Лемма о трезубце

- 1. Пусть I, I_A, I_B, I_C инцентр и эксцентры треугольника ABC. Точки V_A и W_A середины дуг BAC и BC описанной окружности треугольника. Докажите, что
- a) $V_AB = V_AC = V_AI_B = V_AI_C$;
- **b)** $W_A B = W_A C = W_A I = W_A I_A$.
- **2.** Дана окружность, точка A на ней и точка I внутри неё. Постройте треугольник ABC, вписанный в данную окружность, для которого точка I инцентр.
- 3. Внутри треугольнике ABC выбрана точка P такая, что $\angle PBA + \angle PCA = \angle PBC + \angle PCB$. Докажите, что $AP \geq AI$, где I инцентр треугольника ABC.
- 4. Пусть ABCD вписанный четырёхугольник. Докажите, что инцентры треугольников ABC, BCD, CDA и DAB лежат в вершинах прямоугольника.
- 5. (Эйлер) Пусть O, I центры описанной и вписанной окружностей треугольника; R, r радиусы этих окружностей. Докажите, что $IO^2=R^2-2Rr$.
- 6. Пусть I инцентр треугольника ABC (AB > AC), V_A середина дуги BAC его описанной окружности, а M середина BC. Докажите, что $\angle IMC = \angle IV_AA$. 7. Точки A_1 , B_1 , C_1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что $AB_1 AC_1 = CA_1 CB_1 = BC_1 BA_1$. Пусть I_A , I_B и I_C центры окружностей, вписанных в треугольники AB_1C_1 , A_1BC_1 и A_1B_1C соответственно. Докажите, что центр окружности, описанной около треугольника $I_AI_BI_C$, совпадает с центром окружности, вписанной в треугольник ABC.