A.7 Fonction inverse

Définition A.6 La fonction inverse est définie sur $\mathbb{R} \setminus \{0\} =]-\infty; 0[\cup]0; -\infty[$ par

$$f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$$

$$x \mapsto y = \frac{1}{x}$$

Théorème A.10 Pour $x \neq 0$, l'image de x par f est aussi l'antécédent de x par f. En effet f(f(x)) = x.

Proposition A.11 — sens de variation. f est strictement décroissante sur chacun des intervalles $]0; -\infty[$ et $:]-\infty; 0[$:

Si
$$a < b < 0$$
 alors $\frac{1}{b} < \frac{1}{a} < 0$

Si
$$0 < a < b$$
 alors $0 < \frac{1}{b} < \frac{1}{a}$

Démonstration. Exigible en fin de seconde

Figure A.8 – Tableau de variation de la fonction inverse

x	$-\infty$ () +∞
f(x)	$0 \longrightarrow -\infty$	$+\infty$ 0
signe de $f(x)$	_	+

A.7 Fonction inverse

Figure A.9 – La courbe représentative de la fonction inverse dans un repère orthonormé est l'**hyperbole** d'équation $\mathscr{C}\colon y=\frac{1}{x}$ (on peut aussi dire $\mathscr{C}\colon xy=1$)

■ Exemple A.12 Résoudre graphiquement les inéquation $\frac{1}{x} > 2$ et $\frac{1}{x} > -3$ d'inconnue x

x	$-\infty$	$+\infty$
signe de		
signe de		
signe de		

Exercices: Fonction inverse

Exercice 1 — calculer les images et antécédents par une fonction inverse.

f est la fonction inverse définie dans $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x}$

- a) Sans l'aide de la calculatrice, exprimer l'image par la fonction inverse de chacun des nombres réels suivants sans laisser de racine carrée au dénominateur : $2\sqrt{3}, -\sqrt{2}, \frac{\sqrt{3}}{2}$ et $\frac{1+\sqrt{5}}{2}$.
- b) Exprimer l'antécédent des nombres suivants par la fonction inverse sous la forme d'un entier ou d'une fraction d'entiers : $\frac{2}{3}$, $-\frac{3}{2}$, 10^{-2} , 0,001, -10^3 et -10^{-4} .
- Exemple A.13 Résoudre équations et équations en isolant $\frac{1}{x}$.

$$\frac{1}{x} = 12$$

$$\frac{3}{x} = -11$$

$$\frac{1}{x} + 8 = \frac{10}{13}$$

$$\frac{1}{x} + 8 = \frac{10}{13} \qquad 40 - \frac{14}{x} = 20$$

Exercice 2 Résoudre dans \mathbb{R} les équations suivantes en isolant $\frac{1}{x}$.

$$(E_1) \ \frac{1}{x} = 2$$

$$(E_1)$$
 $\frac{1}{x} = \frac{2}{7}$ (E_2) $\frac{1}{x} = \frac{-1}{7}$

$$(E_3) \frac{15}{x} = \frac{-5}{17}$$

$$(E_4) \frac{2}{x} = 26$$

$$(E_4) \frac{2}{x} = 26$$

$$(E_5) \frac{-7}{x} = 2$$

$$(E_5) \frac{-7}{x} = 2$$

 $(E_6) \frac{1}{x} - 11 = \frac{10}{23}$

■ Exemple A.14 — Résoudre équations et inéquations en isolant $\frac{1}{x}$.

$$\frac{1}{x} > 5$$

$$\frac{1}{x} \leqslant 2$$

$$\frac{1}{r} \leqslant -3$$

$$\frac{1}{x} \geqslant -\frac{1}{2}$$

Exercice 3 Résoudre dans \mathbb{R} les inéquations suivantes en isolant $\frac{1}{x}$.

$$(I_1)$$
 $\frac{1}{x} \geqslant 7$

$$(I_3) \frac{1}{x} > -2$$

 $(I_4) \frac{1}{x} > -\frac{2}{5}$

$$\left| \begin{array}{cc} (I_5) & \frac{1}{x} \leqslant 2 \\ (I_6) & \frac{1}{x} \leqslant \frac{2}{5} \end{array} \right|$$

$$(I_2) \frac{1}{x} < -\frac{3}{2}$$

$$(I_4) \frac{1}{x} > -\frac{2}{5}$$

$$(I_6)$$
 $\frac{1}{x} \leqslant \frac{2}{x}$

Exercice 4 — Utiliser le sens de variation de la fonction inverse. En s'aidant de la courbe de la fonction inverse ou de son tableau de variation donner un encadrement de $\frac{1}{x}$ dans chaque cas :

- a) x > 3
- d) $2 \le x < 5$
- g) $-4 \le x < 0$
- j) $-4 \le x < 0$

- b) $x > \frac{2}{3}$

- $\begin{array}{c} \mathbf{k} \) \ -4 < x \\ \mathbf{l} \) \ x < 0 \end{array}$

- c) 3 > x > 0
- e) $\frac{2}{5} < x \le \frac{7}{8}$ h) $x \le -8$ f) $-5 \le x < -2$ i) $x \le -\frac{2}{3}$