Advanced Digital Signal Processing (ADSP)

徐林

ADSP

Stochastic process: stationary

Stationary of order N

$$f_x[x_1, ..., x_N; n_1, ..., n_N] = f_x[x_1, ..., x_N; n_1 + k, ..., n_N + k] \quad \forall k$$

Strict-sense stationary (SSS)

x[n] is stationary for all orders N=1, 2,

An IID sequence is SSS.

Wide-sense stationary (WSS): stationary up to order 2

- Mean is a constant independent of n: $E\{x[n]\} = \mu_x$
- Variance is a constant independent of n: $var\{x[n]\} = \sigma_x^2$
- Autocorrelation depends only on l ($l = n_1 n_2$) $r_r[n_1, n_2] = r_r[n_1 n_2] = r_r[l]$

Stochastic process: stationary

Example:

Let w[n] be a zero-mean, uncorrelated Gaussian random sequence with variance $\sigma^2[n] = 1$.

- a. Characterize the random sequence w[n].
- b. Define x[n] = w[n] + w[n-1]. Determine the mean and autocorrelation of x[n]. Also characterize x[n].

ADSP

Stochastic process: stationary

Wide-sense stationary (WSS)

Mean : $\mu_x = E\{x[n]\}$

Variance : $\sigma_x^2 = E\{(x[n] - \mu_x)^2\} = E\{x^2[n]\} - \mu_x^2$

Autocorrelation : $r_x[l] = E\{x[n] \cdot x[n-l]\} = E\{x[n+l]x[n]\}$

Autocovariance : $\gamma_x[l] = E\{(x[n] - \mu_x) \cdot (x[n-l] - \mu_x)\}$

$$= E\{(x[n+l] - \mu_x) \cdot (x[n] - \mu_x)\} = r_x[l] - \mu_x^2$$

Properties $r_x[l]$

$$r_x[0] = E\{x^2[n]\} = \sigma_x^2 + \mu_x^2 \ge 0$$

$$r_x[0] \ge r_x[l]$$
 $\mathbb{E}\{x^2[n]\}$: Power of $x[n]$

$$\frac{r_{x}[l] = r_{x}[-l]}{\mathbb{E}[(x [n] - x [n-l])^{2}] \geq 0} \geq 2r_{x}[0] \geq 2r_{x}[l]}$$

$$\mathbb{E}[(x [n] - x [n-l])^{2}] \geq 0 \geq 2r_{x}[0] \geq 2r_{x}[l]$$

$$\mathbb{E}[(x [n] - x [n-l])^{2}] \geq 0 \geq 2r_{x}[0] \geq 2r_{x}[l]$$

ADSP

Stochastic process: stationary

Joint wide-sense stationary (WSS) 接合化件學

x[n] is WSS, y[n] is WSS, and

Cross-correlation :
$$r_{xy}[l] = E\{x[n] \cdot y[n-l]\}$$

$$r_{xy}[l] = E\{x[n] \cdot y[n-l]\}$$

$$r_{xy}[l] = E\{x[n] \cdot y[n-l]\} \neq E\{x[n+l] \cdot y[n]\}$$

Cross-covariance :
$$\gamma_{xy}[l] = E\{(x[n] - \mu_x) \cdot (y[n-l] - \mu_y)\}$$

= $r_{xy}[l] - \mu_x \cdot \mu_y$

Normalized
$$\gamma_{xy}$$
 : $\rho_{xy}[l] = \frac{\gamma_{xy}[l]}{\sigma_x \cdot \sigma_y}$

ADSP

Stochastic process: ergodicity たんかな

- Ensemble averages: $E\{\cdot\}$
- Time averages: $\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} (\cdot)$
- Ergodic: $E\{\cdot\} = \lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} (\cdot)$ Ensemble averages = Time averages
- In practice: $E\{\cdot\} = \frac{1}{2N+1} \sum_{n=-N}^{N} (\cdot)$

ADSP

Stochastic process: ergodicity

Mean :
$$\hat{\mu}_x = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

Variance :
$$\hat{\sigma}_x^2 = \frac{1}{N} \sum_{n=0}^{N-1} (x[n] - \hat{\mu}_x)^2 = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n] - \hat{\mu}_x^2$$

$$\text{Autocorrelation} \quad : \quad \hat{r}_x[l] = \frac{1}{N} \sum_{n=0}^{N-1-|l|} x[n]x[n+l] \quad \text{for} \quad |l| \leq L-1$$

- Only WSS can be ergodic = NATION WAS decided and the second control of the second cont
- WSS does not imply ergodicity of any kind

ADSP

Stochastic process: ergodicity

Joint ergodicity

$$\begin{array}{ll} \textbf{Cross-covariance} &:& \hat{\gamma}_{xy}[l] = \frac{1}{N} \sum_{n=0}^{N-1-|l|} (x[n] - \hat{\mu}_x) (y[n+l] - \hat{\mu}_y) \\ &= \hat{r}_{xy}[l] - \hat{\mu}_x \cdot \hat{\mu}_y \end{array}$$

Normalized
$$\hat{\gamma}_{xy}$$
 : $\hat{
ho}_{xy}[l] = \frac{\hat{\gamma}_{xy}[l]}{\hat{\sigma}_x \cdot \hat{\sigma}_y}$

Part A: Stochastic signal processing 上海科技大学 Shanghai Tech University

ADSP

Power spectral density (PSD) 均值为0.保证收敛

PSD and $r_x(l)$ DTFT pair

$$x[n]$$
 stationary, $\mu_x = 0$

$$P_{x}(e^{j\omega}) = \sum_{l=-\infty}^{\infty} r_{x}[l]e^{-j\omega l} \quad o - o \quad r_{x}[l] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{x}(e^{j\omega}) e^{j\omega l} d\omega$$
operties PSD:

Properties PSD:

- $P_{x}(e^{j\omega})$ real-valued periodic function of frequency (period 2π)
- x[n] real, PSD even: $P_x(e^{j\omega}) = P_x(e^{-j\omega})$ $\gamma_x(l) = \gamma_x(-l)^*$
- PSD nonnegative $P_{x}(e^{j\omega}) \geq 0$
- Average power: $\frac{1}{2\pi} \int_{-\pi}^{\pi} P_x(e^{j\omega}) d\omega = r_x(0) = \mathbb{E}\{|x[n]|^2\} \ge 0$

Example: $r_x[l] = a^{|l|}$ with |a| < 1. Calculate $P_x(e^{j\omega})$

Estimate PSD:

$$\{\hat{r}_{\chi}[l]\}|_{l=-(L-1)}^{L-1} \qquad \hat{P}_{\chi}\left(e^{j\omega}\right) = \mathrm{fft}(\hat{r}_{\chi}[l], M) \text{ with } M \geq 2L-1$$

ADSP

Power spectral density (PSD) $\gamma_{w} = E[(w \ln 1 - u_{*})(w \ln - l] - u_{*})$

白噪声: 察均值 宜平稳,不相关

White noise: $w[n] \sim WN(\mu_w, \sigma_w^2)$

(to, 不相关 Yw[l]= 以;=。

爱华新公

 $E\{w[n]\} = \mu_w : \circ \quad \text{and} \quad r_w[l] = E(w[n]w[n-l]) = \sigma_w^2 \, \delta(l) + \rho$ $P_w(e^{j\omega}) = \sigma_w^2 \quad \forall \omega \quad \text{in the parameter } h \text{ in the parameter }$

White Gaussian noise:

w[n] is white and Gaussian, $w[n] \sim WGN(\mu_w, \sigma_w^2)$ 特合為斯分布的自义为

IID:

• w[n] are independently and identically distributed with mean μ_w and variance σ_w^2 , $w[n] \sim \text{IID}(\mu_w, \sigma_w^2)$ 2. (1)

ADSP

Power spectral density (PSD)

Cross-Power spectral density

Zero-mean, joint stationary

$$P_{xy}(e^{j\omega}) = \sum_{l=-\infty}^{\infty} r_{xy}[l]e^{-j\omega l} \quad \text{o-} \quad r_{xy}[l] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{xy}(e^{j\omega}) e^{j\omega l} d\omega$$
$$r_{xy}[l] = r_{yx}^* [-l] \qquad \qquad P_{xy}(e^{j\omega}) = P_{yx}^*(e^{j\omega})$$

Coherence function (normalized cross-PSD):

$$C_{xy}(e^{j\omega}) \triangleq \frac{P_{xy}(e^{j\omega})}{\sqrt{P_{x}(e^{j\omega})}\sqrt{P_{y}(e^{j\omega})}}$$

Properties coherence function:

- $0 \le |C_{xy}(e^{j\omega}) \le 1$
- $C_{xy}(e^{j\omega}) = 1$: x[n] = y[n]
- $C_{xy}(e^{j\omega}) = 0$: x[n] and y[n] not correlated

THANKS!

