Merging DataFrames

MERGING DATAFRAMES WITH PANDAS

Anaconda Instructor

Population DataFrame

```
import pandas as pd
population = pd.read_csv('pa_zipcode_population.csv')
print(population)
```

```
Zipcode 2010 Census Population
0 16855 282
1 15681 5241
2 18657 11985
3 17307 5899
4 15635 220
```



```
cities = pd.read_csv('pa_zipcode_city.csv')
print(cities)
```

	Zipcode	City	State
0	17545	MANHEIM	PA
1	18455	PRESTON PARK	PA
2	17307	BIGLERVILLE	PA
3	15705	INDIANA	PA
4	16833	CURWENSVILLE	PA
5	16220	CROWN	PA
6	18618	HARVEYS LAKE	PA
7	16855	MINERAL SPRINGS	PA
8	16623	CASSVILLE	PA
9	15635	HANNASTOWN	PA
10	15681	SALTSBURG	PA
11	18657	TUNKHANNOCK	PA
12	15279	PITTSBURGH	PA
13	17231	LEMASTERS	PA
14	18821	GREAT BEND	PA

Merging

```
pd.merge(population, cities)
```

	Zipcode	2010 Census Population	City	State
0	16855	282	MINERAL SPRINGS	PA
1	15681	5241	SALTSBURG	PA
2	18657	11985	TUNKHANNOCK	PA
3	17307	5899	BIGLERVILLE	PA
4	15635	220	HANNASTOWN	PA

Medal DataFrames

```
NOC
            Country
                       Total
      United States
USA
                      1052.0
       Soviet Union
                      584.0
URS
GBR
     United Kingdom
                       505.0
FRA
                       475.0
             France
GER
                       454.0
            Germany
```

```
NOC
            Country
                       Total
      United States
                     2088.0
USA
       Soviet Union
URS
                       838.0
     United Kingdom
                       498.0
GBR
ITA
              Italy
                       460.0
                       407.0
GER
            Germany
```

Merging all columns

```
pd.merge(bronze, gold)
```

```
Empty DataFrame
Columns: [NOC, Country, Total]
Index: []
```


Merging on

```
pd.merge(bronze, gold, on='NOC')
```

```
NOC
          Country_x
                     Total_x
                                    Country_y
                                               Total_y
                                United States
USA
      United States
                      1052.0
                                                2088.0
URS
       Soviet Union
                                 Soviet Union
                                                 838.0
                       584.0
     United Kingdom
GBR
                       505.0
                               United Kingdom
                                                 498.0
GER
            Germany
                       454.0
                                      Germany
                                                 407.0
```

Merging on multiple columns

```
pd.merge(bronze, gold, on=['NOC', 'Country'])
```

```
NOC
            Country
                     Total_x
                               Total_y
USA
      United States
                      1052.0
                                2088.0
URS
       Soviet Union
                       584.0
                                 838.0
GBR
     United Kingdom
                       505.0
                                 498.0
                       454.0
                                 407.0
GER
            Germany
```


Using suffixes

```
pd.merge(bronze, gold, on=['NOC', 'Country'], suffixes=['_bronze', '_gold'])
```

```
Country Total_bronze Total_gold
NOC
      United States
                                       2088.0
USA
                           1052.0
       Soviet Union
                            584.0
                                        838.0
URS
     United Kingdom
                            505.0
                                        498.0
GBR
                                        407.0
GER
                            454.0
            Germany
```

Counties DataFrame

```
CITY NAME COUNTY NAME
O SALTSBURG INDIANA
1 MINERAL SPRINGS CLEARFIELD
2 BIGLERVILLE ADAMS
3 HANNASTOWN WESTMORELAND
4 TUNKHANNOCK WYOMING
```

```
print(cities.tail())
```

10 15681 SALTSBURG PA 11 18657 TUNKHANNOCK PA 12 15279 PITTSBURGH PA 13 15034 LEMAGTERS PA
12 15279 PITTSBURGH PA
47 40074 LEMACTEDO DA
13 17231 LEMASTERS PA
14 18821 GREAT BEND PA

Specifying columns to merge

	CITY NAME	COUNTY NAME	Zipcode	City	State
0	SALTSBURG	INDIANA	15681	SALTSBURG	PA
1	MINERAL SPRINGS	CLEARFIELD	16855	MINERAL SPRINGS	PA
2	BIGLERVILLE	ADAMS	17307	BIGLERVILLE	PA
3	HANNASTOWN	WESTMORELAND	15635	HANNASTOWN	PA
4	TUNKHANNOCK	WYOMING	18657	TUNKHANNOCK	PA

Switching left/right DataFrames

	Zipcode	City	State	CITY NAME	COUNTY NAME
0	17307	BIGLERVILLE	PA	BIGLERVILLE	ADAMS
1	16855	MINERAL SPRINGS	PA	MINERAL SPRINGS	CLEARFIELD
2	15635	HANNASTOWN	PA	HANNASTOWN	WESTMORELAND
3	15681	SALTSBURG	PA	SALTSBURG	INDIANA
4	18657	TUNKHANNOCK	PA	TUNKHANNOCK	WYOMING

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Joining DataFrames

MERGING DATAFRAMES WITH PANDAS

Anaconda Instructor

Medal DataFrames

```
Country
NOC
                      Total
      United States
USA
                     1052.0
URS
       Soviet Union
                      584.0
     United Kingdom
                      505.0
GBR
FRA
             France
                      475.0
GER
            Germany
                      454.0
```

```
NOC
               Country
                         Total
         United States
                        2088.0
  USA
          Soviet Union
   URS
                         838.0
        United Kingdom
   GBR
                         498.0
                 Italy
                         460.0
   ITA
4 GER
               Germany
                         407.0
```

Merging with inner join

```
NOC
            Country
                     Total_bronze
                                  Total_gold
USA
      United States
                           1052.0
                                       2088.0
      Soviet Union
                                        838.0
URS
                            584.0
GBR
     United Kingdom
                            505.0
                                        498.0
                                        407.0
GER
            Germany
                            454.0
```


Merging with left join

- Keeps all rows of the left DF in the merged DF
- For rows in the left DF with matches in the right DF:
 - Non-joining columns of right DF are appended to left DF
- For rows in the left DF with no matches in the right DF:
 - Non-joining columns are filled with nulls

Merging with left join

	NOC	Country	Total_bronze	Total_gold
0	USA	United States	1052.0	2088.0
1	URS	Soviet Union	584.0	838.0
2	GBR	United Kingdom	505.0	498.0
3	FRA	France	475.0	NaN
4	GER	Germany	454.0	407.0

Merging with right join

```
NOC
            Country
                    Total_bronze
                                   Total_gold
USA
      United States
                           1052.0
                                        2088.0
      Soviet Union
URS
                            584.0
                                         838.0
     United Kingdom
                            505.0
                                         498.0
GBR
GER
            Germany
                            454.0
                                         407.0
                                         460.0
ITA
              Italy
                              NaN
```

Merging with outer join

	NOC	Country	Total_bronze	Total_gold
0	USA	United States	1052.0	2088.0
1	URS	Soviet Union	584.0	838.0
2	GBR	United Kingdom	505.0	498.0
3	FRA	France	475.0	NaN
4	GER	Germany	454.0	407.0
5	ITA	Italy	NaN	460.0

Population and unemployment data

		2010	Census	Population	
Zip Co	de	ZCTA			
57538				322	
59916				130	
37660				40038	
2860				45199	

	unemployment	participants	
Zip			
2860	0.11	34447	
46167	0.02	4800	
1097	0.33	42	
80808	0.07	4310	

Using .join(how="left")

population.join(unemployment)

2010 Census	Population	unemployment	participants	
	322	NaN	NaN	
	130	NaN	NaN	
	40038	NaN	NaN	
	45199	0.11	34447.0	
	2010 Census	322 130 40038	322 NaN 130 NaN 40038 NaN	130 NaN NaN 40038 NaN NaN

Using .join(how="right")

```
population.join(unemployment, how= 'right')
```

	2010 Census Population	unemployment	participants	
Zip				
2860	45199.0	0.11	34447	
46167	NaN	0.02	4800	
1097	NaN	0.33	42	
80808	NaN	0.07	4310	

Using .join(how="inner")

```
population.join(unemployment, how='inner')
```

```
2010 Census Population unemployment participants
2860 45199 0.11 34447
```


Using .join(how="outer")

```
population.join(unemployment, how= 'outer')
```

	2010 Census Population	unemployment	participants
1097	NaN	0.33	42.0
2860	45199.0	0.11	34447.0
37660	40038.0	NaN	NaN
46167	NaN	0.02	4800.0
57538	322.0	NaN	NaN
59916	130.0	NaN	NaN
80808	NaN	0.07	4310.0

Which should you use?

- df1.append(df2): stacking vertically
- pd.concat([df1, df2]):
 - stacking many horizontally or vertically
 - simple inner/outer joins on Indexes
- df1.join(df2): inner/outer/left/right joins on Indexes
- pd.merge([df1, df2]): many joins on multiple columns

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Ordered merges

MERGING DATAFRAMES WITH PANDAS

Anaconda Instructor

Software and hardware sales

```
import pandas as pd
software = pd.read_csv('feb-sales-Software.csv',
                        parse_dates=['Date'])
                        .sort_values('Date')
hardware = pd.read_csv('feb-sales-Hardware.csv',
                        parse_dates=['Date'])/
                        .sort_values('Date')
```

print(software)

```
Product Units
                 Date
                               Company
2 2015-02-02 08:33:01
                                 Hooli Software
                                                      3
1 2015-02-03 14:14:18
                               Initech Software
                                                     13
7 2015-02-04 15:36:29
                             Streeplex
                                        Software
                                                     13
3 2015-02-05 01:53:06
                      Acme Coporation Software
                                                     19
5 2015-02-09 13:09:55
                            Mediacore
                                       Software
4 2015-02-11 20:03:08
                              Initech Software
```

print(hardware)

Date	Company	Product	Units	
0 2015-02-04 21:52:45	Acme Coporation	Hardware	14	
1 2015-02-07 22:58:10	Acme Coporation	Hardware	1	
2 2015-02-19 10:59:33	Mediacore	Hardware	16	
4 2015-02-21 20:41:47	Hooli	Hardware	3	

Using merge()

```
pd.merge(hardware, software)
```

```
Empty DataFrame
Columns: [Date, Company, Product, Units]
Index: []
```


pd.merge(hardware, software, how='outer')

		Date	Company	Product	Units
0	2015-02-02	20:54:49	Mediacore	Hardware	9
1	2015-02-04	21:52:45	Acme Coporation	Hardware	14
2	2015-02-07	22:58:10	Acme Coporation	Hardware	1
3	2015-02-19	10:59:33	Mediacore	Hardware	16
4	2015-02-21	20:41:47	Hooli	Hardware	3
5	2015-02-02	08:33:01	Hooli	Software	3
6	2015-02-03	14:14:18	Initech	Software	13
7	2015-02-04	15:36:29	Streeplex	Software	13
8	2015-02-05	01:53:06	Acme Coporation	Software	19
9	2015-02-09	13:09:55	Mediacore	Software	7
10	2015-02-11	20:03:08	Initech	Software	7
11	2015-02-11	22:50:44	Hooli	Software	4
12	2015-02-16	12:09:19	Hooli	Software	10
13	2015-02-21	05:01:26	Mediacore	Software	3

Sorting merge(how='outer')

```
Product Units
                  Date
                                Company
  2015-02-02 20:54:49
                              Mediacore
                                         Hardware
                                                       9
  2015-02-04 21:52:45
                        Acme Coporation Hardware
                                                      14
  2015-02-07 22:58:10
                        Acme Coporation
                                        Hardware
                              Mediacore
  2015-02-19 10:59:33
                                         Hardware
                                                      16
  2015-02-21 20:41:47
                                  Hooli
                                         Hardware
                                                       3
  2015-02-02 08:33:01
                                  Hooli
                                        Software
                                                       3
  2015-02-03 14:14:18
                                Initech Software
                                                      13
  2015-02-04 15:36:29
                              Streeplex Software
                                                      13
  2015-02-05 01:53:06
                       Acme Coporation Software
                                                      19
  2015-02-09 13:09:55
                              Mediacore
                                         Software
10 2015-02-11 20:03:08
                                Initech
                                        Software
11 2015-02-11 22:50:44
                                  Hooli Software
                                                       4
12 2015-02-16 12:09:19
                                  Hooli
                                         Software
                                                      10
13 2015-02-21 05:01:26
                              Mediacore Software
                                                       3
```


Using merge_ordered()

pd.merge_ordered(hardware, software)

```
Date
                                          Product
                                                  Units
                                Company
   2015-02-02 08:33:01
                                  Hooli
                                        Software
                                                     3.0
   2015-02-02 20:54:49
                              Mediacore
                                        Hardware
                                                     9.0
  2015-02-03 14:14:18
                                                    13.0
                                Initech Software
  2015-02-04 15:36:29
                              Streeplex Software
                                                    13.0
   2015-02-04 21:52:45
                        Acme Coporation Hardware
                                                    14.0
  2015-02-05 01:53:06
                        Acme Coporation Software
                                                    19.0
  2015-02-07 22:58:10
                        Acme Coporation Hardware
                                                     1.0
  2015-02-09 13:09:55
                              Mediacore
                                                     7.0
                                        Software
  2015-02-11 20:03:08
                                Initech Software
                                                     7.0
  2015-02-11 22:50:44
                                  Hooli Software
                                                     4.0
10 2015-02-16 12:09:19
                                                    10.0
                                  Hooli Software
11 2015-02-19 10:59:33
                                        Hardware
                              Mediacore
                                                    16.0
12 2015-02-21 05:01:26
                              Mediacore
                                        Software
                                                     3.0
13 2015-02-21 20:41:47
                                  Hooli Hardware
                                                     3.0
```



```
Company Product_hardware \\
                 Date
0 2015-02-02 08:33:01
                                 Hooli
                                                    NaN
1 2015-02-02 20:54:49
                            Mediacore
                                               Hardware
2 2015-02-03 14:14:18
                              Initech
                                                    NaN
   Units_hardware Product_software Units_software
              NaN
                          Software
                                               3.0
              9.0
                               NaN
                                               NaN
              NaN
                          Software
                                             13.0
              NaN
                          Software
                                              13.0
             14.0
                               NaN
                                               NaN
```



```
stocks = pd.read_csv('stocks-2013.csv')
print(stocks)
```

	Date	AAPL	IBM	CSCO	MSFT
0	2013-01-31	497.822381	197.271905	20.699524	27.236667
1	2013-02-28	456.808953	200.735788	20.988947	27.704211
2	2013-03-31	441.840998	210.978001	21.335000	28.141000
3	2013-04-30	419.764998	204.733636	20.914545	29.870909
4	2013-05-31	446.452730	205.263639	22.386364	33.950909
5	2013-06-30	425.537999	200.850000	24.375500	34.632500
6	2013-07-31	429.157272	194.354546	25.378636	33.650454
7	2013-08-31	484.843635	187.125000	24.948636	32.485000
8	2013-09-30	480.184499	188.767000	24.080000	32.523500
9	2013-10-31	504.744783	180.710002	22.847391	34.382174
10	2013-11-30	524.616499	181.333502	22.204000	37.362500
11	2013-12-31	559.657613	179.114763	21.257619	37.455715


```
gdp = pd.read_csv('gdp-2013.csv')
print(gdp)
```

```
GDP
      Date
2012-03-31 15973.9
2012-06-30 16121.9
2012-09-30 16227.9
2012-12-31 16297.3
2013-03-31 16475.4
2013-06-30
          16541.4
2013-09-30 16749.3
2013-12-31 16999.9
```

pd.merge_ordered(stocks, gdp, on='Date')

	Date	AAPL	IBM	CSCO	MSFT	GDP	
0	2012-03-31	NaN	NaN	NaN	NaN	15973.9	
1	2012-06-30	NaN	NaN	NaN	NaN	16121.9	
2	2012-09-30	NaN	NaN	NaN	NaN	16227.9	
3	2012-12-31	NaN	NaN	NaN	NaN	16297.3	
4	2013-01-31	497.822381	197.271905	20.699524	27.236667	NaN	
5	2013-02-28	456.808953	200.735788	20.988947	27.704211	NaN	
6	2013-03-31	441.840998	210.978001	21.335000	28.141000	16475.4	
7	2013-04-30	419.764998	204.733636	20.914545	29.870909	NaN	
8	2013-05-31	446.452730	205.263639	22.386364	33.950909	NaN	
9	2013-06-30	425.537999	200.850000	24.375500	34.632500	16541.4	
10	2013-07-31	429.157272	194.354546	25.378636	33.650454	NaN	
11	2013-08-31	484.843635	187.125000	24.948636	32.485000	NaN	
12	2013-09-30	480.184499	188.767000	24.080000	32.523500	16749.3	
13	2013-10-31	504.744783	180.710002	22.847391	34.382174	NaN	
14	2013-11-30	524.616499	181.333502	22.204000	37.362500	NaN	
15	2013-12-31	559.657613	179.114763	21.257619	37.455715	16999.9	

	Date	AAPL	IBM	CSCO	MSFT	GDP	
0	2012-03-31	NaN	NaN	NaN	NaN	15973.9	
1	2012-06-30	NaN	NaN	NaN	NaN	16121.9	
2	2012-09-30	NaN	NaN	NaN	NaN	16227.9	
3	2012-12-31	NaN	NaN	NaN	NaN	16297.3	
4	2013-01-31	497.822381	197.271905	20.699524	27.236667	16297.3	
5	2013-02-28	456.808953	200.735788	20.988947	27.704211	16297.3	
6	2013-03-31	441.840998	210.978001	21.335000	28.141000	16475.4	
7	2013-04-30	419.764998	204.733636	20.914545	29.870909	16475.4	
8	2013-05-31	446.452730	205.263639	22.386364	33.950909	16475.4	
9	2013-06-30	425.537999	200.850000	24.375500	34.632500	16541.4	
10	2013-07-31	429.157272	194.354546	25.378636	33.650454	16541.4	
11	2013-08-31	484.843635	187.125000	24.948636	32.485000	16541.4	
12	2013-09-30	480.184499	188.767000	24.080000	32.523500	16749.3	
13	2013-10-31	504.744783	180.710002	22.847391	34.382174	16749.3	
14	2013-11-30	524.616499	181.333502	22.204000	37.362500	16749.3	
15	2013-12-31	559.657613	179.114763	21.257619	37.455715	16999.9	

Let's practice!

MERGING DATAFRAMES WITH PANDAS

