CS217 – Algorithm Design and Analysis Homework 4

Not Strong Enough April 4, 2020

 Γ_1

Let T be a minimum spanning tree of G, and let $c \in \mathbb{R}$. Show that T_c and G_c have exactly the same connected components. (That is, two vertices $u, v \in V$ are connected in T_c if and only if they are connected in G_c). You are encouraged to draw pictures to illustrate your proof.

Solution. Since T_c is a subgraph of G_c , if $u, v \in V$ are connected in T_c , then u, v are connected in G_c .

Now let's assume $u, v \in V$ are not connected in T_c , but are connected in G_c . Then, the path in T from u to v contains an edge y whose weight is greater than c. Also, there exists a path P in G from v to v such that $\forall e \in P, w(e) \le c$. If we remove y from T, T will be split into 2 connected components where v belongs to one and v belongs to another. So there must be an edge v endpoints belongs to different connected components. Adding v into v then will make the 2 components connected again. Let v is v in v in v in v becomes a tree, because it has v in v i

In conclusion, two vertices $u, v \in V$ are connected in T_c if and only if they are connected in G_c .