Package 'Repliscope'

October 12, 2022

Type Package

Language en-GB
Title Replication Timing Profiling using DNA Copy Number
Version 1.1.1
Author Dzmitry G Batrakou
Maintainer Dzmitry G Batrakou <d.batrakou@gmail.com></d.batrakou@gmail.com>
Description Create, Plot and Compare Replication Timing Profiles. The method is described in Muller et al., (2014) <doi:10.1093 gkt878="" nar="">.</doi:10.1093>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Depends R ($>= 3.5.0$), ggplot2, shiny
Imports stats, utils, methods, grDevices, colourpicker
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2022-09-13 07:20:02 UTC
R topics documented:
calcTrep

2 calcTrep

MFAseq	 7
normaliseRatio	 8
plotBed	 9
plotCoverage	 9
plotGenome	 10
plotRatio	 12
plotTrep	 12
rmChr	 13
rmOutliers	 13
runGUI	 14
sacCer3	 14
smoothRatio	 15
sortSeq	 16
syncSeq	 17
TrepDF	 18
trimRatio	 19
W303	 19
W303norm	 20
W303_G2	 21
W303_S	 22

calcTrep

Index

A function to calculate Trep values from a sync-seq experiment calcTrep function fits a Boltzman sigmoid function into relative copy number datapoints for every genomic bin of the provided sync-seq merged dataframe. It then extracts time at which half of the cells have this genomic bin replicated (Trep). The output of the function is a dataframe containing Trep and TrepErr data for every genomic bin in a BED-like format.

23

Description

A function to calculate Trep values from a sync-seq experiment calcTrep function fits a Boltzman sigmoid function into relative copy number datapoints for every genomic bin of the provided sync-seq merged dataframe. It then extracts time at which half of the cells have this genomic bin replicated (Trep). The output of the function is a dataframe containing Trep and TrepErr data for every genomic bin in a BED-like format.

Usage

```
calcTrep(ratioDFs, times)
```

Arguments

ratioDFs A merged ratios dataframe containing sync-seq samples (dataframe).

times Time series data in the same order as in the ratioDFs (numeric vector).

compareRatios 3

Examples

```
TrepDF <- calcTrep(subset(syncSeq[["data"]],chrom=="chrI"),times=c(25,30,35,40,45,50,90))</pre>
```

compareRatios

A function to compare two replication profiles

Description

compareRatios takes two ratio dataframes that were binned the same way and uses z-score statistics to find p-values of their differences. The function outputs a combined dataframe containing the two input ratio dataframes in a long format with added 'p.value' column.

Usage

```
compareRatios(ratio1, ratio2)
```

Arguments

ratio1 Ratio dataframe, or a string containing name of a ratio dataframe (dataframe or

string).

ratio2 Ratio dataframe, or a string containing name of a ratio dataframe (dataframe or

string).

Examples

```
ratioDFs <- compareRatios(W303norm, Dbf4myc)</pre>
```

Dbf4myc

Sequence read coverage ratios for S.cerevisiae Dbf4-9myc sample.

Description

Sequence read coverage ratios for Dbf4-9myc sample (T9394 strain). The cells were stained with DNA dye and sorted based on DNA content into S or G2/M phase fractions. Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads for replicating (S) and non-replicating (G2/M) samples were calculated in 1 kb genomic bins. The ratio was created by dividing 'score' values from replicating sample by non-replicating sample 'score' values, adjusted by total number of reads. The ratio values were further adjusted by multiplying them by 1.402 to put the values onto biologically relevant relative copy number scale from 1 to 2.

```
data(Dbf4myc)
```

4 guide

Format

data frame with 11356 rows and 7 variables:

chrom short chromosome name

chromStart left chromosome coordinate

chromEnd right chromosome coordinate

name.rep replicating sample name

name.nonRep non-replicating sample name

ratio ratio value in the current bin

ratioFactor adjustment factor used for the current ratio

Source

S phase sample: SRA; G2 sample: SRA

References

Natsume et al. (2013) Mol Cell 50(5):661-74 (PubMed)

Examples

data(Dbf4myc)

guide

Guide dataframe for plotting smoothed sortSeq data

Description

Guide dataframe for plotting smoothed sortSeq data

Usage

data(guide)

Format

Dataframe with 2 rows and 6 variables:

order Order to plot data in

name.rep Name of replicating sample

name.nonRep Name of non-replicating sample

raw Should raw data be plotted?

smooth Should smooth data be plotted?

color Color to plot the profile in

Examples

data(guide)

loadBed 5

	loadBed	Load a BED formatted file.	
--	---------	----------------------------	--

Description

The function reads BED formatted files. The BED file format defined by UCSC: http://genome.ucsc.edu/FAQ/FAQformat. First three columns ("chrom", "chromStart", "chromEnd") are mandatory. The file fields may be separated by tabs, spaces or commas. If the BED file contains a header, it will be ignored. If a genome mask dataframe is provided, only data intersected with the mask will be retained. Resulting data is ordered by "chromStart" columns.

Usage

```
loadBed(file, genome = NULL, name = NULL)
```

Arguments

file Path to the BED file (string, mandatory)

genome A mask dataframe to exclude data from the BED file (dataframe, optional).

The genome dataframe must contain "chrom" column and may further contain

"chromStart" and "chromEnd" columns in this order.

name A string to replace the 'name' column of the loaded BED file with (string, op-

tional).

Examples

makeGenome

A helper function to create a gemome dataframe

Description

makeGenome is called by plotGenome() and plotCoverage() functions if a genome dataframe is not provided. It creates a BED-like dataframe containing unique chromosome names, their start coordinates (assumed 0), their ends (highest value in the corresponding 'chromEnd' of the BED dataframe) and 'midY' column containing half the max value of the "score" or "ratio" columns per chromosome. This later serves as y coordinate to add chromosome names. Axis name is passed via comment to the output dataframe. Extract it with 'attributes(genome)\$axisName'.

```
makeGenome(DF, region = FALSE)
```

6 makeRatio

Arguments

DF A BED or ratio dataframe containing either 'score' or 'ratio' column (dataframe).

region String in the format 'chrI:1000-3000' (string, optional).

Examples

```
genomeDF <- makeGenome(W303_G2)</pre>
```

makeLabels

A helper function to create axis ticks and human readable labels.

Description

makeLabels is called by plotGenome() and plotCoverage() functions. It creates a dataframe containing two columns: 'ticks' and 'labels'. 'Ticks' contains axis ticks coordinates, 'labels' will contain human readable lables for the ticks (using prefixes and optional units).

Usage

```
makeLabels(theMin, theMax, unit = "")
```

Arguments

theMin Minimum value for the scale (double).
theMax Maximum value for the scale (double).
unit Unit to use for the labels (string, optional)

Examples

```
labels <- makeLabels(0,1200000,"b")
```

makeRatio A function to calculate 'score' ratio between two bed dataframes mak-

eRatio merges two supplied bed dataframes, calculates ratio of their

"score" values normalises the ratio by the 'score' sums.

Description

A function to calculate 'score' ratio between two bed dataframes makeRatio merges two supplied bed dataframes, calculates ratio of their "score" values normalises the ratio by the 'score' sums.

```
makeRatio(bedRep, bedNonRep)
```

MFAseq 7

Arguments

bedRep Bed dataframe containing read counts from a replicating sample (dataframe).

The bed dataframe must contain "chrom", "chromStart", "chromEnd" and "score"

columns.

bedNonRep Bed dataframe containing read counts from a non-replicating sample (dataframe).

The bed dataframe must contain "chrom", "chromStart", "chromEnd" and "score"

columns.

Examples

ratioDF <- makeRatio(W303_S,W303_G2)</pre>

MFAseq

Replication profile for wild type DS2 H.volcanii

Description

Replication profile for H.volcanii wild isolate DS2. Genomic DNA for deep sequencing was isolated from 100 ml culture in stationary phase (A650 > 1, DS2_stat sample) or 1 litre in exponential phase (A650 0.1, DS2_exp sample). Unique reads for the two samples were calculated in 1 kb genomic bins using ASM2568v1 genome assembly. The ratio was created by dividing 'score' values from replicating sample by non-replicating sample 'score' values, adjusted by total number of reads. The ratio values were further adjusted by multiplying them by 1.12 to put the values onto biologically relevant relative copy number scale from 1 to 2.

Usage

data(MFAseq)

Format

data frame with 3887 rows and 7 variables:

chrom short chromosome name

chromStart left chromosome coordinate

chromEnd right chromosome coordinate

name.rep replicating sample name

name.nonRep non-replicating sample name

ratio ratio value in the current bin

ratioFactor adjustment factor used for the current ratio

Source

DS2_exp exponential phase sample: SRA; DS2_stat stationary sample: SRA

8 normaliseRatio

References

Hawkins et al. (2013) Nature 503(7477):544-547 (PubMed)

Examples

data(MFAseq)

normaliseRatio

A function to normalise ratio values from 'ratio' column of the provided dataframe to fit biologically-relevant scale. It scales values either using supplied 'rFactor' value or automatically to best fit 1 to 2 scale (the upper limit of the scale may be adjusted with the upper Limit parameter). Normalisation factor used is stored in 'ratioFactor' column and also passed as the dataframe comment. To extract it, use 'attributes(mergedBed)\$comment'

Description

A function to normalise ratio values from 'ratio' column of the provided dataframe to fit biologically-relevant scale. It scales values either using supplied 'rFactor' value or automatically to best fit 1 to 2 scale (the upper limit of the scale may be adjusted with the upper Limit parameter). Normalisation factor used is stored in 'ratioFactor' column and also passed as the dataframe comment. To extract it, use 'attributes(mergedBed)\$comment'

Usage

```
normaliseRatio(ratioDF, rFactor = NULL, upperLimit = 2, replace = TRUE)
```

Arguments

ratioDF A ratio dataframe containing 'ratio' column (dataframe).

rFactor Value to normalise by, related to replication progression (numeric, optional).

upperLimit Top value for the scale, defaults to 2 (numeric, optional, defaults).

replace Should the existing 'ratio' values be overwritten or stored in a new column

(boolean, defaults to TRUE).

Examples

```
ratioDF <- normaliseRatio(W303) ## scales to 1 to 2 range, replaces original values. ratioDF <- normaliseRatio(W303,rFactor=1.41,replace=FALSE) # (multiplies score values by 1.41 and keeps the original values)
```

plotBed 9

plotBed	A function to boxplot 'score' column of a BED dataframe, per unique chromosome name in the 'chrom' column. The resulting plot also highlights outliers based on the inter quartile range (IQR). The genome wide median is plotted as a pink line through the boxplots.

Description

A function to boxplot 'score' column of a BED dataframe, per unique chromosome name in the 'chrom' column. The resulting plot also highlights outliers based on the inter quartile range (IQR). The genome wide median is plotted as a pink line through the boxplots.

Usage

```
plotBed(bed, plotting = TRUE)
```

Arguments

bed A dataframe containing 'score' and 'chrom' columns (dataframe).

plotting Should the plot object be sent to the default device? (boolean, defaults to

TRUE).

Examples

```
plotBed(W303_S)
plotObject <- plotBed(W303_G2,plotting=FALSE)</pre>
```

plotCoverage

A function to scatterplot 'score' column of a BED dataframe plotCoverage function plots values in the 'score' column of the supplied bed dataframe as a function of chromosome coordinates. The genome wide median is plotted as a pink line.

Description

A function to scatterplot 'score' column of a BED dataframe plotCoverage function plots values in the 'score' column of the supplied bed dataframe as a function of chromosome coordinates. The genome wide median is plotted as a pink line.

```
plotCoverage(bed, region = FALSE, plotting = TRUE)
```

10 plotGenome

Arguments

region

bed A dataframe containing 'score', 'chrom', 'chromStart' and 'chromEnd' columns (dataframe).

Only plot for the provided region in the format 'chrI:1000-3000' (string, op-

tional).

plotting Should the plot object be sent to the default device? (boolean, defaults to

TRUE).

Examples

```
plotCoverage(W303_G2)
plotObject <- plotCoverage(W303_S,plotting=FALSE)</pre>
```

plotGenome

plotGenome: plot replication profile.

Description

plotGenome plots scatterplot/barplot/polygon of 'score' and/or 'splineSmooth' columns values by genomic coordinates, either for the whole genome or a region. It also allows annotation with additional BED-formatted data. Ggplot2 package is used for plotting.

```
plotGenome(
  ratioDFs,
  geom = "geom_point",
 ylims = c(1, 2),
  plotting = TRUE,
  genome = NULL,
  region = FALSE,
  guide = NULL,
  lines = NULL,
  circles = NULL,
  rectangles = NULL,
  pointers = NULL,
  colourLines = "#00FF00",
  colourCircles = "#FFFFFF",
  colourRectangles = "#FF0000",
  colourPointers = "#FF7F00"
)
```

plotGenome 11

Arguments

ratioDFs A ratio dataframe or combined ratios dataframe containing 'ratio' column (dataframe). ggplot2 geom to use for plotting: "geom point", "geom ribbon" or "geom segment" geom (string, defaults to "geom_point"). A vector of two values for y axis limits - first is lowest, second is highest (nuylims meric vector, defaults to 1 and 2) Should the plot object be sent to the default device? (boolean, defaults to plotting TRUE). genome A mask dataframe to exclude data from the ratio dataframe (dataframe, optional). The genome dataframe must contain "chrom", "chromStart" and "chromEnd" columns. region Only plot for the provided region in the format 'chrI:1000-3000' (string, optional). guide A dataframe guiding the plotGenome function how to plot the data (dataframe, optional). The guide dataframe must contain the following columns: 'order' (integer) - order to plot data in, 'name.rep' (character) - replicating sample name that matches the one in the ratioDFs dataframe, 'name.nonRep' (character) non-replicating sample name that matches the one in the ratioDFs dataframe, 'raw' (logical) - should the raw raw data be plotted? 'smooth' (logical) - should the smoothed data be plotted? 'color'(character) - R color to plot the current sample with, both raw and smoothed data. lines Additionally plot vertical lines from a BED formatted dataframe (dataframe, optional). circles Additionally plot circles on the chromosome line from a BED formatted dataframe (dataframe, optional). rectangles Additionally plot rectangles on the chromosome line from a BED formatted dataframe (dataframe, optional). pointers Additionally plot downward pointing triangles from a BED formatted dataframe (dataframe, optional). colourLines Colour for 'lines' data (string, defaults to green). colourCircles Colour for 'circles' data (string, defaults to white). colourRectangles Colour for 'rectangles' data (string, defaults to red). colourPointers Colour for 'pointers' data (string, defaults to orange).

Examples

12 plotTrep

```
plotGenome(MFAseq,region='chr1:0-2848000')
# plot marker frequency analysis for H.volcanii isolate DS2
```

plotRatio	A function to plot a histogram of supplied ratio vector plotRatio plots
•	histogram of values in a supplied vector using ggplot2 and highlights interval between 1 and 2 in green.

Description

A function to plot a histogram of supplied ratio vector plotRatio plots histogram of values in a supplied vector using ggplot2 and highlights interval between 1 and 2 in green.

Usage

```
plotRatio(ratio, plotting = TRUE)
```

Arguments

ratio A numeric vector containing raw or smoothed ratio values (vector).

plotting Should the plot object be sent to the default device? (boolean, defaults to

TRUE).

Examples

```
plotRatio(W303$ratio)
plotObject <- plotRatio(W303$ratio,plotting=FALSE)</pre>
```

plotTrep

A function to scatterplot 'Trep' column of a Trep dataframe plotTrep function plots values in the 'Trep' column of the supplied dataframe as a function of chromosome coordinates. The genome wide median is plotted as a pink line.

Description

A function to scatterplot 'Trep' column of a Trep dataframe plotTrep function plots values in the 'Trep' column of the supplied dataframe as a function of chromosome coordinates. The genome wide median is plotted as a pink line.

```
plotTrep(TrepDF, region = FALSE, plotting = TRUE)
```

rmChr 13

Arguments

TrepDF A dataframe containing 'chrom', 'chromStart', 'chromEnd' and 'Trep' columns

(dataframe).

Only plot for the provided region in the format 'chrI:1000-3000' (string, opregion

plotting Should the plot object be sent to the default device? (boolean, defaults to

TRUE).

Examples

```
plotTrep(TrepDF, region="chrI")
```

rmChr

A function to remove single chromosome data from a bed dataframe

Description

A function to remove single chromosome data from a bed dataframe

Usage

```
rmChr(bed, chr)
```

Arguments

bed A bed dataframe containing 'chrom' column (dataframe, required).

chr Chromosome to remove (string, required).

Examples

```
bedDF <- rmChr(W303_S,"chrM") ## removes mitochondria</pre>
```

rmOutliers A function to remove outliers from the "score" column of a supplied

> bed dataframe There are three methods: max, IQR and median. Max is used to remove 1 or more maximum values; IQR uses interquartile range to detect outliers, while median method can be used to remove

data based on genome-wide median.

Description

A function to remove outliers from the "score" column of a supplied bed dataframe There are three methods: max, IQR and median. Max is used to remove 1 or more maximum values; IQR uses interquartile range to detect outliers, while median method can be used to remove data based on genome-wide median.

14 sacCer3

Usage

```
rmOutliers(bed, method, n = 1, range = 3, loLim = 0.25, hiLim = NULL)
```

Arguments

A dataframe containing 'score' column (dataframe, required).

Method to detect outliers: "max", "IQR" or "median" (string).

Number of max values to remove (integer, defaults to 1). Use with "max" method.

Number of IQR above the 3rd or below the 1st IQR to set the threshold (double, defaults to 3). Use with "IQR" method.

Low limit for the median method (double, defaults to 0.25).

hiLim High limit for the median method (double).

Examples

bedDF <- rmOutliers(W303_S,method="max",n=2) ## removes 2 rows of data containing 3 top values bedDF <- rmOutliers(W303_S,method="IQR",range=3) ## removes datapoints outside 3 x IQR above the 3rd # and below the 1st IQR.

bedDF <- rmOutliers(W303_S,method="median",loLim=0.25,hiLim=2) # removes datapoints that are lower # than 0.25 x genome median or above 2 x genome median.

runGUI

A function to launch Repliscope in interactive mode (Shiny app).

Description

A function to launch Repliscope in interactive mode (Shiny app).

Usage

runGUI()

sacCer3

S.cerevisiae genome information

Description

sacCer3 meta information: chromosome sizes, centromere and replication origin positions.

Usage

data(sacCer3)

smoothRatio 15

Format

List containing three dataframes

genome Chromosome information dataframecen Centromere information dataframeori Replication origin information dataframe

Source

Replication origin information: (OriDB)

References

Siow et al. (2011) NAR 40(Database issue):D682-6 (PubMed)

Examples

data(sacCer3)

smoothRatio

A function to smooth ratio values using cubic smoothing spline smoothRatio function splits values from 'ratio' column by chromosome and based the supplied 'groupMin' and 'split' parameters and then applies smooth.spline() function from R stats package. The supplied dataframe may contain multiple ratios, i.e. ratios produced using multiple replicating samples and/or multiple non-replicating samples. This must be reflected in 'name.rep' and 'name.nonRep' columns. In other words, different ratio dataframes may be merged using rbind() function before calling smoothRatio() function.

Description

A function to smooth ratio values using cubic smoothing spline smoothRatio function splits values from 'ratio' column by chromosome and based the supplied 'groupMin' and 'split' parameters and then applies smooth.spline() function from R stats package. The supplied dataframe may contain multiple ratios, i.e. ratios produced using multiple replicating samples and/or multiple non-replicating samples. This must be reflected in 'name.rep' and 'name.nonRep' columns. In other words, different ratio dataframes may be merged using rbind() function before calling smoothRatio() function.

```
smoothRatio(ratioDF, groupMin = 5, splitNum = 5)
```

16 sortSeq

Arguments

ratioDF A ratio dataframe or combined ratios dataframe containing 'ratio' column (dataframe).

Minimum number of values required to make a group (integer, defaults to 5). groupMin splitNum

Minimum number of adjacent bins with missing values to close current group

(integer, defaults to 5).

Examples

ratioDF <- smoothRatio(W303norm)</pre>

sortSeq

Replication profiles for wild type and Dbf4-9myc S.cerevisiae samples

Description

Replication profiles for wild type and Dbf4-9myc samples (T7107 and T9394 strains). The cells were stained with DNA dye and sorted based on DNA content into S or G2/M phase fractions. Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads for replicating (S) and non-replicating (G2/M) samples were calculated in 1 kb genomic bins. The ratio was created by dividing 'score' values from replicating sample by non- replicating sample 'score' values, adjusted by total number of reads. The ratio values were further adjusted by multiplying them by 1.41 and 1.402 for wild type and Dbf4-9myc samples, respectively, to put the values onto biologically relevant relative copy number scale from 1 to 2. The relative copy number values were smoothed using cubic spline and compared using z score statistics.

Usage

data(sortSeq)

Format

data frame with 22696 rows and 10 variables:

chrom short chromosome name

chromStart left chromosome coordinate

chromEnd right chromosome coordinate

name.rep replicating sample name

name.nonRep non-replicating sample name

ratio ratio value in the current bin

ratioFactor adjustment factor used for the current ratio

group Group number of the current bin

splineSmooth Smoothed ratio value

p.value Significance of ratio difference between Dbf4myc and W303 samples

syncSeq 17

Source

Dbf4myc S phase sample: SRA; Dbf4myc G2 sample: SRA; W303 S sample: SRA; W303 G2 sample: SRA

References

Natsume et al. (2013) Mol Cell 50(5):661-74 (PubMed)

Examples

data(sortSeq)

syncSeq

Replication profiles budding yeast arrest-release samples

Description

Replication profiles of wild type S. cerevisiae arrest-release samples (AUY077 strain). The cells were arrested in G1 with alpha-factor followed by release using pronase. The samples were collected before the release (aFactor) and various time intervals after the release (25min,30min,35min,40min,45min,50min and 90min) Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads for replicating (post-release) and non-replicating (aFactor) samples were calculated in 1 kb genomic bins. The ratios were created by dividing 'score' values from replicating samples by non-replicating sample 'score' values, adjusted by total number of reads. The ratio values were further adjusted based on bulk genome replication (as determined by flow cytometry), to put the values onto biologically relevant relative copy number scale from 1 to 2. The relative copy number values were smoothed using cubic spline.

Usage

data(syncSeq)

Format

List containing two data frames

data syncSeq replication profiles data. Columns: chrom (short chromosome name), chromStart (left chromosome coordinate), chromEnd (right chromosome coordinate), name.rep (replicating sample name), name.nonRep (non-replicating sample name), ratio (ratio value in the current bin), ratioFactor (adjustment factor used for the current ratio), group (Group number of the current bin), splineSmooth (Smoothed ratio value)

guide Guide dataframe for plotting the syncSeq data order (Order to plot data in), name.rep (Name of replicating sample), name.nonRep (Name of non-replicating sample), raw (Should raw data be plotted?), smooth (Should smooth data be plotted?), color (Color to plot the profile in)

TrepDF

Source

GEO

References

```
Müller et al. (2014) NAR 42(1):e3 (PubMed)
```

Examples

data(syncSeq)

TrepDF

Trep data calculated from syncSeq[["data"]]

Description

Trep is median replication time, expressed in minutes after release G1 arrest. It is calculated from multiple relative copy number datapoints across timeseries of a cell cycle experiment. For every genomic bin, a sigmoid function is fitted and its midpoint is reported.

Usage

```
data(TrepDF)
```

Format

data frame with 11341 rows and 5 variables:

chrom short chromosome name

chromStart left chromosome coordinate

chromEnd right chromosome coordinate

Trep calculated Trep value

TrepErr error from sigmoid function fitting

References

```
Müller et al. (2014) NAR 42(1):e3 (PubMed)
```

Examples

```
data(TrepDF)
```

trimRatio 19

trimRatio	A function to remove outliers from the "ratio" column of a supplied ratio dataframe trimRatio is applied to the calculated ratio of read counts from a replicating to a non-replicating samples.
	counts from a repricuiting to a non-repricuiting samples.

Description

A function to remove outliers from the "ratio" column of a supplied ratio dataframe trimRatio is applied to the calculated ratio of read counts from a replicating to a non-replicating samples.

Usage

```
trimRatio(ratioDF, loLim, hiLim)
```

Arguments

ratioDF	A ratio dataframe	containing?	ratio'	column ((dataframe	required)
IUCIODI	11 Iuno unumunic	Communic	rauo	COLUMN	datan anic,	requireuj.

loLim Low limit threshold (double, required).
hiLim High limit threshold (double, required).

Examples

```
W303 <- trimRatio(W303,0.5,1.5)
```

W303	Sequence read coverage ratios for wild type S.cerevisiae W303	

Description

Sequence read coverage ratios for wild type sample (T7107 strain). The cells were stained with DNA dye and sorted based on DNA content into S or G2/M phase fractions. Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads for replicating (S) and non-replicating (G2/M) samples were calculated in 1 kb genomic bins. The ratio was created by dividing 'score' values from replicating sample by non-replicating sample 'score' values, adjusted by total number of reads.

```
data(W303)
```

20 W303norm

Format

data frame with 11350 rows and 7 variables:

chrom short chromosome name

chromStart left chromosome coordinate

chromEnd right chromosome coordinate

name.rep replicating sample name

name.nonRep non-replicating sample name

ratio ratio value in the current bin

ratioFactor adjustment factor used for the current ratio

Source

S phase sample: SRA; G2 sample: SRA

References

Natsume et al. (2013) Mol Cell 50(5):661-74 (PubMed)

Examples

data(W303)

W303norm	Normalised sequence read coverage ratios for wild type S.cerevisiae
	W303

Description

Sequence read coverage ratios for wild type sample (T7107 strain). The cells were stained with DNA dye and sorted based on DNA content into S or G2/M phase fractions. Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads for replicating (S) and non-replicating (G2/M) samples were calculated in 1 kb genomic bins. The ratio was created by dividing 'score' values from replicating sample by non-replicating sample 'score' values, adjusted by total number of reads. The ratio values were further adjusted by multiplying them by 1.41 to put the values onto biologically relevant relative copy number scale from 1 to 2.

Usage

data(W303norm)

W303_G2 21

Format

data frame with 11340 rows and 7 variables:

chrom short chromosome name

chromStart left chromosome coordinate
chromEnd right chromosome coordinate

name.rep replicating sample name

name.nonRep non-replicating sample name

ratio ratio value in the current bin

ratioFactor adjustment factor used for the current ratio

Source

S phase sample: SRA; G2 sample: SRA

References

Natsume et al. (2013) Mol Cell 50(5):661-74 (PubMed)

Examples

data(W303norm)

W303_G2

Sequence read coverage for wild type S.cerevisiae W303 non-replicating sample.

Description

Sequence read coverage for wild type non-replicating sample (T7107 strain). The cells were stained with DNA dye and sorted based on DNA content into G2/M phase fraction. Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads were calculated in 1 kb genomic bins.

Usage

data(W303_G2)

Format

data frame with 11350 rows and 5 variables:

chrom short chromosome name

chromStart left chromosome coordinate
chromEnd right chromosome coordinate

name sample name

score read number in current bin

W303_S

Source

SRA

References

Natsume et al. (2013) Mol Cell 50(5):661-74 (PubMed)

Examples

```
data(W303_G2)
```

W303_S

Sequence read coverage for wild type S.cerevisiae W303 replicating sample

Description

Sequence read coverage for wild type replicating sample (T7107 strain). The cells were stained with DNA dye and sorted based on DNA content into S phase fraction. Extracted DNA was sequenced and mapped to sacCer3 genome. Unique reads were calculated in 1 kb genomic bins.

Usage

```
data(W303_S)
```

Format

data frame with 11820 rows and 5 variables:

chrom short chromosome name

chromStart left chromosome coordinate

chromEnd right chromosome coordinate

name sample name

score read number in current bin

Source

SRA

References

Natsume et al. (2013) Mol Cell 50(5):661-74 (PubMed)

Examples

```
data(W303_S)
```

Index

* BED	W303_G2, 21
compareRatios, 3	W303_S, 22
loadBed, 5	* datasets
plotBed, 9	Dbf4myc, 3
plotCoverage, 9	guide, 4
plotRatio, 12	MFAseq, 7
rmChr, 13	sacCer3, 14
rmOutliers, 13	sortSeq, 16
* Trep	syncSeq, 17
plotTrep, 12	TrepDF, 18
TrepDF, 18	W303, 19
* bed	W303_G2, 21
Dbf4myc, 3	W303_S, 22
W303, 19	W303norm, 20
W303_G2, 21	* genomics
W303_S, 22	calcTrep, 2
* bioinformatics	compareRatios, 3
calcTrep, 2	loadBed, 5
compareRatios, 3	makeGenome, 5
loadBed, 5	makeLabels, 6
makeGenome, 5	makeRatio, 6
makeLabels, 6	normaliseRatio, 8
makeRatio, 6	plotBed, 9
normaliseRatio, 8	plotCoverage, 9
plotBed, 9	plotGenome, 10
plotCoverage, 9	plotRatio, 12
plotGenome, 10	plotTrep, 12
plotRatio, 12	rmChr, 13
plotTrep, 12	rmOutliers, 13
rmChr, 13	runGUI, 14
rmOutliers, 13	smoothRatio, 15
runGUI, 14	trimRatio, 19
smoothRatio, 15	* ggplot2
trimRatio, 19	plotGenome, 10
* boxplot	* histogram
plotBed, 9	plotRatio, 12
* coverage	* outliers
Dbf4myc, 3	rmChr, 13
W303, 19	rmOutliers, 13
11000, 17	i modelici 5, 13

24 INDEX

* plotting	guide, 4
makeGenome, 5	8,
makeLabels, 6	loadBed, 5
* ratio	
W303norm, 20	makeGenome, 5
* replication	makeLabels, 6
calcTrep, 2	makeRatio, 6
guide, 4	MFAseq, 7
makeRatio, 6	
MFAseq, 7	normaliseRatio, 8
normaliseRatio, 8	normalizeRatio (normaliseRatio), 8
plotGenome, 10	7 . 7 . 1 0
runGUI, 14	plotBed, 9
sacCer3, 14	plotCoverage, 9
smoothRatio, 15	plotGenome, 10
sortSeq, 16	plotRatio, 12
	plotTrep, 12
syncSeq, 17	01 13
trimRatio, 19	rmChr, 13
W303norm, 20	rmOutliers, 13
* sacCer3	runGUI, 14
sacCer3, 14	sacCer3, 14
* scatterplot	
plotCoverage, 9	smoothRatio, 15
plotTrep, 12	sortSeq, 16
* shiny	syncSeq, 17
runGUI, 14	TrepDF, 18
* sigmoid	trimRatio, 19
calcTrep, 2	ti iliitatio, 17
* sortSeq	W303, 19
Dbf4myc, 3	W303_G2, 21
guide, 4	W303_S, 22
MFAseq, 7	W303norm, 20
sortSeq, 16	, 20
W303, 19	
W303_G2, 21	
W303_S, 22	
W303norm, 20	
* spline	
smoothRatio, 15	
* syncSeq	
syncSeq, 17	
TrepDF, 18	
* trep	
calcTrep, 2	
calcTrep, 2	
compareRatios, 3	
Dbf4myc, 3	