Dealved Distribution

* Derived Distribution (The discrete case)

$$Y = g(X)$$

$$P_{y}(y) = P(g(x) = y)$$

$$= \sum_{\alpha: g(\alpha)=\gamma} P_{\times}(\alpha)$$

Linea function of a continuous on

Fy(6) = P(Y < 6) = P(ax+b < 4)

$$= P(\times \leq \cancel{3-b}) = F_{\times}(\cancel{3-b})$$

CAD A sticket Page * Linear function of a named on vis mound $\times \sim N(M o^2)$ $f_{X}(\alpha) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(\alpha-\mu)^{2}/2\sigma^{2}}$ 1+ Y=ax+b a=0.

fy(y) = 1 (y-b)

= 1 [e (5-b u)/202 - 101 . 12x0 $=\frac{1}{\sqrt{2\pi\sigma(a)}}\frac{-(y-b-a)}{2\sigma^2a^2}$

y~ N(all+b, ato2)

* A general function g(X) of a Continuous 91.V

Two stop porocodene:

O Find the COF of Y: Fx(6) = P(Y < 8)

2 Differentiate: fy(4) = dfy(4)

Page Nutren Netrbooks
the PDF of Y=g(x)
\\ \frac{dg}{dg}(\(\pi\))
21- P(7 <7)
$\frac{1}{2}(z) = P(Z \le z)$ $= P(g(x, y) \le z)$
$\frac{dF_{z}(z)}{dz}$
Imple of X with
U has a massle

