Задача №1. Автобус

Настя стоит в поле на расстоянии s от прямой дороги, по которой от остановки с постоянным ускорением a в её сторону начинает движение автобус (рис. 1). Расстояние от остановки до девочки равно l. Через какое минимальное время τ Настя сможет оказаться рядом с автобусом, если она умеет бегать со скоростью v? Временем разгона девочки можно пренебречь.

Задача №2. Черепахи

Три черепахи, движущиеся с постоянными по модулю скоростями и все время поддерживающие курс одна на другую, в момент запуска секундомера находились в вершинах равнобедренного прямоугольного треугольника ABC с катетами длиной l (рис. 2). Скорость первой черепахи $v_1=v$, где v — известная величина, а скорости второй и третьей черепах v_2 и v_3 таковы, что в процессе их движения углы в треугольнике, образованном черепахами, не изменяются. Найдите:

- 1. время t, через которое черепахи встретятся;
- 2. модули скоростей v_2 и v_3 второй и третьей черепах;
- 3. ускорения черепах в начальный момент времени;
- 4. на каком расстоянии s от места старта первой черепахи произойдет их встреча.

Задача №3. Ап стену

На гладкой горизонтальной поверхности на расстоянии s от стены покоится шайба массой m. На нее налетает вторая такая же шайба, движущаяся перпендикулярно стене со скоростью u (рис. 3, вид сверху). Известно, что удары шайб о стену упругие, а при центральном столкновении самих шайб рассеивается доля α ($0 < \alpha < 1$) их суммарной кинетической энергии в системе отсчета их

центра масс. Постройте качественный график зависимости расстояния l между первой шайбой и стеной от времени t, отсчитываемого от момента первого столкновения шайб. Отметьте на нем характерные точки.

Задача №4. Ледяная картина

После добавления в сосуд с водой некоторого количество льда в нем устанавливается тепловое равновесие. На рисунке 4 приведена диаграмма, на которой выделены области с указанием конечного состояния содержимого сосуда в зависимости от температуры t_{π} и массы m_{π} добавленного льда.

- 1. Какая температура установится в сосуде, если в него добавить 0,5 кг льда при температуре -10 °C?
- 2. Определите начальную температуру t и массу m воды в сосуде.

Тепловыми потерями и теплоемкостью сосуда можно пренебречь. Содержимое из сосуда не выливается. Удельная теплота плавления льда $\lambda=330~\mathrm{кДж/кг}$, удельная теплоемкость льда $c_{\pi}=2100~\mathrm{Дж/(kr\cdot °C)}$, удельная теплоемкость воды $c=4200~\mathrm{Дж/(kr\cdot °C)}$.

Рис. 4

Задача №5. Электроцикл

Фрагмент электрической цепи состоит из соединенных параллельно диодов, резисторов, ключей и идеального вольтметра (рис. 5). Диоды D_1 и D_2 открываются при разных напряжениях ($U_{01} < U_{02}$). Их вольтамперная характеристика приведена на рисунке 6. На диаграмме (рис. 7) изображен циклический процесс 1-2-3-4-1, отражающий связь силы тока I, входящего в фрагмент, и показаний вольтметра U. Масштаб по оси ординат утерян, но известно, что в течение цикла сила тока I изменялась с постоянной по модулю скоростью k=1 мА/с, а количество теплоты, выделившееся на резисторах в процессе

Рис. 5

2-3, равно $Q_{23}=6.4$ Дж.

Опишите возможную последовательность действий с ключами, которая приведет к такому виду циклического процесса. Определите:

- 1. напряжения открытия диодов U_{01} и U_{02} ;
- 2. сопротивления резисторов R_1 и R_2 ;
- 3. время τ , которое длился цикл;
- 4. количество теплоты Q_{41} , выделившееся на резисторах на участке 4-1.

Рис. 6

Рис. 7