# Differential Equations MAT244 Notes Jason Siefken Bernardo Galvão-Sousa

You are observing starfish that made their way to a previously uninhabited tide-pool. You'd like to predict the year-on-year population of these starfish.

You start with a simple assumption

#new children per year ∼ size of current population

- 1.1 Come up with a mathematical model for the number of star fish in a given year. Your model should
  - Define any notation (variables and parameters) you use
  - Include at least one formula/equation
  - Explain how your formula/equation relates to the starting assumption
- 2 Let

(Birth Rate) K = 1.1 children per starfish per year (Initial Pop.)  $P_0 = 10$  star fish

and define the model  $M_1$  to be the model for starfish population with these parameters.

2.1 Simulate the total number of starfish per year using Excel.

Recall the model  $\mathbf{M}_1$  (from the previous question).

Define the model  $\mathbf{M}_{1}^{*}$  to be

$$P(t) = P_0 e^{0.742t}$$

- 3.1 Are  $\mathbf{M}_1$  and  $\mathbf{M}_1^*$  different models or the same?
- 3.2 Which of  $\mathbf{M}_1$  or  $\mathbf{M}_1^*$  is better?
- 3.3 List an advantage and a disadvantage for each of  $\mathbf{M}_1$  and  $\mathbf{M}_1^*$ .
- In the model  $M_1$ , we assumed the starfish had K children at one point during the year.
  - 4.1 Create a model  $\mathbf{M}_n$  where the starfish are assumed to have K/n children n times per year (at regular intervals).
  - 4.2 Simulate the models  $\mathbf{M}_1$ ,  $\mathbf{M}_2$ ,  $\mathbf{M}_3$  in Excel. Which grows fastest?
  - 4.3 What happens to  $\mathbf{M}_n$  as  $n \to \infty$ ?
- 5 Exploring  $\mathbf{M}_n$

We can rewrite the assumptions of  $\mathbf{M}_n$  as follows:

- At time t there are  $P_n(t)$  starfish.
- $P_n(0) = 10$
- During the time interval (t, t + 1/n) there will be (on average) K/n new children per starfish.
- 5.1 Write an expression for  $P_n(t+1/n)$  in terms of  $P_n(t)$ .
- 5.2 Write an expression for  $\Delta P_n$ , the change in population from time t to  $t + \Delta t$ .
- 5.3 Write an expression for  $\frac{\Delta P_n}{\Delta t}$ .
- 5.4 Write down a differential equation relating P'(t) to P(t) where  $P(t) = \lim_{n \to \infty} P_n(t)$ .

6

Recall the model  $M_1$  defined by

- $P_1(0) = 10$
- $P_1(t+1) = KP(t)$  for  $t \ge 0$  years and K = 1.1.

Define the model  $M_{\infty}$  by

- P(0) = 10
- P'(t) = kP(t).
- 6.1 If k = K = 1.1, does the model  $\mathbf{M}_{\infty}$  produce the same population estimates as  $\mathbf{M}_{1}$ ?

Suppose that the estimates produced by  $M_1$  agree with the actual (measured) population of starfish.

Fill out the table indicating which models have which properties.

| Model            | Accuracy | Explanatory | (your favourite property) |
|------------------|----------|-------------|---------------------------|
| $\mathbf{M}_1$   |          |             |                           |
| $\mathbf{M}_1^*$ |          |             |                           |
| $ m M_{\infty}$  |          |             |                           |

8

Recall the model  $M_1$  defined by

- $P_1(0) = 10$
- $P_1(t+1) = KP(t)$  for  $t \ge 0$  years and K = 1.1.

Define the model  $M_{\infty}$  by

- P(0) = 10
- P'(t) = kP(t).

8.1 Suppose that  $\mathbf{M}_1$  accurately predicts the population. Can you find a value of k so that  $\mathbf{M}_{\infty}$ accurately predicts the population?

9

After more observations, scientists notice a seasonal effect on starfish. They propose a new model called **S**:

- $P'(t) = k \cdot P(t) \cdot |\sin(2\pi t)|$
- 9.1 What can you tell about the population (without trying to compute it)?
- 9.2 Assuming k = 1.1, estimate the population after 10 years.
- 9.3 Assuming k = 1.1, estimate the population after 10.3 years.
- Consider the following argument for the population model **S** where  $P'(t) = P(t) \cdot |\sin(2\pi t)|$  with P(0) = 10:

At t = 0, the change in population  $\approx P'(0) = 0$ , so

$$P(1) \approx P(0) + P'(0) \cdot 1 = P(0) = 10.$$

At t = 1, the change in population  $\approx P'(1) = 0$ , so

$$P(2) \approx P(1) + P'(1) \cdot 1 = P(0) = 10.$$

And so on.

So, the population of starfish remains constant.

- 10.1 Do you believe this argument? Can it be improved?
- 10.2 Simulate an improved version using a spreadsheet.

11 (Simulating  $\mathbf{M}_{\infty}$  with different  $\Delta s$ )

| Time | Pop. ( $\Delta = 0.1$ ) | Time | Pop. ( $\Delta = 0.2$ ) |
|------|-------------------------|------|-------------------------|
| 0.0  | 10                      | 0.0  | 10                      |
| 0.1  | 11.1                    | 0.2  | 12.2                    |
| 0.2  | 12.321                  | 0.4  | 14.884                  |
| 0.3  | 13.67631                | 0.6  | 18.15848                |
| 0.4  | 15.1807041              | 0.8  | 22.1533456              |

- 11.1 Compare  $\Delta = 0.1$  and  $\Delta = 0.2$ . Which approximation grows faster?
- 11.2 Graph the population estimates for  $\Delta = 0.1$  and  $\Delta = 0.2$  on the same plot. What does the graph show?
- 11.3 What  $\Delta s$  give the largest estimate for the population at time t?
- 11.4 Is there a limit as  $\Delta \rightarrow 0$ ?

(Simulating  $\mathbf{M}_{\infty}$  with different  $\Delta s$ )



- 11.1 Compare  $\Delta = 0.1$  and  $\Delta = 0.2$ . Which approximation grows faster?
- 11.2 Graph the population estimates for  $\Delta = 0.1$  and  $\Delta = 0.2$  on the same plot. What does the graph show?
- 11.3 What  $\Delta s$  give the largest estimate for the population at time t?
- 11.4 Is there a limit as  $\Delta \rightarrow 0$ ?
- 12 Consider the following models for starfish growth
  - M # new children per year ∼ current population
  - N # new children per year ∼ current population times resources available per individual
  - O # new children per year ~ current population times the fraction of total resources remaining
  - 12.1 Guess what the population vs. time curves look like for each model.
  - 12.2 Create a differential equation for each model.
  - 12.3 Simulate population vs. time curves for each model (but pick a common initial population).

### 13 Recall the models

- M # new children per year ∼ current population
- N # new children per year ∼ current population times resources available per individual
- **O** # new children per year ~ current population times the fraction of total resources remaining
- 13.1 Determine which population grows fastest in the short term and which grows fastest in the long term.
- 13.2 Are some models more sensitive to your choice of  $\Delta$  when simulating?
- 13.3 Are your simulations for each model consistently underestimates? Overestimates?
- 13.4 Compare your simulated results with your guesses from question 12.1. What did you guess correctly? Where were you off the mark?

### 14 A simple model for population growth has the form

$$P'(t) = bP(t)$$

where *b* is the *birth rate*.

14.1 Create a better model for population that includes both births and deaths.

15

Lotka-Volterra Predator-Prey models predict two populations, F (foxes) and R (rabbits), simultaneously. They take the form

$$F'(t) = (B_F - D_F) \cdot F(t)$$

$$R'(t) = (B_R - D_R) \cdot R(t)$$

where  $B_2$  stands for births and  $D_2$  stands for deaths.

We will assume:

- Foxes die at a constant rate.
- Foxes mate when food is plentiful.
- · Rabbits mate at a constant rate.
- · Foxes eat rabbits.
- 15.1 Speculate on when  $B_F$ ,  $D_F$ ,  $B_R$ , and  $D_R$  would be at their maximum(s)/minimum(s), given our assumptions.
- 15.2 Come up with appropriate formulas for  $B_F$ ,  $B_R$ ,  $D_F$ , and  $D_R$ .

Suppose the population of F (foxes) and R (rabbits) evolves over time following the rule

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$
  
 
$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

- 16.1 Simulate the population of foxes and rabbits with a spreadsheet.
- 16.2 Do the populations continue to grow/shrink forever? Are they cyclic?
- 16.3 Should the humps/valleys in the rabbit and fox populations be in phase? Out of phase?

### 17 Open the spreadsheet

16

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$
  
 
$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

- 17.1 Is the max population of the rabbits over/under estimated? Sometimes over, sometimes under?
- 17.2 What about the foxes?
- 17.3 What about the min populations?

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

# Component Graph & Phase Plane

For a differential equation involving the functions  $F_1, F_2, \ldots, F_n$ , and the variable t, the component graphs are the n graphs of  $(t, F_1(t)), (t, F_2(t)), \ldots$ 

The *phase plane* or *phase space* associated with the differential equation is the *n*-dimensional space with axes corresponding to the values of  $F_1, F_2, \ldots, F_n$ .

- 18.1 Plot the Fox vs. Rabbit population in the *phase plane*.
- 18.2 Should your plot show a closed curve or a spiral?
- 18.3 What "direction" do points move along the curve as time increases? Justify by referring to the model.
- 18.4 What is easier to see from plots in the phase plane than from component graphs (the graphs of fox and rabbit population vs. time)?

# 19 Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

# **Equilibrium Solution**

An equilibrium solution to a differential equation or system of differential equations is a solution that is constant in the independent variable(s).

- 19.1 By changing initial conditions, what is the "smallest" curve you can get in the phase plane? What happens at those initial conditions?
- 19.2 What should F' and R' be if F and R are equilibrium solutions?
- 19.3 How many equilibrium solutions are there for the fox-and-rabbit system? Justify your answer.
- 19.4 What do the equilibrium solutions look like in the phase plane? What about their component graphs?

## 20 Recall the logistic model for starfish growth:

**O** # new children per year ~ current population times the fraction of total resources remaining

which can be modeled with the equation

$$P'(t) = k \cdot P(t) \cdot \left(1 - \frac{R_i}{R} \cdot P(t)\right)$$

where

- *P*(*t*) is the population at time *t*
- k is a constant of proportionality
- *R* is the total number of resources

Use k = 1.1, R = 1, and  $R_i = 0.1$  unless instructed otherwise.

- 20.1 What are the equilibrium solutions for model O?
- 20.2 What does a "phase plane" for model O look like? What do graphs of equilibrium solutions look like?
- 20.3 Classify the behaviour of solutions that lie between the equilibrium solutions. E.g., are they increasing, decreasing, oscillating?

# 21

# Classification of Equilibria

An equilibrium solution f is called

- attracting if solutions locally converge to f
- repelling if solutions locally diverge from f
- stable if solutions do not locally diverge from f
- unstable if solutions do not locally converge to f
- *semi-stable* if solutions locally converge to f from one side and locally diverge from f on another.

Let

$$F'(t) = ?$$

be an unknown differential equation with equilibrium solution f(t) = 1.

- 21.1 Draw an example of what solutions might look like if f is attracting.
- 21.2 Draw an example of what solutions might look like if f is repelling.
- 21.3 Draw an example of what solutions might look like if f is *stable*.
- 21.4 Could *f* be stable but *not* attracting?

# 22

# Classification of Equilibria

An equilibrium solution f is called

- attracting if solutions locally converge to f
- repelling if solutions locally diverge from f
- *stable* if solutions do not locally diverge from *f*
- *unstable* if solutions do not locally converge to *f*
- semi-stable if solutions locally converge to f from one side and locally diverge from f on another.

Recall the starfish population model O given by

$$P'(t) = k \cdot P(t) \cdot \left(1 - \frac{R_i}{R} \cdot P(t)\right)$$

Use k = 1.1, R = 1, and  $R_i = 0.1$  unless instructed otherwise.

- 22.1 Classify the equilibrium solutions for model O as attracting/repelling/stable/unstable/semi-
- 22.2 Does changing k change the nature of the equilibrium solutions? How can you tell?



A slope field is a plot of small segments of tangent lines to solutions of a differential equation at different initial conditions.

On the left is a slope field for model O, available at

https://www.desmos.com/calculator/ghavqzqqjn

- 23.1 If you were sketching the slope field for model O by hand, what line would you sketch (a segment of) at (5,3)? Write an equation for that line.
- 23.2 How can you recognize equilibrium solutions in a slope field?
- 23.3 Describe different solutions to the differential equation using words. Do all of those solutions make sense in terms of *model* **O**?

24



3d slope fields are possible, but hard to interpret.

On the left is a slope field for the Foxes–Rabbits model.

https://www.desmos.com/3d/fsfbhvy2h9

- 24.1 What are the three dimensions in the plot?
- 24.2 What should the graph of an equilibrium solution look like?
- 24.3 What should the graph of a typical solution look like?
- 24.4 What are ways to simplify the picture so we can more easily analyze solutions?

# Phase Portrait

A phase portrait or phase diagram is the plot of a vector field in phase space where each vector rooted at (x, y) is tangent to a solution curve passing through (x, y) and its length is given by the speed of a solution passing through (x, y).

On the left is a phase portrait for the Foxes–Rabbits model.

https://www.desmos.com/calculator/vrk0q4espx

- 25.1 What do the x and y axes correspond to?
- 25.2 Identify the equilibria in the phase portrait. What are the lengths of the vectors at those points?
- 25.3 Classify each equilibrium as stable/unstable.
- 25.4 Why is the vector at (5, 100) longer than the vector at (10, 100)? Justify numerically.
- 26 Sketch your own vector field where the corresponding system of differential equations:
  - 26.1 Has an attracting equilibrium solution.
  - 26.2 Has a repelling equilibrium solution.
  - 26.3 Has no equilibrium solutions.

27



Recall the slope field for model **O**.

- 27.1 What would a phase portrait for model **O** look like? Draw it.
- 27.2 Where are the arrows the longest? Shortest?
- 27.3 How could you tell from a 1d phase portrait whether an equilibrium solution is attracting/repelling/etc.?



- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$
  
 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$ 

and  $0 \le b \le 2$ 

28.1 Modify

https://www.desmos.com/calculator/vrk0q4espx to make a phase portrait for the tree model.

- 28.2 What do equilibrium solutions mean in terms of tree growth?
- 28.3 For b = 1 what are the equilibrium solution(s)?

29 The following differential equation models the life cycle of a tree. In the model

- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$
  
 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$ 

and  $0 \le b \le 2$ 

- 29.1 Fix a value of b and use a spreadsheet to simulate some solutions with different initial conditions. Plot the results on your phase portrait from 28.1.
- 29.2 What will happen to a tree with (H(0),A(0)) = (20,10)? Does this depend on b?
- 29.3 What will happen to a tree with (H(0),A(0)) = (10,10)? Does this depend on b?

30 The tree model

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$
  
 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$ 

was based on the premises

P<sub>height 1</sub> CO<sub>2</sub> is absorbed by the leaves and turned directly into trunk height.

 $P_{\text{height 2}}$  The tree is in a swamp and constantly sinks at a speed proportional to its height.

 $P_{\text{leaves 1}}$  Leaves grow proportionality to the energy available.

 $P_{\rm energy \, 1}$  The tree absorbs energy from the sun proportionality to the leaf area.

- 30.1 How are the premises expressed in the differential equations?
- 30.2 What does the parameter b represent?
- 30.3 Applying Euler's method to this system shows solutions that pass from the 1st to 4th quadrants of the phase plane. Is this realistic? Describe the life cycle of such a tree?

# 31 Recall the tree model

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$
  
 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$ 

- 31.1 Find all equilibrium solutions for  $0 \le b \le 2$ .
- 31.2 For which b does a tree have the possibility of living forever? If the wind occasionally blew off a few random leaves, would that change your answer?
- 31.3 Find a value  $b_5$  of b so that there is an equilibrium with H = 5. Find a value  $b_{12}$  of b so that there is an equilibrium with H = 12.
- 31.4 Predict what happens to a tree near equilibrium in condition  $b_5$  and a tree near equilibrium in condition  $b_{12}$ .

### 32 Consider the system of differential equations

$$x'(t) = x(t)$$
$$y'(t) = 2y(t)$$

- 32.1 Make a phase portrait for the system.
- 32.2 What are the equilibrium solution(s) of the system?
- 32.3 Find a formula for x(t) and y(t) that satisfy the initial conditions  $(x(0), y(0)) = (x_0, y_0)$ .
- 32.4 Let  $\vec{r}(t) = (x(t), y(t))$ . Find a matrix A so that the differential equation can be equivalently expressed as

$$\vec{r}'(t) = A\vec{r}(t)$$
.

32.5 Write a solution to  $\vec{r}' = A\vec{r}$  (where A is the matrix you came up with).

# 33 Let *A* be an unknown matrix and suppose $\vec{p}$ and $\vec{q}$ are solutions to $\vec{r}' = A\vec{r}$ .

- 33.1 Is  $\vec{s}(t) = \vec{p}(t) + \vec{q}(t)$  a solution to  $\vec{r}' = A\vec{r}$ ? Justify your answer.
- 33.2 Can you construct other solutions from  $\vec{p}$  and  $\vec{q}$ ? If yes, how so?

# 34 Recall from MAT223:

# Linearly Dependent & Independent (Algebraic)

The vectors  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$  are *linearly dependent* if there is a non-trivial linear combination of  $\vec{v}_1, \dots, \vec{v}_n$  that equals the zero vector. Otherwise they are linearly independent.

# Define

$$\vec{p}(t) = \begin{bmatrix} e^t \\ 0 \end{bmatrix} \qquad \vec{q}(t) = \begin{bmatrix} 4e^t \\ 0 \end{bmatrix} \qquad \vec{h}(t) = \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix} \qquad \vec{z}(t) = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}.$$

- 34.1 Are  $\vec{p}$  and  $\vec{q}$  linearly independent or linearly dependent? Justify with the definition.
- 34.2 Are  $\vec{p}$  and  $\vec{h}$  linearly independent or linearly dependent? Justify with the definition.
- 34.3 Are  $\vec{h}$  and  $\vec{z}$  linearly independent or linearly dependent? Justify with the definition.
- 34.4 Is the set of three functions  $\{\vec{p},\vec{h},\vec{z}\}$  linearly independent or linearly dependent? Justify with the definition.

$$\vec{p}(t) = \begin{bmatrix} e^t \\ 0 \end{bmatrix} \qquad \vec{q}(t) = \begin{bmatrix} 4e^t \\ 0 \end{bmatrix} \qquad \vec{h}(t) = \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix} \qquad \vec{z}(t) = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}.$$

- 35.1 Intuitively, describe span $\{\vec{p},\vec{h}\}$ . What is its dimension? What is a basis for it?
- 35.2 Let S be the set of all solutions to  $\vec{r}'(t) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \vec{r}(t)$ . w (You've seen this equation before.) Intuitively, is *S* a subspace? If so, what is its dimension?
- 35.3 Provided S is a subspace, give a basis for S.
- 36 Consider the differential equation

$$y'(t) = 2 \cdot y(t).$$

- 36.1 Write a solution whose graph passes through the point (t, y) = (0, 3).
- 36.2 Write a solution whose graph passes through the point  $(t, y) = (0, y_0)$ .
- 36.3 Write a solution whose graph passes through the point  $(t, y) = (t_0, y_0)$ .
- 36.4 Consider the following argument:

For every point  $(t_0, y_0)$ , there is a corresponding solution to  $y'(t) = 2 \cdot y(t)$ . Since  $\{(t_0, y_0) : t_0, y_0 \in \mathbb{R}\}$  is two dimensional, this means the set of solutions to  $y'(t) = 2 \cdot y(t)$  is two dimensional.

Do you agree? Explain.

37

For an autonomous ordinary differential equation (whose solutions are defined on all of  $\mathbb{R}$ ), a solution that passes through  $(t_0, y_0)$  also passes through  $(0, y_0^*)$  for some  $y_0^*$ .

(Uniqueness 1)

The differential equation  $y'(t) = a \cdot y(t) + b$  has a unique solution passing through every point.

- 37.1 Explain why the *autonomous* condition is important for the first theorem.
- 37.2 Suppose that f and g are solutions to  $y' = a \cdot y + b$ . If the graph of f passes through (0, 1) and the graph of g passes through (1,0), does the second theorem (Uniqueness 1) say that  $f \neq g$ ? Explain.
- 37.3 Consider the following argument:

For every point  $(t_0, y_0)$ , there is a corresponding solution to  $y'(t) = 2 \cdot y(t)$ . Since  $\{(t_0, y_0) : t_0, y_0 \in \mathbb{R}\}$  is two dimensional, this means the set of solutions to  $y'(t) = 2 \cdot y(t)$  is two dimensional.

Apply the above theorems to decide if the argument is true or false.

38

For an autonomous ordinary differential equation (whose solutions are defined on all of  $\mathbb{R}$ ), a solution that passes through  $(t_0, y_0)$  also passes through  $(0, y_0^*)$  for some  $y_0^*$ .

(Uniqueness 1)

The differential equation  $y'(t) = a \cdot y(t) + b$  has a unique solution passing through every point.

Let *S* be the set of all solutions to  $\vec{r}'(t) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \vec{r}(t)$ .

38.1 What is the dimension of *S*? Justify your answer.

- 39.1 Rewrite the system in matrix form.
- 39.2 Classify the following as solutions or non-solutions to the system.

$$\vec{r}_1(t) = e^{2t}$$

$$\vec{r}_3(t) = \begin{bmatrix} e^{2t} \\ 4e^{3t} \end{bmatrix}$$

$$\vec{r}_2(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$$

$$\vec{r}_4(t) = \begin{bmatrix} 4e^{3t} \\ e^{2t} \end{bmatrix}$$

$$\vec{r}_5(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- 39.3 State the definition of an eigenvector for the matrix M.
- 39.4 What should the definition of an eigen solution be for this system?
- 39.5 Which functions from 39.2 are eigen solutions?
- 39.6 Find an eigen solution  $\vec{r}_6$  that is linearly independent from  $\vec{r}_2$ .
- 39.7 Let  $S = \operatorname{span} \vec{r}_2, \vec{r}_6$ . Does S contain all solutions to the system? Justify your answer.
- 40 Recall the system

$$x'(t) = 2x(t)$$

$$y'(t) = 3y(t)$$

has eigen solutions  $\vec{r}_2(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$  and  $\vec{r}_6(t) = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}$ .

- 40.1 Sketch  $\vec{r}_2$  and  $\vec{r}_6$  in the phase plane.
- 40.2 Use

https://www.desmos.com/calculator/h3wtwjghv0 to make a phase portrait for the system.

40.3





curve the graph of a solution to the system? Explain.

- 41 Suppose  $\vec{s}_1$  and  $\vec{s}_2$  are eigen solutions to  $\vec{r}' = A\vec{r}$  with eigenvalues 1 and -1, respectively.
  - 41.1 Write possible formulas for  $\vec{s}_1(t)$  and  $\vec{s}_2(t)$ .
  - 41.2 Sketch a phase plane with graphs of  $\vec{s}_1$  and  $\vec{s}_2$  on it.
  - 41.3 Add a non-eigen solution to your sketch.
  - 41.4 Sketch a possible phase portrait for  $\vec{r}' = A\vec{r}$ . Can you extend your phase portrait to all quadrants?

42 Consider the following phase portrait for a system of the form  $\vec{r}' = A\vec{r}$  for an unknown matrix



- 42.1 Can you identify any eigen solutions?
- 42.2 What are the eigenvalues of A? What are their sign(s)?
- Consider the differential equation  $\vec{r}'(t) = M \vec{r}(t)$  where  $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ . 43
  - 43.1 Find the eigenvectors and eigenvalues for M.
  - 43.2 Verify that  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  are eigenvectors for M. What are the corresponding eigenvalues?
  - 43.3 (a) Is  $\vec{r}_1(t) = e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  a solution to the differential equation?
    - (b) Is  $\vec{r}_2(t) = e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$  a solution to the differential equation?
    - (c) Is  $\vec{r}_3(t) = e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$  a solution to the differential equation?
  - 43.4 Find an eigen solution for the system corresponding to the eigenvalue -1. Write your answer in vector form.
- Recall the differential equation  $\vec{r}'(t) = M \vec{r}(t)$  where  $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ . 44
  - 44.1 Write down a general solution to the differential equation.
  - 44.2 Write down a solution to the initial value problem  $\vec{r}(0) = \begin{vmatrix} x_0 \\ y_0 \end{vmatrix}$ .
  - 44.3 Are your answers to the first two parts the same? Do they contain the same information?
- 45 The phase portrait for a differential equation arising from the matrix  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  (left) and  $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (right) are shown.



Both have eigenvalues  $\pm 1$ , but they have different eigenvectors.

- 45.1 How are the phase portraits related to each other?
- 45.2 Suppose P is a  $2 \times 2$  matrix with eigenvalues  $\pm 1$ . In what ways could the phase portrait for  $\vec{r}'(t) = P \vec{r}(t)$  look different from the above portraits? In what way(s) must it look the same?
- 46 Consider the following phase plane with lines in the direction of  $\vec{a}$  (red) and  $\vec{b}$  (dashed green).



46.1 Sketch a phase portrait where the directions  $\vec{a}$  and  $\vec{b}$  correspond to eigen solutions with eigenvalues that are

|     | sign for $\vec{a}$ | sign for $\vec{b}$ |
|-----|--------------------|--------------------|
| (1) | pos                | pos                |
| (2) | neg                | neg                |
| (3) | neg                | pos                |
| (4) | pos                | neg                |
| (5) | pos                | zero               |

- 46.2 Classify the solution at the origin for situations (1)-(5) as stable or unstable.
- 46.3 Would any of your classifications in 46.2 change if the directions of  $\vec{a}$  and  $\vec{b}$  changed?
- 47 You are examining a differential equation  $\vec{r}'(t) = M \vec{r}(t)$  for an unknown matrix M.

You would like to determine whether  $\vec{r}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  is stable/unstable/etc.

- 47.1 Come up with a rule to determine the nature of the equilibrium solution  $\vec{r}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  based on the eigenvalues of M.
- 47.2 Consider the system of differential equations

$$x'(t) = x(t) + 2y(t)$$
  
 $y'(t) = 3x(t) - 4y(t)$ 

- (a) Classify the stability of the equilibrium solution (x(t), y(t)) = (0, 0) using any method you want.
- (b) Justify your answer analytically using eigenvalues.
- 48 Consider the following model of Social Media Usage where

x(t) = number of social media posts at year t

y(t) = number of social media users at year t

- (P1<sub>x</sub>) Ignoring all else, each year posts decay proportionally to the current number of posts with proportionality constant 1.
- $(P2_x)$  Ignoring all else, social media users increase/decrease in proportion to the number of posts.
- (P1<sub>v</sub>) Ignoring all else (independent of decay), posts grow by a constant amount of 2 million posts every year.

- $(P2_{\nu})$  Ignoring all else, social media users increase/decrease in proportion to the number of
- (P3<sub>v</sub>) Ignoring all else, 1 million people stop using the platform every year.

A school intervention is described by the parameter  $a \in [-1/2, 1]$ :

- After the intervention, the proportionality constant for  $(P1_v)$  is 1-a.
- After the intervention, the proportionality constant for  $(P2_v)$  is a.
- 48.1 Model this situation using a system of differential equations. Explain which parts of your model correspond to which premise(s).
- 49 The SM model of Social Media Usage is

$$x' = -x + 2$$
  
$$y' = (1 - a)x + ay - 1$$

where

x(t) = number of social media posts at year ty(t) = number of social media users at year t $a \in [-1/2, 1]$ 

- 49.1 What are the equilibrium solution(s)?
- 49.2 Make a phase portrait for the system.
- 49.3 Use phase portraits to conjecture: what do you think happens to the equilibrium solution(s) as a transitions from negative to positive? Justify with a computation.
- 50 The SM model of Social Media Usage is

$$x' = -x + 2$$
  
 $y' = (1 - a)x + ay - 1$ 

where

x(t) = number of social media posts at year ty(t) = number of social media users at year t $a \in [-1/2, 1]$ 

- 50.1 Can you rewrite the system in matrix form? (I.e., in the form  $\vec{r}'(t) = M \vec{r}(t)$  for some matrix M.)
- 50.2 Define  $\vec{s}(t)$  to be the displacement from equilibrium in the **SM** model at time t.
  - (a) Write  $\vec{s}$  in terms of x and y.
  - (b) Write a differential equation governing  $\vec{s}$ .
  - (c) Can your differential equation governing  $\vec{s}$  be written in matrix form?
  - (d) Analytically classify the equilibrium solution for your differential equation for  $\vec{s}$  when a = -1/2, 1/2, and 1. (You may use a calculator for computing eigenvectors/values.)

where

x(t) = number of social media posts at year ty(t) = number of social media users at year t $a \in [-1/2, 1]$ 

Some politicians have been looking at the model. They made the following posts on social media:

- 1. The model shows the number of posts will always be increasing. SAD!
- 2. I see the number of social media users always increases. That's not what we want!
- 3. It looks like social media is just a fad. Although users initially increase, they eventually settle down.
- 4. I have a dream! That one day there will be social media posts, but eventually there will be no social media users!
- 51.1 For each social media post, make an educated guess about what initial conditions and what value(s) of a the politician was considering.
- 51.2 The school board wants to limit the number of social media users to fewer than 10 million. Make a recommendation about what value of a they should target.
- 52 Consider the following DF model of Dogs and Fleas where
  - x(t) = number of parasites (fleas) at year t (in millions)
  - y(t) = number of hosts (dogs) at year t (in thousands)
  - (P1<sub>x</sub>) Ignoring all else, the number of parasites decays in proportion to its population (with constant 1).
  - (P2<sub>x</sub>) Ignoring all else, parasite numbers grow in proportion to the number of hosts (with constant 1).
  - (P1<sub>v</sub>) Ignoring all else, hosts numbers grow in proportion to their current number (with constant
  - (P2<sub>v</sub>) Ignoring all else, host numbers decrease in proportion to the number of parasites (with constant 2).
  - (P1<sub>c</sub>) Anti-flea collars remove 2 million fleas per year.
  - (P1<sub>c</sub>) Constant dog breeding adds 1 thousand dogs per year.
  - 52.1 Write a system of differential equations for the **DF** model.
  - 52.2 Can you rewrite the system in matrix form  $\vec{r}' = M \vec{r}$ ? What about in affine form  $\vec{r}' = M \vec{r} + \vec{b}$ ?
  - 52.3 Make a phase portrait for your mode.
  - 52.4 What should solutions to the system look like in the phase plane? What are the equilibrium solutions?

x(t) = number of parasites (fleas) at year t (in millions)

y(t) = number of hosts (dogs) at year t (in thousands)

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

and

$$\vec{r}'(t) = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} \vec{r}(t) + \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Define  $\vec{s}(t)$  to be the displacement of  $\vec{r}(t)$  from equilibrium at time t.

- 53.1 Find a formula for  $\vec{s}$  in terms of  $\vec{r}$ .
- 53.2 Can you find a matrix M so that  $\vec{s}'(t) = M \vec{s}(t)$ ?
- 53.3 What are the eigen solutions for  $\vec{s}' = M \vec{s}$ ?

## 54 Recall the DF model of Dogs and Fleas where

x(t) = number of parasites (fleas) at year t (in millions)

y(t) = number of hosts (dogs) at year t (in thousands)

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \vec{s}(t) = \vec{r}(t) - \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

and

$$\vec{s}'(t) = M \vec{s}(t)$$
 where  $M = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$ .

This equation has eigen solutions

$$\vec{s}_1(t) = \begin{bmatrix} 1-i\\2 \end{bmatrix} e^{it}$$

$$\vec{s}_2(t) = \begin{bmatrix} 1+i\\2 \end{bmatrix} e^{-it}$$

- 54.1 Recall Euler's formula  $e^{it} = \cos(t) + i\sin(t)$ .
  - (a) Use Euler's formula to expand  $\vec{s}_1 + \vec{s}_2$ . Are there any imaginary numbers remaining?
  - (b) Use Euler's formula to expand  $\vec{s}_1 \vec{s}_2$ . Are there any imaginary numbers remaining?
- 54.2 Verify that your formulas for  $\vec{s}_1 + \vec{s}_2$  and  $\vec{s}_1 \vec{s}_2$  are solutions to  $\vec{s}'(t) = M \vec{s}(t)$ .
- 54.3 Can you give a third *real* solution to  $\vec{s}'(t) = M \vec{s}(t)$ ?

# 55 Recall the DF model of Dogs and Fleas where

x(t) = number of parasites (fleas) at year t (in millions)

y(t) = number of hosts (dogs) at year t (in thousands)

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \vec{s}(t) = \vec{r}(t) - \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

and

$$\vec{s}'(t) = M \vec{s}(t)$$
 where  $M = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$ .

- 55.1 What is the dimension of the space of solutions to  $\vec{s}'(t) = M \vec{s}(t)$ ?
- 55.2 Give a basis for all solutions to  $\vec{s}'(t) = M \vec{s}(t)$ .

- 55.3 Find a solution satisfying  $\vec{s}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ .
- 55.4 Using what you know, find a general formula for  $\vec{r}(t)$ .
- 55.5 Find a formula for  $\vec{r}(t)$  satisfying  $\vec{r}(0) = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$ .

56 Consider the differential equation

$$\vec{s}'(t) = M\vec{s}(t)$$
 where  $M = \begin{bmatrix} -1 & -4 \\ 2 & 3 \end{bmatrix}$ 

- 56.1 Find eigen solutions for this differential equation (you may use a calculator/computer to assist).
- 56.2 Find a general real solution.
- 56.3 Make a phase portrait. What do sketches of your solutions look like in phase space?

57 Recall the DF model of Dogs and Fleas where

x(t) = number of parasites (fleas) at year t (in millions)

y(t) = number of hosts (dogs) at year t (in thousands)

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
  $\vec{s}(t) = \vec{r}(t) - \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ 

and

$$\vec{s}'(t) = M \vec{s}(t)$$
 where  $M = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$ .

Some research is being done on a shampoo for the dogs. It affects flea and dog reproduction:

- (PS<sub>r</sub>) Ignoring all else, the number of parasites decays in proportion to its population with constant 1 + a.
- (PS<sub>v</sub>) Ignoring all else, hosts numbers grow in proportion to their current number with constant 1-a.
- 57.1 Modify the previous **DF** model to incorporate the effects of the shampoo.
- 57.2 Make a phase portrait for the **DF Shampoo** model.
- 57.3 Find the equilibrium solutions for the **DF Shampoo** model.
- 57.4 For each equilibrium solution determine its stability/instability/etc..
- 57.5 Analytically justify your conclusions about stability/instability/etc..

58 Recall the tree model from Question 28:

- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$
  
 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$ 

and  $0 \le b \le 2$ 

A phase portrait for this model is available at

https://www.desmos.com/calculator/tvjag852ja

- 58.1 Find explicit formulas for equilibrium solutions of the tree model.
- 58.2 Visually classify the nature of each equilibrium solution as attracting/repelling/etc..
- 58.3 Can you rewrite the system in matrix/affine form? Why or why not?

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P(t) \cdot \left(1 - \frac{P(t)}{2}\right)$$

where P(t) represents the population at time t.

We'd like to approximate dP/dt when  $P \approx 1/2$ .

- 59.1 What is the value of dP/dt when P = 1/2?
- 59.2 What is the approximate value of dP/dt when  $P = 1/2 + \Delta$  when  $\Delta$  is small?
- 59.3 Write down a linear approximation  $S(\Delta)$  that approximates dP/dt when P is  $\Delta$  away from 1/2.
- 59.4 Let  $A_{1/2}(t)$  be an *affine* approximation to dP/dt that is a good approximation when  $P \approx 1/2$ . Find a formula for  $A_{1/2}(t)$  expressed in terms of P(t).
- 59.5 Find additional affine approximations to dP/dt centered at each equilibrium solution.
- Based on our calculations from last time, we have several different equations.

$$\begin{array}{lll} ({\rm Original}) & P' = P(1-P/2) & ({\rm https://www.desmos.com/calculator/v1coz4shtw}) \\ (A_{1/2}) & P' \approx \frac{3}{8} + \frac{1}{2}(P-\frac{1}{2}) & ({\rm https://www.desmos.com/calculator/zsb2apxhqs}) \\ (A_0) & P' \approx P & ({\rm https://www.desmos.com/calculator/vw48bvqgrc}) \\ (A_2) & P' \approx -(P-2) & ({\rm https://www.desmos.com/calculator/i2utk6vnqh}) \end{array}$$

- 60.1 What do you notice about the solutions sketched on the different slope fields (in Desmos)?
- 60.2 Does the nature of equilibrium solutions change when using an affine approximation?

61 Consider the differential equation whose slope field is sketched below.

$$P'(t) = -P(t) \cdot (0.1 + P(t)) \cdot (0.2 + P(t)).$$

https://www.desmos.com/calculator/ikp9rgo0kv



- 61.1 Find all equilibrium solutions.
- 61.2 Use linear approximations to classify the equilibrium solutions as stable/unstable/etc..
- To make a 1d affine approximation of a function f at the point E we have the formula

$$f(x) \approx f(E) + f'(E)(x - E).$$

To make a 2d approximation of a function  $\vec{F}(x,y) = (F_1(x,y), F_2(x,y))$  at the point  $\vec{E}$ , we have a similar formula

$$\vec{F}(x,y)$$
  $\approx$   $\vec{F}(\vec{E}) + D_{\vec{F}}(\vec{E}) \Big( (x,y) - \vec{E} \Big)$  20© Bernardo Galvão-Sousa & Jason Siefken, 2024

where  $D_{\vec{r}}(\vec{E})$  is the total derivative of  $\vec{F}$  at  $\vec{E}$ , which can be expressed as the matrix

$$D_{\vec{F}}(\vec{E}) = \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{bmatrix}$$

evaluated at  $\vec{E}$ .

Recall our model from Question 28 for the life cycle of a tree where H(t) was height, A(t) was the leaves' surface area, and t was time:

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$
  
 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$ 

with  $0 \le b \le 2$ 

We know the following:

- The equations cannot be written in matrix form.
- The equilibrium points are (0,0) and  $(\frac{100}{9}b, \frac{1000}{27}b^2)$ .

We want to find an affine approximation to the system.

Define 
$$\vec{F}(H,A) = (H',A')$$

- 62.1 Find the matrix for  $D_{\vec{F}}$ , the total derivative of  $\vec{F}$ .
- 62.2 Create an affine approximation to  $\vec{F}$  around (0,0) and use this to write an approximation to the original system.
- 62.3 Create an affine approximation to  $\vec{F}$  around  $(\frac{100}{9}b, \frac{1000}{27}b^2)$  and use this to write an approximation to the original system.
- 62.4 Make a phase portrait for the original system and your approximation from part 3. How do they compare?
- 62.5 Analyze the nature of the equilibrium solution in part 3 using eigen techniques. Relate your analysis to the original system.