Competidor(a):	
Número de inscrição:	-(opcional)

Este Caderno de Tarefas não pode ser levado para casa após a prova. Após a prova entregue este Caderno de Tarefas para seu professor guardar. Os professores poderão devolver os Cadernos de Tarefas aos competidores após o término do período de aplicação das provas (1 de outubro de 2022).

Olimpíada Brasileira de Informática OBI2022

Caderno de Tarefas Modalidade Programação • Nível 2 • Fase 3

1 de outubro de 2022

A PROVA TEM DURAÇÃO DE 5 horas

Promoção:

Sociedade Brasileira de Computação

Apoio:

FUNDAÇÃO BEHRING Coordenação:

Instruções

LEIA ATENTAMENTE ESTAS INSTRUÇÕES ANTES DE INICIAR A PROVA

- Este caderno de tarefas é composto por 10 páginas (não contando a folha de rosto), numeradas de 1 a 10. Verifique se o caderno está completo.
- A prova deve ser feita individualmente.
- É proibido consultar a Internet, livros, anotações ou qualquer outro material durante a prova. É permitida a consulta ao *help* do ambiente de programação se este estiver disponível.
- As tarefas têm o mesmo valor na correção.
- A correção é automatizada, portanto siga atentamente as exigências da tarefa quanto ao formato da entrada e saída de seu programa; em particular, seu programa não deve escrever frases como "Digite o dado de entrada:" ou similares.
- Não implemente nenhum recurso gráfico nas suas soluções (janelas, menus, etc.), nem utilize qualquer rotina para limpar a tela ou posicionar o cursor.
- As tarefas **não** estão necessariamente ordenadas, neste caderno, por ordem de dificuldade; procure resolver primeiro as questões mais fáceis.
- Preste muita atenção no nome dos arquivos fonte indicados nas tarefas. Soluções na linguagem C devem ser arquivos com sufixo .c; soluções na linguagem C++ devem ser arquivos com sufixo .cc ou .cpp; soluções na linguagem Pascal devem ser arquivos com sufixo .pas; soluções na linguagem Java devem ser arquivos com sufixo .java e a classe principal deve ter o mesmo nome do arquivo fonte; soluções na linguagem Python 3 devem ser arquivos com sufixo .py; e soluções na linguagem Javascript devem ter arquivos com sufixo .js.
- Na linguagem Java, **não** use o comando *package*, e note que o nome de sua classe principal deve usar somente letras minúsculas (o mesmo nome do arquivo indicado nas tarefas).
- Para tarefas diferentes você pode escolher trabalhar com linguagens diferentes, mas apenas uma solução, em uma única linguagem, deve ser submetida para cada tarefa.
- Ao final da prova, para cada solução que você queira submeter para correção, copie o arquivo fonte para o seu diretório de trabalho ou pen-drive, conforme especificado pelo seu professor.
- Não utilize arquivos para entrada ou saída. Todos os dados devem ser lidos da entrada padrão (normalmente é o teclado) e escritos na saída padrão (normalmente é a tela). Utilize as funções padrão para entrada e saída de dados:
 - em Pascal: readln, read, writeln, write;
 - em C: scanf, getchar, printf, putchar;
 - em C++: as mesmas de C ou os objetos *cout* e *cin*.
 - em Java: qualquer classe ou função padrão, como por exemplo Scanner, BufferedReader, BufferedWriter e System.out.println
 - em Python: read, readline, readlines, input, print, write
 - em Javascript: scanf, printf
- Procure resolver a tarefa de maneira eficiente. Na correção, eficiência também será levada em conta. As soluções serão testadas com outras entradas além das apresentadas como exemplo nas tarefas.

Caravana

 $Nome\ do\ arquivo:$ caravana.cpp, caravana.pas, caravana.java, caravana.js $\ ou$ caravana.py

No deserto da Nlogônia, uma longa caravana de camelos carregados de especiarias está parada num oásis para descansar. O chefe da caravana notou que alguns camelos pareciam mais cansados do que os outros, e descobriu que cada camelo estava carregando um peso diferente, de forma que alguns camelos carregam um peso muito maior do que outros e portanto se cansam mais.

Aproveitando a parada para descanso, o chefe da caravana quer redistribuir as especiarias entre os camelos, de forma que todos os camelos carreguem exatamente o mesmo peso.

Dados os pesos carregados por cada camelo antes da parada, escreva um programa que determine, para cada camelo, qual o peso que deve ser retirado ou adicionado, para que todos carreguem exatamente o mesmo peso.

Entrada

A primeira linha contém um inteiro N, o número de camelos na caravana. Os camelos são numerados de 1 a N. Cada uma das linhas seguintes contém um inteiro P_i , o peso que o camelo de número i carregava antes da parada. Os camelos são dados em ordem crescente de numeração.

Saída

Para cada camelo da caravana, seu programa deve produzir uma linha, o valor que deve ser adicionado ou retirado desse camelo para que todos os camelos carreguem o mesmo peso. A ordem dos camelos na saída deve ser a mesma ordem dada na entrada. Para todos os casos de teste o peso que cada camelo deve carregar é um número inteiro.

Restrições

- $1 \le N \le 1$ 000
- $1 \le P_i \le 10\ 000\ \text{para}\ 1 \le i \le N$

Exemplo de entrada 1	Exemplo de saída 1
3	4
100	0
104	-4
108	

Exemplo de entrada 2	Exemplo de saída 2
5	-4
30	-14
40	3
23	21
5	-6
32	

Exemplo de entrada 3	Exemplo de saída 3
3	0
10000	0
10000	0
10000	

Dígitos

Nome do arquivo: dígitos.c, dígitos.cpp, dígitos.pas, dígitos.java, dígitos.js ou dígitos.py

Joãozinho te propôs o seguinte desafio: ele escolheu dois inteiros A e B, com $1 \le A \le B \le 10^{1000}$, e escreveu na lousa todos os inteiros entre A e B, em sequência, porém colocando um espaço após cada dígito, de forma a não ser possível ver quando um número termina ou começa. Por exemplo, se Joãozinho escolher A = 98 e B = 102, ele escreveria a sequência "9 8 9 9 1 0 0 1 0 1 1 0 2".

Seu desafio é: dada a lista de dígitos escritos na lousa, encontrar os valores de A e B. Caso exista mais de uma possibilidade para os valores que geraria a lista, você deve encontrar uma em que o valor de A é o menor possível.

É garantido que a lista de dígitos da lousa tem no máximo tamanho 1000.

Entrada

A primeira linha da entrada contém um único inteiro N, indicando o número de dígitos. A segunda linha contém N inteiros d_i , indicando os dígitos escritos.

Saída

Imprima o menor valor possível de A.

Restrições

- $1 \le N \le 1000$
- $0 \le d_i \le 9$

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 21 pontos, $1000 \le A \le B \le 9999$.
- Para outro conjunto de casos de testes valendo 23 pontos, B = A + 1.
- Para outro conjunto de casos de testes valendo 40 pontos, $A, B < 10^6$.
- Para outro conjunto de casos de testes valendo 16 pontos, nenhuma restrição adicional.

Exemplo de entrada 1	Exemplo de saída 1
6	123
1 2 3 1 2 4	

Exemplo de entrada 2	Exemplo de saída 2
6	8
8 9 1 0 1 1	

Pilhas de moedas

Nome do arquivo: pilhas.c, pilhas.cpp, pilhas.pas, pilhas.java, pilhas.js ou pilhas.py

Flávia possui várias moedas em sua coleção, que estão organizadas em N pilhas, cada pilha com um certo número de moedas. Vamos chamar o número de moedas de uma pilha de *altura* da pilha.

A garota pretende adicionar algumas moedas à sua coleção, de forma que cada moeda nova deve ser adicionada em uma das pilhas existentes. As moedas originais, porém, devem permanecer nas suas pilhas.

Flávia está se perguntando agora: qual o número mínimo de moedas que ela deve adicionar à coleção para que, considerando os valores de todas as N novas alturas de pilhas, a quantidade de números distintos seja no máximo K?

Por exemplo, se a lista de alturas inicialmente é (3,5,8,4,5,8), temos que existem 4 valores distintos de alturas: 3, 4, 5 e 8. Se K=2, poderíamos, com 3 moedas novas, adicionar duas na pilha de índice 1, e uma na pilha de índice 4. Assim, a lista de alturas ficará (5,5,8,5,5,8), que possui apenas dois valores distintos de alturas: 5 e 8.

Note que, se inicialmente a lista de alturas já tem no máximo K valores distintos, Flávia já estaria feliz, e não iria precisar de nenhuma moeda nova.

Entrada

A primeira linha da entrada contém um dois inteiros separados por espaços N, indicando o número de pilhas e K, indicado o número máximo de valores distintos. A segunda linha contém N inteiros P_i , indicando as alturas das pilhas.

Saída

Imprima a menor quantidade adicional de moedas.

Restrições

- $1 \le N \le 500$
- $1 \le K \le N$
- $1 \le v_i \le 500$

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 13 pontos, K=1.
- Para outro conjunto de casos de testes valendo 21 pontos, K=2.
- Para outro conjunto de casos de testes valendo 28 pontos, $K, N, v_i \leq 50$.
- Para outro conjunto de casos de testes valendo 38 pontos, nenhuma restrição adicional.

Exemplo de entrada 1	Exemplo de saída 1
6 2	3
5 3 8 4 5 8	

Exemplo de entrada 2	Exemplo de saída 2
6 3 5 3 8 4 5 8	1

Dona Minhoca

 $Nome\ do\ arquivo:$ minhoca.c, minhoca.cpp, minhoca.pas, minhoca.java, minhoca.js $\ ou$ minhoca.py

Dona Minhoca construiu uma bela casa, composta de N salas conectadas por N-1 túneis. Cada túnel conecta exatamente duas salas distintas, e pode ser percorrido em qualquer direção. A casa de dona Minhoca foi construída de modo que, percorrendo os túneis, é possível partir de qualquer sala e chegar a qualquer outra sala da casa.

Para deixar sua casa mais segura, Dona Minhoca decidiu instalar radares anti-furto em algumas das salas. Ela comprou K radares, e deve agora decidir em quais salas colocará um radar. Além disso, todos radares terão um raio de alcance, cujo valor R também deve ser decidido. Quando um radar com raio de alcance R é instalado na sala s, todas as salas com distância menor ou igual a R da sala s (incluindo a própria s) ficam sob o alcance do radar, e estarão protegidas.

Devido à política estranha de cobrança da empresa de radares, todos os K radares devem ter o mesmo raio de alcance. Dona Minhoca então se pergunta: qual seria o menor valor possível para R, tal que, se o raio de alcance dos radares for R, é possível escolher K salas para instalar os radares de forma que todas as N salas estejam protegidas?

Entrada

A primeira linha da entrada contém dois inteiros N e K, indicando o número de salas, e de radares que Dona Minhoca possui. As N-1 linhas seguintes contém dois inteiros a_i e b_i cada, indicando que existe um túnel conectando essas duas salas.

Saída

Seu programa deve produzir uma única linha, contendo um único inteiro, o menor valor possível para R.

Restrições

- $1 \le N \le 300000$
- $1 \le K < N$
- $a_i \neq b_i$

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 25 pontos, K=1
- Para outro conjunto de casos de testes valendo 17 pontos, o túnel i conecta as salas i e i+1 $(1 \le i \le N-1)$. Ou seja, a casa possui o formato de uma linha reta.
- Para outro conjunto de casos de testes valendo 17 pontos, $N, K \leq 100$
- Para outro conjunto de casos de testes valendo 41 pontos, nenhuma restrição adicional.

Exemplo de entrada 1	Exemplo de saída 1
6 1	2
1 2	
2 3	
3 4	
4 5	
4 6	

Exemplo de entrada 2	Exemplo de saída 2
6 2	1
1 2	
2 3	
3 4	
4 5	
4 6	

Rodovia

 $Nome\ do\ arquivo:$ rodovia.c, rodovia.cpp, rodovia.pas, rodovia.java, rodovia.js $\ ou$ rodovia.py

O reino de Nlogonia é composto por N cidades, numeradas de 1 a N, e M rodovias **direcionadas**, ou seja, é possível usar a rodovia (x, y) para ir da cidade x à cidade y, porém não na outra direção.

Vamos definir o valor da conectividade do reino como o número de pares ordenados (x, y), com $x \neq y$, tais que é possível viajar de x a y (talvez indiretamente, passando por outras cidades intermediárias pelo caminho). Na figura acima, por exemplo, o valor da conectividade é 11, sendo que os pares em questão são: (1,3), (1,4), (1,6), (3,1), (3,4), (3,6), (5,2), (5,4), (6,1), (6,3) e (6,4).

O governo de Nlogonia está planejando construir uma única nova rodovia (A, B), também direcionada. Muitas discussões estão sendo feitas para escolher a rodovia ideal, porém no momento, o maior receio é se há alguma possibilidade de ser feita uma escolha que seja considerada redundante pelos habitantes do reino. Em particular, foi dada a você a tarefa de descobrir se existe algum par (A, B) de cidades tal que:

- A ≠ B
- Não existe nenhuma rodovia (x, y) originalmente no reino, com x = A e y = B.
- \bullet Caso adicionarmos a rodovia (A, B), o valor da conectividade do reino permanecerá o mesmo.

Também foi pedido que, caso existam pares que cumpram todas as condições, você deve informar algum deles. Caso tenha mais de um par válido, você pode escolher qualquer um deles.

Entrada

A primeira linha da entrada contém dois inteiros N e M, indicando o número de cidades e rodovias. Seguem M linhas contendo dois inteiros x_i e y_i cada, indicando que existe uma rodovia que pode ser usada para viajar da cidade x_i à cidade y_i .

Saída

Caso exista algum par que satisfaça todas as condições, seu programa deve imprimir qualquer um desses pares, em uma única linha. Caso contrário, imprima -1.

Restrições

- $\bullet \ 1 \leq N \leq 200000$
- $1 \le M \le 400000$
- $x_i \neq y_i$
- Nenhuma rodovia é dada mais de uma vez na entrada, ou seja, $(x_i, y_i) \neq (x_j, y_j)$, se $i \neq j$. Note porém que é possível que ambas as rodovias (x, y) e (y, x) sejam dadas.

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 31 pontos, vale que a conectividade inicial do reino é igual a N * (N 1). Ou seja, existe algum caminho entre todos os pares de cidades.
- Para outro conjunto de casos de testes valendo 33 pontos, vale que se existe uma rodovia de x para y, então também existe uma rodovia de y para x.
- Para outro conjunto de casos de testes valendo 36 pontos, nenhuma restrição adicional.

Exemplo de entrada 1	Exemplo de saída 1
4 3	-1
1 2	
2 4	
1 4	

Exemplo de entrada 2	Exemplo de saída 2
4 4	2 3
1 2	
2 4	
1 4	
4 3	