Обработка результатов

```
In [6]: import numpy as np
   import scipy as ps
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
```

Измерим угловые координаты спектральный линий ртути. Результаты занесем в таблицу.

```
In [190]: data = pd.read_excel('lab-441.xlsx', 'table1')
    data.head(len(data))
```

Out[190]:

	цвет	phi1	phi2	sin(phi1)	sin(phi2)	lambda
0	фиолетовый	182.5686	177.5281	-0.0448	0.0431	404.7
1	синий	182.7186	177.2056	-0.0474	0.0488	435.8
2	голубой	182.9125	177.1750	-0.0508	0.0493	491.6
3	зеленый	183.1992	176.8908	-0.0558	0.0542	546.1
4	желтый	183.3775	176.7100	-0.0589	0.0574	577.0
5	желтый	183.3900	176.6994	-0.0591	0.0576	579.1
6	красный	183.6481	176.4369	-0.0636	0.0621	623.4

Построим график зависимости $sin(\phi_m)$ от длины волны λ .

```
In [191]: x = data.values[:, 5]  # lambda
y1 = data.values[:, 3]  # sin(phi1)
y2 = data.values[:, 4]  # sin(phi2)

x = np.array(x, dtype=float)
y1 = np.array(y1, dtype=float)
y2 = np.array(y2, dtype=float)

k1, b1 = np.polyfit(x, y1, deg=1)
k2, b2 = np.polyfit(x, y2, deg=1)
```

```
In [193]: plt.figure(figsize=(12, 6))
plt.grid(linestyle='--')

plt.title('3abucuMoCTb $sin(\phi_m)$ OT $\lambda$', fontweight='bol
d', fontsize=18)
plt.ylabel('$sin(\phi_m)$', fontsize=15)
plt.xlabel('$\lambda$, HM', fontsize=15)

plt.scatter(x, y1)
plt.scatter(x, y2)

plt.plot(x, k1 * x + b1, label='$\phi_1$')
plt.plot(x, k2 * x + b2, label='$\phi_2$')

#plt.errorbar(x, y, xerr=dx, yerr=dy, fmt='o')

plt.xlim((400, 650))
plt.ylim((-0.07, 0.07))

plt.legend()
plt.show()
```


По углу наклона определим шаг решетки, используя формулу $d\sin(\phi_m) = m\lambda$.

```
In [194]: d1 = -1 / k1 d2 = 1 / k2

print('Значение для 1го порядка: ', d1, 'нм') print('Значение для -1го порядка: ', d2, 'нм')
```

Значение для 1го порядка: 11819.5631651 нм Значение для –1го порядка: 12700.1250507 нм

```
In [195]: print('Усредненное значение: ', (d1 + d2) / 2, 'нм')
```

Усредненное значение: 12259.8441079 нм

Для оценки дисперсии решетки определим угловые координаты линий желтого дуплета во всех видимых порядках.

```
In [196]: data2 = pd.read_excel('lab-441.xlsx', 'table2')
    data2.head(len(data2))
```

Out[196]:

	m	first	second	delta phi	D_exp	D_th
0	-2	173.359167	173.340000	0.019167	-32.857143	-32.626844
1	-3	180.988056	180.950556	0.037500	-64.285714	-48.940270
2	-4	166.583611	166.526944	0.056667	-97.142857	-65.253700
3	2	186.721944	186.744722	0.022778	39.047619	32.626844
4	3	190.091111	190.124722	0.033611	57.619048	48.940270
5	4	193.483333	193.537778	0.054444	93.333333	65.253700

```
In [197]: x3 = data2.values[:, 0]
    y3 = data2.values[:, 4]
    y4 = data2.values[:, 5]

x3 = np.array(x3, dtype=float)
    y3 = np.array(y3, dtype=float)
    y4 = np.array(y4, dtype=float)

# k1, b1 = np.polyfit(x, y1, deg=1)
# k2, b2 = np.polyfit(x, y2, deg=1)
```

```
In [198]: plt.figure(figsize=(12, 6))
plt.grid(linestyle='--')

plt.title('3abucumoctь $D$ ot $m$', fontweight='bold', fontsize=18)
plt.ylabel('$D$, cek/ahrctpem', fontsize=15)
plt.xlabel('$m$', fontsize=15)

plt.scatter(x3, y3, label='experimental')
plt.scatter(x3, y4, label='theoretical')

# plt.plot(x, k2 * x + b2, label='$\phi_2$')

#plt.errorbar(x, y, xerr=dx, yerr=dy, fmt='o')

plt.xlim((-5, 5))
plt.ylim((-100, 100))

plt.legend()
plt.show()
```


Оценим экспериментальную разрешающую способность ($R=\frac{\lambda}{\delta\lambda}=\frac{\phi}{\delta\phi}$).

Знаем, что
$$\delta\lambda=rac{\delta\phi}{D}$$
 , тогда $R=rac{\lambda D}{\delta\phi}=274.8$.

Сравнив ее с теоретической по формуле R=mN, оценим число эффектично работающих штрихов $N\approx 275$. Тогда размер освещенной части решетки $\approx 0.55\,$ мм.