TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02A, 15 jul 2022

Prof. Nelson Luís Dias

1	1
l	,

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] A seguinte função escrita em Python,

```
def epp(i,j,k):
    if i==j or i==k or j==k :
        return 0
    if (i,j,k) == (1,2,3) or (i,j,k) == (3,1,2) or (i,j,k) == (2,3,1):
        return 1
    else :
        return -1
```

calcula uma quantidade definida neste curso. Que quantidade é essa? Cite **todas** as aplicações (dadas no curso) em que ela aparece.

SOLUÇÃO DA QUESTÃO:

epp calcula o símbolo de permutação ϵ_{ijk} . Ele é usado na definição e cálculo do produto vetorial e de determinantes de ordem 3.

2 [25] Atenção: este é um cenário simplificado com fins didáticos apenas. A vazão volumétrica Q em uma bacia hidrográfica após uma chuva de uma hora de duração depende do instante t após o início da chuva, da área A da bacia, da altura h de chuva, e da aceleração da gravidade g. Obtenha todos os parâmetros adimensionais que controlam o problema, escolhendo como variáveis comuns a área A e a aceleração da gravidade g.

SOLUÇÃO DA QUESTÃO:

Existem duas dimensões fundamentais: L e T. Portanto, esperamos 3 parâmetros adimensionais As dimensões das 5 variáveis envolvidas são

$$[Q] = L T^{-3},$$
 $[t] = T,$
 $[A] = L^{2},$
 $[h] = L,$
 $[g] = L T^{-2}.$

Os grupos adimensionais são:

$$\Pi_{1} = QA^{a}g^{b},$$

$$L^{0}T^{0} = L^{3}T^{-1}[L^{2}]^{a}[LT^{-2}]^{b},$$

$$3 + 2a + b = 0,$$

$$-1 - 2b = 0,$$

$$a = -5/4,$$

$$b = -1/2,$$

$$\Pi_{1} = \frac{Q}{A^{5/4}g^{1/2}};$$

$$\begin{split} \Pi_2 &= hA^a g^b, \\ \mathsf{L}^0 \, \mathsf{T}^0 &= \mathsf{L} \big[\mathsf{L}^2 \big]^a \big[\mathsf{L} \mathsf{T}^{-2} \big]^b, \\ 1 + 2a + b &= 0, \\ -2b &= 0, \\ a &= -1/2, \\ b &= 0, \\ \Pi_2 &= \frac{h}{A^{1/2}}; \end{split}$$

$$\Pi_{3} = tA^{a}g^{b},$$

$$L^{0}T^{0} = T[L^{2}]^{a}[LT^{-2}]^{b},$$

$$0 + 2a + b = 0,$$

$$1 - 2b = 0,$$

$$a = -1/4,$$

$$b = 1/2,$$

$$\Pi_{3} = \frac{tg^{1/2}}{A^{1/4}} \blacksquare$$

$$[u \times v] \cdot w - [w \times u] \cdot v.$$

Sugestão: Faça $[u \times v] \cdot w = \epsilon_{ijk} u_i v_j w_k$ e $[w \times u] \cdot v = \epsilon_{lmn} u_l v_m w_n$. Agora troque l, m, n por i, j e k (não necessariamente nesta ordem!) de tal forma que os índices de u, v e w coincidam nas duas expressões. Prossiga.

SOLUÇÃO DA QUESTÃO:

Havia um erro na sugestão, e a questão foi anulada. A sugestão correta teria sido:

Sugestão: Faça $[u \times v] \cdot w = \epsilon_{ijk} u_i v_j w_k$ e $[w \times u] \cdot v = \epsilon_{lmn} w_l u_m v_n$. Agora troque l, m, n por i, j e k (não necessariamente nesta ordem!) de tal forma que os índices de u, v e w coincidam nas duas expressões. Prossiga. Neste caso, a solução é:

$$\begin{aligned} [\boldsymbol{u} \times \boldsymbol{v}] \cdot \boldsymbol{w} - [\boldsymbol{w} \times \boldsymbol{u}] \cdot \boldsymbol{v} &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{lmn} w_l u_m v_n \\ &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{kij} w_k u_i v_j \\ &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{kij} u_i v_j w_k \\ &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{ijk} u_i v_j w_k = 0 \ \blacksquare \end{aligned}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

SOLUÇÃO DA QUESTÃO:

$$\begin{vmatrix} 1 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{vmatrix} = 0$$

$$(1-\lambda)[(3-\lambda)(2-\lambda)-1] - 2[(2-\lambda)-2] + 1[1-2(3-\lambda)] = 0,$$

$$(1-\lambda)[6-3\lambda-2\lambda+\lambda^2-1] - 2[-\lambda] + [1-6+2\lambda] = 0,$$

$$(1-\lambda)[5-5\lambda+\lambda^2] + 2\lambda + 1 - 6 + 2\lambda = 0,$$

$$[5-5\lambda+\lambda^2-5\lambda+5\lambda^2-\lambda^3] + 4\lambda - 5 = 0,$$

$$-10\lambda+4\lambda+6\lambda^2-\lambda^3 = 0,$$

$$-6\lambda+6\lambda^2-\lambda^3 = 0,$$

$$\lambda[-6+6\lambda-\lambda^2] = 0.$$

Portanto $\lambda = 0$ é um dos autovalores. Resolvendo a equação quadrática entre colchetes, obtemos os outros dois:

$$\lambda = 3 \pm \sqrt{3}$$