DESCRIPTION

PIEZOELECTRIC/ELECTROSTRICTIVE FILM TYPE ACTUATOR AND METHOD OF MANUFACTURING THE ACTUATOR

5

10

15

Technical Field

The present invention relates to a piezoelectric/
electrostrictive actuator. More particularly, the present
invention relates to a piezoelectric/electrostrictive film
actuator which is a film type transducer for use in a
displacement control device, solid device motor, ink jet head,
relay, switch, shutter, pump, fin, and the like to operate
based on displacement of the device and capable of converting
mechanical and electric energies and in which an aspect ratio
of a device part can more easily be increased and by which a
higher-speed response and higher energy conversion efficiency
are realized.

Background Art

In recent years, as one of mechanisms for raising pressure in a pressurizing chamber formed in a substrate of an actuator, a mechanism has been known in which a volume of the pressurizing chamber is changed by displacement of a piezoelectric/electrostrictive device disposed in a pressurizing chamber wall. Moreover, such piezoelectric/electrostrictive actuator is used, for example, as an ink pump of a print head for use in an ink jet printer. When ink

is supplied, and the pressure in the charged pressurizing chamber is raised by the displacement of the piezoelectric/ electrostrictive device, ink particles (droplets) are ejected from nozzle holes connected to the pressurizing chamber to perform printing.

For example, in JP-A-6-40035, one example of an ink jet print head using the piezoelectric/electrostrictive actuator shown in the accompanying FIGS. 4 and 5 is disclosed.

An ink jet print head 140 is formed by bonding/

10 integrating an ink nozzle member 142 and piezoelectric/
electrostrictive film type actuator 145, and the ink supplied
to a cavity 146 formed in the piezoelectric/electrostrictive
film type actuator 145 is spouted through nozzle holes 154
disposed in the ink nozzle member 142.

In more detail, the piezoelectric/electrostrictive film type actuator 145 is constituted of a ceramic substrate 144 and a piezoelectric/electrostrictive device 178 integrally formed in the ceramic substrate 144. The ceramic substrate 144 is integrally formed including a structure in which a closing plate 166 and connection plate 168 each having a thin flat plate shape are stacked via a spacer plate 170.

In the structure, in the connection plate 168, a first opening for connection 172 and second opening for connection 174 are formed in positions opposite to a through hole 156 and orifice hole 158 formed in an orifice plate 150 of the ink nozzle member 142. It is to be noted that the

25

first opening for connection 172 has an inner diameter substantially the same as or slightly larger than that of the through hole 156. On the other hand, the diameter of the second opening for connection 174 is set to be larger than that of the orifice hole 158 by a predetermined dimension.

Moreover, a plurality of longitudinally rectangular windows 176 are formed in the spacer plate 170. Moreover, the spacer plate 170 is stacked onto the connection plate 168 so that the first opening for connection 172 and second opening for connection 174 disposed in the connection plate 168 are opened to the respective windows 176.

10

15

Furthermore, the closing plate 166 is stacked in the surface of the spacer plate 170 on a side opposite to the side on which the connection plate 168 is stacked, and the openings of the windows 176 are covered with this closing plate 166. Accordingly, a cavity 146 connected to the outside through the first and second openings for connection 172, 174 is formed in the ceramic substrate 144.

type actuator 145, in order to obtain a large displacement for ejecting larger droplets, it is effective to reduce the thickness of the closing plate 166 (vibration plate) or to enlarge the width of the longitudinally rectangular window 176 (cavity) in a short-side direction, but there is a problem that rigidity drops and high-speed response is impaired.

On the other hand, the rigidity needs to be enhanced

in order to obtain more superior high-speed response, and it is effective to increase the thickness of the closing plate 166 (vibration plate) or to reduce the width of the longitudinally rectangular window 176 (cavity) in the short-side direction, but there is a problem that the displacement is reduced and a necessary amount of droplets cannot be ejected. That is, in a demand for a higher capability of the piezoelectric/electrostrictive actuator, it has been difficult to establish both the large displacement and high-speed response only by optimization of the dimension.

The present invention has been developed considering from the problem of the related art, and an object thereof is to provide a superior piezoelectric/electrostrictive film type actuator which can easily highly be integrated without including a laminated structure using an adhesive and in which a larger displacement is obtained with the same driving voltage and which is fast in response speed and large in generation force, and a manufacturing method of the actuator.

20 Disclosure of the Invention

10

15

25

That is, according to the present invention, there is provided a piezoelectric/electrostrictive film type actuator which comprises a ceramic substrate, and a piezoelectric/electrostrictive device containing a piezoelectric/electrostrictive film(s) and an electrode film(s) and being disposed on the ceramic substrate; said actuator being driven by displacement of the piezoelectric/

electrostrictive device, characterized in that the
piezoelectric/electrostrictive device wherein piezoelectric/
electrostrictive films and electrode films are alternately
laminated so as to form the electrode film from uppermost and
lowermost layers possesses a plurality of layers of
piezoelectric/electrostrictive films. The piezoelectric/
electrostrictive device preferably includes two to four
layers of piezoelectric/electrostrictive films.

In the piezoelectric/electrostrictive device of the piezoelectric/electrostrictive film type actuator of the present invention, a thickness t_n of an n-th piezoelectric/electrostrictive film from the bottom preferably satisfies the following equation:

 $t_n \leq t_{n-1} \times 0.95$.

20

25

15 The thickness per layer of the piezoelectric/electrostrictive film is preferably 30 μm or less.

In the present invention, at least one layer of piezoelectric/electrostrictive film is preferably formed by an electrophoresis deposition method. Two or more piezoelectric/electrostrictive devices are preferably arranged on the same ceramic substrate.

In the piezoelectric/electrostrictive film type actuator, it is preferable to laminate a plurality of layers of thin plates to form the ceramic substrate when one imparts to the device a mechanism for pressurizing a part of the wall of the cavity formed in the internal portion of the ceramic substrate and being deformed by the piezoelectric/

electrostrictive device. More preferably, two or three layers of thin plates are laminated to constitute the ceramic substrate. At this time, the thickness of a thinner portion of the ceramic substrate is preferably 50 μ m or less.

5

10

15

20

25

In the present invention, a material containing any of zirconium oxide, aluminum oxide, magnesium oxide, aluminum nitride, and silicon nitride as a major component can preferably be used in the ceramic substrate. Zirconium oxide, in further detail, partially stabilized zirconium oxide or completely stabilized zirconium oxide is preferable in high strength or high tenacity.

The piezoelectric/electrostrictive film type actuator of the present invention can preferably be used as an ink pump of a printer head disposed in an ink jet printer.

Next, according to the present invention, there is provided a piezoelectric/electrostrictive film type actuator which comprises a ceramic substrate and a piezoelectric/electrostrictive device disposed on the ceramic substrate and including a piezoelectric/electrostrictive film and electrode film; said substrate being provided with a cavity formed in the internal portion thereof and said cavity being pressurized by deforming a part of the wall thereof with the piezoelectric/electrostrictive device; characterized in that the piezoelectric/electrostrictive film type actuator is prepared by a method of: preparing a green sheet laminate including at least one green sheet to be a substrate and one or a plurality of green sheets in which at least one hole

portion is formed; sintering the green sheet laminate to obtain a ceramic laminate; forming an electrode film (A) in the outer surface of the obtained ceramic laminate by a film forming method; thereafter forming a piezoelectric/

- electrostrictive film (A) on the electrode film (A) by the film forming method; further forming an electrode film (B) on the piezoelectric/electrostrictive film (A) by the film forming method; repeating the forming of the piezoelectric/electrostrictive film (A) and electrode film (B) once or a
- plurality of times; thereafter forming a piezoelectric/
 electrostrictive film (B) on the electrode film (B) by the
 film forming method; further forming an electrode film (C) on
 the piezoelectric/electrostrictive film (B) by the film
 forming method; and sintering the piezoelectric/
- electrostrictive film and/or the electrode film predetermined times at an arbitrary timing during a period after the electrode film (A) is formed until the electrode film (C) is formed.

In the present invention, a thickness t_n of the piezoelectric/electrostrictive film formed n-th time preferably satisfies the following equation:

 $t_n \leq t_{n-1} \times 0.95.$

Moreover, in the steps of forming and sintering the electrode film (B) at a sintering temperature Tm1 (°C) and forming and sintering the piezoelectric/electrostrictive film (B) at a sintering temperature Tm2 (°C), the following equation is preferably satisfied:

 $0 \le \text{Tm}2-\text{Tm}1 \le 300$.

15

20

25

In the piezoelectric/electrostrictive film type
actuator prepared by the above-described method, the
piezoelectric/electrostrictive film and electrode film are

5 subjected to a plurality of film forming methods per layer
and can be formed. For the film forming method, at least one
thick film forming method selected from a group consisting of
a screen printing method, dipping method, coating method, and
electrophoresis deposition method can be used. Furthermore,

10 as the film forming method of the piezoelectric/
electrostrictive film, it is preferable to use the screen
printing method first time and use the electrophoresis
deposition method second and subsequent times.

Moreover, in the piezoelectric/electrostrictive film type actuator prepared by the above-described method, two or three green sheets in which at least one hole portion is formed are preferably laminated.

The piezoelectric/electrostrictive film type actuator prepared by the above-described method can preferably be used as an ink pump of a printer head disposed in an ink jet printer.

Furthermore, according to the present invention, there is provided a manufacturing method of a piezoelectric/electrostrictive film type actuator which comprises a ceramic substrate and a piezoelectric/electrostrictive device disposed on the ceramic substrate and including a piezoelectric/electrostrictive film and electrode

film; said substrate being provided with a cavity formed in the internal portion thereof and said cavity being pressurized by deforming a part of the wall thereof with the piezoelectric/electrostrictive device; characterized in that 5 the method comprising: a step A of preparing a green sheet laminate including at least one green sheet to be a substrate and at least one green sheet in which at least one hole portion is formed and sintering the green sheet laminate to obtain a ceramic laminate: a step B of forming an electrode 10 film (A) in the outer surface of the obtained ceramic laminate by a film forming method; a step C of forming a piezoelectric/electrostrictive film (A) on the electrode film (A) by the film forming method; a step D of further forming an electrode film (B) on the piezoelectric/ electrostrictive 15 film (A) by the film forming method; a step E of forming a piezoelectric/electrostrictive film (B) on the electrode film (B) by the film forming method after repeating the steps C and D once or a plurality of times; and further a step F of forming an electrode film (C) on the 20 piezoelectric/electrostrictive film (B) by the film forming method, and that the sintering of the piezoelectric/ electrostrictive film and/or the electrode film is performed the predetermined times at an arbitrary timing during a

In the present invention, a thickness t_{n} of the piezoelectric/electrostrictive film formed n-th time

period after the electrode film (A) is formed until the

electrode film (C) is formed.

25

preferably satisfies the following equation:

 $t_n \le t_{n-1} \times 0.95$.

Moreover, in the steps of forming and sintering the electrode film (B) at a sintering temperature Tml (°C) and forming and sintering the piezoelectric/electrostrictive film (B) at a sintering temperature Tm2 (°C), the following equation is preferably satisfied:

 $0 \le Tm2-Tm1 \le 300$.

10

15

20

25

In the manufacturing method of the present invention, the piezoelectric/electrostrictive film and electrode film can be subjected to a plurality of film forming methods per layer and formed. For the film forming method, at least one thick film forming method selected from a group consisting of a screen printing method, dipping method, coating method, and electrophoresis deposition method can be used. Furthermore, as the film forming method of the piezoelectric/ electrostrictive film, it is also possible to use the screen printing method first time and use the electrophoresis deposition method second and subsequent times.

In the manufacturing method of the present invention, the step A preferably includes a step of preparing one or a plurality of laminated green sheets which form the substrate and in each of which at least one hole portion is formed.

More preferably, two or three green sheets in which at least one hole portion is formed are laminated.

The piezoelectric/electrostrictive film type actuator obtained by the manufacturing method of the present

invention can preferably be used as an ink pump of a printer head disposed in an ink jet printer.

Brief Description of the Drawings

20

FIG. 1 is a sectional view showing an embodiment of a piezoelectric/electrostrictive film type actuator of the present invention;

FIG. 2 is a sectional view showing another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention;

FIG. 3 is an exploded perspective view showing a structure of the piezoelectric/electrostrictive film type actuator of the present invention;

FIG. 4 is a sectional view showing another example of a conventional actuator;

FIG. 5 is an AA' sectional view of FIG. 4, showing another example of the conventional actuator;

FIG. 6 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention;

FIG. 7 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention;

FIG. 8 is a sectional view showing one embodiment of
the piezoelectric/electrostrictive film type actuator of the
present invention as seen from a short-side direction of the
piezoelectric/electrostrictive film;

- FIG. 9 is a sectional view showing another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;
- FIG. 10 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

5

15

20

- FIG. 11 is a sectional view showing still another

 10 embodiment of the piezoelectric/electrostrictive film type
 actuator of the present invention as seen from the short-side
 direction of the piezoelectric/electrostrictive film;
 - FIG. 12 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;
 - FIG. 13 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;
 - FIG. 14 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;
- 25 FIG. 15 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side

direction of the piezoelectric/electrostrictive film;

FIG. 16 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 17 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 18 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

10

15

20

25

FIG. 19 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 20 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 21 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 22 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type

actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 23 is a sectional view showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention as seen from the short-side direction of the piezoelectric/electrostrictive film;

FIG. 24 is a diagram showing the embodiment of the piezoelectric/electrostrictive film type actuator, and shows a sectional view and plan view of a conventional actuator including one layer of the piezoelectric/electrostrictive film and an actuator including two layers of the piezoelectric/electrostrictive films according to the present invention;

10

FIG. 25 is a diagram showing another embodiment of
the piezoelectric/electrostrictive film type actuator, and
shows a sectional view and plan view of the actuator
including two layers of the piezoelectric/electrostrictive
films according to the present invention;

FIG. 26 is a diagram showing still another

20 embodiment of the piezoelectric/electrostrictive film type
actuator, and shows a sectional view and plan view of the
actuator including two layers of the
piezoelectric/electrostrictive films according to the present
invention:

25 FIG. 27 is a diagram showing one embodiment of the piezoelectric/electrostrictive film type actuator according to the present invention, and is a sectional view showing one

actual shape example of the embodiment corresponding to FIG. 8;

FIG. 28 is a diagram showing one embodiment of the piezoelectric/electrostrictive film type actuator of the present invention, and is a sectional view showing another actual shape example of the embodiment corresponding to FIG. 8;

FIG. 29 is a diagram showing one embodiment of the piezoelectric/electrostrictive film type actuator of the present invention, and is a sectional view showing another actual shape example of the embodiment corresponding to FIG. 8;

10

15

20

FIG. 30 is a diagram showing one embodiment of the piezoelectric/electrostrictive film type actuator of the present invention, and is a sectional view seen from the short-side direction of the piezoelectric/electrostrictive film showing the actual shape example;

FIG. 31 is a diagram showing one embodiment of the piezoelectric/electrostrictive film type actuator of the present invention, and is a sectional view seen from the short-side direction of the piezoelectric/electrostrictive film showing another actual shape example; and

FIG. 32 is a diagram showing one embodiment of the piezoelectric/electrostrictive film type actuator of the present invention, and is a sectional view seen from the short-side direction of the piezoelectric/electrostrictive film showing still another actual shape example.

Best Mode for Carrying out the Invention

Embodiments of a piezoelectric/electrostrictive film type actuator of the present invention will concretely be described hereinafter, but the present invention should be interpreted without being bound to these, and various changes, modifications, and improvements can be added based on knowledge of a person skilled in the art without departing from the scope of the present invention.

The present invention is an invention relating to the piezoelectric/electrostrictive film type actuator which is driven by displacement of a piezoelectric/electrostrictive device. A structure of the piezoelectric/electrostrictive film type actuator of the present invention is constituted of: a ceramic substrate; and a piezoelectric/electrostrictive device disposed on the ceramic substrate, and further the piezoelectric/electrostrictive device is constituted of a piezoelectric/electrostrictive film and electrode film.

In the present invention, the piezoelectric/

electrostrictive device has a characteristic feature that the
piezoelectric/electrostrictive film and electrode film are
alternately laminated so as to form the electrode film from
the uppermost and lowermost layers, and it preferably has two
to four layers of the piezoelectric/ electrostrictive films.

In this piezoelectric/electrostrictive film type actuator in
which the piezoelectric/electrostrictive film and electrode
film are laminated in layers on the substrate, a thin-film

piezoelectric/electrostrictive device can be formed in which the thickness of the piezoelectric/electrostrictive film per layer is thinned and set, for example, to 30 µm or less. Additionally, when the films are laminated, a thick piezoelectric/electrostrictive device having a high aspect ratio can be formed. Therefore, as compared with the piezoelectric/electrostrictive device whose thickness per layer is the same and which includes only one layer of the piezoelectric/electrostrictive film, high rigidity is 10 obtained in a portion which is bent/displaced to raise a response speed. Moreover, since a plurality of piezoelectric/electrostrictive films are driven, a large generation force is wholly obtained. Even with the high rigidity, a relatively large displacement can be obtained. 15 Furthermore, as compared with the piezoelectric/ electrostrictive device whose total thickness of the piezoelectric/electrostrictive device is the same and whose thickness per layer is large and which includes only one layer of the piezoelectric/electrostrictive film, an electric field intensity is high even with the same driving voltage, 20

more piezoelectric/electrostrictive devices on the same substrate, and high integration can be realized.

The present invention is also characterized in that the actuator is manufactured by: forming the electrode film

on the outer surface of a ceramic laminate which is the

be attained. Furthermore, it is easier to arrange two or

and a relatively larger displacement and generation force can

substrate by a film forming method; forming the piezoelectric/electrostrictive film on the electrode film by the film forming method; further forming the electrode film on the piezoelectric/electrostrictive film by the film 5 forming method; repeating the forming of these piezoelectric/electrostrictive film and electrode film preferably a plurality of times; and integrating the piezoelectric/electrostrictive film and electrode film by sintering, that is, heat treatment. Since a method of bonding and integrating thin plates as in a method for use in 10 a conventional bimorph type actuator is not used, stability for long-time use is superior, reliability is high, and a drift of a displacement amount can further be suppressed. A timing for sintering the piezoelectric/electrostrictive film and electrode film is not limited, and the sintering may be 15 performed at an arbitrary time between the forming of the first electrode film and the forming of the last electrode film the desired number of times.

that at least one layer of the piezoelectric/electrostrictive film is formed preferably by an electrophoresis deposition method. When the electrophoresis deposition method of applying an electric field to a slurry containing material particles, for example, ceramic particles to deposit the

25 material particles in a predetermined place is used, it is possible to automatically form the piezoelectric/electrostrictive film on the electrode with a high density

and shape precision. Especially when a finer arrangement pattern is formed, or when the film having a higher aspect ratio is formed, mass production is possible with good precision. For example, alignment in using screen printing or preparation and management of a printing plate in accordance with a difference of sintering shrinkage of the substrate are unnecessary, the steps are saved, and man power can further be saved.

The piezoelectric/electrostrictive film type

10 actuator of the present invention will be described

hereinafter with reference to the drawings.

15

First, the embodiment will be described.

FIGS. 1 and 2 are sectional views showing one example of the embodiment relating to the piezoelectric/ electrostrictive film type actuator of the present invention.

FIG. 3 is an exploded perspective view showing a structure of the piezoelectric/electrostrictive film type actuator of the present invention.

A piezoelectric/electrostrictive film type actuator
20 21 shown in FIG. 2 is constituted of a ceramic substrate 44,
and a piezoelectric/electrostrictive device 78 formed
integrally with the ceramic substrate 44. The ceramic
substrate 44 possesses a structure in which a closing plate
66 and connection plate 68 having thin flat plate shapes are
25 stacked via a spacer plate 70.

Hole portions for connection 72, 74 are formed in the connection plate 68. As shown in FIG. 3, a plurality of

openings 76 whose horizontally sectional shapes are substantially rectangular are formed in the spacer plate 70. Moreover, the spacer plate 70 is stacked onto the connection plate 68 so that the hole portions for connection 72, 74 open with respect to the respective openings 76.

In the spacer plate 70, the closing plate 66 is stacked on the surface on a side opposite to the surface on which the connection plate 68 is stacked, and this closing plate 66 covers the openings 76 of the spacer plate 70. In this manner, in the ceramic substrate 44, a plurality of cavities 46 connected to the outside through the hole portions for connection 72, 74 shown in FIG. 2 are formed in the same ceramic substrate.

10

A piezoelectric/electrostrictive film type actuator 11 shown in FIG. 1 includes a structure in which the 15 connection plate 68 is omitted from the above-described piezoelectric/electrostrictive film type actuator 21. is, the piezoelectric/electrostrictive film type actuator 11 includes a substrate constituted by stacking two layers of thin ceramic plates, and the piezoelectric/electrostrictive 20 film type actuator 21 includes a substrate constituted by stacking three layers of thin ceramic plates. actuator is manufactured through manufacturing steps described later, a three-layers structure is more preferable such as the piezoelectric/electrostrictive film type actuator 25 21 in order to enhance yield.

That is, since the green sheet sintered to form the

substrate has flexibility, the sheet is originally difficult to handle. For example, unless a support method is carefully performed at a supply time into a sintering furnace, the sheet has a problem that the sheet is distorted or broken by its own weight or is easily deformed after sintered. Therefore, for the piezoelectric/electrostrictive film type actuator 21 with the three-layers structure including the connection plate 68, the rigidity is further enhanced in the laminated green sheets. Therefore, the actuator is easier to 10 handle as compared with the piezoelectric/electrostrictive film type actuator 11 including the two-layers structure in which the connection plate 68 is not disposed. generation of defective actuators caused by the handling can be reduced. Furthermore, even when the cavities 46 are 15 arranged in the ceramic substrate 44 with the high density, in case of the piezoelectric/electrostrictive film type actuator 21 possessing the three-layers structure in which the connection plate 68 is disposed, one may use it for practical use. However, one may hardly use practically the 20 actuator possessing the two-layers structure, though.

In the piezoelectric/electrostrictive film type actuators 11, 21, a plurality of piezoelectric/ electrostrictive devices 78 are disposed in positions, preferably, opposite to the plurality of cavities 46 in the outer surface of the closing plate 66 of the above-described ceramic substrate 44. The piezoelectric/electrostrictive device 78 includes a lower electrode film 77, piezoelectric/

25

electrostrictive film 79, intermediate electrode film 73, piezoelectric/electrostrictive film 79, and upper electrode film 75 in order from below on the closing plate 66, and is formed by the film forming method.

5

10

15

In the piezoelectric/electrostrictive film type actuators 11, 21 structured in this manner, when electricity is conducted between an odd-numbered electrode film (lower electrode film 77 and upper electrode film 75) and even-numbered electrode film (intermediate electrode film 73) from below in the same manner as in the related art, an electric field function is generated in the respective piezoelectric/electrostrictive films 79. An electric field inducted strain of the piezoelectric/electrostrictive film 79 is induced based on the electric field, and flexural displacement or generation force in a vertical direction are developed in the ceramic substrate 44 because of a lateral effect.

When five layers are laminated in total including two layers of piezoelectric/electrostrictive films 79 as in the piezoelectric/electrostrictive film type actuators 11, 21, it is easy to form a so-called high aspect ratio piezoelectric/electrostrictive device having a high ratio of a height in the vertical direction with respect to a width of a horizontal direction. In the piezoelectric/ electrostrictive device having the high aspect ratio, a high rigidity is obtained in a portion which is flexurally displaced and the response speed is raised. Since a plurality of piezoelectric/electrostrictive films are driven,

a large generation force is wholly obtained. Even with the high rigidity, the relatively large displacement can be obtained.

FIGS. 7 and 6 are sectional views showing still another embodiment of the piezoelectric/electrostrictive film type actuator of the present invention.

A piezoelectric/electrostrictive film type actuator 71 shown in FIG. 7 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one layer, whereas the piezoelectric/electrostrictive device 78 10 of the piezoelectric/electrostrictive film type actuator 11 has two layers thereof. A piezoelectric/electrostrictive film type actuator 81 shown in FIG. 6 is a one having three layers of piezoelectric/electrostrictive films 79 with 15 addition of one layer, whereas the piezoelectric/ electrostrictive device 78 of the piezoelectric/ electrostrictive film type actuator 21 has two layers thereof. The piezoelectric/electrostrictive device having a higher aspect ratio is formed by laminating in total seven layers 20 inclusive of three layers of piezoelectric/ electrostrictive films 79, a higher rigidity is obtained in the portion which is flexurally displaced, accordingly the response speed is raised, and a larger generation force can be obtained. with the high rigidity, a relatively large displacement can 25 be obtained.

FIGS. 8 to 23 are diagrams showing one embodiment of the piezoelectric/electrostrictive film type actuator of the

present invention, and are sectional views seen from a shortside direction of the piezoelectric/electrostrictive film.

A piezoelectric/electrostrictive film type actuator 108 shown in FIG. 8 is a piezoelectric/electrostrictive film type actuator of a standard mode in which a width of the lower electrode film 77 and piezoelectric/electrostrictive film 79 is smaller than that of the cavities 46 by 10% or more. A piezoelectric/electrostrictive film type actuator 109 shown in FIG. 9 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one layer, whereas the piezoelectric/electrostrictive device 78 of the piezoelectric/electrostrictive film type actuator 108 has two layers thereof.

10

15

20

25

A piezoelectric/electrostrictive film type actuator 110 shown in FIG. 10 is a piezoelectric/electrostrictive film type actuator in which the width of the lower electrode film 77 and piezoelectric/electrostrictive film 79 is smaller than that of the cavities 46 by several percentages. The rigidity and displacement are larger than those of the piezoelectric/electrostrictive film type actuator 108, but it is necessary to position accurately the lower electrode film at the time of manufacturing, with a less productivity. A piezoelectric/electrostrictive film type actuator 111 shown in FIG. 11 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one layer, whereas the piezoelectric/electrostrictive device 78 of the piezoelectric/electrostrictive film type actuator 110 has two

layers thereof.

A piezoelectric/electrostrictive film type actuator
112 shown in FIG. 12 is a piezoelectric/electrostrictive film
type actuator in which only the width of the lower electrode
5 film 77 is larger than that of the cavity 46. The rigidity
is further higher than that of the piezoelectric/electrostrictive film type actuator 110, but the displacement is
slightly inferior. A piezoelectric/electrostrictive film
type actuator 113 shown in FIG. 13 is a one having three
10 layers of piezoelectric/electrostrictive films 79 with
addition of one layer, whereas the piezoelectric/
electrostrictive device 78 of the piezoelectric/electrostrictive film type actuator 112 has two layers thereof.

A piezoelectric/electrostrictive film type actuator 114 shown in FIG. 14 is a piezoelectric/electrostrictive film 15 type actuator in which only the width of the lower electrode film 77 and the first layer of piezoelectric/electrostrictive film 79 is larger than that of the cavities 46. The rigidity is further higher than that of the piezoelectric/ electrostrictive film type actuator 112, but the displacement 20 is slightly inferior. A piezoelectric/electrostrictive film type actuator 115 shown in FIG. 15 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one layer, whereas the piezoelectric/ electrostrictive device 78 of the piezoelectric/ 25 electrostrictive film type actuator 114 has two layers thereof.

A piezoelectric/electrostrictive film type actuator 116 shown in FIG. 16 is a piezoelectric/electrostrictive film type actuator in which only the width of the lower electrode film 77 and piezoelectric/electrostrictive film 79 is larger than that of the cavities 46. The rigidity is further higher than that of the piezoelectric/electrostrictive film type actuator 114, but the displacement is slightly inferior. A piezoelectric/electrostrictive film type actuator 117 shown in FIG. 17 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one layer, whereas the piezoelectric/electrostrictive device 78 of the piezoelectric/electrostrictive film type actuator 116 has two layers thereof.

5

10

A piezoelectric/electrostrictive film type actuator 118 shown in FIG. 18 is a piezoelectric/electrostrictive film 15 type actuator in which the lower electrode film 77 is connected to the adjacent electrode film, and the patterning of the lower electrode is unnecessary. The rigidity and displacement of the piezoelectric/electrostrictive film type actuator 118 are substantially equal to those of the 20 piezoelectric/electrostrictive film type actuator 112. piezoelectric/electrostrictive film type actuator 119 shown in FIG. 19 is a one having three layers of piezoelectric/ electrostrictive films 79 in with addition of one layer, whereas the piezoelectric/electrostrictive device 78 of the 25 piezoelectric/electrostrictive film type actuator 118 has two layers thereof.

A piezoelectric/electrostrictive film type actuator 120 shown in FIG. 20 is a piezoelectric/electrostrictive film type actuator in which the lower electrode film 77 and the first layer of piezoelectric/electrostrictive film 79 are connected to the adjacent electrode film. The patterning of the lower electrode and the first layer of piezoelectric/ electrostrictive film is unnecessary and the productivity is superior, but interference (cross talk) with the adjacent piezoelectric/electrostrictive device is still large. rigidity is further higher than that of the piezoelectric/ electrostrictive film type actuator 114, but the displacement is slightly inferior. A piezoelectric/electrostrictive film type actuator 121 shown in FIG. 21 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one layer, whereas the piezoelectric/electrostrictive device 78 of the piezoelectric/electrostrictive film type actuator 120 has two layers thereof.

5

10

15

20

25

A piezoelectric/electrostrictive film type actuator 122 shown in FIG. 22 is a piezoelectric/electrostrictive film type actuator in which the piezoelectric/electrostrictive films 79 are stacked in a trapezoidal shape and the width of the electrode film 77 is reduced toward the upper part.

There is a merit that a margin of positioning accuracy is taken and a multilayered structure is accordingly relatively easily formed. A piezoelectric/electrostrictive film type actuator 123 shown in FIG. 23 is a one having three layers of piezoelectric/electrostrictive films 79 with addition of one

layer, whereas the piezoelectric/electrostrictive device 78 of the piezoelectric/electrostrictive film type actuator 122 has two layers thereof.

In the piezoelectric/electrostrictive film type actuators shown in FIGS. 8 to 23 described above, the connection plate may be disposed in the ceramic substrate 44, or a structure from which the connection plate is omitted may also be used. Two or more piezoelectric/electrostrictive devices 78 are usually arranged on the ceramic substrate 44.

5

10

15

20

It is to be noted that in the present invention the shapes and arrangements of the actuator and the respective films as constituting elements of the actuator are not especially limited and any shape or arrangement may also be used in accordance with use applications. For the shapes, not only polygonal shapes such as triangular and quadrangular shapes and circular shapes such as circular and elliptic shapes but also special shapes such as a lattice shape may also be used. When the use application is an ink pump of a print head of an ink jet printer, for example, a plurality of cavities and piezoelectric/electrostrictive devices having substantially the same rectangular shape are preferably arranged at a constant interval in the same direction in the same substrate.

Moreover, in the piezoelectric/electrostrictive film

25 type actuator of the present invention, as described above, a
plurality of piezoelectric/electrostrictive devices are
preferably arranged on the same ceramic substrate together

with the cavity formed in the internal portion of the ceramic substrate, but an integration density is preferably as high as possible. For example, when the device is used in the application field as an ink pump of the print head of the ink jet printer, a shortest distance of an interval between the adjacent actuators is preferably 1000 μ m or less. More preferably, a pitch is 500 μ m or less.

5

10

15

20

Next, the shapes and materials of the respective elements constituting the piezoelectric/electrostrictive film type actuator of the present invention will individually and concretely be described.

First, the ceramic substrate will be described.

In the piezoelectric/electrostrictive film type actuator 21 shown in FIG. 2, the ceramic substrate 44 is a substrate-shaped member which has flexibility, and is bent under the displacement of the piezoelectric/electrostrictive device 78 disposed in the surface. For example, the cavities 46 are deformed, and pressure fluctuation is generated in the cavities. Any shape or material of the ceramic substrate 44 is sufficient and may appropriately be selected as long as the substrate has the flexibility and mechanical strength to such an extent that the substrate does not break by bend deformation.

The plate thickness of the closing plate 66 which is a thinner portion of the ceramic substrate 44 is preferably 50 µm or less, more preferably about 3 to 12 µm. The plate thickness of the connection plate 68 is preferably 10 µm or

more, more preferably 50 μ m or more. Furthermore, the plate thickness of the spacer plate 70 is preferably 50 μ m or more.

The shape of the ceramic substrate is not especially limited to the rectangular shape, the circular shape may be used, and the polygonal shapes other than the quadrangular shape, other than the triangular shape, may also be used.

5

10

15

20

25

Ceramic can be used as the material constituting the ceramic substrate and, for example, zirconium oxide, aluminum oxide, magnesium oxide, aluminum nitride, and silicon nitride can preferably be used. In zirconium oxide, a material containing completely stabilized zirconium oxide as a major component and a material containing partially stabilized zirconium oxide are most preferably used because the mechanical strength is high even with small thickness, tenacity is high, and reactivity with the materials of the piezoelectric/electrostrictive film and electrode film is small.

For the completely stabilized zirconium oxide and partially stabilized zirconium oxide, the stabilized/treated oxide is preferable as follows. That is, examples of a compound for stabilizing zirconium oxide include yttrium oxide, ytterbium oxide, cerium oxide, calcium oxide, and magnesium oxide. When at least one compound is added or contained, the zirconium oxide is partially or completely stabilized. For the stabilization, it is possible to stabilize the zirconium oxide not only by addition of one type of compound but also by combination and addition of the

compounds.

5

10

For addition amounts of the compounds, the amount of yttrium oxide or ytterbium oxide is 1 to 30 mol%, preferably 1.5 to 10 mol%. The amount of cerium oxide is 6 to 50 mol%, preferably 8 to 20 mol%. The amount of calcium oxide or magnesium oxide is 5 to 40 mol%, preferably 5 to 20 mol%. Above all, yttrium oxide is preferably used as a stabilizer, and the amount is 1.5 to 10 mol%, further preferably 2 to 4 mol%. As additives such as a sintering aid, alumina, silica, transition metal oxide, and the like are preferably added in a range of 0.05 to 20 wt%.

In order to obtain the above-described mechanical strength and a stabilized crystalline phase, an average crystal particle diameter of zirconium oxide is desirably set to 0.05 to 3 µm, preferably 1 µm or less. For the above-described ceramic substrate, various ceramics other than zirconium oxide can also be used, but preferably substantially the same material is used to constitute the substrate. This is preferable because the reliability of a bond portion, strength of the device, and reduction of manufacturing intricacy are achieved.

Next, the piezoelectric/electrostrictive device will be described.

The piezoelectric/electrostrictive device is

constituted of at least a piezoelectric/electrostrictive film

and a pair of electrode films for applying a voltage to the

piezoelectric/electrostrictive film. The piezoelectric/

electrostrictive film type actuator 21 shown in FIG. 3 is constituted of two layers of piezoelectric/electrostrictive films 79 and the lower electrode film 77, intermediate electrode film 73, and upper electrode film 75 being disposed to sandwich the piezoelectric/electrostrictive films therebetween. The device may be a one constituted of at least one layer of piezoelectric/electrostrictive film and electrode films disposed on and under said at least one layer, however, it is preferable to manufacture a piezoelectric/electrostrictive device of such a multilayered structure that two to four layers of piezoelectric/electrostrictive films are laminated.

As a type of the piezoelectric/electrostrictive device, it is desired to employ a device being superior in the stability of generated displacement, and advantageous in lightening of weight while the thitherto known piezoelectric/electrostrictive device can be still usable. The piezoelectric/electrostrictive device 78 laminated in the films as in the present embodiment is preferable in that respect.

As is shown by the piezoelectric/electrostrictive film type actuator 21 in FIG. 2, it is more preferable to form the piezoelectric/electrostrictive device 78 on the outer surface side of the ceramic substrate 44 because the actuator can be driven by deforming the cavity 46 to a larger extent by applying a pressure and one may manufacture the device with a great easiness. However, the present invention

is not necessarily limited to this, and the device may also be formed on an inner surface side of the cavity 46 in the ceramic substrate 44 or on the both sides thereof.

Any material of the piezoelectric/electrostrictive

5 film may be used as long as the material causes electric
field induced strains such as piezoelectric or
electrostrictive effect. The material may be either
crystalline or amorphous. A semiconductor, ceramic,
ferroelectric ceramic, or antiferroelectric ceramic can also

10 be used. The material may appropriately be selected and used
in accordance with the use application.

Examples of a concrete material include ceramic containing lead zirconate, lead titanate, lead magnesium niobate, lead nickel niobate, lead zinc niobate, lead manganese niobate, lead antimony stannate, lead manganese tungstate, lead cobalt niobate, barium titanate, sodium bismuth titanate, potassium sodium niobate, or strontium bismuth tantalite alone or in a mixture. Especially, a material containing lead zirconate titanate (PZT-system) and lead magnesium niobate (PMN-system) as the major components, or a material containing sodium bismuth titanate as the major component is preferably used, because a stabilized composition having a high electromechanical coupling coefficient and piezoelectric constant and little reactivity with the ceramic substrate at the sintering time of the piezoelectric/electrostrictive film is obtained.

15

20

25

Furthermore, ceramic may also be used in which to

the above-described material, one alone or a mixture of oxides such as lanthanum, calcium, strontium, molybdenum, tungsten, barium, niobium, zinc, nickel, manganese, cerium, cadmium, chromium, cobalt, antimony, iron, yttrium, tantalum, lithium, bismuth, and tin is added. For example, when lead zirconate, lead titanate, and lead magnesium niobate as the major components contain lanthanum or strontium, antielectric field or piezoelectric property can be adjusted, and other advantages are sometimes obtained.

The thickness per layer of the piezoelectric/ electrostrictive film is preferably thinned so that large displacement can be attained with a smaller voltage, and is designed as 100 μm or less. More preferably, the thickness is about 3 to 30 μm . When a plurality of piezoelectric/ electrostrictive films are laminated in the piezoelectric/ electrostrictive device of the piezoelectric/electrostrictive film type actuator, the films are preferably gradually thinned and formed, and are preferably formed so that a thickness t_n of the n-th piezoelectric/electrostrictive film from the bottom satisfies the following equation:

 $t_n \le t_{n-1} \times 0.95$.

5

10

15

20

25

This is because the strain amount of the piezoelectric/electrostrictive film is larger as the applied electric field is higher, that is, as the thickness of the piezoelectric/electrostrictive film is smaller with the same driving voltage. When the piezoelectric/electrostrictive film formed in an upper part is set to be distorted larger

than the piezoelectric/electrostrictive film formed in a lower part, bend efficiency can be raised, and flexural displacement can more effectively be developed.

5

For the piezoelectric/electrostrictive film for use in the piezoelectric/electrostrictive film type actuators 11, 21, 71, 81 of the present invention in FIGS. 1, 2, 6, and 7, from demanded actuator characteristics, a film is preferable whose piezoelectric constant $|\mathbf{d}_{31}|$ is 50×10^{-12} m/V or more. A film is more preferable whose $|\mathbf{d}_{31}|$ is 100×10^{-12} m/V or more.

10 The material of the electrode film of the piezoelectric/electrostrictive device is preferably constituted of a metal which is solid at room temperature and which can bear a high-temperature oxidizing atmosphere around a sintering temperature described in the manufacturing steps 15 described later and which is superior in conductivity. Examples of the material include aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, ruthenium, palladium, rhodium, silver, tin, tantalum, tungsten, iridium, platinum, gold, lead, and another simple 20 metal or an alloy of these. Furthermore, a cermet material may also be used in which the same material as that of the piezoelectric/electrostrictive film or the ceramic substrate is dispersed.

The selection of the material of the electrode film

in the piezoelectric/electrostrictive device sometimes

depends on a method of forming the piezoelectric/

electrostrictive film. For example, in the piezoelectric/

electrostrictive film type actuator 21 of the present invention shown in FIG. 2, when the piezoelectric/ electrostrictive film 79 is sintered and formed on the electrode film 77 after forming the lower electrode film 77 on the ceramic substrate 44, the electrode film 77 requires the use of high-melting metals such as platinum which does not change even at the sintering temperature of the piezoelectric/electrostrictive film 79. However, after forming the piezoelectric/electrostrictive film 79, the electrode film can be formed in the upper electrode film 75 formed on the piezoelectric/electrostrictive film 79 at a low temperature. Therefore, it is also possible to use low-melting metals such as aluminum, gold, and silver.

5

10

The thickness of the electrode film is a

15 considerable factor for drop of the displacement of the piezoelectric/electrostrictive device. Therefore, in the piezoelectric/electrostrictive film type actuator 21 of the present invention shown in FIG. 2, especially when the upper electrode film 75 and intermediate electrode film 73 are

20 formed after forming the piezoelectric/electrostrictive film, it is preferable to use materials of organic metal pastes for obtaining a dense and thinner film after the sintering, such as a gold resinate paste, platinum resinate paste, and silver resinate paste.

The thickness of the electrode film is preferably small in order to secure the displacement amount for driving the film as the actuator. The thickness is usually designed

to be 15 μm or less, more preferably 5 μm or less. Therefore, for example, in the piezoelectric/electrostrictive film type actuators 11, 21 shown in FIGS. 1 and 2, the film thickness of the piezoelectric/electrostrictive device 78 including five layers in total is set to preferably approximately 240 μm or less, more preferably 70 μm or less.

5

10

15

Next, an electrode constitution including a terminal electrode for applying the voltage to the piezoelectric/ electrostrictive device of the piezoelectric/electrostrictive film type actuator according to the present invention will be described with reference to the accompanying drawings. FIG. 24 is a diagram showing the embodiment of the piezoelectric/electrostrictive film type actuator, and show a sectional view and plan view indicating a difference of sizes between a conventional actuator including one layer of piezoelectric/electrostrictive film and an actuator including two layers of piezoelectric/ electrostrictive films according to the present invention.

First, a conventional piezoelectric/electrostrictive

film type actuator 241 including one layer of piezoelectric/
electrostrictive film will be described. The piezoelectric/
electrostrictive film type actuator 241 includes the ceramic
substrate 144 and the piezoelectric/electrostrictive device
178 disposed in a position opposite to the cavity 146. The
piezoelectric/electrostrictive device 178 includes a lower
electrode film 177, piezoelectric/electrostrictive film 179,
and upper electrode film 175 formed in order from a ceramic

substrate 144 side by the film forming method. A terminal electrode 6 is disposed with respect to the lower electrode film 177. For the upper electrode film 175, a terminal electrode 8 is disposed on the ceramic substrate 144 via an auxiliary electrode 7 disposed to be insulated from the lower electrode film 177. The piezoelectric/electrostrictive device 178 is driven by applying the voltage through the terminal electrodes 6, 8. The lower electrode film 177 and upper electrode film 175 are electrically conducted, the electric field function is generated in the piezoelectric/electrostrictive film 179 to induce the electric field inductive strain, and the flexural displacement or generation force is developed in the ceramic substrate 144.

5

10

A reason why the upper electrode film 175 is 15 connected to the terminal electrode 8 via the auxiliary electrode 7 is that further inexpensive silver is used in the material of the terminal electrode, and gold is frequently used in the upper electrode film 175 as described above. Therefore, when the heat treatment such as sintering is 20 performed in a contact state of the terminal electrode 8 with the upper electrode film 175, gold ion in a contact portion is diffused in silver and disappears to cause disconnection. To solve the problem, the auxiliary electrode 7 formed of platinum is used as an intermediary, and the gold ion of the 25 upper electrode film 175 is prevented from being diffused in silver of the terminal electrode 8 and causing the disconnection.

However, as compared with the direct connection of the upper electrode film 175 to the terminal electrode 8, there is a problem that the auxiliary electrode 7 is relayed and the area per chip of the piezoelectric/electrostrictive film type actuator 241 is enlarged by the region of the electrode. It is to be noted that when the material of the terminal electrode 8 is platinum, the auxiliary electrode 7 is unnecessary. However, platinum is expensive as compared with silver, bad in solder wettability, and therefore unfavorable.

Similarly, according to a piezoelectric/
electrostrictive film type actuator 242 including two layers
of piezoelectric/electrostrictive films according to the
present invention shown in FIG. 24, the above-described
problem is solved as described hereinafter, and the area per
chip of the actuator can further be reduced.

The piezoelectric/electrostrictive film type actuator 242 includes the ceramic substrate 44, and the piezoelectric/electrostrictive device 78 disposed in the position opposite to the cavity 46. The piezoelectric/electrostrictive device 78 includes the lower electrode film 77, piezoelectric/electrostrictive film 79, intermediate electrode film 73, piezoelectric/electrostrictive film 79, and upper electrode film 75 formed, respectively, in order from the ceramic substrate 44 side by the film forming method. In the piezoelectric/electrostrictive film type actuator 242, when electricity is supplied between the lower electrode film

77 and upper electrode film 75 and the intermediate electrode film 73, the electric field function is generated in the respective piezoelectric/electrostrictive films 79 and the electric field inductive strain is induced. The flexural displacement and generation force in the vertical direction can be developed in the ceramic substrate 44. Therefore, the lower electrode film 77 is connected to the upper electrode film 75, the conducted terminal electrode 6 is disposed, the intermediate electrode film 73 is connected to the terminal electrode 8, and the voltage is applied through the terminal The terminal electrode 6 may be aligned electrodes 6, 8. with or disposed opposite to the terminal electrode 8 as However, in order to increase the reliability of bond shown. with the piezoelectric/electrostrictive device 78, it is preferable to dispose the electrodes independently of the piezoelectric/electrostrictive device 78 without forming the electrodes on the cavity 46 which is displaced.

5

10

15

20

25

In the intermediate electrode film 73, from the demanded heat resistance, the material is used in which the disconnection is not easily caused by the diffusion and disappearance of the gold ion at the heat treatment time, such as platinum and palladium. Therefore, as a result, the intermediate electrode film 73 can directly be connected to the terminal electrode 8 without any auxiliary electrode. Therefore, an area which has been required for relaying the electrode film and terminal electrode in the piezoelectric/electrostrictive film type actuator 241 is

unnecessary. As shown in one example in FIG. 24, with respect to a width W1 of the piezoelectric/electrostrictive film type actuator 241 in a longitudinal direction, the piezoelectric/electrostrictive film type actuator 242 has a width W2 in the longitudinal direction, and the width can be reduced by ΔW .

5

10

15

20

25

It is to be noted that to maximize this effect, a piezoelectric/electrostrictive film 79 end heretofore stopped in a position slightly projecting from a cavity 46 end is enlarged and formed up to a ceramic substrate 44 end, and the terminal electrode 8 is preferably formed on the intermediate electrode film 73 extended onto the end. In this case, when one chip of the piezoelectric/electrostrictive film type actuator is cut out, a portion of the piezoelectric/electrostrictive film 79 formed on the ceramic substrate 44 is cut. Unless the ceramic substrate 44 is firmly bonded to the piezoelectric/electrostrictive film 79 in an interface, interface peel possibly occurs by shock of cut processing.

A piezoelectric/electrostrictive film type actuator of a more preferable mode including a countermeasure against this will be described hereinafter with reference to the drawings. FIGS. 25 and 26 are diagrams showing another embodiment of the piezoelectric/electrostrictive film type actuator, and show a sectional view and plan view of the actuator including two layers of the piezoelectric/electrostrictive films according to the present invention.

In a piezoelectric/electrostrictive film type

actuator 252 shown in FIG. 25, in a portion planned to be cut on the ceramic substrate 44, a bond layer 9 is formed to firmly bond the ceramic substrate 44 to the piezoelectric/ electrostrictive film 79. As the bond layer 9, for example, a material equal to that of the lower electrode film 77, such as platinum and palladium, or lead zirconate titanate containing a glass component is preferable.

5

10

15

20

Moreover, in a piezoelectric/electrostrictive film type actuator 262 shown in FIG. 26, as the material of the piezoelectric/electrostrictive film 79, lead zirconate titanate is used which is of a composition base having high reactivity with the material of the ceramic substrate 44. Additionally, at this time, when the ceramic substrate 44 reacts with the piezoelectric/electrostrictive film 79 in the upper surface of the cavity 46, strength unfavorably drops in a part of the wall of the cavity 46 deformed under the displacement of the piezoelectric/electrostrictive device 78. Therefore, in the piezoelectric/electrostrictive film type actuator 262, the whole surface above the cavity 46 of the ceramic substrate 44 is coated with the lower electrode film 77, so that the piezoelectric/electrostrictive film 79 is preferably prevented from directly contacting the ceramic substrate 44 on the cavity 46.

Subsequently, a manufacturing method of the

25 piezoelectric/electrostrictive film type actuator of the

present invention will be described.

In the actuator of the present invention, the

constituting material of each member is ceramic, and each constituting element of the actuator is preferably manufactured with respect to the ceramic substrate using a green sheet laminate method. On the other hand, with respect to the piezoelectric/electrostrictive device, the actuator is 5 preferably manufactured using a thin or thick film forming According to the green sheet laminate method in which the ceramic substrate of the piezoelectric/ electrostrictive film type actuator can integrally be molded, a state change of the bond portion of each member with an 10 elapse of time hardly occurs. Therefore, this is a method high in the reliability of the bond portion and easy in the securing of the rigidity. In the piezoelectric/ electrostrictive film type actuator of the present invention, bond reliability between the ceramic substrate and the 15 piezoelectric/electrostrictive device is a very important point which influences the characteristics of the actuator. Since the present manufacturing method is superior in productivity and moldability, the actuator having a predetermined shape can also be prepared in a short time and 20 with good reproducibility.

First, the manufacturing method of the ceramic laminate will be described.

A binder, solvent, dispersant, plasticizer, and the
like are added to/mixed with ceramic powder of zirconium
oxide to prepare slurry. After a defoaming treatment, the
green sheet having a predetermined thickness is prepared by

methods such as a reverse roll coater method and doctor blade method.

Moreover, the green sheet is processed in various demanded shapes by methods such as punching using a metal mold and laser processing.

5

10

15

20

For example, in the piezoelectric/electrostrictive film type actuator 21 shown in FIG. 3, there are prepared a green sheet A mainly forming the closing plate 66 after the sintering, a green sheet B in which at least one rectangular opening 76 is formed and which is sintered to form the spacer plate 70, and a green sheet C in which at least one hole portion for connection 72, 74 is formed and which is sintered to form the connection plate 68. All the shapes of the openings 76 do not have to be the same, and are determined in accordance with desired functions. As long as the hole portions for connection 72, 74 are connected to the outside space, the shapes of the hole portions for connection 72, 74 are not especially limited. For example, with the use as the ink pump of the printer head of the ink jet printer, as shown in FIG. 3, hole portions whose opening sections are substantially circular are formed to individually connect each of the hole portions for connection 72, 74 to the outside space.

When one row of or more openings 76 are formed to be

25 juxtaposed in the green sheet B, a plurality of actuators can

be obtained at once. These green sheets A, B, C are prepared

beforehand, at least two green sheets A, C constituting the

substrate and at least one green sheet B in which at least one opening 76 is formed are used to laminate at least one green sheet B in which at least one opening 76 is formed, for example, between the green sheets A and C, and the green sheet laminate may be prepared. Needless to say, in the preparing method of the green sheet laminate, in detail a laminate order of the green sheets A, C and the green sheet B in which at least one hole portion is formed, there is not especially a limitation. The sheets can usually be laminated in an arbitrary order as long as the laminate does not affect the subsequent steps.

For example, a method of pressing and obtaining a ceramic green laminate after successively stacking the green sheets A, B, C may also be used, or a method of stacking the green sheets A, B to press and obtain an integrated material and stacking the green sheet C on the integrated material to press and obtain the green sheet laminate may also be used. For the pressing, when heat is added, laminate properties can advantageously be enhanced. When the paste, slurry, and the like mainly containing the ceramic powder and binder are applied or printed onto the green sheet to form a bond auxiliary layer, the laminate properties of the green sheet interface can preferably be enhanced. For the above-described ceramic powder, the same or similar composition as that of ceramic used in the green sheet is preferable in securing the reliability.

These are described only as an illustration, and all

the manufacturing methods of the present invention are not described. For example, even when the number of laminates is four or more, a pressing frequency or order is not especially limited, and the method of preparing the green sheet laminate is not limited to these.

5

10

15

The obtained green sheet laminate is sintered to obtain a ceramic laminate. The green sheet laminate is sintered at a temperature of about 1200 to 1600°C, but the ceramic laminate obtained by the sintering sometimes include an unintended warp. In this case, at a temperature close to the sintering temperature, a weight is preferably laid on the laminate to re-sinter (hereinafter referred to also as warp correction) and flat the laminate. In this warp correction, a porous ceramic plate such as flat alumina is preferably used as the weight. The warp correction is performed after the sintering. Alternatively, a method of laying the weight beforehand at the sintering time and flatting the laminate simultaneously with the sintering is also preferable.

piezoelectric/electrostrictive device on the green sheet
laminate by the film forming method described later without
sintering the green sheet laminate, and thereafter performing
the sintering may also be used. However, when the laminate
is sintered beforehand to form the ceramic laminate before
forming the piezoelectric/electrostrictive device, dimension
accuracy is further enhanced, and the warp of the
piezoelectric/electrostrictive device can preferably be

inhibited.

20

25

Subsequently, the manufacturing method of the piezoelectric/electrostrictive device will be described.

In the manufacturing method of the present invention, the piezoelectric/electrostrictive device can be 5 formed on the surface of the ceramic laminate by thick film forming methods such as a screen print method, dipping method, coating method, and electrophoresis deposition method, or thin film methods such as an ion beam method, sputtering method, vacuum deposition, ion plating method, 10 chemical vapor phase deposition method (CVD), and plating. Moreover, one layer is preferably subjected to the abovedescribed film forming method not only once but also a plurality of times to form the piezoelectric/electrostrictive film and electrode film constituting the 15 piezoelectric/electrostrictive device.

When the piezoelectric/electrostrictive device is formed by the film forming method in this manner, it is possible to integrally bond and dispose the piezoelectric/electrostrictive device and ceramic substrate without using any adhesive, the reliability and reproducibility can be secured, and the integration can easily be performed. Additionally, in the manufacturing method of the present invention, the piezoelectric/electrostrictive film is preferably formed by the thick film forming method. According to these methods, a paste, slurry, suspension, emulsion, or sol containing piezoelectric ceramic particles

having an average particle diameter of 0.01 to 5 μm , preferably 0.05 to 3 μm as the major component can be used to form the piezoelectric/electrostrictive film, and satisfactory operation characteristics are obtained.

5

10

15

20

25

Especially the electrophoresis deposition method has an advantage that the film can be formed with the high density and high shape accuracy, and is preferable in forming the piezoelectric/electrostrictive film. Moreover, the method has characteristics as described in technical document ""DENKI KAGAKU", 53, No. 1 (1985) P63 to P68, authored by Kazuo ANZAI". Therefore, the method may appropriately be selected and used considering from the demanded accuracy and reliability. As a preferable condition in the electrophoresis deposition method, as disclosed, for example, in JP-A-6-63914, a method of dispersing material particles of ceramic in a solvent to which a phosphoric ester based surface active agent has been added to obtain a slurry having a high solid content concentration is known in order to prepare the slurry which is an object to be electrophoresed. According to the electrophoresis deposition method using such slurry, the film can be formed even if the voltage is not The actuator can be manufactured at a lower cost. high.

On the other hand, the screen print method is still preferably used as the manufacturing method of the present invention, because the film can be formed simultaneously with the forming of the pattern.

In the present invention, as the method of forming

the piezoelectric/electrostrictive film in the piezoelectric/ electrostrictive device, for example, a method of using the screen print method first time and using the electrophoresis deposition method second and subsequent times is also preferably used.

5

10

15

20

25

More concretely, the present invention will be described by the piezoelectric/electrostrictive film type actuator 21 of the present invention shown in FIG. 2. sintering the green sheet laminate on a predetermined condition, preferably at a temperature of 1200°C to 1600°C, the lower electrode film 77 is printed in the predetermined position of the surface of the obtained ceramic laminate, and sintered preferably at a temperature of 1250°C to 1450°C. Subsequently, the piezoelectric/electrostrictive film 79 is printed, and further the intermediate electrode film 73 is printed and sintered preferably at a temperature lower than the sintering temperature of the piezoelectric/ electrostrictive film 79 to be printed next by 0°C to 300°C. Furthermore, the piezoelectric/electrostrictive film 79 is printed and sintered preferably at a temperature of 1100°C to The upper electrode 75 can be sintered preferably at a temperature of 500°C to 900°C to form the piezoelectric/ electrostrictive device 78. Thereafter, an electrode lead for connecting the electrode film to a driving circuit may be printed and sintered.

It is to be noted that a step of repeating the printing of the first (lower) piezoelectric/electrostrictive

film 79, the printing of the intermediate electrode film 73, and the sintering is performed m times. Accordingly, the piezoelectric/electrostrictive film type actuator 21 includes two layers of piezoelectric/electrostrictive films 79. On 5 the other hand, it is also possible to form the piezoelectric/electrostrictive film type actuator including m+1 layers of piezoelectric/electrostrictive films 79. At this time, after finishing the repeating step, a sintering temperature Tm1 of the intermediate electrode film 73 after the printing is preferably lower than the sintering temperature Tm2 of the piezoelectric/electrostrictive film 79 formed last (in the upper part) by 0°C to 300°C.

This is because the piezoelectric/electrostrictive film 79 formed last (in the upper part) is sintered only once at the sintering temperature Tm2, whereas the piezoelectric/electrostrictive film 79 formed in the middle is sintered many times at the sintering temperature Tm1 and thereafter sintered once at the sintering temperature Tm2. Therefore, when the sintering temperature Tm1 is set to be lower than the sintering temperature Tm2, the sintering degree of each piezoelectric/electrostrictive film can be uniformed.

15

20

25

It is to be noted that in FIG. 8, in one embodiment of the piezoelectric/electrostrictive film type actuator of the present invention obtained in this manner, a sectional view seen from the short-side direction of the piezoelectric/electrostrictive film is schematically shown. Especially when the screen print method is used to

manufacture the piezoelectric/electrostrictive film type actuator of the present invention, by fluidity of the paste of the piezoelectric/electrostrictive material in the screen print step, concretely as shown in FIG. 27, a mode is obtained in which the film thickness is thinned closer to the pattern end of the short-side direction. Since the piezoelectric/electrostrictive film contracts in the short-side direction in the sintering step of the piezoelectric/electrostrictive film 79, the middle portion of the closing plate 166 sometimes has a shape bent in a direction of the cavity 46 as shown in FIG. 28.

It is to be noted that a sintering shrinkage start timing of the upper and lower piezoelectric/electrostrictive films 79, a sintering shrinkage amount, and the shape of the closing plate 166 are adjusted. Accordingly, the closing plate 166 can be formed in a W shape as shown in FIG. 29, but in this shape, the flexural displacement is easily developed as compared with a simple shape shown in FIG. 28. The reason is not exactly known, but the strain at the time of the sintering shrinkage of the piezoelectric/electrostrictive film is easily released, and a residual stress for deteriorating the characteristics of the piezoelectric/electrostrictive material is reduced. This possibility is considered.

Moreover, the thickness t_n of the piezoelectric/ electrostrictive film formed n-th time (n \geq 2) preferably satisfies the following equation:

 $t_n \le t_{n-1} \times 0.95$.

5

When the gradually thin piezoelectric/
electrostrictive film is formed and laminated in this manner,
the piezoelectric/electrostrictive film formed in the upper
part can be distorted more largely than the piezoelectric/
electrostrictive film formed in the lower part. The bend
efficiency can be enhanced, and the flexural displacement can
more effectively be developed.

When the dimension of the piezoelectric/ electrostrictive film 79 in the short-side direction is as 10 small as 200 μm or less, as shown in FIG. 30, the width of the electrode layer is increased toward the upper layer from the lower layer. Even in this case, the piezoelectric/ electrostrictive film formed in the upper part can still be distorted more largely than the piezoelectric/ 15 electrostrictive film formed in the lower part. The bend efficiency can be enhanced, and the flexural displacement can more effectively be developed (WE1 < WE2 < WE3 in FIG. 30). A width increase amount is preferably optimized in consideration of an electric field distribution, and is, for 20 example, preferably about twice the layer thickness of the piezoelectric/electrostrictive film 79 in the lower and upper layers.

Additionally, when the driving voltage of the

25 piezoelectric/electrostrictive film type actuator is raised
to obtain a large flexural displacement, as shown in FIGS. 31,

32, a difference between the width of the electrode film 73

and the width of the electrode films 75, 77 is preferably changed (WE1, WE3 < WE2 in FIG. 31, WE2 < WE1, WE3 in FIG. 32). This has an effect of avoiding the addition of the electric field in the vicinity of the end of the short-side direction in which the layer thickness of the piezoelectric/electrostrictive film 79 is easily reduced.

5

10

15

Moreover, since the appropriate material is selected, each electrode film and piezoelectric/electrostrictive film of the piezoelectric/electrostrictive device and an electrode lead are successively printed, and can thereafter be sintered integrally once. On the other hand, after forming the piezoelectric/electrostrictive film, each electrode can also be disposed at low temperature. When the material is selected, the piezoelectric/electrostrictive film and/or the electrode film can be sintered the desired number of times at arbitrary times from when the first electrode film is formed until the last electrode film is formed regardless of the above-described example.

Moreover, it is also preferable to form the

20 piezoelectric/electrostrictive device beforehand in the green
sheet laminate and simultaneously sinter the green sheet
laminate and piezoelectric/electrostrictive device. In the
simultaneous sintering, all the constituting films of the
piezoelectric/electrostrictive device may also be sintered.

25 Alternatively, the example includes various methods such as a
method of simultaneously sintering only the lower electrode
and green sheet laminate and a method of sintering the

constituting films other than the upper electrode simultaneously with the green sheet laminate. Examples of the method of sintering the piezoelectric/electrostrictive device simultaneously with the green sheet laminate include a press molding method using a metal mold and a method of 5 molding the piezoelectric/electrostrictive film by a tape molding method using a slurry material, laminating the piezoelectric/electrostrictive film onto the green sheet laminate by heat pressing before the sintering, and simultaneously sintering the film and laminate to 10 simultaneously prepare the ceramic substrate and piezoelectric/electrostrictive film. Additionally, in this method, the above-described film forming method needs to be used to form the electrode in the piezoelectric/ electrostrictive film beforehand. The electrode and 15 piezoelectric/electrostrictive film which are constituting layers of the piezoelectric/electrostrictive device can be formed in the green sheet laminate by the screen printing, and can simultaneously be sintered.

The sintering temperature of the piezoelectric/
electrostrictive film is appropriately determined by the
material constituting the film, but is 800°C to 1400°C in
general, and preferably 1100°C to 1350°C. In this case, in
order to control the composition of the piezoelectric/
electrostrictive film, the film is preferably sintered under
presence of an evaporation source of the material of the
piezoelectric/electrostrictive film. It is to be noted that

20

25

when the piezoelectric/electrostrictive film and green sheet laminate are simultaneously sintered, both sintering conditions need to be unified.

It is to be noted that the piezoelectric/

electrostrictive film type actuator of the present invention
can also be prepared by the methods other than the preparing
method using the above-described green sheet, such as a
pressurizing molding method or cast molding method using a
molding die, injection molding method, and photolithography.

A method of bonding members which have been separately
prepared and which are constituting elements to prepare the
actuator is also possible. However, productivity is low.
Additionally, there is also a problem in the reliability
because problems such as breakage in the bond portion easily

Industrial Applicability

15

20

25

occur.

According to the present invention, a problem of a conventional piezoelectric/electrostrictive film type actuator can be solved. That is, there is provided a superior piezoelectric/electrostrictive film type actuator which does not include a structure laminated using an adhesive and which can easily highly be integrated and in which a larger displacement is obtained with the same driving voltage and which is high in response speed and large in generation force.

This piezoelectric/electrostrictive film type

actuator can be used as a displacement control device, solid device motor, ink jet head, relay, switch, shutter, pump, fin, and the like, and can preferably be used especially as an ink pump of a print head for use in an ink jet printer.