STD – 10 MATHS

CHAPTER - 1

REAL NUMBER

EXERCISE - 1.4 Q-1 (6 to 10)

(vi) $\frac{23}{2^35^2}$

Clearly, the denominator is in the form of $2^{m} \times 5^{n}$.

Hence, $\frac{23}{2^35^2}$ has a terminating decimal expansion.

(vii)
$$\frac{129}{2^2 5^7 7^5}$$

As you can see, the denominator is not in the form of $2^m \times 5^n$.

Hence, $\frac{129}{2^2 5^7 7^5}$ has a non-terminating decimal expansion.

(viii)
$$\frac{6}{15}$$

$$\frac{6}{15}=\frac{2}{5}$$

Since, the denominator has only 5 as its factor,

thus, $\frac{6}{15}$ has a terminating decimal expansion.

$$(ix) \frac{35}{50}$$

$$\frac{35}{50} = \frac{7}{10}$$

Factorising the denominator, we get,

2	50
5	25
5	5
	1

 $10 = 2 \times 5$

Since, the denominator is in the form of $2^{m} \times 5^{n}$

thus, $\frac{35}{50}$ has a terminating decimal expansion.

$$(x) \frac{77}{210}$$

$$=\frac{77}{210}$$

$$=\frac{(7\times11)}{(30\times7)}$$

$$=\frac{11}{30}$$

Factorising the denominator, we get,

2	210
3	105
5	35
7	7
	1

$$30 = 2 \times 3 \times 5$$

As you can see, the denominator is not in the form of

 $2^{\rm m} \times 5^{\rm n}$ Hence, $\frac{.77}{2.10}$ has a non-terminating decimal

expansion.

Thanks

For watching