Dynocog

Thesis update V

13 April 2021

Project Overview

- 1. Project Background
- 2. Current Progress
- 3. Recent Updates
- 4. Next Step

Dynocog Project

How do neural correlates of learning differ between levels of performance, in a dynamic decision-making task under uncertainty?

Dynocog Project

Cognitive Learning Tasks

Model Variation Across Individuals

How do neural correlates of learning differ between levels of performance, in a dynamic decision-making task under uncertainty?

Captured by corresponding Statistical Parameters

Human (& AI) RL Task

Execution

Phase 1. Psychological Experiments

Phase 2. Design the Computational Framework

Phase 3. Fit & Perform Inference

Phase 1. Psychological Experimentation

Primary concerned with **Dynamic Learning under Uncertainty**

Task Battery:

WCST → Dynamic Learning under Uncertainty

N-Back Task \rightarrow Working Memory

Corsi → Working Memory

Navon → Complimentary: local/global attention

(Relates to EEG data, Covariate to Corsi)

Fitts \rightarrow Complimentary: (corroborate RL outcomes? @ Ben)

Phase 2. Mathematical Framework

Hierarchical Bayesian Reinforcement Learning Inspired by the Slooten et. al.

To be Implemented in Pyro (scalable, universal probabilistic programming)

Hierarchical Bayesian == Pooled Variation

RL == Dynamic Learning Task

 $\mu_{z} \sim Normal(0,1)$ $\sigma_{z} \sim Cauchy(0,5)$ $z' \sim Normal(\mu_{z'}, \sigma_{z'})$ $\alpha_{G,i} = \phi(\alpha'_{G,i})$ $\alpha_{I,i} = \phi(\alpha'_{I,i})$

Phase 3. Fit + Inference

Model Specification ~ Neural Correlates

Statistical Parameterisation ~ Neuropsychological Theoretical Model

$$Q_i(t+1) = Q_i(t) + \begin{cases} \alpha_{Gain}[r_i(t) - Q_i(t)] & if \ r = 1 \\ \alpha_{Loss}[r_i(t) - Q_i(t)] & if \ r = 0 \end{cases} \qquad P_A(t) = \frac{exp(\beta Q_A(t))}{exp(\beta Q_B(t)) + exp(\beta Q_A(t))}$$

Current Progress

Phase 1. Psytoolkit Instance

- Psytoolkit fully implemented
- Awaiting perusal & MTurk

Phase 2. Model Design

- Thoroughly decomposed comparable model (Slooten)
- Not yet begun our instance

Phase 3. Model Instance

- Theoretically studied
- Implemented other Pyro instances
- Not yet configured data structure

Recent Updates

Psytoolkit

Notion + Git == Project Structuring

Psytoolkit

All iterative changes made:

- 1. Instruction sets
- 2. Game Implementation changes
- 3. WCST rule generation Python script

3. Recent Updates

Custom vector images

Figma

Wisconsin Card Sorting Task

Press the space bar to continue

Psytoolkit

- WCST Python Instance
- Some functional (programming) changes in Psytoolkit (e.g. 'GO' or 'z', 'x' keys)
- @ Ben to peruse

Instructions:

$$H \text{ or } O = 'z'$$

 $no H \text{ or } O = 'x'$

WCST Python Instance

```
cross1blue 1 0 1
                                          "cross1blue"
                          "number"
                                         "star2yellow"
   star2yellow
                          "number"
    cross4blue 4 0 3
                          "number"
                                          "cross4blue"
   star3vellow 3 0
                          "number"
                                         "star3yellow"
  circle4green
                          "number"
                                        "circle4green"
triangle3yellow
                          "number"
                                     "triangle3yellow"
     star2blue
                          "number"
                                           "star2blue"
     cross4red 4 0 8
                          "number"
                                           "cross4red"
   star3yellow 3 0
                          "number"
                                         "star3yellow"
  circle4green
                          "number"
                                        "circle4green"
      star3red
                           "color"
                                            "star3red"
 triangle1blue
                           "color"
                                       "triangle1blue"
                                        "circle3green"
  circle3green
                           "color"
```

3. Recent Updates

- Notion: Project migration
- Integrate Git (outdated)
- Taskboard & Calendar

Dynocog Research Unit

A mathematical paradigm to comprehend human cognition.

Task Board I Board view ~

Task Board Task Board Task Board No date (1) Q Search ≥ *** New ~ April 2021 < Today > Sun Mon Tue Wed Fri Sat 28 29 30 Apr 1 2 5 6 7 8 9 10 WCST task ... Psytoolkit Zach Wolpe 11 13 14 15 16 17 Automate ... Prep Recap ... Python Collaboration Zach Wolpe Zach Wolpe Cleanup Dy... Collaboration Zach Wolpe Psytoolk... Psytoolkit Zach Wolpe Update Cal... Collaboration 18 19 20 21 22 23 24 25 26 27 28 29 30 May 1 Find dat... Superflous wor Zach Wolpe

Project Details

Github Link

ZachWolpe/Dynocog How do neural correlates of learning differ between levels of performance, in a dynamic decision-making task under uncertainty? We're a cognitive neuroscience https://github.com/ZachWolpe/Dynocog

Project Overview

Wisconsin Card Sorting Task Models

+ :: BACKGROUND Main research question (RQ):

How do neural correlates of learning differ between levels of performance, in a dynamic decision-making task under uncertainty?

We aim to depart from more traditional ideas of comparing dichotomised average neural data,

What's Next?

Next Step

- 1. Final round check Psytoolkit
- 2. Psytoolkit data structure
- 3. MTurk Implementation
- 4. Theoretical Model Design
 - a. RL + graphical architecture
 - b. Bayes sense check
- 5. Clean up write up structure
- 6. Incorporate write up plan

(@ Ben)

(@ Zach)

(@ Ben @ Jussi @ Zach)

(@ Zach @ Jonathan @ Allan)

(@ Zach, Provided by @ Jonathan Shock)

(@ Zach)

