Linear transformations

Nachiketa Mishra IIITDM Kancheepuram, Chennai

Linear Transformation

Let V and W be vector spaces over the field F.

Linear Transformation

Let V and W be vector spaces over the field F. A linear transformation from V into W is a function $T:V\longrightarrow W$ such that

$$T(c\alpha + \beta) = cT(\alpha) + T(\beta)$$
 for all $\alpha, \beta \in V, c \in F$

(1) Let V be a vector space over a field F.

$$I(c\alpha + \beta) = c\alpha + \beta$$

$$I(c\alpha + \beta) = c\alpha + \beta = cI(\alpha) + I(\beta)$$
 for all $\alpha, \beta \in V, c \in F$

$$I(c\alpha + \beta) = c\alpha + \beta = cI(\alpha) + I(\beta)$$
 for all $\alpha, \beta \in V, c \in F$
 $\Longrightarrow I$ is a L.T.

(1) Let V be a vector space over a field F. We define a function $I:V\longrightarrow V$ as I(v)=v for all $v\in V$.

$$I(c\alpha + \beta) = c\alpha + \beta = cI(\alpha) + I(\beta)$$
 for all $\alpha, \beta \in V, c \in F$
 $\implies I$ is a L.T.

(2) Let $V = \left\{ f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n : n \in \mathbb{N}, c_i \in F \right\}.$ We define a function $D: V \longrightarrow V$ as $(Df)(x) = c_1 + 2c_2 x + \ldots + nc_n x^{n-1}. \text{ Prove that } D \text{ is a L.T.}$

(3) Let $A \in F^{m \times n}$. Define a function $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ as T(X) = AX.

(3) Let $A \in F^{m \times n}$. Define a function $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ as T(X) = AX.

$$T(cX+Y)=A(cX+Y)$$

(3) Let $A \in F^{m \times n}$. Define a function $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ as T(X) = AX.

$$T(cX + Y) = A(cX + Y) = cAX + AY = cT(X) + T(Y)$$

(3) Let $A \in F^{m \times n}$. Define a function $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ as T(X) = AX.

$$T(cX + Y) = A(cX + Y) = cAX + AY = cT(X) + T(Y)$$

 $\Longrightarrow T$ is a L.T.

Prove that T(0) = 0

$$T(0) = T(0+0)$$

Prove that T(0) = 0

$$T(0) = T(0+0) = T(0) + T(0)$$
 (Tis a L.T.)

Prove that T(0) = 0

$$T(0) = T(0+0) = T(0) + T(0)$$
 (*T* is a L.T.)
 $\Longrightarrow T(0) = 0$

$$T(c\alpha) = T(c\alpha + 0)$$

$$T(c\alpha) = T(c\alpha + 0) = cT(\alpha) + T(0) = cT(\alpha) + 0 = cT(\alpha)$$

$$T(c\alpha) = T(c\alpha + 0) = cT(\alpha) + T(0) = cT(\alpha) + 0 = cT(\alpha)$$

Note: Since T is a L.T.,

$$T(c_1\alpha_1+c_2\alpha_2)=c_1T(\alpha_1)+T(c_2\alpha_2)$$

$$T(c\alpha) = T(c\alpha + 0) = cT(\alpha) + T(0) = cT(\alpha) + 0 = cT(\alpha)$$

Note: Since *T* is a L.T.,

$$T(c_1\alpha_1 + c_2\alpha_2) = c_1T(\alpha_1) + T(c_2\alpha_2) = c_1T(\alpha_1) + c_2T(\alpha_2)$$

$$T(c\alpha) = T(c\alpha + 0) = cT(\alpha) + T(0) = cT(\alpha) + 0 = cT(\alpha)$$

Note: Since T is a L.T.,

$$T(c_1\alpha_1 + c_2\alpha_2) = c_1T(\alpha_1) + T(c_2\alpha_2) = c_1T(\alpha_1) + c_2T(\alpha_2)$$

Prove that if T is a L.T., then

$$T(c_1\alpha_1+c_2\alpha_2+\ldots+c_n\alpha_n)=c_1T(\alpha_1)+c_2T(\alpha_2)+\ldots+c_nT(\alpha_n)$$

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

 $T(0, 0) = (1, 0) \Longrightarrow T(0) \neq 0$ (Not a L.T.)

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

 $T(0, 0) = (1, 0) \Longrightarrow T(0) \neq 0$ (Not a L.T.)

(2)
$$T(x_1, x_2) = (x_2, x_1)$$

Verify which of the following functions $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ are linear transformations?

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

 $T(0, 0) = (1, 0) \Longrightarrow T(0) \neq 0$ (Not a L.T.)

(2)
$$T(x_1, x_2) = (x_2, x_1)$$

 $T(x_1, x_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

6

Verify which of the following functions $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ are linear transformations?

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

 $T(0, 0) = (1, 0) \Longrightarrow T(0) \neq 0$ (Not a L.T.)

(2)
$$T(x_1, x_2) = (x_2, x_1)$$

 $T(x_1, x_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies T(X) = AX \text{ (lts a L.T.)}$

6

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

 $T(0, 0) = (1, 0) \Longrightarrow T(0) \neq 0$ (Not a L.T.)

(2)
$$T(x_1, x_2) = (x_2, x_1)$$

 $T(x_1, x_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies T(X) = AX \text{ (Its a L.T.)}$

(3)
$$T(x_1, x_2) = (x_1^2, x_2)$$

Verify which of the following functions $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ are linear transformations?

(1)
$$T(x_1, x_2) = (1 + x_1, x_2)$$

 $T(0, 0) = (1, 0) \Longrightarrow T(0) \neq 0$ (Not a L.T.)

(2)
$$T(x_1, x_2) = (x_2, x_1)$$

 $T(x_1, x_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies T(X) = AX \text{ (lts a L.T.)}$

(3)
$$T(x_1, x_2) = (x_1^2, x_2)$$

 $\alpha = \beta = (1, 0), \alpha + \beta = (2, 0), T(\alpha + \beta) \neq T(\alpha) + T(\beta)$
Not a L.T.

6

Ordered basis, $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$

 β_j 's need not be distinct

T is a unique L.T. with $T(\alpha_j) = \beta_j$

 β_j 's need not be distinct

Ordered basis, $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$

T is a unique L.T. with $T(\alpha_j) = \beta_j$

 β_j 's need not be distinct

Theorem 1

Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis for V.

Theorem 1

Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let $\beta_1, \beta_2, \ldots, \beta_n$ be any vectors in W.

Theorem 1

Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let $\beta_1, \beta_2, \ldots, \beta_n$ be any vectors in W. Then there is precisely one linear transformation $T: V \longrightarrow W$ such that $T(\alpha_j) = \beta_j$ for $j = 1, 2, \ldots, n$.

Theorem 1

Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let $\beta_1, \beta_2, \ldots, \beta_n$ be any vectors in W. Then there is precisely one linear transformation $T: V \longrightarrow W$ such that $T(\alpha_j) = \beta_j$ for $j = 1, 2, \ldots, n$.

Proof: Since $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is an ordered basis for V, for a given vector $\alpha \in V$, there is a unique n-tuple (x_1, x_2, \dots, x_n) such that

$$\alpha = x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n$$

We define a function $T:V\longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

We define a function $T:V\longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

Claim 1:
$$T(\alpha_j) = \beta_j$$

We define a function $T:V\longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

Claim 1:
$$T(\alpha_j) = \beta_j$$

$$T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \ldots + 1.\alpha_j + \ldots + 0\alpha_n)$$

We define a function $T: V \longrightarrow W$ as $T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$ Claim $1: T(\alpha_j) = \beta_j$ $T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \ldots + 1.\alpha_j + \ldots + 0\alpha_n)$ $= 0\beta_1 + 0\beta_2 + \ldots + 1.\beta_j + \ldots + 0\beta_n$

We define a function $T: V \longrightarrow W$ as $T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$ Claim $1: T(\alpha_j) = \beta_j$ $T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \ldots + 1.\alpha_j + \ldots + 0\alpha_n)$ $= 0\beta_1 + 0\beta_2 + \ldots + 1.\beta_j + \ldots + 0\beta_n$ $= \beta_j$

We define a function $T: V \longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

Claim 1: $T(\alpha_j) = \beta_j$

$$T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \dots + 1 \cdot \alpha_j + \dots + 0\alpha_n)$$

= $0\beta_1 + 0\beta_2 + \dots + 1 \cdot \beta_j + \dots + 0\beta_n$
= β_j

Claim 2: T is a linear transformation.

We define a function $T: V \longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

Claim 1: $T(\alpha_j) = \beta_j$

$$T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \dots + 1 \cdot \alpha_j + \dots + 0\alpha_n)$$

= $0\beta_1 + 0\beta_2 + \dots + 1 \cdot \beta_j + \dots + 0\beta_n$
= β_j

Claim 2 : T is a linear transformation.

Show that $T(c\alpha + \beta) = cT(\alpha) + T(\beta)$ for all $\alpha, \beta \in V$, $c \in F$.

We define a function $T: V \longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

Claim 1: $T(\alpha_j) = \beta_j$

$$T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \dots + 1 \cdot \alpha_j + \dots + 0\alpha_n)$$

= $0\beta_1 + 0\beta_2 + \dots + 1 \cdot \beta_j + \dots + 0\beta_n$
= β_j

Claim 2: T is a linear transformation.

Show that
$$T(c\alpha + \beta) = cT(\alpha) + T(\beta)$$
 for all $\alpha, \beta \in V$, $c \in F$.
Let $\beta = y_1\alpha_1 + y_2\alpha_2 + ... + y_n\alpha_n$.

We define a function $T: V \longrightarrow W$ as

$$T(\alpha) = T(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n) = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n.$$

Claim 1: $T(\alpha_j) = \beta_j$

$$T(\alpha_j) = T(0\alpha_1 + 0\alpha_2 + \dots + 1 \cdot \alpha_j + \dots + 0\alpha_n)$$

= $0\beta_1 + 0\beta_2 + \dots + 1 \cdot \beta_j + \dots + 0\beta_n$
= β_j

Claim 2 : T is a linear transformation.

Show that $T(c\alpha + \beta) = cT(\alpha) + T(\beta)$ for all $\alpha, \beta \in V$, $c \in F$.

Let
$$\beta = y_1 \alpha_1 + y_2 \alpha_2 + \ldots + y_n \alpha_n$$
.

$$c\alpha + \beta = (cx_1 + y_1)\alpha_1 + (cx_2 + y_2)\alpha_2 + \ldots + (cx_n + y_n)\alpha_n$$

 \implies (by the definition of T)

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + ... + (cx_n + y_n)\beta_n$$

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

Claim 3: *T* is unique.

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

Claim 3: T is unique.

It is enough to prove that if $U:V\longrightarrow W$ is a L.T. with $U(\alpha_j)=\beta_j$ for $j=1,2,\ldots,n$, then $T(\alpha)=U(\alpha)$ for all $\alpha\in V$.

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

Claim 3: T is unique.

It is enough to prove that if $U:V\longrightarrow W$ is a L.T. with $U(\alpha_j)=\beta_j$ for $j=1,2,\ldots,n$, then $T(\alpha)=U(\alpha)$ for all $\alpha\in V$. Consider

$$U(\alpha) = U(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n)$$

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

Claim 3: T is unique.

It is enough to prove that if $U:V\longrightarrow W$ is a L.T. with $U(\alpha_j)=\beta_j$ for $j=1,2,\ldots,n$, then $T(\alpha)=U(\alpha)$ for all $\alpha\in V$. Consider

$$U(\alpha) = U(x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n)$$

= $x_1U(\alpha_1) + x_2U(\alpha_2) + \ldots + x_nU(\alpha_n)$ (*U* is a L.T.)

 \Longrightarrow (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

Claim 3: T is unique.

It is enough to prove that if $U:V\longrightarrow W$ is a L.T. with $U(\alpha_j)=\beta_j$ for $j=1,2,\ldots,n$, then $T(\alpha)=U(\alpha)$ for all $\alpha\in V$. Consider

$$U(\alpha) = U(x_{1}\alpha_{1} + x_{2}\alpha_{2} + \dots + x_{n}\alpha_{n})$$

$$= x_{1}U(\alpha_{1}) + x_{2}U(\alpha_{2}) + \dots + x_{n}U(\alpha_{n}) \quad (U \text{ is a L.T.})$$

$$= x_{1}\beta_{1} + x_{2}\beta_{2} + \dots + x_{n}\beta_{n} \quad (U(\alpha_{j}) = \beta_{j})$$

 \implies (by the definition of T)

$$T(c\alpha + \beta) = (cx_1 + y_1)\beta_1 + (cx_2 + y_2)\beta_2 + \dots + (cx_n + y_n)\beta_n$$

= $cT(\alpha) + T(\beta)$ (Prove it!)

Claim 3: T is unique.

It is enough to prove that if $U:V\longrightarrow W$ is a L.T. with $U(\alpha_j)=\beta_j$ for $j=1,2,\ldots,n$, then $T(\alpha)=U(\alpha)$ for all $\alpha\in V$. Consider

$$\begin{array}{rcl} U(\alpha) & = & U(x_{1}\alpha_{1} + x_{2}\alpha_{2} + \ldots + x_{n}\alpha_{n}) \\ & = & x_{1}U(\alpha_{1}) + x_{2}U(\alpha_{2}) + \ldots + x_{n}U(\alpha_{n}) \ \ (U \text{ is a L.T.}) \\ & = & x_{1}\beta_{1} + x_{2}\beta_{2} + \ldots + x_{n}\beta_{n} \ \ (U(\alpha_{j}) = \beta_{j}) \\ & = & T(\alpha) \end{array}$$

It completes the proof.

Let
$$B=\{\alpha_1=(1,2),\alpha_2=(3,4)\}$$
 be an ordered basis for R^2 . Let $\beta_1=(3,2,1),\ \beta_2=(6,5,4)\in R^3$. Find a unique L.T. $T:R^2\longrightarrow R^3$ such that $T(\alpha_j)=\beta_j$ for $j=1,2$.

```
Let B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\} be an ordered basis for R^2. Let \beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3. Find a unique L.T. T: R^2 \longrightarrow R^3 such that T(\alpha_j) = \beta_j for j=1,2. Solution: T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1 T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2
```

```
Let B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\} be an ordered basis for R^2. Let \beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3. Find a unique L.T. T: R^2 \longrightarrow R^3 such that T(\alpha_j) = \beta_j for j = 1,2. Solution : T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1 T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2 Let \alpha = (x,y) \in R^2
```

```
Let B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\} be an ordered basis for R^2. Let \beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3. Find a unique L.T. T: R^2 \longrightarrow R^3 such that T(\alpha_j) = \beta_j for j = 1,2. Solution: T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1 T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2 Let \alpha = (x,y) \in R^2 \alpha = a\alpha_1 + b\alpha_2 \Longrightarrow (x,y) = a(1,2) + b(3,4)
```

Let
$$B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\}$$
 be an ordered basis for R^2 . Let $\beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3$. Find a unique L.T. $T: R^2 \longrightarrow R^3$ such that $T(\alpha_j) = \beta_j$ for $j=1,2$. Solution: $T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1$ $T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2$ Let $\alpha = (x,y) \in R^2$ $\alpha = a\alpha_1 + b\alpha_2 \Longrightarrow (x,y) = a(1,2) + b(3,4)$ $(x,y) = (-2x + \frac{3}{2}y)\alpha_1 + (x - \frac{1}{2}y)\alpha_2$

Let
$$B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\}$$
 be an ordered basis for R^2 . Let $\beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3$. Find a unique L.T. $T: R^2 \longrightarrow R^3$ such that $T(\alpha_j) = \beta_j$ for $j=1,2$. Solution: $T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1$ $T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2$ Let $\alpha = (x,y) \in R^2$ $\alpha = a\alpha_1 + b\alpha_2 \Longrightarrow (x,y) = a(1,2) + b(3,4)$ $(x,y) = (-2x + \frac{3}{2}y)\alpha_1 + (x - \frac{1}{2}y)\alpha_2$ $T(x,y) = (-2x + \frac{3}{2}y)\beta_1 + (x - \frac{1}{2}y)\beta_2$

Let
$$B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\}$$
 be an ordered basis for R^2 . Let $\beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3$. Find a unique L.T. $T: R^2 \longrightarrow R^3$ such that $T(\alpha_j) = \beta_j$ for $j = 1,2$. Solution: $T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1$ $T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2$ Let $\alpha = (x,y) \in R^2$ $\alpha = a\alpha_1 + b\alpha_2 \Longrightarrow (x,y) = a(1,2) + b(3,4)$ $(x,y) = (-2x + \frac{3}{2}y)\alpha_1 + (x - \frac{1}{2}y)\alpha_2$ $T(x,y) = (-2x + \frac{3}{2}y)\beta_1 + (x - \frac{1}{2}y)\beta_2$ $T(x,y) = (-2x + \frac{3}{2}y)(3,2,1) + (x - \frac{1}{2}y)(6,5,4)$

Let
$$B = \{\alpha_1 = (1,2), \alpha_2 = (3,4)\}$$
 be an ordered basis for R^2 . Let $\beta_1 = (3,2,1), \ \beta_2 = (6,5,4) \in R^3$. Find a unique L.T. $T: R^2 \longrightarrow R^3$ such that $T(\alpha_j) = \beta_j$ for $j=1,2$. Solution: $T(\alpha_1) = T(1,2) = (3,2,1) = \beta_1$ $T(\alpha_2) = T(3,4) = (6,5,4) = \beta_2$ Let $\alpha = (x,y) \in R^2$ $\alpha = a\alpha_1 + b\alpha_2 \Longrightarrow (x,y) = a(1,2) + b(3,4)$ $(x,y) = (-2x + \frac{3}{2}y)\alpha_1 + (x - \frac{1}{2}y)\alpha_2$ $T(x,y) = (-2x + \frac{3}{2}y)\beta_1 + (x - \frac{1}{2}y)\beta_2$ $T(x,y) = (-2x + \frac{3}{2}y)(3,2,1) + (x - \frac{1}{2}y)(6,5,4)$ $T(x,y) = (\frac{3}{2}y,x + \frac{1}{2}y,2x - \frac{1}{2}y)$

Problem 2 contd.

$$T(x,y) = \left(\frac{3}{2}y, x + \frac{1}{2}y, 2x - \frac{1}{2}y\right) = \begin{bmatrix} 0 & \frac{3}{2} \\ 1 & \frac{1}{2} \\ 2 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Problem 2 contd.

$$T(x,y) = \left(\frac{3}{2}y, x + \frac{1}{2}y, 2x - \frac{1}{2}y\right) = \begin{bmatrix} 0 & \frac{3}{2} \\ 1 & \frac{1}{2} \\ 2 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

T is a unique L.T. thanks to Theorem 1.

Let V, W be vector spaces over a field F. Let $T: V \longrightarrow W$ be a linear transformation.

Let V, W be vector spaces over a field F. Let $T: V \longrightarrow W$ be a linear transformation.

Range of
$$T$$
, $R(T) = \{ \beta \in W : T(\alpha) = \beta \text{ for some } \alpha \in V \}$

Show that R(T) is a subspace of W.

Proof: Let $T: V \longrightarrow W$ is a L.T.

Show that R(T) is a subspace of W.

Proof: Let $T: V \longrightarrow W$ is a L.T.

Note that T(0) = 0. $\Longrightarrow 0 \in R(T) \neq \phi$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$. There exist $\alpha_1, \alpha_2 \in V$ such that $T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$. There exist $\alpha_1, \alpha_2 \in V$ such that $T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2$. Clearly $c\alpha_1 + \alpha_2 \in V$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$. There exist $\alpha_1, \alpha_2 \in V$ such that $T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2$. Clearly $c\alpha_1 + \alpha_2 \in V. \Longrightarrow T(c\alpha_1 + \alpha_2) \in R(T)$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \implies 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$. There exist $\alpha_1, \alpha_2 \in V$ such that $T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2$. Clearly $c\alpha_1 + \alpha_2 \in V. \implies T(c\alpha_1 + \alpha_2) \in R(T)$. $\implies cT(\alpha_1) + T(\alpha_2) \in R(T)$ (T is a L.T.)

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$. There exist $\alpha_1, \alpha_2 \in V$ such that $T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2$. Clearly $c\alpha_1 + \alpha_2 \in V . \Longrightarrow T(c\alpha_1 + \alpha_2) \in R(T)$. $\Longrightarrow cT(\alpha_1) + T(\alpha_2) \in R(T)$ (T is a L.T.) $\Longrightarrow c\beta_1 + \beta_2 \in R(T)$.

```
Proof: Let T: V \longrightarrow W is a L.T.

Note that T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi.

Let \beta_1, \beta_2 \in R(T), c \in F. There exist \alpha_1, \alpha_2 \in V such that T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2.

Clearly c\alpha_1 + \alpha_2 \in V. \Longrightarrow T(c\alpha_1 + \alpha_2) \in R(T).

\Longrightarrow cT(\alpha_1) + T(\alpha_2) \in R(T) (T is a L.T.)

\Longrightarrow c\beta_1 + \beta_2 \in R(T).

Hence R(T) is a subspace of W.
```

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in R(T) \neq \phi$. Let $\beta_1, \beta_2 \in R(T), c \in F$. There exist $\alpha_1, \alpha_2 \in V$ such that $T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2$. Clearly $c\alpha_1 + \alpha_2 \in V. \Longrightarrow T(c\alpha_1 + \alpha_2) \in R(T)$. $\Longrightarrow cT(\alpha_1) + T(\alpha_2) \in R(T)$ (T is a L.T.) $\Longrightarrow c\beta_1 + \beta_2 \in R(T)$. Hence R(T) is a subspace of W.

Rank of $T = \dim R(T)$

(provided V is a finite-dimensional vector space.)

The null space of T.

Let V, W be vector spaces over a field F. Let $T: V \longrightarrow W$ be a linear transformation.

The null space of T.

Let V, W be vector spaces over a field F. Let $T: V \longrightarrow W$ be a linear transformation.

Null space of
$$T$$
, $N(T) = \{\alpha \in V : T(\alpha) = 0\}$

Null space of T.

Null space of T.

Proof: Let $T: V \longrightarrow W$ is a L.T.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \implies 0 \in N(T) \neq \phi$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in N(T) \neq \phi$. Let $\alpha_1, \alpha_2 \in N(T), c \in F$.

```
Proof: Let T: V \longrightarrow W is a L.T.
Note that T(0) = 0. \Longrightarrow 0 \in N(T) \neq \phi.
Let \alpha_1, \alpha_2 \in N(T), c \in F. Then T(\alpha_1) = T(\alpha_2) = 0.
```

```
Proof: Let T: V \longrightarrow W is a L.T.
Note that T(0) = 0. \Longrightarrow 0 \in N(T) \neq \phi.
Let \alpha_1, \alpha_2 \in N(T), c \in F. Then T(\alpha_1) = T(\alpha_2) = 0. Since T is a L.T., T(c\alpha_1 + \alpha_2) = cT(\alpha_1) + T(\alpha_2)
```

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \Longrightarrow 0 \in N(T) \neq \phi$. Let $\alpha_1, \alpha_2 \in N(T), c \in F$. Then $T(\alpha_1) = T(\alpha_2) = 0$. Since T is a L.T., $T(c\alpha_1 + \alpha_2) = cT(\alpha_1) + T(\alpha_2) = c0 + 0 = 0$

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that T(0) = 0. $\Longrightarrow 0 \in N(T) \neq \phi$. Let $\alpha_1, \alpha_2 \in N(T), c \in F$. Then $T(\alpha_1) = T(\alpha_2) = 0$. Since T is a L.T., $T(c\alpha_1 + \alpha_2) = cT(\alpha_1) + T(\alpha_2) = c0 + 0 = 0$ $\Longrightarrow c\alpha_1 + \alpha_2 \in N(T)$.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that $T(0) = 0. \implies 0 \in N(T) \neq \phi$. Let $\alpha_1, \alpha_2 \in N(T), c \in F$. Then $T(\alpha_1) = T(\alpha_2) = 0$. Since T is a L.T., $T(c\alpha_1 + \alpha_2) = cT(\alpha_1) + T(\alpha_2) = c0 + 0 = 0$ $\implies c\alpha_1 + \alpha_2 \in N(T).$ Hence N(T) is a subspace of V.

Proof: Let $T: V \longrightarrow W$ is a L.T. Note that T(0) = 0. $\Longrightarrow 0 \in N(T) \neq \phi$. Let $\alpha_1, \alpha_2 \in N(T), c \in F$. Then $T(\alpha_1) = T(\alpha_2) = 0$. Since T is a L.T., $T(c\alpha_1 + \alpha_2) = cT(\alpha_1) + T(\alpha_2) = c0 + 0 = 0$ $\Longrightarrow c\alpha_1 + \alpha_2 \in N(T).$ Hence N(T) is a subspace of V.

Nullity of
$$T = \dim N(T)$$

(provided V is a finite-dimensional vector space.)

Find the range and null space of the following linear transformations.

(1) Let $O:V\longrightarrow W$ be the zero linear transformation. That is $O(\alpha)=0$ for all $\alpha\in V$.

Find the range and null space of the following linear transformations.

(1) Let $O: V \longrightarrow W$ be the zero linear transformation. That is $O(\alpha) = 0$ for all $\alpha \in V$. $R(O) = \{\beta \in W : \beta = O(\alpha) \text{ for some } \alpha \in V\}$

Find the range and null space of the following linear transformations.

(1) Let $O: V \longrightarrow W$ be the zero linear transformation. That is $O(\alpha) = 0$ for all $\alpha \in V$. $R(O) = \{\beta \in W : \beta = O(\alpha) \text{ for some } \alpha \in V\}$ $R(O) = \{\beta \in W : \beta = O(\alpha) = 0 \text{ for some } \alpha \in V\}$

Find the range and null space of the following linear transformations.

(1) Let $O: V \longrightarrow W$ be the zero linear transformation. That is $O(\alpha) = 0$ for all $\alpha \in V$. $R(O) = \{\beta \in W : \beta = O(\alpha) \text{ for some } \alpha \in V\}$ $R(O) = \{\beta \in W : \beta = O(\alpha) = 0 \text{ for some } \alpha \in V\} = \{0\}$

Find the range and null space of the following linear transformations.

(1) Let $O: V \longrightarrow W$ be the zero linear transformation. That is $O(\alpha) = 0$ for all $\alpha \in V$. $R(O) = \{\beta \in W : \beta = O(\alpha) \text{ for some } \alpha \in V\}$ $R(O) = \{\beta \in W : \beta = O(\alpha) = 0 \text{ for some } \alpha \in V\} = \{0\}$ $N(O) = \{\alpha \in V : O(\alpha) = 0\}$

Find the range and null space of the following linear transformations.

(1) Let $O:V\longrightarrow W$ be the zero linear transformation. That is $O(\alpha)=0$ for all $\alpha\in V$. $R(O)=\{\beta\in W\ :\ \beta=O(\alpha)\ \text{for some}\ \alpha\in V\}$ $R(O)=\{\beta\in W\ :\ \beta=O(\alpha)=0\ \text{for some}\ \alpha\in V\}=\{0\}$ $N(O)=\{\alpha\in V\ :\ O(\alpha)=0\}=V$

Find the range and null space of the following linear transformations.

(1) Let $O:V\longrightarrow W$ be the zero linear transformation. That is $O(\alpha)=0$ for all $\alpha\in V$. $R(O)=\{\beta\in W\ :\ \beta=O(\alpha)\ \text{for some}\ \alpha\in V\}$ $R(O)=\{\beta\in W\ :\ \beta=O(\alpha)=0\ \text{for some}\ \alpha\in V\}=\{0\}$ $N(O)=\{\alpha\in V\ :\ O(\alpha)=0\}=V$ $\operatorname{Rank}\ (O)=\operatorname{dim}\ R(O)=0\ \text{and}$ $\operatorname{Nullity}\ (O)=\operatorname{dim}\ N(O)=\operatorname{dim}\ V.$

(2) Let $I: V \longrightarrow V$ be the identity linear transformation.

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$.

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$. $R(I)=\{\beta\in V:\beta=I(\alpha)\text{ for some }\alpha\in V\}$

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$. $R(I)=\{\beta\in V:\ \beta=I(\alpha)\ \text{for some}\ \alpha\in V\}$ $R(I)=\{\beta\in V:\ \beta=I(\alpha)=\alpha\ \text{for some}\ \alpha\in V\}$

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$. $R(I)=\{\beta\in V:\beta=I(\alpha)\text{ for some }\alpha\in V\}$ $R(I)=\{\beta\in V:\beta=I(\alpha)=\alpha\text{ for some }\alpha\in V\}=V$

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$. $R(I)=\{\beta\in V:\beta=I(\alpha)\text{ for some }\alpha\in V\}$ $R(I)=\{\beta\in V:\beta=I(\alpha)=\alpha\text{ for some }\alpha\in V\}=V$ $N(I)=\{\alpha\in V:I(\alpha)=0\}$

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$. $R(I)=\{\beta\in V:\ \beta=I(\alpha)\ \text{for some}\ \alpha\in V\}$ $R(I)=\{\beta\in V:\ \beta=I(\alpha)=\alpha\ \text{for some}\ \alpha\in V\}=V$ $N(I)=\{\alpha\in V:\ I(\alpha)=0\}=\{\alpha\in V:\ \alpha=0\}=\{0\}$

(2) Let $I:V\longrightarrow V$ be the identity linear transformation. That is $I(\alpha)=\alpha$ for all $\alpha\in V$. $R(I)=\{\beta\in V:\beta=I(\alpha)\text{ for some }\alpha\in V\}$ $R(I)=\{\beta\in V:\beta=I(\alpha)=\alpha\text{ for some }\alpha\in V\}=V$ $N(I)=\{\alpha\in V:I(\alpha)=0\}=\{\alpha\in V:\alpha=0\}=\{0\}$ Rank $I(I)=\dim R(I)=\dim V$ and Nullity I(I)=0.

Find the rank and nullity of the linear transformation $T: R^2 \longrightarrow R^3$ defined as $T(x_1, x_2) = (x_1, 0, 0)$.

$$T: R^2 \longrightarrow R^3$$
 defined as $T(x_1, x_2) = (x_1, 0, 0)$.

Solution:
$$T(x_1, x_2) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$T: R^2 \longrightarrow R^3$$
 defined as $T(x_1, \underline{x}_2) = (x_1, 0, 0)$.

Solution:
$$T(x_1, x_2) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow TX = AX, \quad \text{where } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$T: R^2 \longrightarrow R^3$$
 defined as $T(x_1, x_2) = (x_1, 0, 0)$.

Solution:
$$T(x_1, x_2) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow TX = AX, \quad \text{where } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$R(T) = \left\{ Y \in R^3 : Y = TX \text{ for some } X \in R^2 \right\}$$

$$R(T) = \{ Y \in \mathbb{R}^3 : Y = TX \text{ for some } X \in \mathbb{R}^2 \}$$

$$T: R^2 \longrightarrow R^3$$
 defined as $T(x_1, x_2) = (x_1, 0, 0)$.

Solution:
$$T(x_1, x_2) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow TX = AX, \quad \text{where } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$R(T) = \{ Y \in R^3 : Y = TX \text{ for some } X \in R^2 \}$$

 $R(T) = \{ Y \in R^3 : Y = AX \text{ for some } X \in R^2 \}$

$$T: R^{2} \longrightarrow R^{3} \text{ defined as } T(x_{1}, x_{2}) = (x_{1}, 0, 0).$$

$$Solution: T(x_{1}, x_{2}) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$\implies TX = AX, \quad \text{where } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$R(T) = \{ Y \in R^{3} : Y = TX \text{ for some } X \in R^{2} \}$$

$$R(T) = \{ Y \in R^{3} : Y = AX \text{ for some } X \in R^{2} \}$$

$$R(T) = \{ AX : X \in R^{2} \}$$

$$T: R^2 \longrightarrow R^3 \text{ defined as } T(x_1, x_2) = (x_1, 0, 0).$$

$$Solution: T(x_1, x_2) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Longrightarrow TX = AX, \text{ where } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$R(T) = \{ Y \in R^3 : Y = TX \text{ for some } X \in R^2 \}$$

$$R(T) = \{ Y \in R^3 : Y = TX \text{ for some } X \in R^2 \}$$

 $R(T) = \{ Y \in R^3 : Y = AX \text{ for some } X \in R^2 \}$
 $R(T) = \{ AX : X \in R^2 \}$

$$R(T) = \{AA : A \in R\}$$

$$R(T) = \{ \text{ all linear combinations of columns of } A \}$$

$$T: R^2 \longrightarrow R^3 \text{ defined as } T(x_1, x_2) = (x_1, 0, 0).$$

$$Solution: T(x_1, x_2) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Longrightarrow TX = AX, \text{ where } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$R(T) = \{ Y \in R^3 : Y = TX \text{ for some } X \in R^2 \}$$

$$R(T) = \{ Y \in R^3 : Y = TX \text{ for some } X \in R^2 \}$$

 $R(T) = \{ Y \in R^3 : Y = AX \text{ for some } X \in R^2 \}$
 $R(T) = \{ AX : X \in R^2 \}$

$$R(T) = \{AA : A \in R\}$$

$$R(T) = \{ \text{ all linear combinations of columns of } A \}$$

$$\implies R(T) = \text{Column space of } A$$

 $\implies R(T) = \text{Column space of } A = \text{Row space of } A^t.$

 $\Longrightarrow R(T) = \text{Column space of } A = \text{Row space of } A^t.$ $\Longrightarrow R(T) = \{a(1,0,0) : a \in R\}$

```
\implies R(T) = Column space of A = Row space of A^t.

\implies R(T) = \{a(1,0,0) : a \in R\} = Span of \{(1,0,0)\}
```

$$\implies$$
 $R(T) =$ Column space of $A =$ Row space of A^t .
 \implies $R(T) = \{a(1,0,0) : a \in R\} =$ Span of $\{(1,0,0)\}$
 \implies Rank $(T) = 1$

$$\Rightarrow$$
 $R(T) =$ Column space of $A =$ Row space of A^t .
 \Rightarrow $R(T) = \{a(1,0,0) : a \in R\} =$ Span of $\{(1,0,0)\}$
 \Rightarrow Rank $(T) = 1$
 $N(T) = \{X \in R^2 : TX = 0\}$

$$\Rightarrow$$
 $R(T) =$ Column space of $A =$ Row space of A^t .
 \Rightarrow $R(T) = \{a(1,0,0) : a \in R\} =$ Span of $\{(1,0,0)\}$
 \Rightarrow Rank $(T) = 1$
 $N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$

$$\Rightarrow R(T) = \text{Column space of } A = \text{Row space of } A^t.$$

$$\Rightarrow R(T) = \{a(1,0,0) : a \in R\} = \text{Span of } \{(1,0,0)\}$$

$$\Rightarrow \text{Rank}(T) = 1$$

$$N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$$

$$AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow R(T) = \text{Column space of } A = \text{Row space of } A^t.$$

$$\Rightarrow R(T) = \{a(1,0,0) : a \in R\} = \text{Span of } \{(1,0,0)\}$$

$$\Rightarrow \text{Rank}(T) = 1$$

$$N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$$

$$AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = 0, x_2 = a, a \in R$$

$$\implies R(T) = \text{Column space of } A = \text{Row space of } A^t.$$

$$\implies R(T) = \{a(1,0,0) : a \in R\} = \text{Span of } \{(1,0,0)\}$$

$$\implies \text{Rank}(T) = 1$$

$$N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$$

$$AX = 0 \implies \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies x_1 = 0, x_2 = a, a \in R$$

$$N(T) = \{(x_1, x_2) = (0, a) : a \in R\}$$

$$\Rightarrow R(T) = \text{Column space of } A = \text{Row space of } A^t.$$

$$\Rightarrow R(T) = \{a(1,0,0) : a \in R\} = \text{Span of } \{(1,0,0)\}$$

$$\Rightarrow \text{Rank}(T) = 1$$

$$N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$$

$$AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = 0, x_2 = a, a \in R$$

$$N(T) = \{(x_1, x_2) = (0, a) : a \in R\} = \{a(0, 1) : a \in R\}$$

$$\Rightarrow R(T) = \text{Column space of } A = \text{Row space of } A^t.$$

$$\Rightarrow R(T) = \{a(1,0,0) : a \in R\} = \text{Span of } \{(1,0,0)\}$$

$$\Rightarrow \text{Rank}(T) = 1$$

$$N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$$

$$AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = 0, x_2 = a, a \in R$$

$$N(T) = \{(x_1, x_2) = (0, a) : a \in R\} = \{a(0, 1) : a \in R\}$$

$$N(T) = \text{Span } \{(0, 1)\}$$

$$\Rightarrow R(T) = \text{Column space of } A = \text{Row space of } A^t.$$

$$\Rightarrow R(T) = \{a(1,0,0) : a \in R\} = \text{Span of } \{(1,0,0)\}$$

$$\Rightarrow \text{Rank}(T) = 1$$

$$N(T) = \{X \in R^2 : TX = 0\} = \{X : AX = 0\}$$

$$AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = 0, x_2 = a, a \in R$$

$$N(T) = \{(x_1, x_2) = (0, a) : a \in R\} = \{a(0, 1) : a \in R\}$$

$$N(T) = \text{Span } \{(0, 1)\}$$

Nullity
$$(T) = 1$$

Show that

(i)
$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$$
 is a linear transformation, and (ii)compute rank(T), nullity(T).

Show that

(i) $T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$ is a linear transformation, and (ii)compute rank(T), nullity(T).

Solution:

$$T(x_1, x_2, x_3) = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Show that

(i) $T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$ is a linear transformation, and (ii)compute rank(T), nullity(T).

Solution:

$$T(x_1, x_2, x_3) = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\implies T(X) = AX$$

Show that

(i)
$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$$
 is a linear transformation, and (ii)compute rank(T), nullity(T).

Solution:

$$T(x_1, x_2, x_3) = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\implies T(X) = AX$$

Hence T is a linear transformation.

Show that

(i)
$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$$
 is a linear transformation, and (ii)compute rank(T), nullity(T).

Solution:

$$T(x_1, x_2, x_3) = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\implies T(X) = AX$$

Hence T is a linear transformation.

Range of T =Column space of A

Show that

(i)
$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$$
 is a linear transformation, and (ii)compute rank(T), nullity(T).

Solution:

$$T(x_1, x_2, x_3) = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\implies T(X) = AX$$

Hence T is a linear transformation.

Range of T =Column space of A =Row space of A^t .

$$A^t = \left[\begin{array}{rrr} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{array} \right]$$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Range of T =Row space of $A^t =$ Span $\{(1,0,1),(0,1,-1)\}$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Range of $T = \text{Row space of } A^t = \text{Span } \{(1,0,1),(0,1,-1)\}$ Range of $T = \{a(1,0,1) + b(0,1,-1) : a,b \in R\}$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Range of
$$T = \text{Row space of } A^t = \text{Span } \{(1,0,1),(0,1,-1)\}$$

Range of $T = \{a(1,0,1) + b(0,1,-1) : a,b \in R\}$
Range of $T = \{(a,b,a-b) : a,b \in R\}$

$$A^{t} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -4 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

```
Range of T = \text{Row space of } A^t = \text{Span } \{(1,0,1),(0,1,-1)\}
Range of T = \{a(1,0,1) + b(0,1,-1) : a,b \in R\}
Range of T = \{(a,b,a-b) : a,b \in R\}
rank (T) = \dim R(T) = 2
```

$$N(T) = \left\{ X \in R^3 : \ TX = 0 \right\}$$

$$N(T) = \{X \in \mathbb{R}^3 : TX = 0\} = \{X \in \mathbb{R}^3 : AX = 0\}$$

$$N(T) = \left\{ X \in R^3 : TX = 0 \right\} = \left\{ X \in R^3 : AX = 0 \right\}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix}$$

$$N(T) = \{X \in R^3 : TX = 0\} = \{X \in R^3 : AX = 0\}$$

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{array} \right] \sim \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & -3 & 4 \end{array} \right]$$

$$N(T) = \{X \in R^3 : TX = 0\} = \{X \in R^3 : AX = 0\}$$

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{array} \right] \sim \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & -3 & 4 \end{array} \right]$$

$$\sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{array} \right]$$

$$N(T) = \left\{ X \in \mathbb{R}^3 : \ TX = 0 \right\} = \left\{ X \in \mathbb{R}^3 : \ AX = 0 \right\}$$

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{array} \right] \sim \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & -3 & 4 \end{array} \right]$$

$$\sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right]$$

$$N(T) = \{X \in R^3 : TX = 0\} = \{X \in R^3 : AX = 0\}$$

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{array} \right] \sim \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & -3 & 4 \end{array} \right]$$

$$\sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 0 & \frac{2}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right]$$

$$N(T) = \{X \in R^3 : TX = 0\} = \{X \in R^3 : AX = 0\}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & -3 & 4 \end{bmatrix}$$

$$\sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 0 & \frac{2}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right]$$

$$AX = 0 \Longrightarrow x_1 + \frac{2}{3}x_3 = 0, x_2 - \frac{4}{3}x_3 = 0$$

$$N(T) = \left\{ X \in \mathbb{R}^3 : \ TX = 0 \right\} = \left\{ X \in \mathbb{R}^3 : \ AX = 0 \right\}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & -3 & 4 \end{bmatrix}$$

$$\sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 0 & \frac{2}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 \end{array} \right]$$

$$AX = 0 \Longrightarrow x_1 + \frac{2}{3}x_3 = 0, x_2 - \frac{4}{3}x_3 = 0$$

$$x_3 = a \Longrightarrow x_1 = -\frac{2}{3}a, x_2 = \frac{4}{3}a$$

$$N(T) = \left\{ \left(-\frac{2}{3}a, \frac{4}{3}a, a \right) : a \in R \right\}$$

$$N(T) = \left\{ \left(-\frac{2}{3}a, \frac{4}{3}a, a \right) : a \in R \right\} = \left\{ a \left(-\frac{2}{3}, \frac{4}{3}, 1 \right) : a \in R \right\}$$

$$N(T) = \left\{ \left(-\frac{2}{3}a, \frac{4}{3}a, a \right) : a \in R \right\} = \left\{ a \left(-\frac{2}{3}, \frac{4}{3}, 1 \right) : a \in R \right\}$$

$$N(T) = \operatorname{Span} \left\{ \left(-\frac{2}{3}, \frac{4}{3}, 1 \right) \right\}$$

$$N(T) = \left\{ \left(-\frac{2}{3}a, \frac{4}{3}a, a \right) : a \in R \right\} = \left\{ a \left(-\frac{2}{3}, \frac{4}{3}, 1 \right) : a \in R \right\}$$

$$N(T) = \text{Span } \left\{ \left(-\frac{2}{3}, \frac{4}{3}, 1 \right) \right\}$$
Nullity (T) = 1.

Let V and W be vector spaces over the field F and let $T:V\longrightarrow W$ be a linear transformation. Suppose that V is finite-dimensional. Then

$$\mathsf{rank}(T) + \mathsf{nullity}(T) = \mathsf{dim}V$$

Let V and W be vector spaces over the field F and let $T:V\longrightarrow W$ be a linear transformation. Suppose that V is finite-dimensional. Then

$$\mathsf{rank}(T) + \mathsf{nullity}(T) = \mathsf{dim}V$$

Proof: Let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be a basis for N(T) and let dim V = n.

Let V and W be vector spaces over the field F and let $T:V\longrightarrow W$ be a linear transformation. Suppose that V is finite-dimensional. Then

$$\mathsf{rank}(T) + \mathsf{nullity}(T) = \mathsf{dim}V$$

Proof: Let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be a basis for N(T) and let dim V = n. Note that nullity (T) = k.

Let V and W be vector spaces over the field F and let $T:V\longrightarrow W$ be a linear transformation. Suppose that V is finite-dimensional. Then

$$\mathsf{rank}(T) + \mathsf{nullity}(T) = \mathsf{dim}V$$

Proof: Let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be a basis for N(T) and let dim V = n. Note that nullity (T) = k. Since $\{\alpha_1, \alpha_2, \dots, \alpha_k\} \subseteq V$ and V is finite-dimensional, there exist vectors $\alpha_{k+1}, \dots, \alpha_n \in V$ such that $\{\alpha_1, \dots, \alpha_n\}$ is a basis for V, thanks to Corollary 2 of Theorem 5.

Let V and W be vector spaces over the field F and let $T:V\longrightarrow W$ be a linear transformation. Suppose that V is finite-dimensional. Then

$$\mathsf{rank}(T) + \mathsf{nullity}(T) = \mathsf{dim}V$$

Proof: Let $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ be a basis for N(T) and let dim V = n. Note that nullity (T) = k. Since $\{\alpha_1, \alpha_2, \ldots, \alpha_k\} \subseteq V$ and V is finite-dimensional, there exist vectors $\alpha_{k+1}, \ldots, \alpha_n \in V$ such that $\{\alpha_1, \ldots, \alpha_n\}$ is a basis for V, thanks to Corollary 2 of Theorem 5. Next, we prove that $B = \{T(\alpha_{k+1}), \ldots, T(\alpha_n)\}$ is a basis for R(T).

Claim 1:
$$R(T) = \text{Span } B = \text{Span } \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$$

Claim 1:
$$R(T) = \text{Span } B = \text{Span } \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$$

Let $\beta \in R(T)$.

Claim 1: $R(T) = \text{Span } B = \text{Span } \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ Let $\beta \in R(T)$. Then there exists $\alpha \in V$ such that $\beta = T(\alpha)$.

Claim 1: $R(T) = \operatorname{Span} B = \operatorname{Span} \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ Let $\beta \in R(T)$. Then there exists $\alpha \in V$ such that $\beta = T(\alpha)$. Since $\alpha \in V = \operatorname{Span} \{\alpha_1, \dots, \alpha_n\}$, there exist scalars c_1, c_2, \dots, c_n such that $\alpha = c_1\alpha_1 + \dots + c_k\alpha_k + c_{k+1}\alpha_{k+1} + \dots + c_n\alpha_n$

Claim 1: $R(T) = \text{Span } B = \text{Span } \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ Let $\beta \in R(T)$. Then there exists $\alpha \in V$ such that $\beta = T(\alpha)$. Since $\alpha \in V = \text{Span } \{\alpha_1, \dots, \alpha_n\}$, there exist scalars c_1, c_2, \dots, c_n such that

$$\alpha = c_1 \alpha_1 + \ldots + c_k \alpha_k + c_{k+1} \alpha_{k+1} + \ldots c_n \alpha_n$$

$$\beta = T(\alpha) = T(c_1\alpha_1 + \ldots + c_k\alpha_k + c_{k+1}\alpha_{k+1} + \ldots + c_n\alpha_n)$$

Claim 1: $R(T) = \text{Span } B = \text{Span } \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ Let $\beta \in R(T)$. Then there exists $\alpha \in V$ such that $\beta = T(\alpha)$. Since $\alpha \in V = \text{Span } \{\alpha_1, \dots, \alpha_n\}$, there exist scalars c_1, c_2, \dots, c_n such that

$$\alpha = c_1 \alpha_1 + \ldots + c_k \alpha_k + c_{k+1} \alpha_{k+1} + \ldots c_n \alpha_n$$

$$\beta = T(\alpha) = T(c_1\alpha_1 + \ldots + c_k\alpha_k + c_{k+1}\alpha_{k+1} + \ldots + c_n\alpha_n)$$

$$\beta = c_1 T(\alpha_1) + \ldots + c_k T(\alpha_k) + c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n)$$

Claim 1: $R(T) = \text{Span } B = \text{Span } \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ Let $\beta \in R(T)$. Then there exists $\alpha \in V$ such that $\beta = T(\alpha)$. Since $\alpha \in V = \text{Span } \{\alpha_1, \dots, \alpha_n\}$, there exist scalars c_1, c_2, \dots, c_n such that

$$\alpha = c_1 \alpha_1 + \ldots + c_k \alpha_k + c_{k+1} \alpha_{k+1} + \ldots c_n \alpha_n$$

$$\beta = T(\alpha) = T(c_1\alpha_1 + \ldots + c_k\alpha_k + c_{k+1}\alpha_{k+1} + \ldots + c_n\alpha_n)$$

$$\beta = c_1 T(\alpha_1) + \ldots + c_k T(\alpha_k) + c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n)$$

$$\beta = c_1 0 + \ldots + c_k 0 + c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n)$$

Claim 1: $R(T) = \operatorname{Span} B = \operatorname{Span} \{T(\alpha_{k+1}), \ldots, T(\alpha_n)\}$ Let $\beta \in R(T)$. Then there exists $\alpha \in V$ such that $\beta = T(\alpha)$. Since $\alpha \in V = \operatorname{Span} \{\alpha_1, \ldots, \alpha_n\}$, there exist scalars c_1, c_2, \ldots, c_n such that

$$\alpha = c_1 \alpha_1 + \ldots + c_k \alpha_k + c_{k+1} \alpha_{k+1} + \ldots c_n \alpha_n$$

$$\beta = T(\alpha) = T(c_1\alpha_1 + \ldots + c_k\alpha_k + c_{k+1}\alpha_{k+1} + \ldots + c_n\alpha_n)$$

$$\beta = c_1 T(\alpha_1) + \ldots + c_k T(\alpha_k) + c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n)$$

$$\beta = c_1 0 + \ldots + c_k 0 + c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n)$$

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$
$$\Longrightarrow R(T) \subseteq \text{Span } B.$$

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$

 $\Longrightarrow R(T) \subseteq \text{Span } B. \text{ Since } B \subseteq R(T), \text{ Span } B \subseteq R(T).$

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$

$$\Longrightarrow R(T) \subseteq \text{Span } B. \text{ Since } B \subseteq R(T), \text{ Span } B \subseteq R(T).$$

$$\Longrightarrow R(T) = \text{Span } B.$$

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$

$$\implies$$
 $R(T) \subseteq$ Span B . Since $B \subseteq R(T)$, Span $B \subseteq R(T)$.

$$\implies R(T) = \operatorname{Span} B.$$

Claim 2: $B = \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ is a L.I. set.

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$

$$\Longrightarrow R(T) \subseteq \text{Span } B. \text{ Since } B \subseteq R(T), \text{ Span } B \subseteq R(T).$$

$$\implies R(T) = \operatorname{Span} B.$$

Claim 2:
$$B = \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$$
 is a L.I. set. Consider

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0$$

$$\beta = c_{k+1}T(\alpha_{k+1}) + \ldots + c_nT(\alpha_n) \in \text{Span } B$$

$$\Longrightarrow R(T) \subseteq \text{Span } B. \text{ Since } B \subseteq R(T), \text{ Span } B \subseteq R(T).$$

$$\implies R(T) = \operatorname{Span} B.$$

Claim 2:
$$B = \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$$
 is a L.I. set. Consider

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0$$

$$\Longrightarrow T(c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n)=0$$

$$\beta = c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n) \in \text{Span } B$$

$$\Longrightarrow R(T) \subseteq \text{Span } B. \text{ Since } B \subseteq R(T), \text{ Span } B \subseteq R(T).$$

$$\implies R(T) = \operatorname{Span} B.$$

Claim 2 :
$$B = \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$$
 is a L.I. set. Consider

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0$$

$$\Longrightarrow T(c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n)=0$$

$$\implies c_{k+1}\alpha_{k+1} + \ldots + c_n\alpha_n \in N(T)$$

$$\beta = c_{k+1} T(\alpha_{k+1}) + \ldots + c_n T(\alpha_n) \in \text{Span } B$$

$$\Longrightarrow R(T) \subseteq \text{Span } B. \text{ Since } B \subseteq R(T), \text{ Span } B \subseteq R(T).$$

$$\implies R(T) = \operatorname{Span} B.$$

Claim 2:
$$B = \{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$$
 is a L.I. set. Consider

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0$$

$$\Longrightarrow T(c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n)=0$$

$$\implies c_{k+1}\alpha_{k+1} + \ldots + c_n\alpha_n \in N(T) = \text{Span } \{\alpha_1, \ldots, \alpha_k\}$$

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$b_1\alpha_1+\ldots+b_k\alpha_k-c_{k+1}\alpha_{k+1}-\ldots-c_n\alpha_n=0$$

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$b_1\alpha_1+\ldots+b_k\alpha_k-c_{k+1}\alpha_{k+1}-\ldots-c_n\alpha_n=0$$

Since $\{\alpha_1, \ldots, \alpha_k, \ldots, \alpha_n\}$ is a L.I. set,

$$b_1 = \ldots = b_k = -c_{k+1} = \ldots = -c_n = 0.$$

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$b_1\alpha_1+\ldots+b_k\alpha_k-c_{k+1}\alpha_{k+1}-\ldots-c_n\alpha_n=0$$

Since $\{\alpha_1, \ldots, \alpha_k, \ldots, \alpha_n\}$ is a L.I. set,

$$b_1 = \ldots = b_k = -c_{k+1} = \ldots = -c_n = 0.$$

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0 \Longrightarrow c_{k+1}=\ldots=c_n=0$$

This proves Claim 2.

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$b_1\alpha_1+\ldots+b_k\alpha_k-c_{k+1}\alpha_{k+1}-\ldots-c_n\alpha_n=0$$

Since $\{\alpha_1, \ldots, \alpha_k, \ldots, \alpha_n\}$ is a L.I. set,

$$b_1 = \ldots = b_k = -c_{k+1} = \ldots = -c_n = 0.$$

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0 \Longrightarrow c_{k+1}=\ldots=c_n=0$$

This proves Claim 2. By Claims 1 and 2, B is a basis of R(T) and dim R(T) = |B| = n - k.

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$b_1\alpha_1+\ldots+b_k\alpha_k-c_{k+1}\alpha_{k+1}-\ldots-c_n\alpha_n=0$$

Since $\{\alpha_1, \ldots, \alpha_k, \ldots, \alpha_n\}$ is a L.I. set,

$$b_1 = \ldots = b_k = -c_{k+1} = \ldots = -c_n = 0.$$

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0 \Longrightarrow c_{k+1}=\ldots=c_n=0$$

This proves Claim 2. By Claims 1 and 2, B is a basis of R(T) and dim $R(T) = |B| = n - k \implies \dim R(T) = \dim V - \dim N(T)$.

$$c_{k+1}\alpha_{k+1}+\ldots+c_n\alpha_n=b_1\alpha_1+\ldots+b_k\alpha_k$$

$$b_1\alpha_1+\ldots+b_k\alpha_k-c_{k+1}\alpha_{k+1}-\ldots-c_n\alpha_n=0$$

Since $\{\alpha_1, \dots, \alpha_k, \dots, \alpha_n\}$ is a L.I. set, $b_1 = \dots = b_k = -c_{k+1} = \dots = -c_n = 0$.

$$c_{k+1}T(\alpha_{k+1})+\ldots+c_nT(\alpha_n)=0 \Longrightarrow c_{k+1}=\ldots=c_n=0$$

This proves Claim 2. By Claims 1 and 2, B is a basis of R(T) and dim R(T) = |B| = n - k. \Longrightarrow dim $R(T) = \dim V - \dim N(T)$. \Longrightarrow rank(T)+ nullity $(T) = \dim V$.

If $A \in F^{m \times n}$, then row rank (A) = column rank (A).

If $A \in F^{m \times n}$, then row rank (A) = column rank (A). **Proof:** We construct a linear transformation $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ defined as T(X) = AX.

```
If A \in F^{m \times n}, then row rank (A) = \operatorname{column\ rank\ } (A).

Proof: We construct a linear transformation T : F^{n \times 1} \longrightarrow F^{m \times 1} defined as T(X) = AX. By Rank-Nullity-Dimension Theorem, \operatorname{rank}(T) + \operatorname{nullity\ } (T) = \dim V = \dim F^{n \times 1} = n - - - - (1).
```

```
If A \in F^{m \times n}, then row rank (A) = \operatorname{column\ rank\ } (A).

Proof: We construct a linear transformation T : F^{n \times 1} \longrightarrow F^{m \times 1} defined as T(X) = AX. By Rank-Nullity-Dimension Theorem, \operatorname{rank}(T) + \operatorname{nullity\ } (T) = \dim V = \dim F^{n \times 1} = n - - - - (1).
```

$$R(T) = \{Y \in F^{m \times 1} : T(X) = Y \text{ for some } X \in F^{n \times 1}\}$$

If $A \in F^{m \times n}$, then row rank $(A) = \operatorname{column\ rank\ } (A)$. **Proof:** We construct a linear transformation $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ defined as T(X) = AX. By Rank-Nullity-Dimension Theorem, $\operatorname{rank}(T) + \operatorname{nullity\ } (T) = \dim V = \dim F^{n \times 1} = n - - - - (1)$.

$$R(T) = \{ Y \in F^{m \times 1} : T(X) = Y \text{ for some } X \in F^{n \times 1} \}$$
$$= \{ Y \in F^{m \times 1} : AX = Y \text{ for some } X \in F^{n \times 1} \}$$

```
If A \in F^{m \times n}, then row rank (A) = \operatorname{column\ rank\ } (A).

Proof: We construct a linear transformation T : F^{n \times 1} \longrightarrow F^{m \times 1} defined as T(X) = AX. By Rank-Nullity-Dimension Theorem, \operatorname{rank}(T) + \operatorname{nullity\ } (T) = \dim V = \dim F^{n \times 1} = n - - - - (1).
```

$$R(T) = \left\{ Y \in F^{m \times 1} : T(X) = Y \text{ for some } X \in F^{n \times 1} \right\}$$
$$= \left\{ Y \in F^{m \times 1} : AX = Y \text{ for some } X \in F^{n \times 1} \right\}$$
$$= \left\{ AX : X \in F^{n \times 1} \right\}$$

$$R(T) = \left\{ Y \in F^{m \times 1} : T(X) = Y \text{ for some } X \in F^{n \times 1} \right\}$$

$$= \left\{ Y \in F^{m \times 1} : AX = Y \text{ for some } X \in F^{n \times 1} \right\}$$

$$= \left\{ AX : X \in F^{n \times 1} \right\}$$

$$= \left\{ x_1 A_1 + \ldots + x_n A_n : A_i, i^{th} \text{column of } A, x_i \in F \right\}$$

$$R(T) = \left\{ Y \in F^{m \times 1} : T(X) = Y \text{ for some } X \in F^{n \times 1} \right\}$$

$$= \left\{ Y \in F^{m \times 1} : AX = Y \text{ for some } X \in F^{n \times 1} \right\}$$

$$= \left\{ AX : X \in F^{n \times 1} \right\}$$

$$= \left\{ x_1 A_1 + \ldots + x_n A_n : A_i, i^{th} \text{column of } A, x_i \in F \right\}$$

$$= \text{Column space } (A)$$

If $A \in F^{m \times n}$, then row rank $(A) = \operatorname{column\ rank\ } (A)$. **Proof:** We construct a linear transformation $T : F^{n \times 1} \longrightarrow F^{m \times 1}$ defined as T(X) = AX. By Rank-Nullity-Dimension Theorem, $\operatorname{rank}(T) + \operatorname{nullity\ } (T) = \dim V = \dim F^{n \times 1} = n - - - - (1)$.

$$R(T) = \left\{ Y \in F^{m \times 1} : T(X) = Y \text{ for some } X \in F^{n \times 1} \right\}$$

$$= \left\{ Y \in F^{m \times 1} : AX = Y \text{ for some } X \in F^{n \times 1} \right\}$$

$$= \left\{ AX : X \in F^{n \times 1} \right\}$$

$$= \left\{ x_1 A_1 + \ldots + x_n A_n : A_i, i^{th} \text{column of } A, x_i \in F \right\}$$

$$= \text{Column space } (A)$$

rank $(T) = \dim R(T) = \dim \operatorname{column} \operatorname{space} (A) = \operatorname{column} \operatorname{rank} (A) - (2)$

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

= $\{X \in F^{n \times 1} : AX = 0\} = S$

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

= $\{X \in F^{n \times 1} : AX = 0\} = S$

Let R be the row-reduced echelon matrix row-equivalent to A.

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

= $\{X \in F^{n \times 1} : AX = 0\} = S$

Let R be the row-reduced echelon matrix row-equivalent to A. Let r be the number of non-zero rows of R.

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

= $\{X \in F^{n \times 1} : AX = 0\} = S$

Let R be the row-reduced echelon matrix row-equivalent to A. Let r be the number of non-zero rows of R.

$$r = \text{row rank } (R) = \text{row rank } (A) - - - - (3)$$

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

= $\{X \in F^{n \times 1} : AX = 0\} = S$

Let R be the row-reduced echelon matrix row-equivalent to A. Let r be the number of non-zero rows of R.

$$r = \text{row rank } (R) = \text{row rank } (A) - - - - (3)$$

$$RX = 0 \Longrightarrow x_{k_i} + \sum_{j=1}^{n-r} C_{ij} u_j = 0 \text{ for } 1 \le i \le r$$

$$N(T) = \{X \in F^{n \times 1} : T(X) = 0\}$$

= $\{X \in F^{n \times 1} : AX = 0\} = S$

Let R be the row-reduced echelon matrix row-equivalent to A. Let r be the number of non-zero rows of R.

$$r = \text{row rank } (R) = \text{row rank } (A) - - - - (3)$$

$$RX = 0 \Longrightarrow x_{k_i} + \sum_{j=1}^{n-r} C_{ij} u_j = 0 \text{ for } 1 \le i \le r$$

The above system has n-r free variables and it implies that

$$\dim S = n - r = \dim N(T) = \operatorname{nullity}(T) - -(4)$$

column rank
$$(A) + n - r = n$$

column rank
$$(A) + n - r = n$$

$$\implies$$
 column rank $(A) = r$

column rank
$$(A) + n - r = n$$

$$\implies$$
 column rank $(A) = r = \text{row rank } (A)$, by (3)

From (1), (2) and (4),
$${\rm column\ rank\ } (A)+n-r=n$$

$$\implies$$
 column rank $(A) = r = \text{row rank } (A), \text{ by } (3)$

It completes the proof.

column rank
$$(A) + n - r = n$$

$$\implies$$
 column rank $(A) = r = \text{row rank } (A), \text{ by } (3)$

It completes the proof.

Note : rank (A) =column rank (A) =row rank (A)

Describe explicitly a linear transformation from R^3 into R^3 which has as its range the subspace spanned by (1,0,-1),(1,2,2).

Describe explicitly a linear transformation from R^3 into R^3 which has as its range the subspace spanned by (1,0,-1),(1,2,2).

Solution : From Theorem 3, if T(X) = AX, then R(T) = Column space (A) (Note that $A \in R^{3 \times 3}$).

Describe explicitly a linear transformation from R^3 into R^3 which has as its range the subspace spanned by (1,0,-1),(1,2,2).

Solution : From Theorem 3, if T(X) = AX, then R(T) = Column space (A) (Note that $A \in R^{3 \times 3}$). **Since**

$$R(T) =$$
Span $\{(1, 0, -1), (1, 2, 2)\}$

Describe explicitly a linear transformation from R^3 into R^3 which has as its range the subspace spanned by (1,0,-1),(1,2,2).

Solution : From Theorem 3, if T(X) = AX, then R(T) = Column space (A) (Note that $A \in R^{3 \times 3}$). **Since**

$$R(T) =$$
Span $\{(1, 0, -1), (1, 2, 2)\} \implies A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ -1 & 2 & 2 \end{bmatrix}$

$$T(X) = AX$$

$$T(X) = AX = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$T(X) = AX = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_2 + 2x_3, -x_1 + 2x_2 + 2x_3)$$

Find a L.T. (if exists) $T: R^3 \longrightarrow R^3$ such that $N(T) = \operatorname{Span} \{(1,1,1)\}$ and $R(T) = \operatorname{Span} \{(1,0,-1),(1,2,2)\}$. Justify your answer.

Find a L.T. (if exists) $T: R^3 \longrightarrow R^3$ such that $N(T) = \operatorname{Span} \{(1,1,1)\}$ and $R(T) = \operatorname{Span} \{(1,0,-1),(1,2,2)\}$. Justify your answer.

Outline of the answer : Note that $\{\alpha_1 = (1, 1, 1)\}$ be a basis for N(T).

Find a L.T. (if exists) $T: R^3 \longrightarrow R^3$ such that $N(T) = \operatorname{Span} \{(1,1,1)\}$ and $R(T) = \operatorname{Span} \{(1,0,-1),(1,2,2)\}$. Justify your answer.

Outline of the answer: Note that $\{\alpha_1 = (1,1,1)\}$ be a basis for N(T). Using the basis of N(T), we construct a basis for $V = R^3$, say $\{\alpha_1 = (1,1,1), \alpha_2 = (0,1,1), \alpha_3 = (0,0,1)\}$ (We have solved similar problems in the past!).

Find a L.T. (if exists) $T: R^3 \longrightarrow R^3$ such that $N(T) = \operatorname{Span} \{(1,1,1)\}$ and $R(T) = \operatorname{Span} \{(1,0,-1),(1,2,2)\}$. Justify your answer.

Outline of the answer : Note that $\{\alpha_1=(1,1,1)\}$ be a basis for N(T). Using the basis of N(T), we construct a basis for $V=R^3$, say $\{\alpha_1=(1,1,1),\alpha_2=(0,1,1),\alpha_3=(0,0,1)\}$ (We have solved similar problems in the past!). Note that $\beta_1=(0,0,0),\beta_2=(1,0,-1),\beta_3=(1,2,2)\in R(T)$.

Find a L.T. (if exists) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that $N(T) = \text{Span } \{(1,1,1)\} \text{ and } R(T) = \text{Span } \{(1,0,-1),(1,2,2)\}.$ Justify your answer.

Outline of the answer : Note that $\{\alpha_1 = (1, 1, 1)\}$ be a basis for N(T). Using the basis of N(T), we construct a basis for $V = R^3$, say $\{\alpha_1 = (1, 1, 1), \alpha_2 = (0, 1, 1), \alpha_3 = (0, 0, 1)\}$ (We have solved similar problems in the past!). Note that $\beta_1 = (0,0,0), \beta_2 = (1,0,-1), \beta_3 = (1,2,2) \in R(T).$

Let us contruct T such that $T(\alpha_1) = T(1,1,1) = \beta_1 = (0,0,0)$,

Find a L.T. (if exists) $T:R^3\longrightarrow R^3$ such that $N(T)=\operatorname{Span}\ \{(1,1,1)\}$ and $R(T)=\operatorname{Span}\ \{(1,0,-1),(1,2,2)\}$. Justify your answer.

Outline of the answer: Note that $\{\alpha_1=(1,1,1)\}$ be a basis for N(T). Using the basis of N(T), we construct a basis for $V=R^3$, say $\{\alpha_1=(1,1,1),\alpha_2=(0,1,1),\alpha_3=(0,0,1)\}$ (We have solved similar problems in the past!). Note that $\beta_1=(0,0,0),\beta_2=(1,0,-1),\beta_3=(1,2,2)\in R(T)$. Let us contruct T such that $T(\alpha_1)=T(1,1,1)=\beta_1=(0,0,0),$ $T(\alpha_2)=T(0,1,1)=\beta_2=(1,0,-1),$ and

Find a L.T. (if exists) $T:R^3\longrightarrow R^3$ such that $N(T)=\operatorname{Span}\ \{(1,1,1)\}$ and $R(T)=\operatorname{Span}\ \{(1,0,-1),(1,2,2)\}$. Justify your answer.

Outline of the answer: Note that $\{\alpha_1=(1,1,1)\}$ be a basis for N(T). Using the basis of N(T), we construct a basis for $V=R^3$, say $\{\alpha_1=(1,1,1),\alpha_2=(0,1,1),\alpha_3=(0,0,1)\}$ (We have solved similar problems in the past!). Note that $\beta_1=(0,0,0),\beta_2=(1,0,-1),\beta_3=(1,2,2)\in R(T)$. Let us contruct T such that $T(\alpha_1)=T(1,1,1)=\beta_1=(0,0,0),$ $T(\alpha_2)=T(0,1,1)=\beta_2=(1,0,-1),$ and $T(\alpha_3)=T(0,0,1)=\beta_3=(1,2,2)$

$$(x, y, z) = a\alpha_1 + b\alpha_2 + c\alpha_3 = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

$$(x, y, z) = a\alpha_1 + b\alpha_2 + c\alpha_3 = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

$$\implies (x, y, z) = x\alpha_1 + (y - x)\alpha_2 + (z - y)\alpha_3$$

$$(x, y, z) = a\alpha_1 + b\alpha_2 + c\alpha_3 = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

$$\implies (x, y, z) = x\alpha_1 + (y - x)\alpha_2 + (z - y)\alpha_3$$

$$\implies T(x, y, z) = x\beta_1 + (y - x)\beta_2 + (z - y)\beta_3$$

$$(x, y, z) = a\alpha_1 + b\alpha_2 + c\alpha_3 = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

$$\implies (x, y, z) = x\alpha_1 + (y - x)\alpha_2 + (z - y)\alpha_3$$

$$\implies T(x, y, z) = x\beta_1 + (y - x)\beta_2 + (z - y)\beta_3$$

$$\implies T(x, y, z) = (-x + z, -2y + 2z, x - 3y + 2z)$$

$$(x, y, z) = a\alpha_1 + b\alpha_2 + c\alpha_3 = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

$$\implies$$
 $(x, y, z) = x\alpha_1 + (y - x)\alpha_2 + (z - y)\alpha_3$

$$\implies T(x,y,z) = x\beta_1 + (y-x)\beta_2 + (z-y)\beta_3$$

$$\Rightarrow T(x,y,z) = (-x+z,-2y+2z,x-3y+2z)$$

$$T(x,y,z) = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

- (a) $N(T) \cap R(T) = \{0\}$
- (b) If $T(T(\alpha)) = 0$, then $T(\alpha) = 0$.

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution : $(a) \Longrightarrow (b)$.

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution: $(a) \Longrightarrow (b)$.

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution: $(a) \Longrightarrow (b)$.

$$T(T(\alpha)) = 0$$

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution: $(a) \Longrightarrow (b)$.

$$T(T(\alpha)) = 0 \Longrightarrow T(\alpha) \in N(T).$$

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution: $(a) \Longrightarrow (b)$.

Suppose that $N(T) \cap R(T) = \{0\}.$

 $T(T(\alpha)) = 0 \Longrightarrow T(\alpha) \in N(T)$. Note that $T(\alpha) \in R(T)$.

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution: $(a) \Longrightarrow (b)$.

$$T(T(\alpha)) = 0 \Longrightarrow T(\alpha) \in N(T)$$
. Note that $T(\alpha) \in R(T)$.

$$\implies T(\alpha) \in N(T) \cap R(T)$$

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution: $(a) \Longrightarrow (b)$.

$$T(T(\alpha)) = 0 \Longrightarrow T(\alpha) \in N(T)$$
. Note that $T(\alpha) \in R(T)$.

$$\implies T(\alpha) \in N(T) \cap R(T) = \{0\}.$$

Let $T:V\longrightarrow V$ be a linear transformation. Prove that following statements are equivalent.

(a)
$$N(T) \cap R(T) = \{0\}$$

(b) If
$$T(T(\alpha)) = 0$$
, then $T(\alpha) = 0$.

Solution : $(a) \Longrightarrow (b)$.

$$T(T(\alpha)) = 0 \Longrightarrow T(\alpha) \in N(T)$$
. Note that $T(\alpha) \in R(T)$.

$$\implies T(\alpha) \in N(T) \cap R(T) = \{0\}. \implies T(\alpha) = 0.$$

(b)
$$\Longrightarrow$$
 (a) Suppose that if $T(T(\alpha)) = 0$, then $T(\alpha) = 0$.

(b)
$$\Longrightarrow$$
 (a) Suppose that if $T(T(\alpha)) = 0$, then $T(\alpha) = 0$. Clearly $\{0\} \subseteq N(T) \cap R(T) - - - - (1)$.

(b)
$$\Longrightarrow$$
 (a) Suppose that if $T(T(\alpha)) = 0$, then $T(\alpha) = 0$. Clearly $\{0\} \subseteq N(T) \cap R(T) - - - - - (1)$. Let $\beta \in N(T) \cap R(T)$.

(b)
$$\Longrightarrow$$
 (a)
Suppose that if $T(T(\alpha)) = 0$, then $T(\alpha) = 0$. Clearly $\{0\} \subseteq N(T) \cap R(T) - - - - (1)$.
Let $\beta \in N(T) \cap R(T)$. $\Longrightarrow \beta \in N(T)$ and $\beta \in R(T)$.

(b)
$$\Longrightarrow$$
 (a)
Suppose that if $T(T(\alpha)) = 0$, then $T(\alpha) = 0$. Clearly $\{0\} \subseteq N(T) \cap R(T) = 0$. Let $\beta \in N(T) \cap R(T) = 0$. $\Longrightarrow \beta \in N(T)$ and $\beta \in R(T)$. $\Longrightarrow T(\beta) = 0$ and there exists $\alpha \in V$ such that $\beta = T(\alpha)$.

```
(b) \Longrightarrow (a)
Suppose that if T(T(\alpha)) = 0, then T(\alpha) = 0. Clearly \{0\} \subseteq N(T) \cap R(T) - - - - - (1).
Let \beta \in N(T) \cap R(T). \Longrightarrow \beta \in N(T) and \beta \in R(T). \Longrightarrow T(\beta) = 0 and there exists \alpha \in V such that \beta = T(\alpha). \Longrightarrow T(\beta) = T(T(\alpha)) = 0.
```

```
(b) \Longrightarrow (a)
Suppose that if T(T(\alpha)) = 0, then T(\alpha) = 0. Clearly \{0\} \subseteq N(T) \cap R(T) - - - - - (1).
Let \beta \in N(T) \cap R(T). \Longrightarrow \beta \in N(T) and \beta \in R(T). \Longrightarrow T(\beta) = 0 and there exists \alpha \in V such that \beta = T(\alpha). \Longrightarrow T(\beta) = T(T(\alpha)) = 0. \Longrightarrow T(\alpha) = 0 (by hypothesis).
```

```
 (b) \Longrightarrow (a)  Suppose that if T(T(\alpha)) = 0, then T(\alpha) = 0. Clearly \{0\} \subseteq N(T) \cap R(T) - - - - - (1). Let \beta \in N(T) \cap R(T). \Longrightarrow \beta \in N(T) and \beta \in R(T). \Longrightarrow T(\beta) = 0 and there exists \alpha \in V such that \beta = T(\alpha). \Longrightarrow T(\beta) = T(T(\alpha)) = 0. \Longrightarrow T(\alpha) = 0 (by hypothesis). \Longrightarrow \beta = T(\alpha) = 0.
```

```
 (b) \Longrightarrow (a)  Suppose that if T(T(\alpha)) = 0, then T(\alpha) = 0. Clearly \{0\} \subseteq N(T) \cap R(T) - - - - - (1). Let \beta \in N(T) \cap R(T). \Longrightarrow \beta \in N(T) and \beta \in R(T). \Longrightarrow T(\beta) = 0 and there exists \alpha \in V such that \beta = T(\alpha). \Longrightarrow T(\beta) = T(T(\alpha)) = 0. \Longrightarrow T(\alpha) = 0 (by hypothesis). \Longrightarrow \beta = T(\alpha) = 0. \Longrightarrow \beta \in \{0\}.
```

```
 (b) \Longrightarrow (a)  Suppose that if T(T(\alpha)) = 0, then T(\alpha) = 0. Clearly \{0\} \subseteq N(T) \cap R(T) - - - - - (1). Let \beta \in N(T) \cap R(T). \Longrightarrow \beta \in N(T) and \beta \in R(T). \Longrightarrow T(\beta) = 0 and there exists \alpha \in V such that \beta = T(\alpha). \Longrightarrow T(\beta) = T(T(\alpha)) = 0. \Longrightarrow T(\alpha) = 0 (by hypothesis). \Longrightarrow \beta = T(\alpha) = 0. \Longrightarrow \beta \in \{0\}. \Longrightarrow N(T) \cap R(T) \subseteq \{0\} - - - (2).
```

```
(b) \Longrightarrow (a)
Suppose that if T(T(\alpha)) = 0, then T(\alpha) = 0. Clearly
\{0\} \subset N(T) \cap R(T) - - - - - (1).
Let \beta \in N(T) \cap R(T). \Longrightarrow \beta \in N(T) and \beta \in R(T).
\Longrightarrow T(\beta) = 0 and there exists \alpha \in V such that \beta = T(\alpha).
\Longrightarrow T(\beta) = T(T(\alpha)) = 0. \Longrightarrow T(\alpha) = 0 (by hypothesis).
\implies \beta = T(\alpha) = 0. \implies \beta \in \{0\}.
\implies N(T) \cap R(T) \subseteq \{0\} - - - (2).
From (1) and (2), N(T) \cap R(T) = \{0\}.
```

L(V, W): set of all linear transformations from V into W.

Let V, W be vector spaces over the field F.

L(V, W): set of all linear transformations from V into W.

Let V, W be vector spaces over the field F.

$$L(V, W) = \{T : T : V \longrightarrow W \text{ is a L.T. } \}$$

L(V, W): set of all linear transformations from V into W.

Let V, W be vector spaces over the field F.

$$L(V, W) = \{T : T : V \longrightarrow W \text{ is a L.T. } \}$$

Observation 1: L(V, W) is a vector space under the opeartions

$$(T+U)(\alpha) = T(\alpha) + U(\alpha), \quad (cT)(\alpha) = cT(\alpha)$$

for all $T, U \in L(V, W)$, $c \in F$.

Observation 2: If V and W are finite dimensional vector spaces, then $\dim L(V,W) = \dim V \dim W$.

Observation 2: If V and W are finite dimensional vector spaces, then dim $L(V, W) = \dim V \dim W$.

Linear Operator : If V is a vector space over the field F, then a linear operator T is a linear transformation $T:V\longrightarrow V$.