

Nozzles for Focusing Aerosol Particles

by Yong-Le Pan, John Bowersett, Steven C. Hill, Ronald G. Pinnick, and Richard K. Chang

ARL-TR-5026 October 2009

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-TR-5026 October 2009

Nozzles for Focusing Aerosol Particles

Yong-Le Pan, John Bowersett, Steven C. Hill, and Ronald G. Pinnick Computational and Information Sciences Directorate, ARL

Richard K. Chang Center for Laser Diagnostics and Depart of Applied Physics Yale University, New Haven, CT 06520

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188		
data needed, and completing and reviewing the collect burden, to Department of Defense, Washington Headq	ion information. Send comme quarters Services, Directorate for other provision of law, no per-	nts regarding this burden es or Information Operations a son shall be subject to any p	timate or any other aspect nd Reports (0704-0188),	tructions, searching existing data sources, gathering and maintaining the of this collection of information, including suggestions for reducing the 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. ly with a collection of information if it does not display a currently valid	
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)	
October 2009	Final			, ,	
4. TITLE AND SUBTITLE	1 11141			5a. CONTRACT NUMBER	
			Ja. GONTRAGT NOMBER		
Nozzles for Focusing Aerosol Particles				CL CDANT AUMOED	
			5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
Yong-Le Pan, John Bowersett, Steven C. Hill, Ronald G. Pinnick, and Rickard K.					
Chang			d Rickard R.	5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES))		8. PERFORMING ORGANIZATION	
U.S. Army Research Laboratory				REPORT NUMBER	
ATTN: RDRL CIE-S				ARL-TR-5026	
2800 Powder Mill Road					
Adelphi, MD 20783-1197					
9. SPONSORING/MONITORING AGENCY	' NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)	
	. ,	,			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Approved for public release; distribution unlimited.					
42 CURRIEMENTARY NOTES					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
			1.6	.1	
				igle-particle sampling measurements of biece nozzles and a two-piece nozzle with a	
15. SUBJECT TERMS					
Aerodynamic focusing nozzle, sh	eath nozzle, atmos	pheric particles,	bioaerosols		
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON Yong-Le Pan	
a. REPORT b. ABSTRACT	c. THIS PAGE	ABSTRACT	PAGES	10h TELEPHONE NUMBER (Include area code)	

19b. TELEPHONE NUMBER (*Include area code*) (301) 394-1318 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

22

UU

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

Contents

Lis	et of Figures	iv
Ac	knowledgments	v
1.	Introduction	1
2.	First-generation Single-piece Nozzle	2
3.	Second-generation Nozzle	3
4.	Third-generation Nozzle—With Sheath Flow	4
5.	Use of these Nozzles in Army, DoD, DTRA, DARPA, DOE, and DHS Programs	8
6.	References	9
Lis	et of Symbols, Abbreviations, and Acronyms	12
Dis	stribution List	13

List of Figures

Figure 1. The design of the first-generation aerodynamic focusing nozzle for aerosol particles used for SPFS and TAOS instrument prototypes. The first nozzle that worked well was machined from aluminum.	2
Figure 2. The design of the second-generation nozzle for aerodynamically focusing $1{\text -}10\mu\text{m}$ diameter aerosol particles into an aerosol jet. Some nozzles were fabricated in aluminum and some in steel. It has been used for SPFS and TAOS measurement technologies both in the laboratory and various test fields.	3
Figure 3. Design of the third-generation nozzle assembly for aerodynamic focusing of 1–10 µm diameter particles into an aerosol jet. The outer nozzle of the assembly provides for a clean-air sheath resulting in a tightly focused of particles having nearly uniform speed and similar trajectories over a distance of about 5 mm. The nozzles are made from stainless steel.	5
Figure 4. (Left) Testing setup for the third-generation sheath nozzle, and (right) the scattering images of flowing aerosol particles at different flow rates with and without the sheath flow.	7
Figure 5. The latest version of the third-generation nozzle connects to the "top cover" of a SPFS-puffer system.	7

Acknowledgments

We acknowledge support from the Defense Advanced Research Projects Agency (DARPA) Spectral Sensing of Bioaerosols (SSBA); DARPA Semiconductor Ultraviolet Optical Sources (SUVOS); the Defense Threat Reduction Agency (DTRA) Rapid Aerosol Agent Detection (RAAD); DTRA Basic Science; the Air Force Research Laboratory (AFRL); the Department of Homeland Security (DHS) Enhanced Bioaerosol Agent Detection (EBAD); and the Department of Energy (DOE).

INTENTIONALLY LEFT BLANK.

1. Introduction

A nozzle is typically used to control the flow of a fluid exiting some region (e.g., a pipe) and moving into another fluid. In aerosol science and its applications, nozzles are often used to generate particles (as in a nebulizer where the nozzle helps control the flow of a liquid into a gas), or, as in the applications discussed here, to control the motion of the particles in the flowing gas. An aerosol is a suspension of particles in a gas. The particles may be solid, liquid, or a mixture of both. "Aerosol" is often used to refer to the particles in the suspension. Ambient aerosol particles commonly have sizes ranging from a few nanometers to a few hundred micrometers. They can be composed of a wide variety of materials. For these applications, the particles, because of their inertia, can take different trajectories depending upon their size, shape, density, and velocity, and upon the density and viscosity of the gas.

A nozzle may be used to aerodynamically focus aerosol particles so that particles in a size range can be concentrated in air (1-6), or used to separate and/or measure particles of different sizes based on their inertial properties (7-10). Also, the nozzle may be used to increase the speed of particles so that they can be impacted upon a surface (9-12). Furthermore, for the application emphasized here, the nozzles may be used to focus particles into a relatively small-diameter jet (13-19) so that the particles can be analyzed using mass spectrometry (8), laser-induced fluorescence (20-29), light scattering (30-34), or laser induced breakdown spectroscopy (35).

For the applications in which we are most interested, collimating particles from ambient air, the jet of air moves into a region where the pressure is close to atmospheric pressure, and so there are significant interactions between the rapidly flowing jet and the gas already in the chamber. As a point of interest, for mass spectrometry applications (8) the particles are typically drawn into the region of high vacuum, the interactions between the jet of gas and the gas in the chamber are negligible, and the trajectories of particles are simpler. Also, in order to achieve high sample rates for the particles, we use high particle velocities (e.g., 10 m/s), and so we avoid the aerodynamic lens technologies (17, 18, 35) that work well at low gas velocities (~0.5 L/min).

Here we report our development of several nozzles designed to aerodynamically focus aerosol particles into a small-diameter jet, so that individual particles can be illuminated by a laser beam and their light scattering and/or laser-induced fluorescence (LIF) spectra can be measured well. We also mention an additional nozzle that can aerodynamically puff selected particles out of the air stream so that they can be sorted and collected (25).

The design specifications for the aerodynamic focusing nozzles depend upon the application. For our applications in single-particle LIF and elastic scattering measurements (20–34), we want the particles to be focused into as narrow a stream as possible (as small as 20 μ m diameter would be excellent), and for the particles to remain collimated for a distance of a few millimeters.

Also, we want particles having different sizes and shapes to flow at the same speed and the same trajectory in the particle stream as it moves away from the nozzle. To help the particles flow in a collimated stream, we used an eduction tube a short distance (e.g., about 1 cm) below the nozzle.

In general, nozzles can be divided into single-piece nozzles, double-sheath nozzles, and multiple-stage nozzles (aerodynamic lenses). In this report, we briefly present the development of two different single-piece aerodynamically focusing nozzles, and then one nozzle that has a sheath flow.

2. First-generation Single-piece Nozzle

The first of our aerodynamic focusing nozzles was designed and machined by Yong-Le Pan in 1998. It was a single-piece nozzle that looks similar to a 30° cone (figure 1). Originally, plastic glass was used to make the nozzle, but it did not work well, possibly because of static charges. The first nozzle that worked well was machined from aluminum. Subsequently, several versions of this nozzle were remachined by the Yale Gibbs machine shop and used in various laboratories. This nozzle produces a laminar aerosol flow with an aerosol jet diameter of a few hundred micron at a flow rate of 0.6 to 2.1 L/min. Individual aerosol particles (1 to 10 µm size) within the jet move at about 10 m/s when the flow is nominally 1 L/min. These nozzles have been used for Single Particle Fluorescence Spectrometer (SPFS) and Two-Dimensional Angular Optical Scattering (TAOS) measurements and have been used with a variety of bioaerosol simulants and interferent aerosol particles (15–18, 25–26).

Figure 1. The design of the first-generation aerodynamic focusing nozzle for aerosol particles used for SPFS and TAOS instrument prototypes. The first nozzle that worked well was machined from aluminum.

3. Second-generation Nozzle

The primary reason we designed and built the second-generation nozzle was that we wanted to measure TAOS over very large angles using an elliptical mirror (27). In this setup, the laser and particle interrogation region (located at the mirror focal point) is located well below (more than 1 in) the nozzle exit. At this distance, the aerosol stream is no longer well focused. We modified the nozzle assembly so that it could be inserted into the relatively small (0.40 in) opening of the mirror and close to the mirror focal point (figure 2). This second-generation nozzle was designed and machined around 2003. Because this nozzle had much smaller dimensions and required more complicated internal curves, it was too difficult to make using elementary machining techniques. Eventually, it was fabricated by John Bowersett at the U.S. Army Research Laboratory (ARL) by electrical discharge machining (EDM). This second-generation nozzle functions similarly to the first-generation nozzle but with a better focusing capability. It has been used for a variety of SPFS and TAOS prototypes in various laboratories and field tests. One of the SPFS-puffer systems was operated 24 hours per day, 7 days per week in the San Francisco International Airport, CA, for several months by Sandia National Laboratories (SNL) (19–21, 27).

Figure 2. The design of the second-generation nozzle for aerodynamically focusing $1-10~\mu m$ diameter aerosol particles into an aerosol jet. Some nozzles were fabricated in aluminum and some in steel. It has been used for SPFS and TAOS measurement technologies both in the laboratory and various test fields.

4. Third-generation Nozzle—With Sheath Flow

Although the second-generation nozzle functions well and performed successfully in various applications, it had shortcomings. We found that particles of different size move at slightly different speeds within the aerosol jet. This is a problem because particles of different sizes arrive at the sampling region (where they are illuminated by the ultraviolet [UV] laser and where their fluorescence and/or TAOS are measured) at different times. Further, the aerosol stream did not remain well-collimated very far from the tip of the nozzle, limiting the region over which particles could be interrogated reliably with pulsed laser sources. So we decided to develop a new third-generation nozzle assembly with a sheath flow. Sheath nozzles have been employed previously in aerosol counting instruments such as the Particle Measuring Systems models, ASASP-X and LAS-X, and in the TSI Aerosol Particle Sizer Spectrometer. The inner nozzle of our assembly has similar design to the second-generation nozzle, but with a separate outer nozzle for a clean-air sheath flow (figure 3). This nozzle can produce a tightly focused aerosol jet of particles having relatively uniform speed over distances of more than 5 mm.

Figure 3. Design of the third-generation nozzle assembly for aerodynamic focusing of $1{\text -}10~\mu\text{m}$ diameter particles into an aerosol jet. The outer nozzle of the assembly provides for a clean-air sheath resulting in a tightly focused of particles having nearly uniform speed and similar trajectories over a distance of about 5 mm. The nozzles are made from stainless steel.

This nozzle provides for a well-defined interrogation region and also prevents the contamination of optics by preventing sampled aerosol from circulating in the optical cell.

The nozzle was EDM-machined by John Bowertsett of the ARL machine shop in 2006. The machining process posed a particular challenge, because the inner surfaces needed to be joined smoothly, with no abrupt changes in curvature, and the exit hole needed to be small (0.9-mm diameter). The external portions of the nozzles were machined in a more conventional manner using computer numerical control (CNC) lathes and milling machines running programs written by computer aided machining (CAM) software. The close tolerance of concentricity of the two nozzles was achieved by placing a perforated ring at the end of the inner nozzle. This ring

formed a close sliding fit to the outer nozzle. Fabrication of the nozzle with the desired shape was accomplished using EDM technology. First, a copper tungsten electrode was turned on a CNC lathe. The geometry of the electrode matched that of the inner surface to be machined. Next, the electrode was precisely aligned over the nozzle and the EDM process initiated. Roughing and finishing electrodes were used to produce the desired finish on the inside surface. A high degree of precision is accomplished using this method.

The nozzle assembly was tested before it was used in the TAOS and SPFS prototype detection systems. Figure 4 shows the test setup and some test results. A pulsed 532-nm laser sheet was focused by a cylindrical lens to illuminate the aerosol stream that was formed by the nozzle within a small airtight chamber. The scattering image from a 300-µm diameter fiber was used for size calibration. Test titanium oxide (TiO₂) particles with mean sizes of 2, 4.3, 7.2, and 9.6 µm were used. The aerosol sample rates were 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 L/min (through the inner nozzle), with or without a matched sheath flow through the outer nozzle. The photos reveal that this nozzle assembly has the best focusing capability around 1.0 L/min (through the inner nozzle) and can focus the aerosol particles into a stream less than 300-µm diameter and keep the stream collimated for a distance longer than 5 mm for particles larger than 3-µm diameter. The focusing is less tight for the smaller particles. This third-generation nozzle has been used for the recent SPFS and TAOS prototypes, particularly for the sampling aerosol particles directly from atmosphere and the dual-wavelength excitation UV-LIF experiments (22–24, 28–29).

The third-generation nozzle was slightly modified in 2008 for installation into a new SPFS-puffer system. There were no changes at the nozzle tips of the sheath nozzle combination, but the nozzle assembly is modified for easier machining and connection to the chamber (figure 5).

Figure 4. (Left) Testing setup for the third-generation sheath nozzle, and (right) the scattering images of flowing aerosol particles at different flow rates with and without the sheath flow.

Figure 5. The latest version of the third-generation nozzle connects to the "top cover" of a SPFS-puffer system.

5. Use of these Nozzles in Army, DoD, DTRA, DARPA, DOE, and DHS Programs

These nozzles have been used for bioaerosol detection and characterization in our SPFS (15–24) and TAOS technologies (25–29). The nozzles have found application in various programs carried out by the ARL/Yale research team, such as the Defense Threat Reduction Agency (DTRA) Rapid Aerosol Agent Detection (RAAD) program, the DTRA Basic Science Atmospheric Organic Carbon Aerosol Study, the Air Force Research Laboratory (AFRL) Scattering Pattern Measurements program, the U.S. Army Medical Institute for Infectious Disease BL-3 Detector Development program, the Department of Homeland Security (DHS) Enhanced Biological Agents Detection (EBAD) and Particle Penetration programs, the Defense Advanced Research Projects Agency (DARPA) Spectral Sensor for Biological Agents (SSBA) program, the DARPA Semiconductor UV Optical Source (SUVOS) program, and the Department of Energy (DOE) Selection of Hazardous Particles program.

6. References

- 1. Kim, M. C.; Kim, D. S.; Lee, K. W. et al. Multijet And Multistage Aerosol Concentrator: Design And Performance Analysis. *J. Aerosol Med.-Deposition Clearance Effect in Lung* **2001**, *14* (2), 245–254.
- 2. Wu, J. J.; Cooper, D. W.; Miller, R. J. Virtual Impactor Aerosol Concentrator for Cleanroom Monitoring. *J. Environ. Sci.* **1989**, *32* (4), 52–56.
- 3. Romay, F. J.; Roberts, D. L.; Marple, V. A. et al. A High-Performance Aerosol Concentrator For Biological Agent Detection. *Aerosol Sci. and Tech.* **2002**, *36* (2), 217–226.
- 4. The XMX-CV Aerosol concentrator. http://bio.dycor.com/cms/Portals/dycor.com/pdf/dycor_xmxcv_may2007.pdf (accessed 2009).
- 5. Kesavan, J.; Bottiger, J. R.; McFarland, A. R. Bioaerosol Concentrator Performance: Comparative Tests with Viable and with Solid And Liquid Nonviable Particles. *J. Applied Microbiology* **2008**, *104* (1), 285–295.
- 6. Geller, M. D.; Biswas, S.; Fine, P. A. et al. A New Compact Aerosol Concentrator for Use in Conjunction with Low Flow-Rate Continuous Aerosol Instrumentation. *J. Aerosol Sci.* **2005**, *36* (8), 1006–1022.
- 7. The Aerodynamic Particle Sizer (APS) Spectrometer from TSI. http://www.tsi.com/en-1033/products/13996/aerodynamic_particle_sizer%C2%AE_spectrometer.aspx (accessed 2009).
- 8. Murphy, D. M.; Cziczo, D. J.; Hudson, P. K.; Schein, M. E.; Thomson, D. S. Particle Density Inferred from Simultaneous Optical Aerodynamic Diameters Sorted by Composition. *J. Aerosol Science* **2004**, *35*, 135–139.
- 9. Riediker, M.; Koller, T.; Monn, C. Differences in Size Selective Aerosol Sampling for Pollen Allergen Detection Using High-volume Cascade Impactors. *Clinical and Experimental Allergy* **2000**, *30* (6), 867–873.
- 10. Maenhaut W.; Hillamo R.; Makela T. et al. A New Cascade Impactor for Aerosol Sampling with Subsequent PIXE Analysis. *Nuclear Instruments and Methods in Physics Researach Section B-beam interactions with Materials and Atoms* **1996**, 109, 482–487.
- 11. Hu, S.; Seshadri, S.; McFarland, A. R. CFD Study on Compound Impaction in a Jet-in-well Impactor. *Aerosol Science and Technology* **2007**, *41*, 1102–1109.
- 12. Burwash, W.; Finlay, W.; Matida, E. Deposition of Particles by a Confined Impinging Jet onto a Flat Surface at re = 10⁴. *Aerosol Science and Technology* **2006**, *40*, 147–156.

- 13. Dahneke, B.; Padliya, D. Nozzle-inlet Design for Aerosol Beam Instruments. *Rarefied Gas Dynamics* **1977**, 1163–72.
- 14. Tafreshi, H. V.; Benedek, G.; Piseri, P.; Vinati, S.; Barborini, E.; Milani, P. A Simple Nozzle Configuration for the Production of Low Divergence Supersonic Cluster Beam by Aerodynamic Focusing. *Aerosol Science and Technology* **2002**, *36*, 593–606.
- 15. Rostedt, A.; Putkiranta, M.; Marjamaki, M.; Keskinen, J.; Janka, K.; Reinivaara, R.; Holma, L. Optical chamber design for aerosol particle fluorescent measurement. in *Optically Based Biological and Chemical Detection for Defence III*, Carrano, J. C.; Zukauskas, A., eds; *Proc. of SPIE* **2006**, 6398, 63980G.
- 16. Deng, R.; Zhang, X.; Smith, K. A.; Wormhoudt, J.; Lewis, D. K.; Freedman, A. Focusing Particles with Diameters of 1 to 10 microns into Beams at Atmospheric Pressure. *Aerosol Science and Technology* **2008**, *42*, 899–915.
- 17. Passig, J.; Meiwes-Broer, K.-H.; Tiggesbaumker, J. Collimation of Metal Nanoparticle Beams using Aerodynamic Lenses. *Review of Scientific Instruments* **2006**, 77 (093304), 1–5.
- 18. Schreiner, J.; Voigt, C.; Mauersberger, K. et al. Aerodynamic Lens System for Producing Particle Beams at Stratospheric Pressures. *Aerosol Sci. and Tech.* **1998**, *29* (1), 50–56.
- 19. Lee, J. W.; Yi, M. Y.; Lee, S. M. Inertial Focusing of Particles with an Aerodynamic Lens in the Atmospheric Pressure Range. *J. Aerosol Sci.* **2003**, *34* (2), 211–213.
- 20. Pan, Y. L.; Holler, S.; Chang, R. K.; Hill, S.; Pinnick, R. G.; Niles, S.; Bottiger, J. R. Single-shot Fluorescence Spectra of Individual Micron-sized Bio-aerosols Illuminated by 351 nm and 266 nm Laser. *Optics Letters* **1999**, *24* (2), 116–118.
- 21 Hill, S. C.; Pinnick, R. G.; Niles, S.; Pan, Y. L.; Holler, S.; Chang, R. K.; Bottiger, J. R.; Chen, B. T.; Orr, C. S.; Feather, G. Real-time Measurement of Fluorescence Spectra From Single Airborne Biological Particles. *Field Analytical Chemistry and Technology* **1999**, *3*, 221–239.
- 22. Pan, Y. L.; Cobler, P.; Potter, A.; Chou, T.; Holler, S.; Chang, R. K.; Pinnick, R.; Wolf, J. P. High-speed, High-sensitivity Aerosol Fluorescence Spectrum Detection by Using a 32-anode PMT Detector. *Review of Scientific Instruments* **2001**, **72** (3), 1831–1836.
- 23. Pan, Y. L.; Hartings, J.; Pinnick, R. G.; Hill, S. C.; Halverson, J.; Chang, R. K. Single-Particle Fluorescence Spectrometer for Ambient Aerosols. *Aerosol Science & Technology* **2003**, *37* (8), 628–639.
- 24. Pinnick, R. G.; Hill, S. C.; Pan, Y. L.; Chang, R. K. Fluorescence Spectra of Atmospheric Aerosol at Adelphi, Maryland, USA: Measurement and Classification of Single Particles Containing Organic Carbon. *Atmospheric Environment* **2004**, *38*, 1657–1672.

- 25. Pan, Y. L.; Boutou, V.; Bottiger, J. R.; Zhang, S. S.; Wolf, J. P.; Chang, R. K. A Puff of Air Sorts Bioaerosols for Pathogen Identification. *Aerosol Science & Technology* **2004**, *38*, 598–602.
- 26. David, K.; Song, Y. K.; Patterson, W. R.; Nurmikko, A. V.; Pan, Y. L.; Chang, R. K.; Han, J.; Gherasimova, M.; Cobler, P. J.; Butler, P. D.; Palermo, V. Spectroscopic Sorting of Aerosols by a Compact Sensor Employing UV LEDS. *Aerosol Science & Technology* 2006, 40 (12), 1047–1051.
- 27. Pan, Y. L.; Pinnick, R. G.; Hill, S. C.; Rosen, J. M.; Chang, R. K. Single-particle Laser-induced-fluorescence Spectra of Biological and Other Organic-carbon Aerosols in the Atmosphere: Measurements at New Haven, CT, and Las Cruces, NM, USA. *J. of Geophysical Research* 2007,112, D24S19.
- 28. Huang, H. C.; Pan, Y. L.; Hill, S. C.; Pinnick, R. G.; Chang, R. K. Real-time Measurement of Dual-wavelength Laser-induced Fluorescence Spectra of Individual Aerosol Particles. *Optics Express* **2008**, *16* (21), 16523–16528.
- 29. Pan, Y. L.; Pinnick, R. G.; Hill, S. C.; Chang, R. K. Particle-fluorescence Spectrometer for Real-time Measurements of Atmospheric Organic Carbon and Biological Aerosol. *Environmental Science & Technology* **2009**, *43* (2), 429–434.
- 30. Holler, S.; Pan, Y. L.; Chang, R. K.; Hill, S.; Pinnick, R. G.; Bottiger, J. R. Two-dimensional Elastic Scattering Angular Patterns for the Characterization of Airborne Micro-particles. *Optics Letters* **1998**, *23* (18), 1489–1491.
- 31. Holler, S.; Auger, J. C.; Stout, B.; Pan, Y. L.; Bottiger, J. R.; Chang, R. C.; Videen, G. Observations and Calculations of Light Scattering from Cluster of Spheres. *Applied Optics* **2000**, *39* (36), 6873–6887.
- 32. Pan, Y. L.; Aptowicz, K. B.; Hart, M.; Eversole, J. D.; Chang, R. K. Characterizing and Monitoring Respiratory Aerosols by Light Scattering. *Optics Letters* **2003**, *28* (8), 589–591.
- 33. Aptowicz, K. B.; Pinnick, R. G.; Hill, S. C.; Pan, Y. L.; Chang, R. K. Optical Scattering Patterns from Single Urban Aerosol Particles at Adelphi, Maryland, USA: A classification Relating to Particle Morphologies. *J. Geophysical Research* **2006**, *111*, D12212.
- 34. Auger, J. C.; Aptowicz, K. B.; Pinnick, R. G.; Pan, Y. L.; Chang, R. K. Angularly Resolved Light Scattering from Aerosolized Spores: Observations and Calculations. *Optics Letters* **2007**, *32*, 3358–3360.
- 35. Park, K.; Cho, G.; Kwak, J. H. Development of an Aerosol Focusing-laser Induced Breakdown Spectroscopy (Aerosol Focusing-LIBS) for Determination of Fine and Ultrafine Metal Aerosols. *Aerosol Science and Technology* **2009**, *43*, 375–386.

List of Symbols, Abbreviations, and Acronyms

AFRL Air Force Research Laboratory

ARL U.S. Army Research Laboratory

CAM computer aided machining

CNC computer numerical control

DARPA Defense Advanced Research Projects Agency

DHS Department of Homeland Security

DOE Department of Energy

DTRA Defense Threat Reduction Agency

EBAD Enhanced Bioaerosol Agent Detection

EDM electrical discharge machining

LIF laser-induced fluorescence

RAAD Rapid Aerosol Agent Detection

SNL Sandia National Laboratories

SPFS Single Particle Fluorescence Spectrometer

SSBA Spectral Sensing of Bioaerosols

SUVOS Semiconductor UV Optical Sources

TAOS Two-Dimensional Angular Optical Scattering

UV ultraviolet

NO. OF COPIES ORGANIZATION

1 ADMNSTR ELEC DEFNS TECHL INFO CTR ATTN DTIC OCP 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218

- 1 DARPA ATTN IXO S WELBY 3701 N FAIRFAX DR ARLINGTON VA 22203-1714
- 1 CD OFC OF THE SECY OF DEFNS ATTN ODDRE (R&AT) THE PENTAGON WASHINGTON DC 20301-3080
 - 1 US ARMY INFO SYS ENGRG CMND ATTN AMSEL IE TD A RIVERA FT HUACHUCA AZ 85613-5300
 - 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL
 35898-5000
 - 1 US ARMY RSRCH LAB ATTN RDRL CIM G T LANDFRIED BLDG 4600 ABERDEEN PROVING GROUND MD 21005-5066
 - 1 US ARMY STRTGC DEFNS CMND ATTN CSSD H MPL TECHL LIB PO BOX 1500 HUNTSVILLE AL 35807
 - 1 CHIEF OF NAV OPS DEPT OF THE NAVY ATTN OP 03EG WASHINGTON DC 20350
 - 1 AIR FORCE RESEARCH LAB ATTN AMSSB-RRTAFRL/RHPC B BRONK WRIGHT PATTERSON AIR FORCE BASE DAYTON OH 45433

NO. OF COPIES ORGANIZATION

- 2 US AIR FORCE TECH APPL CTR ATTN HQ AFTAC/TCC ATTN S GOTOFF 1030 SOUTH HIGHWAY A1A PATRICK AFB FL 32925-3002
- 1 CENTRAL INTLLGNC AGCY DIR DB STANDARD ATTN OSS/KPG/DHRT 1E15 OHB WASHINGTON DC 20505
- 1 US DEPT OF ENERGY ATTN TECHL LIB WASHINGTON DC 20585
- 1 UNIV COLLEGE GALWAY DEPART OF EXPERIMENTAL PHSICS ATTN S G JENNINGS IRELAND
- 1 NEW MEXICO STATE UNIV DEPART OF PHYSICS ATTN R ARMSTRONG ROOM 256 GARDINER HALL LAS CRUCES NM 88003
- 1 DIRECTOR
 US ARMY RSRCH LAB
 ATTN AMSRD ARL RO EV
 W D BACH
 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709
- 1 US ARMY RSRCH LAB ATTN AMSRL-RO-EN B MANN PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211

NO. OF COPIES ORGANIZATION

- 45 US ARMY RSRCH LAB ATTN RDRL CIM P **TECHL PUB** ATTN RDRL CIM L TECHL LIB ATTN RDRL CIE P CLARK ATTN RDRL CIE S A WETMORE ATTN RDRL CIE S R PINNICK (10 COPIES) ATTN RDRL CIE S S HILL (10 COPIES) ATTN RDRL CIE S YONG-LE PAN (10 COPIES) ATTN RDRL CES S J BOWERSETT (10 COPIES) ATTN IMNE ALC IMS MAIL & RECORDS MGMT ADELPHI MD 20783-1197
- 1 CHAIRMAN JOINT CHIEFS OF STAFF ATTN J5 R&D DIV WASHINGTON DC 20301
- 2 DIR OF DEFNS RSRCH & ENGRG ATTN DD TWP ATTN ENGRG WASHINGTON DC 20301
- 1 COMMANDING OFFICER ATTN NMCB23 6205 STUART RD STE 101 FT BELVOIR VA 22060-5275
- DIR OF CHEM & NUC OPS DADCSOPS
 ATTN TECHL LIB
 WASHINGTON DC 20301
- 1 NATL GROUND INTLLGNC CTR ATTN RSRCH & DATA BRANCH 220 7TH STRET NE CHARLOTTESVILLE VA 22901-5396

NO. OF COPIES ORGANIZATION

- 1 TECOM ATTN AMSTE CL ABERDEEN PROVING GROUND MD 21005-5057
- 1 US ARMY ENGRG DIV ATTN HNDED FD PO BOX 1500 HUNTSVILLE AL 35807
- 6 US ARMY ERDEC
 ATTN SCBRD RTE A SAMUELS
 ATTN SCBRD RTE I SINDONI
 ATTN SCBRD RTE S CHRISTESEN
 ATTN SCBRD RTE W FOUNTAIN
 ATTN SCBRD RTE E STUEBING
 ATTN SCBRD RTE J R BOTTIGER
 ABERDEEN PROVING GROUND MD
 21005-5423
- 1 US ARMY MIS & SPC INTLLGNC CTR ATTN AIAMS YDL REDSTONE ARSENAL AL 35898-5500
- 1 US ARMY NATICK RDEC ACTING TECHL DIR ATTN SBCN-TP P BRANDLER KANSAS STREET BLDG 78 NATICK MA 01760-5056
- 1 US ARMY NUC & CHEML AGCY 7150 HELLER LOOP STE 101 SPRINGFIELD VA 22150-3198
- 10 YALE UNIVERSITY
 DEPART OF APPLIED PHYSICS
 ATTN R K CHANG
 15 PROSPECT ST
 NEW HAVEN, CT 06520

TOTAL: 89 (87 HC, 1 ELEC, 1 CD)