Análise de Coerência Wavelet em Sinais Ruidosos com Picos Gaussianos Defasados

Ândrio Epping Luís Felipe Borsoi

SUMÁRIO

- Transformadas Wavelet
- 2. Definições Clássicas
- 3. Definições Alternativas e Estudo de Caso

O que é a Transformada Wavelet

- Ferramenta matemática que permite decompor um sinal em diferentes escalas e posições no tempo;
- Fornece uma representação tempo-frequência com múltiplas resoluções, ideal para análise de sinais não estacionários;
- Usa funções oscilatórias localizadas chamadas wavelets.

O que é a Transformada Wavelet

- Capta eventos transitórios como picos, saltos e impulsos;
- Permite localizar no tempo quando diferentes frequências ocorrem;
- Adapta-se automaticamente:
 - Boa resolução temporal em altas frequências;
 - Boa resolução espectral em baixas frequências.

O que é a Transformada Wavelet

20

10°

10¹

10²

Frequency (Hz)

 10^{3}

Wavelet vs Fourier

Características	Fourier	Wavelet
Resolução temporal	Baixa	Alta (para eventos curtos)
Resolução em frequência	Alta	Adaptativa
Sinais estacionários	Ideal	Funciona também para não estacionários
Localização no tempo	Não possui	Sim

Fourier: "quais frequências existem?"

Wavelet: "quando as frequências ocorrem?"

Objetivo do trabalho

- Validar uma nova definição de espectro de potência (WPS), espectro cruzado (WCS) e coerência wavelet (WCO);
- Detectar padrões similares com atraso entre sinais;
- Baseado na formulação de Schuck e Bardo (2019).

WPS, WCS e WCO

WPS:

- Mede a energia local do sinal em diferentes escalas e tempos.
- Ajuda a identificar quando e em que escala ocorre atividade significativa no sinal.

• WCS:

- Mede a correlação local entre dois sinais no domínio tempoescala.
- Captura estruturas semelhantes entre dois sinais, mesmo que ruidosos.

WCO:

 Mede o grau de similaridade normalizado entre dois sinais, faixa por faixa.

Definições clássicas

$$W_{x}(b,a) = \int_{-\infty}^{\infty} x(t) \, \psi^{*}\left(\frac{t-b}{a}\right) dt$$

$$\mathrm{WPS}_{\scriptscriptstyle X}(b,a) = E\left\{W_{\scriptscriptstyle X}(b,a)\,\overline{W_{\scriptscriptstyle X}(b,a)}\right\}$$

$$\mathrm{WCS}_{xy}(b,a) = E\left\{W_x(b,a)\,\overline{W_y(b,a)}\right\}$$

$$WCO_{xy}(b, a) = \frac{|WCS_{xy}(b, a)|^2}{|WPS_x(b, a)| \cdot |WPS_y(b, a)|}$$

*"E" representa a média de várias realizações do cálculo da transformada para um mesmo par de parâmetros a, b

Wavelet-Mãe como uma Morlet complexa

- Ideal para detecção de pulsos;
- 0.5: largura da janela gaussiana
 - valores maiores ⇒ melhor resolução em frequência;
- 1.5: frequência central da onda portadora
 - valores maiores ⇒ melhor resolução temporal;
- Função complexa: mantém a fase do sinal para cálculo do WCS.

$$\psi(t) = e^{i2\pi f_0 t} \cdot e^{-\frac{t^2}{2\sigma^2}}$$

Definições alternativas

Funções de autocorrelação e correlação cruzada

$$\widehat{R}_{xx}[m] = \frac{1}{N-m} \sum_{n=0}^{N-m-1} x[n+m] \cdot \overline{x[n]}$$

$$\widehat{R}_{yy}[m] = \frac{1}{N-m} \sum_{n=0}^{N-m-1} y[n+m] \cdot \overline{y[n]}$$

$$\widehat{R}_{xy}[m] = \frac{1}{N-m} \sum_{n=0}^{N-m-1} x[n+m] \cdot \overline{y[n]}$$

CWT nas correlações ao invés do sinal diretamente

$$\begin{split} & \text{WPS}_{x}(b, a) = E\left\{\left|\mathcal{CWT}\{\widehat{R}_{xx}[m]\}(b, a)\right|\right\} \\ & \text{WPS}_{y}(b, a) = E\left\{\left|\mathcal{CWT}\{\widehat{R}_{yy}[m]\}(b, a)\right|\right\} \\ & \text{WCS}_{xy}(b, a) = E\left\{\mathcal{CWT}\{\widehat{R}_{xy}[m]\}(b, a)\right\} \end{split}$$

$$WCO_{xy}(b, a) = \frac{|WCS_{xy}(b, a)|^2}{|WPS_x(0, a)| \cdot |WPS_y(0, a)|}$$

*b=0 indica o ponto com autocorrelação máxima

Ferramentas Utilizadas

- Linguagem: Python
- Bibliotecas: NumPy, SciPy, PyWavelets, Matplotlib
- Visualização em heatmaps 2D

Geração do sinal de entrada

- Pulso Gaussiano unitário modulado; $g(t) = e^{-t^2} \cdot \cos(6t)$
- Adição de ruído branco;
- Segundo sinal idêntico com 0,4 s de atraso.

Espectro de potência Wavelet (WPS)

Espectro Cruzado Wavelet (WCS)

Coerência Wavelet (WCS)

Conclusão

- Ideal para detectar eventos curtos e localizados;
- Detecta satisfatoriamente atrasos em um sinal;
- Determina precisamente o atrasado detectado;
- Preciso mesmo com ruídos no sinal;
- Coerência Wavelet não necessita suavização como a definição clássica;
- Repositório.

Obrigado!

