Theoretical Computer Science

Winter semester 2024/25 Prof. Dr. Georg Schied

Solution - Assignment 11

Deadline: Monday, 20 January 2025

10 out of 20 points have to be achieved in order to pass

Last assignment with obligabory exercises.

Reminder: The following achievements are required as exam prerequisite:

- · 10 assignments must be passed and
- 20 quizzes must be successfully solved.

Exercise 11.1

The following grammar defines arithmetic expressions, consisting of numbers, operators + and *, and brackets. As usual, operation * has higher precedence than +, and both operators are handled as being left-associative.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid number$$

- a) Augment the grammar with a power operator $^{\circ}$, where $3^{\circ}5$ denotes 3° . The power operator $^{\circ}$ should have higher precedence than multiplication * and it should be right-associative, e.g. $5*4^{\circ}3^{\circ}2$ should be read as $5*(4^{\circ}(3^{\circ}2))$.
- b) Draw the derivation tree for 5*4^3^2 according to the extended grammar (2, 3, 4, 5 are considered number symbols).

Exercise 11.2

a) The following grammar is not LL(1). Give three reasons why not, without computing the predictive parsing table.

b) Transform the following grammar so that it is no longer left recursive.

$$S \rightarrow bSb$$
 $S \leftarrow P \equiv EBNF$ *

| AcA
 $A \rightarrow bb$ $C \leftarrow S \setminus SA$
| AbA
|

Exercise 11.3 - obligatory (5 points)

- a) The following grammar does not have the LL(1) property. Indicate two reasons why not (without computing the predictive parsing table).
 - $S \rightarrow$ SAa Bb I Sc
 - $A \rightarrow$ aa
 - $B \rightarrow$ bAcc l bAa l ca
- b) Transform the grammar so that it is LL(1).

Exercise 11.4

- a) Which of the following propositional formulas are satisfiable, which are valid (tautologies), which are unsatisfiable?
 - (1)
 - (square → ¬heavy) ∨ square

 red ∧ square → ¬heavy Starfube
 ¬ square ∧ ¬heavy ∧ (heavy ∨ square)

 ¬square ∧ ¬heavy ∧ (heavy ∨ square) (2)
- (3)
- b) Are both propositional logic formulas equivalent? (give a short justification)

 - $(1) \neg (p \land (q \lor r)) \quad \text{and} \quad \neg p \lor \neg q \land \neg r \rightarrow \neg p \lor \neg q \land \neg r$ $(2) \underset{\leftarrow}{a} \rightarrow \underset{\rightarrow}{b} \quad \text{and} \quad \neg \underset{\leftarrow}{a} \rightarrow \neg b$ $(3) \underset{\leftarrow}{a} \rightarrow b \quad \text{and} \quad \neg \underset{\rightarrow}{b} \rightarrow \neg a$ $(3) \underset{\leftarrow}{a} \rightarrow b \quad \text{and} \quad \neg \underset{\rightarrow}{b} \rightarrow \neg a$
- c) Simplify the following propositional formulas as far as possible by equivalent transformations.

a) Is the following propositional formula valid, satisfiable or unsatisfiable?

(heavy $\land \neg \text{ red}$) \lor ($\neg \text{ heavy } \land \text{ red}$)

b) Simplify the following propositional formula as far as possible by equivalent transformations. Indicate the individual steps.

Exercise 11.6

Let the following vocabulary for first-order logic formulas be given:

- Function symbols: f (unary), g (binary)
- Predicate symbols: P (unary), Q (binary)
- Constant symbols: a, b
- Variable symbols: X, y, z

S → SA6 Bb Sc A → aa B → <u>bA</u> 0 <u>bAa</u> ca	С			
b) Fransform th	e grammar so that it is LL(1).			
© B -	BACC BACC	Ambigus, There	is a co	onflict for non-terminal G
8-	SAU } S	has left	ecurelan	
P) E	sing Common	trag with	13	
B	-> 6 A R			
	R -> cc/	C		
(2)	S-s (B	b)(SAc	Sc)
	5->181	0		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2		
a) Is the follo (he b) Simplify th	1.5 - obligatory (4 points) wing propositional formula valid, satisfiable havy A — red) v (— heavy A red) evfollowing propositional formula as far as attions. Indicate the individual steps.			its satisfiable because, some of the results in the
	hear	red		prepartien table has
	0	G ->	2 /	a combinations of
			1	True and False
		0	8	

Exercise 11.3 - obligatory (5 points)

 a) The following grammar does not have the LL(1) property. Indicate two reasons why not (without computing the predictive parsing table). b) 7 (7 (heavy 1 7 red) 17 (7 heavy 1 red)
7 (Theavy 1 red 1 heavy 12 red)
7 (heavy -> red 1 7 (heavy -> red)
(7 heavy -> red 1 7 (heavy -> red)
(7 heavy -> red) 1 (heavy -> red)
7 (heavy -> red) 1 (heavy -> red)

Are the following first-order formulas syntactically correct or not?

- Q(f(x), g(a))(1)
- $\exists y \neg (\forall z \ P(f(x)) \land \forall y \ Q(a,y))$ $\forall y \ Q(f(y)) \ \nabla g(a,b))$ (2)
- (3)
- (4)

Exercise 11.7 - obligatory (5 points)

Let the same vocabulary for first-order logic formulas be given as in the previous exercise. Are the following first-order formulas syntactically correct or not? Indicate all errors.

- (1) $\exists y \ P(f(x,b)) \rightarrow \forall z \ Q(g(z,b))$
- (2) $\forall x \exists z \ Q(g(x,b), z) \lor \forall z \ P(f(z))$
- (3) $\neg \exists \forall x \ Q(b, \ g(a,x))$
- $\forall x \ Q(x, \ f(z)) \rightarrow \exists z \ f(z)$ (4)
- $\forall y \ Q(y, \exists x \ P(g(a,x)))$ (5)

Exercise 11.8

Let the following predicates on persons be given:

- Male(p)p is male
- Brother(p_1, p_2) p_1 is brother of p_2
- c is a child of p (i.e. p is parent of c) Child(c, p)
- Aunt(a, p)a is aunt of p
- a) Explain in everyday language the meaning of the following formulas. Are the formulas true if they are considered as statements about all living persons?
 - (1)¬∀p Male(p)
 - ∀p ∃b Brother(b, p) (2)
 - (3)∃p ∃b Brother(b, p)
 - (4)
 - (5)

∀p ∀b Brother(b, p). (Send tesons is Everyold as a first-order formula: The Bayer (L. Co. Lo)

- b) Formulate as a first-order formula:
- (1) "There is someone who is male." (2) If a person pois her." (2) If a person p_1 is brother of p_2 , then also p_2 is brother of p_1 .
 - (3) "Not every person has a child." /
 - (4) "A male person is never aunt of someone else."
 - (5) "If any two persons are brothers, then they have a common parent."
 - (6) "If a person is brother of someone else, then the person is male."

protection (prop) = Frenchild (prop)
- page 3 of 4
Brother (prop) = prode (p)

	Let the following vocabulary for first-order logic formulas be given:				
FX 11.7	Function symbols: f (unary), g (binary)				
	Predicate symbols: P (unary), Q (binary)				
	Constant symbols: a, b				
	Variable symbols: x, y, z				
	Exercise 11.7 - obligatory (5 points)				
	Let the same vocabulary for first-order logic formulas be given as in the previous exercise. Are the following first-order formulas syntactically correct or not? Indicate all errors.				
	$(1) \qquad \exists y \ P(f(x,b)) \rightarrow \forall z \ Q(g(z,b))$				
	$(2) \qquad \forall x \exists z \ Q(g(x,b), \ z) \ \lor \ \forall z \ P(f(z))$				
	(3) $\neg \exists \forall x \ Q(b, \ g(a,x))$ (4) $\forall x \ Q(x, \ f(z)) \rightarrow \exists z \ f(z)$				
	$(5) \qquad \forall y \ Q(y, \exists x \ P(g(a,x)))$				
1) not comect, Q	needs to accept bitan parameters				
2) Causey					
,					
3/ Wh correct 1	imide la existation authoris minis				
) (3.)	imisbe for existantial quiter is reising	>			
u) correct	·				
,					
5) not correct					

Exercise 11.9

Let the following vocabulary for first-order formulas be given. We assume natural numbers IN as domain of discourse.

Constants symbols: 0, 1, 2 Variable symbols: n, m, k

Function symbols: + (addition, binary),

(multiplication, binary)

Predicate symbols: = (equality, binary),

(less-than relation, binary),isSquare (is a square number, unary)

As usual, +, \cdot , =, and < can be written in infix notation.

a) There is a number n, so that 2n+1 is a square number.

b) For each square number there also exists a larger square number.

c) The product of two square numbers is always also a square number.

d) There exists no number that is greater than every square number.

Exercise 11.10 - obligatory (6 points)

Let the same vocabulary and same domain of discourse IN for first-order formulas be given as in Exercise 11.6. Formulate the following statements about natural numbers as first order formulas:

- a) There exists at least one number that is not square.
- b) For each number n is $n \cdot n$ a square number.
- c) Not every number is a square number.
- d) For each n that is a square number, n+1 is not a square number.
- e) For each number there is a greater square number.