lab5-rishita-143

October 25, 2024

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import os
import random
```

1 Loading the dataset

```
[2]: # Define paths for your data folders

TRAIN_DIR = 'C:/Users/shikh/Desktop/5th trimester/NNDL/seg_train/seg_train'

TEST_DIR = 'C:/Users/shikh/Desktop/5th trimester/NNDL/seg_test/seg_test'

PRED_DIR = 'C:/Users/shikh/Desktop/5th trimester/NNDL/seg_pred/seg_pred'
```

```
[3]: # Constants
IMG_HEIGHT = 150
IMG_WIDTH = 150
BATCH_SIZE = 32
NUM_CLASSES = 6
EPOCHS = 20

# Class mapping
class_names = {
    'buildings': 0,
    'forest': 1,
    'glacier': 2,
    'mountain': 3,
    'sea': 4,
    'street': 5
}
```

2 Displaying few images from the dataset(training set)

```
[4]: from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img,__
     →img_to_array
     # Function to display random samples from each class
     def display_sample_images():
         plt.figure(figsize=(15, 10))
         for idx, class_name in enumerate(class_names.keys()):
             # Get path to class folder in training set
             class_path = os.path.join(TRAIN_DIR, class_name)
             # Get random image from class
             images = os.listdir(class_path)
             random_image = random.choice(images)
             img_path = os.path.join(class_path, random_image)
             # Load and display image
             img = load img(img path)
             plt.subplot(2, 3, idx + 1)
             plt.imshow(img)
             plt.title(f'Class: {class_name}')
             plt.axis('off')
         plt.tight_layout()
         plt.show()
     # Display sample images
     print("Displaying sample images from each class:")
     display_sample_images()
```

Displaying sample images from each class:

3 Model Architecture:

```
[5]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,
     →Dropout, BatchNormalization
     from tensorflow.keras.preprocessing.image import ImageDataGenerator
     model = Sequential()
     # First Convolutional Layer
     model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
     model.add(MaxPooling2D(pool_size=(2, 2)))
     model.add(BatchNormalization())
     # Second Convolutional Layer
     model.add(Conv2D(64, (3, 3), activation='relu'))
     model.add(MaxPooling2D(pool_size=(2, 2)))
     model.add(BatchNormalization())
     # Third Convolutional Layer
     model.add(Conv2D(128, (3, 3), activation='relu'))
     model.add(MaxPooling2D(pool_size=(2, 2)))
```

```
model.add(BatchNormalization())

# Flatten and Fully Connected Layers
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(6, activation='softmax'))
```

c:\Users\shikh\AppData\Local\Programs\Python\Python312\Lib\sitepackages\keras\src\layers\convolutional\base_conv.py:99: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

```
super().__init__(
```

- Three convolutional layers are used with ReLU activation and MaxPooling.
- Batch normalization is applied to speed up training and make it more stable.
- Dropout helps prevent overfitting by randomly disabling some neurons.

```
[6]: model.compile(optimizer='adam', loss='categorical_crossentropy', use metrics=['accuracy'])
```

- Adam optimizer is used for efficient gradient-based optimization.
- Categorical crossentropy is the loss function as this is a multi-class classification problem.

```
[7]: # Data augmentation for training set
     train_datagen = ImageDataGenerator(
         rescale=1./255
     )
     # Data generator for validation set (without augmentation)
     test_datagen = ImageDataGenerator(rescale=1./255)
     # Load training and validation data
     train_generator = train_datagen.flow_from_directory(
         TRAIN_DIR,
         target_size=(IMG_HEIGHT, IMG_WIDTH),
         batch_size=BATCH_SIZE,
         class_mode='categorical'
     validation_generator = test_datagen.flow_from_directory(
         TEST DIR,
         target_size=(IMG_HEIGHT, IMG_WIDTH),
         batch_size=BATCH_SIZE,
         class mode='categorical'
     )
```

Found 14034 images belonging to 6 classes. Found 3000 images belonging to 6 classes.

- Data augmentation in train_datagen introduces variability and prevents overfitting.
- Both generators rescale pixel values to range [0, 1] for faster learning.

4 Model Training:

```
[8]: # Train the model
history = model.fit(
    train_generator,
    steps_per_epoch=None,
    epochs=EPOCHS,
    validation_data=validation_generator,
    validation_steps=None
}

Epoch 1/20
c:\Users\shikh\AppData\Local\Programs\Python\Python312\Lib\site-
    packages\keras\src\trainers\data_adapters\py_dataset_adapter.py:122:
    UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in
    its constructor. `**kwargs` can include `workers`, `use_multiprocessing`,
```

`max_queue_size`. Do not pass these arguments to `fit()`, as they will be

```
self. warn if super not called()
                    152s 341ms/step -
accuracy: 0.4429 - loss: 5.0966 - val accuracy: 0.4920 - val loss: 2.2417
Epoch 2/20
439/439
                    285s 650ms/step -
accuracy: 0.5745 - loss: 1.2402 - val_accuracy: 0.7207 - val_loss: 0.8987
Epoch 3/20
439/439
                    325s 738ms/step -
accuracy: 0.6455 - loss: 0.9499 - val_accuracy: 0.7397 - val_loss: 0.8335
Epoch 4/20
439/439
                    862s 2s/step -
accuracy: 0.6707 - loss: 0.8868 - val_accuracy: 0.7373 - val_loss: 0.8644
Epoch 5/20
439/439
                    210s 477ms/step -
accuracy: 0.7055 - loss: 0.8192 - val_accuracy: 0.4853 - val_loss: 2.5290
Epoch 6/20
439/439
                    130s 297ms/step -
accuracy: 0.7471 - loss: 0.7086 - val_accuracy: 0.7550 - val_loss: 0.7245
Epoch 7/20
439/439
                    185s 421ms/step -
accuracy: 0.7646 - loss: 0.6454 - val_accuracy: 0.7717 - val_loss: 0.6527
Epoch 8/20
```

```
439/439
                   145s 330ms/step -
accuracy: 0.7846 - loss: 0.6062 - val_accuracy: 0.7897 - val_loss: 0.6331
Epoch 9/20
439/439
                   283s 645ms/step -
accuracy: 0.7883 - loss: 0.5758 - val accuracy: 0.7840 - val loss: 0.6630
Epoch 10/20
439/439
                   103s 234ms/step -
accuracy: 0.8061 - loss: 0.5239 - val_accuracy: 0.7467 - val_loss: 0.8786
Epoch 11/20
439/439
                   112s 255ms/step -
accuracy: 0.8282 - loss: 0.4807 - val_accuracy: 0.8160 - val_loss: 0.5720
Epoch 12/20
439/439
                   111s 252ms/step -
accuracy: 0.8456 - loss: 0.4252 - val_accuracy: 0.8203 - val_loss: 0.5436
Epoch 13/20
439/439
                   117s 266ms/step -
accuracy: 0.8488 - loss: 0.4085 - val_accuracy: 0.7897 - val_loss: 0.7170
Epoch 14/20
439/439
                   335s 763ms/step -
accuracy: 0.8657 - loss: 0.3707 - val_accuracy: 0.7027 - val_loss: 0.8941
Epoch 15/20
439/439
                   107s 243ms/step -
accuracy: 0.8773 - loss: 0.3379 - val_accuracy: 0.7823 - val_loss: 0.6937
Epoch 16/20
439/439
                   683s 2s/step -
accuracy: 0.8813 - loss: 0.3104 - val accuracy: 0.8187 - val loss: 0.7942
Epoch 17/20
439/439
                   395s 901ms/step -
accuracy: 0.8971 - loss: 0.2854 - val_accuracy: 0.8017 - val_loss: 0.7633
Epoch 18/20
439/439
                   104s 236ms/step -
accuracy: 0.9020 - loss: 0.2725 - val_accuracy: 0.7743 - val_loss: 0.7907
Epoch 19/20
439/439
                   109s 248ms/step -
accuracy: 0.9168 - loss: 0.2411 - val accuracy: 0.8343 - val loss: 0.6153
Epoch 20/20
439/439
                   112s 255ms/step -
accuracy: 0.9145 - loss: 0.2362 - val_accuracy: 0.8013 - val_loss: 0.6799
```

- The model trains over a specified number of epochs (20) to improve accuracy.
- steps_per_epoch and validation_steps are used to iterate over the entire dataset.

5 Evaluate the model

```
[9]: test_loss, test_accuracy = model.evaluate(validation_generator)
print(f'Test accuracy: {test_accuracy:.2f}')
```

94/94 6s 63ms/step -

accuracy: 0.7981 - loss: 0.7125

Test accuracy: 0.80

• Test accuracy gives an indication of how well the model generalizes to unseen data.

6 Plot Accuracy and Loss Curves

```
[10]: # Plot training & validation accuracy values
      plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'], label='Train Accuracy')
      plt.plot(history.history['val_accuracy'], label='Val Accuracy')
      plt.xlabel('Epoch')
      plt.ylabel('Accuracy')
      plt.legend()
      plt.title('Model Accuracy')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'], label='Train Loss')
      plt.plot(history.history['val_loss'], label='Val Loss')
      plt.xlabel('Epoch')
      plt.ylabel('Loss')
      plt.legend()
      plt.title('Model Loss')
      plt.show()
```


- These plots show how the model accuracy and loss evolve over time.
- Helps to spot overfitting (if validation loss starts increasing while training loss decreases).

```
[11]: from sklearn.metrics import confusion_matrix, classification_report
      import numpy as np
      import seaborn as sns
      # Generate predictions and true labels
      Y_pred = model.predict(validation_generator)
      y_pred = np.argmax(Y_pred, axis=1)
      y_true = validation_generator.classes
      # Confusion matrix
      cm = confusion_matrix(y_true, y_pred)
      plt.figure(figsize=(8, 6))
      sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names.
       →keys(), yticklabels=class_names.keys())
      plt.xlabel('Predicted')
      plt.ylabel('True')
      plt.title('Confusion Matrix')
      plt.show()
      # Classification report
      print(classification_report(y_true, y_pred, target_names=class_names.keys()))
```

94/94 6s 62ms/step

	precision	recall	f1-score	support
buildings	0.16	0.14	0.15	437
forest	0.12	0.12	0.12	474
glacier	0.20	0.15	0.17	553
mountain	0.18	0.20	0.19	525
sea	0.16	0.17	0.16	510
street	0.16	0.20	0.18	501
accuracy			0.16	3000
macro avg	0.16	0.16	0.16	3000
weighted avg	0.17	0.16	0.16	3000

- The confusion matrix shows the distribution of true vs. predicted labels.
- The classification report includes precision, recall, and F1-score for each class.

7 5. Optimization:

```
[22]: # Enhanced data augmentation for training set
      train_datagen = ImageDataGenerator(
          rescale=1./255,
          rotation_range=30,
                                        # Rotate images by up to 30 degrees
          width_shift_range=0.2,  # Horizontal shift by up to 20%
height_shift_range=0.2,  # Vertical shift by up to 20%
          shear_range=0.2,
                                       # Shear intensity (slanting)
          zoom_range=0.2,
                                       # Zoom in by up to 20%
      )
[23]: # No augmentation for validation set
      test_datagen = ImageDataGenerator(rescale=1./255)
[24]: # Load training and validation data with new augmentation settings
      train_generator = train_datagen.flow_from_directory(
          TRAIN_DIR,
          target_size=(IMG_HEIGHT, IMG_WIDTH),
          batch_size=32,
          class_mode='categorical'
      validation_generator = test_datagen.flow_from_directory(
          TEST_DIR,
          target size=(IMG HEIGHT, IMG WIDTH),
          batch_size=32, # Changed the batch size to 16
          class_mode='categorical'
```

Found 14034 images belonging to 6 classes. Found 3000 images belonging to 6 classes.

)

```
[25]: from tensorflow.keras.optimizers import Adam

# Rebuild model with more filters per layer
model = Sequential()

# First Convolutional Layer with 32 filters
model.add(Conv2D(64, (3, 3), activation='relu', input_shape=(IMG_HEIGHT,u_MIMG_WIDTH, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())

# Second Convolutional Layer with 64 filters
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
```

```
model.add(BatchNormalization())
      # Third Convolutional Layer with 128 filters
      model.add(Conv2D(256, (3, 3), activation='relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))
      model.add(BatchNormalization())
      # Flatten and Fully Connected Layers
      model.add(Flatten())
      model.add(Dense(256, activation='relu'))
      model.add(Dropout(0.5)) # To avoid overfitting
      model.add(Dense(NUM_CLASSES, activation='softmax'))
      # Compile the model with a lower learning rate
      model.compile(optimizer=Adam(learning_rate=0.0001),__
       →loss='categorical_crossentropy', metrics=['accuracy'])
[26]: | # Train the model with enhanced data augmentation and new hyperparameters
      history = model.fit(
          train_generator,
          steps_per_epoch=None,
          epochs=EPOCHS,
          validation_data=validation_generator,
          validation_steps=None
      )
     Epoch 1/20
     439/439
                         419s 949ms/step -
     accuracy: 0.5080 - loss: 2.3390 - val_accuracy: 0.3463 - val_loss: 4.6967
     Epoch 2/20
     439/439
                         690s 2s/step -
     accuracy: 0.6032 - loss: 1.3870 - val accuracy: 0.6673 - val loss: 1.6094
     Epoch 3/20
     439/439
                         1099s 3s/step -
     accuracy: 0.6324 - loss: 1.2374 - val_accuracy: 0.7187 - val_loss: 1.2998
     Epoch 4/20
     439/439
                         2578s 6s/step -
     accuracy: 0.6618 - loss: 1.0590 - val_accuracy: 0.7307 - val_loss: 1.0901
     Epoch 5/20
     439/439
                         368s 836ms/step -
     accuracy: 0.6845 - loss: 0.9403 - val_accuracy: 0.7493 - val_loss: 0.9147
     Epoch 6/20
     439/439
                         399s 906ms/step -
     accuracy: 0.6770 - loss: 0.9391 - val_accuracy: 0.7850 - val_loss: 0.7501
     Epoch 7/20
                         424s 965ms/step -
     439/439
     accuracy: 0.7047 - loss: 0.8536 - val_accuracy: 0.7507 - val_loss: 1.0833
```

```
Epoch 8/20
     439/439
                         409s 928ms/step -
     accuracy: 0.7130 - loss: 0.8138 - val_accuracy: 0.7300 - val_loss: 0.9598
     Epoch 9/20
     439/439
                         426s 968ms/step -
     accuracy: 0.7120 - loss: 0.8094 - val_accuracy: 0.7780 - val_loss: 1.0037
     Epoch 10/20
     439/439
                         522s 1s/step -
     accuracy: 0.7274 - loss: 0.7611 - val_accuracy: 0.7423 - val_loss: 1.0398
     Epoch 11/20
     439/439
                         431s 980ms/step -
     accuracy: 0.7367 - loss: 0.7440 - val_accuracy: 0.6960 - val_loss: 1.3237
     Epoch 12/20
     439/439
                         441s 1s/step -
     accuracy: 0.7279 - loss: 0.7804 - val_accuracy: 0.7630 - val_loss: 0.8323
     Epoch 13/20
     439/439
                         433s 983ms/step -
     accuracy: 0.7472 - loss: 0.7152 - val_accuracy: 0.7630 - val_loss: 1.0701
     Epoch 14/20
     439/439
                         562s 1s/step -
     accuracy: 0.7516 - loss: 0.7199 - val_accuracy: 0.8110 - val_loss: 0.6708
     Epoch 15/20
     439/439
                         645s 1s/step -
     accuracy: 0.7602 - loss: 0.6774 - val_accuracy: 0.7660 - val_loss: 0.8668
     Epoch 16/20
     439/439
                         1023s 2s/step -
     accuracy: 0.7616 - loss: 0.6758 - val_accuracy: 0.7863 - val_loss: 0.7522
     Epoch 17/20
     439/439
                         1084s 2s/step -
     accuracy: 0.7665 - loss: 0.6589 - val_accuracy: 0.8157 - val_loss: 0.5731
     Epoch 18/20
     439/439
                         447s 1s/step -
     accuracy: 0.7723 - loss: 0.6442 - val_accuracy: 0.8213 - val_loss: 0.6117
     Epoch 19/20
     439/439
                         654s 1s/step -
     accuracy: 0.7738 - loss: 0.6486 - val_accuracy: 0.8103 - val_loss: 0.6412
     Epoch 20/20
     439/439
                         410s 931ms/step -
     accuracy: 0.7752 - loss: 0.6403 - val_accuracy: 0.8070 - val_loss: 0.6748
[27]: # Evaluate the model
      test_loss, test_accuracy = model.evaluate(validation_generator)
      print(f'Optimized Test accuracy: {test_accuracy:.2f}')
      # Plot training & validation accuracy/loss values
      plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
```

```
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Model Accuracy')

plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.xlabel('Epoch')
plt.xlabel('Loss')
plt.legend()
plt.title('Model Loss')
```

94/94 22s 238ms/step - accuracy: 0.8070 - loss: 0.7005
Optimized Test accuracy: 0.81

• After Optimizing the accuracy we get on the test data is **0.81**

```
[28]: from sklearn.metrics import confusion_matrix, classification_report
import numpy as np
import seaborn as sns

# Generate predictions and true labels
Y_pred = model.predict(validation_generator)
y_pred = np.argmax(Y_pred, axis=1)
y_true = validation_generator.classes
```

94/94 18s 187ms/step

	precision	recall	f1-score	support
buildings	0.13	0.16	0.15	437

forest	0.15	0.17	0.16	474
glacier	0.16	0.15	0.16	553
mountain	0.18	0.20	0.19	525
sea	0.15	0.12	0.13	510
street	0.15	0.13	0.14	501
accuracy			0.15	3000
macro avg	0.15	0.16	0.15	3000
weighted avg	0.16	0.15	0.15	3000