Integrated ATAC-seq Data Analysis with ATACseqQC

Kai Hu, Haibo Liu, Lihua Julie Zhu

University of Massachusetts Medical School (UMMS)

Acknowledgments

Core developers of **ATACseqQC**

Lihua Julie Zhu

Jianhong Ou

Other contributors

Nathan Lawson

Michelle Kelliher

Lucio Castilla

Agenda

Mini-lecture (15~20min)

- Introduction to ATAC-seq technology
- A common ATAC-seq workflow
- Best practices in ATAC-seq assays and data analysis

Demo (15~20min)

- ATACseqQC functions
- Demo plots

Q/A (5~10min)

Bioconductor support site

How to run the workshop

Step1: install Docker engine: https://docs.docker.com/get-docker/

Step2: download the docker image:

• docker pull hukai916/integrated_atacseq_analysis_workshop2021:latest

Step3: start the container:

• docker run -e PASSWORD=yourpassword -p 8787:8787 hukai916/integrated atacseq analysis workshop2021:latest

Step4: in your web browser:

• Enter http://localhost:8787 using username rstudio and password yourpassword

More instructions:

https://github.com/hukai916/IntegratedATACseqAnalysisWorkshop2021

- Introduction to ATAC-seq technology
- A common ATAC-seq workflow
- Best practices in ATAC-seq assays and data analysis

DNA packaging in eukaryotes

Condensed approximately 10,000 times.

"Open" vs "closed" chromatin

Nucleosome-free region (NFR)

"Closed" chromatin

"Open" chromatin

Methods for profiling chromatin accessibility landscape

MNase: endo-exonuclease

DNAase: endonuclease, preferentially cut nucleosome free region.

FAIRE: regulatory DNA fragments will be preferentially released to extraction solution after sonication.

ATAC: hypersensitive transposase that cuts accessible regions.

- Introduction to ATAC-seq technology
- A common ATAC-seq workflow
- Best practices in ATAC-seq assays and data analysis

A typical ATAC-seq workflow

- Introduction to ATAC-seq technology
- A common ATAC-seq workflow
- Best practices in ATAC-seq assays and data analysis

Important steps, best practices, and important QCs

Popular software tools in each step

Preprocessing Filtered Raw Fastq Bam Bam Sort and remove Trim with organelle DNA with **Trimmomatic SAMtools** or cutadapt Mark/remove Mapping with duplicates with **Picard** Bowtie2 or Remove mapping **BWA-mem** artifacts with custom scripts Down-Post-Peak file peak QC stream

- Nucleosome positioning:
 NucleoATAC
- Footprinting analysis: TOBIAS
- Regulatory network inference with paired RNA-seq data: PECA2
- Peak calling: MACS2
- Associate peaks to gene: ChlPpeakAnno
- Functional annotation:
 GREAT, chipenrich, or
 BEHST

ATACseqQC workflow

- i. Assessing mapping status: bamQC()(Alternatives: samtools, picard)
- ii. Assessing sequencing depth and library complexity: saturationPlot() & estimateLibComplexity()
- iii. Assessing insert size distribution: fragSizeDist()
- iv. Assessing similarities of replicates:
 plotCorrelation()
- v. Shifting aligned reads: shiftGAlignmentsList()
- vi. Splitting BAM files: splitfalignmentsByCuts()
- vii. Plotting aggregate signals around TSSs: featureAlignedHeatmap(), featureAlignedDistribution()
- viii. Streamlining IGV snapshots: IGVSnapshot()
- x. Assessing DNA-binding factor footprints: factorFootprints()

- ATACseqQC functions
- Demo plots

Demo I: assessing mapping status

bamQC():

- Input: sorted BAM files with duplicates marked
- Output: mapping rate, duplicate rate, mapping quality, etc.

Alternative tools:

- SAMtools
- picard tools

Demo II: assessing sequencing depth and library complexity

saturationPlot()

estimateLibComplexity()

Ou, J., Liu, H., Yu, J. et al. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. *BMC Genomics* **19**, 169 (2018).

Demo III: assessing insert size distribution

Ou, J., Liu, H., Yu, J. et al. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. *BMC Genomics* **19**, 169 (2018).

Demo IV: assessing similarities of replicates:

plotCorrelation()

- Can plot PCA or heatmap.
- The correlation is calculated by the counts in the promoter regions.

Rep1 is quite different from other replicates.

Demo V: shifting aligned reads

shiftGAlignmentsList()

- Tn5 tagmentation produces fragments with 9bp overhang at the 5' ends
- To center the cleavage events:
 - shift +4 bp for reads mapped to forward strand
 - shift -5 bp for reads mapped to reverse strand

Demo VI: splitting BAM files

splitGAlignmentsByCut()

- You can split the Bam into different bins:
 - Nucleosome-free fragments
 - Inter1
 - Mono-nucleosome fragments
 - Inter2
 - Di-nucleosome fragments
 - etc.
- The reads from different bins can be used to visualized different signals:
 - promoter/enhancer/insulators are localized in NFR

Demo VII: plotting aggregate signals around TSSs

Demo VII: plotting aggregate signals around TSSs

featureAlignedDistribution()

Demo VIII: streamlining IGV snapshots

- Need IGV
- For high quality data:
 - read signals are enriched to open regions
- For poor quality data:
 - read signals distribute across the genome

Ou, J., Liu, H., Yu, J. *et al.* ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. *BMC Genomics* **19**, 169 (2018).

Demo IX: assessing DNA-binding factor footprints

factorFootprints()

Ou, J., Liu, H., Yu, J. *et al.* ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. *BMC Genomics* **19**, 169 (2018).

- ATACseqQC functions
- Demo plots

Datasets for demo with ATACseqQC

Dataset1: good quality

SRR891269 and SRR891270 are ATAC-seq data for two biological replicates of 50K cells from EBV-transformed lymphoblastoid cell line GM12878 (Buenrostro *et al.* 2013).

Dataset2: bad quality

SRR5800801 and SRR5800802 are ATAC-seq data for two replicates of 75k cells from a breast cancer cell line T47 (Valles and Izquierd-Bouldstridge, unpublished).

Preprocessing already performed for you:

- FastqQC on raw fastq files
- Mapped to hg38
- Bam file filtered according to the steps aforementioned
- Download link to the preprocessed bam files and preprocessing scripts: Google Drive
- A small subset of the bam files are included in the workshop package for quick demo

Demo with Rstudio

- demo.R
- demo.Rmd
- demo.html

Q & A

View and submit your questions to **Bioconductor support site**: https://support.bioconductor.org/post/search/?query=ATACseqQC

Developers actively monitor questions posted there.

References

- ATAC-seq technology: Buenrostro, J., Giresi, P., Zaba, L. et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213–1218 (2013). https://doi.org/10.1038/nmeth.2688
- 2. ATACseqQC package: Ou, J., Liu, H., Yu, J. *et al.* ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. *BMC Genomics* **19**, 169 (2018). https://doi.org/10.1186/s12864-018-4559-3
- 3. ChIPpeakAnno package: Zhu, L.J., Gazin, C., Lawson, N.D. *et al.* ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. *BMC Bioinformatics* **11**, 237 (2010). https://doi.org/10.1186/1471-2105-11-237
- 4. ATACseqQC workshop: https://github.com/haibol2016/ATACseqQCWorkshop

Read more:

1. ChIPpeakAnno workshop: https://github.com/hukai916/IntegratedChIPseqWorkshop