Лемма Йонеды

Косарев Дмитрий a.k.a. Kakadu

матмех СПбГУ

22 мая 2019 г.

Содержание

1 Предварительные знания о терии категорий

2 Лемма Йонеды

Применения

Категории

Категория $\mathbb C$ состоит из:

- набора *объектов* $|\mathbb{C}|$;
- множества *стрелок* $\mathbb{C}(A,B)$ из объекта A в объект B (идексированное парами объектов $A,B\in |\mathbb{C}|$);
- ullet тождественная (identity) стрелка $\mathrm{id}_A\in\mathbb{C}(A,A)$ для каждого объекта $A\in|\mathbb{C}|;$
- ullet композиций $g\circ f\in \mathbb{C}(A,C)$ для каждой пары "соединяемых" стрелок $f\in \mathbb{C}(A,B)$ and $g\in \mathbb{C}(B,C)$,

и такая, что

- композиция ассоциативна;
- соответсвующие тождественные стрелки служат нейтральными элементами для композиции.

Стрелки ещё называют морфизмами.

Локально малые (locally small) категории

Определение

Покально малая категория – у которой набор стрелок между двумя произвольными объектами образует множество.

Определение

Малая категория – это локально малая категория, у которой набор *объектов* образует множество.

Наборы стрелок в категории $\mathbb C$ из объекта A в объект B обозначаются $\mathbb C(A,B)$. Множества $\mathbb C(A,B)$ называются homsets.

Примеры

Категория Set локально малая

- Объекты множества
- ullet Стрелки из $\operatorname{Set}(A,B)$ всюду определенные отображения из A в B

На типы и программы можно смотреть как на категорию $\mathbb{H}ask$. Тогда объекты будут типами, а стрелки – программами.

Примеры

Любой предпорядок на множестве (A,\leqslant) порождает категорию $\mathbb{P}\mathrm{re}(A,\leqslant)$

- Объекты элементы множества А
- Множества homset $\operatorname{\mathbb{P}re}(A,\leqslant)(a,b)$
 - либо состоят из одного элемента (когда $a \leqslant b$)
 - либо пустые

Рефлексивность $a\leqslant a$ соответствует $id_a.$

Транзитивность – это композиция стрелок.

Примеры

Всякий моноид (M, \oplus, e) порождает категорию $\mathrm{Mon}(M, \oplus, e)$

- С единственным объектом *
- С единственным homset $Mon(M, \oplus, e)(*, *)$
 - нейтральный элемент отображается в identity стрелку
 - остальные элементы в остальные стрелки

Дуальная (двойственная, opposite) категория

У каждой категории $\mathbb C$ есть *дуальная* категория $\mathbb C^{\mathrm{op}}$ с теми же объектами и развернутыми стрелками

- ullet объекты \mathbb{C}^{op} это объекты \mathbb{C} , и наоборот;
- ullet стрелки $\mathbb{C}^{op}(A,B)$ из A в B категории \mathbb{C}^{op} являются стрелками $\mathbb{C}(B,A)$ из B в A категории \mathbb{C} ;
- композиция направлена в обратную сторону

TODO: рассказать про дуальность.

TODO: про декартову замкнутость

 ${\sf I}{\sf I}$ на примере Haskell тоже

Функторы

Функторы – это отображения между категориями, сохраняющие структуру.

Формально, функтор $F:\mathbb{C}\to\mathbb{D}$ – это отображение объектов и стрелок из \mathbb{C} в объекты и стрелки из \mathbb{D} , такое, что

- ullet объект $\mathrm{F}(\mathrm{A}) \in |\mathbb{D}|$ для каждого объекта $\mathrm{A} \in |\mathbb{C}|$;
- ullet стрелка $F(f)\in \mathbb{D}(F(A),F(B))$ для каждой стрелки $f\in \mathbb{C}(A,B)$,
- ullet $\mathrm{F}(\mathrm{id}_{\mathrm{A}})=\mathrm{id}_{\mathrm{F}(\mathrm{A})}$ для каждого объекта $\mathrm{A}\in |\mathbb{C}|$;
- $F(g \circ f) = F(g) \circ F(f)$ для каждой пары f , g "соединяемых" стрелок.

TODO: сказать про категорию (малых) категорий, что там стрелки – это функторы, а объекты – малые категории. И свойства программерского функутора вытекают из свойств стрелок.

Косарев Дмитрий Лемма Йонеды 22 мая 2019 г. 10/42

Homfunctor

Дана \mathbb{C} и объекты $A,B\in |\mathbb{C}|$, homset $\mathbb{C}(A,B)$ – это множество стрелок;

Введем $\mathbb{C}(A,-)$ – это отображение из $|\mathbb{C}|$ в $|\mathbb{S}et|$, переводящее объекты $B\mapsto \mathbb{C}(A,B)$ (т.е. объекты в набор морфизмов).

Его можно расширить до стрелок $f \in \mathbb{C}(B,C)$: $f \mapsto (f \circ) \in \mathbb{S}et(\mathbb{C}(A,B),\mathbb{C}(A,C))$

Функтор $\mathbb{C}(A,-)$ из \mathbb{C} в $\mathbb{S}\mathrm{et}$ будем называть homfunctor.

Аналогично, $\mathbb{C}(-,B)$ функтор преобразующий $f\mapsto (\circ f)$; но контравариантный, т.е. homfunctor из категории \mathbb{C}^{op} в $\mathbb{S}\mathrm{et}$

Косарев Дмитрий 22 мая 2019 г. 11/42

Рис.: Ковариантный Нот функтор от Бартоша Милевски

В терминах Haskell

```
Ковариантный – композиция после
type Reader a x = a \rightarrow x
instance Functor (Reader a) where
    fmap f h = f . h
Контравариантный – композиция до
type 0p \ a \ x = x \rightarrow a
instance Contravariant (Op a) where
    contramap f h = h \cdot f
```

Примеры функторов

Функторы $\mathbb{P}\mathrm{re}(A,\leqslant) o \mathbb{P}\mathrm{re}(B,\sqsubseteq)$ – это монотонные функции

Функторы $\mathbb{M}\mathrm{on}(\mathrm{M},\oplus,\mathrm{e}) \to \mathbb{M}\mathrm{on}(\mathrm{N},\otimes,\mathrm{e}')$ – гомоморфизмы моноидов

Естественные преобразования (natural transformations)

По сути: отображение между функторами, сохраняющее структуру.

Формально, даны функторы $F,G:\mathbb{C}\to\mathbb{D}$. Естественным преобразованием $\phi:F\overset{\cdot}{\longrightarrow}G$ из F в G будет семейство стрелок в \mathbb{D} индексированное объектами из \mathbb{C} , такое что

- ullet стрелка $\phi_A\in \mathbb{D}(F(A),G(A))$ для каждого объекта $A\in |\mathbb{C}|$;
- условие натуральности: для произвольной стрелки $f\in \mathbb{C}(A,B)$ верно $\phi_B\circ F(f)=G(f)\circ \phi_A$

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\phi_A \downarrow \qquad \qquad \downarrow \phi_B$$

$$G(A) \xrightarrow{G(f)} G(B)$$

Категория функторов

Примеры из программирования (1/2)

Отображение $\operatorname{reverse}:\operatorname{List}\stackrel{\cdot}{\longrightarrow}\operatorname{List}$ – естественное из функтора List в себя.

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\phi_{A} \downarrow \qquad \qquad \downarrow \phi_{B}$$

$$G(A) \xrightarrow{G(f)} G(B)$$

(а) Натуральность

(b) Специализация для List

Здесь $\phi \equiv$ reverse; F,G \equiv списки

Косарев Дмитрий Лемма Йонеды 22 мая 2019 г. 17/42

Примеры из программирования (2/2)

Для функтора $\mathrm{Tree}:\mathbb{H}ask\longrightarrow\mathbb{H}ask$, обход дерева будет естественным преобразованием $\mathrm{Tree}\stackrel{\cdot}{\longrightarrow}\mathrm{List}.$

Условие естественности:

 $inorder_B \circ Tree(f) = List(f) \circ inorder_A$

Комментарий про естественность

Содержание

1 Предварительные знания о терии категорий

2 Лемма Йонеды

Применения

Для произвольных: малой категории $\mathbb C$, объекта $A\in\mathbb C$ и функтора $F:\mathbb C o\mathbb S{
m et}$

Лемма (Йонеды для ковариантного hom-функтора)

$$[-]^{A,F}: [\mathbb{C}, \operatorname{Set}](\mathbb{C}(A, -), F) \simeq F(A) : [-]^{A,F}.$$

Лемма (Йонеды для контравариантного hom-функтора)

$$[-]^{A,F}: [\mathbb{C}^{op}, \mathbb{S}et](\mathbb{C}(-,A), F) \simeq F(A) : |-|^{A,F}.$$

Расшифровка

$$[-]^{A,F}: [\mathbb{C}^{op}, \mathbb{S}et](\mathbb{C}(-,A),F) \simeq F(A) : |-|^{A,F}.$$

- С − категория
- \mathbb{C}^{op} тоже категория; те же объекты, стрелки развернуты
- Set тоже категория; объекты \equiv множества, стрелки \equiv функции
- [A,B] категория; объекты функторы из A в B; стрелки натуральные трансформации
- для \forall объекта A существует функтор C(-,A) hom функтор.
- Для категории D множество стрелок из a b обозначается как D(a,b).

- $F \text{функтор } \mathbb{C}^{op} \to \mathbb{S}et$
- ullet В левой части множество морфизмов в $[\mathbb{C}^{op}, \mathbb{S}et]$ из C(-,A) в F

Доказательство (1/2)

$$\begin{array}{ccc}
\mathbb{C}(A,A) & \xrightarrow{C(f,A)} \mathbb{C}(B,A) \\
\eta_A \downarrow & & \downarrow \eta_B \\
F(A) & \xrightarrow{F(f)} F(B)
\end{array}$$

$$\begin{split} \mathrm{id}_{\mathrm{c}} \in \mathbb{C}(\mathrm{A},\mathrm{A}) & \eta: \mathbb{C}(-,\mathrm{A}) \xrightarrow{\cdot} \mathrm{F} \\ & \mathrm{id}_{\mathrm{A}} \xrightarrow{} \overset{\mathrm{f}}{\underset{}{\bigcup}} & \downarrow \\ & \downarrow & \downarrow \\ & \mathrm{u} := \eta_{\mathrm{A}}(\mathrm{Id}_{\mathrm{A}}) \xrightarrow{} \eta_{\mathrm{B}}(\mathrm{f}) \end{split}$$

 η определяется полностью единственным значением $u:=\eta_A(\mathrm{Id}_A)\in F(A)$, так как $\forall B\in\mathbb{C}\ \eta_B:C(B,A)\to F(B)$ она должна преобразовывать $f\in\mathbb{C}(B,A)$ (т.е. морфизм $f:B\to A$) согласно коммутативности.

Ключевая идея: условий натуральности для произвольной $\eta:\mathbb{C}(-,A)\stackrel{\cdot}{\longrightarrow} F$ достаточно, чтобы постановить, что η однозначно определилась своим занчением $\eta_A(\mathrm{id}_A)\in F(A)$ за счет компоненты $\eta_A:\mathbb{C}(A,A)\to F(A)$ на тождественном морфизме $\mathrm{id}_A.$

Косарев Дмитрий 22 мая 2019 г. 22/42

Доказательство (2/2)

Слева направо

$$[\mathbb{C}^{\mathrm{op}}, \mathbb{S}\mathrm{et}](\mathbb{C}(-, A), F) \xrightarrow{\mathrm{comp}_A} \mathbb{S}\mathrm{et}(\mathbb{C}(A, A), F(A)) \xrightarrow{\mathrm{ev}_{\mathrm{Id}_A}} F(A)$$

"application to identity arrow"

Справа налево: надо перегнать элемент x множества F(A) в натуральную трансформацию $\mathbb{C}(-,A) \stackrel{\cdot}{\longrightarrow} F$. Конструируется покомпонентно. η_B должна быть стрелкой в $\mathbb{S}\mathrm{et}$, т.е. функцией $\mathbb{C}(B,A) \to F(B)$

$$\lfloor x \rfloor^{A,F}(f) = F(f)(x),$$
 где f – стрелка в $\mathbb C$

"using functorial action"

homfunctor $\mathbb{C}(A,-):\mathbb{C} \to \mathbb{S}\mathrm{et}$ получается фиксацией *начала* и варьированием *конца* стрелки

homfunctor $\mathbb{C}(-,\mathrm{B}):\mathbb{C}^{\mathrm{op}}\to\mathbb{S}\mathrm{et}$ получается фиксацией *конца* и варьированием *начала* стрелки

Можно построить $\mathbb{C}(-,-):\mathbb{C}^{\mathrm{op}}\times\mathbb{C}\to\mathbb{S}\mathrm{et}$ и получить путём каррирования $\mathrm{H}^{ullet}:\mathrm{C}^{\mathrm{op}}\to[\mathbb{C},\mathbb{S}\mathrm{et}]$

Yoneda embedding

Лемма

Функтор $H^{\bullet}: C^{op} \to [\mathbb{C}, \mathbb{S}et]$ полный (full), строгий (faithful) и инъективен на объектах

Функтор полный, если он сюръективен на каждом homset Функтор строгий, если инъективен на каждом homset.

TODO: какойнить пример

Подставим $\mathbb{C}(B,A)$ вместо F в лемме Йонеды

$$[\mathbb{C}, \operatorname{Set}](\mathbb{C}(A, -), \mathbb{C}(B, -)) \simeq \mathbb{C}(B, A)$$

Отображение справа налево переводит стрелку $f\in \mathbb{C}(B,A)$ в $\mathbb{C}(f,-)=(\circ f)$

Инъективность на объекта получается автоматически, так как разные homset не пересекаются

Faithful (строгий) – мотивирует название embedding

Full (полный) означанет, что встраивание "хорошее": отображение $\mathbb{C}(A,-) \to \mathbb{C}(B,-)$ в $[\mathbb{C},\mathbb{S}\mathrm{et}]$ – это то же самое отображение, что и $B \to A$ в \mathbb{C} .

Представление универсального элемента

 \mathbb{C} – малая категория и функтор $F:\mathbb{C} \to \mathbb{S}\mathrm{et}$

Тогда представление функтора F состоит из объекта $A \in |C|$ вместе с элементом $u \in F(A)$ таким, что для произвольного $B \in |C|$ и $x \in F(B)$ существует уникальное отображение $f: A \to B$, такое что F(f)(u) = x

Содержание

🕕 Предварительные знания о терии категорий

Пемма Йонедь

Применения

Indirect inequality

Для произвольного предпорядка (A,\leqslant)

$$(b \leqslant a) \Leftrightarrow (\forall c. (a \leqslant c) \Rightarrow (b \leqslant c))$$

Доказательство:

- ⇒ транзитивность
- ← рефлексивность ≤

Indirect inequality

Категория $\operatorname{\mathbb{P}re}(A,\leqslant)$.

homset $\mathbb{P}re(A,\leqslant)(b,a)$ – "худое" множество (одноэлементное , если $b\leqslant a$, иначе пустое).

 $\mathbb{P}re(A,\leqslant)(a,-)$ – "худая" функция: переводит $c\in A$ в одноэлементное множество, если $a\leqslant c$, иначе в пустое.

Нат. тр-я $\phi: \mathbb{P}re(A,\leqslant)(a,-) \to \mathbb{P}re(A,\leqslant)(b,-)$ – это семейство функций, очень просто устроенных

Семейство ϕ функций — свидетель того, что для каждого c, если $\mathbb{P}re(A,\leqslant)(a,c)$ не пусто, то $\mathbb{P}re(A,\leqslant)(b,c)$ тоже, а следовательно $(a\leqslant c)$ влечет $(b\leqslant c))$

 Косарев Дмитрий
 Лемма Йонеды
 22 мая 2019 г.
 30 / 42

Indirect equality

$$(b \simeq a) \Leftrightarrow (\forall c \ . \ (a \leqslant c) \Leftrightarrow (b \leqslant c))$$

$$\begin{split} F(f) \circ F(g) &= \mathrm{id} \\ \Leftrightarrow \mathsf{F} \text{ is a functor} \\ F(f \circ g) &= F(\mathrm{id}) \\ \Leftarrow \mathsf{Leibniz} \\ f \circ g &= \mathrm{id} \end{split}$$

- Если F строгий (faithful), то последний шаг это ⇔
- \bullet В этом случае, если F(f) и F(g) образуют изоморфизм, то f и g тоже
- Если F full (сюръективен по стрелкам), то если F(f) имеет обратное h, то h достижим путём F, т.е. $\exists g: h = F(g)$
- Итого, для full&faithful функтора F, стрелка f образует изоморфизм $\Leftrightarrow F(f)$ образует тоже
- Yoneda embedding предоставляет full&faithful функтор

$$(\mathbb{C}(B,-) \simeq \mathbb{C}(A,-)) \Leftrightarrow (A \simeq B) \Leftrightarrow (\mathbb{C}(-,A) \simeq \mathbb{C}(-,B))$$

Косарев Дмитрий Лемма Йонеды 22 мая 2019 г. 31/42

```
data Yo f a= Yo { unYo :: forall r . (a->r) -> f r } Лемма гласит, что Yo f a\simeq f a, если f- это функтор. Надо предъявить изоморфизм fromYo :: Yo f a-> f a fromYo y= unYo y id y= application to identity y= toYo :: Functor y= f y= Yo f y= toYo y= Yo f y= Yo
```

Неформально: $Yo\ f\ a$ берет произвольную функцию $a\to r$ для произвольного r и возвращает значение типа $f\ r$. В некотором смысле она должна иметь fa сохраненным внутри себя.

Косарев Дмитрий 22 мая 2019 г. 32/42

Частный случай: f = Id

Yo Id a
$$\simeq$$
 Id a \simeq a

$$b \rightarrow Yo Id a \simeq b \rightarrow Id a \simeq b \rightarrow a$$

Yo Id $a = \forall r.(a \rightarrow r) \rightarrow r$

Что сильно напоминает преобразование

$$b \to a \quad \leadsto \quad \forall r.b \to (a \to r) \to r$$

Теорема

CPS преобразование корректно

Доказательство.

Лемма Йонеды

Воплощение CoYoneda в Haskell (1/2)

$$\forall a . f a \rightarrow (\forall r.(a \rightarrow r) \rightarrow g r)$$

~ Универсальное свойство квантора всеобщности

$$\forall a \ . \ \forall r \ . (f \ a \rightarrow (a \rightarrow r) \rightarrow g \ r)$$

 \simeq uncurrying

$$\forall a . \forall r . (f a \times (a \rightarrow r) \rightarrow g r)$$

 \simeq swap кванторов

$$\forall r . \forall a . (f a \times (a \rightarrow r) \rightarrow g r)$$

~ Универсальное свойство квантора существования

$$\forall r . (\exists a . (f a \times (a \rightarrow r)) \rightarrow g r)$$

функтор

```
data CoYo f r = exists a . CoYo { unCoYo :: (f a, a \rightarrow r) }
fromCoYo :: Functor f => CoYo f b -> f b
fromCoYo (CoYo (x, h)) = fmap h x
toCoYo :: f b \rightarrow CoYo f b
toCoYo y = CoYo (y, id)
instance Functor (CoYo f ) where
  fmap q(CoYo(x, h)) = CoYo(x, q. h)
Использоваться, чтобы для GADT, где типы используются только как индесы, породить
```

 Косарев Дмитрий
 Лемма Йонеды
 22 мая 2019 г.
 35 / 42

Представимый (representable) функтор

Выбрав в категории $\mathbb C$ объект a мы автоматически получаем функтор $\mathrm{Hom}(a,-)$, который представляет нашу категорию в категории $\mathbb S\mathrm{et}$. Мы представляем объекты и морфизмы $\mathbb C$ как множества и функции в $\mathbb S\mathrm{et}$.

Функтор ${\rm Hom}({\rm a},-)$ для некоторого ${\rm a}$ иногда называют представимым.

Вообще, любой функтор, который для некоторого ${\bf a}$ изоморфен hom функтору, называется *представимым*.

Чтобы функтор был представимым, нужно предъявить lpha и eta с двумя условиями

- $\alpha \circ \beta = id = \beta \circ \alpha$
- ullet Условие натуральности: $\mathrm{Ff} \circ lpha_{\mathrm{x}} = lpha_{\mathrm{y}} \circ \mathbb{C}(\mathrm{a},\mathrm{f})$

alpha :: forall x.
$$(a \rightarrow x) \rightarrow F x$$
 fmap f . alpha = alpha . fmap f

Выше правый fmap- от функтора Reader. Можно чуть-чуть упростить

$$fmap f (alpha h) = alpha (f . h)$$

Аналогично для второй функции eta

beta :: forall x. F x
$$\rightarrow$$
 (a \rightarrow x)

Число 42 – с потолка.

alpha :: forall x. (Int
$$\rightarrow$$
 x) \rightarrow [x] alpha h = map h [42]

Условие натруальности выполняется

А что на счет обратной части изоморфизма β ?

beta :: forall x.
$$[x] \rightarrow (Int \rightarrow x)$$

Всё будет плохо на пустом списке

```
class Functor f => Naperian f where
  type Loa f
  lookup :: f a \rightarrow (Loa f \rightarrow a) — each other's...
  tabulate :: (Log f \rightarrow a) \rightarrow f a - ... inverses
data Stream x = Cons x (Stream x)
instance Naperian Stream where
  type Rep Stream = Integer
  lookup (Cons b bs) n =
    if n == 0 then b
    else index bs (n - 1)
  tabulate f = Cons (f 0) (tabulate (f . (+1)))
```

```
class Functor f => Naperian f where
  type Loa f
  lookup :: f a \rightarrow (Loa f \rightarrow a) — each other's...
  tabulate :: (Log f \rightarrow a) \rightarrow f a - ... inverses
data Stream x = Cons x (Stream x)
instance Naperian Stream where
  type Rep Stream = Integer
  lookup (Cons b bs) n =
    if n == 0 then b
    else index bs (n - 1)
  tabulate f = Cons (f 0) (tabulate (f . (+1)))
```

Вопрос: можно ли задать представимый функтор по-другому, другими функциями, потому что эти другие функции проще описывать?

```
class Functor f => Naperian f where
  type Log f
  lookup :: f a -> (Log f -> a) -- each other's...
  tabulate :: (Log f -> a) -> f a -- ... inverses

positions :: f (Log f)
  tabulate h = fmap h positions
  positions = tabulate id
```

```
Если функтор — это пара,
то positions = (True, False)
и tabulate f = (f True, f False)
```

Конец

Ссылки I

- Functors from GADTs via coYoneda Gabriel Gonzalez ссылка
- The Yoneda Lemma: What's It All About? Tom Leinster ссылка
- From the Yoneda lemma to categorical physics

 John Baez

 CCHUKA
- What You Needa Know about Yoneda Guillaume Boisseasu & Jeremy Gibbons ссылка
- Univeral element in nCat lab