1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

240pin Unbuffered DDR3 SDRAM MODULE

Based on 128Mx8 DDR3 SDRAM A Die

Features

· Performance:

	Canad Cart	PC3-8500	PC3-10660	PC3-12800		
Speed Sort		-BE -CG		-DG	Unit	
ا	DIMM CAS Latency	7	9	9		
f _{CK}	Clock Frequency	533	667	800	MHz	
t _{CK}	Clock Cycle	1.875	1.5	1.25	ns	
f_{DQ}	DQ Burst Frequency	1066	1333	1600	Mbps	

- JEDEC Standard 240-pin Dual In-Line Memory Module
- 128Mx64 and 256Mx64 DDR3 Unbuffered DIMM based on 128Mx8 DDR3 Elixir SDRAM
- Intended for 533MHz, 667MHz and 800MHz applications
- Inputs and outputs are SSTL15 compatible
- $V_{DD} = V_{DDQ} = 1.5Volt \pm 0.075Volt$
- SDRAMs have 8 internal banks for concurrent operation
- · Differential clock inputs
- Data is read or written on both clock edges
- 8 bit pre-fetch
- Two different termination values (Rtt_Nom & Rtt_WR)
- · Extended operating temperature rage
- · Auto Self-Refresh option

- · Automatic and controlled precharge commands
- Programmable Operation:
 - DIMM CAS Latency: 5,6,7,8,9,10
 - Burst Type: Sequential & Interleave
 - Burst Length: BC4, BL8
 - Operation: Burst Read and Write
- 14/10/1 Addressing (row/column/rank) 1GB
- 14/10/2 Addressing (row/column/rank) 2GB
- · Serial Presence Detect
- · Gold contacts
- · SDRAMs in 78 BGA Package
- RoHS and Halogen-Free compliance
- · Green DIMM with Heat Spreader

Description

M2Y1G64CB88A9N and M2Y2G64CB8HA9N are 240-Pin Double Data Rate 3 (DDR3) Synchronous DRAM Unbuffered Dual In-Line Memory Module (UDIMM), organized as one-rank 128Mx64 and two ranks 256Mx64 high-speed memory array. M2F1G64CB88A9N uses eight 128Mx8 DDR3 SDRAMs. M2F2G64CB8HA9N uses sixteen 128Mx8 DDR3 SDRAMs. These DIMMs are manufactured using raw cards developed for broad industry use as reference designs. The use of these common design files minimizes electrical variation between suppliers. All Elixir DDR3 SDRAM DIMMs provide a high-performance, flexible 8-byte interface in a 5.25" long space-saving footprint.

The DIMM is intended for use in applications operating up to 533 MHz (667MHz or 800MHz) clock speeds and achieves high-speed data transfer rates of up to 1066Mbps (1333 Mbps or 1600 Mbps). Prior to any access operation, the device CAS latency and burst / length / operation type must be programmed into the DIMM by address inputs A0-A13 and I/O inputs BA0, BA1, and BA2 are using for the mode register set cycle.

The DIMM uses serial presence-detect implemented via a serial 2,048-bit EEPROM using a standard IIC protocol. The first 128 bytes of serial PD data are programmed and locked during module assembly. The remaining 128 bytes are available for use by the customer.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Ordering Information

Part Number	Spe	ed		Organization	Leads	Power	Note
M2Y1G64CB88A9N-BE	533MHz (1.875ns@ CL = 7)	DDR3-1066	PC3-8500			1.5V	
M2Y1G64CB88A9N-CG	667MHz (1.500ns@ CL = 9)	DDR3-1333	PC3-10660	128Mx64	Gold		
M2Y1G64CB88A9N-DG	800 MHz(1.250ns@ CL = 9)	DDR3-1600	PC3-12800				
M2Y2G64CB8HA9N-BE	533MHz (1.875ns@ CL = 7)	DDR3-1066	PC3-8500				
M2Y2G64CB8HA9N-CG	667MHz (1.500ns@ CL = 9)	DDR3-1333	PC3-10660	256Mx64			
M2Y2G64CB8HA9N-DG	800 MHz(1.250ns@ CL = 9)	DDR3-1600	PC3-12800				

Pin Description

Pin Name	Description	Pin Name	Description
A0-A13	Address Inputs	SCL	Serial Presence Detect Clock Input
BA0-BA2	SDRAM Bank select	SDA	Serial Presence Detect Data input/output
RAS	Row Address Strobe	SA0-SA2	Serial Presence Detect Address Inputs
CAS	Column Address Strobe	V_{DD}	SDRAM core power supply
WE	Write Enable	V_{DDQ}	SDRAM I/O Driver power supply
S 0, S 1	Chip Selects	V_{REFDQ}	SDRAM I/O reference supply
CKE0-CKE1	Clock Enable	V_{REFCA}	SDRAM command/address reference supply
ODT0-ODT1	On die termination control lines	V_{SS}	Ground
DQ0-DQ63	Data input/output	V_{DDSPD}	Serial EEPROM positive power supply
DQS0-DQS7 DQS0-DQS7	SDRAM differential data strobes	NC	No Connect
DM0-DM7	Input Data Mask/High Data Strobes	V_{TT}	SDRAM I/O termination supply
CK0-CK1, CK0-CK1	Differential Clock Inputs	RESET	Set DRAMs to Know State
Note: CK1, CK1, S	i, OTD1 and CKE1 are used for 2GB module only	<i>'</i> .	

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Pinout

Pin	Front	Pin	Front	Pin	Front	Pin	Back	Pin	Back	Pin	Back
1	V_{REFDQ}	42	NC	82	DQ33	121	V_{SS}	162	NC	202	V_{SS}
2	V _{SS}	43	NC	83	□ □V _{SS} □ □	122	DQ4	163	V _{SS}	203	DM4
3	DQ0	44	V_{SS}	84	DQS4	123	DQ5	164	NC	204	NC
4	DQ1	45	NC	85	DQS4	124	V _{SS}	165	NC	205	Vss
5	V _{SS}	46	NC	86	V _{SS}	125	DM0	166	V _{SS}	206	DQ38
6	DQS0	47	V_{SS}	87	DQ34	126	NC	167	NC	207	DQ39
7	DQS0	48	NC	88	DQ35	127	V _{SS}	168	RESET	208	V _{SS}
8	V _{SS}		KEY	89	V _{SS}	128	DQ6		KEY	209	DQ44
9	DQ2	49	NC	90	DQ40	129	DQ7	169	CKE1/NC	210	DQ45
10	DQ3	50	CKE0	91	DQ41	130	V _{SS}	170	V_{DD}	211	V_{SS}
11	V _{SS}	51	V_{DD}	92	V _{SS}	131	DQ12	171	NC	212	DM5
12	DQ8	52	BA2	93	DQS5	132	DQ13	172	NC	213	NC
13	DQ9	53	NC	94	DQS5	133	V _{SS}	173	V_{DD}	214	V_{SS}
14	V _{SS}	54	V_{DD}	95	V _{SS}	134	DM1	174	A12 / BC	215	DQ46
15	DQS1	55	A11	96	DQ42	135	NC	175	A9	216	DQ47
16	DQS1	56	A7	97	DQ43	136	V _{SS}	176	V_{DD}	217	V_{SS}
17	V _{SS}	57	V_{DD}	98	V _{SS}	137	DQ14	177	A8	218	DQ52
18	DQ10	58	A5	99	DQ48	138	DQ15	178	A6	219	DQ53
19	DQ11	59	A4	100	DQ49	139	V _{SS}	179	V_{DD}	220	V_{SS}
20	V _{SS}	60	V_{DD}	101	V _{SS}	140	DQ20	180	A3	221	DM6
21	DQ16	61	A2	102	DQS6	141	DQ21	181	A1	222	NC
22	DQ17	62	V_{DD}	103	DQS6	142	V _{SS}	182	V_{DD}	223	V_{SS}
23	V _{SS}	63	CK1/NC	104	V _{SS}	143	DM2	183	V_{DD}	224	DQ54
24	DQS2	64	CK1/NC	105	DQ50	144	NC	184	CK0	225	DQ55
25	DQS2	65	V_{DD}	106	DQ51	145	V _{SS}	185	CK0	226	V_{SS}
26	V _{SS}	66	V_{DD}	107	V _{SS}	146	DQ22	186	VDD	227	DQ60
27	DQ18	67	V_{REFCA}	108	DQ56	147	DQ23	187	NC	228	DQ61
28	DQ19	68	NC	109	DQ57	148	V _{SS}	188	A0	229	V _{SS}
29	V _{SS}	69	V_{DD}	110	V _{SS}	149	DQ28	189	V_{DD}	230	DM7
30	DQ24	70	A10/AP	111	DQS7	150	DQ29	190	BA1	231	NC
31	DQ25	71	BA0	112	DQS7	151	V _{SS}	191	V_{DD}	232	V_{SS}
32	V _{SS}	72	V_{DD}	113	V _{SS}	152	DM3	192	RAS	233	DQ62
33	DQS3	73	WE	114	DQ58	153	NC	193	<u>80</u>	234	DQ63
34	DQS3	74	CAS	115	DQ59	154	V _{SS}	194	V_{DD}	235	V_{SS}
35	V _{SS}	75	V_{DD}	116	V _{SS}	155	DQ30	195	ODT0	236	V_{DDSPD}
36	DQ26	76	S1/NC	117	SA0	156	DQ31	196	A13	237	SA1
37	DQ27	77	ODT1/NC	118	SCL	157	V _{SS}	197	V_{DD}	238	SDA
38	V _{SS}	78	V_{DD}	119	SA2	158	NC	198	NC	239	V _{SS}
39	NC	79	NC	120	V _{TT}	159	NC	199	V _{SS}	240	V _{TT}
40	NC	80	V _{SS}			160	V _{SS}	200	DQ36		
41	V _{SS}	81	DQ32			161	NC	201	DQ37		

Note:

^{1.} NC = No Connect.

^{2.} Pin 63, 64, 76, 77 and 169 (CK1, CK1, SI, OTD1 and CKE1) are used for 2GB module only.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Input/Output Functional Description

input/Output Fu	IIICUOIIa	i Desci	iption
Symbol	Type	Polarity	Function
CK0-CK1 CK0-CK1	SSTL	Differential crossing	CK and $\overline{\text{CK}}$ are differential clock inputs. All the DDR3 SDRAM address/control inputs are sampled on the crossing of positive edge of CK and negative edge of $\overline{\text{CK}}$. Output (read) data is reference to the crossing of CK and $\overline{\text{CK}}$.
CKE0-CKE1	SSTL	Active High	Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode.
<u>\$0</u> -§1	SSTL	Active Low	Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks.
RAS, CAS, WE	SSTL	Active Low	$\overline{RAS}, \overline{CAS}, \overline{WE}$ (along with \overline{S}) define the command being entered.
V_{REFDQ}	Supply		Reference voltage for SSTL15 I/O inputs
V_{REFCA}	Supply		Reference voltage for SSTL15 command/address inputs
V_{DDQ}	Supply		Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity.
ODT0-ODT1	SSTL	Active High	When high, termination resistance is enabled for all DQ, DQS, \overline{DQS} , and DM pins, assuming this function is enabled in the Mode Register 1 (MR1).
BA0 – BA2	SSTL	-	Selects which SDRAM bank is to be active.
A0 – A13	SSTL	-	During a Bank Activate command cycle, Address input defines the row address (RA0-RA13). During a Read or Write command cycle, Address input defines the column address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with B0 and B1 to control which banks(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1, or BA2. If AP is low, BA0, BA1, and BA2 are used to define which bank to precahrge. A12 (\overline{BC}) is sampled during READ and WRITE commands to determine if burst chop (on-the –fly) will be performed (High, no burst chop; Low, burst chopped).
DQ0 – DQ63	SSTL	Active High	Data and Check Bit Input/Output pins.
VDD, VSS	Supply		Power and ground for the DDR3 SDRAM input buffers and core logic.
DQS0 - DQS7 DQS0 - DQS7	SSTL	Differential crossing	Data strobe for input and output data.
DM0 – DM7	Input	Active High	DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loadings.
SA0 – SA2		-	These signals are tied at the system planar to either Vss or V_{DDSPD} to configure the serial SPD EEPROM address range.
SDA		-	This bi-directional pin is used to transfer data into or out of the SPD EEPROM. A external resistor must be connected from the SDA bus line to VDD to act as a pull-up on the system board.
SCL		-	This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to V DD to act as a pull-up.
$V_{ extsf{DDSPD}}$	Supply		Power Supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable from 3.0V to 3.6V.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Functional Block Diagram

(1GB, 1 Rank, 128Mx8 DDR3 SDRAMs)

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Functional Block Diagram

(2GB, 2 Rank, 128Mx8 DDR3 SDRAMs)

CK0 → CK: SDRAMs D0-D7

CK1 → CK: SDRAMs D8-D15
CK0 → CK: SDRAMs D0-D7

CK1 → CK: SDRAMs D8-D15

→ SDA

Serial PD

SA1

SA2

WP_{A0}

SAO

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Serial Presence Detect -- Part 1 of 2 (1GB)

128Mx64 1 Rank UNBUFFERED DDR3 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.5V DDR3 SDRAMs with SPD

Byte	Description	SP	D Entry Va	lue		al PD Data I Hexadecima		Note
		-BE	-CG	-DG	-BE	-CG	-DG	
0	CRC range, EEPROM bytes, bytes used	Total	overs Bytes: SPD Bytes: Bytes Used	256,		92		
1	SPD revision		Revision 1.0)		10		
2	DRAM device type	D	DR3 SDRA	M		0B		
3	Module type (form factor)		UDIMM			02		
4	SDRAM Device density and banks	8	8 banks, 1Gl	0		02		
5	SDRAM device row and column count	14 re	ows, 10 colu	ımns		11		
6	Reserved		Undefined			00		
7	Module ranks and device DQ count		1 rank, 8 bits			01		
8	ECC tag and module memory Bus width	No	on ECC, 64b	oits		03		
9	Fine timebase dividend/divisor (in ps)		2.5ps			52		
10	Medium timebase dividend		1ns			01		
11	Medium timebase divisor		8ns			08		
12	Minimum SDRAM cycle time (tCKmin)(ns)	1.875	1.5	1.25	0F	0C	0A	
13	Reserved		Undefined			00		
14	CAS latencies supported	6,7,8	6,8,9	5,6,7,8,9,10	1C	34	7E	
15	CAS latencies supported		Undefined			00		
16	Minimum CAS latency time (tAAmin)(ns)	13.125	13.5	11.25	69	6C	5A	
17	Minimum write recovery time (tWRmin)	15ns		78				
18	Minimum CAS-to-CAS delay (tRCDmin)(ns)	13.125	13.5	11.25	69	6C	5A	
19	Minimum Row Active to Row Active delay (tRRDmin)(ns)	7.5		6	3C 30			
20	Minimum row Precharge delay (tRPmin)(ns)	13.125	13.5	11.25	69	6C	5A	
21	Upper nibble for tRAS and tRC		1,1			11		
22	Minimum Active-to-Precharge delay (tRASmin)(ns)	37.5	36	35	2C	20	18	
23	Minimum Active-to-Active/Refresh delay (tRCmin)(ns)	50.625	49.5	46.25	95	8C	72	
24	Minimum refresh recovery delay (tRFCmin) LSB	(Cor	nbo bytes 24	4,25)		70		
25	Minimum refresh recovery delay (tRFCmin) MSB		110ns			03		
26	Minimum internal Write-to-Read command delay (tWTRmin)		7.5ns			3C		
27	Minimum internal Read-to-Precharge command delay (tRTPmin)		7.5ns			3C		
28	Minimum four active window delay (tFAWmin) LSB	(Cor	nbo byte 28	, 29)	01	00)	
29	Minimum four active window delay (tFAWmin) MSB	37.5ns	3	0ns	2C	F)	
30	SDRAM device output drivers suported		ZQ / 6,RZQ / Off Mode Su			83		
31	SDRAM device thermal and refresh options	Extended Te	mperature F DDTS, PASF	Range, ASR, R,		8D		
32	Module thermal sensor	Non The	rmal Sensoi	Support		00		
33	SDRAM device type	Standar	d Monolithic	Device		00		
34-59	Reserved		Undefined					
60	Module height (nominal)	29 <	height ≦ 3	30 mm		0F		

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Serial Presence Detect -- Part 2 of 2 (1GB)

128Mx64 1 Rank UNBUFFERED DDR3 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.5V DDR3 SDRAMs with SPD

Byte	Description	SPD Entry Value			Serial (He		Note	
_	·	-BE	-CG	-DG	-BE	-CG	-DG	
61	Module thickness (Max)		< thickness < thickness			11		
62	Raw Card ID reference	Raw Card A			00			
63	DRAM address mapping edge connector		Undefined			00		
64-116	Reserved							
117-118	Module manufacture ID				830B			
119-125	Module information							
126-127	CRC				1944	CB62	D93C	
128-145	Module part number		Undefined					
146	Module die revision		Undefined			00		
147	Module PCB revision	Na	nya Technol	ogy		00		
148-149	DRAM device manufacturer ID				830B			
150-175	Manufacturer reserved		Undefined					
176-255	Customer reserved							

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Serial Presence Detect -- Part 1 of 2 (2GB)

256Mx64 2 Ranks UNBUFFERED DDR3 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.5V DDR3 SDRAMs with SPD

Byte	Description	SP	D Entry Va	lue		PD Data E xadecima		Note
		-BE	-CG	-DG	-BE	-CG	-DG	
0	CRC range, EEPROM bytes, bytes used	Total	overs Bytes SPD Bytes Bytes Used	: 256,		92		
1	SPD revision		Revision 1.0)		10		
2	DRAM device type	D	DR3 SDRA	М		0B		
3	Module type (form factor)		UDIMM			02		
4	SDRAM Device density and banks	8	3 banks, 1G	b		02		
5	SDRAM device row and column count	14 r	ows, 10 colu	ımns		11		
6	Reserved		Undefined			00		
7	Module ranks and device DQ count		ranks, 8 bit			09		
8	ECC tag and module memory Bus width	No	on ECC, 64b	oits		03		
9	Fine timebase dividend/divisor (in ps)		2.5ps			52		
10	Medium timebase dividend		1ns			01		
11	Medium timebase divisor		8ns			08		
12	Minimum SDRAM cycle time (tCKmin)(ns)	1.875	1.5	1.25	0F	0C	0A	
13	Reserved		Undefined			00		
14	CAS latencies supported	6,7,8	6,8,9	5,6,7,8,9,10	1C	34	7E	
15	CAS latencies supported		Undefined			00		
16	Minimum CAS latency time (tAAmin)(ns)	13.125	13.5	11.25	69	6C	5A	
17	Minimum write recovery time (tWRmin)		15ns			78		
18	Minimum CAS-to-CAS delay (tRCDmin)(ns)	13.125	13.5	11.25	69	6C	5A	
19	Minimum Row Active to Row Active delay (tRRDmin)(ns)	7.5		6	3C 30			
20	Minimum row Precharge delay (tRPmin)(ns)	13.125	13.5	11.25	69	6C	5A	
21	Upper nibble for tRAS and tRC		1,1			11		
22	Minimum Active-to-Precharge delay (tRASmin)(ns)	37.5	36	35	2C	20	18	
23	Minimum Active-to-Active/Refresh delay (tRCmin)(ns)	50.625	49.5	46.25	95	8C	72	
24	Minimum refresh recovery delay (tRFCmin) LSB	(Cor	nbo bytes 2	4,25)		70		
25	Minimum refresh recovery delay (tRFCmin) MSB		110ns			03		
26	Minimum internal Write-to-Read command delay (tWTRmin)		7.5ns			3C		
27	Minimum internal Read-to-Precharge command delay (tRTPmin)		7.5ns			3C		
28	Minimum four active window delay (tFAWmin) LSB	(Cor	nbo byte 28	, 29)	01	0	0	
29	Minimum four active window delay (tFAWmin) MSB	37.5ns	3	0ns	2C	F	0	
30	SDRAM device output drivers suported	DLL-(ZQ / 6,RZQ / Off Mode Su	ipport,		83		
31	SDRAM device thermal and refresh options		mperature I DDTS, PASF	Range, ASR, R,	8D			
32	Module thermal sensor	Non The	rmal Senso	r Support		00		
33	SDRAM device type	Standar	d Monolithic	Device		00		
34-59	Reserved		Undefined					
60	Module height (nominal)	29 <	height ≦	30 mm		0F		

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Serial Presence Detect -- Part 2 of 2 (2GB)

256Mx64 2 Ranks UNBUFFERED DDR3 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.5V DDR3 SDRAMs with SPD

Byte	Description	SPD Entry Value					Note	
_	·	-BE	-CG	-DG	Serial PD Data Entry (Hexadecimal)	-DG		
61	Module thickness (Max)		thickness ≤ thickness ≤		11			
62	Raw Card ID reference	R	aw Card B			01		
63	DRAM address mapping edge connector	ι	Jndefined			01		
64-116	Reserved							
117-118	Module manufacture ID				830B			
119-125	Module information							
126-127	CRC				90D1	42F7	50A9	
128-145	Module part number	ι	Jndefined					
146	Module die revision	ι	Jndefined			00		
147	Module PCB revision	Nany	⁄a Technoloថ	ЭУ		00		
148-149	DRAM device manufacturer ID				830B			
150-175	Manufacturer reserved	ι	Jndefined					
176-255	Customer reserved							

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units
V _{IN} , V _{OUT}	Voltage on I/O pins relative to Vss	-0.4 to 1.975	V
V_{DD}	Voltage on VDD supply relative to Vss	-0.4 to 1.975	V
V_{DDQ}	Voltage on VDDQ supply relative to Vss	-0.4 to 1.975	V

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics and Operating Conditions

 $(T_{CASE} = 0 \, ^{\circ}\text{C} \sim 85 \, ^{\circ}\text{C}; \, V_{DDQ} = 1.5\text{V} \pm 0.075\text{V}; \, V_{DD} = 1.5\text{V} \pm 0.075\text{V}, \, \text{See AC Characteristics})$

Symbol	Parameter	Min	Max	Units	Notes
VDD	Supply Voltage	1.425	1.575	V	1
VDDQ	I/O Supply Voltage	1.425	1.575	V	1
VREF	I/O Reference Voltage	0.49VDDQ	0.51Vddq	V	1, 2

Note:

- 1. Inputs are not recognized as valid until VREF stabilizes.
- 2. VREF is expected to be equal to 0.5 V DDQ of the transmitting device, and to track variations in the DC level of the same. Peak-to-peak noise on VREF may not exceed 2% of the DC value.

Environmental Parameters

Symbol	Parameter	Rating	Units	Note
T _{OPR}	Module Operating Temperature Range (ambient)	0 to 55	°C	3
H _{OPR}	Operating Humidity (relative)	10 to 90	%	1
T _{STG}	Storage Temperature (Plastic)	-50 to 100	°C	1
H _{STG}	Storage Humidity (without condensation)	5 to 95	%	1
P _{BAR}	Barometric Pressure (operating & storage)	105 to 69	K Pascal	1,2

Note:

- Stresses greater than those listed may cause permanent damage to the device. This is a tress rating only, and device
 functional operation at or above the conditions indicated is not implied. Exposure to absolute maximum rating conditions for
 extended periods may affect reliability.
- 2. Up to 9850 ft
- 3. The component maximum case temperature shall not exceed the value specified in the component spec.

Single Ended AC and DC Input Levels

		DDR3-1066, DDR3-133			
Symbol	Parameter	Parameter Min.		Units	Note
VIH (DC)	DC input logic high	Vref + 0.100	VDD	V	1
VIL (DC)	DC input logic low	VSS	Vref – 0.100	V	1
VIH (AC)	AC input logic high	Vref + 0.175		V	1
VIL (AC)	AC input logic low	-	Vref – 0.175	V	1
VrefDQ(DC)	Reference Voltage for DQ, DM inputs	0.49 * VDD	0.51 * VDD	V	2,3
VrefCA(DC)	Reference Voltage for ADD, CMD inputs	0.49 * VDD	0.51 * VDD	V	2,3

Note:

- 1. For DQ and DM, Vref = VrefDQ. For input only pins except RESET, Vref = VrefCA.
- 2. The AC peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than +/- 1% VDD.
- For reference: approx. VDD/2 +/- 15mV.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Operating, Standby, and Refresh Currents

 $T_{CASE} = 0$ °C ~ 85 °C; $V_{DDQ} = V_{DD} = 1.5V \pm 0.075V$ (1GB, 1 Rank, base on 128Mx8 DDR3 SDRAMs)

Symbol	Parameter/Condition	DDR3-1066	DDR3-1333	DDR3-1600	Unit
I DD0	Operating Current: one bank activate/Precharge	968	1056	1056	mA
I DD1	Operating Current: one bank activate/Read/Precharge	1100	1188	1276	mA
I DD2P(0)	Precharge Power-Down Current Fast Exit-MR0 bit A12=0	141	141	141	mA
I DD2P(1)	Precharge Power Down Current Slow Exit-MR0 bit A12=1	264	264	264	mA
I DD2N	Precharge Standby Current	572	616	660	mA
I DD2Q	Precharge Quiet Standby current	484	528	572	mA
I DD3P	Active Power-Down Current Always Fast Exit	352	396	440	mA
I DD3N	Active Standby Current	572	616	660	mA
I DD4W	Operating Current: Burst Write	1408	1760	2024	mA
I DD4R	Operating Current: Burst Read	1408	1760	2200	mA
I DD5B	Burst Refresh Current	2200	2376	2552	mA
I DD6	Self-Refresh Current Normal Temperature Range (0-85C)	123	123	123	mA
I DD7	All Bank Interleave Read Current 2640 3168 3432				mA
Note: Mo	dule IDD was calculated from component IDD. It may differ fror	n the actual measur	ement.		

Operating, Standby, and Refresh Currents

 $T_{CASE} = 0$ °C ~ 85 °C; $V_{DDQ} = V_{DD} = 1.5V \pm 0.075V$ (2GB, 2 Ranks, base on 128Mx8 DDR3 SDRAMs)

Symbol	Parameter/Condition	DDR3-1066	DDR3-1333	DDR3-1600	Unit
I DD0	Operating Current: one bank activate/Precharge	1540	1672	1716	mA
I DD1	Operating Current: one bank activate/Read/Precharge	1672	1804	1936	mA
I DD2P(0)	Precharge Power-Down Current Fast Exit-MR0 bit A12=0	282	282	282	mA
I DD2P(1)	Precharge Power Down Current Slow Exit-MR0 bit A12=1	528	528	528	mA
I DD2N	Precharge Standby Current	1144	1232	1320	mA
I DD2Q	Precharge Quiet Standby current	968	1056	1144	mA
I DD3P	Active Power-Down Current Always Fast Exit	704	792	880	mA
I DD3N	Active Standby Current	1144	1232	1320	mA
I DD4W	Operating Current: Burst Write	1980	2376	2684	mA
I DD4R	Operating Current: Burst Read	1980	2376	2860	mA
I DD5B	Burst Refresh Current	2772	2992	3212	mA
I DD6	Self-Refresh Current Normal Temperature Range (0-85C)	246	246	246	mA
I DD7	All Bank Interleave Read Current	3212	3784	4092	mA
NI-1- NA-	dela IDD de la calculata di francia con la IDD. Il conse diffici francia				

Note: Module IDD was calculated from component IDD. It may differ from the actual measurement.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Speed Bins

	Speed Bin		DDR3-10	066(-BE)	DDR3-1	333(-CF)	DDR3-13	333 (-CG)	DDR3-1	600(-DG)	DDR3-1	600(-DH)	
	CL - nRCD - nl	₹P	7-7	7-7	8-8-8		9-9-9		9-9-9		10-10-10		Unit
Р	arameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Internal i	read command		13.125	20	12	20	13.5	20	11.25	20	12.5	20	
o first da	ata	tAA	13.123	20	12	20	13.3	20	11.23	20	12.5	20	ns
ACT to i	nternal read or	4DCD	13.125		12		13.5		11.25		12.5		
write del	ay time	tRCD	10.120		12	-							ns
PRE con	nmand period	tRP	13.125		12		13.5		11.25		12.5		ns
	CT or REF d period	tRC	50.625		48		49.5		46.25		47.5		ns
ACT to F	PRE command	tRAS	37.5	9*tREFI	36	9*tREFI	36	9*tREFI	35	9*tREFI	35	9*tREFI	ns
	CWL=5	tCK(AVG)	Rese	erved	2.5	3.3	Res	erved	2.5	3.3	2.5	3.3	ns
CL = 5	CWL=6, 7, 8	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	2.5	3.3	2.5	3.3	ns
CL = 6	CWL=6	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	1.875	<2.5	Rese	erved	ns
	CWL=7, 8	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
	CWL=5	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
a	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	Res	erved	1.875	<2.5	1.875	<2.5	ns
CL = 7	CWL=7	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
	CWL=8	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
	CWL=5	tCK(AVG)	Rese	erved	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
01 0	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875	<2.5	ns
CL = 8	CWL=7	tCK(AVG)	-		1.5	<1.875	Res	erved	1.5	<1.875	Rese	erved	ns
	CWL=8	tCK(AVG)	_		Rese	erved	Res	erved	Res	erved	Rese	erved	ns
	CWL=5, 6	tCK(AVG)	-	-	Rese	erved	Res	erved	Res	erved	Rese	erved	ns
CL = 9	CWL=7	tCK(AVG)	-	-	1.5	<1.875	1.5	<1.875	1.5	<1.875	1.5	<1.875	ns
	CWL=8	tCK(AVG)	-		Rese	erved	Res	erved	1.25	<1.5	Rese	erved	ns
	CWL=5, 6	tCK(AVG)	-			erved		erved	Res	erved	Rese	erved	ns
CL = 10	CWL=7	tCK(AVG)	-		1.5 (Opt	<1.875 ional)	1.5 (Opt	<1.875 ional)	1.5	<1.875	1.5	<1.875	ns
	CWL=8	tCK(AVG)	_	-					1.25	<1.5	1.25	<1.5	ns
	CWL=5, 6, 7	tCK(AVG)	_		-				Res	erved	Rese	erved	ns
CL = 11	CWL=8	tCK(AVG)	-		-				1.25 (Opt	<1.5 ional)	1.25 (Opti	<1.5 onal)	ns
Supporte	ed CL settings	1	6,7	7,8	5,6,7,8	3,9,(10)	6,8,9	9,(10)		9,10,(11)		9,10,(11)	nCk
	ed CWL Settings		5	,6	5,	6,7	5,	6,7	5,6	,7,8	5,6	,7,8	nCk

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

AC Timing Specifications for DDR3 SDRAM Devices Used on Module

		DDR3	3-1066	DDR	3-1333	
Parameter	Symbol	Min	Max	Min	Max	Units
Clock Timing					'	
Minimum Clock Cycle time (DLL off mode)	tCK(DLL_O	8	-	8		ns
Average high pulse width	FF) tCH(avg)	0.47	0.53	0.47	0.53	tCK(av
Average low pulse width	tCL(avg)	0.47 tCK(avg)min	0.53 tCK(avg)max	0.47 tCK(avg)min	0.53 tCK(avg)max	tCK(avg
Absolute Clock Period	tCK(abs)	+tJIT(per)min	+tJIT(per)max	+tJIT(per)min	+tJIT(per)max	ps
Absolute clock high pulse width	tCH(abs)	0.43	-	0.43	-	ps
Absolute clock low pulse width	tCL(abs)	0.43	-	0.43	-	ps
Clock Period Jitter	tJIT(per)	-90	90	-80	80	ps
Clock Period Jitter during DLL locking period	tJIT(per,lck)	-80	80	-70	70	ps
Cycle to Cycle Period Jitter	tJIT(cc)	1	80	11	60	ps
Cycle to Cycle Period Jitter during DLL locking period	tJIT(cc,lck)	1	60	1-	40	ps
Duty Cycle Jitter	tJIT(duty)	-	-	-	-	ps
Cumulative error across 2 cycles	tERR(2per)	-132	132	-118	118	ps
Cumulative error across 3 cycles	tERR(3per)	-157	157	-140	140	ps
Cumulative error across 4 cycles	tERR(4per)	-175	175	-155	155	ps
Cumulative error across 5 cycles	tERR(5per)	-188	188	-168	168	ps
Cumulative error across 6 cycles	tERR(6per)	-200	200	-177	177	ps
Cumulative error across 7 cycles	tERR(7per)	-209	209	-186	186	ps
Cumulative error across 8 cycles	tERR(8per)	-217	217	-193	193	
•		-217	224			ps
Cumulative error across 9 cycles	tERR(9per)			-200	200	ps
Cumulative error across 10 cycles	tERR(10per)	-231 tERR(npr)min	231 tERR(npr)max	-205 tERR(npr)min	205 tERR(npr)max	ps
Cumulative error across n=11~50 cycles	tERR(nper)	=(1+0.68ln(n))*tJIT (per)min	=(1+0.68ln(n))*tJIT (per)max	=(1+0.68ln(n))*tJIT (per)min	=(1+0.68ln(n))*tJIT (per)max	ps
Data Timing						
DQS, DQS to DQ skew, per group, per access	tDQSQ	-	150		125	ps
DQ output hold time from DQS, DQS	tQH	0.38	-	0.38		tCK(avg
DQ low-impedance time from CK, CK	tLZ(DQ)	-600	300	-500	250	ps
DQ high-impedance time from CK, CK	tHZ(DQ)	-	300		250	ps
Data setup time to DQS, DQS reference to Vih(ac) /	tDS(base)	25		TBD		ps
Vil(ac) levels Data hold time to DQS, DQS reference to Vih(ac) / Vil(ac)	tDH(base)	100		TBD		
levels	(Di i(base)	100		TBD		ps
Data Strobe Timing		I	I	I	I	
DQS, DQS differential READ Preamble	tRPRE	0.9	-	0.9	-	tCK(avg
DQS, DQS differential READ Postamble	tRPST	0.3	-	0.3	-	tCK(avg
DQS, DQS differential output high time	tQSH	0.38	-	0.40		tCK(avg
DQS, DQS differential output low time	tQSL	0.38	-	0.40		tCK(avg
DQS, DQS differential WRITE Preamble	tWPRE	0.9	-	0.9		tCK(avg
DQS, DQS differential WRITE Postamble	tWPST	0.3	-	0.3		tCK(avg
DQS, $\overline{\text{DQS}}$ rising dege output access time from rising CK, $\overline{\text{CK}}$	tDQSCK	-300	300	-255	255	ps
DQS, DQS low-impedance time (Reference from RL-1)	tLZ(DQS)	-600	300	-500	250	ps
DQS, DQS high-impedance time (Reference from RL +	tHZ(DQS)	_	300		250	ps
BL/2) DQS, DQS differential input low pulse width	tDQSL	0.4	0.6	0.4	0.6	tCK(av
DQS, DQS differential input low pulse width	tDQSL	0.4	0.6	0.4	0.6	tCK(avg
DQS, DQS rising edge to CK, CK rising edge	tDQSS	-0.25	0.25	-0.25	0.25	tCK(avg
DQS, DQS falling edge setup time to CK, CK rising edge	tDSS	0.2	-	0.2	-	tCK(avg
DQS, DQS falling edge hold time to CK, CK rising edge	tDSH	0.2	-	0.2	-	tCK(av

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

		DDR3-1066		DDR3-1333		
Parameter	Symbol	Min	Max	Min	Max	Units
Command and Address Timing	-			'		
DLL locking time	tDLLK	512	-	512	-	nCK
Internal READ Command to PRECHARGE Command delay	tRTP	max(4nCK, 7.5ns)	-	max(4nCK, 7.5ns)	-	
Delay from start of internal write transaction to internal read command	tWTR	max(4nCK, 7.5ns)	-	max(4nCK, 7.5ns)	-	
WRITE recovery time	tWR	15	-	15	-	ns
Mode Register Set command cycle time	tMRD	4	-	4	-	nCK
Mode Register Set command update delay	tMOD	max(12nCK, 15ns)	-	max(12nCK, 15ns)	-	
CAS to CAS command delay	tCCD	4	-	4	-	nCK
Auto precharge write recovery + precharge time	tDAL(min)		WR + roundup	(tRP/tCK(avg))		nCK
Multi-Purpose Register Recovery Time	tMPRR	1	-	1	-	
ACTIVE to ACTIVE command period for 1KB page size	tRRD	max(4nCK, 7.5ns)	-	max(4nCK, 6ns)	-	
Four activate window for 1KB page size	tFAW	37.5	-	30	-	ns
Command and Address setup time to CK, CK referenced to Vih(ac) / Vil(ac) levels		125	-	65	-	ps
Command and Address hold time to CK, CK referenced to Vih(ac) / Vil(ac) levels	tlH(base)	200	-	140	-	ps
Calibrating Timing	ı					1
Power-up and RESET calibration time	tZQinit	512	-	512	-	nCK
Normal operation Full calibration time	tZQoper	256	-	256		nCK
Normal operation Short calibration time	tZQCS	64	_	64	_	nCK
Reset Timing	iEGOO	O1		01		nore
Exit Reset from CKE HIGH to a valid command	tXPR	max(5nCK, tRFC(min) + 10ns)	-	max(5nCK, tRFC(min) + 10ns)	-	
Self Refresh Timings						
Exit Self Refresh to commands not requiring a locked DLL	tXS	max(5nCK, tRFC(min) + 10ns)	-	max(5nCK, tRFC(min) + 10ns)	-	
Exit Self Refresh to commands requiring a locked DLL	tXSDLL	tDLLK(min)	-	tDLLK(min)	-	nCK
Minimum CKE low width for Self Refresh entry to exit timing	tCKESR	tCKE(min) + 1nCK	-	tCKE(min) + 1nCK	-	
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)	tCKSRE	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-	
Valid Clock Requirement after Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit	tCKSRX	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-	
Power Down Timings						
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	max(3nCK, 7.5ns)	-	max(3nCK, 6ns)	-	
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL	tXPDLL	max(10nCK, 24ns)	-	max(10nCK, 24ns)	-	
CKE minimum pulse width	tCKE	max(3nCK, 5.625ns)	-	max(3nCK, 5.625ns)	-	
Command pass disable delay	tCPDED	1	-	1	-	nCK
Power Down Entry to Exit Timing	tPD	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	
Timing of ACT command to Power Down entry	tACTPDEN	1	-	1	-	nCK
Timing of PRE or PREA command to Power Down entry	tPRPDEN	1	-	1	-	nCK
Timing of RD/RDA command to Power Down entry	tRDPDEN	RL+4+1	-	RL+4+1	-	nCK
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRPDEN	WL+4+(tWR/tCK(a vg))	-	WL+4+(tWR/tCK(a vg))	-	nCK
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRAPDEN	WL+4+WR+1	-	WL+4+WR+1	-	nCK
Timing of WR command to Power Down entry (BC4MRS)	tWRPDEN	WL+2+(tWR/tCK(a vg))	-	WL+2+(tWR/tCK(a vg))	-	nCK
Timing of WRA command to Power Down entry (BC4MRS)	tWRAPDEN	WL+2+WR+1	-	WL+2+WR+1	-	nCK
Timing of REF command to Power down entry	tREFPDEN	1	-	1	-	nCK
Timing of MRS command to Power Down entry	tMRSPDEN	tMOD(min)	-	tMOD(min)	-	

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

		DDR:	3-1066	DDR3	-1333	
Parameter	Symbol Min		Max	Min	Max	Units
ODT Timings						
ODT high time without write command or with write command and BC4	ODTH4	4	-	4	-	nCK
ODT high time with Write command and BL8	ODTH8	6	-	6	-	nCK
Asynchronous RTT turn-on delay (Power - Down with DLL frozen)	tAONPD	1	9	1	9	ns
Asynchronous RTT turn-off delay (Power – Down with DLL frozen)	tAOFPD	1	9	1	9	ns
RTT turn-on	tAON	-300	300	-250	250	ps
RTT_Nom and RTT_WR turn-off time from ODTLoff reference	tAOF	0.3	0.7	0.3	0.7	tCK(avg)
RTT dynamic change skew	tADC	0.3	0.7	0.3	0.7	tCK(avg)
Write Leveling Timings				'		
First DQS/DQS rising edge after write leveling mode is programmed	tWLMRD	40	-	40	-	nCK
DQS/DQS delay after write leveling mode is programmed	tWLDQSEN	25	-	25	-	nCK
Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing	tWLS	245	-	195	-	ps
Write leveling setup hold from rising CK, CK crossing to rising DQS, DQS crossing	tWLH	245	-	195	-	ps
Write leveling output delay	tWLO	0	9	0	9	ns
Write leveling output error	tWLOE	0	2	0	2	ns

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

AC Timing Specifications for DDR3 SDRAM Devices Used on Module

DDR3-1600						
Parameter	Symbol	Min	Max	Units		
Clock Timing	ı					
Minimum Clock Cycle time (DLL off mode)	tCK(DLL_OFF)	8	-	ns		
Average high pulse width	tCH(avg)	0.47	0.53	tCK(avg)		
Average low pulse width	tCL(avg)	0.47	0.53	tCK(avg)		
Absolute Clock Period	tCK(abs)	tCK(avg)min + tJIT(per)min	tCK(avg)max +tJIT(per)max	ps		
Absolute clock high pulse width	tCH(abs)	0.43	-	ps		
Absolute clock low pulse width	tCL(abs)	0.43	-	ps		
Clock Period Jitter	tJIT(per)	-70	70	ps		
Clock Period Jitter during DLL locking period	tJIT(per,lck)	-60	60	ps		
Cycle to Cycle Period Jitter	tJIT(cc)	14	40	ps		
Cycle to Cycle Period Jitter during DLL locking period	tJIT(cc,lck)	12	20	ps		
Duty Cycle Jitter	tJIT(duty)	-	-	ps		
Cumulative error across 2 cycles	tERR(2per)	-103	103	ps		
Cumulative error across 3 cycles	tERR(3per)	-122	122	ps		
Cumulative error across 4 cycles	tERR(4per)	-136	136	ps		
Cumulative error across 5 cycles	tERR(5per)	-147	147	ps		
Cumulative error across 6 cycles	tERR(6per)	-155	155	ps		
Cumulative error across 7 cycles	tERR(7per)	-163	163	ps		
Cumulative error across 8 cycles	tERR(8per)	-169	169	ps		
Cumulative error across 9 cycles	tERR(9per)	-175	175	ps		
Cumulative error across 10 cycles	tERR(10per)	-180	180	ps		
Cumulative error across n=11~50 cycles	tERR(nper)	tERR(npr)min =(1+	tERR(npr)max =(1+	ps		
Data Timing	, , ,	0.68ln(n))*tJIT(per)min	0.68ln(n))*tJIT(per)max	•		
DQS, DQS to DQ skew, per group, per access	tDQSQ	-	100	ps		
DQ output hold time from DQS, DQS	tQH	0.38	-	tCK(avg		
DQ low-impedance time from CK, CK	tLZ(DQ)	-450	225	ps		
DQ high-impedance time from CK, CK	tHZ(DQ)	-	225	ps		
Data setup time to DQS, DQS reference to Vih(ac) / Vil(ac) levels	tDS(base)	TBD		ps		
Data hold time to DQS, DQS reference to Vih(ac) / Vil(ac) levels	tDH(base)	TBD		ps		
Data Strobe Timing		I				
DQS, DQS differential READ Preamble	tRPRE	0.9	-	tCK(avg		
DQS, DQS differential READ Postamble	tRPST	0.3	-	tCK(avg		
DQS, DQS differential output high time	tQSH	0.40	-	tCK(avg		
DQS, DQS differential output low time	tQSL	0.40	-	tCK(avg		
DQS, DQS differential WRITE Preamble	tWPRE	0.9	-	tCK(avg		
DQS, DQS differential WRITE Postamble	tWPST	0.3	-	tCK(avg		
DQS, DQS rising dege output access time from rising CK, CK	tDQSCK	-225	225	ps		
DQS, DQS low-impedance time (Reference from RL-1)	tLZ(DQS)	-450	225	ps		
DQS, DQS high-impedance time (Reference from RL + BL/2)	tHZ(DQS)	-	225	ps		
DQS, DQS differential input low pulse width	tDQSL	0.4	0.6	tCK(avg		
DQS, DQS differential input high pulse width	tDQSH	0.4	0.6	tCK(avg		
DQS, DQS rising edge to CK, CK rising edge	tDQSS	-0.25	0.25	tCK(avg		
DQS, DQS falling edge setup time to CK, CK rising edge	tDSS	0.2	-	tCK(avg)		
DQS, DQS falling edge hold time to CK, CK rising edge	tDSH	0.2	-	tCK(avg)		

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

		DDR3-		
Parameter	Symbol	Min	Max	Units
Command and Address Timing				
DLL locking time	tDLLK	512	-	nCK
Internal READ Command to PRECHARGE Command delay	tRTP	max(4nCK, 7.5ns)	-	
Delay from start of internal write transaction to internal read command	tWTR	max(4nCK, 7.5ns)	-	
WRITE recovery time	tWR	15	-	ns
Mode Register Set command cycle time	tMRD	4	-	nCK
Mode Register Set command update delay	tMOD	max(12nCK, 15ns)	-	
CAS to CAS command delay	tCCD	4	-	nCK
Auto precharge write recovery + precharge time	tDAL(min)	WR + roundup ((tRP/tCK(avg))	nCK
Multi-Purpose Register Recovery Time	tMPRR	1	-	
ACTIVE to ACTIVE command period for 1KB page size	tRRD	max(4nCK, 6ns)	-	
Four activate window for 2KB page size	tFAW	30	-	ns
Command and Address setup time to CK, CK referenced to Vih(ac) / Vil(ac) levels	tIS(base)	TBD	-	ps
Command and Address hold time to CK, $\overline{\text{CK}}$ referenced to Vih(ac) / Vil(ac) levels	tIH(base)	TBD	-	ps
Calibrating Timing				
Power-up and RESET calibration time	tZQinit	512	-	nCK
Normal operation Full calibration time	tZQoper	256	-	nCK
Normal operation Short calibration time	tZQCS	64	-	nCK
Reset Timing				
Exit Reset from CKE HIGH to a valid command	tXPR	max(5nCK, tRFC(min) + 10ns)	-	
Self Refresh Timings		,		
Exit Self Refresh to commands not requiring a locked DLL	tXS	max(5nCK, tRFC(min) + 10ns)	-	
Exit Self Refresh to commands requiring a locked DLL	tXSDLL	tDLLK(min)	-	nCK
Minimum CKE low width for Self Refresh entry to exit timing	tCKESR	tCKE(min) + 1nCK	-	
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)	tCKSRE	max(5nCK, 10ns)	-	
Valid Clock Requirement after Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit	tCKSRX	max(5nCK, 10ns)	-	
Power Down Timings				
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	max(3nCK, 6ns)	-	
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL	tXPDLL	max(10nCK, 24ns)	-	
CKE minimum pulse width	tCKE	max(3nCK, 5ns)	-	
Command pass disable delay	tCPDED	1	<u>-</u>	nCK
Power Down Entry to Exit Timing	tPD	tCKE(min)	9*tREFI	
Timing of ACT command to Power Down entry	tACTPDEN	1	-	nCK
Timing of PRE or PREA command to Power Down entry	tPRPDEN	1	-	nCK
Timing of RD/RDA command to Power Down entry	tRDPDEN	RL+4+1	-	nCK
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRPDEN	WL+4+(tWR/tCK(avg))	-	nCK
BC401F) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRAPDEN	WL+4+WR+1	-	nCK
Timing of WR command to Power Down entry (BC4MRS)	tWRPDEN	WL+2+(tWR/tCK(avg))	-	nCK
Timing of WRA command to Power Down entry (BC4MRS)	tWRAPDEN	WL+2+WR+1	-	nCK
Timing of REF command to Power down entry	tREFPDEN	1	-	nCK
Timing of MRS command to Power Down entry	tMRSPDEN	tMOD(min)		

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

		DDR3	3-1600	
Parameter	Symbol	Min	Max	Units
ODT Timings				
ODT high time without write command or with write command and BC4	ODTH4	4	-	nCK
ODT high time with Write command and BL8	ODTH8	6	-	nCK
Asynchronous RTT turn-on delay (Power - Down with DLL frozen)	tAONPD	1	9	ns
Asynchronous RTT turn-off delay (Power – Down with DLL frozen)	tAOFPD	1	9	ns
RTT turn-on	tAON	-225	225	ps
RTT_Nom and RTT_WR turn-off time from ODTLoff reference	tAOF	0.3	0.7	tCK(avg)
RTT dynamic change skew	tADC	0.3	0.7	tCK(avg)
Write Leveling Timings				
First DQS/DQS rising edge after write leveling mode is programmed	tWLMRD	40	-	nCK
DQS/DQS delay after write leveling mode is programmed	tWLDQSEN	25	-	nCK
Write leveling setup time from rising CK, $\overline{\text{CK}}$ crossing to rising DQS, $\overline{\text{DQS}}$ crossing	tWLS	TBD	-	ps
Write leveling setup hold from rising CK, CK crossing to rising DQS, DQS crossing	tWLH	TBD	-	ps
Write leveling output delay	tWLO	0	7.5	ns
Write leveling output error	tWLOE	0	2	ns

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Package Dimensions

(1GB, 1 Rank, 128Mx8 DDR3 SDRAMs)

0.80+/- 0.05

1. 00 Pitch

Units: Millimeters

1.50 +/- 0.10

1GB: 128M x 64 / 2GB: 256M x 64 **Unbuffered DDR3 SDRAM DIMM**

Package Dimensions

(1GB, 1 Rank, Heat Spreader, 128Mx8 DDR3 SDRAMs)

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Package Dimensions

(2GB, 2 Ranks, 128Mx8 DDR3 SDRAMs)

Offits. Millimeters

1GB: 128M x 64 / 2GB: 256M x 64 **Unbuffered DDR3 SDRAM DIMM**

Package Dimensions

(2GB, 2 Ranks, Heat Spreader, 128Mx8 DDR3 SDRAMs)

Units: Millimeters

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR3 SDRAM DIMM

Revision Log

Rev	Date	Modification
1.0	11/2008	Official Release