Comportamiento del "Fondo Comunidad Activa (8% FNDR)". Comuna de Peñaflor. Periodo 2024

```
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
```

1. Introducción

El objetivo de este informe es analizar la distribución de proyectos financiados por el Fondo Comunidad Activa (8% FNDR), durante el año 2024. Este análisis se centra en la distribución de proyectos por ámbito, de la comuna de Peñaflor, dentro de la provincia de Talagante.

Carga de datos

La base llamada **fondo_concursable** contiene los datos de interés para el ánalisis central. La cual se obtiene en el siguiente link: https://comunidadactiva.gobiernosantiago.cl/wp-content/uploads/2023/07/Provincia-Talagante.pdf

```
In [6]: # Lee el archivo excel y almacena en un diccionario de DataFrames
df = pd.read_excel('Fondo_Concursable.xlsx')

# Mostrar la primera fila del DataFrame concatenado
df.head(1)
```

\cap		+	Γ	6	٦	0
U	и	L	L	U	J	0

	N°	Alcance	Puntaje	Tipologia	Código	Nombre Proyecto	Institución	Tipo Organizacion	Rut
0	1	Comunal	100	Cultura	CL- 00108- 24	Taller de Teatro para Personas Mayores "Latido	Fundación Educa y Colabora	fundación	65174
4									

Descripción de los datos

El archivo Fondo_Concursable.xlsx contiene información detallada sobre los proyectos presentados al fondo concursable. La hoja tiene las siguientes columnas:

- N°: Número de identificación del proyecto.
- Alcance: Indica el alcance del proyecto (e.g., Comunal).
- Puntaje: Puntaje obtenido en el concurso, que varía entre 0 y 100.
- **Tipologia**: Tipo de proyecto (e.g., Cultura, Deporte, Seguridad, Social, Medio ambiente).

- Código: Código único identificador del proyecto.
- Nombre Proyecto: Nombre descriptivo del proyecto.
- Institución: Nombre de la institución que presenta el proyecto.
- **Tipo Organizacion**: Tipo de organización (e.g., Fundación, Club Deportivo, Junta de Vecinos, etc.).
- Rut Inst.: RUT de la institución.
- Monto solicitado: Monto económico solicitado para el proyecto.
- **Provincia**: Provincia asociada al proyecto.
- Comuna: Comuna asociada a la organización que presentó el proyecto.
- **Estado**: Resultado final del proyecto (e.g., Seleccionado, No admisible).

Análisis descriptivo estadístico

```
In [9]: # 2. Obtener información general del DataFrame
print("\nInformación general del DataFrame:")
print(df.info())

# 3. Estadísticas descriptivas para columnas numéricas
print("\nEstadísticas descriptivas para columnas numéricas:")

descripcion = df.describe().round()

# Formatear la columna "Monto solicitado" para eliminar decimales y notación exp
descripcion['Monto solicitado'] = descripcion['Monto solicitado'].apply(lambda x

# Mostrar el resultado
descripcion
```

Información general del DataFrame:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 348 entries, 0 to 347
Data columns (total 14 columns):

	(
#	Column	Non-Null Count	Dtype
0	N°	348 non-null	int64
1	Alcance	348 non-null	object
2	Puntaje	348 non-null	int64
3	Tipologia	348 non-null	object
4	Código	348 non-null	object
5	Nombre Proyecto	348 non-null	object
6	Institución	348 non-null	object
7	Tipo Organizacion	348 non-null	object
8	Rut Inst.	348 non-null	object
9	Monto solicitado	348 non-null	int64
10	Provincia	348 non-null	object
11	Comuna	348 non-null	object
12	Estado	348 non-null	object
13	Unnamed: 13	4 non-null	object
dtyp	es: int64(3), objec	t(11)	

memory usage: 38.2+ KB

None

Estadísticas descriptivas para columnas numéricas:

Out[9]:

	N°	Puntaje	Monto solicitado
count	348.0	348.0	348
mean	109.0	65.0	5,800,769
std	76.0	40.0	3,415,849
min	1.0	0.0	659,000
25%	44.0	36.0	2,174,852
50%	88.0	85.0	5,617,162
75%	174.0	95.0	9,536,285
max	261.0	100.0	10,000,000

El análisis estadístico descríptivo de las variables: Puntaje y Monto Solicitado resalta que no existen valores nulos o fuera de rango. La base es pequeña y contiene datos bien precisos, donde se destaca el monto minimo de dinero solicitado, la suma de 659.000 de pesos y el monto máximo, de 10.000.000 de pesos.

Visualización de Los Resultados del Fondo.

```
In [160...
          # Crear una figura con dos subplots (1 fila, 2 columnas)
          fig, axes = plt.subplots(1, 2, figsize=(12, 5)) # Reducir el tamaño de la figur
          # Graficar el primer gráfico (Tipologia)
          bars_tipologia = porcentajes_cruzados_tipologia.plot(kind='bar', color=['dodgerb
          axes[0].set_title('Resultado por Área', fontsize=12, pad=10) # Título más grand
          axes[0].tick_params(axis='x', rotation=0, labelsize=9) # Reducir el tamaño de l
          axes[0].set_yticks([]) # Eliminar Las marcas del eje y
          axes[0].set yticklabels([]) # Eliminar Las etiquetas del eje y
          axes[0].set_ylim(0, 100) # Limitar el rango del eje y para que las barras no se
          # Añadir etiquetas de porcentaje sobre las barras (Tipologia)
          for i, (colname, data) in enumerate(porcentajes_cruzados_tipologia.items()):
              for j, value in enumerate(data):
                  axes[0].annotate(f'{value:.1f}%', xy=(j, value + 1), ha='center', va='bd
          # Graficar el segundo gráfico (Comuna)
          bars_comuna = porcentajes_cruzados_comuna.plot(kind='bar', color=['dodgerblue',
          axes[1].set_title('Resultado por Comuna', fontsize=12, pad=10) # Título más gra
          axes[1].tick params(axis='x', rotation=0, labelsize=9) # Reducir el tamaño de l
          axes[1].set_yticks([]) # Eliminar las marcas del eje y
          axes[1].set_yticklabels([]) # Eliminar las etiquetas del eje y
          axes[1].set_ylim(0, 100) # Limitar el rango del eje y para que las barras no se
          # Añadir etiquetas de porcentaje sobre las barras (Comuna)
          for i, (colname, data) in enumerate(porcentajes cruzados comuna.items()):
              for j, value in enumerate(data):
                  axes[1].annotate(f'{value:.1f}%', xy=(j, value + 1), ha='center', va='bd
          # Crear una leyenda manual y compartirla entre los gráficos
          handles, labels = axes[0].get_legend_handles_labels()
          fig.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, 0), ncol=2,
          # Ajustar el espacio entre los subplots
```

```
plt.tight_layout()

# Mostrar La figura
plt.show()
```



```
In [132...
          import pandas as pd
          import matplotlib.pyplot as plt
          # Lista de comunas
          comunas = ['Peñaflor', 'Talagante', 'El Monte', 'Isla de Maipo', 'Padre Hurtado'
          # Crear una figura con 5 subplots (uno por comuna)
          fig, axes = plt.subplots(2, 3, figsize=(15, 10)) # 2 filas, 3 columnas (el últi
          axes = axes.flatten() # Aplanar la matriz de subplots para facilitar el acceso
          # Iterar sobre cada comuna y crear un gráfico
          for i, comuna in enumerate(comunas):
              # Filtrar el DataFrame por comuna
              df comuna = df[df['Comuna'] == comuna]
              # Crear una tabla cruzada para la comuna y el estado
              frecuencias_cruzadas = pd.crosstab(df_comuna['Tipologia'], df_comuna['Estado
              # Calcular los porcentajes
              porcentajes_cruzados = frecuencias_cruzadas.div(frecuencias_cruzadas.sum(axi
              # Graficar el gráfico de barras
              bars = porcentajes cruzados.plot(kind='bar', color=['dodgerblue', 'tomato'],
              axes[i].set_title(f'Resultado en {comuna}') # Título del gráfico (sin la pa
              axes[i].tick_params(axis='x', rotation=0, labelsize=9) # Reducir el tamaño
              axes[i].set_yticks([]) # Eliminar las marcas del eje y
              axes[i].set_yticklabels([]) # Eliminar las etiquetas del eje y
              axes[i].set_xlabel('') # Eliminar la etiqueta del eje x (si existía)
              # Añadir etiquetas de porcentaje sobre las barras
              for j, (colname, data) in enumerate(porcentajes_cruzados.items()):
                  for k, value in enumerate(data):
                      axes[i].annotate(f'{value:.1f}%', xy=(k, value + 1), ha='center', va
          # Ocultar el sexto subplot (posición [1, 2])
          axes[-1].axis('off')
          # Crear una leyenda manual y compartirla entre los gráficos
```

```
handles, labels = bars.get_legend_handles_labels()
fig.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, 0), ncol=2,

# Ajustar el espacio entre los subplots
plt.tight_layout()

# Mostrar la figura
plt.show()
```


En resultados por ámbito destaca que el **peor** rendimiento se da en **Medio Ambiente** donde la diferencia entre seleccionados y no admisibles es poca 7.6% y el **mejor** es en **Seguridad** con una diferencia de 78.8%.

En resultados por comuna destaca **El Monte** con una diferencia de 79.2% entre los proyectos seleccionados y los no seleccionados. Las otras comunas tienen un comportamiento casi igual.

La comuna de **Peñaflor** (tercer gráfico) muestra un comportamiento no muy alentador. En medio ambiente son más los proyectos rechazados que aprobados y en cultura y social solo la mitad de los proyectos son aprobados. Seguridad y deporte son los únicos que tienen más proyectos ganados que rechazados.

Comuna de Peñaflor

Out[14]:	Estado	No admisible	Seleccionado
	Tipologia		
	Cultura	1	1
	Deporte	9	15
	Medio ambiente	2	1
	Seguridad	6	27
	Social	5	5

```
In [182...
          import pandas as pd
          # Crear una tabla cruzada (pivot table) para el Estado por Comuna (solo conteo)
          tabla_cruzada_estado = df.pivot_table(
              values='N°',
                                         # Usar una columna numérica para contar
              index='Comuna',
                                         # Filas (comunas)
             columns='Estado',
                                        # Columnas (estados)
              aggfunc='count',
                                        # Función de agregación (contar)
              fill_value=0
                                        # Rellenar valores faltantes con 0
          # Calcular el total general (total de proyectos)
          total_general = tabla_cruzada_estado.sum().sum()
          # Agregar totales a la tabla de conteo
          tabla_cruzada_estado['Total Comuna'] = tabla_cruzada_estado.sum(axis=1) # Total
          tabla_cruzada_estado.loc['Total Estado'] = tabla_cruzada_estado.sum(axis=0) # 7
          # Calcular la tabla de porcentajes
          tabla_cruzada_porcentajes = (tabla_cruzada_estado / total_general) * 100
          tabla_cruzada_porcentajes = tabla_cruzada_porcentajes.map(lambda y: f"{y:.2f}%")
          # Renombrar las columnas de la tabla de porcentajes para evitar conflictos
          tabla_cruzada_porcentajes.columns = [f"{col} (%)" for col in tabla_cruzada_porce
          # Combinar las dos tablas horizontalmente
          tabla_combinada = pd.concat([tabla_cruzada_estado, tabla_cruzada_porcentajes], a
          # Mostrar la tabla combinada
          print("Tabla cruzada del estado de los proyectos por comuna (conteo y porcentaje
          tabla_combinada
```

Tabla cruzada del estado de los proyectos por comuna (conteo y porcentajes)

Out[182...

	No admisible	Seleccionado	Total Comuna	No admisible (%)	Seleccionado (%)	Total Comuna (%)
Comuna						
El Monte	7	60	67	2.01%	17.24%	19.25%
Isla de Maipo	25	48	73	7.18%	13.79%	20.98%
Padre Hurtado	15	45	60	4.31%	12.93%	17.24%
Peñaflor	23	49	72	6.61%	14.08%	20.69%
Talagante	17	59	76	4.89%	16.95%	21.84%
Total Estado	87	261	348	25.00%	75.00%	100.00%

```
In [184... # Contar los datos de la variable 'Estado'
  total_estados = df['Estado'].value_counts()

# Mostrar el resultado
  total_estados
```

Out[184... Estado

Seleccionado 261 No admisible 87 Name: count, dtype: int64

Proyectos Seleccionados

Se analizará y visualizará solo los proyectos SELECCIONADOS entre el total de los presentados.

```
In [49]: # Generar solo el Estado "Seleccionado"
    estado_seleccionado = 'Seleccionado'

# Filtrar el DataFrame por el estado seleccionado
    df_filtrado = df[df['Estado'] == estado_seleccionado]
```

```
In [51]: # Crear una tabla cruzada (pivot table)
  tabla_cruzada = df_filtrado.pivot_table(
     values='Monto solicitado', # Valores que se sumarán
     index='Comuna', # Filas (comunas)
     columns='Tipologia', # Columnas (tipologías)
     aggfunc='sum', # Función de agregación (suma)
     fill_value=0 # Rellenar valores faltantes con 0
)

# Agregar una columna con el total por fila (total por comuna)
  tabla_cruzada['Total Comuna'] = tabla_cruzada.sum(axis=1)

# Agregar una fila con el total por columna (total por tipología)
  tabla_cruzada.loc['Total Area'] = tabla_cruzada.sum(axis=0)

# Formatear Los valores de la tabla cruzada (sin decimales y con separadores de
```

```
tabla_cruzada_formateada = tabla_cruzada.map(lambda y: f"{int(y):,}")

# Mostrar La tabla cruzada formateada
print("Tabla cruzada del monto solicitado por comuna y tipología:")
tabla_cruzada_formateada
```

Tabla cruzada del monto solicitado por comuna y tipología:

Out[51]:

Ti	ipologia	Cultura	Deporte	Medio ambiente	Seguridad	Social	Total Comuna
	Comuna						
E	l Monte	89,633,747	52,535,680	10,124,866	179,806,494	53,949,826	386,050,613
	Isla de Maipo	44,652,106	9,043,816	14,326,396	119,218,566	66,169,856	253,410,740
ı	Padre Hurtado	22,902,729	29,012,873	2,422,000	133,630,414	39,482,983	227,450,999
ı	Peñaflor	9,665,159	69,692,495	9,748,293	239,154,475	30,857,620	359,118,042
Ta	alagante	41,198,758	45,111,990	9,999,990	295,171,970	12,638,427	404,121,135
	Total Area	208,052,499	205,396,854	46,621,545	966,981,919	203,098,712	1,630,151,529

```
In [21]: # Filtrar el DataFrame por el estado seleccionado
         df_filtrado = df[df['Estado'] == estado_seleccionado]
         # Filtrar solo la Comuna de Peñaflor
         df_peñaflor = df_filtrado[df_filtrado['Comuna'] == 'Peñaflor']
         # Agrupar por "Comuna", "Tipo de Organización" y "Tipología", y aplicar múltiple
         resultado = df_peñaflor.groupby(['Comuna', 'Tipo Organizacion', 'Tipologia']).ag
             Cantidad_Proyectos=('Rut Inst.', 'count'), # Contar La cantidad de proyecto
             Monto_Solicitado_Total=('Monto solicitado', 'sum') # Sumar el Monto Solicit
         ).reset_index()
         # Ordenar por Comuna y Cantidad de Proyectos (aunque solo hay una comuna, Peñafl
         resultado = resultado.sort_values(by=['Tipo Organizacion', 'Cantidad_Proyectos']
         # Formatear los valores numéricos
         resultado['Cantidad_Proyectos'] = resultado['Cantidad_Proyectos'].map(lambda x:
         resultado['Monto Solicitado Total'] = resultado['Monto Solicitado Total'].map(la
         # Configurar pandas para mostrar todas las filas
         pd.set_option('display.max_rows', None)
         # Mostrar el resultado
         print(f"Proyectos seleccionados en Peñaflor por tipo de organización y tipología
```

Proyectos seleccionados en Peñaflor por tipo de organización y tipología:

Out[21]:

•	Comuna		Tipo Organizacion	Tipologia	Cantidad_Proyectos	Monto_Solicitado_Total				
	0	Peñaflor	AGRUPACIÓN: CULTURAL	Social	1	\$9,835,210				
	1	Peñaflor	AGRUPACIÓN: DISCAPACITADOS	Social	1	\$5,139,820				
	2	Peñaflor	CLUB ADULTO MAYOR	Social	2	\$5,985,435				
	3	Peñaflor	CLUB DEPORTIVO	Deporte	12	\$56,205,245				
	4	Peñaflor	COMITÉ DE ADELANTO	Seguridad	2	\$17,968,792				
	5	Peñaflor	COMITÉ DE SEGURIDAD	Seguridad	2	\$18,285,511				
	6	Peñaflor	GRUPO ACOUT	Deporte	1	\$2,179,000				
	8	Peñaflor	JJVV	Seguridad	23	\$202,900,172				
	7	Peñaflor	JJVV	Cultura	1	\$9,665,159				
	9	Peñaflor	MUNICIPALIDAD	Deporte	1	\$1,917,250				
	10	Peñaflor	ONG	Deporte	1	\$9,391,000				
	11	Peñaflor	ONG	Medio ambiente	1	\$9,748,293				
	12	Peñaflor	SINDICATO	Social	1	\$9,897,155				
	<pre>comuna_seleccionada = 'Peñaflor' # Lo que deseas filtrar # Filtrar el DataFrame por el estado seleccionado df_penaflor = df_filtrado[df_filtrado['Comuna'] == comuna_seleccionada]</pre>									

```
In [110...
comuna_seleccionada = 'Peñaflor' # lo que deseas filtrar

# Filtrar el DataFrame por el estado seleccionado
df_penaflor = df_filtrado[df_filtrado['Comuna'] == comuna_seleccionada]

# Crear una tabla de contingencia entre Tipo de Organización y Tipología
tabla_contingencia = pd.crosstab(df_penaflor['Tipo Organizacion'], df_penaflor['

# Crear el gráfico de barras horizontales
tabla_contingencia.plot(kind='barh', figsize=(8, 6), colormap='viridis')

# Personalizar el gráfico
plt.title('Organizaciones y el área del proyecto seleccionado Peñaflor', fontsiz
plt.xlabel('Frecuencia', fontsize=8)
plt.ylabel('Tipo de Organización', fontsize=8)
plt.yticks(fontsize=8)
plt.legend(title='Tipología', fontsize=8, bbox_to_anchor=(1.1, 1), loc='upper le

# Mostrar el gráfico
plt.tight_layout()
plt.show()
```

