B. AND Sequences

A sequence of n non-negative integers $(n \geq 2)$ a_1, a_2, \ldots, a_n is called good if for all i from 1 to n-1 the following condition holds true:

$$a_1 \& a_2 \& \ldots \& a_i = a_{i+1} \& a_{i+2} \& \ldots \& a_n,$$

where & denotes the bitwise AND operation.

You are given an array a of size n ($n \geq 2$). Find the number of permutations p of numbers ranging from 1 to n, for which the sequence a_{p_1} , a_{p_2} , ..., a_{p_n} is good. Since this number can be large, output it modulo 10^9+7 .

Input

The first line contains a single integer t ($1 \le t \le 10^4$), denoting the number of test cases.

The first line of each test case contains a single integer n ($2 \le n \le 2 \cdot 10^5$) — the size of the array.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($0 \le a_i \le 10^9$) — the elements of the array.

It is guaranteed that the sum of n over all test cases doesn't exceed $2\cdot 10^5$.

Output

Output t lines, where the i-th line contains the number of good permutations in the i-th test case modulo $10^9 + 7$.

array of vector<int>arr(n) where element:

Index	0	1	2	3	4
Value	0	2	0	3	0

```
// find minimum value
int mn = *vec_min(arr);
// cnt minimum value
int cnt = 0;
for (auto val : arr)
{
```

so , (n-2)P(n-2) = (n-2)! and minimum count take first index cnt P 1 and last index (cnt-1) P 1 */

Index	0	1	2	3	4
Value	0	2	0	3	0

```
int ans = (1LL * fact(n - 2) * (1LL * cnt * (cnt - 1) % mod)) % mod;
cout << ans << endl;</pre>
```