Exercise 17. (Q9): Assume that the sequence (x_n) is a convergent sequence and $\lim_{n\to\infty} x_n = L$. Prove that (x_n) is also a Cauchy sequence.

Proof: We suppose directly that (x_n) is a convergent sequence and $\lim_{n\to\infty}x_n=L$, then given an $\epsilon>0$, there exists an $N\in\mathbb{N}$ such that whenever $n,m\in\mathbb{N}>N$,

$$|x_n - L| < \frac{\epsilon}{2},$$

and

$$|x_m - L| < \frac{\epsilon}{2}.$$

Adding the two together, we get

$$|x_n - L| + |x_m - L| \ge |x_n - x_m + L - L|$$

= $|x_n - x_m|$,

thus

$$|x_n - x_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon,$$

thus the sequence (x_n) is also a Cauchy sequence.