Zadanie 1 trojmian.c

Aleksander Kłak, prowadzący Łukasz Janiec

4 listopada 2020

Spis treści

1	Przygotowanie do zajęć	1
2	Kompilacja	1
3	Kod programu	1
4	Działanie programu oraz testy	2
5	Wnioski	3

1 Przygotowanie do zajęć

Przygotowaniem do zajęć był algorytm zapisany w schemacie blokowym oraz wykonanie testów. Na GitLab umieściłem zarówno algorytm jak i przetestowanie algorytmu wraz z jego wynikami. Oba pliki znajdują się w repozytorium aklak_podstawy_programowania/Z1/przygotowanie

2 Kompilacja

Program kompiluje się w każdym środowisku jakiego zastosowałem. Stosowałem Visual Studio Code oraz internetowe zintegrowane środowisko programistyczne Repl.it. Do skompilowania programu potrzebna była poprawa paru niewielkich błędów. Teraz program działa bez zarzutu.

3 Kod programu

Listing 1: C++

```
#include <stdio.h>
   #include <math.h>
3
   int main() {
4
5
      float a,b,c,delta;
6
7
      printf("Program oblicza pierwiastki rownania w postaci\n");
                   2\n");
      printf(" a x + b x + c = 0 \setminus n");
9
      printf("Podaj wartosc a:");
10
      scanf("%f",&a);
11
      printf("Podaj wartosc b:");
12
      scanf("%f",&b);
13
```

```
printf("Podaj wartosc c:");
14
      scanf("%f",&c);
15
16
17
      if (a==0.0)
                     /*przypadek rownania liniowego */
18
        if (b!=0.0)
19
          printf("Jest to rownanie liniowe o rozwiazaniu x=\%f\n",-c/b);
20
        else if (c==0.0) /* oraz a==b==0.0 */
          printf("Rozwiazaniem jest dowolne x \n");
21
22
                       /* a==b==0.0 != c */
          printf("Brak rozwiazan\n");
23
      else { /*przypadek rownania kwadratowego */
24
25
        delta=pow(b,2)-4.0*a*c;
26
        if (delta < 0)
          printf("Brak rozwiazan rzeczywistych\n");
27
28
                        /* delta >= 0 */
29
          if (delta > 0)
30
        printf("Rozwiazaniem sa x1=%f i x2=%f\n",(-b-sqrt(delta))/(2*a),(-b+sqrt(delta))/(2*a));
31
            printf("Rozwiazaniem sa x1=x2=\%f n",-b/(2*a));
32
33
34
    return 0;
35
   }
```

4 Działanie programu oraz testy

Program po wspomnianych wyżej poprawkach buduje się i uruchamia bezbłędnie. Wprowadzanie danych, po czym program wykonuje procesy matematyczne. Na sprzęcie prywatnym procesy wykonują się prędko oraz poprawnie, jednak z niewielką dokładnością, ale sporym zakresem. Dzieje się tak z powodu zadeklarowania zmiennych jako *float*. Dopiero przy wartości 2¹⁵⁰ wystąpił błąd i program pokazał "nan" zamiast liczb.

Tabela 1: Testy								
a	b	c	x_1	x_2	x_0			
0	0	0	dowolne x					
0	0	1	brak rozwiązań					
0	1	0			0			
1	0	0			0			
0	1	1			1			
1	1	0	1	0				
1	0	1	brak rozwiązań					
1	1	1	brak rozwiązań					
1	2	1			-1			
65536	1	-1	-0,003914	0,003899				
2147483648	1	-1	-0,000022	0,000022				
4294967296	1	-1	-0,000015	0,00015				
2^{150}	1	-1	nan	-nan				

5 Wnioski

Najważniejszymi wnioskiem z zadania jest poprawne zapamiętanie i stosowanie składni języka programowania. Każdy język ma swoje specyficzne elementy składni bez których programowanie jest niemożliwe. Kolejnym wnioskiem może być umiejętność korzystania z kompilatora. Dobry kompilator może pomóc w rozwiązywaniu błędów. Błędy i ich rozwiązania są szeroko dostępne w internecie, należy jedynie umieć do nich dotrzeć. Ostatnim wnioskiem jest uprzednie przemyślenie typu zmiennej, tak aby jej rozmiar i jej zakres zgadzały się z tym, co jest od zmiennej wymagane i do czego zostanie użyta.