

1 Présentation

1.1 Objectifs

Les objectifs de ces deux séances de TP sont :

- ☐ De réaliser le modèle du robot Ericc ;
- ☐ Comparer les simulations causales, acausales et le comportement réel.

1.2 Contexte pédagogique

Modéliser:

- Mod 2 : Proposer un modèle de connaissance et de comportement
- Mod 3 : Valider un modèle.

1.3 Évaluation des écarts

L'objectif de ce TP est de simuler le comportement d'un système par le biais d'un logiciel de modélisation multiphysique.

2 Présentation du système réel

2.1 Le robot Ericc3

Le Robot Ericc3 est un robot qui présente un caractère anthropomorphique. Il est constitué de 5 axes asservis en position. On s'intéresse ici uniquement à l'asservissement autour de l'axe de lacet.

On considérera deux configurations :

Configuration 1 : bras replié

 $Lacet = 0^{\circ}$; $Epaule = 39^{\circ}$; $Coude = -90^{\circ}$, $Poignet = 130^{\circ}$

Configuration 2 : bras déplié

Lacet = 0° ; Epaule = 90° ; Coude = 0° , Poignet = 90°

2.2 Analyse structurelle du robot

Activité 0 :

☐ Réaliser la chaine fonctionnelle décrivant la chaine cinématique « axe de lacet ».

3 ANALYSE DU MODÈLE SIMMECHANICS

Activité 1 : ouvrir un modèle

- ☐ Copier le dossier «ModeleEricC» sur votre espace personnel.
- Ouvrir Matlab.
- ☐ Placer le chemin d'accès de ce dossier dans la barre d'adresse Matlab.
- □ Dans Matlab ouvrir le fichier « ericc3_DataFile.m » et « data_modele_ericc.m » puis les exécuter. On note dans le workspace la création d'un objet appelé smiData qui contient l'ensemble des variables mécaniques nécessaires au calcul.
- ☐ Lancer Simulink et ouvrir le fichier Ericc3_SimMeca.slx.
- ☐ Exécuter le programme, observer le résultat de la simulation et expliquer ce comportement.

Activité 2 : modifier un modèle

On peut bloquer des rotations en modifiant les blocs intitulés « Revolute » (liaisons pivot).

- □ « Actuation » permet de préciser les grandeurs imposées (torque signifie couple en Anglais).
- « Sensing » permet de préciser les grandeurs mesurées.

- ☐ Modifier alors le fichier Ericc3_SimMeca.slx pour obtenir le bras dans sa configuration 2 tout en laissant la possibilité de commander la liaison entre la chaise et le bâti. (Angles en radian).
- □ Sauvegarder votre travail.

4 CONSTRUCTION DU MODÈLE DU MOTEUR À COURANT CONTINU

Le moteur à courant continu du robot est caractérisé par les paramètres suivants :

- \square K_t : la constante de couple ;
- \square K_e : la constante de force contre électromotrice (fcem):
- \square R: la résistance de l'induit;
- \Box L: l'inductance de l'induit;
- \Box J_m : Inertie de l'arbre moteur;

On note:

- $\ \square \ u_m(t)$: la tension appliquée aux bornes de l'induit ;
- \Box e(t): tension de force contre-électromotrice;
- \Box $i_m(t)$: le courant absorbé par l'induit ;
- \square $\omega_m(t)$: la vitesse angulaire de l'arbre;
- \Box $C_m(t)$: le couple moteur.

Les équations temporelles décrivant le fonctionnement d'un moteur à courant continu seul sont données ci-dessous :

$$C_m(t) - f_v \cdot \omega_m(t) = J_m \frac{d\omega_m(t)}{dt}$$
$$e(t) = K_e \cdot \omega_m(t)$$

$$u_m(t) = e(t) + L \frac{di_m(t)}{dt} + R \cdot i(t)$$
$$C_m(t) = K_c \cdot i_m(t)$$

Les données numériques nécessaires à la réalisation du modèle sont déclarées dans le fichier : data_modele_ericc.m.

4.1 Construction du modèle électrique

Créer un nouveau fichier Simulink (Blank model).

Activité 3 : construire le modèle électrique

- On modélisera ici le comportement donné par l'équation issue de la loi des mailles en utilisant ici les blocs situés dans la bibliothèque : Simscape ▶ Foundation Library ▶ Electrical :
 - la tension $u_m(t)$ sera imposée par un bloc *Controlled Voltage Source* (catégorie : Electrical Sources);
 - l'intensité pourra être mesurée par un bloc Current sensor (catégorie : Electrical Sensors) ;
 - les autres composants se trouveront dans la catérgorie « Electrical Elements ».
- Pour imposer la tension $u_m(t)$ (échelon) et pour visualiser l'intensité $i_m(t)$, il faut utiliser des blocs qui permettent de passer de grandeurs causales à acausales (« Simulink PS converter ») et inversement (« PS Simulink Converter ») situés dans la catégorie « Simscape \blacktriangleright Utilities ».

Dans Simulink, réaliser le schéma électrique de la motorisation du robot sans la conversion électromécanique.

4.2 Construction du modèle mécanique

Activité 4 : construire le modèle mécanique

- On modélisera ici le comportement donné par l'équation mécanique issue du PFD en utilisant ici les blocs situés dans la bibliothèque : Simscape ▶ Foundation Library ▶ Mechanical :
 - on modélisera une inertie en rotation par rapport à une référence de mouvement de rotation à l'aide de blocs situé dans « Rotational Elements » ;
 - pour visualiser la rotation du moteur il faut utiliser un bloc « Ideal Rotational Motion Sensor » (catégorie « Mechanical sensor ») couplé à un bloc qui permet de passer de grandeurs acausales à causales (« PS-Simulink Converter ») situés dans la catégorie « Simscape ▶ Utilities » qu'on raccordera au port noté « W ».

Dans Simulink, réaliser le schéma mécanique de la motorisation du robot sans la conversion électromécanique.

4.3 Construction complète de la modélisation électromécanique du moteur (acausal)

Activité 5 : réaliser le lien électro-mécanique

- On modélisera ici le comportement donné par les équations électromécaniques.
 - Le convertisseur électromécanique d'un moteur à courant continu se modélise à l'aide du bloc
 « Rotational Electromechanical Converter » situé dans la catégorie « Simscape ▶ Power Systems ▶
 Simscape Components & Machines ▶ Rotational Electromechanical Converter.
- □ Raccorder les deux schémas électrique et mécanique définis précédemment à l'aide du bloc de conversion électromécanique. Il faudra utiliser un bloc Solver Configuration présent dans Simscape ▶ Utilities à connecter (par exemple) au flux électrique.
- Réaliser la simulation consistant à imposer un échelon de tension au moteur (5V) et à visualiser la réponse en vitesse de rotation du moteur.
- ☐ Sauvegarder votre modèle.

4.4 Couplage du moteur et du modèle SimMechanics

Activité 6 : couplage

☐ Revenir au modèle mécanique. On cherche à piloter l'axe de lacet tout en mesurant son évolution. Pour cela, réaliser les modifications ci-contre su votre modèle.

☐ Copier-coller le modèle de moteur dans le modèle mécanique et relier la sortie du moteur au capteur de couple. Vous devez obtenir le schéma cidessous.

☐ Tester le fonctionnement du modèle.

5 CONSTRUCTION DU MODÈLE DU ROBOT ERICC3

On donne le schéma bloc global du système :

- \square L'angle de consigne de lacet se note : $\theta_c(p)$.
- lacksquare La vitesse de rotation à la sortie du moteur se note $\theta_m(p)$.
- lacksquare La vitesse de rotation à la sortie du réducteur se note $\theta_r(p)$.
- Le système comporte un correcteur PID (Proportionnel Intégral Dérivé). Ici n'est représenté que le correcteur Proportionnel (de gain K_p) et Intégrale (de gain K_i). Dans l'étude on n'étudiera que l'influence de K_p . Ainsi on prendra $K_i = 0$.
- \square Après une conversion numérique analogique, on modélise le moteur avec un variateur (de constante K_v) qui permet d'imposer au moteur un courant $I_m(p)$
- \square On note $C_m(p)$ le couple délivré par le moteur.
- lacksquare Le frottement visqueux est modélisé par le coefficient f_v .
- $lue{}$ Le **système de réduction** de vitesse de fonction de transfert K_r est composé
 - d'un réducteur poulie-courroie;
 - d'un réducteur Harmonic Drive de rapport de réduction 1/100.

La chaine retour est composée d'un **capteur de position** qui mesure directement l'angle à la sortie du moteur. C'est un codeur incrémental et on prendra comme gain 1.

Activité 7 : comparaison causale-acausale

- \Box Déterminer le rapport de réduction K_r du système.
- Compléter le schéma bloc modele_ericc_complet_eleve.slx pour modéliser le système asservi en boucle fermée.
- Lancer la simulation et analyser les résultats.
- Conclure quant aux avantages et inconvénients des deux méthodes de modélisation employées.

6 Analyse temporelle des performances du robot

6.1 Comparaison des performances simulées entre les modèles causal et acausal

L'étude portera sur les configurations 1 et 2 (bras en partie replié et déplié).

Activité 8

- ☐ Modifier le programme pour tenir compte des configurations 1 et 2.
- ☐ Exécuter la simulation sur une durée de 2.5s et observer le résultat en double cliquant sur le Scope.

6.2 Comparaison des performances simulées et expérimentales

Le schéma bloc "modele_ericc_complet_eleve.slx" comporte une partie permettant de tracer le résultat expérimental.

K_p	Configuration	Nom du fichier de données
10 ⁶	1	conf1_1e6.csv
10 ⁶	2	conf2_1e6.csv
10 ⁵	1	conf1_1e5.csv
10 ⁵	2	conf2_1e5.csv

Activité 9

- ☐ Mettre en place des simulations pour comparer les essais expérimentaux et numériques.
- ☐ Pour changer les fichiers, modifier le script data_modele_ericc.m et l'exécuter.