姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

封面日期: 2025 年 6 月 26 日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

前言页显示日期: 2025年6月26日

目录

第一章	二重积分	1
1.1	二重积分的概念	1
1.2	交换积分次序	2
1.3	二重积分的计算	2
1.4	其他题型	3

第一章 二重积分

1.1 二重积分的概念

1. 例 1 (2010, 数一、数二)

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy \quad (D) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$

Solution.【详解】

2. 例 2 (2016, 数三) 设 $J_i = \iint_{D_i} \sqrt[3]{x-y} dx dy (i=1,2,3)$, 其中

$$D_1 = \{(x,y)|0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x,y)|0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x,y)|0 \le x \le 1, x^2 \le y \le 1\},$$

则

(A)
$$J_1 < J_2 < J_3$$
 (B) $J_3 < J_1 < J_2$

(C)
$$J_2 < J_3 < J_1$$
 (D) $J_2 < J_1 < J_3$

Solution.【详解】

1.2 交换积分次序

3. 例 3 (2001, 数一) 交换二次积分的积分次序:

$$\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$$

Solution.【详解】 □

4. 例 5 交换 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$ 的积分次序。

Solution.【详解】 □

1.3 二重积分的计算

6. 例 6 (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数, 且 $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy=a,$ 其中 $D=\{(x,y)|0\leq x\leq 1, 0\leq y\leq 1\},$ 计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) dx dy.$$

Solution.【详解】 □

7. 例 7 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y) | -1 \le x \le 1, 0 \le y \le 2\}$ 。

Solution.【详解】 □

8. 例 8 (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计 算二重积分 $\iint_D (x + 2y) dx dy$ 。

Solution. 【详解】 □

9. 例 9 (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy,$ 其中 $D = \{(x,y) ||x| + |y| \leq 2\}$ 。

Solution.【详解】 □

10. 例 10 (2014, 数二、数三) 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy.$$

Solution.【详解】 □

11. 例 11 (2019, 数二) 已知平面区域 $D = \{(x,y) | |x| \le y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} dx dy.$$

Solution.【详解】 □

1.4 其他题型

13. 例 12 (2010, 数二) 计算二重积分 $I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$, 其中 (题目描述不完整)

Solution.【详解】 □

14. 例 13 (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$, 其中

$$D = \{(x,y)|(x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$$

Solution.【详解】 □