Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID25501	
Project Name	Project - WEB PHISHING DETECTION	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: supervised learning classification	from sklearm.linear_model import LogisticRegression lr-LogisticRegression() lr-fit(x_train_y_train) LogisticRegression()
		MAE - , MSE - , RMSE - , R2 score - Classification Model: Logistic Regression	y_predi=1r.predict(x_test) from sklearn.metrics import accuracy_score log_reg=accuracy_score(y_test,y_predi) log_reg
		Confusion Matrix - , Accuray Score-	9.9167797376752601
		& Classification Report -	
2.	Tune the Model	Hyperparameter Tuning -	Date Indiag_Thinking_Tyleins Data Da
		Validation Method -	
			from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import NFold, cross_val_score X, y = datasets.load_iris(return_Xy=True) clf = DecisionTreeClassifier(random_state=42) k_folds = KFold(n_splits = 5) scores = cross_val_score(clf, X, y, cv = k_folds) print("Cross Validation Scores: ", scores) print("Average CV Scores ", scores.mean()) print("Mumber of CV Scores used in Average: ", len(scores)) Cross Validation Scores: [1. 0.03333333 0.0333333 0.03 Average CV Scores used in Average: 5 Average CV Scores used in Average: 5