THE BEAUTIFUL GEOMETRY OF APERIODIC TESSELLATIONS

Jesse Bettencourt March 30, 2015

Supervised by Miroslav Lovric

WHAT IS A TESSELLATION?

A SIMPLE TESSELLATION

Checkerboard Tessellation

WHAT IS A TESSELLATION?

Definition:

A **tessellation** \mathcal{T} of the space \mathbb{E}^n is a countable family of closed sets, T, called tiles:

$$\mathcal{T} = \{T_1, T_2, \ldots\}$$

such that

- 1. \mathcal{T} has **no overlaps**: $\mathring{T}_i \cap \mathring{T}_j = \emptyset$ if $i \neq j$
- 2. \mathcal{T} has **no gaps**: $\bigcup_{i=1}^{\infty} T_i = \mathbb{E}^n$

COMPONENTS OF A TESSELLATION

Definition:

Let $\{T_1, T_2, \ldots\}$ be the set of tiles of tessellation \mathcal{T} , partitioned into a set of equivalence classes by **criterion** \mathcal{M} . The set, \mathcal{P} , of representatives of these equivalence classes is called the **protoset** for \mathcal{T} with respect to \mathcal{M} .

Example:

Criterion: $\mathcal{M} = \{\text{Colour of the tile. Only opposite colours may touch.}\}$

Protoset:
$$\mathcal{P} = \{$$
 , $\}$

PROTOSETS ADMIT TESSELLATIONS

Definition:

If $\mathcal T$ is a tessellation with protoset $\mathcal P$, then we say that $\mathcal P$ admits $\mathcal T$.

Example:

We say

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits

PROTOSETS CAN ADMIT MULTIPLE TESSELLATIONS

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both

and

MATCHING RULES CORRESPOND TO DEFORMED PROTOSETS

Edge deformations can force matching rules.

 ${\tt Matching \, Rules} \implies {\tt Deformed \, Protoset}$

DESCRIBING TESSELLATIONS

PERIODICITY

Definition:

A tessellation is said to be **periodic** if it admits translational symmetry in two directions.

Definition:

A tessellation is said to be **non-periodic** if it admits no translational symmetries.

Periodic

Non-Periodic

THE APERIODIC QUESTION

Checkerboard protoset,

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both periodic and non-periodic tessellations.

Periodic

Non-Periodic

THE APERIODIC QUESTION

Checkerboard protoset,

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both periodic and non-periodic tessellations.

Some protosets,

$$\mathcal{P} = \{\,lacktriangledown\,,\,oxedown\,\}$$
 admit only periodic tessellations.

THE APERIODIC QUESTION

Checkerboard protoset,

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both periodic and non-periodic tessellations.

Some protosets,

$$\mathcal{P} = \{lacktriangledown, oxedsymbol{\square}\}$$
 admit only periodic tessellations.

Are there any protosets,

$$\mathcal{P} = \{?\}$$

that admit only non-periodic tessellations?

AN APERIODIC TESSELLATION

THE PENROSE RHOMBS PROTOSET

 $m{\star}$ With matching rules

THE PENROSE RHOMBS PROTOSET

admits only non-periodic tessellations, called Penrose Tessellations.

NON-LOCALITY OF THE PENROSE TESSELLATIONS

Cannot be constructed through local procedures.

Example:

This arrangement

follows the matching rules.

NON-LOCALITY OF THE PENROSE TESSELLATIONS

Cannot be constructed through local procedures.

Example:

This arrangement

follows the matching rules, but is a mistake:

CONSTRUCTION BY SUBSTITUTION

SUBSTITUTION RULES ON ROBINSON TRIANGLES

First, consider the Rhombs as joined triangles:

SUBSTITUTION RULES ON PENROSE RHOMBS

SUBSTITUTION RULES ON PENROSE RHOMBS

START WITH A SEED: THICK RHOMBUS

APPLY SUBSTITUTION RULES

APPLY SUBSTITUTION RULES AGAIN

APPLY SUBSTITUTION RULES AGAIN AND AGAIN

APPLY SUBSTITUTION RULES AGAIN AND AGAIN AND AGAIN

APPLY SUBSTITUTION RULES AGAIN AND AGAIN AND AGAIN AND AGAIN

APPLY SUBSTITUTION RULES 10 TIMES

PENROSE TESSELLATION FEATURES

Any pattern with diameter d will begin repeating within $2\phi d$ from the perimeter.

SURPRISING ROTATIONAL SYMMETRY

Penrose Tessellations can admit five-fold rotational symmetry.

(Impossible for periodic tessellations)

RATIO OF THICK TO THIN RHOMBS

Questions?

github.com/jessebett/PenroseTilingThesis

BIBLIOGRAPHY

J H Conway and K M Knowles.

Quasiperiodic tiling in two and three dimensions.

Journal of Physics A: Mathematical and General, 19(17):3645–3653, 1986.

In Indagationes Mathematicae (Proceedings), volume 84, pages 39-52, Elsevier, 1981,

N G De Bruijn.

Algebraic theory of Penrose's non-periodic tilings of the plane. I.

N.G. de Bruiin.

Updown generation of Penrose patterns.

Indagationes Mathematicae, 1(2):201-219, June 1990.

Martin Gardner

Penrose Tiles to Trapdoor Ciphers: And the Return of Dr Matrix.

Cambridge University Press, 1997.

T. Ogawa and R. Collins.

Chains, Flowers, Rings and Peanuts: Graphical Geodesic Lines and Their Application to Penrose Tiling. Visual Mathematics. (4), 1999.

R Penrose

Pentaplexity A Class of Non-Periodic Tilings of the Plane.

The Mathematical Intelligencer, 2(1):32-37, March 1979.

Marjorie Senechal.

Quasicrystals and geometry.

CUP Archive, 1996.