Book 10 Proposition 75

If a medial (straight-line), which is commensurable in square only with the whole, and which contains a medial (area) with the whole, is subtracted from a(nother) medial (straight-line) then the remainder is an irrational (straight-line). Let it be called a second apotome of a medial (straight-line).

For let the medial (straight-line) CB, which is commensurable in square only with the whole, AB, and which contains with the whole, AB, the medial (rectangle contained) by AB and BC, have been subtracted from the medial (straight-line) AB [Prop. 10.28]. I say that the remainder AC is an irrational (straight-line). Let it be called a second apotome of a medial (straight-line).

For let the rational (straight-line) DI be laid down. And let DE, equal to the (sum of the squares) on AB and BC, have been applied to DI, producing DG as breadth. And let DH, equal to twice the (rectangle contained) by AB and BC, have been applied to DI, producing DF as breadth. The remainder FE is thus equal to the (square) on AC [Prop. 2.7]. And since the (squares) on AB and BC are medial and commen-

surable (with one another), DE (is) thus also medial [Props. 10.15, 10.23 corr.]. And it is applied to the rational (straight-line) DI, producing DG as breadth. Thus, DG is rational, and incommensurable in length with DI[Prop. 10.22]. Again, since the (rectangle contained) by AB and BC is medial, twice the (rectangle contained) by AB and BC is thus also medial [Prop. 10.23 corr.]. And it is equal to DH. Thus, DH is also medial. And it has been applied to the rational (straight-line) DI, producing DF as breadth. DF is thus rational, and incommensurable in length with DI [Prop. 10.22]. And since ABand BC are commensurable in square only, AB is thus incommensurable in length with BC. Thus, the square on AB (is) also incommensurable with the (rectangle contained) by AB and BC [Props. 10.21 lem., 10.11]. But, the (sum of the squares) on AB and BC is commensurable with the (square) on AB [Prop. 10.15], and twice the (rectangle contained) by AB and BC is commensurable with the (rectangle contained) by AB and BC [Prop. 10.6]. Thus, twice the (rectangle contained) by AB and BC is incommensurable with the (sum of the squares) on AB and BC [Prop. 10.13]. And DE is equal to the (sum of the squares) on AB and BC, and DH to twice the (rectangle contained) by AB and BC. Thus, DE [is] incommensurable with DH. And as DE (is) to DH, so GD (is) to DF [Prop. 6.1]. Thus, GD is incommensurable with DF [Prop. 10.11]. And they are both rational (straight-lines). Thus, GD and DF are rational (straight-lines which are) commensurable in square only. Thus, FG is an apotome [Prop. 10.73]. And DI(is) rational. And the (area) contained by a rational and an irrational (straight-line) is irrational [Prop. 10.20],

and its square-root is irrational. And AC is the square-root of FE. Thus, AC is an irrational (straight-line) [Def. 10.4]. And let it be called the second apotome of a medial (straight-line).[†] (Which is) the very thing it was required to show.