Data Preparation for Fraud Detection

This notebook is dedicated to preparing the dataset for a fraud detection model. The focus is on cleaning, transforming, and inital exploring the data to ensure it's well-suited for effective model training.

```
In []: # import required libraries
import polars as pl

# adjust display setting polars
pl.Config.set_tbl_cols(-1)
```

Initial Exploration

Out[]: polars.config.Config

We start with an initial exploratory to understand the dataset's structure, identify any immediate issues, and plan for necessary data cleaning steps.

```
In []: # load the historical transactions
    transactions_df = pl.read_csv("../raw-datasets/credit_card_transactions-ibm_v2.csv")

# display it
    transactions_df
```

Out[]: shape: (24_386_900, 15)

User	Card	Year	Month	Day	Time	Amount	Use Chip	Merchant Name	Merchant City	Merchant State	Zip	мсс	Errors?	Is Fraud?
i64	i64	i64	i64	i64	str	str	str	i64	str	str	f64	i64	str	str
0	0	2002	9	1	"06:21"	"\$134.09"	"Swipe Transact	3527213246127876953	"La Verne"	"CA"	91750.0	5300	null	"No"
0	0	2002	9	1	"06:42"	"\$38.48"	"Swipe Transact	-727612092139916043	"Monterey Park"	"CA"	91754.0	5411	null	"No"
0	0	2002	9	2	"06:22"	"\$120.34"	"Swipe Transact	-727612092139916043	"Monterey Park"	"CA"	91754.0	5411	null	"No"
0	0	2002	9	2	"17:45"	"\$128.95"	"Swipe Transact	3414527459579106770	"Monterey Park"	"CA"	91754.0	5651	null	"No"
0	0	2002	9	3	"06:23"	"\$104.71"	"Swipe Transact	5817218446178736267	"La Verne"	"CA"	91750.0	5912	null	"No"
0	0	2002	9	3	"13:53"	"\$86.19"	"Swipe Transact	-7146670748125200898	"Monterey Park"	"CA"	91755.0	5970	null	"No"
0	0	2002	9	4	"05:51"	"\$93.84"	"Swipe Transact	-727612092139916043	"Monterey Park"	"CA"	91754.0	5411	null	"No"
0	0	2002	9	4	"06:09"	"\$123.50"	"Swipe Transact	-727612092139916043	"Monterey Park"	"CA"	91754.0	5411	null	"No"
0	0	2002	9	5	"06:14"	"\$61.72"	"Swipe Transact	-727612092139916043	"Monterey Park"	"CA"	91754.0	5411	null	"No"
0	0	2002	9	5	"09:35"	"\$57.10"	"Swipe Transact	4055257078481058705	"La Verne"	"CA"	91750.0	7538	null	"No"
0	0	2002	9	5	"20:18"	"\$76.07"	"Swipe Transact	-4500542936415012428	"La Verne"	"CA"	91750.0	5814	null	"No"
0	0	2002	9	5	"20:41"	"\$53.91"	"Online Transac	-9092677072201095172	"ONLINE"	null	null	4900	null	"No"
1999	1	2020	2	26	"20:18"	"\$44.54"	"Chip Transacti	2500998799892805156	"Merrimack"	"NH"	3054.0	4121	null	"No"
1999	1	2020	2	27	"07:47"	"\$47.18"	"Online Transac	-5841929396161652653	"ONLINE"	null	null	4121	null	"No"
1999	1	2020	2	27	"09:31"	"\$120.00"	"Chip Transacti	-4282466774399734331	"Berlin"	"NH"	3570.0	4829	null	"No"
1999	1	2020	2	27	"11:36"	"\$12.91"	"Chip Transacti	3414527459579106770	"Nashua"	"NH"	3064.0	5651	null	"No"
1999	1	2020	2	27	"20:18"	"\$15.52"	"Chip Transacti	97032797689821735	"Merrimack"	"NH"	3054.0	5411	null	"No"
1999	1	2020	2	27	"20:29"	"\$56.67"	"Chip Transacti	2500998799892805156	"Merrimack"	"NH"	3054.0	4121	null	"No"
1999	1	2020	2	27	"22:18"	"\$63.43"	"Chip Transacti	-5162038175624867091	"Merrimack"	"NH"	3054.0	5541	null	"No"
1999	1	2020	2	27	"22:23"	"\$-54.00"	"Chip Transacti	-5162038175624867091	"Merrimack"	"NH"	3054.0	5541	null	"No"
1999	1	2020	2	27	"22:24"	"\$54.00"	"Chip Transacti	-5162038175624867091	"Merrimack"	"NH"	3054.0	5541	null	"No"
1999	1	2020	2	28	"07:43"	"\$59.15"	"Chip Transacti	2500998799892805156	"Merrimack"	"NH"	3054.0	4121	null	"No"
1999	1	2020	2	28	"20:10"	"\$43.12"	"Chip Transacti	2500998799892805156	"Merrimack"	"NH"	3054.0	4121	null	"No"
1999	1	2020	2	28	"23:10"	"\$45.13"	"Chip Transacti	4751695835751691036	"Merrimack"	"NH"	3054.0	5814	null	"No"

Overview: With approximately 24.4 million transactions, this dataset offers a comprehensive set of data points. The upcoming steps involve thorough data cleaning and transformation to shape the data for optimal use in machine learning model training.

We'll conduct an initial exploration to get a sense of the dataset's quality, identify any missing values, and understand the overall data distribution.

```
In [ ]: # calculate of missing values in each column
missing_values = transactions_df.select([pl.col(column).is_null().sum().alias(column) for column in transactions_df.columns])
```

```
print("Percentage of Missing Values:")
missing_values / len(transactions_df) * 100
```

Percentage of Missing Values:

Out[]: shape: (1, 15)

User	Card	Year	Month	Day	Time	Amount	Use Chip	Merchant Name	Merchant City	Merchant State	Zip	MCC	Errors?	Is Fraud?
f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.156896	11.801972	0.0	98.407215	0.0

We observed a significant number of missing values in the Errors? column. It seems likely that these null values indicate transactions without any errors, implying successful transactions.

`Is Fraud?` proportion:

shape: (2, 3)

Is Fraud?	count u32	percentage f64
No	24357143	99.87798
Yes	29757	0.12202

Our target column, Is Fraud?, shows a distribution of 99.87% (24,357,143 transactions) as non-fraudulent and only 0.13% (29,757 transactions) as fraudulent. This distribution aligns well with real-world scenarios where fraudulent transactions are relatively rare.

`Use Chip` proportion:

shape: (3, 3)

Use Chip	count	percentage
str 	u32	f64
Swipe Transaction Chip Transaction Online Transaction	15386082 6287598 2713220	63.091586 25.782687 11.125727

The Use Chip column represents the transaction method used by the customer. Our analysis revealed that Swipe Transactions account for 63.09%, Chip Transactions for 25.79%, and Online Transactions for 11.12%.

`Merchant State` proportion: shape: (224, 3)

Merchant State	count u32	percentage f64
null CA TX FL Tonga Botswana Kiribati Paraguay	2720821 2591830 1793298 1458699 2 1	11.156896 10.62796 7.35353 5.981486 0.000008 0.000004 0.000004

In the Merchant State column, we noticed that null values comprise the largest proportion (11.15%), followed by California (10.62%) and Texas (7.3%). With approximately 224 unique values, it's clear that transactions occur not only in the USA but also in other countries, as indicated by entries like Paraguay, Togo, etc.

`Merchant City` proportion:
shape: (13_429, 3)

Merchant City	count	percentage
str	u32	f64
ONLINE Houston Los Angeles Miami	2720821 246036 180496 178653	11.156896 1.008886 0.740135 0.732578
Boyne Falls	1	0.000004
Weyerhaeuser	1	0.000004
Poyen	1	0.000004
Long Bottom	1	0.000004

The Merchant City column also follows a similar pattern, with 'Online' being the most common category at 11.15%. Other frequent locations include U.S. cities such as Houston, Los Angeles, and Miami. The presence of 13,429 unique city names suggests that transactions span globally, not just within the USA.

`Errors?` proportion: shape: (24, 3)

Errors? str	count u32	percentage f64
null Insufficient Balance Bad PIN Technical Glitch	23998469 242783 58918 48157	98.407215 0.995547 0.241597 0.197471
Bad Zipcode,Insufficient Balance Bad Zipcode,Technical Glitch Bad Card Number,Bad Expiration,I Bad Card Number,Bad Expiration,T	 13 7 2 1	 0.000053 0.000029 0.000008 0.000004

Consistent with earlier observations, the Errors? column indicates that 98.40% of transactions have no recorded errors, implying successful transactions. This column also includes other error categories like insufficient balance, bad pin, etc., totaling 24 distinct categories.

```
In [ ]: print('Summary statistics: ')
     transactions_df.describe()
```

Summary statistics:

Out[]: shape: (9, 16)

describe	User	Card	Year	Month	Day	Time	Amount	Use Chip	Merchant Name	Merchant City	Merchant State	Zip	МСС	Errors?	Is Fraud?
str	f64	f64	f64	f64	f64	str	str	str	f64	str	str	f64	f64	str	str
"count"	2.43869e7	2.43869e7	2.43869e7	2.43869e7	2.43869e7	"24386900"	"24386900"	"24386900"	2.43869e7	"24386900"	"21666079"	2.1508765e7	2.43869e7	"388431"	"24386900"
"null_count"	0.0	0.0	0.0	0.0	0.0	"0"	"0"	"0"	0.0	"0"	"2720821"	2.878135e6	0.0	"23998469"	"0"
"mean"	1001.019335	1.351366	2011.95517	6.525064	15.718123	null	null	null	-4.7692e17	null	null	50956.442115	5561.171253	null	null
"std"	569.461157	1.407154	5.105921	3.472355	8.794073	null	null	null	4.7589e18	null	null	29397.065949	879.315433	null	null
"min"	0.0	0.0	1991.0	1.0	1.0	"00:00"	"\$-0.00"	"Chip Transacti	-9.2229e18	"Aaronsburg"	"AA"	501.0	1711.0	"Bad CVV"	"No"
"25%"	510.0	0.0	2008.0	3.0	8.0	null	null	null	-4.5005e18	null	null	28374.0	5300.0	null	null
"50%"	1006.0	1.0	2013.0	7.0	16.0	null	null	null	-7.9468e17	null	null	46742.0	5499.0	null	null
"75%"	1477.0	2.0	2016.0	10.0	23.0	null	null	null	3.1895e18	null	null	77564.0	5812.0	null	null
"max"	1999.0	8.0	2020.0	12.0	31.0	"23:59"	"\$999.97"	"Swipe Transact	9.2233e18	"Zwolle"	"Zimbabwe"	99928.0	9402.0	"Technical Glit	"Yes"

From the summary statistics presented above, it's challenging to discern clear insights due to the raw and unclean state of the data. Post-cleanup, we will conduct another round of summary statistics to better understand the dataset.

Data Cleaning and Features Transformation

```
In [ ]: # clone the dataframe
transactions_prepared = transactions_df.clone()
```

We are set to perform initial data cleaning tasks. These include removing unnecessary characters, typecasting columns for consistency, and creating new features to enrich our dataset.

```
In [ ]: # type casting, remove unnecesarry characters, create new datetime column
        transactions prepared = transactions prepared.with columns([
            pl.col("Amount").str.strip_chars("$").cast(pl.Float64).abs(), # remove dollar sign, cast to float, turn into absolute incase there's minus trx which is not make sense
            pl.col("Merchant Name").cast(pl.Utf8), # cast to string
            pl.col("MCC").cast(pl.Utf8).cast(pl.Categorical), # cast to categorical
            pl.col("Use Chip").cast(pl.Categorical),
            pl.col("Errors?").cast(pl.Categorical),
            # create 'timestamp_transaction' column
            (pl.col("Year").cast(pl.Utf8) + "-" +
             pl.col("Month").cast(pl.Utf8).str.zfill(2) + "-" + # add Leading zero
             pl.col("Day").cast(pl.Utf8).str.zfill(2) + " " +
             pl.col("Time")).str.strptime(pl.Datetime, "%Y-%m-%d %H:%M").alias("timestamp transaction"),
        ]).drop(["Year", "Month", "Day", "Time"]) # drop unnecessary columns
        # extract datetime information
        # fill missing values
        transactions_prepared = transactions_prepared.with_columns([
            pl.col("timestamp_transaction").dt.weekday().alias("weekday"),
            pl.col("timestamp_transaction").dt.hour().alias("hour"),
            pl.col("timestamp_transaction").dt.minute().alias("minute"),
            pl.col("Errors?").fill_null("No Error"), # fill missing values as No Error
            pl.col("Merchant City").fill_null("NA"), # fill null values as NA
            pl.col("Merchant State").fill null("NA"),
            pl.col("Zip").fill_null("NA").str.strip_chars(".0"),
        ])
       sys:1: CategoricalRemappingWarning: Local categoricals have different encodings, expensive re-encoding is done to perform this merge operation. Consider using a StringCache or an Enum type if
      the categories are known in advance
In [ ]: # rename columns
        transactions prepared = transactions prepared.rename({
            "User":"user_id", "Card":"card_index", "Amount":"trx_amount", "Use Chip":"trx_method",
            "Merchant Name": "merch name", "Merchant State": "merch state", "Merchant City": "merch city", "Zip": "zip code",
            "MCC": "merch_category_code", "Errors?": "error_status", "Is Fraud?": "is_fraud"
        })
        transactions prepared.head()
```

Out[]: shape: (5, 15)

user	id card_index	trx_amount	trx_method	merch_name	merch_city	merch_state	zip_code	merch_category_code	error_status	is_fraud	$time stamp_transaction$	weekday	hour	minute
	64 i64	f64	cat	str	str	str	str	cat	cat	str	datetime[µs]	i8	i8	i8
	0 (134.09	"Swipe Transact	"35272132461278	"La Verne"	"CA"	"9175"	"5300"	"No Error"	"No"	2002-09-01 06:21:00	7	6	21
	0 (38.48	"Swipe Transact	"-7276120921399	"Monterey Park"	"CA"	"91754"	"5411"	"No Error"	"No"	2002-09-01 06:42:00	7	6	42
	0 (120.34	"Swipe Transact	"-7276120921399	"Monterey Park"	"CA"	"91754"	"5411"	"No Error"	"No"	2002-09-02 06:22:00	1	6	22
	0 (128.95	"Swipe Transact	"34145274595791	"Monterey Park"	"CA"	"91754"	"5651"	"No Error"	"No"	2002-09-02 17:45:00	1	17	45
	0 (104.71	"Swipe Transact	"58172184461787	"La Verne"	"CA"	"9175"	"5912"	"No Error"	"No"	2002-09-03 06:23:00	2	6	23

Columns are renamed for clarity and consistency, which aids in making the dataset more understandable and easier to work with during further analysis and modeling.

In []: print('Summary statistics: ')
 transactions_prepared.describe()

Summary statistics:

Out[]: shape: (9, 16)

•														
describe	user_id	card_index	trx_amount	trx_method	merch_name	merch_city	merch_state	zip_code	merch_category_code	error_status	is_fraud	timestamp_transaction	weekday	ŀ
str	f64	f64	f64	str	str	str	str	str	str	str	str	str	f64	
"count"	2.43869e7	2.43869e7	2.43869e7	"24386900"	"24386900"	"24386900"	"24386900"	"24386900"	"24386900"	"24386900"	"24386900"	"24386900"	2.43869e7	2.4386
"null_count"	0.0	0.0	0.0	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"0"	0.0	
"mean"	1001.019335	1.351366	54.051265	null	null	null	null	null	null	null	null	null	4.003477	12.4
"std"	569.461157	1.407154	75.564936	null	null	null	null	null	null	null	null	null	1.999703	5.065
"min"	0.0	0.0	0.0	null	"-1000080909058	"Aaronsburg"	"AA"	"10001"	null	null	"No"	"1991-01-02 07:	1.0	
"25%"	510.0	0.0	12.22	null	null	null	null	null	null	null	null	null	2.0	
"50%"	1006.0	1.0	36.17	null	null	null	null	null	null	null	null	null	4.0	
"75%"	1477.0	2.0	72.0	null	null	null	null	null	null	null	null	null	6.0	
"max"	1999.0	8.0	12390.5	null	"99968297410928	"Zwolle"	"Zimbabwe"	"NA"	null	null	"Yes"	"2020-02-28 23:	7.0	
4														

In the prepared dataframe, the summary statistics are now more insightful, particularly for the trx_amount and timestamp_transaction columns. Notably, the transaction amount varies significantly, with the smallest being 0 and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies significantly, with the smallest being t and t are transaction amount varies are transaction amount varies and t are transaction amount varies are transaction amount varies and t are transaction amount varies and t are transaction amount varies and t are transaction amount variety and t are transaction amount variety and t are transaction amount variety and t are

We will export this prepared dataframe as a Parquet file. Opting for Parquet format offers the benefits of space efficiency and faster I/O. The saved file will be utilized for more in-depth Exploratory Data Analysis (EDA) in a separate notebook, followed by the development of our machine learning model.

In []: transactions_prepared.write_parquet("../clean-datasets/transactions_prepared.parquet")