Vol

1.5

Generated by Doxygen 1.8.9.1

Thu Oct 8 2015 22:41:21

Contents

1	Hier	archica	l Index		1
	1.1	Class I	Hierarchy		. 1
2	Clas	s Index	[9
	2.1	Class I	List		. 9
3	File	Index			11
	3.1	File Lis	st		. 11
4	Clas	s Docu	mentation	1	13
	4.1	OsiVol	SolverInte	rface Class Reference	. 13
	4.2	VOL_a	alpha_facto	or Class Reference	. 13
		4.2.1	Detailed	Description	. 13
	4.3	VOL_c	dual Class	Reference	. 13
		4.3.1	Detailed	Description	. 13
	4.4	VOL_c	dvector Cla	ass Reference	. 13
		4.4.1	Detailed	Description	. 14
		4.4.2	Construc	ctor & Destructor Documentation	. 15
			4.4.2.1	VOL_dvector	. 15
			4.4.2.2	VOL dvector	. 15
			4.4.2.3	VOL_dvector	
			4.4.2.4	~VOL_dvector	
		4.4.3	Member	Function Documentation	
			4.4.3.1	size	
			4.4.3.2	operator[]	
			4.4.3.3	operator[]	
			4.4.3.4	clear	
				CC	
			4.4.3.5		
			4.4.3.6	allocate	. 16

iv CONTENTS

		4.4.3.7 swap	16
		4.4.3.8 operator=	16
		4.4.3.9 operator=	16
4.5	VOL_i	ndc Class Reference	16
	4.5.1	Detailed Description	16
4.6	VOL_i	vector Class Reference	16
	4.6.1	Detailed Description	17
	4.6.2	Constructor & Destructor Documentation	18
		4.6.2.1 VOL_ivector	18
		4.6.2.2 VOL_ivector	18
		4.6.2.3 VOL_ivector	18
		4.6.2.4 ~VOL_ivector	18
	4.6.3	Member Function Documentation	18
		4.6.3.1 size	18
		4.6.3.2 operator[]	18
		4.6.3.3 operator[]	18
		4.6.3.4 clear	18
		4.6.3.5 allocate	19
		4.6.3.6 swap	19
		4.6.3.7 operator=	19
		4.6.3.8 operator=	19
	4.6.4	Member Data Documentation	19
		4.6.4.1 v	19
		4.6.4.2 sz	19
4.7	VOL_p	parms Struct Reference	19
	4.7.1	Detailed Description	20
	4.7.2	Member Data Documentation	21
		4.7.2.1 printflag	21
4.8	VOL_p	orimal Class Reference	21
	4.8.1	Detailed Description	21
4.9	VOL_p	problem Class Reference	21
	4.9.1	Detailed Description	22
	4.9.2	Constructor & Destructor Documentation	23
		4.9.2.1 VOL_problem	23
		4.9.2.2 VOL_problem	23
		4.9.2.3 ~VOL_problem	23
	4.9.3	Member Function Documentation	23

CONTENTS

Index																27
	4.12.1	Detailed	Descrip	otion .			 		 	 ٠.		 	 		 	25
4.12	VOL_v	h Class Re	eferenc	æ			 		 	 		 	 		 	25
		4.11.2.3	heuris	stics			 		 	 		 	 		 	24
		4.11.2.2	solve	_subpro	oblem		 		 	 		 	 		 	24
		4.11.2.1	comp	ute_rc			 		 	 		 	 		 	24
	4.11.2	Member	Functio	on Docu	ument	ation			 	 		 	 		 	24
	4.11.1	Detailed	Descri	otion .			 		 	 		 	 		 	24
4.11	VOL_u	ser_hooks	Class	Refere	nce .		 		 	 		 	 		 	23
	4.10.1	Detailed	Descrip	otion .			 	 	 	 		 	 		 	23
4.10	VOL_s	wing Class	s Refer	ence .			 		 	 		 	 		 	23
		4.9.3.1	solve				 		 	 		 	 		 	23

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

```
_EKKfactinfo[external]
forcing_constraint_action::action[external]
doubleton action::action[external]
tripleton action::action[external]
remove_fixed_action::action[external]
std::allocator< T >
OsiSolverInterface::ApplyCutsReturnCode [external]
std::array< T >
std::auto ptr< T >
std::basic_string< Char >
   std::string
   std::wstring
std::basic string< char >
std::basic_string< wchar_t >
std::bitset < Bits >
BitVector128 [external]
CoinAbsFltEq[external]
CoinArrayWithLength [external]
   CoinArbitraryArrayWithLength [external]
   CoinBigIndexArrayWithLength [external]
   CoinDoubleArrayWithLength [external]
   CoinFactorizationDoubleArrayWithLength[external]
   CoinFactorizationLongDoubleArrayWithLength[external]
   CoinIntArrayWithLength [external]
   CoinUnsignedIntArrayWithLength [external]
   CoinVoidStarArrayWithLength [external]
CoinBaseModel[external]
   CoinModel[external]
   CoinStructuredModel[external]
CoinBuild [external]
CoinDenseVector< T > [external]
CoinError[external]
CoinExternalVectorFirstGreater 2< class, class, class > [external]
CoinExternalVectorFirstGreater 3< class, class, class, class, class > [external]
```

2 Hierarchical Index

```
CoinExternalVectorFirstLess_2< class, class, class > [external]
CoinExternalVectorFirstLess 3< class, class, class, class > [external]
CoinFactorization [external]
CoinFileIOBase [external]
   CoinFileInput[external]
   CoinFileOutput[external]
CoinFirstAbsGreater 2< class, class > [external]
CoinFirstAbsGreater 3< class, class, class > [external]
CoinFirstAbsLess 2< class, class > [external]
CoinFirstAbsLess_3 < class, class, class > [external]
CoinFirstGreater_2< class, class > [external]
CoinFirstGreater_3< class, class, class > [external]
CoinFirstLess 2< class, class > [external]
CoinFirstLess_3 < class, class, class > [external]
CoinLplO::CoinHashLink[external]
CoinMpsIO::CoinHashLink[external]
CoinIndexedVector[external]
   CoinPartitionedVector[external]
CoinLpIO [external]
CoinMessageHandler[external]
CoinMessages[external]
   CoinMessage [external]
CoinModelHash [external]
CoinModelHash2[external]
CoinModelHashLink[external]
CoinModelInfo2[external]
CoinModelLink[external]
CoinModelLinkedList[external]
CoinModelTriple [external]
CoinMpsCardReader[external]
CoinMpsIO[external]
CoinOneMessage [external]
CoinOtherFactorization [external]
   CoinDenseFactorization [external]
   CoinOslFactorization [external]
   CoinSimpFactorization [external]
CoinPackedMatrix[external]
CoinPackedVectorBase[external]
   CoinPackedVector[external]
   CoinShallowPackedVector[external]
CoinPair < S, T > [external]
CoinParam [external]
CoinPrePostsolveMatrix [external]
   CoinPostsolveMatrix[external]
   CoinPresolveMatrix[external]
CoinPresolveAction[external]
   do_tighten_action[external]
  doubleton_action[external]
   drop empty cols action[external]
  drop_empty_rows_action[external]
  drop zero coefficients action[external]
  dupcol_action[external]
   duprow3 action[external]
  duprow action[external]
```

1.1 Class Hierarchy 3

```
forcing_constraint_action[external]
  qubrow action[external]
  implied free action[external]
   isolated constraint action[external]
   make fixed action[external]
   remove dual action[external]
   remove fixed action[external]
  slack doubleton action[external]
   slack singleton action[external]
   subst_constraint_action[external]
  tripleton_action[external]
  twoxtwo_action[external]
   useless constraint action[external]
CoinPresolveMonitor[external]
CoinRational[external]
CoinRelFltEq[external]
CoinSearchTreeBase[external]
   CoinSearchTree < class > [external]
CoinSearchTreeCompareBest[external]
CoinSearchTreeCompareBreadth [external]
CoinSearchTreeCompareDepth [external]
CoinSearchTreeComparePreferred[external]
CoinSearchTreeManager[external]
CoinSet[external]
   CoinSosSet[external]
CoinSnapshot[external]
CoinThreadRandom[external]
CoinTimer[external]
CoinTreeNode[external]
CoinTreeSiblings[external]
CoinTriple < S, T, U > [external]
CoinWarmStart[external]
   CoinWarmStartBasis [external]
   CoinWarmStartDual[external]
   CoinWarmStartPrimalDual[external]
   CoinWarmStartVector< T > [external]
   CoinWarmStartVector< double > [external]
   CoinWarmStartVector < U > [external]
   CoinWarmStartVectorPair< T, U > [external]
CoinWarmStartDiff[external]
   CoinWarmStartBasisDiff[external]
   CoinWarmStartDualDiff[external]
   CoinWarmStartPrimalDualDiff[external]
   CoinWarmStartVectorDiff< T > [external]
   CoinWarmStartVectorDiff< double > [external]
   CoinWarmStartVectorDiff< U > [external]
   CoinWarmStartVectorPairDiff< T, U > [external]
CoinYacc[external]
std::complex
std::multimap< K, T >::const_iterator
std::unordered multimap< K, T>::const iterator
std::set< K >::const_iterator
OsiCuts::const iterator[external]
std::unordered set< K >::const iterator
```

4 Hierarchical Index

```
std::multiset < K >::const_iterator
std::unordered multiset < K >::const iterator
std::vector< T >::const iterator
std::basic string< Char >::const iterator
std::string::const iterator
std::wstring::const iterator
std::deque < T >::const iterator
std::list< T >::const iterator
std::forward list< T >::const iterator
std::map < K, T >::const_iterator
std::unordered_map< K, T >::const_iterator
std::multimap < K, T >::const_reverse_iterator
std::unordered multimap< K, T >::const reverse iterator
std::set< K >::const reverse iterator
std::unordered set< K >::const reverse iterator
std::multiset< K >::const_reverse_iterator
std::unordered multiset < K >::const reverse iterator
std::vector< T >::const_reverse_iterator
std::basic string< Char >::const reverse iterator
std::string::const reverse iterator
std::wstring::const reverse iterator
std::deque< T >::const reverse iterator
std::list< T >::const reverse iterator
std::forward\_list < T > ::const\_reverse\_iterator
std::map < K, T >::const reverse iterator
std::unordered map < K, T >::const reverse iterator
std::deque< T >
dropped_zero[external]
EKKHlink[external]
std::error_category
std::error_code
std::error condition
std::exception
   std::bad alloc
   std::bad_cast
   std::bad exception
   std::bad typeid
   std::ios base::failure
   std::logic error
      std::domain error
      std::invalid_argument
      std::length error
      std::out of range
   std::runtime_error
      std::overflow_error
      std::range_error
      std::underflow_error
FactorPointers [external]
std::forward list< T >
glp_prob[external]
std::ios base
   basic_ios < char >
   basic ios < wchar t >
   std::basic ios
```

1.1 Class Hierarchy 5

```
basic_istream< char >
      basic istream< wchar t>
      basic_ostream < char >
      basic ostream< wchar t >
      std::basic_istream
          basic_ifstream< char >
          basic ifstream< wchar t >
          basic iostream < char >
          basic iostream< wchar t >
          basic_istringstream< char >
          basic_istringstream< wchar_t >
          std::basic_ifstream
             std::ifstream
             std::wifstream
          std::basic iostream
             basic_fstream< char >
             basic_fstream< wchar_t >
             basic_stringstream< char >
             basic stringstream< wchar t >
             std::basic fstream
                 std::fstream
                 std::wfstream
             std::basic_stringstream
                 std::stringstream
                 std::wstringstream
          std::basic istringstream
             std::istringstream
             std::wistringstream
          std::istream
          std::wistream
      std::basic_ostream
          basic iostream < char >
          basic_iostream< wchar_t >
          basic ofstream < char >
          basic_ofstream< wchar_t >
          basic ostringstream < char >
          basic ostringstream< wchar t >
          std::basic iostream
          std::basic_ofstream
             std::ofstream
             std::wofstream
          std::basic_ostringstream
             std::ostringstream
             std::wostringstream
          std::ostream
          std::wostream
      std::ios
      std::wios
std::multimap< K, T >::iterator
std::unordered_set< K >::iterator
std::unordered_multimap< K, T >::iterator
std::set< K >::iterator
std::list< T >::iterator
std::unordered multiset< K >::iterator
```

6 Hierarchical Index

```
std::vector< T >::iterator
std::multiset< K >::iterator
std::deque< T >::iterator
OsiCuts::iterator[external]
std::basic_string< Char >::iterator
std::string::iterator
std::forward list< T >::iterator
std::wstring::iterator
std::map< K, T >::iterator
std::unordered map< K, T>::iterator
std::list< T >
std::map< K, T>
std::multimap< K, T >
std::multiset< K >
OsiAuxInfo[external]
   OsiBabSolver[external]
OsiBranchingInformation [external]
OsiBranchingObject[external]
   OsiTwoWayBranchingObject[external]
      OsiIntegerBranchingObject[external]
      OsiLotsizeBranchingObject [external]
      OsiSOSBranchingObject[external]
OsiChooseVariable [external]
   OsiChooseStrong[external]
OsiCut[external]
   OsiColCut[external]
   OsiRowCut[external]
      OsiRowCut2[external]
OsiCuts[external]
OsiHotInfo[external]
OsiObject[external]
   OsiObject2[external]
      OsiLotsize[external]
      OsiSimpleInteger[external]
      OsiSOS[external]
OsiPresolve [external]
OsiPseudoCosts [external]
OsiRowCutDebugger[external]
OsiSolverBranch [external]
OsiSolverInterface [external]
   OsiCpxSolverInterface [external]
   OsiGlpkSolverInterface [external]
   OsiGrbSolverInterface [external]
   OsiMskSolverInterface[external]
   OsiSpxSolverInterface [external]
   OsiVolSolverInterface . . . . . . . . . . . . . .
   OsiXprSolverInterface [external]
OsiSolverResult[external]
presolvehlink[external]
std::priority_queue < T >
std::queue < T >
Coin::ReferencedObject[external]
std::list< T >::reverse iterator
std::vector< T >::reverse iterator
```

1.1 Class Hierarchy 7

```
std::deque< T >::reverse_iterator
std::multiset< K >::reverse iterator
std::map< K, T >::reverse iterator
std::string::reverse iterator
std::wstring::reverse iterator
std::unordered map< K, T>::reverse iterator
std::unordered_multimap< K, T >::reverse_iterator
std::set< K >::reverse iterator
std::basic string< Char >::reverse iterator
std::multimap< K, T >::reverse_iterator
std::unordered_set< K >::reverse_iterator
std::unordered_multiset< K >::reverse_iterator
std::forward list< T >::reverse iterator
std::set< K >
std::smart ptr < T >
Coin::SmartPtr< T > [external]
std::stack< T >
symrec[external]
std::system error
OsiUnitTest::TestOutcome [external]
OsiUnitTest::TestOutcomes[external]
std::thread
std::unique ptr< T >
std::unordered map< K, T >
std::unordered multimap< K, T >
std::unordered multiset< K >
std::unordered set< K >
std::valarray< T >
std::vector< T >
std::vector< double >
std::weak ptr<T>
Κ
S
Τ
U
```

8 **Hierarchical Index**

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

OsiVolSolverInterface	
Vol(ume) Solver Interface	13
VOL_alpha_factor	13
VOL_dual	13
VOL_dvector	
Vector of doubles	13
VOL_indc	16
VOL_ivector	
Vector of ints	16
VOL_parms	
This class contains the parameters controlling the Volume Algorithm	19
VOL_primal	21
VOL_problem	
This class holds every data for the Volume Algorithm and its solve method must be invoked to solve	
the problem	21
VOL_swing	23
VOL_user_hooks	
The user hooks should be overridden by the user to provide the problem specific routines for the	
volume algorithm	23
VOL_vh	25

10 **Class Index**

Chapter 3

File Index

	100.00	4.0
27	LIIA	Liet
O-1		L 131

lere is a list of all documented fil	es with brief	descriptions:		
OsiVolSolverInterface.hpp			 	?
VolVolume.hpp			 	?

12 File Index

Chapter 4

Class Documentation

4.1 OsiVolSolverInterface Class Reference

Vol(ume) Solver Interface.

#include <OsiVolSolverInterface.hpp>

Inheritance diagram for OsiVolSolverInterface:

4.2 VOL_alpha_factor Class Reference

4.2.1 Detailed Description

Definition at line 489 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

· VolVolume.hpp

4.3 VOL_dual Class Reference

Collaboration diagram for VOL_dual:

4.3.1 Detailed Description

Definition at line 354 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

· VolVolume.hpp

4.4 VOL_dvector Class Reference

vector of doubles.

```
#include <VolVolume.hpp>
```

Public Member Functions

VOL dvector (const int s)

Construct a vector of size s.

• VOL dvector ()

Default constructor creates a vector of size 0.

VOL_dvector (const VOL_dvector &x)

Copy constructor makes a replica of x.

∼VOL_dvector ()

The destructor deletes the data array.

• int size () const

Return the size of the vector.

double & operator[] (const int i)

Return a reference to the i-th entry.

• double operator[] (const int i) const

Return the i-th entry.

• void clear ()

Delete the content of the vector and replace it with a vector of length 0.

void cc (const double gamma, const VOL_dvector &w)

Convex combination.

• void allocate (const int s)

delete the current vector and allocate space for a vector of size s.

void swap (VOL_dvector &w)

swaps the vector with w.

VOL_dvector & operator= (const VOL_dvector &w)

Copy w into the vector.

VOL_dvector & operator= (const double w)

Replace every entry in the vector with w.

Public Attributes

double * v

The array holding the vector.

• int sz

The size of the vector.

4.4.1 Detailed Description

vector of doubles.

It is used for most vector operations.

Note: If VOL_DEBUG is #defined to be 1 then each time an entry is accessed in the vector the index of the entry is tested for nonnegativity and for being less than the size of the vector. It's good to turn this on while debugging, but in final runs it should be turned off (beause of the performance hit).

Definition at line 148 of file VolVolume.hpp.

4.4.2 Constructor & Destructor Documentation

4.4.2.1 VOL_dvector::VOL_dvector(const int s) [inline]

Construct a vector of size s.

The content of the vector is undefined.

Definition at line 157 of file VolVolume.hpp.

4.4.2.2 VOL_dvector::VOL_dvector() [inline]

Default constructor creates a vector of size 0.

Definition at line 162 of file VolVolume.hpp.

4.4.2.3 VOL_dvector::VOL_dvector (const VOL_dvector & x) [inline]

Copy constructor makes a replica of x.

Definition at line 164 of file VolVolume.hpp.

4.4.2.4 VOL_dvector::~VOL_dvector() [inline]

The destructor deletes the data array.

Definition at line 172 of file VolVolume.hpp.

4.4.3 Member Function Documentation

4.4.3.1 int VOL_dvector::size () const [inline]

Return the size of the vector.

Definition at line 175 of file VolVolume.hpp.

4.4.3.2 double& VOL_dvector::operator[](const int *i*) [inline]

Return a reference to the i-th entry.

Definition at line 178 of file VolVolume.hpp.

4.4.3.3 double VOL_dvector::operator[](const int *i*) const [inline]

Return the i-th entry.

Definition at line 184 of file VolVolume.hpp.

4.4.3.4 void VOL_dvector::clear() [inline]

Delete the content of the vector and replace it with a vector of length 0.

Definition at line 191 of file VolVolume.hpp.

4.4.3.5 void VOL_dvector::cc (const double gamma, const VOL_dvector & w) [inline]

Convex combination.

Replace the current vector v with v = (1-gamma) v + gamma w.

Definition at line 198 of file VolVolume.hpp.

4.4.3.6 void VOL_dvector::allocate (const int s) [inline]

delete the current vector and allocate space for a vector of size s.

Definition at line 214 of file VolVolume.hpp.

4.4.3.7 void VOL_dvector::swap (VOL_dvector & w) [inline]

swaps the vector with w.

Definition at line 221 of file VolVolume.hpp.

4.4.3.8 VOL_dvector& VOL_dvector::operator= (const VOL_dvector & w)

Copy w into the vector.

4.4.3.9 VOL_dvector& VOL_dvector::operator= (const double w)

Replace every entry in the vector with w.

The documentation for this class was generated from the following file:

VolVolume.hpp

4.5 VOL_indc Class Reference

4.5.1 Detailed Description

Definition at line 538 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

VolVolume.hpp

4.6 VOL_ivector Class Reference

vector of ints.

#include <VolVolume.hpp>

Public Member Functions

• VOL ivector (const int s)

Construct a vector of size s.

• VOL ivector ()

Default constructor creates a vector of size 0.

VOL ivector (const VOL ivector &x)

Copy constructor makes a replica of x.

∼VOL_ivector ()

The destructor deletes the data array.

• int size () const

Return the size of the vector.

int & operator[] (const int i)

Return a reference to the i-th entry.

• int operator[] (const int i) const

Return the i-th entry.

• void clear ()

Delete the content of the vector and replace it with a vector of length 0.

void allocate (const int s)

delete the current vector and allocate space for a vector of size s.

void swap (VOL_ivector &w)

swaps the vector with w.

VOL_ivector & operator= (const VOL_ivector &v)

Copy w into the vector.

VOL_ivector & operator= (const int w)

Replace every entry in the vector with w.

Public Attributes

int * v

The array holding the vector.

• int sz

The size of the vector.

4.6.1 Detailed Description

vector of ints.

It's used to store indices, it has similar functions as VOL_dvector.

Note: If VOL_DEBUG is #defined to be 1 then each time an entry is accessed in the vector the index of the entry is tested for nonnegativity and for being less than the size of the vector. It's good to turn this on while debugging, but in final runs it should be turned off (beause of the performance hit).

Definition at line 242 of file VolVolume.hpp.

4.6.2 Constructor & Destructor Documentation

```
4.6.2.1 VOL_ivector::VOL_ivector ( const int s ) [inline]
```

Construct a vector of size s.

The content of the vector is undefined.

Definition at line 250 of file VolVolume.hpp.

```
4.6.2.2 VOL_ivector::VOL_ivector( ) [inline]
```

Default constructor creates a vector of size 0.

Definition at line 255 of file VolVolume.hpp.

```
4.6.2.3 VOL_ivector::VOL_ivector ( const VOL_ivector & x ) [inline]
```

Copy constructor makes a replica of x.

Definition at line 257 of file VolVolume.hpp.

```
4.6.2.4 VOL_ivector::~VOL_ivector() [inline]
```

The destructor deletes the data array.

Definition at line 265 of file VolVolume.hpp.

4.6.3 Member Function Documentation

```
4.6.3.1 int VOL_ivector::size() const [inline]
```

Return the size of the vector.

Definition at line 270 of file VolVolume.hpp.

```
4.6.3.2 int& VOL_ivector::operator[]( const int i ) [inline]
```

Return a reference to the i-th entry.

Definition at line 272 of file VolVolume.hpp.

```
4.6.3.3 int VOL_ivector::operator[]( const int i) const [inline]
```

Return the i-th entry.

Definition at line 278 of file VolVolume.hpp.

```
4.6.3.4 void VOL_ivector::clear( ) [inline]
```

Delete the content of the vector and replace it with a vector of length 0.

Definition at line 285 of file VolVolume.hpp.

4.6.3.5 void VOL_ivector::allocate (const int s) [inline]

delete the current vector and allocate space for a vector of size s.

Definition at line 293 of file VolVolume.hpp.

4.6.3.6 void VOL_ivector::swap (VOL_ivector & w) [inline]

swaps the vector with w.

Definition at line 300 of file VolVolume.hpp.

4.6.3.7 VOL_ivector& VOL_ivector::operator= (const VOL_ivector & v)

Copy w into the vector.

4.6.3.8 VOL_ivector& VOL_ivector::operator= (const int w)

Replace every entry in the vector with w.

4.6.4 Member Data Documentation

4.6.4.1 int* VOL_ivector::v

The array holding the vector.

Definition at line 245 of file VolVolume.hpp.

4.6.4.2 int VOL_ivector::sz

The size of the vector.

Definition at line 247 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

VolVolume.hpp

4.7 VOL_parms Struct Reference

This class contains the parameters controlling the Volume Algorithm.

#include <VolVolume.hpp>

Public Attributes

· double lambdainit

initial value of lambda

· double alphainit

initial value of alpha

· double alphamin

minimum value for alpha

double alphafactor

when little progress is being done, we multiply alpha by alphafactor

· double ubinit

initial upper bound of the value of an integer solution

· double primal abs precision

accept if max abs viol is less than this

· double gap_abs_precision

accept if abs gap is less than this

double gap_rel_precision

accept if rel gap is less than this

· double granularity

terminate if best_ub - lcost < granularity

double minimum_rel_ascent

terminate if the relative increase in lcost through ascent_check_inv1 steps is less than this

· int ascent_first_check

when to check for sufficient relative ascent the first time

· int ascent check invl

through how many iterations does the relative ascent have to reach a minimum

int maxsgriters

maximum number of iterations

· int printflag

controls the level of printing.

· int printinvl

controls how often do we print

· int heurinvl

controls how often we run the primal heuristic

· int greentestinvl

how many consecutive green iterations are allowed before changing lambda

· int yellowtestinvl

how many consecutive yellow iterations are allowed before changing lambda

· int redtestinvl

how many consecutive red iterations are allowed before changing lambda

· int alphaint

number of iterations before we check if alpha should be decreased

• char * temp_dualfile

name of file for saving dual solution

4.7.1 Detailed Description

This class contains the parameters controlling the Volume Algorithm.

Definition at line 71 of file VolVolume.hpp.

4.7.2 Member Data Documentation

4.7.2.1 int VOL_parms::printflag

controls the level of printing.

The flag should the the 'OR'-d value of the following options:

- 0 print nothing
- 1 print iteration information
- 2 add lambda information
- · 4 add number of Red, Yellow, Green iterations

Default: 3

Definition at line 115 of file VolVolume.hpp.

The documentation for this struct was generated from the following file:

VolVolume.hpp

4.8 VOL_primal Class Reference

Collaboration diagram for VOL_primal:

4.8.1 Detailed Description

Definition at line 313 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

· VolVolume.hpp

4.9 VOL_problem Class Reference

This class holds every data for the Volume Algorithm and its solve method must be invoked to solve the problem.

```
#include <VolVolume.hpp>
```

Collaboration diagram for VOL_problem:

Public Member Functions

Constructors and destructor

• VOL_problem ()

Default constructor.

• VOL problem (const char *filename)

Create a a VOL_problem object and read in the parameters from filename.

∼VOL problem ()

Destruct the object.

Method to solve the problem.

• int solve (VOL_user_hooks &hooks, const bool use_preset_dual=false) Solve the problem using the hooks.

Methods returning final data

• int iter () const

returns the iteration number

• double alpha () const

returns the value of alpha

• double lambda () const

returns the value of lambda

Public Attributes

int iter

iteration number

External data (containing the result after solve)

double value

final lagrangian value (OUTPUT)

VOL_dvector dsol

final dual solution (INPUT/OUTPUT)

VOL_dvector psol

final primal solution (OUTPUT)

VOL_dvector viol

violations (b-Ax) for the relaxed constraints

External data (may be changed by the user before calling solve)

VOL_parms parm

The parameters controlling the Volume Algorithm (INPUT)

int psize

length of primal solution (INPUT)

• int dsize

length of dual solution (INPUT)

VOL_dvector dual_lb

lower bounds for the duals (if 0 length, then filled with -inf) (INPUT)

VOL_dvector dual_ub

upper bounds for the duals (if 0 length, then filled with +inf) (INPUT)

4.9.1 Detailed Description

This class holds every data for the Volume Algorithm and its solve method must be invoked to solve the problem.

The INPUT fields must be filled out completely before solve is invoked. dsol have to be filled out if and only if the last argument to solve is true.

Definition at line 605 of file VolVolume.hpp.

4.9.2 Constructor & Destructor Documentation

```
4.9.2.1 VOL_problem::VOL_problem()
```

Default constructor.

```
4.9.2.2 VOL_problem::VOL_problem ( const char * filename )
```

Create a a VOL_problem object and read in the parameters from filename.

```
4.9.2.3 VOL_problem::~VOL_problem()
```

Destruct the object.

4.9.3 Member Function Documentation

```
4.9.3.1 int VOL_problem::solve ( VOL_user_hooks & hooks, const bool use_preset_dual = false )
```

Solve the problem using the hooks.

Any information needed in the hooks must be stored in the structure user_data points to.

The documentation for this class was generated from the following file:

· VolVolume.hpp

4.10 VOL swing Class Reference

4.10.1 Detailed Description

Definition at line 390 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

· VolVolume.hpp

4.11 VOL_user_hooks Class Reference

The user hooks should be overridden by the user to provide the problem specific routines for the volume algorithm.

```
#include <VolVolume.hpp>
```

Inheritance diagram for VOL_user_hooks:

Public Member Functions

virtual int compute_rc (const VOL_dvector &u, VOL_dvector &rc)=0
 compute reduced costs

 virtual int solve_subproblem (const VOL_dvector &dual, const VOL_dvector &rc, double &lcost, VOL_dvector &x, VOL dvector &v, double &pcost)=0

Solve the subproblem for the subgradient step.

virtual int heuristics (const VOL_problem &p, const VOL_dvector &x, double &heur_val)=0

Starting from the primal vector x, run a heuristic to produce an integer solution.

4.11.1 Detailed Description

The user hooks should be overridden by the user to provide the problem specific routines for the volume algorithm.

The user should derive a class ...

for all hooks: return value of -1 means that volume should quit

Definition at line 563 of file VolVolume.hpp.

4.11.2 Member Function Documentation

4.11.2.1 virtual int VOL_user_hooks::compute_rc(const VOL_dvector & u, VOL_dvector & rc) [pure virtual]

compute reduced costs

Parameters

и	(IN) the dual variables
rc	(OUT) the reduced cost with respect to the dual values

4.11.2.2 virtual int VOL_user_hooks::solve_subproblem (const VOL_dvector & dual, const VOL_dvector & rc, double & lcost, VOL_dvector & x, VOL_dvector & v, double & pcost) [pure virtual]

Solve the subproblem for the subgradient step.

Parameters

dual	(IN) the dual variables
rc	(IN) the reduced cost with respect to the dual values
lcost	(OUT) the lagrangean cost with respect to the dual values
X	(OUT) the primal result of solving the subproblem
V	(OUT) b-Ax for the relaxed constraints
pcost	(OUT) the primal objective value of \boldsymbol{x}

4.11.2.3 virtual int VOL_user_hooks::heuristics (const VOL_problem & p, const VOL_dvector & x, double & heur_val)

[pure virtual]

Starting from the primal vector x, run a heuristic to produce an integer solution.

Parameters

X	(IN) the primal vector

heur_val | (OUT) the value of the integer solution (return DBL_MAX here if no feas sol was found

The documentation for this class was generated from the following file:

· VolVolume.hpp

4.12 VOL_vh Class Reference

4.12.1 Detailed Description

Definition at line 515 of file VolVolume.hpp.

The documentation for this class was generated from the following file:

· VolVolume.hpp

File Documentation

Index

\sim VOL_dvector	VOL_ivector, 19
VOL_dvector, 15	VOL_alpha_factor, 13
\sim VOL_ivector	VOL_dual, 13
VOL_ivector, 18	VOL_dvector, 13
\sim VOL_problem	\sim VOL_dvector, 15
VOL_problem, 23	allocate, 16
	cc, 15
allocate	clear, 15
VOL_dvector, 16	operator=, 16
VOL_ivector, 18	operator[], 15
CC	size, 15
VOL dvector, 15	swap, 16
clear	VOL_dvector, 15
VOL_dvector, 15	VOL_indc, 16
VOL_ivector, 18	VOL_ivector, 16
compute_rc	~VOL_ivector, 18
VOL_user_hooks, 24	allocate, 18
	clear, 18
heuristics	operator=, 19
VOL_user_hooks, 24	operator[], 18
	size, 18
operator=	swap, 19
VOL_dvector, 16	sz, 19
VOL_ivector, 19	v, 19 VOL_ivector, 18
operator[]	VOL_parms, 19
VOL_dvector, 15	printflag, 21
VOL_ivector, 18	VOL primal, 21
OsiVolSolverInterface, 13	VOL_problem, 21
printflag	~VOL_problem, 23
VOL_parms, 21	solve, 23
VOL_parms, 21	VOL_problem, 23
size	VOL swing, 23
VOL_dvector, 15	VOL user hooks, 23
VOL_ivector, 18	compute_rc, 24
solve	heuristics, 24
VOL_problem, 23	solve_subproblem, 24
solve_subproblem	VOL_vh, 25
VOL_user_hooks, 24	:
swap	
VOL_dvector, 16	
VOL_ivector, 19	

VOL_ivector, 19