Lecture 15 137A

Calculation certs Diese Notation

· Probablif Amplitudes

<Â> = <4/Â 14> Exponel in eigenferneties

= 21 21 Cm "Cn < 4 m l 14 m)

= El El Cm Cnan (4m)4m>

= £ 1 cul'an = neighted averge of eigenslus

Note'. $\leq |C_n|^2 = 1$ — it has to be in Some State...

Probably to obser system with an is $|C_n|^2$.

Note: If you have degeneracy:

Eg. an is & times degenerate; lace warefunct is as 4nr with r=1,...,x

Them, the probable to find Pn = 5 1 Cnr/= 5 1 < 4nr |4>12 After measurent, you erst up in one of the & passible sewefunctions 14> = { Cnr 14nr> Continuous & Discrete Spetius & States Eg. Finite Squere well Most general Stocke hus both types of stockes: $|4\rangle = \sum_{n} C_{n} |4_{n}\rangle + \int_{0}^{\infty} C(a) |4_{a}\rangle da$

 $\langle \hat{A} \rangle = \langle 4|\hat{A}|4 \rangle$ $= \begin{cases} \int \alpha |\hat{A}| d\alpha \\ - |\hat{A}| |\hat{A}| d\alpha \\ - |\hat{A}| |\hat{A}| |\hat{A}| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$ $= \begin{cases} \int |C(a)|^2 a da \\ - |A| |A| d\alpha \end{cases}$

Commeting Obserables

 $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \qquad \hat{A}, \hat{B} \text{ commute}$ $ij \quad [\hat{A}, \hat{B}] = 0$

If [Â,B]=0, Ahern me B are compatible and Thre exists a

Commun set f eigenfernet ins for both of Neum! ({\tan})

=> If a system is in 14n?, a sheariset of A will precisely yield an witrout changing 14n?. A measurest of B will yield by without perturbing the state. Ig. X, y ~ Px, Py Heisenberg Uncertainty Consider tuo observables Â, B <Â> = <4|Â|4> , = <4|B|4> Define: $\Delta \hat{A} = \left[\left\langle (\hat{A} - \langle \hat{A} \rangle)^2 \right\rangle \right]^{1/2}$ mean Can show $\left(\Delta \hat{A} \right)^2 = \left\langle \hat{A}^2 \right\rangle - \left\langle A \right\rangle^2$ Similarly, $\Delta \hat{B} = \left[\langle (\hat{B} - \langle B \rangle^2) \right]^{1/2}$ Com prove: sÂs\$ 7 ½ | <[Â, 8]>| ex. [x, Px] = ih, sispx >/h/2 minimum incertait -> Gaussion nue pachet

Unitary Transformations

Leve the physical description inchanged $\hat{A}_{14} = |x\rangle$ · Suppose Â147 = 1x>

linear, Hemitian

 $|4'\rangle = \hat{u}|4\rangle$ } describe the actin f $|x'\rangle = \hat{u}|x\rangle$ } unitary \hat{u} . Calculate $\hat{A}'|4'\rangle = |x'\rangle$

 \hat{u} \hat{u} \hat{u} \Rightarrow $\hat{A}'\hat{u} = \hat{u}\hat{A}$ ûÂ14>

since $\hat{u}\hat{u}^{\dagger} = \hat{I} = \hat{u}^{\dagger}\hat{u}$

- Â'= WAÛt, · LÊTA'Û = Â

-> looks like a single chaye of hair

(i) If is Hermition, Â is Hermitions (ii) Operator equations one commutators are encluyed

 $y \cdot \hat{A} = C_1 \hat{B} + C_2 \hat{C} \hat{D}$ $\hat{A}' = C_1 \hat{B}' + C_2 \hat{C}' \hat{D}'$

	(iii) The eigenealics of A' one	
	(iii) The lègendales y Â' one (E	
	(iv) Matrix elemets are unchased	
	<x â 4> = <x' â' 4'></x' â' 4'></x â 4>	
	-> prysical obserbles one metrage	l
	lg nomentum space + position sp uccessionetics! U = fr pour trues operation	all
	successiones in the four	in
	operation	to!
K	Expessing Unitary Operators as a fume of Hamitein operators:	
K	Con unite û = e Hermitia	/
	· Consider om "infinitesmal" unite vey close to Î.	ay,
	û = Î + i E F of the unitary Sreal, small parameter	nerata Y
	S'real, small paraneter	/

$$|4'\rangle = |4\rangle + |84\rangle = (\hat{1} + ic\hat{F})|4\rangle$$
 $\Rightarrow |\varpi\rangle = ic\hat{F}|4\rangle$

$$(\hat{I} + ie\hat{F}) A (I - ie\hat{F})$$

$$= \hat{A} + ie\hat{F} \hat{A} \qquad \hat{U} + \hat{U} +$$

· Consider now unitag time exclution $\hat{U}(t, t_0)$ advances the System from $t_0 \Rightarrow t$. $\hat{U}(t_0, t_0) = \hat{I}$

14(t)> - û(t, to) 14(to)>

We can bruk up nto lettle smaller timesteps:

 $\hat{u}(t,t) = \hat{u}(t,t') \hat{u}(t,t_0)$

Also note $\hat{\mathcal{U}}^{-1}(t,t_0) = \hat{\mathcal{U}}(t_0,t)$ (8) Lets' sustitute into SE: ih 2 û(t, to) = ĤÛ(t, to) 414(60) Formal which is nitigration time undep!) $u(t,t_0) = \hat{I} - \frac{1}{k} \int_{t_0}^{t} \hat{H}u(t,t_0)dt'$ If we consider a small time step, from the SE alove, in $\left[\hat{u}(t_0+\delta t,t_0)-\hat{u}(t_0,t_0)\right]$ = Ĥû(to,to) St Then, to first order i st, * û(to + 5t, to) = Î - i Ĥ 5t causes time frondator. (p' nores i space, h rotates)

Cose of a time undep. H: Starting with $ih \frac{\partial}{\partial t} \hat{u}(t, t_0) = \hat{H}\hat{u}(t, t_0)$ a solution is $\hat{u}(t,t_0) = \exp\left[-\frac{i}{n}\hat{H}(t-t_0)\right]$ $\frac{1}{2} \left(\frac{-i}{k} \right) = \frac{1}{1+i} \left(\frac{-i}{t-t_0} \right)$ 4 4 were on energy eigenfunctor, $4n(t) = e^{-\frac{i}{h}} E_n(t-to)$ 4n(to) as were · Time remidetar of Expectedin reduces $\frac{d}{dt} \langle \hat{A} \rangle = \frac{d}{dt} \langle \hat{t} | \hat{A} | \hat{4} \rangle$ = (24/A/4> + <4/2A/4> + < 4/A 124> = -1 < H + A + > + < 4 | 2A + > + in < 4 | AH + 4 > <41 | HA | 4> sine H = A+

=> $\frac{d}{dt} \langle \hat{A} \rangle = \frac{1}{i\hbar} \langle [\hat{A}, \hat{H}] \rangle + \langle \hat{A} \hat{A} \rangle$ For a time inelep operator \hat{A} , $2\hat{A} = 0$ and $\frac{d}{dt} \langle \hat{A} \rangle = \frac{1}{i\hbar} \langle [\hat{A}, \hat{H}] \rangle$ **P

Note: If \hat{A} commetes with \hat{H} ,

Them $\langle \hat{A} \rangle$ is a constant of motion!