

CLASSROOM LOG-5

G. Neha IMT2014018

TOPICS COVERED

- Mapping 1:1 Relationships
- Mapping 1:N Relationships
- Mapping N:M Relationships
- Mapping entities with multivalued attributes

MAPPING 1:1 RELATIONSHIP

- When only one entity has total participation
- Choose the entity with total participation as the base relation and include the primary key of the other relation as foreign key in the base relation

Vehicle(Reg No., Student Id, ...)

Student(Student Id, ...)

MAPPING 1:1 RELATIONSHIP

- Both the entities have total participation
- In this case, merge both entity types and relationship attributes into one relation

Ex: Student resides in room

Resides_in(Student ID, Room No., ...)

MAPPING 1:1 RELATIONSHIP

- When both the entities have partial participation
- Choose one of the entities as base relation and include primary key of the other relation as foreign key

MAPPING 1:N RELATIONSHIPS

- Take N-sided entity as base relation
- Primary key of 1-sided entity becomes foreign key of base relation

Student(<u>Student ID</u>, Batch ID, …)

MAPPING N:M RELATIONSHIP

- For each regular binary M:N relationship type R, create a new relation S to represent R
- Include primary keys of the participating entity types as foreign key attributes in S; their combination will form the primary key of S
- Also include any relationship attributes in S
- Both 1:1 and 1:N relationships can be mapped in a way similar to mapping M:N relationships (only in the case of partial participation)

MAPPING N:M RELATIONSHIP

```
Ex:
Student(Student ID, ...)
Course(Course ID, ...)
Enrolls_in(Student ID, Course ID,...)
```


MAPPING N-ARY RELATIONSHIP

- ☐ For each n-ary relationship type R, create a new relation S to represent R
- Primary keys of participating relations in R become foreign keys in S
- Combination of primary keys of participating relations is the primary key of S

MAPPING MULTI-VALUED ATTRIBUTES

- Create a relation R for entity S without including multivalued attributes
- ☐ For each multi-valued attribute A of a given entity type S, create a new relation
- Include the primary key of R and a value of multivalued attribute A
- Combination of primary key of R and value of multivalued attribute is used as primary key

Ex:

Flag(Country,...)

FlagColor(Country, Color)

EXAMPLE

Mapping of strong entity types

EMPLOYEE

FNAME MINIT LNAME SSN	BDATE	ADDRESS	SEX	SALARY
-----------------------	-------	---------	-----	--------

DEPARTMENT

DNAME	DNUMBER
-------	---------

PROJECT

PNAME <u>PNUMBER</u> PLOCATION	
--------------------------------	--

Mapping of weak entity types

Mapping 1:1 relationship

Employee

Mapping 1:N relationship

Mapping N: M relationship

Employee

Mapping multivalued attributes **Employee** SSN Minit **Bdate** Address DNo Fname Lname Sex Salary Super_ssn Department Dnumber Dname Mgr_SSN Mgr_start_date Dept_location Dlocation Dnumber Project Pnumber Pname Plocation Dnum Works_on Pno Essn Hours Dependent ESSN Dependent_name Relationship Sex **Bdate**

SOLUTION

THANK YOU

