IQF - Trabalho Prático I

Alexandre Canhoto 63672, Amalie Andersen 62495, Felipe Pinto 61387 October 25, 2021

Contents

Question 3	Ciclo Born-Haber KP .	2	Question 6							6.1
Question 4	Ciclo Born-Haber MgCl									
${ m e~MgCl_2}$		2								

Question 3 Ciclo Born-Haber KP

Name	Mole	Energy kJ mol ⁻¹	Scale: $5*10^{-3} \mathrm{cm/kJ}$ Length (cm)	$\frac{\mathrm{K_g}^+ + \mathrm{F_g} + \mathrm{e}^-}{\frac{\Delta \mathrm{H_{ion}}(25^{\circ}\mathrm{C})\mathrm{F_g}^-}{\Delta \mathrm{H_{ion}}(25^{\circ}\mathrm{C})\mathrm{K_g}^+}}}$
$\Delta H_{ m diss} \; F_{2 m g}$ $\Delta H_{ m subl}(25{}^{\circ}{ m C}) \; K_{ m s}$ $\Delta H_{ m ion}(25{}^{\circ}{ m C}) \; K_{ m g}^{+}$ $\Delta H_{ m ion}(25{}^{\circ}{ m C}) \; F_{ m g}^{-}$ $\Delta H_{ m rede} \; KF_{ m s}$	1/2 1 1 1 1	+158 $+90$ $+418$ -328 -826	0.790 0.450 2.090 -1.640 -4.130	$K_{\rm g}+F_{\rm g}$ $K_{\rm s}+F_{\rm g}$
$\frac{\Delta H_{\text{form }} KF_s}{\Delta H_{\text{form }} KF_s} \leftarrow K_g^+$		-567 		$KF_{ m s}$

Question 4 Ciclo Born-Haber MgCl e $MgCl_2$

(i) MgCl

Name	Mole	Energy $kJ \text{mol}^{-1}$	Scale: $2*10^{-2} \mathrm{cm/kJ}$ Length (cm)
$\Delta H_{\rm diss} \operatorname{Cl}_{2\mathrm{g}}$	1/2	+242.0	2.420
$\Delta H_{\rm subl}(25^{\circ}{\rm C})~{\rm Mg_s}$	1	+150.2	3.004
$\Delta H_{\rm ion}(25^{\circ}{\rm C})~{\rm Mg_g}^+$	1	+738.1	14.762
$\Delta H_{\rm ion}(25^{\circ}{\rm C})~{\rm Cl_g}^-$	1	-349.0	-6.980
$\Delta H_{\rm rede}~MgCl_{\rm s}$	1	-676.0	-13.520
$\Delta H_{form} MgCl_s$	1	-15.7	-0.314
$\mathrm{MgCl_s} \longleftarrow$	- Mg _g ⁺	$+ \operatorname{Cl}_{\operatorname{g}}^- \longleftarrow$	

$$\begin{array}{c} \mathrm{MgCl_s} \longleftarrow \mathrm{Mg_g}^+ + \mathrm{Cl_g}^- \longleftarrow \\ \mathrm{Mg_g}^+ + \mathrm{Cl_g} + \mathrm{e}^- \longleftarrow \mathrm{Mg_g} + \mathrm{Cl_g} \longleftarrow \\ \mathrm{Mg_s} + \mathrm{Cl_g} \longleftarrow \mathrm{Mg_s} + \frac{1}{2} \, \mathrm{Cl_{2\,g}} \end{array}$$

(ii) $\overline{\mathrm{MgCl_2}}$

Name	Mole	Energy kJ mol ⁻¹	Scale: $5*10^{-3}\mathrm{cm/kJ}$ Length (cm)	_	$\frac{\mathrm{Mg}^{2+} + 2 \mathrm{Cl}_{\mathrm{g}} + 2 \mathrm{e}}{\uparrow}$	
$\Delta H_{diss} Cl_{2g}$	1	+242.0	1.2100		$2\Delta m{H_{ion}}(25^{\circ} m{C})Cl_{g}^{-}$	
$\Delta H_{\rm subl}(25^{\circ}{\rm C})~{\rm Mg_s}$	1	+150.2	0.7510			
$\Delta H_{\rm ion}(25^{\circ}{\rm C})~{\rm Mg_g}^{2+}$	1	+2188.1	10.9405			
$\Delta H_{ion}(25^{\circ}C)~Cl_{g}^{-}$	2	-349.0	-3.4900			$- Mg_g^{2+} + 2 Cl_g^{-}$
$\Delta H_{\rm rede} \ MgCl_{2s}$	1	-2524.0	-12.6200			
$\Delta H_{\rm form} \ {\rm MgCl_{2s}}$	1	-641.7	-3.2085	_		
					ΔH _{ion} (25 °C) Mg _g ²⁺	
	5	$Mg_s + Cl_{2g}$		$egin{aligned} \mathrm{Mg_g} &+ 2\mathrm{Cl_g} \\ \mathrm{Mg_s} &+ 2\mathrm{Cl_g} \\ \mathrm{Mg_s} &+ \mathrm{Cl_{2g}} \end{aligned}$	$\Delta H_{\rm subl}(25^{\circ}{\rm C})~{ m Mg_s}$ $\Delta H_{\rm diss}~{ m Cl_2}_{\rm g}$	10 cm
					$\frac{\downarrow}{\mathrm{MgCl}_{2s}}$	1 cm

Question 6

Compound	Entropy $J/K mol$					
$\overline{\mathrm{Mg}\left(\mathrm{s}\right)}$	32.68					
$\mathrm{Cl}_{2}\left(\mathrm{g}\right)$	223.07					
$\mathrm{MgCl}_{2}(\mathrm{s})$	89.62					
K(s)	64.18					
$F_2(g)$	202.78					
KF (s)	66.57					

Table 1: Entropy table

Reaction	$\Delta\mathrm{S}$	$\Delta \mathrm{G}$ (298.15 K)
$Mg(s) + Cl_2(g) \longrightarrow MgCl_2(s)$	-0.16613	-592.170
$Mg(s) + \frac{1}{2}Cl_2(g) \longrightarrow MgCl(s)$	-0.05459	0.577
$K(s) + \frac{1}{2}F_2(g) \longrightarrow KF(s)$	-0.09900	-537.483

We can now use the our calculated properties of the formation enthalpies of both MgCl₂ and MgCl to calculate the Gibbs free energy of both systems. We found properties of the entropies, please note here that we use the entropy of MgCl₂ for the entropy of MgCl as well, since we do not have the entropy of MgCl because it does not exist naturally. By calculating Gibbs free energy of both systems we can see that the Gibbs Free Energy for the formation of MgCl₂ is a negative value which means that the formation of MgCl₂ occurs spontaneously while the Gibbs Free Energy for the formation of MgCl is positive, which means that it does not occur's spontaneously.