Energy-Efficient Computing: Do We Have A Roadmap?

Peter Kogge
McCourtney Prof. of CS, Univ. of Notre Dame
IBM Fellow (retired)
Cray, IEEE Computer Pioneer Awardee

Snapshots From My Undergrad EE Days

Introduction

Computing Has Reached a "Cambrian Explosion"

turing lecture

DOI:10.1145/3282307

Innovations like domain-specific hardware, enhanced security, open instruction sets, and agile chip development will lead the way.

BY JOHN L. HENNESSY AND DAVID A. PATTERSON

A New Golden Age for Computer Architecture

- Cellular Automata
- Map Reduce
- Systolic Arrays
- Petri Nets
- Actor model
- Lambda Calculus
- Combinators
- Logic Computing
- Reversible
- Probabilistic
- Functional

- Data Flow
- Neural Morphic
- Adiabatic
- Analog-Electrical
- Analog-Mechanical
- **G**enetic
- Ising
- DNA
- Fluidics
- Optical
- Quantum

Coupled with growing irregularity, sparsity, transitory nature of computation, what "consumes" power is changing

Evolution of Cells: (A Core as a "Cell")

https://cdn.hswstatic.com/gif/Prokaryotesvseukaryotes.jpg

Eukaryotes/Core:

- **Nucleus**
 - Program store
- **Organelles**
 - Function units
 - Memory hierarchy^{membrane}
- Plasmodesma
 - Basic I/O

https://cdn.britannica.com/85/78585-050-3B7B6E8E/cells-animal-plant-ways-nucleus-difference-organelles.jpg

Thesis: Our parallel systems have only evolved to simple plants, with *no animals yet*.

But we may be close to a Cambrian Explosion Of Architectural Diversity

https://crossexamined.org/wp-content/uploads/2020/05/Blog-2-cover-1.jpg

https://s3.amazonaws.com/s3.timetoast.com/public/uploads/photos/10442248/evolution.jpg

From ARCS 2021 Keynote

What is Energy-Efficient Computing?

- We Can't Mean Just:
 - Lower energy/flop
 - Lower node power
 - Lower energy per computation
- We **Must** Mean:
 - Lower Overall System Energy At Performance Comparable or Better Than What Is Achievable Today
 - At the Same Size Problems, Or Bigger
- Will Require **ATSAA**:
 - <u>Architecture</u>/Technology/<u>Software</u>/<u>Algorithm</u>/Application <u>Codesign</u>

First Observation: Evolution of Challenges

- 2000: DOE Report "Scientific Discovery through Adv. Computing"
 - Beginning of ubiquitous parallelism
 - Challenge: Make full use of terascale
 - Critical issues: performance, portability, adaptability
 - Sim codes 5%-10% of peak and decreases with parallelism

E,g. Computing energy of Iso-octane

- 275M nonlinear equations
- Iterative solution
- 2.5PB between processors
- 15 TB to disk
- 30 PFlops

• 2008 Exascale Study: Eye-opener on energy/power

Topics

- The Road to Exascale: Lessons Learned
- Current Projections to Zettascale
- Deep Dive on The Past
- Technology Advances
- Non-Obvious Research Directions

Review: The Road to Exascale

Includes content from "Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?" by Kogge & Dally, SC 2022

The HPL World in 2008

"First Light" for new TOP500 entries

- Roadrunner: 1+ PF/s
- DARPA (Bill Harrod): Exa by 2015?
- 2008 Exascale Report: Yes, but...

The HPL World in 2022

- 2022: Frontier Cracks 1EF/s
 - 7 years after Report Goal
 - 4 years after extrapolating curve
- Bounding Curve Changed in 2013

Flops/sObvious Questions

- What Is/Was Exascale?
- What Did 2008 Report Predict?
- Comparison to Frontier
- What did Report get Right/Wrong?

The Exascale Study Report Outline

- What should "Exascale" Mean?
- The 2008 state of the art
 - Architectures, Runtimes, Programming, Metrics
- 2008 Application Characteristics
 - Computation vs Memory intensive Apps, Scaling, Concurrency
- Technology Roadmaps
 - Logic: Silicon and Non, Memory, Storage, Interconnect, Packaging, Resiliency, Programming Models

- Strawman Designs
 - Subsystem projections, Evolutionary designs (Heavy and lightweight), Aggressive design
- Challenges & Research Areas
 - Power, power, & powerMemory capacity & bandwidth - Remain

 - Programmability Reliability

Practically Solved

Blue: Addressed here

What Was Exascale?

- Report Emphasis: Try to change focus from flops
- Goal: overall 1000x capability over "Petascale" by 2015
 - In Same Footprint for Supercomputer at max 20MW
 - 1000X in a rack (peta scale)
 - 1000X in a module (tera scale)
- Goal: *not just flops* but 1000x in:
 - Memory
 - Memory Bandwidth
 - Network Bandwidth
 - •
- Plus ability to efficiently use massive concurrency

Technologies Investigated

- Logic: power, area, energy, clock
 - CMOS: hi perf/low voltage
 - Options: hybrid, superconducting
 - Voltage scaling
- Main Memory
 - SRAM, DRAM, NAND, Alternatives
 - Reliability, packaging, power
- Storage Memory
 - Disk, Holographical, Archival

- Interconnect: esp. energy
 - On chip
 - DRAM to Processor (Stacking)
 - Intra/inter module
 - Rack to rack
 - Electrical vs optical
- Packaging and Cooling
- Resiliency & Checkpointing
- Programming Models

2015 Aggressive Strawman Design (2013 Tech)

Node: 742 simple cores/chip with 4 FPUs @ 1.5GHz

- 32nm CMOS with 30Gb/s SERDES
- 16 Memory channels: each 1 GB Stacked DRAM
- 150 Watts w'o routing chip

Group: 12 nodes with 12 64-radix router chips

Includes 16 12GB SATA drives for checkpointing

Cabinet: 32 Groups = 384 nodes

Assumed max power of 120KW

System: 583 Cabinets, 67MW

- 3-hop Dragonfly interconnect (optical)
- 166 million cores with 664 million FPUs

Est. 14.9 GF/W Or 67 pJ/flop

Power/Energy Constrained Memory Bandwidth

Where Did the Energy Go?

2022 Frontier Node

- Heterogeneous Processors
 - 64-core 2GHz CPUs
 - Quad GPUs: closer to Strawman
 - But more FPUs/core
 - And slightly faster
- Chiplet design
- Mixed memory hierarchy
 - 8 DDR4 DRAM Channels
 - 8 HBM2e stacks/GPU
- Quad network ports

Measured 52.2 GF/W ~3.3X Strawman

Frontier vs Strawman

	Road-	2008	
	Runner	Strawman	Frontier
Syste	em Counts		
Nodes/Blade	1	12	2
Blades/Chassis	4	1	8
Chassis/Cabinet	3	32	8
Nodes/Cabinet	12	384	128
Total Nodes	3060	223,872	9,408
Cores/Node	40	742	944
MACs/Node	76	2,968	56,832
Total MACs	232K	665M	535M
Mem	ory Metric	S	
Total Memory (TB)	36	3,498	9,408
Total Memory BW (TB/s)	378	157,605	125,239
Network B	andwidth N	Metrics	
Network ports/node	1	12	4
Total Network ports	3,060	2.7M	37,632
Switch Chips/Cabinet		384	64*
Switch Radix	24	64	64
Total Switch Chips	900	223,872	4,736*
Signal Rates (Gb/s)	4	30	56
Inj. B/W/Node (GB/s)	2	180	100
Bisection B/W (TB/s)	0.192	210	540
* Assuming 8	switch car	ds/chassis	

- Strawman's huge #s of nodes
 - Exploded # of Network ports
 - And thus huge switching costs
- Frontier had fewer, bigger nodes
 - Reduced network ports
- Comparable Memory Bandwidth
 - Use of wide stacked memory
 - But only 3X capacity
- Essentially same N/W topology
 - But 2X better SERDES
 - And 2+X better bisection B/W

Frontier vs Roadrunner: Did We Get 1000X?

	Road-		Growth
	Runner	Frontier	Ratio
GFlops/s/core	8.4	126	15
GFlops/s/chip	56	23,426	419
TFlops/s/node	0.34	117	349
TFlops/s/cabinet	4	14,993	3,726
TFlops/s/sq. ft.	0.17	151	882
Flops/core/cycle	2.74	208	75
Flops/cycle ¹	3.2E5	6.7E8	2,022
Flops/Mem byte	9.9	119	T2.T
Flops/Mem BW byte	2.7	8.8	3.25
Flops/Inj. byte	168	1,171	1_7
GFlops/watt	0.44	52.2	119
Watts/core	19.24	2.4	1/8
Watts/chip	128	449	3.5
Watts/node	766	2,243	2.9
All cores an	nd all chips	included	
¹ Using clock	for major o	compute cor	e.

- Flops/s exceeded 1000X / cabinet
 - But huge cabinets
 - Within 3X for chip & node
- >100X in flops/s per watt
 - And flops/cycle
- Miserable increase in Memory, Memory Bandwidth, N/W Injection Bandwidth

Report Card

What We Got Right

- CMOS, flat clocks
- Large # of wide simple cores
- Aggressive memory hierarchy
- Stacked memory
- Near reticle-limited dies
- Energy of movement predominates
- Near billion-way concurrency
- Memory concerns were valid
- Dragonfly with hi radix switches
- N/W signaling rate would improve

What We Missed

- Exploding Heterogeneous designs
- SIMD width much larger
- Stacked memory: more ports/lower transfer rate
- Machine Learning & short FP
- Massive chips (area and power)
- Reliability not a show-stopper
- New programming models

What about "Zettascale"

Industry Projections: Road to 1 Zettaflops/s

- 2018: China NUDT: 2035 is reasonable
 - Moving from exascale to zettascale computing: challenges and techniques. Frontiers Inf Technol Electronic Eng 19, 1236–1244 (2018). https://doi.org/10.1631/FITEE.1800494
- 2021: Intel: 2027 may be possible
 - Raja's chip notes lay out intel's path to zettascale. https://www.servethehome.com/rajas-chip-notes-lay-out-intels-path-to-zettascale/, 2021
- 2023: AMD: 2035 is reasonable
 - https://www.hpcwire.com/2023/02/21/a-zettascale-computer-today-would-need-21-nuclear-power-plants/
- All assume power budget 50-100MW

NUDT's 2018 Projection for 2035

- Technical Challenges: Manufacturing, Energy, Interconnect, Storage, Reliability, Programming
- Expected changes
 - Architecture: heterogeneous, mixed precision, nearmemory, non-von Neumann
 - Package driven: 3D integration, inter-chip interconnection, density per node to 0.5-0.8 Pflops/s @0.8 Tflops/W
 - Network: electrical to exceed 50Gb/s, optical CWDM to 112Gb/s per channel, on-die photonics
 - Storage: 3D stacks, hybrid multi-layer storage, NVM, Network attached memory
 - New technologies: memrister, quantum
 - Programming: MPI+X, with variety of intra-node threading models, DSLs

Table 1 Zettascale metrics

Metric	Value	
Peak performance	1 Zflops	
Power consumption	100 MW	
Power efficiency	10 Tflops/W	
Peak performance per node	10 Pflops/node	
Bandwidth between nodes	1.6 Tb/s	
I/O bandwidth	10-100 PB/s	
Storage capacity	1 ZB	
Floor space	1000 m^2	

- 100,000 Nodes
- 1000W per node
- Only 1.5X more floor space implies100KW per sq. m of floorspace, or 3.2X more power per rack

Intel 2021: Zettaflops/s by 2027-28

- Goal: same power as ~2Eflops Aurora
- Architecture: 16X "Al Math" + keeping execution units fed from memory
- Power/Thermals: 2X Lower voltages and higher-end cooling (eg liquid cooling but more than rear door heat exchangers
- Data Movement: 3X higher integration, fewer better SERDES
- Process: 5X multi-tile design with advanced packaging that allows technology mix

- Phase 1: 2022-23 Exascale+
 - "Granite Rapids"
- Phase 2: 2024-25 Pre-Zetta
 - "Falcon" = Xeon + Xe
 - "Lightbender" = Silicon photonics
- Phase 3: 2026-28: Zetta
 - Reduce 50MW Exaflop-class to 50KW
 - Requires all changes from left

AMD: Need to Use "AI"

Clear Takeaways

- Focus seems to solely be on flops/s
- Aggregate power the major challenge
 - Power budgets of 100MW imply need 200X in efficiency
- No silver bullet from "traditional" architecture
- Process improvements small (3X?)
- Bulk of improvement riding on packaging, esp. 3D
- Much hope on "AI" i.e. mixed precision
- Memory/networks mentioned but not any real thought

Deep Dive on The Past: An Energy Focus

The Multi-Faceted World of 2020s

- "First Light": 1st appearance
- Color=Benchmark
 - HPL
 - HPCG
 - HPL_MxP
 - BFS
 - SSSP
- Fill
 - Solid: with GPUs
 - Hollow: without

CAGR

• HPL: 1.2

HPCG: 1.13

BFS: Flat

- Seems to have been ~ constant since ~2018
- "System" power/core >> chip power per core
- We need to look at "system"

Today's Node Design – Movement Energy

Technology Advances

A Quick Subset

Lower Operating Voltage – No Free Lunch

- A.k.a in prior decades as Dennard Scaling
- Lower voltage implies *lower energy per operation* (good)
- Implies lower clock rates
- Implies more parallelism needed
- Requires more paths for interconnect
- And more data movement
- And more power spent in data movement (bad)

And What About Memory?

	Petaflops/s	Exaflops/s	Zflops/s
	Roadrunner	Frontier	At same ratio
Capacity (Bytes)	0.036PB	0.009EB	0.0025ZB
Bytes per flops/s	0.032	0.0075	0.0025
Bandwidth (Bytes/s)	0.378PB/s	0.125EB/s	0.04ZB/s
Bandwidth per flops/s	0.344	0.105	0.04
Flops per Byte	3	10	25

- Assume characteristics scale as they did from Peta to Exa
- Relative capacity dropping
 - Can problem size scale with flops?
- Is being able to access a word of memory every 400 flops acceptable?
- With all the deep cache hierarchies how much extra data transfers between memories are there?
 - All of which consume power

At Best Modest Gains in PHY/SERDES Energy

		2008 Projection		Recent	
	Data Movement	Energy	Bandwidth	Energy	Citation
Г 1 1	Chip-chip vertically on Thru Silicon Via	0.01pJ/b			
	Long range on chip	0.018pJ/b/mm			
	Chip-chip copper	2pJ/b	224Gb/s	3pJ/b	ISSCC 2024 Paper 7.3
	Routed Interconnect	2pJ.b + 1pJ/b per switch			
	Optical	1.5pJ/b + 0.1pJ/bit for routing	224Gb/s	1.04pJ/b	ISSCC 2024 Paper 7.2

Stacking: Reduce Die-Die Energy Cost

https://scx2.b-cdn.net/gfx/news/2021/benefits-of-3d-soc-des.jpg

Chiplets

- Chiplet: Breaking large tiled die into multiple smaller die
 - And place on substrate not PC
 - With lower energy per bit transferred
- Reason: Increase yield => Lower cost
 - Also promote "mix & match"
- Side-effect: Increased off-die contacts
 - Each will consume energy

ISSCC 2024 – New Architectures Sessions & Forums

- 15: Embedded Memories & Ising Computing
- 17: Emerging Sensing and Computing Technologies
- 20: Machine Learning Accelerators
- 29: ICs for Quantum Technologies
- 30: Domain-Specific Computing and Digital Accelerators
- 34: Compute-In-Memory
- F1: Efficient Chiplets and Die-to-Die Communications
- F2: Energy-Efficient Al-Computing Systems for Large-Language Models
- F3: Digitally Enhanced Analog Circuits

Examples of Novel In-Memory Accelerators

SRAM ISING In-memory Optimizer (ISSCC 2024 15.5)

Supply Voltag

Power Density

Network Density

Ch	ip Specifications
Technology	TSMC 28nm HPC
Supply voltage	0.9V
Package	FCBGA
Die size	2.2 mm × 3.3 mm
Cry	ptography Core
Core area	3.2 mm ²
SRAM	228.5KB
Logic gates	2.1M (NAND2 equiv.)
Hash function	SHA3-256/384/512
PRNG	CHACHA20/AES/SHAKE
Crypto-fields	Zq/Binary/Complex
Power	91~420 mW@0.9V

Post Quantum Crypto-processor (ISSCC 2024 16.2)

74TF/s BF16 Compute-In-Memory for Diffusion Models (ISSCC 2024 20.2)

Technology	28nm CMOS
Chip Area	3.80mm ²
SRAM Size	513KB
# of PE	144
Bit Precision	INT8, 16, 32
Max Freq.	500MHz
Supply Voltage	0.55~0.9V
PINN Power	147mW@0.9V
FEM Power	98mW@0.9V
Peak Perform. (GOPS)	336 (0.9V, 16b)
PINN Efficiency (TOPS/W)	1.14 (0.9V, 16b)
FEM Efficiency (TOPS/W)	1.01 (0.9V, 16b)

Compute-In-Memory PINN (ISSCC 2024 20.4)

Compute-In-Memory Spiking Neural Net (ISSCC 2024 30.2)

Compute-In-Memory SAT Solver (ISSCC 2024 30.3)

In-Memory Annealing Processor (ISSCC 2024 30.4)

Technology	
Die	4.56
Core	2.41
Gate Count	
On-chip SRAM (KB)	
Operating Voltage (V)	
Max. Frequency (MHz)	
Power (mW)	
Energy Efficiency (Task*/J)	
Area Efficiency (Task*/ mm ² ·s)	
	Die Core Count RAM (KB) /oltage (V) ency (MHz) (mW) fficiency */J)

*Task: one 101-station path planning problem

Chip Summary 22nm CMOS logic process. (Ultra low leakage) Foundry provided 1T1R ReRAM 16Mb (16 sub-banks) ReRAM-CIM Canacit FP16 / BF16 FP16 / BF16 FP32 Output precision Macro area (Inc. test mode) 8.2mm² 0.7 - 0.8V Throughputs (TFLOPS) 0.104 (BF16) 0.095 (FP16 31.27 - 65.52 28 71 - 60 43 Inference Accuracy (CIFAR-100)* 69.48% (Top-1), 91.59% (Top-5) sured (BVDD=0.8V, bit width of input and weight pre-align mantissa = 12bits, and 50% input sparsit Measured @VDD=0.7V, bit width of input and weight pre-align mantissa = 12bits, and 90% input sparsity

Compute-in-Memory with 31.2TFLOPS/W(ISSCC 2024 34.8)

Spiking Neural Net Accelerators

Renesas 8.8TOPS/W

Cluster 0 Cluster 1

Logic
PIM WANG

BrainScale S-2 Chip

Cerebras Trillion Transistor Chip

My Suggested Research Directions

My Thoughts

- Need to consider more than HPL
- Solution has to be heterogeneous & hybrid
 - Integration of "AI" beyond just mixed precision
 - Need to seriously reconsider "Probabilistic" algorithms
- More specialized computation will move:
 - Closer to CPUs on die/module
 - Further from CPUs into memory and network
- Levels of parallelism will seriously explode
 - Places more stress on networking
 - We cannot afford deep S/W stacks to start computations "over there"
- Memory system given short shrift

Three Major Research Components

Promote "Benchmarking for Understanding"

Architect to reduce inefficiencies due to "border crossings"

Develop flexible "hybrid" algorithmic techniques

#1: Benchmarking for Understanding

Reasons for Benchmarking

Today • Competitive benchmarking: "my system is better than yours"

Internal Technical benchmarking: "I get best performance with parameters xyz"

Benchmarking "Crimes"

- Selective benchmarking,
- Using wrong benchmarks,
- Improper comparison of results,
- Improper interpretation of results,
- Measurement omissions

See G. Heiser, "Systems benchmarking crimes," https://gernot-heiser.org/benchmarking-crimes.html

Current Benchmarks (From Upcoming Paper)

					Ina "Ur	Inadequate for "Understanding	
Name	Year	Reference	Агеа	Architecture	Туре	Code	1 -
Gibson Mix	1959	[13]	general	single core	technical	none	Ī.

Name	Year	Reference	Area	Architecture	Type	Code	Metric
Gibson Mix	1959	[13]	general	single core	technical	none	Instr/s
Whetstone	1972	[14]	numeric	competitive	synthetic	single core	Whetstone Instrs/s
Linpack	1976	https://www.top500.org/	linear algebra	parallel	competitive	application	flops/s
Dhrystone	1984	http://www.roylongbottom.org.uk/	non-numeric	single core	competitive	synthetic	Dhrystone Instrs/s
TPC	1988	https://www.tpc.org	database	gene ral	competitive	app suite	varied
SLALOM	1990	[15]	finite element	any	competitive	kernel	problem size
SPEC	1988	https://www.speg.org/benchmarks.html	general	any	technical	app suite	varied
SLALOM	1990	[15]	finite element	any	technical	suite	composite
NAS	1991	[16]	CFD	parallel	competitive	suite	varied
HPL	1993	[17]	linear algebra	parallel	competitive	application	flops/s
NAS	1994	https://www.nas.nasa.gov/sultware/npb.html	fluid dynamics	parallel	technical	suite	flops/s
Cinebench	2000	[18]	Rendering	general	competitive	application	composite
HPC Challenge	2004	https://hpcchallenge.org/hpcc/	memory-intensive	gene ral	technical	kernel suite	varied rates
BFS	2010	https://graph500.org	graphs	parallel	competitive	kernel	TEP/s
[19] Firehose	2015	https://stream-benchmarking.github.ic/firehose/	streaming	pipelined	technical	kernel suite	datums/s
HPCG	2017	https://www.hpcg-benchmark.org/	linear algebra	parallel	competitive	kernel	flops/s
10500	2018	https://www.io500.org/	VO	parallel	competitive	suite	composite
HPL-MxP	2019	https://hpt-mxp.org/results.tnd	linear algebra	parallel	competitive	kernel	flops/s
MLPerf	2019	https://micommons.org/benchmarks/inference-datacenter/	machine learning	gene ral	technical	suite	varied

TABLE I

A SHORT HISTORY OF BENCHMARKING CLASSICAL SYSTEMS. WHERE POSSIBLE, REFERENCES ARE TO WEBSITES CONTAINING MULTIPLE REPORTS.

The Benchmarking Bridge

Goal: Institutionalize benchmarking process:

- To enable deep understanding how computational infrastructure affects performance
- As a function of benchmark characteristics

We Need to Capture Cross-Benchmark Data

Expanding Scalability Studies beyond Kernels

- Build on ECP approach
- Define kernels and WORKFLOWS:
 - Compositions of kernels
 - Including sparsity & irregularity
 - With multiple data set sizes
 - To be measured over multiple system sizes لـ
- scale both strong and weak

i.e. Not just the highest performance

but how does app/infrastructure

- Example: current AGILE program from IARPA
 - Workflow 1: Knowledge Graphs Groups, Relationships, and Interests
 - Workflow 2: Detection System and Event Patterns
 - Workflow 3: Sequence Data Identification and Clustering
 - Workflow 4: Network of Networks such as Cyber-Physical Systems
- Each with several variations
- Include instrumentation to track major energy-costly events

#2: "Border Crossings": The New Bottleneck

Significantly different engine technologies

Example Effects of Physical Separation

Bylina et al., "Performance Analysis of Multicore and Multinodal Implementation of SpMV Operation", 2014. www.graph500.org. http://www.hpcg-benchmark.org/

An Example of A New Architectural Technique

- Migratory Threading
- All memory on a single logical space
- On nonlocal reference: H/W
 - Suspends thread
 - Packages State
 - Sends to correct node
 - Unpacks State
 - Restarts thread
- Cheap spawns

16 node Lucata Pathfinder at GaTech

Example of Usefulness: Subgraph Isomorphism

Multiple parallel implementations

Prog. Model	Processor	Avail. Nodes	Cores/ Node	Core Clock
SHAD-1	AMD EPYC 7763	16	128	2.45GHz
SHAD-2	E5-2680 v2	16	20	2.8GHz
Cilk	Xeon Silver 4208	1	16	2.1GHz
Mig. Thread	FPGA Custom	16	16	225MHz

- Mig. Threads need no comm s/w
- Takeaway: Best of conventional must use 87+% of its cycles in handling inter-node comm
 - We've seen similar results in ML, SpMV, ...

#3: Innovation in "Hybrid" Algorithms

- Hardware is going heterogeneous
 - Codes will bounce between different "cores"

- Algorithms are rapidly leveraging new models of computation
 - Probabilistic, AI, Quantum, Analog in Memory...

- We need to understand algorithms that do both
 - EFFICIENTLY without wasting processing cycles

History (and Future) of Algorithms

Technique	Repeatable Results	Bounded Precision	Execution Time
Direct Solvers	Yes	Within roundoff	Predictable
Iterative Solvers	Yes with same seed	Usually testable	Iterative improvement
Monte Carlo	Yes with same seed	Math bounds	Iterative improvement
ML-based	Yes after training	Weak	Fixed (Inferencing)
Quantum	No	Distribution	Needs multiple runs

As we move down

- Solutions get faster
- Likely to be more hybrid, heterogeneous
- "Accuracy" becomes less well-defined
- Need to understand "costs" of hybridization

ML/AI in Science Apps

- Use as universal function approximators
 - Learning: *Discover* equation (learn from solvers or experimental data)
 - Inferencing: Replace conventional solvers
- PINNs: Physics Inspired Neural Nets
 - Designed with classes of ODEs/PDEs in mind
 - Train to find coefficients
- Issue: Unboundable accuracy
- Techniques exist to architect NN for dynamically adjustable time/accuracy

Example of Solovlev Equilibrium

"A hands-on introduction to Physics-Informed Neural Networks for solving partial differential equations with benchmark tests taken from astrophysics and plasma physics", https://arxiv.org/pdf/2403.00599v1

See for example: https://towardsdatascience.com/solving-differential-equations-with-neural-networks-afdcf7b8bcc4
Also "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations." Journal of Computational physics (2019)

Summary: My Suggested Research Directions

- Much of new technology will be researched by industry
 - Rapid escalation in heterogeneity
- Research focus should be on improving energy efficiency for Science apps using alternative models
- 1. Understand where are energyinefficient events
- 2. Develop architectures that avoid inefficient border crossings
- 3. Design algorithmic techniques that reflect changing nature of computing