Lecture 8

Joint distributions

Discrete case

Definition

Let X and Y be discrete random variables defined on the same probability space Ω . The function:

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

is called the joint probability mass function of X and Y.

Fair coin is tossed 3 times. Let

- X = number of heads in the first 2 tosses,
- Y = number of heads in all 3 tosses.

We can display the joint pmf in a table:

X / Y	0	1	2	3
0	1/8	1/8	0	0
1	0	1/4	1/4	0
2	0	0	1/8	1/8

A joint probability mass function must satisfy two properties:

- **1** $0 \le p_{X,Y}(x,y) \le 1$
- ② The total probability is 1. We can express this as a double sum:

$$\sum_{x \in S_X} \sum_{v \in S_V} p_{X,Y}(x,y) = 1.$$

Joint probability mass function:

$$p(x,y) = \begin{cases} c(x+y), & x = 1,2, \ y = 1,2, \\ 0, & \text{otherwise.} \end{cases}$$

Determine the value of c.

Solution

$$p(1,1) + p(1,2) + p(2,1) + p(2,2) = 1$$

hence

$$c(1+1+1+2+2+1+2+2) = 12c = 1 \implies c = \frac{1}{12}$$
.

Remark

The joint PMF determines the probability of any event that can be specified in terms of the random variables X and Y:

$$\mathbb{P}((X,Y)\in A)=\sum_{(x,y)\in A}p_{X,Y}(x,y).$$

Example

Roll two symmetric dice. Let X be the outcome on the first die and Y on the second die. Let $B = \{(x, y) : y - x \ge 2\}$. Find $\mathbb{P}((X, Y) \in B)$.

Solution

Both X and Y take values in $\{1,2,3,4,5,6\}$ and the joint pmf is $p(i,j) = \frac{1}{36}$, $i,j = 1,\ldots,6$, $B = \{(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,6)\}$ $\implies \mathbb{P}((X,Y) \in B) = \frac{10}{26}$.

Marginal distributions

From the joint PMF $p_{X,Y}$ we can calculate the **marginal pmf's** of X and Y:

$$p_X(x) = \sum_y p_{X,Y}(x,y) \quad \text{and} \quad p_Y(y) = \sum_x p_{X,Y}(x,y).$$

Example

The joint PMF of X and Y:

$X \setminus Y$	0	1	2	3
1	1/20	2/20	2/20	
2	2/20	4/20	1/20	2/20
3		1/20	3/20	1/20
4		1/20		

- $p_X(3) = ?$
- Find marginal pmf's of X and Y.

Marginal PMF of X:

Solution

$$p_X(1) = \sum_{y} p(1,y) = p(1,0) + p(1,1) + p(1,2) + p(1,3) = \frac{1}{20} + \frac{2}{20} + \frac{2}{20} = \frac{1}{4}$$
$$p_X(2) = p(2,0) + p(2,1) + p(2,2) + p(2,3) = \frac{2}{20} + \frac{4}{20} + \frac{1}{20} + \frac{2}{20} = \frac{9}{20},$$

$$p_X(2) = p(2,0) + p(2,1) + p(2,2) + p(2,3)$$

 $p_X(3) = p(3,0) + p(3,1) + p(3,2) + p(3,2)$

$$p_X(3) = p(3,0) + p(3,1) + p(3,2) + p(3,3) = \frac{1}{20} + \frac{3}{20} + \frac{1}{20} = \frac{1}{4},$$

$$p_X(4) = \frac{1}{20}$$

$$p_X(4)=rac{1}{20}.$$
 ginal PMF of Y:

Marginal PMF of Y:
$$p_{Y}(0) = p(1,0)$$

 $p_Y(2) = \frac{2}{20} + \frac{1}{20} + \frac{3}{20} = \frac{6}{20}, \ p_Y(3) = \frac{2}{20} + \frac{1}{20} = \frac{3}{20}.$

$$\frac{3}{20}$$
,

$$+\frac{2}{20}=$$

$$=\frac{3}{20},$$

$$p_Y(0) = p(1,0) + p(2,0) = \frac{1}{20} + \frac{2}{20} = \frac{3}{20},$$

$$(0) = \frac{1}{20} + \frac{1}{20} = \frac{8}{20}$$

$$p_Y(1) = \frac{2}{20} + \frac{4}{20} + \frac{1}{20} + \frac{1}{20} = \frac{8}{20},$$

Remark

Marginal probability mass functions don't determine the joint pmf.

Example

$X \setminus Y$	0	1
0	0	1/2
1	1/2	0

$X \backslash Y$	0	1
0	1/4	1/4
1	1/4	1/4

Two different joint pmfs have the same marginal distributions of X and Y.

Independence of random variables

Definition

Two random variables X and Y defined on the same probability space (Ω, \mathbb{P}) are **independent** if

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B), \forall A, B \subset \mathbb{R}.$$

Discrete case

Two discrete random variables X and Y (defined on the same space (Ω, \mathbb{P})) are **independent**, if

$$\mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y) \ \forall x,y \in \mathbb{R},$$

or the same condition in terms of pmf:

$$p_{X,Y}(x,y) = p_X(x)p_Y(y), \ \forall x,y \in \mathbb{R}.$$

Joint PMF of (X, Y):

	$X \backslash Y$	0	1	
:	0	2/6	1/6	
	1	2/6	1/6	
-				

Are X and Y independent?

Solution

$$p_X(0) = \frac{3}{6}, \ p_X(1) = \frac{3}{6}, p_Y(0) = \frac{4}{6}, \ p_Y(1) = \frac{2}{6},$$

50

$$p_{X,Y}(0,0) = p_X(0)p_Y(0),$$

$$p_{X,Y}(0,1) = p_X(0)p_Y(1),$$

$$p_{X,Y}(1,0) = p_X(1)p_Y(0),$$

$$p_{X,Y}(1,1) = p_X(1)p_Y(1),$$

hence X and Y are independent.

Joint PMF of (X,Y):

$X \setminus Y$	0	1
0	1/2	0
1	1/4	1/4

Are X and Y independent?

Solution

$$p_X(0) = \frac{1}{2}, \ p_X(1) = \frac{1}{2}, \ p_Y(0) = \frac{3}{4}, \ p_Y(1) = \frac{1}{4},$$

$$p_{X,Y}(0,1) = 0 \neq p_X(0)p_Y(1) = \frac{1}{8},$$

hence X and Y are not independent.

