Fecha: 14/07/19 Apellido y nombre: Tomborini Agustin Fed PARCIAL 1 ARQUITECTURA DE COMPUTADORES - TEMA 1

1	El número 145 es el número octal correspondiente al: (1 pto)									
	a) número decimal: lol b) número binario:									
2	El número 136 es el número decimal correspondiente al: (1 pto)									
	a) hexadecimal: 88 b)BCD:									
3.	S according complementation as a secretary complementation as									
	2. (1 pto) ×									
4	 Dado n=16, si se quieren representar números naturales (sin signo). ¿Cuál es el rango de representación expresado en potencias de 2? (1 pto) ★ 									
5.	Realizar 11111110 - 00000001 indicando si se produce overflow. (la representación de negativos se									
	realiza por complemento a la base). (1 pto)									
6.	Realizar 01111111 + 01110000 indicando si se produce overflow. (la representación de negativos se									
	realiza por complemento a la base). (1 pto) X									
7.	Representar 86,125 en punto flotante con la representación IEEE, exprese el resultado en									
	hexadecimal. (2 ptos)									
8.	Indicar a que número decimal corresponde expresión hexadecimal C0500000 que representa un									
	número expresado en punto flotante con la representación IEEE (2 ptos)									
9.	Para la función lógica Z= BC + A:									
	a) Expresar los minitérminos (1 pto)									
	b) Implementaria con decodificador y compuertas externas (1 pto)									
	c) Implementaria con multiplexor (1 pto)									
i	Realizar un conversor de código BCD a Exceso 3:									
	a) Desarrolle la tabla de verdad (1 pto)									
	b) Los diagramas de Karnaugh correspondientes. (1 pto) ×									
	 c) Complete la conexión de la PAL (disponible en la última hoja) marcando los enlaces que quedan 									

intactos. (1 pto) x

-	B3	B2	B1	B0		D3	D2	DI	D0
f	()	0	0	0		0	0	1	- 1
	0	0	0	i		0	1	0	0
	0	0	1	0		0	1	0	1
	0	0	1	1		0	1	1	0
-	0	1	0	0		0	+	1	1
	0	1	0	1		1	0	0	0
	0	1	1	0		1	0	0	1
	0	1	1	1		1	0		()
	1	0	0	0			0	1	1.
	1	0	0	1		1	1	0	0
1	1	0	1	0		X	X	X	Y
1	1	0	1	1		X	×	Y	Y
7	1	1	0	0		X	7	X	V
	1	1	0	1		7	X	1	1
	1	1	1	0	8	Y	1	Y	7
	1	1	1	1		Y	1		7