Monoxide: Scale out Blockchains with Asynchronous Consensus Zones

Jiaping Wang, Hao Wang USENIX NSDI 2019

Background

➤ Block Structure & Proof-of-Work (PoW)

Background

≻TPS

Transaction confirming throughput measured as transaction-per-second (TPS)

►51% attack

Problem & Goal

≻Problem

low throughput has significantly hindered the scalability and usability of cryptocurrency systems for increasing numbers of users and transactions

≻Goal

high throughput without weakening decentralization or security

Challenges

➤ How to increase throughput for blockchain

➤ How to efficient handling of cross-zone transactions

➤ How to prevent 51% attacks against a single zone

Asynchronous Consensus Zones

Divide the blockchain network into multiple independent and parallel Zones

- Build a blockchain within each consensus zone
- Miners mine in their own Zone through PoW

Asynchronous Consensus Zones

Zone Count : $n = 2^k$

Cross-Zone Transactions - transaction process

Complete transaction = Initiate TX + Relay TX

- 1. Initiate transaction in zone A was successfully packaged
- 2. Relay TX is passed to zone B
- The transaction is packaged in zone B

Cross-Zone Transactions - block design

- Chaining-Block: the chain formation and the PoW verification
- Transaction-Block : carrying actual confirmed transactions

= the previous

Outbound Relay: collection of all Relay TX

block body Forwarded Relay TX of 0 Transaction-Block Φ^a Transaction-Block Φ^b Outbound Relay TX Chaining-Block Oa Chaining-Block $\mathbf{\Theta}^b$ Relay Transaction 0 Transaction 0 Transaction 0 ψ : Forwarded Relay TX of x Version Version Sharding Scale kTransaction n' Transaction x Relay Transaction xSharding Scale kSharding Scale kInbound Relay TX 0 Shard Index s Transaction n Shard Index s Shard Index s' Relay Transaction r Height of Originate Block t Inbound Relay TX 0 Hash of Previous Chaining-Block Inbound Relay TX x Hash of Previous Chaining-Block Position p of TX x in Outbound List **Timestamp** Timestamp Inbound Relay TX m Relay Transaction $x(\boldsymbol{\phi}, \boldsymbol{b})$ Inbound Relay TX m' **PoW Target PoW Target** Coinbase Transaction Coinbase Transaction Merkle Tree Path h_q to TX xPoW Nonce PoW Nonce Merkle Root (Confirmed TX) Merkle Root (Confirmed TX) Forwarded Relay TX of m' Merkle Root (Outbound Relay TX) Merkle Root (Outbound Relay TX) Zone B Zone A

difference

Cross-Zone Transactions - guaranteed atomicity

- Relay Tx will never expire before being passed to the target zone
- In case of accidental loss, Relay TX can be rebuilt from the original Zone

Chu-ko-nu Mining

Main idea: a miner use **a single PoW solution** to create **multiple blocks** at different zones simultaneously, but **no more than one block per-zone**

- For honest miners: can get more rewards
- For malicious miners: competing with **more miners**, when the batch size is large enough, the effect is similar to mining in the whole network

Evaluation-Transaction distribution & Throughput

- Transaction distribution
 - -Transactions handled in each zone are balanced
 - -Single Address Hotspot
 - e.g., a deposit address of a large
 - cryptocurrency exchange
 - 0x3f5CE5FBFe3E9af3971dD833D26bA9b5C936f0bE (Binance)

-achieves up to 11,694.89 TPS when there are 2,048 zones

Figure 7: Transaction distribution across zones.

Figure 6: Linear scaling out with multiple zones.

Evaluation-Overhead

• Proportion of cross-zone transactions

Figure 8: Percentage of cross-zone transactions, which approaches to 100%. Almost every original transaction produced a relay transaction.

• Storage overhead

Figure 9: Sizes of the blockchain data in the entire network.

Conclusion

