Projet 2: SAT

Daniel Hirschkoff, Olga Kupriianova, Antoine Plet

http://perso.ens-lyon.fr/daniel.hirschkoff/P2

Projet2 — présentation

- implémenter plusieurs versions d'un solveur SAT
- dans le langage de votre choix parmi
 - C Caml Java
- modalittés
 - en binôme
 appariements par "niveaux proches en programmation"
 - 4 échéances au long du semestre
- séances en salle machines, quelques séances en amphi

Évaluation

- capacité à développer du code
 - de façon réfléchie (clarté, modularité, efficacité)
 - de manière organisée (échéances, respect des consignes)
- exigences
 - adaptées à votre niveau d'expertise
 - uniformité sur l'organisation
- travail important, tout au long du semestre
 - entre les séances notamment (maison, salles machines)
- petit rapport et petite soutenance, à la fin

Le problème SAT : description, notations

 on cherche à satisfaire une formule logique en forme normale conjonctive

- variables x_1, x_2, \dots, x_k
- littéraux α, β exemples: $x_1, \overline{x_1}, x_2, \overline{x_2}, \dots$ $\overline{x_1}$: "non x_1 " (parfois $\neg x_1$) si $\alpha = \overline{x_7}$, α vrai signifie x_7 faux
- clauses $C = \alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n$
- formule $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_r$
- formule satisfiable: il existe une assignation d'une valeur de vérité aux variables telle que chaque clause contienne au moins un littéral vrai
- cas limite:

formule vide: satisfiable

clause vide: insatisfiable

Positionnement

- satisfiabilitté: rôle central en théorie de la complexité
- des solveurs: utiliser la machine pour démontrer des résultats un domaine de recherche:

des méthodes de toutes sortes...

une technologie qui s'affine depuis des décennies

- . sur l'ensemble du spectre, de méthodes complètes à des heuristiques
- . de l'outil-exemple pour chercheur/théoricien à la dimension industrielle
- ... pour résoudre maints problèmes

logistique, planification, vérification de matériel et de logiciel, jeux, . . .

- ce cours
 - un peu : se faire de la culture sur SAT
 (est-ce vraiment un sujet de L3?) / "démystifier NP"

surtout :

SAT est un support pour apprendre à programmer/s'organiser, dans le cadre d'un projet logiciel non rikiki

(en particulier, il ne s'agit pas de faire du "SAT ultra sophistiqué")

on explore l'espace des affectations possibles des variables

```
essayer avec x_1 = vrai ... récursivement si ça ne marche pas,

essayer avec x_2 = faux ...
```

- exploite ce que l'on appelle le variable splitting
 - on explore toutes les instanciations possibles (des variables)
 - on manipule une instanciation partielle, que l'on étend tant qu'elle est consistante (pas de conflit)
 - en cas de conflit, on élimine un ensemble d'instanciations
- on fait des paris
 - à chaque pari, on déduit des conditions nécessaires

```
p.ex. si x_3 = \text{vrai}, la clause \overline{x_3} \vee \overline{x_{12}} implique x_{12} = \text{faux}
```

→ on n'énumère ainsi pas toutes les affectations possibles

Algorithme DPLL — étapes essentielles

1. boolean constraint propagation

déduire

- 1.1 trouver les affectations nécessaires
 - si une clause est $\{\alpha\}$, alors α est nécessairement satisfait (i.e., $x = \text{vrai si } \alpha = x$, = faux si $\alpha = \overline{x}$)
 - si une variable x n'apparaît qu'avec une seule polarité, déduire sa valeur
- 1.2 propagation des valeurs si nécessairement α est satisfait.
 - . "éliminer" toutes les clauses contenant α
 - . "éliminer" $\overline{\alpha}$ de toutes les clauses le contenant (\star)
- 1.3 recommencer en 1.1
- 2. choix décider

choisir une variable x_i encore inconnue, et lui attribuer une valeur (vrai ou faux)

- 3. backtrack rebrousser chemin
 - l'étape (★) peut engendrer une clause vide: **conflit** on revient alors sur le dernier *choix* ayant été fait

(choix, pas déduction)

DPLL - exemple

autres transparents

Paris et backtrack

- à un instant donné dans l'exécution de DPLL, on a parié sur la valeur d'un certain nombre de variables
- on maintient une pile de tranches
 - on a fait *n* paris sur des variables X_{c_1}, \ldots, X_{c_n}
 - chaque choix a entraîné, par BCP, l'assignation d'un certain nombre de variables (elles sont dans la même tranche) $X_{c_1}, y_{c_1}^1, \dots, y_{c_l}^{i_1}, \mid X_{c_2}, y_{c_2}^1, \dots, y_{c_2}^{i_2}, \dots \mid X_{c_n}, y_{c_n}^1, \dots, y_{c_n}^{i_n}$
- lorsque l'on rebrousse chemin, il faut
 - retourner sa veste pour le dernier pari où cela est possible
 - si on a parié sur $x_{c_n} = \text{faux}$ car on avait déjà vu que $x_{c_n} = \text{vrai}$ était contradictoire, remonter à $x_{c_{n-1}}$
 - (dans une telle situation, on peut imaginer que x_{cn} = faux n'était pas un pari, mais une déduction)
 - annuler l'affectation des variables ayant découlé de ce dernier pari

Pensez avant de programmer

- choix des structures de données
 - qu'est-ce qu'une variable, un littéral, une clause ? (dans votre programme)
 - phase de propagation
 - à quoi veut-on accéder et comment?
 - . toutes les clauses contenant telle variable
 - . le nombre de littéraux "vivants" dans telle clause
 - . le nombre de clauses "vivantes"
 - quelles opérations faut-il être en mesure d'effectuer?
 - l'affectaction courante que faire quand on revient sur l'affectation d'une variable?
- n'utilisez pas une grande fonction récursive: implémentez la récursion à la main (on manipule la pile, on a un meilleur contrôle)
- autre aspect important : programmez modulairement dans un mois, si vous voulez changer une des structures de données, il faudrait que cela ne soit pas une catastrophe (+ interdit de dire "désolé, mais je ne prévois pas de me tromper"!)

Rendu 1 — DPLL

- en entrée: une formule logique
- ► en sortie: non/oui et une affectation des variables
- à l'intérieur: algorithme DPLL "simple"
 - structure modulaire, ouvrant la voie à des raffinements successifs

un fichier pour la boucle principale

- structures de données pour
 - la représentation des variables, littéraux, clauses
 une variable peut avoir trois états: inconnu, vrai, faux
 - l'état courant de la recherche
- efficacité raisonnable
 - typiquement, 80-90 % du temps passé dans la propagation des informations
 - pouvoir au moins soupçonner les sources majeures d'inefficacité
- traitement de l'entrée
 - déductions diverses (p.ex. détecter les $x \vee \overline{x}$)
 - éventuellement, tri des variables
 - éventuellement, collecte d'informations sur les clauses

Recommandations

- minisat est installé sur les machines des salles libre-service
 - l'exécution de référence
- faites des tests en nombre raisonnable
 - un sous-répertoire avec des fichiers de tests que vous écrivez/engendrez
- implémentez ce qui vous est demandé
- insistons: importance de la ponctualitté des rendus!
 - les rendus sont incrémentaux, mais ce n'est pas uniquement le résultat en fin de semestre qui compte

Soyons alphabétisés

Lisez les sujets de rendu.

À titre d'information: rendus n+1

- variations sur la manière dont on choisit le prochain pari
 - sur quelle variable miser, avec quelle valeur
- une technique astucieuse pour la propagation des unités
- calculer des choses astucieuses sur l'état courant de l'exploration
- extension, en cours de route, de l'ensemble des clauses
- backtrack astucieux (plus en amont que le dernier pas)
- ▶ on décidera de repartir à zéro après K conflits
- on tirera d'emblée au hasard une affectation pour toutes les variables, pour ensuite touiller de ci de là jusqu'à satisfaire la formule

ne vous effrayez pas: vous pouvez dans un premier temps faire "quelque chose qui marche", quitte à devoir reprendre une partie de la structure par la suite

Formules quelconques, lois de de Morgan

 la procédure DPLL s'applique à des formules en forme normale conjonctive (CNF)

$$\left(x_1 \,\vee\, \overline{x_3} \,\vee\, \overline{x_4}\right) \;\wedge\; \left(x_1 \,\vee\, x_4 \,\vee\, x_5\right) \;\wedge\; \left(\overline{x_2} \,\vee\, \overline{x_3}\right.$$

• on veut prendre en entrée une formule logique plus complexe $(\neg p \land (q \Rightarrow r)) \Rightarrow (q \lor \neg p)$

Lois de de Morgan:

$$[(p \land q) \lor r] = (p \lor r) \land (q \lor r) \qquad [\neg(p \land q)] = \neg p \lor \neg q$$
$$[\neg(p \lor q)] = \neg p \land \neg q \qquad [p \Rightarrow q] = \neg p \lor q \qquad [\neg \neg p] = p$$

- on obtient une formule en CNF en itérant ces lois. . .
- ... mais la distributivité fait exploser la taille inévitable si on veut préserver le sens de la formule
- or il suffit de préserver la satisfiabilitté et on veut aussi pouvoir engendrer, le cas échéant, un contre-exemple de la formule de départ

Transformation de Tseitin, définition

- pour chaque sous-formule p de la formule de départ, on introduit une nouvelle variable ξ_p
- on y va inductivement, pour associer à chaque sous-formule p une formule [p], directement en forme normale conjonctive:

$$[p = p_1 \lor p_2] = (\neg \xi_p \lor \xi_{p_1} \lor \xi_{p_2}) \land (\xi_p \lor \neg \xi_{p_1}) \land (\xi_p \lor \neg \xi_{p_2})$$

$$[p = p_1 \wedge p_2] = (\neg \xi_p \vee \xi_{p_1}) \wedge (\neg \xi_p \vee \xi_{p_2}) \wedge (\xi_p \vee \neg \xi_{p_1} \vee \neg \xi_{p_2})$$

$$[p = \neg p_1] = (\neg \xi_p \vee \neg \xi_{p_1}) \wedge (\xi_p \vee \xi_{p_1})$$

$$[p = x] = (\neg \xi_p \lor x) \land (\xi_p \lor \neg x)$$

ainsi, par exemple, lorsque $p=p_1\vee p_2,\ [p]$ exprime que p est satisfaite si et seulement si $p_1\vee p_2$ l'est

▶ une formule *p* est transformée en la conjonction

$$\xi_p \wedge \bigwedge_{p' \text{ sous-formule de } p} [p']$$

le ξ_p impose que la formule initiale (à la racine) soit satisfaite

Tseitin, propriétés

on se donne une formule p, on en calcule la transformée de Tseitin, notée (par abus) [p]

- ightharpoonup [p] se calcule en temps **linéaire** par rapport à la taille de p
- ▶ p et [p] sont équi-satisfiables
 - toute valuation qui satisfait [p] satisfait p (et satisfait toujours p en modifiant la valeur de variables ne se trouvant pas dans p)
 - une valuation qui satisfait p peut être étendue en une valuation qui satisfait [p]
- (on peut optimiser la représentation en mémoire en partageant des sous-expressions)

Retour au rendu 1

- deux versions de votre solveur
 - le solveur SAT "brut" qui mange des formules en CNF
 - le "solveur convivial" qui mange des formules quelconques
- 2 applique Tseitin pour s'appuyer sur 1
 cela rappelle (une partie de) la structure d'un compilateur

Très rapidement,

quelques éléments de compilation

analyses lexicale et syntaxique: fabriquer des arbres

Intepréter / compiler

- interprète: implémentation de la sémantique opérationnelle exécuter le programme
- ► compilateur: traduction traduire (en préservant le sens) (p.ex. IMPV assembleur)

interprètes et compilateurs sont des programmes manipulant des programmes

Un compilateur

- traducteur de code à code (de fichier source à fichier objet)
- ▶ anatomie sommaire $\boxed{1} \rightarrow \boxed{2} \rightarrow \boxed{3}$
 - 1. front end

```
du fichier de texte à une représentation arborescente "let x = 3 in (f x)+2" ou plutôt ['1';'e';'t';' ';'x';' ';'=';' ';'3';' ';'i';'n';' ';'';'(';'f';' ';'x';')';'+';'2';'\n']
```

```
Let(Var "x", Cst 3, Add(App(Var "f", Var "x"), Cst 2))

2. des tas de transformations (représentations intermédiaires)
```

3. back end

génération de code: d'une représentation arborescente à un fichier de texte

"tout" est dans l'étape 2: analyses, transformations, réécritures, algorithmique, optimisations, . . .

Les deux étapes dans le front end

 analyse lexicale flot de caractères (source) | → | flot de *lexèmes* | lexème (token): "atome" du langage typiquement: mots-clefs (let, begin, while,...) symboles réservés ((, +, ;;, ;,...) identificateurs (f, toto, ...) ainsi 32*52+(1et x = 5 in x*x)→ INT(32), MULT, INT(52), ADD, LPAREN, LET, ID("x"), EGAL, INT(5), IN, ID("x"), MULT, ID("x"), RPAREN (INT et ID ont un attribut, entier et chaîne de caractères respectivement) analyse syntaxique flot de lexèmes arbre de syntaxe abstraite \rightarrow Add(Mult(Int(32), Int(52)), Let("x", Int(5), Mult(Var("x"), Var("x"))))

étape intermédiaire: arbre d'analyse syntaxique (parse tree)

Analyse lexicale

- chaque lexème est décrit par une expression régulière
- principaux éléments (syntaxe de ocamllex):
 - caractère '\$', chaîne de caractères "else"
 - intervalle ['0'-'9'] (un chiffre)
 - disjonction (de caractères)

```
['\t' ' '] (tabulation ou espace)
```

- répétitions: + signifie au moins 1, * zéro ou plus ['a'-'z']+['a'-'z' '0'-'9']* (ça commence par une lettre puis des lettres ou des chiffres)
- disjonction a* | b*
- en sortie de l'analyse lexicale: des mots

Expression régulière ↔ automate non déterministe

Déterminisation, minimisation

 à partir de l'automate du transparent précédent, on dispose de procédures pour déterminiser l'automate (explosion du nombre d'états), puis le minimiser

on aboutit à

comment implémenter l'automate résultant?

١	une table (très creuse)	etat	a	ь	L C	u	e
		e1	-	e2	e3	-	-
		e2	e4	-	-	-	-
		e3	-	-	e3	-	-

• éliminer les états: un plat de spaghetti, fait de if et de goto

Analyse lexicale : au total

on décrit le dictionnaire

```
ensemble d'expressions régulières,
auxquelles on associe un nom ( avec éventuellement un attribut)
un lexème
```

```
| "let" { LET }
| "in" { IN }
| ['0'-'9']+ as s { INT (int_of_string s) }
```

 "magiquement", on obtient un programme qui reconnaît les mots du dictionnaire (et proteste sinon)

Déмо

Analyse syntaxique

- l'analyse syntaxique se fonde sur une approche plus puissante: règles de grammaire
 - les règles de grammaire font intervenir les lexèmes et des "variables" (les non terminaux)
 - exemple de grammaire:

$$E ::= K \mid E + E \mid E * E \mid (E) \mid \text{let } Id = E \text{ in } E$$

- ► E non terminal (il peut y en avoir plusieurs)
- K, let, Id, +, *, (,), in, = lexèmes

présentation alternative:

```
E \ \rightarrow \ K \qquad E \ \rightarrow \ E + E \qquad E \ \rightarrow \ E * E \qquad E \ \rightarrow \ (E) \qquad E \ \rightarrow \ \text{let} \ \mathit{Id} = E \ \text{in} \ + E
```

- ▶ analyse lexicale : du flot de caractères au flot de lexèmes
- analyseur syntaxique (ou parser) : applique les règles de grammaire pour reconnaître une suite de lexèmes
 - on change la structure : un flot (de lexèmes) devient un arbre
 - on construit des *phrases* à partir de *mots*

Reconnaître une séquence de lexèmes

 l'idée est de construire un arbre de dérivation permettant de reconnaître le flot de lexèmes

```
right grammaire : E ::= E + E \mid E * E \mid K K un entier right soit le flot 32, +, 26, *, 2
```

on peut reconnaître de deux manières:

deux arbres différents: ambiguïté

→ aucun moyen en revanche de reconnaître
9 * 1 + + 1

Ce que fait le parser

```
E ::= E + E \mid E * E \mid (E) \mid a \mid b \mid c a+b*c
pile
             entrée action
         a + b * c$ shift
$a
           +b*c$ reduce : E \rightarrow a
$E
          +b*c$ shift
E+ b*c shift
E + b *c$ reduce : E \rightarrow b
E + E *c shift (très malin)
E + E * c shift
$E + E * c $ reduce : E \rightarrow c
E + E * E $ reduce : E \rightarrow E * E
E + E
               $ reduce : E \rightarrow E + E
$E
                     accept
```

à la fin, on a un arbre add(id(a),mul(id(b),id(c)))

Lex & Yacc, Flex & Bison, ...

- ▶ analyse syntaxique : on écrit la grammaire, et on associe à chaque règle une action sémantique (construction de l'arbre)
- DÉMO avec ocamllex ocamlyacc
- remarque : avec yacc, on ôte les ambiguïtés en "bricolant", pas en réécrivant la grammaire (comme en FDI)
- on trouve "partout" les outils pour les analyses lexicale et syntaxique

```
%{
(* --- preambule: ici du code Caml --- *)
open Expr (* rappel: dans expr.ml:
            type expr = Const of int | Add of expr*expr | Mull of expr*expr *)
/* description des lexemes */
%token <int> INT
                    /* le lexeme INT a un attribut entier */
%token PLUS TIMES
%token I PAREN RPAREN
%token FOL
                    /* retour a la ligne */
%left PLUS
%left TIMES
%start main /* "start" signale le point d'entree: c'est ici main */
%type <Expr.expr> main /* on _doit_ donner le type du point d'entree */
%%
    /* — debut des regles de grammaire — */
                          /* a droite . les valeurs associees */
                          /* le point d'entree */
main:
    expr EOL
                           { $1 } /* on yeut reconnaitre un "expr" */
expr: /* regles de grammaire pour les expressions */
   INT
                           { Const $1 }
  | LPAREN expr RPAREN
                           { $2 } /* on recupere le deuxieme element */
  expr PLUS expr
                           { Add($1,$3) }
  expr TIMES expr
                           { Mul($1,$3) }
```

```
#include < stdlib . h>
#include <stdio.h>
#include <iostream>
#include <fstream > //for dag output
#include "ast.h"
using namespace std;
int line_number = 1; /* number of current source line */
extern int yylex(); /* lexical analyzer generated from lex.1 */
extern char *vvtext: /* last token. defined in lex.1
*/
void yyerror(char *s){
fprintf(stderr, "line_%d:_syntax_error._Last_token_was_\"%s\"\n", line_number, yytext);
exit (1);
void error(char *s){
fprintf(stderr, "line_%d:_error:_%s\n", line_number, s);
                                              /* Axiom */
exit (1);
                                              %start expr
                                             %%
 struct expr *parsing_result = NULL;
%}
                                              //ETF (sub-)grammar
//type of non terminals
                                              e_expr:
                                              e_expr TK_PLUS t_expr \{ \$\$ = expr_binop(\$1, \$3, PLUS) ; \}
%union {
  double number:
                                                e_expr TK_MINUS t_expr { \$\$ = \exp_{\text{binop}}(\$1. \$3. \text{MINUS}) :}
  char* id_string;
                                                t_expr
  struct expr *expr;
                                              t_expr:
                                                t_{expr} TK_MUL f_{expr} { $$ = expr_binop($1, $3, MULT);}
//token declaration for minic input
                                                t_expr TK_DIV f_expr { \$\$ = \exp_{\text{binop}}(\$1, \$3, DIV) ; }
%token TK_PLUS TK_MINUS TK_MUL TK_DIV
                                                f_expr
%token TK_NUM TK_VAR
%token TKIPAR TK RPAR
                                              f_expr:
                                              TK_NUM \{ \$\$ = expr_number(\$1): \}
/* Associativity */
                                                TK_VAR \{ \$\$ = expr_var(\$1); \}
%left TK_PLUS TK_MINUS
                                                TK_LPAR e_expr TK_RPAR \{ $$ = $2; \}
%Left TK MUL TK DIV
%type<number> TK_NUM
                                              expr:
%tvpe<id_string > TK_VAR
                                              e_expr { parsing_result = $1: }
%type<expr> e_expr t_expr f_expr
```

%{ // useful functions.

Les deux semaines à venir

- la semaine prochaine
 - TP: analyses lexicale et syntaxique Tseitin

tout le monde commence le projet, seul(e)

- constitution des binômes
 - 1. questionnaire
 - 2. stratification

```
http://perso.ens-lyon.fr/daniel.hirschkoff/P2
```

3. vous m'envoyez un mail

```
"nous sommes X et Y, et nous choisissons le langage Z" contrainte : X et Y distants d'au plus un "niveau" dans la stratification
```

- la semaine suivante
 - démarrage du projet (les binômes sont constitués)
- premier rendu
 - ▶ pour le ????? sans doute le 16 février

Watched literals

(littéraux surveillés)

Watched literals

- une technique permettant d'économiser du temps lors de la propagation des contraintes
 - "Chaff: Engineering an Efficient SAT Solver", Moskewicz, Madigan, Zhao, Zhang, Malik, DAC 2001.
 - questions de droits: technique brévetée ?
- remarque:
 les clauses ont toutes au moins deux littéraux
- propagation lorsque tous les littéraux sauf un sont à faux

Watched literals — principes

- pour chaque clause, on ne regarde que deux littéraux...
 - ...qui ne sont pas à faux (vrai ou inconnu)
 - si c'est impossible, c'est que la clause en question est inactive autrement dit, un littéral est à vrai
- lorsque le littéral α est mis à faux,
 - Pour toutes les clauses C où α est surveillé, on cherche un autre littéral à surveiller
 - $\,\,$ si pas possible, déclenchement de propagation supplémentaire NB: là où α apparaît sans être surveillé, on ne fait rien
 - optionnel: pour toutes les clauses C contenant $\overline{\alpha}$ (surveillé ou non),
 - on se fait la remarque que C est satisfaite
 - si on vient de rendre la clause satisfiable, on installe ᾱ comme littéral surveillé (priorité aux littéraux vrais par rapport aux inconnus)

→ on détermine plus facilement si une clause est satisfaite

Watched literals — commentaires

- alors donc :
 - on ne regarde qu'au plus deux littéraux pour savoir si une clause est satisfaite
 - invariant: tant que la clause n'est pas satisfaite, aucun des deux littéraux n'est à faux
 - ce faisant, on regarde moins de pointeurs
 "α apparaît-il dans C_i?" vs "α est-il surveillé dans C_i?"
- backtrack: on laisse les littéraux surveillés inchangés!

(on ne bouge pas les jumelles)

- les jumelles ne doivent pas revenir à leur position antérieure
- l'état n'est pas nécessairement le même, mais essentiellement équivalent
- remarque: si on surveille (faux,_), alors, par l'invariant, on surveille (faux, vrai), et lors d'un backtrack on passera de faux à ? avant de modifier les littéraux non surveillés de la clause
- particulièrement efficace sur les entrées ayant de longues clauses
- ▶ NB : avec WL, pas de propagation "littéral pur"

La méthode historique **Résolution**

Engendrer une nouvelle clause

supposons que la formule contienne deux clauses de la forme

alors la clause

$$\alpha_1 \vee \dots \vee \alpha_k \vee \beta_1 \vee \dots \vee \beta_n$$

s'appelle le *résolvant* de C_n et C_k

- elle est obtenue en "mariant" C_n et C_k selon x
- elle est conséquence logique (déduite) de $C_n \wedge C_k$
 - elle implique $C_n \wedge C_k$

Résolution — correction, complétude

- la résolution est correcte (le résolvant découle des clauses utilisées)
- la résolution n'est pas complète (il existe des formules conséquences qui ne sont pas construites par la résolution)
- la résolution est complète réfutationnellement : la clause vide est obtenue si et seulement si la formule de départ est insatisfiable
- approche pour SAT :
 appliquer la résolution jusqu'à obtenir la clause vide
 (insatisfiable) ou ne plus pouvoir résoudre (satisfiable)

$\overline{X} \vee Z$	(1)	\overline{X}	(par (1), (3))	(5)
$\overline{y} \vee z$	(2)	\overline{y}	(par (2), (3))	(6)
\overline{Z}	(3)	у	(par (4), (5))	(7)
$x \vee y$	(4)	Ø	$(par\ (6),(7))$	(8)

Algorithme de Davis Putnam (1960)

- on suppose les variables ordonnées $x_1 < \cdots < x_k$
- idée: résoudre le plus possible par rapport à la plus grande variable, puis itérer
- \triangleright k seaux $S_k, S_{k-1}, \ldots, S_1$
- chaque clause C est ajoutée au seau S_i si
 - x_i apparaît dans C
 - ▶ pas de variable $x_{i>i}$ dans C

• on engendre tous les résolvants possibles pour le seau S_k , en les insérant en-dessous dans le bon seau

cas particulier:

pas de résolution, car x_k n'apparaît qu'avec une seule polarité \hookrightarrow on passe directement à S_{k-1}

cas d'arrêt? (insatisfiable, ou solution trouvée)

Étendre la formule traitée par DPLL

- principe : ajouter une clause dérivable pendant l'exécution de l'algorithme
- cette clause dérivable sera construite en s'appuyant sur la résolution

► NB : on travaille avec la propagation unitaire, sans la propagation par polarité unique

Quand ça coince

 focalisons-nous sur un conflit le conflit est détecté sur une clause

$$C = \alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n$$

$$\Leftrightarrow \diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond$$

$$\leftarrow \text{tout le monde est à faux}$$

telle que tous les litéraux α_i sont à faux

cette clause est contradictoire

- → d'où vient la valeur des α_i?
 - de paris faits (paris, ou hypothèses)
 - de conséquences déduites

déduction par clause unitaire : une clause dont tous les litéraux sauf un sont à faux C' $\diamond \diamond \diamond \diamond \diamond \diamond ? \diamond$

ces affectations ont une date : niveau de décision

Déroulement de l'algorithme DPLL

- niveaux de décision
 - ▶ niveau de décision: 0 au départ, +1 à chaque pari
 - niveau de décision d'un littéral déduit :
 niveau de décision courant au moment où la déduction est faite
- backtrack stack

$$|3^{1} - 2^{1} 17^{1}| -5^{2} 4^{2} -1^{2} -7^{2}|3^{3} 10^{3}$$

(chaque littéral est annoté avec son niveau de décision) "tranches de temps"

par exemple :

$$C = \alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n$$

$$\Diamond^5 \Diamond^2 \Diamond^5 \Diamond^1 \Diamond^2 \Diamond^5 \Diamond^3 \Diamond^1$$

transparents de Oliveras et Rodríguez-Carbonell

il y a une petite erreur : au moment de déduire p10, on se sert de la clause 4, or on ne devrait pas car c'est 2, ça n'est pas -2.

Mener l'enquète à partir d'un conflit

on part de la clause où se manifeste le conflit

 $T_0 = C_i$ pour un certain i

 elle contient au moins deux littéraux qui ont été déterminés (découverts faux, de fait) au niveau de décision courant

$$T_0$$
 $\diamond \diamond \diamond \bullet \diamond \bullet \diamond$

(sinon elle aurait engendré un conflit, ou une propagation, plus tôt)

 au moins un littéral de la clause a été <u>déduit</u> faux au niveau de décision courant

$$T_0$$
 $\diamond \diamond \diamond \bullet \diamond \bullet \diamond$

on cherche la **justification** de cette déduction : c'est une clause C_i contenant l'opposé de ce littéral

$$C_j$$
 $\nabla \bullet \nabla \bullet \nabla \bullet \nabla \bullet \nabla$

Engendrer de nouvelles clauses

ightharpoonup on "remonte la causalité" en construisant T_1 à partir de T_0

- il reste au moins un dans T_1 , la clause résultante
 - : littéral ayant été fixé à faux dans le niveau de décision courant <u>NB:</u> il peut n'en rester qu'un, par idempotence $(\alpha_t \vee \alpha_t \leftrightarrow \alpha_t)$
- T₁ est déduite à partir de T₀ = C_i et C_j, donc T₁ est une conséquence du problème courant
- ► T_1 est contradictoire, car T_0 l'est et seul $\overline{\bullet}$ est à "vrai" dans C_i
- ▶ si T_1 a au moins deux •, on itère, en construisant T_2 , T_3 , ...
 - invariants:
 - ▶ il y a au moins un •
 - T_i conséquence du problème courant
 - ► T_i contradictoire
 - on s'arrete lorsqu'il ne reste qu'un
 - ça termine : intuitivement, on ne peut pas boucler car on "remonte dans le temps"

Visualiser les justifications : Graphe des conflits

- praphe orienté, dont les nœuds sont étiquetés par des littéraux
- ▶ si lors de la propagation, on utilise la clause

$$C = \alpha_1 \vee \cdots \vee \alpha_k \vee \beta$$

pour déduire, à partir de $\overline{\alpha}_1, \ldots, \overline{\alpha}_k$, que β est vrai, on insère les nœuds $\overline{\alpha}_1, \ldots, \overline{\alpha}_k$, et, pour chaque $\overline{\alpha}_i$, un arc (orienté) $\overline{\alpha}_i \rightharpoonup \beta$

- ullet le conflit est représenté par un noeud supplémentaire ot
 - \bot est fils des nœuds intervenant dans le conflit (variante: on a deux nœuds α et $\overline{\alpha}$ ayant \bot comme fils)

transparents de Oliveras et Rodríguez-Carbonell

(p.11)

Circonscrire le conflit

- remonter les causes du conflit nous conduit à mettre en évidence un ensemble N de nœuds
 - ▶ qui contient ⊥
 - qui ne contient que des littéraux dont la valeur a été déduite au niveau de décision courant
- ▶ la phase de "remontée" $(T_i \leadsto T_{i+1})$ s'arrête lorsque l'on trouve un UIP (Unique Implication Point):
 - un seul littéral du niveau courant pointe vers un nœud de N
 - tous les autres littéraux pointant vers N sont de niveau strictement inférieur au niveau courant

transparents de Oliveras et Rodríguez-Carbonell (p.12)

 on rassemble la négation des littéraux desquels part un arc vers un nœud de N, cela donne une clause conséquence

c'est la **clause apprise**

- 1 seul littéral au niveau courant
- . "explication" du conflit

Vers où revenir en arrière ?

- contemplons la clause apprise C_a $\diamond \diamond \bullet \bullet$ un seul littéral, α , au niveau courant
- une telle clause
 - peut être déduite, par résolution, à partir de la formule sur laquelle on travaille
 - est contradictoire dans l'affectation courante tous les littéraux sont à faux
- ullet $\mathcal{C}_{
 m a}$ aurait permis de déterminer plus tôt la valeur de lpha

p.ex., si le niveau courant est 12, avec

$$C_{a} = x_{1}^{7} \vee \overline{x_{4}}^{9} \vee \overline{x_{8}}^{5} \vee \alpha^{12}$$

on voit que la valeur de lpha pouvait être déterminée dès le niveau 9 \hookrightarrow on ajoute \mathcal{C}_a et on revient au niveau 9

backtrack : on revient au niveau (max des niveaux des littéraux différents de α dans C_a)

Backtracker loin, backtracker malin

- ▶ la clause apprise C_a est vue comme un raccourci
 - on aurait pu propager l'information plus tôt
 - et ainsi échouer plus tôt
- on remonte jusqu'à l'endroit où elle aurait pu être utilisée
 - peut-être va-t-on reparcourir le chemin qui nous a mené au conflit courant

mêmes paris, mêmes déductions

- on fait le pari qu'on gagne à ajouter ce raccourci "coupe des branches" dans l'espace des possibles
- l'UIP peut être le littéral sur lequel on a parié au niveau de décision courant

il arrive que l'ajout de clause se ramène à revenir sur le dernier pari

Concrètement, dans votre programme

Il faut équiper les structures de données de l'information nécessaire pour expliciter les causes.

Différence par rapport à DPLL normal:

- on remplace backtrack (chronologique) par analyse de conflit
- au passage, cette version modifiée est correcte et complète, comme DPLL

SMT

Satisfaction Modulo une Théorie

Résoudre des problèmes, au-delà de SAT

on veut pouvoir utiliser DPLL pour étudier la satisfiabilité de problèmes exprimés sous forme de formules comme

- $(f(a,g(b)) = X \Rightarrow g(g(X)) \neq g(Y) \land f(X,Y) = f(Z,X)$
- $(k_2 \leqslant k_5 + 3 \land k_2 > k_1) \Rightarrow (k_5 \leqslant k_7 2 \lor k_7 > k_1 + 1)$

exemple: ordonnancement

- ightharpoonup n tâches, T_i dure d_i minutes
- la tâche i commence à la date s_i, et se termine à f_i (pas de préemption)
- ► T_i et T_j incompatibles si elles ont besoin d'une même ressource non partageable
- ▶ le problème: conjonction de

$$\bigwedge_{i \leq n} f_i = s_i + d_i \quad \max_{i \leq n} f_i < D$$

si T_i et T_i sont incompatibles, alors $(si \geq f_i) \lor (s_i \geq f_i)$

Donner de la structure aux littéraux

vu sous l'angle de SAT :

$$\begin{bmatrix}
\underbrace{(f(a,g(b)) = X}_{\alpha_1} \Rightarrow \underbrace{g(g(X)) \neq g(Y)}_{\alpha_2} \\ \land \underbrace{(k_2 \leqslant k_5 + 3)}_{\alpha_1} \land \underbrace{k_2 > k_1}_{\alpha_2}
\end{bmatrix} \Rightarrow \underbrace{(k_5 \leqslant k_7 - 2)}_{\alpha_3} \lor \underbrace{k_7 > k_1 + 1}_{\alpha_4}$$

statut des littéraux, granularité :

- pour SAT, les "atomes" sont des littéraux que l'on combine à l'aide des opérateurs logiques usuels
- en SMT, les littéraux proviennent d'une théorie, qui a sa propre notion de littéral

De SAT à SMT, théories

l'objectif est d'exploiter un solveur SAT pour résoudre des problèmes exprimés dans une certaine *théorie* **exemples de théorie** :

- égalité
 - la théorie consiste en un ensemble d'égalités x = y et de diségalités x ≠ y entre atomes on peut travailler avec une relation d'équivalence quelconque
- congruence $f(x_1, x_3) = f(x_2, x_3), g(x_3) \neq g(x_1)$ égalité et fonctions non interprétées (\neq plus, succ, etc.)
 - une signature Σ, à partir de laquelle on construit des termes
 - égalités, diségalités
- ▶ différences $k_i \leq k_j + n$ $k_i \in \mathbb{Z}, n \in \mathbb{Z}$
 - inégalités $k_i k_j \leqslant n$

SMT, déclinaisons

- version empressée
 - on traduit un problème vers un problème SAT
 - ► s'apprente à une compilation

on ne traitera pas cela ici

- version paresseuse : on associe DPLL et un solveur pour la théorie
 - hors ligne : DPLL est utilisé comme une boîte noire, à laquelle on passe des formules de la théorie "de façon abstraite"
 - en ligne : on adapte DPLL pour qu'il collabore avec le solveur de la théorie

SMT, hors ligne DPLL $\overset{ca\ va?}{\underset{bool}{\rightleftharpoons}} \mathcal{T}$

- en entrée: une formule logique faisant intervenir des littéraux
 - les littéraux sont les "atomes" de la théorie
 - on n'ajoute pas de littéral en cours de route
 pas de "f(a) = f(b) implique le littéral a = b"
 la théorie est une boîte noire
- on dispose d'un solveur pour la théorie une fonction check(s), qui vérifie qu'un ensemble s de littéraux est satisfiable dans la théorie
- on fait tourner DPLL, en maintenant un ensemble μ de littéraux auxquels on a affecté une valeur ($\mu \leftrightarrow la\ pile$)
 - à chaque fois que l'on fixe la valeur d'un littéral (pari ou déduction de DPLL), on l'ajoute à μ
 - lorsque l'on a trouvé une solution au problème SAT, check (μ)
 - si succès, succès
 - si échec, on ajoute la "négation de μ ", et on relance DPLL du début

ce faisant, on se sert de DPLL pour énumérer les solutions du problème SAT "abstrait"

SMT, en ligne : **DPLL(T)**

- ightharpoonup on a un solveur $\mathcal S$ pour la théorie en question
- comme avant, on fait tourner DPLL, en mettant à jour μ en cas d'échec
 - si l'échec est du côté DPLL, soit backtrack (avec apprentissage de clause), soit échec
 - si l'échec vient du côté de la théorie, ${\cal S}$ fournit un ensemble de littéraux η qui "explique le conflit": backtrack en ajoutant la clause correspondante
- autres aspects
 - incrémentalité l'état de ${\cal S}$ "suit" les évolutions de μ du côté DPLL
 - déductions côté \mathcal{S}

Ce que doit savoir faire un solveur pour une théorie

- S doit être capable de décider si un ensemble de littéraux est satisfiable (S traite des conjonctions de littéraux)
- S doit pouvoir engendrer un modèle lorsqu'il répond "satisfiable"

si possible, aussi:

- incrémentalité / backtrack: S ne doit pas repartir à zéro si on enrichit le modèle ou si on fait un backtrack
- expliquer un conflit: lorsque $\mathcal S$ répond "insatisfiable", il exhibe un ensemble de littéraux qui est la cause du conflit
- déduire pour la théorie: S sait déduire la valeur d'un littéral appartenant à la formule de départ

Changements entre SAT et SMT

- prétraitements
 - ► Tseitin: pour pouvoir utiliser DPLL
 - normalisation des formules en entrée

```
reconnaître \overline{\alpha_i} p.ex. k_7 < k_1 + 1 et k_7 > k_1
```

- état final :
 - la formule booléenne est satisfiable, et
 - la conjonction de littéraux μ est satisfiable pour S
- en SMT, les littéraux ne sont pas nécessairement indépendants: désactiver la propagation des littéraux purs

Changements entre DPLL et DPLL(T)

- conflit: on fait un backtrack, en apprenant une formule qui ne contient que des littéraux appartenant à la formule initiale
 - la justification du conflit construite par ${\mathcal S}$ doit parler de littéraux que DPLL connaît
- détection précoce du conflit toutes les k affectations de littéral par DPLL, vérifier la consistance de l'état M (précoce : k=1) incrémentalitté de $\mathcal S$
- propagation par la théorie
 - on s'appuie sur une propagation par $\mathcal S$: déduire la valeur de littéraux appartenant à la formule initiale
- backtrack dans S (pour suivre le backtrack de DPLL)

Solveurs pour des exemples de théories

- égalité
 - la théorie consiste en un ensemble d'égalités x = y et de diségalités x ≠ y entre atomes on peut travailler avec une relation d'équivalence quelconque
 - maintenir les classes d'équivalence : ensemble union-find, ou ensemble de Tarjan
- congruence $f(x_1, x_3) = f(x_2, x_3), g(x_3) \neq g(x_1)$ égalité et fonctions non interprétées (\neq plus, succ, etc.)
 - une signature Σ , à partir de laquelle on construit des termes
 - égalités, diségalités
 - ▶ idée : on clôt la structure union-find par congruence
- ▶ différences $k_i \leq k_j + n$ $k_i \in \mathbb{Z}, n \in \mathbb{Z}$
 - inégalités $k_i k_j \leqslant n$
 - recherche de cycles dans un graphe orienté algorithme incrémental (online)