Công thức tính số mol OH- (hoặc CO₂) khi cho CO₂ tác dụng với dung dịch kiềm

Dạng bài khi sục khí CO₂ vào dung dịch kiềm là bài toán rất hay gặp trong đề thi. Nhiều bạn còn luống cuống trong khâu xử lý hoặc làm sai do bị đề bẫy. Bài viết dưới đây sẽ giúp các em tìm ra đáp án chính xác và nhanh nhất.

1. Công thức tính số mol OH (hoặc CO₂) khi cho CO₂ tác dụng với dung dịch kiềm

A. Bài toán CO₂ dẫn vào dung dịch NaOH (hoặc KOH)

Ví du:

$$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O(1)$$

$$CO_2 + NaOH \rightarrow NaHCO_3$$
 (2)

$$\label{eq:definition} \mbox{D} \mbox{\v{q}} \mbox{t} \ T = \frac{n_{\mbox{\scriptsize NaOH}}}{n_{\mbox{\scriptsize CO}_2}}$$

- Nếu T ≥ 2 : chỉ tạo muối Na₂CO₃ \Rightarrow $n_{NaOH\,pu}$ = $2n_{CO_2}$ = $2n_{Na_2CO_3}$
- Nếu T \leq 1 : chỉ tạo muối NaHCO₃ \Rightarrow $n_{NaOH} = n_{NaHCO_3} = n_{CO_2 pu}$
- Nếu 1 < T < 2 : tạo cả muối NaHCO $_3$ và Na $_2$ CO $_3$ \implies $n_{CO_3^{2-}} = n_{OH^-} n_{CO_2}$
- Chất hấp thụ vào bình NaOH tăng:

 $m_{\ bình\ tăng}=m_{\ dd\ tăng}=m_{\ chất\ hấp\ thụ\ (CO2\ +\ H2O\ có\ thể\ có)}$

Tương tự với KOH.

B. Bài toán CO₂ dẫn vào dung dịch Ca(OH)₂ hoặc Ba(OH)₂:

Phương trình hóa học:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O(1)$$

$$Ca(OH)_2 + 2CO_2 \rightarrow Ca(HCO_3)_2$$
 (2)

Xét tỉ lệ:
$$T = \frac{n_{CO_2}}{n_{Ca(OH)_2}}$$

- Nếu T \leq 1 : chỉ tạo muối CaCO₃ \Rightarrow $n_{Ca(OH)_2} = n_{CaCO_3} = n_{CO_2}$
- Nếu T ≥2 : chỉ tạo muối Ca(HCO₃)₂ \implies $n_{Ca(OH)_2} = n_{Ca(HCO_3)_2}$
- Nếu 1 < T < 2: tạo cả muối CaCO₃ và Ca(HCO₃)₂ \Rightarrow $n_{\downarrow} = n_{OH^{-}} n_{CO_{2}}$
- Xét tương tự với Ba(OH)₂
- Sự tăng giảm khối lượng dung dịch : Khi cho sản phẩm cháy vào bình Ca(OH)₂ hay Ba(OH)₂

$$m_{dd t ilde{a} ng} = m_{h ilde{a} p t h u} - m_{k ilde{e} t t u a}$$

$$m_{dd \ giảm} = m_{k \acute{e}t \ t \acute{u}a} - m_{h \acute{a}p \ thu}$$

- Nếu không có các dữ kiện trên ta phải chia trường hợp để giải.

C. Bài toán cho CO₂ vào hỗn họp dung dịch chứa NaOH, Ca(OH)₂ (hoặc NaOH, Ba(OH)₂ hoặc KOH, Ca(OH)₂ hoặc KOH, Ba(OH)₂)

Phương trình:

$$CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$$
 (1)
 $CO_2 + OH^- \rightarrow HCO_3^-(2)$

-Xét tỉ lệ:
$$T = \frac{n_{OH^-}}{n_{CO_2}}$$

+Nếu T
$$\geq$$
 2 : chỉ tạo muối $\mathrm{CO_3}^{2^-} \Rightarrow \mathrm{n_{OH^-pu}} = 2\mathrm{n_{CO_3^{2^-}}} = 2\mathrm{n_{CO_2}}$

+Nếu T
$$\leq$$
 1 : chỉ tạo muối HCO₃- \Rightarrow $n_{OH^-} = n_{HCO_3^-} = n_{CO_2pu}$

+Nếu 1 < T < 2 : tạo cả muối HCO
$$_3^-$$
 và $_{\rm CO}_3^{2-} \Longrightarrow n_{_{\rm CO}_3^{2-}} = n_{_{\rm OH}^-} - n_{_{\rm CO}_2}$

-Dựa vào dữ kiện bài toán áp dụng định luật bảo toàn khối lượng, bảo toàn nguyên tố tìm số mol của HCO_3^- và CO_3^{2-} rồi so sánh với số mol của Ca^{2+} để suy ra số mol kết tủa.

2. Bạn nên biết

Khi sục khí CO₂ vào dung dịch kiềm thì xảy ra theo 2 giai đoạn sau:

$$CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O (1)$$

Khi hết OH, vẫn tiếp tục sục CO₂ vào thì

$$CO_2 + CO_3^{2-} + H_2O^- \rightarrow 2HCO_3^{-}(2)$$

3. Mở rộng

Khi sục khí SO₂ vào dung dịch kiềm thì hiện tượng và cách giải sẽ tương tự với bài toán sục khí CO₂ vào dung dịch kiềm.

$$SO_2 + 2OH^- \rightarrow SO_3^{2-} + H_2O$$
 (1)
 $SO_2 + OH^- \rightarrow HSO_3^{-}(2)$

Ví dụ minh họa: Dẫn 2,24 lít khí SO₂ (đkc) vào 200ml dung dịch KOH 1,5M. Vậy khi phản ứng xảy ra hoàn toàn thì thu được:

B. KHSO₃ 0,1M

C. K₂SO₃ 0,5M và KOH dư 0,5M

D. KHSO₃ 0,1M và K₂SO₃ 0,5M

Hướng dẫn

 $n_{SO_2} = 0.1 \text{mol}; n_{KOH} = 0.3 \text{mol}$

$$\Rightarrow T = \frac{n_{KOH}}{n_{SO_2}} = 3 > 2$$

Chỉ tạo muối K₂SO₃ và dung dịch KOH dư

$$n_{K_2SO_3} = n_{CO_2} = 0,1mol$$

$$\Rightarrow$$
 $C_{M(K_2SO_3)} = \frac{0.1}{0.2} = 0.5M$

$$n_{KOHdu} = 0.3 - 2n_{CO_2} = 0.1mol$$

$$\Rightarrow$$
 $C_{M(KOH)} = \frac{0.1}{0.2} = 0.5M$

Đáp án C

4. Bài tập minh họa

Câu 1: Sục 2,24 lít khí CO₂ vào 200ml dung dịch NaOH 1M thu được dung dịch

X. Tính khối lượng muối trong X?

A.15 g

B. 20 g

C. 10 g

D.10,6 g

Hướng dẫn

$$n_{CO_2} = 0.1 \text{mol}, n_{NaOH} = 0.2 \text{mol}$$

$$\Rightarrow T = \frac{n_{\text{NaOH}}}{n_{\text{CO}_2}} = 2$$

⇒Dung dịch X chỉ chứa 1 muối là Na₂CO₃

$$\Rightarrow$$
 n $_{Na_2CO_3} = n_{CO_2}$

$$\Rightarrow$$
 m _{Na₂CO₃} = 0,1.106 = 10,6gam

Đáp án D

Câu 2. Cho V lít (đktc) CO₂ tác dụng với 200 ml dung dịch Ca(OH)₂ 1M thu được 10 gam kết tủa. Vây thể tích V của CO₂ là

A. 2,24 lít.

B. 6,72 lít.

C. 8,96 lít.

D. 2,24 hoặc 6,72 lít

Hướng dẫn

$$n_{\text{Ca(OH)}_2} = 0,2\text{mol}; n_{\downarrow\text{CaCO}_3} = 0,1\text{mol}$$

TH1: Chỉ tạo muối CaCO₃

$$\Rightarrow$$
 $n_{CO_2} = n_{\downarrow CaCO_3} = 0.1 mol$

$$\Rightarrow$$
 V_{CO₂} = 0,1.22,4 = 2,24 lit

TH2: Tạo hỗn hợp 2 muối

Bảo toàn nguyên tố Ca : $n_{Ca(HCO_3)_2} = n_{Ca(OH)_2} - n_{\downarrow CaCO_3} = 0,1 mol$

Bảo toàn nguyên tố C : \Rightarrow $n_{CO_2} = 2n_{Ca(HCO_3)_2} + n_{\downarrow CaCO_3} = 0,3mol$

$$\Rightarrow$$
 V_{CO₂} = 0,3.22,4 = 6,72 lit

Đáp án D

Câu 3: Sục 3,36 lít khí CO₂ (đktc) vào 500ml dd KOH 0,1M và Ba(OH)₂ 0,12M. Tính m kết tủa thu được?

A. 4,925 gam

B. 3,94 gam

C. 1,97 gam

D. 2,55 gam

Hướng dẫn:

$$n_{CO_2} = 0.15 \text{ mol}, n_{OH^-} = 0.17 \text{ mol}, n_{Ba^{2+}} = 0.06 \text{ mol}$$

Ta thấy: $1 < T=1,133 < 2 \implies$ tạo cả muối HCO_3^- và CO_3^{2-}

Cách 1:

$$CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$$

$$0.085 \quad 0.17 \rightarrow 0.085$$

$$CO_2 + CO_3^{2-} + H_2O \rightarrow 2HCO_3^{-}$$

$$0,065 \rightarrow 0,065 \rightarrow 0,13$$

$$\begin{split} &n_{\text{CO}_3^{2^-}} = \ 0,085\text{-}0,065 = 0,02\text{mol} < n_{\text{Ba}^{2^+}} = 0,06\text{mol} \\ &n_{\downarrow} = 0,02\text{mol} \\ &\Rightarrow m_{\downarrow} = 0,02 \ . \ 197 = 3,94g \\ &\text{Cách 2:} \\ &\text{Ta c\'o:} \ \Rightarrow n_{\text{CO}_3^{2^-}} = n_{\text{OH}^-} - n_{\text{CO}_2} \rightarrow a = 0,17\text{-}0,15 \rightarrow a = 0,02 \text{ mol} \\ &n_{\text{CO}_3^{2^-}} = 0,02\text{mol} < n_{\text{Ba}^{2^+}} = 0,06\text{mol} \\ &\Rightarrow n_{\downarrow} = 0,02\text{mol} \\ &\Rightarrow m_{\downarrow} = 0,02.197 = 3,94\text{gam} \end{split}$$

Đáp án B