МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский государственный авиационный технический университет» (ФГБОУ ВО «УГАТУ»)

Прямые методы решения СЛАУ

Старший преподаватель кафедры ВВТиС А.А. Гайнетдинова

Уфа, 2020

Цель

• получить навык численного решения систем линейных алгебраических уравнений (СЛАУ) с использованием различных прямых методов

Задачи

- изучить теоретические основы различных прямых методов решения СЛАУ;
- реализовать программно выбранные методы решения СЛАУ;
- применить программы для решения задач интерполяции и аппроксимации;
- провести анализ полученных результатов.

Пусть дана система линейных алгебраических уравнений (СЛАУ), состоящая из n уравнений с n неизвестными:

$$\begin{cases} a_{11}x_1+\cdots+a_{1n}x_n=d_1,\\ \cdots\\ a_{n1}x_1+\cdots+a_{nn}x_n=d_n \end{cases} \Leftrightarrow A\vec{x}=\vec{d}, A=\begin{pmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \end{pmatrix}, \vec{d}=\begin{pmatrix} d_1\\ \vdots\\ d_n \end{pmatrix}.$$

Предполагается, что существует единственное решение системы, то есть $\det A \neq 0$.

На практике кроме существования и единственности решения важна еще устойчивость относительно погрешностей правой части и элементов матрицы. Формально перепишем линейную систему в виде

$$\vec{x} = A^{-1} \vec{d}$$
.

Варьируя это равенство и определяя вариацию обратной матрицы из соотношения

$$\delta E = \delta (AA^{-1}) = A\delta A^{-1} + \delta AA^{-1} = 0,$$

получим

$$\delta \vec{x} = A^{-1} (\delta \vec{d} - \delta A \vec{x}).$$

Формально устойчивость есть, ибо при $\det A \neq 0$ обратная матрица существует. Но если матрица A^{-1} имеет большие элементы, то можно указать такой вид погрешности исходных данных, который сильно изменит решение. В этом случае систему называют плохо обусловленной. Очевидно, что в этом случае $\det A \, pprox 0$ (необходимое, но не недостаточное условие).

Методы решения линейных систем делятся на *прямые* и *итерационные*. Прямые методы дают решение за конечное число действий, просты и наиболее универсальны.

Для систем небольшого порядка n≲200 почти всегда применяются только прямые методы.

Можно выделить следующие прямые методы решения СЛАУ

- метод Гаусса (метод последовательного исключения неизвестных);
- использование LU-разложения;
- метод квадратного корня (метод Холецкого);
- метод прогонки (трёхдиагональной, пятидиагональной и т.п.)

Для контроля расчета полезно найти невязки:

$$r_k = d_k - \sum_{i=1}^n a_{ki} x_i$$
, $1 \le k \le n$.

Если они велики, то это означает грубую ошибку в расчете. Если они малы, а система хорошо обусловлена, то решение найдено достаточно аккуратно.

5 Для плохо обусловленных систем малость невязок не гарантирует хорошей точности решения.

Процесс решения системы линейных уравнений

$$\sum_{j=1}^{n} a_{ij}x_j = d_i, \qquad i = 1, \dots, n,$$

состоит из двух этапов: прямого и обратного ходов.

Прямой ход: система приводится к треугольному виду

1. Предполагаем, что $a_{11} \neq 0$. Тогда первое уравнение системы делим на коэффициент a_{11} , в результате получаем уравнение:

$$x_1 = \sum_{j=2}^{n} a_{1j}^{(1)} x_j = d_1^{(1)}.$$

Затем из каждого из оставшихся уравнений вычитается первое, умноженное на соответствующий коэффициент a_{i1} . В результате система преобразуется к виду:

$$\begin{pmatrix} 1 & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} d_1^{(1)} \\ d_2^{(1)} \\ \vdots \\ d_n^{(1)} \end{pmatrix}.$$

- 2. В предположении, что $a_{22}^{(1)} \neq 0$, делим второе уравнение на коэффициент $a_{22}^{(1)}$ и исключаем неизвестное x_2 из всех последующих уравнений и т.д.
- 3. Получаем систему уравнений с верхнетреугольной матрицей:

$$\begin{pmatrix} 1 & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & 1 & \cdots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} d_1^{(1)} \\ d_2^{(2)} \\ \vdots \\ d_n^{(n)} \end{pmatrix}.$$

Метод Гаусса

Обратный ход: непосредственное определение неизвестных

- 1. Из n-го уравнения системы (2) определяем x_n : $x_n = b_n^{(n)}$.
- 2. Из k-го определяем x_k :

$$x_k = d_k^{(k)} - \sum_{l=k+1}^n a_{kl}^{(k)} x_l, k = n-1, ..., 1.$$

Метод Гаусса Выбор главного элемента

Исключение по описанному алгоритму нельзя проводить, если в ходе расчета на главной диагонали оказался нулевой элемент или элемент, достаточно близкий к нулю. Чтобы избежать этого каждый цикл всегда начинают с перестановки строк. Среди элементов столбца $a_{mk}^{(k)}, m \geq k$, находят *главный*, т.е. наибольший по модулю в текущем столбце, и перестановкой строк переводят его на главную диагональ, после чего делают исключения.

 ${
m LU}$ -разложение — это представление матрицы A в виде произведения двух матриц, A=LU, где L — нижняя треугольная матрица, а U — верхняя треугольная матрица с единичной диагональю.

Пусть дана СЛАУ и главные миноры матрицы A ненулевые. Тогда система может быть представлена в виде двух СЛАУ с треугольными матрицами:

$$Ax = d \Rightarrow LUx = d \Rightarrow \begin{cases} Ux = y \\ Ly = d \end{cases}$$

На первом шаге решается система Ly=d. Поскольку L— нижняя треугольная матрица, эта система решается непосредственно прямой подстановкой

$$y_1 = \frac{b_1}{l_{11}}, y_k = \frac{1}{l_{kk}} \left(d_k - \sum_{j=1}^{k-1} l_{kj} y_j \right), \quad j = 2, 3, ..., n.$$

На втором шаге решается система Ux = y. Поскольку U — верхняя треугольная матрица, эта система решается непосредственно обратной подстановкой

$$x_n = y_n, \ x_k = y_k - \sum_{j=k+1}^n u_{kj} x_j, \qquad k = n-1, ..., 1.$$

Элементы l_{ij} , u_{ij} определяются из условия

$$\sum_{k=1}^{n} l_{ik} u_{kj} = a_{ij}, i, j = 1, ..., n.$$

по следующим формулам:

$$l_{i1} = a_{i1}, \qquad l_{ij} = a_{ij} - \sum_{k=1}^{J-1} l_{ik} u_{kj}, \qquad i \ge j > 1,$$

$$u_{1j} = \frac{a_{1j}}{l_{11}}, \qquad u_{ij} = \frac{1}{u_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \right), 1 < i < j.$$

ЛР 3

При решении систем линейных алгебраических уравнений с симметрическими матрицами можно сократить объем вычислений почти вдвое.

Метод основан на представлении матрицы А системы в виде произведения трех матриц:

$$A = S^T B S$$

где B — диагональная матрица с элементами $b_{ii}=\pm 1$, S — верхняя треугольная матрица.

Решение исходной линейной системы сводится к последовательному решению трех систем, двух треугольных и одной диагональной:

$$S^T z = b$$
, $By = z$, $Sx = y$,

что делается обычным обратным ходом.

Нахождение элементов матриц

Перепишем соотношение $A = S^T B S$ в координатном виде:

$$a_{kl} = \sum_{i=1}^{n} s_{ik} b_{ii} s_{il} = \sum_{i=1}^{\min(k,l)} b_{ii} s_{ik} s_{il}.$$

Это равенство можно переписать в следующей форме:

$$a_{kk} = \sum_{i=1}^{k} b_{ii} |s_{ik}|^2; \quad a_{kl} = \sum_{i=1}^{k} b_{ii} s_{ik} s_{il}, k < l$$

Или, окончательно:

$$b_{kk} = \operatorname{sgn}\left(a_{kk} - \sum_{i=1}^{k-1} b_{ii} |s_{ik}|^2\right)$$

$$s_{kk} = \sqrt{a_{kk} - \sum_{i=1}^{k-1} b_{ii} |s_{ik}|^2}$$

$$s_{kl} = \frac{1}{s_{kk} d_{kk}} \left(a_{kl} - \sum_{i=1}^{k-1} b_{ii} s_{ik} s_{il}\right), \qquad k+1 \le l \le n.$$

Пусть матрица А содержит много нулевых элементов, расположенных в матрице не беспорядочно, а плотными массивами на заранее известных местах. Тогда расчет по методу Гаусса можно организовать таким образом, чтобы не включать нулевые элементы матрицы. Этим самым экономится требуемая память и уменьшается объем вычислений.

Выбор наибольшего элемента в таких расчетах делать нельзя, ибо перестановка разрушает специальную структуру матрицы.

Наиболее важным частным случаем метода Гаусса является метод прогонки, применяемый к системам с трех- или пятидиагональной матрицей. Такие системы часто встречаются при численном решении краевых задач для дифференциальных уравнений второго порядка, при моделировании некоторых инженерных задач.

Если матрица A является трехдиагональной, то система Ax = d записывается в каноническом виде

$$a_i x_{i-1} - b_i x_i + c_i x_{i+1} = d_i$$
, $1 \le i \le n$, $a_1 = c_n = 0$.

Эта запись называется разностным уравнением второго порядка, или трехточечным уравнением. В этом случае прямой ход сводится к исключению элементов a_i . Получается треугольная система, содержащая в каждом уравнении только два неизвестных — x_i и x_{i+1} . Поэтому формулы обратного хода имеют вид

$$x_i = \xi_{i+1} x_{i+1} + \eta_{i+1}, \qquad i = n, n-1, ..., 1.$$

Уменьшим в последней формуле индекс на единицу и подставим в исходные уравнения

$$a_i(\xi_i x_i + \eta_i) - b_i x_i + c_i x_{i+1} = d_i.$$

Выражая отсюда x_i через x_{i+1} , получим

$$x_{i} = \frac{c_{i}}{b_{i} - a_{i}\xi_{i}} x_{i+1} + \frac{a_{i}\eta_{i} - d_{i}}{b_{i} - a_{i}\xi_{i}}.$$

Трёхдиагональная прогонка (продолжение)

Чтобы это выражение совпало с формулами обратного хода, надо, чтобы стоящие в правой части этого равенства дроби были равны соответственно ξ_{i+1} и η_{i+1} . Отсюда получим удобную запись формул прямого хода

$$\xi_{i+1} = \frac{c_i}{b_i - a_i \xi_i}, \qquad \eta_{i+1} = \frac{a_i \eta_i - d_i}{b_i - a_i \xi_i}, i = 1, 2, ..., n.$$

Для начала вычислений по формулам прямого и обратного хода формально требуется задать неизвестные величины ξ_1 , η_1 , x_{n+1} . Однако перед этими величинами в формулах стоят множители a_1 или $\xi_{n+1}{\sim}c_n$, равные нулю. Поэтому можно положить $\xi_1 = \eta_1 = x_{n+1} = 0.$

Заметим, что достаточным условием устойчивости прогонки является условие преобладания диагональных элементов

$$|b_i| \ge |a_i| + |c_i|.$$

Рассмотрим СЛАУ следующего вида:

$$a_i x_{i-2} - b_i x_{i-1} + c_i x_i - d_i x_{i+1} + e_i x_{i+2} = f_i, i = 0, ..., N,$$

$$a_0 = b_0 = a_1 = e_{N-1} = d_{N-1} = e_N = 0.$$

Для решения этой системы применим метод исключения Гаусса. Учитывая структуру системы, легко получить, что обратный ход метода Гаусса должен осуществляться по формулам:

$$x_i = \alpha_{i+1}x_{i+1} - \beta_{i+1}x_{i+2} + \gamma_{i+1}, \qquad i = N, N-1, ..., 0.$$

Используя это представление, выразим x_{i-1} и x_{i-2} . Получим:

$$\begin{aligned} x_{i-1} &= \alpha_i x_i - \beta_i x_{i+1} + \gamma_i, & 1 \leq i \leq N, \\ x_{i-2} &= (\alpha_{i-1} \alpha_i - \beta_{i-1}) x_i - \alpha_{i-1} \beta_i x_{i+1} + \alpha_{i-1} \gamma_i + \gamma_{i-1}, & 2 \leq i \leq N. \end{aligned}$$

Подставляя эти выражения в представление решения, получим

$$[(\alpha_{i-1}\alpha_i - \beta_{i-1})a_i - \alpha_i b_i + c_i]x_i =$$

$$= [\alpha_{i-1}\beta_i a_i - \beta_i b_i + d_i]x_{i+1} - e_i x_{i+2} + [f_i - (\alpha_{i-1}\gamma_i + \gamma_{i-1})a_i + \gamma_i b_i].$$

Сравнивая это выражение с исходным представлением, видим, что если положить

$$\alpha_{i+1} = \frac{\alpha_{i-1}\beta_i a_i - \beta_i b_i + d_i}{(\alpha_{i-1}\alpha_i - \beta_{i-1})a_i - \alpha_i b_i + c_i},$$

$$\beta_{i+1} = \frac{e_i}{(\alpha_{i-1}\alpha_i - \beta_{i-1})\alpha_i - \alpha_i b_i + c_i},$$

$$\gamma_{i+1} = \frac{f_i - (\alpha_{i-1}\gamma_i + \gamma_{i-1})a_i + \gamma_i b_i}{(\alpha_{i-1}\alpha_i - \beta_{i-1})a_i - \alpha_i b_i + c_i},$$

то уравнения исходной системы для $i=0,\ldots,N$ будут удовлетворены.

При этом, как и в случае трехдиагональной прогонки, для начала вычислений по формулам прямого и обратного хода можно формально задать недостающие величины равными нулю.

Контрольные вопросы

- 1. Какие методы решения СЛАУ называются прямыми?
- 2. Какие прямые численные методы решения систем линейных алгебраических уравнений вы знаете, каковы их характерные особенности?
- 3. Как можно проверить правильность решения системы линейных алгебраических уравнений?
- 4. Всегда ли можно получить решение системы линейных алгебраических уравнений?

Литература

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы (глава 6, § 1)
- 2. Калиткин Н.Н. Численные методы (глава V, §1, пп. 2, 6)
- 3. Вержбицкий В.М. Основы численных методов (глава 2, §2.1 2.5)
- 4. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций (добавления, § 3)

