CS 6041 Theory of Computation

Regular expression

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Where are we now?

Outline

- Regular expression
 - Definition
 - Example

- Equivalence with DFA/NFA
 - Regular expression ⇒ Regular language
 - Regular expression ← Regular language

Regular expression

 Regular expressions are those describing languages by using regular operations (*Union*, Concatenation, Star, Complement, Boolean, etc.)

• Example:

```
(0 \cup 1)0^*
= (\{0\} \cup \{1\})\{0\}^* //add bracket
= \{0,1\}\{0\}^* //comma = union
```

Regular expression

- $\Sigma = \{0,1\}$
 - $(0 \cup 1)^* = \{0,1\}^* = \Sigma^*$

• Σ is any alphabet

- $_{\text{o}}$ Σ describes the language consisting of all strings of length 1 over this alphabet
- $_{\circ}$ Σ^{*} describes the language consisting of all strings over that alphabet

Regular expression

- What is $\Sigma * 1? -> \{w \mid w...\}$
 - describes the language that contains all strings that end in a

- What is $(0\Sigma^*) \cup (\Sigma^*1)$? -> {w | w...}
 - describes all strings that start with a 0 or end with a 1

Definition of regular expression

- R is regular expression if R is
 - \circ a, where a∈Σ, length is 1;
 - ε, length is 0;
 - Ø;
 - Union: $(R_1 \cup R_2)$, where R_1 and R_2 are all regular expressions;
 - Concatenation: (R_1R_2) , where R_1 and R_2 are all regular expressions;
 - Star: (R_1^*) , where R_1 is regular expression.
- L(R): the language of R
 - \circ L(1 Σ *): language that starts with 1

Regular expression \rightarrow Description

• Let $\Sigma = \{0,1\}$

```
 \begin{array}{ll} \circ & 0*10* & = \{\, w \mid w \text{ contains a single 1} \,\} \\ \circ & \Sigma^*1\Sigma^* & = \{\, w \mid w \text{ has at least one 1} \,\} \\ \circ & \Sigma^*001\Sigma^* & = \{\, w \mid w \text{ contains the substring 001} \,\} \\ \circ & (\Sigma\Sigma)^* & = \{\, w \mid w \text{ is a string of even length} \,\} \\ \circ & (\Sigma\Sigma\Sigma)^* & = \{\, w \mid \text{ the length of w is a multiple of 3} \,\} \\ \end{array}
```

Regular expression \rightarrow Description

- Let $\Sigma = \{0,1\}$
 - o 01∪10 = { 01, 10 }

 $0 \cdot (0 \cdot \epsilon)1^* = 01^* \cdot 1^*$

• $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$

 \circ $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$

= { w | w starts and ends with the same symbol }

What is the description for this RE?

Some special regular expression

- Let $\Sigma = \{0,1\}$
 - o 1*∅ = ∅
 - \circ \varnothing * = { ε }
 - \circ R \cup Ø = R
 - \circ RØ = Ø
 - \circ R \cup ε = R \cup { ε }
 - \circ R ε = R

Regular expression for numbers

- $\{+,-,\epsilon\}(D^* \cup D^*.D^*)$, where $D=\{0,1,2,3,4,5,6,7,8,9\}$
 - 72
 - 。 3.14159
 - +7.
 - o -.01

Description > Regular expression

• Let $\Sigma = \{0,1\}$

```
{ w | w contains exactly two 0s}
                                                    1*01*01*
{ w | w contains at least two 0s }
                                                    \sum * 0 \sum * 0 \sum *
{ w | w begins with a 1 and ends with a 0}
                                                    15*0
{ w | w is a string which does not contain
                                                    0*1*
substring 10}
```

Description -> Regular expression

• Let $\Sigma = \{0,1\}$

{ w | w contains exactly two 0s}

1*01*01*

{ w | w contains an even number of 0s }

(1*01*01*)*

{ w | w contains exactly two 1s}

0*10*10*

{ w | w contains an even number of 0s, or contains exactly two 1s}

(1*01*01*)* U

0*10*10*

Outline

- Regular expression
 - Definition
 - Example

- Equivalence with DFA/NFA
 - Regular expression ⇒ Regular language
 - Regular expression ← Regular language

Equivalence with DFA/NFA

 Theorem: A language is regular if and only if some regular expression describes it.

• Lemma1:

Regular expression \Rightarrow Regular language.

• Lemma2:

Regular expression \leftarrow Regular language.

Proof

Create an equivalent NFA for regular expression

Definition:

R is regular expression if R is

- o a
- 0 8
- Ø
- \circ R₁ \cup R₂
- \circ R₁R₂
- $\circ R_1^*$

Create NFA for each case

Proof

Create an equivalent NFA for regular expression

Case 1: a

R=a,
$$a \in \Sigma$$
.

$$L(R) = \{a\},\$$

$$N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\}),$$

$$\delta(q_1,a)=\{q_2\},$$

$$\delta(r,b)=\emptyset$$
, if $r\neq q_1$ or $b\neq a$.

Can you draw the NFA?

Proof

Create an equivalent NFA for regular expression

Case 2: ε

$$L(R) = \{\varepsilon\},\$$

$$N = (\{q1\}, \Sigma, \delta, q1, \{q1\}),$$

$$\forall$$
r, \forall b, δ (r,b)= \emptyset .

Can you draw the NFA?

N

Proof

Create an equivalent NFA for regular expression

Case 3: empty set

$$R=\emptyset$$
.

$$L(R)=\emptyset$$
,

$$N=(\{q_1\},\Sigma,\delta,q_1,\varnothing),$$

$$\forall r, \forall b, \delta(r,b) = \emptyset$$
.

Can you draw the NFA?

N

Proof

Create an equivalent NFA for regular expression

Case 4: $R=(R_1 \cup R_2)$,

N.

Can you draw the NFA?

 N_2

N

Proof

Create an equivalent NFA for regular expression

Case 5: $R=(R_1R_2)$,

Can you draw the NFA?

Add all accept states in N₁ to start state of N₂

Proof

Create an equivalent NFA for regular expression

Case 6: $R=(R_1^*)$,

Can you draw the NFA?

Add all accept states to start state

Equivalence with DFA/NFA

 Theorem: A language is regular if and only if some regular expression describes it.

Lemma1: (proved)

Regular expression \Rightarrow Regular language (NFA).

Lemma2:

Regular expression \leftarrow Regular language.

$RE \Rightarrow RL(NFA)$

Create (ab∪a)*

a

1. a

2. b

3. ab

4. ab∪a

a

3

Create (a∪b)*aba

o a

b

o a∪b

。 (a∪b)*

Create (a∪b)*aba

aba

Create (a∪b)*aba

Create (a∪b)*aba

Practice:

$RE \Rightarrow RL(NFA)$

a

a

b

- Create (ab∪a)*

 - a
 - b 2.

 $a \cup b$ 3.

3

Practice:

$RE \Rightarrow RL(NFA)$

 $R_1 \cup R_2$

 N_2

- Create (ab∪a)*
 - 1. a

2. b

3. $ab \cup a^*$

Proof

Definition a language is called a <u>regular language</u> if some <u>finite</u> <u>automaton (DFA/NFA)</u> recognizes it

Idea: DFA/NFA \Rightarrow ? \Rightarrow Regular expression

Generalized nondeterministic finite automaton, GNFA

- 1, create an equivalent GNFA based on DFA
- 2, use GNFA to create an equivalent RE

Accept state:

- 1, unique and different from start state
- 2, cannot access to other states
- Kennesaw State University 3, all other states can access to it

CS 6041

Theory of Computation

Definition of GNFA

- GNFA is a five tuple (Q, Σ , δ ,q_{start},q_{accept})
 - Q is finite set of states
 - \circ Σ is input alphabet
 - ∘ δ :(Q-{q_{accept}})×(Q-{q_{start}})→R is transition functions, means from (Q-{q_{accept}}) to (Q-{q_{start}}) with input R
 - q_{start} is the start state
 - q_{accept} is the accept state

Computation on GNFA

• Input $w=w_1w_2...w_k$, $w_i \in \Sigma^*$

- Computation: for state sequence $q_0, q_1, ..., q_k$
 - \circ q₀=q_{start} is the start state
 - o $\forall i$, $w_i \in L(R_i)$, $R_i = \delta(q_{i-1}, q_i)$

- Accept:
 - q_k=q_{accept} is accept state

$DFA/NFA \Rightarrow GNFA$

DFA and GNFA are equivalent

GNFA ⇒ Regular expression

Change the number of states in GNFA to 1

DFA

DFA GNFA

$DFA \Rightarrow GNFA \Rightarrow Regular expression$

Add start/accept state

Regular language <==> Regular expression

 Theorem: A language is regular if and only if some regular expression describes it.

Regular language ==> Regular expression

Regular language <== Regular expression

Regular language: DFA, NFA, Regular expression

- A language is regular if some <u>deterministic</u> <u>finite automaton</u> recognizes it
- A language is regular if and only if some nondeterministic finite automaton recognizes it
- A language is regular if and only if some <u>regular</u> <u>expression</u> describes it

Regular language in big picture

DFA/NFA → RE web tool

http://ivanzuzak.info/noam/webapps/fsm2regex/

#states s0**s**1 52 #initial s0#accepting **s**1 #alphabet a b #transitions s0:b>s1

s1:a>s0

the \$ character representing the empty string

DFA/NFA → RE web tool

http://ivanzuzak.info/noam/webapps/fsm2regex/

#states **s**1 s2 **s**3 #initial **s**1 #accepting s2 #alphabet a #transitions s1:\$>s2 s1:a>s3 s2:a>s1 s3:b>s3 s3:b>s2 s3:a>s2

$$+aa*(b(b+aaa*b)*(a+a(a+aa*(a+$+b))+b+$)+a+$+b)+a$$

the \$ character representing the empty string

Conclusion

- Regular expression
 - Definition
 - Example

- Equivalence with DFA/NFA
 - Regular expression ⇒ Regular language
 - Regular expression ← Regular language