

Telco Customer Churn Analyis

Ironhack Mid-Project David Arques June 2024

Agenda 😃

Project Overview:

- Goal & Context
- Problem Statement

Data Exploration:

- Demographics
- Customer Segmentation
- Billing

Correlations:

Bivariate Analysis

Machine Learning

Conclusions

Project Overview

Goal

Analyze the Telco Customer Churn dataset to gain valuable insights and identify specific business actions to reduce customer churn.

Context

Customer churn = Customer leaving

Retaining existing customers is more important than acquiring new ones

(Product-Led mindset)

Problem Statement

How can we **reduce customer churn using data-driven insights** and action-oriented analysis?

Kaggle: Telco Customer Churn +7K customer and 20 Features

Demographics	Service/Tech	Billing	Numerical ~	Target
Gender Seniority Partner Dependents	Phone Service Phone lines Internet Service Online Security Online Backup Device Protection Tech Support Streaming TV Streaming Movies	Contract type Paperless Billing Payment Method	Monthly charges Total Charges Tenure	Churn Yes = leaving No = staying

Source: Kaggle Dataset link

Data Exploration (EDA) Q

Exploration: Demographics

Interactive customer

<u>Demographics Dashboard</u>

by churn

Findings: Demographics 28

What types of customers are leaving?

- Gender **

 The gender distribution is almost 50/50, so not very relevant.
- Seniority •
 Most customers leaving are below 65 years old.
 However, since approximately 80% of our overall data consists of people below 65 (so not relevant).

Action: Focusing on <u>single people with no marriage</u> or <u>kids is a good target audience</u> to improve customer retention.

Feature Engineering: Customer Segmentation

Based on Tenure (mean = 2.7 years)

Customer Segmenation Findings

Customers leaving (Churn=yes)

Learning: More than half (~55%) of customers leaving are 'butterflies' *(= highly profitable)
Assessing customer churn is crucial to increasing Telco profit and improving business.

Exploration & Findings: Billing

Insighst: Review the electronic check payment method, as most customers leaving use that one.

Correlations

Feature correlation assessment with target [churn]

Top correlations to churn:

Contract type (~0.40) Internet service (~0.32)

Bivariate Analysis

with High Correlation Features to Target (Churn)

Feature Distribution Visualization

Contract type

Contract type distribution with (~0.40) correlation towards target churn

Bivariate Analysis results				
Chi-Square		Cramér's V		
Statistic	1179.80	Association	0.40	
p-value	6.44e-257	ASSOCIATION	0.40	

Conclusions

- Chi-square results show strong statistical evidence that contract type is related to customer churn (p-value < 0.05).
- Cramer's V of 0.41 indicates a moderate relationship.
- Contract type is not the only driver of churn but significantly influences customer behavior.

Internet Service

Internet Service distribution with (~0.32) correlation towards target churn

Bivariate Analysis results				
Chi-Square		Cramér's V		
Statistic	732.06	Association	0.32	
p-value	1.09e-159	ASSOCIATION	0.32	

Conclusions

- Chi-square results show moderate statistical evidence that customer's internet service type is related to churn (p-value < 0.05).
- Cramer's V of 0.32 indicates a moderate to low relationship.
- Customer's internet service type is not as strong as contract type but is still relevant when assessing churn.

Machine Learning Testing

ML Data Overview

ML type 🤖

- Classification
- 70/30 Train-test split

• Churn (No=0, Yes=1)

Size 📏

- 7k Customers (Rows)
- 20 Features (Columns)

Uneven target data. We'll Apply Oversampling

Classification ML models tested

No Data modification

Logistic Regression

Decision Tree Classifier

Support Vector Machine

Upsampling (SMOTE)

Logistic Regression

Random Forest Classifier

ML Results (No Upsampling)

Test Data accuracy table:			
Logistic Regression	Test: 0.79		
Decision Tree	Test: 0.73		
	Train: 0.99		
SVC	Test: 0.57		
	Train: 0.58		

Logistic Regression

р	recision	recall	f1-score	support
0	0.85	0.89	0.87	1556
1	0.63	0.54	0.58	551

Decision Tree Classifier

	precision	recall	f1-score	support
0	0.82	0.82	0.82	1556
1	0.48	0.48	0.48	551

Support Vector Machine (SVC)

pr	ecision	recall	f1-score	support
0	0.89	0.49	0.63	1556
1	0.36	0.83	0.51	551

ML Results (No Upsampling)

Conclusions

- Logistic regression achieved the best results across all metrics (Precision, Recall, and F1-score) and Test/Train Accuracy.
- We can confirm it is the best ML model out of the three tested.

Confusion Metrics (No Upsampling)

ML Results Upsampling (SMOTE)

Test Data accuracy table:			
Logistic Regression	Test: 0.79		
rregression	Train: 0.80		

Logistic Regression

	precision	recall	f1-score	support
0	0.84	0.73	0.78	1586
1	0.75	0.85	0.80	1513

Random Forest Classifier

р	recision	recall	f1-score	support
0	0.86	0.84	0.85	1586
1	0.84	0.86	0.85	1513
10000				

ML Results (No Upsampling)

Conclusions

- After upsampling, the best tested model is the Random Forest classifier.
- Precision metrics increased significantly:
 - o 0.86 for "Churn No"
 - o 0.84 for "Churn Yes"
- Therefore, it is a better model.

Confusion Metrics (No Upsampling)

Better model 🜟

ROC Curve Plotting

Key Takeaways

Data Exploration:

- Demographics are not key features to understand customer churn.
- Potential target audience for improvement: single people with no kids/dependents.
- Customer segmentation highlights the importance of assessing customer churn.
- More than half of our customers leaving are highly profitable (spending more than average)
- 57% of customers leaving use electronic check as a payment method (= Room for improvement)

Correlation:

- Key features related to customer churn: contract type and internet service type.
- Contract type has a moderate relationship with churn. Focus on pitching longer-term contracts (two years) which have the lowest churn rate.

Machine Learning Models:

- **Upsampling is crucial** for assessing machine learning models due to **significant data imbalance** (70/30 split).
- Random Forest classifier using SMOTE upsampling is the best option for building an accurate model to predict customer churn.

Thank you

