Nur die Aufgaben mit einem \ast werden korrigiert.

3.1. MC Fragen: Folgenkonvergenz. Wählen Sie die richtigen Antworten.

(a) Sei a_n definiert durch

$$a_n = \begin{cases} 1 + \sqrt{\frac{k}{12k+1}} & n = 3k+1 \text{ für } k \ge 0, \\ \frac{5k^3 + k}{k^3 + 1} & n = 3k+2 \text{ für } k \ge 0, \\ \frac{(-1)^k}{k} & n = 3k+3 \text{ für } k \ge 0. \end{cases}$$

Welche der Aussagen gilt?

- \square $\lim_{n\to\infty} a_n$ existiert.
- \square $\liminf_{n\to\infty} a_n$ existiert.
- (b) Welche der folgenden Aussagen sind richtig?
 - \square Sei $(q_n)_{n\geq 1}$ eine Folge rationaler Zahlen, sodass

$$|q_n - q_{n+1}| \to 0$$
 für $n \to \infty$.

Dann ist $(q_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge.

- Sei $(a_n)_{n\geq 1}$ eine konvergente Folge, und σ eine Permutation von $\{1,2,3,\dots\}$ (d.h. eine Bijektion der Menge $\{1,2,3,\dots\}$ auf sich selbst). Dann konvergiert auch die Folge $(b_n)_{n\geq 1}, b_n = a_{\sigma(n)}, \forall n\geq 1$.
- (c) Sei $(x_n)_n$ eine Cauchy-Folge in \mathbb{R} . Dann
 - \square konvergiert $\sum_{n=1}^{\infty} \sqrt{x_n}$;
 - \square kann $(x_n)_n$ unbeschränkt sein;
 - $\square \quad$ gibt zu jedem $\varepsilon>0$ ein $N\in\mathbb{N}$ so dass für alle m,n>N

$$|x_m - x_n| < \varepsilon.$$

- *3.2. Grenzwert. Bestimmen Sie die folgenden Grenzwerte:
 - (a) $\lim_{n\to\infty} \sqrt[n]{3n+4}$;
 - **(b)** $\lim_{n\to\infty} \frac{(-19)^n \pi}{13^n + 1}$;
 - (c) $\lim_{n\to\infty} \frac{(-2022)^n + (-2023)^n}{(-2022)^{n+1} (-2023)^n}$;
 - (d) $\lim_{n\to\infty} \left(1 + \frac{1}{n^3}\right)^{n^2}$.
- *3.3. Fibonacci. Die reelle Folge $(a_n)_{n\geq 1}$ sei rekursiv gegeben durch

$$a_1 = 1,$$
 $a_2 = 1,$ $a_{n+1} = a_n + a_{n-1}$ für $n \ge 2$.

(a) Beweisen Sie folgende explizite Formel durch vollständige Induktion.

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

- (b) Zeigen Sie, dass $b_n := \frac{a_{n+1}}{a_n}$ gegen die goldene Zahl $\Phi := \frac{1+\sqrt{5}}{2}$ konvergiert.
- (c) Finden Sie eine Zahl $n \ge 1$ sodass folgende Aussage gilt:

$$\forall m \in \mathbb{N}, \ m \ge n: \quad \left| b_m - \frac{1+\sqrt{5}}{2} \right| \le \frac{1}{100}.$$

3.4. Bernoulli Ungleichung. Zeigen Sie, dass für jedes $n \in \mathbb{N}$ und $x \in \mathbb{R}$, wobei x > -1, Folgendes gilt:

$$(1+x)^n \ge 1 + nx.$$