BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130906 Date: 28/11/2019

Subject Name: Electrical Circuit Analysis

Time: 02:30 PM TO 05:00 PM Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a) (b)	State and explain Reciprocity theorem. State and explain Maximum power transfer theorem with suitable example.	03 04
	(c)	Obtain Thevenin's equivalent resistance of the circuit given in fig.1 to the left of the terminals a-b.	07
Q.2	(a)	In the fig.2, the switch k is first kept at position 1 and steady state condition is reached. At $t = 0$, switch is moved to position 2. Find the current in both the cases.	03
	(b)	Explain time constant in case of series R-L and series R-C circuit.	04
	(c)	In the fig.3, the switch is closed at $t = 0$. Find value of i, di/dt , d^2i/dt^2 at $t=0^+$. Assume initial current of inductor to be zero.	07
	(c)	Explain in detail about transient response in series R-C circuit having DC excitation.	07
Q.3	(a)	Explain the importance of Dot convention in coupled circuit with suitable example.	03
	(b) (c)	Draw impedance triangle and explain related terms. For the network shown in fig.4, find the node current I using node voltage technique.	04 07
0.2	(-)	OR	02
Q.3	(a)	In the fig.5, an unknown impedance of Z Ω is connected in series with $(5 + j8) \Omega$ coil. If $I = 2.5 \angle -15^0$ A, find value of Z.	03
	(b)	Find the current in a series R-L circuit having $R = 2 \Omega$ and $L = 10 H$ while a DC voltage of 100 V is applied. What is the value of this current after 5 seconds of switching on?	04
	(c)	The circuit shown in fig.6 is operating in the sinusoidal steady state. Find I_1 and I_2 by loop analysis and determine ratio V_0 / V_s . Assume $\omega = 10^3$ rad / sec.	07
Q.4	(a) (b)	Find driving point impedance of the given network shown in fig.7. Find inverse Laplace of given F(s). $F(s) = \underbrace{(s+2)}_{s (s+3) (s+4)}$	03 04
	(c)	Obtain the step response for the R-L series circuit shown in fig.8.	07

Q.4	(a)	Explain characteristics of unit ramp function.	03
	(b)	Determine the transfer function $H(s) = V_0(s) / I_0(s)$ of the circuit in	04
		fig.9.	
	(c)	Find $v_0(t)$ in the circuit of fig.10, assuming zero initial condition.	07
o =			0.0
Q.5	(a)	What is the condition of symmetry of all different two port parameters?	03
	(b)	Briefly describe h parameters for a two port network.	04
	(c)	Obtain Z-parameters of the circuit shown in fig.11.	07
		OR	
Q.5	(a)	Find Y-parameters of the circuit shown in fig.12	03
	(b)	Derive expression of ABCD parameters in terms of Z parameters.	04
	(c)	Determine Z-parameters of the circuit shown in fig.13.	07

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020

Subject Code:3130906 Date:10/03/2021

Subject Name: Electrical Circuit Analysis

Time:10:30 AM TO 12:30 PM Total Marks:56

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b) (c)	Explain Norton's theorem. Determine current flowing through R_L for the network shown in Fig. 1 using Nodal voltage technique. Determine current flowing through 5 Ω resistance for the network shown	Marks 03 04
	(c)	in Fig. 2 using superposition theorem.	07
Q.2	(a)	In the circuit shown in Fig.3, the switch 'K' is closed at t=0. Assuming zero initial current through inductor. Find 'i', ' di/dt ' and ' d^2i/dt^2 ' at t = 0 ⁺ .	03
	(b)	Obtain step response of series R-L circuit.	04
	(c)	Determine the load resistance R_L to be connected at terminal A-B in order to transfer maximum power from the network shown in Fig. 4. Also, determine the value of maximum power.	07
Q.3	(a)	Determine equivalent inductance between terminals A-B for the coupled circuit shown in Fig. 6.	03
	(b)	Explain the steps to obtain dual of a network with suitable example.	04
	(c)	Determine power supplied by 20 V source for the network shown in Fig. 7 using loop current method.	07
Q.4	(a)	Explain dot rule for coupled circuit.	03
	(b)	Draw power triangle for series R-L circuit and define related terms.	04
	(c)	Determine current flowing through $R_L = 5~\Omega$ resistance for the network shown in Fig. 8 using Thevenin's theorem.	07
Q.5	(a)	Define unit ramp function. Obtain Laplace transform of unit ramp function.	03
	(b)	In the network shown in Fig. 9, the switch is closed at t=0. By the method of Laplace transform, determine the current. Assume zero initial condition. Take $\omega=10$ r/s.	04
	(c)	Define poles and zeros of network function. Explain significance of poles and zeros in different network functions.	07
Q.6	(a)	Obtain driving point impedance for the network shown in Fig. 10.	03
	(b)	Draw magnitude and phase plot of a voltage transfer function for the network shown in Fig. 11	04

For the network shown in Fig. 12, the switch is in position 1 long enough **07** to establish steady state. At t = 0, the switch is moved to position 2. Find the expression for the current in the circuit. **Q.7** Define H-parameter of a two-port network. 03 (a) (b) Obtain condition for reciprocity and symmetry of a two port network in 04 terms of Z-parameters. Obtain y-parameters for the network shown in Fig. 13 **07 (c) Q.8** (a) A two port network is represented by following equations: 03 $V_1 = 24 I_1 + 8 I_2$ $V_2 = 8 \ I_1 + 32 \ I_2$ Draw the T-network represented by above equations. Obtain h-parameters for the network shown in Fig. 14 04 **(b)** Obtain ABCD parameters in terms of Z-parameters for a two-port network. **07**

Seat No.:	Enrolment No.

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021

Subject Code:3130906 Date:19-02-2022

Subject Name: Electrical Circuit Analysis

Time:10:30 AM TO 01:00 PM Total Marks:70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

		Sample with 1101 Programmers secondary concentrations are missing	
			MARKS
Q.1	(a)	State and explain Superposition theorem for the solution of electrical network.	03
	(b)	State and explain Reciprocity theorem for the solution of electrical circuits.	04
	(c)	Determine the current through $j5\Omega$ using superposition theorem of network shown in Fig.1	07
Q.2	(a)	State and explain Thevenin theorem for the solution of complicated networks.	03
	(b)	What is the significance of Maximum Power transfer theorem? State and explain with example.	04
	(c)	In the network shown in Fig.2, determine the Thevenin equivalent circuit for the load $R_{\rm L}$.	07
		OR	
	(c)	Find the current through branch "b-e" using Norton theorem for the network as shown in Fig.3.	07
Q.3	(a)	Why the current in inductor and voltage in capacitor cannot change simultaneously?	03
	(b)	Explain and derive the step response to R-L series circuit using Laplace Transformation method	04
	(c)	Construct the exact dual of the network of Fig-4	07
		OR	
Q.3	(a)	passive elements. (1) Resistor (2) Capacitor.	03
	(b)	Give details of the procedure to obtain sinusoidal steady state response of a circuit	04
	(c)	The circuit shown in Fig.5 consists of a resistor and a relay with inductance (L). The relay is adjusted in such a way that it is actuated when the current through the coil is 8 mA. The switch is closed at $t=0$ and it is observed that the relay is actuated when $t=0.1$ sec. Determine (a) the value of L and (b) the equation of current.	07
Q.4	(a) (b)	Enlighten significance of poles and zeros in network functions. As shown in Fig.6, the switch K is opened at time $t=0$. Obtain the particular solution for voltage $v(t)$ across the parallel circuit using Laplace transformation.	03 04
	(c)	The switch is open at $t = 0$ for the circuit shown in Fig.7. Steady state condition has been achieved before switching. Find the expression for the current $i(t)$ using Laplace transformation.	07

OR

Q.4	(a)	Explain concept of Laplace transformation. What are the advantages and	03
		disadvantages of Laplace transformation?	
	(b)	What are the properties of Laplace transformation? Explain in detail.	04
	(c)	Obtain current equation $i(t)$ for $t \ge 0$ using Laplace Method for Fig.8.	07
Q.5	(a)	Derive condition of Symmetry of h-Parameter.	03
	(b)	Derive relationship of z-Parameter in terms of ABCD Parameter	04
	(c)	Obtain h-Parameters of the network shown in Fig.9	07
		OR	
Q.5	(a)	Derive condition of reciprocity of y-Parameters.	03
	(b)	Derive relationship of h-Parameter in terms of g-Parameters	04
	(c)	Obtain Transmission Parameters of the network shown in Fig.10. Find	07
	. ,	whether the network is (i) symmetrical (ii) reciprocal	

Seat No.:	Enrolment No.
S C C C C C C C C C C C C C C C C C C C	Zmoment i tot

BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2021

Sub	Subject Code:3130906 Date:08/09/20				
Tim	Subject Name:Electrical Circuit Analysis Time:10:30 AM TO 01:00 PM Total Marks:70 Instructions:				
	1. 2. 3. 4.				
			Marks		
Q.1	(a) (b)	State and explain Superposition theorem. For the electrical network shown in Figure 1 , find the value of unknown current I_1 , I_2 and I_3 using the mesh analysis technique.	03 04		
	(c)	The network shown in Figure 2 contains the dependent source and an independent source. Find the Norton's equivalent circuit across terminals A and B.	07		
Q.2	(a)	<u> </u>	03		
	(b)	is the importance of initial conditions in network analysis? In the given circuit shown in Figure 3 , capacitor C has initial voltage $V_c(0^-)=5V$ and at the same time current through inductor L is zero. Obtain the $dv(t)/dt$ at $t=0^+$ if the switch K is closed at the time $t=0$ sec.	04		
	(c)	In the circuit shown in Figure 4 , a d.c. voltage of 10 volts is suddenly applied by closing switch to a series circuit consisting of resistor $R=10\Omega$, inductor L=1H and capacitor C=0.04F. Obtain the expression of current $i(t)$ for t>0.	07		
	()	OR	0=		
	(c)	For the network shown in Figure 5 , obtain the expression of current $i_1(t)$ and $i_2(t)$ for t>0. Consider switch K is closed at t=0 sec.	07		
Q.3	(a) (b)	Define the term (i) RMS values (ii) Apparent power (iii) Complex power. For the circuit diagram shown in Figure 6 , obtain the impedance Z_{eq} and	03 04		
	(c)	admittance Y_{eq} . In the network shown in Figure 7 , determine the voltage V which results in a zero current through the impedance $2+j3\Omega$.	07		
		OR			
Q.3	(a)	Explain in brief about the ideal transformer.	03		
	(b) (c)	Explain the dot rule for mutually coupled circuit using the suitable example. For the network shown in Figure 8 , a three-phase, three-wire, balanced ABC system, with an effective line voltage of 120 V, has three impedances of $5\angle 45^{\circ}$ Ω in a \triangle (delta) connection. Determine the line currents and draw the phasor-diagram showing the voltage, current relationship.	04 07		
Q.4	(a)	Convert the capacitance C (passive element) to Laplace domain using	03		

(b) Obtain Laplace transformation of the following time-domain function:

(i) f(t) = A (ii) $f(t) = e^{-at}$

04

	(c)	Obtain the step response of the series RC-circuit shown in Figure 9.	07
		OR	
Q.4	(a)	For the network shown in Figure 10 , find the $Z_{21}(s)$.	03
	(b)	Define the term Poles and Zeros with suitable example.	04
	(c)	Determine the input impedance of the given network shown in Figure 11 .	07
		Assume all the initial conditions are to be zero.	
Q.5	(a)	What is the condition of symmetry of all different two port parameters?	03
_	(b)	Derive expression of Y parameters in terms of Z parameters.	04
	(c)	Obtain the Y parameters of the given network in Figure 12 .	07
		OR	
Q.5	(a)	Explain the transmission line parameters for the two-port network.	03
•	(b)	Obtain Y-parameters for the given network shown in Figure 13 .	04
	(c)	Obtain the Z parameters of the given network in Figure 14 .	07

Seat No.:	Enrolment No.
3cat 110	

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2022

Subject Code:3130906	Date:28-07-2022
Subject Coucie 120000	Dute:20 07 202

Subject Name: Electrical Circuit Analysis

Fime:02:30 PM TO 05:00 PM	Total Marks:70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS	
Q.1	(a) (b)	Discuss open-circuit impedance parameters and draw equivalent circuit	03 04	
	(c)	for open circuit impedance parameters. In the network shown in fig.1, using node analysis, Calculate V_2 which results in zero current through 4 Ω resistor.	07	
Q.2	(a)	In the circuit shown in fig.2, a dc voltage suddenly applied to a series circuit. The inductor and capacitor are initially uncharged. Determine the particular solution for current i(t) in the circuit.	03	
	(b)	Describe maximum power transfer theorem and write different conditions for maximum power transfer theorem for AC circuits.	04	
	(c)	Explain Norton's theorem with suitable example. OR	07	
	(c)	Explain Thevenin's theorem with suitable example.	07	
Q.3	(a) (b)	Elaborate series-series connection for two-port network. Define Kirchhoff Voltage Law and Kirchhoff Current Law with suitable	03 04	
	(c)	example. In the network shown in fig.3, a steady state is reached with the switch k open. At time t=0. Switch k is closed. Figure out the values of i_1 , i_2 , di_1/dt and di_2/dt at t=0+.	07	
	OR			
Q.3	(a)	1	03	
	(b)	List difference between ideal and practical current source and Describe about source transformation.	04	
	(c)	In the network shown in fig.4, the switch k is moved from position 1 to 2 at $t=0$ a steady state having previously been attained. Find out $d^2i/dt^2(0+)$ at $t=0+$.	07	
0.4	(a)	Explore the dual of the network shown in Fig.5.	03	
	(b)	In the network shown in fig.6, the switch k is closed at t=0, a steady state having previously been attained. Compute the particular solution for the current.	04	
	(c)	In the network of fig.7, the switch is closed for a long time and at t=0, the switch is opened. Evaluate the current through the capacitor using Laplace transformation.	07	
OR				
Q.4	(a)	In the two mesh network shown in fig.8, Identify the mesh currents I_1 and I_2 .	03	

- (b) In the network shown in fig.9, the switch k is in position k is in position a for a long period of time. At t=0, the switch is moved from a to b. Calculate V_2 (t).
- (c) In a series R-L-C circuit, $R=5\Omega$, L=1H and C=0.25 F and $v(t)=6e^{-2t}$ Volts. Switch k is closed at time t=0. Evaluate particular solution for the current using Laplace transform method. Assume zero initial conditions in the elements.
- Q.5 (a) Find out reciprocity condition for h-Parameters.
 - (b) Generalize relationship of ABCD to z-parameters. 04
 - (c) For the network shown in fig.10, the capacitor is initially charged to a voltage V₀, with a polarity indicated on the diagram. The switch k is closed at time t=0. Discover the particular solution for the current in the circuit using Laplace transform.

OR

- Q.5 (a) Find out symmetry condition for ABCD parameters 03
 - (b) Generalize relationship of h-parameters to y-parameters. 04
 - (c) In R-L circuit shown in fig.11, the switch is in position 1 long enough to establish steady state conditions and at t=0 is switched to position 2. Discover the expression for the current in the circuit using Laplace transform.

03

