Finding Time-dependent Shortest Paths over Large Graphs

Alberto Presta

10-07-2019

DSSC - Algorithmic Design exam

Finding Timedependent Shortest Paths over arge Graph

Alberto Presta

Introduction to the problem

Existing solutions

New Dijkstra Based Algorithm

Time complex

presentation's schedule

- Introduction to the problem
- 2 Existing solutions
- New Dijkstra Based Algorithm
- 4 Time complexity
- Non-FIFO Graphs

Finding
Timedependent
Shortest
Paths over
Large Graph

Alberto Presta

Introduction to the problem

xisting

New Dijkstra Based

Based Algorithm

> Fime :omplexity

Introduction

- TSDP (time-dependent shortest path problem): to find the optimal path (with minimum travel time) from a source to a destination, over a time-dependent graph.
- ② We concentrate on finding the least total travel time (LTT) from source node v_s to a dest. node v_e with starting time $t \in [t_s, t_e]$, chosen from the user. Such a query is called an LTT query, denoted as LTT (v_s, v_e) .
- More focused in on a specific class of graphs, called FIFO time-dependent graphs.

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

> ime omplexity

Problem Definition

Definition

A time-dependent graph is defined as $G_T(V, E, W)$ (or G_T for short):

- $V = \{v_i\}$ is a set of nodes.
- $E \subseteq V \times V$ is a set of edges.

For every edge $(v_i, v_j) \in E$, there is a function $\omega_{i,j}(t)$, where t is a time variable in a domain T: It specifies how much time it takes to travel from v_i to v_j , if departing v_i at time t.

Finding
Timedependent
Shortest
Paths over
Large Graph

Alberto Presta

Introduction to the problem

> Existing solutions

New Dijkstra Based

Time complexity

Problem Definition

Definition

Given a time-dependent graph $G_T(V, E, W)$ and a LTT (v_s, ve, T) , where $v_s, v_e \in V$ and $T \in \tau$ is a starting-time interval, the *time-dependent shortest path* (TDSP) problem is to minimize LTT:

$$g_{p^*}\left(t^*
ight)-t^*=\min_{p,\omega(\cdot),t}g_p(t)-t$$

where p^* is the path $v_s - v_e$, $\omega^*(v_i)$ is the waiting time in v_i and t^* is the best starting time, with which results in the minimum travel time $g_p(t) - t$.

Finding Timedependent Shortest Paths over Large Grapl

> Alberto Presta

Introduction to the problem

Existing

New Dijkstra Based Algorithm

Time complex

Existing Solutions

three different types of algorithm:

- Discrete-time algorithm.
- 2 Bellman-Ford based algorithm.
- A* algorithm.

observation

Main challenge: edge delays are different function of departure times, the $v_s - v_e$ path with the least total travel time changes in a complicated manner as the starting time changes

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the problem

Existing solutions

New Dijkstra Based Algorithm

Algorithm

Time complexity

Discrete-time algorithm

- Find approximate LTT by globally discretizing time interval into time points.
- ② Given a graph $G_T(V, E, W)$, we discretize the starting-time interval $T = [t_s, t_e]$ into k points and contructs a static graph $G'_T(V', E', W')$ by making k copies of each node and each edge.
- **3** For each edge (v'_i, v'_j) , $w'_{i,j}$ is equal to the value of $w_{i,j}(t)$ on a fixed time point.
- static-single-source shortest path problem on $G'_{\mathcal{T}}(V', E', W')$.

observation

Increasing k deteriorates the efficiency of discrete-time approaches, since G'_t is k times larger than G_t .

Finding Timedependent Shortest Paths over

Alberto Presta

Introduction to the problem

Existing

New Dijkstra Based

> ime omplexity

Bellman-Ford Based Algorithm

Definition

Let we give the following definitions:

- $g_l(t)$ the earliest arrival time function at node v_l , from source v_s , for starting time t.
- ② $h_{k,l}(t)$ the earliest arrival time at v_l , from source v_s via edge (v_k, v_l) , for starting time t.

how does the algorithm work?

- It updates $g_l(t)$ and $h_{k,l}(t)$ until they converge to the correct values.
- ② it returns the best starting time t^* and the optimal path p^* .
- **3** Time complexity is $O(|V| \cdot |E| \cdot \alpha(T))$ where $\alpha(T)$ is the time required in a function operation in T.

Finding Timedependent Shortest Paths over Large Grapl

> Alberto Presta

Introduction to the

Existing solutions

New Dijkstra Based Algorithm

Time complexity

Bellman-Ford Based Algorithm

Pseudo-code

```
1: for all v_l \in V do g_l \leftarrow \infty for t \in T;

2: for all (v_k, v_l) \in E do h_{k,l} \leftarrow \infty for t \in T;

3: g_s(t) \leftarrow t for t \in T;

4: repeat

5: for all (v_k, v_l) \in E do h_{k,l} \leftarrow g_k(t) + w_{k,l}(g_k(t));

6: for all v_l \in V do g_l(t) \leftarrow \min_{v_k \in N(v_l)} h_{k,l}(t);

7: until all functions g_l(t) are unchanged;

8: return (t* \leftarrow \arg\min_{t \in T} g_e(t) - t, p*)
```

Finding
Timedependent
Shortest
Paths over
arge Graph

Alberto Presta

Introduction to the

Existing solutions

New Dijkstra Based Algorithm

Time comple

A* Algorithm

Main idea: maintain a priority queue of all paths to be expanded.

- Let p_k be a path from v_s to v_k (there can be multiple paths of this type in the queue).
- 2 Each path is associated with a function $f_{p_k}(t) = g_{p_k}(t) + d_{k,e} t$.
- **3** In each iteration we pick the path which $\min_t \{f_{p_i}(t)\}$ is minimum and we extend it with one more edge (v_i, v_j) : New path is added in priority queue and the old one is deleted.
- In worst case, all possible paths are enumerated and time/space complexity is exponential with respect the size of G_T.

Finding
Timedependent
Shortest
Paths over
Large Graph

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

> ime omplexity

Notation

First of all, we introduce some important notations:

- **1** $G_T(V, E, W)$: time-dependent graph (G_T) .
- $w_{i,j}(t)$: edge-delay function for $(v_i, v_j) \in E$.
- v_s, v_e, T : source, destination and starting-time interval.

- $\omega^*(v_i)$: optimal waiting time at node v_i .
- $g_i(t)$: $v_s v_i$ earliest arrival-time function.
- **3** $g_p(t)$: arrival-time function (along path p).
- \circ $\alpha(T)$: time/space required to maintain a function or to manipulate a function operation over time interval T

Finding
Timedependent
Shortest
Paths ove
arge Grap

Alberto Presta

troduction

problem Existing

existing olutions

New Dijkstra Based Algorithm

> ime omplexity

FIFO time-dependent graph

Introduction

We focus in answering LTT queries in an FIFO (*First-in* and *Firt-out*) time-dependent graph G_T , where no waiting time is needed in optimal solution.

Definition

Time-dependent graph G_T is a FIFO graph, iff every edge (v_i, v_j) has FIFO property. An edge (v_i, v_j) has FIFO property, iff $w_{i,j}(t_{t_0}) \leq t_{\Delta} + w_{i,j}(t_0 + t_{\Delta})$ for $t_{\Delta} \geq 0$.

Theorem

For a given LTT query on a FIFO time-dependent graph G_T , there exists an optimal path p* along which the optimal waiting time is 0 for every v_i on p*.

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the

Existing solutions

New Dijkstra Based Algorithm

Time complexity

New Dijkstra Based Algorithm

Organization of the algorithm

Answering LTT query can be done in two decoupled steps:

- time-refinement: for every node $v_i \in V$ to compute the earliest arrival time $g_i(t)$, departing from v_s at any starting time $t \in T$.
- 2 path-selection: we select from first step one of the paths from v_s to v_e , which matches the optimal travel time $g_e(t*) t*$.

These two steps are grouped in the so called TWO-STEP-LTT.

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the

Existing solutions

New Dijkstra

ime omplexity

Two-step-LTT

```
TWO-STEP-LTT(G_T(V, E, W), v_s, v_e, T):

1: \{g_i(t)\} \leftarrow timeRefinement(G_T, v_s, v_e, T);

2: if !(g_e(t) = \infty \text{ for the entire } [t_s, t_e])then

3: t^* \leftarrow arg \min_{t \in T} \{g_e(t) - t\};

4: p^* \leftarrow pathSelection(G_T, g_i(t), v_s, v_e, t^*);

5: return(t^*, p^*);

6: else return 0;
```

Finding
Timedependent
Shortest
Paths over
Large Graph

Alberto Presta

Introduction to the

. Existing

New Dijkstra Based Algorithm

Time complexity

Time-refinement

How does the algorithm works?

The first step is dominating factor in terms of computational cost. We compute $g_i(t)$ for every node $v_i \in V$, through this recursive equation:

$$g_i(t) = \min_{v_j \in N(v_i), \omega(v_j)} (g_j(t) + \omega(v_j)) + w_{i,j}(g_j(t) + \omega(v_j))$$

where
$$N(v_i) = \{v_j | (v_i, v_j) \in E\}$$

Definition

We say that function $g_i(t)$ is well-refined in a starting-time subinterval I_i , if it specifies the earliest arrival time at v_i from v_s for any starting time $t \in I_i$.

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the

Existing solutions

New Dijkstra Based Algorithm

Time complexity

Time-refinement

How does the algorithm works?

- We refine $g_i(t)$, incrementally in the given starting-time interval $T = [t_s, t_e]$.
- ② $\forall v_i \in V$, let $I_i = [t_s, \tau_i] \subseteq T$ be a starting-time subinterval, where $\tau_i \in T = [t_s, t_e]$.
- **3** We "incrementally" refine $g_i(t)$ to a largest starting-time subinterval $I'_{i,i}$, in a way that $g_i(t)$ is always well-refined.
- We go ahead until $g_e(t)$ is well refined in the entire starting-time interval T.

Finding
Timedependent
Shortest
Paths over
Large Grapl

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

Time complexity

Time-refinement

Pseudo-code

Algorithm 3 timeRefinement $(G_T(V, E, W), v_s, v_e, T)$

Input: a time-dependent graph G_T , a query $\mathsf{LTT}(v_s, v_e, T)$ - source v_s , destination v_e , and starting-time interval $T = [t_s, t_e]$; **Output:** $\{g_i(t)|v_i \in V\}$ - all earliest arrival-time functions.

```
 q<sub>s</sub>(t) ← t for t ∈ T; τ<sub>s</sub> ← t<sub>s</sub>;

 2: for each v_i \neq v_s do

 a<sub>i</sub>(t) ← ∞ for t ∈ T; τ<sub>i</sub> ← t<sub>s</sub>;

 4: Let Q be a priority queue initially containing pairs, (\tau_i, g_i(t)),
      for all nodes v_i \in V, ordered by q_i(\tau_i) in ascending order;
 5: while |Q| > 2 do
         (\tau_i, g_i(t)) \leftarrow dequeue(Q);
 7: (\tau_k, g_k(t)) \leftarrow head(Q);
         \Delta \leftarrow \min\{w_{f,i}(g_k(\tau_k)) \mid (v_f, v_i) \in E\};
      \tau'_i \leftarrow \max\{t \mid g_i(t) \leq g_k(\tau_k) + \Delta\};
         for each (v_i, v_i) \in E do
11:
            g'_{i}(t) \leftarrow g_{i}(t) + w_{i,j}(g_{i}(t)) \text{ for } t \in [\tau_{i}, \tau'_{i}];
            q_i(t) \leftarrow \min\{q_i(t), q_i'(t)\} \text{ for } t \in [\tau_i, \tau_i'];
            update(Q, (\tau_i, g_i(t)));
         \tau_i \leftarrow \tau_i';
14:
15.
         if \tau_i > t_c then
            if v_i = v_e then
16:
17.
                return \{g_i(t)|v_i\in V\};
18:
         else
19:
            enqueue(Q, (\tau_i, g_i(t)));
20: return \{q_i(t)|v_i \in V\}.
```

Finding Timedependent Shortest Paths over Large Grap

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

Time complex

More on Time-refinement algorithm

- We use a priority Queue Q, which initially contains pairs $(\tau_i, g_i(t))$ for all nodes v_i in ascending order of $g_i(\tau_i)$.
- **②** While loop conducts time-refinement for every node v_i in G_T .
- **3** Line 6-9 and line 14: we update starting-time interval refinement, by finding the minimum travel time from v_f to fixed v_i (line 8) and by calculating τ' (line 9).
- line 11-14: we use the well-refined $g_i(t)$ to refine arrival-time functions $g_j(t)$ in starting-time subintervals $[\tau_i, \tau_i']$ of all v_i 's outgoing neighbors.

Finding
Timedependent
Shortest
Paths over
Large Graph

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

> ime omplexity

PathSelection

How does the algorithm works?

- We determine the predecessor of every node in p* backward from v_e to v_s based on $\{g_i(t)\}$ and $t* \in T$.
- ② This algorithm takes five inputs: graph G_t , all the earliest arrival-time functions $\{g_i(t)\}$, the optimal starting time $t* \in T$, source v_s and destination v_e .
- **③** The predecessor of v_j is determined as v_i , if $g_j(t*) = g_i(t*) + w_{i,j}(g_i(t*))$ for $(v_i, v_j) \in E$.

Finding
Timedependent
Shortest
Paths over
arge Graph

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

> ime omplexity

Non-FIFC

Pathselection

Pseudo-Code

```
PathSelection(G_T(V, E, W), \{g_i(t)\}, v_s, v_e, t*\}):

1: v_j \leftarrow v_e;

2: p* \leftarrow \emptyset;

3: while v_j \neq v_s do

4: for each (v_i, v_j) \in E do

5: if g_i(t*) + w_{i,j}(g_i(t*)) = g_j(t*) then

6: v_j \leftarrow v_i; break;

7: p* \leftarrow (v_i, v_j) \cdot p*;

8: return p*;
```

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the

Existing

New Dijkstr Based

Fime complexity

Our query is LTT($v_1, v_4, T = [0, 60]$).

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the

Existing

New Dijkstra Based Algorithm

Time complexit

Non-FIF

Figure: Our Time-dependent graph, which we use as example

First Iteration:

Second Iteration:

Finding
Timedependent
Shortest
Paths over
Large Graph

Alberto Presta

Introduction to the problem

Existing

New Dijkstra Based Algorithm

Time complexit

Third iteration:

... after 11 iterations we have that all functions are well-refined!

Finding Timedependent Shortest Paths over Large Graph

Alberto Presta

Introduction to the problem

Existing

New Dijkstra Based

Time

Solution

$$t^* = 20$$
 and $p^* = (v_1, v_2)(v_2, v_3)(v_3, v_4)$.

Finding
Timedependent
Shortest
Paths over
Large Graphs

Alberto Presta

Introduction to the problem

Existing

New Dijkstra Based Algorithm

ime

Time complexity of two-Step-LTT

Given a graph G_T with n nodes and m edges in total, consider query LTT(v_s , v_e , T).

Theorem

The time complexity of the timeRefinement algorithm is $O((n \cdot \log n + m)\alpha(T))$.

Theorem

The time complexity of PathSelection is $O(m\alpha(T))$.

Theorem

the time-complexity of Two-step-LTT is $O((n \cdot \log n + m)\alpha(T))$

Finding
Timedependent
Shortest
Paths over

Alberto Presta

Introduction to the problem

Existing solutions

New Dijkstra Based Algorithm

Time complexity

Solution for Non-FIFO Graphs

How to find an optimal LTT over a non-FIFO graphs?

- We can transform a non-FIFO graphs G'_T into a FIFO graph G_T , where both V and E remain unchanged.
- ② Find optimal path p^* found in G_T can be converted into a optimal path $p^{'*}$ for G'_T , by inserting some waiting time on each node.

Finding Timedependent Shortest Paths over arge Graph

Alberto Presta

Introduction to the

Existing

New Dijkstra Based

Algorithm

Time complexity

solution for non-FIFO Graphs

IDEA

Foe each $w'_{i,j}(t)$ in the non-FIFO graph, we define $w_{i,j}(t)$ to construct a FIFO graph:

$$w_{i,j} = \Delta_{i,j}(t) + w'_{i,j}(t + \Delta_{i,j}(t))$$

 $\Delta_{i,j}(t)$ is the optimal waiting time to traverse edge (v_i, v_j) , if arriving at v_i at time t.

Then in the FIFO optimal path p^* we add the term $\Delta_{i,j}(t)$ at node v_i , for $1 \le i \le k-1$, where t is the arrival time at node v_i along path p^* in G_T for starting time t^* .

Finding Timedependent Shortest Paths over Large Graph

> Alberto Presta

Introduction to the

Existing

New Dijkstra Based

Time