Name: Jerry Jiang

1. The roots of the equation $x^2 + px + q = 0$ are 5 and -2. Find the values of p and q.

$$(X-2)(X+5)=0$$

2. For what values of k does the equation $2x^2 + 5x + k = 0$ have two distinct real roots?

3. If z = a + bi, find $\operatorname{Re}\left(\frac{z}{z^*}\right)$.

$$= \frac{a+bi}{a-bi}$$

$$= \frac{(a+bi)(a+bi)}{(a-bi)(a+bi)}$$

$$= \frac{a^2-b^2+2abi}{a^2+b^2}$$

$$= \frac{a^2-b^2}{a^2+b^2} + \frac{2ab}{a^2+b^2}$$

$$= \frac{a^2-b^2}{a^2+b^2} + \frac{2ab}{a^2+b^2}$$

$$= \frac{a^2-b^2}{a^2+b^2} + \frac{2ab}{a^2+b^2}$$

4. Solve
$$2 \log_7 x - \log_x 7 = 1$$
.

let
$$\log_7 x = a$$

$$2a - \frac{1}{a} = 1$$

$$2a^2 - 1 - a = 0$$

$$2a^2 - a - 1 = 0$$

$$0 = \frac{1}{2}$$

5. A committee of 4 students is to be chosen from 5 boys and 4 girls. In how many ways can this be done if at least two girls must be chosen?

The complement of the requirement is 0 or 1 girl is chosen.

$$\frac{4 \cdot 5C_3}{1 \text{ firl chosen}} + \frac{5C_4}{0 \text{ firl chosen}} = 4 \cdot 10 + 5 = 45$$

The universal set is to chose 4 people randomly out of 5+4=9 people. $9C_5 = \frac{9 \times 8 \times 7 \times 5 \times 5}{5 \times 9 \times 5 \times 5 \times 5} = 126$

6. Without the calculator solve for the square roots of 3-4i.

$$\begin{cases} a^{2}-b^{2}=3\\ 2ab=-4\\ 2ab=2\\ ab=2 \end{cases}$$

$$\begin{cases} a^{2}-b^{2}=3\\ ab=-2 \end{cases}$$

$$\angle$$
, $b = -\frac{x}{a}$

$$\frac{1}{2} = \alpha^2 - \left(-\frac{2}{\alpha}\right)^2 = 3$$

:.
$$a^{1}=4$$
, $a=\pm 2$.
:. $b=-\frac{2}{a}$

i. the square roots required is 2-i or -2+ i.

7. Find all values of a, b and c so that 10, a, b, c, 810 is a geometric sequence.

$$\begin{cases} \frac{810}{10} = r^4 \\ \frac{a}{10} = r \\ \frac{b}{10} = r^2 \\ \frac{c}{10} = r^3 \end{cases}$$

$$\begin{cases} r = \pm 3 \\ a = 10r \\ b = 10r^2 \\ c = 10r^3 \end{cases}$$

$$\begin{cases} A_1 = 30 \quad (A_2 = -30) \end{cases}$$

$$\begin{cases} A_1 = 30 & \begin{cases} A_2 = -30 \\ b_1 = 90 & \begin{cases} b_2 = 90 \\ c_1 = 270 & c_2 = -270 \end{cases} \end{cases}$$

8. The coefficient of x^3 in the expansion of $\left(1+\frac{x}{2}\right)^n$ is 70. Find the coefficient of x^2 .

$$\frac{x^{3}}{3} \cdot \frac{(\frac{x}{2})^{3} \cdot (\frac{n}{3})}{3 \cdot 2 \cdot 1} = 70x^{3}$$

$$= \frac{x^{2}}{4} \cdot \frac{\left(\frac{x}{2}\right)^{2} \cdot \left(\frac{16}{2}\right)}{2 \cdot 1}$$

9. If 2^{2018} is multiplied out, it has n digits. Find the value of n.

we have a.b.d × 103, which can also be nritten in a.b.d × 10

... we find not that logio X function can help write the scientific form of a number, thus lead to the number of digits in that number

10. The roots of $x^2 + cx + d = 0$ are a and b and the roots of $x^2 + ax + b = 0$ are c and d. If a, b, c and d are nonzero, find the value of a + b + c + d.

we can get Vieta's Theorem from the quadratic equation.

Vieta theorem: in $ax^2 + bx + c = o$ (a\pm 0), the root x, & xz have the following relationship with the coefficient:

$$\chi_1 + \chi_2 = -\frac{b}{a}$$
 $\chi_1 \cdot \chi_2 = \frac{c}{a}$.

$$a+b+c+d=-a-c$$

Solutions to HL1 Assignment #7

- 1. The sum of the roots is 3, so p = -3. The product of the roots is -10, so q = -10.
- 2. Here $\Delta = 25 8k$. We want $\Delta > 0$, so k < 25/8.
- 3. Now $\frac{z}{z^*} = \frac{(a+bi)(a+bi)}{a^2+b^2} = \frac{a^2-b^2+2abi}{a^2+b^2}$. So the real part is $\frac{a^2-b^2}{a^2+b^2}$.
- 4. Letting $t = \log_7 x$, gives $2t 1/t = 1 \Leftrightarrow 2t^2 t 1 = 0 \Leftrightarrow t = -0.5$ or t = 1. So $x = 1/\sqrt{7}$ or x = 7.
- 5. This is $\binom{4}{2} \times \binom{5}{2} + \binom{4}{3} \times \binom{5}{1} + \binom{4}{4} \times \binom{5}{0} = 81$.
- 6. Suppose $(a+bi)^2=3-4i$ where $a,b\in\mathbb{R}$. Then $a^2-b^2=3$ and ab=-2. Solving simultaneously gives a=2 and b=-1, or a=-2 and b=1. So the square roots of 3-4i are $\pm(2-i)$.
- 7. Let the ratio be r. Then the sequence is $10, 10r, 10r^2, 10r^3, 810$. We conclude $10r^4 = 810 \Leftrightarrow r = \pm 3$. So $a = \pm 30$, b = 90, $c = \pm 270$. (This solution only considers real values of r but we could also consider r to be complex in which case we would also have $r = \pm 3i$ and the associated values of a, b and c.)
- 8. We are given $\binom{n}{3}(\frac{x}{2})^3 = 70$. Solving we have n = 16. So the x^2 term is $\binom{16}{2}(\frac{x}{2})^2$. Hence the required coefficient is 30.
- 9. We have $2^{2018} = 10^{\log 2^{2018}} = 10^{2018 \log 2} = 10^{607.5}$. So 2^{2018} has 608 digits when multiplied out.
- 10. By the sum of roots formula we have a+b=-c and c+d=-a. So $c+d=b+c \Leftrightarrow b=d$. By the product of the roots formula we have ab=d and cd=b. It follows that a=c=1. So a+b+c+d=-2.