Preparation for Saudi Arabia Team 2021

May/June Session: Level 4

Nikola Petrović

Lesson 2

Inversion in geometry

Problems:

- 1. Let A be an intersection point of circles k and l. Circle Γ_1 is externally tangent to k and l (respectively) in points B_1 and C_1 , while circle Γ_1 is externally tangent to k and l in points B_2 and C_2 . Prove that the circumcircles of $\triangle AB_1C_1$ and $\triangle AB_2C_2$ are tangent to each other.
- 2. Let PQ be the diameter of k and let B be a point on the diameter. A line perpendicular to PQ from B intersects k at A. A circle l is internally tangent to k and is also tangent to segment AB and to segment PB at point C. Prove that AC is the symmetry line of $\angle PAB$.
- 3. Let k_1 and k_2 be circles with radii $r_1 < r_2$ respectively and let AD be a common tangent, d_1 , where $A \in k_1$ and $D \in k_2$. Let d_2 be a (different) line parallel to d_1 which is tangent to k_1 . A line through D intersects d_2 in B and k_2 the second time in C, where $B \neq C$. Prove that the circumcircle of $\triangle ABC$ is tangent to d_1 .
- 4. A diameter AB of circle k is given and on it point C. Let l be a circle of diameter AC and let circle t be externally tangent to l at T, internally tangent to k and tangent to a line through C perpendicular to AB. Prove that BT is a tangent to l.
- 5. In triangle ABC a point M is given such that $\angle AMB \angle ACB = \angle AMC \angle ABC$. Prove that $AB \cdot CM = AC \cdot BM$.
- 6. Let $\triangle ABC$ be given such that $\angle ACB = 2\angle CAB$. Let circle s with center S be tangent to the circumcircles of $\triangle ADC$, BDC and line AC, where point D is the intersection of the angle bisector of $\angle ACB$ witgh AB. Prove that $CS \perp AB$.
- 7. Let ABC be a right-angled triangle with the right angle at vertex A and such that AB > AC. Let the tangent at A of the circumcircle k of $\triangle ABC$ intersect BC at D. Let E be the point symmetrical to A with respect to BC, X the foot of the perpendicular from A to BE, Y the midpoint of AX and Z the second point of intersection of k and BY. Prove that BD is the tangent of the circumcircle of ADZ.
- 8. Let A_1 , B_1 and C_1 be the respective midpoints of the sides of $\triangle ABC$. Let O be the circumcenter of $\triangle ABC$. Circumcenters of BOC and $A_1B_1C_1$ intersect in X and Y. Prove that $\angle BAX = \angle CAY$.
- 9. Prove that the nine-point circle touches the incircle and all three excircles.
- 10. A triangle ABC is given. Let D, E, F be respectively the feet of perpendiculars from A, B and C and let M be the midpoint of AB. Let DE intersect AB in P and let a line through F parallel with DE intersect AC and BC respectively in Q and R. Prove that PQMR is cyclic.
- 11. Let D be the midpoint of BC of $\triangle ABC$. Let k be the circumcircle of ABD. On the arc AB of k not containing D we notice a point E so that $\angle EDB = \angle DAC$. Let a perpendicular line from A to AD intersect BC in F. Let G be the second intersection point of FE with k unless FE is a tangent of k in which case we define $G \equiv E$. Prove that DG = DB.
- 12. Fix a circle Γ , a line ℓ to tangent Γ , and another circle Ω disjoint from ℓ such that Γ and Ω lie on opposite sides of ℓ . The tangents to Γ from a variable point X on Ω meet ℓ at Y and Z. Prove that, as X varies over Ω , the circumcircle of XYZ is tangent to two fixed circles.