Design of wind energy systems SS 2015

Tutorial 2: Blade Element Momentum Theory

Prof. Dr. Martin Kühn Davide Trabucchi Juan José Trujillo

ForWind - Wind Energy Systems

Outline

- Class exercise
 - Blade design
 - BEM (partial load)
- Home exercise
 - Distributed soon

Assignment

Data

- Consider the turbine defined in the table as an actuator disk
- Consider the disk evenly subdivided in 10 annular rings

Task

- Design a blade following Schmitz and using a NACA 63-215 profile (see C_L in tables of CIP-Tutorial)
- Evaluate the axial induction factor of the designed blade by means of BEM for an inflow speed 10 m/s

Turbine specification

Rotor diameter [m]	100
Number of blade [-]	3
Electrical conversion efficiency [-]	0.95
Design wind speed [m/s]	10
Design tip-speed-ratio [-]	7
Design lift coefficient * [-]	0.65

Air density [kg/m3]

1.225

^{*} Based on max. gliding factor

r = (rout+rin) / 2

BEM approximation/extension

During this tutorial the following assumptions are taken in order to implement the blade element momentum method

- No wake rotation
- No drag on blade element
- No tip-loss correction
- Wake separation, turbulent wake state (see next slide)

[Fig.: www.windpower.org]

Wake separation

Turbulent wake state:

high tip-speed-ratio/induction-factor rotor ~ impermeable disk

CThrust increases

Spera (1994) empirical correction

$$a = \frac{1}{2} \left(2 + K(1 - 2a_c) - \sqrt{(K(1 - 2a_c) + 2))^2 + 4(Ka_c^2 - 1)} \right)$$

$$K = \frac{4\sin^2(\alpha)}{\sigma C_{Thrust}}$$

$$a_c \approx 0.2 \; ; \sigma = \frac{Nc}{2\pi r}$$

$$C_T = C_L \cos(\alpha) + C_D \sin(\alpha)$$

BEM Algorithm

- **CD=0**
- if ai+1>ac ai+1 according to Spera

$$K = \frac{4sin^{2}(\alpha)}{\sigma C_{Thrust}}$$

$$a_{c} \approx 0.2$$

$$\sigma = \frac{Nc}{2\pi r}$$

$$a = \frac{1}{2} \left(2 + K(1 - 2a_c) - \sqrt{(K(1 - 2a_c) + 2)^2 + 4(Ka_c^2 - 1)} \right)$$

Aerodynamic profile (NACA 63-215)

- Use C_L table in Excel-sheet of CIP-Tutorial or use the approximations below to interpolate data for BEM
- C_L,C_D curve extended to α_A
 -180°,180°
- Linear approximation of C_L(α_A)

•
$$\alpha_A \ge -20^\circ$$
, $C_L = -0.98 + 0.056 \alpha_A$ G_{-200}

■
$$\alpha_A \ge -10^\circ$$
, $C_L = 0.2 + 0.062 \alpha_A$

•
$$\alpha_{A} \ge 0^{\circ}$$
, $C_{L} = 0.2 + 0.095 \alpha_{A}$

•
$$\alpha_{A} \ge 15^{\circ}$$
, $C_{L} = 1.6$

•
$$\alpha_{A} \ge 22^{\circ}$$
, $C_{L} = 2 - 0.02 \alpha_{A}$

