Advanced Machine Learning

Graphical Models

Conditional Independence, Graphical models, LDA

Outline

- 1. Graphical Models
- 2. Cakes!
- 3. Latent Dirichlet Allocation

Graphical Models

- If we want to build large probabilistic inference systems
 - ★ AI Doctor
 - ★ Fault diagnostic system for a computer
 - we can describe this by introducing random variables, but it is helpful to graphically represent causal connections
- Graphical models allow us to do this
- It allows us to build a joint probability from which we can compute everything we want!

Dependencies Between Variables

- In building a probabilistic model we want to know which random variables depend on each other directly and which don't
- Variables that don't will typically still be correlated.
- ullet If two random variables X and Y are correlated then
 - $\star X$ could affect Y
 - ★ Y could affect X
 - \star X and Y could not influence each other, but both be affected by another random variable Z^{\blacksquare}

Graphical Models

- Bayesian Belief Networks are a type of graphical models where we use a directed graphs to show causal relationships between random variables
- We could represent the three conditions described above by

 We can use these graphical representations to work out how to efficiently average over latent variables

Statistical Independence

Two random variables are statistically independent if

$$\mathbb{P}(X,Y) = \mathbb{P}(X)\mathbb{P}(Y)$$

- ullet Equally this implies $\mathbb{P}(X|Y)=\mathbb{P}(X)$ and $\mathbb{P}(Y|X)=\mathbb{P}(Y)$
- Statistically independent variables are uncorrelated
- But statistical independence is often too powerful

Conditional Independence

A weaker notion is conditional independence

$$\mathbb{P}(X,Y|Z) = \mathbb{P}(X|Z)\mathbb{P}(Y|Z)$$

- Conditional independence implies that there is no direct causation
- But it doesn't imply zero correlation
- Conditional independence reduces computational complexity, e.g.

Outline

- 1. Graphical Models
- 2. Cakes!
- 3. Latent Dirichlet Allocation

Let Them Eat Cakes

- I will go through a very simple example involving cakes
- It illustrates some simple principles
- In the subsidiary notes I present a very simple program for computing all the probabilities—I would encourage you to do this as it makes things much clearer

The Cake Scenario

- Abi and Ben both bake cakes and bring them into the coffee room
- Abi will bring in cakes 20% of the time: $\mathbb{P}(A=1)=0.2$
- Ben will bring in cakes 10% of the time: $\mathbb{P}(B=1)=0.1$
- 90% of the time if either Abi or Ben have put cakes in the coffee room there is some left when I enter

$$\mathbb{P}(C=1|A=1,B=0) = \mathbb{P}(C=1|A=0,B=1) = 0.9$$

- If they both make cake then there is always cake left $\mathbb{P}(C=1|A=1,B=1)=1$
- If neither Abi or Ben has made cake there is still a 5% chance someone else has put cake in the coffee room $\mathbb{P}(C=1|A=0,B=0)=0.05 \mathbb{I}$

Computing with Probabilities

Other probabilities I can deduce, e.g.

$$\mathbb{P}(C=0|A,B) = 1 - \mathbb{P}(C=1|A,B)$$

I can depict the causal relationship as

The quantity that I really want is the joint probability

$$\begin{split} \mathbb{P}(A,B,C) &= \mathbb{P}(C,B|A)\,\mathbb{P}(A) \\ &= \mathbb{P}(C|A,B)\,\mathbb{P}(B|A)\,\mathbb{P}(A) \\ &= \mathbb{P}(C|A,B)\,\mathbb{P}(B|A)\,\mathbb{P}(A) \\ \blacksquare \end{split}$$

• Because $\mathbb{P}(B|A) = \mathbb{P}(B)$

Computing Expectations

- By using the joint probability and summing over all unknown quantities, we can compute expectations of anything we are interested in
- These sums are often sped up using knowledge of conditional independence
- To compute the probability of and event $\mathcal E$ we introduce an indicator function $[\![\mathcal E]\!]$ which is equal to 1 if the event happens and 0 otherwise

$$\mathbb{P}(\mathcal{E}) = \mathbb{E}[\llbracket \mathcal{E} \rrbracket]$$

• If E is a random variable equal to 1 if event $\mathcal E$ happens and 0 otherwise then $E=[\![\mathcal E]\!]$

Are There Any Cakes Left?

 We can use our model to compute the probabilities of there being cakes in the coffee room

$$\mathbb{P}(C = 1) = \sum_{A,B,C \in \{0,1\}} [C = 1] \mathbb{P}(A,B,C)$$

$$= \sum_{A,B \in \{0,1\}} \mathbb{P}(C = 1|A,B) \mathbb{P}(A) \mathbb{P}(B) = 0.29$$

- The probability that Abi baked a cake is just 0.2 and for Ben its 0.1 (which is what we assume at the start)
- The probability of them both baking on a particular day is 0.02

Making Observation

- Making observations changes probabilities
- In graphical models observed random variables are shaded

ullet The probabilities conditioned on C is given by

$$\mathbb{P}(A,B|C) = \frac{\mathbb{P}(A,B,C)}{\mathbb{P}(C)}$$

where

$$\mathbb{P}(C) = \sum_{A,B \in \{0,1\}} \mathbb{P}(A,B,C)$$

Who Made Those Cakes?

If we observe there are cakes

$$\mathbb{P}(A,B|C=1) = \mathbb{P}(A,B,C=1)/\mathbb{P}(C=1)$$

A straightforward if tedious calculation shows

$$\mathbb{P}(A=1|C=1)=0.628, \quad \mathbb{P}(B=1|C=1)=0.317$$
 $\mathbb{P}(A=1,B=1|C=1)=0.069$

- Note $\mathbb{P}(A=1,B=1|C=1)\neq \mathbb{P}(A=1|C=1)\mathbb{P}(B=1|C=1)$
- ullet When we observe C then A and B are no longer independent

Elaborate Cakes

- We can elaborate on our cake model
- We suppose that Dave likes cakes so if there is a cake in the coffee room there is a 80% chance that I will see him eating a cake: $\mathbb{P}(D=1|C=1)=0.8$
- Even if there are no cakes in the coffee room there is a 10% chance that Dave has bought his own cake:

$$\mathbb{P}(D=1|C=0)=0.1$$

• Eli also likes cakes: there is a 60% chance that I will see her eating cakes if there are cakes in the coffee room:

$$\mathbb{P}(E=1|C=1) = 0.6$$

ullet But she never buys herself cakes $\mathbb{P}(E=1|C=0)=0$

Elaborate Graphical Model

We can depict this situation as

This allows us to break down the joint probability

$$\mathbb{P}(A, B, C, D, E) = \mathbb{P}(C, D, E | A, B) \mathbb{P}(B) \mathbb{P}(A) \blacksquare$$
$$= \mathbb{P}(D|C) \mathbb{P}(E|C) \mathbb{P}(C|A, B) \mathbb{P}(B) \mathbb{P}(A) \blacksquare$$

ullet We use the conditional independence of D and E given C

Dependencies

 If we don't observe cakes then the probability of Dave and Eli eating cake are not independent

$$\mathbb{P}(D=1) = 0.303, \qquad \mathbb{P}(E=1) = 0.174$$

$$\mathbb{P}(D=1, E=1) = 0.1392 \mathbb{I}$$

so
$$\mathbb{P}(D,E) \neq \mathbb{P}(D)\mathbb{P}(E)$$

This changes if we know there are cakes in the coffee room

$$\mathbb{P}(D=1|C=1)=0.8 \qquad \mathbb{P}(E=1|C=1)=0.6$$

$$\mathbb{P}(D=1,E=1|C=1)=0.48$$

so
$$\mathbb{P}(D=1,E=1|C=1) = \mathbb{P}(D=1|C=1)\mathbb{P}(E=1|C=1)$$

Observations and Independence

 Making observations changes the probabilities and in some case the dependencies of random variables on each other

 There are rules to deduce the conditional independence from a graphical model given which variables have been observed
 —but these are details that you can look up if needed

Graphical Model Frameworks

- There are sophisticated frameworks for computing probabilities in Bayesian Belief Networks efficiently
- If our graph is a tree then we can evaluate probabilities efficiently.
- When there are loops (so that a random variable both influences and is influenced by another random variables) then exact evaluation of expectations requires exhaustive summing over variables (which is often not tractable)
- There are various message passing algorithms designed to obtain approximations of expectations

Outline

- 1. Graphical Models
- 2. Cakes!
- 3. Latent Dirichlet Allocation

Model for Documents

- We consider a model for the words in a set of documents (we ignore word order)
- We consider a corpus $\mathcal{C} = \{d_i | i = 1, 2, ... |\mathcal{C}|\}$
- With documents consisting of words

$$d = \left(w_1^{(d)}, w_2^{(d)}, \dots, w_{N_d}^{(d)}\right) \mathbf{I}$$

- ullet We assume that there is a set of topics $\mathcal{T} = \{t_1, t_2, ..., t_{|\mathcal{T}|}\}$
- We associate a probability, $\theta_t^{(d)}$, that a word in document d relates to a topic t!

Documents and Topic

Words and Topic

• We associate a probability $\phi_w^{(t)}$ that a word, w, is related to a topic t!

$$\boldsymbol{\phi}^{(t)} = (\phi_w^{(t)} | w \in \mathcal{V})$$

Dirichlet Allocation

- Most documents are predominantly about a few topics and most topic have a small number of words associated to them.
- We can generate sparse vectors $m{ heta}^{(d)}$ and $m{\phi}^{(t)}$ from a Dirichlet distribution with small parameters $m{lpha}$

$$Dir(\boldsymbol{p}|\boldsymbol{\alpha}) = \Gamma\left(\sum_{i} \alpha_{i}\right) \prod_{i=1}^{n} \frac{p_{i}^{\alpha_{i}-1}}{\Gamma(\alpha_{i})}$$

•
$$\sum_{i} p_i = 1$$

Generating Document

 To generate a document we choose a topic for each word and a word for each topic

$$\forall d \in \mathcal{C} \quad \boldsymbol{\theta}^{(d)} \sim \operatorname{Dir}(\alpha \mathbf{1}) \blacksquare$$

$$\forall t \in \mathcal{T} \quad \boldsymbol{\phi}^{(t)} \sim \operatorname{Dir}(\beta \mathbf{1}) \blacksquare$$

$$\forall d \in \mathcal{C} \quad \land \quad \forall i \in \{1, 2, ..., N_d\} \quad \tau_i^{(d)} \sim \operatorname{Cat}(\boldsymbol{\theta}^{(d)}), \blacksquare w_i^{(d)} \sim \operatorname{Cat}(\boldsymbol{\phi}^{(\tau_i^{(d)})})$$

- Where $Cat(i|p) = p_i$ is the categorical distribution (we choose one of a number of options)
- This model is known as Latent Dirichlet Allocation

LDA Graphical Model (version 1)

Plate Diagrams

- Drawing every random variable is tedious (and not really possible)
- A short-hand is to draw a box (plate) meaning repeat

• That is we generate vectors $\boldsymbol{\theta}^d$ from a Dirchelet distribution $\mathrm{Dir}(\boldsymbol{\theta}|\alpha\mathbf{1})$ for all documents in corpus \mathcal{C}

LDA Graphical Model (version 2)

- This is a lot more compact
- Personally, I find it hard to read, but you get used to it

Probabilistic Model

The graphical Model is shorthand for the variables

$$\begin{split} \boldsymbol{W} &= (\boldsymbol{w}^{(d)}|d \in \mathcal{C}) \quad \text{with} \quad \boldsymbol{w}^{(d)} = (w_1^{(d)}, w_2^{(d)}, \dots, w_{N_d}^{(d)}), \quad \text{and} \quad w_i^{(d)} \in \mathcal{V} \\ \boldsymbol{T} &= (\tau_i^{(d)}|d \in \mathcal{C} \ \land \ i \in \{1, 2, \dots, N_d\}) \quad \text{with} \quad \tau_i^{(d)} \in \mathcal{T} \\ \boldsymbol{\Theta} &= (\boldsymbol{\theta}^{(d)}|d \in \mathcal{C}) \quad \text{with} \quad \boldsymbol{\theta}^{(d)} = (\theta_t^{(d)}|t \in \mathcal{T}) \in \Lambda^{|\mathcal{T}|} \\ \boldsymbol{\Phi} &= (\boldsymbol{\phi}^{(t)}|t \in \mathcal{T}) \quad \text{with} \quad \boldsymbol{\phi}^{(t)} = (\phi_w^{(t)}|w \in \mathcal{V}) \in \Lambda^{|\mathcal{V}|} \end{split}$$

Distributed according to

$$\mathbb{P}(\boldsymbol{W}, \boldsymbol{T}, \boldsymbol{\Theta}, \boldsymbol{\Phi} | \alpha, \beta) = \left(\prod_{t \in \mathcal{T}} \mathrm{Dir} \left(\boldsymbol{\phi}^{(t)} | \beta \mathbf{1} \right) \right)$$
$$\left(\prod_{d \in \mathcal{C}} \mathrm{Dir} \left(\boldsymbol{\theta}^{(d)} | \alpha \mathbf{1} \right) \prod_{i=1}^{N_d} \mathrm{Cat} \left(\tau_i^{(d)} | \boldsymbol{\theta}^{(d)} \right) \mathrm{Cat} \left(w_i^{(d)} | \boldsymbol{\phi}^{(\tau_i^{(d)})} \right) \right) \blacksquare$$

Finding Topics

- We are given the set of words ${m W}$ and don't really care about au_i^d the topic associated with word i in document d
- ullet But we are interested in the words associated with each topic $\phi^{(t_i)}$
- ullet And the topics associated with each document $oldsymbol{ heta}^{(d)}$
- To compute them we need to sample the probability distribution
- One way to do this is using Monte Carlo methods (see next lecture)

Summary

- Building probabilistic models is an intricate process
- Graphical models provide a representation showing the causal relationship between random variables
- This allows us to break down the joint probability of all the variables into conditional probabilities.
- This is useful for building the model, but also can speed up evaluating expectations
- Making observations changes the probabilities of random variables
- It is possible to generate very rich models such as Latent Dirichlet Allocation (LDA)