

 $\frac{\partial f}{\partial n}$ $\frac{\partial f}{\partial y}$ $\frac{\partial f}{\partial y}$ Sported derivative of f with repeat to x'' same f (x alue) f(x,b) - f(a,b) f(a,b) f(a,b) f(a,b) $\frac{\text{or}}{\text{lim}} = \frac{f(a+h,b) - f(a,b)}{h}$ And similarly. $\frac{\text{of}}{\text{og}} = \lim_{h \to \infty} \left(\frac{f(a,b+h) - f(a,b)}{h} \right)$ Lets work with the example function and let's find the by

 $\frac{\partial f}{\partial n} = \lim_{n \to \infty} \left(\frac{f(n,b) - f(a,b)}{n - a} \right)$ $=\lim_{n\to a}\left(\frac{nb-a^2b}{n-a}\right)$ $= \lim_{n \to a} \left(\frac{(n^2 - a^2)b}{n - a} \right)$ $=\lim_{n\to\infty}\left(\frac{(n-a)(n+a)b}{(n-a)}\right)$ = lim (n+a)b $= b \lim_{n \to a} (n+a)$ = b 2a = 2ab) finally And. f(a, b+h) - f(a, b) It - lim $\left| \begin{array}{c} 3 \\ (a,b) \end{array} \right|$ $=\lim_{h\to 0}\left(\frac{a^2(b+h)-a^2b}{h}\right)$

Another example.

Consider f defined by $f(n,y) = n^2 y^3 + an(2n).$

Find of oy. $\frac{\partial f}{\partial n} = \frac{\partial}{\partial n} \left(n^2 y^3 + an \left(2n \right) \right)$ operator argument. $= y^{\frac{3}{3}} \frac{\partial}{\partial n} \left(n^{2} + en \left(2n \right) \right)$ $=y^{3}\left(2\pi+em\left(2\pi\right)+\pi^{2}see^{2}\left(2\pi\right)\right)$ $=+an^{2}\left(2\right)+1$ using $\frac{d}{dz} + am(z) = See^{2}(z) = \frac{1}{(25)^{2}(z)}$ and product and chain rules. = $2y \left(n + an(2n) + n^{2} See^{2}(2n)\right)$ $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{2}{2} \left(\frac{3}{2} + \alpha n \left(\frac{2}{2} \right) \right) \right)$ $= \frac{n^2 + an(2n)}{3y} \left(\frac{y^3}{3y} \right)$ $= \frac{3y^2 + an(2n)}{3y} \left(\frac{y^3}{3y} \right)$

Notation. Can also write. $f_{x} = \frac{\partial f}{\partial x}$, $f_{y} = \frac{\partial f}{\partial y}$ and $fn(a,b) = \frac{\partial f}{\partial n}\Big|_{(a,b)}$ If allows us to see it as.

In (f) applied to f. operator Graphical interpretation Apastral Lerisatives. tangent line to f Single-variable case. at a f'(a) = df | is the gradient or Slope of this tengent line.

rate of change of with report to n at a. Two variable cap: f(x,y) f(a,b)and the yellow cross section curre reross suface parallel to yaxis, at n=a.

Which To the Instantaneous

is the gradient of the curve Z = f(x,b)3f (a,b) - so the gradient of
the curve z=f(a,y) Higher-order denovatives Taking patral derivatives of derivatives and to on.... There are four possible second-order derwatures of (π, y) . $\frac{\partial f}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\partial f}{\partial n} \right)$ 32f = 3y (3f) (lairants)
Theorems

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$$

$$\frac{\partial^2 f}{\partial y} =$$

the order in which the derivatives are fahen doent matter Ex. 2.33 from Section 2.3. $f(r, 0) = r \cos(m0).$ Where m is a positive ruleger. $(a) frr = \frac{\partial f}{\partial r^2} - \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial r} \right)$ $fr = \frac{\partial}{\partial r} \left(r^{m} \cos \left(m \theta \right) \right) = \cos \left(m \theta \right) \frac{\partial}{\partial r} \left(r^{m} \right)$ $= les(m\theta) m ($ $\int_{\theta} = \frac{\partial}{\partial \theta} \left(r^{m} \log(m\theta) \right)$ = $r^{m} \frac{\partial}{\partial \theta} \left(Los(m\theta) \right)$ $=-r^{M}\sin(m\theta).m$ $=-mr\sin(m\theta)$

- TN M MOS (MO) = (os(m0) + 2 (m2) + 2 m + 2 m + 2 m) $= \left(\begin{array}{c} \lambda M - M \right) \\ \lambda M - M \end{array}$ $= \left(\begin{array}{c} \lambda M - M \\ \lambda M - M \end{array} \right)$ This equation in Satisfied for all 1,0 stand the state of the s

