Algoritmo Genético de Chaves Aleatórias Viciadas Aplicado ao Planejamento de Competições Esportivas

Samuel J. S. Fonseca

Universidade Federal de Ouro Preto samfonsec@gmail.com

25 de agosto de 2017

Introdução

Introdução

Evolução do Esporte

A prática do esporte como forma de lazer ou no contexto profissional se tornou um fator importante e de grande influência no cotidiano das pessoas.

Economia e Negócios

- Eventos esportivos movimentam quantidades enormes de dinheiro e atraem investidores de todos os lugares;
- Este dinheiro gira em torno de patrocínio, salários, contratos, e premiações, além da venda de produtos e ingressos para torcedores.

Introdução

Gastos

- Os gastos envolvidos em um campeonato incluem investimento em marketing, infraestrutura e os custos operacionais, como por exemplo as viagens para enfrentar os adversários;
- Estas viagens são grandes dificuldades enfrentadas pelas equipes, pois consomem muito tempo, dinheiro e afeta diretamente o bem-estar dos jogadores.

Traveling Tournament Problem (TTP)

Traveling Tournament Problem

O Problema

- Dados n times e as distâncias entre as cidades de cada um deles;
- Gerar uma tabela contendo todos o jogos e minimizando a distância.

Traveling Tournament Problem

Versões

Dentre as diferentes versões do TTP existentes, neste trabalho é abordada a versão *Mirrored Traveling Tournament Problem* (mTTP)

- O torneio é dividido em dois turnos;
- O segundo turno possui a mesma sequência de jogos do primeiro, porém, com os mandos de campo invertidos.

Restrições do mTTP

- Os times jogam contra todos os outros uma vez em cada turno;
- Cada time joga apenas uma vez em cada rodada;
- Nenhum time pode jogar mais do que três partidas consecutivas em casa ou fora;
- Duas partidas com os mesmos adversários não podem ocorrer no mesmo turno.

Motivação

Motivação

Prática

Trata-se de um problema de aplicação prática no contexto esportivo.

- Essencial para o planejamento das tabelas de diversas competições;
- Obtém resultados que diminuem os gastos e o desgaste físico das equipes nas viagens realizadas.

Teórica

Trata-se de um problema NP-Difícil, ou seja, não existe algoritmo conhecido que resolva este problema em tempo polinomial determinístico.

Entrada

É representada por uma matriz de distâncias D, em que cada elemento d_{ij} se refere à distância entre as cidades ou estádios das equipes i e j.

	T1	T2	Т3	T4
T1	0	489	340	1340
T2	489	0	358	852
Т3	340	358	0	1122
T4	1340	852	1122	0

Variável de Decisão

Além da distância, é considerada uma variável binária x_{ij}^k cujo valor é definido da seguinte maneira:

$$x_{ij}^k = \begin{cases} 1, & \text{se o time } i \text{ joga contra o time } j \text{ na rodada } k \\ 0, & \text{caso contrário} \end{cases}$$

Solução

Uma solução do mTTP consiste em uma tabela ou calendário com todos os jogos do campeonato, respeitando as restrições e minimizando a distância total viajada pelas equipes.

	T1	T2	Т3	T4
1	@T3	@T4	T1	T2
2	T4	Т3	@T2	@T1
3	T2	@T1	@T4	Т3
4	Т3	T4	@T1	@T2
5	@T4	@T3	T2	T1
6	@T2	T1	Т4	@T3

Valor de uma Solução

A distância total viajada pelas equipes em um torneio pode ser calculada como:

$$Z_{mTTP} = \sum_{k=0}^{m} \sum_{i=0}^{n} \sum_{j=0}^{n} x_{ij}^{k} d_{ij}$$
 (1)

Função Objetivo

$$min Z_{mTTP}$$

(2)

O Método

O Algoritmo Genético de Chaves Aleatórias Viciadas (*Biased Random-Key Genetic Algorithm*, BRKGA) é uma variação dos Algoritmos Genéticos (AG), que se baseiam na teoria de *Darwin* sobre a evolução das espécies para resolver problemas de otimização combinatória.

Codificação

Figura: Representação do cromossomo no BRKGA.

Decodificação

Figura: Esquema de decodificação. Adaptado de Gonçalves e Resende (2011).

- Elitismo;
- Mutação.

Figura: Elites e mutantes na nova população. Adaptado de Gonçalves e Resende (2011).

Cruzamento

Figura: Exemplo de cruzamento. Adaptado de Gonçalves e Resende (2011).

Representação Computacional

- Os times são representados por números inteiros no intervalo [0, n),
 com n sendo o número de times participantes;
- Os jogos são indicados por números inteiros no intervalo de [1, m], com $m = n \times (n-1)/2$;
- As rodadas são compostas por k jogos, em que k = n/2.

Exemplo

Para um torneio com quatro times, tem-se os seis possíveis confrontos:

- Jogo 1: 0 × 1;
- Jogo 2: 0 × 2;
- Jogo 3: 0 × 3;
- Jogo 4: 1 × 2;
- Jogo 5: 1 × 3;
- Jogo 6: 2 × 3.

Grafo de Conflitos

- É construído um grafo de conflitos que define quais jogos podem ou não acontecer em uma mesma rodada;
- O grafo é representado por uma matriz binária C, em que:

$$c_{ij} = \begin{cases} 1, & \text{se existe conflito entre os jogos } i \in j. \\ 0, & \text{caso contrário.} \end{cases}$$

- Jogo 1: 0 × 1;
- Jogo 2: 0 × 2;
- Jogo 3: 0 × 3;
- Jogo 4: 1 × 2;
- Jogo 5: 1 × 3;
- Jogo 6: 2 × 3.

		1	2	3	4	5	6
	L	1	1	1	1	1	0
2	2	1	1	1	1	0	1
3	3	1	1	1	0	1	1
4	ļ	1	1	0	1	1	1
5	5	1	0	1	1	1	1
6	5	0	1 1 1 1 0 1	1	1	1	1

Aplicando o BRKGA ao mTTP

Foram realizadas algumas alterações nos principais processos do BRKGA para aplicá-lo ao mTTP, sendo elas:

- Codificação;
 - Geração da população inicial;
- Mutação.
- Cruzamento.

Codificação

1,26	6,15	4,91	3,44	2,23	5,75
Roda	Rodada 1		Rodada 2		ada 3

• Decodificação

Rodadas	Jog	gos
1	1 × 0	3 × 2
2	1×2	3×0
3	2×0	1×3
4	0 × 1	2 × 3
5	2×1	0×3
6	0 × 2	3×1

Cruzamento

Mutação

Buscas Locais

Home-away Swap

Team Swap

Round Swap

Diversificação do conjunto Elite

- Remover indivíduos com fitness iguais;
- Substituí-los por mutantes;
- Ordenar a população.

Experimentos

Instâncias

As instâncias utilizadas nos experimentos são referentes ao site oficial do pesquisador Michael Trick^a. Elas possuem tamanhos variados e são separadas em 3 conjuntos:

- Circulares;
- National League (NL);
- Campeonato Brasileiro de 2003.

ahttp://mat.gsia.cmu.edu/TOURN/

Tabela: Comparação dos resultados para as instâncias circulares.

Instância	B*	<i>S</i> *	S	T	gap	σ
circ4	20	20	20,00	0,17	0,00%	0,00
circ6	72	72	72,00	1,10	0,00%	0,00
circ8	140	148	154,40	4,16	5,71%	3,63
circ10	272	310	317,00	12,50	13,97%	4,92
circ12	432	532	548,80	30,85	23,15%	9,05
circ14	672	856	871,40	67,74	27,38%	9,80
circ16	968	1.306	1.319,00	134,34	34,92%	7,56
circ18	1.306	1.844	1874,80	257,04	41,19%	13,83
circ20	1.852	2.544	2587,40	452,95	37,37%	20,89

Comparação dos Métodos

Tabela: Comparação dos resultados para as instâncias NL.

Instância	B*	<i>S</i> *	S	T	gap	σ
nl4	8.276	8.276	8.276,00	0,17	0,00%	0,00
nl6	26.588	26.588	26.658,20	1,11	0,00%	62,31
nl8	41.928	43.732	44.470,20	4,15	4,30%	356,90
nl10	63.832	71.488	73.193,20	12,55	11,99%	1.019,33
nl12	119.608	138.966	140.214,40	30,95	16,18%	981,84
nl14	199.363	256.551	260.991,70	67,68	28,69%	2.366,47
nl16	278.305	355.954	367.911,60	134,37	27,90%	5.437,43

Tabela: Comparação dos resultados para a instância do Campeonato Brasileiro de 2003.

Instância	B*	<i>S</i> *	S	T	gap	σ
cb2003_24	500.756	731.629	738.638,70	1.243,24	46,10%	4.970,11

Comparação dos Métodos

Conclusões

- Importante problema no contexto esportivo, por se tratar de renomadas competições que contam com um forte envolvimento de dinheiro;
- Realizadas alterações significativas no processo do BRKGA, aumentando a dificuldade na implementação e afetando a eficiência do método;
- Método proposto apresentou bons resultados para as instâncias pequenas, apesar de perder qualidade na solução à medida que o tamanho das instâncias foi aumentando. Métodos de busca local melhoraram as soluções obtidas inicialmente;
- Trabalhos futuros incluem o aprimoramento do método proposto, a realização de novos experimentos computacionais e análises adicionais à nova versão do método.