IMPORTING LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder,MinMaxScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
from \ sklearn. metrics \ import \ accuracy\_score, classification\_report, confusion\_matrix
data=pd.read_csv('/content/survey.csv')
data.shape
→ (1259, 27)
data.describe()
<del>_</del>
                             \blacksquare
                       Age
      count 1.259000e+03
             7.942815e+07
      mean
       std
              2.818299e+09
             -1.726000e+03
       min
       25%
             2.700000e+01
              3.100000e+01
       50%
              3.600000e+01
       75%
              1.000000e+11
       max
data = data[(data['Age'] >= 18) & (data['Age'] <= 100)]</pre>
data.describe()
<del>_</del>
                     Age
      count 1251.000000
      mean
               32.076739
                7.288272
       std
       min
               18.000000
      25%
               27.000000
       50%
               31.000000
      75%
               36.000000
               72.000000
       max
data.info()
<class 'pandas.core.frame.DataFrame'>
     Index: 1251 entries, 0 to 1258
     Data columns (total 27 columns):
     # Column
                                      Non-Null Count Dtype
         Timestamp
                                      1251 non-null object
```

1	Age	1251 non-null	int64
2	Gender	1251 non-null	object
3	Country	1251 non-null	object
4	state	738 non-null	object
5	self_employed	1233 non-null	object
6	family_history	1251 non-null	object
7	treatment	1251 non-null	object
8	work_interfere	989 non-null	object
9	no_employees	1251 non-null	object
10	remote_work	1251 non-null	object
11	tech_company	1251 non-null	object
12	benefits	1251 non-null	object
13	care_options	1251 non-null	object
14	wellness_program	1251 non-null	object
15	seek_help	1251 non-null	object
16	anonymity	1251 non-null	object
17	leave	1251 non-null	object
18	mental_health_consequence	1251 non-null	object
19	<pre>phys_health_consequence</pre>	1251 non-null	object
20	coworkers	1251 non-null	object
21	supervisor	1251 non-null	object
22	mental_health_interview	1251 non-null	object
23	phys_health_interview	1251 non-null	object
24	mental_vs_physical	1251 non-null	object
25	obs_consequence	1251 non-null	object
26	comments	161 non-null	object
1+vn	os: int64/1) object(26)		

dtypes: int64(1), object(26) memory usage: 273.7+ KB

data.head()

₹	Ti	mestamp	Age	Gender	Country	state	self_employed	family_history	treatment	work_interfere	no_employees	•••	leave mer	ntal
	0	2014-08- 27 11:29:31	37	Female	United States	IL	NaN	No	Yes	Often	6-25		Somewhat easy	
	1	2014-08- 27 11:29:37	44	М	United States	IN	NaN	No	No	Rarely	More than 1000		Don't know	
;	2	2014-08- 27 11:29:44	32	Male	Canada	NaN	NaN	No	No	Rarely	6-25		Somewhat difficult	
:	3	2014-08- 27 11:29:46	31	Male	United Kingdom	NaN	NaN	Yes	Yes	Often	26-100		Somewhat difficult	
	4	2014 - 08 - 27 11:30:22	31	Male	United States	TX	NaN	No	No	Never	100-500		Don't know	

5 rows × 27 columns

data.isnull().sum()

	0
Timestamp	0
Age	0
Gender	0
Country	0
state	513
self_employed	18
family_history	0
treatment	0
work_interfere	262
no_employees	0
remote_work	0
tech_company	0
benefits	0
care_options	0
wellness_program	0
seek_help	0
anonymity	0
leave	0
mental_health_consequence	0
phys_health_consequence	0
coworkers	0
supervisor	0
mental_health_interview	0
phys_health_interview	0
mental_vs_physical	0
obs_consequence	0
comments	1090

dtype: int64

```
data.drop(['comments'], axis= 1, inplace=True)
data.drop(['state'], axis= 1, inplace=True)
data.drop(['Country'], axis= 1, inplace=True)
data.drop(['Timestamp'], axis= 1, inplace=True)
```

data.isnull().sum()

```
∓
```

```
0
                  Age
                                      0
                 Gender
                                      0
             self_employed
                                     18
             family_history
                                      0
               treatment
                                      0
             work_interfere
                                    262
             no_employees
                                      0
                                      0
              remote_work
                                      0
             tech_company
                benefits
                                      0
              care_options
                                      0
           wellness_program
                                      0
               seek_help
                                      0
                                      0
               anonymity
                                      0
                 leave
                                      0
      mental_health_consequence
       phys_health_consequence
                                      0
                                      0
               coworkers
               supervisor
                                      0
        mental_health_interview
         phys_health_interview
                                      0
          mental_vs_physical
                                      0
           obs_consequence
                                      0
     dtype: int64
defaultInt = 0
defaultString = 'NaN'
defaultFloat = 0.0
intFeatures = ['Age']
stringFeatures = ['Gender', 'Country', 'self_employed', 'family_history', 'treatment', 'work_interfere',
                   'no_employees', 'remote_work', 'tech_company', 'anonymity', 'leave', 'mental_health_consequence',
                  'phys_health_consequence', 'coworkers', 'supervisor', 'mental_health_interview', 'phys_health_interview', 'mental_vs_physical', 'obs_consequence', 'benefits', 'care_options', 'wellness_program',
                   'seek_help']
floatFeatures = []
for feature in data:
    if feature in intFeatures:
        data[feature] = data[feature].fillna(defaultInt)
    elif feature in stringFeatures:
        data[feature] = data[feature].fillna(defaultString)
    elif feature in floatFeatures:
        data[feature] = data[feature].fillna(defaultFloat)
        print('Error: Feature %s not recognized.' % feature)
data.isnull().sum()
```

0

```
<del>_</del>
```

```
Age
                                      0
                  Gender
                                      0
              self_employed
                                      0
              family_history
                                      0
                treatment
                                      0
              work_interfere
                                      0
              no_employees
                                      0
               remote_work
                                      0
              tech_company
                                      0
                 benefits
                                      0
               care_options
                                      0
            wellness_program
                                      0
                seek_help
                                      0
                anonymity
                                      0
                  leave
                                      0
       mental_health_consequence
                                      0
       phys_health_consequence
                                      0
                coworkers
                                      0
                                      0
                supervisor
         mental health interview
                                      0
          phys_health_interview
                                      0
           mental_vs_physical
                                      0
            obs_consequence
                                      0
     dtype: int64
gender = data['Gender'].unique()
print(gender)
['Female' 'M' 'Male' 'male' 'female' 'm' 'Male-ish' 'maile' 'Trans-female' 'Cis Female' 'F' 'something kinda male?' 'Cis Male' 'Woman' 'f' 'Mal'
       'Male (CIS)' 'queer/she/they' 'non-binary' 'Femake' 'woman' 'Make' 'Nah'
'Enby' 'fluid' 'Genderqueer' 'Female ' 'Androgyne' 'Agender'
       'cis-female/femme' 'Guy (-ish) ^_^' 'male leaning androgynous' 'Male '
       'Man' 'Trans woman' 'msle' 'Neuter' 'Female (trans)' 'queer'
       'Female (cis)' 'Mail' 'cis male' 'Malr' 'femail' 'Cis Man'
       'ostensibly male, unsure what that really means']
male_str = ["male", "m", "male-ish", "maile", "mal", "male (cis)", "make", "male ", "man", "msle", "mail", "malr", "cis man", "Cis Male", "cis
trans_str = ["trans-female", "something kinda male?", "queer/she/they", "non-binary", "nah", "all", "enby", "fluid", "genderqueer", "androgyr
female_str = ["cis female", "f", "female", "woman", "femake", "female ","cis-female/femme", "female (cis)", "femail"]
for (row, col) in data.iterrows():
    if str.lower(col.Gender) in male str:
         data['Gender'].replace(to_replace=col.Gender, value='male', inplace=True)
    if str.lower(col.Gender) in female_str:
         data['Gender'].replace(to_replace=col.Gender, value='female', inplace=True)
    if str.lower(col.Gender) in trans_str:
         data['Gender'].replace(to_replace=col.Gender, value='trans', inplace=True)
#Get rid of bullshit
stk list = ['A little about you', 'p']
data = data[~data['Gender'].isin(stk_list)]
print(data['Gender'].unique())
```

```
🚁 /tmp/ipython-input-99-2513340261.py:11: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained as
      The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value.
      For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
        data['Gender'].replace(to_replace=col.Gender, value='female', inplace=True)
      tmp/ipython-input-99-2513340261.py:8: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained ass/
      The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
      For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
        data['Gender'].replace(to_replace=col.Gender, value='male', inplace=True)
      /tmp/ipython-input-99-2513340261.py:14: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained as
      The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
      For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
        data['Gender'].replace(to_replace=col.Gender, value='trans', inplace=True)
      ['female' 'male' 'trans']
data['self_employed'] =data['self_employed'].replace([defaultString], 'No')
print(data['self_employed'].unique())
→ ['No' 'Yes']
data['work_interfere'] = data['work_interfere'].replace([defaultString], 'Don\'t know' )
print(data['work_interfere'].unique())
→ ['Often' 'Rarely' 'Never' 'Sometimes' "Don't know"]
from sklearn import preprocessing
labelDict = {}
categorical_features = [col for col in data.columns if data[col].dtype == 'object' and col != 'Age']
for feature in categorical_features:
    le = preprocessing.LabelEncoder()
    le.fit(data[feature])
    data[feature] = le.transform(data[feature])
    le_name_mapping = dict(zip(le.classes_, le.transform(le.classes_)))
    labelKey = 'label_' + feature
    labelValue = list(le name mapping.keys())
    labelDict[labelKey] = labelValue
for key, value in labelDict.items():
    print(key, value)
→ label_Gender ['female', 'male', 'trans']
      label_self_employed ['No', 'Yes']
      label_family_history ['No', 'Yes']
     label_treatment ['No', 'Yes']
label_work_interfere ["Don't know", 'Never', 'Often', 'Rarely', 'Sometimes']
     label_remote_work ['No', 'Yes']
label_tech_company ['No', 'Yes']
      label_benefits ["Don't know", 'No', 'Yes']
      label_care_options ['No', 'Not sure', 'Yes']
     label_wellness_program ["Don't know", 'No', 'Yes']
label_seek_help ["Don't know", 'No', 'Yes']
label_anonymity ["Don't know", 'No', 'Yes']
     label_leave ["Don't know", 'No', 'Yes']
label_leave ["Don't know", 'Somewhat difficult', 'Somewhat easy', 'Very difficult', 'Very easy']
label_mental_health_consequence ['Maybe', 'No', 'Yes']
label_phys_health_consequence ['Maybe', 'No', 'Yes']
label_coworkers ['No', 'Some of them', 'Yes']
label_supervisor ['No', 'Some of them', 'Yes']
label_mental_health_interview ['Maybe', 'No', 'Yes']
label_phys_health_interview ['Maybe', 'No', 'Yes']
label_mental_vs_physical_["Don't know" 'No', 'Yes']
label_mental_vs_physical_["Don't know" 'No', 'Yes']
      label_mental_vs_physical ["Don't know", 'No', 'Yes']
      label_obs_consequence ['No', 'Yes']
```

```
corrmat = data.corr()
f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True);
plt.show()
```



```
k=10
cols = corrmat.nlargest(k, 'treatment')['treatment'].index
cm = np.corrcoef(data[cols].values.T)
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values
plt.show()
```



```
scaler = MinMaxScaler()
data['Age'] = scaler.fit_transform(data[['Age']])
data.head()
```

_		Age	Gender	self_employed	family_history	treatment	work_interfere	no_employees	remote_work	tech_company	benefits	•••	an
	0	0.351852	0	0	0	1	2	4	0	1	2		
	1	0.481481	1	0	0	0	3	5	0	0	0		
	2	0.259259	1	0	0	0	3	4	0	1	1		
	3	0.240741	1	0	1	1	2	2	0	1	1		
	4	0.240741	1	0	0	0	1	1	1	1	2		

5 rows × 23 columns

```
feature_cols = ['Age', 'Gender', 'family_history', 'work_interfere', 'leave', 'anonymity', 'mental_health_consequence', 'benefits']
X = data[feature cols]
y = data.treatment
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0)
models = {
    "Logistic Regression":LogisticRegression(),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Naive Bayes": GaussianNB()
}
# Evaluate each model
for name, model in models.items():
    print(f"--- {name} ---")
    # Train the model
    model.fit(X_train, y_train)
    # Make predictions
    y_pred = model.predict(X_test)
    # Calculate accuracy
    accuracy = accuracy_score(y_test, y_pred)
    # Display results
```

```
print(f"Accuracy: {accuracy:.2f}")
   print("\nConfusion Matrix:")
   print(confusion_matrix(y_test, y_pred))
   print("\nClassification Report:")
   print(classification_report(y_test, y_pred))
   print("\n")
₹
    --- Decision Tree ---
    Accuracy: 0.72
    Confusion Matrix:
    [[126 54]
     [ 50 146]]
    Classification Report:
                                recall f1-score
                                                   support
                   precision
               0
                        0.72
                                  0.70
                                            0.71
                                                        180
                                  0.74
                                            0.74
                                                       196
               1
                        0.73
                                            0.72
                                                        376
        accuracy
       macro avg
                        0.72
                                  0.72
                                            0.72
                                                        376
                                                       376
                        0.72
                                  0.72
                                            0.72
    weighted avg
    --- Random Forest ---
    Accuracy: 0.77
    Confusion Matrix:
    [[128 52]
     [ 33 163]]
    Classification Report:
                  precision
                                recall f1-score
                                                   support
                                  0.71
                                            0.75
               0
                        0.80
                                                        180
               1
                        0.76
                                  0.83
                                            0.79
                                                        196
                                                        376
                                            0.77
        accuracy
       macro avg
                        0.78
                                  0.77
                                            0.77
                                                        376
                        0.78
                                  0.77
                                            0.77
                                                        376
    weighted avg
    --- Naive Bayes ---
    Accuracy: 0.81
    Confusion Matrix:
    [[137 43]
     [ 28 168]]
    Classification Report:
                  precision
                                recall f1-score
                                                   support
                                  0.76
                                            0.79
               0
                        0.83
               1
                        0.80
                                  0.86
                                            0.83
                                                       196
                                            0.81
                                                        376
        accuracy
                        0.81
                                  0.81
                                            0.81
                                                        376
       macro avg
    weighted avg
                        0.81
                                  0.81
                                            0.81
                                                       376
   'max_depth': [3, 5, 10, None],
   'min_samples_split': [2, 5, 10],
```

```
from sklearn.model_selection import GridSearchCV
# Fine-tuning DecisionTreeClassifier
dt_param_grid = {
    'min_samples_leaf': [1, 2, 4]
dt_grid_search = GridSearchCV(DecisionTreeClassifier(), dt_param_grid, cv=5, scoring='accuracy')
dt_grid_search.fit(X_train, y_train)
print("Best parameters for DecisionTree:", dt_grid_search.best_params_)
print("Best score for DecisionTree:", dt_grid_search.best_score_)
```

Fine-tuning RandomForestClassifier

```
rf_param_grid = {
    'n_estimators': [10, 50, 100, 200],
    'max_depth': [3, 5, 10, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
rf_grid_search = GridSearchCV(RandomForestClassifier(), rf_param_grid, cv=5, scoring='accuracy')
rf_grid_search.fit(X_train, y_train)
print("Best parameters for RandomForest:", rf_grid_search.best_params_)
print("Best score for RandomForest:", rf_grid_search.best_score_)
Best parameters for DecisionTree: {'max_depth': 3, 'min_samples_leaf': 1, 'min_samples_split': 2}
     Best score for DecisionTree: 0.840000000000001
     Best parameters for RandomForest: {'max_depth': 10, 'min_samples_leaf': 2, 'min_samples_split': 10, 'n_estimators': 50}
     Best score for RandomForest: 0.8514285714285714
from sklearn.model selection import RandomizedSearchCV
param_dist = {
    'n_estimators': [10, 50, 100, 200],
    'max_depth': [3, 5, 10, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
rf_random_search = RandomizedSearchCV(RandomForestClassifier(), param_distributions=param_dist, n_iter=100, cv=5, random_state=42)
rf_random_search.fit(X_train, y_train)
print("Best Parameters for Random Forest:", rf_random_search.best_params_)
print("Best Score for Random Forest:", rf_random_search.best_score_)
Best Parameters for Random Forest: {'n_estimators': 200, 'min_samples_split': 10, 'min_samples_leaf': 2, 'max_depth': 10}
     Best Score for Random Forest: 0.848000000000001
final_model1 = rf_random_search.best_estimator_ # or dt_grid_search.best_estimator_
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
y_pred = final_model1.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
    Accuracy: 0.7925531914893617
     Confusion Matrix:
      [[128 52]
      [ 26 170]]
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
                0
                        0.83
                                  0.71
                                            0.77
                                                       180
                        0.77
                                  0.87
                                            0.81
                                                       196
                1
                                            0.79
                                                       376
         accuracv
```