PROBABILITY & STATISTICS

Lecture 9 – Intro to Statistics, Parameter estimation

STATISTICS

LET'S STRAT!

• How do you imagine Statistics?

- How do you imagine Statistics?
 - Can you think of any example of Statistics?

WE'RE ALL FOLLOWING THESE STATISTICS...

Probability & Statistics - 2023

Percent of infected, deaths and recovered (Global)

- How do you imagine Statistics?
 - Can you think of any example of Statistics?
 - What is it?

- How do you imagine Statistics?
 - Can you think of any example of Statistics?

• What is it?

• Why do we need it?

• Statistics is a collection of methods which help us to describe, summarize, interpret and analyse data.

• Statistics is a collection of methods which help us to describe, summarize, interpret and analyse data.

• Vital in research, politics, management, business...

• Statistics is a collection of methods which help us to describe, summarize, interpret and analyse data.

• Vital in research, politics, management, business...

• There are different kinds of Statistics...

STATISTICS: EXAMPLE 1

STATISTICS: EXAMPLE 2

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-female-leaders/

WHAT'S THE DIFFERENCE BETWEEN THE TWO?

EXAMPLE 1

GAFAM: Women Still Underrepresented in Tech Percentage of female employees in the workforce of major tech companies* ■ Total Workforce ■ Leadership Jobs ■ Tech Jobs U.S. Civilian Labor Force 47% Google facebook Microsoft amazon * latest available data as of Feb. 19, 2020 Source: Company reports statista **Z** (cc) (i) (=)

Source: https://www.statista.com/chart/4467/female-employees-at-tech-companies/

EXAMPLE 2

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-

Probability & Stafeintide-leadlers/

WATCH THE VIDEO:

https://bit.ly/3fy8nzd

WHAT'S THE DIFFERENCE BETWEEN THE TWO?

EXAMPLE 1

GAFAM: Women Still Underrepresented in Tech Percentage of female employees in the workforce of major tech companies* ■ Total Workforce ■ Leadership Jobs ■ Tech Jobs U.S. Civilian Labor Force 47% Google facebook Microsoft amazon * latest available data as of Feb. 19, 2020 Source: Company reports statista **Z** (cc) (i) (=)

Source: https://www.statista.com/chart/4467/female-employees-at-tech-companies/

EXAMPLE 2

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-

Probability & Stafeintide-leadlers/

WHAT'S THE DIFFERENCE BETWEEN THE TWO?

DESCRIPTIVE STATISTICS

GAFAM: Women Still Underrepresented in Tech Percentage of female employees in the workforce of major tech companies* ■ Total Workforce ■ Leadership Jobs ■ Tech Jobs U.S. Civilian Labor Force 47% Google facebook Microsoft amazon * latest available data as of Feb. 19, 2020 Source: Company reports statista **Z** (cc) (i) (=)

Source: https://www.statista.com/chart/4467/female-employees-at-tech-companies/

INFERENTIAL STATISTICS

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-

Probability & Statemade-leaders/

DESCRIPTIVE VS INFERENTIAL STATISTICS

DESCRIPTIVE STATISTICS

• Describe the data at hand.

INFERENTIAL STATISTICS

• From the data at hand, make conclusions about a larger group.

SO...

DESCRIPTIVE STATISTICS

- Data about the whole population is available.
- Summarize it with
 - summary statistics;
 - tables;
 - plots.

INFERENTIAL STATISTICS

- Data about *a sample* of the whole population is available.
- Reason about the whole population.

SO...

Explorative Data Analysis (EDA) in ML, Business Analytics, ...

DESCRIPTIVE STATISTICS

- Data about the whole population is available.
- Summarize it with
 - summary statistics;
 - tables;
 - plots.

INFERENTIAL STATISTICS

- Data about *a sample* of the whole population is available.
- Reason about the whole population.

OUR FOCUS

DESCRIPTIVE STATISTICS

- Data about the whole population is available.
- Summarize it with
 - summary statistics;
 - tables;
 - plots.

INFERENTIAL STATISTICS

- Data about a sample of the whole population is available.
- Reason about the whole population.

Parameter estimation

• If we take a random person X, what's the probability that it's a man?

• If we take a random person X, what's the probability that it's a man?

X	1	0
P(X)	P	1-р

• If we take a random person X, what's the probability that it's a man?

• How many	y men	and	women
are there	in the	wor	ld?

X	1	0
P(X)	Р	1-р

• If we take a random person X, • How many men and women what's the probability that it's a are there in the world? man?

X	1	0
P(X)	Р	1-р

• There is precise data! ©

World Male Population 3,720,696

World Female Population 3,659,101

• If we take a random person X, • How many men and women what's the probability that it's a are there in the world? man?

X	1	0
P(X)	p = 0.5	1-p = 0.5

• There is precise data! ©

World Male Population 3,720,696

World Female Population 3,659,101

$$p = 0.5$$

• If we take a random person X, • How many men and women what's the probability that it's a are there in the world? man?

X	1	0
P(X)	p = 0.5	1-p = 0.5

• If we take 100 random people $X_1...X_{100}$, how many men do we expect to see?

• There is precise data! ©

World Male Population 3,720,696

World Female Population 3,659,101

$$p = 0.5$$

• If we take a random person X, • How many men and women what's the probability that it's a are there in the world? man?

X	1	0
P(X)	p = 0.5	1-p = 0.5

• If we take 100 random people $X_1...X_{100}$, how many men do we expect to see?

$$N_{\text{men}} = X_1 + ... + X_{100} \sim \text{Bi}(100, \mathbf{p})$$

• There is precise data! ©

World Male Population 3,720,696

World Female Population 3,659,101

$$p = 0.5$$

• If we take a random person X, • How many men and women what's the probability that it's a are there in the world? man?

X	1	0
P(X)	p = 0.5	1-p = 0.5

• If we take 100 random people $X_1...X_{100}$, how many men do we expect to see?

$$N_{\text{men}} = X_1 + ... + X_{100} \sim \text{Bi}(100, \mathbf{p})$$

 $E(N_{\text{men}}) = 100 * \mathbf{p} = 50$

• There is precise data! ©

World Male Population 3,720,696

World Female Population 3,659,101

$$p = 0.5$$

• If we take a random person X, what's the probability that it's a vegetarian?

• If we take a random person X, what's the probability that it's a vegetarian?

$$X \sim Bernoulli(\mathbf{p})$$

 $P(X = 1) = \mathbf{p} = ?$

- If we take a random person X, How what's the probability that it's a are there in the world? vegetarian?
 - X ~ Bernoulli(p) P(X = 1) = p = ?

vegetarians many

If we take a random person X,
 What's the probability that it's a vegetarian?
 No probability that it's a vegetarian?

$$X \sim Bernoulli(\mathbf{p})$$

 $P(X = 1) = \mathbf{p} = ?$

- How many vegetarians are there in the world?
 - No precise data! 😊

What would you do?

• If we take a random person X, • How what's the probability that it's a are there in the world? vegetarian?

$$X \sim Bernoulli(\mathbf{p})$$

 $P(X = 1) = \mathbf{p} = ?$

- many vegetarians
- No precise data! What would you do?

- Survey:
 - 100 people: $X_1...X_{100}$
 - 13 are vegetarians

If we take a random person X,
 What's the probability that it's a are to vegetarian?

$$X \sim Bernoulli(\mathbf{p})$$

 $P(X = 1) = \mathbf{p} = ?$

What is a good guess for the value of p?

- How many vegetarians are there in the world?
 - No precise data! ⊗

What would you do?

- Survey:
 - 100 people: $X_1...X_{100}$
 - 13 are vegetarians

(NON-)VEGETARIANS

• If we take a random person X, • How what's the probability that it's a are there in the world? vegetarian?

$$X \sim Bernoulli(\mathbf{p})$$

 $P(X = 1) = \mathbf{p} = ?$

- X ~ Bernoulli(p)
- What is a good guess for the value of p?

$$\hat{\mathbf{p}} = 13 / 100 = 0.13$$

- vegetarians many
- No precise data!

What would you do?

- Survey:
 - 100 people: X₁...X₁₀₀
 - 13 are vegetarians

(NON-) VEGETARIANS

INFERENTIAL STATISTICS

If we take a random person X,
 What's the probability that it's a vegetarian?
 No probability that it's a vegetarian?

$$X \sim Bernoulli(\mathbf{p})$$

 $P(X = 1) = \mathbf{p} = ?$

- How many vegetarians are there in the world?
 - No precise data! ☺

What would you do?

What is a good guess for the value of p?

$$\hat{\mathbf{p}} = 13 / 100 = 0.13$$

...get the parameter estimate

- Survey:
 - 100 people: $X_1...X_{100}$
 - 13 are vegetarians

From the data...

 Was it a good way to obtain an estimate?

Was it a good way to obtain an estimate?

• How precise is our estimate?

(NON-)VEGETARIANS

INFERENTIAL STATISTICS

 If we take a random person X, what's the probability that it's a are the vegetarian?

X ~ Bernoulli(p)

P(X = 1) = p = ?

- How many vegetarians are there in the world?
- No precise data! ☺
 What would you do?
- What is a good guess for the value
 Survey:
 100 p

$$\hat{p} = 13 / 100 = 0.13$$
• 13 are vegetarians

..get the parameter estimate

From the data...

Was it a good way to obtain an estimate?

• How precise is our estimate?

 Would it be better if there were more people in the survey?

Was it a good way to obtain an estimate?

How precise is our estimate?

 Would it be better if there were more people in the survey?

THE METHOD OF MAXIMUM LIKELIHOOD

A general framework for parameter estimation

THE METHOD OF MAXIMUM LIKELIHOOD

A general framework for parameter estimation

- $X \sim \text{Bernoulli}(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.

- $X \sim \text{Bernoulli}(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

- $X \sim \text{Bernoulli}(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

- $X \sim Bernoulli(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

$$P(X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0 \mid P) =$$

- $X \sim Bernoulli(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

$$P(X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0 \mid p) = {X_1, ..., X_{100} \text{ are independent}}$$

- $X \sim Bernoulli(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

$$P(X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0 \mid p) = {X_1, ..., X_{100} \text{ are independent}}$$

$$= P(X_1 = 1 | p) *...* P(X_{13} = 1 | p) * P(X_{14} = 0 | p) *...* P(X_{100} = 0 | p) =$$

- $X \sim Bernoulli(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

$$P(X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0 \mid p) = {X_1, ..., X_{100} \text{ are independent}}$$

$$= P(X_1 = 1 | p) *...* P(X_{13} = 1 | p) * P(X_{14} = 0 | p) *...* P(X_{100} = 0 | p) =$$

- $X \sim \text{Bernoulli}(p)$ whether a person is a vegetarian (1) or not (0).
- p the true proportion of the vegetarians.
- Survey results: 13 out of 100 participants are vegetarians:

$$X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0$$

$$L(p) = P(X_1 = 1, ..., X_{13} = 1, X_{14} = 0, ..., X_{100} = 0 | p) = {X_1, ..., X_{100} \text{ are independent}}$$

$$= P(X_1 = 1 | p) *...* P(X_{13} = 1 | p) * P(X_{14} = 0 | p) *...* P(X_{100} = 0 | p) =$$

Likelihood function is the joint probability of realized sample given the parameters.

• The probability to observe such data given p is:

$$L(p) = p^{13}(1-p)^{87}$$

• The probability to observe such data given p is:

$$L(p) = p^{13}(1-p)^{87}$$

How to chose the best p?

• The probability to observe such data given p is:

$$L(p) = p^{13}(1-p)^{87}$$

- How to chose the best p?
 - We want the data that we obtained to be the most likely one.

• The probability to observe such data given p is:

$$L(p) = p^{13}(1-p)^{87}$$

- How to chose the best p?
 - We want the data that we obtained to be the most likely one.
 - Maximize L(p) w.r.t. p!

How to optimize a function?

- How to optimize a function?
- 1. Compute its derivative.
- 2. Set it to zero.
- 3. Get the critical point(s).

4. Chose the point of maximum.

How to optimize a function?

$$f(x) = \log x + \log(1 - x)$$

- 1. Compute its derivative.
- 2. Set it to zero.
- 3. Get the critical point(s).

4. Chose the point of maximum.

How to optimize a function?

- 2. Set it to zero.
- 3. Get the critical point(s).

$$f(x) = \log x + \log(1 - x)$$

$$\frac{d}{dx}f(x) = \frac{1}{x} - \frac{1}{1-x} = 0$$

How to optimize a function?

$$f(x) = \log x + \log(1 - x)$$

- 1. Compute its derivative.
- 2. Set it to zero.
- 3. Get the critical point(s).

$$\frac{d}{dx}f(x) = \frac{1}{x} - \frac{1}{1-x} = 0$$

Critical points:

$$x = 0$$
, $x = 1$, $x = \frac{1}{2}$

4. Chose the point of maximum.

How to optimize a function?

$$f(x) = \log x + \log(1 - x)$$

- 1. Compute its derivative.
- 2. Set it to zero.
- 3. Get the critical point(s).

$\frac{d}{dx}f(x) = \frac{1}{x} - \frac{1}{1-x} = 0$

Critical points:

$$x = 0,$$
 $x = 1,$ $x = \frac{1}{2}$

4. Chose the point of maximum.

maximize
$$L(p) = p^{13}(1-p)^{87}$$
 w.r.t. p

maximize $L(p) = p^{13}(1-p)^{87}$ w.r.t. p

maximize
$$L(p) = p^{13}(1-p)^{87}$$
 w.r.t. p

maximize
$$log L(p) = 13 log(p) + 87 log(1-p) w.r.t. p$$

maximize
$$L(p) = p^{13}(1-p)^{87}$$
 w.r.t. p

maximize
$$log L(p) = 13 log(p) + 87 log(1-p) w.r.t. p$$

$$\frac{\mathrm{d}}{\mathrm{dp}}\log\mathrm{L(p)} =$$

maximize
$$L(p) = p^{13}(1-p)^{87}$$
 w.r.t. p

maximize
$$log L(p) = 13 log(p) + 87 log(1-p) w.r.t. p$$

$$\frac{d}{dp} \log L(p) = \frac{13}{p} - \frac{87}{1-p} = 0$$

maximize
$$L(p) = p^{13}(1-p)^{87}$$
 w.r.t. p

maximize
$$log L(p) = 13 log(p) + 87 log(1-p) w.r.t. p$$

$$\frac{d}{dp} \log L(p) = \frac{13}{p} - \frac{87}{1-p} = 0$$

$$\hat{p} = \frac{13}{100}$$

MAXIMUM LIKELIHOOD ESTIMATE

1. Write down the likelihood function:

$$L(\theta) = P(X_1, ..., X_n | \theta) = \prod_{i=1}^{n} P(X_i | \theta)$$

2. Find its maximum w.r.t. the unknown parameter θ :

$$\widehat{\Theta}$$
 = argmax L(θ) w.r.t. θ

(!) In many cases, it's easier to maximize log-likelihood:

$$\log L(\theta) = \log \prod_{i=1}^{n} P(Xi \mid \theta) = \sum_{i=1}^{n} \log P(Xi \mid \theta)$$

$$\widehat{\Theta}$$
 = argmax log L(θ)

Maximum Likelihood Estimate (MLE) is the value which

Maximum Likelihood Estimate (MLE) is the value which maximizes the probability of observing the realized sample.

MLE FOR SOME DISCRETE DISTRIBUTIONS

$$X \sim Bernoulli(p)$$

 $E(X) = p$
 $Var(X) = p(p-1)$

 Models the probability of success in an experiment with two outcomes.

$$E(X) = p$$
$$Var(X) = p(p-1)$$

 Models the probability of success in an experiment with two outcomes.

- (General case of the previous example)
- You want to estimate the proportion of the vegetarians.

$$E(X) = p$$

$$Var(X) = p(p-1)$$

 Models the probability of success in an experiment with two outcomes.

- (General case of the previous example)
- You want to estimate the proportion of the vegetarians.
- Survey: you ask N people whether they are vegetarians and get responses

$$X_1, X_2, \dots X_N$$

$$E(X) = p$$

$$Var(X) = p(p-1)$$

 Models the probability of success in an experiment with two outcomes.

- (General case of the previous example)
- You want to estimate the proportion of the vegetarians.
- Survey: you ask N people whether they are vegetarians and get responses

$$X_1, X_2, ... X_N$$

What's the MLE of p?

$$L(p) =$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} X_i \log p + (1 - X_i) \log(1 - p)$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} X_i \log p + (1 - X_i) \log(1 - p)$$

$$\frac{d}{dp}\log L(p) =$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} X_i \log p + (1 - X_i) \log(1 - p)$$

$$\frac{d}{dp}\log L(p) = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} X_i \log p + (1 - X_i) \log(1 - p)$$

$$\frac{d}{dp}\log L(p) = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$\hat{p} =$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} X_i \log p + (1 - X_i) \log(1 - p)$$

$$\frac{d}{dp}\log L(p) = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$\hat{p} = \frac{1}{N} \sum_{\text{Probability & manied } i \neq s = 2023}^{N} X_i$$

$$L(p) = \prod_{i=1}^{N} p^{X_i} (1-p)^{1-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} X_i \log p + (1 - X_i) \log(1 - p)$$

$$\frac{d}{dp}\log L(p) = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$\hat{p} = \frac{1}{N} \sum_{\text{Probability & Accounting is } = 2023}^{N} X_i$$

$$X \sim Po(\lambda), \quad \lambda > 0$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

$$E(X) = \lambda$$
, $Var(X) = \lambda$

- Models number of events occurring in a fixed interval of time.
- Assumptions: events occur
 - with a known constant mean rate;
 - independently of the time since the last event.

$$X \sim Po(\lambda), \quad \lambda > 0$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0 \\ 0, \text{ otherwise} \end{cases}$$

 $E(X) = \lambda, \quad Var(X) = \lambda$

• Suppose you want to model the number of phone calls a call center receives in an hour.

- Models number of events occurring in a fixed interval of time.
- Assumptions: events occur
 - with a known constant mean rate;
 - independently of the time since the last event.

$$X \sim Po(\lambda), \quad \lambda > 0$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \geq 0 \\ 0, \text{ otherwise} \end{cases}$$

$$E(X) = \lambda$$
, $Var(X) = \lambda$

- Models number of events occurring in a fixed interval of time.
- Assumptions: events occur
 - with a known constant mean rate;
 - independently of the time since the last event.

- Suppose you want to model the number of phone calls a call center receives in an hour.
- You've been recording it for the past n hours:

X1, X2, ..., Xn

$$X \sim Po(\lambda), \quad \lambda > 0$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0 \\ 0, \text{ otherwise} \end{cases}$$

$$E(X) = \lambda$$
, $Var(X) = \lambda$

- Models number of events occurring in a fixed interval of time.
- Assumptions: events occur
 - with a known constant mean rate;
 - independently of the time since the last event.

- Suppose you want to model the number of phone calls a call center receives in an hour.
- You've been recording it for the past n hours:

• What's the MLE of λ ?

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) =$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda \cdot \lambda^k}}{k!}, k \ge 0 \\ 0, \text{ otherwise} \end{cases} \qquad L(\lambda) = P(X_1, \dots, X_n | \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) =$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) = \sum_{i=1}^{n} [-\lambda \log e + X_i \log \lambda - \log X_i!]$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) = \sum_{i=1}^{n} [-\lambda \log e + X_i \log \lambda - \log X_i!]$$

$$=-n\lambda + \log \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) = \sum_{i=1}^{n} [-\lambda \log e + X_i \log \lambda - \log X_i!]$$

$$= -n\lambda + \log \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!$$

$$\frac{d}{d\lambda}L(\lambda) =$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) = \sum_{i=1}^{n} [-\lambda \log e + X_i \log \lambda - \log X_i!]$$

$$= -n\lambda + \log \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!$$

$$\frac{d}{d\lambda}L(\lambda) = -n + \frac{\sum_{i=1}^{n} X_i}{\lambda} = 0,$$

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) = \sum_{i=1}^{n} [-\lambda \log e + X_i \log \lambda - \log X_i!]$$

$$= -n\lambda + \log \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!$$

$$\frac{d}{d\lambda}L(\lambda) = -n + \frac{\sum_{i=1}^{n} X_i}{\lambda} = 0, \qquad \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$L(\lambda) = P(X_1, \dots, X_2 | \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\log L(\lambda) = \sum_{i=1}^{n} [-\lambda \log e + X_1 \log \lambda - \log X_i!]$$

$$= -n\lambda + \log \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!$$

$$\frac{d}{d\lambda}L(\lambda) = -n + \frac{\sum_{i=1}^{n} X_i}{\lambda} = 0, \qquad \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Random variable X takes three values with unknown probabilities:

X	1	2	3
P(X)	?	?	?

Random variable X takes three values with unknown probabilities:

X	1	2	3
P(X)	?	?	?:

 How many parameters does such a distribution have?

Random variable X takes three values with unknown probabilities:

X	1	2	3
P(X)	Р	q	1-p-q

 How many parameters does such a distribution have?

 Random variable X takes three
 We observed it N times: values with unknown probabilities:

X	1	2	3
P(X)	Р	q	1-p-q

X	1	2	3
#	n_1	n ₂	n_3

 How many parameters such a distribution have?

 Random variable X takes three
 We observed it N times: values with unknown probabilities:

X	1	2	3
P(X)	Р	q	1-p-q

X	1	2	3
#	n ₁	n ₂	n_3

- How many parameters does
 What is the MLE of the such a distribution have?
 - parameters?

CALCULUS 101

 How to optimize a function of several variables?

CALCULUS 101

- How to optimize a function of several variables?
- 1. Compute partial derivatives.
- 2. Set them to zero.

3. Solve the equations and get the critical points.

CALCULUS 101

How to optimize a function of several variables?

- 1. Compute partial derivatives.
- 2. Set them to zero.

$$f(x,y) = x^2 + 2xy - 2x - 4y$$

$$\frac{d}{dx}f(x,y) = 2x + 2y - 2 = 0$$

$$\frac{d}{dy}f(x,y) = 2x - 4 = 0$$

$$x^* = 2, y^* = 1$$

X	1	2	3
P(X)	Р	q	1-p-q

Value	1	2	3
#	n_1	n ₂	n ₃

• What's the probability of observing such data? Likelihood:

$$L(p, q) =$$

MLE: YET ANOTHER EXAMPLE

X	1	2	3
P(X)	Р	q	1-p-q

Value	1	2	3
#	n ₁	n ₂	n ₃

• What's the probability of observing such data? Likelihood:

$$L(p, q) = p^{n_1} \cdot q^{n_2} \cdot (1 - p - q)^{n_3}$$
maximize L(p, q) w.r.t. p, q

MLE: YET ANOTHER EXAMPLE

X	1	2	3
P(X)	Р	q	1-p-q

Value	1	2	3
#	n ₁	n ₂	n ₃

• What's the probability of observing such data? Likelihood:

$$L(p, q) = p^{n_1} \cdot q^{n_2} \cdot (1 - p - q)^{n_3}$$
maximize L(p, q) w.r.t. p, q

$$log L(p, q) =$$

MLE: YET ANOTHER EXAMPLE

X	1	2	3
P(X)	Р	q	1-p-q

Value	1	2	3
#	n ₁	n ₂	n ₃

• What's the probability of observing such data? Likelihood:

L(p, q) =
$$p^{n_1} \cdot q^{n_2} \cdot (1 - p - q)^{n_3}$$

maximize L(p, q) w.r.t. p, q

 \Leftrightarrow

$$\log L(p, q) = n_1 \log p + n_2 \log q + n_3 \log(1 - p - q)$$

$$\text{maximize log L(p, q) w.r.t. p, q}$$

MLE: EXAMPLE 2

X	1	2	3
P(X)	Р	q	1-p-q

Value	1	2	3
#	n ₁	n ₂	n ₃

maximize $n_1 \log p + n_2 \log q + n_3 \log(1 - p - q)$ w.r.t. p, q

$$\frac{d}{dp}\log L(p,q) = \frac{n_1}{p} - \frac{n_3}{1 - p - q} = 0$$

$$\frac{d}{dq}\log L(p,q) = \frac{n_2}{q} - \frac{n_3}{1 - p - q} = 0$$

MLE: EXAMPLE 2

X	1	2	3
P(X)	Р	q	1-p-q

Value	1	2	3
#	n_1	n ₂	n ₃

maximize $n_1 \log p + n_2 \log q + n_3 \log(1 - p - q)$ w.r.t. p, q

$$\frac{d}{dp}\log L(p,q) = \frac{n_1}{p} - \frac{n_3}{1 - p - q} = 0$$

$$\frac{d}{dq}\log L(p,q) = \frac{n_2}{q} - \frac{n_3}{1 - p - q} = 0$$

$$\hat{p} = \frac{n_1}{N}$$

$$\hat{q} = \frac{n_2}{N}$$

TO SUM UP

• **Likelihood function** is the joint probability of realized sample given the parameters.

• Maximum Likelihood Estimate (MLE) is the value which maximizes the probability of observing the realized sample.

RANDOMIZED RESPONSE

Asking embarrassing questions

MOTIVATION

- BEFORE:
 - How many vegetarians are in the world?
 - Survey: ask "are you a vegetarian?", estimate the true proportion.

MOTIVATION

- BEFORE:
 - How many vegetarians are in the world?
 - Survey: ask "are you a vegetarian?", estimate the true proportion.
- BUT WHAT IF the question is very sensitive?
 - People won't tell the truth.

MOTIVATION

- BEFORE:
 - How many vegetarians are in the world?
 - Survey: ask "are you a vegetarian?", estimate the true proportion.
- BUT WHAT IF the question is very sensitive?
 - People won't tell the truth.
- EXAMPLE: Do you find this course boring?
 - How do I find out what my students actually think?

LET'S TRY THIS OUT!

• Toss a coin...

LET'S TRY THIS OUT!

• Toss a coin...

Now, answer one of the following questions:

LET'S TRY THIS OUT!

Toss a coin...

Now, answer one of the following questions:

If you got HEADS: DO YOU FIND THIS CLASS BORING?

If you got TAILS: ARE YOU AT THE STATISTICS CLASS

RIGHT NOW?

BINOMIAL DISTRIBUTION

$$X \sim Bi(n, p), n = 1, 2, ..., 0$$

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

$$E(X) = np$$
, $Var(X) = np(1-p)$

• Models the number of successes in a series of *n* independent Bernoulli trials, each of which has a success probability *p*.

BINOMIAL DISTRIBUTION

$$X \sim Bi(n, p), n = 1, 2, ..., 0$$

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

$$E(X) = np, \quad Var(X) = np(1-p)$$

• Models the number of successes in a series of *n* independent Bernoulli trials, each of which has a success probability *p*.

- You sell two types of sandwiches: chicken and vegetarian. Which one people like more?
- For the past N days, you were selling n=100 sandwiches every day and recorded the number of the chicken ones:

$$X_1, X_2, ..., X_N$$

• What is the MLE of the p parameter?

$$L(p) =$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$log L(p) =$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$\frac{\mathrm{d}}{\mathrm{dp}}\mathrm{L(p)} =$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$\frac{d}{dp}L(p) = \sum_{i=1}^{N} \frac{X_i}{p} - \frac{100 - X_i}{1 - p} = 0$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$\frac{d}{dp}L(p) = \sum_{i=1}^{N} \frac{X_i}{p} - \frac{100 - X_i}{1 - p} = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{100N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$\frac{d}{dp}L(p) = \sum_{i=1}^{N} \frac{X_i}{p} - \frac{100 - X_i}{1 - p} = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{100N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$\hat{p} =$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$\frac{d}{dp}L(p) = \sum_{i=1}^{N} \frac{X_i}{p} - \frac{100 - X_i}{1 - p} = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{100N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$\hat{\mathbf{p}} = \frac{\sum_{i=1}^{N} \mathbf{X}_i}{100N}$$

$$L(p) = \prod_{i=1}^{N} C_n^{X_i} p^{X_i} (1-p)^{100-X_i}$$

$$\log L(p) = \sum_{i=1}^{N} \left[\log C_n^{X_i} + X_i \log p + (100 - X_i) \log(1 - p) \right]$$

$$\frac{d}{dp}L(p) = \sum_{i=1}^{N} \frac{X_i}{p} - \frac{100 - X_i}{1 - p} = \frac{\sum_{i=1}^{N} X_i}{p} - \frac{100N - \sum_{i=1}^{N} X_i}{1 - p} = 0$$

$$\hat{\mathbf{p}} = \frac{\sum_{i=1}^{N} \mathbf{X}_i}{100\mathbf{N}}$$

TO SUM UP

• **Likelihood function** is the joint probability of realized sample given the parameters.

• Maximum Likelihood Estimate (MLE) is the value which maximizes the probability of observing the realized sample.

MAXIMUM LIKELIHOOD ESTIMATE

FOR PARAMETERS OF CONTINUOUS DISTRIBUTIONS

• Given samples from a distribution: X_1, X_2, \dots, X_N Obtain estimate of the parameter(s) θ

- Given samples from a distribution: $X_1, X_2, ..., X_N$ Obtain estimate of the parameter(s) θ
- Likelihood function:

- Given samples from a distribution: $X_1, X_2, ..., X_N$ Obtain estimate of the parameter(s) θ
- **Likelihood function**: joint *density function* of the obtained data given the model parameters

$$L(\theta) = p(X_1, X_2, \dots, X_n | \theta)$$

- Given samples from a distribution: $X_1, X_2, ..., X_N$ Obtain estimate of the parameter(s) θ
- **Likelihood function**: joint *density function* of the obtained data given the model parameters

$$L(\theta) = p(X_1, X_2, \dots, X_n | \theta)$$

Assuming the independence of the samples:

- Given samples from a distribution: $X_1, X_2, ..., X_N$ Obtain estimate of the parameter(s) θ
- **Likelihood function**: joint *density function* of the obtained data given the model parameters

$$L(\theta) = p(X_1, X_2, \dots, X_n | \theta)$$

Assuming the independence of the samples:

$$L(\theta) = \prod_{i=1}^{n} p(X_i | \theta)$$

• Observed data: $X_1, X_2, ..., X_N$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, ..., X_N | \lambda) =$$

$$p(x) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0\\ 0, & otherwise \end{cases}$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, ..., X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} =$$

$$p(x) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0\\ 0, & otherwise \end{cases}$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, ..., X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, \dots, X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

maximize $L(\lambda)$ w.r.t. λ

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, \dots, X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

maximize

 $L(\lambda)$ w.r.t. λ

$$\log L(\lambda) =$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, \dots, X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

maximize
$$L(\lambda)$$
 w.r.t. λ

$$\log L(\lambda) = n \cdot \log \lambda - \lambda \sum_{i=1}^{N} X_i$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, \dots, X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

maximize $L(\lambda)$

$$L(\lambda)$$

w.r.t. λ

$$\log L(\lambda) = n \cdot \log \lambda - \lambda \sum_{i=1}^{N} X_i$$

$$\frac{d}{d\lambda}\log L(\lambda) =$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, \dots, X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

maximize $L(\lambda)$

$$L(\lambda)$$

w.r.t. λ

$$\log L(\lambda) = n \cdot \log \lambda - \lambda \sum_{i=1}^{N} X_i$$

$$\frac{d}{d\lambda} \log L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{N} X_i = 0$$

$$\frac{d}{d\lambda}\log L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{N} X_i = 0$$

- Observed data: $X_1, X_2, ..., X_N$
- Likelihood:

$$L(\lambda) = p(X_1, \dots, X_N | \lambda) = \prod_{i=1}^N \lambda \cdot e^{-\lambda X_i} = \lambda^n \cdot \prod_{i=1}^N e^{-\lambda X_i}$$

maximize $L(\lambda)$

$$L(\lambda)$$

w.r.t. λ

$$\log L(\lambda) = n \cdot \log \lambda - \lambda \sum_{i=1}^{N} X_i$$

$$\log L(\lambda) = n \cdot \log \lambda - \lambda \sum_{i=1}^{N} X_{i}$$

$$\frac{d}{d\lambda} \log L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{N} X_{i} = 0 \qquad \Rightarrow \qquad \hat{\lambda} = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} X_{i}}$$