НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ім. Ігоря СІКОРСЬКОГО» ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Протокол до лабораторної роботи **КІЛЬЦЯ НЬЮТОНА**

Виконали студенти групи ФІ-81

Кармазін А.О. Корешков М.О. Прохоренко О.С. Шкаліков О.В.

Перевірив: Долгошей В.Б.

Теоретична частина

Кільця Ньютона утворюються при інтерференції світлових хвиль, відбитих від границь тонкого повітряного прошарку, який знаходиться між опуклою поверхнею лінзи і плоскою скляною пластинкою (рис.1). Спостереження ведеться у відбитому світлі.

Нехай на систему згори падає монохроматичний паралельний пучок променів. Частина променів (промінь 1 на рис. 1) відбивається від верхнього краю пластини, а інша частина (промінь 2 на рис. 1) від нижнього краю лінзи. Промені 1 та 2 когерентні, але між ними виникає різниця ходу. Роль тонкої плівки виконує повітряний проміжок між пластиною та лінзою. Нехай на систему згори падає монохроматичний паралельний пучок променів.

В першому наближені, як що знехтувати невеликим нахилом променів у повітряному зазорі, геометрична різниця дорівнює

$$\delta' = 2(d_0 + d) \tag{1}$$

де d_0 - товщина зазору в місці контакту лінзи та пластини, яка може бути як додатною, наприклад, за наявності часток пилу між лінзою та пластиною, який викликає деформацію; $d_0 + d$ - товщина повітряного зазору на відстані r_m від центру лінзи. Для того, щоб визначити повну різницю ходу d треба прийняти до уваги зміну фаз світлової хвилі під час

Рис. 1: Утворення кілець Ньютона

відбиття від гранці поділу скло-повітря, коли показник заломлення першого середовища більше за показник заломлення другого, та під час відбиття від гранці повітря-скло, коли навпаки показник заломлення першого середовища менше за показник заломлення другого. Відомо, що для електричного вектора у першому випадку відбиття відбувається без зміни фаз, а в другому призводить до зміни фаз на π ; фаза магнітного вектора, навпаки, змінюється на π тільки під час першого відбиття. Таким чином, промені 1 і 2 набувають різниці фаз π , що відповідає додатковій різниці ходу $\frac{\lambda}{2}$, а повна різниця ходу:

$$\delta = 2(d_0 + d) + \frac{\lambda}{2} \tag{2}$$

Якщо форма лінзи близька до сферичної з радіусом кривизни $R\gg r_m$, то з геометричних міркувань $r_m^2=2Rd$ і:

$$\delta = \frac{r_m^2}{R} + 2d_0 + \frac{\lambda}{2} \tag{3}$$

Якщо повна різниця ходу дорівнює $\lambda\left(m+\frac{1}{2}\right)$, то промені 1 і 2 гаситимуть один одного і спостерігатимуться темні плями(кільця). Радіус цих кілець легко розрахувати за формулою:

$$r_{\text{\tiny TEM}}^2 = R(\lambda m - 2d_0) \tag{4}$$

Аналогічно, для радіуса світлих кілець маємо:

$$r_{\text{cBiT}}^2 = R(\lambda m - 2d_0 - \frac{\lambda}{2}) \tag{5}$$

Отже, за графіком залежності $r^2(m)$ від номеру кільця можна визначити радіус кривизни лінзи, а також величину проміжку в місці контакту.

Хід роботи

В даній лабораторній роботі кільця Ньютона досліджується за допомогою мікроскопа. На столику мікроскопа розташоване держак, на якому розміщується досліджувана лінза з пластиною. В одному з окулярів мікроскопа встановлюється освітювач, що генерує пучок променів, паралельних тим, що падають в околі спостерігача. Для монохроматизації пучка перед освітлювачем встановлюють фільтр. В комплект входять 7 фільтрів, що створюють монохроматичні пучки, довжини хвилі яких наведені в таблиці 1.

Колір	Дожина швилі λ (нм)		
Фіолетовий	404 ± 10		
Синій	434 ± 10		
Блакитний	486 ± 10		
Зелений	546 ± 10		
Жовтий	586 ± 10		
Оранжевий	656 ± 10		
Червоний	706 ± 10		

Табл. 1: Довжини хвиль

На початку експерименту рекомендуються знайти кільця Ньютона в білому світлі (без фільтра) і сфокусувати мікроскоп під своє око. Перехрестя шкал мікроскопа повинно проходити через центр кілець. Після цього можна встановити фільтр і переходити до безпосередніх вимірювань радіусу кілець. Для вимірювань на окулярі мікроскопа нанесено спеціальну шкалу з поділками. Ціну поділки для кожного значення збільшення вказано в інструкції до мікроскопа.

Вимірювати радіус кілець слід від центру системи до середини кільця. Для збільшення точності рекомендуємо після першої серії вимірів із заданим фільтром повернути лінзу на 90° навколо вертикальної осі і повторити виміри. Якщо робота виконується двома студентами, то рекомендуємо провести виміри кожному з студентів, а потім порівняти й усереднити одержані результати.

- 1. Виміряйте радіуси темних та світлих кілець для усіх наявних фільтрів, Побудуйте графіки залежностей квадрату радіусів від номеру кільця.
- 2. За графіками визначте нахил прямих і розрахуйте радіус кривизни таблиці фокусну відстань. Оцініть похибку експерименту.
- 3. Оцініть діаметр плями стику лінзи зі скляною пластинкою.

Практична частина

Фільтр	Кільце	R_{cbit}	$R_{\scriptscriptstyle \mathrm{TEM}}$
червоний	1	1	1.07
	2	1.15	1.25
	3	1.35	1.4
	4	1.5	1.55
	5	1.6	1.65
помаранчевий	1	1	1.1
	2	1.2	1.29
	3	1.35	1.41
	4	1.46	1.5
	5	1.56	1.6
зелений	1	0.93	1.03
	2	1.12	1.17
	3	1.25	1.31
	4	1.36	1.41
	5	1.44	1.50
синій	1	0.99	1.08
	2	1.18	1.22
	3	1.32	1.36
	4	1.41	1.46
	5	1.47	1.50

Табл. 2: Дослідні дані

Висновки

Відповіді на контрольні питання

- 1. Від чого залежить кількість спостережуваних кілець?
- 2. Чому кільця, що спостерігаються мають райдужне забарвлення?
- 3. Чому по мірі віддалення від центру кільця розташовуються ближче один до одного?
- 4. Що станеться з кільцями Ньютона, якщо проміжок між лінзою і пластинкою заповнити рідиною?
- 5. Чи можна при спостережені кілець Ньютона у відбитому світлі отримати в центрі не темне, а світле кільце? Якщо так, то сформулюйте умови, які для цього необхідні.