Superstring theory Homework 11

Aristotelis Koutsikos, Chenhuan Wang and Mohamed Ghoneim January 27, 2021

1 Two-point and three-point correlation functions

A primary field $\phi(z)$ transform under the infinitesimal conformal transformation $z \to z + \epsilon(z)$ as

$$\delta_{\epsilon}\phi(z) = -\left[\epsilon(z)\partial_z + h\partial_z\epsilon(z)\right]\phi(z) \tag{1.1}$$

Now consider (quasi-)primary fields ϕ_i with conformal dimension h_i

1. Conformal invariance of two-point function $G(z_1, z_2)$ implies

$$\delta_{\epsilon(z_1),\epsilon(z_2)}G(z_1,z_2) = \left\langle \delta_{\epsilon(z_1)}\phi_1\phi_2 \right\rangle + \left\langle \phi_1\delta_{\epsilon(z_2)}\phi_2 \right\rangle$$

$$= -\left[\epsilon(z_1)\partial_{z_1} + h_1\partial_{z_1}\epsilon(z_1) + \epsilon(z_2)\partial_{z_2} + h_2\partial_{z_2}\epsilon(z_2)\right]G(z_1,z_2)$$

$$= 0$$
(1.2)

2. With $\epsilon(z_i) = \alpha$ in (1.2), we have

$$\alpha \left(\partial_{z_1} + \partial_{z_2}\right) G(z_1, z_2) = 0$$
$$\partial_{\bar{z}_{12}} G(z_1, z_2) = 0$$

with $z_{12} = z_1 - z_2$ and $\bar{z}_{12} = z_1 + z_2$. Thus $G(z_1, z_2)$ depends only on $z_{12} = z_1 - z_2$. It follows that $\partial_{z_1} G = -\partial_{z_2} G$.

3. Use $\epsilon(z_i) = \beta z_i$ in (1.2), we have

$$\beta (z_1 \partial_{z_1} + h_1 + z_2 \partial_{z_2} + h_2) G(z_1, z_2) = 0$$

$$(z_1 - z_2) \frac{\partial_{z_1} G}{G} + (h_1 + h_2) = 0$$

$$\int dz_1 \frac{\partial_{z_1} G}{G} + (h_1 + h_2) \int dz_1 \frac{1}{z_1 - z_2} = 0$$

$$\ln |G| + (h_1 + h_2) \ln |z_1 - z_2| + C = 0$$

Indeed

$$G(z_1, z_2) = \frac{C_{12}}{(z_1 - z_2)^{h_1 + h_2}}$$
(1.3)

is a solution and C_{12} is related to the integration constant.

4. Use $\epsilon(z_i) = \gamma z_i^2$, we have

$$\gamma \left[z_1^2 \partial_{z_1} + 2h_1 z_1 + z_2^2 \partial_{z_2} + 2h_2 z_2 \right] G(z_1, z_2) = 0$$

Plug (1.3) into it

$$\gamma C_{12} \left[z_1^2 \partial_{z_1} + 2h_1 z_1 + z_2^2 \partial_{z_2} + 2h_2 z_2 \right] \frac{1}{(z_1 - z_2)^{h_1 + h_2}}
= \gamma C_{12} \left[-(z_1^2 - z_2^2) \frac{h_1 + h_2}{z_1 - z_2} + 2(h_1 z_1 + h_2 z_2) \right] \frac{1}{(z_1 - z_2)^{h_1 + h_2}}
= \gamma C_{12} \left[(h_1 - h_2) z_1 + (h_2 - h_1) z_2 \right] \frac{1}{(z_1 - z_2)^{h_1 + h_2}}$$

In order for it to vanish, we need to demand $h_1 = h_2$ otherwise $G(z_1, z_2)$ should be zero.

5. For three-point function, (1.2) becomes

$$\left[\epsilon(z_1)\partial_{z_1} + h_1\partial_{z_1}\epsilon(z_1) + \epsilon(z_2)\partial_{z_2} + h_2\partial_{z_2}\epsilon(z_2) + \epsilon(z_3)\partial_{z_3} + h_3\partial_{z_3}\epsilon(z_3) \right] \langle \phi_1(z_1)\phi_2(z_2)\phi_3(z_3) \rangle = 0$$
(1.4)

• With $\epsilon(z_i) = \alpha$, we have

$$\alpha \left(\partial_{z_1} + \partial_{z_2} + \partial_{z_3} \right) \left\langle \phi_1(z_1) \phi_2(z_2) \phi_3(z_3) \right\rangle = 0 \left(\partial_{\bar{z}_{12}} + \partial_{\bar{z}_{13}} + \partial_{\bar{z}_{23}} \right) \left\langle \phi_1(z_1) \phi_2(z_2) \phi_3(z_3) \right\rangle = 0$$
 (1.5)

Obviously $\langle \phi_1(z_1)\phi_2(z_2)\phi_3(z_3)\rangle = f(z_{12},z_{13},z_{23})$ is a solution. To show it must be the case, note that the variables z_{ij} actually depend on each other. We can write $\partial_{\bar{z}_{12}} = \partial_{\bar{z}_{23}} - \partial_{\bar{z}_{13}}$, thus $\partial_{\bar{z}_{23}} \langle \phi \phi \phi \rangle = 0$. The same can be done with other z_{ij} , then indeed the solution is unique.

• With $\epsilon(z_i) = \beta z_i$, we have

$$\beta \left[z_1 \partial_{z_1} + z_2 \partial_{z_2} + z_3 \partial_{z_3} + h_1 + h_2 + h_3 \right] f(z_{12}, z_{13}, z_{23}) = 0$$

It can be solved by

$$f(z_{12}, z_{13}, z_{23}) = \frac{C_{123}}{z_{12}^{\alpha} z_{13}^{\beta} z_{23}^{\gamma}}$$

with $\alpha + \beta + \gamma = h_1 + h_2 + h_3$, since

$$\beta \left[z_{1}\partial_{z_{1}} + z_{2}\partial_{z_{2}} + z_{3}\partial_{z_{3}} + h_{1} + h_{2} + h_{3} \right] \frac{C_{123}}{z_{12}^{\alpha}z_{13}^{\beta}z_{23}^{\gamma}}$$

$$= \beta \left[z_{1} \left(-\frac{\alpha}{z_{12}} - \frac{\beta}{z_{13}} \right) + z_{2} \left(\frac{\alpha}{z_{12}} - \frac{\gamma}{z_{23}} \right) + z_{3} \left(\frac{\beta}{z_{13}} + \frac{\gamma}{z_{23}} \right) + h_{1} + h_{2} + h_{3} \right] \frac{C_{123}}{z_{12}^{\alpha}z_{13}^{\beta}z_{23}^{\gamma}}$$

$$= \beta \left(-\alpha - \beta - \gamma + h_{1} + h_{2} + h_{3} \right) f(z_{12}, z_{13}, z_{23})$$

$$= 0$$

• With $\epsilon(z_i) = \gamma z_i^2$, we have

$$\gamma \left[z_1^2 \partial_{z_1} + z_2^2 \partial_{z_2} + z_3^2 \partial_{z_3} + 2h_1 z_1 + 2h_2 z_2 + 2h_3 z_3 \right] f(z_{12}, z_{13}, z_{23}) = 0$$

$$z_1^2 \left(-\frac{\alpha}{z_{12}} - \frac{\beta}{z_{13}} \right) + z_2^2 \left(\frac{\alpha}{z_{12}} - \frac{\gamma}{z_{23}} \right) + z_3^2 \left(\frac{\beta}{z_{13}} + \frac{\gamma}{z_{23}} \right)$$

$$+ 2h_1 z_1 + 2h_2 z_2 + 2h_3 z_3 = 0$$

$$-\alpha(z_1 + z_2) - \beta(z_1 + z_3) - \gamma(z_2 + z_3) + 2h_1 z_1 + 2h_2 z_2 + 2h_3 z_3 = 0$$

This has to be satisfied with arbitrary z_i , thus

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = 2 \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$$
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$$

Then

$$\langle \phi_1(z_1)\phi_2(z_2)\phi_3(z_3)\rangle = \frac{C_{123}}{z_{12}^{h_1+h_2-h_3}z_{13}^{h_1-h_2+h_3}z_{23}^{-h_1+h_2+h_3}}$$
(1.6)