1. Alice encodes the EPR fair
$ \Psi\rangle = \frac{1}{\sqrt{2}} \left(00\rangle + 11\rangle \right)$
12 what is the
using the quantum one-tofne pad. What is the
etate of the sucoded quantum state
by Bob who kum the key bits ky and Kz?
We use Ki Kz represented the key bits and Ri, Ri means the
opposite state of k, kz
[Yencrypted] = $\sqrt{2}$ (KiKi7+ KiKi)
In one-time pad situation,
if K1 = 0 K2 K2=0, State Stay Still
$ +\rangle = \frac{1}{5}(00\rangle + 11\rangle)$
if K=1 KK K=0, first State turn into opposite.
$(\psi) = \sqrt{\epsilon} (1107 + 1017)$
if KI=O lb K=1, sewnd bit state turn opposite.
$147 = \sqrt{(1017 + 1107)}$
if K1=1 ll K2=1 so both of them turn over.
$ 47 = \sqrt{117 + (\infty 7)}$

2. Alice prepares the state
$$PAB = |\Phi\rangle\langle\Phi|$$
 which is

the singlet $|\Phi\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$. Compute

 PA .

$$2. |47 = \frac{1}{5}(1017 - 1107)$$

$$1017 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad 1107 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$P_{AB} = \frac{1}{2}(|01><01) - |01><10| - |10><01| + |10><10|)$$

1207 is the state of Bob's qubit, for singlet state only 1017 and 1107 when taking the trace, the crossing terms will cancel out.

$$P_{A} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$