

Álgebra Relacional

Prof. Heloise Manica

<u>Bibliografia</u>: Korth, Henry F. e Silbershcatz, Abraham. Sistemas de Bancos de Dados; Makron Books; 2ª Edição. Capítulo 3

Linguagens de Consulta

- Linguagem por meio da qual usuários solicitam informações do banco de dados.
- Categoria de linguagens:
 - Procedural
 - Não-procedural
- ❖ Linguagens "Puras":
 - Álgebra Relacional (procedural)
 - Cálculo relacional de tupla (não-procedural)
 - Cálculo relacional de domínio (não-procedural)
- Linguagens puras (formais, sem a sintaxe agradável das linguagens comerciais) formam a base subjacente das linguagens de consultas usadas comercialmente.

2

Álgebra Relacional

- Linguagem procedimental: consiste de um conjunto de operações que tomam uma ou mais relações como entrada e produz uma nova relação como resultado.
- Seis operadores básicos:
 - seleção
 - projeção
 - união
 - diferençaProduto cartesiano
 - Rename

Álgebra Relacional

- Operações Adicionais
 - Interseção
 - Junção Natural
 - Divisão
 - Designação
- Os operadores tomam uma ou mais relações como entrada e produzem uma nova relação como resultado.

.

Operação de Seleção (Select)

- Seleciona tuplas que satisfaçam um determinado predicado
- Resulta em um subconjunto horizontal da relação
- * Notação: $\sigma_P(r)$
 - onde P é o predicado, isto é, uma expessão, formada por uma ou mais condições.
- O predicado da seleção pode apresentar os seguintes operadores de comparação: > ≥ < ≤ = ≠
 Conectados pelos seguintes operadores lógicos: ^ (and), ∨ (or), ¬ (not)

Operação de Seleção - Exemplo 1

* Relação r:

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 $\bullet \sigma_{A=B \land D > 5} (r)$

Α	В	С	D
α	α	1	7
β	β	23	10

Operação de Projeção (Project)

- Seleciona atributos
- Notação:

 $\Pi_{A_1, A_2, ..., A_k}(r)$

onde A_1 , A_2 são nomes de atributos e r um nome de relação

- O resultado é definido como a relação de k colunas obtida pela remoção das colunas que não estão listadas
- Linhas duplicadas s\u00e3o eliminadas do resultado

8

Operação União

- ❖ Notação: r ∪ s
- * Para $r \cup s$ ser válida,
 - r, s devem ter o mesmo grau (mesmo número de atributos).
 - 2. os domínios do i-ésimo atributo de r e do i-ésimo atributo de s devem ser os mesmos, para todo i.

Operação Diferença

- ❖ Notação: r s
- Definida como:

 $r - s = \{t \mid t \in r \text{ and } t \notin s\}$

- A operação de diferença só pode ser realizada entre relações compatíveis.
 - r e s devem ter o mesmo grau.
 - Os domínios dos atributos de r e s devem ser compatíveis

Operação Diferença - Exemplo 2

Conta			
nome-agência	num-conta	nome-cliente	saldo
Centro	985	João da Silva	500
Pinheiros	846	Ana Bela	520
Pinheiros	320	Carlos Carvalho	1000

Empréstimo			
nome-agência	núm-empréstimo	nome-cliente	quantia
Centro	152	João da Silva	1500
Pinheiros	652	Ana Bela	5200
Centro	452	João Costa	12000

Encontrar os nomes de clientes que tenham conta mas não tenham emprestimo na agencia pinheiros.

π nome-cliente(C nome-agência = "Pinheiros" (conta)) - π nome-cliente(C nome-agência = "Pinheiros" (empréstimo)

nome-cliente Carlos Carvalho

Operação Produto Cartesiano

- ❖ Notação: r × s
- * Assuma que os atributos de r(R) e s(S) são disjuntos. (Isto é, R \cap S = \emptyset).
- Se os atributos de r(R) e s(S) não são disjuntos, então uma renomeação deve ser feita.

16

* r × s

A B C D E

α 1 α 10 +
α 1 β 10 +
α 1 β 20 α 1 γ 10 β 2 α 10 +
β 2 β 10 +
β 2 β 20 β 2 γ 10 β 2 γ 10 -

Operação Produto Cartesiano – Exemplo 2

R			S		
Α	В		Α	В	С
1	a		С	1	е
4	c		g	7	f
	1	R×S		1	

$\nabla \nabla \mathbf{N}$				
R.A	R.B	S.A	S.B	S.C
1	a	С	1	e
1	a	g	7	f
4	С	С	1	e
4	С	g	7	f
2	f	С	1	e
2	f	g	7	f

Composição de Operações

- Pode-se construir expressões usando múltiplas operações
- Exemplo : $\sigma_{A=C}(r \times s)$
- * Operação JUNÇÃO
 - Notação: r ⋈_F s
- Operação JUNÇÃO NATURAL
 - Notação: r ⋈ s

20

Operação JUNÇÃO

Junção: Sejam R e S relações, F é uma fórmula (como na operação de seleção) que compara valores de atributos de R e S; então a junção de R e S sob a fórmula F, denotada por R⋈S, é a relação de grau (r+s) formada pelo subconjunto das tuplas de R×S que satisfazem a fórmula F.

Junções com fórmulas que envolvem somente o operador "=" (como por exemplo (R.A=S.C)), são chamadas **equi-junções**.

24

Junção: exemplo

A B C D E F
2 a e q f e
2 a e a g e
4 d b b a b

22

Operação JUNÇÃO NATURAL

- * Sejam H conjunto de atributos em comum a R e S. Então a junção natural de R com S, no H, é formado concatenando as tuplas de R e S, e eliminando as colunas duplicadas, sempre que os valores correspondentes de todos os atributos em comum de R e S sejam iguais.
- * A junção natural de R com S é denotada como a junção sem a fórmula: R $\bowtie_H S$.

Junção Natural: exemplo 1

S		
Α	В	D
f	3	e
a	2	j
d	1	n
с	1	e
f	3	b

R S

A B C D

c 1 b e

f 3 b e

f 3 b b

Operação de Interseção

- * A interseção de duas relações R e S, consiste de todas as tuplas que aparecem em R e S.
- ♦ Notação: r ∩ s
- * Podemos reescrever uma operação de interseção usando o operador de diferênça: $r \cap s = r$ (r-s)
- * Exemplo 1:

S		
Α	В	C
4	a	f
2	с	g
7	d	c

R		
Α	В	C
1	a	С
7	d	c
4	a	f
3	С	d

$R \cap S$					
Α	В	С			
7	d	c			
4	a	f			

Operação de Interseção - Exemplo 2

Conta			
nome-agência	num-conta	nome-cliente	saldo
Centro	985	João da Silva	500
Pinheiros	846	Ana Bela	520
Pinheiros	320	Carlos Carvalho	1000
Empréstimo			
nome-agência	núm-empréstimo	nome-cliente	quantia

 Empréstimo
 nóme-agência
 núm-empréstimo
 nome-cliente
 quantia

 Centro
 152
 João da Silva
 1500

 Pinheiros
 652
 Ana Bela
 5200

 Centro
 452
 João Costa
 12000

Selecionar os nomes de clientes que possuem conta e empréstimo no banco:

 $\Pi_{\text{nome-cliente}}$ (conta) $\cap \Pi_{\text{nome-cliente}}$ (Empréstimo)

20

Operação de Divisão

- ❖ Notação: r + s
- é interessante para consultas que incluem a frase "para todos"
- Sejam r e s relações com esquemas R e S respectivamente, onde

$$- \ \ \mathsf{R} = (\mathsf{A}_1, \, ..., \, \mathsf{A}_{\mathsf{m}} \, , \, \mathsf{B}_1, \, ..., \, \mathsf{B}_{\mathsf{n}})$$

$$- S = (B_1, ..., B_n)$$

O resultado de r ÷ s é uma relação com esquema

R - S =
$$(A_1, ..., A_m)$$
, tal que

$$r \div s = \{t \ \big| \ t \in \Pi_{\text{R-S}}(r) \land \forall u \in s \ (tu \in r)\}$$

Operação de Divisão - Exemplo 1

* Relações r,s:

B 1 2

Α α ε

Operação de Divisão - Exemplo 2

* Relações r,s:

r				
Α	В	С	D	Е
α	а	α	а	1
α	а	γ	а	1
α	а	γ	b	1
β	а	γ	а	1
β	а	γ	b	3
β β γ	а	γ	а	1
γ	а		b	1
γ	а	γβ	b	1

D E a 1 b 1

***** r ÷ s

Α	В	С
α	а	γ
γ	а	γ

Operação de Designação

- ◆ A operação de designação (←) provê uma maneira conveniente de expressar consultas complexas;
- A designação deve sempre ser feita a uma variável de relação temporária.
- * Exemplo: Escrever r + s como

 $\begin{array}{l} temp1 \leftarrow \Pi_{R.S}(r) \\ temp2 \leftarrow \Pi_{R.S}((temp1 \times s) - r) \\ result = temp1 - temp2 \end{array}$

- O resultado da expressão a direita de ← é atribuído à variável de relação à esquerda de ←.
- Pode-se usar variáveis em expressões subseqüentes.

32

Otimização de Consultas

- A resolução de uma consulta na álgebra relacional pode ser especificada de várias formas, sendo que algumas apresentam um processamento mais otimizado do que outras.
- Existem muitas regras para otimização de expressões de consulta, sendo algumas delas as seguintes:
 - antecipação de seleções;
 - criação de projeções;
 - seleção tem prioridade sobre projeção, ou seja, seleções devem ser executadas primeiro;
 - execução de uma seqüência de operações unárias em um único passo;
 - execução de uma operação binária seguida de uma ou mais unárias em um único passo.

33

Operações da Álgebra relacional Estendida

- As operações básicas da Álgebra Relacional foram estendidas de diversas formas.
- Serão vistas:
 - Projeção generalizada
 - Junção externa (Outer Join)
 - Funções Agregadas

3

Projeção Generalizada

 Estende a operação de projeção para permitir que funções aritméticas sejam usadas em listas de projeções.

$$\Pi_{F1, F2, \dots, Fn}(E)$$

- * E é qualquer expressão da álgebra relacional.
- * Os F_1 , F_2 , ..., F_n são expressões aritméticas envolvendo constantes e atributos no esquema de E.
- Exemplo: Dada uma relação info_crédito(nome_cliente, limite, saldo_crédito), achar o quanto cada pessoa ainda pode gastar:

 $\Pi_{nome_cliente,\,(limite-\,saldo_cr\'edito)}\,(info_cr\'edito)$

Projeção Generalizada - exemplo

Info_Crédito

_		
Nome_cliente	limite	Saldo_credito
Jones	6000	700
Smith	2000	400
Hayes	1500	1500
Curry	2000	1750

 $\Pi_{nome_cliente,\,(limite\ -\ saldo_cr\'edito)}\ (info_cr\'edito)$

Resultado:

Nome_cliente	Limite - saldo_credito
Jones	5300
Smith	1600
Hayes	0
Curry	250

O Exemplo da Empresa Bancária

agência (nome_agência,cidade_agência, fundos)

cliente (nome_cliente, rua_cliente, cidade_cliente)

conta (nome_agência, número_conta, saldo)

empréstimo (nome_agência, número_empréstimo, total)

depositante (nome_cliente, número_conta)

devedor (nome_cliente, número_empréstimo)

Junção Externa

- Uma extensão da operação de junção que evita perda de informações.
- Calcula-se a junção e então adiciona-se ao resultado da junção as tuplas de uma relação que não combinam (match) com as tuplas da outra relação.
- Uso de valores nulos:
 - Nulo significa que o valor é desconhecido ou não existe.
 - Todas as comparações envolvendo valores nulos são falsas por definição.

Exemplo de Junção Externa

* Relação empréstimo

nome_agência	número_emprestimo	total
Downtown	L-170	3000
Redwood	L-230	4000
Perryridge	L-260	1700

* Relação devedor

nome_cliente	numero_empréstimo	
Jones	L-170	
Smith	L-230	
Hayes	L-155	

Exemplo de Junção Externa

❖ empréstimo ⋈ devedor (natural)

nome_agência	número_agência	total	nome_cliente
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith

nome_agência	número_empréstimo	total	nome_cliente	número_empréstimo
Downtown	L-170	3000	Jones	L-170
Redwood	L-230	4000	Smith	L-230
Perryridge	L-260	1700	nulo	nulo

Exemplo de Junção Externa

❖ empréstimo ⋉ devedor (à direita)

nome_agência	número_empréstimo	total	nome_cliente
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
null	L-155	null	Hayes

nome_agência	número_empréstimo	total	nome_cliente
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null
null	L-155	null	Hayes

Funções agregadas

A operação de agregação G tem como entrada uma coleção de valores e retorna um único valor como resultado.

avg: média dos valores min: valor mínimo max: valor máximo sum: soma dos valores count: número de valores

 $G_{1, G_{2}, ..., G_{n}} G_{F_{1} A_{1}, F_{2} A_{2}, ..., F_{m} A_{m}} (E)$

- E expressão da álgebra relacional

G₁, G₂, ..., G_n é uma lista de atributos para agrupar
 F_i é uma função de agregação

- Ai é um nome de atributo

Exemplo de Funções Agregadas

- Existem casos que precisamos eliminar ocorrências múltiplas de valores computados.
- Para eliminar duplicidades adiciona-se a palavra "distinct" ao final do nome da função.

nome_agência	número_conta	saldo
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	Δ-222	700

- count-distinct nome_agencia (conta)
 - O resultado dessa consulta é o valor 3.

Modificações no Banco de Dados

- O conteúdo do banco de dados pode ser modificado usando as seguintes operações:
 - Exclusão
 - Inserção
 - Atualização
- Todas essas operações são expressas usando o operador de designação.

46

Exclusão

- A solicitação de exclusão é expressa de maneira similar a uma consulta.
- No entanto, ao invés de mostrar as tuplas selecionadas ao usuário, elas são excluídas do banco de dados.
- Pode-se excluir apenas tuplas inteiras; não é possível excluir valores de atributos específicos.
- Uma exclusão é expressa na álgebra relacional por:

 Onde r é uma relação e E é uma consulta da álgebra relacional.

Exemplos de Exclusão

- * Excluir todas as contas do cliente Smith conta \leftarrow conta $\sigma_{\text{nome_cliente}} = \text{"Smith"}$ (conta)
- Excluir todos os registros de empréstimo com total entre 0 e 50.
 empréstimo ← empréstimo σ_{total ≥ 0 ^ total ≤ 50} (empréstimo)
- * Excluir todas as contas das agências localizadas em Needham.

$$\begin{split} & r_1 \leftarrow \sigma_{\text{cidade_agência} = \text{"Needham"}} \text{ (conta} \bowtie \text{ agência)} \\ & r_2 \leftarrow \Pi_{\text{nome_agência, número_conta, saldo}} \text{ (}r_1\text{)} \\ & \text{conta} \leftarrow \text{conta} - r_2 \end{split}$$

agência (nome_agência,cidade_agência, fundos)

conta (nome_agência, número_conta, saldo)

47

Inserção

conta (nome_agência, número_conta, saldo) depositante (nome_cliente, número_conta)

- Para inserir dados em uma relação, deve-se:
 - Especificar uma tupla a ser inserida, ou
 - Escrever uma consulta cujo resultado é um conjunto de tuplas a ser inserido
- * Em álgebra relacional, uma inserção é expressa por:

$r \leftarrow r \cup E$

- Onde r é uma relação e E é uma expressão da álgebra relacional.
- * Exemplo: Inserir informação de que o cliente Smith tem \$1200 na conta A-973 na agência Perryridge.

 $conta \leftarrow conta \cup \{("Perryridge", A-973, 1200)\}$ depositante \leftarrow depositante \cup {("Smith", A-973)}

Atualização

- Um mecanismo para mudar um valor em uma tupla sem mudar todos os valores na tupla
- * Usa-se o operador de projeção generalizada para esta tarefa

- $\mathbf{r} \leftarrow \Pi_{F_1, F_2, ..., F_n}(\mathbf{r})$ Cada F_i ou é o i-ésimo atributo de \mathbf{r} , se seu valor não é modificado, ou é uma expressão para o valor do atributo a ser modificado.
- F_i é uma expressão, envolvendo somente constantes e os atributos de r, os quais dão o novo valor para o atributo.

conta (nome_agência, número_conta, saldo)

Exemplos de Atualização

 Fazer pagamento de juros aumentando todos os saldos em 5 por cento.

conta $\leftarrow\Pi_{\text{nome_agencia, número_conta, saldo} \leftarrow \text{saldo*}1.05}$ (conta)

❖ Fazer pagamentos de juros de 6% para contas com saldo acima de \$10.000 e 5% para as outras contas.

 $conta \leftarrow \Pi_{nome_agência, \ n\'umero_conta, \ saldo \leftarrow saldo^*1.06} \ (\sigma_{saldo \ > \ 10000} \ (conta))$ ∪ Π_{nome_agência, número_conta, saldo ← saldo*1.05} (σ_{saldo≤10000} (conta))