INSTALLATION RESTORATION PROGRAM

Final

SITE INVESTIGATION REPORT **VOLUME IV**

152nd TACTICAL RECONNAISSANCE GROUP **NEVADA AIR NATIONAL GUARD** RENO CANNON INTERNATIONAL AIRPORT RENO, NEVADA

HAZWRAP SUPPORT CONTRACTOR OFFICE

Oak Ridge, Tenneasee 37831
Managed by MARTIN MARIETTA ENERGY SYSTEMS, INC.
For the U.S. Department of Energy under contract DE-AC05-840R21400

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Proper reporting burgen for this information is a maintaining the Subain-Hopping and Comprising information including subpessions for reducing the growth Subt 1,754 Aprilation 1/4, 19202-430.	parance his burden in and a millionale for morning Paranere Resultant Printed (070)		
1. Agency Use Only (Leave Blan	k) 2. Report Date	3. Report Type and	Dates Covered
4. Title and Subtitie THE TITLE STATE OF THE STATE OF TH	11 11 11 11 11 11 11 11 11 11 11 11 11		5. Funding Numbers
·	2000 - 100 -		8. Performing Organization Report number
. Oak Ridge l Air National	Waste Remedial Action Prog		10. Sponsoring/Monitoring Agency Report Number
12. Distribution/Availability State	mera r public release; distribution i	s unlimited	12b. Distribution Code
13. Abstract (maximum 200 word			
Carrier of the	reconstruction (1990) 2. pro Harry Horsell 2. pro Harry Horsell 4. pro Horsell 4	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	and the state of t
AA Sahaa Raa		 	de Abroba d'Bassa
14. Subject Terms	Lander Commence		15. Number of Pages 16. Price Code
17. Security Classification of Report Unclassified	18. Security Classification or this Page Unclassified	19. Security Classification Abstract Unclassified	None (Rev. 2-89) Prescribes by ANSI See 238-16 238-02

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1000 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1000

SAMPLE MATRIX : S ASSOCIATED MB : M01

TRIP BLANK : 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	2010.00	mg/kg	0.00		
ANTIMONY	0.00		14.00	ט	U
ARSENIC	56.90	mg/kg	0.00		J
BARIUM	165.00	mg/kg	0.00		
BERYLLIUM	0.78	mg/kg	0.00	В	
CADMIUM	0.00		1.20	ט	U
CALCIUM	32600.00	mg/kg	0.00		
CHROMIUM	10.00	mg/kg	0.00	1	
COBALT	9.30	mg/kg	0.00	В	
COPPER	24.60	mg/kg	0.00	1	
IRON	20100.00	mg/kg	0.00	1	1
LEAD	9.50	mg/kg	0.00		
MAGNESIUM	7240.00	mg/kg	0.00		
Manganese	476.00	mg/kg	0.00		
MERCURY	0.00		0.12	ט	U
NICKEL	0.00		9.80	U	υ
POTASSIUM	2520.00	mg/kg	0.00		J
SELENIUM	0.00		0.98	U	ט
SILVER	0.00		2.50	U	ซ
SODIUM	1350.00	mg/kg	0.00	1	
THALLIUM	0.00		0.49	U	ט
VANADIUM	46.90	mg/kg	0.00		
ZINC	84.50	mg/kg	0.00		1

P	Accesion	For	
1	NTIS (DTIC 1 Unanno Justinica	TAB 🗓	
	By Distribu		
	A۱	vailability Codes	3
	Dist	Avail and or Special	
	A-1	,	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1001 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1000

SAMPLE MATRIX : S ASSOCIATED MB : M01

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	10700.00	mg/kg	0.00		
ANTIMONY	16.30	mg/kg	0.00		
ARSENIC	69.60	mg/kg	0.00		J
BARIUM	171.00	mg/kg	0.00		
BERYLLIUM	0.00		0.46	ט	Ū
CADHIUM	0.00		1.10	U	ū
CALCIUM	2730.00	mg/kg	0.00		
CHRONIUM	7.30	mg/kg	0.00	1	
COBALT	6.90	mg/kg	0.00	В	
COPPER	16.10	mg/kg	0.00		
IRON	14200.00	mg/kg	0.00		
LEAD	7.60	mg/kg	0.00		
MAGNESIUM	2470.00	mg/kg	0.00		
MANGANESE	353.00	mg/kg	0.00		
MERCURY	0.12	mg/kg	0.00		
NICKEL	0.00		9.20	ט	U
POTASSIUM	5290.00	mg/kg	0.00		J
SELENIUM	0.00		0.92	υ	ט
SILVER	0.00		2.30	Ü	U
SODIUM	1340.00	mg/kg	0.00	I	
THALLIUM	0.00		0.46	ט	ט
VANADIUM	35.00	mg/kg	0.00	T	
ZINC	39.60	mg/kg	0.00		1

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final 🛑 REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1002 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1000

SAMPLE MATRIX : S

TRIP BLANK: 1004TB

ASSOCIATED MB : M01

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	OFinal
ALUMINUM	15300.00	mg/kg	0.00		
ANTIMONY	0.00		14.00	ū	ט
ARSENIC	94.80	mg/kg	0.00		J
BARIUM	211.00	mg/kg	0.00		
BERYLLIUM	0.57	mg/kg	0.00	В	
CADMIUM	0.00		1.20	U	ט
CALCIUM	3700.00	mg/kg	0.00		
CEROMIUM	10.90	mg/kg	0.00		
COBALT	15.00	mg/kg	0.00	1	
COPPER	24.70	mg/kg	0.00		T
IRON	22600.00	mg/kg	0.00		
LEAD	8.90	mg/kg	0.00		
MAGNESIUM	3740.00	mg/kg	0.00		
MANGANESE	874.00	mg/kg	0.00		T
MERCURY	0.00		0.12	υ	ט
NICKEL	10.70	mg/kg	0.00		
POTASSIUM	2560.00	mg/kg	0.00	1	J
SELENIUM	0.00		0.98	ט	ט
SILVER	0.00		2.50	U	ט
SODIUM	1440.00	mg/kg	0.00		
THALLIUM	0.00	1	0.49	U	ט
VANADIUM	51.00	mg/kg	0.00		
ZINC	171.00	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1003 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1000

SAMPLE MATRIX : S ASSOCIATED MB : M01

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	12700.00	mg/kg	0.00		
ANTIMONY	0.00		14.00	U	ם
ARSENIC	24.80	mg/kg	0.00		J
BARIUN	130.00	mg/kg	0.00		
BERYLLIUM	0.71	mg/kg	0.00	В	
CADHIUN	0.00		1.20	U	ū
CALCIUM	3600.00	mg/kg	0.00		
CHRONIUM	10.30	mg/kg	0.00		
COBALT	11.80	mg/kg	0.00		
COPPER	19.80	mg/kg	0.00		
IRON	19700.00	mg/kg	0.00		
LEAD	7.80	mg/kg	0.00		
MAGNESIUM	5100.00	mg/kg	0.00		
Manganese	415.00	mg/kg	0.00		
MERCURY	0.00		0.12	ט	ט
NICKEL	10.70	mg/kg	0.00		
POTASSIUM	2620.00	mg/kg	0.00		J
SELENIUM	0.00		0.96	ซ	U
SILVER	0.00		2.40	ט	บ
SODIUM	1220.00	mg/kg	0.00		
THALLIUM	0.00		0.48	ប	ט
VANADIUM	43.60	mg/kg	0.00		
ZINC	47.80	mg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1005 ANALYSIS TYPE : MET

SDG: 1004

SAMPLE TYPE : FB SAMPLE MATRIX : W

TRIP BLANK: 1008TB

ASSOCIATED MB : M02

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
ALUMINUM	266.00	µg/L	0.00		
ANTIMONY	0.00		14.00	ט	U
ARSENIC	0.00		4.00	U	ט
BARIUM	40.10	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	ט
CADMIUM	0.00		5.00	U	U
CALCIUM	19700.00	µg/L	0.00	1	1
CHROMIUM	0.00		6.00	U	U
COBALT	0.00		9.00	U	U
COPPER	320.00	μg/L	0.00		
IRON	501.00	μg/L	0.00		1 -
LEAD	4.80	μg/L	0.00		1
Magnesium	6380.00	μg/L	0.00		
MANGANESE	9.20	μg/L	0.00	В	J
MERCURY	0.00		0.20	บ	U
NICKEL	3.00		11.00	U	U
POTASSIUM	2940.00	μg/L	0.00	В	
SELENIUM	0.00		4.00	U	U
SILVER	0.00		6.00	U	ט
SODIUM	14900.00	μg/L	0.00	1	
THALLIUM	0.00		10.00	υ	U
VANADIUM	0.00		5.00	ט	U
ZINC	73.20	µg/L	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1006 ANALYSIS TYPE: MET SAMPLE TYPE : FB SDG : 1004 SAMPLE MATRIX : W ASSOCIATED MB : M02

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	143.00	μg/L	0.00	В	
ANTIHONY	0.00		14.00	υ	Ū
ARSENIC	0.00		4.00	a	U
BARIUM	11.00	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	ט
CADHIUM	0.00	1	5.00	υ	U
CALCIUM	235.00	µg/L	0.00	В	
CHRONIUM	0.00		6.00	ט	σ
COBALT	0.00		9.00	ט	Ū
COPPER	22.60	μg/L	0.00	В	
IRON	59.90	µg/L	0.00	В	
LEAD	5.20	μg/L	0.00		
MAGNESIUM	53.20	μg/L	0.00	В	
Manganese	2.50	μg/L	0.00	В	J
MERCURY	0.11		0.20	ט	U
NICKEL	0.00		11.00	ט	U
POTASSIUM	0.00		1360.00	U	U
SELENIUM	0.00	1	4.00	U	ט
SILVER	0.00		6.00	ט	ט
SODIUM	457.00	μg/L	0.00	В	
THALLIUM	0.00		2.00	ט	ט
VANADIUM	0.00		5.00	Ū	U
ZINC	13.10	μg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1007 ANALYSIS TYPE : MET

SAMPLE TYPE : ER SDG: 1004

SAMPLE MATRIX : W

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

ASSOCIATED MB : M02

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	111.00	µg/L	0.00	В	
ANTIMONY	0.00		14.00	ט	ט
ARSENIC	0.00		4.00	Ū	U
BARIUM	10.00	µg/L	0.00	В	
BERYLLIUM	0.00	T	1.00	ט	ט
CADHIUH	0.00	T	5.00	U	ט
CALCIUM	353.00	µg/L	0.00	В	
CHRONIUM	0.00	Ī	6.00	ū	ט
COBALT	0.00	1	9.00	ט	υ
COPPER	26.70	μg/L	0.00		
IRON	64.20	μg/L	0.00	В	
LEAD	2.00	µg/L	0.00	В	
MAGNESIUM	0.00		46.00	ซ	ט
MANGANESE	15.50	µg/L	0.00		J
MBRCURY	0.00		0.20	ט	ט
NICREL	0.00		11.00	ט	ט
POTASSIUM	0.00		1360.00	U	U
SELENIUM	0.00		4.00	ט	U
SILVER	0.00		6.00	ט	U
SODIUM	412.00	µg/L	0.00	В	1
THALLIUM	0.00		2.00	ט	ט
VANADIUM	0.00		5.00	ט	U
ZINC	28.20	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1015

SAMPLE TYPE : SAMPLE MATRIX : S

ANALYSIS TYPE : MET

SDG : 1015

ASSOCIATED MB : M03

TRIP BLANK : 1034TB FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUM	25500.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	Ū	บัง
ARSENIC	33.20	mg/kg	0.00		J
BARIUM	151.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.57	ū	ชิง
CADHIUM	0.00		1.40	77	บัง
CALCIUN	61 31 12	ag/kg	0.00		3
CERONIUM		mg/kg	0.00		J
COBALT	20	mg/kg	0.00	В	J
COPPER	27.80	mg/kg	.00		3
IRON	25800.00	mg/kg	0.00		J
LEAD	8.00	mg/kg	0.00	1	J
MAGNESIUM	6040.00	mg/kg	0.00		J
MANGANESE	324.00	mg/kg	0.00		J
MERCURY	0.00		0.14	ט	עט
NICKEL	16.50	mg/kg	0.00		J
POTASSIUM	3950.00	mg/kg	0.00		3
SELENIUM	0.00		1.10	U	บJ
SILVER	0.00		2.90	ט	บJ
SODIUM	2700.00	mg/kg	0.00		J
THALLIUM	0.00		0.57	U	υJ
VANADIUM	55.50	mg/kg	0.00	İ	J
ZINC	66.40	mg/kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1016 ANALYSIS TYPE: MET SAMPLE TYFE : SDG : 1315

SAMPLE MATRIX : S

ASSOCIATED MB : M03

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinel
ALUMINUM	13400.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	ט	บJ
ARSENIC	77.90	mg/kg	0.00		J
BARIUM	172.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.48	U	UJ
CADMIUM	0.00	T	1.20	ט	บว
CALCIUM	3210.00	mg/kg	0.90		J
CHROMIUM	10.50	mg/kg	0.00		J
COBALT	17.00	mg/kg	0.00		J
COPPER	21.20	ng/kg	0.00		J
IRON	20200.00	mg/kg	0.00		J
LEAD	7.20	mg/kg	0.00	T	J
MAGNESIUM	2790.00	mg/kg	0.00	1	J
Manganese	839.00	mg/kg	0.00	1	J
MERCURY	0.00		0.12	U	บัง
NICTEL	0.00		9.50	U	ชม
POTASSIUM	1650.00	mg/kg	0.00	1	J
SELENIUM	0.00		0.96	ט	UJ
SILVER	0.00	1	2.40	U	บJ
SODIUM	1440.00	mg/kg	0.00	<u> </u>	J
TRALLIUM	0.00	1	0.48	ט	บง
VANADIUM	50.40	mg/kg	0.00	1	J
ZINC	55.90	mg/kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1017 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	*trument ./tection Limit	QCode	QFinal
ALUMINUM	18400.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	ט	UJ
ARSENIC	33.20	mg/kg	0.00		J
BARIUM	97.40	mg/kg	0.00		J
BERYLLIUM	0.00		0.50	ū	บJ
CADMIUM	0.00		1.30	ט	บป
CALCIUM	3990.00	mg/kg	0.00		J
CHRONIUM	12.50	mg/kg	0.00		J
COBALT	8.40	mg/kg	0.00	В	J
COPPER	24.40	mg/kg	0.00		J
IRON	24100.00	mg/kg	0.00		J
LEAD	7.50	mg/kg	0.00		J
Magnesium	3740.00	mg/kg	0.00		J
MANGANESE	130.00	mg/kg	0.00		J
MERCURY	0.00		0.13	ט	UJ
NICKEL	13.00	mg/kg	0.00		J
POTASSIUM	2630.00	mg/kg	0.00		J
SELENIUM	0.00		1.00	ט	UJ
SILVER	0.00		2.50	ט	บJ
SODIUM	1720.00	mg/kg	0.00		J
THALLIUM	0.00		0.50	U	ชิง
VANADIUM	53.00	mg/kg	0.00		J
ZINC	48.20	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1018 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	24200.00	mg/kg	0.00	1	J
ANTIHONY	0.00		14.00	ū	บัง
ARSENIC	32.10	mg/kg	0.00		J
BARIUM	163.00	mg/kg	0.00		J
BERYLLIUM	0.00	T	0.51	Ü	บว
CADMIUM	0.00		1.30	Ū	נט
CALCIUM	60300.00	mg/kg	0.00	-	J
CEROMIUM	9.60	mg/kg	0.00		J
COBALT	9.40	mg/kg	0.00	В	J
COPPER	21.90	mg/kg	0.00		J
IRON	19300.00	mg/kg	0.00		J
LEAD	16.20	mg/kg	0.00		J
MAGNESIUM	13000.00	mg/kg	0.00		J
MANGANESE	420.00	mg/kg	0.00		J
MERCURY	0.00		0.13	U	ชม
NICKEL	0.00		10.20	U	ชิงิ
POTASSIUM	3310.00	mg/kg	0.00		J
SELENIUM	0.00		1.00	U	บJ
SILVER	0.00		2.60	U	บัง
SODIUM	1530.00	mg/kg	0.00		J
THALLIUM	0.00		0.51	ט	ชม
VANADIUM	52.20	mg/kg	0.00		J
ZINC	51.40	mg/kg	0.00		J
		ī			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1019 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1015 SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	18700.00	mg/kg	0.00		J
ANTIHONY	0.00		14-00	ט	ซฮ
ARSENIC	80.10	mg/kg	0.00		J
BARIUM	126.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.49	U	บฮ
CADHIUM	0.00		1-20	ט	บง
CALCIUM	3960.00	mg/kg	0.00		J
CHROMIUM	12.10	mg/kg	0.00		J
COBALT	9.50	mg/kg	0.00	В	J
COPPER	25.60	mg/kg	0.00		3
IRÓN	24300.00	mg/kg	0.00		J
LEAD	8.50	mg/kg	0.00		J
Magnesium	4450.00	mg/kg	0.00		J
Hanganese	490.00	mg/kg	0.00		13
MERCURY	0.00		0.12	U	บว
NICREL	15.90	mg/kg	0.00	1	J
POTASSIUM	2120.00	mg/kg	0.00	1	J
SELENIUM	0.00	1	0.97	υ	บง
SILVER	0.00	† · · · ·	2.40	Ū	נט
SODIUM	1380.00	mg/kg	0.00		J
THALLIUM	0.00		0.49	ט	บง
VANADIUH	55.90	mg/kg	0.00	1	J
ZINC	55.00	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1020 SAMPLE TYPE: ANALYSIS TYPE : MET

SDG: 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	15600.00	mg/kg	0.00		J
antihony	0.00		14.00	ט	บัว
ARSENIC	41.90	mg/kg	0.00		J
BARIUM	92.10	mg/kg	0.00		J
BERYLLIUM	0.00		0.46	บ	บJ
CADMIUM	0.00		1.20	U	UJ
CALCIUM	5170.00	mg/kg	0.00		J
CHROMIUN	11.20	mg/kg	0.00		J
COBALT	12.00	mg/kg	0.00		J
COPPER	22.30	mg/kg	0.00		J
IRON	27800.00	mg/kg	0.00		J
LEAD	5.10	mg/kg	0.00		J
MAGNESIUM	6130.00	mg/kg	0.00		J
Manganese	304.00	mg/kg	0.00		J
MERCURY	0.00		0.12	ซ	ชม
NICKEL	17.60	mg/kg	0.00		J
POTASSIUM	2610.00	mg/kg	0.00		J
SELENIUM	0.00		0.92	ซ	บJ
SILVER	0.00		2,30	ט	ชม
SODIUM	1430.00	mg/kg	0.00		J
THALLIUM	0.00		0.46	Ū	บJ
VANADIUM	59.30	mg/kg	0.00	1	J
ŽINC	62.90	mg/kg	0.00	T	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1021

SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

ANALYSIS TYPE : MET TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	9670.00	mg/kg	0.00		J
ANTIMONY	0.00	T	14.00	ט	บบ
ARSENIC	10.70	mg/kg	0.00		J
BARIUM	103.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.55	ט	บว
CADHIUM	0.00		1.40	ט	บบ
CALCIUM	3430.00	mg/kg	0.00		J
CHRONIUM	8.70	mg/kg	0.00		J
COBALT	7.40	mg/kg	0.00	В	J
COPPER	16.60	mg/kg	0.00		J
IRON	16600.00	mg/kg	0.00		J
LEAD	26.10	mg/kg	0.00		J
Magnesium	2860.00	mg/kg	0.00		J
Manganese	289.00	mg/kg	0.00		J
MERCURY	0.00		0.14	U	עט
NICREL	0.00		11.10	ט	บัง
POTASSIUM	0.00		350.00	ช	บบ
SELENIUM	0.00		1.10	ט	UJ
SILVER	0.00	ĺ	2.80	U	บว
SODIUM	589.00	mg/kg	0.00	В	J
THALLIUM	0.00		0.55	ช	UJ
VANADIUM	43.10	mg/kg	0.00	İ	J
ZINC	75.70	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1022 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

ASSOCIATED MB : M03

EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 1538 Units Instrument Detection Limit OFinal Compound Concentration **OCode** ALUMINUM 12900.00 0.00 J mg/kg 14.00 IJ ANTIHONY 0.00 ARSENIC J 10.00 mg/kg BARIUM 144.00 mg/kg 0.00 J BERYLLIUM 0.71 υJ 0.00 CADMIUM 0.00 1.80 ט IJ CALCIUM 6920.00 mg/kg 0.00 CHRONIUM 12.70 mg/kg 0.00 J COBALT 0.00 7.60 J mg/kg COPPER 28.20 mg/kg 0.00 J IRON 0.00 J 16200.00 mg/kg mg/kg 0.00 J MAGNESIUM 4570.00 0.00 J mg/kg MANGANESE 0.00 311.00 mg/kg 0.18 IJ MERCURY 0.00 NICKEL UJ 0.00 14.20 POTASSIUM 0.00 720.00 U UJ SELENIUM 0.00 1.40 U υJ SILVER 0.00 3.50 U UJ SODIUM 749.00 0.00 В mg/kg THALLIUM 0.00 0.71 ט บว VANADIUM 43.80 0.00 J ng/kg ZINC 145.00 mg/kg 0.00 J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1023

SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S

ANALYSIS TYPE : MET

TRIP BLANK : 1034TB

ASSOCIATED MB : M03

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20000.00	mg/kg	0.00		J
ANTIMONY	0.00		14.00	ט	บบ
ARSENIC	31.50	mg/kg	0.00		J
BARIUM	207.00	mg/kg	0.00	1	J
BERYLLIUM	0.00		0.67	ט	บว
CADHIUN	0.00		1.70	ū	บัง
CALCIUN	43500.00	mg/kg	0.00		J
CERONIUM	11.70	mg/kg	0.00		J
COBALT	10.30	mg/kg	0.00	В	J
COPPER	33.50	mg/kg	0.00		J
IRON	20200.00	mg/kg	0.00		J
LEAD	21.90	mg/kg	0.00		3
MAGNESIUM	14300.00	mg/kg	0.00		J
MANGANESE	815.00	mg/kg	0.00		J
MERCURY	0.00		0.17	ט	ซุ
NICKEL	18.40	mg/kg	0.00		J
POTASSIUM	3970.00	mg/kg	0.00		J
SELENIUM	0.00	1	1.30	U	UJ
SILVER	0.00	1	3.40	υ	บJ
SODIUM	1930.00	mg/kg	0.00		J
THALLIUM	0.00		0.67	U	UJ
VANADIUM	49.80	mg/kg	0.00		J
ZINC	139.00	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1024

SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

ANALYSIS TYPE : MET

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	13300.00	mg/kg	0.00		J
antimony	0.00		14.00	Ū	UJ
ARSENIC	14.30	mg/kg	0.00		J
BARIUM	131.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.54	U	บัง
CADMIUM	0.00		1.30	U	UJ
CALCIUM	8440.00	mg/kg	0.00		J
CHRONIUM	15.40	mg/kg	0.00		J
COBALT	8.90	mg/kg	0.00	В	J
COPPER	25.90	mg/kg	0.00		J
IRON	16900.00	mg/kg	0.00		J
LEAD	34.60	mg/kg	0.00		J
MAGNESIUM	6090.00	mg/kg	0.00		J
Manganese	428.00	mg/kg	0.00		J
MERCURY	0.00		0.13	ט	UJ
NICKEL	15.70	mg/kg	0.00		J
POTASSIUM	1570.00	mg/kg	0.00		J
SELENIUM	0.00		5.40	U	บัง
SILVER	0.00		2.70	ט	UJ
SODIUM	733.00	mg/kg	0.00	В	J
THALLIUM	0.00		0.54	Ū	UJ
VANADIUM	42.00	mg/kg	0.00		J
ZINC	158.00	mg/kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1025 ANALYSIS TYPE : MET

SAMPLE TYPE :

SAMPLE MATRIX : S

TRIP BLANK: 1034TB

SDG: 1015

ASSOCIATED MB : M03

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20000.00	mg/kg	0.00		J
ANTIMONY	0.00		14.00	U	บJ
ARSENIC	16.10	mg/kg	0.00		J
BARIUM	179.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.47	U	UJ
CADMIUM	0.00		1.20	ט	ชม
CALCIUN	4550.00	mg/kg	0.00		J
CHRONIUM	9.10	mg/kg	0.00		J
COBALT	10.80	mg/kg	0.00	В	J
COPPER	21.90	mg/kg	0.00		J
IRON	19900.00	mg/kg	0.00		J
LEAD	8180.00	mg/kg	0.00		J
MAGNESIUM	8180.00	mg/kg	0.00		3
Manganese	549.00	mg/kg	0.00		J
MERCURY	0.00		0.12	U	רמ
NICKEL	10.40	mg/kg	0.00		J
POTASSIUM	3030.00	mg/kg	0.00	1	J
SELENIUM	0.00		4.70	U	บJ
SILVER	0.00		2.30	U	נט
SODIUM	2430.00	mg/kg	0.00	1	J
THALLIUM	0.00		0.47	U	UJ
VANADIUM	44.50	mg/kg	0.00		J
ZINC	43.50	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1026 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	13100.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	υ	บว
ARSENIC	13.00	mg/kg	0.00		J
BARIUH	82.10	mg/kg	0.00		J
BERYLLIUM	0.00		0.48	U	บJ
CADMIUM	0.00		1.20	U	บัว
CALCIUM	5900.00	mg/kg	0.00		J
CERONIUM	11.00	mg/kg	0.00	Î	J
COBALT	9.70	mg/kg	0.00	В	3
COPPER	25.50	mg/kg	0.00	İ	J
IRON	22200.00	mg/kg	0.00		J
LEAD	3.90	mg/kg	0.00		J
MAGNESIUM	6210.00	mg/kg	0.00		J
MANGANESE	288.00	mg/kg	0.00		J
MERCURY	0.34	mg/kg	0.00		J
NICKEL	20.90	mg/kg	0.00		J
POTASSIUM	2080.00	mg/kg	0.00	1	J
SELENIUM	0.00	1	0.97	U	บป
SILVER	0.00		2.40	U	บJ
BODIUM	1550.00	mg/kg	0.00	1	J
TRALLIUM	0.00	T	0.48	U	บว
VANADIUM	53.90	mg/kg	0.00		J
ZINC	59.20	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1027 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	8420.00	mg/kg	0.00		J
Antinony	0.00		14.00	ט	UJ
ARSENIC	17.50	mg/kg	0.00		J
BARIUM	48.30	mg/kg	0.00		J
BERYLLIUM	0.00		0.48	ט	บJ
CADHIUN	0.00		1.20	U	บัว
CALCIUN	4320.00	mg/kg	0.00		J
CHRONIUM	10.20	mg/kg	0.00		J
COBALT	6.30	mg/kg	0.00	В	J
COPPER	21.00	mg/kg	0.00		J
IRON	18900.00	mg/kg	0.00		J
LEAD	3.50	mg/kg	0.00		J
MAGNESIUM	3290.00	mg/kg	0.00		J
Manganese	228.00	mg/kg	0.00		J
MERCURY	0.00		0.12	ū	บัง
NICKEL	0.00		9.50	บ	υJ
POTASSIUM	0.00		150.00	ט	ชง
SELENIUM	0.00		4.80	บ	บJ
SILVER	0.00		2.40	ט	บJ
SODIUM	967.00	mg/kg	0.00	В	J
THALLIUM	0.00		0.48	ט	บJ
VANADIUM	65.50	mg/kg	0.00		J
ZINC	39.80	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1028

SAMPLE TYPE: SAMPLE MATRIX: S

ANALYSIS TYPE : MET

SDG: 1015

ASSOCIATED MB : M03

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	18900.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	U	บJ
ARSENIC	24.90	mg/kg	0.00		J
BARIUM	178.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.45	Ū	บJ
CADHIUN	0.00		1.10	U	บง
CALCIUM	14500.00	mg/kg	0.00		J
CHROMIUM	12.30	mg/kg	0.00		J
COBALT	9.90	mg/kg	0.00	В	J
COPPER	21.70	mg/kg	0.00		J
IRON	21200.00	mg/kg	0.00		J
LEAD	8.90	mg/kg	0.00		J
MAGNESIUM	6970.00	mg/kg	0.00		J
Manganese	412.00	mg/kg	0.00		J
MERCURY	0.00		0.11	ט	บJ
NICKEL	15.50	mg/kg	0.00		J
POTASSIUM	2330.00	mg/kg	0.00		J
SELENIUM	0.00		4.50	บ	ซฮ
SILVER	0.00		2.20	U	บJ
SODIUM	1350.00	mg/kg	0.00	1	J
THALLIUM	0.00		0.45	ט	บว
VANADIUM	56.60	mg/kg	0.00	1	J
ZINC	53.50	mg/kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1029 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	0Code	QFinal
ALUMINUM	18800.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	Ū	บว
ARSENIC	7.90	mg/kg	0.00		J
BARIUM	130.00	mg/kg	0.00		J
BERYLLIUM	0.60	mg/kg	0.00	В	J
CADMIUM	0.00		1.20	ט	บJ
CALCIUM	6160.00	mg/kg	0.00		J
CHRONIUM	19.70	mg/kg	0.00		J
COBALT	11.60	mg/kg	0.00	В	J
COPPER	23.40	mg/kg	0.00		J
IRON	23700.00	mg/kg	0.00		J
LEAD	5.00	mg/kg	0.00	1	J
Magnesium	5660.00	mg/kg	0.00		J
MANGANESE	202.00	mg/kg	0.00		J
MERCURY	0.00		0.12	ט	บัง
NICKEL	23.20	mg/kg	0.00		J
POTASSIUM	1320.00	mg/kg	0. 1		J
SELENIUM	0.00	1	4.80	U	บJ
SILVER	0.00		2.40	υ	บJ
SODIUM	2040.00	mg/kg	0.00		J
THALLIUM	0.00		0.48	υ	บง
VANADIUM	74.70	mg/kg	0.00	1	J
ZINC	57.90	mg/kg	0.00	İ	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1030 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	16800.00	mg/kg	0.00		J
ANTIHONY	0.00		14.00	U	บว
ARSENIC	15.50	mg/kg	0.00		J
BARIUM	221.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.54	ט	บJ
CADMIUM	0.00	T	1.40	U	נט
CALCIUM	5770.00	mg/kg	0.00		J
CEROMIUM	16.30	mg/kg	0.00		J
COBALT	11.70	mg/kg	0.00	В	J
COPPER	26.20	mg/kg	0.00		J
IRON	19600.00	mg/kg	٥٥٠٢		J
LEAD	6.00	mg/kg	0.00		J
MAGNES 1 UM	4490.00	mg/kg	0.00		J
MANGANESE	124.00	mg/kg	0.00	1	J
MERCURY	0.00		0.14	υ	UJ
NICKEL	16.90	mg/kg	0.00		J
POTASSIUM	0.00		320.00	U	บJ
SELENIUM	0.00		1.10	υ	บJ
SILVER	0.00		2.70	ט	UJ
SODIUM	1750.00	mg/kg	0.00		J
THALLIUM	0.00		0.54	υ	บุว
VANADIUM	61.20	mg/kg	0.00	1	J
ZINC	62.60	mg/kg	0.00	<u> </u>	J
				Ť.	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1031 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1015 SAMPLE MATRIX : S ASSOCIATED MB : MC3

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	15700.00	mg/kg	0.00		J
ANTIMONY	0.00		14.00	Ū	נט
ARSENIC	72.80	mg/kg	0.00		J
BARIUN	229.00	mg/kg	0.00		J
BERYLLIUM	0.00		0.49	υ	บว
CADMIUM	0.00		1.20	Ū	บว
CALCIUM	3550.00	mg/kg	0.00		J
CHRONIUM	10.50	mg/kg	0.00		J
COBALT	15.30	mg/kg	0.00		J
COPPER	23.70	mg/kg	0.00		J
IRON	23400.00	mg/kg	0.00		3
LEAD	7.70	mg/kg	0.00		J
MAGNESIUM	4260.00	mg/kg	0.00		J
Manganese	1150.00	mg/kg	0.00		J
MERCURY	0.00		0.12	ט	บป
NICKEL	15.90	mg/kg	0.00		J
POTASSIUM	1850.00	mg/kg	0.00		J
SELENIUM	0.00		0.98	U	UJ
SILVER	0.00		2.40	ט	υJ
SODIUM	1260.00	mg/kg	0.00		3
THALLIUM	0.00		0.49	ט	נט
VANADIUM	45.80	mg/kg	0.00		J
ZINC	38.60	mg/kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1032

SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S

ANALYSIS TYPE : MET

TRIP BLANK: 1034TB

1005

ASSOCIATED MB : M03

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 1538

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	9510.00	mg/kg	0.00		J
ANTIMONY	0.00		14.00	υ	บัง
ARSENIC	10.00	mg/kg	0.00		J
BARIUM	63.10	mg/kg	0.00		J
BERYLLIUM	0.00		0.46	ט	UJ
CADMIUM	0.00		1.10	U	บว
CALCIUM	3650.00	mg/kg	0.00		J
CHROMIUM	9.80	mg/kg	0.00		J
COBALT	7.90	mg/kg	0.00	В	J
COPPER	15.60	mg/kg	0.00		J
IRON	23700.00	mg/kg	0.00		J
LEAD	5.50	mg/kg	0.00		J
MAGNESIUM	2860.00	mg/kg	0.00		J
MANGANESE	112.00	mg/kg	0.00		J
MERCURY	0.00		0.11	U	บว
NICKEL	10.50	mg/kg	0.00		J
POTASSIUM	0.00		110.00	ט	บัง
SELENIUM	0.00		0.91	ט	บว
SILVER	0.00		2.30	υ	บว
SODIUM	1040.00	mg/kg	0.00	В	J
TRALLIUM	0.00		0.46	ט	ชฮ
VANADIUM	50.70	mg/kg	0.00	1	J
ZINC	38.10	mg/kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final **Summary** REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1033 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S ASSOCIATED MB : M03

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUH	16200.00	mg/kg	0.00		J
ANTIHONY	0.00	1	14.00	U	บฮ
ARSENIC	14.10	mg/kg	0.00		J
BARIUM	83.50	mg/kg	0.00		J
BERYLLIUM	0.00		0.47	ם	บง
CADHIUH	0.00		1.20	ט	บง
CALCIUM	5460.00	mg/kg	0.00		J
CHRONIUM	12.20	mg/kg	0.00		J
COBALT	9.30	mg/kg	0.00	В	J
COPPER	22.70	mg/kg	0.00	T	J
IRON	23100.00	mg/kg	0.00		J
LRAD	4.30	mg/kg	0.00	Ī	J
Magnesium	7150.00	mg/kg	0.00		J
Manganese	273.00	mg/kg	0.00		J
MERCURY	0.00		0.12	ט	บว
NICKEL	26.60	mg/kg	0.00		J
POTASSIUM	2260.00	mg/kg	0.00		J
SELENIUM	0.00		4.70	ט	UJ
SILVER	0.00		2.30	บ	ชม
SODIUM	1410.00	mg/kg	0.00		J
THALLIUM	0.00		0.47	ט	บJ
VANADIUM	58.60	mg/kg	0.00		J
ZINC	49.00	mg/kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1035 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	19600.00	mg/kg	0.00		
ANTIHONY	0.00		12.90	U	ซฮ
ARSENIC	20.50	mg/kg	0.00		
BARIUM	150.00	mg/kg	0.00		
BERYLLIUM	0.00		0.45	ט	บว
CADHIUH	0.00		1.10	U	บัง
CALCIUM	24600.00	mg/kg	0.00	 	
CHRONIUN	9.80	mg/kg	0.00		
COBALT	8.30	mg/ks	0.00		
COPPER	23.80	mg/kg	0.00		
IRON	18500.00	mg/kg	0.00		
LEAD	13.20	mg/kg	0.00		
MAGNESIUM	10900.00	mg/kg	0.00		
Manganese	452.00	mg/kg	0.00		
MERCURY	0.00		0.10	U	עט
NICKEL	10.60	mg/kg	0.00		
POTASSIUM	3160.00	mg/kg	0.00		
SELENIUM	0.00		8.90	ט	บว
SILVER	0.00		2.30	U	บว
SODIUM	1620.00	mg/kg	0.00		J
TRALLIUM	0.00		0.45	ט	บว
VANADIUM	50.80	mg/kg	0.00		T
ZINC	54.90	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1036 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20900.00	mg/kg	0.00		
Antimony	0.00		12.80	ט	บัว
ARSENIC	24.70	mg/kg	0.00		
BARIUM	159.00	mg/kg	0.00		
BERYLLIUM	0.00		0.45	U	ซฮ
CADHIUM	0.00		1.10	υ	ชม
CALCIUM	24800.00	mg/kg	0.00		
CHRONIUM	12.90	mg/kg	0.00		
COBALT	9.60	mg/kg	0.00		
COPPER	21.70	mg/kg	0.00		
IRON	20300.00	mg/kg	0.00		
LEAD	13.60	mg/kg	0.00		
MAGNESIUM	10700.00	mg/kg	0.00		
Manganese	449.00	mg/kg	0.00		
MERCURY	0.14	mg/kg	0.00		J
NICKEL	17.80	mg/kg	0.00		
POTASSIUM	3040.00	mg/kg	0.00	1	
SELENIUM	0.00		8.90	ט	บJ
SILVER	0.00		2.20	U	ชม
SODIUM	1670.00	mg/kg	0.00		J
THALLIUM	0.00		0.45	ט	υJ
VANADIUM	54.60	mg/kg	0.00	1	
ZINC	59.70	mg/kg	0.00	<u> </u>	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1037 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S

TRIP BLANK : 1059TB

ASSOCIATED MB : M04

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11700.00	mg/kg	0.00		
VALIMONA	0.00		12.90	U	υJ
ARSENIC	10.40	mg/kg	0.00	\top	
BARIUM	64.00	mg/kg	0.00	1	1
BERYLLIUM	0.00		0.45	U	UJ
CADMIUM	0.00		1.10	U	บJ
CALCIUM	5390.00	mg/kg	0.00		
CHROMIUM	15.70	mg/kg	0.00		
COBALT	11.60	mg/kg	0.00		
COPPER	15.40	mg/kg	0.00		
IRON	20500.00	mg/kg	0.00	1	
LEAD	3.30	mg/kg	0.00	<u> </u>	
Magnesium	3490.00	mg/kg	0.00		
anganese	162.00	mg/kg	0.00	1	1
MERCURY	0.10	mg/kg	0.00		J
NICKEL	13.50	mg/kg	0.00		<u> </u>
POTASSIUM	0.00		1090.00	U	UJ
SELENIUM	0.00		0.88	U	บัง
SILVER	0.00		2.30	U	ซฮ
SODIUM	1090.00	mg/kg	0.00		J
THALLIUM	0.00		0.44	ט	υJ
VANADIUH	73.80	mg/kg	0.00	 	
INC	44.70	mq/kq	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1038 ANALYSIS TYPE : MET SAMPLE TYPE :

SAMPLE MATRIX : S

TRIP BLANK: 1059TB

SDG: 1036 ASSOCIATED MB : M04

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	25000.00	mg/kg	0.00		
antimony	0.00		13.60	U	บัง
ARSENIC	24.00	mg/kg	0.00		
BARIUM	189.00	mg/kg	0.00		
BERYLLIUM	0.00		0.48	U	บัง
CADHIUN	0.00		1.20	ט	ซฮ
CALCIUM	4870.00	mg/kg	0.00		
CERONIUM	12.60	mg/kg	0.00	1	
COBALT	9.30	mg/kg	0.00		
COPPER	38.70	mg/kg	0.0	T	
IRON	24600.00	mg/kg	0.00		
LEAD	9.80	mg/kg	0.00		
Magnes I um	8900.00	mg/kg	0.00		
Manganese	339.00	mg/kg	0.00		
MERCURY	1.20	mg/kg	0.00		J
NICKEL	19.60	mg/kg	0.00		
POTASSIUM	3810.00	mg/kg	0.00		
SELENIUM	0.00		9.50	ט	UJ
SILVER	0.00		2.40	ט	บJ
BODIUM	2720.00	mg/kg	0.00		J
TEALLIUM	0.00		0.48	U	נט
VANADIUM	53.60	mg/kg	0.00	1	
ZINC	57.80	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1039 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: MET SDG: 1036 ASSOCIATED MB: M ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	23600.00	mg/kg	0.00		
ANTIMONY	0.00		16.00	ט	υJ
ARSENIC	73.20	mg/kg	0.00		
BARIUM	151.00	mg/kg	0.00	I	
BERYLLIUM	0.62	mg/kg	0.00		
CADMIUM	0.00		1.40	U	บง
CALCIUM	9210.00	mg/kg	0.00		
CHRONIUM	24.10	mg/kg	0.00		
COBALT	12.20	mg/kg	0.00		
COPPER	40.70	mg/kg	0.00		
IRON	33000.00	mg/kg	0.00		
LRAD	6.50	mg/kg	0.00		
Magnesium	6090.00	mg/kg	0.00		
Manganese	121.00	mg/kg	0.00		
MERCURY	0.16	mg/kg	0.00	1	J
NICKEL	23.10	mg/kg	0.00	1	
POTASSIUM	0.00		1360.00	U	ชว
SELENIUM	0.00		11.20	U	บJ
SILVER	0.00		2.80	U	บJ
SODIUM	1760.00	mg/kg	0.00		J
THALLIUM	0.00		0.56	ט	ชฮ
VANADIUM	110.00	mg/kg	0.00	1	1
ZINC	70.00	mg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1040 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1036

SAMPLE ATRIX : S
ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	13300.00	mg/kg	0.00		
ANTIHONY	0.00		13.20	U	ซฮ
ARSENIC	14.90	mg/kg	0.00		
BARIUM	86.20	mg/kg	0.00		<u> </u>
BERYLLIUM	0.00		0.46	ซ	ชว
CADHIUN	0.00		1.20	U	บJ
CALCIUM	5560.00	mg/kg	0.00		
CHRONIUM	13.50	mg/kg	0.00		
COBALT	7.90	mg/kg	0.00		
COPPER	14.50	mg/kg	0.00		
IRON	21000.00	mg/kg	0.00		
LEAD	5.40	mg/kg	0.00		
MAGNESIUM	3450.00	mg/kg	0.00		Ī
Manganese	323.00	mg/kg	0.00		
MERCURY	0.13	mg/kg	0.00		J
NICKEL	17.80	mg/kg	0.00		
POTASSIUM	0.00		1120,00	U	บJ
SELENIUM	0.00		4.70	บ	ชม
SILVER	0.00		2.30	U	บูง
SODIUM	1060.00	mg/kg	0.00		J
TEALLIUM	0.00		0.47	ט	บว
VANADIUM	66.90	mg/kg	0.00		
ZINC	41.00	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

ANALYSIS TYPE : MET

SDG: 1036

SAMPLE NUMBER: 1041 SAMPLE TYPE: SAMPLE MATRIX: S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	31200.00	mg/kg	0.00		
ANTIMONY	0.00		13.70	Ū	บJ
ARSENIC	21.50	mg/kg	0.00		
BARIUM	227.00	mg/kg	0.00		
BERYLLIUM	0.00	T	0.48	ช	บว
CADMIUM	0.00	7	1.20	ט	ชิง
CALCIUM	4680.00	mg/kg	0.00		
CHRONIUM	17.60	mg/kg	0.00		
COBALT	11.40	mg/kg	0.00		
COPPER	23.90	mg/kg	0.00		
IRON	27300.00	mg/kg	0.00		
LEAD	8.10	mg/kg	0.00		
Magnesium	8090.00	mg/kg	0.00		
Manganese	317.00	mg/kg	0.00		
MERCURY	0.00		0.11	Ū	บว
NICREL	15.10	mg/kg	0.00		
POTASSIUM	3750.00	mg/kg	0.00		
SELENIUM	0.00		4.80	Ū	บัง
SILVER	0.00		2.40	U	บJ
SODIUM	3760.00	mg/kg	0.00		J
THALLIUM	0.00	1	0.48	U	บว
VANADIUM	67.40	mg/kg	0.00	1	1
ZINC	57.30	mg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1042 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	17700.00	mg/kg	0.00		
ANTIHONY	0.00		15.30	ט	บว
ARSENIC	14.40	mg/kg	0.00		
BARIUM	142.00	mg/kg	0.00		
BERYLLIUM	0.00		0.54	U	ชิวิ
CADHIUN	0.00		1.30	ט	บัว
CALCIUM	7550.00	mg/kg	0.00		
CHRONIUN	20.70	mg/kg	0.00		
COBALT	22.10	mg/kg	0.00		
COPPER	25.90	mg/kg	0.00		
IRON	26800.00	mg/kg	0.00		
LRAD	6.00	mg/kg	0.00		
MAGNESIUM	4980.00	mg/kg	0.00		
MANGANESE	143.00	mg/kg	0.00	Î	
MERCURY	0.00		0.12	ט	ซิงิ
NICREL	25.00	mg/kg	0.00		
POTASSIUM	0.00		1300.00	ט	ប្ប
SELENIUM	0.00		5.40	ט	ชิงิ
SILVER	0.00		2.70	ט	บว
SODIUM	1420.00	mg/kg	0.00		J
THALLIUM	0.00		0.54	U	ชฮ
VANADIUM	83.70	mg/kg	0.00		
ZINC	56.80	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1043 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

ASSOCIATED MB : M04

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	13100.00	mg/kg	0.00		
ANTIMONY	0.00		13.00	ט	IJ
ARSENIC	13.70	mg/kg	0.00		
BARIUM	65.80	mg/kg	0.00		
BERYLLIUM	0.00		0.46	ט	บJ
CADMIUM	0.00		1.10	υ	UJ
CALCIUM	5720.00	mg/kg	0.00		
CHROMIUM	20.20	mg/kg	0.00		
COBALT	7.70	mg/kg	0.00		
COPPER	22.10	mg/kg	0.00		
IRON	20000.00	mg/kg	0.00		
LEAD	4.10	mg/kg	0.00		
MAGNESIUM	3920.00	mg/kg	0.00		
Manganese	122.00	mg/kg	0.00		
MERCURY	0.00	Ì	0.11	ט	บJ
NICKEL	14.80	mg/kg	0.00		
POTASSIUM	0.00		1110.00	ū	บัง
SELENIUM	0.00		4.60	บ	บJ
SILVER	0.00		2.30	บ	บัง
SODIUM	1210.00	mg/kg	0.00		J
THALLIUM	0.00		0.46	U	บJ
VANADIUM	94.00	mg/kg	0.00		
ZINC	51.60	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1044 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1036 SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	32500.0.	mg/kg	0.00		
ANTIHONY	0.00		13.70	ט	נט
ARSENIC	26.60	mg/kg	0.00		
BARIUM	207.00	mg/kg	0.00		
BERYLLIUM	0.00		0.48	ū	UJ
CADHIUN	0.00	T	1.20	ט	υJ
CALCIUM	71000.00	mg/kg	0.00		
CHROMIUM	14.30	mg/kg	0.00		
COBALT	11.10	mg/kg	0.00		
COPPER	25.30	mg/kg	0.00		
IRON	22400.00	mg/kg	0.00		
LEAD	ز7.5	mg/kg	0.00		
MAGNESIUM	21500.00	mg/kg	0.00		
MANGANESE	443.00	mg/kg	0.00		
MERCURY	0.00		0.10	ט	บง
NICKEL	15.70	mg/kg	0.00		
POTASSIUM	6220.00	mg/rg	0.00	1	
SELENIUM	0.00	i -	9.60	U	บJ
SILVER	0.00		2.40	U	บJ
SODIUM	7480.00	mg/kg	0.00	1	J
THALLIUM	0.00		2.40	U	UJ
VANADIUM	67.00	mg/kg	0.00		
ZINC	56.60	mg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1045 ANALYSIS TYPE . MET SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1005FB

Compound	Concentration	Units	Instrument Petection Limit	QCode	QFinal
ALUMINUM	23300.00	mg/kg	0.00		
ANTIMONY	0.00		14.60	U	บJ
ARSENIC	5.60	mg/kg	0.00		
BARIUM	121.00	mg/kg	2.00		
BEPYLLIUM	0.00		0.51	Ü	บJ
CADMIUM	0.00		1.30	ט	บJ
CALCIUM	7570.00	mg/kg	0.00	T	
CHRONIUM	26.20	mg/kg	0.00		
COBALT	8.80	mg/kg	0.00		
COPPER	27.10	mg/kg	0.00		
IRON	2100- 00	mg/kg	0.00		
LEAD	6.50	mg/kg	0.00		
MAGNESIUM	4780.00	mg/kg	0.00		
MANGANESE	114.00	mg/kg	0.00		
MERCURY	0.12	mg/kg	0.00		J
NICKEL	12.20	mg/kg	0.00		
POTASSIUM	0.00		1250.00	U	บบ
SELENIUM	0.00		1.00	ט	บัง
SILVER	0.00	1	2.60	U	บง
SODIUM	1720.00	mg/kg	0.00		J
THALLIUM	0.00		0.51	ט	UJ
VANADIUM	130.00	mg/kg	0.00	7	
ZINC	60.90	mg/kg	0.00		
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1046 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUM	13500.00	mg/kg	0.00		
antihony	0.00		13.30	ט	ชร
ARSENIC	12.70	mg/kg	0.00		
BARIUM	74.20	mg/kg	0.00		
BERYLLIUM	0.00		0.47	Ū	บัง
CADHIUM	0.00		1.20	ט	บัง
CALCIUM	6030.00	mg/kg	0.00		
CEROMIUM	18.60	mg/kg	0.00		
COBALT	10.60	mg/kg	0.00		
COPPER	26.70	mg/kg	0.00		
IRON	24400.00	mg/kg	0.00		
LEAD	5.80	mg/kg	0.00		
MAGNESIUM	4080.00	mg/kg	0.00		
Manganese	269.00	mg/kg	0.00		
MERCURY	0.00		0.11	ט	บฮ
NICKEL	15.60	mg/kg	0.00		
POTASSIUM	0.00		1140.00	ט	บง
SELENIUM	0.00		0.93	ט	บว
SILVER	0.00	1	2.30	ū	บว
SODIUM	1230.00	mg/kg	0.00	1	J
THALLIUM	0.00		0.46	ט	บัง
VANADIUM	77.40	mg/kg	0.00		
ZINC	139.00	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1047 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	21800.00	mg/kg	0.00		
ANTIMONY	0.00		14.40	υ	ชิง
ARSENIC	28.70	mg/kg	0.00		
BARIUM	172.00	mg/kg	0.00		
BERYLLIUM	0.00		0.50	ט	บัง
CADHIUM	0.00		1.30	U	บัง
CALCIUM	47900.00	mg/kg	0.00		
CHROMIUM	8.20	mg/kg	0.00		
COBALT	8.90	mg/kg	0.00		
COPPER	26.50	mg/kg	0.00]	Ι
IRON	18800.00	mg/kg	0.00		
LEAD	7.20	mg/kg	0.00		
MAGNESIUM	10900.00	mg/kg	0.00		T
Manganese	396.00	mg/kg	0.00		
MERCURY	0.00		0.11	ซ	บJ
NICKEL	12.40	mg/kg	0.00		
POTASSIUM	2810.00	mg/kg	0.00	,	
SELENIUM	0.00		10.10	ט	บัง
SILVER	0.00	1	2.50	U	ชง
SODIUM	1380.00	mg/kg	0.00		J
THALLIUM	0.00		0.50	Ū	บว
VANADIUM	49.90	mg/kg	0.00		
ZINC	54.00	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1048 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	16400.00	mg/kg	0.00	I	
ANTIHONY	0.00		13.90	U	บว
ARSENIC	34.50	mg/kg	0.00		
BARIUM	273.00	mg/kg	0.00		
BERYLLIUM	0.49	mg/kg	0.00		
CADMIUM	0.00		1.20	ט	บัว
CALCIUM	4080.00	mg/kg	0.00		
CHRONIUM	11.30	mg/kg	0.00		
COBALT	12.70	mg/kg	0.00		
COPPER	25.70	mg/kg	0.00		
IRON	20400.00	mg/kg	0.00		
LEAD	7.50	mg/kg	0.00		
MAGNESIUM	4020.00	mg/kg	0.00	1	
Manganese	2140.00	mg/kg	0.00		
MERCURY	0.00		0.12	ט	ชม
NICREL	15.90	mg/kg	0.00		
POTASSIUM	1490.00	mg/kg	0.00	Ţ	
SELENIUM	0.00		0.99	U	บว
SILVER	0.00		2.40	ט	บว
SODIUM	995.00	mg/kg	0.00		J
TEALLIUM	0.00		0.49	ט	บว
VANADIUM	51.90	mg/kg	0.00		
ZINC	51.70	mg/kg	0.00	1	

EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 1538

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1049 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S

TRIP BLANK : 1059TB

FIELD BLANKS : 1005FB, 1006FB

ASSOCIATED MB : M04

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	19900.00	mg/kg	0.00		
ANTIHONY	0.00		14.70	ט	עט
ARSENIC	14.10	mg/kg	0.00		
BARIUM	191.00	mg/kg	0.00		
BERYLLIUM	0.00		0.52	ט	ซฮ
CADMIUM	0.00		1.30	U	ขว
CALCIUM	4900.00	mg/kg	0.00		
CHROMIUM	13.30	mg/kg	0.00	1	1
COBALT	14.30	mg/kg	0.00		1
COPPER	20.60	mg/kg	0.00	Î	
IRON	26600.00	mg/kg	0.00		
LEAD	8.20	mg/kg	0.00		
MAGNESIUM	5180.00	mg/kg	0.00		
Manganese	282.00	mg/kg	0.00		
MERCURY	0.00		0.12	ט	บบ
NICKEL	18.40	mg/kg	0.00	ĺ	
POTASSIUM	2480.00	mg/kg	0.00		1
SELENIUM	0.00		1.00	U	บบ
SILVER	0.00		2.60	ט	UJ
SODIUM	1220.00	mg/kg	0.00	1	J
THALLIUM	0.00	1	0.52	ט	ซฮ
VANADIUM	53.10	mg/kg	0.00	1	1
ZINC	46.40	mg/kg	0.00	1	1

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1050 ANALYSIS TYPE : MET SDG: 1036

SAMPLE TYPE: SAMPLE MATRIX: S
SDG: 1036 ASSOCIATED MB: MG ASSOCIATED MB : M04

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	25500.00	mg/kg	0.00		
ANTIHONY	0.00		14.60	ט	UJ
ARSENIC	26.20	mg/kg	0.00		
BARIUM	223.00	mg/kg	0.00		
CADHIUM	0.00		1.30	ט	บัว
CALCIUM	35200.00	mg/kg	0.00		
CERONIUM	14.00	mg/kg	0.00		
COBALT	10.60	mg/kg	0.00		
COPPER	27.00	mg/kg	0.00		
IRON	21400.00	mg/kg	0.00		
LEAD	10.70	mg/kg	0.00		
Magnesium	16900.00	mg/kg	0.00		
Manganese	586.00	mg/kg	0.00		
MERCURY	0.00		0.12	ט	נט
NICKEL	11.30	mg/kg	0.00		
POTASSIUM	5300.00	mg/kg	0.00		
SELENIUM	0.00		10.10	U	נט
SILVER	0.00		2.60	υ	บง
SODIUM	1870.00	mg/kg	0.00		J
THALLIUM	0.00		0.51	υ	ชร
VANADIUM	55.00	mg/kg	0.00		1
ZINC	103.00	mg/kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1051

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : MET

SDG : 1055

ASSOCIATED MB : M05

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	31900.00	mg/Kg	0.00		3
ANTIHONY	0.00		14.00	U	บัง
ARSENIC	34.70	mg/Kg	0.00		3
BARIUM	221.00	mg/Kg	0.00		J
BERYLLIUM	0.59	mg/Kg	0.00		J
CALCIUM	42200.00	mg/Kg	0.00		J
CHRONIUM	13.00	mg/Rg	0.00		J
COBALT	10.80	mg/Kg	0.00		J
COPPER	25.50	mg/Kg	0.00		J
IRON	23700.00	mg/Kg	0.00		J
LEAD	8.10	mg/Kg	0.00		J
MAGNESIUM	11600.00	mg/Kg	0.00		J
Manganese	467.00	mg/Kg	0.00		J
POTASSIUM	3650.00	mg/Rg	0.00		J
SODIUM	1230.00	mg/Rg	0.00	1	3
VANADIUM	57.80	mg/Kg	0.00	1	3
ZINC	58.00	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final **Summary** REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1052 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinel
ALUMINUM	15100.00	mg/Kg	0.00		J
Antihony	0.00		14.00	υ	บง
ARSENIC	21.10	mg/Kg	0.00	Ī	J
BARIUM	135.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.49	ט	ชง
CADMIUM	0.00		1.20	ט	บว
CALCIUN	3880.00	mg/Kg	0.00		3
CEROMIUM	11.60	mg/Kg	0.00		J
COBALT	8.90	mg/Kg	0.00		J
COPPER	22.60	mg/Kg	0.00		J
IRON	18500.00	mg/Kg	0.00		J
LEAD	7.10	mg/Kg	0.00		J
Magnesium	4110.00	mg/Kg	0.00		3
Manganese	227.00	mg/Kg	0.00		J
HERCURY	0.00		0.12	U	บJ
NICKEL	12.60	mg/Kg	0.00		J
POTASSIUM	2070.00	mg/Kg	0.00		J
SELENIUM	0.00		0.98	ט	บJ
SILVER	0.00		2.50	ט	ชม
SODIUM	1010.00	mg/Kg	0.00		J
TEALLIUM	0.00		0.49	U	บว
VANADIUM	51.00	mg/Kg	0.00		J
ZINC	41.20	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1053 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	17700.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.30	U	עט
ARSENIC	53.90	mg/Kg	0.00		J
BARIUM	200.00	mg/Kg	0.00		J
BERYLLIUM	0.51	mg/Kg	0.00		J
CADMIUM	0.00		1.30	U	บว
CALCIUM	8710.00	mg/Kg	0.00		J
CEROMIUM	10.70	mg/Rg	0.00		J
COBALT	11.90	mg/Kg	0.00		J
COPPER	29.10	mg/Kg	0.00	1	J
IRON	21000.00	mg/Kg	0.00		J
LEAD	7.70	mg/Kg	0.00		J
MAGNESIUM	6290.00	mg/Kg	0.00		J
Manganese	996.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	U	บง
NICKEL	0.00		10.00	ט	ขั้
POTASSIUM	2650.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	U	บัง
SILVER	0.00		2.50	ט	ชม
SODIUM	1080.00	mg/Kg	0.00		J
THALLIUM	0.00	1	0.50	U	บัง
VANADIUM	44.30	mg/Kg	0.00		J
ZINC	55.70	mg/Kg	0.00		J
		<u> </u>		. t	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1054 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11500.00	mg/Kg	0.00		J
ANTIHONY	0.00		12.70	U	บว
ARSENIC	36.90	mg/Kg	0.00		J
BARIUM	115.00	mg/Rg	0.00		J
BERYLLIUM	0.47	mg/Rg	0.00		J
CADHIUN	0.00		1.10	U	บJ
CALCIUM	3060.00	mg/Kg	0.00		J
CHRONIUM	10.80	mg/Rg	0.00		J
COBALT	8.30	mg/Kg	0.00		J
COPPER	23.80	mg/Kg	0.00		J
IRON	24200.00	mg/Kg	0.00		3
LEAD	6.80	mg/Kg	0.00		
Magnesium	2900.00	mg/Kg	0.00		J
MANGANESE	489.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	ט	บง
NICKEL	11.70	mg/Kg	0.00	1	J
POTASSIUM	1630.00	mg/Kg	0.00		J
SELENIUM	0.00		0.89	U	บัง
SILVER	0.00		2.20	ט	บว
SODIUM	756.00	mg/Kg	0.00	.1	J
THALLIUM	0.00	l l	0.44	U	บJ
VANADIUM	61.40	mg/Kg	0.00		J
ZINC	44.50	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1055 ANALYSIS TYPE : MET SDG: 1055

SAMPLE TYPE : SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	14600.00	mg/Kg	0.00		J
antimony	0.00		14.80	U	ซฮ
ARSENIC	25.80	mg/Kg	0.00		J
BARIUM	151.00	mg/Kg	0.00		J
BERYLLIUM	0.00	1	0.52	U	บJ
CADMIUM	0.00		1.30	U	บัง
CALCIUM	3800.00	mg/Kg	0.00		J
CHRONIUM	10.50	mg/Kg	0.00		J
COBALT	11.30	mg/Kg	0.00		J
COPPER	23.20	mg/Kg	0.70		J
IRON	18800.00	mg/Kg	0.00		J
LEAD	8.00	mg/Kg	0.00		J
Magnesium	4930.00	mg/Kg	0.00		J
Manganese	323.00	mg/Kg	0.00		J
MERCURY	0.00	1	0.13	U	บว
NICKEL	16.70	mg/Kg	0.00		J
POTASSIUM	2440.00	mg/Kg	0.00		J
SELENIUM	0.00	1	5.20	U	บัง
SILVER	0.00	ĺ	2.60	U	บง
SODIUM	1060.00	mg/Kg	0.00		J
THALLIUM	0.00		0.52	ט	บง
VANADIUM	40.60	mg/Kg	0.00	1	J
ZINC	47.30	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1056 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	33000.00	mg/Kg	0.00		J
ANTIMONY	0.00		15.10	U	บบ
Arsenic	26.90	mg/Kg	0.00		J
BARIUM	295.00	mg/Kg	0.00		J
BERYLLIUM	0.60	mg/Kg	0.00		J
CADHIUH	0.00		1.30	ט	IJ
CALCIUM	34700.00	mg/Kg	0.00		J
CHRONIUM	13.30	mg/Kg	0.00		J
COBALT	9.10	mg/Kg	0.00		J
COPPER	31.60	mg/Kg	0.00		J
IRON	23500.00	mg/Kg	0.00		J
LEAD	14.50	mg/Kg	0.00		J
MAGNESIUM	11100.00	mg/Kg	0.00	T	J
MANGANESE	515.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	U	บัง
NICKEL	11.70	mg/Kg	0.00		J
POTASSIUM	4300.00	mg/Kg	0.00		J
SELENIUM	0.00		10.60	ט	ชม
SILVER	0.00		2.70	υ	บว
SODIUM	1290.00	mg/Rg	0.00	1	J
TRALLIUM	0.00		0.53	U	บว
VANADIUM	61.20	mg/Kg	0.00		J
ZINC	92.20	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

ANALYSIS TYPE : MET

SAMPLE NUMBER: 1057 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: MET SDG: 1055 ASSOCIATED MB: M05

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	22400.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.10	U	ชฮ
ARSENIC	46.90	mg/Kg	0.00		J
BARIUM	204.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.49	ซ	IJ
CADHIUN	0.00		1.20	ט	บJ
CALCIUM	4170.00	mg/Kg	0.00	<u> </u>	J
CHRONIUM	15.00	mg/Kg	0.00		J
COBALT	13.40	mg/Kg	0.00		3
COPPER	25.70	mg/Kg	0.00		J
IRON	23300.00	mg/Kg	0.00		J
LEAD	7.40	mg/Kg	0.00		J
Magnesium	4050.00	mg/Rg	0.00		J
Manganese	1440.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	บร
NICKEL	11.70	mg/Kg	0.00		J
POTASSIUM	2530.00	mg/Kg	0.00	1	3
SELENIUM	0.00		9.90	บ	บฮ
SILVER	0.00		2,50	บ	บว
SODIUM	1240.00	mg/Rg	0.00		J
TRALLIUM	0.00	1	0.49	ט	บัง
VANADIUM	57.60	mg/Kg	0.00		J
ZINC	58.50	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1058 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055 SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUH	21900.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.30	U	UJ
ARSENIC	17.60	mg/Kg	0.00		J
BARIUM	169.00	mg/Kg	0.00		J
BERYLLIUM	C.57	mg/Kg	0.00		J
CADNIUN	0.00		1.30	ū	บJ
CALCIUN	4900.00	mg/Rg	0.00		.7
CHRONIUM	14.50	mg/Kg	0.00		J
COBALT	11.90	mg/Kg	0.00		J
COPPER	27.00	mg/Kg	0.00		J
IRON	23100.00	mg/Kg	0.00		J
LEAD	7.10	mg/Rg	0.00		J
MAGNESIUM	5720.00	mg/Kg	0.00		J
MANGANESE	244.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	U	UJ
NICKEL	18.30	mg/Kg	0.00		J
POTASSIUM	2510.00	mg/Rg	0.00		J
SELENIUM	0.00		10.10	U	บัง
SILVER	0.00		2.50	บ	บว
SODIUM	1330.00	mg/Kg	0.00		J
THALLIUM	0.00		0.50	υ	บง
VANADIUM	57.50	mg/Kg	0.00		J
ZINC	56.00	mg/Kg	0.00	1	J

PROJECT: NEVADA AIP NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1060 SAMPLE TYPE: ANALYSIS TYPE: MET SDG: 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	13700.00	mg/Kg	0.00		J
ANTIHONY	0.00		12.40	σ	บัง
ARSENIC	17.20	mg/Kg	0.00		J
BARIUM	108.00	mg/Kg	0.00		3
BERYLLIUM	0.00		0.43	ט	บัว
CADHIUH	0.00		1.10	U	บัง
CALCIUM	6960.00	mg/Kg	0.00		J
CHROMIUM	11.90	mg/Rg	0.00		J
COBALT	5.70	mg/Kg	0.00		J
COPPER	20.00	mg/Rg	0.00		J
IRON	15800.00	mg/Kg	0.00		J
LEAD	4.90	mg/Kg	0.00		J
Magnesium	5730.00	mg/Kg	0.00		J
MANGANESE	248.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	U	บัง
NICREL	14.30	mg/Kg	0.00		J
POTASSIUM	1880 00	mg/Rg	0.00		J
SELENIUM	0.00		8.70	U	บว
SILVER	0.00	1	2.20	υ	บป
SODIUM	1120.00	mg/Kg	0.00		J
THALLIUM	0.00		0.43	ט	บป
VANADIUM	42.00	mg/Kg	0.00		J
ZINC	37.10	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1061 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S

ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concent:	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	23200.00	mg/Kg	0.00		J
ANTIHONY	0.00		15.70	ט	บัง
ARSENIC	16.10	mg/Kg	0.00		J
BARIUH	175.00	mg/Kg	0.00		J
BERYLLIUM	0.71	mg/Kg	0.00		J
CADMIUM	0.00		1.40	Ū	UJ
CALCIUM	8680.00	mg/Rg	0.00		J
CHROMIUM	26.40	mg/Kg	0.00		J
COBALT	10.60	mg/Kg	0.00		J
COPPER	37.60	mg/Kg	0.00		J
IRON	29200.00	mg/Kg	0.00		J
LEAD	7.40	mg/Kg	0.00		J
MAGNESIUM	5190.00	mg/Kg	0.00		J
Manganese	374.00	mg/Kg	0.00		J
MERCURY	0.00		0.14	บ	υJ
NICREL	24.40	mg/Kg	0.00		J
POTASSIUM	1650.00	mg/Kg	0.00		J
SELENIUM	0.00		11.00	ซ	บง
SILVER	0.00		2.70	U	บว
SODIUM	1740.00	mg/Kg	0.00		J
THALLIUM	0.00		0.55	ט	บัง
VANADIUM	65.60	mg/Kg	0.00		J
ZINC	116.00	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1062 ANALYSIS TYPE : MET SAMPLE TYPE : SR

SAMPLE MATRIX : S

SDG: 1055

ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	25300.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.40	U	ชม
ARSENIC	101.00	mg/Rg	0.00		J
BARIUN	193.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.51	U	บJ
CADHIUH	0.00	1	1.30	ט	บJ
CALCIUM	7940.00	mg/Kg	0.00		J
CHROMIUM	23.20	mg/Kg	0.00		J
COBALT	9.70	mg/Kg	0.00		J
COPPER	24.90	mg/Kg	0.00		J
IRON	22500.00	mg/Rg	0.00		J
LEAD	5.10	mg/Kg	0.00		J
MAGNESIUM	5990.00	mg/Kg	0.00		J
Manganese	450.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	บ	บJ
NICKEL	20.10	mg/Kg	0.00		J
POTASSIUM	1500.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	ט	UJ
SILVER	0.00		2.50	บ	ชม
SODIUM	1870.00	mg/Kg	0.00		J
THALLIUM	0.00	1	0.51	ט	บัง
VANADIUM	58.90	mg/Kg	0.00		J
ZINC	51.10	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1063 ANALYSIS TYPE : MET

SAMPLE TYPE :

SAMPLE MATRIX : S

TRIP BLANK: 1088TB

SDG: 1055

ASSOCIATED MB : M05

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	14300.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.10	U	ขว
ARSENIC	6.80	mg/Kg	0.00		J
BARIUM	117.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.49	ט	บัง
CADHIUN	0.00		1.20	Ū	บัง
CALCIUM	4980.00	mg/Kg	0.00		J
CERONIUN	13.60	mg/Kg	0.00		J
COBALT	14.00	mg/Kg	0.00		J
COPPER	20.60	mg/Kg	0.00		J
IRON	19000.00	mg/Kg	0.00	1	J
LEAD	4.90	mg/Kg	0.00		J
MAGNESIUM	3500.00	mg/Kg	0.00		J
Manganese	142.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	נט
NICKEL	28.30	mg/Kg	0.00		J
POTASSIUM	0.00		1200.00	U	נט
SELENIUM	0.00		0.99	U	บัง
SILVER	0.00	1	2.50	ט	บJ
SODIUM	1060.00	mg/Kg	0.00		J
THALLIUM	0.00		0.49	ט	บJ
VANADIUM	70.50	mg/Kg	0.00		J
ZINC	45.70	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1064 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1055 SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUH	20500.00	mg/Kg	0.00		J
ANTIHONY	0.00		13.80	Ū	ชิวิ
ARSENIC	5.90	mg/Kg	0.00		J
BARIUM	93.50	mg/Kg	0.00		J
BERYLLIUM	0.53	mg/Kg	0.00		J
CADMIUM	0.00		1.20	υ	บัว
CALCIUM	6060.00	mg/Kg	0.00		J
CHRONIUN	18.50	mg/Kg	0.00		J
COBALT	13.10	mg/Kg	0.00		J
COPPER	26.00	mg/Kg	0.00		J
IRON	26500.00	mg/Kg	0.00		J
LEAD	5.30	mg/Rg	0.00		J
Magnesium	10000.00	mg/Kg	0.00		J
MANGANESE	564.00	mg/Kg	0.00		J
MERCURY	0.00	1	0.12	U	บัง
NICKEL	33.40	mg/Kg	0.00		3
POTASSIUM	4990.00	mg/Kg	0.00		J
SELENIUM	0.00	1	4.90	ט	ชว
SILVER	0.00		2.40	ט	บัง
SODIUM	1690.00	mg/Kg	0.00		J
THALLIUM	0.00		0.49	ס	บว
VANADIUM	60.70	mg/Kg	0.00		J
ZINC	54.40	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1065 ANALYSIS TYPE: MET SAMPLE TYPE : SR SDG : 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20000.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.10	Ū	UJ
ARSENIC	19.80	mg/Rg	0.00		J
BARIUM	141.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.50	Ū	บว
CADHIUN	0.00		1.20	Ū	บว
CALCIUM	6390.00	mg/Kg	0.00		J
CERONIUM	15.70	mg/Rg	0.00		J
COBALT	13.80	mg/Rg	0.00		J
COPPER	27.30	mg/Kg	0.00		J
IRON	21600.00	mg/Kg	0.00		J
LEAD	5.20	mg/Kg	0.00	T	J
Magnesium	9920.00	mg/Kg	0.00		J
Manganese	734.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	U	บว
NICKEL	30.00	mg/Kg	0.00		J
POTASSIUM	4290.00	mg/Kg	0.00		J
SELENIUM	0.00		5.00	υ	บJ
SILVER	0.00		2.50	ט	บว
SODIUM	1160.00	mg/Kg	0.00		J
THALLIUM	0.00		0.50	ט	บว
VANADIUM	58.80	mg/Kg	0.00	1 -	J
ZINC	54.40	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1066 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055 SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK : 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	12600.00	mg/Kg	0.00		JJ
ANTIMONY	0.00		15.50	U	ซฮ
ARSENIC	13.80	mg/Kg	0.00		J
BARIUM	91.10	mg/Kg	0.00		J
BERYLLIUM	0.61	mg/Kg	0.00		J
CADMIUM	0.00		1.40	ช	ชว
CALCIUM	3970.00	mg/Kg	0.00		J
CEROMIUM	12.20	mg/Kg	0.00		J
COBALT	5.60	mg/Kg	0.00		J
COPPER	24.30	mg/Kg	0.00		J
IRON	25800.00	mg/Kg	0.00	1	3
LEAD	6.00	mg/Kg	0.00	 	J
HAGNESIUM	3110.00	mg/Kg	0.00	† — —	J
MANGANESE	115.00	mg/Kg	0.00		J
MERCURY	0.00		0.14	ט	บัง
HICKEL	13.10	mg/Kg	0.00	† · · · · ·	J
POTASSIUM	2210.00	mg/Kg	0.00		J
SELENIUM	0.00		1.10	U	UJ
SILVER	0.00		2.70	ט	บJ
SODIUM	4120.00	mg/Kg	0.00		J
THALLIUM	0.00		0.54	U	บJ
VANADIUM	31.70	mg/Kg	0.00		J
ZINC	40.30	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1067 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055 SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11000.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.20	U	บง
ARSENIC	32.40	mg/Kg	0.00		J
BARIUM	79.20	mg/Kg	0.00		J
BERYLLIUM	0.00		0.50	ū	UJ
CADHIUN	0.00		1.20	ū	ชง
CALCIUM	3490.00	mg/Kg	0.00		J
CHROMIUM	15.80	mg/Kg	0.00		J
COBALT	11.60	mg/Kg	0.00		J
COPPER	20.70	mg/Kg	0.00		J
IRON	16200.00	mg/Rg	0.00		J
LEAD	4.70	mg/Kg	0.00	Ī	J
Magnesium	3070.00	mg/Kg	0.00		J
Manganese	117.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	ซฮ
NICREL	23.90	mg/Rg	0.00		J
POTASSIUN	1440.00	mg/Kg	0.00		J
SELENIUM	0.00		5.00	ט	U J
SILVER	0.00		2.50	U	ขว
SODIUM	1710.00	mg/Kg	0.00		J
THALLIUM	0.00		0.50	U	บว
VANADIUN	62.40	mg/Kg	0.00		J
ZINC	56.50	mg/Kg	0.00	1	J
		+			-

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1068 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	16100.00	mg/Kg	0.00		J
YNONITHA	0.00		14.60	U	บัว
ARSENIC	21.70	mg/Kg	0.00		J
BARIUM	141.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.51	ט	บัง
CADHIUM	0.00	Ī	1.30	ū	บัง
CALCIUM	61500.00	mg/Kg	0.00		J
CHROHIUM	8.70	mg/Kg	0.00		J
COBALT	5.00	mg/Kg	0.00		J
COPPER	27.40	mg/Kg	0.00		J
IRON	12400.00	mg/Kg	0.00		J
LEAD	4.40	mg/Kg	0.00		J
Magnesium	20400.00	mg/Kg	0.00		J
MANGANESE	336.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	ט	บัง
NICKEL	11.10	mg/Kg	0.00		J
POTASSIUM	4650.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	ט	UJ
SILVER	0.00		2.60	ט	ยว
SODIUM	2520.00	mg/Kg	0.00		J
THALLIUM	0.00		0.51	ט	ซฮ
VANADIUM	43.40	mg/Kg	0.00		J
ZINC	59.20	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1069 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055 SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	21400.00	mg/Kg	0.00		J
YNCHITHA	0.00		12.80	ט	บว
ARSENIC	97.10	mg/Kg	0.00		J
BARIUM	105.00	mg/Kg	0.00		J
BERYLLIUM	0.56	mg/Kg	0.00		J
CADHIUM	0.00		1.10	U	ชม
CALCIUM	6290.00	mg/Kg	0.00		J
CEROHIUN	18.00	mg/Kg	0.00		J
COBALT	12.30	mg/Kg	0.00		J
COPPER	21.40	mg/Kg	0.00		J
IRON	28200.00	mg/Kg	0.00		J
LEAD	5.20	mg/Kg	0.00		J
Magnesium	7910.00	mg/Kg	0.00	T	J
MANGANESE	733.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	ט	บJ
NICKEL	18.40	mg/Kg	0.00		J
POTASSIUM	3600.00	mg/Kg	0.00		J
SELENIUM	0.00		0.90	U	ชว
SILVER	0.00		2.20	ט	บว
SODIUN	1550.00	mg/Kg	0.00		3
THALLIUM	0.00	1	0.45	U	บJ
VANADIUM	61.60	mg/Kg	0.00		J
ZINC	52.80	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1070 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20500.00	mg/Kg	0.00		J
Antihony	0.00	1	14.70	U	บัง
ARSENIC	11.20	mg/Kg	0.00		J
BARIUM	195.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.52	ט	ชง
CADHIUN	0.00		1.30	ט	บัง
CALCIUM	5960.00	mg/Kg	0.00		J
CHRONIUM	15.60	mg/Kg	0.00		J
COBALT	14.40	ng/Kg	0.00		J
COPPER	26.20	mg/Kg	0.00		J
IRON	21400.00	mg/Kg	0.00	1	J
LEAD	6.60	mg/Kg	0.00		J
MAGNESIUM	4330.00	mg/Kg	0.00		J
Manganese	140.00	mg/Kg	0.00		J
MERCURY	0.00	1	0.13	ט	บัง
NICKEL	26.20	mg/Rg	0.00		J
POTASSIUM	0.00		1260.00	ט	บว
SELENIUM	0.00		5.20	ט	บัง
SILVER	0.00		2.60	U	ับJ
SODIUM	1190.00	mg/Kg	0.00		J
THALLIUM	0.00		0.52	ט	נט
VANADIUM	71.80	mg/Rg	0.00		J
ZINC	50.30	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1071 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S ASSOCIATED MB : M05

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	17200.00	mg/Kg	0.00		J
ANTIHONY	0.00		13.70	ט	บว
ARSENIC	15.10	mg/Kg	0.00		J
BARIUM	105.00	mg/Kg	0.00		J
BERYLLIUM	0.00	T	0.48	Ū	บว
CADHIUM	0.00		1.20	U	บว
CALCIUM	17900.00	mg/Kg	0.00		J
CHRONIUM	12.60	mg/Kg	0.00		J
COBALT	8.30	mg/Kg	0.00		3
COPPER	22.90	mg/Kg	0.00		J
IRON	17500.00	mg/Kg	0.00		J
LEAD	7.70	mg/Rg	0.00	T	J
MAGNESIUM	9180.00	mg/Kg	0.00		J
Manganese	279.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	บJ
NICKEL	18.40	mg/Kg	0.00		J
POTASSIUM	2080.00	mg/Kg	0.00	Ţ	3
SELENIUM	0.00		0.96	U	υJ
SILVER	0.00		2.40	υ	บัง
SODIUM	1200.00	mg/Rg	0.00		J
THALLIUM	0.00		0.48	υ	บJ
VANADIUM	50.40	mg/Kg	0.00		J
ZINC	48.60	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1072 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: MET SDG: 1076 ASSOCIATED MB: MG ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	Ofinal
ANTIMONY	0.00		14.00	Ū	บัว
ARSENIC	27.80	mg/Rg	0.00		J
BARIUM	226.00	mg/Kg	0.00		J
BERYLLIUM	0.58	mg/Kg	0.00	В	J
CADMIUN	0.00		1.30	ט	บัง
CALCIUM	9670.00	mg/Kg	0.00		J
CEROMIUM	17.40	mg/Kg	0.00		J
COBALT	15.80	mg/Kg	0.00		J
COPPER	40.30	mg/Kg	0.00		J
IRON	27400.00	mg/Kg	0.00		J
LEAD	5.40	mg/Kg	0.00		J
MAGNESIUM	8180.00	mg/Kg	0.00		3
MANGANESE	1880.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	U	ซฮ
NICKEL	35.00	mg/Kg	0.00		J
POTASSIUM	3990.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	ט	UJ
SILVER	0.00		2.50	U	บJ
SODIUM	2640.00	mg/Kg	0.00		J
THALLIUM	0.00		0.51	ט	ชง
VANADIUH	81.50	mg/Rg	0.00		J
ZINC	70.90	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1073 ANALYSIS TYPE : MET

SAMPLE TYPE : SR SDG: 1076

SAMPLE MATRIX : 3

TRIP BLANK: 1088TB FIELD BLANKS: 1005FB, 1006FB

ASSOCIATED MB : M06

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	21500.00	mg/Kg	0.00		J
Antimony	0.00		380.00	ט	บัง
ARSENIC	25.70	mg/Kg	0.00		J
BARIUM	121.00	mg/Kg	0.00		J
BERYLLIUM	0.00		380.00	ט	UJ
CADMIUM	0.00		380.00	U	บัง
CALCIUM	6960.00	mg/Kg	0.00		J
CHRONIUM	17.50	mg/Kg	0.00		J
COBALT	9.70	mg/Kg	0.00	В	J
COPPER	22.10	mg/Kg	0.00		J
IRON	23400.00	mg/Kg	0.00		J
LEAD	5.10	mg/Kg	0.00		J
MAGNESIUM	7760.00	mg/Kg	0.00		J
HANGANESE	359.00	mg/Kg	0.00		J
MERCURY	0.00	1	380.00	U	UJ
NICKEL	26.50	mg/Kg	0.00		3
POTASSIUM	29 5 00	mg/Rg	0.00		J
SELENIUM	0.00		380.00	υ	υJ
SILVER	0.00		380.00	U	บัว
SODIUM	2100.00	mg/Kg	0.00		J
TRALLIUM	0.00		380.00	U	บป
VANADIUM	67.70	mg/Kg	0.00	1	J
ZINC	47.60	mg/Kg	0.00		3

PROJECT: WEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SPAPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1074 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: MET SDG: 1076 ASSOCIATED MB: M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	21100.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	ט	נט
ARSENIC	7.10	mg/Kg	0.00		J
BARIUM	168.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.50	U	บัง
CADHIUN	0.00		1.20	ט	บJ
CALCIUM	6060.00	mg/Kg	0.00		J
CHROMIUM	18.30	mg/Kg	0.00		J
COBALT	14.50	mg/Kg	0.00		J
COPPER	23.90	mg/Kg	0.00		J
IRON	24000.00	mg/Kg	0.00		J
LEAD	5.30	mg/Kg	0.00	Ī	J
MAGNESIUM	4480.00	mg/Kg	0.00		J
MANGANESE	171.00	mg/kg	0.00		J
MERCURY	0.00		0.12	U	บัง
NICKEL	25.10	mg/Kg	0.00		J
POTASSIUM	2450.00	mg/Kg	0.00	1	J
CELENIUM	0.00		1.00	U	บJ
SILVER	0.00		2.50	U	บJ
SODIUM	1950.00	mg/Kg	0.00		J
TRALLIUM	0.00	1	0.50	U	υJ
VANADIUM	83.50	mg/Kg	0.00		J
ZINC	56.50	mg/Kg	0.00	 	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1075 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076 SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11400.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	U	עט
ARSENIC	10.50	mg/Kg	0.00		J
BARIUM	97.90	mg/Kg	0.00		J
BERYLLIUM	0.00		0.50	ט	บว
CADMIUM	0.00		1.20	ט	บว
CALCIUM	114000.00	mg/Kg	0.00		3
CERONIUM	6.60	mg/Kg	0.00		J
COBALT	3.90	mg/Kg	0.00	В	J
COPPER	25.00	mg/Kg	0.00		J
IRON	8580.00	mg/Kg	0.00		J
LEAD	3.00	mg/Kg	0.00		J
MAGNESIUM	35600.00	mg/Kg	0.00		J
MANGANESE	290.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	UJ
NICKEL	12.50	mg/Kg	0.00		J
POTASSIUM	3110.00	mg/Kg	0.00		3
SELENIUM	0.00		1.00	ט	บJ
SILVER	0.00		2.50	υ	บั
SODIUM	2270.00	mg/Kg	0.00		J
THALLIUM	0.00		0.50	ט	עט
VANADIUH	35.70	mg/Kg	0.00		J
ZINC	50.40	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1076 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentra ion	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	10200.00	mg/Kg	0.00		J
Antimony	0.00	7	380.00	ט	บว
ARSENIC	45.00	mg/Kg	0.00		J
BARIUM	98.00	mg/Kg	0.00		J
BERYLLIUM	0.00		380.00	ט	บว
CADHIUH	0.00		380.00	ט	บัว
CALCIUM	4730.00	mg/Kg	0.00		J
CEROMIUM	15.70	mg/Kg	0.00		J
COBALT	9.80	mg/Kg	0.00	В	J
COPPER	18.50	mg/Kg	0.00		J
IRON	19500.00	mg/Kg	0.00		J
LEAD	5.60	mg/Kg	0.00		J
MAGNESIUM	3770.00	mg/Kg	0.00		J
Manganese	1600.00	mg/Kg	0.00		J
MERCURY	0.00	1	380.00	υ	บว
NICKEL	24.60	mg/Kg	0.00		J
POTASSIUM	2990.00	mg/Kg	0.00		J
SELENIUM	0.00		380.00	U	บฮ
SILVER	0.00		380.00	ט	บJ
SODIUM	1100.00	mg/Kg	0.00	В	J
THALLIUM	0.00		380.00	ช	บง
VANADIUM	44.10	mg/Kg	0.00		J
ZINC	40.40	mg/Kg	0.00		J
		1		1	\top

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1077 ANALYSIS TYPE : MET

SAMPLE TYPE :

SAMPLE MATRIX : S

TRIP BLANK : 1088TB

SDG: 1076

ASSOCIATED MB : M06

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	9150.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	U	UJ
ARSENIC	24.20	mg/Rg	0.00		J
BARIUM	108.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.45	ט	ชว
CADHIUH	0.00		1.10	ט	UJ
CALCIUM	5350.00	mg/Kg	0.00		J
CHRONIUM	15.10	mg/Kg	0.00		J
COBALT	8.50	mg/Kg	0.00	В	J
COPPER	21.20	mg/Kg	0.00	1	J
IRON	19100.00	mg/Kg	0.00	1	J
LEAD	4.10	mg/Kg	0.00	T	J
MAGNESIUM	3220.00	mg/Kg	0.00		J
Manganese	571.00	mg/Rg	0.00		J
MERCURY	0.00		0.11	υ	บัง
NICKEL	18.90	mg/Kg	0.00	T	J
POTASSIUM	1770.00	mg/Kg	0.00	1	J
SELENIUM	0.00		0.89	ט	บJ
SILVER	0.00		2.20	U	บว
SODIUM	868.00	mg/Kg	0.00	В	3
THALLIUM	0.00		0.45	U	บว
VANADIUM	44.80	mg/Kg	0.00		J
ZINC	55.50	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1078 ANALYSIS TYPE : MET SAMPLE TYPE : SR SDG : 1076 SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11400.00	mg/Kg	0.00		J
YMLIHONA	0.00		14.00	ū	บง
ARSENIC	125.00	mg/Kg	0.00		J
BARIUM	122.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.46	σ	บว
CADMIUM	0.00		1.20	ט	บัง
CALCIUM	5730.00	mg/Kg	0.00		J
CHROMIUM	19.10	mg/Kg	0.00		J
COBALT	14.10	mg/Kg	0.00		J
COPPER	31.50	mg/Kg	0.00		J
IRON	30000.00	mg/Kg	0.00	T	J
LEAD	4.20	mg/Kg	0.00		J
Magnesium	3550.00	mg/Kg	0.00		3
Manganese	585.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	U	บJ
NICKEL	23.60	mg/Kg	0.00		J
POTASSIUM	1520.00	mg/Kg	0.00		J
SELENIUM	0.00		0.92	ט	נט
SILVER	0.00		2.30	ט	ซฮ
SODIUM	1120.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.46	ט	บป
VANADIUM	66.50	mg/Kg	0.00		J
ZINC	60.20	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1079 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	27000.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	ט	UJ
ARSENIC	50.20	mg/Kg	0.00		J
BARIUM	148.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.51	Ū	ชม
CADMIUM	0.00		1.30	Ū	บัง
CALCIUM	5490.00	mg/Kg	0.00		J
CHRONIUM	18.60	mg/Kg	0.00		J
COBALT	9.60	mg/Kg	0.00	В	J
COPPER	47.70	mg/Kg	0.00		J
IRON	28800.00	mg/Kg	0.00		J
LEAD	9.10	mg/Kg	0.00		3
Magnesium	10300.00	mg/Kg	0.00	T	J
MANGANESE	1040.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	ט	UJ
NICKEL	22.20	mg/Kg	0.00		J
POTASSIUM	4540.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	ט	บJ
SILVER	0.00		2.60	ט	บว
SODIUM	1250.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.51	ט	ชุง
VANADIUM	65.10	mg/Kg	0.00		J
ZINC	99.30	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1080 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	12600.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	ซ	บัง
ARSENIC	43.60	mg/Kg	0.00		J
BARIUM	73.70	mg/Kg	0.00	Ì	J
BERYLLIUM	0.00		0.44	ט	UJ
CADMIUM	0.00		1.10	ט	บัง
CALCIUM	4900.00	mg/Kg	0.00		3
CHROMIUM	16.70	mg/Kg	0.00	I	3
COBALT	12.90	mg/Kg	0.00		J
COPPER	9.90	mg/Kg	0.00	1	3
IRON	21700.00	mg/Kg	0.00	1	J
LEAD	5.00	mg/Kg	0.00		J
Magnesium	3380.00	mg/Kg	0.00		J
Manganese	372.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	U	עט
NICREL	21.50	mg/Rg	0.00		J
POTASSIUM	2160.00	mg/Kg	0.00	1	3
SELENIUM	0.00	1	0.88	U	UJ
SILVER	0.00		2.20	ט	UJ
SODIUM	1070.00	mg/Kg	0.00	В	J
TRALLIUM	0.00		0.44	ט	UJ
VANADIUM	50.40	mg/Kg	0.00		J
ZINC	36.10	mg/Kg	0.00	1	3

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1081 ANALYSIS TYPE : MET

SAMPLE TYPE :

SAMPLE MATRIX : S

SDG: 1076

ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUNINUM	9270.00	mg/Kg	0.00		J
antihony	0.00		14.00	ט	ชม
ARSENIC	15.60	mg/Kg	0.00		J
BARIUM	75.40	mg/Kg	0.00		J
BERYLLIUM	0.00		0.45	ט	บJ
CADMIUM	0.00		1.10	ט	ប្រ
CALCIUM	5140.00	mg/Kg	0.00		J
CERONIUM	15.40	mg/Kg	0.00		J
COBALT	6.30	mg/Kg	0.00	В	J
COPPER	19.40	mg/Kg	0.00		J
IRON	21100.00	mg/Kg	0.00		J
LRAD	4.50	mg/Kg	0.00		J
MAGNESIUM	3530.00	mg/Kg	0.00		J
MANGANESE	196.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	บ	บว
NICKEL	13.30	mg/Kg	0.00	T	J
POTASSIUM	1420.00	mg/Kg	0.00		J
SELENIUM	0.00		0.89	Ū	UJ
SILVER	0.00		2.20	U	บJ
SODIUM	908.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.45	υ	บว
VANADIUM	39.60	mg/Kg	0.00		J
ZINC	45.40	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1082 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076 SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

TRIP DLANK : 1000TD

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	24900.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	Ū	υJ
ARSENIC	22.30	ng/Kg	0.00		J
BARIUM	156.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.55	ט	บJ
CADMIUM	0.00	T	1.40	U	บJ
CALCIUM	6190.00	mg/Rg	0.00	1	J
CHRONIUM	15.50	mg/Kg	0.00		J
COBALT	10.30	mg/Rg	0.00	В	J
COPPER	29.80	mg/Kg	0.00		J
IRON	25000.00	mg/Kg	0.00		J
LEAD	8.00	mg/Kg	0.00		J
MAGNESIUM	13000.00	mg/Rg	0.00		J
MANGANESE	620.00	mg/Kg	0.00		J
MERCURY	0.00		0.14	ט	עט
NICKEL	19.70	mg/Kg	0.00		J
POTASSIUM	4890.00	mg/Rg	0.00	}	J
SELENIUM	0.00	Ì	1.10	U	บัง
SILVER	0.00	1	2.70	U	บJ
SODIUM	1520.00	mg/Kg	0.00		J
THALLIUM	0.00		0.55	U	ซฮ
VANADIUM	56.00	mg/Kg	0.00		J
ZINC	61.60	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1083 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076 SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

: 10001B

FIELD BLANKS: 1005FB, 1006FB
EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUM	9330.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	ט	บว
ARSENIC	27.30	mg/Kg	0.00	T	J
BARIUM	91.80	mg/Kg	0.00	1	J
BERYLLIUM	0.00		0.44	ט	ชม
CADHIUM	0.00		1.10	Ū	UJ
CALCIUM	4620.00	mg/Kg	0.00		3
CEROMIUM	14.90	mg/Kg	0.00		J
COBALT	9.20	mg/Rg	0.00	В	J
COPPER	30.00	mg/Kg	0.00		J
IRON	17300.00	mg/Kg	0.00		J
LEAD	4.20	mg/Kg	0.00		J
Magnesium	2770.00	mg/Kg	0.00		J
Manganese	611.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	บ	บัง
NICKEL	17.40	mg/Kg	0.00		J
POTASSIUM	1980.00	mg/Kg	0.00		J
SELENIUM	0.00		0.88	U	บว
SILVER	0.00		2.20	ช	עט
BODIUM	922.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.44	ט	บJ
VANADIUM	40.00	mg/Kg	0.00	T	J
ZINC	56.10	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summar REVIEWER: DENNIS MARTY Summary BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1084 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1076

SAMPLE MATRIX : S

TRIP BLANK: 1088TB

ASSOCIATED MB : M06

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 1538

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	9290.00	mg/Kg	0.00		J
Antihony	0.00		14.00	U	บบ
ARSENIC	9.60	mg/Kg	0.00		J
BARIUM	71.70	mg/Kg	0.00		J
BERYLLIUM	0.00		0.47	ט	บJ
CADMIUM	0.00		1.20	ט	UJ
CALCIUN	4900.00	mg/Kg	0.00		J
CHRONIUM	13.70	mg/Kg	0.00	T	J
COBALT	5.60	mg/Kg	0.00	В	J
COPPER	20.30	mg/Kg	0.00		J
IRON	20400.00	mg/Kg	0.00		J
LEAD	4.30	mg/Kg	0.00		J
MAGNESIUM	3090.00	mg/Kg	0.00		J
MANGANESE	113.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	บัง
NICKEL	11.60	mg/Kg	0.00		J
POTASSIUM	1490.00	mg/Kg	0.00	1	J
SELENIUM	0.00		0.94	ט	ขัว
SILVER	0.00		2.30	ט	บฮ
SODIUM	781.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.47	ט	บJ
VANADIUM	48.10	mg/Kg	0.00	†	J
ZINC	47.80	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1085 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1076 SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	10100.00	mg/Kg	0.00		J
Antihona	0.00		380.00	ū	บัว
ARSENIC	13.80	mg/Rg	0.00		J
BARIUM	78.10	mg/Kg	0.00		J
BERYLLIUM	0.00		380.00	U	UJ
CADMIUM	0.00		380.00	a	บว
CALCIUM	56000.00	mg/Kg	0.00		J
CHRONIUM	6.20	mg/Kg	0.00		J
COBALT	3.40	mg/Kg	0.00	В	J
COPPER	16.10	mg/Kg	0.00		J
IRON	8650.00	mg/Kg	0.00		J
LEAD	5.00	mg/Kg	0.00		J
MAGNESIUM	18500.00	mg/Kg	0.00		J
MANGANESE	401.00	mg/Kg	0.00		3
MERCURY	0.00		380.00	ט	ซฮ
NICKEL	0.00		380.00	ซ	ชฮ
POTASSIUM	2300.00	mg/Kg	0.00		J
SELENIUM	0.00		380.00	ט	บJ
SILVER	0.00		380.00	ט	บJ
SODIUM	1280.00	mg/Kg	0.00		J
THALLIUM	0.00		380.00	Ū	บว
VANADIUM	29.00	mg/Kg	0.00		J
ZINC	58.50	mg/Kg	0.00	Ţ	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1086 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1076

SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	10000.00	mg/Kg	0.00		J
ANTIHONY	0.00		380.00	ט	ซฮ
ARSENIC	14.80	mg/Kg	0.00		J
BARIUM	63.60	mg/Kg	0.00		J
BERYLLIUM	0.00		380.00	ט	บJ
CADMIUM	0.00		380.00	U	บJ
CALCIUM	4380.00	mg/Rg	0.00		J
CHROMIUM	17.40	mg/Kg	0.00		J
COBALT	6.50	mg/Kg	0.00	В	J
COPPER	16.30	mg/Kg	0.00		J
IRON	15000.00	mg/Kg	0.00	1	J
LEAD	4.50	mg/Kg	0.00		J
MAGNESIUM	3110.00	mg/Kg	0.00		J
MANGANESE	452.00	mg/Kg	0.00	1	J
MERCURY	0.00		380.00	U	บว
NICKEL	17.20	mg/Kg	0.00		J
POTASSIUM	2080.00	mg/Kg	0.00		3
SELENIUM	0.00		380.00	ט	UJ
SILVER	0.00		380.00	ט	บJ
SODIUM	686.00	mg/Kg	0.00	В	J
THALLIUM	0.00		380.00	U	บัง
VANADIUM	50.90	mg/Kg	0.00		J
ZINC	36.30	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1087 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1076

SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	22500.00	mg/Kg	0.00	-	J
YNONITHA	0.00		14.00	ט	ซฮ
ARSENIC	93.60	mg/Kg	0.00		J
BARIUM	124.00	mg/Kg	0.00		3
BERYLLIUM	0.57	mg/Kg	0.00	В	J
CADMIUM	0.00		1.40	ט	บJ
CALCIUM	7190.00	mg/Kg	0.00		J
CHROMIUM	23.50	mg/Kg	0.00		J
COBALT	19.10	⊾7/Kg	0.00		J
COPPER	33.30	mg/Kg	0.00		J
IRON	28400.00	mg/Kg	0.00		J
LEAD	7.00	mg/Kg	0.00		J
MAGNESIUM	5440.00	mg/Kg	0.00		J
Manganese	164.00	mg/Kg	0.00		J
MERCURY	0.00		0.14	U	บJ
NICKEL	40.00	mg/Kg	0.00		J
POTASSIUM	3020.00	mg/Kg	0.00		3
SELENIUM	0.00		1.10	ט	บัง
SILVER	0.00		2.70	U	עט
SODIUM	1280.00	mg/Kg	0.00	В	J
THALLIUM	0.00	1	0.54	U	ชง
VANADIUM	101.00	mg/Kg	0.00		J
ZINC	63.10	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENFIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1089
ANALYSIS TYPE: MET

SAMPLE TYPE : SDG : 1089 SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ANTIMONY	0.00	1	13.30	ŭ	UJ
ARSENIC	2.)	mg/Kg	2.00		J
BARIUM	65.50	mg/Kg	0.00		J
BERYLLIUM	0.00		0.47	υ	UJ
CADMIUM	0.00		1.20	U	יגט
CALCIUM	5180.00	mg/Kg	0.00		J
CHROMIUM	17.40	mg/Kg	0.00		J
COBALT	5.30	mg/Kg	0.00	В	J
COPPER	15.50	mg/Kg	0.00		J
IRON	20900.00	mg/Rg	0.00		J
LEAD	4.70	ng/Kg	0.00		J
Magnesium	2530.00	mg/Kg	0.00		J
MANGANESE	165.00	mg 'Kg	0.00		J
MERCURY	0.00		0.12	ט	ชม
NICKEL	10.80	mg/Kg	0.00		J
POTASSIUM	1790.00	mg/Kg	0.00		J
SELENIUM	0.00		0.93	U	บว
SILVER	0.00		2.30	บ	บง
SODIUM	1080.00	mg/Kg	0.00	ь	J
THALLIUM	0.00		0.47	U	บัง
VANADIUM	49.50	my/Kg	0.00		J
ZINC	31.40	mg/Kg	0.00	1 -	J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final • REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1090 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1089

SAMPLE MATRIX : S

TRIP BLANK : 1111TB

ASSOCIATED MB : M07

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	17900.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	U	บJ
ARSENIC	104.00	mg/Kg	0.00		J
BARIUM	128.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.49	U	บJ
CADHIUM	0.00		1.20	U	ชม
CALCIUM	6810.00	mg/Kg	0.00		J
CHROMIUM	22.80	mg/Kg	0.00		3
COBALT	12.20	mg/Kg	0.00	В	J
COPPER	66.60	mg/Kg	0.00		J
IRON	23200.00	mg/Kg	0.00		J
LEAD	2.20	mg/Kg	0.00		J
MAGNESIUM	3970.00	mg/Rg	0.00		J
MANGANESE	122.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	บัง
NICKEL	21.20	mg/Kg	0.00		J
POTASSIUM	1650.00	mg/Kg	0.00		J
SELENIUM	0.00		0.98	บ	υJ
SILVER	0.00		2.40	U	บJ
SODIUM	1450.00	mg/Kg	0.00		J
THALLIUM	0.00		0.49	บ	บป
VANADIUM	92.00	mg/Kg	0.00		J
ZINC	151.00	mg/Kg	0.00	1	J

PROJECT: NEVADA AIK NATIONAL GUARD Final Summary

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1091 ANALYSIS TYPE: MET SAMPLE TYPE: SDG: 1089 SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUM	18400.00	mg/Kg	0.00		J
ANTIHONY	0.00		13.20	U	ชฮ
ARSENIC	2.20	mg/Kg	0.00	В	J
BARIUM	141.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.46	U	UJ
CADMIUM	0.00		1.20	U	บJ
CALCIUM	14200.00	mg/Kg	0.00		J
CHROMIUM	13.70	mg/Kg	0.00		J
COBALT	8.20	mg/Kg	0.00	В	J
COPPER	18.60	mg/Kg	0.00		J
IRON	18500.00	mg/Kg	0.00		J
LEAD	6.90	mg/Kg	0.00		J
MAGNESIUM	6500.00	mg/Kg	0.00		J
Manganese	343.00	mg/Kg	0.00		J
MERCURY	0.00	1	0.12	บ	บJ
NICKEL	14.40	mg/Kg	0.00		J
POTASSIUM	2300.00	mg/Kg	0.00	}	J
SELENIUM	0.00		0.93	υ	UJ
SILVER	0.00		2.30	υ	UJ
SODIUM	2140.00	mg/Kg	0.00		J
THALLIUM	0.00		0.46	U	บJ
VANADIUM	62.10	mg/Rg	0.00		J
ZINC	46.10	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1092 ANALYSIS TYPE : MET

SAMPLE TYPE :

SAMPLE MATRIX : S

TRIP BLANK: 1111TB

SDG: 1089

ASSOCIATED MB : M07

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
MUNIMULA	12800.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.30	U	IJ
ARSENIC	9.00	mg/Kg	0.00		J
BARIUM	121.00	mg/Kg	0.00		J
BERYLLIUM	0.56	mg/Kg	0.00	В	3
CADMIUM	0.00		1.20	Ū	บJ
CALCIUM	4530.00	mg/Kg	0.00		J
CERONIUM	16.30	mg/Kg	0.00		J
COBALT	6.70	mg/Kg	0.00	В	J
COPPER	16.60	mg/Kg	0.00		J
IRON	14300.00	mg/Kg	0.00		J
LEAD	6.30	mg/Kg	0.00		J
MAGNESIUM	2930.00	mg/Kg	0.00	1	J
MANGANESE	149.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	U	บJ
NICKEL	14.60	mg/Kg	0.00		J
POTASSIUM	3130.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	U	บJ
SILVER	0.00		2.50	ט	נט
SODIUM	1080.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.50	U	บัง
VANADIUM	60.90	mg/Rg	0.00		J
ZINC	45.90	mg/Kg	0.00	T	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1093 ANALYSIS TYPE : MET

SAMPLE TYPE : SR SAMPLE MATRIX : S

SDG: 1089

ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	13800.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	ū	บง
ARSENIC	7.20	mg/Kg	0.00		J
BARIUM	131.00	mg/Kg	0.00		J
BERYLLIUM	0.65	mg/Kg	0.00	В	J
CADHIUN	0.00		1.20	ט	ชร
CALCIUM	4410.00	mg/Kg	0.00		J
CHROMIUM	14.00	mg/Kg	0.00		J
COBALT	6.70	mg/Kg	0.00	В	J
COPPER	16.70	mg/Kg	0.00	1	J
IRON	22900.00	mg/Rg	0.00	1	J
LEAD	6.60	mg/Kg	0.00		J
MAGNESIUM	3130.00	mg/Kg	0.00		J
MANGANESE	208.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	υ	บว
NICKEL	17.00	mg/Kg	0.00		J
POTASSIUM	2420.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	U	บัง
SILVER	0.00		2.50	U	บว
SODIUM	1110.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.50	U	บว
VANADIUM	61.20	mg/Kg	0.00		J
ZINC	42.30	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final **Summary** REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1094

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : MET

SDG: 1089

ASSOCIATED MB : M07

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	21600.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.10	ס	υJ
ARSENIC	13.50	mg/Kg	0.00		J
BARIUM	206.00	mg/Kg	0.00		J
BERYLLIUM	0.68	mg/Kg	0.00	В	J
CADHIUM	1.40	mg/Kg	0.00		J
CALCIUM	12600.00	mg/Kg	0.00		J
CHROMIUM	22.00	mg/Kg	0.00		J
COBALT	10.90	mg/Kg	0.00	В	J
COPPER	19.10	mg/Kg	0.00		J
IRON	27000.00	mg/Kg	0.00		J
LEAD	19.50	mg/Kg	0.00		J
Magnesium	6230.00	mg/Kg	0.00		J
Manganese	396.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	บง
NICKEL	24.50	mg/Kg	0.00		J
POTASSIUM	1700.00	mg/Kg	0.00		3
SELENIUM	0.00		0.99	ט	บJ
SILVER	0.00		2.50	ט	ซฮ
SODIUM	2650.00	mg/Kg	0.00	1	J
TRALLIUM	0.00	1	0.49	U	บว
VANADIUM	98.00	mg/Kg	0.00		J
ZINC	63.20	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Novice Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1095

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : MET

SDG: 1089

ASSOCIATED MB : M07

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	30800.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.50	U	נט
ARSENIC	63.80	mg/Kg	0.00		J
BARIUM	235.00	mg/Kg	0.00		J
BERYLLIUM	0.83	mg/Kg	0.00	В	J
CADHIUN	0.00	1	1.30	ט	ซฮ
CALCIUM	5050.00	mg/Kg	0.00		J
CFRONIUM	16.80	mg/Kg	0.00		J
COBALT	10.80	mg/Kg	0.00	В	J
COPPER	21.10	mg/Kg	0.00		J
IRON	35500.00	mg/Kg	0.00		J
LEAD	9.60	mg/Kg	0.00		J
Magnesium	4910.00	mg/Kg	0.00		J
Manganese	621.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	บ	บJ
NICREL	11.70	mg/Kg	0.00		J
POTASSIUM	3040.00	mg/Kg	0.00		3
SELENIUM	0.00		1.00	ט	ชม
SILVER	0.00		2.50	ช	บJ
SODIUM	2110.00	mg/Kg	0.00		J
TRALLIUM	0.00		0.51	υ	נט
VANADIUM	63.20	mg/Kg	0.00		J
ZINC	49.10	mg/Kg	0.00	Ī	J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1096 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1089 SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	18700.00	mg/Kg	0.00		J
ANTIHONY	0.00		15.40	Ū	ชิงิ
ARSENIC	39.30	mg/Kg	0.00		J
BARIUM	151.00	mg/Kg	0.00		J
BERYLLIUM	0.63	mg/Kg	0.00	В	J
CADHIUM	1.50	mg/Kg	0.00		J
CALCIUM	6110.00	mg/Kg	0.00		J
CEROMIUM	18.80	mg/Kg	0.00		J
COBALT	10.00	mg/Kg	0.00	В	J
COPPER	21.70	mg/Kg	0.00		J
IRON	22900.00	mg/Rg	0.00		J
LEAD	5.90	mg/Kg	0.00		J
MAGNESIUM	5020.00	mg/Kg	0.00		J
Manganese	161.00	mg/Kg	0.00		J
MERCURY	0.00		0.14	U	บJ
NICKEL	17.90	mg/Kg	0.00		J
POTASSIUM	2650.00	mg/Kg	0.00		3
SELENIUM	0.00		1.10	ij	ບJ
SILVER	0.00		2.70	U	נט
SODIUM	1340.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.54	ט	บว
VANADIUM	58.60	mg/Kg	0.00	1	J
ZINC	50.80	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1097 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	16100.00	mg/Kg	0.00		J
ANTIMONY	0.00		12.00	U	UJ
ARSENIC	4.80	mg/Kg	0.00		J
BARIUM	136.00	mg/Kg	0.00		J
BERYLLIUM	0.50	mg/Kg	0.00	В	J
CADMIUM	0.00		1.00	υ	UJ
CALCIUM	6960.00	mg/Kg	0.00		J
CHROMIUM	14.50	mg/Kg	0.00		J
COBALT	8.90	mg/Rg	0.00	В	J
COPPER	18.00	mg/Kg	0.00		J
IRON	20200.00	mg/Kg	0.00		J
LEAD	4.60	mg/Kg	0.00		J
MAGNESIUM	6690.00	mg/Kg	0.00		J
MANGANESE	302.00	mg/Kg	0.00		3
MERCURY	0.00		0.10	U	UJ
NICKEL	20.60	mg/Kg	0.00		J
POTASSIUM	1490.00	mg/Kg	0.00		J
SELENIUM	0.00		0.84	U	UJ
SILVER	0.00	T	2.10	บ	UJ
SODIUM	1310.00	mg/Kg	0.00	1	J
THALLIUM	0.00		0.42	U	บว
VANADIUM	66.30	mg/Kg	0.00	1	J
ZINC	46.70	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final 🛲 REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

EN. NG SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1098 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinel
ALUHINUM	20200.00	mg/Kg	0.00		J
Antihony	0.00		15.40	Ū	ชง
ARSENIC	45.00	Eg/Kg	0.00		J
BARIUM	174.00	mg/Kg	0.00		J
BERYLLIUM	0.82	mg/Kg	0.00	В	J
CADHIUH	0.00		1.40	U	ซฮ
CALCIUM	5470.00	mg/Kg	0.00		3
CHRONIUM	14.40	mg/Kg	0.00		J
COBALT	10.70	mg/Kg	0.00	В	J
COPPER	21.70	mg/Kg	0.00		J
IRON	36400.00	mg/Kg	0.00		J
LEAD	9.50	mg/Kg	0.00		J
Magnesium	6520.00	mg/Kg	0.00	1	J
Manganese	641.00	mg/Kg	0.00	1	J
MERCURY	0.00		0.14	U	บัง
NICKEL	23.50	mg/Kg	0.00	1	J
POTASSIUM	4430.00	mg/Kg	0.00	T	J
SELENIUM	0.00		1.10	υ	บJ
SILVER	0.00		2.70	U	ซง
SODIUM	1190.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.54	υ	ซฮ
VANADIUM	57.30	mg/Kg	0.00		J
ZINC	49.10	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1099

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : MET SDG : 1089

ASSOCIATED MB : M07

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	19600.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	Ū	บัง
ARSENIC	33.00	mg/Kg	0.00	Τ	J
BARIUM	167.00	mg/Kg	0.00		J
BERYLLIUM	0.59	mg/Kg	0.00	В	J
CADHIUM	0.00		1.30	Ū	บัง
CALCIUM	4450.00	mg/Kg	0.00	I	J
CHRONIUM	15.30	mg/Kg	0.00		J
COBALT	10.30	mg/Kg	0.00	В	J
COPPER	21.20	mg/Kg	0.00		J
IRON	21900.00	mg/Kg	0.00		J
LEAD	9.00	mg/Kg	0.00	1	J
MAGNESIUM	5040.00	mg/Kg	0.00		J
MANGANESE	377.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	U	UJ
NICKEL	17.00	mg/Kg	0.00		J
POTASSIUM	3880.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	ט	บัง
SILVER	0.00		2.60	U	UJ
SODIUM	1080.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.51	U	UJ
VANADIUM	56.90	mg/Kg	0.00		J
ZINC	45.90	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1100 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	29900.00	mg/Kg	0.00		J
ANTIHONY	0.00		15.30	ט	บว
ARSENIC	36.90	mg/Kg	0.00	I	J
BARIUM	173.00	mg/Kg	0.00		J
BERYLLIUM	0.79	mg/Kg	0.00	В	J
CADMIUM	0.00		1.30	ט	UJ
CALCIUM	8310.00	mg/Kg	0.00		J
CHROMIUM	23.70	mg/Kg	0.00		J
COBALT	15.60	mg/Kg	0.00		J
COPPER	54.90	mg/Kg	0.00		J
IRON	20700.00	mg/Kg	0.00		J
LEAD	8.20	mg/Kg	0.00		J
MAGNESIUM	5480.00	mg/Kg	0.00		J
MANGANESE	319.00	mg/Kg	0.00		J
MERCURY	0.74	mg/Kg	0.00		J
NICKEL	31.10	mg/Kg	0.00		J
POTASSIUM	2900.00	mg/Kg	0.00		J
SELENIUM	0.00		1.10	ט	บง
SILVER	0.00	1	2.70	ט	บว
SODIUM	1810.00	mg/Kg	0.00		J
THALLIUM	0.00	1	0.54	ט	บัง
VANADIUM	93.30	mg/Rg	0.00		J
ZINC	60.70	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1101 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	19200.00	mg/Kg	0.00		J
Antimony	0.00		15.60	ט	บัง
ARSENIC	23.20	mg/Kg	0.00		J
BARIUM	169.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.55	U	บJ
CADHIUN	0.00		1.40	U	ชง
CALCIUM	20000.00	mg/Kg	0.00	T	J
CHROMIUM	9.60	mg/Rg	0.00		J
COBALT	8.60	mg/Kg	0.00	В	J
COPPER	21.20	mg/Kg	0.00		J
IRON	18400.00	mg/Kg	0.00		J
LEAD	7.00	mg/Kg	0.00		J
MAGNESIUM	8640.00	mg/Kg	0.00		J
MANGANESE	478.00	mg/Kg	0.00		J
MERCURY	1.90	mg/Kg	0.00		J
NICKEL	12.60	mg/Kg	0.00		J
POTASSIUM	3370.00	mg/Kg	0.00		J
SELENIUM	0.00		1.10	U	ชม
SILVER	0.00		2.70	ט	บJ
SODTUM	1810.00	mg/Kg	0.00		3
THALLIUM	0.00		0.55	ט	ซฮ
VANADIUM	48.10	mg/Kg	0.00		J
ZINC	48.60	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1102 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	16500.00	mg/Kg	0.00		J
ANTIMONY	0.00		13.70	U	บัง
ARSENIC	37.80	mg/Kg	0.00		J
BARIUM	194.00	mg/Kg	0.00		J
BERYLLIUM	0.58	mg/Kg	0.00	В	J
CADHIUM	0.00		1.20	ū	UJ
CALCIUM	3990.00	mg/Kg	0.00		J
CHROMIUM	12.60	mg/Kg	0.00		J
COBALT	8.80	mg/Kg	0.00	В	J
COPPER	18.60	mg/Kg	0.00		J
IRON	20500.00	mg/Kg	0.00		J
LEAD	7.70	mg/Kg	0.00		J
MAGNESIUM	3630.00	mg/Kg	0.00		J
MANGANESE	375.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	U	บัง
NICKEL	11.70	mg/Kg	0.00		J
POTASSIUM	2980.00	mg/Kg	0.00	1	J
SELENIUM	0.00		0.96	ט	บัง
SILVER	0.00	1	2.40	U	UJ
SODIUM	1240.00	mg/Kg	0.00		J
THALLIUM	0.00		0.48	U	נט
VANADIUM	46.10	mg/Kg	0.00		J
ZINC	41.90	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1103 ANALYSIS TYPE : MET

SDG: 1089

SAMPLE TYPE : SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	16300.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.60	U	ŲJ
ARSENIC	29.70	mg/Kg	0.00		J
BARIUM	106.00	mg/Kg	0.00		J
BERYLLIUM	0.64	mg/Kg	0.00	В	J
CADHIUM	0.00		1.30	Ū	บัง
CALCIUM	6040.00	mg/Kg	0.00		J
CHROMIUM	16.80	mg/Kg	0.00		J
COBALT	12.70	mg/Kg	0.00	В	J
COPPER	19.90	mg/Kg	0.00		J
IRON	22200.00	mg/Kg	0.00		J
LEAD	4.40	mg/Kg	0.00		J
MAGNESIUM	4860.00	mg/Kg	0.00		J
MANGANESE	168.00	mg/Rg	0.00		J
MERCURY	0.00		0.13	Ū	UJ
NICKEL	38.00	mg/Kg	0.00		J
POTASSIUM	2460.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	U	UJ
SILVER	0.00		2.60	U	บบ
SODIUM	1260.00	mg/Kg	0.00	В	J
TRALLIUM	0.00		0.51	U	บว
VANADIUM	71.10	mg/Kg	0.00	1	J
ZINC	57.00	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1104
ANALYSIS TYPE : MET

SAMPLE TYPE: SDG: 1089 SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20700.00	mg/Kg	0.00		J
ANTIMONY	0.00	T	16.20	υ	บว
ARSENIC	58.10	mg/Kg	0.00		J
BARIUM	178.00	mg/Kg	0.00		J
BERYLLIUM	0.82	mg/Kg	0.00	В	J
CADMIUM	0.00	T	1.40	ט	บัง
CALCIUM	5490.00	mg/Kg	0.00		J
CHROMIUM	14.00	mg/Rg	0.00		J
COBALT	15.10	mg/Kg	0.00		J
COPPER	23.60	mg/Kg	0.00		3
IRON	26300.00	mg/Kg	0.00		J
LEAD	10.20	mg/Kg	0.00		J
Magnesium	6160.00	mg/Rg	0.00		J
MANGANESE	572.00	mg/Rg	0.00		J
MERCURY	0.00		0.14	U	บัง
NICKEL	0.00	1	11.40	υ	ชูง
POTASSIUM	4510.00	mg/Kg	0.00	—	J
SELENIUM	0.00		1.10	U	UJ
SILVER	0.00		2.80	U	ซิงิ
SODIUM	1440.00	mg/Kg	0.00	1	J
THALLIUM	0.00		0.57	υ	บง
VANADIUH	45.10	mg/Kg	0.00		J
ZINC	50.50	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1105 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1105 SAMPLE MATRIX : S ASSOCIATED MB : M08

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	20800.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	ט	บJ
BARIUM	170.00	mg/Kg	0.00		J
BERYLLIUM	0.62	mg/Kg	0.00	В	J
CADHIUM	0.00		1.20	σ	บJ
CALCIUM	7180.00	mg/Rg	0.00		J
CHRONIUM	23.40	mg/Kg	0.00		J
COBALT	9.50	mg/Rg	0.00	В	J
COPPER	21.50	mg/Kg	0.00		J
IRON	22100.00	mg/Kg	0.00		J
LEAD	5.30	mg/Kg	0.00		J
MAGNESIUM	4270.00	mg/Kg	0.00		J
Manganese	195.00	mg/Kg	0.00		J
MBRCURY	0.00		0.12	บ	ซุ
NICKEL	18.90	mg/Kg	0.00		J
POTASSIUM	1890.00	mg/Kg	0.00		J
SELENIUM	0.00	7	1.00	U	บป
SILVER	0.00		2.50	บ	บูง
SODIUM	1520.00	mg/Rg	0.00		J
THALLIUM	0.00	1	0.50	ט	ซุฮ
VANADIUM	70.20	mg/Kg	0.00		J
ZINC	51.20	mg/Rg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1106 ANALYSIS TYPE : MET SAMPLE TYPE : SR SDG : 1105 SAMPLE MATRIX : S ASSOCIATED MB : M08

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUHINUM	17300.00	mg/Kg	0.00		J
Antihony	0.00		14.00	U	บว
ARSENIC	115.00	mg/Rg	0.00		J
BARIUM	127.00	mg/Kg	0.00		J
BERYLLIUM	0.79	mg/Kg	0.00	В	J
CADMIUM	0.00		1.20	ū	บJ
CALCIUN	5970.00	mg/Kg	0.00		3
CHRONIUM	18.50	mg/Kg	0.00		3
COBALT	9.30	mg/Kg	0.00	В	3
COPPER	21.50	mg/Kg	2.00		J
IRON	24600.00	mg/Kg	0.00		3
LEAD	4.40	mg/Kg	0.00		3
Magnesium	4020.00	mg/Kg	0.00		J
Manganese	170.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	ט	บJ
NICKEL	20.40	mg/Kg	0.00		3
POTASSIUM	1660.00	mg/Kg	0.00		3
SELENIUM	0.00		1.00	υ	บัง
SILVER	0.00		2.50	U	ขั้
SODIUM	1230.00	mg/Kg	0.00	В	J
TEALLIUM	0.00		0.50	U	บัง
VANADIUM	72.00	mg/Kg	0.00		J
ZINC	52.70	mg/Kg	0.00		3

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1107 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1105 SAMPLE MATRIX : S ASSOCIATED MB : M08

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	19200.00	mg/Kg	0.00		J
ANTIMONY	0.00		14.00	ט	ชม
ARSENIC	12.00	mg/Rg	0.00		J
BARIUM	113.00	mg/Kg	0.00		J
DERYLLIUM	0.00	mg, Ny	0.00	В	J
CADMIUM	0.00		1.40	ט	บJ
CALCIUM	5620.00	mg/Kg	0.00		J
CHROMIUM	21.10	mg/Kg	0.00		J
COBALT	11.50	mg/Kg	0.00	В	J
COPPER	19.90	mg/Kg	0.00	Î	J
IRON	24100.00	mg/Kg	0.00		J
LEAD	6.10	mg/Kg	0.00		J
MAGNESIUM	3870.00	mg/Kg	0.00		J
Manganese	154.00	mg/Kg	0.00		J
MERCURY	0.14	mg/Kg	0.00		J
NICKBL	24.90	mg/Kg	0.00		J
POTASSIUM	1440.00	mg/Kg	0.00		J
SELENIUM	0.00	1	1.10	ט	บว
SILVER	0.00		2.90	ט	UJ
SODIUM	1230.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.57	ט	บว
VANADIUM	95.70	mg/Kg	0.00		J
SINC	48.10	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1108

SAMPLE TYPE : ER SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG : 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
Antihony	0.00		60.00	υ	ប
ARSENIC	0.00		4.00	U	U
BERYLLIUM	0.00		1.00	ט	ប
CADMIUM	0.00		5.00	U	U
CHRONIUM	0.00		6.00	U	U
COBALT	0.00		9.00	ט	U
LEAD	0.00		2.00	u	U
MERCURY	0.00		0.20	U	U
NICKEL	0.00		11.00	U	Ū
POTASSIUM	0.00		1363.00	บ	υ
SELENIUM	0.00		4.00	U	ט
SILVER	0.00		6.00	U	U
THALLIUM	0.00		2.00	υ	ט
VANADIUM	0.00		5.00	U	υ
			L		

PROJECT: <u>NEVADA AIR NATIONAL GUARD</u>

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1109

ANALYSIS TYPE : MET

SAMPLE TYPE : ER SAMPLE MATRIX : W SDG : 1108 ASSOCIATED MB : C: ASSOCIATED MB : Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ANTIMONY	0.00	Ì	60.00	ט	υ
ARSENIC	0.00		4.00	ט	U
BERYLLIUM	0.00		1.00	U	ช
CADHIUM	0.00		5.00	บ	υ
CHRONIUM	0.00		6.00	ט	ט
COBALT	0.00		9.00	U	U
COPPER	0.00		5.00	σ	σ
LEAD	0.00		2.00	U	ט
MAGNESIUH	0.00		46.00	U	ט
MANGANESE	0.00		2.00	U	ט
MERCURY	0.00		0.20	U	ט
NICKEL	0.00		11.00	υ	ט
POTASSIUM	0.00		1363.00	υ	υ
SELENIUM	0.00		4.00	ט	U
SILVER	0.00		6.00	U	U
THALLIUM	0.00		2.00	ט	U
VANADIUM	0.00		5.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1110

SDG: 1108

SAMPLE TYPE : ER SAMPLE MATRIX : W

ASSOCIATED MB : Clean Samp

ANALYSIS TYPE : MET TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ANTIMONY	0.00		60.00	ט	ט
ARSENIC	0.00		4.00	ט	ū
BERYLLIUM	0.00		1.00	ט	ט
CADMIUM	0.00		5.00	U	Ū
CHROMIUM	0.00		6.00	υ	ט
COBALT	0.00	T	9.00	U	U
COPPER	0.00		5.00	Ū	ט
LEAD	0.00		2.00	ט	U
Magnesium	0.00		46.00	U	U
MERCURY	0.00]	0.20	ט	ט
NICKEL	0.00		11.00	ט	U
POTASSIUM	0.00		1363.00	ซ	U
SELENIUM	0.00		4.00	บ	U
SILVER	0.00	1	6.00	U	U
THALLIUM	0.00		2.00	U	U
VANADIUM	0.00		5.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1112 SAMPLE TYPE: SAMPLE MATRIX: SAM

ASSOCIATED MB : M06

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11600.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	Ū	UJ
ARSENIC	33.70	mg/Kg	0.00		J
BARIUM	71.10	mg/Kg	0.00		J
BERYLLIUM	0.00		0.49	υ	บJ
CADHIUN	0.00		1.20	U	บว
CALCIUM	4060.00	mg/Kg	0.00		J
CEROMIUM	14.00	mg/Kg	0.00		J
COBALT	9.90	mg/Rg	0.00	В	J
COPPER	17.70	mg/Kg	0.00		J
IRON	16900.00	mg/Kg	0.00		J
LEAD	4.50	mg/Rg	0.00		J
Magnesium	5010.00	mg/Kg	0.00		J
MANGANESE	346.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	υ	ชม
NICKEL	23.00	mg/Kg	0.00		J
POTASSIUM	3490.00	mg/Kg	0.00		J
SELENIUM	0.00	1	0.98	υ	บJ
SILVER	0.00	1	2.40	U	עט
SODIUM	989.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.49	U	บJ
VANADIUM	61.90	mg/Kg	0.00		J
ZINC	37.00	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1113 ANALYSIS TYPE : MET

SDG: 1076

SAMPLE TYPE : SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	15100.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	U	ŪĴ
ARSENIC	5.30	mg/Kg	0.00		J
BARIUM	111.00	mg/Kg	0.00		J
BERYLLIUM	0.00		0.52	U	บัง
CADHIUN	0.00		1.30	ט	ยัง
CALCIUM	5990.00	mg/Kg	0.00		J
CERONIUM	14.60	mg/Kg	0.00		J
COBALT	8.60	mg/Kg	0.00	В	J
COPPER	24.60	mg/Kg	0.00		J
IRON	21200.00	mg/Kg	0.00		J
LEAD	6.40	mg/Kg	0.00		J
MAGNESIUM	5830.00	mg/Kg	0.00		J
MANGANESE	280.00	mg/Kg	0.00		J
MERCURY	0.00		0.13	ט	บิงิ
NICKEL	25.00	mg/Kg	0.00		J
POTASSIUM	1820.00	mg/Kg	0.00		J
SELENIUM	0.00		1.00	ט	ขว
SILVER	0.00		2.60	υ	บว
SODIUM	879.00	mg/Rg	0.00	В	3
TEALLIUM	0.00		0.52	19	73.7
VANADIUM	65.60	mg/Kg	0.00		J
ZINC	58.00	mg/Rg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1114 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: MET SDG: 1076 ASSOCIATED MB: M06

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	12800.00	mg/Kg	0.00		J
ANTIHONY	0.00		14.00	U	บง
ARSENIC	4.90	mg/Kg	0.00		J
BARIUM	64.10	mg/Kg	0.00		J
BERYLLIUM	0.00		0.50	U	UJ
CADHIUN	0.00		1.20	U	υJ
CALCIUM	5380.00	mg/Kg	0.00		J
CHROMIUM	14.70	mg/Rg	0.00		J
COBALT	7.90	mg/Kg	0.00	В	J
COPPER	23.60	mg/Kg	0.00		J
IRON	21500.00	mg/Kg	0.00		J
LEAD	4.50	mg/Rg	0.00		J
MAGNESIUM	4190.00	mg/Kg	0.00		J
MANGANESE	142.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	U	บJ
NICKEL	16.10	mg/Kg	0.00		J
POTASSIUM	2360.00	mg/Kg	0.00		J
SELENIUM	0.00		0.99	U	ບປ
SILVER	0.00		2.50	ט	עט
SODIUM	1040.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.50	U	บว
VANADIUM	58.50	mg/Kg	0.00		J
ZINC	52.50	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

Final Summary
REVIEWER: DFWIS MARTY
BEGINNING MPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1115 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1076 SAMPLE MATRIX : S ASSOCIATED MB : M06

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	12100.00	mg/Kg	0.00		J
ANTIHONY	0.00		380.00	Ū	υJ
ARSENIC	5.00	mg/Kg	0.00		3
BARIUM	104.00	mg/Kg	0.00		J
BERYLLIUM	0.00		380.00	U	บJ
CADHIUM	0.00		380.00	U	บJ
CALCIUM	4920.00	mg/Kg	0.00		J
CHRONIUM	9.80	mg/Kg	0.00		J
COBALT	7.30	mg/Kg	0.00	В	J
COPPER	22.20	mg/Kg	0.00		3
IRON	17100.00	mg/Kg	0.00		J
LEAD	4.10	mg/Kg	0.00		J
MAGNESIUM	5730.00	mg/Kg	0.00		J
MANGANESE	259.00	mg/Kg	0.00		J
MERCURY	0.00		380.00	U	บบ
NICKEL	16.80	mg/Kg	0.00		J
POTASSIUM	2030.00	mg/Kg	0.00		J
SELENIUM	0.00		380.00	U	บJ
SILVER	0.00		380.00	υ	נט
SODIUM	742.00	mg/Kg	0.00	В	J
TBALLIUM	0.00		380.00	U	עט
VANADIUH	45.10	mg/Kg	0.00		J
ZINC	43.00	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1116
ANALYSIS TYPE : MET

SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	9590.00	mg/Kg	0.00		J
ANTIMONY	0.00		13.60	υ	UJ
ARSENIC	47.60	mg/Rg	0.00		J
BARIUM	79.10	mg/Kg	0.00		J
BERYLLIUM	0.00		0.46	υ	บว
CADMIUM	0.00		1.10	ט	נט
CALCIUM	4760.00	mg/Kg	0.00		J
CHROMIUM	16.80	mg/Kg	0.00		J
COBALT	10.40	mg/Kg	0.00	В	3
COPPER	17.60	mg/Kg	0.00		J
IRON	19600.00	mg/Kg	0.00		J
LEAD	3.50	mg/Kg	0.00		J
MAGNESIUM	2650.00	mg/Kg	0.00		J
MANGANESE	910.00	mg/Kg	0.00		J
MERCURY	1.10	mg/Kg	0.00		J
NICKEL	16.50	mg/Kg	0.00		J
POTASSIUM	1830.00	mg/Kg	0.00		J
SELENIUM	0.00	1	0.91	U	บัง
SILVER	0.00		2.30	υ	บJ
SODIUM	912.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.46	υ	บง
VANADIUM	33.30	mg/Kg	0.00		J
ZINC	41.50	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1117 ANALYSIS TYPE : MET

SAMPLE TYPE: SAMPLE MATRIX: S

SDG: 1089

ASSOCIATED MB : M07

TRIP BLANK : 1120TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	11800.00	mg/Kg	0.00		J
ANTIHONY	0.00	1	13.90	U	บัง
ARSENIC	78.80	mg/Rg	0.00		J
BARIUM	104.00	mg/Kg	0.00		J
BERYLLIUM	0.53	mg/Kg	0.00	В	J
CADMIUM	0.00		1.20	υ	υJ
CALCIUM	5930.00	mg/Kg	0.00		J
CHROMIUM	16.70	mg/Kg	0.00		J
COBALT	8.60	mg/Kg	0.00	В	J
COPPER	20.30	mg/Kg	0.00		J
IRON	20200.00	mg/Kg	0.00		3
LEAD	2.30	mg/Rg	0.00		J
MAGNESIT	3420.00	mg/Kg	0.00		J
MANGANESE	124.00	mg/Kg	0.00		J
MERCURY	0.00		0.12	U	บว
NICKEL	11.70	mg/Kg	0.00		J
POTASSIUM	1760.00	mg/Kg	0.00		J
SELENIUM	0.00		0.98	ט	บJ
SILVER	0.00		2.40	ט	บJ
SODIUM	997.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.49	ט	บัง
VANADIUM	66.90	mg/Kg	0.00		J
ZINC	47.00	mg/Kg	0.00	1	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1118
ANALYSIS TYPE: MET

SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	19000.00	mg/Kg	0.00		J
Antihony	0.00	T	13.60	U	υJ
ARSENIC	6.70	mg/Kg	0.00		J
BARIUM	125.00	mg/Rg	0.00		J
BERYLLIUM	0.58	mg/Kg	0.00	В	J
CADHIUN	0.00		1.20	ט	บJ
CALCIUM	6770.00	mg/Kg	0.00	T.	3
CEROMIUM	18.20	mg/Kg	0.00		J
COBALT	9.40	mg/Kg	0.00	В	J
COPPER	21.20	mg/Kg	0.00		J
IRON	23000.00	mg/Kg	0.00		J
LEAD	5.50	mg/Kg	0.00		J
MAGNESIUP	6390.00	mg/Kg	0.00		J
MANGANESE	368.00	mg/Rg	0.00		J
MERCURY	0.00		0.12	υ	บJ
NICKEL	27.30	mg/Kg	0.00		J
POTASSIUM	2460.00	mg/Kg	0.00		3
SELENIUM	0.00	Ī	0.96	U	บJ
SILVER	0.00		2.40	U	UJ
SODIUM	1150.00	mg/Rg	0.00	В	J
TRALLIUM	0.00	1	0.48	Ū	บว
VANADIUM	72.00	mg/Kg	0.00	1	J
ZINC	52.70	mg/Kg	0.00	1	J
ZINC	52.70	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1119 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S ASSOCIATED MB : M07

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	10800.00	mg/Kg	0.00		J
Antihony	0.00		12.60	Ū	บJ
ARSENIC	3.80	mg/Kg	0.00		J
BARIUH	73.70	mg/Kg	0.00		J
BERYLLIUM	0.00		0.44	υ	ชม
CADHIUH	0.00		1.10	ט	บJ
CALCIUM	4690.00	mg/Kg	0.00		J
CHRONIUM	15.90	mg/Kg	0.00		J
COBALT	8.00	mg/Kg	0.00	В	J
COPPER	17.20	mg/Rg	0.00		J
IRON	17700.00	mg/Rg	0.00		3
LEAD	4.00	mg/Kg	0.00		J
MAGNESIUM	3250.00	mg/Kg	0.00		3
MANGANESE	266.00	mg/Kg	0.00		J
MERCURY	0.00		0.11	U	UJ
NICKEL	0.00		8.90	ט	IJ
POTASSIUM	1900.00	mg/Kg	0.00		J
SELENIUM	0.00		0.89	ט	บJ
SILVER	0.00		2.20	U	עט
SODIUM	890.00	mg/Kg	0.00	В	J
THALLIUM	0.00		0.44	ט	บJ
VANADIUM	36.70	mg/Kg	0.00	1	J
ZINC	41.40	mg/Kg	0.00		J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1500 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W ASSOCIATED MB : M09

TRIP BLANK : 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	568.00	µg/L	0.00		
Antimony	0.00		14.00	ū	נט
ARSENIC	152.00	µg/L	0.00		J
BARIUM	31.20	μg/L	0.00		
BERYLLIUM	0.00		1.00	U	UJ
CADHIUH	0.00		5.00	U	บJ
CALCIUM	47400.00	μg/L	0.00		
CHRONIUM	0.00		6.00	U	υJ
COBALT	0.00		9.00	ט	נט
COPPER	9.40	µg/L	0.00		
IRON	55.90	μg/L	0.00	1	J
LEAD	0.00		10.00	U	บJ
Magnesium	5040.00	μg/L	0.00		
Manganese	164.00	μg/L	0.00		
MERCURY	0.00		0.20	ט	บJ
NICREL	0.00		11.00	ט	ชง
POTASSIUM	14500.00	µg/L	0.00	1	
SELENIUM	4.20	μg/L	0.00		
SILVER	0.00		6.00	ט	נט
SODIUM	443000.00	µg/L	0.00		
PHALLIUM	0.00		2.00	ט	ซฮ
VANADIUM	13.00	µg/L	0.00		
INC	3.80	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1501 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W ASSOCIATED MB : M09

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	512.00	µg/L	0.00		
ANTIMONY	0.00	T	14.00	ט	บว
ARSENIC	116.00	μg/L	0.00		J
BARIUM	95.00	µg/L	0.00	Ī	
BERYLLIUM	0.00		1.00	U	UJ
CADHIUM	0.00		5.00	ט	บว
CALCIUM	66900.00	µg/L	0.00		
CHROMIUM	0.00		6.00	บ	υJ
COBALT	0.00		9.00	U	บัง
COPPER	10.50	μg/L	0.00		
IRON	43.80	μg/L	0.00		J
LEAD	0.00		10.00	ט	บัง
MAGNESIUM	18600.00	μg/L	0.00		
MANGANESE	384.00	μg/L	0.00		
MERCURY	0.00		0.20	υ	บว
NICKEL	0.00		11.00	ט	บว
POTASSIUM	12100.00	µg/L	0.00		
SELENIUM	4.90	µg/L	0.00		
SILVER	0.00		6.00	υ	บว
SODIUM	394000.00	µg/L	0.00		
THALLIUM	0.00		2.00	υ	עט –
VANADIUM	7.10	μg/L	0.00	1	7
ZINC	4.60	μg/L	0.00		1

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1502 ANALYSIS TYPE : MET

SDG : 1500

SAMPLE TYPE: SAMPLE MATRIX: W ASSOCIATED MB : M09

TRIP BLANK: 1506TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	490.00	µg/L	0.00		
ANTIMONY	0.00		14.00	U	บัง
ARSENIC	55.40	µg/L	0.00		J
BARIUM	106.00	µg/L	0.00		
BERYLLIUM	0.00		1.00	U	บัง
CADHIUM	0.00		5.00	U	UJ
CALCIUM	96400.00	ug/L	0.00		
CHRONIUM	0.00		6.00	U	บJ
COBALT	0.00		9.00	Ū	บว
COPPER	13.40	µg/L	0.00		
IRON	43.90	μg/L	0.00		J
LEAD	0.00		2.00	ט	บว
MAGNESIUM	24100.00	µg/L	0.00		
MANGANESE	152.00	µg/L	0.00		
MERCURY	0.00		0.20	Ū	บัง
NICKEL	0.00		11.00	ט	บัง
POTASSIUM	16000.00	µg/L	0.00	1	
SELENIUM	0.00		4.00	U	UJ
SILVER	0.00		6.00	U	ซฮ
SODIUM	371000.00	μg/L	0.00		
THALLIUM	0.00		2.00	ט	עט
VANADIUM	17.90	µg/L	0.00	1	
ZINC	13.80	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1503 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1500 SAMPLE MATRIX : W ASSOCIATED MB : M09

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
ALUMINUM	449.00	µg/L	0.00		
ANTIMONY	0.00		14.00	ט	υJ
ARSENIC	58.60	µg/L	0.00		3
BARIUM	397.00	µg/L	0.00		
BERYLLIUM	0.00		1.00	ט	บว
CADHIUH	0.00		5.00	ט	บว
CALCIUM	83200.00	µg/L	0.00		1
CERONIUM	0.00		6.00	U	บJ
COBALT	15.30	μg/L	0.00		7
COPPER	109.00	µg/L	0.00		
IRON	34.30	µg/L	0.00		J
LEAD	0.00		2.00	ט	ซฮ
Magnesium	22900.00	μg/L	0.00		
Hanganese	4660.00	µg/L	0.00		
MERCURY	0.00		0.20	U	บัง
NICKEL	11.60	μg/L	0.00		
POTASSIUM	17200.00	µg/L	0.00		
SELENIUM	0.00		4.00	U	บJ
SILVER	0.00		6.00	U	บบ
SODIUM	371000.00	μg/L	0.00		
TEALLIUM	0.00		2.00	ט	ซฮ
VANADIUM	6.20	μg/L	0.00		
ZINC	22.60	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1504 ANALYSIS TYPE: MET SAMPLE TYPE : WR SDG : 1500 SAMPLE MATRIX : W ASSOCIATED MB : M09

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	498.00	µg/L	0.00		
ANTIHONY	0.00		14.00	ū	บัง
ARSENIC	57.10	µg/L	0.00		J
BARIUM	363.00	µg/L	0.00		
BERYLLIUM	0.00		1.00	υ	บJ
CADHIUM	0.00		5.00	U	บัง
CALCIUM	82100.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	บัง
COBALT	13.90	μg/L	0.00		
COPPER	104.00	µg/L	0.00		
IRON	0.00		34.00	U	บัง
LEAD	0.00		2.00	U	บัง
MAGNESIUM	22600.00	μg/L	0.00		
MANGANESE	4080.00	μg/L	0.00		
MERCURY	0.00		0.20	υ	UJ
NICKEL	12.80	μg/L	0.00		
POTASSIUM	15700.00	μg/L	0.00		
SELENIUM	0.00	1	4.00	ט	บJ
SILVER	0.00		6.00	U	บJ
SODIUM	361000.00	µg/L	0.00	1	
THALLIUM	0.00	1	2.00	ט	UJ
VANADIUM	0.00		5.00	U	UJ
ZINC	6.90	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1507 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W
ASSOCIATED MB : M09

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	351.00	µg/L	0.00		
Antimony	0.00		14.00	ט	ชง
ARSENIC	19.60	μg/L	0.00		J
BARIUM	27.60	μg/L	0.00		
BERYLLIUM	0.00		1.00	ט	UJ
CADHIUM	0.00		5.00	U	ซฮ
CALCIUM	47000.00	µg/L	0.00		
CHRONIUN	0.00		6.00	U	ช3
COBALT	0.00		9.00	U	UJ
COPPER	13.80	µg/L	0.00	7	
IRON	0.00		34.00	U	บัง
Leau	0.00		2.00	U	ชฮ
MAGNESIUM	10000.00	μg/L	0.00		
MANGANESE	90.80	µg/L	0.00		
MERCURY	0.00		0.20	U	UJ
NICREL	0.00		11.00	U	บว
POTASSIUM	9480.00	µg/L	0.00		
SELENIUM	0.00		40.00	U	บัง
SILVER	0.00		6.00	ט	03
SODIUM	56500.00	µg/L	0.00	1	1
THALLIUM	0.00	1	2.00	ט	บง
VANADIUM	5.50	µg/L	0.00		—
ZINC	0.00		3.00	υ	UJ
		<u> </u>		<u> </u>	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DE .NIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1508 SAMPLE TYPE: SAMPLE MATRIX: W
ANALYSIS TYPE: MET SDG: 1500 ASSOCIATED MB: M09

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	392.00	µg/L	0.00		
ANTIHONY	0.00		14.00	ט	υJ
ARSENIC	45.20	µg/L	0.00		J
BARIUM	64.20	µg/L	0.00		
BERYLLIUM	0.00		1.00	U	บัง
CADMIUM	0.00		5.00	ū	บัง
CALCIUM	66600.00	µg/L	0.00		
CEROMIUM	0.00		6.00	ט	บัง
COBALT	0.00		9.00	ט	บัง
COPPER	11.30	μg/L	0.00		
IRON	0.00		34.00	U	บว
LEAD	0.00	Ť Ť	2.00	ט	บว
MAGNESIUM	21100.00	µg/L	0.00		
Manganese	1350.00	μg/L	0.00		
MERCURY	0.00		0.20	U	עט
NICKEL	0.00		11.00	ט	บว
POTASSIUM	17200.00	µg/L	0.00		
SELENIUM	0.00		4.00	บ	บัง
SILVER	0.00		6.00	ט	บJ
SODIUM	132000.00	µg/L	0.00		
THALLIUM	0.00		2.00	บ	บัง
VANADIUM	6.90	µg/L	0.00		
ZINC	4.90	µg/L	0.00	T	T

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1509 ANALYSIS TYPE : MET

SAMPLE TYPE: SAMPLE MATRIX: W SDG: 1500 ASSOCIATED MB: M09

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	380.00	µg/L	0.00		
ANTIMONY	0.00		14.00	U	บัว
ARSENIC	31.30	μg/L	0.00		J
BARIUM	53.70	μg/L	0.00		
BERYLLIUM	0.00		1.00	υ	บัง
CADHIUN	0.00		5.00	บ	บัว
CALCIUM	54100.00	µg/L	0.00		
CHROMIUM	0.00		6.00	υ	บว
COBALT	0.00		9.00	ט	ชม
COPPER	0.00		5.00	U	บJ
IRON	47.90	μg/L	0.00		J
LEAD	0.00		2.00	ט	บJ
MAGNESIUM	11000.00	µg/L	0.00		
MANGANESE	207.00	μg/L	0.00		
MERCURY	0.00		0.20	ט	ยว
NICKEL	0.00		11.00	U	נט
POTASSIUM	12600.00	µg/L	0.00		
SELENIUM	0.00		4.00	ט	บJ
SILVER	0.00		6.00	ט	ชง
SODIUM	175000.00	μg/L	0.00		
THALLIUM	0.00		2.00	ט	נט
VANADIUM	0.00		5.00	ט	נט
ZINC	13.80	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1510 ANALYSIS TYPE : MET SDG: 1500

SAMPLE TYPE: SAMPLE MATRIX: W SDG: 1500 ASSOCIATED MB: M09

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	391.00	μg/L	0.00		
ANTIMONY	0.00		14.00	U	נט
ARSENIC	30.40	µg/L	0.40		J
BARIUM	48.60	µg/L	0.00		
BERYLLIUM	0.00		1.00	U	บัง
CADMIUM	0.00		5.00	ū	บJ
CALCIUM	45700.00	µg/L	0.00		
CHROMIUM	0.00	Ì	6.00	ט	υJ
COBALT	0.00	Ì	9.00	ט	บัว
COPPER	0.00		5.00	U	บJ
IRON	47.90	µg/L	0.00		J
LEAD	0.00		2.00	U	נט
MAGNESIUM	9480.00	μg/L	0.00		
MANGANESE	136.00	μg/L	0.00		
MERCURY	0.00	Ì	0.20	U	บัง
NICKEL	0.00		11.00	ט	נט
POTASSIUM	11700.00	µg/L	0.00	1	
SELENIUM	0.00		4.00	U	บัง
SILVER	0.00		6.00	υ	บัง
SODIUM	154000.00	µg/L	0.00		
TRALLIUM	0.00		2.00	ט	บบ
VANADIUM	5.10	µg/L	0.00		1
ZINC	6.80	µg/L	0.00		Ì

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1511 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W
ASSOCIATED MB : M09

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	383.00	µg/L	0.00		
ANTIHONY	0.00		14.00	υ	บัว
ARSENIC	25.70	µg/L	0.00		J
BARIUM	64.80	µg/L	0.00		
BERYLLIUM	0.00		1.00	ט	บJ
CADMIUM	0.00		5.00	Ū	ซฮ
CALCIUM	57800.00	μg/L	0.00		
CEROMIUM	0.00		6.00	U	עט
COBALT	0.00		9.00	U	บัง
COPPER	0.00		5.00	Ü	บว
IRON	0.00		34.00	ט	UJ
LEAD	0.00		2.00	U	עט
MAGNESIUM	13400.00	µg/L	0.00		
HANGANESE	734.00	µg/L	0.00		
MERCURY	0.00		0.20	U	บว
NICKEL	0.00		11.00	ט	บว
POTASSIUM	13400.00	μg/L	0.00		T
SELENIUM	0.00		4.00	ט	נט
SILVER	0.00		6.00	ט	บว
SODIUM	187000.00	µg/L	0.00		1
TEALLIUM	0.00		2.00	ט	บบ
VANADIUM	0.00		5.00	ט	บป
ZINC	15.70	µg/L	0.00	†	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1513

SAMPLE TYPE : ER

SDG: 1500

SAMPLE MATRIX : W ASSOCIATED MB : M09

ANALYSIS TYPE : MET

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	252.00	μg/L	0.00		
ANTIHONY	0.00		14.00	ט	บัว
ARSENIC	0.00		4.00	U	บัง
BARIUM	3.10	μg/L	0.00		
BERYLLIUM	0.00		1.00	บ	บัง
CADMIUM	0.00		5.00	ប	บJ
CALCIUM	71.20	µg/L	0.00		
CHRONIUM	0.00		6.00	ט	บJ
COBALT	0.00	1	9.00	ប	บJ
COPPER	0.00		5.00	ט	บง
IRON	91.90	µg/L	0.00		J
LRAD	0.00		2.00	U	UJ
MAGNESIUM	0.00		46.00	ט	UJ
Manganese	0.00		2.00	ט	UJ
MERCURY	0.00		0.20	บ	บัง
NICKEL	0.00		11.00	U	บัง
POTASSIUM	0.00		360.00	U	บว
SELENIUM	0.00		4.00	υ	υJ
SILVER	0.00		6.00	U	บJ
SODIUM	552.00	µg/L	0.00		
TRALLIUM	0.00		2.00	U	บฮ
VANADIUM	0.00		5.00	U	UJ
ZINC	6.50	µg/L	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1514

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

TRIP BLANK: 1512TB

SDG: 1500

ASSOCIATED MB : M09

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	389.00	µg/L	0.00		
ANTIHONY	0.00		14.00	U	บัง
ARSENIC	43.40	µg/L	0.00		J
BARIUM	95.50	µg/L	0.00		
BERYLLIUM	0.00		1.00	บ	บว
CADHIUM	0.00		5.00	ס	UJ
CALCIUM	61600.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	ชิว
COBALT	0.00		9.00	ซ	UJ
COPPER	0.00		5.00	ט	บง
IRON	35.90	µg/L	0.00		J
LEAD	0.00		2.00	U	ชัง
Magnesium	12400.00	µg/L	0.00	1	
Manganese	248.00	μg/L	0.00		
MERCURY	0.00		0.20	ט	บว
NICKEL	0.00		11.00	ט	ชิงิ
POTASSIUM	12400.00	μg/L	0.00		
SELENIUM	0.00		4.00	U	บูว
SILVER	0.00		6.00	ט	ชิงิ
MUIDOS	150000.00	μg/L	0.00		
THALLIUM	0.00	\Box	2.00	U	บว
VANADIUH	13.50	μg/L	0.00		1
ZINC	5.30	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1518 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W
ASSOCIATED MB : M09

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
305.00	μg/L	0.00	Ι	
0.00		14.00	Ū	บว
0.00		4.00	ū	ยง
38.90	µg/L	0.00		
0.00		1.00	U	บJ
0.00		5.00	U	บว
18600.00	µg/L	0.00		
0.00		6.00	U	ชว
0.00		9.00	U	ซฮ
0.00	1	5.00	υ	ซฮ
67.90	µg/L	0.00		J
0.00	1	2.00	Ū	UJ
6880.00	µg/L	0.00		
36.00	µg/L	0.00	1	
0.00	1	0.20	ט	บJ
0.00		11.00	ט	บัง
2850.00	µg/L	0.00		
0.00		4.00	U	บัง
0.00		6.00	U	บัง
16500.00	µg/L	0.00		
0.00		2.00	U	บัว
0.00		5.00	ט	บJ
4.20	μg/L	0.00	1	
	305.00 0.00 0.00 38.90 0.00 0.00 18600.00 0.00 0.00 67.90 0.00 6880.00 36.00 0.00 2850.00 0.00 16500.00 0.00	305.00	Detection Limit 1.00 1.	Detection Det

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1519 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1500 SAMPLE MATRIX : W
ASSOCIATED MB : M09

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	366.00	µg/L	0.00		
ANTIHONY	0.00		14.00	Ū	UJ
ARSENIC	26.80	µg/L	0.00		J
BARIUM	50.20	μg/L	0.00		
BERYLLIUM	0.00		1.00	ט	บJ
CADHIUH	0.00		5.00	U	บJ
CALCIUM	43200.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	บัง
COBALT	0.00		9.00	U	UJ
COPPER	11.10	μg/L	0.00		
IRON	0.00		34.00	บ	บว
LRAD	0.00		2.00	U	บว
Magnesium	8300.00	µg/L	0.00		
Manganese	111.00	µg/L	0.00		
MERCURY	0.00		0.20	U	ชม
NICKEL	0.00		11.00	ט	UJ
POTASSIUM	8820.00	µg/L	0.00		
SELENIUM	0.00		4.00	U	บJ
SILVER	0.00		6.00	บ	บว
SODIUM	98700.00	µg/L	0.00		
THALLIUM	0.00		2.00	บ	UJ
VANADIUM	11.90	μg/L	0.00		
ZINC	5.30	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1520 ANALYSIS TYPE : MET

SAMPLE TYPE : SDG: 1500

SAMPLE MATRIX : W ASSOCIATED MB : M09

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	295.00	µg/L	0.00		
ANTIHONY	0.00		14.00	U	ชง
ARSENIC	58.20	µg/L	0.00		J
BARIUM	83.50	µg/L	0.00		
BERYLLIUM	0.00		1.00	U	บJ
CADHIUM	0.00		5.00	ט	บว
CALCIUM	66000.00	µg/L	0.00		
CERONIUM	0.00		6.00	U	ซฮ
COBALT	0.00	1	9.00	Ū	ชง
COPPER	0.00		5.00	ū	υJ
IRON	47.80	µg/L	0.00		J
LEAD	0.00		2.00	บ	ชิงิ
Magnesium	14300.00	µg/L	0.00		
Manganese	335.00	μg/L	0.00		
MERCURY	0.00		0.20	ט	บJ
NICREL	0.00		11.00	U	נט
POTASSIUM	9310.00	µg/L	0.00		
SELENIUM	0.00		20.00	υ	บัง
SILVER	0.00	1	6.00	U	UJ
SODIUM	69000.00	μg/L	0.00		
TRALLIUM	0.00		2.00	υ	ชว
VANADIUM	0.00		5.00	ט	บJ
ZINC	3.30	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1522 ANALYSIS TYPE : MET SAMPLE TYPE : SDG : 1520

SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	181.00	μg/L	0.00	В	
Antihony	0.00		60.00	U	ชม
ARSENIC	23.20	μg/L	0.00		J
BARIUM	40.60	µg/L	0.00	8	
BERYLLIUM	0.00		1.00	U	UJ
CADMIUM	0.00		5.00	Ū	ชง
CALCIUM	44200.00	µg/L	0.00		
CHROMIUM	0.00		6.00	σ	บัง
COBALT	0.00		9.00	U	ชง
COPPER	0.00	Ī	5.00	U	UJ
IRON	50.20	µg/L	0.00	В	
LEAD	0.00		2.00	ט	บJ
MAGNESIUM	8670.00	µg/L	0.00		
Manganese	24.10	µg/L	0.00		
MERCURY	0.00		0.20	บ	υJ
NICKEL	0.00		11.00	ט	ซิฮิ
POTASSIUM	8970.00	µg/L	0.00		
SELENIUM	0.00		4.00	U	ชง
SILVER	0.00		6.00	U	ชฮ
SODIUM	96000.00	µg/L	0.00		
TRALLIUM	0.00		2.00	U	บป
VANADIUM	8.70	μg/L	0.00	В	
ZINC	8.40	μg/L	0.00	В	
		1	L	1	. 1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1523 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1520

SAMPLE MATRIX : W
ASSOCIATED MB : M10

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	213.00	μg/L	0.00		
ANTIMONY	0.00		60.00	U	UJ
ARSENIC	14.50	µg/L	0.00		J
BARIUM	37.30	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	UJ
CADMIUM	0.00		5.00	υ	บว
CALCIUM	51400.00	μg/L	0.00		
CHROMIUM	0.00		6.00	U	UJ
COBALT	0.00		9.00	U	נט
COPPER	7.80	µg/L	0.00	В	
IRON	75.20	µg/L	0.00	В	
LEAD	0.00		2.00	U	บว
MAGNESIUM	10000.00	µg/L	0.00		
MANGANESE	86.40	µg/L	0.00		
MERCURY	0.00		0.20	บ	UJ
NICKEL	0.00		11.00	υ	บัว
POTASSIUM	10300.00	µg/L	0.00		
SELENIUM	0.00		4.00	U	UJ
SILVER	0.00		6.00	U	บJ
SODIUM	134000.00	µg/L	0.00		
THALLIUM	0.00	1	2.00	υ	UJ
VANADIUM	10.10	µg/L	0.00	В	
ZINC	10.10	µg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1524 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1520

SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	216.00	μg/L	0.00		
ANTIHONY	0.00		60.00	ט	บว
ARSENIC	16.30	µg/L	0.00		J
BARIUM	44.20	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	ชม
CADHIUM	0.00		5.00	U	עט
CALCIUM	59900.00	µg/L	0.00		
CEROMIUM	0.00		6.00	U	ซว
COBALT	0.00		9.00	ט	ชม
COPPER	9.60	μg/L	0.00	В	
IRON	66.90	µg/L	0.00	В	
LBAD	0.00		2.00	U	บJ
Magnesium	12400.00	µg/L	0.00		
Hanganese	71.00	µg/L	0.00	1	
MERCURY	0.00		0.20	U	บJ
NICKEL	0.00	1	11.00	U	บว
POTASSIUM	12100.00	µg/L	0.00	 	
SELENIUM	0.00		4.00	ט	บJ
SILVER	0.00		6.00	U	ชง
SODIUM	103000.00	μg/L	0.00		
PHALLIUM	0.00		2.00	U	บป
VANADIUM	6.00	μg/L	0.00	В	1
INC	5.80	µg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1525 SAMPLE TYPE : ER SAMPLE MATRIX : W
ANALYSIS TYPE : MET SDG : 1520 ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ANTIMONY	0.00	Ī	60.00	U	บJ
ARSENIC	0.00		4.00	ū	บJ
BERYLLIUM	0.00		1.00	ט	บัง
CADMIUM	0.00		5.00	Ū	ชม
CHROMIUM	0.00	T	6.00	U	บว
COBALT	0.00		9.00	U	עט
COPPER	0.00		5.00	U	บัง
LEAD	0.00	1	2.00	ט	บว
HANGANESE	0.00		2.00	U	עט
MERCURY	0.00	1	0.20	ซ	บัง
NICKEL	0.00		11.00	Ū	UJ
POTASSIUM	0.00	1	1363.00	ט	บัง
SELENIUM	0.00		4.00	ט	υJ
SILVER	0.00		6.00	U	ซฮ
THALLIUM	0.00	1	2.00	ט	บัง
VANADIUM	0.00		5.00	ט	บว

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1526 ANALYSIS TYPE : MET SAMPLE TYPE : SDG: 1520

SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concertration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	194.00	μg/L	0.00	В	
YNOMITHA	0.00		60.00	ט	ขัว
ARSENIC	61.60	µg/L	0.00	1	J
BARIUM	27.60	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	UJ
CADMIUM	0.00		5.00	U	ชิงิ
CALCIUM	42600.00	µg/L	0.00	T	
CHROMIUM	0.00		6.00	ט	υJ
COBALT	0.00		9.00	ט	ยง
COPPER	0.00	<u> </u>	5.00	ט	บว
IRON	125.00	μg/L	0.00		
LEAD	0.00		2.00	U	บง
MAGNESIUM	10400.00	μg/L	0.00		
MANGANESE	218.00	μg/L	0.00		
MERCURY	0.00		0.20	U	บJ
NICKEL	0.00		11.00	ט	บัง
POTASSIUM	8040.00	µg/L	0.00		
SELENIUM	0.00		4.00	ט	บัง
SILVER	0.00		6.00	U	ช3
SODIUM	98300.00	μg/L	0.00		
TRALLIUM	0.00		2.00	ט	บว
VANADIUM	0.00		5.00	ט	บัง
ZINC	7.20	µg/L	0.00	В	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1527 ANALYSIS TYPE: MET

SDG: 1520

SAMPLE TYPE: WR SAMPLE MATRIX: W SDG: 1520 ASSOCIATED MB: M ASSOCIATED MB : M10

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 1538

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	185.00	µg/L	0.00	В	
ANTIHONY	0.00		60.00	U	ชิงิ
ARSENIC	54.20	µg/L	0.00		J
BARIUM	27.80	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	บ	บัง
CADMIUM	0.00		5.00	ט	ชิงิ
CALCIUM	42209.00	µg/L	0.00		
CHROMIUM	0.00		6.00	ū	บัง
COBALT	0.00		9.00	U	ชม
COPPER	10.50	μg/L	0.00	В	
IRON	50.10	μg/L	0.00	В	
LEAD	0.00	1	2.00	ט	บว
Magnesium	10500.00	μg/L	0.00		
MANGANESE	220.00	µg/L	0.00		
MERCURY	0.00		0.20	U	บัง
NICKEL	0.00		11.00	σ	ชิง
POTASSIUM	9450.00	µg/L	0.00		
SELENIUM	0.00	Ì	4.00	U	UJ
SILVER	0.00		6.00	ט	บJ
SODIUM	102000.00	µg/L	0.00		
THALLIUM	0.00		2.00	U	บัง
VANADIUM	0.00	1	5.00	υ	ชฮ
ZINC	3.80	µg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1529 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1520

SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	194.00	µg/L	0.00	В	
ANTIHONY	0.00		60.00	ט	บบ
ARSENIC	37.90	µg/L	0.00		J
BARIUM	53.20	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	บว
CADHIUM	0.00		5.00	ט	บว
CALCIUM	45400.00	µg/L	0.00		
CERONIUM	0.00		6.00	U	บว
COBALT	0.00		9.00	Ū	บัง
COPPER	8.20	μg/L	0.00	В	
IRON	75.20	µg/L	0.00	В	
LEAD	0.00		2.00	U	บบ
Magnesium	16000.00	µg/L	0.00		
Manganese	258.00	µg/L	0.00		
Mercury	0.00		0.20	ט	บง
NICKEL	0.00		11.00	ū	บJ
POTASSIUM	11000.00	µg/L	0.00		
SELENIUM	0.00		4.00	ט	บบ
SILVER	0.00		6.00	ט	บว
SODIUM	279000.00	μg/L	0.00		
THALLIUM	0.00		2.00	บ	ชง
VANADIUM	9.70	μg/L	0.00	В	T
ZINC	7.00	µg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1530 ANALYSIS TYPE : MET

SAMPLE TYPE: SAMPLE FALL...

SDG • 1520 ASSOCIATED MB : M10

TRIP BLANK: 1089TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	178.00	µg/L	0.00	В	}
antimony	0.00		60.00	U	บัง
ARSENIC	39.00	µg/L	0.00		J
BARIUM	43.70	μg/L	0.00	В	
BERYLLIUM	0.00	1	1.00	U	บัง
CADHIUM	0.00		5.00	ū	บJ
CALCIUM	44100.00	µg/L	0.00		
CERONIUM	0.00		6.00	σ	บว
COBALT	0.00		9.00	U	บัง
COPPER	0.00		5.00	บ	บัง
IRON	0.00		34.00	ט	บว
LEAD	0.00		2.00	υ	บJ
Magnesium	12800.00	µg/L	0.00		
Manganese	27.00	μg/L	0.00		
MERCURY	0.00		0.20	ט	บัง
NICKEL	0.00	İ	11.00	ט	บัง
POTASSIUM	9030.00	μg/L	0.00		
SELENIUM	0.00		4.00	U	υJ
SILVER	0.00		6.00	ט	UJ
SODIUM	221000.00	µg/L	0.00		
THALLIUM	0.00		2.00	U	נט
VANADIUM	10.60	µg/L	0.00	В	
ZINC	4.80	µg/L	0.00	В	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1531 ANALYSIS TYPE : MET

SAMPLE TYPE : WR SAMPLE MATRIX : W

SDG: 1520

ASSOCIATED MB : M10

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ALUMINUM	202.00	µg/L	0.00		
ANTIHONY	0.00		60.00	υ	נט
ARSENIC	32.00	µg/L	0.00		J
BARIUM	44.10	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	บJ
CADHIUM	0.00		5.00	U	IJJ
CALCIUM	43700.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	บง
COBALT	0.00		9.00	ט	UJ
COPPER	9.60	µg/L	0.00	В	
IRON	0.00		34.00	U	บฮ
LEAD	0.00		2.00	U	ซุฮ
MAGNESIUM	12800.00	μg/L	0.00		
MANGANESE	26.40	μg/L	0.00		
MERCURY	0.00		0.20	U	υJ
NICKEL	0.00		11.00	U	บว
POTASSIUM	10300.00	µg/L	0.00		
SELENIUM	0.00		4.00	υ	บว
SILVER	0.00		6.00	U	UJ
SODIUM	223000.00	μg/L	0.00		
TRALLIUM	0.00		2.00	U	UJ
VANADIUM	10.30	µg/L	0.00	6	
ZINC	5.60	µg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1532 ANALYSIS TYPE : MET

SDG: 1520

SAMPLE TYPE : SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	196.00	μg/L	0.00	В	
ANTIMONY	0.00		60.00	Ū	บJ
ARSENIC	23.20	µg/L	0.00		J
BARIUM	66.50	µg/L	0.00	В	
BERYLLIUM	0.00	T	1.00	U	UJ
CADHIUM	0.00		5.00	ט	บJ
CALCIUM	57400.00	µg/L	0.00		
CHRONIUM	0.00		6.00	υ	บัง
COBALT	0.00	1	9.00	U	บัง
COPPER	11.00	µg/L	0.00	В	
IRON	75.20	µg/L	0.00	В	
LEAD	0.00		2.00	U	บัง
MAGNESIUM	18100.00	µg/L	0.00		
MANGANESE	328.00	µg/L	0.00		
MERCURY	0.00		0.20	บ	บว
NICKEL	0.00		11.00	υ	บJ
POTASSIUM	14800.00	µg/L	0.00		
SELENIUM	0.00		4.00	U	บว
SILVER	0.00		6.00	U	บJ
SODIUM	304000.00	µg/L	0.00		
THALLIUM	0.00		2.00	U	บJ
VANADIUM	6.70	µg/L	0.00	В	
ZINC	4.20	μg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1533 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1520 SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	314.00	μg/L	0.00		
ANTIMONY	0.00		60.00	U	บัง
ARSENIC	84.50	µg/L	0.00		J
BARIUM	36.70	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	ขัว
CADHIUH	0.00		5.00	U	บJ
CALCIUM	22400.00	µg/L	0.00		
CERONIUM	0.00		6.00	מ	บว
COBALT	0.00		9.00	U	บัง
COPPER	11.90	µg/L	0.00	В	
IRON	360.00	µg/L	0.00		
LEAD	0.00		2.00	ט	บัง
MAGNESIUM	5530.00	µg/L	0.00		
Manganese	172.00	µg/L	0.00		
MERCURY	0.00		0.20	υ	บัง
NICKEL	0.00		11.00	ט	บัง
POTASSIUM	8550.00	µg/L	0.00		
SELENIUM	4.70	µg/L	0.00	В	
SILVER	0.00	1	6.00	ט	บJ
SODIUM	236000.00	µg/L	0.00	1	
THALLIUM	0.00	1	2.00	U	บง
VANADIUM	15.00	µg/L	0.00	В	
ZINC	0.00	1	3.00	U	UJ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1542 ANALYSIS TYPE: MET SAMPLE TYPE : SDG : 1520

SAMPLE MATRIX : W ASSOCIATED MB : M10

TRIP BLANK : 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	3440.00	µg/L	0.00		
antimony	0.00		60.00	Ū	ប្រ
ARSENIC	58.50	μg/L	0.00		J
BARIUM	62.60	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	Ū	บJ
CADMIUM	0.00		5.00	υ	บJ
CALCIUM	47000.00	µg/L	0.00		
CHRONIUM	0.00		6.00	ט	บว
COBALT	0.00		9.00	<u>ס</u>	บJ
COPPER	16.30	μg/L	0.00	В	
IRON	3070.00	µg/L	0.00		
LEAD	0.00		2.00	U	עט
Magresium	11200.00	μg/L	0.00		
MP.NGANESE	244.00	μg/L	0.00		
MERCURY	0.00		0.20	ซ	UJ
NICKEL	0.00		11.00	ט	ชม
POTASSIUM	10100.00	μg/L	0.00		
SELENIUM	0.00		4.00	บ	บุง
SILVER	0.00		6.00	U	บJ
SODIUM	147000.00	μg/L	0.00		
TRALLIUM	0.00		2.00	U	ซฮ
VANADIUM	22.40	μg/L	0.00	В	
ZINC	18.10	µg/L	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1543

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1520

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
ANTIHONY	0.00		60.00	ט	บJ
ARSENIC	0.00		4.00	υ	บัว
BERYLLIUM	0.00		1.00	ט	UJ
CADMIUM	0.00		5.00	U	UJ
CHROMIUM	0.00		6.00	ט	บJ
COBALT	0.00		9.00	ט	บง
COPPER	0.00		5.00	ט	บว
IRON	0.00		34.00	ט	บว
LEAD	0.00		2.00	ט	บว
Magnesium	0.00		46.00	U	ชม
Manganese	0.00		2.00	U	UJ
MERCURY	0.00		0.20	ט	บัว
NICKEL	0.00		11.00	ט	บว
POTASSIUM	0.00		1363.00	U	UJ
SELENIUM	0.00		4.00	ט	บว
SILVER	0.00		6.00	ט	บว
THALLIUM	0.00		2.00	U	บบ
VANADIUM	0.00		5.00	ט	บบ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1000

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1000

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	 Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.12	ט	ט
TPH BY JP-4 STD	0.00	0.61	U	ט
			-	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1001

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1000

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.11	ט	ט
TPH BY JP-4 STD	0.00		0.57	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1002

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1000 ASSOCIATED MB: C

ANALYSIS TYPE : PHC

SDG: 1000

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	U	ט
TPH BY JP-4 STD	0.00		0.62	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

■Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1003

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1000

ASSOCIATED MB : Clean Sam

TRIP BLANK : 1004TB

FIELD BLANKS: 1005rB, 1006FB

Compound	Concentration	 Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.12	ט	ט
TPH BY JP-4 STD	0.00	0.61	ט	ט
TPH BY JP-4 STD	0.00	 0.61	0	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1005 SAMPLE TYPE ANALYSIS TYPE: PHC SDG: 1004

SAMPLE TYPE : FB SAMPLE MATRIX : W
SDG : 1004 ASSOCIATED MB : Clean Samp

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	ט	ប
TPH BY JP-4 STD	0.00		0.50	U	U
		1			

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1006 ANALYSIS TYPE : PHC

SAMPLE TYPE : FB

SDG: 1004

SAMPLE MATRIX : W

ASSOCIATED MB : Clean Same

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00]	0.10	บ	U
TPH BY JP-4 STD	0.00		0.50	U	บ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1007

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1004

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	1	0.10	ט	U
TPH BY JP-4 STD	0.00	1 —	0.50	U	U
		1		7	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1015 ANALYSIS TYPE: PHC SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1305FB, 1006FB

ט	บ
ט	ט
ט	j

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL:C

BEGINNING SAMPLE #:1000 ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1016 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1015 ASSOCIATED MB: Clean Samp

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	[Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	ט	U
TPH BY JP-4 STD	0.00		0.96	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1017

ANALYSIS TYPE : PHC

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1015 ASSOCIATED MB: Clean Samp

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.13	ט	U
TPE BY JP-4 STD	0.00	1.00	U	ū
		 	T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1018

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.13	U	Ū
TPH BY JP-4 STD	0.00		1.00	ū	ט
	1	1		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE LUMBER: 1019

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Sam

TRIF BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.12	ט	U
TPH BY JP-4 STD	0.00	0.98	ט	מ
			1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1020

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.11	ט	מ
TPH BY JP-4 STD	0.00		0.92	ט	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1025 ANALYSIS TYPE: PHC SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPR BY GAS STD	0.00		0.12	U	U
TPE BY JP-4 STD	0.00		0.93	U	ט
		 			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1026

ANALYSIS TYPE : PHC

SDG: 1015

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1015 ASSOCIATED MB: C ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	 0.12	ט	ប
TPH BY JP-4 STD	0.00	0.98	U	ט
			1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1027

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC SDG : 1015

ASSOCIATEL MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	0.12	U	ט
TPH BY JP-4 STD	0.00	0.95	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 CATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1028 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1015 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.11	ប	U
TPH BY JP-4 STD	0.00	0.90	Ü	σ
			1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1029

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Sam

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPE BY GAS STD	0.00		0.12	U	บ
TPH BY JP-4 STD	0.00		0.96	U	ซ
		7		7	

PROJECT: NEVADA AIR NATIONAL GUARD Final National Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1030 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1030 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.14	U	ט
TPH BY JP-4 STD	0.00	1.10	U	U
		1	T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1031 ANALYSIS TYPE : PHC

SDG: 1030

SAMPLE TYPE : SAMPLE MATRIX : S

ASSOCIATED MB : Clean Same

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	υ	ט
TPH BY JP-4 STD	0.00		0.98	U	ט
		I			

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1032

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1030

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.11	υ	ט
TPH BY JP-4 STD	0.00	0.91	ū	ט
			1	

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1033 ANALYSIS TYPE : PHC

SDG: 1030

SAMPLE TYPE : SAMPLE MATRIX : S

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.12	U	ช
TPH BY JP-4 STD	0.00	0.94	ט	ט
			T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1035 ANALYSIS TYPE : PHC

SAMPLE TYPE : SDG: 1030

SAMPLE MATRIX : S

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00		0.11	Ū	U
TPH BY JP-4 STD	0.00		0.90	ט	ט
		1		.1 .	7

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1036 ANALYSIS TYPE: PHC SAMPLE TYPE : SDG : 1030

SAMPLE MATRIX : S

ASSOCIATED MB : Clean Same

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.11	ט	ט
TPH BY JP-4 STD	0.00		0.90	ט	ט
				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1037

SAMPLE TYPE : RE SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1030

ASSOCIATED MB : VBLK3L

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

		L	_1_	1
0.00		7.00	ט	U
2166.45	mg/kg	0.00		1
1570.83	mg/kg	0.00		
	2166.45	2166.45 mg/kg	2166.45 mg/kg 0.00	2166.45 mg/kg 0.00

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMPER: 1038

SAMPLE TYPE: SAMPLE MATRIX: S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPE BY GAS STU	0.00		0.12	ט	ט
TPH BY JP-4 STD	0.00		0.95	ט	ប
		7			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1039

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00		0.14	ט	ט
TPH BY JP-4 STD	0.00		1.10	ט	σ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1040

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

TRIP BLANK: 1059TB

SDG: 1036

ASSOCIATED MB : Clean Sam

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPR BY GAS STD	0.00		0.12	ū	ט
TPH BY JP-4 STD	0.00		0.94	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

DATE:03/30/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1041

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.12	ט	ט
TPH BY JP-4 STD	0.00	0.96	σ	ט
			1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final distribut Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1042

SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKBC

ANALYSIS TYPE : PHC TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	19.00	mg/Rg	0.00		
TPH BY JP-4 STD	14.00	mg/Kg	0.00		
					

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1042 SAMPLE TYPE : DL SAMPLE MATRIX : L ANALYSIS TYPE : PHC SDG : 1036 ASSOCIATED MB : C:

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	0.95	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544___

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1043

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : VBLKBC

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.08	mg/Kg	0.00	J	J
TPH BY JP-4 STD	0.06	mg/Kg	0.00	J	3
		1			T

PROJECT: NEVADA AIR NATIONAL GUARD

Final *Summary* REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1044 ANALYSIS TYPE : PHC

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1036 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	ט	ט
TPH BY JP-4 STD	0.00		0.98	ט	Ū
		_		1	1

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1044

SAMPLE TYPE : RE SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinel
TPH BY GAS STD	9.90	ng/Kg	0.00		Ī
TPH BY JP-4 STD	7.20	mg/Kg	0.00		
				1	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summery REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1045

SAMPLE TYPE: SAMPLE MATRIX: S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration [Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	 0.13	ט	บ
TPH BY JP-4 STD	0.00	1.00	ט	บ

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1046 SAMPLE TYPE : SAMPLE MATRIX : S ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : VBLKBC

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.02	mg/Kg	0.00	J	J
TPE BY JP-4 STD	0.01	mg/Kg	0.00	J	J
		T		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1047

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC SDG: 1036 ASSOCIATED MB : VBLKBD

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.01	mg/Kg	0.00	BJ	R
TPH BY JP-4 STD	0.01	mg/Kg	0.00	BJ	R
				1	T

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1048 ANALYSIS TYPE : PHC SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S

ASSOCIATED MB : Clean Same

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compourd	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	U	ט
TPH BY JP-4 STD	0.00		0.99	U	ט
				T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1049

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1036

ASSOCIATED MB : VBLKBD

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	630.00	mg/Kg	0.00	В	
TPH BY JP-4 STD	460.00	mg/Kg	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1050 SAMPLE TYPE: SAMPLE MATRIX: S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : Clean Sam

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	}	0.13	ט	ט
TPE BY JP-4 STD	0.00		1.00	מ	ט
		1 ——		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1051

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.13	υ	υ
TPH BY JP-4 STD	0.00		1.00	ט	ช
		T -			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1052

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : VBLKBD

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	120.00	mg/Kg	0.00	В	
TPH BY JP-4 STD	87.00	mg/Kg	0.00	В	
			1		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1053

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

ASSOCIATED MB : VBLKBD

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.10	mg/Kg	0.00	BJ	J
TPH BY JP-4 STD	0.07	mg/Kg	0.00	ВЈ	J
	1	1			$\overline{}$

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1054

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1036

TRIP BLANK: 1059TB

ASSOCIATED MB : Clean Samp

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.11	U	U
TPH BY JP-4 STD	0.00		0.89	ט	ช
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1055 SAMPLE TYPE : DL SAMPLE MATRIX : S ANALYSIS TYPE : PHC SDG : 1036 ASSOCIATED MB : VI

ASSOCIATED MB : VBLKBD

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	i	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	3800.00	mg/Kg	0.00	В	
TPH BY JP-4 STD	2700.00	mg/Kg	0.00	В	
		_	1		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1055 SAMPLE TYPE: ANALYSIS TYPE: PHC SDG: 1036

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKBD

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	9.20	mg/Kg	0.00	В	
TPH BY JP-4 STD	6.60	mg/Kg	0.00	В	
				T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1057 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1036 ASSOCIATED MB: VI

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

ASSOCIATED MB : VBLKBD

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.39	mg/Kg	0.00	BJ	J
TPH BY JP-4 STD	0.29	mg/Kg	0.00	BJ	J
		•			

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1058

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

ASSOCIATED MB : VBLKBE

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	250.00	mg/kg	0.00		
TPH BY JP-4 STD	180.00	mg/Kg	0.00		
		τ			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

ANALYSIS TYPE : PHC SAMPLE NUMBER: 1060

SDG: 1055

SAMPLE TYPE: SAMPLE MATRIX: S

ASSOCIATED MB : VBLKBE

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	i	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	39.00	mg/kg	0.00		
TPH BY JP-4 STD	28.00	mg/Kg	0.00	T	
		1		7	7

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1061 ANALYSIS TYPE : PHC SDG : 1055

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1055 ASSOCIATED MB: VBLKBE

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.21	mg/kg	0.00		
TPH BY JP-4 STD	0.15	mg/Kg	0.00	J	J
					

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1062

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.13	U	ט
TPH BY JP-4 STD	0.00	1.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1063

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	ប	ט
TPH BY JP-4 STD	0.00		0.99	ט	ט
		I			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1064

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	U	U
TPH BY JP-4 STD	0.00	1	0.98	ט	U
				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

BEGINNING SAMPLE #:1000

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1065

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : Clean Same

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	U	Ü
TPH BY JP-4 STD	0.00		0.99	U	U
		T		7	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1066 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1055 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00		0.14	ט	บ
TPH BY JP-4 STD	0.00		1.10	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1066

SAMPLE TYPE : RE SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	2.80	mg/kg	0.00		
TPH BY JP-4 STD	2.10	mg/Kg	0.00		
		1			~

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1067 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1055 ASSOCIATED MB: VBLKBG

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	0Code	QFinal
TPH BY GAS STD	0.03	mg/kg	0.00	J	R
TPH BY JP-4 STD	0.02	mg/Kg	0.00	вј	R
			1	T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1068

SAMPLE TYPE : SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	34.00	mg/kg	0.00		
TPH BY JP-4 STD	25.00	mg/Kg	0.00		
TPH BY JP-4 STD	25.00	mg/Kg	0.00	 	4

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

ANALYSIS TYPE: PHC SAMPLE NUMBER: 1068

SAMPLE TYPE : RE SAMPLE MATRIX : S

SDG: 1055

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QPinal
TPH BY JP-4 STD	0.00		0.95	ט	ט
	1				

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1069 ANALYSIS TYPE : PHC

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKBG

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.01	mg/kg	0.00	3	R
TPH BY JP-4 STD	0.01	mg/Kg	0.00	BJ	R
		T T			_

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary

DATE:03/30/94

DATA VALIDATION LEVEL:C

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1070 ANALYSIS TYPE : PHC

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKBG

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.01	mg/kg	0.00	J	R
TPH BY JP-4 STD	0.01	mg/Rg	0.00	BJ	R
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1071 ANALYSIS TYPE: PHC SAMPLE TYPE: SDG: 1055 SAMPLE MATRIX : S

ASSOCIATED MB : Clean Same

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	U	U
TPH BY JP-4 STD	0.00		0.96	U	Ū
		·	1	7	~ `

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1072 ANALYSIS TYPE: PHC SAMPLE TYPE :

SDG: 1055

SAMPLE MATRIX : S

SAMPLE MAIRIA .

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.13	U	ט
TPH BY JP-4 STD	0.00		1.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA V.LIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1073

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		380.00	Ü	U
TPE BY JP-4 STD	0.00		380.00	ט	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

ANALYSIS TYPE : PHC

SAMPLE NUMBER: 1074 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1055 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	OFinal
TPH BY GAS STD	0.00	0.13	U	υ
TPH BY JP-4 STD	0.00	1.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Example Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1074

SAMPLE TYPE : RE

SDG: 1055

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compo .nd	Concentration.	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.27	mg/kg	0.00		
TPH BY JP-4 STD	0.20	mg/kg	0.00	J	J
			T	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1075

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	υ	U
TPH BY JP-4 STD	0.00	1	1.00	υ	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

BEGINNING SAMPLE #:1000

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1075

SAMPLE TYPE : RE SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1055

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.11	mg/kg	0.00		
TPH BY JP-4 STD	0.08	mg/Kg	0.00	J	3
		<u>† </u>		+	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1075

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1055

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		380.00	U	บ
TPH BY JP-4 STD	0.00		380.00	บ	ט
	1				

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1077

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

ASSOCIATED MB : VBLKBG

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	İ	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	2600.00	mg/kg	0.00		
TPH BY JP-4 STD	2000.00	mg/Kg	0.00		
				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1078 SAMPLE TYPE : SR SAMPLE MATRIX : S ANALYSIS TYPE : PHC SDG : 1055 ASSOCIATED MB : V

ASSOCIATED MB : VBLKBG

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	110.00	mg/kg	0.00		
TPH BY GAS STD	13.00	mg/kg	0.00	В	
TPH BY JP-4 STD	9.10	mg/kg	0.00	В	
TPE BY JP-4 STD	82.00	mg/Rg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1079

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	İ	Instrument Detection Limit	QCode	QFinal
TPE BY GAS STD	0.00		0.13	ט	ט
TPH BY JP-4 STD	0.00		1.00	U	บ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1080

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : VBLKBF

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	4.10	mg/Rg	0.00		
TPH BY JP-4 STD	3.00	mg/Kg	0.00		
		+		+	_

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1081

SAMPLE TYPE : DL SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : VBLK3L

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPB BY GAS STD	1700.00	mg/Kg	0.00		
TPH BY JP-4 STD	1200.00	mg/Kg	0.00		
		Ι		I	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1082 SAMPLE TYPE: SAMPLE MATRIX: SAMPLE MATRIX: SAMPLE TYPE: PHC SDG: 1015

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Concentration		Instrument Detection Limit	QCode	QPinal
0.07	mg/Kg	0.00	J	J
0.05	mg/Kg	0.00	J	J
	0.07	0.07 mg/Kg	Detection Limit 0.07 mg/Kg 0.00	Detection Limit 0.07 mg/Kg 0.00 J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1083

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1015

ASSOCIATED MB : VBLKBF

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	330.00	mg/Kg	0.00	I	
TPH BY JP-4 STD	240.00	mg/Kg	0.00		
		+			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1084

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	 Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	7.40	ប	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1084

SAMPLE TYPE : DL

SAMPLE MATRIX : M

ANALYSIS TYPE : PHC

SDG : 1015

ASSOCIATED MB : VBLK3L

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Distrument Distriction Limit	QCode	QFinal
TPH BY GAS STD	4808.94	mg/L	0.00		
TPH BY JP-4 STD	3496.81	mg/Kg	0.00		
		1.		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1085

SAMPLE TYPE : RE

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	91.36	mg/kg	0.00		
TPH BY JP-4 STD	66.24	mg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1086

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		380.00	ប	U
TPH BY JP-4 STD	0.00		380.00	ט	U
		1			1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1087

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1015

ASSOCIATED MB : VBLKAI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.07	mg/Kg	0.00	J	J
TPH BY JP-4 STD	0.05	mg/Rg	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1089

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : Clean Same

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.12	U	U
TPH BY JP-4 STD	0.00	0.93	ט	ס
			T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1090

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.12	U	U
TPH BY JP-4 STD	0.00		0.99	ט	U
······				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1091

SAMPLE TYPE : DL

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	I	Instrument Delection Limit	QCode	QFinal
TPH BY GAS STD	2500.00	mg/Kg	0.00		
TPH BY JP-4 STD	1800.00	mg/Kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1092

ANALYSIS TYPE : PHC

SDG: 1089

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1089 ASSOCIATED MB: VI ASSOCIATED MB : VBLKAK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	87.00	mg/Kg	0.00	·	
TPH BY JP-4 STD	63.00	mg/Kg	0.00		
		· Y		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1093

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK : 1111TB

KIP DIANK : IIIIID

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	33.00	mg/Kg	0.00	В	
TPH BY JP-4 STD	24.00	mg/Kg	0.00	В	
		I			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1094

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	1	0.12	ט	บ
TPH BY JP-4 STD	9.60	mg/Kg	0.00		
	1	7			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1095

SAMPLE TYPE :

SDG: 1089

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

ASSOCTA

ASSOCIATED MB : VBLKAK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	590.00	mg/Kg	0.00] "	
TPH BY JP-4 STD	430.00	mg/Kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1096

ANALYSIS TYPE: PHC SDG: 1089

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1089 ASSOCIATED MB: VBLKAJ

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	1600.00	mg/Kg	0.00	В	
TPH BY JP-4 STD	1100.00	mg/Kg	0.00	В	
		1		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1096

SAMPLE TYPE : RE

SDG: 1089

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

ASSOCIATED MB : Clean Sam

			Limit		
PH BY GAS STD	0.00		8.40	υ	ប
PH BY GAS STD	0.00	<u> </u>	8.40	U	ľ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1097

SAMPLE TYPE : RE

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	2.00	mg/Rg	0.00		
TPH BY JP-4 STD	1.40	mg/Rg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1098

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	v.00	0.14	υ	υ
TPE BY JP-4 STD	0.00	1.10	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1099 SAMPLE TYPE : SR SAMPLE MATRIX : S ANALYSIS TYPE : PHC SDG : 1089 ASSOCIATED MB : C

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	Ī	0.13	U	U
TPH BY JP-4 STD	0.00		1.00	ט	ט
			1		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1100

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.06	mg/Kg	0.00	BJ	J
TPH BY JP-4 STD	0.00		0.95	ט	ט
TPH BY JP-4 STD	0.04	mg/Kg	0.00	BJ	R
				·	

PROJECT: NEVADA AIR NATIONAL GUARD

Final t Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1101

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	5.80	mg/Kg	0.00	В	
TPH BY JP-4 STD	4.20	mg/Rg	0.00	В	
		Ī			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1102

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	0Code	QFinal
TPH BY GAS STD	570.00	mg/Kg	0.00		
TPH BY JP-4 STD	410.00	mg/Rg	0.00	1	
		T			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1103

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Concentration Units Instrument Octoor Limit QCode	QCode	QFinal	
TPH BY GAS STD	3.10	mg/Rg	0.00		
TPH BY JP-4 STD	2.20	mg/Kg	0.00		
				T	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1104

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : Clean Same

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units Instrument Detection Limit		QCode	QFinal
TPH BY GAS STD	0.00		0.14	ט	ช
TPH BY JP-4 STD	0.00		1.10	U	ช
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1105

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		7.90	U	ט
		1		ì	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1105

SAMPLE TYPE : RE

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	2500.00	mg/Kg	0.00	В	
TPH BY GAS STD	0.00	\top	7.90	U	U
TPH BY JP-4 STD	1800.00	mg/Kg	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1106

SAMPLE TYPE : RE

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	De	nstrument etection mit	QCode	QFinal
TPH BY GAS STD	0.00		7.80	บ	ט
				_	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1106

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	2200.00	mg/Kg	0.00	В	
TPH BY JP-4 STD	2400.00	mg/Kg	0.00		
TPH BY JP-4 STD	1600.00	mg/Kg	0.00	В	

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1107 ANALYSIS TYPE : PHC

SAMPLE TYPE : RE SAMPLE MATRIX : S

SDG: 1089

ASSOCIATED MB : VBLKAJ

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	OCode	QFinal
TPH BY GAS STD	2800.00	mg/Kg	0.00	В	
TPH BY GAS STD	0.00		8.90	ט	บ
TPH BY JP-4 STD	2100.00	mg/Rg	0.00	В	
		<u> </u>			l

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1108

SAMPLE TYPE : ER SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	0.10	ט	ט
TPH BY JP-4 STD	0.00	0.80	ū	U
				T

PROJECT: NEVADA AIR NATIONAL GUARD Final

DATE:03/30/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1109

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1108

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	į	0.10	ט	U
TPH BY JP-4 STD	0.00		0.80	U	U
		T			

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1110

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	OCode	QFinal
TPH BY GAS STD	0.00		0.10	U	ט
TPE BY JP-4 STD	0.00		0.80	ט	U
		1		1	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1112 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: PHC SDG: 1030 ASSOCIATED ME: VBLKBH

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STP	84.69	mg/kg	0.00		
TPH BY JP-4 STD	61.41	mg/kg	0.00		
		7		1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1113

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1030

ASSOCIATED MB : VBLKBH

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	1.83	mg/kg	0.00		
TPH BY JP-4 STD	1.32	mg/kg	0.00		
		T-	r —		3

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1114

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1030

ASSOCIATED MB : VBLKBH

TRIP BLANK: 1120TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	1.17	mg/kg	0.00		
TPH BY JP-4 STD	0.84	mg/kg	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1115

SAMPLE TYPE :

ANALYSIS TYPE : PHC

SDG: 1030

SAMPLE MATRIX : S ASSOCIATED MB : Clean Samp

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1 :	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		380.00	U	U
TPH BY JP-4 STD	0.00		380.00	ប	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1116

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1030

ASSOCIATED MB : VBLKBH

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	12.43	mg/kg	0.00		
TPH BY JY-4 STD	9.01	mg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DNAL GUARD DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1117

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1030

ASSOCIATED MB : VBLKBH

TRIP BLANK : 1120TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.72	mg/kg	0.00		
TPH BY JP-4 STD	0.52	mg/kg	0.00	J	J
				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1118

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1030

ASSOCIATED MB : VBLKBH

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.17	mg/kg	0.00		
TPH BY JP-4 STD	0.12	ng/kg	0.00	J	J
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1119

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG : 1030

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.11	ט	U
TPH BY JP-4 STD	0.00		0.89	ט	U
	T T	T			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1500

SAMPLE TYPE :

SDG: 1500

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	1	0.10	บ	ט
TPH BY JP-4 STD	0.00		0.60	ט	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1501

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	υ	บ
TPH BY JP-4 STD	0.00		0.60	U	ט
	<u> </u>	1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1502

ANALYSIS TYPE : PHC

SDG: 1500

SAMPLE TYPE: SAMPLE MATRIX: W
SDG: 1500 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	ช	ט
TPH BY JP-4 STD	0.00		0.60	ū	บ
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1503

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : VIBLKTPH

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	1.20	mg/L	0.00		1
TPH BY JP-4 STD	0.91	mg/L	0.00		
TPH BY JP-4 STD	0.00		0.60	Ū	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1504 SAMPLE TYPE: WR SAMPLE MATRIX: W ANALYSIS TYPE: PHC SDG: 1500 ASSOCIATED MB: VI

ASSOCIATED MB : VIBLKTPHPW

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.74	mg/L	0.00		
TPH BY JP-4 STD	0.54	mg/L	0.00	J	J
TPH BY JP-4 STD	0.00		0.60	U	Ū

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1507

SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W

ASSOCIATED MB : Clean Same

ANALYSIS TYPE : PHC TRIP BLANK : 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00		0.60	ט	U

PROJECT: NEVADA AIP NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1508

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PEC

SDG: 1500

ASSOCIATED LB: Clean Samp

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00		0.60	ט	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL: C

BEGINNING SAMPLE #:1000 ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1509 ANALYSIS TYPE : PHC SAMPLE TYPE: SDG: 1500 SAMPLE MATRIX : W

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QPinal
TPH BY JP-4 STD	0.00		0.60	ט	υ
			T		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1510

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

TRIP BLANK: 1512TB

ASSOCIATED MB : Clean Samp

FIELD BLANKS: 1005FB, 1006FB

	Detection Limit		
0.00	0.60	ט	U
	0.00	Limit	Limit

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1511

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Same

TRIP BLANK : 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	0.60	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1513

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1030

ASSOCIATED MB : VBLKBA

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.01	mg/L	0.00	J	J
TPH BY JP-4 STD	0.01	mg/L	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1514

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00		0.60	U	ប
		T			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1516

SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00		0.60	ט	ט
		+		+	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1517

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Same

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	0.60	ט	U
				1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1518

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

	I _I		1	1
0.00		0.60	ט	Ū
	0.00	0.00	0.00 0.60	0.00 0.60 U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1519

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	0.60	ט	ט
	L			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1520

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : VIBLKTPHPW

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.10	mg/L	0.00	В	
TPH BY JP-4 STD	0.08	mg/L	0.00	BJ	J
TPH BY JP-4 STD	0.00		0.60	ט	σ
	I .	1	1	.1	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1520

SAMPLE TYPE : DL

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	 Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	0.60	ט	ט
		l "		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1522

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG : 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Concentration	Detection	QCode	QFinal
0.00	0.60	ט	U
		Detection Limit	Detection Limit

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1523

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	1	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	U	U
TPH BY JP-4 STD	0.00		0.60	U	σ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1524

ANALYSIS TYPE : PHC

SAMPLE TYPE: SAMPLE MATRIX: W
SDG: 1520 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	ט	U
TPH BY JP-4 STD	0.00		0.60	ט	U
			1	" -	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1525

SAMPLE TYPE : ER SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean San

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
IPH BY GAS STD	0.00		0.10	ប	U
TPE BY JP-4 STD	0.00		0.60	ט	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
PRITEMED DENNIS MARRY

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1526

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	υ	บ
TPH BY JP-4 STD	0.00		0.60	Ū	ט
		I			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1527

SAMPLE TYPE : WR

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	0.10	U	U
TPH BY JP-4 STD	0.00	0.60	ט	U
			1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1529

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.10	U	ט
TPH BY JP-4 STD	0.00	0.60	ט	ט
			1 "	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1530

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Same

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.10	U	ט
TPH BY JP-4 STD	0.00	0.60	σ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1531

SAMPLE TYPE : WR

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	\	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	ט	ט
TPH BY JP-4 STD	0.00		0.60	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1532

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00		0.10	U	α
TPH BY JP-4 STD	0.00		0.60	U	ซ
		1	1		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1533

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.10	ט	บ
TPH BY JP-4 STD	0.00	0.60	ט	ū

PROJECT: NEVADA AIR NATIONAL GUARD

Final **Summary** REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1535

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : VIBLKTPHP

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.56	mg/L	0.00	В	
TPH BY JP-4 STD	0.41	mg/L	0.00	BJ	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1536

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	U	U
TPH BY JP-4 STD	0.00		0.60	ט	ช

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1537

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1520

ASSOCIATED MB : VIBLKTPHP

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	28.00	mg/L	0.00		
TPH BY JP-4 STD	21.00	mg/L	0.00		
		1			1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1538

BEGINNING SAMPLE #:1000

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1538

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	0.10	ט	ט
TPH BY JP-4 STD	0.00	0.80	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1539

BEGINNING SAMPLE #:1000

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG : 1520

ASSOCIATED MB : Clean Same

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	į.	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	บ	ט
TPH BY JP-4 STD	0.00		0.60	U	U
		1		 	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1540 SAMPLE TYPE: SAMPLE MATRIX: W
ANALYSIS TYPE: PHC SDG: 1520 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.10	υ	υ
TPH BY JP-4 STD	0.00		0.60	υ	ט
				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1541

SAMPLE TYPE : SDG : 1538 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

ASSOCIATED MB : VIBLKTPHP

TRIP BLANK: 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00		0.60	U	ט
TPH BY GAS STD	2.60	mg/L	0.00		
TPH BY JP-4 STD	0.00	T	0.60	Ū	ט
TPH BY JP-4 STD	1.90	mg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1542

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1538

ASSOCIATED MB : VIBLKTPHPW

TRIP BLANK: 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	Ī	0.60	ט	υ
TPH BY GAS STD	0.05	mg/L	0.00	J	J
TPH BY JP-4 STD	0.04	mg/L	0.00	J	J
TPH BY JP-4 STD	0.00	1	0.60	U	ט
		1			

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1543

SAMPLE TYPE : ER SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1538

ASSOCIATED MB : Clean Same

TRIP BLANK: 1544TB

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	1	0.10	ט	บ
TPH BY JP-4 STD	0.00		0.60	ט	ט

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1000

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

OL SDG: 1000

ASSOCIATED MB : VBLKG8

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	70
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	σ
1,1-DICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLORGETHENE	0.00	Ī	12.00	U	ט
1,2-DICHLOROETHANE	0.00		12.00	Ū	บ
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ū	ū
1,2-DICHLOROPROPANE	0.00		12.00	σ	U
2-BUTANONE	0.00	1	12.00	U	บว
2-HEXANONE	0.00		12.00	บ	UJ
4-METHYL-2-PENTANONE	0.00		12.00	U	บง
ACETONE	16.00	µg/Rg	0.00	1	R
BENZENE	0.00	1	12.00	U	ט
BROMODICHLOROMETHANE	0.00	1	12.00	ט	U
BROMOFORM	0.00	1	12.00	บ	U
BROHOMETHANE	0.00	1	12.00	ט	U
CARBON DISULFIDE	0.00		12.00	U	ט
CARBON TETRACHLORIDE	0.00	1	12.00	U	ט
CHLOROBENZENE	0.00		12.00	ט	ט
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	0.00		12.00	U	ט
CHLOROMETHANE	0.00		12.00	ט	ซ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
ETHYLBENZ ENE	0.00		12.00	U	ט
METHYLENE CHLORIDE	23.00	μg/Kg	0.00		R
STYRENE	0.00		12.00	U	υ
TETRACHLOROETHENE	0.00		12.00	U	U
TOLUENE	0.00		12.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	บัง
TRICHLOROETHENE	0.00		12.00	ט	U
VINYL CHLORIDE	0.00		12.00	บ	ט
XYLENES (TOTAL)	0.00		12.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1000 ANALYSIS TYPE : VOL SAMPLE TYPE : RE SDG : 1000 SAMPLE MATRIX : S

ASSOCIATED MB : VBLKS9

TRIP BLANK : 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ช
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	Ū	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ū	ט
1,1-DICHLOROETHANE	0.00	1	12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	ט	บ
1,2-DICHLOROETHANE	0.00		12.00	Ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ט	ū
1,2-DICHLOROPROPANE	0.00		12.00	ט	ū
2-BUTANONE	0.00	1	12.00	ט	บัว
2-HEXANONE	0.00	1	12.00	U	บJ
4-METHYL-2-PENTANONE	0.00		12.00	U	บJ
ACETONE	270.00	µg/Rg	0.00		R
BENZENE	0.00		12.00	U	υ
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROMOFORM	0.00	1	12.00	u	U
BROMOMETHANE	0.00	1	12.00	υ	ט
CARBON DISULFIDE	0.00	1	12.00	U	U
CARBON TETRACHLORIDE	0.00	1	12.00	U	U
CHLOROBENZENE	0.00		12.00	U	U
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	2.00	µg/ℝg	0.00		
CHLOROMETHANE	0.00	1	12.00	υ	U
CIS-1,3-DICHLOROPROPENE	0.00	1	12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
ETHYLBENZENE	0.00	1	12.00	U	U
METHYLENE CHLORIDE	44.00	µg/Kg	0.00		R
STYRENE	0.00	\top	12.00	U	ט
TETRACHLOROETHENE	0.00	1	12.00	υ	ט
TOLUENE	0.00		12.00	Ū	ט
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	U	UJ
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00	1	12.00	υ	U
XYLENES (TOTAL)	0.00	1	12.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1001 ANALYSIS TYPE : VOL

SDG: 1000

SAMPLE TYPE : SAMPLE MATRIX : S

ASSOCIATED MB : VBLKG8

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unita	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00]	11.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	מ
1,1,2-TRICHLOROETHANE	0.00		11.00	ט	ט
1,1-DICHLOROETHANE	0.00	I.	11.00	Ū	ט
1,1-DICHLOROETHENE	0.00		11.00	U	ט
1,2-DICHLOROETHANE	0.00	I	11.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		11.00	U	ט
2-BUTANONE	0.00		11.00	ט	נט
2-HEXANONE	0.00		11.00	υ	บว
4-METHYL-2-PENTANONE	0.00		11.00	ט	נט
ACETONE	11.70	µg/Kg	0.00		R
Benzene	0.00	1	11.00	υ	ט
BROMODICHLOROMETHANE	0.00		11.00	U	ט
BROHOPORM	0.00		11.00	ซ	ט
Bromometeans	0.00		11.00	U	ט
CARBON DISULFIDE	0.00		11.00	U	Ü
CARBON TETRACHLORIDE	0.00	T	11.00	U	U
CHLOROBENZENE	0.00	T	11.00	ט	ט
CHLOROETHANE	0.00		11.00	U	U
CHLOROFORM	0.00		11.00	ט	υ
CHLOROMETHANE	0.00		11.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		11.00	ប	U
DIBROMOCHLOROMETHANE	0.00		11.00	U	U
ethylbenzene	0.00		11.00	ט	U
METHYLENE CHLORIDE	31.00	µg/Kg	0.00		R
STYRENE	0.00		11.00	บ	บ
TETRACHLOROETHENE	0.00		11.00	ט	ט
TOLUENE	0.00		11.00	ט	ט
TRANS-1, 3-DICHLOROPROPENE	0.00	1	11.00	ט	บJ
TRICHLOROETHENE	0.00		11.00	ט	Ū
VINYL CHLORIDE	0.00	1	11.00	U	ט
XYLENES (TOTAL)	0.00	1	11.00	U	U

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1002 ANALYSIS TYPE : VOL

SDG: 1000

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1000 ASSOCIATED MB: VBLKG8

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 153

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	υ
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHENE	0.00		12.00	Ū	U
1,2-DICHLOROETHANE	0.00	T	12.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	Ū	Ü
1,2-DICHLOROPROPANE	0.00		12.00	U	U
2-BUTANONE	0.00		12.00	U	IJ
2-HEXANONE	0.00		12.00	ט	บว
4-methyl-2-pentanone	0.00		12.00	U	บว
ACETONE	15.00	µg/Kg	c.00		R
Benzene	0.00		12.00	U	ט
BROMODICHLOROMETHANE	0.00		12.00	ū	U
BROMOFORM	0.00		12.00	ט	ט
Brohometeane	0.00		12.00	ט	υ
CARBON DISULFIDE	0.00	†	12.00	U	U
CARBON TETRACHLORIDE	0.00		12.00	ט	ū
Chlorobenzene	0.00		12.00	ט	ט
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	0.00		12.00	ט	ט
CHLOROMETHANE	0.00		12.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	ט	U
DIBROMOCHLOROMETHANE	0.00		12.00	บ	U
ethylbenzene	0.00		12.00	ט	ט
METHYLENE CHLORIDE	30.00	µg/Kg	0.00		R
STYRENE	0.00		12.00	U	ט
TETRACHLOROETHENE	0.00	T	12.00	ช	υ
TOLUENE	0.00		12.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	บว
TRICHLOROETHENE	0.00		12.00	ט	U
VINYL CHLORIDE	0.00		12.00	ט	U
XYLENES (TOTAL)	0.00		12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1003 SAMPLE TYPE: SAMPLE MATRIX: SAMPLE TYPE: VOL SDG: 1000 ASSOCIATED MB: VI

ASSOCIATED MB : VBLKG8

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	0Code	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	υ	U
1,1,2-TRICHLOROETHANE	0.00		12.00	Ū	ט
1,1-DICHLOROETHANE	0.00	1	12.00	U	U
1,1-DICHLOROSTHENS	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	12.00	U	U
1,2-DICHLOROPROPANE	0.00		12.00	Ū	U
2-BUTANONE	0.00		12.00	υ	บว
2-HEXANONE	0.00		12.00	U	ชฮ
4-METHYL-2-PENTANONE	0.00	T	12.00	ט	บบ
ACETONE	14.00	μg/Kg	0.00		R
BENZENE	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00		12.00	U	ט
BROMOFORM	0.00		12.00	υ	υ
BROMOMETHANE	0.00	1	12.00	U	ט
CARBON DISULFIDE	0.00	1	12.00	U	ซ
CARBON TETRACHLORIDE	0.00		12.00	U	บ
CHLOROBENZENE	0.00	1	12.00	ט	U
CHLOROETHANE	0.00	1	12.00	U	ט
CHLOROFORM	0.00	1	12.00	U	บ
CHLOROMETHANE	0.00	1	12.00	ט	ט
CIS-1, 3-DICHLOROPROPENE	0.00	1	12.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ETHYLBENZENE	0.00		12.00	υ	บ
METHYLENE CHLORIDE	25.00	µg/Rg	0.00	1	R
STYRENE	0.00	1	12.00	U	บ
TETRACHLOROETHENE	0.00	1	12.00	ט	υ
TOLUENE	0.00	1	12.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	12.00	ט	UJ
TRICHLOROETHENE	0.00	1	12.00	U	ט
VINYL CHLORIDE	0.00	1	12.00	ט	υ
XYLENES (TOTAL)	0.00		12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1003

SAMPLE TYPE : RE

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1000

ASSOCIATED MB : VBLK03

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	υ
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	Ū
1,1,2-TRICHLOROETHANE	0.00	T	12.00	ט	Ū
1,1-DICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHENE	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	12.00	U	U
1,2-DICHLOROPROPANE	0.00		12.00	a	u
2-BUTANONE	0.00	1	12.00	U	บง
2-HEXANONE	0.00		12.00	υ	บู
4-METHYL-2-PENTANONE	0.00		12.00	ט	บัง
ACETONE	4400.00	µg/Rg	0.00		J
BENZENE	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00		12.00	U	U
BROMOFORM	0.00	1	12.00	ט	U
BROMOMETHANE	0.00		12.00	U	ט
CARBON DISULFIDE	0.00		12.00	ט	ซ
CARBON TETRACHLORIDE	0.00		12.00	ט	ט
CHLOROBENZENE	0.00		12.00	ט	U
CHLOROSTHANS	0.00		12.00	ט	ט
CHLCROFORM	2.00	وة/وع	0.00		
CHLOROMETHANE	0.00	\top	12.00	ט	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	ט	U
ethylbenzene	0.00		12.00	ט	ט
KETHYLEN® CHLORIDE	200.00	µg/Rg	0.00		J
STYRENE	0.00		12.00	U	U
Tetrachloroethene	0.00		12.00	ט	U
TOLUENE	0.00		12.00	ט	υ
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	U	UJ
TRICHLOROETHENE	0.00	1	12.00	U	U
VINYL CHLORIDE	0.00		12.00	υ	υ
XYLENES (TOTAL)	0.00	1	12.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1004 SAMPLE TYPE : TB SAMPLE MATRIX : W ANALYSIS TYPE : VOL SDG : 1004 ASSOCIATED MB : VI

ASSOCIATED MB : VBLKSA

TRIP BLANK: 1004TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ชม
1,1,2-TRICHLOROETHANE	0.00		10.00	υ	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00		10.00	U	U
2-BUTANONE	0.00	1	10.00	บ	עט
2-HEXANONE	0.00	†	10.00	ט	บJ
4-METHYL-2-PENTANONE	0.00	1	10.00	υ	บบ
ACETONE	0.00		10.00	U	U
BENZENE	0.00	†	10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00	<u> </u>	10.00	U	U
BROMOMETHANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00		10.00	ū	ט
CARBON TETRACHLORIDE	0.00	1	10.00	υ	υ
CHLOROBENZENE	0.00		10.00	υ	ט
CHLOROSTHANS	0.00	1	10.00	บ	U
CHLOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00		10.00	ט	ט
CIS-1,3-DICHLOROPPOPENE	0.00	 	10.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ethylbenzene	0.00	1	10.00	ט	ט
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00	1	10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	υ	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	υ	U
TRICHLOROETHENE	0.00		10.00	υ	U
VINYL CHLORIDE	0.00	1	10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	U	U

EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, 151

PROJECT: NEVADA ATR NATIONAL GUARD

Final Simmary REVIEWER: DENNI MARTY BEGINNING SAFLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1005

SAMPLE TYPE : FB SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1004

ASSOCIATED MB : VBLKCA

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	บJ
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHANE	0.00	<u> </u>	10.00	ū	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ם	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	ט	บัง
2-HEXANONE	0.00		10.00	ט	UJ
4-methyl-2-pentanone	0.00		10.00	υ	บJ
ACETONE	0.00		10.00	U	U
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROMODICHLOROMETHANE	6.00	µg/L	0.00	J	J
BROMOFORM	0.00		10.00	ט	ט
BROMOMETHANE	0.00	1	10.00	ט	U
CARBON DISULPIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	ט	U
CHLOROFORM	0.00	Ì	10.00	ט	ט
CHLOROFORM	20.00	µg/L	0.00		
CHLOROMETHANE	0.00		10.00	υ	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	1.00	µg/L	0.00	J	3
ethylbenzene	0.00		10.00	ט	U
METHYLEP'S CHLORIDE	3.00	µg/L	0.00	J	R
METHYLENE CHLORIDE	0.00		10.00	υ	υ
STYRENE	0.00		10.00	U	Ū
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	ט	ט
VINYL CHLORIDE	0.00	1	10.00	U	U
XYLENES (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1006 ANALYSIS TYPE: VOL SDG: 1004

SAMPLE TYPE: FB SAMPLE MATRIX: W
SDG: 1004 ASSOCIATED MB: VBLKCA

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	υ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	Ü	UJ
1,1,2-TRICHLOROETHANE	0.00		10.00	υ	บ
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHENE	0.00		10.00	Ū	U
1,2-DICHLOROETHANE	0.00		10.00	Ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	T^{-}	10.00	ū	U
1,2-DICHLOROPROPANE	0.00		10.00	Ū	U
2-BUTANONE	0.00		10.00	n	ซฮ
2-HEXANONE	0.00		10.00	U	บว
4-METHYL-2-PENTANONE	0.00		10.00	U	บว
ACETONE	0.00	1	10.00	ט	U
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00	1	10.00	U	U
BROMOFORM	0.00	T	10.00	U	U
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULPIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00	1	10.00	υ	U
CHLOROETHANE	0.00		10.00	U	U
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	υ	υ
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ETHYLBENZENE	0.00	T	10.00	υ	ט
METHYLENE CHLORIDE	3.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	υ	v
TOLUENE	0.00		10.00	υ	Ū
TRANS-1, 3-DICHLOROPROPENE	0.00	1	10.00	U	ט
TRICHLOROETHENE	0.00	1	10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	U	ט
XYLENES (TOTAL)	0.00	1	10.00	U	υ

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1007

SAMPLE TYPE : ER SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1004

ASSOCIATED MB : VBLKCA

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	UJ
1,1,2-TRICHLOROETHANE	0.00	1	10.00	U	U
1,1-DICHLOROETHANE	0.00		10.00	Ū	ū
1,1-DICHLOROETHENE	0.00		10.00	U	σ
1,2-DICHLOROETHANE	0.00	1	10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ס	U
1,2-DICHLOROPROPANE	0.00		10.00	U	บ
2-BUTANONE	0.00		10.00	U	บง
2-HEXANONE	0.00		10.00	U	บัง
4-METHYL-2-PENTANONE	0.00		10.00	U	ขัว
ACETONE	0.00		10.00	ט	บ
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	υ	U
BROMOFORM	0.00	1	10.00	บ	U
BROMOMETHANE	0.00	1	10.00	ט	U
CARBON DISULFIDE	0.00		10.00	U	ט
CARBON TETRACHLORIDE	0.00	1	10.00	U	U
CHLOROBENZENE	0.00		10.00	υ	υ
CHLOROETHANE	0.00	T	10.00	U	ט
CHLOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00	1	10.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	บ
ETHYLBENZENE	0.00		10.00	ט	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00	T	10.00	υ	U
TRANS-1, 3-DICHLOROPP PENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00	1	10.00	U	υ
VINYL CHLORIDE	0.00	1	10.00	υ	υ
XYLENES (TOTAL)	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1008

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1004

ASSOCIATED MB : VBLKCA

TRIP BLANK: 1008TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,?,2-TETRACHLOROETHANE	0.00		10.00	ט	נט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ד
1,1-DICHLOROETHANE	0.00		10.00	บ	ū
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHANE	0.00		10.00	ט	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ū
2-BUTANONE	0.00		10.00	U	ชม
2-HEXANONE	0.00		10.00	U	บJ
4-methyl-2-pentanone	0.00		10.00	Ū	บัง
ACETONE	0.00		10.00	U	υ
Benzene	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00		10.00	υ	U
BROMOFORM	0.00		10.00	U	ט
BROMOMETRANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	ט	U
CHLOROFORM	0.00	1	10.00	U	ū
CHLOROMETHANE	0.00	1	10.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	υ
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzene	0.00		10.00	υ	υ
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00	1	10.00	U	υ
TETRACHLOROETHENE	0.00	1	10.00	U	υ
POLUENE	0.00		10.00	υ	U
TRANS-1, 3-DICHLOROPROPENE	0.00	<u> </u>	10.00	U	υ
TRICHLOROETHENE	0.00		10.00	U	υ
VINYL CELORIDE	0.00	1	10.00	U	υ
XYLENES (TOTAL)	0.00		10.00	บ	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1015

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKJ9

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00	Ţ · · · · ·	14.00	ū	ט
1,1,2-TRICHLOROETHANE	0.00	1	14.00	Ū	ט
1,1-DICHLOROETHANE	0.00	1	14.00	ט	ט
1,1-DICHLOROETHENE	0.00		14.00	Ū	ט
1,2-DICHLOROETHANE	0.00		14.00	υ	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	Ū	U
1,2-DICHLOROPROPANE	0.00		14.00	ū	Ū
2-BUTANONE	0.00		14.00	σ	Ū
2-HEXANONE	0.00		14.00	Ū	UJ
4-METHYL-2-PENTANONE	0.00		14.00	ប	ขั้
ACETONE	0.00		14.00	U	U
ACETONE	21.00	μg/kg	0.00		R
BENZENE	0.00		14.00	Ū	U
BROMODICHLOROMETHANE	0.00		14.00	U	ט
BROMOFORM	0.00		14.00	U	U
BROMOMETHANE	0.00		14.00	ט	U
CARBON DISULFIDE	0.00		14.00	ט	U
CARBON TETRACHLORIDE	0.00		14.00	U	U
CHLOROBENZENE	0.00		14.00	U	U
CHLOROETHANE	0.00		14.00	U	ט
CHLOROFORM	0.00		14.00	U	Ū
CHLOROMETHANE	0.00		14.00	ט	U
CIS-1,3-DICHLOROPROPENE	0.00		14.00	υ	U
DIBROMOCHLOROMETHANE	0.00		14.00	ט	ט
ethylbenzene	0.00		14.00	ט	ū
METHYLENE CHLORIDE	47.00	μg/kg	0.00		R
METHYLENE CHLORIDE	0.00		14.00	υ	ט
STYRENE	0.00		14.00	ט	ซ
TETRACHLOROETHENE	0.00		14.00	U	บัง
TOLUENE	0.00		14.00	U	U
Trans-1,3-dichloropropene	0.00		14.00	U	U
Trichloroethene	0.00		14.00	U	U
VINYL CHLORIDE	0.00		14.00	U	U
XYLENES (TOTAL)	0.00		14.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1016

SAMPLE TYPE : SDG : 1015 SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

ASSOCIATED MB : VBLKJ9

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	12.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ū
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	ט	U
1,2-DICHLOROETHANE	0.00		12.00	Ū	U
1,2-DICHLOROETHENE (TOTAL)	0.00	T	12.00	σ	U
1,2-DICHLOROPROPANE	0.00		12.00	U	U
2-BUTANONE	0.00		12.00	บ	ט
2-HEXANONE	0.00		12.00	ט	บว
4-METHYL-2-PENTANONE	0.00		12.00	U	บั
ACETONE	16.00	µg/kg	0.00		R
ACETONE	0.00		12.00	U	υ
Benzene	0.00		12.00	บ	ט
BROMODICHLOROMETHANE	0.00		12.00	υ	ט
BROMOFORM	0.00		12.00	U	U
BROMOMETHANE	0.00	1	12.00	U	U
CARBON DISULFIDE	0.00		12.00	U	υ
CARBON TETRACHLORIDE	0.00		12.00	U	U
CHLOROBENZENE	0.00		12.00	U	U
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	0.00		12.00	υ	U
CHLOROMETHANE	0.00		12.00	υ	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
ETHYLBENZENE	0.00		12.00	ט	U
METHYLENE CHLORIDE	0.00		12.00	U	U
METHYLENE CHLORIDE	38.00	µg/kg	0.00		R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	U	UJ
TOLUENE	0.00	T	12.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	T	12.00	U	U
TRICHLOROETHENE	0.00		12.00	U	ט
VINYL CHLORIDE	0.00	1	12.00	ט	υ
XYLENES (TOTAL)	0.00	1	12.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1017 ANALYSIS TYPE: VOL SAMPLE TYPE : SDG : 1015 SAMPLE MATRIX : S

ASSOCIATED MB : VBLKJ9

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	υ	υ
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ū	U
1,1,2-TRICHLOROETHANE	0.00		13.00	U	ū
1,1-DICHLOROETHANE	0.00		13.00	U	U
1,1-DICHLOROETHENE	0.00		13.00	U	บ
1,2-DICHLOROETHANE	0.00		13.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	ט	ט
1,2-DICHLOROPROPANE	0.00		13.00	U	U
2-BUTANONE	0.00		13.00	U	ט
2-HEXANONE	0.00	1	13.00	ט	บว
4-METHYL-2-PENTANONE	0.00		13.00	U	บJ
ACETONE	22.00	μg/kg	0.00		R
ACETONE	0.00		13.00	ט	ט
Benzene	0.00		13.00	Ü	ט
BROMODICHLOROMETHANE	0.00	1	13.00	U	ט
BRONOFORM	0.00	1	13.00	U	B
BROHOMETRANE	0.00	1	13.00	U	U
CARBON DISULFIDE	0.00		13.00	ט	ט
CARBON TETRACHLORIDE	0.00		13.00	ט	U
Chlorobenzene	0.00	1	13.00	U	U
CHLOROETHANE	0.00		13.00	U	U
CHLOROFORM	0.00		13.00	U	υ
CHLOROMETHANE	0.00		13.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		13.00	U	ט
DIBROMOCHLOROMETHANE	0.00		13.00	ט	U
ETHYLBENZENE	0.00		13.00	U	ט
METHYLENE CHLORIDE	0.00		13.00	U	ប
METHYLENE CHLORIDE	31.00	µg/kg	0.00		R
STYRENE	0.00		13.00	U	ט
TETRACHLOROETHENE	0.00	1	13.00	υ	บง
TOLUENE	0.00		13.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	U	U
TRICHLOROETHENE	0.00		13.00	ט	υ
VINYL CHLORIDE	0.00	T	13.00	U	υ
XYLENES (TOTAL)	0.00		13.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATEL BLANK DATA

SAMPLE NUMBER: 1018

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKM2

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	Ū	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	ט
1,1-DICHLOROETHANE	0.00		13.00	ט	ט
1,1-dichloroethene	0.00		13.00	U	ט
1,2-DICHLOROETHANE	0.00		13.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		13.00	ש	ט
2-BUTANONE	2.00		13.00	ט	ט
2-HEXANONE	0.00		13.00	ט	ชุง
4-methyl-2-pentanone	0.00		13.00	U	ชฮ
ACETONE	51.00	µg/kg	0.00		R
ACETONE	0.00		13.00	ט	ט
Benzene	0.00		13.00	ช	U
BROMODICHLOROMETHANE	0.00		13.00	U	ט
BROHOPORM	0.00		13.00	ט	U
BROMOMETHANE	0.00		13.00	ט	ប
CARBON DISULFIDE	0.00		13.00	ט	υ
CARBON TETRACHLORIDE	0.00		13.00	ט	ט
CHLOROBENZENE	0.00		13.00	ט	ט
CHLOROETHANE	0.00		13.00	ט	ט
CHLOROFORM	0.00		13.00	Ū	ט
CHLOROMETHANE	0.00		13.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		13.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		13.00	บ	U
ETHYLBENZENE	0.00		13.00	ט	ט
METHYLENE CHLORIDE	0.00		13.00	ט	U
METHYLENE CHLORIDE	28.00	µg/kg	0.00		R
STYRENE	0.00		13.00	υ	ט
TETRACHLOROETHENE	0.00		13.00	υ	UJ
TOLUENE	0.00		13.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	U	U
TRICHLOROETHENE	0.00		13.00	U	U
VINYL CHLORIDE	0.00		13.00	บ	ט
XYLENES (TOTAL)	0.00		13.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1019

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG : 1015

ASSOCIATED MB : VBLKJ9

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	υ	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHENE	0.00	1	12.00	ט	บ
1,2-DICHLOROETHANE	0.00		12.00	υ	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	12.00	U	U
1,2-DICHLOROPROPANE	0.00		12.00	U	ט
2-BUTANONE	0.00	1	12.00	U	ט
2-HEXANONE	0.00		12.00	U	บง
4-METHYL-2-PENTANONE	0.00	1	12.00	U	บว
ACETONE	14.00	µg/kg	0.00		R
ACETONE	0.00		12.00	ū	U
Benzene	0.00	1	12.00	ט	U
BROMODICHLOROMETHANE	0.00	1	12.00	ט	Ū
BROMOFORM	0.00	1	12.00	ט	ט
BROMOMETHANE	0.00		12.00	ט	U
CARBON DISULFIDE	0.00		12.00	U	U
CARBON TETRACHLORIDE	0.00		12.00	ט	U
CHLOROBENZENE	0.00		12.00	υ	บ
CHLOROETHANE	0.00		12.00	ט	U
CHLOROFORM	0.00		12.00	ט	ט
CHLOROMETHANE	0.00	1	12.00	U	ט
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
DIBROMOCHLOROMETHANE	0.00		12.00	ט	ט
ethylbenzene	0.00	1	12.00	U	ט
METHYLENE CHLORIDE	0.00		12.00	υ	U
METHYLENE CHLORIDE	25.00	µg/kg	0.00		R
STYRENE	0.00	1	12.00	U	U
TETRACHLOROETHENE	0.00	1	12.00	ט	ชม
TOLUENE	0.00	1	12.00	U	U
TRANS-1,3-DICELOROPROPENE	0.00		12.00	ט	U
TRICHLOROETHENE	0.00	1	12.00	U	U
VINYL CHLORIDE	0.00	1	12.00	U	Ü
XYLENES (TOTAL)	0.00	1	12.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

ANALYSIS TYPE : VOL SAMPLE NUMBER: 1020

SDG: 1015

SAMPLE TYPE: SAMPLE MATRIX: S

ASSOCIATED MB : VBLKJ9

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	U	ט
1,1-DICHLOROETHANE	0.00	\perp	11.00	ט	ט
1,1-DICHLOROETHENE	0.00		11.00	ט	ט
1,2-DICHLOROETHANE	0.00		11.00	u	U
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	U	ט
1,2-DICHLOROPROPANE	0.00		11.00	ט	<u>ט</u>
2-BUTANONE	0.00	\mathbf{I}_{-}	11.00	Ū	Ū
2-HEXANONE	0.00		11.00	υ	UJ
4-METHYL-2-PENTANONE	0.00		11.00	ט	UJ
ACETONE	0.00		11.00	U	U
ACETONE	19.00	μg/kg	0.00		R
BENZENB	0.00		11.00	ט	ט
BROMODICHLOROMETHANE	0.00		11.00	U	ט
BROMOFORM	0.00		11.00	ט	ט
BROMOMETHANE	0.00	1	11.00	บ	ប
CARBON DISULPIDE	0.00		11.00	υ	ט
CARBON TETRACHLORIDE	0.00		11.00	ט	ט
CHLOROBENZENE	0.00		11.00	ט	U
CHLOROETHANE	0.00	\mathbb{L}^{-}	11.00	U	ט
CHLOROFORM	0.00		11.00	ט	ט
CHLOROMETHANE	0.00	T	11.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00	1	11.00	u	U
DIBROMOCHLOROMETHANE	0.00		11.00	U	U
ETHYLBENZENE	0.00		11.00	U	ט
METHYLENE CHLORIDE	24.00	µg/kg	0.00		R
METHYLENE CHLORIDE	0.00		11.00	U	ט
STYRENE	0.00		11.00	U	U
TETRACHLOROETHENE	0.00	l	11.00	U	บัง
TOLUENE	0.00		11.00	υ	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	U	U
TRICHLOROETHENE	0.00	1	11.00	U	υ
VINYL CHLORIDE	0.00		11.00	U	ט
XYLENES (TOTAL)	0.00		11.00	U	Ū

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final 4 REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1021 ANALYSIS TYPE : VOL SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKJ9

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

EQUIPMENT RINSATES: 1007ER, 1108ER, 1109ER, 1110ER, 1513ER, 1525ER, Units Instrument Detection Limit QCode **OPinal** Concentration Compound 1.1.1-TRICHLOROFTHANE 0.00 14.00 ט 1,1,2,2-TETRACELOROETEANE 0.00 14.00 U U 0.00 14.00 U Ū 1.1.2-TRICHLOROETHANE 1, 1-DICHLOROETHANE 0.00 14.00 U ס 1,1-DICHLOROETHENE 0.00 14.00 U U 1,2-DICHLOROETHANE 0.00 14.00 Ū U 14.00 u U 1,2-DICHLOROETHENE (TOTAL) 0.00 14.00 U 1,2-DICHLOROPROPANE 0.00 14.00 tt 2-BUTANONE 0.00 tī UJ 2-HEXANONE 0.00 14.00 4-METHYL-2-PENTANONE 0.00 14.00 ט UJ ACETONE 0.00 14.00 U 0.00 ACETONE 14.00 μg/kg R BENZENE 0.00 14.00 14.00 BROMODICHLOROMETHANE 0.00 u 111 BROMOFORM 0.00 14.00 U U BROMOMETHANE 0.00 14.00 U U U U CARBON DISULFIDE 0.00 14.00 CARBON TETRACHLORIDE 0.00 14.00 บ บ υ CHLOROBENZENE 0.00 14.00 U CHLOROETHANE 0.00 14.00 d CHLOROFORM IJ U 14.00 0.00 CHLOROMETHANE U 0.00 14.00 CIS-1.3-DICHLOROPROPENE 0.00 14.00 u u DIBROMOCHLOROMETHANE 0.00 14.00 U U ETHYLBENZENE 0.00 14.00 11 Ħ METHYLENE CHLORIDE 43.00 μg/kg 0.00 R METHYLENE CHLORIDE 0.00 14.00 U STYRENE 0.00 U U 14.00 TETRACHLOROETHENE 0.00 14.00 U UJ TOLUENE 0.00 14.00 U U TRANS-1, 3-DICHLOROPROPENE 0.00 14.00 u U TRICHLOROETHENE 0.00 υ U 14.00 VINYL CHLORIDE 0.00 14.00 U tt XYLENES (TOTAL) 0.00 14.00 υ

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1022 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1015 ASSOCIATED MB: VBLKJ9

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		18.00	υ	U
1,1,2,2-TETRACHLOROETHANE	0.00		18.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	—	18.00	ט	U
1,1-DICHLOROETHANE	0.00		18.00	U	ט
1,1-DICHLOROETHENE	0.00		18.00	U	U
1,2-DICHLOROETHANE	0.00		18.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	18.00	Ū	ט
1,2-DICHLOROPROPANE	0.00	1	18.00	U	U
2-BUTANONE	0.00	1	18.00	ט	U
2-HEXANONE	0.00	1	18.00	ט	บัง
4-METHYL-2-PENTANONE	0.00	1	18.00	ט	UJ
ACETONE	15.00	µg/kg	0.00	J	R
ACETONE	0.00	1	18.00	U	ט
Benzene	0.00	1	18.00	U	υ
BROMODICHLOROMETHANE	0.00	1	18.00	U	U
Brohoporm	0.00		18.00	Ū	ט
BROMOMETHANE	0.00		18.00	U	U
CARBON DISULFIDE	0.00		18.00	U	U
CARBON TETRACHLORIDE	0.00		18.00	U	ט
CHLOROBENZENE	0.00	1	18.00	U	U
CHLOROETHANE	0.00	1	18.00	U	U
CHLOROFORM	0.00		18.00	U	U
CHLOROMETHANE	0.00		18.00	Ü	U
CIS-1,3-DICHLOROPROPENE	0.00		18.00	U	ט
DIBROMOCHLOROMETHANE	0.00	1	18.00	U	U
ETHYLBENZ ENE	0.00		18.00	U	ט
ETHYLENE CHLORIDE	0.00		18.00	υ	U
ETHYLENE CHLORIDE	54.00	µg/kg	0.00	J	R
STYRENE	0.00		18.00	U	U
TETRACHLOROETHENE	0.00		18.00	U	บง
OLUENE	0.00		18.00	U	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		18.00	U	υ
TRICHLOROETHENE	0.00		18.00	U	U
VINYL CHLORIDE	0.00		18.00	U	U
KYLENES (TOTAL)	0.00	1	18.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1023

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		17.00	U	u
1,1,2,2-TETRACHLOROETHANE	0.00	I	17.00	U	ū
1,1,2-TRICHLOROETHANE	0.00		17.00	U	Ū
1,1-DICHLOROETHANE	0.00		17.00	ט	U
1,1-DICHLOROETHENE	0.00		17-00	U	U
1,2-DICHLOROETHANE	0.00		17.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		17.00	ū	ប
1,2-DICHLOROPROPANE	0.00		17.00	ט	ט
2-BUTANONE	0.00		17.00	ט	U
2-HEXANONE	0.00		17.00	U	UJ
4-METHYL-2-PENTANONE	0.00		17.00	ט	UJ
ACETONE	0.00		17.00	ט	ט
ACETONE	50.00	μg/kg	0.00		R
BENZENE	0.00		17.00	U	υ
BROMODICHLOROMETHANE	0.00		17.00	ט	ט
BRONOFORM	0.00		17.00	U	ט
BROMOMETHANE	0.00		17.00	ט	ט
CARBON DISULFIDE	0.00		17.00	ט	ט
CARBON TETRACHLORIDE	0.00		17.00	ט	ט
CHLOROBENZENE	0.00		17.00	ט	ט
CHLOROETHANE	0.00		17.00	ט	ט
CHLOROFORM	0.00		17.00	U	U
CHLOROMETRANE	0.00		17.00	ט	บ
CIS-1,3-DICHLOROPROPENE	0.00	I	17.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		17.00	บ	บ
ETHYLBENZENE	0.00		17.00	ט	Ü
METHYLENE CHLORIDE	0.00		17.00	U	ט
METHYLENE CHLORIDE	56.00	μg/kg	0.00		R
STYRENE	0.00		17.00	ט	ช
TETRACHLOROETHENE	0.00		17.00	U	บป
TOLUENE	0.00		17.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		17.00	υ	ט
TRICELOROETHENE	0.00		17.00	U	ט
VINYL CHLORIDE	0.00		17.00	υ	ט
XYLENES (TOTAL)	0.00		17.00	U	U

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1024 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1015 ASSOCIATED MB: VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		13 10	ū	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	U
1,1-DICHLOROETHANE	0.00		13.00	υ	บ
1,1-DICHLOROETHENE	0.00		13.00	บ	U
1,2-DICHLOROETHANE	0.00		13.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	U	U
1,2-DICHLOROPROPANE	0.00		13.00	ט	ט
2-BUTANONE	0.00	1	13.00	U	Ū
2-HEXANONE	0.00		13.00	U	บัง
4-METHYL-2-PENTANONE	0.00		13.00	U	UJ
ACETONE	0.00		13.00	ט	U
ACETONE	18.00	µg/kg	0.00		R
BEN2 ENE	0.00		13.00	U	ט
BROMODICHLOROMETHANE	0.00	1	13.00	U	U
BROMOFORM	0.00		13.00	ט	ט
BROMOMETHANE	0.00		13.00	Ū	U
CARBON DISULFIDE	0.00		13.00	ט	ט
CARBON TETRACHLORIDE	0.00		13.00	ט	U
CHLOROBENZENE	0.00		13.00	U	U
CHLOROETHANE	0.00		13.00	U	ט
CHLOROPORM	0.00		13.00	υ	U
CHLOROMETHANE	0.00	1	13.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00	_	13.00	U	U
DIBROMOCHLOROMETHANE	0.00		13.00	Ū	U
ETHYLBENZENE	0.00	1	13.00	U	U
METHYLENE CHLORIDE	0.00		13.00	Ū	U
METHYLENE CHLORIDE	36.00	µg/kg	0.00		R
STYRENE	0.00	1	13.00	U	ט
TETRACHLOROETHENE	0.00		13.00	U	บJ
TOLUENE	0.00	1	13.00	U	υ
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	U	U
TRICHLOROETHENE	0.00		13.00	υ	υ
VINYL CHLORIDE	0.00	†	13.00	Ū	U
XYLENES (TOTAL)	0.00	1	13.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1025

SAMPLE TYPE : SDG: 1015

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	υ	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	σ	U
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHANE	0.00	T	12.00	U	U
1,1-DICHLOROETHENE	0.00	1	12.00	U	ט
1,2-DICHLOROETHANE	0.00		12.00	ט	U
1,2-DICELOROETHENE (TOTAL)	0.00		12.00	U	ט
1,2-DICHLOROPROPANE	0.00		12.00	D	ט
2-BUTANONE	0.00		12.00	U	ט
2-HEXANONE	0.00		12.00	U	บว
4-METHYL-2-PENTANONE	0.00		12.00	υ	UJ
ACETONE	0.00		12.00	U	υ
ACETONE	15.00	μg/kg	0.00	1	R
BENZENE	0.00		12.00	ט	U
BROMODICHLOROMETHANE	0.00		12.00	U	ט
BROMOFORM	0.00		12.00	ט	U
BROMOMETHANE	0.00		12.00	U	U
CARBON DISULFIDE	0.00		12.00	ט	υ
CARBON TETRACHLORIDE	0.00		12.00	U	ט
CHLOROBENZENE	0.00		12.00	ט	U
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	0.00		12.00	ט	ט
CHLOROMETHANE	0.00		12.00	ט	U
CIS-1, 3-DICHLOROPROPENE	0.00	1	12.00	U	"
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
BTHYLBENZENE	0.00		12.00	ט	υ
METHYLENE CHLORIDE	0.00		12.00	ט	U
METHYLENE CHLORIDE	23.00	µg/kg	0.00	1	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	υ	บัง
TOLUENE	0.00		12.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	U
TRICHLOROETHENE	0.00		12.00	υ	υ
VINYL CHLORIDE	0.00		12.00	U	υ
XYLENES (TOTAL)	0.00		12.00	ט	บ

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1026 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1015 ASSOCIATED MB: VI

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ū	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHENE	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	บ	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ū	ט
1,2-DICHLOROPROPANE	0.00	1	12.00	ט	ט
2-BUTANONE	0.00		12.00	U	Ū
2-HEXANONE	0.00		12.00	ט	UJ
4-METHYL-2-PENTANONE	0.00		12.00	ט	UJ
ACETONE	18.00	µg/kg	0.00		R
ACETONE	0.00	I	12.00	U	U
BENZENE	0.00		12.00	บ	U
BROMODICHLOROMETHANE	0.00		12.00	υ	ט
BRONOFORM	0.00		12.00	ט	ט
BROMOMETHANE	0.00		12.00	U	U
CARBON DISULPIDE	0.00		12.00	U	บ
CARBON TETRACELORIDE	0.00		12.00	ט	U
CHLOROBENZENE	0.00		12.00	ט	ט
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	0.00		12.00	ū	U
CHLOROMETHANE	0.00		12.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	บ
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ethylbenzene	0.00		12.00	Ü	ט
METHYLENE CHLORIDE	0.00		12.00	υ	υ
METHYLENE CHLORIDE	47.00	µg/kg	0.00		R
STYRENE	0.00		12.00	ט	ט
TETRACHLOROETHENE	0.00	I	12.00	U	บJ
TOLUENE	0.00		12.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00	1	12.66	Ü	U
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00	1	12.00	U	U
XYLENES (TOTAL)	0.00	1	12.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1027

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG : 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	σ	U
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHANE	0.00	T	12.00	U	Ū
1,1-DICHLOROETHENE	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	Ū	a
1,2-DICHLOROSTHENS (TOTAL)	0.00	1	12.00	ט	ū
1,2-DICHLOROPROPANE	0.00		12.00	ט	ū
2-BUTANONE	0.00		12.00	ט	Ū
2-HEXANONE	0.00		12.00	ט	บJ
4-METHYL-2-PENTANONE	0.00		12.00	ט	บว
ACETONE	18.00	µg/kg	0.00	T	R
ACETONE	0.00		12.00	U	Ū
BENZENE	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROHOFORM	0.00		12.00	U	U
BROMOMETHANE	0.00		12.00	ט	ט
CARBON DISULFIDE	0.00		12.00	ט	บ
CARBON TETRACHLORIDE	0.00		12.00	ט	U
CHLOROBENZENE	0.00		12.00	υ	ט
CHLOROETHANE	0.00	1	12.00	ט	מ
CHLOROFORM	0.00		12.00	ט	U
CHLOROMETHANE	0.00		12.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		12.00	ט	บ
DIBROMOCHLOROMETHANE	0.00		12.00	<u>ס</u>	U
ETHYLBENZENE	0.00		12.00	U	ט
METHYLENE CHLORIDE	0.00		12.00	U	U
METHYLENE CHLORIDE	36.00	µg/kg	0.00	T	R
STYRENE	0.00		12.00	υ	U
TETRACHLOROETHENE	0.00		12.00	ט	บว
TOLUENE	0.00		12.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	U
TRICHLOROETHENE	0.00		12.00	ט	ט
VINYL CHLORIDE	0.00		12.00	บ	ט
KYLENES (TOTAL)	0.00		12.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1028

SAMPLE TYPE : SDG : 1015

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKK5

ANALYSIS TYPE : VOL

TRIP BLANK: 1034TB FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	U
1,1,2-TRICHLOROETHANE	0.00		100	a	U
1,1-DICHLOROETHANE	0.00		11.00	Ü	Ū
1,1-DICHLOROETHENE	0.00		11.00	U	Ū
1,2-DICHLOROETHANE	0.00		11.00	ט	υ
1,2-DICHLOROETHENE (TOTAL)	0.00	1	11.00	Ū	Ū
1,2-DICHLOROPROPANE	0.00		11.00	ט	ט
2-BUTANONE	0.00		11.00	ū	U
2-HEXANONE	0.00		11.00	ט	บง
4-METHYL-2-PENTANONE	0.00		11.00	U	บว
ACETONE	0.00		11.00	U	U
acetone	13.00	μg/kg	0.00		R
BENZENE	0.00		11.00	ט	ט
BROMODICHLOROMETHANE	0.00	1	11.00	U	ט
BROHOPORM	0.00	1	11.00	ט	U
Brohomethane	0.00		11.00	ט	U
CARBON DISULPIDE	0.00		11.00	υ	U
CARBON TETRACHLORIDE	0.00	1	11.00	ט	ט
CHLOROBENZENE	0.00		11.00	U	U
CHLOROETHANE	0.00		11.00	ט	U
CHLOROFORM	0.00		11.00	υ	υ
CHLOROMETHANE	0.00		11.00	u	U
CIS-1,3-DICHLOROPROPENE	0.00		11.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		11.00	ט	ט
ethylbenzene	0.00		11.00	ט	ט
METHYLENE CHLORIDE	0.00		11.00	U	U
METHYLENE CHLORIDE	27.00	μg/kg	0.00		R
STYRENE	0.00		11.00	υ	υ
TETRACHLOROETHENE	0.00	1	11.00	U	บัง
TOLUENE	0.00		11.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
TRICHLOROETHENE	0.00		11.00	U	U
VINYL CHLORIDE	0.00	1	11.00	U	U
XYLENES (TOTAL)	0.00		11.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1029

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	U
1,1,2,2-TETRACELOROETHANE	0.00		12.00	U	ט
1,1,2-TRICHLOROSTHANE	0.00		12.00	U	ū
1,1-DICHLOROETHANE	0.00		12.00	Ū	ט
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00		12.00	a	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ט	U
1,2-DICELOROPROPANE	0.00		12.00	ט	ū
2-BUTANONE	0.00		12.00	ט	ט
2-HEXANONE	0.00		12.00	บ	บJ
4-METHYL-2-PENTANONE	0.00		12.00	U	ชฮ
ACETONE	0.00		12.00	U	U
ACETONE	16.00	µg/kg	0.00		R
Benzene	0.00		12.00	O	U
BROMODICHLOROMETHANE	0.00		12.00	U	ט
BROHOFORM	0.00		12.00	U	U
BROMOMETHANE	0.00		12.00	υ	U
CARBON DISULFIDE	0.00		12.00	Ü	U
CARBON TETRACHLORIDE	0.00		12.00	U	ט
CHLOROBENZENE	0.00		12.00	U	ט
CHLOROETHANE	0.00		12.00	ט	U
CHLOROFORM	2.00	μg/kg	0.00	J	J
CHLOROFORM	0.00		12.00	ט	U
CHLOROMETHANE	0.00		12.00	ប	U
CIS-1, 3-DICHLOROPROPENE	0.00		12.00	ט	ט
DIBROHOCHLOROMETHANE	0.00]	12.00	U	ט
ETHYLBENZENE	0.00		12.00	ū	ט
METHYLENE CHLORIDE	0.00		12.00	บ	U
METHYLENE CHLORIDE	27.00	µg/kg	0.00		R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	U	บJ
TOLUENE	0.00		12.00	U	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	U
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00		12.00	v	ט
XYLENES (TOTAL)	0.00		12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1030

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1015 ASSOCIATED MB: VI

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		14.00	ט	ū
1,1,2-TRICHLOROETHANE	0.00		14.00	ט	ט
1,1-DICHLOROETHANE	0.00		14.00	U	ū
1,1-DICHLOROETHENE	0.00		14.00	ט	U
1,2-DICHLOROETHANE	0.00		14.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	ט	ū
1,2-DICELOROPROPANE	0.00		14.00	ט	Ū
2-BUTANONE	0.00		14.00	ט	Ū
2-HEXANONE	0.00		14.00	ט	עט
4-METHYL-2-PENTANONE	0.00		14.00	U	บัว
ACETONE	0.00		14.00	U	ט
ACETONE	20.00	µg/kg	0.00		R
BENZENE	0.00		14.00	U	U
BROMODICELOROMETHANE	0.00		14.00	ט	U
BRONOFORM	0.00		14.00	ט	U
BROMOMETHANE	0.00		14.00	ช	U
CARBON DISULFIDE	0.00		14.00	υ	υ
CARBON TETRACHLORIDE	0.00		14.00	U	U
CHLOROBENZENE	0.00	1	14.00	U	ט
CHLOROETHANE	0.00	1	14.00	ט	ט
CHLOROFORM	2.00	μg/kg	0.00	J	J
CHLOROFORM	0.00	1	14.00	ט	U
CHLOROMETHANE	0.00		14.00	ט	ט
CIS-1, 3-DICHLOROPROPENE	0.00		14.00	U	U
DIBROHOCHLOROMETHANE	0.00	1	14.00	U	U
ETHYLBENZENE	0.00	1	14.00	U	ט
METHYLENE CHLORIDE	38.00	μg/kg	0.00		R
METHYLENE CHLORIDE	0.00		14.00	บ	ט
STYRENE	0.00		14.00	U	U
TETRACHLOROETHENE	0.00	1	14.00	U	บว
TOLUENE	0.00		14.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		14.00	U	U
TRICELOROETHENE	0.00	1	14.00	U	ט
VINYL CHLORIDE	0.00		14.00	U	U
XYLENES (TOTAL)	0.00	1	14.00	ט	U

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1031

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	υ
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	U
1,1,2-TRICHLOROETHANE	0.00	1	12.00	U	ט
1,1-DICHLOROETHANE	0.00		12.00	U	Ū
1,1-DICHLOROETHENE	0.00	1	12.00	U	ū
1,2-DICHLOROETHANE	0.00		12.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	12.00	U	ช
1,2-DICHLOROPROPANE	0.00		12.00	U	ט
2-BUTANONE	0.00		12.00	Ū	U
2-HEXANONE	0.00	1	12.00	U	עט
4-METHYL-2-PENTANONE	0.00		12.00	ט	נט
ACETONE	23.00	μg/kg	0.00	T	R
ACETONE	0.00		12.00	U	U
BENZENE	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROHOFORM	0.00		12.00	U	U
BROMOMETHANE	0.00		12.00	U	U
CARBON DISULFIDE	0.00	1	12.00	ט	ט
CARBON TETRACHLORIDE	0.00		12.00	ט	ט
CHLOROBENZENE	0.00	1	12.00	υ	ט
CHLOROETHANE	0.00		12.00	U	ט
CHLOROFORM	0.00	1	12.00	ט	υ
CHLOROFORM	1.00	µg/kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	U	ช
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
DIBRONOCHLOROMETHANE	0.00		12.00	U	ט
ethylben2ene	0.00	1	12.00	ט	U
METHYLENE CHLORIDE	0.00		12.00	U	ט
METHYLENE CHLORIDE	24.00	µg/kg	0.00		R
STYRENE	0.00		12.00	U	ט
TETRACHLOROETHENE	0.00		12.00	u	ชง
TOLUENE	0.00		12.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
TRICHLOROETHENE	0.00		12.00	U	ס
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00		12.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1032 ANALYSIS TYPE: VOL SAMPLE TYPE :

SAMPLE MATRIX : S

DL SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	Τ	11.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	11.00	ū	U
1,1,2-TRICHLOROETHANE	0.00	T	11.00	ū	σ
1,1-DICHLOROETHANE	0.00		11.00	ช	υ
1,1-DICHLOROETHENE	0.00	T	11.00	ט	ט
1,2-DICHLOROETHANE	0.00		11.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	Ī	11.00	U	U
1,2-DICHLOROPROPANE	0.00	1	11.00	ט	ū
2-BUTANONE	0.00	Ī	11.00	ซ	U
2-HEXANONE	0.00		11.00	ט	บJ
4-METHYL-2-PENTANONE	0.00		11.00	ช	ชฮ
ACETONE	15.00	μg/kg	0.00		R
ACETONE	0.00		11.00	ט	U
BENZENE	0.00		11.00	ū	ט
BROMODICHLOROMETHANE	0.00		11.00	ซ	ט
BROMOFORM	0.00		11.00	ט	ŭ
BRONOMETHANE	0.00	Ţ	11.00	ט	ט
CARBON DISULFIDE	0.00		11.00	U	ט
CARBON TETRACHLORIDE	0.00		11.00	ט	ט
CHLOROBENZENE	0.00		11.00	Ū	σ
CHLOROETHANE	0.00	I	11.00	U	a
CHLOROFORM	0.00	T	11.00	ט	ט
CHLOROMETRANE	0.00	Ţ	11.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00	1	11.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		11.00	บ	บ
ethylbenzene	0.00	T	11.00	ט	ט
METHYLENE CHLORIDE	0.00		11.00	บ	U
METHYLENE CHLORIDE	25.00	µg/kg	0.00		R
STYRENE	0.00		11.00	บ	U
TETRACHLOROETHENE	0.00		11.00	υ	บว
TOLUENE	0.00		11.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	U	U
TRICHLOROETHENE	0.00		11.00	υ	U
VINYL CHLORIDE	0.00		11.00	υ	υ
XYLENES (TOTAL)	0.00		11.00	U	υ

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1033

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	ū
1,1,2-TRICHLOROSTHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHANE	0.00		12.00	a	ט
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00		12.00	ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	ט
1,2-DICHLOROPROPANE	0.00	T	12.00	ט	ש
2-BUTANONE	0.00		12.00	U	ט
2-HEXANONE	0.00		12.00	U	บJ
4-METHYL-2-PENTANONE	0.00		12.00	U	บJ
ACETONE	18.00	µg/kg	0.00		R
ACETONE	0.00		12.00	ט	ט
Benzene	0.00		12.00	ט	ט
BROMODICHLOROMETHANE	0.00		12.00	U	U
BROHOFORM	0.00	1	12.00	ט	U
BROMOMETHANE	0.00		12.00	ט	U
CARBON DISULPIDE	0.00		12.00	U	ט
CARBON TETRACHLORIDE	0.00		12.00	ט	U
Chlorobenzene	0.00		12.00	U	U
CHLOROETHANE	0.00		12.00	ט	U
CHLOROFORM	0.00		12.00	U	U
CHLOROMETHANE	0.00		12.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		12.00	υ	ט
DIBROHOCHLOROMETHANE	0.00		12.00	U	U
ethylbenzene	0.00		12.00	ט	U
METHYLENE CHLORIDE	21.00	µg/kg	0.00	1	R
METHYLENE CHLORIDE	0.00		12.00	U	U
STYRENE	0.00		12.00	U	σ
TETRACHLOROETHENE	0.00		12.00	U	UJ
TOLUENE	0.00		12.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	U
TRICHLOROETHENE	0.00	T	12.00	ט	ט
VINYL CHLORIDE	0.00		12.00	U	υ
XYLENES (TOTAL)	0.00	1	12.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1034 SAMPLE TYPE: TB SAMPLE MATRIX: W
ANALYSIS TYPE: VOL SDG: 1500

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00	I	10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	ū	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	UJ
1,2-DICHLOROETHANE	0.00		10.00	ט	บัว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00	T	10.00	Ū	UJ
2-BUTANONE	0.00	1	10.00	ט	บว
2-HEXANONE	0.00		10.00	U	UJ
4-metryl-2-pentanone	0.00		10.00	U	บฮ
BENZENE	0.00	1	10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00	1	10.00	U	U
BROMOMETHANE	0.00	1	10.00	ט	υ
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	υ	ט
CHLOROETHANE	0.00		10.00	ט	บว
CHLOROFORM	0.00		10.00	Ü	ט
CHLOROMETHANE	0.00		10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENZ ENE	0.00		10.00	บ	ט
STYRENE	0.00		10.00	บ	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	υ	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	υ	υ
TRICHLOROETHENE	0.00		10.00	77	U
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	0.00		10.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1035

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1015

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	U
1,1,2-TRICHLOROETHANE	0.00		11.00	σ	U
1,1-DICHLOROETHANE	0.00	1	11.00	U	U
1,1-DICHLOROETHENE	0.00		11.00	U	บ
1,2-DICHLOROETHANE	0.00		11.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	a	U
1,2-DICHLOROPROPANE	0.00	1	11.00	U	ט
2-BUTANONE	0.00		11.00	U	ט
2-HEXANONE	0.00		11.00	U	ชฮ
4-METHYL-2-PENTANONE	0.00		11.90	U	บว
ACETONE	14.00	µg/kg	0.00		R
ACETONE	0.00		11.00	υ	υ
Benz ene	0.00		11.00	ט	U
BROMODICHLOROMETHANE	0.00		11.00	U	U
Bronoform	0.00		11.00	ט	υ
BROMOMETHANE	0.00		11.00	U	U
CARBON DISULFIDE	0.00		11.00	ט	U
CARBON TETRACHLORIDE	0.00		11.00	U	υ
CHLOROBENZENE	0.00		11.00	ט	U
CELOROETHANE	0.00	1	11.00	ט	Ū
CHLOROFORM	0.00		11.00	υ	U
CHLOROMETHANE	0.00	1	11.00	ט	U
CIS-1,3-DICHLOROPROPENE	0.00	1	11.00	ט	U
DIBROHOCHLOROMETHANE	0.00		11.00	ט	U
ETHYLBENZENB	0.00		11.00	ซ	υ
METHYLENE CHLORIDE	18.00	μg/kg	0.00		R
METHYLENE CHLORIDE	0.00	1	11.00	U	U
STYRENE	0.00	1	11.00	υ	υ
TETRACHLOROETHENE	0.00		11.00	U	บว
TOLUENE	0.00		11.00	υ	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	11.00	ט	U
TRICHLOROETHENE	0.00	+	11.00	ט	ט
VINYL CHLORIDE	0.00	 	11.00	U	ט
XYLENES (TOTAL)	0.00	<u> </u>	11.00	υ	บ

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1036 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1036 ASSOCIATED MB: VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		11.00	ū	U
1,1-DICHLOROETHANE	0.00		11.00	ט	U
1,1-DICHLOROETHENE	0.00		11.00	ט	U
1,2-DICHLOROETHANE	0.00		11.00	ט	ט
1,2-DICHLOROPROPANE	0.00		11.00	۵	ט
2-BUTANONE	0.00		11.00	ט	ชฮ
2-HEXANONE	0.00		11.00	U	ชว
4-METHYL-2-PENTANONE	0.00		21.00	ט	ขัว
ACETONE	0.00		11.00	U	บง
Benzene	0.00		11.00	ט	ซ
BROMODICHLOROMETHANE	0.00		11.00	υ	ซ
BROMOFORM	0.00		11.00	U	ט
BROMOMETHANE	0.00		11.00	U	U
CARBON DISULFIDE	0.00		11.00	ט	ช
CARBON TETRACHLORIDE	0.00		11.00	υ	ชง
CHLOROBENZENE	0.00		11.00	U	ט
CHLOROETHANE	0.00		11.00	ט	ט
CHLOROFORM	0.00		11.00	ט	ช
CHLOROMETHANE	0.00		11.00	U	ชม
CIS-1,3-DICHLOROPROPENE	0.00		11.00	U	บ
DIBROMOCHLOROMETHANE	0.00		11.00	U	ช
ETHYLBENZENE	0.00		11.00	บ	ט
METHYLENE CHLORIDE	8.00	µg/Rg	0.00	ВЈ	R
STYRENE	0.00		11.00	U	U
TETRACHLOROETHENE	0.00		11.00	U	ซ
TOLUENE	0.00		11.00	ט	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	U	ซ
TRICHLOROETHENE	0.00		11.00	U	U
VINYL CHLORIDE	0.00		11.00	υ	υ
XYLENES (TOTAL)	0.00		11.00	U	U
				t	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1037 ANALYSIS TYPE : VOL

SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKP1

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		2200.00	U	Ü
1,1,2,2-TETRACHLOROETHANE	0.00		2200.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		2200.00	Ū	ט
1,1-DICHLOROETHANE	0.00		2200.00	ū	ט
1,1-DICHLOROETHENE	0.00		2200.00	บ	υ
1,2-DICHLOROETHANE	0.00		2200.00	ט	ט
1,2-DICHLOROPROPANE	0.00		2200.00	ū	ט
2-BUTANONE	0.00	T	2200.00	U	נט
2-HEXANONE	0.00		2200.00	ū	บJ
4-METHYL-2-PENTANONE	0.00		2200.00	ט	บัง
ACETONE	1900.00	µg/Kg	0.00	3	J
BENZENB	0.00	T	2200.00	ט	ט
BROMODICHLOROMETHANE	0.00		2200.00	υ	บ
BROMOFORM	0.00		2200.00	ט	ט
BROMOMETHANE	0.00		2200.00	U	U
CARBON DISULFIDE	0.00		2200.00	U	ט
CARBON TETRACHLORIDE	0.00		2200.00	ט	UJ
CHLOROBENZENE	0.00		2200.00	ט	ט
CHLOROETHANE	0.00		2200.00	U	ט
CHLOROFORM	0.00		2200.00	ט	U
CHLOROMETHANE	0.00		2200.00	ט	ซฮ
CIS-1,3-DICHLOROPROPENE	0.00		2260.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		2200.00	U	U
ETHYLBENZ ENE	1800.00	µg/Kg	0.00	J	J
METHYLENE CHLORIDE	4200.00	μg/Kg	0.00	В	J
STYRENE	0.00		2200.00	ט	ט
TETRACHLOROETHENE	0.00		2200.00	U	U
TOLUENE	0.00		2200.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		2200.00	U	ט
TRICHLOROETHENE	0.00		2200.00	υ	υ
VINYL CHLORIDE	0.00		2200.00	U	ט
XYLENE (TOTAL)	9700.00	µg/Kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1038

ANALYSIS TYPE : VOL SDG : 1036

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1036 ASSOCIATED MB: VBLKM2

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00	T	12.00	ט	U
1,1-DICHLOROETHANE	0.00		12.00	Ū	U
1,1-DICHLOROETHENE	0.00	1	12.00	υ	U
1,2-DICHLOROETBANE	0.00		12.00	ט	ט
1,2-DICHLOROPROPANE	0.00		12.00	ט	U
2-BUTANONE	0.00	1	12.00	U	UJ
2-HEXANONE	0.00		12.00	U	บัง
4-METHYL-2-PENTANONE	0.00	1	12.00	ט	UJ
ACETONE	26.00	µg/Rg	0.00	В	R
BENZENE	0.00		12.00	ט	U
BROMODICHLOROMETHANE	0.00		12.00	ט	U
BROMOPORM	0.00		12.00	U	U
BROHOMETHANE	0.00	1	12.00	บ	บ
CARBON DISULFIDE	0.00	1	12.00	U	U
CARBON TETRACHLORIDE	0.00	1	12.00	υ	ชิงิ
CHLOROBENZENE	0.00	1	12.00	U	บ
CHLOROETHANE	0.00		12.00	U	U
CHLOROFORM	1.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00	1	12.00	บ	บง
CIS-1,3-DICHLOROPROPENE	0.00	1	12.00	U	υ
DIBROMOCHLOROMETHANE	0.00		12.00	0	U
ETHYLBENZENE	0.00	1	12.00	U	U
METHYLENE CHLORIDE	20.00	μg/Kg	0.00	В	R
STYRENE	0.00	Ī	12.00	U	ט
TETRACHLOROETHENE	0.00		12.00	ט	U
TOLUENE	0.00	1	12.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	υ	U
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00	1	12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1039 SAMPLE TYPE: SAMPLE MATRIX: S

ANALYSIS TYPE : VOL SDG: 1036 ASSOCIATED MB : VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		14.00	บ	ט
1,1,2,2-TETRACELOROETHANE	0.00		14.00	U	ט
1,1,2-TRICHLOROBTHANB	0.00	1	14.00	Ū	ט
1,1-DICHLOROETHANE	0.00		14-00	ט	ט
1, 1-DICHLOROETHENE	0.00		14-00	ט	บ
1,2-DICHLOROETHANE	0.00		14.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		14.00	ט	ט
2-BUTANONE	0.00		14.00	U	UJ
2-HEXANONE	0.00		14.00	U	ซฮ
4-methyl-2-pentanone	0.00		14.00	ט	UJ
ACETONE	14.00	µg/Kg	0.00	3	J
Benzene	0.00		14.00	ט	υ
BROMODICHLOROMETHANE	0.00		14.00	ט	ט
BROMOFORM	0.00		14.00	ט	U
BROMOMETHANE	0.00		14.00	ט	U
CARBON DISULPIDE	0.00		14.00	ט	ט
CARBON TETRACHLORIDE	0.00	-	14.00	U	บัง
CHLOROBENZENE	0.00		14.00	U	U
CHLOROETHANE	0.00		14.00	ט	υ
CHLOROFORM	0.00	1	14.00	U	ט
CHLOROMETHANE	0.00		14.00	ט	ชง
CIS-1,3-DICHLOROPROPENE	0.00		14.00	U	ט
DIBROMOCHLOROMETHANE	0.00		14.00	υ	U
ethylbenzene	0.00		14.00	ט	ט
METHYLENE CHLORIDE	11.00	μg/Kg	0.00	BJ	R
STYRENE	0.00		14.00	ט	υ
TETRACELOROETHENE	0.00		14.00	ט	ט
TOLUENE	0.00		14.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00	T	14.00	U	U
TRICHLOROETHENE	0.00		14.00	U	U
VINYL CHLORIDE	0.00		14.00	ט	U
XYLENES (TOTAL)	0.00		14.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1040 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1036 ASSOCIATED MB: VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	ប
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		12.00	ט	U
2-BUTANONE	0.00		12.00	U	บJ
2-HEXANONE	0.00		12.00	ט	บว
4-METHYL-2-PENTANONE	0.00	1	12.00	U	บJ
ACETONE	12.00	µg/Kg	0.00		J
Benz ene	0.00		12.00	U	υ
BROMODICHLOROMETHANE	0.00		12.00	υ	υ
BROHOPORH	0.00		12.00	ט	ט
BROHOMETHANE	0.00	1	12.00	U	U
CARBON DISULFIDE	0.00		12.00	υ	U
CARBON TETRACHLORIDE	0.00		12.00	U	บง
CHLOROBENZENE	0.00		12.00	U	U
CHLOROETHANE	0.00		12.00	υ	U
CELOROFORM	0.00		12.00	U	U
CHLOROMETHANE	0.00		12.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
DIBROMOCHLOROMETHANE	0.00		12.00	U	บ
ETHYLBENZENE	0.00		12.00	บ	ប
METHYLENE CHLORIDE	8.00	µg/Kg	0.00	BJ	R
STYRENE	0.00	I	12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	ט	ט
TOLUENE	0.00		12.00	บ	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	υ	U
TRICHLOROETHENE	0.00	T	12.00	υ	υ
VINYL CHLORIDE	0.00	1	12.00	U	U
XYLENES (TOTAL)	0.00	1	12.00	U	U

PROJECT: NEVADA ALR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1041

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG : 1036

ASSOCIATED MB : VBLKK5

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	ŋ
1,1-DICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHENE	0.00		12.00	ט	ช
1,2-D_CHLOROETHANE	0.00		12.00	ט	ט
1,2-DICHLOROPROPANE	0.00		12.00	ט	ט
2-BUTANONE	0.00		12.00	U	ชว
2-REXANONE	0.00	,	12.00	U	ชง
4-methyl-2-pentanone	0.00		12.00	ט	บัง
ACETONE	0.00		12.00	ū	ชม
Benzene	0.00		12.00	บ	ט
BROMODICHLOROMETHANE	0.00		12.00	ט	U
BROHOFORM	0.00		12.00	U	U
BROMOMETHANE	0.00		12.00	ט	ט
CARBON DISULFIDE	0.00		12.00	ט	U
CARBON TETRACHLORIDE	U.00		12.00	บ	บง
CHLOROBENZENE	0.00		12.00	ט	ų
CHLOROETHANE	0.00	T	12.00	ט	ט
CHLOROFORM	0.00		12.00	ט	ט
CHLOROMETHANE	0.00		12.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
DIBROMOCHLOROMETHANE	0.00	1	12.00	υ	υ
ethylbenzene	0.00		12.00	U	Ü
METHYLENE CHLORIDE	7.00	μg/Kg	0.00	ВЈ	R
STYRENE	0.00	1	12.00	Ü	U
TETRACHLOROETHENE	0.00		12.00	U	U
TOLUENE	0.00		12.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
TRICHLOROETHENE	0.00		12.00	ט	ט
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00		12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1042

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	ט	ប
1,1,2,2-TETRACHLOROETHANE	0.00		14.00	ט	σ
1,1,2-TRICHLOROETHANE	0.00		14.00	ū	U
1,1-DICHLOROETHANE	0.00		14.00	ט	ט
1,1-DICHLOROETHENE	0.00		14.00	U	ט
1,2-DICHLOROETHANB	0.00		14.00	ช	Ū
1,2-DICHLOROPROPANE	0.00		14.00	U	U
2-BUTANONE	0.00		14.00	ט	ซฮ
2-HEXANONE	0.00		14.00	U	บัง
4-METHYL-2-PENTANONE	0.00		14.00	U	บัง
ACETONE	32.00	µg/Rg	0.00	В	R
BERTENE	0.00	1	14.00	บ	ט
BROMODICHLOROMETHANE	0.00	1	14.00	U	U
BROHOPORM	0.00	1	14.00	Ū	บ
BROMOKETHANE	0.00	1	14.00	U	ט
CARBON DISULFIDE	0.00	1	14.00	U	ט
CARBON TETRACHLORIDE	0.00		14.00	ט	บJ
CHLOROBENZENE	0.00		14.00	บ	U
CHLOROETHANE	0.00		14.00	ט	υ
CHLOROFORM	0.00		14.00	ט	U
CHLOROMETHANE	0.00		14.00	ט	UJ
CIS-1,3-DICHLOROPROPENE	0.00	1	14.00	υ	U
DIBROMOCHLOROMETHANE	0.00		14.00	U	ט
ethylbenzene	0.00		14.00	บ	บ
METHYLENE CHLORIDE	22.00	µg/Kg	0.00	В	R
STYRENE	0.00		14.00	ū	U
TETRACHLOROETHENE	0.00		14.00	U	U
TOLUENE	0.00	1	14.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		14.00	U	U
TRICHLOROETHENE	0.00	1	14.00	U	บ
VINYL CHLORIDE	0.00		14.CO	υ	υ
XYLENES (TOTAL)	0.00	1	14.00	บ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final N REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1043

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	ย
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	ט	ט
1,1-DICHLOROETHANE	0.00		11.00	ט	U
1,1-DICHLOROETHENE	0.00		11.00	U	מ
1,2-DICHLOROBTHANE	0.00		11.00	U	ט
1,2-DICELOROPROPANE	0.00		11.00	a	ט
2-BUTANONE	0.00		11.00	ט	ชิงิ
2-HEXANONE	0.00		11.00	σ	UJ
4-METHYL-2-PENTANONE	0.00		11.00	U	บัง
ACETONE	37.00	µg/Kg	0.00	В	R
BENZENE	0.00		11.00	ט	υ
BROHODICHLOROHETHANE	0.00		11.00	U	טן
BROHOFORM	0.00		11.00	ט	บ
BROMOMETHANE	0.00		11.00	ט	U
CARBON DISULFIDE	0.00		11.00	ט	ט
CARBON TETRACHLORIDE	0.00		11.00	ט	บJ
CHLOROBENZENE	0.00		11.00	ט	U
CHLOROETHANE	0.00		11.00	מ	υ
CHLOROPORM	2.00	µg/Kg	0.00	3	J
CHLOROMETHANE	0.00		11.00	ช	บง
CIS-1,3-DICHLOROPROPENE	0.00		11.00	ט	υ
DIBROMOCHLOROMETHANE	0.00		11.00	U	U
ETHYLBENZENE	0.00		11.00	ט	U
METHYLENE CHLORIDE	21.00	µg/Kg	0.00	В	R
STYRENE	0.00		11.00	Ū	บ
TETRACHLOROETHENE	0.00		11.00	ט	U
TOLUENE	0.00]	11.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	υ	ט
TRICHLOROETHENE	0.00		11.00	U	U
VINYL CHLORIDE	0.00		11.00	U	U
XYLENES (TOTAL)	0.00	1	11.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1044

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00	T	12.00	υ	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHENE	0.00	T	12.00	ū	บ
1,2-DICHLOROETHANE	0.00		12.00	Ū	U
1,2-DICELOROPROPANE	0.00		12.00	U	ט
2-BUTANONE	0.00		12.00	Ū	บง
2-HEXANONE	0.00		12.00	ט	บว
4-METHYL-2-PENTANONE	0.00		12.00	U	บบ
ACETONE	28.00	µg/Kg	0.00	В	R
BENZENE	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROMOFORM	0.00		12.00	ט	U
BRONOMETHANE	0.00		12.00	U	ט
CARBON DISULFIDE	0.00		12.00	ט	U
CARBON TETRACHLORIDE	0.00		12.00	U	עט
CHLOROBENZENE	0.00		12.00	υ	ט
CHLOROSTHANE	0.00		12.00	U	U
CHLOROFORM	0.00		12.00	ū	ט
CHLOROMETHANE	0.00		12.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		12.00	υ	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	บ
ETHYLBENZENE	0.00		12.00	U	U
METHYLENE CHLORIDE	19.00	μg/Rg	0.00	В	R
STYRENE	0.00		12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	υ	U
TOLUENE	0.00		12.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	ט
TRICHLOROETHENE	0.00		12.00	υ	U
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00		12.00	υ	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1045 ANALYSIS TYPE : VOL SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	Ţ	13.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ס	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	ū	Ū
1,1-DICHLOROETHANE	0.00		13.00	ū	ט
1,1-DICHLOROBTHENE	0.00		13.00	Ū	Ū
1,2-Diceloroethane	0.00		13.00	U	ū
1,2-DICHLOROPROPANE	0.00	T	13.00	Ū	ū
2-BUTANONE	0.00		13.00	Ū	ชว
2-HEXANONE	0.00		13.00	Ū	ŪĴ
4-METHYL-2-PENTANONE	0.00		13.00	ט	UJ
ACETONE	15.00	µg/Kg	0.00	В	R
Benzene	0.00		13.00	ט	U
BROMODICHLOROMETHANE	0.00	1	13.00	U	ט
BROMOFORM	0.00		13.00	υ	U
BROMOMETHANE	0.00		13.00	ט	ט
CARBON DISULPIDE	0.00		13.00	ט	υ
CARBON TETRACHLORIDE	0.00		13.00	U	บัง
CHLOROBENZENE	0.00		13.00	ט	ט
CHLOROETHANE	0.00		13.00	ט	ט
CELOROFORM	0.00		13.00	ט	ט
CHLOROMETHANE	0.00		13.00	U	บัง
CIS-1, 3-DICHLOROPROPENE	0.00		13.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		13.00	ט	U
ETHYLBENZENE	0.00		13.00	U	ט
METHYLENE CHLORIDE	21.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	U
TETRACHLOROETHENE	0.00		13.00	ט	υ
TOLUENE	0.00		13.00	U	ū
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	υ	ט
TRICHLOROETHENE	0.00		13.00	ซ	U
VINYL CHLORIDE	0.00		13.00	บ	U
XYLENES (TOTAL)	0.00		13.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1046

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00]	12.00	Ū	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	ū
1,1-DICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00		12.00	U	U
1,2-DICHLOROPROPANE	0.00		12.00	U	ט
2-BUTANONE	0.00		12.00	ט	บัว
2-HEXANONE	0.00		12.00	ט	ชม
4-METHYL-2-PENTANONE	0.00		12.00	U	บัว
ACETONE	20.00	µg/Kg	0.00	В	R
Benzene	0.00		12.00	ט	U
BROMODICHLOROMETHANE	0.00	1	12.00	ט	U
BRONOFORM	0.00	1	12.00	บ	ט
BROMOMETHANE	0.00		12.00	ט	υ
CARBON DISULFIDE	0.00		12.00	ט	U
CARBON TETRACHLORIDE	0.00		12.00	บ	UJ
CHLOROBENZENE	0.00		12.00	U	U
CHLOROETHANE	0.00		12.00	ט	ט
CHLOROFORM	0.00		12.00	U	U
CHLOROMETHANE	0.00		12.00	ט	UJ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ETHYLBENZENE	0.00		12.00	U	ט
METHYLENE CHLORIDE	19.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	ט	ט
TOLUENE	0.00		12.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	ט	U
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00	1	12.00	U	U
XYLENES (TOTAL)	0.00		12.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1047

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	U	ט
1,1,2-TRICHLOROSTHANS	0.00		13.00	ט	ט
1,1-DICELOROFTHANE	0.00		13.00	ט	ט
1,1-DICHLOROETHENE	0.00		13.00	U	ט
1,2-DICHLOROETHANE	0.00		13.00	a	U
1,2-DICHLOROPROPANE	0.00		13.00	Ū	ט
2-BUTANONE	0.00		13.00	Ū	ชม
2-HEXANONE	0.00		13.00	ט	บว
4-methyl-2-pentanone	0.00		13.00	ט	ชว
ACETONE	13.00	µg/Kg	0.00	В	R
Benzene	0.00		13.00	ט	ט
BROMODICHLOROMETHANE	0.00		13.00	ט	ט
BRONOFORM	0.00		13.00	U	U
BROMOMETHANE	0.00		13.00	ט	U
CARBON DISULFIDE	0.00		13.00	ט	U
CARBON TETRACELORIDE	0.00		13.00	ט	UJ
CHLOROBENZENE	0.00		13.00	U	U
CHLOROETHANE	0.00		13.00	ט	ט
CHLOROPORM	0.00		13.00	ט	U
CHLOROMETHANE	0.00		13.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		13.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		13.00	ט	ט
ethylben2ene	0.00		13.00	υ	υ
METHYLENE CHLORIDE	19.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	ט
TETRACHLOROETHENE	0.00		13.00	U	U
TOLUENE	0.00		13.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	T	13.00	U	U
TRICHLOROETHENE	0.00	1	13.00	U	υ
VINYL CHLORIDE	0.00	1	13.00	U	U
KYLENES (TOTAL)	0.00	1	13.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1048 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1036 ASSOCIATED MB: VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	ū
1,1-DICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHENE	0.00		12.00	ט	ប
1,2-DICHLOROETHANE	0.00	Ī	12.00	ט	υ
1,2-DICHLOROPROPANE	0.00		12.00	ט	ס
2-BUTANONE	0.00	1	12.00	U	บว
2-HEXANONE	0.00	1	12.00	ט	ชฮ
4-METHYL-2-PENTANONE	0.00	1	12.00	U	บJ
ACETONE	18.00	µg/Rg	0.00	В	R
BENZENE	0.00		12.00	U	υ
BROMODICHLOROMETHANE	0.00		12.00	U	U
BRONOFORM	0.00	†	12.00	U	U
BROMOMETHANE	0.00	1	12.00	U	ប
CARBON DISULFIDE	0.00		12.00	U	U
CARBON TETRACHLORIDE	0.00		12.00	U	บง
CHLOROBENZENE	0.00		12.00	ט	U
CHLOROETHANE	0.00		12.00	U	ט
CHLOROFORM	0.00		12.00	ช	U
CHLOROMETHANE	0.00	1	12.00	U	บว
CIS-1, 3-DICHLOROPROPENE	0.00		12.00	υ	U
DIBROMOCHLOROMETHANE	0.00		12.00	ט	U
ETHYLBENZENE	0.00		12.00	ט	ט
METHYLENE CHLORIDE	18.00	µg/Rg	0.00	В	R
STYRENE	0.00	T	12.00	U	ט
TETRACHLOROETHENE	0.00		12.00	ט	ט
TOLUENE	0.00		12.00	υ	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	ט
TRICHLOROETHENE	0.00	1	12.00	ט	ט
VINYL CHLORIDE	0.00		12.00	ט	U
XYLENES (TOTAL)	0.00	1	12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1049 ANALYSIS TYPE : VOL SAMPLE TYPE : SDG: 1036

SAMPLE MATRIX : S ASSOCIATED MB : VBLRP1

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinel
1,1,1-TRICHLOROETHANE	0.00		2600.00	υ	ū
1,1,2,2-TETRACHLOROETHANE	0.00		2600.00	U	ū
1,1,2-TRICHLOROETHANE	0.00	1	2600.00	U	U
1,1-DICHLOROETHANE	0.00		2600.00	ט	Ū
1,1-DICHLOROETHENE	0.00	1	2600.00	U	ט
1,2-DICHLOROETHANE	0.00		2600.00	ט	U
1,2-DICELOROPROPANE	0.00	1	2600.00	U	ū
2-BUTANONE	0.00	1	2600.00	U	บัง
2-HEXANONE	0.00		2600.00	υ	บว
4-METHYL-2-PENTANONE	0.00		2600.00	U	บง
ACETONE	0.00		2600.00	U	υJ
Benz ene	0.00		2600.00	U	ט
BROMODICHLOROMETHANE	0.00		2600.00	ט	ซ
BROHOPORM	0.00		2600.00	U	U
Bromomethane	0.00		2600.00	ט	ט
CARBON DISULPIDE	0.00		2600.00	U	U
CARBON TETRACHLORIDE	0.00		2600.00	ט	บัง
CHLOROBENZENE	0.00		2600.00	υ	ប
CHLOROETHANE	0.00		2600.00	ט	U
CELOROFORM	0.00		2600.00	ט	ט
CHLOROMETHANE	0.00		2600.00	ט	ซฮ
CIS-1,3-DICHLOROPROPENE	0.00		2600.00	U	U
DIBROMOCHLOROMETHANE	0.00		2600.00	U	ט
ethylbenzene	1300.00	µg/Kg	0.00	J	J
METHYLENE CHLORIDE	1900.00	μg/Kg	0.00	B J	J
STYRENE	0.00		2600.00	U	ט
TETRACHLOROETHENE	0.00		2600.00	υ	ט
TOLUENE	0.00		2600.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		2600.00	U	U
TRICHLOROETHENE	0.00		2600.00	ט	υ
VINYL CHLORIDE	0.00		2600.00	U	ט
XYLENE (TOTAL)	4600.00	µg/Kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1050

ANALYSIS TYPE: VOL SDG: 1036

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1036 ASSOCIATED MB: VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	U	ס
1,1-DICHLOROETHANE	0.00		13.00	บ	ט
1,1-DICHLOROETHENE	0.00		13.00	ប	U
1,2-DICHLOROETHANE	0.00		13.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	13.00	ט	ט
2-BUTANONE	0.00		13.00	ט	บัง
2-EEXANONE	0.00		13.00	ט	บัง
4-METHYL-2-PENTANONE	0.00	1	13.00	ט	บว
ACETONE	15.00	µg/Kg	0.00	В	R
Benzene	0.00	1	13.00	U	U
BROMODICHLOROMETHANE	0.00		13.00	ט	บ
BROMOFORM	0.00		13.00	ט	ט
BROMOMETHANE	0.00		13.00	U	U
CARBON DISULFIDE	0.00		13.00	ט	ט
CARBON TETRACHLORIDE	0.00		13.00	ט	บัง
CHLOROBENZENE	0.00	1	13.00	บ	ט
CHLOROETHANE	0.00	1	13.00	U	U
CELOROFORM	0.00		13.00	υ	ט
CHLOROMETHANE	0.00	1	13.00	บ	บัง
CIS-1, 3-DICHLOROPROPENE	0.00	1	13.00	U	U
DIBROMOCHLOROMETHANE	0.00		13.00	U	U
ethylbenzene	0.00	1	13.00	U	U
METHYLENE CHLORIDE	24.00	µg/Rg	0.00	В	R
STYRENE	0.00	1	13.00	U	U
TETRACHLOROETHENE	0.00		13.00	U	U
Toluene	0.00	I	13.00	υ	U
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	U	υ
TRICHLOROETHENE	0.00		13.00	U	υ
VINYL CHLORIDE	0.00		13.00	U	U
XYLENES (TOTAL)	0.00		13.00	บ	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1051

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	U
1,1,2,2-TETRACHLOROETHAME	0.00		13.00	σ	ū
1,1,2-TRICHLOROETHANE	0.00		13.00	Ū	Ū
1,1-DICHLOROETHANE	0.00	T	13.00	υ	Ū
1,1-DICHLOROBTHENE	0.00		13.00	ט	ū
1,2-DICHLOROETHANE	0.00		13.00	D	Ū
1,2-DICHLOROPROPANE	0.00		13.00	ט	U
2-BUTANONE	0.00		13.00	ט	ชง
2-HEXANONE	0.00		13.00	ט	บว
4-METHYL-2-PENTANONE	0.00		13.00	ט	ซฮ
ACETONE	24.00	µg/Kg	0.00	В	R
BENZENE	0.00		13.00	υ	U
BROMODICHLOROMETHANE	0.00		13.00	ט	U
BROMOFORM	0.00		13.00	ū	U
BROMOMETHANE	0.00		13.00	ט	ט
CARBON DISULFIDE	0.00		13.00	D	J
CARBON TETRACHLORIDE	0.00		13.00	ט	ซุว
CHLOROBENZENE	0.00		13.00	U	U
CHLOROETHANE	0.00		13.00	ט	ט
CHLOROFORM	0.00		13.00	ט	ט
CHLOROMETHANE	0.00		13.00	ט	ซุฮ
CIS-1,3-DICHLOROPROPENE	0.00		13.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		13.00	ซ	ט
ETHYLBENZENE	0.00		13.00	U	U
METHYLENE CHLORIDE	25.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	U
TETRACHLOROSTHENS	0.00		13.00	U	ט
TOLUENE	0.00		13.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	ט	ט
TRICHLOROETHENE	0.00	1	13.00	υ	U
VINYL CHLORIDE	0.00		13.00	U	ט
XYLENES (TOTAL)	0.00		13.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1052 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1036 ASSOCIATED MB: VI

ASSOCIATED MB : VBLKK6

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00	1	12.00	ט	ช
1,2-DICHLOROETHANE	0.00		12.00	σ	Ū
1,2-DICHLOROPROPANE	0.00		12.00	Ū	U
2-BUTANONE	0.00		12.00	Ū	ซฮ
2-HEXANONE	0.00		12.00	U	บัง
4-METHYL-2-PENTANONE	0.00		12.00	υ	บัง
ACETONE	29.00	μg/Kg	0.00	В	R
BENZENE	0.00	1	12.00	ט	ט
BROMODICHLOROMETHANE	0.00		12.00	U	ט
BROMOFORM	0.00		12.00	ū	ט
BROMOMETHANE	0.00		12.00	U	U
CARBON DISULFIDE	0.00	1	12.00	U	U
CARBON TETRACHLORIDE	0.00	1	12.00	U	บัง
CHLOROBENZENE	0.00	1	12.00	U	ט
CHLOROETHANE	0.00	i	12.00	מ	ט
CHLOROFORM	0.00		12.00	U	ט
CHLOROMETHANE	0.00		12.00	U	ซิงิ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
ethylbenzene	0.00		12.00	U	U
METHYLENE CHLORIDE	20.00	µg/Rg	0.00	В	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	ט	ט
TOLUENE	0.00		12.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	ט	U
TRICHLOROETHENE	0.00		12.00	U	ט
VINYL CHLORIDE	0.00		12.00	U	U
KYLENES (TOTAL)	0.00		12.00	ט	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1053

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1036

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	υ
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	Ū	บ
1,2-DICHLOROETHANE	0.00		12.00	Ū	σ
1,2-DICHLOROPROPANE	0.00	1	12.00	ט	U
2-BUTANONE	0.00		12.00	U	UJ
2-HEXANONE	0.00	1	12.00	U	บง
4-METHYL-2-PENTANONE	0.00		12.00	ט	บJ
ACETONE	55.00	µg/Kg	0.00	В	R
BEN2 ENE	0.00		12.00	ט	ט
BROMODICHLOROMETHANE	0.00		12.00	U	U
BROMOFORM	0.00	1	12.00	ט	U
BROHOMETHANE	0.00		12.00	ט	ט
CARBON DISULPIDE	0.00	1	12.00	ט	ט
CARBON TETRACHLORIDE	0.00	1	12.00	ū	UJ
CHLOROBENZENE	0.00		12.00	ט	บ
CHLOROETHANE	0.00		12.00	υ	บ
CHLOROFORM	1.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ETHYLBENZENE	0.00		12.00	U	ט
METHYLENE CHLORIDE	30.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	U	ט
TETRACHLOROETHENE	0.00	T^{-}	12.00	U	U
TOLUENE	0.00	† ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	12.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	12.00	บ	ט
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00	1	12.00	υ	U
XYLENES (TOTAL)	0.00	1	12.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544_

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1054
ANALYSIS TYPE: VOL

SAMPLE TYPE : SDG : 1036

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	Ofinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	ט	ט
1,1-DICHLOROETHANE	0.00		11.00	ט	U
1,1-DICHLOROETHENE	0.00		11.00	Ū	ש
1,2-DICHLOROETHANE	0.00		11.00	U	U
1,2-DICHLOROPROPANE	0.00		11.00	U	ט
2-BUTANONE	0.00		11.00	U	ซฮ
2-HEXANONE	0.00		11.00	U	עט
4-METHYL-2-PENTANONE	0.00		11.00	U	บJ
ACETONE	38.00	µg/Kg	0.00	В	R
BENZENE	0.00		11.00	ט	U
BROMODICHLOROMETHANE	0.00		11.00	U	U
BROMOFORM	0.00		11.00	U	ט
BROMOMETHANE	0.00		11.00	U	บ
CARBON DISULFIDE	0.00		11.00	U	U
CARBON TETRACHLORIDE	0.00		11.00	U	UJ
CHLOROBENZENE	0.00		11.00	U	U
CHLOROETHANE	0.00	1	11.00	υ	U
CHLOROFORM	2.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		11.00	บ	บัง
CIS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
DIBROMOCHLOROMETHANE	0.00		11.00	U	U
ETHYLBENZENE	0.00		11.00	U	U
METHYLENE CHLORIDE	20.00	µg/Kg	0.00	В	R
STYRENE	0.00		11.00	ט	U
TETRACHLOROETHENE	0.00		11.00	U	U
TOLUENE	0.00	Ī	11.00	ט	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	υ	U
TRICHLOROETHENE	0.00		11.00	U	U
VINYL CHLORIDE	0.00		11.00	U	ט
KYLENES (TOTAL)	0.00		11.00	ט	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1055

SAMPLE TYPE: SAMPLE MATRIX: S
SDG : 1055 ASSOCIATED MB: VI

ANALYSIS TYPE : VOL

SDG : 1055

ASSOCIATED MB : VBLKAB

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		1600.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	1600.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	1	1600.00	Ū	U
1,1-DICHLOROETHANE	0.00		1600.00	U	U
1,1-DICHLOROETHENE	0.00		1600.00	ט	บ
1,2-DICHLOROETHANE	0.00		1600.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		1600.00	U	ט
1,2-DICHLOROPROPANE	0.00		1600.00	U	U
2-BUTANONE	0.00	1	1600.00	U	ט
2-HEXANONE	0.00		1600.00	U	U
4-METHYL-2-PENTANONE	0.00		1600.00	ט	U
ACETONE	1800.00	µg/Rg	0.00		J
BEN2 ENB	0.00		1600.00	U	U
BROMODICHLOROMETHANE	0.00		1600.00	U	U
BROHOFORM	0.00		1600.00	U	ขัง
Brohometeane	0.00		1600.00	ט	IJ
CARBON DISULFIDE	0.00		1600.00	Ū	ט
CARBON TETRACHLORIDE	0.00		1600.00	υ	บว
ILOROBENZENE	0.00		1600.00	U	U
CHLOROETHANE	0.00		1600.00	Ū	Ū
Chloroporm	0.00		1600.00	ט	ט
CHLOROMETHANE	0.00		1600.00	ซ	บัง
CIS-1,3-LICHLOROPROPENE	0.00		1600.00	U	ט
DIBROMOCHIA ROMETHANE	0.00		1600.00	υ	υ
r _flbenzene	400.00	µg/Kg	0.00	J	J
METHYLENE COLORIDE	970.00	µg/Rg	0.00	BJ	R
STYRENE	0.00		1600.00	U	U
TETRACHLOROETHENE	0.00		1600.00	U	ชฮ
TOLUENE	0.00	T	1600.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	1600.00	U	U
TRICHLOROETHENE	0.00		1600.00	ט	U
VINYL CHLORIDE	0.00	T	1600.00	U	U
XYLENE (TOTAL)	1000.00	ug/Rg	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1056

SAMPLE TYPE : SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	Ü
1,1,2,2-TETRACHLOROETHANE	0.00	T	13.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	U	ט
1,1-DICHLOROETHANE	0.00		13.00	ס	ט
1,1-DICHLOROETHENE	0.00		13.00	U	ט
1,2-DICHLOROETHANE	0.00		13.00	Ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	U	U
1,2-DICHLOROPROPANE	0.00	1	13.00	U	ט
2-BUTANONE	0.00		13.00	Ū	υ
2-HEXANONE	0.00		13.00	Ū	U
4-METHYL-2-PENTANONE	0.00		13.00	U	U
ACETONE	12.00	µg/Kg	0.00	BJ	R
BENZENB	5.00	µg/Kg	0.00	3	J
BROMODICHLOROMETHANE	0.00		13.00	Ū	ט
BROMOFORM	0.00	1	13.00	σ	UJ
BRONOMETHANE	0.00		13.00	U	ชม
CARBON DISULPIDE	0.00	1	13.00	a	ט
CARBON TETRACHLORIDE	0.00		13.00	ט	บJ
CHLOROBENZENE	0.00		13.00	U	ט
CHLOROETHANE	0.00		13.00	U	Ü
CHLOROFORM	0.00		13.00	U	ū
CHLOROMETHANE	0.00		13.00	ប	บัง
CIS-1,3-DICHLOROPROPENE	0.00	1	13.00	U	Ū
DIBROMOCHLOROMETHANE	0.00		13.00	U	ט
ETHYLBENZ ENE	72.00	µg/Kg	0.00	T	
METHYLENE CHLORIDE	33.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	U
Tetrachloroethene	0.00		13.00	U	บJ
TOLUENE	0.00		13.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	ט	υ
TRICHLOROETHENE	0.00		13.00	U	U
VINYL CHLORIDE	0.00		13.00	U	U
XYLENE (TOTAL)	170.00	µg/Kg	0.00	<u> </u>	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1057 ANALYSIS TYPE: VOL SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	Ū	U
1,1,2-Trichlorosthams	0.00		12.00	U	ט
1,1-dichloroethane	0.00		12.00	Ū	ט
1,1-DICHLOROETHENE	0.00		12.00	U	Ū
1,2-DICHLOROETHANE	0.00		12.00	ū	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	Ū	ט
1,2-DICHLOROPROPANE	0.00	1	12.00	U	a
2-BUTANONE	0.00		12.00	U	U
2-HEXANONE	0.00		12.00	ט	ש
4-methyl-2-pentanone	0.00	1	12.00	U	U
ACETONE	19.00	µg/Kg	0.00	В	R
Benzene	0.00	1	12.00	U	ט
BROMODICHLOROMETHANE	0.00	1	12.00	U	U
Bromoform	0.00		12.00	ט	บัง
BROHOHETHANE	0.00		12.00	U	บัง
CARBON DISULFIDE	0.00		12.00	ū	ט
CARBON TETRACHLORIDE	0.00		12.00	U	บง
CHLOROBENZENE	0.00		12.00	U	ט
CHLOROETHANE	0.00	Ţ	12.00	U	U
CHLOROFORM	0.00	<u> </u>	12.00	U	U
CHLOROMETHANE	0.00	1	12.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		12.00	บ	ט
DIBROMOCHLOROMETHANE	0.00		12.00	ט	U
ethyldenzene	0.00		12.00	ט	ט
METHYLENE CELORIDE	31.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	U	บว
TOLUENE	0.00	1	12.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	υ
TRICHLOROETHENE	0.00		12.00	ט	ט
VINYL CHLORIDE	0.00		12.00	U	U
XYLENE (TOTAL)	2.00	µg/Rq	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1058 ANALYSIS TYPE : VOL

SDG: 1055

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1055 ASSOCIATED MB: VBLKK5

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	13.00	บ	ช
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	U	U
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	ס
1,1-DICHLOROETHANE	0.00		13.00	ט	ט
1,1-DICHLOROETHENE	0.00		13.00	ט	U
1,2-DICHLOROETHANE	0.00	1	13.00	Ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	13.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		13.00	U	U
2-BUTANONE	0.00	 	13.00	ט	ט
2-HEXANONE	0.00		13.00	U	U
4-METHYL-2-PENTANONE	0.00	1	13.00	U	U
ACETONE	32.00	µg/Kg	0.00	В	R
BENZENB	0.00		13.00	ט	ט
BROMODICHLOROMETHANE	0.00		13.00	U	U
BROMOFORM	0.00	<u> </u>	13.00	ט	บJ
BROHOMETHANE	0.00		13.00	ט	บว
CARBON DISULFIDE	0.00	1	13.00	Ū	ט
CARBON TETRACHLORIDE	0.00		13.00	U	บJ
Chlorobenzene	0.00		13.00	ט	Ü
CHLOROSTHANS	0.00		13.00	U	ū
CHLOROFORM	0.00		13.00	U	ט
CHLOROMETHANE	0.00		13.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00		13.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		13.00	U	ט
eteylbenzene	0.00		13.00	ט	ט
METHYLENE CHLORIDE	43.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	ט
TETRACHLOROETHENE	0.00		13.00	U	עט
TOLUENE	0.00		13.00	υ	บ
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	υ	Ū
TRICHLOROETHENE	0.00		13.00	U	U
VINYL CHLORIDE	0.00	1	13.00	υ	υ
XYLENES (TOTAL)	0.00	1	13.00	ט	ט

PROJECT: <u>NEVADA</u> AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1059

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : VBLKWI

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ū	U
1,1,2-TRICELOROETHANE	0.00	1	10.00	U	ט
1,1-DICHLOROETHANE	0.00	T^{-}	10.00	ū	U
1,1-DICHLOROETHENB	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00	1	10.00	ū	ט
1,2-DICHLOROETHERE (TOTAL)	0.00		10.00	ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	σ	ט
2-BUTANONE	0.00		10.00	ט	บัง
2-HEYANONE	00 0		10.00	υ	บ
4-METHYL-2-PENTANONE	0.00		10.00	ט	ū
ACETONE	0.00		10.00	U	บง
Benzene	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	U	ט
Bromoform	0.00	†	10.00	ט	ט
Bronomethane	0.00		10.00	U	ชง
CARBON DISULFIDE	0.00	1	10.00	U	ש
CARBON TETRACHLORIDE	0.00	1	10.00	U	U
CHLOROBENZENE	0.00	1	10.00	ט	U
CHLOROETHANE	0.00	1	10.00	U	บJ
CELOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00		10.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00	T	10.00	υ	υ
DIBROHOCHLOROMETHANE	0.00	1	10.00	U	U
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	υ	υ
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	ט	ט
TRICHLOROETHENE	0.00	1	10.00	U	U
VINYL CHLORIDE	0.00		10.00	ט	υ
XYLENES (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1060 SAMPLE TYPE: SAMPLE MATRIX: SAMPLE MATRIX: SAMPLE STATEMENT STATEMENT STATEMENT SAMPLE MATRIX: SAMPLE MATR

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		11.00	U	ש
1,1-DICHLOROETHANE	0.00		11.00	U	ס
1,1-DICHLOROETHENE	0.00		11.00	ט	ט
1,2-DICHLOROETHANE	0.00		11.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	ט	ט
1,2-DICHLOROPROPANE	0.00	1	11.00	U	σ
2-BUTANONE	0.00		11.00	ט	U
2-HEXANONE	0.00	1	11.00	U	U
4-METHYL-2-PENTANONE	0.00	1	11.00	ט	ט
ACETONE	28.00	µg/Kg	0.00	В	R
Benzene	0.00		11.00	υ	ט
BROMODICHLOROMETHANE	0.00	1	11.00	U	U
Bromoform	0.00		11.00	υ	บJ
Bromomethane	0.00		11.00	U	บัง
CARBON DISULFIDE	0.00		11.00	U	บ
CARBON TETRACHLORIDE	0.00		11.00	υ	UJ
CELOROBENZENE	0.00		11.00	U	Ü
CHLOROETHANE	0.00		11.00	ט	ซ
CHLOROFORM	0.00		11.00	υ	ט
CHLOROMETHANE	0.00		11.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00	T	11.00	U	U
DIBROMOCHLOROMETHANE	0.00		11.00	υ	บ
ethylbenzene	0.00	1	11.00	U	ט
METHYLENE CHLORIDE	21.00	µg/Kg	0.00	В	R
STYRENE	0.00		11.00	ט	U
TETRACHLOROETHENE	0.00	1	11.00	ט	บว
TOLUENE	0.00	1	11.00	บ	Ü
TRANS-1,3-DICHLOROPROPENE	0.00	1	11.00	U	U
TRICHLOROETHENE	0.00		11.00	U	υ
VINYL CHLORIDE	0.00	 	11.00	U	U
XYLENES (TOTAL)	0.00	1	11.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1061

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKN4

TRIP BLANK : 1088TB

FIELD BLANKS : 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	14.00	ប	U
1,1,2,2-TETRACHLOROETHANE	0.00	1	14.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		14.00	ט	ט
1,1-DICHLOROETHANE	0.00		14.00	Ū	Ū
1,1-DICHLOROETHENE	0.00		14.00	U	U
1,2-DICHLOROETHANE	0.00		14.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	Ū	Ū
1,2-DICHLOROPROPANE	0.00		14.00	U	ם
2-BUTANONE	0.00		14.00	U	ū
2-HEXANONE	0.00		14.00	ט	U
4-METHYL-2-PENTANONE	0.00		14.00	ט	บ
ACETONE	20.00	µg/Rg	0.00	В	R
BENZ ENE	0.00		14-00	ט	บ
Bromodichloromethane	0.00		14.00	υ	บ
BROMOFORM	0.00		14.00	U	บJ
BROHONETHANE	0.00		14.00	ט	ซฮ
CARBON DISULFIDE	0.00		14.00	U	บ
CARBON TETRACHLORIDE	0.00		14.00	U	บัง
Chlorobenzene	0.00		14.00	บ	ט
CHLOROETHANE	0.00		14.00	U	U
CHLOROFORM	0.00		14.00	ט	U
CHLOROMETHANE	0.00		14.00	บ	บัง
CIS-1,3-DICHLOROPROPENE	0.00		14.00	U	U
DIBROMOCHLOROMETHANE	0.00		14.00	บ	U
ETHYLBENZENE	0.00		14.00	U	U
METHYLENE CHLORIDE	20.00	µg/Kg	0.00	В	R
STYRENE	0.00		14.00	ซ	U
TETRACHLOROETHENE	0.00		14.00	ט	บว
TOLUENE	0.00		14.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		14.00	ט	U
TRICHLOROETHENE	0.00		14.00	U	υ
VINYL CHLORIDE	0.00		14.00	U	U
XYLENES (TOTAL)	0.00		14.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1062 ANALYSIS TYPE: VOL SAMPLE TYPE : SR

SDG: 1055

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	ט
1,1-DICHLOROETHANE	0.00		13.00	U	U
1,1-DICHLOROETHENE	0.00		13.00	U	ט
1,2-DICHLOROETHANE	0.00		13.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	U	U
1,2-DICHLOROPROPANE	0.00		13.00	U	ט
2-BUTANONE	0.00		13.00	ū	ū
2-HEXANONE	0.00		13.00	ū	ט
4-METHYL-2-PENTANONE	0.00		13.00	บ	บ
ACETONE	17.00	µg/Kg	0.00	В	R
BENZENE	0.00		13.00	U	ט
BROMODICHLOROMETHANE	0.00		13.00	ប	บ
Brohoform	0.00		13.00	U	บJ
BROMOMETHANE	0.00		13.00	U	บง
CARBON DISULPIDE	0.00		13.00	U	U
CARBON TETRACHLORIDE	0.00		13.00	U	บัง
CHLOROBENZENE	0.00	1	13.00	U	ซ
CHLOROETHANE	0.00		13.00	U	ט
CHLOROFORM	0.00		13.00	U	ט
CHLOROMETHANE	0.00		13.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		13.00	U	U
DIBROMOCHLOROMETHANE	0.00		13.00	ט	ט
ethylbenzene	0.00	1	13.00	υ	υ
METHYLENE CHLORIDE	23.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	U
TETRACHLOROETHENE	0.00	1	13.00	ט	עט
TOLUENE	0.00	1	13.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00	T -	13.00	U	ט
TRICHLOROETHENE	0.00	1	13.00	U	U
VINYL CHLORIDE	0.00	1	13.00	ט	U
XYLENES (TOTAL)	0.00	1	13.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1063

SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

LYSIS TYPE : VOL S.

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	U
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHANE	0.00		12.00	U	Ū
1,1-DICHLOROETHENE	0.00		12.00	ט	U
1,2-DICHLOROETHANE	0.00	1	12.00	U	ū
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	ט
1,2-DICHLOROPROPANE	0.00		12.00	U	U
2-BUTANONE	0.00		12.00	ט	U
2-HEXANONE	0.00	1 -	12.00	υ	U
4-METHYL-2-PENTANONE	0.00		12.00	ט	ט
ACETONE	17.00	µg/Kg	0.00	В	R
BENZENE	0.00		12.00	ט	ט
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROMOFORM	0.00		12.00	ŭ	ชิงิ
BROHOHETHANE	0.00		12.00	ช	ชิง
CARBON DISULFIDE	0.00		12.00	บ	ט
CARBON TETRACHLORIDE	2.00		12.00	ט	บป
CHLOROBENZENE	0.00		12.00	ט	ט
CHLOROETHANE	0.00		12.00	ט	ט
CHLOROFORM	1.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	U	עט
CIS-1,3-DICHLOROPROPENE	0.00		12.00	ט	บ
DIBROMOCHLOROMETHANE	0.00		12.00	ט	ט
ethylbens ene	0.00	1	12.00	ū	U
METHYLENE CHLORIDE	19.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	ט	ט
TETRACHLOROETHENE	0.00		12.00	U	עט
TOLUENE	0.00		12.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
TRICHLOROETHENE	0.00		12.00	ט	บ
VINYL CHLORIDE	0.00		12.00	U	ט
XYLENES (TOTAL)	0.00		12.00	Ū	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1064

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROBTHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	ū
1,1,2-TRICHLOROETHANE	0.00		12.00	U	ŋ
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DTCHLOROETHENE	0.00	1	12.00	U	U
1,2-1 [CHLOROETHANE	0.00		12.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	12.00	ט	U
1,2-DICHLOROPROPANE	0.00		12.00	ט	U
2-Butanone	0.00	1	12.00	U	U
2-HEXANONE	0.00	1	12.00	ט	U
4-methyl-2-pentanone	0.00		12.00	ט	U
ACETONE	16.00	µg/Kg	0.00	В	R
Benzene	0.00		12.00	ט	U
BROMODICHLOROMETHANE	0.00		12.00	U	U
BROMOFORM	0.00		12.00	ט	UJ
BROHOMETHANE	0.00		12.00	ט	บัง
CARBON DISULPIDE	0.00		12.00	u	U
CARBON TETRACHLORIDE	0.00	†	12.00	U	บJ
CHLOROBENZENE	0.00		12.00	ט	U
CHLOROETHANE	0.00		12.00	U	ט
CELOROFORM	0.00	<u> </u>	12.00	U	U
CHLOROMETHANE	0.00		12.00	ט	บัว
CIS-1,3-DICHLOROPROPENE	0.00		12.00	บ	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
ETHYLBENZENE	0.00		12.00	ט	υ
METHYLENE CHLORIDE	23.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	ซ	U
TETRACHLOROETHENE	0.00		12.00	ซ	บง
TOLUENE	0.00		12.00	U	υ
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	ט
TRICHLOROETHENE	0.00		12.00	U	บ
VINYL CHLORIDE	0.00		12.00	ט	υ
XYLENES (TOTAL)	0.00		12.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1065

SAMPLE TYPE : SR

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00	1	12.00	υ	ū
1,1,2-TRICHLOROETHANE	0.00	1	12.00	ช	a
1,1-DICHLOROETHANE	0.00		12.00	ט	U
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00	Ī	12.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	U
1,2-DICHLOROPROPANE	0.00		12.00	Ū	U
2-BUTANONE	0.00	1	12.00	U	Ū
2-HEXANONE	0.00		12.00	ט	ū
4-methyl-2-pentanone	0.00		12.00	U	U
ACETONE	24.00	µg/Kg	0.00	3	R
BENZENE	0.00		12.00	U	U
BRONODICHLOROMETHANT	0.00		12.00	U	ט
BROMOFORM	0.00		12.00	ט	עט
BROMOMETHANE	0.00		12.00	ט	ซฮ
CARBON DISULPIDE	0.00		12.00	U	บ
CARBON TETRACHLORIDE	0.00		12.00	ט	บัง
CHLOROBENZENE	0.00		12.00	ט	ט
CHLOROETHANE	0.00		12.00	ซ	ט
CHLOROFORM	0.00		12.00	บ	บ
CHLOROMETHANE	0.00		12.00	ប	บว
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ETHYLBENZENE	0.00		12.00	U	U
METHYLENE CHLORIDE	16.00	µg/Rg	0.00	В	R
STYRENE	0.00		12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	U	บว
TOLUENE	0.00		12.00	บ	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	ט	υ
TRICHLOROETHENE	0.00		12.00	ט	U
VINYL CHLORIDE	0.00		12.00	υ	U
MYLENES (TOTAL)	0.00	1	12.00	υ	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1066 ANALYSIS TYPE : VOL

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1055 ASSOCIATED MB: VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		14.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		14.00	ט	U
1,1-DICHLOROETHANE	0.00		14.00	U	ט
1,1-DICHLOROETHENE	0.00		14.00	U	ט
1,2-DICHLOROETHANE	0.00		14.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		14.00	ט	U
2-BUTANONE	0.00	T	14.00	U	U
2-HEXANONE	0.00	1	14.00	ט	ט
4-METHYL-2-PENTANONE	0.00	1	14.00	U	U
ACETONE	23.00	µg/Rg	0.00	В	R
BENZENE	0.00	1	14.00	ט	U
BROMODICHLOROMETHANE	0.00	1	14.00	U	ט
Brohoform	0.00		14.00	ט	บป
BROMOMETHANE	0.00	T	14.00	U	UJ
CARBON DISULFIDE	0.00		14.00	U	ט
CARBON TETRACHLORIDE	0.00		14.00	U	บง
CHLOROBENZENE	0.00	1	14.00	ט	U
CELOROETHANE	0.00		14.00	U	ט
CHLOROFORM	0.00	1	14.00	ט	U
CHLOROMETHANE	0.00		14.00	ט	ชิงิ
CIS-1,3-DICHLOROPROPENE	0.00		14.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		14.00	บ	υ
ethylbenzene	0.00		14.00	υ	ט
METHYLENE CHLORIDE	18.00	µg/Kg	0.00	В	R
STYRENE	0.00		14.00	U	U
TETRACHLOROETHENE	0.00	1	14.00	ט	บJ
TOLUENE	0.00	1	14.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	14.00	U	ט
TRICHLOROETHENE	0.00	1	14.00	U	ט
VINYL CHLORIDE	0.00		14.00	υ	U
XYLENES (TOTAL)	0.00		14.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1067 ANALYSIS TYPE: VOL SAMPLE TYPE : SDG : 1055

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

TRIP DIMNK : 10001D

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	I -	12.00	Ū	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	υ
1,1,2-TRICHLOROETHANE	0.00	Ţ	12.00	Ū	U
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	Ü	ט
1,2-DICHLOROETHANE	0.00		12.00	Ū	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ם	U
1,2-DICELOROPROPANE	0.00		12.00	ū	σ
2-BUTANONE	0.00		12.00	U	U
2-HEXANONE	0.00		12.00	Ū	ט
4-METHYL-2-PENTANONE	0.00		12.00	υ	U
ACETONE	40.00	µg/Rg	0.00	В	R
BENZENE	0.00		12.00	U	ט
BROHODICHLOROMETHANE	0.00		12.00	U	U
BROHOFORM	0.00		12.00	ט	บัง
BROHOMETHANE	0.00		12.00	U	บัว
CARBON DISULFIDE	0.00		12.00	ט	U
CARBON TETRACHLORIDE	0.00		12.00	U	บร
CHLOROBENZENE	0.00		12.00	บ	ט
CRLOROETHANE	0.00		12.00	ט	U
CELOROFORM	0.00	1	12.00	ט	U
CHLOROMETHANE	0.00		12.00	ט	บJ
CIS-1,3-DICHLOROPROPENE	0.00	T	12.00	υ	U
DIBROMOCHLOROMPTHANP	0.00		12.00	U	U
ETHYLBENZENE	0.00		12.00	ט	U
METHYLENE CELORIDE	36.00	µg/Rg	0.00	В	R
STYRENE	0.00	1	12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	U	บJ
TOLUENE	0.00		12.00	ט	<u>ס</u>
TRANS-1, 3-DICHLOROPROPENE	0.00	1	12.00	U	U
TRICHLOROETHENE	0.00		12.00	υ	U
VINYL CHLORIDE	0.00		12.00	υ	U
XYLENES (TOTAL)	0.00		12.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1068 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1055 ASSOCIATED MB: VBLKN4

TRIP BLANK : 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	σ
1,1-DICHLOROETHANE	0.00		13.00	ט	U
1,1-DICHLOROETHENE	0.00		13.00	ט	U
1,2-DICHLOROETHANE	0.00		13.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	ט	ט
1,2-DICHLOROPROPANE	0.00		13.00	U	U
2-BUTANONE	0.00		13.00	ט	U
2-HEXANONE	0.00	1	13.00	υ	U
4-METHYL-2-PENTANONE	0.00	1	13.00	υ	U
ACETONE	67.00	µg/Kg	0.00	В	R
Benzene	0.00		13.00	Ü	U
BROMODICHLOROMETHANE	0.00	1	13.00	υ	U
BROMOFORM	0.00	1	13.00	ט	บJ
BROMOMETHANE	0.00		13.00	U	บัง
CARBON DISULFIDE	0.00		13.00	ט	υ
CARBON TETRACHLORIDE	0.00		13.00	U	บว
CHLOROBENZENE	0.00		13.00	Ü	U
CHLOROETHANE	0.00		13.00	ט	U
CHLOROFORM	0.00		13.00	ט	U
CHLOROMETRANE	0.00		13.00	Ü	บัว
CIS-1,3-DICHLOROPROPENE	0.00	T	13.00	U	U
DIBROMOCHLOROMETHANE	0.00		13.00	U	U
ethylbenzene	0.00		13.00	ט	ט
ETHYLENE CHLORIDE	29.00	µg/Rg	0.00	В	R
STYRENE	0.00	\top	13.00	U	ט
TETRACHLOROETHENE	0.00	1	13.00	บ	บว
TOLUENE	0.00	— —	13.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	13.00	บ	U
TRICHLOROETHENE	0.00	1	13.00	U	U
VINYL CHLORIDE	0.00		13.00	U	U
XYLENES (TOTAL)	0.00	1	13.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1069 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1055 ASSOCIATED MB: VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLORGETHANE	0.00		11.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	a	ū
1,1,2-TRICHLOROETHANE	0.00		11.00	Ū	ט
1,1-DICHLOROETRANE	0.00		11.00	ט	ט
1,1-DICHLOROETHENE	0.00	1	11.00	U	U
1,2-DICHLOROETHANE	0.00	T	11.00	U	ū
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	U	ט
1,2-DICHLOROPROPANE	0.00	<u> </u>	11.00	U	U
2-BUTANONE	0.00		11.00	U	U
2-HEXANONE	0.00		11.00	บ	ט
4-METHYL-2-PENTANONE	0.00		11.00	U	U
ACETONE	35.00	µg/Kg	0.00	В	R
BENZENE	0.00		11.00	U	U
BROMODICHLOROMETHANE	0.00	1	11.00	U	U
Bronoform	0.00		11.00	ט	บัง
BROMOMETHANE	0.00		11.00	U	UJ
CARBON DISULFIDE	0.00		11.00	U	ט
CARBON TETRACHLORIDE	0.00	1	11.00	υ	UJ
CHLOROBENZENE	0.00	1	11.00	ט	ט
CHLOROETHANE	0.00	1	11.00	U	U
CHLOROFORM	0.00	1	11.00	U	ט
CHLOROMETHANE	0.00		11.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00	1	11.00	U	Ū
DIBROMOCHLOROMETHANE	0.00	1	11.00	U	Ü
ETHYLBENZENE	0.00		11.00	U	U
METHYLENE CHLORIDE	49.00	µg/Kg	0.00	В	R
STYRENE	0.00		11.00	ט	ט
TETRACHLOROETHENE	0.00		11.00	U	บว
TOLUENE	0.00		11.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
TRICHLOROETHENE	0.00		11.00	υ	ט
VINYL CHLORIDE	0.00	1	11.00	U	U
XYLENES (TOTAL)	0.00	1	11.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD F-1015

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1070 ANALYSIS TYPE : VOL

SAMPLE TYPE : SDG: 1055

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		13.00	σ	ט
1,1-DICHLOROETHANE	0.00		13.00	ū	U
1,1-DICHLOROETHEN2	0.00		13.00	ט	บ
1,2-DICHLOROETHANE	0.00		13.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	13.00	U	U
1,2-DICHLOROPROPANE	0.00		13.00	ט	σ
2-BUTANONE	0.00	1	13.00	Ū	U
2-HEXANONE	0.00	1	13.00	ט	U
4-METHYL-2-PENTANONE	0.00	1	13.00	ט	ט
ACETONE	47.00	µg/Kg	0.00	В	R
BENZENE	0.00		13.00	U	U
BROMODICHLOROMETHANE	0.00	1	13.00	ט	U
BROMOPORM	0.00		13.00	U	บJ
BROMOMETHANE	0.00		13.00	U	บJ
CARBON DISULFIDE	0.00		13.00	ט	ט
CARBON TETRACHLORIDE	0.00		13.00	U	UJ
CHLOROBENZENE	0.00		13.00	ט	υ
CHLOROETHANE	0.00		13.00	ט	ט
CHLOROFORM	0.00		13.00	υ	ט
CHLOROMETHANE	0.00		13.00	บ	บัง
CIS-1,3-DICHLOROPROPENE	0.00	T	13.00	υ	U
DIBROMOCHLOROMETHANE	0.00		13.00	U	U
ETHYLBENZENE	0.00		13.00	ט	U
METHYLENE CHLORIDE	62.00	µg/kg	0.00	В	R
STYRENE	0.00		13.00	ט	ט
TETRACHLOROETHENE	0.00		13.00	U	บง
TOLUENE	0.00	T	13.00	υ	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	13.00	ט	Ū
TRICHLOROETHENE	0.00		13.00	υ	U
VINYL CHLORIDE	0.00		13.00	U	ט
XYLENES (TOTAL)	0.00	1	13.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1071

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKV6

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00	[12.00	U	U
1,1,2-TRICHLOROETHANE	0.00		12.00	U	Ū
1,1-DICHLOROETHANE	0.00		12.00	ט	ט
1,1-DICHLOROETHENE	0.00		12.00	Ū	U
1,2-DICHLOROETHANE	0.00	ļ	12.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	U
1,2-DICHLOROPROPANE	0.00		12.00	Ü	ט
2-BUTANONE	16.00	µg/Rg	0.00		
2-HEXANONE	0.00		12.00	U	U
4-METHYL-2-PENTANONE	0.00		12.00	U	U
ACETONE	80.00	µg/Kg	0.00	В	R
BENZENE	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00		12.00	ט	υ
BROMOFORM	0.00		12.00	ט	บัง
BROMOMETHANE	0.00		12.00	U	บัว
CARBON DISULFIDE	0.00		12.00	U	U
CARBON TETRACHLORIDE	0.00		12.00	U	บัง
CHLOROBENZENE	0.00		12.00	U	υ
CHLOROETHANE	0.00		12.00	U	υ
CHLOROFORM	2.00	µg/Kg	0.00	BJ	R
CHLOROMETHANE	0.00		12.00	U	บง
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
ETHYLBENZENE	0.00		12.00	υ	U
METHYLENE CHLORIDE	37.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00		12.00	U	บว
TOLUENE	0.00		12.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
TRICHLOROETHENE	0.00		12.00	U	υ
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00		12.00	ט	ט
		二		<u> </u>	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1072 ANALYSIS TYPE : VOL SDG : 1055

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1055 ASSOCIATED MB: VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	บ
1,1,2-TRICHLOROETHANE	0.00		13.00	a	ט
1,1-DICHLOROETHANE	0.00	Ī	13.00	a	ט
1,1-DICHLOROETHENE	0.00		13.00	ט	U
1,2-DICHLOROETHANE	0.00		13.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	U	U
1,2-DICHLOROPROPANE	0.00		13.00	ט	ט
2-BUTANONE	0.00		13.00	ט	บ
2-HEXANONE	0.00		13.00	U	U
4-METHYL-2-PENTANONE	0.00		13.00	U	ט
ACETONE	22.00	µg/Rg	0.00	В	R
BENZENE	0.00		13.00	ט	ט
BROMODICHLOROMETHANE	0.00	1	13.00	ט	ם
BROMOFORM	0.00		13.00	ט	UJ
BROMOMETEANE	0.00		13.00	ט	บัง
CARBON DISULFIDE	0.00		13.00	U	บ
CARBON TETRACHLORIDE	0.00		13.00	ប	บJ
CHLOROBENZENE	0.00		13.00	U	บ
CHLOROETHANE	0.00		13.00	ט	U
CHLOROFORM	0.00		13.00	υ	U
CHLOROMETHANE	0.00		13.00	U	บง
CIS-1,3-DICHLOROPROPENE	0.00	Ī	13.00	U	ט
DIBROMOCHLOROMETHANE	0.00	1	13.00	υ	ט
ETHYLBENZENE	0.00		13.00	บ	ט
METHYLENE CHLORIDE	25.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	U	U
TETRACHLOROETHENE	0.00	I	13.00	ט	נט
TOLUENE	0.00		13.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	U	U
TRICHLOROETHENE	0.00		13.00	U	U
VINYL CHLORIDE	0.00		13.00	U	U
MYLENES (TOTAL)	0.00		13.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Name Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1073

SAMPLE TYPE : SR SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKN4

TRIP BLANK : 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	บ
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	U
1,1,2-TRICHLOROETHANE	0.00		12.00	U	Ū
1,1-DICHLOROETHANE	0.00	1	12.00	U	U
1,1-DICHLOROETHENE	0.00	1	12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	ט	ū
1,2-DICHLOROETHENE (TOTAL)	0.00	$T^{}$	12.00	ט	U
1,2-DICHLOROPROPANE	0.00		12.00	U	U
2-BUTANONE	0.00	$T^{}$	12.00	U	ט
2-HEXANONE	0.00	T -	12.00	U	U
4-METHYL-2-PENTANONE	0.00		12.00	ט	ט
ACETONE	13.00	µg/Kg	0.00	В	R
Benzene	0.00	T	12.00	ט	ט
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROMOFORM	0.00	T	12.00	ט	บว
BROHOMETHANE	0.00	T	12.00	ט	UJ
CARBON DISULFIDE	0.00	I = I	12.00	Ū	U
CARBON TETRACHLORIDE	0.00		12.00	ט	บัง
CHLOROBENZENE	0.00		12.00	ט	บ
CHLOROETHANE	0.00		12.00	ט	ט
CHLOROFORM	1.00	µg/Kg	0.00	J	J
CHLOROFORM	0.00		12.00	U	U
CHLOROMETHANE	0.00		12.00	บ	บว
CIS-1,3-DICHLOROPROPENE	0.00		12.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		12.00	ט	ט
ETHYLBENZENE	0.00		12.00	ט	ט
METHYLENE CHLORIDE	29.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	บ	U
TETRACHLOROETHENE	0.00		12.00	ט	บฮ
TOLUENE	0.00		12.00	υ	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	υ	U
TRICHLOROETHENE	0.00		12.00	ט	U
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00		12.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1074 ANALYSIS TYPE : VOL SDG: 1055

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1055 ASSOCIATED MB: VBLKN4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	U	υ
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		13.00	a	บ
1,1-DICHLOROETHANE	0.00		13.00	ט	U
1,1-DICHLOROETHENE	0.00		13.00	U	U
1,2-DICHLOROETHANE	0.00		13.00	ט	ช
1,2-DICHLOROETHENE (TOTAL)	0.00	T	13.00	U	ช
1,2-DICHLOROPROPANE	0.00		13.00	ט	Ū
2-BUTANONE	0.00	1	13.00	U	U
2-HEXANONE	0.00	Ī	13.00	υ	บ
4-METHYL-2-PENTANONE	0.00		13.00	U	U
ACETONE	23.00	µg/Kg	0.00	В	R
BENZENE	0.00		13.00	ט	U
BROMODICHLOROMETHANE	0.00	1	13.00	U	υ
Bronoporm	0.00	<u> </u>	13.00	υ	ชง
BROMOMETHANE	0.00	1	13.00	ט	บว
CARBON DISULFIDE	0.00	† · · · ·	13.00	U	U
CARBON TETRACHLORIDE	0.00		13.00	U	UJ
CHLOROBENZENE	0.00		13.00	U	U
CHLOROETHANE	0.00		13.00	บ	U
CELOROFORM	0.00		13.00	U	U
CHLOROMETHANE	0.00	1	13.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00	1	13.00	U	ט
DIBROMOCHLOROMETHANE	0.00	1	13.00	U	U
ETHYLBENZENE	0.00	1	13.00	U	ט
METHYLENE CHLORIDE	24.00	µg/Kg	0.00	В	R
STYRENE	0.00	1	13.00	U	ט
TETRACHLOROETHENE	0.00	Ī	13.00	U	บJ
TOLUENE	0.00		13.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	U	Ū
TRICHLOROETHENE	0.00	1	13.00	U	υ
VINYL CHLORIDE	0.00		13.00	U	ט
XYLENES (TOTAL)	0.00	+	13.00	ט	10

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1075 SAMPLE TYPE : SAMPLE MATRIX : S ANALYSIS TYPE : VOL

SDG: 1055

ASSOCIATED MB : VBLKZ7

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	O Code	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	מ	ט
1,1-DICHLOROETHANE	0.00		12.00	a	ซ
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00		12.00	ט	O
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ט	ט
1,2-DICHLOROPROPANE	0.00	1	12.00	ט	ס
2-BUTANONE	0.00		12.00	ט	ט
2-HEXANONE	0.00		12.00	U	U
4-METHYL-2-PENTANONE	0.00		12.00	U	U
ACETONE	17.00	µg/Kg	0.00	В	R
Benz ene	0.00		12.00	υ	ט
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROMOFORM	0.00	1	12.00	U	UJ
BROMOMETHANE	0.00	1	12.00	Ū	ชฮ
CARBON DISULFIDE	0.00	1	12.00	U	U
CARBON TETRACHLORIDE	0.00	1	12.00	ט	บฮ
CHLOROBENZENE	0.00		12.00	ט	U
CHLOROETHANE	0.00	1	12.00	ט	ט
CHLOROFORM	4.00	µg/Kg	0.00	BJ	R
CHLOROMETHANE	0.00	1	12.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ETHYLBENZENE	0.00		12.00	U	ט
METHYLENE CHLORIDE	54.00	µg/Kg	0.00	В	R
STYRENE	0.00	T	12.00	U	ט
TETRACHLOROETHENE	0.00	1	12.00	U	บง
TOLUENE	0.00	T	12.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	U	บ
TRICHLOROETHENE	0.00		;2.00	U	U
VINYL CHLORIDE	0.00	1	12.00	ט	υ
XYLENES , TOTAL)	0.00	1	12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1076 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1076 ASSOCIATED MB: VBLKL5

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		380.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		380.00	U	U
1,1,2-TRICHLOROETHANE	0.00		380.00	U	บัง
1,1-DICHLOROETHANE	0.00	1	380.00	U	U
1,1-DICHLOROETHENE	0.00		380.00	U	Ū
1,2-DICHLOROETHANE	0.00		380.00	Ū	ū
1,2-DICHLOROETHENE (TOTAL)	0.00		380.00	ū	ū
1,2-DICHLOROPROPANE	0.00		380.00	Ū	Ū
2-BUTANONE	0.00		380.00	U	บว
2-HEXANONE	0.00		380.00	ט	ט
4-methyl-2-pentanone	0.00		380.00	υ	UJ
ACETONE	10.00	µg/kg	0.00	J	R
BENZENE	0.00	1	380.00	U	ū
BROHODICHLOROMETHANE	0.00	1	380.00	U	U
BROHOFORM	0.00	1	380.00	ט	U
BROMOMETRANE	0.00	1	380.00	ט	U
CARBON DISULFIDE	0.00	1	380.00	U	U
CARBON TETRACHLORIDE	0.00	1	380.00	U	ט
Chlorobenzene	0.00	1	380.00	U	U
CHLOROETHANE	0.00	1	380.00	ט	v
CHLOROFORM	0.00	1	380.00	U	U
CHLOROMETHANE	0.00		380.00	ט	บJ
CIS-1, 3-DICHLOROPROPENE	0.00		380.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	380.00	υ	U
METHYLENE CHLORIDE	19.00	µg/kg	0.00	J	R
STYRENE	0.00		380.00	ט	U
TETRACHLOROETHENE	0.00		380.00	U	U
TOLUENE	0.00	1	380.00	ט	ซ
TRANS-1, 3-DICHLOROPROPENE	0.00	7	380.00	U	บ
TRICHLOROETHENE	0.00	1	380.00	U	ט
VINYL CHLORIDE	0.00	1	380.00	U	U
XYLENES (TOTAL)	0.00	1	380.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1077

SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKL5

ANALYSIS TYPE : VOL

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	ט
1,1,2-TRICHLOROSTHAME	0.00		11.00	ט	บว
1,1-DICHLOROETHANE	0.00		11.00	ט	ט
1,1-DICHLOROETHENE	0.00		11.00	ט	ט
1,2-DICHLOROETHANE	0.00		11.00	ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	11.00	ט	ט
1,2-DICHLOROPROPANE	0.00		11.00	U	U
2-BUTANONE	0.00		11.00	U	ยว
2-HEXANONE	0.00	1	11.00	บ	U
4-HETHYL-2-PENTANONE	0.00		11.00	U	บJ
ACETONE	11.00	µg/kg	0.00	J	R
Benzene	0.00		11.00	ט	บ
BROMODICHLOROMETHANE	0.00		11.00	บ	ט
BROMOFORM	0.00		11.00	U	1-
Brohomethane	0.00		11.00	ט	U
CARBON DISULFIDE	0.00		11.00	ט	ט
CARBON TETRACHLORIDE	0.00		11.00	ט	ט
CHLOROBENZENE	0.00		11.00	ט	ט
CHLOROETHANE	0.00		11.00	U	ט
CHLOROFORM	0.00		11.00	υ	ט
CHLOROMETHANE	0.00		11.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	11.00	U	υ
DIBROMOCHLOROMETHANE	0.00		11.00	ט	υ
METHYLENE CHLORIDE	17.00	µg/kg	0.00	J	R
STYRENE	0.00		11.00	U	U
TETRACHLOROETHENE	3.00	μg/kg	0.00	J	J
TOLUENE	0.00	T	11.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	\top	11.00	U	U
TRICHLOROETHENE	0.00	T	11.00	U	U
VINYL CHLORIDE	0.00		11.00	U	U
XYLENE (TOTAL)	13.00	µg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1078 SAMPLE TYPE : SR SAMPLE MATRIX : S ANALYSIS TYPE : VOL SDG : 1076 ASSOCIATED MB : VBLKL6

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	U	บJ
1,1-DICHLOROETHANE	0.00		11.00	ט	U
1,1-DICHLOROETHENE	0.00		11.00	ט	ט
1,2-DICHLOROETHANE	0.00		11.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	ט	ט
1,2-DICHLOROPROPANE	0.00		11.00	U	บ
2-RUTANONE	0.00		11.00	ט	ชม
2-HEXANONE	0.00		11.00	U	U
4-METHYL-2-PENTANONE	0.00		11.00	U	บJ
ACETONE	19.00	µg/kg	0.00	J	R
Benzene	0.00		11.00	U	ט
BROMODICHLOROMETHANE	0.00		11.00	ט	U
BROMOFORM	0.00		11.00	บ	ט
Bromomethane	0.00		11.00	U	ט
CARBON DISULFIDE	0.00		11.00	U	U
CARBON TETRACHLORIDE	0.00		11.00	ט –	U
CHLOROBENZENE	0.00		11.00	U	ט
CHLOROETHANE	0.00		11.00	U	ט
CHLOROFORM	0.00		11.00	ט	ט
CHLOROMETHANE	0.00		11.00	ט	UJ
CIS-1,3-DICHLOROPROPENE	0.00		11.00	ט	U
DIBROMOCHLOROMETHANE	0.00		11.00	U	ט
METHYLENE CHLORIDE	15.00	μg/kg	0.00	J	R
STYRENE	0.00		11.00	U	U
TETRACHLOROETHENE	0.00		11.00	ט	ט
TOLUENE	0.00		11.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		11.00	υ	U
Trichloroethene	0.00		11.00	υ	U
VINYL CHLORIDE	0.00		11.00	ט	U
XYLENES (TOTAL)	0.00		11.00	บ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1079

SAMPLE TYPE: SDG: 1076 SAMPLE MATRIX : S ASSOCIATED MB : VBLKM2

ANALYSIS TYPE : VOL TRIP BLANK : 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	α
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	ชม
1,1-DICHLOROETHANE	0.00		13.00	ט	U
1,1-DICHLOROETHENE	0.00		13.00	U	U
1,2-DICHLOROETHANE	0.00		13.00	Ū	σ
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		13.00	U	U
2-BUTANONE	0.00		13.00	ū	ชว
2-HEXANONE	0.00	Ĩ	13.00	U	U
4-METHYL-2-PENTANONE	0.00		13.00	ט	บว
ACETONE	18.00	μg/kg	0.00	J	R
BENZENE	0.00		13.00	U	บ
BROMODICHLOROMETHANE	0.00		13.00	บ	U
BROMOFORM	0.00		13.00	U	ט
Brohometrane	0.00		13.00	ש	Ū
CARBON DISULFIDE	0.00		13.00	U	ช
CARBON TETRACHLORIDE	0.00		13.00	U	U
CHLOROBENZENE	0.00		13.00	ט	ט
CHLOROETHANE	0.00	-	13.00	ט	ט
CHLOROFORM	2.00	µg/kg	0.00	J	J
CHLOROMETHANE	0.00		13.00	ט	บJ
CIS-1,3-DICHLOROPROPENE	0.00		13.00	υ	Ū
DIBROMOCHLOROMETHANE	0.00		13.00	ט	U
METHYLENE CHLORIDE	28.00	µg/kg	0.00	J	R
STYRENE	0.00		13.00	บ	U
TETRACHLOROETHENE	0.00		13.00	ט	Ü
TOLUENE	0.00		13.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	ט	U
TRICHLOROETHENE	0.00		13.00	บ	U
VINYL CHLORIDE	0.00		13.00	ט	υ
XYLENES (TOTAL)	0.00	T	13.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1080 ANALYSIS TYPE: VOL SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKL5

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	υ	Ū
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	ū	ชุง
1,1-DICHLOROETHANE	0.00	T	11.00	Ü	ט
1,1-DICHLOROETHENE	0.00		11.00	υ	U
1,2-DICHLOROETHANE	0.00		11.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	T	11.00	U	ט
1,2-DICHLOROPROPANE	0.00		11.00	ŋ	ซ
2-BUTANONE	0.00		11.00	σ	บว
2-HEXANONE	0.00		11.00	บ	U
4-METHYL-2-PENTANONE	0.00		11.00	ט	υJ
ACETONE	10.00	µg/kg	0.00	J	R
Benzenb	0.00		11.00	U	ט
BROMODICHLOROMETHANE	0.00		11.00	Ū	U
BROMOFORM	0.00	1	11.00	ט	ט
BROMOMETHANE	0.00	1	11.00	ט	ט
CARBON DISULFIDE	0.00		11.00	U	ט
CARBON TETRACHLORIDE	0.00		11.00	υ	U
Chlorobenzene	0.00		11.00	υ	U
CHLOROETHANE	0.00		11.00	U	บ
CHLOROFORM	0.00		11.00	υ	ט
CHLOROMETHANE	0.00		11.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
DIBROMOCHLOROMETHANE	0.00		11.00	U	U
METHYLENE CHLORIDE	21.00	μg/kg	0.00	J	R
STYRENE	0.00		11.00	υ	ט
TETRACHLOROETHENE	0.00		11.00	U	ซ
TOLUENE	0.00		11.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	U	Ü
TRICHLOROETHENE	0.00		11.00	Ū	Ü
VINYL CHLORIDE	0.00		11.00	U	ט
XYLENES (TOTAL)	0.00		11.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1081 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE : VOL

SDG: 1076

ASSOCIATED MB : VBLKL6

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	OFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	ū
1,1,2-TRICHLOROETHANE	0.00		11.00	ט	บว
1,1-DICHLOROETHANE	0.00		11.00	ט	σ
1,1-DICHLOROETHENE	0.00	T	11.00	ū	Ū
1,2-DICHLOROETHANE	0.00		11.00	Ū	ū
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	ū	U
1,2-DICHLOROPROPANE	0.00	1	11.00	ט	U
2-BUTANONE	0.00		11.00	Ū	บว
2-HEXANONE	0.00		11.00	U	υ
4-METHYL-2-PENTANONE	0.00		11.00	υ	บัง
ACETONE	16.00	μg/kg	0.00	3	R
BENZENE	0.00		11.00	U	U
BROHODICHLOROHETHANE	0.00		11.00	υ	U
BROHOFORM	0.00		11.00	U	U
BROHOMETHANE	0.00		11.00	U	U
CARBON DISULFIDE	0.00	1	11.00	ט	U
CARBON TETRACELORIDE	0.00		11.00	U	ט
CHLOROBENZENE	0.00		11.00	U	U
CHLOROSTHANS	0.00		11.00	ט	U
CHLOROFORM	0.00		11.00	υ	ט
CHLOROMETHANE	0.00	1	11.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00		11.00	ט	บ
DIBROHOCHLOROHETHANE	0.00		11.00	U	U
METHYLENE CHLORIDE	19.00	µg/kg	0.00	J	R
STYRENE	0.00		11.00	ט	U
TETRACHLOROETHENE	3.00	µg/kg	0.00	J	J
TOLUENE	0.00		11.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
TRICHLOROETHENE	0.00		11.00	U	U
VINYL CHLORIDE	0.00		11.00	U	U
XYLENES (TOTAL)	0.00	1	11.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1082

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL SDG : 1076

ASSOCIATED MB : VBLKL6

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETFANE	0.00		14.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		14.00	U	U
1,1,2-TRICHLOROETHANE	0.00	1	14.00	U	บบ
1,1-DICHLOROETHANE	0.00		14.00	υ	ט
1,1-DICHLOROETHENE	0.00		14.00	U	υ
1,2-DICHLOROETHANE	0.00		14.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	υ	ט
1,2-DICHLOROPROPANE	0.00		14.00	ט	ט
2-BUTANONE	11.00	μg/kg	0.00	J	J
2-HEXANONE	0.00	1	14.00	ט	ט
4-METHYL-2-PENTANONE	0.00		14.00	U	บัง
ACETONE	68.00	µg/kg	0.00		R
BENZENE	0.00		14.00	U	U
BROMODICHLOROMETHANE	0.00	1	14.00	ט	ט
BROMOFORM	0.00		14.00	ט	ט
Brohomethane	0.06	1	14.00	U	ט
CARBON DISULFIDE	0.00	1	14.00	ט	บ
CARBON TETRACHLORIDE	0.00		14.00	U	υ
CHLOROBENZENE	0.00	1	14.00	U	ט
CHLOROETHANE	0.00		14.00	U	U
CHLOROFORM	0.00		14.00	ט	ט
CHLOROMETHANE	0.00		14.00	υ	บว
CIS-1,3-DICHLOROPROPENE	0.00		14.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	14.00	U	บ
METHYLENE CHLORIDE	25.00	µg/kg	0.00		R
STYRENE	0.00		14.00	U	U
TETRACHLOROETHENE	0.00	1	14.00	ט	U
TOLUENE	0.00	1	14.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	14.00	ט	U
TRICHLOROETHENE	0.00	1	14.00	11	U
VINYL CHLORIDE	0.00		14.00	υ	U
XYLENES (TOTAL)	0.00	1	14.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1083 ANALYSIS TYPE : VOL

SAMPLE TYPE : SDG: 1076

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKDY

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		6600.00	υ	บ
1,1,2,2 TETRACHLOROETHANE	0.00		6600.00	υ	ט
1,1,2-TRICHLOROETHANE	0.00		6600.00	ט	ขัว
1,1-DICHLOROETHANE	0.00		6600.00	U	ט
1,1-DICHLOROETHENE	0.00		6600.00	Ū	υ
1,2-DICHLOROETHANE	0.00	1	6600.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		6600.00	U	ט
1,2-DICELOROPROPANE	0.00		6600.00	ט	U
2-BUTANONE	0.00		6600.00	Ū	บบ
2-HEXANONE	0.00		6600.00	Ū	U
4-METHYL-2-PENTANONE	0.00		6600.00	U	บัง
ACETONE	0.00	1	6600.00	υ	บว
BENZENE	0.00	1 -	6600.00	ט	υ
BROMODICHLOROMETHANE	0.00		6600.00	ט	U
BROHOFORM	0.00		6600.00	u	U
BROMOMETHANE	0.00		6600.00	U	U
CARBON DISULFICE	0.00		6600.00	U	U
CARBON TETRACHLORIDE	0.00		6600.00	U	U
CHLOROBENZENE	0.00		6600.00	υ	U
CHLOROETHANE	0.00		6600.00	υ	U
CHLOROFORM	0.00		6600.00	U	υ
CHLOROMETHANE	0.00		6600.00	U	บง
CIS-1,3-DICHLOROPROPENE	0.00		6600.00	υ	υ
DIBROMOCHLOROMETHANE	0.00		6600.00	ט	U
METHYLENE CHLORIDE	2200.00	µg/kg	0.00	J	J
STYRENE	0.00		6600.00	ט	U
TETRACHLOROETHENE	0.00		6600.00	ט	υ
TOLUENE	0.00		6600.00	ט	ū
TRANS-1,3-DICHLOROPROPENE	0.00		6600 00	U	υ
TRICHLOROETHENE	0.00		6600.00	υ	υ
VINYL CHLORIDE	0.00		6600.00	υ	υ
XYLENES (TOTAL)	0.00		6600.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1084 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1076 ASSOCIATED MB: VBLKS4

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		19000.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		19000.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		19000.00	U	UJ
1,1-DICHLOROETHANE	0.00		19000.00	Ū	U
1,1-DICHLOROETHENE	0.00		19000.00	U	U
1,2-DICHLOROETHANE	0.00		19000.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		19000.00	ט	ט
1,2-DICHLOROPROPANE	0.00		19000.00	ū	a
2-BUTANONE	0.00		19000.00	ט	บัง
2-HEXANONE	0.00		19000.00	Ū	ប
4-METHYL-2-PENTANONE	0.00		19000.00	U	บัง
ACETONE	0.00		19000.00	U	บัว
ACETONE	0.00	µg/kg	0.00	J	J
BENZENE	0.00	1	19000.00	U	U
BROMODICHLOROMETHANE	0.00	1	19000.00	υ	υ
BROHOPORM	0.00		19000.00	ט	U
BROMOMETHANE	0.00		19000.00	ט	U
CARBON DISULPIDE	0.00		19000.00	U	บ
CARBON TETRACHLORIDE	0.00		19000.00	U	ט
CHLOROBENZENE	0.00		19000.00	U	U
CHLOROETHANE	0.00		19000.00	U	U
CHLOROFORM	0.00		19000.00	บ	U
CHLOROMETHANE	0.00		19000.00	ט	UJ
CIS-1,3-DICHLOROPROPENE	0.00		19000.00	U	U
DIBROMOCHLOROMETHANE	0.00		19000.00	บ	U
METHYLENE CHLORIDE	0.00		19006.00	U	UJ
METHYLENE CHLORIDE	5100.00	µg/kg	0.00	J	J
STYRENE	0.00		19000.00	U	ט
TETRACHLOROETHENE	0.00		19000.00	ט	U
TOLUENE	0.00		19000.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		19000.00	U	U
TRICHLOROETHENE	0.00		19000.00	U	U
VINYL CHLORIDE	0.00		19000.00	υ	υ
XYLENE (TOTAL)	2500.00	µg/kg	0.00	J	J
XYLENES (TOTAL)	0.00		19000.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1085 ANALYSIS TYPE : VOL

SAMPLE TYPE :

SDG: 1076

SAMPLE MATRIX : S

ASSOCTATED MB : VBLKL6

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		360.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		380.00	U	U
1,1,2-TRICHLOROETHANE	0.00	1	380.00	บ	ชว
1,1-DICHLOROETHANE	0.00		380.00	ū	υ
1,1-DICHLOROETHENE	0.00		380.00	U	U
1,2-DICHLOROETHANE	0.00		380.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		380.00	ט	U
1,2-DICHLOROPROPANE	0.00		380.00	ט	ט
2-BUTANONE	0.00		380.00	U	บJ
2 - HF XANONE	0.00		380.00	υ	ט
4-METHYL-2-PENTANONE	0.00		380.00	ט	บว
ACETONE	17.00	µg/kg	0.00	J	R
BENZENE	0.00		380.00	U	ט
BROMODICHLOROMETHANE	0.00		380.00	a	u
BROHOPORM	0.00		380.00	U	U
BROHOMETHANE	0.00		380.00	ט	ט
CARBON DISULFIDE	0.00		380.00	U	ט
CARBON TETRACHLORIDE	0.00		380.00	U	ט
CHLOROBENZENE	0.00	1	380.00	U	U
CHLOROETHANE	0.00		380.00	U	U
CHLOROFORM	0.00		380.00	U	U
CHLOROMETHANE	0.00	1	380.00	ט	บJ
CIS-1,3-DICHLOROPROPENE	0.00		380.00	υ	U
DIBROACCHLOROMETHANE	0.00		380.00	U	U
METHYLENE CHLORIDE	16.00	µg/kg	0.00	J	R
STYRENE	0.00	1	380.00	υ	U
TETRACHLOROETHENE	0.00	1	380.00	ט	U
TOLUENE	0.00	1	380.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	380.00	U	U
TRICHLOROETHENE	0.00		380.00	U	U
VINYL CHLORIDE	0.00	1	380.00	υ	U
XYLENES (TOTAL)	0.00		380.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1086

SAMPLE TYPE : SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG : 1076

ASSOCIATED MB : VBLKL6

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		380.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		380.00	Ü	Ū
1,1,2-TRICHLOROETHANE	0.00		380.00	U	ชง
1,1-DICHLOROETHANE	0.00	1	380.00	ū	υ
1,1-DICHLOROETHENE	0.00	1	380.00	υ	ט
1,2-DICHLOROETHANE	0.00		380.00	ū	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00	1	380.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	380.00	ט	ט
2-BUTANONE	0.00		380.00	U	UJ
2-HEXANONE	0.00		380.00	ט	U
4-METHYL-2-PENTANONE	0.00		380.00	ט	บว
ACETONE	15.00	μg/kg	0.00	1	R
BENZENE	0.00	†	380.00	υ	υ
BROMODICHLOROMETHANE	0.00	†	380.00	ט	U
BROMOFORM	0.00	1	380.00	U	U
BROMOMETHANE	0.00	†	380,00	U	U
CARBON DISULFIDE	0.00		380.00	U	U
CARBON TETRACHLORIDE	0.00	†	380.00	υ	U
CHLOROBENZENE	0.00	İ	380.00	ט	ט
CHLOROETHANE	0.00		380.00	U	U
CHLOROFORM	0.00	1	380.00	U	Ū
CHLOROMETHANE	0.00	1	380.00	υ	υJ
CIS-1,3-DICHLOROPROPENE	0.00	†	380.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	380.00	υ	U
METHYLENE CHLORIDE	19.00	µg/kg	0.00		R
STYRENE	0.00	T	380.00	U	U
TETRACHLOROETHENE	0.00		380.00	ט	U
TOLUENE	0.00		380.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	380.00	U	U
TRICHLOROETHENE	0.00	1	380.00	U	U
VINYL CHLORIDE	0.00	 	380.00	U	U
XYLENES (TOTAL)	0.00	†	380.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1087

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1076

ASSOCIATED MB : VBLKQ7

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		14.00	Ū	ט
1,1,2-TRICHLOROETHANE	0.00		14.00	Ū	UJ
1,1-DICHLOROETHANE	0.00		24.00	υ	ט
1,1-DICHLOROETHENE	0.00		14.00	U	ט
1,2-DICHLOROETHANE	0.00		14.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	ū	ט
1,2-DICHLOROPROPANE	0.00		14.00	ט	U
2-BUTANONE	0.00		14.00	U	טט
2-HEXANONE	0.00		14.00	U	υ
4-METHYL-2-PENTANONE	0.00		14.00	ט	บว
ACETONE	22.00	µg/kg	0.00		R
Benzene	0.00		14.00	υ	σ
BROMODICHLOROMETHANE	0.00		14.00	ט	U
BROMOPORM	0.00		14.00	ט	ט
BROMOMETHANE	0.00	1	14.00	ט	U
CARBON DISULPIDE	0.00	1	14.00	ט	ט
CARBON TETRACHLORIDE	0.00		14.00	ט	ט
CHLOROBENZENE	0.00		14.00	U	บ
CHTOROETHANE	0.00		14.00	ט	U
CHLOROFORM	0.00		14.00	ט	U
CHLOROMETHANE	0.00		14.00	บ	บฮ
CIS-1,3-DICHLOROPROPENE	0.00		14.00	U	U
DIBROMOCHLOROMETHANE	0.00		14.00	U	U
METHYLENE CHLORIDE	46.00	µg/kg	0.00		R
STYRENE	0.00		14.00	U	ט
TETRACHLOROETHENE	0.00		14.00	U	υ
TOLUENE	0.00	T -	14.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		14.00	U	U
TRICHLOROETHENE	0.00		14.00	U	U
VINYL CHLORIDE	0.00		14.00	U	υ
XYLENES (TOTAL)	0.00	1	14.00	ט	ប

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1088 SAMPLE TYPE : TB SAMPLE MATRIX : W ANALYSIS TYPE : VOL SDG : 1520 ASSOCIATED MB : HZ

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	Ü
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	Ū	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	บ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00	T -	10.00	U	U
2-BUTANONE	0.00		10.00	U	บัง
2-HEXANONE	0.00		10.00	U	ט
4-METHYL-2-PENTANONE	0.00	Ţ	10.00	ט	U
ACETONE	0.00		10.00	U	υJ
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	บ	ט
BROMOFORM	0.00		10.00	U	ט
BROMOMETHANE	0.00		10.00	ט	บัง
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	บ	U
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	ט	ชัง
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	υ	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBRULTCH! OROMETRANE	0.00		10.00	ט	ט
ethylbenzene	0.00		10.00	ט	U
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	υ	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	ט
TRICHLOROETHENE	0.00		10.00	υ	U
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1089

SAMPLE TYPE :

SAMPLE MATRIX : S

SAMPLE NUMBER: 1089 ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKU5

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	บ
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	מ
1,1,2-TRICHLOROETHANE	0.00		12.00	Ū	U
1,1-DICHLOROETHANE	0.00		12.00	U	ט
1,1-DICHLOROETHENE	0.00		12.00	ט	Ū
1,2-DICHLOROETHANE	0.00		12.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ט	ט
1,2-DICHLOROPROPANE	0.00	1	12.00	ū	Ū
2-BUTANONE	0.00	1	12.00	ט	บว
2-HEXANONE	0.00		12.00	U	U
4-METHYL-2-PENTANONE	0.00		12.00	บ	บ
ACETONE	35.00	µg/Rg	0.00	В	R
Benzene	0.00		12.00	U	ט
BROMODICHLOROMETHANE	0.00		12.00	Ū	ט
BROMOPORM	0.00	1	12.00	U	U
Bromomethane	0.00		12.00	Ū	U
CARBON DISULFIDE	0.00	1	12.00	ט	บ
CARBON TETRACHLORIDE	0.00		12.00	U	U
CHLOROBENZENE	0.00		12.00	υ	U
CHLOROETHANE	0.00	1	12.00	U	บัง
CHLOROFORM	1.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00	†	12.00	υ	ט
CIS-1,3-DICHLOROPROPENE	0.00	1	12.00	υ	U
DIBROMOCHLOROMETHANE	0.00	T	12.00	υ	ט
ETHYLBENZENE	0.00		12.00	U	ט
METHYLENE CHLORIDE	54.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	U	ט
TETRACHLOROETHENE	0.00		12.00	υ	ט
TOLUENE	0.00		12.00	ט	บ
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	υ
TRICHLOROETHENE	0.00	1	12.00	U	U
VINYL CELORIDE	0.00		12.00	υ	υ
XYLENES (TOTAL)	0.00	1	12.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1090

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1089 ASSOCIATED MB: VBLKU5

ANALYSIS TYPE : VOL

TRIP BLANK: 1111TB FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	12.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	σ
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	U
1,2-DICHLOROPROPANE	0.00	1	12.00	U	U
2-BUTANONE	0.00		12.00	U	บัง
2-HEXANONE	0.00	1	12.00	U	U
4-METHYL-2-PENTANONE	0.00	1	12.00	ט	ט
ACETONE	68.00	µg/Rg	0.00	В	R
BENZENE	0.00		12.00	ט	U
BROMODICHLOROMETHANE	0.00	1	12.00	U	U
BROMOFORM	0.00		12.00	U	υ
Bromomethane	0.00		12.00	บ	U
CARBON DISULFIDE	0.00		12.00	U	ט
CARBON TETRACHLORIDE	0.00		12.00	ט	ט
CHLOROBENZENE	0.00	T	12.00	ט	ט
CHLOROETHANE	0.00		12.00	U	UJ
CHLOROFORM	2.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	ט	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00		12.00	U	υ
ethylben2ene	0.00	I	12.00	υ	ט
METHYLENE CHLORIDE	60.00	µg/Kg	0.00	В	R
STYRENE	0.00		12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	U	U
TOLUENE	0.00		12.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	υ
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00	1	12.00	ט	U
XYLENE (TOTAL)	2.00	µg/Kg	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1091 ANALYSIS TYPE : VOL SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKY5

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		2800.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		2800.00	ט	ט
1,1,2-TRICHLOROSTHAMS	0.00		2800.00	Ū	ט
1,1-DICHLOROETHANE	0.00		2800.00	ט	U
1,1-DICHLOROETHENE	0.00		2800.00	ט	U
1,2-DICHLOROETHANE	0.00	1	2800.00	ט	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00	1	2800.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		2800.00	Ū	ū
2-BUTANONE	0.00	1	2800.00	ט	บว
2-HEXANONE	0.00	1	2800.00	υ	υ
4-METHYL-2-PENTANONE	0.00	1	2800.00	U	U
ACETONE	0.00		2800.00	U	บัง
BENZENE	0.00		2800.00	U	U
BROMODICHLOROMETHANE	0.00	† 	2800.00	ט	ט
BROHOFORM	0.00	1	2800.00	U	U
BROMOMETHANE	0.00	1	2800.00	מ	ט
CARBON DISULPIDE	0.00		2800.00	U	U
CARBON TETRACHLORIDE	0.00		2800.00	ט	U
CHLOROBENZENE	0.00		2800.00	ט	ט
CHLOROETHANE	0.00		2800.00	υ	บว
CHLOROFORM	0.00	T	2800.00	U	U
CHLOROMETHANE	0.00		2800.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00	T-"	2800.00	υ	U
DIBROMOCHLOROMETHANE	0.00		2800.00	U	U
ETHYLBENZ ENE	0.00		2800.00	ט	U
METHYLENE CHLORIDE	460.00	µg/Kg	0.00	ВЈ	R
STYRENE	0.00	1	2800.00	ט	ū
TETRACHLOROETHENE	0.00		2800.00	ט	U
TOLUENE	0.00		2800.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		2800.00	υ	U
TRICHLOROETHENE	0.00		2800.00	U	U
VINYL CHLORIDE	0.00		2800.00	U	U
XYLENE (TOTAL)	44000.00	µg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1092

SAMPLE TYPE: SAMPLE MATRIX: S
SDG: 1089 ASSOCIATED MB: VI

ANALYSIS TYPE : VOL SDG: 1089

ASSOCIATED MB : VBLKU5

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	12.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	σ	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	ט	U
1,2-DICHLOROETHANE	0.00		12.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	U
1,2-DICHLOROPROPANE	0.00	1	12.00	U	U
2-BUTANONE	0.00		12.00	U	บป
2-HEXANONE	0.00	1	12.00	U	U
4-METHYL-2-PENTANONE	0.00		12.00	ט	ט
ACETONE	63.00	µg/Kg	0.00	В	R
BENZENE	3.00	µg/Kg	0.00	J	J
BROMODICHLOROMETHANE	0.00	1	12.00	U	ט
BROMOFORM	0.00	1	12.00	υ	บ
BROMOMETHANE	0.00		12.00	υ	U
CARBON DISULFIDE	0.00	1	12.00	U	U
CARBON TETRACHLORIDE	0.00	1	12.00	ט	บ
CHLOROBENZENE	0.00	1	12.00	U	U
CHLOROETHANE	0.00	1	12.00	ซ	บว
CHLOROFORM	4.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00	1	12.00	U	ט
CIS-1, 3-DICHLOROPROPENE	0.00		12.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	12.00	ט	ט
ETHYLBENZENE	50.00	μg/Kg	0.00	1	
METHYLENE CELORIDE	60.00	µg/Kg	0.00	В	R
STYRENE	0.00	1	12.00	ט	ט
TETRACHLOROETHENE	0.00		12.00	U	U
TOLUENE	7.00	µg/Kg	0.00	J	J
TRANS-1, 3-DICHLOROPROPENE	0.00	1	12.00	บ	U
TRICHLOROETHENE	0.00	1	12.00	υ	ט
VINYL CHLORIDE	0.00	1	12.00	U	ט
XYLENE (TOTAL)	280.00	µg/Kg	0.00	+	+

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1093

SAMPLE TYPE : SR SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKU5

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	l	12.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	1	12.00	บ	ט
1,1-DICHLOROETHANE	0.00		12.00	Ū	U
1,1-DICHLOROETHENE	0.00		12.00	U	ט
1,2-DICHLOROETHANE	0.00		12.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	Ū
1,2-DICHLOROPROPANE	0.00	1	12.00	U	U
2-BUTANONE	0.00		12.00	V	υJ
2-HEXANONE	0.00	1	12.00	ט	ט
4-METHYL-2-PENTANONE	0.00	1	12.00	ט	U
ACETONE	100.00	µg/Kg	0.00	В	R
BENZENE	2.00	µg/Kg	0.00	J	J
BROMODICHLOROMETHANE	0.00		12.00	ט	ט
BROMOFORM	0.00		12.00	υ	ט
Bromomethane	0.00		12.00	ט	ט
CARBON DISULFIDE	0.00		12.00	U	ט
CARBON TETRACELORIDE	0.00		12.00	ט	ט
CHLOROBENZENE	0.00		12.00	υ	ט
Chloroethane	0.00		12.00	ט	บJ
CHLOROFORM	2.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	υ	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	υ	U
DIBROMOCHLOROMETHANE	0.00		12.00	บ	υ
ETHYLBENZENE	120.00	µg/Kg	0.00		
METHYLENE CHLORIDE	45.00	µg/Rg	0.00	В	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00	Ī	12.00	υ	U
TOLUENE	0.00		12.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	12.00	U	U
TRICHLOROETHENE	0.00	1	12.00	U	ט
VINYL CHLORIDE	0.00	†	12.00	U	U
XYLENE (TOTAL)	420.00	µg/Rg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE MATRIX : S

SAMPLE NUMBER: 1094 SAMPLE TYPE: ANALYSIS TYPE: VOL SDG: 1089

ASSOCIATED MB : VBLKU5

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		12.00	Ū	ט
1,1-DICHLOROETHANE	0.00		12.00	U	ū
1,1-DICHLOROETHENE	0.00		12.00	U	U
1,2-DICHLOROETHANE	0.00		12.00	Ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	U	ū
1,2-DICHLOROPROPANE	0.00		12.00	U	ט
2-BUTANONE	8.00	µg/Kg	0.00	J	J
2-FEXANONE	0.00		12.00	ט	U
4-METHYL-2-PENTANONE	0.00		12.00	U	U
ACETONE	78.00	µg/Kg	0.00	В	R
BENZENE	19.00	µg/Kg	0.00		
BROMODICHLOROMETHANE	0.00		12.00	ט	U
BROMOFORM	0.00		12.00	ט	U
BROMOMETHANE	0.00		12.00	Ū	U
CARBON DISULFIDE	0.00		12.00	Ū	υ
CARBON TETRACHLORIDE	0.00		12.00	ט	U
CHLOROBENZENE	0.00	1	12.00	U	υ
CHLOROETHANE	0.00		12.00	ט	บJ
CHLOROFORM	3.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00	1	12.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		12.00	υ	U
DIBROMOCHLOROMETHANE	0.00	1	12.00	ט	U
ETHYLBENZENE	94.00	µg/Rg	0.00		
METHYLENE CHLORIDE	57.00	µg/Rg	0.00	В	R
STYRENE	0.00		12.00	U	U
TETRACHLOROETHENE	0.00	\top	12.00	U	Ū
TOLUENE	39.00	µg/Rg	0.00	1	
TRANS-1,3-DICHLOROPROPENE	0.00	1	12.00	ט	U
TRICHLOROETHENE	0.00	1	12.00	U	U
VINYL CHLORIDE	0.00		12.00	U	U
XYLENE (TOTAL)	200.00	µg/Kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1095

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKX7

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		32.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00		32.00	a	ט
1,1,2-TRICHLOROETHANE	0.00	1	32.00	Ū	ū
1,1-DICHLOROETHANE	0.00		32.00	U	Ū
1,1-DICHLOROETHENE	0.00		32.00	U	ū
1,2-DICHLOROETHANE	0.00		32.00	ט	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00		32.00	ū	ū
1,2-DICHLOROPROPANE	0.00	1	32.00	Ū	U
2-BUTANONE	0.00		32.00	U	บัง
2-HEXANONE	0.00	1	32.00	υ	U
4-METHYL-2-PENTANONE	0.00		32.00	บ	U
ACETONE	78.00	μg/Kg	0.00	1	J
BENZENE	14.00	µg/Kg	0.00	J	J
BROMODICHLOROMETHANE	0.00		32.00	U	U
BROMOFORM	0.00		32.00	U	U
BROMOMETHANE	0.00		32.00	U	Ü
CARBON DISULFIDE	0.00		32.00	U	υ
CARBON TETRACHLORIDE	0.00		32.00	ט	U
CHLOROBENZENE	0.00		32.00	U	ט
CHLOROETHANE	0.00		32.00	U	บJ
CHLOROFORM	4.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		32.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		32.00	U	U
DIBROMOCHLOROMETHANE	0.00		32.00	υ	U
ethylbenzene	320.00	µg/Kg	0.00		
METHYLENE CHLORIDE	66.00	µg/Rg	0.00	В	R
STYRENE	0.00	Ī	32.00	U	U
TETRACHLOROETHENE	0.00		32.00	υ	ט
TOLUENE	140.00	µg/Kg	0.00	T	1
TRANS-1,3-DICHLOROPROPENE	0.00	1	32.00	ט	ט
TRICHLOROETHENE	0.00		32.00	U	U
VINYL CHLORIDE	0.00		32.00	U	U
XYLENE (TOTAL)	1500.00	µg/Kg	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

Final Summary RE'IEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1096 ANALYSIS TYPE: VOL SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKY3

TRIP BLANK : 1111TB

TITE DIAME . 1005ED

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCoda	QFinal
1,1,1-TRICHLOROETHANE	0.00		1600.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00		1600.00	U	U
1,1,2-TRICHLOROETHANE	0.00		1600.00	ט	U
1,1-DICHLOROETHANE	0.00		1600.00	Ū	ט
1,1-DICHLOROETHENE	0.00		1600.00	ט	U
1,2-DICHLOROETHANE	0.00		1600.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		1600.00	υ	υ
1,2-DICHLOROPROPANE	0.00		1600.00	U	U
2-BUTANONE	1100.00	µg/Kg	0.00	J	J
2-HEXANONE	0.00		1600.00	U	Ü
4-METHYL-2-PENTANONE	0.00		1600.00	U	ט
ACETONE	0.00	1	1600.00	U	UJ
BENZENE	0.00	T	1600.00	U	บ
BROMODICHLOROMETHANE	0.00		1600.00	U	υ
BROMOFORM	0.00	1	1600.00	U	U
BROMOMETHANE	0.00		1600.00	U	บ
CARBON DISULFIDE	0.00		1600.00	U	U
CARBON TETRACHLORIDE	0.00		1600.00	U	U
CHLOROBENZENE	0.00		1600.00	U	ט
CHLOROETHANE	0.00		1600.00	ט	עט
CHLOROFORM	0.00		1600.00	U	ย
CHLOROMETHANE	0.00	1	1600.00	U	ט
CIS-1,3-DICHLOROPROPENE	0.00		1600.00	U	U
DIBROMOCHLOROMETHANE	0.00		1600.00	U	U
ETHYLBENZENE	1100.00	μg/Rg	0.00	J	J
METHYLENE CHLORIDE	530.00	µg/Kg	0.00	BJ	R
STYRENE	0.00		1600.00	U	ט
TETRACHLOROETHENE	0.00		1600.00	υ	ט
TOLUENE	520.00	µg/Rg	0.00	J	J
TRANS-1,3-DICHLOROPROPENE	0.00	1	1600.00	U	U
TRICHLOROETHENE	0.00		1600.00	U	U
VINYL CHLORIDE	0.00	1	1600.00	U	v
XYLENE (TOTAL)	5600.00	µg/Kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1097

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKY9

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	ס	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	σ	ū
1,1-DICHLOROETHANE	0.00		11.00	U	α
1,1-DICHLOROETHENE	0.00		11.00	U	U
1,2-DICHLOROETHANE	0.00		11.00	ū	U
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	Ū	U
1,2-DICHLOROPROPANE	0.00	1	11.00	ū	U
2-BUTANONE	0.00		11.00	ט	UJ
2-HEXANONE	0.00	1	11.00	U	U
4-METHYL-2-PENTANONE	0.00	1	11.00	U	ט
ACETONE	26.00	µg/Rg	0.00	В	R
BENZENE	0.00		11.00	ט	U
BROMODICHLOROMETHANE	0.00		11.00	υ	U
Brohoporm	0.00		11.00	U	υ
BROMOMETHANE	0.00	†	11.00	U	บ
CARBON DISULFIDE	0.00		11.00	Ū	U
CARBON TETRACHLORIDE	0.00	Ì	11.00	U	U
CHLOROBENZENE	0.00		11.00	ט	υ
CHLOROETHANE	0.00		11.00	U	บJ
CHLOROFORM	2.00	µg/Kg	0.00	ВЈ	R
CHLOROMETHANE	0.00		11.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	11.00	U	U
ETHYLBENZENE	0.00		11.00	ט	U
METHYLENE CHLORIDE	12.00	µg/Kg	0.00	В	R
STYRENE	0.00		11.00	ט	U
TETRACHLOROETHENE	0.00		11.00	υ	ט
TOLUENE	0.00	1	11.00	U	υ
TRANS-1,3-DICHLOROPROPENE	0.00		11.00	U	U
TRICHLOROETHENE	0.00	1	11.00	U	υ
VINYL CHLORIDE	0.00	1	11.00	ט	U
XYLENES (TOTAL)	0.00	1	11.00	ט	บ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1098

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKU9

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		14.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		14.00	σ	ט
1,1-DICHLOROETHANE	0.00		14.00	ט	ט
1,1-DICHLOROETHENE	0.00		14.00	บ	U
1,2-DICHLOROETHANE	0.00		14.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		14.00	U	ט
1,2-DICHLOROPROPANE	0.00		14.00	ט	υ
2-BUTANONE	0.00	1	14.00	ט	บว
2-HEXANONE	0.00	i	14.00	ט	ט
4-METHYL-2-PENTANONE	0.00		14.00	U	ט
ACETONE	38.00	µg/Rg	0.00		J
BENZENE	0.00		14.00	ט	U
BROMODICHLOROMETHANE	0.00		14.00	ซ	U
BROMOFORM	0.00	1	14.00	ט	ប
BROMOMETHANE	0.00		14.00	ט	U
CARBON DISULPIDE	0.00	1	14.00	บ	U
CARBON TETRACHLORIDE	0.00		14.00	ט	บ
CHLOROBENZENE	0.00		14.00	ט	U
CHLOROETHANE	0.00		14.00	ט	UJ
CHLOROFORM	0.00		14.00	U	ט
CHLOROMETHANE	0.00		14.00	บ	U
CIS-1,3-DICHLOROPROPENE	0.00		14.00	U	ט
DIBROMOCHLOROMETHANE	0.00		14.00	υ	U
ETHYLBENZENE	0.00		14.00	ט	U
METHYLENE CHLORIDE	25.00	µg/Kg	0.00	В	R
STYRENE	0.00		14.00	U	ט
TETRACHLOROETHENE	0.00		14.00	U	U
TOLUENE	0.00	<u> </u>	14.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		14.00	U	ט
TRICHLOROETHENE	0.00	1	14.00	U	U
VINYL CHLORIDE	0.00	1	14.00	U	υ
XYLENES (TOTAL)	0.00	1	14.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1099

SAMPLE TYPE : SR SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKU9

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		13.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ū	บ
1,1,2-TRICHLOROETHANE	0.00		13.00	U	ט
1,1-DICHLOROETHANE	0.00		13.00	บ	ប
1,1-DICHLOROETHENE	0.00		13.00	ט	บ
1,2-DICHLOROETHANE	0.00	1	13.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	U	υ
1,2-DICHLOROPROPANE	0.00		13.00	ט	ט
2-BUTANONE	0.00	1	13.00	ט	บว
?-HEXANONE	0.00		13.00	U	U
4-METHYL-2-PENTANONE	0.00		13.00	a	ט
ACETONE	0.00		13.00	U	บัง
BENZENE	0.00		13.00	ט	U
BROMODICHLOROMETHANE	0.00		13.00	ט	U
BROMOFORM	0.00		13.00	υ	บ
BROHOMETHANE	0.00		13.00	U	U
CARBON DISULFIDE	0.00	1	13.00	U	U
CARBON TETRACHLORIDE	0.00	1	13.00	U	U
CHLOROBENZENE	0.00		13.00	U	ט
CHLOROETHANE	0.00		13.00	ט	บJ
CHLOROFORM	2.00	µg/Kg	0.00	J	J
CHLOROMETHANE	0.00		13.00	U	ט
CIS-1, 3-DICHLOROPROPENE	0.00	1	13.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		13.00	U	U
ETHYLBENZENE	0.00	1	13.00	U	ซ
METHYLENE CHLORIDE	19.00	µg/Rg	0.00	В	R
STYRENE	0.00	1	13.00	ט	ט
TETRACHLOROETHENE	0.00		13.00	υ	U
TOLUENE	0.00		13.00	υ	υ
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	U	υ
TRICHLOROETHENE	0.00		13.00	ט	U
VINYL CHLORIDE	0.00		13.00	ט	U
XYLENES (TOTAL)	0.00		13.00	ט	ប

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1100

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

ASSOCIATED MB : VBLKU9

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	ļ	13.00	ט	ū
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00	l	13.00	ū	ט
1,1-DICHLOROETHANE	0.00		13.00	ט	ט
1,1-DICHLOROETHENE	0.00		13.00	ט	U
1,2-DICHLOROETHANE	0.00		13.00	U	υ
1,2-DICHLOROETHENE (TOTAL)	0.00	· ·	13.00	ס	ט
1,2-DICHLOROPROPANE	0.00		13.00	ט	υ
2-BUTANONE	0.00		13.00	ט	บว
2-HEXANONE	0.00	Î	13.00	U	U
4-METHYL-2-PENTANONE	0.00		13.00	ט	ט
ACETONE	0.00		13.00	ū	UJ
Benzene	0.00		13.00	U	ט
BROMODICHLOROMETHANE	0.00		13.00	U	ט
BROMOFORM	0.00		13.00	U	ט
BROHOMETHANE	0.00		13.00	U	ט
CARBON DISULFIDE	0.00		13.00	ס	U
CARBON TETRACELORIDE	0.00		13.00	บ	ט
CHLOROBENZENE	0.00		13.00	ט	ט
CHLOROETHANE	0.00		13.00	ט	บัง
CHLOROPORM	0.00		13.00	ט	ט
CHLOROMETHANE	0.00		13.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		13.00	U	U
DIBROMOCHLOROMETHANE	0.00		13.00	ט	U
ETHYLBENZENE	0.00		13.00	ט	ט
METHYLENE CHLORIDE	24.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	ט	ט
TETRACHLOROETHENE	0.00		13.00	Ū	U
TOLUENE	0.00		13.00	บ	ט
TRANS-1,3-DICHLOROPROPENE	0.00		13.00	ט	U
TRICHLOROETHENE	0.00		13.00	U	ט
VINYL CHLORIDE	0.00		13.00	ט	U
XYLENES (TOTAL)	0.00		13.00	υ	υ
		t		<u> 1 </u>	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1101

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1089

ASSOCIATED MB : VBLKU9

TRIP BLANK: 1111TB

FIELD PLANKS: 1005FB, 1006FB

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	μg/Kg μg/Kg	14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00		U U U U U U U U U U U U U U U U U U U
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	+	14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 0.00 0.00 14.00 14.00 14.00 14.00	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 120.00 4.00 0.00 0.00 0.00 0.00	+	14.00 14.00 14.00 14.00 14.00 14.00 14.00 0.00 0.00 14.00 14.00 14.00	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 120.00 4.00 0.00 0.00	+	14.00 14.00 14.00 14.00 14.00 14.00 0.00 0.00 14.00 14.00 14.00 14.00	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00	+	14.00 14.00 14.00 14.00 14.00 0.00 0.00	0 0 0 0 0 0 0 0	U U U U U U U U U U U U U U U U U U U
0.00 0.00 0.00 0.00 0.00 120.00 4.00 0.00 0.00 0.00 0.00	+	14.00 14.00 14.00 14.00 0.00 0.00 14.00 14.00 14.00	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.00 0.00 0.00 120.00 4.00 0.00 0.00 0.00	+	14.00 14.00 14.00 0.00 0.00 14.00 14.00 14.00	0 0 0 0 0	0 0 0 0 3 3 0 0 0
0.00 0.00 0.00 120.00 4.00 0.00 0.00 0.00	+	14.00 14.00 0.00 0.00 14.00 14.00 14.00	U U U U U U U U U U U U U U U U U U U	03 0 0 3 3 5 0
0.00 0.00 120.00 4.00 0.00 0.00 0.00	+	14.00 14.00 0.00 0.00 14.00 14.00 14.00	U U U U U U U U	U U U U U U U U U U U U U U U U U U U
0.00 120.00 4.00 0.00 0.00 0.00 0.00	+	14.00 0.00 0.00 14.00 14.00 14.00	U J U U U U	0 J J U U
120.00 4.00 0.00 0.00 0.00 0.00	+	0.00 0.00 14.00 14.00 14.00	J U U	J J U U
4.00 0.00 0.00 0.00 0.00	+	0.00 14.00 14.00 14.00	u u	J U U
0.00 0.00 0.00 0.00	μg/Kg	14.00 14.00 14.00 14.00	u u	α α
0.00 0.00 0.00		14.00 14.00 14.00	U	U U
0.00		14.00	Ū	U
0.00		14.00	 	
0.00			U	
		4	1 -	[ט
0.00		14.00	υ	ט
0.00	1	14.00	ט	U
0.00		14.00	U	υJ
0.00		14.00	U	ט
0.00		14.00	ט	U
0.00		14.00	Ū	ט
0.00		14.00	ט	ט
8.00	µg/Kg	0.00	J	J
33.00	µg/Kg	0.00	В	R
0.00		14.00	ט	ט
0.00		14.00	U	U
0.00		14.00	U	ט
0.00		14.00	บ	ט
		14.00	U	U
0.00		1 4.00		
		14.00	U	บ
	0.00	0.00	0.00 14.00 0.00 14.00	0.00 14.00 U 0.00 14.00 U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1102 ANALYSIS TYPE : VOL

SAMPLE TYPE: SAMPLE MATRIX: S SDG: 1089 ASSOCIATED MB: VBLKY3

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		1400.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		1400.00	Ū	ซ
1,1,2-TRICHLOROETHANE	0.00		1400.00	ט	ט
1,1-DICHLOROETHANE	0.00		1400.00	ū	บ
1,1-DICHLOROETHENE	0.00		1400.00	ū	ט
1,2-DICHLOROETHANE	0.00		1400.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		1400.00	ט	ט
1,2-DICHLOROPROPANE	0.00		1400.00	ū	U
2-BUTANONE	1300.00	μg/Kg	0.00	J	J
2-HEXANONE	0.00		1400.00	ט	U
4-METHYL-2-PENTANONE	0.00		1400.00	U	บ
ACETONE	0.00		1400.00	U	บJ
BENZENE	0.00		1400.00	ט	ซ
BROMODICHLOROMETHANE	0.00		1400.00	ט	U
BROMOFORM	0.00		1400.00	ט	U
BROMOMETHANE	0.00	1	1400.00	υ	ט
CARBON DISULFIDE	0.00		1400.00	υ	บ
CARBON TETRACELORIDE	0.00		1400.00	ט	U
CHLOROBENZENE	0.00		1400.00	U	ט
CHLOROETHANE	0.00	1	1400.00	ט	UJ
CHLOROFORM	0.00	1	1400.00	υ	บ
CHLOROMETHANE	0.00	1	1400.00	Ū	υ
CIS-1,3-DICHLOROPROPENE	0.00	1	1400.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	1400.00	U	ט
ethylbenzene ethylbenzene	2300.00	µg/Rg	0.00		
METHYLENE CHLORIDE	630.00	µg/Rg	0.00	вј	R
STYRENE	0.00		1400.00	U	υ
TETRACHLOROETHENE	0.00		1400.00	U	U
TOLUENE	0.00		1400.00	บ	U
TRANS-1,3-DICHLOROPROPENE	0.00		1400.00	ט	υ
TRICHLOROETHENE	0.00	1	1400.00	U	U
VINYL CHLORIDE	0.00	1	1400.00	ט	U
XYLENE (TOTAL)	8200.00	µg/Kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1103

SAMPLE TYPE : SDG : 1089

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKU9

ANALYSIS TYPE : VOL

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOKOETHANE	0.00		13.00	ט	ប
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		13.00	ט	σ
1,1-DICHLOROETHANE	0.00		13.00	ט	ū
1,1-DICHLOROETHENE	0.00		13.00	U	ט
1,2-DICHLOROETHANE	0.00		13.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	ט	ប
1,2-DICHLOROPROPANE	0.00		13.00	ט	ט
2-BUTANONE	0.00		13.00	U	บJ
2-HEXANONE	0.00		13.00	ט	ט
4-METHYL-2-PENTANONE	0.00		13.00	ט	ט
ACETONE	0.00		13.00	Ū	บJ
BENZENE	0.00		13.00	ט	ט
BROMODICHLOROMETHANE	0.00		13.00	ט	ט
BROMOFORM	0.00		13.00	υ	ט
BROMOMETHANE	0.00		13.00	ט	ט
CARBON DISULFIDE	0.00		13.00	ט	ט
CARBON TETRACHLORIDE	0.00		13.00	ט	ប
CHLOROBENZENE	0.00		13.00	ט	ט
CHLOROETHANE	0.00	1	13.00	ט	บัว
CHLOROFORM	0.00		13.00	ט	ט
CHLOROMETHANE	0.00		13.00	บ	ט
CIS-1,3-DICHLOROPROPENE	0.00		13.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		13.00	ט	ט
ETHYLBENZENE	0.00		13.00	ט	ט
METHYLENE CHLORIDE	36.00	µg/Kg	0.00	В	R
STYRENE	0.00		13.00	ט	ט
TETRACHLOROETHENE	0.00		13.00	U	ט
TOLUENE	0.00		13.00	ט	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		13.00	ט	ט
TRICHLOROETHENE	0.00		13.00	υ	U
VINYL CHLORIDE	0.00		13.00	U	ט
XYLENE (TOTAL)	5.00	µg/Kg	0.00	3	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1104 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1089 ASSOCIATED MB: VBLKU9

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		14.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00	Ī	14.00	U	υ
1,1,2-TRICHLOROETHANE	0.00		14.00	ט	U
1,1-DICHLOROETHANE	0.00		14.00	ט	ט
1,1-DICHLOROETHENE	0.00		14.00	U	ט
1,2-DICHLOROETHANE	0.00		14.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	14.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	14.00	U	U
2-BUTANONE	0.00		14.00	U	UJ
2-HEXANONE	0.00		14.00	U	ט
4-METHYL-2-PENTANONE	0.00		14.00	U	ט
ACETONE	0.00		14.00	ט	עט
BENZ ENE	0.00		14.00	Ü	U
BROMODICHLOROMETHANE	0.00		14.00	ט	Ū
BRONOFORM	0.00		14.00	U	ט
BROHOMETHANE	0.00		14.00	ซ	ט
CARBON DISULFIDE	0.00	1	14.00	U	U
CARBON TETRACHLORIDE	0.00		14.00	ט	ū
CHLOROBENZENE	0.00		14.00	ט	ŭ
CHLOROETHANE	0.00		14.00	U	บJ
CELOROFORM	0.00	T	14.00	ט	ט
CHLOROMETHANE	0.00		14.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		14.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		14.00	บ	ט
ETHYLBENZENE	0.00		14.00	U	U
METHYLENE CHLORIDE	58.00	µg/Rg	0.00	В	R
STYRENE	0.00		14.00	ט	ט
TETRACHLOROETHENE	0.00		14.00	U	ט
TOLUENE	0.00		14.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		14.00	U	U
TRICHLOROETHENE	0.00		14.00	υ	U
VINYL CHLORIDE	0.00		14.00	U	ט
XYLENES (TOTAL)	0.00	Ť	14.00	U	Ü

PROJECT: NEVADA AIR NATIONAL GUARD

t Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1105

SAMPLE TYPE : SDG: 1089

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

ASSOCIATED MB : VBLKY3

TRIP BLANK: 1111TB FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		1500.00	ט	ប
1,1,2,2-TETRACHLOROETHANE	0.00		1500.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		1500.00	ט	Ū
1,1-DICHLOROETHANE	0.00		1500.00	U	U
1,1-DICHLOROETHENE	0.00	1	1500.00	ט	U
1,2-DICHLOROETHANE	0.00	T	1500.00	ช	U
1,2-DICHLOROETHENE (TOTAL)	0.00		1500.00	σ	ט
1,2-DICHLOROPROPANE	0.00		1500.00	บ	ט
2-BUTANONE	1200.00	µg/Rg	0.00	J	J
2-HEXANONE	0.00		1500.00	ט	ט
4-METHYL-2-PENTANONE	0.00		1500.00	U	ט
ACETONE	0.00	1	1500.00	U	บว
BENZENE	0.00	1	1500.00	U	Ū
BROMODICHLOROMETHANE	0.00		1500.00	ט	U
BROMOFORM	0.00		1500.00	ט	ט
Bronomethane	0.00		1500.00	U	U
CARBON DISULFIDE	0.00	}	1500.00	ט	ט
CARBON TETRACHLORIDE	0.00		1500.00	ט	ប
CHLOROBENZENE	0.00		1500.00	υ	ט
CHLOROETHANE	0.00		1500.00	บ	บว
CHLOROFORM	0.00		1500.00	บ	U
CHLOROMETHANE	0.00		1500.00	U	บ
CIS-1,3-DICHLOROPROPENE	0.00		1500.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		1500.00	ט	ט
ethylbenzene	630.00	µg/Rg	0.00	3	J
METHYLENE CHLORIDE	650.00	µg/Rg	0.00	ВJ	R
STYRENE	0.00		1500.00	ט	ט
TETRACHLOROETHENE	0.00		1500.00	U	U
Toluene	0.00		1500.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		1500.00	U	ט
TRICHLOROETHENE	0.00		1500.00	U	U
VINYL CHLORIDE	0.00		1500.00	ט	ט
XYLENE (TOTAL)	2600.00	µg/Rg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1106 SAMPLE TYPE : SR ANALYSIS TYPE : VOL SDG : 1089

SR SAMPLE MATRIX : S

ASSOCIATED MB : VBLKY3

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		2100.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		2100.00	ט	U
1,1,2-TRICHLOROETHANE	0.00	1	2100.00	ט	ט
1,1-DICHLOROETHANE	0.00	1	2100.00	ט	ซ
1,1-DICHLOROETHENE	0.00		2100.00	ט	υ
1,2-DICHLOROETHANE	0.00		2100.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		2100.00	ū	מ
1,2-DICHLOROPROPANE	0.00		2100.00	ט	ט
2-BUTANONE	0.00	1	2100.00	ט	23
2-HEXANONE	0.00	Ī	2100.00	ช	ט
4-METHYL-2-PENTANONE	0.00		2100.00	U	บ
ACETONE	0.00	1	2100.00	ט	UJ
Benzene	670.00	µg/Kg	0.00	J	J
BROHODICHLOROMETHANE	0.00		2100.00	ט	ט
BROMOFORM	0.00		2100.00	ט	σ
BROHOMETHANE	0.00		2100.00	ט	υ
CARBON DISULFIDE	0.00		2100.00	Ū	ט
CARBON TETRACHLORIDE	0.00		2100.00	ט	บ
CHLOROBENZENE	0.00		2100.00	ט	ט
CHLOROETHANE	0.00		2100.00	ט	UJ
CHLOROPORM	0.00		2100.00	ט	Ü
CHLOROMETHANE	0.00		2100.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		2100.00	U	Ū
DIBROMOCHLOROMETHANE	0.00		2100.00	ט	U
ETHYLBENZENE	24000.00	µg/Kg	0.00		
METHYLENE CHLORIDE	990.00	µg/Rg	0.00	BJ	R
STYRENE	0.00		2100.00	U	ט
TETRACHLOROETHENE	0.00		2100.00	U	ט
TOLUENE	3900.00	µg/Kg	0.00		
TRANS-1, 3-DICHLOROPROPENE	0.00		2100.00	บ	ט
TRICHLOROETHENE	0.00		2100.00	υ	U
VINYL CHLORIDE	0.00		2100.00	υ	υ
XYLENE (TOTAL)	92000.00	µg/Kg	0.00	1	
					1

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1107 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1089 ASSOCIATED MB: VBLKY3

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		1700.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		1700.00	υ	ט
1,1,2-TRICHLOROETHANE	0.00		1700.00	U	Ū
1,1-DICHLOROETHANE	0.00		1700.00	ū	ט
1,1-DICHLOROETHENE	0.00		1700.00	U	U
1,2-DICHLOROETHANE	0.00		1700.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		1700.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		1700.00	Ū	U
2-BUTANONE	0.00		1700.00	ช	י.ט
2-HEXANONE	0.00		1/00:00	U	U
4-METHYL-2-PENTANONE	0.00		1700.00	υ	ט
ACETONE	0.00		1700.00	U	ชิง
Benzene	230.00	μg/Kg	0.00	J	J
BROMODICHLOROMETHANE	0.00	1	1700.00	U	ט
BROMOFORM	0.00	1	1700.00	ט	ט
BROHOMETHANE	0.00		1700.00	ט	U
CARBON DISULFIDE	0.00		1700.00	ט	U
CARBON TETRACHLORIDE	0.00		1700.00	U	U
CHLOROBENZENE	0.00		1700.00	U	U
CHLOROETHANE	0.00	1	1700.00	U	UJ
CHLOROFORM	0.00	1	1700.00	υ	U
CHLOROMETHANE	0.00	1	1700.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		1700.00	v	U
DIBROMOCHLOROMETHANE	0.00	T -	1700.00	υ	ט
ethylbenzene	0.00		1700.00	U	ט
METHYLENE CHLORIDE	800.00	µg/Kg	0.00	ВЈ	R
STYRENE	0.00		1700.00	บ	U
TETRACHLOROETEENE	0.00		1700.00	U	U
TOLUENE	0.00		1700.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	T	1700.00	U	U
TRICPLOROETHENE	0.00	1	1700.00	υ	υ
VINYL CHLORIDE	0.00		1700.00	U	U
XYLENE (TOTAL)	1400.00	µg/Kg	0.00	J	J

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1108 ANALYSIS TYPE: VOL SAMPLF TYPE : ER

SDG : 1108

SAMPLE MATRIX : W

ASSOCIATED MB : Clear Samp

TRIP BLANK : 1111TB

FIELD BLANKS: 1005FB, 1006FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
0.00		10.00	ט	U
0.00		10.00	U	ט
0.00	Į	10.00	ט	U
0.00		10.00	U	U
0.00		10.00	ט	עט
0.00		10.00	ט	ט
0.00		10.00	ט	ט
0.00	Ì	10.00	U	ซฮ
0.00		10.00	ט	ซฮ
0.00		10.00	U	บง
0.00		10.00	111	υJ
0.00		10.00	U	U
0.00		10.00	U	ט
0.00		10.00	U	ט
0.00		10.00	U	ט
0.00	1 -	10.00	ט	บJ
0.00	1	10.00	U	ט
0.00		10.00	υ	ט
0.00		10.00	ט	U
0.00		10.00	U	U
0.00		10.00	U	ט
0.00		10.00	ט	ט
0.00	1	10.00	υ	ט
0.00		10.00	ับ	U
0.00		10.00	ט	ט
0.00		10.00	U	ט
0.00		10.00	U	U
0.00		10.00	υ	บัง
0.00	1	10.00	U	U
0.00		10.00	U	ט
0.00		10.00	υ	U
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Detection Limit	Detection Limit

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1109

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	บัง
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICELOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	σ	ชง
2-HEXANONE	0.00		10.00	ט	ซฺฮ
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
ACETONE	0.00		10.00	ט	αJ
Benzene	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00		10.00	U	נט
CARBON TETRACHLORIDE	0.00	T	10.00	ט	ט
CHLOROBENZENE	0.00		10.00	ט	υ
CHLOROETHANE	0.00	1	10.00	ט	ט
CHLOROPORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	U	ט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENZENE	0.00		10.00	U	ט
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	UJ
TRICHLOROETHENE	0.00	1	10.00	ט	v
VINYL CHLORIDE	0.00		10.00	บ	U
XYLENES (TOTAL)	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1110

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	บ	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	ט	ชม
1,2-DICHLOROETHANE	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	ט	บัง
2-HEXANONE	0.00		10.00	U	บัง
4-METHYL-2-PENTANONE	0.00		10.00	17	ŪĴ
ACETONE	0.00		10.00	ū	บJ
Benzene	0.00		10.00	ט	υ
BROMODICHLOROMETHANE	0.00		10.00	υ	ט
BROMOPORM	0.00		10.00	ט	ט
BROMOMETHANE	0.00		10.00	U	ซ
CARBON DISULFIDE	0.00	1	10.00	U	UJ
CARBON TETRACHLORIDE	0.00		10.00	ū	ט
CHLOROBENZENE	0.00		10.00	U	บ
CHLOROETHANE	0.00		10.00	ט	ט
CELOROFORM	0.00		10.00	U	ū
CHLOROMETHANE	0.00		10.00	U	ט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	บ
ETHYLBENZENE	0.00		10.00	U	บ
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	υ	Ū
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	บัง
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	บ	U
XYLENES (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Mandates Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1111

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD CLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ช	υ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	Ū	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHANE	0.00	1	10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	ט	עט
1,2-DICELOROETHANE	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	U	ชว
2-HEXANONE	0.00		10.00	U	บว
4-methyl-2-pentanone	0.00		10.00	U	บว
ACETONE	0.00		10.00	Ū	UJ
Benzene	0.00	1	10.00	U	U
BROMODICHLOROMETHANE	0.00	1	10.00	U	U
Brohoform	0.00		10.00	U	ט
BRONOMETHANE	0.00	1	10.00	ט	U
CARBON DISULFIDE	0.00		10.00	U	ชง
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00	1	10.00	U	U
CHLOROETHANE	0.00		10.00	U	ช
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ethylbenzene	0.00		10.00	U	ช
STYRENE	0.00		10.00	U	U
TETRACELOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	บJ
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	U	υ
KYLENES (TOTAL)	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1112

SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

TRIP BLANK: 1120TB FIELD BLANKS: 1005FB, 1006FB ASSOCIATED MB : VBLKM2

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		12.00	U	บัง
1,1-DICHLOROETHANE	0.00		12.00	U	ט
1,1-dichloroethene	0.00		12.00	ט	U
1,2-DICHLOROETHANE	0.00	ŀ	12.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00	T	12.00	Ū	ช
1,2-DICHLOROPROPANE	0.00		12.00	Ū	ט
2-BUTANONE	0.00		12.00	U	บว
2-HEXANONE	0.00		12.00	ט	U
4-METHYL-2-PENTANONE	0.00		12.00	U	บัง
ACETONE	37.00	μg/kg	0.00		R
BENZENE	0.00		12.00	ט	ט
BROMODICHLOROMETHANE	0.00		12.00	U	ט
BROMOFORM	0.00	1	12.00	ט	ט
BRONGMETHANE	0.00		12.00	ט	ט
CARBON DISULFIDE	0.00		12.00	ט	ט
CARBON TETRACHLORIDE	0.00	1	12.00	υ	ט
CHLOROBENZENE	0.00		12.00	υ	U
CHLOROETHANE	0.00		12.00	ט	U
CHLOROFORM	1.00	μg/kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	U	ひよ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	บ
DIBROMOCHLOROMETHANE	0.00		12.00	บ	U
METHYLENE CHLORIDE	20.00	µg/kg	0.00		R
STYRENE	0.00		12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	บ	ט
TOLUENE	0.00		12.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	ט
TRICHLOROETHENE	0.00		12.00	ט	υ
VINYL CHLORIDE	0.00		12.00	ט	υ
XYLENES (TOTAL)	0.00		12.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1113

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1076

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		13.00	υ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		13.00	ט	1
1,1,2-TRICHLOROETHANE	0.00		13.00	σ	נט
1,1-DICHLOROETHANE	0.00		13.00	ū	ט
1,1-DICHLOROETHENE	0.00	T	13.00	Ū	ס
1,2-DICHLOROETHANE	0.00		13.00	ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		13.00	ט	ט
1,2-DICHLOROPROPANE	0.00	T	13.00	Ū	ט
2-BUTANONE	12.00	μg/kg	0.00	J	J
2-HEXANONE	0.00		13.00	ט	ט
4-METHYL-2-PENTANONE	0.00		13.00	U	บัง
ACETONE	44.00	μg/kg	0.00		R
Benzens	0.00		13.00	U	U
BROMODICALOROMETHANE	0.00		13.00	U	ט
BROHOFORM	0.00		13.00	ט	ט
BROHONETEANE	0.00		13.00	ט	U
CARBON DISULFIDE	0.00		13.00	ט	U
CARBON TETRACHLORIDE	0.00		13.00	U	ט
CHLOROBENZENE	0.00		13.00	ט	U
CHLOROETHANE	0.00		13.00	ט	U
CHLOROFORM	1.00	µg/kg	0.00	J	J
CHLOROMETHANE	0.00		13.00	υ	บว
CIS-1,3-DICHLOROPROPENE	0.00		13.00	ט	U
DIBROMOCHLOROMETHANE	0.00		13.00	U	U
METHYLENE CHLORIDE	22.00	µg/kg	0.00		R
STYRENE	0.00		13.00	ט	ט
TETRACHLOROETHENE	0.00		13.00	ט	U
TOLUENE	0.00	1	13.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00	T^{-}	13.00	U	U
TRICHLOROETHENE	0.00		13.00	ט	ט
VINYL CHLORIDE	0.00	1	13.00	U	U
XYLENES (TOTAL)	0.00		13.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1114 ANALYSIS TYPE : VOL

SAMPLE TYPE : SDG : 1076

SAMPLE MATRIX : S

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00	I	12.00	מ	ū
1,1,2-TRICHLOROETHANE	0.00		12.00	מ	UJ
1,1-DICHLOROETHANE	0.00		12.00	U	U
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00		12.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		12.00	ם	ט
1,2-DICHLOROPROPANE	0.00		12.00	ט	ס
2-BUTANONE	0.00		12.00	ס	ชิงิ
2-HEXANONE	0.00		12.00	U	ט
4-METHYL-2-PENTANONE	0.00	I	12.00	ט	ชิง
ACETONE	25.00	µg/kg	0.00		R
BENZENE	0.00		12.00	U	a
BROMODICHLOROMETHANE	0.00		12.00	ឋ	U
BROMOFORM	0.00		12.00	ט	ט
BROMOMETHANE	0.00		12.00	ם	ט
CARBON DISULFIDE	0.00		12.00	a	ט
CARBON TETRACHLORIDE	0.00		12.00	ט	ט
CHLOROBENZENE	0.00		12.00	Ū	ט
CHLOROETHANE	0.00		12.00	ט	ט
CHLOROFORM	1.00	µg/kg	0.00	J	J
CHLOROMETHANE	0.00	T	12.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00		12.00	U	ט
DIBROMOCHLOROMETHANE	0.00		12.00	U	U
METHYLENE CHLORIDE	30.00	μg/kg	0.00		R
STYRENE	0.00		12.00	ט	Ū
TETRACHLOROETHENE	0.00		12.00	ט	ט
TOLUENE	0.00		12.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		12.00	ט	υ
TRICHLOROETHENE	0.00		12.00	ט	U
VINYL CHLORIDE	0.00		12.00	ט	ט
XYLENES (TOTAL)	0.00		12.00	ט	ט
		1			1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1115

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1076

ASSOCIATED MB : VBLKM2

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		380.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		380.00	ט	ם
1,1,2-TRICHLOROETHANE	0.00		380.00	ם	UJ
1,1-DICHLOROETHANE	0.00		380.00	Ū	۵
1,1-DICHLOROETHENE	0.00		380.00	ū	ט
1,2-DICHLOROETHANE	0.00		380.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	Ī	380.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	380.00	ט	U
2-BUTANONE	0.00		380.00	U	ซฮ
2-HEXANONE	0.00	1	380.00	ט	ט
4-METHYL-2-PENTANONE	0.00		380.00	U	บง
ACETONE	19.00	µg/kg	0.00		R
BENZENE	0.00	1	380.00	U	U
BRONODICHLOROMETHANE	0.00	1	380.00	U	ט
BROMOFORM	0.00		380.00	ט	ט
BROMOMETHANE	0.00		380.00	ט	U
CARBON DISULFIDE	0.00		380.00	ט	ט
CARBON TETRACELORIDE	0.00		380.00	ט	ט
CHLOROBENZENE	0.00		380.00	ט	ט
CHLOROETHANE	0.00	1	380.00	ט	ט
CHLOROFORM	0.00	1	380.00	ט	ū
CHLOROMETHANE	0.00	1	380.00	ט	UJ
CIS-1,3-DICHLOROPROPENE	0.00		380.00	ט	U
DIBROMOCHLOROMETHANE	0.00		380.00	ט	U
METHYLENE CHLORIDE	25.00	μg/kg	0.00		R
STYRENE	0.00		380.00	U	ט
TETRACHLOROETHENE	0.00		380.00	U	ט
TOLUENE	0.00		380.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		380.00	υ	ט
TRICHLOROETHENE	0.00		380.00	ט	ט
VINYL CHLORIDE	0.00		380.00	U	U
XYLENES (TOTAL)	0.00		380.00	U	U
	<u> </u>	1	<u> </u>	1	<u> </u>

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1116 SAMPLE TYPE: SAMPLE MATRIX: S ANALYSIS TYPE: VOL SDG: 1076 ASSOCIATED MB: VBLKM2

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	U	บ
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	U
1,1,2-TRICHLOROETHANE	0.00		11.00	U	บัง
1,1-DICHLOROETHANE	0.00		11.00	U	U
1,1-DICHLOROETHENE	0.00		11.00	ט	ט
1,2-DICHLOROETHANE	0.00		11.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	8.00	µg/kg	0.00	J	J
1,2-DICHLOROPROPANE	0.00		11.00	ט	ט
2-BUTANONE	0.00	1	11.00	U	บว
2-HEXANONE	0.00		11.00	ט	ีย
4-METHYL-2-PENTANONE	0.00		11.00	υ	บJ
ACETONE	16.00	μg/kg	0.00		R
BENZENE	0.00	1	11.00	U	ט
BROMODICHLOROMETHANE	0.00		11.00	ט	ט
BROHOPORM	0.00		11.00	ט	U
BROHOMETHANE	0.00	1	11.00	ט	ט
CARBON DISULFIDE	0.00	1	11.00	U	ט
CARBON TETRACHLORIDE	0.00		11.00	ט	Ū
CHLOROBENZENE	0.00		11.00	ט	ប
CHLOROETHANE	0.00		11.00	U	ט
CHLOROFORM	2.00	µg/kg	0.00	J	J
CHLOROMETHANE	0.00		11.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		11.00	ช	ซ
DIBROMOCHLOROMETHANE	0.00		11.00	U	ט
ETHYLBENZENE	17.00	μg/kg	0.00		
METHYLENE CHLORIDE	19.00	µg/kg	0.00		R
STYRENE	0.00		11.00	ט	บ
TETRACHLOROETHENE	0.00		11.00	ט	บ
TOLUENE	0.00		11.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		11.00	ט	υ
TRICHLOROETHENE	0.00		11.00	υ	ט
VINYL CHLORIDE	0.00		11.00	U	ซ
XYLENE (TOTAL)	13.00	µg/kg	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1117 ANALYSIS TYPE: VOL SAMPLE TYPE: SDG: 1076 SAMPLE MATRIX : S

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		12.00	ט	บัง
1,1-DICHLOROETHANE	0.00	1	12.00	ט	ט
1,1-DICHLOROETHENE	0.00		12.00	ū	U
1,2-DICHLOROETHANE	0.00	T	12.00	U	ū
1,2-DICHLOROETHENE (TOTAL)	48.00	µg/kg	0.00		
1,2-DICHLOROPROPANE	0.00		12.00	Ū	U
2-BUTANONE	0.00		12.00	σ	ชม
2-HEXANONE	0.00		12.00	ט	ט
4-METHYL-2-PENTANONE	0.00		12.00	ט	UJ
ACETONE	20.00	µg/kg	0.00		R
Benzene	0.00		12.00	U	U
BROMODICHLOROMETHANE	0.00	1	12.00	U	ט
BROMOFORM	0.00		12.00	ט	ט
BROMOMETEANE	0.00		12.00	U	ט
CARBON DISULFIDE	0.00		12.00	บ	ט
CARBON TETRACHLORIDE	0.00	1	12.00	ט	ט
CHLOROPENZENE	0.00		12.00	υ	ט
CHLOROETHANE	0.00		12.00	ט	Ū
CHLOROFORM	2.00	µg/kg	0.00	J	J
CHLOROMETHANE	0.00		12.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00	1	12.00	υ	ซ
DIBROMOCHLOROMETHANE	0.00		12.00	U	ט
ethylbenzene	12.00	μg/kg	0.00	J	J
METHYLENE CHLORIDE	30.00	μg/kg	0.00		R
STYRENE	0.00		12.00	ט	U
TETRACHLOROETHENE	0.00		12.00	ט	ט
TOLUENE	0.00	1	12.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	12.00	υ	υ
TRICHLOROETHENE	0.00		12.00	ט	ט
VINYL CHLORIDE	0.00	1	12.00	U	ט
XYLENES (TOTAL)	0.00		12.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1118

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1076

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		12.00	ט	υ
1,1,2,2-TETRACHLOROETHANE	0.00		12.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	}	12.00	ט	נס
1,1-DICHLOROETHANE	0.00		12.00	ū	ט
1,1-DICHLOROETHENE	0.00		12.00	ט	ט
1,2-DICHLOROETHANE	0.00	1	12.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	12.00	ū	ט
1,2-DICHLOROPROPANE	0.00		12.00	U	U
2-BUTANONE	9.00	µg/kg	0.00	J	J
2-HEXANONE	0.00		12.00	ט	U
4-METHYL-2-PENTANONE	0.00	T	12.00	ט	บัว
ACETONE	32.00	µg/kg	0.00		R
BENZENE	0.00		12.00	U	ט
BROMODICHLOROMETHANE	0.00		12.00	ט	ū
BROHOPORM	0.00		12.00	ט	U
BROMOMETHANE	0.00		12.00	ט	ט
CARBON DISULFIDE	0.00		12.00	ט	ט
CARBON TETRACHLORIDE	0.00		12.00	U	ט
CHLOROBENZENE	0.00		12.00	U	ט
CHLOROETHANE	0.00	Î	12.00	ט	σ
CHLOROFORM	0.00		12.00	U	ט
CHLOROMETHANE	0.00		12.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00		12.00	ט	U
DIBROHOCHLOROMETHANE	0.00		12.00	ט	U
METHYLENE CHLORIDE	23.00	µg/kg	0.00	.]	R
STYRENE	0.00		12.00	U	ט
TETRACHLOROETHENE	0.00		12.00	U	ט
TOLUENE	0.00		12.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		12.00	ט	บ
TRICHLOROETHENE	0.00		12.00	U	U
VINYL CHLORIDE	0.00		12.00	U	U
XYLENES (TOTAL)	0.00		12.00	บ	U
		İ			

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1119

SAMPLE TYPE :

SAMPLE MATRIX : S

ANALYSIS TYPE : VOL

SDG: 1076

ASSOCIATED MB : VBLKM2

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		11.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		11.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		11.00	ū	ΩJ
1,1-DICHLOROETHANE	0.00		11.00	ប	ט
1,1-DICHLOROETHENE	0.00		11.00	U	ט
1,2-DICHLOROETHANE	0.00		11.00	บ	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		11.00	ט	υ
1,2-DICHLOROPROPANE	0.00		11.00	ט	U
2-BUTAHONE	0.00	T	11.00	U	עס
2-HEXANONE	0.00		11.00	U	U
4-METHYL-2-PENTANONE	0.00		11.00	U	บJ
ACETONE	21.00	µg/kg	0.00		R
BENZENE	0.00	1	11.00	U	ט
BROMODICHLOROMETHANE	0.00	1	11.00	U	U
BROHOFORM	0.00	<u> </u>	11.00	U	ū
BROHOMETHANE	0.00	1	11.00	U	ū
CARBON DISULFIDE	0.00		11.00	a	ט
CARBON TETRACHLORIDE	0.00	1	11.00	U	Ü
CHLOROBENZENE	0.00	1	11.00	ט	B
CHLOROETHANE	0.00	1	11.00	U	ū
CHLOROFORM	1.00	µg/kg	0.00	J	J
CELOROMETHANE	0.00	1	11.00	ט	บป
CIS-1,3-DICELOROPROPENE	0.00	Ţ	11.00	U	U
DIBROMOCHLOROMETHANE	0.00		11.00	ט	U
METHYLENE CHLORIDE	19.00	µg/kg	0.00		R
STYRENE	0.00	—	11.00	U	ט
TETRACHLOROETHENE	0.00	1	11.00	ט	U
TOLUENE	0.00		11.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	11.00	υ	U
TRICHLOROETHENE	0.00		11.00	U	ប
VINYL CHLORIDE	0.00		11.00	ט	บ
XYLENES (TOTAL)	0.00	†	11.00	บ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1120

ANALYSIS TYPE : VOL SDG : 1108

SAMPLE TYPE: TB SAMPLE MATRIX: W
SDG: 1108 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	บ	ū
1,1-DICHLOROETHENE	0.00		10.00	ט	บัง
1,2-DICHLOROETHANE	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	Ū	ט
2-BUTANONE	0.00		10.00	U	ชว
2-HEXANONE	0.00	Î	10.00	ט	บัง
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
ACETONE	0.00		10.00	U	נט
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ū
BRONOFORM	0.00	1	10.00	ט	U
BROMOMETHANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00		10.00	U	บว
CARBON TETRACHLORIDE	0.00		10.00	ប	U
CHLOROBENZENE	0.00	Ì	10.00	ט	υ
CHLOROETHANE	0.00		10.00	U	U
CELOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00	Ì	10.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ETHYLBENZENE	0.00		10.00	ט	ט
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ū
TOLUENE	0.00	1	10.00	Ū	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	UJ
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00	1	10.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1121

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG : 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK : 1120TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinel
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-dichloroethene	0.00		10.00	ŋ	บว
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	Ū	U
2-BUTANONE	0.00		10.00	ס	נט
2-HEXANONE	0.00		10.00	ט	ซฮ
4-METHYL-2-PENTANONE	0.00		10.00	ט	บJ
BENZENZ	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00	1	10.00	U	U
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00		10.00	U	บJ
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CELOROBENZENE	0.00	1	10.00	U	U
CHLOROETHANE	0.00	1	10.00	U	Ü
CHLOROFORM	0.00	1	10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00	_	10.00	ט	U
ethylbenzene	0.00		10.00	U	υ
STYRENE	0.00		10.00	U	ซ
TETRACHLOROETHENE	0.00		10.00	ט	บ
TOLUE.IE	0.00	1	10.00	U	U
Trans-1,3-dichloropropene	0.00		10.00	ט	ซฮ
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	ט	ט
XYLENES (TOTAL)	0.00	1	10.00	υ	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final (REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1500

ANALYSIS TYPE : VOL

SAMPLE TYFL: SAMPLE MAIRIA . ..
SDG : 1500 ASSOCIATED MB: VBLKSH

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	υ	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHANE	0.00		10.00	U	บ
1,1-DICHLOROETHENE	0.00		10.00	U	บว
1,2-DICHLOROETHANE	0.00	T -	10.00	ט	บJ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	บว
2-BUTANONE	0.00		10.00	ט	บว
2-HEXANONE	0.00		10.00	U	ซฮ
4-methyi - 2-pentanone	0.00		.0.00	U	υJ
ACETONE	0.00		10.00	ט	υ
Benzen <i>e</i>	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROMOFORM	0.00		10.00	ט	U
Bromomethane	0.00	1	10.00	ט	Ü
CARBON DISULFIDE	0.00	1	10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	**	U
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	ט	บัง
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	Ū	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	บ
ethylbenzene 	0.00		10.00	U	ט
METHYLENE CHLORIDE	5.00	µg/L	0.00		R
STYRENE	0.00		10.00	ט –	U
TETRACHLOROETHENE	0.00		10.00	U	บ
LOLUENE	0.00		10.00	υ	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	ט	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD Final National Summary

Final Management Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1501

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKSH

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	1	10.00	U	ū
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHENE	0.00		10.00	Ū	UJ
1,2-DICHLOROETHANE	0.00		10.00	U	עט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	Ū	បរ
2-BUTANONE	0.00		10.00	U	บัว
2-HEXANONE	0.00		10.00	U	บง
4-METHYL-2-PENTANONE	0.00		10.00	U	נט
ACETONE	0.00		10.00	ט	ט
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00	1	10.00	U	ט
BROMOFORM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	σ	ט
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00	1	10.00	ס	บง
CHLOROFORM	0.00		10.00	Ū	U
CHLOROMETHANE	0.00		10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROHOCHLOROMETHANE	0.00		10.00	ט	U
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	4.00	µg/L	0.00		R
STYRENE	0.00		10.00	ti	U
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00	T	10.00	υ	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
Trichloroethene	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

Summary

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1502

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKSH

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	מ
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	a	ס
1,1-DICHLOROETHANE	0.00		10.00	ū	ט
1,1-DICHLOROETHENE	0.00		10.00	U	บว
1,2-DICHLOROETHANE	0.00		10.00	ט	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ס	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	บว
2-BUTANONE	0.00		10.00	ט	ชม
2-HEXANONE	0.00		10.00	ט	ชฮ
4-METHYL-2-PENTANONE	0.00		10.00	U	บว
ACETONE	0.00	j	10.00	ט	Ü
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOFORM	0.00	1	10.00	ט	U
BROHOMETHANE	0.00	1	10.00	ט	Ū
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00	1	10.00	U	บว
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	נט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ETHYLBENZENE	0.00	<u> </u>	10.00	U	U
METHYLENE CHLORIDE	4.00	μg/L	0.00		R
STYRENE	0.00		10.00	Ū	U
TETRACHLOROETRENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00	1	10.00	U	ט
VINYL CHLORIDE	0.00	1	10.00	U	U
XYLENES (TOTAL)	0.00		10.00	υ	ט
	1	<u> </u>	10.00	<u> </u>	1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1503

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKSH

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	OFinal
1,1,1-TRICHLOROETHANE	0.00	1	10.00	ū	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	U	ū
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ū
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	a	ชง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	10.00	U	υJ
2-BUTANONE	0.00		10.00	Ū	บง
2-HEXANONE	0.00	1	10.00	U	υJ
4-METHYL-2-PENTANONE	0.00	1	10.00	ט	บว
ACETONE	0.00	1	10.00	ט	ט
BENZENE	18.00	µg/L	0.00	1	
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00	1	10.00	U	U
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00		10.00	U	ט
CARBON TETRACHLORIDE	0.00	1	10.00	U	ט
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	U	บว
CHLOROFORM	0.00		10.00	ซ	ט
CHLOROMETHANE	0.00		10.00	σ	บว
CIS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ETHYLBENZENE	17.00	µg/L	0.00		
METHYLENE CHLORIDE	2.00	µg/L	0.00		R
STYRENE	0.00		10.00	υ	U
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	24.00	µg/L	0.00		
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	υ	U
TRICHLOROETHENE	20.00	µg/L	0.00		
VINYL CHLORIDE	0.00	T	10.00	ט	U
XYLENE (TOTAL)	210.00	µg/L	0.00	1	
					1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1504

SAMPLE TYPE : WR SDG : 1500 SAMPLE MATRIX : W

ASSOCIATED MB : VBLKCR

ANALYSIS TYPE : VOL

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ū
1,1,2,2-TETRACHLOROSTHANS	0.00		10.00	U	ט
1,1,2-TRICELOROETHANE	0.00		10.00	a	a
1,1-DICHLOROETHANE	0.00		10.00	ט	ס
1,1-DICHLOROETHENE	0.00		10.00	υ	ชง
1,2-DICHLOROETHANE	0.00		10.00	U	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	σ
1,2-DICHLOROPROPANE	0.00		10.00	U	ซฮ
2-BUTANONE	0.00		10.00	U	บว
2-HEXANONE	0.00		10.00	U	บัง
4-METHYL-2-PENTANONE	0.00		10.00	ט	υJ
ACETONE	0.00	\top	10.00	U	U
BENZENE	17.00	µg/L	0.00		
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHATE	0.00	1	10.00	บ	υ
BRONOFORM	0.00		10.00	U	U
BROMOMETHANE	0.00		10.00	Ū	U
CARBON DISULFIDE	0.00		10.00	U	ט
CARBON TETRACELORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	σ
CHLOROETHANE	0.00		10.00	ט	บว
CHLOROFORM	0.00		10.00	ט	σ
CHLOROMETHANE	0.00		10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENSENE	12.00	µg/L	0.00		
METHYLENE CHLORIDE	4.00	µg/L	0.00		R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	ט	ช
TOLUENE	21.00):g/L	0.00		
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICHLOROETHENE	14.00	µg/L	0.00	1	
VINYL CHLORIDE	0.00		10.00	U	U
XYLENE (TOTAL)	200.00	µg/L	0.00	1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1506

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLORDSTHANS	0.00		10.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHENE	0.00		10.00	U	บว
1,2-DICHLOROETHANE	0.00	1	10.00	U	ขัว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ū
1,2-DICHLOROPROPANE	0.00	1	10.00	U	บัง
2-BUTANONE	0.00		10.00	U	บัง
2-HEXANONE	0.00		10.00	ט	บJ
4-METHYL-2-PENTANONE	0.00		10.00	U	บJ
ACETONE	0.00		10.00	ש	U
Benzene	0.00	1	10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00	1	10.00	ש	U
Bronomethane	0.00	1	10.00	ū	ט
CARBON DISULFIDE	0.00	1	10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	υ	ט
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	ט	υJ
CHLOROFORM	0.00	1	10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ethylbenzene	0.00		10.00	U	ט
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00	1	10.00	σ	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00	1	10.00	υ	U
VINYL CHLORIDE	0.00	1	10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1507 ANALYSIS TYPE : VOL SAMPLE TYPE : SDG: 1500

SAMPLE MATRIX : W

ASSOCIATED MB : VBLKCR

TRIP BLANK: 1506TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1.1.1-TRICHLOROETHANE	0.00	I *	10.00	ţī	Ū
1,1,2,2-TETRACHLOROETHANE	0.00	i	10.00	ס	σ
1,1,2-TRICHLOROETHANE	0.00		10.00	ū	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	נט
1,2-DICHLOROETHANE	0.00		10.00	ט	บJ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	UJ
2-BUTANONE	0.00	1	10.00	U	บว
2-HEXANONE	0.00	1	10.00	U	บว
4-METHYL-2-PENTANONE	0.00		10.00	U	ชม
ACETONE	0.00		10.00	ט	ט
Benzenb	0.00		10.00	ט	ט
BROHODICHLOROMETHANE	0.00	1	10.00	ט	ט
BROMOFORM	0.00	1	10.00	ט	ט
BROHOMETHANE	0.00	1	10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	U	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	บ	υJ
CHLOROFORM	0.00	Ĭ	10.00	U	ט
CHLOROMETHANE	0.00	T	10.00	ū	ប្ស
CIS-1,3-DICHLOROPROPENE	0.00	T	10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ethylbenzene	0.00		10.00	ט	U
METHYLENE CHLORIDE	3.00	µg/L	0.00		R
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	υ	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	υ	ប
TRICHLOROETHENE	0.00		10.00	บ	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENES (TOTAL)	0.00		10.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1508

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKVO

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ū
1,1-DICHLOROETHANE	0.00		10.00	a	U
1,1-DICHLOROETHENE	0.00		10.00	ū	บว
1,2-DICHLOROETHANE	0.00		10.00	ט	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	Ū
1,2-DICHLOROPROPANE	0.00		10.00	U	ซฮ
2-BUTANONE	0.00		10.00	U	ขว
2-HEXANONE	0.00		10.00	ט	υJ
4-METHYL-2-PENTANONE	0.00	1	10.00	U	UJ
ACETONE	0.00		10.00	U	U
BENZENE	0.00	1	10.00	U	ט
BROMODICHLOROMETHANE	0.00	† ·	10.00	ט	ט
BROHOFORM	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00	1	10.00	ט	Ū
CARBON DISULFIDE	0.00	1	10.00	ט	ט
CARBON TETRACHLORIDE	0.00	1	10.00	Ū	Ū
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	U	บัง
CHLOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00	1	10.00	υ	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	U
ETHYLBENZENE	0.00		10.00	U	U
METHYLENE CHLORIDE	2.00	µg/L	0.00		R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00	1	10.00	ט	ט
TOLUENE	0.00	1	10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLOROSTHENE	0.00	—	10.00	ט	ט
VINYL CELORIDE	0.00	†	10.00	U	U
XYLENES (TOTAL)	0.00	 	10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1509

SDG : 1500

SAMPLE TYPE: SAMPLE MATRIX: W
SDG: 1500 ASSOCIATED MB: VBLKVO

TRIP BLANK : 1512TB

FIELD BLANKS: 1005FB, 1006FB

0.00 0.00 0.00 0.00 0.00		10.00 10.00 10.00	ט ט	บ บ
0.00 0.00 0.00		10.00	ט	
0.00			 	U
0.00		10.00	T	
0.00			ט	ט
		10.00	ט	บัว
 		10.00	ט	บว
0.00		10.00	ט	U
0.00		10.00	ט	บัว
0.00		10.00	ט	נט
0.00		10.00	ט	บัง
0.00		10.00	ט	บัว
0.00		10.00	ט	U
0.00		10.00	ט	U
0.00		10.00	ט	U
0.00		10.00	ט	U
0.00	Ī	10.00	U	ט
0.00		10.00	ū	U
0.00		10.00	ט	U
0.00		10.00	ט	ט
0.00		10.00	ט	บัว
0.00		10.00	U	ט
0.00		10.00	ט	บัง
0.00		10.90	ט	U
0.00		10.00	ט	บ
0.00		10.00	ט	ט
2.00	µg/L	0.00		R
0.00		10.00	ט	ט
0.00		10.00	ט	U
0.00		10.00	ט	U
0.00		10.00	บ	ט
0.00		10.00	U	U
0.00		10.00	U	ט
0.00		10.00	ט	U
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 10.00 0.00 10.00	0.00

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1510 ANALYSIS TYPE: VOL SAMPLE TYPE : SDG : 1500

SAMPLE MATRIX : W

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		00 د .	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	a	ט
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHENE	0.00		10.00	U	บว
1,2-DICHLOROETHANE	0.00		10.00	ט	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	σ
1,2-DICELOROPROPANE	0.00		10.00	ט	ซฮ
2-BUTANONE	0.00		10.00	ט	UJ
2-HEXANONE	0.00		10.00	ซ	บัง
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
ACETONE	0.00		10.00	U	ט
Benz ene	0.00		10.00	ט	Ū
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BRONOFORM	0.00	<u> </u>	10.00	U	ט
BROMOMETHANE	0.00	 	10.00	ט	U
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00	1	10.00	ט	U
CHLOROBENS ENE	0.00		10,00	ט	U
CHLOROETHANE	0.00		10.00	ט	บัง
CHLOROFORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	U	UJ
CIS-1, 3-DICHLOROPROPENE	0.00		10.00	บ	ט
DIBRONOCHLOROMETHANE	0.00		10.00	υ	υ
ETHYLDENZENE	0.00		10.00	ט	ט
METHYLENE CHLORIDE	0.00		10.00	U	U
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00		10.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	U	บ
XYLENES (TOTAL)	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1511 ANALYSIS TYPE: VOL

SAMPLE TYPE: SAMPLE MATRIX: W
SDG: 1500 ASSOCIATED MB: Clean Samp

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	De	nstrument etection imit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ប
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ซ
1,1-DICHLOROETHENE	0.00		10.00	ט	ซ์
1,2-DICHLOROETHANE	0.00		10.00	ט	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	D	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	υJ
2-BUTANONE	0.00		10.00	U	บัง
2-HEXANONE	0.00		10.00	U	บัว
4-METHYL-2-PENTANONE	0.00	T	10.00	U	UJ
ACETONE	0.00		10.00	υ	U
Benzene	0.00		10.00	ט	a
BROMODICHLOROMETHANE	0.00		10.00	Ū	ט
BROHOFORM	0.00		10.00	ט	U
BRONOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00		10.00	บ	ט
CHLOROETHANE	0.00		10.00	ט	บว
CHLOROFORM	0.00		10.00	ט	σ
CHLOROMETHANE	0.00		10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ETHYLBENZENE	0.00		10.00	Ū	U
METHYLENE CHLORIDE	0.00		10.00	ū	ט
STYRENE	0.00		10.00	U	υ
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
Trichloroethenb	0.00	1 1	10.00	ט	U
VINYL CHLORIDE	0.00	1	10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	υ	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1512

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unita	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		10.00	ū	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	U	บัง
1,2-DICHLOROETHANE	0.00		10.00	U	บัง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	σ
1,2-DICHLOROPROPANE	0.00		10.00	U	บว
2-BUTANONE	0.00		10.00	U	บัง
2-HEXANONE	0.00		10.00	ט	บัง
4-METHYL-2-PENTANONE	0.00		10.00	U	บJ
ACETONE	0.00		10.00	υ	U
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROHOFORM	0.00		10.00	U	υ
BRONOMETHANE	0.00		10.00	U	U
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00	1	10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	ช
CHLOROETHANE	0.00		10.00	ט	บว
CHLOROFORM	0.00	1	10.00	ט	ס
CHLOROMETHANE	0.00	1	10.00	U	UJ
CIS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ethylbenzene	0.00	1	10.00	ט	U
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	ū	ט
TOLUENE	0.00		10.00	υ	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICHLOROETHENE	0.00		10.00	U	υ
VINYL CHLORIDE	0.00		10.00	υ	U
XYLENES (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1513

ANALYSIS TYPE : VOL

SAMPLE TYPE : ER SAMPLE MATRIX : W SDG : 1500 ASSOCIATED MB : C ASSOCIATED MB : Clean Samp

TRIP BLANK : 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	©Code	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ם	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ช
1,1-DICHLOROETHENE	0.00		10.00	บ	ชม
1,2-DICHLOROETHANE	0.00		10.00	ט	บJ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00		10.00	U	บูง
2-BUTANONE	0.00		10.00	υ	υJ
2 - HEXANONE	0.00		10.00	σ	บJ
4-METHYL-2-PENTANONE	0.00		10.00	υ	บว
ACETONE	0.00		10.00	U	Ū
Benz ene	0.00		10.00	ט	ט
BROHODICHLOROMETHANE	0.00		10.00	ט	ซ
BROMOFORM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	บ	ט
CHLOROBENZENE	0.00		10.00	ט	υ
CHLOROETHANE	0.00		10.00	ט	UJ
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	ט	ชฮ
CIS-1,3-DICHLOROPROPENE	0.00	· · · · · · ·	10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ט	υ
ETHYLBENZENE	0.00		10.00	U	ט
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00		10.00	ט	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00		10.00	υ	U
XYLENES (TOTAL)	0.00		10.00	ט	ט
				1	

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03, 0/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1514

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKVO

TRIP ELANK: 1512TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	T	10.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	B
1,1-DICHLOROETHANE	0.00	1	10.00	Ū	U
1,1-DICHLOROETHENE	0.00		10.00	ū	บJ
1,2-DICHLOROETHANE	0.00		10.00	Ū	บJ
1,2-DICHLOROPROPANE	0.00		10.00	Ū	บัว
2-BUTANONE	0.00		10.00	υ	UJ
2-HEXANONE	0.00		10.00	ט	บว
4-METHYL-2-PENTANONE	0.00		10.00	U	บว
ACETONE	0.00		10.00	ט	U
BENZENE	0.01		10.00	U	U
BROMODICELOROMETHANE	0.00	i i	10.00	ט	U
BROHOFORM	0.00		10.00	U	U
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00	1	10.00	U	ט
CARBON TETRACHLORIDE	0.00	1	10.00	U	U
CHLOROBENZENE	0.00	 -	10.00	U	U
CHLOROETHANE	0.00		10.00	U	บว
CELOROFORM	0.00	1	10.00	U	σ
Chloromethanb	0.00	1	10.00	U	ซฮ
CIS-1, 3-DICHLOROPROPENE	0.00		10.00	ū	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ប	1
ETHYLBENZENE	0.00		10.00	Ü	ט
METHYLENE CHLORIDE	4.00	µg/L	0.00		R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ū
TOLUENE	0.00		10.00	U	U
TRANS-1, 3-DICHLOROPROPENE	. 0.00		10.0C	υ	U
TRICHLOROETHENE	6.00	µg/L	0.00		
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	υ	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1515

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	บ	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	υ
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1.1-DICHLOROETHENE	0.00		10.00	ט	UJ
1,2-DICHLOROETHANP	0.00		10.00	U	บJ
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	บง
2-BUTANONE	0.00		10.00	U	ซฮ
2-HEXANONE	0.00		10.00	U	บัง
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
BENZENT	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROHOFORM	0.00		10.00	ט	ט
BRONOMETHANE	0.00		10.00	υ	ט
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORI.	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	ט	บJ
CHLOROPORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	ŭ
ETHYLBENZ ENE	0.00		10.00	ט	U
STYRENE	0.00		10.00	ט	ซ
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENES (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1516

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKKE

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETRANE	0.00		10.00	บ	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ū	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	U	מ
1,1-DICHLOROETHANE	0.00	Ĭ	10.00	ū	ū
1,1-DICHLOROETHENE	0.00		10.00	ט	บว
1,2-DICHLOROETHANE	0.00		10.00	Ū	UJ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	บว
2-BUTANONE	0.00	1	10.00	υ	บว
2-HEXANONE	0.00	1	10.00	U	UJ
4-METHYL-2-PENTANONE	0.00]	10.00	U	ชว
ACETONE	0.00		10.00	U	U
BENZENE	0.00	1	10.00	ט	บ
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOPORM	0.00	1	10.00	U	U
BROHOHETHANE	0.00	1	10.00	υ	ט
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00	1	10.00	U	υ
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00	1	10.00	U	ชิงิ
CHLOROFORM	0.00	1	10.00	U	υ
C. OROMETRANE	0.00	1	10.00	บ	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	บ
DIBROMOCHLOROMETHANE	0.00	1	10.00	U	υ
ethylbenzene	0.00		10.00	υ	ט
METHYLENE CHLORIDE	1.00	µg/L	0.00	1	R
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00		10.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLOROETHENE	0.00	1	10.00	U	บ
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1517

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : VBLKKE

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	บ	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	U	σ
1,1-DICHLOROETHANE	0.00		10.00	ū	U
1,1-DICHLOROETHENE	0.00	1	10.00	ט	บJ
1,2-DICHLOROETHANE	0.00	1	10.00	ט	บัง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00	i	10.00	ט	נט
2-BUTANONE	0.00	1	10.00	U	נט
2-HEXANONE	0.00		10.00	ט	ซฮ
4-METHYL-2-PENTANONE	0.00		10.00	U	บัง
ACETONE	0.00		10.00	ט	ט
BENZENE	0.00	1	10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROHOFORM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	U	ט
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00	1	10.00	ט	ט
CHLOROETHANE	0.00	1	10.00	U	ซฮ
CHLOROFORM	0.00	1	10.00	ט	ū
CHLOROMETHANE	0.00		10.00	υ	บร
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	10.00	U	U
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	1.00	μg/L	0.00		R
STYRENE	0.00	T	10.00	ט	υ
TETRACHLOROETHENE	0.00	1	10.00	U	U
TOLUENE	0.00		10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICELOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00	1	10.00	ט	υ
XYLENES (TOTAL)	0.00		10.00	υ	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1518

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1500

ASSOCIATED MB : Clean Sam

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	10.00	ט	σ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	Ū
1,1,2-TRICHLOROETHAME	0.00	1	10.00	U	U
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-dichloroethene	0.00	1	10.00	ט	บง
1,2-DICHLOROETHANE	0.00		10.00	ט	נט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	Ū
1,2-DICHLOROPROPANE	0.00		10.00	v	ชง
2-BUTANONE	0.00		10.00	U	ยว
2-HEXANONE	0.00	1	10.00	ט	ชม
4-meteyl-2-pentanone	0.00	1	10.00	U	บว
ACETONE	0.00		10.00	υ	υ
Benzene	0.00		10.00	U	υ
BROMODICHLOROMETHANE	0.00	1	10.00	ט	U
BROMOFORM	0.00	T^{-}	10.00	U	ט
BROHOMETHANE	0.00	1	10.00	ט	U
CARBON DISULFIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	ט
Chlorobenzene	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	U	บัง
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	ช	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ethylbenzene	0.00		10.00	ט	Ū
METHYLENE CHLORIDE	0.00		10.00	U	U
STYRENE	0.00		10.00	ช	U
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00		10.00	U	ΰ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	g	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENES (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1519

SAMPLE TYPE: SDG: 1500 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	ū	ט
1,1,2-TRICHLOROSTHAMS	0.00	I	10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	Ū	U
1,1-DICHLOROETHENE	0.00		10.00	Ū	บว
1,2-DICHLOROETHANE	0.00		10.00	υ	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	ט	บว
2-BUTANONE	0.00		10.00	U	บว
2-HEXANONE	0.00		10.00	ט	UJ
4-METHYL-2-PENTANONE	0.00		10.00	ט	บัง
ACETONE	0.00		10.00	U	ט
BENZENE	0.00		10.00	U	<u>"</u>
BROMODICHLOROMETHANE	0.00	1	10.00	U	U
BRONOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		19.60	17	U
CHLOROBENZENE	0.00	1	10.00	ט	υ
CHLOROETHANS	0.00		10.00	U	บัง
CHLOROFORM	0.00		10.00	U	Ū
CHLOROMETHANE	0.00		10.00	U	บง
CIS-1, 3-DICHLOROPROPENE	0.00		10.00	บ	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzene	0.00		10.00	U	ט
METHYLENE CHLORIDE	0.00		10.00	U	ט
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	υ	ט
TOLUENE	0.00		10.00	U	υ
Trans-1,3-dichloropropene	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	ט	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00	1	10.00	U	ש

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1520

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1520 ASSOCIATED MB : VBLKWI

TRIP BLANK : 1034TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHAME	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ū	ū
1,1-DICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHENE	0.00		10.00	บ	ט
1,2-DICHLOROETHANE	0.00		10.00	U	ū
1,2-DICHLOROETHENE (TOTAL)	2.00	µg/L	0.00	J	3
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ū
1,2-DICELOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	ט	บว
2-HEXANONE	0.00		10.00	U	ט
4-METHYL-2-PENTANONE	0.00		10.00	ט	U
ACETONE	0.00		10.00	U	υJ
Benzene	2.00	μg/L	0.00	J	J
BROMODICHLOROMETHANE	0.00		10.00	U	ช
BRONOFORM	0.00		10.00	ט	Ü
BROMOMETHANE	0.00		10.00	ט	บว
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	U	บว
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ETHYLBENZENE	4.00	μg/L	0.00	J	J
ethylbenzene	0.00		10.00	ט	ט
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	U	Ü
TOLUENE	7.00	µg/L	0.00	J	J
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00	T	10.00	υ	U
VINYL CHLORIDE	0.00	Ī	10.00	ט	U
XYLENES (TOTAL)	12.00	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1521

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : VBLKWI

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROETHAME	0.00		10.00	σ	ט
1,1-DICHLOROETRANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	ט	บ
1,2-DICHLOROETHANE	0.00	1	10.00	ס	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	ט	บว
2-HEXANONE	0.00		10.00	ט	U
4-METHYL-2-PENTANONE	0.00		10.00	บ	ט
ACETONE	0.00	Ī	10.00	U	บว
Benzene	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00		10.00	ט	U
BROHOHETHANE	0.00		10.00	U	บูว
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	ט	บ
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	Ū	บว
CHLOROFORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
DIBROHOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	6.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	Ū	ט
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	υ	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1522

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : VBLKWI

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETEANE	0.00		10.00	ū	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ū	ט
1,2-DICHLOROETHANE	0.00		10.00	U	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00	T	10.00	ט	ช
1,2-DICHLOROPROPANE	0.00	1	10.00	Ū	U
2-BUTANONE	0.00		10.00	ט	บป
2 - HEXANONE	0.00		10.00	U	U
4-METHYL-2-PENTANONE	0.00		10.00	ט	ט
ACETONE	0.00		10.00	U	บัว
Benzene	0.00		10.00	υ	ט
BROHODICHLOROMETHANE	0.00	1	10.00	ט	ט
BROMOFORM	0.00	1	10.00	ט	U
BROHOHETBANE	0.00	T	10.00	ט	UJ
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00	1	10.00	υ	U
CHLOROBENZENE	0.00	<u> </u>	10.00	ט	U
CHLOROETHANE	0.00	1	10.00	ט	บัว
CHLOROFORM	0.00	1	10.00	ט	ט
CHLOROMETRANE	0.00	1	10.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETRANE	0.00	1	10.00	υ	υ
ethylbenzene	0.00	1	10.00	ט	U
METHYLENE CHLORIDE	4.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00	1	10.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	υ	U
TRICHLOROETHENE	0.00		10.00	บ	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENES (TOTAL)	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1523

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : VBLKWI

TRIP BLANK : 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	<u> </u>	10.00	ט	ט
1,1-DICHLOROETHANE	0.00	1	10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	U	ซ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ū	U
1,2-DICHLOROPROPANE	0.00		10.00	Ū	ט
2-BUTANONE	0.00		10.00	σ	บว
2-HEXANONE	0.00		10.00	U	ט
4-METHYL-2-PENTANONE	0.00		10.00	ט	ט
ACETONE	0.00		10.00	ט	บัง
BENZENE	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROHOFORM	0.00		10.00	ט	υ
BROMOMETHANE	0.00		10.00	ט	บว
CARBON DISULFIDE	0.00		10.00	ū	ט
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00	1	10.00	ט	ט
CHLOROETHANE	0.00		10.00	a	บว
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ethylbenz ene	0.00		10.00	U	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	υ
TRICHLOROETHENE	0.00		10.00	U	υ
VINYL CHLORIDE	0.00		10.00	U	υ
XYLENES (TOTAL)	0.00		10.00	U	U
					1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1524

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : VBLKWI

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROBTHANE	0.00		10.00	ū	ū
1,1-DICHLOROETHANE	0.00		10.00	ū	ū
1,1-DICHLOROETHENE	0.00		10.00	ט	Ū
1,2-DICHLOROETHANE	0.00		10.00	ט	ū
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	ט	U
2-BUTANONE	0.00	1	10.00	ט	บว
2-HEXANONE	0.00		10.00	ט	U
4-METHYL-2-PENTANONE	0.00		10.00	ט	ט
ACETONE	0.00		10.00	U	บว
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	υ	υ
BROMOFORM	0.00		10.00	υ	υ
BROHOMETHANE	0.00	 	10.00	U	บว
CARBON DISULFIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	บ
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	U	บัง
CHLOROFORM	0.00		10.00	ט	υ
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	Ü	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	U
ethylbenzene	0.00		10.00	U	ט
METHYLENE CELORIDE	20.00	µg/L	0.00	1	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	ט	ט
Trans-1,3-dichloropropene	0.00		10.00	U	υ
TRICHLOROETHENE	0.00		10.00	υ	บ
VINYL CHLORIDE	0.07		10.00	υ	U
XYLENES (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1525

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : VBLKWI

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
0.00		10.00	U	บ
0.00		10.00	ט	ט
0.00		10.00	σ	Ū
0.00	1	10.00	ט	ט
0.00		10.00	ט	U
0.00		10.00	Ū	ט
0.00		10.00	ט	ט
0.00		10.00	U	U
0.00	I -	10.00	ט	บว
0.00		10.00	ū	ט
0.00		10.00	ט	U
0.00		10.00	ט	บัง
0.00]	10.00	ט	υ
0.00		10.00	U	ט
0.00		10.00	ש	U
0.00		10.00	U	บว
0.00		10.00	ט	U
0.00		10.00	U	U
0.00		10.00	ט	U
0.00		10.00	ט	ชิงิ
0.00		10.00	ט	ט
0.00		10.00	U	บJ
0.00		10.00	U	ט
0.00		10.00	ū	ט
0.00		10.00	U	ט
6.00	μg/L	0.00	J	R
0.00		10.00	a	ט
0.00		10.00	ט	U
0.00		10.00	U	ט
0.00		10.00	ט	U
0.00		10.00	υ	U
0.00		10.00	U	U
0.00		10.00	υ	ט
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Detection Limit	Detection Limit

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1526

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBL

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHANE	. 0.00		10.00	Ū	ט
1,1,2-TRICHLOROETHAME	0.00		10.00	U	Ū
1,1-DICHLOROETHANE	0.00		10.00	U	ū
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHAME	0.00		10.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	D	ט
2-BUTANONE	0.00		10.00	ט	ซฮ
2-HEXANONE	0.00	1	10.00	U	ט
4-METHYL-2-PENTANONE	0.00	1	10.00	U	ט
ACETONE	0.00	1	10.00	ט	บัง
BENZENE	1.00	µg/L	0.00	J	J
BROMODICHLOROMETHANE	0.00	1	10.00	U	ט
BROHOFORM	0.00	1	10.00	U	ט
BROMOMETHANE	0.00	†	10.00	ט	บัง
CARBON DISULFIDE	0.00	†	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00	1	10.00	U	บว
CHLOROFORM	0.00		10.00	Ū	U
CHLOROMETHANE	0.00	1	10.00	ט	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENZENE	0.00		10.00	U	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00	1	10.00	U	U
TETRACHLOROETHENE	0.00	1	10.00	U	U
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00	1	10.00	υ	ט
VINYL CHLORIDE	0.00	1	10.00	U	บ
XYLENES (TOTAL)	0.00	1	10.00	บ	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1527

SAMPLE TYPE : WR

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1059TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	U
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	ū	ซิงิ
2-HEXANONE	0.00		10.00	U	U
4-METHYL-2-PENTANONE	0.00	1	10.00	U	ט
ACETONE	U.00		10.00	U	UJ
BENZENE	1.00	µg/L	0.00	J	J
BRONODICHLOROMETHANE	0.00	1	10.00	ט	ט
BRONOPORM	0.00	1	10.00	ซ	ט
BROHOHETHANE	0.00		10.00	U	บัง
CARBON DISULFIDE	0.00		10.00	U	υ
CARBON TETRACHLORIDE	0.00	1	10.00	ט	U
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00	1	10.00	U	บJ
CHLOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00		10.00	บ	บัง
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	υ	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENZENE	0.00		10.00	ט	ט
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00	1	10.00	U	U
TETRACHLOROETHENE	0.00	1	10.00	U	υ
TOLUENE	0.00	1	10.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	10.00	U	υ
TRICHLOROETHENE	0.00	1	10.00	U	บ
VINYL CHLORIDE	0.00	1	10.00	ט	U
XYLENES (TOTAL)	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1528

SAMPLE TYPE : TB

SDG: 1520

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

ASSOCIATED MB : HAZWRAPBL

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROSTHAMS	0.00		10.00	U	ū
1,1-DICHLOROETHANE	0.00	1	10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	U
2-BUTANONE	0.00		10.00	ט	ชง
2-HEXANONE	0.00	1	10.00	U	U
4-METHYL-2-PENTANONE	0.00		10.00	ט	U
ACETONE	0.00	1	10.00	U	עט
Benz ene	0.00		10.00	U	ט
BRONODICHLOROMETHANE	0.00	Ì	10.00	υ	บ
BROHOFORM	0.00		10.00	ū	ט
BROMOMETRANE	0.00	1	10.00	U	บัง
CARBON DISULFIDE	0.00		10.00	U	ט
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	ช	ט
CHLOROETHANE	0.00	Ī	10.00	U	ซฮ
CHLOROFORM	0.00	1	10.00	ט	U
CHLOROMETHANE	0.00		10.00	บ	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ethylbenzene	0.00		10.00	ט	ט
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
TRICHLOROETHENE	0.00	1	10.60	U	U
VINYL CHLORIDE	0.00	1	10.00	ט	ט
XYLENES (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1529 ANALYSIS TYPE : VOL

SDG: 1108

SAMPLE TYPE: SAMPLE MATRIX: W
SDG: 1108 ASSOCIATED MB: HAZWRAPBLK

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ū	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ū
1,1-DICHLOROETHANE	0.00	1	10.00	ט	ט
1,1-DICHLOROETHENE	0.00	İ	10.00	ט	บJ
1,2-DICHLOROETHANE	0.00		10.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	บ	ט
1,2-DICHLOROPROPANE	0.00	1	10.00	ט	U
2-BUTANONE	0.00		10.00	υ	บJ
2-HEXANONE	0.00		10.00	ט	บัง
4-METHYL-2-PENTANONE	0.00		10.00	U	ชฮ
ACETONE	0.00		10.00	ט	עט
BENZENE	0.00		10.00	ט	U
BROHODICELOPOMETHANE	0.00		10.00	ט	ט
BROMOFCRM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00	1	10.00	U	ซฮ
CARBON TETRACHLORIDE	0.00	1	10.00	U	U
CHLOROBENZENE	0.00	1	10.00	U	ט
CHLOROETHANE	0.00	†	10.00	U	ט
CHLOROFORM	0.00	1	10.00	U	ט
CHLOROMETHANE	0.00	1	10.00	ט	n
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ethylbenzene	0.00		10.00	Ū	U
METHYLENE CHLORIF"	1.00	µg/L	0.00	BJ	R
STYRENE	0.00		10.00	Ū	ט
TTRACHLOROETHENE	0.00		10.00	ט	U
Toluene	0.00		10.00	ט	υ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	דט
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00	i	10.00	υ	U
XYLENES (TOTAL)	0.00	1	10.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1530

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBLI

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ū	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	σ	U
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ס
2-BUTANONE	0.00	1	10.00	U	บัว
2-HEXANONE	0.00		10.00	U	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	U
ACETONE	0.00		10.00	U	บัง
BENZENE	0.00	1	10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROHOFORM	0.00		10.00	บ	ט
BROHOMETHANE	0.00		10.00	ט	ซฮ
CARBON DISULFIDE	0.00	1	10.00	U	ช
CARBON TETRACHLORIDE	0.00	1	10.00	บ	ט
CHLOROBENZENE	0.00	1	10.00	U	U
CHLOROETHANE	0.00		10.00	U	ซฮ
CHLOROFORM	0.00	1	10.00	U	Ū
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	υ
DIBROMOCHLOROMETHANE	0.00	1	10.00	ט	U
ETHYLBENZENE	0.00	1	10.00	ט	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00	T	10.00	ט	U
TETRACHLOROETHENE	0.00	1	10.00	ט	U
TOLUENE	0.00		10.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	10.00	U	ט
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1531

SAMPLE TYPE : WR

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	10.00	υ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	U
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00	Ī	10.00	U	U
1,2-DICHLOROETHANE	0.00		10.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	ט	ชว
2-HEXANONE	0.00		10.00	ט	U
4-METHYL-2-PENTANONE	0.00	1	10.00	U	U
ACETONE	0.00		10.00	υ	UJ
Benzene	0.00	1	10.00	ט	U
BROMODICHLOROMETHANE	0.00	†	10.00	υ	ט
BROMOFORM	0.00	1	10.00	U	ט
BROMOMETHANE	0.00	1	10.00	ט	บัง
CARBON DISULFIDE	0.00	1	10.00	υ	ט
CARBON TETRACHLORIDE	0.00	1	10.00	ט	บ
CHLOROBENZENE	0.00	1	10.00	U	ט
CHLOROETHANE	0.00	1	10.00	U	บัง
CHLOROFORM	0.00	1	10.00	ט	ט
CHLOROMETHANE	0.00	Ì	10.00	ט	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	บ	U
DIBROMOCHLOROMETHANE	0.00	1	10.00	ט	U
ethylbenzene	0.00	1	10.00	U	ט
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	υ
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	U	υ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
TRICHLOROETHENE	0.00	1	10.00	υ	U
VINYL CELORIDE	0.00		10.00	ט	υ
XYLENES (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

Summary

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

DATE:03/30/94

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1532

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBLE

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	ŀ	10.00	ט	ū
1,1,2,2-TETRACHLOROETHANE	0.00	ł	10.00	ט	ū
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	υ	ט
1,1-DICHLOROETHENE	0.00	1	10.00	ט	a
1,2-DICHLOROETHANE	0.00		10.00	σ	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00		10.00	υ	U
2-BUTANONE	0.00		10.00	Ū	עט
2-HEXANONE	0.00		10.00	U	ט
4-METHYL-2-PENTANONE	0.00		10.00	ט	ט
ACETONE	0.00		10.00	U	บัง
Benzene	0.00	1	10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROHOFORM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	υ	ชฮ
CARBON DISULFIDE	0.00		10.00	ט	Ū
CARBON TETRACHLORIDE	0.00		10.00	ט	บ
CHLOROBENZENE	0.00		10.00	ט	บ
CHLOROETHANE	0.00		10.00	ū	บว
CHLOROFORM	0.00		10.00	υ	ט
CHLOROMETHANE	0.00		10.00	ט	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROHOCHLOROMETHANE	0.00		10.00	ט	ט
ethylbenzene	0.00		10.00	ט	ט
METHYLENE CHLORIDE	1.00	μg/L	0.00	J	R
STYRENE	0.00		10.00	ซ	ט
TETRACHLOROETHENE	0.00	I	10.00	ט	ט
TOLUENE	2.00	µg/L	0.00	J	J
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	υ	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	υ	ט
XYLENES (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1533

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ū	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	σ
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ū	ช
1,2-DICHLOROETHANE	0.00		10.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	υ	ū
1,2-DICHLOROPROPANE	0.00	1	10.00	ט	ū
2-BUTANONE	0.00		10.00	U	UJ
2-HEXANONE	0.00		10.00	σ	U
4-METHYL-2-PENTANONE	0.00		10.00	ט	υ
ACETONB	0.00	1	10.00	ט	บว
BENZENE	0.00		10.00	U	ช
BROMODICHLOROMETHANE	0.00		10.00	υ	ט
BROMOFORM	0.00	T	10.00	ט	U
BROHOMETHANE	0.00		10.00	ט	บว
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	บ	ט
CHLOROETHANE	0.00		10.00	ט	บว
CHLOROFORM	2.00	µg/L	0.00	J	J
CHLOROMETHANE	0.00		10.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	บ
ethylbenzene	0.00		10.00	ט	ט
METHYLENE CHLORIDE	3.00	μg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	U	υ
TOLUENE	1.00	μg/L	0.00	J	J
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	U
TRICHLOROETHENE	0.00		10.00	ט	U
VINYL CHLORIDE	0.00		10.00	ט	บ
XYLENES (TOTAL)	0.00		10.00	υ	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1534

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBL

TRIP BLANK : 1088TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	Ĭ	10.00	ט	ŭ
1,1,2,2-TETRACELOROETHANE	0.00		10.00	σ	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ū	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00	T	10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	ū
2-BUTANONE	0.00	1	10.00	ט	บัว
2-HEXANONE	0.00		10.00	ט	ט
4-METHYL-2-PENTANONE	0.00		10.00	ט	ט
ACETONE	0.00		10.00	ט	บง
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00	Ì	10.00	ט	U
BROMOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00		10.00	U	บว
CARBON DISULFIDE	0.00	1	10.00	ט	U
CARBON TETRACHLORIDE	0.00	†	10.00	U	U
CHLOROBENZENE	0.00	1	10.00	U	Ū
CHLOROETHANE	0.00	1	10.00	ט	บว
CHLOROFORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	Ū	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	υ	U
DIBROHOCHLOROHETHANE	0.00	1	10.00	7,	ט
ETHYLBENZENE	0.00	1	10.00	7 —	ט
METHYLENE CHLORIDE	2.00	μg/L	0.00] 3	R
STYRENE	0.00	1	10.00	ט	U
TETRACELOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	υ	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	υ	ט
VINYL CHLORIDE	0.00	T^{-}	10.00	ט	ט
XYLENES (TOTAL)	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final ENDES Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1535

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	ū
1,1,2,2-TETRACHLOROETHAME	0.00		10.00	D	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	ū
1,2-DICHLOROETHANE	0.00		10.00	ט	U
1,2-DICHLOROSTHENE (TOTAL)	2.00	μg/L	0.00	3	J
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	ש	ชง
2-HEXANONE	0.00		10.00	U	υ
4-METHYL-2-PENTANONE	0.00		10.00	ט	ט
ACETONE	0.00		10.00	U	บJ
BENZENE	0.00	T	21.00	ט	ט
BENZENE	21.00	µg/L	0.00		
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOFORM	0.00		10.00	ט	ט
BROMOMETHANE	0.00		10.00	ט	บัง
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00	1	10.00	ט	υ
CHLOROBENZENE	0.00	1	10.00	ט	ט
CHLOROETHANE	0.00		10.00	ט	ซฮ
CHLOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00		10.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ū	ט
ethylbenzene	0.00		10.00	ט	ט
ETHYLBENZENE	4.00	µg/L	0.00	J	R
METHYLENE CHLORIDE	6.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	U
TETRACHLOROETHENE	0.00		10.00	บ	υ
TOLUENE	6.00	μg/L	0.00	J	J
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	υ
TRICHLOROETHENE	1.00	µg/L	0.00	J	J
VINYL CHLORIDE	0.00		10.00	υ	ט
XYLENE (TOTAL)	63.00	µg/L	0.00		

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1536

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1520

ASSOCIATED MB : HAZWRAPBL

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	71
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ū
1,1,2-TRICHLOROETHANE	0.00	T	10.00	U	מ
1,1-DICHLOROETHANE	0.00		10.00	a	U
1,1-DICHLOROETHENE	0.00		10.00	ប	U
1,2-DICHLOROETHANE	0.00	T	10.00	U	ŭ
1,2-DICHLOROETHANE	5.00	µg/L	0.00	J	3
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	บ	ū
1,2-DICELOROPROPANE	0.00		10.00	U	ŭ
2-BUTANONE	0.00		10.00	U	บJ
2-HEXANONE	0.00		10.00	Ū	ŭ
4-METHYL-2-PENTANONE	0.00		10.00	U	U
ACETONE	0.00		10.00	U	ซฮ
Benzene	0.00	T T	10.00	ט	U
BROMODICHLOROMETHANE	0.00	1	10.00	U	U
Bronoform	0.00	1	10.00	U	ט
Bronometeane	0.00		10.00	U	บJ
CARBON DISULFIDE	0.00		10.00	ช	ט
CARBON TETRACHLORIDE	0.00		10.00	υ	U
Chlorobenzene	0.00		10.00	ט	ס
CHLOROETHANE	0.00		10.00	υ	บัง
CHLOROFORM	0.00		10.00	ប	ט
CHLOROMETHANE	0.00		10.00	U	υJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	Ū
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ethylbenzene	0.00	T	10.00	ט	ט
METHYLENE CHLORIDE	2.00	μg/L	0.00	3	R
STYRENE	0.00		10.00	ช	ט
TETRACHLOROETHENE	0.00	T	10.00	ט	ט
TOLUENE	0.00	1	10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	บ	υ
TRICHLOROETHENE	0.00		10.00	ט	ט
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	U	υ

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE: 03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1537

SAMPLE TYPE : SDG : 1520

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		170.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00	7	170.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		170.00	ū	ū
1,1-DICHLOROETHANE	0.00		170.00	U	U
1,1-DICHLOROETHENE	0.00		170.00	ซ	υ
1,2-DICHLOROETHANE	0.00		170.00	ŭ	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		170.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		170.00	U	บ
2-BUTANONB	0.00		170.00	ū	ชิง
2-HEXANONE	0.00		170.00	U	บ
4-METHYL-2-PENTANONE	0.00		170.00	U	U
ACETONE	0.00		170.00	U	บัง
BENZENE	2300.00	μg/Ľ	0.00		
BROMODICHLOROMETHANE	0.00		170.00	U	ט
BROMOFORM	0.00	1	170.00	U	ט
Bronohethane	0.00	1	170.00	U	ซฮ
CARBON DISULFIDE	0.00	1	170.00	U	ซ
CARBON TETRACHLORIDE	0.00	1	170.00	U	U
CHLOROBENZENE	0.00	1	170.00	ט	บ
CHLOROETHANE	0.00		170.00	U	บJ
CHLOROFORM	0.00		170.00	Ū	U
CHLOROMETHANE	0.00		170.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		170.00	ប	U
DIBROMOCHLOROMETHANE	0.00		170.00	บ	U
ETHYLBENZENE	0.00		480.00	U	U
BTHYLBENZENE	480.00	µg/L	0.00		
METHYLENE CHLORIDE	76.00	µg/L	0.00	J	J
styren*	3.00	1	170.00	U	ט
TETRACHLOROETHENE	0.00		170.00	ט	U
TOLUENE	0.00		170.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00	1	170.00	U	ט
TRICHLOROETHENE	0.00	1	170.00	U	υ
VINYL CHLORIDE	0.00	ļ	170.00	U	ט
XYLENE (TOTAL)	1400.00	µg/L	0.00		-
XYLENES (TOTAL)	0.00	1	1400.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

NATIONAL GUARD DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1538

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection- Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	}	10.00	ט	מ
1,1,2,2-TETRACHLOROETHAME	0.00		10.00	ū	ט
1,1,2-TRICHLOROETHANE	0.00	T	10.00	Ū	ם
1,1-DICHLOROETHANE	0.00		10.00	U	D
1,1-DICHLOROETHENE	0.00	1	10.00	ט	נט
1,2-DICHLOROETHANE	0.00	1	10.00	U	U
1,2-DICELOROPROPANE	0.00		10.00	ס	۵
2-BUTANONE	0.00		10.00	Ū	ប្រ
2-HEXANORE	0.00		10.00	U	ชิงิ
4-METEYL-2-PENTANONE	0.00		10.00	ט	ชฮ
ACETONE	0.00		10.00	ט	บว
Benzene	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROHOFORM	0.00		10.00	U	U
BROHONETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	บว
CARBON TETRACHLORIDE	0.00		10.00	บ	U
CHLOROBENZENE	0.00		10.00	Ū	U
CHLOROETHANE	0.00	T	10.00	ט	ט
CHLOROFORM	0.00		10.00	מ	U
CHLOROMETHANE	0.00		10.00	ט	σ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
eteylbenzene	0.00		10.00	ט	U
STYRENE	0.00		10.00	v	U
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	บัว
TRICHLOROETHENE	· 0.00		10.00	ט	ט
VINYL CHLORIDE	0.00		10.00	ט	ט
XYLENES (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1539

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : HAZWRAPBLK

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00	Ĭ	10.00	ט	U
1,1,2-TRICHLOROSTHANS	0.00		10.00	ם	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ช	บJ
1,2-DICHLOROETHANE	0.00		10.00	ט	מ
1,2-DICHLOROSTHENS (1 TAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ס	Ū
2-BUTANONE	0.00		10.00	ט	UJ
2-HEXANONE	0.00		10.00	ט	ชิงิ
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
ACETONE	0.00		10.00	ט	บJ
Benzene	0.00		10.00	ט	ซ
BROMODICHLOROMETHANE	0.00		10.00	ū	ט
Bronoform	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00		10.00	υ	ū
CARBON DISULFIDE	0.00		10.00	ט	บบ
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	ט	, o
CHLOROFORM	0.00	1	10.00	ט	U
CHLOROMETHANE	0.00		10.00	ַט	บ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ETHYLBENZENE	0.00		10.00	ט	ט
METHYLENE CHLORIDE	2.00	µg/L	0.00	BJ	R
STYRENE	0.00		10.00	ט	บ
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	2.00	μg/L	0.00	J	J
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	UJ
TRICHLOROETHENE	0.00		10.00	บ	U
VINYL CHLORIDE	0.00		10.00	บ	ט
XYLENES (TOTAL)	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000 DATE:03/30/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1540

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

ASSOCIATED MB : HAZWRAPBL

TRIP BLANK: 1111TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ช
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	υ
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ס	U
1,1-DICHLOROETHENE	0.00		10.00	ū	บว
1,2-DICHLOROETHANE	0.00		10.00	ū	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	U
2-BUTANONE	0.00		10.00	U	נס
2-HEXANONE	0.00		10.00	U	บง
4-METHYL-2-PENTANONE	0.00		10.00	U	ชม
ACETONE	0.00		10.00	U	บว
Benzene	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00	Ì	10.00	ט	ט
Bronoform	0.00		10.00	ט	ט
Bronomethane	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	บร
CARBON TETRACHLORIDE	0.00		10.00	U	U
Chlorobenzene	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	U	ט
CHLOROFORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00		10.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBRONOCHLOROMETHANE	0.00		10.00	ט	ט
ethylbenzene	0.00		10.00	ט	ט
METHYLENE CHLORIDE	3.00	µg/L	0.00	BJ	R
STYRENE	0.00		10.00	ט	מ
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	2.00	μg/L	0.00	J	J
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	บง
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	υ	υ
XYLENES (TOTAL)	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1541

SAMPLE TYPE :

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : VBLKCZ

TRIP BLANK: 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		50.00	บ	υ
1,1,2,2-TETRACHLOROETHANE	0.00		50.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		50.00	ט	ט
1,1-DICHLOROETHANE	0.00		50.00	ט	U
1,1-DICHLOROETHENE	0.00		50.00	ט	บJ
1,2-DICHLOROETHANE	0.00		50.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		50.00	ט	ט
2-BUTANONE	0.00	l	50.00	ט	UJ
2-HEXANONE	0.00		50.00	Ū	บัง
4-methyl-2-pentanone	0.00		50.00	ט	บัง
ACETONE	0.00	l	50.00	ט	บJ
Benzene	620.00	µg/L	0.00		
BROMODICHLOROMETHANE	0.00		50.00	U	U
Bromoform	0.00		50.00	U	ט
BROMOMETHANE	0.00		50.00	ט	ט
CARBON DISULFIDE	0.00		50.00	Ū	บJ
CARBON TETRACHLORIDE	0.00		50.00	บ	ט
CHLOROBENZENE	0.00		50.00	ט	U
CHLOROETHANE	0.00		50.00	ט	U
CELOROFORM	0.00		50.00	U	ט
CHLOROMETHANE	0.00		50.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00		50.00	υ	U
DIBROMOCHLOROMETHANE	0.00		50.00	U	υ
ETHYLBENZENE	0.00		50.00	ט	ט
METHYLENE CHLORIDE	6.00	µg/L	(.00	ВЈ	R
STYRENE	0.00		50.00	ט	ט
TETRACHLOROETHENE	0.00		50.00	ט	ט
TOLUENE	7.00	μg/L	0.00	J	J
TRANS-1,3-DICHLOROPROPENE	0.00		50.00	U	บJ
TRICHLOROETHENE	0.00	1	50.00	U	υ
VINYL CHLORIDE	0.00		50.00	ט	U
XYLENE (TOTAL)	92.00	μg/L	0.00	1	
		t	t		1

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1542

SAMPLE TYPE :

SAMPLE MATRIX : V

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : HAZWRAPBL

TRIP BLANK: 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	U
1,1,2,2-TETRACHLOROSTHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROSTHAMS	0.00		10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	บ	ט
1,1-DICHLOROETHENE	0.00		10.00	U	IJ
1,2-DICHLOROETHANE	0.00		10.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ū	Ū
1,2-DICHLOROPROPANE	0.00		10.00	ט	U
2-BUTANONE	0.00	1	10.00	ט	บว
2-HEXANONE	0.00		10.00	U	נט
4-METHYL-2-PENTANONE	0.00		10.00	ט	נט
ACETONE	58.00	µg/L	0.00	В	R
Benzene	8.00	µg/L	0.00	J	J
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROHOFORM	0.00	1	10.00	υ	ט
BROHOHETBANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00		10.00	ט	บว
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00	1	10.00	U	บ
CHLOROETHANE	0.00	1	10.00	ט	ט
CHLOROFORM	1.00	µg/L	0.00	J	J
CHLOROMETHANE	0.00	1	10.00	ט	ט
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
DIBROHOCHLOROMETHANE	0.00		10.00	U	U
ETHYLBENZENE	0.00	1	10.00	ט	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	BJ	R
STYRENE	0.00		10.00	ט	U
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00		10.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	UJ
TRICHLOROETHENE	0.00		10.00	ט	ט
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAFPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1543

SAMPLE TYPE : ER

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB Clean Samp

TRIP BLANK: 1544TB

FIELD PLANKS: 1005FB, 1005FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TF.TRACHLOROETHANE	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DTCHLOROETHANE	0.00		10.00	Ū	υ
1,1-DICHLOROETHENB	0.00		10.00	ט	บูว
1,2-DICHLOROETHANE	0.00		10.00	ט	บ
1,2-DICHLOROPROPANE	0.00		10.00	ū	ט
2-BUTANONE	0.00		10.00	ט	บว
2-HEYANONE	0.00		10.00	ט	ซฮ
4-METHYL-2-PENTANONE	0.00	1	10.00	ū	บJ
ACETONE	0.00		10.00	U	บJ
BENZENE	0.00	T	10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00		10.00	ט	บJ
CARBON TETRACELORIDE	0.00		10.00	ט	ש
CHLOROBENZENB	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	ט	ט
CHLOROFORM	0.00	i	10.00	ט	ט
CHLOROMETHANE	0.00		10.00	ซ	ט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		10.60	T7	U
ETHYLBENZENE	0.00		10.00	U	ט
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00	1	10.00	U	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	บ	บว
TRICHLOROETHENE	0.00	İ	10.00	U	υ
VINYL CHLORIDE	0.00		10.00	U	υ
XYLENES (TOTAL)	0.00		10.00	υ	ט

PROJECT: NEVADA AIR NATIONAL GUARD

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1000

DATE:03/30/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1544

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1544

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1108

ASSOCIATED MB : Clean Sam

TRIP BLANK : 1544TB

FIELD BLANKS: 1005FB, 1006FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ū	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	υ	ט
1,1-DICHLOROETHENE	0.00	1	10.00	ט	UJ
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ט	U
1,2-DICHLOROPROPANE	0.00	1	10.00	ט	ט
2-BUTANONE	0.00		10.00	U	ชม
2-HEXANONE	0.00		10.00	ט	บว
4-METHYL-2-PENTANONE	0.00		10.00	ט	ซฮ
ACETONE	0.00		10.00	ט	บม
BENZENE	0.00		10.00	Ü	U
BROMODICHLOROMETHANE	0.00		10.00	υ	υ
BROMOFORM	0.00		10.00	ט	U
BROHOMETHANE	0.00	1	10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	บว
CARBON TETRACHLORIDE	0.00		10.00	บ	U
CHLOROBENZENE	0.00		10.00	ซ	ט
CHLOROETHANE	0.00		10.00	ט	ט
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	υ	ט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		10.00	υ	ט
ETHYLBENZENE	0.00		10.00	ט	ט
STYRENE	0.00		10.00	บ	ט
TETRACHLOROETHENE	0.00		10.00	ט	ช
Toluene	0.00	1	10.00	U	σ
TRANS-1, 3-DICHLOROPROPENE	. 0.00		10.00	ט	UJ
TRICHLOROETHENE	0.00		10.00	ט	ט
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	0.00	1	10.00	ט	U

04/05/	94				NEVA	DA ANG	FIELD SAMP	LES			PAG	Æ: 1
FIELD#	SAMPLE-ID	TIME	TEMP	рH	COND	PID	WTR-LVL	LABNOTES	REQ	CONTAINERS	FLT	PRSRV
1545	TB000D1-030393-001 SITE: EXAC: COMM:TRIP BLANK	0715	0.0	0.00	0	0.00	0.00		VOL	3-40ml	NO	HCL
1546	MM002GW-030393-001 SITE:BASEWIDE EXAC: COMM:	1010	14.7	7.18	1760	0.50	4.87		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNQ3 HCL NO HCL
1547	MW001GW-030393-001 SITE:BASEWIDE EXAC: COMM:LOW PRODUCING			0.90	0	0.60	8.66		PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml	NO .45 NO	NO HNO3 HCL NO
	COMITON PRODUCING	 ,	FANANC		OCLD NO.	DL CIIL	DACO.			3-40ml	NO	HCL
1548	FB00001-030393-001 SITE: EXAC: COMM:FIELD BLANK de			0.00	0	0.00	0.00		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO NO NO NO	NO HNO3 HCL NO HCL
1549	MW004GW-030393-001 SITE:SITE 4 EXAC: COMM:	1355	13.6	7.22	1980	0.40	6.80		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1550	MW003GW-030393-001 SITE:SITE 4 EXAC: COMM:	1425	11.7	7.29	2340	0.50	6.88		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1551	MW005GW-030393-001 SITE:SITE 4 EXAC: COMM:	1555	11.5	7.33	1600	0.60	5.64		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
1552	MW005WR-030393-002 SITE:SITE 4 EXAC: COMM:WATER REPLICAT		11.5	7.33	1600	0.60	5.64		PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1553	TB000DI-030493-002 SITE: EXAC: COMM:TRIP BLANK	0810	0.0	0.00	0	0.00	0.00		VOL	3-40ml	NO	HCL
1554	MW018GW-030493-001 SITE:SITE 14 EXAC: COMM:	0850	14.0	6.88	980	92.00	7.07		PHC PHC	2-1000ml 3-40ml 1-1000ml 3-40ml	NO NO NO	NO HCL NO
1555	MW015GW-030493-001 SITE:SITE 14 EXAC: COMM:	0910	15.4	6.46	1070	0.50	7.30		PHC PHC	2-1000ml 3-40ml 1-1000ml 3-40ml	NO NO NO	NO HCL NO HCL
1556	FB000DI-030493-001 SITE: FXAC:DECON WATER SO COMM:FIELD BLANK W	URCE		0.00	0	0.00	0.00		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO NO NO NO	NO HNO3 HCL NO HCL

04/05/	94				NEVAL	A ANG F	IELD SAMP	PLES			PAG	E: 2
FIELD#	SAMPLE-ID	TIME	TEMP	рH	COND	PID (VTR-LVL	LABNOTES	REQ	CONTAINERS	FLT	PRSRV
1557	MW012GW-030493-001 SITE:SITE 13 EXAC: COMM:	1020	15.5	6.54	600	0.70	6.89		MET PHC PHC	2-1000ml 1-1000ml 1-1000ml 3-40ml 3-40ml	NO .45 NO NO NO	NO HNO3 NO HCL HCL
1558	EROO1RI-030493-001 SITE: EXAC: COMM:EQUIP. RINSATE	1045	0.0	0.00	0	0.00	0.00		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO NO NO NO	NO HNO3 HCL NO HCL
1559	MW014GW-030493-001 SITE:SITE 13 EXAC: COMM:	1110	15.1	7.04	980	0.60	6.53		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1560	MW013GW-030493-001 SITE:SITE 13 EXAC: COMM:	1430	15.8	6.74	610	0.60	6.74		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1561	SD005SO-030493-001 SITE:BASEWIDE EXAC: COMM:Low & High Boil			0.00	0	0.00	0.00		PHC	1-500ml	NO	NO
1562	SD008SO-030493-001 SITE:BASEWIDE EXAC: COMM:Low & High Boil		0.0	0.00	0	0.00	0.00		PHC	1-500ml	NO	NO
1563	SD006SO-030493-001 SITE:BASEWIDE EXAC: COMM:Low & High Boil			0.00	0	0.00	0.00		PHC	1-500ml	NO	NO
1564	SD007SO-030493-001 SITE:BASEWIDE EXAC: COMM:Low & High Boil			0.00	0	0.00	0.00		PHC	1-500ml	NO	NO
1565	TB000DI-030593-003 SITE: EXAC: COMM:TRIP BLANK	0720	0.0	0.00	0	0.00	0.00		VOL	3-40ml	NO	HCL
1566	MWO20GW-030593-001 SITE:SITE 3 EXAC: COMM:	0815	14.9	6.62	1570	0.60	6.70	MS/MSD	MET PHC PHC	4-1000ml 2-1000ml 6-40ml 2-1000ml 6-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1567	MW021GW-030593-001 SITE:SITE 3 EXAC: COMM:	0830	14.9	6.92	1310	0.60	6.82		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1568	MWO21WR-030593-002 SITE:SITE 3 EXAC: COMM:	0840	14.9	6.92	1310	0.60	6.82		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1569	MW016GW-030593-001 SITE:SITE 5 EXAC: COMM:	0930	14.9	7.07	812	0.60	8.48		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
						MAN	ing si r	referr			-	-

NVANG SI Report Final - April 1994

							1-1113	•			
04/05/	94				NEV	ADA ANG	FIELD SAM	PLES		PAG	Œ: 3
FIELD#	SAMPLE-ID	TIME	TEMP	рH	COND	PID	WTR-LVL	LABNOTES	REQ CONTAINERS	FLT	PRSRV
1570	MW016WR-030593-002 SITE:SITE 5 EXAC: COMM:	0945	14.9	7.07	812	0.60	8.48		BNA 2-1000ml MET 1-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
1571	MW017GW-030593-001 SITE:SITE 5 EXAC: COMM:	1030	13.9	7.08	660	24.30	6.70	MS/MSD	BNA 4-1000ml MET 2-1000ml PHC 6-40ml PHC 2-1000ml VOL 6-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1572	ER017RI-030593-002 SITE: EXAC: COMM:EQUIP. RINSATE		0.0	0.00	0	0.00	0.00		BNA 2-1000ml MET 1-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO NO	NO HNO3 HCL NO HCL
1573	MW022GW-030593-001 SITE:SITE 3 EXAC: COMM:	1400	16.4	7.13	1620	1.80	7.22		BNA 2-1000ml MET 1-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
1574	MW019GW-030593-001 SITE:SITE 5 EXAC: COMM:	1420	16.9	7.75	647	0.80	8.14		BNA 2-1000ml MET 1-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
1575	TB000D1-030693-004 SITE: EXAC: COMM:TRIP BLANK	0715	0.0	0.00	0	0.00	0.00		VOL 3-40ml	NO	HCL
1576	MW010GW-030693-001 SITE:SITE 7 EXAC: COMM:	0910	12.7	6.80	1620	0.70	5.88		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	NO HCL NO
1577	MW023GW-030693-001 SITE:SITE 7 EXAC: COMM:	0825	15.0	7.39	1178	0.90	5.12		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	NO HCL NO HCL
1578	MW006GW-030693-001 SITE:SITE 7 EXAC: COMM:	1015	15.6	7.17	950	148.00	4.25		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	NO HCL NO HCL
1579	MW024GW-030693-001 SITE:SITE 7 EXAC: COMM:	1025	15.4	6.80	1150	0.70	4.50		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	NO HCL NO HCL
1580	MW025GW-030693-001 SITE:SITE 7 EXAC: COMM:	1345	16.3	6.80	1590	40.40	3.45		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	NO HCL NO
1581	MW007GW-030693-001 SITE:SITE 7 EXAC: COMM:FLOATING PRODU					180.00	3.02		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	HCF HCF HO
1582	ER007RI-030693-003 SITE: EXAC: COMM:EQUIP. RINSATE		0.0	0.00	0	0.00	0.00		BNA 2-1000ml PHC 3-40ml PHC 1-1000ml VOL 3-40ml	NO NO NO	NO HCL NO HCL

NVANG SI Report Final - April 1994

04/05/	04/05/94 NEVADA ANG FIELD SAMPLES									PAG	Æ: 4	
FIELD#	SAMPLE-ID	TIME	TEMP	рH	COND	PID	WTR-LVL	LABNOTES	REQ	CONTAINERS	FLT	PRSRV
1583	TB000DI-030793-001 SITE: EXAC: COMM:TRIP BLANK	0715	0.0	0.00	0	0.00	0.00		VOL	3-40ml	NO	HCL
1584	NW067GW-030793-001 SITE:APRON EXAC: COMM:	0830	13.4	6.97	1130	12.00	4.24		BNA MET PHC PHC VOL	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
1585	ER067RI-030793-004 S:TE: EXAC: COMM:EQUIP. RINSATE	0900	0.0	0.00	0	0.00	0.00		PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO NO NO NO	NO HNO3 HCL NO HCL
1586	MW065GW-030793-001 SITE:APRON EXAC: COMM:	0900	14.8	7.00	990	6.20	4.93		PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO	NO HNO3 HCL NO HCL
1587	MW066GW-030793-001 SITE:APRON EXAC: COMM:	0945	14.4	7.10	1160	1.20	4.78		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1588	MW008GW-030793-001 SITE:SITE 2 EXAC: COMM:	1015	12.9	7.10	1290	1.20	4.76		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1589	MW011GW-030793-001 SITE:SITE 2 EXAC: COMM:	1330	13.5	7.13	794	7.60	5.24		MET PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NG .45 NO NO NO	NO HNO3 HCL NO HCL
1590	MW009GW-030793-001 SITE:SITE 2 EXAC: COMM:	1400	14.9	7.10	850	1.80	6.69		MET PHC PHC	2-1000ml 1-1000ml 3-40ml 1-1000ml 3-40ml	NO .45 NO NO NO	NO HNO3 HCL NO HCL
1591	TB000DI-030893-005 SITE: EXAC: COMM:TRIP BLANK	0730	0.0	0.00	0	0.00	0.00		VOL	3-40ml	NO	HCL
1592	OTOOOWT-030893-001 SITE: EXAC:Small storage t COMM:Storage tank (tank o	f purg	0.00 e water	0	0.00	0.00		MET PHC PHC	2-1000ml 1-1000ml 1-1000ml 3-40ml 3-40ml	NO NO NO NO	NO HNO3 NO HCL HCL
1593	MW010GW-031793-001 SITE:SITE 7 EXAC: COMM:	0950	12.8	7.10	1300	0.00	0.00			3-40ml 3-40ml	NO NO	HCL
1594	MW024GW-031793-001 SITE:SITE 7 EXAC: COMM:	1345	14.5	7.00	1338	0.00	0.00		PHC	3-40ml	NO	HCL
1595	MW007GW-031793-001 SITE:SITE 7 EXAC: COMM:	1515	16.3	6.40	3080	0.00	0.00		VOL	3-40ml	NO	HCL
	wai.						ANG SI R al - April					

04/05/	94				NEVA	DA ANG I	FIELD SAME	PLES			PAG	Æ: 5	
FIELD#	SAMPLE-ID	TIME	TEMP	рH	COND	PID	WTR-LVL	LABNOTES	REQ	CONTAINERS	FLT	PRSRV	
1596	EROOORI-031793-001 SITE: EXAC: COMM:	1630	0.0	0.00	0	0.00	0.00			3-40ml 3-40ml	NO NO	HCL	
1597	TB00001-031793-006 SITE: EXAC: COM:	1700	0.0	0.00	0	0.00	0.00		VOL	3-40ml	NO	HCL	

REGION:	

ORGANIC REGIONAL DATA ASSESSMENT

VALIDATIO	N LEVEL:	С	
CASE NO.:			

LABORATORY: COMPUCHEM

SITE: NEVADA AIR NAT. GUARD (RENO)

NUMBER OF SAMPLES/MATRIX

WATER: 156 SOIL: 4

REVIEWER (IF NOT ESD):_

REVIEWER'S NAME: DENNIS MARTY

COMPLETION DATE: 03/01/94

SAMPLES START #: 1545

END #: 1597

DATA ASSESSMENT SUMMARY

		VOA	BNA	PHC
1.	HOLDING TIMES	0	0	0
2.	GC/MS TUNE/INSTR. PERFORM	0	0	
3.	CALIBRATIONS	M	M	М
4.	BLANKS	M	M	М
5.	SURROGATES		X	X
6.	MATRIX SPIKE/DUP	X	X	X
7.	OTHER QC	0	0	0
8.	INTERNAL STANDARDS	0	0	0
9.	COMPOUND IDENTIFICATION	0	0	0
10.	SYSTEM PERFORMANCE	M	M	М
11.	OVERALL ASSESSMENT	M	M	M

O = DATA HAD NO PROBLEMS/OR QUALIFIED DUE TO MINOR PROBLEMS.

ACTION ITEMS: Action items are noted in the error messages included with the final summary report.

AREAS OF CONCERN: Problems with the initial and continuing calibrations, as well as problems with method blank contamination.

NOTABLE PERFORMANCE:

H - DATA QUALIFIED DUE TO MAJOR PROBLEMS.

Z = DATA UNACCEPTABLE.

X = PROBLEMS, BUT DO NOT AFFECT DATA.

REGION:_

INORGANIC REC	GIONAL DATA ASSESS	MENT					
VALIDATION LEVEL: C CASE NO.: LABORATORY: COMPUCHEM SITE: NEVADA AIR NAT. GUARD (RENCONDUCHEM NUMBER OF SAMPLES/MATRIX WATER: 156 SOIL: 4 REVIEWER (IF NOT ESD): REVIEWER'S NAME: DENNIS MARTY COMPLETION DATE: 03/01/94 SAMPLES START #: 1545 END #: 1597							
DATA ASSESS	SMENT SUMMARY						
1. HOLDING TIMES		M 0 0 0 0 0 0 0 0 0	0	O M	CYANIDE		
ACTION ITEMS: Action items are noted in the error mea	sages included with the final	eummary	report.				
AREAS OF CONCERN: Calibration problems and problems w	ith blank contamination is th	e primar	y problem w	ith this	data set.		
NOTABLE PERFORMANCE:							

PROJECT: NEVADA AIR NAT. GUARD (RENO)

LABORATORY: COMPUCHEM REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

PACKAGE DEFICIENCIES SUMMARY

Total number of samples: 59

Analysis Type	Number of Analyses				
VOL - Volatiles:	45				
BNA - Semivolatiles:	38				
PHC - Petroleum Hydrocarbons:	45				
MET - Metals:	29				
P P - Pesticides:	0				
ANI - Anions:	0				
H_A - Halocarbons and Aromatics:	0				

Sample Type	QC Samples as a % of Total Samples
Duplicate QC water samples: Duplicate QC soil samples: MS/MSD QC water samples: MS/MSD QC soil samples:	5.45% 0.00% 0.00% 0.00%

	Problem	Number of Problems
1.	Holding Times exceeded:	
	A. Extraction Holding Times exceeded:	0
	B. Analysis Holding Times exceeded:	0
2.	Tuning problems (VOL & BNA):	0
3.	Initial Calibration:	0
4.	Continuing Calibration:	63
5.	Surrogate Recovery outside of limits (level IV or	D): 0
6.	Method Blank contamination:	153
7.	Trip Blank or Field Blank contamination:	73
8.	MS/MSD Recovery:	2
9.	Matrix Spike:	23
10.	Blank Spike:	0
11.	Internal Standards:	0
12.	PHC Calibration:	0
13.	Field Duplicate:	12
	PEST/PCB Continuing Calibrations:	0
15.	PEST/PCB Instrument Performance:	0
16.	Metals Curve Validation:	24
17.	Metals Calibration:	0
18.	Laboratory Control Samples:	1
	ICP Interference:	0
	ICP Serial Dilution:	19
	PHC Sample Result Verification:	0

Ratio of detects with changed flags to total detects:

PROJECT: NEVADA AIR NAT. GUARD (RENO)

LABORATORY: COMPUCHEM REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

PACKAGE DEFICIENCIES SUMMARY

NONDETECT ERROR SUMMARY

Problem	Number of Problems
1. Holding Times exceeded:	
A. Extraction Holding Times exceeded:	0
B. Analysis Holding Times exceeded:	0
2. Tuning problems (VOL & BNA):	0
3. Initial Calibration:	45
4. Continuing Calibration:	604
5. MS/MSD Recovery:	0
6. Matrix Spike:	0
7. Blank Spike:	0
8. Internal Standards:	0
9. PHC Calibration:	0
10. PEST/PCB Continuing Calibrations:	0
11. PEST/PCB Instrument Performance:	0
12. Metals Curve Validation:	257
13. Metals Calibration:	0
14. Laboratory Control Samples:	20
15. ICP Interference:	0
16. ICP Serial Dilution:	1
17. PHC Sample Result Verification:	0

Changed to UJ: 847

Changed to R.: 7

Ratio of detects with changed flags to total detects: 854 / 4280

PROJECT: NEVADA AIR NAT. GUARD (RENO)

LABORATORY: COMPUCHEM REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

PACKAGE DEFICIENCIES SUMMARY

Illegible Information:

Missing Information (Lab Report): The electronic transfer files for this package were not in the correct format.

Missing QC Information:

Transcription Errors:

Logbook Problems:

Request for Analysis Problems:

PROJECT: NEVADA AIR NAT. GUARD (RENO)

LABORATORY: COMPUCHEM REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

PACKAGE DEFICIENCIES SUMMARY

NONCONFORMANCE CALIBRATIONS FOR ORGANIC ANALYSES

				NUMBER OF	COMPOUNDS	
ANALYSIS TYPE	CAL TYPE	DATE	TIME	%RSD>40%	%RSD>30%	%RSD>25%
BNA	INIT	05/05/92		3	5	
AOT	INIT	03/10/93		1		
AOT	INIT	03/11/93		1		
BNA	CONT	03/08/93	0920	1		5
BNA	CONT	03/09/93	1149	1		5
BNA	CONT	03/10/93	0958	3		6
BNA	CONT	03/11/93	2255	2		10
BNA	CONT	03/11/93	2322	3		9
BNA	CONT	03/12/93	1137	1		
BNA	CONT	03/12/93	1600	2		9
BNA	CONT	03/12/93	2220	3		6
BNA	CONT	03/17/93	1913	4		7
VOL	CONT	03/08/93	1145	1		3
AOT	CONT	03/08/93	2209	1		5
VOL	CONT	03/09/93	1027	2		6
AOT	CONT	03/11/93	0303	1		
VOL	CONT	03/19/93	0853	5		6

PROJECT: NEVADA AIR NATIONAL GUARD LABORATORY: COMPUCHEM LABORATORIES INC

REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL:C

DEFINITIONS OF QUALIFYING Q CODES

Final Q codes are determined by the flagging logic found in the U.S. EPA Functional Guidelines for the Validation of Organic and Inorganic Data (2/1/1988, 7/1/1988, and 6/1991). The definitions below for Q codes, are taken from these documents.

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified", and the associated numerical value represents its approximate concentration.
- P This flag is used for a target analyte when there is a greater than 25% difference for detected concentrations between two GC columns. The lower value is reported and flagged with a "P".
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - HOLDING TIMES
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1546

DATE:02/26/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1592

Sample Number	SAMPLE TYPE	MATRIX	SAMPLE DATE	EXTRA ION DATE	ANALYSIS DATE	EXTRACTION DAYS	EXTRACTION ACCEPTABLE	ANALYSIS DAYS	AMALYSIS ACCEPTABLE
1546	1	W	03/03/93	03/04/93	03/09/93	1	T	5	T
1547		W	03/03/93	03/04/93	03/08/93	1	T	4	T
1548	7B	W	03/03/93	03/04/93	03/08/93	1	T	4	T
1549		W	03/03/93	03/04/93	03/08/93	1	T	4	T
1550	1	W	03/03/93	03/04/93	03/08/93	1	T	4	T
1551		W	03/03/93	03/04/93	03/08/93	1	T	4	T
1552	WR	W	03/03/93	03/04/93	03/09/93	1	т	5	T
1554		W	03/04/93	03/08/93	03/10/93	4	T	2	T
1555		W	03/04/93	03/08/93	03/10/93		T	2	T
1556	PB	W	03/04/°3	03/08/93	03/10/93	4	T	2	T
1557		W	03/04/93	03/08/93	03/10/93	4	T	2	T
1558	ER	W	03/04/93	03/08/93	03/10/93	4	T	2	T
1559		W	03/04/93	03/08/93	03/10/93	4	T	2	T
1560		W	03/04/93	03/08/93	03/10/93	4	T	2	T
1566		W	05/93 د ٥	03/10/93	03/12/93	5	T	2	T
1567	1	W	03/05/93	03/10/93	03/12/93	5	T	2	T
1568	WR	W	03/05/93	03/10/93	03/12/93	5	T	2	т
. 69		W	03/05/93	03/10/93	03/12/93	5	T	2	т
1570	WR	W	03/05/93	03/09/93	03/11/93	4	T	2	T
1571		W	03/05/93	03/09/93	03/11/93	4	T	2	T
1572	ER	W	03/05/93	03/09/93	03/11/93	4	T	2	T
1573		W	03/05/93	03/09/93	03/12/93	4	T	3	T
1574		W	03/05/93	03/09/93	03/11/93	4	T	2	T
1576		W	03/06/93	03/10/93	03/12/93	4	T	2	T
1577		W	03/06/93	03/10/93	03/12/93	4	T	2	T
1578	1	W	03/06/93	03/10/93	03/12/93	4	T	2	T
1579		W	′ J6/93	03/10/93	03/12/93	4	Ī	2	T
1580		۲	03/06/93	03/10/93	02/12/93	4	T	2	т
1581		W	03/06/93	03/10/93	03/12/93	4	T	2	T
1582	ER	w	03/06/93	03/10/93	03/12/93	4	T	2	T
1584		W	03/07/93	03/10/93	03/12/93	3	т	2	T
1505	ER	W	03/07/93	03/10/93	03/12/93	3	T	2	T
1586		W	03/07/93	03/10/93	03/12/93	3	T	2	T
1587		W	03/07/93	03/10/93	03/12/93	3	T	2	T
1588		w	03/07/93	03/10/93	03/12/93	3	T	2	T
1589		W	03/07/93	03/11/93	03/13/93	4	T	2	T
1590	1	w	03/07/93	03/11/93	03/13/93	4	T	2	T
1592	PB	w	03/08/93	03/11/93	03/13/93	3	T	2	T
1581	DL	W	03/06/93	03/10/93	03/12/93	4	T	2	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - INITIAL CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

CALIBRA. DATE	COMPOUND	SDG	RRF1	RRF2	RRF3	RRP4	RRF5	RRFC	CHIKC	RRFI	RSD	CEK &RSD LIMIT	ERRAT
03/09/93	4-NITROPHENOL	1570	0.104	0.182	0.174	0.173	0.173	0.161	T	0.161	20.0	T	T
03/09/93	BIS (2-CHLOROETHOXY) METHANE	1570	0.555	0.524	0.526	0.495	0.479	0.516	T	0.516	5.7	T	7
03/09/93	DI-N-OCTYLPHTHALATE	1570	1.394	1.657	1.906	2.080	2.090	1.825	T	1.825	16.3	T	T
03/09/93	PENTACHLOROPHENOL	1570	0.100	0.147	0.138	0.147	0.148	0.136	T	0.136	15.1	T	P
03/09/93	PYRENE	1570	1.772	1.639	1.659	1.617	1.605	1.658	T	1.658	4.0	T	P
05/05/92	2,4-DINITROPHENOL	1545	0.064	0.105	0.139	0.168	0.180	0.131	T	0.131	36.2	P	T
05/05/92	3,3'-DICHLOROBENZIDINE	1545	0.152	0.096	0.078	0.127	0.175	0.126	T	0.126	31.6	P	T
05/05/92	3-NITROANILINE	1545	0.106	0.142	0.099	0.189	0.283	0.164	Ť	0.164	46.2	P	T
05/05/92	4-CHLOROANILINE	1545	0.187	0.116	0.203	0.354	0.397	0.251	T	0.251	47.3	P	T
05/05/92	4-NITROANILINE	1545	0.138	0.170	0.183	0.270	0.395	0.231	T	0.231	45.0	P	T
05/05/92	BENZO(A)PYRENE	1545	0.942	0.937	0.995	1.066	1.120	1.012	T	1.012	7.9	T	P
05/05/92	HEXACHLOROETHANE	1545	0.780	0.816	0.840	0.950	0.913	0.860	T	0.860	8.2	Т	P
05/05/92	N-NITROSODIPHENYLAMINE (1)	1545	0.503	0.313	0.477	0.605	0.695	0.519	T	0.519	27.7	T	T
06/12/92	2,4,6-TRICHLOROPHENOL	1590	0.424	0.389	0.388	0.393	0.401	0.399	T	0.399	3.7	T	F
05/12/92	2-METHYLPHENOL	1590	1.399	1.434	1.377	1.370	1.325	1.381	T	1.381	2.9	T	P
06/12/92	4-NITROPHENOL	1570	0.310	0.357	0.404	0.441	0.432	0.389	T	0.389	14.1	T	T
06/12/92	BENZO(A)ANTHRACENE	1590	1.151	1.134	1.138	1.104	1.082	1.122	T	1.122	2.5	T	7
06/12/92	BENZO(K)FLUORANTHENE	1570	1.124	1.081	0.881	0.829	0.845	0.952	T	0.952	14.7	T	P
06/12/92	CARBAZOLE	1570	0.99	3.887	0.857	0.850	0.786	0.875	T	0.875	8.7	T	P
06/12/92	ISOPHORONE	1570	0.870	0.889	0.874	0.857	0.894	0.877	T	0.877	1.7	T	P
06/12/92	N-NITROSODIPHENYLAMINE (1)	1590	0.688	0.595	0.583	0.582	0.591	0.608	Т	0.608	7.4	T	T

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: BNA - INITIAL CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

Calib. Date	Compound	SDG	% RSD Largest Excluded	RSD Chk > 30%	% RSD Smallest Excluded	RSD Chk > 30%
05/05/92	2,4-DINITROPHENOL	1545	37.6	P	39.8	P
05/05/92	3,3'-DICHLOROBENZIDINE	1545	29.0	T	38.8	F
05/05/92	3-NITROANILINE	1545	30.8	F	69.6	F
05/05/92	4-CHLOROANILINE	1545	46.6	P	62.0	P
05/05/92	4-NITROANILINE	1545	29.7	T	67.3	F

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: BNA - CONTINUING CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/26/94

CALIBRA.	TIME	COMPOUND	SDG	RRF INIT	RRF	& D	LIMITS	ERRAT COMP
03/08/93	0920	2-NITROPHENOL	1545	0.194	0.219	-12.9	T	P
03/08/93	0920	3,3'-DICHLOROBENSIDINE	1545	0.126	0.249	-97.6	P	T
03/08/93	0920	4-HITROANILINE	1545	0.231	0.165	28.6	P	T
03/08/93	0920	4-HITROPHENOL	1545	0.310	0.233	24.8	T	T
03/08/93	0920	Benso(A) Anthracene	1545	1.083	1.319	-21.8	T	P
03/09/93	0920	BIS(2-ETHYLHEXYL)PHTHALATE	1545	1.435	1.868	-30.2	F	T
03/08/93	0920	BUTYLBENZYLPHTHALATE	1545	0.977	1.346	-37.8	P	T
03/08/93	0920	DIBENZ(A, H) ANTHRACENE	1545	0.735	0.919	-25.0	P	P
03/09/93	1149	1,2,4-TRICHLOROBENZENE	1545	0.324	0.318	1.9	т	P
03/39/93	1149	3,3'-DICHLOROBENZIDINE	1545	0.126	0.270	-114.3	P	T
03/09/93	1149	3-NITROANILINE	1545	0.164	0.211	-28.7	P	T
03/09/93	1149	4-CHLOROANILINE	1545	0.251	0.334	-33.1	P	T
03/09/93	1149	4-NITROANILINE	1545	0.231	0.188	18.6	T	T
03/09/93	1149	4-NITROPHENOL	1545	0.310	0.210	32.3	P	T
03/09/93	1149	BUTYLBENZYLPHTHALATE	1545	0.977	1.218	-24.7	T	T
03/09/93	1149	FLUORANTHENE	1545	1.114	1.096	1.6	T	F
03/09/93	1149	N-NITROSODIPHENYLAMINE (1)	1545	0.519	0.617	-18.9	T	Ŧ
03/09/93	1149	PENTACHLOROPHENOL	1545	0.136	0.092	32.4	F	P
03/10/93	0958	2,4-DINITROPHENOL	1545	0.131	0.100	23.7	T	Ŧ
03/10/93	0958	2-NITROANILINE	1545	0.541	0.382	29.4	F	T
03/10/93	0958	3,3'-DICHLOROBENZIDINE	1545	0.126	0.305	-142.1	F	T
03/10/93	0958	3-NITROANILINE	1545	0.164	0.217	-32.3	P	T
03/10/93	0958	4-BROMOPHENYL-PHENYLETHER	1545	0.231	0.288	-24.7	T	P
03/10/93	0958	4-CHLOROANILINE	1545	0.251	0.353	-40.6	F	T
03/10/93	0958	4-NITROANILINE	1545	0.231	0.178	22.9	T	T
03/10/93	0958	4-NITROPHENOL	1545	0.310	0.143	53.9	F	T
03/10/93	0958	BIS(2-CHLOROETHYL)ETHER	1545	1.499	1.207	19.5	T	P
03/10/93	0958	INDENO(1,2,3-CD)PYRENE	1545	0.863	1.067	-23.6	T	P
03/10/93	0958	PHENOL	1545	1.606	1.170	27.1	P	P
03/11/93	1226	3,3'-DICHLOROBENZIDINE	1570	0.275	0.318	-15.6	T	T
03/11/93	1226	4-NITROPHENOL	1570	0.161	0.200	-24.2	т	т
03/11/93	1226	HEXACHLOROBENZENE	1570	0.277	0.288	-4.0	T	P
03/11/93	1226	ISOPHORONE	1570	0.896	0.904	-0.9	т	P
03/11/93	2255	2,4-DINITROPHENOL	1545	0.131	0.090	31.3	P	T
03/11/93	2255	2-NITROANILINE	1545	0.541	0.416	23.1	T	T
03/11/93	2255	3,3'-DICHLOROBENZIDINE	1545	0.126	0.337	-167.5	P	T
03/11/93	2255	3-NITROANILINE	1545	0.164	0.217	-32.3	P	T
03/11/93	2255	4-BROMOPHENYL-PHENYLETHER	1545	0.231	0.298	-29.0	P	P
03/11/93	2255	4-CHLOROANILINE	1545	0.251	0.351	-39.8	P	т
03/11/93	2255	4-NITROPHENOL	1545	0.310	0.129	58.4	P	T
03/11/93	2255	BENZO(G, H, I)PERYLENE	1545	0.748	0.896	-19.8	Ŧ	P
03/11/93	2255	HEXACHLOROBENZENE	1545	0.291	0.400	-37.5	P	P
03/11/93	2255	HEXACHLOROBUTADIENE	1545	0.209	0.267	-27.8	P	T
03/11/93	2255	N-NITROSODIPHENYLAMINE (1)	1545	0.519	0.645	-24.3	T	T
03/11/93	2255	PENTACHLOROPHENOL	1545	0.136	0.089	34.6	P	P
03/11/93	2255	PHENOL	1545	1.606	1.168	27.3	F	P
03/11/93	2322	3,3'-DICHLOROBENZIDINE	1570	0.237	0.311	-31.2	P	T
03/11/93	2322	4-NITROPHENOL	1570	0.389	0.269	30.8	P	т
	2222	BENZO(K)FLUORANTHENE	1570	0.952	1.195	-25.5	P	7
03/11/93	2324	-2 (1.7. 200)24.7.22						-

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: BNA - CONTINUING CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

CALIBRA.	TIME	COMPOUND	SDG	RRF	RRF	1 D	LINITS	ERRAT COMP
03/11/93	2322	BUTYLBENZYLPETHALATE	1570	0.728	1.180	-62.1	7	T
03/11/93	2322	DI-M-BUTYLPHTHALATE	1570	1.542	2.010	-30.4	P	T
03/11/93	2322	DI-H-OCTYLPHTHALATE	1570	1.636	3.085	-88.6	7	T
03/11/93	2322	HEXACHLOROBENSENE	1570	0.256	0.277	-8.2	T	7
03/11/93	2322	N-NITROSO-DI-H-PROPYLAMINE	1570	1.129	1.413	-25.2	P	P
03/11/93	2322	NAPHTHALENE	1570	1.037	1.069	-3.1	T	P
03/11/93	2322	PYRENE	1570	1.515	2.005	-32.3	F	P
03/12/93	1137	1,2,4-TRICHLOROBENZENE	1570	0.289	0.296	-2.4	T	P
03/12/93	1137	4,6-DINITRO-2-METHYLPHENOL	1570	0.105	0.123	-17.1	T	T
03/12/93	1137	4-BROMOPHENYL-PHENYLETHER	1570	0.221	0.229	-3.6	T	P
03/12/93	1137	4-NITROPHENOL	1570	0.161	0.226	-40.4	P	T
03/12/93	1600	2,4-DINITROPHENOL	1545	0.131	0.091	30.5	F	T
03/12/93	1600	3,3'-DICHLOROBENZIDINE	1545	0.126	0.375	-197.6	F	T
03/12/93	1600	3-NITROANILINE	1545	0.164	0.228	-39.0	F	Ŧ
03/12/93	1600	4-Bromophenyl-Phenylether	1545	0.231	0.298	-29.0	P	P
03/12/93	1600	4-CHLOROANILINE	1545	0.251	0.350	-39.4	P	T
03/12/93	1600	4-NITROPHENOL	1545	0.310	0.139	55.2	P	T
03/12/93	1600	DIBENZ(A, H) ANTHRACENE	1545	0.735	0.915	-24.5	T	P
03/12/93	1600	HEXACHLOROBENZENE	1545	0.291	0.379	-30.2	P	P
03/12/93	1600	INDENO(1,2,3-CD)PYRENE	1545	0.863	1.125	-30.4	P	P
03/12/93	1600	N-NITROSODIPHENYLAMINE (1)	1545	0.519	0.648	-24.9	T	T
03/12/93	1600	NITROBENZENE	1545	0.507	0.465	8.3	T	P
03/12/93	1600	PENTACHLOROPHENOL	1545	0.136	0.086	36.8	P	P
03/12/93	2220	2,2'-OXYBIS (1-CHLOROPROPANE)	1570	2.116	1.687	20.3	T	T
03/12/93	2220	2,2'-OXYBIS (1-CHLOROPROPANE)	1590	2.116	1.687	20.3	T	T
03/12/93	2220	3,3DICHLOROBENZIDINE	1570	0.237	0.315	-32.9	P	T
03/12/93	2220	3,3'-DICHLOROBENZIDINE	1590	0.237	0.315	-32.9	F	T
03/12/93	2220	BIS (2-CHLOROSTHOXY) METHANE	1590	0.538	0.487	9.5	T	P
03/12/93	2220	BIS(2-ETHYLHEXYL)PHTHALATE	1570	0.929	1.449	-56.0	P	T
03/12/93	2220	BIS(2-ETHYLHEXYL)PHTHALATE	1590	0.929	1.449	-56.0	P	T
03/12/93	2220	BUTYLBENZYLPHTHALATE	1570	0.728	1.034	-42.0	P	T
03/12/93	2220	BUTYLBENZYLPHTHALATE	1590	0.728	1.034	-42.0	P	T
03/12/93	2220	DI-N-BUTYLPHTHALATE	1570	1.542	1.955	-26.8	F	T
03/12/93	2220	DI-N-BUTYLPHTHALATE	1590	1.542	1.955	-26.8	P	T
03/12/93	2220	DI-N-OCTYLPHTHALATE	1570	1.636	2.436	-48.9	P	T
03/12/93	2220	DI-N-OCTYLPHTHALATE	1590	1.636	2.436	-48.9	F	T
03/12/93	2220	DIETHYLPHTHALATE	1570	1.582	1.721	-8.8	T	т
03/12/93	2220	HEXACHLOROBENZENE	1570	0.256	0.323	-26.2	P	P
03/12/93	2220	HEXACHLOROBENZENE	1590	0.256	0.323	-26.2	P	P
03/12/93	2220	HEXACHLOROBUTADIENE	1570	0.218	C.227	-4.1	T	T
03/17/93	1913	2,2'-OXYBIS (1-CHLOROPROPANE)	1590	2.116	1.526	27.9	F	T
03/17/93	1913	3,3'-DICHLOROBENZIDINE	1590	0.237	0.294	-24.1	T	T
03/17/93	1913	4-NITROPHENOL	1590	0.389	0.212	45.5	P	T
03/17/93	1913	BENZO(R)FLUORANTHENE	1590	0.952	1.265	-32.9	P	F
03/17/93	1913	BIS(2-ETHYLHEXYL)PHTHALATE	1590	0.929	1.493	-60.7	P	T
03/17/93	1913	BUTYLBENZYLPHTHALATE	1590	0.728	1.023	-40.5	P	T
03/17/93	1913	DI-N-BUTYLPHTHALATE	1590	1.542	1.944	-26.1	P	T
03/17/93	1913	DI-N-OCTYLPHTHALATE	1590	1.636	2.540	-55.3	P	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: BNA - TUNING REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

DATA VALIDATION LEVEL:C

SDG	LAS ID NUMBER	СОИРОИИ	EXP	FORM	SPEC	443 m/m RELATIVE ABUN	442 m/s RELATIVE ABUN	CALC R ABUR	LAB NABUN	CALC ERROR	LIMIT
1545	DF930308A21	DFTPP		Y	Y	11.40	67.20	16.96	16.90	7	P
1545	DF930309A21	DFTPP		Y	Y	12.90	73.70	17.50	17.50	7	T
1545	DF930310A21	DFTPP		Y	Y	12.00	68.70	17.47	17.50	7	T
1545	DF930311B21	DFTPP		Y	Y	15.20	77.20	19.69	19.70	7	T
1570	930311A07	DFTPP		Y	Y	15.30	77.60	19.72	19.70	P	T
1570	930311805	DPTPP		Y	Y	12.30	51.60	23.84	23.80	P	F
1570	930312A07	DFTPP		Y	Y	13.80	73.90	18.67	18.70	7	T
1570	930312805	DFTPP		Y	Y	14.70	72.30	20.33	20.30	r	T
1590	930312805	DFTPP		Y	Y	14.70	72.30	20.33	20.30	P	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - SURROGATE RECOVERY
REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:02/27/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SDG	QUESTION 1	QUESTION 2	QUESTION 3	QUESTION 4	QUESTION 5	QUESTION 6
1545	T	T	7		7	P
1570	T	T	7		r	7
1590	T	T	r		7	7

Question 1) Were recoveries on form III verified? Question 2) Were all recoveries >= 10%? Question 3) Was surrogate recovery a problem? Question 4) If 3) is T, is there evidence of purging, reinjection, or re-extraction? Question 5) Were there two blanks with surrogates outside criteria? Question 6) Were there two or more analyses for a fraction?

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - BLANKS

ANALYSIS: BNA - BLANKS REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

BLANK NUMBER	SAMPLE TYPE	COMPOUND	RT	TCL or TIC	CONCENTRATION	UNITS	OCODE
1548	FB	BIS(2-ETHYLHEXYL)PETHALATE		TCL	2.00	μg/L	
1556	ra .	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	<u></u>	µg/L	
1556	FB	LABORATORY ARTIFACT	16.68	TIC	59.00		J
1556	PB	UNKNOWN	5.63	TIC		μg/L	3
1556	78	UNEROWE	7.35	TIC	18.00		J
1556	PB	UNKNOWN	8.17	TIC	4.00	μg/L	J
1556	PB	UNKNOWN	8.28	TIC	13.00		J
1556	FB	UNKNOWN	14.38	TIC	3.00	μg/L	J
1556	FB	BLANK CONTAMINANT	15.52	TIC	4.00	μg/L	3
1556	FB	BLANK CONTAMINANT	15.58	TIC	6.00	μg/L	J
1592	PB	UNKNOWN	13.28	TIC		μg/L	3
1592	FB	UNKNOWN	10.98	TIC	3.00	μg/L	J
1592	FB	UNKNOWN	10.67	TIC		μg/L	J
1592	PB	UNKNOWN	9.62	TIC		μg/L	J
1592	TB.	UNKNOWN	7.73	TIC		μg/L	J
1592	PB	BIS(2-ETHYLHEXYL)PHTHALATE	 	TCL		µg/L	J
1592	FB	DIETHYLPHTHALATE	 	TCL		μg/L	J
1592	PB	UNKNOWN	10.38	TIC		µg/L	3
1592	PB	UNKNOWN	10.90	TIC		μg/L	3
1592	PB	UNKNOWN	19.43	TIC	13.00		3
1592	PB	LABORATORY ARTIFACT	16.48	TIC	32.00		3
1592	PB	BIS (PHENYLENE) ETHANONE	10.10	TIC		μg/L	3
SBLR27	мв	BIS(2-ETHYLHEXYL)PHTHALATE	1.0.10	TCL		μg/L	3
SBLR41	МВ	BIS(2-ETHYLHEXYL)PETHALATE		TCL		μg/L	3
SBLK41	МВ	ETHANE, 1-METHOXY-2-(METHOXY	5.82	TIC		μg/L	J
SBLK41	мв	UNKNOWN	15.53	TIC		μg/L	7
SBLK41	МВ	UNKNOWN	18.35	TIC		µg/L	3
SBLK41	MB	UNKNOWN CARBOXYLIC ACID	15.58	TIC		µg/L	3
SBLK50	нв	BIS(2-ETHYLHEXYL)PHTHALATE	13.30	TCL		μg/Ľ	J
SBLK50	мв	BUTYLBENZYLPHTHALATE		TCL		μg/L	3
SBLR50	мв	UNKNOWN	15.52	TIC		μg/Ľ	3
SBLR50	мв	UNKNOWN	18.27	TIC		µg/L	3
SBLK45	мв	BIS(2-ETHYLHEXYL)PHTHALATE		TCL		μg/L	J
SBLK45	ИВ	BUTYLBENZYLPHTHALATE		TCL		µg/L	3
SBLK45	мв	DISTRYLPHTHALATE		TCL		μg/L	3
SBLK45	мв	LABORATORY ARTIFACT	17.58	TIC	10.00		3
SBLK45	MB ·	UNKNOWN	5.50	TIC			J
SBLX45	MB	UNKNOWN	6.35	TIC		μg/L	3
SBLK51	мв	BIS(2-ETHYLHEXYL)PHTHALATE	0.33	TCL		μg/L	3
SBLR51	MB	BUTYLBENZYLPHTHALATE	 	TCL		μg/L μg/L	3
SBLK51	MB	LABORATORY ARTIFACT	16 48				3
SBLK51	KB	UNKNOWN	16.45	TIC	61.00		3
SBLR63	МВ	BIS(2-ETHYLHEXYL)PHTHALATE	13.43	TCL		μg/L μg/L	3
SBLK63	мв	LABORATORY ARTIFACT	16.45	TIC		μg/L μg/L	3
SBLR63	нв	UNKNOWN	6.35	TIC			3
SBLK63	мв	UNKNOWN	ļ			µg/L	
SBLK63	MB	UNKNOWN	11.68	TIC		µg/L	J
SBLK63	MB	UNKNOWN HYDROCARBON	17.22	TIC		µg/L	3
SBLK63	MB	UNKNOWN HYDROCARBON UNKNOWN HYDROCARBON	6.00	TIC		µg/L	
SBLR64			6.72	TIC		μg/L	J
<i>оош</i> лот	МВ	BIS(2-ETHYLHEXYL)PHTHALATE	l	TCL	3.00	µg/L	3

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - BLANKS
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1548

DATE:02/27/94

BLANK NUMBER	SAMPLE TYPE	SDG	MATRIX
1548	78	1545	W
1556	78	1545	W
1592	73	1590	W
SBLK27	H/B	1545	W
SBLK41	MB	1545	W
SBLR50	МВ	1545	W
SBLR45	МВ	1570	W
SBLR51	МВ	1570	w
SBLX63	МВ	1570	W
SBLR64	MB	1590	W

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: BNA - MS/MSD REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE NUMBER SAMP SDG COMPOUND SAMPLE RESULT MATRIX SPIKE ME MSD CAL RPD VER MS VER 1566 1545 1,4-DICHLOROBENZENE 100.00 0.00 35.26 44.02 35.26 44.02 -22 1566 1545 150.00 0.00 103.70 123.20 69.13 T 82.13 P -17 4-NITROPHENOL 1566 1545 ACENAPHTHENE 100.00 0.00 44.23 60.22 44.23 P 60.22 T -31 1566 1545 N-NITROSO-DI-N-PROPYLAMINE 100.00 0.00 38.30 38.30 F 45.92 T 45.92 -18 1566 1545 100.00 0.00 46.55 69.77 46.55 T 69.77 T -40 1570 1571 2,4-DINITROTOLUENE 50.00 0.00 49.88 50.53 99.76 101.06 F -1 1571 1570 4-NITROPHENOL 75.00 0.00 78.82 99.36 P 105.09 74.52 -6 1571 1570 83.45 84.70 111.27 F 112.93 F PENTACHLOROPHENOL 75.00 0.00 -1 1590 1590 4-CHLORO-3-METHYLPHENOL 75.00 0.00 81.67 76.85 108.89 P 102.47 F 6 1590 1590 4-NITROPHENOL 75.00 0.00 72.44 75.22 96.59 F 100.29 F -4 T 1590 1590 PENTACHLOROPHENOL 75.00 1.51 82.96 85.33 108.60 F 111.76 -3

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: BNA - FIELD DUPLICATES REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

DATA VALIDATION LEVEL:C

SDG	SAMPNUM	SAMPTYPE	DUPNUM	DUPTYPE	COMPOUND	RT	SAMP CON	DUP COM	RPD
1545	1551		1552	WR	1,2-DICHLOROBENZENE		5.00	11.00	75.00
1545	1551		1552	WR	1,3-DICHLOROBENZENE		2.00	3.00	40.00
1545	1551		1552	WR	1,4-DICHLOROBENZENE		2.00	4.00	66.67
1545	1551	•	1552	WR	BIS(2-ETHYLHRXYL)PHTHALATE		5.00	7.00	33.33
1545	1551		1552	WR	DI-H-BUTYLPETHALATE		1.00	2.00	66.67
1545	1551		1552	WR	NAPHTHALENE	Î	9.00	17.00	61.54
1545	1551		1552	WR	VOA TCL	5.07	8.00	10.00	22.22
1545	1551		1552	WR	VOA TCL	5.43	53.00	71.00	29.03
1545	1567		1568	WR	BIS(2-ETHYLHEXYL)PHTHALATE		2.00	6.00	100.00
1545	1567		1568	WR	UNKNOWN	16.42	2.00	10.00	133.33

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: BNA - LAB DUPLICATES

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

DATA VALIDATION LEVEL:C

SDG	SAMPNUM	SAMPTYPE	DUPNUM	DUPTYPE	DILUTION	COMPOUND	RT	SAMP COM	DUP COM	RPD
1570	1501		1581	DL	15.00	2-METEYLHAPETHALEME		9000.00	9600.00	e
1570	1581		1581	DL	15.00	acenaphthene		240.00	330.00	31
1570	1581		1581	DL	15.00	ANTERACENE		210.00	260.00	21.2
1570	1581		1581	DL	15.00	Beneo(A) Anteracene		280.00	330.00	16.3
1570	1501		1581	DL	15.00	BENEO(A) PYRENE		160.00	190.00	17
1570	1581		1581	DL	15.00	BENZO (B) FLUORANTHENE		290.00	320.00	9
1570	1581		1581	DL	15.00	BENZO(K)FLUORANTHENE		290.00	320.00	9.8
1570	1581		1581	DL	15.00	BIS(2-ETHYLHEXYL)PHTHALATE		160.00	190.00	17
1570	1581		1581	DL	15.00	CHRYSENE		330.00	380.00	14
1570	1581		1581	DL	15.00	DIBENSOFURAN		130.00	180.00	32.2
1570	1581		1581	DL	15.00	BTHYLMETHYLBENZENE	6.10	16000.00	46000.00	96
1570	1581		1581	DL	15.00	FLUORANTHENE		660.00	700.00	5
1570	1581		1581	DL	15.00	FLUORENE		220.00	300.00	30.7
1570	1581		1581	DL	15.00	NAPETHALENE		6400.00	6900.00	7.5
1570	1581		1581	DL	15.00	PHENANTERENE		650.00	760.00	15
1570	1581		1581	DL	15.00	PYRENE		610.00	780.00	24
1570	1581		1581	DL	15.00	SUBSTITUTED BENIEWE	4.95	15000.00	43000.00	96.5
1570	1581		1581	DL	15.00	UNKNOWN	5.67	11000.00	28000.00	87
1570	1581		1581	DL	15.00	UNKNOWN	8.62	11000.00	28000.00	87
1570	1581		1581	DL	15.00	UNKNOWN HYDROCARBON	6.62	21000.00	53000.00	86.4
1570	1581		1581	DL.	15.00	UNKNOWN HYDROCARBON	8.30	16000.00	45000.00	95_0
1570	1581		1581	DL	15.00	UNKNOWN HYDROCARBON	8.78	9900.00	28000.00	95
1570	1581		1581	DL	15.00	UNKNOWN HYDROCARBON	9.02	20000.00	59000.00	98.7
1570	1581		1581	DL	15.00	UNKNOWN HYDROCARBON	9.75	17000.00	36000.00	71.7

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: BNA - INTERNAL STANDARDS REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

SDG	FORM NUMBER	DATE	TIME	СОНБОЛИД	SAMPLE NUMBER	SAMPLE TYPE	AREA COUNTS	RETENTION TIME
1545	930308A21	03/08/93	0920	NAPETEALENE-d8	1547		T	T
1545	930308A21	03/08/93	0920	PERYLENE-d12	1550		T	T
1545	930309A21	03/09/93	1149	ACENAPHTHENE-d10	1552	WR	T	T
1545	930309A21	03/09/93	1149	PHENANTHRENE-d10	1546		T	T
1545	930310A21	03/10/93	0958	ACENAPETHENE-d10	1558	ER	T	T
1545	930310A21	03/10/93	0958	CHRYSENE-d12	1556	PB	T	T
1545	930311B21	03/11/93	2255	1,4-DICHLOROBENZENE-d4	1568	WR	T	T
1545	930311B21	03/11/93	2255	CHRYSENE-d12	1569		T	T
1545	930311B21	03/11/93	2255	PHENANTHRENE-d10	1567		T	T
1570	930311A07	03/11/93	1226	ACENAPHTHENE-d10	1570	WR	T	T
1570	930311A07	03/11/93	1226	PERYLENE-d12	1574		T	T
1570	930311805	03/11/93	2322	1,4-DICHLOROBENZENE-d4	1584		T	T
1570	930311805	03/11/93	2322	CHRYSENE-d12	1588		T	T
1570	930312A07	03/12/93	1137	1,4-DICHLOROBENZENE-d4	1573		T	T
1570	930312A07	03/12/93	1137	CERYSENE-d12	1572	ER	T	T
1570	930312805	03/12/93	2220	CERYSENE-d12	1589		T	T
1570	930312805	03/12/93	2220	NAPHTHALENE-d8	1589		T	T
1590	930312805	03/12/93	2220	NAPHTHALENE-d8	1590		T	T
1590	930312B05	03/12/93	2220	PERYLENE-d12	1592	FB	T	T

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

	F	1	1	NUMBER OF	TOTAL COM	LOW COM	HEAN CON	IDL
TCL/ TIC	СОИРОТИТО	RT	MATRIX	SAMPLES	RIGH COM	DOW COM	ABAR COR	IDL
TCL	1,2-DICHLOROBENSENE		W	2	11.00	5.0ù	8.00	10.00
TCL	1,3-DICELOROBENSENS		W	2	3.00	2.00	2.50	10.00
TCL	1,4-DICHLOROBENSENE		W	2	4.00	2.00	3.00	10.00
TCL	2,4-DINETHYLPHENOL		W	2	3.00	1.00	2.00	10.00
TCL	2-METHYLNAPHTHALENE		W	5	9600.00	2.00	3722.60	10.00
TCL	4-METHYLPHENOL		W	1	1.00	1.00	1.00	10.00
TCL	ACENAPHTHENE		W	3	330.00	2.00	190.67	10.00
TCL	ANTHRACENE		W	2	260.00	210.00	235.00	10.00
TCL	BENZO(A)ANTHRACENE		W	2	330.00	280.00	305.00	10.00
TCL	BENZO(A) PYRENE		W	2	190.00	160.00	175.00	10.00
TCL	BENZO(B) FLUORANTHENE		W	2	320.00	290.00	305.00	10.00
TCL	BENZO(K) FLUORANTHENE	l	W	2	320.00	290.00	305.00	10.00
TCL	BIS(2-ETHYLHEXYL)PHTHALATE		W	38	190.00	1.00	15.89	10.00
TCL	BUTYLBENZYLPHTHALATE		w	24	3.00	1.00	1.63	10.00
TCL	CARBAZOLE		W	1	3.00	3.00	3.00	10.00
TCL	CHRYSENE		W	2	380.00	330.00	355.00	10.00
TCL	DI-N-BUTYLPHTHALATE		W	5	2.00	1.00	1.20	10.00
TCL	DIBENZOFURAN		W	3	180.00	1.00	103.67	10.00
TCL	DIETHYLPHTHALATE		W	8	1.00	1.00	1.00	10.00
TCL	FLUORANTHENE		W	2	700.00	660.00	680.00	10.00
TCL	FLUORENE	· · · · · · · · · · · · · · · · · · ·	W	3	300.00	1.00	173.67	10.00
TCL	NAPHTHALENE		w	7	6900.00	1.00	1906.43	10.00
TCL	PENTACHLOROPHENOL		W	3	2.00	1.00	1.33	50.00
TCL	PHENANTHRENE		w	3	760.00	2.00	470.67	10.00
TCL	PRENOL	 	W	2	32.00	4.00	18.00	10.00
TCL	PYRENE		w	2	780.00	610.00	695.00	10.00
TIC	1-METHYLNAPHTHALENE	9.32	W	1	8.00	8.00	8.00	NA
TIC	2,5-PYRROLIDINEDIONE, 1-PROP	19.07	w	1	17.00	17.00	17.00	NA
TIC	2-CYCLOHEXEN-1-OL	5.23	w	1	2.00	2.00	2.00	NA
TIC	2-CYCLOREXEN-1-ONE	5.73	W	1	4.00	4.00	4.00	NA
TIC	BENZOPHENONE	11.67	W	2	4.00	2.00	3.00	NA .
TIC	BENZOPHENONE	11.70	W	1	4.00	4.00	4.00	NA
TIC	BIS (PHENYLENE) ETHANONE	10.10	W	1	4.00	4.00	4.00	NA
TIC	BLANK CONTAMINANT	5.50	W	2	5.00	5.00	5.00	NA
TIC	BLANK CONTAMINANT	5.53	w	1	5.00	5.00	5.00	NA
TIC	BLANK CONTAMINANT	5.55	W	1	4.00	4.00	4.00	NA
TIC	BLANK CONTAMINANT	6.35	W	1	3.00	3.00	3.00	NA
TIC	BLANK CONTAMINANT	15.40	W	1	2.00	2.00	2.00	NA
TIC	BLANK CONTAMINANT	15.42	W	1	4.00	4.00	4.00	NA
TIC	BLANK CONTAMINANT	15.43	w	3	3.00	2.00	2.67	
TIC	BLANK CONTAMINANT		W	1	2.00	2.00	2.00	
	BLANK CONTAMINANT	15.47	W	1	3.00	3.00	3.00	
	BLANK CONTAMINANT	15.50	w	2	6.00	4.00	5.00	
TIC	BLANK CONTAMINANT	15.52	w	3	4.00	3.00	3.67	
	ELANK CONTAMINANT	15.53	W	1	4.00	4.00	4.00	
	· · · · · · · · · · · · · · · · · · ·	15.57	w	2	9.00	8.00	8.50	
	BLANK CONTAMINANT	15.58	W		7.00	6.00	6.50	ļ
		— —	w	2			6.33	
	BLANK CONTAMINANT	15.60		3	9.00	3.00	5.00	
	BLANK CONTAMINANT	18.32	W	1	5.00	5.00		
TIC	BLANK CONTAMINANT	18.35	W	1	4.00	4.00	4.00	NA.

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

SAMPLES SAME CONTAININATE 18.77 W 1 8.00 8.0									
C CYCLOPERTABILORAME, DECAMETE 7.55 W 1 2.00 2.00 A.00	TCL/ TIC	СОНРОГИТ	RT	MATRIX		HIGH COM	JOW COM	MEAN CON	IDL
C CTILIDENTIABRIEME 7.00 W 1 5.00 5.00 5.00 A.00 A.50 MA CD DIESTIABRIEME 7.00 W 1 5.00 5.00 5.00 N.0 A.00 CINETIABRIEME 7.00 W 1 7.00 7.00 7.00 N.0 N.0 CINETIABRIEME 7.00 W 1 7.00 7.00 7.00 N.0 N.0 CINETIABRIEME 7.00 W 1 7.00 7.00 7.00 N.0 N.0 CINETIABRIEME 7.00 W 1 7.00 7.00 7.00 N.0 N.0 CINETIABRIEME 7.00 W 1 7.00 7.00 7.00 N.0 N.0 CINETIABRIEME 7.00 W 1 1 7.00 17.00 17.00 N.0 N.0 CINETIABRIEME 7.00 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 7.00 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 5.73 W 1 1 10.00 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 5.73 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 5.73 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 5.73 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 5.70 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 6.03 W 1 1 7.00 7.00 T.00 N.0 N.0 CINETIABRIEME 6.00 W 1 1 6.00 G.00 G.00 N.0 N.0 CINETIABRIEME 6.00 W 1 1 6.00 G.00 G.00 N.0 N.0 CINETIABRIEME 6.10 W 2 44600.00 1600.00 S1000.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 10.00 10.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.10 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.22 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.22 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.22 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.22 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.23 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.23 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.23 W 1 1 10.00 11.00 11.00 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 N.0 N.0 CINETIABRIEME 6.20 N.0 N.0 N.0 N.0 N.0 N.0 N.0 N.0 N.0 N.	TIC	BLANK CONTANINANT	18.37	W	1	8.00	8.00	8.00	KY
C	TIC	CYCLOPENTASILOXANE, DECAMETH	7.55	W	1	2.00	2.00	2.00	MA
C C C C C C C C C C	TIC	CYCLOPENTASILOXANE, DECAMETE	7.57	W	2	5.00	4.00	4.50	MA
C	TIC	DIETHYLBENZENE	7.00	W	1	5.00	5.00	5.00	MA
C	TIC	DIMETHYLBENZOIC ACID	9.50	W	1	7.00	7.00	7.00	NA
C C C C C C C C C C	TIC	DIMETHYLBENZOIC ACID	9.55	W	1	7.00	7.00	7.00	NA
C CTETYLERTENTLERRERNE	TIC	ETHYLDIMETHYLBENZENE	6.98	W	1	5.00	5.00	5.00	NA
C CTITILMETTILBREENE 5.77 W 1 11.00 11.00 11.00 MA	ric	ETHYLDIMETHYLBENZENE	7.32	W	1	12.00	12.00	12.00	NA
C	ric	ETHYLMETHYLBENZENE	5.75	W	1	10.00	10.00	10.30	NA
C CTRYLMETRYLBENZENE	TIC	ETHYLMETHYLBENZENE	5.77	w	1	11.00	11.00	11.00	NA
C C THYLHETHYLBENZENE	ric	ETHYLMETHYLBENZENE	6.03	w	1	10.00	10.00	10.00	NA
C	ric	ETHYLMETHYLBENZENB	6.05	W	1	7.00	7.00	7.00	NA
C	ric	ETHYLMETHYLBENZENE	6.07	w	1	6.00	6.00	6.00	NA
C ETHYLMETHYLBENEREE	ric			W	2				
C	ric			W	1				-
C	ric			W	1	15.00			
C ETEYLMETHYLBENZENE	ric								
C	CIC			<u> </u>					
CC ETHYLMETEYLBENZENE 6.35 W 1 24.00 24.00 24.00 NA CC ETHYLMETERYLCYCLOREXANE 5.52 W 1 30000.00 30000.00 30000.00 NA CC LABORATORY ARTIFACT 15.52 W 1 3.000 3.00 3.00 3.00 NA CC LABORATORY ARTIFACT 15.53 W 1 2.00 2.00 2.00 NA CC LABORATORY ARTIFACT 16.43 W 2 12.00 6.00 9.00 NA CC LABORATORY ARTIFACT 16.43 W 2 12.00 6.00 9.00 NA CC LABORATORY ARTIFACT 16.45 W 2 7.00 6.00 6.50 NA CC LABORATORY ARTIFACT 16.47 W 2 19.00 15.00 17.00 NA CC LABORATORY ARTIFACT 16.47 W 2 19.00 15.00 17.00 NA CC LABORATORY ARTIFACT 16.47 W 2 19.00 15.00 17.00 NA CC LABORATORY ARTIFACT 16.48 W 1 32.00 32.00 32.00 NA CC LABORATORY ARTIFACT 16.63 N 1 4.00 4.00 4.00 NA CC LABORATORY ARTIFACT 16.63 N 1 12.00 17.00 NA CC LABORATORY ARTIFACT 16.65 N 1 17.00 17.00 17.00 NA CC LABORATORY ARTIFACT 16.66 N 1 12.00 12.00 NA CC LABORATORY ARTIFACT 16.67 N 1 12.00 12.00 NA CC LABORATORY ARTIFACT 16.67 N 1 19.00 15.00 NA CC LABORATORY ARTIFACT 16.67 N 1 19.00 15.00 NA CC LABORATORY ARTIFACT 16.67 N 1 19.00 15.00 NA CC LABORATORY ARTIFACT 16.67 N 1 19.00 15.00 NA CC LABORATORY ARTIFACT 16.70 N 2 7.00 3.00 59.00 NA CC LABORATORY ARTIFACT 16.70 N 2 7.00 3.00 59.00 NA CC LABORATORY ARTIFACT 16.70 N 2 7.00 3.00 59.00 NA CC LABORATORY ARTIFACT 17.37 N 1 19.00 13.00 13.00 NA CC LABORATORY ARTIFACT 17.37 N 1 19.00 13.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC LABORATORY ARTIFACT 17.60 N 1 19.00 NA CC CRIMETHYLDERUSENE 6.98 N 1 19.00 NA CC CRIMETHYLDERUSENE 6.98 N 1 19.00 NA CC CRIMETHYLDERUSENE 6.98 N 1 19.00 NA CC CRIMETHYLDERUSENE 6.98 N 1 19.00 NA CC CRIMETHYLDERUSENE 6.98 N 1 19.00 NA CC CRIMETHYLDERUSENE 6.90 N 1 19.00 NA CC CRIMETHYL	ric			w	1		17.00	17.00	NA
C ETHYLMETEYLCYCLOREXANE 5.52 W 1 30000.00 30000.00 NA C LABORATORY ARTIFACT 15.52 W 1 3.00 3.00 3.00 NA C LABORATORY ARTIFACT 15.53 W 1 2.00 2.00 2.00 NA C LABORATORY ARTIFACT 16.42 W 3 32.00 29.00 30.33 NA C LABORATORY ARTIFACT 16.43 W 2 12.00 6.00 9.00 NA C LABORATORY ARTIFACT 16.45 W 2 7.00 6.00 9.00 NA C LABORATORY ARTIFACT 16.45 W 2 7.00 6.00 6.50 NA C LABORATORY ARTIFACT 16.45 W 2 19.00 15.00 17.00 NA C LABORATORY ARTIFACT 16.48 W 1 32.00 32.00 32.00 NA C LABORATORY ARTIFACT 16.63 W 1 4.00 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 16.65 W 1 17.00 17.00 17.00 NA C LABORATORY ARTIFACT 16.65 W 1 17.00 17.00 17.00 NA C LABORATORY ARTIFACT 16.66 W 1 12.00 12.00 12.00 NA C LABORATORY ARTIFACT 16.67 W 1 19.00 15.00 55.00 NA C LABORATORY ARTIFACT 16.67 W 1 19.00 13.00 55.00 NA C LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 55.00 NA C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.38 W 1 40.00 40.00 40.00 NA C LABORATORY ARTIFACT 17.60 W 1 40.00 40.00 40.00 NA C LABORATORY ARTIFACT 17.60 W 1 40.00 40.00 40.00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00.00 19.00.00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00 19.00 00 NA C LABORATORY ARTIF	ric	· · · · · · · · · · · · · · · · · · ·		w			24.00		
C LABORATORY ARTIFACT 15.52 W 1 3.00 3.00 3.00 NA	CIC	· · · · · · · · · · · · · · · · · · ·							
C LABORATORY ARTIFACT 15.53 W 1 2.00 2.00 2.00 2.00 NA	IC								
C LABORATORY ARTIFACT 16.42 W 3 32.00 29.00 30.33 NA									
C LABORATORY ARTIFACT 16.43 W 2 12.00 6.00 9.00 NA									
16.45 W 2 7.00 6.00 6.55 NA CC LABORATORY ARTIFACT 16.47 W 2 19.00 15.00 17.00 NA CC LABORATORY ARTIFACT 16.48 W 1 32.00 32.00 32.00 NA CC LABORATORY ARTIFACT 16.63 W 1 4.00 4.00 4.00 NA CC LABORATORY ARTIFACT 16.65 W 1 17.00 17.00 17.00 NA CC LABORATORY ARTIFACT 16.67 W 1 12.00 12.00 12.00 NA CC LABORATORY ARTIFACT 16.67 W 1 159.00 59.00 59.00 NA CC LABORATORY ARTIFACT 16.69 W 1 59.00 59.00 59.00 NA CC LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 5.00 NA CC LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA CC LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA CC LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 16.00 NA CC LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 A.00 NA CC LABORATORY ARTIFACT 17.60 W 1 40.00 4.00 4.00 NA CC LABORATORY ARTIFACT 17.60 W 1 19.00.00 19.00.00 NA CC METHYLPROPYLBENZENE 6.93 W 1 19.00.00 19.00.00 NA CC METHYLPROPYLBENZENE 6.95 W 1 19.00.00 19.00.00 NA CC METHYLPROPYLBENZENE 6.95 W 1 19.00.00 19.00.00 NA CC SUBSTITUTED BENZENE 6.95 W 1 19.00 19.00 19.00 NA CC TRIMETHYLBENZENE 6.98 W 1 19.00 19.00 19.00 NA CC TRIMETHYLBENZENE 6.98 W 1 19.00 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 NA CC TRIMETHYLBENZENE 6.90 M 1 19.00 NA		· · · · · · · · · · · · · · · · · · ·							
C LABORATORY ARTIFACT 16.47 W 2 19.00 15.00 17.00 NA			-						ļ
C LABORATORY ARTIFACT 16.48 W 1 32.00 32.00 32.00 NA C LABORATORY ARTIFACT 16.63 W 1 4.00 4.00 4.00 HA C LABORATORY ARTIFACT 16.65 W 1 17.00 17.00 17.00 NA C LABORATORY ARTIFACT 16.66 W 1 12.00 12.00 12.00 NA C LABORATORY ARTIFACT 16.68 W 1 59.00 59.00 55.00 NA C LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 5.00 NA C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.38 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.60 W 1 43000.00 43000.00 NA C LABORATORY ARTIFACT 17.60 W 1 1900.00 1900.00 NA C METHYLPROPYLBENZENE 6.93 W 1 1900.00 1900.00 1900.00 NA C METHYLPROPYLBENZENE 6.95 W 1 1900.00 1900.00 1900.00 NA C METHYLPROPYLBENZENE 6.95 W 1 1900.00 1900.00 1900.00 NA C METHYLPROPYLBENZENE 6.95 W 1 1900.00 1900.00 1900.00 NA C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C TRIMETHYLBENZENE 6.30 W 1 140.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 140.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 140.00 16.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 NA C TRIMETHYLBENZENE 6.57 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.58 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.68 W 1 22.00 23.00 23.00 NA									
C LABORATORY ARTIFACT 16.63 M 1 4.00 4.00 4.00 MA		· · · · · · · · · · · · · · · · · · ·							
C LABORATORY ARTIFACT 16.65 W 1 17.00 17.00 17.00 17.00 NA C LABORATORY ARTIFACT 16.67 W 1 12.00 12.00 12.00 NA C LABORATORY ARTIFACT 16.68 W 1 59.00 59.00 59.00 NA C LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 5.00 NA C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 16.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.60 W 1 43000.00 43000.00 43000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00.00 19000.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00.00 19000.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00.00 19000.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00 19.00.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00 19.00.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00 19.00.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00 19.00 19.00 NA C LABORATORY ARTIFACT 17.37 W 2 43000.00 43000.00 43000.00 NA C LABORATORY ARTIFACT 17.37 W 2 43000.00 19.00.00 19.00 NA C RETHYLPROPYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C C TRIMETHYLBENZENE 6.40 W 1 16.00 16.00 16.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.51 W 1 48.00 48.00 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.68 W 1 21.00 21.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00									
C LABORATORY ARTIFACT 16.67 W 1 12.00 12.00 12.00 NA C LABORATORY ARTIFACT 16.68 W 1 59.00 59.00 59.00 NA C LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 5.00 NA C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 16.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.60 W 1 43000.00 43000.00 NA C LABORATORY ARTIFACT 17.60 W 1 43000.00 43000.00 NA C LABORATORY ARTIFACT 17.60 W 1 43000.00 43000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00 19000.00 NA C LABORATORY ARTIFACT 17.60 W 1 10.00 10.00 19.00 NA C LABORATORY ARTIFACT 17.60 W 1 19.00 19.00.00 NA C LABORATORY ARTIFACT 17.37 W 1 19.00 19.00 NA C LABORATORY ARTIFACT 17.37 W 1 19.00 19.00 NA C LABORATORY ARTIFACT 16.72 W 1 16.00 15.00 NA C RETHYLPROPYLBENZENE 6.38 W 1 19.00 19.00 00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.50 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C C UNNOWN 5.07 W 1 4.00 4.00 4.00 4.00 NA C UNNOWN 5.07 W 1 4.00 4.00 4.00 4.00 4.00 NA C C C C C C C C C		····	· · · · · · · · · · · · · · · · · · ·	ļ					
C LABORATORY ARTIFACT 16.68 W 1 59.00 59.00 59.00 NA C LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 5.00 NA C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 16.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 NA C METHYLPROPYLBENZENE 6.93 W 1 43000.00 43000.00 43000.00 NA C METHYLPROPYLBENZENE 6.95 W 1 19^000.00 19000.00 19000.00 NA C METHYLPROPYLBENZENE 7.08 W 1 10.00 10.00 10.00 NA C SUBSTITUTED BENZENE 4.95 W 2 43000.00 15000.00 29000.00 NA C C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 22.00 23.00 NA C TRIMETHYLBENZENE 6.60 W 1 20.00 NA C TRIMETHYLBENZENE 6.60 W 1 20.00 NA C TRIMETHYLBENZENE 6.60 W 1 20.00 NA C TRIMETHYLBENZENE 6.60 W 1 20.00 NA C TRIMETHYLBENZENE 6.60 W 1 20.00 NA C TRIMETHYLBENZENE 6.60 W 1 20.00			ļ						
C LABORATORY ARTIFACT 16.70 W 2 7.00 3.00 5.00 NA C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 16.00 NA C LABORATORY ARTIFACT 17.58 W 1 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.000.00 4.000.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.000.00 4.000.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.000 4.000.00 NA C LABORATORY ARTIFACT 17.58 W 1 4.00 4.00 4.00 NA C LABORATORY ARTIFACT 17.58 W 1 19.00.00 4.000 1.000 NA C LABORATORY ARTIFACT 17.08 W 1 19.00 19.00.00 NA C LABORATORY ARTIFACT 17.08 W 1 19.00 19.00.00 NA C LABORATORY ARTIFACT 17.08 W 1 19.00 19.00.00 NA C C LABORATORY ARTIFACT 17.08 W 1 19.00 19.00 19.00 NA C C LABORATORY ARTIFACT 17.08 W 1 19.00 19.00 19.00 NA C C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C C TRIMETHYLBENZENE 6.50 W 1 13.00 13.00 13.00 NA C C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C C TRIMETHYLBENZENE 6.80 W 1 21.00 21.00 23.00 23.00 NA C C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C C TRIMETHYLBENZENE 6.80 W 1 4.00				-					
C LABORATORY ARTIFACT 16.72 W 2 26.00 23.00 24.50 NA C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 NA C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 A.00 NA C LABORATORY ARTIFACT 17.60 W 1 43000.00 43000.00 43000.00 NA C METHYLPROPYLBENZENE 6.93 W 1 19.000.00 19000.00 19000.00 NA C METHYLPROPYLBENZENE 6.95 W 1 19.000.00 19000.00 19000.00 NA C METHYLPROPYLBENZENE 7.08 W 1 10.00 10.00 10.00 NA C SUBSTITUTED BENZENE 4.95 W 2 43000.00 15000.00 29000.00 NA C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C TRIMETHYLBENZENE 6.40 W 1 16.00 16.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.			 						
C LABORATORY ARTIFACT 17.37 W 1 13.00 13.00 13.00 NA	CIC		-						<u> </u>
C LABORATORY ARTIFACT 17.58 W 1 16.00 16.00 16.00 NA	TIC								ļ
C LABORATORY ARTIFACT 17.60 W 1 4.00 4.00 4.00 NA C METHYLPROPYLBENZENE 6.93 W 1 43000.00 43000.00 NA C METHYLPROPYLBENZENE 6.95 W 1 19.00.00 19000.00 19000.00 NA C METHYLPROPYLBENZENE 7.08 W 1 10.00 10.00 10.00 NA C SUBSTITUTED BENZENE 4.95 W 2 43000.00 15000.00 29000.00 NA C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C TRIMETHYLBENZENE 6.40 W 1 16.00 16.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 21.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 4.00 4.00 4.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.	ric			ļ					
METHYLPROPYLBENZENE	CIC	·	 -	 					
C METHYLPROPYLBENZENE 6.95 W 1 19000.00 19000.00 NA 1 10000.00 19000.00 NA 1 10.00 10.00 10.00 NA 10.00 NA 10.	CIC								
C METHYLPROPYLBENZENE	TIC								ļ
C SUBSTITUTED BENZENE 4.95 N 2 43000.00 15000.00 29000.00 NA C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 19.00 NA C TRIMETHYLBENZENE 6.40 W 1 16.00 16.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 13.00 NA C TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C UNKNOWN 5.07 W 1 4.00 4.00 4.00 NA C UNKNOWN 5.07 W 1 4.00 4.00 4.00 NA C UNKNOWN 5.07 W 1 4.00 4.00 4.00 NA C UNKNOWN 5.07 W 1 4.00 4.00 4.00 NA C C C C C C C C C	CIC								
C TRIMETHYLBENZENE 6.38 W 1 19.00 19.00 NA C TRIMETHYLBENZENE 6.40 W 1 16.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 21.00 21.00 NA C TRIMETHYLBENZENE 6.78 W 1 22.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 NA	CIC								ļ
C TRIMETHYLBENZENE 6.40 W 1 16.00 16.00 NA C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 NA C TRIMETHYLBENZENE 6.67 W 1 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 NA	CIC								ļ
C TRIMETHYLBENZENE 6.50 W 1 34.00 34.00 NA C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 NA C TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 NA C TRIMETHYLBENZENE 6.80 W 1 4.00 4.00 NA	CIC								
C TRIMETHYLBENZENE 6.52 W 1 48.00 48.00 NA C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 NA C TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C UNKNOWN 5.07 W 1 4.00 4.00 NA	CIC				1				
C TRIMETHYLBENZENE 6.67 W 1 13.00 13.00 NA C TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 NA C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 23.00 NA C UNKNOWN 5.07 W 1 4.00 4.00 NA	CIC				1				ļ
CC TRIMETHYLBENZENE 6.78 W 1 21.00 21.00 NA CC TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 NA CC UNKNOWN 5.07 W 1 4.00 4.00 NA	ric	TRIMETHYLBENZENE	6.52	W	1	48.00	48.00	48.00	NA
C TRIMETHYLBENZENE 6.80 W 1 22.00 23.00 NA CC UNKNOWN 5.07 W 1 4.00 4.00 NA	ric	TRIMETHYLBENZENE	6.67	W	1	13.00	13.00	13.00	NA
C UNKNOWN 5.07 W 1 4.00 4.00 NA	ric	TRIMETHYLBENZENE	6.78	W	1	21.00	21.00	21.00	NA
	ic	TRIMETHYLBENZENE	6.80	W	1	23.00	23.00	23.00	NA
C UNKNOWN 5.38 W 1 55000.00 55000.00 NA	IC	UNKNOWN	5.07	W	1	4.00	4.00	4.00	NA
	CIC	UNKNOWN	5.30	W	1	55000.00	55000.00	55000.00	NA

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - CONTAMINATION REPORT
REVIEWER: DENNIS MARTINATION REPORT

BEGINNING SAMPLE #:1545

DATE:02/27/94

TCL/ TIC	сонфолир	RT	MATRIX	NUMBER OF SAMPLES	HIGH COM	TOM COM	MEAN CON	IDL
TIC	UNKHOWE	5.52	W	1	13000.00	13000.00	13000.00	MA
TIC	UNENOWN	5.63	W	. 1	8.00	8.00	8.00	MA
TIC	UNKNOWN	5.67	W	3	28000.00	6.00	13002.00	MA
TIC	UNKNOWN	5.88	W	1	3.00	3.00	3.00	KA
TIC	UNKNOWN	5.98	w	1	12000.00	12000.00	12000.00	NA
TIC	UNKNOWN	6.07	W	1	22000.00	22000.00	22000.00	NA
TIC	UNKNOWN	6.27	W	1	3.00	3.00	3.00	NA
TIC	UNKNOWN	6.43	W	1	60000.00	60000.00	60000.00	NA
TIC	UNKNOWN	6.68	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	6.80	W	1	33000.00	33000.00	33000.00	NA .
TIC	UNKNOWN	6.82	w	1	13000.00	13000.00	13000.00	NA
TIC	UNKNOWN	7.35	w	2	45.00	18.00	31.50	NA
TIC	UNKNOWN	7.38	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	7.47	w	3	9.00	2.00	5.00	NA
TIC	UNKNOWN	7.48	W	1	6.00	6.00	6.00	NA
TIC	UNKNOWN	7.58	W	1	13.00	13.00	13.00	
TIC	UNKNOWN	7.65	W	1	17.00	17.00	17.00	
TIC	UNKNOWN	7.72	W	2	43.00	7.00	25.00	
TIC	UNKNOWN	7.73	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	7.77	W	2	51.00	10.00	30.50	NA
TIC	UNKNOWN	7.78	W	1	22.00	22.00	22.00	NA
TIC	UNKNOWN	7.80	w	2	12000.00	19.00	6009.50	
TIC		7.83	w	1	22.00	22.00	22.00	NA
TIC	UNKNOWN		W	1		39.00	39.00	NA
	UNRNOWN	7.85	ļ		39.00			
TIC	UNKNOWN	7.87	W	1	2.00	2.00	2.00	NA
TIC	UNKNOWN	7.88	W	1	26.00	26.00	26.00	NA
TIC	UNKNOWN	7.90	W	1	11000.00	11000.00	11000.00	MA
TIC	UNKNOWN	7.92	W	1	2.00	2.00	2.00	NA.
TIC	UNKNOWN	8.00	W	1	10.00	10.00	10.00	KY
TIC	UNKNOWN	8.02	W	1	12.00	12.00	12.00	NA
TIC	UNKNOWN	8.17	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	8.23	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	8.28	W	1	13.00	13.00	13.00	NA .
TIC	UNKNOWN	8.50	W	1	9.00	9.00	9.00	NA.
TIC	UNKNOWN	8.52	W	1	7.00	7.00	7.00	NA
TIC	UNKNOWN		W	1	3.00	3.00	3.00	
TIC	UNKNOWN	8.55	W	2	3.00	3.00	3.00	
TIC	UNKNOWN	 	W	1	9.00	9.00		
TIC	UNKNOWN	8.62	W	2	28000.00	11000.00	19500.00	
TIC	UNKNOWN		W	1	8.00	8.00	8.00	
TIC	UNKNOWN	8.78	W	1	10.00	10.00	10.00	
TIC	UNKNOWN	8.82	W	1	7.00	7.00		
TIC	UNKNOWN	 	W	1	14.00	14.00	14.00	
TIC	UNKNOWN	8.95	W	1	7.00		7.00	
TIC	UNKNOWN	8.98	W	1	6.00	6.00	6.00	
TIC	UNKNOWN	9.00	W	2	13.00	2.00	7.50	NA
TIC	UNKNOWN	9.12	W	1	30.00	30.00	30.00	NA
TIC	UNKNOWN	9.15	W	1	24.00	24.00	24.00	NA
TIC	UNKNOWN	9.27	W	1	4.00	4.00		
TIC	UNKNOWN	9.37	W	3	8.00	3.00	4.67	NA

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

		T		T				T
TCL/	СОНБОДИД	RT	MATRIX	number of Samples	RIGH COM	TOM CON	HEAN CON	IDL
TIC	UNKNOWN	9.47	W	1	10.00	10.00	10.00	MA
TIC	UNKNOWN	9.52	W	1	6.00	6.00	6.00	KA
TIC	UNKNOWN	9.55	W	2	18.00	8.00	13.00	KA
TIC	UNKNOWN	9.60	W	2	9.00	6.00	7.50	KA
TIC	UNKNOWN	9.62	W	2	3.00	3.00	3.00	MA
TIC	UNKNOWN	9.63	W	1	32.00	32.00	32.00	NA
TIC	UNKNOWN	9.67	W	2	57.00	3.00	30.00	NA
TIC	UNKNOWN	9.72	W	3	7.00	3.00	4.67	HA
TIC	UNKNOWN	9.75	W	1	3.00	3.00	3.00	AA
TIC	UNKNOWN	9.77	W	2	24.00	3.00	13.50	MA
TIC	UNKNOWN	10.10	W	1	5.00	5.00	5.00	NA
TIC	UNKNOWN	10.12	W	1	8.00	8.00	8.00	NA
TIC	UNKNOWN	10.15	W	1	20.00	20.00	20.00	NA
TIC	UNKNOWN	10.32	W	1	3.00	3.00	3.00	NA
TIC	UNKNOWN	10.38	W	1	3.00	3.00	3.00	NA
TIC	UNKNOWN	10.42	w	1	6.00	6.00	6.00	NA
TIC	UNKNOWN	10.67	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	10.90	w	1	5.00	5.00	5.00	NA
TIC	UNKNOWN	10.93	W	1	3.00	3.00	3.00	NA
TIC	UNKNOWN	10.97	W	4	21.00	4.00	10.00	NA
TIC	UNXNOWN	10.98	W	3	27.00	3.00	16.33	NA
TIC	UNKNOWN	11.00	W	2	14.00	11.00	12.50	NA
TIC	UNKNOWN	11.07	W	1	19.00	19.00	19.00	KA
TIC	UNKI:OWN	11.08	w	1	4.00	4.00	4.00	ИА
TIC	UNKNOWN	11.10	W	3	22.00	11.00	15.67	NA
TIC	UNKNOWN	11.13	W	1	9.00	9.00	9.00	NA
TIC	UNKNOWN	11.15	W	2	11.00	7.00	9.00	HA
TIC	UNKNOWN	11.68	W	1	2.00	2.00	2.00	MA
TIC	UNKNOWN	11.73	W	1	10.00	10.00	10.00	NA
TIC	UNKNOWN	11.88	W	1	17.00	17.00	17.00	NA
TIC	UNKNOWN	11.90	W	1	16.00	16.00	16.00	MA
TIC	UNKNOWN	11.98	W	1	18.00	18.00	18.00	MA
TIC	UNKNOWN	12.53	¥	1	13.00	13.00	13.00	NA
TIC	UNKNOWN	13.02	w	1	7.00	7.00	7.00	MA
TIC	UNKNOWN	13.15	W	1	3.00	3.00	3.00	NA
TIC	UNKNOWN	13.28	w	1	5.00	5.00	5.00	NA
TIC	UNKNOWN	13.57	W	2	16.00	4.00	10.00	NA
TIC	UNKNOWN	13.58	W	2	8.00	6.00	7.00	NA
TIC	UNKNOWN	13.68	W	1	5.00	5.00	5.00	NA
TIC	UNKNOWN	13.70	W	1	7.00	7.00	7.00	на
TIC	UNKNOWN	13.72	W	1	6.00	6.00	6.00	ИА
TIC	UNKNOWN	13.83	w	1	3.00	3.00	3.00	MA
TIC	UNKNOWN	14.03	W	1	4.00	4.00	4.00	MA
TIC	UNKNOWN	14.08	W	1	5.00	5.00	5.00	NA
TIC	UNKNOWN	14.10	w	3	21.00	5.00	11.33	NA
TIC	UNKNOWN	14.12	W	1	8.00	8.00	8.00	
TIC	ИМКИОМР	14.20	W	3	18.00	11.00	13.67	NA
TIC	UNKNOWN	14.23	W	1	6.00	6.00	6.00	
TIC	UNKNOWN	14.25	W	1	9.00	9.00	9.00	
TIC	UNKNOWN	14.38	W	1	3.00	3.00	3.00	
			I		1		l	1

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

TCL/ TIC	СОНБОЛИД	RT	MATRIX	NUMBER OF SAMPLES	HIGE COM	TOM COM	HEAM COM	IDL
TIC	UNKNOWN	14.67	W	2	3.00	2.00	2.50	KA
TIC	UNKNOWN	14.78	W	1	4.00	4.00	4.00	MA
TIC	UNKNOWN	14.60	w	1	4.00	4.00	4.00	MA
TIC	UNKNOWN	14.83	W	1	6.00	6.00	6.00	MA
TIC	UNKNOWN	15.13	W	3	4.00	2.00	3.00	KA
TIC	UNKNOWN	15.17	W	1	3.00	3.00	3.00	NA
TIC	UNKNOWN	15.20	W	2	15.00	2.00	8.50	NA
TIC	UNKNOWN	15.22	W	2	12.00	10.00	11.00	NA
TIC	UNKNOWN	15.25	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	15.27	W	1	10.00	10.00	10.00	MA
TIC	UNKNOWN	15.40	W	1	3.00	3.00	3.00	MA
TIC	UNKNOWN	15.87	W	1	7.00	7.00	7.00	NA
TIC	UNKNOWN	15.68	W	2	4.00	3.00	3.50	NA
TIC	UNKNOWN	16.25	W	2	20.00	17.00	18.50	KA
TIC	UNKNOWN	16.30	W	1	2.00	2.00	2.00	MA
TIC	UNKNOWN	16.37	w	1	2.00	2.00	2.00	NA
TIC	UNKNOWN	16.38	w	2	33.00	9.00	21.00	NA
TIC	UNKNOWN	16.40	W	1	69.00	69.00	69.00	NA
TIC	UNKNOWN	16.42	W	2	10.00	2.00	6.00	NA
TIC	UNKNOWN	16.43	w	3	47.00	28.00	35.67	NA
TIC	UNKNOWN	16.47	W	3	6500.00	13.00	2180.67	NA
TIC	UNKNOWN	16.48	W	1	22.00	22.00	22.00	NA
TIC	UNKNOWN	16.50	W	1	25.00	25.00	25.00	NA
TIC	UNKNOWN	16.83	W	1	5.00	5.00	5.00	NA
TIC	UNKNOWN	16.92	W	1	4.00	4.00	4.00	NA
TIC	UNKNOWN	17.03	W	1	8.00	8.00	8.00	МА
TIC	UNKNOWN	17.30	W	1	17.00	17.00	17.00	NA
TIC	UNKNOWN	17.37	W	1	9.00	9.00	9.00	NA
TIC	UNKNOWN	17.55	W	2	8.00	4.00	6.00	NA
TIC	UNKNOWN	17.57	W	2	17.00	4.00	10.50	NA
TIC	UNKNOWN	17.58	W	1	15.00	15.00	15.00	NA
TIC	UNKNOWN	17.60	W	1	10.00	10.00	10.00	NA
TIC	UNKNOWN	17.62	W	1	14.00	14.00	14.00	MA
TIC	UNKNOWN	17.78	w	2	18.00	4.00	11.00	MA
TIC	UNKNOWN	17.80	W	1	11.00	11.00	11.00	MA
TIC	UNKNOWN	17.82	W	1	54.00	54.00	54.00	NA
TIC	UNKNOWN	17.83	W	1	44.00	44.00	44.00	NA
TIC	UNKNOWN	17.87	W	1	57.00	57.00	57.00	NA
TIC	UNKNOWN	17.88	W	1	29.00	29.00	29.00	NA
TIC	UNKNOWN	17.90	W	2	29.00	6.00	17.50	NA
TIC	UNKNOWN	18.27	W	1	15.00	15.00	15.00	NA
TIC	UNKNOWN		w	1	4.00	4.00	4.00	
TIC	UNKNOWN	18.38	W	1	5.00	5.00	5.00	
TIC	UNKNOWN	19.43	W	1	13.00	13.00	13.00	
TIC	UNKNOWN	19.82	W	1	4.00	4.00	4.00	
TIC	UNKNOWN	19.83	W	1	9.00	9.00	9.00	
TIC	UNKNOWN	19.85	W	1	2.00	2.00	2.00	
TIC	UNKNOWN	19.87	W	1	9.00	9.00	9.00	<u> </u>
TIC	UNKNOWN	19.86	W	1	4.00	4.00	4.00	
TIC	UNKNOWN	19.90	W	1	11.00	11.00	11.00	L
		22.30	<u> </u>		11.00	11.00	11.00	L''

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

TCL/ TIC	СОНФОЛИД	RT	MATRIX	Number of Samples	HIGH COM	TOM CON	HEAN CON	IDL			
TIC	UNKNOWN	19.93	W	1	3.00	3.00	3.00	NA			
TIC	UNKNOWN	19.95	W	1	3.00	3.00	3.00	MA			
TIC	UNKHOWN ALKYL	7.88	W	1	10.00	10.00	10.00	MA			
TIC	UNKNOWN ALKYLBENIENE	7.27	W	1	8.00	8.00	8.00	MA			
TIC	UNKNOWN ALKYLBENEENE	7.90	W	1	10.00	10.00	10.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID	9.58	W	1	15.00	15.00	15.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID	9.93	W	1	16.00	16.00	16.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID	9.97	W	1	31.00	31.00	31.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID	10.23	W	1	9.00	9.00	9.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID	13.25	W	1	2.00	2.00	2.00	MA			
TIC	UNKNOWN CARBOXYLIC ACID ESTER	11.22	W	1	7.00	7.00	7.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID ESTER	11.23	W	1	16.00	16.00	16.00	NA			
	WINDWN CARBOXYLIC ACID ESTER	11.87	W	1	9.00	9.00	9.00	NA			
TIC	UNKNOWN CARBOXYLIC ACID ESTER	13.00	w	1	42.00	42.00	42.00				
TIC	UNKNOWN CARBOXYLIC ACID ESTER	13.02	W	1	10.00	10.00	10.00	}			
TIC	UNKNOWN CARBOXYLIC ACID ESTER	13.57	W	1	4.00	4.00	4.00				
TIC	UNKNOWN CARBOXYLIC ACID ESTER	13.67	w	1	4.00	4.00	4.00				
TIC	UNKNOWN HYDROCARBON	5.03	W	1	82000.00	82000.00	82000.00				
TIC	UNKNOWN HYDROCARBON	5.05	w	1	27000.00	27000.00	27000.00				
TIC	UNKNOWN HYDROCARBON	5.37		1	110000.00	110000.00	110000.00	├			
TIC	UNKNOWN HYDROCARBON	5.72	W	1		30000.00	30000.00	 			
TIC			W	1	30000.00	27000.00	27000.00				
TIC	UNKNOWN HYDROCARBON	5.73	W	1	27000.00	33000.00	33000.00				
TIC	UNKNOWN HYDROCARBON	6.00	w		33000.00		46000.00				
	UNKNOWN HYDROCARBON	6.05		1	46000.00	46000.00					
TIC	UNKNOWN HYDROCARBON	6.42	W	1	130000.00	130000.00	130000.00				
TIC	UNKNOWN HYDROCARBON	6.62	W	2	53000.00	21000.00	37000.00	 			
TIC	UNKNOWN HYDROCARBON	7.35	W	1	81000.00	81000.00	81000.00				
TIC	UNKNOWN HYDROCARBON	7.37	W	1	31000.00	31000.00	31000.00				
TIC	UNKNOWN HYDROCARBON	8.22	W	1	89000.00	89000.00	89000.00	 			
TIC	UNKNOWN HYDROCARBON	8.30	W	2	45000.00	16000.00	30500.00				
TIC	UNKNOWN HYDROCARBON	8.78	W	2	28000.00	9900.00	18950.00	 			
TIC	UNKNOWN HYDROCARBON	9.02	W	2	59000.00	20000.00	39500.00				
TIC	UNKNOWN BYDROCARBON	9.75	W	2	36000.00	17000.00	26500.00				
TIC	UNKNOWN PHENOL	10.67	W	2	4.00	3.00	3.50				
TIC	UNKNOWN PHTHALATE	15.98	W	1	2.00	2.00	2.00				
	UNKNOWN PHTHALATE	16.10	W	1	25.00	25.00	25.00	├			
TIC	UNKNOWN PNA	10.77	W	1	24.00	24.00	24.00	NA			
TIC	UNKNOWN PNA	15.08	W	1	12.00	12.00	12.00				
TIC	UNKNOWN SUBST. CYCLOHEX	5.75	W	1	54000.00	54000.00	54000.00	NA			
TIC	VOA TCL	4.93	W	1	6.00	6.00	6.00	NA			
TIC	VOA TCL	5.07	W	2	10.00	8.00	9.00	NA			
TIC	VOA TCL	5.10	W	1	3.00	3.00	3.00	MA			
TIC	VOA TCL	5.18	W	1	130.00	130.00	130.00	NA			
TIC	VOA TCL	5.30	W	1	8.00	8.00	8.00	MA			
TIC	VOA TCL	5.32	W	1	6.00	6.00	6.00	NA			
TIC	VOA TCL	5.43	W	2	71.00	53.00	62.00	NA			
TIC	VOA TCL	5.47	W	1	2.00	2.00	2.00	NA			

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

Sample Number	SAMPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1546		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	3.00	μg/L	
1546		1.00	1545	BUTYLBENEYLPETEALATE		TCL	1.00	μg/L	
1546	Ī	1.00	1545	DI-M-BUTYLPHTHALATE		TCL	1.00	µg/L	
1546		1.00	1545	DISTEYLPHTEALATE		TCL	1.00	μg/L	
1546		1.00	1545	LABORATORY ARTIFACT	16.65	TIC	17.00	µg/L	J
1546		1.00	1545	UNKNOWN	9.72	TIC	3.00	μg/L	J
1546		1.00	1545	UNKNOWN	11.10	TIC	11.00	µg/L	J
1546		1.00	1545	UNKNOWN	13.68	TIC	5.00	µg/L	J
1546		1.00	1545	UNKNOWN	14.20	TIC	11.00	μg/L	J
1546		1.00	1545	UNKNOWN	14.78	TIC	4.00	μg/L	J
1546		1.00	1545	UNKNOWN	15.22	TIC	12.00	μg/L	J
1546		1.00	1545	UNKNOWN	16.38	TIC	33.00	μg/L	J
1546		1.00	1545	UNKNOWN	16.43	TIC	28.00	μg/L	J
1546		1.00	1545	UNKNOWN	17.83	TIC	44.00	μg/L	J
1546		1.00	1545	UNKNOWN	19.87	TIC	9.00	µg/L	J
1547		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	1	TCL	8.00	μg/L	
1548	PB	1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	2.00	μg/L	
1549		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	3.00	μg/L	
1549		1.00	1545	LABORATORY ARTIFACT	16.70	TIC	3.00	μg/L	J
1550		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	2.00	μg/L	
1550		1.00	1545	LABORATORY ARTIFACT	16.72	TIC	26.00	μg/L	J
1550		1.00	1545	VOA TCL	5.10	TIC	3.00	μg/L	J
1550		1.00	1545	VOA TCL	5.47	TIC	2.00	µg/L	J
1551		1.00	1545	1,2-DICHLOROBENZENE		TCL	5.00	μg/L	
1551		1.00	1545	1,3-DICHLOROBENZENE		TCL	2.00	μg/L	
1551		1.00	1545	1,4-DICHLOROBENZENE		TCL	2.00	μg/L	
1551		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	5.00	μg/L	
1551		1.00	1545	DI-N-BUTYLPHTHALATE		TCL	1.00	μg/L	
1551		1.00	1545	DIMETHYLBENZOIC ACID	9.50	TIC	7.00	μg/L	J
1551		1.00	1545	DIMETHYLBENZOIC ACID	9.55	TIC	7.00	μg/L	J
1551	 	1.00	1545	ETHYLMETHYLBENZENE	5.75	TIC	10.00	μg/L	J
1551		1.00	1545	ETHYLMETHYLBENZENE	6.15	TIC	10.00	µg/L	J
1551		1.00	1545	ETHYLMETHYLBENZENE	6.33	TIC	17.00	μg/L	J
1551		1.00	1545	NAPHTHALENE		TCL	9.00	μg/L	
1551		1.00	1545	TRIMETHYLBENZENE	6.50	TIC	34.00	µg/L	3
1551		1.00	1545	TRIMETHYLBENZENE	6.78	TIC	21.00	μg/L	J
1551		1.00	1545	UNKNOWN	7.35	TIC	45.00	μg/L	J
1551		1.00	1545	UNKNOWN	7.58	TIC	13.00	μg/L	3
1551		1.00	1545	UNKNOWN	7.72	TIC	43.00	μg/L	J
1551		1.00	1545	UNKNOWN	7.78	TIC	22.00	μg/L	J
1551		1.00	1545	UNKNOWN	7.85	TIC	39.00	µg/L	J
1551		1.00	1545	имкиоми	8.00	TIC	10.00	μg/L	J
1551		1.00	1545	UNKNOWN	8.78	TIC	10.00	μg/L	J
1551		1.00	1545	UNKNOWN	8.82	TIC		μg/L	J
1551		1.00	1545	UNKNOWN	9.12	TIC	30.00	µg/L	J
1551		1.00	1545	ИНКИОМИ	9.63	TIC	32.00	µg/L	J
1551		1.00	1545	UNKNOWN CARBOXYLIC ACID	9.93	TIC	16.00	µg/L	J
1551		1.00	1545	VOA TCL	5.07	TIC			J
1551		1.00	1545	VOA TCL	5.43	TIC	 	₩—	J
1552	WR	1.00	1545	1,2-DICHLOROBENZENE	 	TCL	11.00		

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	СОНРОТИР	RT	TCL/	CONCENTRATION	UNITS	Q FLAG
1552	WR	1.00	1545	1,3-DICHLOROBENZENE		TCL	3.00	μg/L	
1552	WR	1.00	1545	1,4-DICELOROBENTENE		TCL	4.00	µg/L	
1552	WR	1.00	1545	2-METHYLMAPHTHALENE		TCL	2.00	μg/L	
1552	WR	1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	1	TCL	7.00	µg/L	
1552	WR	1.00	1545	BUTYLBENZYLPETHALATS		TCL	2.00	µg/L	
1552	WR	1.00	1545	DI-N-BUTYLPHTHALATE		TCL	2.00	μg/L	
1552	WR	1.00	1545	ETHYLDIMETHYLBENZENE	7.32	TIC	12.00	µg/L	J
1552	WR	1.00	1545	ETHYLMETHYLBENZENE	5.77	TIC	11.00	μg/L	3
1552	WR	1.00	1545	ETHYLMETHYLBENZENE	6.17	TIC	15.00	μg/L	3
1552	WR	1.00	1545	ETHYLMETHYLBENZENE	6.35	TIC	24.00	µg/L	3
1552	WR	1.00	1545	NAPHTRALENE	 	TCL	17.00	μg/L	
1552	WR	1.00	1545	TRIMETHYLBENZENE	6.52	TIC	48.00	μς/L	J
1552	WR	1.00	1545	TRIMETHYLBENZENE	6.80	TIC	23.00	-	1 7
1552	WR	1.00	1545	UNKNOWN	7.65	TIC	17.00		3
1552	WR	1.00	1545	UNKNOWN	7.77	TIC	51.00	-	3
1552	WR	1.00	1545	UNKNOWN	7.83	TIC	22.00	 	3
1552	WR	1.00	1545	UNKNOWN	7.88	TIC	26.00	 	3
1552	WR	1.00	1545	UNKNOWN	8.02	TIC	12.00		J
1552	WR	1.00	1545	UNKNOWN	8.87	TIC	14.00		3
1552	WR	1.00	1545	UNRNOWN	9.00	TIC	13.00		3
1552	WR	1.00	1545	UNKNOWN	9.15	TIC	24.00		3
1552	WR	1.00	1545	UNKNOWN	9.67	TIC	57.00		3
1552	WR	1.00	1545	UNRNOWN CARBOXYLIC ACID	9.58	TIC	15.00	ļ — —	3
1552	WR	1.00	1545	UNKNOWN CARBOXYLIC ACID	9.97	TIC	31.00		3
1552	WR	1.00	1545	VOA TCL	5.07	TIC	10.00		3
1552	WR	1.00	1545	VOA TCL	5.18	TIC	130.00		3
1552	WR	1.00	1545	VOA TCL	5.43	TIC	71.00		3
1554		1.00	1545	BENZOPHENONE	11.70	TIC		μg/L	3
1554		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	111.70	TCL		µg/L	
1554		1.00	1545	 	15 53	TIC		μg/L	J
1554			1545	BLANK CONTAMINANT	15.53	-			
	ļ	1.00			15.60	TIC	9.00	-]
1554		1.00	1545	BUTYLBENZYLPETHALATE	 	TCL		μg/L	
1554		1.00	1545	DI-N-BUTYLPHTHALATE	-	TCL		μg/L	
1554		1.00	1545	LABORATORY ARTIFACT	16.72	TIC	23.00		3
1554		1.00	1545	UNKNOWN	7.38	TIC		µg/L	J
1554			1545	UNKNOWN	8.23	TIC	 	μg/L	3
1554			1545	UNKNOWN	8.65	TIC		μg/ <u>L</u>	J
1554	 	1.00	1545	UNKNOWN	8.98	TIC		μg/L	J
1554		1.00	1545	UNKNOWN	9.37	TIC	 	µg/L	J
1554		1.00	1545	UNKNOWN	9.47	TIC	10.00		J
1554	ļ	1.00	1545	UNKNOWN	9.52	TIC		μg/L	3
1554		1.00	1545	UNKNOWN	9.67	TIC	<u> </u>	μg/L	3
1554	 	1.00	1545	UNKNOWN	10.10	TIC		μg/L	3
1554		1.00	1545	UNKNOWN	11.15	TIC	 	µg/L	J
1554	LI	1.00	1545	UNKNOWN	16.47	TIC	13.00		3
1554		1.00	1545	UNKNOWN	16.83	TIC	5.00	µg/L	J
1554		1.00	1545	UNKNOWN	16.92	TIC	4.00	µg/L	J
1554		1.00	1545	UNKNOWN	17.03	TIC	8.00	μg/L	3
1554		1.00	1545	UNKNOWN	17.37	TIC	9.00	µg/L	J
1554	-7	1.00	1545	UNKNOWN	17.78	TIC	18.00	µg/L	J

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

Sample Number	SAMPLE TYPE	SAMPLE DILUTION	SDG	сонфолир	RT	TCL/	CONCENTRATION	UNITS	Q PLAG
1554		1.00	1545	UNKNOWN	17.90	TIC	6.00	μg/L	J
1554		1.00	1545	UNKNOWN	18.38	TIC	5.00	μg/L	J
1554		1.00	1545	UNKNOWN CARBOXYLIC ACID	10.23	TIC	9.00	μg/L	J
1555		1.00	1545	Benzophenone	11.67	TIC	4.00	µg/L	J
1555		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	2.00	μg/L	
1555		1.00	1545	BLANK CONTAMINANT	15.50	TIC	5.00	μg/L	J
1555		1.00	1545	BLANK CONTAMINANT	15.57	TIC	9.00	μg/L	J
1555		1.00	1545	BLANK CONTAMINANT	18.32	TIC	5.00	μg/L	J
1555		1.00	1545	BUTYLBENZYLPHTHALATE		TCL	1.00	μg/L	
1555		1.00	1545	LABORATORY ARTIFACT	16.67	TIC	12.00	μg/L	J
1555		1.00	1545	UNKNOWN	10.42	TIC	6.00	μg/L	J
1555		1.00	1545	UNKNOWN	15.13	TIC	4.00	μg/L	J
1555		1.00	1545	инкноми	15.40	TIC	3.00	μg/L	J
1555		1.00	1545	UNRHOWN PHENOL	10.67	TIC	3.00	μg/L	J
1556	FB	1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	2.00	μg/L	
1556	PB	1.00	1545	BLANK CONTAMINANT	15.52	TIC	4.00	μg/L	J
1556	₽B	1.00	1545	BLANK CONTAMINANT	15.58	TIC	6.00	μg/L	J
1556	PB	1.00	1545	LABORATORY ARTIFACT	16.68	TIC	59.00	μg/L	J
1556	PB	1.00	1545	UNKNOWN	5.63	TIC	8.00	μg/L	J
1556	PB	1.00	1545	инкиони	7.35	TIC	18.00	μg/L	J
1556	PB	1.00	1545	UNKNOWN	8.17	TIC	4.00	μg/L	J
1556	PB	1.00	1545	UNKNOWN	8.28	TIC	13.00	µg/L	J
1556	PB	1.00	1545	UNKNOWN	14.38	TIC	3.00	μg/L	J
1557		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	13.00	μg/L	
1557		1.00	1545	BLANK CONTAMINANT	15.52	TIC	4.00	μg/L	J
1557		1.00	1545	BLANK CONTAMINANT	15.58	TIC	7.00	μg/L	J
1557		1.00	1545	BLANK CONTAMINANT	18.35	TIC	4.00	μg/L	J
1557		1.00	1545	LABORATORY ARTIFACT	16.70	TIC	7.00	μg/L	J
1557		1.00	1545	UNKNOWN	9.75	TIC	3.00	μg/L	J
1557		1.00	1545	UNKNOWN	11.13	TIC	9.00	μg/L	J
1557		1.00	1545	UNKNOWN	14.23	TIC	6.00	µg/L	J
1557		1.00	1545	UNKNOWN	15.25	TIC	4.00	µg/L	J
1557		1.00	1545	UNKNOWN	16.43	TIC	32.00	μg/L	3
1557		1.00	1545	UNKNOWN	16.48	TIC	22.00	μg/L	J
1557		1.00	1545	UNKNOWN	17.88	TIC	29.00	μg/L	J
1557		1.00	1545	UNKNOWN	19.93	TIC	3.00	μg/L	J
1558	ER	1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	<u></u>	TCL		μg/L	
1558	ER	1.00	1545	BLANK CONTAMINANT	15.60	TIC			3
1559	ļ	1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	L	TCL		μg/L	
1559			1545	BLANK CONTAMINANT	15.60	TIC		, ,	3
1559		1.00	1545	BLANK CONTAHINANT	18.37	TIC			J
1559		1.00	1545	BUTYLBENZYLPHTHALATE	ļ	TCL		µg/L	
1559		1.00	1545	DI-N-BUTYLPETEALATE		TCL		µg/L	
1559		1.00	1545	UNKNOWN	9.77	TIC		ļ.,,	J
1559		1.00	1545	UNKNOWN	11.15	TIC	11.00		J
1559		1.00	1545	UNKNOWN	14.25	TIC			J
1559		1.00	1545	UNKNOWN	15.27	TIC	10.00		J
1559		1.00	1545	UNRNOWN	16.47	TIC		μg/L	
1559		1.00	1545	UNKNOWN	16.50	TIC	25.00	μg/L	3
1559		1.00	1545	UNKNOWN	17.90	TIC	29.00	μg/L	J

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE: 02/27/94

Sample Number	SAMPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UMITS	Q FLAG
1559		1.00	1545	UNKKOWN	19.95	TIC	3.00	μg/L	J
1560		1.00	1545	BENSOPHENONE	11.67	TIC	2.00	μg/L	J
1560		1.00	1545	BLANK CONTAMINANT	15.50	TIC	4.00	μg/L	J
1560		1.00	1545	BLANK CONTAMINANT	15.57	TIC	8.00	μg/L	J
1560		1.00	1545	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	
1560		1.00	1545	UNRNOWN	9.72	TIC	4.00	μg/L	J
1560		1.00	1545	UNKNOWN	11.10	TIC	14.00	μg/L	J
1560		1.00	1545	UNKNOWN	13.72	TIC	6.00	μg/L	J
1560		1.00	1545	UNKNOWN	14.20	TIC	12.00	μg/L	J
1560		1.00	1545	UNKNOWN	14.80	TIC	4.00	μg/L	7
1560	-	1.00	1545	UNKNOWN	15.22	TIC	10.00	μg/L	7
1560		1.00	1545	UNKNOWN	16.47	TIC	6500.00	μg/L	J
1560		1.00	1545	UNKNOWN	17.87	TIC	57.00	μg/L	J
1560		1.00	1545	UNRHOWN	18.33	TIC	4.00	µg/L	J
1560		1.00	1545	ижими	19.90	TIC	11.00	μg/L	J
1560		1.00	1545	UNKNOWN PHENOL	10.67	TIC	4.00	μg/L	3
1560		1.00	1545	UNKNOWN PETHALATE	15.98	TIC	2.00	μg/L	,
1560		1.00	1545	UNKJOWN PETHALATE	16.10	TIC	25.00	μg/L	3
1566		1.00	1545	BIS(2-ETHYLHEXYL)PETHALATE	-	TCL	2.00	μg/L	
1566		1.00	1545	CYCLOPENTASILOXANE, DECAMETH	7.57	TIC	5.00	µg/L	,
1566		1.00	1545	LABORATORY ARTIFACT	16.63	TIC	4.00	µg/L	J
1566	l	1.00	1545	UNKNOWN	9.72	TIC		μg/L	J
1566		1.00	1545	UNKNOWN	11.10	TIC	22.00		J
1566		1.00	1545	UNKNOWN	13.70	TIC		µg/L	J
1566		1.00	1545	UNKNOWN	13.83	TIC		μg/L	J
1566		1.00	1545	UNKNOWN	14.20	TIC	18.00		J
1566		1.00	1545	UNKNOWN	15.20	TIC	15.00		3
1566		1.00	1545	UNKNOWN	16.40	TIC	69.00		3
1566		1.00	1545	UNKNOWN	16.43	TIC	47.00	-	J
1566		1.00	1545	UNKNOWN	17.82	TIC	54.00		J
1566		1.00	1545	UNKNOWN	19.83	TIC		μg/L	, –
1567		1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	17.03	TCL		µg/L	——
1567		1.00	1545	BLANK CONTAMINANT	15.52	TIC		µg/L	,
1567		1.00	1545	BUTYLBENZYLPHTHALATE	13.32	TCL		μg/L	<u> </u>
1567		1.00	1545	CYCLOPENTASILOXANE, DECAMETH	7.55	TIC		μg/L	J
1567			1545	UNRNOWN		TIC			<u></u>
1567		1.00	1545	UNKNOWN	16.42	TIC			J
1567		1.00	1545	UNKNOWN	17.78	TIC			3
1568	WR	1.00	1545		17.78	TCL		μg/L μg/L	
1568	WR	1.00	1545	BIS(2-ETHYLHEXYL)PHTHALATE	7 = 7				J
				CYCLOPENTASILOXANE, DECAMETE	7.57	TIC			<u> </u>
1568	WR	1.00	1545	DIETHYLPHTHALATE		TCL		μg/L	
1568	WR	1.00	1545	LABORATORY ARTIFACT	15.52	TIC			J
1568	WR	1.00	1545	UNKNOWN	11.08	TIC		μg/L	J
1568	WR	1.00	1545	UNRNOWN	15.20	TIC			J
1568	WR	1.00	1545	UNKNOWN	15.88	TIC		μg/L	J
1568	WR	1.00	1545	UNKNOWN	16.38	TIC		μg/L	J
1568	WR	1.00	1545	UNKNOWN	16.42	TIC	10.00		3
1568	WR	1.00	1545	UNKNOWN	17.80	TIC	11.00		J
1568	WR	1.00	1545	UNKNOWN	18.27	TIC	15.00		J
1568	WR	1.00	1545	UNKNOWN CARBOXYLIC ACID ESTER	13.67	TIC	4.00	µg/L	J

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RI	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1569		1.00	1545	BIS(2-STHYLHEXYL)PHTHALATE		TCL	7.00	µg/L	
1569		1.00	1545	BUTYLBERSYLPHTEALATE		TCL	1.00	μg/L	
1569	L	1.00	1545	LABORATORY ARTIFACT	15.53	TIC	2.00	µg/L	J
1569		1.00	1545	UNKNOWN	15.88	TIC	4.00	µg/L	J
1570	WR	1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	15.00	μg/L	
1570	WR	1.00	1570	BLANK CONTAMINANT	5.50	TIC	5.00	μg/L	J
1570	WR	1.00	1570	BLANK CONTAMINANT	6.35	TIC	3.00	μg/L	J
1570	WR	1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	J
1570	WR	1.00	1570	UNKNOWN	6.27	TIC	3.00	μg/L	J
1570	WR	1.00	1570	UNKNOWN	7.77	TIC	10.00	μg/L	J
1570	WR	1.00	1570	UNKNOWN	9.55	TIC	8.00	µg/L	J
1570	WR	1.00	1570	UNKNOWN	10.12	TIC	8.00	μg/L	J
1570	WR	1.00	1570	UNKNOWN	11.68	TIC	2.00	µg/L	J
1571		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE	l	TCL	20.00	μg/L	
1571		1.00	1570	BUTYLBENZYLPHTHALATE		TCL	3.00	μg/L	J
1571		1.00	1570	DIETHYLPHTEALATE		TCL	1.00	μg/L	J
1571		1.00	1570	NAPHTHALENE		TCL	1.00	μg/L	J
1572	ER	1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	67.00	μg/L	
1572	ER	1.00	1570	BLANK CONTAMINANT	5.50	TIC	5.00	μg/L	J
1572	ER	1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	J
1572	ER	1.00	1570	LABORATORY ARTIFACT	17.58	TIC	16.00	μg/L	J
1572	ER	1.00	1570	UNKNOWN	19.82	TIC	4.00	μg/L	J
1572	ER	1.00	1570	UNKNOWN	19.85	TIC	2.00	μg/L	J
1572	ER	1.00	1570	UNKNOWN	19.88	TIC	4.00	μg/L	J
1573		1.00	1570	2,5-PYRROLIDINEDIONE, 1-PROP	19.07	TIC	17.00	μg/L	3
1573		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL		μg/L	J
1573		1.00	1570	BLANK CONTAMINANT	5.53	TIC	5.00	μg/L	3
1573		1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	7
1573	-	1.00	1570	DIETEYLPHTHALATE		TCL	1.00	μg/L	J
1573	 	1.00	1570	LABORATORY ARTIPACT	17.37	TIC	13.00	µg/L	3
1573		1.00	1570	UNKNOWN	5.88	TIC	3.00	μg/L	5
1573		1.00	1570	UNKNOWN	9.27	TIC	4.00	μg/L	
1573	†	1.00	1570	UNKNOWN	10.32	TIC		μg/L	J
1573		1.00	1570	UNKNOWN	11.73	TIC	10.00		3
1573		1.00	1570	UNKNOWN	14.83	TIC	† 	µg/L	3
1573		1.00	1570	UNKNOWN	15.87	TIC	ļ	-	J
1573			1570	UNKNOWN	16.30	TIC			J
1573	-		1570	UNENCWN	17.30	TIC	17.00		J
1573		1.00	1570	UNKNOWN	17.62	TIC	14.00		J
1574			1570	BIS(2-ETHYLHEXYL)PHTHALATE	<u> </u>	TCL			J
1574			1570	BLANK CONTAMINANT	5.55	TIC			J
1574	-		1570	BUTYLBENZYLPHTHALATE		TCL			J
1574			1570	DIETHYLPHTHALATE		TCL			J
1574	 		1570	LABORATORY ARTIFACT	17.60	TIC			J
1574			1570	UNENOWN	7.92	TIC			3
1576			1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL			3
1576	-		1570	BUTYLBENZYLPHTHALATE	 	TCL		-	3
1576	 	1.00	1570	UNKNOWN	9.37	TIC	<u> </u>	<u> </u>	3
1577	-			 - 	7.3/	├ ──	ļ		3
	<u> </u>	1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE	15 45	TCL			
1577	L	1.00	1570	BLANK CONTAMINANT	15.45	TIC	2.00	µg/L	J

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

SAMPLE NUMBER	SAMPLE	SAMPLE DILUTION	SDG	СОНФОЛИД	RT	TCL/	CONCESTRATION	UNITS	Q FLAG
1577		1.00	1570	BUTYLBENSYLPHTHALATE		TCL	1.00	μg/L	J
1577		1.00	1570	LABORATORY ARTIFACT	16.45	TIC	6.00	µg/L	3
1577		1.00	1570	UNKNOWN	7.47	TIC	4.00	μg/L	J
1577		1.00	1570	UNKHOWN	7.72	TIC	7.00	µg/L	J
1577		1.00	1570	UNKNOWN	8.53	TIC	3.00	µg/L	J
1577		1.00	1570	UNKNOWN	10.97	TIC	7.00	μg/L	3
1577		1.00	1570	UNKNOWN	13.57	TIC	4.00	μg/L	J
1577		1.00	1570	UNKNOWN	14.10	TIC	5.00	μg/L	J
1577		1.00	1570	UNKNOWN	15.13	TIC	2.00	μg/L	J
1577		1.00	1570	UNKNOWN	17.55	TIC	8.00	μg/L	J
1578		1.00	1570	1-METHYLNAPHTHALENB	9.32	TIC	8.00	μg/L	J
1578		1.00	1570	2,4-DIMETHYLPHENOL		TCL	1.00	μg/L	J
1578		1.00	1570	2-METHYLNAPHTHALENE		TCL	3.00	μg/L	J
1578		1.00	1570	BIS(2-ETHYLHEXYL)PETHALATE		TCL	3.00	µg/L	J
1578		1.00	1570	BUTYLBENSYLPETHALATE		TCL	2.00	μg/L	J
1578		1.00	1570	ETHYLDIMETHYLBENZENE	6.98	TIC	5.00	μg/L	J
1578		1.00	1570	ETHYLMETHYLBENZENE	6.03	TIC	10.00	μg/L	J
1578		1.00	1570	ETHYLMETHYLBENZENE	6.07	TIC	6.00	μg/L	3
1578		1.00	1570	ETHYLMETHYLBENZENE	6.22	TIC	14.00	μg/L	J
1578		1.00	1570	METHYLPROPYLBENZENE	7.08	TIC	10.00	μg/L	J
1578		1.00	1570	NAPHTHALENE		TCL	6.00	μg/L	J
1578		1.00	1570	PHENOL	ļ	TCL	4.00	µg/L	3
1578		1.00	1570	TRIMETHYLBENZEME	6.38	TIC	19.00	μg/L	J
1578	<u> </u>	1.00	1570	TRIMETHYLBENZENE	6.67	TIC	13.00	μg/L	J
1578		1.60	1570	UNKNOWN	5.67	TIC	6.00	μg/L	J
1578		1.00	1570	UNKNOWN	7.48	TIC	6.00	μg/L	J
1578		1.00	1570	UNKNOWN	9.60	TIC	9.00	μq/L	J
1578		1.00	1570	UNKNOWN	10.98	TIC	27.00	μg/L	J
1578		1.00	1570	UNKNOWN	11.88	TIC	17.00	μg/L	J
1578		1.00	1570	UNKNOWN	13.57	TIC	16.00	μq/L	J
1578		1.00	1570	UNKNOWN	14.10	TIC	21.00	μg/L	J
1578		1.00	1570	UNKNOWN	16.25	TIC	20.00	μg/L	J
1578		1.00	1570	UNKNOWN	17.57	TIC	17.00	μg/L	3
1578		1.00	1570	UNKNOWN ALKYL	7.88	TIC	10.00	μg/L	3
1578		1.60	1570	UNKNOWN CARBOXYLIC ACID ESTER	11.23	TIC	16.00	-	J
1578		1.00	1570	UNKNOWN CARBOXYLIC ACID ESTER		TIC	42.00	μq/L	J
1578		1.00	1570	VOA TCL	4.93	TIC		µg/L	J
1578		1.00	1570	VOA TCL	5.30	TIC			J
1579		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL			3
1579		1.00	1570	BUTYLBENZYLPHTHALATE	 	TCL			5
1579		1.00	1570	UNKNOWN	8.55	TIC			3
1579		1.00	1570	UNKNOWN	9.62	TIC		μg/L	3
1579		1.00	1570	UNKNOWN	11.00	TIC	11.00		3
1579		1.00	1570	UNKNOWN	13.02	TIC		µg/L	3
1579		1.00	1570	пикиоми	13.58	TIC		μg/L	3
1579		1.00	1570	UNKNOWN	14.12	TIC		µg/L	3
1579		1.00	1570	UNKNOWN	14.67	TIC		μg/L	3
1579		1.00	1570	UNKNOWN	15.17	TIC		μg/L	3
1579		1.00	1570	UNKNOWN		+	 		
1579				 	17.60	TIC		µg/L	J
13/3		1.00	1570	UNKNOWN CARBOXYLIC ACID	13.25	TIC	2.00	µg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: BNA - ONTAMINATION REPORT
REVIEWER: DEN'TS MARTY

BEGINNING SANLE #:1545

DATE:02/27/94

DATA VALIDATION LEVEL:C

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q PLAG
1580		1.00	1570	2,4-DIMETHYLPHENOL		TCL	3.00	µg/L	J
1580		1.00	1570	2-METHYLHAPETHALENE		TCL	8.00	µg/L	J
1580		1.00	1570	4-METHYLPHENOL		TCL	1.00	µg/L	J
1580		1.00	1570	ACENAPETHEME		TCL	2.00	μg/L	J
1580		1.00	1570	BIS(2-STHYLHEXYL)PETHALATE		TCL	4.00	μg/L	J
1580		1.00	1570	BUTYLBENZYLPHTHALATE		TCL	1.00	μg/L	J
1580		1.00	1570	CARBAZOLE		TCL	3.00	µg/L	J
1580		1.00	1570	DIBENZOFURAN		TCL	1.00	µg/L	J
1580		1.00	1570	DIETHYLBENZENE	7.00	TIC	5.00	µg/L	J
1580		1.00	1570	ethylmethylbenzene	6.05	TIC	7.00	μg/L	J
1580		1.00	1570	ethylmethylbenzene	6.23	TIC	9.00	μg/L	J
1580		1.00	1570	FLUORENE		TCL	1.00	μg/L	J
1580		1.00	1570	NAPHTHALENE		TCL	12.00	μg/L	
1580		1.00	1570	PHENANTERENE		TCL	2.00	μg/L	J
1580		1.00	1570	PHENOL		TCL	32.00	µg/L	
1580		1.00	1570	TRIMETHYLBENZENE	6.40	TIC	16.00	μg/L	J
1580		1.00	1570	UNKNOWN	7.47	TIC	9.00	µg/L	J
1580		1.00	1570	UNKNOWN	7.80	TIC	19.00	μg/L	J
1580		1.00	1570	UNKNOWN	8.57	TIC	9.00	µg/L	J
1580		1.00	1570	UNKNOWN	9.37	TIC	8.00	μg/L	J
1580		1.00	1570	UNKNOWN	9.55	TIC	18.00	μg/L	J
1580		1.00	1570	имкиоми	9.77	TIC	24.00	μg/L	J
1580		1.00	1570	UNKNOWN	10.15	TIC	20.00	μg/L	J
1580		1.00	1570	UNKNOWN	10.97	TIC	21.00	μg/L	J
1580		1.00	1570	UNKNOWN	11.00	TIC	14.00	μg/L	J
1580		1.00	1570	UNKNOWN	11.07	TIC	19.00	μg/L	J
1580		1.00	1570	UNKNOWN	11.90	TIC	16.00	µg/L	J
1580		1.00	1570	UNKNOWN	11.98	TIC	18.00	μg/L	J
1580		1.00	1570	UNKNOWN	12.53	TIC	13.00	μg/L	J
1580		1.00	1570	UNKNOWN ALKYLBENZENE	7.27	TIC	8.00	μg/L	J
1580		1.00	1570	UNKNOWN ALKYLBENZENE	7.90	TIC	10.00	μg/L	J
1580		1.00	1570	UNKNOWN PNA	15.08	TIC	12.00	µg/L	J
1580		1.00	1570	VOA TCL	5.32	TIC	6.00	μg/L	J
1581		5.00	1570	2-METHYLNAPHTHALENE	ļ	TCL	9000.00	μg/L	
1581		5.00	1570	ACENAPHTHENE		TCL	240.00	μg/L	J
1581		5.00	1570	ANTHRACENE	 	TCL	210.00	µg/L	J
1581		5.00	1570	BENZO(A)ANTHRACENE		TCL	280.00	μg/L	3
1581		5.00	1570	BENZO(A)PYRENE		TCL	160.00	μg/L	J
1581		5.00	1570	BENZO(B) FLUORANTHENE	1	TCL	290.00	µg/L	J
1581		5.00	1570	BENZO(K)FLUORANTHENE	1	TCL	290.00	μg/L	J
1581		5.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	160.00	μg/L	J
1581		5.00	1570	CHRYSENE		TCL	330.00	µg/L	J
1581		5.00	1570	DIBENZOFURAN	1	TCL	130.00	μg/L	J
1581		5.00	1570	ETHYLMETHYLBENZENE	6.10	TIC	16000.00	μg/L	J
1581		5.00	1570	PLUORANTHENE	1	TCL	660.00	μg/L	
1581		5.00	1570	FLUORENE	<u> </u>	TCL	220.00	μg/L	J
1581		5.00	1570	METHYLPROPYLBENZENE	6.95	TIC	19000.00	<u> </u>	J
1581		5.00	1570	NAPHTHALENE	 	TCL	6400.00		<u> </u>
1581		5.00	1570	PHENANTHRENE	<u> </u>	TCL	650.00		
1581		5.00	1570	PYRENE	 	TCL	610.00		

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

SAMPLE NUMBER	SAMPLE	SAMPLE DILUTION	SDG	СОМРОИМО	RT	TCL/	CONCENTRATION	UNITS	Q FLAG
1581		5.00	1570	SUBSTITUTED BENZENE	4.95	TIC	15000.00	µg/L	J
1581		5.00	1570	UNRHOWN	5.38	TIC	55000.00	µg/L	J
1581		5.00	1570	UNKNOWN	5.52	TIC	13000.00	µg/L	J
1581		5.00	1570	UNKNOWR	5.67	TIC	11000.00	μg/L	3
1581		5.00	1570	UNKNOWN	5.98	TIC	12000.00	µg/L	3
1581		5.00	1570	UNKNOWN	6.07	TIC	22000.00	μg/L	3
1581		5.00	1570	UNKNOWN	6.43	TIC	60000.00	µg/L	J
1581		5.00	1570	UNKNOWN	6.82	TIC	13000.00	µg/L	J
1581		5.00	1570	UNKNOWN	7.80	TIC	12000.00	µg/L	J
1581		5.00	1570	UNKNOWN	7.90	TIC	11000.00	µg/L	J
1581		5.00	1570	UNKNOWN	8.62	TIC	11000.00	µg/L	J
1581		5.00	1570	UNKNOWN HYDROCARBON	5.05	TIC	27000.00	μg/L	J
1581	<u> </u>	5.00	1570	UNKNOWN HYDROCARBON	5.73	TIC	27000.00	μg/L	J
1581		5.00	1570	UNKNOWN HYDPOCARBON	6.62	TIC	21000.00	μg/L	J
1581	 	3.00	1570	UNKNOWN EYDROCARBON	7.37	TIC	31000.00	— —	3
1581		5.00	1570	UNKNOWN HYDROCARBON	8.30	TIC	16000.00	μg/L	J
1581	1	5.00	1570	UNKNOWN HYDROCARBON	8.78	TIC	9900.00	μg/L	J
1581	 	5.00	1570	UNKNOWN HYDROCARBON	9.02	TIC	20000.00	μg/L	J
1581	 	5.00	1570	UNKNOWN EYDROCARBON	9.75	TIC			3
1581	DL	15.00	1570	2-METHYLNAPHTHALENE	3.73	TCL	9600.00	μq/L	
1581	DL	15.00	1570	ACENAPHTHENE	 	TCL	330.00		J
1581	DL	15.00	1570	ANTHRACENE		TCL	260.00		3
1581	DL	15.00	1570	BENZO(A)ANTHRACENE		TCL	330.00		3
1581	DL	15.00	1570	BENZO(A)PYRENE		TCL	190.00		3
1581	DL	15.00	1570	BENZO(B) PLUORANTHENE		TCL	320.00		3
1581	DL	15.00	1570	BENZO(R)PLUORANTHENE		TCL	320.00		3
1581	DL	15.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE	 	TCL	190.00		3
1581	DL	15.00	1570	CHRYSENE		TCL	380.00		J
1581	DL	15.00	1570	DIBENZOPURAN	ļ	TCL			
1581	DL	15.00	1570	 	6.10	TIC	180.00		J
1581	DL	15.00	1570	ETHYLMETHYLBENZENE	6.10		46000.00		J
1581	DL	15.00	1570	ETHYLMETHYLCYCLOHEXANE	5.52	TIC	30000.00		J
1581	DL	15.00		PLUORANTHENE	 	TCL	700.00		J
1581	 		1570	FLUORENE		TCL	300.00		J
1581	DL	15.00	1570	METHYLPROPYLBENZENE	6.93	TIC	43000.00		J
	DL		1570	NAPHTHALENE		TCL	6900.00		
1581	DL		1570	PHENANTHRENE		TCL	760.00		J
1581	DL	15.00	1570	PYRENE	ļ	TCL	780.00		J
1581	DL		1570	SUBSTITUTED BENZENE	4.95	TIC	43000.00		J
1581	DL	15.00	1570	UNKNOWN	5.67	TIC	28000.00		J
1501	DL		1570	UNKNOWN	6.80	TIC	33000.00		J
1581	DL		1570	UNKNOWN	8.62	TIC	28000.00		3
1581	DL		1570	UNKNOWN HYDROCARBON	5.03	TIC	82000.00		J
1581	DL		1570	UNKNOWN HYDROCARBON	5.37	TIC	110000.00		J
1581	DL		1570	UNKNOWN BYDROCARBON	5.72	TIC	30000.00	µg/L	J
1581	DL		1570	UNKNOWN HYDROCARBON	6.00	TIC	33000.00	μg/L	J
1581	DL	15.00	1570	UNKNOWN EYDROCARBON	6.05	TIC	46000.00	µg/L	J
1581	DL	15.00	1570	UNKNOWN HYDROCARBON	6.42	TIC	130000.00	μg/L	J
1581	DL	15.00	1570	UNKNOWN HYDROCARBON	6.62	TIC	53000.00	μg/L	J
1581	DL	15.00	1570	UNXNOWN HYDROCARBON	7.35	TIC	81000.00	μg/L	J
1581	DL	15.00	1570	UNKNOWN HYDROCARBON	8.22	TIC	89000.00	µg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: BNA - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

DATA VALIDATION LEVEL:C

SAMPLE NUMBER	SAMPLE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/	CONCENTRATION	UNITS	Q FLAG
1581	DL	15.00	1570	UNKNOWN HYDROCARBON	8.30	TIC	45000.00	µg/L	J
1581	DL	15.00	1570	UNKNOWN SYDROCARSON	8.78	TIC	28000.00	µg/L	J
1581	DL	15.00	1570	UNKNOWN HYDROCARBON	9.02	TIC	59000.00	µg/L	J
1581	DL	15.00	1570	UNKNOWN STDROCARBON	9.75	TIC	36000.00	µg/L	J
1581	DL	15.00	1570	UNKNOWN SUBST. CYCLOREX	5.75	TIC	54000.00	μg/L	3
1582	ER	1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	6.00	µg/L	J
1582	ER	1.00	1570	BLANK CONTAMINANT	15.42	TIC	4.00	µg/L	J
1582	ER	1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	J
1582	ER	1.00	1570	DIETHYLPHTHALATE		TCL	1.00	μg/L	J
1582	ER	1.00	1570	LABORATORY ARTIFACT	16.42	TIC	29.00	μg/L	J
1584		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	2.00	μg/L	J
1584		1.00	1570	BLANK CONTAMINANT	15.40	TIC	2.00	μg/L	J
1584		1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	J
1584		1.00	1570	LABORATORY ARTIFACT	16.42	TIC	30.00	μg/L	J
1584		1.00	1570	PENTACHLOROPHENOL		TCL	1.00	μg/L	J
1584		1.00	1570	UNKNOWN	8.50	TIC	9.00	μg/L	J
1584		1.00	1570	UNKNOWN	10.93	TIC	3.00	µg/L	J
1584		1.00	1570	UNKNOWN	14.03	TIC	4.00	μg/L	J
1585	ER	1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	7.00	μg/L	J
1585	ER	1.00	1570	BLANK CONTAMINANT	15.43	TIC	3.00	μg/L	J
1585	EK	1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	J
1585	ER	1.00	1570	LABORATORY ARTIFACT	16.43	TIC	12.00	μg/L	J
1586		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	5.00	µg/L	J
1586		1.00	1570	BLANK CONTAMINANT	15.43	TIC	3.00	μg/L	J
1586		1.00	1570	BUTYLBENZYLPHTHALATE		TCL	1.00	μg/L	J
1586		1.00	1570	LABORATORY ARTIFACT	16.42	TIC	32.00	μg/L	J
1586		1.00	1570	UNKNOWN	8.52	TIC	7.00	µg/L	3
1587		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	4.00	μg/L	J
1587		1.00	1570	BLANK CONTAMINANT	15.47	TIC	3.00	μg/L	J
1587		1.00	1570	BUTYLBENZYLPHTHALATE		TCL	2.00	μg/L	J
1587		1.00	1570	LABORATORY ARTIFACT	16.47	TIC	15.00	μg/L	J
1587		1.00	1570	UNKNOWN	8.55	TIC	3.00	μg/L	J
1588		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	8.00	μg/L	J
1588		1.00	1570	BLANK CONTAMINANT	15.43	TIC	2.00	μg/L	J
1588		1.00	1570	BUTYLBENZYLPHTHALATE		TCL		µg/L	J
1588		1.00	1570	DIETHYLPHTHALATE		TCL	1.00	μg/L	J
1588		1.00	1570	LABORATORY ARTIFACT	16.45	TIC	7.00	μg/L	J
1588		1.00	1570	PENTACHLOROPHENOL		TCL	1.00	μg/L	J
1588		1.00	1570	UNKNOWN	10.97	TIC	8.00	μg/L	J
1588		1.00	1570	UNKNOWN	14.08	TIC	5.00	µg/L	J
1588		1.00	1570	UNENOWN	17.57	TIC	4.00	μg/L	J
1588		1.00	1570	UNKNOWN CARBOXYLIC ACID ESTER	13.57	TIC	4.00	μg/L	J
1589		1.00	1570	2-CYCLOHEXEN-1-OL	5.23	TIC	2.00	μg/L	J
1589		1.00	1570	2-CYCLOHEXEN-1-ONE	5.73	TIC	4.00	μg/L	J
1589		1.00	1570	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	2.00	µg/L	J
1589		1.00	1570	LABORATORY ARTIFACT	16.47	TIC	19.00	μg/L	J
1589		1.00	1570	UNKNOWN	5.07	TIC	4.00	μg/L	J
1589		1.00	1570	UNKNOWN	6.68	TIC	4.00	μg/L	J
1589		1.00	1570	UNRNOWN	7.47	TIC	2.00	μg/L	3
1589		1.00	1570	UNKNOWN	7.87	TIC	2.00	µg/L	J

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

SAMPLE NUMBER	SAMPLE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/	CONCENTRATION	UNITS	Q PLAG
1589		1.00	1570	UNIXHOWN	9.00	TIC	2.00	μg/L	J
1589		1.00	1570	UNKNOWN	9.60	TIC	6.00	μg/L	J
1589		1.00	1570	UNKNOWN	10.98	TIC	19.00	µg/L	3
1589		1.00	1570	UNKHOWN	13.15	TIC	3.00	µg/L	J
1589		1.00	1570	UNKNOWN	13.58	TIC	8.00	µg/L	3
1589		1.00	1570	UNKNOWN	14.10	TIC	8.00	μg/L	J
1589		1.00	157∪	UNKNOWN	14.67	TIC	2.00	μg/L	J
1589		1.00	1570	UNKNOWN	15.13	TIC	3.00	μg/L	J
1589		1.00	1570	UNKNOWN	16.25	TIC	17.00	μg/L	J
1589		1.00	1570	UNKNOWN	17.58	TIC	15.00	μg/L	J
1589		1.00	1570	UNKNOWN CARBOXYLIC ACID ESTER	11.22	TIC	7.00	μg/L	J
1589		1.00	1570	UNKNOWN CARBOXYLIC ACID ESTER	11.87	TIC	9.00	µg/L	J
1589		1.00	1570	UNKNOWN CARBOXYLIC ACID ESTER	13.02	TIC	10.00	µg/L	3
1589		1.00	1570	UNKNOWE PHA	10.77	TIC	24.00	μg/L	3
1590		1.00	1590	BIS(2-ETHYLHEXYL)PETHALATE		TCL	2.00	μg/L	J
1590		1.00	1590	LABORATORY ARTIFACT	16.43	TIC	6.00	μg/L	J
1590		1.00	1590	PENTACHLOROPHENOL		TCL	2.00	μg/L	J
1590		1.00	1590	UNKNOWN	8.95	TIC	7.00	μg/L	J
1590		1.00	1590	UNKNOWN	10.97	TIC	4.00	μg/L	J
1590		1.00	1590	UNKNOWN	17.55	TIC	4.00	μg/L	J
1592	FB	1.00	1590	BIS(2-ETHYLHEXYL)PHTHALATE		TCL	5.00	μg/L	J
1592	PB	1.00	1590	BIS (PHENYLENE) ETHANONE	10.10	TIC	4.00	μg/L	J
1592	PB	1.00	1590	DIETHYLPHTHALATE		TCL	1.00	μg/L	J
1592	PB	1.00	1590	LABORATORY ARTIFACT	16.48	TIC	32.00	µg/L	J
1592	FB	1.00	1590	UNKNOWN	7.73	TIC	4.00	μg/L	J
1592	PB	1.00	1590	UNKNOWN	9.62	TIC	3.00	μg/L	J
1592	PB	1.00	1590	UNKNOWN	10.38	TIC	3.00	μg/L	J
1592	PB	1.00	1590	UNKNOWN	10.67	TIC	4.00	μg/L	3
1592	FB	1.00	1590	UNKNOWN	10.90	TIC	5.00	μg/L	J
1592	PB	1.00	1590	UNKNOWN	10.98	TIC	3.00	μg/L	J
1592	PB	1.00	1590	UNKNOWN	13.28	TIC	5.00	μg/L	J
1592	PB	1.00	1590	UNKNOWN	19.43	TIC	13.00	μg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - HOLDING TIMES
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1546

DATE:03/01/94

Sample Number	SAMPLE	MATRIX	SAMPLE DATE	EXTRACTION DATE	ANALYSIS DATE	EXTRACTION DAYS	EXTRACTION ACCEPTABLE	ANALYSIS DAYS	AMALYSIS ACCEPTABLE
1546		W	03/03/93	03/09/93	03/10/93	6	T	1	T
1547		W	03/03/93	03/09/93	03/23/93	6	Ŧ	14	T
1548	PB	W	03/03/93	03/09/93	03/10/93	6	T	1	T
1549		W	03/03/93	03/09/93	03/11/93	6	Ŧ	2	T
1550		W	03/03/93	03/09/93	03/23/93	6	T	14	T
1551		W	03/03/93	03/09/93	03/23/93	6	T	14	т
1552	WR	W	03/03/93	03/09/93	03/14/93	6	T	5	T
1556	PB	W	03/04/93	03/09/93	03/11/93	5	T	2	T
1557		W	03/04/93	03/09/93	03/11/93	5	T	2	T
1558	BR	W	03/04/93	03/09/93	03/11/93	5	T	2	T
1559		W	03/04/93	03/09/93	03/14/93	5	T	5	T
1560		W	03/04/93	03/09/93	03/14/93	5	T	5	T
1566	1	W	03/05/93	03/09/93	03/10/93	4	T	1	T
1567		W	03/05/93	03/09/93	03/14/93	4	T	5	T
1568	WR	W	03/05/93	03/09/93	03/14/93	4	T	5	T
1569		W	03/05/93	03/09/93	03/14/93	4	T	5	T
1570	WR	W	03/05/93	03/09/93	03/14/93	4	T	5	T
1571		W	03/05/93	03/18/93	03/21/93	13	T	3	T
1572	ER	W	03/05/93	03/09/93	03/11/93	4	T	2	T
1573		W	03/05/93	03/09/93	03/14/93	4	T	5	T
1574		W	03/05/93	03/09/93	03/14/93	4	T	5	T
1584		W	03/07/93	03/18/93	03/21/93	11	T	3	T
1585	ER	W	03/07/93	03/18/93	03/20/93	11	T	2	T
1586		W	03/07/93	03/18/93	03/20/93	11	ī	2	т
1587		W	03/07/93	03/18/93	03/21/93	11	T	3	T
1588		w	03/07/93	03/18/93	03/21/93	11	T	3	T
1589		w	03/07/93	03/18/93	03/21/93	11	T	3	T
1590		W	03/07/93	03/18/93	03/22/93	11	T	4	T
1592	FB	W	03/08/93	03/18/93	03/22/93	10	T	4	T
1566	DL	w	03/05/93	03/09/93	03/10/93	4	T	1	T
1571	DL	W	03/05/93	03/18/93	03/20/93	13	T	2	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - CAL (Curve Validation)
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

SDG	CURVE	CORRELATION COEFFICIENT	LIMIT
1545	AA	0.98265	7
1545	ICP	0.99991	Ŧ
1545	HERCURY	0.99467	P
1570	AA	0.99518	Ŧ
1570	ICP	0.99987	Ŧ
1570	MERCURY	0.99689	T

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

SDG	COMPOUND	СОНРОИИ	TRUE CONCENTRATION	FOUND CONCENTRATION	LAB PERCENT RECOVERY	CAL PERCENT RECOVERY	СОМЪ	LIHIT
1545	CVAA	MERCURY	4.90	5.63	114.90	114.90	T	T
1545	PAA	ARSENIC	30.00	31.07	103.60	103.57	T	T
1545	FAA	SELENIUM	30.00	31.68	105.60	105.60	T	T
1545	PAA	THALLIUM	30.00	28.78	95.90	95.93	T	Ŧ
1545	ICP	ANTIHONY	5000.00	5156.90	103.10	103.14	T	T
1545	ICP	BARIUM	5000.00	4837.90	96.80	96.76	T	7
1545	ICP	CALCIUM	48810.00	50840.00	104.20	104.16	T	Ŧ
1545	ICP	COBALT	5000.00	4869.70	97.40	97.39	Ŧ	T
1570	CVAA	MERCURY	3.00	2.82	94.00	94.00	T	T
1570	Paa	ARSENIC	25.20	25.81	102.40	102.42	T	T
1570	FAA	LEAD	30.00	28.14	93.80	93.80	T	T
1570	FAA	TEALLIUM	30.00	31.42	104.70	104.73	T	T
1570	ICP	CALCIUM	50000.00	51968.00	103.90	103.94	T	T
1570	ICP	COBALT	5000.00	4910.60	98.20	98.21	T	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - BLANKS
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

BLANK NUMBER	SAMPLE TYPE	СОИРОТИТО	RT	TCL or TIC	CONCENTRATION	UNITS	OCODE
1548	FB	ALUNINUN		TCL	61.90	µg/L	В
1548	7B	CALCIUN		TCL	89.40	μg/L	В
1548	PB	SODIUM		TCL	568.00	μg/L	В
1548	FB	ARSENIC		TCL	4.00	μg/L	В
1556	PB	ALUNINUN		TCL	134.00	μg/L	В
1556	PB	BARIUM		TCL	33.80	μg/L	В
1556	PB	CALCIUM		TCL	21400.00	μg/L	
1556	FB	COPPER		TCL	12.90	µg/L	В
1556	FB	IRON		TCL	51.70	µg/L	В
1556	PB	MAGNESIUM		TCL	7160.00	µg/L	
1556	PB	MANGANESE		TCL	7.60	μg/L	В
1556	PB	POTASSIUM		TCL	2790.00	μg/L	В
1556	PB	SODIUM		TCL	19800.00	μg/L	
1556	PB	ZINC		TCL	5.10	µg/L	В
1556	PB	ARSENIC		TCL	11.20	μg/L	
1592	PB	CALCIUM		TCL	59100.00	μg/L	
1592	PB	COPPER		TCL	46.60	μg/L	
1592	FB	IRON		TCL	361 00	μg/L	
1592	PB	Magnesium		TCL	12300.00	μg/L	
1592	PB	Manganese		TCL	640.00	µg/L	
1592	FB	POTASSIUM		TCL	13600.00	μg/L	
1592	PB	SODIUM		TCL	214000.00	μg/L	
1592	FB	VANADIUM		TCL	9.40	μg/L	В
1592	PB	ZINC		TCL	54.10	μg/L	
1592	PB	ALUNINUN		TCL	384.00	μg/L	
1592	PB	BARIUM		TCL	90.40	μg/L	В
1592	7B	ARSENIC		TCL	40.70	μg/L	
METO1	MB	ALUNINUM		TCL	64.42	μg/L	В
METO1	нв	CALCIUM		TCL	422.78	μg/L	В
MET01	нв	IRON		TCL	25.87	μg/L	В
MET01	мв	MAGNESIUM		TCL	101.65	µg/L	В
MET01	мв	MANGANESE		TCL	1.63	µg/L	В
MET01	нв	ZINC		TCL	6.42	µg/L	В
MET02	МВ	ALUMINUM		TCL	58.05	µg/L	В
MET02	МВ	BARIUM	[TCL	2.54	μg/L	В
MET02	мв	CALCIUM		TCL	23.07	μg/L	В
MET02	MB	HUIGOS		TCL	344.41	µg/L	В

F-1156
PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - BLANKS
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1548

DATE:03/01/94

DATA VALIDATION LEVEL:C

BLANK NUMBER	SAMPLE TYPE	SDG	HATRIX
1548	PB	1545	W
1556	PB	1545	W
1592	78	1570	W
MET01	ИВ	1545	M
MET02	нв	1570	W

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: MET - MS

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

Sample Number	SAMP		СОИРОТИР	SSR	SR	SA	CAL SR	LIMIT
1566		1545	ALUNINUM	2083.1001	0.0000	2000.00	101.2	T
1566		1545	ARSENIC	31.8700	5.5650	40.00	65.8	F
1566		1545	Manganese	746.9600	239.0300	500.00	101.6	Ī
1566		1545	SILVER	20.1990	0.0000	50.00	40.4	7
1571		1570	ARSENIC	84.0200	37.4400	40.00	116.5	T
1571		1570	LEAD	15.5000	0.0000	20.00	77.5	T
1571		1570	SELENIUM	5.8000	0.0000	10.00	58.0	P
1571		1570	THALLIUM	30.6000	0.0000	50.00	61.2	P

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - FIELD DUPLICATES

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

SDG	SAMPNUM	SAMPTYPE	DUPNUM	DUPTYPE	COMPOUND	RT	SAMP CON	DUP COM	RPD
1545	1551		1552	WR	ALUNINUH		127.00	97.60	26.18
1545	1551		1552	WR	ARSENIC		116.00	116.00	0.00
1545	1551		1552	WR	BARIUM		237.00	218.00	8.35
1545	1551		1552	WR	CALCIUM		72500.00	64600.00	11.52
1545	1551		1552	WR	COPPER		12.40	15.30	20.94
1545	1551		1552	WR	IRON		51.50	25.60	67.19
1545	1551		1552	WR	MAGNESIUM		18300.00	16300.00	11.56
1545	1551		1552	WR	MANGANESE		845.00	814.00	3.74
1545	1551		1552	WR	POTASSIUM		15700.00	14700.00	6.58
1545	1551		1552	WR	SODIUM		285000.00	254000.00	11.50
1545	1551		1552	WR	VANADIUM		11.30	10.60	6.39
1545	1567		1568	WR	ALUHINUH		85.70	81.80	4.66
1545	1567		1568	WR	ARSENIC		30.30	26.90	11.89
1545	1567		1568	WR	BARIUM		52.40	50.40	3.89
1545	1567		1568	WR	CALCIUM		49000.00	48900.00	0.20
1545	1567		1568	WR	IRON		25.90	17.20	40.37
1545	1567		1568	WR	MAGNESIUM		14100.00	14000.00	0.71
1545	1567		1568	WR	MANGANESE		17.10	15.30	11.11
1545	1567		1568	WR	POTASSIUM		9330.00	8460.00	9.78
1545	1567		1568	WR	SODIUM		233000.00	227000.00	2.61
1545	1567		1568	WR	VANADIUM		7.30	9.20	23.03
1545	1569		1570	WR	ALUMINUM		84.90	75.50	11.72
1545	1569		1570	WR	ARSENIC		34.10	33.20	2.67
1545	1569		1570	WR	BARIUM		25.40	24.20	4.84
1545	1569		1570	WR	CALCIUM		50200.00	48400.00	3.65
1545	1569		1570	WR	IRON		25.80	34.40	28.57
1545	1569		1570	WR	MAGNESIUM		11000.00	10500.00	4.65
1545	1569		1570	WR	MANGANESE		228.00	229.00	0.44
1545	1569		1570	WR	POTASSIUM		8480.00	7520.00	12.00
1545	1569		1570	WR	SODIUM		109000.00	104000.00	4.69
1545	1569		1570	WR	ZINC		8.30	11.10	28.87

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - LAB DUPLICATES
REVIEWER: DEL. IS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

SDG	SAMPNUM	SAIPTYPE	DUPHUM	DUPTYPE	DILUTION	COMPOUND	RT	SAMP COM	DUP CON	RPD
1545	1566		1566	DL	1.00	ARSENIC		5.60	38.71	149
1545	1566		1566	DL	1.00	BARIUN		87.10	83.60	4
1545	1566		1566	DL	1.00	CALCIUN		47700.00	47535.00	0.3
1545	1566		1566	DL	1.00	COPPER		5.30	4.00	27.5
1545	1566		1566	DL	1.00	NAGNESIUN		15800.00	15718.00	0
1545	1566		1566	DL	1.00	Hanganese		239.00	239.81	O
1545	1566		1566	DL	1.00	POTASSIUM		8430.00	7997.40	5.2
1545	1566		1566	DL	1.00	SODIUM		268000.00	268990.00	O
1545	1566		1566	DL	1.00	VANADIUK		10.20	8.28	20
1545	1566		1566	DL	1.00	ZINC		5.80	5.77	0.5
1570	1571		1571	DL	1.00	ALUHINUM		113.00	116.53	3 🚅
1570	1571		1571	DL	1.00	ARSENIC		37.40	32.42	14
1570	1571		1571	DL	1.00	BARIUM		70.00	68.76	1.
1570	1571		1571	DL	1.00	CALCIUM		64400.00	64759.00	0.5
1570	1571		1571	DL	1.00	COPPER		9.10	7.68	16
1570	1571		1571	DL	1.00	IRON		153.00	163.99	6
1570	1571		1571	DL	1.00	MAGNESIUM		13900.00	14031.00	0.9
1570	1571		1571	DL	1.00	MANGANESE		441.00	444.36	0
1570	1571		1571	DL	1.00	POTASSIUM		9580.00	9523.30	0
1570	1571		1571	DL	1.00	SODIUM		66300.00	67168.00	1.3

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - LAB. CONTROL SAMPLES

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

SDG	LAB ID NUMBER	COMPOUND	WATER SOIL		FOUND CONCENTRATION		CAL PERCENT RECOVERY	COMP	LIMIT
1545	PE PURE	COBALT	W	5000.00	4095.40	81.90	81.91	T	T
1545	PE PURE	NICKEL	W	4000.00	3231.40	80.80	80.79	Ī	T
1545	PE PURE	POTASSIUM	W	50000.00	47957.00	95.90	95.91	T	T
1545	PE PURE	SILVER	W	1000.00	651.82	65.20	65.18	T	P
1570	PE PURE	COBALT	W	5000.00	4298.20	86.00	85.96	T	T
1570	PE PURE	POTASSIUM	W	50000.00	49695.00	99.40	99.39	T	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - ICP INTERFERENCE
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

SDG	COMPOUND	SOLUTION	TRUE CON	INITIAL POUND	CAL INITIAL PERCENT RECOVERY		PINAL FOUND	CAL FINAL PERCENT RECOVERY	PIN LIMIT
1545	ALUMINUM	λ	514927.00	512660.00	99.6	T	506960.00	98.5	T
1545	COBALT	AB	475.00	476.30	100.3	T	479.80	101.0	Ŧ
1545	IRON	AB	187957.00	185490.00	98.7	T	185220.00	98.5	T
1545	MAGNESIUM	λ	543610.00	528190.00	97.2	T	526230.00	96.8	T
1570	CALCIUM	λ	529351.00	518980.00	98.0	T	525860.00	99.3	T
1570	MAGNESIUM	AB	533685.00	528000.00	98.9	T	536870.00	100.6	T
1570	ZINC	AB	1001.00	988.40	98.7	T	1000.50	100.0	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: MET - ICP SERIAL DILUTION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

SDG	СОИРОИИD	EPA SAMPLE NUMBER	INITIAL SAMPLE RESULT		LAB PERCENT DIDDERENCE		LAB VS CAL COMPARISON	
1545	BARIUM	1566L	87.06	86.32	0.8	0.85	T	T
1545	HAGNESIUM	1566L	15771.00	16425.50	4.2	4.15	T	Ŧ
1545	SODIUM	1566L	267870.00	282920.00	5.6	5.62	T	Ŧ
1570	ALUHINUM	1571L	112.51	461.64	310.3	310.31	T	P
1570	IRON	1571L	153.05	164.00	7.2	7.15	T	T
1570	POTASSIUM	1571L	9576.20	11212.00	17.1	17.08	T	P

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

TCL/ TIC	COMPOUND	RT	MATRIX	NUMBER OF SAMPLES	HIGH COM	TOM COM	MEAN CON	IDL
TCL	ALUHINUM		W	30	384.00	61.90	114.57	40.00
TCL	ANTIHONY		W	3	36.20	30.00	32.07	30.00
TCL	ARSENIC		W	29	137.00	4.00	45.93	30.00
TCL	BARIUN	·	W	28	237.00	3.30	63.27	2.00
TCL	BERYLLIUM		W	2	1.00	1.00	1.00	1.00
TCL	CADMIUM		W	2	5.00	5.00	5.00	5.00
TCL	CALCIUM		W	31	90900.00	58.90	48262.98	30.00
TCL	CHROMIUM		W	2	6.00	6.00	6.00	10.00
TCL	COBALT		W	2	9.00	9.00	9.00	20.00
TCL	COPPER		W	19	46.60	4.00	11.98	10.00
TCL	IRON		W	24	361.00	17.20	69.23	10.00
TCL	LEAD		W	2	2.00	2.00	2.00	30.00
TCL	MAGNESIUM		W	27	26500.00	3900.00	13651.81	30.00
TCL	Manganese		W	29	3030.00	1.20	322.95	2.00
TCL	MERCURY		W	3	0.21	0.20	0.20	NA
TCL	NICKEL		W	2	13.00	13.00	13.00	20.00
TCL	POTASSIUM		W	27	15800.00	2790.00	10311.88	1000.00
TCL	SELENIUM		W	5	5.50	3.00	4.36	60.00
TCL	SILVER		W	2	5.00	5.00	5.00	5.00
TCL	SODIUM		W	31	421000.00	261.00	162506.32	200.00
TCL	TRALLIUM		W	2	3.00	3.00	3.00	30.00
TCL	VANADIUM		W	21	17.70	4.00	9.09	10.00
TCL	ZINC		W	18	54.10	5.10	9.70	5.00

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	СОКРОИИ	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1546		1.00	1545	ALUNINUN		TCL	92.50	μg/L	B
1546		1.00	1545	ARSENIC		TCL	137.00	μg/L	
1546		1.00	1545	BARIUN		TCL	17.70	μg/L	В
1546		1.00	1545	CALCIUM		TCL	34600.00	µg/L	
1546	1	1.00	1545	COPPER		TCL	6.60	μg/L	В
1546		1.00	1545	IRON		TCL	25.80	μg/L	В
1546		1.00	1545	MAGNESIUM		TCL	3900.00	μg/L	В
1546	 	1.00	1545	MANGANESE		TCL	79.40	μg/L	
1546	1	1.00	1545	POTASSIUM		TCL	11800.00	μg/L	
1546		1.00	1545	SODIUM		TCL	364000.00	μg/L	
1546		1.00	1545	VANADIUM		TCL	12.50	μg/L	В
1547		1.00	1545	ALUHINUH		TCL	117.00	μg/L	В
1547		1.00	1545	ARSENIC		TCL	88.60	μg/L	
1547		1.00	1545	BARIUM		TCL	39.40	μg/L	В
1547	 	1.00	1545	CALCIUM	 	TCL	25800.00	μg/L	
1547	 	1.00	1545	COPPER		TCL		μg/L	В
1547	 	1.00	1545	IRON		TCL	34.40	<u> </u>	В
1547	+	1.00	1545	MAGNESIUM		TCL	6250.00		
1547	 	1.00	1545	MANGANESE		TCL	15.60	_	
1547		1.00	1545	POTASSIUM		TCL	7090.00		
1547		1.00	1545	SELENIUM		TCL		μg/L	
1547		1.00	1545	SODIUM	-	TCL	258000.00		
1547	 	1.00	1545	VANADIUM		TCL	13.00	· ·	В
1548	FB	1.00	1545	ALUMINUM		TCL	61.90	-	В
1548	PB	1.00	1545	ARSENIC		TCL		µg/L	B
1548	PB	1.00	1545	CALCIUM		TCL	89.40		В
1548	PB	1.00	1545	SODIUM		TCL	568.00		В
1549	1.5	1.00	1545	ALUMINUM		TCL	248.00		-
1549		1.00	1545	ARSENIC		TCL	73.00		
1549	 	1.00	1545	BARIUM		TCL			
1549		1.00	1545			TCL	90900.00		В
1549	-	1.00	1545	CALCIUM		TCL		-	
1549	 			COPPER			12.90		В
	-	1.00	1545	IRON		TCL	77.50	· · ·	В
1549	-	1.00	1545	MAGNESIUM		TCL	23800.00	 	
1549		1.00	1545	MANGANESE		TCL	100.00		
1549	ļ		1545	POTASSIUM		TCL	15100.00		
1549	 	1.00	1545	SODIUM		TCL	368000.00		
1549	ļ	1.00	1545	VANADIUM		TCL		μg/L	
1550	ļ	1.00	1545	ALUMINUM		TCL		μg/L	В
1550	ļ	1.00	1545	ARSENIC		TCL	121.00	<u> </u>	
1550	ļ	1.00	1545	BARIUM		TCL		μg/L	В
1550		1.00	1545	CALCIUM		TCL	88700.00		
1550	 	1.00	1545	COPPER	ļ	TCL		μg/L	
1550	ļ	1.00	1545	IRON		TCL		μg/L	В
1550		1.00	1545	MAGNESIUM		TCL	26500.00		
1550		1.00	1545	MANGANESE		TCL	448.00	μg/L	
1550		1.00	1545	POTASSIUM		TCL	14200.00	μg/L	
1550		1.00	1545	SELENIUM		TCL	4.80	μg/L	В
1550		1.00	1545	SODIUM		TCL	421000.00	µg/L	
							9.00		

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

	1.00	1545						
		1545	ZINC		TCL	7.50	µg/L	В
	1.00	1545	ALUNINUN		TCL	127.00	μg/L	В
	1.00	1545	ARSENIC		TCL	116.00	μg/L	
	1.00	1545	BARIUN		TCL	237.00	μg/L	
	1.00	1545	CALCIUN		TCL	72500.00	µg/L	
	1.00	1545	COPPER		TCL	12.40	μg/L	В
	1.00	1545	IRON		TCL	51.50	μg/L	В
	1.00	1545	MAGNESIUM		TCL	1830(.00	μg/L	
	1.00	1545	MANGANESE		TCL	845.00	µg/L	
Ī	1.00	1545	MERCURY		TCL	0.21	μg/L	
	1.00	1545	POTASSIUM		TCL	15700.00	μg/L	
	1.00	1545	SELENIUM		TCL	5.50	μg/L	
	1.00	1545	SODIUM		TCL	285000.00	μg/L	
	1.00	1545	VANADIUN		TCL	11.30	μg/L	В
₹R	1.00	1545	ALUNINUN		TCL	97.60	μg/L	В
/R	1.00	1545	ARSENIC		TCL	116.00	µg/L	
rR P	1.00	1545	BARIUM		TCL	218.00	μg/L	
₹R	1.00	1545	CALCIUM		TCL	64600.00	μg/L	
₹R	1.00	1545	COPPER		TCL	15.30	μg/L	В
₹R	1.00	1545	IRON		TCL	25.60	μg/L	В
₹R	1.00	1545	MAGNESIUM		TCL	16300.00	μg/L	
₹R	1.00	1545	MANGANESE		TCL	814.00	μg/L	
₹R	1.00	1545	POTASSIUM		TCL	14700.00	μg/L	
R R	1.00	1545	SODIUM		TCL	254000.00	μg/L	
n n	1.00	1545	VANADIUM		TCL	10.60	μg/L	В
7B	1.00	1545	ALUMINUM		TCL	134.00	μq/L	В
7B	1.00	1545	ARSENIC		TCL	11.20	ug/L	
РВ	1.00	1545	BARIUM		TCL			В
В		····						
В								В
B		·						В
PB	1.00	1545	MAGNESIUM		TCL	7160.00	μq/L	
'B		1545			TCL			В
'В	1.00	1545	POTASSIUN		TCL		-	В
'B	1.00	1545	SODIUM		TCL	 	<u> </u>	
7B	1.00	1545	ZINC		TCL			В
								
								
			BARIUM		TCL			В
			CALCIUM		TCL			
								В
-								-
								
			ļ <u></u>				_	
								
		·						В
ZR					—			
——↓				 			ļ. <u>-</u>	-
				ļ				-
	R R R R R R R R R B B B B B B B B B B B	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1545 1.00 1545 1.00 1545 1.00 1545 1.00 1545 1.00 1545 1.00 1545 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 R 1.00 1545 B 1.00 1545	1.00 1545 IRON 1.00 1545 MAGNESIUM 1.00 1545 MAGNESIUM 1.00 1545 MERCURY 1.00 1545 POTASSIUM 1.00 1545 SELENIUM 1.00 1545 SODIUM 1.00 1545 SODIUM 1.00 1545 ALUNINUM R 1.00 1545 BARIUM R 1.00 1545 CALCIUM R 1.00 1545 TRON R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESIUM R 1.00 1545 MAGNESE R	1.00 1545 IRON 1.00 1545 MAGNESIUM 1.00 1545 MAGNESIUM 1.00 1545 MAGNESIUM 1.00 1545 POTASSIUM 1.00 1545 SELENIUM 1.00 1545 SODIUM 1.00 1545 SODIUM 1.00 1545 ALUNIUM R 1.00 1545 BARIUM R 1.00 1545 COPPER R 1.00 1545 MAGNESIUM R 1.00 1545 MA	1.00	1.00	1.00

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

Sample Number	SAMPLE TYPE	SAMPLE DILUTION	SDG	сонроило	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1558	ER	1.00	1545	MANGANESE		TCL	3.40	μg/L	В
1558	ER	1.00	1545	SODIUM		TCL	261.00	μg/L	В
1558	ER	1.00	1545	BINC		TCL	8.10	μg/L	В
1559		1.00	1545	ALUNINUN		TCL	75.60	μg/L	В
1559		1.00	1545	ARSENIC		TCL	26.70	μg/L	
1559		1.00	1545	BARIUM		TCL	40.80	μg/L	В
1559		1.00	1545	CALCIUM		TCL	59000.00	μg/L	
1559		1.00	1545	COPPER		TCL	14.80	μg/L	В
1559		1.00	1545	MAGNESIUM		TCL	11300.00	μg/L	
1559		1.00	1545	MANGANESE		TCL	73.90	μg/L	
1559		1.00	1545	POTASSIUN		TCL	9840.00	μg/L	
1559		1.00	1545	SODIUM		TCL	153000.00	μg/L	
1559		1.00	1545	VANADIUM		TCL	7.60	μg/L	В
1559		1.00	1545	ZINC		TCL	5.50	μg/L	В
1560		1.00	1545	ALUMINUM		TCL	72.50	μg/L	В
1560		1.00	1545	ARSENIC		TCL	23.60	μg/L	
1560		1.00	1545	BARIUM		TCL			В
1560		1.00	1545	CALCIUM		TCL	40500.00		
1560		1.00	1545	COPPER		TCL	10.50		В
1560		1.00	1545	IRON		TCL	25.90		В
1560		1.00	1545	MAGNESIUM		TCL	7890.00		
1560		1.00	1545	MANGANESE		TCL	7.80	μg/L	В
1560		1.00	1545	POTASSIUM		TCL	7910.00		
1560		1.00	1545			TCL	79100.00		ļ
				SODIUM			5.00	μg/L	В
1560		1.00	1545	VANADIUM		TCL		μg/L	
1566		1.00	1545	ARSENIC		TCL	5.60	μg/L	В
1566		1.00	1545	BARIUM		TCL	87.10	μg/L	В
1566		1.00	1545	CALCIUM		TCL	47700.00	μg/L	
1566		1.00	1545	COPPER		TCL	5.30	μg/L	В
1566		1.00	1545	MAGNESIUM		TCL	15800.00	μg/L	ļ
1566		1.00	1545	MANGANESE		TCL		μg/L	
1566		1.00	1545	POTASSIUM		TCL			
1566		1.00	1545	SODIUM		TCL	268000.00	-	
1566		1.00	1545	VANADIUM	 	TCL	10.20	<u> </u>	В
1566		1.00	1545	ZINC	ļ	TCL		μg/L	В
1566	DL		1545	ALUHINUH		TCL	104.91	-	<u> </u>
1566	DL		1545	ANTIMONY	ļ	TCL	30.00		<u> </u>
	DL		1545	ARSENIC		TCL	38.71		
1566	DL	1.00	1545	BARIUM		TCL	83.60		
1566	DL	1.00	1545	BERYLLIUM		TCL	1.00	μg/L	<u> </u>
1566	DL	1.00	1545	CADHIUM		TCL	5.00	μg/L	
1566	DL	1.00	1545	CALCIUM		TCL	47535.00		
1566	DL	1.00	1545	CHROMIUM		TCL	6.00	μg/L	
1566	DL	1.00	1545	COBALT		TCL	9.00	μg/L	
1566	DL	1.00	1545	COPPER		TCL	4.00	μg/L	I
1566	DL	1.00	1545	IRON		TCL	34.42	μg/L	
1566	DL	1.00	1545	LEAD		TCL	2.00	μg/L	
1566	DL	1.00	1545	MAGNESIUM		TCL	15718.00	µg/L	
1566	DL	1.00	1545	MANGANESE	<u> </u>	TCL	239.81		
1566	DL	1.00	1545	MERCURY	 	TCL		μg/L	

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	СОНБОЛИД	RT	TCL/	CONCENTRATION	UNITS	Q FLAG
1566	DL	1.00	1545	NICKEL		TCL	13.00	μg/L	
1566	DL	1.00	1545	POTASSIUM		TCL	7997.40	µg/L	
1566	DL	1.00	1545	SELENIUM		TCL	3.00	μg/L	
1566	DL	1.00	1545	SILVER		TCL	5.00	μg/L	
1566	DL	1.00	1545	SODIUM		TCL	268990.00	μg/L	
1566	DL	1.00	1545	THALLIUM		TCL	3.00	μg/L	
1566	DL	1.00	1545	VANADIUM		TCL	8.28	μg/L	
1566	DL	1.00	1545	2 INC		TCL	5.77	μg/L	
1567		1.00	1545	ALUMINUM		TCL	85.70	μg/L	В
1567		1.00	1545	ARSENIC		TCL	30.30	μg/L	
1567		1.00	1545	BARIUM		TCL	52.40	μg/L	В
1567		1.00	1545	CALCIUM		TCL	49000.00	μg/L	
1567	<u> </u>	1.00	1545	COPPER		TCL	6.20	μg/L	В
1567		1.00	1545	IRON		TCL	25.90	μg/L	В
1567		1.00	1545	MAGNESIUM		TCL	14100.00	μg/L	
1567		1.00	1545	MANGANESE		TCL	17.10	μg/L	
1567		1.00	1545	POTASSIUM		TCL	9330.00	μg/L	
1567		1.00	1545	SODIUM		TCL	233000.00	μg/L	
1567		1.00	1545	VANADIUM		TCL	7.30	μg/L	В
1567		1.00	1545	ZINC		TCL	6.20	μg/L	В
1568	WR	1.00	1545	ALUMINUM		TCL	81.80		В
1568	WR	1.00	1545	ARSENIC		TCL	26.90		
1568	WR	1,00	1545	BARIUM		TCL	50.40		В
1568	WR	1.00	1545	CALCIUM		TCL	48900.00		
1568	WR	1.00	1545	IRON		TCL	17.20		В
1568	WR	1.00	1545	MAGNESIUM		TCL	14000.00		-
1568	WR	1.00	1545	MANGANESE		TCL	15.30		
1568	WR	1.00	1545	POTASSIUM		TCL	8460.00		
1568	WR	1,00	1545	BODIUM		TCL	227000.00		
1568	WR	1,00	1545	VANADIUM		TCL	9.20		В
1569	-	1.00	1545	ALUMINUM		TCL	84.90		В
1569		1,00	1545	ARSENIC		TCL	34.10		-
1569		1,00	1545	BARIUM		TCL	25.40		В
1569		1,00	1545	CALCIUM		TCL	50200.00		
1569		1.00	1545	COPPER		TCL	5.30		В
1569			1545	IRON		TCL	25.80		
1569			1545	MAGNESIUM		TCL	11000.00		-
1569			1545	MANGANESE		TCL	228.00		
1569	 		1545	POTASSIUM		TCL	8480.00		
1569	 		1545	SODIUM		TCL	109000.00	$\overline{}$	
1569			1545	ZINC					
1570	WR		1545	ALUMINUM		TCL TCL		μg/L	
1570	WR		1545	ARSENIC		TCL	75.50		В
1570	WR		1545	BARIUM		TCL	33.20		
1570	WR		1545				24.20		-
1570	WR WR			CALCIUM		TCL	48400.00		
			1545	IRON		TCL	34.40		В
1570	WR		1545	MAGNESIUM		TCL	10500.00		
1570	WR		1545	Manganese		TCL	229.00		
1570	WR		1545	POTASSIUM		TCL	7520.00		
1570	WR	1.00	1545	SODIUM		TCL	104000.00	μg/L	

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: MET - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE NUMBER	SAMPLE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1570	WR	1.00	1545	ZINC		TCL	11.10	µg/L	В
1571		1.00	1570	ALUNINUN		TCL	113.00	μg/L	В
1571		1.00	1570	ARSENIC		TCL	37.40	μg/L	
1571		1.00	1570	BARIUM		TCL	70.00	μg/L	В
1571	1	1.00	1570	CALCIUN		TCL	64400.00	µg/L	
1571	1	1.00	1570	COPPER		TCL	9.10	µg/L	В
1571	1	1.00	1570	IRON		TCL	153.00	μg/L	
1571	1	1.00	1570	MAGNESIUM		TCL	13900.00	µg/L	
1571		1.00	1570	MANGANESE		TCL	441.00	µg/L	
1571	1	1.00	1570	POTASSIUM		TCL	9580.00	µg/L	
1571		1.00	1570	SODIUM		TCL	66300.00	μg/L	1
1571	DL	1.00	1570	ALUMINUM		TCL	116.53	μg/L	
1571	DL	1.00	1570	ANTIHONY		TCL	30.00	μg/L	
1571	DL	1.00	1570	ARSENIC		TCL	32.42	μg/L	
1571	DL	1.00	1570	BARIUM		TCL	68.76	μg/L	
1571	DL	1.00	1570	BERYLLIUM		TCL	1.00		
1571	DL	1.00	1570	CADHIUM		TCL	5.00	-	
1571	DL	1.00	1570	CALCIUM		TCL	64759.00	µg/L	ļ <u> </u>
1571	DL	1.00	1570	CEROMIUM		TCL	6.00	µg/L	
1571	DL	1.00	1570	COBALT		TCL		μg/L	
1571	DL	1.00	1570	COPPER	 	TCL	7.68	μg/L	
1571	DL	1.00	1570	IRON		TCL	163.99	μg/L	
1571	 	1.00	1570			TCL	2.00		}
	DL			LEAD					ļ <u> </u>
1571	DL	1.00	1570	MAGNESIUM		TCL	14031.00		<u> </u>
1571	DL	1.00	1570	MANGANESE	<u> </u>	TCL	444.36	µg/L	<u> </u>
1571		1.00	1570	MERCURY		TCL	13.00	μg/L	
1571	DL	1.00	1570	NICKEL		TCL		µg/L	
	DL	1.00	1570	POTASSIUM			9523.30	μg/L	
1571	DL	1.00	1570	SELENIUM		TCL	3.00		
1571	DL	1.00	1570	SILVER		TCL	5.00	μg/L	
1571	DL	1.00	1570	SODIUM	<u> </u>	TCL	67168.00	17.3	!
1571	DL	1.00	1570	THALLIUM		TCL		μg/L	
1571	DL	1.00	1570	VANADIUM		TCL		μg/L	ļ
1571	DL	1.00	1570	ZINC		TCL	5.19	µg/L	L
1572	ER	1.00	1545	ALUMINUM		TCL	84.90		В
1572	ER	1.00	1545	CALCIUM		TCL	105.00		В
1572	ER	1.00	1545	IRON		TCL	25.90		В
1572	ER	1.00	1545	SODIUM		TCL	354.00		В
1573	<u> </u>	1.00	1545	ALUHINUM		TCL	97.60	μg/L	В
1573	<u> </u>	1.00	1545	ARSENIC		TCL	15.80	· -	
1573	ļ	1.00	1545	BARIUM		TCL	63.10		В
1573	ļ	1.00	1545	CALCIUM		TCL	62900.00		
1573		1.00	1545	MAGNESIUM		TCL	17900.00	μg/L	
1573		1.00	1545	MANGANESE		TCL	236.00	μg/L	
1573		1.00	1545	POTASSIUM		TCL	11700.00	µg/L	
1573		1.00	1545	SODIUM		TCL	280000.00	µg/L	
1573		1.00	1545	VANADIUM		TCL	6.20	µg/L	В
1573	[1.00	1545	ZINC		TCL	5.30	µg/L	В
1574	1	1.00	1545	ALUMINUM		TCL	81.20	µg/L	В
1574		1.00	1545	ARSENIC		TCL	11.50	µg/L	

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE: 03/01/94

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	СОИРОПИД	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1574		1.00	1545	BARIUM		TCL	24.00	μg/L	В
1574		1.00	1545	CALCIUM		TCL	46900.00	µg/L	
1574		1.00	1545	COPPER		TCL	21.80	µg/L	В
1574		1.00	1545	MAGNESIUM		TCL	9250.00	µg/L	
1574		1.00	1545	Manganese		TCL	43.80	μg/L	
1574		1.00	1545	POTASSIUM		TCL	7070.00	μg/L	
1574		1.00	1545	SODIUM		TCL	58600.00	μg/L	
1574		1.00	1545	VANADIUM		TCL	6.10	μg/L	В
1574		1.00	1545	ZINC		TCL	6.00	µg/L	В
1584		1.00	1570	ALUHINUM		TCL	122.00	μg/L	В
1584		1.00	1570	ARSENIC		TCL	54.40	μg/L	
1584		1.00	1570	BARIUM	· · · · · · · · · · · · · · · · · · ·	TCL	64.00	μg/L	В
1584		1.00	1570	CALCIUM		TCL	59900.00	μg/L	
1584		1.00	1570	IRON		TCL	65.50	μg/L	В
1584		1.00	1570	MAGNESIUM		TCL	14000.00	μg/L	
1584		1.00	1570	Manganese		TCL	708.00	μg/L	
1584		1.00	570	POTASSIUM		TCL	12300.00	μg/L	
1584		1.00	1570	SODIUM		TCL	180000.00	μg/L	
1584		1.00	1570	ZINC		TCL	14.10		В
1585	ER	1.00	1570	ALUMINUM		TCL	106.00	μg/L	В
1585	ER	1.00	1570	BARIUM		TCL	3.30	μg/L	В
1585	ER	1.00	1570	CALCIUM		TCL	58.90	μg/L	В
1585	ER	1.00	1570	COPPER		TCL	5.30	μg/L	В
1585	ER	1.00	1570	IRON		TCL	32.80	μg/L	В
1585	ER	1.00	1570	MANGANESE		TCL		μg/L	В
1585	ER	1.00	1570	SODIUM		TCL	455.00	-	В
1586		1.00	1570	ALUMINUM		TCL	106.00	μg/L	В
1586		1.00	1570	ARSENIC		TCL	34.10	_	
1586		1.00	1570	BARIUM		TCL	43.80		В
1586		1,00	1570	CALCIUM		TCL	45100.00	ļ	
1586		1.00	1570	MAGNESIUM		TCL	9540.00		
1586		1.00	1570	MANGANESE		TCL	46.20		
1586		1.00	1570	POTASSIUM	-	TCL	10500.00	-	
1586		1.00	1570	SODIUM		TCL	146000.00		
1586		1.00	1570	VANADIUM		TCL		μg/L	В
1586		1.00	1570	ZINC	-	TCL			В
1587		1.00	1570	ALUMINUM		TCL	116.00	 	В
1587		1.00	1570	ARSENIC		TCL	34.80		
1587		1.00	1570	BARIUM		TCL		<u> </u>	В
1587		1.00	1570	CALCIUM		TCL	55100.00		
1587		1.00	1570	IRON		TCL	32.80	-	В
1587		1.00	1570	MAGNESIUM		TCL	11100.00		
1587		1.00	1570	MANGANESE		TCL	176.00		
1587		1.00	1570	POTASSIUM		TCL	11800.00		
1587		1.00	1570	SODIUM		TCL	169000.00		
1587		1.00	1570			TCL		μg/L	-
1587				VANADIUM	-				
1588		1.00	1570	ZINC		TCL		· -	В
		1.00	1570	ALUMINUM		TCL	140.00		В
							L		
1588 1588		1.00	1570 1570	ARSENIC BARIUM		TCL TCL	50.00 41.70		В

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: MET - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

Sample Number	SAMPLE TYPE	SAMPLE DILUTION	SDG	СОИРОТИТ	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1588		1.00	1570	CALCIUM		TCL	85400.00	µg/L	
1588		1.00	1570	IRON		TCL	65.50	μg/L	В
1588		1.00	1570	MAGNESIUM		TCL	17000.00	μg/L	[
1588		1.00	1570	MANGANESE		TCL	127.00	µg/L	
1588		1.00	1570	POTASSIUM		TCL	10600.00	µg/L	
1588		1.00	1570	SODIUM		TCL	157000.00	μg/L	
1588		1.00	1570	VANADIUM		TCL	11.00	μg/L	В
1588		1.00	1570	ZINC		TCL	5.20	μg/L	В
1589		1.00	1570	ALUMINUM		TCL	115.00	µg/L	В
1589		1.00	1570	ANTIMONY		TCL	36.20	μg/L	В
1589		1.00	1570	ARSENIC		TCL	49.80	µg/L	
1589		1.00	1570	BARIUM		TCL	92.20	µg/L	В
1589		1.00	1570	CALCIUM		TCL	53500.00	μg/L	
1589		1.00	1570	IRON		TCL	262.00	μg/L	
1589		1.00	1570	Magnesium		TCL	24700.00	μg/L	
1589		1.00	1570	MANGANESE		TCL	3030.00	μg/L	
1589		1.00	1570	POTASSIUM		TCL	15800.00	μg/L	
1589		1.00	1570	SODIUM		TCL	81100.00	μg/L	
1589		1.00	1570	ZINC		TCL	8.70	μg/L	В
1590	1	1.00	1570	ALUMINUM		TCL	134.00	μg/L	В
1590		1.00	1570	ARSENIC		TCL	29.50	μg/L	
1590		1.00	1570	BARIUM		TCL	23.50	μg/L	В
1590		1.00	1570	CALCIUM		TCL	74300.00	μg/L	
1590		1.00	1570	IRON		TCL	21.70	μg/L	В
1590		1.00	1570	MAGNESIUM		TCL	15800.00	μg/L	
1590		1.00	1570	MANGANESE		TCL	93.60	μg/L	
1590		1.00	1570	POTASSIUM		TCL	9130.00	μg/L	
1590		1.00	1570	SODIUM		TCL	132000.00	μg/L	
1590		1.00	1570	VANADIUM		TCL	17.70	μg/L	В
1592	FB	1.00	1570	ALUMINUM		TCL	384.00	μg/L	
1592	PB	1.00	1570	ARSENIC		TCL	40.70	μg/L	
1592	PB	1.00	1570	BARIUM		TCL	90.40	μg/L	В
1592	PB	1.00	1570	CALCIUM		TCL	59100.00	μg/L	
1592	PB	1.00	1570	COPPER		TCL	46.60	μg/L	
1592	PB	1.00	1570	IRON		TCL	361.00	μg/L	
1592	FB	1.00	1570	MAGNESIUM		TCL	12300.00	μg/L	
1592	PB	1.00	1570	MANGANESE		TCL	640.00	μg/L	
1592	FB	1.00	1570	POTASSIUM		TCL	13600.00	μg/L	
1592	PB	1.00	1570	SODIUM		TCL	214000.00	μg/L	
1592	PB	1.00	1570	VANADIUM		TCL	9.40	μg/L	В
1592	PB	1.00	1570	ZINC		TCL	54.10	μg/L	

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: PHC - HOLDING TIMES
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1546

DATE:02/27/94

Sample Number	SAMPLE TYPE	MATRIX	SAMPLE DATE	EXTRACTION DATE	ANALYSIS DATE	EXTRACTION DAYS	EXTRACTION ACCEPTABLE	ANALYSIS DAYS	ANALYSIS ACCEPTABLE
1546		W	03/03/93		03/09/93			6	T
1549		W	03/03/93		03/09/93			6	T
1550		W	03/03/93		03/09/93			6	Ŧ
1551	1	W	03/03/93		03/09/93		Ì	6	T
1552	WR	W	03/03/93		03/09/93			6	T
1554		W	03/04/93		03/09/93			5	T
1555		W	03/04/93		03/09/93			5	т
1556	FB	W	03/04/93		03/10/93			6	T
1557		W	03/04/93		03/10/93			6	T
1558	ER	W	03/04/93		03/10/93			6	T
1559		W	03/04/93		03/10/93			6	T
1560		w	03/04/93		03/10/93			6	T
1561		S	03/04/93		03/12/93			8	Ŧ
1562		S	03/04/93		03/12/93			8	T
1563		s	03/04/93		03/12/93			8	T
1564		s	03/04/93		03/12/93			8	T
1566		W	03/05/93		03/09/93			4	T
1567		W	03/05/93		03/10/93			5	т
1568	WR	W	03/05/93		03/10/93			5	т
1569		w	03/05/93		03/10/93	_		5	T
1570	WR	W	03/05/93		03/10/93			5	T
1571		W	03/05/93		03/11/93			6	T
1572	ER	W	03/05/93		03/12/93			7	T
1573		W	03/05/93		03/10/93			5	T
1574		W	03/05/93		03/10/93			5	Ī
1576		M	03/06/93		03/10/93			4	T
1577	<u> </u>	W	03/06/93		03/10/93			4	T
1578		W	03/06/93		03/11/93		i	5	T
1579		W	03/06/93		03/11/93			5	T
1580	1	W	03/06/93		03/11/93		<u> </u>	5	T
1581		W	03/06/93		03/11/93			5	T
1582	ER	W	03/06/93		03/12/93			6	T
1584		W	03/07/93		03/11/93			4	T
1535	ER	W	03/07/93		03/12/93			5	T
1586	1	w	03/07/93		03/11/93		l	4	T
1587		w	03/07/93		03/11/93			4	T
1588		W	03/07/93		03/11/93			4	T
1589		w	03/07/93		03/11/93			4	T
1590	1	W	03/07/93		03/11/93			4	T
1592	FB	W	03/08/93	·	03/11/93			3	T
1593		W	03/17/93		03/25/93	L		8	T
1594	 	W	03/17/93		03/25/93		 	8	T
1596	ER	W	03/17/93		03/24/93			7	T
1547	1	W	03/03/93		03/09/93			6	T
	L		,,		1-2, 27, 23	l	L	1	

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: PHC - INITIAL CALIBRATION
REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:02/27/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

CAL DATE	COMPOUND	SDG	RRF1	RRF2	RRF3	RRF4	RRP5	RRFC	CHKC	RRFI	RED	CHK	*RSD
08/24/92	TPE BY JP-4 STD	1596	28214	34830	33019	33779	37371	33443	T	33443	10.0	T	
10/01/92	TPH BY GAS STD	1561	21620	25720	23956	24906	25039	24248	T	24248	6.6	Ŧ	
10/01/92	TPE BY JP-4 STD	1561	28214	34830	33019	33779	37371	33443	T	33443	10.0	T	
12/07/92	TPE BY GAS STD	1570	22322	21993	20908	19707	20156	21017	T	21017	5.4	T	
12/07/92	TPE BY JP-4 STD	1570	23158	27324	31013	31255	30410	28632	T	28632	12.0	Ī	
12/07/92	TPE BY JP-4 STD	1590	23158	27324	31013	31255	30410	28632	T	28632	12.0	T	
12/08/92	TPH BY GAS STD	1545	22322	21993	20908	19707	20156	21017	T	21017	5.4	T	
12/08/92	TPH BY JP-4 STD	1545	23158	27324	31013	31255	30410	28632	T	28632	12.0	T	

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: PHC - CONTINUING CALIBRATION REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:02/27/94

CAL DAT	TIME	COMPOUND	SDG	RRFI	RRPC	1D	LIMITS
03/08/9	3 1843	TPH BY GAS STD	1545	259	250	3.5	T
03/08/9	3 2235	TPH BY JP-4 STD	1545	276	250	9.4	T
03/09/9	3 2109	TPH BY GAS STD	1545	274	250	8.8	T
03/09/9	3 2109	TPH BY GAS STD	1570	274	250	8.8	T
03/09/9	3 2109	TPH BY JP-4 STD	1570	265	250	5.7	Ŧ
03/09/9	3 2147	TPH BY JP-4 STD	1545	265	250	5.7	T
03/09/9	3 2147	TPH BY JP-4 STD	1590	265	250	5.7	T
03/10/9	3 2315	TPE BY GAS STD	1570	275	250	9.1	T
03/10/9	3 2315	TPH BY JP-4 STD	1570	278	250	10.1	T
03/12/9	3 1220	TPH BY GAS STD	1561	232	250	-7.8	T
03/12/9	1259	TPH BY JP-4 STD	1561	240	250	-4.2	T
03/12/9	3 1259	TPH BY JP-4 STD	1596	240	250	-4.2	T
03/23/9	3 1453	TPH BY JP-4 STD	1596	225	250	-11.1	T
03/25/9	3 1102	TPH BY JP-4 STD	1590	275	250	9.1	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: PHC - SURROGATE RECOVERY

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SDG	QUESTION 1	QUESTION 2	QUESTION 3	QUESTION 4	QUESTION 5	QUESTION 6
1545	T	T	7		P	P
1561	T	T	7		P	P
1570	T	T	P		7	F
1590	T	T	7		7	7
1596	T	T	P		7	7

Question 1) Were recoveries on form III verified?
Question 2) Were all recoveries >= 10%?
Question 3) Was surrogate recovery a problem?
Question 4) If 3) is T, is there evidence of purging, reinjection, or re-extraction?
Question 5) Were there two blanks with surrogates outside criteria?
Question 6) Were there two or more analyses for a fraction?

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: PHC - BLANKS
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/27/94

BLANK NUMBER	SAMPLE TYPE	COMPOUND	RT	TCL or TIC	CONCENTRATION	UNITS	OCODE
1556	PB	TPH BY GAS STD		TCL	0.03	μg/L	J
1556	FB	TPH BY JP-4 STD		TCL	0.02	μg/L	J
1592	PB	TPE BY GAS STD		TCL	0.08	μg/L	J
1592	FB	TPH BY JP-4 STD		TCL	0.06	μg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: PHC - BLANKS
REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1548

DATE:02/27/94

BLANK NUKBER	SAMPLE TYPE	SDG	MATRIX
1556	PB	1545	W
1592	PB	1570	W
1548	PB	1545	W

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: PHC - BLANK SPIKE REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

Sample Number	SAMP		COMPOUND	SPIKE ADDED	SAMPLE CONCENTRATION	BLANK SPIKE	LAB BS	CAL R	LIMIT
1561		1561	TPH BY GAS STD	50.0000	0.0000	45.0000	90.0000	90.0	T
1561	1	1561	TPH BY JP-4 STD	50.0000	0.0000	49.0000	98.0000	98.0	T
1566	1	1545	GAS	50.0000	0.0000	52.0000	104.0000	104.0	Ī
1566		1545	JP-4	50.0000	0.0000	50.0000	100.0000	100.0	T
1571		1570	TPH BY GAS STD	50.0000	0.0000	56.0000	106.0000	112.0	T
1571		1570	TPH BY JP-4 STD	50.0000	0.0000	41.0000	82.0000	82.0	T
1593		1590	TPH BY JP-4 STD	50.0000	0.0000	41.0000	82.0000	82.0	T
1596	ER	1596	TPH BY JP-4 STD	50.0000	0.0000	49.0000	98.0000	98.0	т

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: PHC - FIELD DUPLICATES
REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:02/27/94

SDG	SAMPNUM	SAMPTYPE	DUPNUM	DUPTYPE	COMPOUND	RT	SAMP CON	DUP CON	RP D
1545	1551		1552	WR	TPE BY GAS STD		2.40	2.60	8.00
1545	1551		1552	WR	TPH BY JP-4 STD		1.00	1.90	5.41

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: PHC - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

TCL/ TIC	СОНФОЛИД	RT		NUMBER OF SAMPLES	HIGH COM	LOW COM	HEAN CON	IDL
TCL	TPE BY GAS STD		S	1	0.07	0.07	0.07	MA
TCL	TPH BY GAS STD		W	13	14.00	0.00	1.75	MA
TCL	TPH BY JP-4 STD		s	1	0.05	0.05	0.05	μλ
TCL	TPE BY JP-4 STD		w	12	10.00	0.01	1.37	XX

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: PHC - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE: 02/27/94

Sample Humber	SAMPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1551		1.00	1545	TPH BY GAS STD		TCL	2.40	μg/L	
1551		1.00	1545	TPH BY JP-4 STD		TCL	1.80	μg/ μ	
1552	WR	1.00	1545	TPH BY GAS STD		TCL	2.60	µg/L	
1552	WR	1.00	1545	TPE BY JP-4 STD		TCL	1.90	µg/L	
1556	PB	1.00	1545	TPH BY GAS STD		TCL	0.03	μg/L	J
1556	PB	1.00	1545	TPH BY JP-4 STD		TCL	0.02	µg/L	J
1557		1.00	1545	TPH BY GAS STD		TCL	0.02	µg/L	J
1557		1.00	1545	TPH BY JP-4 STD		TCL	0.01	μg/L	J
1562		1.00	1561	TPH BY GAS STD		TCL	0.07	mg/kg	JB
1562		1.00	1561	TPH BY JP-4 STD		TCL	0.05	mg/kg	JВ
1571		1.00	1570	TPH BY GAS STD		TCL	0.15	μg/L	
1571		1.00	1570	TPH BY JP-4 STD		TCL	0.11	μg/L	J
1572	ER	1.00	1561	TPE BY GAS STD		TCL	0.04	μg/L	В
1572	ER	1.00	1561	TPH BY JP-4 STD		TCL.	0.03	µg/L	В
1576		1.00	1570	TPH BY GAS STD		TCL	0.05	μg/L	J
1576		1.00	1570	TPH BY JP-4 STD		TCL	0.04	μg/L	J
1578		1.00	1570	TPE BY GAS STD		TCL	0.00	μg/L	J
1578		1.00	1570	TPH BY GAS STD		TCL	1.60	mg/L	
1578		1.00	1570	TPH BY JP-4 STD		TCL	1.20	mg/L	
1580		1.00	1570	TPE BY GAS STD		TCL	1.80	mg/L	
1580		1.00	1570	TPH BY JP-4 STD		TCL	1 30	mg/L	
1581		1.00	1570	TPE BY GAS STD		TCL	14.00	mg/L	
1581		1.00	1570	TPH BY JP-4 STD		TCL	10.00	mg/L	
1582	ER	1.00	1561	TPH BY GAS STD		TCL	0.02	μg/L	JВ
1582	ER	1.00	1561	TPE BY JP-4 STD		TCL	0.01	μg/L	В
1592	FB	1.00	1570	TPH BY GAS STD		TCL	0.08	μg/L	J
1592	FB	1.00	1570	TPH BY JP-4 STD		TCL	0.06	μg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - HOLDING TIMES
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/26/94

Sample Number	SAMPLE TYPE	MATRIX	SAMPLE DATE	EXTRACTION DATE	ARALYSIS DATE	EXTRACTION DAYS	EXTRACTION ACCEPTABLE	ANALYSIS DAYS	AMALYSIS ACCEPTABLE
1545	TB	W	03/03/93		03/07/93			4	T
1546		W	03/03/93		03/07/93			4	T
1547		W	03/03/93		03/08/93			5	T
1548	PB	W	03/03/93		03/07/93			4	T
1550		W	03/03/93		03/07/93			4	T
1551		W	03/03/93		03/08/93			5	T
1552	WR	W	03/03/93		03/07/93			4	T
1553	TB	W	03/04/93		03/08/93			4	T
1554		W	03/04/93		03/09/93			5	I
1555	Ī	W	03/04/93		03/09/93			5	T
1556	FB	W	03/04/93		03/09/93			5	T
1557		W	03/04/93		03/09/93			5	T
1558	ER	W	03/04/93		03/08/93			4	T
1559		W	03/04/93		03/09/93			5	T
1560		W	03/04/93		03/09/93			5	T
1565	тв	W	03/05/93		03/11/93			6	T
1566		W	03/05/93		03/11/93			6	T
1567		W	03/05/93		03/11/93		1	6	T
1568	WR	W	03/05/93		03/11/93			6	T
1569		W	03/05/93		03/11/93			6	T
1570	WR	W	03/05/93		03/11/93			6	T
1571		W	03/05/93		03/11/93			6	T
1572	ER	W	03/05/93		03/11/93			6	T
1573		W	03/05/93		03/11/93			6	T
1574		W	03/05/93		03/11/93			6	T
1575	TB	W	03/06/93		03/11/93			5	T
1577		W	03/06/93		03/11/93			5	T
1578		W	03/06/93		03/11/93			5	T
1579		W	03/06/93		03/11/93			5	T
1580		W	03/06/93		03/11/93			5	T
1584		W	03/07/93		03/11/93			4	T
1585	ER	W	03/07/93		03/11/93			4	T
1586		W	03/07/93		03/11/93			4	T
1587		W	03/07/93		03/11/93			4	T
1588		W	03/07/93		03/11/93			4	T
1589		W	03/07/93		03/11/93			4	T
1590		W	03/07/93		03/11/93			4	T
1591	ТВ	W	03/08/93		03/11/93			3	T
1592	PB	W	03/08/93		03/11/93	······································		3	T
1593		W	03/17/93		03/19/93	·		2	T
1595		W	03/17/93		03/19/93			2	T
1596	ER	W	03/17/93		03/19/93			2	T
1597	TB	W	03/17/93		03/19/93			2	T
1582	ER	W	03/06/93		03/11/93			5	T
1549		W	03/03/93		03/07/93			4	T

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: VOL - INITIAL CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

CALIBRA. DATE	COMPOUND	SDG	RRF1	RRF2	RRF3	RRF4	RRF5	RRFC	CHRC	RRFI	RSD	CHR ARSD LIMIT	ERRAT COMP
01/29/93	2-BUTANONE	1590	0.353	0.197	0.240	0.233	0.207	0.246	Ŧ	0.246	25.4	T	T
01/29/93	4-METHYL-2-PENTANONE	1590	0.199	0.212	0.223	0.223	0.193	0.210	Ŧ	0.210	6.5	T	T
01/29/93	CELOROETHANE	1590	0.304	0.102	0.185	0.274	0.330	0.239	T	0.239	39.4	7	T
02/11/93	2-BUTANONE	1570	0.607	0.463	0.367	0.415	0.377	0.446	T	0.446	21.9	T	T
02/11/93	ACETONE	1570	0.485	0.408	0.267	0.249	0.218	0.325	T	0.325	35.4	Y	T
02/26/93	4-METHYL-2-PENTANONE	1545	0.237	0.270	0.262	0.304	0.292	0.273	T	0.273	9.6	T	T
02/26/93	CHLOROMETHANE	1545	1.048	0.756	0.808	0.704	0.744	0.812	Ŧ	0.812	16.9	T	T
03/10/93	2-BUTANONE	1570	1.064	0.542	0.276	0.292	0.334	0.502	T	0.502	66.2	F	T
03/10/93	2-HEXANONE	1570	0.289	0.228	0.143	0.169	0.173	0.200	T	0.200	29.1	T	T
03/10/93	4-METEYL-2-PENTANONE	1570	0.526	0.494	0.286	0.322	0.307	0.387	T	0.387	29.3	T	Ŧ
03/10/93	ACETONE	1570	0.085	0.180	0.098	0.139	0.169	0.134	Ŧ	0.134	31.3	F	T
03/10/93	CHLOROETHANB	1570	0.317	0.453	0.592	0.644	0.497	0.501	Ŧ	0.501	25.4	T	T
03/10/93	CHLOROMETHANE	1570	0.468	0.834	0.708	0.514	0.500	0.605	T	0.605	26.3	T	T
03/11/93	2-HEXANONE	1590	0.142	0.085	0.079	0.087	0.094	0.097	T	0.097	26.2	T	T
03/11/93	ACETONE	1590	0.226	0.254	0.116	0.114	0.119	0.166	Ŧ	0.166	41.3	P	T
03/11/93	CHLOROMETHANE	1590	1.351	1.038	0.745	0.829	0.828	0.958	T	0.958	25.6	T	T
03/11/93	CIS-1,3-DICHLOROPROPENE	1590	0.578	0.482	0.482	0.492	0.551	0.517	T	0.517	8.6	T	P

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - INITIAL CALIBRATION

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/26/94

Calib. Date	Compound		RSD argest xcluded	RED Chk > 30%	t RSD Smallest Excluded	RSD Chk > 30%
01/29/93	CHLOROSTEANS	1590	42.3	P	42.2	7
02/11/93	ACETONE	1570	29.5	T	48.1	P
03/10/93	2-BUTAHONE	1570	34.1	P	116.7	P
03/10/93	ACETOWE	1570	31.3	P	37.3	7
03/11/93	ACETONE	1590	38.2	7	57.2	P

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: VOL - CONTINUING CALIBRATION

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/26/94

CALIBRA. DATE	TIME	СОНРОПИД	SDG	RRF INIT	RRF CONT	₹ D	LIMITS	ERRAT COMP
03/07/93	1638	1,1,2,2-TETRACHLOROETHAME	1545	0.452	0.438	3.1	T	7
03/07/93	1638	1,2-DICHLOROETHANE	1545	2.415	1.836	24.0	T	P
03/07/93	1638	CHLOROETHANE	1545	0.668	0.840	-25.7	P	T
03/08/93	1145	1,2-DICHLOROBTHANE	1545	2.415	1.703	29.5	7	P
03/08/93	1145	ACETONE	1545	0.229	0.161	29.7	7	T
03/08/93	1145	XYLENES (TOTAL)	1545	0.626	0.575	8.1	P	
03/08/93	2209	1,1,2,2-TETRACHLOROETHANE	1545	0.452	0.356	21.2	T	ř
03/08/93	2209	1,2-DICHLOROETHANE	1545	2.415	1.636	32.3	P	P
03/08/93	2209	2-HEXANONE	1545	0.134	0.095	29.1	P	T
03/08/93	2209	4-methyl-2-pentanone	1545	0.273	0.201	26.4	P	T
03/08/93	2209	ACETONE	1545	0.229	0.127	44.5	P	T
03/08/93	2209	BENZENE	1545	1.025	0.970	5.4	T	F
03/08/93	2209	CHLOROETHANE	1545	0.668	0.925	-38.5	P	T
03/08/93	2209	STYRENE	1545	1.011	1.039	-2.8	T	Y
03/09/93	1027	1,1,2,2-TETRACHLOROETHANE	1545	0.452	0.334	26.1	P	F
03/09/93	1027	1,2-DICHLOROETHANE	1545	2.415	1.596	33.9	P	F
03/09/93	1027	2-HEXANONE	1545	0.134	0.083	36.1	P	T
03/09/93	1027	4-methyl-2-pentanone	1545	0.273	0.188	31.1	F	T
03/09/93	1027	ACETONE	1545	0.229	0.127	44.5	P	T
03/09/93	1027	CHLOROETHANE	1545	0.668	0.978	-46.4	P	T
03/09/93	1027	VINYL CHLORIDE	1545	0.812	0.973	-19.8	T	P
03/10/93	0650	1,2-DICHLOROETHANE	1570	2.755	3.347	-21.5	T	P
03/10/93	0650	2-BUTANONE	1570	0.502	0.316	37.1	P	T
03/10/93	0650	4-METHYL-2-PENTANONE	1570	0.387	0.287	25.8	P	T
03/10/93	0650	BROMOMETHANE	1570	0.837	0.628	25.0	Ť	P
03/10/93	0650	CARBON DISULPIDE	1570	2.460	2.991	-21.6	T	T
03/11/93	0303	1,1-DICHLOROETHENE	1570	0.930	1.082	-16.3	T	P
03/11/93	0303	2-BUTANONE	1545	0.446	0.343	23.1	T	T
03/11/93	0303	2-BUTANONE	1570	0.446	0.343	23.1	T	Ŧ
03/11/93	0303	ACETONE	1545	0.325	0.215	33.8	P	T
03/11/93	0303	ACETONE	1570	0.325	0.215	33.8	P	T
03/11/93	0303	CHLOROETHANE	1570	0.576	0.692	-20.1	T	T
03/11/93	0303	CHLOROMETHANE	1545	0.570	1.107	-94.2	F	T
03/11/93	0303	CHLOROMETHANE	1570	0.570	1.107	-94.2	P	Ŧ
03/11/93	0303	ETHYLBENZENE	1545	0.376	0.385	-2.4	T	P
03/11/93	1807	ACETONE	1590	0.166	0.127	23.5	T	Ŧ
		VINYL CHLORIDE	1590		0.838	10.9		P
03/19/93	0853	1,2-DICHLOROPROPANE	1590	0.383	0.288			T
03/19/93	0853	2-BUTANONE	1590		0.082	66.7		T
03/19/93	0853	2-REXANONE	1590		0.048	60.0		T
03/19/93	0853	4-METHYL-2-PENTANONE	1590		0.122	41.9		T
03/19/93	_		1590		0.067	57.9		ī
		CHLOROETHANE	1590		0.355	-48.5		T
		CIS-1, 3-DICHLOROPROPENE	1590		0.413	24.5		P
		TRANS-1,3-DICHLOROPROPENE	1590		0.266			,

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - TUNING
REVIEWER: DENNIS MARTY

DATE:02/26/94

BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SDG	LAB ID NUMBER	COMPOUND	EXP	FORM	SPEC	176 m/s RELATIVE ABUN	174 m/s RELATIVE ABUN	CALC N ABUN	LAB 1 ABUN	CALC ERROR	LINI
1545	BF930307B56	BFB		Y	Y	70.60	71.60	98.60	98.60	7	T
1545	BF930308A56	BFB		Y	Y	73.40	75.70	96.96	97.00	P	T
1845	Bro30 nense	BPE		Y	Y	71.40	73.40	97.23	97.30	7	T
1545	BF930309A56	BPB		Y	Y	64.10	68.20	93.99	94.00	7	P
1545	BF930311B03	BFB		Y	Y	85.20	91.40	93.22	93.20	ř	F
1570	930311803	BPB		Y	Y	85.20	91.40	93.22	93.20	P	P
1570	930311C51	BPB		Y	Y	97.50	97.40	100.10	100.10	7	T
1590	930311856	BFB		Y	Y	75.10	76.40	98.30	98.30	P	T
1590	930319A53	BFB		Y	¥	84.00	85.40	98.36	98.40	Y	T

PROJECT: NEVADA AIR NAT. GUARD (RENO)

ANALYSIS: VOL - SURROGATE RECOVERY

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

BDG	CUESTION	QUESTION 2	QUESTION 3 QU	ESTION 4 QUESTION	5 QUESTION 6
1545	T	Ŧ	7	7	7
1570	T	Ŧ	P	F	r
1590	T	T	P	7	P

Question 1) Were recoveries on form III verified? Question 2) Were all recoveries >= 10%? Question 3) Was surrogate recovery a problem? Question 4) If 3) is T, is there evidence of purging, reinjection, or re-extraction? Question 5) Were there two blanks with surrogates outside criteria? Question 6) Were there two or more analyses for a fraction?

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - BLANKS
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/26/94

BLANK NUMBER	SAMPLE TYPE	СОИРОИИ	RT	TCL or TIC	CONCENTRATION	UNITS	OCODE
1548	PB	METHYLENE CHLORIDE		TCL	4.00	μg/L	
1548	FB	CARBON DISULFIDE		TCL	2.00	µg/L	
1545	TB	METHYLENE CHLORIDE		TCL	4.00	μg/L	
1848	TB	ACETORE.		TCL	10.33	μg/ <u>Σ</u>	
1553	TB	METHYLENE CHLORIDE		TCL	2.00	μg/L	
1553	TB	ACETONE		TCL	7.00	μg/L	
1556	PB	METHYLENE CHLORIDE		TCL	5.00	μg/L	
1556	FB	CHLOROPORM		TCL	13.00	μg/L	
1556	PB	BROMODICHLOROMETHANE		TCL	6.00	μg/L	
1556	FB	DIBROMOCHLOROMETHANE		TCL	2.00	μg/L	
1565	ТВ	METHYLENE CHLORIDE		TCL	3.00	μg/L	J
1575	ТВ	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
1591	TB	METHYLENE CHLORIDE		TCL	20.00	μg/L	
1591	ТВ	CARBON DISULFIDE		TCL	1.00	μg/L	J
1592	FB	CHLOROFORM		TCL	1.00	μg/L	J
1592	PB	Benzene		TCL	10.00	μg/L	
1592	7B	ETHYLBENZENE		TCL	2.00	μg/L	J
1592	PB	METHYLENE CHLORIDE		TCL	30.00	μg/L	
1592	FB	XYLENES (TOTAL)		TCL	3.00	μg/L	J
1597	TB	METHYLENE CHLORIDE		TCL	1.00	μg/L	J
VBLRD5	MB	METHYLENE CHLORIDE		TCL	1.00	μg/L	J
VBLRG4	мв	METHYLENE CHLORIDE		TCL	1.00	μg/L	J
VBLKG6	MB	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
VBLKG7	МВ	METHYLENE CHLORIDE		TCL	5.00	μg/L	J
VBLRG4	MB	METHYLENE CHLORIDE		TCL	1.00	μg/L	J
VBLKH5	мв	METHYLENE CHLORIDE		TCL	4.00	μg/L	J
VBLKH4	мв	METHYLENE CHLORIDE		TCL	4.00	μg/L	J
VBLKN2	ИВ	METHYLENE CHLORIDE	1	TCL	2.00	µg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - BLANKS

DATE:02/26/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

BLANK NUMBER	SAMPLE TYPE	SDG	MATRIX
1545	TB	1545	W
1540	7B	1545	w
1553	TB	1545	W
1556	PB	1545	W
1565	TB	1570	w
1575	TB	1570	W
1591	TB	1590	W
1592	PB	1590	W
1597	TB	1590	W
VBLRD5	ИВ	1545	W
VBLRG4	MB	1545	W
VBLRG6	КВ	1545	w
VBLRG7	МВ	1545	W
VBLRG4	МВ	1570	W
VBLRE5	MB	1570	W
VBLRH4	ИВ	1590	W
VBLKN2	МВ	1590	W

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: VOL - MS/MSD

ANALYSIS: VOL - MS/MSD REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

Sample Number	SAMP TYPE		COMPOUND	SPIKE	SAMPLE RESULT	MATRIX SPIKE	MSD	MS t	MS VER	MSD 1		CAL RPD	RPD VER
1566		1545	1,1-DICHLOROETHENE	50.00	0.00	51.46	52.64	102.92	Ŧ	105.28	T	-2	Ŧ
1566		1545	TOLUENE	50.00	0.00	44.84	47.46	89.68	T	94.92	T	-6	Ŧ
1571	1	1570	Benzene	50.00	15.14	68.29	65.92	106.30	T	101.56	T	4	T
1571	1	1570	CHLOROBENZENE	50.00	0.00	47.18	45.68	94.36	T	91.36	T	3	T
1592	PB	1590	BENZENE	50.00	9.60	63.34	59.80	107.48	T	100.40	T	6	T
1592	FB	1590	TRICHLOROETHENE	50.00	0.00	49.60	48.37	99.20	T	96.74	T	3	T

A field blank was used for this analysis.

PROJECT: NEVADA AIR NAT. GUARD (RENO)

1552

DUPTYPE COMPOUND

WR

BENZENE

ANALYSIS: VOL - FIELD DUPLICATES

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

SAMPHUM SAMPTYPE DUPNUM

SDG

1545

1551

DATE:02/26/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: VOL - INTERNAL STANDARDS

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

SDG	FORM NUMBER	DATE	TIME	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	AREA COUNTS	RETENTION TIME
1545	930307B56	03/07/93	1638	BROMOCHLOROMETHANE	1547	T	T	T
1545	930308A56	03/08/93	1145	CHLOROBENZENE	1553	TB	Ŧ	T
1545	930308856	03/08/93	2209	CHLOROBENZENE	1559		T	T
1545	930309A56	03/09/93	1027	BROHOCHLOROMETHANE	1555		T	Ŧ
1545	930311C03	03/11/93	0303	1,4-DIFLUOROBENZENE	1569	1	T	T
1570	930311C03	03/11/93	0303	BROMOCHLOROMETHANE	1574		T	Т
1570	930311C51	03/11/93	0650	1,4-DIPLUOROBENZENE	1587		Т	Т
1590	930311856	03/11/93	1807	CHLOROBENZENE	1591	ТВ	T	т
1590	930319A53	03/19/93	0853	1,4-DIFLUOROBENZENE	1596	ER	T	T

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: VOL - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

TCL/ TIC	СОМРОТИТО	RI	MATRIX	NUMBER OF SAMPLES	HIGH COM	LOW COM	HEAH CON	IDL
TCL	1,2-DICHLOROET WE		W	1	2.00	2.00	2.00	5.00
TCL	1,2-DICHLOROETHENE (TOTAL)		W	2	18.00	4.00	11.00	5.00
TCL	ACETORE		W	3	10.00	2.00	6.33	10.00
TCL	BENZENE	ĺ	W	7	2100.00	10.00	374.14	5.00
TCL	BROHODICHLOROMETHANE		W	1	6.00	6.00	6.00	5.00
TCL	CARBON DISULFIDE		W	6	14.00	1.00	4.83	5.00
TCL	CHLOROFORM		W	5	13.00	1.00	3.40	5.00
TCL	DIBROHOCHLOROMETHANE		W	1	2.00	2.00	2.00	5.00
TCL	ethylbenzene		W	7	480.00	2.00	89.43	5.00
TCL	METHYLENE CHLORIDE		W	39	51.00	1.00	8.23	5.00
TCL	TOLUENE		W	5	37.00	1.00	16.00	5.00
TCL	TRICHLOROETHENE		M	3	9.00	2.00	6.33	5.00
TCL	XYLENES (TOTAL)	1	W	7	1000.00	3.00	291.71	NA
TIC	ALKYL BENZENE	17.72	W	1	18.00	18.00	18.00	NA
TIC	CYCLOHEXANE	7.47	W	2	39.00	32.00	35.50	RA
TIC	CYCLOHEXANE	8.47	W	1	510.00	510.00	510.00	NA
TIC	CYCLOHEXANE, METHYL-	10.10	W	1	330.00	330.00	330.00	NA
TIC	ETHENYLMETHYLBENZENE	17.68	W	1	40.00	40.00	40.00	NA
TIC	ETHENYLMETHYLBENZENE	18.20	w	2	19.00	18.00	18.50	NA
TIC	ETHYLDIMETHYLBENZENE	17.83	W	1	15.00	15.00	15.00	NA
TIC	ETHYLMETHYLBENZENB	13.67	w	1	6.00	6.00	6.00	NA
TIC	ETHYLMETHYLBENZENE	14.12	W	1	7.00	7.00	7.00	NA
TIC	ETHYLMETHYLBENZENE	15.50	W	1	20.00	20.00	20.00	KA
TIC	ethylmethylbenzene	15.52	W	1	19.00	19.00	19.00	KA
TIC	ETHYLMETHYLBENZENE	16.48	W	3	62.00	28.00	49.33	NA
TIC	ETHYLMETHYLBENZ ENE	16.53	w	1	78.00	78.00	78.00	NA
TIC	ETHYLMETHYLBENZENE	16.75	w	1	400.00	400.00	400.00	MA
TIC	ETHYLMETHYLBENZENE	16.87	w	1	71.00	71.00	71.00	NA
TIC	ETHYLMETHYLBENZENE	16.98	W	2	62.00	60.00	61.00	MA
TIC	ETHYLMETHYLBENZENE	17.10	W	1	220.00	220.00	220.00	NA
TIC	ABORATORY ARTIFACT	16.80	W	1	310.00	310.00	310.00	NA
TIC	LAEORATORY ARTIFACT	16.82	W	1	9.00	9.00	9.00	NA
TIC	METFOXYMETHYLPROPANE	5.23	W	1	780.00	780.00		NA
TIC	METHYLPROPYLBENZENE	17.62	W		15.00	13.00	14.00	NA.
īc	PENTANE	3.98	w	1	110.00	110.00	110.00	NA
	PROPYLBENZENE		w	2	16.00			
	SUBSTITUTED BENZENE	16.83	w	1	39.00	<u> </u>		
	TRIMETHYLBENZENE	13.82	W	1	5.00			
	TRIMETHYLBENZENE		W	1	5.00		5.00	
-	TRIMETHYLBENZENE	16.60	W	1	24.00		24.00	
	TRIMETHYLBENZENS	16.63	W	1	51.00	51.00	51.00	
	TRIMETHYLBENZENE	16.65	W	1	25.00	25.00	25.00	
	TRIFTHYLBENZENE		W	1	23.00	23.00	23.00	
	TRIMETHYLBENZENE	16.87	W	1	180.00		180.00	
-	TRIMETHYLBENZENE	17.05		1	54.00			
	TRIMETHYLBENZENE	17.08	W	1	97.00			
	TRIMETHYLBENZENE	17.32	W	1	550.00			
	TRIM HYLBENZENE	17.33	М	2	120.00	110.00	115.00	HA
	TRIMETHYLBENZENE	17.53	W	1	36.00	36.00	36.00	NA
TIC	TRIMETHYLBENZENE	17.77	W	1	250.00	250.00	250.00	NA

PROJECT: NEVADA AIR NAT. GUARD (RENO) ANALYSIS: VOL - CONTAMINATION REPORT

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/26/94

TCL/ TIC	СОНРОГИТО	RT	MATRIX	NUMBER OF SAMPLES	HIGH COM	TOM COR	HEAR CON	IDL
TIC	TRIMETHYLBENSENE	17.97	W	2	36.00	36.00	36.00	MA
TIC	UNKNOWN	5.72	w	1	210.00	210.00	210.00	MA
TIC	UNKNOWN	5.93	W	1	14.00	14.00	14.00	MA
TIC	UNKNOWN	6.13	W	1	40.00	40.00	40.00	NA
TIC	UNKNOWN	16.38	M	1	17.00	17.00	17.00	NA
TIC	UNKNOWN HYDROCARBON	4.40	W	1	17.00	17.00	17.00	NA
TIC	UNKNOWN HYDROCARBON	5.25	W	1	17.00	17.00	17.00	NA
TIC	UNKNOWN HYDROCARBON	6.93	W	1	14.00	14.00	14.00	NA
TIC	UNKNOWN HYDROCARBON	7.37	W	1	36.00	36.00	36.00	NA
TIC	UNANOWN HYDROCARBON	7.42	W	1	80.00	80.00	80.00	NA
TIC	UNKNOWN HYDROCARBON	7.50	W	1	360.00	360.00	360.00	NA
TIC	UNKNOWN HYDROCARBON	8.32	W	1	25.00	26.00	26.00	NA
TIC	UNKNOWN HYDROCARBON	8.37	W	1	63.00	83.00	83.00	NA
TIC	UNKNOWN HYDROCARBON	10.07	W	1	34.00	34.00	34.00	NA
TIC	UNKNOWN HYDROCARBON	10.10	W	1	120.00	120.00	120.00	MA

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:02/26/94

Sample Number	SAMPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
1545	TB	1.00	1545	ACETONE		TCL	10.00	μg/L	
1545	TB	1.00	1545	METHYLENE CHLORIDE		TCL	4.00	μg/L	
1546		1.00	1545	CARBON DISULFIDE		TCL	9.00	µg/L	
1546		1.00	1545	METHOXYMETHYLPROPAHE	5.23	TIC	780.00	μg/L	J
1548	FB	1.00	1545	CARBON DISULFIDE		TCL	2.00	µg/L	
1548	PB	1.00	1545	METHYLENE CHLORIDE	1	TCL	4.00	μg/L	
1549		1.00	1545	ACETONE		TCL	2.00	μg/L	
1549		1.00	1545	METHYLENE CHLORIDE		TCL	3.00	μg/L	
1550		1.00	1545	METHYLENE CHLORIDE		TCL	1.00	µg/L	
1551		1.00	1545	BENZENE		TCL	24.00	μg/L	
1551		1.00	1545	CYCLOHEXANE	7.47	TIC	32.00	μg/L	J
1551		1.00	1545	ethenylmeteylbenzene	18.20	TIC	19.00	μg/L	J
1551		1.00	1545	ETHYLBENZENE		TCL	27.00	μg/L	
1551		1.00	1545	ETHYLMETHYLBENSENE	15.50	TIC	20.00	µg/L	J
1551		1.00	1545	ETHYLMETHYLBENZENE	16.48	TIC	62.00	µg/L	J
1551		1.00	1545	ETHYLMETHYLBENZENE	16.98	TIC	62.00	μg/L	J
1551		1.00	1545	METHYLPROPYLBENZENE	17.62	TIC	13.00	µg/L	J
1551		1.00	1545	PROPYLBENZENE	16.28	TIC	16.00	μg/L	J
1551		1.00	1545	TOLUENE		TCL	37.00	μg/L	
1551		1.00	1545	TRICHLOROETHENE		TCL	8.00	μg/L	
1551		1.00	1545	TRIMETHYLBENZENE	16.65	TIC	25.00	μg/L	J
1551		1.00	1545	TRIMETHYLBENZENE	17.33	TIC	120.00	μg/L	J
1551		1.00	1545	TRIMETHYLBENSENE	17.97	TIC	36.00	μg/L	J
1551		1.00	1545	XYLENES (TOTAL)		TCL	450.00	μg/L	
1552	WR	1.00	1545	BENZENE		TCL	23.00	μg/L	
1552	WR	1.00	1545	CYCLOHEXANE	7.47	TIC	39.00	μg/L	J
1552	WR	1.00	1545	ETHENYLMETHYLBENZENE	18.20	TIC	18.00	μg/L	J
1552	WR	1.00	1545	ETHYLBENZENE		TCL	24.00	μg/L	
1552	WR	1.00	1545	ETHYLMETHYLBENZENE	15.52	TIC	19.00	μg/L	J
1552	WR	1.00	1545	ETHYLMETHYLBENZENE	16.48	TIC	58.00	μg/L	J
1552	WR	1.00	1545	ETHYLMETHYLBENZENE	16.98	TIC	60.00	μg/L	J
1552	WR	1.00	1545	METHYLPROPYLBENZENE	17.62	TIC	15.00	μg/L	J
1552	WR	1.00	1545	PROPYLBENZENE	16.28	TIC	14.00	μg/L	J
1552	WR	1.00	1545	TOLUENE		TCL	33.00	μg/L	
1552	WR	1.00	1545	TRICHLOROETHENE		TCL	9.00	μg/L	
1552	WR	1.00	1545	TRIMETHYLBENZENE	16.67	TIC	23.00	μg/L	3
1552	WR	1.00	1545	TRIMETHYLBENZENE	17.33	TIC	110.00		
1552	WR	1.00	1545	TRIMETHYLBENZENE	17.97	TIC	36.00	μg/L	3
1552	WR	1.00	1545	XYLENES (TOTAL)		TCL	450.00		
1553	TB	1.00	1545	ACETONE		TCL	7.00	µg/L	
1553	TB	1.00	1545	METHYLENE CHLORIDE		TCL		μg/L	
1554		1.00	1545	CARBON DISULFIDE		TCL		μg/L	
1554		1.00	1545	METHYLENE CHLORIDE		TCL		μg/L	
1555		1.00	1545	METHYLENE CHLORIDE	<u> </u>	TCL		μg/L	
1556	PB	1.00	1545	BROMODICHLOROMETHANE	 	TCL		μg/L	
1556	PB	1.00	1545	CHLOROFORM	<u> </u>	TCL	13.00		
1556	PB	1.00	1545	DIBROMOCHLOROMETHANE	t	TCL		μg/L	
1556	PB	1.00	1545	METHYLENE CHLORIDE	 	TCL		μg/L	
1557		1.00	1545	METHYLENE CHLORIDE	 	TCL	<u> </u>	μg/L	 - -
1558	ER	1.00	1545	LABORATORY ARTIPACT	16.82	TIC		µg/L	

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/26/94

SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DILUTION	SDG	CONDOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q PLAG
1558	ER	1.00	1545	NETHYLENE CHLORIDE		TCL	1.00	μg/L	
1559		1.00	1545	CARBON DISULFIDE		TCL	1.00	μg/L	
1559		1.00	1545	METHYLENE CHLORIDE		TCL	2.00	μg/L	
1560	1	1.00	1545	CARBON DISULFIDE		TCL	14.00	μg/L	
1560		1.00	1545	METHYLENE CHLORIDE		TCL	4.00	μg/L	
1565	TB	1.00	1570	METHYLENE CHLORIDE		TCL	3.00	μg/L	J
1566		1.00	1545	METHYLENE CHLORIDE		TCL	1.00	µg/L	
1569		1.00	1545	METHYLENE CHLORIDE	T	TCL	2.00	μg/L	
1570	WR	1.00	1570	METHYLENE CHLORIDE		TCL	3.00	μg/L	J
1571		1.00	1570	1,2-DICHLOROETHENE (TOTAL)		TCL	4.00	μg/L	J
1571		1.00	1570	BENZENE		TCL	15.00	μg/L	
1571		1.00	1570	ETHYLBENZENE		TCL	24.00	μg/L	
1571		1.00	1570	ETHYLMETHYLBENZENE	13.67	TIC	6.00	μg/L	J
1571		1.00	1570	ETHYLMETHYLBENZENE	14.12	TIC	7.00	μg/L	J
1571		1.00	1570	METHYLENE CHLORIDE		TCL	1.00	μg/L	J
1571	-	1.00	1570	TOLUENE	†	TCL	1.00	μg/L	J
1571	<u> </u>	1.00	1570	TRIMETHYLBENZENE	13.82	TIC	5.00	μg/L	J
1571	-	1.00	1570	TRIMETHYLBENZENE	14.45	TIC	5.00	μg/L	J
1571		1.00	1570	UNKNOWN	5.93	TIC	14.00	μg/L	J
1571		1.00	1570	UNKNOWN HYDROCARBON	4.40	TIC	17.00	μg/L	J
1571	-	1.00	1570	UNKNOWN HYDROCARBON	5.25	TIC	17.00	μg/L	J
1571		1.00	1570	UNKNOWN HYDROCARBON	6.93	TIC	14.00	μg/L	J
1571		1.00	1570	XYLENES (TOTAL)	1	TCL	7.00	μg/L	J
1572	ER	1.00	1570	METHYLENE CHLORIDE	+	TCL	2.00	μg/L	J
1573		1.00	1570	METHYLENE CHLORIDE	+	TCL	1.00	μg/L	J
1574	i	1.00	1570	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
1575	TB	1.00	1570	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
1577		1.00	1570	METHYLENE CHLORIDE	†	TCL	2.00	μg/L	J
1578		1.00	1570	ALKYL BENZENE	17.72	TIC	18.00	μg/L	J
1578		1.00	1570	BENZENE	1	TCL	67.00	μg/L	-
1578		1.00	1570	CELOROFORM	 -	TCL	1.00	μg/L	J
1578		1.00	1570	ETHYLBENZENE	+	TCL	55.00	μg/L	
1578		1.00	1570	ETHYLMETHYLBENZENE	16.53	TIC	78.00	μg/L	J
1578		1.00	1570	ETHYLMETHYLBENZENE	16.87	TIC	71.00	μg/L	3
1578		1.00	1570	METHYLENE CHLORIDE	10.07	TCL	31.00	μg/L	ļ —
1578		1.00		TOLUENE	+	TCL		· -	7
1578			1570	TRIMETHYLBENZENE	16.63	TIC		μg/L μg/L	-
1578		1.00	1570	TRIMETHYLBENZENE	17.08	TIC		μg/L	-
1578		1.00	1570	TRIMETHYLBENZENE	17.53	TIC		μg/L	J
1578		1.00	1570	UNKNOWN		 			
					16.38	TIC		µg/L	
1578			1570	UNKNOWN HYDROCARBON	7.42	TIC	80.00		J
1578	 -	1.00	1570	UNKNOWN HYDROCARBON	8.37	TIC	83.00		J
		1.00	1570	UNKNOWN HYDROCARBON	10.10	TIC	120.00		ļ
1578			1570	XYLENES (TOTAL)	-	TCL	73.00		
1579		1.00	1570	CHLOROFORM	 	TCL			J
1579		1.00	1570	METHYLENE CHLORIDE		TCL	32.00		
1580		1.00	1570	BENZENE	4	TCL	380.00		
1580		1.00	1570	ETHENYLMETHYLBENZENE	17.68	TIC		µg/L	J
1580		1.00	1570	ETHYLBENZENE	ļ	TCL	14.00	μg/L	J
1580		1.00	1570	ETHYLDIMETHYLBENZENE	17.83	TIC	15.00	µg/L	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
ANALYSIS: VOL - CONTAMINATION REPORT
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:02/26/94

	SAIPLE TYPE	SAMPLE DILUTION	SDG	COMPOUND	RT	TCL/ TIC	CONCENTRATION	UNITS	Q FLAG
580		1.00	1570	ethylkethylbeniene	16.48	TIC	28.00	μg/L	J
580		1.00	1570	METHYLENE CHLORIDE		TCL	22.00	µg/L	
580		1.00	1570	SUBSTITUTED BENEENE	16.83	TIC	39.00	μg/L	J
580		1.00	1570	TOLUENE		TCL	8.00	μg/L	J
580		1.00	1570	TRIMETHYLBENSENE	16.60	TIC	24.00	μg/L	J
580		1.00	1570	TRIMETHYLBENZENE	17.05	TIC	54.00	μg/L	J
580		1.00	1570	UNKNOWN	6.13	TIC	40.00	μg/L	J
580		1.00	1570	UNKNOWN EYDROCARBON	7.37	TIC	36.00	μg/L	J
580		1.00	1570	UNKNOWN HYDROCARBON	8.32	TIC	26.00	μg/L	J
580		1.00	1570	UNKNOWN HYDROCARBON	10.07	TIC	34.00	µg/L	J
580	_	1.00	1570	XYLENES (TOTAL)		TCL	59.00	μg/L	
.582 1	ER	1.00	1570	METHYLENE CHLORIDE		TCL	1.00	μg/L	J
584		1.00	1570	METHYLENE CHLORIDE		TCL	13.00	μg/L	
.585 1	ER	1.00	1570	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
.586		1.00	1570	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
587		1.00	1570	CHLOROFORM		TCL	1.00	μg/L	3
587		1.00	1570	METHYLENE CHLORIDE		TCL	18.00	μg/L	
588		1.00	1570	1,2-DICHLOROETHENE (TOTAL)		TCL	18.00	μg/L	
588		1.00	1570	METHYLENE CHLORIDE		TCL	6.00	μg/L	J
588		1.00	1570	TRICHLOROETHENE		TCL	2.00	μg/L	J
589		1.00	1570	METHYLENE CHLORIDE		TCL	2.00	μg/L	J
.590		1.00	1590	METHYLENE CHLORIDE		TCL	24.00	μg/L	
.591 :	TB	1.00	1590	CARBON DISULFIDE		TCL.	1.00	μg/L	J
591 7	TB	1.00	1590	METHYLENE CHLORIDE		TCL	20.00	μg/L	
.592 1	FB	1.00	1590	BENZENE		TCL	10.00	μg/L	
592 1	PB	1.00	1590	CHLOROFORM		TCL	1.00	μg/L	J
592 1	PB	1.00	1590	ETHYLBENZËNE		TCL	2.00	μg/L	J
592	FB	1.00	1590	METHYLENE CHLORIDE		TCL	30.00	μg/L	
592 1	PB	1.00	1590	XYLENES (TOTAL)		TCL	3.00	μg/L	J
593		1.00	1590	1,2-DICHLOROETHANE		TCL	2.00	μg/L	J
593		1.00	1590	METHYLENE LORIDE		TCL	5.00	µg/L	J
595		12.50	1590	BENZENE		TCL	2100.00	μg/L	
595		12.50	1590	CYCLOHEXANE	8.47	TIC	510.00	µg/L	J
595		12.50	1590	CYCLOHEXANE, METHYL-	10.10	TIC	330.00	μg/L	3
595		12.50	1590	ETHYLBENZENE		TCL	480.00	μg/L	
595		12.50	1590	ETHYLMETHYLBENZENE	16.75	TIC	400.00	μg/L	J
595		12.50	1590	ETHYLMETHYLBENZENE	17.10	TIC	220.00	μg/L	J
595		12.50	1590	LABORATORY ARTIFACT	16.80	TIC	310.00	μg/L	J
595		12.50	1590	METHYLENE CHLORIDE		TCL	51.00	μg/L	J
595		12.50	1590	PENTANE	3.98	TIC	110.00	μg/L	J
595		12.50	1590	TRIMETHYLBENZENE	16.87	TIC	180.00		J
595		12.50	1590	TRIMETHYLBENZENE	17.32	TIC	550.00		J
595		12.50	1590	TRIMETHYLBENZENE	17.77	TIC	250.00	μg/L	J
595		12.50	1590	UNKNOWN	5.72	TIC	210.00		ن
595		12.50	1590	UNKNOWN HYDROCARBON	7.50	TIC	360.00	µg/L	J
595		12.50	1590	XYLENES (TOTAL)		TCL			
	ER	1.00	1590	METHYLENE CHLORIDE		TCL			J
		1.00	······································						J
595 595 596 1	er TB	12.50 12.50 1.00		1590 1590	1590 UNKNOWN HYDROCARBON 1590 XYLENES (TOTAL) 1590 METHYLENE CHLORIDE	1590 UNKNOWN HYDROCARBON 7.50	1590 UNKNOWN HYDROCARBON 7.50 TIC 1590 XYLENES (TOTAL) TCL 1590 METHYLENE CHLORIDE TCL	1590 UNKNOWN HYDROCARBON 7.50 TIC 360.00 1590 XYLENES (TOTAL) TCL 1000.00 1590 METHYLENE CHLORIDE TCL 4.00	1590 UNKNOWN HYDROCARBON 7.50 TIC 360.00 µg/L

EXPLANATION OF THE ERROR MESSAGES.

The error messages refer to the actions taken when problems exist with the laboratory quality contol items. The USEPA Functional Guidelines for the Validation of Organic and Inorganic Data detail the action to be taken.

The error messages are short explanations on what causes the QCode to be changed to a lower quality level, as indicated by the QFinal code.

NOTE: If results are qualified due to the 5X/10X rule for Method Blank contamination, it takes precidence over all other problems.

Extraction/Analysis Holding Times

The recommended extraction or analysis holding time limit was exceeded by the laboratory. Positive results are changed to "J". Nondetects are flagged using professional judgement and can be flagged as unusable (R).

- GC/MS Instrument Performance Check
 Expanded criteria was used by the laboratory and the ion
 abundance criteria was exceeded. Associated data is flagged
 unusable (R).
- GC/MS Instrument Performance Check Instrument performance criteria was exceeded by the laboratory. Professional judgement must be used in evaluating the data.
- Initial Calibration RRF

The average of the relative response factors did not exceed required minimum limits. Positive results are flagged as estimated (J) and nondetects are flagged as unusable (R).

Continuing Calibration RRF

The relative response factor did not exceed the required minimum limits. If the RRF < .05, positive results are flagged as estimated (J) and nondetects as unusable (R).

Initial Calibration %RSD

The percent relative standard deviation exceeded the required limits. If the RRF > .05, positive results are flagged as estimated (J) and professional judgement must be used on nondetects. If the RRF < .05, positive results are flagged as estimated (J) and nondetects as unusable (R).

Continuing Calibration &D

The percent difference exceeded the required limits and RRF > .05 positive results are flagged as estimated (J) and nondetects as "UJ". If the percent difference exceeded the required limits and rrf < .05 positive results are flagged as estimated (J) and nondetects as unusable (R).

PROJECT: NEVADA AIR NATIONAL GUARD

LABORATORY: COMPUCHEM LABORATORIES INC

REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL:C

EXPLANATION OF THE ERROR MESSAGES.

Method Blank Contamination (5X/10X Rule)

The sample result is flagged "R" if the result does not exceed the method blank result by the 5 times or 10 times factor, depending upon the compound and its specific limit.

Internal Standard (Area Count)

The internal standard area count is outside of the -50% and +100% window. Positive results should be flagged as estimated (J). Nondetected compounds using an IS area count less than 50% are qualified as UJ.

Internal Standard (Retention Time)

The internal standard retention time varies by more than 30 sec. The chromatographic profile for the sample must be examined and if large magnitude shifts are observed, the reviewer may consider partial or total rejection of the data.

Linearity Calibration (Correlation Coefficient)

The linearity calibration did not result in a correlation coefficient that is greater than the required minimum limit. Results that are > IDL are qualified as J and results that are < IDL are qualified as UJ.

Percent Relative Standard Deviation (%RSD)

The %RSD exceeds the required maximum limit for the Initial Calibration. Positive results are qualified as estimated (J) and are qualified by professional judgement.

Percent Difference (%D)

The D exceeds the required maximum limit for the Continuing Calibration. Positive results are qualified as estimated (J). Nondetects are qualified as UJ.

Percent Recovery (%R)

The %R between the True and Found concentrations exceeds the required limit. Positive results are qualified either J or UJ according to the actual %R result.

Nondetect results are qualified UJ or R according to the actual

%R result.

The Percent Recovery (%R) for the Laboratory Control Samples (LCS)

The %R exceeds the required limits for the LCS tests.

Positive results are qualified J or UJ according to the actual

%R result.

Nondetect results are qualified UJ or R according to the actual

Nondetect results are qualified UJ or R according to the actual %R result.

The %R for ICP Interference Test Samples

The %R exceeds the required limits. Positive results are qualified J or UJ according to the actual %R result.

Nondetect results are qualified UJ or R according to the actual

%R result.

NVANG SI Report Final - April 1994 PROJECT: NEVADA AIR NATIONAL GUARD

LABORATORY: COMPUCHEM LABORATORIES INC

REVIEWER: DENNIS MARTY

DATE: 03/30/94

DATA VALIDATION LEVEL:C

EXPLANATION OF THE ERROR MESSAGES.

The %D for the ICP Serial Dilutions test

The %D exceeds the required limits. Associated data is
qualified estimated (J).

DDT Response Time

The DDT Response Time is outside of the required response time windows. If adequate separation is not achieved all associated compound data is qualified R.

Response Time (RT) Windows

The compound RT is outside of the required RT window. Additional review is required of the sample chromatograms.

PHC, Sample Result Verification

The compound RT is outside of the required RT window. Additional review is required of the sample chromatograms.

EXPLANATION OF THE PROFESSIONAL JUDGEMENT MESSAGES.

The Relative Percent Difference (RPD)

The matrix spike/matrix spike duplicate (MS/MSD) RPD is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Matrix Spike &R

The MS/MSD percent recovery for the matrix spike is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Matrix Spike Duplicate %R

The MS/MSD percent recovery for the matrix spike duplicate is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Matrix Spike Recovery

The MS report percent recovery for the matrix spike is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Blank Spike Percent Recovery

The Blank Spike percent recovery for the matrix spike is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Field Duplicate Informational Flag

The relative percent difference exceeds 25% between the samples. The 25% is an arbitrary number and is an informational flag only.

The Lab Duplicate Informational Flag

The relative percent difference exceeds 25% between the dilutions. The 25% is an arbitrary number and is an informational flag only.

NVANG SI Report Final - April 1994

Error Messages

REVIEWER: DÉNNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

30014-	Commend	Decree-	6	g1_	enc	Error that caused the change in the QFinal flag.
Analysis Type	Compound	Response Time	Mamper	Туре	•••	arror that caused the change in the grinal flag.
MET	ALUNINUM		1546		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1546		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1546		1545	Metals Corr Coef calibration outside of limits.
MET			1546		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1547		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1547		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1547		1545	Metals Corr Coef calibration outside of limits.
Met			1547		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1548	PB	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	CALCIUM		1548	FB	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET			1548	PB	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	IRON		1549		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ALUMINUM		1549		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1549		1545	Metals Corr Coef calibration outside of limits.
MET			1549		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ZINC		1550		1545	The concen. does not meet 5X/10X MB contamin. rule
тэн	ALUMINUM		1550		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1550		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1550		1545	Metals Corr Coef calibration outside of limits.
MET			1550		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1551		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1551		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	MERCURY		1551		1545	Metals Corr Coef calibration outside of limits.
MET	ARSENIC		1551		1545	Metals Corr Coef calibration outside of limits.
MET			1551		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1552	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
MET			1552	WR	1545	Field Duplicate % RPD exceeded 50% (No Action)
MET	IRON		1552	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
MET			1552	WR	1545	Field Duplicate & RPD exceeded 50% (No Action)
MET	ARSENIC		1552	WR	1545	Metals Corr Coef calibration outside of limits.
MET			1552	WR	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1556	PB	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1556	FB	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	Manganese		1556	PB	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ZINC		1556	PB	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1556	PB	1545	Metals Corr Coef calibration outside of limits.
MET			1556	PB	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	IRON		1557		1545	The concen. does not meet 5%/10% MB contamin. rule
MET	ALUMINUM		1557		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1557	 	1545	Metals Corr Coef calibration outside of limits.
MET			1557		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1558	ER	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	CALCIUM		1558	ER	1545	The concen. does not meet 5%/10% MB contamin. rule
MET	MANGANESE		1558	ER	1545	The concen. does not meet 5%/10% MB contamin. rule
MET	ZINC		1558	ER	1545	The concen. does not meet 5%/10% MB contamin. rule
MET	ARSENIC		1558	ER	1545	Metals Corr Coef calibration outside of limits.
MET			1558	ER	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1559	-	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ZINC		1559		1545	The concen. does not meet 5x/10x MB contamin. rule
		L		l	1-5-5	The second secon

Error Messages

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

Analysis Type	Compound	Response Time	Sample Number	Sample Type	SDG	Error that caused the change in the QFinal flag.
KET	ARSENIC		1559		1545	Netals Corr Coef calibration outside of limits.
MET			1559		1545	Matrix Spike & Recovery (Prof. Judgement)
met	ALUMINUM		1560		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1560		1545	The concen. does not meet 5X/10X MB contemin. rule
MET	MANGANESE		1560		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1560		1545	Metals Corr Coef calibration outside of limits.
MET			1560		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ZINC		1566		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1566		1545	Metals Corr Coef calibration outside of limits.
MET	_		1566		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1566	DL	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1566	DL	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	SILVER		1566	DL	1545	MET Lab Control Samples & Recovery outside limits.
MET			1566	DL	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ZINC		1566	DL	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	MERCURY		1566	DL	1545	Metals Corr Coef calibration outside of limits.
MET	ARSENIC		1566	DL	1545	Metals Corr Coef calibration outside of limits.
MET			1566	DL	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	LEAD		1566	DL	1545	Metals Corr Coef calibration outside of limits.
MET	THALLIUM		1566	DL	1545	Metals Corr Coef calibration outside of limits.
MET	IRON		1567		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ZINC		1567		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ALUMINUM		1567		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1567		1545	Metals Corr Coef calibration outside of limits.
MET			1567		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1568	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1568	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
MET			1568	WR	1545	Field Duplicate & RPD exceeded 50% (No Action)
MET	ARSENIC		1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET			1568	WR	1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1569		1545	The concen, does not meet 5X/10X MB contamin, rule
MET	IRON		1569		1545	The concen, does not meet 5X/10X MB contamin, rule
MET	ZINC		1569		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1569		1545	Metals Corr Coef calibration outside of limits.
MET			1569		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1570	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	IRON		1570	WR	1545	The concen. does not meet 5x/10x MB contamin. rule
MET	TRON		1570	WR	1545	
MET	ZINC					Field Duplicate % RPD exceeded 50% (No Action)
MET	21110		1570	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
	ARCENTA		1570	WR	1545	Pield Duplicate & RPD exceeded 50% (No Action)
MET	ARSENIC		1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET			1570	WR	1545	Matrix Spike & Recovery (Prof. Judgement)
MRT	ALUMINUM		1571		1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1571		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1571		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1571	DL	1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1571	DL	1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1571	DL	1570	MET ICP Serial Dilution & Diff outside of limits.
MET	SELENIUM		1571	DL	1570	Matrix Spike & Recovery (Prof. Judgement)
MET	ALUMINUM		1572	ER	1545	The concen. does not meet 5X/10X MB contamin. rule

Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

			·	,		#
Analysis Type	Compound	Response Time	Sample Number	Sample Type	SDG	Error that caused the change in the QFinal flag.
MET	CALCIUM		1572	ER	1545	The concen. does not meet 5X/10X MB contamin, rule
HET	IRON		1572	ER	1545	The concen. does not meet 5X/10X MB contamin. rule
MET	EINC		1573		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ALUHINUN		1573		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1573		1545	Metals Corr Coef calibration outside of limits.
MET			1573		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	ZINC		1574		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ALUMINUM		1574		1545	The concen. does not meet 5X/10X MB contamin. rule
MET	ARSENIC		1574		1545	Metals Corr Coef calibration outside of limits.
MET			1574		1545	Matrix Spike & Recovery (Prof. Judgement)
MET	POTASSIUM		1584		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1584		1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1584		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1585	ER	1570	MET ICP Serial Dilution & Diff outside of limits.
MET	BARIUM		1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
MET	CALCIUM		1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
MET	SODIUM	<u> </u>	1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
MET	POTASSIUM		1586		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1586		1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1586		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUKI: UK		1587		1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1587		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1587		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1588		1570	The concen. does not meet 5X/10X MB contamin. rule
MET			1588	-	1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1588		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1589		1570	The concen. does not meet 5%/10% MB contamin. rule
MET			1589		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1589		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1590		1570	The concen. does not meet 5X/10X MB contamin. rule
MET		-	1590		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1590		1570	MET ICP Serial Dilution & Diff outside of limits.
MET	POTASSIUM		1592	PB	1570	MET ICP Serial Dilution & Diff outside of limits.
MET	ALUMINUM		1592	PB	1570	MET ICP Serial Dilution & Diff outside of limits.
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1546		1545	Percent D in the ContCal exceed limits.
BNA			1546		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1548	FB	1545	Percent D in the ContCal exceed limits.
BNA		· · · ·	1548	PB	1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	XYLENES (TOTAL)		1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE		1552	WR	1545	Field Duplicate % RPD exceeded 50% (No Action)
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1552	WR	1545	Percent D in the ContCal exceed limits.
BNA			1552	WR	1545	The concen. does not meet 5%/10% MB contamin. rule
BNA			1552	WR	1545	Pield Duplicate % RPD exceeded 50% (No Action)
BNA	1,3-DICHLOROBENZENE		1552	WR	1545	Pield Duplicate & RPD exceeded 50% (No Action)
BNA	1,4-DICHLOROBENZENE		1552	WR	1545	Matrix Spike & Recovery problems (Frof. Judgement)
BNA	_,		1552	WR	1545	Pield Duplicate & RPD exceeded 50% (No Action)
BNA	1,2-DICHLOROBENZENE		1552	WR	1545	Field Duplicate & RPD exceeded 50% (No Action)
BNA	NAPHTHALENE		1552	WR	1545	
BNA	BIS(2-ETHYLHEXYL)PHTRALATE			77		Prield Duplicate % RPD exceeded 50% (No Action)
	PAGE - ETHILDENIE) PHINALAIS		1550		1545	Percent D in the ContCal exceed limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

						γ····································
Analysis Type	Compound	Response Time	Sample Number	Sample Type	SDG	Error that caused the change in the QFinal flag.
BNA			1550		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1549		1545	Percent D in the ContCal exceed limits.
BNA			1549		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1547		1545	Percent D in the ContCal exceed limits.
BNA			1547		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	XYLENES (TOTAL)		1551		1545	Percent D in the ContCal exceed limits.
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1551		1545	Percent D in the ContCal exceed limits.
BNA			1551		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	1,4-DICHLOROBENZENE		1551		1545	Matrix Spike & Recovery problems (Prof. Judgement)
VOL	ACETONE		1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	ACETONE		1549		1545	Percent D in the ContCal exceed limits.
VOL	METHYLENE CHLORIDE		1553	тв	1545	The concen. does not meet 5X/10X MB contamin. rule
AOT	ACETONE		1553	тв	1545	Percent D in the ContCal exceed limits.
VOL	METHYLENE CHLORIDE		1554		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1554		1545	Percent D in the ContCal exceed limits.
BNA	, , , , , , , , , , , , , , , , , , ,		1554		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1555		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1555		1545	Percent D in the ContCal exceed limits.
BNA			1555		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1556	FB	1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYI.)PHTHALATE		1556	PB	1545	Percent D in the ContCal exceed limits.
BNA			1556	PB	1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1557		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1557		1545	Percent D in the ContCal exceed limits.
BNA			1557		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1558	ER	1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1558	ER	1545	Percent D in the ContCal exceed limits.
BNA			1558	ER	1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1559		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1559		1545	Percent D in the ContCal exceed limits.
BNA			1559		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1560		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1566		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1566		1545	Percent D in the ContCal exceed limits.
BNA			1566		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BUTYLBENZYLPHTHALATE		1567		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1567		1545	Percent D in the ContCal exceed limits.
BNA			1567	·	1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1568	WR	1545	Percent D in the ContCal exceed limits.
BNA		<u> </u>	1568	WR	1545	The concen. does not meet 5X/10X MB contamin. rule
BNA			1568	WR	1545	Field Duplicate & RPD exceeded 50% (No Action)
VOL	METHYLENE CHLORIDE		1569		1545	The concen. does not meet 5X/10X MB contamin. rule
BNA	BUTYLBENZYLPHTHALATE		1569		1545	The concen. does not meet 5x/10x MB contamin. rule
BNA	BIS(2-ETHYLHEXYL)PHTHALATE		1569		1545	Percent D in the ContCal exceed limits.
BNA			1569		1545	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1565	TB	1570	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE	<u> </u>	1570	WR	1570	The concen. does not meet 5X/10X MB contamin. rule
VOL	METHYLENE CHLORIDE		1571		1570	The concen. does not meet 5x/10x MB contamin. rule
VOL	METHYLENE CHLORIDE		1572	ER	1570	The concen. does not meet 5x/10x MB contamin. rule
VOL	METHYLENE CHLORIDE		1573		1570	The concen. does not meet 5x/10x MB contamin. rule
		L	12,3	l	127,0	The Concent Goes not meet 3A/10A AD Concentn. 1416

NVANG SI Report Final - April 1994

Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:02/27/94

					, 	
Analysis C Type	Compound	Response Time	Sample Number	Sample Type	SDG	Error that caused the change in the QFinal flag.
VOL N	METHYLENE CHLORIDE		1575	TB	1570	The concen. does not meet 5X/10X MB contamin. rule
VOL N	ETHYLENE CHLORIDE		1577		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL P	METHYLENE CHLORIDE		1574		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL N	METHYLENE CHLORIDE		1578		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL H	METHYLENE CHLORIDE		1579		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL P	METHYLENE CHLORIDE		1580		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL P	METHYLENE CHLORIDE		1584		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL M	METHYLENE CHLORIDE		1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
VOL M	METHYLENE CHLORIDE		1586		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL H	METHYLENE CHLORIDE		1587		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL M	METHYLENE CHLORIDE		1588		1570	The concen. does not meet 5X/10X MB contamin. rule
VOL M	METHYLENE CHLORIDE		1589		1570	The concen. does not meet 5X/10X MB contamin. rule
	METHYLENE CHIORIDE		1582	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
	BIS(2-ETHYLHEXYL)PHTHALATE		1570	WR	1570	Percent D in the ContCal exceed limits.
BNA			1570	WR	1570	The concen. does not meet 5x/10x MB contamin. rula
	BUTYLBENZYLPHTHALATE		1570	WR	1570	Percent D in the ContCal exceed limits.
BNA			1570	WR	1570	The concen. does not meet 5X/10X MB contamin. rule
	BIS(2-ETHYLHEXYL)PHTHALATE		1571		1570	Percent D in the ContCal exceed limits.
	BUTYLBENZYLPHTHALATE		1571		1570	Percent D in the ContCal exceed limits.
BNA	SOTTED END THE RELIGION OF		1571		1570	The concen. does not meet 5X/10X MB contamin. rule
	DIETHYLPHTHALATE		1571		1570	The concen. does not meet 5X/10X MB contamin. rule
	BIS(2-ETHYLHEXYL)PHTHALACE		1572	ER	1570	Percent D in the ContCal exceed limits.
			1572	ER	1570	Percent D in the ContCal exceed limits.
	BUTYLBENZYLPHTHALATE				1570	
BNA	TO A DANIEL WHILE A DESCRIPTION		1572	ER	1570	The concen. does not meet 5%/10% MB contamin. rule
	BIS(2-ETHYLHEXYL)PHTHALATE		1573		1570	Percent D in the ContCal exceed limits. The concen. does not meet 5%/10% MB contamin. rule
BNA			1573		1570	
	BUTYLBENZYLPHTHALATE		1573			Percent D in the ContCal exceed limits.
BNA			1573		1570	The concen. does not meet 5X/10X MB contamin. rule
	DIETHYLPHTHALATE		1573		1570	The concen. does not meet 5X/10X MB contamin. rule
BNA B	BIS(2-ETHYLHEXYL)PHTHALATE		1574		1570	Percent D in the ContCal exceed limits. The concen. does not meet 5X/10X MB contamin. rule
			1574		1570	
	BUTYLBENZILPHTHALATE		1574		1570	Percent D in the ContCal exceed limits.
BNA			1574		1570	The concen. does not meet 5X/10X MB contamin. rule
	DIETHYLPHTHALATE		1574		1570	The concen. does not meet 5X/10X MB contamin, rule
	BIS(2-ETHYLHEXYL)PHTHALATE		1576	ļ	1570	Percent D in the ContCal exceed limits.
BNA			1576	ļ	1570	The concen. does not meet 5X/10X MB contamin. rule
	BUTYLBENZYLPHTHALATE		1576		1570	Percent D in the ContCal exceed limits.
BNA			1576		1570	The concen. does not meet 5X/10X MB contamin. rule
	BIS(2-ETHYLHEXYL)PHTHALATE		1577	ļ. <u>.</u>	1570	Percent D in the ContCal exceed limits.
BNA			1577		1570	The concen. does not meet 5X/10X MB contamin. rule
	BUTYLBENZYLPHTHALATE		1577	L	1570	Percent D in the ContCal exceed limits.
BNA			1577		1570	The concen. does not meet 5X/10X MB contamin. rule
BNA B	BUTYLBENZYLPHTHALATE		1578		1570	Percent D in the ContCal exceed limits.
BNA			1578		1570	The concen. does not meet 5X/10X MB contamin. rule
BNA B	BIS(2-ETHYLHEXYL)PHTHALATE		1578		1570	Percent D in the ContCal exceed limits.
BNA			1578		1570	The concen. does not meet 5X/10X MB contamin. rule
			1579		1570	Percent D in the ContCal exceed limits.
	BIS(2-ETHYLHEXYL)PHTHALATE					
	BIS(2-ETHYLHEXYL)PHTHALATE		1579		1570	The concen. does not meet 5X/10X MB contamin. rule
BNA B	BIS(2-ETHYLHEXYL)PHTHALATE BUTYLBENZYLPHTHALATE				1570 1570	

Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:02/27/94

BIS(2-ETHYLHEXYL)PHTHALATE			туре		
	ļ	1580		1570	Percent D in the ContCal exceed limits.
		1580		1570	The concen. does not meet 5%/10% MB contamin. rule
BUTYLBENZYLPHTHALATE		1580		1570	Percent D in the ContCal exceed limits.
		1580		1570	The concen. does not meet 5%/10% MB contamin. rule
PYRENE		1581		1570	Percent D in the ContCal exceed limits.
BIS(2-ETHYLHEXYL)PHTHALATE		1582	BR	1570	Percent D in the ContCal exceed limits.
		1582	BR	1570	The concen. does not meet 5X/10X MB contamin. rule
BUTYLBENZYLPHTHALATE		1582	ER	1570	Percent D in the ContCal exceed limits.
		1582	BR	1570	The concen. does not meet 5X/10X MB contamin. rule
BIS(2-ETHYLHEXYL)PHTHALATE		1584		1570	Percent D in the ContCal exceed limits.
		1584		1570	The concen. does not meet 5X/10X MB contamin. rule
BUTYLBENZYLPHTHALATE		1584		1570	Percent D in the ContCal exceed limits.
		1584		1570	The concen. does not meet 5X/10X MB contamin. rule
SIS(2-ETHYLHEXYL)PHTHALATE		1585	ER	1570	Percent D in the ContCal exceed limits.
		1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
SUTYLBENZYLPETHALATE		1585	ER	1570	Percent D in the ContCal exceed limits.
		1585	ER	1570	The concen. does not meet 5X/10X MB contamin. rule
BUTYLBENZYLPHTHALATE		1586		1570	Percent D in the ContCal exceed limits.
		1586		1570	The concen. does not meet 5X/10Y MB contamin. rule
BIS(2-ETHYLHEXYL)PHTHALATE		1586		1570	Percent D in the ContCal exceed limits.
		1586		1570	The concen. does not meet 5X/10X MB contamin. rule
SIS(2-ETHY REXYT.) PHTHALATE		1587		1570	Percent D in the ContCal exceed limits.
		1587		1570	The concen. does not meet 5X/10X MB contamin. rule
BUTYLBENZYLPHTHALATE		1587		1570	Percent D in the ContCal exceed limits.
		1587		1570	The concen. does not meet 5X/10X MB contamin. rule
SIS(2-ETHYLHEXYL)PHTHALATE		1588		1570	Percent D in the ContCal exceed limits.
		1588		1570	The concen. does not meet 5X/10X MB contamin. rule
SUTYLBENZYLPHTHALATE		1588		1570	Percent D in the ContCal exceed limits.
		1588		1570	The concen. does not meet 5%/10% MB contamin. rule
BIS(2-ETHYLHEXYL)PHTHALATE		1589		1570	Percent D in the ContCal exceed limits.
		1589		1570	The concen. does not meet 5x/10x MB contamin. rule
ETHYLENE CHLORIDE		1590		1590	The concen. does not meet 5%/10% MB contamin. rule
ETHYLENE CHLORIDE		1591	тв	1590	The concen. does not meet 5%/10% MB contamin. rule
ETHYLENE CHLORIDE		1592	PB	1590	The concen. does not meet 5X/10X MB contamin. rule
ETHYLENE CHLORIDE		1593		1590	The concen. does not meet 5%/10% MB contamin. rule
ETHYLENE CHLORIDE		1596	ER	1590	The concen. does not meet 5X/10X MB contamin. rule
ETHYLENE CHLORIDE		1597	TB	1590	The concen. does not meet 5x/10x MB contamin. rule
BIS(2-ETHYLHEXYL)PHTHALATE		1590		1590	Percent D in the ContCal exceed limits.
		1590		1590	The concen. does not meet 5X/10X MB contamin. rule
SIS(2-ETHYLHEXYL)PHTHALATE		1592	FB	1590	Percent D in the ContCal exceed limits.
		1592	FB	1590	The concen. does not meet 5X/10X MB contamin. rule
	DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE	DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE DIS(2-ETHYLHEXYL)PHTHALATE	1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1584 1585 1585 1585 1585 1585 1585 1585 1585 1585 1585 1585 1585 1586 1586 1586 1586 1586 1586 1586 1586 1586 1586 1586 1586 1587 1587 1587 1587 1587 1587 1587 1587 1587 1587 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1589 1589 1589 1589 1589 1589 1589 1589 1589 1589 1589 1589 1589 1589 1590 1591 1591 1592 1591 1592 1596 1596 1597 1596 1597 1596 1597 1596 1597 1596 1597 1596 1599 1590 1500 1500	1582 ER	1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1582 ER 1570 1584 1570 1584 1570 1584 1570 1584 1570 1584 1570 1584 1570 1584 1570 1584 1570 1584 1570 1585 ER 1570 1585 ER 1570 1585 ER 1570 1585 ER 1570 1585 ER 1570 1585 ER 1570 1585 ER 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1586 1570 1587 1570 1587 1570 1587 1570 1587 1570 1587 1570 1587 1570 1587 1570 1587 1570 1587 1570 1580 1570 1590 1500

EXPLANATION OF THE ERROR MESSAGES.

The error messages refer to the actions taken when problems exist with the laboratory quality contol items. The USEPA Functional Guidelines for the Validation of Organic and Inorganic Data detail the action to be taken.

The error messages are short explanations on what causes the QCode to be changed to a lower quality level, as indicated by the QFinal code.

NOTE: If results are qualified due to the 5X/10X rule for Method Blank contamination, it takes precidence over all other problems.

Extraction/Analysis Holding Times

The recommended extraction or analysis holding time limit was exceeded by the laboratory. Positive results are changed to "J". Nondetects are flagged using professional judgement and can be flagged as unusable (R).

- GC/MS Instrument Performance Check
 Expanded criteria was used by the laboratory and the ion
 abundance criteria was exceeded. Associated data is flagged
 unusable (R).
- GC/MS Instrument Performance Check
 Instrument performance criteria was exceeded by the laboratory.
 Professional judgement must be used in evaluating the data.

Initial Calibration RRF

The average of the relative response factors did not exceed required minimum limits. Positive results are flagged as estimated (J) and nondetects are flagged as unusable (R).

Continuing Calibration RRF

The relative response factor did not exceed the required minimum limits. If the RRF < .05, positive results are flagged as estimated (J) and nondetects as unusable (R).

Initial Calibration %RSD

The percent relative standard deviation exceeded the required limits. If the RRF > .05, positive results are flagged as estimated (J) and professional judgement must be used on nondetects. If the RRF < .05, positive results are flagged as estimated (J) and nondetects as unusable (R).

Continuing Calibration %D

The percent difference exceeded the required limits and RRF > .05 positive results are flagged as estimated (J) and nondetects as "UJ". If the percent difference exceeded the required limits and rrf < .05 positive results are flagged as estimated (J) and nondetects as unusable (R).

PROJECT: NEVADA AIR NATIONAL GUARD

LABORATORY: COMPUCHEM LABORATORIES INC

REVIEWER: DENNIS MARTY

DATE:03/30/94

DATA VALIDATION LEVEL:C

EXPLANATION OF THE ERROR MESSAGES.

Method Blank Contamination (5X/10X Rule)

The sample result is flagged "R" if the result does not exceed the method blank result by the 5 times or 10 times factor, depending upon the compound and its specific limit.

Internal Standard (Area Count)

The internal standard area count is outside of the -50% and +100% window. Positive results should be flagged as estimated (J). Nondetected compounds using an IS area count less than 50% are qualified as UJ.

Internal Standard (Retention Time)

The internal standard retention time varies by more than 30 sec.

The chromatographic profile for the sample must be examined and if large magnitude shifts are observed, the reviewer may consider partial or total rejection of the data.

Linearity Calibration (Correlation Coefficient)

The linearity calibration did not result in a correlation coefficient that is greater than the required minimum limit. Results that are > IDL are qualified as J and results that are < IDL are qualified as UJ.

Percent Relative Standard Deviation (%RSD)

The %RSD exceeds the required maximum limit for the Initial
Calibration. Positive results are qualified as estimated (J) and
are qualified by professional judgement.

Percent Difference (%D)

The %D exceeds the required maximum limit for the Continuing
Calibration. Positive results are qualified as estimated (J).

Nondetects are qualified as UJ.

Percent Recovery (%R)

The %R between the True and Found concentrations exceeds the required limit. Positive results are qualified either J or UJ according to the actual %R result.

Nondetect results are qualified UJ or R according to the actual %R result.

The Percent Recovery (%R) for the Laboratory Control Samples (LCS)

The %R exceeds the required limits for the LCS tests.

Positive results are qualified J or UJ according to the actual %R result.

Nondetect results are qualified UJ or R according to the actual %R result.

The %R for ICP Interference Test Samples

The %R exceeds the required limits. Positive results are qualified J or UJ according to the actual %R result.

Nondetect results are qualified UJ or R according to the actual %R result.

NVANG SI Report Final - April 1994 PROJECT: NEVADA AIR NATIONAL GUARD

LABORATORY: COMPUCHEM LABORATORIES INC REVIEWER: DENNIS MARTY DATE:03/30/94

DATA VALIDATION LEVEL:C

EXPLANATION OF THE ERROR MESSAGES.

The %D for the ICP Serial Dilutions test

The %D exceeds the required limits. Associated data is
qualified estimated (J).

DDT Response Time

The DDT Response Time is outside of the required response time windows. If adequate separation is not achieved all associated compound data is qualified R.

Response Time (RT) Windows

The compound RT is outside of the required RT window. Additional review is required of the sample chromatograms.

PHC, Sample Result Verification

The compound RT is outside of the required RT window.

Additional review is required of the sample chromatograms.

EXPLANATION OF THE PROFESSIONAL JUDGEMENT MESSAGES.

The Relative Percent Difference (RPD)

The matrix spike/matrix spike duplicate (MS/MSD) RPD is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Matrix Spike %R

The MS/MSD percent recovery for the matrix spike is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Matrix Spike Duplicate %R

The MS/MSD percent recovery for the matrix spike duplicate is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Matrix Spike Recovery

The MS report percent recovery for the matrix spike is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Blank Spike Percent Recovery

The Blank Spike percent recovery for the matrix spike is outside of recommended limits. Professional Judgement must be used in the evaluation of the data.

The Field Duplicate Informational Flag

The relative percent difference exceeds 25% between the samples. The 25% is an arbitrary number and is an informational flag only.

The Lab Duplicate Informational Flag

The relative percent difference exceeds 25% between the dilutions. The 25% is an arbitrary number and is an informational flag only.

NVANG SI Report Final - April 1994

PROJECT: NEVADA AIR NAT. GUARD (RENO) Nondetect Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

		r=====	T :		
ANALYSIS TYPE	СОНБОДИ	Sample Humber	SAMPLE TYPE	5DG	ERROR MESSAGES
BNA	2,4-DINITROPHENOL	1546		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1546		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1546		1545	Percent D in the ContCal exceed limits.
BKA	4-bronophenyl-phenylether	1546		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1546		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1546		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1546		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1546		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1546		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1546		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1546		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1547		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1547		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1547		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1547		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1547		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1547		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1547		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1547		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1547		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1547		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1547	i	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1548	FB	1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1548	FB	1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	PRENOL	1548	PB	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1549	1	1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1549		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1549		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1549		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1549		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1549		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1549		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1549		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1549	 	1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1549		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1549	ļ ——-	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1550	1	1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1550	 	1545	Percent D in the ContCal exceed limits.
BNA	3-NITPOANILINE	1550	 	1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1550		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1550	 	1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1550	 	1545	Percent D in the ContCal exceed limits.
			<u> </u>		TOTAL DE LIN CONTROL PACCOR ILLIANDS.

PROJECT: NEVADA AIR NAT. GUARD (RENO) Nondetect Error Messages

Nondetect Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

ANALYSIS TYPE	СОИРОТИТО	Sample Number	SAMPLE TYPE	SDG	ERROR MESSAGES
BNA	HEXACHLOROBENZ ENE	1550		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1550		1545	Percent D in the ContCal exceed limits.
BMA	INDENO(1,2,3-CD)PYRENE	1550	<u> </u>	1545	Percent D in the ContCal exceed limits.
BNA	PENTACELOROPHENOL	1550		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1550		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1551		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1551		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1551		1545	Percent D in the ContCal exceed limits.
BNA	4-Bromophenyl-Phenylether	1551		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1551		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1551		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1551		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1551		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1551		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1551		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1551		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1552	WR	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1554		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1554		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1554		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1554		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1554		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1554		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1554		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1554		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1554		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1554		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1554		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1555		1545	Percent D in the ContCal exceed limits.
BNA	3,3 - DICHLOROBENZIDINE	1555		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1555		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1555		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1555		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1555		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1555		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1555		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1555		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1555		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1555		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1556	PB	1545	Percent D in the ContCal exceed limits.
<u>-</u>	Z, T-DINIIROF DENOL	1330	r D	1343	reicent D in the Contral exceed limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

		,···			
ANALYSIS TYPE	COMPOUND	Sample Number	SAMPLE TYPE	SDG	ERROR MESSAGES
BNA	3,3'-DICHLOROBENZIDINE	1556	FB	1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1556	FB	1545	Percent D in the ContCal exceed limits.
ВИХ	4-Bromophenyl-Phenylether	1556	PB	1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1556	FB	1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1556	PB	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1556	PB	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1556	PB	1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1556	FB	1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1556	FB	1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1556	PB	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1557		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1557		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1557		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1557		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1557		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1557		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1557		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHIOROBUTADIENE	1557		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1557		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1557		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1557		1545	Percen' D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1558	ER	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1559		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1559		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1559		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1559		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1559		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1559		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1559		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1559		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1559		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1559		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1559		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1560		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1560		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1560		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1560		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1560		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1560		1545	Percent D in the ContCal exceed limits.
BNA	BIS(2-ETHYLHEXYL)PHTHALATE	1560		1545	Percent D in the ContCal exceed limits.
·		L		ــــــــــــــــــــــــــــــــــــــ	<u></u>

DATE:03/01/94

ANALYSIS TYPE	CONDOUND	SAMPLE NUMBER	Sample Type	SDG	ERROR MESSAGES
BNA	HEXACHLOROBENIENE	1560		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1560		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1560		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1560		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1560		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1566		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1566		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1566		1545	Percent D in the ContCal exceed limits.
BNA	4-bromophenyl-phenylether	1566		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1566		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1566		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1566		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1566		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1566		1545	Percent D in the ContCal exceed limits.
BNA	PENTACHLOROPHENOL	1566		1545	Percent D in the ContCal exceed limits.
BNA	PHENOL	1566		1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1567		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1567		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1567		1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1567		1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1567		1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1567		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1567		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1567		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1567		1545	Percent D in the ContCal exceed limits.
	PENTACHLOROPHENOL	1567		1545	Percent D in the ContCal exceed limits.
	PHENOL	1567		1545	Percent D in the ContCal exceed limits.
	2,4-DINITROPHENOL	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	4-BROMOPHENYL-PHENYLETHER	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	4-CHLOROANILINE	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBUTADIENE	1568	WR	1545	Percent D in the ContCal exceed limits.
	INDENO(1,2,3-CD)PYRENE	1568	WR	1545	Percent D in the ContCal exceed limits.
	PENTACHLOROPHENOL	1568	WR	1545	Percent D in the ContCal exceed limits.
	PHENOL	1568	WR	1545	Percent D in the ContCal exceed limits.
BNA	2,4-DINITROPHENOL	1569		1545	Percent D in the ContCal exceed limits.
BNA	3,3 -DICHLOROBENZIDINE	1569		1545	Percent D in the ContCal exceed limits.
BNA	3-NITROANILINE			1545	Percent D in the ContCal exceed limits. Percent D in the ContCal exceed limits.
BNA		1569			Percent D in the ContCal exceed limits.
BNA	4-Bromophenyl-Phenylether 4-Chloroaniline	1569		1545	Percent D in the ContCal exceed limits. Percent D in the ContCal exceed limits.
BNA		1569		1545	
BNA	4-NITROPHENOL	1569		1545	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1569		1545	Percent D in the ContCal exceed limits.
	HEXACHLOROBUTADIENE	1569		1545	Percent D in the ContCal exceed limits.
BNA	INDENO(1,2,3-CD)PYRENE	1569		1545	Percent D in the ContCal exceed limits.
	PENTACHLOROPHENOL	1569		1545	Percent D in the ContCal exceed limits.
	PRENOL	1569		1545	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1570	WR	1570	Percent D in the ContCal exceed limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

		,			
ANALYSIS TYPE	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
BNA	4-NITROPHENOL	1570	WR	1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1570	WR	1570	Percent D in the ContCal exceed limits.
BKY	DI-N-BUTYLPHTEALATE	1570	WR	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1570	WR	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1570	WR	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1570	WR	1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1570	WR	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1571		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1571		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(R) FLUORANTHENE	1571		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1571		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1571		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1571		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1571		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1571		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1572	BR	1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1572	ER	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1573		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1573		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K)FLUORANTHENE	1573		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1573		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1573		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1573		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1573		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1573		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1574		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1574		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1574		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1574		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1574		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1574		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1574		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1574		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1576		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1576		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(R)FLUORANTHENE	1576		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1576		1570	Percent D in the ContCal exceed limits.
	DI-N-OCTYLPHTHALATE	1576		1570	Percent D in the ContCal exceed limits.
	HEXACHLOROBENZENE	1576		1570	Percent D in the ContCal exceed limits.
	N-NITROSO-DI-N-PROPYLAMINE	1576		1570	Percent D in the ContCal exceed limits.
	PYRENE	1576		1570	Percent D in the ContCal exceed limits.
	3,3'-DICHLOROBENZIDINE	1577		1570	Percent D in the ContCal exceed limits.
	4-NITROPHENOL	1577		1570	Percent D in the ContCal exceed limits.
	BENZO(K) FLUORANTHENE	1577		1570	Percent D in the ContCal exceed limits.
		-3,,,		13/0	rescent b in the contral exceed limits.

DATE:03/01/94

ANALYSIS TYPE	COMPOUND		SAMPLE TYPE	SDG	ERROR MESSAGES
BNA	DI-N-BUTYLPHTHALATE	1577		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1577		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZ ENE	1577		1570	Percent D in the ContCal exceed limits.
BKA	N-NITROSO-DI-N-PROPYLAMINE	1577		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1577		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1578		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1578		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K)FLUORANTHENE	1578		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1578		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1578		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1578		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1578		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1578		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1579		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1579	-	1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K)FLUORANTHENE	1579	-	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1579		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1579		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1579		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1579	-	1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1579		1570	Percent D in the ContCal exceed limits.
BNA	3,5'-DICHLOROBENZIDINE	1580		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1580		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K)FLUORANTHENE	1580		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1580		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1580		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1580		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1580		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1580		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1581		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1581		1570	Percent D in the ContCal exceed limits.
BNA	BUTYLBENZYLPHTHALATE	1581		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1581		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1581		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1581		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1581		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	BUTYLBENZYLPHTHALATE	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1581	DL	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	BENZO(R)FLUORANTHENE	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1582	ER	1570	Percent D in the ContCal exceed limits.
<u> </u>					<u> </u>

PROJECT: NEVADA AIR NAT. GUARD (RENO) Nondetect Error Messaces

Nondetect Error Messaces
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

			,		
ANALYSIS TYPE	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
BNA	PYRENE	1582	ER	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1584		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1584		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1584		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1584		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1584		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1584		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1584		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1584		1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATB	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPETHALATE	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1585	ER	1570	Percent D in the ContCal exceed limits.
ANA	PYRENE	1585	ER	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1586		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1586		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K)FLUORANTHENB	1586		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTRALATE	1586		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1586		1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1586		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1586		1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1586	 	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1587		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1587	 -	1570	Percent D in the ContCal exceed limits.
BNA	BENZO (K) FLUORANTHENE	1587		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTRALATE	1587		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1587	-	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1587	 	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1587	_	1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1587	 	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1588	 	1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1588		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1588		1570	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1588	-	1570	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1588	 	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1588		1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1588	-	1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1588	-	1570	Percent D in the ContCal exceed limits.
BNA	3,3'-DICHLOROBENZIDINE	1589		1570	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1589		1570	Percent D in the ContCal exceed limits.
BNA	BENZO(K) PLUORANTHENE	1589		1570	Percent D in the ContCal exceed limits.
BNA	BUTYLBENZYLPHTHALATE				Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1589		1570	Percent D in the ContCal exceed limits.
		1589		1570	
BNA	DI-N-OCTYLPHTHALATE	1589	-	1570	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1589	ļ	1570	Percent D in the ContCal exceed limits.
BNA	N-NITROSO-DI-N-PROPYLAMINE	1589	<u> </u>	1570	Percent D in the ContCal exceed limits.
BNA	PYRENE	1589	L	1570	Percent D in the ContCal exceed limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

	-	·			I
ANALYSIS TYPE	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
BNA	2,2'-OXYBIS (1-CHLOROPROPANE)	1590		1590	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1590		1590	Percent D in the ContCal exceed limits.
BNA	Benzo(K) Fluoranthene	1590		1590	Percent D in the ContCal exceed limits.
BNA	BUTYLBENZYLPHTHALATE	1590		1590	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1590		1590	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTRALATE	1590		1590	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZ ENE	1590		1590	Percent D in the ContCal exceed limits.
BNA	2,2'-OXYBIS (1-CHLOROPROPANE)	1592	PB	1590	Percent D in the ContCal exceed limits.
BNA	4-NITROPHENOL	1592	FB	1590	Percent D in the ContCal exceed limits.
BNA	BENZO(K) FLUORANTHENE	1592	PB	1590	Percent D in the ContCal exceed limits.
BNA	BUTYLBENZYLPHTHALATE	1592	FB	1590	Percent D in the ContCal exceed limits.
BNA	DI-N-BUTYLPHTHALATE	1592	FB	1590	Percent D in the ContCal exceed limits.
BNA	DI-N-OCTYLPHTHALATE	1592	PB	1590	Percent D in the ContCal exceed limits.
BNA	HEXACHLOROBENZENE	1592	FB	1590	Percent D in the ContCal exceed limits.
MET	ANTIMONY	1546		1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1546		1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1546		1545	Metals Corr Coef calibration outside of limits.
MET	CHRONIUM	1546		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1546		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1546		1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1546		1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1546		1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1546		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1546		1545	Metals Corr Coef calibration outside of limits.
MET		1546		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1546	<u> </u>	1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1546		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1547		1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1547		1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1547		1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1547		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1547	 	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1547	 	1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1547		1545	Metals Corr Coef calibration outside of limits.
MET	NICREL	1547		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1547		1545	Metals Corr Coef calibration outside of limits.
MET		1547		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1547		1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1547		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	BARIUM				<u> </u>
MET	BERYLLIUM	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET		1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1548	PB	1545	Metals Corr Coef calibration outside of limits.
	CHROMIUM	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET	CORRE	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	COPPER	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	IRON	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET MET	MAGNESIUM	1548	PB	1545	Metals Corr Coef calibration outside of limits.
	MANGANESE	1548	PB	1545	Metals Corr Coef calibration outside of limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

ANALYSIS TYPE	СОНВОДИД	Sample Number	SAMPLE TYPE	SDG	ERROR MESSAGES
MET	MERCURY	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET	POTASSIUM	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1548	FB	1545	Metals Corr Coef calibration outside of limits.
MET		1548	FB	1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET	VANADIUM	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1548	PB	1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1549		1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1549		1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1549		1545	Metals Corr Coef calibration outside of limits.
MET	CHRONIUM	1549		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1549		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1549		1545	Metals Corr Coef calibration outside of limits.
MET	MBRCURY	1549		1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1549		1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1549		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1549		1545	Metals Corr Coef calibration outside of limits.
MET		1549		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1549		1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1549		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1550		1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1550		1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1550		1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1550		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1550	<u> </u>	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1550	 	1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1550		1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1550	1	1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1550		1545	Metals Corr Coef calibration outside of limits.
MET		1550		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1550		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIHONY	1551	1	1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1551	1	1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1551		1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1551		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1551		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1551		1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1551		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1551	<u> </u>	1545	Metals Corr Coef calibration outside of limits.
MET		1551		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1551		1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1551		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1552	WR	1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1552	WR	1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1552	WR	1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1552	WR	1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1552	WR	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1552	WR	1545	Metals Corr Coef calibration outside of limits.
	· · · · · · · · · · · · · · · · · · ·				The state of the s

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Nondetect Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

ANALYTE COMPOUND COMPOUND TYPE TYP						
NET NETEXAL 1552 WR 1545 Natale Corr Coef calibration outside of limits.		COMPOUND			SDG	ERROR MESSAGES
STLENTIN	MET	MERCURY	1552	WR	1545	Metals Corr Coef calibration outside of limits.
NET	NET	NICKEL	1552	WR	1545	Metals Corr Coef calibration outside of limits.
NET	HET	SELENIUM	1552	WR	1545	Metals Corr Coef calibration outside of limits.
RET TALLIUM	MET	SILVER	1552	WR	1545	Metals Corr Coef calibration outside of limits.
NET	MET		1552	WR	1545	MET Lab Control Samples & Recovery outside limits.
MET ANTIHONY 1556 78 1545 Metals Corr Coef calibration outside of limits.	MET	THALLIUM	1552	WR	1545	Metals Corr Coef calibration outside of limits.
NET CADMIUM 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET CADMIUM 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET CRONIUM 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET COBALT 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET LEAD 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET MERCURY 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET MERCURY 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET SILVER 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET SILVER 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET SILVER 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET LEAD 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET LEALLIUM 1556 PB 1545 METALS CORT Coef calibration outside of limite. NET TANADIUM 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET VANADIUM 1556 PB 1545 Metals Corr Coef calibration outside of limite. NET ANTIHONY 1557 1545 Metals Corr Coef calibration outside of limite. NET CORNIUM 1557 1545 Metals Corr Coef calibration outside of limite. NET CRONIUM 1557 1545 Metals Corr Coef calibration outside of limite. NET CRONIUM 1557 1545 Metals Corr Coef calibration outside of limite. NET CRONIUM 1557 1545 Metals Corr Coef calibration outside of limite. NET CRONIUM 1557 1545 Metals Corr Coef calibration outside of limite. NET LEAD 1557 1545 Metals Corr Coef calibration outside of limite. NET NICKEL 1557 1545 Metals Corr Coef calibration outside of limite. NET NICKEL 1557 1545 Metals Corr Coef calibration outside of limite. NET SILVER 1557 1545 Metals Corr Coef calibration outside of limite. NET MICKEL 1557 1545 Metals Corr Coef calibration outside of limite. NET SILVER 1557 1545 Metals Corr Coef calibration outside of limite. NET TALLIUM 1559 1545 Metals Corr Coef calibration outside of limite. NET LEAD 1558 PB 1545 Metals Corr Coef calibration outside of limite. NET LEAD 1558 PB 1545 Metals C	MET	ZINC	1552	WR	1545	Metals Corr Coef calibration outside of limits.
NET CADMIUM	MET	ANTIMONY	1556	FB	1545	Metals Corr Coef calibration outside of limits.
NET CORALT 1556 FB 1545 Netals Corr Coef calibration outside of limits.	MET	BERYLLIUM	1556	PB	1545	Metals Corr Coef calibration outside of limits.
NOT LEAD 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT LEAD 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT SELECURY 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT SILVER 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT SILVER 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT SILVER 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT SILVER 1556 FB 1545 NET Lab Control Samples & Recovery outside limits. NOT TARALIUM 1556 FB 1545 NET Lab Control Samples & Recovery outside limits. NOT VARADIUM 1556 FB 1545 Netals Corr Coef calibration outside of limits. NOT VARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT VARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT CARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT CARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT CARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT CARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT CARADIUM 1557 Not Set Netals Corr Coef calibration outside of limits. NOT COBALT 1557 Not Set Netals Corr Coef calibration outside of limits. NOT NOT SET NOT	MET	CADHIUM	1556	FB	1545	Metals Corr Coef calibration outside of limits.
NET LEAD 1556 FB 1545 Metals Corr Coef calibration outside of limits.	MET	CHROMIUM	1556	PB	1545	Metals Corr Coef calibration outside of limits.
NET NET	MET	COBALT	1556	FB	1545	Metals Corr Coef calibration outside of limits.
NET NET	MET	LEAD	1556	PB	1545	Metals Corr Coef calibration outside of limits.
NET				PB		
NET SELENIUM 1556			L.———			
NET						
MET TEALLIUM 1556 PB 1545 MET Lab Control Samples & Recovery outside limits. MET TEALLIUM 1556 PB 1545 Metals Corr Coef calibration outside of limits. MET ANTHONY 1557 1545 Metals Corr Coef calibration outside of limits. MET ARTHONY 1557 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CORALT 1557 1545 Metals Corr Coef calibration outside of limits. MET CORALT 1557 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1557 1545 Metals Corr Coef calibration outside of limits. MET NERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET TABLLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET TABLLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ARTHONY 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET ARRIUM 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET CROMIUM 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 RR 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 RR 1545 Metals						
NET TEALLIUM 1556 FB 1545 Metala Corr Coef calibration outside of limita. NET VANADIUM 1556 FB 1545 Metala Corr Coef calibration outside of limita. NET ANTIMONY 1557 1545 Metala Corr Coef calibration outside of limita. NET BERYLLIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET CADMIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET CROMIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET CROMIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET CROMIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET LEAD 1557 1545 Metala Corr Coef calibration outside of limita. NET NERCURY 1557 1545 Metala Corr Coef calibration outside of limita. NET NICKEL 1557 1545 Metala Corr Coef calibration outside of limita. NET SILVER 1557 1545 Metala Corr Coef calibration outside of limita. NET SILVER 1557 1545 Metala Corr Coef calibration outside of limita. NET SILVER 1557 1545 Metala Corr Coef calibration outside of limita. NET SILVER 1557 1545 Metala Corr Coef calibration outside of limita. NET TRALLIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET TRALLIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET TRALLIUM 1557 1545 Metala Corr Coef calibration outside of limita. NET ANTHONY 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET ANTHONY 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET CADMIUM 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET CADMIUM 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET COPPER 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET COPPER 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET COPPER 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET LEAD 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET NECRUTY 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET NECRUTY 1558 RR 1545 Metala Corr Coef calibration outside of limita. NET NECRUTY 1558 RR 1545 Met						
NET VANADIUM 1556 FB 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1557 1545 Metals Corr Coef calibration outside of limits. MET ADMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CEROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CEROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1557 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1557 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET TEALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET TEALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARTUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARTUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARTUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CODALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COMPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 E		THALLTUM		'- 1		
MET ANTIMONY 1557 1545 Netale Corr Coef calibration outside of limits. MET BERYLLUM 1557 1545 Netale Corr Coef calibration outside of limits. MET CADMIUM 1557 1545 Netale Corr Coef calibration outside of limits. MET CORMIUM 1557 1545 Netale Corr Coef calibration outside of limits. MET CODALT 1557 1545 Netale Corr Coef calibration outside of limits. MET CODALT 1557 1545 Netale Corr Coef calibration outside of limits. MET LEAD 1557 1545 Netale Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Netale Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Netale Corr Coef calibration outside of limits. MET SILVER 1557 1545 Netale Corr Coef calibration outside of limits. MET SILVER 1557 1545 Netale Corr Coef calibration outside of limits. MET SILVER 1557 1545 Netale Corr Coef calibration outside of limits. MET THALLIUM 1557 1545 Netale Corr Coef calibration outside of limits. MET THALLIUM 1557 1545 Netale Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORALT 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORONIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORONIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORONIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORONIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORONIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET CORONIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Netale Corr Coef calibration outside of limits. MET M						
MET BERYLLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CEROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CEROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CEROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1557 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET TABLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET TABLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTINONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits.		· · · · · · · · · · · · · · · · · · ·				
MET CADMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CERONIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET CORALT 1557 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1557 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET TABLILIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET TRALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CORALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CORALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CORALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET CHROMIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1557 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1557 1545 Metals Corr Coef calibration outside of limits. MET NERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET THALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET COBALT 1557 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1307 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET THALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CORPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET LEAD 1557 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET TEALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARTUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARTUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET MERCURY 1557 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET TEALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET TEALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERILLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						<u> </u>
MET NICKEL 1557 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET THALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIHONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET SELENIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1557 1545 Metals Corr Coef calibration outside of limits. MET 1557 1545 MET Lab Control Samples & Recovery outside limits. MET THALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIHONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET SILVER 1557 1545 Netals Corr Coef calibration outside of limits. MET THALLIUM 1557 1545 MET Lab Control Samples & Recovery outside limits. MET THALLIUM 1557 1545 Metals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET THAILIUM 1557 1545 NET Lab Control Samples & Recovery outside limits. MET THAILIUM 1557 1545 Netals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Netals Corr Coef calibration outside of limits. MET ANTIHONY 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits.						
MET TEALLIUM 1557 1545 Netals Corr Coef calibration outside of limits. MET ZINC 1557 1545 Netals Corr Coef calibration outside of limits. MET ANTIMONY 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET CEROMIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Netals Corr Coef calibration outside of limits.		SILVER				
MET ZINC 1557 1545 Metals Corr Coef calibration outside of limits. MET ANTIHONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MECURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET ANTIHONY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.				ļ		
MET BARIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET BERYLLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET CADMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET CHROMIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET COBALT 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET COPPER 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.		- 				
MET IRON 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET LEAD 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET MAGNESIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.		······································				
MET MERCURY 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.		· · · · · · · · · · · · · · · · · · ·				
MET NICKEL 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET POTASSIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.						
MET SELENIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits. MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.		· · · · · · · · · · · · · · · · · · ·				-
MET SILVER 1558 ER 1545 Metals Corr Coef calibration outside of limits.	MET	POTASSIUM	1558	ER	1545	Metals Corr Coef calibration outside of limits.
		SELENIUM	1558	ER	1545	Metals Corr Coef calibration outside of limits.
	MET	SILVER	1558	ER	1545	Metals Corr Coef calibration outside of limits.
	MET		1558	ER	1545	MET Lab Control Samples % Recovery outside limits.
MET THALLIUM 1558 ER 1545 Metals Corr Coef calibration outside of limits.	MET	THALLIUM	1558	ER	1545	Metals Corr Coef calibration outside of limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

ANALYSIS TYPE	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
MET	VANADIUM	1558	ER	1545	Metals Corr Coef calibration outside of limits.
MET	APTINOFY	1559		1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1559		1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1559		1545	Metals Corr Coef calibration outside of limits.
MET	CERONIUM	1559		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1559		1545	Metals Corr Coef calibration outside of limits.
MET	IRON	1559		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1559		1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1559		1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1559		1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1559		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1559		1545	Metals Corr Coef calibration outside of limits.
MET		1559		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1559		1545	Metals Corr Coef calibration outside of limits.
	ANTIMONY	1560		1545	Metals Corr Coef calibration outside of limits.
	BERYLLIUM	1560		1545	Metals Corr Coef calibration outside of limits.
	CADMIUM	1560		1545	Metals Corr Coef calibration outside of limits.
 	CHROMIUM	1560	 	1545	Metals Corr Coef calibration outside of limits. Metals Corr Coef calibration outside of limits.
├	COBALT	1560		1545	Metals Corr Coef calibration outside of limits. Metals Corr Coef calibration outside of limits.
	LEAD	1560	\vdash	1545	Metals Corr Coef calibration outside of limits.
		1560		1545	Metals Corr Coef calibration outside of limits. Metals Corr Coef calibration outside of limits.
					
		1560		1545	Metals Corr Coef calibration outside of limits.
		1560	 !	1545	Metals Corr Coef calibration outside of limits.
MET		1560		1545	Metals Corr Coef calibration outside of limits.
├ ───		1560		1545	MET Lab Control Samples & Recovery outside limits.
├	<u> </u>	1560		1545	Metals Corr Coef calibration outside of limits.
		1560		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1566	─	1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
	CADMIUM	1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
	LEAD	1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
MET		1566		1545	MET Lab Control Samples & Recovery outside limits.
		1566		1545	Metals Corr Coef calibration outside of limits.
		1567		1545	Metals Corr Coef calibration outside of limits.
		1567		1545	Metala Corr Coef calibration outside of limits.
MET	CADHIUH	1567		1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1567		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1567		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1567		1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1567		1545	Metals Corr Coef calibration outside of limits.
MET I	NICKEL	1567		1545	Metals Corr Coef calibration outside of limits.
MET :	SELENIUM	1567		1545	Metals Corr Coef calibration outside of limits.

NVANG SI Report Final - April 1994

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

ANALYSIS TYPE	СОМБОЛИД	SAMPLE NUMBER	SAMPLE TYPE	BDG	ERROR MESSAGES
MET	SILVER	1567		1545	Metals Corr Coef calibration outside of limits.
MET	_	1567		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1567		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIHONY	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	CADHIUM	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1568	W _K	1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	COPPER	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET		1568	WR	1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1568	WR	1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1569		1545	Metals Corr Coef calibration outside of limits.
MET	PERYLLIUM	1569		1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1569		1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1569		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1569		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1569		1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1569		1545	Metals Corr Coef calibration outside of limits.
MET	TICKEL	1569		1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1569		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1569		1545	Metals Corr Coef calibration outside of limits.
MET		1569		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1569	\Box	1545	Metals Corr Coef calibratio outside of limits.
MET	VANADIUM	1569		1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1570	WR	1545	Metals Corr Coef calibration outside of limits.
EET	CADHIUM	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	COPPER	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET		1570	WR	1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	VANADIUM	1570	WR	1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	ARSENIC	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	BARIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.

DATE:03/01/94

ANALYSIS TYPE	СОИБОЛИД	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
MET	COBALT	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	COPPER	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	MAGNESIUM	1572	BR	1545	Metals Corr Coef calibration outside of limits.
MET	MANGANESE	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	POTASSIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET		1572	ER	1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	VANADIUM	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	ZINC	1572	ER	1545	Metals Corr Coef calibration outside of limits.
MET	ANTIMONY	1573	 	1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1573	 	1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1573	 	1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1573	 	1545	Matala Corr Coef calibration outside of limits.
MET	COBALT	1573	ļ	1545	Metals Corr Coef calibration outside of limits.
MET	COPPER	1573	 	1545	Metals Corr Coef calibration outside of limits.
MET	IRON		ļ	1545	Metals Corr Coef calibration outside of limits.
	LEAD	1573			Metals Corr Coef calibration outside of limits.
MET		1573		1545	
MET	MERCURY	1573		1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1573		1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1573		1545	Metals Corr Coef calibration outside of limits.
MET	SILVER	1573	 	1545	Metals Corr Coef calibration outside of limits.
MET		1573		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1573	 	1545	Metals Corr Coef calibration outside of limits.
MET	ANTIHONY	1574		1545	Metals Corr Coef calibration outside of limits.
MET	BERYLLIUM	1574	ļ	1545	Metals Corr Coef calibration outside of limits.
MET	CADMIUM	1574	ļ	1545	Metals Corr Coef calibration outside of limits.
MET	CHROMIUM	1574		1545	Metals Corr Coef calibration outside of limits.
MET	COBALT	1574		1545	Metals Corr Coef calibration outside of limits.
MET	IRON	1574		1545	Metals Corr Coef calibration outside of limits.
MET	LEAD	1574		1545	Metals Corr Coef calibration outside of limits.
MET	MERCURY	1574	<u></u>	1545	Metals Corr Coef calibration outside of limits.
MET	NICKEL	1574		1545	Metals Corr Coef calibration outside of limits.
MET	SELENIUM	1574		1545	Metals Corr Coef calibration outside of 'imits.
MET	SILVER	1574		1545	Metals Corr Coef calibration outside of limits.
MET		1574		1545	MET Lab Control Samples & Recovery outside limits.
MET	THALLIUM	1574		1545	Metals Corr Coef calibration outside of limits.
AOT	1,1,2,2-TETRACHLOROETHANE	1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1545	TB	1545	Percent RSD in the InitCal exceeds limits.
VOL		1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1545	TB	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1546	1	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1546		1545	Percent D in the ContCal exceed limits.

DATE:03/01/94

ANALYSIS TYPE	СОМРОИНД	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
VOL	2-HEXANONE	1546		1545	Percent D in the ContCal exceed limits.
AOT	4-METHYL-2-PENTANONE	1546		1545	Percent RSD in the InitCal exceeds limits.
VOL		1546		1545	Percent D in the ContCal exceed limits.
AOT	ACETONE	1546		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1546	<u> </u>	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1546		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1547		1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1547		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1547		1545	Percent D in the ContCal exceed limits.
VOL	4-methyl-2-pentanone	1547		1545	Percent RSD in the InitCal exceeds limits.
VOL		1547		1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1547		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1547		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1547	1	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1548	PB	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1548	FB	1545	Percent D in the Contral exceed limits.
VOL	2-HEXANONE	1548	PB	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1548	PB	1545	Percent RSD in the InitCal exceeds limits.
VOL		1548	PB	1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1548	PB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1548	PB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1548	FB	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1549	 	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1549		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1549		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1549		1545	Percent RSD in the InitCal exceeds limits.
VOL		1549		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1549		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1549		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1550	ļ	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1550		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1550		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1550	 	1545	Percent RSD in the InitCal exceeds limits.
VOL		1550		1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1550		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1550		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1550		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1551	<u> </u>	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1551	<u> </u>	1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1551		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1551		1545	Percent RSD in the InitCal exceeds limits.
VOL		1551	-	1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1551	 	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETRANE	1551	 	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1551	 	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1552	WR	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1552	l WR	1545	Percent D in the ContCal exceed limits.
	2-HEXANONE	1552	WR	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1552	WR	1545	Percent RSD in the InitCal exceeds limits.
VOL		1552	WR	1545	Percent D in the ContCal exceed limits.
		1,3,32	170	, , , , ,	. STOOM D IN CHE CONTEST SACES TIMILES.

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

ANAT VATA	CONTOURN	CAMPT =	SAMPLE	enc	ERROR MESSAGES
ANALYSIS TYPE	CORPOUND	Sample Number	SAMPLE TYPE		BUNCK REGERS
AOT	ACETONE	1552	WR	1545	Percent D in the ContCal exceed limits.
AOT	CHLOROETHANE	1552	WR	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1552	WR	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1553	TB	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1553	TB	1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1553	TB	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1553	TB	1545	Percent RSD in the InitCal exceeds limits.
VOL		1553	TB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1553	TB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1553	TB	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1554		1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1554		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1554		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1554		1545	Percent RSD in the InitCal exceeds limits.
VOL		1554		1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1554		1545	Percent D in the ContCal exceed limits.
vor	CHLOROETHANE	1554		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1554		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1555		1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1555		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1555		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1555		1545	Percent RSD in the InitCal exceeds limits.
VOL		1555		1545	Percent D in the ContCal exceed limits.
	ACETONE	1555		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1555		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1555		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1556	FB	1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1556	PB	1545	Percent D in the ContCal exceed limits.
	2-HEXANONE	1556	PB	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1556	PB	1545	Percent RSD in the InitCal exceeds limits.
VOL	T-MINID-I-I BRITANON	1556	FB	1545	Percent D in the ContCal exceed limits.
	ACETONE	1556	PB	1545	Percent D in the ContCal exceed limits.
	CHLOROETHANE	1556	PB	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1556	FB	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1557	-	1545	Percent D in the ContCal exceed limits.
	1,2-DICHLOROETHANE 2-HEXANONE	1557		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1557		1545	Percent D in the ContCal exceed limits.
	4-metair-z-renianune	1557		1545	Percent RSD in the InitCal exceeds limits.
VOL	ACETONE	1557		1545	Percent D in the ContCal exceed limits.
	ACETONE	1557		1545	Percent D in the ContCal exceed limits.
	CHLOROETHANE	1557		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1557		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1558	ER	1545	Percent D in the ContCal exceed limits.
	1,2-DICHLOROETHANE	1558	ER	1545	Percent D in the ContCal exceed limits.
	2-HEXANONE	1558	ER	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1558	ER	1545	Percent RSD in the InitCal exceeds limits.
VOL		1558	₹R	1545	Percent D in the ContCal exceed limits.
	ACETONE	1558	ER	1545	Percent D in the ContCal exceed limits.
	CHLOROETHANE	1558	ER	1545	Percent D in the ContCal exceed limits.
vor	CHLOROMETHANE	1558	ER	1545	Percent D in the ContCal exceed limits.

NVANG SI Report Final - April 1994

DATE:03/01/94

ANALYSIS TYPE	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
VOL	1,1,2,2-TETRACHLOROETHAME	1559		1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1559		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1559	T	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1559		1545	Percent RSD in the InitCal exceeds limits.
VOL		1559	f	1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1559		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1559		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1559		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1560		1545	Percent D in the ContCal exceed limits.
VOL	1.2-DICHLOROETHANE	1560	 	1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1560		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1560		1545	Percent RSD in the InitCal exceeds limits.
VOL		1560		1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1560	<u> </u>	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1560		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1560		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1565	TB	1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1565	TB	1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1565	TB	1570	Percent D in the ContCal exceed limits.
VOL		1566	18	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE 1,2-DICHLOROETHANE			1545	Percent D in the ContCal exceed limits.
		1566			Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1566		1545	
VOL	4-METHYL-2-PENTANONE	1566		1545	Percent RSD in the InitCal exceeds limits.
VOL		1566		1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1566		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1566		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1566		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1567		1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1567		1545	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1567		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1567		1545	Percent RSD in the InitCal exceeds limits.
AOL		1567		1545	Percent D in the ContCal exceed limits.
AOL	ACETONE	1567		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1567		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1567		1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1568	WR	1545	Percent D in the ContCal exceed limits.
AOL	1,2-DICHLOROETHANE	1568	WR	1545	Percent D in the ContCal exceed limits.
VOL	2 - HE XANONE	1568	WR	1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1569	WR	1545	Percent RSD in the InitCal exceeds limits.
VOL		1568	WR	1545	Percent D in the ContCal exceed limits.
VOL	ACETONE	1568	WR	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1568	WR	1545	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1568	WR	1545	Percent D in the ContCal exceed limits.
VOL	1,1,2,2-TETRACHLOROETHANE	1569		1545	Percent D in the ContCal exceed limits.
VOL	1,2-DICHLOROETHANE	1569		1545	Percent D in the ContCal exceed limits.
VOL	2 - HEXANONE	1569		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1569		1545	Percent RSD in the InitCal exceeds limits.
VOL		1569		1545	Percent D in the ContCal exceed limits.
AOL	ACETONE	1569		1545	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1569		1545	Percent D in the ContCal exceed limits.

DATE:03/01/94

ANALYSIS TYPE	COMPOUND	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
VOL	CHLOROMETHANE	1569		1545	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1570	WR	1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1570	WR	1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1570	WR	1570	Percent D in the ContCal exceed limits.
VOL	4-methyl-2-pentanone	1571		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1571		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1571		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1572	ER	1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1572	ER	1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1572	ER	1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1573		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1573		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1573		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1574		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1574		1570	Percent D in the ContCal exceed limits.
AOT	CHLOROMETHANE	1574		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1575	ТВ	1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1575	тв	1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1575	TB	1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1577		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1577		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1577		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1578		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1578		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1578		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1579		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1579		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1579		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1580		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1580		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1580		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1582	ER	1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1582	ĒR	1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1582	ER	1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1584	<u> </u>	1570	Percent D in the ContCal exceed limits.
	ACETONE	1584		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1584		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1585	ER	1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1585	ER	1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1585	ER	1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1586		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1586		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1586		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1587		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1587		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1587		1570	Percent D in the ContCal exceed limits.
VOL	4-METHYL-2-PENTANONE	1588		1570	Percent D in the ContCal exceed limits.
VOL	ACETONE	1588			
VOL	CHLOROMETHANE	1588		1570	Percent D in the ContCal exceed limits.
VOL				1570	Percent D in the ContCal exceed limits.
702	4-METHYL-2-PENTANONE	1589	لــــا	1570	Percent D in the ContCal exceed limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Nondetect Error Messages
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

ANALYSIS TYPE	СОИРОИИД	SAMPLE NUMBER	SAMPLE TYPE	SDG	ERROR MESSAGES
VOL	ACETONE	1589		1570	Percent D in the ContCal exceed limits.
VOL	CHLOROMETHANE	1589		1570	Percent D in the ContCal exceed limits.
VOL	2-BUTANONE	1590		1590	Percent D in the ContCal exceed limits.
VOL	2-HEXANORE	1590		1590	Percent D in the ContCal exceed limits.
VOL		1590		1590	The RRF in the continuing calib. exceeds limit.
VOL	4-METHYL-2-PENTANONE	1590		1590	Percent D in the ContCal exceed limits.
VOL	ACETONE	1590		1590	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1590		1590	Percent D in the ContCal exceed limits.
VOL	TRANS-1,3-DICHLOROPROPENE	1590	-	1590	Percent D in the ContCal exceed limits.
VOL	2-BUTANONE	1591	TB	1590	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE		TB	1590	Percent D in the ContCal exceed limits.
VOL	2000000		TB	1590	The RRF in the continuing calib. exceeds limit.
VOL	4-METHYL-2-PENTANONE		TB	1590	Percent D in the ContCal exceed limits.
VOL	ACETONE	1591	TB	1590	
VOL	CHLOROETEANE	 			Percent D in the ContCal exceed limits.
VOL			TB	1590	Percent D in the ContCal exceed limits.
VOL	TRANS-1,3-DICHLOROPROPENE 2-BUTANONE		TB	1590	Percent D in the ContCal exceed limits.
			FB	1590	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE		PB	1590	Percent D in the ContCal exceed limits.
VOL			PB	1590	The RRF in the continuing calib. exceeds limit.
AOT	4-METHYL-2-PENTANONE		FB	1590	Percent D in the ContCal exceed limits.
VOL	ACETONE		FB	1590	Percent D in the ContCal exceed limits.
AOT	CHLOROETHANE	1592	PB	1590	Percent D in the ContCal exceed limits.
VOL	TRANS-1, 3-DICHLOROPROPENE	1592	FB	1590	Percent D in the ContCal exceed limits.
VOL	2-BUTANONE	1593		1590	Percent D in the ContCal exceed limits.
AOL	2-HEXANONE	1593		1590	Percent D in the ContCal exceed limits.
AOT		1593		1590	The RRP in the continuing calib. exceeds limit.
AOL	4-METHYL-2-PENTANONE	1593		1590	Percent D in the ContCal exceed limits.
VOL	ACETONE	1593		1590	Percent D in the ContCal exceed limits.
AOL	CHLOROETHANE	1593		1590	Percent D in the ContCal exceed limits.
VOL	TRANS-1, 3-DICHLOROPROPENE	1593		1590	Percent D in the ContCal exceed limits.
VOL	2-BUTANONE	1595		1590	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1595		1590	Percent D in the ContCal exceed limits.
VOL		1595		1590	The RRF in the continuing calib. exceeds limit.
VOL	4-METHYL-2-PENTANONE	1595		1590	Percent D in the ContCal exceed limits.
VOL	ACETONE	1595		1590	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1595		1590	Percent D in the ContCal exceed limits.
AOL	TRANS-1, 3-DICHLOROPROPENE	1595		1590	Percent D in the ContCal exceed limits.
VOL	2-BUTANONE	1596	ER	1590	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1596	ER	1590	Percent D in the ContCal exceed limits.
VOL		1596	ER	1590	The RRF in the continuing calib. exceeds limit.
VOL	4-METHYL-2-PENTANONE	1596	ER	1590	Percent D in the ContCal exceed limits.
VOL	ACETONE	1596	ER	1590	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1596	ER	1590	Percent D in the ContCal exceed limits.
VOL	TRANS-1,3-DICHLOROPROPENE	1596	ER	1590	Percent D in the ContCal exceed limits.
VOL	2-BUTANONE	1597	TB	1590	Percent D in the ContCal exceed limits.
VOL	2-HEXANONE	1597	ТВ	1590	Percent D in the ContCal exceed limits.
VOL		1597	TB	1590	The RRF in the continuing calib. exceeds limit.
VOL	4-METHYL-2-PENTANONE	1597	ТВ	1590	Percent D in the ContCal exceed limits.
VOL	ACETONE	1597	TB	1590	Percent D in the ContCal exceed limits.
VOL	CHLOROETHANE	1597	тв	1590	Percent D in the ContCal exceed limits.
		·	1		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Nondetect Error Messages REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

ANALYSIS TYPE	CONDOUND	Sample Number	SAMPLE TYPE	SDG	ERROR MESSAGES
VOL	TRANS-1, 3-DICHLOROPROPENE	1597	TB	1590	Percent D in the ContCal exceed limits.

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Research Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1546

SAMPLE TYPE : MWOZ SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-DICHLOROBENZENE	0.00	1	10.00	U	ט
1,3-DICHLOROBENZENE	0.00	1	10.00	U	บ
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	Ū
2,4-DICHLOROPHENOL	0.00		10.00	σ	U
2,4-DIMETHYLPHENOL	0.00	Î	10.00	U	ט
2,4-DINITROPHENOL	0.00		25.00	ט	ชง
2,4-DINITROTOLUENE	0.00		10.00	ט	U
2,6-DINITROTOLUENE	0.00		10.00	U	U
2-CHLORONAPHTHALENE	0.00		10.00	U	U
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTHALENE	0.00		10.00	ט	U
2-methylphenol	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-NITROPHENOL	0.00		10.00	ט	υ
3,3'-DICHLOROBENZIDINE	0.00		10.00	υ	נט
3-NITROANILINE	0.00		25.00	U	บJ
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	บบ
4-CHLORO-3-METHYLPHENUL	0.00		10.00	ប	ט
4-CHLOROANILINE	0.00		10.00	ט	บJ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	บ	U
4-methylphenol	0.00		10.00	U	U
4-NITROANILINE	0.00		25.00	υ	ט
4-NITROPHENOL	0.00		25.00	U	บJ
ACENAPHTHENE	0.00		10.00	บ	ט
ACENAPETHYLENE	0.00		10.00	U	U
anthracene	0.00		10.00	U	U
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A)PYRENE	0.00		10.00	υ	υ
BENZO(B) FLUORANTHENE	0.00		10.90	ט	U
BENZO(G, H, I) PERYLENE	0.00		10.00	บ	บ
BENZO(K)FLUORANTHENE	0.00		10.00	U	ט
BENZOIC ACID	0.00		10.00	U	υ
BENZYL ALCOHOL	0.00		10.60	ט	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	ט	υ
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1546

SAMPLE TYPE : MW 02 SAMPLE MATRIX : W

SAMPLE MATRIX : W ASSOCIATED MB : SBLK27

ANALYSIS TYPE : BNA

TRIP BLANK: 1545TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	3.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	1.00	µg/L	0.00		
CARBAZOLE	0.00		10.00	σ	ט
CHRYSENE	0.00		10.00	ט	U
DI-N-BUTYLPHTHALATE	1.00	µg/L	0.00		
DI-N-OCTYLPHTEALATE	0.00	1	10.00	ט	U
DIBENZ(A, E) ANTHRACENE	0.00		10.00	Ū	U
DIBENZOFURAN	0.00		10.00	ט	ט
DIETHYLPHTHALATE	1.00	μg/L	0.00		
DIMETHYLPHTHALATE	0.00		10.00	ט	ט
PLUORANTHENE	0.00		10.00	U	ט
PLUORENE	0.00		10.00	ט	ט
HEXACHLOROBENZENE	0.00		10.00	ט	บัง
HEXACHLOROBUTADIENE	0.00		10.00	ט	נט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	JJ
ISOPHORONE	0.00		10.00	U	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	U
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	Ū	ט
Naphthalene	0.00		10.00	ט	ប
NITROBENZENE	0.00		10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	U	บว
PHENANTHRENE	0.00		10.00	υ	U
PHENOL	0.00	1	10.00	ū	ΩJ
PYRENE	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1547

SAMPLE TYPE : MWOI

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK27

ANALYSIS TYPE : BNA

TRIP BLANK: 1545TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00	Ť	10.00	U	ט
1,2-DICHLOROBENZENE	0.00		10.00	U	U
1,3-DICHLOROBENZENE	0.00		10.00	U	บ
1,4-DICHLOROBENZENE	0.00	1	10.00	U	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	Ū
2,4,5-TRICHLOROPHENOL	0.00	Ì	25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00	1	10.00	U	U
2,4-DICHLOROPHENOL	0.00	1	10.00	U	ט
2,4-DIMETHYLPHENOL	0.00		10.60	U	ט
2,4-DINITROPHENOL	0.00		25.00	U	บง
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	U	U
2-CHLORONAPHTHALENE	0.00		10.00	U	บ
2-CHLOROPHENOL	0.00		10.00	U	ט
2-methylnapethalene	0.00		10.00	U	Ū
2 – METHYLP HENOL	0.00	1	10.00	ט	U
2-NITROANILINE	0.00	1	25.00	ט	U
2-NITROPHENOL	0.00	†	10.00	บ	ט
3,3'-DICHLOKOBENZIDINE	0.00		10.00	ט	υJ
3-NITROANILINE	0.00		25.00	ū	บบ
4,6-dinitro-2-methylphenol	0.00		25.00	ט	U
4-Bromophenyl-Phenylether	0.00		10.00	ט	UJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	ט
4-CHLORUANILINE	0.00		10.00	ט	บJ
CELOROPHENYL-PHENYLETHER	0.00		10.00	ט	ט
4-methylphenol	0.00		10.00	ט	ט
-nitroaniline	0.00		25.00	U	U
4-NITROPHENOL	0.00		25.00	U	บJ
acenad ethene	0.00		10.00	U	υ
ACENAPHTHYLENE	0.00		10.00	U	ט
ANTHRACENE	0.00		10.00	U	Ū
BENZO(A)ANTHRACENE	0.00		10.00	U	ט
BENZO(A)PYRENE	0.00		10.00	บ	U
Benzo(B) Fluoran Thene	0.00		10.00	U	U
BENZO(G, H, I)PERYLENE	0.00		10.00	U	U
BENZO(K) *LUORANTHENE	0.00		10.00	U	υ
BENZOIC ACID	0.00		10.00	U	U
BENZYL ALCOHOL	0.00		10.00	υ	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	U	υ
BIS(2-CHLOROETHYL)ETHER	0.00	<u> </u>	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1547

SAMPLE TYPE : mwofl SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
BIS(2-ETHYLHEXYL)PHTHALATE	8.00	μg/L	0.00		R
BUTYLBENZYLPETHALATE	0.00	1	10.00	ט	ט
CARBAZOLE	0.00		10.00	J	ט
CHRYSENE	0.00		10.00	Ū	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	υ	σ
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ט
Dibenz (A, H) anthracene	0.00		10.00	U	Ü
DIBENZOFURAN	0.00		10.00	ט	U
DIETHYLPHTRALATE	0.00		10.00	U	ט
DIMETHYLPHTHALATE	0.00		10.00	U	Ū
FLUORANTHENE	0.00	1	10.00	υ	U
FLUORENE	0.00		10.00	ט	U
HEXACHLOROBENZENE	0.00		10.00	O	บJ
HEXACHLOROBUTADIENE	0.00		10.00	ט	נט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	U
HEXACHLOROETHANE	0.00		10.00	U	υ
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	บว
ISOPHORONE	0.00		10.00	ซ	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	U
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	U
NAPETHALENE	0.00		10.00	ט	U
NITROBENZENE	0.00		10.00	บ	v
PENTACHLOROPHENOL	0.00		25.00	U	บว
PHENANTHRENE	0.00		10.00	ט	U
PHENOL	0.00		10.00	U	υJ
PYRENE	0.00		10.00	U	U
					<u> </u>

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1548 ANALYSIS TYPE : BNA SAMPLE TYPE : FB SDG : 1545 SAMPLE MATRIX : W

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00	1	10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	ט	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ט
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	ט	ซ
2,4,6-TRICHLOROPHENOL	0.00	T	10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-dimethylphenol	0.00	1	10.00	ט	ט
2,4-DINITROPHENOL	0.00		25.00	ט	บบ
2,4-DINITROTOLUENE	0.00	Ι ,	10.00	Ū	U
2,6-DINITROTOLUENE	0.00		10.00	Ū	U
2-chloronaphthalene	0.00		10.00	บ	ีย
2-CHLOROPHENOL	0.00		10.00	U	ប
2-methylnaphtralene	0.00		10.00	υ	บ
?-METHYLPHENOL	0.00		10.00	ช	ט
2-NITROANILINE	0.00		25.00	ช	ט
2-NITROPHENOL	0.00		10.00	υ	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	U	ขว
3-NITROANILINE	0.00		25.00	ט	บว
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	ט	ט
4-Bromophenyl-Phenylether	0.00	1	10.00	U	บว
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	บ
4-CHLOROANILINE	0.00	1	10.00	ซ	บง
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	U	U
4-METHYLPHENOL	0.00	1	10.00	ט	U
4-nitroaniline	0.00		25.00	ט	บ
4-NITROPHENOL	0.00		25.00	U	บว
acenaphthene	0.00		10.00	U	U
acenaphthylene	0.00		10.00	U	ט
ANTHRACENE	0.00		10.00	U	U
BENZO(A)ANTHRACENE	0.00		10.00	υ	U
Benzo(A) Pyrene	0.00		10.00	υ	U
BEN2O(B) FLUORANTHENE	0.00		10.00	U	U
BENZO(G, H, I)PERYLENE	0.00		10.00	U	U
Benzo (K) fluoranthene	0.00	T	10.00	υ	υ
BENZOIC ACID	0.00		10.00	U	U
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY) METHANE	0.00		10.00	υ	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1548

SAMPLE TYPE : FB SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00		10.00	ט	U
CARBAZOLE	0.00		10.00	ט	ū
CHRYSENE	0.00		10.00	ט	Ū
DI-N-BUTYLPHTHALATE	0.00		10.00	ū	ū
DI-N-OCTYLPHTHALATE	0.00		10.00	B	ט
DIBENZ (A, E) ANTHRACENE	0.00	1	10.00	ט	ט
Dibenzofuran	0.00		10.00	ט	ū
DIETHYLPHTHALATE	0.00		10.00	ט	ט
DIMETHYLPHTHALATE	0.00		10.00	ט	ט
PLUORANTHENE	0.00	1	10.00	U	U
PLUORENE	0.00	1	10.00	U	ט
HEXACHLOROBENZENE	0.00		10.00	บ	บว
HEXACHLOROBUTADIENE	0.00		10.00	ט	UJ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ū	U
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	U	UJ
ISOPHORONE	0.00	1	10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	ט	ט
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00	1	10.00	ט	ט
NITROBENZENE	0.00	1	10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	U	บป
PHENANTHRENE	0.00	1	10.00	U	U
PHENOL	0.00	1	10.00	U	บง
PYRENE	0.00	T	10.00	υ	υ

PROJECT: NEVADA AIR NAT. GUARD (RENC)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1549

SAMPLE TYPE : MW44

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	U	ט
1,3-Dichlorobenzene	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	U	ū
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	Ū	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	ס	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	ט
2,4-DIMETHYLPHENOL	0.00	1	10.00	ū	ט
2,4-DINITROPHENOL	0.00	1	25.00	ט	υJ
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	ט	U
2-CHLORONAPHTHALENE	0.00		10.00	ט	U
2-CHLOROPHENOL	0.00	1	10.00	U	U
2-METHYLNAPETHALENE	0.00		10.00	U	U
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	U	ט
2-NITROPHENOL	0.00		10.00	ប	ט
3,3'-DICHLOROBENZIDINE	0.00	ĺ	10.00	Ū	บJ
3-NITROANILINE	0.00	1	25.00	ט	บJ
4,6-DINITRO-2-METHYLPHENOL	0.00	T	25.00	U	U
C-BROMOPHENYL-PHENYLETHER	0.00	1	10.00	ט	บJ
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	ซ
4-CHLOROANILINE	0.00		10.00	ט	บัง
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	U
4-METHYLPHENOL	0.00	ĺ	10.00	ט	U
4-NITROANILINE	0.00	1	25.00	ט	Ū
4-NITROPHENOL	0.00		25.00	ט	บัง
ACENAPHTHENE	0.00		10.00	บ	U
ACENAPHTHYLENE	0.00		10.00	U	U
ANTHRACENE	0.00		10.00	U	U
BENZO(A)ANTHRACENE	0.00		10.00	ט	ט
BENZO(A)PYRENE	0.00		10.00	ט	U
Benzo (B) Fluoranthene	0.00		10.00	ט	υ
BENZO(G, H, I) PERYLENE	0.00		10.00	υ	ט
BENZO(K) FLUORANTHENE	0.00		10.00	U	ט
BENZOIC ACID	0.00		10.00	U	U
BENZYL ALCOHOL	0.00		10.00	υ	U
BIS(2-CHLOROETHOXY) METHANE	0.00		10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DAT.".

SAMPLE NUMBER: 1549

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MWO4 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	3.00	μg/L	0.00		R
BUTYLBENZYLPETHALATE	0.00		10.00	מ	U
CARBAZOLE	0.00		10.00	ū	ט
CHRYSENE	0.00		10.00	ū	U
DI-N-BUTYLPHTHALATE	0.00	1	10.00	ס	מ
DI-N-OCTYLPHTHALATE	0.00	1	10.00	U	ט
DIBENZ (A, H) ANTERACENE	0.00	T	10.00	U	a
Dibenzopuran	0.00	T^{-}	10.00	U	U
DIETHYLPHTHALATE	0.00	T	10.00	U	U
DIMETHYLPHTHALATE	0.00	T -	10.00	U	U
FLUORANTHENE	0.00		10.00	υ	U
FLUORENE	0.00		10.00	Ū	υ
HEXACHLOROBENZENE	0.00		10.00	ט	บว
HEXACHLOROBUTADIENE	0.00		10.00	υ	บบ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	Ū
HEXACHLOROETHANE	0.00	1	10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	U	บป
ISOPHORONE	0.00		10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	ט
N-NITROSODIPHENYLAMINE (1)	0.00	1	10.00	U	U
NAPHTHALENE	0.00		10.00	U	U
NITROBENZENE	0.00	1	10.00	ט	U
PENTACHLOROPHENOL	0.00	1	25.00	U	บัง
PHENANTHRENE	0.00	T	10.00	U	U
PHENOL	0.00		10.00	U	บัง
PYRENE	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1550

SAMPLE TYPE : mw\$3

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE	0.00	1	10.00	υ	U
1,2-DICHLOROBENZENE	0.00		10.00	U	ט
1,3-DICELOROBENZENE	0.00		10.00	ט	U
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ū
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	U
2,4,6-Trichlorophenol	0.00	1	10.00	Ū	ט
2,4-DICHLOROPHENOL	0.00		10.00	Ū	ū
2,4-dimethylphenol	0.00		10.00	ט	ט
2,4-dinitrophenol	0.00		25.00	υ	บัง
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	U	U
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	U	U
2-METHYLNAPHTHALENE	0.00		10.00	ט	U
2-methylphenol	0.00	1	10.00	ט	ט
2-NITROANILINE	0.00		25.00	U	<u>י</u>
2-NITROPHENOL	0.00	1	10.00	υ	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บJ
3-NITROANILINE	0.00		25.00	U	UJ
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	Ū	ט
4-Bromophenyl-Phenylether	0.00		10.00	U	UJ
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	ט
4-CHLOROANILINE	0.00		10.00	ט	บัง
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	U	U
4-methylphenol	0.00	1	10.00	ט	ט
4-NITROANILINE	0.00	1	25.00	U	Ū
4-NITROPHENOL	0.00		25.00	U	บัง
ACENAPHTHENE	0.00		10.00	U	U
ACENAPHTHYLENE	0.00	<u> </u>	10.00	υ	U
ANTHRACENE	0.00		10.00	ט	υ
BENZO (A) ANTHRACENE	0.00		10.00	ט	U
BENZO(A)PYRENE	0.00	1	10.00	U	U
BENZO(B)FLUORANTHENE	0.00		10.00	U	U
BENZO(G, H, I) PERYLENE	0.00		10.00	Ū	U
BENZO(R)FLUORANIHENE	0.00		10.00	Ü	U
BENZOIC ACID	0.00		10.00	ט	U
BENZYL ALCOHOL	0.00	1	10.00	U	ט
BIS(2-CHLOROETHOXY)METHANE	0.00	†	10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00	 	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Summary Final REVIEWER: DENNIS MARTY

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597 BEGINNING SAMPLE #:1545

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1550

SAMPLE TYPE : mw \$3

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00	ŀ	10.00	ט	ט
CARBAZOLE	0.00		10.00	σ	ט
CHRYSENE	0.00		10.00	U	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	ū	ט
DI-N-OCTYLPHTHALATE	0.00		10.00	Ū	U
DIBENZ(A, H)ANTHRACENE	0.00		10.00	U	Ū
DIBENZOFURA'I	0.00		10.00	ט	ū
DIETHYLPHTHALATE	0.00		10.00	U	ט
DIMETHYLPHTHALATE	0.00		10.00	ט	U
PLUORANTHENE	0.00		10.00	U	ט
FLUORENE	0.00		10.00	υ	ט
HEXACHLOROBENZENE	0.00	1	10.00	ט	UJ
HEXACHLOROBUTADIENE	0.00		10.00	ט	บJ
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	ט	ט
HEXACHLOROETHANE	0.00	1	10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	Ū	บง
ISOPHORONE	0.00	1	10.00	υ	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	ט
N-NITROSODIPHENYLAMINE (1)	0.00	1	10.00	ט	ט
NAPHTHALENE	0.00		10.00	Ü	U
nitrobenzene	0.00	<u> </u>	10.00	ט	ט
PENTACHLOROPHENOL	0.00		25.00	U	บว
PHENANTHRENE	0.00		10.00	ט	U
PHENOL	0.00		10.00	U	ชง
PYRENE	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1551

SAMPLE TYPE : MW\$5

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	υ
1,2-DICHLOROBENZENE	5.00	µg/L	0.00	1	
1,3-DICHLOROBENZENE	2.00	µg/L	0.00		
1,4-DICHLOROBENZENE	2.00	µg/L	0.00		
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	ס
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	บ	ס
2,4-DICHLOROPHENOL	0.00	1	10.60	v v	ט
2,4-DIMETHYLPHENOL	0.00		10.00	ū	ט
2,4-DINITROPHENOL	0.00		25.00	υ	บว
2,4-DINITROTOLUENE	0.00		10.00	ט	ซ
2,6-DINITROTOLUENE	0.00		10.00	ט	บ
2-CHLORONAPHTHALENE	0.00		10.00	IJ	U
2-CHLOROPHENOL	0.00		10.00	ט	บ
2-METHYLNAPHTHALENE	0.00		10.00	ט	บ
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	U
2-NITROPHENOL	0.00	1	10.00	υ	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บัง
3-NITROANILINE	0.00		25.00	Ū	บัง
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	U	U
4-Bromophenyl-Phenylether	0.00		10.00	ט	บJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	0.00		10.00	U	บJ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	บ	บ
4-methylphenol	0.00		10.00	U	υ
4-NITROANILINE	0.00		25.00	บ	Ū
4-nitrophenol	0.00	1	25.00	ט	บง
acenaphthene	0.00		10.00	ט	U
ACENAPHTHYLENE	0.00		10.00	υ	U
ANTHRACENE	0.00	1	10.00	U	U
BENZO(A)ANTHRACENE	0.00	1	10.00	U	บ
BENZO(A)PYRENE	0.00	<u> </u>	10.00	ט	υ
BENZO(B) FLUORANTHENE	0.00		10.00	U	ט
BENZO(G, H, I) PERYLENE	0.00	T	10.00	<u></u>	υ
BENZO(K)FLUORANTHENE	0.00		10.00	υ	ט
BENZOIC ACID	0.00	1	10.00	U	ט
BENZYL ALCOHOL	0.00	 	10.00	U	U
BIS (2-CHLOROETHOXY) METHANE	0.00		10.00	U	υ
BIS(2-CHLOROETHY NETHER	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1551

SAMPLE TYPE : MWØ5

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	5.00	μg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00		10.00	U	U
CARBAZOLE	0.00		10.00	Ū	ū
CHRYSENE	0.00	T	10.00	ט	Ū
DI-N-BUTYLPHTHALATE	1.00	µg/L	0.00	1	
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	บ
DIBENZ(A, E) ANTHRACENE	0.00		10.00	ט	ט
DIBENZOPURAN	0.00		10.00	ט	Ū
DIETHYLPHTHALATZ	0.00		10.00	ט	U
DIMETHYLPHTHALATE	0.00		10.00	υ	Ü
PLUORANTHENE	0.00		10.00	ט	ט
FLUORENE	0.00		10.00	U	U
HEXACHLOROBENZENE	0.00		10.00	ū	บJ
HEXACHLOROBUTADIENE	0.00		10.00	ט	บJ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	U
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ū	บJ
ISOPHORONE	0.00	1	10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	U	U
N-NITROSODIPHENYLAMINE (1)	0.00	1	10.00	U	U
napetralene	9.00	µg/L	0.00		
NITROBENZENE	0.00	1	10.00	U	ט
PENTACHLOROPHENOL	0.00		25.00	U	บJ
PHENANTHRENE	0.00		10.00	ט	U
PHENOL	0.00		10.00	ט	υJ
PYRENE	0.00	1	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary

Final Summary
REVIEWER: DENNIS MARTY
PEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1552

SAMPLE TYPE : WR mwd5 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA SDG : 1545

ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,2,4-irichlorobenzene	0.00		10.00	ט	υ
1,2-DICHLOROBENZENE	11.00	μg/L	0.00		
1,3-dichlorobenzene	3.00	µg/L	0.00		
1,4-DICHLOROBENZENE	4.00	µg/L	0.00		
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	σ
2,4-dimethylphenol	0.00		10.00	ū	מ
2,4-DINITROPHENOL	0.00		25.00	Ū	บว
2,4-DINITROTOLUENE	0.00		10.00	U	U
2,6-DINITROTOLUENE	0.00		10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	U	U
2-CHLOROPHENOL	0.00		10.00	U	U
2-methylnaphthalene	2.00	µg/L	0.00		
2-methylphenol	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-NITROPHENOL	0.00		10.00	ט	ซ
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บว
3-NITROANILINE	0.00		25.00	Ū	บว
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ū
4-bromophenyl-phenylether	0.00		10.00	υ	บJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	บ	U
4-CHLOROANILINE	0.00		10.00	υ	บJ
4-Chlorophenyl-Phenylether	0.00		10.00	ט	ט
4-methylphenol	0.00		10.00	ט	ט
4-NITROANILINE	0.00		25.00	ט	U
4-NITROPHENOL	0.00		25.00	U	UJ
acenaphthene	0.00		10.00	ט	U
ACENAPHTHYLENE	0.00	1	10.00	ט	U
ANTHRACENE	0.00		10.00	υ	U
BENZO(A)ANTHRACENE	0.00		10.00	ט	U
BENZO(A)PYRENE	0.00		10.00	ט	U
Benzo (B) Fluoranthene	0.00		10.00	ט	U
BENZO(G, H, I) PERYLENE	0.00		10.00	U	U
BENZO(K)FLUORANTHENE	0.00		10.00	U	ט
BENZOIC ACID	0.00	1	10.00	ט	U
BENZYL ALCOHOL	0.00		10.00	U	υ
BIS(2-CHLOROETHOXY)METHANE	0.00	1	10.00	ט	ט
BIS(2-CHLOROETHYL)ETHER	0.00	 	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

■ Summary

REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1552

BEGINNING SAMPLE #:1545

Final

SAMPLE TYPE : WR mw of SAMPLE MATRIX : W

ANALYSIS TYPE : BNA SDG: 1545 ASSOCIATED MB : SBLK27

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
BIS(2-ETHYLHEXYL)PHTHALATE	7.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00		
CARBAZOLE	0.00		10.00	ט	U
CHRYSENE	0.00		10.00	U	U
DI-N-BUTYLPHTHALATE	2.00	μg/L	0.00		
DI-N-OCTYLPHTHALATE	0.00		10.00	ū	U
Dibenz (A, H) anthracene	0.00		10.00	U	ט
DIBENZOPURAN	0.00	İ	10.00	U	ט
DIETHYLPHTHALATE	0.00		10.00	ט	U
DIMETHYLPHTHALATE	0.00	1	10.00	ט	U
PLUORANTHENE	0.00	1	10.00	ט	U
FLUORENE	0.00	i	10.00	U	υ
HEXACHLOROBENZ ENE	0.00		10.00	ט	UJ
HEXACHLOROBUTADIENE	0.00		10.00	ט	บง
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	U
HEXACHLOROETHANE	0.00		10.00	U	σ
INDENO(1,2,3-CD)PYRENE	0.00		10.00	Ū	ชง
1507 DONE	0.00		10.00	ซ	Ū
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	ט	U
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	U
Naphtralene	17.00	µg/L	0.00		
NITROBENZENE	0.00		10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	υ	บJ
PHENANTHRENE	0.00		10.00	U	U
PHENOL	0.00		10.00	U	บัง
PYRENE	0.00		10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1554 ANALYSIS TYPE : BNA

SAMPLE TYPE : MWIS

SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	Ū
1,2-DICHLOROBENZENE	0.00		10.00	ט	U
1,3-DICHLOROBENZENE	0.00		10.00	U	ט
1,4-DICHLOROBENZENE	0.00		10.00	U	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	U
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	U
2,4-DICHLOROPHENOL	0.00	1	10.00	U	ט
2,4-DIMETHYLPHENOL	0.00		10.00	U	U
2,4-DINITROPHENOL	0.00		25.00	ט	נט
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	υ	U
2-CHLORONAPHTHALENE	0.00		10.00	υ	U
2-CHLOROPHENOL	0.00		10.00	ū	Ü
2-METHYLNAPHTHALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	U	ט
2-NITROANILINE	0.00	 	25.00	ט	U
2-NITROPHENOL	0.00		10.00	U	ט
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	ט	บว
3-NITROANILINE	0.00		25.00	U	บJ
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00		10.00	U	υJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	ט
4-CHLOROANILINE	0.00	1	10.00	ט	บป
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	ט	ט
4-METHYLPHENOL	0.00	1	10.00	U	U
4-NITROANILINE	0.00		25.00	ט	υ
4-NITROPHENOL	0.00		25.00	บ	บว
acenaphthene	0.00		10.00	ט	ט
acenaphthylene	0.00		10.00	U	U
ANTHRACENE	0.00	1	10.00	U	ט
Benzo (a) anteracene	0.00		10.00	ט	U
BENZO(A)PYRENE	0.00		10.00	U	U
BENZO(B) FLUORANTHENE	0.00		10.00	U	ט
BENZO(G, H, I) PERYLENE	0.00		10.00	υ	ט
BENZO(K)FLUORANTHENE	0.00		10.00	ט	ט
BENZOIC ACID	0.00		10.00	ט	ט
BENZYL ALCOHOL	0.00		10.00	U	ט
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	υ	ט
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	Ū	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1554

SAMPLE TYPE : MWIS SAMPLE MATRIX : W SDG : 1545

ASSOCIATED MB : SBLK41

ANALYSIS TYPE : BNA

TRIP BLANK: 1553TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	5.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	1.00	µg/L	0.00		
CARBAZOLE	0.00		10.00	Ū	Ū
CHRYSENE	0.00		10.00	ับ	ט
DI-N-BUTYLPHTHALATE	1.00	µg/L	0.00		
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	U
DIBENZ (A, E) ANTERACENE	0.00		10.00	υ	ū
DIBENZOFURAN	0.00		10.00	U	υ
DIETHYLPHTHALATE	0.00		10.00	Ū	ט
DIMETHYLPHTHALATE	0.00		10.00	U	U
FLUORANTHENE	0.00		10.00	ū	U
FLUORENE	0.00	1	10.00	ט	Ü
HEXACHLOROBENZENE	0.00		10.00	U	บว
HEXACHLOROBUTADIENE	0.00		10.00	U	บว
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	ט	ס
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ū	บJ
ISOPHORONE	0.00	1	10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	U	ט
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	U
naphthalene	0.00	7	10.00	U	U
NITROBENZENE	0.00		10.00	υ	ט
PENTACHLOROPHENOL	0.00		25.00	U	UJ
PHENANTHRENE	0.00		10.00	U	U
PHENOL	0.00		10.00	ט	บว
PYRENE	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1555

SAMPLE TYPE : MW15

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00	1	10.00	U	U
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	U	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	U
2,4,6-TRICELOROPHENOL	0.00	1	10.00	U	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00	1	10.00	U	ט
2,4-DINITROPHENOL	0.00		27.00	U	υJ
2,4-DINITROTOLUENE	0.00		10.00	U	ט
2,6-DINITROTOLUENE	0.00	i	10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	Ū	ט
2-CHLOROPHENOL	0.00		10.00	U	ט
2-METHYLNAPHTHALENE	0.00		10.00	υ	U
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-NITROPHENOL	0.00		16.00	U	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	υ	บJ
3-NITROANILINE	0.00		25.00	Ū	υJ
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	บJ
4-CHLORO-3-METHYLPHENOL	0.00	T	10.00	ט	ט
4-CHLOROANILINE	0.00	Ī	10.00	ט	υJ
4-CHIOROPHENYL-PHENYLETHER	0.00		10.00	U	ט
4-METHYLPHENOL	0.00		10.00	ט	ט
4-NITROANILINE	0.00		25.00	ט	ט
4-NITROPHENOL	0.00	1	25.00	U	บง
ACENAPHTHENE	0.00		10.00	ט	บ
ACENAPHTHYLENE	0.00	İ	10.00	U	U
ANTHRACENE	0.00		10.00	ט	υ
BENZO(\) ANTHRACENE	0.00		10.00	บ	U
BENZO(A) PYRENE	0.00		10.00	U	υ
BENZO(B) FLUORANTHENE	0.00		10.00	บ	บ
BENZO(G, H, I) PERYLENE	0.00		10 00	U	ט
BENZO(K) FLUORANTHENE	0.00		10.00	U	ט
BENZOIC ACID	0.00	T	10.00	U	บ
BENZYL ALCOHOL	0.00		10.00	บ	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	U	ט
BIS(2-CHLOROETHYL)ETHER	0.00	T	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

Final Time REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1555 ANALYSIS TYPE : BNA SAMPLE TYPE : MWIS

SDG: 1545

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK41

TRIP BLANK : 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode .	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	1.00	μg/L	0.00		
CARBAZOLE	0.00	1	10.00	ט	ū
CHRYSENE	0.00		10.00	ט	ū
DI-N-BUTYLPHTHALATE	0.00	T	10.00	U	U
DI-N-OCTYLPHTHALATE	0.00	T	10.00	U	U
DIBENZ(A, H) ANTHRACENE	0.00		10.00	Ū	υ
DIBENZOFURAN	0.00		10.00	ט	ט
DIETHYLPHTHALATE	0.00		10.00	U	U
DIMETHYLPHTHALATE	0.00		10.00	ט	U
PLUORANTHENE	C.C0		10.00	U	U
FLUORENE	0.00		10.00	v	U
HEXACHLOROBENZENE	0.00	T^{-}	10.00	U	σJ
HEXACHLOROBUTADIENE	0.00		10.00	ט	บJ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00	1	10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	UJ
ISOPHORONE	0.00		10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	U
N-NITROSO: PHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00	1	10.00	ט	ט
NITROBENZENE	0.00		10.00	ט	ט
PENTACHLOROPHENOL	0.00	1	25.00	ט	บว
PHENANTHRENE	0.00	<u> </u>	10.00	υ	U
PHENOL	0.00		10.00	υ	บว
PYRENE	0.00	1	10.00	บ	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1556

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	U
1,2-DICHLOROBENZENE	0.00	<u> </u>	10.00	U	υ
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	Ū	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	σ	Ū
2,4-DICHLOROPHENOL	0.00		10.00	ט	U
2,4-DIMETHYLPHENOL	0.00		10.00	ט	ט
2,4-DINITROPHENOL	0.00		25.00	ט	บJ
2,4-DINITROTOLUENE	0.00		10.00	ט	U
2,6-DINITROTOLUENE	0.00		10.00	U	U
2-CHLORONAPHTHALENE	0.00		10.00	U	บ
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTHALENE	0.00		10.00	U	U
2-METHYLPHENOL	0.00		10.00	ט	U
2-NITROANILINE	0.00		25.00	U	U
2-NITROPHENOL	0.00		10.00	U	U
3,3'-DICHLOROBENZIDINE	0.00	<u> </u>	10.00	ט	บJ
3-NITROANILINE	0.00		25.00	ט	บัง
4,6-DINITRO-2-METHYLPHENOL	0.00	İ -	25.00	ט	υ
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	U	UJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	0.00		10.00	ט	บJ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	Ū	U
4-METHYLPHENOL	0.00	1	10.00	U	U
4-HITROANILINE	0.00	†	25.00	U	U
4-NITROPHENOL	0.00		25.00	υ	UJ
ACENAPHTHENE	0.00	<u> </u>	10.00	υ	ט
ACENAPHTHYLENE	0.00	<u> </u>	10.00	U	U
ANTHRACENE	0.00		10.00	Ü	U
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A)PYRENE	0.00	†	10.00	ט	ט
BENZO(B)FLUORANTHENE	0.00	 	10.00	U	יט –
BENZO(G, H, I)PERYLENE	0.00		10.00	υ	U
BENZO(K)FLUORANTHENE	0.00	<u> </u>	10.00	U	ט
BENZOIC ACID	0.00	 	10.00	ט	U
BENZYL ALCOROL	0.00	 	10 10	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00	†	10.00	ט	ט
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

Final 1

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

DATE:03/01/94

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1556

SAMPLE TYPE : FB SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG : 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00		10.00	ט	ט
CARBAZOLE	0.00		10.00	U	ש
CERYSENE	0.00	I	10.00	ū	Ū
DI-N-BUTYLPHTHALATE	0.00		10.00	U	U
DI-N-OCTYLPHTHALATE	0.00		10.00	ש	ט
DIBENZ(A, H)ANTERACENE	0.00		10.00	ט	Ū
Dibenzofuran	0.00		10.00	ט	Ū
DIETHYLPHTHALATE	0.00		10.00	ט	Ū
DIMETHYLPHTHALATE	0.00		10.00	ט	υ
FLUORANTHENE	0.00		10.00	บ	U
FLUORENE	0.00		10.00	ט	U
HEXACHLOROBENZENE	0.00		10.00	ט	บัง
HEXACHLOROBUTADIENE	0.00	1	10.00	ប	UJ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	υ	U
HEXACHLOROETHANE	0.00		10.00	υ	υ
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	บJ
ISOPHORONE	0.00		10.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	บ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	מ	ซ
NAPHTHALENE	0.00		10.00	ט	U
NITROBENZENE	0.00		10.00	υ	U
PENTACHLOROPHENOL	0.00	Ī	25.00	υ	บJ
PRENANTHRENE	0.00		10.00	ט	บ
PHENOL	0.00		10.00	υ	บัว
PYRENE	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1557

SAMPLE TYPE : MWIZ

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00	•	10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	σ
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	ū
2,4-DIMETHYLPHENOL	0.00		10.00	U	Ū
2,4-DINITROPHENOL	0.00		25.00	υ	บัง
2,4-dinitrotoluene	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	ט	ט
2-CHLOROPHENOL	0.00	Ī	10.00	ช	ט
2-methylnaphthalene	0.00		10.00	ט	Ū
2-methylphenol	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-nitrophenol	0.00		10.00	U	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บง
3-NITROANILINE	0.00		25.00	Ū	υJ
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	UJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	ט
4-CHLOROANILINE	0.00		10.00	υ	บว
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	ט
4-methylphenol	0.00		10.00	U	ט
4-NITROANILINE	0.00		25.00	U	ט
4-NITROPHENOL	0.00		25.00	ט	UJ
acenaphthene	0.00		10.00	ט	U
acenaphthylene	0.00		10.00	U	U
ANTHRACENE	0.00		10.00	U	ט
Benzo (A) anthracene	0.00		10.00	ט	U
BENZO(A) PYRENE	0.00		10.00	ט	U
BENZO(B) FLUORANTHENE	0.00		10.00	U	U
BENZO(G, E, I) PERYLENE	0.00		10.00	ט	υ
BENZO(K) PLUORANTHENE	0.00		10.00	ט	บ
BENZOIC ACID	0.00		10.00	U	ט
BENZYL ALCOHOL	0.00		10.00	ט	บ
BIS (2-CHLOROETHOXY) METHANE	0.00		10.00	υ	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1557

SAMPLE TYPE : MWIZ

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLREXYL)PHTHALATE	13.00	µg/L	0.00		R
BUTYLBENZ YLPHTHALATE	0.00		10.00	Ū	U
CARBAZOLE	0.00		10.00	ט	Ū
CHRYSENE	0.00		10.00	Ū	ū
DI-N-BUTYLPHTHALATE	0.00		10.00	υ	ט
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ט
DIBENZ(A, H) ANTHRACENE	0.00		10.00	Ū	ט
DIBENZOFURAN	0.00		10.00	ט	U
DIETHYLPHTHALATE	0.00		10.00	U	ט
DIMETHYLPHTHALATE	0.00	1	10.00	Ū	U
FLUORANTHENE	0.00		10.00	U	U
FLUORENE	0.00		10.00	υ	ט
HEXACHLOROBENZENE	0.00	1	10.00	U	ชฮ
HEXACHLOROBUTADIENE	0.00	1	10.00	U	บJ
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	บัง
ISOPHORONE	0.00		10.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	υ
N-NITROSODIPHENYLAMINE (1)	0.00	1	10.00	ט	Ū
Naphthalene	0.00	1	10.00	บ	U
NITROBENZENE	0.00		10.00	Ū	U
PENTACHLOROPHENOL	0.00	1	25.00	ט	บJ
PHENANTHRENE	0.00	1	10.00	ט	ט
PHENOL	0.00		10.00	U	UJ
PYRENE	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1558
ANALYSIS TYPE: BNA

SAMPLE TYPE : ER MWIZ SAMPLE MATRIX : W

SDG : 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	บ	U
1,2-DICHLOROBENZENE	0.00		10.00	บ	υ
1,3-DICHLOROBENZENE	0.00	i	10.00	U	U
1,4-DICHLOROBENZENE	0.00		10.00	υ	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	Ū
2,4-DICHLOROPHENOL	0.00	1	10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00		10.00	ט	U
2,4-DINITROPHENOL	0.00		25.00	ט	บว
2,4-DINITROTOLUENE	0.00		10.00	U	Ū
2,6-DINITROTOLUENE	0.00		10.00	ט	U
2-CHLORONAPHTHALENE	0.00		10.00	U	U
2-CHLOROPHENOL	0.00		10.00	U	U
2-METHYLNAPHTHALENE	0.00	1	10.00	U	U
2-METHYLPHENOL	0.00	1	10.00	U	U
2-NITROANILINE	0.00		25.00	ū	U
2-NITROPHENOL	0.00		10.00	ט	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บว
3-NITROANILINE	0.00	1	25.00	U	บง
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	υ	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	U	บJ
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	บ
4-CHLOROANILINE	0.00	1	10.00	ט	บJ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	U	U
4-METHYLPHENOL	0.00	İ	10.00	U	ט
4-NITROANILINE	0.00		25.00	U	ט
4-NITROPHENOL	0.00		25.00	U	UJ
ACENAPHTHENE	0.00	<u> </u>	10.00	U	ט
ACENAPHTHYLENE	0.00	İ	10.00	υ	U
ANTHRACENE	0.00	1	10.00	υ	U
BENZO(A)ANTHRACENE	0.00		10.00	υ	บ
BENZO(A)PYRENE	0.00		10.00	U	U
BENZO(B)FLUORANTHENE	0.00		10.00	U	ט
BENZO(G, H, I) PERYLENE	0.00		10.00	U	บ
BENZO(K) FLUORANTHENE	0.00		10.00	U	U
BENZOIC ACID	0.00		10.00	ט	ט
BENZYL ALCOHOL	0.00		10.00	υ	บ
BIS(2-CHLOROETHOXY) METHANE	0.00		10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1558

BEGINNING SAMPLE #:1545

SAMPLE TYPE : ER MWIZ SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

ASSOCIATED MB : SBLK41 SDG: 1545

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	9.00	μg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00		10.00	ט	מ
CARBAIOLE	0.00		10.00	ט	U
CHRYSENE	0.00		10.00	U	מ
DI-N-BUTYLPHTHALATE	0.00		10.00	ס	Ū
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ט
DIBENS (A, E) ANTHRACENE	0.00		10.00	ט	ט
DIBENZOFURAN	0.00		10.00	ט	U
DISTHYLPSTHALATE	0.00	1	10.00	ט	U
DIMETHYLPHTHALATE	0.00	1	10.00	Ū	υ
PLUORANTHENE	0.00		10.00	ט	U
FLUORENE	0.00		10.00	ט	ט
HEXACHLOROBENZENE	0.00		10.00	ט	ชิงิ
HEXACHLOROBUTADIENE	0.00		10.00	ט	ชง
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ū
HEXACHLOROETHANE	0.00		10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	υ	ซฮ
ISOPHORONE	0.00		10.00	ט	ם
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	ט
N-MITROSODIPHENYLAMINE (1)	0.00	İ	10.00	U	U
NAPHTHALENE	0.00	Ť:	10.00	U	U
NITROBENZENE	0.00		10.00	v	ט
PENTACHLOROPHENOL	0.00		25.00	ט	UJ
PHENANTHRENE	0.00		10.00	ט	υ
PHENOL	0.00		10.00	ט	บัง
PYRENE	0.00		10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1559

SAMPLE TYPE : MWI4 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG : 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00	ŀ	10.00	U	ט
1,2-DICHLOROBENZENE	0.00	1	10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	U	ט
1,4-DICHLOROBENZENE	0.00		10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00	1	10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00		10.00	U	ט
2,4-DINITROPHENOL	0.00		25.00	ט	υJ
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	Ū	U
2-CHLORONAPHTHALENE	0.00		10.00	ט	ט
2-CHLOROPHENOL	0.00	1	10.00	ט	U
2-METHYLNAPHTHALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	ט	U
2-NITROANILINE	0.00	1	25.00	U	ט
2-NITROPHENOL	0.00		10.00	ט	U
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	υ	ชง
3-NITROANILINE	0.00	T	25.00	ט	บJ
4,6-DINITRO-2-METHYLPHENOL	0.00	†	25.00	U	ט
4-BROMOPHENYL-PHENYLETHER	0.00	†·	10.00	U	บัง
4-CHLORO-3-METHYLPHENOL	0.00	†	10.00	U	ט
4-CHLOROANILINE	0.00	1	10.00	U	ชิงิ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	U	ט
4-METHYLPHENOL	0.00	1	10.00	U	U
4-NITROANILINE	0.00		25.00	U	ט
4-NITROPHENOL	0.00		25.00	Ū	UJ
acenaphthene	0.00	1	10.00	Ū	ט
ACENAPHTHYLENE	0.00	Ì	10.00	ט	U
ANTHRACENE	0.00	1	10.00	U	U
BENZO(A)ANTHRACENE	0.00		10.00	U	บ
BENZO(A)PYRENE	0.00	1	10.00	ט	ט
BENZO(B) FLUORANTHENE	0.00		10.00	U	U
BENZO(G, H, I)PERYLENE	0.00		10.00	ט	U
BENZO(R)FLUORANTHENE	0.00	1	10.00	U	U
BENZOIC ACID	0.00	1	10.00	U	ט
BENZYL ALCOHOL	0.00	1	10.00	ט	υ
BIS(2-CHLOROETHOXY) METHANE	0.00	1	10.00	U	บ
BIS(2-CHLOROETHYL)ETHER	0.00	+	10.00	U	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1559

SAMPLE TYPE : MWI4 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK : 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	5.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	1.00	µg/L	0.00	I	
CARBASOLE	0.00		10.00	Ū	ט
CHRYSENE	0.00		10.00	ū	ט
DI-N-BUTYLPETRALATE	1.00	µg/L	0.00		
DI-N-OCTYLPHTHALATE	0.00		10.00	Ū	ט
DIBENZ(A, H)ANTERACENE	0.00		10.00	ט	ט
DIBENZOFURAN	0.00		10.00	U	ט
DISTHYLPHTHALATE	0.00	İ	10.00	Ū	ט
DIMETHYLPETHALATE	0.00		10.00	ט	Ū
PLUORANTHENE	0.00		10.00	ט	U
PLUORENE	0.00		10.00	σ	U
HEXACHLOROBENZENE	0.00		10.00	ט	UJ
HEXACHLOROBUTADIENE	0.00		10.00	U	บJ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00	1	10.00	ט	ס
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	עט
ISOPHORONE	0.00		10.00	U	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	υ	ט
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00		10.00	ט	U
NITROBENZENE	0.00		10.00	ט	U
PENTACHLOROPHENOL	0.00		25.00	ט	บง
PHENANTHRENE	0.00		10.00	U	ט
PHENOL	0.00		10.00	U	บJ
PYRENE	0.00		10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1560

SAMPLE TYPE : mw13 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	eboOQ	QFinal
1,2,4-TRICHLOROBENZENE	0.00	1	10.00	ט	U
1,2-DICHLOROBENIENE	0.00		10.00	U	U
1,3-DICHLOROBENZENE	0.00	1	10.00	ט	ū
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	a
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ប
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	U
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00	1	10.00	ס	U
2,4-DINITROPHENOL	0.00	1	25.00	ט	บJ
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-dinitrotoluene	0.00		10.00	ซ	U
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTHALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	U	U
2-NITROANILINE	0.00		25.00	U	U
2-NITROPHENOL	0.00		10.00	ט	ט
3,3 -DICHLOROBENZIDINE	0.00	1	10.00	U	บJ
3-NITROANILINE	0.00	1	25.00	U	ซฮ
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	U	U
4-Bromophenyl-Phenylether	0.00	1	10.00	U	บว
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	บ
4-CHLOROANILINE	0.00	1	10.00	U	บว
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	U	U
4-METHYLPHENOL	0.00		10.00	ט	U
4-NITROANILINE	0.00	1	25.00	ט	ט
4-nitrophenol	0.00		25.00	U	ชง
acenapethene	0.00		10.00	U	ט
acenaphthylene	0.00		10.00	U	U
ANTHRACENE	0.00	1	10.00	U	บ
Benzo (a) anthracene	0.00		10.00	t1	ט
BENZO(A)PYRENE	0.00		10.00	σ	ט
Benzo (B) fluoranthene	0.00		10.00	ט	U
BENZO(G, H, I)PERYLENE	0.00		10.00	ט	ช
BENZO(K)FLUORANTHENE	0.00		10.00	ט	U
BENZOIC ACID	0.00		10.00	Ū	บ
BENZYL ALCOHOL	0.00	1	10.00	ט	บ
BIS(2-CHLOROETHOXY) METHANE	0.00		10.00	υ	ט
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1560

SAMPLE TYPE : MW13

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK41

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	0.00		10.00	บ	עט
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00		
CARBASOLE	0.00		10.00	U	Ū
CHRYSENE	0.00	1	10.00	Ū	U
DI-N-BUTYLPHTHALATE	0.00		10.00	U	U
DI-N-OCTYLPHTHALATE	0.00		10.00	Ū	U
Dibenz (A, H) anthracene	0.00		10.00	ū	ซ
DIBENZOFURAN	0.00		10.00	U	υ
DIETHYLPHTHALATE	0.00	1	10.00	Ū	υ
DIMETHYLPHTHALATE	0.00	1	10.00	U	U
FLUORANTHEME	0.00		10.00	ט	ט
PLUORENE	0.00	1	10.00	ט	U
HEXACHLOROBENZENE	0.00		10.00	ט	บัง
HEXACHLOROBUTADIENE	0.00		10.00	ט	υJ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ס	บJ
ISOPBORONE	0.00	1	10.00	ט	บ
N-NITROSO-DI-N-PROPYLAMINE	0.00	Ì	10.00	υ	Ü
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	U
NAPHTHALENE	0.00		10.00	U	ט
NITROBENZENE	0.00		10.00	ט	ט
PENTACHLOROPHENOL	0.00		25.00	ט	บว
PHENANTHRENE	0.00		10.00	ט	U
PHENOL	0.00	1	10.00	ט	บง
PYRENE	0.00	T	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1566

ANALYSIS TYPE : BNA SDG: 1545

SAMPLE TYPE: $m\omega 2\phi$ SAMPLE MATRIX: W

ASSOCIATED MB : SBLK50

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	υ	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	U
2,4,6-TRICHLOROPHENOL	0.00	1	10.00	ט	ש
2,4-DICHLOROPHENOL	0.00	1	10.00	U	ס
2,4-DIMETHYLPHENOL	0.00		10.00	U	ש
2,4-DINITROPHENOL	0.00	1	25.00	ט	ชิง
2,4-DINITROTOLUENE	0.00		10.00	ט	U
2,6-DINITROTOLUENE	0.00		10.00	U	U
2-CHLORONAPHTHALENE	0.00		10.00	U	U
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTHALENE	0.00	1	10.00	ט	ט
2-METHYLPHENOL	0.00	T	10.00	ט	ט
2-NITROANILINE	0.00	1	25.00	ט	Ū
2-NITROPHENOL	0.00	1	10.00	ט	υ
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	U	บัง
3-NITROANILINE	0.00	1	25.00	ט	υJ
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	ט	U
4-BROMOPHENYL-PHENYLETHER	0.00	1	10.00	ט	UJ
4-CHLORO-3-METHYLPHENOL	0.00	İ	10.00	ט	ט
4-CHLOROANILINE	0.00		10.00	ט	บัง
4-chlorophenyl-phenylether	0.00	1	10.00	U	ט
4-METHYLPHENOL	0.00	1	10.00	U	ט
4-NITROANILINE	0.00	1	25.00	ט	ט
4-NITROPHENOL	0.00	i .	25.00	U	บัง
acenaphthene	0.00		10.00	U	ט
acenaphthylene	0.00		10.00	υ	J
ANTHRACENE	0.00		10.00	υ	ט
BENZO(A)ANTERACENE	0.00		10.00	U	U
Benzo(A) pyrene	0.00		10.00	ט	ט
BENZO (B) PLUORANTHENE	0.00		10.00	ט	Ū
BENZO(G, E, I) PERYLENE	0.00		10.00	U	U
BENZO (K) FLUORANTHENE	0.00	1	10.00	U	ט
BENZOIC ACID	0.00		10.00	υ	U
BENZYL ALCOHOL	0.00		10.00	ט	U
BIS(2-CHLOROETHOXY)METHANE	0.00	1	10.00	υ	ט
BIS(2-CHLOROETHYL)ETHER	0.00	†	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1566

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MWZO SAMPLE MATRIX : W

ANALYSIS TYPE : BNA SDG: 1545 ASSOCIATED MB : SBLK50

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00		10.00	U	Ū
CARBAZOLE	0.00		10.00	ט	Ū
CHRYSENE	0.00		10.00	U	บ
DI-N-BUTYLPHTHALATE	0.00	1	10.00	ū	U
DI-N-OCTYLPHTHALATE	0.00		10.00	ū	U
DIBENE (A, E) ANTHRACENE	0.00	1	10.00	ס	ט
DIBENZOPURAN	0.00		10.00	ט	U
DIETHYLPHTHALATE	0.00		10.00	ט	υ
DIMETHYLPHTHALATE	0.00	1	10.00	ט	U
FLUORANTHENE	0.00		10.00	υ	ū
PLUORENE	0.00	1	10.00	υ	υ
HEXACHLOROBENZENE	0.00	1	10.00	U	บJ
HEXACHLOROBUTADIENE	0.00	1	10.00	U	נט
HEXACHLOROCYCLOPENTADIENE	0.00	†	10.00	ט	U
HEXACHLOROETHANE	0.00	†	10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	U	บว
ISOPHORONE	0.00	1	10.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00	†	10.00	U	U
N-NITROSODIPHENYLAMINE (1)	0.00	1	10.00	ט	ט
NAPHTHALENE	0.00	1	10.00	U	ס
nitrobenzene	0.00	†	10.00	υ	U
PENTACHLOROPHENOL	0.00	1	25.00	υ	עט
PHENANTHRENE	0.00		10.00	U	υ
PHENOL	0.00		10.00	U	บัง
PYRENE	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1567

SAMPLE TYPE : MW21

SAMPLE MATRIX : W ASSOCIATED MB : SBLK50

ANALYSIS TYPE : BNA TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB
EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE).00		10.00	U	U
1,2-DICHLOROBENZENE	0.00		10.00	ט	บ
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	ט	ซ
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	ס
2,4-DICHLOROPHENOL	0.00		10.00	ט	Ū
2,4-DIMETHYLPHENOL	0.00		10.00	ט	U
2,4-DINITROPHENOL	0.00		25.00	ט	บัง
2,4-DINITROTOLUENE	0.00		10.00	υ	ט
2,6-DINITROTOLUENE	0.00	<u> </u>	10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	Ū	ט
2-CHLOROPHENOL	0.00		10.00	U	ט
2-METHYLNAPHTHALENP	0.00		10.00	U	ט
2-METHYLPHENOL	0.00		10.00	U	ט
2-NITROANILINE	0.00		25.00	U	ט
2-NITROPHENOL	0.00		10.00	ט	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บัง
3-NITROANILINE	0.00		25.00	ט	UJ
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	U	UJ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	C.00		10.00	ט	UJ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	U	U
4-methylphenol	0.00		10.00	U	U
4-NITROANILINE	0.00		25.00	U	Ū
4-NITROPHENOL	0.00		25.00	ט	บJ
acenaphthene	0.00		10.00	ט	ט
acenaphthylene	0.00		10.00	ט	υ
ANTHRACENE	0.00	<u> </u>	10.00	U	U
BENZO(A)ANTHRACENE	0.00		10.00	U	บ
BENIO(A) PYRENE	0.00		10.00	U	υ
BENZO(B) FLUORANTHENE	0.00	1	10.00	U	ט
BENZO(G, H, I) PERYLENE	0.00		10.00	υ	υ
BENZO(K)FLUORANTHENE	0.00	 	10.00	υ	ט
BENZOIC ACID	0.00		10.00	ט	ט
BENZYL ALCOHOL	0.00		10.00	Ü	U
BIS(2-CHLOROETROXY METRANE	0.00		10.00	υ	ט
BIS(2-CHLOROETHYL)ETHER	0.00	<u> </u>	16.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1567 ANALYSIS TYPE : BNA SAMPLE TYP! : MW2

SDG: 1545

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK50

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFir.al
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00		R
BUTYLBENZYLPHTHALATE	1.00	µg/L	0.00		R
CARBAZOLE	0.00		10.00	ט	ט
CHRYSENE	0.00		10.00	U	σ
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	ט
DI-N-OCTYLPHTHALATE	0.00	T -	10.00	Ū	U
DIBENZ(A, H) ANTERACENE	0.00	T —	10.00	ט	ט
DIBENZOFURAN	0.00	1	10.00	U	U
DIETHYLPHTHALATE	0.00		10.00	ט	ט
DIMETHYLFETPALATE	0.00	\top	10.00	ט	U
PLUORANTHENE	0.00		12.00	υ	ט
FLUORENE	0.00		10.00	ט	U
HEXACH CROBENZENE	0.00	1	10.00	ט	บง
HEXACHLOROBUTADIENE	0.00		10.00	ט	נט
HEXACHLORCCYCLOPENTADIENE	0.00		10.00	ט	U
HEXACHLOROETHANE	0.00	T^{-}	10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	บัง
ISOPHORONE	0.00	1	10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	ט
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00	1	10.00	U	U
NITROBENZENE	0.00		10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	ט	UJ
PHENANTHRENE	0.00		10.00	υ	U
PHENOL	0.00		10.00	U	נט
PYRENE	0.00		10.00	υ	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1568 ANALYSIS TYPE : BNA SAMPLE TYPE : WR MWZ SAMPLE MATRIX : W

BNA SDG: 1545

ASSOCIATED MB : SBLK50

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	U
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	ט
4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	ט
2,4-DIMETHYLPHENOL	0.00		10.00	U	ט
2,4-DINITROPHENOL	0.00		25.00	ט	נט
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00	T	10.00	U	υ
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	ט	U
2-METHYLNAPHTHALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	U	ט
2-NITROANILINE	0.00		25.00	ט	U
2-NITROPHENOL	0.00	1	10.00	ט	U
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	U	υJ
3-NITROANILINE	0.00		25.00	U	บJ
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	ט	עט
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	ט
4-CHLOROANILINE	0.00		10.00	U	บJ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ซ	U
4-METHYLPHENOL	0.00		10.00	U	ט
4-NITROANILINE	0.00		25.00	ט	ט
4-NITROPHENOL	0.00		25.00	υ	บง
ACENAPETHENE	0.00		10.00	U	ט
ACENAPHTHYLENE	0.00	†	10.00	U	U
ANTHRACENE	0.00]	10.00	υ	U
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A) PYRENE	0.00		10.00	U	υ
BENZO(B) FLUORANTHENE	0.00		10.00	ט	U
BENZO(G, H, I) PERYLENE	0.00		10.00	U	υ
BENZO(K) FLUORANTHENE	0.00		10.00	U	U
BENZOIC ACID	0.00	Î	10.00	ט	υ
BENZYL ALCOHOL	0.00	1	10.00	U	υ
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1568 ANALYSIS TYPE : BNA SAMPLE TYPE : WR MW2| SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : SBLK50

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	6.00	μg/L	0.00		R
BUTYLBENZYLPHTHALATE	0.00		10.00	Ū	ט
CARBASOLE	0.00		10.00	ט	ט
CHRYSENE	0.00		10.00	ט	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	Ū	Ū
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ט
DIBENZ (A, H) ANTHRACENE	0.00	Î	10.00	ט	σ
DIBENZOFURAN	0.00		10.00	ט	ט
DIETHYLPHTHALATE	1.00	µg/L	0.00		
DIMETHYLPHTHALATE	0.00	1	10.00	ט	U
PLUORANTHENE	0.00		10.00	ט	U
FLUORENE	0.00		10.00	U	ט
HEXACHLOROBENZENE	0.00	1	10.00	ט	บบ
HEXACHLOROBUTADIENE	0.00		10.00	Ū	עט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
BEXACHLOROETHANE	0.00	1	10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	ט	บว
ISOPHORONE	0.00		10.00	ט	Ū
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	บ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00		10.00	ט	บ
NITROBENZENE	0.00		10.00	ט	U
PENTACHLOROPHENOL	0.00		25.00	ט	υJ
PHENANTHRENE	0.00		10.00	ט	U
PHENOL	0.00	1	10.00	U	נט
PYRENE	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1569

SAMPLE TYPE : MW16

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK50

ANALYSIS TYPE : BNA

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB
EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	U
1,2-DICHLOROBENZENE	0.00	1	10.00	ט	U
1,3-DICHLOROBENZENE	0.00		10.00	U	U
1,4-DICHLOROBENZENE	0.00	1	10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	ט	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	U
2,4-DICHLOROPHENOL	0.00	1	10.00	U	Ū
2,4-DIMETHYLPHENOL	0.00	†	10.00	U	U
2,4-DINITROPHENOL	0.00	†	25.00	ט	บJ
2,4-DINITROTOLUENE	0.00	1	10.00	U	U
2,6-DINITROTOLUBNE	0.00		10.00	U	Ū
2-CHLORONAPHTHALENE	0.00		10.00	Ū	ט
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTHALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00	1	10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-NITROPHENOL	0.00	1	10.00	ט	ט
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	U	บว
3-NITROANILINE	0.00		25.00	Ū	υJ
4,6-DINITRO-2-METHYLPHENOL	0.00	Ī	25.00	U	Ū
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	ט	บฮ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	U
4-CHLOROANILINE	0.00	İ	10.00	ט	บัง
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	U	ט
4-metrylphenol	0.00	1	10.00	U	U
4-NITROANILINE	0.00	1	25.00	U	Ū
4-NITROPHENOL	0.00		25.00	ט	υJ
ACENAPHTHENE	0.00		10.00	U	U
ACENAPETHYLENE	0.00		10.00	U	U
ANTHRACENE	0.00		10.00	υ	U
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A)PYRENE	0.00	1	10.00	υ	υ
BENZO(B)FLUORANTHENE	0.00	1	10.00	ט	ט
BENZO(G, H, I) PERYLENE	0.00	1	10.00	υ	U
BENZO(K) FLUORANTHENE	0.00		10.00	ט	υ
BENTOIC ACID	0.00		10.00	U	U
BENZYL ALCOHOL	0.00	1	10.00	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00	1	10.00	υ	υ
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1569

SAMPLE TYPE : MWIG

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1545

ASSOCIATED MB : SBLK50

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	0Code	OFinal
BIS(2-ETHYLHEXYL)PHTHALATE	7.00	µg/L	0.00	1	R
BUTYLBENZYLPHTHALATE	1.00	μg/L	0.00		R
CARBAZOLE	0.00		10.00	U	ט
CHRYSENE	0.00	1	10.00	ט	Ū
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	U
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	U
DIBENZ (A, E) ANTERACENE	0.00		10.00	U	U
DIBENZOFURAN	0.00		10.00	ט	U
DIETHYLPHTHALATE	0.00	Ì	10.00	ט	U
DIMETHYLPHTHALATE	0.00		10.00	U	ט
FLUORANTHENE	0.00		10.00	ט	U
FLUORENE	0.00		10.00	<u>"</u>	U
HEXACHLOROBENZENE	0.00		10.00	ט	บว
HEXACHLOROBUTADIENE	0.00		10.00	U	บว
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	ט
HEXACHLOROETHANE	0.00		10.00	U	υ
INDENO(1,2,3-CD)FTRENE	0.00		10.00	U	ชง
ISOPHORONE	0.00		10.00	ū	ប
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	บ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	U
NAPHTHALENE	0.00		10.00	U	υ
NITROBENZENE	0.00		10.00	U	ט
PENTACHLOROPHENOL	0.00		25.00	υ	บJ
PHENANTHRENE	0.00		10.00	U	U
PHENOL	0.00		10.00	ט	บว
PYRENE	0.00	Ī	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1570

SAMPLE TYPE : WR MWIG SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570 ASSOCIATED MB: SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00	1	10.00	U	ט
1,3-DICHLOROBENZENE	0.00	1	10.00	U	ט
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00	1	10.00	U	U
2,4-DICHLOROPHENOL	0.00	Ť	10.00	U	U
2,4-DIMETHYLPHENOL	0.00	1	10.00	U	U
2,4-DINITROPHENOL	0.00	1	25.00	U	ט
2,4-DINITROTOLUENE	0.00		10.00	U	ט
2,6-DINITROTOLUENE	0.00		10.00	U	ט
2-CHLORONAPHTHALENE	0.00	1	10.00	ט	Ū
2-CHLOROPHENOL	0.00	1	10.00	U	ט
2-methylnaphthalene	0.00	1	10.00	U	U
2-METHYLPHENOL	0.00		10.00	σ	ט
2-NITROANILINE	0.00		25.00	U	ט
2-NITROPHENOL	0.00		10.00	U	ט
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	U	UJ
3-NITROANILINE	0.00	1	25.00	υ	U
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	U
4-Bromophenyl-Phenylether	0.00		10.00	บ	U
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	ט
4-CELOROANILINE	0.00	1	10.00	ט	ט
4-celorophenyl-phenylether	0.00		10.00	บ	ט
4-METHYLPHENOL	0.00	 	10.00	U	υ
4-NITROANILINE	0.00		25.00	ט	ט
4-NITROPHENOL	0.00	1	25.00	ט	บง
acenaphthene	0.00	1	10.00	ט	ט
ACENAPHTHYLENE	0.00	1	10.00	ט	ט
ANTHRACENE	0.00		10.00	ט	ט
BENZO(A)ANTHRACENE	0.00		10.00	υ	U
BENZO(A)PYRENE	0.00	 	10.00	ט	U
BENZO(B)FLUORANTHENE	0.00		10.00	U	Ū
BENZO(G, H, I) PERYLENE	0.00		10.00	ט	υ
BENZO(K)FLUORANTHENE	0.00	1	10.00	υ	บบ
BENZOIC ACID	0.00		10.00	υ	ט
BENZYL ALCOHOL	0.00	1	10.00	ט	U
BIS (2-CHLOROETHOXY) METHANE	0.00	 	10.00	U	ט
BIS(2-CHLOROETHYL)ETHER	0.00	 	10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

DATE:03/01/94

DATA VALIDATION LEVEL:C REVIEWER: DENNIS MARTY ENDING SAMPLE #:1597 BEGINNING SAMPLE #:1545

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1570

SAMPLE TYPE : WR MWIG SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	15.00	µg/L	0.00		R
BUTYLBENZ YLPHTHALATE	. 2.00	µg/L	0.00	J	R
CARBAZOLE	0.00	Ī	10.00	Ū	υ
CHRYSENE	0.00		10.00	υ	ט
DI-N-BUTYLPHTHALATE	0.00	Ì	10.00	ט	עט
DI-N-OCTYLPHTHALATE	0.00		10.00	U	ชฮ
DIBENS(A, E)ANTERACENE	0.00	1	10.00	U	ט
DIBENZOFURAN	0.00		10.00	ט	U
DIETHYLPHTHALATE	0.00	1	10.00	ט	Ū
DIMETHYLPHTHALATE	0.00	1	10.00	ט	υ
FLUORANTHENE	0.00	1	10.00	ט	ט
FLUORENE	0.00	1	10.00	ט	ט
HEXACHLOROBENZENE	0.00		10.00	U	עט
HEXACHLOROBUTADIENE	0.00		10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	U	Ü
ISOPHORONE	0.00		10.00	υ	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	ט	บัง
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ם	ט
Napethalene	0.00	ľ	10.00	ū	U
NITROBENZENE	0.00		10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	υ	υ
PHENANTHRENE	0.00		10.00	บ	ט
PHENOL	0.00		10.00	U	U
PYRENE	0.00	T	10.00	ū	บง

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1571

SAMPLE TYPE : MW17

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK45

TRIP BLANK : 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	Ū	ซ
1,2-Dichlorobenzene	0.00		10.00	υ	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00	1	10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	Ū	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	Ū	ט
2,4-DICHLOROPHENOL	0.00		10.00	Ū	Ū
2,4-DIMETHYLPHENOL	0.00		10.00	Ū	U
2,4-DINITROPHENOL	0.00	1	25.00	U	ט
2,4-dinitrotoluene	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	ט	U
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTHALENE	0.00		10.00	Ū	ט
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	U	ט
2-NITROPHENOL	0.00		10.00	U	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	U	บบ
3-NITROANILINE	0.00	1	25.00	ט	ט
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	U	Ū
4-Bromophenyl-Phenylether	0.00	1	10.00	U	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	U
4-CHLOROANILINE	0.00		10.00	U	ט
4-chlorophenyl-phenylether	0.00	1	10.00	ט	U
4-methylphenol	0.00		10.00	U	U
4-NITROANILINE	0.00		25.00	ט	U
4-NITROPHENOL	0.00		25.00	ט	ชฮ
acenaphthene	0.00		10.00	ט	ט
acenaphthylene	0.00		10.00	υ	บ
ANTHRACENE	0.00		10.00	U	U
BENZO(A)ANTHRACENE	0.00	<u> </u>	10.00	U	ט
BENZO(A)PYRENE	0.00		10.00	ט	U
BENZO(B)FLUORANTHENE	0.00		10.00	U	U
BENZO(G, H, I)PERYLENE	0.00		10.00	ט	U
BENZO(K) FLUORANTHENE	0.00		10.00	U	บJ
BENZOIC ACID	0.00		10.00	ט	บ
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	υ	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	υ	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1571

SAMPLE TYPE : MWI7

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	20.00	μg/L	0.00		J
BUTYLBENSYLPHTHALATE	3.00	μg/L	0.00	J	R
CARBAZOLE	0.00		10.00	ט	ט
CHRYSENE	0.00	1	10.00	ט	ū
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	UJ
DI-N-OCTYLPHTHALATE	0.00	1	10.00	ט	ชง
DIBENZ(A,E)ANTHRACENE	0.00	1	10.00	ū	ט
DIBENEOFURAN	0.00	1	10.00	ū	ט
DISTRYLPSTEALATS	1.00	µg/L	0.00	3	R
DIMETHYLPHTHALATE	0.00	1	10.00	ט	ט
PLUORANTHENE	0.00	1	10.00	ט	ט
FLUORENE	0.00		10.00	U	Ü
HEXACHLOROBENZENE	0.00		10.00	ט	บัง
HEXACHLOROBUTADIENE	0.00	1	10.00	ט	Ū
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	ט	ט
BEXACELOROETHANE	0.00		10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00	T	10.00	ט	U
ISOPHORONE	0.00		10.00	u	U
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	บ	បរ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	ט
NAPHTHALENE	1.00	µg/L	0.00	J	J
NITROBENZENE	0.00		10.00	ט	ט
PENTACHLOROPHENOL	0.00		25.00	U	υ
PHENANTHRENE	0.00		10.00	U	ט
PHENOL	0.00	1	10.00	ט	U
PYRENE	0.00	1	10.00	U	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597_

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1572

SAMPLE TYPE : ER MWI7 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA SDG : 1570

ASSOCIATED MB : SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	J
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00	Ì	10.00	U	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	υ	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	σ	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	U
2,4-DICHLOROPHENOL	0.00		10.00	U	Ü
2,4-DIMETHYLPHENOL	0.00		10.00	ט	ט
2,4-DINITROPHENOL	0.00		25.00	ט	υ
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	U	ט
2-CHLORONAPHTHALENE	0.00		10.00	ט	U
2-CHLOROPHENOL	0.00		10.00	บ	ט
2-METHYLNAPHTHALENE	0.00		10.00	ซ	ט
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	Ū	ט
2-NITROPHENOL	0.00		10.00	U	ប
3,3'-DICHLOROBENZIDINE	0.00		10.00	บ	บว
3-NITROANILINE	0.00		25.00	ū	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	บ
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	U	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	U
4-CHLOROANILINE	0.00		10.00	U	U
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	υ	σ
4-METHYLPHENOL	0.00	1 "	10.00	ט	U
4-NITROANILINE	0.00		25.00	U	U
4-NITROPHENOL	0.00		25.00	U	บJ
ACENAPHTHENE	0.00	1	10.00	U	U
ACENAPHTHYLENE	0.00	1	10.00	U	U
ANTHRACENE	0.00	1	10.00	ט	U
BENZO(A)ANTHRACENE	0.00		10.00	υ	U
BENZO(A)PYRENE	0.00		10.00	U	ט
Benzo (B) Fluoranthene	0.00		10.00	υ	ซ
BENZO(G, H, I) PERYLENE	0.00		10.00	ט	U
BENZO (R) PLUORANTHENE	0.00		10.00	υ	נט
BENZOIC ACID	0.00		10.00	ט	U
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	υ	ט
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1572

SAMPLE TYPE : ERMWI7 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	67.00	µg/L	0.00		J
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	ט	ם
CHRYSENE	0.00		10.00	ū	ט
DI-N-BUTYLPHTRALATE	0.00		10.00	U	IJ
DI-N-OCTYLPHTHALATE	0.00		10.00	σ	บัว
DIBENS (A, E) ANTHRACENE	0.00		10.00	ט	ט
Dibensofuran	0.00		10.00	ט	Ū
DIETEYLPHTHALATE	0.00		10.00	ט	ט
DIMETHYLPHTHALATE	0.00		10.00	ט	ū
PLUORANTHENE	0.00		10.00	υ	ט
FLUORENE	0.00		10.00	ט	U
HEXACHLOROBENZENE	0.00		10.00	U	บว
HEXACHLOROBUTADIENE	0.00		10.00	U	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	U
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	ប
ISOPHORONE	0.00		10.00	U	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	Ū	บJ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	ū
NAPHTHALENE	0.00		10.00	U	U
nitrobenzene	0.00		10.00	U	ט
PENTACHLOROPHENOL	0.00		25.00	U	U
PHENANTHRENE	0.00		10.00	ט	ט
PHENOL	0.00		10.00	U	υ
PYRENE	0.00		10.00	U	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1573 ANALYSIS TYPE : BNA SAMPLE TYPE : MW22 SAMPLE MATRIX : W

SDG : 1570

ASSOCIATED MB : SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00	1	10.00	U	ט
1,3-DICHLOROBENZENE	0.00		10.00	U	U
1,4-DICHLOROBENZENE	0.00	1	10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	Ū
2,4-DICHLOROPHENOL	0.00	Î	10.00	ט	U
2,4-DIMETHYLPHENOL	0.00	1	10.00	U	U
2,4-DINITROPHENOL	0.00		25.00	ט	U
2,4-DINITROTOLUENE	0.00		10.00	ט	บ
2,6-DINITROTOLUENE	0.00		10.00	U	υ
2-CHLORONAPHTHALENE	0.00		10.00	U	U
2-CHLOROPHENOL	0.00		10.00	Ū	ט
2-METHYLNAPHTHALENE	0.00		10.00	ט	บ
2-METHYLPHENOL	0.00		10.00	ט	ซ
2-NITROANILINE	0.00		25.00	ט	U
2-NITROPHENOL	0.00		10.00	บ	ט
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	U	บJ
3-HITROANILINE	0.00		25.00	ט	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	Ū
4-Bromophenyl-Phenylether	0.00		10.00	U	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	0.00	1	10.00	U	U
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ū	U
4-methylphenol	0.00		10.00	ט	U
4-NITROANILINE	0.00		25.00	ט	ū
4-NITROPHENOL	0.00		25.00	ט	υJ
acenaphthene	0.00		10.00	ט	Ū
acenaphthylene	0.00		10.00	ט	ט
ANTHRACENE	0.00		10.00	U	Ū
Benzo (A) anthracene	0.00		10.00	υ	ט
Benzo (a) pyrene	0.00		10.00	ט	U
Benzo (B) Fluoranthene	0.00		10.00	ט	ט
BENZO(G, H, I)PERYLENE	0.00		10.00	ט	ט
Benzo(K) Fluoranthene	0.00	1	10.00	ט	บว
BENZOIC ACID	0.00		10.00	U	ט
BENZYL ALCOHOL	0.00		10.00	ט	ט
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	υ	U
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1573

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MWZZ SAMPLE MATRIX : W

SAMPLE MATRIX : W
ASSOCIATED MB : SBLK45

ANALYSIS TYPE : BNA

TRIP BLANK: 1565TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
BIS(2-ETHYLHEXYL)PHTHALATE	9.00	μg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	ט	ū
CERYSENE	0.00		10.00	U	Ū
DI-N-BUTYLPHTRALATE	0.00	1	10.00	ט	บง
DI-N-OCTYLPHTHALATE	0.00		10.00	U	บัง
Dibens (A, H) anthracene	0.00		10.00	ט	ט
DIBENZOFURAN	0.00		10.00	ט	ט
DIETHYLPHTHALATE	1.00	μg/L	0.00	J	R
DIMETHYLPHTHALATE	0.00		10.00	ט	Ū
PLUORANTHENE	0.00		10.00	ט	ט
FLUORENE	0.00		10.00	ט	Ū
HEXACHLOROBENZENE	0.00		10.00	บ	บบ
HEXACHLOROBUTADIENE	0.00		10.00	ט	σ
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	ū	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	ซ
ISOPHORONE	0.00		10.00	υ	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	บง
N-NITROSODIPHENYLAMINE (1)	0.00		10,00	U	ט
NAPETHALENE	0.00		10,00	ט	ט
nitrobenzene	0.00	1	10.00	ט	ט
PENTACHLOROPHENOL	0.00	1	25.00	υ	ט
PHENANTHRENE	0.00	1	10.00	ט	U
PHENOL	0.00	1	10.00	U	ט
PYRENE	0.00		10.00	U	บว

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/L /94

Final Summary REVIEWER: DENNIS MARTY

REVIEWER: DENNIS MARTY DATA VALIDATION LEVEL: C
BEGINNING SAMPLE #:1545 ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1574

SAMPLE TYPE : MW19

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK45

ANALYSIS TYPE : BNA

TRIP BLANK: 1565TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ប
1,2-DICHLOROBENZENE	0.00	1	10.00	υ	ט
1,3-DICHLOROBENZENE	0.00		10.00	U	ט
1,4-DICHLOROBENZENE	0.00	1	10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	Ū
2,4,6-TRICHLOROPHENOL	0.00		10.00	Ū	Ū
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00		10.00	ט	υ
2,4-DINITROPHENOL	0.00		25.00	ט	ט
2,4-DINITROTOLUENE	0.00		10.00	U	U
2,6-DINITROTOLUENE	0.00		10.00	U	ט
2-CHLORONAPHTHALENE	0.00		10.00	ט	υ
2-CHLOROPHENOL	0.00		10.00	"	บ
2-methylnaphthalene	0.00		10.00	Ū	บ
2-methylphenol	0.00		10.00	ט	U
2-NITROANILINE	0.00		25.00	บ	ū
2-NITROPBENOL	0.00	1	10.00	U	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บJ
3-NITROANILINE	0.00		25.00	U	U
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	บ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ซ	v
4-CHLOROANILINE	0.00		10.00	υ	<u> </u>
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	υ
4-methylphenol	0.00	<u> </u>	10.00	ט	ט
4-NITROANILINE	0.00		25.00	ש	υ
4-NITROPHENOL	0.00		25.00	ט	บัง
ACENAPHTHENE	0.00		10.00	U	บ
ACENAPHTHYLENE	0.00	 	10.00	U	ט
ANTHRACENE	0.00		10.00	U	ט
BENZO(A) ANTHRACENE	0.00		10.00	U	บ
BENZO(A)PYRENE	0.00		10.00	υ	U
BENZO (B) FLUORANTHENE	0.60	1 -	10.00	ט	ט
BENZO(G, H, I) PERYLENE	0.00		10.00	υ	υ
BENZO(K) FLUORANTHENE	0.00	<u> </u>	10.00	U	עט
BENZOIC ACID	0.00		10.00	U	U
BENZYL ALCOHOL	0.00	 	10.00	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	ט	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1574

SAMPLE TYPE : MW19

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK45

TRIP BLANK: 1565TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PETHALATE	5.00	μg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	ū	U
CHRYSENE	0.00		10.00	ט	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	U	บัว
DI-N-OCTYLPHTHALATE	0.00		10.00	U	บง
DIBENZ (A, H) ANTHLACENE	0.00		10.00	Ū	Ū
DIBENZOFURAN	0.00		10.00	ប	ט
DIETHYLFHTHALATE	1.00	µg/L	0.00	J	R
DIMETHYLPHTHALATE	0.00		10.00	ט	υ
PLUORANTHENE	0.00	1	10.00	บ	U
FLUORENE	0.00	ĺ	10.00	บ	υ
HEXACHLOROBENZENE	0.00		10.00	บ	บัง
HEXACHLOROBUTADIENE	0.00		10.00	U	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	U
HEXACHLOROETHANE	0.00		10.00	Ū	U
INDENO(1,2,3-CD)PYFONE	0.00		10.00	U	U
ISOPHORONE	0.00	T -	10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	บัง
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	υ
NAPHTHALENB	0.00		10.00	U	ט
NITROBENZENE	0.00		10.00	ט	ט
PEN ACHLOROPHENOL	0.00	1	25.00	U	U
PHENANTHRENE	0.00	T	10.00	υ	U
PHENOL	0.00		10.00	U	U
PYRENE	0.00	 	10.00	U	บฮ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

DADING GIRE ED

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1576

Final 🗰

SAMPLE TYPE : mwlø

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG : 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	Ū
1,2-DICHLOROBENZENE	0.00		10.00	ט	U
1,3-DICHLOROBENZENE	0.00		10.00	Ū	U
1,4-DICHLOROBENZENE	0.00		10.00	ט	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	υ
2,4-DIMETHYLPHENOL	0.00		10.00	ט	ט
2,4-DINITROPHENOL	0.00		25.00	ט	U
2,4-DINITROTOLUENE	0.00		10.00	บ	บ
2,6-DINITROTOLUENE	0.00		10.00	U	ט
2-CHLORONAPHTHALENE	0.00		10.00	U	U
2-CHLOROPHENOL	0.00		10.00	ט	U
2-METHYLNAPHTHALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00	•	25.00	ט	U
2-NITROPHENOL	0.00		10.00	ט	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บJ
3-WITROANILINE	0.00		25.00	ט	บ
4,6-DINITRO-2-METHYLF /ENOL	0.00	1	25.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	ט	บ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	U
4-CHLOROANILINE	0.00		10.00	υ	U
4-CHLOROPHENYL-PHENYLETHER	0.00	 	10.00	U	U
4-METHYLPHENOL	0.00		10.00	U	U
4-NITROANILINE	0.00	1	25.00	ט	บ
4-NITROPHENOL	0.00	İ	25.00	U	UJ
ACENAPHTHENE	0.00	1	10.00	U	υ
ACENAPHTHYLENE	0.00	<u> </u>	10.00	ซ	U
ANTHRACENE	0.00		10.00	U	ט
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A)PYRENE	0.00		10.00	ט	U
BENZO(B) FLUORANTHENE	0.00	<u> </u>	10.00	U	ט
BENZO(G, E, I)PERYLENE	0.00		10.00	U	U
BENZO(K) FLUORANTHENE	0.00	 	10.00	U	บัง
BENZOIC ACID	0.00	 	10.00	U	ט
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY) METHANE	0.00		10.00	υ	ט
BIS(2-CHLOROETHYL)ETHER	0.00	 	10.00	U	U
	 	 	13.00	+	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1576

SAMPLE TYPE : MWID

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinel
BIS(2-ETHYLHEXYL)PHTHALATE	1.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	1.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	Ū	ט
CHRYSENE	0.00		10.00	U	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	σ	UJ
DI-N-OCTYLPHTHALATE	0.00	I	10.00	Ū	υJ
DIBENZ(A, E) ANTHRACENE	0.00		10.00	Ū	ט
DIBENZOFURAN	0.00		10.00	σ	ט
DIETHYLPHTHALATE	0.00		10.00	Ū	ט
DIMETHYLPHTHALATE	0.00		10.00	U	บ
FLUORANTHENE	0.00		10.00	U	ט
PLUORENE	0.00		10.00	U	ט
HEXACHLOROBENZENE	0.00		10.00	U	υJ
HEXACHLOROBUTADIENE	0.00		10.00	ט	U
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	U	U
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	ט
ISOPHORONE	0.00		10.00	ט	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	บัง
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	Ū	ט
NAPHTHALENE	0.00		10.00	U	ט
NITROBENZENE	0.00		10.00	U	บ
PENTACHLOROPHENOL	0.00		25.00	U	U
PHENANTHRENE	0.00		10.00	υ	ט
PHENOL	0.00		10.00	ט	U
PYRENE	0.00	1	10.00	Ū	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1577

SAMPLE TYPE: $m\omega 23$ SAMPLE MATRIX: W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00	Ì	10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	Ū	ט
1,4-DICHLOROBENZENE	0.00		10.00	Ū	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	บ
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	U
2,4-DICHLOROPHENOL	0.00		10.00	U	U
2,4-DIMETHYLPHENOL	0.00		10.00	ט	U
2,4-DINITROPHENOL	0.00		25.00	ט	U
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	บ	ט
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	บ	U
2-methylnaphthalene	0.00		10.00	ט	U
2-METHYLPHENOL	0.00		10.00	ū	ט
2-NITROANILINE	0.00		25.00	ū	υ
2-NITROPHENOL	0.00		10.00	ט	ט
3,3'-DICHLOROBENZIDINE	0.00	1	10.00	ט	บJ
3-NITROANILINE	0.00		25.00	ט	ס
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	บ	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	U
4-CHLOROANILINE	0.00		10.00	ט	U
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	บ	υ
4-METHYLPHENOL	0.00		10.00	U	ט
4-NITROANILINE	0.00		25.00	ט	U
4-NITROPHENOL	0.00	1	25.00	υ	บง
ACENAPHTHENE	0.00		10.00	ט	ט
ACENAPHTHYLENE	0.00		10.00	บ	ט
ANTHRACENE	0.00		10.00	บ	U
BENZO(A)ANTERACENE	0.00		10.00	ט	ט
BENZO(A)PYRENE	0.00		10.00	U	ט
BENZO (B) PLUORANTHENE	0.00		10.00	υ	ט
BENZO(G, H, I) PERYLENE	0.00		10.00	U	ט
BENZO (R) FLUORANTHENE	0.00		10.00	U	נט
BENZOIC ACID	0.00		10.00	υ	ט
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	ט	ט
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	ט	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1577

BEGINNING SAMPLE #:1545

SDG: 1570

SAMPLE TYPE: MW23 SAMPLE MATRIX: W

ASSOCIATED MB : SBLK51

ANALYSIS TYPE : BNA TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00	J	P.
BUTYLBENZYLPHTHALATE	1.00	μg/L	0.00	J	R
CARBAZOLE	0.00		10.00	ט	U
CHRYSENE	0.00	Ì	10.00	ט	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	נט
DI-N-OCTYLPHTHALATE	0.00		10.00	U	บัง
DIBENZ (A, H) ANTHRACENE	0.00		10.00	a	ū
Dibenzofuran	0.00		10.00	ט	U
DISTHYLPHTEALATE	0.00		10.00	ט	Ū
DIMETHYLPHTHALATE	0.00	†	10.00	ט	U
PLUORANTHENE	0.00		10.00	Ū	ט
FLUORENE	0.00		10.00	ט	ט
HEXACHLOROBENZENE	0.00	1	10.00	ט	ชฮ
HEXACHLOROBUTADIENE	0.00		10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	ט	ט
HEXACHLOROETHANE	0.00	1	10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	U	U
ISOPHORONE	0.00	1	10.00	U	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	บJ
N-NITROSODIPHENYLAMINE (1)	0.00	1	10.00	ט	ט
NAPHTHALENE	0.00	1	10.00	ט	U
nitrobenzene	0.00		10.00	บ	ט
PENTACHLOROPHENOL	0.00		25.00	U	U
PHENANTHRENE	0.00		10.00	U	U
PHENOL	0.00	1	10.00	ט	ט
PYRENE	0.00		10.00	ט	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1578 SAMPLE TYPE : $m\omega\phi b$ SAMPLE MATRIX : W ANALYSIS TYPE : BNA SDG : 1570 SAMPLE MATRIX : W

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	U
1,2-DICHLOROBENZENE	0.00		10.00	U	U
1,3-DICHLOROBENZENE	0.00		10.00	U	U
1,4-DICHLOROBENZENE	0.00	<u> </u>	10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	U
2,4-DICHLOROPHENOL	0.00		10.00	U	U
2,4-DIMETHYLPHENOL	1.00	µg/L	0.00	J	J
2,4-DINITROPHENOL	0.00	1	25.00	U	U
2,4-DINITROTOLUENE	0.00		10.00	U	ט
2,6-DINITROTOLUENE	0.00	T	10.00	ū	U
2-chloronaphthalene	0.00	1	10.00	ט	U
2-CHLOROPHENOL	0.00		10.00	ט	U
2-methylnaphthalene	3.00	µg/L	0.00	J	J
2-methylphenol	0.00	1	10.00	ט	ט
2-NITROANILINE	0.00		25.00	U	U
2-nitrophenol	0.00		10.00	ט	ט
3,3DICHLOROBENZIDINE	0.00		10.00	U	บง
3-NITROANILINE	0.00		25.00	ט	ט
4,6-dinitro-2-methylphenol	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00	1	10.00	υ	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	0.00		10.00	ט	υ
4-chlorophenyl-phenylether	0.00		10.00	U	ט
4-methylphenol	0.00		10.00	ט	U
4-NITROANILINE	0.00		25.00	ט	ט
4-nitrophenol	0.00		25.00	ט	บJ
acenapethene	0.00		10.00	U	U
acenaphthylene	0.00		10.00	ט	U
ANTHRACENE	0.00		10.00	ט	U
BZNZO(A)ANTHRACENE	0.00		10.00	บ	U
Benzo(A) Pyrene	0.00		10.00	บ	ט
BENZO(B) FLUORANTHENE	0.00		10.00	U	υ
BENZO(G, E, I)PERYLENE	0.00		10.00	ט	υ
BENZO(K)FLUORANTHENE	0.00		10.00	ט	נט
BENZOIC ACID	0.00		10.00	υ	บ
BENZYL ALCOHOL	0.00	1	10.00	ט	υ
BIS(2-CHLOROETHOXY)METHANE	0.00	"	10.00	ט	U
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	υ	שׁ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1578

SAMPLE TYPE : MW \$6

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	3.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	U	U
CHRYSENE	0.00	T	10.00	ט	ช
DI-N-BUTYLPHTRALATE	0.00		10.00	U	ชม
DI-N-OCTYLPHTRALATE	0.00	1	10.00	ū	ชิง
Dibens (A, H) anteracene	0.00		10.00	ט	U
Dibenzofuran	0.00		10.00	ช	ט
DIETHYLPHTEALATZ	0.00		10.00	ט	ū
DIMETHYLPHTHALATE	0.00		10.00	U	U
FLUORANTHENE	0.00		10.00	ט	U
FLUORENE	0.00		10.00	U	U
HEXACHLOROBENZ ENE	0.00		10.00	ט	บว
HEXACHLOROBUTADIENE	0.00		10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	บ
HEXACHLOROETHANE	0.00		10.00	U	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	Ω
ISOPHORONE	0.00		10.00	U	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	U	บJ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	U
NAPHTHALENE	6.00	µg/L	0.00	J	J
nitrobenzene	0.00		10.00	ט	ט
PENTACHLOROPHENOL	0.00		25.00	ט	ט
PHENANTHRENE	0.00		10.00	ט	U
PHENOL	4.00	µg/L	0.00	J	J
PYRENE	0.00	1	10.00	U	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final 1

Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1579

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MWZY

SAMPLE MATRIX : W ASSOCIATED MB : SBLK51

ANALYSIS TYPE : BNA

TRIP BLANK : 1575TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-DICHLOROBENZENE	0.00	1	10.00	ט	ט
1,3-DICHLOROBENZENE	0.00	i –	10.00	υ	ט
1,4-DICHLOROBENZENE	0.00		10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	υ	U
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	U	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	U
2,4-DIMETHYLPHENOL	0.00		10.00	ט	U
2,4-DINITROPHENOL	0.00	1	25.00	ซ	บ
2,4-DINITROTOLUENE	0.00		10.00	บ	ប
2,6-DINITROTOLUENE	0.00	1	10.00	U	U
2-CHLORONAPETHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	U	ט
2-METHYLNAPHTHALENE	0.00	1	10.00	ט	ט
2-methylphenol	0.00	1	10.00	ט	U
2-NITROANILINE	0.00		25.00	ט	ט
2-NITROPHENOL	0.00	1	10.00	ט	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	U	บJ
3-NITROANILINE	0.00	1	25.00	U	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	U	ט
4-Bromophenyl-Phenylether	0.00	1	10.00	υ	ט
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	ט
4-CHLOROANILINE	0.00	† · · · · ·	10.00	ט	ט
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	ט	ט
4-methylphenol	0.00	† · · · ·	10.00	υ	ט
4-NITROANILINE	0.00	1	25.00	ט	υ
4-NITROPHENOL	0.00	1	25.00	ט	บง
acenaphthene	0.00		10.00	υ	υ
ACENAPHTHYLENE	0.00	1	10.00	U	บ
ANTHRACENE	0.00	 	10.00	ט	ט
BENZO(A)ANTHRACENE	0.00	1	10.00	U	ט
BENZO(A)PYRENE	0.00	1	10.00	U	ט
BENZO(B) FLUORANTHENE	0.00	1	10.00	U	บ
BENZO(G, H, I) PERYLENE	0.00		10.00	U	ט
BENZO(K)FLUORANTHENE	0.00		10.00	บ	บฮ
BENZOIC ACID	0.00		10.00	ט	ט
BENZYL ALCOHOL	0.00	†	10.00	υ	ט
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	U	บ
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

REVIEWER: DENNIS MARTY

Summary

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1579 ANALYSIS TYPE : BNA

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MW24

SDG: 1570

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK51

TRIP BLANK : 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	4.00	μg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	Ū	ט
CHRYSENE	0.00		10.00	ט	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	ซฮ
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	บว
DIBENZ (A, H) ANTERACENE	0.00		10.00	ט	ט
DIBENZOFURAN	0.00		10.00	U	ū
DIETHYLPHTHALATE	0.00		10.00	U	ט
DIMETHYLPHTRALATE	0.00	1	10.00	U	U
FLUORANTHENE	0.00		10.00	U	ט
FLUORENE	0.00	1	10.00	U	ט
HEXACHLOROBENZENE	0.00		10.00	U	UJ
HEXACHLOROBUTADIENE	0.00	1	10.00	ט	Ū
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	U	U
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	ט	ט
ISOPHORONE	0.00		10.00	ט	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	บJ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00	1	10.00	U	ט
nitrobenzene	0.00	1	10.00	ט	ט
PENTACHLOROPHENOL	0.00	1	25.00	υ	ט
PHENANTHRENE	0.00		10.00	ט	ט
PHENOL	0.00		10.00	U	บ
PYRENE	0.00	1	10.00	ט	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1580

SAMPLE TYPE : MW25

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-DICHLOROBENZENE	0.00	1	10.00	υ .	U
1,3-DICHLOROBENZENE	0.00	1	10.00	Ū	ט
1,4-DICHLOROBENZENE	0.00	i i	10.00	Ū	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00	1	10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00	1	25.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	U	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	ט
2,4-DIMETHYLPHENOL	3.00	µg/L	0.00	J	J
2,4-DINITROPHENOL	0.00	1	25.00	U	Ū
2,4-DINITROTOLUENE	0.00	1	10.00	ט	ប
2,6-DINITROTOLUENE	0.00	1	10.00	ט	U
2-CHLORONAPHTHALENE	0.00	1	10.00	U	U
2-CHLOROPHENOL	0.00	1	10.00	U	ט
2-methylnaphthalene	8.00	μg/L	0.00	J	J
2-METHYLPHENOL	0.00		10.00	U	ט
2-NITROANILINE	0.00	1	25.00	U	ט
2-NITROPHENOL	0.00	1	10.00	U	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	U	บัง
3-NITROANILINE	0.00	1	25.00	U	ט
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	U	U
4-Brohophenyl-Phenylether	0.00	1	10.00	ט	ט
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	ט
4-CHLOROANILINE	0.00		10.00	ט	U
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	ט	U
4-METHYLPHENOL	1.00	μg/L	0.00	J	J
4-NITROANILINE	0.00		25.00	U	ט
4-HITROPHENOL	0.00	1	25.00	ט	บัง
ACENAPETHENE	2.00	μg/L	0.00	J	3
ACENAPETHYLENE	0.00	1	10.00	ט	U
ANTHRACENE	0.00		10.00	U	ט
BENZO (A) ANTHRACENE	0.00	1	10 90	U	U
BENZO(A)PYRENE	0.00		10.00	U	υ
BENZO(B) FLUORANTHENE	0.00	†	10.00	U	U
BENZO(G, H, I) PERYLENE	0.00		10.00	ט	U
BENZO (K) FLUORANTHENE	0.00	1	10.00	U	บง
BENZOIC ACID	0.00	1	10.00	ט	ט
BENZYL ALCOHOL	0.00	1	10.00	ט	ט
BIS(2-CHLOROETHOXY)METHANE	0.00	1	10.00	υ	U
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1580

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MW25

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	4.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	1.00	μg/L	0.00	J	R
CARBAZOLE	3.00	µg/L	0.00	J	J
CHRYSENE	0.00		10.00	ט	ū
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	บJ
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ซฮ
DIBENS (A, H) ANTHRACENE	0.00	1	10.00	U	U
DIBENZOFURAN	1.00	μg/L	0.00	J	J
DIETHYLPHTHALATE	0.00	1	10.00	U	σ
DIMETHYLPHTHALATE	0.00	1	10.00	ט	ט
FLUORANTHENE	0.00		10.00	U	υ
FLUORENE	1.00	µg/L	0.00	J	J
HEXACELOROBENZENE	0.00	1	10.00	U	บัง
HEXACHLOROBUTADIENE	0.00		10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	U	U
HEXACHLOROETHANE	0.00	1	10.00	U	ט
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	ט	U
ISOPHORONE	0.00		10.00	U	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	UJ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	ט
NAPHTHALENE	12.00	µg/L	0.00		
NITROBENZENE	0.00	1	10.00	ט	ט
PENTACHLOROPHENOL	0.00	1	25.00	ט	U
PHENANTHRENE	2.00	µg/L	0.00	J	J
PHENOL	32.00	µg/L	0.00		1
PYRENE	0.00		10.00	ט	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1581 ANALYSIS TYPE : BNA SAMPLE TYPE : MWO7

SDG: 1570

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		550.00	บ	ט
1,2-DICHLOROBENZENE	0.00		550.00	υ.	U
1,3-DICHLOROBENZENE	0.00		550.00	U	U
1,4-DICHLOROBENZENE	0.00	1	550.00	ט	υ
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		550.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		1400.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00		550.00	U	ט
2,4-DICHLOROPHENOL	0.00	1	550.00	U	ט
2,4-DIMETHYLPHENOL	0.00	1	550.00	ט	U
2,4-DINITROPHENOL	0.00		1400.00	ט	ט
2,4-DINITROTOLUENE	0.00		550.00	ט	U
2,6-DINITROTOLUENE	0.00		550.00	U	U
2-CHLORONAPHTHALENE	0.00		550.00	ט	ט
2-CHLOROPHENOL	0.00		550.00	ט	ט
2-METHYLNAPHTHALENE	9000.00	μg/L	0.00	1	
2-methylphenol	0.00		550.00	บ	ט
2-NITROANILINE	0.00		1400.00	U	ש
2-NITROPHENOL	0.00		550.00	ט	U
3,3'-DICHLOROBENZIDINE	0.00		550.00	U	UJ
3-NITROANILINE	0.00		1400.00	σ	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		1400.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		550.00	ט	บ
4-CHLORO-3-METHYLPHENOL	0.00		550.00	U	U
4-CHLOROANILINE	0.00		550.00	U	U
4-CHLOROPHENYL-PHENYLETHER	0.00		550.00	Ü	U
4-methylphenol	0.00		550.00	Ü	U
4-NITROANILINE	0.00		1400.00	U	ט
4-NITROPHENOL	0.00		1400.00	U	บJ
ACENAPHTHENE	240.00	μg/L	0.00	J	J
ACENAPHTHYLENE	0.00		550.00	U	U
anthracene	210.00	µg/L	0.00	J	J
Benzo (A) anthracene	280.00	µg/L	0.00	J	J
BENIO(A) PYRENE	160.00	µg/L	0.00	J	J
Benzo (B) Fluoranthene	290.00	µg/L	0.00	J	J
BENZO(G, H, I)PERYLENE	0.00		550.00	U	ט
Benzo (R) Fluoranthene	290.00	μg/L	0.00	J	J
BENZOIC ACID	0.00		550.00	U	U
BENZYL ALCOHOL	0.00		550.00	ט	ט
BIS(2-CHLOROETHOXY)METHANE	0.00		550.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00		550.00	υ	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1581

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MW 07 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	160.00	µg/L	0.00	J	J
BUTYLBENZYLPHTHALATE	0.00		550.00	ט	ชิงิ
CARBAZOLE	0.00	1	550.00	ט	ט
CHRYSENE	330.00	μg/L	0.00	J	J
DI-N-BUTYLPHTHALATE	0.00		550.00	σ	บัง
DI-N-OCTYLPHTRALATE	0.00		550.00	ם	ซฮ
Dibens (A, H) Anteracene	0.00		550.00	ū	U
DIBENZOFURAN	130.00	μg/L	0.00	J	J
DIETHYLPHTHALATE	0.00		550.00	Ū	υ
DIMETHYLPHTEALATE	0.00		550.00	U	Ū
FLUORANTHENE	660.00	µg/L	0.00		
FLUORENE	220.00	µg/L	0.00	J	J
HEXACHLOROBENZENE	0.00		550.00	Ū	บJ
HEXACHLOROBUTADIENE	0.00	1	550.00	U	ū
HEXACHLOROCYCLOPENTADIENE	0.00		550.00	U	U
HEXACHLOROETHANE	0.00		550.00	ט	U
INDENO(1,2,3-CD)PYRENE	0.00		550.00	ט	U
ISOPHORONE	0.00		550.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		550.00	ט	ชฮ
N-NITROSODIPHENYLAMINE (1)	0.00		550.00	U	ט
NAPHTHALENE	6400.00	µg/L	0.00		
nitrobenzene	0.00	1	550.00	ט	U
PENTACHLOROPHENOL	0.00		1400.00	ט	U
PHENANTHRENE	650.00	µg/L	0.00		
PHENOL	0.00		550.00	U	ט
PYRENE	610.00	µg/L	0.00		J

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1581

SAMPLE TYPE : DLMWO7 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570 ASSOCIATED MB: SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE	0.00	1	1600.00	υ	U
1,2-DICHLOROBENSENE	0.00		1600.00	ט	ט
1,3-DICHLOROBENZENE	0.00		1600.00	σ	U
1,4-DICHLOROBENZENE	0.00		1600.00	ט	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		1600.00	U	U
2,4,5-TRICHLOROPHENOL	0.00		4100.00	υ	U
2,4,6-TRICHLOROPHENOL	c.00	1	1600.00	Ū	ט
2,4-DICHLOROPHENOL	0.00	T	1600.00	σ	ס
2,4-DIMETHYLPHENOL	0.00		1600.00	U	ט
2,4-DINITROPHENOL	0.00		4100.00	U	U
2,4-DINITROTOLUENE	0.00		1600.00	U	U
2,6-DINITROTOLUENE	0.00		1600.00	ט	U
2-CHLORONAPHTHALENE	0.00		1600.00	υ	U
2-CHLOROPHENOL	0.00		1600.00	ū	U
2-METHYLNAPHTHALENE	9600.00	µg/L	0.00	1	
2-METHYLPHENOL	0.00		1600.00	ט	ט
2-NITROANILINE	0.00		4100.00	ט	ט
2-NITROPHENOL	0.00		1600.00	ט	ט
3,3 - DICHLOROBENZIDINE	0.00		1600.00	U	υJ
3-NITROANILINE	0.00		4100.00	ט	U
4,6-DINITRO-2-METHYLPHENOL	0.00		4100.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		1600.00	U	U
4-CHLORO-3-METHYLPHENOL	0.00	1 -	1600.00	ט	U
4-CHLOROANILINE	0.00		1600.00	ט	ט
4-CHLOROPHENYL-PHENYLETHER	¢.00		1600.00	ט	บ
4-METHYLPHENOL	0.00		1600.00	ט	U
4-NITROANILINE	0.00	1	4100.00	ט	ט
4-NITROPHENOL	0.00	<u> </u>	4100.00	ט	บฮ
ACENAPHTHENE	330.00	μg/L	0.00	J	J
ACENAPHTHYLENE	0.00		1600.00	ט	ט
anthracene	260.00	µg/L	0.00	J	J
BENZO(A)ANTHRACENE	330.00	µg/L	0.00	J	J
BENZO(A)PYRENE	190.00	µg/L	0.00	J	J
BENZO(B) FLUORANTHENE	320.00	μg/L	0.00	J	J
BENZO(G, H, I) PERYLENE	0.00	1	1600.00	U	υ
BENZO(K) FLUORANTHENE	320.00	µg/L	0.00	J	J
BENZOIC ACID	0.00		1600.00	U	υ
BENZYL ALCOHOL	0.00		1600.00	υ	U
BIS(2-CHLOROETHOXY)METHANE	0.00		1600.00	U	ט
BIS(2-CHLOROETHYL)ETHER	0.00		1600.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1581

SAMPLE TYPE : DLMW07 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

ASSOCIATED MB : SBLK51 SDG: 1570

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	190.00	µg/L	0.00	J	J
BUTYLBENZYLPHTHALLE	0.00		1600.00	ט	נט
CARBASOLE	0.00		1600.00	ū	ט
CHRYSENE	380.00	µg/L	0.00	J	J
DI-N-BUTYLPHTRALATE	0.00		1600.00	υ	บัง
DI-N-OCTYLPHTHALATE	0.00		1600.00	ט	UJ
DIBENS (A, E) ANTERACENE	0.00		1600.00	U	ט
Dibenzofuran	180.00	µg/L	0.00	J	J
DIETHYLPHTHALATE	0.00		1600.00	U	Ū
JI he th yl pete alate	0.00		1600.00	<u>"</u>	U
FLUORANTHENE	700.00	µg/L	0.00	J	J
FLUORENE	300.00	μg/L	0.00	J	J
HEXACHLOROBENZ ENB	0.00		1600.00	ט	บJ
HEXACHLOROP"TADIENE	0.00		1600.00	U	ט
HEXACHLOROCYCLOPENTADIENE	0.00	\top	1600.00	ט	υ
HEXACHLOROETHANE	0.00		1600.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		1600.00	ט	Ū
ISOPHORONE	0.00		1600.00	υ	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		1600.00	ט	บว
N-NITROSODIPHENYLAMINE (1)	0.00		1600.00	υ	σ
NAPHTHALENE	6900.00	µq/L	0.00		
NITROBENZENE	0.00		1600.00	ū	1,,
PENTACHLOROPHENOL	0.00	1	4100.00	U	0
PHENANTHRENE	760.00	μg/L	0.00	J	J
PHENOL	0.00	1	1600.00	ט	ט
PYRENE	780.00	µg/L	0.00	J	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1582 ANALYSIS TYPE: BNA SAMPLE TYPE : ERMWO7 SAMPLE MATRIX : W

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode .	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00	1	10.00	U	U
1,4-DICHLOROBENZENE	0.00	1	10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	ט
2,4,6-TRICHLOROPHENOL	0.00	T	10.00	U	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	ט
2,4-DIMETHYLPHENOL	0.00		10.00	U	ט
2,4-DINITROPHENOL	0.00	1	25.00	U	ט
2,4-DINITROTOLUENE	0.00	1	10.00	ט	ט
2,6-DINITROTOLUENE	2.00	1	10.00	ט	U
2-CHLORONAPHTHALENE	0.00		10.00	ט	ט
2-CHLOROPHENOL	0.00		10.00	ט	U
2-METHYLNAPHTHALENE	0.00		10.00	U	ט
2-METHYLPHENOL	0.00	1	10.00	ט	ט
2-NITROANILINE	0.00	1	25.00	Ū	ט
2-NITROPHENOL	0.00		10.00	U	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บJ
3-NITROANILINE	0.00	1	25.00	U	ט
4,6-DINITRO-2-METHYLPHENOL	0.00	1	25.00	υ	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	U	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	บ	ט
4-CHLOROANILINE	0.00	 	10.00	U	ט
4-CHLOROPHENYL-PHENYLETHER	0.00	†	10.00	U	υ
4-methylphenol	0.00	<u> </u>	10.00	ט	ט
4-NITROANILINE	0.00	1	25.00	ט	U
4-NITROPHENOL	0.00	1	25.00	U	บร
ACENAPHTHENE	0.00		10.00	บ	ซ
ACENAPHTHYLENE	0.00		10.00	υ	ט
ANTHRACENE	0.00	1	10.00	ט	U
BENZO(A)ANTHRACENE	0.00		10.00	ט	ט
BENZO(A)PYRENE	0.00	†	10.00	U	ט
BENZO(B)FLUORANTHENE	0.00		10.00	U	ט
BENZO(G,H,I)PERYLENE	0.00		10.00	U	ט
BEN2O(K)FLUORANTHENE	0.00		10.00	ט	บว
BENZOIC ACID	0.00	T	10.00	υ	ט
BENZYL ALCOHOL	0.00	†	10.00	υ	ט
BIS(2-CHLOROETHOXY)METHANE	0.00	1	10.00	U	ט
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	υ	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1582

SAMPLE TYPE : ERMWO7 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

ASSOCIATED MB : SBLK51

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	6.00	μg/L	0.00	J	R
BUTYLBENZYLPETHALATE	2.00	µg/L	0.00	J	R
CARBAIOLE	0.00		10.00	ט	U
CERTSENE	0.00		10.00	U	ט
DI-N-BUTYLPHTHALATE	6.00		10.00	U	บัง
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	บJ
DIBENZ(A, E) ANTHRACENE	0.00		10.00	ט	Ū
DIBENZOFURAN	0.00	1	10.00	Ū	U
DIETHYLPHTRALATE	1.00	µg/L	0.00	J	J
DIMETRYLPHTHALATE	0.00		10.00	U	ט
FLUORANTHENE	0.00		10.00	U	ט
FLUORENE	0.00		10.00	U	U
HEXACHLOROBENZENE	0.00		10.00	U	บว
HEXACHLOROBUTADIENE	0.00	1	10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	U
HEXACHLOROETHANE	0.00	1	10.00	ש	ט
INDENO(1,2,3-CD)PYRENE	0.00		10.00	U	ט
ISOPHORONE	0.00	1	10.00	ט	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00	1	10.00	ט	UJ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00		10.00	U	ט
NITROBENZENE	0.00		10.00	ט	ט
PENTACHLOROPHENOL	0.00	1	25.00	υ	ט
PHENANTHRENE	0.00	1	10.00	ט	ט
PHENOL	0.00		10.00	U	U
PYRENE	0.00	1	10.00	U	บง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1584 ANALYSIS TYPE : BNA

SAMPLE TYPE : MW67

SAMPLE MATRIX : W

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	ช
1,4-DICHLOROBENZENE	0.00		10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ū	ū
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	ū
2,4-DIMETHYLPHENOL	0.00		10.00	ט	U
2,4-DINITROPHENOL	0.00		25.00	ט	U
2,4-DINITROTOLUENE	0.00		10.00	ט	υ
2,6-DINITROTOLUENE	0.00		10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	ט	ט
2-CHLOROPHENOL	0.00		10.00	υ	υ
2-METHYLNAPHTHALENE	0.00		10.00	ซ	บ
2-METHYLPHENOL	0.00		10.00	ט	Ū
2-NITROANILINE	0.00		25.00	ט	U
2-NITROPHENOL	0.00		10.00	U	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	U	UJ
3-NITROANILINE	0.00		25.00	U	U
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	ט	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	0.00		10.00	U	ט –
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	U
4-METHYLPHENOL	0.00		10.00	ט	U
4-NITROANILINE	0.00		25.00	ט	U
4-NITROPHENOL	0.00		25.00	ט	บป
ACENAPHTHENE	0.00		10.00	U	U
ACENAPHTHYLENE	0.00		10.00	ט	υ
ANTHRACENE	0.00		10.00	υ	ט
BENZO(A)ANTHRACENE	0.00		10.00	ט	ט
BENZO(A)PYRENE	0.00	<u> </u>	10.00	υ	U
BENZO(B)FLUORANTHENE	0.00		10.00	ט	U
BENZO(G, H, I)PERYLENE	0.00		10.00	U	U
BENZO(R) FLUORANTHENE	0.00		10.00	υ	บบ
BENZOIC ACID	0.00		10.00	U	ט
BENZYL ALCOHOL	0.00		10.00	ט	υ
BIS (2-CHLOROETHOXY) METHANE	0.00	†	10.00	บ	U
BIS(2-CHLOROETHYL)ETHER	0.00	 	10.00	ט	ט
, , , , , , , , , , , , , , , , , , , ,	<u> </u>	 		+	+

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1584

SAMPLE TYPE : MW67

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	µg/L	0.00	J	R
BUTYLBENIYLPHTHALATE	2.00	µg/L	0.00	J	R
Carbazole	0.00		10.00	U	ט
CHRYSENE	0.00		10.00	U	ט
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	บัว
DI-N-OCTYLPHTRALATE	0.00		10.00	ט	บว
DIBERS (A, E) ANTERACENE	0.00		10.00	U	U
DIBENZOFURAN	0.00		10.00	U	U
DIETHYLPHTEALATE	0.00		10.00	ט	ט
DIMETHYLPHTRALATB	0.00	1	10.00	ט	ט
FLUORANTHENE	0.00		10.00	ช	ט
Fluorene	0.00		10.00	ט	U
HEXACHLOROBENZENE	0.00		10.00	U	נט
HEXACHLOROBUTADIENE	0.00		10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	U
ISOPEORONE	0.00		10.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	บป
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	Ū	U
Naphthalene	0.00		10.00	Ü	ט
nitrobenzene	0.00		10.00	ט	ט
PENTACHLOROPHENOL	1.00	µg/L	0.00	J	J
PHENANTHRENE	0.00		10.00	ט	ט
PHENOL	0.00		10.00	ซ	บ
PYRENE	0.00		10.00	Ū	บว

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1585

SAMPLE TYPE : ERMWG7 SAMPLE MATRIX : W

ASSOCIATED MB : SBLK51

ANALYSIS TYPE : BNA TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	U
1,2-DICHLOROBENZENE	0.00		10.00	U	U
1,3-DICHLOROBENZENE	0.00		10.00	ט	ט
1,4-DICHLOROBENZENE	0.00		10.00	U	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00	İ .	10.00	ט	U
2,4-DIMETHYLPHENOL	0.00		10.00	ט	ט
2,4-DINITROPHENOL	0.00		25.00	U	U
2,4-DINITROTOLUENE	0.00		10.00	ט	U
2,6-DINITROTOLUENE	0.00		10.00	U	U
2-CHLORONAPHTHALENE	0.00	1	10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	<u>ט</u>	ט
2-METHYLNAPHTHALENE	0.00	1	10.00	U	ט
2-METHYLPHENOL	0.00		10.00	U	ט
2-NITROANILINE	0.00	†	25.00	a	ס
2-NITROPHENOL	0.00	 	10.00	U	U
3,3'-DICHLOROBENZIDINE	0.00	 	10.00	ט	บว
3-NITROANILINE	0.00		25.00	ט	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	U	ט
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	ט	ט
4-CHLORO-3-METHYLPHENOL	0.00	1	10.00	ט	U
4-CHLOROANILINE	0.00	1	10.00	ט	U
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	υ	U
4-METHYLPHENOL	0.00	 	10.00	ט	ט
4-NITROANILINE	0.00		25.00	ט	ט
4-NITROPHENOL	0.00		25.00	ט	บว
ACENAPHTHENE	0.00	1	10.00	ט	ט
ACENAPHTHYLENE	0.00		10.00	U	ט
ANTHRACENE	0.00		10.00	U	ט
BENZO(A)ANTHRACENE	0.00	 	10.00	ט	ט
BENZO(A)PYRENE	0.00		10.00	U	U
BENZO(B) PLUORANTHENE	0.00		10.00	ט	U
BENZO(G, H, I) PERYLENE	0.00		10.00	U	U
BENZO(K) FLUORANTHENE	0.00		10.00	U	บัง
BENZOIC ACID	0.00		10.00	ט	υ
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY) METHANE	0.00	†	10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	U	U
	+	 		+	+

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1585

SAMPLE TYPE : ER MW67 SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK :

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	7.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	. µg/L	0.00	J	R
CARBASOLE	0.00	1	10.00	ט	Ū
CHRYSENE	0.00		10.00	U	Ū
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	ขว
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ซฮ
DIBENS (A, H)ANTERACENE	0.00		10.00	ט	ט
DIBENZOFURAN	0.00		10.00	ט	U
DIETHYLPHTHALATE	0.00		10.00	ט	ט
DIMETHYLPHTHALATE	0.00		10.00	ט	ט
PLUORANTHENE	0.00	1	10.00	U	ט
PLUORENE	0.00	1	10.00	U	U
HEXACHLOROBENZENE	0.00	1	10.00	ט	บJ
HEXACHLOROBUTADIENE	0.00	1	10.00	U	ט
HEXACHLOROCYCLOPENTADIENE	0.00	1	10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	ט	ט
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	ט	ט
ISOPHORONE	0.00		10.00	ט	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	บป
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00		10.00	ū	U
NITROBENZENE	0.00	1	10.00	ט	ט
PENTACHLOROPHENOL	0.00		25.00	ט	ט
PHENANTHRENE	0.00	Ì	10.00	ט	υ
PHENOL	0.00	1	10.00	ט	ט
PYRENE	0.00	T	10.00	U	บว

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1586

SAMPLE TYPE : MW65

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	U	ט
1,2-Dichlorobenzene	0.00		10.00	U	ប
1,3-DICELOROBENZENE	0.00		10.00	U	U
1,4-DICHLOROBENZENE	0.00		10.00	Ū	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ū
2,4,5-TRICHLOROPHENOL	0.00		25.00	ŋ	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00		10.00	U	U
2,4-DINITROPHENOL	0.00		25.00	ט	Ü
2,4-DINITROTOLUENE	0.00		10.00	U	ט
2,6-DINITROTOLUENE	0.00		10.00	U	ש
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-METHYLNAPHTRALENE	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	ט	Ū
2-NITROANILINE	0.00		25.00	ט	ប
2-NITROPHENOL	0.00		10.00	υ	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	บ	บว
3-WITROANILINE	0.00		25.00	ט	U
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	บ	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	U	U
4-CHLOROANILINE	0.00		10.00	ט	ט
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	ט
4-METHYLPHENOL	0.00		10.00	U	ט
4-NITROANILINE	0.00		25.00	a	a
4-NITROPHENOL	0.00		25.00	ū	บัง
ACENAPHTHENE	0.00		10.00	บ	υ
ACENAPHTHYLENE	0.00		10.00	ט	U
Anthracene	0.00		10.00	U	ט
BENZO(A)ANTERACENE	0.00		10.00	υ	ט
BENZO(A) PYRENE	0.00		10.00	U	ט
Benzo (B) Fluoranthene	0.00		10.00	U	U
BENZO(G, H, I) PERYLENE	0.00		10.00	U	ט
BENZO(K) FLUORANTHENE	0.00		10.00	U	บัง
BENZOIC ACID	0.00		10.00	ט	ט
BENZYL ALCOHOL	0.00		10.00	ט	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	ט	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1586

SAMPLE TYPE : MW65

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	5.00	μg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	1.00	µg/L	0.00	J	R
CARBASOLE	0.00	I	10.00	U	Ū
CHRYSENE	0.00		10.00	ט	Ū
DI-N-BUTYLPHTHALATE	0.00		10.00	U	บJ
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	ชฮ
DIBENZ(A, H) ANTHRACENE	0.00		10.00	ū	Ū
DIBENZOFURAN	0.00		10.00	ט	ט
DIETHYLPHTRALATE	0.00		10.00	U	ū
DIMETHYLPHTHALATE	0.00		10.00	ט	ט
PLUORANTHENE	0.00		10.00	ט	ט
FLUORENE	0.00		10.00	Ū	ט
HEXACHLOROBENZENE	0.00		10.00	ט	บว
HEXACHLOROBUTADIENE	0.00		10.00	ט	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	U
HEXACHLOROETHANE	0.00		10.00	σ	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	U	U
ISOPEORONE	0.00		10.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	υ	บง
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	U	U
naphthalene	0.00	1	10.00	U	ט
nitrobenzene	0.00	Ì	10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	ט	U
PHENANTERENE	0.03		10.00	υ	ט
PHENOL	0.00		10.00	ט	Ū
PYRENE	0.00	1	10.00	ט	υJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1587

SAMPLE TYPE : mwu6

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	מ
1,3-DICHLOROBENZENE	0.00		10.00	U	ט
1,4-DICHLORDBENZENE	0.00		10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ס
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	Ū
2,4-DIMETHYLPHENOL	0.00		10.00	U	ט
2,4-DINITROPHENOL	0.00		25.00	ט	ט
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00		10.00	U	υ
2-CHLORONAPHTHALENE	0.00		10.00	U	ט
2-CHLOROPHENOL	0.00		10.00	Ū	υ
2-METHYLNAPHTHALENB	0.00		10.00	U	ט
2-methylphenol	0.00		10.00	ū	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-NITROPHENOL	0.00		10.00	ט	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	υJ
3-NITROANILINE	0.00		25.00	ט	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	υ
4-BROMOPHENYL-PHENYLETHER	0.00		10.00	ט	υ
4-CHLORO-3-METHYLPHENOL	0.00		10.00	υ	U
4-CHLOROANILINE	0.00		10.00	ט	บ
4-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	ט
4-METHYLPHENOL	0.00		10.00	U	U
4-NITROANILINE	0.00	1	25.00	U	ט
4-NITROPHENOL	0.00		25.00	ט	บว
ACENAPHTHENE	0.00		10.00	ט	ט
ACENAPHTHYLENE	0.00		10.00	U	U
ANTHRACENE	0.00		10.00	U	υ
BENZO (A) ANTHRACENE	0.00		10.00	ט	U
BENZO(A) PYRENE	0.00		10.00	ט	U
BENZO (B) FLUORANTHENE	0.00	1	10.00	ט	U
BENZO(G, H, I) PERYLENE	0.00	1	10.00	ט	U
BEN20 (K) FLUORANTHENE	0.00		10.00	U	UJ
BENZOIC ACID	0.00	1	10.00	U	U
BENZYL ALCOHOL	0.00	†	10.00	U	U
BIS(2-CHLOROETHOXY) METHANE	0.00		10.00	U	U
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1587

SAMPLE TYPE : MWGG SAMPLE MATRIX : W

ANALYSIS TYPE : BNA SDG : 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	4.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
CARBAZOLE	0.00		10.00	U	מ
CHRYSENE	0.00		10.00	ט	ū
DI-N-BUTYLPHTRALATE	0.00		10.00	ט	บJ
DI-N-OCTYLPHTHALATE	0.00		10.00	ט	UJ
DIBENZ (A, H) ANTHRACENE	0.00		10.00	Ū	ט
DIBENZOFURAN	0.00	T	10.00	U	ū
DIETHYLPHTHALATE	0.00		10.00	ט	Ū
DIMETHYLPHTHALATE	0.00	Ì	10.00	U	ט
PLUORANTHENE	0.00	T	10.00	υ	ט
FLUORENE	0.00		10.00	U	υ
HEXACHLOROBENZENE	0.00		10.00	ט	บว
HEXACHLOROBUTADIENE	0.00		10.00	ซ	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	υ
HEXACHLOROETHANE	0.00	1	10.00	U	U
INDENO(1,2,3-CD)PYRENE	0.00	1	10.00	U	ט
ISOPHORONE	0.00		10.00	υ	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	บ	t.1
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ū
NAPHTHALENE	0.00	1	10.00	U	ט
nitrobenzene	0.00		10.00	U	U
PENTACHLOROPHENOL	0.00		25.00	U	U
PHENANTHRENE	0.00		10.00	ט	ט
PHENOL	0.00	T	10.00	ט	ט
PYRENE	0.00		10.00	U	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1588

SAMPLE TYPE : mw \$8

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	ט	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	U
1,4-DICHLOROBENZENE	0.00		10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	ט	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	υ
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	U	U
2,4-DIMETHYLPHENOL	0.00		10.00	ū	ט
2,4-DINITROPHENOL	0.00		25.00	ס	U
2,4-DINITROTOLUENE	0.00		10.00	U	ט
2,6-DINITROTOLUENE	0.00		10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	U	บ
2-CHLOROPHENOL	0.00		10.00	ט	บ
2-METHYLNAPHTHALENE	0.00		10.00	บ	ט
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	U	υ
2-NITROPHENOL	0.00		10.00	ט	ט
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บง
3-NITROANILINE	0.00		25.00	U	ט
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ū	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	ū
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	U
4-CHLOROANILINE	0.00		10.00	U	ט
4-chlorophenyl-phenylether	0.00	L	10.00	ซ	ט
4-METHYLPHENOL	0.00		10.00	ប	U
4-NITROANILINE	0.00		25.00	ט	U
4-NITROPHENOL	0.00		25.00	ט	บัง
ACENAPHTHENE	0.00		10.00	ט	ט
ACENAPHTHYLENE	0.00		10.00	ט	U
ANTHRACENE	0.00		10.00	บ	U
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A)PYRENE	0.00		10.00	U	ט
BENZO(B) FLUORANTHENE	0.00		10.00	U	υ
BENZO(G, H, I) PERYLENE	0.00		10.00	ט	U
BENZO(K) FLUORANTHENE	0.00		10.00	ט	บบ
BENZOIC ACID	0.00		10.00	U	ט
BENZYL ALCOHOL	0.00		10.00	U	υ
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	บ	U
BIS(2-CHLOROETHYL)ETHER	0.00		10.00	ט	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1588

SAMPLE TYPE : $mw\phi\theta$ SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK51

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	8.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	2.00	µg/L	0.00	J	R
Carbazole	0.00		10.00	ū	U
CHRYSENE	0.00		10.00	U	ט
DI-N-BUTYLPETHALATE	0.00		10.00	ช	บัง
DI-N-OCTYLPHTHALATE	0.00		10.00	U	บัว
Dibenz (A, H) anteracene	0.00		10.00	ū	ซ
Dibenzofuran	0.00		10.00	U	U
DISTHYLPHTHALATE	1.00	μg/L	0.00	J	J
DIMETHYLPHTHALATE	0.00		10.00	ט	ט
Fluoranthene	0.00		10.00	U	U
FLUORENE	0.00		10.00	ט	ט
HEXACHLOROBENZENE	0.00		10.00	ט	עט
HEXACHLOROBUTADIENE	0.00		10.00	U	U
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACELOROETHANE	0.00		10.00	ט	บ
INDENO(1,2,3-CD)PYRENE	0.00		10.00	U	U
ISOPHORONE	0.00		10.00	ט	U
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	ט	บัง
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	U
NAPHTHALENE	0.00		10.00	ט	U
NITROBENZENE	0.00		10.00	υ	U
PENTACHLOROPHENOL	1.00	µg/L	0.00	J	J
PHENANTHRENE	0.00		10.00	υ	U
PHENOL	0.00		10.00	บ	บ
PYRENE	0.00		10.00	U	บว

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1589 SAMPLE TYPE : MWI SAMPLE MATRIX : W ANALYSIS TYPE : BNA SDG : 1570 ASSOCIATED MB : SI

ASSOCIATED MB : SBLK63

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	บ
1,2-DICHLOROBENZENE	0.00		10.00	ט	Ū
1,3-DICHLOROBENZENE	0.00	Ì	10.00	ט	ט
1,4-DICHLOROBENZENE	0.00	İ	10.00	ט	ט
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	ט
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00	1	10.00	ט	ט
2,4-DINITROPHENOL	0.00		25.00	ט	U
2,4-DINITROTOLUENE	0.00		10.00	ט	ט
2,6-DINITROTOLUENE	0.00	T	10.00	ט	ט
2-CHLORONAPHTHALENE	0.00		10.00	ט	U
2-CHLOROPHENOL	0.00		10.00	ט	υ
2-methylnaphthalene	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	U
2-NITROPHENOL	0.00		10.00	υ	บ
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	บJ
3-NITROANILINE	0.00		25.00	ū	U
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	บ
4-Bromophenyl-Phenylether	0.00	1	10.00	ט	ט
4-CHLORO-3-METHYLPHENOL	0.00	Ì	10.00	U	ט
4-CHLORCANILINE	0.00	Î	10.00	U	υ
4-CHLOROPHENYL-PHENYLETHER	0.00	1	10.00	ט	U
4-METHYLPHENOL	0.00	1	10.00	ט	ט
4-NITROANILINE	0.00	1	25.00	υ	υ
4-NITROPHENOL	0.00	ļ	25.00	บ	UJ
ACENAPHTHENE	0.00		10.00	U	บ
ACENAPHTHYLENE	0.00	1	10.00	U	υ
ANTHRACENE	0.00	 	10.00	U	U
RENZO(A)ANTERACENE	0.00		10.00	ט	U
BENZO(A)PYRENE	0.00		10.00	ט	U
BENZO(B) FLUORANTHENE	0.00		10.00	ט	U
BENZO(G, E, I) PERYLENE	0.00		10.00	ט	U
BENZO(K)FLUORANTHENE	0.00		10.00	บ	บJ
BENZOIC ACID	0.00	†	10.00	ט	U
BENZYL ALCOHOL	0.00	†	10.00	ט	U
BIS(2-CHLOROETHOXY)METHANE	0.00	†	10.00	U	ט
TIS (2-CHLOROETHYL) ETHER	0.00	 	10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1589

SAMPLE TYPE : MWI

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1570

ASSOCIATED MB : SBLK63

TRIP BLANK :

FIELD BLANKS : 1548FB, 1555FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.00	μg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	0.00		10.00	ט	บัง
CARBAZOLE	0.00		10.00	Ū	ט
CHRYSENE	0.00		10.00	σ	U
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	บัว
DI-N-OCTYLPHTHALATE	2.00		10.00	ט	บJ
DIBENZ(A, H)ANTHRACENE	0.00		10.00	ט	ט
DIBENZOFURAN	0.00	1	10.00	υ	U
DIETHYLPHTHALATE	0.00		10.00	U	U
DIMETHYLPHTHALATE	0.00	1	10.00	U	ט
PLUORANTHENE	0.00	1	10.00	ט	U
FLUORENE	0.00	1	10.00	U	U
HEXACHLOROBENZENE	0.00	1	10.00	ט	บฮ
HEXACHIOROBUTADIENE	0.00		10.00	υ	ט
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	U	ט
HEXACHLOROETHANE	0.00	1	10.00	ט	υ
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ט	ช
ISOPHORONE	0.00	1	10.00	τ յ	ט
n-nitroso-di-n-propylamine	0.00	T	10.00	ט	บJ
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ט	ט
NAPHTHALENE	0.00	1	16.00	ช	U
NITROBENZENE	0.00		10.00	U	ប
PENTACHLO: OPHENOL	0.00		25.00	υ	บ
PHENANTHRENE	0.00		10.00	Ū	υ
PHENOL	0.00		10.00	υ	ប
PYRENE	0.00		10.00	U	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1590 SAMPLE TYPE: $m\omega\phi^q$ ANALYSIS TYPE: BNA SDG: 1590

SAMPLE MATRIX : W

ASSOCIATED MB : SBLK64

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	ט
1,2-DICHLOROBENZENE	0.00		10.00	U	ט
1,3-DICHLOROBENZENE	0.00		10.00	ט	U
1,4-dichlorobenzene	0.00		10.00	U	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	บัง
2,4,5-TRICHLOROPHENOL	0.00		25.00	U	U
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	U
2,4-DICH OROPHENOL	0.00		10.00	σ	υ
2,4-DIMETHYLPHENOL	0.00	1	10.00	ט	U
2,4-DINITROPHENOL	0.00	1	25.00	ט	U
2,4-DINITROTOLUENE	0.00	†	10.00	U	U
2,6-DINITROTOLUENE	0.00		10.00	U	υ
2-CHLORONAPHTHALENE	0.00		10.00	υ	U
2-CHLOROPHENOL	0.0	T	10.00	ט	บ
2-METHYLNAPHTHALENE	0.00		10.00	บ	ט
-methylphenol	0.00	†	10.00	U	ט
-nitroaniline	0.00		25.00	U	U
-NITROPHENOL	0.00	i	10.00	U	ט
3,3 - DICHLOROBENZIDINE	0.00		10.00	U	ט
-nitroaniline	0.00		25.00	U	ט
,6-DINITRO-2-METHYLPHENOL	0.00		25.00	Ū	ซ
-BROMOPHENYL-PHENYLETHER	0.00		10.00	U	U
-CHLOPO-3-METHYLPHENOL	0.00		10.00	U	U
-CHLOROANILINE	0.00		10.00	U	U
-CHLOROPHENYL-PHENYLETHER	0.00		10.00	ט	U
-METHYLPHENOL	0.00		10.00	U	U
-NITROANILINE	0.00		25.00	U	ט
-NITROPHENOL	0.00		25.00	ט	บง
CENAPHTHENE	0.00		10.00	ט	ט
CENAPHTHYLENE	0.00		10.00	ט	U
ANTHRACENE	0.00		10.00	U	U
BENZO(A)ANTHRACENE	0.00		10.00	U	U
BENZO(A)PYRENE	0.00		10.00	U	U
ENZO(B) FLUORANTHENE	0.00		10.00	ט	U
BENZO(G, H, I)PERYLENE	0.00		10.00	ט	U
ENZO(K) FLUORANTHENE	0.00		10.00	ט	UJ
ENZOIC ACID	0.00		10.00	υ	ט
SENZYL ALCOHOL	0.00		10.00	υ	Ü
IS(2-CHLOROETHOXY)METHANE	0.00		10.00	ט	Ü
IS(2-CHLOROETHYL)ETHER	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1590

SAMPLE TYPE : MW09

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG : 1590

ASSOCIATED MB : SBLK64

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentra i	Lon	Units	Instrument Petection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	2.	.00	μg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	0.	.00		10.00	Ū	บJ
CARBAZOLE	0.	.00		10.00	U	ט
CHRYSENE	0.	.00		10.00	ט	ט
DI-N-BUTYLPHTHALATE	0.	.00		10.00	ט	บัง
DI-N-OCTYLPHTHALATE	0.	.00		10.00	ט	UJ
Dibenz (A, H) anteracene	0.	.00		10.00	ט	ט
DIBENZOFURAN	0.	.00		10.00	ט	ט
DIETHYLPHTHALATE	0.	.00		10.00	ט	ט
DIMETHYLPHTHALATE	0.	.00		10.00	U	U
FLUORANTHENE	0.	.00		10.00	ט	ט
PLUORENE	0.	.00		10.00	a	ט
HEXACHLOROBENZENE	0.	.00		10.00	ט	บัง
HEXACHLOROBUTADIENE	0.	.00	-	10.00	U	ט
HEXACHLOROCYCLOPENTADIENE	0.	.00		10.00	υ	ט
HEXACHLOROETHANE	0.	.00		10.00	U	ט
INDENO(1,2,3-CD)PYRENE	0.	.00		10.00	U	U
ISOPHORONE	0.	.00		10.00	ט	ט
N-NITROSO-DI-N-PROPYLAMINE	0.	.00		10.00	υ	ט
N-NITROSODIPHENYLAMINE (1)	0.	.00		10.00	ט	υ
NAPHTHALENE	0.	.00		10.00	ט	U
NITROBENZENE	0.	.00		10.00	U	ט
PENTACHLOROPHENOL	2.	.00	μg/L	0.00	J	J
PHENANTHRENE	0.	.00		10.00	U	U
PHENOL	0.	.00		10.00	ט	ט
PYRENE	0.	.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Language Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1592

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1590

ASSOCIATED MB : SBLK64

TRIP BLANK: 1591TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,2,4-TRICHLOROBENZENE	0.00		10.00	ט	U
1,2-DICHLOROBENZENE	0.00		10.00	Ū	U
1,3-DICHLOROBENZENE	0.00		10.00	Ū	U
1,4-DICHLOROBENZENE	0.00		10.00	D	U
2,2'-OXYBIS (1-CHLOROPROPANE)	0.00		10.00	U	บJ
2,4,5-TRICHLOROPHENOL	0.00		25.00	ט	ט
2,4,6-TRICHLOROPHENOL	0.00		10.00	ט	U
2,4-DICHLOROPHENOL	0.00		10.00	ט	ט
2,4-DIMETHYLPHENOL	0.00	1	10.00	ש	U
2,4-DINITROPHENOL	0.00		25.00	U	U
2,4-DINITROTOLUENE	0.00		10.00	U	ט
2,6-DINITROTOLUENE	0.00		10.00	U	ט
2-CHLORONAPHTHALENE	0.00		10.00	ט	ט
2-CHLOROPHENOL	0.00		10.00	ט	ט
2-methylnaphthalene	0.00		10.00	ט	ט
2-METHYLPHENOL	0.00		10.00	ט	ט
2-NITROANILINE	0.00		25.00	ט	ט
2-nitrophenol	0.00		10.00	ט	U
3,3'-DICHLOROBENZIDINE	0.00		10.00	ט	σ
3-NITROANILINE	0.00		25.00	U	Ü
4,6-DINITRO-2-METHYLPHENOL	0.00		25.00	ט	ט
4-Bromophenyl-Phenylether	0.00		10.00	ט	U
4-CHLORO-3-METHYLPHENOL	0.00		10.00	ט	υ
4-CHLOROANILINE	0.00		10.00	U	U
4-chlorophenyl-phenylether	0.00		10.00	ט	ט
4-methylphenol	0.00		10.00	ט	U
4-NITROANILINE	0.00		25.00	ט	ט
4-NITROPHENOL	0.00		25.00	ט	บง
Acenaphthene	0.00		10.00	υ	ט
ACENAPHTHYLENE	0.00		10.00	ט	ט
ANTHRACENE	0.00		10.00	U	ט
Benzo (A) anthracene	0.00		10.00	ט	υ
BENZO(A)PYRENE	0.00		10.00	บ	U
BENZO(B)FLUORANTHENE	0.00	Ι	10.00	U	ט
BENZO(G, H, I) PERYLENE	0.00		10.00	ט	ט
BENZO(K) FLUORANTHENE	0.00		10.00	ט	บJ
BENZOIC ACID	0.00		10.00	υ	U
BENZYL ALCOHOL	0.00		10.00	U	U
BIS(2-CHLOROETHOXY)METHANE	0.00		10.00	U	υ
BIS(2-CHLOROETHYL)ETHER	0.00	1	10.00	บ	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1592

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : BNA

SDG: 1590

ASSOCIATED MB : SBLK64

TRIP BLANK: 1591TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
BIS(2-ETHYLHEXYL)PHTHALATE	5.00	µg/L	0.00	J	R
BUTYLBENZYLPHTHALATE	0.00		10.00	U	บัง
CARBAZOLE	0.00		10.00	U	บ
CHRYSENE	0.00		10.00	U	מ
DI-N-BUTYLPHTHALATE	0.00		10.00	ט	บัง
DI-N-OCTYLPHTRALATE	0.00		10.00	ט	บJ
DIBENZ(A, H) ANTHRACENE	0.00		10.00	ט	ט
Dibenzofuran	0.00		10.00	ט	U
DIETHYLPHTHALATE	1.00	µg/L	0.00	3	J
DIMETHYLPHTHALATE	0.00		10.00	ט	ט
PLUORANTHENE	0.00		10.00	ט	U
PLUORENE	0.00		10.00	υ	U
HEXACHLOROBENZENE	0.00		10.00	ប	נט
HEXACHLOROBUTADIENE	0.00		10.00	บ	ū
HEXACHLOROCYCLOPENTADIENE	0.00		10.00	ט	ט
HEXACHLOROETHANE	0.00		10.00	ט	U
INDENO(1,2,3-CD)PYRENE	0.00		10.00	ם	ט
ISOPHORONE	0.00		10.00	U	ט
N-NITROSO-DI-N-PROPYLAMINE	0.00		10.00	U	ū
N-NITROSODIPHENYLAMINE (1)	0.00		10.00	ช	U
NAPHTHALENE	0.00	T	10.00	ט	U
NITROBENZENE	0.00		10.00	υ	ט
PENTACHLOROPHENOL	0.00		25.00	U	ט
PHENANTERENE	0.00		10.00	U	ט
PHENOL	0.00		10.00	ט	ט
PYRENE	0.00	Ī	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1546

SAMPLE TYPE : Mwd2 SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK : 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	92.50	µg/L	0.00	В	R
Antihony	0.00		30.00	ט	υJ
ARSENIC	137.00	µg/L	0.00		
BARIUM	17.70	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	บัง
CADHIUN	0.00		5.00	Ū	บร
CALCIUM	34600.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	บัง
COBALT	0.00		9.00	ט	บว
COPPER	6.60	µg/L	0.00	В	
IRON	25.80	µg/L	0.00	В	R
LEAD	0.00		2.00	U	บว
Magnesium	3900.00	µg/L	0.00	В	
MANGANESE	79.40	μg/L	0.00		
MERCURY	0.00		0.20	U	บว
NICKEL	0.00		13.00	ŭ	บว
POTASSIUM	11800.00	µg/L	0.00]	
SELENIUM	0.00		3.00	ט	บJ
SILVER	0.00		5.00	υ	บว
SODIUM	364000.00	µg/L	0.00		
THALLIUM	0.00		3.00	U	ซฮ
VANADIUM	12.50	μg/L	0.00	В	
ZINC	0.00	<u> </u>	5.00	U	บัง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1547 SAMPLE TYPE : $M \omega \phi / M$ SAMPLE MATRIX : W ANALYSIS TYPE : MET SDG : 1545 ASSOCIATED MB : MI

ASSOCIATED MB : MET01

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QPinal
ALUMINUM	117.00	µg/L	0.00	В	R
Antimony	0.00		30.00	U	บัง
ARSENIC	88.60	µg/L	0.00		
BARIUM	39.40	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	บัง
CADMIUM	0.00		5.00	Ū	UJ
CALCIUM	25800.00	μg/L	0.00		
CEROMIUM	0.00		6.00	U	บบ
COBALT	0.00		9.00	Ū	ชิงิ
COPPER	7.10	μg/L	0.00	В	
IRON	34.40	µg/L	0.00	В	R
LEAD	0.60		2.00	U	ชิง
MAGNESIUM	6250.00	μg/L	0.00		
Manganese	15.60	μg/L	0.00		
MERCURY	0.00	1	0.20	U	ชฮ
NICKEL	0.00		13.00	U	ขั้
POTASSIUM	7090.00	μg/L	0.00	1	
SELENIUM	5.50	µg/L	0.00		
SILVER	0.00		5.00	ט	UJ
SODIUM	258000.00	µg/L	0.00		
THALLIUM	0.00	1	3.00	υ	บัว
VANADIUM	13.00	µg/L	0.00	В	
ZINC	0.00		5.00	U	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1548

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1545TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	61.90	µg/L	0.00	В	R
ANTIMONY	0.00		30.00	U	บัง
ARSENIC	4.00	µg/L	0.00	В	
BARIUM	0.00		2.00	ប	บJ
BERYLLIUM	0.00		1.00	υ	עט
CADMIUM	0.00		5.00	ซ	UJ
CALCIUM	89.40	µg/L	0.00	В	R
CHRONIUM	0.00		6.00	U	עס
COBALT	0.00		9.00	Ū	ชฮ
COPPER	0.00		4.00	U	บว
IRON	0.00		13.00	บ	บว
LEAD	0.00		2.00	ט	บJ
Magnesium	0.00		47.00	ט	บัง
Manganese	0.00		1.00	υ	บัง
MERCURY	0.00		0.20	ט	บัง
NICKEL	0.00		13.00	U	บัง
POTASSIUM	0.00		1440.00	U	UJ
SELENIUM	0.00		3.00	ט	UJ
SILVER	0.00		5.00	U	UJ
SODIUM	568.00	μg/L	0.00	В	
TEALLIUM	0.00		3.00	U	บัง
VANADIUM	0.00		4.00	U	บัง
ZINC	0.00		5.00	υ	บง

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1549 SAMPLE TYPE : $\psi \psi \psi$ SAMPLE MATRIX : W ANALYSIS TYPE : MET SDG : 1545 ASSOCIATED MB : MI

ASSOCIATED MB : MET01

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	248.00	μg/L	0.00	Ī	R
ANTIMONY	0.00		30.00	U	UJ
ARSENIC	73.00	μg/L	0.00		
BARIUM	68.70	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	ชิวิ
CADHIUM	0.00		5.00	ū	บง
CALCIUM	90900.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	ชม
COBALT	0.00		9.00	U	υJ
COPPER	12.90	μg/L	0.00	В	
IRON	77.50	μg/L	0.00	В	R
LEAD	0.00		2.00	ט	บว
MAGNESIUM	23800.00	µg/L	0.00		
MANGANESE	100.00	µg/L	0.00		
MERCURY	0.00	Ì	0.20	ט	บัว
NICKEL	0.00		13.00	U	บัง
POTASSIUM	15100.00	μg/L	0.00	1	
SELENIUM	0.00		3.00	บ	ชว
SILVER	0.00		5.00	ט	บว
SODIUM	368000.00	μg/L	0.00	T	Ì
THALLIUM	0.00	1	3.00	ט	บJ
VANADIUM	17.50	µg/L	0.00	В	
ZINC	0.00	1	5.00	σ	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1550 SAMPLE TYPE : $\uparrow h \omega \phi 3$ SAMPLE MATRIX : W ANALYSIS TYPE : MET SDG : 1545 ASSOCIATED MB : MI

ASSOCIATED MB : MET01

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	84.50	μg/L	0.00	В	R
ANTIHONY	0.00		30.00	υ	บJ
ARSENIC	121.00	μg/L	0.00		
BARIUM	79.00	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	ชม
CADHIUH	0.00	T	5.00	ט	ΩJ
CALCIUM	88700.00	μg/L	0.00		
CHRONIUM	0.00	T	6.00	U	บว
COBALT	0.00		9.00	υ	נט
COPPER	15.80	µg/L	0.00	В	
IRON	21.40	µg/L	0.00	В	R
LEAD	0.00		2.00	υ	บัว
MAGNESIUM	26500.00	μg/L	0.00		
MANGANESE	448.00	µg/L	0.00		
MERCURY	0.00		0.20	U	บว
NICKEL	0.00		13.00	U	บJ
POTASSIUM	14200.00	µg/L	0.00		1
SELENIUM	4.80	µg/L	0.00	В	
SILVER	0.00	1	5.00	ט	บง
SODIUM	421000.00	µg/L	0.00	1	
TRALLIUM	0.00		3.0C	ט	บัง
VANADIUM	9.00	μg/L	0.00	В	
ZINC	7.50	µg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1551

SAMPLE TYPE : MW65 SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK : 1545TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	127.00	µg/L	0.00	В	R
ANTIMONY	0.00		30.00	U	UJ
ARSENIC	116.00	μg/L	0.00		
BARIUM	237.00	μg/L	0.00		
BERYLLIUM	0.00		1.00	ט	บัง
CADHIUM	0.00		5.00	U	บJ
CALCIUM	72500.00	µg/L	0.00		
CERONIUM	0.00		6.00	ט	ชิงิ
COBALT	0.00		9.00	U	บัง
COPPER	12.40	µg/L	0.00	В	
IRON	51.50	µg/L	0.00	В	R
LEAD	0.00	1	2.00	บ	บว
Magnesium	18300.00	μg/L	0.00	1	
MANGANESE	845.00	μg/L	0.00		
MERCURY	0.21	μg/L	0.00		
NICKEL	0.00		13.00	ט	บัง
POTASSIUM	15700.00	μg/L	0.00		
SELENIUM	5.50	µg/L	0.00		
SILVER	0.00		5.00	U	UJ
SODIUM	285000.00	µg/L	0.00		
THALLIUM	0.00		3.00	ט	บัง
VANADIUM	11.30	µg/L	0.00	В	
ZINC	0.00	1	5.00	ט	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final **Summary** REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1552 ANALYSIS TYPE : MET SAMPLE TYPE : WRMWJ5 SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	97.60	µg/L	0.00	В	R
ANTIMONY	0.00		30.00	Ū	נט
ARSENIC	116.00	μg/L	0.00		
BARIUM	218.00	µg/L	0.00		
BERYLLIUM	0.00		1.00	U	บัง
CADHIUM	0.00		5.00	ט	บัง
CALCIUM	64600.00	μg/L	0.00		
CHRONIUM	0.00		6.00	U	บป
COBALT	0.00		9.00	U	עס
COPPER	15.30	μg/L	0.00	В	
IRON	25.60	µg/L	0.00	В	R
LEAD	0.00		2.00	ט	עט
MAGNESIUM	16300.00	μg/L	0.00	1	
MANGANESE	814.00	µg/L	0.00	1	
MERCURY	0.00		0.20	ט	UJ
NICKEL	0.00		13.00	ט	עט
POTASSIUM	14700.00	µg/L	0.00	1	
SELENIUM	0.00		3.00	ט	עט
SILVER	0.00	1	5.00	ט	บJ
SODIUM	254000.00	μg/L	0.00	1	
THALLIUM	0.00		3.00	ט	บJ
VANADIUM	10.60	µg/L	0.00	В	
ZINC	0.00		5.00	U	บูว

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1556

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1553TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	134.00	μg/L	0.00	В	R
ANTIHONY	0.00		30.00	U	บว
ARSENIC	11.20	µg/L	0.00		
BARIUM	33.80	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	UJ
CADMIUM	0.00		5.00	U	บJ
CALCIUM	21400.00	µg/L	0.00		
CHROMIUM	0.00		6.00	ט	נט
COBALT	0.00		9.00	Ū	υJ
COPPER	12.90	µg/L	0.00	В	
IRON	51.70	μg/L	0.00	В	R
LEAD	0.00	Ì	2.00	ט	υJ
MAGNESIUM	7160.00	µg/L	0.00		
Hanganese	7.60	µg/L	0.00	В	R
MERCURY	0.00	i i	0.20	ט	υJ
NICKEL	0.00		13.00	ט	บัง
POTASSIUM	2790.00	µg/L	0.00	В	
SELENIUM	0.00		3.00	ט	บว
SILVER	0.00	<u> </u>	5.00	ט	נט
SODIUM	19800.00	µg/L	0.00	1	
TRALLIUM	0.00		3.00	U	נט
VANADIUM	0.00		4.00	ט	บว
ZINC	5.10	μg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summar REVIEWER: DENNIS MARTY Summary BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1557

SAMPLE TYPE : MW12 SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	99,90	μg/L	0.00	В	R
ANTIMONY	0.00		30.00	U	บัง
ARSENIC	25.90	µg/L	0.00		
BARIUM	33.90	μg/L	0.00	В	
BERYLLIUM	0.00	1	1.00	ט	บัง
CADMIUM	0.00		5.00	U	UJ
CALCIUM	34700.00	µg/L	0.00		
CERONIUM	0.00	1	6.00	ט	บัว
COBALT	0.00	1	9.00	U	ชว
COPPER	8.10	µg/L	0.00	В	
IRON	25.80	µg/L	0.00	В	R
LEAD	0.00	1	2.00	ט	บัง
MAGNESIUM	6560.00	µg/L	0.00		
MANGANESE	15.50	μg/L	0.00		
MERCURY	0.00	1	0.20	บ	UJ
NICKEL	0.00	1	13.00	U	บง
POTASSIUM	7470.00	μg/L	0.00		
SELENIUM	0.00	1	3.00	U	บัง
SILVER	0.00	1	5.00	ט	บว
SODIUM	73000.00	µg/L	0.00		
THALLIUM	0.00		3.00	ט	UJ
VANADIUM	5.70	µg/L	0.00	В	
ZINC	0.00	1	5.00	U	UJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DEN'IIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

BEGINNING SAMPLE #:1545

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1558

SAMPLE TYPE : ERMWIZ SAMPLE MATRIX : W

ANALYSIS TYPE : MET SDG : 1545

ASSOCIATED MB : MET01

TRIP BLANK : 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	77.50	μg/L	0.00	В	R
ANTIMONY	C 70		30.00	U	บัง
ARSENIC	29.80	µg/L	0.00		
BARIUM	0.00		2.00	U	บJ
BERYLLIUM	0.00	1	1.00	U	UJ
CADKIUM	0.00	1	5.00	U	บบ
CALCIUM	105.00	µg/L	0.00	В	R
CERONIUN	0.00	1	6.00	Ū	UJ
COBALT	0.00	1	9.00	U	UJ
COPPER	0.00		4.00	ט	บัง
THOM	0.00	!	13.00	ט	บJ
LEAD	0.00	†—	2.00	U	บฮ
Hagnesium	0.00	1	47.00	ט	U.
MANGANESE	3.40	μg/L	0.00	В	R
MERCURY	0.00		0.20	U	UJ
NICKEL	0.00	1	13.00	Ū	บว
POTASSIUM	0.00		1440.00	υ	บฮ
SELENIUM	0.00		3.00	U	บว
SILVER	0.00		5.00	1,,	บJ
SODIUM	261.00	µg/L	0.00	В	1
THALLIU	0.00	1	3.00	U	บง
VANADIUM	0.00		4.00	U	บJ
ZINC	8.10	µg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1559

SAMPLE TYPE : mwi4 SAMPLE MATRIX : W

ANALYSIS TYPE : MET SDG: 1545 ASSOCIATED MB : MET01

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	75.60	µg/L	0.00	В	R
ANTIMONY	0.00		30.00	Ū	บัง
ARSENIC	26.70	µg/L	0.00		
BARIUM	40.80	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	บJ
CAUMIUM	0.00		5.00	ט	บว
CALCIUM	59000.00	μg/L	0.00		
CHROMIUM	0.00		6.00	ט	บว
COBALT	0.00		9.00	ט	บัง
CC PPER	14.80	μg/L	0.00	В	
IRON	0.00		13.00	U	บJ
LEAD	0.00		2.00	U	บัง
MAGNESIUM	11300.00	µg/L	0.00		
MANGANESE	73.90	µg/L	0.00		
MERCURY	0.00		0.20	ט	บJ
NICKEL	0.00		13.00	ט	עט
POTASSIUM	9840.00	μg/L	0.00	1	
SELENIUM	0.00	1	3.00	υ	บบ
SILVER	0.00	1	5.00	U	บว
SODIUM	153000.00	µg/L	0.00		
THALLIUM	0.00		3.00	Ն	บัง
VANADIUH	7.60	µg/L	0.00	В	
ZINC	5.50	µg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1560 SAMPLE TYPE : MWI3 SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	72.50	µg/L	0.00	В	R
ANTIMONY	0.00		30.00	ט	บJ
ARSENIC	23.60	µg/L	0.00		
BARIUM	43.30	µg/L	0.00	В	
BERYLLIUM	0.00	Ī	1.00	Ū	υJ
CADHIUN	0.00		5.00	ט	UJ
CALCIUM	40500.00	µg/L	0.00		
CHROMIUM	0.00		6.00	Ū	נט
COBALT	0.00		9.00	מ	บัง
COPPER	10.50	μg/L	0.00	В	
IRON	25.90	µg/L	0.00	В	R
LEAD	0.00		2.00	U	บัง
MAGNESIUM	7890.00	µg/L	0.00		
MANGANESE	7.80	µg/L	0.00	В	R
MERCURY	0.00		0.20	U	บัง
NICREL	0.00		13.00	ט	บัง
POTASSIUM	7910.00	µg/L	0.00		
SELENIUM	0.00	1	3.00	U	עט
SILVER	0.00		5.00	Ū	UJ
SODIUM	79100.00	µg/L	0.00		
THALLIUM	0.00		3.00	U	UJ
VANADIUM	5.00	μg/L	0.00	В	
ZINC	0.00		5.00	υ	บJ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1566

SAMPLE TYPE : MW24

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	0.00		50.00	ט	บง
ANTIMONY	0.00		30.00	υ	บง
ARSENIC	5.60	µg/L	0.00	В	Ĭ
BARIUM	87.10	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	ช	บัง
CADMIUM	0.00		5.00	U	ขั้
CALCIUM	47700.00	µg/L	0.00		
CHROMIUM	0.00		6.00	ט	บบ
COBALT	0.00		9.00	ט	บัง
COPPER	5.30	µg/L	0.00	В	
IRON	0.00		13.00	U	บบ
LEAD	0.00		2.00	U	บัง
MAGNESIUM	15800.00	μg/L	0.00		
MANGANESE	239.00	µg/L	0.00		
MERCURY	0.00		0.20	U	נט
NICKEL	0.00		13.00	ט	עט
POTASSIUM	8430.00	µg/L	0.00		
SELENIUM	0.00	1	3.00	U	נט
SILVER	0.00		5.00	U	บัง
SODIUM	268000.00	µg/L	0.00		
THALLIUM	0.00		3.00	ט	บว
VANADIUM	10.20	μg/L	0.00	В	
ZINC	5.80	μg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1566

SAMPLE TYPE : DLmw2\$ SAMPLE MATRIX : W

ANALYSIS TYPE : MET

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	104.91	µg/L	0.00		R
ANTIMONY	30.00	µg/L	0.00		
ARSENIC	38.71	µg/L	0.00		
BARIUM	83.60	µg/L	0.00		
BERYLLIUM	1.00	µg/L	0.00		
CADMIUM	5.00	µg/L	0.00	T	
CALCIUM	47535.00	µg/L	0.00	1	
CHROMIUM	6.00	µg/L	0.00		
COBALT	9.00	µg/L	0.00		
COPPER	4.00	µg/L	0.00		
IRON	34.42	μg/L	0.00		R
LEAD	2.00	μg/L	0.00		
HAGNESIUM	15718.00	µg/L	0.00		
MANGANESE	239.81	μg/L	0.00		
MERCURY	0.20	μg/L	0.00		
NICKEL	13.00	μg/L	0.00		
POTASSIUM	7997.40	µg/L	0.00		
SELENIUM	3.00	µg/L	0.00		
SILVER	5.00	μg/L	0.00	Ī	J
SODIUM	268990.00	µg/L	0.00		
THALLIUM	3.00	µg/L	0.00		
VANADIUM	8.28	μg/L	0.00		
ZINC	5.77	µg/L	0.00		R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1567

SAMPLE TYPE : MW21

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	85.70	µg/L	0.00	В	R
ANTIMONY	0.00		30.00	a	บว
ARSENIC	30.30	µg/L	0.00		
BARIUM	52.40	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	UJ
CADMIUN	0.00		5.00	ט	נט
CALCIUM	49000.00	μg/L	0.00		
CHROMIUM	0.00		6.00	ט	נט
COBALT	0.00		9.00	ס	נט
COPPER	6.20	µg/L	0.00	В	
IRON	25.90	μg/L	0.00	В	R
LEAD	0.00		2.00	ט	עט
MAGNESIUM	14100.00	μg/L	0.00		
MANGANESE	17.10	μg/L	0.00		
MERCURY	0.00		0.20	บ	บJ
NICKEL	0.00		13.00	ט	บJ
POTASSIUM	9330.00	µg/L	0.00		
SELENIUM	0.00		3.00	U	ซฮ
SILVER	0.00		5.00	U	บJ
SODIUM	233000.00	µg/L	0.00	1	
THALLIUM	0.00		3.00	U	עט
VANADIUM	7.30	μg/Σ	0.00	В	1
ZINC	6.20	μg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1568 ANALYSIS TYPE : MET SAMPLE TYPE : WRMW2| SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

81.80 0.00 26.90 50.40 0.00 0.00 48900.00	µg/L µg/L µg/L	0.00 30.00 0.00 0.00	B U B	R UJ
26.90 50.40 0.00 0.00 48900.00	μg/L	0.00	В	
50.40 0.00 0.00 48900.00	μg/L	0.00		
0.00 0.00 48900.00		1.00		
0.00	/7		ט	
48900.00	/2	5.00		ชิว
	1.0/2	3.00	σ	บัว
0.00	μg/L	0.00		
		6.00	ט	ਹਤ
0.00		9.00	ט	บว
0.00		4.00	U	บJ
17.20	µg/L	0.00	В	R
0.00		2.00	ט	UJ
14000.00	μg/L	0.00		
15.30	μg/L	0.00		
0.00		0.20	ט	បរ
0.00		13.00	Ū	บJ
8460.00	µg/L	0.00		1
0.00		3.00	Ū	บบ
0.00		5.00	U	บJ
227000.00	μg/L	0.00		
0.00		3.00	บ	บJ
9.20	μg/L	0.00	В	
0.00		5.00	ט	
	14000.00 15.30 0.00 0.00 8460.00 0.00 0.00 227000.00	14000.00 μg/L 15.30 μg/L 0.00 μg/L 0.00 μg/L 0.00 μg/L 0.00 μg/L 0.00 μg/L 0.00 μg/L 0.00 μg/L	14000.00 μg/L 0.00 15.30 μg/L 0.00 0.00 0.20 0.00 13.00 8460.00 μg/L 0.00 0.00 3.00 0.00 5.00 227000.00 μg/L 0.00 0.00 3.00 9.20 μg/L 0.00	14000.00 μg/L 0.00 15.30 μg/L 0.00 0.00 0.20 U 0.00 13.00 U 8460.00 μg/L 0.00 0.00 3.00 U 227000.00 μg/L 0.00 0.00 3.00 U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1569 ANALYSIS TYPE: MET SAMPLE TYPE : MWIG SDG : 1545 SAMPLE MATRIX : W

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	84.90	μg/L	0.00	В	R
ANTIHONY	0.00		30.00	U	บัว
ARSENIC	34.10	μg/L	0.00		
BARIUM	25.40	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	บJ
CADMIUN	0.00		5.00	U	UJ
CALCIUM	50200.00	µg/L	0.00		
CHROMIUM	0.00		6.00	U	ซฮ
COBALT	0.00		9.00	ט	ชง
COPPER	5.30	µg/L	0.00	В	
IRON	25.80	μg/L	0.00	В	R
LEAD	0.00		2.00	U	บว
MAGNESIUM	11000.00	µg/L	0.00		
MANGANESE	228.00	μg/L	0.00	1	
MERCURY	0.00		0.20	U	บJ
NICKEL	0.00		13.00	ט	บัง
POTASSIUM	8480.00	μg/L	0.00		
SELENIUM	0.00		3.00	ט	บJ
SILVER	0.00		5.00	ט	บJ
SODIUM	109000.00	μg/L	0.00		
THALLIUM	0.00		3.00	ט	บัง
VANADIUM	0.00		4.00	υ	บัง
ZINC	8.30	µg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1570 ANALYSIS TYPE: MET

SAMPLE TYPE : WRMWIG SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	75.50	μg/L	0.00	В	R
Antimony	0.00		30.00	U	עט
ARSENIC	33.20	μg/L	0.00		
BARIUM	24.20	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	บัง
CADMIUM	0.00		5.00	U	บัง
CALCIUM	48400.00	μg/L	0.00		
CEROMIUM	0.00		6.00	ט	ซฮ
COBALT	0.00		9.00	ט	ชง
COPPER	0.00		4.00	U	บว
IRON	34.40	μg/L	0.00	В	R
LEAD	0.00		2.00	U	บว
MAGNESIUM	10500.00	µg/L	0.00		
MANGANESE	229.00	μg/L	0.00		
MERCURY	0.00		0.20	U	บว
NICKEL	0.00		13.00	ט	UJ
POTASSIUM	7520.00	µg/L	0.00	1	
SELENIUM	0.00		3.00	ט	บัง
SILVER	0.00		5.00	ט	บัง
SODIUM	104000.00	μg/L	0.00		
THALLIUM	0.00		3.00	U	UJ
VANADIUM	0.00		4.00	ū	บง
ZINC	11.10	μg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1571 ANALYSIS TYPE : MET SAMPLE TYPE : MW17

SAMPLE MATRIX : W

ASSOCIATED MB : MET02

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	113.00	µg/L	0.00	В	R
Antimony	0.00		30.00	ū	U
ARSENIC	37.40	µg/L	0.00		
BARIUM	70.00	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	U
CADMIUM	0.00		5.00	ט	ט
CALCIUM	64400.00	μg/L	0.00		
CHROMIUM	0.00		6.00	ט	Ū
COBALT	0.00		9.00	ט	ū
COPPER	9.10	μg/L	0.00	В	
IRON	153.00	µg/L	0.00		
LEAD	0.00		2.00	U	ט
MAGNESIUM	13900.00	μg/L	0.00	ĺ	
Manganese	441.00	μg/L	0.00	ĺ	
MERCURY	0.00		0.20	ט	ט
NICKEL	0.00		13.00	Ū	ט
POTASSIUM	9580.00	µg/L	0.00		J
SELENIUM	0.00		3.00	U	ט
SILVER	0.00		5.00	บ	ט
SODIUM	66300.00	µg/L	0.00	1	1
THALLIUM	0.00		3.00	ט	ט
VANADIUM	0.00		4.00	U	ט
ZINC	0.00		5.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1571 ANALYSIS TYPE: MET SAMPLE TYPE : DLMWI7 SAMPLE MATRIX : W

SDG : 1570

ASSOCIATED MB : MET02

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	116.53	μg/L	0.00		R
ANTIHONY	30.00	µg/L	0.00		
ARSENIC	32.42	μg/L	0.00		
BARIUM	68.76	μg/L	0.00		
BERYLLIUM	1.00	μg/L	0.00		
CADMIUM	5.00	μg/L	0.00		
CALCIUM	64759.00	μg/L	0.00		
CERONIUM	6.00	µg/L	0.00	1	
COBALT	9.00	µg/L	0.00		
COPPER	7.68	μg/L	0.00		
IRON	163.99	μg/L	0.00	1	
LEAD	2.00	μg/L	0.00		
MAGNESIUM	14031.00	µg/L	0.00		
MANGANESE	444.36	μg/L	0.00		
MERCURY	0.20	μg/L	0.00		
NICKEL	13.00	µg/L	0.00		
POTASSIUM	9523.30	μg/L	0.00		J
SELENIUM	3.00	μg/L	0.00		
SILVER	5.00	µg/L	0.00		
SODIUM	67168.00	µg/L	0.00		
THALLIUM	3.00	µg/L	0.00		
VANADIUH	4.00	μg/L	0.00		
ZINC	5.19	μg/L	0.00		
		1-3.3		 	<u>.l. </u>

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1572 ANALYSIS TYPE: MET SAMPLE TYPE : ERMWI7 SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
84.90	µg/L	0.00	В	R
0.00		30.00	U	บJ
0.00	1	3.00	U	บJ
0.00		2.00	ū	บว
0.00	1	1.00	U	บJ
0.00		5.00	ט	บง
105.00	µg/L	0.00	В	R
0.00		6.00	ū	ชง
0.00		9.00	ט	UJ
0.00		4.00	ט	ชม
25.90	μg/L	0.00	В	R
0.00		2.00	υ	บง
0.00		47.00	ט	บว
0.00		1.00	U	บัง
0.00		0.20	ט	υJ
0.00	1	13.00	υ	บJ
0.00		1440.00	ט	ซฮ
0.00		3.00	υ	ซฮ
0.00		5.00	υ	บJ
354.00	μg/L	0.00	В	
0.00		3.00	ט	ชว
0.00	1	4.00	ט	บว
0.00	1	5.00	U	UJ
	84.90 0.00 0.00 0.00 0.00 105.00 0.00 0.00 25.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	84.90 μg/L 0.00 0.00 0.00 0.00 105.00 μg/L 0.00 0.00 25.90 μg/L 0.00	Detection Limit	Detection Limit

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1573 ANALYSIS TYPE : MET

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MW2Z SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK : 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	97.60	μg/L	0.00	В	R
ANTIMONY	0.00	1	30.00	U	บว
ARSENIC	15.80	µg/L	0.00		
BARIUM	63.10	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	บว
CADHIUH	0.00		5.00	U	บว
CALCIUM	62900.00	μg/L	0.00		
CHROMIUM	0.00		6.00	ט	עט
COBALT	0.00		9.00	ט	ชร
COPPER	0.00		4.00	ט	ซฮ
IRON	0.00		13.00	ט	ชฮ
LEAD	0.00		2.00	ט	บัง
MAGNESIUM	17900.00	µg/L	0.00		
Manganese	236.00	μg/L	0.00		
MERCURY	0.00		0.20	U	UJ
NICKEL	0.00		13.90	U	UJ
POTASSIUM	11700.00	µg/L	0.00		
SELENIUM	0.00		3.00	ט	บัว
SILVER	0.00		5.00	ט	บัง
SODIUM	280000.00	μg/L	0.00	T	†
TRALLIUM	Ú.00		3.00	υ	บัง
VANADIUM	6.20	μg/L	0.00	В	1
ZINC	5.30	µq/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1574 ANALYSIS TYPE: MET SAMPLE TYPE : mw19

SAMPLE MATRIX : W

SIS TYPE: MET SDG: 1545

ASSOCIATED MB : MET01

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	81.20	µg/L	0.00	В	R
ANTIMONY	0.00	1	30.00	υ	บัง
ARSENIC	11.50	µg/L	0.00		
BARIUM	24.00	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	UJ
CADMIUM	0.00		5.00	ט	עט
CALCIUM	46900.00	µg/L	0.00		
CHRONIUM	0.00		6.00	U	บัง
COBALT	0.00		9.00	ט	נט
COPPER	21.80	μg/L	0.00	В	
IRON	0.00		13.00	ט	บJ
LEAD	0.00		2.00	υ	บบ
MAGNESIUM	9250.00	µg/L	0.00		
MANGANESE	43.80	µg/L	0.00		
MERCURY	0.00		0.20	U	บูง
NICKEL	0.00	1	13.00	ט	บว
POTASSIUM	7070.00	μg/L	0.00		
SELENIUM	0.00		3.00	U	נט
SILVER	0.00		5.00	ט	บัง
SODIUM	58600.00	µg/L	0.00		
THALLIUM	0.00		3.00	ט	บบ
VANADIUM	6.10	μg/L	0.00	В	
ZINC	6.00	µg/L	0.00	В	R

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1564

SAMPLE TYPE : MW67 SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1570

ASSOCIATED MB : MET02

TRIP BLANK:

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	122.00	μg/L	0.00	B	R
ANTIHONY	0.00		30.00	ט	ט
ARSENIC	54.40	µg/L	0.00		
BARIUM	64.00	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	U
CADHIUM	0.00		5.00	บ	υ
CALCIUM	59900.00	µg/L	0.00		
CHROMIUM	0.00		6.00	ט	U
COBALT	0.00		9.00	U	U
COPPER	0.00		4.00	U	ט
IRON	65.50	µg/L	0.00	В	
LEAD	0.00		2.00	ט	U
MAGNESIUM	14000.00	μg/L	0.00		
MANGANESE	708.00	μg/L	0.00		
MERCURY	0.00	1	0.20	υ	U
NICREL	0.00		13.00	U	U
POTASSIUM	12300.00	µg/L	0.00		J
SELENIUM	0.00		3.00	U	U
SILVER	0.00		5.00	U	ט
SODIUM	180000.00	µg/L	0.00	1	
THALLIUM	0.00		3.00	U	ט
VANADIUM	0.00		4.00	U	U
ZINC	14.10	µg/L	0.00	В	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1585
ANALYSIS TYPE: MET

SAMPLE TYPE : ERMW67 SAMPLE MATRIX : W

SDG : 1570

ASSOCIATED MB : MET02

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinel
ALUMINUM	106.00	µg/L	0.00	В	R
ANTIHON	0.00		30.00	ט	U
ARSENIC	0.00		3.00	U	ט
BARIUM	3.30	µg/L	0.00	В	R
BERYLLIUM	0.00		1.00	υ	ט
CADHIUM	0.00		5.00	ט	U
CALCIUM	58.90	µg/L	0.00	В	R
CHRONIUM	0.00		6.00	ט	U
COBALT	0.00		9.00	ט	U
COPPER	5.30	μg/L	0.00	В	
IRON	32.80	µg/L	0.00	В	
LEAD	0.00		2.00	U	U
MAGNESIUM	0.00		47.00	U	ט
Manganese	1.20	µg/L	0.00	В	
MERCURY	0.00		0.20	ט	ט
NICKEL	0.00		13.00	ט	Ū
POTASSIUM	0.00		1440.00	U	U
SELENIUM	0.00		3.00	U	U
SILVER	0.00		5.00	ט	ט
SODIUM	455.00	µg/L	0.00	В	R
THALLIUM	0.00		3.00	ט	ט
VANADIUM	0.00		4.00	ט	ט
ZINC	0.00	1	5.00	ט	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1586

SAMPLE TYPE : MW65 SAMPLE MATRIX : W

ANALYSIS TYPE : MET SDG : 1570

ASSOCIATED MB : MET02

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	106.00	μg/L	0.00	В	R
ANTIHONY	0.00		30.00	ט	ט
ARSENIC	34.10	µg/L	0.00		
BARIUM	43.80	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	U	Ū
CADMIUN	0.00		5.00	U	ט
CALCIUM	45100.00	µg/L	0.00		
CHRONIUM	0.00		6.00	U	U
COBALT	0.00		9.00	U	מ
COPPER	0.00		4.00	ū	Ū
IRON	0.00		13.00	ט	ט
LEAD	0.00		2.00	Ū	U
Magnesium	9540.00	μg/L	0.00		
Manganese	46.20	µg/L	0.00		
MERCURY	0.00		0.20	U	บ
NICKEL	0.00		13.00	ט	ט
POTASSIUM	10500.00	μg/L	0.00	1	J
SELENIUM	0.00		3.10	บ	U
SILVER	0.00		5.00	บ	ū
SODIUM	146000.00	μg/L	0.00		
THALLIUM	0.00		3.00	ט	Ū
VANADIUM	4.30	μą/L	0.00	В	
ZINC	5.80	µg/L	0.00	В	
				1	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1587

SAMPLE TYPE : m W66 SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1570

ASSOCIATED MB : MET02

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUHINUM	116.00	μg/L	0.00	В	R
Antihony	0.00		30.00	Ū	ט
ARSENIC	34.80	µg/L	0.00		
BARIUM	52.20	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	บ	U
CADMIUM	0.00		5.00	ט	ט
CALCIUM	55100.00	μg/L	0.00		
CHROMIUM	0.00	1	6.00	U	U
COBALT	0.00		9.00	ט	ט
COPPER	0.00	T	4.00	U	ט
IRON	32.80	μg/L	0.00	В	
LEAD	0.00		2.00	ט	U
MAGNESIUM	11100.00	μg/L	0.00		
MANGANESE	176.00	µg/L	0.00		
MERCURY	0.00		0.20	U	ט
NICKEL	0.00		13.00	ט	ט
POTASSIUM	11870.00	µg/L	0.00		J
SELENIUM	0.00		3.00	ט	U
SILVER	0.00		5.00	บ	U
SODIUM	169000.00	μg/L	0.00		
TRALLIUM	0.00		3.00	υ	σ
VANADIUM	5.00	μg/L	0.00	В	
ZINC	6.90	μg/L	0.00	В	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

DATE:03/01/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1588

SAMPLE TYPE : mwo8

SAMPLE MATRIX : W

ANALYSIS TYPE : MET SDG : 1570

ASSOCIATED MB : MET02

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	140.00	µg/L	0.00	В	R
Antimony	0.00		30.00	ט	U
ARSENIC	50.00	µg/L	0.00		
BARIUM	41.70	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	U
CADMIUM	0.00		5.00	ט	ס
CALCIUM	85400.00	μg/L	0.00		
CHRONIUM	0.00		6.00	U	σ
COBALT	0.00		9.00	U	ū
COPPER	0.00		4.00	ט	Ū
IRON	65.50	µg/L	0.00	В	
LEAD	0.00		2.00	U	U
MAGNESIUM	17000.00	μg/L	0.00		
HANGANESE	127.00	µg/L	0.00		
MERCURY	0.00		0.20	U	U
NICKEL.	0.00		13.00	U	ט
POTASSIUM	10600.00	μg/L	0.00	1	J
SELENIUM	0.00		3.00	U	U
SILVER	0.00		5.00	U	ט
SODIUM	157000.00	μg/L	0.00	1	1
THALLIUM	0.00		3.00	ט	U
VANADIUM	11.00	µg/L	0.00	В	1
ZINC	5.20	µg/L	0.00	В	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

DATA VALIDATION LEVEL:C

REVIEWER: DENNIS MARTY ENDING SAMPLE #:1597 BEGINNING SAMPLE #:1545

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1589

SAMPLE TYPE : MWII SAMPLE MATRIX : W

ANALYSIS TYPE : MET SDG : 1570

ASSOCIATED MB : MET02

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	115.00	µg/L	0.00	В	R
ANTIHONY	36.20	μg/L	0.00	В	
ARSENIC	49.80	µg/L	0.00		
BARIUM	92.20	µg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	ט
CADHIUM	0.00		5.00	U	ט
CALCIUM	53500.00	µg/L	0.00		
CHROMIUM	0.00		6.00	σ	U
COBALT	3.00		9.00	ט	ט
COPPER	0.00		4.00	ū	U
IRON	262.00	µg/L	0.00		
LEAD	0.00		2.00	ט	ט
MAGNESIUM	24700.00	μg/L	0.00		
MANGANESE	3030.00	µg/L	0.00		
MERCURY	0.00		0.20	U	ט
NICKEL	0.00	\top	13.00	ט	U
POTASSIUM	15800.00	µg/L	0.00		J
SELENIUM	0.00		3.00	ט	U
SILVER	0.00		5.00	ט	ט
SODIUM	81100.00	µg/L	0.00		
THALLIUM	0.00		3.00	υ	บ
VANADIUM	0.00		4.00	บ	ט
ZINC	8.70	µg/L	0.00	В	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1590

BEGINNING SAMPLE #:1545

SAMPLE TYPE : mw49

SAMPLE MATRIX : W

ANALYSIS TYPE : MET

SDG: 1570

ASSOCIATED MB : MET02

TRIP BLANK :

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
ALUMINUM	134.00	μg/L	0.00	В	R
ANTIMONY	0.00		30.00	ū	U
ARSENIC	29.50	μg/L	0.00		
BARIUM	23.50	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	U
CADHIUM	0.00		5.00	υ	U
CALCIUM	74300.00	μg/L	0.00		
CHROMIUM	0.00		6.00	U	ū
COBALT	0.00	1	9.00	ט	ט
COPPER	0.00		4.00	Ü	U
IRON	21.70	μg/L	0.00	В	
LEAD	0.00		2.00	ū	U
MAGNESIUM	15800.00	μg/L	0.00		
MANGANESE	93.60	µg/L	0.00		
MERCURY	0.00		0.20	U	U
NICKEL	0.00		13.00	ט	U
POTASSIUM	9130.00	µg/L	0.00		J
SELENIUM	0.00		3.00	U	U
SILVER	0.00		5.00	υ	ט
SODIUM	132000.00	μg/L	0.00		
THALLIUM	0.00		3.00	U	U
VANADIUM	17.70	µg/L	0.00	В	
ZINC	0.00		5.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY

DATA VALIDATION BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1592 SAMPLE TYPE : FB SAMPLE MATRIX : W
ANALYSIS TYPE : MET SDG : 1570 ASSOCIATED MB : MET02

TRIP BLANK: 1591TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
ALUMINUM	384.00	µg/L	0.00		J
ANTIMONY	0.00		30.00	Ū	ט
ARSENIC	40.70	µg/L	0.00		
BARIUM	90.40	μg/L	0.00	В	
BERYLLIUM	0.00		1.00	ט	ט
CADMIUM	0.00		5.00	Ū	U
CALCIUM	59100.00	µg/L	0.00		
CHROMIUM	0.00		6.00	ט	ט
COBALT	0.00	Ì	9.00	Ū	U
COPPER	46.60	μg/L	0.00		
IRON	361.00	µg/L	0.00		
LEAD	0.00		2.00	บ	Ū
Magnesium	12300.00	µg/L	0.00		
Manganese	640.00	µg/L	0.00		
MERCURY	0.00		0.20	ט	Ū
NICKEL	0.00		13.00	ט	U
POTASSIUM	13600.00	μg/L	0.00		J
SELENIUM	0.00		3.00	U	ט
SILVER	0.00		5.00	U	ប
SODIUM	214000.00	μg/L	0.00		
THALLIUM	0.00		3.00	U	U
VANADIUM	9.40	µg/L	0.00	В	
ZINC	54.10	µg/L	0.00		1

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

BEGINNING SAMPLE #:1545

SAMPLE NUMBER: 1546 SAMPLE TYPE : $m\omega\phi^2$ SAMPLE MATRIX : W ANALYSIS TYPE : PHC SDG : 1545 ASSOCIATED MB : Clean Samp

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
0.00	mali	0.10	ט	ט
0.00	msl	0.60	U	บ
	0.00	0.00 ms/1	Detection Limit 0.00 Mg 0.10	Detection Limit 0.00 mg/l 0.10 U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1547

SAMPLE TYPE : M WOI SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	Mali	0.10	υ	U
TPH BY JP-4 STD	0.00	mall	0.60	ט	U
		0-		7	1

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL: C

BEGINNING SAMPLE #:1545 ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1548

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MALL	0.10	ם	ט
TPH BY JP-4 STD	0.00	MIL	0.60	υ	۵
		7			

PROJECT: NFVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWEL DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1549 ANALYSIS TYPE : PHC SAMPLE TYPE : nwd4 SAMPLE MATRIX : W

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Concentration	Units	Instrument Detection Limit	QCode	QPinal
0.00	Ingle	0.10	บ	U
0.00	MAL	0.60	ט	ט
	0.00	0.00 MG/L	0.00 MG 0.10 0.00 MG 0.60	0.00 Maje 0.10 U 0.00 Maje 0.60 U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1550

SAMPLE TYPE : $m\omega\phi^3$ SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	MALL	0.10	ט	U
TPH BY JP-4 STD	0.00	MILL	0.60	U	ū
	T	70			

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1551

SAMPLE TYPE : mw \$5

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : VIBLKTPHW

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH B: GAS STD	2.40	₽g/L	0.00		
TPH BY JP-4 STD	1.80	Fg/L	0.00		
				+	

PROJECA: NEVADA AIR NAT. GUARD (RENO)

Summary Final

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1552 ANALYSIS TYPE : PHC SAMPLE TYPE : WR * W SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : VIBLKTPHWO

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPE BY GAS STD	2.60	Jg/L	0.00	T	
TPH BY JP-4 STD	1.90	jg/L	0.00		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1554

SAMPLE TYPE : mwi8 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration			QCode	QFinal
0.00	mylL	0.10	ט	ט
0.00	myle	0.60	บ	ט
	0.00	0.00 mg/L	Detection Limit 0.00 MGL 0.10	Detection Limit 0.00 wG/L 0.10 U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1555 ANALYSIS TYPE: PHC SAMPLE TYPE : MW15

SDG: 1545

SAMPLE MATRIX : W

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	myle	0.10	U	บ
TPE BY JP-4 STD	0.00	male	0.60	ū	ט
		7			

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

DATE:03/01/94

Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1556

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : VIBLKTPHW

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPE BY GAS STD	0.03	Jg/L	0.00	J	J
TPH BY JP-4 STD	0.02	Øg/L	0.00	J	j

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1557

ANALYSIS TYPE : PHC

SDG: 1545

SAMPLE TYPE : mwl2 SAMPLE MATRIX : W SDG : 1545 ASSOCIATED MB : VIBLKTPHW0

TRIP BLANK : 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.02	y g/L	0.00	J	J
TPH BY JP-4 STD	0.01	yg/L	0.00	J	J
			1		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1558

SAMPLE TYPE : ERMWIZ SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Sam

SDG: 1545

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unita	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	male	0.10	Ū	บ
TPH BY JP-4 STD	0.00	mel	0.60	ט	ט
		12015	 		

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94
Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1559

ANALYSIS TYPE : PHC SDG : 1545

SAMPLE TYPE : YMW14 SAMPLE MATRIX : W
SDG : 1545 ASSOCIATED MB : Clean Samp

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MALL	0.10	ט	ט
TPH BY JP-4 STD	0.00	WELL	0.60	Ū	U
		7 01			

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

DATE:03/01/94

Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1560 ANALYSIS TYPE : PHC SAMPLE TYPE : MW13 SAMPLE MATRIX : W

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPR BY GAS STD	0.00	MALL	0.10	ט	บ
TPR BY JP-4 STD	0.00	myle	0.60	U	ס

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWLA: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1561

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1561

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MAINS	0.14	ט	U
TPH BY JP-4 STD	0.00	malks	1.20	ט	ט
		1 0			

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1562

ANALYSIS TYPE : PHC

SDG : 1561

SAMPLE TYPE: $\mathfrak{SD}\phi\beta$ SAMPLE MATRIX: S SDG: 1561 ASSOCIATED MB: VBLKCA

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.07	mg/kg	0.00	JB	J
TPE BY JP-4 STD	0.05	mg/kg	0.00	JB	J
		1			

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1563

SAMPLE TYPE : SD \$6 SAMPLE MATRIX : S

ANALYSIS TYPE : PHC

SDG: 1561

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	malks	0.18	U	ט
TPH BY JP-4 STD	0.00	MALKE	1.40	U	a

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1564

SAMPLE TYPE : 50\$7 SAMPLE MATRIX : S

ANALYSIS TYPE : PHC SDG: 1561 ASSOCIATED MB : Clean Sam

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	MUKS	0.17	U	บ
TPH BY JP-4 STD	0.00	make	1.40	U	U
		1000			

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

BEGINNING SAMPLE #:1545

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1566

SAMPLE TYPE : MW20 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC SDG : 1545

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unita	Instrument Detection Limit	©Code	QPinal
TPH BY GAS STD	0.00	MALL	0.10	ט	U
TPH BY JP-4 STD	0.00	male	0.60	ט	ט
		7			

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1567

BEGINNING SAMPLE #:1545

SAMPLE TYPE : MW2

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Same

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		I strument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	male	0.10	บ	U
TPH BY JP-4 STD	0.00	mele	0.60	ū	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO) Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1568

SAMPLE TYPE : WR MWZ/ SAMPLE MATRIX : W

ANALYSIS TYPE : PHC SDG: 1545 ASSOCIATED MB : Clean Samp

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS SID	0.00	MYL	0.10	U	ט
TPH BY JP-4 STD	0.00	male	0.60	ט	ט
		1 01			

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1569

sample type: mw/6

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MALL	0.10	σ	ט
TPH BY JP-4 STD	0.00	MG/L	0.60	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1570

BEGINNING SAMPLE #:1545

SAMPLE TYPE : WR mwb SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MHL	0.10	U	ט
TPH BY JP-4 STD	0.00	MELL	0.60	U	ט
TPE BY JP-4 STD	0.00	 " 	0.60	a	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1571

SAMPLE TYPE : MWI7 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : VIBLKTPHW

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.15	g/L	0.00		
TPH BY JP-4 STD	0.11	j g/L	0.00	3	3

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1572

SAMPLE TYPE : ERM W72 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC SDG : 1561

ASSOCIATED MB : VBLKCA

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.04	zg/L	0.00	В	
TPH BY JP-4 STD	0.03	% g/L	0.00	В	
		1			

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1573

SAMPLE TYPE : MW2Z SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1545

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MYL	0.10	U	Ü
TPH BY JP-4 STD	0.00	male	0.60	ט	ט
		1 0			

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1574

SAMPLE TYPE : MW19 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	My/L	0.10	ט	U
TPH BY JP-4 STD	0.00	male	0.60	บ	ט
		7-0-			

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

Summary Final REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1576

SAMPLE TYPE : MW23 SDG: 1570

SAMPLE MATRIX : W

ASSOCIATED MB : VIBLKTPHY

ANALYSIS TYPE : PHC TRIP BLANK: 1575TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.05	Ng/L	0.00	J	J
TPH BY JP-4 STD	0.04	Ng/L	0.00	J	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

DATE:03/01/94

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1577

BEGINNING SAMPLE #:1545

ANALYSIS TYPE : PHC

SDG: 1570

SAMPLE TYPE :mw23 SAMPLE MATRIX : W SDG : 1570 ASSOCIATED MB : Clean Samp

TRIP BLANK : 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	mole	0.10	U	ט
TPH BY JP-4 STD	0.00	MALL	0.60	ט	מ
		וטן		.1	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

R NAT. GUARD (RENO) DATE:03/01/94

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

Final

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1578

SAMPLE TYPE : mwd6

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : VIBLKTPHW

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	9 g/L	0.00	J	3
TPH BY GAS STD	1.60	mg/L	0.00		
TPH BY JP-4 STD	1.20	mg/L	0.00		
TPH BY JP-4 STD	0.00	MALL	0.60	υ	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1579

SAMPLE TYPE : MW24 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MYL	0.10	U	U
TPE BY JP-4 STD	0.00	male	0.60	ט	ט
		יטד	,		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1580

SAMPLE TYPE : mw25 SAMPLE MATRIX : W SDG : 1570

ASSOCIATED MB : VIBLKTPHW

ANALYSIS TYPE : PHC

TRIP BLANK: 1575TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	1.80	mg/L	0.00		
TPH BY GAS STD	0.00	MIL	0.10	U	ט
TPH BY JP-4 STD	0.00	male	0.60	ט	Ū
TPH BY JP-4 STD	1.30	mg/L	0.00		

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary

REVIEWER: DENNIS MARTY DATA VALIDATION LEVEL:C BEGINNING SAMPLE #:1545 ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1581

ANALYSIS TYPE : PHC SDG : 1570

SAMPLE TYPE : $m\omega\phi$? SAMPLE MATRIX : W ASSOCIATED MB : VIBLKTPHW0

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration	Units	Instrument Detection Limit	QCode	QPinal
0.00	myle	0.10	υ	υ
14.00	mg/L	0.00		
10.00	mg/L	0.00		
0.00	MOLL	0.60	υ	υ
	0.00 14.00 10.00	0.00 Mb/L 14.00 mg/L 10.00 mg/L	Detection Limit	Detection

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

BEGINNING SAMPLE #:1545

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1582 ANALYSIS TYPE: PHC SAMPLE TYPE : ERMWO7 SAMPLE MATRIX : W

IC SDG: 1561

ASSOCIATED MB : VBLKCA

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.02	₩g/L	0.00	JB	J
TPH BY JP-4 STD	0.01	Dg/L	0.00	В	
		T	[1	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final **Summary** REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1584

BEGINNING SAMPLE #:1545

SAMPLE TYPE : mw67

SDG : 1570 ANALYSIS TYPE : PHC

mw67 SAMPLE MATRIX : W
ASSOCIATED MB : Clean Samp

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	mble	0.10	υ	ט
TPH BY JP-4 STD	0.00	myle	0.60	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1585 SAMPLE TYPE ANALYSIS TYPE: PHC SDG: 1561

SAMPLE TYPE : ERMW67 SAMPLE MATRIX : W

ASSOCIATED MB : Clean Sam

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
0.00	MylL	0.10	Ū	U
0.00	myle	0.80	D	ט
	0.00	0.00 mg/L	0.00 mg/L 0.10	Detection Limit 0.00 My L 0.10 U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1586

SAMPLE TYPE : mw65

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : Clean Samp

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MB/L	0.10	υ	U
TPH BY JP-4 STD	0.00	MIL	0.60	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1587

SAMPLE TYPE : MWGG SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : Clean Sam

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration			QCode	Qfinal
0.00	myl	0.10	U	ט
0.00	MALL	0.60	ט	ט
	0.00	0.00 mg/L	0.00 mg/L 0.10	Detection Limit 0.00 vng/L 0.10 U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1588

ANALYSIS TYPE : PHC

SAMPLE TYPE : mwg8

SAMPLE MATRIX : W

ASSOCIATED MB : Clean Samp

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	MOL	0.10	U	ט
TPH BY JP-4 STD	0.00	mylL	0.60	ט	Ū

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1589

SAMPLE TYPE : mwl SAMPLE MATRIX : W

ANALYSIS TYPE : PHC SDG: 1570 ASSOCIATED MB : Clean Sam

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.00	migle	0.10	U	U
TPH BY JP-4 STD	0.00	myle	0.60	ט	σ

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1590

ANALYSIS TYPE : PHC SDG : 1570

SAMPLE TYPE : $m\omega\phi^q$ SAMPLE MATRIX : W SDG : 1570 ASSOCIATED MB : Clean Samp

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
TPH BY GAS STD	0.00	mg/L	0.10	ט	ט
TPH BY JP-4 STD	0.00	myle	0.60	מ	ט
			-		-

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1592

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1570

ASSOCIATED MB : VIBLKTPHW

TRIP BLANK: 1591TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
TPH BY GAS STD	0.08	Wg/L	0.00	J	J
TPH BY JP-4 STD	0.06	Wg/L	0.00	J	J
				T	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1593

SAMPLE TYPE : mw 43 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1597TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1590

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	m6/L	0.60	บ	บ
· · · · · · · · · · · · · · · · · · ·	T				

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE: 03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1594

SAMPLE TYPE : mwz4

SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG : 1590

ASSOCIATED MB : Clean San

TRIP BLANK: 1597TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	MAL	0.60	Ü	U
		1	1		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1596

BEGINNING SAMPLE #:1545

SAMPLE TYPE : ERmw24 SAMPLE MATRIX : W

ANALYSIS TYPE : PHC

SDG: 1596 ASSOCIATED MB: Clean Samp

TRIP BLANK : 1597TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	l	Instrument Detection Limit	QCode	QFinal
TPH BY JP-4 STD	0.00	mylL	0.80	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1545

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545 1546-1552 ASSOCIATED MB: VBLKC8

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	UJ .
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ប
1,1-DICHLOROETHANE	0.00		10.00	ū	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	υ
1,2-DICHLOROETHANE	0.00		10.00	ט	บู
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00		10.00	Ū	ט
2-BUTANONE	0.00		10.00	U	U
2-HEXANONE	0.00		10.00	U	UJ
4-methyl-2-pentanone	0.00		10.00	υ	บว
ACETONE	10.00	μg/L	0.00		J
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00		10.00	ט	υ
BROMOMETHANE	0.00		10.00	บ	U
CARBON DISULFIDE	0.00		10.00	υ	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00		10.00	ט	UJ
CHLOROFORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	ט	บร
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00		10.00	υ	υ
ETHYLBENZ ENE	0.00		10.00	υ	ט
METHYLENE CHLORIDE	4.00	µg/L	0.00		
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	υ	ט
TOLUENE	0.00		10.00	υ	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	บ
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00		10.00	ט	ט
XYLENE (TOTAL)	0.00		10.00	υ	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1546

SAMPLE TYPE : mw 42 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545

ASSOCIATED MB : VBLKC8

TRIP BLANK : 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	บัง
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	Ū
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHENE	0.00	1	10.00	Ū	U
1,2-DICHLOROETHANE	0.00		10.00	Ū	ขว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	Ū
1,2-DICHLOROPROPANE	0.00		10.00	ט	a
2-BUTANONE	0.00		10.00	ט	ū
2-HEXANONE	0.00		10.00	U	ชิงิ
4-METHYL-2-PENTANONE	0.00		10.00	υ	UJ
ACETONE	0.00		10.00	บ	บฮ
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	υ	Ü
Bromoform	0.00		10.00	ט	ū
BROHOMETHANE	0.00		10.00	U	U
CARBON DISULFIDE	9.00	μg/L	0.00		
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	U	υJ
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	ט
ETHYLBENZENE	0.00		10.00	ט	บ
METHYLENE CHLORIDE	0.00		10.00	U	ט
STYRENE	0.00		10.00	ט	Ü
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00		10.00	U	σ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	บ
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	U
XYLENE (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPIE NUMBER: 1547 ANALYSIS TYPE : VOL SAMPLE TYPE : MWO! SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : Clean Samp

TRIP BLANK : 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	υ
1,1,2,2-TETRACHLOROETHANE	0.00	ĺ	10.00	ט	UJ
1,1,2-TRICHLOROETHANE	0.00		10.00	บ	ט
1,1-DICHLOROETHANE	0.00		10.00	บ	บ
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	บง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00	1	10.00	ט	ū
2-BUTANONE	0.00	1	10.00	ט	ט
2-HEXANONE	0.00		10.00	ט	บJ
4-METHYL-2-PENTANONE	0.00	1	10.00	U	บง
ACETONE	0.00		10.00	ט	บJ
BENZENE	0.00	1	10.00	ט	U
BROMODICHLOROMETHANE	0.00	1	10.00	U	ט
BROMOFORM	0.00		10.00	ט	ט
BROMOMETHANE	0.00	1	10.00	U	Ū
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00	<u> </u>	10.00	ט	ט
CHLOROBENZENE	0.00		10.00	บ	บ
CHLOROETHANE	0.00		10.00	ט	บัง
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	נט
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DTBROMOCHLOROMETHANE	0.00	1	10.00	U	U
ETHY LBENZENE	0.00		10.00	U	ט
ME:THYLENE CHLORIDE	0.00		10.00	U	U
S'.YRENE	0.00	T -	10.00	ט	ט
TETRACHLOROETHENE	0.00	T	10.00	ט	U
TOLUENE	0.00		10.00	บ	บ
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	บ
TRICHLOROETHENE	0.00	Ì	10.00	υ	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENE (TOTAL)	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1548

SAMPLE TYPE : FB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545

ASSOCIATED MB : VBLKC8

TRIP BLANK: 1545TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	ט	บัง
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00	T	10.00	ס	ט
1,1-DICHLOROETHENE	0.00		10.00	υ	บ
1,2-DICHLOROETHANE	0.00	1	10.00	U	เม
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00	1	10.00	ט	U
2-HEXANONE	0.00		10.00	ט	บJ
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
ACETONE	0.00	1	10.00	ט	UJ
BENZENE	0.00		10.00	ט	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOFORM	0.00		10.00	ū	U
BROMOMETHANE	0.00		10.00	U	B
CARBON DISULFIDE	2.00	µg/L	0.00		
CARBON TETRACHLORIDE	0.00		10.00	υ	ט
CELOROBENZENE	0.00		10.00	Ü	ט
CHLOROETHANE	0.00		10.00	υ	บว
CHLOROFORM	0.00		10.00	U	U
CHLOROMETRANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	Ū
DIBROMOCHLOROMETHANE	0.00		10.00	ט	บ
ethylbenzene 	0.00		10.00	υ	ט
METHYLENE CHLORIDE	4.00	μg/L	0.00		
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	υ
TRICHLOROETHENE	0.00		10.00	υ	ט
VINYL CHLORIDE	0.00		10.00	ט	υ
XYLENE (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1549

SAMPLE TYPE : mw 43 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1545

ASSOCIATED MB : VBLKC8

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	υJ
1,1,2-TRICELOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00	1	10.00	ט	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	ū	บ
2-BUTANONE	0.00	1	10.00	U	ט
2-HEXANONE	0.00	1	10.00	υ	บง
4-METHYL-2-PENTANONE	0.00	1	10.00	U	บJ
ACETONE	2.00	µg/L	0.00	1	J
BEN2 ENE	0.00	1	10.00	บ	บ
BROMODICHLOROMETHANE	0.00	1	10.00	U	U
BROMOFORM	0.00		10.00	U	υ
BROMOMETHANE	0.00		10.00	Ū	ט
CARBON DISULFIDE	0.00	1	10.00	ט	ט
CARBON TETRACHLORIDE	0.00	1	10.00	ט	U
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00	1	10.00	U	UJ
CHLOROPORM	0.00	1	10.00	ט	ט
CHLOROMETHANE	0.00	1	10.00	ט	עט
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	ט	ט
DIBROMOCHLOROMETHANE	0.00	1	10.00	ט	υ
ethylbenzene	0.00		10.00	ט	ט
METHYLENE CHLORIDE	3.00	µg/L	0.00	1	
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00	1	10.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	ט	ט
TRICHLOROETHENE	0.00	1	10.00	ט	บ
VINYL CHLORIDE	0.00	1	10.00	บ	U
KYLENE (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final E

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1550

SAMPLE TYPE : $m \omega \phi 3$ SAMPLE MATRIX : W

ASSOCIATED MB : VBLKC8

ANALYSIS TYPE : VOL

TRIP BLANK: 1545TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETBANE	0.00		10.00	Ū	υJ
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	Ū
1,1-DICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	Ū	บัว
1,2-DICHLOROETHENE (TOTAL)	0.00	T	10.00	Ū	U
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00	1	10.00	ט	U
2-HEXANONE	0.00	1	10.00	ū	UJ
4-METHYL-2-PENTANONE	0.00	1	10.00	U	UJ
ACETONE	0.00		10.00	ช	บว
BEN2ENE	0.00		10.00	ט	υ
BROHODICELOROMETHANE	0.00	1	10.00	U	U
BROHOFORM	0.00		10.00	U	ט
Bronomethane	0.00		10.00	ט	U
CARBON DISULPIDE	0.00	1	10.00	ט	υ
CARBON TETRACHLORIDE	0.00		10.00	υ	U
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	ט	UJ
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	ט
ethylbenzene	0.00		10.00	ซ	U
METHYLENE CHLORIDE	1.00	µg/L	0.00		
STYRENE	0.00		10.00	ס	U
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	บ	ט
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00	T	10.00	U	υ
XYLENE (TOTAL)	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1551 SAMPLE TYPE : $m\omega\phi \leq$ SAMPLE MATRIX : W ANALYSIS TYPE : VOL SDG : 1545 SAMPLE MATRIX : W ASSOCIATED MB : VBLKC8

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	υ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	Ū	ซฮ
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00	Ī	10.00	U	Ū
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	Ū	บิว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ס
1,2-DICHLOROPROPANE	0.00		10.00	σ	ט
2-BUTANONE	0.00		10.00	U	ט
2-HEXANONE	0.00	T	10.00	Ü	บJ
4-METHYL-2-PENTANONE	0.00		10.00	U	บJ
ACETONE	0.00		10.00	U	υJ
BENZENE	24.00	µg/L	0.00	1	
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	ט	ש
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00	1	10.00	υ	ט
CHLOROETHANE	0.00		10.00	ט	ชฮ
CHLOROFORM	0.00	1	10.00	U	Ū
CHLOROMETHANE	0.00		10.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	υ
DIBROMOCHLOROMETHANE	0.00	T -	10.00	U	U
ethylbenzene 	27.00	μς .	0.00		
METHYLENE CHLORIDE	0.00		10.00	U	U
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	37.00	µg/L	0.00		
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	8.00	µg/L	0.00		
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	450.00	µg/L	0.00		J

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1552 ANALYSIS TYPE : VOL SAMPLE TYPE : WRMW\$ SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : VBLKC8

TRIP BLANK: 1545TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ប	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ซฮ
1,1,2-TRICHLOROETHANE	0.00		10.00	σ	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	Ū	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	บฮ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	Ū
2-BUTANONE	0.00		10.00	U	Ū
2-HEXANONE	0.00		10.00	ט	บJ
4-methyl-2-pentanone	0.00		10.00	U	บัง
ACETONE	0.00		10.00	ט	ชฮ
BENZENE	23.00	μg/L	0.00		
BROMODICHLOROMETHANE	0.00		10.00	U	U
Bromoform	0.00		10.00	U	U
BROMOMETHANE	0.00		10.00	U	U
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00	1	10.00	υ	U
CHLOROBENZENE	0.00		10.00	U	υ
CHLOROETHANE	0.00	1	10.00	U	UJ
CHLOROFORM	0.00	<u> </u>	10.00	ט	U
CHLOROMETRANE	0.00	1	10.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCELOROMETHANE	0.00		10.00	U	บ
ETHYLBENZENE	24.00	μg/L	0.00		
METHYLENE CHLORIDE	0.00	1	10.00	U	U
STYRENE	0.00		10.00	ט	υ
TETRACELOROETHENE	0.00		10.00	ט	ט
TOLUENE	33.00	µg/L	0.00		
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	บ	U
TRICHLOROETHENE	9.00	μg/L	0.00	1	
VINYL CHLORIDE	0.00		10.00	U	U
XYLENES (TOTAL)	450.00	µg/L	0.00	1	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1553

SAMPLE TYPE : TB

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545 1564-1560 ASSOCIATED MB: VBLKD5

TRIP BLANK : 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Concentration	Units	Instrument Detection Limit	QCode	QFinal
0.00		10.00	ប	ប
0.00		10.00	U	ชิวิ
0.00	T	10.00	<u></u>	Ū
0.00		10.00	ט	บ
0.00		10.00	ט	ט
0.00		10.00	U	บJ
0.00		10.00	ט	ט
0.00		10.00	υ	ט
0.00	1	10.00	ט	ช
0.00		10.00	U	บJ
0.00		10.00	ט	บJ
7.00	μg/L	0.00		J
0.00	1	10.00	บ	ט
0.00		10.00	ט	ט
0.00		10.00	ט	ט
0.00	1	10.00	ט	U
0.00		10.00	U	ซ
0.00		10.00	υ	ซ
0.00	1	10.00	ט	บ
0.00		10.00	ט	ชิง
0.00		10.00	ซ	υ
0.00		10.00	υ	บJ
0.00	1	10.00	ט	ប
0.00		10.00	υ	บ
0.00		10.00	ט	ט
2.00	μg/L	0.00		R
0.00		10.00	υ	U
0.00		10.00	U	ט
0.00		10.00	U	U
0.00		10.00	U	ט
0.00	1	10.00	บ	ט
0.00		10.00	U	υ
0.00	1	10.00	υ	ט
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Detection Limit	Detection Limit

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final **Summary** REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1554 ANALYSIS TYPE : VOL

BEGINNING SAMPLE #:1545

SAMPLE TYPE : mwig Sample Matrix : W

SDG: 1545

ASSOCIATED MB : VBLKG7

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	บว
1,1,2-TRICHLOROETHANE	0.00	T	10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	U	Ū
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00	1	10.00	ט	UJ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ū	U
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00	1	10.00	U	Ü
2-HEXANONE	0.00	†	10.00	U	บว
4-METHYL-2-PENTANONE	0.00		10.00	ט	บJ
ACETONE	0.00		10.00	U	บัง
Benzene	0.00	1	10.00	υ	ט
BROMODICHLOROMETHANE	0.00	1	10.00	U	ט
BROMOFORM	0.00	1	10.00	U	U
BROMOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	2.00	µg/L	0.00		
CARBON TETRACHLORIDE	0.00		10.00	ט	Ü
CHLOROBENZENE	0.00	1	10.00	υ	ט
CHLOROETHANE	0.00	1	10.00	ט	บว
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00	1	10.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	ט
DIBRONOCHLOROMETHANE	0.00		10.00	υ	ט
ETHYLBENZENE	0.00	1	10.00	U	ט
METHYLENE CHLORIDE	5.00	µg/L	0.00		R
STYRENE	0.00	T	10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	บ	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	ט	Ü
VINYL CHLORIDE	0.00	1	10.00	υ	υ
XYLENE (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1555

BEGINNING SAMPLE #:1545

SAMPLE TYPE : mwi5

SAMPLE MATRIX : W

ASSOCIATED MB : VBLKG7

ANALYSIS TYPE : VOL

TRIP BLANK: 1553TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1545

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00	1	10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	נט
1,1,2-TRICHLOROETHANE	0.00		10.00	ס	ס
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHANE	0.00		10.00	U	υJ
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	10.00	U	ט
2-BUTANONE	0.00		10.00	U	ט
2-HEXANONE	0.00		10.00	ט	บว
4-methyl-2-pentanone	0.00		10.00	ט	บัง
ACETONE	0.00		10.00	ט	ซฮ
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00	İ	10.00	U	U
BROHOFORM	0.00	1	10.00	ט	U
BROHOMETHANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00	j .	10.00	U	ט
CARBON TETRACHLORIDE	0.00	İ	10.00	ט	ט
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00	İ	10.00	ט	บJ
CHLOROFORM	0.00	1	10.00	ט	U
CHLOROMETHANE	0.00		10.00	Ü	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	ט
DIBROHOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzen?	0.00		10.00	U	U
METHYLENE CHLORIDE	2.00	μg/L	0.00	T	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
LOTUENE	0.00		10.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
TRICHLOROETHENE	0.00		10.00	ט	U
VINYL CHLORIDE	0.00		10.00	ט	U
KYLENE (TOTAL)	0.00		10.00	ט	ש

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final 🗨 REVIEWER: DENNIS MARTY **REGINNING SAMPLE #:1545** DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1556

SAMPLE TYPE : FB SAMPLE MATRIX : W
SDG : 1545 ASSOCIATED MB : VI

ANALYSIS TYPE : VOL

SDG: 1545

ASSOCIATED MB : VBLKG7

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	บ	UJ
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ซ
1,1-DICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2- ICHLOROETHANE	0.00	1	10.00	U	บัง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	D	σ
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	U	U
2-HEXANONE	0.00	T	10.00	U	ชง
4-methyl-2-pentanone	0.00		10.00	U	บJ
ACETONE	0.00		10.00	ט	บJ
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	6.00	µg/L	0.00		
BROMOFORM	0.00	1	10.00	υ	ט
Bromomethane	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00	1	10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	ט
CHLOROETHANE	0.00	1	10.00	U	UJ
CHLOROFORM	13.00	µg/L	0.00	1 -	
CHLOROMETHANE	0.00		10.00	υ	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ซ
DIBROMOCHLOROMETHANE	2.00	µg/L	0.00		
ethylben2 ene	0.00		10.00	U	ט
METHYLENE CHLORIDE	5.00	µg/L	0.00		R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	. 0.00		10.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00	1	10.00	ט	ט
VINYL CHLORIDE	0.00		10.00	บ	υ
XYLENE (TOTAL)	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1557

SAMPLE TYPE : MWIZ SAMPLE MATRIX : W

SAMPLE MATRIX : W
ASSOCIATED MB : VBLKG6

ANALYSIS TYPE : VOL SDG : 1545

TRIP BLANK: 1553TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	۵	บัง
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ū	U
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHANE	0.00	T	10.00	ט	บัว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	ט	ซ
2-BUTANONE	0.00	1	10.00	U	บ
2-HEXANONE	0.00	T	10.00	U	บัง
4-METHYL-2-PENTANONE	0.00		10.00	U	บัง
ACETONE	0.00	1	10.00	ט	υJ
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.60		10.00	U	U
BROHOFORM	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00	1	10.00	ט	ט
CARBON DISULPIDE	0.00	1	10.00	U	ט
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	U	บัง
CHLOROFORM	0.00		10.00	υ	ט
CHLOROMETHANE	0.00		10.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ETHYLBENZ ENE	0.00		10.00	ט	ט
METHYLENE CHLORIDE	5.00	µg/L	0.00		R
STYRENE	0.00		10.00	ט	U
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	U	υ
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	υ
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	Ü
XYLENE (TOTAL)	0.00	 	10.00	ט	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1558

BEGINNING SAMPLE #:1545

SAMPLE TYPE : ERMWIZ SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1545

ASSOCIATED MB : VBLKD5

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00	Ţ	10.00	U	υJ
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	ū
1,2-DICHLOROETHANE	0.00		10.00	ט	บัง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	U
2-BUTANONE	0.00		10.00	ס	ט
2-HEXANONE	0.00		10.00	U	บัง
4-METHYL-2-PENTANONE	0.00		10.00	U	บJ
ACETONE	0.00		10.00	ט	UJ
BENZENE	0.00	1	10.00	ט	σ
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00	 	10.00	U	ט
BROMOMETHANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00	1	10.00	ט	Ū
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	ט	บัว
CHLOROFORM	0.00	1	10.00	U	ט
CHLOROMETHANE	0.00	1	10.00	U	บัว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	υ	υ
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	1.00	μg/L	0.00		R
STYRENE	0.00	†	10.00	υ	บ
TETRACHLOROETHENE	0.00		10.00	υ	υ
TOLUENE	0.00	1	10.00	U	บ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	U
XYLENE (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1559 ANALYSIS TYPE: VOL

SAMPLE TYPE : mwiy SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : VBLKG6

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	'nits	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	บัง
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHANE	0.00	Ī	10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	υ	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	บJ
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ט	U
1,2-DICELOROPROPANE	0.00	1	10.00	U	ט
2-BUTANONE	0.00		10.00	ט	ט
2-HEXANONE	0.00		10.00	υ	บบ
4-methyl-2-pentanone	0.00		10.00	υ	บJ
ACETONE	0.00		10.00	U	บบ
BENZENE	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00	1	10.00	υ	U
BROHOMETEANE	0.00		10.00	U	ט
CARBON DISULFIDE	1.00	µg/L	0.00		
CARBON TETRACHLORIDE	0.00		10.00	บ	U
CHLOROBENZENE	0.00		10.00	U	υ
CHLOROETHANE	0.00	1	10.00	ט	บJ
CHLOROFORM	0.00		10.00	υ	ט
CHLOROMETHANE	0.00	1	10.00	U	עט
CIS-1,3-DICKLOROPROPENE	0.00		10.00	U	U
DIBROHOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzene	0.00		10.00	ט	υ
METHYLENE CHLORIDE	2.00	jig/L	0.00		R
STYRENE	0.00		10.00	υ	U
TETRACHLOROETHENE	0.00	1	10.00	ט	υ
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	υ	ט
TRICHLOROETHENE	0.00	1	10.00	U	ט
VINYL CHLORIDE	0.00	1	10.00	υ	υ
XYLENE (TOTAL)	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1560

SAMPLE TYPE :mw13 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545

ASSOCIATED MB : VBLKG6

TRIP BLANK: 1553TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	UJ
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHANE	0.00		10.00	Ū	נט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	Ū	ט
2-BUTANONE	0.00		10.00	ū	Ū
2-HEXANONE	0.00		10.00	ט	บัง
4-METHYL-2-PENTANONE	0.00		10.00	U	UJ
ACETONE	0.00		10.00	U	บป
BENZENE	0.00		10.00	ט	U
BROMODICELOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00		10.00	ט	U
BROMOMETRANE	0.00	Ī	10.00	ט	ט
CARBON DISULFIDE	14.00	μg/L	0.00		
CARBON TETRACHLORIDE	0.00		10.00	ט	บ
CHLOROBENZENE	0.00		10.00	ט	Ū
CHLOROETHANE	0.00		10,00	U	บัง
CHLOROFORM	0.00		10.00	ซ	ט
CHLOROMETHANE	0.00		10.00	υ	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENZENE	0.00		10.00	U	U
METHYLENE CHLORIDE	4.00	µg/L	0.00		R
STYRENE	0.00		10.00	U	ū
TETRACHLOROETHENE	0.00		10.00	ט	Ü
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	υ
VINYL CHLORIDE	0.00		10.00	U	U
XYLENE (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARL (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1565 ANALYSIS TYPE: VOL SAMPLE TYPE : TB

SAMPLE MATRIX : W

SDG: 1570 1566-1574 ASSOCIATED MB: VBLKG4

TRIP BLANK: 1565TB

TRIP BLANK : 150516

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unita	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	Ū	ט
1,1,2-TRICHLOROETRANE	0.00	T	10.00	Ū	υ
1,1-DICHLOROETHANE	0.00		10.00	U	บ
1,1-DICHLOROETHENE	0.00	1	10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	U	บ
1,2-DICHLOROETHENE (TOTAL)	0.00	Ī	10.00	ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	ט	υ
2-HEXANONE	0.00		10.00	U	U
4-METHYL-2-PENTANONE	0.00		10.00	U	UJ
ACETONE	0.00	1	10.00	U	บJ
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00	İ	10.00	υ	ט
BROMOFOR	0.00		10.00	U	ט
BROMOMETHANE	0.00		10.00	υ	ט
CARBON DISULFIDE	0.00		10.00	υ	บ
CARBON TETRACHLORIDE	0.00	1	10.00	U	ט
CHLOROBENZENE	0.00	1	10.00	ט	ซ
CHLOROETHANE	0.00	†	10.00	ט	ט
CHLOROFORM	0.00		10.00	U	U
CHLOROMETHANE	0.00	1	10.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ETHYLBENZENE	0.00	 	10.00	υ	U
METHYLENE CHLORIDE	3.00	µg/L	0.00	J	R
STYRENE	0.00	1	10.00	ט	ช
TETRACHLOROETHENE	0.00		10.00	บ	ט
TOLUENE	0.00	1	10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLORG STHENE	0.00	1	10.00	υ	U
VINYL CHLOKIDE	0.00	\top	10.00	U	U
XYLENE (TOTAL)	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

• GUARD (RENO) DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1566

SAMPLE TYPE : MWH

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545

ASSOCIATED MB : VBLKG4

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	υ	ŪĴ
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	σ
1,1-DICHLOROETHANE	c.00		10.00	U	ט
1,1-DICALOROETHENE	0.00		10.00	Ū	Ū
1,2-DICHLOROETHANE	0.00		10.00	Ü	บว
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00	1	10.00	ט	U
2-BUTANONE	0.00	1	10.00	ט	U
2-HEXANONE	0.00		10.00	U	บว
4-methyl-2-pentanone	0.00		10.90	ט	บJ
ACETONE	0.00		10.00	ט	บว
BENZENE	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	υ
BROMOFORM	0.00	1	10.00	U	U
BROMOMETHANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00	†	10.00	U	ซ
CHLOROBENZENE	0.00		10.00	บ	υ
CHLOROETHANE	0.00	1	10.00	ט	บบ
CHLOROFORM	0.00	1	10.00	U	U
CHLOROMETHANE	0.00	† 	10.00	U	บฮ
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	υ	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	ט
ethylbenzene	0.00	1	10.00	ט	U
METHYLENE CHLORIDE	1.00	μg/L	0.00		R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00	1	10.00	Ū	บ
TOLUENS	0.00	1	10.00	υ	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLOROETHENE	0.00	 	10.00	υ	U
VINYL CHLORIDE	0.00		10.00	ט	υ
XYLENE (TOTAL)	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1567

SAMPLE TYPE MWZ! SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG : 1545

ASSOCIATED MB : Clean Samp

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite 45/2	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ប	U
1,1,2,2-TETRACHLOROETHANE	0.00	l	10.00	ט	UJ
1,1,2-TRICHLOROETHANE	0.00		10.00	۵	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ū
1,1-DICHLOROETHENE	0.00	T	10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	บัง
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00	1	10.00	ט	ט
2-HEXANONE	0.00		10.00	Ū	บว
4-METHYL-2-PENTANONE	0.00		10.00	U	UJ
ACETONE	0.00		10.00	ט	บว
BENZENE	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROMOFORM	0.00		10.00	ט	ט
BROMOMETHANE	0.00		10.00	ט	บ
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	Ü	ט
CHLOROBENZENE	0.00		10.00	υ	Ū
CHLOROETHANE	0.00		10.00	ט	บัง
CHLOROFORM	0.00		10.00	Ū	ט
CHLOROMETHANE	0.00		10.00	Ū	บป
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	บ
ETHYLBENZENE	0.00		10.00	ט	U
METHYLENE CHLORIDE	0.00		10.00	υ	U
STYRENE	0.00		10.00	υ	υ
TETRACHLOROETHENE	0.00		10.00	บ	ט
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENE (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1568 ANALYSIS TYPE : VOL

BEGINNING SAMPLE #:1545

SAMPLE TYPE : WRMWZ| SAMPLE MATRIX : W

SDG: 1545

ASSOCIATED MB : Clean Sam

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration		Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00	T	10.00	U	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ชร
1,1,2-TRICHLOROETHANE	0.00		10.00	ū	ช
1,1-DICHLOROETHANE	0.00		10.00	Ū	ช
1,1-DICHLOROETHENE	0.00		10.00	Ū	U
1,2-DICHLOROETHANE	0.00	1	10.00	U	ชิงิ
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ט	U
1,2-DICHLOROPROPANE	0.00	1	10.00	U	U
2-BUTANONE	0.00	† —	10.00	ס	U
2-HEXANONE	0.00	1	10.00	U	บJ
4-METHYL-2-PENTANONE	0.00		10.00	ט	υJ
ACETONE	0.00		10.00	U	ชม
BENZENE	0.00		10.00	υ	ט
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOPORM	0.00	† · · · ·	10.00	ט	ט
BROMOMETHANE	0.00	1	10.00	U	ט
CARBON DISULFIDE	0.00	<u> </u>	10.00	υ	U
CARBON TETRACHLORIDE	0.00	†	10.00	υ	ט
CHLOROBENZENE	0.00	 	10.00	υ	บ
CHLOROETHANE	0.00	1	10.00	U	υJ
CHLOROFORM	0.00	 	10.00	U	บ
CHLOROMETHANE	0.00		10.00	U	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	υ
ethylbenzene	0.00		10.00	U	ט
METHYLENE CHLORIDE	0.00	1	10.00	U	ט
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00	1	10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLOROETHENE	0.00	1	10.00	υ	υ
VINYL CHLORIDE	0.00	 	10.00	ט	ט
XYLENE (TOTAL)	0.00	1	10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1569

SAMPLE TYPE : mwi6 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1545

ASSOCIATED MB : VBLKG4

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	บัง
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	ū	ū
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.70	i	10.00	ט	บJ
1,2-DICHLOROETHENE (TOTAL)	0.00	Ī	10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	U	ט
2-HEXANONE	0.00		10.00	U	ซฮ
4-METHYL-2-PENTANONE	0.00		10.00	Ū	עט
ACETONE	0.00		10.00	ט	บว
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOFORM	0.00		10.00	υ	U
BROMOMETHANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	ט	UJ
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	ט	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	U
ETHYLBENZENE	0.00		10.00	U	U
METHYLENE CHLORIDE	2.00	µg/L	0.00		R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00	1	10.00	U	U
TOLUENE	0.00		10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00	1	10.00	บ	U
VINYL CHLORIDE	0.00		10.00	υ	U
XYLENE (TOTAL)	0.00	1	10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1570

SAMPLE TYPE : WRMWIG SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1570

ASSOCIATED MB : VBLKG4

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	U
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00		10.00	Ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	U
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00	1	10.00	U.	U
2-HEXANONE	0.00		10.00	ט	U
4-METHYL-2-PENTANONE	0.00	1	10.00	U	บฮ
ACETONE	0.00		10.00	U	บว
Benzene	0.00	1	10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00		10.00	υ	ט
BROMOMETHANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00		10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	υ	υ
CHLOROFORM	0.00		10.00	ט	ū
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ethylbenzene	0.00		10.00	υ	υ
METHYLENE CHLORIDE	3.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENE (TOTAL)	0.00	1	10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1571

BEGINNING SAMPLE #:1545

ANALYSIS TYPE: VOL SDG: 1570

SAMPLE TYPE: MW17 SAMPLE MATRIX: W
SDG: 1570 ASSOCIATED MB: VBLKG4

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ū	ט
1,1,2-TRICHLOROETHAME	0.00	T	10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	Ū
1,1-DICHLOROETHENE	0.00		10.00	Ū	υ
1,2-DICHLOROETHANE	0.00		10.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	4.00	µg/L	0.00	J	J
1,2-DICHLOROPROPANE	0.00	T	10.00	Ū	U
2-BUTANONE	0.00		10.00	Ū	ט
2-HEXANONE	0.00		10.00	Ū	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	UJ
ACETONE	0.00	1	10.00	U	υJ
Benzene	15.00	µg/L	0.00	1	
BROMODICHLOROMETHANE	0.00	1	10.00	ช	U
BROHOFORM	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00	1	10.00	ט	ū
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00	1	10.00	U	ט
CHLOROFORM	0.00		10.00	ū	ט
CHLOROMETHANE	0.00		10.00	ū	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
E THYLBENZENE	24.00	µg/L	0.00		
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	1.00	μg/L	0.00	J	J
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00]	10.00	U	U
VINYL CHLORIDE	0.00		10.00	ט	ט
XYLENES (TOTAL)	7.00	µg/L	0.00	J	J

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1572 ANALYSIS TYPE : VOL SAMPLE TYPE : ERMWI7 SAMPLE MATRIX : W

SDG : 1570

ASSOCIATED MB : VBLKG4

TRIP BLANK: 1565TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	บ
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHANE	0.00		10.00	σ	บ
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00		10.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	ט	ט
2-HEXANONE	0.00		10.00	ט	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	ชฮ
ACETONE	0.00		10.00	ט	ซฮ
BENZENE	0.00		10.00	ט	Ū
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROMOFORM	0.00		10.00	U	ט
BROMOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00		10.00	מ	ט
CHLOROETHANE	0.00		10.00	ט	ט
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	U J
CIS-1,3-DICHLOROPROPENE	0.00	Ī	10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	บ
ethylbenzene	0.00		10.00	U	ū
METHYLENE CHLORIDE	2.00	μg/L	0.00	J	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICHLOROETHENE	0.00		10.00	ט	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENE (TOTAL)	0.00		10.00	υ	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1573 ANALYSIS TYPE : VOL

SAMPLE TYPE : MW 22 SAMPLE MATRIX : W

SDG: 1570

ASSOCIATED MB : VBLKG4

TRIP BLANK: 1565TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	υ	U
1,1,2-TRICHLOROETHAME	0.00		10.00	U	U
1,1-DICHLOROETHANE	0.00		10.00	ט	σ
1,1-DICHLOROETHENE	0.00	Ī	10.00	ט	U
1,2-DICHLOROETHANE	0.00	1	10.00	U	a
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00		10.00	U	O
2-BUTANONE	0.00		10.00	ט	U
2-HEXANONE	0.00	1	10.00	ט	U
4-METHYL-2-PENTANONE	0.00		10.00	ט	บว
ACETONE	0.00		10.00	U	บว
BENZENE	0.00	1	10.00	υ	U
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROHOFOR 1	0.00	1	10.00	<u> </u> :	U
BROMOMETRANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	Ū
CHLOROBENZENE	0.00	1	10.00	U	U
CHLOROETHANE	0.00	Î	10.00	U	U
CHLOROPORM	0.00		10.00	U	ט
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ethylbenzene Ethylbenzene	0.00		10.00	ט	U
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	υ	U
TETRACHLOROETHENE	0.00		10.00	υ	U
TOLUENE	0.00		10.00	U	υ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	υ
XYLENE (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENC)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1574

SAMPLE TYPE : MW19

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1570

ASSOCIATED MB : VBLKG4

TRIP BLANK: 1565TB

IKIP DIANK : 13031B

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	Ū
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	U	ט
1,1,2-TRICHLOROETHANE	0.00	1	10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHAME	0.00		10.00	ט	ט
1,2-DICHLOROSTEEMS (TOTAL)	0.00		10.00	ט	ū
1,2-DICELOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	U	ט
2-HEXANONE	0.00		10.00	U	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	ชฮ
ACETONE	0.00		10.00	ט	บว
Penzene	0.00		10.00	Ü	ט
BROMODICHLOROMETHANE	0.00		10.00	U	ט
BROMOFORM	0.00		10.00	ט	ט
BROHOMETHANE	0.00		10.00	ט	U
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	Ū	U
CHLOROPORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
BTHYLBENZENE	0.00		10.00	U	ט
METHYLENE CHLORIDE	2.00	µg/L	0.00	3	R
STYRENE	0.00		10.00	ט	ט
Tetrachloroethene	0.00		10.00	U	ט
TOLUENE	0.00		10.00	ט	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	υ
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENE (TOTAL)	0.00		10.00	U	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1575

SAMPLE TYPE : TB SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1570 | 1576-1582 ASSOCIATED MB: VBLKH5

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	ū	U
1,1-DICHLOROETHENE	0.00	1	10.00	ט	ט
1,2-DICHLOROETHANE	0.00	1	10.00	ט	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	σ	ช
2-BUTANONE	0.00	1	10.00	ט	U
2-HEXANONE	0.00		10.00	U	U
4-METHYL-2-PENTANONE	0.00		10.00	U	ชง
ACETONE	0.00		10.00	υ	บป
Benzene	0.00	<u> </u>	10.00	υ	ט
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROHOFORM	0.00		10.00	U	ט
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00	1	10.00	U	מ
CHLOROBENZENE	0.00	1	10,00	U	ซ
CHLOROETHANE	0.00	1	10.00	U	บ
CHLOROFORM	0.00	1	10.00	U	บ
CHLOROMETHANE	0.00	1	10.00	υ	ชฮ
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	บ	บ
DIBROMOCHLOROMETHANE	0.00	1	10.00	Ū	ט
ETHYLBENZ ENE	0.00	1	10.00	U	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00	1 -	10.00	U	U
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENE (TOTAL)	0.00		10.00	ט	บ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DAMA WATTOA

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1577

SAMPLE TYPE : MW23

SAMPLE MATRIX : W

ASSOCIATED MB : VBLKH5

ANALYSIS TYPE : VOL

TRIP BLANK: 1575TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	υ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	Ū
1,1,2-TRICHLOROETHANE	0.00	1	10.00	ū	ū
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00	1	10.00	ט	Ū
2-BUTANONE	0.00	1	10.00	U	U
2-HEXANONE	0.00		10.00	U	U
4-methyl-2-pentanone	0.00		10.00	บ	บบ
ACETONE	0.00	1	10.00	ט	บบ
BENZENE	0.00		10.00	ט	υ
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROHOFORM	0.00	T	10.00	ט	C
BROMOMETHANE	0.00	1	10.00	U	U
CARBON DISULFIDE	0.00	1	10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	U	ט
CHLOROBENZENE	0.00		10.00	U	ū
CHLOROETHANE	0.00		10.00	U	υ
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	Ū	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	υ	υ
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
ethylbenzene	0.00		10.00	ט	U
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	U
TETRACHLOROETHENE	0.00	1	10.00	U	υ
TOLUENE	0.00	1	10.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLOROETHENE	0.00	1	10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	ט	U
XYLENE (TOTAL)	0.00	\top	10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1578

SAMPLE TYPE : mwo6 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1570

ASSOCIATED MB : VBLKH5

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	บ	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	บ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ט	U
1,2-DICHLOROPROPANE	0.00	i –	10.00	ט	U
2-BUTANONE	0.00		10.00	ซ	U
2-HEXANONE	0.00		10.00	U	U
4-METHYL-2-PENTANONE	3.30		10.00	U	บง
ACETONE	0.00		10.00	U	บJ
BENZENE	67.00	μg/L	0.00	1	1
BROMODICHLOROMETHANE	0.00	1	10.00	ט	ט
BRONOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00	1	10.00	ט	U
CARBON DISULFIDE	0.00		10.00	ט	ū
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	ט	บ
Chloroethane	0.00		10.00	ט	ט
CHLOROFORM	1.00	μg/L	0.00	J	J
CHLOROMETHANE	0.00		10.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	υ
DIBROMOCHLOROMETHANE	0.00		10.00	U	U
ethylbenzene	55.00	µg/L	0.00		
METHYLENE CHLORIDE	31.00	μg/L	0.00		R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	1.00	μg/L	0.00	J	J
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00	1	10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	ט
XYLENES (TOTAL)	73.00	µg/L	0.00		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

■Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1579

SAMPLE TYPE : MWZH SAMPLE MATRIX : W

ASSOCIATED MB : VBLKH5

ANALYSIS TYPE : VOL

TRIP BLANK: 1575TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1570

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	Ü	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	σ	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	Ū
1,1-DICHLOROETHANE	0.00	T	10.00	U	ū
1,1-DICHLOROETFENE	0.00		10.00	Ū	U
1,2-DICHLOROETHANE	0.00		10.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ט	Ū
1,2-DICHLOROPROPANE	0.00		10.00	ט	U
2-BUTANONE	0.00		10.00	ט	ט
2-HEXANONE	0.00		10.00	σ	U
4-METHYL-2-PENTANONE	0.00		10.00	ט	บJ
ACETONE	0.00		10.00	ט	עט
BENZENE	0.00		10.00	U	ט
BROMODICHLOROMETHANE	0.00	1	10.00	ט	ט
BROMOFORM	0.00		10.00	U	U
BROMONETHANE	0.00	1	10.00	U	Ū
CARBON DISULFIDE	0.00	1	10.00	ט	บ
CARBON TETRACHLORIDE	0.00	1	10.00	U	U
CHLOROBENZENE	0.00		10,00	U	ט
CHLOROETHANE	0.00	1	10.00	ט	U
CHLOROFORM	1.00	µg/L	0.00	J	J
CHLOROMETHANE	0.00	†	10.00	U	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	υ	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	U
STHYLBENZENE	0.00	1	10.00	U	U
METHYLENE CHLORIDE	32.00	µg/L	0.00		R
STYRENE	0.00	†	10. 0	U	U
TETRACHLOROETHENE	0.00	1	105	υ	υ
TOLUENE	0.00	†	10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	1	10.00	U	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	υ	U
XYLENE (TOTAL)	0.00	1	10.00	U	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1580

SAMPLE TYPE : MWZ5

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1570

ASSOCIATED MB : VBLKH5

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		20.00	Ů.	ប
1,1,2,2-TETRACHLOROETHANE	0.00		20.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		20.00	ับ	บ
1,1-DICHLOROETHANE	0.00		20.00	บ	Ū
1,1-DICHLOROETHENE	0.00		20.00	U	Ū
1,2-DICHLOROETHANE	0.00		20.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		20.00	Ū	U
1,2-DICHLOROPROPANE	0.00		20.00	บ	ט
2-BUTANONE	0.00	 	20.00	ט	ט
2-HEXANONE	0.00		20.00	U	U
4-METHYL-2-PENTANONE	0.00		20.00	U	บบ
ACETONE	0.00	1	20.00	U	บJ
DINZENE	380.00	µg/L	0.00	†	
BROMODICHLOROMETHANE	0.00	1	20.00	ט	U
BROMOFORM	0.00	1	20.00	ט	U
BROMOMETHANE	0.00	1	20.00	ט	U
CARBON DISULFIDE	0.00		20.00	U	U
CARBON LETRACHLORIDE	0.00	1	20.00	U	ט
CHLOROBENZENE	0.00	<u> </u>	20.00	U	υ
CHLOROETRANE	0.00		20.00	υ	U
CHLOROFORM	0.00		20.00	U	Ū
CHLOROMETHANE	0.00	1	20.00	U	UJ
CIS-1,3-D*CHLOROPROPENE	0.00	1	20.00	ט	U
DIBROMOCHLOROMETHANE	0.00	1	20.00	U	U
ETHYLBENZENE	14.00	μg/L	0.00	J	J
METHYLENE CHLORIDE	22.00	µg/L	0.00		R
STYRENE	0.00		20.00	U	υ
TETRACHLOROETHENE	0.00	Ť -	20.00	U	υ
TOLUENE	8.00	µg/L	0.00	J	J
TRANS-1, 3-DICHLOROP" SPENE	0.00	1	20.00	U	U
TRICHLOROETHENE	0.00	1	20.00	U	ט
VINYL CHLORIDE	0.00	1	20.00	U	U
XYLENES (TOTAL)	59.00	µg/L	0.00	1	

PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C

ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1582

SAMPLE TYPE : ERMW25 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG: 1570 ASSOCIATED MB: VBLKH5

TRIP BLANK: 1575TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	מ	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00	I	10.00	U	U
1,2-DICHLOROETHANE	0.00		10.00	ט	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00	T	10.00	U	ט
1,2-DICHLOROPROPANE	0.00	\top	10.00	U	U
2-BUTANONE	0.00		10.00	U	U
2-HEXANONE	0.00		10.00	ט	U
4-METHYL-2-PENTANONE	0.00	 	10.00	U	บJ
ACETONE	0.00		10.00	ט	บัง
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	ט	U
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	U	ט
CHLOROPORM	0.00	1	10.00	ט	U
CHLOROMETHANE	0.00		10.00	U	บว
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	υ	ט
ETHYLBENZENE	0.00	1	10.00	U	υ
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	ט	U
TETRACHLOROETHENE	0.00		10.00	ט	U
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	ט	บ
TRICHLOROETHENE	0.00	1	10.00	U	U
VINYL CHLORIDE	0.00	1	10.00	υ	υ
XYLENE (TOTAL)	0.00		10.00	ט	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)
Final Summary
REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1584

SAMPLE TYPE : mw67 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1570

ASSOCIATED MB : VBLKH5

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ប	ช
1,1,2-TRICHLOROETHANE	0.00		10.00	a	U
1,1-DICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHENE	0.00	T	10.00	ט	ט
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	U
1,2-DICHLOROPROPANE	0.00		10.00	U	ט
2-BUTANONE	0.00		10.00	U	U
2-HEXANONE	0.00	1	10.00	ט	U
4-METHYL-2-PENTANONE	0.00		10.00	U	บุว
ACETONE	0.00		10.00	U	บป
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	U	บ
CARBON TETRACHLORIDE	0.00		10.00	ט	υ
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	U	ט
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ETHYLBENZENE	0.00		10.00	ט	ט
METHYLENE CHLORIDE	13.00	µg/L	0.00		R
STYRENE	0.00		10.00	บ	υ
TETRACHLOROETHENE	0.00		10.00	บ	ט
TOLUENE	0.00		10.00	ט	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	υ	U
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENE (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1585

BEGINNING SAMPLE #:1545

SAMPLE TYPE : ERMW67 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL

SDG : 1570

ASSOCIATED MB : VBLKH5

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHANE	0.00		10.00	ס	U
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00	1	10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ט	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	U
2-BUTANONE	0.00		10.00	ט	Ū
2-HEXANONE	0.00		10.00	ט	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	บบ
ACETONE	0.00		10.00	ט	บัว
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	U	U
Bronoform	0.00		10.00	ט	υ
Bronomethane	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	บ
CARBON TETRACHLORIDE	0.00		10.00	U	U
CHLOROBENZENE	0.00	1	10.00	υ	U
CHLOROETRANE	0.00		10.00	บ	U
CHLOROFORM	0.00	1	10.00	υ	U
CHLOROMETHANE	0.00	 	10.00	υ	UJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00	1	10.00	U	U
ethylbenzene	0.00		10.00	ט	U
METHYLENE CHLORIDE	2.00	μg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	ט	ซ
TOLUENE	0.00		10.00	U	บ
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	ט
TRICHLOROETHENE	0.00	1	10.00	יט –	U
VINYL CHLORIDE	0.00	1	10.00	U	ט
XYLENE (TOTAL)	0.00		10.00	ט	ט

F-1416
PROJECT: NEVADA AIR NAT. GUARD (RENO) DATE:03/01/94

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1586 SAMPLE TYPE : mw65 SAMPLE MATRIX : W ANALYSIS TYPE : VOL SDG : 1570 ASSOCIATED MB : VI

ASSOCIATED MB : VBLKH5

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	U
1,1,2,2-TETRACHLOROETHANE	0.00	[10.00	Ū	ט
1,1,2-TRICHLOROETHANE	0.00	T	10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00		10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	σ	U
2-BUTANONE	0.00		10.00	ū	ט
2-HEXANONE	0.00		10.00	ט	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	ซฮ
ACETONE	0.00	1	10.00	ט	ชง
BENZENE	0.00		10.00	ט	ū
BROMODICHLOROMETHANE	0.00	í — —	10.00	U	ט
BROMOFORM	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00		10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	υ	ט
CHLOROBENZENE	0.00		10.00	ซ	ט
CHLOROETHANE	0.00		10.00	ט	ט
CHLOROFORM	0.00		10.00	ט	U
CHLOROMETHANE	0.00		10.00	ט	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		10.00	บ	ט
ETHYLBENZENE	0.00		10.00	U	ט
METHYLENE CHLORIDE	2.00	μg/L	0.00	J	R
STYRENE	0.00		10.00	ט	ט
TETRACHLOROETHENE	0.00		10.00	ט	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00	Ī	10.00	ט	ט
TRICHLOROETHENE	0.00		10.00	ט	υ
VINYL CHLORIDE	0.00		10.00	ט	ט
KYLENE (TOTAL)	0.00		10.00	ט	υ

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1587

SAMPLE TYPE : mw66 SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1570

ASSOCIATED MB : VBLKH5

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ַט	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	υ	U
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ū
1,1-DICHLOROETHANE	0.00		10.00	ט	υ
1,1-DICHLOROETHENE	0.00		10.00	บ	ū
1,2-DICHLOROETHANE	0.00		10.00	U	U
1,2-DICHLOROETHENE (TOTAL)	0.00	1	10.00	ū	U
1,2-DICHLOROPROPANE	0.00	1	10.00	U	U
2-BUTANONE	0.00	1-	10.00	U	U
2-HEXANONE	0.00	1	10.00	U	U
4-METHYL-2-PENTANONE	0.00	1	10.00	ט	บว
ACETONE	0.00	1	10.00	U	ชร
BENZENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00	1	10.00	ט	U
BROMOFORM	0.00		10.00	ט	บ
BROMOMETHANE	0.00	1	10.00	U	บ
CARBON DISULFIDE	0.00	1	10.00	ט	ប
CARBON TETRACHLORIDE	0.00		10.00	ט	υ
CHLOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	U	σ
CHLOROFORM	1.00	µg/L	0.00	J	J
CHLOROMETHANE	0.00	1	10.00	ט	บัง
CIS-1,3-DICHLOROPROPENE	0.00	†	10.00	ט	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	U
ETHYLBENZENE	0.00		10.00	U	U
METHYLENE CHLORIDE	18.00	µg/L	0.00		R
STYRENE	0.00	1	10.00	U	ช
TETRACHLOROETHENE	0.00	1	10.00	ט	σ
TOLUENE	. 0.00	1	10.00	U	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	U
TRICHLOROETHENE	0.00	 	10.00	U	υ
VINYL CHLORIDE	0.00	1	10.00	ט	U
XYLENE (TOTAL)	0.00	1	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 F-1418 DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1588 SAMPLE TYPE : MWO8 SAMPLE MATRIX : W ANALYSIS TYPE : VOL SDG : 1570 ASSOCIATED MB : VBLKH5

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	บ
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00	1	10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	υ	U
1,2-DICHLOROETHANE	0.00		10.00	ט	υ
1,2-DICHLOROETHENE (TOTAL)	18.00	µg/L	0.00		
1,2-DICHLOROPROPANE	0.00		10.00	U	U
2-BUTANONE	0.00	1	10.00	Ū	υ
2-HEXANONE	0.00		10.00	ט	ט
4-METHYL-2-PENTANONE	0.00		10.00	υ	บJ
ACETONE	0.00		10.00	ū	บัง
BENZENE	0.00		10.00	υ	U
BROHODICHLOROMETHANE	0.00		10.00	U	U
BROMOFORM	0.00		10.00	U	U
BROHOMETHANE	0.00		10.00	ט	σ
CARBON DISULFIDE	0.00		10.00	ט	U
CARBON TETRACHLORIDE	0.00		10.00	υ	บ
CELOROBENZENE	0.00		10.00	ט	U
CHLOROETHANE	0.00		10.00	U	ū
CHLOROFORM	0.00		10.00	ט	ū
CHLOROMETHANE	0.00		10.00	U	บJ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	Ū
DIBROMOCHLOROMETHANE	0.00		10.00	υ	U
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	6.00	μg/L	0.00	J	R
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	0.00		10.00	υ	U
TOLUENE	0.00		10.00	U	U
TRANS-1,3-DICHLOROPROPENE	0.00	I	10.00	U	U
TRICHLOROETHENE	2.00	μg/L	0.00	J	J
VINYL CHLORIDE	0.00	1	10.00	U	U
XYLENE (TOTAL)	0.00		10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary

DATE:03/01/94

REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1589

SAMPLE TYPE : MWI SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1570

ASSOCIATED MB : VBLKH5

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ช	ū
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	a	ט
1,2-DICHLOROETHANE	0.00		10.00	U	U
1,2-DICELOROETHENE (TOTAL)	0.00		10.00	U	ū
1,2-DICHLOROPROPANE	0.00		10.00	ט	U
2-BUTANONE	0.00		10.00	ū	Ū
2-HEXANONE	0.00	T	10.00	ט	ט
4-METHYL-2-PENTANONE	0.00		10.00	U	UJ
ACETONE	0.00		10.00	ט	บJ
BENZENE	0.00		10.00	U	บ
BROMODICELOROMETHANE	0.00	1	10.00	U	ט
BROHOFORM	0.00		10.00	ט	ט
BROMOMETRANE	0.00	1	10.00	ט	ט
CARBON DISULFIDE	0.00		10.00	υ	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	บ
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	ซ	ט
CHLOROFORM	0.00	†	10.00	U	n
CHLOROMETHANE	0.00	1	10.00	U	บง
CIS-1,3-DICHLOROPROPENE	0.00	 	10.00	U	บ
DIBROMOCHLOROMETHANE	0.00	†	10.00	ט	ט
ETHYLBENZENE	0.00		10.00	บ	ט
METHYLENE CHLORIDE	2.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	U
TETRACHLOROETHENE	C.00		10.00	ט	υ
TOLUENE	0.00		10.00	ט	ט
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	ט	ט
TRICHLOROETHENE	0.00		10.00	ט	ט
VINYL CHLORIDE	0.00		10.00	υ	υ
XYLENE (TOTAL)	0.00	1	10.00	ט	ט

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1590

SAMPLE TYPE : mw49

SAMPLE MATRIX : W

ANALYSIS TYPE : VOL SDG : 1590

ASSOCIATED MB : VBLKH4

TRIP BLANK:

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	υ	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	บ	U
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ט
1,1-DICHLOROETHANE	0.00		10.00	บ	ט
1,1-DICHLOROETHENE	0.00		10.00	ט	U
1,2-DICHLOROETHANE	0.00		10.00	α	U
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	U	UJ
2-HEXANONE	0.00		10.00	U	R
4-METHYL-2-PENTANONE	0.00		10.00	ט	บัว
ACETONE	0.00		10.00	U	บว
BENZ ENE	0.00		10.00	ט	U
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOFORM	0.00		10.00	U	ט
BROMOMETHANE	0.00		10.00	υ	ט
CARBON DISULFIDE	0.00		10.00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	υ	υ
CHLOROBENZENE	0.00		10.00	U	U
CHLOROETHANE	0.00		10.00	U	บัง
CHLOROPORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	U	U
CIS-1,3-DICHLOLOPROPENE	0.00		10.00	υ	ט
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzene	0.00		10.00	U	ט
METHYLENE CHLORIDE	24.00	µg/L	0.00	1	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	ט
TOLUENE	0.00		10.00	U	ט
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	Ū	บง
TRICHLOROETHENE	0.00		10.00	U	υ
VINYL CHLORIDE	0.00		10.00	U	U
XYLENE (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1591 ANALYSIS TYPE : VOL SAMPLE TYPE : TB

SAMPLE MATRIX : W

SDG: 1590 1584-1592 ASSOCIATED MB: VBLKH4

TRIP BLANK: 1591TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	υ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	Ū	U
1,1,2-TRICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETHANE	0.00		10.00	σ	ט
1,1-DICHLOROETHENE	0.00		10.00	U	U
1,2-DICHLOROETHANE	0.00		10.00	U	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	U	U
2-BUTANONE	0.00		10.00	ט	עט
2-HEXANONE	0.00		10.00	U	R
4-METHYL-2-PENTANONE	0.00		10.00	ט	บัง
ACETONE	0.00		10.00	U	บJ
BENZENE	0.00		10.00	υ	U
BROMODICHLOROMETHANE	0.00	1	10.00	υ	ט
BROMOFORM	0.00	†	10.00	ט	ט
BROHOMETRANE	0.00	† T	10.00	ט	ט
CARBON DISULFIDE	1.00	µg/L	0.00	J	J
CARBON TETRACELORIDE	0.00		10.00	บ	บ
CHLOROBENZENE	0.00	1	10.00	ט	ט
CHLOROETHANE	0.00	†	10.00	U	ชิงิ
CHLOROFORM	0.00		10.00	U	ט
CELOROMETHANE	0.00	1	10.00	ט	ช
CIS-1,3-DICHLOROPROPENE	0.00	1	10.00	υ	U
DIBROMOCHLOROMETHANE	0.00		10.00	ט	ט
STHYLBENZENE	0.00	1	10.00	ט	ט
METHYLENE CHLORIDE	20.00	μg/L	0.00	1	R
STYRENE	0.00		10.00	U	υ
TETRACHLOROETHENE	0.00	†	10.00	ū	U
TOLUENE	0.00	1	10.00	υ	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	บว
TRICHLOROETHENE	0.00		10.00	ט	U
VINYL CHLORIDE	0.00	1	10.00	ט	ט
XYLENE (TOTAL)	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary
REVIEWER: DENNIS MARTY
BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1592

SAMPLE TYPE: FB (TANK) SAMPLE MATRIX: W
SDG: 1590 (WATER) ASSOCIATED MB: VBLKH4

ANALYSIS TYPE : VOL SDG : 1590

TRIP BLANK: 1591TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	บ
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	U
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ช
1,1-DICHLOROETHANE	0.00		10.00	ט	ט
1,1-DICHLOROETFENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00		10.00	Ū	บ
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	U
1,2-DICHLOROPROPANE	0.00		10.00	U	U
2-BUTANONE	0.00		10.00	U	บัง
2-HEXANONE	0.00		10.00	U	R
4-METHYL-2-PENTANONE	0.00	1	10.00	U	บJ
ACETONE	0.00		10.00	U	UJ
BENZENE	10.00	µg/L	0.00		
BROMODICHLOROMETHANE	0.00	†	10.00	υ	U
BROMOFORM	0.00		10.00	ט	U
BROMOMETHANE	0.00		10.00	U	ט
CARBON DISULFIDE	0.00		10.00	υ	ט
CARBON TETRACHLORIDE	0.00		10.00	U	υ
CHLOROBENZENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	U	UJ
CHLOROFORM	1.00	µg/L	0.00	J	J
CHLOROMETHANE	0.00		10.00	ט	U
CIS-1,3-DICHLOROPROPENE	0.00	Ī	10.00	U	ט
DIBROMOCHLOROMETHANE	0.00		10.00	บ	U
ethylbenzene	2.00	µg/L	0.00	J	J
METHYLENE CHLORIDE	30.00	µg/L	0.00		R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	บ	U
TOLUENE	0.00		10.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	U	UJ
TRICHLOROETHENE	0.00		10.00	U	ט
VINYL CHLORIDE	0.00	Ī	10.00	U	U
XYLENES (TOTAL)	3.00	μg/L	0.00	J	J
		1		1	

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY

DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1593 SAMPLE TYPE : $m\omega\phi3$ SAMPLE MATRIX : W ANALYSIS TYPE : VOL SDG : 1590 ASSOCIATED MB : VBLKN2

BEGINNING SAMPLE #:1545

TRIP BLANK: 1597TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Unite	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ט	U
1,1,2,2-TETRACHLOROETHANE	0.00	1	10.00	ט	ט
1,1,2-TRICELOROETHANE	0.00		10.00	U	Ū
1,:-DICHLOROETHANE	0.00		10.00	ט	U
1,1-DICHLOROETHENE	0.00		10.00	ט	ט
1,2-DICHLOROETHANE	2.00	μg/L	0.00	J	J
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	ט
1,2-DICHLOROPROPANE	0.00		10.00	v	ט
2-BUTANONE	0.00		10.00	ט	υJ
2-HEXANONE	0.00		10.00	ט	R
4-METHYL-2-PENTANONE	0.00		10.00	ū	บง
ACETONE	0.00		10.00	ū	UJ
BENZENE	0.00	†	10.00	ט	ט
BROMODICHLOROMETHANE	0.00	1	10.00	ט	ט
BROHOFORM	0.00	1	10.00	ט	ט
BROMOMETHANE	0.00		10.00	ט	U
CARBON DISULPIDE	0.00		10,00	ט	ט
CARBON TETRACHLORIDE	0.00		10.00	ט	υ
CHLOROBENZ ENE	0.00		10.00	ט	ט
CHLOROETHANE	0.00		10.00	U	บัง
CHLOROFORM	0.00	1	10.00	ט	U
CHLOROMETHANE	0.00		10.00	ט	บ
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	υ
DIBROMOCHLOROMETHANE	0.00		10.00	υ	ט
ETHYLBENZENE	0.00	1	10.00	ט	U
METHYLENE CHLORIDE	5.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	บ	U
TETRACHLOROETHENE	0.00		10.00	υ	ט
TOLUENE	0.00		10.00	ט	U
TRANS-1, 3-DICHLOROPROPENE	0.00		10.00	υ	נט
TRICHLOROETHENE	0.00]	10.00	ט	U
VINYL CHLORIDE	0.00		10.00	ט	U
XYLENE (TOTAL)	0.00	1	10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Summary Final REVIEWER: DENNIS MARTY

BEGINNING SAMPLE #:1545

DATE: 03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1595

SAMPLE TYPE : MWO7 SAMPLE MATRIX : W

ASSOCIATED MB : VBLKN2

ANALYSIS TYPE : VOL

TRIP BLANK : 1597TB FIELD BLANKS: 1548FB, 1556FB, 1592FB

EQUIPMENT RINSATES: 1558ER, 1572ER, 1582ER, 1585ER, 1596ER

SDG: 1590

Compound	Concentration	Units	Instrument Detection Limit	QCode	QPinal
1,1,1-TRICHLOROETHANE	0.00		120.00	υ	U
1,1,2,2-TETRACHLOROETHANE	0.00		120.00	ט	ט
1,1,2-TRICHLOROETHANE	0.00		120.00	ט	บ
1,1-DICHLOROETHANE	0.00		120.00	Ū	ט
1,1-DICHLOROETHENE	0.00	1	120.00	U	U
1,2-DICHLOROETHANE	0.00		120.00	ū	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		120.00	Ū	ט
1,2-DICHLOROPROPANE	0.00	T	120.00	Ū	ט
2-BUTANONE	0.00		120.00	ט	บJ
2-HEXANONE	0.00		120.00	U	R
4-METHYL-2-PENTANONE	0.00		120.00	บ	บว
ACETONE	0.00		120.00	U	บง
Benzene	2100.00	μg/L	0.00		
BROMODICFLOROMETHANE	0.00	1	120.00	ט	U
BROMOFORM	0.00	1	120.00	ט	U
BROMOMETHANE	0.00		120.00	ט	U
CARBON DISULFIDE	0.00		120.00	ט	U
CARBON TETRACHLORIDE	0.00		120.00	U	U
CHLOROBENZENE	0.00		120.00	υ	U
CHLOROETHANE	0.00		120.00	ט	บัง
CHLOROFORM	0.00		120.00	υ	ט
CHLOROMETHANE	0.00		120.00	U	ט
CIS-1,3-DICHLOROPROPENE	0.00		120.00	υ	U
DIBROMOCHLOROMETHANE	0.00		120.00	U	U
ETHYLBENZENE	480.00	µg/L	0.00		1
METHYLENE CHLORIDE	51.00	µg/L	0.00	J	J
STYRENE	0.00		120.00	บ	ט
TETRACHLOROETHENE	0.00		120.00	ט	ีย
TOLUENE	0.00		120.00	U	U
TRANS-1, 3-DICHLOROPROPENE	0.00		120.00	U	บJ
TRICHLOROETHENE	0.00	1	120.00	U	ט
VINYL CHLORIDE	0.00		120.00	U	υ
XYLENES (TOTAL)	1000.00	µg/L	0.00		

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545 DATE:03/01/94

DATA VALIDATION LEVEL:C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1596 ANALYSIS TYPE : VOL SAMPLE TYPE : ERMW \$47 SAMPLE MATRIX : W

SDG: 1590

ASSOCIATED MB : VBLKN2

TRIP BLANK: 1597TB

FIELD BLANKS: 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	U	ט
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ט	υ
1,1,2-TRICHLOROETHANE	0.00		10.00	Ū	ט
1,1-DICHLOROETHANE	0.00	1	10.00	υ	ט
1,1-DICHLOROETHENE	0.00		10.00	U	ט
1,2-DICHLOROETHANE	0.00	1	10.00	ט	ט
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	Ū	U
1,2-DICHLOROPROPANE	0.00		10.00	Ū	ט
2-BUTANONE	0.00	1	10.00	U	บว
2-HEXANONE	0.00		10.00	ט	R
4-METHYL-2-PENTANONE	0.00		10.00	ט	บJ
ACETONE	0.00		10.00	ט	บัง
BENZENE	0.00		10.00	U	U
BROMODICHLOROMETHANE	0.00		10.00	ט	U
BROMOPORM	0.00	1	10.00	U	U
BROHOMETRANE	0.00		10.00	Ū	ט
CARBON DISULFIDE	0.00	1	10.00	U	U
CARBON TETRACHLORIDE	0.00		10.00	U	υ
CHLOROBENZENE	0.00	1	10.00	U	U
CHLOROETHANE	0.00	1	10.00	υ	JJ
CHLOROFORM	0.00		10.00	ט	ט
CHLOROMETHANE	0.00		10.00	U	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	ט	υ
DIBROMOCHLOROMETHANE	0.00	1	10.00	ט	U
ETHYLBENZENE	0.00		10.00	U	U
METHYLENE CHLORIDE	4.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	υ	υ
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00		10.00	υ	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	บง
TRICHLOROETHENE	0.00		10.00	U	U
VINYL CHLORIDE	0.00		10.00	U	U
XYLENE (TOTAL)	0.00		10.00	U	U

PROJECT: NEVADA AIR NAT. GUARD (RENO)

Final Summary REVIEWER: DENNIS MARTY BEGINNING SAMPLE #:1545

DATE:03/01/94

DATA VALIDATION LEVEL: C ENDING SAMPLE #:1597

SAMPLE AND ASSOCIATED BLANK DATA

SAMPLE NUMBER: 1597 ANALYSIS TYPE: VOL SAMPLE TYPE : TB

SAMPLE MATRIX : W

SDG: 1590 1593-1596 ASSOCIATED MB: VBLKN2

TRIP BLANK: 1597TB

FIELD BLANKS : 1548FB, 1556FB, 1592FB

Compound	Concentration	Units	Instrument Detection Limit	QCode	QFinal
1,1,1-TRICHLOROETHANE	0.00		10.00	ซ	U
1,1,2,2-TETRACHLOROETHANE	0.00		10.00	ם -	ט
1,1,2-TRICHLOROETHANE	0.00		10.00	U	ū
1,1-DICHLOROETHANE	0.00		10.00	ט	U
1,1-dichloroethene	0.00		10.00	ū	U
1,2-DICHLOROETHANE	0.00		10.00	U	Ū
1,2-DICHLOROETHENE (TOTAL)	0.00		10.00	U	ט
1,2-DICHLOROPROPANE	0.00		10.00	ט	ט
2-BUTANONE	0.00		10.00	ט	เม
2-HEXANONE	0.00		10.00	Ü	R
4-METHYL-2-PENTANONE	0.00		10.00	U	บJ
ACETONE	0.00		10.00	U	υJ
BENZENE	0.00		10.00	ט	מ
BROMODICHLOROMETHANE	0.00		10.00	ט	ט
BROMOFORM	0.00		10.00	ט	ט
BROMOMETHANE	0.00		10.00	מ	ט
CARBON DISULFIDE	0.00		10.00	Ū	מ
CARBON TETRACHLORIDE	0.00		10.00	ט	ט
CHLOROBENZENE	0.00		10.00	ס	ט
CHLOROETHANE	0.00		10.00	ט	บJ
CHLOROFORM	0.00		10.00	U	U
CHLOROMETHANE	0.00		10.00	ט	U
CIS-1,3-DICHLOROPROPENE	0.00		10.00	U	U
DIBROMOCHLOROMETHANE	0.00		10.00	U	ט
ethylbenzene	0.00		10.00	U	U
METHYLENE CHLORIDE	1.00	µg/L	0.00	J	R
STYRENE	0.00		10.00	U	ט
TETRACHLOROETHENE	0.00		10.00	U	U
TOLUENE	0.00	T	10.00	บ	U
TRANS-1,3-DICHLOROPROPENE	0.00		10.00	U	บJ
Trichloroethene	0.00		10.00	υ	U
VINIL CHLORIDE	0.00		10.00	U	ט
XYLENE (TOTAL)	0.00		10.00	v	υ