# Data-adaptive SNP-set-based Association Tests of Longitudinal Traits

Yang Yang M.S, Informatics Ph.D Candidate, Biostatistics

Division of Biostatistics, School of Public Health, The University of Texas

Jan.05 2015

Yang Yang (UTSPH) Amazon Jan.5 2015 1 / 78

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

Yang Yang (UTSPH) Amazon Jan.5 2015 2 / 78

- **Background** 
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS

- Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results

Yang Yang (UTSPH) Amazon Jan.5 2015 3 / 78

# Introduction to GWAS

What is SNP?



A Single Nucleotide Polymorphism (SNP) is a DNA sequence variation occurring commonly within a population (e.g. 1%) in which a single nucleotide A, T, C or G in the genome (or other shared sequence) differs between members of a biological species or paired chromosomes.

◆ロト ◆団ト ◆巨ト ◆巨ト ■ りゅぐ

Yang Yang (UTSPH) Amazon Jan.5 2015 4 / 78

# Introduction to GWAS

#### A flowchart of GWAS





Yang Yang (UTSPH) Amazon Jan.5 2015 5 / 78

## Introduction to GWAS

How does GWAS result look like?



Figure: Common genetic variants on 5p14.1 associate with autism spectrum disorders [WZM $^+$ 09]

Yang Yang (UTSPH) Amazon Jan.5 2015 6 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Introduction to GWAS

## **GWAS Catalog**



Figure: Published GWAS results for 18 trait categories

Yang Yang (UTSPH) Amazon Jan.5 2015 7 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Introduction to GWAS

#### Common variants and rare variants



Allele Frequency

Figure: effect size of Single Nucleotide Variant [BM12]

Yang Yang (UTSPH) Amazon Jan.5 2015 8 / 78

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- **3** Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

◆ロ → ◆部 → ◆ き → ◆ き → り へ ○

Yang Yang (UTSPH) Amazon Jan.5 2015 9 / 78

# single-SNP based association tests

the classical method

For individual i with SNP j coded as  $x_{ij}$  ( $x_{ij} = 0, 1, 2$  representing copies of minor alleles) and a vector of covariates  $\varphi_i$ ,

$$g(\mu_i) = \beta_0 + x_{ij}\beta_j + z_i\varphi_i,$$

However, this method suffers from at least two disadvantages:

- 1), it will generate millions of tests thus increase the multiple test error correction burden;
- 2), the coefficient estimate of SNP j will become unstable or even the estimation algorithm cannot converge when SNP minor allele frequency (MAF) becomes smaller, e.g. MAF < 0.01.

◆ロ → ◆回 → ◆ 重 → ◆ 重 → ◆ へ ○

Yang Yang (UTSPH) Amazon Jan.5 2015 10 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference O●O

## SNP-set based association tests I

## A brief review

By pooling multiple low MAF SNVs together, the SNP-set based association test can detect the signal(s) from a region (such as a gene) instead of from a single SNV.



Yang Yang (UTSPH) Amazon Jan.5 2015 11 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference O●O

# SNP-set based association tests II

#### A brief review

Major categories of SNP-set based association tests:



- the so-called "burden test", which used MAF based weighting scheme to combine the sum statistics from multiple SNVs in a region [LL08, MB09];
- the variance-component test, which includes SKAT, C-alpha, SSU, etc [Pan09, NRV+11, WLC+11].
- the Lasso and group-penalized regression based methods [ZSSL10, KPS14].
- the functional linear model and functional principal component analysis based methods [LZX12b, LZX12a, LBX11, FWM+13].
- the adaptive test combines statistics of burden test and variance-component test, such as SKAT-O, aSum, aSSU, aScore, an exponential combination (EC) framework for set-based association tests, a robust and powerful test using Fisher's method to combine linear and quadratic statistics, a unified mixed-effect model, etc [HP10, PS11, LEB+12, LWL12, CHG+12, DLS13, SZH13].

Yang Yang (UTSPH) Amazon Jan.5 2015 12 / 78

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

◄□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Yang Yang (UTSPH) Amazon Jan.5 2015 13 / 78

# How do longitudinal data look like?



Figure: Trajectories of phenotype left hippocampus volume over time (in months) in three allele groups of SNP rs2075650 [XSP+14]

◆ロ → ◆部 → ◆注 → ◆注 → りへ○

Yang Yang (UTSPH) Amazon Jan.5 2015 14 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Why longitudinal? I

In a cross-sectional study  $(n_i = 1)$  we are restricted to the model

$$Y_{i1} = \beta_C x_{i1} + \epsilon_{i1}, \quad i = 1, \ldots, m,$$

where  $\beta_C$  represents the difference in average Y across two sub-populations (samples) which differ by one unit in x. With repeated measurements, the above linear model can be extended to

$$Y_{ij} = \beta_C x_{i1} + \beta_L (x_{ij} - x_{i1}) + \epsilon_{ij}, \quad i = 1, ..., m; \ j = 1, ..., n_i$$

[WDL<sup>+</sup>90].

Yang Yang (UTSPH)

Based on above formula, we can more obviously explain the merits of longitudinal studies over cross-sectional studies.

- **1** Longitudinal studies allow us to estimate both the cross-sectional difference  $(\beta_C)$  and the rate change over time  $(\beta_L)$ .
- ② Even when  $\beta_C = \beta_L$ , longitudinal studies tend to be more powerful than cross-sectional studies. This is due to the fact that in longitudinal studies, each person can be thought of serving as his/her own control.

Amazon

Jan.5 2015

15 / 78

# Why longitudinal? II

- 3 Another merit of the longitudinal study is its ability to distinguish the degree of variation in Y across time for one subject from the variation in Y across subjects.
- With longitudinal studies, we can estimate a person's current and future outcome (behavior trend).

4□▶ 4団▶ 4 亘▶ 4 亘 ▶ 9 Q @

16 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Why longitudinal? III

## Longitudinal study in GWAS

A recent study by Xu et al [XSP<sup>+</sup>14] demonstrates the power gain from longitudinal data analysis over traditional cross-sectional data analysis used in GWAS.





Figure: Comparison of the Manhattan plots for genome-wide p-values for phenotype left hippocampus volume from longitudinal analysis (left) and from cross-sectional analysis (right) [XSP $^+$ 14]

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

17 / 78

Yang Yang (UTSPH) Amazon Jan.5 2015

# Why longitudinal? IV

| P | o | w | re | r |  |
|---|---|---|----|---|--|
|   |   |   |    |   |  |

| Model      | rs2075650     |                | \ /            |               | rs439401       |                |  |
|------------|---------------|----------------|----------------|---------------|----------------|----------------|--|
|            | $P = 10^{-8}$ | $P = 10^{-10}$ | $P = 10^{-15}$ | $P = 10^{-8}$ | $P = 10^{-10}$ | $P = 10^{-15}$ |  |
| LME-RSI    | 1             | 1              | 0.859          | 0.872         | 0.677          | 0.148          |  |
| GEE-Robust | 1             | 1 🗶            | 0.857          | 0.871         | 0.676          | 0.170          |  |
| Baseline   | 0.736         | 0.448          | 0.038          | 0.077         | 0.015          | 0              |  |

LME-RSI: a linear mixed-effects model with random slope and intercept LME-RI: a linear mixed-effects model with only a random intercept term; GEE-Robust: GEE with the sandwich covariance estimator; Baseline: a linear model at the baseline testing for the main effects of an SNP.
doi:10.1371/journal.pone.0102312.1008

Figure: Simulation results at significance level P with different methods [XSP+14]

Yang Yang (UTSPH) Amazon Jan.5 2015 18 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# A brief review of major longitudinal data analysis methods I

## Major categories of longitudinal data analysis methods:

- random effect models
   Random effect model is a two-stage models, which treat probability distributions for the
  response vectors of different individuals as a single family and the random-effects
  parameters which hold the same for the same individual as another distribution [LW82].
- marginal effect models
   Marginal effect model is an extension to quasi-likelihood method. Rather than giving subject-specific(SS) estimates as in random effect models, marginal effect models by Generalized Estimating Equation (GEE) give population-averaged (PA) estimates.
- transitional (Markov) models
  The transitional (Markov) model, describes the conditional distribution of each response  $y_{ij}$  as an explicit function of first q prior observations  $y_{ij-1}, \ldots, y_{ij-q}$  from history response vector:  $H_{ij} = \{y_{ik}, k = 1, \ldots, j-1\}$  and covariates  $x_{ij}$ . The integer q is referred as the order of the Markov models.

◆ロ → ◆部 → ◆注 → 注 り へ ○

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

(日) (日) (日) (日) (日) (日)

Yang Yang (UTSPH) Amazon Jan.5 2015 20 / 78

# **Research Aims**

- Aim 1: Data-adaptive SNP-set-based association tests (aSPU) for longitudinal data analysis within GEE framework;
- Aim 2: Longitudinal aSPU family tests on Rare Variants

Yang Yang (UTSPH) Amazon Jan.5 2015 21 / 78

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aim
- 3 Public Health Significance
  - Specific Aims, Methods and Results
    - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
      - Methods
      - Methods in data simulation
      - Simulation results
    - Aim 2: Longitudinal aSPU family tests on Rare Variants
      - Methods
      - Methods in data simulation
      - Simulation results
- Real Data Application
- 6 References

Yang Yang (UTSPH) Amazon Jan.5 2015 22 / 78

# **Public Health Significance I**

① Due to the **complexity** in genetics association with phenotype, e.g. specific association effect directions and sizes, a given test favoring one scenario may or may not perform well in other scenarios [Pan09, DLS18, PKZ+14, SZH13]. In other words, there is **no single test** the most powerful among all testing scenarios.

Therefore, a few data-adaptive tests were developed as an ad hoc strategy, e.g. some tests tried to combine the advantage of burden test and variance-component test; some other tests tried to use a set of pre-determined weights for individual RVs.

Compared to the previous limited sense data-adaptive tests, our proposed method will be more extensive and generalized in **data adaptability**. The new tests will provide a relative high power in almost all data scenarios;

Yang Yang (UTSPH) Amazon Jan.5 2015 23 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# **Public Health Significance II**

- ② There is not yet a SNP-set based data-adaptive association test method for longitudinal data analysis in GWAS: we will propose such a new method to fill in this gap;
- OVs and RVs are both important in finding the missing heritability of human complex disease. Our proposed new method will have the ability to handle both of them (either CVs or RVs);

In conclusion, this research work will provide useful methods/tools for identifying the underlying genetic factors explaining the heritability of human complex disease, and in the long run this will contribute to the prevention, diagnosis and cure of complex diseases.

Yang Yang (UTSPH) Amazon Jan.5 2015 24 / 78

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

Yang Yang (UTSPH) Amazon Jan.5 2015 25 / 78

# Aim 1

To develop a data-adaptive longitudinal association test within GEE framework for **common variants**, which will be done in either sliding-window based or gene-based manner for real GWAS data.

Yang Yang (UTSPH) Amazon Jan.5 2015 26 / 78

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ > 4 部 > 4 差 > 4 差 > 差 夕 Q O

Yang Yang (UTSPH) Amazon Jan.5 2015 27 / 78

# Aim 1 I

### Methods: introduction to notation and formula

Suppose for each subject i = 1, ..., n, we have k total longitudinal measurements

$$y_i = (y_{i1}, y_{i2}, \dots, y_{ik})'$$

with  $y_{im}$  as a element, p SNPs of interest as a row vector

$$x_i = (x_{i1}, x_{i2}, \ldots, x_{ip})$$

with  $x_{ii}$  coded as 0,1 or 2 for the count of the minor allele, and

$$z_i = (z_{i1}, z_{i2}, \ldots, z_{ia})$$

as a row vector for q variates.

Thus, we have:

$$X_i = \begin{pmatrix} x_i \\ x_i \\ \vdots \\ x_i \end{pmatrix}, Z_i = \begin{pmatrix} 1 & z_i \\ 1 & z_i \\ \vdots & \vdots \\ 1 & z_i \end{pmatrix}$$

 $X_i$  is a  $k \times p$  matrix, and  $Z_i$  is a  $k \times (q+1)$  matrix.

, a , , a , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e ,

# Aim 1 II

## Methods: introduction to notation and formula

We then have the GLM equation as,

$$g(\mu_i) = \eta_i = Z_i \varphi + X_i \beta = H_i \theta$$

The consistent and asymptotically normal estimates of  $\beta$  and  $\varphi$  can be obtained by solving the GEE [LZ86]:

$$U(\varphi,\beta) = \sum_{i=1}^{n} U_i(\varphi,\beta) = \sum_{i=1}^{n} \left(\frac{\partial \mu_i}{\partial \theta'}\right)' V_i^{-1}(Y_i - \mu_i) = 0,$$

with

$$\frac{\partial \mu_i}{\partial \theta'} = \frac{\partial g^{-1}(H_i \theta)}{\partial \theta'}, V_i = \phi A_i^{\frac{1}{2}} R_w A_i^{\frac{1}{2}},$$

and

$$A_i = egin{bmatrix} v(\mu_{i1}) & 0 & \cdots & 0 \ 0 & v(\mu_{i2}) & 0 & 0 \ dots & 0 & \ddots & dots \ 0 & 0 & \cdots & v(\mu_{jk}) \end{bmatrix}$$

Yang Yang (UTSPH) Amazon Jan.5 2015 29 / 78

# Aim 1 III

## Methods: introduction to notation and formula

With a canonical link function and a working independence model, we have a closed form of the U vector with **two parts** corresponding to SNPs and covariates, and its covariance estimator:

$$U = \left(U'_{.1}, U'_{.2}\right)' = \sum_{i} (Z_{i}, X_{i})' (Y_{i} - \mu_{i})$$

$$\widetilde{\Sigma} = \widehat{\text{Cov}}(U) = \sum_{i} (Z_{i}, X_{i})' \widehat{\text{var}(Y_{i})} (Z_{i}, X_{i}) = \sum_{i} (Z_{i}, X_{i})' (Y_{i} - \hat{\mu_{i}}) (Y_{i} - \hat{\mu_{i}})' (Z_{i}, X_{i}) = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix}$$
(1)

Yang Yang (UTSPH) Amazon Jan.5 2015 30 / 78

## Aim 1 IV

### Methods: introduction to notation and formula

## Quantitative traits

We use the identity link, i.e.  $g(\mu_{im}) = \mu_{im}$  and  $v(\mu_{im}) = \phi \times 1 = \phi$ . Then we have:

$$U = \sum_{i} (Z_{i}, X_{i})' R_{w}^{-1} (Y_{i} - \mu_{i})$$

$$\widetilde{\Sigma} = \sum_{i} (Z_{i}, X_{i})' R_{w}^{-1} (Y_{i} - \hat{\mu}_{i}) (Y_{i} - \hat{\mu}_{i})' R_{w}^{-1} (Z_{i}, X_{i})$$
(2)

if the assumption of a common covariance matrices across  $Y_i$  for i is valid, e.g. for quantitative continuous traits study [Pan01], we can adopt a more efficient covariance estimator:

$$\widetilde{\Sigma} = \sum_{i=1}^n \left(Z_i, X_i\right)' \widehat{\operatorname{var}(Y_i)} \left(Z_i, X_i\right) = \sum_{i=1}^n \left(Z_i, X_i\right)' \left(\sum_{i=1}^n \frac{(Y_i - \hat{\mu_i})(Y_i - \hat{\mu_i})'}{n}\right) \left(Z_i, X_i\right) = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix}$$

which is used by default for its better finite-sample performance [Pan01].

Yang Yang (UTSPH) Amazon Jan.5 2015 31 / 78

## Aim 1 V

### Methods: introduction to notation and formula

#### Binary traits

For binary traits (trait value coded as 0 and 1), we use the logit link function so that  $g(\mu_{im}) = log \frac{\mu_{im}}{1 - \mu_{im}}$  and  $v(\mu_{im}) = \mu_{im}(1 - \mu_{im})$ . Additionally the (m, l)th element of  $\frac{\partial \mu_{i}}{\partial \theta^{l}}$  is  $H_{i,ml}\mu_{im}(1 - \mu_{im})$  with  $H_{i,ml}$  as the (m, l)th element of  $H_{i}$ , which is the short notation for  $(Z_{i}, X_{i})$ .

Then we have:

$$U = \sum_{i=1} \left(\frac{\partial \mu_i}{\partial \theta'}\right)' V_i^{-1} (Y_i - \mu_i)$$
  
= 
$$\sum_{i=1} \left(\frac{\partial \mu_i}{\partial \theta'}\right)' \phi A_i^{-\frac{1}{2}} R_w^{-1} A_i^{-\frac{1}{2}} (Y_i - \mu_i)$$

and

$$\begin{split} \widetilde{\Sigma} &= \sum_{i} \left( \frac{\partial \mu_{i}}{\partial \theta'} \right)' \phi A_{i}^{-\frac{1}{2}} R_{w}^{-1} A_{i}^{-\frac{1}{2}} (Y_{i} - \hat{\mu}_{i}) (Y_{i} - \hat{\mu}_{i})' \phi A_{i}^{-\frac{1}{2}} R_{w}^{-1} A_{i}^{-\frac{1}{2}} \left( \frac{\partial \mu_{i}}{\partial \theta'} \right) \\ &= \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \end{split}$$

Yang Yang (UTSPH) Amazon Jan.5 2015 32 / 78

# Aim 1 VI

Methods: introduction to notation and formula

In this research, I will focus on the case with quantitative traits, since they are most typical traits used as the response variable in longitudinal data analysis. In general, the only difference lies in which canonical link we will use, with all other equations/formulas remaining the same.

Yang Yang (UTSPH) Amazon Jan.5 2015 33 / 78

## Aim 1 VII

#### Methods: introduction to notation and formula

Our goal is to detect whether there is any association between the longitudinal trait and the  $\mathsf{SNPs}$  via testing on hypothesis

$$H_o: \beta = (\beta_1, \beta_2, \dots, \beta_p)' = 0$$

We have under the null hypothesis with  $g(Y_i) = Z_i \varphi$  to obtain  $\varphi$  and predict  $\hat{\mu} = g^{-1}(Z\hat{\varphi})$ . We hereby have score vector under the null hypothesis, with a working independence model, is:

$$U(\hat{\varphi},0) = (U'_{.1}, U'_{.2})' = \sum_{i=1}^{n} (U'_{i1}, U'_{i2})'$$

where

$$U_{.1} = \sum_{i} Z'_{i}(Y_{i} - \hat{\mu_{i}}), U_{.2} = \sum_{i} X'_{i}(Y_{i} - \hat{\mu_{i}})$$

As U asymptotically follows a multivariate normal distribution under  $H_0$ , then the score vector for  $\beta$  also has an asymptotic normal distribution:

$$U_{.2} \sim N(0, \Sigma_{.2}), \ \Sigma_{.2} = \widehat{Cov}(U_{.2}) = V_{22} - V_{21}V_{11}^{-1}V_{12}$$

, where  $V_{xx}$  are defined in Equation 1.

(ロ) (型) (基) (基) (基) のQで

Yang Yang (UTSPH) Amazon Jan.5 2015 34 / 78

# Aim 1 VIII

#### Methods: introduction to notation and formula

#### Several classical tests:

- The Wald Test: The Wald Test known as  $T = \hat{\beta}' \operatorname{cov}(\hat{\beta}) \hat{\beta}$  is most commonly used, where  $\hat{\beta}$  is the estimate of  $\beta$  after fitting the full GEE model with  $g(\mu_i) = Z_i \varphi + X_i \beta$ . Under  $H_0$ , we have  $T \sim \chi_p^2$ . The Wald test is more time consuming by fitting full model, may fail to converge with many SNPs put on RHS of the regression-like equation to test, and more importantly, the type I error tends to inflate in such case [PKZ+14, ZXSP14].
- The Score Test:  $T = U_2^{'} \Sigma_2^{-1} U_2^{-1}$ , where  $U_{.2}$  and  $\Sigma_{.2}$  are discussed above; the statistic is asymptotically equivalent to the Wald test with the same null distribution  $T \sim \chi_p^2$ . Since we only need to fit the null model with covariates, it is computationally easier and less likely to have numerical convergence problems. More importantly, the score test controls the type I error well [PKZ+14, ZXSP14].
- The UminP Test:  $T = \max_{j} \frac{U_{2,j}^2}{\sum_{.2,j}}$  for  $j \in {1,2,\dots,p}$ , of jth SNP effect. The  $\sum_{.2,jj}$  is the jth entry on the diagonal of  $\sum_{.2}$ . With max T, we can get minimal p-value accordingly. A simulation method based on the asymptotic normal distribution of the score vector can be used to calculate its p-value [PKZ+14, ZXSP14]. An asymptotic multivariate normal distribution numerical integration based method provided an alternative to calculate its p-value [PHS09, Pan09].

Yang Yang (UTSPH) Amazon Jan.5 2015 35 / 78

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

# Aim 1 I

## Methods: A new class of tests and a data-adaptive test in longitudinal data settings

A general form of score-vector-based statistic can be generalized as:

$$T_w = W'U = \sum_{j=1}^p W_j U_j$$

where  $W = (W_1, \dots, W_p)'$  is a vector of weights for the p SNVs [LT11]. with special cases:

$$T_{Sum} = 1'U = \sum_{j=1}^{p} U_j, \qquad T_{SSU} = U'U = \sum_{j=1}^{p} U_j^2,$$

These two tests are called Sum test and SSU test [Pan09].

Yang Yang (UTSPH) Amazon Jan.5 2015 36 / 78

## Aim 1 II

### Methods: A new class of tests and a data-adaptive test in longitudinal data settings

If we choose weight to be

$$W_j = U_{.2,j}^{\gamma-1}$$

for a series of integer value  $\gamma=1,2,\ldots,\infty$ , leading to the sum of powered score (U) tests called **SPU** tests:

$$T_{SPU(\gamma)} = \sum_{j=1}^{p} U_{.2,j}^{\gamma-1} U_{.2,j}$$

When  $\gamma o \infty$  as an extreme situation, where  $\infty$  is assumed to be an even number, we have

$$T_{SPU(\gamma)} \propto ||U||_{\gamma} = \left(\sum_{j=1}^p |U_{\cdot 2,j}|^{\gamma}\right)^{\frac{1}{\gamma}} \ o \ ||U||_{\infty} = \max_{j=1}^p |U_{\cdot 2,j}| \equiv T_{SPU(\infty)}.$$

In our experience, SPU( $\gamma$ ) test with a large  $\gamma>8$  usually gave similar results as that of SPU( $\infty$ ) test [PKZ+14], thus we will only use  $\gamma\in\Gamma=\{1,2,\ldots,8,\infty\}$  for the whole dissertation work.

◆ロト ◆問 ▶ ◆ 差 ▶ ◆ 差 ● 釣 Q (\*)

Yang Yang (UTSPH) Amazon Jan.5 2015 37 / 78

### Aim 1 III

Methods: A new class of tests and a data-adaptive test in longitudinal data settings

### Simulation-based P-value estimation of $T_{SPU(\gamma)}$

Suppose T is short notation of  $T_{SPU(\gamma)}$  for a specific  $\gamma$  and  $\hat{\Sigma}_{.2}$  is the covariance matrix of the score vector  $U_{.2}$  based on original data (see Equation 1). We draw B samples of the score vector from its null distribution:

$$U_{.2}^{(b)} \sim MVN\left(0,\hat{\Sigma}_{.2}\right),$$

with  $b=1,2,\ldots,B$ , and thus obtain a statistics under null hypothesis:  $T^{(b)}=\sum_{j=1}^p U_{.2,j}^{(b)\gamma}$ . We then can calculate the p-value of  $T_{SPU(\gamma)}$  as

$$P_{SPU(\gamma)} = \sum_{b=1}^{B} \frac{I(T^{(b)} \ge T^{obs}) + 1}{B+1}.$$

38 / 78

# Aim 1 IV

Methods: A new class of tests and a data-adaptive test in longitudinal data settings

### The aSPU test

Although we have a list of  $SPU(\gamma)$  statistics and p-values, we are not sure which one is **the most powerful** in a specific data situation. Thus, it will be convenient to have a test which data-adaptively and automatically **select/combine the best**  $SPU(\gamma)$  test(s).

We hereby propose an adaptive SPU (aSPU) test to achieve such purpose. Accordingly, we will have the aSPU test statistic:

$$T_{aSPU} = \min_{\gamma \in \Gamma} P_{SPU(\gamma)},$$

Yang Yang (UTSPH) Amazon Jan.5 2015 39 / 78

### Aim 1 V

Methods: A new class of tests and a data-adaptive test in longitudinal data settings

Simulation-based P-value estimation of  $T_{aSPU}$  Similarly.

$$P_{SPU(\gamma)}^{(b)} = \sum_{b_1 \neq b}^{B} \frac{I(T_{SPU(\gamma)}^{(b_1)} \ge T_{SPU(\gamma)}^{(b)}) + 1}{(B-1) + 1}$$

for every  $\gamma$  and every b. Then, we will have  $T_{\mathsf{aSPU}}^{(b)} = \min_{\gamma \in \Gamma} P_{\mathsf{SPU}(\gamma)}^{(b)}$ , and the final p-value of aSPU test is:

$$P_{aSPU} = \sum_{b=1}^{B} \frac{I(T_{aSPU}^{(b)} \le T_{aSPU}^{obs}) + 1}{B+1}.$$

It is worth noting again that the same B simulated score (U) vectors have been used in calculating the  $P_{aSPU}$ .

◆ロト ◆部ト ◆差ト ◆差ト を めらべ

Yang Yang (UTSPH) Amazon Jan.5 2015 40 / 78

# Aim 1 VI

Methods: A new class of tests and a data-adaptive test in longitudinal data settings

### The "data-adaptive" genome wide scan strategy

In practice for genome wide scan purpose, we can use a "data-adaptive" aSPU test strategy that is:

- **1** we first start with a smaller B, say B = 1000
- ② we increase B to say  $10^6$  for just a few groups of SNVs, which passed an pre-determined significance cutoff (e.g. p-value  $\leq 5/B$ ) in 1
- 3 repeat 2 until a pre-determined B number reached

In this "data-adaptive" way of implementing the simulation based p-value calculating method for aSPU test, we will be able to apply the aSPU test to GWA data.

Yang Yang (UTSPH) Amazon Jan.5 2015 41 / 78

# Aim 1 VII

Methods: A new class of tests and a data-adaptive test in longitudinal data settings

### Other versions of aSPU test

aSPUw test
 The SPUw test is a diagonal-variance-weighted version of the SPU test, defined as:

$$T_{SPUw(\gamma)} = \sum_{j=1}^{p} \left( \frac{U_{.2,j}}{\sqrt{\hat{\Sigma}_{.2,jj}}} \right)^{\gamma}$$

aSPU(w).Score test

$$T_{aSPU.Score} = \min \Big\{ \min_{\gamma \in \Gamma} P_{SPU(\gamma)}, P_{Score} \Big\},$$

→□▶ →□▶ → □▶ → □ ● →○

Yang Yang (UTSPH) Amazon Jan.5 2015 42 / 78

# **Table of Contents**

- Background
  - Introduction to GWAS
    - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ b - 4 固 b - 4 直 b - 4 直 - りへの

Yang Yang (UTSPH) Amazon Jan.5 2015 43 / 78

# Aim 1 I

### Methods in data simulation

### Simulation of genotype data

- ① a latent vector  $G_i = (G_{i1}, \ldots, G_{ip})'$  was first drawn from a **multivariate Normal distribution** N(0, R), where R had a AR(1) correlation structure with its (i, j)th element in terms of purely correlation  $r_{ij} = \operatorname{Corr}(G_{if}, G_{ig}) = \rho^{|f-g|}$  between any two latent components,  $G_{if}$  and  $G_{ig}$  for  $f \neq g$ . In our simulations we set  $\rho = 0.8$ .;
- ② the latent vector  $G_i$  was dichotomized to yield a haplotype with each latent element  $G_{ij}$  dichotomized to 0 or 1 with probability  $\operatorname{Prob}(G_{ij}=1)=\operatorname{MAF}$  of jth SNP; the MAFs were randomly drawn from a uniform distribution: for causal SNPs the MAFs were set between 0.3 and 0.4; for null SNPs the MAFs were set between 0.1 and 0.5;
- ③ we combined two independent haplotypes to form the genotype  $X_i = (X_{i1}, \dots, X_{ip})'$  for subject i. The haplotypes for different subject were generated independently.

Yang Yang (UTSPH) Amazon Jan.5 2015 44 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Aim 1 II

### Methods in data simulation



Figure: Demo graph of genotype simulation

Jan.5 2015 45 / 78

### Aim 1 III

### Methods in data simulation

### Simulation of phenotype data

We setup the mixed effect model to achieve the AR(1) correlation structure as:

$$y_{im} = \mu_i + b_i + \underbrace{\rho e_{i,m-1} + s_{i,m}}_{e_{i,m}},$$
 (3)

with m = 1, ..., k indexes the longitudinal measurements within subject i;

$$\mu_i = Z_i \varphi + X_i \beta = H_i \theta$$

as in quantitative trait case;  $b_i$  is the random intercept representing the subject-level random effect, and

$$\rho e_{i,m-1} + s_{i,m} = e_{i,m},$$

where  $\rho$  is lag-one autocorrelation coefficient, so we can plugin our estimate from real data here by setting up  $\rho=0.7$ . We assume the following distribution:

Yang Yang (UTSPH) Amazon Jan.5 2015 46 / 78

# Aim 1 IV

### Methods in data simulation

$$b_i \sim N(0, \sigma_b^2)$$

$$e_{i,m} \sim N(0, \sigma_e^2)$$

$$s_{i,m} \sim N(0, (1 - \rho^2)\sigma_e^2)$$

Under this assumption, the variance-covariance matrix across longitudinal measurements becomes (assuming k = 4 for the number of longitudinal measurements ):

Yang Yang (UTSPH) Amazon Jan.5 2015 47 / 78

### Aim 1 V

### Methods in data simulation

### Connect phenotype data with genotype data

Let we first introduce the below splitting of the phenotype variance:

$$Var(y_{im}) = Var(X_{ij})\beta_j^2 + \sigma_{oth}^2 = 2f(1-f)\beta_j^2 + \sigma_{oth}^2$$
 (5)

Now let we look at the relationship between genetic heritability (narrow-sense heritability) and equation (5):

$$h^2 = \frac{Var(A)}{Var(P)} \tag{6}$$

In our situation for jth SNP, this can be extended to:

$$h_j^2 = \frac{Var_j(A)}{Var(P)} = \frac{Var(X_{ij})\beta_j^2}{Var(y_{im})} = \frac{Var(y_{im}) - \sigma_{oth}^2}{Var(y_{im})} \approx \frac{Var(y_{im}) - \sigma_b^2 - \sigma_e^2}{Var(y_{im})}$$
(7)

(미) (B) (B) (B) (B) (B) (P)

Yang Yang (UTSPH) Amazon Jan.5 2015 48 / 78

### Methods in data simulation

### Summary of parameter setup in simulation studies

After this point, by systematically solving the equations (5) and (7), we can easily calculate the  $\beta_j$  for jth SNP once we have determined the value of  $h_j^2$ ,  $\sigma_b^2$ ,  $\sigma_e^2$  and f. Usually a  $h_j^2$  for a single SNP j will not be high for complex disease and we used  $h_j^2 = 0.001$  in our simulation study to control  $\beta_j$ . We summarize the parameters used in simulation studies here:

- $h_j^2 = 0.001$
- $\sigma_b^2 = 1$
- $\sigma_e^2 = 1$
- n varies between 500 and 3000
- k = 4
- 1000 replicates of simulated dataset
- $\alpha = 0.05$
- $\rho_V = 0.7$
- $\rho_{x} = 0.8$
- R = AR(1)
- Rw = I

# **Table of Contents**

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ > 4 部 > 4 差 > 4 差 > 差 夕 Q C

Yang Yang (UTSPH) Amazon Jan.5 2015 50 / 78

# Aim 1 I

### Simulation results

### • Tests under default simulation settings with varying sample size

|            |       |       |       | SSU   | aSPU  | aSPUw | aSPU.sco | aSPUw.sco |
|------------|-------|-------|-------|-------|-------|-------|----------|-----------|
| 500 0.038  | 0.056 | 0.058 | 0.053 | 0.044 | 0.052 | 0.051 | 0.050    | 0.048     |
| 1000 0.047 | 0.054 | 0.048 | 0.049 | 0.065 | 0.065 | 0.064 | 0.059    | 0.057     |
| 2000 0.055 | 0.041 | 0.053 | 0.053 | 0.059 | 0.052 | 0.055 | 0.058    | 0.058     |
| 3000 0.055 | 0.054 | 0.057 | 0.060 | 0.065 | 0.063 | 0.054 | 0.056    | 0.059     |

Table: Type I error under using working independence Rw

Yang Yang (UTSPH) Amazon Jan.5 2015 51 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Aim 1 II

### Simulation results

#### Power Benchmark on different sample size



Figure: Empirical power benchmark under different n using working independence  $R_w$ 

- 4ロト 4部ト 4 E ト 4 E ト E り90で

Yang Yang (UTSPH) Amazon Jan.5 2015 52 / 78

## Aim 1 III

### Simulation results

• Tests with half number of SNPs in opposite effect direction In 5 causal SNPs, we set 2 of them to have opposite effect direction to the left 3 SNPs. The other settings kept the same as the above. We have the empirical power benchmark result as below.

Yang Yang (UTSPH) Amazon Jan.5 2015 53 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Aim 1 IV

### Simulation results

#### Power Benchmark on different sample size



Figure: Empirical power benchmark under a mixed SNP effects

Yang Yang (UTSPH) Amazon Jan.5 2015 54 / 78

# Aim 1 V

### Simulation results

Tests with growing number of Null SNPs

#### Power Benchmark on different number of null SNPs



Figure: Empirical power benchmark under an increasing number of Null SNPs

Yang Yang (UTSPH) Amazon Jan.5 2015 55 / 78

# **Table of Contents**

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ > 4 部 > 4 差 > 4 差 > 差 夕 Q C

Yang Yang (UTSPH) Amazon Jan.5 2015 56 / 78

# Aim 2

Extend the data-adaptive longitudinal association test within GEE framework to work for **rare variants** in a gene-based manner.

# **Table of Contents**

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ > 4 部 > 4 差 > 4 差 > 差 夕 Q C

Yang Yang (UTSPH) Amazon Jan.5 2015 58 / 78

# Aim 2 I

### Methods

For CVs we have:

$$U_{.2}^{(b)} \sim MVN\left(0,\hat{\Sigma}_{.2}\right)$$

with  $b=1,2,\ldots,B$ , and thus obtain a statistics under null hypothesis:  $T^{(b)}=\sum_{j=1}^p U_{.2,j}^{(b)\gamma}$ . We then calculate the p-value of  $T_{SPU(\gamma)}$  as  $P_{SPU(\gamma)}=\sum_{b=1}^B \frac{I(T^{(b)}\geq T^{obs})+1}{B+1}$ .

The above algorithms will hold in RV case by large, except that the  $U_{.2}^{(b)}$  may **not** follow the multivariate Normal distribution any longer. As a remedy, we propose a permutation algorithm that generates the empirical null distribution of  $U_{.2}^{(b)}$  and in the same time **maintain the relationship** between longitudinal traits and possible covariates such as age, gender, etc, for subject i. The algorithm will also be robust to **missing data** as this is a usual case in longitudinal data settings.

◆ロト ◆問ト ◆ 恵ト ◆ 恵 ・ からぐ

Yang Yang (UTSPH) Amazon Jan.5 2015 59 / 78

# Aim 2 II

### Methods

The permutation algorithm can be implemented as follows:

- ① identify the max k across all n subjects, which is the number of longitudinal measurements, e.g. k = 4.
- ② detect if the data has missing values, if yes, fill the missing value with NA to complement the data dimension (for example, subject i with  $Y_i = (y_{i,1}, ., y_{i,4})'$  has two missing measurements at time 2 and time 3. After missing value complementing, it becomes  $Y_i = (y_{i,1}, \mathrm{NA}, \mathrm{NA}, y_{i,4})'$ ). Now we should have all the subjects with each  $Y_i$  of dimension equal to  $k \times 1$ .
- ③ complement  $H_i$  to be of full dimension, i.e.  $k \times (p+q+1)$ , for covariates and SNVs. Now we should have  $(Y_i \quad H_i)$  as an augmented matrix of dimension  $k \times (p+q+2)$  for each subject i, where  $H_i = (Z_i, X_i)$ . For total n subjects, we have row-wise binded matrix

$$M = \begin{pmatrix} Y_1 & H_1 \\ Y_2 & H_2 \\ \vdots & \vdots \\ Y_n & H_n \end{pmatrix}$$

of dimension  $nk \times (p+q+2)$ .

4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D >

Yang Yang (UTSPH) Amazon Jan.5 2015 60 / 78

# Aim 2 III

### Methods

- **9** permute the SNV chunk among different individuals, i.e. the  $X_i$  in  $(Y_i \quad Z_i, X_i)$  with the  $X_j$  in  $(Y_j \quad Z_j, X_j)$ , where  $i \neq j$ .
- with permuted

$$M^{*(b)} = \begin{pmatrix} Y_1 & Z_1, X_1^{*(b)} \\ Y_2 & Z_1, X_2^{*(b)} \\ \vdots & \vdots \\ Y_n & Z_1, X_n^{*(b)} \end{pmatrix}$$

we refit the GEE model and get the  $U_{.2}^{*(b)}$ 

**1** repeat step 4 - 5 B times to produce  $U_{.2}^{*(b)}$  with  $b=1,2,\ldots,B$ .

◆ロト ◆団 ▶ ◆ 重 ト ◆ 重 ・ か Q (\*)

# **Table of Contents**

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ > 4 部 > 4 差 > 4 差 > 差 夕 Q C

Yang Yang (UTSPH) Amazon Jan.5 2015 62 / 78

## Aim 2 I

### Methods in data simulation

The simulation strategy of RV data is almost the same with previous strategy for generating  ${\sf CV}$  data , except that:

- $oldsymbol{0}$  the MAF of RVs, regardless of casual one or null one, are set between 0.001 and 0.01.
- ② the casual RVs are **not** excluded from later test as we expect the whole-genome sequencing or exome sequencing/Chip platform will identify high density SNVs including the real casual ones.

We will use the same simulated longitudinal phenotype data as for CVs.

Yang Yang (UTSPH) Amazon Jan.5 2015 63 / 78

# **Table of Contents**

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aims
- 3 Public Health Significance
- Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

- 4 ロ > 4 個 > 4 き > 4 き > り へ ©

Yang Yang (UTSPH) Amazon Jan.5 2015 64 / 78

# Aim 2 I

### Simulation results

If we still use the CVs' strategy on RVs, we will have

Simulation-based Test under default settings with varying sample size

| n    | pSSU  | pSSUw | pScore | pSum  | mvn.UminP | UminP | SPU(1) | SPUw(1) | SPU(2) | SPUw(2) | aSPU  | aSPUw | aSPU.sco | aSPUw.sco |
|------|-------|-------|--------|-------|-----------|-------|--------|---------|--------|---------|-------|-------|----------|-----------|
| 500  | 0.053 | 0.054 | 0.052  | 0.049 | 0.047     | 0.022 | 0.052  | 0.026   | 0.063  | 0.025   | 0.056 | 0.021 | 0.059    | 0.035     |
| 1000 | 0.055 | 0.040 | 0.042  | 0.048 | 0.054     | 0.049 | 0.048  | 0.046   | 0.061  | 0.044   | 0.045 | 0.045 | 0.053    | 0.047     |
| 2000 | 0.054 | 0.050 | 0.048  | 0.049 | 0.046     | 0.045 | 0.053  | 0.044   | 0.063  | 0.061   | 0.066 | 0.062 | 0.062    | 0.062     |
| 3000 | 0.045 | 0.044 | 0.039  | 0.060 | 0.053     | 0.055 | 0.057  | 0.058   | 0.058  | 0.052   | 0.049 | 0.055 | 0.055    | 0.057     |

**Table:** Empirical type I error using simulation-based method in RV analysis. mvn.UminP: UminP method based MVN distribution; UminP: UminP method based on simulation.

Yang Yang (UTSPH) Amazon Jan.5 2015 65 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Aim 2 II

### Simulation results



Figure: Empirical power benchmark using simulation-based method in RV analysis

Yang Yang (UTSPH) Amazon Jan.5 2015 66 / 78

### Aim 2 III

### Simulation results

Permutation-based Test under default settings with varying sample size

As noted before, there are some minor issues in using simulated-based aSPU method to test RVs, we thus tested the aSPU performance based on permutation algorithm. The type I error is shown below.

| n    | pSSU  | pSSUw | pScore | pSum  | mvn.UminP | UminP | SPU(1) | SPUw(1) | SPU(2) | SPUw(2) | aSPU  | aSPUw | aSPU.sco | aSPUw.sco |  |
|------|-------|-------|--------|-------|-----------|-------|--------|---------|--------|---------|-------|-------|----------|-----------|--|
| 500  | 0.053 | 0.054 | 0.052  | 0.049 | 0.047     | 0.046 | 0.050  | 0.049   | 0.056  | 0.061   | 0.054 | 0.053 | 0.060    | 0.056     |  |
| 1000 | 0.055 | 0.040 | 0.042  | 0.048 | 0.054     | 0.056 | 0.048  | 0.049   | 0.056  | 0.043   | 0.047 | 0.045 | 0.052    | 0.051     |  |
| 2000 | 0.054 | 0.050 | 0.048  | 0.049 | 0.046     | 0.046 | 0.049  | 0.043   | 0.053  | 0.052   | 0.063 | 0.057 | 0.058    | 0.056     |  |
| 3000 | 0.045 | 0.044 | 0.039  | 0.060 | 0.053     | 0.050 | 0.058  | 0.058   | 0.047  | 0.048   | 0.049 | 0.053 | 0.049    | 0.053     |  |
|      |       |       |        |       |           |       |        |         |        |         |       |       |          |           |  |

Table: Empirical type I error using permutation-based method in RV analysis. mvn.UminP: UminP method based MVN distribution; UminP: UminP method based on permutation.

Yang Yang (UTSPH) Amazon Jan.5 2015 67 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Aim 2 IV

### Simulation results

### Power Benchmark on different sample size



Figure: Empirical power benchmark using simulation-based method in RV analysis

# Aim 2 V

### Simulation results

 An effort to combine the advantages from aSPU, aSPUw and score test. The aSPU.aSPUw.Score test can save user's effort in deploying a best version of aSPU family test on a specific dataset with only a small amount of power loss in the process of compromising among different versions.

$$\textit{T}_{\textit{aSPU.aSPUw.Score}} = \min \Bigl\{ \underset{\gamma \in \Gamma}{\min} \textit{P}_{\textit{SPU}(\gamma)}, \underset{\gamma \in \Gamma}{\min} \textit{P}_{\textit{SPUw}(\gamma)}, \textit{P}_{\textit{Score}} \Bigr\},$$

**◆□▶ ◆□▶ ◆ 亘 ▶ ◆ 亘 ・ 釣 Q (^)** 

Yang Yang (UTSPH) Amazon Jan.5 2015 69 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# Aim 2 VI

### Simulation results

#### Power Benchmark on different sample size 0. aspu\_weighted\_sco\_P aspu weighted P 6.0 aspu\_sco P aspu\_aspuw.sco\_P 0.8 aspu aspuw P 0.7 mvn.UminP pSum 9.0 **Empirical Power** pSSUw pSSU ß 0.5 pScore Ö SPU(2) 0.4 SPUw(2) 0.4 SPUw(1) SPU(1) 0.3 0.3 0.2 0.1 0.1 0.0 0.0 1000 500 2000 3000 Sample Size

Figure: Empirical power benchmark with aSPU.aSPUw.Score test in RV analysis

Yang Yang (UTSPH) Amazon Jan.5 2015 70 / 78

# **Table of Contents**

- Background
  - Introduction to GWAS
  - SNP-set based association tests
  - Longitudinal data analysis strategy in GWAS
- Research Aim
- 3 Public Health Significance
- 4 Specific Aims, Methods and Results
  - Aim 1: A data-adaptive association test for longitudinal data analysis within GEE framework
    - Methods
    - Methods in data simulation
    - Simulation results
  - Aim 2: Longitudinal aSPU family tests on Rare Variants
    - Methods
    - Methods in data simulation
    - Simulation results
- Real Data Application
- 6 References

Yang Yang (UTSPH) Amazon Jan.5 2015 71 / 78

# **Real Data Introduction**

The real data used in my dissertation will be obtained from the Atherosclerosis Risk in Communities (ARIC) Study (https://www2.cscc.unc.edu/aric/).

The Cohort Component of the ARIC study began in 1987. A total of 15,792 participants received an extensive examination, including medical, social, and demographic data. These participants were re-examined every three years with the first screen (baseline) occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth exam was in 1996-98. In 2009, the NHLBI funded a fifth exam, which is currently being conducted.



Figure: ARIC Cohort and Community Surveillance Components. Figure adopted from the ARIC website

We applied our novel method on ARIC data. Specifically, we will use the four closely cardiovascular-disease-related traits measured in ARIC cohort data, which are total cholesterol (tch), High-density lipoprotein (HDL), Low-density lipoprotein (LDL) and triglycerides (trgs). We will exclusively use Caucasian samples (n = 11478). For the covariates, we will include but not limited to subject's demographic information such as age, gender, BMI, etc.

4 D > 4 A > 4 B > 4 B > B = 90 Q P

Yang Yang (UTSPH) Amazon Jan.5 2015 72 / 78

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

## Real Data Result Demo



Figure: Manhattan Plot of aSPUw.score test on ARIC data Total Cholesterol trait

Yang Yang (UTSPH)

Amazon

Jan.5 2015 73 / 78





Thank you for your participation!

Yang Yang (UTSPH) Amazon Jan.5 2015 74 / 78

### References I



William S Bush and Jason H Moore, *Genome-wide association studies*, PLoS computational biology **8** (2012), no. 12, e1002822.



Lin S Chen, Li Hsu, Eric R Gamazon, Nancy J Cox, and Dan L Nicolae, *An exponential combination procedure for set-based association tests in sequencing studies*, The American Journal of Human Genetics **91** (2012), no. 6, 977–986.



Andriy Derkach, Jerry F Lawless, and Lei Sun, Robust and powerful tests for rare variants using fisher's method to combine evidence of association from two or more complementary tests, Genetic epidemiology 37 (2013), no. 1, 110–121.



Ruzong Fan, Yifan Wang, James L Mills, Alexander F Wilson, Joan E Bailey-Wilson, and Momiao Xiong, Functional linear models for association analysis of quantitative traits, Genetic epidemiology 37 (2013), no. 7, 726–742.



Fang Han and Wei Pan, A data-adaptive sum test for disease association with multiple common or rare variants, Human heredity **70** (2010), no. 1, 42–54.



Sunkyung Kim, Wei Pan, and Xiaotong Shen, *Penalized regression approaches to testing for quantitative trait-rare variant association*. Frontiers in genetics **5** (2014).



Li Luo, Eric Boerwinkle, and Momiao Xiong, Association studies for next-generation sequencing, Genome research 21 (2011), no. 7, 1099–1108.



Seunggeun Lee, Mary J. Emond, Michael J. Bamshad, Kathleen C. Barnes, Mark J. Rieder, Deborah A. Nickerson, N. H. L. B. I G. O Exome Sequencing Project-E. S. P Lung Project Team , David C. Christiani, Mark M. Wurfel, and Xihong Lin, Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies., Am J Hum Genet 91 (2012), no. 2, 224–237 (eng).



Bingshan Li and Suzanne M. Leal, Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data., Am J Hum Genet 83 (2008), no. 3, 311–321 (eng).

Yang Yang (UTSPH) Amazon Jan.5 2015 75 / 78

4日 > 4周 > 4 3 > 4 3 >

Background Research Aims Public Health Significance Specific Aims, Methods and Results Real Data Application Reference

# References II



Dan-Yu Lin and Zheng-Zheng Tang, A general framework for detecting disease associations with rare variants in sequencing studies, The American Journal of Human Genetics **89** (2011), no. 3, 354–367.



Nan M Laird and James H Ware, Random-effects models for longitudinal data, Biometrics (1982), 963-974.



Seunggeun Lee, Michael C. Wu, and Xihong Lin, *Optimal tests for rare variant effects in sequencing association studies.*, Biostatistics **13** (2012), no. 4, 762–775 (eng).



Kung-Yee Liang and Scott L Zeger, Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), no. 1, 13–22.



Li Luo, Yun Zhu, and Momiao Xiong, Quantitative trait locus analysis for next-generation sequencing with the functional linear models. Journal of medical genetics 49 (2012), no. 8, 513–524.



\_\_\_\_\_\_, Smoothed functional principal component analysis for testing association of the entire allelic spectrum of genetic variation, European Journal of Human Genetics 21 (2012), no. 2, 217–224.



Bo Eskerod Madsen and Sharon R. Browning, A groupwise association test for rare mutations using a weighted sum statistic., PLoS Genet 5 (2009), no. 2, e1000384 (eng).



Benjamin M Neale, Manuel A Rivas, Benjamin F Voight, David Altshuler, Bernie Devlin, Marju Orho-Melander, Sekar Kathiresan, Shaun M Purcell, Kathryn Roeder, and Mark J Daly, *Testing for an unusual distribution of rare variants*, PLoS genetics 7 (2011), no. 3, e1001322.



Wei Pan, On the robust variance estimator in generalised estimating equations, Biometrika 88 (2001), no. 3, 901-906.



\_\_\_\_\_\_, Asymptotic tests of association with multiple snps in linkage disequilibrium, Genetic epidemiology **33** (2009), no. 6. 497–507.

Yang Yang (UTSPH) Amazon Jan.5 2015 76 / 78

4日 > 4周 > 4 至 > 4 至 >

## References III



Wei Pan, Fang Han, and Xiaotong Shen, Test selection with application to detecting disease association with multiple snps, Human heredity **69** (2009), no. 2, 120–130.



Wei Pan, Junghi Kim, Yiwei Zhang, Xiaotong Shen, and Peng Wei, A powerful and adaptive association test for rare variants, Genetics (2014), genetics–114.



Wei Pan and Xiaotong Shen, Adaptive tests for association analysis of rare variants., Genet Epidemiol 35 (2011), no. 5, 381–388 (eng).



Jianping Sun, Yingye Zheng, and Li Hsu, A unified mixed-effects model for rare-variant association in sequencing studies, Genetic epidemiology 37 (2013), no. 4, 334–344.



JAMES H WARE, DOUGLAS W DOCKERY, THOMAS A LOUIS, XIPING XU, BENJAMIN G FERRIS, and FRANK E SPEIZER, Longitudinal and cross-sectional estimates of pulmonary function decline in never-smoking adults, American journal of epidemiology 132 (1990), no. 4, 685–700.



Michael C. Wu, Seunggeun Lee, Tianxi Cai, Yun Li, Michael Boehnke, and Xihong Lin, *Rare-variant association testing* for sequencing data with the sequence kernel association test., Am J Hum Genet **89** (2011), no. 1, 82–93 (eng).



Kai Wang, Haitao Zhang, Deqiong Ma, Maja Bucan, Joseph T Glessner, Brett S Abrahams, Daria Salyakina, Marcin Imielinski, Jonathan P Bradfield, Patrick MA Sleiman, et al., Common genetic variants on 5p14. 1 associate with autism spectrum disorders. Nature 459 (2009), no. 7246, 528–533.



Zhiyuan Xu, Xiaotong Shen, Wei Pan, Alzheimer's Disease Neuroimaging Initiative, et al., Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes, PloS one **9** (2014), no. 8, e102312.

Yang Yang (UTSPH) Amazon Jan.5 2015 77 / 78

### References IV



Hua Zhou, Mary E Sehl, Janet S Sinsheimer, and Kenneth Lange, Association screening of common and rare genetic variants by penalized regression, Bioinformatics 26 (2010), no. 19, 2375.



Yiwei Zhang, Zhiyuan Xu, Xiaotong Shen, and Wei Pan, Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data, NeuroImage 96 (2014), 309–325.

Yang Yang (UTSPH) Amazon Jan.5 2015 78 / 78