Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

(МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 1 семестр 2020—2021 гг.

Руководитель практики,		Кравченко О.В.
ст. преп. кафедры ФН1	$(no\partial nuc b)$	· •
студент группы ФН1–11		Непейвода Никита Евгеньевич
	$(no \partial nuc arepsilon)$	

Москва, 2020 г.

Содержание

1	Цели и задачи практики	3
	1.1 Цели	3
	1.2 Задачи	3
	1.3 Индивидуальное задание	3
2	Отчёт	4
3	Индивидуальное задание	5
	3.1 Пределы и непрерывность	5
\mathbf{C}_{1}	писок литературы	9

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с программными средствами, необходимыми в будущей профессиональной деятельности.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски L^AT_FX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе I^AT_EX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе IATEX типовые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.

2 Отчёт

Актуальность темы продиктована необходимостью владеть системой вёрстки L^AT_EXи средой вёрстки TeXStudio для отображения текста, формул и графиков. Полученные в ходе практики навыки могут быть применены при написании курсовых проектов и дипломной работы, а также в дальнейшей профессиональной деятельности.

Ситема вёрстки IATEX содержит большое количество инструментов (пакетов), упрощающих отображение информации в различных сферах инженерной и научной деятельности.

3 Индивидуальное задание

3.1 Пределы и непрерывность.

Задача №1.

Условие:

Дана последовательность $\{a_n\}=rac{n+1}{3n+1}$ и число $c=rac{1}{3}$. Доказать, что:

$$\lim_{x \to \infty} a_n = c,$$

$$\lim_{x \to \infty} \frac{n+1}{3n+1} = \frac{1}{3},$$

а именно, для каждого сколь угодно малого числа $\varepsilon>0$ найти наименьшее натуральное число $N=N(\varepsilon)$ такое, что $|a_n-c|<\varepsilon$ для всех номеров $n>N(\varepsilon)$. Заполнить таблицу

ε	0,1	0,01	0,001
$N(\varepsilon)$			

Решение:

По определению предела последовательности:

$$\left| \frac{n+1}{3n-1} - \frac{1}{3} \right| < \varepsilon,$$

$$\frac{4}{3} \left| \frac{1}{3n-1} \right| < \varepsilon.$$

n принимает только натуральные значения, следовательно помодульное выражение всегда будет положительным. Расскроем модуль и выразим n:

$$n > \frac{1}{3} + \frac{4}{9\varepsilon}$$

Поочерёдно подставим ε и найдём $N(\varepsilon)$:

$$\begin{split} \varepsilon &= 0.1; \quad n > \frac{43}{9} \Rightarrow N_{\varepsilon} = 4; \\ \varepsilon &= 0.01; \quad n > \frac{403}{9} \Rightarrow N_{\varepsilon} = 44; \\ \varepsilon &= 0.001; \quad n > \frac{4003}{9} \Rightarrow N_{\varepsilon} = 444. \end{split}$$

Заполним таблицу:

ε	0,1	0,01	0,001
$N(\varepsilon)$	4	44	444

Сделаем проверку:

$$|a_5 - c| = \frac{2}{21} < 0.1;$$

$$|a_{45} - c| = \frac{2}{201} < 0.01;$$

$$|a_{445} - c| = \frac{2}{2001} < 0.001.$$

Задача №2.

(a):
$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1},$$

(6):
$$\lim_{x \to +\infty} \frac{\sqrt{2x^4 + 3} - \sqrt{x^3} + \sqrt[3]{x^5}}{(x^2 + 9)^{\frac{3}{2}}},$$

(B):
$$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
,

(r):
$$\lim_{x \to 0} (1 + \sin^2 3x)^{\frac{1}{\ln \cos x}},$$

(д):
$$\lim_{x\to 0} (\cos 2x)^{\frac{x+2}{x-2}},$$

(e):
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{(\pi - 4x)^2}.$$

Решение:

(a):

$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 1} \frac{(x - 1)^2 (x + 3)}{(x - 1)^2 (x + 1)} = \frac{4}{2} = 2.$$

(б):

$$\lim_{\substack{x \to +\infty \\ -0}} \frac{\sqrt{2x^4 + 3} - \sqrt{x^3} + \sqrt[3]{x^5}}{(x^2 + 9)^{\frac{3}{2}}} = \left[\frac{\infty}{\infty}\right] = \begin{vmatrix} \sqrt{2x^4 + 3} - \sqrt{x^3} + \sqrt[3]{x^5} \sim \sqrt{2}x^2, & x \to \infty \\ (x^2 + 9)^{\frac{3}{2}} \sim x^3, & x \to \infty \end{vmatrix} = \lim_{x \to +\infty} \frac{\sqrt{2}x^2}{x^3} = \lim$$

(B):

$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2} = \left[\frac{0}{0}\right] = \lim_{x \to 4} \frac{2(x-4)(\sqrt{x}+2)}{(x-4)(\sqrt{1+2x}+3)} = \lim_{x \to 4} \frac{2(\sqrt{x}+2)}{(\sqrt{1+2x}+3)} = \frac{4}{3}.$$

(r):

$$\lim_{x \to 0} (1 + \sin^2 3x)^{\frac{1}{\ln \cos x}} = [1^{\infty}] = e^{\lim_{x \to 0} \frac{\sin^2 3x}{\ln \cos x}} = \begin{vmatrix} \cos x = 1 + t \Rightarrow \ln(1 + t) \sim t, & t \to 0 \\ \sin^2 3x \sim 9x^2, & x \to 0 \end{vmatrix} = e^{\lim_{x \to 0} \frac{9x^2}{\cos x - 1}} = e^{\lim_{x \to 0} \frac{-18x^2}{\cos x - 1}} = e^{\lim_{x \to 0} \frac{-18x^2}{x^2}} = e^{-18}.$$

(д):

$$\lim_{x \to 0} (\cos 2x)^{\frac{x+2}{x-2}} = \lim_{x \to 0} 1^{-1} = 1.$$

(e):

$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{(\pi - 4x)^2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \left| \begin{array}{c} \pi - 4x = t, & t \to 0 \end{array} \right| = \lim_{t \to 0} \frac{1 - \cos \frac{t}{2}}{t^2} = \left| \begin{array}{c} 1 - \cos \frac{t}{2} \sim \frac{t^2}{8} \end{array} \right| = \lim_{t \to 0} \frac{t^2}{8t^2} = \frac{1}{8}.$$

Задача №3.

Условие:

- (a): Показать, что данные функции f(x) и g(x) являются бесконечно малыми или бесконечно большими при указанном стремлении аргумента.
- (б): Для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию) вида $C(x-x_0)^{\alpha}$ при $x\to x_0$ или Cx^{α} при $x\to \infty$, указать их порядки малости (роста).
- **(в):** Сравнить функции f(x) и g(x) при указанном стремлении.

№ варианта	функции $f(x)$ и $g(x)$	стремление
30	$f(x) = \frac{1}{x} - \frac{1}{x^3}, \ g(x) = \ln \cos \frac{1}{x}$	$x \to \infty$

Решение:

(а) Убедимся, что обе функции при заданном стремлении являются бесконечно малыми:

$$\lim_{x \to \infty} \frac{1}{x} - \frac{1}{x^3} = 0 - \text{BM}$$

$$\lim_{x\to\infty}\ln\cos\frac{1}{x}=0\text{ - BM}$$

(б) Так как f(x) и g(x) бесконечно малые функции, то эквивалентными им будут функции вида Cx^{α} при $x \to \infty$.

Найдём эквивалентную для f(x):

$$f(x) = \frac{1}{x} - \frac{1}{x^3} \sim \frac{1}{x}, \ x \to \infty$$

Отсюда следует, что для $f(x): C=1; \ \alpha=-1$

Найдём эквивалентную для q(x):

$$g(x) = \ln \cos \frac{1}{x} \sim \begin{vmatrix} \cos \frac{1}{x} = 1 + t, \ t \to 0 \\ \ln (1 + t) \sim t = \cos \frac{1}{x} - 1 \end{vmatrix} \sim \cos \frac{1}{x} - 1 \sim \begin{vmatrix} \frac{1}{x} = z, \ z \to 0 \\ \cos z - 1 \sim -\frac{z^2}{2} = -\frac{1}{2x^2} \end{vmatrix} \sim -\frac{1}{2x^2}.$$

Отсюда следует, что для $g(x): C = -\frac{1}{2}; \ \alpha = -2$.

(в) Найдём предел отношения заданных функций, применяя эквивалентности, найденные выше:

$$\lim_{x \to \infty} \frac{\ln \cos \frac{1}{x}}{\frac{1}{x} - \frac{1}{x^3}} = \lim_{x \to \infty} \frac{x}{-2x^2} = 0.$$

Из этого следует, что g(x) = o(f(x)).

Задача №4.

Условие:

Найти точки разрыва функции

$$y = f(x) \equiv \begin{cases} \frac{\sin \pi x}{\arcsin x}, & |x| \le 1, \\ 1 + \sqrt[3]{x}, & |x| > 1. \end{cases}$$

и определить их характер. Построить фрагменты графика функции в окрестности каждой точки разрыва.

Решение:

Особыми точками являются точки x=0,1,-1. Рассмотрим односторонние пределы в окресности каждой из особых точек:

$$\lim_{x\to 0+0}\frac{\sin\pi x}{\arcsin x}=\lim_{x\to 0-0}\frac{\sin\pi x}{\arcsin x}=\pi,\ \Rightarrow x=0\ \text{- разрыв первого рода устраннимый}.$$

$$\lim_{x\to 1+0}1+\sqrt[3]{x}=2,\quad \lim_{x\to 1-0}\frac{\sin\pi x}{\arcsin x}=0,\ \Rightarrow x=1\ \text{- разрыв первого рода неустраннимый}.$$

$$\lim_{x\to -1-0} 1+\sqrt[3]{x}=\lim_{x\to -1+0} \frac{\sin\pi x}{\arcsin x}=f(-1)=0,\ \Rightarrow x=-1$$
 - не точка разрыва.

Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе IATEX, 2003 с.
- [2] Добавить сюда источник.
- [3] Добавить сюда источник.