RNN 系列変換モデルを用いた 高階論理からの文生成

馬目 華奈

お茶の水女子大学 戸次研究室

言語処理学会第 24 回年次大会 March 13, 2018

はじめに

意味表示に論理式を採用する利点

- 従来の係り受け解析や述語項構造解析を超える深い意味解析 が可能
- 副詞や前置詞などは、イベントを項に持つ述語として扱うため、修飾表現を含む文も簡潔に扱える
- 量化や否定などの論理推論、モダリティや内包的述語など複雑な意味を扱える
- 述語論理の論理式に変換し、推論ができる

論理式を意味表示にした場合の応用例

研究の目的

研究概要

- エンコーダ・デコーダを用いて 高階論理式から文を生成する手法を提案。
- embedding の際、4種の手法を検討する。(記号、トークン、木構造、グラフ)

文から高階論理式への変換

- エンコーダ・デコーダを用いて 高階論理式から文を生成する手法を提案。
- embedding の際、4種の手法を検討する。(記号、トークン、木構造、グラフ)

ccg2lambda を用いた論理式変換

embedding手法の提案

- エンコーダ・デコーダを用いて 高階論理式から文を生成する手法を提案.
- embedding の際、4種の手法(記号,トークン,木構造,グラフ)を検討する。

提案手法:記号区切りとトークン区切り

Bob walked の論理式:

1:記号ごとに区切る

$$[\mathsf{e,x,i,s,t,s}, \llcorner, x, ., (, \mathsf{B,o,b}, \llcorner, (, x,), ...]$$

2:トークンごとに区切る

[exists,
$$x$$
, (, Bob, (, x ,), &, exists, e , (, ...]

提案手法:木構造のベクトル化

木構造を用いたベクトル

[exists, x, &, Bob, x, exists, e, &, ...]

- 論理式をポーランド記法に変換する (論理演算子を前にもってくる)
- pre-order の深さ優先探索でたどる

:じめに 研究概要 論理式 **embedding** 系列変換モデル データセット 実験 結果 おわりに Reference

提案手法:グラフ構造のベクトル化

グラフ構造を用いたベクトル

 $[\mathsf{exists}, e, x, \&, \mathsf{Bob}, \&, = \\, \mathsf{Subj}, \mathsf{walk}]$

- 論理式をポーランド記法に変換する (論理演算子を前にもってくる)
- 同じ変数をさす様に edge を変更
- pre-order の深さ優先探索でたどる

エンコーダ・デコーダ

- エンコーダ・デコーダを用いて高階論理式から文を生成する 手法を提案.
- embedding の際, 4種の手法を検討する.(記号, トークン, 木構造, グラフ)

系列変換モデル [Sutskever et al., 2014]

- 入出力がシーケンスとなるニューラルネットのモデル
- エンコーダ:入力列を RNN により隠れ状態ベクトルに変換
- デコーダ:隠れ状態ベクトルを初期値とし、 隠れ状態と自身のこれまでの出力結果をもとに 次のトークンを生成

データセットの作成

- SNLI(The Stanford Natural Language Inference Corpus) [Bowman et al., 2015] を用い論理式と文のペアを作成
- 60 単語以内の文例を対象 train:9140/dev:2285/test:1500
- ccg2lambda を用いる

実験設定

- 系列変換モデルによる文生成 (入力:論理式,出力:文)
- トークン区切りの次元数を 256 次元に

	記号	トークン	木構造	グラフ
入力語数	70	5,118	5,107	4,991
出力語数	78	7,214	7,214	7,214
最長入力列	2,097	699	451	259
最長出力列	270	55	53	53

環境, ライブラリ

- tsubame サーバ(メモリ 240GiB,GPU× 4)
- python3 系ライブラリ(Keras,nltk)

モデルの詳細

学習モデル

embedding_1 → 256 次元 embedding_2 → 256 次元 lstm_1 → 256 次元 lstm_2 → 256 次元 dense_1(softmax) → 出力語数

評価方法

BLEU による評価

$$score = BP \exp \left(\sum_{i=1}^{N} rac{1}{N} \log P_n
ight)$$
 $BP = \left\{ egin{array}{ll} 1 & (c \geq r) \ \exp \left(1 - rac{r}{c}
ight) & (c < r) \end{array}
ight.$

$$P_n = rac{\sum_{i=0}$$
 出力文 i 中と解答文 i 中で一致した $n ext{-}gram$ 数 $\sum_{i=0}$ 出力文 i 中の全 $n ext{-}gram$ 数

実験結果

指標 記号 トークン 木構造 グラフ BLFU 34.9 39.7 41.8 44.7	BLEU 評価	i				
RI FII 34 9 39 7 41 8 44 7	_	指標	記号	トークン	木構造	グラフ
<u> </u>	_	BLEU	34.9	39.7	41.8	44.7

BLEUスコア割合

出力結果1

入力論理式

exists $x.(_boy(x) \& exists z.(_football(z) \& exists e.(_play(e) \& (Subj(e) = x) \& (Acc(e) = z)))$

正解文

boys play football.

出力結果

記号単位	The boy	is wearing	; a	blue shirt.		
トークン単位	The boy is playing			basketball .		
木構造	The boys are playin			sports .		
グラフ	The boy	oy is playing		football.		

出力結果2

入力論理式

exists $x.(_woman(x) \& _two(x) \&$ exists $z.(_package(z) \&$ exists $e.(_hold(e) \& (Subj(e) = x) \& (Acc(e) = z))))$

正解文

Two woman are holding packages.

出力結果

記号単位 Two women are watching the paper.
トークン単位 Two women are holding flowers .
木構造 Two women are holding something .
ブラフ Two women are holding a camera .

出力結果3

入力論理式

exists $\times.(_man(x) \& exists z01.(exists e.(_blue(e) \& (Subj(e) = z01) \& _standing(z01) \& _shirt(z01)) \& exists z02.(_front(z02) \& exists z00. ...$

正解文

A man in a blue shirt standing in front of a garage-like structure painted with geometric designs.

出力結果

in a purple.

- 記 A man in a blue shirt and a black shirt and blue jeans is walking ...
- A man in a blue shirt and a woman in a red dress holding up a small boy.
- 木 man in a blue shirt with a beard is standing on a computer while a.
- 7 A man in a blue shirt standing next to a cement mixer with one

まとめ

- エンコーダ・デコーダを用いて高階論理式から文を生成する 手法を提案した。
- 実験をする際、ccg2lambda を用いてデータセットを作成した.
- 提案手法の評価を行った結果、BLEU スコアは、トークン単位で区切り、論理式の計算の順序を考慮することで高くなった。

今後の課題

- 他の意味表現を用いた文生成との比較を行う.
- 評価方法に、文類似度を使用するなど評価方法を工夫する.
- 論理式の述語中に出てくる単語を出力するマスキング処理を かける
- 論理式の embedding を改良する

参考文献 |

- Lasha Abzianidze. A Tableau Prover for Natural Logic and Language. In Proc. of EMNLP, 2015.
- Daisuke Bekki. A Formal Theory of Japanese Grammar: The Conjugation System, Syntactic Structures, and Semantic Composition. Kuroshio, 2010. (In Japanese).
- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. In *Proc. of EMNLP*, 2015.
- Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer. Neural AMR: Sequence-to-Sequence Models for Parsing and Generation. In *Proc. of ACL*, 2017.
- Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao, and Daisuke Bekki. ccg2lambda: A Compositional Semantics System. In *Proc. of ACL System Demonstrations*, 2016.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Automatic Evaluation of Machine Translation. In *Proc. of ACL*, 2002.
- Mark Steedman. Surface Structure and Interpretation. In *The MIT Press*, 1996.

参考文献 Ⅱ

- Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Networks. In *Proc. of NIPS*. 2014.
- Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving by deep graph embedding. In *Proc. of NIPS*, 2017.
- Hitomi Yanaka, Koji Mineshima, Pascual Martínez-Gómez, and Daisuke Bekki. Determining Semantic Textual Similarity using Natural Deduction Proofs. In *Proc. of EMNLP*, 2017.