G-Computation

Malcolm Barrett

RStudio, PBC

2021-09-01 (updated: 2022-10-16)

Normal regression estimates associations. But we want causal estimates: what would happen if everyone in the study were exposed to x vs if no one was exposed.

G-Computation/G-Formula

- 1 Fit a model for y ~ x + z where z is all covariates
- Create a duplicate of your data set for each level of x
- 3 Set the value of x to a single value for each cloned data set (e.g x = 1 for one, x = 0 for the other)

G-Computation/G-Formula

- Make predictions using the model on the cloned data sets
- Calculate the estimate you want, e.g. mean(x_1) - mean(x_0)

Advantages of the parametric G-formula

Often more statistically precise than propensity-based methods

Incredibly flexible

Basis of other important causal models, e.g. causal survival analysis and TMLE

Greek Pantheon data (greek_data)

name	l	a	у	
Rheia	0	0	0	
Kronos	0	0	1	
Demeter	0	0	0	
Hades	0	0	0	
Hestia	0	1	0	
Poseidon	0	1	0	
Hera	0	1	0	
Zeus	0	1	1	
Artemis	1	0	1	
Apollo	1	0	1	

+ 10 more rows

1. Fit a model for y ~ a + l

greek_model <- lm(y ~ a + 1, data = greek_data)</pre>

2. Create a duplicate of your data set for each level of a

name	l	a	У
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

2. Create a duplicate of your data set for each level of a

name	l	a	у
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

name	l	a	у
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

3. Set the value of a to a single value for each cloned data set

name	l	a	у
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	0	0
Poseidon	0	0	0
Hera	0	0	0
Zeus	0	0	1
Artemis	1	0	1
Apollo	1	0	1

name	l	a	у
Rheia	0	1	0
Kronos	0	1	1
Demeter	0	1	0
Hades	0	1	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	1	1
Apollo	1	1	1

3. Set the value of a to a single value for each cloned data set

```
# set all participants to have a = 0
untreated_data <- greek_data %>%
   mutate(a = 0)

# set all participants to have a = 1
treated_data <- greek_data %>%
   mutate(a = 1)
```

4. Make predictions using the model on the cloned data sets

```
# predict under the data where everyone is untreated
predicted untreated <- greek model %>%
 augment(newdata = untreated data) %>%
  select(untreated = .fitted)
# predict under the data where everyone is treated
predicted treated <- greek model %>%
 augment(newdata = treated data) %>%
  select(treated = .fitted)
predictions <- bind cols(</pre>
 predicted untreated,
 predicted treated
```

5. Calculate the estimate you want

1

```
predictions %>%
   summarise(
     mean treated = mean(treated),
     mean untreated = mean(untreated),
     difference = mean_treated - mean_untreated
## # A tibble: 1 × 3
4‡4‡
     mean_treated mean_untreated difference
4‡4‡
            <fdb>
                            <fdb>>
                                       < [db>
              0.5
```

0.5

Your Turn

Work through Your Turns 1-3 in 07-g-computation-exercises.Rmd

Detour: Colliders, selection bias, and loss to follow-up

Confounders and chains

Colliders

Colliders

Let's prove it!

```
set.seed(1234)
collider_data <- collider_triangle() |>
  simulate_data(-.6)
```

Let's prove it!

collider_data

```
## # A tibble: 500 × 3
##
           m
                  X
       <dbl> <dbl>
##
                       <fdb>
   1 -0.457 -0.410 1.28
4⊧4⊧
   2 0.281 1.79
                   -0.550
4⊧4⊧
4‡4‡
      0.0835
             1.31 -0.169
   4 0.640
              1.06 -1.40
##
   5 -1.30 0.435 1.16
4F4F
## 6 -0.569 0.630 -0.000667
## 7 -0.793 1.50 -1.10
## 8 -0.482 0.748 -0.411
## 9 -0.706 1.03
                   -0.381
             -0.841 -0.420
## 10 1.42
## # ... with 490 more rows
```

Let's prove it!

correct effect size: 0

Loss to follow-up

Adjusting for selection bias

- Fit a probability of censoring model, e.g. glm(censoring ~ predictors, family = binomial())
- Create weights using inverse probability strategy
- Use weights in your causal model

We won't do it here, but you can include many types of weights in a given model. Just take their product, e.g. multiply inverse propensity of treatment weights by inverse propensity of censoring weights.

Your Turn

Work through Your Turns 4-6 in 07-g-computationexercises.Rmd