Summary - FIR Complex SSE (TimeStamped)

WARNING: Run-time failures have been observed for several unit tests and applications on PCIe-based platforms. The work around requires modifying the **buffersize** attribute of the PL to PS (egress) boundary connection, as defined in the OAS. An example for modifying the OAS for executing on PCIe-based platforms is provided in a below section.

Name	fir_complex_sse_ts
Worker Type	Application
Version	v1.5
Release Date	4/2019
Component Library	ocpi.assets_ts.components
Workers	fir_complex_sse_ts.hdl
Tested Platforms	xsim, isim, modelsim, Matchstiq-Z1(PL)

Functionality

The FIR Complex SSE (Systolic Symmetric Even) component inputs complex signed samples and filters them based upon a programmable number of coefficient tap values. The worker also processes all operations of the Complex_Short_With_Metadata protocol, passing along time and interval information. The underlying FIR Filter implementation makes use of a symmetric systolic structure to construct a filter with an even number of taps and symmetry about its midpoint.

Worker Implementation Details

$fir_complex_sse_ts.hdl$

The NUM_TAPS_p parameter defines the number of coefficient values. Care should be taken to ensure that the COEFF_WIDTH_p parameter is \leq the type (size) of the taps property. The taps property is type short, so COEFF_WIDTH_p must be between 1 and 16. Identical filter tap coefficients are applied to both real and imaginary input samples.

This implementation uses NUM_TAPS_p/2 multipliers for each of the real and imaginary data paths and processes input data at the clock rate - i.e. this worker can handle a new input value every clock cycle.

The FIR Complex SSE worker utilizes the OCPI Complex_Short_With_Metadata protocol for both input and output ports. The Complex_Short_With_Metadata protocol conveys sample data using an interface of 16-bit complex signed samples. The DATA_WIDTH_p parameter may be used to restrict the the number of bits processed on the input and the number of bits (sign-extended) produced on the input.

Figure 1: FIR Complex SSE Block Diagram - 8-tap example per I/Q rail

Theory

For a FIR filter with symmetric impulse response we are guaranteed to have linear phase response and thus constant group delay vs. frequency. In general, the group delay will be equal to (NUM_TAPS_p-1)/2. The filter topology itself will add some propagation delay to the response. For this design the total delay from an impulse input to the beginning of the impulse response will be NUM_TAPS_p/2 + 4 samples.

The worker only outputs samples after the delay has occurred. During flush or done operations, the worker continues to produce valid data until the pipeline is empty. During the sync operation, the pipeline is emptied, but no valid data is produced. During flush, done, and sync operations, the operation is passed along after the pipeline is empty.

The worker passes along and does not modify time and interval operations.

Block Diagrams

Top level

Source Dependencies

fir_complex_sse_ts.hdl

- projects/assets_ts/components/fir_complex_sse.hdl/fir_complex_sse.vhd
- projects/assets/hdl/primitives/dsp_prims/dsp_prims_pkg.vhd projects/assets/hdl/primitives/dsp_prims/fir/src/fir_systolic_sym_even.vhd projects/assets/hdl/primitives/dsp_prims/fir/src/macc_systolic_sym.vhd
- $\bullet \ projects/assets/hdl/primitives/misc_prims/misc_prims_pkg.vhd \\ projects/assets/hdl/primitives/misc_prims/round_conv/src/round_conv.vhd \\$
- projects/assets/hdl/primitives/util_prims/util_prims_pkg.vhd projects/assets/hdl/primitives/util_prims/pd/src/peakDetect.vhd

Component Spec Properties

Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
NUM_TAPS_p	ULong	-	-	Parameter	1-?	16	Number of coefficients used by each real/imag even sym-
							metric filter
peak	Short	-	-	Volatile	Standard	0	Read-only amplitude which may be useful for gain control
taps	Short	-	NUM_TAPS_p	Writable	-2 ^{COEFF_WIDTH_p-1} to	-	Symmetric filter coefficient values loaded into both re-
					+2 1		al/imag filters

Worker Properties

$fir_complex_sse_ts.hdl$

Type	Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
Property	DATA_WIDTH_p	-	-	-	Parameter	1-16	16	Number of bits of input data which are
								processed by FIR primitive
Property	COEFF_WIDTH_p	-	-	-	Parameter	1-32	16	Number of bits of taps property values
								which are processed by FIR primitive
Property	LATENCY_p	UShort	-	-	Parameter	-	1	Clock cycle delay between input and out-
								put
Property	GROUP_DELAY_p	-	-	-	Parameter	-	1	Number of clocks between first valid in-
								put and first valid output

Component Ports

ಬ

Name	Producer	Protocol	Optional	Advanced	Usage
in	false	Complex_Short_With_Metadata	false	-	Complex signed samples
out	true	Complex_Short_With_Metadata	false	-	Complex signed samples

Worker Interfaces

$fir_complex_sse_ts.hdl$

Type	Name	DataWidth	Advanced	Usage
StreamInterface	in	32		Signed complex samples
StreamInterface	out	32		Signed complex samples

Control Timing and Signals

The FIR Complex SSE worker uses the clock from the Control Plane and standard Control Plane signals. The Raw Property interface is used to read/write coefficient values.

Worker Configuration Parameters

 $fir_complex_sse_ts.hdl$

Table 1: Table of Worker Configurations for worker: fir_complex_sse_ts

Configuration	NUM_TAPS_p	COEFF_WIDTH_p
0	32	16
1	32	8
2	128	16

Performance and Resource Utilization

 $fir_complex_sse_ts.hdl$

Table 2: Resource Utilization Table for worker "fir_complex_sse_ts"

Configuration	OCPI Target	Tool	Version	Device	Registers (Typ)	LUTs (Typ)	Fmax (MHz) (Typ)	Memory/Special Functions
0	stratix4	Quartus	17.1.0	N/A	3275	2582	N/A	DSP18: 64
0	zynq_ise	ISE	14.7	7z010clg400-3	2416	2713	217.604	DSP48E1: 32
0	virtex6	ISE	14.7	6vcx75tff484-2	2416	2713	183.056	DSP48E1: 32
0	zynq	Vivado	2017.1	xc7z020clg400-3	1584	1988	N/A	DSP48E1: 32
1	stratix4	Quartus	17.1.0	N/A	3147	2508	N/A	DSP18: 64
1	zynq_ise	ISE	14.7	7z010clg400-3	2160	2678	217.817	DSP48E1: 32
1	virtex6	ISE	14.7	6vcx75tff484-2	2160	2678	187.864	DSP48E1: 32
1	zynq	Vivado	2017.1	xc7z020clg400-3	1584	1919	N/A	DSP48E1: 32
2	stratix4	Quartus	17.1.0	N/A	11821	9274	N/A	DSP18: 256
2	zynq_ise	ISE	14.7	7z010clg400-3	12692	64424	146.69	N/A
2	virtex6	ISE	14.7	6vcx75tff484-2	8564	9350	183.056	DSP48E1: 128
2	zynq	Vivado	2017.1	xc7z020clg400-3	8035	6674	N/A	DSP48E1: 128

Test and Verification

WARNING: Run-time failures have been observed for several unit tests and applications on PCIe-based platforms. The work around requires modifying the **buffersize** attribute of the PL to PS (egress) boundary connection, as defined in the OAS.

The OAS XML must be changed to resolve this issue for the unit tests as shown below:

```
<Connection>
<Port Instance="last_PL_worker" Name="out"/>
<Port Instance="first_PS_worker" Name="in" Buffersize="8192" Buffercount="4"/>
</Connection>
```

An additional change is required for fir_complex_sse.test when executed on a PCIe-based platform, in that, the fir_complex_sse.hdl's messageSize property must be be reduced from 8192 to 4096, as shown below:

```
property name='messageSize' value='4096'>
```

A single test case is implemented to validate the FIR Complex SSE component. The python script <code>gen_lpf_taps.py</code> is used to generate a taps file consisting of <code>NUM_TAPS_p/2</code> filter coefficients. Input data is generated by first creating a *.dat input file containing all of the opcodes of the Complex_Short_With_Metadata protocol in the following sequence:

- 1. Interval
- 2. Sync (this opcode is expected after an Interval opcode)
- 3. Time
- 4. Samples (impulse with length numtaps*2)
- 5. Samples (impulse with length numtaps*2)
- 6. Flush
- 7. Samples (impulse with length numtaps*2)
- 8. Sync
- 9. Samples (impulse with length numtaps*2)

The samples messages consist of a single maximum signed value of +32767 (for each real/imag filter) followed by 2*(NUM_TAPS_p-1) zero samples (again for each real/imag filter). The *.bin input file is the binary version of the *.dat ASCII file repeated NUM_TAPS_p times.

The FIR Complex SSE worker inputs complex signed samples, filters the input as defined by the coefficient filter taps, and outputs complex signed samples. Since the input consists of an impulse response - that is, a maximal 'one' sample followed by all zeros equal to the length of the filter - the output of each filter is simply the coefficient values.

The worker will pass through the interval and time opcodes. The samples opcode followed by flush or done will output an impulse response, showing the symmetric tap values. The samples opcode followed by sync will produce the first numtaps*2-group_delay tap values. In addition to the samples data, the worker also passes along the zlms.

For verification, the output file is parsed into messages. All non-samples messages should match the input exactly. The samples messages are compared to the tap values and checked to ensure they are within \pm 1.