A.03.04 – Modelos de Propriedades Energéticas

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-06-04 00h50m41s UTC

- 1 Modelos de Propriedades Energéticas
 - Energia Interna e Entalpia
 - U e H em Modelos de Substâncias

2 Tópicos de Leitura

O sistema fechado de massa *m*, ilustrado:

• Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;
- $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;
- m e V constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_v$;
- A temperatura experimenta uma variação de $(dT)_{y}$.

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 \rightarrow $(\delta q)_{v} = du.$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 \rightarrow $(\delta q)_v = du.$

Assim, o calor transferido a volume constante a um sistema fechado é a variação de sua energia interna!

Define-se o calor específico a volume constante da substância do sistema, c_v , como

$$c_{v} \equiv \left(\frac{\partial u}{\partial T}\right)_{v},$$

uma propriedade termodinâmica intensiva.

Define-se o calor específico a volume constante da substância do sistema, c_v , como

$$c_{v} \equiv \left(\frac{\partial u}{\partial T}\right)_{v},$$

uma propriedade termodinâmica intensiva.

Ainda, $C_v = (\partial U/\partial T)_v = mc_v$ é a capacidade térmical a volume constante do sistema.

Entalpia – Relação com Temperatura

O sistema fechado de massa m, ilustrado:

• Recebe uma diferencial de calor a pressão constante, $(\delta q)_P$;

Entalpia – Relação com Temperatura

O sistema fechado de massa *m*, ilustrado:

- Recebe uma diferencial de calor a pressão constante, $(\delta q)_P$;
- Realiza uma diferencial de trabalho a pressão constante, $(\delta w)_P = P dv$;

Entalpia – Relação com Temperatura

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a pressão constante, $(\delta q)_P$;
- Realiza uma diferencial de trabalho a pressão constante, $(\delta w)_P = P dv$;
- A temperatura experimenta uma variação de $(dT)_P$, possivelmente diferente de $(dT)_v$.

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg$$
$$(\delta q)_P - (\delta w)_P = du$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \rightarrow$$

$$(\delta q)_P - (\delta w)_P = du \rightarrow$$

$$(\delta q)_P = du + P dv = d(u + Pv).$$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \rightarrow$$

$$(\delta q)_P - (\delta w)_P = du \rightarrow$$

$$(\delta q)_P = du + P dv = d(u + Pv).$$

A quantidade (u + Pv) aparece frequentemente o suficiente para ser definida como uma nova propriedade.

Assim,

$$H \equiv U + PV$$
 [kJ], e

Assim,

$$H \equiv U + PV$$
 [kJ], e
 $h \equiv u + Pv$ [kJ/kg],

Assim,

$$H \equiv U + PV$$
 [kJ], e
 $h \equiv u + Pv$ [kJ/kg],

são a entalpia e a entalpia específica, respectivamente: novas propriedades termodinâmicas.

O termo origina do verbo grego "ενθάλπω", que significa: "(eu) aqueço", conforme a própria ilustração.

O termo origina do verbo grego "ενθάλπω", que significa: "(eu) aqueço", conforme a própria ilustração.

Da expressão $(\delta q)_P = dh$, tem-se que o calor transferido a pressão constante a um sistema fechado é a variação de sua entalpia!

Define-se o calor específico a pressão constante da substância do sistema, c_P , como

$$c_P \equiv \left(\frac{\partial h}{\partial T}\right)_P,$$

uma propriedade termodinâmica intensiva.

Define-se o calor específico a pressão constante da substância do sistema, c_P , como

$$c_P \equiv \left(\frac{\partial h}{\partial T}\right)_P,$$

uma propriedade termodinâmica intensiva.

Ainda, $C_P = (\partial H/\partial T)_P = m c_P$ é a capacidade térmical a pressão constante do sistema.

Experimentos mostraram que u:u(T), assim,

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du$$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \longrightarrow$$
$$(\delta q)_T - (\delta w)_T = (du)_T = 0$$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \longrightarrow$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \longrightarrow$$

$$(\delta q)_T = (\delta w)_T.$$

Experimentos mostraram que u:u(T), assim,

$$\delta q - \delta w = du \longrightarrow$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \longrightarrow$$

$$(\delta q)_T = (\delta w)_T.$$

$$c_{v}(T) = \frac{du}{dT}$$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \longrightarrow$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \longrightarrow$$

$$(\delta q)_T = (\delta w)_T.$$

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Experimentos mostraram que u:u(T), assim,

Ainda,

$$\delta q - \delta w = du \longrightarrow$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \longrightarrow$$

$$(\delta q)_T = (\delta w)_T.$$

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Experimentos mostraram que u: u(T), assim,

Ainda,

$$\delta q - \delta w = du \longrightarrow$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \longrightarrow$$

$$(\delta q)_T = (\delta w)_T.$$

$$h \equiv u + Pv$$

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Experimentos mostraram que u:u(T), assim,

Ainda,

$$\delta q - \delta w = du \longrightarrow$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \longrightarrow$$

$$(\delta q)_T = (\delta w)_T.$$

$$h \equiv u + Pv \quad \rightarrow \\ h = u + RT,$$

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Ainda,

$$h \equiv u + Pv \quad \rightarrow \\ h = u + RT,$$

fazendo com que h:h(T), e ainda

$$c_P(T) = \frac{dh}{dT} = \frac{du + RdT}{dT}$$

Gás Ideal — Substância com Pv = RT

Experimentos mostraram que u:u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Ainda,

$$h \equiv u + Pv \longrightarrow$$

$$h = u + RT,$$

fazendo com que h:h(T), e ainda

$$c_P(T) = \frac{dh}{dT} = \frac{du + RdT}{dT}$$
 \rightarrow $h(T) = \int c_P(T) dT$

Gás Ideal — Substância com Pv = RT

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_v(T) = \frac{du}{dT}$$
 \rightarrow $u(T) = \int c_v(T) dT.$

Ainda,

$$h \equiv u + Pv \longrightarrow$$

$$h = u + RT,$$

fazendo com que h:h(T), e ainda

$$c_P(T) = \frac{dh}{dT} = \frac{du + RdT}{dT} \rightarrow h(T) = \int c_P(T) dT \text{ and}$$

$$c_P(T) = c_v(T) + R.$$

$$c_P(T) = c_v(T) + R (kJ/kg)$$

$$c_P(T) = c_v(T) + R$$
 (kJ/kg) \rightarrow $\bar{c}_P(T) = \bar{c}_v(T) + \bar{R}$

(1)

40 + 40 + 43 + 43 +

$$c_P(T) = c_v(T) + R$$
 (kJ/kg) \rightarrow
 $\bar{c}_P(T) = \bar{c}_v(T) + \bar{R}$ (kJ/kmol).
$$\gamma(T) \equiv \frac{c_P(T)}{c_v(T)} = 1 + \frac{R}{c_v(T)}$$
 (—).

$$c_P(T) = c_v(T) + R$$
 (kJ/kg) \rightarrow

$$\bar{c}_P(T) = \bar{c}_v(T) + \bar{R}$$
 (kJ/kmol).

$$\gamma(T) \equiv \frac{c_P(T)}{c_v(T)} = 1 + \frac{R}{c_v(T)}$$
 (--).

$$\bar{c}_{P,monatom.} = 5/2\bar{R}$$

$$c_P(T) = c_v(T) + R$$
 (kJ/kg) – $\bar{c}_P(T) = \bar{c}_v(T) + \bar{R}$ (kJ/kmol).
$$\gamma(T) \equiv \frac{c_P(T)}{c_v(T)} = 1 + \frac{R}{c_v(T)}$$
 (—).

$$\bar{c}_{P,monatom.} = 5/2\bar{R}$$
 $\bar{c}_{P,di-atom.} = 7/2\bar{R}$

$$c_P(T) = c_v(T) + R$$
 (kJ/kg) - $\bar{c}_P(T) = \bar{c}_v(T) + \bar{R}$ (kJ/kmol).
 $\gamma(T) \equiv \frac{c_P(T)}{c_v(T)} = 1 + \frac{R}{c_v(T)}$ (—).

$$ar{c}_{P,monatom.} = 5/2ar{R}$$
 $ar{c}_{P,di-atom.} = 7/2ar{R}$
 $\gamma_{He} = 5/3 \approx 1,667$

$$c_P(T) = c_v(T) + R$$
 (kJ/kg) – $\bar{c}_P(T) = \bar{c}_v(T) + \bar{R}$ (kJ/kmol).
 $\gamma(T) \equiv \frac{c_P(T)}{c_v(T)} = 1 + \frac{R}{c_v(T)}$ (—).

$$\bar{c}_{P,monatom.} = 5/2\bar{R}$$
 $\bar{c}_{P,di-atom.} = 7/2\bar{R}$
 $\gamma_{He} = 5/3 \approx 1,667$
 $\gamma_{ar}(300 \text{ K}) \approx 7/5 = 1,4.$
(1)

Gás Ideal — Comportamento de $\bar{c}_P(T)$

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 4-3 a 4-5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

