复变函数与积分变换 习题课

夏健康

数学与统计学院

2021 秋

证明:

$$z_1\bar{z}_2 + \bar{z}_1z_2 = 2\text{Re}(z_1\bar{z}_2).$$

Proof.

设
$$z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$$
. 则
$$z_1\bar{z}_2 + \bar{z}_1z_2$$

$$= (x_1 + iy_1)(x_2 - iy_2) + (x_1 - iy_1)(x_2 + iy_2)$$

$$= (x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2) + (x_1x_2 + y_1y_2) + i(x_1y_2 - x_2y_1)$$

$$= 2(x_1x_2 + y_1y_2) = 2Re(z_1\bar{z}_2)$$

证明:

$$|z_1+z_2|\leq |z_1|+|z_2|.$$

Proof.

$$|z_1 + z_2|^2 = (z_1 + z_2)(\bar{z}_1 + \bar{z}_2) = z_1\bar{z}_1 + z_2\bar{z}_2 + z_1\bar{z}_2 + \bar{z}_1z_2$$

$$= |z_1|^2 + |z_2|^2 + 2Re(z_1\bar{z}_2)$$

$$\leq |z_1|^2 + |z_2|^2 + 2|z_1||z_2| = (|z_1| + |z_2|)^2$$

这里应用了上一结论和不等式 $Rez \le |z| = |\overline{z}|$.

可导函数的四则运算

设f,g 在 z_0 处可导,则: $f \pm g$, $f \cdot g$, $f/g(g(z_0) \neq 0)$ 在 z_0 处可导,且

$$(f \pm g)'(z_0) = f'(z_0) \pm g'(z_0),$$

$$(f(z_0) \cdot g(z_0))' = f'(z_0)g(z_0) + f(z_0)g'(z_0),$$

$$(1/g(z_0))' = g'(z_0)/g^2(z_0), \text{ M-Fr}$$

$$(f/g)'(z_0) = [f'(z_0)g(z_0) - f(z_0)g'(z_0)]/g^2(z_0).$$

Proof.

因为 f, g 在 z_0 处可导,则 f, g 在 z_0 处连续且在 z_0 的邻域 U内有定义. 设 Δz 足够小,使得 $z_0 + \Delta z \in U$,考察差商:

$$\frac{(f \pm g)(z_0 + \Delta z) - (f \pm g)(z_0)}{\Delta z} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \pm \frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z}$$

两端同取极限即得 $(f \pm g)'(z_0) = f'(z_0) \pm g'(z_0)$.

对于乘积,考察差商

$$\frac{f(z_0 + \Delta z)g(z_0 + \Delta z) - f(z_0)g(z_0)}{\Delta z} \\
= \frac{f(z_0 + \Delta z) - f(z_0)g(z_0 + \Delta z)}{\Delta z} + \frac{f(z_0)(g(z_0 + \Delta z) - g(z_0))}{\Delta z}$$

两端取极限并应用f,g在z0 处的连续性可得:

$$(f(z_0) \cdot g(z_0))' = f'(z_0)g(z_0) + f(z_0)g'(z_0).$$

因为 $|g(z_0)|>0$, 所以存在 $\delta>0$, 使得对任何 z 属于邻域 $U(z_0,\delta)=\{z||z-z_0|<\delta\}$ 成立

$$|g(z) - g(z_0)| < |g(z_0)|/2,$$

从而对任何 $z \in U(z_0, \delta)$,总是有 $|g(z)| \ge |g(z_0)|/4 > 0$. 在邻域 $U \cap U(z_0, \delta)$ 上考察差商,此时 $g(z_0)$, $g(z_0 + \Delta z) \ne 0$.

$$\frac{1}{\Delta z} \left[\frac{1}{g(z_0 + \Delta z)} - \frac{1}{g(z_0)} \right] = -\frac{1}{g(z_0)g(z_0 + \Delta z)} \frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z}$$

两端取极限并应用连续性可得: $(1/g)'(z_0) = -g'(z_0)/g^2(z_0)$.

解析函数的四则运算

设f,g 在 z_0 处解析. 则: $f\pm g$, $f\cdot g$, f/g ($g(z_0)\neq 0$) 在 z_0 处解析.

Proof.

因为 f,g 在 z_0 处解析,所以 f,g 在 z_0 可导且存在邻域 $U=U(z_0)$ 使得 f,g 在任何 $z\in U$ 处可导.

$$(f \pm g)'(z) = f'(z) \pm g'(z),$$

$$(f(z) \cdot g(z))' = f'(z)g(z) + f(z)g'(z),$$

$$(1/g(z))' = g'(z)/g^{2}(z).$$

所以这些函数在 z_0 处可导,且在任何 $z \in U$ 处也可导. 注意 1/g 可导的邻域可能会小一些,因为要保证 $g(z) \neq 0$. 这是可以办到的,只需取 $U \cap U(z_0, \delta)$ 即可.

1/2 处处不可导,点点不解析

首先 $1/\bar{z}$ 在原点处无定义,假定其在某点 $z_0 \neq 0$ 处可导,则可断言: $1/\bar{z}_0 \neq 0$. 事实上, $1/\bar{z}_0 = z_0/|z_0|^2 = 0$ 将导致 $z_0 = 0$. 由可导的四则运算 $1/(1/\bar{z})$ 在 z_0 也可导,这也是矛盾,因为 $\bar{z} = x - iy$ 在任何点处均不可导. 这可以直接从定义得到:

$$\lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \overline{z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

而当 ΔZ 沿着不同的路径趋于0 时,比如实轴和虚轴,二者确定的极限不同,因此上式不存在极限.

另外一种证明是利用 Cauchy - Riemann 方程:

$$\frac{1}{\overline{z}} = \frac{z}{|z|^2} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = u(x, y) + iv(x, y).$$

简单的计算可知只要 $(x,y) \neq (0,0)$ 总有:

$$\frac{\partial u}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2} \neq \frac{2xy}{(x^2 + y^2)^2} = -\frac{\partial v}{\partial x}.$$

习题热身

设函数
$$f(z) = x^2 + 2xy - y^2 + i(y^2 + 2xy - x^2)$$
. 求 $f'(i)$.

解

由题意,

$$u(x,y) = x^2 + 2xy - y^2, v(x,y) = y^2 + 2xy - x^2.$$

经计算, u(x,y) 和 (x,y) 在复平面上每一点都满足Cauchy-Riemann 方程:

$$u_x(x, y) = 2x + 2y = v_y, u_y(x, y) = 2x - 2y = -v_x.$$

所以, f(z) 在复平面内处处解析,

$$f'(z) = u_x + iv_x = (2x + 2y) + i(2y - 2x).$$

因此
$$f'(i) = u_x(0,1) + iv(0,1) = 2 + 2i$$
.