More organized facts about limits

Bare hands

Definition. We say $\lim_{n\to\infty} a_n = L$ if

for all $\epsilon > 0$, there exists $K \in \mathbb{N}$, so that if $n \geq K$, then $|a_n - L| < \epsilon$.

We can give explicit ϵ -K arguments to prove

$$\lim_{n \to \infty} \frac{1}{n} = 0$$
, and $\lim_{n \to \infty} x^n = 0$ if $-1 < x < 1$.

Algebraic operations

If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, then

$$\lim_{n \to \infty} (a_n + b_n) = L + M, \quad \lim_{n \to \infty} (a_n - b_n) = L - M, \quad \lim_{n \to \infty} (a_n \cdot b_n) = L \cdot M,$$

and if $M \neq 0$ and all $b_n \neq 0$, then $\lim_{n \to \infty} (a_n/b_n) = L/M$.

Squeezing theorem

If a_n , b_n , and c_n are sequences of real numbers, and for all $n \in \mathbb{N}$, we have $a_n \leq b_n \leq c_n$, and $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Continuous functions

If a function $f: \mathbb{R} \to \mathbb{R}$ is continuous at L, and $\lim_{n \to \infty} a_n = L$, then $\lim_{n \to \infty} f(a_n) = f(L)$.

Subsequences

If a_n is a sequence of real numbers, and b_n is a subsequence produced from a_n by throwing away finitely many terms, then a_n converges if and only if b_n converges.

If a_n is a convergent sequence of real numbers, and b_n is a subsequence, then b_n converges and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Existence without construction

Theorem. If a_n is a nondecreasing bounded above sequence, then a_n converges.

Theorem. If a_n is a nonincreasing bounded below sequence, then a_n converges.