2/2

3/3

2/2

4/4

Note: 20/20 (score total: 26/26)

		l
200	100	

+69/1/44+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

$_{ m IPS}$		
\mathbf{Quizz}	$d\mathbf{u}$	13/11/2013

Nom et prénom :	
HENRY Vivien	

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?

麣	${\it flash - approximation \ successives - simple \ rampe - double \ rampe}$
	double rampe - flash - approximation successives - simple rampe $$
	approximation successives - flash - simple rampe - double rampe $$
	approximation successives - flash - double rampe - simple rampe
	flash - approximation successives - double rampe - simple rampe

Question 2 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

Question 3 •

Quelle est la capacité d'un condensateur plan? On note :

- ε : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d: Distance entre les armatures.

$$\Box C = \frac{\epsilon}{Sd} \qquad \Box C = \epsilon dS \qquad \Box C = \frac{\epsilon S}{d} \qquad \Box C = \frac{\epsilon d}{S}$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurcr ...

des différences de températures des températures.	des courants des résistances des différences de potentiels.
---	---

	Question 5 • Pourquoi laire du sur-echantillonnage ?
2/2	Pour améliorer l'efficacité du filtre antirepliement. Pour réduire le bruit de quantification Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
1/1	La course électrique. La taille des grains de la poudre utilisée La longueur du potentiomètre Le pas de bobinage La résistance maximale du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des températures des déformations des résistances des courants des flux lumineux des grands déplacements.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des déplacements angulaires des déplacement linéaire des températures des courants des flux lumineux
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
3/3	Les voies sont symétriques. Les impédances d'entrées sont élevés. De rejeter les perturbations de mode différentiel. Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question $10 \bullet$ Soit un CAN acceptant en entrée des signaux compris entre $0V$ et $10V$, la quantification s'effectue sur 8 bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN.?
1/1	☐ 10 mV.s ⁻¹ ☐ 78 mV ☐ 80 mV.s ⁻¹ ☐ 39 mV
	Question 11 • On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1 + \tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon = u_+ - u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
6/6	Le système est stable