Теорема Кронекера-Капелли

Рассмотрим произвольную систему уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Обозначим через A её матрицу коэффициентов, а через \widetilde{A} её расширенную матрицу:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \widetilde{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Теорема 1. (**Кронекера-Капелли**) СЛУ совместна \Leftrightarrow rk A = rk \widetilde{A} .

Rm: 1. По-другому теорема Кронекера-Капелли может быть названа критерием совместности.

Теорема 2. (критерий определенности) СЛУ определена $\Leftrightarrow \operatorname{rk} A = \operatorname{rk} \widetilde{A} = n$, где n - число неизвестных.

 \square (**І-ый способ**) Приведем матрицу \widetilde{A} ЭП строк к ступенчатому виду \widetilde{A}^* . По методу Гаусса мы знаем, что система совместна $\Leftrightarrow r_e(A^*) = r_e\left(\widetilde{A}^*\right)$ и там же, система определена $\Leftrightarrow r_e(A^*) = r_e\left(\widetilde{A}^*\right) = n$. По теореме о совпадении трёх видов рангов матрицы мы можем утверждать:

$$r_e(A^*) = \operatorname{rk} A \wedge r_e\left(\widetilde{A}^*\right) = \operatorname{rk} \widetilde{A}$$

(**ІІ-ый способ**) Набор чисел $(\lambda_1, \dots, \lambda_n)$ - решение СЛУ $\Leftrightarrow \lambda_1 A^{(1)} + \dots + \lambda_n A^{(n)} = b$, где b - столбец свободных членов.

Критерий совместности:

 (\Rightarrow) пусть у СЛУ существует решение \Leftrightarrow вектор-столбец b линейно выражается через $\{A^{(1)},\dots,A^{(n)}\}\Leftrightarrow\{A^{(1)},\dots,A^{(n)}\}$ и $\{A^{(1)},\dots,A^{(n)},b\}$ линейно эквивалентны \Rightarrow у линейно эквивалентных систем ранги совпадают:

$$\operatorname{rk}\left\{A^{(1)},\ldots,A^{(n)}\right\} = \operatorname{rk}\left\{A^{(1)},\ldots,A^{(n)},b\right\} \Leftrightarrow \operatorname{rk}A = \operatorname{rk}\widetilde{A}$$

 (\Leftarrow) Пусть $\mathrm{rk}\,A = \mathrm{rk}\,\widetilde{A}$, тогда базис $\left\{A^{(j_1)}, \ldots, A^{(j_r)}\right\}$ системы столбцов A является базисом и для \widetilde{A} , иначе ранг был бы больше $\Rightarrow b$ линейно выражается через $\left\{A^{(j_1)}, \ldots, A^{(j_r)}\right\} \Rightarrow$ тем более линейно выражается через все столбцы $\left\{A^{(1)}, \ldots, A^{(n)}\right\} \Rightarrow$ есть решение.

Критерий определенности: Будем считать нашу СЛУ совместной. Тогда $\operatorname{rk} A = \operatorname{rk} \widetilde{A}$ и существует линейное выражение столбца $b = \lambda_1 A^{(1)} + \ldots + \lambda_n A^{(n)}$. Следовательно, $\operatorname{rk} A = \operatorname{rk} \widetilde{A} = n \Leftrightarrow$ все столбцы матрицы коэффициентов $\{A^{(1)}, \ldots, A^{(n)}\}$ линейно независимы $\Rightarrow b$ выражается через $\{A^{(1)}, \ldots, A^{(n)}\}$ единственным способом \Rightarrow существует единственное решение СЛУ \Rightarrow она определена.

Пусть $\operatorname{rk} A = \operatorname{rk} \widetilde{A} < n \Leftrightarrow \exists \mu_i \neq 0 \colon \mu_1 A^{(1)} + \ldots + \mu_n A^{(n)} = 0 \Rightarrow b = (\mu_1 + \lambda_1) A^{(1)} + \ldots + (\mu_n + \lambda_n) A^{(n)}$ - другое линейное выражение $b \Rightarrow$ есть больше одного решения СЛУ \Rightarrow система неопределена.

Подпространства векторных пространств

Пусть V - векторное пространство.

Опр: 1. <u>Подпространством</u> пространства V называется непустое подмножество: $U\subseteq V,U\neq\varnothing$ для которого выполнены два свойства:

- 1) $\forall x, y \in U, x + y \in U$;
- 2) $\forall x \in U, \forall \lambda \in \mathbb{R}, \lambda \cdot x \in U;$

То есть подпространство это непустое подмножество, замкнутое относительно операций, которые мы умеем производить над векторами.

Опр: 2. Подпространства $U = \{0\}, U = V$ называются несобственными. Все остальные подпространства - собственные.

Свойства подпространств

Утв. 1. $\overrightarrow{0} \in U$.

 \square В самом деле, $U \neq \varnothing \Rightarrow \exists x \in U \Rightarrow 0 \cdot x = \overrightarrow{0} \in U$.

Утв. 2. U само является векторным пространством и операции на множестве U получаются ограничением операций на V.

 \square Операции не выходят за множество U по определению, аксиомы выполняются также автоматически, поскольку они выполняются на большем множестве V.

Примеры: геометрическое пространство

 $V = \{\text{геом. векторы в пространстве}\}, U = \{\text{геом. векторы на заданной плоскости в пространстве}\}.$

Рис. 1: Геометрические векторы в плоскости U пространства V.

□ Сумма двух векторов в плоскости снова будет лежать в плоскости, при умножении вектора на число мы не выходим за пределы этой плоскости, поэтому это будет подпространством. ■

Примеры: линейные оболочки

Пусть $S \subseteq V$ - система векторов.

Опр: 3. Линейной оболочкой S назовём множество всех линейных комбинаций векторов из S:

$$U = \langle S \rangle = \{ v = \lambda_1 v_1 + \ldots + \lambda_m v_m \mid v_i \in S, \, \lambda_i \in \mathbb{R} \}$$

Если $S = \varnothing \Rightarrow \langle S \rangle = \{\overrightarrow{0}\} \neq \varnothing$. Сумма в которой нет слагаемых по определению равна 0.

Если $S \neq \emptyset \Rightarrow \forall v_1, \dots, v_m \in S, \ 0 \cdot v_1 + \dots + 0 \cdot v_m = \overrightarrow{0} \in \langle S \rangle \Rightarrow \langle S \rangle \neq \emptyset.$

- 1) $\forall x, y \in \langle S \rangle$, $x + y = \lambda_1 v_1 + \ldots + \lambda_m v_m + \mu_1 v_1 + \ldots + \mu_m v_m = (\lambda_1 + \mu_1) v_1 + \ldots + (\lambda_m + \mu_m) v_m \in \langle S \rangle$;
- 2) $\forall x \in \langle S \rangle$, $\forall \lambda \in \mathbb{R}$, $\lambda \cdot x = \lambda \cdot \mu_1 v_1 + \ldots + \lambda \cdot \mu_m v_m = (\lambda \cdot \mu_1) v_1 + \ldots + (\lambda \cdot \mu_m) v_m \in \langle S \rangle$;

Опр: 4. Если $U = \langle S \rangle$, то говорят, что подмножество S порождает подпространство U.

 \mathbf{Rm} : 2. Заметим, что это наименьшее подпространство, содержащее S, поскольку если множество S лежит в каком-то подпространстве, то там же лежат и все линейные комбинации векторов из S.

Rm: 3. Также заметим, что линейная оболочка вссегда бесконечна, кроме того случая, когда является линейной оболочкой 0. В остальных случаях вместе с любым вектором она содержит и всю прямую.

Утв. 3. Если B - это базис в S, то B и базис в $\langle S \rangle$.

 \square Пусть $B = \{e_1, \dots, e_n\}$, тогда $\forall v \in S, v = \lambda_1 e_1 + \dots + \lambda_n e_n, \lambda_i \in \mathbb{R}, i = \overline{1, n}$. Тогда:

$$\forall w \in \langle S \rangle, \ w = \mu_1 v_1 + \ldots + \mu_m v_m, \ v_i = \sum_{j=1}^n \alpha_{ij} e_j \in S, \ i = \overline{1, m}, \ \alpha_{ij} \in \mathbb{R}, \ \forall i, j \Rightarrow$$

$$\Rightarrow w = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_i \alpha_{ij} e_j = \sum_{j=1}^{n} \sum_{i=1}^{m} \mu_i \alpha_{ij} e_j = w_1 e_1 + \ldots + w_n e_n, \ w_j \in \mathbb{R}, \ \forall j = \overline{1, n}$$

Следствие 1. dim $\langle S \rangle$ = rk S.

 \square Поскольку базисы у S и $\langle S \rangle$ одинаковые, то число векторов в них также одинаково.

Утв. 4. Любое подпространство U является линейной оболочкой своего базиса $B = \{e_1, \dots, e_m\}$.

 \square Базис по определению обладает тем свойством, что любой вектор из подпространства является линейной комбинацией векторов из базиса:

$$\forall u \in U, u = \mu_1 e_1 + \ldots + \lambda_m e_m, \mu_i \in \mathbb{R}, i = \overline{1, m}$$

Взяв все линейные комбинации базисных векторов мы получим все векторы из этого подпространства:

$$U = \{ u = \lambda_1 e_1 + \ldots + \lambda_m e_m \mid e_i \in B, \ \lambda_i \in \mathbb{R} \} = \langle \{ e_1, \ldots, e_m \} \rangle = \langle B \rangle$$

Фундаментальная система решений

Подпространства в арифметическом пространстве (а значит и в любом конечномерном пространстве) также можно задавать с помощью ОСЛУ.

Теорема 3. Рассмотрим произвольную ОСЛУ с матрицей коэффициентов A:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

Тогда множество её решений: $U \subseteq \mathbb{R}^n$ будет подпространством и $\dim U = n - \operatorname{rk} A$.

 \square Докажем, что U - подпространство.

Множество решений всегда содержит нулевой вектор: $(0, ..., 0) \in U \Rightarrow U \neq \emptyset$.

1) Пусть $y = (y_1, \dots, y_n), z = (z_1, \dots, z_n) \in U$, тогда будет верно:

$$\forall i = \overline{1, m}, \ a_{i1}y_1 + \ldots + a_{in}y_n = 0, \ a_{i1}z_1 + \ldots + a_{in}z_n = 0 \Rightarrow$$
$$\Rightarrow a_{i1}(y_1 + z_1) + \ldots + a_{in}(y_n + z_n) = 0 \Rightarrow y + z = (y_1 + z_1, \ldots, y_n + z_n) \in U$$

2) Пусть $y=(y_1,\ldots,y_n)\in U,\,\lambda\in\mathbb{R},$ тогда будет верно:

$$\forall i = \overline{1, m}, \ a_{i1}y_1 + \ldots + a_{in}y_n = 0 \Rightarrow \lambda \cdot (a_{i1}y_1 + \ldots + a_{in}y_n) = a_{i1} \cdot \lambda y_1 + \ldots + a_{in} \cdot \lambda y_n = 0 \Rightarrow a_{i1}(\lambda y_1) + \ldots + a_{in}(\lambda y_n) = 0 \Rightarrow \lambda \cdot y = (\lambda y_1, \ldots, \lambda y_n) \in U$$

Найдем базис подпространства $U \Rightarrow$ построим его (поскольку во всех базисах одинаковое число векторов, то нам не важно какой это будет базис). Воспользуемся методом Гаусса и приведем ОСЛУ к ступенчатому виду \Rightarrow возникают главные неизвестные: x_{j_1}, \ldots, x_{j_r} и свободные неизвестные: $x_j, j \neq j_1, \ldots, j_r$. Следовательно, мы получаем общее решение - выражение главных неизвестных через свободные:

$$\forall k = \overline{1, r}, \ x_{j_k} = \sum_{j \neq j_1, \dots, j_r} c_{kj} x_j$$

Поскольку наша система однородна, то в выражении выше не будет свободного члена. Подставляя вместо свободных неизвестных конкретные числовые значения, мы будем получать частные решения. Построим частное решение $v_j, \forall j \neq j_1, \ldots, j_r$ следующим образом:

$$x_{j} = 1, x_{i} = 0, \forall i \neq j_{1}, \dots, j_{r}, j \Rightarrow x_{j_{k}} = c_{kj}$$

Запишем это в векторной форме:

$$v_j = (0, \dots, c_{1j}, \dots, 0, \underset{j_1}{1}, 0, \dots, c_{rj}, \dots, 0)$$

Таких векторов у нас будет столько же, сколько и номеров свободных неизвестных, то есть n-r. Докажем, что их множество $\{v_j \mid j \neq j_1, \ldots, j_r\}$ и будет искомым базисом U.

Линейная независимость: Пусть произвольная линейная комбинация равна нулю:

$$\sum_{j \neq j_1, \dots, j_r} \lambda_j v_j = 0 \Rightarrow \forall j \neq j_1, \dots, j_r, \sum_{j \neq j_1, \dots, j_r} \lambda_j v_j = \lambda_j \cdot 1 + \sum_{i \neq j, j_1, \dots, j_r} \lambda_i \cdot 0 = \lambda_j = 0$$

<u>Порождает</u> U: Для любого решения $z=(z_1,\ldots,z_n)\in U$ рассмотрим новый вектор z', который является линейной комбинацией векторов v_j с коэффициентами, которые равны соответствующим координатам вектора z:

$$z' = \sum_{j \neq j_1, \dots, j_r} z_j v_j$$

По доказанному ранее, $z_j' = z_j, \forall j \neq j_1, \ldots, j_r \Rightarrow$ координаты свободных неизвестных совпадают \Rightarrow координаты главных неизвестных также будут совпадать, поскольку они однозначно выражаются через свободные из общего решения $\Rightarrow z_{j_k}' = z_{j_k}, \forall k = 1, \ldots, r \Rightarrow z = z'$. Следовательно, любое решение выражается в виде комбинации v_j .

Таким образом, мы доказали, что $\{v_j \mid j \neq j_1, \dots, j_r\}$ - базис $\Rightarrow \dim U = n - r = n - r_e(A^*)$, поскольку число главных неизвестных равно числу ненулевых строк в ступенчатой матрице. Следовательно:

$$\dim U = n - r_e(A^*) = n - \operatorname{rk} A$$

Опр: 5. Базис пространства U решений ОСЛУ называется фундаментальной системой решений (ФСР).

Неоднородная система линейных уравнений

Рассмотрим произвольную СЛУ:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

И свяжем с этой системой ОСЛУ, заменив свободные члены на нули:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

Опр: 6. Связанная с произвольной СЛУ однородная СЛУ называется ассоциированной.

Опр: 7. Динейным многообразием в пространстве \mathbb{R}^n называется подмножество $L \subseteq \mathbb{R}^n$ для которого $\exists v \in \mathbb{R}^n$ и $\exists U \subseteq \mathbb{R}^n$ такие, что:

$$L=v+U=\{y\in\mathbb{R}^n\mid y=v+z,\,z\in U\}$$

Rm: 4. То есть, линейное многообразие это по сути сдвиг подпространства на какой-то вектор, вообще говоря в этом подпространстве не лежащий.

Утв. 5. Пусть СЛУ совместна, $U \subseteq \mathbb{R}^n$ - пространство решений ассоциированной однородной СЛУ и $x^\circ = (x_1^\circ, \dots, x_n^\circ) \in \mathbb{R}^n$ - её частное решение. Тогда множество всех решений СЛУ имеет вид:

$$x^{\circ} + U = \{ y \in \mathbb{R}^n \mid y = x^{\circ} + z, z \in U \}$$

То есть множество решений неоднородной СЛУ является линейным многообразием.

 \square Надо показать, что два множества совпадают \Rightarrow покажем, что каждое решение СЛУ имеет вид $x^{\circ} + z, z \in U$ и наобоорт, что каждый вектор такого вида является решением.

 (\Rightarrow) Пусть \underline{y} - решение СЛУ $\Rightarrow \forall i = \overline{1,m}, \ a_{i1}y_1 + \ldots + a_{in}y_n = b_i,$ вместе с этим x° - тоже решение СЛУ, тогда: $\forall i = \overline{1,m}, \ a_{i1}x_1^{\circ} + \ldots + a_{in}x_n^{\circ} = b_i \Rightarrow$ вычтем одно решение из другого:

$$a_{i1}(y_1 - x_1^{\circ}) + a_{i2}(y_2 - x_2^{\circ}) + \ldots + a_{in}(y_n - x_n^{\circ}) = 0$$

Следовательно, вектор $z = y - x^{\circ} \in U \Rightarrow y = x^{\circ} + z$.

 (\Leftarrow) Если $z \in U \Rightarrow \forall i = \overline{1, m}, a_{i1}z_1 + \ldots + a_{in}z_n = 0$. Сложим это равенство с равенствами при частном решении на x° :

$$\forall i = \overline{1, m}, \ a_{i1}(x_1^{\circ} + z_1) + \ldots + a_{in}(x_n^{\circ} + z_n) = b_i$$

Таким образом, $y = x^{\circ} + z$, где $z \in U$ - произвольное, тоже будет решением исходной СЛУ.

Рис. 2: Геометрическое устройство множества решений произвольной неоднородной СЛУ.

Пример

Пусть n = 3, рассмотрим следующую СЛУ:

$$\{x_1 + 2x_2 + 4x_3 = 8$$

Её ассоциированная ОСЛУ будет иметь вид:

$$\{x_1 + 2x_2 + 4x_3 = 0$$

Система уже приведена к ступенчатому виду, тогда:

- 1) главные неизвестные: x_1 ;
- (2) свободные неизвестные: (x_2, x_3) ;
- 3) общее решение ОСЛУ: $x_1 = -2x_2 4x_3$;
- 4) общее решение СЛУ: $x_1 = 8 2x_2 4x_3$;

Обозначим $U \subseteq \mathbb{R}^3$ - пространство решений ОСЛУ, $\dim U = 3 - 1 = 2$. Получим ФСР, подставляя вместо какой-то свободной неизвестной 1, а остальным придаем значения 0 и находим значения главных неизвестных, тогда:

$$v_2 = (-2, 1, 0), v_3 = (-4, 0, 1)$$

Rm: 5. Фундаментальне решения нумеруются номерами тех свободных неизвестных, которым мы придаем значения 1.

Для описания линейного многообразия нам необходимо найти ещё какое-нибудь частное решение. Пусть все свободные неизвестные равны 0, тогда частное решение СЛУ будет иметь вид:

$$x^{\circ} = (8, 0, 0)$$

Изобразим графически множество решений. Выберем в пространстве координатные оси и будем по ним откладывать координаты: (x_1, x_2, x_3) . Тогда каждый вектор в этом геометрическом пространстве имеет три координаты и его можно отождествить с арифметическим вектором (с тройкой из этих координат). Пространство решений ОСЛУ будет двумерным \Rightarrow плоскостью.

Пересечение полученного множества с координатными осями будет в точках: (8,0,0), (0,4,0), (0,0,2). То есть множество решений нашей СЛУ из одного линейного уравнения это плоскость, содержащая треугольник построенный пунктирными линиями на графике.

Рис. 3: Построение множества решений СЛУ.

Отметим, что можно двигаться и в обратную сторону и по подпространству построить СЛУ, множеством решения которой будет является это подпространство.

Теорема 4.

- 1) Пусть $U \subset \mathbb{R}^n$ некоторое подпространство. Тогда существует ОСЛУ от переменных $x_1, \dots, x_n,$ множество решений которой равно U;
- 2) Пусть $L \subset \mathbb{R}^n$ линейное многообразие. Тогда существует СЛУ от n неизвестных, множество решений которой равно L;

1) Пусть $\{v_1, \dots, v_k\}$ - базис U, где: $v_i = (a_{i1}, a_{i2}, \dots, a_{in}), \forall i = \overline{1, k}$. Запишем СЛУ с матрицей коэффициентов A:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Рассмотрим ФСР для этой системы: $\{w_1, \ldots, w_m\}$, где $w_i = (c_{i1}, c_{i2}, \ldots, c_{in})$, $\forall i = \overline{1, m}$. Тогда по теореме 3 будет верно: $m = n - \operatorname{rk} A$, если $\operatorname{rk} A = k$, то m = n - k. Рассмотрим систему с матрицей коэффициентов C:

$$\begin{cases} c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = 0 \\ c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n = 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ c_{m1}x_1 + c_{m2}x_2 + \dots + c_{mn}x_n = 0 \end{cases}$$

Обозначим через V подпространство решений этой системы в \mathbb{R}^n . По построению v_1, \ldots, v_k - это решение этой системы. Следовательно, $U \subseteq V$. С другой стороны:

$$\dim V = n - \operatorname{rk} C = n - m$$

Таким образом, мы получаем: $n-m=n-(n-k)=k=\dim U=\dim V.$ А поскольку $U\subseteq V$ и $\dim U=\dim V,$ тогда U=V;

2) Если $L = \emptyset$, то система может быть экзотической:

$$0 \cdot x_1 + 0 \cdot x_2 + \ldots + 0 \cdot x_n = 1$$

Пусть $L \neq \emptyset$, тогда по определению линейного многообразия L = v + U, где $U \subseteq \mathbb{R}^n$ - подпространство. Пусть:

$$\begin{cases}
c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = 0 \\
c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n = 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_{m1}x_1 + c_{m2}x_2 + \dots + c_{mn}x_n = 0
\end{cases}$$

это однородная система с множеством решений U (существует по первому пункту). Пусть верно:

$$v = (\alpha_1, \dots, \alpha_n), b_i = c_{i1}\alpha_1 + c_{i2}\alpha_2 + \dots + c_{in}\alpha_n, \forall i = \overline{1, m}$$

Тогда система:

$$\begin{cases} c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = b_1 \\ c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1}x_1 + c_{m2}x_2 + \dots + c_{mn}x_n = b_m \end{cases}$$

будет СЛУ, множество решений которой равно L, то есть мы получили искомую СЛУ.