מבוא לתורת הקבוצות - שיעור 10

04 בספטמבר, 2023

יונתן מגר

חשבון עוצמות

תזכורת - חיבור

עבור $a,b=|A\cup B|$ עבור $a,b=|A\cup B|$ כך ש $A\cap B=\emptyset$ כך ער כך $|A|=a\wedge |B|=b$. מתקיימת הילופיות, a+b=a'+b a=0,a'=1,b=אם ניקח לב שאם לב שום סדר וכו'. נשים סדר וכו'. נשים לב שאם מיד אוניקות, יחס

דוגמות

$$\forall n.n + \aleph_0 = \aleph_0$$
 .

$$\aleph_0 + \aleph = \aleph$$
 •

$$\forall n.n + \aleph = \aleph$$
 •

$$\forall a \geq \aleph_0.n + a = a$$
 •

$$\aleph_0 + \aleph_0 = \aleph_0$$
 •

$$\aleph + \aleph = \aleph$$

a+a=a למעשה לכל עוצמה a אינסופית מתקיים •

כפל

 $.a \cdot b = |A \times B|$ גדיר, נגדיר אוינה פר ש-A,Bיהיי היינה עוצמות. עוצמות היינה a,b

- טענה: ההגדרה טובה, כלומר לא תלויה במייצגים. מתקיים:
 - $a \cdot b = b \cdot a$ •
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c \bullet$
 - $a \cdot (b+c) = a \cdot b + a \cdot c \bullet$
 - . מתאים ליחס הסדר על עוצמות.
 - $a \le a', b \le b' \Rightarrow a \cdot b \le a' \cdot b'$
 - . הכל מתאים לכפל על הטבעיים.
 - $a \cdot a = a, a \cdot 0 = 0$ וכמובן •

דוגמות

$$\aleph_0 \cdot \aleph_0 = \aleph_0 \cdot$$

$$n \cdot \aleph_0 = \aleph_0$$
 •

$$\aleph_0 \cdot \aleph = \aleph$$

$$n \cdot \aleph = \aleph$$
 •

חזקה

 $a^0=1$ לכל $a^0=A$, נגדיר $a^b=|A^B|$, נגדיר $a^b=|A^B|$, נגדיר $a^b=a^0$, נגדיר $a^b=a^0$, לכל $a^b=a^0$

- טענה: ההגדרה טובה, כלומר לא תלויה במייצגים. מתקיים:
 - $A^{B \cup C} \sim A^B imes A^C$ כי $a^{b+c} = a^b \cdot a^c$ •
- $(A imes B)^C \sim A^C imes B^C$ ים $(a \cdot b)^c = a^c \cdot b^c$ $A^{B imes C} \sim (A^B)^C$ $a^{b \cdot c} = (a^b)^c$
 - - . מתאימה להגדרת החזקה על הטבעיים.

נוכיח: בהינתן g(b,c)=f((c))(b) באופן הבא: Aל-Bל מתאימה פוני ב-Cל היא על כל איבר ב- $f:C o A^B$ נוכיח: בהינתן $f:C o A^B$ נגדיר את נמצא קg:B imes C o A נגדיר בהינתן כלומר, ההופכית. עועל נמצא את חח"ע ועל נמצא את ההופכית. כלומר, בהינתן f(c)(b)=g(b,c):ט ע"י כך שנתאים לכל איבר c את איך שרf(c) פועלת על ע"י כך שנתאים לכל איבר

$$|P(A)| = 2^{|A|} \cdot \forall a.a^1 = a \cdot \forall a.1^a = 1 \cdot$$

דוגמות

$$.\aleph \cdot \aleph = 2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0 + \aleph_0} = 2^{\aleph_0} = \aleph \bullet$$

$$2^{\aleph} \cdot 2^{\aleph} = 2^{\aleph+\aleph} = 2^{\aleph}$$
 •

$$\kappa_0^{\kappa_0} \le (2^{\kappa_0})^{\kappa_0} = 2^{\kappa_0 \cdot \kappa_0} = 2^{\kappa_0} = \kappa \cdot \kappa^{\kappa} = 2^{\kappa^0 \cdot \kappa} = 2^{\kappa} \cdot \kappa^{\kappa} = 2^{\kappa^0 \cdot \kappa} = 2^{\kappa^0 \cdot$$

$$\aleph^{\aleph} = 2^{\aleph^0 \cdot \aleph} = 2^{\aleph}$$

, אני, מצד שני הפונקציות הרציפות הרציפות ל- \mathbb{R} ? תשובה: יש לפחות א כי כל הפונקציות הרציפות מ- \mathbb{R} ל-. א א. אכן העוצמה איא פונקציה רציפה נקבעת על פי הערכים שלה, על $\mathbb Q$ ולכן העוצמה היא לכל היותר א $\mathbb R^\mathbb Q$. לכן העוצמה היא א

אקסיומת הבחירה

ניסוח ראשון

 $orall I, i \in I, A_i
eq \emptyset \exists f \in \prod_{i \in I} A_i$ כלומר, כלומר, אינה אינה של היקה לא ריקה לא היקה של משפחה המכפלה הקרטזית. . $\forall i \in I. f(i) \in A_i$ כך ש $f \in \left(\cup_{i \in I} A_i \right)^I$ שזוהי

ניסוח שני

 $\emptyset \neq A \subseteq X$ לכל קבוצה לכל $f(A) \in A$ כך דימת פונקציה לכל פונקציה לכל לכל לכל לכל פונקציה לכל פונקציה לכל פונקציה לכל פונקציה לכל פונקציה אוני פונקציה לכל פונקצי

• טענה: הניסוחים שקולים. הוכחה ברשימות (9.1: להוסיף אח"כ).