Examenul național de bacalaureat 2021 Proba E. c)

Matematică M st-nat

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați al treilea termen al progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1=2$ și $b_2=6$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 7 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x 7. Calculați $(f \circ g)(7)$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x-1} = x-2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr n din mulțimea numerelor naturale de o cifră, acesta să verifice inegalitatea n(n-1)(n-2)(n-3)(n-4) > 0.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1), B(-1,0), C(3,5) și D(5,6). Demonstrați că punctele B, D și mijlocul segmentului AC sunt coliniare.
- **5p 6.** Determinați $x \in (0, \pi)$, știind că $(\sin x \cos x)^2 = 2$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 1+2^a & 2^a \\ -2^a & 1-2^a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b**) Arătați că $A(1) + A(2) A(1) \cdot A(2) = I_2$.
- **5p** c) Se consideră numerele naturale m și n, astfel încât $A(m) \cdot A(n) = A(m+n)$. Arătați că m = n = 1.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x * y = x^2 + y^2 + x + y$.
- **5p a**) Arătați că (-1)*(-1)=0.
- **5p b**) Demonstrați că $x * y = \left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 \frac{1}{2}$, pentru orice numere reale x și y.
- **5p** c) Determinați mulțimea valorilor reale ale lui x pentru care $x^2 * x^2 \le 4$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = x^2 + 4x \frac{1}{2}\ln(x+2)$.
- **5p** a) Arătați că $f'(x) = \frac{(2x+3)(2x+5)}{2(x+2)}, x \in (-2,+\infty)$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{x^2 + 4x f(x)}{x}$.
- **5p** c) Demonstrați că $x^2 + 4x + \frac{15}{4} \ge \frac{1}{2} \ln(2x + 4)$, pentru orice $x \in (-2, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 + \frac{2}{x^2 + 1}$.
- **5p a)** Arătați că $\int_{0}^{3} (x^{2} + 1) f(x) dx = 18$.
- **5p b)** Arătați că $\int_{1}^{3} x f(x) dx = 4 + \ln 5$.
- **5p** c) Demonstrați că $F(x+1) \ge F(x) + 1$, pentru orice număr real x, unde F este o primitivă a lui f.