TEC-V MILESTONE 6

By: Michael Dowling & Zealand Brennan

CLIENT

- DR. Wood
 - **Professor** | Ocean Engineering and Marine Sciences
 - Program Chair for Ocean Engineering

MILESTONE 6:

Tashs	Completi on%	Michael	Zealand	To Do
Multi Fild Upload	80%	80%	0%	Testing
Styling	70%	70%	0%	Gain user Feedback
Forward Facing Sonar	30%	30%	0%	Review File Types and API
Autonomy	80%		80%	

MILESTONE TASKS

MULTIFILE UPLOAD

UPDATED FUNCTIONS

Load Coordinates

- Three different possible files:
 - Txt Holds collected data from sonar
 - Telemetry- outputted by Q-Ground
 - Distance traveled onboard IMU

MAIN ISSUE

STYLING

UPDATED UI

ATTEMPTED NEW FEATURES

Coordinate Layout

 Allow users to understand orientation of the object

PLANNED FEATURES

View Model

 Allow users to quickly focus on the model and choose a viewing location.

DELETE SPHERES

Create Cage

- Delete Multiple spheres: Function
 - Show cube with grid
 - Drag points to location
 - Delete: Will remove all points within zone

NEW SONAR + TESTING

Direct SSH

- Directly connect to sonar
 - Retrieve only the required Data
 - Does not work

MAIN ISSUES

```
♣ Test.py > 分 send_command
      import socket
      import json
      IP_ADDRESS = '192.168.2.92' # Replace with your sonar's IP address
      PORT = 51200 # Replace with your sonar's port
      def send command(command):
          with socket.socket(socket.AF INET, socket.SOCK STREAM) as sock:
                  sock.connect((IP ADDRESS, PORT))
                  print("Connected to OmniScan 450.")
                  sock.sendall(command.encode('utf-8'))
12
                  print("Command sent.")
              except Exception as e:
                  print(f"An error occurred: {e}")
      if __name__ == "__main__":
          # Example command to set start_mm to 0, adjust pulse_len_percent a
          command = json.dumps({
              "id": 2197,
              "params": {
                  "start mm": 0,
                  "pulse len percent": 10, # Adjust as needed
                  "filter duration percent": 10 # Adjust as needed
```

TESTING DAY

Goal Map floor of pool

- Code functioning and newly mount for sonar was placed on stern of ROV.
- Ethernet tether was broken causing network issues. No data collected

SHOWCASE

SHOWCASE POSTER

Topographic Exploration Cave Vehicle (TEC-V)

Michael Dowling, Zealand Brennan, Stephen Coster, Gabor Papp, Henry Hill Faculty Advisor: Marius Silaghi, Dept. of Electrical Engineering and Computer Science, Florida Institute of Technology

Introduction

- TEC-V is a project intended to advance the capabilities of underwater exploration.
- Specializing in submerged cave mapping and navigation.
- Our team tackled several major challenges, including the development of a software interface for data visualization and the integration of sonar technology for environmental scanning.

Software Architecture

- Utilized Pvthon for sonar data acquisition, translating raw data into a processableformat.
- ImplementedJavafor3D vi sualization and user interface, enabling interactive data rendering
- Employed Gazebo for virtual testing of AUV autonomy through simulated underwater environments.

Testing Location

Cloud Plot: Webpage

Functions

Mapping Process

Mechanical

- Integration of the Omniscan 450 FS sonar, enhanding ROV's scanning precision and depth.
- Custom-designed mechanical components for optimal mounting of sonar equipment and improved hydrodynamics.

Future Improvements

Cloud Plot Application Upgrades:

- · Introduce rotational adjustments for accurate data representation.
- Enhance data integration with support for multiple file formats.

Omniscan 450 FS Integration:

- Deploy the Omniscan 450 FS to refine sonar scanning precision.
- Optimize sonar positioning for comprehensive area coverage.

Autonomous Navigation:

- Improve AUV autonomy using refined sonar data.
- · Enhance the navigational algorithms through simulation testing.

CLASS DIAGRAM: CLOUD PLOT

3D CARDS:

FUTURE WORK

IMPROVEMENTS

Cloud Plot

- Fix rotation problem with multi-file
- Allow for direct connection of craft.
- Turn the current webpage into an application.

TEC-V

- Implement new sonar
- Process data on board allowing for senor integration for partial autonomy.

LIVE DEMO

TEC-V- Cloud Plot

https://bluecodehydra.github.io/3DCloudPlot_Webpage/

WEBPAGE LINK

TEC-V

https://bluecodehydra.github.io/FIT_Project-TEC_V/data.html

QUESTIONS?