Exercises 5 solutions

TI.
$$A = U \leq V^T$$

(a) $2A = 2 U \leq V^T$
 $= U (2 \leq) V^T$
 $= \tilde{U} \leq \tilde{V}^T$

(b) $A^T = (U \leq V^T)^T$
 $= V \leq^T U^T$
 $= V \leq^T V^T$

(c) $A^{-1} = (U \leq V^T)^{-1}$
 $= V \leq^{-1} V^T$

But then to keep to convention,

Set $V = (V_1 | - | V_1), U = [U_2 | - | V_1]$

and $S = d_1^{\alpha} a_S(\frac{1}{5}, ..., \frac{1}{5}, ...)$

T2. $A = U \leq V^T \gamma$
 $A \cdot A = U \leq V^T V \leq V^T$
 $A \cdot A = V \leq V = V \leq V^T$

1.e. a vector W
 $W^T W = W \in V^T$
 $W \in V^T W = V^T W = V^T$
 $W \in V^T W = V^T$

T4.
$$(AB)^{+} = B^{+}A^{+}$$
 ??

Falso. Choose $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $(AB)^{+} = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$
 $A^{+} = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$, $B^{+} = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$
 $B^{+}A^{+} = \begin{bmatrix} \frac{1}{4} & 0 \\ \frac{1}{4} & 0 \end{bmatrix} \neq \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix} = (AB)^{+}$