Introduction to Computational Intelligence Lecture 6

This Session

- Informed search strategies
 - o Greedy best-first search
 - A* search

Outline

A* search - Recap

• Idea: avoid expanding paths that are already expensive based on a cost function.

• Cost function: f(n) = g(n) + h(n)

A* Search – Example

- Uniform-cost orders by backward path cost g(n)
- Greedy orders by forward path cost h(n)
- A* Search orders by total path cost f(n) = g(n) + h(n)

A* Search – Working Example

A* Search – Work Example Cont.

366

A* Search – Working Example: After A Expanded

A* Search – Working Example: After SExpanded

A* Search – Working Example: After R Expanded

A* Search – Working Example: After P Expanded

A* Search – Condition for Search Termination

• Should we stop when we enqueue a goal?

• No! only stop when we dequeue a goal

Properties of A*

- Problem: Actual bad goal cost \leq estimated good goal cost (5 \leq 6)
- Solution: The estimates must be less than actual costs. Need a good b(n), i.e., an admissible heuristic

Admissible Heuristics

• A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n, and h(n) > 0.

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is

optimistic

• E.g., straight line distance never overestimates the actual road distance

• Theorem: If h(n) is admissible, A^* is optimal

Properties of A* Cont.

Optimal?

Yes - cannot expand f_{i+1} until f_i is finished

A* expands all nodes with $f(n) < C^*$

A* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Complete?

Yes – unless there are infinitely many nodes with $f(n) \le C^*$

• Time?

- Number of nodes for which $f(n) \le C^*$
- o Exponential in (relative error in h × length of solution)

• Space?

o Exponential as it keeps all nodes in memory

UCS vs A* Contours

Designing Heuristic Functions

• The optimal solution of A* depends on coming up with admissible heuristics.

• Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Designing Heuristic Functions Cont.

• Heuristics for the 8-puzzle

 $b_1(n)$ = number of misplaced tiles

 $b_2(n)$ = total Manhattan distance (number of squares from desired location of each tile)

• Are h_1 and h_2 admissible?

Heuristics from Relaxed Problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- $h_1(n)$: If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- $h_2(n)$: If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Designing Heuristic Functions

• Heuristics for the 8-puzzle

$$b_1(n)$$
 = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance (number of squares from desired location of each tile)

$$b_1(\text{start}) = 8$$

$$b_2(\text{start}) = 3+1+2+2+3+3+2 = 18$$

Dominance of Admissible Heuristics

- A* search expands every node with $f(n) < C^*$ or $h(n) < C^* g(n)$.
- To minimize number of node expansions we need $h(n) \rightarrow \text{exact cost.}$

- Multiple admissible heuristics:
 - o If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, (both admissible), then h_2 dominates h_1
 - $\checkmark \forall n$,: $h_2(n) \ge h_1(n)$
 - O Which one is better for A* search?
 - ✓ $h_2(n)$ will expand fewer nodes, on average, than $h_1(n)$

Combining Admissible Heuristics

- Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them consistently dominates the others.
- How do we pick one?
 - O Apply max pooling:

$$\checkmark h_{new}(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$

✓ Max of admissible heuristics is admissible

Trade off: the computation to all the heuristics should not take too long - between quality of estimate and work per node.

Heuristics form a semi-lattice

Memory-bounded Search

- The memory usage of A* can still be exorbitant
- How to make A* more memory-efficient while maintaining completeness and optimality?
- Idea: perform iterations of DFS Iterative deepening A* search
 - O The cutoff is defined based on the f-cost rather than the depth of a node.
 - o Each iteration expands all nodes inside the contour for the current f-cost, peeping over the contour to find out where the contour lies.

Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis

Summary

- Uniformed search strategies can only generate successors and distinguish goals from non-goals
- Informed Strategies that know whether one non-goal is more promising than another
- Greedy (best-first) search using f(n) = g(n) + h(n) and an admissible h(n) is known as A^* search
- A* search is complete & optimal with admissible and consistent heuristics
- Heuristic design is key:
 - o Finding good heuristics for a specific problem is an area of research
 - o Use relaxed problems

References

- 1. Eberhart, Russell C., and Yuhui Shi. Computational Intelligence : Concepts to Implementations, Elsevier Science & Technology, 2011.
- 2. Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th Edition, 2020.
- 3. End-to-End Training of Deep Visuomotor Policies, Sergey Levine*, Chelsea Finn*, Trevor Darrell, Pieter Abbeel, JMLR 17, 2016.
- 4. AIMA slides (http://aima.cs.berkeley.edu/)