Data Structures
$$1 - HW1 - Abraham Murciono$$

i) a) for $(i = 0; i < N; i++)$

if $(a \in 1; i < N; j++)$

if $(a \in 1; i < N; j++)$

if $(a \in 1; i < N; j++)$

success $(a \in 1; i)$

c) $(N+1) + \frac{N(N+1)}{2} + \frac{N(N+1)}{2} - 1 + \frac{N(N+1)}{2} - 1$
 $= \frac{1}{2}(2N+2+N^2+N+N^2+N-2+N^2+N-2)$
 $= \frac{1}{2}(3N^2+5N-2)$
 $= \frac{1}{2}(3N^2+5N-2)$

worst case complexity: N^2

(N+1) + $\frac{N(N+1)}{2} + \frac{N(N+1)}{2} - 1 + 0$
 $= \frac{1}{2}(2N+2+N^2+N+N^2+N-2)$
 $= \frac{1}{2}(2N^2+4N) = N^2+2N$

cest case complexity: N^2

2) i) for $(i=n^3; i \ge 10; i=2)$
 $\frac{n^3-10}{2} + 1$
 $\frac{n^3-10}{2} + 1$
 $\frac{n^3-10}{2} + 1$

while $(i < n^3)$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

(iii)
$$i=2$$
 $k=2$

While $(i \times n)$

for $(j=1, j \le i, j++)$
 $k+=j$
 $i *= 2$
 $(g(n) - 1)$
 $2 + |g(n)| + \frac{2 + \overline{n} (\sqrt{3n} + 1)(2 + \overline{n} + 1)}{6} - 1 + |g(n)| - 1$
 $= 2 |g(n)| + \frac{1}{6} (2 + \overline{n} (2n + \sqrt{3n} + 2 + \overline{n} + 2 + \overline{n}) - 2$
 $= 2 |g(n)| + \frac{1}{3} (2n + \overline{n} + 2n + \overline{n}) - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$
 $= 2 |g(n)| + \frac{2}{3} n^{\frac{3}{2}} + n + \frac{1}{3} n^{\frac{1}{2}} - 2$