习题一

一、单项选择题(本大题共10小题,每题只有一个正确答案,答对一题得2分,

1.设行列式
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
=m, $\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix}$ =n,则行列式 $\begin{vmatrix} a_{11} & a_{12} + a_{13} \\ a_{21} & a_{22} + a_{23} \end{vmatrix}$ 等于【 】

A. m+n

B. -(m+n) C. n-m D. m-n

2.设矩阵
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 4 \end{pmatrix}$$
, $A^* \in A$ 的伴随矩阵,则 A^* 中位于(1, 2)的元素是【 】

3.设 A 是方阵,如有矩阵关系式 AB=AC,则必有【 】

A. A=0 B. $B \neq C$ $\forall A=0$ C. $A \neq 0$ $\forall B=C$ D. $|A| \neq 0$ $\forall B=C$

4.已知 3×4 矩阵 **A** 的行向量组线性无关,则秩(\mathbf{A}^{T})等于【 】

B. 2 C. 3 D. 4

5.设矩阵 **A** 的秩为 **r**,则 **A** 中【 】

A. 所有 r-1 阶子式都不为 0 B. 所有 r-1 阶子式全为 0

C. 至少有一个 r 阶子式不等于 0

D. 所有 r 阶子式都不为 0

6.设 Ax=b 是一非齐次线性方程组, η_1 , η_2 是其任意 2 个解,则下列结论错误的是【 1

A. $\eta_1 + \eta_2 \not\in Ax = 0$ 的一个解 B. $\frac{1}{2} \eta_1 + \frac{1}{2} \eta_2 \not\in Ax = b$ 的一个解

C. $\eta_{1} - \eta_{2} = Ax = 0$ 的一个解 D. $2 \eta_{1} - \eta_{2} = Ax = b$ 的一个解

7.设 n 阶方阵 A 不可逆,则必有【】

A. 秩(A)<n B. 秩(A)=n-1 C. A=0 D. 方程组 Ax=0 只有零解

8. 设 $A \neq n$ 阶方阵,则 A 能与 n 阶对角阵相似的充要条件是【

A. A 是对角阵

B. A 有 n 个互不相同的特征向量

C. A有n个线性无关的特征向量 D. A有n个互不相同的特征值

9.设 A 是正交矩阵,则下列结论错误的是【 】

A. $|\mathbf{A}|^2$ 必为 1 B. $|\mathbf{A}|$ 必为 1 C. $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$ D. A 的行(列)向量组是正交单位向量组 10.设 **A** 是实对称矩阵,**C** 是实可逆矩阵, $\mathbf{B} = \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C}$.则【

A. A 与 B 相似 B. A 与 B 不等价 C. A 与 B 有相同的特征值 D. A 与 B 合同

二、填空题(本大题共 10 小题, 每题 3 分, 共 30 分。)

11. 行列式
$$D = \begin{vmatrix} k & 2 & 0 \\ 1 & k+1 & 0 \\ 2 & 0 & 2 \end{vmatrix}$$
 中, $k =$ _____时, $D = 0$ 。
12.设矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$,则 A^{-1} 等于_____。

13.设 $\mathbf{A} = (a_{ij})_{3\times 3}$, $|\mathbf{A}| = 2$, \mathbf{A}_{ij} 表示 $|\mathbf{A}|$ 中元素 a_{ij} 的代数余子式(i,j = 1,2,3),则

 $(a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23})^2 + (a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23})^2 + (a_{31}A_{21} + a_{32}A_{22} + a_{33}A_{23})^2 = \underline{\hspace{2cm}} \circ$

14. 若向量组 α_1 , α_2 , α_3 与向量组 β_1 , β_2 , β_3 等价, 其中 β_1 = $(1,0,0,0)^{\mathsf{T}}$, β_2 = $(0,1,0,0)^{\mathsf{T}}$,

 $β_3$ =(1, 1, 0, 0)^T,则向量组α₁, α₂, α₃的秩为_____。

15.设向量(2, -3, 5)与向量(-4, 6, a)线性相关,则 a=____。

16.设 **A** 是 3×4 矩阵, 其秩为 3, 若 \mathbf{n}_1 , \mathbf{n}_2 为 **Ax=b** 的 2 个不同的解,则它的通解为_____。

17.设 \mathbf{A} 是 $\mathbf{m} \times \mathbf{n}$ 矩阵, \mathbf{A} 的秩为 $\mathbf{r}(<\mathbf{n})$,则 $\mathbf{A}\mathbf{x}=\mathbf{0}$ 的一个基础解系中含有解的个数为_____。

18.设向量 α 、 β 都是单位向量,则向量 $\alpha+\beta$ 与 $\alpha-\beta$ 的内积($\alpha+\beta$, $\alpha-\beta$)=_____。

19.设 3 阶矩阵 A 的行列式|A|=8,已知 A 有 2 个特征值-1 和 4,则另一特征值为。

20.设矩阵
$$A = \begin{pmatrix} 0 & 10 & 6 \\ 1 & -3 & -3 \\ -2 & 10 & 8 \end{pmatrix}$$
,已知 $\alpha = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ 是它的一个特征向量,则 α 所对应的特征值

为____。

三、计算题(本大题共 4 小题, 共 42 分)

21.设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$
, 求 $\left(\mathbf{A}^*\right)^{-1}$ 。(8分)

22.设矩阵
$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
,求矩阵 \mathbf{B} 使其满足矩阵方程 $\mathbf{A}\mathbf{B} = \mathbf{A} + 2\mathbf{B}$ 。(8分)

23.求 方程组
$$\begin{cases} x_1 + x_3 = -3 \\ 2x_1 - x_2 + 4x_3 = -4 \end{cases}$$
的通解。(12分)
$$x_1 - x_2 + 3x_3 = -1$$

24.设实二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$,求正交变换 X=PY 化该二次型为标准形。(14 分)

四、证明题:

- 25. 设 η_0 是非齐次线性方程组 **Ax=b** 的一个特解, ξ_1 , ξ_2 是其导出组 **Ax=0** 的一个基础解系.试证明: η_0 , η_0 + ξ_1 , η_0 + ξ_2 线性无关。(8分)
- 26. 已知 A 为 $m \times n$ 实矩阵,证明: $A^T A$ 是正定矩阵的充分必要条件为 秩 $(A) = n \cdot (8 \text{ } f)$

习题二

一、单项选择题(本大题共 10 小题,每题只有一个正确答案,答对一题得 2 分,共 20 分)

1. 设 A 是 4 阶矩阵,则 -A =【	1.	设 A 是 4	. 阶矩阵,	则 − A =		ı
------------------------	----	---------	--------	-----------------	--	---

A. -4|A| B. -|A| C. |A| D. 4|A|

2. 设 A 为 n 阶可逆矩阵,下列运算中正确的是【】

A. $(2A)^{T}=2A^{T}$ B. $(3A)^{-1}=3A^{-1}$ C. $[(A^{T})^{T}]^{-1}=[(A^{-1})^{-1}]^{T}$ D. $(A^{T})^{-1}=A$

3. 设 2 阶方阵 A 可逆,且 $A^{-1} = \begin{pmatrix} -3 & 7 \\ 1 & -2 \end{pmatrix}$,则 $A = \mathbf{C}$

A. $\begin{pmatrix} -2 & 7 \\ 1 & -3 \end{pmatrix}$ B. $\begin{pmatrix} 2 & 7 \\ 1 & 3 \end{pmatrix}$ C. $\begin{pmatrix} 2 & -7 \\ -1 & 3 \end{pmatrix}$ D. $\begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix}$

4. 设向量组 α₁, α₂, α₃线性无关,则下列向量组线性无关的是【

A. α_1 , α_2 , $\alpha_1 + \alpha_2$ B. α_1 , α_2 , $\alpha_1 - \alpha_2$

C. α_{1} - α_{2} , α_{2} - α_{3} , α_{3} - α_{1} D. α_{1} + α_{2} , α_{2} + α_{3} , α_{3} + α_{1}

5. 向量组 α_1 = (1, 0, 0), α_2 = (0, 0, 1), 下列向量中可以由 α_1 , α_2 线性表出的是【 1

A. (2, 0, 0) B. (-3, 2, 4) C. (1, 1, 0) D. (0, -1, 0)

6. 设 A, B 均为 3 阶矩阵, 若 A 可逆, 秩 (B) =2, 那么秩 (AB) = 【 】

A. 0

B. 1 C. 2

7. 设 A 为 n 阶矩阵, 若 A 与 n 阶单位矩阵等价, 那么方程组 Ax=b【

A. 无解

B. 有唯一解 C. 有无穷多解

D. 解的情况不能确定

8. 在 \mathbb{R}^3 中,与向量 α_1 = (1, 1, 1), α_2 = (1, 2, 1)都正交的单位向量是【

A. (-1, 0, 1) B. $\frac{1}{\sqrt{2}}$ (-1, 0, 1) C. (1, 0, -1) D. $\frac{1}{\sqrt{2}}$ (1, 0, 1)

9. 下列矩阵中,为正定矩阵的是【

 $A. \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix} \qquad B. \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad C. \quad \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D. \quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

10. 已知 A 是 n 阶实对称矩阵, $A^2=A$,秩(A)=n,则 x^TAx 是【

A. 正定二次型 B. 负定二次型 C. 既不正定也不负定 D. 无法判断

二、填空题(本大题共10小题, 每题3分,共30分。)

12. 设行矩阵
$$A=(a_1\,a_2\,a_3)$$
 , $B=(b_1\,b_2\,b_3)$,且 $A^TB=\begin{bmatrix} 1 & 2 & 1 \\ -1 & -2 & -1 \\ 1 & 2 & 1 \end{bmatrix}$,则 $AB^T=$ _______。

- 13. 设 A 为 3 阶方阵,且 $|A| = \frac{1}{2}$,则 $|2A^*| = ______.$
- 14. 当向量组 α ¡=(1, 2, 3), α ₂=(2, 2, 2), α ₃=(3, 0, t) 线性相关时, t=_____。
- 15. 若3元齐次线性方程组 Ax=0 的基础解系含2个解向量,则矩阵 A的秩等于______

16. 矩阵
$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & -1 \\ -3 & 1 & 2 \end{pmatrix}$$
的秩等于_____。

- 17. 设 α_1 , α_2 是非齐次线性方程组 Ax=b 的解,又已知 $k_1\alpha_1+k_2\alpha_2$ 也是 Ax=b 的解,则 $k_1+k_2=$ ___。
- 18. 已知 $P^{-1}AP = \begin{pmatrix} 1 & & \\ & 2 & \\ & & -1 \end{pmatrix}$,其中 $P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$,则矩阵 A 的属于特征值 $\lambda = -1$ 的特征向

量是____。

- 19. 设 A 为 n 阶方阵,已知矩阵 E-A 不可逆,那么矩阵 A 必有一个特征值为_____。
- 20. 实对称矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 3 & 5 \end{pmatrix}$ 所对应的二次型 $\mathbf{x}^T A \mathbf{x} = \underline{\hspace{1cm}}$ 。
- 三、计算题(本大题共4小题,共计42分)
- 21. 设 $A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix}$,矩阵 B 满足 AB = A + 2B,求 B。(8分)
- 22. 设向量 $\alpha_1 = (1,2,1)^T$ 和 $\alpha_2 = (1,1,2)^T$ 都是方阵 A 的属于特征值 $\lambda = 2$ 的特征向量,又向量 $\beta = \alpha_1 + 2\alpha_2$,求 $A^2\beta$ 。(8 分)
- 23. 给定向量组 $\alpha_1 = (-2,1,0,3)^T$, $\alpha_2 = (1,-3,2,4)^T$, $\alpha_3 = (3,0,2,-1)^T$, $\alpha_4 = (0,-1,4,9)^T$.

试判断 α_4 是否为 α_1 , α_2 , α_3 的线性组合;若是,则求出组合系数。(12分)

24. 设已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
 求正交矩阵 P ,使 $P^{-1}AP$ 为对角矩阵。(14 分)

四、证明题

25. 设 η_0 是非齐次线性方程组 **Ax=b** 的一个特解, ξ_1 , ξ_2 ,…, ξ_r 是其导出组 **Ax=0** 的一个基础解系.

试证明: η_0 , $\eta_{0+}\xi_1$, $\eta_{0+}\xi_2$, …, $\eta_{0+}\xi_1$ 线性无关。(8分)

26. 已知 A 为 $m \times n$ 实矩阵,证明: $A^T A$ 是正定矩阵的充分必要条件为 秩 (A) = n。

习题三:		大题共 10 小题,每	- -小题 2 分	-, 共 20 分。)			
		且 $ A =2$,则 $ -A $		1			
A6		B2		D.	6		
2. 设A	$=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$,贝	JA的伴随矩阵 A*	*= 【	1			
A. $\begin{bmatrix} d \\ -c \end{bmatrix}$	$\begin{bmatrix} -b \\ a \end{bmatrix}$ B.	$\begin{bmatrix} -d & c \\ b & -a \end{bmatrix}$	C. $\begin{bmatrix} -d \\ c \end{bmatrix}$	$\begin{bmatrix} b \\ -a \end{bmatrix}$ D.	$\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$		
	n 阶方阵,且 吉论中错误的是	A 的第一行可由基	其余 n-1 个	行向量线性表	長示,		
A. r(A)	≤n-1		B. A有	了一个列向量可	可由其余列	列向量线性表示	;
C. A =	0		D. A f	的 n-1 阶余子云	代全为零		
4. 设A	. 为 n 阶方阵,	AB=0, 且 B≠0,	则【]			
A. A 的	的列向量组线性	三无关	B. A=0)			
C. A的	J列向量组线性	相关	D. A fr	的行向量组线性	生无关		
5. 设α	1、 α 2 是非齐	次线性方程组 Ax=	=b 的解,	β是对应齐次	欠线性方程	呈组 Ax=0 的解	,则
Ax=b 必	有一个解是【	1					
A. α_1	$+\alpha_2$ B. α_1	$-\alpha_2$ C. β +	$-\alpha_1 + \alpha_2$	$\mathbf{D.} \beta + \frac{1}{3} \mathbf{c}$	$\alpha_1 + \frac{2}{3}\alpha_2$		
6. 设齐	次线性方程组	Ax=0 的基础解系	含有一个	解向量,当A	是3阶方	方阵时,【	1
A. r(A)	=0	B. $r(A)=1$	C. r(A)	=2	D. r(A	A)=3	
7. 设A	与B等价,则	U C J					
A. A =	БВ 合同	B. A 与 B 相似	C. A =	Bl	D. r(A	(A)=r(B)	
8. 已知	A 相似于∧=	$\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}, A =$	[]				
A2	E	31	C. 0		D. 2		
9. 设λ	₀ 是可逆阵 A F	的一个特征值,则	A ⁻² 必有-	一个特征值是	[]		
A. $\frac{\lambda_0}{2}$	F	3. $\frac{1}{2\lambda_0}$	C. $\frac{1}{\lambda_0^2}$	D.	$\frac{2}{\lambda_0}$		

10. 设 3 阶实对称矩阵 A 的特征值分别为 1, 0, -1, 则【 】

二、填空题(本大题共 10 小题, 每小题 2 分, 共 20 分。)

A. |A|≠0 B. |A|=0 C. A 负定 D. A 正定

1. 按自然数从小到大为标准次序,则排列 54123 的逆序数=____。

2.
$$\begin{pmatrix} 3 & -2 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}$$
 $\begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & 0 \end{pmatrix}$ = ________ 3. 设 $A = \begin{pmatrix} 1 & -4 \\ 0 & 3 \end{pmatrix}$,则 $A^{-1} =$ _______

- 4. 设 α_1 = (1, 2, 4), α_2 =(-1, -2, y) 且 α_1 与 α_2 线性相关,则 y=____。
- 5. 若向量组 α_1 , α_2 , …, α_s 线性无关,且可由向量组 β_1 , β_2 , …, β_t 线性表出,则 s _____t。 (填 \geq 或 \leq)
- 6. 若 A 是秩为 1 的三阶方阵, η_1,η_2,η_3 是 Ax=b 的解,且 $\eta_1-\eta_2$ 与 $\eta_2-\eta_3$ 无关,

则 Ax=b 的通解可表示为 x=____。

7. 已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则 $x = \underline{\qquad}$ 。

- 8. 若向量 $\alpha = (1, -2, 1)$ 与 $\beta = (2, 3, t)$ 正交,则 $t = ______$ 。
- 9. 已知三阶实对称矩阵A有三个特征值 2, 1, -2, $B=A^2+2E$,则B的特征值是。
- 10. 二次型 $f(x_1, x_2, x_3, x_4) = x_1^2 + x_1x_2 + 3x_1x_4 5x_4^2$ 的对称矩阵是_____。

三、计算题 (本大题共50分)

1. 设
$$A = \begin{pmatrix} 0 & 3 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
且 $AB = A + 2B$,求 B 。 (10 分)

2. 讨论 p 取何值时,下列线性方程组无解?有解?并在有解时求其通解。

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = p \end{cases} (14 \%)$$

3. 已知
$$A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$$
的一个特征向量是 $\zeta = (1, 1, -1)^T$,确定 a,b 以及 ζ 的特征值。

(10分)

4. 用正交变换化二次型 $f(x_1, x_2, x_3)=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$ 为标准型,并写出所用的正交变换。(16 分)

四、证明题

- 1. 设向量组 α_1 , α_2 , α_3 线性无关,证明 $\alpha_1+\alpha_2$, $\alpha_1-\alpha_2$, α_3 也线性无关。
- 2. 设 A 与 B 都是 n 阶正定矩阵,证明: A+B 也是正定矩阵。

习题四:

一、	单项选择题	(本大	题共 1	10 小题,	每小题 2	2分,	共 20 %	分。)
	k	-1	2					

1.	二阶行列式	x-1	$2 \\ k-1$	≠0的充分必要条件是【	1
----	-------	-----	------------	-------------	---

A. $k \neq -1$ B. $k \neq 3$ C. $k \neq -1 \perp k \neq 3$ D. $k \neq -1 \neq 3 \neq 3$

2. 设 A 为三阶矩阵, $|A|=a\neq 0$,则其伴随矩阵 A^* 的行列式 $|A^*|=$ 【 1

B. a^2

C. a^3

D. a^4

3. 设 A、B 为同阶可逆矩阵,则以下结论正确的是【

A. |AB|=|BA|

B. |A+B|=|A|+|B|

C. $(AB)^{-1}=A^{-1}B^{-1}$

D. $(A+B)^2 = A^2 + 2AB + B^2$

4. 设 A 可逆,则下列说法错误的是【 1

A. 存在 B 使 AB=E

B. $|A| \neq 0$

C. A 相似于对角阵

D. A的 n 个列向量线性无关

5. 矩阵
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$
的逆矩阵的【 】

A. $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ B. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ D. $\begin{bmatrix} 0 & -1 \\ -1 & -2 \end{bmatrix}$

6. 已知 A 的一个 k 阶子式不等于 0,则秩(A)满足【】.

7. 设 α_1 , α_2 是非齐次方程组 Ax=b 的解, β 是对应的齐次方程组 Ax=0 的解,

则 Ax=b 必有一个解是【

A. $\alpha_1 + \alpha_2$ B. $\alpha_1 - \alpha_2$ C. $\beta + \alpha_1 + \alpha_2$ D. $\beta + \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2$

8. 若
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$$
与 $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似,则 $x = \mathbf{I}$

A. -1

B. 0

C. 1

D. 2

9. 若A相似于
$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
,则 $A - E = \mathbf{I}$

A. -1

B. 0

C. 1

D. 2

10. 设 3 阶实对称矩阵 A 的特征值分别为 1, 0, -1, 则【

A. $|A| \neq 0$

B. |A|=0

C. A 负定

D. A 正定

二、填空题(本大题共 10 小题, 每小题 2 分, 共 20 分。)

- 11. 设 A, B 均为三阶可逆阵, |A|=2, 则|2B⁻¹A²B|=_____。
- 12. 在五阶行列式中, 项a₂₁ a₃₂ a₄₅ a₁₄ a₅₃ 的符号为____。
- 13. 向量空间 $V=\{x=(x_1,x_2,0) \mid x_1,x_2 \text{ 为实数 }\}$ 的维数为_____。

14. 设三阶方阵A等价于
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,则R(A)=_____。

15. 设 α _I=[1, 2, x], α ₂=[-2, -4, 1]线性相关,则 x=____。

16. 矩阵
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 [1 -1 1]的秩为_____。

- 17. 设 λ_0 是可逆阵 A 的一个特征值,则 A^{-2} 必有一个特征值是
- 18. 已知齐次方程组 A_{4x_5} **x** = 0 的基础解系含有 2 个向量,则 A 的秩=______
- 19. 若向量 $\alpha = (1, -2, 1)$ 与 $\beta = (2, 3, t)$ 正交,则 $t = ______$ 。
- 20. 二次型 $f(x_1,x_2,x_3)=x_1^2-2x_1x_2+x_2x_3$ 的矩阵是_____。
- 三、计算题 (本大题共50分)

1. 设
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
, 求 $(A+2E)^{-1}(A^2-4E)$ 。 $(10 分)$

2. 讨论 a 为何值时下列方程组无解? 有无穷解? 并在有解时求其通解.

$$\begin{cases} x_1 + 2x_3 + x_4 = 2 \\ x_1 + x_2 + x_3 + 4x_4 = a \\ x_1 - x_2 + 3x_3 - 2x_4 = 1 \end{cases}$$
 (14 %)

3. 设
$$A = \begin{bmatrix} x & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
 的特征值是 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 4$.

- (1) 求 x 的值; (2) A 是否相似于对角阵, 为什么? (10分)
- 4. 用正交变换化二次型 $f(x_1, x_2, x_3)=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$ 为标准型,

并写出所用的正交变换。(16分)

四、证明题(每题5分,共10分)

- 1. 设向量组 α_1 , α_2 , α_3 线性无关,证明 $\alpha_1+\alpha_2$, $\alpha_1-\alpha_2$, α_3 也线性无关。
- 2. 设 A 与 B 都是 n 阶正定矩阵,证明: A+B 也是正定矩阵。

习题一:

一、单项选择题(本大题共10小题,每小题2分,共20分)

原方程组的一个特解为 $\eta_0 = (-3, -2, 0)^T$,

二、填空题(本大题共10空,每空3分,共30分)

12.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

16.
$$\eta_1+c(\eta_2-\eta_1)$$
 (或 $\eta_2+c(\eta_2-\eta_1)$), c 为任意常数, 或 $c_1\eta_1+c_2\eta_2$, $c_1+c_2=1$

三、计算题(本大题共 4 小题, 共 42 分)

21. 解: 因为 AA*=|A|E=18E------4 分

22. 解: **AB**=**A**+2**B** 即 (**A**-2**E**) **B**=**A**, ------2 分

丽 (**A**-2**E**)
$$^{-1} = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}$$
.------6分

23.
$$\widetilde{\mathbf{H}}: \overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 1 & -3 \\ 2 & -1 & 4 & -4 \\ 1 & -1 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} -----4 \Rightarrow$$

24. 解:该二次型的矩阵为
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
,------3分

它的特征值为 2, 5, 1;	相应的特征向量为	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ - \end{pmatrix}$	1)6分
所以,正交变换 $X=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	V2 V2)		
该二次型的标准形为f=2y	$x_1^2 + 5y_2^2 + y_3^2$	14	分
四、证明题(本大题共 2 小题, 25. 证明:由假设 A η ₀ =b, A 3 (1) A η ₁ =A (η ₀ +ξ ₁ 所以 η ₁ , η ₂ 是 Ax= (2) 考虑 l ₀ η ₀ +l ₁ η ₁ +l ₂ 即(l ₀ +l ₁ +l ₂) η ₀ +l ₁	ξ ₁ = 0 , A ξ ₂ = 0 .) = A η ₀ + A ξ ₁ = b , ξ b 的 2 个解。 ₂ η ₂ = 0 ,	可理 A η ₂ = b ,	
则 $l_0+l_1+l_2=0$,否则 \mathfrak{I}			
所以 l ₁ ξ ₁ +l ₂ ξ ₂ = 0			分
又由假设, ξ ₁ , ξ ₂	线性无关,所以 $l_1=0$, l ₂ =0, 从而 l ₀ =0).
所以 η ₀ , η ₁ , η ₂ 线性 26. 证明:必要性:已知 A ^T A 正 因为秩(A)=秩	定, A ^T A >0,则秩		
			1 A
充分性: 因为秩(A)			4 /)
	_n, 对任息 xek , ; A ^T Ax>0,即二次型 f=		
二次型 f 的矩阵 A^TA 是正知	E的。	4 分	
习题二: 一、单项选择题(本大题共 10	小题,每小题 2 分,	共 20 分)	
1.C 2.A 3.B	4.D	5.A	
6.C 7.B 8.B	9.C	10.A	
二、填空题(本大题共 10 空,	每空 3 分,共 30 分))	
11. 4 12.	0	13. 2	
14 -3 15.		16. 3	
	(1, 1, 2) ^T	19. 1	
20. $x_1^2 + 5x_3^2 + 4x_1x_2 + 6x_2x_3$ 三、计算题(本大题共 4 小题,			
	2 1 - 24 /		

三、计算题(本大题共4小题,共42分)

21. 解:
$$AB = A + 2B$$
 \Rightarrow $(A - 2E)B = A$ ------2 分 令 $C = A - 2E$,则 $|C| = -1$,故 $C = A - 2E$ 可逆

且利用
$$C^{-1} = \frac{1}{|C|}C^*$$
 或初等变换可求得 $C^{-1} = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$ —————6 分

所以 α₄=2 α₁+ α₂+ α₃,组合系数为(2,1,1).-----12 分

解二:考虑 a 4=x1 a 1+x2 a 2+x3 a 3,

$$\text{EU} \quad \begin{cases} -2x_1 + x_2 + 3x_3 = 0 \\ x_1 - 3x_2 = -1 \\ 2x_2 + 2x_3 = 4 \\ 3x_1 + 4x_2 - x_3 = 9. \end{cases}$$

方程组有唯一解(2, 1, 1)^T, -------10 分组合系数为(2, 1, 1). ------12 分

24. 解:
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
 的特征值为 2, 5, 1。------3分

相应的特征向量为
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ 。-----9 分

所以,正交变换
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
 , ------12 分

习题三

一、单项选择题(每题只有一个正确答案,答对一题得2分,共20分)

二、填空题(每题 2 分,共 20 分)

(1) 7 (2)
$$\begin{pmatrix} 6 & 5 & -3 \\ 0 & -1 & 0 \\ 4 & -2 & -2 \end{pmatrix}$$
 (3)
$$\frac{1}{3} \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix}$$
 (4) -4 (5) \leq

$$(6) \ k_1(\eta_1 - \eta_2) + k_2(\eta_2 - \eta_3) \ (7) -1 \ (8) 4 \ (9) 6,3,6 \ (10) \begin{pmatrix} 1 & 1/2 & 0 & 3/2 \\ 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 3/2 & 0 & 0 & -5 \end{pmatrix}$$

三、计算题

1. 解 (1)
$$AB-2B=A \rightarrow (A-2E)B=A \rightarrow B=(A-2E)^{-1}A$$
 (2分)

(2)
$$A-2E = \begin{pmatrix} -2 & 3 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \qquad (A-2E)^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 3 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & -1 \end{pmatrix}$$
 (6 $\%$)

(3)
$$B = (A - 2E)^{-1}A = \begin{pmatrix} 0 & 3 & 3 \\ -1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
 (10 $\%$)

2.解:

$$(1)(A,b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 & -3 & 0 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 5 & 4 & 3 & 3 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -2 & -6 & -3 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 0 & -1 & -2 & -2 & -6 & p-5 \end{pmatrix}$$
(4%)

(3) p=2 时,

Ax=0 的基础解系: $\xi_1 = (1,-2,1,0,0)^T$, $\xi_2 = (1,-2,0,1,0)^T$, $\xi_3 = (1,-6,0,0,1)^T$

原方程的一个特解: $\eta = (2,-3,0,0,0)^T$

线性方程组的通解为
$$x = k_1 \xi_1 + k_2 \xi_2 + k_3 \xi_3 + \eta$$
, k_1 , k_2 , k_3 为常数。 (14 分)

3.解: 设 A 的关于
$$\zeta$$
 的特征值为 λ ,则 A $\zeta = \lambda$ ζ . (3 分)

$$A\zeta = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2+a \\ 1+b \end{pmatrix} = \lambda\zeta = \begin{pmatrix} \lambda \\ \lambda \\ -\lambda \end{pmatrix}, \tag{6 \%}$$

解得
$$\lambda = -1$$
, $a = -3$, $b = 0$. (10 分)

4.
$$M: (1)$$
 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ (2 \Re)

(2)
$$|A-\lambda E|=(2-\lambda)(\lambda-1)(\lambda-5)$$
, A 的特征值为 2, 1, 5。 (5分)

(3) 与 2 对应的特征向量为
$$k(1, 0, 0)^{\mathsf{T}}$$
 (7 分)

与
$$1$$
 对应的特征向量为 $k(0, 1, -1)^{\mathsf{T}}$ (9分)

与 5 对应的特征向量为
$$k(0, 1, 1,)^{T}$$
 k 不等于 0 (11 分)

(4) 正交矩阵
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
, $P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ (14)

分)

(5) 设
$$X = PY$$
,则它是一个正交变换且 $f(x_1, x_2, x_3) = 2y_1^2 + y_2^2 + 5y_3^2$ (16 分)

四. 1.证明:

(1)设
$$k_1, k_2, k_3$$
为常数, $k_1(\alpha_1 + \alpha_2) + k_2(\alpha_1 - \alpha_2) + k_3\alpha_3 = 0$. (2分)

(2) 由
$$\alpha_1, \alpha_2, \alpha_3$$
线性无关和 $(k_1 + k_2)\alpha_1 + (k_1 - k_2)\alpha_2 + k_3\alpha_3 = 0$ 得
$$\begin{cases} k_1 + k_2 = 0 \\ k_1 - k_2 = 0 \end{cases}$$
 (3 分)
$$k_3 = 0$$

即 $k_1=k_2=k_3=0$, $\therefore \alpha_1+\alpha_2, \alpha_1-\alpha_2, \alpha_3$ 线性无关.

2.证明: \cdot A, B 正定, 即 A, B 都为对称阵. $(A+B)^T = A^T + B^T = A + B$, 即 A+B 也是对称阵. (2 分) 任意的 $\mathbf{x} \neq \mathbf{0}$,有 $\mathbf{x}^T A \mathbf{x} > \mathbf{0}$ 和 $\mathbf{x}^T B \mathbf{x} > \mathbf{0}$, 则有 $\mathbf{x}^T (A+B) \mathbf{x} = \mathbf{x}^T A \mathbf{x} + \mathbf{x}^T B \mathbf{x} > \mathbf{0}$. (3 分) \cdot A+B 也是正定矩阵.

习题四:

一、单项选择题(每题只有一个正确答案,答对一题得2分,共20分)

В

- (2)
- A (3)
- (4) C
 - (5) A

- (7)
- (8)
- (9) B
 - (10)

二、填空题(每题 2 分,共 20 分)

- (11) 32 (12) 正号 (3) 2 (14) 2 (15) $-\frac{1}{2}$
- (16) 1 (17) $\frac{1}{\lambda_0^2}$ (18) 3 (19) 4

$$\begin{pmatrix}
1 & -1 & 0 \\
-1 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{pmatrix}$$

三. 计算题 (本大题共 50 分)

1.
$$A+2E=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 (2%) , $(A+2E)^{-1}=\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ (4%) , $A^2=\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -2 & 1 \end{pmatrix}$

$$A^{2}-4E = \begin{pmatrix} -3 & 0 & 0 \\ -2 & -3 & 0 \\ -1 & -2 & -3 \end{pmatrix} (6 \%), \quad (A+2E)^{-1} (A^{2}-4E) = \begin{pmatrix} -3 & 0 & 0 \\ 1 & -3 & 0 \\ 1 & 1 & -3 \end{pmatrix} (10 \%).$$

故 (1) 当 a≠3 时, R(A)=2<R(A,b)=3, 此方程组无解。

- (7分)
- (2) 当 a=3 时, R(A)= R(A,b)=2, 此方程组有无穷多解。
- (10分)

于是取
$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 及 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,则 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ 及 $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$

所求通解为
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = c_1 \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ -3 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
 (14分)

3. 解 由己知条件可得 x+3+3=2+2+4⇒ x=2

(4分)

故
$$A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix}$$
, $A - 2E = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{pmatrix}$, 由 $R(A - 2E) = 2$ (7分)

可知方程组(A-2E)x=0 基础解系只含一个解向量, 即 λ_1 = λ_2 =2 这个特征值只有一个无关的 特 征 向 量 , 故 A 不 能 相 似 与 对 角 矩 阵 。 (10 分)

4.
$$M: (1)$$
 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ (2%)

(2)
$$|A-\lambda E|=(2-\lambda)(\lambda-1)(\lambda-5)$$
, A 的特征值为 2, 1, 5。 (5分)

(3) 与
$$2$$
 对应的特征向量为 k (1, 0, 0) $^{\mathsf{T}}$ (7分)

与
$$1$$
 对应的特征向量为 $k(0, 1, -1)^{\mathsf{T}}$ (9分)

与 5 对应的特征向量为
$$k(0, 1, 1,)^{\mathsf{T}} k$$
 不等于 0 (11 分)

(4) 正交矩阵
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 , $P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ (14 分)

(5) 设
$$X = PY$$
,则它是一个正交变换且 $f(x_1, x_2, x_3) = 2y_1^2 + y_2^2 + 5y_3^2$ (16分)

四、证明题 (每题 5 分, 共 10 分)

1.证明:

(1)设
$$k_1, k_2, k_3$$
 为常数, $k_1(\alpha_1 + \alpha_2) + k_2(\alpha_1 - \alpha_2) + k_3\alpha_3 = 0$. (2分)

(2) 由
$$\alpha_1, \alpha_2, \alpha_3$$
线性无关和 $(k_1 + k_2)\alpha_1 + (k_1 - k_2)\alpha_2 + k_3\alpha_3 = 0$ 得
$$\begin{cases} k_1 + k_2 = 0 \\ k_1 - k_2 = 0 \end{cases}$$
 (5分)

即 $k_1 = k_2 = k_3 = 0$, $\therefore \alpha_1 + \alpha_2, \alpha_1 - \alpha_2, \alpha_3$ 线性无关.

2. 证明: $\cdot \cdot$ A, B 正定, 即 A, B 都为对称阵. $(A+B)^T = A^T + B^T = A + B$, 即 A+B 也是对称阵. (2 分) 任意的 $\mathbf{x} \neq \mathbf{0}$,有 $\mathbf{x}^T A \mathbf{x} > \mathbf{0}$ 和 $\mathbf{x}^T B \mathbf{x} > \mathbf{0}$, 则有 $\mathbf{x}^T (A + B) \mathbf{x} = \mathbf{x}^T A \mathbf{x} + \mathbf{x}^T B \mathbf{x} > \mathbf{0}$. (5 分) $\cdot \cdot \cdot A + B$ 也是正定矩阵.