令和2年 電磁気学II 第1回小テスト

大山主朗

- 1 以下の(a)及び(d)に示す物理定数は電磁気学を修めた者であれば常識的 に覚えていなければならない数値である、それぞれの値を示せ、
- (a) 真空の誘電率 $\varepsilon_0: 8.854 \times 10^{-12} \, \mathrm{F/m}$
- (b) 真空の透磁率 $\mu_0: 1.257 \times 10^{-6} \, \mathrm{H/m}$
- (c) 電子の電荷 $e:-1.602\times 10^{-19}\,\mathrm{C}$
- (d) 電子の静止質量 $m:9.109\times10^{-31}\,\mathrm{kg}$
- 2 AB = BC = a, $\angle B = 90^\circ$ の直角二等辺三角形 ABC がある. いま各頂 点に点磁荷 m が存在するとき,以下の各問いに答えよ.
- (a) 頂点 B に存在する点磁荷にはたらく力 F_B を求めよ.
- (b) 頂点 A に存在する点磁荷にはたらく力 F_A を求めよ.
- (c) 直角三角形 ABC の内接円の半径 r を求めよ.
- (d) 頂点 A に存在する点磁荷が直角三角形 ABC の内心につくる磁界 H_A を求めよ.
- $oldsymbol{3}$ xy 直交座標系において,同量異符号の点磁荷 $\pm m$ が距離 l に固定された磁気双極子が存在する.このとき以下の問いに答えよ.
- (a) 点 A に存在する磁荷 -m が点 $P(x_0,y_0)$ に作る磁界 H_1 を求めよ. また, H_1 を x 方向成分 H_{x1} と y 方向成分 H_{y1} に分解せよ.
- (b) 点 B に存在する磁荷 +m が点 $P(x_0,y_0)$ に作る磁界 H_2 を求めよ. また, H_2 を x 方向成分 H_{x2} と y 方向成分 H_{y2} に分解せよ.
- (c) 点 P での磁界 H の x 方向成分 H_x と y 方向成分 H_y をそれぞれ求めよ.

- (d) 磁気双極子モーメント M の大きさと方向を求めよ.
- (e) 点 P が原点 O より十分遠方にあると仮定すると、 $\sqrt{(x_0-l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ 及び $\sqrt{(x_0+l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ と近似できる.このことを用いて (c) にて得た磁界 H_x 及び H_y を簡略化せよ.
- (f) y 方向に一様な磁界 H_0 が存在するとき、磁気双極子にはたらくトルク T を求めよ.

$$egin{aligned} oldsymbol{T} &= oldsymbol{M} H_0 \sin heta \ &= m l oldsymbol{i} \ &= m l oldsymbol{i} \ &| oldsymbol{T} | = m l \left[\operatorname{Wb} \cdot \operatorname{m}
ight] \end{aligned}$$

- 4 磁化されていない強磁性体に磁界 H を外部から印加し,強磁性体内部での磁束密度 B を観測すると,図 3 に示すような結果が得られた.このとき,図中の行程 1: 点 O \rightarrow 点 P_1 ,行程 2: 点 P_1 \rightarrow 点 P_2 ,行程 3: 点 P_2 \rightarrow 点 P_3 ,行程 4: 点 P_3 \rightarrow 点 P_4 ,行程 5: 点 P_4 \rightarrow 点 P_5 , 行程 6: 点 P_5 \rightarrow 点 P_6 ,行程 7: 点 P_6 \rightarrow 点 P_1 の 7 つの行程に着目して,測定結果を説明せよ.
- 5 強磁性体,弱磁性体,常磁性体,反磁性体の4つの磁性体の性質を,「比透磁率 μ_s 」と「磁化率 χ 」という2つの語句を両方用いて説明せよ.