Proofs without words I

Exercises in METAPOST

Toby Thurston

March 2021 —

Contents

Geometry and Algebra

3

Geometry and Algebra

The Pythagorean theorem I	4
The Pythagorean theorem II	5
The Pythagorean theorem III	6
The Pythagorean theorem IV	7
The Pythagorean theorem V	8
The Pythagorean theorem VI	9
A Pythagorean theorem: $aa' = bb' + cc'$	10
The rolling circle squares itself	1
On trisecting an angle	2
Trisection in an infinite number of steps	l3
Trisection of a line segment	L 4
The vertex angles of a star sum to 180°	۱5
Viviani's theorem I	۱6
Viviani's theorem II	۱7
A theorem about right angles	18
Area and the projection theorem of a right triangle	١9
Chords and tangents of equal length	20

The Pythagorean theorem I

— adapted from the Chou pei san ching

The Pythagorean theorem II

Behold!

— Bhāskara (12th century)

The Pythagorean theorem III

— based on Euclid's proof

The Pythagorean theorem IV

— H. E. Dudeney (1917)

The Pythagorean theorem \boldsymbol{V}

— James A. Garfield (1876)

The Pythagorean theorem VI

— Michael Hardy

A Pythagorean theorem: aa' = bb' + cc'

$$\frac{x}{b'} = \frac{b}{a} \implies \frac{x}{b} = \frac{b'}{a} \implies ax = bb';$$

$$\frac{y}{c'} = \frac{c}{a} \implies \frac{y}{c} = \frac{c'}{a} \implies ay = cc';$$

$$\therefore aa' = a(x + y) = bb' + cc'.$$

— Enzo R. Gentile

The rolling circle squares itself

— Thomas Elsner

On trisecting an angle

— Rufus Isaacs

Trisection in an infinite number of steps

 $\frac{1}{3} = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \cdots$

— Eric Kincanon

Trisection of a line segment

 $\overline{AF} = \frac{1}{3} \cdot \overline{AB}$

— Scott Cobel

The vertex angles of a star sum to $180\ensuremath{^\circ}$

— Fouad Nakhli

Viviani's theorem I

The perpendiculars to the sides from a point on the boundary or within an equilateral triangle add up to the height of the triangle.

This shows a particular example, with C'GQ collinear, rather than the general case

— Samuel Wolf

Viviani's theorem II

The perpendiculars to the sides from a point on the boundary or within an equilateral triangle add up to the height of the triangle.

— Ken-Ichiroh Kawasaki

A theorem about right angles

The internal bisector of the right angle of a right triangle bisects the square on the hypotenuse

— Roland H. Eddy

Area and the projection theorem of a right triangle

— Sidney H. Kung

Chords and tangents of equal length

If circle C_1 passes through the center O of circle C_2 , the length of the common chord \overline{PQ} is equal to the tangent segment \overline{PR} .

— Roland H. Eddy