

Subject Code: KOE03											039		
Roll No:													

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10 X2=20)	(CO			
Q1(a)	How are bi	inary digits used to express the integer and fractiona	l parts of a number?		1			
Q1(b)	Explain ho	ow BCD addition is carried out.			1			
Q1(c)	Implement	t a 4:1 multiplexer using 2:1 multiplexer.			2			
Q1(d)	Demultiple	exer is decoder circuit with an additional enabling	g input. Do you agree		2			
	with the above statement?							
Q1(e)	Give the difference between positive and negative edge triggering.							
Q1(f)	A flip-flop	has 5 ns delay from the time the clock edge occurs	to the time the output		3			
	is complemented. What is the maximum delay in a 10-bit binary ripple counter that							
	uses these	flip-flops? What is the maximum frequency the	e counter can operate					
	reliably?							
Q1(g)	Define crit	rical race and non-critical race.			4			
Q1(h)	What is the	e significance of state assignment?			4			
Q1(i)	Why is EC	CL logic faster than TTL?			5			
Q1(j)	Compare s	static RAM and dynamic RAM.		9	5+			

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO				
Q2(a)	Realize a	3-input gate using 2-input gates for the following ga	tes:	1				
		(i) AND (ii) OR (iii) NAND (iv) NOR	1.3					
Q2(b)	(i)Implem	ent a full subtractor circuit using only NAND gates.		2				
	(ii)Using 4:1 multiplexers, implement the following function							
	$F(A, B, C) = \sum m(0,2,3,5,7)$							
Q2(c)	Define bi-directional shift register. Draw and explain 3 bit bi-directional shift							
	register us	sing D flip-flop.	*					
Q2(d)	Design a	primitive state diagram and state table for a circuit	with two asynchronous	4				
	inputs (X	and Y) and one output Z. This circuit is to be d	esigned so that if any					
	change ta	kes place on X and Y, Z is to change states. Assum	e initially that the two					
	inputs nev	ver change simultaneously.						
Q2(e)	(i) Write a	a note on interfacing TTL with CMOS.		5				
	(ii) Expla	in the parameters used to characterize logic families.						

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q3(a) Minimize the following using Tabular method							
	$F(A,B,C,D,E) = \sum m(0,1,2,3,6,7,14,15,16,19,31)$						
Q3(b)	(i) Reduc	e the expression $f = \sum_{i=1}^{n} m_i(0,1,2,3,5,7,8,9,10,12,11,12,12$	3) using K-maps and	1			
	implemen	t the real minimal expression using NAND logic.					
	(ii) Design	the logic circuit for a BCD to decimal decoder.					

SECTION-C Attempt ANY ONE following Question Ma		Marks (1X10=10)	CO			
Q4(a) Constru	4(a) Construct BCD adder using two 4-bit binary parallel adder and logic gates.					
Q4(b) Explain	4-bit magnitude comparator.		2			

				Sub	ject	Cod	le: K	OE	039
Roll No:									

Printed Page: 2 of 2

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a) Design a	BCD to Excess-3 code converter and implement it us	sing a suitable PLA.	5
Q7(b) Draw a ne	eat diagram of TTL NAND gate and explain its opera	ation.	5