Quiz 15B: The class NP

CS 212 Nature of Computation

Habib University — Fall 2023

Total Marks: 10	Date: November 29, 2023
Duration: 15 minutes	Time: 830–845h
Student ID:	
Student Name:	• ()
1. (10 points) Show that the class NP is closed under concatenation	on.
Solution: We prove the closure by constructing a non-dete the concatenation of two languages in NP.	rministic polynomial-time decider for
Proof. Consider the languages $L_1, L_2 \in NP$ and let N_1 and N_2 polynomial-time deciders. Construct N to decide $L_1 \circ L_2$ as follows.	2 be their respective non-deterministic
On input $w = w_1 w_2 w_3 \dots w_n$:	
1. for i in 0 to n :	
(a) Simulate N_1 on $w_1 w_2 \dots w_i$.	
(b) If N_1 accepts,	
i. simulate N_2 on $w_{i+1}w_{i+2}\dots w_n$.	
ii. If N_2 accepts, accept.	
2. Reject.	
N utilizes N_1 and N_2 so is non-deterministic.	
The leap runs of 11 times in the worst case.	(n^{κ}) , in the worst case.
The loop runs $n+1$ times in the worst case. The worst case running time of the algorithm is therefore $O(n)$	n^{k+1}
N halts in all cases.	,, , , , , , , , , , , , , , , , , , ,
	-