Step 1

Step 2

7 states (3 bits registers)

3 bits for coming states

a is input

x, y, z are output

Step 3

 $S0 = \neg s_2 \neg s_1 \neg s_0$

 $S1 = \neg s_2 \neg s_1 s_0$

 $S2 = \neg s_2 s_1 \neg s_0$

 $S3 = \neg s_2 s_1 s_0$

 $S4 = s_2 \neg s_1 \neg s_0$

 $S5 = s_2 \neg s_1 s_0$

 $S6 = s_2 s_1 \neg s_0$

Step 4

	inp	uts			outputs						
s_2	s_1	s_0	a	x	У	\mathbf{z}	n_2	n_1	n_0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	0	0	1		
0	0	1	0	0	1	1	0	0	1		
0	0	1	1	0	1	1	0	1	0		
0	1	0	0	1	1	1	0	1	0		
0	1	0	1	1	1	1	0	1	1		
0	1	1	0	0	1	0	0	1	1		
0	1	1	1	0	1	0	1	0	0		
1	0	0	0	0	0	1	1	0	0		
1	0	0	1	0	0	1	1	0	1		
1	0	1	0	1	0	1	1	0	1		
1	0	1	1	1	0	1	1	1	0		
1	1	0	0	1	0	0	1	1	0		
1	1	0	1	1	0	0	0	0	0		
1	1	1	0]	Don	t ca	re co	nditic	n		
1	1	1	1]	Don	't ca	re co	nditic	n		

Step 5

Kmap for x

s_0 a s_2s_1	00	01	11	10	
00	0	0	0	0	
01	1	1	0	0	\implies x = $s_1 \neg s_0 + s_2 s_0$
11	1	1	X	х	
10	0	0	1	1	

Kmap for y

s_2s_1	s_0 a	00	01	11	10	
	00	0	0	1	1	→ v = = a, a, l = a, a,
	01	1	1	1	1	$\implies y = \neg s_2 s_1 + \neg s_2 s_0$
	11	0	0	X	X	
	10	0	0	0	0	

Kmap for z

s_0 a s_2s_1	00	01	11	10	
00	0	0	1	1	
01	1	1	0	0	$\Longrightarrow z = s_2 \neg s_1 + \neg s_2 \neg s_1 s_0 + \neg s_2 s_1 \neg s_0$
11	0	0	X	X	
10	1	1	1	1	

Kmap for n_2

$s_0 a$ $s_2 s_1$	00	01	11	10	
00	0	0	0	0	
01	0	0	1	0	$\implies n_2 = s_2 \neg s_1 + s_2 \neg s_0 \neg a + s_1 s_0 a$
11	1	0	X	X	
10	1	1	1	1	

Kmap for n_1

s_0 a s_2s_1	00	01	11	10	
00	0	0	1	0	→ m a a l a a a l a a a
01	1	1	0	1	$\implies n_1 = \neg s_1 s_0 a + \neg s_2 s_1 \neg s_0 + s_1 \neg s_0 \neg a + s_1 s_0 \neg a$
11	1	0	х	X	
10	0	0	1	0	

Kmap for n_0

s_0 a s_2s_1	00	01	11	10	
00	0	1	0	1	
01	0	1	0	1	$\implies n_0 = s_0 \neg a + \neg s_2 \neg s_0 a + \neg s_1 \neg s_0$
11	0	0	X	х	
10	0	1	0	1	

Logic Circuit

