PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-288969

(43) Date of publication of application: 04.11.1997

(51)Int.CI.

H01J 9/22

(21)Application number: 08-101318

(71)Applicant: HITACHI LTD

HITACHI DEVICE ENG CO LTD

(22)Date of filing:

23.04.1996

(72)Inventor: NISHIZAWA SHOKO

ODAKA YOSHIYUKI SASAYA OSAMU ISHIGAKI TOSHIMASA

.....

(54) MANUFACTURE OF COLOR CATHODE-RAY TUBE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a color cathoderay tube manufacturing method by which an organic film with a small thickness and few pinholes can be obtained when it is made from a water-soluble emulsion. SOLUTION: In this method, at least formation of a phosphor film 4 on the inner surface of the panel part of a color cathode-ray tube, formation of an organic film 5 by heating after application of a water-soluble emulsion onto the phosphor film 4, and deposition of an aluminum reflecting film onto the organic film 5 are effected. In this case, particles with particle diameters ranging from 10 to 20nm that are much smaller than those of known particles are used as the particles constituting the water-soluble emulsion. The use of the emulsion particles with such particle diameters markedly enhances the formability of the organic film 5, and since the film thickness can be made very thin, the amount by which cracked gases are generated from the organic film 5 and the like is decreased sharply, and a panel baking process can be omitted.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE COPY

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

国際調査報告 (1)

(19)日本国特許庁(JP)

9/22

(12) 公開特許公報(A)

特開平9-288969

(43)公開日 平成9年(1997)11月4日

(51) Int.Cl.⁶ H 0 1 J 識別記号

庁内整理番号

FΙ

H01J 9/22

技術表示箇所

Α

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出願番号

特願平8-101318

(22)出願日

平成8年(1996)4月23日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出願人 000233088

日立デバイスエンジニアリング株式会社

千葉県茂原市早野3681番地

(72)発明者 西澤 昌紘

千葉県茂原市早野3300番地 株式会社日立

製作所電子デパイス事業部内

(72)発明者 小高 芳之

千葉県茂原市早野3300番地 株式会社日立

製作所電子デバイス事業部内

(74)代理人 弁理士 武 顕次郎

最終頁に続く

(54) 【発明の名称】 カラー陰極線管の製造方法

(57)【要約】

【課題】 水溶性エマルジョンで有機フィルム5を形成する際、膜厚が薄く、ピンホールの少ない有機フィルム5を得るカラー陰極線管の製造方法を提供する。

【解決手段】 少なくとも、カラー陰極線管のパネル部内面に螢光体膜4を形成する工程、螢光体膜4上に水溶性エマルジョンを塗布した後で加熱して有機フィルム5を形成する工程、有機フィルム5上にアルミニウム反射膜を蒸着する工程とを含むカラー陰極線管の製造方法であって、水溶性エマルジョンの構成粒子として、既知の同じ構成粒子よりも相当に細かい粒径の10乃至20nmのものを用いている。このような粒径のエマルジョン粒子を用いると、有機フィルム5の被膜形成性が著しく向上し、膜厚を相当に薄くできることから、有機フィルム5等からの分解ガスの発生量が激減し、パネルベーキング工程を省略することができるようになる。

[図2]

【特許請求の範囲】

【請求項1】 少なくとも、カラー陰極線管のパネル部内面に簽光体膜を形成する工程、前記簽光体膜上に水溶性エマルジョンを塗布した後で加熱して有機フィルムを形成する工程、前記有機フィルム上にアルミニウム反射膜を蒸着する工程を含むカラー陰極線管の製造方法において、前記水溶性エマルジョンの構成粒子として粒径が10乃至20nmのものを用いることを特徴とするカラー陰極線管の製造方法。

【請求項2】 前記水溶性エマルジョンは、酸化剤を内 包したマイクロカブセル粒子が混入されていることを特 徴とする請求項1に記載のカラー隆極線管の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、カラー陰極線管の製造方法に係わり、特に、カラー陰極線管のパネル部内面に被着された螢光膜上に有機フィルムを形成する場合、均一な膜質の薄膜の有機フィルムの形成させるようにしたカラー隆極線管の製造方法に関する。

[0002]

【従来の技術】従来、カラー陰極線管を製造する際の主要な工程順序の1つに、パネル部内面に螢光膜を被着形成させる第1工程、第1工程で形成した螢光膜上に有機フィルムを形成させる第2工程、第1工程で形成した有機フィルム上にアルミニウム反射膜を蒸着させる第3工程がある。

【0003】また、第2工程において、有機フィルムの 形成する場合には、大別すると、次の2つの方法が知ら れている。

【0004】その第1の方法は、アクリル樹脂を、トルエンや酢酸エチル等の有機溶剤に溶解させてアクリル樹脂の溶液を作成し、このアクリル樹脂の溶液をカラー陰極線管のパネル部内面に被着形成した螢光膜上に吹付け、その後に乾燥して有機フィルムを形成する方法であり、その第2の方法は、粒子径が60乃至90nmのメタクリル酸メチルやアクリル酸等を用いて水溶性エマルジョンを作成し、この水溶性エマルジョンを作成し、この水溶性エマルジョンを作成し、この水溶性エマルジョンを作成し、この水溶性エマルジョンを形成した螢光膜上に均一にスピンコートし、その後にエマルジョンの最小被膜形成温度以上の温度に加熱して有機フィルムを形成する方法である。

[0005]

【発明が解決しようとする課題】ところで、有機フィルムを形成する場合における前記既知の第1の方法は、トルエンや酢酸エチル等の有機溶剤を用いていることから、特別の安全対策や防火対策を施す必要があり、具体的には、有機フィルムを形成する作業個所を、別途に安全及び防火対策を施したものにする必要がある。このため、カラー陰極線管の製造コストが上昇するだけでなく、量産が難しくなるという問題があり、その他に、多

くのトルエンや酢酸エチル等の有機溶剤を用いると、地球環境の破壊にも結び付き兼ねないという問題もある。【0006】一方、有機フィルムを形成する場合における前記既知の第2の方法は、水溶性エマルジョンを用いていることから、前記第1の方法に生じる問題点を解決することはできるが、水溶性エマルジョンを登光膜上にスピンコートしたとき、水溶性エマルジョンの一部が登光膜の隙間に侵入し易く、ピンホールの少ない有機フィルムを形成するためには、形成する有機フィルムの膜厚を、前記第1の方法で形成する膜厚の7乃至10倍に近い3乃至5μm程度まで厚くする必要がある。そして、有機フィルムの膜厚を厚くした場合には、アルミニウムの機フィルムの膜厚を厚くした場合には、アルミニウムの機フィルムの膜を厚くした場合には、アルミニウムの関連を関いてきたが、(パネル性成別

を、前記第1の方法で形成する膜厚の7乃至10倍に近い3乃至5μm程度まで厚くする必要がある。そして、有機フィルムの膜厚を厚くした場合には、アルミニウム 反射膜を形成した後のパネルベーキング(パネル焼成加熱)工程時に、有機フィルム等中に含まれている有機物の分解が十分に行われず、しかも、有機物の分解の際に 多量に発生する分解ガスが膜厚の厚い有機フィルムを通して逃げることができなくなり、有機フィルムに分解ガス脱出用のピンホールを形成させないと、多量に発生した分解ガスによって有機フィルムが浮き上がり、螢光膜

【0007】本発明は、これらの問題点を解決するもので、その目的は、水溶性エマルジョンを用いて有機フィルムを形成する場合、膜厚が薄く、ピンホールの少ない有機フィルムを形成するカラー陰極線管の製造方法を提供することにある。

から剥離してしまうという別の問題が生じる。

[0008]

20

【課題を解決するための手段】前記目的を達成するために、本発明による第1の手段は、水溶性エマルジョンの作成時に用いるエマルジョン粒子の粒径を、これまで用いてきたエマルジョン粒子の粒径よりも大幅に細かい10万至20nmのものを用いるようにしたものである。【0009】また、前記目的を達成するために、本発明による第2の手段は、水溶性エマルジョンの作成時に用

による第2の手段は、水溶性エマルジョンの作成時に用いるエマルジョン粒子の粒径を、これまで用いてきたエマルジョン粒子の粒径よりも大幅に細かい10乃至20nmのものを用いるとともに、酸化剤を内包したマイクロカプセル粒子を混入させるようにしたものである。

【0010】前記第1の手段によれば、水溶性エマルジョンの作成時に用いるエマルジョン粒子の粒径を10乃至20nmの範囲内の微小な粒径のものにしたので、有機フィルムの被膜形成性が著しく向上し、形成される有機フィルムの膜厚を相当に薄くしても、単位面積当たりのピンホールの数がほぼ同等かそれ以下になる。

【0011】また、前記第2の手段によれば、水溶性エマルジョンの作成時に用いるエマルジョン粒子の粒径を10乃至20nmの範囲内の微小な粒径のものにし、かつ、酸化剤を内包したマイクロカプセル粒子を混入するようにしたので、前記第1の手段と同様に、有機フィルムの被膜形成性が著しく向上し、形成される有機フィルムの膜厚を相当に薄くしても、単位面積当たりのピンホ

ールの数がほぼ同等かそれ以下になり、その上、マイクロカプセル粒子の分解によって得られた酸化剤により、 有機フィルム等の中に含まれる有機物の分解が促進される。

[0012]

【発明の実施の形態】本発明による1つの実施の形態によるカラー陰極線管の製造方法は、少なくとも、カラー陰極線管のパネル部内面に螢光体膜を形成する工程(第1工程)と、螢光体膜上に水溶性エマルジョンを塗布した後で加熱して有機フィルムを形成する工程(第2工程)と、有機フィルム上にアルミニウム反射膜を蒸着する工程(第3工程)とを含むもので、第2工程で用いる水溶性エマルジョンには、構成粒子として粒径が10乃至20nmのものを用いている。

【0013】また、本発明による他の実施の形態によるカラー陰極線管の製造方法は、少なくとも、カラー陰極線管のパネル部内面に螢光体膜を形成する工程(第1工程)と、螢光体膜上に水溶性エマルジョンを塗布した後で加熱して有機フィルムを形成する工程(第2工程)と、有機フィルム上にアルミニウム反射膜を蒸着する工程(第3工程)とを含むもので、第2工程で用いる水溶性エマルジョンには、構成粒子として粒径が10乃至20nmのものを用い、かつ、酸化剤を内包したマイクロカプセル粒子を混入させている。

【0014】本発明による1つの実施の形態によれば、 水溶性エマルジョンの構成粒子として、その粒径が10 乃至20nmのものを用いたことにより、有機フィルム の被膜形成性が著しく向上し、形成する有機フィルムの 膜厚を、既知の有機フィルムの膜厚よりも相当に薄くし たとしても、形成した有機フィルムの単位面積当たりの ピンホールの数を、既知のこの種の方法によって形成さ れる有機フィルム、即ち、その粒子径が60乃至90n mのものを用いて形成した膜厚の厚い有機フィルム(既 知の有機フィルム) の同ピンホール数と同等かそれ以下 にすることができる。そして、有機フィルムの膜厚を既 知の有機フィルムの膜厚に比べて相当に薄くできること から、アルミニウム反射膜を蒸着した後のパネルベーキ ング(パネル焼成加熱)工程時に、有機フィルム等に含 まれる有機物の分解の際に生じる分解ガスの発生量が既 知の有機フィルムからの分解ガスの発生量に比べて相当 に少なくなり、かかるパネルベーキング(パネル焼成加 熱) 工程を省略し、その後のカラー陰極線管における熱 処理時に、かかる分解ガスを発生させるようにすること が可能になる。

【0015】また、本発明による他の実施の形態によれば、水溶性エマルジョンの構成粒子として、その粒径が10万至20nmのものを用い、かつ、水溶性エマルジョンに酸化剤を内包したマイクロカプセル粒子を混入させたことにより、前記1つの実施の形態と同様の機能を果たすことができるとともに、カラー陰極線管における

その後の熱処理時に、マイクロカプセル粒子の熱分解により発生した酸化剤が有機フィルム等に含まれる有機物の分解を促進するので、有機物の分解が充分に進行し、その結果、カラー陰極線管の実働時に、有機フィルムに電子ビームが当たったとしても、有機フィルムから分解ガスが放出されることがなく、分解ガスによってカラー陰極線管が劣化することはない。

【0016】ここで、図4は、水溶性エマルジョンにおけるエマルジョン粒子の粒径(横軸)と、かかる粒径の 10 粒子を用いて有機フィルムを形成した場合における有機 フィルムの被膜形成性(縦軸)との関係を示す特性図で ある。

【0017】図4に図示されるように、有機フィルムの被膜形成性は、水溶性エマルジョンの構成するエマルジョン粒子の粒径が約20nm以下のものを用いたときに最良の値(1)を示すもので、その粒径が約20nm以上のものを用いたときに粒径の大きさに比例して最良の値(1)から順次悪化する値(2乃至6)を示すものである。一方、用いるエマルジョン粒子として粒径が約10nm以下のものの場合、エマルジョン粒子の凝集性が高まってくることから、使用することが難くなる。このため、本発明においては、エマルジョン粒子の粒径して、10nm乃至20nmの範囲のものを選択使用し、有機フィルムの被膜形成性を向上させるようにしている。

[0018]

【実施例】以下、本発明の実施例を図面を参照して説明 する。

【0019】図1は、本発明によるカラー陰極線管の製造方法によって製造されたカラー陰極線管の概略構成を示す断面図及びその一部の拡大図であり、図2は、図1に図示された断面図の中の螢光膜及び有機フィルム部分の構成の一例を示す拡大断面図である。また、図3は、本発明によるカラー陰極線管の製造方法によって製造された有機フィルムとの比較を行うために提示した既知のカラー陰極線管の製造方法によって製造された有機フィルムの構成の一例を示す拡大断面図である。

【0020】図1、図2、図3において、1はパネル部、2はネック部、3はファンネル部、4は螢光膜、5は有機フィルム、6はアルミニウム反射膜、7はシャドウマスク、7bはマスクフレーム、8は磁気シールド、9は偏向ヨーク、10はピュリテイ調整用マグネット、11はセンタービームスタティックコンバーゼンス調整用マグネット、12はサイドビームスタティックコンバーゼンス調整用マグネット、13は電子銃、14は電子ビームである。

【0021】そして、カラー陰極線管を構成する管体 (ガラス製)は、前側に配置された大径形状のパネル部 1と、電子銃13を収納している細長形状のネック部2 と、パネル部1とネック部2とを結合する略漏斗形状の

50

30

を作成する。

ファンネル部3とからなる。パネル部1は、フロント内 面に螢光膜4が被着形成され、螢光膜4上に有機フィル ム5が形成され、有機フィルム5上にアルミニウム反射 膜6が形成される。シャドウマスク7は、マスクフレー ム7 bに保持され、螢光膜4に対向するようにパネル部 1内部に固定配置される。磁気シールド8は、パネル部 1とファンネル部3の結合部分の内側に固定配置され、 偏向ヨーク9は、ファンネル部3とネック部2の結合部 分の外側に設置される。ネック部2の外側には、ピュリ ティ調整用マグネット10、センタービームスタティッ クコンバーゼンス調整用マグネット11、サイドビーム スタティックコンバーゼンス調整用マグネット12が並 設配置される。電子銃13から放射された3本の電子ビ -ム14 (図1では1本だけが示されている) は、偏向 ヨーク9で所定方向に偏向された後、シャドウマスク7 を通して螢光膜 4 の対応する色の画素に到達するように 構成されている。

【0022】前記構成によるカラー陰極線管における動作、即ち、画像表示動作は、既知のカラー陰極線管における画像表示動作と全く同じであるので、このカラー陰極線管における画像表示動作については、その説明を省略する。

【0023】ここで、図1及び図2に図示されたカラー 陰極線管の製造方法の第1の実施例について説明する。

【0024】始めに、以下の組成、即ち、平均粒径が20nmのメタクリル酸メチル粒子80%及び平均粒径が20nmのアクリル酸粒子20%をそれぞれ含有したアクリルエマルジョン粒子が15重量%、グリセリンが1.5重量%、純水が残部からなる水溶性エマルジョンを作成する。

【0025】次に、カラー陰極線管のパネル部1のフロント内面に、既知のように、ホトリソグラフィ法によってブラックマトリクスタイプの赤色、青色、緑色の3色の螢光膜4を被着形成する。

【0026】次いで、被着形成した螢光膜4を40℃に加熱し、その後でパネル部1のフロント内面に前記水溶性エマルジョンを50ml注入し、水溶性エマルジョンがフロント内面に均一に行き渡るように拡大させる。

【0027】続いて、パネル部1を150rpmの回転数で20秒間スピンさせ、フロント内面にスピンコートによる水浴性エマルジョンの薄膜を形成する。

【0028】次に、この水溶性エマルジョンの薄膜をヒーターによって約45℃で均一に加熱し、平均膜厚が 0.9μmの有機フィルム5を形成する。

【0029】次いで、形成した有機フィルム5上に、既知のように、アルミニウムを約0.25µmの厚さに蒸着し、アルミニウム反射膜6を形成する。

【0030】このとき、通常、形成した有機フィルム5 エマルジョンに入れる。マイクロガブゼル粒子を入れたやアルミニウム反射膜6等に対して行われる約430℃ 水溶性エマルジョンを50℃に加温した状態で急速に撹の温度のパネルベーキング (パネル焼成加熱) 工程を省 50 拌し、撹拌後に30分静止状態に保つことにより、アク

略させ、次工程に移行させる。

【0031】なお、この省略したパネルベーキング(パネル焼成加熱)工程における有機フィルム5等からの分解ガスの放出は、分解ガスの発生量が激減することから、その後に行われるパネル部1とファンネル部3のフリット封着工程、管体封止工程、排気熱処理工程において適宜放出させるようにすれば足りるものである。

【0032】既知のように、パネル部1に、ファンネル部3を熱結合させるフリット工程、ネック部2内に電子銃13を収納して封止する管体封止工程、管体の真空排気工程、各種の熱処理工程等を経てカラー陰極線管が完成される。

【0033】このように、第1の実施例によれば、有機フィルム5の被膜形成性を著しく向上できることから、有機フィルム5の膜厚を、既知の有機フィルムに比べて7乃至10倍程度薄くしても、単位面積当たりのピンホールの数を同等かそれ以下にすることができ、しかも、有機フィルム5等から熱分解によって放出される分解ガスを激減させることができ、それによってパネルベーキング(パネル焼成加熱)工程を省略することができる。

【0034】続いて、図1及び図2に図示されたカラー 陰極線管の製造方法の第2の実施例について説明する。 【0035】まず、以下の組成、即ち、平均粒径が20nmのメタクリル酸メチル粒子80%及び平均粒径が20nmのアクリル酸粒子20%をそれぞれ含有したアクリルエマルジョン粒子が15重量%、酸化剤を内包したマイクロカプセル粒子が0.8重量%、グリセリンが1.5重量%、純水が残部からなる水溶性エマルジョン

【0036】この場合、マイクロカプセル粒子としては、以下の①、②、③のいずれかの組成からなるものを用いる。

【0037】①. 15%の過酸化水素水に5%のゼラチンを入れ、pHの調整により過酸化水素水を内包するゼラチンのマイクロカブセルを形成し、その後で余剰の過酸化水素水を抽出する。次いで、過酸化水素水を内包するゼラチンのマイクロカブセルの中に10%のホルマリン水溶液を注入し、30程度撹拌してゼラチンを硬膜させる。硬膜したゼラチンのマイクロカブセルに水を加えてマイクロカブセル分散液を生成し、この分散液を混入して水溶性エマルジョンを作成する。このとき、ゼラチンのマイクロカブセルの平均粒径は、20乃至50nmになる。

【0038】②. 平均粒径が10nmの酸化銀(AgO)の超微粒子を10重量%の純水中に分散させ、第1の実施例で用いられるエマルジョン濃度3%のアクリルエマルジョンに入れる。マイクロカブセル粒子を入れた水溶性エマルジョンを50℃に加温した状態で急速に撹拌1. 損拌後に30分齢止状態に保つことにより、アク

20

リル樹脂でコーティングされ酸化銀のマイクロカプセル 粒子を形成させる。この酸化銀のマイクロカプセル粒子 をよく水洗いした後、水を加えて3%の酸化銀のマイク ロカプセル分散液を生成し、この分散液を混入して水溶 ・性エマルジョンを作成する。

【0039】③.5%のゼラチンの水溶液中に、ノズル・径1μmのノズルから高圧空気を吹き込み、微小な泡を形成する。この泡が立った水溶液を80℃に加温した状態で空気とよくバブリングしながら撹拌し、空気を内含したゼラチンのマイクロカプセル粒子を形成させる。この空気を内包したマイクロカプセル粒子に20%のホルマリン水溶液を加え、100℃で60分間加温してゼラチンを硬膜させる。硬膜したゼラチンのマイクロカプセルを丹念に水洗いした後、水を加えて3%のマイクロカプセル分散液を生成し、この分散液を混入して水溶性エマルジョンを作成する。

【0040】次工程以降は、前記第1の実施例の工程順序と同じであって、始めに、カラー陰極線管のパネル部1のフロント内面に、既知のように、ホトリソグラフィ法によってブラックマトリクスタイプの赤色、青色、緑色の3色の螢光膜4を被着形成する。

【0041】次いで、被着形成した螢光膜4を40℃に加熱し、その後でパネル部1のフロント内面に前記水溶性エマルジョンを50ml注入し、水溶性エマルジョンがフロント内面に均一に行き渡るように拡大させる。

【0042】続いて、パネル部1を150rpmの回転数で20秒間スピンさせ、フロント内面にスピンコートによる水溶性エマルジョンの薄膜を形成する。

【0043】次に、この水溶性エマルジョンの薄膜をヒーターによって約45℃で均一に加熱し、平均膜厚が 0.9μmの有機フィルム5を形成する。

【0044】次いで、形成した有機フィルム5上に、既知のように、アルミニウムを約0.25μmの厚さに蒸着し、アルミニウム反射膜6を形成する。

【0045】このとき、通常、形成した有機フィルム5 やアルミニウム反射膜6等に対して行われる約430℃ の温度のパネルベーキング(パネル焼成加熱)工程を省 略させ、次工程に移行させる。

【0046】なお、この省略したパネルベーキング(パネル焼成加熱)工程における有機フィルム5等からの分解ガスの放出は、分解ガスの発生量が激減することから、その後に行われるフリット工程、管体封止工程、熱処理工程において適宜放出させるようにすれば足りるものである。

【0047】既知のように、パネル部1に、ファンネル部3やネック部2を熱結合させるフリット工程、ネック部2内に電子銃13を収納して封止する管体封止工程、管体の真空排気工程、各種の熱処理工程等を経てカラー 陰極線管が完成される。

【0048】このように、第2の実施例によれば、第1

の実施例の場合と同じように、有機フィルム5の被膜形成性を著しく向上できることから、有機フィルム5の膜厚を、既知の有機フィルムに比べて7万至10倍程度薄くしても、単位面積当たりのピンホールの数を同等かそれ以下にすることができ、しかも、有機フィルム5の膜厚が相当に薄くなったことから、有機フィルム5等から熱分解によって放出される分解ガスを激減させることができ、それによってパネルベーキング (パネル焼成加熱)工程を省略することができる。

【0049】また、第2の実施例によれば、水溶性エマルジョンに混入させたマイクロカブセル粒子が熱分解によって酸化剤を放出し、その酸化剤が有機フィルム5等に含有される有機物の分解を促進させるので、カラー陰極線管の実働時に電子ビームが有機フィルム5に当たっても分解ガスが放出されることがなく、分解ガスの放出に伴うカラー陰極線管の劣化を防ぐことができる。

[0050]

【発明の効果】以上のように、請求項1に記載の発明によれば、水溶性エマルジョンの作成時に用いるエマルジョン粒子の粒径を、これまで用いてきたエマルジョン粒子の粒径よりも大幅に細かい10万至20nmのものを用いているので、有機フィルムの被膜形成性が著しく向上し、形成する有機フィルムの膜厚を、既知の有機フィルムの膜厚よりも相当に薄くすることができる。そして、有機フィルムの膜厚を既知の有機フィルムの膜厚に比べて相当に薄くできることから、有機フィルム等に含まれる有機物の熱分解に伴う分解ガスの発生量が既知の有機フィルムからの分解ガスの発生量に比べて相当に少なくなり、パネルベーキング工程を省略することができるという効果がある。

【0051】なお、請求項1に記載の発明において、パネルベーキング工程を省略しても、得られたカラー陰極線管における表示画像の明るさは既知のカラー陰極線管と殆んど変わりがなく、反射色も最小分解能以下に留めることができた。

【0052】また、請求項2に記載の発明によれば、水溶性エマルジョンの作成時に用いるエマルジョン粒子の粒径を、これまで用いてきたエマルジョン粒子の粒径よりも大幅に細かい10万至20nmのものを用い、かつ、水溶性エマルジョンに酸化剤を内包したマイクロカブセル粒子を混入させているので、請求項1に記載の発明で得られる効果の他に、カラー陰極線管におけるその後の熱処理時に、マイクロカブセル粒子の熱分解により発生した酸化剤が有機フィルム等に含まれる有機物の分解を促進させ、有機物の分解を充分に進行させるので、カラー陰極線管の実働時に、有機フィルムに電子ビームが当たったとしても、有機フィルムから分解ガスが放出されることがなく、分解ガスによってカラー陰極線管が劣化することはないという効果がある。

50 【図面の簡単な説明】

【図1】本発明によるカラー陰極線管の製造方法によって製造されたカラー陰極線管の概略構成を示す断面図及びその一部の拡大図である。

【図2】図1に図示された断面図の中の螢光膜及び有機フィルム部分の構成の一例を示す拡大断面図である。

【図3】既知のカラー陰極線管における螢光膜及び有機 フィルム部分の構成の一例を示す拡大断面図である。

【図4】水溶性エマルジョンにおけるエマルジョン粒子 の粒径と、有機フィルムの被膜形成性との関係を示す特 性図である。

【符号の説明】

- 1 パネル部
- 2 ネック部
- 3 ファンネル部

【図1】

図 1

【図3】

[図3]

- 4 螢光膜
- 5 有機フィルム
- 6 アルミニウム反射膜
- 7 シャドウマスク
- 7 b マスクフレーム
- 8 磁気シールド
- 9 偏向ヨーク
- 10 ピュリテイ調整用マグネット
- 11 センタービームスタティックコンバーゼンス調整
- 10 用マグネット
 - 12 サイドビームスタティックコンバーゼンス調整用マグネット
 - 13 電子銃
 - 14 電子ピーム

【図2】

(図2)

【図4】

[图4]

フロントページの続き

(72)発明者 笹谷 治

千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 石垣 利昌

千葉県茂原市早野3681番地 日立デバイス エンジニアリング株式会社内