I	1.	(original) A method of providing concurrent access to a resource object, the method
2	comp	orising the computer-implemented steps of:
3		creating and storing a lock data structure for a particular resource object, the lock data
4		structure comprising data indicative of values for a resource object
5		identification, a lock type, and a version number related to a number of
6		changes to the resource object since the lock data structure was generated;
7		receiving a request from a requesting process for a requested lock type for access to
8		the particular resource object; and
9		determining whether to grant the request based on the requested lock type and the
10		lock type in the lock data structure.
1	2.	(original) A method as recited in Claim 1, further comprising the step of:
2		if it is determined to grant the request, then
3		bringing the value of the lock type in the data structure into agreement with
4		the lock type in the request;
5		generating a lock object having data indicative of the values for the resource
6		object identification, the lock type and the version number from the
7		lock data/structure, and
8		returning the lock to the requesting process.
1	3.	(original) A method as recited in Claim 1, further comprising the steps of:
2		receiving a lock to be released having data indicative of values for the resource object
3		identification and the lock type and the version number;

4		determining whether the data indicative of the value for the lock type in the lock to be
5		released indicates an exclusive lock, and
6		if it is determined the data indicates the exclusive lock is to be released, then changing
7		the value for the version number in the lock data structure based on the value
8		of the version number in the lock to be released.
1.	4.	(original) A method as recited in Claim 2, wherein:
2		the lock data structure further comprises a reference number;
3		said step of generating a lock data structure further comprises setting the reference
4		number to a predetermined initial value; and
5		said method further comprises, if it is determined to grant the request, then replacing
6		the value of the reference number in the lock data structure with a sum of the
7		value of the reference number in the lock data structure and a predetermined
8		reference change value.
1	5.	(original) A method as recited in Claim 4, further comprising the steps of:
2		receiving a lock to be released having data indicating the particular resource object;
3		determining whether the reference number substantially equals the predetermined
4		initial value of the reference number; and
5		if it is determined the reference number does not substantially equal the
6		predetermined initial value, then replacing the value of the reference number
7		in the lock/data structure with a difference substantially equal to the value of
8		the reference number in the lock data structure minus the predetermined
9		reference change.

	1	6. (original) A method as recited in Claim 5 further comprising, if it is determined the
21	2	reference substantially equals the predetermined initial value, then deleting the lock data
\mathcal{B}^{\setminus}	3	structure for the particular resource object.
$\alpha \nu$	1	7. (canceled)
	1	8. (currently amended) A method of updating a resource object using optimistic locks,
Many!	2	the method comprising the computer-implemented steps of: The method as recited in Claim
(IBI)	3	7, said using the optimistic lock comprising:
	4	receiving from a client process a request to update a particular resource object;
	5	sending to a lock manager process a request for a first lock for access to the particular
	6	resource object, the request including data indicating an optimistic lock type;
	7	receiving the first lock for access to the particular resource object, the first lock
	8	including data indicating the resource object, the optimistic lock type and a
	9	first value for a version number related to a number of changes to the resource
	10	object since the lock manager generated a lock data structure corresponding to
	11	the resource object; and
	12	updating the resource object by
	13	sending to a lock manager process a request for a second lock for access to the
	14	particular resource object, the request including data indicating the
	15	resource object dentification and an exclusive lock type;
	16	receiving the second lock for access to the particular resource object, the
	17	second lock including data indicating the resource object

19	identification, the exclusive lock type and a second value for the
19	version number;
20	determining whether the second value for the version number substantially
21	equals the first value for the version number; and
22	if the second value substantially equals the first value, then
23	committing an updated resource object to the resource, and
24	replacing the second value in the reference number in the second lock
25	with a third value of the version number, the third value
26	computed by adding the second value and a predetermined
27	version change value
1	9. (original) The method as recited in Claim 8, further comprising, if the second value
2	does not substantially equal the first value, then sending a message to the client process, the
3	message indicating that the resource object was not updated.
1	10. (currently amended) The method as recited in Claim 7 8, further comprising sending
2	to the lock manager process a first release message to release the first lock.
1	11. (currently amended) The method as recited in Claim § 10, further comprising sending
2	to the lock manager process a second release message to release the second lock.
1	12. (currently amended) The method as regited in Claim 9, further comprising sending to
2	the lock manager process a second-release message to release the second lock, the second
3	release message including data indicating the third value of the version number in the second
4	lock and the exclusive lock type, wherein the third value of the version number is used by the
5	lock manager to replace the second value of the version number in the lock data structure

1	13. (original) A computer-readable medium carrying one or more sequences of
2	instructions for providing concurrent access to a resource object, which instructions, when
3	executed by one or more processors, cause the one or more processors to carry out the steps
4	of:
5	generating a lock data structure for a particular resource object, the lock data structure
6	comprising data indicative of values for a resource object identification, a lock
7	type, and a version number related to a number of changes to the resource
8	object since the lock data structure was generated;
9	receiving a request from a requesting process for a requested lock type for access to
10	the particular resource object; and
11	determining whether to grant the request based on the requested lock type and the
12	lock type in the lock data structure.
1	14. (currently amended) A computer-readable medium carrying one or more sequences of
2	
	instructions for updating a resource object, which instructions, when executed by one or more
3	processors, cause the one or more processors to carry out the steps of:
4	receiving from a client process a request to update a particular resource object;
5	sending to a lock manager process a request for a first lock for access to the particular
6	resource object, the request including data indicating an optimistic lock type;
7	receiving the first lock for access to the particular resource object, the first lock
8	including data indicating the resource object, the optimistic lock type and a
9	first value for a version number related to a number of changes to the resource
10	object since the lock manager generated a lock data structure corresponding to
11	the resource object; and

٠		
	12	using the optimistic lock to update updating the resource object by
)	13	sending to a lock manager process a request for a second lock for access to the
Bl	14	particular resource object, the request including data indicating the
V	15	resource object identification and an exclusive lock type;
	16	receiving the second lock for access to the particular resource object, the
	17	second lock including data indicating the resource object
,	18	identification, the exclusive lock type and a second value for the
M	19	version number;
	120	determining whether the second value for the version number substantially
	21	equals the first value for the version number; and
•	22	if the second value substantially equals the first value, then
	23	committing an updated resource object to the resource, and
	24	replacing the second value in the reference number in the second lock
	25	with a third value of the version number, the third value
	26	computed by adding the second value and a predetermined
	27	version change value.
	1	15. (original) An apparatus for providing concurrent access to a resource object,
	2	comprising:
	3	a processor;
	4	one or more stored sequences of instructions which, when executed by the processor,
	5	cause the processor to carry out the steps of:
	6	generating a lock data structure for a particular resource object, the lock data
	7	structure comprising data indicative of values for a resource object
		7

8	identification, a lock type, and a version number related to a number of
, 9	changes to the resource object since the lock data structure was
B 10	generated;
11	receiving a request from a requesting process for a requested lock type for
12	access to the particular resource object; and
13	determining whether to grant the request based on the requested lock type and
14	the lock type in the lock data structure.
\mathcal{M}_{-1}	16 (augustly amonded) An amondatus for undating a magazine chicat, commissing
	16. (currently amended) An apparatus for updating a resource object, comprising:
DV1+2	a processor;
. 3	one or more stored sequences of instructions which, when executed by the processor,
4	cause the processor to carry out the steps of:
5	receiving from a client process a request to update a particular resource object;
6	sending to a lock manager process a request for a first lock for access to the
7	particular resource object, the request including data indicating an
8	optimistic lock type;
9	receiving the first lock for access to the particular resource object, the first
10	lock including data indicating the resource object, the optimistic lock
11	type and a first value for a version number related to a number of
12	changes to the resource object since the lock manager generated a lock
13	data structure corresponding to the resource object; and
14	using the optimistic lock to update updating the resource object by
15	sending to a lock manager process a request for a second lock for
16	access to the particular resource object, the request including

	17	data indicating the resource object identification and an
,	18	exclusive lock type;
2	19	receiving the second lock for access to the particular resource object,
	20	the second lock including data indicating the resource object
	21	identification, the exclusive lock type and a second value for
	22	the version number;
٠	23	determining whether the second value for the version number
· /	24	substantially equals the first value for the version number; and
	25	if the second value substantially equals the first value, then
100	26	committing an updated resource object to the resource, and
	27	replacing the second value in the reference number in the
	28	second lock with a third value of the version number,
	29	the third value computed by adding the second value
	30	and a predetermined version change value.
	1	17. (original) An apparatus for providing concurrent access to a resource object,
	2	comprising:
	3	means for generating a lock data structure for a particular resource object, the lock
	4	data structure comprising data indicative of values for a resource object
	5	identification, a lock type, and a version number related to a number of
	6	changes to the resource object since the lock data structure was generated;
	7	means for receiving a request from a requesting process for a requested lock type for
	8	access to the particular resource object; and
		\int

	9		means for determining whether to grant the request based on the requested lock type
	10		and the lock type in the lock data structure.
B	1	18.	(currently amended) An apparatus for updating a resource object, comprising:
	2		a means for receiving from a client process a request to update a particular resource
	3		object;
	4		a means for sending to a lock manager process a request for a first lock for access to
· /	5		the particular resource object, the request including data indicating an
X	6		optimistic lock type;
Pn	47		a means for receiving the first lock for access to the particular resource object, the
o.	8		first lock including data indicating the resource object, the optimistic lock type
-	9		and a first value for a version number related to a number of changes to the
	10		resource object since the lock manager generated a lock data structure
	11		corresponding to the resource object; and
	12		a means for using the optimistic lock to update updating the resource object,
	13		including
	14		a means for sending to a lock manager process a request for a second lock for
	15		access to the particular resource object, the request including data
	16		indicating the resource object identification and an exclusive lock type;
	17		a means for receiving the second lock for access to the particular resource
	18		object, the second lock including data indicating the resource object
	19		identification, the exclusive lock type and a second value for the
	20		version number:

21	a means for determining whether the second value for the version number
22	substantially equals the first value for the version number;
23	a means for committing an updated resource object to the resource if the
24	second value substantially equals the first value; and
25	a means for replacing the second value in the reference number in the second
26	lock with a third value of the version number if the second value
27	substantially equals the first value, the third value computed by adding
28	the second value and a predetermined version change value.
Lile	19. (new) The computer-readable medium as/recited in Claim 14, wherein the
PMT	19. (new) The computer-readable medium as recited in Claim 14, wherein the
. 2	instructions, when executed by one or more processors, cause the one or more processors to
3	carry out the step of:
4	if the second value does not substantially equal the first value, then sending a message
5	to the client process, the message indicating that the resource object was not
6	updated.
1	20. (new) The computer-readable medium as recited in Claim 14, wherein the
2	instructions, when executed by one or more processors, cause the one or more processors to
3	carry out the step of:
4	sending to the lock manager process a first release message to release the first lock.
1	21. (new) The computer-readable medium as recited in Claim 20, wherein the
2	instructions, when executed by one or more processors, cause the one or more processors to
3	carry out the step of:

	1
4	sending to the lock manager process a second release message to release the second
5	lock.
1	22. (new) The computer-readable medium as recited in Claim 19, wherein the
2.	instructions, when executed by one or more processors, cause the one or more processors to
3	carry out the step of:
4	sending to the lock manager process a release message to release the second lock, the
5	release message including data indicating the third value of the version
6	number in the second lock and the exclusive lock type, wherein the third value
17	of the version number is used by the lock manager to replace the second value
18	of the version number in the lock data structure.
1	23. (new) The apparatus as recited in Claim 16, wherein the instructions, when executed
2	by one or more processors, cause the one or more processors to carry out the step of:
3	if the second value does not substantially equal the first value, then sending a message
4	to the client process, the message indicating that the resource object was not
5	updated.
1	24. (new) The apparatus as recited in Claim 16, wherein the instructions, when executed
2	by one or more processors, cause the one or more processors to carry out the step of:
3	sending to the lock manager process a first release message to release the first lock.
1	25. (new) The apparatus as recited in Claim 24, wherein the instructions, when executed
2	by one or more processors, cause the one or more processors to carry out the step of:
3	sending to the lock manager process a second release message to release the second
4	lock.

		1
1	26.	(new) The apparatus as recited in Claim 23, wherein the instructions, when executed
2	by c	one or more processors, cause the one or more processors to carry out the step of:
3		sending to the lock manager process a release message to release the second lock, the
4		release message including data indicating the third value of the version
5		number in the second lock and the exclusive lock type, wherein the third value
6		of the version number is used by the lock manager to replace the second value
7		of the version number in the lock data structure.
, 1	27.	(new) The apparatus as recited in Claim 18, further comprising:
12		means for sending a message to the client process if the second value does not
3		substantially equal the first value, the message indicating that the resource
4		object was not updated.
1	28.	(new) The apparatus as recited in Claim 18, further comprising:
2		means for sending to the lock manager process a first release message to release the
3		first lock.
1	29.	(new) The apparatus as recited in Claim 28, further comprising:
2		means for sending to the lock manager process a second release message to release
3		the second lock.
1	30.	(new) The apparatus as recited in Claim 27, further comprising:
2		means for sending to the lock manager process a second release message to release the
3		second lock, the second release message including data indicating the third value
4		of the version number in the second lock and the exclusive lock type, wherein

the third value of the version number is used by the lock manager to replace the second value of the version number in the lock data structure.