wednesday 1.aa	
R are a metric space	
Metric Spaces (notes)	
Recall: the standard dist on $IR = d(x, y) = x-y $	
properties: i) $d(x,y) \ge 0$ $\forall x,y \in \mathbb{R}$ and $d(x,y) = 0$ iff $x = y$	
equiv. d(x,x)=0 tx=R and d(x,y) for any distinct	x,y er
$\ddot{u} d(x,y) = d(y,x) \forall x,y \in \mathbb{R}$	
$ (ii) d(x,z) \leq d(x,y) + d(y,z) \forall x,y,z \in \mathbb{R} $	
def Ret M be a nonempty set.	
a metric or a dist func on M is a function d:MxM->R satisfylv	10
i) $d(x,y) \ge 0$ $\forall x,y \in M$ and $d(x,y) = 0$ iff $x = y$	9
$ii) d(x,y) = d(y,x) \forall x,y \in M$	
iii) $d(x,z) \in d(x,y) + d(y,z) \forall x,y,z \in M (\triangle inequality)$	
The pair (M,d) is a metric space	
ex (i) IR with the standard metric $d(x,y) = x-y $ is a metric space $\frac{ x-y }{ x-y }$, $d(x,y) = \frac{ x-y }{ x-y }$, $d(x,y) = \frac{ x-y }{ x-y }$	
Remark: There are other metrics on \mathbb{R} , $d(x,y) = \frac{1+ x-y }{1+ x-y }$, $d(x,y) = \frac{1}{1+ x-y }$	-91,
Distances on R2= E(x, x2) = x, x2 ER3 (similarly on R3RK K22)	
2) $M = R^2 $ euclidean metric for $x = (x, x_2)$ & $y = (y_1, y_2)$ in R^2	
$(1) d(x_1y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$	
(ex \(\triangle \) inequality)	
(3) $M = R^2$, $d(x,y) = x_1 - y_1 + x_2 - y_2 $	
"taxi cab metric"	
proof Dineg; let x,y,z \in 1R2	
$ x_1-z_1 \le x_1-y_1 + y_1-z_1 $ and $ x_2-z_2 \le x_2-y_2 + y_2-z_3 $	
$d(x,z) \leq d(x,y) + d(y,z)$	

def	la se	t 5	in a	met	hic	spac	;e ((M)	d\	is k	oun <i>o</i>	leel	łi	Sis	CO	ntai	ned		
	in a	n 0	pen	ba	11	Br (x)	for	50	me	XE	M	and	r>0					
⇒ ¡4	t agree																		
frid	lay 1. 24																		
Seg	uences	Sec	729	š															
	<u> </u>	sequ	mæ	of					n, :	s,	From	n M	to IF	l, or	mo	n g	enero	العي ا	rom
	a	set	In E	涩:v	n≥w	, }	to 1	R											
	We	write	2 ^M	tor	2(N	١,	and	we	write	56	quenc	u	as						
			(2^{n}	=m		Or	(s	m, ^s	Smry									
	for	(s _v) n= 1	, u	je c	an a	Also	wn:	le (s _n) _n	€ M								
ex	$(s_n)_n$	= 3	Wh	ene		Sn=	- N												
	the se	q :	$\left(\frac{4}{3}\right)$	5 4,	5,	٠.,)		水	orde	mo	rtters	*						
	$(s_n)_n$ the se	0+	value:		[4, 3,	<u>5</u> 4	6 .	j	*	order	de	esnit	mat	ter	in §	et *		
ex	(s _n)) n ell/	, :	s _n = s	sin <u>n</u>	π ,													
	The sec						, 0,	-1,	0,) i:	s pe	viod	ic						
	The se																		
Liw	nits of	seg																	
intu	uitively,	a s	equer	nce	(sn	o (nver	مو	to	a A	#	5	Iŧ	Sn	is cl	0 S e	to s	¥	large n
	e precisi																		
det	- We so	uy th	eat a	i Sec	zuenc	e (s _n) (n to	eal	num	bers	co	Nverg	es t	, a	rea	d no	ımbcı	ser
	if for	each	€>0	> th	ere :	ane (R so	uch t	that	(* <u>*</u>) S	n-s	3 > 1	∀n>	N (OR n	>N	implics	ls _w -	ske)
not	e: 6 t	ypical	ly is	very	Smal	, P	ositiv	im c	1 n	umb	er								
	't (S_{n})	conve	ges	me n	unite	W	->∞ °	N_ 2	6r	S _n	> 3	(as	N-∋∞)					

We say that the number s is the limit of (sn)	
Note (*) means that $\forall n \in \mathbb{N}$, $s_n \in (s-\epsilon, s+\epsilon)$	
Note (*) we can write n∈N (by the archémedean prop)	
ex $(s_n)_{n \in \mathbb{N}}$ where $s_n = \frac{n+2}{n} = 1 + \frac{2}{n}$ has $s_n = 1$	
let $E=\frac{1}{10}$ $ s_n-s =\frac{2}{n}<\frac{1}{10}$ for all $n>20$	
so for E= 110, we can take N= 20	
14 &= 1/100 sn-s) = 2 < 100 for all n>200	
so for E= 1/109 we can take N= 200	
let $\varepsilon > 0$ $ s_n - s = \frac{2}{n} \le \varepsilon$ for all $n > 2/\varepsilon$	
su for E>0, we can take N = 2/E	
$e = \frac{1}{10}$ 0.9 $\frac{1}{10}$ 0.9 $\frac{1}{10}$ 0.9	
0.9	
$\frac{proof}{n \to \infty} \text{ of } \frac{n+2}{n} = 1$	
Let $E > 0$. Let $N = \frac{2}{E}$. Then for every $n > N$,	
$ S_{n}-S = \left \frac{N+2}{n}-1\right = \frac{2}{N} < \frac{2}{N} = \frac{2}{2/\epsilon} = \epsilon$	
so for all $n > n$, $ s_n-1 < \varepsilon$. Thus $\lim_{n \to \infty} s_n = 1$ \square	
general proof to prove that lim sn=s given E>0 we need to find	N in terms of E st
Sn-s < & \tau >N	
exi $s_n = \sqrt{n}$, $n \ge 1$ Prove that $n \Rightarrow \infty$ $s_n = 0$	
DISCUSSION: let e>o, Isn-01= Isn1= Vn < E for all v	η> 1/ε²
PROOF. Let $\varepsilon > 0$, let $N = 1/\varepsilon^2$, then for every $n > N$, $1s_{n-1}$	01=1年14年189=8
30 $ s_n-0 < \epsilon \forall n > p \forall n \leq s_n \rightarrow 0 \Box$	

$ex \int S_n = \frac{h-2}{3n+5}$, nen lim	Sn= 1/3	
DISCUSSION	lat E >0 Is.	$-\frac{1}{3} = \frac{n-2}{3n+5} - \frac{1}{3} < \varepsilon \iff \frac{1}{3}$	3/30+5) = 2/30+5
710CU3510W.	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 5/	51 5/175 / 3/4/19
C) 3n+5	> 11 (=> h>	98 - 73	11
PROOF: Let	E>0, let N= 9	$\frac{11}{E} - \frac{5}{3}$, thun n>N means that	n > 9€ - 5/3
by the disc	above it follows	that $\frac{ N-2 }{3n+5} - \frac{1}{3} < \varepsilon$ therefore,	lim sn= 1/3 [
		SHT SHT	
201.10			
		verge to any real number, we so	y that (Sn) diverge
ex) h, n2	(-1) " Sin(MT) (-1) ^h (1+1/n)	
	ses not converg		
(neg) there 38	>> Such that	for any NER, there exists	n>N with
1 sn-s1 =	3 =		
there are a	rhitrarily lame	n w/ sn ∉ (s-ε, s+ε)	
We di	i bijiai iig	N 60 5, 55	
7. 156			161 - 06
7h-14	3 aln-5	1000 = 1000 = E	166 < 98n+a)8
30+7	3 = quta	(9ntal	100-218
			106-218
			16