4 Applicazione lineare

Definizione 4.0.1 (Applicazione lineare). Siano V_1, V_2 spazi vettoriali su \mathbb{R} . Un'applicazione lineare (o mappa lineare) è una mappa $\varphi: V_1 \to V_2$ tale che:

- 1. $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2), \forall v_1, v_2 \in V_1.$
- 2. $\lambda \varphi(v) = \varphi(\lambda v), \forall v \in V_1$.

Esempio 4.0.1. Alcuni esempi di applicazioni lineari:

•
$$V_1 = \mathbb{R}^n$$
, $V_2 = \mathbb{R}$, $\varphi\left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}\right) = \lambda_1 a_1 + \dots + \lambda_n a_n \text{ con } \lambda_1 \dots \lambda_n \text{ fisso.}$

•
$$V_1 = \mathbb{R}^n$$
, $V_2 = \mathbb{R}^2$, $\varphi\left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}\right) = \begin{bmatrix} c\lambda_1 a_1 + \dots + \lambda_n a_n \\ \mu_1 a_1 + \dots + \mu_n a_n \end{bmatrix}$ con $\lambda_1, \dots, \lambda_n \in \mu_1, \dots, \mu_n$ fissi.

•
$$V_1 = \mathbb{R}^n, V_2 = \mathbb{R}^{n-1}, \varphi\left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}\right) = \begin{bmatrix} a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

- $V_1 = \mathbb{R}[x]_{\leq d}, V_2 = \mathbb{R}[x]_{\leq d-1}$ quindi è come scrivere $\varphi(f) = f'$. E questo va bene perché sono rispettate le proprietà (a) e (b) della definizione sopra.
- $V_1 = \{f : [0,1] \to \mathbb{R} : f \text{ continua }, \int_0^1 f < \infty\}, V_2 = \mathbb{R}$. Vediamo che $\varphi(f) = \int_0^1 f$. Infatti, anche in questo caso, le proprietà (a) e (b) della definizione sono rispettate.

Sia $\varphi: V_1 \to V_2$ un'applicazione lineare e sia e_1, \cdots, e_n una base di V_1 allora sia $v \in V_1, v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n$. $\varphi(v) = \varphi(\lambda_1 e_1) + \varphi(\lambda_2 e_2) + \cdots + \varphi(\lambda_n e_n) = \lambda_1 \varphi(e_1) + \lambda_2 \varphi(e_2) + \cdots + \lambda_n \varphi(e_n)$. In conclusione, conoscere $\varphi(v) \iff$ conoscere $\varphi(e_1), \cdots, \varphi(e_n)$ e lineare coordinate di v rispetto e_1, \cdots, e_n . Viceversa se faccio $\varphi(e_1) = v_1, \varphi(e_2) = v_2, \cdots, \varphi(e_n) = v_n$ allora $\exists!$ applicazione lineare $\varphi v_1 - \varphi v_2$ con queste proprietà.

Esempio 4.0.2. $V_1 = \mathbb{R}^n, \ V_2 = \mathbb{R}^2$ e le basi standard sono $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Esiste una sola $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $\varphi \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right), \ \varphi \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$. Infatti tale φ è dato da $\varphi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \left(\begin{bmatrix} 0 \\ x_2 \end{bmatrix} \right)$

4.1 Nucleo e immagine

Definizione 4.1.1. Sia $\varphi: V_1 \to V_2$ un'applicazione lineare possiamo definire di φ :

- Il nucleo: $Ker(\varphi) = \{v \in V_1 : \varphi(v) = 0\} \subset V_1 \text{ sottospazio.}$
- L'immagine: $Im(\varphi) = \{v_2 \in V_2 : \exists v_1 \in V_1 : \varphi(v_1) = v_2\} \subset V_2 \text{ sottospazio.}$

Esempio 4.1.1. Alcuni esempi di nucleo ed immagine di un'applicazione lineare.

1. Per
$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2$$
, $\varphi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$.
$$Ker(\varphi) = \{\begin{bmatrix} x_1 \\ 0 \end{bmatrix} : x_1 \in \mathbb{R}\} = span\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) \qquad Im(\varphi) = \{\begin{bmatrix} 0 \\ x_2 \end{bmatrix} : x_2 \in \mathbb{R}\} = span\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

2.
$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2$$
, $\varphi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$.

$$Ker(\varphi) = \left\{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix} : x_1 \in \mathbb{R} \right\} = span \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \qquad Im(\varphi) = \left\{ \begin{bmatrix} x_2 \\ 0 \end{bmatrix} : x_2 \in \mathbb{R} \right\} = span \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$$

3. $\varphi : \mathbb{R}[x]_{\leq d} \to \mathbb{R}[x]_{\leq d-1}, Ker(\varphi) = \{ \text{ polinomi costanti } \} = span(1) \quad Im(\varphi) = \mathbb{R}[x]_{d-1}$

Teorema 4.1.1. Sia $dim(V_1) < \infty$ e sia $\varphi : V_1 \to V_2$ un'applicazione lineare, allora vale che:

$$dim Ker(\varphi) + dim Im(\varphi) = dim V_1$$

Dimostrazione 4.1.1. Per dimostrare il teorema sopra partiamo prendendo v_1, \dots, v_r una base di $Ker(\varphi)$ (quindi $dim\ Ker(\varphi) = r$), e w_1, \dots, w_s una base di $Im(\varphi)$ (quindi $dim\ Im(\varphi) = s$).

Siano poi $\overline{v_1}, \dots, \overline{v_s} \in V_1$ tali che $\varphi(\overline{v_1}) = w_1, \dots, \varphi(\overline{v_s}) = w_s$. Noi dobbiamo dimostrare che $v_1, \dots, v_r, \overline{v_1}, \dots, \overline{v_2}$ è una base di V_1 (in questo modo dimostriamo che $\dim V_1 = r + s$ ed il teorema è verificato).

Verifichiamo l'indipendenza lineare. Supponiamo che $\lambda_1 v_1 + \dots + \lambda_r v_r + \lambda_{r+1} \overline{v_1} + \dots + \lambda_{r+s} \overline{v_s} = 0$. Applichiamo φ : $\lambda_1 v_1 + \dots + \lambda_r v_r + \varphi(\lambda_{r+1} \overline{v_1} + \dots + \lambda_{r+2} \overline{v_s}) = 0$ ($\varphi(v_1) = 0 \, \forall : i$). quindi $\lambda_{r+1} \varphi(\overline{v_1}) + \dots + \lambda_{r+2} \varphi(\overline{v_s}) = 0$ che è come scrivere $\lambda_{r+1} w_1 + \dots + \lambda_{r+s} w_s = 0 \Longrightarrow \lambda_{r+1} = \dots = \lambda_{r+s} = 0$ perché w_1, \dots, w_s base.

Quindi $\lambda_1 v_1 + \cdots + \lambda_r v_r = 0$ ed allora $\lambda_1 = \cdots = \lambda_r = 0$ perché v_1, \cdots, v_r è una base di $Ker(\varphi)$. In fine $\lambda_1 = \cdots = \lambda_r = \lambda_{r+1} = \cdots = \lambda_{r+s} = 0$.

 $\begin{array}{l} span(v_1,\cdots,\overline{v_r},\overline{v_1},\cdots,\overline{v_s})=v_1 \text{ tale che sia } v_1V_1. \ \ \varphi(v)\in Im(\underline{\varphi}) \Longrightarrow \exists \ \overline{\lambda_1},\cdots,\overline{\lambda_s} \text{ tale che } \varphi(v)=\overline{\lambda_1}w_1+\cdots+\overline{\lambda_s}w_s. \ \text{Ma allora } \varphi(v-\overline{\lambda_1}\overline{v_1}-\cdots-\overline{\lambda_s}\overline{v_s})=\varphi(v)-\overline{\lambda_1}\varphi(\overline{v_1})-\cdots-\overline{\lambda_s}\varphi(\overline{v_s})=0. \ \text{Quindi} \ v-\overline{\lambda_1}\overline{v_1}-\cdots-\overline{\lambda_s}\overline{v_s}\in Ker(\varphi), \ \text{ma allora } v-\overline{\lambda_1}\overline{v_1}-\cdots-\overline{\lambda_s}\overline{v_s}=\lambda_1v_1+\cdots+\lambda_rv_r\ \forall\ \lambda_1,\cdots,\lambda_r\ \text{perch\'e} \ v_1,\cdots,v_r\ \text{base di} \ Ker(\varphi). \ \text{In somma} \ v=\lambda_1v_1+\cdots+\lambda_rv_r+\overline{\lambda_1}\overline{v_1}+\cdots+\overline{\lambda_s}\overline{v_s} \end{array}$

Osservazione 4.1.1. Supponiamo che v_1, \ldots, v_n sia una base di V_1 . Allora φ è unicamente determinata dai valori $\varphi(v_1), \ldots, \varphi(v_n)$.

Infatti $\forall v \in V_1$ si scrive in modo unico come $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$. Ma allora

$$\varphi(v) = (\lambda_1 v_1 + \ldots + \lambda_n v_n) = \varphi(\lambda_1 v_1) + \varphi(\lambda_n v_n) = \lambda_1 \varphi(v_1) + \ldots + \lambda_n \varphi(v_n)$$

Viceversa, dati vettori $w_1, \ldots, w_n \in V_2$, $\exists \varphi : V_1 \to V_2$ lineare tale che $\varphi(v_1) = w_1, \ldots, \varphi(v_n) = w_n$ perché $\varphi(v)$ deve essere $v = \lambda_1 v_1 + \ldots + \lambda_n v_n = \lambda_1 w_1 + \ldots + \lambda_n w_n$.

Esempio 4.1.2. Troviamo $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ tale che:

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix} \ \mathrm{e} \ \varphi\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$$

Un elemento generico di \mathbb{R}^2 è:

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Allora abbiamo che:

Esempio 4.1.3. Troviamo $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ tale che:

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\end{bmatrix} \ \mathrm{e} \ \varphi\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$

Usiamo l'elemento generico di \mathbb{R}^2 dell'esempio precedente e abbiamo che:

Osservazione 4.1.2. Sappiamo che $dim(V_1) = dim(V_2) = n$. Sia a_1, \ldots, a_n base di V_1 e a'_1, \ldots, a'_n base di V_2 .

Sappiamo che $\exists \varphi: V_1 \to V_2$ tale che $\varphi(a_1) = a'_1, \dots, \varphi(a_n) = a'_n$ e $\exists \psi: V_2 \to V_1$ tale che $\varphi(a'_1) = a_1, \dots, \varphi(a'_n) = a_n$

Esempio 4.1.4. Dati $V_1 = M_{2\times 2}(\mathbf{R})$ e $V_2 = \mathbf{R}^4$ e le loro basi:

Base di
$$V_1:\begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&1\\0&0\end{bmatrix},\begin{bmatrix}0&0\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}$$
 Base di $V_2:\begin{bmatrix}1\\0\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\0\end{bmatrix}$

Abbiamo quindi che:

$$\varphi\left(\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\0\\0\end{bmatrix}, \varphi\left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\right) = \begin{bmatrix}0\\1\\0\\0\end{bmatrix}, \varphi\left(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right) = \begin{bmatrix}0\\0\\1\\0\end{bmatrix}, \varphi\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right) = \begin{bmatrix}0\\0\\0\\1\end{bmatrix}$$

$$\varphi\left(\begin{bmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{bmatrix}\right) = \begin{bmatrix}a_{11}\\a_{12}\\a_{21}\\a_{22}\end{bmatrix} \text{ Mentre l'inversa è: } \varphi\left(\begin{bmatrix}a_{11}\\a_{12}\\a_{21}\\a_{22}\end{bmatrix}\right) = \begin{bmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{bmatrix}$$

Definizione 4.1.2. Se dim(V) = n, esiste un **isomorfismo** $\varphi : V \xrightarrow{\sim} \mathbf{R}^n$. Se a_1, \ldots, a_n è una base di V, poniamo

$$\varphi(a_1) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \varphi(a_2) = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \varphi(a_n) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Otteniamo quindi $\forall v \in V_1$:

$$v = \lambda_1 a_1 + \ldots + \lambda_n a_n \leadsto \varphi(v) = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \text{ Inversa: } \psi : \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} \mapsto \lambda_1 a_1 + \ldots + \lambda_n a_n.$$

Esempio 4.1.5. Sia $\varphi: \mathbf{R}^n \to \mathbb{R}^m$ un'applicazione lineare. Conoscendo i valori di φ sulla base standard, come si calcola $\varphi(v)$ per $v \in \mathbf{R}^n$ generale? Ipotizziamo che n=m=2. Conosciamo

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}a_{11}\\a_{21}\end{bmatrix}\varphi\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}a_{12}\\a_{22}\end{bmatrix}$$

Se abbiamo un vettore generale

$$v = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbf{R}^2$$

allora

$$\begin{bmatrix}b_1\\b_2\end{bmatrix}=b_1\begin{bmatrix}1\\0\end{bmatrix}+b_2\begin{bmatrix}0\\1\end{bmatrix}=b_1\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right)+b_2\varphi\left(\begin{bmatrix}0\\1\end{bmatrix}\right)=b1\begin{bmatrix}a_{11}\\a_{21}\end{bmatrix}+b2\begin{bmatrix}a_{12}\\a_{22}\end{bmatrix}=\begin{bmatrix}a_{11}b_1+a_{12}b_2\\a_{21}b_1+a_{22}b_2\end{bmatrix}$$

Definizione 4.1.3 (Prodotto di una matrice e un vettore colonna). Sia $A \in M_{m \times m}(\mathbf{R})$, $v \in \mathbb{R}^n$, il loro prodotto è

$$\begin{bmatrix} a_{11}, \dots, a_{1n} \\ \vdots \\ a_{m1}, \dots, a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \dots a_{1n}b_n \\ a_{21}b_1 + a_{22}b_2 + \dots a_{2n}b_n \\ \vdots \\ a_{m1}b_1 + a_{m2}b_2 + \dots a_{mn}b_n \end{bmatrix} \in \mathbf{R}^m$$

Esempio 4.1.6. Dati $\varphi : \mathbb{R}^3 \to \mathbf{R}, \, \varphi\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = x + 2y + 3z.$ Troviamo $\varphi\left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right) = 1 + 2 \cdot (-1) + 3 \cdot 1.$

Ma anche:

$$\varphi\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = 1, \varphi\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = 2, \varphi\left(\begin{bmatrix}10\\0\\1\end{bmatrix}\right) = 3$$

Matrice di φ : $A \in M_{1\times 3}(\mathbf{R}), A = [1, 2, 3]$

$$A \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = [1, 2, 3] \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = 1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 1 = 2$$

Esempio 4.1.7. Dati
$$\varphi: \mathbf{R}^2 \to \mathbf{R}^2$$
, $\varphi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$, $\varphi\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ Matrice di φ :

Definizione 4.1.4. Sia $\varphi: V \to W$ un'applicazione lineare dove dim(V) = n e dim(W) = m. Sia $B = \{a_1, \ldots, a_n\}$ base di V e $B' = \{a'_1, \ldots, a'_m\}$ base di W. Scriviamo

$$\varphi(a_1) = a_{11}a_1' + a_{21}a_2' + \ldots + a_{m1}a_m'\varphi(a_2) = a_{12}a_1' + a_{22}a_2' + \ldots + a_{m2}a_m' \\ \vdots \\ \varphi(a_n) = a_{1n}a_1' + a_{2n}a_2' + \ldots + a_{mn}a_m'$$

La matrice di φ rispetto alle basi B, B' è:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \varphi(a_1) & \vdots & \varphi(a_2) & \vdots & \dots & \vdots & \varphi(a_n) \end{bmatrix}$$

Teorema 4.1.2. Se $v = b_1 a_1 + \ldots + b_n a_n$ è un vettore di V. Le coordinate di $\varphi(v)$ rispetto alla base B' sono date dal vettore

$$A: \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in \mathbf{R}^m$$

Esempio 4.1.8. Dati
$$\varphi : \mathbb{R}^2 \to \mathbb{R} \ \mathrm{e} \ \varphi\left(\left[\begin{matrix} x \\ y \end{matrix} \right] \right) = x + 2y.$$

La matrice di φ rispetto alla base standard di \mathbb{R}^2 in partenza è:

$$\varphi\bigg(\begin{bmatrix}1\\0\end{bmatrix}\bigg)=1\varphi\bigg(\begin{bmatrix}0\\1\end{bmatrix}\bigg)=2A=[1,2]\in M_{1\times 2}(\mathbb{R})$$

Se considero la base $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ di \mathbb{R}^2 in partenza:

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 1, \varphi\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = 3$$