June 18, 2023 Handout #2 Due: June 23

Problem Set 3

Problem 3.1 (Nearest neighbor predictors and Voronoi sets)

Nearest neighbor, k-nearest neighbor, and tree predictors are piecewise constant functions. This means that we can partition \mathbf{R}^d into N regions, $\mathcal{R}_1, \ldots, \mathcal{R}_N$, and we have $g(x) = \hat{y}_k$ for all $x \in \mathcal{R}_k$. The regions don't overlap, except for their boundaries, and every point in \mathbf{R}^d is in one of the regions. (We are not concerned with how these predictors work when a point is right on the boundary between two regions; in any case, whichever value the predictor takes on these boundaries makes no difference at all in practice.) In this problem we explore this idea.

- (a) The set of points closer to one given point than another. Suppose u and v are given vectors in \mathbf{R}^d , with $u \neq v$. We define the set of all points in \mathbf{R}^d that are closer to $u \in \mathbf{R}^d$ than $v \in \mathbf{R}^d$ as $S(u,v) = \{x \in \mathbf{R}^d \mid ||x-u||_2 \leq ||x-v||_2\}$. Show that S(u,v) is a halfspace, which has the form $S(u,v) = \{x \in \mathbf{R}^d \mid a^Tx \leq b\}$. (You should say explicitly what the vector a is, and what the scalar b is.) The boundary of S(u,v) is a hyperplane, i.e., the set of points that satisfy $a^Tx = b$. Sketch this for the specific example with u = (1,1) and v = (2,4). Show the points u and v, shade the set S(u,v), and indicate its boundary, which is a line (since a hyperplane in \mathbf{R}^2 is a line).
- (b) Voronoi sets. Suppose u^1, \ldots, u^m are given points in \mathbf{R}^d . Define \mathcal{V}_i , the set of points in \mathbf{R}^d closer to x^i than the others (i.e., u^i is the nearest neighbor of all points in \mathcal{V}_i), for $i = 1, \ldots, m$. We can express these sets as

$$\mathcal{V}_i = \bigcap_{j \neq i} \mathcal{S}\left(u^i, u^j\right),\,$$

i.e., V_i is the intersection of the m-1 halfspaces $S\left(u^i,u^j\right)$ for $j\neq i$. An intersection of halfspaces is called a polyhedron. The specific polyhedra V_i are called Voronoi sets or Voronoi regions associated with the collection of points u^1,\ldots,u^m . (Polyhedra is the plural of polyhedron.) They form a partition of \mathbf{R}^d into a set of polyhedra, called the Voronoi partition of \mathbf{R}^d . Sketch the Voronoi regions for the collection of points (1,1),(2,4),(5,3).

- (c) Nearest neighbor predictor. Let g be the 1-nearest neighbor predictor for the data set $x^1, \ldots, x^n, y^1, \ldots, y^n$. Explain why g has the form $g(x) = y^k$ for $x \in \mathcal{V}_k$, where \mathcal{V}_k is the Voronoi region associated with x^k . In other words, g is piecewise constant, with the same value inside each of the Voronoi regions associated with the vectors $x^i, i = 1, \ldots, n$.
- (d) k-nearest neighbor predictor. Let g(x) be the k-nearest neighbor predictor for the data set $x^1, \ldots, x^n, y^1, \ldots, y^n$. Explain why g is piecewise constant on a regions that are polyhedra. You can do this for the case k = 2, to make things simpler.

Hint. The set of points x for which x^q and x^l are its two nearest neighbors has the form

$$\mathcal{R}_{ql} = \left\{ x \in \mathbf{R}^d \mid ||x - x^q||_2 \le ||x - x^j||_2, ||x - x^l||_2 \le ||x - x^j||_2, j \ne q \text{ or } l \right\}.$$

This is an intersection of 2(n-1) halfspaces. Hint. Drawing these sets in in 2D is encouraged. You can use such drawings as part of your explanation.

Problem 3.2 (Multiclass exponential loss)

For a K-class classification problem, consider the coding $Y = (Y_1, \dots, Y_K)^T$ with

$$Y_k = \begin{cases} 1, & \text{if } G = \mathcal{G}_k \\ -\frac{1}{K-1}, & \text{otherwise} \end{cases}$$

Let $f = (f_1, \dots, f_K)^T$ with $\sum_{k=1}^K f_k = 0$, and define

$$L(Y, f) = \exp\left(-\frac{1}{K}Y^T f\right)$$

- (a) Using Lagrange multipliers, derive the population minimizer f^* of E(Y, f), subject to the zero-sum constraint, and relate these to the class probabilities.
- (b) Show that a multiclass boosting using this loss function leads to a reweighting algorithm similar to Adaboost

Problem 3.3 (Back propagation for cross-entropy loss function)

Derive the forward and backward propagation equations for the cross-entropy loss function.