高耐压低压差微功耗 LDO

MD71XXH 系列

CMOS 电压稳压电路

30mA

■ 特性:

- 输出电压精度高。
- 输入输出压差低。
- 超低功耗电流。
- 低输出电压温漂
- 输入耐压。
- 输出短路保护

■ 用途:

- 使用电池供电设备的稳压电源
- 通信设备的稳压电源
- 家电玩具的稳压电源
- 移动电话用的稳压电源
- 便携式医用仪器稳压电源

MD71XXH 系列是使用 CMOS 技术开发的低压差,低功耗电流高精度降压稳压电路。由于内置有低通态电阻晶体管,因而输入输出压差低。最高工作电压可达 32V,适合需要较高耐压的应用电路。

精度±3% 典型值 40mV Iout=1mA 典型值 1.2uA 典型值 50 PPm/℃ 32V 保持输出稳压,有过压保护

短路电流 30 mA

■ 产品选型

型号	输出电压(注)	精度	打印 MARK TO-92	打印 MARK SOT-89-3L	打印 MARK SOT-23-3L
MD7130H	3.0V	±3%	№ 7130H	№ 7130H	№ 130H
MD7133H	3.3V	±3%	№ 7133H	№ 7133H	№ 133H
MD7136H	3.6V	±3%	№ 7136H	№ 7136H	№ 136H
MD7141H	4.1V	±3%	№ 7141H	№ 7141H	5-40H
MD7144H	4.4V	±3%	№ 7144H	№ 7144H	№ 144H
MD7150H	5.0V	±3%	№ 7150H	№ 7150H	№ 150H

注: 在希望使用上述输出电压档以外的产品,客户可要求定制,输出电压范围 3.0V~5.2V,每 0.1V 进行细分。

■ 引脚排列

引脚编号	引脚名称	功能特性
1	GND	接地端
2	VDD	电源输入端
3	VOUT	输出端

引脚编号	引脚名称	功能特性
1	GND	接地端
2	VDD	电源输入端
3	VOUT	输出端

引脚编号	引脚名称	功能特性
1	GND	接地端
2	VDD	电源输入端
3	VOUT	输出端

引脚编号	引脚名称	功能特性
1	VDD	接地端
2	GND	电源输入端
3	NC	输出端
4	NC	悬空端
5	VOUT	悬空端

■ 绝对最大额定值:

(除特殊注明以外: Ta=25℃)

项目	记号	绝对最大额定值	单位
输入电压	$ m V_{IN}$	32	V
输出电压	$V_{ m OUT}$	$V_{\rm ss}$ -0.3 \sim $V_{\rm IN}$ +0.3 V	V
容许功耗	P_{D}	SOT_89 500 TO_92 300 SOT_23-3/5 250	mW
工作周围温度范围	Topr	-40~+85	$^{\circ}$
保存周围温度范围	T_{stg}	-40~+125	

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。

万一超过此额定值,有可能造成产品劣化等物理性损伤。

■ 电气属性:

MD71XXH 系列(MD7130H, 输出电压+3.0V) (除特殊注明以外: Ta=25℃)

项目	记号	条件	最小 值	典型 值	最大 值	单位	测定 电路
输出电压	Vout	VIN=5V, IOUT=10mA	2.91	3.0	3.09	V	1
输出电流*1	Iout	VIN= 5V	25	30		mA	1
输入输出压差*2	Vdrop	Iout=1mA		40	60	mV	
输入稳定度	$\triangle \underline{Vout}$ $\triangle Vin \cdot Vout$	4V≤VIN≤32V IOUT=1mA		0.05	0.2	%/V	
负载稳定度	△Vout2	V _{IN} =5V 1.0mA≤I _{OUT} ≤30mA		60	100	mV	1
输出电压温度系数	<u> </u>	Vin=5V, Iout=10mA -40°C≤Ta≤85°C		±50	±100	ppm/ ℃	
静态电流*3	Iss	VIN=32V 无负载		1.2	5	uA	2
输入电压	Vmax			32		V	1
输出短路电流*4	Ishort	Vout=0V		30		mA	3

MD71XXH 系列(MD7133H,输出电压+3.3V) (除特殊注明以外: Ta=25℃)

项目	记号	条件	最小 值	典型 值	最大 值	单位	测定 电路
输出电压	Vout	VIN= 5.3V, IOUT=10mA	3.201	3.3	3.399	V	1
输出电流*1	Iout	VIN= 5.3V	25	30		mA	1
输入输出压差*2	Vdrop	IOUT=1mA		40	60	mV	
输入稳定度	$\triangle \underline{Vout}$ $\triangle Vin \cdot Vout$	4.3V≤VIN≤32V IOUT=1mA		0.05	0.2	%/V	
负载稳定度	△Vout2	VIN=5.3V 1.0mA≤Iout≤30mA		60	100	mV	1
输出电压温度系数	<u> </u>	VIN=5.3V, IOUT=10mA -40°C≤Ta≤85°C		±50	±100	ppm/ ℃	
静态电流*3	Iss	VIN=32V 无负载		1.2	5	uA	2
输入电压	Vmax			32		V	1
输出短路电流*4	Ishort	Vout=0V		30		mA	3

MD71XXH 系列(MD7136H,输出电压+3.6V) (除特殊注明以外: Ta=25℃)

项目	记号	条件	最小 值	典型 值	最大 值	单位	测定 电路
输出电压	Vout	VIN= 5.6V, IOUT=10mA	3.492	3.6	3.708	V	1
输出电流*1	Iout	VIN= 5.6V	25	30		mA	1
输入输出压差*2	Vdrop	Iout=1mA		40	60	mV	
输入稳定度	$\triangle \underline{V}$ OUT $\triangle V$ IN • V OUT	4.6V≪VIN≪32V IOUT=1mA		0.05	0.2	%/V	
负载稳定度	△Vout2	VIN=5.6V 1.0mA≤Iout≤30mA		60	100	mV	1
输出电压温度系数	△ <u>Vout</u> △Ta•Vout	VIN=5.6V, IOUT=10mA -40°C≤Ta≤85°C		±50	±100	ppm/ ℃	
静态电流*3	Iss	VIN=32V 无负载		1.2	5	uA	2
输入电压	Vmax			32		V	1
输出短路电流*4	Ishort	Vout=0V		30		mA	3

MD71XXH 系列(MD7141H,输出电压+4.1V) (除特殊注明以外: Ta=25℃)

项目	记号	条件	最小 值	典型 值	最大 值	单位	测定 电路
输出电压	Vout	VIN=6.1V, IOUT=10mA	3.997	4.1	4.223	V	1
输出电流*1	Iout	VIN= 6.1V	25	30		mA	1
输入输出压差*2	Vdrop	IOUT=1mA		40	60	mV	
输入稳定度	$\triangle \underline{Vout}$ $\triangle Vin \cdot Vout$	5.1V≪VIN≪32V IOUT=1mA		0.05	0.2	%/V	
负载稳定度	△Vout2	VIN=6.1V 1.0mA≤Iout≤30mA		60	100	mV	1
输出电压温度系数	△ <u>Vout</u> △Ta•Vout	VIN=6.1V, IOUT=10mA -40°C≤Ta≤85°C		±50	±100	ppm/ ℃	
静态电流*3	Iss	VIN=32V 无负载		1.2	5	uA	2
输入电压	Vmax			32		V	1
输出短路电流*4	Ishort	Vout=0V		30		mA	3

MD71XXH 系列(MD7144H,输出电压+4.4V)

(除特殊注明以外: Ta=25℃)

项目	记号	条件	最小 值	典型 值	最大 值	单位	测定 电路
输出电压	Vout	VIN=6.4V, IOUT=10mA	4.268	4.4	4.532	V	1
输出电流*1	Iout	VIN= 6.4V	25	30		mA	1
输入输出压差*2	Vdrop	IOUT=1mA		40	60	mV	1
输入稳定度	$\triangle \underline{Vout}$ $\triangle Vin \cdot Vout$	5.4V≪VIN≪32V IOUT=1mA		0.05	0.2	%/V	
负载稳定度	△Vout2	VIN=6.4V 1.0mA≤Iout≤30mA		60	100	mV	
输出电压温度系数	<u> </u>	VIN=6.4V, IOUT=10mA -40°C≤Ta≤85°C		±50	±100	ppm/ ℃	
静态电流*3	Iss	VIN=32V 无负载		1.2	5	uA	2
输入电压	Vmax	-		32		V	1
输出短路电流*4	Ishort	Vout=0V		30		mA	3

MD71XXH 系列(MD7150H,输出电压+5.0V)

(除特殊注明以外: Ta=25℃)

项目	记号	条件	最小 值	典型 值	最大 值	单位	测定 电路
输出电压	Vout	VIN=7V, IOUT=10mA	4.85	5.0	5.15	V	1
输出电流*1	Iout	VIN= 7V	25	30		mA	1
输入输出压差*2	Vdrop	IOUT=1mA		40	60	mV	1
输入稳定度	$\triangle \underline{V}$ OUT $\triangle V$ IN • V OUT	6V≤VIN≤32V IOUT=1mA		0.05	0.2	%/V	
负载稳定度	△Vout2	V _{IN} =7V 1.0mA≤I _{OUT} ≤30mA		60	100	mV	
输出电压温度系数	<u> </u>	Vin=7V, Iout=10mA -40°C≤Ta≤85°C		±50	±100	ppm/ ℃	
静态电流*3	Iss	VIN=32V 无负载		1.2	5	uA	2
输入电压	Vmax			32		V	1
输出短路电流*4	Ishort	Vout=0V		30		mA	3

- 1 Iour:缓慢增加输出电流,当输出电压约等于 VOUT 的 98%时的输出电流值
- 2 $V_{drop}=V_{IN1}$ (V_{OUT} (E) $\times 0.98V$)

VOUT (E): VIN=VOUT+2V, IOUT=1 mA 时的输出电压值

 $\mathbf{V}_{\mathrm{IN1}}$: 缓慢下降输出电压, 当输出电压降为 $\mathbf{V}_{\mathrm{OUT}}$ (E) 的 98%时的输入电压

Vmax: 缓慢上升输入电压, 当输出电压超出(Vout (E) *0.98~Vout (E) *1.02)的输入电压

- 3 Iss:VIN=30V 无负载时,图 2 中电流表的电流值
- 4 Ishort: 例如 MD7150H, 当 VDD=6V 时, 图 3 中电流表的电流值

■ 测试电路:

1.

2.

3.

■ 应用电路:

 C_L (一般大于2.2uF)为输出稳定用电容器

注意 上述连接图以及参数并不作为保证电路工作的依据。实际的应用电路请在进行充分的实测基础上设定参数。

■ 建议使用条件:

输入电容器(CIN): 1.0 µF以上

输出电容器(CL): 2.2 µF以上(钽电容器)或10.0 µF以上(铝电解电容器).

注意 一般而言,线性稳压电源因选择外接零件的不同有可能引起振荡。上述电容器Z使用前请确认 在应用电路上不发生振荡。

■ 用语说明:

1. 低压差型电压稳压器

采用内置低通杰电阳晶体管的低压差的电压稳压器。

2. 输出电压 (Vour)

输入电压,输出电流,温度在一定的条件下,可保证输出电压精度为±3.0%。 注意 当这些条件发生变化时,输出电压的值也随之发生变化,有可能导致输出 电压的精度超出上述范围。详情请参阅电气特性,及各特性数据。

3. 输入稳定度{△Vouti/△Vin*Vout}

表示输出电压对输入电压的依存性。即,当输出电流一定时,输出电压随输入电压的变化而产生的变化量。

4. 负载稳定度 (Δ VouT2)

表示输出电压对输出电流的依存性。即,当输入电压一定时,输出电压随输出电流的变化而产生的变化量。

5. 输入输出电压差(Vdrop)

表示当缓慢降低输入电压 VIN,当输出电压降到为 VIN=VOUT+2.0V 时的输出电压值 VOUT (E) 的 98%时的输入电压 VIN1 与输出电压的差。

 $V_{drop}=V_{IN1}-(V_{OUT}(E) \times 0.98)$

■ 工作说明:

1. 基本原理:

图 11 所示为 MD71XXH 系列的框图。误差放大器根据反馈电阻 Rs 及 Rf 所构成的分压电阻的输入电压 Vfb 同基准电压(Vref)相比较。通过此误差放大器向输出晶体管提供必要的门极电压,而使输出电压不受输入电压或温度变化的影响而保持一定。

2. 输出晶体管

MD71XXH系列的输出晶体管,采用了低通态电阻的P沟道MOSFET晶体管。在晶体管的构造上,因在VIN-VOUT端子间存在有寄生二极管,当VOUT的电位高于VIN时,有可能因逆流电流而导致IC被毁坏。因此,请注意VOUT不要超过VIN+0.3V以上。

3. 短路保护电路

MD71XXH系列为了在VOUT-GND 端子之间的短路时保护输出晶体管,可以选择短路保护即使在VOUT-GND 端子之间为短路的情况下,也能抑制输出电流大约30mA。但是,短路保护电路并

没有兼有加热保护功能,在包括了短路条件的使用条件下,请充分地注意输入电压、负载电流的条件,保证IC 的功耗不超过封装的容许功耗。即使在没有短路的情况下,若输出较大的电流,并且输入输出的电压差较大时,为了保护输出晶体管短路保护电路开始工作,电流被限制在所定值内。

4. 输出电容器 (CL) 的选定

MD71XXH系列,为了使输出负载有变化的情况下也能稳定工作,在IC内部使用了相位补偿电路和输出电容器的ESR (Equivalent Series Resistance:等效串联电阻)来进行相位补偿。因此,在VOUT-GND之间一定请使用2.2uF以上的电容器 (CL)。为了使MD71XXH系列能稳定工作,必须使用带有适当范围ESR的电容器。跟适当范围(0.5~5 Ω 左右)相比ESR或大或小,都可能使输出不稳定并引起振荡。因此,推荐使用钽电解电容器。使用小ESR的陶瓷电容器或OS电容器的情况下,有必要增加代替ESR的电阻与输出电容器串联。要增加的电阻值为0.5~5 Ω 左右,因使用条件而不同故请在进行充分的实测验证后再决定。通常,建议使用1.0 Ω 左右的电阻。铝电解电容器,因在低温时ESR可能增大并引起振荡。特请予以注意。在使用时,请对包括温度特性等予以充分的实测验证。

■ 注意事项:

- 1. VIN端子、VOUT端子以及GND的配线,为降低阻抗,充分注意接线方式。另外,请尽可能将输出电容器接在VOUT.GND端子的附近。
- 2.线性稳压电源通常在低负载电流(1.0 mA以下)状态下使用时,输出电压有时会上升,请加以注意。
- 3.本IC内部使用了相位补偿电路和输出电容器的ESR来进行相位补偿。因此在VOUT-GND端子之间一定要使用2.2 μ F以上的电容器。建议使用钽电容器。另外,为了使MD71XXH系列能稳定工作,必须使用带有适当范围(0.5~5 Ω)的ESR的电容器。跟这个适当范围相比ESR或大或小,都可能使输出不稳定,引起振荡的可能。因此,在实际的使用条件下进行充分的实测验证后再做出决定。
- 4.在电源的阻抗偏高的情况下,当IC的输入端未接电容或所接电容值很小时,会发生振荡,请加以注意。
- 5.请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 6.本IC虽内置防静电保护电路,但请不要对IC印加超过保护电路性能的过大静电。

■ 应用电路拓展:

1.基本电路

2.高输出电流正电压稳压电路

3.短路保护电路

3.输出电压扩展1

VOUT=Vxx (1+R2/R1)+IssXR2

4.输出电压扩展2

VOUT=Vxx+VD1

5.恒电流源电路

IOUT=Vxx/RA+Iss

6.双电源输出

■ 封装尺寸:

封装尺寸

封装尺寸

TO-92 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	3.300	3.700	0.130	0.146
A1	1,100	1.400	0.043	0.055
b	0.380	0.550	0.015	0.022
С	0.360	0.510	0.014	0.020
D	4.400	4.700	0.173	0.185
D1	3.430		0.135	1012.000
E	4.300	4.700	0.169	0.185
е	1.270 TYP		0.050 TYP	
e1	2.440	2.640	0.096	0.104
L	14.100	14.500	0.555	0.571
Ф		1.600	133460	0.063
h	0.000	0.380	0.000	0.015

封装尺寸

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

封装尺寸

Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

■ 焊接条件:

推荐采用回流方式焊接(即回流焊)

温度分布曲线如下图:

注意: 上述条件温度为印刷电路板的零部件贴装面上的温度 根据电路板的材质、大小、厚度等,电路板温度和开 关表面温度会有很大的不同,所以请注意开关表面温 度不要超过250℃±5℃以上

版本如有更新恕不另行通知 版本:180724

上海明达微电子有限公司