TCP/UDP

TCP (Transmission Control Protocol) – zapewnia niezawodność, kontrolę przepływu i przeciążenia.

UDP (User Datagram Protocol) – szybki, ale bez gwarancji niezawodności (często używany w transmisjach w czasie rzeczywistym).

Warstwa sieciowa daje komunikację od karty sieciowej do karty sieciowej.

Warstwa transportowa to komunikacja od procesu do procesu.

TCP:

- połączeniowość
- niezawodność (potwierdzenia, retransmisje)
- kontrola przepływu (możliwości odbiorcy)
- kontrola przeciążeń (możliwości sieci)
- suma kontrolna danych i nagłówku (aby nie było przekłamań)
- porządkowanie kolejności segmentów

W TCP liczymy bajty, nie pakiety. Od liczby bajtów zależy numer sekwencyjny. TCP jest protokołem klient-serwer.

Potwierdzamy, to co dostaliśmy, nie to czego nie dostaliśmy.

Warstwa transportowa daje możliwość zakończenia połączenia.

Porty są odpowiednikiem adresacji w warstwie 4.

Numer sekwencyjny. Wszystkie bajty są numerowane. Początkowa wartość jest ustalana w trakcie nawiązania połączenia. Numer sekwencyjny <u>segmentu</u> jest równy numerowi pierwszego bajtu w segmencie.

Numer potwierdzenia. Jest to numer określający segment. Wskazuje, który następny bajt nie jest potwierdzony. Jest zatem o jeden większy od ostatniego numeru sekwencyjnego.

W nagłówku TCP jest pole o rozmiarze okna. Odbiorca wysyła rozmiar okna, czyli ile jeszcze ma miejsca w buforze, ile jeszcze może przyjąć od nadawcy. Rozmiar okna wysyła się w potwierdzeniach (także w trakcie inicjalizacji połączenia).

Kontrola przeciążeń: powolny start. Określa ilość wysyłanych pakietów. Jeśli po czasie Timeout nie otrzymamy potwierdzenia, to wnioskujemy, że zalaliśmy sieć. Ustala się wtedy nowy timeout i zmniejsza liczbę pakietów. Timeout jest obliczany na podstawie czasu otrzymania wiadomości ACK.

Kontrola przepływu: przesuwne okno, wielkość okna

Opóźnione potwierdzenie:

Algorytm Nagle'a

Pojawia się podczas komunikacji z daleką siecią - gdzie RTT jest duży.

Syndrom głupiego okna: odbiorca odczytuje bufor bajt po bajcie (małe bloki), odbiorca ogłasza niewielkie okna, zamiast poczekać na opróżnienie bufora. <u>Nadawca wysyła niewielkie segmenty, zamiast większych bloków.</u>

Zegary:

Retransmission Timer - zegar odmierzający Timeout; czas oczekiwania jest zmienny. Wartość ta zależy od RTT.

Persistence Timer - zapobiega zakleszczeniu w sytuacji zgubienia pakietu zwiększającego okna. Gdy zgubi się pakiet zwiększający okno (a wcześniej było = 0), to moglibyśmy czekać w nieskończoność.

Keepalive Timer - pozwala na sprawdzenie aktywności drugiej strony połączenia.

Budowa nagłów	<u>ka UDP:</u>	
	numer portu źródła (16 b)	numer portu przeznaczenia (16 b)
	długość datagramu (16 b)	suma kontrolna (16 b)
	dane	

adres źródła (32)			
adres przeznaczenia (32)			
nieużywane = 0 (8)	protokół = 17 (8)	długość datagramu UDP (16)	
Nagłówek			
Dane			

,	numer portu źródła (16)		numer portu przeznaczenia (16)	
			kwencyjny (2)	
	numer potwierdzenia (32)			
długość (4)	zarezerw. (6)	flagi (6)	rozmiar okna (16)	
	suma kontrolna wskaźnik ważności (16) (16) opcje (?)			

Maksymalna długość okna, a przepustowość TCP. Długość okna zapisuje się na 2B, czyli 2^16/1024 = 64KB. Największy pakiet, jaki można wysłać, ma 64KB.

Przepustowość to P=64KB/(RTT + TT). Jedyna opcja zwiększenia przepustowości, to zwiększenie licznika.

Cumulative acknowledgement - potwierdzanie danych po kolei (bez dziur). Przeciwieństwem jest **selective acknowledgment**.

SCTP - Stream Control Transmission Protocol

Charakterystyka SCTP:

- protokół połączeniowy
- niezawodny transport danych z selektywnymi potwierdzeniami
- możliwe przesyłanie bez kontroli kolejności odbioru
- kontrola przeciążeń, kontrola przepływu
- strumień to sekwencja wiadomości (nie sekwencja bajtów)

multihoming - wspieranie hostów z wieloma interfejsami (w ramach asocjacji nie może wystąpić np. lista adresów).

SCTP

(protokół, adresy lokalne, port lokalny, adresy obce, port obcy)

Pakiet składa się ze wspólnego nagłówka i jednej lub więcej części opatrzonych własnym nagłówkiem.

Wspólny nagłówek:

numer portu źródła (16)	numer portu przeznaczenia (16)	
znacznik weryfikacyjny (32)		
suma kontrolna CRC-32c (32)		

Nagłówek części

typ	flagi	długość
(8)	(8)	(16)
dane		

- Typy określone w standardzie obejmują m.in.:
 - DATA [0x00],
 - INIT [0x01], INIT-ACK [0x02],
 - SHUTDOWN [0x07], SHUTDOWN-ACK [0x08], SHUTDOWN-COMPLETE [0x08]
- Podział na części ułatwia rozszerzanie protokołu

Nawiązywanie połączenia:

Zamknięcie połączenia:

SACK

typ = 0x03	flagi	długość
kumulacyjne TSN ACK		
okno odbiorcy		
liczba oddzielonych dziurami bloków N		liczba zdublowanych bloków M
Przesuniecie początku bloku #1		Przesuniecie końca bloku #1
• • •		
TSN zdublowanego bloku #1		