Progettazione Concettuale

Requisiti della base di dati

Progettazione concettuale

Schema concettuale

Progettazione logica

Schema logico

Progettazione fisica

Schema fisico

- Quale costrutto E-R va utilizzato per rappresentare un concetto presente nelle specifiche?
- Bisogna basarsi sulle definizioni dei costrutti del modello E-R
 - se ha proprietà significative e descrive oggetti con esistenza autonoma
 - entità
 - se è semplice e non ha proprietà
 - attributo
 - se correla due o più concetti
 - relationship
 - se è caso particolare di un altro
 - generalizzazione

Design Pattern

- Soluzioni progettuali a problemi comuni
- Largamente usati nell'ingegneria del software
- Vediamo alcuni pattern comuni nella progettazione concettuale di basi di dati

Reificazione di attributo di entità

Parte-di

Istanza-di

Reificazione di relationship binaria

Reificazione di attributo di relationship

Caso particolare di entità

Storicizzazione di concetto

Evoluzione di concetto

Relationship ternaria

Reificazione di relationship ternaria

Reificazione di relationship ternaria

Strategie di progetto

- Come procediamo con tante specifiche anche dettagliate? Come ci orientiamo?
- Strategie:
 - top-down
 - bottom-up
 - inside-out

Strategia top-down

 Si parte da uno schema iniziale che viene successivamente raffinato e integrato per mezzo di primitive che lo trasformano in una serie di schemi intermedi per arrivare allo schema E-R finale

• Primitive di raffinamento:

- Da entità a associazione tra entità
- Da entità a generalizzazione
- Da associazione a insiemi di associazioni
- Da associazione a entità con associazioni
- Introduzione di attributi su entità e associazioni

Strategia bottom-up

- Si parte dalle specifiche iniziali e si suddividono fino a dare specifica ad una componente minima di cui si dà lo schema E-R
- Gli schemi prodotti vengono fusi e integrati fino ad ottenere lo schema finale
- Primitive di trasformazione:
 - Generazione di entità
 - Generazione di associazione
 - Generazione di generalizzazione

Nella pratica...

- Si procede di solito con una **strategia mista**:
 - si individuano i concetti principali e si realizza uno schema scheletro
 - sulla base di questo si può decomporre
 - poi si raffina, si espande, si integra
- Definizione dello schema scheletro:
 - Si individuano i concetti più importanti, ad esempio perché più citati o perché indicati esplicitamente come cruciali e li si organizza in un semplice schema concettuale

Una metodologia

Analisi dei requisiti

- Analizzare i requisiti ed eliminare le ambiguità
- Costruire un glossario dei termini
- Raggruppare i requisiti in insiemi omogenei

Passo base

- Definire uno schema scheletro con i concetti più rilevanti
- Passo iterativo (da ripetere finché non si è soddisfatti)
 - Raffinare i concetti presenti sulla base delle loro specifiche
 - Aggiungere concetti per descrivere specifiche non descritte
- Analisi di qualità (ripetuta e distribuita)
 - Verificare le qualità dello schema e modificarlo

Qualità di uno schema concettuale

- correttezza
- completezza
- leggibilità
- minimalità

Frasi di carattere generale

Si vuole realizzare una base di dati per una società che eroga corsi: di ogni corso vogliamo rappresentare i dati dei partecipanti e dei docenti.

Schema scheletro

Frasi relative ai partecipanti

Per i partecipanti (circa 5000), identificati da un codice, rappresentiamo il codice fiscale, il cognome, l'età, il sesso, la città di nascita, i nomi dei loro attuali datori di lavoro e di quelli precedenti (insieme alle date di inizio e fine rapporto), le edizioni dei corsi che stanno attualmente frequentando e quelli che hanno frequentato nel passato, con la relativa votazione finale in decimi.

Frasi relative ai datori di lavoro

Relativamente ai datori di lavoro presenti e passati dei partecipanti, rappresentiamo il nome, l'indirizzo e il numero di telefono.

Frasi relative a tipi specifici di partecipanti

Per i partecipanti che sono liberi professionisti, rappresentiamo l'area di interesse e, se lo possiedono, il titolo professionale. Per i partecipanti che sono dipendenti, rappresentiamo invece il loro livello e la posizione ricoperta.

Frasi relative ai corsi

Per i corsi (circa 200), rappresentiamo il titolo e il codice, le varie edizioni con date di inizio e fine e, per ogni edizione, rappresentiamo il numero di partecipanti e il giorno della settimana, le aule e le ore dove sono tenute le lezioni.

Frasi relative ai docenti

Per i docenti (circa 300), rappresentiamo il cognome, l'età, la città di nascita, tutti i numeri di telefono, il titolo del corso che insegnano, di quelli che hanno insegnato nel passato e di quelli che possono insegnare. I docenti possono essere dipendenti interni della società di formazione o collaboratori esterni.

Integrazione

Integrazione

Integrazione

Progettazione Logica

Requisiti della base di dati

Progettazione concettuale

Schema concettuale

Progettazione logica

Schema logico

Progettazione fisica

Schema fisico

Obiettivo

- "Tradurre" lo schema concettuale in uno schema logico che rappresenti gli stessi dati in maniera corretta ed efficiente
- Dati in **ingresso**:
 - schema concettuale
 - informazioni sul carico applicativo (dimensione dei dati)
 - modello logico
- Dati in uscita:
 - schema logico
 - documentazione associata

Carico applicativo

Schema concettuale E-R

Ristrutturazione dello schema E-R

Modello logico

Schema E-R ristrutturato

Traduzione nel modello logico

Ristrutturazione di uno schema E-R

• Motivazioni:

- semplificare la traduzione
- "ottimizzare" le prestazioni
 - come valutiamo le prestazioni?

• Osservazione:

 uno schema E-R ristrutturato non è (più) uno schema concettuale nel senso stretto del termine

Indicatori per valutare le prestazioni

- Consideriamo degli "indicatori" dei parametri che caratterizzano le prestazioni
 - spazio: numero di occorrenze previste
 - **tempo**: numero di occorrenze (di entità e *relationship*) visitate per portare a termine un'operazione

Tavola dei volumi

Concetto	Tipo	Volume
Sede	Ш	10
Dipartimento	Ш	80
Impiegato	Ш	2000
Progetto	Ш	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

Indicatori per valutare le prestazioni

- Operazione:
 - trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- Si costruisce una tavola degli accessi basata su uno schema di navigazione

Schema di navigazione

Tavola degli accessi

Concetto	Costrutto	Accessi	Tipo
Impiegato	Entità	1	П
Afferenza	Relationship	1	L
Dipartimento	Entità	1	L
Partecipazione	Relationship	3	L
Progetto	Entità	3	L

Attività di ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Attività di ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre
- In questa fase si decide se eliminare le ridondanze eventualmente presenti o mantenerle (o anche di introdurne di nuove)
- Vantaggi delle ridondanze:
 - semplificazione delle interrogazioni
- Svantaggi delle ridondanze:
 - appesantimento degli aggiornamenti
 - maggiore occupazione di spazio

Forme di ridondanza in uno schema E-R

• Attributi derivabili:

- da altri attributi della stessa entità (o relationship)
- da attributi di altre entità (o relationship)

• Relationship derivabili:

 dalla composizione di altre (più in generale: cicli di relationship)

Attributo derivabile dalla stessa entità

Attributo derivabile da altra entità

Ridondanza dovuta a ciclo

Analisi di una ridondanza

Tavola dei volumi e operazioni

Concetto	Tipo	Volume
Città	Ш	200
Persona	Е	1000000
Residenza	R	1000000

- Operazione 1: memorizza una nuova persona con la relativa città di residenza (500 volte al giorno)
- Operazione 2: stampa tutti i dati di una città (incluso il numero di abitanti) (2 volte al giorno)

Presenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

Assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L
Residenza	Relazione	5000	L

Costi

- Presenza di ridondanza:
 - Costi:
 - Operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno
 - Operazione 2: trascurabile
 - Contiamo doppi gli accessi in scrittura
 - Totale di 3500 accessi al giorno
- Assenza di ridondanza:
 - Costi:
 - Operazione 1: 1000 accessi in scrittura
 - Operazione 2: 10000 accessi in lettura al giorno
 - Contiamo doppi gli accessi in scrittura
 - Totale di 12000 accessi al giorno

Attività di ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Le gerarchie nel modello relazionale

- Il modello relazionale **non può rappresentare** direttamente le generalizzazioni
- Entità e relationship sono invece direttamente rappresentabili
- Si eliminano perciò le gerarchie, sostituendole con entità e relationship

Possibilità

- 1. **Accorpamento delle figlie** della generalizzazione nel genitore
- 2. **Accorpamento del genitore** della generalizzazione nelle figlie
- 3. **Sostituzione** della generalizzazione con *relationship*

Come scegliere?

- La scelta fra le alternative si può fare basandosi sul numero e il tipo degli accessi fatti alle singole entità per eseguire le operazioni
- È possibile seguire alcune semplici regole generali:
 - la prima conviene se gli accessi al padre e alle figlie sono contestuali;
 - la seconda conviene se gli accessi alle figlie sono distinti;
 - la terza conviene se gli accessi alle entità figlie sono separati dagli accessi al padre;
 - sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli.

Attività di ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Motivazione

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base al principio che:
 - Gli accessi si riducono
 - separando attributi di un concetto che vengono acceduti separatamente
 - raggruppando attributi di concetti diversi acceduti insieme
 - Si considera sempre che ad ogni accesso si legge
 l'intera informazione

Casi principali

- Partizionamento verticale di entità
- Partizionamento orizzontale di relationship
- Eliminazione di attributi multivalore
- Accorpamento di entità/relationship

Partizionamento verticale di entità

Partizionamento verticale di entità

Partizione orizzontale di relationship

Partizione orizzontale di relationship

Eliminazione di attributi multivalore

Eliminazione di attributi multivalore

Accorpamento di entità/relationship

Accorpamento di entità/relationship

Attività di ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Scelta degli identificatori principali

 Operazione indispensabile per la traduzione nel modello relazionale

• Criteri:

- assenza di opzionalità
- semplicità
- utilizzo nelle operazioni più frequenti o importanti
- Se nessuno degli identificatori soddisfa i requisiti visti?
 - Si introducono nuovi attributi (codici) contenenti valori speciali generati appositamente per questo scopo

Traduzione verso il modello relazionale

- Idea di base:
 - Le entità diventano relazioni sugli stessi attributi
 - Le relationship diventano relazioni sugli identificatori delle entità coinvolte (più gli attributi propri)

Entità e relationship molti a molti

- Impiegato(Matricola, Cognome, Stipendio)
- Progetto(<u>Codice</u>, Nome, Budget)
- Partecipazione(Matricola, Codice, Datalnizio)
- Vincoli di integrità referenziale fra:
 - Matricola in Partecipazione e (la chiave di) Impiegato
 - Codice in Partecipazione e (la chiave di) Progetto

Entità e relationship molti a molti

- Nomi più espressivi per gli attributi della chiave della relazione che rappresenta la relationship:
 - Impiegato(Matricola, Cognome, Stipendio)
 - Progetto(Codice, Nome, Budget)
 - Partecipazione (Matricola, Codice, Datalnizio)
 - Partecipazione(Impiegato, Progetto, DataInizio)

Relationship Ricorsive

- Prodotto(<u>Codice</u>, Nome, Costo)
- Composizione (Composto, Componente, Quantità)

Relationship n-arie

- Fornitore(PartitalVA, Nome)
- Prodotto(Codice, Genere)
- Dipartimento(Nome, Telefono)
- Fornitura (Fornitore, Prodotto, Dipartimento, Quantità)

Relationship uno a molti

- Giocatore(Cognome, DataNascita, Ruolo)
- Contratto(CognGiocatore, DataNascG, Squadra, Ingaggio)
- Squadra(Nome, Città, ColoriSociali)
- È corretto?

Soluzione più compatta

- Giocatore(Cognome, DataNasc, Ruolo, Squadra, Ingaggio)
- Squadra(Nome, Città, ColoriSociali)
- Con vincolo di integrità referenziale fra Squadra in Giocatore e (la chiave di) Squadra
- Se la cardinalità minima della relationship è 0, allora Squadra in Giocatore deve ammettere valore nullo
 - La traduzione riesce a rappresentare efficacemente la cardinalità minima della partecipazione che ha 1 come cardinalità massima:
 - 0 : valore nullo ammesso
 - 1 : valore nullo non ammesso

Entità con identificazione esterna

- Studente(Matricola, Università, Cognome, AnnoDiCorso)
- Università(Nome, Città, Indirizzo)
- con vincolo ...

Relationship uno a uno

- Varie possibilità:
 - fondere da una parte o dall'altra
 - fondere tutto?

Un caso privilegiato

- Impiegato(Codice, Cognome, Stipendio)
- Dipartimento(Nome, Sede, Telefono, Direttore, InizioD)
- con vincolo di integrità referenziale, senza valori nulli

Un altro caso

Schema Finale

- Impiegato(Codice, Cognome, Dipartimento, Sede, Data*)
- Dipartimento(Nome, Città, Telefono, Direttore*)
- Sede(<u>Città</u>, Via, CAP)
- Progetto(Nome, Budget)
- Partecipazione(Impiegato, Progetto)

 ATTENZIONE: differenze apparentemente piccole in cardinalità e identificatori possono cambiare di molto il significato ...

