Introduction to Time Series Analysis. Lecture 8.

- 1. Review: Linear prediction, projection in Hilbert space.
- 2. Forecasting and backcasting.
- 3. Prediction operator.
- 4. Partial autocorrelation function.

Linear prediction

Given X_1, X_2, \dots, X_n , the best linear predictor

$$X_{n+m}^n = \alpha_0 + \sum_{i=1}^n \alpha_i X_i$$

of X_{n+m} satisfies the **prediction equations**

$$E\left(X_{n+m} - X_{n+m}^{n}\right) = 0$$

$$E\left[\left(X_{n+m} - X_{n+m}^{n}\right)X_{i}\right] = 0 \quad \text{for } i = 1, \dots, n.$$

This is a special case of the *projection theorem*.

Projection theorem

If \mathcal{H} is a Hilbert space, \mathcal{M} is a closed subspace of \mathcal{H} , and $y \in \mathcal{H}$, then there is a point $Py \in \mathcal{M}$ (the **projection of** y **on** \mathcal{M}) satisfying

1.
$$||Py - y|| \le ||w - y||$$

$$2. \langle y - Py, w \rangle = 0$$

for $w \in \mathcal{M}$.

Projection theorem for linear forecasting

Given $1, X_1, X_2, \ldots, X_n \in \{\text{r.v.s } X : EX^2 < \infty\}$, choose $\alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ so that $Z = \alpha_0 + \sum_{i=1}^n \alpha_i X_i$ minimizes $E(X_{n+m} - Z)^2$.

Here,
$$\langle X, Y \rangle = \mathrm{E}(XY)$$
, $\mathcal{M} = \{Z = \alpha_0 + \sum_{i=1}^n \alpha_i X_i : \alpha_i \in \mathbb{R}\} = \bar{\mathrm{sp}}\{1, X_1, \dots, X_n\}$, and $y = X_{n+m}$.

Projection theorem: Linear prediction

Let X_{n+m}^n denote the best linear predictor:

$$||X_{n+m}^n - X_{n+m}||^2 \le ||Z - X_{n+m}||^2$$
 for all $Z \in \mathcal{M}$.

The projection theorem implies the orthogonality

$$\langle X_{n+m}^n - X_{n+m}, Z \rangle = 0 \quad \text{for all } Z \in \mathcal{M}$$

$$\Leftrightarrow \quad \langle X_{n+m}^n - X_{n+m}, Z \rangle = 0 \quad \text{for all } Z \in \{1, X_1, \dots, X_n\}$$

$$\Leftrightarrow \quad \frac{\operatorname{E} \left(X_{n+m}^n - X_{n+m} \right) = 0}{\operatorname{E} \left[\left(X_{n+m}^n - X_{n+m} \right) X_i \right] = 0}$$

Linear prediction

That is, the prediction errors $(X_{n+m}^n - X_{n+m})$ are orthogonal to the prediction variables $(1, X_1, \dots, X_n)$.

Orthogonality of prediction error and 1 implies we can subtract μ from all variables $(X_{n+m}^n$ and $X_i)$. Thus, for forecasting, we can assume $\mu = 0$.

One-step-ahead linear prediction

Write
$$X_{n+1}^n = \phi_{n1} X_n + \phi_{n2} X_{n-1} + \dots + \phi_{nn} X_1$$

 $E((X_{n+1}^n - X_{n+1})X_i) = 0, \text{ for } i = 1, \dots, n$ Prediction equations:

$$\sum_{i=1}^{n} \phi_{nj} E(X_{n+1-j} X_i) = E(X_{n+1} X_i)$$

$$\sum_{j=1}^{n} \phi_{nj} \gamma(i-j) = \gamma(i)$$

$$\Gamma_n \phi_n = \gamma_n,$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

One-step-ahead linear prediction

Prediction equations: $\Gamma_n \phi_n = \gamma_n$.

$$\Gamma_n = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \gamma(n-2) \\ \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix},$$

$$\phi_n = (\phi_{n1}, \phi_{n2}, \dots, \phi_{nn})', \quad \gamma_n = (\gamma(1), \gamma(2), \dots, \gamma(n))'.$$

Mean squared error of one-step-ahead linear prediction

$$P_{n+1}^{n} = E (X_{n+1} - X_{n+1}^{n})^{2}$$

$$= E ((X_{n+1} - X_{n+1}^{n}) (X_{n+1} - X_{n+1}^{n}))$$

$$= E (X_{n+1} (X_{n+1} - X_{n+1}^{n}))$$

$$= \gamma(0) - E (\phi'_{n} X X_{n+1})$$

$$= \gamma(0) - \gamma'_{n} \Gamma_{n}^{-1} \gamma_{n},$$

where $X = (X_n, X_{n-1}, \dots, X_1)'$.

Mean squared error of one-step-ahead linear prediction

Variance is reduced:

$$\begin{split} P_{n+1}^n &= \mathbb{E} \left(X_{n+1} - X_{n+1}^n \right)^2 \\ &= \gamma(0) - \gamma_n' \Gamma_n^{-1} \gamma_n \\ &= \mathbb{V}\mathrm{ar}(X_{n+1}) - \mathbb{C}\mathrm{ov}(X_{n+1}, X) \mathbb{C}\mathrm{ov}(X, X)^{-1} \mathbb{C}\mathrm{ov}(X, X_{n+1}) \\ &= \mathbb{E} \left(X_{n+1} - 0 \right)^2 - \mathbb{C}\mathrm{ov}(X_{n+1}, X) \mathbb{C}\mathrm{ov}(X, X)^{-1} \mathbb{C}\mathrm{ov}(X, X_{n+1}), \end{split}$$
 where $X = (X_n, X_{n-1}, \dots, X_1)'.$

Introduction to Time Series Analysis. Lecture 8.

- 1. Review: Linear prediction, projection in Hilbert space.
- 2. Forecasting and backcasting.
- 3. Prediction operator.
- 4. Partial autocorrelation function.

Backcasting: Predicting m **steps in the past**

Given X_1, \ldots, X_n , we wish to predict X_{1-m} for m > 0.

That is, we choose $Z \in \mathcal{M} = \bar{\operatorname{sp}} \{X_1, \dots, X_n\}$ to minimize $\|Z - X_{1-m}\|^2$.

The prediction equations are

$$\langle X_{1-m}^n - X_{1-m}, Z \rangle = 0 \quad \text{for all } Z \in \mathcal{M}$$

$$\Leftrightarrow \qquad \mathsf{E}\left(\left(X_{1-m}^n - X_{1-m}\right) X_i\right) = 0 \quad \text{for } i = 1, \dots, n.$$

One-step backcasting

Write the least squares prediction of X_0 given X_1, \ldots, X_n as

$$X_0^n = \phi_{n1}X_1 + \phi_{n2}X_2 + \dots + \phi_{nn}X_n = \phi'_n X,$$

where the predictor vector is reversed: now $X = (X_1, \dots, X_n)'$. The prediction equations are

$$E\left(\left(X_0^n - X_0\right) X_i\right) = 0 \quad \text{for } i = 1, \dots, n$$

$$\Leftrightarrow \qquad E\left(\left(\sum_{j=1}^n \phi_{nj} X_j - X_0\right) X_i\right) = 0$$

$$\Leftrightarrow \qquad \sum_{j=1}^n \phi_{nj} \gamma(j-i) = \gamma(i)$$

$$\Leftrightarrow \qquad \Gamma_n \phi_n = \gamma_n.$$

One-step backcasting

The prediction equations are

$$\Gamma_n \phi_n = \gamma_n,$$

which is exactly the same as for forecasting, but with the indices of the predictor vector reversed: $X = (X_1, \dots, X_n)'$ versus $X = (X_n, \dots, X_1)'$.

Example: Forecasting AR(1)

AR(1) model:

 $X_t = \phi_1 X_{t-1} + W_t$

linear prediction of X_2 :

 $X_2^1 = \phi_{11} X_1$

Prediction equation:

$$\gamma(0)\phi_{11} = \gamma(1)$$
$$= \operatorname{Cov}(X_0, X_1)$$

 $=\phi_1\gamma(0)$

 \Leftrightarrow

$$\phi_{11} = \phi_1.$$

Example: Backcasting AR(1)

AR(1) model:

$$X_t = \phi_1 X_{t-1} + W_t$$

linear prediction of X_0 :

$$X_0^1 = \phi_{11} X_1$$

Prediction equation:

$$\gamma(0)\phi_{11} = \gamma(1)$$

$$= \operatorname{Cov}(X_0, X_1)$$

$$= \phi_1 \gamma(0)$$

$$\Leftrightarrow$$

$$\phi_{11} = \phi_1.$$

Introduction to Time Series Analysis. Lecture 8.

- 1. Review: Linear prediction, projection in Hilbert space.
- 2. Forecasting and backcasting.
- 3. Prediction operator.
- 4. Partial autocorrelation function.

The prediction operator

For random variables Y, Z_1, \ldots, Z_n , define the **best linear prediction of** Y **given** $Z = (Z_1, \ldots, Z_n)'$ as the operator $P(\cdot|Z)$ applied to Y:

with
$$P(Y|Z) = \mu_Y + \phi'(Z - \mu_Z)$$
 with
$$\Gamma \phi = \gamma,$$
 where
$$\gamma = \text{Cov}(Y,Z)$$

$$\Gamma = \text{Cov}(Z,Z).$$

Properties of the prediction operator

1.
$$E(Y - P(Y|Z)) = 0$$
, $E((Y - P(Y|Z))Z) = 0$.

2.
$$E((Y - P(Y|Z))^2) = Var(Y) - \phi' \gamma$$
.

3.
$$P(\alpha_1 Y_1 + \alpha_2 Y_2 + \alpha_0 | Z) = \alpha_0 + \alpha_1 P(Y_1 | Z) + \alpha_2 P(Y_2 | Z)$$
.

4.
$$P(Z_i|Z) = Z_i$$
.

5.
$$P(Y|Z) = EY \text{ if } \gamma = 0.$$

Example: predicting m steps ahead

Write
$$X_{n+m}^{n} = \phi_{n1}^{(m)} X_{n} + \phi_{n2}^{(m)} X_{n-1} + \dots + \phi_{nn}^{(m)} X_{1}$$

$$\Gamma_{n} \phi_{n}^{(m)} = \gamma_{n}^{(m)},$$
with
$$\Gamma_{n} = \text{Cov}(X, X),$$

$$\gamma_{n}^{(m)} = \text{Cov}(X_{n+m}, X)$$

$$= (\gamma(m), \gamma(m+1), \dots, \gamma(m+n-1))'.$$
Also,
$$E((X_{n+m} - X_{n+m}^{n})^{2}) = \gamma(0) - \phi^{(m)'} \gamma_{n}^{(m)}.$$

Introduction to Time Series Analysis. Lecture 8.

- 1. Review: Linear prediction, projection in Hilbert space.
- 2. Forecasting and backcasting.
- 3. Prediction operator.
- 4. Partial autocorrelation function.

Partial autocovariance function

AR(1) model:
$$X_t = \phi_1 X_{t-1} + W_t$$

$$\gamma(1) = \text{Cov}(X_0, X_1) = \phi_1 \gamma(0)$$

$$\gamma(2) = \text{Cov}(X_0, X_2)$$

$$= \text{Cov}(X_0, \phi_1 X_1 + W_2)$$

$$= \text{Cov}(X_0, \phi_1^2 X_0 + \phi_1 W_1 + W_2)$$

$$= \phi_1^2 \gamma(0).$$

Clearly, X_0 and X_2 are correlated through X_1 .

In the PACF, we remove this dependence by considering the covariance of the *prediction errors* of X_2^1 and X_0^1 .

Partial autocovariance function

For AR(1) model:
$$X_2^1 = \phi_1 X_1$$
,
$$X_0^1 = \phi_1 X_1$$
, so
$$Cov(X_2^1 - X_2, X_0^1 - X_0) = Cov(\phi_1 X_1 - X_2, \phi_1 X_1 - X_0)$$
$$= Cov(W_2, \phi_1 X_1 - X_0)$$
$$= 0.$$

Partial autocorrelation function

The Partial AutoCorrelation Function (PACF) of a stationary time series $\{X_t\}$ is

$$\phi_{11} = \text{Corr}(X_1, X_0) = \rho(1)$$

$$\phi_{hh} = \text{Corr}(X_h - X_h^{h-1}, X_0 - X_0^{h-1}) \quad \text{for } h = 2, 3, \dots$$

This removes the linear effects of X_1, \ldots, X_{h-1} :

$$\dots, X_{-1}, \underline{X_0}, \underbrace{X_1, X_2, \dots, X_{h-1}}, \underline{X_h}, X_{h+1}, \dots$$

Partial autocorrelation function

The PACF ϕ_{hh} is also the last coefficient in the best linear prediction of X_{h+1} given X_1, \ldots, X_h :

$$\Gamma_h \phi_h = \gamma_h \qquad X_{h+1}^h = \phi_h' X$$
$$\phi_h = (\phi_{h1}, \phi_{h2}, \dots, \phi_{hh}).$$

Example: Forecasting an AR(p)

For
$$X_t = \sum_{i=1}^p \phi_i X_{t-i} + W_t$$
,
 $X_{n+1}^n = P(X_{n+1}|X_1, \dots, X_n)$
 $= P\left(\sum_{i=1}^p \phi_i X_{n+1-i} + W_{n+1}|X_1, \dots, X_n\right)$
 $= \sum_{i=1}^p \phi_i P(X_{n+1-i}|X_1, \dots, X_n)$
 $= \sum_{i=1}^p \phi_i X_{n+1-i}$ for $n \ge p$.

Example: PACF of an AR(p)

For
$$X_t = \sum_{i=1}^{p} \phi_i X_{t-i} + W_t$$
,

$$X_{n+1}^n = \sum_{i=1}^p \phi_i X_{n+1-i}.$$

Thus,
$$\phi_{hh} = \begin{cases} \phi_h & \text{if } 1 \le h \le p \\ 0 & \text{otherwise.} \end{cases}$$

Example: PACF of an invertible MA(q)

For
$$X_t = \sum_{i=1}^q \theta_i W_{t-i} + W_t$$
, $X_t = -\sum_{i=1}^\infty \pi_i X_{t-i} + W_t$,
 $X_{n+1}^n = P(X_{n+1}|X_1, \dots, X_n)$
 $= P\left(-\sum_{i=1}^\infty \pi_i X_{n+1-i} + W_{n+1}|X_1, \dots, X_n\right)$
 $= -\sum_{i=1}^\infty \pi_i P\left(X_{n+1-i}|X_1, \dots, X_n\right)$
 $= -\sum_{i=1}^n \pi_i X_{n+1-i} - \sum_{i=1}^\infty \pi_i P\left(X_{n+1-i}|X_1, \dots, X_n\right)$.

In general, $\phi_{hh} \neq 0$.

ACF of the MA(1) process

ACF of the **AR**(1) process

PACF of the MA(1) process

PACF of the AR(1) process

PACF and ACF

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays

Sample PACF

For a realization x_1, \ldots, x_n of a time series, the **sample PACF** is defined by

$$\hat{\phi}_{00} = 1$$

$$\hat{\phi}_{hh} = \text{last component of } \hat{\phi}_h,$$

where
$$\hat{\phi}_h = \hat{\Gamma}_h^{-1} \hat{\gamma}_h$$
.

Introduction to Time Series Analysis. Lecture 8.

- 1. Review: Linear prediction, projection in Hilbert space.
- 2. Forecasting and backcasting.
- 3. Prediction operator.
- 4. Partial autocorrelation function.