

Physical Property Modeling of Multilayer Heavy Duty Sack Films

Presented by:

Nancy Conley

Technical Service and Application Development

NOVA Chemicals Corporation

NOVA Chemicals | Polyethylene

Agenda

- HDS market challenges
- Purpose of the work
- Model design principles
- Model validation
- Putting the models to use
- Conclusions and recommendations

Applications

Heavy duty shipping sacks have diverse needs

Purpose of the Work

- Develop predictive, virtual design tool that allows customers to make heavy duty bags that are...
 - Higher performing
 - More cost effective
- ... while getting to market faster using less resources

Study Design Principles

- Study 3-layer, coextruded PE films
- Use Design of Experiments (DOE) to study wide range of film design criteria and processing conditions
- Use resins that are widely accessible to bag producers
- Create model as simple as possible by limiting number of second order coefficients

Design of Experiments Setup

- Modified 4 factor, 3-level Taguchi L18 model
 - 27 primary films
 - 6 validation films
- Key Inputs:
 - Layer: distribution, composition
 - Film: thickness, stiffness
- Key Outputs
 - Secant Modulus (MD, TD)
 - Puncture
 - Haze

Processing: blowup ratio, process time

LDPE content in film held constant

Dart

Tear (MD, TD)

Resins Used in This Study

Resin Type	Resin Code	Melt Index g/10min	Density g/cm ³	Properties
Single site octene LLDPE	sLLDPE	0.85	0.921	High performance seal
Z-N octene LLDPE	o-LLD	0.80	0.926	General purpose seal
Z-N hexene LLDPE	h-LLD	0.80	0.926	Bulk layer
Z-N butene LLDPE	b-LLD	0.80	0.921	Bulk layer
HDPE	HD	0.72	0.962	Stiffener
LDPE	LD	0.25	0.920	Processing aid

Wise Words from a Famous Statistician

"All models are wrong, but some are useful."

"The ability to devise simple but evocative models is the signature of the great scientist... over-parameterization is often the mark of mediocrity."

George Box (1919-2013)

Model Results: Highly Predictive

Predicted Values

The Model in Use: Salt Bag Redesign

Performance of Commercially Available Packages

	Salt Pellet Bag	Rock Salt Bag A	Rock Salt Bag B
Layers	3 — LLDPE/ MDPE/ LLDPE	2 – LLDPE/LLDPE	3- All LLDPE
Thickness, mil	6.5	7	6.75
Secant 1% MD, MPa	243	256	252
Secant 1% TD, MPa	262	293	265
Tear MD, g	819	1100	884
Tear TD, g	4277	4389	4151

Model in Use: Salt Bag B Redesign

Film	Core Resin*	BUR	Dart, g	MD tear, g	Puncture j/mm	1% Secant MD MPa
Target, 6.75 mil			675	884		252
All sLLDPE	sLLDPE	1.7	1200	3060	42	251
Butene core	b-LLDPE	2.5	1130	2750	31	251

Film	Core Resin*	BUR	Dart g	MD tear g	Puncture j/mm	1% Secant MD MPa
Target, 6 mil			675	884		273
Butene core	b-LLDPE	1.7	770	2064	29	276

Model in Use, part 2 - Resin Bag Redesign

	Existing	Downgauged targets
Thickness, mil	5.6	5.0
Secant 1% MD, MPa	294	330
Dart, g	560	560
Tear MD, g	1300	1300
Puncture, j/mm	21	24

Model in Use, part 2 - Resin Bag Redesign

Film	Core Resin*	BUR	Dart g	MD tear g	Puncture j/mm	1% Secant MD MPa
Target, 5.6 mil			560	1300	21	294
All sLLDPE	sLLDPE	1.7	1200	3060	42	251
Butene core	b-LLDPE	2.5	1130	2750	31	251

Film	Core Resin*	BUR	Dart g	MD tear g	Puncture j/mm	1% Secant MD MPa
Target, 5 mil			560	1300	24	330
All sLLDPE	sLLDPE	1.7	685	1650	34	336
Butene core	b-LLDPE	1.7	495	1200	24	336
Butene core	h-LLDPE	2.5	680	1410	28	336

^{*} Includes LDPE in the core

Conclusions and Future Work

- Simple model successfully developed to predict performance of complex 3 layer coextruded films
- Model enables creation of new applications and optimization of existing ones
- Future work includes:
 - Expanding model to 5 layer films
 - Predicting **creep and dimpling** performance

Thank you

© 2016 NOVA Chemicals - All rights reserved.

The information contained herein is provided for general reference purposes only. By providing the information contained herein, NOVA Chemicals makes no guaranty or warranty and does not assume any liability, with respect to the accuracy or completeness of such information, or product results in any specific instance, and hereby expressly disclaims any implied warranties of merchantability or fitness for a particular purpose or any other warranties or representations whatsoever, expressed or implied. Nothing contained herein shall be construed as a license to use the products of NOVA Chemicals in any manner that would infringe any patent. Nothing herein shall be copied, reproduced, distributed or otherwise used without the express written permission of NOVA Chemicals.

