2013-2014学年第一学期期末试题

- 一、选择题(本大题共5小题,每小题3分,共15分)
- 2. 设 $A \setminus B$ 均为 n 阶矩阵, 若 $(A+B)(A-B) = A^2 B^2$ 成立,则 $A \setminus B$ 必须满足 () . (A) A = E 或 B = E (B) A = O 或 B = O (C) A = B (D) AB = BA
- 3. 下列矩阵不是初等矩阵的是().

$$\text{(A)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \text{(B)} \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \text{(C)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{(D)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix}$$

- **4.** 已知向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,则下列各结论不正确的是 ().
 - (A) α_1 , α_2 , α_3 , α_4 都不是零向量
 - (B) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 中任意两个向量的对应分量不成比例
 - (C) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 中至少有一个向量可由其余向量线性表示
 - (D) α_1 , α_2 , α_3 , α_4 中任一部分组线性无关
- 5. 与矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似的矩阵是 ().

$$\text{(A)} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{(B)} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{(C)} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{(D)} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

二、填空题(本大题共5小题,每小题3分,共15分,把答案填在题中的横线上)

1. 行列式
$$D = \begin{vmatrix} 1 & 3 & -1 \\ -4 & 9 & -3 \\ 5 & -15 & 5 \end{vmatrix}$$
, 则 $M_{31} - M_{32} - M_{33} =$ _____.

- **2.** 设 A 是四阶方阵, B 是五阶方阵, 且 |A| = 2, |B| = -2 那么 |-|A|B| =
- **3**. 设 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, 且 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 则 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩为 .
- **4.** 设三阶方阵 $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, 且 Ax = 0 的基础解系中含有两个线性无关的解向量,则 a 与 b 的关系是 ______.
- **5**. 设三阶矩阵 A 的三个特征值分别为 1,2,4,则 A^{-1} 的特征值依次为 .
- **三、解答题**(本大题共7小题,共60分,其中第3,7小题每题10分,其余各题每题8分.解答应写出推理,演算步骤)
- 1. 求行列式 $D = \begin{vmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & -1 & 1 \\ -1 & 2 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{vmatrix}$ 的值.
- 2. 己知 $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & -1 \end{pmatrix}$, 求 $(AB)^T A^T B^T$
- 3. 求矩阵 $A = \begin{pmatrix} 1 & 2 & 1 & 1 & 3 \\ 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 1 & 1 & 2 & 1 & 5 \end{pmatrix}$ 的秩.
- **4.** 已知 $\alpha_1 = (1, -1, 0, 0)$, $\alpha_2 = (0, 1, 1, -1)$, $\alpha_3 = (-1, 3, 2, 1)$, $\alpha_4 = (-2, 6, 4, 1)$. 讨论向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 及向量组 $\alpha_1, \alpha_2, \alpha_3$ 的线性相关性.

5. 求齐次线性方程组
$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 0, \\ 3x_1 + 6x_2 - x_3 - 3x_4 = 0, \text{ 的通解.} \\ 5x_1 + 10x_2 + x_3 - 5x_4 = 0 \end{cases}$$

6. 求矩阵
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

四、证明题(本大题共2小题,每小题5分,共10分,解答应写出推理步骤)

- **1.** 设 n 阶方阵 A 满足 $A^3 A^2 + 2A E = O$, 证明 A 及 E A 均可逆, 并求 A^{-1} 和 $(E A)^{-1}$.
- **2.** 设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是一组 n 维向量,证明他们线性无关的充要条件是任一 n 维向量都可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示.