Lecture 5: Newton's Method

Shi Pu

Newton's Method

■ The objective is to find an optimal solution of the problem

$$\min\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^n\},\$$

where f is twice continuously differentiable over \mathbb{R}^n

■ Given \mathbf{x}_k , the next iterate \mathbf{x}_{k+1} is chosen to minimize the quadratic approximation of the function around \mathbf{x}_k :

$$\mathbf{x}_{k+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \{ f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_k)^{\top} \nabla^2 f(\mathbf{x}_k) (\mathbf{x} - \mathbf{x}_k) \}$$

This formula is not well-defined in general.

■ If $\nabla^2 f(\mathbf{x}_k) \succ \mathbf{0}$,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (\nabla^2 f(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k)$$

■ The vector $-(\nabla^2 f(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k)$ is called Newton's direction.

Pure Newton's Method

Algorithm 1 Pure Newton's Method

- 1: **Input:** $\epsilon > 0$ tolerance parameter.
- 2: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 3: **for** $k = 0, 1, 2, \cdots$ **do**
- 4: Compute the Newton direction \mathbf{d}_k , which is the solution to the linear system

$$\nabla^2 f(\mathbf{x}_k) \mathbf{d}_k = -\nabla f(\mathbf{x}_k)$$

- 5: set $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}_k$.
- 6: if $\|\nabla f(\mathbf{x}_{k+1})\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- 7: end for

(non)Convergence of Newton's method

■ At the very least, Newton's method requires $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^n$, which in particular implies there exists a unique optimal solution \mathbf{x}^* . However, this is not enough to guarantee convergence.

Example: $f(x) = \sqrt{1+x^2}$.

(non)Convergence of Newton's method

■ At the very least, Newton's method requires $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^n$, which in particular implies there exists a unique optimal solution \mathbf{x}^* . However, this is not enough to guarantee convergence.

Example: $f(x) = \sqrt{1 + x^2}$.

The minimizer of f over \mathbb{R} is x = 0. The first and second derivatives of f are:

$$f'(x) = \frac{x}{\sqrt{1+x^2}}, \ f''(x) = \frac{1}{(1+x^2)^{3/2}}.$$

Therefore, (pure) Newton's method has the form

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} = x_k - x_k(1 + x_k^2) = -x_k^3$$

Divergence when $|x_0| \ge 1$; fast convergence when $|x_0| < 1$.

Convergence of Newton's method

- A lot of assumptions are required to guarantee convergence.
- However, Newton's method does have one very attractive feature under certain assumptions, local quadratic rate of convergence: near the optimal solution $e_k = \|\mathbf{x}_k \mathbf{x}^*\|$ satisfy $e_{k+1} \leq Me_k^2$ for some positive M > 0.
- This property essentially means that the number of accuracy digits is doubled at each iteration.
- Contrast to the gradient method in which the convergence theorems are rather independent in the starting point, but only "relatively" slow linear convergence is assured.

Quadratic Convergence of Newton's Method

Theorem (Pure Newton's Method)

Let f be a twice continuously differentiable function defined over \mathbb{R}^n . Assume that

- There exists m > 0 for which $\nabla^2 f(\mathbf{x}) \succ m\mathbf{I}$ for any $\mathbf{x} \in \mathbb{R}^n$
- There exists L > 0 for which $\|\nabla^2 f(\mathbf{x}) \nabla^2 f(\mathbf{y})\| \le L\|\mathbf{x} \mathbf{y}\|$ $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by Newton's method and let \mathbf{x}^* be the unique minimizer of f over \mathbb{R}^n . Then for any $k=0,1,\cdots$ inequality

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\| \le \frac{L}{2m} \|\mathbf{x}_k - \mathbf{x}^*\|^2$$

holds. In addition, if $\|\mathbf{x}_0 - \mathbf{x}^*\| \leq \frac{m}{L}$, then:

$$\|\mathbf{x}_k - \mathbf{x}^*\| \leq \frac{2m}{L} (\frac{1}{2})^{2^k}.$$

Proof. In class

4 D > 4 A > 4 B > 4 B > B = 900

Numerical Example

Consider the minimization problem

$$\min 100x^4 + 0.01y^4$$

```
• optimal solution: (x, y) = (0, 0)
```

poorly scaled problem

4 D > 4 B > 4 E > 4 E > 9 9 0

Numerical Example Contd.

Invoking pure Newton's method we obtain convergence after only 17 iterations.

```
\Rightarrow h=@(x)[1200*x(1)2,0;0,0.12*x(2)2];

\Rightarrow pure_newton(f,g,h,[1;1],1e-6)

iter= 1 f(x)=19.7550617284

iter= 2 f(x)=3.9022344155

iter= 3 f(x)=0.7708117364

::

iter= 15 f(x)=0.0000000027

iter= 16 f(x)=0.0000000005

iter= 17 f(x)=0.0000000001
```

Numerical Example 2

Consider the minimization problem min $\sqrt{x_1^2+1}+\sqrt{x_2^2+1}$.

- Optimal solution $\mathbf{x} = \mathbf{0}$.
- The Hessian of the function is

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{1}{(x_1^2 + 1)^{3/2}} & 0\\ 0 & \frac{1}{(x_2^2 + 1)^{3/2}} \end{pmatrix} \succ \mathbf{0},$$

but there does not exists an m > 0 for which $\nabla^2 f(\mathbf{x}) \succeq m\mathbf{I}$.

```
 \begin{array}{l} \gg f=0(x) sqrt(1+x(1)\hat{2}) + sqrt(1+x(2)\hat{2}) \\ \gg g=0(x)[x(1)/sqrt(x(1)\hat{2}+1);x(2)/sqrt(x(2)\hat{2}+1)]; \\ \gg h=0(x) diag([1/(x(1)\hat{2}+1)\hat{1}.5,1/(x(2)\hat{2}+1)\hat{1}.5]); \\ \gg pure\_newton(f,g,h,[1;1],1e-8) \\ iter=1 f(x)=2.8284271247; iter=2 f(x)=2.8284271247 \\ \cdots; iter=30 f(x)=2.8105247315 \\ iter=31 f(x)=2.7757389625; iter=32 f(x)=2.6791717153 \\ iter=33 f(x)=2.4507092918; iter=34 f(x)=2.1223796622 \\ iter=35 f(x)=2.0020052756; iter=36 f(x)=2.0000000081 \\ iter=37 f(x)=2.00000000000 \\ \end{array}
```

Numerical Example 2 Contd.

Gradient method with backtracking and parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$ converges after only 7 iterations.

```
\gg [x,fun_val]=gradient_method_backtracking(f,g, [1;1],1,0.5,0.5,1e-8); iter_number = 1, norm_grad = 0.397514, fun_val = 2.084022 iter_number = 2, norm_grad = 0.016699, fun_val = 2.000139 iter_number = 3, norm_grad = 0.000001, fun_val = 2.000000 iter_number = 4, norm_grad = 0.000001, fun_val = 2.000000 iter_number = 5, norm_grad = 0.000000, fun_val = 2.000000 iter_number = 6, norm_grad = 0.000000, fun_val = 2.000000 iter_number = 7, norm_grad = 0.000000, fun_val = 2.000000
```

Numerical Example 2 Contd. Starting from (10; 10)

```
\gg pure_newton(f,g,h, [10;10],1e-8);
iter= 1, f(x)=2000.0009999997
iter= 2, f(x)=19999999999999990000
iter= 5, f(x) = Inf
\gg[x,fun_val]=gradient_method_backtracking(f,g, [10;10],1,0.5,0.5,1e-8);
iter_number = 1, norm_grad = 1.405573, fun_val = 18.120635
iter_number = 2, norm_grad = 1.403323, fun_val = 16.146490
iter_number = 12, norm_grad = 0.000049, fun_val = 2.000000
iter_number = 13, norm_grad = 0.000000, fun_val = 2.000000
```

Newton's method seem to be unreliable – partly since no stepsize was defined.

Damped Newton's Method

Algorithm 2 Damped Newton's Method

- 1: **Input:** (α, β) parameters for the backtracking procedure $(\alpha \in (0,1), \beta \in (0,1))$
 - $\epsilon > 0$ tolerance parameter.
- 2: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 3: **for** $k = 0, 1, 2, \cdots$ **do**
- 4: Compute the Newton direction \mathbf{d}_k , which is the solution to the linear system

$$\nabla^2 f(\mathbf{x}_k) \mathbf{d}_k = -\nabla f(\mathbf{x}_k)$$

5: set $t_k = 1$. While

$$f(\mathbf{x}_k) - f(\mathbf{x}_k + t_k \mathbf{d}_k) < -\alpha t_k \nabla f(\mathbf{x}_k)^{\top} \mathbf{d}_k$$

set
$$t_k := \beta t_k$$

- 5: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$
- 5: if $\|\nabla f(\mathbf{x}_{k+1})\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- 6: end for

Numerical Example 2 Contd. Starting from (10; 10)

Hybrid Gradient-Newton Method

Algorithm 3 Hybrid Gradient-Newton Method

- 1: **Input:** (α, β) parameters for the backtracking procedure $(\alpha \in (0,1), \beta \in (0,1))$ $\epsilon > 0$ tolerance parameter.
- 2: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 3: **for** $k = 0, 1, 2, \cdots$ **do**
- 4: If $\nabla^2 f(\mathbf{x}_k) \succ 0$, then take \mathbf{d}_k as the Newton direction \mathbf{d}_k , which is the solution to the linear system

$$\nabla^2 f(\mathbf{x}_k) \mathbf{d}_k = -\nabla f(\mathbf{x}_k).$$

Otherwise, set $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$.

5: set $t_k = 1$. While

$$f(\mathbf{x}_k) - f(\mathbf{x}_k + t_k \mathbf{d}_k) < -\alpha t_k \nabla f(\mathbf{x}_k)^{\top} \mathbf{d}_k,$$

set
$$t_k := \beta t_k$$

- 6: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$
- 7: if $\|\nabla f(\mathbf{x}_{k+1})\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- 8: end for