

LAB5: SSN - testowanie właściwości algorytmu wyprzedzającego i rozwiązań dla jedno- i dwu-wymiarowego, stacjonarnego przypadku transferu ciepła w materiałach jednorodnych i niejednorodnych

dr inż. Konrad M. Gruszka,*
5 stycznia 2025

Streszczenie

Bazując na niniejszym dokumencie należy rozszerzyć i przetestować pod różnymi kątami algorytmy wyprzedzające wykorzystujące SSN w oparciu o kryteria przedstawione w dalszej części tego dokumentu. Aby rozwiązać zadania z tego dokumentu, konieczne są skrypty utworzone na wcześniejszych zajęciach obejmujące przypadki stacjonarnego transferu ciepła dla jedno- i dwuwymiarowych dziedzin obliczeniowych.

Zadania projektowe

Zadania do samodzielnego wykonania

Algorytm forward

- 1. Zbadaj wpływ różnych funkcji aktywacji: sigmoid, tanh, linear na dokładność i szybkość uczenia się modelu 1D.
- 2. Zmieniaj liczbę neuronów w każdej warstwie ukrytej i zbadaj, jak to wpływa na dokładność i zbieżność treningu sieci. Zastosuj 5 różnych konfiguracji poczynając od małej ilości neuronów aż do około 1000 na warstwę. Przestestuj zarówno model **1D** jak i **2D** Opisz je odpowiednio w raporcie.
- 3. Eksperymentuj z różną liczbą warstw ukrytych przy stałej ilości neuronów w warstwie, zmieniając ilość warstw w modelu (od 1 do 4) i oceniając wpływ na dokładność ($\mathbf{1D}$).
- 4. Modyfikuj systematycznie szybkość uczenia się i analizuj, jak wpływa to na czas potrzebny do zbieżności oraz na dokładność końcową (2D).
- 5. Przeprowadź walidację krzyżową modelu, aby ocenić jego stabilność i zdolność generalizacji na różnych podziałach danych (1D lub 2D).
- 6. Zmodyfikuj wartość tolerancji zbieżności w wygenerowanych danych dla 0.01 0.05, 0.1, 0.5, 1.0, 5.0 i 10.0 stopni C i trenuj **model wyprzedzający** 1D SSN na tych danych (100 plików dla każdej tolerancji). Oceń jakość predykcji modelu w zależności od użytej tolerancji.
- 7. Użyj biblioteki matplotlib do wygenerowania wykresów przedstawiających jak zmienia się bład SSN w trakcie treningu

^{*}Katedra Informatyki, Wydział Informatyki i Sztucznej Inteligencji (kgruszka@icis.pcz.pl)

Algorytm wsteczny

- 1. **Dobór funkcji aktywacji.** Zbadaj wpływ różnych funkcji aktywacji w warstwach ukrytych na skuteczność SSN w zadaniu odwrotnym. Przetestuj przynajmniej następujące funkcje:
 - ReLU
 - tanh
 - sigmoid
 - LeakyReLU

Oceń modele pod kątem wartości błędu MAE, szybkości zbieżności oraz stabilności uczenia. Testy należy przeprowadzić zarówno dla modelu 1D, jak i jego rozszerzenia do 2D.

- 2. **Wpływ liczby i rozmiaru warstw ukrytych.** Sprawdź, jak liczba warstw ukrytych oraz liczba neuronów w tych warstwach wpływają na jakość wyznaczania warunków brzegowych. Zalecany zakres testów:
 - Liczba warstw: 1–4
 - Liczba neuronów: 64, 128, 256, 512, 1024

Analizuj wyniki dla wersji 1D i 2D, a także czas treningu, overfitting i dokładność odwzorowania. Można bazować na parametrach używanych w modelach wyprzedzających.

- 3. **Wpływ danych treningowych i ich objętości.** Przeanalizuj wpływ liczby przykładów treningowych na jakość działania SSN. W szczególności sprawdź:
 - Jak zachowuje się model przy uczonym zbiorze danych: 50, 100, 200, 500 przypadków
 - Czy istnieje punkt nasycenia (więcej danych nie poprawia wyników)?
 - Jak zmienia się błąd MAE i czas uczenia?

Porównaj również wersję 1D i 2D – które wymagają większego wolumenu danych do podobnej skuteczności?

- 4. **Różna rozdzielczość siatki (liczba węzłów).** Sprawdź, jak zmienia się jakość odtwarzania warunków brzegowych w zależności od liczby węzłów:
 - 1D: N = 20, 50, 100, 200
 - 2D: siatki 10×10 , 20×20 , 30×30

Oceń, jak zmiana rozmiaru wejścia (i wyjścia) wpływa na strukturę sieci i efektywność. Czy zwiększanie liczby węzłów pogarsza, poprawia, a może nie wpływa znacząco na wyniki? Do określenie ilości węzłów siatki w zadaniu 2D podejdź elastycznie.

- 5. **Analiza wpływu wartości warunków brzegowych.** Zbadaj, czy SSN działa lepiej dla pewnych typów warunków brzegowych. Wygeneruj zestawy danych z różnymi przypadkami:
 - Warunki równe: $T_L = T_P$
 - $\bullet\,$ Duża różnica: $T_L=0^{\circ}C,\,T_P=300^{\circ}C$
 - Mała różnica: $T_L = 100^{\circ}C$, $T_P = 105^{\circ}C$

Sprawdź, jak model radzi sobie z tymi przypadkami oraz czy wymaga innej liczby epok/trudniej się uczy.

- 6. **Porównanie jakości modeli 1D i 2D.** Rozszerz model do wersji 2D (siatka rozkładu temperatury) i porównaj jakość działania modelu z wersją 1D.
 - Wersja 1D: wektor temperatury + model wyjściowy $[T_L, T_P]$
 - \bullet Wersja 2D: siatka $N\times N,$ wyjście: $T_{gra},\,T_{d},\,T_{lewo},\,T_{prawo}$

Oceń różnice w złożoności sieci, czasie uczenia i skuteczności.

- 7. Generalizacja do nieznanych warunków. Sprawdź zdolność SSN do uogólnienia trenuj model na danych z zakresu T_L , $T_P \in [0, 200]$ i przetestuj go na danych z zakresu [200, 300].
 - Czy model poprawnie przewiduje warunki spoza zakresu treningowego?
 - Czy SSN wykazuje tendencję do "zgadywania średniej"?

Przygotuj raport końcowy z projektu, który zawiera analizę wszystkich przeprowadzonych eksperymentów, w tym dane (tabele) i wykresy, które ilustrują główne wyniki (ipynb).