Definition (Product of posets)

Given two posets $\mathbf{P} = \langle \mathbf{P}, \leq_{\mathbf{P}} \rangle$ and $\mathbf{Q} = \langle \mathbf{Q}, \leq_{\mathbf{O}} \rangle$, the *product poset* is $\mathbf{P} \times \mathbf{Q} =$ $\langle \mathbf{P} \times \mathbf{Q}, \leq_{\mathbf{P} \times \mathbf{O}} \rangle$, where $\mathbf{P} \times \mathbf{Q}$ is the Cartesian product of the sets \mathbf{P} and \mathbf{Q} (??),

and the order
$$\leq_{\mathbf{P}\times\mathbf{Q}}$$
 is given by:

 $\langle p_1, q_1 \rangle \leq_{\mathbf{P} \times \mathbf{Q}} \langle p_2, q_2 \rangle$

$$\langle P1, 917 \rightarrow P \times Q \langle P2, 927 \rangle$$