

Tech Saksham

Case Study Report

Data Analytics with Power BI

"Analysis of Commercial Electricity **Consumption in Indian State (Data** Analytics with Data from Cloud/Web)"

"V.O.Chidamabaram College, Tuticorin"

NM ID	NAME
asmsu22320212231506126	SUBASH P

Trainer Name: RUMAMAHESWARI

Master Trainer: RUMAMAHESWARI

ABSTRACT

In this ever evolving business world, Power BI is a powerful business analytics tool that has become increasingly important in today's data-driven world. It allows businesses to transform raw data into meaningful insights, enabling them to make data-informed decisions and gain a competitive edge. The Energy Calculation Dashboard created using Power BI is a visual representation of energy. Calculation data. It allows users to monitor and analyze energy usage in real-time, providing insights into patterns, trends, and potential areas for improvement. With Power BI's interactive features, users can drill down into specific areas or time periods to gain more detailed information. The dashboard may include various charts, graphs, maps, and other visualizations to present the data in a user-friendly and intuitive way. Through 'Power Bi' software we not only develop a visual representation of data but also learn about computer and technical skills which are very necessary in executing digital businesses.

INDEX

Sr. No.	Table of Contents	Page No.
1	Chapter 1: Introduction	4
2	Chapter 2: Literature Survey	8
3	Chapter 3: Methodology	12
4	Conclusion	22
5	Future Scope	23
6	References	24
7	Links	25

CHAPTER 1

INTRODUCTION

Power BI is important for organizations because it allows them to make data-driven decisions, gain valuable insights, and drive business success. Itenables users to consolidate and analyze data from multiple sources, visualize data in interactive ways, and share insights with stakeholders. Power BIpromotes collaboration, enhances data exploration, and augments process optimization in various industries and sectors. It is a business analytics and data visualization tool developed by Microsoft. It is designed to provide organizations with powerful tools for data analysis, reporting, and collaboration. With Power BI, users can connect to various data sources, transform and model data, create visually appealing dashboards, and share insights with others.

Origin of Power BI:

Power BI was first introduced by Microsoft in 2013 as a collection of business intelligence tools and services. Over the years, it has evolved to become a comprehensive solution for data visualization and analytics. Power BI Desktop, Power BI Service, and Power BI Mobile are the key elements of the Power BI ecosystem. The objective of a Power BI Energy Calculation Dashboard is to provide organizations with a visual representation of their energy usage data. This

dashboard allows users to monitor and analyze energy Calculation patterns, identify areas of high energy usage, and make informed decisions to optimize energy efficiency. The key objectives of a Power BI Energy Calculation Dashboard include:

Visualization: The dashboard provides graphical representations of energy Calculation data such as line charts, bar charts, and gauges. This allows users to easily understand and interpret the data.

Monitoring: The dashboard enables real-time or near-real-time monitoring of energy usage. Users can track energy Calculation trends, compare historical data, and identify anomalies or spikes in energy usage. International Journal of Research Publication and Reviews, Vol 5, no 1, pp 5305-5312 January 2024 5306

Efficiency Analysis: The dashboard offers insights into energy Calculation patterns, Allowing organizations to identify areas of high energy usage and potential energy-saving opportunities. Users can analyze energy Calculation by timeof day, day of the week, or specific areas within the organization.

Cost Analysis: The dashboard provides cost analysis by integrating energy Calculation data with tariff rates. This allows organizations to understand the financial impact of their energy usage and identify opportunities for cost savings.

Reporting: The dashboard allows users to generate reports on energy Calculation metrics, trends, and cost analysis. These reports can be shared with stakeholders to drive energy conservation initiatives and

track progress over time. Power BI is a powerful business analytics tool that has become increasingly important in today's data-driven world. It allows businesses to transform raw data into meaningful insights, enabling them to make data-informed decisions and gain a competitive edge. Here are six real-world applications and the importance of Power BI:

- 1. Business Intelligence (BI): Power BI allows organizations to consolidate data from various sources into meaningful reports and dashboards. By providing a comprehensive view of key metrics and performance indicators, Power BI helps businesses monitor their performance and make informed decisions.
- 2. Sales and Marketing Analytics: Power BI enables businesses to analyze sales and marketing data to uncover trends, identify customer behavior patterns, and optimize marketing campaigns. With interactive visualizations, teams can gain actionable insights that drive revenue growth and improve customer targeting strategies.
- 3. Financial Analysis: Power BI helps financial teams analyze and visualize financial data, including budgets, forecasting, and profitability analysis. By providing real-time reports and visualizations, Power BI empowers organizations to make timely financial decisions and improves overall financial management.
- **4. Human Resources Analytics:** Power BI can be used to analyze HR data such as employee turnover, performance, and training effectiveness. By visualizing HR metrics, organizations can identify

trends, predict attrition rates, and optimize HR strategies to improve employee engagement and retention.

- 5. Supply Chain Management: Power BI can integrate data from multiple systems to provide end-to-end supply chain visibility. With real-time dashboards and analytics, businesses can optimize inventory levels, track logistics performance, and identify inefficiencies, leading to improved operational efficiency and cost savings.
- 6. Healthcare Analytics: Power BI has applications in the healthcare industry, where it can help providers analyze patient data, track healthcare outcomes, and monitor the effectiveness of treatments. By aggregating and visualizing healthcare data, Power BI supports evidence-based decision-making and improves patient care.

Challenges and Considerations:

While Power BI offers numerous benefits, there are certain challenges and considerations to keep in mind. These include data privacy and security concerns, data integration complexities, and the need for data governance and quality assurance. Organizations should also consider the scalability and performance requirements of their Power BI implementations to ensure optimal utilization.

Real-World Applications:

Power BI has found applications in various industries and sectors. It is used for sales and marketing analytics, financial reporting and analysis, supply

chain optimization, HR and workforce analytics, and more.

Organizations across healthcare, retail, finance, manufacturing, and many other sectors leverage Power BI to gain insights from their data and improve decision-making process.

CHAPTER 2

LITERATURE SURVEY

The author in paper [1] provides in-depth knowledge and guidance on using Microsoft Power BI for data analysis and visualization. Authored by Brett Powell, a renowned expert in Power BI, the book covers various aspects of Power BI, including data modeling, creating interactive reports and dashboards, and sharing insights with others. It also guides on how to create visually appealing and interactive reports using Power BI's extensive range of visualizations and formatting options. The book covers advanced topics such as using DAX (Data Analysis Expressions) formulas to create calculated columns and measures, implementing row-level security, and leveraging Power Query for data transformation. Furthermore, "Mastering Microsoft PowerBI" explores the Power BI service, which allows users to publish and share reports and dashboards with others. It provides insights into collaboration features, data refresh options, and managing security and access controls. International Journal of Research Publication and Reviews, Vol 5, no 1, pp 5305-5312 January 2024 5307The paper [2] "Analyzing Data with Power BI and Power Pivot for Excel" explores the capabilities and features of Power BI and Power Pivot for Excelin analyzing data. The paper aims to provide a comprehensive understanding of these tools and how they can be effectively used in

data analysis. Thepaper starts by introducing the concept of data analysis and the need for tools like Power BI and Power Pivot. It highlights the challenges faced by organizations in managing and analyzing large volumes of data and showcases how these tools can overcome those challenges. The authors then delve into the functionalities and capabilities of Power BI and Power Pivot in detail. They discuss how Power BI simplifies the process of data analysis by providing a user-friendly interface and powerful visualizations. They also explain the role of Power Pivot in Excel, which enables users to create data models and perform advanced calculations. Furthermore, the paper discusses various data analysis techniques that can be applied using these tools. It covers topics like data cleansing, data modeling, creating relationships between data tables, and using DAX formulas for calculations. The authors also provide practical examples and case studies to demonstrate the practical application of Power BI and Power Pivot in real-world scenarios. They showcase how these tools can be used to analyze sales data, financial data, customer data, and more. Additionally, the paper highlights the benefits of using PowerBI and Power Pivot, such as improved data visibility, enhanced decisionmaking, and increased productivity. It also addresses the limitations of these tools and suggests alternative approaches for complex analysis tasks .Overall, "Analyzing Data with Power BI and Power Pivot for Excel" serves as a comprehensive guide for individuals and organizations looking to leverage the capabilities of Power BI and Power Pivot for effective data analysis. It provides a

valuable resource for understanding the concepts, features, and practical implementation of these tools. The paper [3] "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython" is a research paper written by Wes McKinney. It is acomprehensive guide that provides a detailed explanation of how to use Python libraries such as Pandas, NumPy, and IPython for data analysis and data wrangling purposes. The paper emphasizes the importance of these libraries in handling and manipulating large datasets effectively. It starts with an introduction to the basics of data wrangling and provides an overview of the Python programming language. It then dives into the specifics of using Pandas for data manipulation, cleaning, and preprocessing tasks. The research paper includes various examples and case studies to illustrate the practical application of these Python libraries. It covers topics like datastructures, indexing, merging and joining datasets, handling missing data, data reshaping, and time series analysis. Additionally, the paper explores NumPy, a library for numerical computing in Python, which is commonly used alongside Pandas. It explains how to perform mathematical operations, create arrays, and handle multidimensional data using NumPy. Moreover, IPython, an interactive computing environment, is also covered in the researchpaper. It demonstrates how IPython enhances the data analysis workflow by providing an interactive interface, allowing code execution, exploringdatasets, and generating visualizations in a seamless manner. Overall, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython" is a comprehensive resource for

anyone interested in learning about data wrangling and analysis using Python. It provides practical guidance, code examples, and insights into the various libraries and tools available for manipulating and analyzing data.

CHAPTER 3

Power BI is a powerful business intelligence tool developed by Microsoft that offers a wide range of features and capabilities. Here are some of the key features of Power BI which we have used to create our calculator:

- 1. Data Connectivity: Power BI allows you to connect to a variety of data sources, including databases, cloud services, Excel files, SharePoint lists, and more. This feature enables you to access and analyze data from multiple sources in one place.
- **2. Data Transformation:** Power BI provides tools for cleaning, transforming, and shaping data. You can perform tasks such as removing duplicates, splitting columns, merging data, and applying data type conversions. This feature helps in preparing the data for analysis.
- **3. Data Modeling:** Power BI allows you to create relationships between different tables and define hierarchies, calculated columns, and measures. This feature helps in organizing and structuring the data for analysis and reporting.
- **4. Data Visualization:** Power BI offers a wide range of interactive visualizations, including charts, graphs, maps, tables, and custom visuals. These visualizations help in presenting data in a visually appealing and meaningful way, making it easier to understand and analyze.

- 5. Dashboards and Reports: Power BI allows you to create interactive dashboards and reports by combining multiple visualizations, filters, and slicers. Dashboards provide a high-level overview of key metrics, while reports offer more detailed analysis and insights.
- **6.** Collaboration and Sharing: Power BI enables collaboration by allowing users to share dashboards and reports with others within the organization. You can also set up row-level security to control access to sensitive data.
- 7. Natural Language Query: Power BI supports natural language queries, allowing users to ask questions in plain English and get instant visualizations and insights. This feature makes it easier for nontechnical users to explore and analyze data.
- **8. Mobile Access:** Power BI provides mobile apps for iOS and Android devices, allowing users to access dashboards and reports on the go. The mobileapps offer a responsive and touch-friendly experience for data exploration and analysis.
- 9. Data Refresh and Scheduled Refresh: Power BI allows you to schedule data refreshes to keep your dashboards and reports up-to-date. You can set up automatic refreshes for on-premises data sources or cloud-based data sources.
- **10. Power BI Service:** Power BI offers a cloud-based service where you can publish and share your dashboards and reports. The service

provides additional features such as data gateways, collaboration workspaces, and content packs. To create an energy consumption calculator using Power BI, you can follow these steps:

- 1. Data Collection: Gather energy consumption data from various sources, such as smart meters, sensors, or utility bills. Ensure that the data is accurate and covers a suitable timeframe for analysis.
- 2. Data Preparation: Clean and transform the raw data into a structured format that Power BI can easily work with. This may involve removing duplicates, handling missing values, and performing any necessary calculations or aggregations.
- **3. Data Modeling:** Create a data model in Power BI by defining relationships between different tables or data sources. This step helps organize the data for analysis and reporting.
- **4. Data Visualization:** Design the visual elements of the dashboard using various Power BI visualization tools, such as charts, graphs, and maps. Choose the appropriate visualizations to represent energy consumption data effectively.
- **5. Dashboard Layout:** Arrange the visualizations on the dashboard canvas to create an intuitive and user-friendly layout. Consider the target audience and their specific needs to determine the most impactful way to display the data.
- **6. Interactivity:** Add interactive elements to the dashboard, such as slicers or filters, to allow users to explore the data further and

customize their views. This enhances the user experience and facilitates data analysis.

- 7. Integration: Connect Power BI to the data source and ensure that the dashboard is updated in real-time or at regular intervals. This will allow for dynamic visualizations and accurate insights.
- **8. Testing and Refinement:** Test the dashboard thoroughly, checking for any errors or inconsistencies in the data and visualizations. Make refinements as needed to improve the accuracy and usability of the dashboard.
- **9. Sharing and Collaboration:** Publish the dashboard to a Power BI service or share it with relevant stakeholders. Collaborate with the users to gather feedback and make any necessary iterations based on their requirements.
- 10. Ongoing Maintenance: Regularly update and maintain the dashboard as new data becomes available or business needs change. Monitor performance and address any issues promptly to ensure the dashboard remains accurate and up to date.

By following these steps, I have created a comprehensive energy consumption calculator in Power BI that provides valuable insights and helps drive energy efficiency initiatives within an organization.

Fig: Block Diagram

of the method

followed Results:

The image below shows the overall view of the calculator. The three types of energy consumed in different countries i.e Water, Electricity and Gas is calculated using the data collected from those cities and is presented in the image below. The total cost and unit consumed by the buildings in those cities is calculated accurately on the given date and energy.

This is a donut chart which shows the consumed unit by Water (Dark blue), Electricity (Orange) and Gas (Light blue)

The image below shows only the unit consumed and total cost of water in these cities, it has the accurate calculation from date to date and building to building in form of Stacked columns, Calendars, Diagrams and Donut charts which enables us to understand the calculations quickly and make the necessary changes as soon as possible

The images below are graphs and donut chart of the unit consumed by water and its total cost varying from date to date and city to city

Just like water, even electricity is calculated separately of different cities varying from date to date. The total cost and unit consumed can be easily understood because of the interactive features of graphs and charts used through power bi.

The images downside are the calculations of consumed electricity per cost and per unit

Just like Water and Electricity, this is the visual representation of Gas consumed.

These images present the calculations of

Dashboard

CONCLUSION

In conclusion, Power BI provides a comprehensive and visual representation of energy consumption data, allowing users to analyse and understand their energy usage patterns effectively. With its interactive dashboards and reports, Power BI enables users to identify areas of high consumption, track energy efficiency improvements, and make data-driven decisions to optimize their energy usage. By leveraging Power BI, businesses and individuals can monitor and manage their energy consumption more efficiently, leading to cost savings and a reduced environmental impact Power BI is a powerful tool for analysing and visualizing energy consumption data. It provides businesses and individuals with the ability to gain insights into their energy usage patterns, identify areas of inefficiency, and make informed decisions to optimize energy consumption. Power BI's interactive dashboards and interactive reports allow users to drill down into granular details, compare energy consumption across different periods or locations, and set goals for energy efficiency improvements. By leveraging Power BI's capabilities, organizations can track, monitor, and control their energy consumption effectively, resulting in cost savings, reduced environmental impact, and enhanced sustainability efforts

FUTURE SCOPE

The future scope of this project is vast. With the advent of advanced analytics and machine learning, PowerBI can be leveraged to predict future trends based on historical data. Integrating these predictive analytics into the project could enable the bank to anticipate customer needs and proactively offer solutions. Furthermore, PowerBI's capability to integrate with various data sources opens up the possibility of incorporating more diverse datasets for a more holistic view of customers. As data privacy and security become increasingly important, future iterations of this project should focus on implementing robust data governance strategies. This would ensure the secure handling of sensitive customer data while complying with data protection regulations. Additionally, the project could explore the integration of real-time data streams to provide even more timely and relevant insights. This could potentially transform the way banks interact with their customers, leading to improved customer satisfaction and loyalty.

REFERENCES

- 1 . "Mastering Microsoft Power BI: Expert Techniques for Effective Data Analytics and Business Intelligence" by Brett Powell: This comprehensive guide covers advanced techniques and best practices for developing impactful dashboards using Power BI, including data modeling, visualization, and sharing.
- 2 . "Analyzing Data with Power BI and Power Pivot for Excel" by Alberto Ferrari and Marco Russo: This book covers the basics of data analysis using Power BI and Power Pivot for Excel. It provides a solid foundation in data modeling, DAX formulas, and creating interactive visualizations

LINK