Introduction to Bottom-Up Parsing

Outline

- Review LL parsing
- Shift-reduce parsing
- · The LR parsing algorithm
- · Constructing LR parsing tables

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Predictive Parsing: Review

- · A predictive parser is described by a table
 - For each non-terminal A and for each token b we specify a production $A \to \alpha$
 - When trying to expand A we use $A \rightarrow \alpha$ if b follows next
- · Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

Constructing Predictive Parsing Tables

- 1. Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α
 - We say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A

- The expansion of \boldsymbol{A} is empty and \boldsymbol{b} belongs to an expansion of γ
- Means that b can appear after A in a derivation of the form $S \rightarrow^* \beta Ab\omega$
- We say that $b \in Follow(A)$ in this case
- What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in First(A)$ in this case

Computing First Sets

Definition

First(X) = { b |
$$X \rightarrow^* b\alpha$$
 } \cup { $\varepsilon \mid X \rightarrow^* \varepsilon$ }

Algorithm sketch

- 1. First(b) = { b }
- 2. $\varepsilon \in \text{First}(X)$ if $X \to \varepsilon$ is a production
- 3. $\varepsilon \in \text{First}(X)$ if $X \to A_1 \dots A_n$ and $\varepsilon \in \text{First}(A_i)$ for $1 \le i \le n$
- 4. First(α) \subseteq First(X) if X \rightarrow $A_1 ... A_n <math>\alpha$ and $\epsilon \in$ First(A_i) for $1 \le i \le n$

First Sets: Example

Recall the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

 $X \rightarrow + E \mid \varepsilon$ $Y \rightarrow * T \mid \varepsilon$

First sets

Computing Follow Sets

· Definition

Follow(X) = { b |
$$S \rightarrow^* \beta X b \delta$$
 }

Intuition

- If $X \to A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
- Also if $B \to^* \epsilon$ then $Follow(X) \subseteq Follow(A)$
- If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)
 - For each production $A \rightarrow \alpha \times \beta$
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production $A \rightarrow \alpha \times \beta$ where $\epsilon \in \text{First}(\beta)$

Follow Sets: Example

Recall the grammar

```
E \rightarrow TX X \rightarrow + E \mid \varepsilon

T \rightarrow (E) \mid \text{int } Y Y \rightarrow * T \mid \varepsilon
```

Follow sets

```
Follow(+) = { int, (} Follow(*) = { int, (} Follow(()) = { int, (} Follow(E) = { ), $ } Follow(X) = { $, ) } Follow(T) = { +, ), $ } Follow()) = { +, ), $ } Follow(Y) = { +, ), $ } Follow(int) = { *, +, ), $ }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\varepsilon \in \text{First}(\alpha)$, for each $b \in \text{Follow}(A)$ do
 - T[A, b] = α
 - If $\varepsilon \in \text{First}(\alpha)$ and $\varphi \in \text{Follow}(A)$ do
 - T[A, \$] = α

Constructing LL(1) Tables: Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the line of Y we put $Y \rightarrow^* T$?
 - In the lines of First(*T) = { * }
- Where in the line of Y we put $Y \to \varepsilon$?
 - In the lines of Follow(Y) = { \$, +,) }

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- For some grammars there is a simple parsing strategy: Predictive parsing
- Most programming language grammars are not LL(1)
- Thus, we need more powerful parsing strategies

Bottom Up Parsing

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
 - Preferred method in practice
- Also called LR parsing
 - L means that tokens are read left to right
 - R means that it constructs a rightmost derivation!

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$E \rightarrow E + (E) \mid int$$

- Why is this not LL(1)?
- Consider the string: int + (int) + (int)

The Idea

 LR parsing reduces a string to the start symbol by inverting productions:

```
str w input string of terminals repeat
```

- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str = $\alpha \beta \gamma$)
- Replace β by A in str (i.e., str $w = \alpha A \gamma$)

```
until str = 5 (the start symbol)
OR all possibilities are exhausted
```

A Bottom-up Parse in Detail (1)

$$int + (int) + (int)$$

A Bottom-up Parse in Detail (2)

```
E
|
int + ( int ) + ( int )
```

Compiler Design 1 (2011)

A Bottom-up Parse in Detail (3)

A Bottom-up Parse in Detail (4)

```
int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
```


25

Compiler Design 1 (2011)

A Bottom-up Parse in Detail (5)

```
int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
```


A Bottom-up Parse in Detail (6)

```
int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E + (E)

E
```

A rightmost derivation in reverse

Compiler Design 1 (2011)

Important Fact #1

Important Fact #1 about bottom-up parsing:

An LR parser traces a rightmost derivation in reverse

Where Do Reductions Happen

Important Fact #1 has an interesting consequence:

- Let $\alpha\beta\gamma$ be a step of a bottom-up parse
- Assume the next reduction is by using $A \rightarrow \beta$
- Then γ is a string of terminals

Why? Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a right-most derivation

Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a I
 - The I is not part of the string
- Initially, all input is unexamined: $1x_1x_2 ... x_n$

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

Shift: Move I one place to the right

- Shifts a terminal to the left string

$$E + (I int) \Rightarrow E + (int I)$$

In general:

$$ABCIxyz \Rightarrow ABCxIyz$$

Compiler Design 1 (2011)

Reduce

Reduce: Apply an inverse production at the right end of the left string

- If $E \rightarrow E + (E)$ is a production, then

$$E + (\underline{E} + (\underline{E})) \Rightarrow E + (\underline{E})$$

In general, given $A \rightarrow xy$, then:

Compiler Design 1 (2011)

Shift-Reduce Example

 $E \rightarrow E + (E) \mid int$

Shift-Reduce Example

 $E \rightarrow E + (E) \mid int$

```
I int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
```

Shift-Reduce Example

 $E \rightarrow E + (E) \mid int$

```
I int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
E I + (int) + (int)$ shift 3 times
```

```
I int + (int) + (int) \$ shift
int I + (int) + (int) \$ reduce E \rightarrow int
E I + (int) + (int) \$ shift 3 times
E + (int I) + (int) \$ reduce E \rightarrow int
```

```
I int + (int) + (int)\$ shift
int I + (int) + (int)\$ reduce E \rightarrow int
E I + (int) + (int)\$ shift 3 times
E + (int I) + (int)\$ reduce E \rightarrow int
E + (E I) + (int)\$ shift
```

```
I int + (int) + (int)$ shift

int I + (int) + (int)$ reduce E \rightarrow int

E \mid + (int) + (int)$ shift 3 times

E + (int \mid) + (int)$ reduce E \rightarrow int

E + (E \mid) + (int)$ shift

E + (E \mid) + (int)$ reduce E \rightarrow E + (E \mid)
```

```
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI + (int) + (int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E I) + (int)$ shift
E + (E) I + (int)$ reduce E \rightarrow E + (E)
             shift 3 times
EI+(int)$
                                                   ( int ) + (
```

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
EI+(int)+(int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E \mid ) + (int)$ shift
E + (E) I + (int)$ reduce E \rightarrow E + (E)
EI+(int)$
                 shift 3 times
E + (int | )$
                   reduce F \rightarrow int
                                                     (int) + (
```

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
EI + (int) + (int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E \mid ) + (int)$ shift
E + (E) I + (int)$ reduce E \rightarrow E + (E)
EI+(int)$
                    shift 3 times
E + (int 1 )$
                    reduce F \rightarrow int
E + (E | )$
                       shift
                                                        int ) + (
```

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
EI + (int) + (int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E \mid ) + (int)$ shift
E + (E) I + (int)$ reduce E \rightarrow E + (E)
EI+(int)$
                   shift 3 times
E + (int 1 )$
                    reduce E \rightarrow int
E + (E | )$
                       shift
                       reduce E \rightarrow E + (E)
E + (E) | $
                                                + ( int )+ (
```


The Stack

- · Left string can be implemented by a stack
 - Top of the stack is the
- · Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a nonterminal on the stack (production LHS)

Key Question: To Shift or to Reduce?

<u>Idea</u>: use a finite automaton (DFA) to decide when to shift or reduce

- The input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with " $A \rightarrow \beta$ on tok" then <u>reduce</u>

LR(1) Parsing: An Example

Representing the DFA

- Parsers represent the DFA as a 2D table
 - Recall table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
 - Those for terminals: action table
 - Those for non-terminals: goto table

Representing the DFA: Example

The table for a fragment of our DFA:

	int	+	()	\$	E
•••						
3			s4			
4	<i>s</i> 5					<i>g</i> 6
5		$\mathbf{r}_{E} o int$		$r_{E^{ o}int}$		
6	s 8		s7			
7		$r_{\text{E}} \rightarrow_{\text{E+(E)}}$			$r_{\text{E}} \rightarrow \text{E+(E)}$	
•••						

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated
- Remember for each stack element on which state it brings the DFA
- LR parser maintains a stack

```
\langle \text{sym}_1, \text{state}_1 \rangle \dots \langle \text{sym}_n, \text{state}_n \rangle
state<sub>k</sub> is the final state of the DFA on \text{sym}_1 \dots \text{sym}_k
```

The LR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 0 be the start state
Let stack = \( \dummy, 0 \)
   repeat
        case action[top_state(stack), I[j]] of
                 shift k: push ( I[j++], k )
                 reduce X \rightarrow A:
                     pop |A| pairs,
                      push \langle X, Goto[top\_state(stack), X] \rangle
                 accept: halt normally
                 error: halt and report error
```

LR Parsers

- · Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- · LR Parsers can be described as a simple table
- There are tools for building the table
- How is the table constructed?

Compiler Design 1 (2011)