Border Gateway Protocol (BGP)

Základné úlohy:

- 1. Prepojte zariadenia podľa topológie na obrázku. Overte, či na nich nie je uložená konfigurácia, prípadne ju vymažte a smerovače reštartujte.
- 2. Nakonfigurujte zariadeniam zodpovedajúce pomenovanie, heslá do konzoly a privilegovaného režimu a nakonfigurujte telnet prístup. Deaktivujte preklad domén a synchronizujte logovanie.
- 3. Nakonfigurujte zariadeniam IP adresy, clock rate na sériových linkách a zapnite rozhrania.
 - Fyzické lokálne siete (smerom k PC) budú mať adresy X0.X0.X0.0 /24, kde X je číslo smerovača. Smerovaču prideľte prvú IP adresu z danej siete a počítaču desiatu (nezabudnite nakonfigurovať predvolenú bránu).
 - Loopback rozhrania budú mať IP adresy X.X.X.X /32, kde X je opäť číslo smerovača.
 - Siete medzi smerovačmi budú mať adresy XY.XY.XY.0 /30, kde X je menšie číslo smerovača a Y väčšie. Redundantná linka medzi R1 a R2 bude sieť 12.12.12.252 /30. Smerovaču RX prideľte prvú IP adresu a smerovaču RY druhú IP adresu z danej siete.
- 4. Overte funkčnosť liniek pomocou ping medzi priamo pripojenými zariadeniami.
- 5. V nasledujúcich bodoch konfigurujte smerovací protokol BGP tak, že R1 a R2 budú v AS 100 a R3 bude v AS 200. Adresy nakonfigurovaných Loop 0 rozhraní budú slúžiť ako Router ID.
- 6. Nakonfigurujte iBGP susedstvo medzi R1 a R2. Na smerovačoch nastavte BGP suseda pomocou obidvoch jeho adries priamo pripojených liniek. Overte konfiguráciu zobrazením BGP susedov, resp. sumarizovaných informácií. Je susedstvo nadviazané? Prečo boli vytvorené až dve susedstvá?
- 7. Zabezpečte, aby sa vytvorilo iba jedno BGP susedstvo medzi R1 a R2, ale obe linky zostali používané BGP protokolom. Odstráňte preto konfiguráciu susedov z predchádzajúcej úlohy a nastavte BGP suseda pomocou jeho Router ID. Pomocou ping overte, či viete komunikovať s Router ID suseda.
- 8. Pomocou OSPF zabezpečte, aby sa R1 a R2 vedeli dostať k BGP susedovi (jeho Router ID) a overte nadviazanie BGP susedstva. Bolo susedstvo nadviazané?
- 9. Nastavte, aby sa susedovi posielali BGP aktualizácie z IP lokálneho Loop 0 rozhrania.
- 10. Nakonfigurujte eBGP susedstvo s R3 pomocou IP adresy z priamo pripojenej siete. Bolo susedstvo úspešne nadviazané? Overte. Všimnite si zmeny v zobrazení BGP susedov (typ linky, TTL).
- 11. Cez príkaz network zahrňte PC siete do BGP smerovania. Zobrazte smerovacie tabuľky a BGP databázu. Porovnajte zobrazenie interných a externých sietí. V zobrazení sumarizovaných BGP informácií zistite počet prefixov prijatých na určitom rozhraní.
- 12. Pomocou konfigurácie BGP na R1 zabezpečte, aby sa R3 naučil predvolenú cestu cez R1. Overte.

Doplnkové úlohy

13. Nakonfigurujte eBGP susedstvo (úloha 10) pomocou Router ID. Bude potrebné zabezpečiť dostupnosť Router ID suseda (napr. pomocou statickej cesty, NIE predvolenej), nastaviť zdroj aktualizácií na Loop 0 rozhranie a zvýšiť pre suseda parameter ebgp multihop aspoň na 2.

Zoznam príkazov

```
!konfigurácia BGP protokolu
Router(config) # router bgp <as-num>
Router(config-router) # bgp router-id <ip-address>
Router(config-router)# neighbor <ip-address> remote-as <as-num>
  !preposielanie ebgp informácií so svojou adresou ako next-hop
Router(config-router)# neighbor <ip-address> next-hop-self
  !nastavenie zdrojovej IP v aktualizáciách
Router(config-router) # neighbor <ip-address> update-source <interface>
  !nastavenie TTL pre ebgp susedsvo
Router(config-router) # neighbor <ip-address> ebgp-multihop <num>
  !deaktivácia suseda
Router(config-router) # neighbor <ip-address> shutdown
Router(config-router) # no neighbor <ip-address> shutdown
  !ohlasovanie predvolenej cesty (default route)
Router(config-router) # neighbor <ip-address> default-originate
  !ohlasovanie ciest v smerovacích informáciách
Router(config-router)# network <network-ip-address> mask <subnet-mask>
  !reset BGP
Router# clear ip bgp [<ip-address>|<as-num>|*] [soft] [in|out]
  !verifikácia BGP
Router# show ip bgp neighbors
Router# show ip bgp summary
Router# show ip bgp [<network>/<mask>]
Router# show ip bgp rib-failure
Router# debug ip bgp
Router# debug ip bgp [<ip-address>] updates
```