Internet Analytics (COM-308)

Homework Set 4

Exercise 1

In this exercise we study the geometric interpretation of singular value decomposition (SVD) seen in class. Assume the images of three vectors $a = [1, 2, 0]^{\mathsf{T}}, b = [2, -1, 0]^{\mathsf{T}}$ and $c = [0, 0, 1]^{\mathsf{T}}$ under the

linear transformation $X = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ x_{3,1} & x_{3,2} & x_{3,3} \end{bmatrix}$ is $Xa = [3,0,4]^\intercal, Xb = [0,1,0]^\intercal$ and $Xc = [0,0,0]^\intercal$, respectively.

(a) Find the linear transformation X (matrix X) directly by solving the system of linear equations

$$X[a \ b \ c] = [Xa \ Xb \ Xc].$$

(b) The SVD decomposition of matrix X is

$$X = U\Sigma V^{\mathsf{T}}$$
.

where we can interpret the three matrices U, Σ and V^{\dagger} as follows:(i) the two matrices U and V^{\dagger} are changes of basis; and (ii) matrix Σ is scaling each axis (dimension) independently. Determine the transformation X from this interpretation of SVD (without any calculations).

Exercise 2

Let X be an $n \times m$ matrix, where each of the n rows is a datum represented by an m-dimensional vector. Furthermore, assume that X is zero-mean, i.e. each column of X sums up to zero. Consider the singular value decomposition (SVD) of X:

$$X = U\Sigma V^{\mathsf{T}}.$$

- (a) Express the SVD of the matrix X^{\dagger} in terms of the SVD of X.
- (b) We define the $m \times m$ covariance matrix $Cov_{m \times m}[X]$ as

$$\operatorname{Cov}_{m \times m}[X] = \begin{pmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \dots \\ \operatorname{Cov}(X_2, X_1) & \ddots \\ \vdots & \operatorname{Cov}(X_m, X_m) \end{pmatrix}$$

1

where $Cov(X_i, X_j) = \frac{1}{n} \sum_{k=1}^n X_{ki} X_{kj}$. Express $Cov_{m \times m}[X]$ in terms of multiplication of two matrices.

(c) Principal Component analysis (PCA) can be seen as the eigendecomposition of the covariance matrix:

$$\operatorname{Cov}_{m \times m}[X] = Q \Lambda Q^{\mathsf{T}}.$$

How does this interpretation of PCA relate to the SVD of X? Express Q and Λ in terms of U, Σ and V.

(d) With PCA, we project the original data X into a new space Y = XV of dimension d. Compute the covariance matrix of Y.