PSY9511: Seminar 8

Sequence modelling (with an emphasis on language)

Esten H. Leonardsen 13.05.24

Overview

- 1. Introduction and motivation
- 2. Preprocessing
- 3. Bag of words
- 4. Vectorization
- 5. Recurrent neural networks
- 6. Transformers

Age	Sex	Education	Salary
25	Male	12	40,000
30	Female	16	65,000
35	Male	14	55,000
40	Female	18	80,000
45	Male	16	75,000

Age	Sex	Education	Salary
25	Male	12	40,000
30	Female	16	65,000
35	Male	14	55,000
40	Female	18	80,000
45	Male	16	75,000

Age	Sex	Education	Salary
25	Male	12	40,000
30	Female	16	65,000
35	Male	14	55,000
40	Female	18	80,000
45	Male	16	75,000

Age	Sex	Education	Salary
25	Male	12	40,000
30	Female	16	65,000
35	Male	14	55,000
40	Female	18	80,000
45	Male	16	75,000

Age	Sex	Education	Salary
25	Male	12	40,000
30	Female	16	65,000
35	Male	14	55,000
40	Female	18	80,000
45	Male	16	75,000

Ш

Age

35

35 Male

The movie was great, the actors were awesome. Positive Negative

The movie was great, the actors were awesome.

La película fue genial, las actores fueron increíbles.

The movie was great, the actors were awesome.

La película fue genial, las actores fueron increíbles.

The movie was great, the actors were_____.

The movie was _____, the actors were______.

The movie was great, the actors were_____.

The movie was great, we saw it at the new Cinema in the city center, the actors were awesome.

The movie was great, we saw it at the new Cinema in the city center, right down by the restaurant where we went for my birthday that one year, the one where the clown was inside the cake, the actors were awesome.

Language modelling: Using the innate structure in language to create better models

- Classification: Predict a class for a full sequence (sentiment analysis)
- Sequence-to-sequence: Predict a sequence from another sequence (translation)
- Generative: Predict the next token in a sequence of words

Tokenization

The movie was great, the actors were awesome.

\[\sqrt{ \qq \sqrt{ \q \sq}} \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sq \sqrt{ \sq}\q \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt

Tokenization


```
The movie was great, the actors were awesome.
    [<s> "the" "movie" "was" "great" "," "the" "actors" "were" "awesome" "." <e>]
 In[1]:
         from nltk.tokenize import word_tokenize
         tokens = word tokenize(s)
         tokens = [token.lower() for token in tokens]
         tokens = ['<s>'] + tokens + ['<e>']
         print(tokens)
Out[1]:
         ['<s>', 'the', 'movie', 'was', 'great', ',', 'the', 'actors',
         'were', 'awesome', '.', '<e>']
```

Tokenization

Stemming


```
The movie was great, the actors were awesome.
     [<s> "the" "movie" "was" "great" "," "the" "actors" "were" "awesome" "." <e>]
    [<s> "The" "movie" "was" "great" "," "the" "actor" "were" "awesome" "." <e>]
 In[1]:
         from nltk.stem.snowball import SnowballStemmer
         stemmer = SnowballStemmer('english')
         stemmed = [stemmer.stem(token) for token in tokens]
         stemmed
Out[1]:
         ['<s>', 'the', 'movi', 'was', 'great', ',', 'the', 'actor',
          'were', 'awesom', '.', '<e>']
```

Stemming

Lemmatization

```
The movie was great, the actors were awesome.
     [<s> "the" "movie" "was" "great" "," "the" "actors" "were" "awesome" "." <e>]
    [<s> "The" "movie" "was" "great" "," "the" "actor" "was" "great" "." <e>]
 In[1]:
         from nltk.stem import WordNetLemmatizer
         lemmatizer = WordNetLemmatizer()
         lemmatized = [lemmatizer.lemmatize(token) for token in tokens]
         print(lemmatized)
Out[1]:
         ['<s>', 'the', 'movie', 'wa', 'great', ',', 'the', 'actor',
          'were'. 'awesome'. '.'. '<e>'l
```

Lemmatization

Stopword removal


```
The movie was great, the actors were awesome.
    [<s> "the" "movie" "was" "great" "," "the" "actors" "were" "awesome" "." <e>]
           "movie" "great" "." "actor" "awesome" "." <e>]
In[1]:
         from nltk.corpus import stopwords
         pruned = [token for token in tokens if not token in stopwords.
              words('english')]
         print(pruned)
Out[1]:
        ['<s>', 'movie', 'great', ',', 'actors', 'awesome', '.', '<e>']
```

Stopword removal

The movie was great, the actors were awesome.

\$\sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{2} \sqrt{2}

```
["", "". <e> <s> "actors" "awesome" "great" "movie" "the" "was" "were"]
0 1 2 3 4 5 6 7 8 9 10
```


Integer encoding

Integer encoding

Language preprocessing: Highlighting important parts of a sentence while hiding redundancies

- Tokenization: Splitting text into tokens
- · Stemming: Removing redundant suffixes
- · Lemmatization: Mapping words to common lemmas
- Stopword removal: Removing non-informative words
- Integer encoding: Turning words into numbers

The movie was great, the actors were awesome.

The movie was great, the actors were awesome.

The movie was great, the actors were awesome.

,		<s></s>	<6>	actors	awesome	great	movie	the	was	were
1	1	1	1	1	1	2	1	1	1	1

The movie was great, the actors were awesome.

,		<s></s>	<6>	actors	awesome	awful	great	horrible	movie	the	was	were	sentiment
1	1	1	1	1	1	0	1	0	1	2	1	1	positive
1	1	1	1	1	0	1	0	1	1	2	1	1	negative

The movie was awful, the actors were horrible.

The movie was great, the actors were awesome.

,		<s></s>	<6>	actors	awesome	awful	great	horrible	movie	the	was	were	sentiment
1	1	1	1	1	1	0	1	0	1	2	1	1	positive
1	1	1	1	1	0	1	0	1	1	2	1	1	negative

The movie was awful, the actors were horrible.

,		<s></s>	<6>	actors	awesome	awful	great	horrible	movie	the	was	were	sentiment
1	1	1	1	1	1	0	1	0	1	2	1	1	positive
1	1	1	1	1	0	1	0	1	1	2	1	1	negative

$$y = \beta_0 + \sum_i \beta_i X_i$$

http://localhost:8888/notebooks/notebooks/Bag%20of%20words%20demo.ipynb

Bag of words: Model language by using word counts (or frequencies)

- Main advantage: Simple, useful when a few key words are sufficient to determine the correct prediction
- · Main disadvantage: Does not understand word similarities

Dataset: ["This is awesome", "This is wonderful"]


```
Dataset: ["This is awesome", "This is wonderful"]
Tokens: [["this" "is" "awesome"], ["this" "is" "wonderful"]]
```



```
Dataset: ["This is awesome", "This is wonderful"]
Tokens: [["this" "is" "awesome"], ["this" "is" "wonderful"]]
Pruned: [["awesome"], ["wonderful"]]
```



```
Dataset: ["This is awesome", "This is wonderful"]
Tokens: [["this" "is" "awesome"], ["this" "is" "wonderful"]]
Pruned: [["awesome"], ["wonderful"]]
Dictionary: ["awesome", "wonderful"]
```



```
Dataset: ["This is awesome", "This is wonderful"]
```

Tokens: [["this" "is" "awesome"], ["this" "is" "wonderful"]]

Pruned: [["awesome"], ["wonderful"]]

Dictionary: ["awesome", "wonderful"]

Encoded: $\begin{bmatrix} awesome & wonderful \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$


```
Dataset: ["This is awesome", "This is wonderful"]
```

Tokens: [["this" "is" "awesome"], ["this" "is" "wonderful"]]

Pruned: [["awesome"], ["wonderful"]]

Dictionary: ["awesome", "wonderful"]

Encoded: awesome wonderful 0 0 1

Vectors: [[1, 0], [0, 1]]

Embeddings

The movie was awesome. The movie was wonderful. The movie was fantastic.

fantastic=[0.5, 0.2, -1.1, 0.7, 0.4]

The movie was awesome. The food was awesome. The book was awesome.

Word2vec: Disadvantages

I think the movie was really bad, but my friend said it was good.

I think the movie was really good, but my friend said it was bad.

Word2vec: Model words by vectors that encode their semantic content

- Main advantage: Models semantic meaning, allowing us to do mathematics with language
- Main disadvantage: Does not consider the structure innate to language

I think the movie had a great plot

I think the movie had a great plot

I think the movie had a great plot

Blackboard demo!

More blackboard demo!

LSTM Cell

https://colab.research.google.com/drive/1MHTzUMViR8vKGOI-VbZR0CYzsJMkSrJw

RNNs: Models sequences by recursively considering what it has seen so far, and what the new input token is

- Main advantage: Is able to encompass both long- and short-term dependencies
- Main disadvantage: In practice it is hard to weigh long-term versus short-term

Transformers

Transformers

The movie was great, we saw it at the new Cinema in the city center, right down by the restaurant where we went for my birthday that one year, the one where the clown was inside the cake, the actors were _____

The movie was great, we saw it at the new Cinema in the city center, right down by the restaurant where we went for my birthday that one year, the one where the clown was inside the cake, the actors were

The movie was great, we saw it at the new Cinema in the city center, right down by the restaurant where we went for my birthday that one year, the one where the clown was inside the cake, the actors were

The movie was great, the actors were_____

 $[8 \quad 7 \quad 9 \quad 6 \quad 0 \quad 8 \quad 4 \quad 10] \rightarrow ?$

$$\begin{bmatrix} 8 & 7 & 9 & 6 & 0 & 8 & 4 & 10 \end{bmatrix} \rightarrow ?$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$[8 \quad 7 \quad 9 \quad 6 \quad 0 \quad 8 \quad 4 \quad 10] \rightarrow ?$$

$$\begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}$$

$$[0 \quad 0 \quad 0 \quad 6 \quad 0 \quad 0 \quad 0]$$

The movie was great.

Transformers: Embedding

Transformers: Demo

https://huggingface.co/docs/transformers/model_doc/llama2

Transformers: Demo

http://localhost:8888/notebooks/notebooks/GPT%20Embedding%20demo.ipynb

Transformers

Transformers: Revolutionized language modelling by combining feed forward neural networks with multihead attention and positional endcodings (and infinite data and compute)

- Main advantage: Outperforms everything else for almost all language modelling tasks
- Main disadvantage: Can either be used locally, which is fidgety and requires a good computer, or via an API, which is costly and gives others access to your data

