Name:	
GSI's name:	
Lab section:	

Statistics 153 (Introduction to Time Series) Homework 6

Due on November 29, 2018

Instructions: Homework is due by 3:50pm in lecture on the due date. Please staple your homework when you turn it in. For the computing exercises, be sure to attach all relevant code and plots.

This homework's score is out of 20 points, and you don't need to solve every problem for a full score. The points associated with each problem add up to more than 20, so you only need to answer a subset to get a full score (assuming correct solutions). You are welcome to attempt as many problems as you want, but your score will be capped at 20.

1. Interpretation of Spectral Density

Recall that one interpretation of the spectral density is that it gives the relative contributions of sinusoids of various frequencies to the process X_t . That is, $f(\lambda)$ gives the relative strength of sinusoids of frequency λ .

Let Z_t be white noise with variance 1.

a. Let
$$X_t = X_{t-1} - .9X_{t-2} + Z_t$$
. (2 points)

- i. Plot its spectral density (you can use the "arma.spec" function). Which frequencies f are dominant?
- ii. Simulate the process for 50 time steps. If there is periodic behavior, compare the observed period with $\frac{1}{f}$, the inverse of the dominant frequencies from (i).

b. Let
$$X'_t = -.3X'_{t-2} - .9X'_{t-4} + Z_t$$
. Repeat the same procedure as above for this process. (2 points)

c. Let
$$X_t'' = .9X_{t-5}'' + Z_t$$
. Repeat the same procedure as above for this process. (2 points)

2. Spectral Density of AR Processes

Let Z_t be a white noise process with variance 1. Consider the AR(3) process:

$$(1 - .9B^3)X_t = Z_t$$

- a. Compute the transfer and power transfer functions associated with the AR polynomial $(1 .9B^3)$. Also, compute the spectral density $f_X(\lambda)$.
- b. Plot the spectral density $f_X(\lambda)$. Do you think X_t will oscillate? If so, what period? (1 point)
- c. Simulate X_t for 50 time steps. Is the simulation consistent with your answer to (b)? (1 point)
- d. Consider the linear filter with weights $a_{-1} = a_0 = a_1 = \frac{1}{3}$; $a_j = 0$ otherwise. Let Y_t be the time series obtained by applying this filter to X_t . Compute the transfer function, power transfer function, and spectral density $f_Y(\lambda)$.
- e. Plot the spectral density $f_Y(\lambda)$. Do you think Y_t will oscillate? If so, what period? (1 point)
- f. Simulate Y_t by applying the filter from (d) to your simulated X_t from (c). Is the simulation consistent with your answer to (d)? (1 point)

3. DFT and Convolution

For data $x_0, ..., x_{n-1}$ and $y_0, ..., y_{n-1}$, we define their convolution z_t as:

$$z_t = \sum_{k=0}^{n-1} x_{t-k} y_k$$

where $x_{-m} = x_{n-m}$ for negative values in the sum above. Show that the j^{th} coefficient of DFT of z_t is $b_j^Z = b_j^X b_J^Y$. That is, DFT coefficients of the convolution of x_t and y_t is equal to the product of their DFT coefficients. (This is analogous to the spectral density result from Shumway Problem 4.8) (5 points)

4. DFT and Periodic Data

Suppose the data x_t is h-cyclic for some positive integer h: $x_{t+h} = x_t$ for all integers t. Now, suppose the DFT of the first cycle $x_0, ..., x_{h-1}$ is $\beta_0, ..., \beta_{h-1}$.

For n=kh, show that the DFT of $x_0,...,x_{n-1}$ is $b_j=b_{mk}=k\beta_m$ for multiples of k and $b_j=0$ otherwise. (5 points)