Comparing estimators of Normal variance

Let $X_1, \ldots, X_n | \mu, \sigma^2 \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ where both μ and σ^2 are unknown. Recall the following estimators of the variance:

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

We have shown in a previous lecture that the MLE is a biased estimator for σ^2 whereas s^2 is an unbiased estimator. For this reason, s^2 is used in practice most often. But we know that we shouldn't just look at the bias to compare estimators, but we should also consider their MSEs! Using properties/moments of the χ^2 distribution:

- 1. Find $\mathbb{E}[\hat{\sigma}_{MLE}^2]$.
- 2. Find $\mathbb{E}[s^2]$.
- 3. Find $Var(\hat{\sigma}_{MLE}^2)$.
- 4. Find $Var(s^2)$.
- 5. Find $MSE_{\sigma^2}(\hat{\sigma^2}_{MLE})$ and $MSE_{\sigma^2}(s^2)$. Which estimator for σ^2 is better? Hint: use the fact that (a-1) < a for all $a \in \mathbb{R}$.