# **Let's Grow More**

# Name:Rashmi Ranjan Nayak

# Task #2

# **Develop A Neural Network That Can Read Handwriting:**

```
In [1]:
```

```
import tensorflow as tf
```

# Loading MNIST dataset from tensorflow datasets

```
In [2]:
```

```
mnist = tf.keras.datasets.mnist
```

# train-test splitting

```
In [3]:
```

```
(x_train, y_train),(x_test, y_test) = mnist.load_data()
```

#### In [4]:

```
x train.shape
```

#### Out[4]:

(60000, 28, 28)

# In [5]:

```
import matplotlib.pyplot as plt
plt.imshow(x_train[0])
plt.show()
plt.imshow(x_train[0], cmap=plt.cm.binary)
```



## Out[5]:

<matplotlib.image.AxesImage at 0x21d04c68bc8>



# Checking the values of each pixel before Normalization:

In [6]:

| prin       | t(x_t        | rain     | [0])     |          |          |        |          |         |           |     |            |     |       |     |     |             |            |
|------------|--------------|----------|----------|----------|----------|--------|----------|---------|-----------|-----|------------|-----|-------|-----|-----|-------------|------------|
|            | 9 0          | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
| ) ]        | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0]<br>0   | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
|            | 9 0          | 0        | 0        | Ö        | 0        | 0      | 0        | 0       | 0]        |     | ·          | Ū   | Ŭ     |     | ·   |             | Ü          |
| [ (        |              | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
|            | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0]<br>0   | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
| (          |              | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0]        |     |            |     |       |     | _   | _           | _          |
| [ (        | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0<br>0]   | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
| [          | 0            | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 3   | 18    | 18  | 18  | 126         | 136        |
| 17         |              |          |          | 247      |          | 0      | 0        | 0       | 0]        |     | 154        | 170 | 252   | 252 | 252 | 252         | 252        |
| [ (<br>22! | 0<br>5 172   | 0<br>253 | 0<br>242 | 0<br>195 | 0<br>64  | 0      | 0<br>0   | 30<br>0 | 36<br>0]  |     | 154        | 1/0 | 253   | 253 | 253 | 253         | 253        |
| [ (        | 9 0          | 0        | 0        | 0        | 0        | 0      |          | 238     | 253       | 253 | 253        | 253 | 253   | 253 | 253 | 253         | 251        |
| 93         |              | 82<br>0  | 56<br>0  | 39       | 0        | 0      | 0<br>10  | 210     | 0]        |     | 252        | 252 | 252   | 100 | 102 | 2/17        | 2/1        |
| -          | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 18       | 219     | 253<br>0] |     | ∠33        | ∠33 | ∠33   | TAQ | 107 | <b>24</b> / | <b>241</b> |
| [ (        | 9 0          | 0        | 0        | 0        | 0        | 0      | 0        | 80      | 156       | 107 | 253        | 253 | 205   | 11  | 0   | 43          | 154        |
| )<br>]     | 9 0          | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0 | 0<br>0   | 0<br>0  | 0]<br>14  |     | 154        | 252 | ۵e    | 0   | 0   | 0           | 0          |
| -          | 9 0          | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0]        |     | 194        | درے | 30    |     | U   | U           | U          |
| _          | 9 0          | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         |     | 139        | 253 | 190   | 2   | 0   | 0           | 0          |
| [ (        | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0]<br>0   | 0   | 11         | 190 | 253   | 70  | 0   | 0           | 0          |
|            | 9 0          | 0        | 0        | ő        | Õ        | Ö      | 0        | Ö       | 0]        |     |            |     |       |     |     |             | Ü          |
| [ (        |              | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 35  | 241   | 225 | 160 | 108         | 1          |
|            | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0]<br>0   | 0   | 0          | 0   | 81    | 240 | 253 | 253         | 119        |
| 2!         | 5 0          | 0        | 0        | Ö        | Õ        | Ō      | 0        | Ō       | 0]        |     |            |     |       |     |     |             |            |
| [ (<br>15( |              | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 0   | 0     | 45  | 186 | 253         | 253        |
| [ (        |              | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0]<br>0   | 0   | 0          | 0   | 0     | 0   | 16  | 93          | 252        |
| 253        | 3 187        | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0]        |     | _          | _   | _     | _   |     |             |            |
| [ (<br>25  | 9 0<br>3 249 | 0<br>64  | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0 | 0<br>0   | 0       | 0<br>0]   | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 249        |
| [ (        |              | 04       | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 0   | 0     | 46  | 130 | 183         | 253        |
|            | 3 207        | 2        | 0        | 0        | 0        | 0      | 0        | 0       | 0]        |     | _          |     | 1 4 6 |     |     |             |            |
| [ (<br>25( | 9 0<br>9 182 | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0 | 0<br>0   | 0       | 0<br>0]   | 0   | 0          | 39  | 148   | 229 | 253 | 253         | 253        |
| [ (        |              | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         |     | 114        | 221 | 253   | 253 | 253 | 253         | 201        |
| 78         |              | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0]        |     | 252        | 252 | 252   | 252 | 100 | 0.1         | _          |
|            | 9 0          | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0 | 0<br>0   | 23<br>0 |           |     | 253        | 253 | 253   | 253 | 198 | 81          | 2          |
| _          | 9 0          | 0        | 0        | 0        | 0        | 18     | 171      | 219     | 253       | 253 | 253        | 253 | 195   | 80  | 9   | 0           | 0          |
|            | 9 0          | 0        | 0        | 0        | 0<br>172 | 0      | 0<br>252 |         |           |     | 244        | 122 | 11    | 0   | 0   | 0           | Δ          |
| -          | 9 0          | 0        | 0<br>0   | 55       | 1/2      | 226    |          |         | 253<br>0] |     | <b>∠44</b> | 133 | 11    | 0   | 0   | 0           | 0          |
| [ (        | 9 0          | 0        | 0        | 136      |          | 253    | 253      | 212     | 135       | 132 | 16         | 0   | 0     | 0   | 0   | 0           | 0          |
|            | 9 0          | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0   | 0<br>0 | 0<br>0   | 0<br>0  | 0]<br>0   | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
| -          | 9 0          | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0]        |     | U          | U   | U     | U   | U   | U           | U          |
| -          | 9 0          | 0        | 0        | 0        | 0        | 0      | 0        | 0       | 0         | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
|            | 9 0          | 0        | 0<br>0   | 0<br>0   | 0<br>0   | 0      | 0<br>0   | 0       | 0]<br>0   | 0   | 0          | 0   | 0     | 0   | 0   | 0           | 0          |
| ٠,         |              | ,        | •        | 9        | 9        | 5      | ,        | 9       | •         | •   | 9          | 9   | •     | 9   | 9   | 9           | J          |

As image are in Gray level(1 channel ==> 0to 255),not colored (RGB)

Normalizing the data | Pre-processing step

#### In [7]:

```
x_train = tf.keras.utils.normalize(x_train, axis = 1)
x_test = tf.keras.utils.normalize(x_test, axis = 1)
plt.imshow(x_train[0], cmap=plt.cm.binary)
```

#### Out[7]:

<matplotlib.image.AxesImage at 0x21d00009f88>



# **After Normalization:**

#### In [8]:

```
print(x_train[0])
                                                                  0.
[[0.
                           0.
                                        0.
                                                     0.
               Θ.
  0.
               0.
                           0.
                                                     0.
                                                                  0.
                                        0.
  Θ.
               0.
                           0.
                                                                  0.
                                        Θ.
                                                     0.
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0
               0.
                           0.
                                        0.
                                                    1
               0.
                                                                  0.
 [0.
                           0.
                                        0.
  0
               0.
                           0.
                                                     0.
                                                                  0.
                                        0.
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
                                                     0.
  0.
               0.
                           0.
                                                                  0.
                                        0.
  0.
               0.
                           0.
                                        0.
                                                    ]
 [0.
              Θ.
                                                     Θ.
                                                                  0.
                           0.
                                        Θ.
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  Θ.
              Θ.
                           0.
                                                                  Θ.
                                        0.
                                                     0.
  0.
               0.
                           0.
                                        Θ.
                                                     0.
              Θ.
                           0.
  0.
                                        Θ.
                                                    1
 [0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
               0.
                           0.
                                                     Θ.
                                                                  Θ.
  0.
                                        Θ.
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0.
              0.
                           0.
                                        0.
                                                                  0.
                                                     0.
  0.
               0.
                           0.
                                        0.
 [0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0.
               0.
                           0.
                                        Θ.
                                                     0.
                                                                  0.
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0.
                           0.
               0.
                                        0.
                                                    1
 [0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
                           Θ.
                                                     0.
  Θ.
               0.
                                        Θ.
                                                                  0.
  0.00393124\ 0.02332955\ 0.02620568\ 0.02625207\ 0.17420356\ 0.17566281
  0.28629534 \ 0.05664824 \ 0.51877786 \ 0.71632322 \ 0.77892406 \ 0.89301644
  0.
              0.
                           0.
                                        Θ.
               0.
 [0.
                           0.
                                        0.
                                                     0.
                           0.05780486 \ 0.06524513 \ 0.16128198 \ 0.22713296
  0.
               Θ.
  0.22277047 \ 0.32790981 \ 0.36833534 \ 0.3689874 \ 0.34978968 \ 0.32678448
  0.368094
               0.3747499
                           0.79066747 0.67980478 0.61494005 0.45002403
  0.
               0.
                           0.
                                        0.
                                                    1
 [0.
               0.
                           0.
                                        0.
                                                     0.
               0.12250613 0.45858525 0.45852825 0.43408872 0.37314701
  0.
  0.33153488 \ 0.32790981 \ 0.36833534 \ 0.3689874 \ 0.34978968 \ 0.32420121
  0.15214552 0.17865984 0.25626376 0.1573102
                                                    0.12298801 0.
  0.
               0.
                           0.
                                        0.
                                                    ]
 [0.
               0.
                           0.
                                        0.
                                                     0.
               0.04500225\ 0.4219755\quad 0.45852825\ 0.43408872\ 0.37314701
  Θ.
  0.33153488 0.32790981 0.28826244 0.26543758 0.34149427 0.31128482
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0.
               0.
                           0.
                                        Θ.
                                                    ]
                                                     0.
               0.
 [0.
                           0.
                                        Θ.
                                                                  0.
               0.
                           0.1541463
                                        0.28272888 0.18358693 0.37314701
  0.33153488 \ 0.26569767 \ 0.01601458 \ 0.
                                                     0.05945042 0.19891229
  0.
               0.
                           0.
                                        0.
                                                     0.
                                                                  0.
  0.
               0.
                           0.
                                        0.
                                                    ]
               0.
                           0.
                                                     0.
 [0.
                                        0.
```

```
3.02_

0.

0.

0.

1

0.

0.

0.

0.

0.

0.

0.

0.
                                                  0.0253731 0.00171577 0.22713296
0. 0. 0.
0. 0. 0.
 0.33153488 0.11664776 0.
                     0.
                                         0.
                                         0.
 Θ.
                     0.
[0.
                     0.
                                         0.
                                                                                                     0.20500962
                     0.
                                         0.
 0.33153488 0.24625638 0.00291174 0.
                                                 0.
          0. 0.
                     0.
                                         0.
[0.
                                                                                                      0.
                                                                                                      0.01622378
                                                 0.
0.
                                                                       .
0.
0.
                             0.
0.
                                        0.
[0.
                     Θ.
 0.04586451 0.31235677 0.32757096 0.23335172 0.14931733 0.00129164
 \theta. \theta. \theta.
                                                                                0.
 0.
                     0.
                                         Θ.
                                                             0.
                                        0.
                                              0.
0.
                                                                                 Θ.
[0.
                                                                      0.
0.
                                         0.
                   0.10498298 0.34940902 0.3689874 0.34978968 0.15370495
                                                             0.
                                                                                 Θ.
 0.04089933 0. 0.
                                        0.
                                                                                ]
 0. 0.
                                                             0.
                   0.
                                        0.
                                                             0.
                                                                                  0.
                 0.
0.
                                        0.
 Θ.
                                                            0.
                                                                                  0.
                                                                                                      Θ.
                                         0.06551419 0.27127137 0.34978968 0.32678448
                   Θ.

      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      <td
[0.
[0.
                                                                                                     0.
                                                                                                     0.32161793
                                         0.06697006 0.18959827 0.25300993 0.32678448
 0. 0. 0.
                                                                                ]
                                                  0.
0.
                                                                      0.
0.
                     0.
                                         0.
                    0.
                                        0.
 0.05110617 0.19182076 0.33339444 0.3689874 0.34978968 0.32678448

      0.40899334
      0.39653769
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.
      0.

      [0.
      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.04117838
      0.16813739
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      <t
[0.
 0.28960162\ 0.32790981\ 0.36833534\ 0.3689874\ 0.34978968\ 0.25961929
 0.12760592 0. 0.
                                                 0. 0.
         0.
0.
                                        0.
                                                             0.
                                                                                1
[0.
                                         0.
                                                             0.
                                         0.04431706 0.11961607 0.36545809 0.37314701
 0.33153488 \ 0.32790981 \ 0.36833534 \ 0.28877275 \ 0.111988 \quad 0.00258328
 0. 0.
                                         0.
                                                   0.
                                                                                 0.
 0.
                     0.
                                         0.
                                                             0.
                     0.
                                         0.
                                                            0.
 0.05298497\ 0.42752138\ 0.4219755\quad 0.45852825\ 0.43408872\ 0.37314701
 0.33153488 0.25273681 0.11646967 0.01312603 0.
                                                   0.
0.
 0.
               0.
                                        0.
                                         0.
[0.
                     0.
                                                                                0.37491383 0.56222061
                                        Θ.
                                                            0.
 0.66525569 \ 0.63253163 \ 0.48748768 \ 0.45852825 \ 0.43408872 \ 0.359873
 0.17428513 0.01425695 0. 0.
                                                                                0.
                     Θ.
                                         0.
                                                             0.
                                                                        ]
                     0.
                                                          0.
 0.
                                         0.
                                         0.
                                                             0.
                                                                                0.92705966 0.82698729
 0.74473314 0.63253163 0.4084877 0.24466922 0.22648107 0.02359823
                                                            0.
                                                                           0.
                     0.
                                  0.
 Θ.
                    0.
                                        0.
                                                                                                      0.
                                                             Θ.
                                                                                 Θ.
 0.
                     0.
                                         0.
                                                             0.
                                                                                ]
                                                            0.
                                                                                 0.
[0.
                    Θ.
                                        Θ.
                                        0.
                                                           Θ.
                                                                                0.
                                                          0.
0.
0.
 Θ.
                   0.
                                        0.
                                                                                                      0.
                                                                                Θ.
 0.
                    0.
                                        0.
                                                                                 0.
                                        0.
 Θ.
                    0.
                                                          0.
                   Θ.
                                        Θ.
                                                                               Θ.
                                                                                                      0.
                                                          0.
                                        0.
                                                                                0.
                     0.
                                                                                                      0.
 0.
 0.
                     0.
                                         0.
                                                             0.
                                                                                                      0.
                                                          Θ.
                     0.
                                        0.
                                                                                 0.
                                                                                                      0.
```

```
0.
 [0.
                      Θ.
 0.
            0.
                      0.
                                 0.
                                           0.
                                                      0.
                                          Θ.
 0.
            Θ.
                      0.
                                0.
                                                      0.
 0.
            0.
                      Θ.
                                Θ.
                                           0.
                                                      0.
 0.
            0.
                     0.
                                0.
                                          ]]
In [9]:
print(y train[0])
```

Θ.

# Resizing image to make it suitable for apply Convolution operation:

]

Θ.

```
In [10]:
```

5

Θ.

0.

```
import numpy as np
IMG SIZE = 28
x trainr = np.array(x train).reshape(-1,IMG SIZE,IMG SIZE,1) ## Increasing one dimension for kernel operation
x testr = np.array(x test).reshape(-1,IMG STZE,IMG STZE,1) ## Increasing one dimension for kernel operation
print("Training Sample demension",x trainr.shape)
print("Testing Sample demension",x_testr.shape)
```

Training Sample demension (60000, 28, 28, 1) Testing Sample demension (10000, 28, 28, 1)

# **Creating a Deep Neural Network:**

## Training on 60,000 of MNIST handwritten dataset

```
In [11]:
```

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
```

```
In [12]:
```

```
#### Creating a neural network now
model = Sequential()
##### First Convolution Layer 0 1 2 3 (60000,28,28,1)
model.add(Conv2D(64, (3,3), input shape = x trainr.shape[1:]))### Only for first convolution Layer to mention inp
ut Layer size
model.add(Activation("relu"))## activation function to make it non-linear, <0, remove, >0
model.add(MaxPooling2D(pool size=(2,2)))## Maxpooling single maximum value of 2x2
##### 2nd Convolutional Layer
model.add(Conv2D(64, (3,3))) ## 2nd Convolutional Layer
model.add(Activation("relu")) ## activation function
model.add(MaxPooling2D(pool size=(2,2))) ## Maxpooling
##### 3rd Convolutional Layer
model.add(Conv2D(64, (3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
##### Fully Connected Layer #1
model.add(Flatten()) ### before using fully connected Layer, needvto be flatten so that 2D to 1D
model.add(Dense(64))
model.add(Activation("relu"))
##### Fully Connected Layer #2
model.add(Dense(32))
model.add(Activation("relu"))
##### Last Fully Connected Layer , output must be equal to number of classes, 10 \ (0-9)
model.add(Dense(10)) ## this Last dense Layer must be equal to 10
model.add(Activation("softmax")) ### activation function is changed to softmax (class probabiliities)
```

# Model summery:

#### In [13]:

```
model.summary()
```

Model: "sequential"

| Layer (type)                 | Output Shape       | Param # |
|------------------------------|--------------------|---------|
| conv2d (Conv2D)              | (None, 26, 26, 64) | 640     |
| activation (Activation)      | (None, 26, 26, 64) | 0       |
| max_pooling2d (MaxPooling2D) | (None, 13, 13, 64) | 0       |
| conv2d_1 (Conv2D)            | (None, 11, 11, 64) | 36928   |
| activation_1 (Activation)    | (None, 11, 11, 64) | 0       |
| max_pooling2d_1 (MaxPooling2 | (None, 5, 5, 64)   | 0       |
| conv2d_2 (Conv2D)            | (None, 3, 3, 64)   | 36928   |
| activation_2 (Activation)    | (None, 3, 3, 64)   | 0       |
| max_pooling2d_2 (MaxPooling2 | (None, 1, 1, 64)   | 0       |
| flatten (Flatten)            | (None, 64)         | 0       |
| dense (Dense)                | (None, 64)         | 4160    |
| activation_3 (Activation)    | (None, 64)         | 0       |
| dense_1 (Dense)              | (None, 32)         | 2080    |
| activation_4 (Activation)    | (None, 32)         | 0       |
| dense_2 (Dense)              | (None, 10)         | 330     |
| activation_5 (Activation)    | (None, 10)         | 0       |
| Total params: 81,066         |                    |         |

Total params: 81,066 Trainable params: 81,066 Non-trainable params: 0

# In [14]:

```
print("Total Training Samples = ",len(x_trainr))
```

Total Training Samples = 60000

#### In [15]:

```
model.compile(loss ="sparse_categorical_crossentropy", optimizer = "adam", metrics=["accuracy"])
```

#### In [16]:

```
model.fit(x_trainr, y_train,epochs=5, validation_split = 0.3, batch_size=1) ## Training Model
Epoch 1/5
42000/42000 [================== ] - 108s 3ms/step - loss: 0.2393 - accuracy: 0.9268 - val
loss: 0.1264 - val_accuracy: 0.9658
Epoch 2/5
42000/42000 [==
                                =====] - 112s 3ms/step - loss: 0.1181 - accuracy: 0.9677 - val
 loss: 0.1131 - val accuracy: 0.9698
Epoch 3/5
42000/42000 [========
                             :======] - 114s 3ms/step - loss: 0.1029 - accuracy: 0.9739 - val
loss: 0.0966 - val accuracy: 0.9754
Epoch 4/5
42000/42000 [=======
                       =========] - 116s 3ms/step - loss: 0.0985 - accuracy: 0.9750 - val
loss: 0.0987 - val_accuracy: 0.9776
Epoch 5/5
_loss: 0.1092 - val_accuracy: 0.9729
Out[16]:
```

<keras.callbacks.History at 0x21d03bf72c8>

#### In [17]:

```
test_loss, test_acc = model.evaluate(x_testr, y_test, batch_size=1)
print("Test loss on 10,000 test samples", test_loss)
print("Validation Accuracy on 10,000 test samples", test_acc)
```

#### In [18]:

```
predictions = model.predict([x_testr])
```

#### In [19]:

### print(predictions)

```
[[3.98236994e-20 1.76070799e-07 1.46776614e-07 ... 9.99994159e-01 2.34744686e-08 4.24170821e-06]
[8.63195769e-03 4.09690023e-04 9.87197697e-01 ... 3.71094840e-03 1.63410950e-05 3.28977694e-06]
[1.40158605e-15 1.00000000e+00 2.51318161e-10 ... 3.70012976e-09 1.03811404e-10 4.27631715e-12]
...
[1.55509511e-21 8.60572028e-16 9.18513549e-15 ... 5.83426502e-11 1.72200036e-13 2.81773049e-09]
[3.62762184e-24 5.50039849e-19 3.21641406e-21 ... 5.49855232e-19 4.79376033e-13 2.08339550e-08]
[2.40092987e-07 2.90620167e-10 1.04741502e-11 ... 4.20690799e-13 2.54795696e-09 4.18601388e-07]]
```

#### In [20]:

## in order to understand, convert the predictions from one hot encoding, we need to use numpy for that
print(np.argmax(predictions[0])) ### so actually argmax will return the maximum value indexx and find the value o
f it

7

#### In [21]:

```
### now to check that is our answer is true or not
plt.imshow(x_test[0])
```

#### Out[21]:

<matplotlib.image.AxesImage at 0x21d02134b48>



#### In [22]:

```
print(np.argmax(predictions[128]))
```

### In [23]:

plt.imshow(x\_test[128])

#### Out[23]:

<matplotlib.image.AxesImage at 0x21d02227ac8>



## In [24]:

import cv2

#### In [84]:

img = cv2.imread("8test.png")

#### In [85]:

plt.imshow(img)

#### Out[85]:

<matplotlib.image.AxesImage at 0x21d0272c348>



# In [86]:

img.shape

#### Out[86]:

(312, 326, 3)

## In [87]:

gray = cv2.cvtColor(img, cv2.COLOR\_BGR2GRAY)

#### In [88]:

gray.shape

## Out[88]:

(312, 326)

### In [89]:

resized = cv2.resize(gray, (28,28), interpolation = cv2.INTER\_AREA)

```
In [90]:
resized.shape
Out[90]:
(28, 28)
In [91]:
plt.imshow(resized)
Out[91]:
<matplotlib.image.AxesImage at 0x21d0276a2c8>
 5
10
15
 20
 25
            10
                 15
                      20
                           25
In [92]:
newimg = tf.keras.utils.normalize (resized, axis =1) ## 0 to 1 scaling
In [93]:
newimg = np.array(newimg).reshape(-1,IMG_SIZE, IMG_SIZE, 1) ## kernel operation of convolutional layer
In [94]:
newimg.shape
Out[94]:
(1, 28, 28, 1)
In [95]:
predictions = model.predict(newimg)
In [96]:
print(np.argmax(predictions))
In [ ]:
```