Первый коллоквиум, семестр 4

24 марта 2019 г.

Оглавление

1	Опр	ределения	3
	1.1	Произведение мер	3
	1.2	Сферические координаты в \mathbb{R}^3 и в \mathbb{R}^m , их Якобианы	3
	1.3	Образ меры при отображении	4
	1.4	Взвешенный образ меры	4
	1.5	Плотность одной меры по отношению к другой	4
	1.6	Заряд, множество положительности	5
		1.6.1 Заряд	5
		1.6.2 Множество положительности	5
	1.7	Интегральные неравенства Гельдера и Минковского	5
		1.7.1 Неравенство Гельдера	5
		1.7.2 Неравенство Минковского	5
	1.8	Интеграл комплекснозначной функции	5
	1.9	Пространство $L_p(E,\mu), 1 \leq p < +\infty$	6
	1.10	Пространство $L_{\infty}(E,\mu)$	6
	1.11	Существенный супремум	6
	1.12	Условие L_{loc}	7
	1.13	Несобственный интеграл Лебега в R	7
	1.14	Фундаментальная последовательность, полное пространство	7
		1.14.1 Фундаментальная последовательность	7
		1.14.2 Полное пространство	7
	1.15	Плотное множество	7
2	Teo	ремы	8
	2.1	Теорема Леви	8
	2.2	Линейность интеграла Лебега	8
	2.3	Теорема об интегрировании положительных рядов	8

2.4	Абсолютная непрерывность интеграла			
2.5	Теорема Лебега о мажорированной сходимости для случая сходимости			
	по мере.	9		
2.6	Теорема Лебега о мажорированной сходимости для случая сходимости			
	почти везде	9		
2.7	Теорема Фату. Следствия	10		
	2.7.1 Следствие 1	10		
	2.7.2 Следствие 2	10		
2.8	Теорема о вычислении интеграла по взвешенному образу меры	10		
	2.8.1 Лемма	10		
	2.8.2 Следствие	11		
	2.8.3 Теорема	11		
2.9	Критерий плотности	11		
2.10	Единственность плотности	11		
2.11	Лемма о множестве положительности	12		
2.12	Р. Теорема Радона-Никодима			
2.13	Лемма об образах малых кубических ячеек при диффеоморфизме	12		
2.14	Лемма о вариациях на тему регулярности меры Лебега	12		
2.15	Теорема об образе меры Лебега при диффеоморфизме	13		
2.16	Теорема о гладкой замене переменной в интеграле Лебега	13		
2.17	Принцип Кавальери	13		
2.18	Сферические координаты в R^m	13		
2.19	Совпадение определенного интеграла и интеграла Лебега	14		
2.20	Теорема Тонелли	14		
2.21	Объем шара в \mathbb{R}^m	15		
2.22	Теорема Фубини	15		
2.23	Формула для Бета-функции	15		
2.24	Предельный переход под знаком интеграла при наличии равномерной			
	сходимости	16		
2.25	Теорема Лебега о непрерывности интеграла по параметру	16		
2.26	Правило Лейбница дифференцирования интеграла по параметру 1			
2.27	Теорема о вложении пространств L^p	17		
2.28	Теорема о сходимости в L_p и по мере	17		
2.29	Полнота L^p	17		

Глава 1

Определения

1.1 Произведение мер

```
< X, A, \mu >, < Y, B, \nu > - пространства с мерой. \mu, \nu - \sigma-конечные меры. A \times B = \{A \times B \subset X \times Y : A \in A, B \in B\} m_0 : A \times B \to \overline{\mathbb{R}} m_0(A \times B) = \mu A \cdot \nu B m - называется произведением мер \mu и \nu, если m - мера, которая ялвяется Лебеговским продолжением m_0 с полукольца A \times B на некоторую \sigma-алгебру A \otimes B. m = \mu \times \nu - обозначение.
```

1.2 Сферические координаты в R^3 и в R^m , их Якобианы

 $\langle X \times Y, \mathbb{A} \otimes \mathbb{B}, \mu \times \nu \rangle$ - произведение пространств с мерой.

$$x_1 = r \cdot \cos \phi_1$$

$$x_2 = r \cdot \sin \phi_1 \cdot \cos \phi_2$$

$$x_3 = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cos \phi_3$$

$$\vdots$$

$$x_{m-2} = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cdots \sin \phi_{m-3} \cdot \cos \phi_{m-2}$$

$$x_{m-1} = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cdots \sin \phi_{m-2} \cdot \cos \phi_{m-1}$$

$$x_m = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cdots \sin \phi_{m-2} \cdot \sin \phi_{m-1}$$

$$\mathcal{J} = r^{m-1} \cdot (\sin \phi_1)^{m-2} \cdot (\sin \phi_2)^{m-3} \cdot \cdot \cdot (\sin \phi_{m-2})^1 \cdot (\sin \phi_{m-1})^0$$

Что тут происходит идейно. Сначала мы проецируем наш m-мерный вектор на нормаль к (m-1)-мерной гиперплоскости. Потом рассматриваем проекцию на эту гиперплоскость и в ней рекурсивно повторяем процедуру, пока не дойдём до нашего любимого \mathbb{R}^2 . Уже в нём рассматривем обычные полярные координаты (отсюда и другие ограничения на размер угла).

1.3 Образ меры при отображении

 $< X, \mathbb{A}, \mu > —$ пространство с мерой, $< Y, \mathbb{B}, _> —$ пространство с σ -алгеброй.

 $\Phi: X \to Y, \, \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}).

Пусть для $\forall E \in \mathbb{B} \ \nu(E) = \mu(\Phi^{-1}(E)).$

 ν является мерой на Y и называется образом меры μ при отображении Φ .

1.4 Взвешенный образ меры

 $< X, \mathbb{A}, \mu > —$ пространство с мерой, $< Y, \mathbb{B}, _ > —$ пространство с σ -алгеброй.

 $\Phi: X \to Y, \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}).

 $\omega: X \to \overline{\mathbb{R}}, \, \omega \geq 0$ — измеримая.

Пусть для $E \in \mathbb{B} \ \nu(E) = \int_{\Phi^{-1}(E)} \omega \ d\mu$.

u является мерой на Y и называется взвешенным образом меры μ .

При $\omega \equiv 1$ взвешенный образ меры является обычным образом меры.

1.5 Плотность одной меры по отношению к другой

 $< X, \mathbb{A}, \mu > -$ пространство с мерой.

 $\omega:X \to \overline{\mathbb{R}},\, \omega \geq 0$ — измеримая.

 $\nu(E) = \int_E \omega(x) \ d\mu$. ν — мера на X.

 ω называется плотностью ν относительно $\mu.$

1.6 Заряд, множество положительности

1.6.1 Заряд

 $< X, A, _ > —$ пространство с σ -алгеброй.

 $\phi: \mathbb{A} \to \mathbb{R}$ (конечная, не обязательно неотрицательная).

 ϕ счётно аддитивна.

Тогда ϕ — заряд.

1.6.2 Множество положительности

 $A \subset X$ — множество положительности, если $\forall B \subset A, B$ измеримо: $\phi(B) \geq 0$.

1.7 Интегральные неравенства Гельдера и Минковского

 $< X, \mathbb{A}, \mu > ; f, g : E \subset X \to \mathbb{C} \ (E$ - изм.) — заданы п.в, измеримы.

1.7.1 Неравенство Гельдера

$$p,q>1:rac{1}{p}+rac{1}{q}=1.$$
 Тогда: $\int\limits_{E}|fg|d\mu\leq\left(\int\limits_{E}|f|^{p}d\mu
ight)^{rac{1}{p}}\cdot\left(\int\limits_{E}|g|^{q}d\mu
ight)^{rac{1}{q}}$

1.7.2 Неравенство Минковского

$$1 \le p < +\infty$$
. Тогда: $\left(\int\limits_E |f+g|^p d\mu\right)^{\frac{1}{p}} \le \left(\int\limits_E |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int\limits_E |g|^p d\mu\right)^{\frac{1}{p}}$

1.8 Интеграл комплекснозначной функции

 (X,\mathbb{A},μ) - пространство с мерой. $E\in\mathbb{A}$

$$f:E\to\mathbb{C}$$

f измерима (суммируема), если Im(f) и Re(f) измеримы (суммируема)

$$\int_{E} f = \int_{E} Re(f) + i \cdot \int_{E} Im(f)$$

1.9 Пространство $L_p(E,\mu), 1 \leq p < +\infty$

$$< X, \mathbb{A}, \mu >, E \in \mathbb{A}.$$

$$L_p'(E,\mu)=\{f:$$
 п.в. $E o\mathbb{C},\;$ изм., $\int\limits_E|f|^pd\mu<+\infty\}$

Это линейное пространство (по нер-ву Минковского и линейности пространства измеримых функций).

У этого пространства есть дефект — если определить норму как $||f|| = \left(\int_E |f|^p\right)^{\frac{1}{p}}$, то будет сразу много нулей пространства (ненулевые функции, которые п.в. равны 0, будут иметь норму 0). Поэтому перейдем к фактор-множеству функций по отношению эквивалентности:

$$f \sim g$$
, если $f = g$ п.в.

$$L_p(E,\mu):=L_p'(E,\mu)/\sim$$
 - лин. норм. пр-во с нормой $||f||=\left(\int\limits_E|f|^p\right)^{rac{1}{p}}.$

<u>NB1</u>: Его элементы — классы эквивалентности обычных функций. Будем называть их тоже функциями. Они не умеют вычислять значение в точке (т.к. можно всегда подменить значение на любое другое и получить представителя все того же класса эквивалентности), но зато их можно интегрировать!

 $\underline{\mathrm{NB2}}$: также иногда будем обозначать $||f||_p$ за норму f в пространстве L_p .

1.10 Пространство $L_{\infty}(E,\mu)$

$$L_{\infty}(E,\mu) = \{f: \text{п.в. } E \to \mathbb{C}, \ \operatorname{ess\,sup} |f| < +\infty \}$$
 NB1: $||f||_{\infty} = \operatorname{ess\,sup} |f|$.

<u>NB2</u>: Новый вид нер-ва Гельдера : $||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$ (причем можно брать $p = +\infty, q = 1$ или наоборот).

1.11 Существенный супремум

$$< X, A, \mu >, E \subset X$$
 — изм., $f : \pi.в. E \to \overline{\mathbb{R}}$.

$$\underline{\text{Тогда}}$$
: $\underset{x \in E}{\operatorname{Enssup}} f(x) = \inf\{A \in R : f(x) \le A$ при п.в. $x\}$.

В этом определении A - существенная верхняя граница.

Свойства:

1.
$$\operatorname{ess\,sup}_{E} f \leq \sup_{E} f$$

2.
$$f(x) \le \operatorname{ess\,sup}_E f$$
 при п.в. $x \in E$.

3.
$$\int_{E} |fg| d\mu \le \operatorname{ess\,sup}_{E} |g| \cdot \int_{E} |f| d\mu$$
.

1.12 Условие L_{loc}

Ты проиграл

1.13 Несобственный интеграл Лебега в R

Ты проиграл

1.14 Фундаментальная последовательность, полное пространство

1.14.1 Фундаментальная последовательность

 $\{a_n\}$ - фунд. посл. в метрическом пр-ве (X,ρ) , если $\forall \epsilon>0 \exists N: \forall n,k>N:$ $\rho(a_n,a_k)<\epsilon$

1.14.2 Полное пространство

X - полное пространство, если любая фундаментальная последовательность в нём сходится.

1.15 Плотное множество

Множество A плотно во множестве B, если $\forall b \in B \ \forall \epsilon > 0$ верно, что $U_{\epsilon}(b) \cap A \neq \emptyset$.

Глава 2

Теоремы

2.1 Теорема Леви

 $(X, \mathbb{A}, \mu), \ f_n \geqslant 0$ - изм. $f_1(x) \leqslant ... \leqslant f_n(x) \leqslant f_{n+1}(x) \leqslant ...$ при почти всех x $f(x) = \lim_{n \to \infty} f_n(x)$ при почти всех x (считаем, что при остальных $x: f \equiv 0$) $\underline{\text{Тогда:}} \lim_{n \to \infty} \int\limits_{Y} f_n(x) d\mu = \int\limits_{Y} f(x) d\mu$

2.2 Линейность интеграла Лебега

$$f,g$$
измеримые, Тогда $\int\limits_{\mathbb{E}} (f+g) = \int\limits_{\mathbb{E}} f + \int\limits_{\mathbb{E}} g$

2.3 Теорема об интегрировании положительных рядов

$$u_n(x) \ge 0$$
 почти всюду на \mathbb{E} , тогда $\int\limits_{\mathbb{E}} (\sum_{n=1}^{+\infty} u_n(x)) d\mu(x) = \sum_{n=1}^{+\infty} \int\limits_{\mathbb{E}} u_n(x) d\mu(x)$

2.4 Абсолютная непрерывность интеграла

 $< X, \mathbb{A}, \mu >$ - пространство с мерой $f: X \to \overline{\mathbb{R}}$ - суммируема

Тогда
$$\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall E$$
 — измеримое $\mu E < \delta \; |\int\limits_E f d\mu| < \epsilon$

2.5 Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

 $< X, \mathbb{A}, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \stackrel{\mu}{\Rightarrow} f$ (сходится по мере), $\exists g: X \to \overline{\mathbb{R}}$ такая, что:

- $\forall n$, для «почти всех» $x \mid |f_n(x)| \leq g(x) \ (g \text{ называется мажорантой})$
- g суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int\limits_{\mathbf{Y}} |f_n f| d\mu \to 0$
- $\int_X f_n \to \int_X f$ («уж тем более»)

2.6 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.

 $< X, A, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \to f$ почти везде, $\exists g: X \to \overline{\mathbb{R}}$ такая, что:

- $\forall n$, для «почти всех» $x |f_n(x)| \le g(x)$ (g называется мажорантой)
- \bullet g суммируемая

Тогда:

• f_n, f — суммируемы

$$\bullet \int\limits_X |f_n - f| d\mu \to 0$$

•
$$\int_X f_n \to \int_X f$$
 («уж тем более»)

2.7 Теорема Фату. Следствия.

$$< X, \mathbb{A}, \mu > -$$
 пространство с мерой f_n, f – измеримы, $f_n \geq 0$ $f_n \to f$ «почти везде» $\exists C > 0 \ \forall n \ \int\limits_X f_n d\mu \leq C$ $\underline{\mathbf{Tогда:}}\ \int\limits_X f \leq C$

2.7.1 Следствие 1

$$f_n, f \geq 0$$
 — измер. $f_n \stackrel{\mu}{\Rightarrow} f$ $\exists C \ orall n \int\limits_X f_n \leq C$ $\underline{\text{Тогда:}} \int\limits_X f \leq C$

2.7.2 Следствие 2

$$f_n \ge 0$$
 — измер.

Тогда: $\int\limits_X \underline{\lim} \, f_n \le \underline{\lim} \int\limits_X f_n$

2.8 Теорема о вычислении интеграла по взвешенному образу меры

2.8.1 Лемма

Пусть у нас есть
$$< X, \mathbb{A}, \mu > \mathrm{u} < Y, \mathbb{B}, _ > \mathrm{u} \ \Phi : X \to Y$$
 Пусть $\Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ Пусть для $E \in \mathbb{B} \ \nu(E) := \mu(\Phi^{-1}(E))$ Тогда:

$$u$$
 — мера на $(Y,\mathbb{B}),\, \nu(E)=\int\limits_{\Phi^{-1}(E)}1\cdot d\mu$

2.8.2 Следствие

Из этого следует, что если f — измеримая функция в Y (относительно ν), то $f \circ \Phi$ измерима относительно μ .

2.8.3 Теорема

Есть пространства $\langle X, \mathbb{A}, \mu \rangle$ и $\langle Y, \mathbb{B}, \nu \rangle$.

 $\Phi: X \to Y \ w \ge 0$ — измеримая, ν — взвешенный образ $\mu \ (w$ — плотность)

Тогда:

Для $\forall f \geq 0$ — измерима на $Y,\, f \circ \Phi$ - измерима (относительно $\mu)$

 $\int_{Y} f d\nu = \int_{X} f(\Phi(x)) * \omega(x) d\mu(x)$

 $\underline{\text{Замечание:}}$ То же верно, если f суммируема.

2.9 Критерий плотности

Есть пространство $< X, \mathbb{A}, \mu >$

 ν — еще одна мера.

 $\omega \geq 0$ — измерима на X.

Тогда:

 ω — плотность ν относительно $\mu \iff$ Для любого $A \in \mathbb{A}: \mu A \cdot \inf_A(\omega) \le \nu(A) \le \mu A \cdot \sup_A(\omega)$

2.10 Единственность плотности

 $f,g \in L(x)$.

Пусть $\forall A$ — измеримо: $\int_A f = \int_A g$.

Тогда:

f = g почти везде

Следствие:

Плостность ν относительно μ определена однозначно с точностью до μ -почти везде.

2.11 Лемма о множестве положительности

Пусть есть пространство $< X, A > и \phi$ — заряд.

Тогда:

 $\forall A \in \mathbb{A} \ \exists B \subset A : \phi(B) \geq \phi(A)$ и В — множество положительности

2.12 Теорема Радона-Никодима

Пусть есть пространство (X, \mathbb{A}, μ) .

 ν — мера на \mathbb{A} .

Обе меры конечные и $\nu \prec \mu$ (абсолютная непрерывность меры: если $\mu E=0,$ то $\nu E=0).$

Тогда:

 $\exists!f:X o\overline{\mathbb{R}}$ (с точностью до почти везде), которая является плотностью ν относительно μ и при этом f суммируема по μ .

2.13 Лемма об образах малых кубических ячеек при диффеоморфизме

 $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$ $a\in O,\Phi\in C^1(O)$ Возьмём $c>|\det\Phi'(a)|\neq 0$ тогда $\exists \delta>0: \forall$ кубической ячейки $Q,Q\subset B(a,\delta), a\in Q$ выполняется $\lambda\Phi(Q)< c\cdot\lambda Q$

2.14 Лемма о вариациях на тему регулярности меры Лебега

 $f:O\subset\mathbb{R}^m o\mathbb{R}$ — непрерывна.

 $A \subset O$, A — измеримо.

 $A\subset Q$ (кубическая ячейка) $\subset \overline{Q}\subset O,$ то есть граница A не лежит на границе O. Тогда

$$\inf_{A\subset G\subset O, G-open\ set}(\lambda G\cdot \sup_G(f))=\lambda A\cdot \sup_A f$$

2.15 Теорема об образе меры Лебега при диффеоморфизме

$$\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$$
 - Диффеоморфизм, $\forall A\in\mathbb{M}^m,A\subset O$ $\lambda(\Phi(A))=\int_A|\det\Phi'(x)|d\lambda(x)$

2.16 Теорема о гладкой замене переменной в интеграле Лебега

$$\Phi:O\subset\mathbb{R}^m o\mathbb{R}^m$$
 - диффеоморфизм $O'=\Phi(O)$ — открытое f задана на $O',f\geqslant 0$, измерима по Лебегу, тогда $\int_{O'}f(y)\cdot d\lambda(y)=\int_Of(\Phi(x))\cdot |\det\Phi'(x)|\cdot d\lambda(x)$

2.17 Принцип Кавальери

 (X, α, μ) и (Y, β, ν) — пространства с мерами, причем μ, ν — σ -конечные и полные $m = \mu \times \nu, C \in \alpha \otimes \beta$, тогда:

- 1. При п.в. $x C_x$ измеримо (ν -измеримо), т.е. $C_x \in \beta$
- 2. Функция $x \to \nu C_x$ измеримая (в широком смысле) на X

NB: ϕ — измерима в широком смысле, если она задана при п.в. x, и $\exists f: X \to R'$ — измеримая и $\phi = f$ п.в. При этом $\int_X \phi = \int_X f$ (по опр.)

3.
$$mC = \int_X \nu(C_x) \cdot d\mu(x)$$

2.18 Сферические координаты в R^{m}

$$x_1 = r \cdot \cos \phi_1$$

$$x_2 = r \cdot \sin \phi_1 \cdot \cos \phi_2$$

$$x_3 = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cos \phi_3$$

$$\vdots$$

$$x_{m-2} = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdots \sin \phi_{m-3} \cdot \cos \phi_{m-2}$$

$$1 \le i \le m - 2 : \phi_i \in [0, \pi]$$

$$i = m - 1 : \phi_i \in [0, 2\pi]$$

$$r \ge 0$$

$$x_{m-1} = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \dots \cdot \sin \phi_{m-2} \cdot \cos \phi_{m-1}$$
$$x_m = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \dots \cdot \sin \phi_{m-2} \cdot \sin \phi_{m-1}$$

$$\mathcal{J} = r^{m-1} \cdot (\sin \phi_1)^{m-2} \cdot (\sin \phi_2)^{m-3} \cdots (\sin \phi_{m-2})^1 \cdot (\sin \phi_{m-1})^0$$

Что тут происходит идейно. Сначала мы проецируем наш m-мерный вектор на нормаль к (m-1)-мерной гиперплоскости. Потом рассматриваем проекцию на эту гиперплоскость и в ней рекурсивно повторяем процедуру, пока не дойдём до нашего любимого \mathbb{R}^2 . Уже в нём рассматривем обычные полярные координаты (отсюда и другие ограничения на размер угла).

2.19 Совпадение определенного интеграла и интеграла Лебега

Ты проиграл

2.20 Теорема Тонелли

< $\mathbb{X}, \alpha, \mu>, <$ $\mathbb{Y}, \beta, \nu>$ - пространства с мерой μ, ν - σ -конечны, полные $m=\mu\times \nu$ $f: \mathbb{X}\times \mathbb{Y} \to \overline{R}, \, f\geq 0, \, \mathrm{f}$ - измерима относительно т Тогда:

- 1. при *почти всех* $x \in X$ f_x измерима на \mathbb{Y} , где $f_x : \mathbb{Y} \to \overline{R}$, $f_x(y) = f(x,y)$ (симметричное утверждение верно для у)
- 2. Функция $x \mapsto \phi(x) = \int_{\mathbb{Y}} f_x d\nu = \int_{\mathbb{Y}} f(x,y) d\nu(y)$ измерима* на \mathbb{X} (симметричное утверждение верно для у)

3.
$$\int_{\mathbb{X}\times\mathbb{Y}} f(x,y)dm = \int_{\mathbb{X}} \phi(x)d\mu = \int_{\mathbb{X}} (\int_{\mathbb{Y}} f(x,y)d\nu(y))d\mu(x) = \int_{\mathbb{Y}} (\int_{\mathbb{X}} f(x,y)d\mu(x))d\nu(y)$$

2.21 Объем шара в \mathbb{R}^m

$$\begin{split} &B(0,R)\subset\mathbb{R}^{m}\\ &\lambda_{m}(B(0,R))=\int\limits_{B(0,R)}1d\lambda_{m}=\int\mathcal{J}=\\ &=\int\limits_{0}^{R}dr\int\limits_{0}^{\pi}d\phi_{1}\cdot\cdot\int\limits_{0}^{\pi}d\phi_{m-2}\int\limits_{0}^{2\pi}d\phi_{m-1}\cdot r^{m-1}(\sin\phi_{1})^{m-2}\dots(\sin\phi_{m-2})=\to\\ &\int\limits_{0}^{\pi}(\sin\phi_{k})^{m-2-(k+1)}=B(\frac{m-k}{2};\frac{1}{2})=\frac{\Gamma(\frac{m-k}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-k}{2}+\frac{1}{2})}\\ &\to=\frac{R^{m}}{m}\frac{\Gamma(\frac{m-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m}{2})}\frac{\Gamma(\frac{m-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-1}{2})}\cdot\cdot\cdot\frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})}2\pi=\\ &=\frac{\pi R^{m}}{\frac{m}{2}}\frac{\Gamma(\frac{1}{2})^{m-2}}{\Gamma(\frac{m}{2})}=\frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)}R^{m}\\ &\text{Или просто:}\\ &B(0,r)\subset\mathbb{R}^{m}\\ &\lambda_{m}(B(0,r))=\frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)}r^{m} \end{split}$$

2.22 Теорема Фубини

 (X,α,μ) и (Y,β,ν) - пространства с мерами, причем $\mu,\nu-\sigma$ -конечны на $X\times Y$ есть $\alpha\otimes\beta$, причем $m(A\times B)=\mu A\cdot \nu B$ — произведение мер — σ -конечная мера на $\alpha\times\beta$

 $(X \times Y), \alpha \otimes \beta, m$ — произведение пр-в с мерой

Обозначение : $C \subset X \times Y, x \in X$ тогда

 $C_x = y : (x,y) \in C$ — Сечение I рода

 $C_y = x : (x, y) \in C$ — Сечение II рода

2.23 Формула для Бета-функции

$$B(s,t)=\int\limits_0^1x^{s-1}(1-x)^{t-1}$$
, где s и t >0 - Бета-функция $\Gamma(s)=\int\limits_0^{+\infty}x^{s-1}e^{-x}dx$, где s >0 , тогда $B(s,t)=rac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$

2.24 Предельный переход под знаком интеграла при наличии равномерной сходимости

$$f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$$
 $(\mathbb{X}, \mathbb{A}, \mu)$ – простр. с мерой \mathbb{Y} – метр. простр. (или метризуемое) $\forall y \ f^y(x) = f(x,y)$ – сумм. на \mathbb{X} $\mu X < +\infty; \ f(x,y) \underset{y \to a}{\Longrightarrow} \phi(x)$ Тогда:

- ϕ сумм.
- $\int_X f(x,y)d\mu(x) \xrightarrow[y\to a]{} \int_X \phi(x)d\mu(x)$

2.25 Теорема Лебега о непрерывности интеграла по параметру

Ты проиграл

2.26 Правило Лейбница дифференцирования интеграла по параметру

$$f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$$
 $(\mathbb{X}, \mathbb{A}, \mu)$ – простр. с мерой \mathbb{Y} – метр. простр. (или метризуемое) $\forall y \ f^y(x) = f(x,y)$ – сумм. на \mathbb{X} $\mathbb{Y} \subset \mathbb{R}$ – промежуток при п. в. $x \ \forall y \ \exists f'_y(x,y)$ f'_y удовлетворяет усл. L_{loc} в точке $a \in \mathbb{Y}$ Тогда:

- \bullet $I(y) = \int\limits_X f(x,y) d\mu(x)$ дифф. в точке a
- $I'(a) = \int_X f'_y(x, a) d\mu(x)$

2.27 Теорема о вложении пространств L^p

 $\mu E < +\infty, \, 1 \leq s < r \leq +\infty$

Тогда:

- 1. $L_r(E,\mu) \subset L_s(E,\mu)$
- 2. $\forall f$ измеримая : $||f||_s \le \mu E^{1/s 1/r} ||f||_r$

2.28 Теорема о сходимости в L_p и по мере

 $1 \le p < +\infty$ $f_n \in L_p(\mathbb{X}, \mu)$

- 1. \bullet $f \in L_p$
 - $f_n \to f$ b L_p

Тогда: $f_n \stackrel{\mu}{\Rightarrow} f$ (по мере)

- 2. $f_n \stackrel{\mu}{\Rightarrow} f$ (либо если $f_n \to f$ почти везде)
 - $|f_n| \leq g$ почти везде при всех $n; g \in L_p$

Тогда: $f_n \to f$ в L_p

2.29 Полнота L^p

 $L_p(E,\mu)$ $1 \le p < \infty$ – полное

То есть любая фундаментальная последовательность сходиться по норме $||f||_p$.

$$(\forall \epsilon > 0 \ \exists N \ \forall n, k \ ||f_n - f_k||_p < \epsilon) \Rightarrow (\exists f : ||f_n - f||_p \to 0)$$