SEQUENCE LISTING

(1) GENERAL INFORMATION:

		\$) A	(A) (B) (C) (E) (F)	STRE CITY COUN POST. TELE	: sa ET: : PA TRY: AL CO PHONI	32-3 RIS FRA ODE E: 0	4 ru NCE (ZIP 1 53): 7 77	5008 40 0	•		•					
	(i	i) T	ITLE	OF	INVE	OITE	N: S	R-p7	0								
	(ii.	i) N	UMBE:	R OF	SEQ	JENC	ES:	40									
	(i		(A) 1 (B) ((C) (MEDI COMPT OPERA	READI M TY UTER: ATINO VARE:	PE: BBI Sys	Flor M PC STEM	comp	patil DOS	MS-I	oos 1.0,	Vers	sion	#1.2	25 (E	EPO)	
(2)	INE	FORM	ATIOI	V FOR	R SEC	3 7/2	NO:	1:									
			(A) I (B) I (C) S (D) I	LENGT TYPE: STRAN TOPOL	HARA H: 2 nuc IDEDN LOGY:	874 leid ESS: lir	date	pai d	irs								
	(ii	.) MC	DLECU	JLE I	YPE:	c ^{DNA}											
	(vi				OURC		ou s a	peljl	.a\					٠.			
		(B) L	AME /	KEY: ION: ESCR	156	20		ID N	0: 1	<i>)</i>	٠					
TGC	CTCC	CCG	CCCG	CGCA	CC C	GCCC	CGAG	G CC	TGTG	CTCC	TGC	GAAG	ccc	ACGC	acc.	. A A	60
	GGGG																120
	GCGA											\				GC	173
									1	Met . 1	Ala	e1y/	Ser \	Thr 5	Thr		17.
ACC Thr	TCC Ser	CCC	GAT Asp 10	GGG Gly	GGC Gly	ACC Thr	ACG Thr	TTT Phe 15	GAG Glu	CAC His	CTC Leu	TGG Trp	AGC Ser 20	TCT Ser	CTG Leu		221
GAA Glu	CCA Pro	GAC Asp 25	AGC Ser	ACC Thr	TAC Tyr	TTC Phe	GAC Asp 30	CTT Leu	CCC Pro	CAG Gln	TCA Ser	AGC Ser 35	CGG Arg	ea à	AAT Asn		269
AAT Asn	GAG Glu 40	GTG Val	GTG Val	GGT Gly	GGC Gly	ACG Thr 45	GAT Asp	TCC Ser	AGC Ser	ATG Met	GAC Asp 50	GTC Val	TTC Phe	CAC His	CTA Leu		317
GAG Glu 55	GGC Gly	ATG Met	ACC Thr	ACA Thr	TCT Ser 60	GTC Val	ATG Met	GCC Ala	CAG Gln	TTC Phe 65	AAT Asn	TTG Leu	CTG Leu	AGC Ser	AGC Ser 70		365
ACC Thr	ATG Met	GAC Asp	CAG Gln	ATG Met 75	AGC Ser	AGC Ser	CGC Arg	GCT Ala	GCC Ala .80	TCG Ser	GCC Ala	AGC Ser	CCG Pro	TAC Tyr	ACC Thr	`	413

į	
i	, ,
	ľ
į	Ţ
į	; =
	; ==
ä	
	H H
4	4
II,	L
	100
1,	=
ž,	

	CCC Pro	GAC Glu	G CAG	5 Al	a Alá	AGC A Sei	C GTG r Val	CCC Pro	ACC Thi	His	TCA Ser	CCC Pro	TAC Ty:	GC: R Al.	a Gli	G CCC n Pro		461	
	AGC Ser	se)	Th:	r Phe	C GAC B Asp	ACC Thi	ATG Met	Ser 110	Pro	GCC Ala	CCI Pro	GTC Val	116 115	Pro	C TCC Sei	I AAC r Asn		509	
	ACC Thr	GA0 Asp 120	Ty	Pro	GGA Gly	A CCC	CAC His 125	His	TTC Phe	GAG Glu	GTC Val	ACT Thr 130	Phe	CAC Glr	G CAC	TCC Ser		5 57 	
	135	Thr	Ala	a.Lys	Ser	140	Thr	Trp	Thr	Tyr	145	Pro	Leu	Leu	Lys	AAA Lys 150		605	
	CTC Leu	TAC	TGC Cys	GAC Glr	111e	∖ Ala	AAG Lys	ACA Thr	TGC Cys	CCC Pro 160	Ile	CAG Gln	ATC Ile	Lys	GTC Val 165			653	
	GCC Ala	CCA Pro	CCG Pro	Pro 170	Pro	61 y	ACC	GCC Ala	ATC Ile 175	CGG Arg	GCC Ala	ATG Met	Pro	GTC Val 180	Tyr	AAG Lys		701	
	AAG Lys	GCG Ala	GAG Glu 185	His	GTG Val	ACC Thr	GAC Asp	ATC Ile 190	GTG Val	AAG Lys	CGC Arg	TGC - Cys	Pro 195	Asn	CAC	GAG Glu		749	
	CTC Leu	GGG Gly 200	Arg	GAC Asp	TTC Phe	AAC	GAA Glu 205	GGA Gly	CAG Gln	TCT Ser	GCC Ala	CCA Pro 210	GCC Ala	AGC Ser	CAC His	CTC Leu		797	
	ATC Ile 215	CGT Arg	GTG Val	GAA Glu	GGC Gly	AAT Asn 220	AAT Asn	CTC Leu	TCG Ser	CAG	TAT Tyr 225	GTG Val	GAC Asp	GAC Asp	CCT Pro	GTC Val 230		8 4 5	
	ACC Thr	GGC Gly	AGG Arg	CAG Gln	AGC Ser 235	GTC Val	GTG Val	GTG Val	CCC Pro	TAT Tyr 240	GAG Glu	CCA Pro	CCA	CAG	GTG Val 245	GGG Gly		993	
	ACA Thr	GAA Glu	TTC Phe	ACC Thr 250	ACC Thr	ATC Ile	CTG Leu	Tyr	AAC Asn 255	TTC Phe	ATG Met	TGT CV3	AAC Asn	AGC Ser 260	AGC Ser	TGT		9,41	
•	GTG Val	GGG Gly	GGC Gly 265	ATG Met	AAC Asn	CGA Arg	CGG	CCC Pro 270	ATC Ile	CTC Leu	ATC Ile	ATC	I Le 279	ACC Thr	CTG Leu	GAG Glu		989	
	ACG Thr	CGG Arg 280	GAT Asp	GGG Gly	CAG Gln	GTG Val	CTG Leu 285	GGC Gly	CGC Arg	CGG Arg	TCC Ser	TTC Phe 290	GAG Glu	G1 %	CGC Arg	ATC Ile		1037	
	TGC Cys 295	GCC Ala	TGT Cys	CCT Pro	GGC Gly	CGC Arg 300	GAC Asp	CGA Arg	AAA Lys	GCC Ala	GAT Asp 305	GAG Glu	GAC Asp	CAC His	TAC Tyr	370 yra cee		1085	
	GAG Glu	CAG Gln	CAG Gln	GCC Ala	TTG Leu 315	AAT Asn	GAG Glu	AGC Ser	TCC Ser	GCC Ala 320	AAG Lys	AAC Asn	GGG Gly	GCT Ala	GCC Ala 325	Ser		1133	
	AAG Lys	CGC Arg	GCC Ala	TTC Phe 330	AAG Lys	CAG Gln	AGT Ser	CCC Pro	Pro 335	GCC Ala	GTC Val	CCC Pro	GCC Ala	CTG Leu 340	GGC Gly	CCG Pro	`	181	
,	σιγ	val	345	гуз	Arg	Arg		Gly 350	Asp	Glu	Asp	Thr	Tyr 355	Tyr	Leu	Gln		1229	`
•	val.	CGA Arg 360	GGC Gly	CGC Arg	GAG Glu	AAC Asn	TTC Phe 365	GAG . Glu	ATC Ile	CTG Leu	ATG Met	AAG Lys 370	CTG Leu	AAG Lys	GAG Glu	AGC Ser		1277	

Phys

	CTC Let 375	1 GI	G CTO	J ATO	G GAC	TTC Leu 380	ı Val	CCC. Pro	G CAC	G CCC	CTC Leu 385	ı Val	A GAC L Asp	TCO Ser	TA	CGG Arg 390	13.25
	CAC Gl:	G CAC n Gli	CAC n Gli	G CAC	G CTC n Leu 395	ı Leu	CAG Gln	AGG Arg	CCG Pro	AGT Ser 400	His	CTA Leu	CAG Gln	CCC Pro	CCA Pro 405	A TCC Ser	1373
	TAC Tyr	GG(G CCC	5 TC Val 418	L Leu	TCG Ser	CCC Pro	ATG Met	AAC Asn 415	Lys	GTG Val	CAC His	GGG Gly	GGC Gly 420	Val	AAC Asn	1421
	AAC Lys	CTC Lev	9 CCC 1 Pro 425	Sez	Val	AAC Asn	CAG Gln	CTG Leu 430	Val	Gly GGC	CAG Gln	CCT Pro	CCC Pro 435	CCG Pro	CAC	AGC Ser	1469
	TCC	GCA Ala 440	ı Ala	AÇA Thr	CCC Pro	AAC Asn	CTG Leu 445	Gly	CCT Pro	GTG Val	GGC Gly	TCT Ser 450	Gly	ATG Met	CTC	AAC Asn	1517
	AAC Asn 455	His	GGC Gly	CAC His	GCA Ala	GTG Val 460	PAO	GCC Ala	AAC Asn	AGC	GAG Glu 465	ATG Met	ACC Thr	AGC Ser	AGC Ser	CAC His 470	1565
	GGC Gly	ACC Thr	CAG Gln	TCC Ser	ATG Met 475	Val	TCG Ser	ely gee	TCC Ser	CAC His 480	TGC Cys	ACT Thr	CCG Pro	CCA Pro	CCC Pro 485	CCC Pro	1613
	Tyr	His	Ala	490	Pro	Ser	Leu	Val	Sex 495	Phe	Leu	Thr	Gly	Leu 500	Gly	TGT Cys	1661
	Pro	Asn	Cy s 505	Ile	Ģlu	TAT Tyr	Phe	Thr 510	Ser	Gli	Gly	Leu	Gln 515	Ser	Ile	Tyr	1709
	CAC His	CTG Leu 520	CAG Gln	AAC Asn	CTG Leu	ACC Thr	ATC Ile 525	GAG Glu	GAC Asp	CTG Leu	GI Å	GCC Ala 530	CTG Leu	AAG Lys	ATC Ile	CCC	1757
/	GAG Glu 535	CAG Gln	TAT Tyr	CGC Arg	ATG Met	ACC Thr 540	ATC	TGG Trp	CGG Arg	GGC Gly	CTG Leu 545	CAG Gln	GAC Asp	CTG Leu	AAG Lys	CAG Gln 550	1805
	GGC Gly	CAC His	GAC Asp	TAC Tyr	GGC Gly 555	GCC Ala	GCC Ala	GCG Ala	CAG Gln	CAG Gln 560	CTG Leu	CTC Leu	CGG	TCC Ser	AGC Ser 565	AAC Asn	1853
		GCC Ala		ATT Ile 570	TCC Ser	ATC Ile	GGC Gly	GGC Gly	TCC Ser 575	GGG Gly	GAG Glu	CTG Leu	CAG Gln	CGC Arg 580	CAG	CGG Arg	1901
	GTC Val	ATG Met	GAG Glu 585	GCC Ala	GTG Val	CAC His	TTC Phe	CGC Arg 590	GTG Val	CGC Arg	CAC His	ACC Thr	ATC Ile 595	ACC Thr	ATC Ile	CCC CCC	1949
	AAC Asn	CGC Arg 600	GGC Gly	GGC Gly	CCC Pro	GGC Gly	GCC Ala 605	GGC Gly	CCC Pro	GAC Asp	GAG Glu	TGG Trp 610	GCG Ala	GAC Asp	TTC Phe	G1y	1997
	TTC Phe 615	GAC Asp	CTG Leu	CCC Pro	GAC Asp	TGC Cys 620	AAG Lys	GCC Ala	CGC Arg	Lys	CAG Gln 625	CCC Pro	ATC .	AAG Lys	GAG Glu	GAG Glu 630	2045
	TTC Phe	ACG Thr	GAG Glu	GCC Ala	GAG Glu 635	ATC Ile	CAC His	TGAG	GGGC	CG G	GCCC.	AGCC	A GA	ĢCCT	GTGC	:	2096
	CACC	GCCC	AG A	.GACC	CAGG	c ca	CCTC	GCTC	TCC	TTCC	TGT (GTCC.	AAAA	CT G	CCTC	CGGAG	2156
	GCAG	GGCC	TC C	AGGC	TGTG	c cc	GGGG	AAAG	GCA	AGGT	cce (GCCC.	ATGC	cc c	GGCA	.CCTCA	2216

GAGAGGCCCA	GCCACCAAAG	CCGCCTGCGG	ACAGCCTGAG	TCACCTGCAG	227
AGCTGCCCTA	ATGCTGGGCT	TGCGGGGCAG	GGGCCGGCCC	ACTCTCAGCC	233
CGGGCGTGCT	CCATGGCAGG	CGTGGGTGGG	GACCGCAGTG	TCAGCTCCGA	239
TCATCCTAGA	GACTCTGTCA	TCTGCCGATC	AAGCAAGGTC	CTTCCAGAGG	245
CTTCGCTGGT	GGACTGCCAA	AAAGTATTTT	GCGACATCTT	TTGGTTCTGG	251
GCAGCCAAGC	GACTGTGTCT	GAAACACCGT	GCATTTTCAG	GGAATGTCCC	2576
GGGACTCTCT	CTGCTGGACT	TGGGAGTGGC	CTTTGCCCCC	AGCACACTGT	2636
ACCGCCTCCT	TCCTGCCCCT	AACAACCACC	AAAGTGTTGC	TGAAATTGGA	2696
GAAGGCGCAA	CCCCTCCCAG	GTGCGGGAAG	CATCTGGTAC	CGCCTCGGCC	2756
AGCCTGGCCA	CAGTCACCTC	TCCTTGGGGA	ACCCTGGGCA	GAAAGGGACA	2916
AGAGGACCGG	AAATTGTCAA	TATTTGATAA	AATGATACCC	TTTTCTAC	2874
	AGCTGCCCTA CGGGCGTGCT TCATCCTAGA CTTCGCTGGT GCAGCCAAGC GGGACTCTCT ACCGCCTCCT GAAGGCGCAA AGCCTGGCCA	AGCTGCCCTA ATGCTGGGCT CGGGCGTGCT CCATGGCAGG TCATCCTAGA GACTCTGTCA CTTCGCTGGT GGACTGCCAA GCAGCCAAGC GACTGTGTCT GGGACTCTCT CTGCTGGACT ACCGCCTCCT TCCTGCCCCT GAAGGCGCAA CCCCTCCCAG AGCCTGGCCA CAGTCACCTC	AGCTGCCCTA ATGCTGGGCT TGCGGGGCAG CGGGCGTGCT CCATGGCAGG CGTGGGTGGG TCATCCTAGA GACTCTGTCA TCTGCCGATC CTTCGCTGGT GGACTGCCAA AAAGTATTTT GCAGCCAAGC GACTGTGTCT GAAACACCGT GGGACTCTCT CTGCTGGACT TGGGAGTGGC ACCGCCTCCT TCCTGCCCCT AACAACCACC GAAGGCGCAA CCCCTCCCAG GTGCGGGAAG AGCCTGGCCA CAGTCACCTC TCCTTGGGGA	AGCTGCCCTA ATGCTGGGCT TGCGGGGCAG GGGCCGGCCC CGGGCGTGCT CCATGGCAGG CGTGGGTGGG GACCGCAGTG TCATCCTAGA GACTCTGTCA TCTGCCGATC AAGCAAGGTC CTTCGCTGGT GGACTGCCAA AAAGTATTTT GCGACATCTT GCAGCCAAGC GACTGTGTCT GAAACACCGT GCATTTTCAG GGGACTCTCT CTGCTGGACT TGGGAGTGGC CTTTGCCCCC ACCGCCTCCT TCCTGCCCCT AACAACCACC AAAGTGTTGC GAAAGGCGCAA CCCCTCCCAG GTGCGGGAAG CATCTGGTAC AGCCTGGCCA CAGTCACCTC TCCTTGGGGA ACCCTGGGCA	AGGAGGCCCA GCCACCAAG CCGCCTGCGG ACAGCCTGAG TCACCTGCAG AGCTGCCCTA ATGCTGGGCT TGCGGGGCAG GGGCCGGCCC ACTCTCAGCC CGGGCGTGCT CCATGGCAGG CGTGGGTGGG GACCGCAGTG TCAGCTCCGA TCATCCTAGA GACTCTGTCA TCTGCCGATC AAGCAAGGTC CTTCCAGAGG CTTCGCTGGT GGACTGCCAA AAAGTATTTT GCGACATCTT TTGGTTCTGG GCAGCCAAGC GACTGTGTCT GAAACACCGT GCATTTTCAG GGAATGTCCC GGGACTCTCT CTGCTGGACT TGGGAGTGGC CTTTGCCCCC AGCACACTGT ACCGCCTCCT TCCTGCCCCT AACAACCACC AAAGTGTTGC TGAAATTGGA GAAGGCCAAA CCCCTCCCAG GTGCGGGAAG CATCTGGTAC CGCCTCGGCC AGCCTGGCCA CAGTCACCTC TCCTTGGGGA ACCCTGGGCA GAAAGGGACA AGAGGACCGG AAATTGTCAA TATTTGATAA AATGATACCC TTTTCTAC

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 637 amino acids
 - (B) TYPE: amind acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ala Gln Ser Thr Thr Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu
1 10 15

His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro
20 25 30

Gln Ser Ser Arg Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser 35 40 45

Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln
50 55

Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala
65 70 75 80

Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His 95

Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala 100 105 110

Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu 115 120 125

Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr 130 140

Ser Pro Leu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro 145 150 155

Ile Gln Ile Lys Val Ser Ala Pro Pro Pro Pro Gly Thr Ala Ile Arg 165 170 175

Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Ile Val Lys
180 185 190

Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln S r

(mb

Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe Met Cys Asq Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Ile Thr Leu Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg 275 280 285 Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala 290 295 300 Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala 305 310 320 Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala 325 Val Pro Ala Leu Gly Pro Gly Val Lys Lys Arg Arg His Gly Asp Glu 340 Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu 355 Met Lys Leu Lys Glu Ser Leu Glu Leu Wet Glu Leu Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Gln Leu Leu Gln Arg Pro Ser 385 400 His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys His Gly Gly Val Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly
420 425 430 Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Ser Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Ser Glu Met Thr Ser Ser His Gly Thr Gln Ser Met Val Ser Gly Ser His 465 Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe 485 490 495 Leu Thr Gly Leu Gly Cys Pro Asn Cys Ile Glu Tyr Phe Thr Ser Gln 500 505 510 Gly Leu Gln Ser Ile Tyr His Leu Gln Asn Leu Thr Ile Glu Asp Leu Gly Ala Leu Lys Ile Pro Glu Gln Tyr Arg Met Thr Ile Trp Arg Gly Leu Gln Asp Leu Lys Gln Gly His Asp Tyr Gly Ala Ala Ala Gln Gln 545 550 555 560 Leu Leu Arg Ser Ser Asn Ala Ala Ala Ile Ser Ile Gly Gly Ser Gly 565 570 575 Glu Leu Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg

585

His Thr Ile Thr Ile Pro Asn Arg Gly Gly Pro Gly Ala Gly Pro Asp

580

ACC GAC TAT CCC GGA CCC CAC CAC TTC GAG GTC ACT TTC CAG CAG TCC

Thr Asp Tyr Pro Gly Pro His His Phe Glu Val Thr Phe Gln Gln Ser

AGC ACG GCC AAG TCA GCC ACC TGG ACG TAC TCC CCA CTC TTG AAG AAA

557

605

Se 13	r Th 5	r Al	a Ly	s Se	r Ala 140	a Thr	Trp	Thi	r Tyr	Ser 145	Pro	Le	ı Let	L Ly	s Lys 150		
CT Le	C TA	c TG	C CAG s Gli	3 ATC n Ile 159	e Ala	AAC A Lys	ACA Thr	L TGC	CCC Pro 160	Ile	CAG Gln	ATC	Lys	GT0 Va: 16:	G TCC l Ser		653
GC all	a. 5 t.	A CC	G CC0 0 Pro 170	o Pro	G GG(ACC Thr	GCC Ala	175	Arg	GCC Ala	ATG Met	CC1	GTC Val	Ty	AAG Lys		701
AA(Ly:	G GCd S Ala	GA(2 G1) 18	a His	GTC Val	G ACC	GAC Asp	Ile 190	Val	AAG Lys	CGC	TGC Cys	CCC Pro	Asn	CAC His	GAG Glu		749
CTO	GG(1 Gly 200	Arq	SAC YEA	Phe	AAC Asr	GAA Glu 205	Gly	CAG Gln	TCT Ser	GCC Ala	CCA Pro 210	Ala	AGC	CAC	CTC Leu		797
ATC 116 215	Arc	GTO Val	G GAA	. GSC	AAT Asn 220	Asn	CTC Leu	TCG Ser	CAG Gln	TAT Tyr 225	GTG Val	GAC Asp	GAC Asp	CCI	GTC Val 230		845
ACC Thr	GGC Gly	AGO Aro	G CAG	AGC Ser 235	· Val	GTG Val	GTG Val	CCC	TAT Tyr 240	GAG Glu	CCA Pro	CCA Pro	CAG Gln	GTG Val 245	GGG Gly		893
ACA Thr	GAA Glu	TTC Phe	ACC Thr 250	Thr	ATC	CTG Leu	TAC Tyr	AAC Asn 255	TTC Phe	ATG Met	TGT Cys	AAC Asn	AGC Ser 260	AGC	TGT		941
GTG Val	GGG Gly	GGC Gly 265	Met	AAC Asn	CGA Arg	CGG Arg	CCC Pro 270	ATC 11e	CTC Leu	ATC Ile	ATC Ile	ATC Ile 275	ACC Thr	CTG Leu	GAG Glu		989
ACG Thr	CGG Arg 280	Asp	GGG Gly	CAG Gln	GTG Val	CTG Leu 285	GGC Gly	CGC Arg	Arg coe	TCC	TTC Phe 290	GAG Glu	GGC	CGC	ATC Ile		1037
TGC Cys 295	GCC Ala	TGT Cys	CCT Pro	GGC	CGC Arg 300	GAC Asp	CGA Arg	AAA Lys	GCC Ala	GAT Asp 305	GAG Glu	GAC Asp	CAC His	TAC Tyr	CGG Arg 310		1085
GÁG Glu	CAG Gln	CAG Gln	GCC Ala	TTG Leu 315	AAT Asn	GAG Glu	AGC Ser	TCC Ser	GCC Ala 320	AAG Lys	AAC Asn	ez ece	GCT Ala	GCC Ala 325	AGC Ser		1133
AAG Lys	CGC Arg	GCC Ala	TTC Phe 330	Lys	CAG Gln	AGT Ser	CCC Pro	CCT Pro 335	GCC Ala	GTC Val	CCC Pro	GCC Ala	CTG Leu 340	GGC Gly	CCG Pro		1191
GGT Gly	GTG Val	AAG Lys 345	AAG Lys	CGG Arg	CGG Arg	CAC His	GGA Gly 350	GAC Asp	GAG Glu	GAC Asp	ACG Thr	TAC Tyr 355	TAC Tyr	C TG Leu	CAG Gln		1229
GTG Val	CGA Arg 360	GGC Gly	CGC Arg	GAG Glu	AAC Asn	TTC Phe 365	GAG Glu	ATC Ile	CTG Leu	ATG Met	AAG Lys 370	CTG Leu	AAG Lys	GAG Glu	AOC Ser	\	1277
CTG Leu 375	GAG Glu	CTG Leu	ATG Met	GAG Glu	TTG Leu 380	GTG Val	CCG Pro	CAG Gln	CCG Pro	CTG Leu 385	GTA Val	GAC Asp	TCC Ser	TAT Tyr	CGG Arg 390		1325
CAG Gln	CAG Gln	CAG Gln	CAG Gln	CTC Leu 395	CTA Leu	CAG . Gln .	AGG Arg	CCG Pro	AGT Ser 400	CAC His	CTA Leu	CAG Gln	CCC Pro	CCA Pro 405	TCC Ser		373
TAC Tyr	GGG Gly	CCG Pro	GTC Val 410	CTC Leu	TCG Ser	CCC . Pro	Met .	AAC Asn 415	AAG Lys	GTG Val	CAC (GGG Gly	GGC Gly 420	GTG Val	AAC Asn		1421
AAG	CTG	CCC	TCC	GTC	AAC	CAG	CTG	GTG	GGC (CAG	CCT (ccc	CCG	CAC	AGC		1469

Lys Leu Pro Ser Val Asn Gln Leu Val Gly Gln Pro Pro Pro His Ser	
TCG GCA GCT ACA CCC AAC CTG GGA CCT GTG GGC TCT GGG ATG CTC AAC Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Ser Gly Met Leu Asn 440 450	1517
AAC CAC GGC CAC GCA GTG CCA GCC AAC AGC GAG ATG ACC AGC AGC CAC ASN His Gly His Ala Val Pro Ala Asn Ser Glu Met Thr Ser Ser His 455	1565
GGC ACC CAG TCC ATG GTC TCG GGG TCC CAC TGC ACT CCG CCA CCC Gly Thr Gln Ser Met Val Ser Gly Ser His Cys Thr Pro Pro Pro 435 485	1613
TAC CAC GCC GAC CCC AGC CTC GTC AGG ACC TGG GGG CCC TGAAGATCCC Tyr His Ala Asp Pro Ser Leu Val Arg Thr Trp Gly Pro 490 495	1662
CGAGCAGTAT CGCATGACCA TCTGGCGGGG CCTGCAGGAC CTGAAGCAGG GCCACGACT	Á 1722
CGGCGCCGCC GCGCAGCAGC TGCTGCGCTC CAGCAACGCG GCCGCCATTT CCATCGGCG	G 1782
CTCCGGGGAG CTGCAGCGCC AGCGGGTCAT GGAGGCCGTG CACTTCCGCG TGCGCCACA	C 1842
CATCACCATO COCAACOGOG GOGGCCCOO CGCCGGCCCC GACGAGTGGG CGGACTTCG	G 1902
CTTCGACCTG CCCGACTGCA AGGCCCGCAA CCAGCCCATC AAGGAGGAGT TCACGGAGG	C 1962
CGAGATCCAC TGAGGGGCCG GGCCCAGCCA GAGCCTGTGC CACCGCCCAG AGACCCAGG	C 2022
CGCCTCGCTC TC	2034

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ala Gln Ser Thr Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu
1 10 15

His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro

Gln Ser Ser Arg Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser 35

Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala oln 50 60

Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala 65 70 75 80

Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His 85 90 95

Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala

Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu 115 120 125

Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr 130 135 140

Ser Pro Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val Ser Ala Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Ile Val Lys
180 185 190 Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser 195 200 Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln Tyr Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Pro Tyr 225 230 235 Glu Pro Pro Gln val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu 260 270 Ile Ile Ile Thr Leu Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg 275 Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala 290 295 300 Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala 305 310 315 320 Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Val Pro Ala Leu Gly Pro Gly Val Lys Lys Arg Arg His Gly Asp Glu 340 345 350 Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Gla Asn Phe Glu Ile Leu 355 360 365 Met Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro 370 375 Leu Val Asp Ser Tyr Arg Gln Gln Gln Gln Leu Leu Gln Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys Val His Gly Gly Val Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Ser Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Ser Glu Met Thr Ser Ser His Gly Thr Gln Ser Met Val Ser Gly Ser His Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Arg Thr

(2) INFORMATION FOR SEQ ID NO: 5:

Trp Gly Pro

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2156 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(A) ORGANISM: Homo sapiens

(11) MOLECULE TYPE: cDNA
(V1) ORIGINAL SOURCE:

FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 33..1940 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GCGAGCTGCC CTCGGAGGCC GGCGTGGGGA AG ATG GCC CAG TCC ACC GCC ACC 53 Met Ala Gln Ser Thr Ala Thr TCC CCT GAT GGG GGC ACC ACG TTT GAG CAC CTC TGG AGC TCT CTG GAA Ser Pro Asp Gly Gly Thr Thr Phe Glu His Leu Trp Ser Ser Leu Glu 101 15 CCA GAC AGC ACC TAC TTC GAC CTT CCC CAG TCA AGC CGG GGG AAT AAT 149 Pro Asp Ser Thr Tyr Phe Asp Leu Pro Gln Ser Ser Arg Gly Asn Asn GAG GTG GTG GGC GGA ACG GAT TCC AGC ATG GAC GTC TTC CAC CTG GAG Glu Val Val Gly Gly Thr Asp ger Ser Met Asp Val Phe His Leu Glu 197 GGC ATG ACT ACA TCT GTC ATG GCC CAG TTC AAT CTG CTG AGC AGC GC Gly Met Thr Thr Ser Val Met Ala on Phe Asn Leu Leu Ser Ser Thr 245 ATG GAC CAG ATG AGC AGC CGC GCG GCC TCG GCC AGC CCC TAC ACC CCA Met Asp Gln Met Ser Ser Arg Ala Ala Ser Ala Ser Pro Tyr Thr Pro 293 80 GAG CAC GCC GCC AGC GTG CCC ACC CAC TCG CCC TAC GCA CAA CCC AGC 341 Glu His Ala Ala Ser Val Pro Thr His Ser Pro Tyr Ala Gln Pro Ser TCC ACC TTC GAC ACC ATG TCG CCG GCG CCT GTC ATC CCC TCC AAC ACC 389 Ser Thr Phe Asp Thr Met Ser Pro Ala Pro Val Ile Pro Ser Asn Thr 110 GAC TAC CCC GGA CCC CAC CAC TTT GAG GTC ACT TTC CAG CAG TCC AGC 437 Asp Tyr Pro Gly Pro His His Phe Glu Val Thr Phe Gln Gln Ser Ser ACG GCC AAG TCA GCC ACC TGG ACG TAC TCC CCG CTC TTG AAG AAA CTC 485 Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Pro Leu Lys Lys Leu TAC TGC CAG ATC GCC AAG ACA TGC CCC ATC CAG ATC AAG GTG TCC ACC 533 Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val Ser Th CCG CCA CCC CCA GGC ACT GCC ATC CGG GCC ATG CCT GTT TAC AAG AAA 581 Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys 175 GCG GAG CAC GTG ACC GAC GTG GTG AAA CGC TGC CCC AAC CAC GAG CTC Ala Glu His Val Thr Asp Val Val Lys Arg Cys Pro Asn His Glu Leu GGG AGG GAC TTC AAC GAA GGA CAG TCT GCT CCA GCC AGC CAC CTC ATC Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala Pro Ala Ser His L u Ile 677 205

	CG(Ar	C GT g Va	G GA 1 G1	A GG u Gl	C AA' y Ası 220	n Asr	CTC Let	I TCC	G CAC	G TA:	r Val	G GA	T GAG p Asj	p Pr	T GT 0 Va 23	C ACC 1 Thr 0		725
	GG(Gl)	C AGG Y Arg	G CA g Gl	G AG n Se . 23	r Va.	C GTO l Val	GTC Val	G CCC	TA1 Ty1 240	: Glu	CCA Pro	A CC	A CAG	G GT0 n Va: 249	l Gl	G ACG y Thr		773
	GAZ Glu	A TTO	C AC E Th	£ IU:	C ATO	C CTG E Leu	TAC Tyr	AAC Asn 255	ı Ph∈	ATC Met	TGT Cys	AAC Asi	2 AGC	: Se	TG:	T GTA s Val	8	821
	GGC Gly	G GGG 7 Gly 265	/ Me	G AA(t Asi	Arg	G CGG J Arg	CCC Pro 270	Ile	CTC Leu	ATC	ATC	11e 275	Thr	CTC Lev	G GAG	G ATG 1 Met	8	69
	CGG Arg 280	, ASE	GGG Gly	G CAC y Glr	GTC Val	CTG Leu 285	. Gly	CGC Arg	CGG Arg	TCC Ser	TTT Phe 290	Glu	GGC Gly	CGC Arc	ATC	TGC Cys 295	9	17
	GCC Ala	: TGT : Cys	Pro	r GGC o Gly	CGC Arg 300	Asp	AIGA	AAA Lys	GCT Ala	GAT Asp 305	Glu	GAC Asp	CAC His	TAC	CGC Arc 310	GAG Glu	9	65
	CAG Gln	CAG Gln	GCC Ala	CTG Leu 315	Asn	GAG Glu	AGC Ser	TCC Ser	GCC Ala 320	Lys	AAC Asn	GGG Gly	GCC Ala	GCC Ala 325	Ser	AAG Lys	10	13
	CGT Arg	GCC Ala	Phe	rys	CAG Gln	AGC Ser	CCC Pro	CCT Pro 335	GCC Ala	GTC Val	CCC Pro	GCC Ala	CTT Leu 340	Gly	GCC	GGT	10	61
	GTG Val	AAG Lys 345	Lys	CGG Arg	CGG Arg	CAT His	GGA Gly 350	GAC Asp	GAG Glu	GAQ Asp	ACG Thr	TAC Tyr 355	TAC Tyr	CTT Leu	CAG	GTG Val	11	09
i	CGA Arg 360	GGC Gly	CGG Arg	GAG Glu	AAC Asn	TTT Phe 365	GAG Glu	ATC Ile	CTG Leu	ATG Met	AAG Lys 370	CTG	AAA Lys	GAG Glu	AGC Ser	CTG Leu 375	11	57
1	GAG Glu	CTG Leu	ATG Met	GAG Glu	TTG Leu 380	GTG Val	CCG Pro	CAG Gln	CCA Pro	CTG Leu 385	GTG Val	GAC Asp	TCC Ser	TAT	CGG Arg 390		120	
	CAG Gln	CAG Gln	CAG Gln	CTC Leu 395	CTA Leu	CAG Gln	AGG Arg	CCG Pro	AGT Ser 400	CAC His	CTA Leu	CAG Gln	CCC Pro	Pro 405	TCC Ser	TAC	125	5 3
	GGG Gly	CCG Pro	GTC Val 410	CTC Leu	TCG Ser	CCC Pro	ATG Met	AAC Asn 415	AAG Lys	GTG Val	CAC His	GGG Gly	GGC Gly 420	ATG Met	AAC neA	AAG Lys	130	01
	Leu	Pro 425	TCC	GTC Val	AAC Asn	CAG Gln	CTG Leu 430	GTG Val	GGC Gly	CAG Gln	CCT Pro	CCC Pro 435	CCG Pro	CAC His	AGT Ser	TCG Ser	134	19
	GCA Ala 440	GCT Ala	ACA Thr	CCC Pro	Asn	CTG Leu 445	GGG Gly	CCC Pro	GTG Val	Gly	CCC Pro 450	GGG Gly	ATG Met	CTC Leu	AAC Asn	AAC Asn 455	139	7
	CAT His	GGC Gly	CAC His	GCA Ala	GTG Val 460	CCA Pro	GCC . Ala .	AAC Asn	Gly	GAG Glu 465	ATG Met	AGC Ser	AGC Ser	AGC Ser	CAC- His 470	AGC Ser	144	5
	GCC Ala	CAG Gln	TCC Ser	ATG Met 475	GTC Val	TCG (Ser (GGG (Gly :	Ser :	CAC His 480	TGC . Cys.	ACT Thr	CCG Pro	CCA Pro	CCC Pro 485	CCC Pro	TAC Tyr	149	3
	CAC (GAC Asp 490	CCC Pro	AGC Ser	CTC (Leu \	val:	AGT (Ser 495	TTT '	ITA /	ACA (Gly	TTG Leu 500	GGG Gly	TGT Cys	CCA Pro	154	1

And OSA

AAC Asn	TGC Cys 505	ATC Ile	GAG Glu	TAT Tyr	TTC Phe	ACC Thr 510	TCC Ser	CAA Gln	GGG Gly	TTA Leu	CAG Gln 515	AGC Ser	ATT	TAC Tyr	CAC		1589
CTG Leu 520	32G 318	AAC Asn	CTG Leu	ACC Thr	ATT Ile 525	GAG Glu	GAC Asp	CTG Leu	GGG Gly	GCC Ala 530	CTG Leu	AAG Lys	ATC Ile	CCC Pro	GAG Glú 535		1637
CAG Gln	TAC	CG	ATG Met	ACC Thr 540	ATC Ile	TGG Trp	CGG Arg	GGC GI'y	CTG Leu 545	Gln	GAC	CTG Leu	AAG Lys	CAG Gln 550	GGC Gly		1685
CAC His	GAC Asp	TAC Tyr	AGC Ser 555	ACC	GCG Ala	CAG Gln	CAG Gln	CTG Leu 560	CTC Leu	CGC Arg	TCT Ser	AGC Ser	AAC Asn 565	GCG Ala	GCC Ala		1733
ACC Thr	ATC Ile	TCC Ser 570	ATC Ile	GGC Gly	ejh gec	TCA Ser	GGG Gly 575	GAA Glu	CTG Leu	CAG Gln	CGC Arg	CAG Gln 580	CGG Arg	GTC Val	ATG Met		1791
GAG Glu	GCC Ala 585	GTG Val	CAC His	TTC Phe	CGC Arg	OTG Val 590	CGC Arg	CAC His	ACC Thr	ATC Ile	ACC Thr 595	ATC	CCC Pro	AAC Asn	CGC Arg		1829
GGC G1 y 600	GGC Gly	CCA Pro	GGC Gly	GGC Gly	GGC Gly 605	CCT Pro	AAC AAP	GAG Glu	TGG Trp	GCG Ala 610	GAC Asp	TTC Phe	GGC Gly	TTC Phe	GAC Asp 615		1877
CTG Leu	CCC Pro	GAC Asp	TGC Cys	AAG Lys 620	GCC Ala	CGC Arg	AAG Lys	dAG GAn	CCC Pro 625	ATC Ile	AAG Lys	GAG Glu	GAG Glu	TTC Phe 630	ACG Thr	,	1925
GAG Glu	GCC Ala	GAG Glu	ATC Ile 635	CAC His	TGAG	GGCC	TC G	CCTG	gC10	C AG	CCTG	ccc	ACC	GCCC	AGA		1980
GACC	CAAG	CT G	CCTC	CCCT	с тс	CTTC	CTGT	GTG	TCCA	AAA	CTGC	CTCA	.GG A	.GGCA	.GGAC	:	2040
TTCG	GGCT	GT G	cccG	GGGA	A AG	GCAA	GGTC	CGG	CCCA	icg/	CCAG	GCAC	CT C	ACAG	GCCC	:	2100
AGGA	AAGG	CC C	AGCC.	ACCG.	A AG	CCGC	CTGT	GGA	CAGC	CTG	AGTC	ACCT	GC A	.GAAC	С		2156

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 636 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Ala Gln Ser Thr Ala Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu 1 15

His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro
20 25 30

Gln Ser Ser Arg Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser 35 40 45

Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln

Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala 65 70 75 80

Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His 85 90 95

Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu 115 Val The Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Pro Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Dys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser 195 200 205 Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln 210 220 Tyr Val Asp Asp Pro Val Tha Gly Arg Gln Ser Val Val Pro Tyr 230 Glu Pro Pro Gln Val Gly Thr Gly Phe Thr Thr Ile Leu Tyr Asn Phe 250 Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu 260 270 Ile Ile Ile Thr Leu Glu Met Arg Asp Cly Gln Val Leu Gly Arg Arg 275 280 285 Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala 290 295 300 Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gla Ser Pro Pro Ala 325 330 335 Val Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg H\s Gly Asp Glu 340 345 Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu 355 Met Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro cin Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Leu Leu Gln Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Pro Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Gly Glu Met Ser Ser Ser His Ser Ala Gln Ser Met Val Ser Gly Ser His

Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe Thr Gly Leu Gly Cys Pro Aşn Cys Ile Glu Tyr Phe Thr Ser Gln Gly Lev Gln Ser Ile Tyr His Leu Gln Asn Leu Thr Ile Glu Asp Leu Deu Lys Ile Pro Glu Gin Tyr Arg Met Thr Ile Trp Arg Gly Gly Ala Leu Gln Asp' Leu Lys Gln Gly His Asp Tyr Ser Thr Ala Gln Gln Leu Leu Arg Ser Sex Asn Ala Ala Thr Ile Ser Ile Gly Gly Ser Gly Glu Leu Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg His 580 Thr Ile Thr Ile Pro Asn Arg Gly Gly Pro Gly Gly Gly Pro Asp Glu Trp Ala Asp Phe Gly Phe Asp Leu Pro Asp Cys Lys Ala Arg Lys Gln Pro Ile Lys Glu Glu Phe Thr Glu Ala Glu Ile His 630 (2) INFORMATION FOR SEQ ID NO: (i) SEQUENCE CHARACTERISTICS (A) LENGTH: 2040 base pairs

- (ii) MOLECULE TYPE: cDNA
- (Vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mus musculus
- (ix) FEATURE:

50

- (A) NAME/KEY: CDS
- (B) LOCATION: 124..1890

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

TGATCTCCCT GTGGCCTGCA GGGGACTGAG CCAGGGAGTA GATGCCCTGA GACCCCAAGG 60 GACACCCAAG GAAACCTTGC TGGCTTTGAG AAAGGGATCG TCTCTCTCT GCCCAAGAGA 120 AGC ATG TGT ATG GGC CCT GTG TAT GAA TCC TTG GGG CAG GCC CAG TTG 168 Met Cys Met Gly Pro Val Tyr Glu Ser Leu Gly Gln Ala Gln Phe AAT TTG CTC AGC AGT GCC ATG GAC CAG ATG GGC AGC CGT GCG GCC CCG 216 Asn Leu Leu Ser Ser Ala Met Asp Gln Met Gly Ser Arg Ala Ala Pro GCG AGC CCC TAC ACC CCG GAG CAC GCC GCC AGC GCG CCC ACC CAC TCG 264 Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Ala Pro Thr His Ser 40 CCC TAC GCG CAG CCC AGC TCC ACC TTC GAC ACC ATG TCT CCG GCG CCT Pro Tyr Ala Gln Pro Ser Ser Thr Ph Asp Thr M t Ser Pro Ala Pro 312

GTC ATC CCT TCC AAT ACC GAC TAC CCC GGC CCC CAC CAC TTC GAG GTC

										•									
	۷a	1 11	.е 55	Pro	Se	r As	n Th	r As ₁	p Ty	r Pr	o G1	y Pr	o Hi 7		s Ph	e Gl	u Val		
	3	2/50	e '	GIN	GII.	ı Se.	r Se. 8	r Thi	r Al	a Ly	s Se	r Ala 90	a Thi	r Tr	p Th	r Ty	C TCC r Ser 95		408
		o Le	<u>"</u>	Leu	τÿs	100	s Let	ı Tyı	Cy:	s Gl	n Ile 105	e Ala	Lys	3 Thi	r Cy:	s Pr	C ATC O Ile		456
	GA:	G AT n Il	e i	AAA Lys	GTC Val	. 2e1	C ACA	A CCA	CCI Pro	A CCC Pro 120	o Pro	GGC Gly	ACC Thr	GCC Ala	125	Ar	G GCC G Ala		504
	AT(G CC t Pr	0 1	GTC /al 130	TAC	AAC	F AAC B Lys	G GCA B Ala	GA0 Glu 135	ı His	GTG Val	ACC Thr	GAC Asp	ATT 11e	Val	Lys	G CGC B Arg		552
	TG0 .Cys	CCG Pro 14	O F	AAC Asn	CAC His	GAG Glu	CTI	GGA Gly 150	AGG Arg	GAC Asp	TTC Phe	TAA neA	GAA Glu 155	. Gly	CAC Glr	TC1	GCC Ala		600
	Pro 160	AT	r A a.S	GC er	CAC His	CTC	Ile 165	. A∕£a	GTA Val	GAA Glu	GGC Gly	AAC Asn 170	Asn	CTC	GCC Ala	CAC Glr	TAC Tyr 175		648
	GTC Val	GA:	r G > A	AC .sp	CCT Pro	GTC Val 180	Thr	GGA Gly	AGG	CAG Glm	AGT Ser 185	GTG Val	GTT Val	GTG Val	CCG Pro	TAT Tyr 190	GAA Glu		6 96
	CCC Pro	CCA Pro	A C	Tu	GTG Val 195	GĞA Gly	ACA Thr	GAA Glu	TTT Phe	The 200	Thr	ATC Ile	CTG Leu	TAC Tyr	AAC Asn 205	Phe	ATG Met		744
	TGT Cys	AAC Asn	ıs	GC er 10	AGC Ser	TGT	GTG Val	GGG Gly	GGC Gly 215	ATG Met	YAA neA	CGG	AGG Arg	CCC Pro 220	ATC Ile	CTT Leu	GTC Val		792
	XTC Ile	ATC Ile 225	. +1	CC (CTG Leu	GAG Glu	ACC Thr	CGG Arg 230	TAD QeA	GGA Gly	CAG Gln	GTQ Val	CTG Leu 235	GGC Gly	CGC Arg	CGG Arg	TCT Ser		840
•	TTC Phe 240	GAG Glu	G(GT (CGC Arg	ATC Ile	TGT Cys 245	GCC Ala	TGT Cys	CCT Pro	GGC Gly	CGT Arg 250	GAC Asp	ATA CCC	AAA Lys	GCT Ala	GAT Asp 255		888
(GAA Glu	GAC Asp	C#	AT 7	TAC Tyr	CGG Arg 260	GAG Glu	CAA Gln	CAG Gln	GCT Ala	CTG Leu 265	AAT Asn	GAA Glu	AGT Ser	ACC	ACC Thr 270	AAA Lys		936
F	TA/ ne/	GGA Gly	GC Al	a r	GCC 11 a 275	AGC Ser	AAA Lys	CGT Arg	GCA Ala	TTC Phe 280	AAG Lys	CAG Gln	AGC Ser	CCC Pro	CCT Pro 285	GCC Ala	ATC Ile	٠	984
Ē	Pro	GCC Ala	CT Le 29	eu c	GT Gly	ACC Thr	AAC Asn	GTG Val	AAG Lys 295	AAG Lys	AGA Arg	CGC	CAC His	GGG Gly 300	GAC Asp	GAG Glu	GAC Asp		1032
A	ITG et	TTC Phe 305	TA Ty	C A	IET .	CAC His	GTG Val	CGA Arg 310	GGC Gly	CGG Arg	GAG Glu	AAC Asn	TTT Phe 315	GAG Glu	ATC Ile	TTG Leu	ATG Met	\	1080
_	AA .ys 20	GTC Val	AA Ly	G G	AG .	AGC Ser	CTA Leu 325	GAA Glu	CTG Leu	ATG Met	GAG Glu	CTT L u 330	GTG Val	CCC Pro	CAG Gln	CCT Pro	TTG Leu 335	`	1128
G V	TT	GAC Asp	TC Se	C T	Ar 1	CGA Arg 340	CAG Gln	CAG (Gln (CAG Gln	CAG Gln	CAG Gln 345	CAG (Gln)	CTC	CTA Leu	CAG Gln	AGG Arg 350	CCG Pro		1176
A	GT	CAC	CT	G C	AG (CT	CCA,	TCC 1	TAT	GGG	ccc (GTG (CTC '	rcc	CCA	ATG	AAC		1224

	Ser	His	Leu	1 Glr 355	Pro	Pro	Ser	Tyr	Gly 360	Pro	Val	. Leu	ı Ser	Pro 365		Asn			
	AAG Lys	GTA Val	CAC His	s Gly	GGT Gly	GTC Val	AAC L Asn	AAA Lys 375	Leu	CCC Pro	TCC Ser	GTC Val	AAC Asn 380	Gln	CTG Leu	GTG Val		1272	
	GGC Gly	G1: 385	/Src	CCC Pro	CCG Pro	CAC His	AGC Ser 390	Ser	GCA Ala	GCT Ala	Gly	Pro 395	Asn	CTG Leu	GGG Gly	Pro		1320	
	Met 400	Gly	' Ser	Gly	Met	405		Ser	His	Gly	His 410	Ser	Met	Pro	Ala	Asn 415		1368	
	GIĀ	Glu	Met	Asn	450 G1A	Gly	CAC His	Ser	Ser	Gln 425	Thr	Met	Val	Ser	Gly 430	Ser		1416	
	CAC	TGC Cys	ACC Thr	CCG Pro 435	CCX Pro	Pro	Pro	TAT Tyr	CAT His 440	GCA Ala	GAC Asp	CCC	AGC Ser	CTC Leu 445	GTC Val	AGT Ser		1464	
	Phe	Leu	Thr 450	Gly	Leu	Gly	Cys	Pro 455	Asn	Cys	Ile	Glu	Cys 460	Phe	Thr	Ser		1512	
	GIN	G1y 465	Leu	Gln	Ser	Ile	TAC Tyr 470	Nis	Leu	Gln	Asn	Leu 475	Thr	Ile	Glu	Asp		1560	
	180	GIĀ	Ala	Leu	Lys	Val 485	Pro	Asp	GZn	Tyr	Arg 490	Met	Thr	Ile	Trp	Arg 495		1609	
	/	Leu	Gin.	Asp	Leu 500	Lys	CAG Gln	Ser	His	A 5 2	Cys	Gly	Gln	Gln	Leu 510	Leu		1656	
`	Arg	ser	ser	515	Asn	Ala	GCC Ala	Thr	11e 520	Ser	Ile	Gly	Gly	Ser 5,25	Gly	Glu		1704	
-	CTG Leu	CAG Gln	CGG Arg 530	CAG Gln	CGG Arg	GTC Val	ATG Met	GAA Glu 535	GCC Ala	GTG Val	CAT His	TTC Phe	CGT Arg 540	GTG Val	CGC Arg	CAC His		1752	
	inr	ATC Ile 545	ACA Thr	ATC Ile	CCC Pro	AAC Asn	CGT Arg 550	GGA Gly	G1 y GGC	GCA Ala	Gly	GCG Ala 555	GTG Val	ACA Thr	GGT Gly	CCC Pro		1900	
	GAC Asp 560	GAG Glu	TGG Trp	GCG Ala	GAC Asp	TTT Phe 565	GGC Gly	TTT Phe	GAC Asp	CTG Leu	CCT Pro 570	GAC Asp	TGC Cys	AAG Lys	icc ser	CGT Arg 575		1848	
	AAG (Lys (CAG Gln	CCC Pro	Ile	AAA Lys 580	GAG Glu	GAG Glu	TTC . Phe	Thr	GAG Glu 585	ACA Thr	GAG Glu	AGC Ser	CAC His				1890	
	TGAG	GAAC	GT A	CCTT	CTTC	T CC	TGTC	CTTC	CTC	IGTG.	AGA	AACT	GCTC	TT G	GAAG	TGGGA		1950	
	CCTG	TTGG	CT G	TGCC	CACA	g aa	ACCA	GCAA	GGA	CCTT	CTG	CCGG	ATGC	CA T	TCCT	gaagg	. \	2 010	
•	GAAG?	rcgc'	TC A	TGAA	CTAA	c TC	CCTC	TTGG		•								2040	
								•											

(2) INFORMATION FOR SEQ ID NO: 8:

⁽i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 589 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Cys Met Gly Pro Val Tyr Glu Ser Leu Gly Gln Ala Gln Phe Asn Leu Leu Ser Ser Ala Met Asp Gln Met Gly Ser Arg Ala Ala Pro Ala 20 25 30 Ser Pro TX Thr Pro Glu His Ala Ala Ser Ala Pro Thr His Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu Val Thr 65 70 75 80 Phe Gln Gln Ser Set Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Pro Leu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln 100 105 Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Ile Val Lys Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala Pro 145 150 155 160 Ala Ser His Leu Ile Arg Val Glu Glv Asn Asn Leu Ala Gln Tyr Val 165 170 175 Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Deu Tyr Asn Phe Met Cys 195 205 Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Aro Ile Leu Val Ile 210 220 Ile Thr Leu Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Ser Phe 225 235 240 Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu 245 250 255 Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Thr Thr Lys Asn 260 265 270 Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Ile Pro 275 Ala Leu Gly Thr Asn Val Lys Lys Arg Arg His Gly Asp Glu Asp Met 290 295 300 Phe Tyr Met His Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys 305 310 315 320 Val Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Gln Gln Leu Leu Gln Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys

Ser Pro Tyr thr Pro Glu His Ala Ala Ser Ala Pro Thr His Ser Pro
45 Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro Val Ile Pro Ser Asn The Asp Tyr Pro Gly Pro His His Phe Glu Val Thr
65 75 80 Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Pro Leu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln
100 105 110 Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Ile Val Lys Arg Cys 130 140 Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala Pro 145 155 160 Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ala Gln Tyr Val 165 170 175 Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Val Pro Tyr Glu Pro 180 185 190 Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe Met Cys 195 200 Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Tle Leu Val Ile 210 220 Ile Thr Leu Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu 255 Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Thr Thr Lys Asn 260 265 270 Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Ile Pro 275 280 285 Ala Leu Gly Thr Asn Val Lys Lys Arg Arg His Gly Asp Glu Asp Met 290 295 300 Phe Tyr Met His Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys Val Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro Leu Val

Asp Ser Tyr Arg Gln Gln Gln Gln Gln Leu Leu Gln Arg Pro Ser

His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu S r Pro Met Asn Lys

(ii) MOLECULE TYPE: protein

SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Cys\Met Gly Pro Val Tyr Glu Ser Leu Gly Gln Ala Gln Phe Asn

Leu Leu Ser Ser Ala Met Asp Gln Met Gly Ser Arg Ala Ala Pro Ala

(3
٠.3
<u> </u>
ïЦ
Į, [] ·
13
Į,M
91
(.]
البيا
Ų
10

Val His Gly Gly Val Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly Pro Pro Pro His Ser Ser Ala Ala Gly Pro Asn Leu Gly Pro Met Gly Met Leu Asn Ser His Gly His Ser Met Pro Ala Asn Gly Gly Ser 405 Glu Met Asn\Gly Gly His Ser Ser Gln Thr Met Val Ser Gly Ser His Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe Gly Leu Gln Ser Ile Txr His Leu Gln Asn Leu Thr Ile Glu Asp Leu Gly Ala Leu Lys Val Pro Asp Gln Tyr Arg Met Thr Ile Trp Arg Gly Leu Gln Asp Leu Lys Gln Ser His Asp Cys Gly Gln Gln Leu Leu Arg Ser Ser Ser Asn Ala Ala Thr Ile Ser Ile Gly Gly Ser Gly Glu Leu 515 Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg His Thr Ile Thr Ile Pro Asn Arg Gly Gly Ala Gly Ala Val Thr Gly Pro Asp Glu Trp Ala Asp Phe Gly Phe Asp Leu Pro Asp Cys Lys Ser Arg Lys Pro Ile Lys Glu Glu Phe Thr Glu Thr Glu Ger His

(2) INFORMATION FOR SEQ ID NO: 9:

580

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 758 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mus musculus
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 389..757
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

TGGTCCCGCT TCGACCAAGA CTCCGGCTAC CAGCTTGCGG GCCCCGCGGA GGAGGAGACC CCGCTGGGGC TAGCTGGGCG ACGCGCGCCA AGCGGCGGCG GGAAGGAGGC GGGAGGAGCG GGGCCCGAGA CCCCGACTCG GGCAGAGCCA GCTGGGGAGG CGGGGCGCGC GTGGGAGCCA GGGGCCCGGG TGGCCGCCC TCCTCCGCCA CGGCTGAGTG CCCGCGCTGC CTTCCCGCCG

6**0**(

120

130

GTC	CGCC	AAG	AAAG	GCGC	TA A	GCCT	GCGG	C AG	TCCC	CTCG	cce	CCGC	CTC	CCTG	CTCC	€C 300
ACC	CTTA	TAA	CCCG	CCGT	cc c	GCAT	CCAG	G CC	AGGA	GGCA	ACG	CTGC	AGC	CCAG	CCCTC	:G 360
cce	ACGC	CGA	CGCC	CGGC	CC G	GAGC	AĢA	ATG Met 1	AGC Ser	GGC Gly	AGC Ser	GTT Val 5	GGG Gly	GAG Glu	ATG Met	412
GCC Ala	CAG Gln 10	\Thr	TCT Ser	TCT Ser	TCC	TCC Ser 15	TCC Ser	TCC Ser	ACC Thr	TTC Phe	GAG Glu 20	His	CTG Leu	TGG Trp	AGT Ser	. 460
TCT Ser 25	Leu	GAG Glu	CCA Pro	GAC Asp	AGC Ser 30	Thr	TAC Tyr	TTT Phe	GAC Asp	CTC Leu 35	CCC Pro	CAG Gln	CCC Pro	AGC Ser	CAA Gln 40	508
GGG Gly	ACT	AGC Ser	GAG Glu	GCA Ala 45	TCA Ser	GGC Gly	AGC Ser	GAG Glu	GAG Glu 50	TCC Ser	AAC Asn	ATG Met	GAT Asp	GTC Val 55	TTC Phe	556
CAC His	CTG Leu	CAA Gln	GGC Gly 60	ATG Met	GCC Ala	CAG Gln	TTC	AAT Asn 65	TTG Leu	CTC Leu	AGC Ser	AGT Ser	GCC Ala 70	ATG Met	GAC Asp	604
CAG Gln	ATG Met	GGC Gly 75	AGC Ser	CGT Arg	GCG Ala	ACC Ala	CCG Pro 80	GCG Ala	AGC Ser	CCC	TAC Tyr	ACC Thr 85	CCG Pro	G AG Glu	CAC His	652
GCC Ala	GCC Ala 90	AGC Ser	GCG Ala	CCC Pro	ACC Thr	CAC His 95	icc ser	CCC Pro	TAC Tyr	GCG Ala	CAG Gln 100	CCC	AGC Ser	TCC Ser	ACC Thr	700
TTC Phe 105	GAC Asp	ACC Thr	ATG Met	TCT Ser	CCG Pro 110	GCG Ala	CCT Pro	val orc	ATC Ile	CCT Pro 115	TCC Ser	ÄAT Asn	ACC Thr	GAC Asp	TAC Tyr 120	748
	GGC Gly	CCC Pro	C	4										•		7.58

INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Ser Gly Ser Val Gly Glu Met Ala Gln Thr Ser Ser Ser Ser 1 5 10

Ser Thr Phe Glu His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr 20 25 30

Phe Asp Leu Pro Gln Pro Ser Gln Gly Thr Ser Glu Ala Ser Gly Sex 35

Glu Glu Ser Asn Met Asp Val Phe His Leu Gln Gly Met Ala Gln Phe 50 55 60

Asn Leu Leu Ser Ser Ala Met Asp Gln Met Gly Ser Arg Ala Ala Pro 65 70 75 80

Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Ala Pro Thr His Ser 85 90 95

Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro 105

Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro 115 120 (2) INFORMATION FOR SEQ ID NO: 11: 1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 559 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGNAL SOURCE: QRGANISM: Homo sapiens (A) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: CGACCTTCCC CAGTCAAGCC GGGGGAATAA TGAGGTGGTG GGCGGAACGG ATTCCAGCAT 60 GGACGTCTTC CACCTGGAGG GCATGACTAC ATCTGTCATG CATCCTCGGC TCCTGCCTCA 120 CTAGCTGCGG AGCCTCTCCC CCTCGGTCCA CGCTGCCGGG CGGCCACGAC CGTGACCCTT 180 CCCCTCGGGC CGCCCAGATC CATGCCTCGT CCCACGGGAC ACCAGTTCCC TGGCGTGTGC 240 AGACCCCCCG GCGCCTACCA TGCTGTACGT CGGTGACCCC GCACGGCACC TCGCCACGGC 300 CCAGTTCAAT CTGCTGAGCA GCACCATGGA CCAGATGAGC AGCCGCGGG CCTCGGCCAG 360 CCCCTACACC CCAGAGCACG CCGCCAGCGT GCCCACCCAC TCGCCCTACG CACAACCCAG 420 CTCCACCTTC GACACCATGT CGCCGGCGCC TGTCATCCCC TCCAACACCG ACTACCCCGG 480 ACCCCACCAC TITGAGGICA CTTTCCAGCA GTCAGCACG GCCAAGTCAG CCACCTGGAC 540 GTACTCCCCG CTCTTGAAG 559 INFORMATION FOR SEQ ID NO: 12: SEQUENCE CHARACTERISTICS: (A) LENGTH: 1764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: ATGCTGTACG TCGGTGACCC CGCACGGCAC CTCGCCACGG CCCAGTTCAA TCTGTGAGC 60 AGCACCATGG ACCAGATGAG CAGCCGCGCG GCCTCGGCCA GCCCCTACAC CCCAGAGCAC 120 GCCGCCAGCG TGCCCACCCA CTCGCCCTAC GCACAACCCA GCTCCACCTT CGACACCATG 180 TCGCCGGCGC CTGTCATCCC CTCCAACACC GACTACCCCG GACCCCACCA CTTTGAGGTC 240

ACTITCCAGO AGTOCAGOAC GGCCAAGTOA GCCACOTGGA CGTACTCCCC GCTOTTGAAG

AAACTCTACT GCCAGATCGC CAAGACATGC CCCATCCAGA TCAAGGTGTC CACCCCGCCA

CCCCCAGGCA CTGCCATCCG GGCCATGCCT GTTTACAAGA AAGCGGAGCA CGTGACCGAC

GTCGTGAAAC GCTGCCCCAA CCACGAGCTC GGGAGGGACT TCAACGAAGG ACAGTCTGCT

300

3/60

420

CCAGCCAGCC ACCTCATCCG CGTGGAAGGC AATAATCTCT CGCAGTATGT GGATGACCCT 540 GTCACCGGCA GGCAGAGCGT CGTGGTGCCC TATGAGCCAC CACAGGTGGG GACGGAATTC 600 ACCACCATCC TGTACAACTT CATGTGTAAC AGCAGCTGTG TAGGGGGCAT GAACCGGCGG 660 CCCATCCTOA TCATCATCAC CCTGGAGATG CGGGATGGGC AGGTGCTGGG CCGCCGGTCC 720 GCATCTGCGC CTGTCCTGGC CGCGACCGAA AAGCTGATGA GGACCACTAC TTTGAGGGCC 780 CGGGAGCAGC AGGCCCTGAA CGAGAGCTCC GCCAAGAACG GGGCCGCCAG CAAGCGTGCC 940 TTCAAGCAGA GCCCQCCTGC CGTCCCCGCC CTTGGTGCCG GTGTGAAGAA GCGGCGGCAT 900 GGAGACGAGG ACACGTÀCTA CCTTCAGGTG CGAGGCCGGG AGAACTTTGA GATCCTGATG 96Ò AAGCTGAAAG AGAGCCTGÒA GCTGATGGAG TTGGTGCCGC AGCCACTGGT GGACTCCTAT 1020 CGGCAGCAGC AGCAGCTCCT ACAGAGGCCG AGTCACCTAC AGCCCCCGTC CTACGGGCCG 1080 GTCCTCTCGC CCATGAACAA GOTGCACGGG GGCATGAACA AGCTGCCCTC CGTCAACCAG 1140 CTGGTGGGCC AGCCTCCCCC GCACAGTTCG GCAGCTACAC CCAACCTGGG GCCCGTGGGC 1200 CCCGGGATGC TCAACAACCA TGGCCAGGCA GTGCCAGCCA ACGGCGAGAT GAGCAGCAGC 1260 CACAGCGCCC AGTCCATGGT CTCGGGGTTGC CACTGCACTC CGCCACCCCC CTACCACGCC 1320 GACCCCAGCC TCGTCAGTTT TTTAACAGGA TTGGGGTGTC CAAACTGCAT CGAGTATTTC 1380 ACCTCCCAAG GGTTACAGAG CATTTACCAC CTGCAGAACC TGACCATTGA GGACCTGGGG 1440 GCCCTGAAGA TCCCCGAGCA GTACCGCATG ACCARCTGGC GGGGCCTGCA GGACCTGAAG 1500 CAGGGCCACG ACTACAGCAC CGCGCAGCAG CTGCTCCGCT CTAGCAACGC GGCCACCATC 1560 TCCATCGGCG GCTCAGGGGA ACTGCAGCGC CAGCGGGTC% TGGAGGCCGT GCACTTCCGC 1620 GTGCGCCACA CCATCACCAT CCCCAACCGC GGCGGCCCAG GCGGCGGCCC TGACGAGTGG 1680 GCGGACTTCG GCTTCGACCT GCCCGACTGC AAGGCCCGCA AGQAGCCCAT CAAGGAGGAG 1740 TTCACGGAGG CCGAGATCCA CTGA 1764

INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 587 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:.

Met Leu Tyr Val Gly Asp Pro Ala Arg His Leu Ala Thr Ala Gln Ahe

Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala Ser

Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His Ser

Pro Tyr Ala Gin Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro

Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu Val

(3

14 In

Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Pro Leu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile th lie Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys Arg Cys Pro Agn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln Tyr 165 170 Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe Met 195 200 Cys Asn Ser Ser Cys val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile 210 220 Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg Ser 225 230 235 240 Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp
245 250 255 Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala Lys Asn Gly Ala Ala Ser Lys Arg Ala the Lys Gln Ser Pro Pro Ala Val 275 280 285 Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu Asp 290 295 Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met 305 310 320 Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Let Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Leu Leu Gan Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Wal Gly Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly 385 Pro Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Gly Glu Met Ser Ser His Ser Ala Gln Ser Met Val Ser Gly Ser His Qys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe Leu 440 Thr Gly Leu Gly Cys Pro Asn Cys Il Glu Tyr Phe Thr Ser Gln Gly

Leu 465	Gl'n	Ser	Ile	Tyr	His 470	Leu	Gln	Asn	Leu	Thr 475	Ile	Glu	Asp		Gly 480
	•			Pro 485					490					495	
3½n	Ąsp	Leu	Lys 500	Gln	GÌγ	His	Ąśp	Tyr 505	Ser	Thr	Ala	Gln	Gln 510	Leu	Leu
Arg	ser	Ser 515	Asn	Ala	Ala	Thr	Ile 520	Ser	Ile	Gly	Ġly	Ser 525	Gly	Glu	Leu
Gln	Arg 530	eyb.	Arg	Val	Met	Glu 535	Ala	Val	His	Phe	Arg 540	Val	Arg	His	Thr
Ile 545	Thr	Ile	P 20	Asn	Arg 550	Gly	Gly	Pro	Gly	Gly 555	Gly	Pro	Asp	Glu	Trp 560
Ala	Asp	Phe	Gly	Phe 565	qeA	Leu	Pro	Asp	Су з 570	Lys	Ala	Arg	Lys	Gln 575	Pro
Ile	Lys	Glu	Glu 580	Phe	Mr	Glu	Ala	Glu 585	Ile	His					

(2) INFORMATION FOR SEQ ID NO. 14:

- (1) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1521 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 14

I				- ,	/		
Ø	ATGCTGTACG	TCGGTGACCC	CGCACGGCAC	CTCGCCACGG	CCCAGTTCAA	. TCTGCTGAGC	60
	AGCACCATGG	ACCAGATGAG	CAGCCGCGCG	GCCTCGGCCA	GCCCCTACAC	CCCAGAGCAC	120
	GCCGCCAGCG	TGCCCÁCCCA	CTCGCCCTAC	GCACAACCCA	GCTCCACCTT	CGACACCATG	130
	TCGCCGGCGC	CTGTCATCCC	CTCCAACACC	GACTACCCCG	GACCCCACCA	CTTTGAGGTC	240
	ACTTTCCAGC	AGTCCAGCAC	GGCCAAGTCA	GCCACCTGGA	CGTACTCCCC	OCTOTIGAAG	300
	AAACTCTACT	GCCAGATCGC	CAAGACATGC	CCCATCCAGA	TCAAGGTGTC	CACCCGCCA	360
	CCCCCAGGCA	CTGCCATCCG	GGCCATGCCT	GTTTACAAGA	AAGCGGAGCA	CGTGACGAC	42Ô
	GTCGTGAAAC	GCTGCCCCAA	CCACGAGCTC	GGGAGGGACT	TCAACGAAGG	ACAGTCTOCT	480
	CCAGCCAGCC	ACCTCATCCG	CGTGGAAGGC	AATAATCTCT	CGCAGTATGT	GGATGACCCT	540
	GTCACCGGCA	GGCAGAGCGT	CGTGGTGCCC	TATGAGCCAC	CACAGGTGGG	GACGGAATTC	600
	ACCACCATCC	TGTACAACTT	CATGTGTAAC	AGCAGCTGTG	TAGGGGGCAT	GAACCGGCGG	660
	CCCATCCTCA	TCATCATCAC	CCTGGAGATG	CGGGATGGGC	AGGTGCTGGG	CCGCCGGTCC	720
•	TTTGAGGGCC	GCATCTGCGC	CTGTCCTGGC	CGCGACCGAA	AAGCTGATGA	GGACCACTAC	. 780
(CGGGAGCAGC	AGGCCCTGAA	CGAGAGCTCC	GCCAAGAACG	GGGCCGCCAG	CAAGCGTGCC	940
•	TTCAAGCAGA	GCCCCCTGC	CGTCCCCGCC	сттестессе	GTGTGAAGAA	GCGGCGGCAT	900
(GGAGACGAGG	ACACGTACTA	CCTTCAGGTG	CGAGGCCGGG	AGAACTTTGA	GATCCTGATG	960

AAGCTGAAAG	AGAGCCTGGA	GCTGATGGAG	TTGGTGCCGC	AGCCACTGGT	GGACTCCTAT	102
CGGCAGCAGC	AGCAGCTCCT	ACAGAGGCCG	CCCCGGGATG	CTCAACAACC	ATGGCCACGC	108
дот о сса сс с	AACGGCGAGA	TGAGCAGCAG	CCACAGCGCC	CAGTCCATGG	TCTCGGGGTC	1140
ссастэсаст	CCGCCACCCC	CCTACCACGC	CGACCCCAGC	CTCGTCAGGA	CCTGGGGGCC	1200
CTGAAGATÇC	CCGAGCAGTA	CCGCATGACC	ATCTGGCGGG	GCCTGCAGGA	CCTGAAGCAG	1260
GGCCACGACT	ACAGCACCGC	GCAGCAGCTG	CTCCGCTCTA	GCAACGCGGC	CACCATCTCC	1320
ATCGGCGGCT	CAGGGGAACT	GCAGCGCCAG	CGGGTCATGG	AGGCCGTGCA	CTTCCGCGTG	1380
CGCCACACCA	TCACCATCCC	CAACCGCGGC	GGCCCAGGCG	GCGGCCCTGA	CGAGTGGGCG	1440
GACTTCGGCT	TCGACQTGCC	CGACTGCAAG	GCCCGCAAGC	AGCCCATCAA	GGAGGAGTTC	1500
ACGGAGGCCG	AGATCCACTG	A				1521

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 506 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Met Leu Tyr Val Gly Asp Pro Ala Arg His Leu Ala Thr Ala Gln Phe

Asn Leu Leu Ser Ser Thr Met Asp Gin Met Ser Ser Arg Ala Ala Ser

Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His Ser

Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro 50 55

Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro Xis His Phe Glu Val 65

Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser

Pro Leu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thi Cys Pro Ile 100

Gln Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala

Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys Arg 135

Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala 150

Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln Tyr

Val Asp Asp Pro Val Thr Gly Arg Gln S r Val Val Pro Tyr Glu

Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe Met

Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg Ser Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asa His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Val Pro Ala Leu Aly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys Leu Lys Glu Ser\Leu Glu Leu Met Glu Leu Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gla Gln Gln Leu Leu Gln Arg Pro Pro Arg 340 Asp Ala Gln Gln Pro Trp Pko Arg Ser Ala Ser Gln Arg Arg Asp Glu Gln Gln Pro Gln Arg Pro Val Ais Gly Leu Gly Val Pro Leu His Ser Ala Thr Pro Leu Pro Arg Arg Pro Gln Pro Arg Gln Asp Leu Gly Ala Leu Lys Ile Pro Glu Gln Tyr Arg Met Thr Ile Trp Arg Gly Leu Gln 405 Asp Leu Lys Gln Gly His Asp Tyr Ser The Ala Gln Gln Leu Leu Arg Ser Ser Asn Ala Ala Thr Ile Ser Ile Gly Gly Ser Gly Glu Leu Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg His Thr Ile Thr Ile Pro Asn Arg Gly Gly Pro Gly Gly Pro Asp Glu Trp Ala Asp Phe Gly Phe Asp Leu Pro Asp Cys Lys Ala Arg Lys Gln Pro Ile

(2) INFORMATION FOR SEQ ID NO: 16:

500

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1870 base pairs

Lys Glu Glu Phe Thr Glu Ala Glu Ile His

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: CDS

	į	: :	1
	ŧ,		=
	Ž.	:	≟
	Ï	1	e de la constante de la consta
1	,		ann.
į	Ĭ.	=	j
	ľ,	=	7774
******			Times.
ž	í		
i		11 11 11	Trees.
5	:		ž.
Differ.			1
-	•	=	
4		=	111111
		÷	5

	. ,	(×i	.) SI	EQUEN	ICE I	DESCR	RIPTI	ON:	SEQ	ID N	10: 1	6:						•
	TGO	ccg	GGC	TGC	AÇGO	cir c	CAGO	GAAC	C AG	ACAG	CACC	TAC	TTCG	ACC	TTCC	CCAG	TC	60
	AAG	ccsc	:gec	AATA	ATG#	IGG 1	GGTC	GGCG	G AA	ADDO.	TTCC	AGC				TTC Phe		115
	CAC His	Let	GAC Glu	i of h	ATC Met	ACT Thr 10	Thr	TCT Ser	GTC Val	ATG Met	GCC Ala 15	Gln	TTC Phe	AAT Asn	CTG Leu	CTG Leu 20		163
	Ser	Ser	Thi	ATG Met	A\9 p 2\5	Gln \	Met	Ser	Ser	Arg 30	Ala	Ala	Ser	Ala	Ser 35	Pro		211
	Tyr	Thr	Pro	GAG Glu 40	His	Alla	Ala \	Ser	Val 45	Pro	Thr	His	Ser	Pro 50	Tyr	Ala		259
	Gln	Pro	Ser 55		Thr	Phe	Asp	Thr 60	Met	Ser	Pro	Ala	Pro 65	Val	Ile	Pro		307
	Ser	Asn 70	Thr	GAC Asp	Tyr	Pro	Gly 75	Pho	His	His	Phe	Glu 80	Val	Thr	Phe	Gln		355
	Gln 85	Ser	Ser	ACG Thr	Ala	90	Ser	Ala	THE	Trp \	Thr 95	Tyr	Ser	Pro	Leu	Leu 100		403
	Lys	Lys	Leu	TAC Tyr	Cys 105	Gln	Ile	Ala	Lys	Th 110	Суз	Pro	Ile	Gln	Ile 115	Lys	. 5	451
	GTG Val	TCC Ser	ACC Thr	CCG Pro 120	CCA Pro	CCC Pro	CCA Pro	GGC Gly	ACT Thr 125	GCC Ala	ATC 11d	CGG Arg	GCC Ala	ATG Met 130	CCT	GTT Val		499
(TAC Tyr	AAG Lys	AAA Lys 135	GCG Ala	GAG Glu	CAC His	GTG Val	ACC Thr 140	GAC Asp	GTC Val	GTG Val	AAA Lys	CGC Arg 145	TGC Cys	CCC Pro	AAC Asn		547
,	CAC His	GAG Glu 150	CTC Leu	GGG Gly	AGG Arg	GAC Asp	TTC Phe 155	AAC Asn	GAA Glu	GGA Gly	CAG Gln	TCT Ser 160	GC/T Ala	CCA Pro	GCC Ala	AGC Ser		595
	CAC His 165		ATC Ile	CGC Arg	GTG Val	GAA Glu 170	GGC Gly	AAT Asn	AAT Asn	CTC Leu	TCG Ser 175	CAG Gln	TAT Tyr	GTG Val	GAT Asp	GAC Asp 180		643
	CCT Pro	GTC Val	ACC Thr	GGC Gly	AGG Arg 185	CAG Gln	AGC Ser	GTC Val	GTG Val	GTG Val 190	CCC Pro	TAT Tyr	GAG Glu	CCA Pro	CCA Pro 195	CAG Gln		691
	GTG Val	GGG Gly	ACG Thr	GAA Glu 200	TTC Phe	ACC	ACC Thr	ATC Ile	CTG Leu 205	TAC Tyr	AAC Asn	TTC Phe	ATG Met	TGT Cys 210	AAC Asn	AGC Sei	\	739
	AGC Ser	TGT Cys	GTA Val 215	GGG Gly	GGC Gly	ATG Met	AAC Asn	CGG Arg 220	CGG Arg	CCC Pro	ATC Il	CTC	ATC Ile 225	ATC Ile	ATC Ile	ACC Thr		78 7
	CTG Leu	GAG Glu 230	ATG Met	CGG Arg	GAT Asp	GGG GGG	CAG Gln 235	GTG Val	CTG Leu	GGC Gly	CGC Arg	CGG Arg 240	TCC Ser	TTT Phe	GAG Glu	GGC Gly	`	835
	CGC	ATC	TGC	GCC	TGT	CCT	GGC	CGC	GAC	CGA	AAA	GCT	GAT	GAG	GAC	CAC		883

	Ar 24	g Il 5	e C	/s A	la C	ys Pr 25	60 Gl	y Ar	g As	p Ar	g Lys 255	s Al	a As	p Gl	u As	p His	
	TA Ty	c co	iG GI ig GI	AG C. Lu G	ın .G.	AG GC ln Al 65	C CT .a Le	G AAG u Asr	GA(G AG0 u Sei 270	: Ser	GC Al	C AAG a Ly	G AA s As	C GG n G1 27	G GCC y Ala 5	931
	Αſ	a Se	r Ly	/S\A.	rg Al 30 \	la Ph	e Ly:	s Glr	1 Sea 285	r Pro) Pro	Ala	a Val	1 Pro 290	o Al	C CTT a Leu	
	GG G1	T GC y Al	C GC a Gl 29	y Va	IQ AA	AG AA /s Ly	G CGG	G CGG G Arg 300	, His	GGA Gly	A GAC	GAC Glu	GA0 1 Asp 305	Th	TAC	C TAC r Tyr	1027
	CT' Le	CA 1 Gl 31	n Va	'G C(GA GC	y CG	G GAG g Glu 315	ı Asn	TTT Phe	GAG Glu	ATC	Leu 320	ı Met	AAC Lys	G CTO	G AAA u Lys	1075
	GA0 G1: 325	1 5e	C CT r Le	G GA u Gl	AG CI .u Le	G AT u Me 33	t \ Gli	TTG Leu	GTG Val	CCG Pro	CAG Gln 335	Pro	CTG Leu	GTC Val	GA(. Asi	TCC Ser 340	1123
	TA1	CGG Arc	G CA g Gl	G CA n Gl	G CA n Gl 34	n Gl	G CTO	CTA	CAG Gln	AGG Arg 350	Pro	AGT Ser	CAC His	CTA Leu	CAC Glr 355	G CCC n Pro	1171
	Pro	Sei	TA Ty	C GG r G1 36	y Pr	G GT(o Vai	C CTC L Leu	TCO Ser	CCC Pro 365	Met	AAC Asn	AAG Lys	GTG Val	CAC His	Gly	GGC Gly	1219
	ATG Met	AAC Asr	AA0 1 Ly: 37	s Le	G CC u Pr	C TCC	GTC Val	AAC Asn 380	CAG Gln	CTG	GTG Val	GGC Gly	CAG Gln 385	CCT	CCC	CCG Pro	1267
	CAC	AGT Ser 390	: Se	c AI	A GC' a Al	T ACA	CCC Pro 395	AAC Asn	CTG Leu	GGG Gly	ÇCC P¥0	GTG Val 400	Gly	CCC	GGG Gly	ATG Met	1315
	CTC Leu 405	AAC Asn	AA0 Asr	CA'	T GG(s Gl;	CAC Y His 410	GCA Ala	GTG Val	CCA Pro	GCC Ala	AAC Asn 415	ej gec	GAG Glu	ATG Met	AGÇ Ser	AGC Ser 420	1363
`	AGC Ser	CAC	AGC Ser	GCC	CAC a Glr 425	ı Ser	ATG Met	GTC Val	TCG Ser	GGG Gly 430	TCC Ser	CAC His	Tec cys	ACT Thr	CCG Pro 435		1411
	CCC Pro	CCC Pro	TAC	Hi:	S ALA	GAC Asp	Pro	AGC Ser	CTC Leu 445	GTC Val	AGT Ser	TTT Phe	TTA Leu	ACA Thr 450	Gly	TTG Leu	1459
	GGG Gly	TGT Cys	Pro 455	M3I	TGC Cys	ATC Ile	GAG Glu	TAT Tyr 460	TTC Phe	ACC Thr	TCC Ser	CAA Gln	GGG Gly 465	TTA Leu	CAG Gln	AGC	1507
	ATT Ile	TAC Tyr 470	CAC His	CTC	CAG Gln	AAC Asn	CTG Leu 475	ACC Thr	ATT Ile	GAG Glu	GAC Asp	CTG Leu 480	GGG Gly	GCC Ala	CTG Leu	AAG Lys	1555
	ATC Ile 485	CCC Pro	GAG Glu	CAG Gln	TAC Tyr	CGC Arg 490	ATG Met	ACC Thr	ATC Ile	TGG Trp	CGG Arg 495	GGC G1 y	CTG Leu	CAG Gln	GAC Asp	CTG Leu 500	1603
4	AAG Lys	CAG Gln	GGC Gly	CAC	GAC Asp 505	TAC Tyr	AGC Ser	ACC Thr	Ala	CAG Gln 510	CAG Gln	CTG Leu	CTC Leu	CGC Arg	TCT Ser 515	AGC Ser	1651
1	AAC Asn	GCG Ala	GCC Ala	ACC Thr 520	TIE	TCC Ser	ATC Ile	GIA	GGC Gly 525	TCA Ser	GGG (Gly (GAA Glu	Leu	CAG Gln 530	CGC Arg	CAG Gln	1699
(CGG	GTC	ATG	GAG	GCC	GTG	CAC	TTC	CGC	GTG (CGC (CAC	ACC	ATC	ACC	ATC	1747

الميها الميها المتنا المتنا الميها الميها

E.

Arg Val Met 535 Glu Ala Val His Phe Arg Val Arg His Thr Ile Thr Ile

CCC AAC CGC GGC GGC CCA GGC GGC GGC CCT GAC GAG TGG GCG GAC TTC
Pro Asn Arg Gly Gly Pro Gly Gly Gly Pro Asp Glu Trp Ala Asp Phe
550

GGC TTC GAC CTG CCC GAC TGC AAG GCC CGC AAG CAG CCC ATC AAG GAG
Gly Phe Asp Leu Pro Asp Cys Lys Ala Arg Lys Gln Pro Ile Lys Glu
565

GAG TTC ACG GAG GCC GAG ATC CAC TGA
Glu Phe Thr Glu Ala Glu Ile His
585

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 588 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln
1 10 15

Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala 20 30

Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His

Ser Pro Tyr Ala Gln Pro Ser Ser Thr the Asp Thr Met Ser Pro Ala
50 55

Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu 65 70 80

Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr
85 90 95

Ser Pro Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro

Ile Gln Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg 115

Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys
130 135 140

Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser 150 155 160

Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln 165

Tyr Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Pro Tyr

Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe

Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Led 210 220

Ile Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg 235 240

Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Cou Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Val Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu 290 295 300 Asp Thr Tyr Tyx Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Gln Leu Leu Gln Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys 355 360 365 Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Pro Gly Met Leu Asn Asn His\Gly His Ala Val Pro Ala Asn Gly Glu Met Ser Ser Ser His Ser Ala Gn Ser Met Val Ser Gly Ser His Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe Leu Thr Gly Leu Gly Cys Pro Asn Cys Ile Glu Tyr Phe Thr Ser Gln 450 Aly Leu Gln Ser Ile Tyr His Leu Gln Asn Leu Thr Ile Glu Asp Leu 465 470 480 Gly Ala Leu Lys Ile Pro Glu Gln Tyr Arg Met Thr Ile Trp Arg Gly Leu Gln Asp Leu Lys Gln Gly His Asp Tyr Ser Thr Ala Gln Gln Leu 500 505 Leu Arg Ser Ser Asn Ala Ala Thr Ile Ser Ile Gly Gly Ser Gly Glu Leu Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg His Thr Ile Thr Ile Pro Asn Arg Gly Gly Pro Gly Gly Pro Asp Glu Trp Ala Asp Phe Gly Phe Asp Leu Pro Asp Cys Lys Ala Arg Lys

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1817 base pairs

Pro Ile Lys Glu Glu Phe Thr Glu Ala Glu Ile His

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MQLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

	•	\		- -	•	•	
	ATGGCCCAGT	CCACCGCKAC	CTCCCCTGAT	GGGGGCACCA	CGTTTGAGC	A CCTCTGGAGC	60
	TCTCTGGAAC	CAGACAGCA	CTACTTCGAC	CTTCCCCAGT	CAAGCCGGG	GAATAATGAG	120
	GTGGTGGGCG	GAACGGATTC	CAGCATGGAC	GTCTTCCACC	TGGAGGGCA	GACTACATCT	180
	GTCATGGCCC	AGTTCAATCT	GTGAGCAGC	ACCATGGACC	AGATGAGCAG	ccccccccc	240
	TCGGCCAGCC	CCTACACCC	AGAGCACGCC	GCCAGCGTGC	CCACCCACTO	GCCCTACGCA	300
	CAACCCAGCT	CCACCTTCGA	CACCATGTCG	CCGGCGCCTG	TCATCCCCT	CAACACCGAC	360 ·
	TACCCCGGAC	CCCACCACTT	TGAGGTÇACT	TTCCAGCAGT	CCAGCACGG	CAAGTCAGCC	420
	ACCIGGACGT	ACTCCCCGCT	CTTGAAGAAA	CTCTACTGCC	AGATCGCCAA	GACATGCCCC	480
	ATCCAGATCA	AGGTGTCCAC	CCCGCCACCO	CCAGGCACTG	CCATCCGGG	CATGCCTGTT	540
	TACAAGAAAG	CGGAGCACGT	GACCGACGTC	GTGAAACGCT	GCCCCAACCA	CGAGCTCGGG	600
	ĄGGGACTTCA	ACGAAGGACA	GTCTGCTCCA	GCRAGCCACC	TCATCCGCGT	GGAAGGCAAT	660
	AATCTCTCGC	AGTATGTGGA	TGACCCTGTC	ACCOGCAGGC	AGAGCGTCGT	GGTGCCCTAT	720
	GAGCCACCAC	AGGTGGGGAC	GGAATTCACC	ACCATOCTGT	ACAACTTCAT	GTGTAACAGC	780
	AGCTGTGTAG	GGGGCATGAA	ccecceccc	ATCCTCATCA	TCATCACCCT	GGAGATGCGG	840
	GATGGGCAGG	TGCTGGGCCG	CCGGTCCTTT	GAGGGCCGCA	TCTGCGCCTG	TCCTGGCCGC	900
	GACCGAAAAG	CTGATGAGGA	CCACTACCGG	GAGCAGCAGG	CCCTGAACGA	GAGCTCCGCC	960
/	AAGAACGGGG	CCGCCAGCAA	GCGTGCCTTC	AAGCAGAGCC	cdccreccer	CCCCGCCCTT	1020
	GGTGCCGGTG	TGAAGAAGCG	GCGGCATGGA	GACGAGGACA	CGTACTACCT	TCAGGTGCGA	1080
	GGCCGGGAGA	ACTTTGAGAT	CCTGATGAAG	CTGAAAGAGA	GCCTGGAGCT	GATGGAGTTG	1140
	GTGCCGCAGC	CACTGGTGGA	CTCCTATCGG	CAGCAGCAGC	AGCTCCTACA	GAGGCCGAGT	1200
	CACCTACAGC	CCCCGTCCTA	CGGGCCGGTC	CTCTCGCCCA	TGAACAAGOT	GCACGGGGGC	1260
	ATGAACAAGC	TGCCCTCCGT	CAACCAGCTG	GTGGGCCAGC	CTCCCCGCA	CAGTTCGGCA	1320
	GCTACACCCA	ACCTGGGGCC	CGTGGGCCCC	GGGATGCTCA	ACAACCATGG	COACGCAGTG	1,380
	CCAGCCAACG	GCGAGÁTGAG	CAGCAGCCAC	AGCGCCCAGT	CCATGGTCTC	GGGTCCCAC	1440
	TGCACTCCGC	CACCCCCTA	CCACGCCGAC	CCCAGCCTCG	TCAGGACCTG	GGGGCCTGA	1500
	AGATCCCCGA (GCAGTACCGC	ATGACCATCT	GGCGGGGCCT	GCAGGACCTG	AAGCAGGGCC	1560
	ACGACTACAG (CACCGEGCAG	CAGCTGCTCC	GCTCTAGCAA	CGCGGCCACC	ATCTCCATC	1620
	GCGGCTCAGG (GGAACTGCAG	CGCCAGCGGG	TCATGGAGGC	CGTGCACTTC	CGCGTGCGCC	1680
	ACACCATCAC (CATCCCCAAC	CGCGGCGGCC	CAGGCGGCGG	CCCTGACGAG	TGGGCGGACT	1740
	TCGGCTTCGA (CTGCCCGAC	TGCAAGGCCC	GCAAGCAGCC	CATCAAGGAG	GAGTTCACGG	1800
	AGGCCGAGAT C	CACTGA	•				18 7
							`

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (11) MQLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Met Ala Gla Ser Thr Ala Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu

His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro

Gln Ser Ser Arg\Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser

Met Asp Val Phe Hits Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln

Phe Asn Leu Leu Ser ger Thr Met Asp Gln Met Ser Ser Arg Ala Ala

Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His

Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala

Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu 115 120 125

Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr

Ser Pro Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro

Ile Gln Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg

Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys

Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser

Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln

Tyr Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Val Pro Tyr

Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Led Tyr Asn Phe

Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu

Ile Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg

Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Ly& Ala

Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala

Lys kan Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Val Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys Leu Lxs Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Leu Leu Gln Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Pro Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Gly 450 Glu Met Ser Ser Ser His Ser Ala\Gln Ser Met Val Ser Gly Ser His Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Arg Thr 485 490 Trp Gly Pro

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO

GCGAGCTGCC CTCGGAG

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (iii) ANTI-SENSE: YES
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GGTTCTGGAG GTGACTCAG (2) INFORMATION FOR SEQ ID NO: 22: (i) SEQUENCE CHARACTERISTICS: LENGTH: 18 base pairs. TYPE: nucleic acid (B) STRANDEDNESS: single (D) TOROLOGY: linear (ii) MOLECULE TYPE: DNA (iii) ANTI-SENSE: NO (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 22: GCCATGCCTG TCTACAAG (2) INFORMATION FOR SEQ ID NO: 23: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (iii) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO 23: ACCAGCTGGT TGACGGAG (2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (iii) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24: GTCAACCAGC TGGTGGGCCA G (2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (iii) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

·

19

18

18

```
TOPOLOGY: linear
                (ii) MOLECULE TYPE: DNA
               (iii) ANTI-SANSE: NO
                (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 26:
            AGGCCGGCGT GGGGAAG
            (2) INFORMATION FOR SEQ ID NO: 27:
(i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 19 pase pairs
f. ±
                      (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
I, M
                      (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE: DNA
               (iii) ANTI-SENSE: YES
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
           CTTGGCGATC TGGCAGTAG
           (2) INFORMATION FOR SEQ ID NO: 28:
                 (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 17 base pairs
                      (B) TYPE: nucleic acid
                      (C) STRANDEDNESS: single
                      (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: DNA
              (iii) ANTI-SENSE: NO
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:
          GCGGCCACGA CCGTGAC
           (2) INFORMATION FOR SEQ ID NO: 29:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 base pairs
                     (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: DNA
              (iii) ANTI-SENSE: YES
```

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

GTGGATCTCG GCCTCC

(2) INFORMATION FOR SEQ ID NO: 26:

SEQUENCE CHARACTERISTICS:
(A) LENGTH: 17 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

16

17

19

```
GGCAGCTTGG GTCTCTGG
                                                                            18
 (2) INFORMATION FOR SEQ ID NO: 30:
      (i) SEQUENCE CHARACTERISTICS:
           (A) LINGTH: 18 base pairs (B) TYRE: nucleic acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
     (11) MOLECULE TYPE: DNA
    (iii) ANTI-SENSE: NO
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:
CTGTACGTCG GTGACCCC
(2) INFORMATION FOR SEQ ID NO: 31:
      (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 18 base paixs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA
   (iii) ANTI-SENSE: YES
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:
TCAGTGGATC TCGGCCTC
                                                                           18
    INFORMATION FOR SEQ ID NO: 32:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 18 base pairs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA
   (iii) ANTI-SENSE: NO
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:
AGGGGACGCA GCGAAACC
                                                                           18
(2) INFORMATION FOR SEQ ID NO: 33:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 19 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA
   (iii) ANTI-SENSE: YES
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

19

CCATÇAGCTC CAGGCTCTC (2) INTORMATION FOR SEQ ID NO: 34: SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (A) TOPOLOGY: linear (11) MOLECULE TYPE: DNA (iii) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: CCAGGACAGG CGCAGATG 18 (2) INFORMATION FOR SEQ ID NO: 35: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: \ingle (D) TOPOLOGY: lineal (ii) MOLECULE TYPE: DNA (iii) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35: GATGAGGTGG CTGGCTGGA 19 (2) INFORMATION FOR SEQ ID NO: 36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (iii) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: TGGTCAGGTT CTGCAGGTG 19 (2) INFORMATION FOR SEQ ID NO: 37: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i1) MOLECULE TYPE: DNA (111) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

```
CACCTACTC AGGGATGC
                                                                                  18 .
 (2) INFORMATION FOR SEQ ID NO: 38:
       (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 21 base pairs
            (B) TYPE: nucleic acid (C) STRANDEDNESS: single
                TOPOLOGY: linear
            (D)
      (ii) MOLECULE TYPE: DNA
    (iii) ANTI-SENSE: YES
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:
 AGGAAAATAG AAGCGTCAGT C
                                                                                . 21
 (2) INFORMATION FOR SEQ ID NO: 39:
      (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: DN
    (iii) ANTI-SENSE: NO
     (xi) SEQUENCE DESCRIPTION:\seq ID NO: 39:
CAGGCCCACT TGCCTGCC
                                                                                  18
(2) INFORMATION FOR SEQ ID NO: 40:
      (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 19 base pair
            (B) TYPE: nucleic acid
            (C) STRANDEDNESS: single
            (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA
    (iii) ANTI-SENSE: YES
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:
CTGTCCCCAA GCTGATGAG
                                                                                  19
```

Ų