Multiple Linear Regression

Due: Monday 09/13 (11.00PM) Submission: On Gradescope

You do not need to use R Markdown for this homework. You can write or type your answers and scan/upload a PDF file on Gradescope.

Part I: Practice Questions

You do not need to submit these questions.

- 1. Setup the **X** matrix and β vector for each of the following regression models. Assume $i=1,\ldots,4$.
 - (a) $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1}^2 + \varepsilon_i$
 - (b) $\sqrt{Y_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 \log_{10} X_{i2} + \varepsilon_i$
- 2. Compute the trace of the hat matrix.
- 3. Consider the following regression model

$$\mathbf{Y} = \mathbf{1}_n \beta + \epsilon$$

Compute the least squares estimator of β and compute the corresponding hat matrix **H**.

4. For a general linear regression model in which X may or may not have full rank, show that

$$\sum_{i=1}^{n} \hat{Y}_i (Y_i - \hat{Y}_i) = 0$$

5. Consider the multiple regression model

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i, \ i = 1, \dots, n$$

where ϵ_i are uncorrelated, with $\mathbb{E}(\varepsilon_i) = 0$ and $Var(\varepsilon_i) = \sigma^2$. Assuming that ε_i are independent normal random variables, state the likelihood function and obtain the maximum likelihood estimators of β_1 , and β_2 .

Part II: Homework Questions – to be submitted

1. Setup the **X** matrix and β vector for each of the following regression models. Assume $i = 1, \ldots, 4$.

(a)
$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1}^2 + \varepsilon_i$$

(b)
$$\sqrt{Y_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 \log_{10} X_{i2} + \varepsilon_i$$

2. Consider the Simple Linear Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

where $i=1,\ldots,n$, and $\epsilon_i \sim IID(0,\sigma^2)$. Suppose that the value of the predictor x_i is replaced by cx_i+d , where c,d are some non-zero constant. **Show** how are $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$, R^2 and the t-test of $H_0:\beta_1=0$ affected by this change. Justify your answer.

- 3. Obtain the maximum likelihood estimators in a simple linear regression model with normal error terms.
- 4. Show that $Cov(\mathbf{r}) = \sigma^2(\mathbf{I}_n \mathbf{H})$.
- 5. Show that if **X** has full rank,

$$(\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta) = (\mathbf{Y} - \mathbf{X}\hat{\beta})^T (\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\hat{\beta} - \beta)^T \mathbf{X}^T \mathbf{X} (\hat{\beta} - \beta)$$

holds, and hence deduce that the left side is minimized uniquely when $\beta = \hat{\beta}$.