Optimisation Multiobjectif en présence d'incertitudes

Victor Trappler¹
Céline Helbert¹ Christophette Blanchet-Scalliet¹ Rodolphe Le Riche²
Visite des stagiaires
July 4, 2024

Institut Camille Jordan 1

Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS) 2

En bref

1. Optimisation

2. Optimisation multiobjectif

-

Optimisation

Qu'est ce que l'optimisation?

Définition formelle

Optimisation: Processus par lequel on va chercher à <u>optimiser</u> une quantité

Qu'est ce que l'optimisation?

Définition pour les humains

- rendre: Ce sur quoi on va agir
- · quantité: Quelque chose qui représente un "coût"
- la plus petite possible: coût bas = 👍 / coût haut = 👎

Exemples de problèmes d'optimisation

Définition pour les humains

- · Choisir le produit qui a le prix le plus bas
- Choisir le chemin le plus rapide (qui va prendre le moins de temps)
- Choisir la forme des Pringles pour que la chaîne de production prenne le moins de temps possible
- · Choisir la forme des ailes pour que l'avion ait le moins de chances de se crasher
- · Entraîner une IA
- · Faire des prévisions météo

Définition pour les humains

Définition pour les humains

Définition pour les humains

Optimisation: Processus par lequel on va chercher à rendre une quantité la plus petite possible

Trouver $\min f(x)$

Définition pour les humains

Et maintenant?

Cas "simples":

$$f(x) = ax^2 + bx + c$$
 sous forme canonique?

Problème (pour nous)

Calculer f(x) pour pleins de x ça peut coûter cher (temps, argent)

5

Et maintenant?

Cas "simples":

$$f(x) = ax^{2} + bx + c \text{ sous forme canonique ?}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right) \Rightarrow x^{*} = -\frac{b}{2a}$$

Problème (pour nous)

Calculer f(x) pour pleins de x ça peut coûter cher (temps, argent)

5

Optimisation multiobjectif

Exemples de problèmes d'optimisation multiobjectif

Quand on doit prendre une décision, il y souvent plusieurs facteurs qui rentrent en compte

Définition pour les humains

- · Choisir le produit qui a le prix le plus bas
- · Choisir le chemin le plus rapide (qui va prendre le moins de temps)
- · Choisir la forme des ailes pour que l'avion ait le moins de chances de se crasher

Exemples de problèmes d'optimisation multiobjectif

Quand on doit prendre une décision, il y souvent plusieurs facteurs qui rentrent en compte

Définition pour les humains

- Choisir le produit qui a le prix le plus bas et le goût le moins mauvais (rapport qualité/prix)
- Choisir le chemin le plus rapide (qui va prendre le moins de temps) et le moins de péage et coûte le moins cher
- Choisir la forme des ailes pour que l'avion ait le moins de chances de se crasher et soit le moins lourd

Optimisation Multiobjectif

Souvent les objectifs sont concurrents: il faut parfois trouver des compromis.

Problème

Comment comparer des solutions?

- - · Vélo est moins cher et moins lent que le cheval: donc Vélo ≺ Cheval
 - · La voiture est moins chère et moins lente que le cheval: Voiture ≺ Cheval
 - \cdot TGV moins cher et moins lent que l'hélico: TGV \prec Hélico

En conclusion

- · Qu'est ce que l'optimisation (au sens mathématique) ? 🗸
- Qu'est ce que l'optimisation multiobjectif?

