Non è consentito usare libri o appunti.

Esercizio 1 (9 punti). Si consideri la seguente rete bayesiana.

Calcolare $P(Dyspnoea \mid Smoker, \neg TBC)$ sapendo che

```
P(LungCancer|Smoker) = 0.1 \\ P(LungCancer|\neg TBC, LungCancer) = 1 \\ P(LungCancer|\neg TBC, \neg LungCancer) = 0 \\ P(Bronchitis|Smoker) = 0.2 \\ P(Bronchitis|Smoker) = 0.1 \\ P(Bronchitis|\neg Smoker) = 0.1 \\ P(TBCOrCancer|TBC, LungCancer) = 1 \\ P(Dyspnoea|TBCOrCancer, \neg Bronchitis) = 0.5 \\ P(TBCOrCancer|TBC, \neg LungCancer) = 1 \\ P(Dyspnoea|\neg TBCOrCancer, \neg Bronchitis) = 0.05 \\ P(Dyspnoea|
```

Esercizio 2 (9 punti). Dati i dati di training mostrati in tabella, costruire un decision tree con l'algoritmo DTL e prevedere la classe del seguente nuovo esempio: age <= 30, income = medium, student = yes, credit - rating = fair.

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes _.
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no
		•	•		•

Esercizio 3 (12 punti). Si consideri il seguente problema decisionale sequenziale. Un agente in una griglia 3×3 può muoversi nelle quattro direzioni o restare fermo. Ogni volta che esegue un'azione valida, l'agente raggiunge in modo deterministico la cella corrispondente. L'interazione inizia nella cella in basso a sinistra (blu) e la cella in alto a destra (verde) è uno stato terminale. La ricompensa immediata è rappresentata nella seguente griglia:

0	0	2
-1	-10	0
0	-1	0

Simula l'esecuzione di Q-learning, partendo da una Q-table inizializzata con la ricompensa immediata, supponendo di avere osservato i seguenti episodi:

$$(0,0) \xrightarrow{\rightarrow} (1,0) \xrightarrow{\uparrow} (1,1) \xrightarrow{\rightarrow} (2,1) \xrightarrow{\uparrow} (2,2)$$

$$(2,1) \xrightarrow{\downarrow} (2,0) \xrightarrow{\uparrow} (2,1)$$

$$(1,1) \xrightarrow{\downarrow} (1,0) \xrightarrow{\rightarrow} (2,0)$$

$$(0,0) \xrightarrow{\rightarrow} (1,0) \xrightarrow{\uparrow} (1,1)$$

Usare il fattore di sconto $\gamma = 0.9$ e il tasso di apprendimento $\alpha = 1$.

Dire qual è la politica greedy una volta completati gli aggiornamenti della Q-table.