Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 4 Tuesday 13 February 2024

Topics:

- §2.4: Inner product spaces
- §2.5: Orthonormal systems and Gram-Schmidt

Inner product in \mathbb{R}^2

Euclidean distance between x and y:

$$||x - y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Inner product in \mathbb{R}^2

Alternative computation via the law of cosines:

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos(\theta)$$

Inner product in \mathbb{R}^2

$$||x - y||^{2} = ||x||^{2} + ||y||^{2} - 2 ||x|| ||y|| \cos(\theta)$$

$$||x|| ||y|| \cos \theta = \frac{1}{2} (||x||^{2} + ||y||^{2} - ||x - y||^{2})$$

$$= \frac{1}{2} (x_{1}^{2} + x_{2}^{2} + y_{1}^{2} + y_{2}^{2} - (x_{1} - y_{1})^{2} - (x_{2} - y_{2})^{2})$$

$$= x_{1}y_{1} + x_{2}y_{2}$$

$$=: \langle x, y \rangle \qquad \text{"inner product of } x \text{ and } y\text{"}$$

Note: nonzero vectors x and y are orthogonal $\Leftrightarrow \langle x, y \rangle = 0$

Inner product spaces

Definition: let X be a linear space over \mathbb{K}

A map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ is called an inner product if

- 1. $\langle x, x \rangle \geq 0$
- 2. $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- 3. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ $\lambda, \mu \in \mathbb{K}$
- 4. $\langle x,y\rangle=\overline{\langle y,x\rangle}$ [For $\mathbb{K}=\mathbb{R}$ we simply have $\langle x,y\rangle=\langle y,x\rangle$]

Inner product spaces

If $\mathbb{K} = \mathbb{R}$, then the IP is linear in the second component:

$$\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$$

If $\mathbb{K} = \mathbb{C}$, then the IP is conjugate-linear in the second component:

$$\langle x, \lambda y + \mu z \rangle = \overline{\lambda} \langle x, y \rangle + \overline{\mu} \langle x, z \rangle$$

[Exercise: prove these statements]

Inner product spaces

Examples:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \bar{y}_i, \quad x, y \in \mathbb{K}^n$$

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i, \quad x, y \in \ell^2$$

$$\langle f,g\rangle = \int_{a}^{b} f(t)\overline{g(t)} dt, \quad f,g \in \mathcal{C}([a,b],\mathbb{K})$$

[Exercise: for ℓ^2 show that the infinite sum converges absolutely using Hölder's ineq.]

Cauchy-Schwarz inequality

Lemma: if X is an IPS then

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle \quad \forall x, y \in X$$

Proof: for all $\lambda \in \mathbb{K}$

$$0 \le \langle x - \lambda y, x - \lambda y \rangle = \langle x, x \rangle - \lambda \langle y, x \rangle - \overline{\lambda} \langle x, y \rangle + |\lambda|^2 \langle y, y \rangle$$

For $\lambda = t\langle x, y \rangle$ with $t \in \mathbb{R}$:

$$0 \le \langle x, x \rangle - 2t |\langle x, y \rangle|^2 + t^2 |\langle x, y \rangle|^2 \langle y, y \rangle =: c + bt + at^2$$

Discriminant: $b^2 - 4ac \le 0 \Rightarrow CS$ inequality

Cauchy-Schwarz inequality

Corollary: if X is an IPS, then $||x|| = \sqrt{\langle x, x \rangle}$ is a norm

Proof of triangle inequality:

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2$$

$$\leq ||x||^2 + 2|\langle x, y \rangle| + ||y||^2$$

$$\leq ||x||^2 + 2||x|||y|| + ||y||^2 \quad \text{[by CS ineq.]}$$

$$= (||x|| + ||y||)^2$$

[Exercise: verify the remaining properties of a norm]

Cauchy-Schwarz inequality

Corollary: if X is an IPS, then

$$x_n \to x$$
, $y_n \to y$ \Rightarrow $\langle x_n, y_n \rangle \to \langle x, y \rangle$

Proof: with $M = \sup\{\|y_n\| : n \in \mathbb{N}\}$ we have

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n, y_n \rangle - \langle x, y_n \rangle| + |\langle x, y_n \rangle - \langle x, y \rangle| \\ &= |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle| \\ &\leq \|y_n\| \|x_n - x\| + \|x\| \|y - y_n\| \quad \text{[by CS ineq.]} \\ &\leq M \|x_n - x\| + \|x\| \|y - y_n\| \to 0 \end{aligned}$$

Identities

$$||x|| = \sqrt{\langle x, x \rangle}$$

Parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Polarization identity ($\mathbb{K} = \mathbb{R}$):

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2$$

Polarization identity ($\mathbb{K} = \mathbb{C}$):

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2$$

Orthogonality

Notation: $x \perp y$ if $\langle x, y \rangle = 0$ (x and y are called orthogonal)

Pythagorean theorem:

$$x \perp y \implies ||x + y||^2 = ||x||^2 + ||y||^2$$

Proof:

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} + ||y||^{2}$$

Orthogonality

Lemma: if X is an IPS and $V \subset X$ a subset, then the orthogonal complement of V defined by

$$V^{\perp} = \{ x \in X : \langle x, v \rangle = 0 \text{ for all } v \in V \}$$

is a closed linear subspace

Proof: if $x, y \in V^{\perp}$ and $\lambda, \mu \in \mathbb{K}$, then

$$\langle \lambda x + \mu y, v \rangle = \lambda \langle x, v \rangle + \mu \langle y, v \rangle = 0$$
 for all $v \in V$

If (x_n) in V^{\perp} and $x_n \to x$, then

$$\langle x, v \rangle = \lim_{n \to \infty} \langle x_n, v \rangle = 0$$
 for all $v \in V$

Best approximations

Definition: let X be a NLS and $V \subset X$ a subset

 $v_0 \in V$ is called a best approximation of $x \in X$ if

$$||x - v_0|| = d(x, V) := \inf\{||x - v|| : v \in V\}$$

Remark: in an arbitrary NLS the existence and uniqueness of best approximations is a delicate matter!

Characterization in an IPS

Lemma: let X be an IPS and $V \subset X$ a linear subspace

If
$$x \in X$$
 and $v_0 \in V$ then

$$||x-v_0|| = d(x, V) \Leftrightarrow x-v_0 \in V^{\perp}$$

[Exercise: where do we use that V is a linear subspace in the proof?]

Characterization in an IPS

Claim:
$$||x - v_0|| = d(x, V) \Leftrightarrow x - v_0 \in V^{\perp}$$

Proof (\Rightarrow): for all $v \in V$ and $\lambda \in \mathbb{K}$:

$$||x - v_0||^2 \le ||x - v_0 - \lambda v||^2$$

$$= ||x - v_0||^2 - \bar{\lambda} \langle x - v_0, v \rangle - \lambda \langle v, x - v_0 \rangle + |\lambda|^2 ||v||^2$$

Let
$$\lambda = t\langle x - v_0, v \rangle$$
 with $t > 0$:
$$2|\langle x - v_0, v \rangle|^2 \leq t|\langle x - v_0, v \rangle|^2 ||v||^2$$

$$t \to 0 \implies x - v_0 \in V^{\perp}$$

Characterization in an IPS

Claim:
$$||x - v_0|| = d(x, V) \Leftrightarrow x - v_0 \in V^{\perp} \quad (v_0 \in V)$$

Proof (\Leftarrow): for all $v \in V$ we have

$$||x - v||^2 = ||x - v_0 + v_0 - v||^2$$

$$= ||x - v_0||^2 + ||v_0 - v||^2 \qquad (x - v_0 \perp v_0 - v)$$

$$\geq ||x - v_0||^2$$

Taking the infimum over all $v \in V$ gives $d(x, V) \ge ||x - v_0||$

[Recall: inf = greatest lower bound]

We also have $d(x, V) \leq ||x - v_0||$

[Recall: inf is a lower bound]

Existence and uniqueness in an IPS

Lemma: let X be IPS and $V \subset X$ a linear subspace

 $\dim V < \infty \Rightarrow \forall x \in X \exists$ a unique best approximation $v_0 \in V$

Existence and uniqueness in an IPS

Proof: let $V = \text{span}\{e_1, \dots, e_n\}$ Writing $v_0 = c_1 e_1 + \cdots + c_n e_n$ gives $x - v_0 \in V^{\perp} \Leftrightarrow \langle x - v_0, v \rangle = 0 \quad \forall v \in V$ $\Leftrightarrow \langle x - v_0, e_k \rangle = 0 \quad \forall k = 1, \dots, n$ $\Leftrightarrow \langle x, e_k \rangle = \langle v_0, e_k \rangle \quad \forall k = 1, \dots, n$ $\Leftrightarrow \langle x, e_k \rangle = \sum_{j=1}^{n} c_j \langle e_j, e_k \rangle \qquad \forall k = 1, \dots, n$

Existence and uniqueness in an IPS

Proof (ctd):

$$x - v_0 \in V^{\perp} \Leftrightarrow \underbrace{\begin{bmatrix} \langle e_1, e_1 \rangle & \dots & \langle e_n, e_1 \rangle \\ \vdots & & \vdots \\ \langle e_1, e_n \rangle & \dots & \langle e_n, e_n \rangle \end{bmatrix}}_{G} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \langle x, e_1 \rangle \\ \vdots \\ \langle x, e_n \rangle \end{bmatrix}$$

Exercise: det $G = 0 \Leftrightarrow \{e_1, \dots, e_n\}$ linearly dependent

 $\{e_1,\ldots,e_n\}$ linearly indep. $\Rightarrow c_1,\ldots,c_n$ uniquely determined

Orthonormal sets

Definition: if X is an IPS, then $\{e_i : i \in I\} \subset X$ is called an orthonormal set if

$$\langle e_i, e_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Remark: for any finite set $F \subset I$ we have

$$\left\| \sum_{i \in F} \lambda_i e_i \right\|^2 = \left\langle \sum_{i \in F} \lambda_i e_i, \sum_{i \in F} \lambda_i e_i \right\rangle = \sum_{i \in F} |\lambda_i|^2$$

In particular, orthonormal vectors are linearly independent

Gram-Schmidt procedure

Theorem: Let X be an IPS and f_1, \ldots, f_n be linearly independent

There exist orthonormal vectors e_1, \ldots, e_n such that

$$span\{e_1,\ldots,e_k\} = span\{f_1,\ldots,f_k\} \quad \forall \ k=1,\ldots,n$$

Gram-Schmidt procedure

Proof:

$$e_1 = rac{f_1}{\|f_1\|} \qquad \qquad \Rightarrow \quad \|e_1\| = 1 \qquad \operatorname{span}\{e_1\} = \operatorname{span}\{f_1\}$$

$$\widetilde{e}_2 = \mathit{f}_2 - \langle \mathit{f}_2, e_1 \rangle e_1 \quad \Rightarrow \quad \langle \widetilde{e}_2, e_1 \rangle = 0 \quad \widetilde{e}_2 \neq 0$$

$$e_2 = rac{\widetilde{e}_2}{\|\widetilde{e}_2\|} \hspace{1cm} \Rightarrow \hspace{1cm} \langle e_2, e_1
angle = 0 \hspace{1cm} \|e_2\| = 1$$

Gram-Schmidt procedure

Proof (ctd): assume $\{e_1, \ldots, e_k\}$ are orthonormal and

$$\begin{array}{lcl} \operatorname{span}\{e_1,\ldots,e_k\} & = & \operatorname{span}\{f_1,\ldots,f_k\} \\ \\ \widetilde{e}_{k+1} & = & f_{k+1} - \sum_{i=1}^k \langle f_{k+1},e_i \rangle e_i & \Rightarrow & \widetilde{e}_{k+1} \neq 0 \\ \\ \langle \widetilde{e}_{k+1},e_j \rangle & = & 0 \quad j=1,\ldots,k \\ \\ e_{k+1} & = & \widetilde{e}_{k+1}/\|\widetilde{e}_{k+1}\| \end{array}$$

Then $\{e_1, \ldots, e_{k+1}\}$ are orthonormal and

$$span\{e_1, \dots, e_{k+1}\} = span\{f_1, \dots, f_{k+1}\}$$

Best approximations revisited

Lemma: let X be IPS and $V \subset X$ a linear subspace

 $\dim V < \infty \ \Rightarrow \ \forall \, x \in X \ \exists \ \mathsf{a} \ \mathsf{unique} \ \mathsf{best} \ \mathsf{approximation} \ v_0 \in V$

If $\{e_1, \ldots, e_n\}$ is an orthonormal basis for V then

$$v_0 = \sum_{j=1}^n \langle x, e_j \rangle e_j$$

Best approximations revisited

Proof: let $c_i = \langle x, e_i \rangle$ then

$$\left\| x - \sum_{j=1}^{n} \lambda_{j} e_{j} \right\|^{2} = \|x\|^{2} - \sum_{j=1}^{n} \bar{\lambda}_{j} c_{j} - \sum_{j=1}^{n} \lambda_{j} \bar{c}_{j} + \sum_{j=1}^{n} |\lambda_{j}|^{2}$$

$$= \|x\|^{2} + \sum_{j=1}^{n} |\lambda_{j} - c_{j}|^{2} - \sum_{j=1}^{n} |c_{j}|^{2}$$

Minimum attained $\Leftrightarrow \lambda_j = c_j$ for all j

[Exercise: verify the equalities above]