Journal Report 7 10/14/19-10/25/19 Oliver Hayman Computer Systems Research Lab Period 4, White

Daily Log

Detail for each day about what you researched, coded, debug, designed, created, etc. Informal style is OK.

Monday October 28th

Tried packing objects again, looked at images of rotated of objects (which I create for every object just to check that it generate ok), and it turns out my method for modifying the scale of rotated objects was wrong. I changed this method slightly, and the rotations looked a little better.

Tuesday October 29th

Tried packing/debugging all of class, as my code took so long to run so it took a while.

I found a small error in the placing object method that I thought I had corrected months ago. This is part of the reason it took me so long to find, as I thought that method was essentially working just as it should and investigated other methods much more in depth for errors.

The packing algorithm was fast - much faster than any other algorithm I had tried before this point.

Thursday October 31st

Most of class was presentations.

However, at the end of the class, I tried to pack several objects. It turns out that packings given for multiple objects were not correct - there are still some errors with the sizes of objects changing when you rotate them, and there was overlap of objects. However, due to the increased speed of the packing algorithm, these errors should be easier to fix.

Timeline

Date	Goal	Met
September	I hope to figure out a method that ef-	I figured out that the best method for
27th	ficiently finds the optimal rotation of	doing this is just by finding the op-
	an object by initially testing out sev-	timal rotation for each object as you
	eral rotations of each object and then	pack it, and any specific optimization
	progressively gets closer to the opti-	algorithms would take too long
	mal rotation through these tests, and	
	begin work on it	
October 3rd	I hope to program the method found	I did not program any method, but
	in the previous week	came up with several that would
		pack objects quickly and would be
0 1 1 17:1	71 (1 11 (1 1)	plausible
October 17th	I hope to be able to pack objects cor-	I haven't accomplished this yet
NT 1 4/1	rectly and display an image of it	T.1. (1.1. 11. 1.1. 1.1. 1.1. 1.1. 1.1.
November 4th	I hope to be able to pack 10 objects in	I haven't been able to create correct
	a single class period	packings yet, but given the current
		run time of my code this should be
November	There to be able to made objects and	very achievable
18th	I hope to be able to pack objects cor-	
1001	rectly and have rotated objects be ex-	
	actly the same size as the original object	
November	I hope to be able to speed up my al-	
18th	gorithm to the point that I can pack	
1001	40 objects correctly in a class period	

Reflection

I was finally able to figure out what was causing so many errors for me in the previous weeks - the packing method wasns't dealing with cases where it was impossible to pack an object correctly. I'm glad I could finally figure this out, and that my packing method is fast. Two packings are shown below (one clearly showcases that my code still has errors):

The rotation of the triangles is not the default rotation, so clearly the method is trying out each rotation. The fact that only one rotation is used seems to indicate there is a problem in how I'm scaling rotated objects - this rotation is likely much smaller than everything else.

The biggest challenge for me this week was the issue of rotating objects. When you rotate objects, since the width of the object in the image changes, you need to account for this since I use this width for scaling objects in the packing. I tried using trigonometry to find this scale before, but I did so incorrectly. I found out you need to consider two sets of diametrically opposite points in the rectangle, whereas I had previously been using one set.

One way to solve the rotation issue (which I'm surprised I hadn't thought of yet) is literally just

to use the Pillow rotate method and size finding method, and compare the width of the rotated image to the original image. This should be easier to implement and should also be more accurate than the trigonemtric method used.