The exam is closed book; students are permitted to prepare one 4x6 notecard of formulas, notes, etc. that can be used during the exam. A calculator is permitted but not necessary for the exam. Do 4 out of the 5 problems (20 points each, 80 points total). Clearly indicate the problem that you are omitting; if it is not clear, then the first 4 problems will be graded.

Problem 1. (20 points) Suppose X is a random variable with probability density function (pdf)

$$f(x|\theta) = \begin{cases} \frac{\theta - 1}{x^{\theta}} & \text{for } x > 1\\ 0 & \text{otherwise} \end{cases}$$

where $\theta > 1$.

(a - 10 pts) Show that this family of pdfs is an exponential family.

(b - 10 pts) Find $E[\log X]$.

Problem 2. (20 points) Suppose that the distribution of X, conditional on U = u, is Bernoulli(u) with probability mass function

$$P(X = x | U = u) = \begin{cases} u^x (1 - u)^{1 - x} & \text{if } x \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases},$$

and that the marginal distribution of U is uniform on the interval $(0, \frac{1}{2})$.

(a - 10 pts) Find the marginal distribution of X.

(b - 10 pts) Compute Cov(X, U), the covariance of X and U.

Problem 3. (20 points) Let X_1 and X_2 be independent uniform random variables on the interval (0,1). (a - 10 pts) Find the joint probability density function (pdf) of $X_{(1)}$ and $X_{(2)}$ where $X_{(1)} = \min\{X_1, X_2\}$ and $X_{(2)} = \max\{X_1, X_2\}$.

(b - 10 pts) Let $V = \frac{X_{(1)}}{X_{(2)}}$ and $W = X_{(2)}$. Show that V and W are independent.

Problem 4. (20 points) Suppose that Y_i , i = 1, ..., 5 are independent Normal random variables with mean 0 and variance 2.

(a - 10 pts) Compute
$$P(Y_1 + Y_2 > 1 \text{ and } Y_3^2 + Y_4^2 + Y_5^2 > 5)$$
.

(b - 10 pts) Let
$$\bar{Y} = \frac{Y_1 + Y_2 + Y_3 + Y_4 + Y_5}{5}$$
. Compute $P\left(\sqrt{5} \ \bar{Y} < \sqrt{\sum_{i=1}^{5} (Y_i - \bar{Y})^2}\right)$.

Use the standard normal, χ^2 , and/or t tables attached to this exam.

Problem 5. (20 points)

(a - 6 pts) Let X be a Poisson random variable with mean $\lambda = 4$ having probability mass function

$$P(X = x) = \begin{cases} \frac{1}{x!} 4^x e^{-4} & \text{if } x = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Compute $E[X^2 - X]$ (or equivalently E[X(X - 1)]).

(b - 6 pts) Suppose that X_1, \ldots, X_n are independent Poisson random variables with mean 4, and let \bar{X}_n denote the sample mean of this random sample of size n. For what real numbers a and b does $\frac{\sqrt{n}(\bar{X}-a)}{b}$ converge in distribution to a standard normal random variable?

(b - 8 pts) Suppose that X_1, \ldots, X_{10000} are independent Poisson random variables with mean 4 and let \bar{X} denote its sample mean. Use the central limit theorem to approximate $P(3.99 < \bar{X} < 4.01)$.

Use the standard normal table attached to this exam.

The critical value χ^{2*} is the value such that the area under the density curve of a χ^2 distribution with df degrees of freedom to the right of χ^{2*} is equal to p.

 χ^2 distribution critical values

	Upper-tail probability p											
df	.64	.55	.48	.42	.35	.29	.24	.17	.12	.08	.04	.02
1	0.2	0.4	0.5	0.7	0.9	1.1	1.4	1.9	2.4	3	4	5
2	0.9	1.2	1.5	1.7	2.1	2.5	2.9	3.5	4.2	5	6	8
									5.8			10
4	2.5	3.0	3.5	3.9	4.4	5.0	5.5	6.4	7.3	8	10	12
5	3.4	4.0	4.5	5.0	5.6	6.2	6.7	7.8	8.7	10	12	13

The critical value t^* is the value such that the area under the density curve of a t distribution with df degrees of freedom to the right of t^* is equal to p. It is also the value such that the area under the curve between $-t^*$ and t^* is equal to C.

t distribution critical values

	Upper-tail probability p										
df	.20	.18	.15	.12	.10	.08	.07	.06	.05	.02	
1	1.4	1.6	2.0	2.5	3.1	3.9	4.5	5.2	6.3	15.9	
2	1.1	1.2	1.4	1.7	1.9	2.2	2.4	2.6	2.9	4.8	
3	1.0	1.1	1.2	1.5	1.6	1.9	2.0	2.2	2.4	3.5	
4	0.9	1.0	1.2	1.4	1.5	1.7	1.8	2.0	2.1	3.0	
5	0.9	1.0	1.2	1.3	1.5	1.6	1.8	1.9	2.0	2.8	
∞	0.84	0.92	1.04	1.17	1.28	1.41	1.48	1.55	1.64	2.05	
	60%	64%	70%	76%	80%	84%	86%	88%	90%	96%	
	Confidence level C										