A primer guide

Machine Learning project steps

AI (Artificial Intelligence) refers to the development of systems/machines that can perform tasks that historically only humans could do e.g.

- Reasoning
- Decision making
- · Problem-solving
- Language Translation
- Perceptions

---Industry-wise impact---

Healthcare: All is making significant contributions in diagnosing diseases, drug discovery, personalized treatment plans, etc.

Finance: The financial industry uses AI for fraud detection, algorithmic trading, risk assessment, customer service, etc.

Transportation: Autonomous vehicles, and traffic management systems utilize AI to improve safety and efficiency in transportation.

Entertainment: content recommendation, game design, special effects where AI is making significant contributions

Retail: Product recommendations, personalized user journey, customer support where AI is making a major improvement

ML project steps cont..

Data Collection	 In this step data for the problem statement are collected. Data can be collected from various data source e.g. ➤ Domain specific transactional data ➤ Web Analytics ➤ GPS Sensor ➤ Social network 	Model Training	•In this process model is trained by using Training data created during "Data Preparation" step
Data Cleaning	 This step refers to the process of Selection of feature variable (in our example use-case; House age, Distance from nearest MRT satiation, Number of convenience stores) ▶ Removal of unwanted data (No, Transaction Date, Latitude, Longitude) ▶ Filling missing values in feature columns with mean /median of the columns/ KNN ▶ Feature encoding (turning text into numbers) ▶ Feature normalization (scaling / standardization) 	Model Evaluation	•In this process model is evaluated buy using Test data created during "Data Preparation step". Versus matrix are captured to see the performance of the model.
Data Preparation	•In Data preparation steps we generally split our sample data in 2 categories 1.Train data (70% ~ 80%) — used for training the selected model 2.Test data (20% ~ 30%) — used for validate the accuracy of the model	Model Deployment	 Once the model is tuned and evaluated model needs to be deployed. One common deployment methodology is to expose the model as web services API. Steps to expose as API. ➢ Export the trained model as a pickle/joblib/HDF5 file ➢ Read the model in Python flask/fastapi and expose it as restful web services
Model Selection	•Model selection is a process of fitting the dataset into a standard ML model algorithm . Our current dataset is best fit for Linear Regression algorithm. Python sklearn library provides an exhaustive list to ML model algorithm .	Model Re-Evaluation	 •In general, a model needs to be re-evaluated again ➤If the model was trained in a smaller dataset ➤If a new set of data is accumulated ➤If the model is outdated

Development & Deployment process.

Development & Deployment process. (used in hands-on example)

Hands-on code sample.

To explain various steps in ML project. We will use "Real estate price prediction" data set . The Kaggle link for the data set https://www.kaggle.com/datasets/quantbruce/real-estate-price-prediction
Note ** this dataset is collected from the public domain and not related to any project (or any proprietary data)

This dataset has 414 sample data. We will create a ML model to predict the price per unit area of a house based on -

- 1.Age of the house
- 2.Distance from nearest MRT satiation
- 3. Number of convenience stores

No	transaction date			number of convenience stores	latitude	X6 longitude	house price of unit area
1	2012.917	S				Ŭ	
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1

Please refer the attachment for code sample

Model development code in pdf	RealState_Prediction.pdf			
Model deployment code in pdf	ML_Web.pdf			

THANK YOU

Build a real state application which provides – Functional Requirement –

- 1. User should be able to access a web-site using desktop/mobile browser having
 - a. homepage with header , footer and price calculator
 - b. Price calculator should calculate property price based on user provided
 - age of the property,
 - distance from metro station
 - number of store in the property

Non Functional Requirement -

- 1. Application should be designed in a mutli-tiered architecture
- 2. It should be implemented in headless architecture
- 3. should be hosted in a cloud flamework
- 3. Seamless Dev-Ops automation should be integrated with the solution .

