MMAN2300

Engineering Mechanics 2

Part A: Week 4

Method of instant centres

(Chapter 5/5 Meriam & Kraige, Chapter 4 Waldron & Kinzel)

4. Conservation of Power and Energy

The analysis is based on the assumption that the input power equals the output power.

i.e.,
$$P_{\text{in}} = P_{\text{out}}$$

This is valid if

- (i) no energy losses in the mechanism, and
- (ii) no energy stored in the system as it moves

$$P = T\omega = Fv$$

$$\Rightarrow \frac{T_{in}}{T_{out}} = \frac{\omega_{out}}{\omega_{in}} \qquad or \qquad \frac{F_{in}}{F_{out}} = \frac{v_{out}}{v_{in}}$$

$$\frac{F_{in}}{F_{out}} = \frac{v_{out}}{v_{in}}$$

The ratio of (angular) velocities can be determined using the instant centre method.

5. Mechanical Advantage (M.A.)

Mechanical advantage (M.A.) is defined as the ratio of the magnitudes of output force over input force.

$$M.A. = \frac{F_{out}}{F_{in}}$$

M.A. is a non-dimensional positive number.

<u>Example</u>

(a) Find torque T required to supply piston force F (assuming $P_{in} = P_{out}$).

(b) Determine the mechanical advantage of the adjustable toggle pliers.

(c) Determine the mechanical advantage for the mobile lifting mechanism shown below. A graphical solution is acceptable.

