Proiectare logică

Curs 2

Reprezentarea numerelor. Coduri. Erori

Cristian Vancea

https://users.utcluj.ro/~vcristian/PL.html

Cuprins

- Reprezentarea numerelor în calculator
- Coduri binare
- Detectarea și corectarea erorilor

Reprezentarea numerelor în calculator

- Are la bază sistemul de numerație binar.
- Se utilizează 1 bit pentru semn:
 - bit semn = 0 => număr pozitiv
 - bit semn = 1 => număr negativ
- Bitul de semn este primul de la stânga (bitul cel mai semnificativ)
- Categorii de reprezentare:
 - Numere întregi
 - Numere fracționare
 - în virgulă fixă
 - în virgulă mobilă

- La proiectare se definesc n biți parte întreagă și m biți partea fracționară => poziția punctului fracționar nu se schimbă.
- Nu se consumă biți suplimentari pentru punctul fracționar ci doar se ține cont de poziția lui în calcule.
- Numerele întregi sunt caz particular: **m=0**.
- Variante de reprezentare a semnului:
 - Mărime și semn
 - Complement față de 2

Reprezentarea numerelor în virgulă fixă Mărime și semn


```
Ex<sub>1</sub>: n=3 m=3

Poziția 3 2 1 0 -1 -2 -3

0 1 1 0 . 1 0 1_2 = +(2^2+2^1+2^{-1}+2^{-3})<sub>10</sub> = +6.625<sub>10</sub>

Ex<sub>2</sub>: n=4 m=2

Poziția 4 3 2 1 0 -1 -2

1 1 0 0 1 . 0 1_2 = -(2^3+2^0+2^{-2})<sub>10</sub> = -9.25<sub>10</sub>
```

Formula:
$$N_2 = x_n x_{n-1} \dots x_1 x_0 x_{-1} \dots x_{-m} => N_{10} = (-1)^{x_n} \times \sum_{k=-m}^{n-1} (x_k \times 2^k)$$

Reprezentarea numerelor în virgulă fixă Mărime și semn

Formula:
$$N_2 = x_n x_{n-1} \dots x_1 x_0 x_{-1} \dots x_{-m} => N_{10} = (-1)^{x_n} \times \sum_{k=-m}^{n-1} (x_k \times 2^k)$$

Minim:
$$N_{10} = (-1)^{1} \times \sum_{k=-m}^{n-1} (1 \times 2^{k}) = -(2^{n} - 2^{-m})$$

Maxim:
$$N_{10} = (-1)^{0} \times \sum_{k=-m}^{n-1} (1 \times 2^{k}) = 2^{n} - 2^{-m}$$

Poziția	n	n-1 n-2	•••	1 01 -2	•••	-m
	0	1 1	•••	1 1. 1 1	•••	1

Domeniul de reprezentare: $[-(2^{n}-2^{-m}), (2^{n}-2^{-m})]$

Valoarea 0 acceptă 2 reprezentări: 000...0.00...0 sau 100...0.00...0

Reprezentarea numerelor în virgulă fixă Mărime și semn – **Adunare**

```
Ex: n=3 m=1

Transp. 11 11

A 0100.1+ = 4.5_{10}+ = 100.1-

B 1001.1 = -1.5_{10} = 001.1

R 1110.0 \neq +3.0<sub>10</sub> = 0011.0
```

Dezavantaj: Sistemul trebuie să analizeze biții de semn pentru a decide operația de efectuat și semnul rezultat conform tabelului.

A _n	B _n	Oper	R _n
0	0	+	0
0	1	-	
1	0	-	?
1	1	+	1

La scădere se scad valorile absolute, cea mai mică din ce mai mare, iar semnul e dat de numărul cu valoarea absolută cea mai mare.

Mărime și semn – **Scădere**

Observație: Scăderea **se poate înlocui cu o adunare** în care se inversează semnul celui de al doilea termen. Deci păstrează dezavantajele adunării.

Ex₁:
$$n=3 m=1$$

 $1100.1 - 1001.1 = 1100.1 + 0001.1$
inversare semn
Ex₂: $n=4 m=2$
 $11110.01 - 00111.10 = 11110.01 + 10111.10$
inversare semn

Complement

Definiție: Complementul lui N_b reprezentat cu \boldsymbol{n} cifre pentru partea întreagă și \boldsymbol{m} cifre pentru partea fracționară este:

$$\overline{N}_b = b^n - b^{-m} - N_b$$

Ex:
$$n = 3$$
, $m = 2$
 $\overline{78}_{10} = 10^3 - 10^{-2} - 78 = 999.99 - 78 = 921.99_{10}$
 $\overline{11.1}_2 = 2^3 - 2^{-2} - 11.1 = 111.11 - 11.1 = 100.01_2$
 $n = 2$, $m = 1$
 $\overline{23.1}_{10} = 10^2 - 10^{-1} - 23.1 = 99.9 - 23.1 = 76.8_{10}$
 $\overline{10.1}_2 = 2^2 - 2^{-1} - 10.1 = 11.1 - 10.1 = 1_2$

de n ori de m ori

Obs:
$$\overline{N}_{10} = (99 \dots 9.99 \dots 9)_{10} - N_{10} => \text{scădere din valoarea maximă}$$
 $\overline{N}_{2} = (11 \dots 1.11 \dots 1)_{2} - N_{2} => \text{scădere din valoarea maximă}$

Observație: În baza 2 complementul unui număr se poate obține ușor prin **inversarea valorilor biților** din 1 în 0 și din 0 în 1.

Definiție₁: Complementul unui număr binar se mai numește: complementul față de 1.

Definiție₂: Complementul față de 2 al unui număr binar N_2 cu \boldsymbol{n} biți parte întreagă și \boldsymbol{m} biți de precizie este:

$$\overline{\bar{N}}_2 = 2^n - N_2 = \overline{N}_2 + 2^{-m}$$
,

adică după inversarea biților se adună 1 la bitul ce mai puțin semnificativ (cel mai din dreapta) al complementului față de 1.

Ex₁:
$$n = 3$$
, $m = 2$
 $N_2 \longrightarrow 010.01$
inv inv 11
 $\overline{N}_2 \longrightarrow 101.10+$
 $010.11+$
 $000.01 \Leftrightarrow 2^{-2}$
 $\overline{\overline{N}}_2 \longrightarrow 101.11$
 011.00

Ex₂:
$$n = 1$$
, $m = 3$

inv $\begin{array}{c} 1.001 \\ 0.110+ \\ \underline{0.001} \Leftrightarrow 2^{-3} \\ 0.111 \end{array}$ $\begin{array}{c} 0.011 \\ \underline{0.001} \Leftrightarrow 2^{-3} \\ 1.101 \end{array}$

$$\text{Ex}_1$$
: $n=3, \ m=2$ Ex_2 : $n=1, \ m=3$ $N_2 \longrightarrow 010.01$ 101.00 1.001 0.011 $\overline{\bar{N}}_2 \longrightarrow 101.11$ 011.00 0.111 1.101

Observație: Complementul față de 2 se mai poate obține **inversând biții mai semnificativi decât cel mai puțin semnificativ bit de 1** ⇔ se parcurge numărul de la dreapta la stânga și toți biții următori primului bit de 1 întâlnit se inversează.

Observație: La reprezentarea pe n biți pentru partea întreagă numărul 2^n are valoarea 0 deoarece se exclude bitul 1, cel mai semnificativ, fiindcă depășește domeniul de reprezentare.

$$\operatorname{Ex}_1$$
: $n=3$, $m=2$ Ex_2 : $n=5$, $m=1$ $\operatorname{O}_{10} = 00000.0_2$ $(2^3)_{10} = 1000.00_2$ $(2^5)_{10} = 100000.0_2$ bit exclus în reprezentare

Complement față de 2

Obs.: Pentru $m{n}$ biți parte întreagă avem: $-m{N}_2=m{0}-m{N}_2=m{2}^{m{n}}-m{N}_2=ar{m{N}}_2$

 $Regulă_1$: În reprezentarea complement față de 2, valoarea negativă a unui număr binar este reprezentată de complementul față de 2 al acestuia.

Regulă₂: Conversia în baza 10 a lui $N_2 = x_{n-1}x_{n-2} \dots x_1x_0 \dots x_{-n} \dots x_{-m}$ reprezentat în complement față de 2 pe n biți parte întreagă și m biți parte fracționară este:

$$N_{10} = -(x_{n-1} \times 2^{n-1}) + \sum_{k=-m}^{n-2} (x_k \times 2^k)$$

Bitul cel mai semnificativ x_{n-1} indică semnul (0 – pozitiv, 1 – negativ).

```
Ex_{2}: n = 4, m = 1
Ex_2: n = 4, m = 1
N_{10} \longrightarrow 7.5
                                                                  -7.5
                                                         3 2 1 0 -1
Pozitia 3 2 1 0 -1
N_2 \longrightarrow 0.111.1 \Leftrightarrow 2^2+2^1+2^0+2^{-1}=7.5_{10} 1000.1 \Leftrightarrow -2^3+2^{-1}=-8+0.5=-7.5_{10}
\overline{N}_2 \longrightarrow 1000.1 \Leftrightarrow -2^3 + 2^{-1} = -8 + 0.5 = -7.5_{10} \ 0\ 1\ 1\ 1.1 \Leftrightarrow 2^2 + 2^1 + 2^0 + 2^{-1} = 7.5_{10}
Ex<sub>3</sub>: n = 5, m = 2
                                                             Ex_{3'}: n = 5, m = 2
N_{10} \longrightarrow 11
                                                                      -1 1
Pozitia 4 3 2 1 0 -1 -2
                                                              4 3 2 1 0 -1 -2
N_2 \longrightarrow 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \Leftrightarrow 2^3 + 2^1 + 2^0 = 11_{10} 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \Leftrightarrow -2^4 + 2^2 + 2^0 = -11_{10}
\overline{N}_2 \longrightarrow 10101.00 \Leftrightarrow -2^4 + 2^2 + 2^0 = -11_{10} \quad 01011.00 \Leftrightarrow 2^3 + 2^1 + 2^0 = 11_{10}
```

Formula:
$$N_2 = x_{n-1} \dots x_1 x_0 x_{-1} \dots x_{-m} \Rightarrow N_{10} = -(x_{n-1} \times 2^{n-1}) + \sum_{k=-m}^{n-2} (x_k \times 2^k)$$

Minim:
$$N_{10} = -(1 \times 2^{n-1}) + \sum_{k=-m}^{n-2} (0 \times 2^k) = -2^{n-1}$$

Maxim:
$$N_{10} = -(0 \times 2^{n-1}) + \sum_{k=-m}^{n-2} (1 \times 2^k) = 2^{n-1} - 2^{-m}$$

Domeniul de reprezentare:
$$[-2^{n-1}, 2^{n-1} - 2^{-m}]$$

Reprezentare unică pentru fiecare valoare.

Complement față de 2 – Adunare

```
Ex<sub>1</sub>: n=4, m=1

A 0111.1+ \Leftrightarrow 2<sup>2</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>= 7.5<sub>10</sub>

B 1000.0 \Leftrightarrow -2<sup>3</sup>= -8<sub>10</sub>

R 1111.1 \Leftrightarrow -2<sup>3</sup>+2<sup>2</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>= -0.5<sub>10</sub>

Ex<sub>2</sub>: n=4, m=2

Transport 11

A 1111.10+ \Leftrightarrow -2<sup>3</sup>+2<sup>2</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>= -0.5<sub>10</sub>

B 100.01 \Leftrightarrow -2<sup>3</sup>+2<sup>2</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>= -0.5<sub>10</sub>

R 1011.11 \Leftrightarrow -2<sup>3</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>= -3.25<sub>10</sub>

R 2 100.01 \Leftrightarrow -2<sup>3</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>+2<sup>-2</sup>= -3.75<sub>10</sub>

-3.25<sub>10</sub>

-3.75<sub>10</sub>
```

Observație: Bitul se semn este utilizat la adunare ca orice alt bit, iar transportul generat de bitul de semn se ignoră.

Avantaj: Adunarea se simplifică față de reprezentarea în mărime și semn fiindcă nu necesită analiza biților de semn.

Complement față de 2 – **Adunare**

 Depășirea domeniului de reprezentare: dacă numerele au același semn și rezultatul are semn diferit.

```
Ex<sub>1</sub>: n=4, m=2

Transport 11111

A 0100.10+\Leftrightarrow 2<sup>2</sup>+2<sup>-1</sup>= 4.5<sub>10</sub> 4.50<sub>10</sub>+ B 0011.11 \Leftrightarrow 2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>+2<sup>-2</sup>= 3.75<sub>10</sub> 3.75<sub>10</sub>

R 1000.01 \Leftrightarrow -2<sup>3</sup>+2<sup>-2</sup>= -7.75<sub>10</sub> \Rightarrow 8.25<sub>10</sub>

Ex<sub>2</sub>: n=4, m=2

Transport 1 1 1

A 1000.11+\Leftrightarrow -2<sup>3</sup>+2<sup>-1</sup>+2<sup>-2</sup>= -7.25<sub>10</sub> -7.25<sub>10</sub>+ B 1110.11 \Leftrightarrow -2<sup>3</sup>+2<sup>2</sup>+2<sup>1</sup>+2<sup>-1</sup>+2<sup>-2</sup>= -1.25<sub>10</sub> -1.25<sub>10</sub>

R 0111.10 \Leftrightarrow 2<sup>2</sup>+2<sup>1</sup>+2<sup>0</sup>+2<sup>-1</sup>= 7.5<sub>10</sub> \Rightarrow -8.50<sub>10</sub>
```

Complement față de 2 – **Scădere**

Observație: Bitul se semn este utilizat la scădere ca orice alt bit, iar **împrumutul** generat de bitul de semn **se ignoră**.

Avantaj: Scăderea se simplifică față de reprezentarea în mărime și semn fiindcă nu necesită analiza biților de semn.

Complement față de 2 – **Scădere**

 Depășirea domeniului de reprezentare: dacă numerele au semn diferit și rezultatul are același semn cu scăzătorul.

```
Ex: n=4, m=2

împrumut 1 1 1 1

A 1100.10- \Leftrightarrow 2<sup>-3</sup>+2<sup>2</sup>+2<sup>-1</sup>= -3.5<sub>10</sub> -3.50<sub>10</sub>-

B 0101.11 \Leftrightarrow 2<sup>2</sup>+2<sup>0</sup>+2<sup>-1</sup>+2<sup>-2</sup>= 5.75<sub>10</sub> \underline{5.75}_{10}

R 0110.11 \Leftrightarrow 2<sup>2</sup>+2<sup>1</sup>+2<sup>-1</sup>+2<sup>-2</sup>= 6.75<sub>10</sub> \Rightarrow -9.25<sub>10</sub>
```

 Observație: Scăderea este echivalentă cu adunarea cu complementul față de 2 al scăzătorului.

- Se utilizează pentru numere foarte mari sau mici cu grad de precizie ridicat.
- La proiectare se definesc m biți pentru mantisa M și
 e biți pentru exponentul E.
- Reprezentare:

Formula: $N_{10} = (-1)^{SM} \times M \times 2^{(-1)^{SE} \times E}$

- Exponentul indică ordinul de mărime printr-o putere.
- Mantisa determină valoarea în cadrul ordinului de mărime.

Specificații de implementare

• Se renunță la semnul exponentului **SE** și se introduce mărimea numită caracteristică (C), care are numai valori pozitive:

- Se adoptă **forma normalizată** în care partea întreagă a mantisei este 1 și nu se memorează => se câștigă un bit de precizie la mantisă. În acest caz valoarea 0 necesită reprezentare specială.
- Reprezentarea în simplă precizie (32 biți) IEEE 754

e=8, m=23, deplasament = 127

Formula:
$$N_{10} = (-1)^S \times (1. x_{22} x_{21} ... x_0)_2 \times 2^{C-127}$$
, $C \in [1, 254]$

$$C \in [1, 254] \iff E \in [-126, 127], M \in [1, 2 - 2^{-23}]$$

C = 0 și C = 255 sunt rezervate pentru *numere speciale* (ex: $0, \infty$)

Reprezentarea în dublă precizie (64 biți) – IEEE 754

1 0111 1100 => $N_2 = -1.1100 \times 2^{7-7} = -1.11 \times 2^0 = -1.11 => N_{10} = -1.75$

25

Coduri binare

- Se utilizează la codificarea cifrelor zecimale în sistemele de calcul sau transferuri de date.
- Cifrele zecimale (0 ... 9) se pot reprezenta pe 4 biţi.
- Categorii:
 - ponderate
 - neponderate

Coduri ponderate

• Fiecare poziție binară x_i din codificare are asociată o pondere p_i . Suma ponderilor biților cu valoarea 1 dau valoarea cifrei zecimale asociate codului:

$$N = x_3 p_3 + x_2 p_2 + x_1 p_1 + x_0 p_0$$

Coduri ponderate Exemple

Cifra	8421 - BCD			2421				642-3				
zecimală	p_3	p_2	p_1	p_0	p_3	p_2	p_1	p_0	p_3	p_2	p_1	p_0
Zeciiiiaia	8	4	2	1	2	4	2	1	6	4	2	-3
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	1	0	1
2	0	0	1	0	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1	1	0	0	1
4	0	1	0	0	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1	1	0	1	1
6	0	1	1	0	1	1	0	0	0	1	1	0
7	0	1	1	1	1	1	0	1	1	1	0	1
8	1	0	0	0	1	1	1	0	1	0	1	0
9	1	0	0	1	1	1	1	1	1	1	1	1

- Codul 8421 BCD (Binary Coded Decimal) ⇔ conversia în baza 2 a fiecărei cifre zecimale.
- Codurile 2421, 642-3 sunt coduri **autocomplementare** fiindcă suma ponderilor = 9.
- La 2421 (cod Aiken) codificările pentru 0-4 trebuie să conțină 0 pe bitul cel mai semnificativ.

Cifrele complementare și codurile asociate lor sunt trecute pe rânduri de culoare identică.

Cod **autocomplementar** – dacă o cifră zecimală A este complementul cifrei B (A = 9 - B) atunci codul binar al cifrei A este complementul codului cifrei B și se obține prin **inversarea biților** din 1 în 0 și din 0 în 1.

Coduri neponderate Codul Excess 3

Cifra zecimală	84	21	- B	CD	E	Exc	es 3	3
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

- Codul Excess 3 se obține din BCD prin adunarea valorii 3 (0011 în binar).
- Este un cod autocomplementar.

Cifrele complementare și codurile asociate lor sunt trecute pe rânduri de culoare identică.

Coduri neponderate Codul Gray

- cod reflectat codul pe n biți se generează prin reflectarea codului pe n-1 biți și adăugarea unui bit suplimentar pe poziția cea mai semnificativă (la stânga): 0 la codul normal și 1 la cel reflectat.
- cod ciclic fiindcă oricare 2 coduri consecutive diferă printr-un bit.

Detectarea și corectarea erorilor

- În procesul de transmitere a informației pot sa apară erori în cadrul datelor transmise.
- S-au adoptat metode de codificare capabile sa detecteze erorile şi eventual să le corecteze.
- Dacă nu se poate realiza corectarea la destinație atunci se va recurge la retransmiterea informației afectate => consum suplimentar de timp.

Detectarea erorilor

Metoda bitului de paritate

- Se poate aplica peste orice codificare utilizată.
- La codul utilizat se adaugă un bit de paritate în poziția cea mai semnificativă (la stânga):
 - Paritate pară bitul de paritate va avea valoarea 0 sau 1 astfel încât numărul total de biți de 1 să fie par.

```
Ex: pentru codul 0110 se adaugă 0 \Rightarrow 0 0110 pentru codul 0010 se adaugă 1 \Rightarrow 1 0010 pentru codul 1101 se adaugă 1 \Rightarrow 1 1101
```

 Paritate impară – bitul de paritate va avea valoarea 0 sau 1 astfel încât numărul total de biți de 1 să fie impar.

```
Ex: pentru codul 0110 se adaugă 1 \Rightarrow 10110 pentru codul 0010 se adaugă 0 \Rightarrow 0010 pentru codul 1101 se adaugă 0 \Rightarrow 01101
```

- Obs: Detectează erori survenite pe maxim 1 bit.
- Notă: Sursa și destinația folosesc aceeași paritate.

Detectarea erorilor Metoda bitului de paritate

Ex: Să se determine valoarea transmisă în cod Excess 3 de un sistem care folosește paritatea pară pentru următoarele valori zecimale:

Valoare zecimală	Valoare transmisă				
98	111001011				
36	001101001				
56	110001001				
73	010100110				
1 02	1010000110101				