Corrigé du devoir maison 12.

Partie 1 : Généralités

1°)
$$f_X(0) = \sum_{k=0}^n P(X=k)0^k = \boxed{P(X=0)}$$
.
$$f_X(1) = \sum_{k=0}^n P(X=k) = \boxed{1} \text{ puique les } (X=k) \text{ forment un système complet d'événements.}$$

2°) f_X est une fonction polynômiale, elle est donc indéfiniment dérivable. Pour tout $t \in \mathbb{R}$, comme $n \geq 1$,

$$f'_X(t) = \sum_{k=1}^n P(X=k)kt^{k-1}$$
 car pour $k=0$, le terme était une constante

Ainsi $f_X'(1) = \sum_{k=1}^n k P(X=k)$. De même, pour tout $t \in \mathbb{R}$, comme $n \ge 2$:

$$f_X''(t) = \sum_{k=2}^{n} P(X=k)k(k-1)t^{k-2}$$

Ainsi
$$f_X''(1) = \sum_{k=2}^n (k^2 - k)P(X = k)$$
. Par ailleurs, $E(X) = \sum_{k=0}^n kP(X = k) = \sum_{k=1}^n kP(X = k)$, donc $E(X) = f_X'(1)$.

 $V(X) = E(X^2) - E(X)$ et par le théorème de transfert,

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} P(X = k)$$

$$= \sum_{k=1}^{n} k^{2} P(X = k)$$

$$= \sum_{k=1}^{n} (k^{2} - k) P(X = k) + \sum_{k=1}^{n} k P(X = k)$$

$$= \sum_{k=2}^{n} (k^{2} - k) P(X = k) + \sum_{k=1}^{n} k P(X = k)$$

$$= f_{X}''(1) + f_{X}'(1)$$

On en tire que $V(X) = f_X''(1) + f_X'(1) - (f_X'(1))^2$

Partie 2: Une première application

3°) À l'issue du 2ème lancer, on ne peut avoir gagné qu'un point au plus. Donc $X_2(\Omega) = \{0, 1\}$. Ne pas avoir gagné de point au 2ème lancer revient à avoir fait deux fois de suite la même chose : $(X_2 = 0) = (P_1 \cap P_2) \cup (F_1 \cap F_2)$. Comme $P_1 \cap P_2$ et $F_1 \cap F_2$ sont incompatibles,

$$P(X_2 = 0) = P(P_1 \cap P_2) + P(F_1 \cap F_2)$$

Comme P_1 et P_2 sont indépendants, ainsi que F_1 et F_2 :

$$P(X_2 = 0) = P(P_1)P(P_2) + P(F_1)P(F_2)$$

Comme la pièce est équilibrée : $P(X_2 = 0) = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \boxed{\frac{1}{2}}$

Comme $P(X_2 = 0) + P(X_2 = 1) = 1$, on en tire $P(X_2 = 1) = \frac{1}{2}$. On peut dire que X_2 est une

variable de Bernouilli de paramètre $\frac{1}{2}$ donc $E(X_2) = \frac{1}{2}$ et $V(X_2) = \frac{1}{2} \left(1 - \frac{1}{2}\right) = \frac{1}{4}$

4°) À l'issue du 3ème lancer, on peut gagner un point supplémentaire par rapport à X_2 donc $X_3(\Omega) = \{0, 1, 2\}.$

Ne pas avoir gagné de point au 3ème lancer revient à avoir fait trois fois de suite la même chose : $(X_3 = 0) = (P_1 \cap P_2 \cap P_3) \cup (F_1 \cap F_2 \cap F_3)$.

Par le même raisonnement qu'à la question précédente, $P(X_3 = 0) = 2 \times \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \boxed{\frac{1}{4}}$

Avoir gagné 2 points au 3ème lancer revient à avoir fait à chaque lancer un côté différent : $(X_3 = 2) = (P_1 \cap F_2 \cap P_3) \cup (P_1 \cap F_2 \cap P_3)$.

Par le même raisonnement qu'à la question précédente, $P(X_3=2)=2\times\frac{1}{2}\frac{1}{2}\frac{1}{2}=\boxed{\frac{1}{4}}$.

Comme $P(X_3 = 0) + P(X_3 = 1) + P(X_3 = 2) = 1$, on en tire $P(X_3 = 1) = \frac{1}{2}$.

5°) $X_n(\Omega) = \{0, \ldots, n-1\}$, car on peut ne faire que des piles et ne gagner aucun point, et au maximum on gagne un point à chaque lancer à partir du 2^{ème} donc au total n-1 points. $(X_n = 0) = (P_1 \cap \cdots \cap P_n) \cup (F_1 \cap \cdots \cap F_n)$. Par un raisonnement similaire à ceux des questions précédentes,

 $P(X_n = 0) = 2 \times \left(\frac{1}{2}\right)^n = \boxed{\frac{1}{2^{n-1}}}$

6°) Soit $n \ge 2$ et $k \in \{1, ..., n\}$. Notons A_{n+1} l'événement "le côté obtenu au n+1-ième lancer est le même que celui obtenu au lancer précédent".

 A_{n+1} et $\overline{A_{n+1}}$ forment un système complet d'événements. Par la formule des probabilités totales :

$$P(X_{n+1}=k) = P(A_{n+1})P_{A_{n+1}}(X_{n+1}=k) + P(\overline{A_{n+1}})P_{\overline{A_{n+1}}}(X_{n+1}=k)$$

On a $A_{n+1} = (P_n \cap P_{n+1}) \cup (F_n \cap F_{n+1})$; par un raisonnement similaire à ceux des questions précédentes, $P(A_{n+1}) = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \frac{1}{2}$, donc également $P(\overline{A_{n+1}}) = 1 - P(A_{n+1}) = \frac{1}{2}$.

Sachant que A_{n+1} est réalisé (on ne gagne pas de point au n+1-ième lancer), dire que $X_{n+1}=k$ revient à dire que $X_n=k$. De même, sachant que $\overline{A_{n+1}}$ est réalisé (on gagne un point au n+1-ième lancer), dire que $X_{n+1}=k$ revient à dire que $X_n=k-1$. D'où :

$$P(X_{n+1} = k) = \frac{1}{2}P(X_n = k) + \frac{1}{2}P(X_n = k - 1).$$

Lorsque k vaut n, comme X_n ne prend jamais la valeur n, on a $P(X_n = n) = 0$, donc la formule devient $P(X_{n+1} = n) = \frac{1}{2}P(X_n = n - 1)$.

2

7°) Soit $n \geq 2$ et $t \in \mathbb{R}$. En utilisant les questions 5 et 6 :

$$Q_{n+1}(t) = \sum_{k=0}^{n} P(X_{n+1} = k)t^{k}$$

$$= P(X_{n+1} = 0) + \sum_{k=1}^{n-1} \left(\frac{1}{2}P(X_{n} = k) + \frac{1}{2}P(X_{n} = k - 1)\right)t^{k} + P(X_{n+1} = n)t^{n}$$

$$= \frac{1}{2^{n}} + \frac{1}{2}\sum_{k=1}^{n-1} P(X_{n} = k)t^{k} + \frac{1}{2}\sum_{k=1}^{n-1} P(X_{n} = k - 1)t^{k} + \frac{1}{2}P(X_{n} = n - 1)t^{n}$$

$$= \frac{1}{2^{n}} + \frac{1}{2}\left(Q_{n}(t) - P(X_{n} = 0)\right) + \frac{1}{2}\sum_{j=0}^{n-2} P(X_{n} = j)t^{j+1} + \frac{1}{2}P(X_{n} = n - 1)t^{n} \text{ avec } j = k + 1$$

$$= \frac{1}{2^{n}} + \frac{1}{2}\left(Q_{n}(t) - \frac{1}{2^{n-1}}\right) + \frac{t}{2}\sum_{j=0}^{n-2} P(X_{n} = j)t^{j} + \frac{t}{2}P(X_{n} = n - 1)t^{n-1}$$

$$= \frac{1}{2^{n}} + \frac{1}{2}Q_{n}(t) - \frac{1}{2^{n}} + \frac{t}{2}\sum_{j=0}^{n-1} P(X_{n} = j)t^{j}$$

$$= \frac{1}{2}Q_{n}(t) + \frac{t}{2}Q_{n}(t)$$

$$Q_{n+1}(t) = \frac{t+1}{2}Q_{n}(t)$$

Pour $t \in \mathbb{R}$ fixé, $(Q_n(t))_{n \geq 2}$ est donc une suite géométrique de raison $\frac{1+t}{2}$.

Comme $Q_2(t) = P(X_2 = 0) + P(X_2 = 1)t = \frac{1+t}{2}$, on en tire que pour tout $n \ge 2$,

$$Q_n(t) = Q_2(t) \left(\frac{1+t}{2}\right)^{n-2} = \left[\left(\frac{1+t}{2}\right)^{n-1}\right]$$

8°) Soit
$$n \ge 3$$
. Pour tout $t \in \mathbb{R}$, $Q'_n(t) = \frac{n-1}{2} \left(\frac{1+t}{2}\right)^{n-2}$, donc $E(X_n) = Q'_n(1) = \frac{n-1}{2}$.

Pour tout $t \in \mathbb{R}$, $Q''_n(t) = \frac{(n-1)(n-2)}{4} \left(\frac{1+t}{2}\right)^{n-3}$, donc $Q''_n(1) = \frac{(n-1)(n-2)}{4}$ et
$$V(X_n) = \frac{(n-1)(n-2)}{4} + \frac{n-1}{2} - \frac{(n-1)^2}{4}$$

$$= \frac{n-1}{4}(n-2+2-n+1)$$

$$V(X_n) = \frac{n-1}{4}$$

Partie 3 : Une deuxième application

9°) Par hypothèse, pour tout $k \in \{2, ..., 12\}$, $P(S = k) = \frac{1}{11}$ (et P(S = 0) = P(S = 1) = 0). Donc, pour tout $t \in \mathbb{R}$,

$$f_S(t) = \sum_{k=2}^{12} \frac{1}{11} t^k = \frac{1}{11} \sum_{k=2}^{12} t^k$$

Si t=1, on a $f_S(1)=1$ (comme vu à la question 2). Si $t\in\mathbb{R}\setminus\{1\}$:

$$f_S(t) = \frac{t^2}{11} \sum_{k=2}^{12} t^{k-2}$$
$$= \frac{t^2}{11} \sum_{i=0}^{10} t^i$$
$$\forall t \in \mathbb{R} \setminus \{1\}, \ f_S(t) = \frac{t^2}{11} \frac{1 - t^{11}}{1 - t} \quad \text{car } t \neq 1$$

Comme 0 n'est pas racine de $\sum_{i=0}^{10} t^i$, 0 est bien racine double de f_S .

On sait aussi que 1 n'est pas racine de f_S . Pour $t \neq 0$ et $t \neq 1$,

$$f_S(t) = 0 \iff 1 - t^{11} = 0$$

 $\iff t \text{ racine 11ième de l'unité distincte de 1}$
 $\iff t = e^{i\frac{2k\pi}{11}}, \ k \in \{1, \dots, 11\}$

Aucun des angles $\frac{2k\pi}{11}$ n'est égal à 0 modulo π , donc toutes ces valeurs sont non réelles.

Ainsi, la seule racine réelle de f_S est 0.

- 10°) a) $p_6 = P(X = 6) = P(Y = 6) \ge 0$, et si cette valeur était nulle, alors (X = 6) et (Y = 6) seraient vides, et donc (S = 12) aussi puisque $(S = 12) = (X = 6) \cap (Y = 6)$. Or on sait que $P(S = 12) = \frac{1}{11} \ne 0$ donc c'est impossible. Ainsi $p_6 > 0$.

 De même, $P(S = 2) \ne 0$ et la seule façon d'avoir S = 2 est que X et Y valent 1. Donc $p_1 = P(X = 1) = P(Y = 1) \ne 0$ i.e. $p_1 > 0$.
 - **b)** Pour tout $t \in \mathbb{R}$, $f_X(t) = \sum_{k=1}^6 p_k t^k$, et comme $p_6 \neq 0$, f_X est bien de degré 6. On a $f_X(0) = \sum_{k=1}^6 p_k 0^k = 0$ donc 0 est bien racine de f_X .
 - c) En utilisant le calcul général fait à la question 2, on trouve que pour tout $t \in \mathbb{R}$, $f_X'(t) = \sum_{k=1}^6 k p_k t^{k-1} \operatorname{donc} \left[f_X'(0) = p_1 \right].$

Supposons que pour tout h < 0, $f_X(h) > 0$. Alors, pour tout h < 0, le taux d'accroissement de f_X entre h et 0 est négatif :

$$\frac{f_X(h) - f_X(0)}{h - 0} = \frac{f_X(h)}{h} < 0$$

Par passage à la limite $h \to 0$, on obtient $f_X'(0) \le 0$: absurde puisque $f_X'(0) = p_1 > 0$ d'après la question a. Ainsi, il existe un réel h < 0 tel que $f_X(h) \le 0$.

d) Comme f_X est de degré 6 et de coefficient dominant p_6 positif, $f_X(t) \xrightarrow[t \to -\infty]{} +\infty$.

En particulier, il existe un réel B tel que pour tout $t \leq B, f_X(t) > 1$.

Comme $f_X(h) \leq 0$, on a B < h.

La fonction f_X est continue sur le segment [B,h]. On a $f_X(B)>0$ et $f_X(h)\leq 0$ donc la valeur 0 est comprise entre $f_X(B)$ et $f_X(h)$. D'après le théorème des valeurs intermédiaires, il existe un réel t_0 entre B et h, tel que $f_X(t_0)=0$. On a $t_0<0$ puisque $t_0\leq h<0$.

11°) D'après le résultat admis, comme X_1 et X_2 sont indépendantes, $f_S = f_{X_1} f_{X_2} = f_X^2$.

En particulier, $f_S(t_0) = (f_X(t_0))^2 = 0^2 = 0$. Ainsi t_0 est une racine réelle pour f_S , strictement négative donc distincte de 0: c'est absurde d'après la question 9.

Ainsi, il est impossible que S suive la loi uniforme sur $\{2, \ldots, 12\}$.