

第一章 函数 极限 连续

▲ 重点题型一 函数的性态

【类型一与方法】有界性的判定

例1下列函数无界的是

(A)
$$f(x) = \frac{1}{x}\sin x, x \in (0, +\infty)$$
 (B) $f(x) = x\sin\frac{1}{x}, x \in (0, +\infty)$

(C)
$$f(x) = \frac{1}{r} \sin \frac{1}{r}, x \in (0, +\infty)$$

(B)
$$f(x) = x \sin \frac{1}{x}, x \in (0, +\infty)$$

(C)
$$f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in (0, +\infty)$$
 (D) $f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0, 2022)$

【详解】

微信公众号: djky66

顶尖考研祝您上岸

【类型二与方法】导函数与原函数的奇偶性与周期性

例 2【2002,数二】设函数 f(x) 连续,则下列函数中,必为偶函数的是

(A)
$$\int_0^x f(t^2)dt$$

(B)
$$\int_0^x f^2(t)dt$$

(C)
$$\int_0^x t [f(t) - f(-t)] dt$$
 (D)
$$\int_0^x t [f(t) + f(-t)] dt$$

(D)
$$\int_0^x t[f(t) + f(-t)]dt$$

▲ 重点题型二 极限的概念

例 3【2014,数三】设 $\lim_{n\to\infty}a_n=a$,且 $a\neq 0$,则当n充分大时有

(A)
$$\left|a_n\right| > \frac{\left|a\right|}{2}$$

(B)
$$\left|a_n\right| < \frac{\left|a\right|}{2}$$

(C)
$$a_n > a - \frac{1}{n}$$

(D)
$$a_n < a + \frac{1}{n}$$

【详解】

▲ 重点题型三 函数极限的计算

【类型一与方法】 $\frac{0}{0}$

例 4【2000,数二】若 $\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$,则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$

$$(D) \propto$$

【详解】

例 5【2002,数二】设 y = y(x) 是二阶常系数微分方程 $y'' + py' + qy = e^{3x}$ 满足初始条件

y(0) = y'(0) = 0 的特解,则当 $x \to 0$ 时,函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限

(A) 不存在

(B) 等于1

(C) 等于 2

(D) 等于3

【类型二与方法】 $\frac{\infty}{\infty}$

例 6【2014,数一、数二、数三】求极限
$$\lim_{x \to +\infty} \frac{\int_1^x \left[t^2(e^{\frac{1}{t}} - 1) - t \right] dt}{x^2 \ln\left(1 + \frac{1}{x}\right)}$$
.

【详解】

【类型三与方法】 0•∞

例 7
$$\lim_{x\to 0^+} \ln(1+x) \ln(1+e^{\frac{1}{x}}) = \underline{\qquad}$$
.
【详解】

【类型四与方法】∞-∞

例 8 求极限
$$\lim_{x\to\infty} \left(x^3 \ln \frac{x+1}{x-1} - 2x^2 \right)$$
.

【详解】

【类型五与方法】 0^0 与 ∞^0

例9【2010,数三】求极限
$$\lim_{x\to+\infty} \left(x^{\frac{1}{x}}-1\right)^{\frac{1}{\ln x}}$$
.

【详解】

【类型六与方法】1°

例 10 求极限
$$\lim_{x\to 0} \left(\frac{a^x + a^{2x} + \dots + a^{nx}}{n}\right)^{\frac{1}{x}} (a > 0, n \in N)$$
.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

▲ 重点题型四 已知极限反求参数

【方法】

例 11【1998,数二】确定常数
$$a,b,c$$
 的值,使 $\lim_{x\to 0} \frac{ax-\sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c(c \neq 0)$.

▲ 重点题型五 无穷小阶的比较

【方法】

例 12【2002,数二】设函数 f(x) 在 x=0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0$, $f'(0) \neq 0$, $f''(0) \neq 0$.证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时,

 $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例 13【2006,数二】试确定 A , B , C 的值,使得 $e^x(1+Bx+Cx^2)=1+Ax+o(x^3)$,其中 $o(x^3)$ 是 当 $x \to 0$ 时比 x^3 高阶的无穷小量.

例 14【2013,数二、数三】当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小,求n与a的值.

【详解】

▲ 重点题型六 数列极限的计算

【方法】

例 15【2011,数一、数二】(I)证明:对任意正整数n,都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$;

(II) 设
$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n (n = 1, 2, \dots)$$
,证明数列 $\{a_n\}$ 收敛.

【详解】

例 16【2018,数一、数二、数三】设数列 $\{x_n\}$ 满足: $x_1 > 0$, $x_n e^{x_{n+1}} = e^{x_n} - 1(n = 1, 2, \cdots)$.证明 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$.

例 17【2019,数一、数三】设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx (n=0,1,2,\cdots)$.

- (I) 证明数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2}a_{n-2}(n=2,3,\cdots)$;
- (II) $\vec{x} \lim_{n \to \infty} \frac{a_n}{a_{n-1}}$.

【详解】

微信公众号: djky66

例 18【2017,数一、数二、数三】求 $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2}\ln\left(1+\frac{k}{n}\right)$.

【详解】

▲ 重点题型七 间断点的判定

例 19【2000,数二】设函数 $f(x) = \frac{x}{a + e^{bx}}$ 在 $(-\infty, +\infty)$ 内连续,且 $\lim_{x \to -\infty} f(x) = 0$,则常数 a, b 满足

(A)
$$a < 0$$
, $b < 0$

(B)
$$a > 0$$
, $b > 0$

(C)
$$a \le 0$$
, $b > 0$

(D)
$$a \ge 0$$
, $b < 0$

第二章 一元函数微分学

▲ 重点题型一 导数与微分的概念

例 1【2000,数三】设函数 f(x) 在点 x = a 处可导,则函数 |f(x)| 在点 x = a 处不可导的充分条件是

- (A) $f(a) = 0 \perp f'(a) = 0$
- (B) $f(a) = 0 \perp f'(a) \neq 0$
- (C) $f(a) > 0 \perp f'(a) > 0$
- (D) $f(a) < 0 \perp f'(a) < 0$

【详解】

例 2【2001,数一】设f(0) = 0,则f(x)在x = 0处可导的充要条件为

- (A) $\lim_{h\to 0} \frac{1}{h^2} f(1-\cosh)$ 存在
- (B) $\lim_{h\to 0}\frac{1}{h}f(1-e^h)$ 存在
- (C) $\lim_{h\to 0} \frac{1}{h^2} f(h-\sinh)$ 存在 (D) $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在

【详解】

例 3【2016,数一】已知函数 $f(x) = \begin{cases} x, x \le 0 \\ \frac{1}{n}, \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \dots \end{cases}$ 则

- (A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点
- (C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

▲ 重点题型二 导数与微分的计算

【类型一与方法】分段函数

例 4【1997, 数一、数二】设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$,且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A$ 为常数),求 $\varphi'(x)$,并讨论 $\varphi'(x)$ 在 x=0 处的连续性.

【详解】

【类型二与方法】复合函数

例 5【2012,数三】设函数 $f(x) = \begin{cases} \ln \sqrt{x}, x \ge 1 \\ 2x - 1, x < 1 \end{cases}$, y = f(f(x)), 求 $\frac{dy}{dx}\Big|_{x=e} = \underline{\qquad}$

【详解】

【类型三与方法】隐函数

例 6【2007,数二】已知函数 f(u) 具有二阶导数,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定.设 $z=f(\ln y-\sin x)$,求 $\frac{dz}{dx}\bigg|_{x=0}$, $\frac{d^2z}{dx^2}\bigg|_{x=0}$.

【类型四与方法】反函数

例 7【2003,数一、数二】设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数,且 $y' \neq 0$, x = x(y) 是 y = y(x) 的反函数.

- (I) 试将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的微分方程;
- (II) 求变换后的微分方程满足初始条件 y(0) = 0, $y'(0) = \frac{3}{2}$ 的解.

【详解】

微信公众号: djky66

【类型五与方法】参数方程

贝尖考研祝您上岸

例 8【2008,数二】设函数 y = y(x) 由参数方程 $\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$ 确定,其中 x(t) 是初值问题

$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x \Big|_{t=0} = 0 \end{cases} \text{ in } \mathbf{m}, \quad \mathbf{x} \frac{d^2y}{dx^2}.$$

【详解】

【类型六与方法】高阶导数

▲ 重点题型三 导数应用求切线与法线

【类型一与方法】直角坐标 y = f(x) 表示的曲线

例 10【2000,数二】已知 f(x) 是周期为 5 的连续函数,它在 x = 0 的某个领域内满足关系式 $f(1+\sin x) - 3f(1-\sin x) = 8x + \alpha(x)$,其中 $\alpha(x)$ 是当 $x \to 0$ 时比 x 高阶的无穷小,且 f(x) 在 x = 1 处可导,求曲线 y = f(x) 在点 (6, f(6)) 处的切线方程.

【详解】

【类型二与方法】参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
表示的曲线

例 11 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2-t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为_____.

【类型三与方法】极坐标 $r = r(\theta)$ 表示的曲线

例 12【1997,数一】对数螺线 $r = e^{\theta}$ 在点 $\left(e^{\frac{\pi}{2}}, \frac{\pi}{2}\right)$ 处切线的直角坐标方程为______.

【详解】

▲ 重点题型四 导数应用求渐近线

【方法】

例 13【2014,数一、数二、数三】下列曲线中有渐近线的是

(A)
$$y = x + \sin x$$

(B)
$$y = x^2 + \sin x$$

(C)
$$y = x + \sin \frac{1}{x}$$

(D)
$$y = x^2 + \sin \frac{1}{x}$$

【详解】

例 14【2007,数一、数二、数三】曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为

(A) 0

(B) 1

(C) 2

(D) 3

▲ 重点题型五 导数应用求曲率

【方法】(数一、数二掌握,数三大纲不要求)

例 15【2014,数二】曲线 $\begin{cases} x = t^2 + 7 \\ y = t^2 + 4t + 1 \end{cases}$ 上对应于 t = 1 的点处的曲率半径是

- (A) $\frac{\sqrt{10}}{50}$ (B) $\frac{\sqrt{10}}{100}$ (C) $10\sqrt{10}$ (D) $5\sqrt{10}$

【详解】

▲ 重点题型六 导数经济应用

量, p 为价格, MC 为边际成本, η 为需求弹性 ($\eta > 0$).

例 16【2015,数三】为了实现利润最大化,厂商需要对某商品确定其定价模型.设Q为该商品的需求

- (I) 证明定价模型为 $p = \frac{MC}{1-\frac{1}{1}}$;
- (II) 若该商品的成本函数为 $C(Q)=1600+Q^2$, 需求函数为Q=40-p, 试由(I)中的定价模型 确定此商品的价格.

▲ 重点题型七 导数应用求极值与最值

【方法】

例 17【2000,数二】设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$,且 f'(0) = 0,则

- (A) f(0) 是 f(x) 的极大值
- (B) f(0)是 f(x)的极小值
- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) f(0) 不是 f(x) 的极值,点(0,f(0)) 也不是曲线 y = f(x) 的拐点

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例 18【2010,数一、数二】求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值.

【详解】

例 19【2014,数二】已知函数 y = y(x)满足微分方程 $x^2 + y^2y' = 1 - y'$,且 y(2) = 0,求 y(x)的极大值与极小值.

▲ 重点题型八 导数应用求凹凸性与拐点

【方法】

例 20【2011,数一】曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是

- (A) (1, 0)
- (B) (2, 0)
- (C)(3, 0)
- (D) (4, 0)

【详解】

例 21【2017,数一、数三】设函数 f(x) 可导,且 f(x)f'(x) > 0,则

- (A) f(1) > f(-1)
- (B) f(1) < f(-1)
- (C) |f(1)| > |f(-1)| (D) |f(1)| < |f(-1)|

【详解】

例 22【2015,数二】已知函数 f(x) 在区间 $[a,+\infty]$ 上具有二阶导数,f(a)=0,f'(x)>0,f''(x)>0. 设 b > a, 曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$, 证明 $a < x_0 < b$.

【详解】

▲ 重点题型十 导数应用求方程的根

【方法】

例 23【2003,数二】讨论曲线 $y = 4 \ln x + k$ 与 $y = 4 x + \ln^4 x$ 的交点个数.

例 24【2015,数二】已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数. 【详解】

▲ 重点题型十一 微分中值定理证明题

【类型一与方法】证明含有 ξ 一个点的等式

例 25【2013,数一、数二】设奇函数 f(x) 在[-1,1]上具有二阶导数,且 f(1) = 1.证明:

- (I) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
- (II) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.

【详解】

例 26 设函数 f(x) 在 $\begin{bmatrix} 0,1 \end{bmatrix}$ 上连续,在(0,1) 内可导,f(1)=0,证明:存在 $\xi \in (0,1)$,使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$.

【类型二与方法】证明含有 ξ,η 两个点的等式

例 27 设 f(x) 在[0,1]上连续,在(0,1) 内可导,且 f(0) = 0 , f(1) = 1.证明:

- (I) 存在两个不同的点 $\xi_1,\xi_2\in(0,1)$, 使得 $f'(\xi_1)+f'(\xi_2)=2$;
- (II) 存在 $\xi, \eta \in (0,1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$.

【详解】

微信公众号:djky66

【类型三与方法】证明含有高阶导数的等式或不等式

例 28【2019,数二】已知函数 f(x) 在 $\begin{bmatrix} 0,1 \end{bmatrix}$ 上具有 2 阶导数,且 f(0)=0 , f(1)=1 , $\int_0^1 f(x) dx = 1$. 证明:

- (I) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
- (II) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

第三章 一元函数积分学

▲ 重点题型一 定积分的概念

例 1【2007,数一、数二、数三】如图,连续函数 y = f(x) 在区间 [-3,-2], [2,3]上的图形分别是 直径为 1 的上、下半圆周,在区间 $\left[-2,0\right]$, $\left[0,2\right]$ 的图形分别是直径为 2 的下、上半圆周.

设 $F(x) = \int_0^x f(t)dt$,则下列结论正确的是

(A) $F(3) = -\frac{3}{4}F(-2)$ (B) $F(3) = \frac{5}{4}F(2)$ (C) $F(-3) = \frac{3}{4}F(2)$ (D) $F(-3) = -\frac{5}{4}F(-2)$

(A)
$$F(3) = -\frac{3}{4}F(-2)$$

(B)
$$F(3) = \frac{5}{4}F(2)$$

(C)
$$F(-3) = \frac{3}{4}F(2)$$

(D)
$$F(-3) = -\frac{5}{4}F(-2)$$

【详解】

例 2【2009,数三】使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是

(B)
$$\left(1, \frac{\pi}{2}\right)$$

(B)
$$\left(1, \frac{\pi}{2}\right)$$
 (C) $\left(\frac{\pi}{2}, \pi\right)$ (D) $(\pi, +\infty)$

(D)
$$(\pi, +\infty)$$

例3【2003,数二】设 $I_1=\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}dx$, $I_2=\int_0^{\frac{\pi}{4}}\frac{x}{\tan x}dx$,则

(A) $I_1 > I_2 > 1$

(B) $1 > I_1 > I_2$

(C) $I_2 > I_1 > 1$

(D) $1 > I_2 > I_1$

【详解】

▲ 重点题型二 不定积分的计算

【方法】

微信公众号: djky66

例 4 计算下列积分: (1) $\int \frac{x^2+1}{x^4+1} dx$; (2) $\int \frac{x^2-1}{x^4+1} dx$.

【详解】

例 5【2009,数二、数三】计算不定积分
$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx(x>0)$$
.

例 6 求
$$\int \frac{1}{1+\sin x+\cos x} dx$$
.

【详解】

♣ 重点题型三 定积分的计算

【与方法】

例7【2013, 数一】计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$.

微層公众号: djky66 (顶尖考研祝您上岸)

例 8 求下列积分(1)
$$\int_0^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx$$
;(2) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$.

【详解】

例 9 求
$$\int_0^{\frac{\pi}{4}} \ln(1+\tan x) dx$$
.

▲ 重点题型四 反常积分的计算

【方法】

例 10【1998,数二】计算积分
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{dx}{\sqrt{|x-x^2|}}$$
.

【详解】

▲ 重点题型五 反常积分敛散性的判定

【方法】

例 11【2016,数一】若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛,则

(A) $a < 1 \perp b > 1$

- (B) $a > 1 \perp b > 1$
- (C) $a < 1 \perp a + b > 1$
- (D) $a > 1 \perp a + b > 1$

2023 考研晚千老师高等数学强化讲义

例 12【2010,数一、数二】设m,n均为正整数,则反常积分 $\int_0^1 \frac{\sqrt[n]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

(A) 仅与m的取值有关

(B) 仅与n的取值有关

(C) 与m,n 的取值都有关

(D) 与m,n 的取值都无关

【详解】

▲ 重点题型六 变限积分函数

例 13【2013,数二】设函数 $f(x) = \begin{cases} \sin x, 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$, $F(x) = \int_0^x f(t) dt$, 则

(A) $x = \pi$ 是函数 F(x) 的跳跃间断点

(B) $x = \pi$ 是函数 F(x) 的可去间断点

(C) F(x)在 $x = \pi$ 处连续但不可导

(D) F(x)在 $x = \pi$ 处可导

Y

例 14【2016,数二】已知函数 f(x) 在 $\left[0,\frac{3\pi}{2}\right]$ 上连续,在 $\left(0,\frac{3\pi}{2}\right)$ 内是函数 $\frac{\cos x}{2x-3\pi}$ 的一个原函数,

 $\mathbb{H} f(0) = 0$.

- (I) 求 f(x) 在区间 $\left[0, \frac{3\pi}{2}\right]$ 上的平均值;
- (II) 证明 f(x) 在区间 $\left(0, \frac{3\pi}{2}\right)$ 内存在唯一零点.

【详解】

微信公众号: djky66

■ ■ ■ ■ ■ ■ ■ 重点题型七 定积分应用求面积

【方法】

例 15【2019,数一、数二、数三】求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

▲ 重点题型八 定积分应用求体积

【方法】

例 16【2003,数一】过原点作曲线 $y = \ln x$ 的切线,该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.

- (I) 求D的面积A;
- (II) 求D绕直线x = e旋转一周所得旋转体的体积V.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例 17【2014,数二】 己知函数 f(x,y)满足 $\frac{\partial f}{\partial y} = 2(y+1)$,且 $f(y,y) = (y+1)^2 - (2-y)\ln y$,求

曲线 f(x,y)=0 所围图形绕直线 y=-1 旋转所成旋转体的体积.

▲ 重点题型九 定积分应用求弧长

【方法】(数一、数二掌握,数三大纲不要求)

例 18 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

【详解】

▲ 重点题型十 定积分应用求侧面积

【方法】(数一、数二掌握,数三大纲不要求)

例 19【2016,数二】设*D* 是由曲线 $y = \sqrt{1-x^2} (0 \le x \le 1)$ 与 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} (0 \le t \le \frac{\pi}{2})$ 围成的平面区域,

求D绕x轴旋转一周所得旋转体的体积和表面积.

【详解】

▲ 重点题型十一 定积分物理应用

【方法】(数一、数二掌握,数三大纲不要求)

2023 考研晚千老师高等数学强化讲义

例 20【2020,数二】设边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为 ρ ,则该平板一侧所受的水压力为______.

【详解】

♣ 重点题型十二 证明含有积分的等式或不等式

【方法】

例 21【2000,数二】设函数 $S(x) = \int_0^x \left| \cos t \right| dt$.

(I) 当n为正整数,且 $n\pi \le x < (n+1)\pi$ 时,证明 $2n \le S(x) < 2(n+1)$;

例 22【2014,数二、数三】设函数 f(x), g(x) 在区间 [a,b] 上连续,且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:

(I)
$$0 \le \int_a^x g(t)dt \le x - a, x \in [a,b];$$

(II)
$$\int_a^{a+\int_a^b g(t)dt} f(x)dx \le \int_a^b f(x)g(x)dx.$$

第四章 常微分方程

ዹ 重点题型一 一阶微分方程

【类型一与方法】可分离变量

例 1【1998,数一、数二】已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$,且当 $\Delta x \to 0$ 时, α 是 Δx 的高阶无穷小, $y(0) = \pi$,则 y(1) 等于

- (A) 2π

- (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

【详解】

微信公众号: djky66

例 2【2002,数二】已知函数 f(x) 在 $(0,+\infty)$ 内可导,f(x) > 0 , $\lim_{x \to +\infty} f(x) = 1$,且满足

$$\lim_{h\to 0} \left(\frac{f(x+hx)}{f(x)}\right)^{\frac{1}{h}} = e^{\frac{1}{x}}, \quad \Re f(x).$$

【详解】

【类型二与方法】一阶齐次

例3【1999,数二】求初值问题
$$\begin{cases} (y + \sqrt{x^2 + y^2}) dx - x dy = 0 (x > 0) \\ y \Big|_{x=1} = 0 \end{cases}$$
的解.

【详解】

【类型三与方法】一阶线性

例 4【2010,数二、数三】设 y_1,y_2 是一阶线性非齐次微分方程y'+p(x)y=q(x)的两个特解.若 常数 λ , μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

$$(A) \lambda = \frac{1}{2}, \mu = \frac{1}{2}$$

(B)
$$\lambda = -\frac{1}{2}, \quad \mu = -\frac{1}{2}$$

(C)
$$\lambda = \frac{2}{3}$$
, $\mu = \frac{1}{3}$ (D) $\lambda = \frac{2}{3}$, $\mu = \frac{2}{3}$

(D)
$$\lambda = \frac{2}{3}, \ \mu = \frac{2}{3}$$

顶尖考研祝您上岸)

例 5【2018,数一】已知微分方程 y' + y = f(x),其中 f(x) 是 R 上的连续函数.

- (I) 若 f(x) = x, 求方程的通解;
- (II) 若 f(x) 是周期为T 的函数,证明:方程存在唯一的以T 为周期的解.

【类型四与方法】伯努利方程(数一掌握,数二、数三大纲不要求)

例 6 求解微分方程
$$y' - \frac{4}{x}y = x^2 \sqrt{y}$$
.

【详解】 令
$$z = \sqrt{y}$$
 ,则 $z' - \frac{2}{x}z = \frac{1}{2}x^2$,得
$$z = e^{\int_{x}^{2} dx} \left(\int_{x}^{2} \frac{1}{2} x^2 e^{-\int_{x}^{2} dx} dx + C \right) = x^2 \left(\frac{1}{2} x + C \right)$$

方程的通解为 $\sqrt{y} = \frac{1}{2}x^3 + Cx^2$, 其中C为任意常数.

【类型五与方法】全微分方程(数一掌握,数二、数三大纲不要求)

例 7 求解下列微分方程:

(1)
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0$$
;

(1)
$$(2xe^{y} + 3x^{2} - 1)dx + (x^{2}e^{y} - 2y)dy = 0;$$
(2)
$$\frac{2x}{y^{3}}dx + \frac{y^{2} - 3x^{2}}{y^{4}}dy = 0.$$

【详解】(1) 法一: 设
$$P(x,y) = 2xe^y + 3x^2 - 1$$
, $Q(x,y) = x^2e^y - 2y$, 则 $\frac{\partial P}{\partial y} = 2xe^y = \frac{\partial Q}{\partial x}$, 方程

为全微分方程.

设存在
$$u(x,y)$$
, 使得 $du(x,y) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = P(x,y) dx + Q(x,y) dy$, 得

$$u(x,y) = \int (2xe^{y} + 3x^{2} - 1)dx = x^{2}e^{y} + x^{3} - x + \varphi(y)$$

由
$$\frac{\partial u}{\partial y} = x^2 e^y + \varphi'(y)$$
,得 $\varphi'(y) = -2y$, $\varphi(y) = -y^2$, 方程的通解为

$$x^2 e^y + x^3 - x - y^2 = C.$$

法二:由

$$(2xe^{y} + 3x^{2} - 1)dx + (x^{2}e^{y} - 2y)dy = (2xe^{y}dx + x^{2}e^{y}dy) + (3x^{2} - 1)dx + (-2y)dy$$
$$= d(x^{2}e^{y}) + d(x^{3} - x) + d(-y^{2}) = d(x^{2}e^{y} + x^{3} - x - y^{2}) = 0$$

得
$$x^2 e^y + x^3 - x - y^2 = C$$
.

当 y ≠ 0 时, 方程为全微分方程.

$$u(x,y) = \int_0^x 2x dx + \int_1^y \frac{y^2 - 3x^2}{y^4} dy = x^2 - \frac{1}{y} + 1 + \frac{x^2}{y^3} - x^2 = C$$

方程的通解为 $x^2 - y^2 + y^3 = Cy^3$.

▲ 重点题型二 二阶常系数线性微分方程

【方法】

(A)
$$Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(B)
$$Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(C)
$$Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

(C)
$$Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$
 (D) $Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$

【详解】

例 9【2015,数一】设 $y = \frac{1}{2}e^{2x} + \left(x - \frac{1}{3}\right)e^{x}$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^{x}$ 的

一个特解,则

(A)
$$a = -3$$
, $b = 2$, $c = -1$

(A)
$$a = -3$$
, $b = 2$, $c = -1$ (B) $a = 3$, $b = 2$, $c = -1$

(C)
$$a = -3$$
, $b = 2$, $c = 1$ (D) $a = 3$, $b = 2$, $c = 1$

(D)
$$a=3$$
, $b=2$, $c=1$

例 10【2016,数二】已知 $y_1(x)=e^x$, $y_2(x)=u(x)e^x$ 是二阶微分方程 (2x-1)y''-(2x+1)y'+2y=0 的两个解.若 u(-1)=e, u(0)=-1, 求 u(x), 并写出该微分方程的通解.

【详解】

例 11【2016,数一】设函数 y(x)满足方程 y'' + 2y' + ky = 0,其中 0 < k < 1.

公众号:djky66

- (I) 证明反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;
- (II) $\ddot{x} y(0) = 1, \quad y'(0) = 1, \quad \ddot{x} \int_0^{+\infty} y(x) dx$ 的值.

【详解】

顶尖考研祝您上岸)

▲ 重点题型三 高阶常系数线性齐次微分方程

【方法】

例 12 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$.

▲ 重点题型四 二阶可降阶微分方程

【方法】(数一、数二掌握,数三大纲不要求)

例 13 求微分方程 $y''(x+y'^2) = y'$ 满足初始条件 y(1) = y'(1) = 1 的特解.

【详解】本题不含 y , 令 y'=p , 则 y''=p' , 原方程化简为 $p'(x+p^2)=p$, 转化为反函数

$$\frac{dx}{dp} - \frac{1}{p}x = p, \quad \text{if } x = e^{\int \frac{dp}{p}} \left(\int e^{-\int \frac{dp}{p}} p dp + C \right) = p(p+C).$$

由 p(1) = y'(1) = 1,得 C = 0, 从而 $x = p^2$, 于是 $y' = \sqrt{x}$, 得 $y = \frac{2}{3}x^{\frac{3}{2}} + C_1$.

→ 重点题型五 欧拉方程

【方法】(数一掌握,数二、数三大纲不要求)

例 14 求解微分方程 $x^2y'' + xy' + y = 2\sin \ln x$.

【详解】令
$$x = e^t$$
,原方程转化为 $D(D-1)y + Dy + y = 2\sin t$,即 $\frac{d^2y}{dt^2} + y = 2\sin t$.

特征方程为 $r^2+1=0$,得 $\lambda=\pm i$,齐次方程的通解为 $y=C_1\cos t+C_2\sin t$.

令 $y^* = t(A\cos t + B\sin t)$,代入方程,得 A = -1, B = 0,故 $y^* = -t\cos t$.

因此原方程的通解为 $y = C_1 \cos \ln x + C_2 \sin \ln x - \ln x \cdot \cos \ln x$.

♣ 重点题型六 差分方程

【方法】(数三掌握,数一、数二大纲不要求)

例 15【1997,数三】差分方程 $y_{t+1} - y_t = t \cdot 2^t$ 的通解为______

【详解】齐次方程的通解为 $y_t = C$.

因此原方程的通解为 $y_t = C + (t-2)2^t$.

例 16【2018,数三】差分方程 $\Delta^2 y_x - y_x = 5$ 的通解为______.

【详解】

$$\Delta^2 y_x = \Delta(\Delta y_x) = \Delta(y_{x+1} - y_x) = y_{x+2} - y_{x+1} - (y_{x+1} - y_x) = y_{x+2} - 2y_{x+1} + y_x$$

原方程化简为 $y_{x+2}-2y_{x+1}=5$,转化为 $y_{x+1}-2y_x=5$.齐次方程的通解为 $y_x=C2^x$.

令 $y_x^* = A$,代入方程,得 A = -5,故 $y_x^* = -5$.因此原方程的通解为 $y_x = C2^x - 5$.

▲ 重点题型七 变量代换求解二阶变系数线性微分方程

例 17【2005,数二】用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1-x^2)y'' - xy' + y = 0$,并求其满足 $y|_{x=0}=1$, $y'|_{x=0}=2$ 的特解.

2023 考研晚千老师高等数学强化讲义

▲ 重点题型八 微分方程综合题

【类型一】综合导数应用

例 18【2001,数二】设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点 $\left(\frac{1}{2},0\right)$,求曲线L的方程.

【详解】

【类型二】综合定积分应用

例 19【2009,数三】设曲线 y = f(x),其中 f(x) 是可导函数,且 f(x) > 0.已知曲线 y = f(x) 与直线 y = 0,x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的立体体积值是该曲边梯形面积值的 πt 倍,求该曲线的方程.

【详解】

【类型三】综合变限积分

例 20【2016,数三】设函数 f(x) 连续,且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$,求 f(x). 【详解】

【类型四】综合多元复合函数

例 21【2014,数一、数二、数三】设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式.

【详解】

【类型五】综合重积分

例 22【2011,数三】设函数 f(x) 在区间[0,1]上具有连续导数,f(0)=1,且满足

$$\iint\limits_{D_t} f'(x+y)dxdy = \iint\limits_{D_t} f(t)dxdy$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t \} (0 < t \le 1)$, 求 f(x) 的表达式.

第五章 多元函数微分学

▲ 重点题型一 多元函数的概念

【方法】

例1求下列重极限:

(1)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^{\alpha}y^{\beta}}{x^2+y^2} \ (\alpha \ge 0, \beta \ge 0);$$

(2)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{xy(x^2-y^2)}{x^2+y^2}$$
;

(3)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}.$$

微嚼公众号:djky66 (顶尖考研祝您上岸)

例 2【2012,数一】如果函数 f(x,y) 在点(0,0) 处连续,那么下列命题正确的是

(A) 若极限
$$\lim_{x\to 0\atop y\to 0} \frac{f(x,y)}{|x|+|y|}$$
 存在,则 $f(x,y)$ 在点 $(0,0)$ 处可微

(B) 若极限
$$\lim_{\substack{x\to 0\\ y\to 0}} \frac{f(x,y)}{x^2+y^2}$$
 存在,则 $f(x,y)$ 在点 $(0,0)$ 处可微

(C) 若
$$f(x,y)$$
在点 $(0,0)$ 处可微,则极限 $\lim_{x\to 0 \ y\to 0} \frac{f(x,y)}{|x|+|y|}$ 存在

(D) 若
$$f(x,y)$$
 在点 $(0,0)$ 处可微,则极限 $\lim_{x\to 0\atop x\to 0} \frac{f(x,y)}{x^2+v^2}$ 存在

例 3【2012, 数三】设连续函数
$$z = f(x,y)$$
 满足 $\lim_{\substack{x \to 0 \ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$,则 $dz \Big|_{(0,1)} = \underline{\qquad}$

【详解】

▲ 重点题型二 多元复合函数求偏导数与全微分

【方法】

例 4【2021,数一、数二、数三】设函数 f(x,y) 可微,且 $f(x+1,e^x)=x(x+1)^2$, $f(x,x^2)=2x^2\ln x$,则 df(1,1)=

(A)
$$dx + dy$$
 (B) $dx - dy$ (C) dy (D) $-dy$

【详解】

顶尖考研祝您上岸)

例 5【2011,数一、数二】设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{\substack{x=1\\y=1}}^{x=1}$.

【详解】

▲ 重点题型三 多元隐函数求偏导数与全微分

【方法】

2023 考研晚千老师高等数学额化讲义

例 6【2005,数一】设有三元方程 $xy-z\ln y+e^{xz}=1$,根据隐函数存在定理,存在点 (0,1,1) 的一个 邻域,在此邻域内该方程

- (A) 只能确定一个具有连续偏导数的隐函数 z = z(x, y)
- (B) 可确定两个具有连续偏导数的隐函数 x = x(y, z) 和 z = z(x, y)
- (C) 可确定两个具有连续偏导数的隐函数 y = y(x, z) 和 z = z(x, y)
- (D) 可确定两个具有连续偏导数的隐函数 x = x(y, z) 和 y = y(x, z)

【详解】

例 7【1999,数一】设 y=y(x), z=z(x) 是由方程 z=xf(x+y) 和 F(x,y,z)=0 所确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 $\frac{dz}{dx}$.

微學公众量:djky66 (顶尖考研况您上岸)

▲ 重点题型四 变量代换化简偏微分方程

【方法】

例 8【2010,数二】设函数u = f(x,y)具有二阶连续偏导数,且满足等式 $4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$.

确定 a,b 的值,使等式在变换 $\xi = x + ay$, $\eta = x + by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$.

♣ 重点题型五 求无条件极值

【方法】

例9【2003,数一】已知函数 f(x,y) 在点(0,0)的某个邻域内连续,且 $\lim_{\substack{x\to 0\\y\to 0}}\frac{f(x,y)-xy}{(x^2+y^2)^2}=1$,则

- (A) 点(0,0) 不是 f(x,y) 的极值点
- (B) 点(0,0) 是 f(x,y) 的极大值点
- (C) 点(0,0) 是 f(x,y) 的极小值点
- (D) 根据所给条件无法判别点(0,0) 是否为f(x,y) 的极值点

微量公众号:djky66 (顶尖考研况您上岸)

例 10【2004,数一】设z = z(x,y)是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数,求z = z(x,y)的极值点和极值.

ዹ 重点题型六 求条件极值(边界最值)

【方法】

例 11【2006,数一、数二、数三】设 f(x,y)与 $\varphi(x,y)$ 均为可微函数,且 $\varphi_y'(x,y) \neq 0$.已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点,下列选项正确的是

- (A) 若 $f'_{x}(x_{0}, y_{0}) = 0$, 则 $f'_{y}(x_{0}, y_{0}) = 0$
- (B) 若 $f'_{x}(x_{0}, y_{0}) = 0$, 则 $f'_{y}(x_{0}, y_{0}) \neq 0$
- (C) 若 $f'_x(x_0, y_0) \neq 0$, 则 $f'_v(x_0, y_0) = 0$
- (D) 若 $f'_x(x_0, y_0) \neq 0$, 则 $f'_v(x_0, y_0) \neq 0$

【详解】

微信公众号:djky66 (顶尖考研祝您上岸)

例 12【2013,数二】求曲线 $x^3 - xy + y^3 = 1(x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离. 【详解】

♣ 重点题型七 求闭区域最值

【方法】

例 13【2014,数二】设函数u(x,y)在有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满

足
$$\frac{\partial^2 u}{\partial x \partial y} \neq 0$$
 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$,则

- (A) u(x,y) 的最大值和最小值都在D的边界上取得
- (B) u(x, y) 的最大值和最小值都在D的内部取得
- (C) u(x,y) 的最大值在D的内部取得,最小值在D的边界上取得
- (D) u(x,y) 的最小值在 D 的内部取得,最大值在 D 的边界上取得

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例 14【2005,数二】已知函数 z = f(x, y) 的全微分 dz = 2xdx - 2ydy,且 f(1,1) = 2,求 f(x, y) 在

椭圆域
$$D = \left\{ (x, y) \mid x^2 + \frac{y^2}{4} \le 1 \right\}$$
 上的最大值和最小值.

第六章 二重积分

▲ 重点题型一 二重积分的概念

例 1【2010,数一、数二】 $\lim_{n\to\infty}\sum_{i=1}^n\sum_{j=1}^n\frac{n}{(n+i)(n^2+j^2)}=$

(A)
$$\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy$$

(B)
$$\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$$

(C)
$$\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy$$

(D)
$$\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$

【详解】

微信公众号: djky66

例 2【2016,数三】设 $J_i = \iint_D \sqrt[3]{x-y} dx dy (i=1,2,3)$,其中 $D_1 = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$,

$$D_2 = \left\{ (x,y) \mid 0 \le x \le 1, 0 \le y \le \sqrt{x} \right\}, \quad D_3 = \left\{ (x,y) \mid 0 \le x \le 1, x^2 \le y \le 1 \right\}, \quad \emptyset$$

- (A) $J_1 < J_2 < J_3$
- (B) $J_3 < J_1 < J_2$
- (C) $J_2 < J_3 < J_1$
- (D) $J_2 < J_1 < J_3$

【详解】

▲ 重点题型二 交换积分次序

【方法】

例 3【2001,数一】交换二次积分的积分次序: $\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$ ______.

【详解】

例 4【2014,数三】二次积分
$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2}\right) dx = _____.$$

【详解】

例 5 交换
$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$$
 的积分次序______.

微學公众号:djky66 (顶尖考研况悠上岸)

▲ 重点题型三 二重积分的计算

【方法】

例 6【2011,数一、数二】已知函数
$$f(x,y)$$
 具有二阶连续偏导数,且 $f(1,y)=0$, $f(x,1)=0$,
$$\iint_D f(x,y) dx dy = a$$
,其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$, 计算二重积分 $I = \iint_D xy f''_{xy}(x,y) dx dy$.

例 7 计算 $\iint_D \sqrt{|y-x^2|} dxdy$, 其中 $D = \{(x,y) \mid -1 \le x \le 1, 0 \le y \le 2\}$.

【详解】

例8【2018,数二】设平面区域D由曲线 $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases} (0 \le t \le 2\pi)$ 与x轴围成,计算二重积分 $\iint_D (x+2y) dx dy.$

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例9【2007,数二、数三】设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) ||x| + |y| \le 2\}$.

2023 考研晚千老师高等数学强化讲义

例 10【2014,数二、数三】设平面区域 $D = \{(x,y) | 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$,计算

$$\iint_{D} \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy.$$

【详解】

例 11【2019,数二】已知平面区域 $D = \{(x,y) | |x| \le y, (x^2 + y^2)^3 \le y^4 \}$,计算二重积 $\iint_D \frac{x+y}{\sqrt{x^2 + y^2}} dx dy$.

【详解】

例 12【2010,数二】计算二重积分 $I=\iint_D r^2\sin\theta\sqrt{1-r^2\cos2\theta}drd\theta$,其中 $D=\left\{(r,\theta)\middle|0\le r\le \sec\theta,0\le\theta\le\frac{\pi}{4}\right\}$.

例 13【2009,数二、数三】计算二重积分 $\iint\limits_{D}(x-y)dxdy$,其中

 $D = \{(x, y) \mid (x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$

第七章 无穷级数

▲ 重点题型一 数项级数敛散性的判定

【类型一与方法】正项级数

例1【2015,数三】下列级数中发散的是

(A)
$$\sum_{n=0}^{\infty} \frac{n}{3^n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n} \right)$$

(C)
$$\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}$$
 (D) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

(D)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

【详解】

例 2【2017,数三】若级数 $\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$ 收敛,则 k = 1

- (A) 1
- (B) 2 (C) -1

【详解】

【类型二与方法】交错级数

例3判定下列级数的剑散性

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$
 (2)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

【详解】

【类型三与方法】任意项级数

例 4【2002,数一】设 $u_n \neq 0 (n=1,2,3,\cdots)$,且 $\lim_{n\to\infty}\frac{n}{u_n}=1$,则级数 $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{u_n}+\frac{1}{u_{n+1}}\right)$

- (A) 发散
 (B) 绝对收敛

 (C) 条件收敛
 (D) 敛散性根据所给条件不能判定

【详解】【】

例 5【2019,数三】若 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛,则

(A)
$$\sum_{n=1}^{\infty} u_n v_n$$
 条件收敛

(B)
$$\sum_{n=1}^{\infty} u_n v_n$$
 绝对收敛

(C)
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
收敛

(D)
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
 发散

♣ 重点题型二 幂级数求收敛半径与收敛域

【方法】

例 6【2015,数一】若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} na_n (x-1)^n$ 的

- (A) 收敛点, 收敛点
- (B) 收敛点,发散点
- (C) 发散点, 收敛点
- (D) 发散点,发散点

【详解】

例 7 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n+1}}{3^n (2n+1)}$$
 的收敛域.

【详解】

(顶尖考研祝您上岸)

▲ 重点题型三 幂级数求和

【方法】

例8【2005,数一】求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$$
 的收敛区间与和函数 $f(x)$.

【详解】

例 9【2012,数一】求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例 10【2004,数三】设级数

$$\frac{x^4}{2 \cdot 4} + \frac{x^6}{2 \cdot 4 \cdot 6} + \frac{x^8}{2 \cdot 4 \cdot 6 \cdot 8} + \cdots \quad (-\infty < x < +\infty)$$

的和函数为S(x).求:

- (I) S(x) 所满足的一阶微分方程;
- (II) S(x) 的表达式.

♣ 重点题型四 幂级数展开

【方法】

例 11【2007,数三】将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数,并指出其收敛区间.

【详解】

例 12 将函数 $f(x) = \ln \frac{x}{x+1}$ 在 x = 1 处展开成幂级数.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

▲ 重点题型五 无穷级数证明题

例 13【2016,数一】已知函数 f(x) 可导,且 f(0)=1, $0 < f'(x) < \frac{1}{2}$. 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n=1,2,\cdots)$.证明:

- (I) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
- (II) $\lim_{n\to\infty} x_n$ 存在,且 $0 < \lim_{n\to\infty} x_n < 2$.

例 14【2014,数一】设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n - a_n = \cos b_n$,且级

数 $\sum_{n=1}^{\infty} b_n$ 收敛.

- (I) 证明 $\lim_{n\to\infty} a_n = 0$;
- (II) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

【详解】

微信公众号: djky66

(顶尖考研祝您上岸)

▲ 重点题型六 傅里叶级数

【方法】(数一掌握,数三大纲不要求)

(1) 设 f(x) 在 [-l,l] 可积,则傅里叶系数为

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx (n = 0, 1, 2, \dots), \quad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx (n = 1, 2, \dots)$$

f(x) 的傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$$

(2) 狄利克雷收敛定理

设 f(x) 在[-l,l]上满足条件:

①除有限个第一类间断点外都连续; ②只有有限个极值点

则 f(x) 的傅里叶级数的收敛域为 $(-\infty, +\infty)$, 其和函数 S(x) 是以 2l 为周期的周期函数,在 [-l, l] 的表达式为

2023 考研晚千老师高等数学程化讲义

$$S(x) = \begin{cases} f(x), & x \neq f(x) \text{的连续点} \\ \frac{f(x-0) + f(x+0)}{2}, & x \neq f(x) \text{的第一类间断点} \\ \frac{f(-l+0) + f(l-0)}{2}, & x = \pm l \end{cases}$$

例 15 设 $f(x) = \begin{cases} e^x, -\pi \le x < 0 \\ 1, \ 0 \le x < \pi \end{cases}$,则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于______,在

 $x = 2\pi$ 收敛于_____

【详解】

由狄利克雷收敛定理知 f(x) 以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

 $S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$ 例 16 将 $f(x) = 1 - x^2, 0 \le x \le \pi$,展开成余弦级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

对 $f(x)=1-x^2$ 进行偶延拓,由 $f(x)=1-x^2$ 为偶函数,知 $b_n=0$.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2 \left(1 - \frac{\pi^2}{3} \right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4 \cdot (-1)^{n+1}}{n^2} (n = 1, 2, \dots)$$

$$f(x) = 1 - x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4 \cdot (-1)^{n+1}}{n^2} \cos nx$$

令
$$x = 0$$
, 代入上式, 得 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$.

第八章 多元函数积分学

▲ 重点题型一 三重积分的计算

【方法】

例 1【2013,数一】设直线L过A(1,0,0),B(0,1,1)两点,将L绕z 轴旋转一周得到曲面 Σ , Σ 与平面 z = 0 ,z = 2 所围成的立体为 Ω .

- (I) 求曲面 Σ 的方程;
- (II) 求Ω的形心坐标.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

例 2【2019,数一】设 Ω 是由锥面在 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面z = 0围成的锥体,求 Ω 的形心坐标.

▲ 重点题型二 第一类曲线积分的计算

【方法】

例 3【2018,数一】设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_L xyds =$ ______.

【详解】

例 4 设连续函数 f(x,y) 满足 $f(x,y)=(x+3y)^2+\int_L f(x,y)ds$,其中 L 为曲线 $y=\sqrt{1-x^2}$,求曲线 积分 $\int_L f(x,y)ds$.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

▲ 重点题型三 第二类曲线积分的计算

【类型一与方法】平面第二类曲线积分

例 5【2021,数一】设 $D \subset R^2$ 是有界单连通闭区域, $I(D) = \iint_D (4-x^2-y^2) dx dy$ 取得最大值的积分域记为 D_1 .

(I) 求 $I(D_1)$ 的值;

(II) 计算
$$\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$$
, 其中 ∂D_1 是 D_1 的正向边界.

【类型二与方法】空间第二类曲线积分

例 6【2011,数一】设L是柱面 $x^2+y^2=1$ 与平面 z=x+y 的交线,从z 轴正向往 z 轴负向看去为逆时针方向,则曲线积分 $\oint_L xzdx+xdy+\frac{y^2}{2}dz=$ ______.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

▲ 重点题型四 第一类曲面积分的计算

【方法】

例 7【2010,数一】设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点.若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C ,并计算曲面积分 $I = \iint_{\Sigma} \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} dS$,其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

▲ 重点题型五 第二类曲面积分的计算

【方法】

例8【2009,数一】计算曲面积分
$$I=\bigoplus_{\Sigma}\frac{xdydz+ydzdx+zdxdy}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}$$
,其中 Σ 是曲面 $2x^2+2y^2+z^2=4$

的外侧.

【详解】

例 9 计算
$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}$$
 其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于零的常数.

例 10【2020,数一】设∑为曲面
$$z = \sqrt{x^2 + y^2}$$
 (1 ≤ $x^2 + y^2$ ≤ 4) 的下侧, $f(x)$ 为连续函数,计算
$$I = \iint_{\Sigma} \left[xf(xy) + 2x - y \right] dydz + \left[yf(xy) + 2y + x \right] dzdx + \left[zf(xy) + z \right] dxdy$$