A Specification Test for Dynamic Conditional

Distribution Models with Function-Valued Parameters

Victor Troster*1 and Dominik Wied²

1 Department of Applied Economics, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5, Palma de Mallorca, 07122, Spain

²Institute for Econometrics and Statistics, University of Cologne, 50923 Köln, Germany

Appendix

A.1. Preliminary Results

In this subsection, we provide preliminary results used in the proofs of the propositions. Let \mathcal{G} be a permissible class of functions in such a way that the following holds: (a) \mathcal{T} is a Suslin metric space (a Hausdorff topological space that is the continuous image of a Polish space) with Borel σ -field $\mathcal{B}(\mathcal{T},\Theta)$, and (b) $g(\cdot,\cdot,\cdot)$ is a $\mathcal{B}(\mathcal{T},\Theta)$ -measurable function from $\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^K$ to \mathbb{R} (see ?, Section 11.6). Let $E_Q g = \int g(W_t,\theta,\tau) dQ(W_t,\theta,\tau)$, for $g \in \mathcal{G}$, with $\mathcal{G} := \{W_t \mapsto g(W_t,\theta,\tau) : \theta \in \Theta, \tau \in \mathcal{T}\}$. We assume that the \mathcal{G} class of functions forms a so-called Vapnik-Chervonenkis subgraph (VC-subgraph) class of functions (see ?). The VC-subgraph class is an extension of the class of indicator functions and is useful for most

^{*}Corresponding author. Tel.: (+34) 971 17 30 94; fax: (+34) 971 17 23 89. *E-mail address*: victor.troster@uib.es (Victor Troster).

statistical applications (??). If \mathcal{G} is a VC-subgraph class, then for any given $1 \leq p < \infty$, there are constants a and b satisfying

$$N(\varepsilon, \mathcal{G}, \|\cdot\|) \le a \left(\frac{(E_Q|\mathbb{F}|^p)^{1/p}}{\varepsilon}\right)^b,$$

for all $\varepsilon > 0$ and all probability measures Q, with $E_Q[\mathbb{F}]^p < \infty$, where $N(\varepsilon, \mathcal{G}, \|\cdot\|)$ is the covering number of \mathcal{G} with respect to $\|\cdot\|$, i.e., the minimal number of $L_2(Q)$ -balls of radius ε needed to cover \mathcal{G} , where a $L_2(Q)$ -ball of radius ε around a function $g \in L_2(Q)$ is the set $\{h \in L_2(Q) : \|h - g\| < \varepsilon\}$ (see ?). Moreover, the class of functions \mathcal{G} has a finite and integrable envelope function $\mathbb{F} := \sup_{g \in \mathcal{G}} |g(W_t, \theta, \tau)|$, and it can be covered by a finite number of elements, not necessarily in \mathcal{G} .

The following result establishes a central limit theorem for strong mixing processes for the empirical distribution, $\hat{Z}_T(y, x)$, under the null and the alternative hypothesis.

Lemma A.1. If Assumption 1 holds, under H_0 of (2.1) or H_A of (2.2),

$$v_T(y,x) := \sqrt{T}(\hat{Z}_T(y,x) - F_{YX}(y,x)) \Rightarrow \mathbb{H}_1(y,x), \text{ in } \ell^{\infty}(\mathcal{W}),$$

where \mathbb{H}_1 is a tight mean zero Gaussian process in $\ell^{\infty}(\mathcal{W})$ with covariance function

$$Cov(\mathbb{H}_1(y, x), \mathbb{H}_1(y', x')) = \sum_{k = -\infty}^{\infty} Cov(\mathbb{1}\{Y_0 \le y\} \mathbb{1}\{X_0 \le x\}, \mathbb{1}\{Y_k \le y'\} \mathbb{1}\{X_k \le x'\}).$$

Proof: Parts (a) and (b) of Assumption 1 imply the conditions (2.3) and (2.4) in Theorem 2.1 in ?, respectively. Then the results follow from a direct application of Theorem 2.1 in ?.

The following result establishes a functional delta method for the empirical analog $\hat{G}(\theta, \tau)$ of the moment conditions in (2.4) and for a consistent estimator of the function-valued

parameter $\hat{\theta}_T(\cdot)$.

Lemma A.2. Let $v_T(y,x) := \sqrt{T}(\hat{Z}_T(y,x) - F_{YX}(y,x))$ be the empirical process of Lemma ?? and define the empirical process $r_T(\theta,\tau) := \sqrt{T}(\hat{G}(\theta,\tau) - G(\theta,\tau))$. If Assumption 1 is satisfied, under H_0 of (2.1) or H_A of (2.2),

$$(v_T(y,x), r_T(\theta,\tau)) \Rightarrow (\mathbb{H}_1(y,x), \tilde{\mathbb{H}}_2(\theta,\tau)), \text{ in } \ell^{\infty}(\mathcal{W} \times \Theta \times \mathcal{T}),$$

$$\sqrt{T}(\hat{\theta}_T(\cdot) - \theta_0(\cdot)) \Rightarrow -\dot{G}_{\theta_0,\cdot}^{-1}(\tilde{\mathbb{H}}_2(\theta_0(\cdot),\cdot)) \text{ in } \ell^{\infty}(\mathcal{T}),$$

where $\tilde{\mathbb{H}}_2$ is a tight mean zero Gaussian process with covariance function

$$Cov(\tilde{\mathbb{H}}_2(\theta,\tau),\tilde{\mathbb{H}}_2(\theta',\tau')) = \sum_{k=-\infty}^{\infty} Cov(g(W_0,\theta,\tau),g(W_k,\theta',\tau')).$$

Proof: By Lemma E.1 in ?, Assumption 1 implies that (a) the inverse of $G(\cdot, \tau)$ defined as $G^{-1}(x,\tau) := \{\theta \in \Theta : G(\theta,\tau) = x\}$ is continuous at x = 0 uniformly in $\tau \in \mathcal{T}$ with respect to the Hausdorff distance, (b) there exists $\dot{G}_{\theta_0,\tau}$ such that

$$\lim_{t \to 0} \sup_{\tau \in \mathcal{T}, ||h|| = 1} |t^{-1}(G(\theta_0(\tau) + th, \tau) - G(\theta_0(\tau), \tau)) - \dot{G}_{\theta_0, \tau}h| = 0,$$

where $\inf_{\tau \in \mathcal{T}} \inf_{\|h\|=1} \|\dot{G}_{\theta_0,\tau}h\| > 0$, (c) the maps $\tau \mapsto \theta_0(\tau)$ and $\tau \mapsto \dot{G}_{\theta_0,\tau}$ are continuous, and (d) the mapping $\tau \mapsto \theta_0(\tau)$ is continuously differentiable. Under the previous conditions, Lemma E.2 in ? holds, and the process $r_T(\theta,\tau)$ weakly converges to $\tilde{\mathbb{H}}_2(\theta,\tau)$ in $\ell^{\infty}(\Theta \times \mathcal{T})$ and the map $\theta \mapsto G(\theta,\cdot)$ is Hadamard differentiable at θ_0 with continuously invertible derivative $\dot{G}_{\theta_0,\cdot}$. By Hadamard differentiability of the map $\theta \mapsto G(\theta,\cdot)$, it follows the weak convergence of the process $\sqrt{T}(\hat{\theta}_T(\cdot) - \theta_0(\cdot))$ in $\ell^{\infty}(\mathcal{T})$.

Lemma A.3. Let $v_T(y,x) := \sqrt{T}(\hat{Z}_T(y,x) - F_{YX}(y,x))$ be the empirical process of Lemma ?? and define the empirical process $v_T^{\theta_0}(y,x) := \sqrt{T}(\hat{F}_T(y,x,\hat{\theta}_T) - F(y,x,\theta_0))$. If Assumption

1 holds, under H_0 of (2.1) or H_A of (2.2),

$$(v_T(y,x), v_T^{\theta_0}(y,x)) \Rightarrow (\mathbb{H}_1(y,x), \mathbb{H}_2(y,x)) \text{ in } \ell^{\infty}(\mathcal{W} \times \mathcal{W}),$$

where \mathbb{H}_2 is a tight mean zero Gaussian process in $\ell^{\infty}(\mathcal{W})$.

Proof: By Lemma ??, $\sqrt{T}(\hat{\theta}_T(\cdot) - \theta_0(\cdot)) \Rightarrow -\dot{G}_{\theta_0}^{-1}(\tilde{\mathbb{H}}_2(\theta_0(\cdot), \cdot))$ in $\ell^{\infty}(\mathcal{T})$, where $\tilde{\mathbb{H}}_2$ is a tight mean zero Gaussian process. Similarly to Lemma ??, under H_0 of (2.1) or H_A of (2.2), if parts (a)-(b) of Assumption 1 hold, then $\sqrt{T}(\hat{F}_X(x^*) - F_X(x^*))$ weakly converges to a tight mean zero Gaussian process. Now, let the measurable functions $\Gamma: \mathcal{W} \mapsto [0,1]$ be defined by $(y,x) \mapsto \Gamma(y,x)$, and the bounded maps $\Pi: \mathcal{H} \mapsto \mathbb{R}$ be defined by $f \mapsto \int f d\Pi$. Then it follows from Lemma D.1 in ? that the mapping $(\Gamma,\Pi) \mapsto \int \Gamma(\cdot,x) d\Pi(x)$, with $\Gamma(\cdot,x) = \mathbbm{1}\{x^* \leq x\}F(\cdot|x)$ and $\Pi = F_X(\cdot)$, is well defined and Hadamard differentiable at (Γ,Π) . Under H_0 of (2.1) or H_A of (2.2), we can write $\hat{F}_T(y,x,\hat{\theta}_T) = \int F(y|x^*,\hat{\theta}_T)\mathbbm{1}\{x^* \leq x\}d\hat{F}_X(x^*)$ and $F(y,x,\theta_0) = \int F(y|x^*)\mathbbm{1}\{x^* \leq x\}dF_X(x^*)$. Then, by the functional delta method from Lemma B.1 of ?, it follows that

$$\sqrt{T}(\hat{F}_{T}(y, x, \hat{\theta}_{T}) - F(y, x, \theta_{0})) = \int \sqrt{T} \left[F(y|x^{*}, \hat{\theta}_{T}) - F(y|x^{*}) \right] \mathbb{1}\{x^{*} \leq x\} dF_{X}(x^{*})
+ \int F(y|x^{*}) \mathbb{1}\{x^{*} \leq x\} \sqrt{T} d\left(\hat{F}_{X}(x^{*}) - F_{X}(x^{*})\right) + o_{p}(1).$$

Using the same arguments of the Proof of Lemma ??, we can show that the map $\theta \mapsto F(\cdot|\cdot,\theta(\cdot))$ is Hadamard differentiable. Thus, we apply the functional delta method, for fixed y and x, as follows:

$$\sqrt{T} \left(F(y|x, \hat{\theta}_T) - F(y|x) \right) \Rightarrow -\dot{F}(y|x, \theta_0) \left(-\dot{G}_{\theta_0, \cdot}^{-1}(\tilde{\mathbb{H}}_2(\theta_0(\cdot), \cdot)) \right)
:= \mathbb{H}_2^*(y, x) \text{ in } \ell^{\infty}(\mathcal{W}).$$

Given the Hadamard differentiability of the mapping $(\Gamma, \Pi) \mapsto \int \Gamma(\cdot, x) d\Pi(x)$, the result follows from an application of the functional delta method, where the Gaussian process \mathbb{H}_2 is given by

$$\mathbb{H}_2(y,x) := \int \mathbb{H}_2^*(y,x^*) \mathbb{1}\{x^* \le x\} dF_X(x^*) + \int F(y|x^*) \mathbb{1}\{x^* \le x\} d\mathbb{H}_1(\infty,x^*),$$

where \mathbb{H}_1 is the tight mean zero Gaussian process defined in Lemma ??.

Lemma A.4. Under the local alternatives $H_{A,T}$ in (2.7) and Assumptions 1-2, let $F_T^A(y,x) = \int F_T(y|x^*) \mathbb{1}\{x^* \leq x\} dF_X(x^*)$ and $G_{F_T}(\theta,\tau) = E_{F_T}[g(W_t,\theta,\tau)]$, then:

$$\begin{pmatrix} \sqrt{T} \left(\hat{Z}_T(y, x) - F_T^A(y, x) \right) \\ \sqrt{T} \left(\hat{G}(\theta, \tau) - G_{F_T}(\theta, \tau) \right) \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbb{H}_1(y, x) \\ \tilde{\mathbb{H}}_2(\theta, \tau) \end{pmatrix} \text{ in } \ell^{\infty}(\mathcal{W} \times \Theta \times \mathcal{T}),$$

where $(\mathbb{H}_1, \tilde{\mathbb{H}}_2)$ are the tight mean zero Gaussian processes defined in Lemmas ??-??.

Proof: Under Assumption 2, $F_T^A(y,x)$ is contiguous to $F(y,x,\theta_0)$, then under the sequence of local alternatives $H_{A,T}$ in (2.7) and Assumptions 1-2, $F_T(y|x)$ of (2.7) is a linear combination of two measures that are VC-subgraph class with a p-integrable envelope, for some $2 . From an application of Lemma 2.8.7 in ?, we have that <math>(\sqrt{T}(\hat{Z}_T(y,x)-F_T^A(y,x)), \sqrt{T}(\hat{G}(\theta,\tau)-G_{F_T}(\theta,\tau))) \Rightarrow (\mathbb{H}_1(y,x), \tilde{\mathbb{H}}_2(\theta,\tau))$ in $\ell^\infty(\mathcal{W}\times\Theta\times\mathcal{T})$.

A.2. Proofs of the Propositions

Proof of Proposition 1: To prove part (a), we consider the empirical processes $v_T(y,x) = \sqrt{T}(\hat{Z}_T(y,x) - F_{YX}(y,x))$ and $v_T^{\theta_0}(y,x) = \sqrt{T}(\hat{F}_T(y,x,\hat{\theta}_T) - F(y,x,\theta_0))$ defined in Lemma ?? and in Lemma ??, respectively. Under H_0 in (2.1), we have that $F_{YX}(y,x) \equiv F(y,x,\theta_0)$.

Then:

$$S_{T}^{CM} = \int T \left(\hat{Z}_{T}(y, x) - \hat{F}_{T}(y, x, \hat{\theta}_{T}) \right)^{2} d\hat{Z}_{T}(y, x)$$

$$= \int T \left(\hat{Z}_{T}(y, x) - \hat{F}_{T}(y, x, \hat{\theta}_{T}) \pm F_{YX}(y, x) \right)^{2} d\hat{Z}_{T}(y, x)$$

$$= \int \left(v_{T}(y, x) - v_{T}^{\theta_{0}}(y, x) \right)^{2} d\hat{Z}_{T}(y, x)$$

$$= \int \left(v_{T}(y, x) - v_{T}^{\theta_{0}}(y, x) \right)^{2} dF_{YX}(y, x)$$

$$+ \int \left(v_{T}(y, x) - v_{T}^{\theta_{0}}(y, x) \right)^{2} d(\hat{Z}_{T}(y, x) - F_{YX}(y, x)).$$

By Lemma ??, $\sqrt{T}(\hat{Z}_T(y,x) - F_{YX}(y,x)) \Rightarrow \mathbb{H}_1(y,x)$, where $\mathbb{H}_1(y,x)$ is a tight mean zero Gaussian process in $\ell^{\infty}(\mathcal{W})$. Then, it follows that

$$S_T^{CM} = \int (v_T(y, x) - v_T^{\theta_0}(y, x))^2 dF_{YX}(y, x) + o_p(1).$$

By Lemma ??, $(v_T(y, x), v_T^{\theta_0}(y, x)) \Rightarrow (\mathbb{H}_1(y, x), \mathbb{H}_2(y, x))$ in $\ell^{\infty}(\mathcal{W} \times \mathcal{W})$, where $\mathbb{H}_2(y, x)$ is a tight mean zero Gaussian process in $\ell^{\infty}(\mathcal{W})$. Then, the result follows by an application of the continuous mapping theorem.

To prove part (b), under the alternative hypothesis H_A of (2.2), $F_{YX}(y,x) \neq F(y,x,\theta)$ for some $(y,x) \in \mathcal{W}$ and for all $\theta \in \mathcal{B}(\mathcal{T},\Theta)$, and $v_T^{\theta_0}(y,x)$ becomes $v_T^{\theta}(y,x) = \sqrt{T}(\hat{F}_T(y,x,\hat{\theta}_T) - F_T(y,x,\theta))$. Then,

$$S_T^{CM} = \int T \left(\hat{Z}_T(y, x) - \hat{F}_T(y, x, \hat{\theta}_T) \pm F_{YX}(y, x) \pm F(y, x, \theta) \right)^2 d\hat{Z}_T(y, x)$$

$$= \int \left(v_T(y, x) - v_T^{\theta}(y, x) + \sqrt{T} \left(F_{YX}(y, x) - F(y, x, \theta) \right) \right)^2 dF_{YX}(y, x) + o_P(1).$$

As a corollary of Lemma ??, $(v_T(y,x), v_T^{\theta}(y,x)) \Rightarrow (\mathbb{H}_1(y,x), \mathbb{H}_2(y,x))$ in $\ell^{\infty}(\mathcal{W} \times \mathcal{W})$. Therefore, for all fixed constants C > 0, we have $\lim_{T \to \infty} P(S_T^{CM} > C) = 1$, and the result follows.

Proof of Proposition 2: Under the local alternative $H_{A,T}$ in (2.7), consider the empirical processes

$$v_T^1(y, x) = \sqrt{T} \Big(\hat{Z}_T(y, x) - \int F(y|x^*, \theta_0) \mathbb{1} \{x^* \le x\} dF_X(x^*) \Big), \text{ and}$$

 $r_T^1(\theta, \tau) = \sqrt{T} (\hat{G}(\theta, \tau) - E_F[g(W_t, \theta, \tau)]),$

where $G_F(\theta, \tau) := E_F[g(W_t, \theta, \tau)]$, with $E_F[\cdot]$ defined as the expectation w.r.t. $F = F(y|x, \theta_0)$ in (2.7). Then

$$v_{T}^{1}(y,x) = \sqrt{T} \left(\hat{Z}_{T}(y,x) - \int F(y|x^{*},\theta_{0}) \mathbb{1}\{x^{*} \leq x\} dF_{X}(x^{*}) \right)$$

$$= \sqrt{T} \hat{Z}_{T}(y,x)$$

$$- \sqrt{T} \int \left(F_{T}(y|x^{*}) + \frac{\delta}{\sqrt{T}} \left[F(y|x^{*},\theta_{0}) - J(y|x^{*}) \right] \right) \mathbb{1}\{x^{*} \leq x\} dF_{X}(x^{*})$$

$$= \sqrt{T} \left(\hat{Z}_{T}(y,x) - F_{T}^{A}(y,x) \right) + \delta \int \left[J(y|x^{*}) - F(y|x^{*},\theta_{0}) \right] \mathbb{1}\{x^{*} \leq x\} dF_{X}(x^{*}).$$

Thus, it follows from Lemma?? that

$$v_T^1(y,x) \Rightarrow \mathbb{H}_1(y,x) + \delta \int [J(y|x^*) - F(y|x^*,\theta_0)] \mathbb{1}\{x^* \leq x\} dF_X(x^*),$$

where \mathbb{H}_1 is a tight mean zero Gaussian process in $\ell^{\infty}(\mathcal{W})$ defined in Lemma ??. Then

$$\begin{split} r_T^1(\theta,\tau) &= \sqrt{T} \left(\hat{G}(\theta,\tau) - E_F[g(W_t,\theta,\tau)] \right) \\ &= \sqrt{T} \left(\hat{G}(\theta,\tau) - \left(E_{F_T}[g(W_t,\theta,\tau)] + \delta E_F[g(W_t,\theta,\tau)] - \delta E_J[g(W_t,\theta,\tau)] \right) \right) \\ &= \sqrt{T} \left(\hat{G}(\theta,\tau) - G_{F_T}(\theta,\tau) + \delta \left(E_J[g(W_t,\theta,\tau)] - E_F[g(W_t,\theta,\tau)] \right) \right), \end{split}$$

where $G_J(\theta, \tau) := E_J[g(W_t, \theta, \tau)]$, with $E_J[\cdot]$ defined as the expectation w.r.t. J = J(y|x) in (2.7). We define the empirical process $v_T^{1\theta_0}(y, x)$ as follows:

$$v_T^{1\theta_0}(y,x) = \sqrt{T} \left(\int F(y|x^*, \hat{\theta}_T) \mathbb{1}\{x^* \le x\} d\hat{F}_X(x^*) - \int F(y|x^*, \theta_0) \mathbb{1}\{x^* \le x\} dF_X(x^*) \right).$$

By Lemmas ??-??,

$$\begin{pmatrix} v_T^{1\theta_0}(y,x) \\ r_T^1(\theta,\tau) \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbb{H}_2(y,x) + \delta \int \dot{F}(y|x^*)[h] \mathbb{1}\{x^* \leq x\} dF_X(x^*) \\ \tilde{\mathbb{H}}_2(\theta,\tau) + \delta \left(E_J[g(W_t,\theta,\tau)] - E_F[g(W_t,\theta,\tau)] \right) \end{pmatrix},$$

with $h(\tau) = (\partial G_F(\theta_0, \tau)/\partial \theta)^{-1}G_J(\theta_0, \tau)$, and where $(\mathbb{H}_2, \tilde{\mathbb{H}}_2)$ are the tight mean zero Gaussian processes described in Lemmas ??-??. Therefore, under $H_{A,T}$ in (2.7),

$$S_T^{CM} = \int T \left(\hat{Z}_T(y, x) - \hat{F}_T(y, x, \hat{\theta}_T) \pm \int F(y|x^*, \theta_0) \mathbb{1} \{x^* \le x\} dF_X(x^*) \right)^2 d\hat{Z}_T(y, x)$$

$$= \int \left(v_T^1(y, x) - v_T^{1\theta_0}(y, x) \right)^2 d\hat{Z}_T(y, x)$$

$$= \int (v_T^1(y, x) - v_T^{1\theta_0}(y, x))^2 dF_{YX}(y, x) + o_p(1),$$

Then,

$$S_T^{CM} \xrightarrow{d} \int \left(\mathbb{H}_1(y,x) - \mathbb{H}_2(y,x) + \Delta(y,x)\right)^2 dF_{YX}(y,x),$$

with
$$\Delta(y,x) = \delta \int (J(y|x^*) - F(y|x^*,\theta_0) + \dot{F}(y|x^*,\theta_0)[h]) \mathbb{1}\{x^* \leq x\} dF_X(x^*)$$
, and h is the function $h(\tau) = (\partial G_F(\theta_0,\tau)/\partial \theta)^{-1} G_J(\theta_0,\tau)$.

Proof of Proposition 3: Assumption 1 implies Assumptions 1-2 of ?. Then, parts (a) and (b) follow from an application of Theorems 2 and 3 of ? using the convergence results of our Proposition 1. Further, Assumption 2 implies Assumption 2* of ?. Therefore, part (c) follows the same steps of Theorem 5 of ? using the convergence results of our Proposition 1.