HOMEWORK 10

- (1) The space of $n \times n$ real-valued matrices $M_n(\mathbb{R})$ can be viewed as the space of order n-tuples of column vectors in \mathbb{R}^n , and thus we can identify $M_n(\mathbb{R}) \cong (\mathbb{R}^n)^n \cong \mathbb{R}^{n^2}$.
 - Show that the determinant function det : $M_n(\mathbb{R}) \to \mathbb{R}$ is continuous.
 - Let $GL_n(\mathbb{R})$ denote the set of invertible $n \times n$ real-valued matrices. Show that this is not connected as a subspace of $M_n(\mathbb{R})$.
 - Let $GL_n^+(\mathbb{R}) \subseteq GL_n(\mathbb{R})$ and $SL_n(\mathbb{R})$ denote the subgroup of $n \times n$ matrices A with det A > 0 and det A = 1 respectively. Show that $GL_n^+(\mathbb{R})$ and $SL_n(\mathbb{R})$ are path connected. (Hint: Use the three standard row operations used in Gaussian elimination method to draw a path from any matrix A in $GL_n^+(\mathbb{R})$ to the identity $n \times n$ matrix.)
- (2) Prove that $GL_n(\mathbb{C})$ and $SL_n(\mathbb{C})$ are path connected. (This is far easier to prove than the previous example.)
- (3) Let (W, \leq) be a well-ordered set endowed with the order topology. If W has more than one point, show that it is disconnected.
- (4) Show the following properties of locally connected spaces:
 - Show that a continuous image of a locally connected space need not be continuous by finding a counterexample.
 - Show that a subspace of a locally connected space need not be locally connected by finding a counterexample.
 - Show that local connectedness is a topological invariant.
- (5) Show the following properties of totally disconnected spaces:
 - Show that a topological space X is totally disconnected if for every pair of distinct points $a, b \in X$ there are disjoint open sets U, V such that $a \in U, b \in V$ and $X = U \sqcup V$.
 - Show that a subspace of a totally disconnected space is totally disconnected.
 - Show that an arbitrary product of totally disconnected spaces X_{α} is totally disconnected.
 - Show that any discrete space is totally disconnected.
 - Show that \mathbb{Q} (in the subspace topology from \mathbb{R}) is totally disconnected but not discrete.
 - Show that every discrete space is locally connected.
 - Show that a totally disconnected locally connected space X must be discrete.
- (6) Topology (Munkres), Chapter 3, Section 24, Exercise (1).
- (7) Topology (Munkres), Chapter 3, Section 24, Exercise (2).
- (8) Topology (Munkres), Chapter 3, Section 24, Exercise (3).
- (9) Topology (Munkres), Chapter 3, Section 24, Exercise (8).
- (10) Topology (Munkres), Chapter 3, Section 24, Exercise (12).
- (11) Topology (Munkres), Chapter 3, Section 25, Exercise (3).
- (12) Topology (Munkres), Chapter 3, Section 25, Exercise (4).