ACH2011 - Cálculo I

Sistema de Informação - EACH

Propriedade da soma: Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$ existem, então

$$\lim_{x \to a} f(x) + g(x) = L + M.$$

Prova: Pela definição precisa de limite, dado $\epsilon>0$, devemos encontrar $\delta>0$ tal que, se $0<|x-a|<\delta$ então

$$|f(x) + g(x) - (L+M)| < \epsilon.$$

Veja,

$$|f(x) + g(x) - (L + M)| = |f(x) + g(x) - L - M| = |(f(x) - L) + (g(x) - M)| \le |f(x) - L| + |g(x) - M|$$
 pela desigualdade triangular.

Se conseguimos provar que $|f(x)-L|<\frac{\epsilon}{2}$ e que $|g(x)-M|<\frac{\epsilon}{2}$ teremos

$$|f(x) + g(x) - (L+M)| \le |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

e com isso provaríamos nossa propriedade.

Porem, como $\lim_{x\to a} f(x) = L$, significa que dado $\epsilon_f > 0$, existe $\delta_f > 0$ tal que se $0 < |x-a| < \delta_f$ então

$$|f(x) - L| < \epsilon_f.$$

E como $\lim_{x\to a} g(x) = M$, significa que dado $\epsilon_g > 0$, existe $\delta_g > 0$ tal que se $0 < |x-a| < \delta_g$ então

$$|g(x) - M| < \epsilon_g.$$

(Veja que o ϵ das duas definições não tem porque ser o mesmo, por isso estou dando uma notação diferenciada para os dois (ϵ_f, ϵ_g) , e como δ depende de ϵ também usei esa mesma diferenciação (δ_f, δ_g) .

Agora como a definição de limite vale para todo ϵ , em particular é verdadeira para $\epsilon_f = \frac{\epsilon}{2}$ e $\epsilon_g = \frac{\epsilon}{2}$. Definimos $\delta = min\{\delta_f, \delta_g\}$, isto é, o mínimo entre δ_f e δ_g .

Logo, dado $\epsilon > 0$, seja $\delta = min\{\delta_f, \delta_g\}$, como $0 < |x-a| < \delta \le \delta_f$ então $|f(x)-L| < \epsilon_f = \frac{\epsilon}{2}$ e como $0 < |x-a| < \delta \le \delta_g$ então $|g(x)-M| < \epsilon_g = \frac{\epsilon}{2}$. Portanto

$$|f(x) + g(x) - (L+M)| \le |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

como queríamos.