

# **FCC Test Report (PART 27)**

Report No.: RF181120C09

FCC ID: XPY2AGQN4NNN

Test Model: SARA-R410M

Received Date: Nov. 20, 2018

Test Date: Dec. 08 to 10, 2018

**Issued Date:** Feb. 01, 2019

Applicant: u-blox-AG

Address: Zuercherstrasse 68 8800 Thalwil, Switzerland

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration / **Designation Number:** 

723255 / TW2022





This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.



# **Table of Contents**

| R | eleas        | e Control Record                                                                | 4  |
|---|--------------|---------------------------------------------------------------------------------|----|
| 1 |              | Certificate of Conformity                                                       | 5  |
| 2 | ;            | Summary of Test Results                                                         | 6  |
|   | 2.1<br>2.2   | Measurement Uncertainty                                                         |    |
| _ |              | Test Site and Instruments                                                       |    |
| 3 | 1            | General Information                                                             | 9  |
|   | 3.1          | General Description of EUT                                                      |    |
|   | 3.2          | Configuration of System under Test                                              |    |
|   | 3.2.1<br>3.3 | Description of Support Units  Test Mode Applicability and Tested Channel Detail |    |
|   | 3.4          | EUT Operating Conditions                                                        |    |
|   | 3.5          | General Description of Applied Standards                                        |    |
| 4 |              |                                                                                 |    |
| 4 |              | Test Types and Results                                                          |    |
|   | 4.1          | Output Power Measurement                                                        |    |
|   | 4.1.1        |                                                                                 |    |
|   |              | Test Procedures                                                                 |    |
|   |              | Test Setup Test Results                                                         |    |
|   | 4.1.4        | Modulation characteristics Measurement                                          |    |
|   | 4.2.1        |                                                                                 |    |
|   | 4.2.2        | Test Procedure                                                                  |    |
|   | 4.2.3        | Test Setup                                                                      | 19 |
|   |              | Test Results                                                                    |    |
|   | 4.3          | Frequency Stability Measurement                                                 |    |
|   | 4.3.1        | , , ,                                                                           |    |
|   | 4.3.2        |                                                                                 |    |
|   |              | Test Setup Test Results                                                         |    |
|   | 4.3.4        | Emission Bandwidth Measurement                                                  |    |
|   | 4.4.1        |                                                                                 |    |
|   |              | Test Procedure                                                                  |    |
|   |              | Test Setup                                                                      |    |
|   | 4.4.4        | Test Results (-26dBc Bandwidth)                                                 |    |
|   | 4.4.5        | ,                                                                               |    |
|   | 4.5          | Channel Edge Measurement                                                        |    |
|   |              | Limits of Channel Edge Measurement                                              |    |
|   |              | Test Setup Test Procedures                                                      |    |
|   |              | Test Results                                                                    |    |
|   | 4.6          | Peak to Average Ratio                                                           |    |
|   | 4.5.1        |                                                                                 |    |
|   | 4.5.2        |                                                                                 |    |
|   | 4.5.3        |                                                                                 |    |
|   | 4.5.4        |                                                                                 |    |
|   | 4.7          | Conducted Spurious Emissions                                                    |    |
|   |              | Limits of Conducted Spurious Emissions Measurement  Test Setup                  |    |
|   |              | Test Procedure                                                                  |    |
|   |              | Test Results                                                                    |    |
|   | 4.8          | Radiated Emission Measurement                                                   |    |
|   |              | Limits of Radiated Emission Measurement                                         |    |
|   |              | Test Procedure                                                                  |    |
|   | 4.8.3        | Deviation from Test Standard                                                    | 38 |



| 4.8.4 Test Setup                                  |  |
|---------------------------------------------------|--|
| Pictures of Test Arrangements                     |  |
| opendix – Information of the Testing Laboratories |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |
|                                                   |  |



# **Release Control Record**

| Issue No.   | Description       | Date Issued   |
|-------------|-------------------|---------------|
| RF181120C09 | Original release. | Feb. 01, 2019 |



## 1 Certificate of Conformity

**Product:** LTE CAT-M1 modem

**Brand:** u-blox-AG

Test Model: SARA-R410M

Sample Status: ENGINEERING SAMPLE

**Applicant:** u-blox-AG

Test Date: Dec. 08 to 10, 2018

Standards: FCC Part 27, Subpart F

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \_\_\_\_\_\_\_, Date: \_\_\_\_\_\_\_, Feb. 01, 2019

Claire Kuan / Specialist

**Approved by:** , **Date:** Feb. 01, 2019

May Chen / Manager



# 2 Summary of Test Results

|                        | Applied Standard: FCC Part 27 & Part 2                          |        |                                                                               |  |  |  |  |
|------------------------|-----------------------------------------------------------------|--------|-------------------------------------------------------------------------------|--|--|--|--|
| FCC<br>Clause          | Test Item                                                       | Result | Remarks                                                                       |  |  |  |  |
| 2.1046<br>27.50(b)(10) | Radiated Power                                                  |        | Meet the requirement of limit.                                                |  |  |  |  |
| 2.1047                 | Modulation Characteristics                                      | PASS   | Meet the requirement.                                                         |  |  |  |  |
| 2.1055<br>27.54        | Frequency Stability Stay with the authorized bands of operation | PASS   | Meet the requirement of limit.                                                |  |  |  |  |
| 2.1049<br>27.53(m)(6)  | Occupied Bandwidth                                              | PASS   | Meet the requirement of limit.                                                |  |  |  |  |
| 27.53(g)               | Band Edge Measurements                                          | PASS   | Meet the requirement of limit.                                                |  |  |  |  |
|                        | Peak To Average Ratio                                           | PASS   | Meet the requirement of limit.                                                |  |  |  |  |
| 2.1051<br>27.53(g)     | Conducted Spurious Emissions                                    | PASS   | Meet the requirement of limit.                                                |  |  |  |  |
| 2.1053<br>27.53(g)     | Radiated Spurious Emissions                                     | PASS   | Meet the requirement of limit. Minimum passing margin is -13.35dB at 1564MHz. |  |  |  |  |

#### Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

# 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                    | Frequency     | Expanded Uncertainty (k=2) (±) |
|--------------------------------|---------------|--------------------------------|
| Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz  | 5.30 dB                        |
|                                | 1GHz ~ 6GHz   | 5.16 dB                        |
| Radiated Emissions above 1 GHz | 6GHz ~ 18GHz  | 4.91 dB                        |
|                                | 18GHz ~ 40GHz | 5.30 dB                        |



#### 2.2 Test Site and Instruments

## For radiated spurious emissions test:

| DESCRIPTION &                                       | MODEL NO             | SERIAL NO.  | CALIBRATED    | CALIBRATED    |
|-----------------------------------------------------|----------------------|-------------|---------------|---------------|
| MANUFACTURER                                        | MODEL NO.            | SERIAL NO.  | DATE          | UNTIL         |
| Test Receiver<br>Keysight                           | N9038A               | MY54450088  | July 05, 2018 | July 04, 2019 |
| Pre-Amplifier<br>EMCI                               | EMC001340            | 980142      | Feb. 09, 2018 | Feb. 08, 2019 |
| Loop Antenna <sup>(*)</sup><br>Electro-Metrics      | EM-6879              | 264         | Dec. 16, 2016 | Dec. 15, 2018 |
| RF Cable                                            | NA                   | LOOPCAB-001 | Jan. 15, 2018 | Jan. 14, 2019 |
| RF Cable                                            | NA                   | LOOPCAB-002 | Jan. 15, 2018 | Jan. 14, 2019 |
| Pre-Amplifier Mini-Circuits                         | ZFL-1000VH2B         | AMP-ZFL-01  | Oct. 30, 2018 | Oct. 29, 2019 |
| Trilog Broadband Antenna SCHWARZBECK                | VULB 9168            | 9168-406    | Nov. 22, 2018 | Nov. 21, 2019 |
| RF Cable                                            | 8D                   | 966-4-1     | Mar. 21, 2018 | Mar. 20, 2019 |
| RF Cable                                            | 8D                   | 966-4-2     | Mar. 21, 2018 | Mar. 20, 2019 |
| RF Cable                                            | 8D                   | 966-4-3     | Mar. 21, 2018 | Mar. 20, 2019 |
| Fixed attenuator Mini-Circuits                      | UNAT-5+              | PAD-3m-4-01 | Sep. 27, 2018 | Sep. 26, 2019 |
| Horn_Antenna<br>SCHWARZBECK                         | BBHA 9120D           | 9120D-783   | Dec. 12, 2017 | Dec. 11, 2018 |
| Pre-Amplifier<br>Mini-Circuits                      | ZVA-183-S+           | AMP-ZVA-03  | May 10, 2018  | May 09, 2019  |
| RF Cable                                            | EMC104-SM-SM-1200    | 160923      | Jan. 29, 2018 | Jan. 28, 2019 |
| RF Cable                                            | EMC104-SM-SM-2000    | 150318      | Jan. 29, 2018 | Jan. 28, 2019 |
| RF Cable                                            | EMC104-SM-SM-5000    | 150321      | Jan. 29, 2018 | Jan. 28, 2019 |
| Pre-Amplifier<br>EMCI                               | EMC184045SE          | 980387      | Jan. 29, 2018 | Jan. 28, 2019 |
| Horn_Antenna<br>SCHWARZBECK                         | BBHA 9170            | BBHA9170608 | Dec. 14, 2017 | Dec. 13, 2018 |
| RF Cable                                            | EMC102-KM-KM-1200    | 160925      | Jan. 29, 2018 | Jan. 28, 2019 |
| Software                                            | ADT_Radiated_V8.7.08 | NA          | NA            | NA            |
| Boresight Antenna Tower &<br>Turn Table<br>Max-Full | MF-7802BS            | MF780208530 | NA            | NA            |

#### Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. \*The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The CANADA Site Registration No. is 20331-2
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Dec. 10, 2018



# For other test items:

| DESCRIPTION &                                    | MODEL NO.                        | SERIAL NO.                           | CALIBRATED    | CALIBRATED    |
|--------------------------------------------------|----------------------------------|--------------------------------------|---------------|---------------|
| MANUFACTURER                                     | WODEL NO.                        | SERIAL NO.                           | DATE          | UNTIL         |
| Spectrum Analyzer<br>R&S                         | FSV40                            | 100964                               | June 20, 2018 | June 19, 2019 |
| Spectrum Analyzer<br>Agilent                     | E4446A                           | MY48250254                           | Nov. 14, 2018 | Nov. 13, 2019 |
| Power meter<br>Anritsu                           | ML2495A                          | 1014008                              | May 09, 2018  | May 08, 2019  |
| Power sensor<br>Anritsu                          | MA2411B                          | 0917122                              | May 09, 2018  | May 08, 2019  |
| Fixed Attenuator<br>Mini-Circuits                | MDCS18N-10                       | MDCS18N-10-01                        | Apr. 16, 2018 | Apr. 15, 2019 |
| AC Power Source Extech Electronics               | 6205                             | 1440452                              | NA            | NA            |
| DC Power Supply<br>Topward                       | 6603D                            | 795558                               | NA            | NA            |
| Temperature & Humidity<br>Chamber<br>Giant Force | GTH-150-40-SP-<br>AR             | MAA0812-008                          | Jan. 10, 2018 | Jan. 09, 2019 |
| True RMS Clamp Meter FLUKE                       | 325                              | 31130711WS                           | May 22, 2018  | May 21, 2019  |
| ESG Vector signal generator Agilent              | E4438C                           | MY45094468/005<br>506 602 UK6<br>UNJ | Nov. 19, 2018 | Nov. 18, 2019 |
| Mech Switch Absorptive Mini-Circuits             | MSP4TA-18+                       | 0140                                 | Feb. 12, 2018 | Feb. 11, 2019 |
| FXD ATTEN<br>Mini-Circuits                       | BW-S3W2+                         | MN71981                              | Feb. 12, 2018 | Feb. 11, 2019 |
| Software                                         | ADT_RF Test<br>Software V6.6.5.4 | NA                                   | NA            | NA            |

- **NOTE:** 1. The test was performed in Oven room 2.
  - 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
  - 3. Tested Date: Dec. 08, 2018



#### 3 General Information

## 3.1 General Description of EUT

| Product               | LTE CAT-M1 modem          |                             |  |  |  |  |  |
|-----------------------|---------------------------|-----------------------------|--|--|--|--|--|
| Brand                 | u-blox-AG                 |                             |  |  |  |  |  |
| Test Model            | SARA-R410M                | ARA-R410M                   |  |  |  |  |  |
| Status of EUT         | ENGINEERING SAMPLE        | :NGINEERING SAMPLE          |  |  |  |  |  |
| Power Supply Rating   | DC 3.8V                   |                             |  |  |  |  |  |
| Modulation Type       | QPSK, 16QAM               |                             |  |  |  |  |  |
|                       | LTE Band 13               | 779.5 ~ 784.5 MHz           |  |  |  |  |  |
| Operating Frequency   | (Channel Bandwidth 5MHz)  | 779.5 ~ 764.5 WII 12        |  |  |  |  |  |
| Operating Frequency   | LTE Band 13               | 782.0 MHz                   |  |  |  |  |  |
|                       | (Channel Bandwidth 10MHz) | 7 02.0 WH 12                |  |  |  |  |  |
|                       | LTE Band 13               | QPSK : 420.7mW(26.24dBm)    |  |  |  |  |  |
| Max. ERP Power        | (Channel Bandwidth 5MHz)  | 16QAM: 416.869mW(26.20 dBm) |  |  |  |  |  |
| Max. ERP Powel        | LTE Band 13               | QPSK: 397.192mW(25.99dBm)   |  |  |  |  |  |
|                       | (Channel Bandwidth 10MHz) | 16QAM: 395.369mW(25.97dBm)  |  |  |  |  |  |
|                       | LTE Band 13               | QPSK: 1M18G7D               |  |  |  |  |  |
| Fusicaia a Designatas | (Channel Bandwidth 5MHz)  | 16QAM: 1M34W7D              |  |  |  |  |  |
| Emission Designator   | LTE Band 13               | QPSK: 1M20G7D               |  |  |  |  |  |
|                       | (Channel Bandwidth 10MHz) | 16QAM: 1M22W7D              |  |  |  |  |  |
| Antenna Type          | Refer to note as below    |                             |  |  |  |  |  |
| Antenna Connector     | Refer to user's manual    |                             |  |  |  |  |  |
| Accessory Device      | NA                        |                             |  |  |  |  |  |
| Data Cable Supplied   | NA                        |                             |  |  |  |  |  |

#### Note:

- 1. This report is prepared for FCC Class II permissive change. The difference design is as the following information:
  - ♦ Module Board antenna trace design change and antenna change.
  - ♦ LTE Cat M1 test mode change for LTE Band13 adding 5M and 10M bandwidth measurements.
- 2. According to above conditions, all test items need to be performed. And all data were verified to meet the requirements.

3. The antenna provided to the EUT, please refer to the following table:

| Gain(dBi)<br>Including cable<br>loss | Frequency range | Antenna Type | Connector<br>Type | Cable<br>Length |  |
|--------------------------------------|-----------------|--------------|-------------------|-----------------|--|
| 2.69                                 | 777-787MHz      | PIFA         | i-pex(MHF)        | 84 mm           |  |

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



# **Configuration of System under Test** 3.2 **EUT** Test Tool (D) (B) Mico SIM Card (1) (2) **Under Table** (A) DC Power Supply LTE **Remote Site** (C) LTE Simulator



# 3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product         | Brand   | Model No. | Serial No. | FCC ID | Remarks            |
|----|-----------------|---------|-----------|------------|--------|--------------------|
| Α. | DC Power Supply | Topward | 6603D     | 795558     | NA     | Provided by Lab    |
| B. | MiCro SIM Card  | NA      | NA        | NA         | NA     | Provided by Lab    |
| C. | LTE Simulator   | R&S     | CMW500    | NA         | NA     | Provided by Lab    |
| D. | Test Tool       | WNC     | NA        | NA         | NA     | Supplied by client |

#### Note:

<sup>1.</sup> All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions | Qty. | Length (m) | Shielding (Yes/No) | Cores (Qty.) | Remarks            |
|----|--------------|------|------------|--------------------|--------------|--------------------|
| 1. | DC Cable     | 1    | 1          | No                 | 0            | Supplied by client |
| 2. | DC Cable     | 1    | 1          | No                 | 0            | Provided by Lab    |



# 3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case was found when positioned on Y-plane. Following channel(s) was (were) selected for the final test as listed below:

#### LTE Band 13

| TEOTITEM                 | AVAILABLE      | AVAILABLE TESTED CHANNEL CHAN |                      | ANNEL MODULATION |      | RB MODE |       |  |  |
|--------------------------|----------------|-------------------------------|----------------------|------------------|------|---------|-------|--|--|
| TEST ITEM                | CHANNEL        | TESTED CHANNEL                | BANDWIDTH            | MODULATION       | SIZE | OFFSET  | INDEX |  |  |
| ERP                      | 23205 to 23255 | 23205, 23230, 23255           | 5MHz                 | QPSK/16QAM       | 1    | 0       | 0     |  |  |
| EKP                      | 23230          | 23230                         | 10MHz                | QPSK/16QAM       | 1    | 0       | 0     |  |  |
| Eroguanay Stability      | 23230          | 23230                         | 5MHz                 | QPSK             | 1    | 0       | 0     |  |  |
| Frequency Stability      | 23230          | 23230                         | 10MHz                | QPSK             | 1    | 0       | 0     |  |  |
|                          |                | 23205                         |                      |                  | 1    | 0       | 0     |  |  |
|                          | 23205 to 23255 | 23205                         | 5MHz                 | QPSK             | 6    | 0       | 0     |  |  |
|                          | 23205 10 23255 | 23255                         | SIVIHZ               | QFSN             | 1    | 5       | 3     |  |  |
| Dond Edge                |                |                               |                      |                  | 6    | 0       | 3     |  |  |
| Band Edge                | 23230          | 23230                         | 23230 10MHz<br>23230 | QPSK             | 1    | 0       | 0     |  |  |
|                          |                |                               |                      |                  | 6    | 0       | 0     |  |  |
|                          |                |                               |                      |                  | 1    | 5       | 7     |  |  |
|                          |                | 23230                         |                      |                  | 6    | 0       | 7     |  |  |
| Dook to Average          | 23205 to 23255 | 23205, 23230, 23255           | 5MHz                 | QPSK/16QAM       | 6    | 0       | 0     |  |  |
| Peak to Average<br>Ratio | 23230          | 23230                         | 10MHz                | QPSK/16QAM       | 6    | 0       | 0     |  |  |
| Occupied Department      | 23205 to 23255 | 23205, 23230, 23255           | 5MHz                 | QPSK/16QAM       | 6    | 0       | 0     |  |  |
| Occupied Bandwidth       | 23230          | 23230                         | 10MHz                | QPSK/16QAM       | 6    | 0       | 0     |  |  |
| Conducted Emissies       | 23205 to 23255 | 23205, 23230, 23255           | 5MHz                 | QPSK             | 1    | 0       | 0     |  |  |
| Conducted Emission       | 23230          | 23230                         | 10MHz                | QPSK             | 1    | 0       | 0     |  |  |
| Dadiated Emission        | 23205 to 23255 | 23205, 23230, 23255           | 5MHz                 | QPSK             | 1    | 0       | 0     |  |  |
| Radiated Emission        | 23230          | 23230                         | 10MHz                | QPSK             | 1    | 0       | 0     |  |  |

#### NOTE:

All supported modulation types were evaluated. The Worst case of QPSK was selected. Therefore, the Frequency Stability, Band Edge, Condcudeted Emission and Radiated Emission were presented under QPSK mode only.

# **Test Condition:**

| Test Item                       | Environmental Conditions | Input Power<br>(System) | Tested By    |
|---------------------------------|--------------------------|-------------------------|--------------|
| ERP                             | 25deg. C, 65%RH          | 120Vac, 60Hz            | Robert Cheng |
| Frequency Stability             | 26deg. C, 65%RH          | 120Vac, 60Hz            | Robert Cheng |
| Band Edge                       | 26deg. C, 65%RH          | 120Vac, 60Hz            | Robert Cheng |
| Peak to Average Ratio           | 26deg. C, 65%RH          | 120Vac, 60Hz            | Robert Cheng |
| Occupied Bandwidth              | 26deg. C, 65%RH          | 120Vac, 60Hz            | Robert Cheng |
| Condcudeted Emission            | 26deg. C, 65%RH          | 120Vac, 60Hz            | Robert Cheng |
| Radiated Emission<br>Below 1GHz | 25deg. C, 66%RH          | 120Vac, 60Hz            | Robert Cheng |
| Radiated Emission<br>Above 1GHz | 19deg. C, 70%RH          | 120Vac, 60Hz            | Robert Cheng |



# 3.4 EUT Operating Conditions

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

## 3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 27, Subpart F

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI/TIA/EIA-603-E 2016

ANSI 63.26-2015

**NOTE:** All test items have been performed and recorded as per the above standards.



#### 4 Test Types and Results

#### 4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

For Portable stations (hand-held devices) operating in the 698-787 MHz band are limited to 3 watts ERP.

#### 4.1.2 Test Procedures

#### **Conducted Power Measurement:**

The EUT was set up for the maximum power with LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

#### **EIRP / ERP Measurement:**

- a. All measurements were done at low, middle and high operational frequency range. RBW ≥OBW and VBW≥3xRBW.
- b. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 0.8m/1.5m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- e. ERP power can be calculated form EIRP power by subtracting the gain of dipole, ERP power = EIPR power 2.15dBi.

Note: The worst case vertical or horizontal polarization have been investigated and reported in this report



#### 4.1.3 Test Setup

#### CONDUCTED POWER MEASUREMENT:



## **ERP/EIRP MEASUREMENT:**

#### For ERP/EIRP below 1GHz



## For ERP/EIRP above 1GHz



For the actual test configuration, please refer to the attached file (Test Setup Photo).



# 4.1.4 Test Results

# CONDUCTED OUTPUT POWER (dBm)

**Channel Bandwidth: 5MHz** 

|           |            |              |             |        | QPSK   |         |      |
|-----------|------------|--------------|-------------|--------|--------|---------|------|
|           |            | DD           |             | Low CH | Mid CH | High CH | 3GPP |
| Band / BW | RB<br>Size | RB<br>Offset | RB<br>Index | 23205  | 23230  | 23255   | MPR  |
|           | Size       | Oliset       | index       | 779.5  | 782    | 784.5   | (dB) |
|           |            |              |             | MHz    | MHz    | MHz     |      |
|           | 1          | 0            | 0           | 22.51  | 22.47  | 22.35   | 0    |
|           | 1          | 5            | 3           | 22.31  | 22.39  | 22.41   | 0    |
|           | 1          | 0            | 3           | 22.26  | 22.36  | 22.52   | 0    |
| 13 / 5M   | 1          | 5            | 0           | 22.31  | 22.35  | 22.32   | 0    |
| 13 / 3101 | 3          | 0            | 0           | 21.16  | 21.18  | 21.03   | 1    |
|           | 3          | 3            | 3           | 21.2   | 21.17  | 21.16   | 1    |
|           | 6          | 0            | 0           | 21.18  | 21.14  | 20.96   | 1    |
|           | 6          | 0            | 3           | 21.11  | 21.12  | 21.11   | 1    |

|           |            |              |             |        | 16QAM  |         |      |
|-----------|------------|--------------|-------------|--------|--------|---------|------|
|           | DD         | DD           | DD          | Low CH | Mid CH | High CH | 3GPP |
| Band / BW | RB<br>Size | RB<br>Offset | RB<br>Index | 23205  | 23230  | 23255   | MPR  |
|           | Size       | Oliset       | IIIuex      | 779.5  | 782    | 784.5   | (dB) |
|           |            |              |             | MHz    | MHz    | MHz     |      |
|           | 1          | 0            | 0           | 22.37  | 22.36  | 22.37   | 0    |
|           | 1          | 5            | 3           | 21.85  | 22.06  | 22.21   | 0    |
|           | 1          | 0            | 3           | 22.16  | 22.16  | 22.26   | 0    |
| 13 / 5M   | 1          | 5            | 0           | 22.2   | 22.21  | 22.02   | 0    |
| 13/3101   | 3          | 0            | 0           | 21.23  | 21.15  | 21.11   | 1    |
|           | 3          | 3            | 3           | 21.16  | 21.16  | 21.27   | 1    |
|           | 6          | 0            | 0           | 21.18  | 21.11  | 21.06   | 1    |
|           | 6          | 0            | 3           | 21.06  | 21.08  | 21.16   | 1    |



# **Channel Bandwidth: 10MHz**

|            |            |              | DD          | QPSK   |      |
|------------|------------|--------------|-------------|--------|------|
|            | DD         | DD           |             | Mid CH | 3GPP |
| Band / BW  | RB<br>Size | RB<br>Offset | RB<br>Index | 23230  | MPR  |
|            | Size       | Size Offset  | IIIUEX      | 782    | (dB) |
|            |            |              |             | MHz    |      |
|            | 1          | 0            | 0           | 22.28  | 0    |
|            | 1          | 5            | 7           | 22.26  | 0    |
|            | 1          | 0            | 3           | 22.11  | 0    |
| 13 / 10M   | 1          | 5            | 4           | 22.13  | 0    |
| 13 / 10101 | 4          | 0            | 0           | 22.09  | 0    |
|            | 4          | 2            | 7           | 22.18  | 0    |
|            | 6          | 0            | 0           | 21.18  | 1    |
|            | 6          | 0            | 7           | 21.16  | 1    |

|            |            |              |             | 16QAM  |      |
|------------|------------|--------------|-------------|--------|------|
|            |            | DD           | DD          | Mid CH | 3GPP |
| Band / BW  | RB<br>Size | RB<br>Offset | RB<br>Index | 23230  | MPR  |
|            | 3126       | Oliset       | IIIuex      | 782    | (dB) |
|            |            |              | MHz         |        |      |
|            | 1          | 0            | 0           | 22.26  | 0    |
|            | 1          | 5            | 7           | 22.14  | 0    |
|            | 1          | 0            | 3           | 22.09  | 0    |
| 13 / 10M   | 1          | 5            | 4           | 22.02  | 0    |
| 13 / 10101 | 4          | 0            | 0           | 22.06  | 0    |
|            | 4          | 2            | 7           | 22.04  | 0    |
|            | 6          | 0            | 0           | 21.28  | 1    |
|            | 6          | 0            | 7           | 21.29  | 1    |



# **ERP POWER**

## **Channel Bandwidth: 5MHz**

|         | QPSK               |                         |         |      |          |         |  |  |  |  |
|---------|--------------------|-------------------------|---------|------|----------|---------|--|--|--|--|
| Channel | Frequency<br>(MHz) | Antenna<br>Polarization | FRP(dBm |      | ERP(dBm) | ERP(mW) |  |  |  |  |
| 23205   | 779.5              | Н                       | 19.54   | 6.53 | 26.07    | 404.576 |  |  |  |  |
| 23230   | 782                | Н                       | 19.51   | 6.42 | 25.93    | 391.742 |  |  |  |  |
| 23255   | 784.5              | Н                       | 19.67   | 6.57 | 26.24    | 420.727 |  |  |  |  |

|         | 16QAM              |                                                         |       |          |         |         |  |  |  |  |
|---------|--------------------|---------------------------------------------------------|-------|----------|---------|---------|--|--|--|--|
| Channel | Frequency<br>(MHz) | cy Antenna LVL Correction Polarization (dBm) Factor(dB) |       | ERP(dBm) | ERP(mW) |         |  |  |  |  |
| 23205   | 779.5              | Н                                                       | 19.40 | 6.53     | 25.93   | 391.742 |  |  |  |  |
| 23230   | 782                | Н                                                       | 19.40 | 6.42     | 25.82   | 381.944 |  |  |  |  |
| 23255   | 784.5              | Н                                                       | 19.63 | 6.57     | 26.20   | 416.869 |  |  |  |  |

Note: The worst case vertical or horizontal polarization have been investigated and find the worst is horizontal.

# **Channel Bandwidth: 10MHz**

|         | QPSK                                                                              |  |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Channel | nel Frequency Antenna LVL Correction (MHz) Polarization (dBm) Factor(dB) ERP(dBm) |  |  |  |  |  |  |  |  |
| 23230   | 23230 782 H 19.06 6.93 25.99 39                                                   |  |  |  |  |  |  |  |  |

|         | 16QAM                                                                |  |  |  |  |         |  |  |  |
|---------|----------------------------------------------------------------------|--|--|--|--|---------|--|--|--|
| Channel | Frequency Antenna LVL Correction (MHz) Polarization (dBm) Factor(dB) |  |  |  |  | ERP(mW) |  |  |  |
| 23230   | 23230 782 H 19.04 6.93 25.97 395.                                    |  |  |  |  |         |  |  |  |

Note: The worst case vertical or horizontal polarization have been investigated and find the worst is horizontal.



#### 4.2 Modulation characteristics Measurement

#### 4.2.1 Limits of Modulation characteristics

N/A

## 4.2.2 Test Procedure

Connect the EUT to Communication Simulator via the antenna connector, the frequency band is set as EUT supported Modulation and Channels, the EUT output is matched with 50 ohm load, the waveform quality and constellation of the EUT was tested.

# 4.2.3 Test Setup





## 4.2.4 Test Results





#### 4.3 Frequency Stability Measurement

## 4.3.1 Limits of Frequency Stability Measurement

According to the FCC part 2.1055 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with specification of EUT  $-30^{\circ}$ C  $\sim 75^{\circ}$ C.

#### 4.3.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the  $\pm 0.5$  °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

**NOTE:** The frequency error was recorded frequency error from the communication simulator.

#### 4.3.3 Test Setup



Report No.: RF181120C09 Page No. 21 / 49 Report Format Version: 6.1.1



# 4.3.4 Test Results

# LTE Band 13

| Voltage<br>(Volts) | Itage Frequency Error (ppm) |       |     |  |  |  |
|--------------------|-----------------------------|-------|-----|--|--|--|
| (voits)            | 5MHz                        |       |     |  |  |  |
| 3.23               | 0.001                       | 0.002 | 2.5 |  |  |  |
| 4.37               | 0.002                       | 0.001 | 2.5 |  |  |  |

| TEMP. (°C) | Frequency | Error (ppm) | Limit (ppm) |
|------------|-----------|-------------|-------------|
|            | 5MHz      | 10MHz       |             |
| 75         | 0.002     | 0.002       | 2.5         |
| 70         | 0.002     | 0.001       | 2.5         |
| 60         | 0.002     | 0.001       | 2.5         |
| 50         | 0.002     | 0.002       | 2.5         |
| 40         | 0.001     | 0.002       | 2.5         |
| 30         | 0.001     | 0.002       | 2.5         |
| 20         | 0.002     | 0.002       | 2.5         |
| 10         | 0.001     | 0.001       | 2.5         |
| 0          | 0.002     | 0.001       | 2.5         |
| -10        | 0.002     | 0.002       | 2.5         |
| -20        | 0.001     | 0.002       | 2.5         |
| -30        | 0.002     | 0.002       | 2.5         |



#### 4.4 Emission Bandwidth Measurement

#### 4.4.1 Limits of Emission Bandwidth Measurement

#### -26dBc Bandwidth

According to FCC 27.53 specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

#### **Occupied Bandwidth**

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

#### 4.4.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW≥1% x OBW and VBW≥3 x VBW.

#### 4.4.3 Test Setup





# 4.4.4 Test Results (-26dBc Bandwidth)

|          | LTE Band 13 |              |             |         |             |               |             |  |  |  |
|----------|-------------|--------------|-------------|---------|-------------|---------------|-------------|--|--|--|
|          | Channel Ba  | ndwidth: 5MH | lz          |         | Channel Bar | ndwidth: 10Ml | ·lz         |  |  |  |
| Channel  | Frequency   | -26dB Band   | width (MHz) | Channel | Frequency   | -26dB Band    | width (MHz) |  |  |  |
| Chamilei | (MHz)       | QPSK         | 16QAM       | Channel | (MHz)       | QPSK          | 16QAM       |  |  |  |
| 23205    | 779.5       | 1.84         | 1.41        |         |             |               |             |  |  |  |
| 23230    | 782         | 1.90         | 1.42        | 23230   | 782         | 1.62          | 2.01        |  |  |  |
| 23255    | 784.5       | 1.79         | 1.42        |         |             |               |             |  |  |  |





# 4.4.5 Test Results (Occupied Bandwidth)

| LTE Band 13 |            |                          |       |                          |           |                          |       |      |
|-------------|------------|--------------------------|-------|--------------------------|-----------|--------------------------|-------|------|
|             | Channel Ba | ndwidth: 5MH             | lz    | Channel Bandwidth: 10MHz |           |                          |       |      |
|             | Frequency  | Occupied Bandwidth (MHz) |       | Channal                  | Frequency | Occupied Bandwidth (MHz) |       |      |
|             | (MHz)      | QPSK                     | 16QAM | Channel                  | (MHz)     | QPSK                     | 16QAM |      |
| 23205       | 779.5      | 1.18                     | 1.34  |                          |           |                          |       |      |
| 23230       | 782        | 1.16                     | 1.14  | 23230                    | 23230     | 782                      | 1.20  | 1.22 |
| 23255       | 784.5      | 1.16                     | 1.14  |                          |           |                          |       |      |





## 4.5 Channel Edge Measurement

## 4.5.1 Limits of Channel Edge Measurement

According to FCC 27.53 (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

According to FCC 27.53(f) For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

#### 4.5.2 Test Setup



#### 4.5.3 Test Procedures

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and s RB of the spectrum is >1% emission bandwidth and VB of the spectrum is  $\geq$  3\*RB.
- c. Record the max trace plot into the test report.



## 4.5.4 Test Results







For the 763 - 775 MHz and 793 - 805 MHz band , the FCC limit is 65+10log(P[watt]) in a 6.25 kHz bandwidth .









For the 763 - 775 MHz and 793 - 805 MHz band ,the FCC limit is 65+10log(P[watt]) in a 6.25 kHz bandwidth .



# 4.6 Peak to Average Ratio

# 4.5.1 Limits of Peak to Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

## 4.5.2 Test Setup



#### 4.5.3 Test Procedures

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.



## 4.5.4 Test Results

| LTE Band 13             |            |                            |       |                          |           |                            |       |      |
|-------------------------|------------|----------------------------|-------|--------------------------|-----------|----------------------------|-------|------|
|                         | Channel Ba | ndwidth: 5MHz              | Z     | Channel Bandwidth: 10MHz |           |                            |       |      |
| Channel Frequency (MHz) | Frequency  | Peak To Average Ratio (dB) |       | Channel                  | Frequency | Peak To Average Ratio (dB) |       |      |
|                         | (MHz)      | QPSK                       | 16QAM | Chamilei                 | (MHz)     | QPSK                       | 16QAM |      |
| 23205                   | 779.5      | 4.81                       | 5.63  |                          |           |                            |       |      |
| 23230                   | 782        | 4.69                       | 5.55  | 23230                    | 23230     | 782                        | 4.60  | 5.79 |
| 23255                   | 784.5      | 4.63                       | 5.54  |                          |           |                            |       |      |





## 4.7 Conducted Spurious Emissions

## 4.7.1 Limits of Conducted Spurious Emissions Measurement

According to FCC 27.53 (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

According to FCC 27.53(f) For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

#### 4.7.2 Test Setup



#### 4.7.3 Test Procedure

- a. All measurements were done at 3 channels: low, middle and high operational frequency range.
- b. When the spectrum scanned from 9 kHz to suitable frequency, it shall be connected to the 20dB pad attenuated the carried frequency.

Report No.: RF181120C09 Page No. 33 / 49 Report Format Version: 6.1.1



# 4.7.5 Test Results

| Channel Bandwidth: 5MHz |                      |                   |        |           |            |  |  |
|-------------------------|----------------------|-------------------|--------|-----------|------------|--|--|
| Channel Number          | Channel Number 23205 |                   | 779.5  | Limit(dB) | PASS /FAIL |  |  |
| Freq. (MHz)             |                      | Measurement Valus | Margin | Maximum   |            |  |  |
| 399.005                 |                      | -40.90            | -27.90 | -13.00    | PASS       |  |  |
| 1585.000                |                      | -48.02            | -8.02  | -40.00    | PASS       |  |  |
| 3763.000                |                      | -43.07            | -30.07 | -13.00    | PASS       |  |  |





| Channel Bandwidth: 5MHz |                      |                   |        |           |            |  |  |
|-------------------------|----------------------|-------------------|--------|-----------|------------|--|--|
| Channel Number          | Channel Number 23230 |                   | 782    | Limit(dB) | PASS /FAIL |  |  |
| Freq. (MHz)             |                      | Measurement Valus | Margin | Maximum   |            |  |  |
| 484.004                 |                      | -41.27            | -28.27 | -13.00    | PASS       |  |  |
| 1576.000                |                      | -49.47            | -9.47  | -40.00    | PASS       |  |  |
| 3844.000                |                      | -41.84            | -28.84 | -13.00    | PASS       |  |  |





| Channel Bandwidth: 5MHz |                      |                   |        |           |            |  |  |
|-------------------------|----------------------|-------------------|--------|-----------|------------|--|--|
| Channel Number          | Channel Number 23255 |                   | 784.5  | Limit(dB) |            |  |  |
| Freq. (MHz)             |                      | Measurement Valus | Margin | Maximum   | PASS /FAIL |  |  |
| 501.004                 |                      | -41.33            | -28.33 | -13.00    | PASS       |  |  |
| 1576.000                |                      | -49.49            | -9.49  | -40.00    | PASS       |  |  |
| 3853.000                |                      | -42.07            | -29.07 | -13.00    | PASS       |  |  |





| Channel Bandwidth: 10MHz |       |                    |        |           |            |  |  |  |
|--------------------------|-------|--------------------|--------|-----------|------------|--|--|--|
| Channel Number           | 23230 | Channel Freq:(MHz) | 782    | Limit(dB) |            |  |  |  |
| Freq. (MHz)              |       | Measurement Valus  | Margin | Maximum   | PASS /FAIL |  |  |  |
| 569.003                  |       | -41.53             | -28.53 | -13.00    | PASS       |  |  |  |
| 1559.000                 |       | -49.98             | -9.98  | -40.00    | PASS       |  |  |  |
| 5014.000                 |       | -42.76             | -29.76 | -13.00    | PASS       |  |  |  |





#### 4.8 Radiated Emission Measurement

#### 4.8.1 Limits of Radiated Emission Measurement

According to FCC 27.53 (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

According to FCC 27.53(f) For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

#### 4.8.2 Test Procedure

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels (low, middle and high channel of operational frequency range.)
- b. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 0.8m/1.5m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution antenna.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 100kHz/300kHz.

4.8.3 Deviation from Test Standard No deviation.



## 4.8.4 Test Setup

# <Frequency Range below 1GHz>



# <Frequency Range above 1GHz>



For the actual test configuration, please refer to the attached file (Test Setup Photo).



# 4.8.5 Test Results

Below 1GHz

**Channel Bandwidth: 5MHz** 

| Mode TX | channel 23205 | Frequency Range | Below 1000 MHz |
|---------|---------------|-----------------|----------------|
|---------|---------------|-----------------|----------------|

|     | Antenna Polarity & Test Distance: Horizontal at 3 M |                  |                          |                           |                         |             |             |  |  |
|-----|-----------------------------------------------------|------------------|--------------------------|---------------------------|-------------------------|-------------|-------------|--|--|
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |  |  |
| 1   | 76.32                                               | 32.85            | -61.85                   | -1.98                     | -63.82                  | -13         | -50.82      |  |  |
| 2   | 128.25                                              | 32.85            | -62.89                   | 5.29                      | -57.60                  | -13         | -44.60      |  |  |
| 3   | 278.16                                              | 33.23            | -61.89                   | 3.86                      | -58.04                  | -13         | -45.04      |  |  |
| 4   | 345.5                                               | 30.20            | -67.44                   | 3.61                      | -63.83                  | -13         | -50.83      |  |  |
| 5   | 520.82                                              | 33.20            | -61.20                   | 2.92                      | -58.27                  | -13         | -45.27      |  |  |
| 6   | 736.85                                              | 27.63            | -68.73                   | 1.03                      | -67.70                  | -13         | -54.70      |  |  |
|     |                                                     | Antenna          | a Polarity & Te          | est Distance: '           | Vertical at 3 N         | 1           |             |  |  |
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |  |  |
| 1   | 66.8                                                | 30.29            | -55.82                   | -5.65                     | -61.47                  | -13         | -48.47      |  |  |
| 2   | 93.39                                               | 32.85            | -58.90                   | -0.99                     | -59.88                  | -13         | -46.88      |  |  |
| 3   | 130.74                                              | 33.65            | -58.39                   | -1.25                     | -59.64                  | -13         | -46.64      |  |  |
| 4   | 238.52                                              | 29.55            | -65.81                   | 3.82                      | -61.98                  | -13         | -48.98      |  |  |
| 5   | 508.65                                              | 34.19            | -61.22                   | 2.82                      | -58.40                  | -13         | -45.40      |  |  |
| 6   | 609.46                                              | 37.53            | -57.15                   | 1.78                      | -55.37                  | -13         | -42.37      |  |  |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



| Mode TX channel 23230 Frequency Range | Below 1000 MHz |
|---------------------------------------|----------------|
|---------------------------------------|----------------|

|      | Antenna Polarity & Test Distance: Horizontal at 3 M |         |                 |                 |                 |                |              |  |  |
|------|-----------------------------------------------------|---------|-----------------|-----------------|-----------------|----------------|--------------|--|--|
| No.  | Frog (MHz)                                          | Reading | S.G Power       | Correction      | Emission        | Limit (dBm)    | Manain (aID) |  |  |
| INO. | Freq. (MHz)                                         | (dBm)   | Value (dBm)     | Factor (dB)     | Value (dBm)     | LIIIII (UDIII) | Margin (dB)  |  |  |
| 1    | 76.54                                               | 31.82   | -62.75          | -1.93           | -64.68          | -13            | -51.68       |  |  |
| 2    | 127.81                                              | 32.20   | -63.54          | 5.30            | -58.24          | -13            | -45.24       |  |  |
| 3    | 278.25                                              | 32.90   | -62.21          | 3.86            | -58.35          | -13            | -45.35       |  |  |
| 4    | 345.4                                               | 29.55   | -68.10          | 3.61            | -64.49          | -13            | -51.49       |  |  |
| 5    | 520.19                                              | 32.05   | -62.34          | 2.92            | -59.41          | -13            | -46.41       |  |  |
| 6    | 737                                                 | 27.33   | -69.04          | 1.02            | -68.01          | -13            | -55.01       |  |  |
|      |                                                     | Antenna | a Polarity & Te | est Distance: ' | Vertical at 3 N | 1              |              |  |  |
| No   | [ros (MIII-)                                        | Reading | S.G Power       | Correction      | Emission        | 1: :: (15 )    |              |  |  |
| No.  | Freq. (MHz)                                         | (dBm)   | Value (dBm)     | Factor (dB)     | Value (dBm)     | Limit (dBm)    | Margin (dB)  |  |  |
| 1    | 65.99                                               | 29.86   | -55.32          | -6.10           | -61.42          | -13            | -48.42       |  |  |
| 2    | 93.97                                               | 32.13   | -59.61          | -0.98           | -60.59          | -13            | -47.59       |  |  |
| 3    | 131.06                                              | 32.64   | -59.16          | -1.25           | -60.41          | -13            | -47.41       |  |  |
| 4    | 238.09                                              | 28.21   | -67.15          | 3.83            | -63.32          | -13            | -50.32       |  |  |
| 5    | 509.26                                              | 32.85   | -62.56          | 2.82            | -59.74          | -13            | -46.74       |  |  |
| 6    | 610.45                                              | 37.00   | -57.69          | 1.78            | -55.91          | -13            | -42.91       |  |  |

- Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
   Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



| Mode TX channel 23255 Frequency Range | Below 1000 MHz |
|---------------------------------------|----------------|
|---------------------------------------|----------------|

|      | Antenna Polarity & Test Distance: Horizontal at 3 M |         |               |                 |                 |                |             |  |  |
|------|-----------------------------------------------------|---------|---------------|-----------------|-----------------|----------------|-------------|--|--|
| No.  | Freq. (MHz)                                         | Reading | S.G Power     | Correction      | Emission        | Limit (dBm)    | Manada (ID) |  |  |
| INO. | Freq. (MHZ)                                         | (dBm)   | Value (dBm)   | Factor (dB)     | Value (dBm)     | LITTIL (UDITI) | Margin (dB) |  |  |
| 1    | 75.65                                               | 32.75   | -62.17        | -2.05           | -64.22          | -13            | -51.22      |  |  |
| 2    | 128.98                                              | 31.38   | -64.36        | 5.28            | -59.08          | -13            | -46.08      |  |  |
| 3    | 279.11                                              | 32.49   | -62.66        | 3.85            | -58.81          | -13            | -45.81      |  |  |
| 4    | 346                                                 | 28.87   | -68.81        | 3.61            | -65.21          | -13            | -52.21      |  |  |
| 5    | 520.01                                              | 32.47   | -61.93        | 2.92            | -59.00          | -13            | -46.00      |  |  |
| 6    | 736.43                                              | 27.62   | -68.75        | 1.02            | -67.73          | -13            | -54.73      |  |  |
|      |                                                     | Antenna | Polarity & Te | est Distance: ' | Vertical at 3 N | 1              |             |  |  |
| No   | Гто с. /\/ /\-\                                     | Reading | S.G Power     | Correction      | Emission        | L' '( / ID )   | Manada (ID) |  |  |
| No.  | Freq. (MHz)                                         | (dBm)   | Value (dBm)   | Factor (dB)     | Value (dBm)     | Limit (dBm)    | Margin (dB) |  |  |
| 1    | 67.49                                               | 29.58   | -56.70        | -5.57           | -62.27          | -13            | -49.27      |  |  |
| 2    | 92.89                                               | 32.77   | -59.06        | -1.02           | -60.08          | -13            | -47.08      |  |  |
| 3    | 130.97                                              | 32.78   | -59.02        | -1.25           | -60.27          | -13            | -47.27      |  |  |
| 4    | 237.55                                              | 28.30   | -67.06        | 3.85            | -63.22          | -13            | -50.22      |  |  |
| 5    | 508.53                                              | 33.42   | -62.00        | 2.83            | -59.17          | -13            | -46.17      |  |  |
| 6    | 609.64                                              | 37.32   | -57.37        | 1.78            | -55.59          | -13            | -42.59      |  |  |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



# **Channel Bandwidth: 10MHz**

| e TX channel 23230 | Frequency Range | Below 1000 MHz |  |
|--------------------|-----------------|----------------|--|
|--------------------|-----------------|----------------|--|

| Antenna Polarity & Test Distance: Horizontal at 3 M |             |         |               |                 |                 |              |              |  |
|-----------------------------------------------------|-------------|---------|---------------|-----------------|-----------------|--------------|--------------|--|
| No.                                                 | Freq. (MHz) | Reading | S.G Power     | Correction      | Emission        | Limit (dBm)  | Manain (-ID) |  |
| INO.                                                | Freq. (MHZ) | (dBm)   | Value (dBm)   | Factor (dB)     | Value (dBm)     | Limit (dbin) | Margin (dB)  |  |
| 1                                                   | 76.78       | 32.54   | -62.06        | -1.94           | -64.00          | -13          | -51.00       |  |
| 2                                                   | 127.58      | 32.63   | -63.11        | 5.30            | -57.81          | -13          | -44.81       |  |
| 3                                                   | 278.9       | 32.86   | -62.29        | 3.85            | -58.44          | -13          | -45.44       |  |
| 4                                                   | 346.31      | 30.00   | -67.74        | 3.60            | -64.14          | -13          | -51.14       |  |
| 5                                                   | 520.07      | 32.56   | -61.84        | 2.92            | -58.92          | -13          | -45.92       |  |
| 6                                                   | 735.88      | 27.45   | -68.91        | 1.04            | -67.87          | -13          | -54.87       |  |
|                                                     |             | Antenna | Polarity & Te | est Distance: ' | Vertical at 3 N | Л            |              |  |
| No.                                                 | Freq. (MHz) | Reading | S.G Power     | Correction      | Emission        | Limit (dBm)  | Margin (dB)  |  |
| 4                                                   | 00.55       | (dBm)   | Value (dBm)   | Factor (dB)     | Value (dBm)     |              | 10 =0        |  |
| 1                                                   | 66.55       | 29.19   | -57.34        | -5.44           | -62.79          | -13          | -49.79       |  |
| 2                                                   | 93.11       | 32.10   | -59.70        | -1.00           | -60.71          | -13          | -47.71       |  |
| 3                                                   | 130.77      | 32.95   | -58.40        | -1.23           | -59.64          | -13          | -46.64       |  |
| 4                                                   | 237.87      | 28.62   | -66.74        | 3.82            | -62.92          | -13          | -49.92       |  |
| 5                                                   | 508.63      | 33.82   | -61.57        | 2.81            | -58.76          | -13          | -45.76       |  |
| 6                                                   | 609.09      | 36.79   | -57.90        | 1.78            | -56.12          | -13          | -43.12       |  |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



## Above 1GHz

## **Channel Bandwidth: 5MHz**

|     | Antenna Polarity & Test Distance: Horizontal at 3 M |                  |                          |                           |                         |             |             |  |  |
|-----|-----------------------------------------------------|------------------|--------------------------|---------------------------|-------------------------|-------------|-------------|--|--|
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |  |  |
| 1   | 2338.5                                              | 34.30            | -64.97                   | 6.73                      | -58.24                  | -13         | -45.24      |  |  |
| 2   | 3118                                                | 35.11            | -67.62                   | 7.30                      | -60.32                  | -13         | -47.32      |  |  |
|     |                                                     | Antenna          | Polarity & Te            | est Distance: '           | Vertical at 3 N         | 1           |             |  |  |
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |  |  |
| 1   | 2338.5                                              | 34.11            | -65.16                   | 6.73                      | -58.43                  | -13         | -45.43      |  |  |
| 2   | 3118                                                | 36.89            | -65.84                   | 7.30                      | -58.54                  | -13         | -45.54      |  |  |

#### Remarks:

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

## The EIRP in Frequency Range 1559 - 1610 MHz

| the Elitti in Frequency range 1000 To to thin E     |             |                  |                          |                           |                         |                    |             |  |
|-----------------------------------------------------|-------------|------------------|--------------------------|---------------------------|-------------------------|--------------------|-------------|--|
| Antenna Polarity & Test Distance: Horizontal at 3 M |             |                  |                          |                           |                         |                    |             |  |
| No.                                                 | Freq. (MHz) | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit<br>(dBm/MHz) | Margin (dB) |  |
| 1                                                   | 1559        | 42.82            | -60.38                   | 6.10                      | -54.27                  | -40                | -14.27      |  |
| Antenna Polarity & Test Distance: Vertical at 3 M   |             |                  |                          |                           |                         |                    |             |  |
| No.                                                 | Freq. (MHz) | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit<br>(dBm/MHz) | Margin (dB) |  |
| 1                                                   | 1559        | 39.7             | -63.50                   | 6.10                      | -57.39                  | -40                | -17.39      |  |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



|     | Antenna Polarity & Test Distance: Horizontal at 3 M |                  |                          |                           |                         |             |             |
|-----|-----------------------------------------------------|------------------|--------------------------|---------------------------|-------------------------|-------------|-------------|
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |
| 1   | 2346                                                | 35.05            | -64.18                   | 6.73                      | -57.45                  | -13         | -44.45      |
| 2   | 3128                                                | 35.22            | -67.53                   | 7.32                      | -60.21                  | -13         | -47.21      |
|     |                                                     | Antenna          | Polarity & Te            | est Distance: '           | Vertical at 3 N         | 1           |             |
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |
| 1   | 2346                                                | 33.17            | -66.06                   | 6.73                      | -59.33                  | -13         | -46.33      |
| 2   | 3128                                                | 37.48            | -65.27                   | 7.32                      | -57.95                  | -13         | -44.95      |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

#### The EIRP in Frequency Range 1559 - 1610 MHz

|     | Antenna Polarity & Test Distance: Horizontal at 3 M |         |               |               |                 |           |                |  |
|-----|-----------------------------------------------------|---------|---------------|---------------|-----------------|-----------|----------------|--|
| No. | Freq. (MHz)                                         | Reading | S.G Power     | Correction    | Emission        | Limit     | Margin (dB)    |  |
| NO. | i req. (wir iz)                                     | (dBm)   | Value (dBm)   | Factor (dB)   | Value (dBm)     | (dBm/MHz) | iviargiri (ub) |  |
| 1   | 1 1564 42.99 -60.18 6.11 -54.07 -40 -14.07          |         |               |               |                 |           |                |  |
|     |                                                     | Antenna | Polarity & Te | est Distance: | Vertical at 3 N | 1         |                |  |
| Nia | (\\                                                 | Reading | S.G Power     | Correction    | Emission        | Limit     | Margin (dD)    |  |
| No. | Freq. (MHz)                                         | (dBm)   | Value (dBm)   | Factor (dB)   | Value (dBm)     | (dBm/MHz) | Margin (dB)    |  |
| 1   | 1564                                                | 38.89   | -64.28        | 6.11          | -58.17          | -40       | -18.17         |  |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



| Mode  | TX channel 23255 | Frequency Range   | Above 1000MHz         |
|-------|------------------|-------------------|-----------------------|
| Wiodo | 174 Onamio 20200 | i roquonoy rtango | 7 100 VO 1000 IVII 12 |

|     | Antenna Polarity & Test Distance: Horizontal at 3 M |                  |                          |                           |                         |             |             |
|-----|-----------------------------------------------------|------------------|--------------------------|---------------------------|-------------------------|-------------|-------------|
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |
| 1   | 2353.5                                              | 33.83            | -65.36                   | 6.72                      | -58.64                  | -13         | -45.64      |
| 2   | 3138                                                | 34.13            | -68.63                   | 7.33                      | -61.30                  | -13         | -48.30      |
|     |                                                     | Antenna          | a Polarity & Te          | est Distance: '           | Vertical at 3 N         | 1           |             |
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |
| 1   | 2353.5                                              | 34.23            | -64.96                   | 6.72                      | -58.24                  | -13         | -45.24      |
| 2   | 3138                                                | 36.22            | -66.54                   | 7.33                      | -59.21                  | -13         | -46.21      |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

# The EIRP in Frequency Range 1559 - 1610 MHz

|     | no in the quality stange seed seed in the initial                                       |                  |                          |                           |                         |                    |             |  |
|-----|-----------------------------------------------------------------------------------------|------------------|--------------------------|---------------------------|-------------------------|--------------------|-------------|--|
|     | Antenna Polarity & Test Distance: Horizontal at 3 M                                     |                  |                          |                           |                         |                    |             |  |
| No. | Freq. (MHz)                                                                             | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit<br>(dBm/MHz) | Margin (dB) |  |
| 1   | 1 1569 43.21 -59.94 6.12 -53.82 -40 -13.82                                              |                  |                          |                           |                         |                    |             |  |
|     |                                                                                         | Antenna          | Polarity & Te            | est Distance: '           | Vertical at 3 N         | 1                  |             |  |
| No. | No. Freq. (MHz) Reading (dBm) S.G Power Correction Emission Limit (dBm/MHz) Margin (dB) |                  |                          |                           |                         |                    |             |  |
| 1   | 1569                                                                                    | 39.7             | -63.45                   | 6.12                      | -57.33                  | -40                | -17.33      |  |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



## **Channel Bandwidth: 10MHz**

| Mode TX channel 23230 | Frequency Range | Above 1000MHz |  |
|-----------------------|-----------------|---------------|--|
|-----------------------|-----------------|---------------|--|

|     | Antenna Polarity & Test Distance: Horizontal at 3 M |                  |                          |                           |                         |             |             |
|-----|-----------------------------------------------------|------------------|--------------------------|---------------------------|-------------------------|-------------|-------------|
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |
| 1   | 2346                                                | 33.87            | -65.36                   | 6.73                      | -58.63                  | -13         | -45.63      |
| 2   | 3128                                                | 34.81            | -67.94                   | 7.32                      | -60.62                  | -13         | -47.62      |
|     |                                                     | Antenna          | Polarity & Te            | est Distance: '           | Vertical at 3 N         | 1           |             |
| No. | Freq. (MHz)                                         | Reading<br>(dBm) | S.G Power<br>Value (dBm) | Correction<br>Factor (dB) | Emission<br>Value (dBm) | Limit (dBm) | Margin (dB) |
| 1   | 2346                                                | 35.09            | -64.14                   | 6.73                      | -57.41                  | -13         | -44.41      |
| 2   | 3128                                                | 37.48            | -65.27                   | 7.32                      | -57.95                  | -13         | -44.95      |

#### Remarks:

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

## The EIRP in Frequency Range 1559 - 1610 MHz

|     | Antenna Polarity & Test Distance: Horizontal at 3 M |         |                 |                 |                 |           |             |
|-----|-----------------------------------------------------|---------|-----------------|-----------------|-----------------|-----------|-------------|
| No. | Re (MIL)                                            | Reading | S.G Power       | Correction      | Emission        | Limit     | Manain (dD) |
| NO. | Freq. (MHz)                                         | (dBm)   | Value (dBm)     | Factor (dB)     | Value (dBm)     | (dBm/MHz) | Margin (dB) |
| 1   | 1 1564 43.71 -59.46 6.11 -53.35 -40 -13.35          |         |                 |                 |                 |           |             |
|     |                                                     | Antenna | a Polarity & Te | est Distance: ' | Vertical at 3 N | 1         |             |
| Na  | (\\                                                 | Reading | S.G Power       | Correction      | Emission        | Limit     | Morein (dD) |
| No. | Freq. (MHz)                                         | (dBm)   | Value (dBm)     | Factor (dB)     | Value (dBm)     | (dBm/MHz) | Margin (dB) |
| 1   | 1564                                                | 40.45   | -62.72          | 6.11            | -56.61          | -40       | -16.61      |

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).



| 5 Pictures of Test Arrangements                       |
|-------------------------------------------------------|
| Please refer to the attached file (Test Setup Photo). |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |



## Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF Lab/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a>
Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

--- END ---