

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $60V,100A,R_{DS(on).max}=6.2m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 60V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & 6.2 m\Omega \\ I_D & 100A \end{array}$

Pin Configuration

TO-252

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Continuous drain current (T _C = 25°C) ¹⁾		100	A
Continuous drain current (T _C = 100°C) ¹⁾	I _D	76	A
Pulsed drain current ²⁾	I _{DM}	400	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ³⁾	E _{AS}	259	mJ
Power Dissipation (T _C = 25°C)	P _D	110	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.13	°C/W
Thermal Resistance, Junction-to-Ambient	Reja	65	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM100N06-T2	TO-252	VSM100N06-T2
VSM100N06-T1	TO-251	VSM100N06-T1

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics T _J = 25°C unless otherwise noted						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	60			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0		3.0	V
Drain-source leakage current		V _{DS} =60 V, V _{GS} =0 V, T _J = 25°C			1	μΑ
	I _{DSS}	V _{DS} =60 V, V _{GS} =0 V, T _J = 125°C			5	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	_	V _{GS} =10 V, I _D =20 A		4.5	6.2	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =10 A		6.7	10	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =50A		56		S
Dynamic characteristics						
Input capacitance	C _{iss}			6080		pF
Output capacitance	Coss	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$		393		
Reverse transfer capacitance	C _{rss}	- F = 1MHz		192		
Turn-on delay time	t _{d(on)}			15		- ns
Rise time	t _r	V _{DD} = 30V,V _{GS} =10V, I _D = 10A		13		
Turn-off delay time	t _{d(off)}			50		
Fall time	t _f			36		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.44		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}	V 00 V 1 40 A		26.6		nC
Gate to drain charge	Q _{gd}	V _{DS} =30 V, I _D =40A,		37.9		
Gate charge total	Qg	V _{GS} = 10 V		130		
Drain-Source diode characteristi	cs and Maxi	mum Ratings		•	1	
Continuous Source Current	Is				100	А
Pulsed Source Current ⁴⁾	I _{SM}]			400	Α
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =40A, T _J =25℃		0.95	1.4	V
Reverse Recovery Time	t _{rr}	I _S =40A, di/dt=100A/us,		50		ns
Reverse Recovery Charge	Q _{rr}			80		nC
	1					

Notes:

- 1: The maximum junction current rating is package limited.
- 2: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3: V_{DD} =50V, V_{GS} =10V, L=0.1mH, I_{AS} =72A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 4: Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Maximum Safe Operating Area

Figure 6. Normalized Maximum Transient Thermal Impedance (RthJC)

Figure 7. Normalized Maximum Transient Thermal Impedance (RthJA)

v1.2 Page 4 http://www.vseei.com/

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

