Algorithm Design Techniques

An Example

The Problem

Algorithm 1: Cubic Time

Algorithm 2: Quadratic Time

Algorithm 3: $O(n \log n)$ Time

Algorithm 4: Linear Time

Comparison of Algorithms

Principles

The Problem

Definition. Given the real vector x[n], compute the maximum sum found in any contiguous subvector.

An Example. If the input vector is

then the program returns the sum of x[2..6], or 187.

A Cubic Algorithm

Idea. For all pairs of integers i and j satisfying $0 \le i \le j < n$, check whether the sum of x[i...j] is greater than the maximum sum so far.

Code.

```
maxsofar = 0
for i = [0, n)
    for j = [i, n)
        sum = 0
        for k = [i, j]
            sum += x[k]
        /* sum is sum of x[i..j] */
        maxsofar = max(maxsofar, sum)
```

Run Time. $O(n^3)$.

A Quadratic Algorithm

Idea. The sum of x[i..j] is close to the previous sum, x[i..j-1].

Code.

```
maxsofar = 0
for i = [0, n)
    sum = 0
    for j = [i, n)
        sum += x[j]
        /* sum is sum of x[i..j] */
        maxsofar = max(maxsofar, sum)
```

Run Time. $O(n^2)$.

Other Quadratic Algorithms?

Another Quadratic Algorithm

Idea. A "cumulative array" allows sums to be computed quickly. If ytd[i] contains year-to-date sales through month i, then sales from March through September are given by ytd[sep] - ytd[feb].

Implementation. Use the cumulative array cumarr. Initialize $cumarr[i] = x[0] + \cdots + x[i]$. The sum of the values in x[i...j] is cumarr[j] - cumarr[i-1].

Code for Algorithm 2b.

```
cumarr[-1] = 0
for i = [0, n)
        cumarr[i] = cumarr[i-1] + x[i]
maxsofar = 0
for i = [0, n)
        for j = [i, n)
        sum = cumarr[j] - cumarr[i-1]
        /* sum is sum of x[i..j] */
        maxsofar = max(maxsofar, sum)
```

Run Time. $O(n^2)$.

An $O(n \log n)$ Algorithm

The Divide-and-Conquer Schema. To solve a problem of size n, recursively solve two subproblems of size n/2 and combine their solutions.

The Idea. Divide into two subproblems.

Recursively find maximum in subvectors.

Find maximum crossing subvector.

Return max of m_a , m_b and m_c .

Run Time. $O(n \log n)$.

Code for the $O(N \log N)$ Algorithm

```
float maxsum3(1, u)
    if (l > u) /* zero elements */
        return 0
    if (l == u) /* one element */
        return max(0, x[1])
    m = (1 + u) / 2
    /* find max crossing to left */
    lmax = sum = 0
    for (i = m; i >= 1; i--)
        sum += x[i]
        lmax = max(lmax, sum)
    /* find max crossing to right */
    rmax = sum = 0
    for i = (m, u]
        sum += x[i]
        rmax = max(rmax, sum)
    return max(lmax+rmax,
               maxsum3(1, m),
               maxsum3(m+1, u)
```

A Linear Algorithm

Idea. How can we extend a solution for x[0..i-1] into a solution for x[0..i]? Key variables:

maxsofar		maxhere
•	•	1

Code.

```
maxsofar = 0
maxhere = 0
for i = [0, n)
   /* invariant: maxhere and maxsofar
        are accurate for x[0..i-1] */
    maxhere = max(maxhere + x[i], 0)
    maxsofar = max(maxsofar, maxhere)
```

Run Time. O(n).

Summary of the Algorithms

ALGORITHM		1	2	3	4
Run time in nanoseconds		1.3 <i>n</i> ³	10 <i>n</i> ²	47 n log ₂ n	48 <i>n</i>
Time to	10 ³	1.3 secs	10 msecs	.4 msecs	.05 msecs
solve a	10 ⁴	22 mins	1 sec	6 msecs	.5 msecs
problem	10 ⁵	15 days	1.7 min	78 msecs	5 msecs
of size	10 ⁶	41 yrs	2.8 hrs	.94 secs	48 msecs
	10 ⁷	41 millenia	1.7 wks	11 secs	.48 secs
Max size	sec	920	10,000	1.0×10 ⁶	2.1×10 ⁷
problem	min	3600	77,000	4.9×10 ⁷	1.3×10 ⁹
solved in	hr	14,000	6.0×10 ⁵	2.4×10 ⁹	7.6×10^{10}
one	day	41,000	2.9×10 ⁶	5.0×10 ¹⁰	1.8×10 ¹²
If <i>n</i> multiplies by 10, time multiplies by		1000	100	10+	10
If time multiplies by 10, <i>n</i> multiplies by		2.15	3.16	10–	10

An Extreme Comparison

Algorithm 1 at 533MHz is $0.58 n^3$ nanoseconds. Algorithm 4 interpreted at 2.03MHz is 19.5 n milliseconds, or 19,500,000 n nanoseconds.

	1999 ALPHA 21164A,	1980 TRS-80,			
n	C,	BASIC,			
	CUBIC ALGORITHM	LINEAR ALGORITHM			
10	0.6 microsecs	200 millisecs			
100	0.6 millisecs	2.0 secs			
1000	0.6 secs	20 secs			
10,000	10 mins	3.2 mins			
100,000	7 days	32 mins			
1,000,000	19 yrs	5.4 hrs			

Design Techniques

Save state to avoid recomputation.

Algorithms 2 and 4.

Preprocess information into data structures.

Algorithm 2b.

Divide-and-conquer algorithms.

Algorithm 3.

Scanning algorithms.

Algorithm 4.

Cumulatives.

Algorithm 2b.

Lower bounds.

Algorithm 4.