Topology: Homework 6

Peter Kagey

October 24, 2018

Problem 1.

Let X be path connected and locally path connected, and assume that $\pi_1(X; x_0)$ is finite. Show that every map $f: X \to S^1$ from X to the unit circle is homotopic to a constant map. (Hint: consider the covering $p: \mathbb{R} \to S^1$ and use the Lifting Criterion.)

Proof.

Let $p: \mathbb{R} \to S^1$ be a covering map. Then by the path lifting criterion if there exists a map $\widetilde{f}: X \to \mathbb{R}$ such that $p \circ \widetilde{f} = f$ and $\widetilde{f}(x_0) = p(f(x_0))$, then

$$f_*\pi_1(X;x_0) \subset p_*\pi_1(\mathbb{R};r_0) = p_*(\mathbf{1}) = \mathbf{1} \text{ in } \pi_1(S^1;s_0).$$

First define $p: \mathbb{R} \to S^1$. Since X is path connected, there exists a path $\alpha_x \colon [0,1] \to X$ starting at x_0 and ending at x. Since f is continuous, $f \circ \alpha_x$ defines a path in S^1 , call it $\beta_x = f \circ \alpha_x \colon [0,1] \to S^1$. By the path lifting property, we can choose any such path α_x (and thus β_x) and define its lift $\widetilde{\beta}_x \colon [0,1] \to \mathbb{R}$ based at $r_0 \in p^{-1}(f(x_0))$. Lastly, define $\widetilde{f}(x) = \widetilde{\beta}_x(1)$.

Since $\pi(X; x_0)$ is finite, the homomorphism $f_* \colon \pi(X; x_0) \to \pi(S^1; s_0) = \mathbb{Z}$ must be trivial. Thus if α_{x_0} is a loop in X, it is homotopic to a constant path in \mathbb{R} .

The constructed map satisfies the requirement that $p \circ \widetilde{f} = f$:

$$p(\widetilde{f}(x)) = p(\widetilde{\beta}_x(1))$$

$$= (p \circ \widetilde{\beta}_x)(1)$$

$$= (\beta_x)(1)$$

$$= (f \circ \alpha_x)(1)$$

$$= f(\alpha_x(1))$$

$$= f(x).$$

So we can use the "contraction" homotopy in \mathbb{R} to construct a homotopy of f, namely

$$\widetilde{H}(t) = (1 - t)\widetilde{f}(x) + \widetilde{f}(x_0)$$

$$H(t) = p((1 - t)\widetilde{f}(x) + \widetilde{f}(x_0)).$$

Thus f is homotopic to the constant map with homotopy H.

Problem 2.

Let X be path connected and locally path connected. Show that if there exists a covering map $p \colon \widetilde{X} \to X$ and $\widetilde{x}_0 \in \widetilde{X}$ such that \widetilde{X} is path connected and $\pi_1(\widetilde{X}; \widetilde{x}_0) = \mathbf{1}$, then X is semi-locally simply connected.

Proof.

In to show that X is semi-locally simply connected, it is sufficient to show that for all $x \in X$ there exists a neighborhood U around x such that all loops in U are null-homotopic in X.

Since \widetilde{X} is the total space of the covering, there exists a neighborhood U_x around every point $x \in X$, such that

a.
$$p^{-1}(U_x) = \coprod_{i \in I} \widetilde{U}_i$$
 where \widetilde{U}_i is an open subset of \widetilde{X} , and

b. the restriction $p|_{\widetilde{U}_i} \colon \widetilde{U}_i \to U$ is a homeomorphism.

Let $\alpha \colon [0,1] \to U_x$ be a loop in U_x . Choosing the $i \in I$ such that $\widetilde{x}_0 \in U_i$, we can lift α via

$$(p|_{\widetilde{U}_i})^{-1} \circ \alpha = \widetilde{\alpha} \colon [0,1] \to \widetilde{X}.$$

Since the fundamental group of \widetilde{X} is trivial, $[\widetilde{\alpha}] = [\mathrm{id}_{x_0}] \in \pi_1(\widetilde{X}; \widetilde{x}_0) = \mathbf{1}$, thus there exists a homotopy $\widetilde{H} \colon [0,1] \times [0,1] \to \widetilde{X}$ from $\widetilde{\alpha}$ to id_{x_0} . This homotopy induces a homotopy $H \colon [0,1] \times [0,1] \to X$ by $p \circ \widetilde{H}$. Since p is a covering map, and thus continuous, H must be continuous, and thus defines a homotopy from $p \circ \widetilde{\alpha} = \alpha$ to $p \circ c_{\widetilde{x}_0} = c_{p(\widetilde{x}_0)}$.

Therefore there exists a neighborhood around every point $x \in X$ such that any loop in that neighborhood is nullhomotopic in X.

Problem 3.

Let X be the Hawaiian earrings. Show that X is not semi-locally simply connected.

Proof.

By defintion X is semi-locally simply connected if for every point $x \in X$ there exists a neighborhood U around x such that all loops in U are contractible in X.

Choose the point $x=(0,0)\in X$. Then for any open neighborhood U containing the origin, we can find a ball of radius ε centered at the origin and contained in U, and this ball contains X_n for $1/n<\varepsilon/2$. As shown in problem 3 of homework 4, the loop around X_n is not contractible in X, so X must not be semi-locally simply connected.

Problem 4.

Let $p \colon \widetilde{X} \to X$ be a covering space with \widetilde{X} path connected and with base points $\widetilde{x}_0 \in \widetilde{X}$ and $x_0 = p(\widetilde{x}_0) \in X$. Consider the right quotient set $\pi_1(X; x_0)/p_*(\pi_1(\widetilde{X}; \widetilde{x}_0))$.

a. Show that there is a well-defined map

$$f: p^{-1}(x_0) \to \pi_1(X; x_0)/p_*(\pi_1(\widetilde{X}; \widetilde{x}_0))$$

such that if $\widetilde{x} \in p^{-1}(x_0)$, then $f(\widetilde{x})$ is the equivalence class of $[p \circ \widetilde{\alpha}] \in \pi_1(X; x_0)$ for every path $\widetilde{\alpha} \colon [0,1] \to \widetilde{X}$ with $\widetilde{\alpha}(0) = \widetilde{x}$ and $\widetilde{\alpha}(1) = \widetilde{x}_0$.

- b. Show that f is surjective.
- c. Show that f is injective.

Proof.

a. Suppose that $\widetilde{\alpha}, \widetilde{\beta} \colon [0,1] \to \widetilde{X}$ are two paths in X such that $\widetilde{\alpha}(0) = \widetilde{\beta}(0) = \widetilde{x}$ and $\widetilde{\alpha}(1) = \widetilde{\beta}(1) = \widetilde{x}_0$. Then $f(\widetilde{x}) = [[p \circ \widetilde{\alpha}]]$ and $f(\widetilde{x}) = [[p \circ \widetilde{\beta}]]$, so in order for f to be well defined, it is sufficient to show that $[p \circ \widetilde{\alpha}] \sim [p \circ \widetilde{\beta}]$. But this follows because

$$\underbrace{[p \circ \widetilde{\alpha}]^{-1}}_{a^{-1}} \cdot \underbrace{[p \circ \widetilde{\beta}]}_{b} = [p \circ \overline{\widetilde{\alpha}}] \cdot [p \circ \widetilde{\beta}]$$

$$= [(p \circ \overline{\widetilde{\alpha}}) * (p \circ \widetilde{\beta})]$$

$$= [p \circ (\overline{\widetilde{\alpha}} * \widetilde{\beta})]$$

$$= p_*[\overline{\widetilde{\alpha}} * \widetilde{\beta}]$$

$$\in p_*(\pi_1(\widetilde{X}; \widetilde{x}_0)).$$

- b. Let $[[\alpha]] \in \pi_1(X; x_0)/p_*(\pi_1(\widetilde{X}; \widetilde{x}_0))$ be an arbitrary element of the right quotient set. Consider any underlying path $\alpha \colon [0,1] \to X$. By the path lifting property there exists a lift $\widetilde{\alpha} \colon [0,1] \to \widetilde{X}$ based at $\widetilde{x}_0 \in p^{-1}(x_0)$. Since $p \circ \widetilde{\alpha} = \alpha$ is a loop, $\widetilde{\alpha}(1) \in p^{-1}(x_0)$, and so $f(\widetilde{\alpha}(1)) = [[\alpha]]$, and so f is surjective.
- c. Assume that $f(\widetilde{x}) = f(\widetilde{x}')$. It is sufficient to show that $\widetilde{x}_0 = \widetilde{x}'_0$. By defintion, $f(\widetilde{x})$ is the equivalence class of paths $[p \circ \widetilde{\alpha}]$ from \widetilde{x} to \widetilde{x}_0 and $f(\widetilde{x}')$ is the equivalence class of paths $[p \circ \widetilde{\alpha}']$ from \widetilde{x}' to \widetilde{x}_0 . So consider a choice of $\widetilde{\alpha}$ and $\widetilde{\alpha}'$ from the respective equivalence classes. Since $[p \circ \widetilde{\alpha}] \sim [p \circ \widetilde{\alpha}']$,

$$\underbrace{[p \circ \widetilde{\alpha}]^{-1}}_{a^{-1}} \cdot \underbrace{[p \circ \widetilde{\alpha}']}_{b} = [p \circ \overline{\widetilde{\alpha}}] \cdot [p \circ \widetilde{\alpha}']$$

$$= [(p \circ \overline{\widetilde{\alpha}}) * (p \circ \widetilde{\alpha}')]$$

$$= [p \circ (\overline{\widetilde{\alpha}} * \widetilde{\alpha}')]$$

$$= p_*[\overline{\widetilde{\alpha}} * \widetilde{\alpha}']$$

$$\in p_*(\pi_1(\widetilde{X}; \widetilde{x}_0)).$$

In order * to be well-defined, $\overline{\alpha}(1) = \widetilde{\alpha}(0) = \widetilde{\alpha}'(0)$, so α and α' are paths with the same base point, namely, $\widetilde{x} = \widetilde{x}'$. Thus the map f is injective.