This problem involves working with **discrete probability distributions**, specifically the **Poisson distribution** and the **Geometric distribution**, and their properties related to independent random variables. We'll be calculating probabilities of events, conditional probabilities, and expected values.

Problem Description:

Let A and B be two independent stochastic variables such that:

- $A \sim \text{Poisson}(3)$
- $B \sim \text{Geometric}(1/2)$

We need to solve three parts:

Part (a): Find
$$P(A=2 \text{ or } B=2)$$

This asks for the probability of the union of two events, A=2 and B=2. Since A and B are independent, the events (A=2) and (B=2) are also independent.

The formula for the probability of the union of two independent events is:

$$P(X \text{ or } Y) = P(X) + P(Y) - P(X \text{ and } Y)$$
 Since X and Y are independent, $P(X \text{ and } Y) = P(X)P(Y)$. So, $P(A=2 \text{ or } B=2) = P(A=2) + P(B=2) - P(A=2)P(B=2)$.

1. Probability Mass Function (PMF) for Poisson Distribution:

If
$$A\sim \mathrm{Poisson}(\lambda)$$
, then $P(A=k)=rac{e^{-\lambda}\lambda^k}{k!}$ For $A\sim \mathrm{Poisson}(3)$, we need $P(A=2)$: $P(A=2)=rac{e^{-3}3^2}{2!}=rac{9e^{-3}}{2}$

2. PMF for Geometric Distribution:

If $B\sim \operatorname{Geometric}(p)$ (number of trials until the first success, starting from 1), then $P(B=k)=(1-p)^{k-1}p$. For $B\sim \operatorname{Geometric}(1/2)$, we need P(B=2): $P(B=2)=\left(1-\frac{1}{2}\right)^{2-1}\cdot\frac{1}{2}=\left(\frac{1}{2}\right)^1\cdot\frac{1}{2}=\frac{1}{4}$

3. Calculate
$$P(A=2 \text{ or } B=2)$$
:
$$P(A=2 \text{ or } B=2) = P(A=2) + P(B=2) - P(A=2)P(B=2)$$

$$P(A=2 \text{ or } B=2) = \frac{9e^{-3}}{2} + \frac{1}{4} - \left(\frac{9e^{-3}}{2}\right)\left(\frac{1}{4}\right)$$

https://stackedit.io/app# 1/6

$$P(A=2 \text{ or } B=2) = \frac{9e^{-3}}{2} + \frac{1}{4} - \frac{9e^{-3}}{8}$$
 To combine terms with e^{-3} : $\frac{4\cdot 9e^{-3}}{8} - \frac{9e^{-3}}{8} = \frac{36e^{-3} - 9e^{-3}}{8} = \frac{27e^{-3}}{8}$ $P(A=2 \text{ or } B=2) = \frac{27e^{-3}}{8} + \frac{1}{4}$

Now, calculate the numerical value to four decimal places:

$$e^{-3}pprox 0.049787 \ P(A=2 ext{ or } B=2)pprox rac{27 imes 0.049787}{8}+rac{1}{4} \ P(A=2 ext{ or } B=2)pprox rac{1.344249}{8}+0.25 \ P(A=2 ext{ or } B=2)pprox 0.168031+0.25 \ P(A=2 ext{ or } B=2)pprox 0.418031$$

Rounding to four decimal places: 0.4180

Part (b): Find
$$P(B = 3 | A + B = 4)$$

This asks for a conditional probability: $P(B=3\mid A+B=4)$. The formula for conditional probability is $P(X\mid Y)=\frac{P(X\text{ and }Y)}{P(Y)}$. So, $P(B=3\mid A+B=4)=\frac{P(B=3\text{ and }A+B=4)}{P(A+B=4)}$.

1. Calculate the numerator $P(B=3 \ \mathrm{and} \ A+B=4)$:

If B=3 and A+B=4, then A+3=4, which implies A=1. So, the event $(B=3 \ {\rm and} \ A+B=4)$ is equivalent to $(B=3 \ {\rm and} \ A=1)$. Since A and B are independent, $P(B=3 \ {\rm and} \ A=1)=P(B=3)P(A=1)$.

For
$$B \sim \operatorname{Geometric}(1/2)$$
, $P(B=3) = \left(1-\frac{1}{2}\right)^{3-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^2 \cdot \frac{1}{2} = \frac{1}{8}$. For $A \sim \operatorname{Poisson}(3)$, $P(A=1) = \frac{e^{-3}3^1}{1!} = 3e^{-3}$.

So,
$$P(B=3 \text{ and } A+B=4)=\frac{1}{8}\cdot 3e^{-3}=\frac{3e^{-3}}{8}$$
.

2. Calculate the denominator P(A+B=4):

This is the probability that the sum of a Poisson and a Geometric random variable equals 4.

A+B=4 can occur if:

•
$$B = 1, A = 3 \implies P(A = 3, B = 1) = P(A = 3)P(B = 1)$$

•
$$B = 2, A = 2 \implies P(A = 2, B = 2) = P(A = 2)P(B = 2)$$

•
$$B = 3, A = 1 \implies P(A = 1, B = 3) = P(A = 1)P(B = 3)$$

https://stackedit.io/app# 2/6

StackEdit

•
$$B = 4, A = 0 \implies P(A = 0, B = 4) = P(A = 0)P(B = 4)$$

$$P(A=0) = \frac{e^{-3}3^0}{0!} = e^{-3}$$

$$\circ \ P(A=1)=3e^{-3}$$
 (from above)

$$\circ~P(A=2)=rac{9e^{-3}}{2}$$
 (from part a)

$$P(A=3) = \frac{e^{-3}3^3}{3!} = \frac{27e^{-3}}{6} = \frac{9e^{-3}}{2}$$

•
$$P(B=1) = \left(\frac{1}{2}\right)^0 \cdot \frac{1}{2} = \frac{1}{2}$$

$$\circ \ P(B=2)=rac{1}{4}$$
 (from part a)

$$\circ \ P(B=3)=rac{1}{8}$$
 (from above)

•
$$P(B=4) = \left(\frac{1}{2}\right)^3 \cdot \frac{1}{2} = \frac{1}{16}$$

Now, sum the products for P(A+B=4):

$$P(A+B=4) = P(A=3)P(B=1) + P(A=2)P(B=2) + P(A=1)P(B=3) + P(A=0)P(B=4)$$
 $P(A+B=4) = \left(\frac{9e^{-3}}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{9e^{-3}}{2}\right)\left(\frac{1}{4}\right) + (3e^{-3})\left(\frac{1}{8}\right) + (e^{-3})\left(\frac{1}{16}\right)$

$$P(A+B=4) = rac{9e^{-3}}{4} + rac{9e^{-3}}{8} + rac{3e^{-3}}{8} + rac{e^{-3}}{16}$$

Find a common denominator (16):

$$P(A+B=4) = rac{4\cdot 9e^{-3}}{16} + rac{2\cdot 9e^{-3}}{16} + rac{2\cdot 3e^{-3}}{16} + rac{e^{-3}}{16} + rac{e^$$

3. Calculate
$$P(B=3\mid A+B=4)$$
:

$$P(B=3 \mid A+B=4) = \frac{\frac{3e^{-3}}{8}}{\frac{61e^{-3}}{16}}$$

Cancel out e^{-3} :

$$P(B = 3 \mid A + B = 4) = \frac{3/8}{61/16} = \frac{3}{8} \times \frac{16}{61}$$

 $P(B = 3 \mid A + B = 4) = \frac{3 \times 2}{61} = \frac{6}{61}$

Now, calculate the numerical value to four decimal places:

$$\frac{6}{61} \approx 0.09836$$

Rounding to four decimal places: 0.0984

Part ©: Find
$$E[A+B]$$
 and $E[(A+B)^2]$

1.
$$E[A + B]$$
:

Using linearity of expectation: E[A+B]=E[A]+E[B].

• For $A \sim \operatorname{Poisson}(\lambda)$, $E[A] = \lambda$. So, E[A] = 3 .

• For
$$B \sim \operatorname{Geometric}(p)$$
 , $E[B] = rac{1}{p}$. So, $E[B] = rac{1}{1/2} = 2$.

$$E[A+B] = 3+2=5$$

This is a positive integer.

2.
$$E[(A+B)^2]$$
:

We know that ${\rm Var}(X)=E[X^2]-(E[X])^2$, so $E[X^2]={\rm Var}(X)+(E[X])^2$. Thus, $E[(A+B)^2]={\rm Var}(A+B)+(E[A+B])^2$.

- We already found E[A+B]=5. So $(E[A+B])^2=5^2=25.$
- For independent random variables A and B, ${
 m Var}(A+B)={
 m Var}(A)+{
 m Var}(B).$
 - \circ For $A \sim \operatorname{Poisson}(\lambda)$, $\operatorname{Var}(A) = \lambda$. So, $\operatorname{Var}(A) = 3$.
 - \circ For $B\sim \mathrm{Geometric}(p), \mathrm{Var}(B)=rac{1-p}{p^2}.$ So, $\mathrm{Var}(B)=rac{1-1/2}{(1/2)^2}=rac{1/2}{1/4}=rac{1}{2} imes 4=2.$
- Var(A+B) = 3+2=5.

Now, calculate $E[(A+B)^2]$:

$$E[(A+B)^2] = Var(A+B) + (E[A+B])^2 = 5 + 25 = 30.$$

This is a positive integer.

Final Answers for Part ©:

- E[A+B] = 5
- $E[(A+B)^2] = 30$

Topics Covered:

- Discrete Probability Distributions:
 - **Poisson Distribution:** Used for modeling the number of events occurring in a fixed interval of time or space. Key properties: $E[X] = \mathrm{Var}(X) = \lambda$. PMF: $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$.

https://stackedit.io/app# 4/6

- \circ **Geometric Distribution:** Models the number of Bernoulli trials needed to get the first success. Key properties: $E[X]=rac{1}{p}, {
 m Var}(X)=rac{1-p}{p^2}$. PMF: $P(X=k)=(1-p)^{k-1}p$.
- **Independence of Random Variables:** A crucial property that simplifies calculations for joint probabilities, sums, and variances.
- Probability of Union of Events: P(X or Y) = P(X) + P(Y) P(X and Y). For independent events, P(X and Y) = P(X)P(Y).
- Conditional Probability: $P(X \mid Y) = \frac{P(X \text{ and } Y)}{P(Y)}$.
- Expected Value (Expectation):
 - $\circ \ \ {\rm Linearity:} \ E[X+Y] = E[X] + E[Y].$
 - \circ For a single random variable: $E[X^2] = \mathrm{Var}(X) + (E[X])^2$.
- Variance:
 - For independent random variables: Var(X + Y) = Var(X) + Var(Y).

WolframAlpha/Computational Check:

You can use WolframAlpha to verify individual probabilities and expected values:

Poisson PMF:

- \circ Poisson distribution P(X=2 | lambda=3) will give you ≈ 0.2240 .
- \circ Poisson probability x=1, lambda=3 will give pprox 0.1493.
- \circ Poisson probability x=0, lambda=3 will give ≈ 0.0498 .
- \circ Poisson probability x=3, lambda=3 will give pprox 0.2240.

Geometric PMF:

- \circ Geometric distribution P(X=2 | p=1/2) will give 0.25.
- \circ Geometric probability x=1, p=1/2 will give 0.5.
- Geometric probability x=3, p=1/2 will give 0.125.
- \circ Geometric probability x=4, p=1/2 will give 0.0625.

Expected Values/Variances:

- mean of Poisson(3) will give 3.
- variance of Poisson(3) will give 3.
- mean of Geometric(1/2) will give 2.
- variance of Geometric(1/2) will give 2.

• Overall calculation for part (a):

https://stackedit.io/app# 5/6

 \circ (9*exp(-3))/2 + 1/4 - ((9*exp(-3))/2) * (1/4) will give 0.418031...

• Overall calculation for part (b):

- \circ The terms in the denominator P(A+B=4): (9*exp(-3))/4 + (9*exp(-3))/8 + (3*exp(-3))/8 + exp(-3)/16 will give $\frac{61e^{-3}}{16}$.
- \circ The numerator P(A=1,B=3): (3*exp(-3))/8.
- Then, ((3*exp(-3))/8) / ((61*exp(-3))/16) will simplify to 6/61.

These checks confirm the numerical and fractional results.

https://stackedit.io/app# 6/6