Analyzing Student Stress Factors through Machine Learning Techniques

Manan Patel and Zachary Perry

Dataset

- Dataset was sourced from Kaggle
- "Student Stress Factors: A Comprehensive Analysis"
- 1,100 students, ages 15-24 (high school college)
- Dharan, Nepal
- 5 Major Factors
- Psychological
 - Physiological
- Social
- Environmental
- Academic
- Objectives
- 1. Can we predict the stress level of a new student based on the similarity of their stress factors to those of known students?
- Which factors contribute most significantly to predicting stress levels in students?

	max	21.0	30.0	1.0	27.0	5.0	3.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0	5.0	2.0	
,	mın	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		anxiety_level	self_esteem	<pre>mental_health_history</pre>	depression	headache	blood_pressure	sleep_quality	breathing_problem	noise_level	living_conditions	safety	basic_needs	academic_performance	study_load	<pre>- teacher_student_relationship</pre>	future_career_concerns	social_support	peer_pressure	extracurricular_activities	bullying	stress_level	

Methodology

Research Question: Can we predict the stress level of a new student based on the similarity of their stress factors to those of known students?

K-Nearest Neighbors

- o Simple and explainable method
- Evaluated based on accuracy score
- Hyperparameter Tuned: K-fold cross validation (n_neighbors)
- 10 splits
- Tested all odd numbers, 1-30, found 27 neighbors was best

Multi-Layer Perceptron

- More complex, good for classification tasks
 - Evaluated based on accuracy score
 - o max_iter=1000
- Hyperparameter Tuned: K-fold cross validation (hidden_layer_sizes, learning_rate_init)
 - 3 splits
- Testing multiple combinations of hidden_layer_sizes and learning_rate_init values
- Tested to find best network structure for hidden layer sizes
- Found learning_rate_init = 0.01 and hidden_layer_sizes = 500 to perform best
- Also tested undersampling for both

Methodology (cont.)

Research Question: Which factors contribute most significantly to predicting stress levels in students?

Decision Trees

- Interpretability and ranking of feature importance
 - Evaluated based on accuracy score
- Hyperparameter Tuned: Max Depth of Tree (max_depth)
- Tested several values to find optimal depth of tree

Random Forest

- Robust ensemble technique that leverages multiple decision trees
- Evaluated based on accuracy score
- Hyperparameter Tuned: Number of trees (n_estimators)
- Tested various n_estimators values to find optimal number of trees in the

KNN Results

True label

- Testing Accuracy: 87.2% •
 - Neighbors: 3

09

9

20

63

0-

20

30

10

99

Testing Accuracy: 89.1% Neighbors: 27

- 0

2-

- Testing Accuracy: 86.98%
 - *Neighbors*: 1

•

MLP Results

99

- Testing Accuracy: 88% hidden_layer_sizes: 50
- |learning_rate_init: 0.0001
- Testing Accuracy: 88%

63

2

- hidden_layer_sizes: 500
 - learning_rate_init: 0.01

- Testing Accuracy: 87.9%
- hidden_layer_sizes: (100,100)
 - learning_rate_init: 0.1

Decision Trees Results

Rank	Feature	Importance
_	blood_pressure	40.21%
2	social_support	29.07%
3	sleep_quality	9.81%
4	bullying	4.37%
5	breathing_problem	4.03%
9	academic_performance	2.12%
7	depression	2.09%
8	extracurricular_activities	1.97%
6	teacher_student_relationship	1.51%
10	peer_pressure	0.88%
11	self_esteem	0.84%
12	noise_level	0.81%
13	study_load	0.70%
14	anxiety_level	0.70%
15	safety	0.34%
16	future_career_concerns	0.23%
17	living_conditions	0.20%
18	basic_needs	0.14%
19	headache	%00.0
20	mental_health_history	%00.0

Testing Accuracy: 90% Max-Depth: 3

Random Forest results

Testing accuracy: 89% Number of Trees (n_estimators): 20

	Rank	Feature	Importance
	<u></u>	sleep_quality	14.46%
	2	blood_pressure	12.17%
	3	safety	8.62%
	4	basic_needs	8.11%
	5	self_esteem	%96.9
	9	anxiety_level	6.51%
	7	teacher_student_relationship	6.40%
	80	extracurricular_activities	6.17%
	6	bullying	5.11%
	10	headache	4.68%
	11	noise_level	3.71%
	12	social_support	3.59%
	13	depression	3.53%
	14	academic_performance	3.27%
	15	study_load	1.43%
/	16	peer_pressure	1.40%
11	17	future_career_concerns	1.32%
1	18	living_conditions	1.15%
1	19	breathing_problem	0.79%
1/	20	mental_health_history	0.61%

Discussion

KNN & MLP

- Both are capable of predicting the stress level of a student based on the characteristics and factors of other students
- KNN is overall the better model

Decision Trees & Random Forest

- Physiological factors such as Blood pressure and sleep quality are most impactful along with social support
- Decision Trees showcased better accuracy compared to Random 0

Future Work

More time?

Extensive exploration of hyperparameter tuning for all models

Additional Research?

(Psychological, Physiological, Social, Environmental, Academic) that Are there certain combinations of features from different domains collectively have more influence on predicting stress levels?

Additional work would have done?

- Explore variations of ensemble approaches for models
- Bagging or Boosting for Decision Trees and Random Forests
 - Different distance metric for KNN
- o Varied architectures for MLP

Team Contributions

Zachary Perry

- · Focused on predicting stress levels of new students based on similarity to known students.
- MLP models and hyperparameter tuning of each model · Conducted in-depth research and testing of KNN and for optimal performance
 - · Created appropriate visualizations

Manan Patel

- · Worked on answering the factors that contributed significantly to predicting stress levels in students
- conducting thorough testing and hyperparameter tuning Explored Decision Trees and Random Forest models, <u>for each</u>
- · Created appropriate visualizations

Roth

- Collaboratively discovered and selected the dataset for the project
- Formulated the research questions jointly
- Shared responsibilities in creating a presentation and co-authored the paper

References

- //www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis [1] "Student Stress Factors: A Comprehensive Analysis," www.kaggle.com. Https:
- [2] R. Spitzer, "GAD-7 Anxiety," 1999. Available: https://adaa.org/sites/default/files/GAD-7_Anxiety-updated_0.pdf
- https://fetzer.org/sites/default/files/images/stories/pdf/selfmeasures\/Self_Measures_for_Self-Esteem_ROSENBERG_SELF-ES [3] M. Rosenberg, "ROSENBERG SELF-ESTEEM SCALE," fetzer.org, 1965. Available:
- [4] "PATIENT HEALTH QUESTIONNAIRE (PHQ-9)," Oct. 2005. Available: https://med.stanford.edu/ fast lab/research/imapp/msrs/_jcr_content/main/accordion/accordion_content3/download_ 256324296/file.res/PHQ9%20id%20date%2008.03.pdf
- [5] American Psychological Association, "APA Dictionary of Psychology," dictionary.apa.org, 2020. https://dictionary.apa.org/social-support
- [6] C. Schuman. NearestNeighbors [PowerPoint slides]. University of Tennessee, Knoxville, 2023. Available: https://utk.instructure.com/courses/179872/files/17767847?module_item_id=3771387
- [7] C. Schuman. TeamProject_NeuralNetworks_Part2 [PowerPoint slides]. University of Tennessee, Knoxville, 2023. Available:https://utk.instructure.com/courses/179872/files/18465674?module_item_id=3820936