EECS 598: Statistical Learning Theory, Winter 2014

Topic 9

The Bounded Difference Inequality

Lecturer: Clayton Scott Scribe: Cheng Zhang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

The goal of this lecture is to introduce and prove the bounded difference inequality (BDI). This is a concentration inequality that generalizes Hoeffding's and that has found many uses in learning theory. Our first use of it will be in the development of Rademacher complexity. The BDI was first proved by McDiarmid [1], and its proof leverages techniques that had been previously developed by Hoeffding [2] and Azuma [3].

2 The Bounded Difference Inequality

Definition 1. Let A be some set and $\phi: A^n \to R$. We say ϕ satisfies the bounded difference assumption if $\exists c_1, \ldots, c_n \geqslant 0$ s.t. $\forall i, 1 \leqslant i \leqslant n$

$$\sup_{x_1,\ldots,x_n,x_i'\in A} |\phi(x_1,\ldots,x_i,\ldots,x_n) - \phi(x_1,\ldots,x_i',\ldots,x_n)| \leqslant c_i$$

That is, if we substitute x_i to x'_i , while keeping other x_j fixed, ϕ changes by at most c_i .

Theorem 1. Let $X_1, ..., X_n$ be arbitrary independent random variables on set A and $\phi: A^n \to R$ satisfy the bounded difference assumption. Then $\forall t > 0$

$$\Pr\{\phi(X_1, \dots, X_n) - \mathbb{E}[\phi(X_1, \dots, X_n)] \ge t\} \le e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$$

and

$$\Pr\{\phi(X_1,\ldots,X_n) - \mathbb{E}[\phi(X_1,\ldots,X_n)] \leqslant -t\} \leqslant e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$$

Remark. By combining the above two inequalities, we obtain:

$$\Pr\{|\phi(X_1,\ldots,X_n) - \mathbb{E}[\phi(X_1,\ldots,X_n)]| \ge t\} \le 2e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}.$$

Remark. The bounded difference inequality recovers Hoeffding's inequality [2]. Assume $X_i \in [a_i, b_i]$ and take $\phi(X_1, \ldots, X_n) = \sum_{i=1}^n X_i$. Then $c_i = b_i - a_i$. Pluging everything into the BDI gives

$$\Pr\{|\sum_{i=1}^{n} X_i - \mathbb{E}[\sum_{i=1}^{n} X_i]| \ge t\} \le 2e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}.$$

The following lemma is used in establishing the BDI.

Lemma 1. Let V, Z be random variables s.t. $\mathbb{E}[V|Z] = 0$ w.p. 1. Assume \exists a function ψ and constant c > 0 s.t. $\psi(Z) \leqslant V \leqslant \psi(Z) + c$. Then $\forall s > 0$

$$\mathbb{E}[e^{sV}|Z]\leqslant e^{\frac{s^2c^2}{8}}.$$

We omit the proof, which is similar to the proof of the lemma used for proving Hoeffding's inequality. There Z was independent of V, $\psi(Z) = a_i$ and $c = b_i - a_i$.

Proof of bounded difference inequality. Denote

$$V = \phi(X_1, \dots, X_n) - \mathbb{E}[\phi(X_1, \dots, X_n)]$$

and

$$V_i = \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_i] - \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_{i-1}].$$

Observe that $V = \sum_{i=1}^{n} V_i$ (telescoping series).

Note. (V_i) is an example of what is called a martingale difference sequence.

Claim: Each V_i statisfies Lemma 1 with $c = c_i$ and $Z = (X_1, \ldots, X_{i-1})$.

Let's first assume the above claim holds; we'll prove it later. Applying Chernoff's bounding technique, $\forall s > 0$ we have

$$\begin{split} \Pr \{ \phi(X_1, \dots, X_n) - \mathbb{E}[\phi(X_1, \dots, X_n)] \geqslant t \} \\ &= \Pr \{ \sum_{i=1}^n V_i \geqslant t \} \\ &= \Pr \{ e^{s \sum_{i=1}^n V_i} \geqslant e^{st} \} \\ &\leqslant e^{-st} \mathbb{E}[e^{s \sum_{i=1}^n V_i}] \\ &\quad (\text{Markov's inequality}) \\ &= e^{-st} \mathbb{E}[e^{s \sum_{i=1}^{n-1} V_i + sV_n}] \\ &= e^{-st} \mathbb{E}_{X_1, \dots, X_{n-1}} \mathbb{E}_{X_n | X_1, \dots, X_{n-1}} [e^{s \sum_{i=1}^{n-1} V_i + sV_n} | X_1, \dots, X_{n-1}] \\ &\quad (\text{only } V_n \text{ depends on } X_n) \\ &= e^{-st} \mathbb{E}_{X_1, \dots, X_{n-1}} \{ e^{s \sum_{i=1}^{n-1} V_i} \mathbb{E}_{X_n | X_1, \dots, X_{n-1}} [e^{sV_n} | X_1, \dots, X_{n-1}] \} \\ &\leqslant e^{-st + \frac{s^2 c_n^2}{8}} \mathbb{E}_{X_1, \dots, X_{n-1}} [e^{s \sum_{i=1}^{n-1} V_i}] \end{split}$$

where the last step uses the lemma. If we repeatedly apply the above inequality to V_{n-1}, \ldots, V_1 , we obtain:

$$\Pr\{\phi(X_1,\ldots,X_n) - \mathbb{E}[\phi(X_1,\ldots,X_n)] \geqslant t\} \leqslant e^{-st + \frac{s^2 \sum_{i=1}^n c_i^2}{8}}.$$

Now take $s = \frac{4t}{\sum_{i=1}^{n} c_i^2}$ to minimize the upper bound, giving

$$\Pr\{\phi(X_1,\ldots,X_n) - \mathbb{E}[\phi(X_1,\ldots,X_n)] \geqslant t\} \leqslant e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$$

Apply the above inequality to $-\phi$ to get the other inequality.

Now let's establish the claim. First observe $\mathbb{E}[V_i|X_1,\ldots,X_{i-1}]=0 \ \forall i,\leqslant i\leqslant n$. This follows immediately from the so-called "tower property" or "smoothing property" of conditional expectation [4], which implies

$$\mathbb{E}[\mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_i] | X_1, \dots, X_{i-1}] = \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_{i-1}].$$

If this is unclear, consider as an example

$$V_3 = \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, X_2, X_3] - \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, X_2].$$

Now

$$\mathbb{E}[\mathbb{E}[\phi(X_1, \dots, X_n) | X_1, X_2, X_3] | X_1, X_2]$$

$$= \mathbb{E}_{X_3 | X_1, X_2} [\int \phi(X_1, X_2, X_3, x_4, \dots, x_n) dP(x_4, \dots, x_n | X_1, X_2, X_3)]$$

$$= \int \int \phi(X_1, X_2, x_3, \dots, x_n) \underbrace{dP(x_4, \dots, x_n | X_1, X_2, X_3) dP(x_3 | X_1, X_2)}_{dP(x_3, \dots, x_n | X_1, X_2)}$$

$$= \int \int \phi(X_1, X_2, x_3, \dots, x_n) dP(x_3, \dots, x_n | X_1, X_2)$$

$$= \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, X_2].$$

Therefore $\mathbb{E}[V_3|X_1,X_2]=0$.

To show the second part of the claim, define

$$L_i = \inf_{\pi} \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_{i-1}, x] - \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_{i-1}]$$

and

$$U_i = \sup_{x'} \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_{i-1}, x'] - \mathbb{E}[\phi(X_1, \dots, X_n) | X_1, \dots, X_{i-1}].$$

Clearly, $L_i \leq V_i \leq U_i$. Furthermore,

$$\begin{split} U_{i} - L_{i} &= \sup_{x'} \mathbb{E}[\phi(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{i-1}, x'] - \inf_{x} \mathbb{E}[\phi(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{i-1}, x] \\ &= \sup_{x'} \int \phi(X_{1}, \dots, X_{i-1}, x', x_{i+1}, \dots, x_{n}) dP(x_{i+1}, \dots, x_{n} | X_{1}, \dots, X_{i-1}, x') \\ &- \inf_{x} \int \phi(X_{1}, \dots, X_{i-1}, x, x_{i+1}, \dots, x_{n}) dP(x_{i+1}, \dots, x_{n} | X_{1}, \dots, X_{i-1}, x) \\ &= \sup_{x'} \int \phi(X_{1}, \dots, X_{i-1}, x', x_{i+1}, \dots, x_{n}) dP(x_{i+1}, \dots, x_{n}) \\ &- \inf_{x} \int \phi(X_{1}, \dots, X_{i-1}, x, x_{i+1}, \dots, x_{n}) dP(x_{i+1}, \dots, x_{n}) \\ &= \sup_{x, x'} \int [\phi(X_{1}, \dots, X_{i-1}, x', x_{i+1}, \dots, x_{n}) - \phi(X_{1}, \dots, X_{i-1}, x, x_{i+1}, \dots, x_{n})] dP(x_{i+1}, \dots, x_{n}) \\ &\leq c_{i} \int dP(x_{i+1}, \dots, x_{n}) \\ &= c_{i} \end{split}$$

where we used independence of X_1, \ldots, X_n in the third equality, and the bounded difference assumption in the inequality.

References

- [1] Colin McDiarmid, "On the method of bounded differences", Surveys in Combinatorics, 1989, J. Siemons ed., London Mathematical Society Lecture Note Series 141, Cambridge University Press, 1989, 148-188.
- [2] W. Hoeffding, "Probability inequalities for sums of bounded random variables", *Journal of the American Statistical Association*, vol.58, no. 301, pp. 13-30, 1963.
- [3] K. Azuma, "Weighted Sums of Certain Dependent Random Variables," *Tohoku Mathematical Journal*, vol. 19, pp. 357-367, 1967.
- [4] S. Resnick, A Probability Path, Birkhäuser, Boston, 1999.