Exercise 1.1

a)

Each clause is a disjunction containing at least one negated atom. Therefore, the interpretation $p_i \mapsto T \quad \forall i$ satisfies S.

b)

$(p \land (q \lor \neg p)) \lor (r \land \neg (s \lor r))$	Commutativity
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (r \wedge \neg (r \vee s))$	De Morgan
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (r \wedge \neg r \wedge \neg s))$	Contradiction
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (\bot \wedge \neg s))$	Falsity
$\Longrightarrow (p \land (\neg p \lor q)) \lor \bot$	Falsity
$\Longrightarrow p \wedge (\neg p \vee q)$	Distributivity
$\Longrightarrow (p \land \neg p) \lor (p \land q)$	Contradiction
$\Longrightarrow \bot \lor (p \land q)$	Falsity
$\implies p \land q$	

Exercise 1.2

a)

All branches are either saturated or closed. The only open branch provides the model $p\mapsto F, q\mapsto F, r\mapsto T.$

b)

Since its negation is unsatisfiable, $(\neg p \land q \land r) \lor (p \land q) \lor (\neg p \land \neg r) \lor \neg q$ is a tautology.

c)

$$p \wedge \neg q \wedge (r \wedge p) \rightarrow (q \vee \neg r) \wedge r$$
 is unsatisfiable, therefore $\{p \wedge \neg q, (r \wedge p) \rightarrow (q \vee \neg r)\} \models \neg r$

Exercise 1.3

Detailed transformations for the first statement, with C meaning that Cyclope is guilty and $\neg C$ that Cyclope is not guilty. Other abbreviations analogous.

$$\begin{array}{c} (\neg C \wedge E \wedge \neg A) \vee (C \wedge \neg (E \wedge \neg A)) \\ \equiv \\ (\neg C \wedge E \wedge \neg A) \vee (C \wedge (\neg E \vee A)) \\ \equiv \\ (\neg C \vee (C \wedge (\neg E \vee A))) \wedge (E \vee (C \wedge (\neg E \vee A))) \wedge (\neg A \vee (C \wedge (\neg E \vee A))) \\ \equiv \\ (\neg C \vee C) \wedge (\neg C \vee \neg E \vee A) \wedge (E \vee C) \wedge (E \vee \neg E \vee A) \wedge (\neg A \vee C) \wedge (\neg A \vee \neg E \vee A) \\ \equiv \\ (\neg C \vee \neg E \vee A) \wedge (E \vee C) \wedge (\neg A \vee C) \end{array}$$

This leads to the following statements):

$(\neg C \vee \neg E \vee A) \wedge (E \vee C) \wedge (\neg A$ lowing set of formulae (applying the steps above to all	
$\{C,E\}$	(1.2)
$\{C, \neg A\}$	(1.3)
$\{\neg E, \neg G, \neg L\}$	(2.1)
$\{E,G\}$	(2.2)
$\{E,L\}$	(2.3)
$\{\neg A, \neg Sh, L\}$	(3.1)
$\{A,Sh\}$	(3.2)
$\{A, \neg L\}$	(3.3)
$\{\neg G, \neg W, P\}$	(4.1)
$\{G,W\}$	(4.2)
$\{G,\neg P\}$	(4.3)
$\{ \neg I, E, St \}$	(5.1)
$\{I, \neg E\}$	(5.2)
$\{I, \neg St\}$	(5.3)
$\{ \neg L, \neg I, W \}$	(6.1)
$\{L,I\}$	(6.2)
$\{L, \neg W\}$	(6.3)
$\{\neg M, \neg P, C\}$	(7.1)
$\{M,P\}$	(7.2)
	, ,

$$\{M, \neg C\} \qquad (7.3)$$

$$\{\neg P, \neg E, \neg G\} \qquad (8.1)$$

$$\{P, E\} \qquad (8.2)$$

$$\{P, G\} \qquad (8.3)$$

$$\{\neg Sh, \neg C, I\} \qquad (9.1)$$

$$\{Sh, C\} \qquad (9.2)$$

$$\{Sh, \neg I\} \qquad (9.3)$$

$$\{\neg St, \neg G, M\} \qquad (10.1)$$

$$\{St, G\} \qquad (10.2)$$

$$\{St, \neg M\} \qquad (10.3)$$

$$\{\neg V, \neg M, Sh\} \qquad (11.1)$$

$$\{V, M\} \qquad (11.2)$$

$$\{V, \neg Sh\} \qquad (11.3)$$

$$\{\neg W, \neg St, \neg V\} \qquad (12.1)$$

$$\{W, St\} \qquad (12.2)$$

$$\{W, V\} \qquad (12.3)$$
Now apply resolution:
$$(1.2) + (8.1) : \{C, \neg P, \neg G\} \qquad (13)$$

$$(4.3) + (13) : \{C, \neg P\} \qquad (14)$$

$$(7.2) + (14) : \{C, M\} \qquad (15)$$

$$(7.3) + (15) : \{M\} \qquad (16)$$

$$(10.3) + (16) : \{St\} \qquad (17)$$

$$(5.3) + (17) : \{I\} \qquad (18)$$

$$(9.3) + (18) : \{Sh\} \qquad (19)$$

$$(12.1) + (20) : \{ \neg W, \neg St \}$$
 (21)

$$(17) + (21): \{\neg W\} \tag{22}$$

$$(6.1) + (22): \{\neg L, \neg I\}$$
 (23)

$$(18) + (23) : \{\neg L\}$$
 (24)

$$(2.1) + (24) : {E}$$
 (25)

$$(4.2) + (22) : \{G\}$$
 (26)

$$(8.1) + (25): \{\neg P, \neg G\} \tag{27}$$

$$(26) + (27) : \{\neg P\}$$
 (28)

$$(3.1) + (19) : \{ \neg A, L \}$$
 (29)

$$(24) + (29) : \{ \neg A \}$$
 (30)

$$(1.1) + (25): \{\neg C, A\}$$
 (31)

$$(30) + (31) : \{\neg C\}$$
 (32)

This leads to the following set of guilty people: Emma Frost, Gambit, Iceberg, Malicia, Shadowcat, Storm, and Vega