特点:

- ➤ 完全兼容"ISO 11898"标准,
- ▶ 内置过温保护;
- ▶ 过流保护功能;
- ▶ 显性超时功能;
- ▶ 未上电节点不干扰总线;
- ▶ 至少允许 110 个节点连接到总线;
- ▶ 高速 CAN, 传输速率可达到 1Mbps;
- ▶ 高抗电磁干扰能力;

产品外形:

提供绿色环保无铅封装

描述

SIT1050 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于卡车、公交、小汽车、工业控制等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。

参数	符号	测试条件	最小	最大	单位
供电电压	V_{cc}		4.5	5.5	V
最大传输速率	1/t _{bit}	非归零码	1		Mbaud
CANH、CANL 输入输出电压	V _{can}		-40	+40	V
总线差分电压	V_{diff}		1.5	3.0	V
环境温度	T_{amb}		-40	125	°C

引脚分布图

极限参数

参数	符号	大小	单位
电源电压	V_{CC}	-0.3~+6	V
MCU 侧端口	TXD,RXD,VREF,Rs	-0.3~VCC+0.3	V
总线侧输入电压	CANL, CANH	-40~40	V
6,7号引脚瞬态电压 见图7	$ m V_{tr}$	-200~+200	V
存储工作温度范围		-55~150	°C
环境温度		-40~125	°C
焊接温度范围		300	°C
连续功耗	SOP8	400	mW
上	DIP8	700	mW

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

引脚定义

引脚序号	引脚名称	引脚功能
1	TXD	发送器数据输入端。
2	GND	地
3	VCC	供电电源
4	RXD	接收器数据输出端
5	Vref	参考电压输出
6	CANL	低电位 CAN 电压输入输出端
7	CANH	高电位 CAN 电压输入输出端
8	S	高速与静音模式选择,低电平为高速

总线发送器直流特性

参数	符号	测试条件	最小	典型	最大	单位
CANH 输出电压(显 性)	$V_{\mathrm{OH(D)}}$	VI=0V, S=0V, RL=60Ω,	2.9	3.4	4.5	
CANL 输出电压(显 性)	$V_{OL(D)}$	图 1、图 2	0.8		1.5	
总线输出差分电压 (隐性)	$V_{O(R)}$	VI=3V, S=0V, RL=60Ω, 图 1、图 2	2	2.5	3	V
总线输出差分电压 (显性)	V _{OD(D)}	VI=0V, S=0V, RL=60Ω, 图 1、图 2	1.5		3	V
总线差分输出电压	V	VI=3V, S=0V, 图 1、图 2	-0.012		0.012	V
(隐性)	$V_{\mathrm{OD(R)}}$	VI=3V,S=0V, NO LOAD	-0.5		0.05	V
显性输出电压对称性	$V_{\text{dom(TX)sym}}$	$V_{\text{dom(TX)sym}} = V_{\text{CC}} - V_{\text{CANH}} - V_{\text{CANL}}$	-400		400	mV
输出电压对称性	V _{TXsym}	$V_{TXsym} = V_{CANH} + V_{CANL}$	0.9V _{CC}		1.1V _{CC}	V
共模输出电压	V _{OC}	S=0V,图 8	2	2.5	3	V
显性隐性共模输出电 压差	$\triangle V_{OC}$			30		mV
		CANH=-12V, CANL=open, 图 11	-105	-72		mA
后因松山山水	T	CANH=12V, CANL=open, 图 11		0.36	1	
短路输出电流 I _{os}	CANL=-12V, CANH=open, 图 11	-1	0.5			
		CANL=12V, CANH=open, 图 11		71	105	
隐性输出电流	$I_{O(R)}$	-27V <canh<32v 0<vcc<5.25v< td=""><td>-2.0</td><td></td><td>2.5</td><td>mA</td></vcc<5.25v<></canh<32v 	-2.0		2.5	mA

(如无另外说明,V_{CC}=5V±10% ,Temp=T_{MIN}~T_{MAX},典型值在 V_{CC}=+5V,Temp=25℃)

总线发送器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延时(低到高)	tPLH	S=0V,图 4	25	65	120	ns
传播延时(高到低)	tPHL		25	45	90	ns
差分输出上升延时间	tr			25		ns
差分输出下降延时间	tf			50		ns
从侦听模式到显性的 使能时间	$t_{ m EN}$	图 7			1	us
显性超时时间	t _{dom}	图 10	300	450	700	us

(如无另外说明, V_{CC} =5V±10% , T_{MIN} - T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =25°C)

总线接收器直流特性

参数	符号	测试条件	最小	典型	最大	单位
正输入阈值	V_{IT+}	S=0V,图 5		800	900	mV
负输入阈值	$V_{\text{IT-}}$		500	650		
比较器阈值迟滞区间	V_{HYS}		100	125		
高电平输出电压	V_{OH}	IO=-2mA,图 6	4	4.6		V
低电平输出电压	V_{OL}	IO=2mA,图 6		0.2	0.4	V
掉电时总线输入电流	$I_{(OFF)}$	CANH or CANL=5V, Other pin=0V		165	250	uA
CANH、CANL 对地 的输入电容	$C_{\rm I}$	TXD=3V VI=0.4sinrE6πt+2. 5V		13		pF
CANH、CANL 差分 输入电容	C_{ID}	TXC=3V, VI=0.4sinrE6πt		5		pF
CANH、CANL 输入 电阻	$R_{\rm IN}$	TXD=3V, S=0V	15	30	40	ΚΩ
CANH、CANL 差分 输入电阻	$R_{\rm ID}$	170-31, 3-01	30		80	ΚΩ
RI(CANH)、 RIN(CANL)失配度	RI_{match}	CANH=CANL	-3%		3%	
共模电压范围	V_{COM}		-12		12	V

(如无另外说明, V_{CC} =5V±10% , T_{MIN} - T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =25°C)

总线接收器器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延迟 (低到高)	tPLH	S=0V or VCC, 图 6	60	100	130	ns
传播延迟(高到低)	tPHL		45	70	90	ns
RXD 信号上升时间	tr			8		ns
RXD 信号下降时间	tf			8		ns

⁽如无另外说明,V_{CC}=5V±10% ,Temp=T_{MIN}~T_{MAX},典型值在 V_{CC}=+5V,Temp=25℃)

器件开关特性

参数	符号	测试条件	最小	典型	最大	单位
环路延迟 1,驱动器 输入到接收器输出, 隐性到显性	Td(LOOP1)	图 9,S=0V	90		190	ns
环路延迟 2,驱动器输入到接收器输出,显性到隐性	Td(LOOP2)		90		190	ns

⁽如无另外说明, V_{CC} =5V±10% , T_{MN} - T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =25°C)

过温保护

参数	符号	测试条件	最小	典型	最大	单位
过温美断	Tj(sd)		155	165	180	°C

⁽如无另外说明,V_{CC}=5V±10% ,Temp=T_{MIN}~T_{MAX},典型值在 V_{CC}=+5V,Temp=25℃)

TXD 引脚特性

参数 	符号	测试条件	最小	典型	最大	单位
TXD 端口高电平输 入电流	I _{IH} (TXD)	VI=VCC	-2		2	uA
TXD 端口低电平度 输入电流	I _{IL} (TXD)	VI=0	-50		-10	uA

SIT1050

5V 供电, ±40V 接口耐压, 1Mbps 高速 CAN 总线收发器

VCC=0V 时, TXD 的 电流	I _O (off)	VCC=0V,TXD=5 V			1	uA
输入高电平下限	V_{IH}		2		VCC+0.	V
输入低电平上限	V_{IL}		-0.3		0.8	V
TXD 端口悬空电压	TXD_{O}			Н		logic

(如无另外说明, V_{CC} =5V±10% , T_{MIN} - T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =25 $^{\circ}$ C)

参考电压输出

参数	符号	测试条件	最小	典型	最大	单位
参考输出电压	Vref	-50uA <i<sub>o<50uA</i<sub>	$0.4V_{CC}$		$0.6V_{CC}$	V

(如无另外说明, V_{CC} =5V±10% , T_{MN} - T_{MAX} ,典型值在 V_{CC} =+5V, T_{CC} =25°C)

供电电流

参数	符号	测试条件	最小	典型	最大	单位
静音模式功耗	I_{CC}	S=VCC, V _I =VCC		6	10	mA
显性功耗		V_{I} =0V, S=0V, LOAD=60 Ω		50	70	mA
隐性功耗		V _I =VCC, S=0V, NO LOAD		6	10	mA

(如无另外说明,VCC=5V±10% , $Temp=T_{MIN}\sim T_{MAX}$,典型值在 VCC=+5V,Temp=25°C)

功能表

表 1 CAN 收发器真值表

$\mathbf{V}_{\mathbf{CC}}$	TXD	S	CANH	CANL	BUS STATE	RXD
4.5V~5.5V	0	0(或浮空)	Н	L	显性	0
4.5V~5.5V	1(或浮空)	$X^{(1)}$	$0.5V_{CC}$	$0.5V_{CC}$	隐性	1
4.5V~5.5V	X	1	$0.5V_{CC}$	$0.5V_{CC}$	隐性	1
0 <v<sub>CC<4.5V</v<sub>	X	X	$0V < V_{CANH} < V_{CC}$	$0V < V_{CANL} < V_{CC}$	隐性	X

(1) X=不关心

表 2 驱动器功能表

INPUTS		OUTPUTS		Dug Stata	
TXD	S	CANH	CAL	Bus State	
0	0 or Open	Н	L	Dominate (显性)	
H or Open	X	Z	Z	Recessive (隐性)	
X	Н	Z	Z	Recessive (隐性)	

⁽¹⁾ H=高电平; L=低电平; Z=高阻

表 3 接收器功能表

V _{ID} =CANH-CANL	RXD	Bus State
V _{ID} ≥0.9V	0	Dominate(显性)
$0.5 < V_{ID} < 0.9V$?	?
$V_{ID} \leq 0.5V$	1	Recessive (隐性)
Open	1	Recessive (隐性)

⁽¹⁾ H=高电平; L=低电平; ?=不确定

测试电路

图 1 驱动器电压、电流测试定义

图 2 总线逻辑电压定义

图 3 驱动器 VOD 测试电路

5V 供电, ±40V 接口耐压, 1Mbps 高速 CAN 总线收发器

图 4 驱动器测试电路与电压波形

图 5 接收器电压与电流定义

- A、 输入脉冲产生器特点: PRR≤125KHz, 50%占空比, tr<6ns, tf<6ns, Zo=50Ω
- B、 CL 包括仪器与固定电容,误差在 20%以内。

图 6 接收器测试电路与电压波形

图 7 t_{EN} 测试电路与电压波形

5V 供电, ±40V 接口耐压, 1Mbps 高速 CAN 总线收发器

注: VI 从 0~VCC,输入脉冲产生器特点: PRR<125KHz, 50%占空比, tr<6ns, tf<6ns, Zo=50Ω

图 8 共模输出电压测试与波形

图 9 t_(LOOP)测试电路与波形

图 10 显性超时测试电路与波形

图 11 驱动器短路电流测试电路与波形

说明

1 简述

SIT1050 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于卡车、公交、小汽车、工业控制等领域,速率可达到 1Mbps,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力,完生兼容"ISO 11898"标准。

2 短路保护

SIT1050 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗会增加,短路保护功能可以保护驱动级不被损坏。

3 过温保护

SIT1050 具有过温保护功能,当结温超过 160℃时,驱动级的电流将减小,因为驱动管是主要的耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

4 电瞬态保护

电瞬变常常发生在汽车应用环境中,SIT1050的 CANH、CANL 具有防止电瞬变损坏的功能。

5 控制模式

控制引脚 S 允许选择两种工作模式:

高速模式或静音模式。

高速模式是正常工作模式,通过将引脚 S 接地来选择。如果引脚 S 未连接,则它是默认模式。但是,为了确保仅使用高速模式的应用中的 EMI 性能,建议将引脚 S 接地。

在静音模式下,发射器被禁用。所有其他 IC 功能继续运行。静音模式通过将引脚 S 连接到 VCC 来选择,并可用于防止由于 CAN 控制器失控而导致的网络通信阻塞。

SOP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.00
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.270BSC	
L	0.40	0.60	0.80
С	0.153	0.203	0.253
θ	-2°	-4°	-6°

DIP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2	2.54TYP		
A3	1.525TYP		
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

定购信息

定购代码	温度	封装
SIT1050T	-40°C~125°C	8 SO
SIT1050	-40°C~125°C	DIP8

编带式包装为 2500 颗/盘