In [57]: **import** pandas **as** pd

In [58]: data = pd.read_csv("/home/placement/Desktop/yamuna/Titanic Dataset.csv")

In [59]: data.describe()

Out[59]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [60]: data.head()

Out[60]:

:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
•	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [61]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                  Non-Null Count Dtype
     Column
     -----
                                  ----
     PassengerId 891 non-null
                                  int64
 1
    Survived
                  891 non-null
                                  int64
     Pclass
 2
                  891 non-null
                                  int64
 3
                  891 non-null
                                  obiect
     Name
 4
     Sex
                  891 non-null
                                  object
 5
                  714 non-null
                                  float64
     Age
                  891 non-null
                                  int64
    SibSp
 7
     Parch
                  891 non-null
                                  int64
                  891 non-null
                                  object
    Ticket
                  891 non-null
                                  float64
 9
     Fare
 10
    Cabin
                  204 non-null
                                  object
 11 Embarked
                  889 non-null
                                  object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

In [62]: data

Out[62]:

	Passengerld Survived Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [63]:	data.isna().su	um()			
Out[63]:	PassengerId	0			
	Survived	0			
	Pclass	0			
	Name	0			
	Sex	0			
	Age	177			
	SibSp	0			
	Parch	0			
	Ticket	0			
	Fare	0			
	Cabin	687			
	Embarked	2			
	dtype: int64				

In [64]: data.head(10)

Out[64]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [65]: data["PassengerId"].unique()
Out[65]: array([ 1,
                        2,
                                       5,
                                             6,
                                                       8,
                                                            9,
                                                                10,
                                                                      11,
                                                                           12,
                             3,
                                                  7,
                                                                                13.
                                  4,
                                                           22,
                       15.
                            16,
                                 17,
                                       18,
                                            19,
                                                 20,
                                                      21,
                                                                 23,
                                                                      24,
                                                                           25.
                                                                                26.
                  14,
                                 30,
                                                 33,
                                                      34,
                                                           35,
                  27,
                       28,
                            29,
                                       31,
                                            32,
                                                                 36,
                                                                      37,
                                                                           38,
                                                                                39,
                  40.
                       41,
                            42,
                                 43,
                                       44,
                                            45,
                                                 46,
                                                      47,
                                                           48,
                                                                 49,
                                                                      50,
                                                                           51.
                                                                                52.
                       54,
                            55,
                                 56,
                                            58,
                                                 59,
                                                           61,
                                                                 62,
                  53,
                                       57,
                                                      60,
                                                                      63,
                                                                           64,
                                                                                65,
                                           71,
                                                 72,
                  66,
                       67,
                            68,
                                 69,
                                      70,
                                                      73,
                                                           74,
                                                                75,
                                                                      76,
                                                                           77,
                                                                                78,
                                            84,
                                                           87,
                       80.
                            81,
                                 82,
                                      83,
                                                 85,
                                                      86,
                                                                88,
                                                                      89,
                            94,
                                 95,
                                      96,
                                           97,
                                                 98,
                                                      99, 100, 101, 102, 103, 104,
                  92,
                       93,
                 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
                 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
                 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
                 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
                 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
                 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
                 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
                 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
                 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
                 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
                 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
                 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
                 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
                 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
                 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299
                 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
                 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
                 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
                 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
                 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
                 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
                 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
                 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
                 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
                 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429
                 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
                 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
                 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
                 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
                 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
                 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,
```

```
508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,
521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572,
573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637,
638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650,
651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663,
664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702,
703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780,
781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806,
807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819,
820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832,
833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845,
846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858,
859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871,
872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884,
885, 886, 887, 888, 889, 890, 891])
```

```
In [66]: data["Survived"].unique()
```

Out[66]: array([0, 1])

localhost:8888/notebooks/logistic.ipynb

6/24

```
In [67]: data["Age"].unique()
Out[67]: array([22. , 38. , 26. , 35. , nan, 54. , 2. , 27. , 14. ,
                4. , 58. , 20. , 39. , 55. , 31. , 34.
                                                          , 15.
                         , 40. , 66. , 42. , 21.
                                                   , 18.
                                                          , 3.
                         , 65. , 28.5 , 5. , 11.
                                                    , 45.
                                                           , 17.
               16. , 25. , 0.83, 30. , 33. , 23. , 24.
                                                          , 46.
               71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
               51. , 55.5 , 40.5 , 44. , 1. , 61. , 56. , 50. , 36. ,
               45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
               60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
               70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [68]: data["Parch"].unique()
Out[68]: array([0, 1, 2, 5, 3, 4, 6])
In [69]: data["SibSp"].unique()
Out[69]: array([1, 0, 3, 4, 2, 5, 8])
In [70]: data["Sex"].unique()
Out[70]: array(['male', 'female'], dtype=object)
In [71]: data["Pclass"].unique()
Out[71]: array([3, 1, 2])
```

```
In [72]: data["Ticket"].unique()
Out[72]: array(['A/5 21171', 'PC 17599', 'STON/02, 3101282', '113803', '373450',
                 '330877', '17463', '349909', '347742', '237736', 'PP 9549',
                 '113783', 'A/5. 2151', '347082', '350406', '248706', '382652',
                 '244373', '345763', '2649', '239865', '248698', '330923', '113788',
                 '347077', '2631', '19950', '330959', '349216', 'PC 17601',
                 'PC 17569', '335677', 'C.A. 24579', 'PC 17604', '113789', '2677',
                 'A./5. 2152', '345764', '2651', '7546', '11668', '349253',
                 'SC/Paris 2123', '330958', 'S.C./A.4. 23567', '370371', '14311',
                 '2662', '349237', '3101295', 'A/4. 39886', 'PC 17572', '2926',
                 '113509', '19947', 'C.A. 31026', '2697', 'C.A. 34651', 'CA 2144',
                 '2669'. '113572', '36973', '347088', 'PC 17605', '2661',
                 'C.A. 29395', 'S.P. 3464', '3101281', '315151', 'C.A. 33111',
                 'S.O.C. 14879', '2680', '1601', '348123', '349208', '374746',
                 '248738', '364516', '345767', '345779', '330932', '113059',
                 'SO/C 14885', '3101278', 'W./C. 6608', 'SOTON/OO 392086', '343275',
                 '343276', '347466', 'W.E.P. 5734', 'C.A. 2315', '364500', '374910',
                 'PC 17754', 'PC 17759', '231919', '244367', '349245', '349215',
                 '35281', '7540', '3101276', '349207', '343120', '312991', '349249',
                 '371110', '110465', '2665', '324669', '4136', '2627',
```

```
data["Fare"].unique()
In [731:
                                                              8.05
Out[73]: array([ 7.25
                             71.2833,
                                         7.925 ,
                                                  53.1
                                                                         8.4583.
                                       11.1333,
                                                  30.0708,
                                                             16.7
                  51.8625.
                             21.075 ,
                                                                        26.55
                  31.275 ,
                              7.8542,
                                       16.
                                                  29.125 ,
                                                             13.
                                                                        18.
                   7.225 .
                                         8.0292,
                                                  35.5
                                                             31.3875, 263.
                             26.
                   7.8792,
                              7.8958,
                                       27.7208, 146.5208,
                                                              7.75
                  82.1708,
                             52.
                                         7.2292,
                                                              9.475 ,
                                                  11.2417,
                                                                        21.
                             15.5
                                       21.6792,
                                                             39.6875,
                  41.5792.
                                                  17.8
                                                             80.
                                                                        83.475 ,
                  76.7292,
                             61.9792,
                                       27.75
                                                  46.9
                  27.9
                             15.2458,
                                         8.1583,
                                                   8.6625,
                                                             73.5
                                                                        14.4542,
                  56.4958,
                              7.65
                                        29.
                                                  12.475 ,
                                                              9.
                                                                         9.5
                   7.7875,
                             47.1
                                       15.85
                                                  34.375 ,
                                                             61.175 .
                                                                        20.575 .
                                       23.
                  34.6542,
                             63.3583,
                                                  77.2875,
                                                              8.6542,
                                                                         7.775 ,
                                       14.4583, 247.5208,
                  24.15
                              9.825 ,
                                                              7.1417,
                                                                        22.3583,
                   6.975 ,
                              7.05
                                        14.5
                                                  15.0458,
                                                             26.2833,
                                                                         9.2167,
                                       11.5
                  79.2
                              6.75
                                                  36.75
                                                              7.7958,
                                                                        12.525 ,
                  66.6
                              7.3125,
                                        61.3792,
                                                   7.7333,
                                                             69.55
                                                                        16.1
                             20.525 ,
                                       55.
                                                  25.925 ,
                                                             33.5
                  15.75
                                                                        30.6958,
                                                             39.
                  25.4667,
                             28.7125,
                                         0.
                                                  15.05
                                                                        22.025 ,
                                         6.4958,
                  50.
                              8.4042,
                                                   10.4625,
                                                             18.7875,
                                                                        31.
                             27.
                                                  90.
                                                              9.35
                                                                        13.5
                 113.275 ,
                                        76.2917,
                   7.55
                             26.25
                                       12.275 ,
                                                   7.125 ,
                                                             52.5542,
                                                                        20.2125,
                  86.5
                           512.3292,
                                       79.65
                                               , 153.4625, 135.6333,
                                                                        19.5
                  29.7
                             77.9583,
                                        20.25
                                                  78.85
                                                             91.0792,
                                                                        12.875 ,
                          , 151.55
                                        30.5
                                                  23.25
                                                             12.35
                    8.85
                                                                    , 110.8833,
                 108.9
                             24.
                                        56.9292,
                                                  83.1583, 262.375 ,
                                                                        14.
                                         6.2375,
                                                             28.5
                 164.8667, 134.5
                                                  57.9792,
                                                                     , 133.65
                                        35.
                  15.9
                              9.225 ,
                                                  75.25
                                                             69.3
                                                                        55.4417,
                 211.5
                              4.0125, 227.525 ,
                                                   15.7417,
                                                              7.7292,
                                                                        12.
                             12.65
                                       18.75
                                                             32.5
                                                                         7.875 ,
                 120.
                                                   6.8583,
                  14.4
                             55.9
                                         8.1125,
                                                  81.8583,
                                                             19.2583,
                                                                        19.9667,
                  89.1042,
                             38.5
                                         7.725 ,
                                                  13.7917,
                                                              9.8375,
                                                                         7.0458,
                             12.2875,
                                         9.5875,
                   7.5208,
                                                   49.5042,
                                                             78.2667,
                                                                        15.1
                             22.525 ,
                   7.6292,
                                       26.2875,
                                                   59.4
                                                              7.4958,
                                                                        34.0208,
                  93.5
                          , 221.7792, 106.425 ,
                                                  49.5
                                                             71.
                                                                        13.8625,
                   7.8292.
                             39.6
                                                  51.4792.
                                                             26.3875,
                                        17.4
                                                                        30.
                  40.125 ,
                              8.7125,
                                       15.
                                                  33.
                                                             42.4
                                                                        15.55
                             32.3208,
                                         7.0542,
                                                   8.4333,
                                                             25.5875,
                                                                         9.8417,
                  65.
                             10.1708, 211.3375,
                                                  57.
                                                             13.4167.
                   8.1375.
                                                                         7.7417.
                   9.4833,
                             7.7375,
                                        8.3625, 23.45 ,
                                                             25.9292,
                                                                         8.6833,
```

```
8.5167, 7.8875, 37.0042, 6.45, 6.95, 8.3, 6.4375, 39.4, 14.1083, 13.8583, 50.4958, 5., 9.8458, 10.5167])
```

```
In [74]: data1 = data.drop(['PassengerId','Name','Ticket','Parch','Cabin','SibSp'],axis=1)
```

In [75]: data1

Out[75]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [76]: list(data1)
Out[76]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']
In [77]: data1['Sex']=data1['Sex'].map({'male':1,'female':0})
data1['Pclass'].unique()
Out[77]: array([3, 1, 2])
```

In [78]: data1

Out[78]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [95]: data2=data1.fillna(data1.median)

In [96]: data2

Out[96]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	$<\!\!\!\text{bound method NDFrame}._\text{add_numeric_operations}$	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[97]: <Axes: >


```
In [98]: plt.hist(data1['Age'])
Out[98]: (array([ 54., 46., 177., 169., 118., 70., 45., 24., 9., 2.]),
          array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126,
                64.084, 72.042, 80. ]),
          <BarContainer object of 10 artists>)
          175
          150
          125
          100
           75
           50
           25
                             20
                                          40
                                                50
                                                             70
                      10
                                   30
                                                       60
                                                                    80
```



```
In [100]: data2.isna().sum()
Out[100]: Survived
                           0
            Pclass
                           0
            Sex
                           0
            Age
                           0
            Fare
            Embarked
            dtype: int64
In [110]: data1.fillna(35,inplace=True)
In [111]: data1.describe()
Out[111]:
                     Survived
                                  Pclass
                                               Sex
                                                          Age
                                                                     Fare
                   891.000000
                              891.000000
                                         891.000000
                                                    891.000000
                                                               891.000000
             count
                      0.383838
                                2.308642
                                           0.647587
                                                     30.752155
                                                                32.204208
             mean
                     0.486592
                                0.836071
                                                     13.173100
               std
                                           0.477990
                                                                49.693429
                                1.000000
                                                      0.420000
               min
                      0.000000
                                           0.000000
                                                                 0.000000
              25%
                      0.000000
                                2.000000
                                           0.000000
                                                     22.000000
                                                                 7.910400
              50%
                     0.000000
                                3.000000
                                           1.000000
                                                     32.000000
                                                                14.454200
```

31.000000

512.329200

35.000000

80.000000

1.000000

1.000000

75%

max

1.000000

1.000000

3.000000

3.000000

```
In [112]: data1['Age'].unique()
Out[112]: array([22. , 38. , 26.
                                  , 35.
                                         , 54. , 2. , 27.
                                                              , 14.
                                  , 55.
                            , 39.
                                          , 31.
                                                , 34.
                                                        , 15.
                 58. . 20.
                            , 66. , 42.
                                          , 21.
                                                , 18.
                                                        , 3.
                                                              , 7.
                            , 28.5 , 5.
                                          , 11.
                                                 , 45.
                                                        , 17.
                 25. , 0.83, 30. , 33. , 23.
                                                        , 46.
                                                 , 24.
                                                       , 9.
                 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                               , 36.5
                 55.5 , 40.5 , 44. , 1. , 61. , 56.
                                                       , 50. , 36.
                 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43.
                 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80.
                 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [113]: data1.groupby(['Age']).count()
Out[113]:
                Survived Pclass Sex Fare Embarked
           Age
                     1
                          1
                              1
                                   1
                                           1
           0.42
           0.67
                          1
                                           1
           0.75
                                           2
                               2
           0.83
           0.92
                          1
                              1
                                           1
                           2
                               2
           70.00
                                   2
           70.50
                              1
                                           1
                          2
                              2
           71.00
                                   2
                                           2
           74.00
                                           1
           80.00
                     1
                          1
                              1
                                  1
                                           1
          88 rows × 5 columns
In [115]: data1['Pclass']=data1['Pclass'].map({1:'F',2:'S',3:'Third'})
```

```
In [116]: data1.isna().sum()
Out[116]: Survived
                        0
           Pclass
                        0
           Sex
                        0
           Age
           Fare
           Embarked
           dtype: int64
In [117]: data1.head(5)
Out[117]:
              Survived Pclass Sex Age
                                        Fare Embarked
            0
                        Third
                               1 22.0
                                       7.2500
                                                    S
                    0
                               0 38.0 71.2833
                                                    С
            2
                        Third
                               0 26.0
                                       7.9250
                                                    S
                                 35.0
                                      53.1000
            3
                    1
                                                    S
                       Third
                               1 35.0 8.0500
                                                    S
In [118]: data1=pd.get_dummies(data1)
In [120]: data1.shape
```

Out[120]: (891, 11)

In [121]: data1.head(500)from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)

Out[121]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
									•••		
495	0	1	35.0	14.4583	0	0	1	0	1	0	0
496	1	0	54.0	78.2667	1	0	0	0	1	0	0
497	0	1	35.0	15.1000	0	0	1	0	0	0	1
498	0	0	25.0	151.5500	1	0	0	0	0	0	1
499	0	1	24.0	7.7958	0	0	1	0	0	0	1

500 rows × 11 columns

In [122]: cor_mat=datal.corr()
 cor_mat

Out[122]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked
Survived	1.000000	-0.543351	-0.083713	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.1556
Sex	-0.543351	1.000000	0.091930	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.1257
Age	-0.083713	0.091930	1.000000	0.074199	0.302149	-0.022021	-0.242412	0.069343	0.036953	0.040528	-0.0650
Fare	0.257307	-0.182333	0.074199	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.1666
Pclass_F	0.285904	-0.098013	0.302149	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.1703
Pclass_S	0.093349	-0.064746	-0.022021	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.1920
Pclass_Third	-0.322308	0.137143	-0.242412	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.0095
Embarked_35	0.060095	-0.064296	0.069343	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.0765
Embarked_C	0.168240	-0.082853	0.036953	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.7783
Embarked_Q	0.003650	-0.074115	0.040528	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.4966
Embarked_S	-0.155660	0.125722	-0.065062	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.0000


```
In [127]: data.groupby('Survived').count()
Out[127]:
                    Passengerld Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
            Survived
                 0
                           549
                                 549
                                       549 549 424
                                                      549
                                                            549
                                                                  549
                                                                       549
                                                                              68
                                                                                       549
                 1
                           342
                                 342
                                       342 342
                                                290
                                                      342
                                                            342
                                                                  342
                                                                       342
                                                                             136
                                                                                       340
In [128]: y=data1['Survived']
           x=data1.drop('Survived',axis=1)
In [130]: from sklearn.model selection import train test split
           x train,x test,y train,y test = train test split(x,y,test size=0.33,random state=42)
In [134]: import warnings
           warnings.filterwarnings("ignore")
           from sklearn.linear model import LogisticRegression
           classifier= LogisticRegression()
           classifier.fit(x train,y train)
Out[134]: LogisticRegression()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [135]: y pred=classifier.predict(x test)
```

Out[141]: 0.8067796610169492

```
In [138]: y pred
Out[138]: array([0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0])
In [139]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,y pred)
Out[139]: array([[155, 20],
                [ 37, 83]])
In [141]: from sklearn.metrics import accuracy score
         accuracy score(y test, y pred)
```

```
In [142]: y
Out[142]: 0
                 0
          2
                0
          886
          887
                 1
          888
                 0
          889
                 1
          890
                 0
          Name: Survived, Length: 891, dtype: int64
 In [ ]:
```