Chapter 3 Solving Problems by Searching

Jane Hsu National Taiwan University

Acknowledgements: This presentation is created by Jane hsu based on the lecture slides from *The Artificial Intelligence: A Modern Approach* by Russell & Norvig, a PowerPoint version by Min-Yen Kan, as well as various materials from the web.

Outline

- Informed (Heuristic) Search Strategies
 - Best-first search
 - Greedy best-first search
 - A* search
- Heuristic Functions
 - Relaxed problems
 - Pattern database

Romania with Step Costs

traight-line distanc	e
Bucharest	
\rad	366
Bucharest	0
Craiova	160
Oobreta	242
Eforie .	161
	176
agaras Siurgiu	77
lirsova	151
asi	226
ugoj	244
fehadia	241
Veamt	234
Oradea	380
itesti	10
Rimnicu Vilcea	193
Sibiu	253
limisoara	329
Jrziceni	80
/aslui	199
Zerind	374
	277

Best-First Search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node
- Implementation:
- Order the nodes in the fringe in decreasing order of desirability
- Special cases:
 - greedy best-first search
 - A* search

Greedy Best-First Search

- □ Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

Greedy best-first search expands the node that appears to be closest to goal

Map of Manhattan

How would you find a path from S to G?

Best-First Search

- □ The Manhattan distance ($\Delta x + \Delta y$) is an estimate of the distance to the goal
 - It is a heuristic function
- Best-First Search
 - Order nodes in priority queue to minimize estimated distance to the goal h(n)
- Compare w/ Dijkstra
 - Order nodes in priority queue to minimize actual distance from the start

Best First in Action

How would you find a path from S to G?

Problem 1: Led Astray

Eventually will expand vertex to get back on the right track

Problem 2: Optimality

- With Best-First Search, are you guaranteed a shortest path is found when
 - goal is first seen?
 - when goal is removed from priority queue (as with Dijkstra?)

Sub-Optimal Solution

No! Goal is by definition at distance 0: will be removed from priority queue immediately, even if a shorter path exists!

Properties of Greedy Best-First Search

- Complete? No can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt →
- <u>Time?</u> O(b^m), but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory
- Optimal? No

Synergy?

- Dijkstra / Breadth First guaranteed to find optimal solution
- Best First often visits far fewer vertices, but may not provide optimal solution

• Can we get the best of both?

A* Search

- Idea: avoid expanding paths that are already expensive
- □ Evaluation function f(n) = g(n) + h(n)
 - $g(n) = \cos t$ so far to reach n
 - h(n) = estimated cost from n to goal
 - f(n) = estimated total cost of path through n to goal

vertex	g(n)	h(n)	f(n)
52 nd & 9 th	0	5	5

vertex	g(n)	h(n)	f(n)
52 nd & 4 th	5	2	7
51st & 8th	2	3	5
50 th & 9 th	2	5	7

vertex	g(n)	h(n)	f(n)
52 nd & 4 th	5	2	7
51st & 7th	3	2	5
50 th & 9 th	2	5	7
50 th & 8 th	3	4	7

vertex	g(n)	h(n)	f(n)
52 nd & 4 th	5	2	7
51st & 6th	4	1	5
50 th & 9 th	2	5	7
50 th & 8 th	3	4	7
50 th & 7 th	4	3	7

vertex	g(n)	h(n)	f(n)
52nd & 4th	5	2	7
51st & 5th	5	0	5
50 th & 9 th	2	5	7
50 th & 8 th	3	4	7
50 th & 7 th	4	3	7

vertex	g(n)	h(n)	f(n)
52 nd & 4 th	5	2	7
50 th & 9 th	2	5	7
50 th & 8 th	3	4	7
50 th & 7 th	4	3	7

DONE!

What Would Dijkstra Have Done?

Heuristic Search 37

Admissible Heuristics

- □ A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- □ Theorem: If *h*(*n*) is admissible, A* using TREE-SEARCH is optimal.

Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

$$G_2) = g(G_2)$$

$$g(G_2) > g(G)$$

$$\Box f(G) = g(G)$$

$$\Box f(G_2) > f(G)$$

since
$$h(G_2) = 0$$

since
$$h(G) = 0$$

from above

Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

from above

- $f(G_2) > f(G)$
 - $h(n) \le h^*(n)$ since h is admissible
- $g(n) + h(n) \leq g(n) + h^*(n)$
- $f(n) \leq f(G)$
- □ Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Optimality of A*

- A* expands nodes in order of increasing f value
 - Gradually adds "f-contours" of nodes
 - Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$
 - All nodes_with $f(n) > C^*$ (optimal solution) are pruned.

Properties of A*

- □ Complete? Yes (unless there are infinitely many nodes with $f \le f(G)$)
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Properties of A*

- Complete? Yes assume finitely many nodes with f(n) ≤ f(G)
- Optimal? Yes
- Efficient?
 - A* is optimally efficient for any given heuristic function. i.e. no other optimal algorithm is guaranteed to expand fewer nodes than A*.
- <u>Time?</u> Exponential
- Space? Exponential (all nodes in memory)
- Theorem: The search space of A* grows exponentially unless the error in the heuristic function grows no faster than the logarithm of the actual path cost. [p.101]

Question?

Memory-Bounded Heuristic Search

- Iterative deepening A*
 - Cutoff: f-cost
 - Not suitable for real-valued costs
 - Space:
- Recursive best-first search
 - Keeping track of the f-value of the best alternative path from any ancestor of the current node.
 - Linear space

RBFS (from AIMA)

```
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
   RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), \infty)
function RBFS(problem, node, f_{-}limit) returns a solution, or failure and a new f_{-}cost limit
   if Goal Test[problem](state) then return node
    successors \leftarrow \text{EXPAND}(node, problem)
   if successors is empty then return failure, \infty
   for each s in successors do
       f[s] \leftarrow \max(g(s) + h(s), f[node])
   repeat
       best \leftarrow the lowest f value node in successors
       if f[best] > f\_hmit then return failure, f[best]
       alternative \leftarrow the second-lowest f-value among successors
       result, f[best] \leftarrow RBFS(problem, best, min(f\_limit, alternative))
       if result \neq failure then return result
```

SMA* Simplified Memory-bounded A*

- Expand the (newest) best leaf until memory is full.
- Drop the (oldest) worst leaf node (highest f-value)
- Back up the value of the "forgotten" node to its parent.
- Regenerate the sub-tree only when all other paths look worse.
- Complete? If any reachable solution exists.
- Optimal? If any optimal solution is reachable.

Consistent Heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n,a,n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$

i.e., f(n) is non-decreasing along any path.

□ Theorem: If *h(n)* is consistent, A* using GRAPH-SEARCH is optimal.

8-Puzzle

- Convert the *initial* configuration into the *goal* configuration by moving the tiles.
- Legal moves:
 - Move any tile to adjacent empty square

Start State

Goal State

Admissible Heuristics

E.g., for the 8-puzzle:

 $h_1(n) = number of misplaced tiles$

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7	2	4		
5		Б		
8	3	1		
Start State				

 $\Box h_1(S) = ?$

$$b_2(S) = ?$$

Admissible Heuristics

E.g., for the 8-puzzle:

 $h_1(n) = number of misplaced tiles$

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Goal State

$$h_1(S) = ?8$$

$$h_2(S) = ?3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

Dominance

- □ If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- \square then h_2 dominates h_1
- h_2 is better for search
- Typical search costs (average number of nodes expanded):

```
□ d=12 IDS = 3,644,035 nodes

A^*(h_1) = 227 nodes

A^*(h_2) = 73 nodes

□ d=24 IDS = too many nodes

A^*(h_1) = 39,135 nodes

A^*(h_2) = 1,641 nodes
```

Importance of Heuristics

7	2	3
4	1	6
8	5	

- h1 = number of tiles in the wrong place
- h2 = sum of distances of tiles from correct location

D	IDS	A*(h1)	A*(h2)
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	364404	227	73
14	3473941	539	113
18		3056	363
24		39135	1641

Heuristic Search

Jane Hsu

Inventing Heuristic Functions

- Relaxed problems: the cost of an exact solution to a relaxed problem is often a good heuristic for the original problem. e.g.
 - A if B and C
 - A if B
 - A if C
 - A
- Composite heuristics
 - $h(n) = \max (h_1(n),...,h_m(n))$
- Weighted evaluation function
 - $f_w(n) = (1-w)g(n) + w h(n)$
- Learn the coefficients for features of a state
 - $h(n) = c_1 x_1(n) + ... + c_k x_k(n)$
- Statistical information
- Search cost
 - Good heuristics should be efficiently computable.

Relaxed Problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- Original: move any tile to adjacent empty square
- Relaxed problems:
 - Move from A to B, if A is adjacent to B.
 - Manhattan distance
 - Move from A to B, if B is empty.
 - Gaschnig's heuristic (1979)
 - Move from A to B. e.g. a tile can be moved to anywhere
 - Misplaced tiles

Composite Heuristics

 \Box Given a collection of admissible heuristics $h_1...h_n$ for a problem, and none of them dominates any of the others, which should we choose?

Finding Optimal Solutions

- Input: A random solvable initial state
- Output: A shortest sequence of moves that maps the initial state to the goal state

- Generalized sliding-tile puzzle is NP Complete (Ratner and Warmuth, 1986)
 - People can't find optimal solutions.
 - Progress measured by size of problems that can be solved optimally.

Fifteen Puzzle

- Invented by Sam Loyd in 1870s
- "...engaged the attention of nine out of ten persons of both sexes and of all ages and conditions of the community."
- \$1000 prize to swap positions of two tiles

Adapted from "Recent Progress in the Design and Analysis of Admissible Heuristic Functions" by R. Korf.

Linear Conflict Heuristic

- Hansson, Mayer, and Yung, 1991
- Given two tiles in their goal row, but reversed in position, additional vertical moves can be added to Manhattan distance.
- Still not accurate enough to solve 24-Puzzle
- We can generalize this idea further.

Sub-Problems

Admissible heuristics can also be derived from the solution cost of a sub-problem of a given problem.

Heuristic Searc..

60

Pattern Database Heuristics

- A pattern database is a complete set of such positions, with associated number of moves.
 - e.g. a 8-tile pattern database for the Fifteen Puzzle contains 519 million entries.
- On 15 puzzle, IDA* with pattern database heuristics is about 10 times faster than with Manhattan distance
 - Culberson and Schaeffer, 1996
- Pattern databases can also be applied to Rubik's Cube.

Additive Databases

- The 7-tile database contains 58 million entries.
 - 20 moves needed to solve red tiles
- The 8-tile database contains 519 million entries.
 - 25 moves needed to solve blue tiles
- Overall heuristic is 20+25=45 moves

Swap Two Tiles

	1	2	3		1	2	3
4	5	6	7	 4	5	6	7
8	9	10	11	8	9	10	11
12	13	15	14	12	13	14	15

(Johnson & Storey, 1879) proved it's impossible.

Heuristic Search Jane Hsu 63

Rubik's Cube

- Invented in 1974 by Erno Rubik of Hungary
- Over 100 million sold worldwide
- Most famous combinatorial puzzle ever

Sizes of Problem Spaces

Problem

Nodes

Brute-Force Search Time (10 million nodes/second)

 $^{\square}$ 8 Puzzle: 10^{5} .01 seconds

□ 2³ Rubik's Cube: 10⁶ .2 seconds

□ 15 Puzzle: 10¹³ 6 days

33 Rubik's Cube: 1019 68,000 years

□ 24 Puzzle: 10²⁵ 12 billion years