检验心理学现象

DAND VIP班公开课

I. 描述统计学回 顾

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
> 1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

· Center 集中趋势测量:

· 均值Mean:数据的算数平均值

·中位数Median:数据按照大小排列后中间的值

· 众数Mode:数据中出现次数最多的值

· Spread 离散程度测量:

·标准差(STD):衡量数据偏离"算数"平均值的程度

- · Shape 数据的形状:使用直方图观察数据的分布情况,可分为3类
 - · Right Skewed (右偏态)
 - · Left Skewed (左偏态)
 - · Symmetric (对称分布)
- · Outliers 异常值:与其他数值相比差异较大的值

- # 通过dataframe的.describe()方法 # 可以得出数据的集中趋势和离散趋势的数据
- 3 df2.describe()

	user_id	converted
count	290584.000000	290584.000000
mean	788004.876222	0.119597
std	91224.735468	0.324490
min	630000.000000	0.000000
25%	709034.750000	0.000000
50%	787995.500000	0.000000
75%	866956.250000	0.000000
max	945999.000000	1.000000

II. 假设检验

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	> 2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

怎样设置假设检验:

- · HO 零假设(null hypothesis):针对两个测量的现象是没有相关性的,或者是检验的样本和总体之间没有相关性(收集数据之前认为真的条件)。
- · H1 **对立假设(**alternative hypothesis**):**和零假设的内容完全对立的假设(与零假设是竞争 且不重合的关系)。
- · **显著性水平(significance level):**零假设为真时,发生不接受零假设的概率,即发生第一类错误的概率,用α表示。

$$H_0: p_{new} - p_{old} = 0$$

$$H_1: p_{new} - p_{old} \neq 1$$

$$\alpha = 0.05$$

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 > 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

- · **置信区间:**对总体参数的一个区间估计,在一定的置信水平的可信度 下该区间内参数值可以被纳入其中范围,范围的上下限由假设检验得 出下(右侧图),范围与假设检验描述有关。
- · **置信区间的意义:**如果我们重复取样,每次取样后都用这个方法构造 置信区间,我们有 95% 的信心说真实值落在此区间内。
- · 表示方式: (点估计 边际误差,点估计+边际误差)
 - · 边际误差:置信区间宽度的一半,通过对样本估计值的加减,达到置信区间的最终结果。
 - · 点估计:从样本统计量估计得到的总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示。
- · P值的定义: 当零假设为真, 真实值落在置信区间的概率。
 - · P值是衡量样本数据和零假设关系的值。
 - · P的取值区间为[0,1]
 - · P值很小(通常是小于等于0.05)说明样本数据有足够证据拒绝零假设,P值大则反之。

置信区间:

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 > 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

One-tailed vs two-tailed t-test

- 在统计显著性的测试中,单 尾检验与双尾检验是根据数据 集推断总体参数的两种方法。
- 双尾检验适用于估计值可能 大于也可能小于(≠)参考值 的情况。
- 单位检验适用于估计值只在 一个方向超过(要么大于,要 么小于)参考值的情况。

One-tailed t-test

A one-tailed test will test either if the mean is significantly greater than x or if the mean is significantly less than x, but not both. The one-tailed test provides more power to detect an effect in one direction by not testing the effect in the other direction.

Two-tailed t-test

A two-tailed test will test both if the mean is significantly greater than x and if the mean significantly less than x. The mean is considered significantly different from x if the test statistic is in the top 2.5% or bottom 2.5% of its probability distribution, resulting in a p-value less than 0.05.

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 > 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

临界值检验:

- 利用显著性水平确定临界值(查表) 以及拒绝法则。
- 利用检验统计量的值及拒绝法则确定是否拒绝零假设。

			T检验II			
自由度	显	著性水平(a	1)	自由度	显	著性水平 (a)
(df)	0.10	0.05	0.01	(df)	0.10	0.05
n -m -1				n -m -1		
1	6.314	12.706	63.657	301	1.650	1.968
2	2.920	4.303	9.925	302	1.650	1.968
-	2 2 5 2	2.102		***	1.000	1.070

P值检验:

- 利用检验统计量的值计算P值。
- 如果P值小于等于显著性水平,则拒 绝零假设。

III. 统计学检验方法

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	> 3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

Z检验与单样本T检验的区别:

- 目的:两种检验都是比较样本和总体参数之间的差异。
- 使用Z检验的前提:
 - 知道总体参数
 - 知道总体标准差(当样本大于30时,可使用 样本统计值代替总体标准差)
 - 总体分布为正态分布
- 使用T检验的前提:
 - 单样本T检验知道总体参数(双样本的不要求)
 - 不知道总体标准差(当样本小于30时,不能用样本统计亮代替总体标准差)
 - 总体分布为T分布
- 简化判断:样本数大于30使用Z检验(总体参数和总体标准差可由样本近似得出),小于30使用T检验。

T检验:

- 单样本T检验:在已知总体平均的前提下,对样本进行检验。
- 配对样本T检验:2个存在相依关系样本的 检验。
- 独立样本T检验:2个不存在相依关系样本的检验。

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	> 3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

Z检验与单样本T检验的区别:

- 选择:
 - Z测试是在知道总体方差的情况下,对两组数据做对比的测试方法。
 - T测试是在不知道总体方差的情况下,对两组数据做对比的测试方法。
- 假设前提:
 - 单样本Z检验与单样本T检验的假设条件相同。
 - 配对样本T检验和独立样本T检验的条件各有不同。
- 使用Z检验的前提:
 - 知道总体参数
 - 知道总体标准差(当样本大于30时,可使用样本统计值代替总体标准差)
 - 总体分布为正态分布
- 使用T检验的前提:
 - 单样本T检验知道总体参数(双样本不要求)
 - 不知道总体标准差(当样本小于30时,不能用样本统计量代替总体标准差)
 - 样本分布为T分布(当样本数量很大时,接近正态分布。T检验不要求知道总 体分布。)
- 简化判断:样本数大于30使用Z检验(总体参数和总体标准差可由样本近似得出),小于30使用T检验。

T检验:

- 单样本T检验:在已知总体 平均的前提下,对样本进行 检验。
- 配对样本T检验:2个存在相 依关系样本的检验。
- 独立样本T检验:2个不存在相依关系样本的检验。

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 > 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

- · 班上20个同学(总体),我们找5位(样本)询问是否喝咖啡
- · 图中4个深浅不一的蓝色区域,是4次抽样的随机结果

- · 如果随机取很多次5个样本的话,通过每一次5个样本的信息,我们都可以计算出这5个同学喝咖啡的比例
- · 将每次保抽样的比率简化为比例数字 展示如上图

- · 根据中心极限定律,当抽样分布样本n足够大,统计值的抽样分布会趋于正态分布(如上直方图)
- · 虽然本例中的n=5不是够大,我们仍然可以 假设它的抽样分布近似正态分布
- · 根据正态分布我们求出样本均值的置信区间

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 > 3.3 自助法	4.1 项目简介 4.2 自助法 4.3 T 检验法

遇到的问题:

小样本问题:

如果我们收到的样本比较小, 那么会不会因为偶然性的原因 使得根据样本的统计值推算总 体参数变得不准确呢。就是说 在小样本的情况下有没有效果 比较好的方法。

• 解决方法:

自助法(Bootstrap)

自助法:

• 自助法步骤:

- (1) 采用重复抽样技术从原始样本中抽取一定数量(可自己给定, 一般与原始样本相同)的样本,此过程允许重复抽样。
- (2) 根据抽出的样本计算待估计的统计量。
- (3) 重复上述N次(一般大于1000),得到N个统计量。
- (4) 根据中心极限定理,上述N个统计量符合正态分布。通过计算上述N个统计量的样本方差,可以估计统计量的置信区间。

使用条件:

Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好(如果原始样本足够大,可以使用抽样分布)。

IV. 项目导览

验证经典心理学现象,使用描述统计学和推论统计学,分析经典心理学实验"斯特普鲁效应"。

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法 Congrue	> 4.1 项目简介 1 0 DITE 法 nt Incongruent

・ 项目背景:

斯特普鲁效应:通过控制文字含义与文字颜色是否一致的条件,记录被试人的反应时间,从而分析左右脑认知的影响。

- Congruent:文字描述与颜色一致
- Incongruent:文字描述与颜色不一致
- 可以使用的检验方式:配对T检验
 - 实现方式1: 直接根据样本计算,比较24个样本Con和 Incon的数值。
 - 实现方式2: 使用自助法(Bootstrap), 通过放回抽样的方式模拟10000次抽样, 再计算。

数据说明:

- 2列数据(Congruent和Incongruent)
- 24个样本
- 数据为浮点型

	Congruent	Incongruent	」
0	12.079	19,278	
1	16.791	18.741	1
2	9.564	21.214	
3	8.630	15.687	
4	14.669	22.803	
5	12.238	20.878	
6	14.692	24.572	
7	8.987	17.394	
8	9.401	20.762	
9	14.480	26.282	
10	22.328	24.524	
11	15.298	18.644	
12	15.073	17.510	
13	16.929	20.330	
14	18.200	35.255	
15	12.130	22.158	
16	18.495	25,139	
17	10.639	20.429	
18	11.344	17.425	
19	12.369	34.288	
20	12.944	23.894	
21	14.233	17.960	
22	19.710	22.058	
23	16.004	21.157	

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 > 4.2 自助法 4.3 T 检验法

```
# 设定每次抽出的内容为bootstrap_sample
  # dataframe可以使用.sample进行抽样
  # 注意1: 第一个参数是抽样的次数
  # 注意2: 对于自助法,一般将抽样的次数设定为样本的总数(用shape[0]获得)
  # 注意3 : 抽取时默认是自助法 replace = Ture
  # .sample方法不受seed设置影响影响
6
  bootstrap_sample = coffee_red.sample(coffee_red.shape[0], replace = True)
  # 检查下,每次都不一样
  bootstrap_sample.head(1)
```

/1/ 统计学回顾	/2/ 假设检验	/3/ 统计学检验方法	/4/ 代码示例
1.1 衡量数据4维度	2.1 假设检验 2.2 置信区间与P值 2.3 单尾检验与双尾检验 2.4 如何判断假设检验	3.1 Z检验与T检验 3.2 中心极限定律 3.3 自助法	4.1 项目简介 4.2 自助法 > 4.3 T 检验法

scipy.stats.ttest_rel

scipy.stats.ttest_rel(a, b, axis=0, nan_policy='propagate')

[source]

Calculate the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values.

Parameters: a, b : array_like

The arrays must have the same shape.

axis: int or None, optional

Axis along which to compute test. If None, compute over the whole arrays, a, and b.

nan_policy: {'propagate', 'raise', 'omit'}, optional

Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'.

statistic: float or array

t-statistic

pvalue : float or array

two-tailed p-value

			rarameters.
	1	#引入scipy科学计算模块	
	2	from scipy import stats	
	3	#注意1:使用.ttest_ind和.ttest_rel计算相依和独立T检验	
3	4	# 注意2: 小括弧中输入比较的两个数据	
	5	# 注意3: 会同时输出T值和P值	
		t, ptwo = stats.ttest_rel(sample['Con'], sample['In'])	

· 注意scipy.stats.ttest计算出的值为双尾的值,如果需要单位的P值需要除以2再和a进行比较。

感谢以下资深助教对本辅导资料的贡献

孟繁春

