PRESSURE DROP IN WELLS PRODUCING OIL AND GAS

K. AZIZ G.W. GOVIER M. FOGARASI

this article begins on the next page

Pressure Drop in Wells Producing Oil and Gas

KHALID AZIZ, University of Calgary, GEORGE W. GOVIER, Alberta Energy Resources Conservation Board, MARIA FOGARASI, University of Calgary, Calgary, Alberta

ABSTRACT

A simple, mechanistically based scheme for the calculation of the pressure drop in wells producing oil and gas in the single-phase liquid, bubble and slug flow patterns is described and checked with independent field data. The scheme is based on an identification of the flow pattern through a modification of the flow pattern map of Govier, Radford and Dunn and the application of the mechanical energy balance in a form appropriate for the flow pattern as suggested by Govier and Aziz. Predictions for some 48 wells are compared with field data and with the predictions of Orkiszewski, Duns and Ros, and Hagedorn and Brown. The proposed method gives results at least as good as any of the others, is more soundly based on the mechanism of flow and is independent of the data with which it is confirmed.

A computer program for the method and a typical printout are given.

K. AZIZ

G. W. GOVIER

K. AZIZ is Professor of Chemical Engineering at The University of Calgary. He received his engineering education at The University of Michigan, University of Alberta and Rice University. He is author or co-author of approximately 40 technical papers and one book. His research interests include reservoir simulation, multiphase flow in pipelines, atmospheric pollution and heat transfer in porous media.

GEORGE W. GOVIER, a professional engineer, is chairman of the Energy Resources Conservation Board, Calgary, and serves as part time professor of engineering at the University of Calgary. He has authored numerous papers in the fields of two-phase flow and the flow of non-Newtonian fluids. Dr. Govier's latest contribution to the scientific literary field is a book entitled "The Flow of Complex Mixtures in Pipes". He is a member of many professional organizations and served as President of the CIM for the 1966-67 term. Dr. Govier has been honored with many scientific awards and was the recipient of the Selwyn G. Blaylock Medal from CIM in 1971.

MRS. MARIA FOGARASI is a research associate at the University of Calgary. She graduated with a B.Sc. in petroleum engineering in 1958 from the University of Alberta and has been associated with the University of Calgary since 1964. Mrs. Fogarasi is currently involved with research in the area of multiface pipe flow. She is a Member of CIM and a Member of the Association of Professional Engineers of Alberta.

INTRODUCTION

MANY METHODS have been proposed for the estimation of the pressure drop in wells which produce a mixture of oil and gas. These are reviewed in detail by Govier and Aziz⁽¹⁾. Most of the methods are strictly empirical, but for certain of the flow patterns which may be encountered methods based on the mechanism of flow may now be developed. This is especially true for the bubble and the slug flow patterns and, as will be discussed in a following paper, the annular-mist flow pattern encountered with gas-condensate wells.

Orkiszewski⁽²⁾ has developed a pressure drop prediction scheme based on an identification of the flow pattern and the application of selected mechanistic and empirical methods to the individual flow patterns. His original appraisal included, among others, the Poettmann and Carpenter⁽³⁾ and related correlations. The most accurate methods, the Duns and Ros⁽¹⁾ and the Hagedorn and Brown⁽⁵⁾, were then tested along with his own scheme against 148 well conditions. Orkiszewski's comparison showed that his method gave improved accuracy over that of Duns and Ros and Hagedorn and Brown. Espanol et al. ⁽⁶⁾ confirmed this with data from 44 different wells.

Orkiszewski's method is rather complex and is not entirely consistent with present understandings of the flow mechanism in the bubble and the slug flow patterns. Although the scheme covers all flow patterns, it has not been fully tested for the froth or the annular-mist patterns.

The objective here is the development of a sound mechanistically-based prediction method for the flow patterns commonly encountered in oil wells — those where the oil is the continuous phase, i.e., the single phase, the bubble and the slug flow patterns. The work is an extension of that discussed by Govier and Aziz⁽¹⁾ and by Aziz, Fortems and Settari⁽⁷⁾. Another paper dealing with the remaining flow patterns is being prepared.

THE MECHANICAL ENERGY EQUATION

All methods for the prediction of the relationship between the pressure gradient, the flow rates, the fluid properties and the geometry of the flow duct involve one form or another of the mechanical energy equation. For a small elevation change, $\triangle z$, the equation may be written (ref. 2)

$$\begin{array}{lll} \alpha & = & \text{velocity profile correction term} \\ V & = & \text{average velocity of fluid or mixture} \\ \triangle P_f & = & \text{friction component of } \triangle P \\ & = & \frac{2fV^2 \rho \triangle z}{g_c D} \dots & (4) \\ f & = & \text{Fanning friction factor} \\ D & = & \text{inside diameter of pipe.} \end{array}$$

Where $\triangle P_r$ is due to the shear of a single phase fluid, the friction factor, f, is known to be a function of the Reynolds number, $Re = DV \rho/\mu$ and the relative roughness, k/D. In regions of laminar flow the relative roughness has no effect and

$$f = \frac{16\mu}{DV_0} (5)$$

For turbulent flow, among the many available relationships that of Colebrook is probably the most suitable:

$$\frac{1}{\sqrt{f}} = 4 \log \frac{D}{2k} + 3.48 - 4 \log \left(1 + 9.35 \frac{D}{2k \text{ Re}\sqrt{f}} \right)$$
 (6)

Equations 1 to 6, with some appropriate integration technique, may be applied directly to the flow of any single-phase fluid in a well of finite depth, z. The equations are also applicable to the flow of gas-liquid mixtures in the bubble and slug flow patterns, provided the terms in them are properly interpreted. The first step in this process is the identification of the flow pattern.

FLOW PATTERN IDENTIFICATION

In wells which produce both oil and gas the gas may be entirely in solution in the oil at the bottom of the well or free gas may be present. In any event as the mixture flows upward to lower pressure regions below the original bubble-point pressure of the oil, gas comes out of solution and any free gas expands. The flow pattern may initially be that of a single-phase liquid, but typically both the bubble and the slug flow patterns are encountered in the upper reaches of the well. With large quantities of free gas, the froth flow pattern may be reached. The situation is illustrated schematically in Figure 1.

Orkiszewski⁽²⁾ bases his flow pattern identification on the flow pattern map of Griffith and Wallis⁽⁹⁾ for the bubble and slug flow patterns and on the map of Duns and Ros⁽⁴⁾ for the other flow patterns. Govier and Aziz discuss the various available methods for flow pattern prediction and conclude that a simple map based on the work of Govier, Radford and Dunn⁽¹⁰⁾ is the most suitable. This map is reproduced as Figure 2. The bubble to slug and the slug to froth flow pattern transition lines are described by the following equations:

For the bubble to slug transition

$$YV_{SL} = 0.01 [(1.96 \text{ X } V_{SG})^{\delta.\delta.1}]...$$
 (7)

 V_{SL} , V_{SC} = superficial velocity of the liquid and the gas phase respectively

 $Y = (\rho_L \sigma_{WA}/\rho_W \sigma)^{1/4}$ $X = (\rho_G/\rho_A)^{1/3} Y$

PL and PG = density of liquid and gas under flowing conditions, respectively

P_A = density of air at standard atmospheric conditions (60°F, 14.65 psia)

interfacial tension of liquid-gas system at flowing conditions

σw_A = interfacial tension of water-air system at standard atmospheric conditions

For the slug to froth transition

$$YV_{\text{SL}} = 0.263 \, (XV_{\text{SG}} - 8.61) \text{ for } YV_{\text{SL}} \leq 4 , \ldots . \tag{8} \label{eq:scale}$$

When $YV_{sL} > 4$ the transition is from slug to annular mist flow is at $XV_{sG} = 26.5$.

FIGURE 1 — Schematic diagram of flow pattern in vertical flow of gas-liquid mixtures.

FIGURE 2 — Generalized flow pattern map for flow of gas-liquid mixtures.

FIGURE 3 — Elements of the slug flow pattern.

The bubble flow pattern is characterized by small bubbles of gas dispersed in a continuous oil phase. The difference in the densities of the two phases causes the bubbles to travel at a velocity higher than the average velocity of the liquid or of the mixture as a

The hydrostatic head component of the total pressure drop may be calculated from Equation 2, provided the in situ density of the gas liquid mixture is known:

$$\Delta P_{HH} = \frac{g}{g_s} P_M \Delta z. \qquad (9)$$

The in situ mixture density is given by

$$\rho_{\rm M} = E_{\rm G} \rho_{\rm C} + (1 - E_{\rm G}) \rho_{\rm L} \dots$$
(10)

The in situ volume fraction of the gas phase, \mathbf{E}_{c} , may be estimated from continuity considerations and a knowledge of the rise velocity of the bubbles(1)

$$E_G = \frac{V_{NG}}{V_{bf}} - \dots \tag{11}$$

 V_{bf} = the rise velocity of the bubbles in the flowing

Zuber and Findlay (11) and others have shown that the rise velocity of bubbles in a flowing stream may be calculated from

$$V_{bf} = C_o V_M + V_{bs}. \tag{12}$$
where
$$C_o = 1.2 \text{ for turbulent flow}$$

$$V_M = V_{SG} + V_{SL}. \tag{13}$$

$$V_{bs} = \text{the rise velocity of the bubbles in a stagnant}$$
liquid

The rise velocity of bubbles in a stagnant liquid, Vb., may be determined from Equation 10 and Δ_{HM} from al. (12), applicable to a swarm of bubbles in the so-called churn turbulent bubbly regime, i.e., at high Reynolds numbers where the bubbles lose their separate identity:

$$V_{b_{\text{N}}} = 1.41 \qquad \left\lceil \frac{\varepsilon g(\rho_L - \rho_G)}{\rho^2_{L}} \right\rceil^{1/4}. \tag{14} \label{eq:VbN}$$

With E_c determined from Equations 11, 12 and 14, $\rho_{\rm M}$ may be determined from Equation 10 and $\triangle P_{min}$ from Equation 9.

The frictional component of the pressure drop may be calculated from Equation 15 by recognizing that the liquid phase is in contact with the pipe wall,

$$\Delta P_{\rm f} = \frac{2f_{\rm L} \epsilon_{\rm M} V_{\rm M}^2}{g_{\rm r} D} \Delta z. \qquad (15)$$

where f_L is calculated from Equation 5 or Equation 6 depending on whether the Reynolds number, evaluated as Re = DV_MP_L/ μ_{L_1} is less than or exceeds 2100. The appropriate value of k/D is used with Equation 6.

Kinetic energy effects are very small over the flow rates where the bubble flow pattern is encountered so the term $\triangle P_{KE}$ of Equation 1 may be neglected. The final $\triangle P$ is therefore the sum of \triangle_{HH} and \triangle_{L} .

Slug Flow

As the gas rate increases with increasing amount of gas coming out of solution, the smaller bubbles collide, coalesce and form larger, cap-shaped bubbles as shown in Figure 1. The cap-shaped bubbles are usually referred to as Taylor bubbles, after Taylor "a", who studied their motion. The liquid between such large bubbles is referred to as the slug. The slug contains small bubbles, but most of the gas phase is contained in the large bubbles.

The hydrostatic head component of the pressure drop may again be predicted by Equations 9 and 10, with Ec estimated through Equations 11 and 12 but with V_{bs} determined from the equation of Neal⁽¹¹⁾ for the rise velocity of Taylor bubbles with the proportionality factor C determined as proposed by Wallis

$$C = 0.345 \left[1 - \exp\left(-\frac{0.01N}{0.345}\right) \right]$$
$$\left[1 - \exp\left(\frac{3.37 - Eo}{m}\right) \right]$$

$$N = \frac{[D^3g(\rho_L - \rho_0)\rho_L]^{1/2}}{\mu_L}$$
 (liquid viscosity number)

$$\begin{array}{ll} N &=& \frac{|D^3g(\rho_L - \rho_G)\rho_L|^{1/2}}{\mu_L} & \text{(liquid viscosity number)} \\ m &=& 10 & \text{for} & N > 250 \\ &=& 69N^{-0.35} & \text{for} & 18 < N < 250 \\ &=& 25 & \text{for} & N < 18 \\ \end{array}$$

$$\text{Eo} &=& \frac{gD^2 \left(\rho_L - \rho_G\right)}{\sigma} & \text{(Eotvos number)} \end{array}$$

Eo =
$$\frac{gD^2 (\rho_L - \rho_G)}{\sigma}$$
 (Eotvos number)

Equations 11, 12 and 16 enable us to predict Eq. assuming all of the gas is in the larger bubbles moving at the velocity, V ... This provides a reasonable estimate of the average in situ volume fraction of gas over the small change in elevation, Az, provided that △z is great enough to include several large bubbles and their intervening slugs. The hydrostatic head component may be estimated from this value of E_0 and Equations 9 and 10.

Alternatively the hydrostatic component may be estimated from a consideration of the actual distribution of the gas phase in the mixture. Govier and Aziz(1) discuss the relationship between Ec, the volumes and dimensions of the Taylor bubbles and the slugs, and the volume fraction of gas in the liquid slug, E_{GSL}. Based on continuity considerations, work of Griffith and Walis (4), and data of Akagawa and Sakaguchi (16), Govier and Aziz (1) show that

$$E_{G} = \frac{v_{b} + E_{GSL} v_{a}}{A(L_{a} + L_{b})}....$$
 (17)

where

These relations enable a prediction to be made of Egg., L. and L. from the known values of Eg and D. The value of L. so determined is only the minimum value to be expected, but because greater L, values lead to approximately proportionately greater L values, this restriction is not serious. For practical purposes, L. may be taken as 10D. Equations 18 and 20, although based on air-water data, are expected to give a reasonable approximation for oil-gas systems.

Figure 3 illustrates the situation in slug flow, and from it and the preceding relations we may express the pressure drop due to hydrostatic head over the elevation change, △z, as

$$\Delta P_{HH} = \frac{g}{g_c} \left(\rho_c L_b + \rho_c L_a \right) \frac{\Delta z}{L_b + L_a}.....(22)$$

$$\rho_{\rm s} = E_{\rm GSL} \rho_{\rm G} + (1 - E_{\rm GSL} \rho_{\rm L}) \dots (23)$$

The component of the pressure drop due to friction may be estimated by recognizing that the bulk of the frictional effect is due to the liquid slug (see Govier and Aziz(1) and that this may be estimated by single-phase methods.

Either of two approaches may be used. The fraction of the total length affected may be taken as $(1 - E_G)$. with the slugs considered to be free of gas bubbles,

$$\Delta P_{I} = \frac{2f_{L}V_{M}^{2}\rho_{L}(1 - E_{c})}{g_{c}D} \Delta z. \qquad (24)$$

A method, preferable at least in principle, is to take account of the estimated fraction L_s/(L_s+L_b) and the estimate of the volume fraction of gas in the slug, Ecsl, thus

$$\triangle P_{I} = \frac{2f_{L}V_{M}^{2} \rho_{a}}{g_{c}D} \left(\frac{L_{s}}{L_{h} + L_{a}}\right) \triangle z \dots (24a)$$

where, in either case, f. is evaluated from Equation 6 at Re = $DV_{M}\rho_{L}/\mu_{L}$ and the appropriate k/D.

THE CALCULATION METHOD

A program incorporating the concepts described has been developed. The principle features of the program are discussed in the following.

Starting from the well head where the pressure, PH, and temperature, TH, are known and the depth

- 1. assume $\triangle z = I/10$ of the total depth, 2. assume $\triangle P = 100$ psi,
- P and T are determined at the mid-point of the first depth increment, $z = z_H + 0.5 \triangle z$, $P = P_H + 0.5 \triangle P$,

$$T = T_H + \frac{(T_B - T_H)z}{z_B}$$

- 4. From the subroutine PROP the fluid properties and flow rates are determined at P and T as follows:
- RS Solution gas-oil ratio from the correlation of Standing⁽¹⁷⁾. When RS is greater than the producing gasoil ratio, RS = GOR and the pressure gradient is calculated for single-phase flow;
- Bo - Formation volume factor from the correlation of Katz(18);
- Z Compressibility factor from the Standing-Katz(10) chart at peusdo-reduced pressure and temperature, pP, and pT, estimated from gas gravity (19). In the subroutine COMPR the value of Z is determined at the reduced conditions by interpolation;
- PL, PG the liquid and gas densities are determined as the ratio of mass and volumetric flow rates.

The volumetric flow rates, in ft³/sec, are

$$Q_L = 6.49 \times 10^{-5} Q_a (B_b + WOR)$$

$$Q_{G} = 3.27 \times 10^{-7} \text{ ZQ}_{o} (R - RS) \frac{T + 460}{P}$$

where

 Oil production rate, STbbl/day Q. = Oil production rate. 0.1027, WOR = Water-oil ratio, STbbl/STbbl R = Producing gas-oil ratio, SCF/STbbl The mass flow rates, in lb/sec, are

$$\begin{array}{lll} M_L & = \ _{\circ} [4.05 \times 10^{-3} \ (SG_{\circ} + SG_{w} \times WOR) \\ & + 8.85 \times 10^{-7} \times SG_{c}RS] \\ M_G & = 8.85 \times 10^{-7} \ Q_{\circ} \ SG_{G} \ (R - RS) \end{array}$$

SC specific gravity

Viscosity of the oil from the correlation of Chew and Connally (20)

Viscosity of the gas from the correlation of μ_{G}

- 5. The flow pattern is determined in the sub-routine REGM1 according to the flow pattern map shown
- 6. In the subroutine DENS1, the in situ density and the volume fraction of gas are calculated from the equations appropriate for the flow pattern (see discussion under the separate flow patterns).
- 7. In the subroutine FRIC1 the frictional contribution, $\triangle P_i$, to the total pressure drop is calculated. The friction factor is evaluated from Equation 6 through subroutine COLE at the appropriate Reynolds number and relative roughness.
- 8. The hydrostatic head term is evaluated from Equation 9 in bubble flow and from Equation 22 in slug flow. The total pressure gradient is then the sum of the frictional and hydrostatic head components.
- The calculated value of △P is compared with the assumed value. If $\triangle P < 100$ psi and if the difference between the assumed and calculated values is less than ± 0.10 psi, the calculation proceeds to the next step. If $\triangle P > 100$ psi the depth increment is divided by 2 and steps 1 to 8 are repeated. If the assumed and calculated values of $\triangle P$ are not within 0.10, the assumed value is replaced by the calculated $\triangle P$ and steps 1 to 8 are repeated.
- 10. Subroutine OUTPUT is called and the values at the depth increment are printed (see sample output in the Appendix)
- 11. Steps 1 to 10 are repeated for the new conditions of the next depth increment until ∑∆z equals the total depth.

The program listing is given in the Appendix.

Comparison of Predictions with Field Data and With Other Methods

A search of the literature has revealed relatively complete field data on the pressure gradients in some 48 wells producing at gas-oil ratios within the range of this study. The relevant field data are identified and summarized in Table 1. The free gas index has been calculated and is given for the top, mid-depth and bottom-hole conditions.

Of the 48 wells studied, 38 are those reported by Espanol^(a), one is the same as that used in a sample calculation by Orkiszewski (2), one is taken from Poettmann and Carpenter(3), and seven were obtained from the files of the Energy Resources Conservation Board. For each well the table gives the API gravity, the oil production rate, the gas-oil ratio, the depth of the well, the tubing diameter, and the measured well-head and bottom-hole pressures. The data are listed in order of increasing top hole gas-liquid ratio, as roughly measured by a "free gas index", FGI, defined as

$$FGI = R - KP (scf/bbl)$$

where

= producing gas-oil ratio, scf/bbl =1(API/100) - 0.05

= pressure, psia

The approximate percentage of well depth for each flow pattern, as determined by this method, i.e., single-phase liquid, bubble and slug, is shown. The bottom hole pressure and the hydrostatic head and frictional components of the total pressure drop as predicted by the proposed method are given, and the per cent errors in pressure drop and in bottom hole pressure are recorded. For comparative purposes, the per cent errors in the predicted bottom hole pressure by the methods of Orkiszewski, of Hagedorn and Brown and of Duns and Ros are also given. The calculated results from the Hagedorn and Brown and the Duns and Ros methods were taken from Espanol'6'. It is clear from this comparison that no single method may be claimed to be more accurate than all other methods in all cases.

The data for wells No. 1, 11 and 16 are clearly suspect. For well No. 1, both the Orkiszewski and the present method show a large error between the pre-

dicted and measured values of the bottom hole pressure, in spite of the fact that the flow is essentially single phase and the pressure drop is almost entirely due to the hydrostatic head. Well No. 11 shows substantial errors for all four methods, and well No. 16 for all but the Duns and Ros method, hardly to be expected when more than two-thirds of the depth is occupied by single-phase liquid, and again, essentially all of the pressure drop is due to the hydrostatic head. In addition, the results of all the prediction methods, except that of Hagedorn and Brown, for well No. 48, where again essentially all of the pressure drop is due to the hydrostatic head, raise a question about the validity of the data.

It may be observed in Table 1 that the hydrostatic component of the total pressure drop is orders of magnitude larger than the frictional component in all but four cases. Only at the high oil flow rates of wells No. 24, 27, 45 and 47 is the frictional pressure drop at all

Table 1 — SUNIMAR	i OF DATA AND	COMPARISON OF RESULTS

No.	Well Ident.	API Gravity	Oil Rate bbl/day	II [:] OR bbl/bbl	GOR Scf/bbl	IVell Depth ft.	Tubing Dia. fl.		sured ure, psi Top	Free Gas In Nid Bottom Depth	dex Top	per c	oproxima ent Dep low Pat B	th
1 2 3 4 5 6 7 8	CB 66 E 12 E 29 E 38 CB 68 E 32 E 25 E 23	38.4 40 44 44 38.4 44 44	136 218 415 118 114 135 132		143 171 516 485 250 450 518 523	5046 12037 12449 12449 5012 12445 12446 12439	.203 .198 .198 .198 .203 .198 .198	1637 4368 5140 4965 1631 4875 4887 4722	391 440 1085 960 271 675 850 850	- 416 - 202 -1358 - 670 -1490 - 698 -1450 - 669 - 295 - 68 -1450 - 631 -1388 - 600 -1320 - 564	12 17 93 111 159 187 187 192	95 100 92 90 65 85 85 88	5 0 8 10 30 15 15	0 0 0 0 5 0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 37 38	CE 33 31 40 16 33 44 16 33 39 24 21 21 21 21 21 31 31 31 31 31 31 31 31 31 31 31 31 31	36.6 44 40 44 41.4 40 44 40 44 41.3 44 41.4 44 44 44 44 44 44 44 44 44 44 44 44 4	233 116 407 498 164 74 71 150 130 93 135 378 103 136 1850 282 111 1656 89 81 141 129 235 103 141 336 490 205 82 101 51	0.26 0.98 0.23	441 443 443 478 338 811 389 486 572 4485 485 581 575 699 873 897 1091 1000 889 1100 987 1112 1069 1171	4839 12454 7300 10553 12453 9101 12458 10201 12457 12456 5054 3890 12024 9667 6225 6225 12443 8862 12451 12443 8862 12451 12441 8156 6000 10328 9673 7214 8454	.166 .198 .198 .198 .198 .198 .198 .198 .198	2056 4967 1945 3695 4339 4042 48675 2122 4801 1094 4683 2232 3656 3850 1633 1500 2985 3044 2720 2986 4595 5137 4440 3825 2965 4508 1907 3006 2742 2662 2925	742 650 495 450 485 20 275 425 50 800 375 70 500 750 750 750 750 625 50 1100 500 1290 725 645 360 1093 450 625 480 575	$\begin{array}{c} -209 & - & 1 \\ -1444 & -602 \\ -238 & + & 16 \\ -960 & -328 \\ -1360 & -523 \\ -360 & -525 \\ -260 & +65 \\ -1300 & -447 \\ +60 & +243 \\ -1070 & -313 \\ -200 & +125 \\ -940 & -241 \\ -1020 & -277 \\ +36 & +255 \\ +370 & +426 \\ -525 & +15 \\ -314 & +133 \\ -161 & +213 \\ -268 & +192 \\ -1120 & -232 \\ -910 & -124 \\ -833 & -65 \\ -192 & -192 \\ -1120 & -232 \\ -910 & -124 \\ -833 & -65 \\ -193 & +295 \\ -760 & -6 \\ +145 & +447 \\ +138 & +444 \\ +27 & +428 \\ +36 & +420 \\ +244 & +582 \\ +60 & +506 \\ \end{array}$	207 240 270 303 314 318 390 406 424 451 458 466 475 483 556 662 704 729 731 748 749 750 830 875 920 952	40 80 68 70 69 63 68 60 65 38 60 48 60 48 40 0 33 38 13 40 23 32 0 15	40 20 12 10 11 27 19 20 45 20 45 50 12 37 40 25 35 33 33 53 45 20 20 20 30 48 45 65	20 20 20 20 20 20 20 12 17 12 55 10 45 23 24 55 10 28 15 27 47 21 27 47 47 47 47 47 47 47 47 47 47 47 47 47
41 42 43 44 45 46 47 48	E 43 E 17 E 44 E 11 CB 55 P 1 CB 56 E 22	43 40 47.3 44.4 47.3 44.4	61 59 57 53 1104 60 1296 44		1433 1617 1675 1460 2645 2250 2796 9975	8456 8472 8468 4308 11429 10961 11429 9665	.198 .198 .198 .198 .166 .203 .166 .198	3382 3339 3260 1338 4734 3870 4577 3000	950 900 835 220 2465 1264 2465 1750	+ 148 + 610 + 315 + 790 + 440 + 899 + 990 + 1186 + 640 + 1121 + 725 + 1238 + 860 + 1306 + 8805 + 9048	1072 1266 1358 1383 1602 1752 1753 9292	10 0 0 0 0 0 0	78 70 75 0 0 65 0	12 30 25 100 100 35 100 100

*Code: CB — Energy Resources Conservation Board; E — Espanol(6); O - Orkiszewski(2); P — Poettmann and Carpenter(3)

significant. In calculating the total pressure drop in the slug flow region, both approaches, i.e. Equations 22 and 24a, and Equations 9, 10 and 24, were tested to determine $\triangle P_{HH}$ and $\triangle P_{r}$. The results obtained for $\triangle P_{HH}$ were essentially the same. The proposed method (Eqs. 22 and 24a), using a different proportion of the tubing subject to friction, gives different predictions for the total pressure drop only in cases where $\triangle P_{r}$ is significant.

On the whole, the results of calculating $\triangle P_r$ from Equation 24a were superior to those based on Equation 24. The values of $\triangle P_{RR}$ and $\triangle P_r$ shown in Table 1 were obtained from Equations 22 and 24a.

Single-phase flow predominates with a modest amount of bubbles but no slug where the top hole FGI is about +200 or less and where the mid-depth FGI is in the range of -600 to -200; this is the case for wells No. 1 to 8 and 10. For these tests the proposed and the Orkiszewski method give essentially the same results; the method of Hagedorn and Brown is slightly superior and that of Duns and Ros is slightly in-

ferior. It is significant to note that in almost all cases the errors are negative.

At FGI values at the top in the range of about 200 to 1000 (wells No. 9, 11 to 38, 40 and 41), with two or three exceptions, the flow pattern is a combination of single-phase, bubble and slug flow; the proportion of single-phase flow decreases and that of the bubble and slug increases as the top hole FGI increases. In this region the proposed method is modestly superior to the methods of Orkiszewski and of Duns and Ros, which are slightly better than that of Hagedorn and Brown.

With top hole FGI values exceeding about 1000 (wells No. 39, and 42 to 48), single-phase flow is not predicted, and the flow pattern tends increasingly from a mixture of bubble and slug to slug. In this region the proposed method is slightly superior to the others.

Summarizing the results of Table 1 and neglecting the suspect data referred to earlier, the average of the absolute errors in the pressure drop calculated

Calculated Proposed N bollom hole pressure, psia		∆P₁ psi	Error in Calc'd △P, % Proposed Melhod	Er Proposed Method	тот în Calculated Во Рет Orkiszewski		ure, Duns-Ros	No.
2123 4456 4823 4721 1902 4447 4572 4566 2248 4376 2723 3557 3856 3974 4270 3295 4248 1139 4291 2364 3490 3327 1711 1722 3566 3436 2685 3292 4123 4382 3769 3607 3331 3877 2270 2816 3123 3239 2456 2871 3208 3101 3057 1189 5186 3946 5300 3631	1732 4013 3730 3762 1639 3776 3725 3718 1508 3733 2224 3097 3809 2619 4255 3024 3830 1093 3499 1985 3428 3281 1403 993 3213 2968 1729 2680 4078 3292 3280 2327 2618 3242 1903 1698 2673 2622 1988 2673 2622 1988 2673 2622 1988 2673 2622 1988 2673 2673 2674 2673 2674 2675 2677 2706 2370 1878	$egin{array}{cccccccccccccccccccccccccccccccccccc$	+39.0 + 2.3 - 7.8 - 6.1 +20.0 - 10.2 - 4.0 +14.6 - 13.7 + 53.7 - 4.3 - 11.3 - 2.5 - 8.7 +63.5 - 12.6 + 4.3 - 10.1 + 7.1 - 13.8 + 15.7 - 13.8 + 15.7 - 11.8 - 10.4 - 17.0 - 18.7 - 16.3 - 17.0 - 16.3 - 17.0 - 16.3 - 19.9 + 16.1 - 10.1 - 10.1 - 10.3 - 10.4 - 17.0 - 16.3 - 10.4 - 17.0 - 16.3 - 10.1 - 10.3 - 10.4 - 10.3 - 10.5 - 1	$\begin{array}{c} +29.7 \\ +20.0 \\ -20.0 \\ +6.2 \\ -4.6 \\ -8.8 \\ -3.3 \\ -11.0 \\ -11.1 \\ -8.3 \\ -11.0 \\ -11.1 \\ -155.3 \\ -11.4 \\ -13.6 \\ +14.8 \\ -13.6 \\ +14.8 \\ -14.7 \\ -15.1 \\ -15$	$\begin{array}{c} +29.7 \\ +22.0 \\ -4.9 \\ -4.6.3 \\ +16.2 \\ -4.16.2 \\$	+ 2.1 - 5.9 - 4.7 - 8.6 - 6.3 - 3.2 - 11.7 + 23.6 - 11.0 - 51.3 - 73.3 - 59.3 - 8.4 - 24.6 - 30.0 - 41.6 - 9.3 + 13.3 - 10.4 - 84.2 - 31.6 + 12.7 - 27.5 - 73.7 + 24.6 - 3.3 - 10.4 - 31.6 - 12.7 - 27.5 - 73.7 + 24.6 - 31.6 - 15.2 - 31.6 - 12.7 - 27.5 - 73.7 + 24.6 - 3.6 - 3.6 - 8.6 - 3.6 - 8.6 - 3.4 - 3.4 - 3.6 - 3.6	+ 1.7 - 7.0 - 7.8 - 10.9 - 8.7 - 8.4 - 14.1 + 37.8 - 13.2 + 14.1 - 14.4 - 10.2 - 10.0 - 17.9 - 15.2 + 10.7 + 1.0 - 15.4 - 19.0 - 17.2 + 46.0 - 17.2 + 46.0 - 6.5 - 8.4 - 19.6 - 8.4 - 19.6 - 8.4 - 19.6 - 8.4 - 19.6 -	12345678901123415678901223456789012334567890412344444444444444444444444444444444444

by the proposed method is 11.5 per cent. The average absolute errors in the calculated bottom hole pressures are 8.9, 8.9, 20.5 and 11.1 per cent, respectively, for the proposed method and the methods of Orkiszewski, Hagedorn and Brown, and Duns and Ros. The proposed method is not demonstrated to be superior to the method of Orkiszewski, but the fact that it is more soundly based on the mechanism of flow, while giving results of equal accuracy to the method of Orkiszewski, is significant.

CONCLUSIONS

The proposed method, based on mechanistic considerations, permits ready identification of the flow pattern, and the calculation of the in situ volume fraction of the gas phase and the pressure gradient. The predicted pressure drop compares favourably with measured values in 44 of the 48 wells for which adequate data are reported. The absolute error is about the same as for the Orkiszewski method, which has been shown previously to be superior to the Hagedorn and Brown and the Duns and Ros method.

The computer program developed permits rapid evaluation at discrete depth intervals of the flow pattern and all other factors influencing the pressure gradient. The complete pressure profile is determined.

Uncertainties in some of the field data and a lack of complete and reliable data covering the full range of flow rates have hindered the development of a fully reliable, mechanistically based computation method. Additional reliable data are needed to permit further checking and possible refinement of the proposed method.

ACKNOWLEDGMENTS

This research is partially supported by The National Research Council of Canada, Mr. A. Settari assisted in the development of an earlier version of the computer program used here.

REFERENCES

- (1) Govier, G. W., and Aziz, K., The Flow of Complex Mixtures in Pipes, Van Nostrand Reinhold Co., New York (1972).
- Orkiszewski, J. Predicting Two-Phase Pressure Drops in Pipes, Journal of Petroleum Technology (2) Orkiszewski,
- (3) Poettmann, F. H., and Carpenter, P. G., The Multiphase Flow of Gas, Oil and Water Through Vertical Flow Strings, Drilling and Production Practice. A.P.I. (1952), p. 257.
- Duns, H., Jr., and Ros, N. C. J., Vertical Flow of Gas and Liquid Mixtures in Wells, Proceedings of Sixth World Petroleum Congress, Frankfurt
- (1963), Vol. 10, p. 694.

 (5) Hagedorn, A. R., and Brown, K. E., Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small-Diameter
- Vertical Conduits, Journal of Petroleum Technology (April 1965), Vol. 17, p. 475.

 (6) Espanol, J.H., Holmes, C. S., and Brown, K. E., A Comparison of Existing Multiphase Flow Methods for the Calculation of Pressure Drop in Vertical Wells, Society of Petroleum Engineers of A.I.M.E., Paper No. SPE 2553 (1969). Also M.Sc. thesis by Espanol, University of Tulsa (1968). (7) Aziz. K., Fortems, C. C., and Settari, A., Interaction
- of Wellbore Conditions with Flow in the Reservoir in the Mathematical Simulation of Petroleum Reservoirs, Proceedings of the Eighth World Petro-
- leum Congress, Moscow (1971).

 (8) Colebrook, C. F., Turbulent Flow in Pipes with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws, Journal of Institution of Civil Engineers (1939), Vol. 11, р. 133.

- (9) Griffith, P., and Wallis, G. B., Two-Phase Slug Flow, Journal of Heat Transfer, A.S.M.E. Transactions (Aug. 1961), Vol. 83, p. 307.
 (10) Govier, G. W., Radford, B. A., and Dunn, J. S. C., The Upward Vertical Flow of Air-Water Mixtures, Pt. 1, Canadian Journal of Chemical Engineering (1967), Vol. 25, 259.
- (1957), Vol. 35, p. 58.
 (11) Zuber, N., and Findlay, J. A., Average Volumetric Concentration in Two-Phase Systems, Journal of Heat Transfer, A.S.M.E. Transactions (Nov. 1965),
- Heat Transfer, A.S.M.E. Transactions (Nov. 196b), Vol. 87, p. 453.
 (12) Zuber, N., Staub, F. W., Bijwaard, G., and Kroeger, P. G., Steady-State and Transient Void Fraction in Two-Phase Flow Systems, Report EURAEC GEAP 5417, General Electric Co., San Jose, California (January 1967), Vol. 1.
 (13) Davies, R. M., and Sir Geoffrey Taylor, The Mechanics of Large Bubbles Rising Through Extended Liquids and Through Liquids in Tubes, Proceedings, Roval Society of London. (1950), Ser. A., Vol. 200,
- Royal Society of London, (1950), Ser. A., Vol. 200, p. 375.
- p. 375.
 (14) Neal, L. G., Analysis of Slip in Gas-Liquid Flow Applicable to the Bubble and Slug Flow Regimes, Report KR 62, Kjeller Research Establishment, Kjeller, Norway (Dec. 1963).
 (15) Wallis, G. B., One-Dimensional Two-Phase Flow, McGraw-Hill Book Co., New York (1969).
 (16) Akagawa, K., and Sakaguchi, T., Fluctuation of Void Ratio in Two-Phase Flow, Bulletin of J.S.M.E. (1966), Vol. 33, p. 104

- (1966), Vol. 33, p. 104.
 (17) Standing, M. B., A Pressure-Volume-Temperature Correlation for Mixtures of California Olls and Gases, Drilling and Production Practice, A.P.I. (1947), p. 275.

 (18) Katz, D. L., Prediction of Shrinkage of Crude Oils,
- Drilling and Production Practice, A.P.I. (1942), p.
- (19) Katz, D. L., and Associates, Handbook of Natural Gas Engineering, McGraw-Hill Book Co., New York
- (1959).
 (20) Chew, Ju-Nani, and Connally, C. A., Jr., A Viscosity Correlation for Gas-Saturated Crude Oils, Transactions of A.I.M.E. (1959), Vol. 216, p. 23.
 (21) Lee, A. L., Starling, K. E., Dolan, J. P., and Ellington, R. T., Viscosity Correlation for Light Hydrocarbon Systems, AIChE. Journal (Sept. 1964), Vol. 10, p. 694 10, p. 694.

NOMENCLATURE

B,

- cross-sectional area of pipe, It2 formation volume factor, bbl/STbbl
- proportionality factor (Eq. 16) distribution coefficient (Eq. 12)
- inside diameter of tubing, ft. $\mathbb{E}_{\mathtt{G}}$ cross-sectional average in situ volume fraction of the
- gas phase E_{GSL} volume fraction of gas in the liquid slug
- Εo Entropy number (defined following Eq. 16)
- Fanning friction factor (Eqs. 5 and 6)
- **FGI** free-gas index, SCF/bbl acceleration of gravity, ft/sec2
- dimension conversion factor = $32.2 \text{ lb}_m \text{ft/lb/sec}^2$ k/D
- relative roughness of pipe length of the Taylor bubble, It (Eq. 17) Ľь
- L. M length of the liquid slug, ft (Eq. 21) mass flow rate, lb.,/sec
- N Wallis liquid viscosity number (defined following Eq. 161
- P pressure, psia $\triangle P$ total pressure drop over small elevation change,
- △z, psi (Eq. 1) $\Delta P_{\rm f}$
- friction component of $\triangle P$, psi (Eq. 1) hydrostatic head component of $\triangle P$, psi (Eq. 1) ∠Piπ kinetic energy component of $\triangle P$, psi (Eq. 1) ΔΡκε
- volumetric flow rate, ft³/sec producing gas oil ratio, SCF/bbl Ř
- Re RS Reynolds number = DVP/ solution gas oil ratio, ft3/bbl SG specific gravity
- temperature (F or R) average velocity, ft/sec.
- $V_{\rm bl}$ = rise velocity of bubbles in a flowing stream, ft/sec. (Eq. 12)
- V_b, rise velocity of bubbles in a stagnant liquid, ft/sec. (Eq. 14 or 16) V_M average velocity of the mixture, ft/sec. (Eq. 13)

SUBSCRIPTS

 refers to bottom hole conditions
 refers to bubbles in flowing liquid
 refers to bubbles in stagnant liquid D Ьſ ь = refers to gas = refers to well head conditions = refers to liquid = refers to mixture м refers to slug S refers to superficial flow rate based on the full pipe cross section for liquid and gas, respectively SL, SG

= refers to water

APPENDIX

σ

Program Listing

HAIN TRACE COC 6600 FTN V3.0-P213 OFTEO 77/04/(M4IN TRACE CDC 6600 EIN V3.0-P213 OPT=0 72/04/0
•	
PROGRAM MAIN (INPUT.OUTPUT.TAPES=INFUT.TAPE6=DUTPUT) COMMON / ROUNDS /	READ (NP. 102) COST. H. ≡OP 102 FORMAT(JF10.5)
1 XLBS- ELSF- ALFH- N- JOENT	READ_[4R. 999] PE: PH
C	999 FORMAT (2F10.5) 4-0.78519-D.*2
C CALCULATION OF PRESSURE DROP IN WELLBORE C. HAIN	0657 = P*0057/1000.
C	G = 12.2
C DATA DESCRIPTION -	LINE = D
C NO-ELL	6666 FORMAT (1H1)
ACCUSED OF THE COURT AND STORE OF BEAD OIL	PRITE (NY. 2222)
C VISCOSITY , [EMPERATION HELATION]	2222 FORMAT(1H , LZX. "MELL DEPIM PRESSURE TEMPERATURE
C GRYGS -SPEC.GRAVITY OF GAS	L'SUAFACE GAS-OLL" / 12%.
C BAVES -SPEC.GRAVITY OF DIE C BAVES -SPEC.GRAVITY OF PRODUCED WATER C D -OIAMETER OF WELL-FT	1° GAS OF WELL K/D TENSION MATTO-/ 128.
C XK2ID -MELAIIVE MUDGHMESS DI MULT	1" GAS OF WELL K/D TENSION RATIO"/ 12%. 1" FT PSIA NEGREE F STA/D MSGF/D*.21%.
C SIGMA -SURFACE TENSION DF_OIL-LHM/SECSD	1°F7** 15%, "LBH/SECSO SCF/S18* /)
C ZB-ZH -BOTTOM AND HEAD DEPTM OF WELL-FT C TB-TH -BOTTOM AND HEAD TEMPERATURES DEGREE F	WAITE (NW.4444) NOWELL, ZB. FB. TB. TH. COST. CGST. 167405- GRYGS- D. ARSID. SIGMA. H
c onst = Oil Phoruciian Hair.sia/8ar	<u>4444 FOPMAI 11H . 12K, LJ. F9.0. 2FR.q. F6.0. F7.D. F9.1.</u>
C QGST -GAS PRODUCTION RATE, HSCF/DAY	F8.3, F7.3; F10.3; 2F10.4, F10.0, //
C PAS OIL RATIO CENSIA C WOP - MAIER UIL RATIO STR/STB C PB -BOITON PRESSUPERPSIA	WRITE (NW. 3333)3333_FORMAT(IH .= I DEPTH DENSITYVISCOSITYFLOW RATE*
C WOP - WATER DIL_RATIO. STR/STB C PB ~BOTTOM PRESSUPE.PSIA	I" REYN. FRIC. PLOW VOL. RUBBLE DELZ P 4 E 5 S U 4 E*
C PH -MELL HEAD PRESSURE. PSTA] D A O F=-/ 1181=T=19X,=GAS OIL GAS OIL 40. •
NR=5	2"FACT. PAIT. FRAC. VELOC. FRICTION HYDROST. KINETIC"
NN=6 110 _ MEAD (NR+ 99) NOVELL	<pre>D* PRESS.*/41%, *E*, * FTLBH/CUFT**5%. *CENTEPOISE*7%***CHFT/\$EC*261*.</pre>
110 _ AEAD (NR, 99) NOVELL	5-GAS FT/SEC FF*, 14#, *PS[*, 15%,*PS]A* / 14 *#*/)
IF (MOMELL .LT. D) GO TO 1111	- PST = PH
	ZST = 7H C [NITIAL INCREMENT OF DEPTH=1/10 OF THE WHOLE LENGTH
MEADINA, 1031 GAVOS, GRVGS, GRV	DELZ = (ZB-ZHI/1c.
TORNAT (JF10.5)	_ C _INITIAL INCREMENT_OF_PRESSURE=100_PSIA+ DELZ IS FIMED AND DELP
1DD FORMAT (JF10-5)	DELP = 190.
READINB.LG1) ZH.IB.ZH.TM	C START OF TIFRATION CYCLE
103 FORMAT(4FLO.S)	000 11EH = 1
MAIN TRACE CDC 6600 FTN V3.0-P2]3 OPT=0 72/04/1	I MAIN TRACE COC 6600 FTN V3.0-P213 0PF=0 72/04/
IF (428-25T) -L1- DELZ) DELZ = ZB-ZST 6 Z = ZST - 0.5*DELZ	ITER=ITER-1
T = 1H + [[B-]H] *2/28	
S P=PS1*0-5*DELP C#LL PROP(P.1.GAVOS:GAVGS:P.OL.QG.QOST:DN5L:DN5G.	B DELP - DELPN
1 1NI, VISCL, VISCG, 95, CEPT, 51 P. NOR, 58N) IF (IR - AS) .GT 0.) GD TO 5555	
IF (IR - AS) .GT- 0-) GD TD 5555 C FOR SINGLE PHASE LIQUID FLOW	7 Z5T=Z5T-DELZ
	PST=PST-DELP
IDENT = 5 DNS = DNSL	C VALUES AT THE END OF THE STEP
GO_70_9999	CALL BUTPUT (TF, DELZ, DNS, TOENT, EG, VBF, REL, PEG, CUEF, LOELP, CTER, ZST, DNSG, DNSL, VISCG, VISCL, OG, DL, F, PST, NOWELL,
SSSS CONTINUE C IDENTIFICATION OF FLOW REGIME AS FOLLOWS	l LINE)
C 10FNT=1 -8U88LE FLOW	
C IOENT=2 -SLUG FLOW C IOENT=3 -TRANSITION FLOW (FROTH)	OO 10 9 10 WITE (NY. BBB8) BASE FORMAT (LHO. NOTE RETNOLOS HUMBER BEFERS TO GAS, SEG.
C 10FNT=5 -41ST FLOW	BABB FORMAT (1HoNDTERETNOLOS_NUMBER_REFERS_TO_GASAEG
C 1DENT=5 -SINGLE PHASE LIQUID FLOW CALL REGHI (D.OL.QG, DNSL.DNSG.SIGHA)	ERROR = ((PST-P81/(P8-PH))*100.
C 10 ETTI, DEUGIT/ DUG. PW/CIFT	JATES 100 2777 DU CORDO
CALL DENSI (D.GL. #G.DNSL. DNSG. V) SCL. SIGHA. VM. VR. VBF. EG.	7777 FORMATIISA, "MEASURED MCLL, HEAD PRESSURE = ", F6.D./ LSK, "PER CENT) ERROR IN DELP = ", F7.21"
1 BL:\$L:DN5:DN55) _9999_CONTINUE	G0_T0_110
C FRICTION TERM IF	9 GD TO 666 1][[CALL EXIT
CALL FRICE (D.GL.AG.DNSL.BNSG.VISCL.VISCG.SJGHA-IKSID.VK.	END
D ACCOUNT FOR KINETIC ENERGY TERM IN HIST FLOW	
IFITDENT-4) 1:2.1 2 COFF=1:-5MI-0G/14617-5P-4-21	
. GO TO 11	
1 COEFel	
C CALCULATE PRESSURE INCREMENT DELPNICHECK FOR CONVERGENCE 11 DELPNICTE (6/32-2)*DNS1*DELZ/(144.*CDEF)	
reiabsinflen-deip) _Le_ o.1 _AND. DELPN _LE_ 100.) GO TO 7	
C MAXIMUM ALLOWED INCREMENT OF PRESSURE IN ONE STEP DO PSIA-IF GREATER C DIVIDE STEP SIZE DELZ BY 2	· · · · · · · · · · · · · · · · · · ·
TF(DELFN _GT. 100_) GO TO 3	
50 TO 4	

	THE COMPA TRACE COC 61:00 FIN V3.0-P713 (IPT=0 72/04
	SUBROUTINE COMPA IPZ, 12. GAVGS. 21 C
	C Z FACTORS BY STANDING MART MELHOD
	C DATA DESCRIPTION C ZP, ZI - REDUCED PRESSURES AND TEMPERATURES
	C FOR WHICH VALUESOF Z ARE GIVEN C ZS - VALUES OF Z FROM STANDING MATT CHART
	C PC = CHITICAL PRESSURE
	c
	OTHERSION 2017 - 201201, Z[120] - Z5120, Z01, Y(20) H(20) DATA (2P(1) + 1=1 - 2)/ -2, 0.0, -4, -7, -1, -1, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
	DATA 121(I), I=1, 202/ 1-05, I-1, I-15, 1,2, 1-25, I-3, I-145, 1.4,
	[1,45; 1,5; 1.6; 1,7; 1,8; 1,9; 2,; 2,2; 2,4; 2,6; 2,8; 3, / DATA ((7548:4), N=1;201; M=1;61 /
	1 1.058, 1.048, 1.041, 1.04, 1.036, 1.020, 1.029, 1.033, 1.014, 2 1.021, 1.016, 1.013, 1.01, 1.007, 1.007, 1.009, 1.007, 1.007, 1.007,
INE PROP TRACE COC 6600 FM V3.0-F213 OPF=0 72/0-/	3 1.0, .999, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.
SURPOUTINE PROPIRATED ASS.GRYGS.A.DL.OG.QDS1.DNSC. ANT. YISCL. YISCG. ASS.GEPT. SEP. YOR.GR#)	5 ,967, ,949, _959, ,960, ,960, ,98, _983, ,987, _992, _996, 4
C CALCULATION OF OIL AND GAS PROPERTIES	7 721, 93, 945- 958, 667, 973, 978- 986, 992- 997, LONI. H 1.604, 588, 665- 773- 774- 812, 211, 856- 275- 809-
с	
C DESCRIPTION OF VARIABLES C P - PAESSURE (P914	1 1.607, 4431, 579, 672, 731, 113, 804, 425, 1850, 464, 486, 2 309, 931, 945, 955, 960, 978, 487, 996, 1.607, 1.408
C T - TEMPERALINE-DEGREE F	DATA 1(25(M-4), N=1-20), M=1-[4] /
C QG - GAS FLDW MATE: CUFT/SEC	L .901925941952782917901996. 1.002. 1.009. 5 .266480605682732773801820860860895.
C BO -FQ#MATION VOLUME FACTOR OF OIL-PB/STG	66916999960975986990950101a.2509401 - 7.57165871757791617441959989915934.
C	8,946, .957, .974, .985, .1000, Loui, .251, .944, .551,.634, .954, .194, .004, .910, .985, .351, .351, .381, .677, .674, .674, .954,
C	1 1972, 984, 1995, 1.803, 1.811, .76, .371, .497, .592, .456, .712, 2 .755, .784, .815, .837, .871, .9, .924, .934, .95, .97, .481,
C LEE GONZALEZ EARIN (1956) CORRELATION FOR VISCO	<u> </u>
C GH - GES MOLE WEIGHT	4 .766, .799, .824, .166, .893, .415, .917, .947, .986, .486, .995,
	
=S=GPYG5*((P/18.)*(10.**(3.6125-APTO))/(10.**(3.6009(*T)))**L.205 JF (95 .GT. 9) GO TO 24	
CALL COMPA P. T. GAVGS. ZCDEF! GG-3_27-1-0E-7-ZCDEF-GDST-(R-AS)-(IRANK/P)	
AMG=8_BSE_07*QDSI*G9YGS*(R=F3)	
DN5G=1MG/OG GM = GPVG5-26-9h6	
C = ((7,17 - 0.006]°GM)°(TRANA°°L,5))/(122-9 - 12-9°GM - FPANK) L = 2.57 1914_5/FPANK - 0.0095°GM	
T = 1.11 + 0.04*A 	
60 to 5F	THE PEGAL TRACE CUC 6510 FTW V1.0-P211 PT=A 72700
C SINGLE PHASE LIGHTLD FLOW AT THIS PRESSURE	SURPOUTINE PEUMLIU-OL-NG-PMSL-NNSG-SIGMAN
24 CONTINUE F=RS*SORT(GRVGS/GHVGS) +1,25*T	COMMON / ROUNDS /
00 <u>u772u.000147*F**1.175</u>	C FLOW REGIME IDENTIFICATION ACCURDING TO FIG.8.9 14 GOVILP + 1/12 A=0_7851940==2
MUL = 005T*(0.00~05*(GRV05*GPP*MOR) + 8.85E-07*GRV65*RS)	5GH&4=0-162 \5L=1L/8
DNS(=FHL/OL	
VISCLD = CEPF-(136,/T)*LP 4 = 0.2 - 0.6/(10.4-(0.3008)*#S()	1×1-(NN5G/D_0A06)0_333133
8 = 0,43 - 0,57/(10,**(0,00072*H5))	
RETUPN END	#LAS=0.5)*(100,*Y)**0.17?
	1 IDENT=1 GO TO 100
	.2 [F(r-26.5] 3.3.4
	3 KLSF=Y/0.263 +9.4
	CO 10 100 B XLFM=70.*(100.*Y)**(-f.152)
	F(I- LFM 9.9.10
	GO [2 100
	TO BEITHM TO IDENTER
	END
·	
INE COMP TRACE COC 6600 FTN V3.0-P213 OPT=0 727047	
5 1.416. 1.014343394451519582635688778.	
5 .765 .796 .861 .876 .90924 .941 .963 .940 .995 1.509 . 7 1.019	_ ,
" 1825 . 1655 . 4985 . 914, .915967, .981, .997, 1.112, 1.02 / - 9474 (475(H.N), Mel.20), Mel.5, 201 /	THE DENSI TRACE CDC 6600 FTH V1.10-P214 OPT-IN 12/14
9 .5745658260H5135535M7715746776516.	SUBBOUTINE DEMSE TO FOLL SUFFICIENTS OF A LINE STREET STREET STREET
1 .656692516439466493. 1.007. 1.023. 1.035666. 2 .67268366671771742761787411647879.	1 8L-SL-005-0955)
	1 JUSS ALSEA FLEHA FA [NENT
1 1912 -9731 -5731	C CALCULATION OF IN SLID DENSITY
7 1.12. 1.136. 1.141. 1.141. 1.156. 1.154. 1.162. 1.162. 1.167.	C VB - BURBLE VELOCITY IN STAUNANT CLUBB C VHF - BURBLE VELOCITY IN FERMING LIBUID
4 1,251, 1,22, 1,642, 1,655, 1,616, 1,544, 1,554, 1,524, 1,504, 5 1,443, 1,42, 1,442, 1,424, 1,406, 1,39, 1,342, 1,347, 1,34,	5[GMA = 0.162
]]_]==], []]= [.2];	G = 37-2 4=0.78539=6=-2
3 laws / Programmes	V5G = Q6/4
TC = 171.25 - 012.5*GRV6S	VM = (OL + DGT/A GD_TO_L=2-2-=1-TOENT
C CALCULATE & FALTURS	C BUABLE FLOW
30 41 JP=[.26 'F(E-Z=IJP) 45,4847	VD = 1.4[*[((5]644*L*(0N5L-NN5G))/(NN5L-0N5L))****(25) V8F = 1.25*Y**V*
~7 CINITYOF >= IF (JF-20150.~9.49	EG = VSG/VAR
4y JPel9	
5 1 = JP - 7 12 = JP - 1	. 60 TO 100
1 x (12 + 460,)/TC 90 51 1T=1+20	Z XME-1-AA SORT ((0 3) - S - () NAS - () NAS () V (SOL XMEO - G - () NAS (- O) (SOL + O) - F () SOL + O) (SOL + O)
F(I-ZT([f) 52:52:51	1F_(ANF = 14.) 20 (9) 21
52 JO 51 F=11-12	20 PMAM = 25. 60 To 24
(1=(/*(*-(f))-ZS(K-(f-1))*(I-ZY(f1-1))/(ZT(f1)-ZY(f1-1))-/S(K-H-1) 53 ((()=1Y)	21 (F (RMF 250.) 22-22:2)
## 10 5 - 1 = [1 - 12 = -1]	60 10 24
20 55 •= II • L2	23 PHUM = 10. 2- 41 = -0.01=E4F/0.3-5
[F(M-L)54,55454 5- 41(1=81L1-40-20181)/1284L1-2018)1	[F
55 CONTINUE	CO 10 2)0 200 CL = L.
ID AC r=L1-T2	$21a \cdot a2 = (3.37 - \text{FNFO})/P_0 24$
60 (=7-24-15) 2610-5	[F (12.LT.1-[0.1) GN to 22"

INE	OEN51	TRACE			CDC	6600	FTN	V3_0-P213	0 <i>2</i> T=0	72/04/
	cz	= 1 EEPIAZ								
	60	TO 230								
	220 CZ						_			
	530 CO	EF = 0.345+C1+4	:2							
	VB	= COEF* SQAT (DP INNSL	-DUSG1/DNS	Ll					
	υB	F = 1.24V4 + VI	1							
		= VSG/VEF		•						
		SL = EG==1.8								
		=(N=(7.5=(FG	<u>L-FG)-1.</u>	52611/JEG=	0.9	<u> </u>				
		. = 10.ºD								
		155 = EGSL+DNSG								
		159L = (ONSG*AL		SLI/(8L-SL)						
		110ENT-3; 70.7	70							
		S=045SL								
					_					
		NTINUE								
c	MIST									
		=1./[1QL/QG		-						
		=1EG		•						
		SMT=EL*DNSL+EG								
		CIDENT-11 SD-R	-80							
		S=DN54T								
_		TO 100					_			
č		ETION FLOW 15 4			17 E D	AVER	elif 1	VALUE OF 51	LUG AND	
		FLOW VALUES ID								
	. IOD AF	15=(#LF4 - X)*DI	1236/1466	M-TF21 - (X	- :	ML 3F J	ella?.	TIZ I ALFH-EI	Tit I	
	Eh	υ								

INE	OUTPUT	TRACE			COC 6600	CIS9-0.CV NT	o>T=o	72/04
	5UBR	OUTINE	QUIPUT (IF.	DELZ. DNS.	IDENT: EG	VAF- REL. R	EG. COE	F•
	LOELP		ZST, DNSG,	D45L, ¥15CG	• V15CL• 0	3. QL, F. PST	. NOVEL	L.
	DATA	IBBL: :		H+ H[ST/3HR	AL. 4H5LUG	SHFROTH, 4H	H[ST/	
		ISNGL -						
		LINE	- L - 30)					
		0 77	1- 301 PH 10	22				
5			N NGREU					
		- 0		_				
7	7 CONT	INUE						
_			LZ/144	_		_		
)ELZ/144.					
),4.6) [DEN	7				
		لفظليت						
		= AEL						
2		0 22 T = ISL1						
-		= PEL	16	-				
		0 22						
3		T FRI	TH					
		■ REL						
	GO T	0 11						
_ 4		J = H[5]	Γ_			_		
		■ REG						
			· caef) • I-DE	LPI				
- 6		0 44						
		T = [5NC = BEL	·L					
		DA.						
		0 33 -						
L								
			S) (TER. 25	L ONSG. DN.	SL. VISCG.	VISCL. DG. O	L .	
			T. EG. DELZ					
	GO T							
2		INUE						
						VISCL. QG. Q	Lı	
			T. EG. VBF.	DEFS: LUIC:	HTD9, PST			
	GD T		_					
4	4 CONT	INCE						

TINE	FRECI	TRACE	CDC 6630 FTN V3.0-F	213 OPT=0 72/04
	1		1C1\D.GL.OG.DNSL.DNSG.VISCL.VISCG.SIG44 NS.DNSS.SL.OL.TFI S./	XH5 D. VH,
	1	XLBS.	KLSF, ALFH, A. JOENT	
. 8	_CALCUL		ENTERTION TERM	
		.78539*D**Z		
		HA = 0 162 • (GL-QG)/A		
		TO (1:2:2:4:	1) - TOENT	
c				
1		=1488. *DNSL*	DEVH/VISCL	
		L COLETAEL.A		
			VM*DNS1/132.2*C)	
		TO 100		
5				
_ 2		TINUE =1488.•DYSL•	nativi derrota	
	HEL	L COLEIREL,	PEID EF	
			HPVH*DNSSPS[1/(32.2*D*(91-5L))	
		INENT-3) 19.		
	la if-		****	
	GO	TO LOD		
-	HIST F	FOR		
		=QG/A		
		=1488. *DV56*		
С			ROUGHNESS FOR MIST FLOW XD	
			V5G*VISCL/S1GHAI * *21 *DNSG/DNSL	
		XNW-0.305) 2	L*21,26 NSG*D*YSG**2)	
		34_75[UMB/10	N2G-D-A2G51	
			(3NY++0.302)/(DNSG+D+VSG++7)	
		JD-D-0011 24		
	24 XD=	0.0D1	- -	
	25 IF (10-0.51 26.2	6,27	
	27 ED=	a . 5		
		L COLE(REG:X		
			SG*V5G*V5G/(32-2*D)	
		EUEH1-31 30:	31.30	
-	30 TF=			
_		TO 100		
	IRANSI	FION FLOW IS	CALCULATED AS A VEIGHTED AVERAGE OF VA	LUES FOR
	200 A	NO HIST FLOW	(TESL AND TEHT!	
	-31 TF= 100 AET	14654 - X)*T	FSL/IXLF4-XLSF)+4X - XLSF)+TFHT/(XLFH-X	LSFI
	. IUD MEI		•	 -

LIVE ON	FPUT	TRACE	COC 6600 FTN V3.0-P213 0PT=0 72/0
		F. IFLPT, EG	EA, ZST, DNSG, DNSL, VISCG, VISCL, OG, QL, , DELZ, FRIC, HYDR, PKIN, PST
33		E (6. 8888) 1	TER. ZST. DNSL. VISCL. OG. GL. REY. F. IFLPT.
₅	CONT		·
5555	FORH.	AT (1H + I) +	F8.1, F5.1, F6.1, F6.3, F7.3, IPE10.2, E10.2, <u>A5, F5.3, AX, F7.0, IPE9.2, F10.2,10X,0PF0.</u> []
6666	FORH	AT (1H + 1L+	FB.1. F5.1, F6.1, F6.3, F7.3, IPE10.2, E10.2, 45, F5.3, F8.3, F7.0, IPE9.2, E10.2,100,0FF8.1)
. 7777	_ FOR H	AT_{13H []	F8.1. F5.1. F6.1. F6.3. F7.3. 1PE10.2. E10.2.
8688	FORH	aT ()H + [].	FB_1, 5K; F6_1, YM, F6_1, 2X, F3_1, 5K, 1PE10_2, . A5, F5_1, 8X, F7_q, 1PE9,2, F10.2, 1DX, 0PFK_1
56		•ID(• [H]) Ta	*WELL ND. *. 12. * CONTINUED*. //]

DESCRIPTION OF INPUT CARDS AND SAMPLE DATA Card 1. Well number

TINE C	OLE TRACE	CDC 6600 FTN V3.0-P2]3 OPT=0	72/04
	SUBROUTINE COLE(P.XO.F)		
<u>c</u> .	-4	CTOR FROM COLEBROOK EQUATION USING	
	NEWTON - RAPHSON [TERATION		
, i	MERION - KENNOUN EIEMELLON	Jeantage	
•	DE=La/AD		
	C)=4.67*DE/9		
	CZ=1.73716=ALDG(DE) -2.2	3	
	Fat /(1)-737[6:4 OG/0F1	·2_281 • ·21	
	3 FUNC=C2-).737]6*ALOG(1.		
	DER=0-6686 C1/(F**1.5-C	1•F1 +Q.5/(F••1.5)	
_	FN=F=FUNCZŌER		
	1F (ABS ((FN-F) /FN) -0.005	1 1-1-2	
	2 FEFH		
	60 TO 3		
	RETURN		
	FND		

1,	Well number	:			
	27				12
2.	Intercept a	and alope of t	emperacure a	nd dead oil viscosity	
	2,	1.72			2F10.3
з.	Specific go	ravicy of oil,	gas and waci	e r	
	0,806	0.76	1.		3F10.5
4.		ecer of cubing		ive roughness of tubing,	
	0.198	0.0009	0.066		3F10.5
5.	Depth (fr) well head	and temperatur	re (^O F) on cl	ne bortom and at the	
	12453.	192.	0.	100.	4F10.5
6.	Production water-oil r	rate of oil (S	STBbl/day), p (Bb1)	yas-oil racio (SCF/STBbl),	
	130.	572.	0.231		3710,5
7.	Prossure (p	e(a) on the bo	etona and cop	of the wall	
	4801,	425.			2F10.5

	WELL	DEPTH FT	RO	SSUPE TTOM SIA	TEMPERATU AOT TU DEGREE		GAS	(PEC. GF	672 672	OF WELL FT		400GH (70) し		S-01L A110 F/51H	
	27	12453	ı <u>.</u> "	801.	192_ 10	0. 130.	74_	4 -	.806	790	_198	. 1	nooA	.0460	572.	
I OEPTH	DENSII		VISCO	SITY	EI OW	RATE	REYN.	FHIC.	FLOW	Vai -	BURBLE	DEL 7	PHE	SSUNE	n # 0 #	
1 067111			645	01L	GAS	016	NO.			. FPAC-		L-1.2.		N HYDROST.	KINFILC	PHES
FT	LBW/CUP		CENTI			/SEC				GA5	FT/SEC	FI		PSI		PSI
i																
311.3	1.9	0.7 -	.011	1.491	2.01E-02	1.10E-02	10192.		SLUG	-316	2.067		1.56E-0			49
	2_3 5			1.361	1.60E-02	1.11E-02	9609_		SLUG	.272	1.90		1.51F-0			57
934.0				1.250	1.256-02	1.136-05	9205 -		SLUG	-535	1-784		1-26E-0			65
1245.3				1.149	1.02E-UZ	1-14E-02	9940.		SLV6		1,685		9.53F-0			74 <u></u> H3
1556.6			012	1.056 .970	6.10E-03 6.37E-03	1.15E-07 1.17E-02	87A2. 8721.		est est	-166 -136	1.586 1.522		8.29F-0			92
1867.9 2179.3			012	.970	4.94E-03	1.196-02	8741.		REL	-109	1.470		7.32F-0			501
2490.6			n13	623	3-76E-03	1 20E-02	BA33-		BBL	0.96	1 424		6-55E-0			111
2801.9			014	.761	2.77E-03	1.22E-02	a990.		AAL	-065	1.395		5-94E-1	7 7,736 (01		121
1113.2			014	.705	1.95E-0J	1.24E-02	9205.	.000	EFL	046	1.367	<u>ال نا</u>	5,46F-1	2 9.82F-01		131
3424.6			015	.655	1.25E-0J	1.26E-0Z	9470-		PFL	-030	1.345		5.07F-0			141
3735.9			.015	.609	6.42E-04	1.286-02	9778.		RPL.	-016	1.378		4.75F-1			151
4047.2			016	569	L.19E-04	1.29E-07	10123-		6HL	-003	1.313		4.49E-0			161 170
435B.5		5.9		-551	0.0	1.30E-02	10367-		SFL SFL	П.О О.О			4.42F-0			190
4669.9 4581.2		5.9 5.a.		.541 530_	0.0	1.30E-02 1.30E-02	10571.		SFL	11-0			4.39E-1			190
5292.5		5.8		.521	0.0	1.305-02	10980		SFL	0.0			4,37F-0			200
5603.8		5.7		.511	0.0	1.31E-02	11185-		SFL	n_a		311-	4.36F-U	7 9.89E+01		510
5915.2		5.7		.502	0.0	1.31E-02	11390.	,008	SFL	0.0			4.35F=0			550
6226.5	4	5.7		.493	0 - 0	1.31E-02	11596.		SFL	0 - D			4-33F-0			530
6537.8		5.6		.484	0.0	1.31E-05	11403-		SFL	0.0			4.32F-0			240
6845-1		5-6-		_ - + 76_	0_0	1.31E-0Z	12009.		5FL	0_0			4.31E-0			250
7160.5		5.5		+64	0.0	1.31E-02	12217.		SFL SFL	0.0			4-29F-0			264
7471_8 7783_1		5.5		.460 .452	0_0 0_0	1.31E-02 1.32E-02	12424. 12632.		SFL	0.0 0.0			4.27E-0			219
7783.1 8094.4		5.4		445	0-0	L 32E-02	12840.		SFL	0_0			4.26E-0			249
8405.B		5.3		, 4 7A	0.0	1.32E-02	13049		SFL	0.n			4.25F-0			519
A717_L		5.3			0-0	1.32E-02	13257.		SFL	0.0			4,24E-0			308
9028_4		5-2		.424	0_0	1-326-02	13467_	-007	5FL	0_0		311.	4.23F-0	2 3,781-01		310
9339.7		5.2		.+18	0.0	1.32E-02	13676-		SFL	0.0			4.22F=U			128
9651.1		5-1		412	0.0	1-325-02	13886.		SFL	0.0			4.21F-0			334
9962,4		5-1		.405 300	<u></u>	1-32E-07	14097-		<u> </u>	0.0			4.20F-0			348
10273.7 10585.0		5.l 5.0		.394	0.0 N.D	1-30E-05	14307		SFL SFL	0.0			4.[9F=0			357
10896.4		5.0		-388	0-0	1.33E-02	1451A. 14729.		5FL	0.0 0.0			18F-0 17F-0			367 177
11207.7		4.9		.3A3	0.0	1.33E-02	14941.		SFL	0.0			4.16F=0			306
11519.0		4.9		.377	0-0	1.3DE-02	15153.		SFL	0.0			4.15F-0			396
		4_8		372	_0_0	1.33E-02	15365.	-0117		_ 0.0_			4.14E-0			496
12141.7		4_8		_367	0-0	1.33E-62	1557d.	- 007	SFL	0.0		011.	4.14F-0	2 4.686.01		416
. 12450.0	4	4 - 7		.362	0-0	1.34E-02	15791.	. II U 7	SFL	0.0		JII.	4.13E-0	? 1.671.01		425
OTE REYN	OLDS NI.	MBER R	EFERS	TO GA.	S, QEG. IN	MIST FLOW	OT ONA	LIQUI	D PEL	. FLSF	HFAF					
	MEA	SUBED	VELL I	MEAN PI	PESSUAE =	425										

PUBLICATION

THE ATTENTION of mer Petroleum Engineers o duced rate to the publ should be completed by shown and returned w 50m 50

nd of members of the Society of exists for subscriptions at a retlined on the form below, which ations noted at the reduced rate

Subscriptions to the ... The Society of P 6200 North Cent

Dallas, Texas, 78
Subscriptions to the Journal of Canadian removes

of the C.I.M. to:

4. to:

The Canadian Institute of Mining & Metallurgy, 906-1117 Ste. Catherine Street West, Montreal 110, Quebec.

TO MEMBERS OF THE PETROLEUM SOCI	ETY OF C.I.M	-	
Journal of Petroleum Technology	(\$9.00/year to	C.I.M.	Members)

Society of Petroleum Engineers Journal (\$6.00/year to C.I.M. Members)

ГО	MEMBERS	OF	S.P.E.	OF	A.I.M.E

Journal of Canadian Petroleum Technology (\$4.00/year to S.P.E. Members)

Name
Address
Cheque \$ Enclosed

Member C.I.M. □ S.P.E. □