Notes on Inference Devices

Santa Fe Institute

Edward G. Huang

Summer 2018

1 Notation and Definitions

Standard notation is taken from set theory and vector algebra. We clarify some notation specific to computation and inference devices.

Computation and Turing Machines

- \mathbb{B}^* The space of all finite bit strings.
- Γ Symbol alphabet for a Turing Machine.
- Q Set of finite states for a given Turing Machine.
- δ Transition function for a given Turing Machine.
- k Number of tapes for a Turing Machine.

Inference Devices

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Conclusion function of an ID that maps $U \to \{-1,1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.
- δ Probe of any variable V parameterized by $v \in V$ such that:

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

- \wp Set of probes over $\Gamma(U)$.
- $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.

- $\bar{F} \quad \text{ Inverse. Given a function } F \text{ over } U, \, F^{-1} = \bar{F} \equiv \{\{u: F(u) = f\}: f \in F(U)\}.$
- > Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U)$ s.t. $\forall u \in U, X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$
- >> Strong inference: a device (X_1, Y_1) strongly infers a device (X_2, Y_2) iff $\forall \delta \in \wp(Y_2)$ and all $x_2, \exists x_1 \text{ such that } X_1 = x_1 \implies X_2 = x_2, Y_1 = \delta(Y_2)$.

2 Turing Machines

Arora and Barak denote a Turing Machine (TM) as $T = (\Gamma, Q, \delta)$ containing:

- 1. An alphabet Γ of a finite set of symbols that T's tapes can contain. We assume that Γ contains a special blank symbol B, start symbol S, and the numbers 0 and 1.
- 2. A finite set Q of possible states that T's register can be in. We assume that Q contains a special start state q_s and a special halt state q_h .
- 3. A transition function $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$, where $k \geq 2$, describing the rules T use in performing each step. The set $\{L, S, R\}$ denote the actions Left, Stay, and Right, respectively.

Suppose T is in state $q \in Q$ and $(\sigma_1, \sigma_2, \ldots, \sigma_k)$ are the symbols on the k tapes. Then $\delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), z)$ where $z \in \{L, S, R\}^k$ and at the next step the σ symbols in the last k-1 tapes will be replaced by the σ' symbols, the machine will be in state q, and the k heads will move Left, Right or Stay. This is illustrated in Figure 1.

Figure 1. The transition function δ for a k-tape Turing Machine

$(q,(\sigma_1,\dots,\sigma_k))$				$(q',(\sigma_2^{'},\ldots,\sigma_k^{'}),z)$				
Input symbol	Work/output symbol read		Current	New work/output tape symbol		Move work/output tape		New state
:	:	٠	i:	:	٠٠.	i :	٠	:
σ_1	σ_i	٠	q	σ_i^{\prime}	٠	z_i	•••	$q^{'}$
:	:	٠.	:	:	٠	:	٠	:

Remark: Γ can be reduced to $\mathbb{B} = \{0,1\}$ and k can be reduced to 1 without loss of computational power. Then, any Turing Machine can be expressed as a partial recursive function mapping $\mathbb{B}^* \to \mathbb{B}^* \cup NH$, where NH is the undefined non-halting output. Since $|\mathbb{B}^* \times \mathbb{B}^* \cup NH| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, the set of all Turing Machines is countably infinite.

3 Inference of Turing Machines

Theorem Every Turing Machine can be weakly inferred by an inference device.

Proof Recall the definition of weak inference:

$$\mathcal{D} > \Gamma$$
 iff $\forall \gamma \in \Gamma(U), \exists x \in X(U)$ such that $\forall u \in U, X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u))$

Preliminaries:

We want to define a countably infinite U, X(U), so that an inference device can weakly infer a countably infinite $\Gamma = \{b \in \mathbb{B}^*, T_1(b)\}$. $x \in X(U)$ can be informally phrased as: "For this input string b, what is $T_1(p)$? Then the inference device must be able to answer correctly, for either of the probes for γ_i .

Working definition of weak inference: $\forall \gamma_i, \forall \delta_{\gamma_i}, \exists x : \forall u \in X^{-1}(x)Y(u) = \delta_{y_i}(u)$

Take U to be the integers. The hard part is mapping U to $p, T_1(p)$. The mapping must be injective, i.e. there must be some u for each $(p, T_1(p))$ tuple.

Let $U := \mathbb{N}$. Let $X : U \to \mathbb{B}^*$ be the lexicographic mapping of integers to binary bit strings. We illustrate weak inference with a toy example.

w