

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
	Código da Disciplina:						
	EQM304						
	-1						
Carga horária semar	nal: 00 - 00 - 04						
Série:	Período:						
3	Diurno						
3	Noturno						
3	Noturno						
Graduação	Pós-Graduação						
iro Químico	Doutor						
Graduação	Pós-Graduação						
iro Químico	Mestre						
iro Químico	Doutor						
Maria Ratusznei Engenheiro Químico							
iro de Alimentos	Doutor						
i	Série: 3 3 3 3 Graduação ro Químico Graduação ro Químico ro Químico ro Químico ro Químico						

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

O objetivo dessa disciplina é fornecer ao aluno da habilitação Engenharia Química condições para aplicar conceitos teóricos e analisar operações unitárias e reatores da indústria química, com base nos fundamentos de fenômenos de transporte, termodinâmica para engenharia química, cálculo de reatores químicos e operações unitárias da indústria química. Incentivar o uso de ferramentas computacionais que possibilitam um maior entendimento dos fenômenos relacionados aos processos químicos industriais e a otimização desses processos.

Nesse contexto, considerando-se as partes teórica e prática da disciplina, faz-se uma associação dos principais objetivos com as categorias de aprendizagem, ou seja, os conhecimentos, as habilidades e as atitudes:

(i) Conhecimentos:

- C1 Fundamentos de fenômenos de transporte, termodinâmica química aplicada, cálculo de reatores químicos;
- C2 Formulação das equações de conservação de massa e de energia (balanços de massa e de energia) em unidades operadas nos modos descontínuo, semi-contínuo e contínuo, em regime permanente e transiente;
- C3 Fundamentos do estudo cinético de sistemas químicos pelo uso de reatores homogêneos, ideais e isotérmicos operados nos modos descontinuo e contínuo.

(ii) Habilidades:

2020-EQM304 página 1 de 13

- H1 Aplicar os conceitos de fenômenos de transporte, termodinâmica química aplicada, cálculo de reatores químicos ao projeto de processos;
- H2 Compreender a síntese da equação de conservação de massa (balanço de massa ou molar) e da equação de conservação de energia (balanço de energia), discernindo sobre os termos que as compõem e as aplicações em processos;
- H3 Analisar e projetar equipamentos pelo uso dos balanços de massa e de energia, além das equações cinéticas, considerando também a resolução por métodos numéricos, relacionando o projeto de equipamentos como etapa da engenharia de processos (planta química).

(iii) Atitudes:

- Al Programar, executar e analisar experimentos relacionados às etapas de processos da indústria química;
- A2 Interpretar os aspectos fenomenológicos que originam o equacionamento matemático de equipamentos e sua posterior resolução numérica, relacionando a causa e efeito entre o dimensionamento do equipamento e as variáveis de processo.

EMENTA

Programação, execução e análise de experimentos relacionados aos temas Fenômenos de Transporte, Termodinâmica para Engenharia Química, Cálculo de Reatores Químicos e Operações Unitárias da Indústria Química. Uso de ferramentas computacionais que possibilitem o tratamento de resultados experimentais, além de um maior entendimento e a otimização dos processos.

SYLLABUS

Programming, implementation and analysis of experiments related to the topics: Transport Phenomena, Thermodynamics for Chemical Engineering, Chemical Reactors Design and Unit Operations in Chemical Industry. Use of computational tools that enable the treatment of experimental results, as well as a greater understanding and optimization of the processes.

TEMARIO

Programación, ejecución y análisis de experimentos relacionados a los temas: Fenómenos de Transporte, Termodinámica para Ingeniería Química, Cálculo de los Reactores Químicos y Operaciones Unitarias de la Industria Química. El uso de herramientas computacionales que permiten el tratamiento de los resultados experimentales, así como una mayor comprensión y optimización de procesos.

2020-EQM304 página 2 de 13

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Project Based Learning
- Problem Based Learning
- Gamificação
- Grupos avaliam uns aos outros

METODOLOGIA DIDÁTICA

Visando ao alcance dos objetivos determinados para a disciplina, com ênfase em metodologias ativas de aprendizagem, as atividades propostas são as seguintes:

- (a) Definição da "operação unitária" ou "reator" a ser objeto de estudo e do grupo de alunos responsável pela execução dessa atividade;
- (b) Apresentação dos fundamentos teóricos e tecnológicos relacionados à "operação unitária" ou "reator" abordado, especificando-se a aplicação na qual a atividade será desenvolvida e os objetivos do estudo;
- (c) Introdução a softwares envolvendo conceitos e comandos para posterior resolução de problemas de engenharia;
- (d) Realização de ensaios "preliminares" para a familiarização com o equipamento e com as técnicas analíticas envolvidas;
- (e) Realização de ensaios "definitivos" no intuito de obter dados experimentais para se atingir os "objetivos de estudo" definidos em etapa anterior com base na análise e da discussão desses resultados;
- (f) As atividades desenvolvidas em cada Módulo são avaliadas por apresentações orais e/ou trabalhos escritos do estudo realizado, com o detalhamento das etapas executadas. Parte da atividades poderá ser realizada em sala de aula ou em ambiente extra-clase utilizando ambiente virtual de aprendizagem (Moodle) como apoio ao ensino presencial. As normas de elaboração dos relatórios são baseadas no padrão ABNT de elaboração de relatórios técnico-científicos.
- (g) Avaliação

Vale ressaltar o destaque a ser dado para a discussão dos fundamentos e aplicações dos equipamentos em estudo quanto aos aspectos de projeto e uso tecnológico na resolução dos trabalhos (atividades de laboratório e de projeto).

2020-EQM304 página 3 de 13

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Os conhecimentos prévios necessários para o aproveitamento da disciplina podem ser divididos em tópicos relacionados às disciplinas já cursadas:

- (1) Matemática e física: conceitos de cálculo diferencial e integral de funções, de algarismos significativos e de medidas físicas experimentais;
- (2) Química: conceitos de físico-química (estequiometria, termodinâmica e cinética química) e de química orgânica, inorgânica e analítica;
- (3) Estatística: conceitos de erros, de ajuste de equações (regressões), de sensibilidade de variáveis de processo e de critérios estatísticos de validação de modelos matemáticos;
- (4) Computação: utilização de planilhas para resolução de equações algébricas e diferenciais, com a posterior síntese de gráficos, tabelas e análise estatística;
- (5) Fundamentos de engenharia de processos: fluxogramas e instrumentação industrial, balanço material e de energia sem e com reação química, conceitos de transferência de quantidade de movimento, calor e massa, conceitos dos principais equipamentos envolvidos com aspectos de transferência de quantidade de movimento (agitação e fluxo de líquidos/gases), de energia (trocadores de calor, evaporadores e secadores), de massa (destilação, absorção, adsorção, extração líquido-líquido e extração líquido-sólido) e de separações (envolvendo as fases gás-líquido-sólido);
- (6) Reatores químicos: conceitos dos principais equipamentos envolvidos com aspectos de transformações químicas;
- (7) Português: leitura e interpretação de textos (livros, listas de exercícios e provas), além da escrita de relatórios resultantes das atividades de laboratório e de projeto;
- (8) Inglês: leitura básica e vocabulário técnico.

CONTRIBUIÇÃO DA DISCIPLINA

- A disciplina tem os seguintes objetivos principais:
- (a) Possibilitar o desenvolvimento de conhecimento em aspectos experimentais relacionados aos fenômenos de transporte, termodinâmica para engenharia química e cálculo de reatores da indústria química, colaborando com o aprimoramento prático da formação dos alunos;
- (b) Suscitar habilidades e atitudes referentes ao desenvolvimento de atividades em equipamentos em escala de laboratório e de planta piloto de engenharia química por meio do planejamento, fundamentação teórica e tecnológica, execução e análise de projetos, procurando "simular" situações comuns ao engenheiro de

2020-EQM304 página 4 de 13

processos químicos;

- (c) Incentivar o uso de ferramentas computacionais que possibilitam um maior entendimento dos fenômenos relacionados aos processos químicos industriais e a otimização desses processos;
- (d) Firmar na prática os principais conceitos adquiridos nas aulas teóricas sobre os assuntos abordados;
- (e) Capacitar os alunos a elaborar relatórios técnicos;
- (f) Promover discussões em grupos entre alunos, incentivando sua capacidade de arguição e defesa de pontos de vista;
- (g) Ressalta-se que as técnicas pedagógicas utilizadas na disciplina propiciam as oportunidades necessárias para o desenvolvimento da capacidade de organização (realização de tarefas individuais e em grupo), de criação (as tarefas são formatadas para permitir a execução de forma flexível), de comunicação (apresentação das tarefas realizadas nas formas oral e escrita), e de arguição (discussão das avaliações das tarefas).

BIBLIOGRAFIA

Bibliografia Básica:

FOGLER, H. Scott. Elementos de engenharia das reações químicas. Trad. de Flávio Faria de Moraes, Luismar Marques Porto. 3. ed. Rio de Janeiro, RJ: LTC, 1999. 892 p. ISBN 85-216-1315-6.

FOGLER, H. Scott. Elementos de engenharia das reações químicas. Trad. de Verônica Calado e Evaristo C. Biscaia Jr. rev. téc. de Frederico W. Tavares. Rio de Janeiro, RJ: LTC, 2009. 853 p. CD-ROM. ISBN 9788521617167.

McCABE, Warren L; SMITH, Julian C; HARRIOT, Peter. Unit operations of chemical engineering. 7. ed. Boston: McGraw-Hill, 2005. 1140 p. (McGraw-Hill Chemical Engineering Series). ISBN 9972848235.

McCABE, Warren L; SMITH, Julian C; HARRIOTT, Peter. Unit operations of chemical engineering. 6. ed. Boston: McGraw-Hill, 2001. 1114 p. ISBN 0-07-118173-3.

McCABE, Warren Lee; SMITH, Julian C; HARRIOTT, Peter. Unit operations of chemical engineering. 5. ed. New York: McGraw-Hill, 1993. 1130 p.

PERRY, Robert H., (Ed.); GREEN, Don W., (Ed.). Perry's chemical engineers' handbook. 8. ed. New York: McGraw-Hill, 2008. ISBN 9780071422949.

PERRY, Robert H., ed; GREEN, Don W., ed; MALONEY, James O., ed. Perry's Chemical Engineers' Handbook. 7. ed. New York: McGraw-Hill, 1997. ISBN 0-07-049841-5.

2020-EQM304 página 5 de 13

INSTITUTO MAUÁ DE TECNOLOGIA

ÇENGEL, Yunus A; CIMBALA, John M. Fluid mechanics: fundamentals and applications. Boston: McGraw-Hill Higher Education, 2006. DVD. (McGraw-Hill Series in Mechanical Engineering). ISBN 0072472383.

Bibliografia Complementar:

AL-MALAH, Kamal I.M. Aspen Plus®: chemical engineering applications. Hoboken, N.J: Wiley, c2017. 602 p. ISBN 9781119131236.

BIRD, R. Byron; STEWART, Warren E; LIGHTFOOT, Edwin N. Transport phenomena. 2. ed. New York: John Wiley, 2002. 895 p. ISBN 0-471-41077-2.

FELDER, Richard M; ROUSSEAU, Ronald W. Princípios elementares dos processos químicos. Trad. de Martín Aznar. 3. ed. Rio de Janeiro, RJ: LTC, 2005. 579 p. ISBN 8521614292.

GHASEM, Nayef. Computer methods in chemical engineering. Hoboken, N.J: Wiley, c2012. 504 p. ISBN 9781439849996.

GOMIDE, Reynaldo. Operações unitárias. São Paulo, SP: R. Gomide, 1993. v. 2 / pt. 2.

HANYAK JR., Michael E. Chemical process simulation and the Aspen HYSYS v8.3 software. Lewisburg, PA: Department of Chemical Engineering, c2013. 198 p. ISBN 9781493794478.

IBRAHEM, Ahmed Saadi; WAZWAZ, Aref. Hysys Software for chemical and petroleum engineering. Saarbrücken, DE: Lambert Academic, c2014. 233 p. ISBN 9783659191985.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Eduardo Mach Queiroz e Fernando Luiz Pellegrino Pessoa. 7. ed. Rio de Janeiro, RJ: LTC, 2008. 643 p. ISBN 9788521625049.

KORETSKY, Milo D. Termodinâmica para engenharia química. [Engineering and chemical thermodynamics]. Tradução de Márcio José Estillac de Mello Cardoso, Oswaldo Esteves Barcia e Rosana Janot Martins. Rio de Janeiro: LTC, 2007. 502 p. ISBN 9788521615309.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-EQM304 página 6 de 13

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 k_1 : 1,0 k_2 : 1,0 k_3 : 1,0 k_4 : 1,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A programação da disciplina inclui a realização de 4 (quatro) trabalhos (T1, T2, T3, T4) referentes à execução de 4 módulos de atividades experimentais, a saber:

- T1 Reatores químicos
- T2 Transporte de fluidos
- T3 Fluidodinâmica computacional (CFD)
- T4 Simulação de processos usando aplicativo AspenHysys

Estima-se que sejam necessárias 20 horas de dedicação extra-classe por aluno para o cumprimento de cada módulo. O cronograma de realização das atividades de cada Módulo é especifico do Módulo em questão, sendo definido pelo professor a cada bimestre.

- O(s) trabalho(s) de cada módulo serão feitos em grupos, de tamanhos designados pelos Professores, podendo ser constituídos de:
- (i) Relatórios técnico-científicos e/ou apresentações orais com posterior discussão e arguição entre grupos e professor sobre as atividades realizadas no Módulo. Neste caso, os relatórios técnico-científicos e/ou as apresentações orais deverão ser entregues na página da disciplina no ambiente virtual de aprendizagem, Moodle, pelo menos 2 h antes do início da aula.
- (ii) Estudos de caso elaborados pelo professor e discussão das soluções entre grupos.

Critério de Avaliação:

A nota T da atividade de cada módulo será calculada como descrito a seguir:

Ti = 50% x nota(s) do(s) trabalhos(s) do módulo + 50% x nota da avaliação individual.

A avaliação individual será realizada no final do bimestre. Em todos os módulos será realizada sem consulta a materiais ou colegas e com duração de 100 minutos

É importante que todos os componentes se envolvam na realização dos experimentos e dos trabalhos, adquirindo conhecimentos que serão cobrados na avaliação individual.

As atividades serão corrigidas e discutidas com o intuito de utilizá-las para a melhoria do aprendizado pela discussão dos diversos itens que o constituem, a

2020-EQM304 página 7 de 13

INSTITUTO MAUÁ DE TECNOLOGIA

saber: objetivos propostos, fundamentos teóricos utilizados, metodologias realizadas, resultados obtidos, discussão das interpretações, e conclusões. Para isso, será utilizando também ambiente virtual de aprendizagem Moodle.

Alunos dependentes:

O aluno dependente desta disciplina poderá aproveitar notas de módulos já cursados desde que esta nota do Módulo seja maior ou igual a 6,0.

A revisão de notas se aplica somente aos módulos cursados no ano corrente, não havendo possibilidade de revisão das notas reaproveitadas em oferecimentos anteriores.

Perda de Atividades:

Não serão aplicados trabalhos substitutivos para esta disciplina. O aluno que perder uma determinada atividade, deverá conversar com o professor responsável pelo módulo em questão e realizar a atividade em outro bimestre ou em outro turno.

2020-EQM304 página 8 de 13

OUTRAS INFORMAÇÕES

A programação da disciplina é a seguinte:

Módulo 1 - Reatores químicos

Módulo 2 - Transporte de fluidos

Módulo 3 - Fluidodinâmica computacional (CFD)

Módulo 4 - Simulação de processos usando aplicativo AspenHysys

A ordem de oferta dos módulos varia de turma para turma, dependendo do horário de aula. Em cada módulo as atividades serão conduzidas de modo a ser atingidos os seguintes propósitos:

- (i) Conhecimento geral sobre o tema em estudo;
- (ii) Conhecimento específico sobre o sistema tecnológico aplicado ao tema em estudo;
- (iii) Aspectos de projeto com ênfase ao dimensionamento e estimativa de custos das unidades aplicadas ao sistema tecnológico em desenvolvimento;
- (iv) Atividade experimental sobre o sistema tecnológico em estudo;
- (v) Conhecimento de ferramentas computacionais que possibilitem o tratamento de resultados experimentais, além de um maior entendimento e a otimização dos processos.

As necessidades de recursos materiais e humanos são as seguintes:

- (a) Parte teórica: lousa/giz, projetor;
- (b) Parte prática: reagentes e vidrarias, equipamentos de laboratório de engenharia química ("operações unitárias" e "reatores químicos") e laboratório de informática (microcomputadores) e também ambiente virtual de aprendizagem (Moodle)

Segurança em Laboratórios:

Os alunos serão orientados quanto ao uso de EPIs (Equipamentos de Proteção Individual) na 1ª aula de cada módulo. O aluno que não estiver utilizando todos os EPIs necessários, e informados pelo professor, não será autorizado a realizar o experimento, devendo fazer a reposição dessa aula em outra oportunidade.

Atrasos:

Para garantir o bom desenvolvimento das aulas e o aprendizado dos alunos, serão tolerados atrasos de 20 min em relação ao horário de início da aula (o professor do módulo fará chamada após decorridos 20 min de aula). O aluno que não estiver presente nesse momento terá a nota de sua atividade da aula multiplicada por um fator de correção (menor que 1,0), a ser informado previamente pelo professor que ministra o módulo da disciplina.

2020-EQM304 página 9 de 13

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

(i) Pacote de aplicativos do Microsoft Office;					
(ii) Software Ansys	versão 19.0 (ou	superior);			
(iii)Software Aspen	Hysys versão 10	(ou superior).			

2020-EQM304 página 10 de 13

2020-EQM304 página 11 de 13

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	Módulo 1: Apresentação: plano ensino; conteúdo; cronograma;	1% a 10%
	regras; site (Moodle). Motivação ao estudo de atividades	
	experimentais de engenharia química (metodologias didáticas	
	ativas). Cadastro alunos ambiente virtual (Moodle)	
2 L	Atividades experimentais referentes a verificação experimental do	11% a 40%
	modo de operação de reator descontinuo e continuo (com e sem	
	mistura).	
3 L	Atividades experimentais referentes à medidas de conversão em	41% a 60%
	reator químico operado no modo continuo de mistura perfeita	
	(CSTR) e de fluxo pistonado (PFR).	
4 L	Atividades experimentais referentes à medidas de conversão em	41% a 60%
	reator químico operado no modo continuo de mistura perfeita	
	(CSTR) e de fluxo pistonado (PFR).	
5 L	Atividades experimentais referentes à medidas de distribuição do	41% a 60%
	tempo de residência de reator químico de mistura perfeita operado	
	no modo continuo (CSTR).	
6 L	Atividades experimentais referentes à medidas de distribuição do	41% a 60%
	tempo de residência de reator químico de mistura perfeita operado	
	no modo continuo de fluxo pistonado (PFR).	
7 L	Atividades experimentais referentes à medidas de distribuição do	41% a 60%
, 1	tempo de residência de reator químico de mistura perfeita operado	110 a 000
	no modo continuo de fluxo pistonado (PFR).	
8 L	Avaliação Escolar da P1.	0
9 L	Avaliação Escolar da P1.	0
10 L	Atividades de avaliação referentes a reatores químicos.	0
11 L	Módulo 2: Apresentação do módulo. Revisão de conceitos teóricos	 1% a 10%
11 11	de mecânica dos fluidos.	10 a 100
12 L		119 2 609
12 1	Experimento I: Construção de Curvas Características da Bomba Centrífuga.	41% a 60%
13 L	=	418 - 608
13 Ь	Experimento I: Construção de Curvas Características da Bomba	41% a 60%
14 7	Centrífuga.	0
14 L	Apresentação e Avaliação.	0
15 L	Semana de Inovação Mauá SMILE 2020.	0
16 L	Experimento II: Estudo da perda de carga distribuída e	41% a 60%
1	localizada.	410 600
17 L	Experimento II: Estudo da perda de carga distribuída e	41% a 60%
10 -	localizada.	
18 L	Apresentação e Avaliação.	0
19 L	Avaliação Escolar da P2.	0
20 L	Avaliação Escolar da P2.	0
21 L	Atividades de Planejamento e Capacitação Docente.	0
22 L	Atividades de Planejamento e Capacitação Docente.	0
23 L	Avaliação Escolar da PS1.	0

2020-EQM304 página 12 de 13

INSTITUTO MAUÁ DE TECNOLOGIA

24 L	Módulo 3: Conceitos de Fluidodinâmica Computacional - CFD.	11% a 40%
	Transferência de calor por condução - dissipadores de calor -	
	Trabalho 1: Aletas.	
25 L	Transferência de calor por condução - dissipadores de calor -	11% a 40%
	Trabalho 1: Aletas.	
26 L	Transferência de calor por condução - dissipadores de calor -	11% a 40%
	Trabalho 1: Aletas.	
27 L	Transferência de calor por convecção - Perda de carga. Perfis de	11% a 40%
	velocidades. Cálculo de vazões. Temperatura média. Fluxos e Taxas	
	de transferência de calor.	
28 L	Transferência de calor por convecção - Perda de carga. Perfis de	11% a 40%
	velocidades. Cálculo de vazões. Temperatura média. Fluxos e Taxas	
	de transferência de calor. Trabalho 2. Transferência de calor em	
	tubulações.	
29 L	Avaliação Individual do Módulo 3.	0
30 L	Avaliação Escolar da P3.	0
31 L	Módulo 4: Apresentação do módulo. Introdução a simulação e ao	11% a 40%
	software, exemplos envolvendo comandos básicos (definição de	
	correntes; diagramas de fases; tabela de propriedades).	
	Exercícios.	
32 L	Simulação de processos simples envolvendo operações unitárias	11% a 40%
	básicas (trocadores de calor; bomba; compressor; turbina;	
	separador; válvula). Apresentação de operadores lógicos (adjust;	
	set). Exercícios.	
33 L	Análise de ciclos termodinâmicos, avaliação de estudo de casos e	11% a 40%
	novos operadores lógicos (spreadsheet). Exercícios.	
34 L	Cálculo de perda de carga, tubulações e acessórios. Exercícios.	11% a 40%
35 L	Simulação de processos reativos cinéticos (CSTR; PFR) e de	11% a 40%
	equilíbrio. Exercícios.	
36 L	Simulação e análise de um processo completo. Desenvolvimento e	91% a
	entrega de relatório completo.	100%
37 L	Avaliação individual do Módulo 4.	0
38 L	Avaliação Escolar da P4.	0
39 L	Avaliação Escolar da P4.	0
40 L	Atividade de discussão sobre os Módulos 3 e 4.	0
41 L	Avaliação Escolar da PS2.	0
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-EQM304 página 13 de 13