Modélisation et Résolution du Problème de Sudoku

Rapport de la réunion 29/03/2016

David TOTY $^{1},$ Maxime TRAN 2

30 Mars 2016

Adresse mail: david.toty@etu.upmc.fr
Adresse mail: maxime.tran@etu.upmc.fr

Chapitre 1

Rapport

Ce qui a été dit :

- Faire attention aux termes utilisés, par exemple : ne pas dire "poids" mais plutôt "degré de liberté".
- Expliquer la taille N au début de la présentation, lors de l'explication d'un Sudoku.
- Montrer les différents Sudoku (Classique, Chaos, Samurai, Killer, etc.).
- Expliquer les stratégies utilisées (solve, solve2, solve3), sur quel langage on a implémenté les stratégies.
- Faire attention aux fautes d'orthographe sur les slides.
- Ajouter des légendes sur les graphes.
- Varier les nombres d'indices dans un Sudoku afin de voir les temps de résolution.
- Présenter les courbes dans l'ordre pour montrer l'évolution des temps des Sudoku de différentes tailles. Dans la conclusion, mettre les points importants de la présentation. Éviter un slide vide!

Définition de la taille N :

Un Sudoku est une grille de taille $N \times N$, composé de N lignes, N colonnes, et N régions de taille $\sqrt{N} \times \sqrt{N}$ prenant des valeurs de 1 à N.

Par exemple:

- Sudoku 4×4 possède 4 lignes, 4 colonnes et 4 régions de taille 2×2 prenant des valeurs de 1 à 4. Chaque ligne, colonne et région possèdent 4 cases.
- Sudoku 9×9 possède 9 lignes, 9 colonnes et 9 régions de taille 3×3 prenant des valeurs de 1 à 9. Chaque ligne, colonne et région possèdent 9 cases.