Ds 1

le 15/09/2016

Exercice 1.

(d'après Bce 2013 Ect)

Soit M la matrice $M = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. On considère aussi les deux suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ définies à l'aide de leurs premiers termes $a_0 = 0$ et $b_0 = 1$ et les relations : $\forall n \in \mathbb{N}$: $\begin{cases} a_{n+1} = 2a_n + b_n \\ b_{n+1} = 2b_n. \end{cases}$

- 1. Montrer par récurrence que $M^n = \begin{bmatrix} b_n & a_n \\ 0 & b_n \end{bmatrix}$ pour tout entier naturel n.
- **2.** Justifier que $(b_n)_{n\in\mathbb{N}}$ est une suite remarquable. En déduire, pour tout entier naturel n, une expression de b_n en fonction de n. Établir que pour tout entier naturel n, on a $a_{n+1} = 2a_n + 2^n$.
- **3.** Soit $(c_n)_{n\in\mathbb{N}}$ la suite définie par $c_n=\frac{a_n}{2^n}$, pour tout entier naturel n.
 - a) Justifier que $(c_n)_{n\in\mathbb{N}}$ est arithmétique de raison $\frac{1}{2}$ et donner son premier terme.
 - b) En déduire une expression de c_n en fonction de n pour tout entier naturel n.
 - c) Déduire des questions précédentes que pour tout entier $n \in \mathbb{N}$, on a : $a_n = n2^{n-1}$.
- **4.** En déduire les quatre coefficients de M^n pour tout entier n.
- 5. Application au calcul d'une somme
 - a) Justifier que les termes de la suite $(a_n)_{n\in\mathbb{N}}$ vérifient :

$$a_k = a_{k+1} - a_k - 2^k$$
, pour tout entier naturel k

- **b)** Montrer que pour tout entier $n \in \mathbb{N}$, on a : $\sum_{k=0}^{n} (a_{k+1} a_k) = a_{n+1}$.
- c) Pour tout entier naturel n, calculer $\sum_{k=0}^{n} 2^{k}$.
- d) Déduire des questions précédentes et de 3.c) que $\sum_{k=0}^{n} k2^{k-1} = (n-1)2^n + 1$, pour tout $n \in \mathbb{N}$.
- 6. Application au calcul des puissances d'une autre matrice

On considère les matrices $A = \frac{1}{2} \begin{bmatrix} 5 & 1 \\ -1 & 3 \end{bmatrix}$ et $P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$.

- a) Montrer en utilisant la méthode du pivot de Gauss que P est inversible et calculer P^{-1} .
- b) Vérifier que $P^{-1}AP = M$.
- c) Établir que $P^{-1}A^nP=M^n$. En déduire les quatre coefficients de A^n .

Exercice 2.

(d'après Ecricome ect 2009 (adaptation libre))

On étudie la fonction f définie sur $[0\,;1[$ par :

$$\forall x \in [0; 1[, f(x) = \frac{e^{-x}}{1-x}].$$

On définit aussi la fonction g définie sur [0;1[par :

$$\forall x \in [0; 1[, \quad g(x) = \frac{x}{1-x}]$$

Partie I : Étude de f et tracé de $\mathcal C$

- 1. Montrer que les fonctions f et g sont de classe \mathcal{C}^{∞} sur [0;1].
- 2. Valeurs et limites de f
 - a) Calculer f(0).
 - **b)** Calculer $f\left(\frac{1}{2}\right)$, sous forme exacte et approchée (on utilisera $\frac{1}{\sqrt{e}} \simeq 0.6.$)
 - c) Calculer $\lim_{x\to 1^-} f(x)$.
- 3. Étude de g
 - a) Quel est le signe de g sur [0;1[?
 - **b)** Montrer que $\forall x \in [0; 1[, g(x) = \frac{1}{1-x} 1]$.
 - c) Montrer que $\forall x \in [0; 1[, g'(x) = \frac{1}{(1-x)^2}]$.
- 4. Variations de f
 - a) Montrer que $\forall x \in [0; 1[, f'(x) = \frac{x e^{-x}}{(1-x)^2}]$.
 - **b)** Vérifier que $\forall x \in [0; 1[$, on a f'(x) = f(x) g(x).
 - c) En déduire le tableau de variations de la fonction f sur [0;1[.
- 5. Étude de la convexité de f
 - a) Montrer que $\forall x \in I$, $f''(x) = \frac{x^2 + 1}{(1 x)^3} e^{-x}$.

 (On pourra utiliser l'écriture de 4.b) et en déduire $f''(x) = f(x) \left[g^2(x) + g'(x) \right]$)
 - b) En déduire la convexité de f sur [0;1[.
- 6. Tracé de la courbe $\mathcal C$ représentative de f
 - a) Que dire de la tangente à \mathcal{C} en 0?
 - **b)** Que dire de la courbe \mathcal{C} en 1?
 - c) Tracer la courbe \mathcal{C} avec une échelle adaptée. On illustrera les réponses aux questions **6.a**) et **6.b**) et on placera $f\left(\frac{1}{2}\right)$.

Partie II : Encadrement de la valeur d'une intégrale

On se propose dans cette partie de déterminer deux encadrements de l'intégrale I suivante :

$$I = \int_0^{\frac{1}{2}} f(x) \, \mathrm{d}x$$

On ne cherchera pas à calculer cette intégrale.

- 7. Interpréter l'intégrale I en terme d'aire d'un domaine que l'on hachurera sur le schéma de la question 6.c)
- 8. Montrer que $\forall x \in [0; \frac{1}{2}]$ $1 \leqslant f(x) \leqslant \frac{2}{\sqrt{e}}$. En déduire l'encadrement $\frac{1}{2} \leqslant I \leqslant \frac{1}{\sqrt{e}}$.
- **9.** Montrer que : $\forall x \in [0; \frac{1}{2}], \quad \frac{1}{1-x} = 1 + x + \frac{x^2}{1-x}.$ En déduire que : $I = \int_0^{\frac{1}{2}} (1+x) e^{-x} dx + \int_0^{\frac{1}{2}} x^2 f(x) dx.$
- **10.** Effectuer une intégration par parties pour calculer $\int_0^{\frac{1}{2}} (1+x) e^{-x} dx$.
- 11. En utilisant l'encadrement de 8., montrer que $\frac{1}{24} \leqslant \int_0^{\frac{1}{2}} x^2 f(x) dx \leqslant \frac{1}{12\sqrt{e}}$. En déduire un deuxième encadrement de I.

Exercice 3.

(d'après EmLyon 2013 Ece)

Partie I - Calcul d'une intégrale dépendant d'un paramètre

On considère l'application $g:[0;1] \longrightarrow \mathbb{R}$ définie, pour tout $t \in [0;1]$, par :

$$g(t) = \begin{cases} -t \ln(t) & \text{si } 0 < t \le 1\\ 0 & \text{si } t = 0 \end{cases}$$

- **1.** Montrer que g est continue sur [0;1].
- 2. À l'aide d'une intégration par parties, calculer, pour tout $x \in]0;1[$, l'intégrale $\int_x^1 g(t) dt$.
- **3.** En déduire que l'intégrale $\int_0^1 g(t) dt$ converge et que : $\int_0^1 g(t) dt = \frac{1}{4}$.

Partie II - Exemple de densité

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $\forall t \in \mathbb{R}: f(t) = \begin{vmatrix} -t \ln t + t^{1/3} & \text{si } 0 < t < 1 \\ 0 & \text{sinon} \end{vmatrix}$

- **4.** Montrer que f est continue sur $]-\infty$; 1[et sur $]1; +\infty[$. Est-ce que f est continue en 1?
- **5.** Etablir que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et que $\int_{-\infty}^{+\infty} f(t) dt = 1$.
- **6.** Montrer que f est une densité.
- 7. a) Montrer que f est de classe C^2 sur]0;1[et calculer f'(t) et f''(t) pour tout $t \in]0;1[$.
 - b) En déduire que l'équation f'(t)=0 d'inconnue $t\in]0\,;1[$, admet une solution et une seule, notée α , et montrer : $\frac{1}{\mathrm{e}}<\alpha<1.$
 - c) Compléter le programme suivant pour qu'il calcule et affiche une valeur approchée de α à 10^{-3} près, en mettant en œuvre l'algorithme de dichotomie.

dichotomieACompleter.sce

```
function y = fPrime(x);
                                       // <- à compléter
  endfunction
  a = 1/\%e;
                                       // bornes de la dichotomie
  b = 1;
  while b-a > 10^{-3}
    c = (a+b) / 2
                                       // milieu du segment
    if fPrime(a) * fPrime(c) > 0
                                       // <- à compléter
12
       else
13
                                       // <- à compléter
     end
  end
17
  disp(a)
                                       // afficher le résultat
```