Integer and binary integer linear programming – Laboratory 27/04/20

A. Integer programming problem: Task 2

1. Solution to the LR problem

min←
$$x_1+x_2+2x_3$$

under constraints
 $2x_1+3x_2 \ge 5$

$$x_i \ge 0, x_i \in \mathbb{Z}, i = 1, 2, 3$$

x₂+2x₃≥4

Solution: $x_1=0$, $x_2=1.6667$, $x_3=1.1667$ with the objective value f(x)=4

 x_1 is an integer, therefore x_2 and x_3 are natural choices for the first branch steps. The obtained solution trees are presented below.

2. Solution tree

Taking x_2 into account as a first branch step.

Solutions for branches:

- For first subproblem(P1). Its LR solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 1.5$ and the objective value f(x) = 5. Therefore, the objective value of the solution of the IP for this problem is at least 5, which is worse than 4.
- For second subproblem(P2). Its LR solution is $x_1 = 0$, $x_2 = 2$, $x_3 = 1$ and the objective value f(x) = 4. Since all variable values are integers, it is also the solution to the IP problem.

Taking x_3 into account as a first branch step.

Solutions for branches:

- For first subproblem(P1). Its LR solution is $x_1 = 0$, $x_2 = 2$, $x_3 = 1$ and the objective value f(x) = 4, which is the same solution as solution with x_2 as a first branching step.
- For second subproblem(P2). Its LR solution is $x_1 = 0$, $x_2 = 1.6667$, $x_3 = 2$ and the objective value f(x) = 5.6667. Therefore, the objective value of the solution of the IP for this problem is at least 6, which is worse than 4.

B. Knapsack problem: Task 3

W _{max}	=	6
vv max	_	v

i	Vi	Wi
1	5	4
2	3	3
3	4	2
4	3	2

Decision tree for given problem was shortened, due to its size.

At first stage x₁:

At second stage x_2 : $w_{21}^* = w_{11} + 3 = 7$, $w_{21} > w_{max}$ and $w_{20} = 4$, $v_{20} = 5$.

At third stage x₃:

