname{Ker}(u_{i_0} - \lambda Id)$ et donc $u_{i_0} = \lambda Id$ ce qui n'est pas. Donc, tous les sous-espaces propres de u_{i_0} sont de dimension strictement inférieures à n.

Soit $i \in I$. Puisque u_i commute avec u_{i_0} , on sait que les sous-espaces propres de u_{i_0} sont stables par u_i . Redémontrons-le. Soient $\lambda \in \mathbb{R}$ puis $x \in \operatorname{Ker}(u_{i_0} - \lambda Id)$.

$$(u_{i_0} - \lambda Id)(u_i(x)) = u_{i_0}(u_i(x)) - \lambda u_i(x) = u_i(i_{i_0}(x)) - \lambda u_i(x) = u_i((u_{i_0} - \lambda Id)(x)) = u_i(0) = 0.$$

7) Si tous les u_i , $i \in I$, sont des homothéties, alors toute base de \mathbb{R}^n est une base de diagonalisation simultanée des u_i , $i \in I$.

Sinon, il existe $i_0 \in I$ tel que u_{i_0} n'est pas une homothétie. u_{i_0} est diagonalisable d'après le théorème spectral. D'après la question précédente, u_{i_0} admet au moins deux sous-espaces propres, tous de dimension strictement inférieure à n. De plus, ces sous-espaces propres sont supplémentaires dans \mathbb{R}^n .

Soit E_{λ} l'un de ces sous-espaces propres. Les $\mathfrak{u}_{\mathfrak{i}}$, $\mathfrak{i} \in I$, laissent stable E_{λ} et donc leurs restrictions à E_{λ} induisent des endomorphismes de E_{λ} . Puisque $\dim(E_{\lambda}) < \mathfrak{n}$, l'hypothèse de récurrence permet d'affirmer qu'il existe une base \mathscr{B}_{λ} de E_{λ} diagonalisant simultanément tous les $\mathfrak{u}_{\mathfrak{i}}$, $\mathfrak{i} \in I$.

La réunion des \mathscr{B}_{λ} , $\lambda \in \operatorname{Sp}(\mathfrak{u}_{i_0})$, est une base de \mathbb{R}^n diagonalisant simultanément tous les \mathfrak{u}_i , $i \in I$. Le résultat est démontré par récurrence.

C. Vecteurs réguliers

- 8) Pour $t \in \mathbb{R}$, posons $P(t) = \det(A + tB)$. P est un polynôme.
 - Si A est inversible, $P(0) \neq 0$ et donc P n'est pas le polynôme nul et admet donc un nombre fini de racines. Par suite, A + tB est inversible pour tout $t \in \mathbb{R}$ sauf peut-être pour un nombre fini de valeurs de t.
 - Si B est inversible, pour tout réel t, $P(t) = \det(B) \times \det\left(AB^{-1} + tI_n\right) = \det(B)\chi_{AB^{-1}}(-t)$. Dans ce cas aussi, P est un polynôme non nul et donc A + tB est inversible pour tout $t \in \mathbb{R}$ sauf peut-être pour un nombre fini de valeurs de t.
- 9) Soit $(a_1, ..., a_r)$ une famille libre de \mathbb{R}^p . On a donc $r \leq p$. On peut compléter la famille $(a_1, ..., a_r)$ en $(a_1, ..., a_p)$ base de \mathbb{R}^p . On note A la matrice de la famille $(a_1, ..., a_p)$ dans la base canonique \mathscr{B} de \mathbb{R}^p .

On complète aussi la famille
$$(b_1, \dots, b_r)$$
 en $\left(\underbrace{b_1, \dots, b_r, 0, \dots, 0}_{p \text{ vecteurs}}\right)$. On note B la matrice de la famille $\left(\underbrace{b_1, \dots, b_r, 0, \dots, 0}_{p \text{ vecteurs}}\right)$

dans la base canonique de \mathbb{R}^p .

La matrice A est inversible et donc la matrice A + tB est inversible pour tout réel t sauf éventuellement pour un nombre

fini de valeurs de t. On en déduit que la famille
$$\left(\underbrace{a_1 + tb_1, \dots, a_r + tb_r, a_{r+1}, \dots, a_p}_{p \text{ vecteurs}}\right)$$
 est une base de \mathbb{R}^p pour tout réel

t sauf éventuellement pour un nombre fini de valeurs de t. En particulier, la famille $(a_1 + tb_1, ..., a_r + tb_r)$ est libre pour tout réel t sauf éventuellement pour un nombre fini de valeurs de t.

10) Soient $x \in \mathbb{R}^n$ et $y \in \text{Ker}\widetilde{\varphi}(v)$. Par suite, $\widetilde{\varphi}(v)(y) = \varphi(v,y) = 0$.

Par hypothèse, $\operatorname{Im}\widetilde{\varphi}(\nu)$ est de dimension q et $q \ge 1$ car φ n'est pas nulle. Par suite, il existe des vecteurs e_1, e_2, \ldots, e_q tels que $(\varphi(\nu, e_1), \ldots, \varphi(\nu, e_q))$ soit une base de $\operatorname{Im}\widetilde{\varphi}(\nu)$.

Supposons par l'absurde que $\phi(x,y) \notin \text{Im}\widetilde{\phi}(v)$. Alors la famille $(\phi(v,e_1),\ldots,\phi(v,e_q),\phi(x,y))$ est libre. D'après la question 9), il existe un voisinage V de 0 tel que pour tout réel t non nul de V, la famille

$$(\varphi(v, e_1) + t\varphi(x, e_1), \dots, \varphi(v, e_q) + t\varphi(x, e_q), \varphi(x, y) + t.0) = (\varphi(v + tx, e_1), \dots, \varphi(v + tx, e_q), \varphi(x, y))$$

soit libre. Puisque $\varphi(v,y)=0$, pour t_0 non nul donné dans V, la famille

$$\left(\phi(\nu+t_0x,e_1),\ldots,\phi(\nu+t_0x,e_q),\phi(x,y)+\frac{1}{t_0}\phi(\nu,y)\right)=\left(\phi(\nu+t_0x,e_1),\ldots,\phi(\nu+t_0x,e_q),\phi\left(\frac{1}{t_0}(\nu+t_0x),y\right)\right)$$

est libre. Puisque to n'est pas nul, la famille

$$\left(\phi(\nu+t_0x,e_1),\ldots,\phi(\nu+t_0x,e_q),t_0\phi\left(\frac{1}{t_0}(\nu+t_0x),y\right)\right)=\left(\phi(\nu+t_0x,e_1),\ldots,\phi(\nu+t_0x,e_q),\phi\left(\nu+t_0x,y\right)\right)$$

est libre. Par suite, $\operatorname{Im}\widetilde{\varphi}(\nu+t_0x)$ est de dimension au moins égale à q+1 ce qui contredit le caractère maximal de ν . On a montré par l'absurde que $\varphi(x,y)\in\operatorname{Im}\widetilde{\varphi}(\nu)$.

11) Soit $y \in \mathbb{R}^n$. Si $y \in \text{Ker}\phi$, alors pour tout x de \mathbb{R}^n , $\phi(x,y) = 0$. En particulier, $\widetilde{\phi}(v)(y) = \phi(v,y) = 0$ et donc $y \in \text{Ker}\widetilde{\phi}(v)$. Ceci montre que $\text{Ker}\phi \subset \text{Ker}\widetilde{\phi}(v)$.

Réciproquement, soient $x \in \mathbb{R}^n$ et $y \in \operatorname{Ker}\widetilde{\varphi}(v)$. D'après la question $\varphi(x,y) \in \operatorname{Im}\widetilde{\varphi}(v)$. Par suite, il existe $y_0 \in \mathbb{R}^n$ tel que $\varphi(x,y) = \varphi(v,y_0)$.

La forme linéaire φ est plate et donc

$$\|\phi(x,y)\|^2 = \langle \phi(x,y), \phi(v,y_0) \rangle = \langle \phi(x,y_0), \phi(v,y) \rangle = \langle \phi(x,y_0), 0 \rangle = 0.$$

Par suite, $\varphi(x,y) \in \text{Ker}\varphi$. On a montré que $\text{Ker}\widetilde{\varphi}(v) \subset \text{Ker}\varphi$ et finalement que $\text{Ker}\widetilde{\varphi}(v) = \text{Ker}\varphi$.

Supposons de plus $\operatorname{Ker} \varphi\{0\}$. Alors, $\operatorname{Ker} \widetilde{\varphi}(\nu) = \{0\}$. Comme $\widetilde{\varphi}(\nu)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p , le théorème du rang permet d'affirmer que

$$p \geqslant \dim (\operatorname{Im} \widetilde{\varphi}(v)) = n - \dim (\operatorname{Ker} \widetilde{\varphi}(v)) = n.$$

Ceci montre que si φ est une application bilinéaire symétrique plate de \mathbb{R}^n dans \mathbb{R}^p de noyau nul, alors $\mathfrak{p} \geqslant \mathfrak{n}$.

12) Soit $v \in \mathcal{V}$. Alors dim $(\operatorname{Im}\widetilde{\varphi}(v)) = q$. Soit (e_1, \ldots, e_q) une famille de vecteurs de \mathbb{R}^n telle que la famille $(\varphi(v, e_1), \ldots, \varphi(v, e_q))$ soit une base de $\operatorname{Im}\widetilde{\varphi}(v)$.

On complète éventuellement la famille libre $(\phi(v, e_1), \dots, \phi(x, e_q))$ en $\mathscr{B} = (\phi(v, e_1), \dots, \phi(v, e_q), e'_{q+1}, \dots, e'_p)$ de \mathbb{R}^p .

nuité du déterminant et par le fait qu'une application linéaire ou multilinéaire sur un espace de dimension finie est continue.

Comme $f(v) = 1 \neq 0$, il existe un voisinage V de v tel que pour tout $w \in V$, $\det_{\mathscr{B}} \left(\varphi(w, e_1), \ldots, \varphi(w, e_q), e'_{q+1}, \ldots, e'_p \right)$. Pour $w \in V$, la famille $\left(\varphi(w, e_1), \ldots, \varphi(w, e_q), e'_{q+1}, \ldots, e'_p \right)$ est une base de \mathbb{R}^p et en particulier, la famille $\left(\varphi(w, e_1), \ldots, \varphi(w, e_q) \right)$ est libre. Par suite, pour tout $w \in V$, $\operatorname{Im}\widetilde{\varphi}(w)$ est de dimension au moins égale à q puis exactement égale à q ou encore $w \in \mathscr{V}$.

On a montré que pour tout $v \in \mathcal{V}$, il existe un voisinage V de v tel que $V \subset \mathcal{V}$ et donc que \mathcal{V} est ouvert.

13) Soit $x \in \mathbb{R}^n$ et soit $\varepsilon > 0$. Soit $v \in \mathcal{V}$. Comme à la question précédente, soit (e_1, \dots, e_q) une famille de vecteurs de \mathbb{R}^n telle que la famille $(\varphi(v, e_1), \dots, \varphi(v, e_q))$.

D'après la question 9), la famille

$$(\varphi(v, e_1) + t\varphi(x, e_1), \dots, \varphi(v, e_q) + t\varphi(x, e_q)) = (\varphi(v + tx, e_1), \dots, \varphi(v + tx, e_q))$$

est libre pour tout t sauf éventuellement pour un nombre fini de valeurs de t. Mais alors, pour tout t non nul sauf éventuellement pour un nombre fini de valeurs de t, la famille

$$\left(\frac{1}{t}\phi(\nu+tx,e_1),\ldots,\frac{1}{t}\phi(\nu+tx,e_q)\right) = \left(\phi\left(\frac{1}{t}\nu+x,e_1\right),\ldots,\phi\left(\frac{1}{t}\nu+x,e_q\right)\right)$$

est libre. Puisque $\left]\frac{\|\nu\|}{\varepsilon}, +\infty\right[$ est infini, on peut choisir le réel t dans l'intervalle $\left]\frac{\|\nu\|}{\varepsilon}, +\infty\right[$ (ν étant bien sûr non nul).

Soit t_0 un tel réel. Alors, la famille $\left(\phi\left(\frac{1}{t_0}\nu+x,e_1\right),\ldots,\phi\left(\frac{1}{t_0}\nu+x,e_q\right)\right)$ est libre ou encore le vecteur $\frac{1}{t_0}\nu+x$ est dans \mathscr{V} . De plus

$$\left\| \left(\frac{1}{t_0} v + x \right) - x \right\| = \frac{1}{t_0} \|v\| < \varepsilon.$$

On a montré que \mathcal{V} est dense dans \mathbb{R}^n .

D. Le cas p = n de noyau nul

- 14) Puisque φ est une application bilinéaire symétrique plate et que ν est régulier pour φ , la question 11) permet d'affirmer que $\operatorname{Ker}\widetilde{\varphi}(\nu) = \operatorname{Ker}\varphi = \{0\}$. Ainsi, $\widetilde{\varphi}(\nu)$ est un endomorphisme injectif de l'espace de dimension finie \mathbb{R}^n et donc un automorphisme de \mathbb{R}^n . On est donc dans le cas où $\mathfrak{p} = \mathfrak{n} = \mathfrak{q}$.
- 15) Soit $x \in \mathbb{R}^n$. Soient y et z deux élément de \mathbb{R}^n . Soit $z' = \left(\widetilde{\varphi}(v)\right)^{-1}(z)$.

$$\begin{split} \langle \psi(x)(y),z\rangle &= \langle \widetilde{\phi}(x) \left((\widetilde{\phi}(\nu))^{-1} \left(y \right) \right), \widetilde{\phi}(\nu)(z') \rangle = \langle \phi \left(x, (\widetilde{\phi}(\nu))^{-1} \left(y \right) \right), \phi(\nu,z') \rangle \\ &= \langle \phi \left(x,z' \right), \phi \left(\nu, (\widetilde{\phi}(\nu))^{-1} \left(y \right) \right) \rangle \text{ (car } \phi \text{ est une forme plate)} \\ &= \langle \phi \left(x, (\widetilde{\phi}(\nu))^{-1} \left(z \right) \right), \widetilde{\phi}(\nu) \circ (\widetilde{\phi}(\nu))^{-1} \left(y \right) \rangle = \langle \widetilde{\phi}(x) \circ (\widetilde{\phi}(\nu))^{-1} \left(z \right), y \rangle \\ &= \langle \psi(x)(z), y \rangle. \end{split}$$

Donc, $\psi(x)$ est un automorphisme auto-adjoint de \mathbb{R}^n .

16) Soient x et y deux éléments de \mathbb{R}^n . Soient z et w deux éléments de \mathbb{R}^n . En posant $z' = (\widetilde{\varphi}(v))^{-1}(z)$ et $w' = (\widetilde{\varphi}(v))^{-1}(w)$

$$\begin{split} \langle (\psi(x) \circ \psi(y))(z), w \rangle &= \langle \psi(y)(z), \psi(x)(w) \rangle \text{ (car } \psi(x) \text{ est auto-adjoint)} \\ &= \langle \phi(y, z'), \phi(x, w') \rangle \\ &= \langle \phi(y, w'), \phi(x, z') \rangle \\ &= \langle (\psi(y) \circ \psi(x))(z), w \rangle \text{ (les rôles de x et y ayant été échangés)} \end{split}$$

Donc, z étant fixé, pour tout w de \mathbb{R}^n , $\langle (\psi(x) \circ \psi(y))(z) - (\psi(y) \circ \psi(x))(z), w \rangle = 0$ et donc $\psi(x) \circ \psi(y)(z) - (\psi(y) \circ \psi(x))(z) \in (\mathbb{R}^n)^{\perp} = \{0\}$. Ceci étant vrai pour tout z de \mathbb{R}^n , on a montré que $\psi(x) \circ \psi(y) = \psi(y) \circ \psi(x)$.

Ainsi, les $\psi(x)$, $x \in \mathbb{R}^n$, sont des endomorphismes autoadjoints de l'espace euclidien \mathbb{R}^n qui commutent deux à deux. La question 7) permet d'affirmer qu'il existe une base orthonormée (e_1, \ldots, e_n) diagonalisant simultanément tous les endomorphismes $\psi(x)$.

Pour chaque $j \in [1, n]$, pour chaque i de [1, n], le vecteur e_i est un vecteur propre de l'endomorphisme autoadjoint $\psi(e'_j)$. Par suite, pour tout $(i, j) \in [1, n]^2$, il existe $\lambda_{i,j} \in \mathbb{R}$ tel que $\psi(e'_i)(e_i) = \lambda_{i,j}e_i$. Mais alors, pour $(i, j) \in [1, n]^2$,

$$\lambda_{i,j} e_i = \psi(e_i')(e_i) = \widetilde{\phi}(e_i') \circ \left(\widetilde{\phi}(\nu)\right)^{-1}(e_i) = \widetilde{\phi}(e_i')(e_i') = \phi\left(e_i', e_i'\right).$$

Par symétrie de φ et en échangeant les rôles de i et j, on a aussi

$$\varphi\left(e_{i}^{\prime},e_{i}^{\prime}\right)=\varphi\left(e_{i}^{\prime},e_{j}^{\prime}\right)=\lambda_{j,i}e_{j}.$$

Supposons de plus $\mathfrak{i}\neq\mathfrak{j}.$ Puisque la famille $(e_{\mathfrak{i}})_{1\leqslant\mathfrak{i}\leqslant\mathfrak{n}}$ est libre, l'égalité

$$\lambda_{i,i}e_i - \lambda_{i,i}e_i = 0$$

impose $\lambda_{i,j} = \lambda_{j,i} = 0$ et donc $\phi(e_i, e_j) = 0$. Ainsi, la base (e'_1, \dots, e_n) est donc une base de \mathbb{R}^n qui diagonalise ϕ .