QUIZ de MATHÉMATIQUES N°2

30/09/2016

Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

Les questions peuvent présenter une ou plusieurs réponses valides. Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

Question 41. Soient E et F sont deux ensembles finis et $f: E \to F$ une application. Parmi les implications suivantes, lesquelles sont vraies ?

- 1. \square Si f est injective $\Rightarrow \operatorname{card}(E) \ge \operatorname{card}(F)$
- 2. \square Le nombre d'applications entre E et F est $\operatorname{card}(F)^{\operatorname{card}(E)}$
- 3. \square On peut toujours définir $f^{-1}: F \to E$.
- 4. \square Si f est bijective, $(f^{-1})^{-1} = Id_E$.
- 5. \square aucune des réponses précédents n'est correcte

Question 42. Parmi les propositions suivantes, lesquelles sont vraies ?

- 1. \square Si les applications $f: E \to F$ et $g: F \to G$ sont injectives, alors l'application $g \circ f$ est injective
- 2. \square Si une application $f: E \to E$ vérifie $f \circ f = \mathrm{Id}_E$, alors f est bijective et $f^{-1} = f$.
- 3. \square Si l'application composée $g \circ f$ est injective, alors f et g sont injectives.
- 4. \square Si une application $f: E \to E$ vérifie $f \circ f$, alors $f = \mathrm{Id}_E$.
- 5.

 aucune des réponses précédents n'est correcte

Question 43. Parmi les propositions suivantes, lesquelles sont vraies?

- 1. $\square f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$ est surjective
- 2. \square $g: \mathbb{Z} \to \mathbb{Z}$, $n \mapsto n+1$ est bijective
- 3. $\square h: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x+y,x-y)$ est bijective
- 4. $\square k : \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x+1}{x-1}$ n'est pas bijective
- 5. \square aucune des réponses précédents n'est correcte

Question 44. Soient E, F, G trois ensembles et $f: E \to F$ et $g: F \to G$. Parmi les affirmations suivantes, lesquelles sont vraies ?

- 1. \square f est injective si et seulement si tout élément de E a une image dans F
- 2. $\square \operatorname{Id}_E \circ f = f = f \circ \operatorname{Id}_F$
- 3. \square Si $g \circ f$ est surjective alors f et g sont surjectives.
- 4. \square Si f et g sont bijectives alors $(f \circ f)^{-1} = g^{-1} \circ f^{-1}$
- 5. \square aucune des réponses précédents n'est correcte

Question 45. Soit $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ telle que $f(x) = \frac{x+1}{x-2}$

- 1. \square f est une surjection
- 2. \Box f est une injection
- 3. $\square f^{-1}$ n'existe pas
- 4. $\Box f^{-1}(y) = \frac{2y+1}{y-2}$
- 5. \square aucune des réponses précédents n'est correcte

Question 46. On considère l'application f définie de \mathbb{R} dans \mathbb{R} dont la représentation graphique est donnée cicontre.

- 1. \square L'image de 0 par f est égale à: f(0) = 2
- 2. \square Si 0 < y < 2,alors y possède trois antécédents
- 3. \square f n'est pas injective
- 4. \square f est surjective
- 5. \square aucune des réponses précédents n'est correcte

Question 47. On considère les fonctions f et g définies sur $\mathbb R$ par

$$f(x) = e^x$$
 $g(x) = \ln(x)$

2

- 1. $\Box f \circ g \neq Id_{\mathbb{R}}$ 2. $\Box g \circ f = Id_{\mathbb{R}}$ 3. $\Box f^{-1} = g$ 4. $\Box g^{-1} = f$
- 5. \square aucune des réponses précédents n'est correcte

Question 48. Parmi les affirmations suivantes, lesquelles sont vraies?

- 1. \square Pour tout $n \in \mathbb{N}^*$: $\sum_{i=1}^{n} 1 = 1$.
- 2. \square Pour tout $n \in \mathbb{N}^*$: $\sum_{i=1}^n i = in$.
- 3. \square Pour tout $(n,k) \in \mathbb{N}^2$ tel que $1 \le k \le n : \binom{n+k}{n} = \frac{n!}{k!(n+k)!}$
- 4. \square Pour tout $n \in \mathbb{N}$ et tout $(x,y) \in \mathbb{R}^2$: $(x+y)^n = \sum_{k=0}^n x^k y^{n-k}$.
- 5. \square aucune des réponses précédents n'est correcte

Question 49. Cocher les bonnes simplifications.

1.
$$\Box \sum_{k=1}^{n} 3 \ k = \frac{n(n+1)}{2}$$

2.
$$\Box \sum_{k=3}^{n+1} k \ 2^{2k+1} = \sum_{i=0}^{j-2} (i+3) \ 2^{2i+7}$$

3.
$$\square \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{10}$$

4.
$$\Box \prod_{k=1}^{n} 5 \ a_k = 5 \prod_{k=1}^{n} a_k$$

$$5. \ \Box \ n! = \prod_{1 \le k \le n} k$$

Question 50. Soient n, k, x et y des entiers. Cocher les bonnes simplifications.

1.
$$\square \binom{n}{k} = \binom{n-1}{k+1} + \binom{n-1}{k+1}$$

$$2. \ \Box \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$

3.
$$\Box (n+1)! = n!(n+1)$$

4.
$$\Box (x+1)^5 = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1$$

5.
$$\Box (x+2y)^5 = 2\sum_{k=0}^{5} {5 \choose k} x^k y^{5-k}$$

Question 51. Voici une construction à 8 étages réalisé à base de Légo. On souhaite poursuivre la construction avec un nombre pair d'étages n.

Combien de briques cela nécessite-t-il ?

- 1. \square n(n+1)
- $2. \square n(n-1)$
- 3. $\Box \frac{n(n+2)}{4}$
- 4. $\Box \frac{n(n+3)}{2}$
- 5. $\Box \frac{(n+1)^2}{2}$

Question 52. On suppose $\forall n \in \mathbb{N}, \sum_{k=0}^{n} a_k = n(n+2)$

1.
$$\Box \sum_{k=0}^{6} a_k = 48$$

2.
$$\Box \sum_{k=0}^{n+1} a_k = (n+1)(n+2)$$

3.
$$\square \sum_{k=0}^{n-1} a_k = (n-1)(n+2)$$

4.
$$\Box \sum_{k=n+1}^{2n} a_k = n(3n+2)$$

5. □ aucune des réponses précédents n'est correcte

Question 53. En lançant deux fois une pièce équilibrée, la probabilité d'obtenir deux résultats différents (un pile

1.
$$\Box \frac{1}{2}$$
 2. $\Box \frac{1}{3}$ 3. $\Box \frac{1}{4}$ 4. $\Box \frac{2}{3}$ 5. \Box aucune des réponses précédents n'est correcte

Question 54. La forme algébrique de $\frac{1}{(1+2i)(3-i)}$ est :

1.
$$\Box -\frac{1}{10} - i\frac{1}{10}$$

2.
$$\Box \frac{1}{10} + i \frac{1}{10}$$

3.
$$\Box \frac{1}{10} - i \frac{1}{10}$$

4.
$$\Box -\frac{1}{10} - i\frac{1}{10}$$

1.
$$\Box -\frac{1}{10} - i\frac{1}{10}$$
 2. $\Box \frac{1}{10} + i\frac{1}{10}$ 3. $\Box \frac{1}{10} - i\frac{1}{10}$ 4. $\Box -\frac{1}{10} - i\frac{1}{10}$ 5. \Box Elle n'existe pas.

Question 55. Parmi les affirmations suivantes, lesquelles sont vraies?

- 1. \square Pour tout $t \in \mathbb{R}$, le conjugué du nombre complexe $1 + e^{it}$ est $1 e^{it}$.
- 2. \square Pour tout $(u, v) \in \mathbb{C}^2$: $\overline{uv} = \overline{u} \ \overline{v}$.
- 3. \square Pour tout $z \in \mathbb{C}$: $|z| = z\overline{z}$.
- 4. \square Pour tout $z \in \mathbb{C}^*$: $|z| = 1 \Leftrightarrow \overline{z} = \frac{1}{z}$.
- 5. \square aucune des réponses précédents n'est correcte

Question 56. D'après Euler, $\sin\theta$ est égal à

1.
$$\Box \frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2}$$
 2. $\Box \frac{e^{\mathrm{i}\theta} - e^{-\mathrm{i}\theta}}{2}$ 3. $\Box \frac{e^{\theta} + e^{-\theta}}{2}$ 4. $\Box \frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2\mathrm{i}}$ 5. $\Box \frac{e^{\mathrm{i}\theta} - e^{-\mathrm{i}\theta}}{2\mathrm{i}}$

2.
$$\Box \frac{e^{i\theta} - e^{-i\theta}}{2}$$

3.
$$\Box \frac{e^{\theta} + e^{-}}{2}$$

4.
$$\Box \frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2}$$

5.
$$\Box \frac{e^{\mathrm{i}\theta} - e^{-\mathrm{i}}}{2\mathrm{i}}$$

Question 57. Soit $z = 4\sqrt{3} + 4i$ un nombre complexe sous forme algébrique. Cocher ses écritures exponentielle et trigonométrique si présentes.

- 1. $\Box 8e^{\frac{\pi}{6}i}$
- 2. $\Box 8e^{\frac{\pi}{3}i}$
- 3. $\square 8(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))$
- 4. $\Box 8(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$
- 5. \square aucune des réponses précédents n'est correcte

Question 58. Soient a un nombre réel et $z = \sin a + i \cos a$ un nombre complexe. Cocher la ou les écritures équivalentes si présentes.

$$1 \quad \Box e^{i(-a+\pi)}$$

2.
$$\Box e^{i(-a+\frac{\pi}{2})}$$

3.
$$\square ie^{-ia}$$

4.
$$\square e^{\mathrm{i}(a+\pi)}$$

1. $\Box e^{\mathrm{i}(-a+\pi)}$ 2. $\Box e^{\mathrm{i}(-a+\frac{\pi}{2})}$ 3. $\Box \mathrm{i}e^{-\mathrm{i}a}$ 4. $\Box e^{\mathrm{i}(a+\pi)}$ 5. \Box aucune des réponses précédents n'est correcte

Question 59. Soient $z_1 = 1 + i$, $z_2 = 1 + i\sqrt{3}$ et $z_3 = z_1 z_2$

1.
$$\Box |z_1| = 1 \text{ et } |z_2| = 2$$

2.
$$\Box arg(z_1) = \frac{\pi}{4}$$
 et $arg(z_2) = \pi$

3.
$$\Box z_1 = 2e^{i\frac{\pi}{4}}$$
 et $z_2 = 2e^{i\pi}$

4.
$$\Box z_3 = (1 - \sqrt{3}) + i(1 + \sqrt{3})$$

5.

aucune des réponses précédents n'est correcte

Question 60. Soit r=3 et $\theta=\frac{2\pi}{3}$. Cocher la forme algébrique de ce complexe si présente.

1.
$$\Box z = -\frac{3}{2} + i \frac{3\sqrt{3}}{2}$$

2.
$$\Box z = \frac{3}{2} - i \frac{3\sqrt{3}}{2}$$

3.
$$\Box z = -\frac{3\sqrt{2}}{2} + i\frac{3\sqrt{3}}{2}$$

4.
$$\Box z = \frac{3\sqrt{2}}{2} - i\frac{3\sqrt{3}}{2}$$

5. \square aucune des réponses précédents n'est correcte