ISEP IG2407

QUIZ March 19th, 2020 **Documents allowed**

Answers

1. An audio signal, which spectrum is limited to 20 kHz was digitalized at a sampling frequency F_s = 24 kHz. The reconstruction of the original analog signal from the DAC output is:

- a. Possible after applying an ideal rectangular filter over [-20 kHz, 20 kHz]
- b. Possible after applying an ideal rectangular filter over [-12 kHz to 12 kHz]
- c. Possible after applying an ideal rectangular filter over [-24 kHz to 24 kHz]
- d. Impossible, as we don't respect the Shannon sampling theorem

2. We digitalize a real valued analog signal, which spectrum belongs to the frequency band [140 MHz 160 MHz]. Which sampling frequency allows the down sampling of the signal while respecting the Shannon sampling theorem?

- a. 30 MHz
- b. 50 MHz
- c. 70 MHz
- d. 40 MHz

3. We consider the digitalized signal x(n) defined as: x(n) = 1 for $n \in \{0,1\}$ and x(n) = 0 for $n \in \{0,1\}$ $\{2,3,4,5\}$. The k^{th} sample of the Discrete Fourier Transform of this signal is equal to:

a.
$$2\cos\left(\frac{\pi k}{6}\right)e^{-\frac{j\pi k}{6}}$$

a.
$$2\cos\left(\frac{\pi k}{6}\right)e^{\frac{-j\pi k}{6}}$$

b. $\cos\left(\frac{\pi k}{6}\right)e^{\frac{-j\pi k}{6}}$
c. $2\cos\left(\frac{\pi k}{2}\right)e^{\frac{-j\pi k}{2}}$

c.
$$2\cos\left(\frac{\pi k}{2}\right)e^{-\frac{j\pi k}{2}}$$

d.
$$\cos\left(\frac{\pi k}{2}\right)e^{-\frac{j\pi k}{2}}$$

4. We consider the digitalized signal x(n) defined as: $x(n) = (-1)^{n+1}$ for $n \in \{0,1,2,3\}$. The Z-transform of this signal is equal to:

a.
$$1+z^{-1}+z^{-2}+z^{-3}$$

b.
$$1-z^{-1}+z^{-2}-z^{-3}$$

c. $-1+z^{-1}-z^{-2}+z^{-3}$

c.
$$-1 + z^{-1} - z^{-2} + z^{-3}$$

d.
$$1-z+z-z^3$$

5. We consider a digital signal $x(nT_s)$ with a sampling frequency $F_s = 512 \, Hz$. We calculate the Discrete Fourier Transform (DFT) on N = 256 samples. The last sample of the DFT corresponds to the frequency:

a.
$$f = 256 \text{ Hz}$$

b.
$$f = 250 \text{ Hz}$$

e.
$$f = 512 \text{ Hz}$$

d.
$$f = 510 \text{ Hz}$$

6. We consider the following digital filter: $H(z) = \frac{1-z^{-2}}{1+z^{-2}}$. This filter has:

a. Two poles $P_0 = e^{j\pi/2}$ et $P_0^* = e^{-j\pi/2}$ and two zeros $Z_1 = 1$ et $Z_2 = -1$ b. Two poles $P_0 = e^{j\pi/4}$ et $P_0^* = e^{-j\pi/4}$ and two zeros $Z_0 = e^{j\pi/2}$ et $Z_0^* = e^{-j\pi/2}$ c. Two poles $P_0 = e^{j\pi/2}$ et $P_0^* = e^{-j\pi/2}$ and two zeros at the origin

a. Two poles
$$P_0 = e^{j\pi/2}$$
 et $P_0^* = e^{-j\pi/2}$ and two zeros $Z_1 = 1$ et $Z_2 = -1$

b. Two poles
$$P_0 = e^{j\pi/4}$$
 et $P_0^* = e^{-j\pi/4}$ and two zeros $Z_0 = e^{j\pi/2}$ et $Z_0^* = e^{-j\pi/2}$

1

c. Two poles
$$P_0 = e^{j\pi/2}$$
 et $P_0^* = e^{-j\pi/2}$ and two zeros at the origin

d. Two zeros
$$Z_0 = e^{j\pi/2}$$
 et $Z_0^* = e^{-j\pi/2}$ and no poles

ISEP IG2407

- 7. The impulse response of a FIR filter is given by h(0) = 1, h(1) = 0 and h(2) = -1 and h(n) = 0 if n > 3. Over the frequency band $[0, F_e/2]$, this filter is:
 - a. An all pass
 - b. A band-pass
 - c. A low pass
 - d. A high-pass
- 8. The transfer function of an IIR filter is given by $H(z) = \frac{z^2 + 1}{z^2 + 1.96}$. This filter is
 - a. Non causal
 - b. Stable
 - c. Unstable
 - d. A FIR filter
- 9. A white, zero mean, Gaussian noise s(n) having a normalized variance is filtered with a FIR filter $H(z) = 1 + z^{-1} + z^{-2}$. The signal at the output of this filter is augmented with another white zero mean, Gaussian noise w(n) having a variance equal to σ^2 . The observed signal y(n) is equal to:

a.
$$s(n) + s(n-1) + s(n-2)$$

- b. s(n) + w(n)
- c. s(n) + s(n-1) + s(n-2) + w(n)
- d. s(n) + s(n-1) + s(n-2) + w(n) + w(n-1) + w(n-2)
- 10. A white, zero mean, Gaussian noise having a normalized variance is filtered by a FIR filter $H(z) = 1 + z^{-1}$. The signal at the output of this filter:
 - a. Is white
 - b. Have a non zero mean value
 - c. Have a variance equal to 2
 - d. Have a variance equal to 1