Rust Quantum Library

The quantum library in Rust contains several useful measures of quantum entanglement that are calculated from the density matrix representing a quantum state. This library is generalized for any density matrix with dimension of 2^n . The Rust library uses ndarray and the ndarray_linalg packages.

We can run Rust from a Jupyter notebook by installing EvCxR Jupyter kernel. The Jupyter notebook runs with the **plotters** crate. Setup can be found from https://datacrayon.com/posts/programming/rust-notebooks/setup-anaconda-jupyter-and-rust. Miniconda is not necessary, Anaconda will work the same. Be careful when installing the actual kernel in the tutorial (shown below) - it is important to check on "other installation methods" in order for proper installation for Linux, Windows, and Mac.

Install the EvCxR Jupyter Kernel

Now we'll install the EvCxR Jupyter Kernel. If you're wondering how it's pronounced, it's been mentioned to be "Evic-ser". This is what will allow us to execute Rust code in a Jupyter Notebook.

You can get other installation methods methods for EvCxR if you need then, but we will be using:

```
cargo install evcxr_jupyter --version 0.5.3 evcxr_jupyter --install
```

Below are the various quantum functions along with the functions that perform linear algebra operations.

1 Quantum functions

1.1 Create a density matrix ρ (create_density_matrix)

Input: The wavefunction expressed as a column vector of coefficients

Input type: pub type VecC64 = ndarray::Array1 < c64 >

Input Example: For the Bell state $\phi_+ = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$,

 $let \ norm_const = 1./2_f64.sqrt();$

 $let \ bell_phi_plus = array![c64::new(norm_const \ , \ 0.0) \ , \ c64::new(0.0 \ , \ 0.0) \ , \ c64::new(0.0 \ , \ 0.0) \ , \ c64::new(0.0 \ , \ 0.0)];$

Output: The density matrix, which is square and Hermitian.

Output type: pub type MatrixC64 = ndarray::Array2<c64>

Output Example: dens matrix for phi_+ =

[[0.4999999999999999999]i, 0+0i, 0+0i, 0.4999999999999999i].

[0+0i, 0+0i, 0+0i, 0+0i],

[0+0i, 0+0i, 0+0i, 0+0i],

The density matrix is a more general way of representing the state of a quantum system. It is represented as $\rho = |\psi\rangle\langle\psi|$, where the wavefunction $|\psi\rangle$ is represented as a column vector.

With this same example, the function performs the operation

$$\rho = |\phi_{+}\rangle \langle \phi_{+}| = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}^{*} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

1.2 Find purity (find_purity)

```
Input: ρ (Density Matrix)
Input Type: pub type MatrixC64 = ndarray::Array2<c64>
Input Example:
array![ [c64::new(0.5, 0.), c64::new(0., 0.)],
[c64::new(0., 0.), c64::new(0.5, 0.)] ]
```

Output: Float

Output Type: f64

Output Example: 0.5

Simply returns the trace of ρ^2 as a f64 type. For an idea on where this purity lies within the range of possible values, print a statement such as println!("The purity lies between {} and 1", 1./(find_dim(rho_sqrd))). The find_dim function finds the dimension of the square matrix. For example, a 4 x 4 matrix has dim = 4.

1.3 Find fidelity (find_fidelity)

```
Input: Two density matrices \rho_1 and \rho_2

Input Type: pub type MatrixC64 = ndarray::Array2<c64>
Input Example: let rho_1 = array![
[c64::new(0.25, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)],
[c64::new(0.0, 0.0), c64::new(0.25, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)],
[c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.25, 0.0), c64::new(0.0, 0.0)],
[c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)],
[c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)]]
[c64::new(0.0, 0.0), c64::new(0.0, 0.0)]]
```

Output: A number between 0 and 1

Output Type: f64

Output Example: 1

This function is a distance measurement of two quantum states ρ_1 and ρ_2 . It is expressed as $F = tr\sqrt{\sqrt{\rho_1}\rho_2\sqrt{\rho_1}}$. This function calls $find_sqr_root_of_matrix$ to calculate $\sqrt{\rho_1}$ and the overall square root of $\sqrt{\rho_1}\rho_2\sqrt{\rho_1}$.

1.4 Find concurrence (find_concurrence)

Input: The density matrix ρ

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example: The state $\cos(\theta) |00\rangle + \sin(\theta) |11\rangle$ for $\theta = 30^{\circ}$ is represented by the vector:

pub const THETA: $f64 = PI^*(30./180.)$;

let psi_part_entangled: VecC64 = array![c64::new(THETA.cos(), 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(THETA.sin(), 0.0)];

Output: A number between 0 and 1

Output Type: f64

Output Example: 0.866 (which is the rounded from $\sqrt{3}/2$)

For two qubits, concurrence $C(\rho) = max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4)$, where $\lambda_1, ... \lambda_4$ are the eigenvalues in decreasing order (ie λ_1 is the highest eigenvalue) of the matrix $R = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$.

In this case, $\tilde{\rho} = (\sigma_y \otimes \sigma_y) \rho^* (\sigma_y \otimes \sigma_y)$. ρ^* is the complex conjugate of ρ , and σ_y is the Pauli-y spin matrix.

This function has been extended from 2 qubits (4 x 4 density matrix) to 3 or more qubits. The function will give wrong answers for odd numbers of qubits.

The extension uses $C(\rho) = max(0, \lambda_1 - \sum \lambda_i)$, where i goes from 2 to the density matrix dimension. The dimension of the density matrix is 2^n , where n is the number of qubits. Also in this case $\tilde{\rho} = (\sigma_y \otimes^n \sigma_y) \rho^*(\sigma_y \otimes^n \sigma_y)$.

The tensor product operation for \otimes^n is called using the $find_tensor_product$ function, and uses an iterator with the fold method to perform the tensor product n times.

1.5 Find trace norm (find_trace_norm)

Input: The density matrix ρ

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example:

For the Bell state $\phi_+ = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$

let norm_const = 1./2_f64.sqrt();

let bell_phi_plus = array![c64::new(norm_const , 0.0) , c64::new(0.0 , 0.0) , c64::new(0.0 , 0.0) , c64::new(norm_const , 0.0)];

Output: A float from 0 to 1

Output Type: f64

Output Example: 1

The trace norm is expressed as $||\rho||_1 = tr\sqrt{\rho^{\dagger}\rho}$. ρ^{\dagger} is the complex conjugate and transpose of the matrix ρ . The function calls $find_sqr_root_of_matrix(\rho^{\dagger}\rho)$. For Hermitian, normalized density matrices, the output is always 1.

1.6 Find negativity (find_negativity)

Input: The density matrix ρ

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example: For a 5 qubit maximally mixed density matrix,

let rho_mixed_diag: $VecC64 = Array::from_elem(32, c64::new(1./32., 0.0));$

let rho_mixed: MatrixC64 = MatrixC64::from_diag(rho_mixed_diag);

Output: A number between 0 and 1

Output Type: f64

Output Example: 0.0

Th negativity can be expressed as $N = \frac{||\rho^{\Gamma_A}||_1-1}{2}$ where ρ^{Γ_A} is the partial transpose of a substate of ρ . $||\rho^{\Gamma_A}||_1$ is the trace norm of that partial transpose. Although the trace norm for density matrices is 1, the trace norm of the partially transposed matrix can vary from 0 to 1. The Peres-Horodecki criterion separates ρ into the tensor product of two states A and B. ρ^{Γ_A} is called with the function $find_partial_transpose(\rho)$.

1.7 Find log negativity (find_log_negativity)

Input: The density matrix ρ

Input Type: pub type MatrixC64 = ndarray::Array2 < c64 >

Input Example: For the Bell State $\phi_{-} = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$:

pub const NORM_CONST: f64 = 1./std::f64::consts::SQRT_2;

let bell_phi_minus_vec: $VecC64 = array![c64::new(NORM_CONST, 0.0) , c64::new(0.0, 0.0) ,$

 $c64::new(0.0, 0.0), c64::new(-NORM_CONST, 0.0)$;

let rho_bell_psi_plus = create_density_matrix(BELL_PSI_PLUS_VEC);

Output: A number between 0 and 1

Output Type: f64

Output Example: 0.0

This function lets $N = find_negativity(\rho)$. Then it takes $log_2(2N+1)$.

1.8 Find Schmidt number (find_schmidt_number)

Input: The joint spectral intensity (JSI) matrix

Input Type: pub type MatrixF64 = ndarray::Array2<f64>

Input Example: A 200 x 200 JSI (located inside the examples folder)

Output: An entanglement measurement of the JSI.

Output Type: f64

Output Example: 6.74 (rounded)

This computation is done in several steps:

1) Take the square root of the elements of the JSI (joint spectral intensity) to find the JSA (joint spectral amplitude). The JSI is a matrix of floats from SPDCalc.

2) Find the singular value decomposition (SVD) of the JSA. A SVD calculation decomposes the into three matrices, USV^T .

3) A normalization constant is found by taking the inverse of the sum of the squares of the singular values of the S matrix (eigenvalues), i.e. $A = 1/\sum \lambda_i^2$.

4) The S matrix is renormalized by multiplying the $\sqrt{A} * S$.

5) From the normalized S matrix, take the sum of the eigenvalues to the fourth power, i.e. $\sum \lambda_{i,norm}^4$. The Schmidt number is $k = 1/\sum \lambda_{i,norm}^4$.

1.9 Create two source Hong-Ou-Mandel graph (find_two_source_hom)

Inputs: A signal vector of frequency modes ω , an idler vector of modes ω , a joint spectral amplitude (JSA) of modes ω , and a vector of time intervals dt in femtoseconds.

Input Types: signal: VecF64, idler: VecF64, jsa: MatrixC64, dt: VecF64

Output: A graph of time intervals (dt) on the x axis and coincidence probabilities on the y axis.

Output Example An example is located in the "two_source_hom_plot.ipynb" under qm/examples.

When calculating the two-source Hong-Ou-Mandel graph, we consider four photons from two identical crystals, i.e. two signal photons and two idler photons. The relevant integral to compute is

$$\int_{\omega_s} \int_{\omega_i} \int_{\omega'_s} \psi(\omega_s, \omega_i, \omega'_s, \omega'_i) - e^{i\phi} \psi(\omega'_s, \omega_i, \omega_s, \omega'_i) \ d\omega'_i \ d\omega'_s \ d\omega_i \ d\omega_s.$$

The wave function ψ is equivalent to the joint spectral amplitude (JSA) for all four photons. Since the photons come from two separate sources, this joint amplitude is separable into two parts, so that

$$\psi(\omega_{s}, \omega_{i}, \omega_{s}', \omega_{i}') = JSA_{1}(\omega_{s}, \omega_{i}) \otimes JSA_{2}(\omega_{s}', \omega_{i}')$$

. Since the two sources are identical, we conclude that $JSA_1 = JSA_2$. So we only need to compute the JSA once and then simply reference different indices for the different signal and idler photons. Using this notation, the integrand becomes

$$JSA(\omega_s, \omega_i) \otimes JSA(\omega_s^{'}, \omega_i^{'}) - e^{i\phi}JSA(\omega_s^{'}, \omega_i) \otimes JSA(\omega_s, \omega_i^{'})$$

We can simply iterate over many sums rather than explicitly calculating this integral. The variable phi depends on time and wavelength difference between two photons of interest. For signal-signal interference, $\phi_{ss} = 2\pi\Delta t(\frac{1}{\lambda_s} - \frac{1}{\lambda_i})$. For idler-idler interference, $\phi_{ii} = 2\pi\Delta t(\frac{1}{\lambda_s'} - \frac{1}{\lambda_i'})$. For signal-idler interference, $\phi_{si} = 2\pi\Delta t(\frac{1}{\lambda_s} - \frac{1}{\lambda_i'})$.

In the code, we let A, B, C, D stand for the different JSA configurations, between ω_s and ω_i , ω_s' and ω_i' , ω_s' and ω_i , and ω_s and ω_i' respectively.

The find_two_source_hom_norm function normalizes the coincidence probabilities.

1.10 Find two source Hong-Ou-Mandel norm (find_two_source_hom_norm)

Inputs: A signal vector of frequency modes ω , an idler vector of modes ω , and a joint spectral amplitude (JSA) of modes ω .

Input Types: signal: VecF64, idler: VecF64, jsa: MatrixC64

Output: A value that normalizes the two_source_hom for each time interval dt.

Output Type: f64

Output Example: 6.41e+61_f64 (rounded)

Normalizes the coincidence probabilities in the two source HOM calculation.

2 Matrix Operations

2.1 Find the symmetric square root of a matrix (find_symmetric_square_root)

```
Input: Any square, Hermitian matrix
```

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example:

```
array![ [c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)], [c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)], [c64::new(0.0, 0.0), c64::new(0.0, 0.0)], [c64::new(0.0, 0.0)], [
```

Output: The square root of the matrix

Output Type: pub type MatrixC64 = ndarray::Array2<c64>

Output Example:

```
array! [ [c64::new(0.0, 0.0), c64::new(0.0, 0.0), c64::new(0.0, 0.0)], [ [c64::new(0.0, 0.0), c64::new(0.5, 0.0), c64::new(0.0, 0.5)], [ [c64::new(0.0, 0.0), c64::new(0.0, -0.5), c64::new(0.5, 0.0)], ];
```

Computes the symmetric square root of a Hermitian matrix. In the example above, the square

root of the matrix is equivalent to the matrix itself.

***Bug in LAPACK involving numerical precision

For some of the entanglement measurements, the square root of the density matrix is required.

Using a LAPACK function such as matrix.ssqrt(UPLO:Lower).unwrap() is the easiest and fastest

route, but LAPACK has a bug and fails to compute. It's suspected that the matrix needs to be

semi-positive definite (eigenvalues need to be ≥ 0) in order for it to work.

So, the function was written by decomposing the Hermitian matrix as $M = SDS^{-1}$, where

S and S^{-1} are complex unitary matrices and D is a real diagonal matrix. S is a matrix of the

eigenvectors of M, and D is has the eigenvalues of M in the diagonal. Since D is diagonal, one can

take the square of the elements in order to find \sqrt{D} . So, $\sqrt{M} = S\sqrt{D}S^{-1}$.

But, one problem is that again, when doing this decomposition, the matrix M needs to be

semi-positive definite. It usually is, but LAPACK will sometimes find that one eigenvalue is a very

small negative number, such as 2.8×10^{-15} . A rescaling function is called in order to fix this issue.

The rescaling function takes matrix M as an input and finds its eigenvalues and eigenvectors,

and sets any negative eigenvalues to 0. Then, matrix M can be decomposed into $M = SDS^{-1}$.

The rescaling function returns (D, S) as a tuple. Then, the square root function returns \sqrt{M}

 $S\sqrt{D}S^{-1}.$

Unfortunately after rescaling the function and calling LAPACK with matrix.ssqrt(UPLO:Lower).unwrap()

still fails in the computation. This is why (D, S) is returned as a tuple rather than a rescaled density

matrix.

2.2Find matrix dimension $(find_-dim)$

Input: Square Matrix

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example:

10

```
 \begin{split} & \text{array!} [ \text{ [c64::new(3., 1.) }, \text{ c64::new(-1., 1.) }], \\ & [ \text{c64::new(2., -1.) }, \text{ c64::new(-2., -1.)] }] \end{split}
```

Output: Integer

Output Type: i32

Output Example: 2

A simple function that calculates the length of a square matrix. For example, if a matrix is 8 x 8, this will return 8 as a type i32 (integer 32 bit).

2.3 Find partial transpose (find_partial_transpose)

Input: Any square matrix

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example: let matrix: MatrixC64 = array!

```
 \begin{array}{l} [{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(2.0\;,\,0.0)\;,\,{\rm c64::new}(3.0\;,\,0.0)\;,\,{\rm c64::new}(4.0\;,\,0.0)\;]\;,\\ [{\rm c64::new}(5.0\;,\,0.0)\;,\,{\rm c64::new}(6.0\;,\,0.0)\;,\,{\rm c64::new}(7.0\;,\,0.0)\;,\,{\rm c64::new}(8.0\;,\,0.0)\;]\;,\\ [{\rm c64::new}(9.0\;,\,0.0)\;,\,{\rm c64::new}(13.0\;,\,0.0)\;,\,{\rm c64::new}(11.0\;,\,0.0)\;,\,{\rm c64::new}(12.0\;,\,0.0)]\;,\\ [{\rm c64::new}(10.0\;,\,0.0)\;,\,{\rm c64::new}(14.0\;,\,0.0)\;,\,{\rm c64::new}(15.0\;,\,0.0)\;,\,{\rm c64::new}(16.0\;,\,0.0)]\;]; \end{array}
```

Output: A square matrix

Output Type: pub type MatrixC64 = ndarray::Array2<c64>

Output Example:

```
 \left[ \text{c64::new}(1.0 \text{ , } 0.0) \text{ , } \text{c64::new}(2.0 \text{ , } 0.0) \text{ , } \text{c64::new}(3.0 \text{ , } 0.0) \text{ , } \text{c64::new}(7.0 \text{ , } 0.0) \right] , \\ \left[ \text{c64::new}(5.0 \text{ , } 0.0) \text{ , } \text{c64::new}(6.0 \text{ , } 0.0) \text{ , } \text{c64::new}(4.0 \text{ , } 0.0) \text{ , } \text{c64::new}(8.0 \text{ , } 0.0) \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] \right] , \\ \left[ \text{c64::new}(9.0 \text{ , } 0.0) \text{ , } \text{c64::new}(10.0 \text{ , } 0.0) \text{ , } \text{c64::new}(11.0 \text{ , } 0.0) \text{ , } \text{c64::new}(12.0 \text{ , } 0.0) \right] \right]
```

```
[c64::new(13.0, 0.0), c64::new(14.0, 0.0), c64::new(15.0, 0.0), c64::new(16.0, 0.0)]];
```

The partial transpose operation splits an even-numbered dimension matrix into four symmetrical blocks. The top right block and bottom left block are transposed, and then the matrix is put back together again.

2.4 Find tensor product (find_tensor_product)

```
Input: One square matrix with dim m \times m and another with dim n \times n
```

Input Type: pub type MatrixC64 = ndarray::Array2<c64>

Input Example: let matrix: MatrixC64 = array!

```
 [ c64::new(1.0 \ , \ 0.0) \ , \ c64::new(1.0 \ , \ 0.0) ] \ , \\ [ c64::new(1.0 \ , \ 0.0) \ , \ c64::new(-1.0 \ , \ 0.0) ] \ , \\ ] ;
```

Output: A square matrix with dim $mn \times mn$

Output Type: pub type MatrixC64 = ndarray::Array2<c64>

Output Example:

```
 \begin{array}{l} [{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(1.0\;,\,0.0)\;]\;,\\ [{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;]\;,\\ [{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;]\;,\\ [{\rm c64::new}(1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;,\,{\rm c64::new}(-1.0\;,\,0.0)\;]\;]; \end{array}
```

Computes the tensor product of any matrix.