

Last session (2015-10-29)

- Big Data Analysis Process
 - Model types
- Hands-on Project 3

Today's session

- Big Data Analysis Process
 - Model evaluation
- Hands-on

Big Data Analysis Process – Main Steps

- Data access
- Data pre-processing / cleaning
- Data transformation / manipulation
- Feature selection
- Feature extraction
- Feature engineering
- Model choice and training
- Model evaluation and tuning
- Model deployment

Microsoft Azure Machine Learning: Algorithm Cheat Sheet

This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the question you're trying to answer.

Model Evaluation

Different performance measures for regression and classification

Regression

- MAE
- RMSE
- RAE
- RSE
- \bullet R²

Classification

- Confusion Matrix
- Accuracy
- Precision
- Recall
- F-score
- ROC Curve
- Precision/Recall Curve

Regression Model Evaluation

Regression

- MAE
- RMSE
- RAE
- RSE
- \bullet R²

Metrics

Mean Absolute Error	0.072338
Root Mean Squared Error	0.135749
Relative Absolute Error	0.176651
Relative Squared Error	0.085524
Coefficient of	0.914476
Determination	0.914470

Regression Model Evaluation

MAE – Mean Absolute Error

- Average of the absolute difference between predictions and true values
- Takes the absolute value so that positive and negative errors are treated equally
- If we just take the average difference between predictions and true values we will measure only the bias component of the error (which could be zero even if the model makes big errors if these are equally distributed between positive and negative errors)
- Scale dependent -> cannot be used to compare performance on different variables

$$MAE = \frac{\sum_{i=1}^{n} |p_i - a_i|}{n}$$

Regression Model Evaluation - MAE

Regression Model Evaluation - MAE

Regression Model Evaluation

RMSE – Root Mean Squared Error

- Measures the average of the squares of the errors, and then takes the root of that value
- Takes the squares of the errors so that positive and negative errors are treated equally
- Takes the root of that to "reverse" the squaring
- Compared to MAE it gives more weight to larger errors than smaller ones
- Scale dependent -> cannot be used to compare performance on different variables

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - a_i)^2}{\sum_{i=1}^{n} (p_i - a_i)^2}}$$

$$a = \text{actual target}$$

$$p = \text{predicted target}$$

Regression Model Evaluation - RMSE

Regression Model Evaluation

RAE – Relative Absolute Error

- Takes the total absolute error and normalizes it by dividing by the total absolute deviation from the mean
- Whereas MAE measures how far the prediction is from the truth in absolute values, <u>RAE represents the error as a fraction of the true value</u> (or as a percentage if multiplied by 100)
- Scale independent -> can be used to compare performance on different variables

$$RAE = \frac{\sum_{i=1}^{n} |p_i - a_i|}{\sum_{i=1}^{n} |\overline{a}_i - a_i|}$$
 $a = \text{actual target}$ $p = \text{predicted target}$

Regression Model Evaluation - RAE

	,	0.0			0. 0		
a	р	(p - a)	p-a	(p-a) ²	ã-a		
1	10	9	9	81	6,55		
5	1	-4	4	16	2,55		
8	7	-1	1	1	0,45		18 18
12	18	6	6		4,45		
18	13	-5	5	25	10,45		
14	16	2	2	4	6,45		
6	4	-2	2	4	1,55		/ X X \
3	2	-1	1	1	4,55		
1	2	1	1	1	6,55		
5	4	-1	1	1	2,55		
10	5	-5	5	25	2,45		12
7,55	7,45	-0,09	3,36				
Mean	Mean	ME	MAE	RMSE	RAE		10 10
			(p -	- a)			
							6
							6 6
9							
							4 3
		6					
			_	_			
			2			1	
	1			-2	1	1	
	-4						
- 44			-5			-5	1 2 3 4 5 6 7 8 9 10 11

Regression Model Evaluation

RSE – Relative Squared Error

- Takes the total squared error and normalizes it by dividing by the total squared deviation from the mean (variance)
- Compared to RAE it gives more weight to larger errors than smaller ones
- Scale independent -> can be used to compare performance on different variables

$$RSE = \frac{\sum_{i=1}^{n} (p_i - a_i)^2}{\sum_{i=1}^{n} (\overline{a} - a_i)^2}$$

$$a = \text{actual target}$$

$$p = \text{predicted target}$$

Regression Model Evaluation - RSE

а	р	(p - a)	p-a	(p-a) ²	ã-a	(ã-a) ²	
1	14	13	13	169			
5	4	-1	1	1	2,55	6,48	
8	7	-1	1	1	0,45	0,21	
12	13	1	1	1	4,45	19,84	
18	17	-1	1	1	10,45	109,30	
14	15	1	1	1	6,45	41,66	
6	5	-1	1	1	1,55	2,39	
3	2	-1	1	1	4,55	20,66	
1	2	1	1	1	6,55	42,84	
5	4	-1	1	1	2,55	6,48	
10	-5	-15	15	225	2,45	6,02	
7,55	7,09	-0,45	3,36	6,05	0,76	1,35	
Mean	Mean	ME	MAE	RMSE	RAE	RSE	
					0%	35%	

Regression Model Evaluation

R² – Coefficient of Determination

- R² describes the <u>proportion of variance of the target variable explained by the regression model</u> If the regression model is "perfect", SSE is zero, and R² is 1.
 If the regression model is a total failure, SSE is equal to SST, no variance is explained by regression, and R² is zero
- Scale independent -> can be used to compare performance on different variables

Coefficient of Deternination
$$\rightarrow$$
 $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$

Sum of Squares Total \rightarrow $SST = \sum (y - \bar{y})^2$

Sum of Squares Regression \rightarrow $SSR = \sum (y' - \bar{y'})^2$

Sum of Squares Error \rightarrow $SSE = \sum (y - y')^2$

Sum of Squares Error \rightarrow $SSE = \sum (y - y')^2$

Regression Model Evaluation

R² – Coefficient of Determination

Measure of goodness of fit

$$R^2 = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}$$

The better the linear regression (on the right) fits the data in comparison to the simple average (on the left graph), the closer the value of \mathbb{R}^2 is to 1. The areas of the blue squares represent the squared residuals with respect to the linear regression. The areas of the red squares represent the squared residuals with respect to the average value.

Regression Model Evaluation – R²

Regression Model Evaluation – R²

a 1 5 8 12 18	p 4 1 7 18 15	(p - a) 3 -4 -1 6 -3	p-a 3 4 1 6 3	(p-a) ² 9 16 1 36 9	ã-a 6,55 2,55 0,45 4,45 10,45 6,45	(ã-a) ² 42,84 6,48 0,21 19,84 109,30 41,66					18	18	16	
6 3 1 5	4 2 2 4 7	-2 -1 1 -1 -3	1 1 1 3	4 1 1 1 9	1,55 4,55 6,55 2,55 2,45	2,39 20,66 42,84 6,48 6,02					12		10	\
7,55 Mean	7,27 Mean	-0,27 ME	2,45 MAE	2,88 RMSE 91 SSE	0,56 RAE	0,30 RSE 298,73 SST	0,70 R ²		5	300				
3		6	(p -			_		1	2	3	4	5	6	
7	-4	-	-3	-2	4	1	-3					→ a	— p —	Poly.

Classification Model Evaluation

Scored dataset

Classification

- Confusion Matrix
- Accuracy
- Precision
- Recall
- F-score
- ROC
- Precision/Recall
- Lift

Precision 0.745	Accuracy 0.861	False Negative 1203	True Positive 2606
F1 Score 0.713	Recall 0.684	True Negative 10382	False Positive 890
		Negative Label	Positive Label > 50K

Scored dataset

Classification Model Evaluation

Confusion Matrix

 A confusion matrix is a table that is often used to describe the performance of a classification model (or "classifier") on a set of test data for which the true values are known

		Predicted						
		Cat	Dog	Rabbit				
	Cat	5	3	0				
Actual class	Dog	2	3	1				
4 0	Rabbit	0	2	11				

Confusion Matrix

True Positive (TP), True Negative (TN), False Positive (FP), False Negatives (FN)

Accuracy = (TP + TN) / Total

Overall, how often is the classifier correct

Precision = TP / (TP + FP) = TP / Predicted positive

- When it predicts yes, how often is it correct?
- "focus" on False Positives

Recall =
$$TP / (TP + FN) = TP / Actual positive$$

- When it's actually yes, how often does it predict yes?
- "focus" on False Negatives

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

• The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst at 0

Confusion Matrix	True Positive 2606	False Negative 1203	Accuracy 0.861	Precision 0.745
■ In Azure ML	False Positive 890	True Negative 10382	Recall 0.684	F1 Score 0.713
	Positive Label > 50K	Negative Label		

http://blogs.msdn.com/b/andreasderuiter/archive/2015/02/09/performance-measures-in-azure-ml-accuracy-precision-recall-and-f1-score.aspx

		Pred	icted							
		<=50K	>50K	tot						
Actual	<=50K	2606	1203	3809	Precision	0,745	0 021	F1	0,713	0 011
Actual	>50K	890	10382	11272	Precision	0,896	0,821	F1	0,908	0,811
	tot	3496	11585	15081						
		Recall	Recall	Accuracy	0,861					
		0,684	0,921							
		0,8	803							

Confusion Matrix

• Example from earlier lesson when we talked about class imbalance

Imagine we have

9900 examples of class A 100 examples of class B

A model that always predicts A will be 99% accurate

This is obviously not what we want!

			Predicted				
			Α	В	tot		
Acti	ual	Α	9900	0	9900	Precision	0,990
		В	100	0	100	Precision	#DIV/0!
		tot	10000	0	10000		
			Recall	Recall	Accuracy	0,990	
			1,000	0,000			
			0,500				

Score Bin	Positive Examples	Negative Examples	Fraction Above Phreshold	Accuracy	F1 Score	Precision	Recall	Negative Precision	Negative Recall
(0.900,1.000]	1683	199	0.125	0.846	0.591	0.894	0.442	0.839	0.982
(0.800,0.900]	370	179	0.161	0.858	0.658	0.845	0.539	0.861	0.966
(0.700,0.800]	220	175	0.187	0.861	0.685	0.804	0.597	0.875	0.951
(0.600,0.700]	176	155	0.209	0.863	0.703	0.776	0.643	0.886	0.937
(0.500,0.600]	157	179	0.232	0.861	0.714	0.746	0.684	0.896	0.921
(0.400,0.500]	158	218	0.257	0.857	0.720	0.714	0.726	0.907	0.902
(0.300,0.400]	172	282	0.287	0.850	0.722	0.679	0.771	0.919	0.877
(0.200,0.300]	188	331	0.321	0.841	0.722	0.645	0.820	0.933	0.848
(0.100,0.200]	216	509	0.369	0.821	0.712	0.600	0.877	0.951	0.802
(0.000,0.100]	469	9045	1.000	0.253	0.403	0.253	1.000	1.000	0.000

U

		Pred	icted								
		<=50K	>50K	tot							
Actual	<=50K	2606	1203	3809	Precision	4	0,745	0 021	F1	0,713	0 011
Actual	>50K	890	10382	11272	Precision		0,896	0,821	F1/	0,908	0,811
	tot	3496	11585	15081			\				
		Recall	Recall	Accuracy	0,861						
		0,684	0,921								
		0,8	303								

Score Bin	Positive Examples	Negative Examples	Fraction Above Threshold	Accuracy	F1 Score P	recisiøn	Recall	Negative Precision	Negative Recall
(0.900,1.000]	1683	199	0.125	9.846	0.591	0,894	0.442	0.839	0.982
(0.800,0.900]	370	179	0.161	0.858	0.658	0.845	0.539	0.861	0.966
(0.700,0.800]	220	175	0.187	0.861	0.685	0.804	0.597	0.875	0.951
(0.600,0.700]	176	155	0.209	0.863	0.703	0.776	0.643	0.886	0.937
(0.500,0.600]	157	179	0.232	0.861	0.714	0.746	0.684	0.896	0.921

POWERED BY VALUES

		True condition			
	Total population	Condition positive	Condition negative	Prevalence $= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
	Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$
	Accuracy (ACC) =	True positive rate (TPR), Sensitivity, Recall $= \frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False positive rate (FPR), Fall-out = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio $(LR+) = \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False negative rate (FNR), Miss rate $= \frac{\sum False \ negative}{\sum Condition \ positive}$	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	$= \frac{LR+}{LR-}$

ROC Curve - Receiver Operating Characteristic curve

- Graphical plot that illustrates the performance of a binary classifier system as its discrimination threshold is varied
- The curve is created by plotting the true positive rate (TPR, or Recall) against the false positive rate (FPR, or Fall-out) at various threshold settings
 - The ROC curve was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields

Find balance between True Positives and False Positives

FPR – False Positive Rate

ROC Curve

TP	FP
FN	TN
1	1

ROC Curve

ROC Curve

ROC AUC – Area Under the Curve

ROC AOC

Precision/Recall Curve

- Graphical plot that illustrates the performance of a binary classifier system as its discrimination threshold is varied
- The curve is created by plotting the Precision against the Recall at various threshold settings

$$Precision = TP / (TP + FP) = TP / Predicted positive$$

- When it predicts yes, how often is it correct?
- "focus" on False Positives

- When it's actually yes, how often does it predict yes?
- "focus" on False Negatives

Find balance between False Positives and False Negatives

Two-Class Classification Model Evaluation

Precision

Precision/Recall Curve

Scored dataset

Scored dataset to compare

POWERED BY VALUES

Recall

Scored dataset

Scored dataset to compare

Two-Class Classification Model Evaluation

Lift

"not documented"

Two-Class Classification Model Evaluation

Two-Class Classification Model Evaluation

ROC Curve in Azure ML

http://blogs.msdn.com/b/andreasderuiter/archive/201 5/02/10/using-roc-plots-and-the-auc-measure-inazure-ml.aspx

False Positive Rate

Confusion Matrix

In Azure ML

Multiclass

Predicted Class

Two-Class

True Positive False Negative

1104 786

False Positive True Negative

385 5265

Positive Label Negative Label

>50K <=50K

Confusion Matrix

POWERED BY VALUES

Metrics

Metrics

Overall accuracy	0.8068
Average accuracy	0.985138
Micro-averaged precision	0.8068
Macro-averaged precision	0.813606
Micro-averaged recall	0.8068
Macro-averaged recall	0.806804

Metrics

Metrics

Overall accuracy	0.8068
Average accuracy	0.985138
Micro-averaged precision	0.8068
Macro-averaged precision	0.813606
Micro-averaged recall	0.8068
Macro-averaged recall	0.806804

Overall Accuracy vs Average Accuracy

3 classes A, B, and C

		Α	В	С	tot
	Α	31	4	6	41
Actual	В	3	40	1	44
	С	8	11	23	42
	tot	42	55	30	127

overall accuracy =
$$\frac{TP(A) + TP(B) + TP(C)}{total} = \frac{31 + 40 + 23}{127} = 0.74$$

		Α	В	С	tot
	Α	31	4	6	41
Actual	В	3	40	1	44
	С	8	11	23	42
	tot	42	55	30	127

Overall Accuracy vs **Average Accuracy**

3 classes A, B, and C

		Α	В	С	tot
	Α	31	4	6	41
Actual	В	3	40	1	44
	С	8	11	23	42
	tot	42	55	30	127

$$average\ accuracy = \frac{accuracy(A) + accuracy(B) + accuracy(C)}{3}$$

$$accuracy(A) = \frac{TP(A) + TN(A)}{total}$$

Overall Accuracy vs **Average Accuracy**

Accuracy of A against B & C

		Α	В	С	tot
	Α	31	4	6	41
Actual	В	3	40	1	44
	С	8	11	23	42
	tot	42	55	30	127

$$accuracy(A) = \frac{TP(A) + TN(A)}{total}$$

$$accuracy(A) = \frac{31 + (40 + 1 + 11 + 23)}{127}$$

		Α	В	С	tot
	Α	31	4	6	41
Actual	В	3	40	1	44
	С	8	11	23	42
	tot	42	55	30	127

Overall Accuracy vs **Average Accuracy**

		Α	В	С	tot
	Α	31	4	6	41
Actual	В	3	40	1	44
	С	8	11	23	42
	tot	42	55	30	127

$$average\ accuracy = \frac{accuracy(A) + accuracy(B) + accuracy(C)}{3}$$

$$= \frac{\frac{TP(A) + TN(A)}{total} + \frac{TP(B) + TN(B)}{total} + \frac{TP(C) + TN(C)}{total}}{3}$$

$$= \frac{31 + (41 + 1 + 11 + 23)}{127} + \frac{40 + (31 + 6 + 8 + 23)}{127} + \frac{23 + (31 + 4 + 3 + 40)}{127} = 0.83$$

Metrics

Metrics

Overall accuracy	0.8068
Average accuracy	0.985138
Micro-averaged precision	0.8068
Macro-averaged precision	0.813606
Micro-averaged recall	0.8068
Macro-averaged recall	0.806804

Micro vs Macro

The macro is the average of the precision/recall taken separately for each class. Therefore it is an average over classes.

The micro average on the contrary is an average over instances.

Therefore classes which have many instances are given more importance.

Micro vs **Macro**

$$precision(X) = \frac{TP(X)}{TP(X) + FP(X)} = \frac{TP(X)}{Total \ predicted \ as \ X}$$

$$recall(X) = \frac{TP(X)}{TP(X) + FN(X)} = \frac{TP(X)}{Total X}$$

3 classes A, B, and C

$$macro\ averaged\ precision = \frac{precision(A) + precision(B) + precision(C)}{3}$$

$$macro\ averaged\ recall = \frac{recall(A) + recall(B) + recall(C)}{3}$$

All classes are treated equally

Micro vs Macro

$$precision(X) = \frac{TP(X)}{TP(X) + FP(X)} = \frac{TP(X)}{Total\ predicted\ as\ X}$$

$$recall(X) = \frac{TP(X)}{TP(X) + FN(X)} = \frac{TP(X)}{Total X}$$

3 classes A, B, and C

$$micro\ averaged\ precision = \frac{TP(A,B,C)}{TP(A,B,C) + FP(A,B,C)} = \frac{TP(A,B,C)}{Total}$$

micro averaged recall =
$$\frac{TP(A,B,C)}{TP(A,B,C) + FN(A,B,C)} = \frac{TP(A,B,C)}{Total}$$

Classes which have many instances are given more importance

 $micro\ averaged\ precision = micro\ averaged\ recall\ = overall\ accuracy$

Metrics

Metrics

Overall accuracy

Average accuracy

Micro-averaged precision

Macro-averaged precision

Micro-averaged recall

Macro-averaged recall

0.8068

0.8068

0.806804

2. Statistics

