МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №1

по дисциплине «Машинное обучение»

Студент гр. 6307	 Михайлов И. Т.
Преподаватель	Жангиров Т. Р.

Санкт-Петербург

2020

Ход выполнения работы

Задание 1

Исходные данные

Предположим X и Y две случайные переменные отражающие возраст и вес, соответственно. Рассмотрим случайную выборку из 20 наблюдений X = (69, 74, 68, 70, 72, 67, 66, 70, 76, 68, 72, 79, 74, 67, 66, 71, 74, 75, 75, 76) Y = (153, 175, 155, 135, 172, 150, 115, 137, 200, 130, 140, 265, 185, 112, 140, 150, 165, 185, 210, 220).

А. Найдем среднее, медиану и моду величины Х.

Среднее:

$$ar x=rac{1}{n}\sum_{i=1}^n x_i=rac{1}{n}(x_1+\cdots+x_n).$$

```
x = pd.Series(x_vals)
x.mean()
71.45
```

Медиана:

Так как число членов четное:

$$Me = \frac{x_{\frac{N}{2}} + x_{\frac{N}{2}+1}}{2}$$

Мода:

```
x.mode()[0]
```

В. Найдем дисперсию Ү.

Пусть $X_1, \,, \, X_{\mathsf{x}}$ - выборка.

Дисперсия выборки или выборочная дисперсия оценивается по формуле:

$$D = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}{n-1},$$

где \overline{X} - среднее значение выборки.

y = pd.Series(y_vals)
y.var(ddof=0)

1369.2099999999998

С. Построим график нормального распределения для Х.

D. Найдем вероятность того, что возраст больше 80.

$$P(\alpha < X < \beta) = F_0 \left(\frac{\beta - a}{\sigma} \right) - F_0 \left(\frac{\alpha - a}{\sigma} \right)$$

Где $\alpha = 80$, $\beta = \infty$, a - мат. ожидание, σ - среднеквадратичное отклонение, F_0 - функция Лапласа.

```
#Подсчет вероятности

s = np.std(x)

a = x.mean()

v = (80 - a) / s

print("a =", a, "s =", s, "v =", v)

a = 71.45 s = 3.7212229172679248 v = 2.2976317705463614
```

$$P(X > 80) = F_0(\infty) - F_0(2.3) = 0.5 - 0.4893 = 0.0107$$

Е. Найдем двумерное мат. ожидание и ковариационную матрицу для этих двух величин.

Двумерное мат. ожидание:

Пусть (ε, η) - двумерная случайная величина, тогда $M(\varepsilon, \eta) = (M\varepsilon, M\eta)$, т.е. математическое ожидание случайного вектора - это вектор из математических ожиданий компонент вектора.

```
[np.mean(x), np.mean(y)]
[71.45, 164.7]
```

Ковариационная матрица:

Ковариация двух выборок (двух случайных величин) - это мера их линейной зависимости, которая определяется следующим образом:

$$cov(X, Y) = M[(X - MX)(Y - MY)],$$

где M - математическое ожидание.

F. Определим корреляцию между X и Y

Функция corrcoef() вычисляет коэффициент корреляции Пирсона (линейный коэффициент корреляции).

Данный коэффициент вычисляется по формуле:

$$R_{XY} = rac{C_{XY}}{\sigma_X \sigma_Y} = rac{\sum (X - ar{X})(Y - ar{Y})}{\sqrt{\sum (X - ar{X})^2 \sum (Y - ar{Y})^2}}$$

где $C_{\scriptscriptstyle XY}$ - ковариационная матрица,

$$\overline{X}=rac{1}{n}\sum_{t=1}^n X_t$$
 и $\overline{Y}=rac{1}{n}\sum_{t=1}^n Y_t$ это средние значения выборок.

Коэффициент корреляции находится в интервале [-1, 1].

G. Построим диаграмму рассеяния, отображающая зависимость между возрастом и весом

Задание 2

Для следующего набора данных

	X ₁	X_2	X_3
a	17	17	12
b	11	9	13
c	11	8	19

Рассчитайте ковариационную матрицу и обобщенную дисперсию.

Ковариационная матрица:

Обобщенная дисперсия:

```
mtrx = np.cov(vec)
round(np.linalg.det(mtrx), 2)
0.0
```

Задание 3

Даны два одномерных нормальных распределения N_a и N_b с мат. ожиданиями 4, 8 и СКО 1, 2 соответственно.

- А. Для каждого из значения {5,6,7} определите какое из распределений сгенерировало значение с большей вероятностью.
- В. Найди значение, которой могло быть сгенерировано обеими распределениями с равной вероятностью

В. Значение, которое могло быть сгенерировано обеими распределениями с равной вероятностью:

```
def norm(x, mu, sigma):
        return math.exp(-0.5*((x - mu) / sigma) ** 2) / (sigma * math.sqrt(2 * math.pi))
   axis = np.arange(-10, 20, 0.1)
   pyplot.plot(axis, [norm(x, 4, 1) for x in axis], label = '\mu = 4, \sigma = 1\s')
   pyplot.plot(axis, [norm(x, 8, 2) for x in axis], label = '\ = 8, \sigma = 2$')
   pyplot.scatter(5.62, norm(5.62, 4, 1))
   pyplot.legend()
   for i in range (400, 2000, 1):
        if abs(norm(i/100, 4, 1) - norm(i/100, 8, 2)) < 0.01:
            break;
   print(i/100)
0.40
                                          \mu = 4, \sigma = 1
0.35
                                          \mu = 8, \sigma = 2
0.30
0.25
0.20
0.15
0.10
0.05
0.00
                                         15
    -10
                                  10
```

А. Для каждого из значения {5,6,7} определите какое из распределений сгенерировало значение с большей вероятностью.

Заметим, что N_a сгенерирует с большей вероятностью значения меньшие 5.62, а N_b значения большие 5.62. Таким образом 5 с большей вероятностью сгенерирует N_a , а 6 и 7 с большей вероятностью сгенерирует N_b .