SEQUENCE LISTING

	<110>	DSM	IP Assets B	3.V.				
5	<120>	Micr	robial produ	action of L-	-ascorbic a	cid		
	<130>	2186	54 WO					
10	<150> <151>		3017677.0 3-08-14					
	<160>	31						
	<170>	Pate	entIn versio	on 3.2				
20	<210> <211> <212> <213>	1 2367 DNA Gluc	onobacter o	oxydans N44-	-1			
	<400> atgaaca	1 agcg	gccccgcac	gctctccatg	atcatcggga	ttctgggcgc	cctcatggcc	60
25	gccttc	ctga	tcatcgaagg	cctccacctc	atcatcctcg	gcggctcgtg	gttctacacc	120
25	ctcgcc	ggca	tegegetgge	ggccagcagc	gtctacatga	tccgtcgcaa	catcctctcg	180
	acatgga	atcg	ccctgggcct	gcttgtggca	acagccctgt	ggtcgctcgc	cgaagtcggc	240
30	accagct	ttct	ggcccagctt	ctcccgcctg	atcgtgttcc	tgtgcgtcgc	cctgatcgcg	300
	actctca	atgg	cgccctggct	cageggeeee	ggccggcgct	acttcacccg	ccccgtcaca	360
35	ggcgcca	acat	ccggcgccct	cggcgcgatc	atcgtggctt	tectegeegg	catgttccgg	420
,,	gtccac	ccga	ccatcgcccc	gcaggacacc	acccacccgc	aggaaaccgc	gtccaccgcc	480
	gactcc	gacc	agccaggcca	tgactggccc	gcctatggcc	gcacggcttc	cggcacgcgc	540
40	tacgcca	agct	tcacgcagat	caaccgcgac	aatgtcagca	agctccgcgt	cgcctggacc	600
	taccgca	accg	gcgacatggc	gctgaacggc	gccgagttcc	agggcacccc	catcaagatc	660
45	ggcgaca	acgg	tctatatctg	ctcaccgcac	aacatcgtct	cggcccttga	cccggacacc	720
	ggcacg	gaaa	agtggaagtt	cgacccccac	gcccagacga	aagtctggca	gcgctgccgc	780
	ggcgtc	ggct	actggcatga	cagcacggcc	acggacgcca	acgcgccctg	cgcctcgcgc	840
50	atcgtc	ctca	ccacgatcga	cgcccgcctc	atcaccatcg	acgcccgtac	cggccaggcc	900
	tgcacg	gatt	tcggaacgaa	cggcaacgtc	aatctcctga	ccggcctcgg	cccgacagct	960
55	cccggct	tcgt	actacccgac	cgccgccccc	ctcgtggcgg	gtgacatcgt	ggtcgtcggc	1020
	ggccgc	atcg	ccgataacga	gcgcaccggc	gagccctccg	gcgtcgtccg	cggctatgat	1080
	gtccgca	accg	gcgcacaggt	ctgggcctgg	gacgccacca	acccgcatcg	cggcaccaca	1140

	cctctggccg	aaggcgagat	ctaccccgcc	gaaaccccca	acatgtgggg	caccgccagc	1200
	tacgacccga	aactcaacct	cgtcttcttc	ccgctcggca	accagacccc	cgatttctgg	1260
5	ggcggcgacc	gcagcaaggc	ctcagacgaa	tacaacgacg	ccttcgtcgc	cgtggacgcc	1320
	aagaccggcg	acgaacgctg	gcacttccgc	accgccaacc	acgacctcgt	ggactacgat	1380
10	gccacggccc	agcccatcct	ctatgacatt	ccggacggcc	atggcggcac	ccgcccggcg	1440
10	atcatcgcca	tgaccaagcg	cggccagatc	ttcgtgctcg	accgccgcga	cggcaccccg	1500
	atcgtccctg	tggaaatgcg	caaagtcccg	caggacggcg	caccggaaca	ccagtacctc	1560
15	gcccccgaac	agccctattc	cgccctctcc	ateggaacag	agcgcctgaa	acccagcgac	1620
	atgtggggtg	gtacgatctt	cgaccagete	ctgtgccgca	tccagttcgc	ctcctaccgc	1680
20	tatgaaggcg	agttcacccc	cgtcaacgag	aaacaggcca	ccatcatcta	tccgggctat	1740
20	tacggcggca	tcaactgggg	cggcggcgcc	gtggatgaaa	gcaccggaac	gctgctggtc	1800
	aacgacatcc	gcatggccca	gtggggcaag	ttcatgaagc	aggaagaagc	ccgtcgcagc	1860
25	ggcttcaaac	ccagctcgga	aggcgaatat	toogaacaga	aaggcacccc	ctggggcgtc	1920
	gtccgctcga	tgttcttctc	ccccgccggt	ctcccctgcg	tgaaaccgcc	ctatggcacg	1980
20	atgaacgcca	tegacetgeg	cagcggcaag	gtcaaatgga	gcatgccgct	tggcacgatc	2040
30	caggacatgc	cggtccacgg	catggtccca	ggcctcgcca	tcccgctcgg	aatgccgacc	2100
	atgageggee	cgctggccac	ccataccggc	ctggtgttct	tctccggcac	gctcgacaac	2160
35	tatgtccgcg	cgctcaacac	cgacaccggc	gaagtcgtct	ggaaagcccg	teteceegte	2220
	gcctcacagg	cegeteegat	gagctacatg	tccgacaaga	ccggcaaaca	gtacatcgtc	2280
40	gtcaccgcag	geggeetgae	ccgctccggc	gtcgacaaaa	accgcggcga	ctacgtcatc	2340
40	gcctacgccc	tgccctccga	agaataa				2367
	1010	•					
45	<210> 2 <211> 788 <212> PRT						

<213> Gluconobacter oxydans N44-1

<400> 2

50

Met Asn Ser Gly Pro Arg Thr Leu Ser Met Ile Ile Gly Ile Leu Gly 1 5

55 Ala Leu Met Ala Ala Phe Leu Ile Ile Glu Gly Leu His Leu Ile Ile 20 25 30

Leu Gly Gly Ser Trp Phe Tyr Thr Leu Ala Gly Ile Ala Leu Ala Ala

260

35 40 45

Ser Ser Val Tyr Met Ile Arg Arg Asn Ile Leu Ser Thr Trp Ile Ala 55 Leu Gly Leu Leu Val Ala Thr Ala Leu Trp Ser Leu Ala Glu Val Gly 75 10 Thr Ser Phe Trp Pro Ser Phe Ser Arg Leu Ile Val Phe Leu Cys Val 85 90 95 15 Ala Leu Ile Ala Thr Leu Met Ala Pro Trp Leu Ser Gly Pro Gly Arg 100 105 Arg Tyr Phe Thr Arg Pro Val Thr Gly Ala Thr Ser Gly Ala Leu Gly 120 125 115 Ala Ile Ile Val Ala Phe Leu Ala Gly Met Phe Arg Val His Pro Thr 130 135 Ile Ala Pro Gln Asp Thr Thr His Pro Gln Glu Thr Ala Ser Thr Ala 30 Asp Ser Asp Gln Pro Gly His Asp Trp Pro Ala Tyr Gly Arg Thr Ala 165 35 Ser Gly Thr Arg Tyr Ala Ser Phe Thr Gln Ile Asn Arg Asp Asn Val 180 185 Ser Lys Leu Arg Val Ala Trp Thr Tyr Arg Thr Gly Asp Met Ala Leu 195 200 Asn Gly Ala Glu Phe Gln Gly Thr Pro Ile Lys Ile Gly Asp Thr Val 210 Tyr Ile Cys Ser Pro His Asn Ile Val Ser Ala Leu Asp Pro Asp Thr 225 50 Gly Thr Glu Lys Trp Lys Phe Asp Pro His Ala Gln Thr Lys Val Trp 245 250 Gln Arg Cys Arg Gly Val Gly Tyr Trp His Asp Ser Thr Ala Thr Asp - 4 -

		Ala	Asn	Ala 275	Pro	Çys	Ala	Ser	Arg 280	Ile	Val	Leu	Thr	Thr 285	Ile	Asp	Ala
	5	Arg	Leu 290	Ile	Thr	Ile	Asp	Ala 295	Arg	Thr	Gly	Gln	Ala 300	Cys	Thr	Asp	Phe
1	0	Gly 305	Thr	Asn	Gly	Asn	Val 310	Asn	Leu	Leu	Thr	Gly 315	Leu	Gly	Pro	Thr	Ala 320
1	5	Pro	Gly	Ser	Tyr	Tyr 325	Pro	Thr	Ala	Ala	Pro 330	Leu	Val	Ala	Gly	Asp 335	Ile
		Val	Val	Val	Gly 340	Gly	Arg	Ile	Ala	Asp 345	Asn	Glu	Arg	Thr	Gly 350	Glu	Pro
2	20	Ser	Gly	Val 355	Val	Arg	Gly	Tyr	Asp 360	Val	Arg	Thr	Gly	Ala 365	Gln	Val	Trp
2	25	Ala	Trp 370	Asp	Ala	Thr	Asn	Pro 375	His	Arg	Gly	Thr	Thr 380	Pro	Leu	Ala	Glu
3	30	Gly 385	Glu	Ile	Tyr	Pro	Ala 390	Glu	Thr	Pro	Asn	Met 395	Trp	Gly	Thr	Ala	Ser 400
3	35	Tyr	Asp	Pro	Lys	Leu 405	Asn	Leu	Val	Phe	Phe 410	Pro	Leu	Gly	Asn	Gln 415	Thr
		Pro	Asp	Phe	Trp 420	Gly	Gly	Asp	Arg	Ser 425	Lys	Ala	Ser	Asp	Glu 430	Tyr	Asn
4	10	Asp	Ala	Phe 435	Val	Ala	Val	Asp	Ala 440	Ьуs	Thr	Gly	Asp	Glu 445	Arg	Trp	His
4	45	Phe	Arg 450		Ala	Asn	His	Asp 455		Val	Asp	Tyr	Asp 460	Ala	Thr	Ala	Gln
	50	Pro 465	Ile	Leu	Tyr	Asp	Ile 470		Asp	Gly	His	Gly 475	Gly	Thr	Arg	Pro	Ala 480
:	55	Ile	Ile	Ala	Met	Thr 485	_	Arg	Gly	Gln	Ile 490		Val	Leu	qaA	Arg 495	Arg
		Asp	Gly	Thr	Pro		Val	Pro	Val	Glu 505		Arg	Lys	Val	Pro 510	Gln	Asp

	Gly	Ala	Pro 515	Glu	His	Gln	Tyr	Leu 520	Ala	Pro	Glu	Gln	Pro 525	Tyr	Ser	Ala
5	Leu	Ser 530	Ile	Gly	Thr	Glu	Arg 535	Leu	Lys	Pro	Ser	Asp 540	Met	Trp	Gly	Gly
10	Thr 545	Ile	Phe	Asp	Gln	Leu 550	Leu	Суз	Arg	Ile	Gln 555	Phe	Ala	Ser	Tyr	Arg 560
15	Tyr	Glu	Gly	Glu	Phe 565	Thr	Pro	Val	Asn	Glu 570	Lys	Gln	Ala	Thr	Ile 575	Ile
20	Tyr	Pro	Gly	Tyr 580	Tyr	Gly	Gly	Ile	Asn 585	Trp	Gly	Gly	Gly	Ala 590	Val	Asp
	Glu	Ser	Thr 595	Gly	Thr	Leu	Leu	Val 600	Asn	Asp	Ile	Arg	Met 605	Ala	Gln	Trp
25	Gly	Lys 610	Phe	Met	Lys	Gln	Glu 615	Glu	Ala	Arg	Arg	Ser 620	Gly	Phe	Lys	Pro
30	Ser 625	Ser	Glu	Gly	Glu	Tyr 630	Ser	Glu	Gln	Lys	Gly 635	Thr	Pro	Trp	Gly	Val 640
35	Val	Arg	Ser	Met	Phe 645	Phe	Ser	Pro	Ala	Gly 650	Leu	Pro	Cys	Val	Lys 655	Pro
40	Pro	Tyr	Gly	Thr 660	Met	Asn	Ala	Ile	Asp 665	Leu	Arg	Ser	Gly	Lys 670	Val	Lys
	Trp	Ser	Met 675	Pro	Leu	Gly	Thr	Ile 680	Gln	Asp	Met	Pro	Val 685	His	Gly	Met
45	Val	Pro 690	Gly	Leu	Ala	Ile	Pro 695	Leu	Gly	Met	Pro	Thr 700	Met	Ser	Gly	Pro
50	Leu 705	Ala	Thr	His	Thr	Gly 710	Leu	Val	Phe	Phe	Ser 715	Gly	Thr	Leu	Asp	Asn 720
55	Tyr	Val	Arg	Ala	Leu 725		Thr	Asp	Thr	Gly 730		Val	Val	Trp	Lys 735	Ala
	Arg	Leu	Pro	Val 740		Ser	Gln	Ala	Ala 745		Met	Ser	Tyr	Met 750		Asp

```
Lys Thr Gly Lys Gln Tyr Ile Val Val Thr Ala Gly Gly Leu Thr Arg
          755
                            760
5
   Ser Gly Val Asp Lys Asn Arg Gly Asp Tyr Val Ile Ala Tyr Ala Leu
                         775
   Pro Ser Glu Glu
15 <210> 3
   <211> 20
   <212> DNA
   <213> Artificial
20 <220>
   <223> Primer
   <400> 3
                                                                   20
   cgccttctat gaaaggttgg
25
   <210> 4
   <211> 20
   <212> DNA
30 <213> Artificial
   <220>
   <223> Primer
35 <400> 4
                                                                   20
   agcggatgga gatcgggcgg
<220>
45 <223> Primer
   <400> 5
                                                                   30
   atgaacageg geceegeac getetecatg
50
   <210> 6
   <211> 30
   <212> DNA
   <213> Artificial .
   <220>
   <223> Primer
   <400> 6
```

- 7 -

	ccggaa	catg ccggcgagga aagccacgat	30
5	<210><211><211><212><213>	7 30 DNA Artificial	
10	<220> <223>	Primer	
	<400>	7 gccc gcctatggcc gcacggcttc	30
		5	30
15	4010.		
	<210>	8	
	<211> <212>	30	
	<213>	DNA Artificial	
20	72137	ALCITICIAL	
20	<220>		
	<223>	Primer	
	1220		
	<400>	8	
25	ttcttc	ggag ggcagggcgt aggcgatgac	30
	<210>	9	
20	<211>	30	
30	<212>	DNA	
	<213>	Artificial	
	<220>		
	<223>	Primer	
35			
	<400>	9	
	cgggact	tttg cgcatttcca cagggacgat	30
40	<210>	10	
	<211>	30	
	<212>	DNA	
	<213>	Artificial	
45	<220>		
	<223>	Primer	
	<400>	10	
	agcccat	tcct ctatgacatt ccggacggcc	30
50			
	4010:	11	
	<210>	11	
	<211> <212>		
55	<213>		
	<400>	11	
	ccgccc	ggcg atcategeca tgaceaageg eggeeagate ttegtgeteg acegeegega	60

	cggcaccccg atcgtccccg tggaaatgcg caaagtcccc caggacggcg caccggaaca	120
	ccagtacctc gcccccgaac agccctattc cgccctctcc atcggaacag agcgcctgaa	180
5	acceagegat atgtggggcg geacgatett egaceagete etgtgeegea teeagttege	240
	ctcctaccgc tatgaaggcg agttcacccc cgtcaacgag aagcaggcca ccatcatcta	300
	teegggetat taeggeggea teaactgggg eggeggege gtggatgaaa geaeeggaae	360
10	getgetggte aacgacatee geatggeeea gtggggeaag tteatgaage aagaagaage	420
	ccgccgcagc ggcttcaaac ccagctcgga aggcgaatat tccgaacaga aaggcacccc	480
15	ctggggcgtc gtccgctcga tgttcttctc ccccgccggt ctcccctgcg tgaaaccgcc	540
	ctatggcacg atgaacgcca tcgacctgcg cagcggcaag gtcaaatgga gcatgccgct	600
	tggcacgatc caggacatgc cggtccacgg catggtcccc ggcctcgcca tcccgctcgg	660
20	aatgeegace atgageggee egetggeeae eeatacegge etggtettet teteeggeae	720
	getegacaae tatgteegeg egeteaaeae egacaeegge gaagtegtet g	771
25	<210> 12 <211> 256 <212> PRT <213> Gluconobacter oxydans IFO 3292	
30	<400> 12	
35	Arg Pro Ala Ile Ile Ala Met Thr Lys Arg Gly Gln Ile Phe Val Leu 1 5 10 15	
	Asp Arg Arg Asp Gly Thr Pro Ile Val Pro Val Glu Met Arg Lys Val 20 25 30	
40	Pro Gln Asp Gly Ala Pro Glu His Gln Tyr Leu Ala Pro Glu Gln Pro 35 40 45	
45	Tyr Ser Ala Leu Ser Ile Gly Thr Glu Arg Leu Lys Pro Ser Asp Met 50 55 60	
50	Trp Gly Gly Thr Ile Phe Asp Gln Leu Leu Cys Arg Ile Gln Phe Ala 65 70 75 80	
55	Ser Tyr Arg Tyr Glu Gly Glu Phe Thr Pro Val Asn Glu Lys Gln Ala 85 90 95	
	Thr Ile Ile Tyr Pro Gly Tyr Tyr Gly Gly Ile Asn Trp Gly Gly Gly 100 105 110	

-9-

Ala Val Asp Glu Ser Thr Gly Thr Leu Leu Val Asn Asp Ile Arg Met 120 115 5 Ala Gln Trp Gly Lys Phe Met Lys Gln Glu Glu Ala Arg Arg Ser Gly 135 130 10 Phe Lys Pro Ser Ser Glu Gly Glu Tyr Ser Glu Gln Lys Gly Thr Pro Trp Gly Val Val Arg Ser Met Phe Phe Ser Pro Ala Gly Leu Pro Cys 165 170 15 Val Lys Pro Pro Tyr Gly Thr Met Asn Ala Ile Asp Leu Arg Ser Gly 190 180 20 Lys Val Lys Trp Ser Met Pro Leu Gly Thr Ile Gln Asp Met Pro Val 200 205 195 25 His Gly Met Val Pro Gly Leu Ala Ile Pro Leu Gly Met Pro Thr Met 215 210 30 Ser Gly Pro Leu Ala Thr His Thr Gly Leu Val Phe Phe Ser Gly Thr 235 225 Leu Asp Asn Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly Glu Val Val 245 35 <210> 13 <211> 350 <212> DNA <213> Gluconobacter oxydans IFO 3287 <220> 45 <221> misc_feature <222> (123)..(123) <223> n is a or c or g or t <400> 13 50 atcateggga ttetgggege ceteatggee geetteetga teategaagg cetecaeete 60 atcatecteg geggeteatg gttttaeace etegeeggea tegegetgge ageeageage 120 gtntacatga teegtegeaa cateeteteg acatggateg eceteggeet gettgtggea 180 acagecetgt ggtegetege egaagtegge accagettet ggeeeagett etecegeetg 240 . ategtatttc tgtgcgtcgc cctgatcgcg accetcatgg cgccctggct cagcggcccc 300

	ggccggcgct acttcacccg ccccgtcaca ggcgccacct ccggcgccct												
5	<210> 14 <211> 116 <212> PRT <213> Gluconobacter oxydans IFO 3287												
	<400> 14												
10	Ile Ile Gly Ile Leu Gly Ala Leu Met Ala Ala Phe Leu Ile Ile Glu 1 5 10 15												
15	Gly Leu His Leu Ile Ile Leu Gly Gly Ser Trp Phe Tyr Thr Leu Ala 20 25 30												
20	Gly Ile Ala Leu Ala Ala Ser Ser Val Tyr Met Ile Arg Arg Asn Ile 35 40 45												
25	Leu Ser Thr Trp Ile Ala Leu Gly Leu Leu Val Ala Thr Ala Leu Trp 50 55 60												
	Ser Leu Ala Glu Val Gly Thr Ser Phe Trp Pro Ser Phe Ser Arg Leu 70 75 80												
30	Ile Val Phe Leu Cys Val Ala Leu Ile Ala Thr Leu Met Ala Pro Trp 85 90 95												
35	Leu Ser Gly Pro Gly Arg Arg Tyr Phe Thr Arg Pro Val Thr Gly Ala 100 105 110												
40	Thr Ser Gly Ala 115												
45	<210> 15 <211> 808 <212> DNA <213> Gluconobacter oxydans IFO 3287												
	<400> 15	e r											
50	gcaageteeg egtegeetgg acetacegea etggegacat ggegetgaac ggggeegagt	120											
	tocagggcac coccatcaag atoggcgaca oggtotatat otgotogoog cacaacatog												
	totoggooot ogaccoogat accggoacgg aaaagtggaa gttogaccoo cacgoocaga	180											
55		240											
	ccaacgegee ctgegeeteg egcategtee teaccaegat egacgeeege etcateacca	300											
	togacqcccq caccqqccaq qcctqcacqq atttcgqaac qaacqqcaac qtcaatctcc	360											

	tgad	ccgg	cct	cggc	ccga	ca g	cccc	cggt	t cc	tact	accc	gac	cgcc	gcc	cccc	tcgtg	ıg	420
5	ccg	gtga	cat	cgtg	gtcg	tc g	gcgg	ccgc	a tc	gccg	ataa	cga	gcgc	acc	ggcg	aacco	:t	480
	ccg	gegț	cgt	ccgc	ggct	at g	acgt	ccgc	a cc	ggcg	cgca	ggt	ctgg	gcc	tggg	acgco	a	540
	ccaa	accc	gca	tcgc	ggca	cc a	cacc	gctg	g cc	gaag	gcga	gat	ctat	ccc	gccg	aaacc	c	600
10	ccaa	acat	gtg	gggc	accg	cc a	gcta	cgac	с сд	aagc	tcąa	cct	cgtc	ttc	ttcc	cgctc	:g	660
	gcaa	acca	gac	cccc	gatt	tc t	gggg	cggc	g ac	cgca	gcaa	ggc	ttct	gat	gaat	acaac	:g	720
15	acgo	cctt	cgt	cgcc	gtgg	ac g	ccaa	gacc	g gc	gacg	aacg	ctg	gcac	ttc	cgca	ccgcc	:a	780
	acca	acga	cct	cgtg	gact	ac g	atgc	cac										808
20	<210 <211 <212 <213	l> 2>	16 268 PRT Gluc	onob	acte:	r ox	ydan	s IFO	O 32	87								
25	<400)>	16															
23	Lys 1	Leu	Arg	Val	Ala 5	Trp	Thr	Tyr	Arg	Thr 10	Gly	Asp	Met	Ala	Leu 15	Asn		
30	Gly	Ala	Glu	Phe 20	Gln	Gly	Thr	Pro	Ile 25	Lys	Ile	Gly	Asp	Thr 30	Val	Tyr		
35	Ile	Cys	Ser 35	Pro	His	Asn	Ile	Val 40	Ser	Ala	Leu	Asp	Pro 45	Asp	Thr	Gly		
40	Thr	Glu 50	Lys	Trp	Lys	Phe	Asp 55	Pro	His	Ala	Gln	Thr 60	Lys	Val	Trp	Gln		
	Arg 65	Cys	Arg	Gly	Val	Gly 70	Tyr	Trp	His	Asp	Ser 75	Thr	Ala	Thr	Asp	Ala 80		
45	Asn	Ala	Pro	Cys	Ala 85	Ser	Arg	Ile	Val	Leu 90	Thr	Thr	Ile	Asp	Ala 95	Arg		
50	Leu	Ile	Thr	Ile 100	Asp	Ala	Arg	Thr	Gly 105	Gln	Ala	Cys	Thr	Asp 110	Phe	Gly		
55	Thr	Asn	Gly 115	Asn	Val	Asn	Leu	Leu 120	Thr	Gly	Leu	Gly	Pro 125	Thr	Ala	Pro		
	Gly	Ser 130	Tyr	Tyr	Pro	Thr	Ala 135	Ala	Pro	Leu		Ala 140	Gly	Asp	Ile	Val		

5	Val Val Gly 145		le Ala Asp 50	Asn Glu Arg 155	Thr Gly Glu	Pro Ser 160	
	Gly Val Val	l Arg Gly T 165	yr Asp Val	Arg Thr Gly 170	Ala Gln Val	Trp Ala 175	
10	Trp Asp Ala	a Thr Asn F 180	ro His Arg	Gly Thr Thr 185	Pro Leu Ala 190	_	
15	Glu Ile Tyr 195		lu Thr Pro 200	Asn Met Trp	Gly Thr Ala 205	Ser Tyr	
20	Asp Pro Lys 210	s Leu Asn I	eu Val Phe 215	Phe Pro Leu	Gly Asn Glr 220	Thr Pro	
25	Asp Phe Trp 225		Asp Arg Ser 230	Lys Ala Ser 235	Asp Glu Tyr	Asn Asp 240	
	Ala Phe Va	l Ala Val <i>I</i> 245	Asp Ala Lys	Thr Gly Asp 250	Glu Arg Trp	His Phe 255	
30	Arg Thr Ala	a Asn His A 260	Asp Leu Val	Asp Tyr Asp 265	Ala		
35	<210> 17 <211> 800 <212> DNA <213> Glue	conobacter	oxydans IF	o 3287			
40	<400> 17						
	tcttcgtgct	cgaccgccg	gacggcacc	c cgatcgtccc	: cgtggaaatg	cgcaaagtcc	60
					acagecetat		120
45	ccatcggaac	agagegeet	g aaacccago	g atatgtgggg	, tggtacgatt		180
					g cgagttcacc	-	240
50	agaaacaggc	caccatcate	c tatccgggc	t attacggcgo	g catcaactgg		300
		•			cegeatggee		360
					acceageteg		120
55	_				gatgttcttc		180
	gtctcccctg	cgtaaaacc	g ccctatggo	a cgatgaacgo	catcgacctg		540
	aggtgaaatg	gagcatgcc	g cttggcacg	ja todaggadat	gccggtccac	ggcatggtcc 6	600

	caggeetege catecegete ggaatgeeaa e	ccatgagegg ceegetggee acceataceg 660	0
. ,	gettggtett etteteegge aegetegaea a	actacgtccg cgcgctcaac accgacaccg 720	0
. 5	gegaggtegt etggaaagee egteteeeeg te	tegeetcaca ggeegeteeg atgagetaca 780	0
	tgtccgacaa gaccggcaaa	80	0
10	<210> 18 <211> 266 <212> PRT <213> Gluconobacter oxydans IFO 3	3287	
15	_	0201	
20	Phe Val Leu Asp Arg Arg Asp Gly Th 1 5	hr Pro Ile Val Pro Val Glu Met 10 15	
	Arg Lys Val Pro Gln Asp Gly Ala Pr 20 25		
25	Glu Gln Pro Tyr Ser Ala Leu Ser Il 35 40	le Gly Thr Glu Arg Leu Lys Pro 45	
30	Ser Asp Met Trp Gly Gly Thr Ile Ph 50 55	The Asp Gln Leu Leu Cys Arg Ile 60	
35	Gln Phe Ala Ser Tyr Arg Tyr Glu Gl 5 65 70	Gly Glu Phe Thr Pro Val Asn Glu 75 80	
40	Lys Gln Ala Thr Ile Ile Tyr Pro Gl 85	Gly Tyr Tyr Gly Gly Ile Asn Trp 90 95	
	Gly Gly Gly Ala Val Asp Glu Ser Th 100 10	Thr Gly Thr Leu Leu Val Asn Asp 110	
45	Ile Arg Met Ala Gln Trp Gly Lys Ph 115 120	Phe Met Lys Gln Glu Glu Ala Arg 125	
50	O Arg Ser Gly Phe Lys Pro Ser Ser Gl 130 135	Glu Gly Glu Tyr Ser Glu Gln Lys 140 _.	
55	Gly Thr Pro Trp Gly Val Val Arg Se 5 145 150	Ser Met Phe Phe Ser Pro Ala Gly 155 160	
	Leu Pro Cys Val Lys Pro Pro Tyr Gl 165	Gly Thr Met Asn Ala Ile Asp Leu 170 175	

Arg Ser Gly Lys Val Lys Trp Ser Met Pro Leu Gly Thr Ile Gln Asp 5 Met Pro Val His Gly Met Val Pro Gly Leu Ala Ile Pro Leu Gly Met 200 10 Pro Thr Met Ser Gly Pro Leu Ala Thr His Thr Gly Leu Val Phe Phe Ser Gly Thr Leu Asp Asn Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly 235 Glu Val Val Trp Lys Ala Arg Leu Pro Val Ala Ser Gln Ala Ala Pro 20 245 250 Met Ser Tyr Met Ser Asp Lys Thr Gly Lys 25 <210> 19 <211> 360 <212> DNA 30 <213> Acetobacter sp. ATCC 15164 <220> <221> misc feature 35 <222> (123)..(123)<223> n is a or c or g or t <400> 19 atcatcggga ttctgggcgc cctcatggcc gccttcctga tcatcgaagg cctccacctc 60 40 ateatecteg geggetegtg gttttacace etegeeggea tegegetgge ggeeageage 120 gtntacatga tccgtcgcaa catcctctcg acatggatcg ccctcggcct gcttgtagca 180 45 acagccctgt ggtcgctcgc cgaagtcggc accagcttct ggcccagctt ctcccgcctg 240 ategtgttcc tgtgcgtcgc cctgatcgcg actctcatgg cgccctggct cagcggcccc 300 ggccggcgct acttcacccg ccccgtcaca ggggccacct ccggcgcact cggcgccatc 360 50 <210> 20 <211> 120 <212> PRT 55 <213> Acetobacter sp. ATCC 15164 <400> 20 Ile Ile Gly Ile Leu Gly Ala Leu Met Ala Ala Phe Leu Ile Ile Glu

- 15 -

WO 2005/017159 PCT/CH2004/000511

	1	5	10		15
5	Gly Leu His Le	u Ile Ile Leu G	Gly Gly Ser Trp 25	Phe Tyr Thr	Leu Ala
10	Gly Ile Ala Le 35	u Ala Ala Ser S 4	er Val Tyr Met O	Ile Arg Arg 45	Asn Ile
	Leu Ser Thr Tr 50	p Ile Ala Leu G 55	ly Leu Leu Val	Ala Thr Ala 60	Leu Trp
15	Ser Leu Ala Gl 65	u Val Gly Thr So	er Phe Trp Pro	Ser Phe Ser	Arg Leu 80
20	Ile Val Phe Le	u Cys Val Ala Lo 85	eu Ile Ala Thr 90	: Leu Met Ala	Pro Trp 95
25	Leu Ser Gly Pr	o Gly Arg Arg T	yr Phe Thr Arg 105	Pro Val Thr	Gly Ala
30	Thr Ser Gly Al	a Leu Gly Ala I. 12	le 20		
35	<210> 21 <211> 760 <212> DNA <213> Acetobac	cter sp. ATCC 19	5164		
	<400> 21 accgcgacaa tgt	cagcaag ctccgcgt	tcg cctggaccta	cegeaeegge g	gacatggcgc 60
40	tgaacggcgc cgaa	attccag ggcaccco	cca tcaagatcgg	cgatacggtc t	atatctgct 120
	caccccacaa cat	egteteg gecetega	acc ccgacaccgg	cacggaaaag t	ggaagttcg 180
45	acceccaege cea	gacgaaa gtctggca	agc gctgccgcgg	cgtcggctac t	ggcatgaca 240
	gcacagccac gga	egocaac gegeeete	gcg cctcgcgcat	cgtcctcacc a	acgatcgacg 300
	cccgcctcat cac	categae geeegead	ccg gccaggcctg	cacggatttc g	ggaacgaacg 360
50	gcaacgtcaa tct	ectgace ggeetege	gcc cgacagcccc	cggctcctac t	accegaceg 420
		ggegggt gacategt			
55		teegge gtegteeg			
	gggcctggga cgc	caccaac ccgcatco	gcg gcaccacacc	actggccgaa g	ggcgagatct 600
	accccccca aacc	cccaac atotogo	rea conceancta	cascccass o	teaacetee 660

	tettettece geteggeaac cagaceeecg atttetgggg eggegaeege ageaaggeet											720					
	cgga	tgaa	ta c	aacg	acgo	c tt	cgtc	gccg	tgg	acgo	caa						760
5	<210 <211 <212 <213	> 2 !> F	2 252 PRT Aceto	bact	er s	sp. A	TCC	1516	i 4								
10	<400)> 2	22														
15	Arg 1	Asp	Asn	Val	Ser 5	Lys	Leu	Arg	Val	Ala 10	Trp	Thr	Tyr	Arg	Thr 15	Gly	
	Asp	Met	Ala	Leu 20	Asn	Gly	Ala	Glu	Phe 25	Gln	Gly	Thr	Pro	Ile 30	Lys	Ile	
20	Gly	Asp	Thr 35	Val	Tyr	Ile	Суз	Ser 40	Pro	His	Asn	Ile	Val 45	Ser	Ala	Leu	
25	Asp	Pro 50	Asp	Thr	Gly	Thr	Glu 55	Lys	Trp	Lys	Phe	Asp 60	Pro	His	Ala	Gln	
30	Thr 65	Lys	Val	Trp	Gln	Arg 70	Cys	Arg	Gly	Val	Gly 75	Tyr	Trp	His	Asp	Ser 80	
. 35				_	85	Asn				90					95		
40	Thr	Ile	Asp	Ala 100	-	Leu	Ile	Thr	Ile 105	Asp	Ala	Arg	Thr	Gly 110	Gln	Ala	
10	Cys	Thr	Asp 115	Phe	Gly	Thr	Asn	Gly 120	Asn	Val	Asn	Leu	Leu 125	Thr	Gly	Leu	
45	Gly	Pro 130		Ala	Pro	Gly	Ser 135	Tyr	Tyr	Pro	Thr	Ala 140	Ala	Pro	Leu	Val	
50	Ala 145	_	Asp	Ile	Val	Val 150	Val	Gly	Gly	Arg	Ile 155		Asp	Asn	Glu	Arg 160	
55	Thr	Gly	Glu	Pro	Ser 165	Gly	Val	Val	Arg	Gly 170		Asp	Val	Arg	Thr 175	Gly	
	Ala	Gln	Val	Trp 180		Trp	Asp	Ala	Thr 185		Pro	His	Arg	Gly 190		Thr	

	Pro Leu	Ala 195	Glu	Gly	Glu	Ile	Tyr 200	Pro	Ala	Glu	Thr	Pro 205	Asn	Met	Trp	
5	Gly Thr 210		Ser	Tyr	Asp	Pro 215	Lys	Leu	Asn	Leu	Val 220	Phe	Phe	Pro	Leu	
10	Gly Asn 225	Gln	Thr	Pro	Asp 230	Phe	Trp	Gly	Gly	Asp 235	Arg	Ser	Lys	Ala	Ser 240	
15	Asp Glu	ı Tyr	Asn	Asp 245		Phe	Val	Ala	Val 250	Asp	Ala					
20	<211> <212>		ficia	al												
25		Prim 23 atca		ggct	tt										•	20
30			fici	al												
35	<220> <223>															
40	<400> gggtcaa	24 aggg	ccga	gacg	at g	tt										23
45	<210> <211> <212> <213>	25 20 DNA Arti	fici	al												
	<220> <223>	Prim	er													
50	<400> gcacgc		caac	tatg	itc											20
55	<210> <211> <212> <213>	DNA		acte	er ox	ydar	Ns IE	ro 32	.44							
•	<400>	26														

60 atqaacaqcq qccccqcac gctctccatq atcatcggga ttctgggcgc cctcatggcc geetteetga teategaagg ectecacete ateatecteg geggetegtg gttetacace 120 5 ctcgccggca tcgcgctggc ggccagcagc gtctacatga tccgtcgcaa catcctctcg 180 acatqqatcq ccctcggcct gcttgtagca acagccctgt ggtcgctcgc cgaagtcggc 240 300 accagettet ggeccagett etecegeetg ategtgttee tgtgegtege cetgategeg 10 acteteatqq egecetgget eageggeece ggeeggeget actteaceeg eccegteaca 360 ggggccact ccggcgcact cggcgccatc atcgtggctt tcctcgccgg catgttccgg 420 gtecacecga ccategecee geaggacace acceacecge aggaaacege gtecacegee 480 gactecquee ageceggeea tgactggeee geetatggee geacagette eggeacgege 540 tacqccaqct tcacacaqat caaccqcqac aatgtcaqca agctccqcqt cqcctqgacc 600 20 660 taccgcaccg gcgacatggc gctgaacggc gccgaattcc agggcacccc catcaagatc 720 ggcgatacgg totatatotg otoaccocac aacatogtot oggocotoga occogacaco 780 25 ggcacggaaa agtggaagtt cgaccccac gcccagacga aagtctggca gcgctgccgc 840 qqcqtcqqct actqqcatqa caqcacaqcc acqqacqcca acqcqccctg cqcctcqcqc atogtoctca ccacgatoga egocogoctc atcaccatog acgeocogoac eggocaggec 900 30 tgcacggatt tcggaacgaa cggcaacgtc aatctcctga ccggcctcgg cccgacagcc 960 1020 cccggctcct actacccgac cgccgcccc ctcgtggcgg gtgacatcgt ggtcgtcggc 35 gqccqcatcg ccgataacga gcgcacaggc gagccttccg gcgtcgtccg cggctacgac 1080 gtccgcaccg gcgcacaggt ctgggcctgg gacgccacca acccgcatcg cggcaccaca 1140 ccactggccg aaggcgagat ctaccccgcc gaaaccccca acatgtgggg caccgccagc 1200 40 tacqacccqa aactcaacct cgtcttcttc ccgctcggca accagacccc cgatttctgg 1260 1320 ggcggcgacc gcagcaaggc ctcggatgaa tacaacgacg ccttcgtcgc cgtggacgcc aaaaccggcg acgaacgctg gcacttccgc accgccaacc acgatctcgt ggactacgat 45 1380 qccacqqccc aqcccatcct ctacqacatt ccggacggcc atggcggcac ccgcccggcg 1440 1500 atcatequea tqaccaaqeq eggecagate tteqtgeteg acegeegega eggeaceeeg 50 1560 atogtocccg tggaaatgcg caaagtcccc caggacggcg caccggaaca ccagtacctc 1620 gcccccqaac agccctattc cgccctctcc atcggaacag agcgcctgaa acccagcgat atgtggggg gcacgatett cgaccagete etgtgeegea tecagttege etectacege 1680 1740 tatgaaggcg agttcacccc cgtcaacgag aagcaggcca ccatcatcta tccgggctat tacggcggca tcaactgggg cggcggcgc gtggatgaaa gcaccggaac gctgctggtc 1800

	aacga	acat	cc g	catg	gccca	a gt	gggg	caag	ttc	atga	agc	aaga	agaa	gc c	cgcc	gcagc	1860	
	ggct	tcaa	ac c	cagc	tegga	a ag	gcga	atat	tcc	gaac	aga	aagg	cacc	cc c	tggg	gcgtc	1920	
5	gtcc	gctc	ga t	gttc	ttct	00	ccgc	cggt	ctc	ccct	gcg	tgaa	accg	cc c	tatg	gcacg	1980	
	atga	acgc	ca t	cgac	ctgc	g ca	gcgg	caag	gtc	aaat	gga	gcat	gccg	ct t	ggca	cgatc	2040	
10	cagg	acat	gc c	ggtc	cacg	g ca	tggt	cccc	ggc	ctcg	cca	tccc	gctc	gg a	atgc	cgacc	2100	
	atga	gcgg	cc c	gctg	gcca	c cc	atac	cggc	ctg	gtct	tct	tctc	cggc	ac g	ıctcg	acaac	2160	
15	tatg	tccg	cg c	gctc	aaca	c cg	acac	cggc	gaa	gtcg	tct	ggaa	agcc	cg t	ctcc	ccgtc	2220	
	gcct	caca	gg c	cgct	ccga	t ga	gcta	catg	tcc	gaca	aga	ccgg	caaa	ca g	taca	tcgtc	2280	
	gtca	ccgc	ag g	cggc	ctga	c cc	gctc	cggc	gto	gaca	aaa	accg	cggc	ga c	tacg	tcatc	2340	
20	gcct	acgc	cc t	gccc	tccg	a ag	aata	a									2367	
25	<210 <211 <212 <213	> 7 > P	7 88 RT	onoba	ıcter	оху	dans	: IFO	324	14								
	<400		7															
30	Met 1	Asn	Ser	Gly	Pro 5	Arg	Thr	Leu	Ser	Met 10	Ile	Ile	Gly	Ile	Leu 15	Gly		
35	Ala	Leu	Met	Ala 20	Ala	Phe	Leu	Ile	Ile 25	Glu	Gly	Leu	His	Leu 30	Ile	Ile		
40	Leu	Gly	Gly 35	Ser	Trp	Phe	Tyr	Thr 40	Leu	Ala	Gly	Ile	Ala 45	Leu	Ala	Ala		
	Ser	Ser 50	Val	Tyr	Met	Ile	Arg 55	Arg	Asn	Ile	Leu	Ser 60	Thr	Trp	Ile	Ala		
45	Leu 65	Gly	Leu	Leu	Val	Ala 70	Thr	Ala	Leu	Trp	Ser 75	Leu	Ala	Glu	Val	Gly 80		
50	Thr	Ser	Phe	Trp	Pro 85	Ser	Phe	Ser	Arg	Leu 90	Ile	Val	Phe	Leu	Cys 95	Val		
55	Ala	Leu	Ile	Ala 100	Thr	Leu	Met	Ala	Pro 105	Trp	Leu	Ser	Gly	Pro 110	Gly	Arg		
	Arg	Tyr	Phe 115		Arg	Pro	Val	Thr 120	Gly	Ala	Thr	Ser	Gly 125	Ala	Leu	Gly		

Ala Ile Ile Val Ala Phe Leu Ala Gly Met Phe Arg Val His Pro Thr 140 5 Ile Ala Pro Gln Asp Thr Thr His Pro Gln Glu Thr Ala Ser Thr Ala 155 10 Asp Ser Asp Gln Pro Gly His Asp Trp Pro Ala Tyr Gly Arg Thr Ala Ser Gly Thr Arg Tyr Ala Ser Phe Thr Gln Ile Asn Arg Asp Asn Val Ser Lys Leu Arg Val Ala Trp Thr Tyr Arg Thr Gly Asp Met Ala Leu 20 200 Asn Gly Ala Glu Phe Gln Gly Thr Pro Ile Lys Ile Gly Asp Thr Val 215 25 Tyr Ile Cys Ser Pro His Asn Ile Val Ser Ala Leu Asp Pro Asp Thr 235 30 Gly Thr Glu Lys Trp Lys Phe Asp Pro His Ala Gln Thr Lys Val Trp Gln Arg Cys Arg Gly Val Gly Tyr Trp His Asp Ser Thr Ala Thr Asp Ala Asn Ala Pro Cys Ala Ser Arg Ile Val Leu Thr Thr Ile Asp Ala 280 Arg Leu Ile Thr Ile Asp Ala Arg Thr Gly Gln Ala Cys Thr Asp Phe 45 Gly Thr Asn Gly Asn Val Asn Leu Leu Thr Gly Leu Gly Pro Thr Ala 50 Pro Gly Ser Tyr Tyr Pro Thr Ala Ala Pro Leu Val Ala Gly Asp Ile 330 55 Val Val Val Gly Gly Arg Ile Ala Asp Asn Glu Arg Thr Gly Glu Pro 340 345

Ser Gly Val Val Arg Gly Tyr Asp Val Arg Thr Gly Ala Gln Val Trp

Ala Trp Asp Ala Thr Asn Pro His Arg Gly Thr Thr Pro Leu Ala Glu Gly Glu Ile Tyr Pro Ala Glu Thr Pro Asn Met Trp Gly Thr Ala Ser Tyr Asp Pro Lys Leu Asn Leu Val Phe Phe Pro Leu Gly Asn Gln Thr Pro Asp Phe Trp Gly Gly Asp Arg Ser Lys Ala Ser Asp Glu Tyr Asn 420 425 Asp Ala Phe Val Ala Val Asp Ala Lys Thr Gly Asp Glu Arg Trp His Phe Arg Thr Ala Asn His Asp Leu Val Asp Tyr Asp Ala Thr Ala Gln Pro Ile Leu Tyr Asp Ile Pro Asp Gly His Gly Gly Thr Arg Pro Ala Ile Ile Ala Met Thr Lys Arg Gly Gln Ile Phe Val Leu Asp Arg Arg Asp Gly Thr Pro Ile Val Pro Val Glu Met Arg Lys Val Pro Gln Asp Gly Ala Pro Glu His Gln Tyr Leu Ala Pro Glu Gln Pro Tyr Ser Ala Leu Ser Ile Gly Thr Glu Arg Leu Lys Pro Ser Asp Met Trp Gly Gly Thr Ile Phe Asp Gln Leu Leu Cys Arg Ile Gln Phe Ala Ser Tyr Arg

Tyr Glu Gly Glu Phe Thr Pro Val Asn Glu Lys Gln Ala Thr Ile Ile

Tyr Pro Gly Tyr Tyr Gly Gly Ile Asn Trp Gly Gly Gly Ala Val Asp 580 585

Glu Ser Thr Gly Thr Leu Leu Val Asn Asp Ile Arg Met Ala Gln Trp 595 600 605

- 5 Gly Lys Phe Met Lys Gln Glu Glu Ala Arg Arg Ser Gly Phe Lys Pro 610 615 620
- Ser Ser Glu Gly Glu Tyr Ser Glu Gln Lys Gly Thr Pro Trp Gly Val 10 625 630 635 640
- Val Arg Ser Met Phe Phe Ser Pro Ala Gly Leu Pro Cys Val Lys Pro 645 650 655

15

- Pro Tyr Gly Thr Met Asn Ala Ile Asp Leu Arg Ser Gly Lys Val Lys 660 665 670
- Trp Ser Met Pro Leu Gly Thr Ile Gln Asp Met Pro Val His Gly Met 675 680 685
- 25 Val Pro Gly Leu Ala Ile Pro Leu Gly Met Pro Thr Met Ser Gly Pro 690 695 700
- Leu Ala Thr His Thr Gly Leu Val Phe Phe Ser Gly Thr Leu Asp Asn 705 710 715 720
- Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly Glu Val Val Trp Lys Ala
 725 730 735

35

Arg Leu Pro Val Ala Ser Gln Ala Ala Pro Met Ser Tyr Met Ser Asp740 745 750

- Lys Thr Gly Lys Gln Tyr Ile Val Val Thr Ala Gly Gly Leu Thr Arg 755 760 765
- 45 Ser Gly Val Asp Lys Asn Arg Gly Asp Tyr Val Ile Ala Tyr Ala Leu 770 775 780
- Pro Ser Glu Glu
- 50 785
 - <210> 28
 - <211> 30
- 55 <212> DNA
 - <213> Artificial
 - <220>
 - <223> Primer

- 23 **-**

	<400>	28		
	ccgaatt	cag gccgaacagc	agcaggtcac	30
5				
	<210>	29		
	<211>	30		
		DNA		
	<213>	Artificial		
10				
	<220>			
	<223>	Primer		
		29		
15	gtgcct	gggt acctcggtgg	aggtcatgaa	30
	<210>	30		
••	<211>	30		
20	<212>			
	<213>	Artificial		
	1000			
	<220>	D		
25	<223>	Primer		
25	<400>	30		
	-			20
	aagtca	tatg aacagcggcc	cccgcacgct	30
30	<210>	31		
30	<211>			
	<212>			
	<213>	Artificial		
	-4407	111 (1111)		
35	<220>			
	<223>	Primer		
			•	
	<400>	31		
		agtt cttcggaggg	cagggcgtag	30
40		, ,,,,,,,,		