Report 1.10

Taylor Grimm

June 2023

Work problem 1.12, pg. 30 of Agresti

A researcher routinely tests using a nominal P(type I error) = 0.05, rejecting H_0 if the P-value ≤ 0.05 . An exact test using test statistic T has null distribution P(T=0) = 0.30, P(T=1) = 0.62, and P(T=2) = 0.08, where a higher T provides more evidence against the null.

- a. With the usual P-value, show that the actual P(type I error) = 0.
 - Under the null distribution given above, the lowest probability is P(T=2) = 0.08. So, even if we observe the most extreme possible test statistic of T=2, we will not reject H_0 since 0.08 > 0.05, so P(type I error) = 0.
- b. With the mid P-value, show that the actual P(type I error) = 0.08.
 - The mid P-value is computed as $\frac{1}{2}P(T=2) + P(T>2) = \frac{1}{2}.08 + 0 = 0.04$, so we reject H_0 since .04 < 0.05. This results in an actual P(type I error) = 0.08 since P(T=2) = 0.08.
- c. Find P(type I error) in parts (a) and (b) when P(T=0)=0.30, P(T=1)=0.66, P(T=2)=0.04. Note that the test with mid P-value can be conservative or liberal. The exact test with ordinary P-value cannot be liberal.
 - With the usual P-value, we would reject if we observe T = 2, which has probability of 0.04 under the null distribution, so P(type I error) = 0.04.
 - With the mid P-value, observing T=2 yields a mid P-value of $\frac{1}{2}P(T=2)+P(T>2)=\frac{1}{2}.04+0=0.02<0.05$, which causes us to reject H_0 . In this case, the P(type I error) = 0.04.
- d. In part (a), a randomized-decision test generates a uniform random variable U from [0, 1] and rejects H_0 if both T = 2 and $U \le \frac{5}{8}$. Show the actual P(type I error) = 0.05. Is this a sensible test?
 - Since the uniform random variable is independent of the value of T, the probability of T=2 and $U\leq \frac{5}{8}$ is $P(T=2)\times P(U\leq \frac{5}{8})=0.08\times \frac{5}{8}=0.05$. Since we reject H_0 if the P-value ≤ 0.05 , we reject H_0 here.

The actual P(type I error) is the probability, under the null, of T=2 and $U\leq \frac{5}{8},$ which is 0.05.

This test is not sensible.