

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/650,633	08/28/2003	Henry P. Gabryjelski	304818.01	7727
45840 2790 1208/2010 1208/2010 1208/2010 C/O WOLF, GREENFIELD (Microsoft Corporation) C/O WOLF, GREENFIELD & SACKS, P.C. 600 ATLANTIC AVENUE BOSTON. MA 02210-2206			EXAMINER	
			DANG, HUNG Q	
			ART UNIT	PAPER NUMBER
		2484		
			NOTIFICATION DATE	DELIVERY MODE
			12/08/2010	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

Patents_eOfficeAction@WolfGreenfield.com M1103_eOfficeAction@WolfGreenfield.com PAIR@wolfgreenfield.com

Application No. Applicant(s) 10/650.633 GABRYJELSKI ET AL. Office Action Summary Examiner Art Unit Hung Q. Dang 2484 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 18 October 2010. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.10-18.20.22.24.25.32-46.51.53-55 and 59-74 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1,10-18,20,22,24,25,32-46,51,53-55 and 59-74 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date. Notice of Draftsparson's Catent Drawing Review (CTO-948) 5) Notice of Informal Patent Application 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 09/23/2010. 6) Other:

Art Unit: 2484

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 10/18/2010 has been entered.

Specification

The amended specification filed 09/23/2010 has been considered and entered.

Response to Arguments

Applicant's arguments filed 02/16/2010 have been fully considered and corresponding remarks are given below.

On pages 25-26, 30-36, Applicant objects to Office Notice taken by Examiner regarding the Examiner's assertion of "user in Ohta can select different starting times for playing back each of the plurality of data streams according to their convenience".

These objections are moot in view of new ground of rejections below, in which Takaqi is used as a secondary reference to support the assertion.

Applicant's arguments stated on pages 26-28 with respect to rejection of claim 51 under 35 USC 101 as directed to non-statutory matter that "a storage medium" is not a signal are not persuasive because it is well known that signals can store data in forms of transitory magnetic-electrical energy. Further it is evidenced on page 23, lines 15-24

Art Unit: 2484

of the originally filed specification of the current invention, the storage media are stated as not limited to non-transitory storage media such as a compact disk ROM device (CD-ROM), CD recordable drive (CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM drive (DVD-ROM). As such, one skilled in the art would reasonably interpret the claimed computer-readable storage medium to comprise transitory storage medium such as signals as well. For that reason, Applicant's arguments are not persuasive.

On pages 28-30, Applicant's arguments with respect to claim 1 that Ohta fails to disclose, teach, or suggest each of the features in claim 1.

In response, Examiner respectfully disagrees and submits that Ohta also teaches concurrent reading from the optical medium of a plurality signals (see at least column 16, lines 25-33), wherein at least each signals corresponds either to a file among separate files recorded or a particular video or audio stream in a file. Ohta also teaches at least one of the plurality of data streams is analyzed in at least column 16, lines 33, wherein the analysis is performed at least in order to provide timing adjustment between picture and sound. In column 7, lines 57-63, Ohta also teaches potential starvation is inferred when the residual data is reduced to a certain level. Although this description is given for simultaneous recording/reproduction, examiner interprets this teaching is also applicable to the case of simultaneous reproduction described in column 16, lines 26-33 since it is directed on how the buffer is managed and controlled in order to prevent it from overflow or underflow. Further, in column 8, lines 4-6, Ohta teaches the reproduction is done so as to make up signal too much reduced due to a starvation

Art Unit: 2484

caused by latency plus error as further shown in Fig. 6 and described in column 7, lines 57-63. As such, Ohta also teaches the limitation of "based on the interference of potential starvation, take remedial action to mitigate the inferred starvation of the first real-time data stream." Therefore, Applicant's arguments are not persuasive.

Also, Examiner submits that newly added claims are rejected for the reasons set forth in details in the Office Action below.

Examiner's Note

Discenzo reference cited below claims priority benefits of US application 10/214927 as its continuation-in-part application. US application 10/214927 does support the cited features of using data fusion engines and neural networks to perform utility-based analysis at least in paragraph [0128].

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

The USPTO "Interim Guidelines for Examination of Patent Applications for Patent Subject Matter Eligibility" (Official Gazette notice of 22 November 2005), Annex IV, reads as follows:

Claims that recite nothing but the physical characteristics of a form of energy, such as a frequency, voltage, or the strength of a magnetic field, define energy or magnetism, per se, and as such are nonstatutory natural phenomena. O'Reilly, 56 U.S. (15 How.) at 112-14. Moreover, it does not appear that a claim reciting a signal encoded with functional descriptive material falls within any of the categories of patentable subject matter set forth in Sec. 101.

- ... a signal does not fall within one of the four statutory classes of Sec. 101.
- signal claims are ineligible for patent protection because they do not fall within any of the four statutory classes of Sec. 101.

Art Unit: 2484

Claims 51 and 72-74 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter as follows.

Claims 51 and 72-74 recite "a computer-readable storage medium having stored thereon ... computer-executable components". However, the recited "computer-readable medium" could be reasonably interpreted as encompassing statutory media such as a "ROM", "RAM", "EPROM", "CD-ROM", etc, as well as non-statutory subject matter such as a magnetic, optical, electromagnetic, infrared, ... or propagation medium.

A "magnetic, optical, electromagnetic, infrared, ... or propagation medium" is neither a process nor a product, (i.e., a tangible "thing") and therefore does not fall within one of the four statutory classes of § 101. Rather, a "magnetic, optical, electromagnetic, infrared, ... or propagation medium" is a form of energy, in the absence of any physical structure or tangible material.

The Examiner suggests amending the claims to recite the "computer-readable storage medium" as either (1) "computer-readable non-transitory storage medium", (2) "memory storage device", or (3) "computer-readable storage medium that doesn't consist of a signal" to include tangible computer readable media, while at the same time excluding the intangible media such as signals, carrier waves, etc. Any amendment to the claim should be commensurate with its corresponding disclosure.

Claim Rejections - 35 USC § 102

Art Unit: 2484

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1, 11-14, 17, 20, 22, 24, and 53-55 are rejected under 35 U.S.C. 102(b) as being anticipated by Ohta et al. (US Patent 6,330,214 – hereinafter Ohta).

Regarding claim 1, Ohta discloses a system that facilitates utilizing an optical medium (Fig. 14A – wherein the reproduction system utilizing optical disc in the optical disc drive 100), the system comprising at least one processor (at least system controller 104 shown in Fig. 14A), the system configured to: provide concurrent reading of a plurality of data streams from the optical medium to a corresponding one of a plurality of buffers (Fig. 14A; column 16, lines 25-33 – wherein the system simultaneously reproduces separate files recorded in the optical disc in the optical disc drive - the data in each file comprises video and audio streams, each of which is interpreted as one data stream in the plurality of data streams as recited - the data of each stream is supplied to a corresponding one of a plurality of buffers as described in column 16, lines 25-32 and further shown in Fig. 14A), the plurality of data streams comprising at least one real-time data stream (column 16. lines 25-33 - wherein one of the data streams is interpreted as the recited real-time data stream since each frame of the video and audio streams should be played back in a timely manner); analyze at least one of the plurality of data streams (column 16, lines 33-39 - wherein the analysis is performed at least in order to provide timing adjustment between picture and sound); infer potential starvation

Art Unit: 2484

of a first real-time data stream of the at least one real-time data stream (column 7, lines 57-63 – wherein potential starvation is inferred when the residual data is reduced to a certain level – also although this description is given for simultaneous recording/reproduction, examiner interprets this teachings also applicable to the case of simultaneous reproduction described in column 16, lines 26-33); and based on the interference of potential starvation, take remedial action to mitigate the inferred starvation of the first real-time data stream (column 8, lines 4-6 – wherein reproduction is done so as to make up signal too much reduced due to a starvation caused by latency plus error as further shown in Fig. 6 and described in column 7, lines 57-63 – also although this description is given for simultaneous recording/reproduction, examiner interprets this teachings also applicable to the case of simultaneous reproduction described in column 16, lines 26-33).

Regarding claim 11, Ohta also discloses a buffer controller that controls creation and/or use of at least one buffer (column 16, lines 33-37; "Memory Controller 164" of Fig. 14A – wherein at least the memory controller is used to control at least the use of the buffers in the buffer memory).

Regarding claim 12, Ohta also discloses the buffer controller performs a utility-based analysis in connection with buffer access (column 6, line 15 – column 8, line 31; column 16, lines 20-43).

Regarding claim 13, Ohta also discloses the utility-based analysis is based at least in part on a probabilistic-based determination of cost associated with saving data to the at least one buffer (column 6. line 15 – column 8. line 48).

Art Unit: 2484

Regarding claim 14, Ohta also discloses, the utility-based analysis is based at least in part on a probabilistic-based determination of cost associated with retrieving data from the at least one buffer (column 6, line 15 – column 8, line 48).

Regarding claim 17, Ohta also discloses the plurality of data streams comprises a plurality of real-time data streams (column 16, lines 25-33 – wherein each of the video and audio streams is interpreted as the recited real-time data stream since each frame of the video and audio streams should be played back in a timely manner), the system further configured to provide concurrent playback of a plurality of data streams from the optical medium (Fig. 14A; column 16, lines 26-33 – wherein simultaneous reproduction of a plurality of video and audio streams is provided).

Regarding claim 20, see the teachings of Ohta as discussed in claim 1 above. Further, Ohta also discloses a continuity component, the continuity component configured to facilitate concurrent recordation of a plurality of data streams in parallel from the optical medium (column 7, lines 36-38; column 16, lines 33-37 – wherein concurrent recordation of a plurality of the data stream is performed in parallel from the optical disc to corresponding buffers).

Regarding claim 22, Ohta also discloses the remedial action comprises dynamically ordering reading of the data streams (column 12, lines 43-47; column 16, lines 25-43 – wherein examiner interprets the reading of the data streams must be dynamically ordered in a certain manner at least to provide balance between read and write with respect to the reproduction buffer memory).

Art Unit: 2484

Regarding claim 24, Ohta also discloses the inferring potential starvation comprises using a probabilistic-based utility analysis (column 6, line 15 – column 8, line 48: column 16, lines 25-43).

Regarding claim 53, Ohta also discloses the system is further configured to perform a utility-based analysis in connection with the concurrent reading (column 6, line 15 – column 8, line 31 - although this description is given for simultaneous recording/reproduction, examiner interprets this teachings also applicable to the case of simultaneous reproduction described in column 16, lines 26-33, which is corresponding to the recited concurrent reading).

Regarding claim 54, Ohta also discloses the utility-based analysis uses a classifier (column 6, line 15 – column 8, line 31; column 16, lines 20-43 – wherein at least it classifies between recordation vs. reproduction or between recording buffer vs. reproducing buffer etc. – also within a reproduction, it is classified based on phases as shown at least in Figs. 9-10).

Regarding claim 55, Ohta also discloses the system is further configured to perform the utility-based analysis by inferring when to initiate recordation (Figs. 7-8).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2484

Claims 10, 65-67, and 69 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Kaneshige et al. (US Patent 6,360,055 – hereinafter Kaneshige).

Regarding claim 10, see the teachings of Ohta as discussed in claim 1 above. However, Ohta does not disclose wherein the at least one buffer of the plurality of buffers corresponding to the first real-time data stream has a minimum buffer capacity that is a function of read speed and at least two seek times, the at least two seek times comprising a time to seek to a location logically forward on the disc, and a time to seek to a location logically backward on the disc.

Kaneshige discloses wherein the buffer corresponding to a real-time data stream has a minimum buffer capacity that is a function of read speed and at least two seek times (column 3, lines 40-44; Fig. 24; Fig. 25), the at least two seek times comprising a time to seek to a location logically forward on the disc, and a time to seek to a location logically backward on the disc (column 5, lines 52-62; column 15, lines 1-18 – wherein the seek time T₁ comprises seek times in both forward and backward directions as described at least in column 5, lines 52-62).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of Kaneshige into the system taught by Ohta in order to suppress breaks or disturbance in reproduced video (*Kaneshige*, column 2, lines 8-13).

Art Unit: 2484

Regarding claim 65, see the teachings of Ohta as discussed in claim 1 above. However, Ohta also discloses the system further comprising an optical media drive operatively coupled to read the optical medium (Fig. 14A – optical disc drive 100).

However, Ohta does not disclose the system further configured to: determine a first plurality of seek times, each of the first plurality of seek times based on a seek from an earlier location on optical media to a later location on optical media; determine a second plurality of seek times, each of the second plurality of seek times based on a seek from an later location on optical media to an earlier location on optical media, the first and second plurality of seek times collectively referred to as the combined seek times, wherein the inference is based on at least a first seek time of the first plurality of seek times and at least a second seek time of the second plurality of seek times.

Kaneshige discloses a system configured to: determine a first plurality of seek times, each of the first plurality of seek times based on a seek from an earlier location on optical media to a later location on optical media (column 3, lines 40-44; Fig. 24; Fig. 25; column 5, lines 52-62; column 15, lines 1-18 – wherein the seek time T_j comprises seek times in both forward and backward directions as described at least in column 5, lines 52-62 – the seek times in forward directions are interpreted as the recited the seek times based on a seek from an earlier location to a later location); determine a second plurality of seek times, each of the second plurality of seek times based on a seek from an later location on optical media to an earlier location on optical media (column 3, lines 40-44; Fig. 24; Fig. 25; column 5, lines 52-62; column 15, lines 1-18 – wherein the seek time T_j comprises seek times in both forward and backward directions as described at

Art Unit: 2484

least in column 5, lines 52-62 – the seek times in backward directions are interpreted as the recited the seek times based on a seek from an earlier location to a later location), the first and second plurality of seek times collectively referred to as the combined seek times, wherein the inference is based on at least a first seek time of the first plurality of seek times and at least a second seek time of the second plurality of seek times (column 3, lines 40-44; Fig. 24; Fig. 25; column 5, lines 52-62; column 15, lines 1-18 – wherein the seek time T_j comprises seek times in both forward and backward directions as described at least in column 5, lines 52-62).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of Kaneshige into the system taught by Ohta in order to suppress breaks or disturbance in reproduced video (*Kaneshige*, column 2, lines 8-13).

Regarding claim 66, Kaneshige also discloses the determining at least a first of the combined seek times comprises: causing the drive to seek from a first location on the optical media to a second position on the optical media (Figs. 23-24 – wherein causing the drive to jump and T_i is defined by the jumping time).

Regarding claim 67, Kaneshige also discloses the causing the drive to seek from a first location on the optical media to a second location on the optical media comprises: reading at least a first amount of data from the first location on the optical media such that an internal media cache of the optical hardware device is not caching data from the second location on the optical media (Fig. 23; column 13, line 66 – column 14, line 4 – wherein at the start of the jump data from the second position are not read in until t₀);

Art Unit: 2484

reading at least a second amount of data from the second location on the optical media (Fig. 23; column 13, line 66 – column 14, line 4 – wherein data from the second position are read in at t₆).

Regarding claim 69, Ohta and Kaneshige also disclose causing the drive to seek from a first location on the optical media to a second location on the optical media (Kaneshige: Figs. 23-24) comprises sending a SEEK command (Ohta: Fig. 6; column 7, lines 45-55).

Claims 15-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Osakabe (US Patent 6,894,961 – hereinafter Osakabe).

Regarding claim 15, see the teachings of Ohta as discussed in claim 1 above. However, Ohta does not disclose the optical medium has a guaranteed minimum data transfer rate.

Osakabe also discloses the optical medium has a guaranteed minimum data transfer rate (column 1, line 39 – column 2, line 30).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of Osakabe into the system disclosed by Ohta in order to permit recording with minimized errors (Osakabe: column 1, lines 44-49).

Regarding claim 16, Osakabe also discloses the guaranteed minimum data transfer rate is at least about 176 KBps (column 1, line 39 – column 2, line 30; Table 4;

Art Unit: 2484

column 8, lines 35-61 - wherein speed of 1X corresponds to 150 KBps - see paragraph [0003] of Green for support).

Claim 18 is rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Lamkin et al. (US 2002/0078144 – hereinafter Lamkin).

Regarding claim 18, see the teachings of Ohta as discussed in claim 17 above. However, Ohta does not explicitly at least two of the plurality of real-time data streams corresponding to a CD audio track.

Lamkin discloses at least two of a plurality of real-time data streams corresponding to a CD audio track (pages 15-16, table A.1.5).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of Lamkin into the system taught by Ohta in order to play back CD audio data thus enhancing the applicability of the system.

Claims 25, 32-40, 43-46, 51, and 72-74 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Takagi (US Patent 5,999,691 – hereinafter Takagi).

Regarding claim 25, Ohta discloses a method of utilizing optical media, the method comprising: starting to read a first data stream from the optical media at time t_x, the first data stream being a real-time data stream (column 16, lines 26-33 – wherein each of the video and audio streams is interpreted as the recited real-time data stream since each frame of the video and audio streams should be played back in a timely manner); and starting to read a second data stream from the optical media concurrently

Art Unit: 2484

with the first data stream at time ty while the first data stream is being read (column 16, lines 26-33 – wherein the second data stream is the data stream recorded in the second file separate from the first file); transferring the first data stream to a first buffer for temporary storage at a sufficient rate to allow transfer of the second data stream without causing starvation of the first data stream (column 16, lines 33-43 – wherein the transferring is performed to prevent overflow and underflow of the corresponding buffers).

Ohta does not explicitly disclose tx is not equal to ty.

Takagi discloses a user can select different starting times for playing back each of the plurality of data streams according to their convenience (column 15, line 47 – column 16, line 52; Fig. 10 - wherein user can choose to select playback of a plurality of data streams arbitrarily).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the feature that lets user arbitrarily select different starting times for playing each stream into the method taught by Ohta in order to provide users with convenience in selecting which stream to be played back thus enhancing the user interface of the method.

Regarding claim 32, Ohta also discloses determining read performance across the optical media to facilitate ascertaining an optical hardware device's ability to read the optical media, the optical hardware device employed to run the optical media, the determining read performance across the optical media comprising: reading at least a first amount of data from a first position on the optical media such that an internal media

Art Unit: 2484

cache is not concurrently caching the first amount of data when the reading of the first amount of data starts (column 7, lines 30-63; Fig. 6 – wherein at least the first amount of data corresponds to 3n); and reading at least a second amount of data from a second position on the optical media, wherein the second position is separated from the first position by data representing an increment of playback time that is sufficient for determining characteristic read performances across the optical media; and reading data from other positions on the optical media to determine read performances across substantially all of the optical media (column 7, lines 30-63; Fig. 6).

Regarding claim 33, Ohta also discloses the first amount of data being about 8 MB (Fig. 6; wherein the amount of 3n of data is interpreted as about 8 MB).

Regarding claim 34, Ohta also discloses the increment of time being about 5 minutes (Fig. 6 - wherein at least the skipped time corresponds to the time period between starting reading the first amount of data and start of phase 1 and is interpreted as about 5 minutes).

Regarding 35, Ohta also discloses the second amount of data is substantially equal in size to the first amount of data (Fig. 6 – wherein each amount of data in "reproduction" periods is interpreted as substantially equal in size).

Regarding claim 36, Ohta also discloses the first amount of data is determined based at least in part upon an internal buffer size of the optical hardware device (Fig. 6 – wherein the amount of data read in each "reproduction period" at least is determined to be less than the available capacity of the buffer).

Art Unit: 2484

Regarding claim 37, Ohta also discloses determining seek times across the optical media to facilitate ascertaining the optical hardware device's ability to seek on the optical media, the optical hardware device employed to run the optical media, the determining seek times comprising: dividing the optical media into a number of sections, the number of sections comprising at least a first section and at least a second section, such that an internal cache of the optical hardware device does not pre-cache data from the second section when told to start reading from the first section (*Fig. 6; column 6, lines 59-65; column 7, lines 42-63*); and for all ordered pairs of sections comprising any two sections, ensuring that the optical hardware device is reading from the first section and then causing the optical hardware device to seek to the second section to gain characteristic seek performances across the optical media (*Fig. 6; column 6, lines 59-65; column 7, lines 42-63*).

Regarding claim 38, Ohta also discloses all sections are of substantially equal size (Fig. 6 – wherein the amounts of data read on both sides of the "head move" period are interpreted as having substantially equal size).

Regarding claim 39, Ohta also discloses a size of the sections is determined based at least in part upon the an internal buffer size of the optical hardware device (Fig. 6 – wherein the amounts of data read on both sides of the "head move" period" is determined at least to be less than the available capacity of the buffer).

Regarding claim 40, Ohta also discloses ensuring that the optical hardware device is reading from the first section comprises reading an amount of data larger than an internal buffer size of the optical hardware device from a section other than the first

Art Unit: 2484

and second sections (Fig. 6 – wherein an internal buffer size is interpreted to 2n, the amount of the data read to fill up to the level of 3n is interpreted as the data from some section other the first and second sections, the first section corresponds to the section contain the data read in phase 1 while the second section is interpreted as corresponding to that containing the data read in phase 3).

Regarding claim 43, Ohta also discloses causing the optical hardware device to seek to the second section comprises using a SEEK command (Fig. 6; column 7, lines 45-55).

Regarding claim 44, Ohta also discloses a size of the sections is about 5 minutes (Fig. 6 - wherein at least the size of data in either "section" is interpreted as about 5 minutes).

Regarding claim 45, Ohta also discloses ensuring that the optical hardware device is reading from the second section comprises reading an amount of data larger than an internal buffer size of the optical hardware device from the first section (Fig. 6 – wherein the internal buffer size is interpreted to 2n, the amount of the data read to fill up to the level of 4n is interpreted as the data from first section while the second section is interpreted as corresponding to the section that contains the data read in phase 3).

Regarding claim 46, Ohta also discloses determining whether minimum buffer requirements are satisfied, the minimum buffer requirements being a function of read speed and seek times (column 6, lines 15-40, 60-65; column 7, lines 35-63).

Regarding claim 51, Ohta also discloses at least one computer-readable storage medium having stored thereon the following computer executable components: a

Art Unit: 2484

component that provides for concurrently reading a non-real-time data stream from optical media starting at time t_y (column 16, lines 25-33; column 18, lines 1-8 - wherein the data streams that are sent to a computer as described in column 18, lines 1-8 are interpreted as non-real-time data streams since each frame of the video and audio streams are not required to be processed in a timely manner for playback) a and reading a real-time data stream from the optical media starting time t_x (column 16, lines 25-33 – wherein one of the data streams read out for playback is interpreted as the recited real-time data stream since each frame of the video and audio streams should be processed in a timely manner during playback).

However, Ohta does not disclose wherein $t_x \neq t_y$.

Takagi discloses a user can select different starting times for reading each of the plurality of data streams according to their convenience (column 15, line 47 – column 16, line 52; Fig. 10 - wherein user can choose to select reading of a plurality of data streams arbitrarily).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the feature that lets user arbitrarily select different starting times for reading each stream into the method taught by Ohta in order to provide users with convenience in selecting which stream to be read thus enhancing the user interface of the method.

Claim 72 is rejected for the same reason as discussed in claim 25 above.

Claim 73 is rejected for the same reason as discussed in claim 32 above.

Claim 74 is rejected for the same reason as discussed in claim 37 above.

Art Unit: 2484

Claims 41-42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta and Takagi as applied to claims 1, 11-14, 17, 20, 22, 24-25, 32-40, 43-46, 51, 53-55, and 72-74 above, and further in view of King et al. (US 2002/0169996 – hereinafter King).

Regarding claim 41, see the teachings of Ohta and Takagi as discussed in claim 37 above. However, Ohta and Takagi do not disclose ensuring that the optical hardware device is reading from the first section comprises sending a READ I0 command with a force unit access (FUA) bit set to one.

King discloses sending a READ I0 command with a force unit access (FUA) bit set to one ([0013]).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of King into the method disclosed by Ohta in order to provide reliability of data (King: [0013]).

Regarding claim 42, see the teachings of Ohta and Takagi as discussed in claim 37 above. However, Ohta and Takagi do not disclose ensuring that the optical hardware device is reading from the second section comprises sending a READ I0 command with a force unit access (FUA) bit set to one.

King discloses sending a READ I0 command with a force unit access (FUA) bit set to one ([0013]).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of King into the method disclosed by Ohta in order to provide reliability of data (King: [0013]).

Art Unit: 2484

Claims 59 and 64 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Discenzo et al. (US 2004/0267395 – hereinafter Discenzo).

Regarding claim 59, see the teachings of Ohta as discussed in claim 53 above.

However, Ohta does not disclose the system is configured to perform the utilitybased analysis using at least one data fusion engine.

Discenzo discloses a system configured to perform the utility-based analysis using at least one data fusion engine ([0058] – wherein inference of system's conditions and states is performed using Bayesian networks, fuzzy logic, data fusion engines, hidden Markov Models, decision trees, model-based methods etc.).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the use of at least one data fusion engine for utility-based analysis as taught by Discenzo into the system disclosed by Ohta to improve efficiency and reliability of the system (*Discenzo*, 100121).

Regarding claim 64, Discenzo also discloses the system is further configured to perform the utility-based analysis using at least one neural network (10058).

Claims 60-61 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Vasko et al. (US Patent 7,058,712 – hereinafter Vasko).

Regarding claim 60, see the teachings of Ohta as discussed in claim 53 above.

However, Ohta does not disclose the system is further configured to perform the utility-based analysis using at least one support vector machine (SVM).

Art Unit: 2484

Vasko discloses the system is further configured to perform the utility-based analysis using at least one support vector machine (SVM) (column 11, lines 32-42 – wherein inference of utility of system resources is performed using Support Vector Machines or Naïve Bayes).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the use of at least one data fusion engine for utility-based analysis as taught by Vasko into the system disclosed by Ohta to improve efficiency of the system (Vasko, column 11, lines 44-46).

Regarding claim 61, Vasko also discloses wherein the system is further configured to perform the utility-based analysis using at least one naive Bayes model (column 11, lines 32-42 – wherein inference of utility of system resources is performed using Support Vector Machines or Naïve Bayes).

Claims 62-63 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Horvitz (US Patent 6,009,452 – hereinafter Horvitz).

Regarding claim 62, see the teachings of Ohta as discussed in claim 53 above. However, Ohta does not disclose the system is further configured to perform the utility-based analysis using at least one Bayesian network.

Horvitz discloses the system is further configured to perform the utility-based analysis using at least one Bayesian network (column 22, lines 5-27; column 30, lines 27-30 – wherein inference of probability of state transitions of system is performed using Bayesian Networks or Hidden-Markov models).

Art Unit: 2484

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the use of at least one data fusion engine for utility-based analysis as taught by Horvitz into the system disclosed by Ohta to improve efficiency of the system (Horvitz, column 22, lines 23-27).

Regarding claim 63, Horvitz also discloses wherein the system is further configured to perform the utility-based analysis using at least one Hidden Markov Model (HMM) (column 22, lines 5-27; column 30, lines 27-30 – wherein inference of probability of state transitions is performed using Bayesian networks or Hidden-Markov models).

Claim 68 is rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta and Kaneshige as applied to claims 1, 10-14, 17, 20, 22, 24, 53-55, 65-67, and 69 above, and further in view of King.

Regarding claim 68, see the teachings of Ohta and Kaneshige as discussed in claim 66 above. Further, Kaneshige also disclose causing the drive to see from a first location on the optical media to a second location on the optical media (Fig. 23; column 13, line 66 – column 14, line 4 – wherein data from the second position are read in at t₆).

However, Ohta and Kaneshige do not disclose sending a read command with a force unit access (FUA) bit set to one to the drive.

King also discloses sending a read command with a force unit access (FUA) bit set to one to the drive ([0013]).

Art Unit: 2484

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of King into the system disclosed by Ohta and Kaneshige in order to provide reliability of data (King: [0013]).

Claims 70-71 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ohta as applied to claims 1, 11-14, 17, 20, 22, 24, and 53-55 above, and further in view of Lamkin and Takagi.

Regarding claim 70, see the teachings of Ohta as discussed in claim 1 above. Ohta also discloses the plurality of data streams comprises a plurality of data streams corresponding to audio files, a first audio file stream of the plurality of audio streams is a real-time data stream (column 16, lines 25-33 – wherein one of the data streams that is reproduced for playback is interpreted as the recited real-time data stream since each frame of the audio streams should be played back in a timely manner), reading of the first CD audio file stream started at time t_x (column 16, lines 26-33 – wherein the audio stream in the first audio file is interpreted as the first audio stream), reading of a second CD audio file stream of the plurality of CD audio file streams started at time t_y (column 16, lines 26-33 – wherein the second audio stream is the audio stream recorded in the second file separate from the first file), where $t_x \neq t_y$, and the reading of the later of the first or second CD audio file streams does not interrupt the reading of the earlier of the first or second CD audio file streams (column 16, lines 26-33).

However, Ohta does not disclose the plurality of data streams comprises a plurality of data streams corresponding to CD audio tracks, and where $t_x \neq t_y$.

Art Unit: 2484

Takagi discloses a user can select different starting times for playing back each of the plurality of data streams according to their convenience (column 15, line 47 – column 16, line 52; Fig. 10 - wherein user can choose to select playback of a plurality of data streams arbitrarily).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the feature that lets user arbitrarily select different starting times for playing each stream into the method taught by Ohta in order to provide users with convenience in selecting which stream to be played back thus enhancing the user interface of the method.

However, Ohta and Takagi do not disclose the plurality of data streams comprises a plurality of data streams corresponding to CD audio tracks.

Lamkin discloses the plurality of data streams comprises a plurality of data streams corresponding to CD audio tracks (pages 15-16, table A.1.5).

One of ordinary skill in the art at the time the invention was made would have been motivated to incorporate the teachings of Lamkin into the system taught by Ohta in order to play back CD audio data thus enhancing the applicability of the system.

Regarding claim 71, Ohta and Lamkin also disclose the second audio track stream (Lamkin: pages 15-16, table A.1.5) is a real-time data stream (Ohta: column 16, lines 25-33 – wherein the second data stream that is reproduced for playback is interpreted as a real-time data stream since each frame of the audio streams should be played back in a timely manner).

Art Unit: 2484

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Hung Q. Dang whose telephone number is (571)270-1116. The examiner can normally be reached on IFT.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, THAI Q. TRAN can be reached on 571-272-7382. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Hung Q Dang/ Examiner, Art Unit 2484

/Thai Tran/ Supervisory Patent Examiner, Art Unit 2484