Syntax Analysis (Parsing)

19CSE401 Compiler Design

Overview

Main Task: Take a token sequence from the scanner and verify that it is a syntactically correct program.

<u>Secondary Tasks</u>:

- Process declarations and set up symbol table information accordingly, in preparation for semantic analysis.
- Construct a syntax tree in preparation for intermediate code generation.

Grammars

- Every programming language has precise grammar rules that describe the syntactic structure of wellformed programs
 - In C, the rules state how functions are made out of parameter lists, declarations, and statements; how statements are made of expressions, etc
- Grammars are easy to understand, and parsers for programming languages can be constructed automatically from certain classes of grammars
- Parsers or syntax analyzers are generated for a particular grammar
- Context-free grammars are usually used for syntax specification of programming languages

What is Parsing or Syntax Analysis?

- A parser for a grammar of a programming language
 - verifies that the string of tokens for a program in that language can indeed be generated from that grammar
 - reports any syntax errors in the program
 - constructs a parse tree representation of the program (not necessarily explicit)
 - usually calls the lexical analyzer to supply a token to it when necessary
 - could be hand-written or automatically generated is based on context-free grammars.
- Grammars are generative mechanisms like regular expressions
- Pushdown automata are machines recognizing contextfree languages (like FSA for RL)

Context-free Grammars

- A context-free grammar for a language specifies the syntactic structure of programs in that language.
- Components of a grammar:
 - a finite set of tokens (obtained from the scanner);
 - a set of variables representing "related" sets of strings, e.g., declarations, statements, expressions.
 - a set of rules that show the structure of these strings.
 - an indication of the "top-level" set of strings we care about.

Context-free Grammars: Definition

Formally, a context-free grammar *G* is a 4-tuple

G = (N, T, P, S), where:

- N: Finite set of non-terminals
- T: Finite set of terminals
- $S \in N$: The start symbol
- P: Finite set of productions, each of the form $A \rightarrow \alpha$, where $A \in N$ and $\alpha \in (N \cup T) *$
- Usually, only P is specified and the first production corresponds to that of the start symbol
- Ex:

(1) (2) (3) (4)
$$E \rightarrow E + E$$
 $S \rightarrow 0S0$ $S \rightarrow aSb$ $S \rightarrow aB \mid bA$ $E \rightarrow E * E$ $S \rightarrow 1S1$ $S \rightarrow \epsilon$ $A \rightarrow a \mid aS \mid bAA$ $E \rightarrow (E)$ $S \rightarrow 0$ $B \rightarrow b \mid bS \mid aBB$ $E \rightarrow id$ $S \rightarrow \epsilon$

Ways of writing CFG

```
E \rightarrow E + E

E \rightarrow E * E

E \rightarrow (E)

E \rightarrow id
```

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Context-free Grammars: Terminology

• The <u>language</u> of a grammar G = (N,T,P,S) is $L(G) = \{ w \mid w \in T^* \text{ and } S \Rightarrow^* w \}.$ The language of a grammar contains only strings of terminal symbols.

Derivation

Derivation

(1)

$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

• E
$$\Rightarrow$$
 E + E
 $\stackrel{E \to id}{\Rightarrow}$ id + E
 $\stackrel{E \to id}{\Rightarrow}$ id + id

is a derivation of the terminal **string** *id* + *id* from E

- In a derivation, a production is applied at each step, to replace a nonterminal by the righthand side of the corresponding production.
- The above derivation is represented in short as,

$$E \Rightarrow^* id + id$$
,

and is read as

E derives id + id

Derivations: Example

- Grammar for palindromes: G = (N, T, P, S),
 N = {S},
 - $T = \{0, 1\},$
 - P = {

$$S \rightarrow 0 S 0$$

| 151

 $\begin{array}{c} (2) \\ S \rightarrow 0S0 \end{array}$

 $S \rightarrow 1S1$ $S \rightarrow 0$

 $S \rightarrow 1$

 $\mathcal{S}
ightarrow \epsilon$

A derivation of the string 10101:

$$S \Rightarrow 1 S 1$$
 (using $S \rightarrow 1S1$)
 $\Rightarrow 1 0S0 1$ (using $S \rightarrow 0S0$)
 $\Rightarrow 10101$ (using $S \rightarrow 1$)

Derivation Trees

- Derivations can be displayed as trees
- The internal nodes of the tree are all nonterminals and the leaves are all terminals
- Corresponding to each internal node A, there exists a production ∈ P, with the RHS of the production being the list of children of A, read from left to right
- The yield of a derivation tree is the list of the labels of all the leaves read from left to right
- If α is the yield of some derivation tree for a grammar G, then $S \Rightarrow * \alpha$ and conversely

Derivation Tree Example

Leftmost and Rightmost

• Defrivation is one where, at each step, the leftmost nonterminal is replaced.

(analogous for *rightmost derivation*)

• Example: a grammar for arithmetic expressions:

$$E \rightarrow E + E \mid E * E \mid id$$

Leftmost derivation:

Rightmost derivation:

$$E \Rightarrow E + E$$

$$\Rightarrow E + E * E$$

$$\Rightarrow E + E * id$$

$$\Rightarrow E + id * id$$

$$\Rightarrow id + id * id$$

Context-free Grammars: L(G)

bit-strings:

```
G = (N, T, P, S), where:
```

- V = { S, B }
- $T = \{0, 1\}$
- $P = \{ S \rightarrow B,$ $S \rightarrow \varepsilon$, $S \rightarrow 0 S O$, $S \rightarrow 1 S 1$, $B \rightarrow 0$, $B \rightarrow 1$

```
A grammar for palindromic • L(G) = \{ w \mid w \in T^* \text{ and } \}
                                          S \Rightarrow^* w }.
```

```
L(G) = \{ 0, 1, 
00,11,101,010, 111,
000......}
```

Ambiguous Grammar

Ambiguous Grammar

- If some word or string **w** in L(G) has two or more leftmost derivation or rightmost derivation parse trees, then G is said to be ambiguous
- The grammar,

```
    E → E + E
        |E * E
        |(E)
        |id is ambiguous,
```

• But the following grammar for the same language is **unambiguous**

```
    E → E + T
        |T
    T → T * F
        |F
    F → (E)|id
```

Ambiguity Example 1

$$word = id * id + id$$

$E \rightarrow E + E$ $\mid E * E$ $\mid (E)$ $\mid id$

More than one left-most derivation

Two different leftmost derivation

For the same string using this grammar I am able to Generate two different derivation tree OR

I am able to derive the string in two different ways by performing leftmost derivation.

Hence the grammar is **AMBIGOUS**

Dealing with Ambiguity

- 1. Transform the grammar to an equivalent unambiguous grammar.
- 2. Use <u>disambiguating rules</u> along with the ambiguous grammar to specify which parse to use.

<u>Comment</u>: It is not possible to determine algorithmically whether:

- Two given CFGs are equivalent;
- A given CFG is ambiguous.