Adrian Kramkowski, Abdelhadi Fares, Yousef Al Sahli und Abdelraoof Sahli

Modul: Compilerbau

```
Aufgabe A2.1 – Deterministischer PDA für L = { w \in \{a,b,c\}^* \mid \#a = 2 \cdot \#c }
```

Ziel: Entwirf einen *deterministischen* PDA (DPDA), der genau dann akzeptiert, wenn die Anzahl der a doppelt so groß ist wie die Anzahl der c. Zeichen b sind neutral.

Symbolische Notation:

- #a = Anzahl der a in einem Wort w
- #c = Anzahl der c in demselben Wort

```
Beispiel: Für w = "aacbc" gilt \#a = 2 und \#c = 2.
```

Bedingung $\#a = 2 \cdot \#c$ heißt: Es gibt **doppelt so viele** a wie c.

Intuition: Wir speichern die Differenz D = (#a) - 2·(#c) über Stack-Marker.

- P steht für "+1", N für "−1".
- Bei a: D := D+1 \rightarrow entweder N abbauen oder P pushen.
- Bei c: D := D-2 → entweder zwei P abbauen (in zwei Schritten) oder zwei N pushen.

Akzeptanz: <u>nur,</u> wenn die gesamte Eingabe gelesen ist <u>und</u> der Stack leer ist (nur _).

Formale Spezifikation (7-Tupel)

```
P = (Q, \Sigma, \Gamma, \delta, q0, \bot, F)

Zustände: Q = { q, qc1 } (Basiszustand q, Zwischenzustand qc1 für den 2. Abbau bei c)

Eingabealphabet: \Sigma = { a, b, c }

Stackalphabet: \Gamma = { \bot, P, N }

Startzustand: q0 = q

Startstapelzeichen: \bot

Endzustände: \Gamma = \emptyset (Akzeptanz durch leeren Stack)
```

Übergangsfunktion δ (deterministisch)

Basiszustand q:

Eingabe 'a'
$$\rightarrow$$
 D := D + 1

$$\delta(q, a, \perp) = (q, P \perp)$$

$$\delta(q, a, P) = (q, PP)$$

$$\delta(q, a, N) = (q, \epsilon)$$

Eingabe 'b' \rightarrow D unverändert

$$\delta(q, b, \bot) = (q, \bot)$$

$$\delta(q, b, P) = (q, P)$$

$$\delta(q, b, N) = (q, N)$$

Eingabe 'c'
$$\rightarrow$$
 D := D - 2

$$\delta(q, c, \perp) = (q, NN \perp)$$

$$\delta(q, c, N) = (q, NNN)$$

$$\delta(q, c, P) = (qC1, \epsilon)$$
 # 1. P abbauen; 2. Schritt folgt in qC1

Zwischenzustand qC1 (nur ε-Übergänge, keine Eingabe):

$$\delta(qC1, \epsilon, P) = (q, \epsilon)$$
 # zweites P abbauen (es waren ≥ 2 P vorhanden)
 $\delta(qC1, \epsilon, \bot) = (q, N\bot)$ # es war nur 1 P vorhanden \rightarrow jetzt D = -1 \rightarrow ein N push

(Anmerkung: P über N entsteht mit diesen Regeln nicht.)

Determinismus: In $\, q \,$ gibt es ausschließlich eingabegesteuerte Übergänge (keine ϵ), in $\, qc1 \,$ ausschließlich ϵ -Übergänge (keine Eingabe). Für jede Kombination ist höchstens ein Übergang definiert.

Akzeptanz: durch leeren Stack nach vollständiger Eingabe.

Schritt-für-Schritt: Lauf auf bcaba (akzeptiert)

Schritt	Gelesen	Zustand	Stack (oben→unten)	Kommentar
0	_	q	Т	Start
1	b	q	Т	No-Op

Schritt	Gelesen	Zustand	Stack (oben→unten)	Kommentar
2	С	q	N, N, ⊥	0 → −2
3	а	q	N, ⊥	- 2 → - 1
4	b	q	N, ⊥	No-Op
5	а	q	Т	-1 → 0

Eingabe zu Ende & Stack = $\bot \Rightarrow$ akzeptiert

Schritt-für-Schritt: Lauf auf bccac (abgelehnt)

Schritt	Gelesen	Zustand	Stack (oben→unten)	Kommentar
0	_	q	Т	Start
1	b	q	1	No-Op
2	С	q	N, N, ⊥	0 → −2
3	С	q	N, N, N, N, ⊥	-2 → -4
4	а	q	N, N, N, ⊥	-4 → -3
5	С	q	N, N, N, N, L	- 3 → - 5

Eingabe zu Ende & Stack $\neq \bot \Rightarrow$ abgelehnt

Kurz-Begründung

Wenn #a = 2-#c: Jede Aktion aktualisiert Nur wenn Stack leer ist: Dann gilt #a -D korrekt (+1 für a, −2 für c, 0 für b). Am Ende gilt D=0 \Rightarrow Stack = $\bot \Rightarrow$ akzeptiert.

 $2 \cdot \#c = \emptyset$. Bleibt ein Marker, ist D $\neq \emptyset \Rightarrow$ abgelehnt.

Determinismus: getrennte Zustände für Eingabe- und ε-Schritte; keine konkurrierenden Übergänge.