EE362 Induction Machine

 ${\bf Nail~Tosun~-~2094563}$ Electric and Electronic Engineering Department, METU

2018 April

Induction Motor Tests

No-load test

It is the same as open circuit test of transformer. It gives information about $rotational\ loss$ and $excitation\ current$.

Since there is no load;

$$s = 0$$

Then equivalent circuit becomes;

Figure 1: No-load equivalent circuit

The values we obtain from no load test are;

$$V_{ph} = \frac{208}{\sqrt{3}} = 121.1V$$

$$cos(\phi) = \frac{\frac{P_{3\phi}}{3}}{V_{ph}I_{Ph}} = 0.09$$

$$\phi = 84.8 \deg$$

$$I_m = I_0 sin(\phi) = 1.485A$$

$$I_c = I_0 cos(\phi) = 0.135A$$

Now assuming R_c is much greater than R_s ;

$$L_m = X_m = \frac{V_{ph}}{2\pi f_s I_m}$$

$$L_m = 0.23H$$

$$R_c = \frac{V_{ph}}{I_c}$$

$$R_c = 900ohm$$

Locked rotor test

Since rotor is stationary with mechanical brake, $f_r = 0$ and

$$s = 1$$

Figure 2: Locked-rotor test equivalent circuit

Find R_1 with dc resistance test. How?

DC resistance test

If machine is Y-connected, put dc supply (low voltage reference to its rated) measure the current.

$$2R_Y = \frac{V_{in}}{I_{measured}}$$

$$R_Y = \frac{1}{2} \frac{V_{in}}{I_{measured}}$$

Measure $V_{dc} \ \& \ I_{dc}$ to find R_1

Figure 3: Testing dc resistance for Y-connected ac machine

If ac machine delta connected,

$$\frac{V_{in}}{I_{measured}} = R_d || 2R_d$$

$$R_d = \frac{3}{2} \frac{V_{in}}{I_{measured}}$$

Now ac resistance of R_1 is approximately $R_{1_{ac}} = 1.1 R_{1_{dc}}$

$$V_{ph} = I$$

Example

For an induction motor following test results are obtained;

	Table 2: Test results		
	Line voltage	Line current	Input power
Locked rotor test	130 V	77 A	$6.4~\mathrm{kW}$
No-load test	$415~\mathrm{V}$	$22.8 \mathrm{\ V}$	$1.65~\mathrm{kW}$

Machine rating; 30kW 3-ph, 50 Hz, 4-pole, 415 V, delta-connected

$$r_{1_dc}=0.44\ ohm$$

Assume $X_1 = X_2$

Solution

$$r_{1_ac} = 1.1r_{1_dc} = 0.48 \ ohm$$