Problem Set 4

Circular motion PHYS-101(en)

1. Circular motion: banked turn

A car of mass m is going around a circular turn of radius R, that is banked at an angle α with respect to the ground. The coefficient of static friction between the tires and the road is μ_s . Let g be the magnitude of the gravitational acceleration. You may neglect kinetic friction (i.e. the car's tires do not slip).

- 1. At what speed should the car enter the banked turn if the road is very slippery (i.e. $\mu_s \to 0$) in order not to slide up or down the banked turn? Call this speed v_0 .
- 2. What is the minimum speed v_{min} the car needs so that it does not slide **down** the banked turn? You can assume that $\mu_s < \tan \alpha$.
- 3. What is the maximum speed v_{max} the car can have so that it does not slide **up** the banked turn? You can assume that $\mu_s \tan \alpha < 1$.
- 4. Suppose the car enters the turn with a speed v such that $v_{max} > v > v_0$. Find an expression for the magnitude of the friction force.

2. Swinging ball

Sally swings a ball of mass m in a circle of radius R in an upright vertical plane by means of a massless string. The speed of the ball is constant and it makes one revolution every t_0 seconds.

- 1. Find an expression for the radial component of the tension in the string $T_{\rho}(\theta)$, where θ is the angle between the vertical and radial directions. Note that while the ball moves in a circle, Sally's hand cannot remain at the center of the circle, if a constant speed is to be maintained. Express your answer in terms of some combination of the parameters m, R, t_0 , and the gravitational constant g.
- 2. Is there a range of values of t_0 for which this type of circular motion can **not** be maintained? If so, what is that range?

3. Spiral motion of a point mass

A point mass P with mass m is represented in polar coordinates. The motion of P is determined by the vector sum of the following two external forces acting on it

$$\vec{F}_1 = -mk^2\vec{r}$$

and

$$\vec{F}_2 = -2m\lambda \vec{v},$$

where $k > \lambda > 0$. Note that we neglect gravity. The force \vec{F}_1 is spring-like (i.e. proportional and opposite to \vec{r} , the displacement from the equilibrium position at the origin) and \vec{F}_2 is a viscous friction-type force (i.e. proportional and opposite to the velocity v).

In this problem you are given that:

- $\dot{\phi} \neq 0$, $\ddot{\phi} = 0$, and $\ddot{\rho} \neq 0$,
- the initial conditions at t=0: $\phi=0$ and $\rho=\rho_0$,
- the formulas for the velocity \vec{v} and the acceleration \vec{a} in polar coordinates:

$$\vec{v} = \dot{\rho}\hat{\rho} + \rho\dot{\phi}\hat{\phi}$$

$$\vec{a} = \left(\ddot{\rho} - \rho \dot{\phi}^2 \right) \hat{\rho} + \left(\rho \ddot{\phi} + 2 \dot{\rho} \dot{\phi} \right) \hat{\phi},$$

• the solution of the equation $\dot{\rho} = -\lambda \rho$ has the form $\rho(t) = Ce^{-\lambda t}$, where C is an integration constant.

- 1. Represent the system graphically in polar coordinates.
- 2. Write down the equations of motion in the form of differential equations, without solving them.
- 3. From the equations of motion, determine
 - the radial position $\rho(t)$,
 - the angle $\phi(t)$ and use it to find $\rho(\phi)$ from $\rho(t)$, and
 - the speed of the particle v(t).

4. Circular motion of the earth

The earth is spinning about its axis with a period of 23 hours 56 min and 4 sec. The equatorial radius of the earth is 6.38×10^6 m. The latitude of Lausanne is $46^{\circ}31'$ N.

- 1. Find the velocity of a person at EPFL as they undergo circular motion about the earth's axis of rotation.
- 2. Find the person's centripetal acceleration.

5. Homework: Pushing a book against a wall

You are holding a book against a vertical wall by pushing it upwards with your hand. The angle between your force and the vertical is α (which is $< 90^{\circ}$). The mass of the book is m and the coefficient of static friction is μ_s . There are two cases: if you push too hard the book will start to slide up and if you don't push hard enough the book will slide down.

- 1. Draw free body diagrams for both cases, when the book is just about to start sliding.
- 2. For both cases, calculate the magnitude of your force (as a function of α) to just prevent slipping.
- 3. Calculate the force (as a function of α) for which the friction becomes zero. Evaluate your result for $\alpha = 0^{\circ}$ and $\alpha = 90^{\circ}$.