COMPITO D

Algebra e Geometria, Fisica, (Fioresi)

19 Dicembre, 2018

	15 Dicembre, 2010	
NOME:		
COGNOME:		

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
Totale	

Esercizio 1 (50 punti)

Si consideri la matrice hermitiana:

$$A = \begin{pmatrix} k & 0 & 1 \\ 0 & k & i \\ 1 & -i & 0 \end{pmatrix}$$

- 1) Si scriva il prodotto hermitiano ad essa associato e si determini se e' non degenere, definito positivo.
- 2) Si dica per quali valori di k complesso la matrice A e' diagonalizzabile e scelto un valore per il quale e' diagonalizzabile si trovi (se possibile) una base di autovettori mutuamente perpendicolari tra loro.

Esercizio 2 (50 punti)

- a) Si risponda vero o falso motivando la risposta con una dimostrazione oppure con un controesempio.
- I) L'insieme delle matrici 2×2 con determinante uguale a 1 e' un gruppo.
- II) Matrici 2×2 con la stessa traccia e lo stesso determinante sono simili.
- III) Sia V uno spazio vettoriale reale finito dimensionale con un prodotto scalare non degenere e W un suo sottospazio. Allora $(W^{\perp})^{\perp} = W$.
- b) Si enunci con chiarezza il teorema di Sylvester sulle forme quadratiche e si spieghi la sua relazione con il teorema spettrale.

CREDITO EXTRA. Sia $\mathbf{u} \in \mathbf{R}^n$ un vettore non nullo. Si dimostri che la matrice $\mathbf{u} \cdot \mathbf{u}^t$ (moltiplicazione righe per colonne) ha autovalore zero contato con molteplicita' algebrica n-1.

Esercizio 3 (50 punti)

Sia W il sottospazio vettoriale di ${\bf R}^4$ generato dai vettori $ae_1+e_2-e_3+e_4,$ $-e_1+2e_3-2e_4.$

- a) Si determini una base ortogonale per W.
- b) Si determini una base per W^\perp ove l'ortogonale e' calcolato rispetto al prodotto scalare euclideo.
- c) Si determini W^{\perp_M} rispetto al prodotto scalare di Minkowski.