PROBABILITY

HARI VENKATESWARLU - FWC22058

13.1.11 1 A fair die is rolled. Consider events E=1,3,5 F=2,3 and G=2,3,4,5. Find

- (a) $Pr(E \mid F)$ and $Pr(F \mid E)$
- **(b)** $Pr(E \mid G)$ and $Pr(G \mid E)$
- (c) $Pr(E \cup F \mid G)$ and $Pr(E \cap F \mid G)$

Solution:

Event	Probability
$\Pr\left(E\right)$	$\frac{1}{2}$
$\Pr\left(F\right)$	$\frac{1}{3}$
$\Pr\left(G\right)$	$\frac{2}{3}$
$\Pr\left(EF\right)$	$\frac{1}{6}$
$\Pr\left(EG\right)$	$\frac{1}{3}$
$\Pr\left(FG\right)$	$\frac{1}{3}$
$\Pr\left(EFG\right)$	$\frac{1}{6}$

Table 13.1.3.2: Probability of Events.

(a) $Pr(E \mid F)$ and $Pr(F \mid E)$

$$\implies \Pr(E \mid F) = \frac{\Pr(EF)}{\Pr(F)} \tag{13.1.1.1}$$

$$=\frac{\frac{1}{6}}{\frac{1}{2}}\tag{13.1.1.2}$$

$$=\frac{1}{2} \tag{13.1.1.3}$$

$$\Rightarrow \Pr(E \mid F) = \frac{\Pr(EF)}{\Pr(F)}$$

$$= \frac{\frac{1}{6}}{\frac{1}{3}}$$

$$= \frac{1}{2}$$

$$\Rightarrow \Pr(F \mid E) = \frac{\Pr(FE)}{\Pr(E)}$$

$$= \frac{\frac{1}{6}}{\frac{1}{2}}$$

$$= \frac{1}{3}$$
(13.1.1.1)
$$(13.1.1.2)$$

$$(13.1.1.3)$$

$$(13.1.1.4)$$

$$= \frac{\frac{1}{6}}{\frac{1}{2}}$$

$$(13.1.1.5)$$

$$= \frac{1}{3}$$
(13.1.1.6)

$$=\frac{\frac{1}{6}}{\frac{1}{2}}\tag{13.1.1.5}$$

$$=\frac{1}{3} \tag{13.1.1.6}$$

¹Read question numbers as (CHAPTER NUMBER).(EXERCISE NUMBER).(QUESTION NUMBER)

(b) $Pr(E \mid G)$ and $Pr(G \mid E)$

$$\implies \Pr(E \mid G) = \frac{\Pr(EG)}{\Pr(G)}$$
 (13.1.2.7)

$$=\frac{\frac{1}{3}}{\frac{2}{2}}\tag{13.1.2.8}$$

$$=\frac{1}{2} \tag{13.1.2.9}$$

$$\Rightarrow \Pr(E \mid G) = \frac{\Pr(EG)}{\Pr(G)}$$

$$= \frac{\frac{1}{3}}{\frac{2}{3}}$$

$$= \frac{1}{2}$$

$$\Rightarrow \Pr(G \mid E) = \frac{\Pr(GE)}{\Pr(G)}$$
(13.1.2.7)
(13.1.2.8)
(13.1.2.9)

$$=\frac{\frac{1}{3}}{\frac{1}{2}}\tag{13.1.2.11}$$

$$= \frac{\frac{1}{3}}{\frac{1}{2}}$$
 (13.1.2.11)
$$= \frac{2}{3}$$
 (13.1.2.12)

(c) $Pr(E \cup F \mid G)$ and $Pr(E \cap F \mid G)$

$$\Rightarrow \Pr(E+F \mid G) = \frac{\Pr((E+F)G)}{\Pr(G)}$$
(13.1.3.13)

$$= \frac{\Pr\left(EG + FG\right)}{\Pr\left(G\right)} \tag{13.1.3.14}$$

$$= \frac{\Pr(EG) + \Pr(FG) - \Pr(EFG)}{\Pr(G)}$$
(13.1.3.15)

$$=\frac{3}{4} \tag{13.1.3.16}$$

$$= \frac{3}{4}$$

$$\Rightarrow \Pr(EF \mid G) = \frac{\Pr(EFG)}{\Pr(G)}$$

$$= \frac{1}{4}$$
(13.1.3.16)
(13.1.3.17)

$$=\frac{1}{4} \tag{13.1.3.18}$$