### CT\_DT\_Example\_Week7

#### **Table of Contents**

| Housekeeping                                              | 1 |
|-----------------------------------------------------------|---|
| Discretization pages 1, 2, 3 Lecture Week 7               | 1 |
| CT response using LTI object and step()                   |   |
| recursively solve for the solution in the discrete domain | 4 |
| compare CT and DT from 0.05 to 0.1 sec by overlaying      | 5 |

30 October 2016 Dr. Tom Chmielewski Fall 2016-17 ECE-S511

### Housekeeping

```
clear all
close all
clc
```

#### Discretization pages 1, 2, 3 Lecture Week 7

consider a PVCF 2nd order system

```
A = [0 1; -125 -20]
B = [0;1]
C = [1, 1]
D = 0
eig(A)
% the two eigenvalues of CT system are
T = 0.001 % 1 millisecond
Ad = expm(A*T) % remember to use expm() not exp()
Bd = inv(A)*(Ad-eye(2))*B
Cd = C
Dd = D
% using Matlab's built in funtion to find the discrete state
representation
sys_ct = ss(A, B, C, D) % create CT LTI object from matrices
sys_dt = c2d(sys_ct, T, 'zoh') % result is DT LTI object at sampling
 time T
A =
     0
  -125
       -20
B =
```

0 1 C =1 1 D = 0 ans = -10.0000 + 5.0000i -10.0000 - 5.0000i T =1.0000e-03 Ad =0.9999 0.0010 0.9801 -0.1238 Bd = 1.0e-03 \* 0.0005 0.9900 Cd =1 1 Dd =0 sys\_ct = A =

*x2* 

x1

x1

0

1

of T, eval implifies numbers

Bds =

1.0e-03 \*

Bds = eval(int(expm(A\*tal), tal, 0, T)\*sym(B)) % integrates to value

0.0005

#### CT response using LTI object and step()



## recursively solve for the solution in the discrete domain



# compare CT and DT from 0.05 to 0.1 sec by overlaying



Published with MATLAB® R2016a