Comparison of both Model on Namapadam Corpus(Hindi Language)

We train both the model using 20000 sentences of training data of Namapadam corpus and evaluate the performance of both models on validation and test data set.

As we can see in the below figure the Overall F1 score(macro f1 score) on validation data set using Indic NER and IndicBERT

IndicNER IndicBERT

**** eval metrics ****			***** eval metrics *****		
epoch	=	3.0	epoch	=	
eval_LOC_f1	=	0.8329	eval_LOC_f1		
eval_LOC_number	=	10213	eval_LOC_number		
eval_LOC_precision	=	0.8137	eval_LOC_precision	=	0.7157
eval_LOC_recall	=	0.853	eval_LOC_recall	=	0.7335
eval_ORG_f1	=	0.6809	eval_ORG_f1	=	0.5616
eval_ORG_number	=	9786	eval_ORG_number	=	9786
eval_ORG_precision	=	0.6752	eval_ORG_precision	=	0.5665
eval_ORG_recall	=	0.6867	eval_ORG_recall	=	0.5568
eval_PER_f1	=	0.8149	eval_PER_f1	=	0.7098
eval_PER_number	=	10568	eval_PER_number	=	10568
eval_PER_precision	=	0.8027	eval_PER_precision	=	0.7138
eval_PER_recall	=	0.8275	eval_PER_recall	=	0.7059
eval_loss	=	0.2028	eval_loss	=	0.2723
eval_overall_accuracy	=	0.9465	eval_overall_accuracy	=	0.9203
eval_overall_f1	=	0.7784	eval_overall_f1	=	0.6677
eval_overall_precision	=	0.7662	eval_overall_precision	=	0.6681
eval_overall_recall	=	0.791	eval_overall_recall	=	0.6674
eval_runtime	= 0:0	5:02.85	eval_runtime		0:04:24.46
eval_samples_per_second	=	44.443	eval_samples_per_second	=	50.895
eval_steps_per_second	=	2.78	eval steps per second		

As we can see that IndicNER has better overall accuracy and better overall f1 score(macro f1 score) then IndicBERT here IndicNER performs better.

As we can see in the below figure the Overall F1 score(macro f1 score) on test data set using Indic NER and IndicBERT

```
IndicNER: {'Precision': 0.7726618705035971, 'Recall': 0.8351477449455676, 'F1': 0.8026905829596414}

IndicBERT: {'Precision': 0.6837563451776649, 'Recall': 0.6982892690513219, 'F1': 0.6909463965119261}
```

As we can see that IndicNER has better overall accuracy and better overall f1 score(macro f1 score) then IndicNER performs better.

So Overall we can say that for NER task IndicNER perfoms better then IndicBERT on Namapadam Corpus.

Comparison of both Model and ChatGPT on 25 Sentences

Model	Class	Precision	Recall	F1 Score
ChatGPT	B-PER	0.882	0.750	0.811
	I-PER	0.900	0.818	0.857
	B-LOC	0.714	0.625	0.667
	I-LOC	0.250	0.333	0.286
	B-ORG	0.750	0.600	0.667
	I-ORG	1.000	1.000	1.000
	B-MISC	0.000	0.000	0.000
	I-MISC	0.000	0.000	0.000
	0	0.936	0.993	0.964
IndicBERT	B-PER	0.684	0.650	0.667
	I-PER	0.857	0.545	0.667
	B-LOC	0.500	0.625	0.556
	I-LOC	0.667	0.667	0.667
	B-ORG	0.400	0.400	0.400
	I-ORG	0.667	0.667	0.667
	B-MISC	0.000	0.000	0.000
	I-MISC	0.000	0.000	0.000
	0	0.927	0.925	0.926
IndicNER	B-PER	0.565	0.650	0.605
	I-PER	1.000	0.455	0.625
	B-LOC	0.500	0.500	0.500
	I-LOC	0.167	0.333	0.222
	B-ORG	0.600	0.600	0.600
	I-ORG	1.000	0.667	0.800
	B-MISC	0.000	0.000	0.000
	I-MISC	0.000	0.000	0.000
	О	0.917	0.912	0.914

Model	Macro F1 score
ChatGPT	0.583
IndicBERT	0.505
IndicNER	0.474

As we can see that ChatGPT leads in the overall F1 score, followed by IndicBERT and IndicNER.

Learning from this comparison:

- 1. In case of Namapadam Corpus IndicNER, designed specifically for Named Entity Recognition (NER) tasks, may hold an inherent advantage over IndicBERT when it comes to handling NER tasks seamlessly. This could potentially explain why IndicNER demonstrates fewer errors or achieves a higher overall F1 score compared to Indic-BERT as we can see in Q2. Indic-BERT, while being a versatile language model fine-tuned for various tasks including NER, might not exhibit the same level of performance as Indic-NER
- 2. While on 25 Sentences here ChatGPT performs better beacsue we have trained IndicBERT and IndicNER with 20000 sentences which is very less so IndicBERT and IndicNER are not performing better compared to chatGPT. As you can see we have trained IndicBERT with 20% of training data (approx 1.5 lakhs sentences) then it is performing almost as chatGPT (see Q4).
- 3. Here with same amount of training IndicNER is better then IndicBERT in case of Namapadam corpus but on 25 sentences IndicBERT performs better but there is just a small difference we can observe. So for more sentences we may not observe that.
- 4. IndicNER has very less change when we change hyperparameters.

FineTuning of IndicBERT and IndicNER for NER Task

Hyperparameters plays a crucial role in training the model and can significantly impact its performance and convergence. I have choosed following hyperparameters and their significance and optimal values as follows::

1. **per device train batch size**::This hyperparameter determines the batch size of training samples per device (e.g., GPU) during training. Larger batch sizes can lead to faster training but may require more memory. Smaller batch sizes may provide better generalization but slower convergence.

Optimal Value for Both IndicBERT and IndicNER is 8

2. **per device eval batch size::** Similar to per_device_train_batch_size but for evaluation/validation data. It determines the batch size of evaluation samples per device during evaluation.

Optimal Value for Both IndicBERT and IndicNER is 8

3. <u>num train epochs::</u> This hyperparameter specifies the number of times the entire training dataset is passed through the model during training. Increasing the number of epochs may improve model performance, but it could also lead to overfitting if the model learns to memorize the training data.

Optimal Value for Both IndicBERT and IndicNER is 3

4. **evaluation strategy::** This hyperparameter determines when evaluation is performed during training. "epoch" means evaluation is performed at the end of each epoch. Other options could include steps or no evaluation during training.

I have choosed evaluation strategy is epoch. I have not changed/Tuned this.

5. <u>learning rate:</u> This hyperparameter determines the step size at which the model weights are updated during training. A higher learning rate may lead to faster convergence but could cause instability or overshooting. A lower learning rate may lead to slower convergence but more stable training.

Optimal Value for Both IndicBERT and IndicNER is 4e-5

6. <u>weight decay:</u> Weight decay is a regularization technique that penalizes large weights in the model during training to prevent overfitting. It reduces the magnitude of the weights during optimization, effectively adding a penalty term to the loss function.

Optimal Value for Both IndicBERT and IndicNER is 0.01

Finetuning of IndicBERT

1.

```
args=TrainingArguments(
  output_dir='output_dir',
  per_device_train_batch_size=12,
  per_device_eval_batch_size=12,
  num_train_epochs=3,
  evaluation_strategy = "epoch",
  learning_rate=2e-5)
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.531000	0.350388	0.606084	0.626261	0.616007	10213	0.514572	0.362661	0.425463	9786	0.621484	0.579201	0.599598	10568	0.588520	0.525600	0.555283	0.896688
2	0.306400	0.308776	0.693341	0.626946	0.658474	10213	0.496827	0.496015	0.496421	9786	0.693686	0.608157	0.648112	10568	0.625539	0.578532	0.601118	0.906360
3	0.267600	0.301372	0.668574	0.674924	0.671734	10213	0.525693	0.499693	0.512364	9786	0.675232	0.639005	0.656619	10568	0.625941	0.606406	0.616019	0.908831

Output on Test Data set:

2.

```
args=TrainingArguments(
   output_dir='output_dir',
   per_device_train_batch_size=8,
   per_device_eval_batch_size=8,
   num_train_epochs=3,
   evaluation_strategy = "epoch",
   learning_rate=3e-5)
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.338000	0.321444	0.676715	0.655047	0.665705	10213	0.608053	0.365727	0.456738	9786	0.662495	0.626136	0.643802	10568	0.655512	0.552426	0.599570	0.905643
2	0.256500	0.277608	0.729548	0.659258	0.692624	10213	0.566077	0.497241	0.529431	9786	0.723384	0.654523	0.687233	10568	0.676087	0.605751	0.638990	0.915049
3	0.226000	0.272699	0.705734	0.711055	0.708384	10213	0.556417	0.535663	0.545843	9786	0.706285	0.682627	0.694255	10568	0.658914	0.645075	0.651921	0.916850

Output on Test Data set:

3.

```
args=TrainingArguments(
  output_dir='output_dir',
  per_device_train_batch_size=8,
  per_device_eval_batch_size=8,
  num_train_epochs=3,
  evaluation_strategy = "epoch",
  learning_rate=4e-5
)
```

Output on Validation Data set:

	,,,,,,,,,,								111									
Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.169100	0.293274	0.666724	0.762166	0.711257	10213	0.619016	0.482322	0.542186	9786	0.684230	0.706567	0.695219	10568	0.661007	0.653352	0.657157	0.917159
2	0.131800	0.287954	0.723982	0.722706	0.723344	10213	0.536112	0.570407	0.552728	9786	0.707521	0.704107	0.705810	10568	0.655571	0.667517	0.661490	0.916837
3	0.097100	0.310096	0.723665	0.728483	0.726066	10213	0.551180	0.560699	0.555899	9786	0.702553	0.708270	0.705400	10568	0.660796	0.667779	0.664269	0.918753

Output on Test Data set:

{'test_loss': 0.27194246649742126, 'test_LOC_precision': 0.6818181818181818, 'test_LOC_precall': 0.6596091205211726, 'test_LOC_fil': 0.6705298013245032, 'test_LOC_number': 614, 'test_LOC_precision': 0.5971731448763251, 'test_DRG_precision': 0.6438095238095238, 'test_DRG_fil': 0.619615920806599, 'test_DRG_number': 525, 'test_PRR_precision': 0.7319461444308446, 'test_PRF_precision': 0.781946144308446, 'test_PRF_precision': 0.781946144308446, 'test_PRF_precision': 0.781946144308446, 'test_precision': 0.78194614630847084609, 'test_precision': 0.781946144308446, 'test_precision': 0.78194614463084609, 'test_precision': 0.781946144308446, 'test_precision': 0.78194614463084609, 'test_precision': 0.781946144308446, 'test_precision': 0.781946144308446

4.

```
args=TrainingArguments(
   output_dir='output_dir',
   per_device_train_batch_size=8,
   per_device_eval_batch_size=8,
   num_train_epochs=3,
   evaluation_strategy = "epoch",
   learning_rate=4e-5,
   weight_decay=0.01
)
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.234700	0.274220	0.693958	0.725350	0.709307	10213	0.621670	0.460249	0.528918	9786	0.683310	0.683762	0.683536	10568	0.671627	0.626100	0.648065	0.916689
2	0.189600	0.261667	0.724060	0.722217	0.723137	10213	0.574646	0.547517	0.560754	9786	0.728711	0.693130	0.710475	10568	0.678517	0.656231	0.667188	0.920915
3	0.154400	0.272273	0.715746	0.733477	0.724503	10213	0.566542	0.556816	0.561637	9786	0.713807	0.705905	0.709834	10568	0.668086	0.667386	0.667736	0.920288

Output on Test Data set:

Conclusion:

As we can see that batch size =8 gives best performance and after adjust the learning rate and adding weight decay gives me best result as you can see in 4^{th} iteration

As we can see that on 4th iteration we get Best Overall f1 score/macro f1 score on validation data set and test data set as well same of overall accuracy as well.

Finetuning of IndicNER

1.

```
args=TrainingArguments(
   output_dir='output_dir',
   per_device_train_batch_size=12,
   per_device_eval_batch_size=12,
   num_train_epochs=3,
   evaluation_strategy = "epoch",
   learning_rate=2e-5)
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss		Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall		Overall Accuracy
1	0.470500	0.174504	0.802906	0.854793	0.828038	10213	0.681814	0.693031	0.687376	9786	0.806022	0.835920	0.820699	10568	0.766079	0.796480	0.780984	0.947746
2	0.122700	0.175233	0.819849	0.853324	0.836252	10213	0.677904	0.700695	0.689111	9786	0.803842	0.839516	0.821291	10568	0.769115	0.799686	0.784102	0.948130
3	0.102500	0.185291	0.810326	0.857535	0.833262	10213	0.678504	0.693133	0.685740	9786	0.805042	0.836961	0.820691	10568	0.767048	0.797788	0.782116	0.947631

Output on Test Data set:

{'test_loss': 0.15220007300376892, 'test_LOC_precision': 0.8102893890675241, 'test_LOC_recall': 0.8208469055374593, 'test_LOC_fl': 0.8155339805825242, 'test_LOC_number': 614, 'test_ORG precision': 0.6375198728139905, 'test_ORG_recall': 0.7638095238095238, 'test_ORG_fl': 0.6949740034662045, 'test_ORG_number': 525, 'test_PER_precision': 0.467933491686461, 'test_PER_precision': 0.873745908039216, 'test_PER_precision': 0.75308339225992, 'test_DR_precision': 0.75308339225992, 'test_DR_precision': 0.75308339225992, 'test_per_precision': 0.753083926580, 'test_orgall_precision': 0.75308339225992, 'test_orgall_precision': 0.7530839225992, 'test_orgall_precision': 0.753089225992, 'test_orgall_precision': 0.75308925928, 'test_orgall_precision': 0.753089225992, 'test_org

2.

```
args=TrainingArguments(
  output_dir',
  per_device_train_batch_size=8,
  per_device_eval_batch_size=8,
  num_train_epochs=3,
  evaluation_strategy = "epoch",
  learning_rate=3e-5)
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.151400	0.172648	0.809071	0.857632	0.832644	10213	0.698550	0.679133	0.688705	9786	0.810619	0.840840	0.825453	10568	0.776021	0.794681	0.785240	0.948084
2	0.108200	0.178782	0.819414	0.852149	0.835461	10213	0.678029	0.693133	0.685498	9786	0.803884	0.834311	0.818815	10568	0.769253	0.795073	0.781950	0.947502
3	0.085600	0.197027	0.814898	0.856947	0.835393	10213	0.677798	0.690681	0.684179	9786	0.805016	0.832135	0.818351	10568	0.768270	0.795139	0.781474	0.946832

Output on Test Data set:

{'test_loss': 0.16366778314113617, 'test_LOC_precision': 0.812199036918138, 'test_LOC_recall': 0.8241042345276873, 'test_LOC_f1': 0.8181083265966047, 'test_LOC_number': 614, 'test_ORG_precision': 0.657051282051282, 'test_ORG_precall': 0.780952380952381, 'test_ORG_f1': 0.7136640557006092, 'test_ORG_number': 525, 'test_PER_precision': 0.834716708309355, 'test_PER_precision': 0.8494367086067595, 'test_Der_all': 0.8494367086607595, 'test_Der_all': 0.8494367086067595, 'test_Der_all': 0.84943670860675966795, 'test_Der_all': 0.8494367086067595, 'test_Der_all': 0.8494367086067595, 'test_Der_all': 0.8494367086795, 'test_Der_all': 0.8494367086795, 'test_Der_all': 0.8494367086795, 'test_Der_all': 0.8494367086795, 'test_Der_all': 0.8494367086795, 'test_Der_all': 0.8494367086795, 'test_Der_all': 0.849436795, 'test_Der_all

3.

```
args=TrainingArguments(
  output_dir='output_dir',
  per_device_train_batch_size=8,
  per_device_eval_batch_size=8,
  num_train_epochs=3,
  evaluation_strategy = "epoch",
  learning_rate=5e-5,
  weight_decay=0.02
)
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.153100	0.170998	0.810911	0.855772	0.832738	10213	0.681762	0.676885	0.679315	9786	0.805359	0.839042	0.821856	10568	0.769140	0.792718	0.780751	0.947085
2	0.103200	0.182718	0.817899	0.849212	0.833261	10213	0.672278	0.697834	0.684817	9786	0.805091	0.829012	0.816876	10568	0.766749	0.793765	0.780023	0.946727
3	0.074100	0.207823	0.810879	0.850074	0.830443	10213	0.670534	0.685060	0.677710	9786	0.700155	0.823420	0.811111	10568	0.762443	0.788334	0.775172	0.945797

Output on Test Data set:

{'test_loss': 0.17027251422405243, 'test_LOC_precision': 0.797427652733119, 'test_LOC_recall': 0.8078175895765473, 'test_LOC_f1': 0.8025889967637541, 'test_LOC_number': 614, 'test_ORG_precision': 0.486468468468468487, 'test_ORG_recall': 0.77714285714285714, 'test_ORG_f1': 0.7071057192374349, 'test_ORG_number': 525, 'test_PER_precision': 0.8284023668639053, 'test_PER_precision': 0.8284023668639053, 'test_PER_precision': 0.8582691318140947, 'test_PER_number': 9.** (test_ORG_f1': 0.7970186335403726, 'test_overall_accuracy': 0.9536520384054693, 'test_overall_precision': 0.759271575275191, 'test_overall_accuracy': 0.9536520384054693, 'test_overall_

4.

```
args=TrainingArguments(
   output_dir='output_dir',
   per_device_train_batch_size=8,
   per_device_eval_batch_size=8,
   num_train_epochs=3,
   evaluation_strategy = "epoch",
   learning_rate=4e-5,
   weight_decay=0.01
```

Output on Validation Data set:

Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.151300	0.170940	0.810182	0.855478	0.832214	10213	0.691108	0.679031	0.685016	9786	0.806103	0.839894	0.822652	10568	0.772302	0.793601	0.782807	0.947466
2	0.104300	0.180633	0.820590	0.855380	0.837624	10213	0.676650	0.692622	0.684543	9786	0.805606	0.832135	0.818656	10568	0.769752	0.795237	0.782287	0.947105
3	0.077700	0.202834	0.813749	0.853030	0.832927	10213	0.675241	0.686695	0.680920	9786	0.802662	0.827498	0.814891	10568	0.766235	0.790951	0.778397	0.946471

Output on Test Data set:

{\test_los': 0.16923412680625916, \test_LOC_precision': 0.8093699515347335, \test_LOC_necall': 0.819609120521173, \test_LOC_f1': 0.8126520681265207, \test_LOC_number': 614, \test_ORG_precision': 0.6560509958410127, \test_DRG_recall': 0.7847619047619048, \test_DRG_f1': 0.7146574154379879, \test_DRG_number': 525, \test_PRR_precision': 0.8323955608591885, \test_FRR_precall': 0.835443037974684, \test_DRG_number': 525, \test_PRR_precision': 0.874938574938574938575, \test_PRR_precision': 0.8749385749385749494556
76, \test_overall_f1': 0.8026905829596414, \test_overall_accuracy': 0.95385311416076, \test_runtime': 19.76, \test_samples_per_second': 43.877, \test_steps_per_second': 2.783}

Conclusion:We can observe that batch size =12 gives better f1 score on validation data set but batch size=8 gives better f1 score on test data set.so we have choosed batch size 8 and then we add weight decay =0.2 but it has decreased the performance so we have reduced that to 0.1 and reduce learning rate then we get overall better performance in 4^{th} iteration.

Output Of IndicBERT Model:

With best finetuned Version

Arguments are:

```
args=TrainingArguments(
   output_dir='output_dir',
   per_device_train_batch_size=8,
   per_device_eval_batch_size=8,
   num_train_epochs=3,
   evaluation_strategy = "epoch",
   learning_rate=4e-5,
   weight_decay=0.01
)
```

Class wise and overall Precision ,Recall and macro f1 score/overall f1 score of Validation Data set

							ch 3/3],											
Epoch	Training Loss	Validation Loss	Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
1	0.234700	0.274220	0.693958	0.725350	0.709307	10213	0.621670	0.460249	0.528918	9786	0.683310	0.683762	0.683536	10568	0.671627	0.626100	0.648065	0.916689
2	0.189600	0.261667	0.724060	0.722217	0.723137	10213	0.574646	0.547517	0.560754	9786	0.728711	0.693130	0.710475	10568	0.678517	0.656231	0.667188	0.920915
3	0.154400	0.272273	0.715746	0.733477	0.724503	10213	0.566542	0.556816	0.561637	9786	0.713807	0.705905	0.709834	10568	0.668086	0.667386	0.667736	0.920288
***** e	eval metr	rics *****																
epoch	1		=	3.0														
eval_	LOC_f1		=	0.7245														
eval_	_LOC_numb	ber	=	10213														
eval_	_LOC_pred	cision	=	0.7157														
eval_	LOC_reca	all	=	0.7335														
eval_	ORG_f1		=	0.5616														
eval_	ORG_numb	ber	=	9786														
eval_	ORG_pred	cision	=	0.5665														
eval_	ORG_reca	all	=	0.5568														
eval_	PER_f1		=	0.7098														
eval_	PER_numb	ber	=	10568														
eval_	PER_pred	cision	=	0.7138														
eval_	PER_reca	all	=	0.7059														
eval_	loss		=	0.2723														
eval_	_overall_	_accuracy	=	0.9203														
eval_	_overall_	_f1	=	0.6677														
eval_	overall	_precision	=	0.6681														
eval_	overall_	_recall	=	0.6674														
eval_	_runtime		= 0:04	:24.46														
eval_	_samples_	_per_secon	d =	50.895														
eval_	_steps_pe	er_second	=	3.184														

Class wise and overall Precision, Recall and macro f1 score/overall f1 score of Test Data set

{'test_loss': 0.23291881382465363, 'test_LOC_precision': 0.6650485436893204, 'test_LOC_recall': 0.6693811074918566, 'test_LOC_fi': 0.6672077922077922, 'test_LOC_number': 614, 'test_ORG_precision': 0.6104129263913824, 'test_ORG_recall': 0.6476190476190476, 'test_ORG_fi': 0.6284658040665435, 'test_ORG_number': 525, 'test_PER precision': 0.7496655345911949, 'test_PER precision': 0.7496655345911949, 'test_PER precision': 0.7520694731861198, 'test_PER precision': 0.7520694731861198, 'test_PER precision': 0.7520694731861198, 'test_PER precision': 0.7520694731861198, 'test_DER precision': 0.752064731861198, 'test_DER precision': 0.752065731861198, 'test_DER precision': 0.752067731861198, 'test_DER precision': 0.752067731861198, 'te

Overall Precision, Recall and macro f1 score/overall f1 score of Training(20000 sentences) Data set

```
{'Precision': 0.8115474991607922, 'Recall': 0.8142443361699261, 'F1': 0.812893680930712}
```

Output Of IndicNER Model:

With best finetuned Version

Arguments are:

```
args=TrainingArguments(
   output_dir* output_dir*,
   per_device_train_batch_size=8,
   per_device_eval_batch_size=8,
   num_train_epochs=3,
   evaluation_strategy = "epoch",
   learning_rate=4e-5,
   weight_decay=0.01
)
```

Class wise and overall Precision ,Recall and macro f1 score/overall f1 score of Validation Data set

Epoc	h Training		Loc Precision	Loc Recall	Loc F1	Loc Number	Org Precision	Org Recall	Org F1	Org Number	Per Precision	Per Recall	Per F1	Per Number	Overall Precision	Overall Recall	Overall F1	Overall Accuracy
	1 0.15130		0.810182	0.855478	0.832214	10213	0.691108	0.679031		9786	0.806103	0.839894	0.822652	10568	0.772302	0.793601	0.782807	0.947466
	2 0.10430			0.855380		10213		0.692622		9786	0.805606	0.832135		10568	0.769752	0.795237	0.782287	0.947105
	3 0.07770	0.202834	0.813749	0.853030	0.832927	10213	0.675241	0.686695	0.680920	9786	0.802662	0.827498	0.814891	10568	0.766235	0.790951	0.778397	0.946471
**	*** eval	metrics ***	**															
	epoch		=	3	.0													
	eval_LOC	f1	=	0.83	29													
	eval_LOC_	_number	=	102	13													
	eval_LOC_	precision	=	0.81	37													
	eval_LOC	recall	=	0.8	53													
	eval_ORG	f1	=	0.68	09													
	eval_ORG	number	=	97	86													
	eval_ORG	precision	=	0.67	52													
	eval_ORG	recall	=	0.68	67													
	eval_PER	f1	=	0.81	49													
	eval_PER	number	=	105	68													
	eval_PER	precision	=	0.80	27													
	eval_PER_	recall	=	0.82	75													
	eval_loss	;	=	0.20	28													
	eval_ove	rall_accurac	y =	0.94	65													
	eval_ove	all_f1	=	0.77	84													
	eval_ove	rall_precisi	on =	0.76	62													
	eval_ove	rall_recall	=	0.7	91													
	eval_runt	ime	= 0	:05:02.	85													
	eval_sam	oles_per_sec	ond =	44.4	43													
		' _ os_per_secon		2.														

Class wise and overall Precision, Recall and macro f1 score/overall f1 score of Test Data set

{'test_loss': 0.16923412680625916, 'test_LOC_precision': 0.8093699515347335, 'test_LOC_recall': 0.8159609120521173, 'test_LOC_f1': 0.8126520681265207, 'test_LOC_number': 614, 'test_LOC_precision': 0.65606509554140127, 'test_DRG_recall': 0.7847619047619048, 'test_DRG f1': 0.7146574154379879, 'test_DRG_number': 525, 'test_PRR precision': 0.8329355608591885, 'test_PRR precision': 0.854938574938575, 'test_PRR precision': 0.854938574938575, 'test_PRR precision': 0.872463618768059571, 'test_precall': 0.8804695814774494556 'test_precision': 0.8026905829596414, 'test_overall_accuracy': 0.95385311416076, 'test_runtime': 19.76, 'test_smples_per_second': 43.877, 'test_steps_per_second': 2.783}

Overall Precision, Recall and macro f1 score/overall f1 score of Training(20000 sentences) Data set

{'Precision': 0.895298956306386, 'Recall': 0.9091092799245571, 'F1': 0.9021512683682222}