

RISC-V

Reference Data v2.3

MNEMONIC	FM1		DESCRIPTION (in Verilog)	Note	SYNTAX	OPCODE		FUNCT7 RS2	HEX
lb	I	•	R[rd]={24'bM[](7),M[R[rs1]+ imm](7:0)}	4)	lb rd,imm(rs1)	0000011	000		03/0
	I		$R[rd]={16'bM[](15),M[R[rs1]+imm](15:0)}$	4)	lh rd,imm(rs1)	0000011	001		03/1
lw	1		R[rd]=M[R[rs1]+imm]		lw rd,imm(rs1)	0000011	010		03/2
	1		R[rd]={24'b0,M[R[rs1]+imm](7:0)}		lbu rd,imm(rs1)	0000011	100		03/4
lhu	1	•	R[rd]={16'b0,M[R[rs1]+ imm](15:0)}		lhu rd,imm(rs1)	0000011	101		03/5
	1		R[rd]=R[rs1]+imm		addi rd,rs1,imm	0010011	000	0000000	13/0
2 . 1	1		R[rd]=R[rs1]< <imm[4:0]< td=""><td></td><td>slli rd,rs1,imm</td><td>0010011 0010011</td><td>001 010</td><td>0000000 shamt</td><td></td></imm[4:0]<>		slli rd,rs1,imm	0010011 0010011	001 010	0000000 shamt	
sltiu	i		R[rd]=(R[rs1] <imm)?1:0 R[rd]=(R[rs1]<imm)?1:0< td=""><td>2)</td><td>slti rd,rs1,imm sltiu rd,rs1,imm</td><td>0010011</td><td>010</td><td></td><td>13/2 13/3</td></imm)?1:0<></imm)?1:0 	2)	slti rd,rs1,imm sltiu rd,rs1,imm	0010011	010		13/2 13/3
	i	•	R[rd]=R[rs1]^imm	۷)	xori rd,rs1,imm	0010011	100		13/4
srli	i		R[rd]=R[rs1]>>imm[4:0]		srli rd,rs1,imm	0010011	101	0000000 shamt	
	i		R[rd]=R[rs1]>>>imm[4:0]	5)	srai rd,rs1,imm	0010011	101	0100000 shamt	
ori	i		R[rd]=R[rs1] imm	٥,	ori rd,rs1,imm	0010011	110	020000 31141111	13/6
andi	Ī		R[rd]=R[rs1] & imm		andi rd,rs1,imm	0010011	111		13/7
auipc	U	Add Upper Immediate to PC	R[rd]=PC+{imm,12'b0}		auipc rd,imm	0010111			17
sb	S	Store Byte	M[R[rs1]+imm](7:0)=R[rs2](7:0)		sb rs2,imm(rs1)	0100011	000		23/0
sh	S	Store Halfword	M[R[rs1]+imm](15:0)=R[rs2](15:0)		sh rs2,imm(rs1)	0100011	001		23/1
SW	S		M[R[rs1]+imm]=R[rs2]		sw rs2,imm(rs1)	0100011	010		23/2
add	R		R[rd]=R[rs1]+R[rs2]		add rd,rs1,rs2	0110011	000	0000000	33/0/00
sub	R		R[rd]=R[rs1]-R[rs2]		sub rd,rs1,rs2	0110011	000	0100000	33/0/20
sll	R		R[rd]=R[rs1]<< R[rs2]		sll rd,rs1,rs2	0110011	001	0000000	33/1/00
slt	R		R[rd]=(R[rs1] <r[rs2])?1:0< td=""><td>21</td><td>slt rd,rs1,rs2</td><td>0110011</td><td>010</td><td>0000000</td><td>33/2/00</td></r[rs2])?1:0<>	21	slt rd,rs1,rs2	0110011	010	0000000	33/2/00
sltu	R	-	R[rd]=(R[rs1] <r[rs2])?1:0< td=""><td>2)</td><td>sltu rd,rs1,rs2</td><td>0110011</td><td>011</td><td>0000000</td><td>33/3/00</td></r[rs2])?1:0<>	2)	sltu rd,rs1,rs2	0110011	011	0000000	33/3/00
xor srl	R R		R[rd]=R[rs1]^R[rs2]		xor rd,rs1,rs2	0110011	100	0000000	33/4/00
sra	R R		R[rd]=R[rs1]>>R[rs2] R[rd]=R[rs1]>>>R[rs2]	5)	srl rd,rs1,rs2 sra rd,rs1,rs2	0110011 0110011	101 101	0000000 0100000	33/5/00 33/5/20
or	R		R[rd]=R[rs1] R[rs2]	٥)	or rd,rs1,rs2	0110011	110	0000000	33/6/00
and	R		R[rd]=R[rs1] & R[rs2]		and rd,rs1,rs2	0110011	111	0000000	33/7/00
lui	U		R[rd]={imm,12'b0}		lui rd,imm	0110011			37
beq	В		if(R[rs1]=R[rs2]) PC=PC+{imm,1'b0}		beg rs1,rs2,imm	1100011	000		63/0
bne	В	·	if(R[rs1]!=R[rs2]) PC=PC+{imm,1'b0}		bne rs1,rs2,imm	1100011	001		63/1
blt	В	-	if(R[rs1] <r[rs2]) pc="PC+{imm,1'b0}</td"><td></td><td>blt rs1,rs2,imm</td><td>1100011</td><td>100</td><td></td><td>63/4</td></r[rs2])>		blt rs1,rs2,imm	1100011	100		63/4
bge	В	Branch Greater or Equal	if(R[rs1]>=R[rs2]) PC=PC+{imm,1'b0}		bge rs1,rs2,imm	1100011	101		63/5
bltu	В		if(R[rs1] <r[rs2]) pc="PC+{imm,1'b0}</td"><td>2)</td><td>bltu rs1,rs2,imm</td><td>1100011</td><td>110</td><td></td><td>63/6</td></r[rs2])>	2)	bltu rs1,rs2,imm	1100011	110		63/6
bgeu	В	Branch Great or Eq Unsign	if(R[rs1]>=R[rs2]) PC=PC+{imm,1'b0}	2)	bgeu rs1,rs2,imm	1100011	111		63/7
_	I	Jump & Link Register	R[rd]=PC+4; PC=(R[rs1]+imm)&(!1)	3)	jalr rd,rs1,imm	1100111	000		67/0
=	J	•	R[rd]=PC+4; PC=PC+{imm,1'b0}		jal rd,imm	1101111			6F
	I		Transfer control to environment system		ecall	1110011	000	0000000 00000	73/0/000
csrrw	1		R[rd]=C[CSR]; C[CSR]=R[rs1]		csrrw rd,CSR,rs1	1110011	001		73/1
	1		R[rd]=C[CSR]; C[CSR]=C[CSR] R[rs1]		csrrs rd,CSR,rs1	1110011	010		73/2
csrrc	1		R[rd]=C[CSR]; C[CSR]=C[CSR]&!R[rs1]		csrrc rd,CSR,rs1	1110011	011		73/3
csrrwi	1		R[rd]=C[CSR]; C[CSR]=imm		csrrwi rd,CSR,imm		101		73/5
	i		R[rd]=C[CSR]; C[CSR]=C[CSR] imm R[rd]=C[CSR]; C[CSR]=C[CSR]&!imm		csrrsi rd,CSR,imm csrrci rd,CSR,imm		110 111		73/6 73/7
mul	R		R[rd]=R[rs1]*R[rs2](31:0)			0110011	000	0000001	33/0/01
mulh	R		R[rd]=R[rs1]*R[rs2](63:32)		mulh rd,rs1,rs2	0110011	001	0000001	33/1/01
mulhsu	R		R[rd]=R[rs1]*R[rs2](63:32)	6)		0110011	010	0000001	33/2/01
mulhu	R		R[rd]=R[rs1]*R[rs2](63:32)	2)	mulhu rd,rs1,rs2	0110011	011	0000001	33/3/01
div	R	· · · · · · · · · · · · · · · · · · ·	R[rd]=(R[rs1]/R[rs2])		div rd,rs1,rs2	0110011	100	0000001	33/4/01
divu	R		R[rd]=(R[rs1]/R[rs2])	2)	divu rd,rs1,rs2	0110011	101	0000001	33/5/01
rem	R	Remainder	R[rd]=(R[rs1]%R[rs2])		rem rd,rs1,rs2	0110011	110	0000001	33/6/01
remu	R	=	R[rd]=(R[rs1]%R[rs2])	2)	remu rd,rs1,rs2	0110011	111	0000001	33/7/01
fadd.s	R		F[rd]=F[rs1]+F[rs2]		fadd.s rd,rs1,rs2	1010011	rm	0000000	53/rm/00
	R	, ,,	R[rd]=class(F[rs1])	8)	fclass.s rd,rs1	1010011	001	1110000	53/1/E0
fcvt.s.w	R		F[rd]=float(R[rs1])		fcvt.s.w rd,rs1	1010011	rm	1101000 00000	
fcvt.s.wu			F[rd]=float(R[rs1])	2)	fcvt.s.wu rd,rs1	1010011	rm	1101000 00001	
fcvt.w.s	R	-	R[rd]=integer(F[rs1])	21	fcvt.w.s rd,rs1	1010011	rm	1100000 00000	
fcvt.wu.s		= =	R[rd]=integer(F[rs1])	2)	fcvt.wu.s rd,rs1	1010011	rm	1100000 00001	
fdiv.s	R		F[rd]=F[rs1]/F[rs2]		fdiv.s rd,rs1,rs2	1010011	rm 010	0001100	53/rm/0C
feq.s fle.s	R R	· · · · · · · · · · · · · · · · · · ·	R[rd]=(F[rs1]==F[rs2])?1:0		feq.s rd,rs1,rs2	1010011	010	1010000	53/2/50
flt.s	R R		R[rd]=(F[rs1]<=F[rs2])?1:0 R[rd]=(F[rs1] <f[rs2])?1:0< td=""><td></td><td>fle.s rd,rs1,rs2 flt.s rd,rs1,rs2</td><td>1010011 1010011</td><td>000 001</td><td>1010000 1010000</td><td>53/0/50 53/1/50</td></f[rs2])?1:0<>		fle.s rd,rs1,rs2 flt.s rd,rs1,rs2	1010011 1010011	000 001	1010000 1010000	53/0/50 53/1/50
flw	I.		F[rd]=M[R[rs1]+imm]		flw rd,imm(rs1)	000011	010	1010000	07/2
fmax.s	R		F[rd]=(F[rs1]>F[rs2])?F[rs1]: F[rs2]		fmax.s rd,rs1,rs2	1010011	010	0010100	53/1/14
fmin.s	R		F[rd]=(F[rs1] <f[rs2])?f[rs1]: f[rs2]<="" td=""><td></td><td>fmin.s rd,rs1,rs2</td><td>1010011</td><td>000</td><td>0010100</td><td>53/0/14</td></f[rs2])?f[rs1]:>		fmin.s rd,rs1,rs2	1010011	000	0010100	53/0/14
fmul.s	R		F[rd]=F[rs1]*F[rs2]		fmul.s rd,rs1,rs2	1010011	rm	0001000	53/rm/08
fmv.s.x	R		F[rd]=R[rs1]		fmv.s.x rd,rs1	1010011	000	1111000 00000	53/0/F00
fmv.x.s	R	_	R[rd]=F[rs1]		fmv.x.s rd,rs1	1010011	000	111000 00000	53/0/E00
fsgnj.s	R	-	F[rd]={F[rs2](31),F[rs1](30:0)}		fsgnj.s rd,rs1,rs2	1010011	000	0010000	53/0/10
	R	_	F[rd]={!F[rs2](31),F[rs1](30:0)}		fsgnjn.s rd,rs1,rs2		001	0010000	53/1/10
fsgnjx.s	R		F[rd]={F[rs2](31)^F[rs1](31), F[rs1](30:0)}		fsgnjx.s rd,rs1,rs2		010	0010000	53/2/10
fsqrt.s	R	_	F[rd]=sqrt(F[rs1])		fsqrt.s rd,rs1	1010011	rm	0101100 00000	53/rm/580
13410.2		51 . 5 6	E[1] E[4] E[0]		fsub.s rd,rs1,rs2	1010011	rm	0000100	53/rm/04
fsub.s	R		F[rd]=F[rs1]-F[rs2]		1300.310,131,132	1010011		0000100	33/1111/01
_	R S		F[rd]=F[rs1]-F[rs2] M[R[rs1]+imm]=F[rs2]		fsw rs2,imm(rs1)	010011	010	0000100	27/2

	NOTES
2)	Operation assumes unsigned integers (instead 2's complement,
3)	The least significant bit of the branch address in jalr is set to 0
4)	(signed) Load instructions extend the sign bit of data
5)	Replicates the sign bit to fill in the leftmost bits of the result during right shift
6)	Multiply with one operand signed and one unsigned
8)	Classify writes a 10-bit mask to show which properties are true (e.g. —inf, -0, +0, +inf, denorm)
	The immediate field is sign-extended in RISC-V

CORE INSTRUCTION FORMATS

R I

В

	31 25	24 20	19 15	14 12	11 7	6	0
	funct7	rs2	rs1	funct3	Rd	opcode	
	imm[1	rs1	funct3	Rd	opcode		
	imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	
	imm[12 10:5]	rs2	rs1	funct3	imm[4:1 11]	opcode	
		imm[31:1	Rd	opcode			
Į	in	nm[20 10:1 1	Rd	opcode			

	PSEUDO INS	TRUCTIONS	*non-exhaustive list
	MNEMONIC	NAME	DESCRIPTION
	beqz	Branch == Zero	If(R[rs1]==0) PC=PC+{imm,1'b0}
	bnez	Branch != Zero	If(R[rs1]!=0) PC=PC+{imm,1'b0}
	fabs.s	Absolut Value	F[rd]=(F[rs1]<0)?-F[rs1]:F[rs1]
	fmv.s	FP move	F[rd]=F[rs1]
	fneg.s	FP negate	F[rd]=-F[rs1]
	j	Jump	PC={imm,1'b0}
	jr	Jump Register	PC=R[rs1]
	la	Load Address	R[rd]=address
	li	Load Immediate	R[rd]=immediate
	mv	Move	R[rd]=R[rs1]
	neg	Negate	R[rd]=-R[rs1]
	nop	No Operation	R[zero]=R[zero]+zero
	not	Not	R[rd]=!R[rs1]
	ret	Return	PC=R[ra]
	seqz	Set if == Zero	R[rd]=(R[rs1]==0)?1:0
	snez	Set if != Zero	R[rd]=(R[rs1]!=0)?1:0
ı			

	Decim	Binary Prefix			
mili(m)	10-3	kilo(k)	10 ³	kibi(ki)	210
micro(μ)	10 ⁻⁶	Mega(M)	10 ⁶	Mebi(Mi)	2^{20}
nano(n)	10-9	Giga(G)	10 ⁹	Gibi(Gi)	2^{30}
pico(p)	10-12	Tera(T)	10 ¹²	Tebi(Ti)	2^{40}
femto(f)	10-15	Peta(P)	10 ¹⁵	Pebi(Pi)	250
atto(a)	10-18	Exa(E)	10 ¹⁸	Exbi(Ei)	2^{60}
zepto(z)	10-21	Zetta(Z)	10 ²¹	Zebi(Zi)	270
yocto(y)	10-24	Yotta(Y)	1024	Yobi(Yi)	280

	CSR Listing						
Number Privilege Name D		Name	Description				
0x000	URW	ustatus	Status register				
0x001	URW	fflags	FP accrued exceptions				
0x002	URW	frm	FP dynamic rounding mode				
0x003	URW	fcsr	FP control and status (frm+fflags)				
0x004	URW	uie	Interrupt-enable				
0x005	URW	utvec	Trap handler base				
0x040	URW	uscratch	Scratch register				
0x041	URW	uepc	Exception program counter				
0x042	URW	ucause	Trap cause				
0x043	URW	utval	Bad address or instruction				
0x044	URW	uip	Interrupt pending				
0xC00	URO	cycle	Cycle counter				
0xC01	URO	time	Timer				
0xC02	URO	instret	Instruction-retired counter				
0xC80	URO	cycleh	Upper 32 bits of cycle				
0xC81	URO	timeh	Upper 32 bits time				
0xC82	URO	instreth	Upper 32 bits instret				

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Expoent-Bias)}$

Half-precision Bias = 15 Single-Precision Bias = 127 Double-Precision Bias = 1023 Quad-Precision Bias = 16383

IEEE Half, Single, Double, and Quad-Precision Formats:

S	Exponent		Fraction			
15	14:10		9:0	•		
S	Exponent		Fraction			
31	30:23		22:0			
S	Exponent		Fraction			
63	62:52		51:0			
S	Exponent		Fraction			
127	126:112			111	:0	

FCSR (Float-point Control and Status Register)

FCSR (Float-point Control and Status Register)										
31		8	7	6	5	4	3	2	1	0
Reserved			Round Mode			NV	DZ	OF	UF	NX

Round Mode(rm)

000	to even
001	to zero
010	to -∞
011	to +∞
100	to max mag
111	N.A. (Rars)

Flags

NV	Invalid Operation
DZ	Divide by Zero
OF	Overflow
UF	Underflow
NX	Inexact

REGISTER NAME. USE. CALLING CONVENTION

REGISTER NAM	E, USE, CALLING	CONVENTION	
REGISTER	NAME	USE	SAVED?
x0	zero	The constant value 0	N.A.
x1	ra	Return Address	No
x2	sp	Stack Pointer	Yes
x3	gp	Global Pointer	
x4	tp	Thread Pointer	
x5-x7	t0-t2	Temporaries	No
x8	s0/fp	Saved Register/Frame Pointer	Yes
x9	s1	Saved Register	Yes
x10-x11	a0-a1	Function Arguments/Return Values	No
x12-x17	a2-a7	Function Arguments	No
x18-x27	s2-s11	Saved Registers	Yes
x28-x31	t3-t6	Temporaries	No
f0-f7	ft0-ft7	FP Temporaries	No
f8-f9	fs0-fs1	FP Saved Registers	Yes
f10-f11	fa0-fa1	FP Function Arguments/Return Values	No
f12-f17	fa2-fa7	FP Function Arguments	No
f18-f27	fs2-fs11	Saved Registers	Yes
f28-f31	ft8-ft11	Temporaries	No

Service	a7	Input	Output
Print Integer	1	a0=integer	Print an Integer on console
Print Float	2	fa0=float	Print a Float on console
Print String	4	a0=address of the string	Print a null-terminated string
Read Integer	5		Return in a0 the integer read from console
Read Float	6		Return in fa0 the float read from console
Dood Ctring	8	a0=buffer address,	Return in a0 address the string read from
Read String	٥	a1=max num characters	console
Print Char	11	a0=char (ASCII)	Print a char a0 (ASCII)
Exit	10		Return to operational system
Read Char	12		Return in a0 the ASCII code of a pressed
Read Char	12		key
Time	30		Return in {a1,a0} the system time
Sleep	32	a0=time(ms)	Sleep for a0 milliseconds
Print Int Hex	34	a0=integer	Print an integer a0 in hexadecimal
Rand	41		Return a random number in a0