# Solid Mechanics - Zak Olech - 9/24/2019

# Variables (Alphbetical By Variable)

| a                 | Constant; distance                 |
|-------------------|------------------------------------|
| A, B, C,          | Forces; reactions                  |
| $A, B, C, \ldots$ | Points                             |
| $A$ , $\alpha$    | Area                               |
| b                 | Distance; width                    |
| c                 | Constant; distance; radius         |
| C                 | Centroid                           |
| $C_1$ , $C_2$ ,   | Constants of integration           |
| $C_P$             | Column stability factor            |
| d                 | Distance; diameter; depth          |
| D                 | Diameter                           |
| e                 | Distance; eccentricity; dilatation |
| E                 | Modulus of elasticity              |
| f                 | Frequency; function                |
| F                 | Force                              |
| F.S.              | Factor of safety                   |
| G                 | Modulus of rigidity; shear modulus |
| h                 | Distance; height                   |
| Н                 | Force                              |
| H, J, K           | Points                             |
| $I, I_x, \ldots$  | Moment of inertia                  |
| $I_{xy}$          | Product of inertia                 |
|                   |                                    |

| J             | Polar moment of inertia                |
|---------------|----------------------------------------|
| k             | Spring constant; shape factor; bulk    |
|               | modulus; constant                      |
| K             | Stress concentration factor; torsional |
|               | spring constant                        |
| l             | Length; span                           |
| L             | Length; span                           |
| $L_e$         | Effective length                       |
| m             | Mass                                   |
| $\mathbf{M}$  | Couple                                 |
| $M$ , $M_x$ , | Bending moment                         |
| $M_D$         | Bending moment, dead load (LRFD)       |
| $M_L$         | Bending moment, live load (LRFD)       |
| $M_U$         | Bending moment, ultimate load (LRFD)   |
| n             | Number; ratio of moduli of elasticity; |

normal direction

Force; concentrated load

Dead load (LRFD)

Live load (LRFD)

Pressure

P

| $P_U$            | Ultimate load (LRFD)                  |
|------------------|---------------------------------------|
| q                | Shearing force per unit length; shear |
|                  | flow                                  |
| Q                | Force                                 |
| Q                | First moment of area                  |
| r                | Radius; radius of gyration            |
| $\mathbf{R}$     | Force; reaction                       |
| R                | Radius; modulus of rupture            |
| S                | Length                                |
| $\boldsymbol{S}$ | Elastic section modulus               |
| t                | Thickness; distance; tangential       |
|                  | deviation                             |
| $\mathbf{T}$     | Torque                                |
| T                | Temperature                           |
| u, $v$           | Rectangular coordinates               |
| u                | Strain-energy density                 |
| U                | Strain energy; work                   |
| $\mathbf{v}$     | Velocity                              |
| $\mathbf{V}$     | Shearing force                        |
| V                | Volume; shear                         |
| w                | Width; distance; load per unit length |
| <b>W</b> , W     | Weight, load                          |
|                  |                                       |

| $\mathbf{V}$                                     | Shearing force                           |
|--------------------------------------------------|------------------------------------------|
| V                                                | Volume; shear                            |
| w                                                | Width; distance; load per unit length    |
| $\mathbf{W}$ , $W$                               | Weight, load                             |
| <i>x</i> , <i>y</i> , <i>z</i>                   | Rectangular coordinates; distance;       |
|                                                  | displacements; deflections               |
| $\overline{x}$ , $\overline{y}$ , $\overline{z}$ | Coordinates of centroid                  |
| Z                                                | Plastic section modulus                  |
| $\alpha$ , $\beta$ , $\gamma$                    | Angles                                   |
| $\alpha$                                         | Coefficient of thermal expansion;        |
|                                                  | influence coefficient                    |
| $\gamma$                                         | Shearing strain; specific weight         |
| $\gamma_D$                                       | Load factor, dead load (LRFD)            |
| $\gamma_L$                                       | Load factor, live load (LRFD)            |
| $\delta$                                         | Deformation; displacement                |
| $\epsilon$                                       | Normal strain                            |
| heta                                             | Angle; slope                             |
| $\lambda$                                        | Direction cosine                         |
| u                                                | Poisson's ratio                          |
| ho                                               | Radius of curvature; distance; density   |
| $\sigma$                                         | Normal stress                            |
| au                                               | Shearing stress                          |
| $\phi$                                           | Angle; angle of twist; resistance factor |
| ω                                                | Angular velocity                         |

# **Conversion Factors**

$$1hp = 550ft*lb/s = 6600 in*lb/s$$

(1)

#### General

#### **SI Prefixes**

| Multiplication Factor                       | Prefix <sup>†</sup> | Symbol |
|---------------------------------------------|---------------------|--------|
| $1\ 000\ 000\ 000\ 000 = 10^{12}$           | tera                | Т      |
| $1\ 000\ 000\ 000 = 10^9$                   | giga                | G      |
| $1\ 000\ 000 = 10^6$                        | mega                | M      |
| $1\ 000 = 10^3$                             | kilo                | k      |
| $100 = 10^2$                                | hecto‡              | h      |
| $10 = 10^{1}$                               | deka‡               | da     |
| $0.1 = 10^{-1}$                             | deci‡               | d      |
| $0.01 = 10^{-2}$                            | centi‡              | c      |
| $0.001 = 10^{-3}$                           | milli               | m      |
| $0.000\ 001 = 10^{-6}$                      | micro               | $\mu$  |
| $0.000\ 000\ 001 = 10^{-9}$                 | nano                | n      |
| $0.000\ 000\ 000\ 001 = 10^{-12}$           | pico                | р      |
| $0.000\ 000\ 000\ 000\ 001 = 10^{-15}$      | femto               | p<br>f |
| $0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$ | atto                | a      |

# Chapter 1 - Concept of stress

# **Axial Loading: Normal Stress**

$$\sigma = \frac{P}{A} \tag{2}$$

# Transverse Forces and Shearing Stress

$$\tau_{\text{ave}} = \frac{P}{A} \tag{3}$$

# Single and Double Shear

Single Shear

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F}{A} \tag{4}$$

Double Shear

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F/2}{A} = \frac{F}{2A} \tag{5}$$

# **Bearing Stress**

$$\sigma_b = \frac{P}{A} = \frac{P}{td} \tag{6}$$

#### Method of Solution

- 1. Clear and precise statement of problem
- 2. Draw one or several free-body diagrams; used to write equilibrium equations
- 3. Think SMART. Strategy, Modeling, Analysis, and Reflect

#### Stresses on an Oblique Section

$$\sigma = \frac{P}{A_0} \cos^2 \theta \tag{7}$$

$$\tau = \frac{P}{A_0} sin\theta cos\theta \tag{8}$$

# Stress Under General Loading **Factor of Safety**

Factor of safety = F.S. = 
$$\frac{\text{ultimate load}}{\text{allowable load}}$$
 (9)

# Chapter 2 - Stress and Strain -Axial Loading

#### **Normal Strain**

$$\epsilon = \frac{\delta}{L} \tag{10}$$

#### Hooke's Law and Modulus of Elasticity

$$\sigma = E\epsilon \tag{11}$$

## Elastic Deformation Under Axial Loading

$$\delta = \frac{PL}{AE} \tag{12}$$

$$\delta = \Sigma = \frac{P_i L_i}{A_i E_i} \tag{13}$$

#### Problems with Temperature Change

$$\delta_T = \alpha(\Delta T)L \tag{14}$$

$$\epsilon_T = \alpha \Delta T \tag{15}$$

#### Lateral Strain and Poisson's Ratio

$$v = -\frac{\text{lateral strain}}{\text{axial strain}} \tag{16}$$

# Multiaxial Loading

$$\epsilon_x = \frac{\sigma_x}{E} \tag{17}$$

$$\sigma_y = \sigma_x = -\frac{v\sigma_x}{E} \tag{18}$$

#### Generalized Hooke's law for multiaxial loading

$$\sigma_x = +\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} - \frac{v\sigma_z}{E} \tag{19}$$

$$\sigma_y = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} - \frac{v\sigma_z}{E}$$

$$\sigma_z = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} + \frac{v\sigma_z}{E}$$
(20)

$$\sigma_z = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} + \frac{v\sigma_z}{E} \tag{21}$$

#### Dilation

$$e = \frac{1 - 2v}{E} (\sigma_x + \sigma_y + \sigma_z) \tag{22}$$

#### **Bulk Modulus**

p: Hydrostatic Pressure

$$e = -\frac{p}{k} \tag{23}$$

k: bulk modulus of the material

$$k = \frac{E}{3(1-2v)} \tag{24}$$

# Shearing Strain: Modulus of Rigidity

$$\tau_{xy} = G\gamma_{xy} \tag{25}$$

$$\tau_{yz} = G\gamma yz \tag{26}$$

$$\tau_{zx} = G\gamma_{zx} \tag{27}$$

$$\frac{E}{2G} = 1 + v \tag{28}$$

#### **Stress Concentrations**

$$K = \frac{\sigma_{\text{max}}}{\sigma_{\text{avg}}} \tag{29}$$

# Chapter 3 - Torsion

#### General

#### Deformation in Circular Shafts

$$\gamma = \frac{\rho\phi}{L} \tag{30}$$

$$\gamma_{max} = \frac{c\phi}{L} \tag{31}$$

$$\gamma = \frac{\rho}{c} * \gamma_{max} \tag{32}$$

#### Shearing Stresses in Elastic Range

$$\tau = -\frac{\rho}{c}\tau_{max} \tag{33}$$

$$\tau_{max} = \frac{Tc}{J} \tag{34}$$

$$\tau = \frac{T\rho}{J} \tag{35}$$

#### Polar Moment of Inertia Solid Shaft

$$J = \frac{1}{2}\pi c^4 \tag{36}$$

#### (18) $\mid c = \text{radius}$

#### Polar Moment of Inertia of a Hollow Shaft inner radius c1, outer radius c2

$$J = \frac{1}{2}\pi(c_2^4 - c_2^4) \tag{37}$$

#### Angle of Twist

$$\phi = \frac{TL}{JG} \tag{38}$$

$$\phi = \Sigma \frac{TL}{JG} \tag{39}$$

### **Statically Indeterminante Shafts**

#### **Transmission Shafts**

Power P is transmitted as:

$$P = 2\pi f T \tag{40}$$

T is the torque exerted at each end of the shaft f the frequency (hz or  $s^{-1}$ )

#### Stress Concentrations

$$\tau_{\text{max}} = K \frac{Tc}{I} \tag{41}$$

K = Stress concentration factor stress  $\frac{Tc}{T}$  is computed for the smaller-diameter shaft



Fig. 3.28 Plot of stress concentration factors for fillets in circular shafts. (Source: W. D. Pilkey and D. F. Pilkey, Peterson's Stress Concentration Factors, 3rd ed., John Wiley & Sons, New York, 2008.)

## **Plastic Deformations**

$$T = \int_0^c \rho \tau(2\pi d\rho) = 2\pi \int_0^c \rho^2 \tau d\rho \tag{42}$$

#### Modulus of Rupture

This is a ficticious value.

$$R_t = \frac{T_u c}{i} \tag{43}$$

#### Solid Shaft of Elastoplastic Material

Maximum Elastic Torque; Solid Circular Shaft, Radius c

$$\tau_y = \frac{1}{2}\pi c^3 \tau Y \tag{44}$$

Torque Related to  $\rho_y$ 

$$T = -\frac{4}{3}T_y(1 - \frac{1}{4}\rho\rho^3 yc^3)$$
 (45)

Plastic Torque

$$T_p = \frac{4}{3}T_y \tag{46}$$

Plastic Torque Vs. Angle of Twist

$$T = \frac{4}{3}T_y(1 - \frac{1}{4}\frac{\phi^3 y}{\phi^3}) \tag{47}$$

Torsional Loading or Shaft Cross-Section Changes Along Length

$$\phi = \sum_{i} \frac{T_i L_i}{J_i G_i} \tag{48}$$

Thin-Walled Hollow Shafts

Shear Flow

$$q = \tau t \tag{49}$$

Average Shearing Stress  $\tau$  at any given point in cross section

$$\tau = \frac{T}{2tA} \tag{50}$$

# Chapter 4 - Pure Bending

#### 1 - Symmetric Members in Pure Bending

$$\epsilon_x = -\frac{y}{\rho} \tag{51}$$

 $\rho$  - Radius of curvature of the neutral surface

y - Distance from neutral surface

# $\mathbf 2$ - Stresses and Deformatoins in the Elastic Range

$$\sigma_x = -\frac{y}{c}\sigma_m \tag{52}$$

c - largest distance from the neutral axis to a point in the section

#### Elastic Flexture formula

$$\sigma_m = \frac{Mc}{I} \tag{53}$$

$$\sigma_x = -\frac{My}{I} \tag{54}$$

#### **Eleastic Section Modulus**

$$S = \frac{I}{c} \tag{55}$$

$$\sigma_m = \frac{M}{S} \tag{56}$$

#### Curvature of Member

$$\frac{1}{\rho} = \frac{M}{EI} \tag{57}$$

# **Eccentric Axial Loading**

$$\sigma_x = \frac{P}{A} - \frac{M_y}{I} \tag{58}$$

#### Unsymmetric Bending

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} \tag{59}$$

## General Eccentric Axial Loading

$$\sigma_x = \frac{P}{A} - \frac{M_z y}{I_z} + \frac{M_y Z}{I_y} \tag{60}$$

#### **Curved Members**

$$R = \frac{A}{\int \frac{dA}{r}} \tag{61}$$

$$\sigma_x = -\frac{My}{Ae(R-y)} \tag{62}$$

#### **Additional Notes**

Area, width, and moment of inertia for W shapes should be given on a test or found in appendix c of textbook.