

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

AD-A 135 787

PLASMA FORMULARY

TIC FILE COPY

Revised 1983

83 12 05 043

NKL-MR-3332 Kenned Suppl. 1983

1983 REVISED

NRL PLASMA FORMULARY

DAVID L. BOOK

Laboratory for Computational Physics

Naval Research Laboratory

Washington, D.C. 20375

Supported by
The Office of Naval Research

APPROVED FOR PUBLIC RELEASE CTE
DISTRIBUTION UNLIMITED DEC 5 1983

A

CONTENTS

Numerical and Algebraic Vector Identities Differential Operators in Curvilinear Coordinates Dimenslon and Units International System (SI) Nomenclature International System (SI) Nomenclature International System (SI) Metric Prefixes International System (SI) Physical Constants (SI) Physical Constants (cgs) Formula Conversion International System (SI) Physical Constants (cgs) International System (SI) Internat		3
Differential Operators in Curvilinear Coordinates 6 Dimenslon and Units 10 International System (SI) Nomenclature 13 Metric Prefixes 13 Physical Constants (SI) 14 Physical Constants (cgs) 16 Formula Conversion 18 Maxwell's Equations 19 Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Numerical and Algebraic	_
Dimension and Units 10 International System (SI) Nomenclature 13 Metric Prefixes 13 Physical Constants (SI) 14 Physical Constants (cgs) 16 Formula Conversion 18 Maxwell's Equations 19 Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Vector Identities	4
Dimenslon and Units 10 International System (SI) Nomenclature 13 Metric Prefixes 13 Physical Constants (SI) 14 Physical Constants (cgs) 16 Formula Conversion 18 Maxwell's Equations 19 Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Differential Operators in Curvilinear Coordinates	6
International System (SI) Nomenclature Metric Prefixes Physical Constants (SI) Physical Constants (cgs) Formula Conversion Italian Maxwell's Equations Electricity and Magnetism Electromagnetic Frequency/Wavelength Bands AC Circuits Dimensionless Numbers of Fluid Mechanics Shocks Fundamental Plasma Parameters Plasma Dispersion Function Collisions and Transport Approximate Magnitudes in Some Typical Plasmas Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	•	10
Metric Prefixes13Physical Constants (SI)14Physical Constants (cgs)16Formula Conversion18Maxwell's Equations19Electricity and Magnetism20Electromagnetic Frequency/Wavelength Bands21AC Circuits22Dimensionless Numbers of Fluid Mechanics23Shocks26Fundamental Plasma Parameters28Plasma Dispersion Function30Collisions and Transport31Approximate Magnitudes in Some Typical Plasmas40Ionospheric Parameters42Solar Physics Parameters43Thermonuclear Fusion44Relativistic Electron Beams46Beam Instabilities48		
Physical Constants (SI) 14 Physical Constants (cgs) 16 Formula Conversion 18 Maxwell's Equations 19 Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Physical Constants (cgs) 16 Formula Conversion 18 Maxwell's Equations 19 Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Formula Conversion 18 Maxwell's Equations 19 Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Maxwell's Equations19Electricity and Magnetism20Electromagnetic Frequency/Wavelength Bands21AC Circuits22Dimensionless Numbers of Fluid Mechanics23Shocks26Fundamental Plasma Parameters28Plasma Dispersion Function30Collisions and Transport31Approximate Magnitudes in Some Typical Plasmas40Ionospheric Parameters42Solar Physics Parameters43Thermonuclear Fusion44Relativistic Electron Beams46Beam Instabilities48	Physical Constants (cgs)	
Electricity and Magnetism 20 Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Formula Conversion	18
Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Maxwell's Equations	19
Electromagnetic Frequency/Wavelength Bands 21 AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Electricity and Magnetism	20
AC Circuits 22 Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Dimensionless Numbers of Fluid Mechanics 23 Shocks 26 Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Fundamental Plasma Parameters 28 Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Plasma Dispersion Function 30 Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Shocks	
Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Fundamental Plasma Parameters	28
Collisions and Transport 31 Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Plasma Dispersion Function	30
Approximate Magnitudes in Some Typical Plasmas 40 Ionospheric Parameters 42 Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Ionospheric Parameters42Solar Physics Parameters43Thermonuclear Fusion44Relativistic Electron Beams46Beam Instabilities48	Approximate Magnitudes in Some Typical Plasmas	40
Solar Physics Parameters 43 Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48		
Thermonuclear Fusion 44 Relativistic Electron Beams 46 Beam Instabilities 48	Solar Physics Parameters	43
Relativistic Electron Beams		
Beam Instabilities		46
		48
	Lasers	
Atomic Physics and Radiation		
References 58		

NUMERICAL AND ALGEBRAIC

Gain in decibels of P_2 relative to P_1

$$G = 10 \log_{10} (P_2/P_1).$$

To within two percent

$$(2\pi)^{1/2} \approx 2.5$$
; $\pi^2 \approx 10$; $e^3 \approx 20$; $2^{10} \approx 10^3$.

Euler-Mascheroni constant¹ $\gamma = 0.57722$

Gamma Function $\Gamma(x+1) = x\Gamma(x)$

 $\Gamma(1/6) = 5.5663$

 $\Gamma(1/5) = 4.5908$

 $\Gamma(1/4) = 3.6256$

 $\Gamma(1/3) = 2.6789$

 $\Gamma(2/5) = 2.2182$

 $\Gamma(1/2) = 1.7725 = \pi^{1/2}$

 $\Gamma(3/5) = 1.4892$

 $\Gamma(2/3) = 1.3541$

 $\Gamma(3/4) = 1.2254$

 $\Gamma(4/5) = 1.1642$

 $\Gamma(5/6) = 1.1288$

 $\Gamma(1) = 1.0$

Binomial Theorem (good for |z| < 1 or $\alpha = \text{positive integer}$):

$$(1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^{k} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots$$

Rothe-Hagen identity² (good for all complex x, y, z except when singular):

$$\sum_{k=0}^{n} \frac{x}{x+kz} {x+kz \choose k} \frac{y}{y+(n-k)z} {y+(n-k)z \choose n-k} = \frac{x+y}{x+y+nz} {x+y+nz \choose n}$$

<u>[</u> :	*	* .	but	ion/	
A	. V .*	11	9k1	lity	Codes

A: 1.7 and/or

Dist Special

A-1

VECTOR IDENTITIES³

Notation: f, g, etc., are scalars; A, B, etc. are vectors; T is a tensor

(1)
$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{A} \times \mathbf{B} \cdot \mathbf{C} = \mathbf{B} \cdot \mathbf{C} \times \mathbf{A} = \mathbf{B} \times \mathbf{C} \cdot \mathbf{A} = \mathbf{C} \cdot \mathbf{A} \times \mathbf{B} = \mathbf{C} \times \mathbf{A} \cdot \mathbf{B}$$

(2)
$$A \times (B \times C) = (C \times B) \times A = (A \cdot C) B - (A \cdot B) C$$

(3)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0$$

(4)
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C}) (\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D}) (\mathbf{B} \cdot \mathbf{C})$$

(5)
$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \times \mathbf{B} \cdot \mathbf{D}) \mathbf{C} - (\mathbf{A} \times \mathbf{B} \cdot \mathbf{C}) \mathbf{D}$$

(6)
$$\nabla (fg) = \nabla (gf) = f \nabla_g + g \nabla f$$

(7)
$$\nabla \cdot (f\mathbf{A}) = f \nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$$

(8)
$$\nabla \times (f\mathbf{A}) = f\nabla \times \mathbf{A} + \nabla f \times \mathbf{A}$$

(9)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \times \mathbf{A} - \mathbf{A} \cdot \nabla \times \mathbf{B}$$

(10)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$$

(11)
$$\mathbf{A} \times (\nabla \times \mathbf{B}) = (\nabla \mathbf{B}) \cdot \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$$

(12)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}$$

(13)
$$\nabla^2 f = \nabla \cdot \nabla f$$

(14)
$$\nabla^2 \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A}$$

(15)
$$\nabla \times \nabla f = 0$$

(16)
$$\nabla \cdot \nabla \times \mathbf{A} = \mathbf{0}$$

If $e_1,\,e_2,\,e_3$ are orthonormal unit vectors, a second-order tensor T can be written in the dyadic form

(17)
$$T = \sum_{i,j} T_{ij} \mathbf{e}_i \mathbf{e}_j$$

In cartesian coordinates the divergence of a tensor is a vector with components

(18)
$$(\nabla \cdot \mathbf{T})_i = \sum_i (\partial T_{ii}/\partial x_i)$$

[This definition is required for consistency with Eq. (28)]. In general

(19)
$$\nabla \cdot (AB) = (\nabla \cdot A) B + (A \cdot \nabla) B$$

(20)
$$\nabla \cdot (f\mathbf{T}) = \nabla f \cdot \mathbf{T} + f \nabla \cdot \mathbf{T}$$

Let r = kx + jy + kz be the radius vector of magnitude r, from the origin to the point x,y,z. Then

(21)
$$\nabla \cdot \mathbf{r} = 3$$

$$(22)^{!} \nabla \times \mathbf{r} = \mathbf{0}$$

(23)
$$\nabla r = \mathbf{r}/r$$

(24)
$$\nabla(1/r) = -r/r^3$$

(25)
$$\nabla \cdot (\mathbf{r}/r^2) = 4\pi\delta(\mathbf{r})$$

If V is a volume enclosed by a surface S and dS = ndS where n is the unit normal outward from V.

$$(26) \int_{\mathbb{R}} dV \nabla f = \int_{\mathbb{S}} dS f$$

$$(27) \int_{V} dV \nabla \cdot \mathbf{A} = \int_{S} d\mathbf{S} \cdot \mathbf{A}$$

$$(28): \int_{\mathcal{U}} dV \cdot \nabla \cdot \mathbf{T} = \int_{\mathcal{E}} d\mathbf{S} \cdot \mathbf{T}$$

$$(29) \int_{V} dV \nabla \times \mathbf{A} = \int_{S} d\mathbf{S} \times \mathbf{A}$$

(30)
$$\int_{V} dV (f \nabla^{2} g - g \nabla^{2} f) = \int_{S} dS \cdot (f \nabla_{S} - g \nabla f)$$

$$(31) \Big| \int_{V} dV (\mathbf{A} \cdot \nabla \times \nabla \times \mathbf{B} - \mathbf{B} \cdot \nabla \times \nabla \times \mathbf{A}) = \int_{S} d\mathbf{S} \cdot (\mathbf{B} \times \nabla \times \mathbf{A} - \mathbf{A} \times \nabla \times \mathbf{B}).$$

If S is an open surface bounded by the contour C of which the line element is $d\mathbf{l}$,

$$(32) \int_{S} d\mathbf{S} \times \nabla f = \oint_{C} d\mathbf{1} f$$

$$(33) \int_{S} dS \cdot \nabla \times \mathbf{A} = \oint_{C} d\mathbf{1} \cdot \mathbf{A}$$

$$(34) \int_{S} (dS \times \nabla) \times A = \oint_{C} dI \times A$$

$$(35) \int_{S} dS \cdot (\nabla f \times \nabla g) = \oint_{C} f dg = -\oint_{C} g df$$

DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES⁴

Cylindrical Coordinates

Divergence

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

Gradient

$$(\nabla f)_r = \frac{\partial f}{\partial r}; \quad (\nabla f)_{\phi} = \frac{1}{r} \frac{\partial f}{\partial \phi}; \quad (\nabla f)_z = \frac{\partial f}{\partial z};$$

Curl

$$(\nabla \times \mathbf{A})_r = \frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}$$

$$(\nabla \times \mathbf{A})_{\phi} = \frac{\partial A_r}{\partial x} - \frac{\partial A_z}{\partial r}$$

$$(\nabla \times \mathbf{A})_z = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\phi}) - \frac{1}{r} \frac{\partial A_r}{\partial \phi}$$

Laplacian

$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

Laplacian of a vector

$$(\nabla^2 \mathbf{A})_r = \nabla^2 A_r - \frac{2}{r^2} \frac{\partial A_\phi}{\partial \phi} - \frac{A_r}{r^2}$$

$$(\nabla^2 \mathbf{A})_{\bullet} = \nabla^2 \mathbf{A}_{\bullet} + \frac{2}{r^2} \frac{\partial \mathbf{A}_r}{\partial \phi} - \frac{\mathbf{A}_{\bullet}}{r^2}$$

$$(\nabla^2 A)_z = \nabla^2 A_z$$

Components of $(A \cdot \nabla)B$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_{\phi} \partial B_r}{r} + A_z \frac{\partial B_r}{\partial z} - \frac{A_{\phi} B_{\phi}}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_{\bullet} = A_r \frac{\partial B_{\bullet}}{\partial r} + \frac{A_{\bullet}}{r} \frac{\partial B_{\bullet}}{\partial \phi} + A_z \frac{\partial B_{\bullet}}{\partial z} + \frac{A_{\bullet}B_r}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_z = A_r \frac{\partial B_z}{\partial r} + \frac{A_{\phi}}{r} \frac{\partial B_z}{\partial \phi} + A_z \frac{\partial B_z}{\partial z}$$

Divergence of a tensor

$$(\nabla \cdot \mathbf{T})_r = \frac{1}{r} \frac{\partial}{\partial r} (rT_{rr}) + \frac{1}{r} \frac{\partial}{\partial \phi} (T_{\phi r}) + \frac{\partial T_{zr}}{\partial z} - \frac{1}{r} T_{\phi \phi}$$

$$(\nabla \cdot \mathbf{T})_{\phi} = \frac{1}{r} \frac{\partial}{\partial r} (rT_{r\phi}) + \frac{1}{r} \frac{\partial T_{\phi\phi}}{\partial \phi} + \frac{\partial T_{z\phi}}{\partial z} + \frac{1}{r} T_{\phi r}$$

$$(\nabla \cdot \mathbf{T})_z = \frac{1}{r} \frac{\partial}{\partial r} (rT_{rz}) + \frac{1}{r} \frac{\partial T_{\phi z}}{\partial \phi} + \frac{\partial T_{zz}}{\partial z}$$

Spherical Coordinates

Divergence

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Gradient

$$(\nabla f)_r = \frac{\partial f}{\partial r}; \quad (\nabla f)_\theta = \frac{1}{r} \frac{\partial f}{\partial \theta}; \quad (\nabla f)_\phi = \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi};$$

Curi

$$(\nabla \times \mathbf{A})_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_{\theta} \sin \theta) - \frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}$$

$$(\nabla \times \mathbf{A})_{\theta} = \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} (rA_{\phi})$$

$$(\nabla \times \mathbf{A})_{\Phi} = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\theta}) - \frac{1}{r} \frac{\partial A_{r}}{\partial \theta}$$

Laplacian

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Laplacian of a vector

$$(\nabla^2 \mathbf{A})_r = \nabla^2 A_r - \frac{2A_r}{r^2} - \frac{2}{r^2} \frac{\partial A_\theta}{\partial \theta} - \frac{2A_\theta \cot \theta}{r^2} - \frac{2}{r^2} \frac{\partial A_\phi}{\partial \theta}$$

$$(\nabla^2 \mathbf{A})_{\theta} = \nabla^2 A_{\theta} + \frac{2}{r^2} \frac{\partial A_{r}}{\partial \theta} - \frac{A_{\theta}}{r^2 \sin^2 \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

$$(\nabla^2 A)_{\phi} = \nabla^2 A_{\phi} - \frac{A_{\phi}}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_{\tau}}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

Components of $(A \cdot \nabla)B$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta} + \frac{A_\phi}{r \sin \theta} \frac{\partial B_r}{\partial \phi} - \frac{A_\theta B_\theta + A_\phi B_\phi}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_{\bullet} = A_{r} \frac{\partial B_{\theta}}{\partial r} + \frac{A_{\theta}}{r} \frac{\partial B_{\theta}}{\partial \theta} + \frac{A_{\phi}}{r \sin \theta} \frac{\partial B_{\theta}}{\partial \phi} + \frac{A_{\phi}B_{r}}{r} - \frac{A_{\phi}B_{\phi} \cot \theta}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_{\bullet} = A_{r} \frac{\partial B_{\phi}}{\partial r} + \frac{A_{\theta}}{r} \frac{\partial B_{\phi}}{\partial \theta} + \frac{A_{\phi}}{r \sin \theta} \frac{\partial B_{\phi}}{\partial \phi} + \frac{A_{\phi}B_{r}}{r} + \frac{A_{\phi}B_{\theta} \cot \theta}{r}$$

Divergence of a tensor

$$(\nabla \cdot \mathbf{T})_r = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (T_{\theta r} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial T_{\theta r}}{\partial \phi} - \frac{T_{\theta \theta} + T_{\theta \phi}}{r}$$

$$(\nabla \cdot \mathbf{T})_{\theta} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (T_{\theta\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial T_{\theta\theta}}{\partial \phi} + \frac{T_{\theta r}}{r} - \frac{\cot \theta}{r} T_{\theta\theta}$$

$$(\nabla \cdot \mathbf{T})_{\phi} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (T_{\theta \phi} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial T_{\phi \phi}}{\partial \phi} + \frac{T_{\phi r}}{r} + \frac{\cot \theta}{r} T_{\phi \theta}$$

DIMENSIONS AND UNITS

To get the value of a quantity in Gaussian units, multiply the value expressed in mks units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light $c=2.9979\times 10^{10}~\rm cm/sec\approx 3\times 10^{10}~cm/sec$.

	C	Dim	ensions			
Physical Quantity	Sym- bol	mks Units	Gaussian Units	Rationalized mks	Conversion Factor	Gaussian
Capacitance	c	$\frac{t^2q^2}{mL^2}$	L	farad	9 × 10"	cm
Charge	q	· q	$\frac{m^{1/2} \int_{0}^{2/2} t}{t}$	coulomb	3 × 10°	statcoulomb
Charge density	ρ	q P	$\frac{m^{1/2}}{\hat{L}^{3/2}t}$	coulomb/m³	3 × 10°	statcoulomb/ cm³
Conductance		$\frac{tq^2}{m L^2}$	$\frac{L}{t}$	siemens	9 × 10 ¹¹	cm/sec
Conductivity	σ	$\frac{tq^2}{m L^3}$	1	siemens/m	9 × 10°	sec ⁻¹
Current	1	q t	$\frac{m^{1/2} \int_{t^2}^{2/2} t^2}{t^2}$	ampere	3 × 10°	statampere
Current density	J	q Et	$\frac{m^{1/2}}{\hat{L}^{1/2}t^2}$	ampere/m²	3 × 10 ⁵	statampere/ cm²
Density	ρ	m £3	<u>m</u> <u>t</u> 2	kg/m³	10-3	g/cm³
Displacement	D	g F	$\frac{m^{1/2}}{\int_{0}^{1/2} t}$	coulomb/m²	$12\pi \times 10^{8}$	statcoulomb/
Electric field	E	$\frac{mL}{t^2q}$	$\frac{m^{1/2}}{L^{1/2}t}$	volt/m	$\frac{1}{3}\times 10^{-4}$	statvolt/cm
Electromotance	&, Emf	$\frac{m l^2}{t^2 q}$	$\frac{m^{1/2} \int_0^{1/2} t}{t}$	volt	$\frac{1}{3}\times 10^{-2}$	statvoit
Energy	U, ₩	$\frac{m L^2}{t^2}$	$\frac{m \hat{L}^2}{t^2}$	joule	107	erg
Energy density	₩, €	m Lt²	m <u>ft²</u>	joule/m³	10	erg/cm³

	S	Dim	ensions	Davis II		
Physical Quantity	Sym- bol	mks Units	Gaussian Units	Rationalized mks	Conversion Factor	Gaussian
Permittivity	€	$\frac{t^2q^2}{mL^3}$	1	farad/m	$36\pi \times 10^9$	
Polarization	P	$\frac{q}{\ell^2}$	$\frac{m^{1/2}}{\hat{\mathcal{L}}^{1/2}t}$	coulomb/m²	3 × 10 ⁵	statcoulomb/ cm²
Potential	ν, φ	$\frac{mL^2}{t^2q}$	$\frac{m^{1/2} L^{1/2}}{t}$	volt	$\frac{1}{3} \times 10^{-2}$	statvolt
Power	P	$\frac{m L^2}{t^3}$	$\frac{m\boldsymbol{L}^2}{t^3}$	watt	107	erg/sec
Power density		$\frac{m}{Lt^3}$	$\frac{m}{Lt^3}$	watt/m³	10	erg/cm³-sec
Pressure	p	$\frac{m}{Lt^2}$	$\frac{m}{Lt^2}$	pascal	10	dyne/cm²
Reluctance	Я	$\frac{q^2}{m \ell^2}$	$\frac{1}{\mathbf{\ell}}$	ampere-turn/ weber	4π × 10 °	cm 1
Resistance	R	$\frac{m L^2}{tq^2}$	$\frac{t}{L}$	ohm	$\frac{1}{9} \times 10^{-11}$	sec/cm
Resistivity	η, ρ	$\frac{m \mathbf{L}^3}{t q^2}$	t	ohm-m	$\frac{1}{9} \times 10^{-9}$	sec
Thermal conductivity	K	$\frac{m L}{t^3}$	$\frac{m \mathcal{L}}{t^3}$	watt/m- deg (K)	105	erg/cm-sec- deg (K)
Time	,	,	ı	second (sec)	1	second
Vector potential	A	$\frac{m \mathcal{L}}{t q}$	$\frac{m^{1/2}L^{1/2}}{t}$	weber/m	106	gauss-cm
Velocity		<u>L</u>	$\frac{\mathbf{\ell}}{t}$	m/sec	102	cm/sec
Viscosity	η. μ	m Lt	$\frac{m}{Lt}$	kg/m-sec	10	poise
Vorticity	ζ	$\frac{1}{t}$	$\frac{1}{t}$	sec 1	1	sec 1
Work	W	$\frac{m L^2}{t^2}$	$\frac{m L^2}{t^2}$	joule	107	erg

INTERNATIONAL SYSTEM (SI) NOMENCLATURE⁵

Physical	Name	Symbol	Physical	Name	Symbol
Quantity	of Unit	for Unit	Quantity	of Unit	for Unit
*length	meter	m	electric	volt	V
*mass	kilogram	kg	potential		
*time	second	s	electric resistance	ohm	Ω
*electric current	ampere	A	electric	siemens	s
*thermodynamic temperature	kelvin	K	conductance	Siemens	
*amount of substance	mole	mol	electric capacitance	farad	F
	• • •		magnetic flux	weber	Wb
*luminous intensity	candela	cd	inductance	henry	Н
†plane angle	radian	rad	magnetic flux density	tesla	Т
†solid angle	steradian	sr	luminous flux	lumen	lm
frequency	hertz	Hz	illuminance	lux	1x
energy	joule	J	activity (of a	becquerel	Bq
force	newton	N	radioactive		
pressure	pascal	Pa	source)		
power	watt	w	absorbed dose (of ionizing	gray	Gy
electric charge	coulomb	С	radiation)		

METRIC PREFIXES

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10-1	deci	d	10	deca	da
10-2	centi	c	10²	hecto	h
10 3	milli	m	103	kilo	k
10-6	micro	μ	106	mega	M
10- •	nano	n	109	giga	G
10 ^{- 12}	pico	P	1012	tera	т
10 ⁻¹⁵	femto	f	1015	peta	P
10-18	atto	a	1018	exa	E

^{*}SI Base Unit †Supplementary Unit

PHYSICAL CONSTANTS (SI)6

Physical Quantity	Symbol	Value	Units
Boltzmann constant	k	1.3807×10^{-23}	J K-1
Elementary charge	e	1.6022 × 10 ⁻¹⁹	c
Electron mass	m _e	9.1095×10^{-31}	kg
Proton mass	m _p	1.6726×10^{-27}	kg
Gravitational constant	G	6.6720 × 10 ⁻¹¹	m ³ s ⁻² kg ⁻¹
Planck constant	$h = h/2\pi$	6.6262×10^{-34} 1.0546×10^{-34}	J s J s
Speed of light in vacuum	c	2.9979×10^8	m s ⁻¹
Permittivity of free space	€0	8.8542 × 10 ⁻¹²	F m ⁻¹
Permeability of free space	μ ₀	$4\pi \times 10^{-7}$	H m ⁻¹
Proton/electron mass ratio	m_p/m_e	1.8362×10^3	
Electron charge/mass ratio	e/m _e	1.7588 × 10 ¹¹	C kg ⁻¹
Rydberg constant	$R_{\infty} = \frac{2\pi^2 me^4}{ch^3}$	1.0974×10^7	m ⁻¹
Bohr radius	$a_0 = \hbar/me^2$	5.2918 × 10 ⁻¹¹	m
Atomic cross section	παξ	8.7974×10^{-21}	m ²
Classical electron radius	$r_e = e^2/mc^2$	2.8179×10^{-15}	m
Thomson cross section	$(8\pi/3)r_e^2$	6.6524×10^{-29}	m ²
Compton wavelength of electron	h/mec h/mec	2.4263×10^{-12} 3.8616×10^{-13}	m m
Fine-structure constant	$\alpha = e^2/\hbar c$ α^{-1}	7.2974×10^{-3} 137.04	
First radiation constant	$c_1 = 2\pi hc^2$	3.7418×10^{-2}	W m ²
Second radiation constant	$c_2 = hc/k$	1.4388 × 10 ⁻²	m K
Stefan-Boltzmann constant	σ	5.6703 × 10 ⁻⁸	W m ⁻² K ⁻⁴

Physical Quantity	Symbol	Value	Units
Wavelength associated with 1 eV	λo	1.2399 × 10 ⁻⁶	m
Frequency associated with 1 eV	ν ₀	2.4180×10^{14}	Hz
Wave number associated with 1 eV	k ₀	8.0655 × 10 ⁵	m ⁻¹
Energy associated with I eV		1.6022 × 10 ⁻¹⁹	J
Energy associated with 1 m ⁻¹		1.9865 × 10 ⁻²⁵	j
Energy associated with I Rydberg		13.606	eV
Energy associated with I Kelvin		8.6173×10^{-5}	eV
Temperature associated with 1 eV		1.1605 × 10 ⁴	K
Avogadro number	N ₄	6.0220×10^{23}	mol ⁻¹
Faraday constant	$F = N_A e$	9.6485 × 10 ⁴	C mol-1
Gas constant	$R = N_A k$	8.3144	J K ⁻¹ mol ⁻¹
Loschmidt's number (no. density at STP)	n ₀	2.6868×10^{25}	m ⁻³
Atomic mass unit	m _u	1.6606 × 10 ⁻²⁷	kg
Standard temperature	T_0	273.16	K
Atmospheric pressure	$\rho_0 = n_0 k T_0$	1.0133×10^5	Pa
Pressure of 1 mm Hg (torr)		1.3332×10^2	Pa
Molar volume at STP	$V_0 - RT_0/p_0$	2.2415 × 10 ⁻²	m ³
Molar weight of air	Mair	2.8971 × 10 ⁻²	kg
calorie (cal)		4.1868	J
Gravitational acceleration	8	9.8067	m s ⁻²

PHYSICAL CONSTANTS (cgs)

Physical Quantity	Symbol	Value	Units	
Boltzmann constant	k	1.3807 × 10 ⁻¹⁶	erg/deg (K)	
Elementary charge	e	4.8032 × 10 ⁻¹⁰	statcoulomb	
Electron mass	m,	9.1095 × 10 ⁻²⁶	g	
Proton mass	m _p	1.6726 × 10 ⁻²⁴	g	
Gravitational constant	G	6.6720 × 10 ⁻⁸	dyne-cm²/g²	
Planck constant	h	6.6262 × 10 ⁻²⁷	erg-sec	
	$h = h/2\pi$	1.0546×10^{-27}	erg-sec	
Speed of light in vacuum	c	2.9979 × 10 ¹⁰	cm/sec	
Proton/electron mass ratio	m _p /m _c	1.8362 × 10³		
Electron charge/mass ratio	e/m,	5.2728 × 10 ¹⁷	statcoulomb/g	
Rydberg constant	$R_{\infty} = \frac{2\pi^2 me^4}{ch^3}$	1.0974 × 10 ⁵	cm ⁻¹	
Bohr radius	$a_0 = \hbar^2/me^2$	5. 2918 × 10-•	cm	
Atomic cross section	πa ²	8.7974 × 10 ⁻¹⁷	cm²	
Classical electron radius	$r_e = e^2/mc^2$	2.8179 × 10 ⁻¹³	cm	
Thomson cross section	$(8\pi/3) r_{e^2}$	6.6524×10^{-28}	cm²	
Compton wavelength of	h/m _e c	2.4263 × 10 ⁻¹⁰	cm	
electron	h/m _e c	3.8616×10^{-11}	cm	
Fine-structure constant	$\alpha = e^{2t}/\hbar c$	7.2974×10^{-3}		
	α-1	137.04		
First radiation constant	$c_1 = 2\pi h c^2$	3.7418×10^{-3}	erg-cm²/sec	
Second radiation constant	$c_2 = hc/k$	1.4388	cm-deg (K)	
Stefan-Boltzmann constant	σ	5.6703 × 10 ⁻⁸	erg/cm²-sec-deg ⁴	
Wavelength associated with 1 eV	λ•	1.2399 × 10 ⁻⁴	cm	

Physical Quantity	Symbol	Value	Units
Frequency associated with 1 eV	ν ₀	2.4180 × 10 ¹⁴	Hz
Wave number associated with 1 eV	ko	8.0655 × 10 ³	cm ⁻¹
Energy associated with 1 eV		1.6022 × 10 ⁻¹²	erg
Energy associated with 1 cm ⁻¹		1.9865 × 10 ⁻¹⁶	erg
Energy associated with 1 Rydberg		13.606	eV
Energy associated with 1° Kelvin		8.6173 × 10 ⁻³	eV
Temperature associated with 1 eV		1.1605 × 10 ⁴	deg (K)
Avogadro number	N_4	6.0220 × 10 ^{e3}	mol ⁻¹
Faraday constant	$F = N_A e$	2. 8 925 × 10 ¹⁴	statcoulomb/mol
Gas constant	$R = N_A k$	8.3144×10^7	erg/deg-mol
Loschmidt's number (no. density at STP)	n _o	2.6868 × 1010	cm ⁻³
Atomic mass unit	m _u	1.6606 × 10 ⁻²⁴	g
Standard temperature	T ₀	273 . 16	deg (K)
Atmospheric pressure	$p_0 = n_0 k T_0$	1.0133 × 10°	dyne/cm²
Pressure of 1 mmHg (torr)		1.3332×10^{9}	dyne/cm²
Molar volume at STP	$V_{\bullet} = RT_{\bullet}/p_{\bullet}$	2.2415 × 104	cm³
Molar weight of air	M _{air}	28.971	g
calorie (cal)		4.1868 × 10°	eng
Gravitational acceleration	8	980.67	cm/sec²

FORMULA CONVERSION7

Here $\alpha=10^2$ cm m⁻¹, $\beta=10^7$ erg J⁻¹, $\epsilon_0=8.8542\times 10^{-12}$ F m⁻¹, $\mu_0=4\pi\times 10^{-7}$ H m⁻¹, $c=(\epsilon_0\mu_0)^{-1/2}=2.9979\times 10^8$ m s⁻¹, and $\hbar=1.0546\times 10^{-34}$ J s. To derive a dimensionally correct SI formula from one expressed in Gaussian units, substitute for each quantity according to $\tilde{Q}=\tilde{k}Q$, where \tilde{k} is the coefficient in the second column of the table corresponding to Q (tildes denote variables expressed in Gaussian units). Thus the formula $\tilde{a}_0=\tilde{h}^2/\tilde{m}\tilde{e}^2$ for the Bohr radius becomes $\alpha a_0=(\hbar\beta)^2/[(m\beta/\alpha^2)\ (e^2\alpha\beta/4\pi\epsilon_0)]$, or $a_0=\epsilon_0h^2/\pi$ me². To go from SI to natural units in which $\hbar=c=1$ (distinguished by a circumflex), use $Q=\tilde{k}^{-1}\tilde{Q}$, where \tilde{k} is the coefficient corresponding to Q in the third column. Thus $\hat{a}_0=4\pi\epsilon_0\hbar^2/[(\hat{m}h/c)(\hat{e}^2\epsilon_0\hbar c)]=4\pi/\tilde{m}\hat{e}^2$. (In going from SI units, do not substitute for ϵ_0 , μ_0 , or c.)

Physical Quantity	Gaussian Units to SI	Natural Units to SI
Capacitance	α/4πε ₀	€01
Charge	$(\alpha\beta/4\pi\epsilon_0)^{1/2}$	$(\epsilon_0 \hbar c)^{-1/2}$
Charge density	$(\beta/4\pi\alpha^5\epsilon_0)^{1/2}$	$(\epsilon_0 \hbar c)^{-1/2}$
Current	$(\alpha\beta/4\pi\epsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Current density	$(\beta/4\pi\alpha^3\epsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Electric field	$(4\pi\beta\epsilon_0/\dot{\alpha}^3)^{1/2}$	(€ ₀ /ħc) ^{1/2}
Electric potential	$(4\pi\beta\epsilon_0/\alpha)^{1/2}$	$(\epsilon_0/\hbar c)^{1/2}$
Electric conductivity	$(4\pi\epsilon_0)^{-1}$	€0-1
Energy	β	(ħc) ⁻¹
Energy density	β/α^3	(hc)-1
Force	β/α	(hc) ⁻¹
Frequency	1	c-1
Inductance	4πε ₀/α	μ_0^{-1}
Length	α	1
Magnetic induction	$(4\pi\beta/\alpha^3\mu_0)^{-1/2}$	$(\mu_0 hc)^{-1/2}$
Magnetic intensity	$(4\pi\mu_0\beta/\alpha^3)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Mass	β/α^2	c/ħ
Momentum	β/α	ħ ^{−1}
Power	β	$(\hbar c^2)^{-1}$
Pressure	β/α^3	_(nc)-1

(Continues)

Physical Quantity	Gaussian Units to SI	Natural Units to SI
Resistance	4πε ₀ /α	$(\epsilon_0/\mu_0)^{1/2}$
Time	1	c
Velocity	α	c ⁻¹ _

MAXWELL'S EQUATIONS

Name	Rationalized mks	Gaussian
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{P}}{\partial t}$
Ampere's law	$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$	$\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} + \frac{4\pi}{c} \mathbf{J}$
Poisson's equation	$\nabla \cdot \mathbf{D} = \boldsymbol{\rho}$	$\nabla \cdot \mathbf{D} = 4\pi \rho$
[Absence of magnetic monopoles]	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
Lorentz force on charge q	$q[E + v \times B]$	$q\bigg[\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\bigg]$
Constitutive relations	D = ε E B = μH	D= ε E B = μH

In a plasma, $\mu \approx \mu_o$ (Gaussian units: $\mu \approx 1$). The permittivity satisfies $\epsilon \approx \epsilon_0$ (Gaussian: $\epsilon \approx 1$) provided all charge is regarded as free. Using the drift approximation $\mathbf{v}_\perp = \mathbf{E} \times \mathbf{B}/B^2$ to calculate polarization charge density gives rise to a dielectric constant $K = \epsilon/\epsilon_0 = 1 + 36\pi \times 10^9 \ \rho/B^2$ (mks) = 1 + $4\pi \rho c^2/B^2$ (Gaussian), where ρ is the mass density.

Electromagnetic energy in volume
$$V = \frac{1}{2} \int_{V} dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D})$$
 (mks)
$$= \frac{1}{8\pi} \int_{V} dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D})$$
 (cgs)

Poynting's theorem
$$\frac{\partial W}{\partial t} + \int_{S} N \cdot dS = -\int_{V} dV J \cdot E,$$

where S is the closed surface bounding V and the Poynting vector (energy flux across S) is $N = E \times H$ (mks) and $N = cE \times B/4\pi$ (cgs).

ELECTRICITY AND MAGNETISM

In the following, ϵ = dielectric permittivity, μ = permeability of conductor, μ' = permeability of surrounding medium, σ = conductivity, $f = \omega/2\pi$ = radiation frequency, $\kappa_m = \mu/\mu_0$ and $\kappa_e = \epsilon/\epsilon_0$. Where subscripts are used, 1 denotes a conducting medium and 2 a propagating (lossless dielectric) medium. All units are mks unless otherwise specified.

$$\epsilon_0 = 8.8542 \times 10^{-12} \text{ farad/m}.$$

$$\mu_0 = 4\pi \times 10^{-7} = 1.2566 \times 10^{-6} \text{ henry/m}.$$

$$R_0 = (\mu_0/\epsilon_0)^{1/2} = 376.73$$
 ohm

$$C = \epsilon A/d$$

Capacity of concentric cylinders of length
$$l$$
, radii a , b

$$C = 2\pi\epsilon/\ln(b/a)$$

$$C = 4\pi \epsilon ab/(b-a)$$

Self-inductance of wire of length
$$l$$
, carrying uniform current

$$L = \mu l$$

$$L = \frac{\mu'l}{4\pi} \left[1 + 4 \ln \left(\frac{d}{a} \right) \right]$$

$$L = b\{\mu'[\ln(8b/a)-2] + \mu/4\}$$

$$\tau = \epsilon/\sigma$$

$$\delta = (2/\omega\mu\sigma)^{1/2} = (\pi f\mu\sigma)^{-1/2}$$

$$Z = [\mu/(\epsilon + i\sigma/\omega)]^{1/2}$$

Transmission coefficient at conducting
$$T = 4.22 \times 10^{-4} (f \kappa_{m1} \kappa_e y/\sigma)^{1/2}$$
 surface (good only for $T << 1)^8$

$$T = 4.22 \times 10^{-4} (f \kappa_{ml} \kappa_e \gamma / \sigma)^{1/2}$$

$$B_0 = \mu I/2\pi r \text{ tesla}$$
= 0.21/r gauss (r in cm)

$$B_z = \frac{\mu a^2 l}{2(a^2 + z^2)^{3/2}}$$

ELECTROMAGNETIC FREQUENCY/WAVELENGTH BANDS⁹

Designation	Frequency Range		Wavelength Range	
Designation	Lower Upper		Lower	Upper
ULF*		10 Hz	3 Mm	
ELF•	10 Hz	3 kHz	100 km	3 Mm
VLF	3 kHz	30 kHz	10 km	100 km
LF	30 kHz	300 kHz	1 km	10 km
MF	300 kHz	3 MHz	100 m	1 km
HF	3 MHz	30 MHz	10 m	100 m
VHF	30 MHz	300 MHz	l m	10 m
UHF	300 MHz	3 GHz	10 cm	1 m
SHF†	3 GHz	30 GHz	l cm	10 cm
S	2.6	3.95	7.6	11.5
G	3.95	5.85	5.1	7.6
j	5.3	8.2	3.7	5.7
Н	7.05	10.0	3.0	4.25
X	8.2	12.4	2.4	3.7
M	10.0	15.0	2.0	3.0
P	12.4	18.0	1.67	2.4
K	18.0	26.5	1.1	1.67
R	26.5	40.0	0.75	1.1
EHF	30 GHz	300 GHz	1 mm	l cm
(Submillimeter)	300 GHz	3 THz	100 μm	l mm
(Infrared)	3 THz	430 THz	0.7 μm	100 µm
(Visible)	430 THz	750 THz	0.4 μm	0.7 μm
(Ultraviolet)	750 THz	30 PHz	10 nm	0.4 μm
(X Ray)	30 PHz	3 EHz	0.1 nm	10 nm
(Gamma Ray)	3 EHz			0.1 nm

Note In spectroscopy the angstrom (Å) is sometimes used (1 Å = 10^{-8} cm = 0.1 nm).

^{*}The boundary between ULF and ELF is variously defined.

^{*}The SHF (microwave) band is further subdivided approximately as shown in

AC CIRCUITS

For a resistance R, inductance L, and capacitance C in series with a voltage source $V = V_0 \exp(j\omega t)$ (here $j = \sqrt{-1}$), the current l = dq/dt, where q satisfies

$$L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + q/C = V.$$

Solutions are $q(t) = q_s + q_t$, $I(t) = I_s + I_t$, where the steady state is $I_s = j\omega q_s = V/Z$ in terms of the impedance $Z = R + j(\omega L - 1/\omega C)$ and $I_t = dq_t/dt$. For initial conditions $q(0) = q_0 = \overline{q}_0 + q_s$, $I(0) = I_0$, the transients can be of three types, depending on $\Delta = R^2 - 4L/C$:

(a) Overdamped, $\Delta > 0$

$$\begin{split} q_{l} &= [(I_{0} + \gamma_{+} \bar{q}_{0}) e^{-\gamma_{-} l} - (I_{0} + \gamma_{-} \bar{q}_{0}) e^{-\gamma_{+} l}]/(\gamma_{+} - \gamma_{-}); \\ I_{l} &= [\gamma_{+} (I_{0} + \gamma_{-} \bar{q}_{0}) e^{-\gamma_{+} l} - \gamma_{-} (I_{0} + \gamma_{+} \bar{q}_{0}) e^{-\gamma_{-} l}]/(\gamma_{+} - \gamma_{-}), \end{split}$$

where $\gamma_{+} = (R \pm \Delta^{1/2})/2L$;

(b) Critically damped, $\Delta = 0$

$$q_t = [\bar{q}_0 + (I_0 + \gamma_R \bar{q}_0)t]e^{-\gamma_R t};$$

$$I_t = [I_0 - (I_0 + \gamma_R \overline{q}_0) \gamma_R t] e^{-\gamma_R t},$$

where $\gamma_R = R/2L$;

(c) Underdamped, $\Delta < 0$

$$q_t = [\omega_1^{-1}(\gamma_R \bar{q}_0 + I_0) \sin \omega_1 t + \bar{q}_0 \cos \omega_1 t] e^{-\gamma_R t};$$

$$I_t = \{I_0 \cos \omega_1 t - [(\omega_1 + \gamma_R^2/\omega_1)\tilde{q}_0 + (\gamma_R/\omega_1)I_0] \sin (\omega_1 t)\}e^{-\gamma_R t},$$

where $\omega_1 = \omega_0 (1 - R^2 C/4L)^{1/2}$, $\omega_0 = (LC)^{-1/2}$. The quality of the circuit is $Q = \omega_0 L/R$; ω_0 is the resonant frequency. At $\omega = \omega_0$, Z = R. Instability results when L, R, C are not all of the same sign.

DIMENSIONLESS NUMBERS OF FLUID MECHANICS¹¹

Name(s)	Symbol	Definition	Significance
Alfvén/Kármán	Al/Ka	*V _A /V	(Magnetic force/inertial forces) ^{1/2}
Bond	Bd	$(ho'- ho)L^2g/\Sigma$	Gravitational force/surface tension
Boussinesq	В	$V/(2gR)^{1/2}$	(Inertial force/gravitational force) 1/2
Brinkman	Br	$\mu V^2/k\Delta T$	Viscous heat/conducted heat
Capillary	Ср	μ V/Σ	Viscous force/surface tension
Carnot	Ca	$(T_2-T_1)/T_2$	Theoretical Carnot cycle efficiency
Cauchy/Hooke	Cy/Hk	$\rho V^2/\Gamma = M^2$	Inertial force/compressibility force
Clausius	Cl	$LV^3 ho/k\Delta T$	Kinetic energy flow rate/heat conduction rate
Cowling	C	$(V_A/V)^2 = Al^2$	Magnetic force/inertial forces
Crispation	Cr	μκ/ΣL	Effect of diffusion/effect of surface tension
Dean	D	$(DV/\nu)(D/2r)^{1/2}$	Transverse flow due to curvature/ longitudinal flow
(Drag coefficient)	C_D	$(\rho'-\rho)Lg/\rho'V^2$	Drag force/inertial forces
Eckert	E	$V^2/c_p\Delta T$	Kinetic energy/change in thermal energy
Ekman	Ek	$(\nu/2\Omega L^2)^{1/2} =$ (Ro/Re) ^{1/2}	(Viscous force/Coriolis force) ^{1/2}
Euler	Eu	$\Delta p/\rho V^2$	Pressure drop due to friction/ kinetic energy density
Froude	Fr	† V/(gL) ^{1/2} V/NL	(Inertial forces/gravitational or buoyancy forces) 1/2
Gay-Lussac	Ga	1/ βΔ <i>T</i>	(Relative volume change during heating) ⁻¹
Grashof	Gr	$gL^3\beta\Delta T/\nu^2$	Buoyancy force/viscous force
(Hall coefficient)	C _H	λ/r _L	Gyrofrequency/collision frequency
Hartmann	н	$BL/(\mu\eta)^{1/2} =$ $(\text{Rm Re C})^{1/2}$	Magnetic force/dissipative forces
Knudsen	Kn	λ/L	Hydrodynamic time/collision time
Lorentz	Lo	V/c	Magnitude of relativistic effects
Lundquist	Lu	$LV_{A\mu 0}/\eta$ — Al Rm	J × B force/resistive magnetic diffusion force

Name(s)	Symbol	Definition	Significance
Mach	M	V/C_s	Magnitude of compressibility effects
Magnetic Mach	Mm	$V/V_A = A\Gamma^1$	(Inertial force/magnetic force) 1/2
Magnetic Reynolds	Rm	$\mu_0 LV/\eta$	Flow velocity/magnetic diffusion velocity
Newton	Nt	$F/\rho L^2 V^2$	Imposed force/inertial forces
Nusselt	N	αL/k	Total heat transfer/thermal conduction
Péclet	Pe	LV/ĸ	Heat convection/heat conduction
Poisseuille	Po	$D^2\Delta p/\mu LV$	Pressure force/viscous force
Prandtl/Schmidt	Pr/Sc	ν/κ	Momentum diffusion/heat diffusion
Rayleigh	Ra	$gH^3\beta\Delta T/\nu\kappa$	Buoyancy force/diffusion forces
Reynolds	Re	LV/ν	Inertial forces/viscous force
Richardson	Ri	$(NH/\Delta V)^2$	Buoyancy effects/vertical shear effects
Rossby	Ro	$V/2\Omega L \sin \Lambda$	Inertial force/Coriolis force
Taylor	Ta	$ \Omega R^{1/2} (\Delta R)^{3/2} / \nu (2\Omega L^2 / \nu)^2 $	(Centrifugal force/viscous force) ^{1/2} Centrifugal force/viscous force
Thring/ Boltzmann	Th/Bo	$\rho c_p V/\epsilon \sigma T^3$	Convective heat transport/ radiative heat transport
Stanton	St	$\alpha/\rho c_{p}V$	Thermal conduction loss/ heat capacity
Stefan	Sf	$\sigma LT^3/k$	Radiated heat/conducted heat
Stokes	S	ν/L^2f	Viscous damping rate/vibration frequency
Strouhal	Sr	fL/V	Vibration speed/flow velocity
Weber	w	$\rho LV^2/\Sigma$	Inertial force/surface tension

^{*(†)} Also defined as the inverse (square) of the quantity shown.

Nomenclature:

В	Magnetic induction
C_s , c	Speeds of sound, light
$c_{ ho}$	Specific heat at constant pressure (units \mathbb{Z}^2/t^2 -deg)
D = 2R	Pipe diameter

F	Imposed force
f	Vibration frequency
8	Gravitational acceleration
H, L	Vertical, horizontal scale lengths
$k = \rho c_{p} \kappa$	Thermal conductivity (units m/Lt^2)
$N = (g/H)^{1/2}$	Brunt-Väisälä frequency
R	Radius of pipe or channel
<i>r</i>	Radius of curvature of pipe or channel
r_L	Larmor radius
T	Temperature
V	Characteristic flow velocity
$V_A = B/(\mu_0 \rho)^{1/2}$	Alfvén speed
α	Newton's-law heat coefficient, $k \frac{\partial T}{\partial x} = \alpha \Delta T$
β	Volumetric expansion coefficient, $dV/V = \beta dT$
Γ	Bulk modulus (units m/Lt^2)
ΔR , ΔV , Δp , ΔT	Imposed difference in two radii, velocities, pressures, or temperatures
€	Surface emissivity
η	Electrical resistivity
K	Thermal diffusivity (units L^2/t)
Λ	Latitude of position on earth's surface
λ	Collisional mean free path
$\mu = \rho \nu$	Bulk viscosity
$\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$	Permeability of free space
ν	Kinematic viscosity (units L^2/t)
ρ	Mass density of fluid medium
ho'	Mass density of bubble, droplet, or moving object
Σ	Surface tension (units m/t^2)
σ	Stefan-Boltzmann coefficient
Ω	Solid body rotational angular velocity

SHOCKS

At a shock front $\mathcal S$ propagating in a magnetized fluid at an angle θ with respect to the magnetic induction $\mathbf B$, the jump conditions are $^{12,\,13}$

(1)
$$\rho U = \bar{\rho} \, \bar{U} \equiv q;$$

(2)
$$\rho U^2 + p + B_1^2/2\mu = \overline{\rho} \overline{U}^2 + \overline{p} + \overline{B}_1^2/2\mu;$$

(3)
$$\rho UV - B_{||}B_{||}/\mu = \bar{\rho} \, \bar{U}\bar{V} - \bar{B}_{||}\bar{B}_{||}/\mu;$$

$$(4) B_{11} = \overline{B}_{11};$$

(5)
$$UB_{i} - VB_{ii} = \overline{U}\overline{B}_{i} - \overline{V}\overline{B}_{ii};$$

(6)
$$\frac{1}{2} (U^2 + V^2) + w + (UB_1^2 - VB_{||}B_1)/\mu\rho U$$
$$= \frac{1}{2} (\overline{U}^2 + \overline{V}^2) + \overline{w} + (\overline{U}\overline{B}_1^2 - \overline{V}\overline{B}_{||}\overline{B}_1)/\mu\overline{\rho} \overline{U}.$$

Here U and V are components of the fluid velocity normal and tangential to \mathscr{S} in the shock frame; $\rho = 1/\nu$ is the mass density; p is the pressure; $B_1 = B \sin \theta$, $B_{11} = B \cos \theta$; μ is the magnetic permeability ($\mu = 4\pi$ in cgs units); and the specific enthalpy is $w = e + p\nu$, where the specific internal energy e satisfies $de = Tds - pd\nu$ in terms of the temperature T and specific entropy s. Quantities in the region behind (downstream from) \mathscr{S} are distinguished by a bar. If B = 0, then 14

(7)
$$U - \overline{U} = [(\overline{p} - p)(v - \overline{v})]^{1/2};$$

$$(8) \qquad (\bar{p}-p)(v-\bar{v})=q^2;$$

(9)
$$\overline{w} - w = \frac{1}{2} (\overline{p} - p)(v + \overline{v});$$

(10)
$$\overline{e} - e = \frac{1}{2} (\overline{p} + p)(v - \overline{v}).$$

In what follows we assume the fluid is a perfect gas with adiabatic index $\gamma=1+2/n$, where n is the number of degrees of freedom. Then $p=\rho RT/m$, where R is the universal gas constant and m is the molar weight; the sound speed is given by $C_s^2=(\partial p/\partial \rho)_s=\gamma pv$; and $w=\gamma e=\gamma pv/(\gamma+1)$. For a general oblique shock in a perfect gas the quantity $X=(U/V_A)^2/r$ satisfies 13

(11)
$$(X - \beta/\alpha)(X - \cos^2\theta)^2 = X \sin^2\theta \{ [1 + (r-1)/2\alpha]X - \cos^2\theta \},$$

where $r = \bar{\rho}/\rho$, $\alpha = \frac{1}{2} [\gamma + 1 - (\gamma - 1)r]$, and $\beta = C_s^2/V_A^2 = 4\pi\gamma\rho/B^2$. The density ratio is bounded by

(12)
$$1 < r < (\gamma + 1)/(\gamma - 1)$$
.

If the shock is normal to **B** $(\theta = \pi/2)$, then

(13)
$$U^2 = r\{C_s^2 + V_A^2[1 + (1 - \gamma/2)(r - 1)]\}/\alpha;$$

$$(14) U/\overline{U} = \overline{B}/B = r;$$

$$(15) \quad \overline{V} = V;$$

(16)
$$\bar{p} = p + (1 - 1/r)\rho U^2 + (1 - r^2)B^2/2\mu$$
.

If $\theta = 0$, there are two possibilities: switch-on shocks, which require $\beta < 1$ and for which

(17)
$$U^2 = rV_A^2$$
;

(18)
$$\overline{U} = V_A^2/U$$
;

(19)
$$\bar{B}_{\parallel}^{2} = 2B_{\parallel}^{2}(r-1)(\alpha-\beta);$$

(20)
$$\overline{V} = \overline{U} \, \overline{B}_1 / B_{11}$$
;

(21)
$$\bar{p} = p + \rho U^2 (1 - \alpha + \beta) (1 - 1/r)$$

and acoustic (hydrodynamic) shocks, for which

$$(22) U^2 = rC_s^2/\alpha;$$

(23)
$$\overline{U} = U/r$$
;

$$(24) \qquad \overline{V} = \overline{B}_1 = 0;$$

(25)
$$\bar{p} = p + \rho U^2(1 - 1/r)$$
.

For acoustic shocks the specific volume and pressure are related by

(26)
$$\bar{v}/v = [(\gamma + 1)p + (\gamma - 1)\bar{p}]/[(\gamma - 1)p + (\gamma + 1)\bar{p}].$$

In terms of the incident Mach number $M = U/C_s$,

(27)
$$\bar{\rho}/\rho = v/\bar{v} = U/\bar{U} = (\gamma + 1)M^2/[(\gamma - 1)M^2 + 2];$$

(28)
$$\bar{p}/p = (2\gamma M^2 - \gamma + 1)/(\gamma + 1);$$

(29)
$$\overline{T}/T = [(\gamma - 1)M^2 + 2](2\gamma M^2 - \gamma + 1)/(\gamma + 1)^2 M^2;$$

(30)
$$\overline{M}^2 = [(\gamma - 1)M^2 + 2]/[2\gamma M^2 - \gamma + 1].$$

The entropy change across the shock is

(31)
$$\Delta s = \bar{s} - s = c_v \ln \left[(\bar{p}/p) (\rho/\bar{\rho})^{\gamma} \right],$$

where $c_v = R/(\gamma - 1)m$ is the specific heat at constant volume. In the weak shock limit $(M \to 1)$,

(36)
$$\Delta s \rightarrow c_v \frac{2\gamma(\gamma-1)}{3(\gamma+1)} (M^2-1)^3 \approx \frac{16\gamma R}{3(\gamma+1)m} (M-1)^3$$
.

FUNDAMENTAL PLASMA PARAMETERS

All quantities are in Gaussian units except temperature (T_e, T_i, T) expressed in eV and ion mass (m_i) expressed in units of proton mass, $\mu = m_i/m_p$; Z is charge state; k is Boltzmann's constant; K is wavelength; γ is the adiabatic index; $\ln \Lambda$ is the Coulomb logarithm.

Frequencies

electron gyrofrequency
$$f_{ce} = \omega_{ce}/2\pi = 2.80 \times 10^6 B \text{ Hz}$$

$$\omega_{ce} = eB/m_ec = 1.76 \times 10^7 B \text{ rad/sec}$$

ion gyrofrequency
$$f_{ci} = \omega_{ci}/2\pi = 1.52 \times 10^3 Z\mu^{-1}B \text{ Hz}$$

$$\omega_{ci} = eB/m_ic = 9.58 \times 10^3 Z\mu^{-1}B \text{ rad/sec}$$

electron plasma frequency
$$f_{pe} = \omega_{pe}/2\pi = 8.98 \times 10^3 \, n_e^{-1/2} \, \mathrm{Hz}$$

$$\omega_{pe}=(4\pi n_e e^2/m_e)^{1/2}$$

$$= 5.64 \times 10^4 \, n_e^{1/2} \, \text{rad/sec}$$

ion plasma frequency
$$f_{pi} = \omega_{pi}/2\pi = 2.10 \times 10^2 Z \mu^{-1/2} n_i^{1/2} \text{ Hz}$$

$$\omega_{pi} = (4\pi n_i Z^2 e^2/m_i)^{1/2} = 1.32 \times 10^3 Z \mu^{-1/2} n_i^{1/2} \text{ rad/sec}$$

electron trapping rate
$$\nu_{Te} = \left(\frac{eKE}{m_e}\right)^{1/2} = 7.26 \times 10^8 \ K^{1/2} E^{1/2} \ \text{sec}^{-1}$$

ion trapping rate
$$\nu_{Ti} = \left(\frac{eKE}{m_i}\right)^{1/2} = 1.69 \times 10^7 \ K^{1/2} E^{1/2} \mu^{-1/2} \ \text{sec}^{-1}$$

electron collision rate
$$\nu_e = 2.91 \times 10^{-6} n_e \ln \Lambda \ T_e^{-3/2} \sec^{-1}$$

ion collision rate $\nu_i = 4.78 \times 10^{-8} n_i Z^2 \ln \Lambda \ T_e^{-3/2} \sec^{-1}$

Lengths

electron deBroglie length
$$\lambda = \hbar/(m_c kT_c)^{1/2} = 2.76 \times 10^{-8} T_c^{-1/2}$$
 cm

classical distance of
$$e^2/kT = 1.44 \times 10^{-7} T^{-1} \text{ cm}$$
 minimum approach

electron gyroradius
$$r_e = v_{Te}/\omega_{Ce} = 2.38 T_e^{1/2}B^{-1}$$
 cm

ion gyroradius
$$r_i = v_{Ti}/\omega_{ci} = 1.02 \times 10^3 \ \mu^{1/2} Z^{-1} T_i^{1/2} B^{-1} \ \mathrm{cm}$$

plasma skin depth
$$c/\omega_{pe} = 5.31 \times 10^{5} n^{-1/2} \text{ cm}$$

Debye length
$$\lambda_D = (kT/4\pi ne^2)^{1/2} = 7.43 \times 10^2 T^{1/2} n^{-1/2} \text{ cm}$$

Velocities

electron thermal velocity
ion thermal velocity
ion sound velocity
Alfvén velocity

$$v_{Te} = (kT_e/m_e)^{1/2} = 4.19 \times 10^7 \ T_e^{1/2} \ \text{cm/sec}$$
 $v_{Ti} = (kT_i/m_i)^{1/2} = 9.79 \times 10^5 \ \mu^{-1/2} T_i^{1/2} \ \text{cm/sec}$
 $c_s = (\gamma ZkT_e/m_i)^{1/2} = 9.79 \times 10^5 (\gamma ZT_e/\mu)^{1/2} \ \text{cm/sec}$
 $v_A = B/(4\pi n_i m_i)^{1/2}$
 $= 2.18 \times 10^{11} \ \mu^{-1/2} n_i^{-1/2} B \ \text{cm/sec}$

Dimensionless

(electron/proton mass ratio)^{1/2} number of particles in Debye sphere

Alfvén velocity/speed of light magnetic/ion rest energy ratio electron plasma/gyrofrequency ratio ion plasma/gyrofrequency ratio

ion plasma/gyrofrequency ratio thermal/magnetic energy ratio

$$(m_e/m_p)^{1/2} = 2.33 \times 10^{-2} = 1/42.9$$

$$\frac{4\pi}{3} \, n \lambda_D^3 = 1.72 \times 10^9 \, T^{3/2} n^{-1/2}$$

 $v_A/c = 7.28 \ \mu^{-1/2} n_i^{-1/2} B$ $B^2/8\pi n_i m_i c^2 = 26.5 \ \mu^{-1} n_i^{-1} B^2$ $\omega_{pel} \omega_{ce} = 3.21 \times 10^{-3} \ n_e^{1/2} B^{-1}$

 $\omega_{pi}/\omega_{ci} = 0.137 \ \mu^{1/2} n_i^{1/2} B^{-1}$ $\beta = 8\pi n k T/B^2 = 4.03 \times 10^{-11} \ n T B^{-2}$

Miscellaneous

Bohm diffusion coefficient $D_B = \frac{ckT}{16~eB} = 6.25 \times 10^6~TB^{-1}~cm^2/sec$ Transverse Spitzer resistivity $\eta_{\perp} = 1.15 \times 10^{-14}~Z~\ln \Lambda~T^{-3/2}~sec$ $= 1.03 \times 10^{-2}~Z~\ln \Lambda~T^{-3/2}~ohm-cm$

The anomalous collision rate due to low frequency ion sound turbulence is

$$\nu^* \approx \omega_{pe} W/kT = 5.64 \times 10^4 \ n^{-1/2} W/kT \text{ sec}^{-1}$$
,

where W is the total energy of waves with $\omega/K < v_{Ti}$.

Magnetic presure is given by

$$P = B^2/8\pi = 3.98 \times 10^6 B^2 \text{ dynes/cm}^2$$

= 3.93(B/B₀)² atm,

where $B_0 = 10 \text{ kG} = 1 \text{ T}$.

Energy of detonation of 1 kiloton of high explosive is

$$W_{kT} = 10^{12} \text{ cal} = 4.2 \times 10^{19} \text{ erg.}$$

PLASMA DISPERSION FUNCTION

Definition (first form valid only for $lm \zeta > 0$)

$$Z(\zeta) = \pi^{-1/2} \int_{-\infty}^{\infty} \frac{dt \ e^{-t^2}}{t-\zeta} = 2ie^{-\zeta^2} \int_{-\infty}^{t\zeta} dt \ e^{-t^2}.$$

Physically $\zeta = x + iy$ is the ratio of phase to thermal velocity.¹⁵

Differential equation

$$\frac{dZ}{d\zeta} = -2[1+\zeta Z], \ Z(0) = i\pi^{1/2}; \qquad \frac{d^2Z}{d\zeta^2} + 2\zeta \frac{dZ}{d\zeta} + 2Z = 0.$$

Real argument (y = 0)

$$Z(x) = e^{-x^2} \left[i\pi^{1/2} - 2 \int_0^x dt \, e^{t^2} \right]$$

Imaginary argument (x = 0)

$$Z(iy) = i\pi^{1/2} \exp(y^2) [1 - \operatorname{erf}(y)].$$

Power series (small argument)

$$Z(\zeta) = i\pi^{1/2} \exp(-\zeta^2) - 2\zeta[1 - 2\zeta^2/3 + 4\zeta^4/15 - 8\zeta^4/105 + \ldots].$$

Asymptotic series $(|\zeta| >> 1)^{16}$

$$Z(\zeta) = i\pi^{1/2} \sigma \exp(-\zeta^2) - \zeta^{-1}[1 + 1/2\zeta^2 + 3/4\zeta^4 + 15/8\zeta^6 + \dots].$$

$$\sigma = \begin{cases} 0 & y > 1/|x| \\ 1 & |y| < 1/|x| \\ 2 & -y > 1/|x| \end{cases}$$

Symmetry properties $(\zeta^* = x - iy)$

$$Z(\zeta^*) = -[Z(-\zeta)]^*$$

$$Z(x-iy) = [Z(x+iy)]^* + 2 i\pi^{1/2} \exp[-(x-iy)^2] \quad (y>0).$$

Two-pole approximations for ζ in upper half plane (good except when $y < \pi^{1/2} x^2$ e^{-x^2} , $x >> 1)^{17}$

$$Z(\zeta) = \frac{0.50 + 0.81 i}{a - \zeta} - \frac{0.50 - 0.81 i}{a^* + \zeta}$$
, $a = 0.51 - 0.81 i$;

$$Z'(\zeta) \approx \frac{0.50 + 0.96 i}{(b - \zeta)^2} + \frac{0.50 - 0.96 i}{(b^2 + \zeta)^2}, \quad b = 0.48 - 0.91 i.$$

COLLISIONS AND TRANSPORT

.

Temperatures are in eV; the corresponding value of Boltzmann's constant is $k = 1.60 \times 10^{-12}$ erg/eV; masses μ , μ' are in units of the proton mass; $e_a = Z_a e$ is the charge of species α . All other units are cgs except where noted.

Relexation Rates

Rates are associated with four relaxation processes arising from the interaction of test particles (labeled α) streaming through a background of field particles (labeled β):

slowing down
$$\frac{d\mathbf{v}_{\alpha}}{dt} = -\nu_{z}^{\alpha/\beta}\mathbf{v}_{\alpha};$$
 transverse diffusion
$$\frac{d}{dt} \left(\mathbf{v}_{\alpha} - \overline{\mathbf{v}}_{\alpha}\right)_{1}^{2} = \nu_{\perp}^{\alpha/\beta}v_{\alpha}^{2};$$
 parallel diffusion
$$\frac{d}{dt} \left(\mathbf{v}_{\alpha} - \overline{\mathbf{v}}_{\alpha}\right)_{1}^{2} = \nu_{\perp}^{\alpha/\beta}v_{\alpha}^{2},$$
 energy loss
$$\frac{d}{dt} v_{\alpha}^{2} = -\nu_{\epsilon}^{\alpha/\beta}v_{\alpha}^{2},$$

where the averages are performed over an ensemble of test particles and a Maxwellian field particle distribution. The exact formulas may be written 18

$$\begin{split} \nu_{x^{\alpha/\beta}} &= (1 + m_{\alpha}/m_{\beta}) \psi(x^{\alpha/\beta}) \ \nu_{0}^{\alpha/\beta} \ \sec^{-1}; \\ \nu_{\perp}^{\alpha/\beta} &= 2 \left[\psi(x^{\alpha/\beta}) \left(1 - 1/2 x^{\alpha/\beta} \right) + \psi'(x^{\alpha/\beta}) \right] \nu_{0}^{\alpha/\beta} \ \sec^{-1}; \\ \nu_{\parallel}^{\alpha/\beta} &= \left[\psi(x^{\alpha/\beta}) / x^{\alpha/\beta} \right] \nu_{0}^{\alpha/\beta} \ \sec^{-1}; \\ \nu_{\ell}^{\alpha/\beta} &= 2 \left\{ \left(m_{\alpha}/m_{\beta} \right) \psi(x^{\alpha/\beta}) - \psi'(x^{\alpha/\beta}) \right\} \nu_{0}^{\alpha/\beta} \ \sec^{-1}, \end{split}$$

where

$$\nu_0^{\alpha/\beta} = 4\pi e_\alpha^2 e_\beta^2 \lambda_{\alpha\beta} n_\beta / m_\alpha^2 v_\alpha^3 \text{ sec}^{-1}; \quad x^{\alpha/\beta} = m_\beta v_\alpha^2 / 2kT_\beta;$$

$$\psi(x) = \frac{2}{\sqrt{\pi}} \int_a^x dt \sqrt{t} e^{-t}; \quad \psi'(x) = \frac{d\psi}{dx},$$

and $\lambda_{\alpha\beta}=\ln \Lambda_{\alpha\beta}$ is the Coulomb logarithm (see below). Limiting forms of ν_s , ν_\perp and $\nu_{||}$ are given in the following table. All the expressions shown have units cm³/sec. Test particle energy ϵ and field particle temperature T are both in eV; $\mu=m_i/m_p$, where m_p is the proton mass; Z is ion charge state; for electron-electron and ion-ion encounters, field particle quantities are distinguished by a prime. The two expressions given for each rate hold for very slow ($x^{\alpha/\beta} << 1$) and very fast ($x^{\alpha/\beta} >> 1$) test particles, respectively.

Electron-electron Slow Fast $\nu_{\epsilon}^{e/e'}/n_{e'}\lambda_{ee'} \approx 5.8 \times 10^{-6} T^{-3/2} \longrightarrow 7.7 \times 10^{-6} \epsilon^{-3/2}$ $\nu_{\perp}^{e/e'}/n_{e'}\lambda_{ee'} \approx 5.8 \times 10^{-6} T^{-1/2} \epsilon^{-1} \longrightarrow 7.7 \times 10^{-6} \epsilon^{-3/2}$

$$\nu_{ii}^{e/e'}/n_e \lambda_{ee'} \approx 2.9 \times 10^{-6} \, T^{-1/2} \, \epsilon^{-1}$$
 $\longrightarrow 3.9 \times 10^{-6} \, T \epsilon^{-5/2}$

Electron-ion

$$\nu_{i}^{e/i}/n_{i}Z^{2}\lambda_{ei} \approx 0.23 \,\mu^{3/2} \,T^{-3/2} \longrightarrow 3.9 \times 10^{-6} \,\epsilon^{-3/2}$$

$$\nu_{\perp}^{e/i}/n_{i}Z^{2}\lambda_{ie} \approx 2.5 \times 10^{-4} \,\mu^{1/2} \,T^{-1/2} \,\epsilon^{-1} \longrightarrow 7.7 \times 10^{-6} \,\epsilon^{-3/2}$$

$$\nu_{\perp}^{e/i}/n_{i}Z^{2}\lambda_{ie} \approx 1.2 \times 10^{-4} \,\mu^{1/2} \,T^{-1/2} \,\epsilon^{-1} \longrightarrow 2.1 \times 10^{-9} \,\mu^{-1} \,T \,\epsilon^{-5/2}$$

Ion-electron

$$\nu_{s}^{i/e}/n_{e}Z^{2}\lambda_{ie} \approx 1.6 \times 10^{-9} \,\mu^{-1} \, T^{-3/2} \longrightarrow 1.7 \times 10^{-4} \,\mu^{1/2} \,\epsilon^{-3/2}$$

$$\nu_{1}^{i/e}/n_{e}Z^{2}\lambda_{ie} \approx 3.2 \times 10^{-9} \,\mu^{-1} \, T^{-1/2} \,\epsilon^{-1} \longrightarrow 1.8 \times 10^{-7} \,\mu^{-1/2} \,\epsilon^{-3/2}$$

$$\nu_{i}^{i/e}/n_{e}Z^{2}\lambda_{ie} \approx 1.6 \times 10^{-9} \,\mu^{-1} \, T^{-1/2} \,\epsilon^{-1} \longrightarrow 1.7 \times 10^{-4} \,\mu^{1/2} \, T\epsilon^{-5/2}$$

Ion-ion

$$\begin{split} \nu_z^{i/l'}/n_{i'}Z^2Z'^2\lambda_{ii'} &\approx 6.8 \times 10^{-8} \frac{\mu'^{1/2}}{\mu} \left(1 + \frac{\mu'}{\mu}\right) T^{-3/2} \longrightarrow 9.0 \times 10^{-8} \, \mu^{-1/2} \left(1 + \frac{\mu}{\mu'}\right) \epsilon^{-3/2} \\ \nu_\perp^{i/l'}/n_{l'}Z^2Z'^2\lambda_{ii'} &\approx 1.4 \times 10^{-7} \, \mu'^{1/2} \, \mu^{-1} \, T^{-1/2}\epsilon^{-1} \quad \longrightarrow 1.8 \times 10^{-7} \, \mu^{-1/2} \, \epsilon^{-3/2} \\ \nu_\perp^{i/l'}/n_{l'}Z^2Z'^2\lambda_{ii'} &\approx 6.8 \times 10^{-8} \, \mu'^{1/2} \, \mu^{-1} \, T^{-1/2}\epsilon^{-1} \quad \longrightarrow 9.0 \times 10^{-8} \, \mu^{1/2} \, \mu'^{-1} \, T\epsilon^{-5/2} \end{split}$$

In the same limits, the energy transfer rate follows from the identity

$$\nu_{\epsilon} = 2 \nu_s - \nu_{\perp} - \nu_{||} ,$$

except for the case of fast electrons or fast ions scattered by ions, where the leading terms cancel. Here the appropriate forms are

$$\nu_{\epsilon}^{e/i} \rightarrow 4.2 \times 10^{-9} \, n_i Z^2 \lambda_{ei} \left[\epsilon^{-3/2} \mu^{-1} - 8.9 \times 10^4 \, (\mu/T)^{1/2} \, \epsilon^{-1} \, \exp\left(-1836 \, \mu \epsilon/T\right) \right] \, \text{sec}^{-1}$$

and

$$\nu_{\epsilon}^{i l l'} \rightarrow 1.8 \times 10^{-7} \, n_{i'} Z^2 Z'^2 \lambda_{i l'} [\epsilon^{-3/2} \mu^{1/2} / \mu' - 1.1 (\, \mu' / T)^{1/2} \epsilon^{-1} \exp{(-\mu' \epsilon / T)}\,] \,\, \text{sec}^{-1}.$$

In general, the energy transfer rate $\nu_{\epsilon}^{\alpha\beta}$ is positive for $\epsilon > \epsilon_{\alpha}^{*}$ and negative for $\epsilon < \epsilon_{\alpha}^{*}$, where $x^{*} = (m_{\beta}/m_{\alpha}) \epsilon_{\alpha}^{*}/T_{\beta}$ is the solution of $m_{\beta}/m_{\alpha} = \psi(x^{*})/\psi'(x^{*})$.

The ratio $\epsilon_{\alpha}^{*}/T_{\beta}$ is given for a number of specific α , β in the following table:

α/β	ile	e/e	i/i	e/p	e/D	e/T, e/He ³	e/He¹
$\frac{\epsilon_{\alpha}^{\bullet}}{kT_{\beta}}$	1.5	.98	.98	4.8 × 10 ⁻³	2.6 × 10 ⁻³	1.8 × 10-3	1.4 × 10 ⁻³

When both species are near Maxwellian with $T_i \lesssim T_e$, there are just two characteristic collision rates. For Z = 1,

$$\nu_e = 2.9 \times 10^{-6} \ n \lambda T_e^{-3/2} \text{ sec}^{-1},$$

 $\nu_r = 4.8 \times 10^{-8} \ n \lambda T_e^{-3/2} \mu^{-1/2} \text{ sec}^{-1}$

Thermal Equilibration

If the components of a plasma have different temperatures, but no relative drift, equilibration is described by

$$dT_{\alpha}/dt = \sum_{\alpha} \bar{\nu}_{\epsilon}^{\alpha/\beta} (T_{\beta} - T_{\alpha}),$$

where

$$\bar{\nu}_{e}^{\alpha/\beta} = 1.8 \times 10^{-19} \frac{(m_{\alpha}m_{\beta})^{1/2} Z_{\alpha}^{2} Z_{\beta}^{2} n_{\beta} \lambda_{\alpha\beta}}{(m_{\alpha}T_{\beta} + m_{\beta}T_{\alpha})^{3/2}} \text{ sec}^{-1}$$

For electrons and ions with $T_r \sim T_i = T$, this implies

$$\bar{\mu}_e^{e/i}/n_i = \bar{\nu}_e^{i/e}/n_e = 3.2 \times 10^{-9} \ Z^2 \lambda/\mu T^{3/2} \ cm^3/sec.$$

Temperature Anisotropy

Isotropization is described by

$$dT_{\perp}/dt = -(1/2)dT_{()}/dt = -\nu_{T}^{\alpha}(T_{\perp} - T_{()}),$$

where, if $A = T_{\perp}/T_{\parallel} - 1 > 0$,

$$\nu_T^{\alpha} = \frac{2\sqrt{\pi}e_{\alpha}^2e_{\beta}^2n_{\alpha}\lambda}{m_{\alpha}^{1/2}(kT_{||})^{3/2}}A^{-2} \left[-3 + (A+3)\frac{\tan^{-1}A^{1/2}}{A^{1/2}} \right] \sec^{-1}.$$

if A < 0, $\tan^{-1} A^{1/2}/A^{1/2}$ is replaced by $\tanh^{-1} (-A)^{1/2}/(-A)^{1/2}$.

For
$$T_{\perp} \approx T_{||} = T$$
,

$$\nu_T^e = 8.2 \times 10^{-7} \, n \lambda T^{-3/2} \, \text{sec}^{-1};$$

 $\nu_T^i = 1.9 \times 10^{-8} \, n \lambda Z^2 / \mu T^{3/2} \, \text{sec}^{-1}.$

Coulomb Logarithm

For test particles of mass m_a , charge $e_a = Z_a e$, scattering off field particles of mass m_B , charge $e_B = Z_B e$, the Coulomb logarithm is defined as $\lambda = \ln \Lambda = \ln(r_{max}/r_{min})$. Here r_{min} is the larger of $e_a e_B/(m_{aB} \bar{u}^2)$ and $\hbar/(2 m_{aB} \bar{u})$, averaged over both particle velocity distributions, where $m_{aB} = m_a m_B/(m_a + m_B)$ and $u = v_a - v_B$; $r_{max} = (4\pi \sum n_Y e_Y^2/kT_Y)^{-1/2}$, where the summation extends over all species γ for which $\bar{u}^2 < v_{TY}^2$, with $v_{TY} = (kT_Y/m_Y)^{1/2}$. If this inequality cannot be satisfied or if either $\bar{u} \omega_{ca}^{-1} < r_{max}$ or $\bar{u} \omega_{cB}^{-1} < r_{max}$, the theory breaks down. Typically $\lambda \approx 10 - 20$. Corrections to the transport coefficients are $O(\lambda^{-1})$, hence the theory is good only to $\sim 10\%$ and fails when $\lambda \sim 1$.

The following cases are of particular interest:

(a) Thermal electron-electron collisions

$$\lambda_{ee} = 23 - \ln(n_e^{1/2} T_e^{-3/2})$$
 $T_r \lesssim 10 \text{ eV}$
= 24 - \ln(n_e^{1/2} T_e^{-1}) $T_c \gtrsim 10 \text{ eV}$

(b) Electron-ion collisions

$$\lambda_{ei} = \lambda_{ie} = 23 - \ln(n_e^{1/2} Z T_e^{-3/2}), \quad 10Z^2 \text{ eV} > T_e > T_i m_e / m_i;$$

$$= 24 - \ln(n_e^{1/2} T_e^{-1}), \quad T_e > 10Z^2 \text{ eV} > T_i m_e / m_i;$$

$$= 30 - \ln(n_i^{1/2} T_i^{-3/2} Z^2 \mu^{-1}), \quad T_i > T_e m_i / m_e Z.$$

(c) Mixed ion-ion collisions

$$\lambda_{ii'} = \lambda_{i'i} = 23 - \ln \left[\frac{ZZ'(\mu + \mu')}{\mu T_i' + \mu' T_i} \left(\frac{n_i Z^2}{T_i} + \frac{n_i' Z'^2}{T_{i'}} \right)^{1/2} \right]$$

(d) Counterstreaming ions (relative velocity $v_D = \beta_D c$) in the presence of warm electrons, $kT_e/m_e > v_D^2 > kT_e/m_e$, $kT_{i'}/m_{i'}$.

$$\lambda_{n'} = \lambda_{i'i} = 35 - \ln \left[\frac{ZZ'(\mu + \mu')}{\mu \mu' \beta_{ii}^2} \left(\frac{n_c}{T_c} \right)^{1/2} \right].$$

Fokker-Planck Equation

$$\frac{Df^{\alpha}}{Dt} = \frac{\partial f^{\alpha}}{\partial t} + \mathbf{v} \cdot \nabla f^{\alpha} + \mathbf{F} \cdot \nabla_{\mathbf{v}} f^{\alpha} = \left(\frac{\partial f^{\alpha}}{\partial t}\right)_{coll},$$

where F is an external force field. The general form of the collision integral is $(\partial f^a/\partial t)_{coll} = -\sum_B \nabla_v \cdot \mathbf{J}^{a/\beta}$ with

$$\mathbf{J}^{\alpha/\beta} = 2\pi\lambda_{\alpha\beta} \frac{e_{\alpha}^{2}e_{\beta}^{2}}{m_{\alpha}} \int d^{3}v'(u^{2}\mathbf{I} - \mathbf{u}\mathbf{u})u^{-3} \left\{ \frac{1}{m_{\beta}} f^{\alpha}(\mathbf{v}) \nabla_{\mathbf{v}} f^{\beta}(\mathbf{v}') - \frac{1}{m_{\alpha}} f^{\beta}(\mathbf{v}') \nabla_{\mathbf{v}} f^{\alpha}(\mathbf{v}) \right\}$$

(Landau form) where u = v' - v and I is the unit dyad, or alternatively

$$\mathbf{J}^{\alpha/\beta} = 4\pi\lambda_{\alpha\beta} \frac{e_{\alpha}^{2}e_{\beta}^{2}}{m_{\alpha}^{2}} \left\{ f^{\alpha}(\mathbf{v}) \nabla_{\mathbf{v}} H(\mathbf{v}) - \frac{1}{2} \nabla_{\mathbf{v}} \cdot \left[f^{\alpha}(\mathbf{v}) \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} G(\mathbf{v}) \right] \right\} ,$$

where the Rosenbluth potentials are

$$G(\mathbf{v}) = \int f^{\beta}(\mathbf{v}') u d^3v'$$

$$H(\mathbf{v}) = \left(1 + \frac{m_a}{m_B}\right) \int f^{\beta}(\mathbf{v}') u^{-1} d^3v'.$$

If species α is a weak beam (number and energy density small compared with background) streaming through a Maxwellian plasma, then

$$\mathbf{J}^{a/\beta} = -\nu_{\mathbf{I}}^{a/\beta} \mathbf{v} f^{a} - \frac{1}{2} \nu_{\perp}^{a/\beta} v^{2} \nabla_{\mathbf{v}} f^{a} + \frac{1}{2} (\nu_{\perp}^{a/\beta} - \nu_{\parallel}^{a/\beta}) \mathbf{v} \mathbf{v} \cdot \nabla_{\mathbf{v}} f^{a}.$$

B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the Fokker-Planck collision terms can be approximated according to

$$\frac{Df_e}{Dt} = \nu_{ee}(F_e - f_e) + \nu_{ei}(\overline{F}_e - f_e);$$

$$\frac{Df_i}{De} = \nu_{ie}(\overline{F}_i - f_i) + \nu_{ii}(F_i - f_i).$$

The respective slowing-down rates $\nu_s^{\alpha/\beta}$ given in the Relaxation Rate section above can be used for $\nu_{\alpha\beta}$, assuming slow ions and fast electrons, with ϵ replaced by T_{α} . (For ν_{ee} and ν_{ii} , ν_{\perp} can equally well be used, and the result is insensitive to whether the slow- or fast-test-particle limit is employed.) The maxwellians F_i are given by

$$F_j = n_j \left(\frac{m_j}{2\pi k T_j} \right)^{3/2} \exp \left\{ - \left[\frac{m_j (\mathbf{v} - \mathbf{u}_j)^2}{2k T_j} \right] \right\};$$

$$\bar{F}_j = n_j \left(\frac{m_j}{2\pi k \bar{T}_j} \right)^{3/2} \exp \left\{ - \left[\frac{m_j (\mathbf{v} - \bar{\mathbf{u}}_j)^2}{2k \bar{T}_j} \right] \right\};$$

where n_j , \mathbf{u}_j and T_j are the number density, mean drift velocity, and effective temperature obtained by taking moments of f_j . Some latitude in the definition of T_j and \overline{u}_j is possible; one choice is $\overline{T}_e = T_i$, $\overline{T}_i = T_e$, $\overline{\mathbf{u}}_e = \mathbf{u}_i$, $\overline{\mathbf{u}}_i = \mathbf{u}_e$.

Transport Coefficients

Transport equations for a multispecies plasma:

$$\frac{D^{a}n_{a}}{Dt} + n_{a}\nabla \cdot \mathbf{v}_{a} = 0;$$

$$m_{a}n_{a}\frac{D^{a}\mathbf{v}_{a}}{Dt} = -\nabla p_{a} - \nabla \cdot \mathbf{p}_{a} + Z_{a}en_{a}\left[\mathbf{E} + \frac{1}{c}\mathbf{v}_{a} \times \mathbf{B}\right] + \mathbf{R}_{a};$$

$$\frac{3}{2}n_{a}k\frac{D^{a}T_{a}}{Dt} + p_{a}\nabla \cdot \mathbf{v}_{a} = -\nabla \cdot \mathbf{q}_{a} - \mathbf{p}_{a}: \nabla \mathbf{v}_{a} + Q_{a}.$$

Here $D^{\alpha}/Dt = \partial/\partial t + \mathbf{v}_{\alpha} \cdot \nabla$; $p_{\alpha} = n_{\alpha}kT_{\alpha}$, where k is Boltzmann's constant; $\mathbf{R}_{\alpha} = \Sigma_{\beta}\mathbf{R}_{\alpha\beta}$, and $Q_{\alpha} = \Sigma_{\beta}Q_{\alpha\beta}$, where $\mathbf{R}_{\alpha\beta}$ and $Q_{\alpha\beta}$ are respectively the momentum and energy gained by the α^{th} species through collisions with the β^{th} ; \mathbf{P}_{α} is the stress tensor, and \mathbf{q}_{α} is the heat flow.

The transport coefficients in a simple two-component (electrons and singly charged ions) plasma are tabulated below. Here || and \bot refer to the direction of the magnetic field $\mathbf{B} = \mathbf{b}B$; $\mathbf{u} = \mathbf{v}_r - \mathbf{v}_i$ is the relative streaming velocity; $n_r = n_i = n$; $\mathbf{j} = -ne\mathbf{u}$ is the current; $\omega_{ce} = 1.76 \times 10^7 \, B$ and $\omega_{ci} = (m_r/m_i) \omega_{ce}$ are the electron and ion gyrofrequencies, respectively; and the basic collisional times are taken to be

$$\tau_e = \frac{3\sqrt{m_e}(kT_e)^{3/2}}{4\sqrt{2\pi}\,n\lambda e^4} = 3.44 \times 10^5 \frac{T_e^{3/2}}{n\lambda}.$$

where λ is the Coulomb logarithm, and

$$\tau_i = \frac{3\sqrt{m_i}(kT_i)^{3/2}}{4\sqrt{\pi} n\lambda e^4} = 2.09 \times 10^7 \frac{T_i^{3/2}}{n\lambda} \mu^{1/2}.$$

In the limit of large fields ($\omega_{cj}\tau_j > 1$) the transport processes may be summarized as follows:²⁰

momentum transfer $R_{ei} = -R_{ie} = R = R_u + R_T$;

frictional force $\mathbf{R}_{\mathbf{e}} = ne(\mathbf{j}_{\perp}/\sigma_{\perp} + \mathbf{j}_{||}/\sigma_{||});$

conductivities $\sigma_{\rm H} = 2.0 \ \sigma_{\rm L} = 2.0 \ \frac{ne^2 \tau_{\rm c}}{m_{\rm c}};$

thermal force $\mathbf{R}_r = -0.71 \ nk \nabla_{||} T_r - \frac{3}{2} \frac{nk}{\omega_{cr} T_r} \mathbf{b} \times \nabla_{\perp} T_r$

ion heating $Q_i = 3 \frac{m_e}{m_i} \frac{nk}{\tau_e} (T_e - T_i);$

$$Q_i = -Q_i - \mathbf{R} \cdot \mathbf{u}$$
:

$$\mathbf{q}_i = -\kappa_{ij}^i \nabla_{ij} k T_i - \kappa_{ij}^i \nabla_{ij} k T_i + \kappa_{ij}^i \mathbf{b} \times \nabla_{ij} k T_i$$

ion thermal conductivities

$$\kappa_{ii}^i = 3.9 \frac{nkT_i\tau_i}{m_i}; \quad \kappa_{\perp}^i = 2 \frac{nkT_i}{m_i\omega_{ci}\tau_i}; \quad \kappa_{\perp}^i = \frac{5}{2} \frac{nkT_i}{m_i\omega_{ci}\tau_i};$$

$$q^e = q^e + q^e$$

$$\mathbf{q_o'} = 0.71 \ nkT_c\mathbf{u_{ij}} + \frac{3}{2} \frac{nkT_c}{\omega_{co}T_c} \mathbf{b} \times \mathbf{u_{ij}};$$

thermal gradient heat flux

$$\mathbf{q}_{T}^{\epsilon} = -\kappa_{11}^{\epsilon} \nabla_{11} k T_{\epsilon} - \kappa_{1}^{\epsilon} \nabla_{\perp} k T_{\epsilon} - \kappa_{\Lambda}^{\epsilon} \mathbf{b} \times \nabla_{\perp} k T_{\epsilon};$$

electron thermal conductivities

$$\kappa_{11}^e = 3.2 \frac{nkT_e\tau_e}{m_e}; \quad \kappa_{\perp}^e = 4.7 \frac{nkT_e}{m_e\omega_{ce}\tau_e}; \quad \kappa_{\perp}^e = \frac{5}{2} \frac{nkT_e}{m_e\omega_{ce}}$$

stress tensor (both species)

$$P_{xx} = -\frac{\eta_0}{2} \left(W_{xx} + W_{yy} \right) - \frac{\eta_1}{2} \left(W_{xx} - W_{yy} \right) - \eta_3 W_{xy};$$

$$P_{yy} = -\frac{\eta_0}{2} \left(\mathbb{Z}_{xx} + \mathbb{Z}_{yy} \right) + \frac{\eta_1}{2} \left(\mathbb{Z}_{xx} - \mathbb{Z}_{yy} \right) + \eta_3 \mathbb{Z}_{xy};$$

$$P_{xy} = P_{yx} = -\eta_1 W_{xy} + \frac{\eta_3}{2} (W_{xx} - W_{yy});$$

$$P_{xz} = P_{zx} = -\eta_z W_{xz} - \eta_4 W_{yz}$$

$$P_{yz} = P_{zy} = -\eta_z W_{pz} + \eta_4 W_{pz}$$

$$P_{zz} = - \eta_0 W_{zz}$$

(here the z axis is defined parallel to B):

$$\eta_0^i = 0.96 \, nkT_i \tau_i; \quad \eta_1^i = \frac{3}{10} \frac{nkT_i}{\omega_{ci}^2 \tau_i}; \quad \eta_2^i = \frac{6}{5} \frac{nkT_i}{\omega_{ci}^2 \tau_i};$$

$$\eta_3^i = \frac{1}{2} \frac{nkT_i}{\omega_{\alpha i}}; \quad \eta_4^i = \frac{nkT_i}{\omega_{\alpha i}};$$

$$\eta_0^e = 0.73 \, nkT_e \tau_e; \quad \eta_1^e = 0.51 \, \frac{nkT_e}{\omega_{ce} \tau_e}; \quad \eta_2^e = 2.0 \, \frac{nkT_e}{\omega_{ce} \tau_e};$$

$$\eta_3' = -\frac{1}{2} \frac{nkT_e}{\omega_{ce}}; \quad \eta_4' = -\frac{nkT_e}{\omega_{ce}}$$

For both species the rate-of-strain tensor is defined as

$$\mathbf{W}_{jk} = \frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} - \frac{2}{3} \, \delta_{jk} \nabla \cdot \mathbf{v}.$$

When B = 0 the following simplifications occur:

$$\mathbf{R}_{\mathbf{q}} = ne\mathbf{j}/\sigma_{11}; \quad \mathbf{R}_{T} = -0.71 \, n \nabla k T_{e}; \quad \mathbf{q}_{i} = -\kappa_{11}^{i} \nabla k T_{i}; \quad \mathbf{q}_{\mathbf{q}}^{e} = 0.71 \, nk T_{e}\mathbf{u};$$

$$\mathbf{q}_{T}^{e} = -\kappa_{11}^{e} \nabla k T_{e}; \quad P_{ik} = -\eta_{0} W_{ik}.$$

When $\omega_{ce}\tau_e > 1 > 2 \omega_{ci}\tau_i$, the high-field expressions are obeyed by the electrons and the zero-field expressions by the ions.

Collisional transport theory is applicable when (1) macroscopic time rates of change satisfy $d/dt < 1/\tau$, where τ is the longest collisional time scale, and (in the absence of a magnetic field) (2) macroscopic length scales L satisfy L > 1, where $L = \bar{v}r$ is the mean free path. In a strong field, $\omega_{ce}\tau > 1$, condition (2) is replaced by $L_{||} > 1$ and $L_{\perp} > 1$ and $L_{\perp} > 1$ and $L_{\perp} > 1$ and uniform field), where $L_{||}$ is a macroscopic scale parallel to the field L_{\perp} is the smaller of $(\nabla_{\perp}B/B)^{-1}$ and the transverse plasma dimension. In addition, the standard transport coefficients are valid only when (3) the Coulomb logarithm satisfies $L_{\parallel} > 1$; (4) the electron gyroradius satisfies $L_{\parallel} > 1$; (5) relative drifts $L_{\parallel} = L_{\parallel} = L_{\parallel}$ between two species are small compared with the thermal velocities, $L_{\parallel} = L_{\parallel} = L_{\parallel}$, $L_{\parallel} = L_{\parallel} = L_{\parallel}$, $L_{\parallel} = L_{\parallel} = L_{\parallel}$ and (6) anomalous transport processes owing to microinstabilities are negligible.

Weakly Ionised Plasmas

Collision frequency for scattering of charged particles by neutrals is

$$\nu_a = n_0 \sigma_{0\alpha} (kT_\alpha/m_\alpha)^{1/2} \text{ sec}^{-1}$$

where n_0 is the neutral density and σ_{0a} is the cross-section, typically $\sim 5 \times 10^{-15}$ cm² and weakly dependent on temperature.

When the system size $L < < \lambda_D$, the charged particle diffusion coefficients are

$$D_{\alpha} = kT_{\alpha}/m_{\alpha}\nu_{\alpha} \text{ cm}^2/\text{sec.}$$

In the opposite limit, both species diffuse at the ambipolar rate

$$D_A = \frac{\mu_i D_e - \mu_e D_i}{\mu_i - \mu_e} = \frac{(T_i + T_e) D_i D_e}{T_i D_e + T_e D_i} \text{ cm}^2/\text{sec}.$$

where $\mu_a = e_a/m_a \nu_a$ is the mobility. The conductivity σ_a satisfies $\sigma_a = n_a e_a \mu_a$. In the presence of a magnetic field B, μ and σ become tensors

The presence of a magnetic field
$$\mathbf{b}$$
, μ and σ become \mathbf{b}

$$\mathbf{J}^{\alpha} \approx \boldsymbol{\sigma}^{\alpha} \cdot \mathbf{E} = \boldsymbol{\sigma}_{||}^{\alpha} \mathbf{E}_{||} + \boldsymbol{\sigma}_{||}^{\alpha} \mathbf{E}_{\perp} + \boldsymbol{\sigma}_{||}^{\alpha} \mathbf{E} \times \mathbf{b},$$
where $\mathbf{b} = \mathbf{B}/B$ and

$$\sigma_{||}^{\alpha} = n_{\alpha}e_{\alpha}^{2}/m_{\alpha}\nu_{\alpha}; \ \sigma_{\perp}^{\alpha} = \sigma_{||}^{\alpha}\nu_{\alpha}^{2}/(\nu_{\alpha}^{2} + \omega_{c\alpha}^{2}); \ \sigma_{\Lambda}^{\alpha} = \sigma_{||}^{\alpha}\nu_{\alpha}\omega_{c\alpha}/(\nu_{\alpha}^{2} + \omega_{c\alpha}^{2}).$$

Here σ_{\perp} and σ_{\wedge} are the Pedersen and Hall conductivities, respectively.

APPROXIMATE MAGNITUDES IN SOME TYPICAL PLASMAS

Plasma Type	n cm ⁻³	T eV	ω _{pe} sec ⁻¹	ληcm	$n \lambda \rho^3$	v _{r1} sec 1
Interstellar gas	1	1	6 × 104	7 × 10 ²	4 × 10 ⁸	7×10^{-3}
Gaseous nebula	103	1	2 × 10 ⁶	20	107	6 × 10 ⁻²
Solar corona	106	102	6 × 10 ⁷	7	4 × 10 ⁸	6 × 10 · 2
Diffuse hot plasma	1012	10²	6×10^{10}	7×10^{-3}	4 × 10 ⁵	40
Solar atmosphere, gas discharge	1014	1	6 × 10 ¹¹	7 × 10 · s	40	2 × 10°
Warm plasma	1014	10	6 × 10 ¹¹	2 × 10-4	103	107
Hot plasma	1014	102	6 × 10 ¹¹	7 × 10 4	4 × 10 ⁴	4 × 10 ⁶
Thermonuclear plasma	1015	104	2×10^{12}	2 × 10 ⁻³	107	5 × 10 4
Theta pinch	1016	102	6×10^{12}	7 × 10 · 5	4×10^3	3×10^8
Dense hot plasma	1018	102	6×10^{13}	7 × 10 · 6	4×10^2	2×10^{10}
Laser plasma	1020	10²	6 × 10 ¹⁴	7 × 10 7	40	2×10^{12}

The diagram (facing) gives comparable information in graphical form.²¹

IONOSPHERIC PARAMETERS²²

The following tables gives average nighttime values. Where two numbers are entered, the first refers to the lower and the second to the upper portion of the layer.

Quantity	E Region	F Region
Altitude (km)	90-160	160-500
Number density (m 3)	$1.5 \times 10^{10} - 3.0 \times 10^{10}$	$5 \times 10^{10} - 2 \times 10^{11}$
Height-integrated number density (m ⁻²)	9 × 1014	4.5 × 10 ¹⁵
Ion-neutral collision frequency (sec 1)	$2\times10^3-10^2$	0.5 - 0.05
lon gyro-/collision frequency ratio κ.	0.09 - 2.0	$4.6 \times 10^2 - 5.0 \times 10^3$
Ion Pedersen factor $\kappa_i/(1 + \kappa_i^2)$	0.09 ~ 0.5	$2.2 \times 10^{-3} - 2 \times 10^{-4}$
Ion Hall factor $\kappa_1^2/(1 + \kappa_1^2)$	8 × 10 4 - 0.8	1.0
Electron-neutral collision frequency	$1.5 \times 10^4 - 9.0 \times 10^2$	8 0 - 10
Electron gyro-/collision frequency ratio **,	$4.1 \times 10^2 - 6.9 \times 10^3$	$7.8 \times 10^4 - 6.2 \times 10^5$
Electron Pedersen factor $\kappa_r/(1 + \kappa_r^2)$	2.7 × 10 ⁻³ = 1.5 × 10 ⁻⁴	10 5 - 1.5 × 10 "
Electron Hall factor $\kappa_r^2/(1+\kappa_r^2)$	1.0	1.0
Mean molecular weight	28 - 26	22 - 16
lon gyrofrequency (sec 1)	180 - 190	230 - 300
Neutral diffusion coefficient (m²/sec)	30 - 5 × 10 ³	105

The terrestrial magnetic field in the lower ionosphere at equatorial latitudes is approximately $B_0 = 0.35 \times 10^{-4}$ tesla. The earth's radius is $R_I = 6371$ km.

SOLAR PHYSICS PARAMETERS²³

Parameter	Symbol	Value	Units
Total mass	M _O	1.99×10^{33}	g
Radius	R _⊙	6.96×10^{10}	cm
Surface gravity	¥⊙	2.74×10^4	cm s ⁻²
Escape speed	t° zo	6.18×10^7	cm s ⁻¹
Upward mass flux in spicules	_	1.6×10^{-9}	g cm ⁻² s ⁻¹
Vertically integrated atmospheric density	_	4.28	g cm ⁻²
Sunspot magnetic field strength	B _{max}	2500-3500	G
Surface temperature	T_0	6420	К
Radiant power	y ⊙	3.90×10^{33}	erg s ⁻¹
Radiant flux density	<i>3</i>	6.41×10^{10}	erg cm ⁻² s ⁻¹
Optical depth at 500 nm, measured from photosphere	T SUKI	0.99	-
Astronomical unit (radius of earth's orbit)	ΑU	1.50×10^{13}	cm
Solar constant (radiant flux density at 1 AU)	f	1.39 × 10°	erg cm ⁻²

Chromosphere and Corona²⁴

Parameter (Units)	Quiet Sun	Coronal Hole	Active Region
Chromospheric radiation losses (erg cm ⁻² s ⁻¹)			
Low chromosphere	2 × 10 ⁶	2 × 10 ⁶	≥ 107
Middle chromosphere	2 × 10 ⁶	2 × 10 ⁶	107
Upper chromosphere	3×10^5	3×10^{5}	2 × 10 ⁶
Total	4 × 10 ⁶	4 × 10 ⁶	$\geq 2 \times 10^7$
Transition layer pressure (dyne cm ⁻²)	0.2	0.07	2
Coronal temperature (K, at 1.1 R_{\odot})	1.1-1.6 × 10 ⁶	106	2.5×10^{6}
Coronal energy losses (erg cm ⁻² s ⁻¹)			
Conduction	2 × 10 ⁵	6 × 10 ⁴	10 ⁵ -10 ⁷
Radiation	105	10 ⁴	5 × 10 ⁶
Solar wind	$\leq 5 \times 10^4$	7 × 10 ⁵	< 10 ⁵
Total	3×10^5	8 × 10 ⁵	107
Solar wind mass loss (g cm ⁻² s ⁻¹)	$\leq 2 \times 10^{-11}$	2×10^{-10}	< 4 × 10 ⁻¹¹

THERMONUCLEAR FUSION²⁵

Natural abundance of deuterium $n_D/n_H = 1.5 \times 10^{-4}$

Mass ratios

$$m_e/m_D$$
 = 2.72 × 10⁻⁴ = 1/3670
 $(m_e/m_D)^{1/2}$ = 1.65 × 10⁻² = 1/60.6
 m_e/m_T = 1.82 × 10⁻⁴ = 1/5496
 $(m_e/m_T)^{1/2}$ = 1.35 × 10⁻² = 1/74.1

Fusion reactions (branching ratios are correct for energies near the cross-section peaks; a negative yield means the reaction is endothermic):²⁶

(1a) D + D
$$\longrightarrow$$
 T(1.01 MeV) + p(3.02 MeV)

(1b)
$$\longrightarrow \text{He}^3(0.82 \text{ MeV}) + \text{n}(2.45 \text{ MeV})$$

(2)
$$D+T \longrightarrow He^4(3.5 \text{ MeV}) + n(14.1 \text{ MeV})$$

(3)
$$D + He^3 \longrightarrow He^4(3.6 \text{ MeV}) + p(14.7 \text{ MeV})$$

(4)
$$T + T \longrightarrow He^4 + 2n + 11.3 MeV$$

(5a) He³ + T
$$\xrightarrow{51\%}$$
 He⁴ + p + n + 12.1 MeV

(5b)
$$\rightarrow He^4(4.8 \text{ MeV}) + D(9.5 \text{ MeV})$$

(5c)
$$\xrightarrow{6\%} \text{He}^{s}(2.4 \text{ MeV}) + p(11.9 \text{ MeV})$$

(6)
$$p + Li^6 \longrightarrow He^4(1.7 \text{ MeV}) + He^3(2.3 \text{ MeV})$$

(7a)
$$p + Li^7 \xrightarrow{\sim 20\%} 2 He^4 + 17.3 MeV$$

$$(7b) \qquad \xrightarrow{\sim 80\%} Be^7 + n - 1.6 MeV$$

(8)
$$D + Li^6 \longrightarrow 2 He^4 + 22.4 MeV$$

(9)
$$p + B^{11} \longrightarrow 3 He^4 + 8.7 MeV$$

(10)
$$n + Li^6 \longrightarrow He^4 (2.1 \text{ MeV}) + T (2.7 \text{ MeV})$$

The total cross section in barns as a function of E, the energy in keV of the incident particle [the first ion on the left side of Eqs. (1)-(5)], assuming the target ion at rest, can be fitted by²⁷

$$\sigma_{T}(E) = \frac{A_{5} + \left[(A_{4} - A_{3}E)^{2} + 1 \right]^{-1}A_{2}}{E\left[\exp(A_{1}/\sqrt{E}) - 1 \right]}$$

where the Duane coefficients A_i for the principal fusion reactions are as follows:

	D – D (la)	D – D (1b)	D – T (2)	D - He ³ (3)	T – T	T – He ³ (5)
A	46.097	47.88	45.95	89.27	38.39	123.1
A2	372	482	5.02 × 10 ⁴	2.59 × 10 ⁴	448	1.125×10 ⁴
.43	4.36 × 10 ⁻⁴	3.08×10^{-4}	1.368×10 ⁻²	3.98×10^{-3}	1.02×10-3	0
A	1.220	1.177	1.076	1.297	2.09	0
A,	0	0	409	647	0	0

Reaction rates σv (cm³/sec), averaged over Maxwellian distributions:

Temperature (keV)	D-D (la+lb)	D-T (2)	D-He ³ (3)	T-T (4)	T- He³ (5a+5b+5c)
1.0	1.5×10-22	5.5 × 10 ⁻²¹	3×10-26	3.3×10^{-22}	10-26
2.0	5.4×10^{-21}	2.6×10 ⁻¹⁹	1.4×10^{-23}	7.1×10-21	10- 25
5.0	1.8×10-19	1.3×10 - 17	6.7×10^{-21}	1.4×10-19	2.1×10-22
10.0	1.2×10^{-18}	1.1×10 ⁻¹⁶	2.3×10 ⁻¹⁹	7.2 × 10-10	1.2×10 ⁻²⁰
20.0	5.2×10^{-18}	4.2×10 ⁻¹⁶	3.8×10-18	2.5×10 18	2.6×10 ⁻¹⁹
50.0	2.1×10^{-17}	8.7×10 16	5.4×10-17	8.7×10 ⁻¹⁸	5.3 × 10-18
100.0	4.5×10^{-17}	8.5×10 ⁻¹⁶	1.6×10 ⁻¹⁶	1.9×10 ⁻¹⁷	2.7×10 · 17
200.0	8.8×10 ⁻¹⁷	6.3×10 ⁻¹⁶	2.4×10 16	4.2×10 ⁻¹⁷	9.2 × 10 ⁻¹⁷
500.0	1.8×10 ⁻¹⁶	3.7×10^{-16}	2.3×10-16	8.4×10 ⁻¹⁷	2.9×10-16
1000.0	2.2×10-16	2.7×10 ⁻¹⁴	1.8×10 ⁻¹⁶	8.0×10 ⁻¹⁷	5.2×10^{-16}

For low energies ($T \le 25 \text{ keV}$) the data may be represented by

$$(\overline{\sigma v})_{DD} = 2.33 \times 10^{-14} T^{-2/3} \exp(-18.76 T^{-1/3}) \text{ cm}^3/\text{sec};$$

$$(\overline{\sigma v})_{DT} = 3.68 \times 10^{-12} \ T^{-2/3} \ \exp(-19.94 \ T^{-1/3}) \ \text{cm}^{3}/\text{sec}$$

where T is measured in keV.

The power density released in the form of charged particles is

 $P_{DD} = 3.3 \times 10^{-13} n_D^2 (\overline{ov})_{DD}$ watt/cm³ (including subsequent D-T reaction)

$$P_{DT} = 5.6 \times 10^{-13} n_D n_T (\overline{\sigma v})_{DT} \text{ watt/cm}^3$$

$$P_{DHe^3} = 2.9 \times 10^{-12} n_D n_{He^3} (\overline{\sigma v})_{DHe^3} \text{ watt/cm}^3$$

The curie (abbreviated Ci) is a measure of radioactivity: 1 curie = 3.7×10^{10} counts/sec. Absorbed radiation dose is measured in rads: 1 rad = 10^2 erg/g.

RELATIVISTIC ELECTRON BEAMS

Here $\gamma = (1 - \beta^2)^{-1/2}$ is the relativistic scaling factor; in analytic formulas units are mks or cgs, as indicated; in numerical formulas, I is in amps, B in gauss, electron density N in cm⁻¹, and temperature, voltage and energy in MeV; $\beta_z = v_z/c$; k is Boltzmann's constant.

Relativistic electron gyroradius:

$$r_e = \frac{mc^2}{eB} (\gamma^2 - 1)^{1/2} (\text{cgs}) = 1.70 \times 10^3 (\gamma^2 - 1)^{1/2} B \text{ cm}.$$

Relativistic electron energy:

$$W = mc^2 \gamma$$
 (cgs) = 0.511 γ MeV.

Bennett pinch condition:

$$I^2 = 2Nk(T_e + T_i)c^2$$
 (cgs) = 3.20 × 10⁻⁴ $N(T_e + T_i)$ A².

Alfvén-Lawson limit:

$$I_A = (mc^3/e) \beta_z \gamma$$
 (cgs) = $(4\pi \ mc/\mu_0 e) \beta_z \gamma$ (mks) = $1.70 \times 10^4 \beta_z \gamma$ A.

The ratio of net current to I_A is

$$I/I_A = \nu/\gamma$$
.

where $\nu = Nr_e$, with $r_e = e^2/.nc^2 = 2.82 \times 10^{-13}$ cm. Beam electron number density is

$$n_b = 2.08 \times 10^8 \ J/\beta \ \text{cm}^{-3}$$

where J is current density in A/cm^2 . For a uniform beam of radius a (in cm),

$$n_h = 6.63 \times 10^7 I/\beta a^2 \text{ cm}^{-3}$$

$$2r_{e}/a = \nu/\gamma$$
.

Child's law: (non-relativistic) space-charge limited current density between parallel plates with voltage drop V and separation d in cm

$$J = 2.34 \times 10^3 V^{3/2} d^{-2} \text{ A cm}^{-2}$$
.

The saturated parapotential current (magnetically self-limited flow along equipotentials in pinched diodes and transmission lines) is²⁸

$$I_p = 8.5 \times 10^3 \text{ Gy in } [y + (y^2 - 1)^{1/2}] \text{ A}.$$

where G is a geometrical factor depending on the diode structure:

$$G = \frac{w}{2\pi d}$$
 for parallel plane cathode and anode of width w, separation d;

$$G = \left[\ln \frac{R_2}{R_1} \right]^{-1}$$
 for cylinders of radii R_1 (inner) and R_2 (outer);

$$G = \frac{R_c}{d_0}$$
 for conical cathode of radius R_c , maximum separation d_0 (at $r = R_c$) from plane anode.

For $\beta \to 0 \ (\gamma \to 1)$, both I_A and I_p vanish.

The condition for suppression of filamentation in a beam of current density $J \wedge cm^{-2}$ by a longitudinal magnetic field B_z is

$$B_{\gamma} > 47 \, \beta_{\gamma} (\gamma J)^{1/2} \, G_{\gamma}$$

Voltage registered by Rogowski coil of minor cross-sectional area A, n turns, major radius a, inductance L, external resistance R and capacitance C (all in mks):

externally integrated
$$V = (1/RC)(nA\mu_0I/2\pi a)$$
;
self-integrating $V = (R/L)(nA\mu_0I/2\pi a) = RI/n$.

X-ray production for target with average atomic number Z ($V \leq 5$ MeV)

$$\eta = x$$
-ray power/beam power = $7 \times 10^{-4} ZV$.

X-ray dose at 1 meter generated by an e-beam depositing total charge Q coulombs while $V \ge .84 \ V_{max}$ in material with charge state Z

$$D = 150 V_{max}^{2.8} QZ^{1/2} \text{ rads.}$$

BEAM INSTABILITIES 29

		Para	Parameters of Most Unstable Mode	able Mode		
Name	Conditions	Growth Rate	Frequency	Wave Number	Group Velocity	Saturation Mechanism
Electron- electron	$V_d > V_{ej}, \ j = 1.2$	2 &	0	13 we/Vd	0	Electron trapping until $\overline{V}_c \sim V_d$
Beam-plasma	$(n_b/n_p)^{1/3} > \overline{V}_b/V_b$	$\frac{\sqrt{3}}{2^{4/3}} \left(\frac{n_b}{n_\rho} \right)^{1/3} \omega_c$	$\omega_{e} \left[1 - \frac{1}{2^{4/3}} (n_b/n_p)^{1/3} \right]$	e, V	۵۱۳ 7 ₅	Trapping of beam electrons
Buneman	$V_d > (M/m)^{1/3} \overline{V}_{c},$ $V_d > \overline{V}_{c}$	$\frac{\sqrt{3}}{2^{4/3}} \left(\frac{m}{M} \right)^{1/3} \omega_r$	$\frac{1}{2^{4/3}}\omega_c(m/M)^{1/3}$	acl Va	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Electron trapping until $\overline{V}_c \sim V_d$
Weak beam- plasma	671	$\frac{1}{2} \frac{n_b}{n_o} \left(\frac{V_b}{V_b} \right)^2 \omega_r$	ž	w./Vh	3 Vc/V,	Quasilinear or non-linear (mode coupling)
Beam-plasma (hot electron)	$V_r \vee V_r \vee V_r$		7. 7. 3	I Q	70	Quasilinear or non-linear
lon acoustic	T, >> T,	(M) (E) (E)	ر حر ع ع	$\lambda_{\bar{D}}^{-1}$	Ú	Quasilinear; ion tail formation; non-linear scattering; or reson ance broadening.
		į		T		OI CAUCILIIA.

		Par	Parameters of Most Unstable Mode	able Mode		
Name	Condition	Growth Rate	Frequency	Wave Number	Group Velocity	Saturation Mechanism
Anisotropic temperature (hydro)	77 < 1	ď	ω, τος θ ~ Ω,	1-0,	12,	Isotropization
lon Cyclotron	$V_a > 20 \ \overline{V}_c$ (for $T_c \approx T_c$)	0.1 n,	1.2 a,	7-1	- m	lon heating
Beam cyclotron (hydro)	V _a > C,	1 n,	,00	1 vo!	$\frac{1}{\sqrt{2}} \lambda b^{-1} \left V_d \leq V_R \leq C_1 \right $	Resonance broadening
Modified two stream (hydro)	$\sqrt{1+\beta}V_4 > V_4 > C,$	$\frac{1}{2}\Omega_H$	√3 Ω <i>μ</i>	$\sqrt{3} \frac{\Omega_H}{V_d}$	-12 Z _o	Trapping
lon-lon (equal beam)	$U < 2V_A\sqrt{1+\beta}$	$\frac{1}{2\sqrt{5}}$ Ω_H	0	1372 an	0	lon trapping
ion-ion (equal beam)	U < 2 C,	$\frac{1}{2\sqrt{2}}\omega$	0	√3/2 ^ω ,	0	lon trapping

For nomenclature, see p. 50.

In the preceding table, subscripts e, i, d, b stand for "electron," "ion," "drift," and "beam," respectively. Thermal velocities are denoted by a bar. In addition, the following are used:

m	electron mass	λ_D	Debye length
M	ion mass	r_e , r_i	gyroradius
$\boldsymbol{\mathcal{V}}$	velocity	β	plasma/magnetic energy density ratio
T	temperature	V_A	Alfven speed
n_e , n_i	number density	Ω_e , Ω_i	gyro frequency
n	harmonic number	Ω_H	hybrid gyro frequency, $\Omega_H^2 = \Omega_c \Omega_c$
$C_s = (T_e/M)^{1/2}$	ion sound speed	\boldsymbol{U}	relative drift velocity of two ion
ω, ω,	plasma frequency		species

LASERS

System Parameters

Efficiencies and power levels are approximately state-of-the-art (1980).30

Туре	Wavelength	E st ionary.	Power levels ava	ilable (W)
Type	(microns)	Efficiency	Pulsed	CW
CO ₂	10.6	0.01 -0.02 pulsed	$> 2 \times 10^{13}$	> 10 ⁵
со	5	0.4	> 10 ⁹	> 100
lodine	1.315	0.003	> 1012	-
Nd-glass, YAG	1.06	0.001	> 2 × 10 ¹³ (20-beam system)	1-103
Ruby	0.6943	< 10 ⁻³	1010	1
He-Ne	0.6328	10-4	_	$1-50 \times 10^{-3}$
Argon ion	0.45-0.60	10-3	5 × 10 ⁴	1-10
N ₂	0.3371	$10^{-3} - 0.05$	$10^5 - 10^6$	_
Kr-F	0.26	0.08	3×10^8	_
Xenon	0.175	0.02	> 108	

Formulas

An e-m wave with k || B has an index of refraction given by

$$n_{\cdot} = \left[1 - \omega_{pe}^{2}/\omega(\omega \mp \omega_{ce})\right]^{1/2}$$

where \pm refers to the helicity. The rate of change of polarization angle θ as a function of displacement s (Faraday rotation) is given by

$$d\theta/ds = (k/2)(n_- - n_+) = 2.36 \times 10^4 \ NBf^{-2} \ cm^{-1}$$

where N is the electron number density, B is the field strength, and f is the wave frequency, all in cgs.

The quiver velocity of an electron in an e-m field of angular frequency ω is

$$v_0 = eE_{max}/m\omega = 25.6\sqrt{I} \lambda_0 \text{ cm/sec}$$

in terms of the laser flux $I = cE_{max}^2/8\pi$, with I in watts/cm², laser wavelength λ_0 in microns.

The ratio of quiver energy to thermal energy is

$$W_{qu}/W_{th} = m_e v_0^2/2kT = 1.81 \times 10^{-13} \lambda_0^2 I/T$$

T in eV. E.g., if $I=10^{15}$ watts/cm², $\lambda_0=1~\mu\text{m}$, T=2~keV, $W_{qu}/W_{th}\approx0.1$.

Ponderomotive force

$$f = N \nabla \langle E^2 \rangle / 8\pi N_c$$

where

$$N_c = 1.1 \times 10^{21} \ \lambda_0^{-2} \ \text{cm}^{-3}$$
.

For uniform illumination of a lens with f-number F, the diameter d at focus (85% of the energy) and the depth of focus l (distance to first zero in intensity) are given by

$$d \approx 2.44 F \lambda \theta/\theta_{DL}$$
 and $l \approx \pm 2 F^2 \lambda \theta/\theta_{DL}$

Here θ is the beam divergence containing 85% of energy and θ_{DL} is the diffraction limited divergence:

$$\theta_{DL} = 2.44 \ \lambda/b$$
.

where b is the aperture. These formulas are modified for nonuniform (such as gaussian) illumination of the lens or for pathological laser profiles.

ATOMIC PHYSICS AND RADIATION

Energies and temperatures are in eV; all other units are cgs except where noted. Z is the charge state (Z=0 refers to a neutral atom); the subscript e labels electrons. N refers to number density, n to principal quantum number. Asterisk superscripts on level population densities denote local thermodynamic equilibrium (LTE) values. Thus N_n^* is the LTE number density of atoms (or ions) in level n.

Characteristic atomic collision cross section

(1)
$$\pi a_0^2 = 8.80 \times 10^{-17} \text{ cm}^2.$$

Binding energy for outer electron in level labelled by quantum numbers n, l

(2)
$$E_{x}^{z}(n,l) = -\frac{Z^{2}E_{x}^{H}}{(n-\Delta_{l})^{2}},$$

where $E_x^H = 13.6$ eV is the hydrogen ionization energy and $\Delta_l = 0.75 l^{-5}$, $l \gtrsim 5$, is the quantum defect.

Excitation and Decay

Cross section (Bethe approximation) for electron excitation by dipole allowed transition $m \rightarrow n^{31.32}$

(3)
$$\sigma_{mn} = 2.36 \times 10^{-13} \frac{f_{nm}g(n,m)}{\epsilon \Delta E_{nm}} \text{ cm}^2,$$

where f_{nm} is the oscillator strength, g(n,m) is the Gaunt factor, ϵ is the incident electron energy, and $\Delta E_{nm} = E_n - E_m$.

Electron excitation rate averaged over Maxwellian velocity distribution^{33, 34}

(4)
$$X_{mn} = N_e < \sigma_{mn} v > = \frac{1.6 \times 10^{-5} f_{nm} \langle g(n,m) \rangle N_e}{\Delta E_{nm} \sqrt{T_e}} \exp\left(-\frac{\Delta E_{nm}}{T_e}\right) \sec^{-1}$$

where $\langle g(n,m) \rangle$ denotes the thermal averaged Gaunt factor (generally ~ 1 for atoms, ~ 0.2 for ions).

Rate for electron collisional deexcitation

(5)
$$Y_{nm} = (N_m * / N_n *) X_{mn} \sec^{-1}$$
.

Here $N_m^*/N_n^* = (g_m/g_n) \exp(\Delta E_{nm}/T_c)$ is the Boltzmann relation for level population densities, where g_n is the statistical weight of level n.

Rate for spontaneous decay $n \rightarrow m$ (Einstein A coefficient)³³

(6)
$$A_{nm} = 4.3 \times 10^7 \frac{g_n}{g_m} f_{nm} (\Delta E_{nm})^2 \text{ sec}^{-1}$$

Intensity emitted per unit volume from the transition $n \to m$ in an optically thin plasma

(7)
$$I_{nm} = 1.6 \times 10^{-10} A_{nm} N_n \Delta E_{nm} \text{ watts/cm}^3$$
.

Condition for steady state in a corona model

$$N_0 N_r \left(\sigma_{0n} v\right) = N_n A_{n0},$$

where the ground state is labelled by a subscript zero.

Hence for a transition $n \to m$ in ions, where $\langle g(n,0) \rangle \approx 0.2$,

(9)
$$I_{nm} = 5.1 \times 10^{-25} f_{nm} (g_0/g_m) (\Delta E_{nm}/\Delta E_{n0})^3 N_o N_o T_e^{-1/2} \exp(-\Delta E_{n0}/T_e)$$
 watts/cm³.

Ionizacion and Recombination

In a general time-dependent situation the number density of the charge state Z satisfies

(10)
$$\frac{dN(Z)}{dt} = N_r [-S(Z)N(Z) - \alpha(Z)N(Z) + S(Z-1)N(Z-1) + \alpha(Z+1)N(Z+1)].$$

Here S(Z) is the ionization rate. The recombination rate $\alpha(Z)$ has the form $\alpha(Z) = \alpha_r(Z) + N_r \alpha_3(Z)$, where α_r and α_3 are the radiative and three-body recombination rates, respectively.

Classical ionization cross-section³⁵ for any atomic shell k

(11)
$$\sigma_i = 6 \times 10^{-14} \ b_k g_k(x) / U_k^2 \ \text{cm}^2;$$

Here b_k is the number of shell electrons, U_k is the binding energy of the ejected electron, $x = \epsilon/U_k$, where ϵ is the incident electron energy, and g is a universal function with a maximum value ≈ 0.2 at $x \approx 4$.

Ionization from ion ground state, averaged over Maxwellian electron distribution for $0.02 \le T_e/E_x^z \le 100$ (Ref. 34):

(12)
$$S(Z) = \frac{10^{-5} (T_r/E_x^Z)^{1/2}}{(E_x^Z)^{3/2} (6 + T_r/E_x^Z)} \exp(-E_x^Z/T_r) \text{ cm}^3/\text{sec},$$

where E_{x}^{z} is the ionization energy.

Electron-ion radiative recombination rate $[e + N(Z) \rightarrow N(Z - 1) + h_{\nu}]$ for $T_e/Z^2 \le 400$ eV (Ref. 36):

(13)
$$\alpha_r(Z) = 5.2 \times 10^{-14} Z \sqrt{E_x^2/T_e} \{0.43 + (1/2) \ln (E_\infty^Z/T_e) + 0.469 (E_x^2/T_e)^{-1/3} \} \text{ cm}^3/\text{sec.}$$

For 1 eV $< T_e/Z^2 < 15$ eV, this becomes approximately³⁴

(14)
$$\alpha_r(Z) = 2.7 \times 10^{-13} \ Z^2 T_e^{-1/2} \ \text{cm}^3/\text{sec.}$$

Collisional (three-body) recombination rate for singly ionized plasma³⁷

(15)
$$\alpha_3 = 8.75 \times 10^{-27} T_c^{-4.5} \text{ cm}^6/\text{sec}$$

Photoionization cross section for ions in level n, l (short wavelength limit)

(16)
$$\sigma_{ph}(n,l) = 1.64 \times 10^{-16} Z^{5/(n^3 K^{7+2l})},$$

where K is wavenumber in Rydberg units (1 Rydberg = 1.0974×10^{5} cm⁻¹).

Ionization Equilibrium Models

Saha equilibrium³⁸

(17)
$$\frac{N_c N_1^*(Z)}{N_n^*(Z-1)} = 6.0 \times 10^{21} \frac{g_1^Z T_c^{-3/2}}{g_n^{Z-1}} \exp\left(-\frac{E_x^Z(n,l)}{T_c}\right) \text{ cm}^{-3},$$

where g_n^z is the statistical weight for level n of charge state Z and $E_x^z(n,l)$ is the ionization energy of the neutral atom initially in level (n,l).

In a steady state at high electron density

(18)
$$N_e N^*(Z)/N^*(Z-1) = S(Z-1)/\alpha_3 \text{ cm}^{-3}$$

a function only of T.

Conditions for LTE³⁸

(a) Collisional and radiative excitation rates for a level n must satisfy

$$(19) Y_{nm}/A_{nm} > 10.$$

(b) Electron density must satisfy

(20)
$$N_e \ge 7 \times 10^{18} Z^7 n^{-17/2} (T/E_{\infty}^2)^{1/2} \text{ cm}^{-3}$$

Steady state condition in corona model

(21)
$$\frac{N(Z-1)}{N(Z)} = \frac{\alpha_r}{S(Z-1)}.$$

Corona model is applicable if³⁹

(22)
$$10^{12} t_1^{-1} < N_e < 10^{16} T_e^{7/2} \text{ cm}^{-3}.$$

where t_i^{-1} is the inverse ionization time.

Radiation

N.B. Energies and temperatures are in eV; all other units are cgs except where noted. Z is the charge state (Z = 0 refers to a neutral atom); the subscript e labels electrons. N refers to number density.

Average radiative decay rate of state with principal quantum number n is

_

(23)
$$A_n = \sum_{m < n} A_{nm} = 1.6 \times 10^{10} Z^4 n^{-9/2} \text{ sec.}$$

Natural line width (ΔE in eV)

(24)
$$\Delta E \ \Delta t = h = 4.14 \times 10^{-15} \text{ eV-sec}$$

where Δt is the lifetime of the line.

Doppler width

(25)
$$\Delta \lambda / \lambda = 7.7 \times 10^{-5} \ (T/\mu)^{1/2},$$

where μ is the emitting atom or ion mass in units of the proton mass.

Optical depth for a Doppler broadened line³⁸

(26)
$$\tau = 1.76 \times 10^{-13} \,\lambda (Mc^2/kT)^{1/2} Nl = 5.4 \times 10^{-9} \,\lambda (\mu/T)^{1/2} Nl,$$

where λ is wavelength and l the physical depth of the plasma; M, N and T are mass, number density and temperature of the absorber; μ is M divided by the proton mass. Optically thin means $\tau < 1$.

Resonance absorption cross section at center of line

(27)
$$\sigma_{\lambda=\lambda_c} = 5.6 \times 10^{-13} \ \lambda^2/\Delta\lambda \ \text{cm}^3.$$

Wien displacement law: wavelength of maximum black body emission is given by

(28)
$$\lambda_{max} = 2.50 \times 10^{-5} T^{-1} \text{ cm}.$$

Radiation from surface of black body of temperature T

(29)
$$W = 1.03 \times 10^5 T^4 \text{ watts/cm}^2$$
.

Bremsstrahlung from hydrogen-like plasma²⁵

(30)
$$P_{Br} = 1.69 \times 10^{-32} N_e T_e^{1/2} \sum [Z^2 N(Z)] \text{ watts/cm}^3$$
,

where the sum is over all ionization states Z.

Bremsstrahlung optical depth⁴⁰

(31)
$$\tau = 5.0 \times 10^{-30} N_e N_i Z^2 \tilde{g} l T^{-7/2},$$

where $\bar{g} \approx 1.2$ is an average Gaunt factor and l is the physical path length.

Inverse bremsstrahlung absorption coefficient⁴¹ for radiation of angular frequency ω :

$$K = 3.1 \times 10^{-7} Z n_e^2 \ln \Lambda / \omega^2 T^{3/2} (1 - \omega_p^2 / \omega^2)^{1/2} \text{ cm}^{-1}$$

where $\Lambda = v_{Te}/V$, with V equal to the maximum of ω and ω_p , multiplied by the maximum of Ze^2/kT and $\hbar/(mkT)^{1/2}$.

Recombination (free-bound) radiation

(32)
$$P_r = 1.69 \times 10^{-32} N_e T_e^{1/2} \Sigma \left[Z^2 N(Z) \left(\frac{E_{\infty}^{2-1}}{T_e} \right) \right] \text{ watts/cm}^3.$$

Cyclotron radiation²⁵ in magnetic field B

(33)
$$P_c = 6.21 \times 10^{-28} B^2 N_e T_e \text{ watt/cm}^3$$

For $N_e kT_e = N_i kT_i = B^2/16\pi$ ($\beta = 1$, isothermal plasma),²⁵

(34)
$$P_c = 5.00 \times 10^{-38} N_e^2 T_e^2 \text{ watt/cm}^3$$
.

Cyclotron radiation energy loss e-folding time for a single electron⁴⁰

(35)
$$t_c = \frac{9.0 \times 10^8 B^{-2}}{2.5 + \gamma} \sec,$$

where γ is the total (kinetic plus rest) energy divided by the rest energy mc^2 .

Number of cyclotron harmonics⁴⁰ trapped in a medium of finite depth /

(36)
$$m^* = (57 \beta Bl)^{1/6},$$

where $\beta = NkT/8\pi B^2$.

Line radiation is given by summing Eq. (9) over all species in the plasma.

REFERENCES

Most of the formules and data in this collection are well-known and for all practical purposes are in the "public domain." The books and articles cited below are intended primarily not for the purpose of giving credit to the original workers, but (i) to guide the reader to sources containing related material and (ii) to indicate where derivations, explanations, examples, etc., omitted from this compilation can be found. Additional material can also be found in D.L. Book, NRL Memorandum Report No. 3332 (1977).

- 1. See M. Abramowitz and I.A. Stegun (Editors), Handbook of Mathematical Functions (Dover, New York, 1968), pp. 1-3, for a tabulation of some mathematical constants not available on pocket calculators.
- 2. H.W. Gould, "Note on Some Binominal Coefficient Identities of Rosenbaum," J. Math. Phys. 10, 49 (1969); H.W. Gould and J. Kaucky, "Evaluation of a C.ass of Binomial Coefficient Summations," J. Comb. Theory 1, 233 (1966).
- 3. W.D. Hayes, "A Collection of Vector Formulas," Princeton University, Princeton, N.J., 1956 (unpublished), and personal communication (1977).
- 4. P.M. Morse and H. Feshback, *Methods of Theoretical Physics* (McGraw-Hill, New York, 1953), Vol. I, pp. 47-52 and pp. 656-666.
- 5. See Quantities, Units and Symbols, report of the Symbols Committee of the Royal Society, 2nd Edition (Royal Society, London, 1975) for a discusion of nomenclature in SI units.
- 6. E.R. Cohen and B.N. Taylor, "Least-Squares Adjustment of the Fundamental Constants," J. Phys. Chem. Ref. Data 2, 663 (1973).
- 7. E.S. Weibel, "Dimensionally Correct Transformations between Different Systems of Units," Amer. J. Phys. 36, 1130 (1968).
- 8. J. Stration, *Electromagnetic Theory* (McGraw-Hill Book Co., New York, 1941), p. 508.
- ITT Reference Data for Engineers (Earns and Co., Indianapolis, Indiana, 1975), p. I-1. These definitions are International Telecommunications Union (ITU) Standards.
- 10. H.E. Thomas, Handbook of Microwave Techniques and Equipment Prentice-Hall, Englewood Cliffs, N.J., 1972), p. 9. Further subdivisions are defined in Ref. 9, p. 1-3.
- 11. J.P. Catchpole and G. Fulford, Ind. and Eng. Chem. 58, 47 (1966); reprinted in recent editions of the *Handbook of Chemistry and Physics* (Chemical Rubber Co., Cleveland, Ohio) on pp. F201-213.

- 12. W.D. Hayes, "The Basic Theory of Gasdynamic Discontinuities," in Fundamentals of Gas Dynamics, Vol. III, High Speed Aerodynamics and Jet Propulsion, ed. H. W. Emmons (Princeton Univ. Press, 1958).
- 13. W.B. Thompson, An Introduction to Plasma Physics (Addison-Wesley Publishing Co., Reading, Mass., 1962), pp. 86-95.
- L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Addison-Wesley Publishing Co., Reading, Mass., 1959), pp. 319-331.
- 15. The Z function is tabulated in B.D. Fried and S.D. Conte, *The Plasma Dispersion Function* (Academic Press, Inc., New York, 1961).
- R.W. Landau and S. Cuperman, "Stability of Anisotropic Plasmas to Almost-Perpendicular Magnetosonic Waves," J. Plasma Phys. 6, 495 (1971).
- 17. B.D. Fried, C.L. Hedrick, J. McCune, "Two-Pole Approximation for the Plasma Dispersion Function," Phys. Fluids 11, 249 (1968).
- 18. B.A. Trubnikov, "Particle Interactions in a Fully Ionized Plasma," Reviews of Plasma Physics, Vol. 1 (Consultants Bureau, New York, 1965), p. 105.
- 19. J.M. Greene, "Improved Bhatnagar-Gross-Krook Model of Electron-Ion Collisions," Phys. Fluids 16, 2022 (1973).
- 20. S.I. Braginskii, "Transport Processes in a Plasma," Reviews of Plasma Physics, Vol. 1 (Consultants Bureau, New York, 1965), p. 205.
- 21. John Sheffield, *Plasma Scattering of Electromagnetic Radiation* (Academic, New York, 1975), p. 6 (after J.W. Paul).
- 22. K.H. Lloyd and G Härendel, "Numerical Modeling of the Drift and Deformation of Ionospheric Plasma Clouds and of their Interaction with Other Layers of the Ionosphere," J. Geophys. Res., 78, 7389 (1973).
- 23. C.W. Allen, Astrophysical Quantities, 2nd edition (Univ. of London, Athone Press, 1963), p. 161.
- 24. G.L. Withbroe and R.W. Noyes, "Mass and Energy Flow in the Solar Chromosphere and Corona," Ann. Rev. Astrophys. 15, 363 (1977).
- 25. S. Glasstone and R.H. Lovberg, Controlled Thermonuclear Reactions (Van Nostrand, New York, 1960), Chapt. 2.
- 26. References to experimental measurements of branching ratios and cross sections are listed in F.K. McGowan, et al., Nucl. Data Tables A6, 353 (1969), and A8, 199 (1970). The yields listed in the table are calculated directly from the mass defect.
- 27. G.H. Miley, H. Towner and N. Ivich, Fusion Cross Section and Reactivities, Rept. COO-2218-17 (University of Illinois, Urbana, Ill., 1974).

- 28. J.M. Creedon, "Relativistic Brillouin Flow in the High ν/γ Limit," J. Appl. Phys. 46, 2946 (1975).
- 29. See, for example, A.B. Mikhailovskii, *Theory of Plasma Instabilities*, Vol. 1 (Consultants Bureau, New York, 1974). The table on pp. 48-49 was compiled by K. Papadopoulos.
- 30. Table prepared from data compiled by J.M. McMahon (personal communication, 1980).
- 31. M.J. Seaton, "The Theory of Excitation and Ionization by Electron Impact," in *Atomic and Molecular Processes*, D.R. Bates, Ed. (New York, Academic Press, 1962), Chapt. 11.
- 32. H. Van Regemorter, "Rate of Collisional Excitation in Stellar Atmospheres," Astrophys. J. 136, 906 (1962).
- 33. A.C. Kolb and R.W.P. McWhirter, "Ionization Rates and Power Loss from θ-Pinches by Impurity Radiation," Phys. Fluids 7, 519 (1964).
- R.W.P. McWhirter, "Spectral Intensities," in *Plasma Diagnostic Techniques*, R.H. Huddlestone and S.L. Leonard, Eds. (Academic Press, New York, 1965).
- 35. M. Gryzinski, "Classical Theory of Atomic Collisions I. Theory of Inelastic Collisions," Phys. Rev. 138A, 336 (1965).
- 36. M.J. Seaton, "Radiative Recombination of Hydrogen Ions," Monthly Notices Roy. Astron. Soc. 119, 81 (1959).
- 37. Ya.B. Zel'dovich and Yu.P. Raizer, *Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena*, (Academic Press, New York, 1966), Vol. I, p. 407.
- 38. H.R. Griem, Plasma Spectroscopy (Academic Press, New York, 1966).
- 39. T.F. Stratton, "X-Ray Spectroscopy," in *Plasma Diagnostic Techniques*, R.H. Huddlestone and S.L. Leonard, Eds. (Academic Press, New York, 1965).
- 40. G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966).
- 41. T.W. Johnston and J.M. Dawson, "Correct Values for High-Frequency Power Absorption by Inverse Bremsstrahlung in Plasmas," Phys. Fluids 16, 722 (1973).

