Data Mining: Introduction

Introduction to Data Mining

Data Mining vs ML vs AI

Machine Learning

Implementation Process of Data Mining

Large-scale Data is Everywhere!

 Enormous data growth in commercial and scientific datasets due to advances in data generation and collection technologies

E-Commerce

- New mantra
 - Gather whatever data you can whenever and wherever possible.

- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.

Traffic Patterns

Sensor Networks

Computational Simulations

Why Data Mining? Commercial Viewpoint

- Data Explosion: Lots of data is collected and warehoused
 - Web Data: Google stores Peta Bytes of web data.
 - Social Media: Facebook has billions of users.
 - E-commerce: Millions of daily transactions.
 - Technological Advancements: Cheaper and more powerful computers.
- Competitive Pressure is Strong
 - Intense Pressure: Stiff competition in data era.
 - Strategic Advantage: Offer better, customized services (e.g., Customer Relationship Management).

Why Data Mining? Scientific Viewpoint

Rapid Data Accumulation

- Data collected and stored at incredible speeds.
- Example: satellites spatial data collection.
- NASA archives petabytes of earth science data annually.
- Telescopes scanning the skies.
- Sky survey data.

Sky Survey Data

Biological Insights

High-throughput biological data.

Simulating the Unseen

Scientific simulations generate terabytes

fMRI Data from Brain

Gene Expression Data

Data Mining Empowers Scientists

Automating analysis of massive datasets and aiding hypothesis formation.

Surface Temperature of Earth

Great opportunities to improve productivity

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity.

Great Opportunities to Solve Society's Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

Predicting the impact of climate change

Reducing hunger and poverty by increasing agriculture production

What is Data Mining?

- Many Definitions
 - Non-trivial extraction of implicit, previously unknown and potentially useful information from data.
 - Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns.

Origins of Data Mining

- Ideas from many fields
 - machine learning/AI, pattern recognition, statistics, and database systems
- Traditional techniques unsuitable due to data that is
 - Large-scale, High dimensional
 - Heterogeneous, Complex
 - Distributed

AI,

A key component of the emerging field of data science and data-driven discovery

Data Mining Tasks

Prediction Methods

 Use some variables to predict unknown or future values of other variables.

Example:

Sales Forecasting in E-commerce

Description Methods

 Find human-interpretable patterns that describe the data.

– Example:

Analyzing historical criminals data for profiling.

Data Mining Tasks ...

Predictive Modeling: Classification

Class

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

Model for predicting credit worthiness

Find a model for class attribute as a function of the values of attributes

Classification Example

Examples of Classification Task

- Credit card transaction classification
 - Legitimate vs. fraudulent.
- Satellite data
 - □ Land cover classification (water bodies, urban areas, . etc.).
- News story categorization
 - ☐ Finance, weather, entertainment, sports, etc.
- Cyberspace security
 - Intruder identification.
- Medical diagnosis
 - ☐ Tumor cell classification (benign vs. malignant).
- Protein analysis
 - Classification of secondary structures (alpha-helix, betasheet, or random coil).

Classification Application 1: Fraud Detection

Goal

Predict and Prevent Fraud

- Approach
 - Data Collection: Use transaction and account-holder data as attributes.
 - Attribute Identification: Timing, purchase details, payment history...etc.
 - Transactions labeling: Categorize as fraud or fair.
 - Model Creation: Develop a robust classification model.
 - Real-time Monitoring: Detect fraud in live credit card transactions.

Classification Application 2: Churn prediction

Goal

Predict whether a telephone customer is likely to be lost to a competitor.

Approach

- Data Collection: Gather detailed transaction records for past and present customers.
- Attribute Identification: Explore attributes like call frequency, call locations, peak call times, financial status, marital status, etc.
- Customer Labeling: Categorize customers as loyal or disloyal.
- Model Development: Create a robust model for predicting customer loyalty.
- Real-time Monitoring: Detect potential churn among customers in real-time.

Classification Application 3

Imagine a use case and recommend a classification-based approach to resolve it.

Regression

- Predicting a continuous variable by considering the relationships with other variables, using linear or nonlinear models.
- Widely explored in statistics and neural network domains.
- Examples
 - Forecasting Sales: Predicting new product sales by analyzing advertising expenditure.
 - Wind Velocity Prediction: Estimating wind velocities using variables like temperature, humidity, and air pressure.
 - Stock Market Forecast: Predicting stock market indices through time series analysis.

Clustering

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Tan, Steinbach, Karpatne, Kumar

Applications of Cluster Analysis

Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Clustering Application 1: Market Segmentation

Goal

Segment the market into distinct customer subsets, allowing precise targeting with tailored marketing strategies.

Approach:

- Data Collection: Gather diverse customer attributes, including geographical and lifestyle information.
- Customer Clustering: Identify clusters of customers who share similar attributes and characteristics.
- Clustering Evaluation: Assess the quality of clustering by analyzing buying patterns within and across clusters.

Clustering Application 2: Document Clustering

Goal

Identify groups of documents that exhibit similarity based on their important words.

Approach

- Term Identification: Recognize frequently occurring terms within each document.
- Similarity Measure: Create a similarity metric by considering term frequencies across documents.
- Clustering Technique: Utilize the similarity measure to cluster documents into cohesive groups.

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Juice, Coke, Milk
2	Juice, Bread
3	Juice, Coke, Diaper, Milk
4	Juice, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Juice}
```

Association Analysis: Applications

Market-basket analysis

 Rules are used for sales promotion, shelf management, and inventory management

Telecommunication alarm diagnosis

 Rules are used to find combination of alarms that occur together frequently in the same time period

Medical Informatics

 Rules are used to find combination of patient symptoms and test results associated with certain diseases

Deviation/Anomaly/Change Detection

Detect significant deviations from normal behavior

Applications:

- Credit Card Fraud Detection
- Network Intrusion Detection
- Identify anomalous behavior from sensor networks for monitoring and surveillance.
- Detecting changes in th

Motivating Challenges

- Scalability: Handling Expansive Data
 - Efficiently managing and processing massive datasets.
- High Dimensionality: Dealing with Multidimensional Data
 - Addressing complex data structures with numerous attributes.
- Heterogeneous and Complex Data: Managing Data Variety
 - Handling diverse data types and intricate data structures.
- Data Ownership and Distribution: Navigating Data Access
 - Tackling geographically distributed data owned by multiple entities.
 - Challenges include minimizing communication, consolidating results, and ensuring data security and privacy.
- Non-traditional Analysis: Adapting to Advanced Techniques
 - Statical methodology is unable to deal with current data nature.