

Logic for Multiagent Systems

Master 1st Year, 1st Semester 201/2022

Laurențiu Leuștean

Web page: http://cs.unibuc.ro/~lleustean/

Propositional logic

Language

Definition 1.1

The language of propositional logic PL consists of:

- ▶ a countable set $V = \{v_n \mid n \in \mathbb{N}\}$ of variables;
- ▶ the logic connectives \neg (non), \rightarrow (implies)
- parantheses: (,).
- The set *Sym* of symbols of *PL* is

$$Sym := V \cup \{\neg, \rightarrow, (,)\}.$$

• We denote variables by $u, v, x, y, z \dots$

Language

Definition 1.2

The set Expr of expressions of PL is the set of all finite sequences of symbols of PL.

Definition 1.3

Let $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ be an expression, where $\theta_i \in Sym$ for all $i = 0, \dots, k-1$.

- ▶ If $0 \le i \le j \le k-1$, then the expression $\theta_i \dots \theta_j$ is called the (i,j)-subexpression of θ .
- We say that an expression ψ appears in θ if there exists $0 \le i \le j \le k-1$ such that ψ is the (i,j)-subexpression of θ .
- We denote by $Var(\theta)$ the set of variables appearing in θ .

The definition of formulas is an example of an inductive definition.

Definition 1.4

The formulas of PL are the expressions of PL defined as follows:

- (F0) Any variable is a formula.
- (F1) If φ is a formula, then $(\neg \varphi)$ is a formula.
- (F2) If φ and ψ are formulas, then $(\varphi \to \psi)$ is a formula.
- (F3) Only the expressions obtained by applying rules (F0), (F1), (F2) are formulas.

Notations

The set of formulas is denoted by *Form*. Formulas are denoted by $\varphi, \psi, \chi, \ldots$

Proposition 1.5

The set Form is countable.

4

Language

Proposition 1.7 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

- V ⊂ Γ.
- ▶ Γ is closed to ¬, that is: $\varphi \in \Gamma$ implies $(\neg \varphi) \in \Gamma$.
- ightharpoonup Γ is closed to \rightarrow , that is: $\varphi, \psi ∈ \Gamma$ implies $(\varphi → \psi) ∈ \Gamma$.

Then $\Gamma = Form$.

It is used to prove that all formulas have a property \mathcal{P} : we define Γ as the set of all formulas satisfying \mathcal{P} and apply induction on formulas to obtain that $\Gamma = Form$.

Language

Unique readability

If φ is a formula, then exactly one of the following hold:

- $\triangleright \varphi = v$, where $v \in V$.
- $ightharpoonup \varphi = (\neg \psi)$, where ψ is a formula.
- $ightharpoonup \varphi = (\psi \to \chi)$, where ψ, χ are formulas.

Furthermore, φ can be written in a unique way in one of these forms.

Definition 1.6

Let φ be a formula. A subformula of φ is any formula ψ that appears in φ .

Language

The derived connectives \vee (or), \wedge (and), \leftrightarrow (if and only if) are introduced by the following abbreviations:

$$\varphi \lor \psi := ((\neg \varphi) \to \psi)
\varphi \land \psi := \neg(\varphi \to (\neg \psi)))
\varphi \leftrightarrow \psi := ((\varphi \to \psi) \land (\psi \to \varphi))$$

Conventions and notations

- ► The external parantheses are omitted, we put them only when necessary. We write $\neg \varphi$, $\varphi \rightarrow \psi$, but we write $(\varphi \rightarrow \psi) \rightarrow \chi$.
- ▶ To reduce the use of parentheses, we assume that
 - ightharpoonup has higher precedence than \rightarrow , \land , \lor , \leftrightarrow ;
 - \wedge , \vee have higher precedence than \rightarrow , \leftrightarrow .
- ▶ Hence, the formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ is written as $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Truth values

We use the following notations for the truth values:

1 for true and 0 for false.

Hence, the set of truth values is $\{0,1\}$.

Define the following operations on $\{0,1\}$ using truth tables.

$$abla : \{0,1\} \to \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Semantics

Semantics

Definition 1.8

An evaluation (or interpretation) is a function $e: V \to \{0,1\}$.

Theorem 1.9

For any evaluation $e: V \to \{0,1\}$ there exists a unique function $e^+: Form \to \{0,1\}$

satisfying the following properties:

- $ightharpoonup e^+(v) = e(v)$ for all $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ for any formula φ .
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ for any formulas φ , ψ .

Proposition 1.10

For any formula φ and all evaluations $e_1, e_2 : V \to \{0, 1\}$, if $e_1(v) = e_2(v)$ for all $v \in Var(\varphi)$, then $e_1^+(\varphi) = e_2^+(\varphi)$.

Semantics

Let φ be a formula.

Definition 1.11

- An evaluation $e: V \to \{0,1\}$ is a model of φ if $e^+(\varphi) = 1$. Notation: $e \models \varphi$.
- $ightharpoonup \varphi$ is satisfiable if it has a model.
- ▶ If φ is not satisfiable, we also say that φ is unsatisfiable or contradictory.
- $ightharpoonup \varphi$ is a tautology if every evaluation is a model of φ . Notation: $\models \varphi$.

Notation 1.12

The set of models of φ is denoted by $Mod(\varphi)$.

Semantics

Remark 1.13

- $\blacktriangleright \varphi$ is a tautology iff $\neg \varphi$ is unsatisfiable.
- $\triangleright \varphi$ is unsatisfiable iff $\neg \varphi$ is a tautology.

Proposition 1.14

Let $e: V \to \{0,1\}$ be an evaluation. Then for all formulas φ , ψ ,

- $ightharpoonup e
 vdash \neg \varphi \text{ iff } e
 vdash \varphi.$
- $e \vDash \varphi \rightarrow \psi$ iff $(e \vDash \varphi \text{ implies } e \vDash \psi)$ iff $(e \nvDash \varphi \text{ or } e \vDash \psi)$.
- $ightharpoonup e dash \varphi \lor \psi$ iff $(e dash \varphi \text{ or } e dash \psi)$.
- ightharpoonup $e \vDash \varphi \land \psi$ iff $(e \vDash \varphi \text{ and } e \vDash \psi)$.

Semantics

Definition 1.15

Let φ, ψ be formulas. We say that

- φ is a semantic consequence of ψ if $Mod(\psi) \subseteq Mod(\varphi)$. Notation: $\psi \models \varphi$.
- φ and ψ are (logically) equivalent if $Mod(\psi) = Mod(\varphi)$.

 Notation: $\varphi \sim \psi$.

Remark 1.16

Let φ, ψ be formulas.

- $\blacktriangleright \psi \vDash \varphi \text{ iff } \vDash \psi \rightarrow \varphi.$
- $\blacktriangleright \ \psi \sim \varphi \ \text{iff } (\psi \vDash \varphi \ \text{and} \ \varphi \vDash \psi) \ \text{iff} \ \vDash \psi \leftrightarrow \varphi.$

Semantics

For all formulas φ, ψ, χ ,

$$\models \varphi \vee \neg \varphi$$

$$\models \neg(\varphi \land \neg\varphi)$$

$$\models \varphi \wedge \psi \to \varphi$$

$$\models \varphi \rightarrow \varphi \lor \psi$$

$$\models \varphi \rightarrow (\psi \rightarrow \varphi)$$

$$\models (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$\models (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\models (\varphi \to \psi) \lor (\neg \varphi \to \psi)$$

$$\models (\varphi \to \psi) \lor (\varphi \to \neg \psi)$$

$$\models \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi))$$

$$\models (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi)$$

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$$

Semantics

$$\varphi \sim \neg \neg \varphi$$

$$\varphi \rightarrow \psi \sim \neg \psi \rightarrow \neg \varphi$$

$$\varphi \lor \psi \sim \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \land \psi \sim \neg (\neg \varphi \lor \neg \psi)$$

$$\varphi \rightarrow (\psi \rightarrow \chi) \sim \varphi \land \psi \rightarrow \chi$$

$$\varphi \sim \varphi \land \varphi \sim \varphi \lor \varphi$$

$$\varphi \land \psi \sim \psi \land \varphi$$

$$\varphi \lor \psi \sim \psi \lor \varphi$$

$$\varphi \land (\psi \land \chi) \sim (\varphi \land \psi) \land \chi$$

$$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi$$

$$\varphi \lor (\varphi \land \psi) \sim \varphi$$

$$\varphi \land (\varphi \lor \psi) \sim \varphi$$

Semantics

$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$

$$\varphi \vee (\psi \wedge \chi) \sim (\varphi \vee \psi) \wedge (\varphi \vee \chi)$$

$$\varphi \rightarrow \psi \wedge \chi \sim (\varphi \rightarrow \psi) \wedge (\varphi \rightarrow \chi)$$

$$\varphi \rightarrow \psi \vee \chi \sim (\varphi \rightarrow \psi) \vee (\varphi \rightarrow \chi)$$

$$\varphi \wedge \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \vee (\psi \rightarrow \chi)$$

$$\varphi \vee \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \wedge (\psi \rightarrow \chi)$$

$$\varphi \rightarrow (\psi \rightarrow \chi) \sim \psi \rightarrow (\varphi \rightarrow \chi)$$

$$\sim (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$$

$$\sim (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$$

$$\neg \varphi \sim \varphi \rightarrow \neg \varphi \sim (\varphi \rightarrow \psi) \wedge (\varphi \rightarrow \neg \psi)$$

$$\varphi \rightarrow \psi \sim \neg \varphi \vee \psi \sim \neg (\varphi \wedge \neg \psi)$$

$$\varphi \vee \psi \sim \varphi \vee (\neg \varphi \wedge \psi) \sim (\varphi \rightarrow \psi) \rightarrow \psi$$

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi$$

Semantics

It is often useful to have a canonical tautology and a canonical unsatisfiable formula.

Remark 1.17

 $v_0 \rightarrow v_0$ is a tautology and $\neg (v_0 \rightarrow v_0)$ is unsatisfiable.

Notation 1.18

Denote $v_0 \rightarrow v_0$ by \top and call it the truth. Denote $\neg(v_0 \rightarrow v_0)$ by \bot and call it the false.

Remark 1.19

- $ightharpoonup \varphi$ is a tautology iff $\varphi \sim \top$.
- $ightharpoonup \varphi$ is unsatisfiable iff $\varphi \sim \bot$.

Semantics

Let Γ be a set of formulas.

Definition 1.20

An evaluation $e:V\to\{0,1\}$ is a model of Γ if it is a model of every formula from Γ .

Notation: $e \models \Gamma$.

Notation 1.21

The set of models of Γ is denoted by $Mod(\Gamma)$.

Definition 1.22

A formula φ is a semantic consequence of Γ if $Mod(\Gamma) \subseteq Mod(\varphi)$. Notation: $\Gamma \vDash \varphi$.

Definition 1.23

- **Γ** is satisfiable if it has a model.
- ightharpoonup Γ is finitely satisfiable if every finite subset of Γ is satisfiable.
- ▶ If Γ is not satisfiable, we say also that Γ is unsatisfiable or contradictory.

Proposition 1.24

The following are equivalent:

- Γ is unsatisfiable.
- Γ ⊨ ⊥.

Theorem 1.25 (Compactness Theorem)

 Γ is satisfiable iff Γ is finitely satisfiable.

Syntax

We use a deductive system of Hilbert type for LP.

Logical axioms

The set Axm of (logical) axioms of LP consists of:

- (A1) $\varphi \rightarrow (\psi \rightarrow \varphi)$
- (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
- (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$,

where φ , ψ and χ are formulas.

The deduction rule

For any formulas φ , ψ , from φ and $\varphi \to \psi$ infer ψ (modus ponens or (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

21

Syntax

Let Γ be a set of formulas. The definition of Γ -theorems is another example of an inductive definition.

Definition 1.26

The Γ -theorems of PL are the formulas defined as follows:

- (T0) Every logical axiom is a Γ -theorem.
- (T1) Every formula of Γ is a Γ -theorem.
- (T2) If φ and $\varphi \to \psi$ are Γ -theorems, then ψ is a Γ -theorem.
- (T3) Only the formulas obtained by applying rules (T0), (T1), (T2) are Γ -theorems.

If φ is a Γ -theorem, then we also say that φ is deduced from the hypotheses Γ .

Syntax

Notations

 $\Gamma \vdash \varphi : \Leftrightarrow \varphi \text{ is a } \Gamma\text{-theorem}$ $\vdash \varphi : \Leftrightarrow \emptyset \vdash \varphi.$

Definition 1.27

A formula φ is called a theorem of LP if $\vdash \varphi$.

By a reformulation of the conditions (T0), (T1), (T2) using the notation \vdash , we get

Remark 1.28

- ▶ If φ is an axiom, then $\Gamma \vdash \varphi$.
- ▶ If $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$.
- ▶ If $\Gamma \vdash \varphi$ and $\Gamma \vdash \varphi \rightarrow \psi$, then $\Gamma \vdash \psi$.

Definition 1.29

A Γ -proof (or proof from the hypotheses Γ) is a sequence of formulas $\theta_1, \ldots, \theta_n$ such that for all $i \in \{1, \ldots, n\}$, one of the following holds:

- $\triangleright \theta_i$ is an axiom.
- \bullet $\theta_i \in \Gamma$.
- there exist k, j < i such that $\theta_k = \theta_i \rightarrow \theta_i$.

Definition 1.30

Let φ be a formula. A Γ -proof of φ or a proof of φ from the hypotheses Γ is a Γ -proof $\theta_1, \ldots, \theta_n$ such that $\theta_n = \varphi$.

Proposition 1.31

For any formula φ ,

 $\Gamma \vdash \varphi$ iff there exists a Γ -proof of φ .

Syntax

Theorem 1.32 (Deduction Theorem)

Let $\Gamma \cup \{\varphi, \psi\}$ be a set of formulas. Then

$$\Gamma \cup \{\varphi\} \vdash \psi \quad \textit{iff} \quad \Gamma \vdash \varphi \rightarrow \psi.$$

Proposition 1.33

For any formulas φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$
$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

Proposition 1.34

Let $\Gamma \cup \{\varphi, \psi, \chi\}$ be a set of formulas.

$$\begin{array}{ccc} \Gamma \vdash \varphi \rightarrow \psi \ \textit{and} \ \Gamma \vdash \psi \rightarrow \chi & \Rightarrow & \Gamma \vdash \varphi \rightarrow \chi \\ \Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \rightarrow \varphi) & \Rightarrow & \Gamma \vdash \psi \\ \Gamma \cup \{\psi\} \vdash \varphi \ \textit{and} \ \Gamma \cup \{\neg \psi\} \vdash \varphi & \Rightarrow & \Gamma \vdash \varphi. \end{array}$$

Consistent sets

Let Γ be a set of formulas.

Definition 1.35

 Γ is called <u>consistent</u> if there exists a formula φ such that $\Gamma \not\vdash \varphi$. Γ is said to be inconsistent if it is not consistent, that is $\Gamma \vdash \varphi$ for any formula φ .

Proposition 1.36

- ▶ ∅ is consistent.
- ▶ The set of theorems is consistent.

Proposition 1.37

The following are equivalent:

- Γ is inconsistent.
- **▶** Γ ⊢ ⊥.

Completeness Theorem

Theorem 1.38 (Completeness Theorem (version 1))

Let Γ be a set of formulas. Then

 Γ is consistent \iff Γ is satisfiable.

Theorem 1.39 (Completeness Theorem (version 2))

Let Γ be a set of formulas. For any formula φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

First-order logic

First-order languages

Definition 2.1

A first-order language \mathcal{L} consists of:

- ▶ a countable set $V = \{v_n \mid n \in \mathbb{N}\}$ of variables;
- \blacktriangleright the connectives \neg and \rightarrow ;
- parantheses (,);
- ► the equality symbol =;
- **▶** the universal quantifier ∀;
- \triangleright a set \mathcal{R} of relation symbols;
- ► a set F of function symbols;
- ► a set C of constant symbols;
- \blacktriangleright an arity function ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.
- $ightharpoonup \mathcal{L}$ is uniquely determined by the quadruple $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$.
- ightharpoonup au is called the signature of \mathcal{L} or the similaritaty type of \mathcal{L} .

First-order languages

Let \mathcal{L} be a first-order language.

• The set $Sym_{\mathcal{L}}$ of symbols of \mathcal{L} is

$$Sym_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- The elements of $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ are called non-logical symbols.
- The elements of $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ are called logical symbols.
- We denote variables by x, y, z, v, \ldots , relation symbols by $P, Q, R \ldots$, function symbols by f, g, h, \ldots and constant symbols by c, d, e, \ldots
- For every $m \in \mathbb{N}^*$ we denote:

 \mathcal{F}_m := the set of function symbols of arity m;

 \mathcal{R}_m := the set of relation symbols of arity m.

First-order languages

Definition 2.2

The set $\mathsf{Expr}_\mathcal{L}$ of expressions of \mathcal{L} is the set of all finite sequences of symbols of \mathcal{L} .

Definition 2.3

Let $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ be an expression of \mathcal{L} , where $\theta_i \in Sym_{\mathcal{L}}$ for all $i = 0, \dots, k-1$.

- ▶ If $0 \le i \le j \le k-1$, then the expression $\theta_i \dots \theta_j$ is called the (i,j)-subexpression of θ .
- We say that an expression ψ appears in θ if there exists $0 \le i \le j \le k-1$ such that ψ is the (i,j)-subexpression of θ .
- We denote by $Var(\theta)$ the set of variables appearing in θ .

21

First-order languages

Definition 2.4

The terms of \mathcal{L} are the expressions defined as follows:

- (T0) Every variable is a term.
- (T1) Every constant symbol is a term.
- (T2) If $m \ge 1$, $f \in \mathcal{F}_m$ and t_1, \ldots, t_m are terms, then $ft_1 \ldots t_m$ is a term.
- (T3) Only the expressions obtained by applying rules (T0), (T1), (T2) are terms.

Notations:

- ▶ The set of terms is denoted by $Term_{\mathcal{L}}$.
- ightharpoonup Terms are denoted by $t, s, t_1, t_2, s_1, s_2, \dots$
- \triangleright Var(t) is the set of variables that appear in the term t.

Definition 2.5

A term t is called closed if $Var(t) = \emptyset$.

First-order languages

Proposition 2.6 (Induction on terms)

Let Γ be a set of terms satisfying the following properties:

- **Γ** contains the variables and the constant symbols.
- ▶ If m > 1, $f \in \mathcal{F}_m$ and $t_1, \ldots, t_m \in \Gamma$, then $ft_1 \ldots t_m \in \Gamma$.

Then $\Gamma = Term_{\mathcal{L}}$.

It is used to prove that all terms have a property \mathcal{P} : we define Γ as the set of all terms satisfying \mathcal{P} and apply induction on terms to obtain that $\Gamma = \mathit{Term}_{\mathcal{L}}$.

First-order languages

Definition 2.7

The atomic formulas of $\mathcal L$ are the expressions having one of the following forms:

- \triangleright (s = t), where s, t are terms;
- $ightharpoonup (Rt_1 ... t_m)$, where $R \in \mathcal{R}_m$ and $t_1, ..., t_m$ are terms.

Definition 2.8

The formulas of \mathcal{L} are the expressions defined as follows:

- (F0) Every atomic formula is a formula.
- (F1) If φ is a formula, then $(\neg \varphi)$ is a formula.
- (F2) If φ and ψ are formulas, then $(\varphi \to \psi)$ is a formula.
- (F3) If φ is a formula, then $(\forall x \varphi)$ is a formula for every variable x.
- (F4) Only the expressions obtained by applying rules (F0), (F1), (F2), (F3) are formulas.

First-order languages

Notations

- ▶ The set of formulas is denoted by $Form_{\mathcal{L}}$.
- Formulas are denoted by $\varphi, \psi, \chi, \ldots$
- $ightharpoonup Var(\varphi)$ is the set of variables that appear in the formula φ .

Unique readability

If φ is a formula, then exactly one of the following hold:

- $ightharpoonup \varphi = (s = t)$, where s, t are terms.
- $ightharpoonup \varphi = (Rt_1 \dots t_m)$, where $R \in \mathcal{R}_m$ and t_1, \dots, t_m are terms.
- $ightharpoonup \varphi = (\neg \psi)$, where ψ is a formula.
- $ightharpoonup \varphi = (\psi \to \chi)$, where ψ, χ are formulas.
- $ightharpoonup \varphi = (\forall x \psi)$, where x is a variable and ψ is a formula.

Furthermore, φ can be written in a unique way in one of these forms.

Proposition 2.9 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

- **Γ** contains all atomic formulas.
- ▶ Γ is closed to \neg , \rightarrow and $\forall x$ (for any variable x), that is: if $\varphi, \psi \in \Gamma$, then $(\neg \varphi), (\varphi \rightarrow \psi), (\forall x \varphi) \in \Gamma$.

Then $\Gamma = Form_{\mathcal{L}}$.

It is used to prove that all formulas have a property \mathcal{P} : we define Γ as the set of all formulas satisfying \mathcal{P} and apply induction on formulas to obtain that $\Gamma = Form_{\mathcal{L}}$.

First-order languages

Derived connectives

Connectives \lor , \land , \leftrightarrow and the existential quantifier \exists are introduced by the following abbreviations:

$$\varphi \lor \psi := ((\neg \varphi) \to \psi)
\varphi \land \psi := \neg(\varphi \to (\neg \psi)))
\varphi \leftrightarrow \psi := ((\varphi \to \psi) \land (\psi \to \varphi))
\exists x \varphi := (\neg \forall x (\neg \varphi))$$

First-order languages

Usually the external parantheses are omitted, we write them only when necessary. We write $s=t, Rt_1 \dots t_m, ft_1 \dots t_m, \neg \varphi, \varphi \to \psi, \forall x \varphi$. On the other hand, we write $(\varphi \to \psi) \to \chi$.

To reduce the use of parentheses, we assume that

- ▶ ¬ has higher precedence than \rightarrow , \land , \lor , \leftrightarrow ;
- \blacktriangleright \land , \lor have higher precedence than \rightarrow , \leftrightarrow ;
- ▶ quantifiers \forall , \exists have higher precedence than the other connectives. Thus, $\forall x \varphi \rightarrow \psi$ is $(\forall x \varphi) \rightarrow \psi$ and not $\forall x (\varphi \rightarrow \psi)$.

First-order languages

- We write sometimes $f(t_1, ..., t_m)$ instead of $ft_1 ... t_m$ and $R(t_1, ..., t_m)$ instead of $Rt_1 ... t_m$.
- ► Function/relation symbols of arity 1 are called unary. Function/relation symbols of arity 2 are called binary.
- ▶ If f is a binary function symbol, we write t_1ft_2 instead of ft_1t_2 .
- ▶ If R is a binary relation symbol, we write t_1Rt_2 instead of Rt_1t_2 .

We identify often a language \mathcal{L} with the set of its non-logical symbols and write $\mathcal{L} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$.

First-order languages

Definition 2.10

Let $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$ be a formula of \mathcal{L} and x be a variable.

- We say that x occurs bound on position k in φ if $x = \varphi_k$ and there exists $0 \le i \le k \le j \le n-1$ such that the (i,j)-subexpression of φ has the form $\forall x \psi$.
- We say that x occurs free on position k in φ if $x = \varphi_k$, but x does not occur bound on position k in φ .
- ightharpoonup x is a bound variable of φ if there exists k such that x occurs bound on position k in φ .
- ightharpoonup x is a free variable of φ if there exists k such that x occurs free on position k in φ .

Example

Let $\varphi = \forall x(x = y) \rightarrow x = z$. Free variables: x, y, z. Bound variables: x.

First-order languages

Notation: $FV(\varphi)$:= the set of free variables of φ .

Alternative definition

The set $FV(\varphi)$ of free variables of a formula φ can be also defined by induction on formulas:

$$FV(\varphi)$$
 = $Var(\varphi)$, if φ is an atomic formula

$$FV(\neg \varphi) = FV(\varphi)$$

$$FV(\varphi \to \psi) = FV(\varphi) \cup FV(\psi)$$

$$FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}.$$

L-structures

Definition 2.11

An \mathcal{L} -structure is a quadruple

$$\mathcal{A} = (\mathcal{A}, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

where

- A is a nonempty set.
- ▶ $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ is a set of functions on A; if f has arity m, then $f^{\mathcal{A}} : A^m \to A$.
- $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ is a set of relations on A; if R has arity m, then $R^{\mathcal{A}} \subset A^{m}$.
- $\triangleright C^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathcal{C} \}.$
- ightharpoonup A is called the universe of the structure A. Notation: A = |A|
- ▶ $f^{\mathcal{A}}$ ($R^{\mathcal{A}}$, $c^{\mathcal{A}}$, respectively) is called the interpretation of f (R, c, respectively) in \mathcal{A} .

Examples - The language of equality $\mathcal{L}_{=}$

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
, where

- $ightharpoonup \mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset;$
- this language is proper for expressing the properties of equality;
- \triangleright $\mathcal{L}_{=}$ -structures are the nonempty sets.

Examples of formulas:

• equality is symmetric:

$$\forall x \forall y (x = y \rightarrow y = x)$$

• the universe has at least three elements:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

Examples - The language of arithmetics $\mathcal{L}_{\mathsf{ar}}$

 $\mathcal{L}_{ar} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, where

- $ightharpoonup \mathcal{R} = \{\dot{<}\}; \dot{<} \text{ is a binary relation symbol;}$
- $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ are binary function symbols and \dot{S} is a unary function symbol;
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

We write $\mathcal{L}_{ar} = (\dot{\langle}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ or $\mathcal{L}_{ar} = (\dot{\langle}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$.

The natural example of \mathcal{L}_{ar} -structure:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

where $S: \mathbb{N} \to \mathbb{N}$, S(m) = m+1 is the successor function. Thus,

$$\dot{<}^{\mathcal{N}}=<,\ \dot{+}^{\mathcal{N}}=+,\ \dot{\times}^{\mathcal{N}}=\cdot,\ \dot{S}^{\mathcal{N}}=S,\ \dot{0}^{\mathcal{N}}=0.$$

• Another example of \mathcal{L}_{ar} -structure: $\mathcal{A} = (\{0,1\},<,\vee,\wedge,\neg,1)$.

Examples - The language with a binary relation symbol

 $\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, where

- $ightharpoonup \mathcal{R} = \{R\}; R \text{ is a binary relation symbol;}$
- \triangleright $\mathcal{F} = \mathcal{C} = \emptyset$:
- \triangleright \mathcal{L} -structures are nonempty sets together with a binary relation.
- ▶ If we are interested in partially ordered sets (A, \leq) , we use the symbol \leq instead of R and we denote the language by \mathcal{L}_{\leq} .
- ▶ If we are interested in strictly ordered sets (A, <), we use the symbol $\dot{<}$ instead of R and we denote the language by $\mathcal{L}_{<}$.
- If we are interested in graphs G = (V, E), we use the symbol \dot{E} instead of R and we denote the language by \mathcal{L}_{Graf} .
- ▶ If we are interested in structures (A, \in) , we use the symbol \in instead of R and we denote the language by \mathcal{L}_{\in} .

Semantics

Let \mathcal{L} be a first-order language and \mathcal{A} be an \mathcal{L} -structure.

Definition 2.12

An A-assignment or A-evaluation is a function $e: V \to A$.

When the \mathcal{L} -structure \mathcal{A} is clear from the context, we also write simply e is an assignment.

In the following, $e:V\to A$ is an \mathcal{A} -assignment.

Definition 2.13 (Interpretation of terms)

The interpretation $t^{\mathcal{A}}(e) \in A$ of a term t under the \mathcal{A} -assignment e is defined by induction on terms :

- ightharpoonup if $t=x\in V$, then $t^{\mathcal{A}}(e):=e(x)$;
- ▶ if $t = c \in C$, then $t^{A}(e) := c^{A}$;
- ightharpoonup if $t=ft_1\ldots t_m$, then $t^{\mathcal{A}}(e):=f^{\mathcal{A}}(t_1^{\mathcal{A}}(e),\ldots,t_m^{\mathcal{A}}(e)).$

Semantics

The interpretation

$$arphi^{\mathcal{A}}(e) \in \{0,1\}$$

of a formula φ under the A-assignment e is defined by induction on formulas.

$$(s = t)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{if } s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \text{otherwise.} \end{cases}$$

$$(Rt_1 \dots t_m)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{if } R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \dots, t_m^{\mathcal{A}}(e)) \\ 0 & \text{otherwise.} \end{cases}$$

Semantics

Negation and implication

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \varphi^{\mathcal{A}}(e);$
- \blacktriangleright $(\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$, where,

Hence.

- \blacktriangleright $(\neg \varphi)^{\mathcal{A}}(e) = 1$ iff $\varphi^{\mathcal{A}}(e) = 0$.
- \blacktriangleright $(\varphi \to \psi)^{\mathcal{A}}(e) = 1$ iff $(\varphi^{\mathcal{A}}(e) = 0 \text{ or } \psi^{\mathcal{A}}(e) = 1)$.

Semantics

Notation

For any variable $x \in V$ and any $a \in A$, we define a new \mathcal{A} -assignment $e_{x \leftarrow a}: V \rightarrow A$ by

$$e_{x \leftarrow a}(v) = \left\{ \begin{array}{ll} e(v) & \text{if } v \neq x \\ a & \text{if } v = x. \end{array} \right.$$

Universal quantifier

$$(\forall x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{if } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \text{ for all } a \in A \\ 0 & \text{otherwise.} \end{cases}$$

Semantics

Let A be an \mathcal{L} -structure and $e: V \to A$ be an A-assignment.

Definition 2.14

Let φ be a formula. We say that:

- ightharpoonup e satisfies φ in \mathcal{A} if $\varphi^{\mathcal{A}}(e) = 1$. Notation: $\mathcal{A} \vDash \varphi[e]$.
- e does not satisfy φ in \mathcal{A} if $\varphi^{\mathcal{A}}(e) = 0$. Notation: $\mathcal{A} \not\models \varphi[e]$.

Proposition 2.15

For all formulas φ, ψ and any variable x,

- (i) $\mathcal{A} \models \neg \varphi[e]$ iff $\mathcal{A} \not\models \varphi[e]$.
- (ii) $A \vDash (\varphi \to \psi)[e]$ iff $(A \vDash \varphi[e]$ implies $A \vDash \psi[e])$ iff $(A \nvDash \varphi[e]$ or $A \vDash \psi[e])$.
- (iii) $A \models (\forall x \varphi)[e]$ iff for all $a \in A$, $A \models \varphi[e_{x \leftarrow a}]$.

Semantics

Proposition 2.16

For all formulas φ, ψ and any variable x,

- (i) $A \vDash (\varphi \land \psi)[e]$ iff $(A \vDash \varphi[e])$ and $A \vDash \psi[e]$.
- (ii) $A \vDash (\varphi \lor \psi)[e]$ iff $(A \vDash \varphi[e]$ or $A \vDash \psi[e])$.
- (iii) $A \vDash (\varphi \leftrightarrow \psi)[e]$ iff $(A \vDash \varphi[e])$ iff $A \vDash \psi[e]$.
- (iv) $A \models (\exists x \varphi)[e]$ iff there exists $a \in A$ s.t. $A \models \varphi[e_{x \leftarrow a}]$.

Let arphi be a formula of $\mathcal{L}.$

Definition 2.17

 φ is satisfiable if there exists an \mathcal{L} -structure \mathcal{A} and an \mathcal{A} -assignment e such that $\mathcal{A} \vDash \varphi[e]$. We also say that (\mathcal{A}, e) is a model of φ .

Definition 2.18

 φ is true in an \mathcal{L} -structure \mathcal{A} if $\mathcal{A} \vDash \varphi[e]$ for all \mathcal{A} -assignments e. We also say that \mathcal{A} satisfies φ or that \mathcal{A} is a model of φ . Notation: $\mathcal{A} \vDash \varphi$

Definition 2.19

 φ is universally true (or logically valid or, simply, valid) if $A \vDash \varphi$ for all \mathcal{L} -structures A.

Notation: $\models \varphi$

Semantics

Let φ, ψ be formulas of \mathcal{L} .

Definition 2.20

 ψ is a logical consequence of φ if for all \mathcal{L} -structures \mathcal{A} and all \mathcal{A} -assignments e,

$$\mathcal{A} \vDash \varphi[e]$$
 implies $\mathcal{A} \vDash \psi[e]$.

Notation: $\varphi \models \psi$

Definition 2.21

 φ and ψ are logically equivalent or, simply, equivalent if for all \mathcal{L} -structures \mathcal{A} and all \mathcal{A} -assignments e,

$$\mathcal{A} \vDash \varphi[e] \text{ iff } \mathcal{A} \vDash \psi[e].$$

Notation: $\varphi \bowtie \psi$

Remark

- $\triangleright \varphi \vDash \psi \text{ iff } \vDash \varphi \rightarrow \psi.$

Semantics

For all formulas φ , ψ and all variables x, y,

$$\neg \exists x \varphi \quad \exists \quad \forall x \neg \varphi \tag{1}$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi \tag{2}$$

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \forall x \varphi \wedge \forall x \psi \tag{3}$$

$$\forall x \varphi \vee \forall x \psi \models \forall x (\varphi \vee \psi) \tag{4}$$

$$\exists x (\varphi \wedge \psi) \models \exists x \varphi \wedge \exists x \psi \tag{5}$$

$$\exists x (\varphi \lor \psi) \quad \exists x \varphi \lor \exists x \psi \tag{6}$$

$$\forall x(\varphi \to \psi) \models \forall x\varphi \to \forall x\psi \tag{7}$$

$$\forall x(\varphi \to \psi) \models \exists x \varphi \to \exists x \psi \tag{8}$$

$$\forall x \varphi \models \exists x \varphi \tag{9}$$

Semantics

$$\varphi \models \exists x \varphi \tag{10}$$

$$\forall x \varphi \models \varphi \tag{11}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \tag{12}$$

$$\exists x \exists y \varphi \quad \exists \ y \exists x \varphi \tag{13}$$

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{14}$$

Proposition 2.22

For all terms s, t, u,

- (i) $\models t = t$;
- (ii) $\models s = t \rightarrow t = s$;
- (iii) $\models s = t \land t = u \rightarrow s = u$.

Proposition 2.23

For all $m \ge 1$, $f \in \mathcal{F}_m, R \in \mathcal{R}_m$ and all terms $t_i, u_i, i = 1, \dots, m$,

$$\exists (t_1 = u_1) \land \ldots \land (t_m = u_m) \to ft_1 \ldots t_m = fu_1 \ldots u_m
\exists (t_1 = u_1) \land \ldots \land (t_m = u_m) \to (Rt_1 \ldots t_m \leftrightarrow Ru_1 \ldots u_m)$$

Semantics

Proposition 2.24

For any \mathcal{L} -structure \mathcal{A} and any \mathcal{A} -assignments e_1, e_2 ,

(i) for any term t,

if
$$e_1(v) = e_2(v)$$
 for all variables $v \in Var(t)$, then $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$.

(ii) for any formula φ ,

if
$$e_1(v) = e_2(v)$$
 for all variables $v \in FV(\varphi)$, then $A \vDash \varphi[e_1]$ iff $A \vDash \varphi[e_2]$.

Semantics

Proposition 2.25

For all formulas φ , ψ and any variable $x \notin FV(\varphi)$,

$$\varphi \ \ \exists x \varphi$$
 (15)

$$\varphi \ \ \exists \ \ \forall x \varphi$$
 (16)

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \forall x \psi \tag{17}$$

$$\forall x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \forall x \psi \tag{18}$$

$$\exists x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \exists x \psi \tag{19}$$

$$\exists x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \exists x \psi \tag{20}$$

$$\forall x (\varphi \to \psi) \quad \exists \quad \varphi \to \forall x \psi$$
 (21)

$$\exists x (\varphi \to \psi) \quad \exists x \varphi$$
 (22)

$$\forall x(\psi \to \varphi) \quad \exists x\psi \to \varphi \tag{23}$$

$$\exists x(\psi \to \varphi) \quad \exists \quad \forall x\psi \to \varphi \tag{24}$$

Semantics

Definition 2.26

A formula φ is called a sentence if $FV(\varphi) = \emptyset$, that is φ does not have free variables.

Notation: Sent_L:= the set of sentences of L.

Proposition 2.27

Let φ be a sentence. For all \mathcal{A} -assignments e_1,e_2 ,

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

Definition 2.28

Let φ be a sentence. An \mathcal{L} -structure \mathcal{A} is a model of φ if $\mathcal{A} \models \varphi[e]$ for an (any) \mathcal{A} -assignment e. Notation: $\mathcal{A} \models \varphi$

Let φ be a formula and Γ be a set of formulas of \mathcal{L} .

Definition 2.29

We say that Γ is satisfiable if there exists an \mathcal{L} -structure \mathcal{A} and an \mathcal{A} -assignment e such that

$$\mathcal{A} \vDash \gamma[e]$$
 for all $\gamma \in \Gamma$.

(A, e) is called a model of Γ .

Definition 2.30

We say that φ is a logical consequence of Γ if for all \mathcal{L} -structures \mathcal{A} and all \mathcal{A} -assignments $e:V\to A$,

$$(A, e)$$
 model of $\Gamma \implies (A, e)$ model of φ .

Notation: $\Gamma \vDash \varphi$

Let φ be a sentence and Γ be a set of sentences of \mathcal{L} .

Definition 2.31

We say that Γ is satisfiable if there exists an \mathcal{L} -structure \mathcal{A} such that

$$A \vDash \gamma$$
 for all $\gamma \in \Gamma$.

A is called a model of Γ . Notation: $A \models \Gamma$

Definition 2.32

We say that φ is a logical consequence of Γ if for all \mathcal{L} -structures \mathcal{A} ,

$$\mathcal{A} \models \Gamma \implies \mathcal{A} \models \varphi$$
.

Notation: $\Gamma \vDash \varphi$

Tautologies

The notions of tautology and tautological consequence from propositional logic can also be applied to a first-order language \mathcal{L} . Intuitively, a tautology is a formula which is "true" based only on the interpretations of the connectives \neg , \rightarrow .

Definition 2.33

An \mathcal{L} -truth assignment is a function $F : Form_{\mathcal{L}} \to \{0,1\}$ satisfying, for all formulas φ, ψ ,

$$ightharpoonup F(\neg \varphi) = 1 - F(\varphi);$$

$$ightharpoonup F(\varphi) o F(\psi).$$

Definition 2.34

 φ is a tautology if $F(\varphi) = 1$ for any \mathcal{L} -truth assignment F.

Examples of tautologies: $\varphi \to (\psi \to \varphi)$, $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$

Tautologies

Proposition 2.35

If φ is a tautology, then φ is valid.

Example

x = x is valid, but x = x is not a tautology.

Definition 2.36

We say that the formulas φ and ψ are tautologically equivalent if $F(\varphi) = F(\psi)$ for any \mathcal{L} -truth assignment F.

Example 2.37

 $\varphi_1 \to (\varphi_2 \to \ldots \to (\varphi_n \to \psi) \ldots)$ and $(\varphi_1 \land \ldots \land \varphi_n) \to \psi$ are tautologically equivalent.

Definition 2.38

Let φ be a formula and Γ be a set of formulas. We say that φ is a tautological consequence of Γ if for any \mathcal{L} -truth assignment F,

$$F(\gamma) = 1$$
 for all $\gamma \in \Gamma$ \Rightarrow $F(\varphi) = 1$.

Proposition 2.39

If φ is a tautological consequence of Γ , then $\Gamma \vDash \varphi$.

Let x be a variable of \mathcal{L} and u be a term of \mathcal{L} .

Definition 2.40

For any term t of \mathcal{L} , we define

 $t_x(u) := the expression obtained from t by replacing all$ occurences of x with u.

Proposition 2.41

For any term t of \mathcal{L} , $t_x(u)$ is a term of \mathcal{L} .

Substitution

- \blacktriangleright We would like to define, similarly, $\varphi_x(u)$ as the expression obtained from φ by replacing all free occurences of x in φ with u.
- ▶ We expect that the following natural properties of substitution are true:

$$\vDash \forall x \varphi \to \varphi_x(u) \text{ and } \vDash \varphi_x(u) \to \exists x \varphi.$$

As the following example shows, there are problems with this definition.

Let $\varphi := \exists y \neg (x = y)$ and u := y. Then $\varphi_x(u) = \exists y \neg (y = y)$. Avem

- ▶ For any \mathcal{L} -structure \mathcal{A} with $|A| \geq 2$, $\mathcal{A} \models \forall x \varphi$.
- $\triangleright \varphi_{x}(u)$ is not satisfiable.

Substitution

Let x be a variable, u a term and φ a formula.

Definition 2.42

We say that x is free for u in φ or that u is substitutable for x in φ if for any variable y that occurs in u, no subformula of φ of the form $\forall y \psi$ contains free occurences of x.

Remark

x is free for u in φ in any of the following cases:

- u does not contain variables:
- $\triangleright \varphi$ does not contain variables that occur in u;
- \blacktriangleright no variable from u occurs bound in φ ;
- \triangleright x does not occur in φ ;
- $\triangleright \varphi$ does not contain free occurrences of x.

Substitution

Let x be a variable, u a term and φ be a formula such that x is free for u in φ .

Definition 2.43

 $\varphi_{x}(u) := \text{the expression obtained from } \varphi \text{ by replacing all }$ free occurences of x in φ with u.

We say that $\varphi_{x}(u)$ is a free substitution.

Proposition 2.44

 $\varphi_{\mathsf{x}}(\mathsf{u})$ is a formula of \mathcal{L} .

Substitution

Free substitution rules out the problems mentioned above, it behaves as expected.

Proposition 2.45

Let φ be a formula and x be a variable.

(i) For any term u substitutable for x in φ ,

$$\vDash \forall x \varphi \rightarrow \varphi_x(u) \quad and \quad \vDash \varphi_x(u) \rightarrow \exists x \varphi.$$

- (ii) $\models \forall x \varphi \rightarrow \varphi \text{ and } \models \varphi \rightarrow \exists x \varphi.$
- (iii) For any constant symbol c,

$$\vDash \forall x \varphi \rightarrow \varphi_x(c) \text{ and } \vDash \varphi_x(c) \rightarrow \exists x \varphi.$$

Substitution

Proposition 2.46

For any formula φ , distinct variables x and y such that $y \notin FV(\varphi)$ and y is substitutable for x in φ ,

$$\exists x \varphi \bowtie \exists y \varphi_x(y)$$
 and $\forall x \varphi \bowtie \forall y \varphi_x(y)$.

In particular, this holds if y is a new variable, that does not occur in φ .

We use Proposition 2.46 as follows: if $\varphi_X(u)$ is not a free substitution (that is x is not free for u in φ), then we replace φ with a logically equivalent formula φ' such that $\varphi'_{\mathbf{r}}(u)$ is a free substitution.

Substitution

Definition 2.47

For any formula φ and any variables y_1, \ldots, y_k , the y_1, \ldots, y_k -free variant φ' of φ is inductively defined as follows:

- \blacktriangleright if φ is an atomic formula, then φ' is φ ;
- \blacktriangleright if $\varphi = \neg \psi$, then φ' is $\neg \psi'$;
- \blacktriangleright if $\varphi = \psi \rightarrow \chi$, then φ' is $\psi' \rightarrow \chi'$;
- if $\varphi = \forall z \psi$, then

$$\varphi' = \begin{cases} \forall w \psi_z'(w) & \text{if } z \in \{y_1, \dots, y_k\} \\ \forall z \psi' & \text{altfel;} \end{cases}$$

where w is the first variable in the sequence $v_0, v_1, \ldots, which$ does not occur in ψ' and is not among y_1, \ldots, y_k .

Definition 2.48

 φ' is a variant of φ if it is the y_1, \ldots, y_k -free variant of φ for some variables y_1, \ldots, y_k .

Proposition 2.49

- (i) For any formulas φ and φ' , if φ' is a variant of φ , then $\varphi \vDash \varphi'$;
- (ii) For any formula φ and any term u, if the variables of u are among y_1, \ldots, y_k and φ' is the y_1, \ldots, y_k -free variant of φ , then $\varphi'_{\mathsf{v}}(u)$ is a free substitution.

Definition 2.50

The set $LogAx_{\mathcal{L}} \subseteq Form_{\mathcal{L}}$ of logical axioms of \mathcal{L} consists of:

- (i) all tautologies.
- (ii) formulas of the form

$$t=t, \quad s=t \rightarrow t=s, \quad s=t \wedge t=u \rightarrow s=u,$$
 for any terms $s,t,u.$

(iii) formulas of the form

$$t_1 = u_1 \wedge \ldots \wedge t_m = u_m \rightarrow ft_1 \ldots t_m = fu_1 \ldots u_m,$$
 $t_1 = u_1 \wedge \ldots \wedge t_m = u_m \rightarrow (Rt_1 \ldots t_m \leftrightarrow Ru_1 \ldots u_m),$ for any $m \geq 1$, $f \in \mathcal{F}_m$, $R \in \mathcal{R}_m$ and any terms s_i , t_i $(i = 1, \ldots, m)$.

(iv) formulas of the form

$$\varphi_{\mathsf{x}}(t) \to \exists \mathsf{x} \varphi$$

where $\varphi_x(t)$ is a free substitution (\exists -axioms).

Syntax

Definition 2.51

The deduction rules (or inference rules) are the following: for any formulas φ , ψ ,

(i) from φ and $\varphi \to \psi$ infer ψ (modus ponens or (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

(ii) if $x \notin FV(\psi)$, then from $\varphi \to \psi$ infer $\exists x \varphi \to \psi$ (\exists -introduction):

$$\frac{\varphi \to \psi}{\exists x \varphi \to \psi} \quad \text{if } x \notin FV(\psi).$$

Syntax

Let Γ be a set of formulas of \mathcal{L} .

Definition 2.52

The Γ -theorems of $\mathcal L$ are the formulas defined as follows:

- (Γ 0) Every logical axiom is a Γ -theorem.
- (Γ1) Every formula of Γ is a Γ-theorem.
- (Γ 2) If φ and $\varphi \to \psi$ are Γ -theorems, then ψ is a Γ -theorem.
- (Γ 3) If $\varphi \to \psi$ is a Γ -theorem and $x \notin FV(\psi)$, then $\exists x \varphi \to \psi$ is a Γ -theorem.
- (Γ 4) Only the formulas obtained by applying rules (Γ 0), (Γ 1), (Γ 2) and (Γ 3) are Γ -theorems.

If φ is a Γ -theorem, then we also say that φ is deduced from the hypotheses Γ .

Notations

 $\Gamma \vdash_{\mathcal{L}} \varphi := \varphi \text{ is a Γ-theorem}$

 $\vdash_{\mathcal{L}} \varphi := \emptyset \vdash_{\mathcal{L}} \varphi$

Definition 2.53

A formula φ is called a (logical) theorem of \mathcal{L} if $\vdash_{\mathcal{L}} \varphi$.

Convention

When \mathcal{L} is clear from the context, we write $\Gamma \vdash \varphi$, $\vdash \varphi$, etc..

Syntax

Definition 2.54

A Γ -proof (or proof from the hypotheses Γ) of $\mathcal L$ is a sequence of formulas $\theta_1, \ldots, \theta_n$ such that for all $i \in \{1, \ldots, n\}$, one of the following holds:

- (i) θ_i is an axiom;
- (ii) $\theta_i \in \Gamma$;
- (iii) there exist k, j < i such that $\theta_k = \theta_i \rightarrow \theta_i$;
- (iv) there exists j < i such that

$$\theta_i = \varphi \rightarrow \psi$$
 and $\theta_i = \exists x \varphi \rightarrow \psi$,

where φ, ψ are formulas and $x \notin FV(\psi)$.

A \emptyset -proof is called simply a proof.

Syntax

Definition 2.55

Let φ be a formula. A Γ -proof of φ or a proof of φ from the hypotheses Γ is a Γ -proof $\theta_1, \ldots, \theta_n$ such that $\theta_n = \varphi$.

Proposition 2.56

Let Γ be a set of formulas. For any formula φ ,

 $\Gamma \vdash \varphi$ iff there exists a Γ -proof of φ .

Syntax

Let Γ be a set of formulas.

Theorem 2.57 (Tautology Theorem (Post))

If ψ is a tautological consequence of $\{\varphi_1, \ldots, \varphi_n\}$ and $\Gamma \vdash \varphi_1, \ldots, \Gamma \vdash \varphi_n$, then $\Gamma \vdash \psi$.

Theorem 2.58 (Deduction Theorem)

Let $\Gamma \cup \{\psi\}$ be a set of formulas and φ be a sentence. Then

$$\Gamma \cup \{\varphi\} \vdash \psi \quad \textit{iff} \quad \Gamma \vdash \varphi \rightarrow \psi.$$

Definition 2.59

 Γ is called <u>consistent</u> if there exists a formula φ such that $\Gamma \not\vdash \varphi$. Γ is said to be <u>inconsistent</u> if it is not consistent, that is $\Gamma \vdash \varphi$ for any formula φ .

Proposition 2.60

For any formula φ and variable x,

$$\Gamma \vdash \varphi \iff \Gamma \vdash \forall x \varphi.$$

Definition 2.61

Let φ be a formula with $FV(\varphi) = \{x_1, \dots, x_n\}$. The universal closure of φ is the sentence

$$\overline{\forall \varphi} := \forall x_1 \dots \forall x_n \varphi.$$

Notation 2.62

 $\overline{\forall \Gamma} := \{ \overline{\forall \psi} \mid \psi \in \Gamma \}.$

Proposition 2.63

For any formula φ ,

$$\Gamma \vdash \varphi \quad \Longleftrightarrow \quad \Gamma \vdash \overline{\forall \varphi} \quad \Longleftrightarrow \quad \overline{\forall \Gamma} \vdash \varphi \quad \Longleftrightarrow \quad \overline{\forall \Gamma} \vdash \overline{\forall \varphi}.$$

Completeness Theorem

Theorem 2.64 (Completeness Theorem (version 1))

Let Γ be a set of sentences. Then

 Γ is consistent \iff Γ is satisfiable.

Theorem 2.65 (Completeness Theorem (version 2))

For any set of sentences Γ and any sentence φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

- ► The Completeness Theorem was proved by Gödel in 1929 in his PhD thesis.
- ► Henkin gave in 1949 a simplified proof.

Prenex normal form

Definition 2.66

A formula that does not contain quantifiers is called quantifier-free.

Definition 2.67

A formula φ is in prenex normal form if

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi,$$

where $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n are variables and ψ is a quantifier-free formula. $Q_1x_1Q_2x_2\ldots Q_nx_n$ is the prefix of φ and ψ is called the matrix of φ .

Any quantifier-free formula is in prenex normal form, as one can take n=0 in the above definition.

Prenex normal form

Examples of formulas in prenex normal form:

- universal formulas: $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \psi$, where ψ is quantifier-free
- existential formulas: $\varphi = \exists x_1 \exists x_2 \dots \exists x_n \psi$, where ψ is quantifier-free
- ▶ $\forall \exists$ -formulas: $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \exists y_1 \exists y_2 \dots \exists y_k \psi$, where ψ is quantifier-free
- ▶ $\forall \exists \forall$ -formulas: $\varphi = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_k \forall z_1 \dots \forall z_p \psi$, where ψ is quantifier-free

Theorem 2.68 (Prenex normal form theorem)

For any formula φ there exists a formula φ^* in prenex normal form such that $\varphi \vDash \varphi^*$ and $FV(\varphi) = FV(\varphi^*)$. φ^* is called a prenex normal form of φ .

Let ${\mathcal L}$ be a first-order language containing

- ▶ two unary relation symbols R, S and two binary relation symbols P, Q;
- \triangleright a unary function symbol f and a binary function symbol g;
- \triangleright two constant symbols c, d.

Example

Find a prenex normal form of the formula

$$\varphi := \exists y (g(y,z) = c) \land \neg \exists x (f(x) = d)$$

We have that

$$\varphi \quad \exists y (g(y,z) = c \land \neg \exists x (f(x) = d))$$

$$\exists y (g(y,z) = c \land \forall x \neg (f(x) = d))$$

$$\exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$$

Thus, $\varphi^* = \exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$ is a prenex normal form of φ .

Prenex normal form

Example

Find a prenex normal form of the formula

$$\varphi := \neg \forall y (S(y) \to \exists z R(z)) \land \forall x (\forall y P(x, y) \to f(x) = d).$$

$$\varphi \quad \exists y \neg (S(y) \rightarrow \exists z R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x,y) \rightarrow f(x) = d)$$

$$\exists y \forall z \neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x,y) \rightarrow f(x) = d)$$

$$\exists y \forall z (\neg(S(y) \to R(z)) \land \forall x \exists y (P(x,y) \to f(x) = d))$$

$$\exists y \forall z \forall x \big(\neg (S(y) \to R(z)) \land \exists y (P(x,y) \to f(x) = d) \big)$$

$$\exists y \forall z \forall x (\neg (S(y) \to R(z)) \land \exists v (P(x, v) \to f(x) = d))$$

$$\exists y \forall z \forall x \exists v \big(\neg (S(y) \to R(z)) \land (P(x, v) \to f(x) = d) \big)$$

 $\varphi^* = \exists y \forall z \forall x \exists v (\neg(S(y) \to R(z)) \land (P(x, v) \to f(x) = d))$ is a prenex normal form of φ .