DSCC/CSC 435 & ECE 412 Optimization for Machine Learning

Lecture 6

Proximal Gradient Method

Lecturer: Jiaming Liang

September 26, 2024

1 Proximal operator

Definition 1. Given a function f, the proximal mapping of f is given by

$$\operatorname{prox}_f(x) = \operatorname{argmin}_{u \in \mathbb{R}^n} \left\{ f(u) + \frac{1}{2} \|u - x\|^2 \right\}, \quad \forall x \in \mathbb{R}^n.$$

Note that if f is closed and convex then $\operatorname{prox}_f(x)$ is a singleton for any $x \in \mathbb{R}^n$.

Example: soft-thresholding, for some $\lambda > 0$, the proximal mapping for the one-dimensional function $\lambda |\cdot|$ is

$$\operatorname{prox}_{\lambda|\cdot|}(y) = \mathcal{T}_{\lambda}(y) = [|y| - \lambda]_{+} \operatorname{sgn}(y) = \begin{cases} y - \lambda, & y \ge \lambda \\ 0, & |y| < \lambda \\ y + \lambda, & y \le -\lambda \end{cases}$$

Hence, the proximal mapping for $f(x) = \lambda ||x||_1$ is

$$\mathcal{T}_{\lambda}(x) \equiv (\mathcal{T}_{\lambda}(x_j))_{j=1}^n = [|x| - \lambda \mathbf{1}]_+ \odot \operatorname{sgn}(x)$$

where \odot denotes componentwise multiplication.

Theorem 1. Let $Q \subseteq \mathbb{R}^n$ be nonempty. Then, $\operatorname{prox}_{I_Q}(x) = \operatorname{proj}_Q(x)$ for any $x \in \mathbb{R}^n$. Let $Q \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Then, $\operatorname{prox}_{I_Q}(x) = \operatorname{proj}_Q(x)$ is a singleton for any $x \in \mathbb{R}^n$.

Theorem 2. Let f be a closed and convex function. Then for any $x, y \in \mathbb{R}^n$, we have

- (i) $\|\operatorname{prox}_f(x) \operatorname{prox}_f(y)\|^2 \le \langle \operatorname{prox}_f(x) \operatorname{prox}_f(y), x y \rangle;$
- (ii) $\| \operatorname{prox}_f(x) \operatorname{prox}_f(y) \| \le \|x y\|.$

Proof. (a) Let $u = \operatorname{prox}_f(x)$ and $v = \operatorname{prox}_f(y)$. It follows from the defintion of proximal mapping that

$$u = \operatorname{argmin}_{w \in \mathbb{R}^n} \left\{ f(w) + \frac{1}{2} ||w - x||^2 \right\}$$

and

$$x - u \in \partial f(u)$$
.

Proximal Gradient Method-1

The inclusion is equivalent to

$$f(w) \ge f(u) + \langle x - u, w - u \rangle \quad \forall w \in \mathbb{R}^n.$$

Taking w = v, we have

$$f(v) \ge f(u) + \langle x - u, v - u \rangle.$$

Following the same argument for $v = \operatorname{prox}_f(y)$, we have

$$f(u) \ge f(v) + \langle y - v, u - v \rangle$$

Adding the above two inequalities, we obtain

$$0 \ge \langle y - x + u - v, u - v \rangle,$$

i.e.,

$$\langle x - y, u - v \rangle \ge ||u - v||^2.$$

Plugging $u = \text{prox}_f(x)$ and $v = \text{prox}_f(y)$ into the above inequality, we prove (a).

(b) This statement simply follows from (a) using the Cauchy-Schwarz inequality.

2 Moreau envelope

Theorem 3. (Moreau decomposition) Let f be a closed and convex function. Then for any $x \in \mathbb{R}^n$, we have

$$\operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x) = x.$$

Proof. Let $u = \operatorname{prox}_f(x)$. It is equivalent to $x - u \in \partial f(u)$. Using Theorem 2 of Lecture 5, we have $u \in \partial_{f^*}(x - u)$, which is equivalent to $x - u = \operatorname{prox}_{f^*}(x)$. Therefore,

$$\operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x) = u + x - u = x.$$

Theorem 4. (extended Moreau decomposition) Let f be a closed and convex function and $\lambda > 0$. Then for any $x \in \mathbb{R}^n$, we have

$$\operatorname{prox}_{\lambda f}(x) + \lambda \operatorname{prox}_{\lambda^{-1} f^*}(x/\lambda) = x.$$

Definition 2. Let f be a closed and convex function and $\mu > 0$. The Moreau envelope of f is

$$M_f^{\mu}(x) = \min_{u} \left\{ f(u) + \frac{1}{2\mu} ||u - x||^2 \right\}.$$

Proximal Gradient Method-2

The parameter μ is called the smoothing parameter.

Figure 1: Moreau envelope

Properties

• $M_f^{\mu}(x) \leq f(x)$, plot, geometric interpretation: Moreau envelope M_f^{μ} is an envelope underneath f that smoothifies f but may not convexifies f

$$\nabla M_f^{\mu}(x) = \frac{1}{\mu} \left(x - \operatorname{prox}_{\mu f}(x) \right)$$

• ∇M_f^μ is $\frac{1}{\mu}$ -Lipschitz continuous, M_f^μ is $\frac{1}{\mu}$ -smooth

$$\begin{split} \|\nabla M_f^{\mu}(x) - \nabla M_f^{\mu}(y)\|^2 &= \frac{1}{\mu^2} \|x - \operatorname{prox}_{\mu f}(x) - y + \operatorname{prox}_{\mu f}(y)\|^2 \\ &= \frac{1}{\mu^2} \left(\|x - y\|^2 + \left\| \operatorname{prox}_{\mu f}(x) - \operatorname{prox}_{\mu f}(y) \right\|^2 - 2\langle \operatorname{prox}_f(x) - \operatorname{prox}_f(y), x - y \rangle \right) \\ &\leq \frac{1}{\mu^2} \left(\|x - y\|^2 - \left\| \operatorname{prox}_{\mu f}(x) - \operatorname{prox}_{\mu f}(y) \right\|^2 \right) \\ &\leq \frac{1}{\mu^2} \|x - y\|^2 \end{split}$$

• M_f^{μ} maintians convexity if f is convex. This is because partial minimization $g(x) = \min_y f(x, y)$ preserves convexity.

3 Proximal gradient method

3.1 Composite optimization

$$\min\{\phi(x) := f(x) + h(x)\}\$$

Proximal Gradient Method-3

- *h* is closed and convex;
- f is closed and convex, dom f is convex, dom $h \subseteq \operatorname{int}(\operatorname{dom} f)$, and f is L-smooth over $\operatorname{int}(\operatorname{dom} f)$;
- the optimal set X_* is nonempty.

3.2 Proximal gradient

Algorithm 1 Proximal gradient method

Input: Initial point $x_0 \in \text{dom } h$, stepsize $\lambda > 0$

for $k \geq 0$ do

Compute $x_{k+1} = \operatorname{prox}_{\lambda h} (x_k - \lambda \nabla f(x_k))$.

end for

Theorem 5. Functions f and h are as assumed in Subsection 3.1. Choose $\lambda \in (0, 1/L]$. Then, the proximal gradient method generates a sequence of points $\{x_k\}$ satisfying

$$\phi(x_k) - \phi_* \le \frac{\|x_0 - x_*\|^2}{2\lambda k}, \quad \forall k \ge 1.$$

Proof. It is easy to verify that one iteration of the proximal gradient method can be written as

$$x_{k+1} = \min_{x \in \mathbb{R}^n} \left\{ \ell_f(x; x_k) + h(x) + \frac{1}{2\lambda} ||x - x_k||^2 \right\}.$$

Using Theorem 5 of Lecture 3 and the fact that the above objective function is $(1/\lambda)$ -strongly convex, we have for every $x \in \text{dom } h$,

$$\ell_f(x; x_k) + h(x) + \frac{1}{2\lambda} \|x - x_k\|^2 \ge \ell_f(x_{k+1}; x_k) + h(x_{k+1}) + \frac{1}{2\lambda} \|x_{k+1} - x_k\|^2 + \frac{1}{2\lambda} \|x - x_{k+1}\|^2$$

$$\ge \ell_f(x_{k+1}; x_k) + h(x_{k+1}) + \frac{L}{2} \|x_{k+1} - x_k\|^2 + \frac{1}{2\lambda} \|x - x_{k+1}\|^2$$

$$\ge f(x_{k+1}) + h(x_{k+1}) + \frac{1}{2\lambda} \|x - x_{k+1}\|^2,$$

where the second inequality is due to $\lambda \leq 1/L$ and the last inequality is due to Lemma 1(ii) of Lecture 3. It then follows from the convexity of f that

$$f(x) + h(x) + \frac{1}{2\lambda} ||x - x_k||^2 \ge f(x_{k+1}) + h(x_{k+1}) + \frac{1}{2\lambda} ||x - x_{k+1}||^2.$$

Taking $x = x_k$, we have

$$f(x_k) + h(x_k) \ge f(x_{k+1}) + h(x_{k+1}) + \frac{1}{2\lambda} ||x_{k+1} - x_*||^2 \ge f(x_{k+1}) + h(x_{k+1})$$

Proximal Gradient Method-4

which shows that the function value of the iterates is a nonincreasing sequence. Taking $x = x_*$, we have

$$f(x_*) + h(x_*) + \frac{1}{2\lambda} ||x_k - x_*||^2 \ge f(x_{k+1}) + h(x_{k+1}) + \frac{1}{2\lambda} ||x_{k+1} - x_*||^2,$$

i.e.,

$$(f+h)(x_{k+1}) - (f+h)(x_*) \le \frac{1}{2\lambda} ||x_k - x_*||^2 - \frac{1}{2\lambda} ||x_{k+1} - x_*||^2.$$

Summing the above inequality and using the monotinicity of $\{(f+h)(x_k)\}$, we obtain

$$k\left[(f+h)(x_k) - (f+h)(x_*)\right] \le \sum_{i=0}^{k-1} (f+h)(x_{i+1}) - (f+h)(x_*) \le \frac{1}{2\lambda} \|x_0 - x_*\|^2 - \frac{1}{2\lambda} \|x_k - x_*\|^2.$$

Thus, the claim of the theorem follows.