calcolare il det di una 2 × 2 a caso, se det ≠ 0 allora rk(A) ≥ 2 possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le paltre rk(A)=3; • Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che A ⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0 • Se A è una matrice simmetrica, allora A² è simmetrica → M simmetrica se M = M ^T → M ^T · M ^T = (M · M) ^T → M = M ^T , sostituisci M con A² • Sia A ∈ M3.2(R) di rango 2, allora il sistema lineare AX = B ammette soluzioni) per Rouché-Capelli (∞2 ⁻³) • A³ − A = I₂ → A(A² − I) = I ⇒ (A² − I) = A ⁻¹ quindi AA ⁻¹ = I (A è invertibile) • A³ − A = 0 → A(A² − I) = 0 → A = 0, A² − I = 0 → A = 0, A² − I = quindi A è invertibile se A² − A = 0 → A(A² − I) = (1/2) → A = 0, A² − A = 0 → A(A² − I) = 0 → A = 0, A² − I = 0 → A(A² − I) = 0 → A(A² − I) = 0 → A = 0, A² − I = 0 → A(A² − I) = 0 → A = 0, A² − I = 0 → A(A² − I) = 0 → A(A	Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X , eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
• Se $A \stackrel{\circ}{\triangleright} u$ • Se $A \stackrel{\circ}{\triangleright} u$ • Se $A \stackrel{\circ}{\triangleright} u$ • Sia $A \in$ • Sia $A \in$ soluzion sceglie $A \stackrel{\circ}{\triangleright} u$ • $A^3 - A$ quindi $A \stackrel{\circ}{\triangleright} u$ • $A^3 - A$ • $A^3 - A$ quindi $A \stackrel{\circ}{\triangleright} u$ • $A^3 - A$ • A	Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle λ sono quelle che λ che λ tutte le altre λ sono quelle che λ in comune alle λ sono quelle che λ che λ in the le altre λ che λ in comune alle λ sono quelle che λ che
	Esercizio 3	Se $A \rightleftharpoons v$ $A^n = 0$) Se $A \rightleftharpoons v$ $A^n = 0$ Se $A \rightleftharpoons v$ con A^2 Soluzion sceglie A soluzion $A^3 - A$ quindi A $A^3 - A$ quindi A Se $A \rightleftharpoons A$ Se $A \rightleftharpoons A$

Qui ci andranno gli esercizi già fatti

$\sqrt{25} = 5$	Ш	$\sqrt{225} = 15$	Ш	Ш	Ш
$\sqrt{16} = 4$	$\sqrt{81} = 9$	$\sqrt{196} = 14$	$\sqrt{361} = 19$	$\sqrt{576} = 24$	$\sqrt{841} = 29$
$\sqrt{9} = 3$	$\sqrt{64} = 8$	$\sqrt{169} = 13$	$\sqrt{324} = 18$	$\sqrt{529} = 23$	$\sqrt{784} = 28$
$\sqrt{4}=2$	$\sqrt{49} = 7$	$\sqrt{144} = 12$	$\sqrt{289} = 17$	$\sqrt{484} = 22$	$\sqrt{729} = 27$
$\sqrt{1} = 1$	$\sqrt{36} = 6$	$\sqrt{121} = 11$	$\sqrt{256} = 16$	Ш	$\sqrt{676} = 26$