Ejercicios sobre congruencias

6 de marzo de 2017

Ejercicio 1. Fijemos algún n = 1, 2, 3, 4, ... Consideremos la siguiente relación sobre los números enteros: se dice que x es **congruente** a y **módulo** n si n divide a x - y:

$$x \equiv y \pmod{n} \Leftrightarrow n \mid (x - y).$$

En otras palabras, x e y tienen el mismo resto de la división por n.

Demuestre que la congruencia módulo n es una relación de equivalencia sobre \mathbb{Z} ; es decir, para todo $x,y,z\in\mathbb{Z}$

$$x \equiv x$$
, $x \equiv y \Rightarrow y \equiv x$, $x \equiv y \ e \ y \equiv z \Rightarrow x \equiv z$.

Solución (Martha). Obviamente, $n \mid x - x = 0$ para todo x. Luego, $n \mid (x - y)$ si y solamente si $n \mid (y - x)$. Por fin, si $n \mid (x - y)$ y $n \mid (y - z)$, entonces

$$n \mid (x - y) + (y - z) = x - z.$$

Las clases de equivalencia se llaman los **residuos módulo** n. La clase de equivalencia de x se denota por [x]. Note que hay n residuos diferentes: [0], [1], [2], ..., [n-1].

Ejercicio 2. *Demuestre que si* $x \equiv x'$, $y \equiv y'$, *entonces*

$$x + y \equiv x' + y',$$

$$x \cdot y \equiv x' \cdot y'.$$

Esto quiere decir que la adición y multiplicación tiene sentido para residuos módulo n: podemos definir

$$[x] + [y] := [x + y],$$
 (1)

$$[x] \cdot [y] := [x \cdot y]. \tag{2}$$

Solución (Javier). Si $n \mid x - x' \vee n \mid y - y'$, entonces

$$n \mid (x - x') + (y - y') = (x + y) - (x' - y'),$$

y también

$$n \mid (x - x') y + x' (y - y') = xy - x'y'.$$

Para ver que las definiciones (1) y (2) tienen sentido (no dependen de los representantes particulares de las clases de equivalencia), tenemos que verificar que si [x] = [x'] y [y] = [y'], entonces

$$[x+y] = [x'+y'],$$

$$[x \cdot y] = [x' \cdot y'].$$

Es lo que acabamos de demostrar.

Ejercicio 3. Demuestre que tiene sentido la cancelación módulo p: si tenemos

$$x \cdot y \equiv x \cdot y' \pmod{p}$$
,

donde $p \nmid x$, *entonces* $y \equiv y' \pmod{p}$.

Indicación: si p es primo, entonces $p \mid xy$ implica $p \mid x$ o $p \mid y$.

Solución (Raúl). $x \cdot y \equiv x \cdot y' \pmod{p}$ significa que $p \mid (x \cdot y - x \cdot y') = x \cdot (y - y')$. Pero $p \nmid x$, y por lo tanto $p \mid (y - y')$.

Ejercicio 4. Sea p un número primo. Demuestre que los coeficientes binomiales $\binom{p}{1}, \binom{p}{2}, \ldots, \binom{p}{p-1}$ son divisibles por p:

$$p \mid {p \choose i} = \frac{p!}{i! (p-i)!}$$
 para $i = 1, 2, ..., p-1$.

Para i = 0, p tenemos $\binom{p}{0} = \binom{p}{p} = 1$.

$$\binom{0}{0} = 1$$

$$\binom{1}{0} = 1$$

$$\binom{1}{0} = 1$$

$$\binom{2}{0} = 1$$

$$\binom{2}{0} = 1$$

$$\binom{3}{0} = 1$$

$$\binom{3}{0} = 1$$

$$\binom{3}{0} = 1$$

$$\binom{4}{0} = 1$$

$$\binom{4}{0} = 1$$

$$\binom{4}{0} = 1$$

$$\binom{5}{0} = 1$$

$$\binom{5}{0} = 1$$

$$\binom{5}{0} = 1$$

$$\binom{5}{0} = 1$$

$$\binom{6}{0} = 1$$

$$\binom{7}{0} = 1$$

$$\binom{7}{0} = 1$$

$$\binom{7}{0} = 21$$

$$\binom{7}{0} = 35$$

$$\binom{7}{0} = 21$$

$$\binom{7}{0} = 1$$

$$\binom{7}{0} = 1$$

$$\binom{7}{0} = 1$$

$$\binom{7}{0} = 21$$

$$\binom{7}{0} = 35$$

$$\binom{7}{0} = 21$$

$$\binom{7}{0} = 1$$

Solución (Ariel). Para i = 1, 2, ..., p - 1 en el número

$$\binom{p}{i} = \frac{p(p-1)(p-2)\cdots(p-i+1)}{i!}$$

p aparece en el numerador, pero $p \nmid i!$, y por lo tanto $p \mid \binom{p}{i}$.

Ejercicio 5. Demuestre que $\binom{p-1}{i} \equiv (-1)^i \pmod{p}$.

Por ejemplo, $\binom{6}{3} = 20 \equiv 6 \equiv -1 \pmod{7}$ y $\binom{6}{2} = 15 \equiv 1 \pmod{7}$. Indicación: del ejercicio 4 sabemos que $\binom{p}{i} \equiv 0 \pmod{p}$ para $i = 1, 2, \ldots, p-1$; luego, use la relación de Pascal $\binom{p}{i} = \binom{p-1}{i} + \binom{p-1}{i-1}$.

Primera solución (Dennis). Vamos a usar la existencia de elementos inversos módulo p (véase abajo). Para i=0 la fórmula es evidente: $\binom{p-1}{0}=1$. Para $i\neq 0$, tenemos

$$\binom{p-1}{i} = \frac{(p-1)(p-2)\cdots(p-i)}{i!},$$

donde módulo p,

$$i! = 1 \cdot 2 \cdot 3 \cdots i \equiv (1-p)(2-p)\cdots(i-p) = (-1)^{i}(p-1)(p-2)\cdots(p-i),$$

así que

$$\binom{p-1}{i} = \frac{(p-1)\,(p-2)\cdots(p-i)}{i!} \equiv \frac{(p-1)\,(p-2)\cdots(p-i)}{(-1)^i\,(p-1)\,(p-2)\cdots(p-i)} = (-1)^i.$$

Segunda solución. El valor inicial es

$$\binom{p-1}{0} = 1.$$

Luego, para i = 1, ..., p - 1 tenemos

$$\binom{p-1}{i} + \binom{p-1}{i-1} = \binom{p}{i} \equiv 0 \pmod{p},$$

es decir,

$$\binom{p-1}{1} \equiv -\binom{p-1}{0} \equiv -1 \pmod{p},$$

$$\binom{p-1}{2} \equiv -\binom{p-1}{1} \equiv +1 \pmod{p},$$

$$\cdots$$

$$\binom{p-1}{i} \equiv (-1)^i \pmod{p}.$$

Ejercicio 6. Demuestre el teorema del binomio módulo p: para p primo se tiene

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$
.

Por ejemplo, $(2+2)^3=64\equiv 1\pmod 3$ y $2^3+2^3=16\equiv 1\pmod 3$. *Indicación: use el ejercicio 4.*

Solución (Alejandra). El teorema del binomio nos dice que

$$(x+y)^p = \sum_{0 \le i \le p} \binom{p}{i} x^{p-i} y^i,$$

pero módulo p los coeficientes $\binom{p}{i}$ son nulos, excepto $\binom{p}{0} = \binom{p}{p} = 1$.

Ejercicio 7. Demuestre el **pequeño teorema de Fermat**: para todo $x \in \mathbb{Z}$ se tiene

$$x^p \equiv x \pmod{p}$$
;

 $y \, si \, p \nmid x$, entonces $x^{p-1} \equiv 1 \pmod{p}$.

Por ejemplo, $2^3 = 8 \equiv 2 \pmod{3}$, $2^2 = 4 \equiv 1 \pmod{3}$.

Indicación: podemos suponer que la clase de equivalencia [x] representada por algún número x = 0, 1, 2, ..., p - 1. Si x = 0, el resultado está claro. Demuestre el paso de inducción: si $[x]^p = [x]$, entonces $[x + 1]^p = [x + 1]$.

Primera solución (Martha). Vamos a usar el siguiente

Lema. Si $p \nmid x$, entonces los múltiplos de [x] nos dan todos los residuos módulo p:

$${[0 \cdot x], [1 \cdot x], [2 x], \ldots, [(p-1) x]} = {[0], [1], \ldots, [p-1]}.$$

Efectivamente, tenemos que ver que los residuos $[n \ x]$ son diferentes para n = 0, 1, ..., p - 1. Y de hecho, si $[m \ x] = [n \ x]$, entonces [m] = [n] por la propiedad de cancelación (ejercicio 3).

Ahora por este lema, si $p \nmid x$, entonces

$$x \cdot (2x) \cdots (p-1)x = (p-1)! x^{p-1} \equiv 1 \cdot 2 \cdots (p-1) = (p-1)! \pmod{p}.$$

Luego, $p \nmid (p-1)!$, así que podemos cancelar (p-1)! y concluir que

$$x^{p-1} \equiv 1 \pmod{p}$$
.

Multiplicando esta identidad por x, tenemos

$$x^p \equiv x \pmod{p}$$
.

Si $p \mid x$, es decir $x \equiv 0 \pmod{p}$, entonces la identidad

$$x^p \equiv x \pmod{p}$$

es evidente ($0^p = 0$).

Segunda solución. En efecto, $0^p = 0$. Luego, el paso de inducción es (usando el ejercicio anterior)

$$[x+1]^p = [(x+1)^p] = [x^p+1^p] = [x^p] + [1] = [x]^p + [1] = [x] + [1] = [x+1].$$

Si $p \nmid x$, entonces $x^p \equiv x \pmod{p}$ implica $x^{p-1} \equiv 1$ gracias al ejercicio 3.

Ejercicio 8. Demuestre que si $p \nmid x$, entonces existe $y \in \mathbb{Z}$ (definido de modo único módulo p) tal que $xy \equiv 1 \pmod{p}$. En este caso escribimos $[x]^{-1} = [y]$.

Indicación: use el ejercicio 7.

Solución. Si $p \nmid x$, entonces $x^{p-1} = x \cdot x^{p-2} \equiv 1 \pmod{p}$, así que x^{p-2} es inverso a x módulo p.

Para ver que el inverso es único módulo p, notamos que $xy \equiv 1$, $xy' \equiv 1$ implica $y \equiv y'$ por la propiedad de cancelación.

Otra solución. Por el **Lema** de arriba, si $p \nmid x$, entonces la multiplicación por [x] nos da una biyección

residuos módulo $p \rightarrow$ residuos módulo p,

$$[y] \mapsto [y] \cdot [x].$$

En particular, para el residuo [1] existe único [y] tal que [y] \cdot [x] = 1.

Ejercicio 9. 1) Demuestre que $1+2+3+\cdots+(p-1)\equiv 0\pmod p$ para $p\neq 2$.

Por ejemplo, $1 + 2 + 3 + 4 = 10 \equiv 0 \pmod{5}$.

2) Demuestre que $1^2 + 2^2 + 3^2 + \dots + (p-1)^2 \equiv 0 \pmod{p}$ para $p \neq 2, 3$. Por ejemplo, $1^2 + 2^2 + 3^2 + 4^2 = 30 \equiv 0 \pmod{5}$.

- 3) Demuestre que $1^3 + 2^3 + 3^3 + \dots + (p-1)^3 \equiv 0 \pmod{p}$ para $p \neq 2$. Por ejemplo, $1^3 + 2^3 + 3^3 + 4^3 = 100 \equiv 0 \pmod{5}$.
- 4) En general, dado k fijo, ¿para cuáles p se va a cumplir $1^k + 2^k + 3^k + \cdots + (p-1)^k \equiv 0 \pmod{p}$?

Solución. En 1), como notó Gauss cuando estudiaba en la primaria, tenemos

$$1+2+3+\cdots+(p-1)=(1+(p-1))+(2+(p-2))+(3+(p-3))+\cdots$$

que es visiblemente divisible por p.

En 2), Dennis nos recordó la fórmula

$$1^{2} + 2^{2} + 3^{2} + \dots + p^{2} = \frac{p(p+1)(2p+1)}{6}.$$

Si $p \nmid 6$, entonces esta fórmula implica que la suma de cuadrados es divisible por p. En general, para $S_k(n) := \sum_{0 \le i \le n} i^k$ y $k = 1, 2, 3, 4, \dots$ tenemos fórmulas

$$S_1(n) = \frac{1}{2}n^2 + \frac{1}{2}n,$$

$$S_2(n) = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n,$$

$$S_3(n) = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2,$$

(véase mi primera lección). Cuando p no aparece en los denominadores, las fórmulas de arriba nos dicen que la suma es divisible por p (el término constante de $S_k(n)$ es siempre nulo). En general, se puede analizar la expresión

$$S_k(n) = \frac{1}{k+1} \sum_{0 \le i \le k} {k+1 \choose i} B_i n^{k+1-i}$$

y ver cuáles números primos aparecen en los denominadores.

Se dice que un número x es una **raíz primitiva de la unidad módulo** p si las potencias de x nos dan todos los residuos no nulos módulo p:

$${[x], [x]^2, [x]^3, [x]^4, \ldots} = {[1], [2], [3], \ldots, [p-1]}.$$

Por ejemplo, 2 es una raíz primitiva de la unidad módulo 5:

$${[2], [2]^2, [2]^3, [2]^4} = {[2], [4], [8], [16]} = {[2], [4], [3], [1]}$$

Módulo todo número primo p existen raíces primitivas de la unidad, pero no es algo obvio y por el momento podemos aceptar este resultado (esto se demuestra en cursos de álgebra).

Ejercicio 10. Si x es un número entero tal que $p \nmid x$, entonces el **orden de** x **módulo** p es el mínimo número natural positivo $k = 1, 2, 3, 4, \ldots$ tal que $x^k \equiv 1 \pmod{p}$. En este caso escribimos $\operatorname{ord}_p(x) = k$.

1) Verifique que $\operatorname{ord}_p(x) \leq p-1$ y que la existencia de raíces primitivas módulo p quiere decir que existe algún x de orden p-1.

- 2) Demuestre que $x^k \equiv 1 \pmod{p}$ si y solamente si $\operatorname{ord}_p(x) \mid k$. En particular, $\operatorname{ord}_p(x) \mid p-1$. Indicación: si $x^k \equiv 1$, la división con resto nos da $k = n \operatorname{ord}_p(x) + r$, donde $r < \operatorname{ord}_p(x)$.
- 3) Demuestre que $\operatorname{ord}_p(x^k) = \frac{\operatorname{ord}_p(x)}{\operatorname{mcd}(k,\operatorname{ord}_p(x))}$.
- 4) Demuestre que

$$1^k + 2^k + \dots + (p-1)^k \equiv 0 \pmod{p}$$

 $si p - 1 \nmid k$. Por ejemplo,

$$1^3 + 2^3 + 3^3 + 4^3 = 100 \equiv 0 \pmod{5}$$
.

Indicación: use la existencia de una raíz primitiva de la unidad módulo p.

Solución (Rodrigo, Dennis). $x^{p-1} \equiv 1 \pmod{p}$ por el pequeño teorema de Fermat, así que $\operatorname{ord}_p(x) \leq p-1$. Luego, si $\operatorname{ord}_p(x) = p-1$, las potencias de x módulo p

$$[x], [x]^2, [x]^3, \ldots, [x]^{p-1}$$

son diferentes y nos dan todos los restos módulo p (en efecto, si $[x]^m = [x]^n$ para m > n, entonces $[x]^{m-n} = [1]$).

En 2), para ver que $x^k \equiv 1 \pmod{p}$ implica $\operatorname{ord}_p(x) \mid k$, podemos usar la división con resto: $k = \operatorname{ord}_p(x) + r$ para algún $0 \le r < \operatorname{ord}_p(x)$. Luego, $x^k = x^{\operatorname{ord}_p(x)} x^r \equiv x^r \equiv 1 \pmod{p}$, pero $\operatorname{ord}_p(x)$ es el mínimo número positivo tal que $x^{\operatorname{ord}_p(x)} \equiv 1 \pmod{p}$ y por lo tanto r = 0.

En 3) tenemos por la parte 2)

$$(x^k)^m \equiv 1 \pmod{p} \iff \operatorname{ord}_p(x) \mid km$$

$$\iff \frac{\operatorname{ord}_p(x)}{\operatorname{mcd}(k,\operatorname{ord}_p(x))} \mid \frac{km}{\operatorname{mcd}(k,\operatorname{ord}_p(x))} \iff \frac{\operatorname{ord}_p(x)}{\operatorname{mcd}(k,\operatorname{ord}_p(x))} \mid m.$$

En 4), como sugirió Rodrigo, podemos usar la fórmula para las sumas parciales de la serie geométrica:

$$1 + x^k + x^{2k} + \dots + x^{(p-1)k} = \frac{1 - (x^k)^p}{1 - x^k}.$$

Módulo p tenemos, gracias al pequeño teorema de Fermat,

$$x^{k} + x^{2k} + \dots + x^{(p-1)k} = \frac{1 - (x^{k})^{p}}{1 - x^{k}} - 1 \equiv \frac{1 - x^{k}}{1 - x^{k}} - 1 \equiv 0.$$

Aquí $x^k \not\equiv 1 \pmod{p}$ por nuestra hipótesis $p - 1 \nmid k$.