Formulaire de dérivées

Dérivées des fonctions usuelles

Fonction	Dérivée	Domaine de définition	Domaine de dérivabilité
$\mathbf{x^n},\mathbf{n}\in\mathbb{N}^*$	nx^{n-1}	\mathbb{R}	\mathbb{R}
$\frac{1}{x}$	$-\frac{1}{\chi^2}$	ℝ*	\mathbb{R}^*
$\frac{1}{x^n},n\in\mathbb{N}^*$	$-\frac{n}{x^{n+1}}$	\mathbb{R}^*	\mathbb{R}^*
$x^n, n \in \mathbb{Z}^*$	nx^{n-1}	$\mathbb{R} \text{ si } n \geq 1, \mathbb{R}^* \text{ si } n \leq -1$	$\mathbb{R} \text{ si } n \geq 1, \mathbb{R}^* \text{ si } n \leq -1$
$\sqrt{\chi}$	$\frac{1}{2\sqrt{x}}$	$[0,+\infty[$]0,+∞[
e ^x	e ^x	\mathbb{R}	\mathbb{R}
$\ln(x)$	$\frac{1}{x}$]0, +∞[]0,+∞[
$\sin(x)$	$\cos(x)$	\mathbb{R}	\mathbb{R}
$\cos(x)$	$-\sin(x)$	\mathbb{R}	\mathbb{R}
$\tan(x)$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\}$	$\mathbb{R}\setminus \{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\}$

Dérivées et opérations

- Si f et g sont deux fonctions dérivables sur I, f + g est dérivable sur I et (f + g)' = f' + g'.
- Si f est dérivable sur I et si λ est un réel, λf est dérivable sur I et $(\lambda f)' = \lambda f'$.
- ullet Si f et g sont deux fonctions dérivables sur I, f \times g est dérivable sur I et $(f \times g)' = f'g + fg'$.
- Si f et g sont deux fonctions dérivables sur I et si g ne s'annule pas sur I, $\frac{f}{g}$ est dérivable sur I et $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$. Si f est dérivable sur I, si g est dérivable sur J et si pour tout x de I, $f(x) \in J$, gof est dérivable sur I et $(g \circ f)' = f' \times g' \circ f$.
- Cette dernière formule fournit en particulier le tableau suivant :

Fonction	Dérivée	Domaine de dérivabilité	
$f^{\mathfrak{n}},\mathfrak{n}\in\mathbb{N}^{*}$	nf′f ^{n−1}	en tout réel où f est dérivable	
1/f	$-\frac{f'}{f^2}$	en tout réel où f est dérivable et non nulle	
$\frac{1}{f^n},n\in\mathbb{N}^*$	$-\frac{nf'}{f^{n+1}}$	en tout réel où f est dérivable et non nulle	
$f^{\mathfrak{n}},\mathfrak{n}\in\mathbb{Z}^{*}$	nf'f ⁿ⁻¹		
\sqrt{f}	$\frac{f'}{2\sqrt{f}}$	en tout réel où f est dérivable et strictement positive	
e ^f	f′e ^f	en tout réel où f est dérivable	
$\ln(f)$	$\frac{f'}{f}$	en tout réel où f est dérivable et strictement positive	
$\sin(f)$	f'cos(f)	en tout réel où f est dérivable	
$\cos(f)$	$-f'\sin(f)$	en tout réel où f est dérivable	