A Comparison of Random Projection-Based Test Statistics in High Dimensions Simulation Study & Further Results

Connor McNeill* Miles Woollacott*

*Department of Statistics, North Carolina State University

December 3, 2024

Outline

- 1 Motivation
- 2 Methodology
- 3 Simulation Study Setup Results
- 4 Conclusion

Motivating Problem

- Suppose that we observe data (Y_i, x_i) , i = 1, ..., n.
- With these data, we are interested in studying a single-index model (SIM) such as a logistic or Poisson model in the form

$$Y_i | \mathbf{x_i} \stackrel{\text{ind}}{\sim} f(\mathbf{x_i}^T \boldsymbol{\beta}, \boldsymbol{\epsilon})$$

where $\beta \in \mathbb{R}^p$, ϵ is our error term, and $p \gg n$.

- We are interested in testing $H_0: \beta = 0$ vs. $H_1: \beta \neq 0$.
- Our classical tests such as the Wald, Score, and Likelihood Ratio cannot be used directly in this case as p > n.

Key Ideas

- Random projection-based approaches perform dimension reduction on the covariates from p to k so that n > k.
- Liu et al. proposed the random projection (RP) test statistic and compared it with the Wald, Score, and Likelihood Ratio tests for a logistic SIM.

Main Idea

How do all four test statistics compare in Type I error and power when constructed via the random projection approach for a Poisson SIM?

¹Xingqiu Zhao Changyu Liu and Jian Huang, "A Random Projection Approach to Hypothesis Tests in High-Dimensional Single-Index Models". In: Journal of the American Statistical Association 119.546 (2024), pp. 1008–1018 pp. 1008-1018.

Random Projection Approach

The random projection approach is as follows

- **1** For a set projection ratio ρ , obtain k, the projection dimension. $k = \lceil \rho n \rceil$.
- 2 Obtain $I P_1$, where $P_1 = \frac{1}{n} \mathbf{1} \mathbf{1}^T$
- **3** For $d=1,\ldots,D$, create a $p\times k$ matrix with random entries from a N(0,1). Then we obtain our **random projection matrix** P_k , which is $p^{-1/2}\times$ the mean of each entry across the D matrices.
- 4 Obtain $U_k = (I P_1)XP_k$, which is a $n \times k$ matrix.
- **5** Utilize U_k in our test statistics instead of X.

Proposed Test

The proposed random projection test statistic, T_{RP} , is

$$T_{RP} = \frac{\mathbf{y}^T \mathbf{H}_k \mathbf{y}/k}{\mathbf{y}^T (\mathbf{I} - \mathbf{P}_1 - \mathbf{H}_k) \mathbf{y}/(n-k-1)},$$

where:

- P_1, P_k , and U_k are as described on the previous slide
- $H_k = U_k (U_k^T U_k)^{-1} U_k^T$ is our Hat matrix

Under H_0 and other assumptions, we reject H_0 when

$$rac{T_{RP}-1}{\sqrt{2/n
ho(1-
ho)}}>z_{lpha}, ext{ where }
ho=rac{k}{n}\in (0,1)$$

and z_{α} is the upper α -quantile of the standard normal.

Classical Tests in High Dimensions

As stated earlier, the Wald (T_W) , Score (T_S) , and Likelihood Ratio (T_{LR}) tests cannot be formed when p > n.

Using the random projection approach, we transform \boldsymbol{X} into \boldsymbol{U}_k , where $\boldsymbol{U}_k \in \mathbb{R}^{n \times k}$ and k < n. We then construct the test statistics in the usual way, but using \boldsymbol{U}_k instead of \boldsymbol{X} .

Liu et al. proved that while $\boldsymbol{X}^T\boldsymbol{X}$ is not invertible, $\boldsymbol{U}_k^T\boldsymbol{U}_k$ is invertible with probability 1.

We will see later that T_W , T_S , T_{LR} do not actually converge to χ_k^2 as would typically be seen.

Our Approach

We will use a simulation-based approach to compare Type I Errors and power for T_{RP} , T_W , T_S , and T_{LR} . For the simulation, we will use n=400 and p=1000.

Data Generation

Overview:

- **1** Generate $\Sigma = ODO^T$, our covariance matrix, based off of the specified sparsity in the setting of the simulation.
- **2** Generate $\boldsymbol{X} = \boldsymbol{Z}\boldsymbol{\Sigma}^{1/2}$ where \boldsymbol{Z} is generated from N(0,1)
- **3** Generate $\beta \in \mathbb{R}^p = b\delta/\sqrt{\delta^T \Sigma \delta}$ in one of two ways based off of δ which controls the sparsity of β :
 - **1** δ_1 is a sparse vector with 10 non-zero values
 - 2 δ_2 is randomly selected from the span of the first 100 columns from the orthogonal $m{O}$ matrix
- 4 Randomly generate Y from our SIM model using X and β

Setup

For L = 1000 iterations on each setting:

- **1** Generate data (Y, X) as described previously with a sparse covariance matrix
- 2 Compute the four test statistics for each iteration

Then compute the rejection rate for each setting. (NOTE: for the classical tests, use the typical χ_k^2 as the null distribution)

Results

$oldsymbol{eta}$ Setting	b ²	T_{RP}	T_{LR}	T_W	T_S	
0	0	0.062	0.011	0.205	0.068	Type I Error
$oldsymbol{\delta_1}$	0.1	0.534	0.533	0.928	0.802	Power
	0.2	0.940	0.974	0.999	0.995	Power
$oldsymbol{\delta}_2$	0.1	0.525	0.516	0.910	0.806	Power
	0.2	0.929	0.972	1.000	0.997	Power

- T_W is not a valid test in this setting.
- The Type I Error of T_{RP} was closest to 0.05.
- T_S is more powerful test than T_{LR} and T_{RP} in this setting
- T_{LR} performs similarly to T_{RP} when $b^2 = 0.1$ but is more powerful when $b^2 = 0.2$.

Comparison with Logistic Model

Poisson

$oldsymbol{eta}$ Setting	b^2	T_{RP}	T_{LR}	T_W	T_S	
0	0	0.062	0.011	0.205	0.068	Type I Error
$oldsymbol{\delta}_1$	0.1	0.534	0.533	0.928	0.802	Power
	0.2	0.940	0.974	0.999	0.995	Power
$oldsymbol{\delta}_2$	0.1	0.525	0.516	0.910	0.806	Power
	0.2	0.929	0.972	1.000	0.997	Power

Logistic

$oldsymbol{eta}$ Setting	b^2	T_{RP}	T_{LR}	T_W	T_S	
0	0	0.059	0.830	0.000	0.021	Type I Error
$oldsymbol{\delta}_1$	0.4	0.469	0.993	0.000	0.227	Power
	8.0	0.831	0.973	0.026	0.581	Power
$oldsymbol{\delta}_2$	0.4	0.480	0.987	0.003	0.214	Power
	8.0	0.830	0.981	0.019	0.613	Power

Conclusion

- Certain test statistics are still effective in high-dimensional settings with random projections.
- Choice of model impacts performance of test statistics.
- The novel test statistic proposed by Liu et al. (T_{RP}) was effective in controlling Type I Error, but at the cost of a sub-optimal power.