60 1-087 CIP (sheet : of 31)

ATATTGCTGAGCTCAGGGAGTGAGGGCCCCACATTTGAGACAGTGAGCCCCAAGAAGAGG	60
$ \begin{array}{c} \texttt{GATCCCTGCTCCAGCAGCTGCAAGGTGCAAGAAGAAGAAGATCCCAGGGAGGAAAATGTG} \\ \underline{ \texttt{H} \texttt{C}}. \end{array} $	120 2
CTGGAGACCCCTGTGTCGGTTCCTGTGGCTTTGGTCCTATCTGTCTTATGTTCAAGCAGT M R P L C R F L M L N S Y L S Y V O A V	180 22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	240 42
CAATGACATTTCACACACGCAGTCGGTATCCGCCAAGCAGAGGGGTCACTGGCTTGGACTT N D I S H T \underline{O} S V S A K Q R V T G L D F	300 62
CATTCCTGGGCTTCACCCCATTCTGGGTTTGTCCAAGATGGACCAGACTCTGGCAGTCTA I P G L H P I L S L S K H D Q T L A V Y	360 82 .
TCANCAGGTCCTCACCAGCCTGCCTTCCCAAAATGTGCTGCAGATAGCCAATGACCTGGA Q Q V L T S L P S Q N V L Q I A N D L E	420 102
GAATCTCCGAGACCTCCTCCATCTGCTGGCCTTCTCCAAGAGCTGCTGCCTCAGAC N L $_{ m L}$ D L L H L L A F S K S C S L P Q T	480 122
CAGTGGCCTGCAGAAGCCAGAGAGCCTGGATGGCGTCCTGGAAGCCTCACTCTACTCCAC S G L Q K P E S L D G V L E A S L Y S T	540 142
AGAGGTGGTGGCTTTGAGCAGGCTGCAGGGCTCTCTGCAGGACATTCTTCAACAGTTGGA E V V A L S R L Q G S L Q D I L Q Q L D	600 162
TGTTAGCCCTGAATGCTGAAGTTTCAAAGGCCACCAGGCTCCCAAGAATCATGTAGAGGG V S P E C *	660 167
AAGAAACCTTGGCTTCCAGGGGTCTTCAGGAGAAGAGAGCCATGTGCACACATCCATC	720
TCATTTCTCTCCCTCCTGTAGACCACCCATCCAAAGGCATGACTCCACAATGCTTGACTC	780
AAGTTATCCACACAACTTCATGAGCACAAGGAGGGGCCAGCCTGCAGAGGGGACTCTCAC	840
CTAGTTCTTCAGCAAGTAGAGATAAGAGCCATCCCATCC	900
GGTACATGTTCCTCCGTGGGTACACGCTTCGCTGCGGCCCAGGAGAGGTGAGGTAGGGA	960
PGGGTAGAGCCTTTGGGCTGTCTCAGAGTCTTTGGGAGCACCGTGAAGGCTGCATCCACA	1020
CACAGCTGGAAACTCCCAAGCAGCACCACGATGGAAGCACTTATTTAT	1080
**************************************	1140
TGAGGAAGGCTCCTGGGGTGCTGCTTTCAATCCTATTGATGGGTCTGCCCGAGGCAAACC	1200
FAATTTTTGAGTGACTGGAAGGAAGGTTGGGATCTTCCAAACAAGAGTCTATGCAGGTAG	1260
GCTCAAGATTGACCTCTGGTGACTGGTTTTGTTTCTATTGTGACTGAC	1320
CGTTTGCAGCGGCATTGCCGGGAGCATAGGCTAGGTTATTATCAAAAGCAGATGAATTT	1360
GTCAAGTGTAATATGTATCTATGTGCACCTGAGGGTAGAGGATGTGTTAGAGGGAGG	1440
AAGGATCCGGAAGTGTTCTCTGAATTACATATGTGTGGTAGGCTTTTCTGAAAGGGTGA	1500
GCATTTTCTTACCTCTGTGGCCACATAGTGTGGCTTTGTGAAAAGGACAAAGGAGTTGA	1560
TCTTTCCGGAACATTTGGAGTGTACCAGGCACCCTTGGAGGGGCTAAAGCTACAGGCCT	1620
TTGTTGGCATATTGCTGAGCTCAGGGAGTGAGGGCCCCACATTTGAGACAGTGAGCCCC	1680
AGAAAAGGGTCCCTGGTGTAGATCTCCAAGGTTGTCCAGGGTTGATCTCACAATGCGTT	1740
CTTAAGCAGGTAGACGTTTGCATGCCAATATGTGGTTCTCATCTGATTGGTTCATCCAA	1800
GTAGAACCCTGTCTCCCACCCATTCTGTGGGGAGTTTTGTTCCAGTGGGAATGAGAAAT	
•	1#60
ACTTAGCAGATGGTCCTGAGCCCTGGGCCAGCACTGCTGAGGAAGTGCCAGGGCCCCAG	1920
CCAGGCTGCCAGAATTGCCCTTCGGGCTGGAGGATGAACAAAGGGGCTTGGGTTTTTCC	1980
TCACCCCTGCACCCTATGTCACCATCAAACTGGGGGGCAGATCAGTGAGAGACACTTG	2040
TGGAAAGCAATACACTTTAAGACTGAGCACAGTTTCGTGCTCAGCTCTGTCTG	2100
GAGCTAGAGAAGCTCACCACATACATATAAAAATCAGAGGCTCATGTCCCTGTGGTTAG	2160
CCCTACTCGCGGCGGTGTACTCCACCACAGCAGCACCGCACCGCTGGAAGTACAGTGCT	2220
TCTTCAACAGGTGTGAAAGAACCTGAGCTGAGGGTGACAGTGCCCAGGGGGAACCCTGCT	2280
GCAGTCTATTGCATTTACATACCGCATTTCAGGGCACATTAGCATCCACTCCTATGGTA	2340
CACACTGTTGACAATAGGACAAGGGATAGGGGTTGACTATCCCTTATCCAAAATGCTTG	2400
GACTAGAAGAGTTTTGGATTTTAGAGTCTTTTCAGGCATAGGTATATTTGAGTATATAT	2460
MATGAGATATCTTGGGGATGGGGCCCAAGTATAAACATGAAGTTCATTTATATTTCAT	2520
ATACCGTATAGACACTGCTTGAAGTGTAGTTTTATACAGTGTTTTAAATAACGTTGTAT	2580
**************************************	2640
#GTTTTGGAGCAGTTTGGATCTTGGGTTTTCTGTTAAGAGATGGTTAGCTTATACCTAA	2700
NCCATAATGGCAAACAGGCTGCAGGACCAGACTGGATCCTCAGCCCTGAAGTGTGCCCT	2760
CAGCCAGGTCATACCCTGTGGAGGTGAGCGGGATCAGGTTTTTGTGGTGCTAAGAGAGG	2820
TTGGAGGTAGATTTGGAGGATGTGAGGGG	2040

GGTT(G CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACO	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
	GTGCCCATCCA				150
	' GTCACCAGGA				200
	GAAAGTCACC				250
	TATCCAAGAT				300
	ATGCCTTCCA				350
	GGATCTTCTT				400
	CCAGTGGCCT				450
	GGCTACTCCA				
	GGACATGCTG				500
	GTCACTCTTC				550
	GGTATCTCCA				600
					650
3	CTGTCAATTT (CCCIGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
-					701

Mouse	MCWRPLCRFL	WLWSYLSYVQ	AVPIQKVQDD	TKTLIKTIVT	RINDISHTQS	50
Human		WLWPYLFYVQ	AVPIQKVQDD	TKTLIKTIVT	RINDISHTQS	
Mouse	VSAKQRVTGL	DFIPGLHPIL	SLSKMDQTLA	VYQQVLTSLP	SQNVLQIAND	100
Human	VSSKQKVTGL	DFIPGLHPIL	TLSKMDQTLA	VYQQILTSMP	SRNVIQISND	
Mouse	LENLRDLLHL	LAFSKSCSLP	QTSGLQKPES	LDGVLEASLY	STEVVALSRL	150
Human	LENLRDLLHV	LAFSKSCHLP	WASGLETLDS	LGGVLEASGY	STEVVALSRL	
Mouse	QGSLQDILQQ - *	LDVSPEC				167
Human	OGST.ODMT.WO	LDLSPGC				

1 Met Cys Trp Arg Pro Leu Cys Arg Phe Leu Trp Leu Trp Ser Tyr 16 Leu Ser Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile 31 Ser His Thr Ser Val Ser Ala Lys Gln Arg Val Thr Gly Leu Asp 46 Phe Ile Pro Gly Leu His Pro Ile Leu Ser Leu Ser Lys Met Asp 61 Gln Thr Leu Ala Val Tyr Gln Gln Val Leu Thr Ser Leu Pro Ser 76 Gln Asn Val Leu Gln Ile Ala Asn Asp Leu Glu Asn Leu Arg Asp 91 Leu Leu His Leu Leu Ala Phe Ser Lys Ser Cys Ser Leu Pro din 106 Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp Gly Val Leu Glu 121 Ala Ser Leu Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu Gln 136 Gly Ser Leu Gln Asp Ile Leu Gln Gln Leu Asp Val Ser Pro dlu 151 166 Cys End

1 Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr
16 Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp
31 Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile
46 Ser His Thr Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp
61 Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp
76 Gln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser
91 Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp
106 Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro Trp
121 Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Cly Val Leu Glu
136 Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu Gln
151 Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro Gly
166 Cys End

Figure 9


```
GTGCAAGAAG AAGAAGATCC CAGGGCAGGA AAATGTCCTG GAGACCCCTG
  CACGTTCTTC TTCTTCTAGG GTCCCGTCCT TTTACACGAC CTCTGGGGAC
               +10
                         +20
                               +30
                                              +40
      TGTCGGGTCC NGTGGNTTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC
     ACAGCCCAGG NCACCNAAAC CAGGATAGAC AGAATACANG TTCGTCACGG
+10 +20 ? +30 ;+40
TATCCAGAAA GTCCAGGATG ACACCAAAAG CCTCATCAAG ACCATTGTCA
101 -----
  ATAGGTCTTT CAGGTCCTAC TGTGGTTTTC GGAGTAGTTC TGGTAACAGT
                   +20
              +10
                                    +30
 NCAGGATCAC TGANATTTCA CACACG
 151.?----
NGTCCTAGTG ACTNTAAAGT GTGTGC
```

Figure 11A

IIB Figure

18S |

white fat

brain

small intestine

stomach

pancreas

lung

testis

heart

spleen

liver

Figure 12A

Figure 12 B

SM/Ckc-+*Dac*-+/+ fat
SM/Ckc-+*Dac-ob^{2J}/ob^{2J}* fat
C57BL/6J +/+ fat
C57BL/6J ob/ob fat

2G7

-28S -18S

Actin

- 18S

Figure 13

Figure 14

Figure 15A

Figure 16

Figure 15B

BgIII Digests

+/+ control

obese
lean
obese
lean
obese
lean
obese
lean
obese

فينية فينية فينية

	11 biguigiai bumat \$68348-1			
Bg/11	17 promoter	lac operator		
AGATETEGATECEGES	AAATTAATAUGACTCACTATAGGG	GAATTGTGACCCGATAACAA	Xba	rbe
Nco I	His-Tag*	ATT TO STATE GEN TARE HA	1	TTAACTTTAAGAAGGAG.
		*************	Ndel Xnol BamH l	
MatGlySerS	GCCATCATCATCACAGCA BOTHISHISHISHISHISBOCS	GCCCCCCGCGCGCGCGCA	GCCATATGC TCGAGGATCCGGC	TGCTAACAAAGCCCGA
	<i>Bpu</i> 11021	momoin	17 berminator	
AACCAAGCTGAGTTGG	CTGCTGCCACCGCTGAGCAATAAC	TACCATALCCCTTCCCCCC	C711.0000 T0 T0 T0	
LA 201 AV 1 a B I A F A F	I MA I WAT OF THE A I WE I WE I WE I WE I	. TOTAL CALL COLLEGE COLL	C. AAACGGGTCTTGAGGGGTTT	TIIG
	4	•		

Figure 18 A

Figure 18B

insoluble
linsoluble
Flow thr.

South
South
300 mm
300 mm

Figure 19A

Figure 19B

			<u>, , , , , , , , , , , , , , , , , , , </u>		
	10	2	:0 !	30 4	50
	GGTTGCAAGG		C CCATCCTGG	G AAGGAAAAT	G CATTGGGGAA
	60	HOB19# 7	'O .	30 °° 8	jo 190
	CCCTGTGCGG	ATTCTTGTG	G CTTTGGCCC	T ATCTTTCT	A TGTCCAAGCT
	110	1:	, 1	30 1	40 1 <u>5</u> 0
	GTGCCCATCC	AAAAAGTCC	A AGATGACAC	C AAAACCCTC	A TCAAGACAAT
	160	1	?0 1	80 35'0f 1	1ST INTRON
	TGTCACCAGG	ATCAATGAC	A TTTCACACA	C GETAAGGAG	A GTATGCGGGG
	210	22		30 24	
	ACAAAGTAGA	ACTGCAGCC	A GCCCAGCAC	T GGCTCCTAG	T GGCACTGGAC
	260	27		80 29	NOBAL D
-	CCAGATAGTC	CAAGAAACA	TTATTCAAC	1 7	GCCAGGCACC
	310	32			
4	TACTCCAAGC			1	CACTCTTTCTG
	360	37			_
4		- 1	-	l' - 1	• • • •
				G AGATNCCAGO	
4	410	42	- 1	1	770
1	TCTTAATTCC	TAAA	AP OF SEQU	ENCE (~ 1.	4-651CT
	460	47	0 48	0 19	500
7	GGTTCTTTCA	GGAAGAGGCC	ATGTAAGAG	AAGGAATTGA	CCTAGGGAAA
	510	52	0 53	0 54	0 550
٦	ATTGGCCTGG	SAAGTGGAGG	GAACGGATG	TGTGGGAAAA	GCAGGAATCT
١	560	57	0 58	0 59	0 <u> </u>
1	CCCAGACCAG (CTTAGAGGCT	TGGCAGTCAC	CTGGGTGCAG	GANACAAGGG
1	610	62	63	0 640	0 650
7	CCTGAGCCAA A	GTGGTGAGG	GAGGGTGGAA	GGAGACAGCC	CAGAGAATGA
	နေဝ	670			
1	CCCTCCATGC (CACGGGGAA	GGCAGAGGGC	TCTGAGAGCG	1 -
1	710	720	3 0 4 5 T	NTRON 740	
1	CATGCTGAGC A	CTTGTTCTC	CCTCTTCCTC	CTNCATAGCA	GTCAGTCTCC
ľ	HOB 28 F 760	770		790	
1	TCCAAACAGA A	AGTCACCGG	TTTGGACTTC	ATTCCTGGGC	1
	810	820			
+	CCTGACCTTA T	CCAAGATCC		GGCAGTCTAC	٥٢٥
	860	870			
1		CCTTCCACA		AAATATCCAA	7,0
1		COLICCAGA	PUCCIONICE	AAATATCCAA	CGACCTGGAG

9	ì°	920	930	940	950	
AACCTCCGG	G ATCT	CTTCA CGT	GCTGGCC TTCT	CTAAGA GCT	GCCACTT	
	60	970	980	990	1000	
GCCCTGGGc	C AGTG	CCTGG AGA	CCTTGGA CAGC	CTGGGG GGT	TCCTGG	
	10	1020	1030	1040	10,50	
AAGCTTCAG	G CTACI	CCACA GAGO	STGGTGG CCCT	GAGCAG GCTC	CAGGG	
10	60	1070	1080	10,90	1100	
TCTCTGCAGG ACATGCTGTG GCAGCTGGAC CTCAGCCCTG GGTGCTGAGG						
11	10	1120	1130	1140	1150	
CCTTGAAGG	CACTO	TTCCT GCAA	GGACTA CGTTA	AAGGGA AGGA	ACTOTG	
11(60	1170	11,80	11,50	1200	
GCTTCCAGGT	ATCTC	CAGGA TIGA	AGAGCA TTGC	TGGAC ACCC	CTTATC	
121	го но	25/2/20	1230	12,10	12,50	
AGGACTCTG	TCAAT	TTCCC TGAC	TCCTCT AAGCC	ACTOT TOCA	AAGG	

Figure 20B

MOUS	E OB ST	RUCTURE			
!st ex	!st intr	2nd ex	2nd intr	3rd exon	
·	_///////////	ATG			TGA
		start			· stop

Figure 20c

HUMAN OB	STU	CTURE			
	lst	exon	1st intr	2nd exon	
	A7				TGA
	•	start			stop

Figure 21A

Figure 21 B

LEU · GLU · LYS · ARG · GLU · ACA · GLU ·

Figure 21 C

Xho I

LEU.GLU.LYS. ARG.

Ob

CLEMUAGE

Ob

Figure 22A

100-1-087 CIP (5,eet 30 of 31)

Figure 22B

L-MF SIG SEQ.	ecu-èc	HISTAG	THEOMBEN CLEANACE		ob
•	EEF-2 STE-	ig ig		ļ	(FOLICIPING THROUGH DIN CLEAVAGE)
			GLY·SER·PRO·		ob

Figure 23A.

Figure 23B

