CSE 505

Lecture #8

September 26, 2012

let if = b. t. e.((b t) e)

We can justify the above reptn by showing:

- a. (((if true) T1) T2) ==>* T1
- b. (((if false) T1) T2) ==> * T2

Example:

(((b. t. e.((b t) e) true) T1) T2)
==> ((t. e.((true t) e) T1) T2)
==>* ((true T1) T2) = ((x. y.x T1) T2)
==> (y.T1 T2)
==> T1

Idea behind Church Numerals

Constructors: zero, succ(zero), succ(succ(zero)),

...

Alternatively: z, s(z), s(s(z)), ...

Lisp Syntax: z, (s z), (s (s z)), ...

Abstract Names: s. z.z,

s. z.(s z),

s. z.(s (s z)), ...

CSE 505 / Jayaraman

Operations on numbers

Let succ = n. f. x. ((n f) (f x))

Let add = n1. n2. f. x. $((n1 \ f) \ ((n2 \ f) \ x))$

Let mult = n1. n2. f. x. ((n1 (n2 f)) x)

Let mystery = n1. n2. (n2 n1)

(SUCC S. Z.Z)

Data Structures

Recall Lisp lists:

(cons 1 nil)

'(1 2 3) (cons 1 (cons 2 (cons 3 nil)))

The names of the constructors nil and cons are not important, so we "abstract them away" in lambda calculus, as shown on next slide.

Lecture 8: 9/26/ 2012

CCC FOF (I

Encoding Lists

- c. n.n
- c. n. ((c tom) n)
- c. n . ((c tom) ((c dick) n))
- c. n . ((c tom) ((c dick) ((c harry) n)))
- •

Function to get first element:

I.((I x. y.x) a)

(I.((I x. y.x) a) c. n.((c tom) ((c dick) n)))

→* tom

```
(I.((I x. y.x) a) c. n.((c tom) ((c dick) n)))
```

 \Rightarrow ((c. n.((c tom) ((c dick) n))) x. y.x) a)

 \Rightarrow (n.((x. y.x tom) ((x. y.x dick) n))) a)

 \Rightarrow (n.(y.tom ((x. y.x dick) n))) a)

 \Rightarrow (y.tom ((x. y.x dick) a)))

⇒tom

Lecture 8: 9/26/2012

CSE 505 / Jayaraman

LAMBDA CALCULUS TOOL DEMO

Lecture 8: 9/26/ 2012

CSE 505 / Jayaraman

Computability

- The language of lambda expressions is powerful enough to encode all computable functions!
- Notice that there is no recursive function definition – but this can be simulated, as will be next shown.

Recursive Definition

Consider recursive definition:

f(n) = if isO(n) then 1 else n * f(n-1)

Lisp syntax:

(defun f (n) (if (is0 n) 1 (* n (f (- n 1)))))

Lambda calculus (not quite):

letrec f = n.(((if (is0 n)) 1) ((mult n) (f (pred n))))

Lecture 8: 9/26/ 2012

12

Representing Recursion

$$\begin{array}{ll} \text{let } t = & \text{f.} & \text{n.}(((\text{if (is0 n)}) \ \ 1) \\ & & ((\text{mult n}) \ (\text{f (pred n)}))) \end{array}$$

Fixed-Point Operator, Y:

let
$$Y = f. (x.(f(x x)) (x.(f(x x)))$$

Note: Fixed point of F is an x such that F(x) = x

Thus the non-recursive equivalent of fact: (Y t)

$$Y = f. (x.(f(x x)) x.(f(x x)))$$

Y is fixed-point operator, because (for any t):

$$(Y \ t) <==>^* (t \ (Y \ t))$$

Derivation:

$$(Y t) = (f. (x.(f (x x)) x.(f (x x))) t)$$

$$==> (x.(t (x x)) x.(t (x x)))$$

$$==> (t (x.(t (x x)) x.(t (x x)))))$$

$$<==> (t (Y t))$$

Lecture 8: 9/26/ 2012

COP FOR I

Recursion and Fixed-points

fact = n.(((if (is0 n)) 1) ((mult n) (fact (pred n)))

$$t = f. n.(((if (is0 n)) 1) ((mult n) (f (pred n))))$$

Why does the fixed-point of t capture f?

Fixed point g has the property: g = (t g)

$$g = n.(((if (is0 n)) 1) ((mult n) (g (pred n)))$$

Lecture 8: 9/26/2012

CSE 505 / Javaraman

Least Fixed Point

Consider: letrec f(n) = if n=0 then 0 else f(n);

Fixed-point f1(n) =
$$\begin{cases} 0, & \text{if } n=0 \\ 1, & \text{if } n=0 \end{cases}$$
Fixed-point f2(n) =
$$\begin{cases} 0, & \text{if } n=0 \\ 2, & \text{if } n=0 \end{cases}$$

Least fixed-point
$$g(n) = \begin{cases} 0, & \text{if } n=0 \\ ?, & \text{if } n=0 \end{cases}$$

Lecture 8: 9/26/ 2012

CSE 505 / Jayaraman

Typed Lambda Calculi

Thus far, we have studied the untyped lambda calculus, i.e., no types associated with vars.

There are two well-known calculi:

- the simply-type lambda calculus
- the second-order (polymorphic) lambda calculus

Interesting, adding types causes all lambda expressions to terminate! Cannot have (x x).

Lecture 8: 9/26/2012

CSE 505 / Jayaraman