齐鲁工业大学 <u>2017/2018</u> 学年第二学期《<u>无线传感器网络</u>》 期末考试试卷(A卷) (本试卷共 8 页)

		(ji	5用班级:物籍	英网工程 2016	(级)	_	
题	号	1		Ш	总分		
得	分						
4			真空题(每题2分	共 40 分)		-	
得分		` ` ´	英工应(母应 2 万	, X TO A)			
阅卷人							
1. 无线	专感器区	网络的发展	屡历史可分为三 个	、阶段,第一阶	段是传统的传感器	紧系统,	
第二阶段是。							
2. 在传	感器节	点不能和	和网关直接通信	言的时候,路1	由器节点就起到	了连接	
	和		通信的目的。				
3. 根据覆盖目标不同,目前覆盖算法可以分为面覆盖、和。							
4. 基于	节点度算	草法的核心	1.思想是给定节点	瓦度的上限和下	限需求,动态调整	芝 节点的	
	,使	[得	落在上	.限和下限之间。			
5. 目前是	无线传属	感器网络 第	区用的主要传输介) 质包括无线电	、和	等。	
6. 设计传感器网络物理层时需要考虑、和通信频段问题							
					丙种,一种是		
				<i>8</i> ** * * = \$ * * * * *	· · · · · · · · · · · · · · · · · · ·		
				方点是否需要测	量实际节点间的距	三 离将定	
位算法	分为		的定位和		的定位算法。		
9. 在传	惑器网 约	各节点的节	5能策略中,休眠	民机制的主要思	想是,当节点周围]没有感	
兴趣的	事件发生	生时,计算	草与通信单元处于	F	,把这些组件关掉	真或调到	
			即休眠状态。				
10 无生	₽ <i>佳</i> 咸 □	哭网丝粉	7 据 駎 会 方 注 主	要有・直接を	出数据源操作的	方法	

和

11. 质心定位算法首先确定包含		_,计算这个区	[域的	
并将其作为未知节点的位置。				
12. 制定 IEEE 1451 标准的目的勍	ì是通过定义—	套通用的通信	接口,以	使变送器
(传感器/执行器)能够独立于网络,	并与现有基于	微处理器的系	统、仪器	仪表的现
场总线网络相连,解决不同网络之	之间的	问题,并	最终能够	实现变送
器到网络的	o			
13. IEEE 802.15.4 标准主要包括	和_		层的标准。	
14. WiFi 标准具有四个特点:无线电	 也波覆盖范围广	`	`	厂商进入
该领域的门槛低和	o			
15. 接入WSN的方式有面向以太网]的WSN接入、		和	0
16. 为道路参数监测节点选择光	强度传感器印	寸, 主要考虑	因素时代	专感器的
、供电电压、光波长、	强度测量范围	、封装、	以	及传感器
价格等。				
17. 智能家居可以定义为一个	或者-		°	
18. RFID 的主要技术包括	和	o		
19. RFID 与传感器整合时把 RFID 材	际签装上	,这样可以为	为标签提供	<u></u>
20. 物联网的关键技术主要有	,	RFID 标签和	<u> </u>	0
得分 二、简答题(每	题 5 分, 共 40)分)		
阅卷人				

1. 传感器硬件节点设计的主要内容时什么?

2. 拓扑控制的意义是什么?

3. 无线传感器网络路由协议考虑的因素有哪些?

4. 传感器网络的安全性需求包括哪些内容?

5. RSSI 测距的原理是什么?

6.	WSN→Internet 数据包转换的思想是什么?
7.	基于 TinyOS 的 WSN 定位系统的设计原则有哪些?
8.	智能家居网关应用软件设计主要有哪些内容?

…對……緩……緩……

得分	
阅卷人	

三、程序功能分析(每题 10 分, 共 20 分)

1. f8wconfig.cfg 文件是 Zstack 协议栈的配置文件,在此文件中可以设置 Zigbee 使用的信道和 Zigbee 网络的 PANID。根据以

// 0x0E

// 0x0D

下代码,说明 Zigbee 当前使用的信道和网络的 PANID。

```
// 信道设置
```

```
// 0 : 868MHz 0x00000001

// 1 - 10 : 915MHz 0x0000007FE

// 11 - 26 : 2.4GHz 0x07FFF800

// -DMAX_CHANNELS_868MHz 0x00000001

// -DMAX_CHANNELS_915MHz 0x0000007FE

// -DMAX_CHANNELS_24GHz 0x07FFF800
```

```
// 以下为信道 11-26 的设置
// -DDEFAULT CHANLIST = 0x04000000
                                     // 0x1A
// -DDEFAULT CHANLIST = 0x02000000
                                     // 0x19
-DDEFAULT CHANLIST = 0x00800000 // 0x17
// -DDEFAULT CHANLIST = 0x00400000
                                     // 0x16
// -DDEFAULT CHANLIST = 0x00200000
                                     // 0x15
// -DDEFAULT CHANLIST = 0x00100000
                                     // 0x14
// -DDEFAULT CHANLIST = 0x00080000
                                     // 0x13
// -DDEFAULT CHANLIST = 0x00040000
                                     // 0x12
// -DDEFAULT CHANLIST = 0x00020000
                                     // 0x11
// -DDEFAULT CHANLIST = 0x00010000
                                     // 0x10
// -DDEFAULT CHANLIST = 0x00008000
                                     // 0x0F
```

// -DDEFAULT_CHANLIST = 0x00001000 // 0x0C// -DDEFAULT_CHANLIST = 0x00000800 // 0x0B

 $-DZDAPP_CONFIG_PAN_ID = 0x1206$

// -DDEFAULT CHANLIST = 0x00004000

// -DDEFAULT CHANLIST = 0x00002000

- 2. 已知 Zstack 协议栈数据的发送和接受程序的代码如(1)和(2)所示。

```
(1) 信息发送程序代码如下:
void MySendTest SendPeriodicMessage(void){
   // 发送的数据
   char theMessageData[] = "****";
   if(AF DataRequest(
       &MySendTest Periodic DstAddr, //发送目的地址
       &MySendTest epDesc, //发送的端点描述符
       &MySendTest PERIODIC CLUSTERID, //簇 ID 号
       (uint16)osal strlrn(theMessageData)+1, //发送的字节长度
       (uint8 *)theMessageData, //发送的数据
       &MyFirstAppCoordManage TransID, //发送的数据 ID 序号
       AF DISCV ROUTE, //设置路由发现
       AF DEFAULT RADIUS //设置路由域
       ) == ZSUCCES)\{
    } else {
(2) 信息接受程序的代码如下:
void SampleApp MessageMSGCB(afIncomingMSGPacket t*pkt){
   uint16 flashTime;
   //数据的接受通过判断 clusterId
   switch(pkt->clusterId){//判断接受的输入簇 ID
       case SAMPLEAPP PERIODIC CLUSTERID:
           if((pkt->cmd.Data[0] == 'L')
             &&(pkt->cmd.Data[1] == 'E')
             &&(pkt->cmd.Data[2] == 'D')
             &&(pkt->cmd.Data[3] == '1')){//判断是否收到"LED1"
```

试分析若 theMessageData[] = "LED1" 和 theMessageData[] = "LED0"时(假设发送和接受程序的簇 ID 相同),数据接受程序的执行结果。