

Laboratório de Princípios de Comunicação

Aulas Remotas - 2020.1

Experimento 06 – Caracterização de Ruído

Data: 19/10/2020

Pré-requisitos

- 1. Uso de sinais complexos no GRC e do bloco VCO
- 2. Modulação e demodulação de sinais AM e FM

Instruções gerais

 Organize os arquivos em um diretório específico para o laboratório em seu computador. Em caso de necessidade, os arquivos serão usados como evidência da participação em sala. Use nomes de arquivos do GRC com o formato

Matricula_ExpXX_ARYY.grc → Exemplo: 12345678_Exp06_AR01.grc

• O relatório será enviado em formato ".pdf" usando a nomenclatura

Matricula_ExpXX_Rel.pdf → Exemplo: 12345678_Exp06_Rel.pdf

• Quando solicitado, envie um arquivo compactado com o formato ".zip" com todos os arquivos relacionados ao experimento, contendo os arquivos ".grc" e ".pdf".

Matricula_ExpXX.zip → Exemplo: 12345678_Exp06.zip

- Preferencialmente (mas não obrigatoriamente) use GUI do tipo "QT".
- Apresente no início do relatório todos os cálculos teóricos solicitados ao longo do roteiro, e coloque as tabelas no final.

Atividade 01 - Características do Ruído Branco Gaussiano

Conceitos preliminares

O ruído AWGN (*Additive White Gaussian Noise*) é amplamente utilizado como modelo para descrever matematicamente ruídos existentes em sistemas de comunicação. Suas propriedades estatísticas permitem que seja possível, de maneira relativamente simples, calcular seu efeito à entrada e saída de circuitos de recepção. Trataremos aqui do ruído AWGN de média nula, denotado por n(t).

O AWGN tem por características essenciais:

• Em qualquer instante de tempo, as amplitudes possíveis para n(t) seguem uma função de densidade de probabilidade gaussiana:

$$f_n(n) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{n^2}{2\sigma^2}}$$
 (1)

• Sua densidade espectral de potência (DEP) $S_n(f)$ é definida como constante para todas as frequências. Esta propriedade justifica o qualificador "branco", em referência à cor branca que contém todas as cores. Para um ruído branco, sua DEP é dada por $S_n(f) = \frac{N_0}{2}$. Portanto, sua função de autocorrelação fica determinada por

$$R_n(\tau) = \frac{N_0}{2} \delta(\tau). \tag{2}$$

Note que o ruído branco é um sinal que tem potência em todas as frequências possíveis e, portanto, a potência do ruído branco de tempo contínuo é infinita.

Em situações práticas, o AWGN é usado para modelar o comportamento de um ruído que contamina um determinado sinal s(t). A aproximação é de que o ruído contaminante tem DEP constante em uma determinada faixa de frequências, tipicamente a largura de banda B de s(t). Nestas condições, a potência de ruído na largura de banda B é dada por

$$P_n = \int_{-\infty}^{+\infty} S_n(f) \, \mathrm{d}f = 2 \int_{\mathrm{B}} \frac{N_0}{2} \, \mathrm{d}f = N_0 \mathrm{B} \qquad \text{(caso continuo)}. \tag{3}$$

Como estamos em um ambiente simulado no GRC, o ruído gaussiano é de tempo discreto com potência finita dentro da faixa de observação $[-f_s/2, +f_s/2]$, onde f_s é a frequência de amostragem. Neste caso, a função de autocorrelação do ruído discreto possui um Delta de Kronecker de amplitude finita (e não um Delta de Dirac com amplitude infinita), e é possível mostrar que a potência do ruído gaussiano de tempo discreto é dada por

$$P_n = \sigma^2$$
 (caso discreto). (4)

Se um ruído branco gaussiano for injetado na entrada de um sistema linear invariante no tempo - SLIT (por exemplo, um filtro passa-bandas), também é possível mostrar que o sinal à saída do SLIT também é gaussiana – porém, o ruído não terá todas as frequências e não será mais caracterizado como branco. No caso do SLIT ser um filtro, a potência do sinal à sua saída será limitada pela largura da sua faixa de passagem *B*, em concordância com a Eq. (3).

Para o caso discreto, se a potência de entrada do filtro for $P_{in} = \sigma^2$, a potência à saída será proporcional à razão entre a banda de passagem do filtro e metade frequência de amostragem (frequência máxima de operação em tempo discreto):

$$P_{out} = \sigma^2 \frac{2B}{f_s}$$
 (caso discreto). (5)

Atividade 02 – Efeito de Ruído em AM e FM

Conceitos preliminares

Para aferir quantitativamente qual o impacto do ruído em sistemas de comunicação analógica, utiliza-se uma métrica de qualidade – a razão sinal-ruído ou relação sinal-ruído (RSR)

$$RSR = \frac{\text{Potência de sinal útil}}{\text{Potência de ruído}} = \frac{P_s}{P_n},$$
 (6)

onde a potência de ruído P_n é calculada da largura de faixa do sinal útil.

A RSR pode ser calculada em qualquer ponto da cadeia de recepção, mas usualmente utilizam-se dois pontos de referência, como ilustrado na Figura 1: (i) à entrada do receptor, imediatamente antes de qualquer circuito ou processamento do sinal e (ii) após o processo completo de demodulação, onde é possível extrair a estimativa da mensagem transmitida.

Figura 1 – Diagrama de blocos conceitual para medição da RSR. B_{TX} é a largura de banda do sinal modulado e B_m é a largura de banda da mensagem.

Os filtros passa-faixa e passa-baixas explicitam a frequência e largura de faixa para medir a potência de sinal útil e de ruído: para o cálculo de RSR_{in} , o sinal está modulado, com largura de faixa B_{TX} na qual o ruído atua. Para RSR_{out} , o sinal útil está em banda-base (pois está demodulado) e o ruído que atua na largura de faixa B_m é o ruído remanescente após todo o processo de demodulação.

No ambiente simulado, temos controle da potência de ruído (raro em ambientes reais), o que nos auxiliará a medir separadamente as potências de sinal útil e de ruído.

Relatório - Entregar até 23/10/2020

Faça um relatório descrevendo as sequencias de passos e análises pertinentes para chegar aos resultados das atividades remotas (ARs). Ilustre com as telas do GRC.

Apresente no início do relatório todos os cálculos e respostas a questões teóricas solicitadas e as tabelas no final.

AR 01 – Características do AWGN					
Setup da simulação AR01					
Taxa de amostragem 200 ksps					
Instrumentos virtuais	Osciloscópio				
	Analisador de Espectro com N = 1024 pontos				
	Histograma <qt gui="" histogram="" sink=""></qt>				
	Display de valor de potência <qt gui="" number="" sink=""></qt>				
	Gerador de ruído <noise source=""></noise>				
	<noise type="Gaussian"></noise>				
	<output type="Float"></output>				
	Amplitude variável				
	Filtro passa-baixas				
	Frequência de corte variável				
	Faixa de transição 100 Hz				
	Medidor de potência RMS				
Observações adicionais	Utilizar bloco "Throttle"				

Como sugestão, adote um painel de controle similar ao mostrado na Figura 2, com a linha superior referente ao ruído gaussiano gerado pela fonte de ruído n(t), e a inferior para o ruído filtrado $n_f(t)$.

Figura 2 – Sugestão para realização das medições de ruído gaussiano.

a) Medição de potência

Utilize medidores RMS e multiplicadores para obter diretamente as leituras de potência. Faça um *print* do diagrama (**Fig. 1.1**)¹. Faça um gráfico (**Fig. 1.2**) com pelo menos 8 pontos da potência do ruído n(t) em função do controle da amplitude do gerador σ .

A1a) Verifique a validade da Eq. (4).

Mantendo σ fixo em 2 V, ajuste o quociente $R = \frac{2B}{f_s}$. Faça um gráfico (**Fig. 1.3**) com pelo menos 8 pontos da potência do ruído filtrado $n_f(t)$ em função de R.

A1b) Verifique a validade da Eq. (5).

b) Verificação das propriedades do AWGN

Ajuste σ = 2 V para n(t) e a banda do filtro passa-baixas para obter R = 0,25. Todas as curvas em um painel (**Fig. 1.4**).

A1c) Verifique qualitativamente, pelos histogramas, se os sinais n(t) e $n_f(t)$ são gaussianos. Indique o valor σ nos histogramas e nos gráficos dos osciloscópios.

Nas formas de onda obtidas pelos osciloscópios, ajuste a base de tempo para 1 ms e indique com linhas horizontais os correspondentes valores de σ . Compare as formas de onda para n(t) e $n_f(t)$ e verifique a ausência de componentes de frequência alta no tempo. Em seguida, varie R, observe o resultado no osciloscópio e comente (**A1d**).

Retorne R para 0.25. Verifique se n(t) e $n_f(t)$ são brancos pela análise das DEPs (**A1e**). **E1a**) Utilizando as DEPs, calcule no domínio da frequência a potência de ambos utilizando a Eq. (3) e verifique (**A1f**) se o instrumento do GRC fornece ou não a medida esperada obtida pela medição no tempo. Em caso negativo, apresente a razão entre a medida de potência realizada no tempo e a medida de potência realizada no domínio da frequência.

No gerador de ruído, troque a estatística de Gaussian para Uniform. Apresente os histogramas (**Fig. 1.5**) de n(t) e $n_f(t)$ e explique o porquê da diferença de formato.

A1g) Verifique se os ruídos continuam ou não brancos² na faixa de passagem do filtro, comparando as DEPs com as do item anterior.

¹ Quantos forem necessários referentes aos esquemáticos da atividade 1

² N₀ relativamente constante como nas DEPs da Figura 2

AR 02 Comparação de desempenho de AM e FM na presença de ruído

O setup de medição será montado passo a passo. A taxa de amostragem é de 200 ksps.

Passo 1 – Configuração da mensagem. A mensagem será uma onda triangular filtrada, de amplitude variável (pico A_m de 0 a 1 V) e média nula. A frequência será de 500 Hz. A largura de faixa B_m contempla 20 harmônicas.

Passo 2 – Configuração do ruído. O ruído será utilizado em duas formas: real (para AM) e complexo (para FM), com amplitude variável. Controle as amplitudes utilizando os blocos <Multiply Const>.

Passo 3 – Configuração das portadoras. As modulações AM e FM terão portadoras com mesma amplitude, fixa em 1 V e mesma frequência (50 kHz).

Passo 4 – Subsistema AM. Utilizaremos AM-DSB+C, com índice de modulação μ = 1. A demodulação será por envoltória. Para fins comparativos, o sinal demodulado deve preservar a amplitude da mensagem original. Para tanto, insira um ganho de valor variável à **saída** do demodulador com o bloco <Multiply Const>.

Passo 5 – Subsistema FM. No transmissor, use VCO com sensibilidade k_f de 8.kHz/V. O modulador usará o VCO complexo, seguido de uma translação em frequência. A demodulação é via PLL com o bloco <PLL Freq Detector>, que também faz uso de sinais complexos. A configuração está mostrada junto ao demodulador. Para manter a amplitude do sinal demodulado igual à da transmissão, dois ajustes são realizados: subtração de uma constante <Add Const >> e ganho <<Multiply Const > (em destaque).

Passo 6 – Filtragem do ruído na banda de passagem do sinal modulado. Esta etapa permite medir a potência do ruído que interfere no sinal modulado, de modo a permitir a medição da potência de ruído $P_{n,in}$ e combiná-la com a potência de sinal modulado $P_{s,in}$ para obter a RSR $_{in}$.

Passo 7 – Compensação de atraso no receptor. Para obter a RSR_{out}, é necessário separar a potência de ruído da potência de sinal. Neste experimento, iremos subtrair a mensagem transmitida do sinal demodulado. Em condições ideais, o resultado da diferença será o ruído. Para tanto, use o osciloscópio e blocos <Delay> para ajustar o atraso com relação à mensagem.

Passo 8 - Instrumentos de medição. Use osciloscópios e analisadores de espectro para monitorar os sinais em pontos relevantes. Para observar facilmente as potências, uma sugestão é utilizar um osciloscópio. As RSRs podem ser medidas visualmente, com o auxílio do bloco $\langle QT | GUI | Constellation | Sink \rangle$, onde nas abscissas inserimos a RSR $_{in}$ e nas ordenadas a RSR $_{out}$.

PROCEDIMENTO EXPERIMENTAL DA AR2

P1) Verificação do funcionamento dos demoduladores.

Faça um *print* do diagrama de blocos (**Fig. 2.1**). Deixe os sinais de ruído com potência zero. Ajuste a amplitude A_m da onda triangular para obter $0.5 V_p$. No demodulador AM, ajuste o ganho do amplificador após o <DC Block> para manter a potência do sinal demodulado igual à do transmitido. Verifique também o ajuste de escala para o demodulador FM para obter sinal demodulado com a mesma potência do sinal transmitido. Preencha a Tabela 2.1.

Mostre os sinais demodulados sem ruído (AM e FM) e compare com o sinal mensagem utilizando um osciloscópio de três entradas. Nesta etapa, ajuste os atrasos dos sinais demodulados AM e FM, de modo que as três formas de onda estejam as mais próximas possível (Fig. 2.2).

P2) Curvas de desempenho dos receptores na presença de ruído.

Serão levantadas duas curvas, correspondentes à transmissão de duas amplitudes da onda triangular: $A_{\rm m}=0.5\,{\rm V_P}\,$ e $A_{\rm m}=1.0\,{\rm V_P}.$ Para cada amplitude, a largura de faixa do filtro passa-faixas da modulação FM deve ser alterada, de acordo com a regra de Carson. As larguras de banda dos filtros serão denominadas $B_{{\rm FM},0.5}$ e $B_{{\rm FM},1.0}$.

- a) Inicialmente, deixe a amplitude da mensagem em 0 V. Levante as curvas (**Fig. 2.3** para $\sigma = 0.5$ V) de potência de ruído $P_{n,out}$ em função da potência de ruído à entrada do demodulador $P_{n,in}$. Varie a amplitude das fontes de ruído e preencha a Tabela 2.2.
- b) Deixe agora a mensagem com $A_m = 0.5 \, V_P$. Usando os valores da Tabela 2.3, fixe σ_{AM} no valor da primeira coluna e varie σ_{FM} até que, para as duas modulações, $RSR_{in,AM} = RSR_{in,FM}^* = RSR_{in}^*$. Anote os valores de RSR_{in}^* , $RSR_{out,AM}$, $RSR_{out,FM}$ e o valor de $\sigma_{FM,0.5}$. Repita o procedimento para $A_m = 1.0 \, V_P$ e preencha as duas últimas colunas. Sugestão: usar bloco <QT GUI Constellation Sink>, verificar quando os pontos estão na mesma abscissa e anotar os valores. Apresente as formas de onda dos sinais demodulados (AM e FM) para os dois valores de A_m (**Fig. 2.4.a-b** para $\sigma_{AM} = 0.5 \, V$).
- c) Em um mesmo gráfico (**Fig. 2.5**), trace as curvas de $RSR_{in}^* \times RSR_{out}$ para a modulação AM e para os dois casos de FM. Veja ao lado para um valor de RSR_{in}^* . Anote os valores e use um *software* externo como Matlab ou Excel para traçar o gráfico.

Com base nos gráficos e observações, responda:

- ${\bf E2a}$) Para uma mesma ${\it RSR}_{out}$ de 20 dB, qual a diferença (em dB) de ${\it RSR}_{in}^*$ entre a demodulação mais robusta e a menos robusta?
- A2a) Qual demodulação se mostrou mais robusta à presença de ruído AWGN?
- A2b) Qual foi o "preço a pagar" pela diferença de desempenho?
- **E2b**) Para as duas amplitudes de A_m , calcule os respectivos valores da razão de desvio $\beta_{0.5}$ e $\beta_{1.0}$.
- **A2c**) Para uma mesma DEP de AWGN à entrada, em qual caso houve melhor RSR_{in}^* ?
- **A2d**) Para uma mesma RSR_{in}^* , em qual caso houve melhor RSR_{out} ?
- A2e) Qual foi o "preço a pagar" pela diferença de desempenho?

Experimento 6: Caracterização de Ruído

Identificação

Turma	Matrícula	Nome

Tabela 2.1 – Medida da potência de saída dos demoduladores na ausência de ruído.

$A_m(V)$	P _{out,AM} (dBm)	P _{out,FM} (dBm)
0.5		
1.0		

Tabela 2.2 – Curvas de desempenho na ausência de sinal modulante.

	Demod AM	Demod FM (B _{FM,0.5})	Demod FM (B _{FM,1.0})	
$\sigma_{AM} = \sigma_{FM}$	$P_{n,out}$ (dBm)	$P_{n,out}$ (dBm)	$P_{n,out}$ (dBm)	
0.01				
0.05				
0.08				
0.1				
0.2				
0.3				
0.4				
0.5				
0.6				
0.7				
0.8				
0.9				
1.0				
1.2				

Tabela 2.3 – Verificação da RSR à entrada e saída dos demoduladores.

			$A_m = 0.5V_p$		$A_m = 1.0V_p$	
			$(B_{FM,0.5})$		$(B_{FM,1.0})$	
σ_{AM}	RSR^*_{in}	$RSR_{out,AM}$	$\sigma_{{ m FM,0.5}}$	RSR _{out,FM}	$\sigma_{\mathrm{FM,1.0}}$	RSR _{out,FM}
(V)	(dB)	(dB)	(V)	(dB)	(V)	(dB)
0.1						
0.2						
0.3						
0.4						
0.5						
0.6						
0.7						
0.8						
0.9						
1.0						
1.2						