Monomeric/single-subunit Enzyme kinetics

Basic modelling of biological networks

Enzymes

make net models of state-transition diagrams of enzyme catalysis: this week

make net models of state-transition of regulatory proteins: after enzyme kinetics

Enzymes: monomers (this week) and multimers (next week)

pyruvate kinase:

- 1. 4 subunits, a multimer
- 2. different binding sites on a single subunit
- 3. conformational changes occur when those sites are occupied
- 4. regulatory and catalytic sites
- 5. multimers are enzyme subject to regulation by feedforward and feedback loops
- 6. more sensitive to regulators than monomer (single subunit enzymes)

All glycolytic enzymes

Enzyme kinetics: experimental example

- Lactate dehydrogenase
- Important in cancer cells, Warburg effect
- NADH + PYRUVATE

 S NAD +LACTATE
- Activity measured in cell free extract
- Rate equation to be fitted to data:

$$v = V_{MAX}^{+} \frac{\frac{nadh \cdot pyr}{K_{NADH} K_{PYR}} - V_{MAX}^{-} \frac{nad \cdot lac}{K_{NAD} K_{LAC}}}{\left(1 + \frac{nadh}{K_{NADH}} + \frac{nad}{K_{NAD}}\right) \left(1 + \frac{pyr}{K_{PYR}} + \frac{lac}{K_{LAC}}\right)}$$

- And for us to derive, our first net model of a state-transition diagram of an enzyme.
- Question: what would be a possible state-transition diagram forlactate dehydrogenase?

Derivation of enzyme kinetics: equations

$$E + S \stackrel{1}{\not-} ES$$

$$V_{1} = k_{1}^{+} \cdot e \cdot s - k_{1}^{-} \cdot es$$

$$ES \stackrel{2}{\not-} EP$$

$$V_{2} = k_{2}^{+} \cdot es - k_{2}^{-} \cdot ep$$

$$EP \stackrel{3}{\not-} E + P.$$

$$V_{3} = k_{3}^{+} \cdot ep - k_{3}^{-} \cdot e \cdot p.$$

$$reactions$$

$$mass-action kinetics$$

$$\frac{ds}{dt} = -v_1$$

$$\frac{de}{dt} = -v_1 + v_3$$

$$\frac{des}{dt} = v_1 - v_2$$

$$\frac{dep}{dt} = v_2 - v_3$$

$$\frac{dp}{dt} = v_3$$

(un)binding reactions catalysis reaction

differential equations

$$v=rac{V_{max}^{+}rac{s}{K_{S}}-V_{max}^{-}rac{p}{K_{P}}}{1+rac{s}{K_{S}}+rac{p}{K_{P}}}$$
 net model

rate equations

Derivation of enzyme kinetics: emergence of quasi-steady state of enzyme species

time window with enzyme-species concentrations constant: quasi-steady state I.e. $de/dt \cong 0$, $des/dt \cong 0$, $dep/dt \cong 0$

Derivation of enzyme kinetics: emergence of quasi-steady state of enzyme species, due to

substrate excess

derivation of enzyme kinetics: net model is valid in quasi-steady state regime

- quasi-steady state assumption
 - assume differential equations for enzyme species constant
- quasi-equilibrium assumption
 - assume differential equations for enzyme species constant
 - and, assume that (un)binding rates are zero (equilibrium) (catalysis rate not; so catalysis rate is assumed to be the rate limiting step)

mechanism for $A + B \not= P + Q$.

(un)binding reactions catalysis reaction

we focus on the quasi-equilibrium assumption

- Assume quasi-steady state of enzyme species
- Assume (un)binding reactions as fast and catalysis slow, such that (un)binding reactions are (close to) zero and catalysis reaction not.
- Then: Enzyme rate: $v_2 = k_2^+ es k_2^- ep$ (un) binding reaction rates at equilibrium: $v_1 = 0, v_2 = 0$ Equilibrium conditions $K_1 = K_S = \frac{e \cdot s}{es}$, $K_3 = K_P = \frac{e \cdot p}{ep}$ conservation of total $e_T = e + es + ep = e + \frac{e \cdot s}{\kappa_S} + \frac{e \cdot p}{\kappa_S}$ solve for e: $e = e_T \frac{1}{1 + \frac{s}{K_C} + \frac{p}{K_R}}$ solve for es and ep: $es = e_T \frac{\frac{s}{K_S}}{1 + \frac{s}{K_S} + \frac{p}{K_D}}, \quad ep = e_T \frac{\frac{p}{K_P}}{1 + \frac{s}{K_S} + \frac{p}{K_D}}$ Enzyme rate equation: $v_2 = k_2^+ es - k_2^- ep = \frac{k_2^+ e_T \frac{s}{K_S} - k_2^- e_T \frac{p}{K_P}}{1 + \frac{s}{K_S} + \frac{p}{K_S}}$

Do the same for:

$$A + B \stackrel{*}{\not} P + Q$$
.

Do the same for:

$$A + B \stackrel{*}{\not\vdash} P + Q$$
.

