Building Recommenders and Search Engines by Re-using User Feedback

Joint work with Thorsten Joachims and Tobias Schnabel (Cornell University)

Ack: NSF Grants

Bio

Counterfactual Evaluation and Learning

MSR - DLTC

Summary

"Use logs collected from interactive systems to evaluate/train new interaction policies"

"Pay attention to feedback effects, and dis-entangle them" -- David

Now: Simple/pragmatic techniques to tackle biased user feedback

"Randomize cleverly to break confounding/feed back" -- Yisong

Wald's insight: What's missing?

- Where to add armor? Cover bullet-holes? (Survivor bias!)
- Beware: Confounding due to missing info

Overview

- "Use user ratings for collaborative filtering"
 - Project: MNAR (Schnabel et al, ICML 2016)
- "Use user clicks for search ranking"
 - **Project: ULTR** (Joachims et al, WSDM 2017)

Movie Recommendation

Example adapted from (Steck et al, 2010)

Selection Bias in Recommendations

User-induced (e.g. browsing)

System-induced (e.g. advertising)

Question: What if we ignore these biases?

Evaluating recommendations under Selection Bias

Evaluating rating predictions under Selection Bias

Recommendations as Treatments

Fix selection bias → potential outcomes framework

Counterfactual Outcomes Y

5 1 3 1 5 3 Factual Outcomes \tilde{Y}

⇒ Understand assignment mechanism

(Imbens & Ruben, 2015)

Assignment Mechanism for Recommendation

$$P_{u,i} = P(O_{u,i} = 1)$$

Inverse Propensity Scoring (IPS) is unbiased if $P_{u,i} > 0$:

$$\hat{R}_{IPS} = \frac{1}{U \cdot I} \sum_{(u,i)} \frac{\mathbb{1}\{O_{ui} = 1\}}{P_{u,i}} (Y_{u,i} - \hat{Y}_{u,i})^2$$

Propensities P

i roponsidos i								
Horror	Romance	Drama						
p	<i>p</i> /10	<i>p</i> /2						
<i>p</i> /10	р	p/2						

(Horvitz & Thompson, 1952; Rosenbaum & Rubin, 1983; ...)

Debiasing Evaluation

IPS is robust to selection bias

Experimental vs. Observational

Controlled Experiments

- We control assignment mechanism (e.g. ad placement)
- Propensities $P_{u,i} = P(O_{u,i} = 1)$ known [Just log propensities!]
- Requirement: $P_{u,i} > 0$ (prob. assignment)

Observational Study

- Assignment mechanism not under our control (e.g. reviews/ratings)
- Use features Z; $\hat{P}_{u,i} = P(O_{u,i} = 1 | Z)$ [Estimate propensity]
- Requirement: $O_{u,i} \perp Y_{u,i} \mid Z$ (unconfounded)

Propensity Estimation

Supervised Regression Problem

$$\widehat{P}_{u,i} = P(O_{u,i} = 1 | Z)$$

- Off-the-shelf ML, e.g.,
 - Logistic regression
 - Naïve Bayes
 - Bernoulli Matrix Factorization

— <u>..</u>.

Observations O

Horror				Romance				Drama						
1	0	1	0	0	1	0	0	0	0	0	0	1	0	0
0			0	0	0	0	0	0	0	0	0	0	0	0
0		0		0		0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0		0	0
0	1_	0	1	0	0	0	0	1	0	1	0	0	0	1
1	0	0	0	1		0	0		0	0		0	0	
0	0	0	0	0	0	0		0		0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0		0	0
0	0	0	0	0		0	0	0		1	0	0	0	0
1	0	0	0	0	0	1	1	0	0	0	0	0	1	0

IPS is robust to inaccurate propensities

Debiased Collaborative Filtering

$$\hat{Y}^{ERM} = \underset{V,W}{\operatorname{argmin}} \left\{ \sum_{O_{u,i}=1} \frac{1}{P_{u,i}} \left(Y_{u,i} - V_u W_i \right)^2 + \lambda (\|V\|_F^2 + \|W\|_F^2) \right\}$$

15

Collaborative Filtering Results

- Two real-world MNAR datasets
 - YAHOO: Song ratings (15400 users; Marlin & Zemel, 2009)
 - COAT: Shopping ratings (300 users; new Schnabel et al, 2016)
- Report performance on MAR datasets

	YAF	OOF	CO	COAT			
	MAE	MSE	MAE	MSE			
MF-IPS	0.810	0.989	0.860	1.093			
MF-Naive	1.154	1.891	0.920	1.202			
HL MNAR	1.177	2.175	0.884	1.214			
HL MAR	1.179	2.166	0.892	1.220			

http://www.cs.cornell.edu/~schnabts/mnar/

Overview

- "Use user ratings for collaborative filtering"
 - Project: MNAR

(Schnabel et al, ICML 2016)

- "Use user clicks for search ranking"
 - Project: ULTR

(Joachims et al, WSDM 2017)

Learning-to-Rank from Clicks

Evaluating Rankings

Evaluation with Missing Judgments

- Loss: $\Delta(y|r)$
 - − Relevance labels $r_i \in \{0,1\}$
 - This talk: rank of relevant documents

$$\Delta(y|r) = \sum_{i} rank(i|y) \cdot r_i$$

- Assume:
 - Click implies observed and relevant:

$$(c_i = 1) \leftrightarrow (o_i = 1) \land (r_i = 1)$$

- Problem:
 - No click can mean not relevant OR not observed

$$(c_i = 0) \leftrightarrow (o_i = 0) \lor (r_i = 0)$$

→ Understand observation mechanism

Inverse Propensity Score Estimator

- Observation Propensities $Q(o_i = 1|x, \overline{y}, r)$
 - Random variable $o_i \in \{0,1\}$ indicates whether relevance label r_i for is observed
- Inverse Propensity Score (IPS) Estimator:

$$\widehat{\Delta}(y|r,o) = \sum_{i:c_i=1} \frac{rank(i|y)}{Q(o_i = 1|\bar{y},r)}$$

Ranking

• Unbiasedness: $E_o\left[\widehat{\Delta}(y \mid r, o)\right] = \Delta(y \mid r)$

Presented \overline{y}	Q		
А	1.0		
В	0.8		
С	0.5		
D	0.2		
Е	0.2		
F	0.2		
G	0.1		

ERM for Partial-Information LTR

Unbiased Empirical Risk:

$$\widehat{R}_{IPS}(S) = rac{1}{N} \sum_{(x,\overline{y},c) \in S} \sum_{i:c_i=1} rac{rank(i|y)}{Q(o_i=1|\overline{y},r)}$$
 Consistent Estimator of True Error

ERM Learning:

$$\hat{S} = \underset{S}{\operatorname{argmin}} \left[\widehat{R}_{IPS}(S) \right]$$
 Consistent ERM Learning

- Questions:
 - How do we optimize this empirical risk in a practical learning algorithm?
 - How do we define and estimate the propensity model $Q(o_i = 1|\bar{y}, r)$?

Propensity-Weighted SVM Rank

• Data:
$$S = \left(x_j, d_j, D_j, q_j\right)^n$$
 Optimizes convex upper bound on unbiased IPS risk estimate!
$$w^* = \operatorname*{argmin} \frac{1}{2} w \cdot w + \frac{C}{n} \sum_j \frac{1}{q_j} \sum_i \xi^i_j$$

$$\forall \bar{d}^i \in D_1 : w \cdot \left[\phi(x_1, d_1) - \phi(x_1, \bar{d}^i)\right] \geq 1 - \xi^i_1$$

$$\vdots$$

$$\forall \bar{d}^i \in D_n : w \cdot \left[\phi(x_n, d_n) - \phi(x_n, \bar{d}^i)\right] \geq 1 - \xi^i_n$$

Loss Bound:

$$\forall w : rank(d, sort(w \cdot \phi(x, d)) \leq \sum_{i} \xi^{i} + 1$$
[Joachims et al., 2002]

Position-Based Propensity Model

Model:

$$P(c_{i} = 1 | r_{i}, rank(i | \overline{y})) = q_{rank(i | \overline{y})} \cdot [r_{i} = 1]$$

- Assumptions
 - Examination only depends on rank
 - Click reveals relevance if rank is examined

Presented \overline{y}	Q
А	q_1
В	q_2
С	q_3
D	q_4
Е	q_5
F	q_6
G	q_7

Estimating the Propensities

- Experiment:
 - Click rate at rank 1:

$$q_1 \cdot E(c_{S_1} = 1 | o_{S_1} = 1)$$

- Intervention:
 - swap results at rank 1 and rank k
 - Click rate at rank k:

$$q_k \cdot E(c_{S_1} = 1 | o_{S_1} = 1)$$

$$\Rightarrow \frac{q_1}{q_k} = \frac{\text{Click rate at rank 1}}{\text{Click rate at rank k after swap}}$$

Real-World Experiment

- Arxiv Full-Text Search
 - Run intervention experiment to estimate q_r
 - Collect training clicks using production ranker
 - Train naïve / propensity
 SVM-Rank (1000 features)
 - A/B tests via interleaving

	Propensity SVM-Rank				
Interleaving Experiment	wins	loses	ties		
against Prod	87	48	83		
against Naive SVM-Rank	95	60	102		

Overview

- "Use user ratings for collaborative filtering"
 - Project: MNAR

(Schnabel et al, ICML 2016)

- "Use user clicks for search ranking"
 - Project: ULTR

(Joachims et al, WSDM 2017)

Discussion

Resources

Randomized dataset:

http://www.cs.cornell.edu/~adith/Criteo/ [NIPS'16 workshop]

- Tutorial: Off-policy evaluation and optimization
 http://www.cs.cornell.edu/~adith/CfactSIGIR2016 [SIGIR'16]
- Book: Causal Inference for Statistics, Social, and Biomedical Sciences, Imbens & Rubin, 2015.
- Many open questions!

Conclusion

Thanks!

Causality+ML

Simple/pragmatic techniques to tackle biased user feedback

adswamin@microsoft.com