Chapter 10 Test April 8, 2008 No Calculators Name

1. Find the equation of the normal line to the curve if $x = \sin^2 t$, $y = \cos 2t$ where $t = \frac{7\pi}{6}$

2. If $x = e^{-t}$ and $y = e^{2t}$, then find $\frac{d^2y}{dx^2}$ in terms of t, and discuss the concavity of this plane curve for $-\infty < t < \infty$

3. Find the length of the curve if $x = \ln(\cos t)$, y = t, and $0 \le t \le \frac{\pi}{3}$

4. Solve the initial value problem $\frac{dr}{dt} = (\cot^2 t) i + \left(\frac{1}{2t\sqrt{t^2 - 1}}\right) j$ where r(1) = <0, 1>

5. Find the unit vectors (four in all) that are tangent and normal to $x = 7t - t^3$, $y = 1 + t^2 - 5t$, at t = 1

6. Find the slope of the tangent line for $r = 1 - \sin \theta$, at $\theta = \frac{\pi}{2}$.

7. Sketch the graph of the polar equation, and be sure to label at least three polar points (r, θ) , if $r = -2 + \sqrt{3} \cos \theta$

8. Find the area of the region that is inside both $r = \sqrt{2}$ and $r = -2\sin\theta$

9. Find the area of the region that is inside $r = 6\cos 2\theta$ and outside r = 3

10. Find the area of the region that is bounded by the small loop of the polar equation $r = \sqrt{2} - 2\cos\theta$

11. Find the length of the curve $r = e^{\frac{\theta}{2}}$ from $\theta = 1$ to $\theta = 2$

12. Find the angle between the velocity and acceleration vectors, for the given value of t if $r(t) = (\sin t)i + (2\cos t)j$ at $t = \frac{\pi}{3} \left(\text{Hint: } \theta = \cos^{-1} \left(\frac{v \cdot a}{|v| |a|} \right) \right)$