Prueba Tema 1. Topología I Doble grado en Informática y Matemáticas 7 de noviembre de 2019

1.— Sea \mathbb{R} el conjunto de los números reales, y $K \subset \mathbb{R}$ el subconjunto:

$$K := \{1/n : n \in \mathbb{N}\}.$$

Consideramos la familia $\mathcal{B} \subset P(\mathbb{R})$ dada por:

$$\mathcal{B} := \{ (a, b) : a, b \in \mathbb{R}, a < b \} \cup \{ (a, b) \setminus K : a, b \in \mathbb{R}, a < b \}.$$

- 1. ¿Es \mathcal{B} base de una topología en \mathbb{R} ?
- 2. Sea T_K la topología generada por \mathcal{B} . Probar que T_K es estrictamente más fina que la topología usual T_u de \mathbb{R} $(T_u \subset T_K, \text{ pero } T_u \neq T_K)$.
- 3. ¿Es (\mathbb{R}, T_K) un espacio Hausdorff?
- 4. Calcular la clausura de (0,1) en (\mathbb{R},T_K) .
- 5. Dar un ejemplo de una sucesión convergente con la topología usual T_u que no converge con la topología T_K .
- 1. Para probar que \mathcal{B} es base de una topología hay que verificar:
- 1. $\mathbb{R} = \bigcup_{B \in \mathcal{B}} B$,
- 2. Para cualquier par de conjuntos $B_1, B_2 \in \mathcal{B}$, y $x \in B_1 \cap B_2$, existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.

La primera propiedad se comprueba fácilmente puesto que:

$$\mathbb{R} = \bigcup_{n \in \mathbb{N}} (-n, n) \subset \bigcup_{B \in \mathcal{B}} B,$$

ya que $(-n, n) \in \mathcal{B}$ para todo $n \in \mathbb{N}$.

Para probar la segunda propiedad, tomamos $B_1, B_2 \in \mathcal{B}$. Distinguimos varios casos:

- (a) Si $B_1 = (a_1, b_1), B_2 = (a_2, b_2)$ y $x \in B_1 \cap B_2$, entonces $B_3 = B_1 \cap B_2 = (c, d)$ pertenece a \mathcal{B} , con $c = \max\{a_1, a_2\}, d = \min\{b_1, b_2\}$).
- (b) Si $B_1 = (a_1, b_1), B_2 = (a_2, b_2) \setminus K$ y $x \in B_1 \cap B_2$, entonces $B_3 = B_1 \cap B_2 = (c, d) \setminus K$ pertenece a \mathcal{B} , con $c = \max\{a_1, a_2\}, d = \min\{b_1, b_2\}.$

El caso $B_1 = (a_1, b_1) \setminus K$, $B_2 = (a_2, b_2)$ se reduce a (b) intercambiando los papeles de B_1 y B_2 .

- (c) Si $B_1 = (a_1, b_1) \setminus K$, $B_2 = (a_2, b_2) \setminus K$ y $x \in B_1 \cap B_2$, entonces $B_3 = B_1 \cap B_2 = (c, d) \setminus K$ pertenece a \mathcal{B} , con $c = \max\{a_1, a_2\}, d = \min\{b_1, b_2\}$.
- 2. Para probar que $T_u \subset T_K$ tenemos en cuenta que la base $\mathcal{B}_u = \{(a,b) : a < b\}$ de la topología usual T_u está contenida en \mathcal{B} . Tomamos $U \in T_u$. Entonces existen conjuntos $\{B_i\}_{i \in I}$ pertenecientes a \mathcal{B}_u tales que $U = \bigcup_{i \in I} B_i$. Como $B_i \in \mathcal{B}_u \subset \mathcal{B} \subset T_K$ para todo $i \in I$, concluimos que $U \in T_K$ por ser unión de elementos de T_K .

Para probar que $T_u \subsetneq T_K$ tomamos el conjunto $U = (-1,1) \setminus K$. Dicho conjunto pertenece a \mathcal{B} y es, por tanto, abierto en la topología T_K . Sin embargo no es abierto de T_u porque $0 \in U$ no es punto interior de U. Para probarlo tenemos en cuenta que los conjuntos $\{(-\varepsilon, \varepsilon) : \varepsilon > 0\}$ forman una base de entornos en 0 en T_u . Si $0 \in \operatorname{int}(U)$, existe $\varepsilon > 0$ tal que $0 \in (-\varepsilon, \varepsilon) \subset U = (-1, 1) \setminus K$. Entonces $\frac{1}{n} \notin (-\varepsilon, \varepsilon)$ para todo $n \in \mathbb{N}$, lo que es imposible.

- 3. Sea $x \neq y, x, y \in \mathbb{R}$. Como (\mathbb{R}, T_u) es Hausdorff, existen dos abiertos $U, V \in T_u$ tales que $x \in U, y \in V, U \cap V = \emptyset$. Como $T_u \subset T_K$, los conjuntos U, V son abiertos en T_K , disjuntos, y contienen a x, y, respectivamente. Esto demuestra que (\mathbb{R}, T_K) es un espacio Hausdorff.
- 4. Para calcular la clausura de (0,1) en T_K tenemos en cuenta que [0,1] es cerrado en T_K puesto que es cerrado en T_u ($T_u \subset T_K$ lo que implica que los cerrados de T_u son cerrados de T_K). Entonces la clausura de (0,1) en T_K está contenida en [0,1].

Veamos que $0, 1 \in \overline{(0,1)}$, lo que demostraría que $\overline{(0,1)} = [0,1]$.

Para todo $x \in \mathbb{R}$, sabemos que $\mathcal{B}(x) = \{B \in \mathcal{B} : x \in B\}$ es base de entornos de x en T_K . Si $U \in \mathcal{B}(1)$, entonces U = (a, b), con a < 1 < b (los conjuntos de la forma $(a, b) \setminus K$ no contienen a 1). Entonces $(0, 1) \cap (a, b) = (\max\{0, a\}, 1) \neq \emptyset$.

- Si $U \in \mathcal{B}(0)$, entonces U es de la forma (a,b) o de la forma $(a,b) \setminus K$, con a < 0 < b. En el primer caso $U \cap (0,1) = (0,\min\{1,b\}) \neq \emptyset$. En el segundo caso, $U \cap (0,1) = (0,\min\{1,b\}) \setminus K \neq \emptyset$. Por tanto, $0 \in \overline{(0,1)}$.
- 5. La sucesión $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ converge a 0 en T_u . Veamos que no converge a ningún punto con la topología T_K . No puede converger a 0 en T_K porque $(-1,1)\setminus K$ es un entorno de 0 que no contiene a ningún elemento de la sucesión. Tampoco puede converger en T_K a otro punto $x\neq 0$: tomamos $\delta, \varepsilon > 0$ tales que $(-\delta, \delta) \cap (x \varepsilon, x + \varepsilon) = \emptyset$. Como $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ converge a 0 en T_u , todos los elementos de la sucesión salvo una cantidad finita están en $(-\delta, \delta)$, por lo que solo hay una cantidad finita en $(x \varepsilon, x + \varepsilon)$. Esto implica que la sucesión no puede converger a $x\neq 0$ en T_K .