

AOB66935L

100V N-Channel AlphaSGT™

General Description

- Trench Power AlphaSGTTM technology
- Combined of low R_{DS(ON)} and wide Safe Operating Area (SOA)
- Higher in-rush current enabled for faster start-up and shorter down time
- RoHS 2.0 and Halogen-Free Compliant

Applications

- Load switch
- BMS
- Hot Swap

Product Summary

 $\begin{array}{lll} V_{DS} & 100V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 180A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 2.8 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 6V) & < 5.8 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Max Tj=175°C

Orderable Part Number Package Type		Form	Minimum Order Quantity
AOB66935L	TO-263	Tape & Reel	800

Parameter Drain-Source Voltage Gate-Source Voltage		Symbol	Maximum	Units	
		V_{DS}	100	V	
		V_{GS}	±20	V	
Continuous Drain	T _C =25°C	1-	180		
Current ^G	T _C =100°C	I _D	180	A	
Pulsed Drain Current ^Ĉ		I _{DM}	800		
Continuous Drain	T _A =25°C	1	43	— A А	
Current	T _A =70°C	DSM	36		
Avalanche Current ^C		I _{AS}	100		
Avalanche energy	L=0.1mH	E _{AS}	500	mJ	
	T _C =25°C	P _D	500	W	
Power Dissipation ^B	T _C =100°C	T D	250	VV	
	T _A =25°C	В	10	W	
Power Dissipation A T _A =70°C		P _{DSM}	7	VV	
Junction and Storag	e Temperature Range	T_J, T_{STG}	-55 to 175	°C	

Thermal Characteristics					
Parameter		Symbol Typ Max		Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	12	15	°C/W
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	50	60	°C/W
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.23	0.3	°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
lana	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V			1	μΑ
I _{DSS}	Zero Gate Voltage Drain Current	T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.1	2.65	3.2	V
		V _{GS} =10V, I _D =20A		2.2	2.8	m0
	Static Drain-Source On-Resistance	T _J =125°C		3.5	4.3	mΩ
		$V_{GS}=6V$, $I_D=20A$		4.5	5.8	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_D=20A$		44		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.7	1	V
Is	Maximum Body-Diode Continuous Curre	ent ^G			180	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			15400		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =50V, f=1MHz		3100		pF
C_{rss}	Reverse Transfer Capacitance			80		pF
R_g	Gate resistance	f=1MHz	1.3	2.6	3.9	Ω
SWITCH	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			170	240	nC
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =50V, I_{D} =20A		62		nC
Q_{gd}	Gate Drain Charge			15		nC
Q _{oss}	Output Charge	$V_{GS}=0V$, $V_{DS}=50V$		246		nC
t _{D(on)}	Turn-On DelayTime			40		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =2.5 Ω ,		38		ns
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		112		ns
t _f	Turn-Off Fall Time			49		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, di/dt=500A/μs		60		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, di/dt=500A/μs		550		nC

A. The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} t≤ 10s and the maximum allowed junction temperature of 175 $^{\circ}$ C. The value in any given application

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175 $^{\circ}$ C.

D. The R_{0JA} is the sum of the thermal impedance from junction to case R_{0JC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

 ${
m I_D}\left({
m A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{SD} (Volts)
Figure 6: Body-Diode Characteristics
(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (° C) Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

V_{DS} (Volts) Figure 14: Coss stored Energy

Pulse Width (s)
Figure 15: Single Pulse Power Rating
Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.1.0: January 2024 **www.aosmd.com** Page 6 of 6