The later development in xenopus and zebrafish

曹莹 (65986033) yingcao@tongji.edu.cn

Xenopus: gastrulation~ neurulation

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate mesoderm: kidney
- 3) lateral plate mesoderm: heart, blood vessels, blood cells

Endoderm

gut

Major derivati of ectoderm germ layer

The major questions to be addressed during ectoderm differentiation

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate mesoderm: kidney
- 3) lateral plate mesoderm: heart, blood vessels, blood cells

Endoderm

gut

Primary neurulation in an amphibian embryo

Primary vs secondary neurulation

Neural tube (神经管) formation

- neural tube (神经管) is the rudiment (原基) of the central nervous system, the formation process of which is called neurulation (神经管形成). There are two major ways of neurulation: primary (初级) neurulation and secondary (次级) neurulation.
- Primary neurulation: neural plate cells → proliferate, invaginate and pinch off → tube (anterior)
- Secondary neurulation: mesenchyme cells→
 coalescence (聚集) → cord → hollow → tube
 (posterior)

Primary neurulation in chick embryo

Notochord and it's secreated Shh is required for MHP formation

Noggin is required for DLHP and neural tube closure

(A) Wild-type

Noggin expressed; neural tube closure

(B) Noggin^{-/-}

BMPs hyperactive, neural tube fails to close

Mechanism of organizer's function in DV patterning

BMP prevents MHP formation

Morphogen regulation of hinge point formation

Neural tube closure in the mammalian embryo

Neural tube closure at mouse site 2 (midbrain region)

a transgenic CAG:Venusmyr mouse

Neural tube zipper advance in Ciona (海鞘)

Expression of N- and E-cadherin adhesion proteins during neurulation in Xenopus

Environmental influences on neural tube defects and the role of folic acid

Patterning of the neural tube

DV patterning of the spinal cord

DV patterning of neural tube in chick

How does DV patterning form in neural tube?

Shh is required for ventral neural cells

DV patterning of neural tube is controlled by shh & $TGF-\beta$

Pax7 (blue, the dorsal neural tube cells), Pax6 (green), and Nkx6.1 (red). Nkx6.1 & Pax6 overlap (yellow), motor neurons

Shh

a blue 15-year old anthropomorphic hedgehog run at supersonic speeds curl into a ball primarily to attack enemies

Notochord-derived 5hh induces ventral neural tube structures

Neural tube gene expression responds to both concentrat ion and duration of Shh

Neural tube differenciation: anterior-posterior patterning

Model for maturation and specification of the caudal region of the spinal cord.

Summary (I)

Key word:
 primary & secondary neurulation, Shh

Event and mechanism
 neural tube formation, neural tube
 patterning (DV pattering)

Graph Summary (I)

Graph Summary (II)

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate mesoderm: kidney
- 3) lateral plate mesoderm: heart, blood vessels, blood cells

Endoderm

gut

Neural crest cells (神经嵴细胞)

• Specification: at the neural plateepidermis boundary.

- Feature:
- Migration.
- Multipotency: can differentiate into different type of cells depending on the location.

Neural crest cell formation

Regions of neural crest

- 1. cranial (面部) neural crest:→ cranial cartilage (面部软骨), bone, neurons, glia, etc;
- 2. trunk (躯干) neural crest: → dorsal root ganglia (背部神经节), melanocytes (色素);
- 3. vagal (迷走神经) and sacral (骶骨) neural crest:
 → parasympathetic ganglia (副交感神经) of the gut
- 4. cardiac (心) neural crest: subregion of the vagal neural crest (交感神经嵴的一部分), → melano- cytes, neurons, cartilage, connective tissue (结缔组织)

Trunk neural crest cells are multipotent stem cells

Model for neural crest lineage segregation and the heterogeneity of neural crest cells.

Specification of neural crest cells

The gene regulatory network for neural crest development

Neural Crest Cell Migration

Analogy of neural crest to the guidance and movement

Delamination of neural crest cells

RhoB protein (green) is expressed in cells as they delaminate.

Neural crest cells lose their adhesive junctions and separate from the epithelium in a process known as **delamination**. Neural crest delamination and migration by contact inhibition

Migrating neural crest cells demonstrate contact inhibition of locomotion in a live zebrafish embryo

Model of collective migration of neural crest cells

neural crest cell Migration in trunk of the chick embryo

Two major migratory pathways:

The ventral pathway: travel through anterior part of the sclerotome (生骨节).

→ sympathetic and parasympathetic ganglia, dorsal root ganglia.

The dorsolateral pathway: travel along the dorsolateral region between epidermis and dermamyotome (生肌节). → melanocytes.

Neural crest cells only migrate through anterior part of the somite

Segmental restriction of neurons by ephrin proteins

cell differentiation in the ventral pathway

Sox8: neural crest cells SF1: the adrenal cortical cells

the enteric (gut) ganglia for peristalsis

Neural crest cell migration in the dorsolateral pathway through the skin

(A)

ISH of mouse @ e11

(B)

Stage 18 chick embryo

Variable melanoblast migration, caused by different mutations

Spotted pigmentation & deafness: the random death of melanoblasts

Cranial neural crest cell migration in the mammalian head

"Chase and run" model for chemota ctic cell migration

Summary (II)

Key word:
 neural crest cells, multipotency

Event and mechanism:
 neural crest cells formation, migration

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate mesoderm: kidney
- 3) lateral plate mesoderm: heart, blood vessels, blood cells

Endoderm

gut

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate mesoderm: kidney
- 3) lateral plate mesoderm: heart, blood vessels, blood cells

Endoderm

gut

Cyclolamb and cyclopamine

Corn lily (玉米百合)

Mouse cyclopic mutant

Zebrafish cyclopic mutant

WT

Nodal mutant (i.e., cyc, sqt, oep)

http://www.ucl.ac.uk/zebrafish-group/research/forebrain.php

Seperation of the eye field in zebrafish

Seperation of the eye field in zebrafish

Seperation of eye field requires Shh and Nodal signal

Development of vertebrate eye

Lens induction

ey/pax6 can ectopically induce eye formation

Pax6 is also important for eye development in mammals

A-C: Eyes of adult wild type (left), Pax6^{tm1Gfs}/Pax6⁺ (center), and Pax6^{tm1Gfs}/Pax6^{tm1Gfs} (right) mice. Arrow indicates hypoplasia of the iris with a larger pupil. D: eyes of adult mice after fixation. Black: iris; white: lens. Arrow: iris hypoplasia. E & F: a homozygous mouse eye (F) showing an irregular iris (arrow) in the pupil region.

Summary (III)

- Key word:
 eye field, shh, nodal, lens
- Event and mechanism
 eye field seperation, lens induction