AKAD Bachelor of Science (Wirtschaftsinformatik) Modulzusammenfassung

WIM04

Formelsammlung

Daniel Falkner Rotbach 529 94078 Freyung daniel.falkner@akad.de 14. Februar 2013

Inhaltsverzeichnis

1 Folgen

Eine Serie von Zahlen oder Größen 5, 10, 4, 1 $(a_n) = a_1, a_2, a_3, ..., a_n$

$$(a_n) = a_1, a_2, a_3, ..., a_n$$

1.1 arithmetische Folgen

- $\bullet \ a_{n+1} = a_n + d$
- 7, 11, 15, 19, 23, 27, ...
- $\bullet \mapsto d = 4$

1.1.1 Bildungsgesetz

$$a_n = a_1 + d * (n-1)$$

1.2 geometrische Folgen

- $\bullet \ an + 1 = a_n * q$
- 2, 6, 18, 54, 162, 486, ...
- $\bullet \mapsto q = 3$

1.2.1 Bildungsgesetz

$$a_n = a_1 * q^{n-1}$$

$$q = \sqrt[n-1]{\frac{a_n}{a_1}}$$

2 Reihen

Aus einer Folge ergibt sich eine Reihe

$$(s_n) = s_1, s_2, s_3, ..., s_n$$

$$(s_n) = a_1 + a_2 + a_3 + \dots + a_n = \sum_{j=1}^n a_j$$

2.1 arithmetische Reihen

•
$$(a_n) = 7, 11, 15, 19, \dots \mapsto a_1 = 7, d = 4$$

•
$$(s_n) = 7, 18, 33, 52, \dots$$

2.1.1 Bildungsgesetz

$$s_n = \frac{n}{2} * (a_1 + a_n) = \frac{n}{2} * (2a_1 + (n-1)d)$$

2.2 geometrische Reihen

•
$$(a_n) = 2, 6, 18, 54, \dots \mapsto a_1 = 2, q = 3$$

•
$$(s_n) = 2, 8, 26, 80, \dots$$

2.2.1 Bildungsgesetz

$$s_n = a_1 * \frac{q^n - 1}{q - 1}, q \neq 1$$

3 Vollständige Induktion

- 1. Zeigen das die Formeln für n = 1 gelten
- 2. Zeigen das die Formeln für n + 1 gelten
 - a) Induktionsannahme festhalten a_n (zu beweisende Formel)
 - b) Die zubeweisende Formel für n + 1 herleiten a_{n+1}
 - c) Die Induktionsnahme + Ursprungsformel für n + 1 herleiten a_{n+1}