Appello di Ingegr	neria Informatica d	el 4.2.2021 in pres	senza	D1
Nome:	Cognome:		Matricola:	D2
				E1
Domanda 1			[2+3 punti]	E2
(i) Enunciare il te				
(ii) Scrivere lo svi	luppo di Taylor al qua	rto ordine nel punto	$x_0 = 0$ della funzione	E3
		$f(x) = e^{\sin x}$		E4
		2 ()		E5
				E6
Risposta				\sum
(i)				
(ii)				
(11)				
V			3	
Domanda 2				[2+3 punti]
(i) Enunciare il I	Ceorema di esistenza e	unicità delle soluzio	ni del problema di Cau	chy
		$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$		
(ii) Mostrare che positiva e limi		oroblema di Cauchy	$con f(x,y) = \sin y, x_0$	$= 0 e y_0 = \pi/2 e$
Risoluzione				
(i)				
7				
0-				·
(11)				

Esercizio 1	[3 punti]
Sia f una funzione derivabile non-negativa da $\mathbb R$	in \mathbb{R} . Allora
a f ammette sempre uno zero; c $1/f$ è limitata;	
Risoluzione (giustificare la risposta)	
	·
Esercizio 2	[3 punti]
Siano $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ due successioni su \mathbb{R} po	ositive tali che $\sum_{n=1}^{\infty} \left(a_n/b_n + b_n^3/a_n \right) < +\infty$. Allora
a (a_n) e (b_n) sono infinitesime; c (b_n) è infinitesima ma (a_n) non lo è;	b (a_n) è infinitesima ma (b_n) non lo è; d nessuna delle precedenti
Risoluzione (giustificare la risposta)	
<u> </u>	
Esercizio 3	[3 punti]
Sia $E\subset \mathbb{C}$ il sotto insieme costituito dalle radici	i quinte di −1. Allora
f a E è connesso; $f b$ E form	a l'insieme dei vertici di un esagono regolare;
	ha cardinalità 1.
Risoluzione (giustificare la risposta)	

T					4
Es	er	C	7.1	0	4

[5 punti]

Studiare la continuità, la derivabilità e la differenziabilità su \mathbb{R}^2 della funzione

$$f(x,y) = \begin{cases} \frac{x^2y^2}{\sinh(x^2+y^2)} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Risoluzione	
7	
Esercizio 5	[4 punti
Risolvere l'equazione differenziale	$y' + \frac{3}{x}y = x^{4/3} + x^{2/7}$
con la condizione iniziale $y(-1) =$ soluzione.	x $-6/13$, determinando l'intervallo massimale di esistenza della
Risoluzione	

Studiare la convergenza dell'integrale generalizzato

$$\int_0^1 \frac{\sinh x}{x^{3/2}\sqrt{1-x^2}} \mathrm{d}x$$

Risoluzione