Regras de Inferência

Dedução Natural

Note que $\neg x \equiv x \to \bot$

$$\frac{x}{x \wedge y} (\wedge I) \qquad \frac{x \wedge y}{x} (\wedge E_1) \qquad \frac{x \wedge y}{y} (\wedge E_2)$$

$$\frac{x}{x \vee y} (\vee I_1) \qquad \frac{y}{x \vee y} (\vee I_2) \qquad \frac{x \vee y}{z} (Y_2) \qquad \frac{x \vee y}{z} (Y_2)$$

$$\frac{[\neg x] \vdash \bot}{x} (RAA) \qquad \frac{x}{x} (ID) \qquad \frac{\bot}{x} (CTR)$$

$$\frac{x \to y}{y} \qquad (\to E) \qquad \frac{[x] \vdash y}{x \to y} (\to I)$$

$$\frac{P(x) \qquad x \not\in fv(\Gamma)}{\forall x. P(x)} \; (\forall I) \quad \frac{\forall x. P(x)}{P(a)} \; (\forall E)$$

$$\frac{P(b)}{\exists x P(x)} \ ^{(\exists I)} \qquad \frac{\exists x P(x) \qquad P(k) \vdash z \qquad k \not\in fv(\Gamma)}{z} \ ^{(\exists E)}$$

Álgebra Booleana

$\alpha \wedge \bot \equiv \bot$	$\{\land - \text{null }\}$
$\alpha \lor \top \equiv \top$	$\{ \lor - \text{null } \}$
$\alpha \wedge \top \equiv \alpha$	$\{\land - identidade \}$
$\alpha \lor \bot \equiv \alpha$	${\lor-identidade}$
$\alpha \wedge \alpha \equiv \alpha$	$\{\land - idempotencia \}$
$\alpha \vee \alpha \equiv \alpha$	${\lor-idempotencia}$
$\alpha \wedge \beta \equiv \beta \wedge \alpha$	$\{\land - \text{comutativo }\}$
$\alpha \vee \beta \equiv \beta \vee \alpha$	${\lor-}$ comutativo $}$
$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$	$\{\land - associativo \}$
$\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$	${\lor- associativo }$
$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	$\{\land - \text{distribui} - \lor\}$
$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	$\{ \lor - \text{distribui } - \land \}$
$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$	$\{ \text{DeMorgan} - \land \}$
$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$	$\{ DeMorgan - \lor \}$
¬T≡⊥	$\{ \text{ negação } -\top \}$
¬⊥≡T	$\{ \text{ negação } -\bot \}$
$\alpha \wedge \neg \alpha \equiv \bot$	$\{ \text{ complemento } - \land \}$
$\alpha \vee \neg \alpha \equiv \top$	$\{ \text{ complemento } - \vee \}$
$\neg(\neg\alpha) \equiv \alpha$	{ dupla-negação }
$\alpha \to \beta \equiv \neg \alpha \lor \beta$	{ implicação }
$\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$	{ bicondicional }
$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$	$\{\neg - \forall\}$
$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$	{¬−∃}
$\forall x. P(x) \land Q(x) \equiv \forall x. P(x) \land \forall x. Q(x)$	$\{ \land - \forall \}$
$\exists x. P(x) \lor Q(x) \equiv \exists x. P(x) \lor \exists x. Q(x)$	{∨ – ∃}