5

10

15

20

25

30

1991). The expression of the polypeptide is directed specifically to the seeds of the transgenic plant.

A transgenic plant of the present invention produced from a plant cell transformed with a tissue specific promoter can be crossed with a second transgenic plant developed from a plant cell transformed with a different tissue specific promoter to produce a hybrid transgenic plant that shows the effects of transformation in more than one specific tissue.

Exemplary tissue-specific promoters are corn sucrose synthetase 1 (Yang et al., 1990), corn alcohol dehydrogenase 1 (Vogel et al., 1989), corn light harvesting complex (Simpson, 1986), corn heat shock protein (Odell et al., 1985), pea small subunit RuBP carboxylase (Poulsen et al., 1986; Cashmore et al., 1983), Ti plasmid mannopine synthase (Langridge et al., 1989), Ti plasmid nopaline synthase (Langridge et al., 1989), petunia chalcone isomerase (Van Tunen et al., 1988), bean glycine rich protein 1 (Keller et al., 1989), CaMV 35s transcript (Odell et al., 1985) and Potato patatin (Wenzler et al., 1989). Preferred promoters are the cauliflower mosaic virus (CaMV 35S) promoter and the S-E9 small subunit RuBP carboxylase promoter.

The choice of which expression vector and ultimately to which promoter a polypeptide coding region is operatively linked depends directly on the functional properties desired, e.g., the location and timing of protein expression, and the host cell to be transformed. These are well known limitations inherent in the art of constructing recombinant DNA molecules. However, a vector useful in practicing the present invention is capable of directing the expression of the polypeptide coding region to which it is operatively linked.

Typical vectors useful for expression of genes in higher plants are well known in the art and include vectors derived from the tumor-inducing (Ti) plasmid of *Agrobacterium tumefaciens* described (Rogers *et al.*, 1987). However, several other plant integrating vector systems are known to function in plants including pCaMVCN transfer control vector described (Fromm *et al.*, 1985). Plasmid pCaMVCN (available from Pharmacia, Piscataway, NJ) includes the cauliflower mosaic virus CaMV 35S promoter.

In preferred embodiments, the vector used to express the polypeptide includes a selection marker that is effective in a plant cell, preferably a drug resistance selection

marker. One preferred drug resistance marker is the gene whose expression results in kanamycin resistance; *i.e.*, the chimeric gene containing the nopaline synthase promoter, Tn.5 neomycin phosphotransferase II (*nptII*) and nopaline synthase 3' non-translated region described (Rogers *et al.*, 1988).

5

RNA polymerase transcribes a coding DNA sequence through a site where polyadenylation occurs. Typically, DNA sequences located a few hundred base pairs downstream of the polyadenylation site serve to terminate transcription. Those DNA sequences are referred to herein as transcription-termination regions. Those regions are required for efficient polyadenylation of transcribed messenger RNA (mRNA).

10

Means for preparing expression vectors are well known in the art. Expression (transformation vectors) used to transform plants and methods of making those vectors are described in U. S. Patents 4,971,908, 4,940,835, 4,769,061 and 4,757,011, the disclosures of which are incorporated herein by reference. Those vectors can be modified to include a coding sequence in accordance with the present invention.

15

A variety of methods has been developed to operatively link DNA to vectors via complementary cohesive termini or blunt ends. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted and to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

20

A coding region that encodes a polypeptide having the ability to confer insecticidal activity to a cell is preferably a Cry1C-R148A, Cry1C-R180A, Cry1C.563, Cry1C.579 or Cry1C.499 *B. thuringiensis* crystal protein-encoding gene. In preferred embodiments, such a polypeptide has the amino acid residue sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, or SEQ ID NO:12, respectively, or a functional equivalent of those sequences. In accordance with such embodiments, a coding region comprising the DNA sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:58, or SEQ ID NO:60 is also preferred.

25

5

10

15

20

25

30

4.7 DNA SEGMENTS AS HYBRIDIZATION PROBES AND PRIMERS

In addition to their use in directing the expression of crystal proteins or peptides of the present invention, the nucleic acid sequences contemplated herein also have a variety of other uses. For example, they also have utility as probes or primers in nucleic acid hybridization embodiments. As such, it is contemplated that nucleic acid segments that comprise a sequence region that consists of at least a 14 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 14 nucleotide long contiguous DNA segment of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:58, or SEQ ID NO:60 will find particular utility. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5000, 10000 etc. (including all intermediate lengths and up to and including full-length sequences will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to crystal proteinencoding sequences will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

Nucleic acid molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so, identical or complementary to DNA sequences of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:58, or SEQ ID NO:60 are particularly contemplated as hybridization probes for use in, *e.g.*, Southern and Northern blotting. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 10-14 and about 100 or 200 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.

The use of a hybridization probe of about 14 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having