Université de Lorraine Analyse complexe

TD 5: Intégration curviligne

Exercice 1. Soient $\gamma_1: [0,1] \to \mathbb{C}$, $t \mapsto t(1+i)$, $\gamma_2: [0,1] \to \mathbb{C}$, $t \mapsto t+it^2$, $\gamma_3: [0,1] \to \mathbb{C}$, $t \mapsto it$ et $\gamma_4: [0,1] \to \mathbb{C}$, $t \mapsto i+t$. Calculer $\int_{\gamma} z dz$, où γ désigne successivement γ_1, γ_2 et $\gamma_3 \vee \gamma_4$.

(Autocorrection : on trouve i à chaque fois. Essayer ensuite avec $\int_{\gamma} \overline{z} dz$.)

Exercice 2. Montrer que l'arc de parabole $y=x^2$ compris entre les abscisses x=0 et x=1 a pour longueur $L=\frac{2\sqrt{5}+\ln(2+\sqrt{5})}{4}=\frac{2\sqrt{5}+\operatorname{argsh}(2)}{4}$. (Faire une intégration par parties.) Remarque culturelle : si l'on cherche à calculer les longueurs d'arcs d'ellipses, d'hyperboles ou de sinu-

Remarque culturelle : si l'on cherche à calculer les longueurs d'arcs d'ellipses, d'hyperboles ou de sinusoïdes, les calculs font apparaître des primitives ne pouvant s'exprimer à l'aide des fonctions usuelles : les « fonctions elliptiques de première et deuxième espèce »

Exercice 3. Soit r > 0 et γ_r le lacet $[0, 2\pi] \to \mathbb{C}$, $t \mapsto re^{it}$. Pour tout $n \in \mathbb{Z}$, calculer $\int_{\gamma_r} z^n dz$.

Exercice 4. Soit $\gamma:[0,2\pi]\to\mathbb{C}, t\mapsto e^{it}$. Calculer $\int_{\gamma}\left(z+\frac{1}{z}\right)^{2n}\frac{dz}{z}$. En déduire les valeurs des intégrales de Wallis $W_{2n}:=\int_{0}^{\pi/2}\cos^{2n}tdt$.

Exercice 5. Soit r > 0 et γ_r le lacet $[0, 2\pi] \to \mathbb{C}$, $t \mapsto re^{it}$.

- 1. Soit $a \in \mathbb{C}$ de module $\neq r$. Calculer $\int_{\gamma_r} (z-a)^n dz$ pour $n \in \mathbb{N}$, puis n = -1, puis $n \in \mathbb{Z}$ quelconque.
- 2. Si r est différent de 2 et 3, calculer $I(r) := \int_{\gamma_r} \frac{dz}{z^2 + z 6}$.
- 3. Plus généralement, si Q est une fraction rationnelle, calculer $\int_{\gamma_r} Q(z) dz$ pour tout r > 0 pour lequel cette intégrale est définie.

 \star \star \star Limites d'intégrales curvilignes \star \star \star

Exercice 6. Soit r > 1, $\gamma_r : [0, \pi] \to \mathbb{C}$, $t \mapsto re^{it}$ le paramétrage standard du demi-cercle supérieur de rayon r, et $I(r) := \int_{\gamma_r} \frac{dz}{z^2 + 1}$. Montrer que $I(r) \xrightarrow[r \to +\infty]{} 0$. Généraliser à $\int_{\gamma_r} \frac{P(z)}{Q(z)} dz$ où $P, Q \in \mathbb{C}[z]$ et $\deg Q \ge \deg P + 2$.

Exercice 7. Étudier la limite lorsque $r \to +\infty$ de $I(r) := \int_{\gamma_r} \frac{e^z}{z^2} dz$, où $\gamma_r : [\pi/2, 3\pi/2] \to \mathbb{C}$, $t \mapsto re^{it}$. Même question si γ_r est cette fois le chemin $[-\pi/2, \pi/2] \to \mathbb{C}$, $t \mapsto re^{it}$.

Exercice 8. Soit $f \in C^0(\mathbb{C},\mathbb{C})$ avec $f(0) \neq 0$. Pour r > 0, on note $\gamma_r : [0,2\pi] \to \mathbb{C}$, $t \mapsto re^{it}$. Calculer la limite, lorsque r > 0 tend vers zéro, de $I(r) := \int_{\gamma_r} f(z) dz$ et de $J(r) := \int_{\gamma_r} \frac{f(z)}{z} dz$ Pour $0 < a < b < 2\pi$, en notant $\gamma_{r,a,b} : [a,b] \to \mathbb{C}$, $t \mapsto re^{it}$, calculer la limite, lorsque r > 0 tend vers zéro, de $I(r,a,b) := \int_{\gamma_{r,a,b}} f(z) dz$ et de $J(r,a,b) := \int_{\gamma_r} \frac{f(z)}{z} dz$.

Exercice 9. Soit T > 0 et $\gamma : [0, T] \to \mathbb{C}$, $t \mapsto t + i \sin(t)$ le paramétrage de l'arc de sinusoïde entre les abscisses x = 0 et x = T. Calculer $\int_{\gamma} z^2 dz$.

Exercice 10. Retrouver les résultats des exercices 3 et 5 à l'aide de primitives. Pour le cas n = -1, utiliser la détermination principale du logarithme Log: $\mathbb{C} \setminus \mathbb{R}_- \to \mathbb{C}$ et trouver une manière de gérer la « coupure ».

Exercice 11. Soit Log la détermination principale du logarithme et $\gamma: [-\pi/2, \pi/2] \to \mathbb{C}, t \mapsto e^{it}$. Calculer $\int_{\gamma} \text{Log}(z) dz$.

Exercice 12. Soit $U \subset \mathbb{C}$ un ouvert. Soit $f,g:U\to\mathbb{C}$ des fonctions holomorphes. Soit $z_0,z_0\in U$ et soit γ un chemin \mathscr{C}^1 par morceaux dans U allant de z_0 à z_1 . Montrer que l'on a l'analogue suivant de la formule d'intégration par partie :

$$\int_{\gamma} f(z)g'(z)dz = f(z_1)g(z_1) - f(z_0)g(z_0) - \int_{\gamma} f'(z)g(z)dz.$$

Exercice 13. Soit γ un chemin \mathscr{C}^1 par morceaux de $\mathbb C$ allant de 0 à i. Calculer $\int_{\gamma} f(z)dz$ avec :

1.
$$f(z) = z^2 \sin z$$
 2. $f(z) = ze^{iz}$

* * ★ Autour de Green-Riemann * * *

Soit $\omega = P(x,y)dx + Q(x,y)dy$ une 1-forme différentielle de classe \mathscr{C}^1 définie sur un ouvert U de \mathbb{C} , et K un compact de U dont le bord ∂K est \mathscr{C}^1 par morceaux et muni de son orientation canonique. La formule de Green-Riemann est l'énoncé suivant :

$$\int_{\partial K} \omega = \int \int_{K} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

C'est une généralisation en dimension 2 du théorème fondamental de l'analyse $f(b)-f(a)=\int_a^b f'(t)dt$.

La version n-dimensionnelle s'appelle la $formule\ de\ Stokes$ et s'écrit $\int_{\partial K}\omega=\int_K d\omega$.

Exercice 14. Démontrer la formule de Green lorsque K est un rectangle $[a,b] \times [c,d] \subset \mathbb{R}^2$, puis lorsque K est un domaine de la forme $\{(x,y) \in \mathbb{R}^2, a \le x \le b \text{ et } 0 \le y \le h(x)\}$, où $h \in \mathcal{C}^1([a,b],\mathbb{R}^*_+)$.

Dans la suite, on admet la formule de Green-Riemann, qui peut être prouvée en recouvrant le compact par des rectangles et en adaptant (avec du travail!) l'exercice précédent.

Exercice 15. Soit $\omega = (x^5 + 3y)dx + (2x - e^{y^3})dy$ et K le disque unité fermé. Calculer $\int_{\partial K} \omega$. (Remarque : on pourrait paramétrer, écrire l'intégrale curviligne et même la calculer, avec beaucoup de courage.)

Exercice 16. 1. Pour tout r > 0, montrer que $\int_{\partial B(0,r)} \overline{z} dz = 2i \operatorname{Aire} (B(0,r))$.

2. Soit $z_1, z_2, z_3 \in \mathbb{C}$ des points non-alignés. On note Δ le triangle de sommets z_1, z_2, z_3 . Montrer que

$$\int_{\partial \Lambda} \overline{z} dz = 2i \operatorname{Aire}(\Delta).$$

3. Soit K un compact à bord \mathscr{C}^1 par morceaux. En utilisant la formule de Green-Riemann, montrer que

$$\int_{\partial V} \overline{z} dz = 2i \operatorname{Aire}(K).$$

Exercice 17. [Le théorème de Cauchy avec l'hypothèse \mathscr{C}^1] Soit $U \subset C$ un ouvert, $K \subset U$ un compact à bords \mathscr{C}^1 par morceaux et soit $f \in \mathscr{C}^1(U,\mathbb{C})$. Écrire $\int_{\partial K} f(z)dz$ à l'aide de la formule de Green-Riemann et des opérateurs de Wirtinger. Si f est de plus holomorphe, montrer le *théorème intégral de Cauchy*:

$$\int_{\partial K} f(z) dz = 0$$