Examen parcial de Física - ELECTRÒNICA 18 de maig de 2020

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** En el circuit de la figura, la tensió llindar dels dos diodes és $V_{\gamma} = 0.7 \text{ V}, V_D = 10 \text{ V}, V_C = 5 \text{ V},$ $R_1 = 1 \,\mathrm{k}\Omega$ i $R_2 = 2 \,\mathrm{k}\Omega$. Quant val la intensitat I_1 que passa per R_1 ?
 - a) $I_1 = 0$

- b) $I_1 = 3.1 \text{ mA}$
- c) $I_1 = 1.1 \text{ mA}$
- d) $I_1 = 2.5 \text{ mA}$
- T2) El díode Zener del circuit de la figura té una tensió llindar $V_{\gamma} = 0.7 \,\mathrm{V}$ i una tensió de ruptura V_Z . Quant les resistències valen $R_1 = 4 \,\mathrm{k}\Omega,$ $R_2 = 7.5 \,\mathrm{k}\Omega$ i $R_3 = 2.5 \,\mathrm{k}\Omega$, el díode condueix per $\varepsilon > 15 \,\mathrm{V}$. Quant val V_Z ?
 - a) 5.0 V
- b) 9.0 V
- c) 6.2 V
- d) 8.0 V
- **T3)** La tensió llindar dels díodes de la figura és V_{γ} = $0.7 \text{ V. Per } V_A = 0 \text{ V i } V_B = 0 \text{ V, cada díode}$ dissipa una potència P = 1.51 mW. Quant val la resistència R?
 - a) $0.25 \text{ k}\Omega$

b) $2 k\Omega$

c) $0.5 \text{ k}\Omega$

d) $1 \text{ k}\Omega$

 R_1

- T4) Digueu quina de les següents afirmacions és FALSA per un transistor PMOS, amb tensió de tall V_T , pel qual les diferències de potencial porta-font i drenador-font són respectivament V_{GS} i V_{DS} , i pel que circula una intensitat I_D .
 - a) El corrent I_D va de la font S al drenador D.
 - b) A la regió de saturació I_D augmenta quan V_{GS} disminueix.
 - c) A la regió òhmica I_D no varia amb V_{DS} .
 - d) Està en tall quan $V_{GS} > V_T$.
- **T5)** Si les entrades d'aquesta porta CMOS són $V_A = V_{DD}$ i $V_B = 0$, els transistors que estan en tall (OFF) són
 - a) T_A^N , T_B^P , T_O^N
- b) T_A^P, T_B^N, T_O^P d) T_A^P, T_B^N, T_O^N
- a) T_A^N, T_B^P, T_O^N c) T_A^N, T_B^P, T_O^P

Examen parcial de Física - ELECTRÒNICA 18 de maig de 2020

Model B

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** La tensió llindar dels díodes de la figura és V_{γ} = 0.7 V. Per $V_A = 0$ V i $V_B = 0$ V, cada díode dissipa una potència $P=1.51~\mathrm{mW}$. Quant val la resistència R?
 - a) $0.25 \text{ k}\Omega$

b) $2 k\Omega$

c) $0.5 \text{ k}\Omega$

- d) $1 \text{ k}\Omega$
- **T2)** Si les entrades d'aquesta porta CMOS són $V_A =$ V_{DD} i $V_B = 0$, els transistors que estan en tall (OFF) són
- a) T_A^N, T_B^P, T_O^N c) T_A^P, T_B^N, T_O^P
 - b) T_A^P, T_B^N, T_O^N d) T_A^N, T_B^P, T_O^P
- **T3)** En el circuit de la figura, la tensió llindar dels dos diodes és $V_{\gamma} = 0.7 \text{ V}, V_D = 10 \text{ V}, V_C = 5 \text{ V},$ $R_1 = 1 \,\mathrm{k}\Omega$ i $R_2 = 2 \,\mathrm{k}\Omega$. Quant val la intensitat I_1 que passa per R_1 ?
 - a) $I_1 = 0$

- b) $I_1 = 3.1 \text{ mA}$
- c) $I_1 = 1.1 \text{ mA}$
- d) $I_1 = 2.5 \text{ mA}$
- T4) El díode Zener del circuit de la figura té una tensió llindar $V_{\gamma} = 0.7 \,\mathrm{V}$ i una tensió de ruptura V_Z . Quant les resistències valen $R_1 = 4 \,\mathrm{k}\Omega$, $R_2 = 7.5 \,\mathrm{k}\Omega$ i $R_3 = 2.5 \,\mathrm{k}\Omega$, el díode condueix per $\varepsilon > 15 \,\mathrm{V}$. Quant val V_Z ?

b) 9.0 V

c) 6.2 V

- d) 8.0 V
- T5) Digueu quina de les següents afirmacions és FALSA per un transistor PMOS, amb tensió de tall V_T , pel qual les diferències de potencial porta-font i drenador-font són respectivament V_{GS} i V_{DS} , i pel que circula una intensitat I_D .
 - a) A la regió òhmica I_D no varia amb V_{DS} .
 - b) El corrent I_D va de la font S al drenador D.
 - c) A la regió de saturació I_D augmenta quan V_{GS} disminueix.
 - d) Està en tall quan $V_{GS} > V_T$.

Examen de Física - ELECTRÒNICA 18 de maig de 2020

Problema: 50% de l'examen

Considereu el circuit de la figura, en el qual el díode Zener es caracteritza per una tensió llindar $V_{\gamma}=0.7~\rm V$ i una tensió Zener $V_{Z}=6~\rm V$, mentre que els paràmetres característics de l'nMOS d'enriquiment són $V_{T}=1~\rm V$ i $\beta=2~\rm mA/V^{2}$. Quins són els valors de les intensitats I_{R} i I_{D} que circulen per les resistències $R=5~\rm k\Omega$ i $R_{D}=100~\Omega$, respectivament, així com les tensions als punts G i D, si:

- a) $V_{DD} = 5 \text{ V}.$
- b) $V_{DD} = 10 \text{ V}.$
- c) Si $V_{DD} = 10$ V, per a quins valors de R_D el transistor està en saturació?

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	b	d
T2)	d	c
T3)	d	b
T4)	c	d
T5)	b	a

Resolució del Model A

T1) Examinarem primer si el díode connectat a V_C està en tall (si $V_B > V_C = 5$ V) o en conducció (en aquest cas tindríem $V_B \simeq V_C - V_\gamma < 5$ V).

El potencial més elevat del circuit és $V_D=10$ V, per tant és clar que el díode connectat a V_D està en polarització directa, per tant condueix i hi ha corrent per la branca D - B - Terra, cosa que indica que el potencial V_B és elevat i que el díode connectat a V_C està polaritzat inversament, amb I=0 i $I_1=I_2$. Llavors: $V_A-V_B\simeq V_\gamma$:

$$R_1I_1 + V_\gamma + R_2I_1 = V_D \Rightarrow I_1 = \frac{V_D - V_\gamma}{R_1 + R_2} = 3.1 \text{ mA}$$

i el potencial $V_B = R_2 I_2 = R_2 I_1 = 6.2$ V confirma que el díode connectat a V_C està en tall.

T2) Si el díode Zener no conduís, per totes dues resistències passaría la mateixa intensitat $I = \varepsilon/(R_1 + R_2 + R - 3)$ i la diferència de potencial $V_A - V_B$ seria $V_A - V_B = R_2 I = R_2 \varepsilon/(R_1 + R_2 + R_3)$. Per tant, el díode conduirà quan sigui:

$$R_2\left(\frac{\varepsilon}{R_1 + R_2 + R_3}\right) > V_Z \Rightarrow V_Z = \left(\frac{R_2}{R_1 + R_2 + R_3}\right)\varepsilon_{min} = 8.0\,\mathrm{V}$$

T3) Si les tensions a les entrades valen 0V, tots dos díodes estàn en polarització directa, i tots dos díodes condueixen, essent $I_A = I_B$ per què tots dos tenen la mateixa tensió llindar. Trobarem I_A a partir de la potència que dissipa el díode connectat a V_A . Serà $P_A = V_\gamma I_A \Rightarrow I_A = P_A/V_\gamma = 2.15$ mA. La intensitat que passa per la resistència R és $I = I_A + I_B = 4.3$ mA. Finalment calculem R a partir de la tensió a la sortida que en aquest cas serà $V_{out} = 0.7$ mV, donat que ha de ser:

$$V_{out} = 5 - RI \Rightarrow R = \frac{5 - V_{out}}{I} = 1 \text{ k}\Omega$$

- **T4)** A la regió òhmica, la intensitat és $I_D=\beta\left[(V_{GS}-V_T)V_{DS}-\frac{V_{DS}^2}{2}\right]$. Per tant, I_D sí que depèn de V_{DS} .
- **T5)** Els transistors NMOS estaran en tall si $V_{GS}=0$. Els transistors PMOS estaran en tall si $V_{GS}=5$ V. Per tant, T_B^N i T_A^P estaran en tall. D'altra banda, com que T_B^P no està en tall, està en la regió òhmica i $V_{DS}\approx 0$. De manera que per T_O^P tenim que $V_{GS}=0$ i, per tant, també està en tall. En resum, estan en tall T_A^P , T_B^N i T_O^P .

Resolució del Problema

El Zener està polaritzat inversament i, com que la font S de l'nMOS està connectada a terra, $V_S = 0$. Per tant

$$V_{GS}=V_G-V_S=V_G=V_{DD}-RI_RI_R=(V_{DD}-V_G)/R$$

 $V_{DS}=V_D-V_S=V_D=V_{DD}-R_DI_D\rightarrow I_D=(V_{DD}-V_D)/R_D=(V_{DD}/R_D)-(1/R_D)V_{DS}$
A més, per la porta G del transistor no circula corrent com a qualsevol MOSFET, de manera que la intensitat que circula pel Zener és la mateixa I_R que per R .

a) Quan $V_{DD} = 5$ V, la tensió aplicada al Zener és inferior a $V_Z = 6$ V. Per tant, no circula corrent pel Zener, ni per R, de manera que

$$I_R=0 \rightarrow V_G=V_{DD}-RI_R=5~{\rm V}=V_{GS}\rightarrow V_{GT}=V_{GS}-V_T=4~{\rm V}\geq 0 \rightarrow {\rm NO~tall}.$$
 Si suposem que l'nMOS està en saturació $(V_{DS}\geq V_{GT}),I_D=\frac{1}{2}\beta V_{GT}^2=16~{\rm mA}$ Si $I_D=16~{\rm mA}\rightarrow V_{DS}=V_{DD}-R_DI_D=3.4~{\rm V}< V_{GT},$ contradictori amb saturació. Per tant, està en òhmica $(V_{GT}\geq V_{DS})\rightarrow I_D=\beta V_{GT}V_{DS}-\frac{1}{2}\beta V_{DS}^2=8V_{DS}-V_{DS}^2$ que junt amb la recta de càrrega $\rightarrow I_D=(V_{DD}/R_D)-(1/R_D)V_{DS}=50-10V_{DS}$ igualant les dues equacions tenim $50-10V_{DS}=8V_{DS}-V_{DS}^2\rightarrow V_{DS}^2-18V_{DS}+50=0$ i només la solució més petita de l'equació de 2n grau $V_{DS}=3.43~{\rm V}\leq V_{GT}=4~{\rm V}$ compleix la condició d'estar en òhmica. Per tant, $I_D=50-10V_{DS}=15.68~{\rm mA}$ Així doncs, $I_R=0$; $I_D=15.68~{\rm mA}$; $V_G=5~{\rm V}$; $V_D=V_{DS}=3.43~{\rm V}$.

b) Quan $V_{DD}=10$ V, la tensió aplicada al Zener és superior a $V_Z=6$ V. Per tant, hi passa corrent i

$$V_G=V_{GS}=V_Z=6~\mathrm{V} \rightarrow I_R=(V_{DD}-V_G)/R=0.8~\mathrm{mA}$$
 $V_G=6~\mathrm{V}=V_{GS}\rightarrow V_{GT}=V_{GS}-V_T=5~\mathrm{V}\geq 0\rightarrow \mathrm{l'nMOS}$ no està en tall. Si suposem que l'nMOS està en saturació $(V_{DS}\geq V_{GT}), I_D=\frac{1}{2}\beta V_{GT}^2=25~\mathrm{mA}$ i $V_{DS}=V_{DD}-R_DI_D=7.5~\mathrm{V}\geq V_{GT}$ tal com ha de ser en saturació. Així doncs, $I_R=0.8~\mathrm{mA}$; $I_D=25~\mathrm{mA}$; $V_G=6~\mathrm{V}$; $V_D=V_{DS}=7.5~\mathrm{V}$

c) Amb $V_{DD}=10$ V, acabem de veure que $V_{GT}=5$ V i que la intensitat en saturació és $I_D=25$ mA, la qual cosa serà certa sempre que $V_{GT}\leq V_{DS}=V_{DD}-R_DI_D$. Per tant cal que $R_D\leq (V_{DD}-V_{GT})/I_D=0.2$ k Ω .