Deep Generative Models

Lecture 11

Roman Isachenko

2025, Spring

DDPM objective

$$\mathbb{E}_{\pi(\mathbf{x}_0)} \mathbb{E}_{t \sim U\{1, T\}} \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} \left[\frac{(1 - \alpha_t)^2}{2\tilde{\beta}_t \alpha_t} \left\| \mathbf{s}_{\boldsymbol{\theta}, t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0) \right\|_2^2 \right]$$

In practice the coefficient is omitted.

NCSN objective

$$\mathbb{E}_{\pi(\mathbf{x}_0)} \mathbb{E}_{t \sim U\{1,T\}} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left\| \mathbf{s}_{\boldsymbol{\theta},\sigma_t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2$$

Note: The objective of DDPM and NCSN is almost identical. But the difference in sampling scheme:

- NCSN uses annealed Langevin dynamics;
- DDPM uses ancestral sampling.

Unconditional generation

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{1-eta_t}} \cdot \mathbf{x}_t + \frac{eta_t}{\sqrt{1-eta_t}} \cdot
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t|oldsymbol{ heta}) + \sigma_t \cdot oldsymbol{\epsilon}$$

Conditional generation

$$\mathbf{x}_{t-1} = rac{1}{\sqrt{1-eta_t}} \cdot \mathbf{x}_t + rac{eta_t}{\sqrt{1-eta_t}} \cdot
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, oldsymbol{ heta}) + \sigma_t \cdot oldsymbol{\epsilon}$$

Conditional distribution

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta})$$
$$= \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) - \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}}$$

Here $p(\mathbf{y}|\mathbf{x}_t)$ – classifier on noisy samples (we have to learn it separately).

Classifier-corrected noise prediction

$$\epsilon_{\theta,t}(\mathbf{x}_t,\mathbf{y}) = \epsilon_{\theta,t}(\mathbf{x}_t) - \sqrt{1-\bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

Guidance scale

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

- Train DDPM as usual.
- ▶ Train the additional classifier $p(\mathbf{y}|\mathbf{x}_t)$ on the noisy samples \mathbf{x}_t .

Guided sampling

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon_{\theta, t}(\mathbf{x}_t, \mathbf{y}) + \sigma_t \cdot \epsilon$$

Note: Guidance scale γ tries to sharpen the distribution $p(\mathbf{y}|\mathbf{x}_t)$ (in this case Z should not depend on \mathbf{x}_t).

- Previous method requires training the additional classifier model $p(\mathbf{y}|\mathbf{x}_t)$ on the noisy data.
- Let try to avoid this requirement.

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta})$$

$$\begin{aligned} \nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \\ &= (1 - \gamma) \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) \end{aligned}$$

Classifier-free-corrected noise prediction

$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \gamma \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) + (1-\gamma) \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t)$$

- ► Train the single model $\epsilon_{\theta,t}(\mathbf{x}_t, \mathbf{y})$ on **supervised** data alternating with real conditioning \mathbf{y} and empty conditioning $\mathbf{y} = \emptyset$.
- ▶ Apply the model twice during inference.

1. Continuity equation for NF log-likelihood

2. FFJORD (Hutchinson's trace estimator)

3. SDE basics

1. Continuity equation for NF log-likelihood

FFJORD (Hutchinson's trace estimator)

3. SDE basics

Continuous-in-time NF

Theorem (continuity equation)

If f is uniformly Lipschitz continuous in x and continuous in t, then

$$\frac{d \log p_t(\mathbf{x}(t))}{dt} = -\text{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t), t)}{\partial \mathbf{x}(t)}\right)$$

It means that if we have the value $\mathbf{x}_0 = \mathbf{x}(0)$ then the solution of the continuity equation will give us the density $p_1(\mathbf{x}(1))$.

Solution of continuity equation

$$\log p_1(\mathbf{x}(1)) = \log p_0(\mathbf{x}(0)) - \int_0^1 \operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t),t)}{\partial \mathbf{x}(t)}\right) dt.$$

Note: This solution will give us the density along the trajectory (not the total probability path).

Continuous-in-time NF

Forward transform + log-density

$$\mathbf{x}(1) = \mathbf{x}(0) + \int_0^1 \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) dt$$

$$\log p_1(\mathbf{x}(1)|\boldsymbol{\theta}) = \log p_0(\mathbf{x}(0)) - \int_0^1 \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t)}{\partial \mathbf{x}(t)}\right) dt$$

- **Discrete-in-time NF**: evaluation of determinant of the Jacobian costs $O(m^3)$ (we need invertible \mathbf{f}).
- ▶ Continuous-in-time NF: getting the trace of the Jacobian costs $O(m^2)$ (we need smooth \mathbf{f}).

Why $O(m^2)$?

 $\operatorname{tr}\left(\frac{\partial f_{\theta}(\mathbf{x}(t))}{\partial \mathbf{x}(t)}\right)$ costs $O(m^2)$ (m evaluations of \mathbf{f}), since we have to compute a derivative for each diagonal element. It is possible to reduce cost from $O(m^2)$ to O(m)!

1. Continuity equation for NF log-likelihood

2. FFJORD (Hutchinson's trace estimator)

SDE basics

Continuous-in-time NF

Hutchinson's trace estimator

If $\epsilon \in \mathbb{R}^m$ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\mathsf{Cov}(\epsilon) = \mathbf{I}$, then

$$\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A} \cdot \mathbf{I}) = \operatorname{tr}\left(\mathbf{A} \cdot \mathbb{E}_{p(\epsilon)} \left[\epsilon \epsilon^{T}\right]\right) =$$

$$= \mathbb{E}_{p(\epsilon)} \left[\operatorname{tr}\left(\mathbf{A} \epsilon \epsilon^{T}\right)\right] = \mathbb{E}_{p(\epsilon)} \left[\epsilon^{T} \mathbf{A} \epsilon\right]$$

Jacobian vector products $\mathbf{v}^T \frac{\partial f}{\partial \mathbf{x}}$ can be computed for approximately the same cost as evaluating \mathbf{f} (torch.func.jvp).

FFJORD density estimation

$$\log p_1(\mathbf{x}(1)) = \log p_0(\mathbf{x}(0)) - \int_0^1 \operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t), t)}{\partial \mathbf{x}(t)}\right) dt =$$

$$= \log p_0(\mathbf{x}(0)) - \mathbb{E}_{p(\epsilon)} \int_0^1 \left[\epsilon^T \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \epsilon\right] dt.$$

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

1. Continuity equation for NF log-likelihood

FFJORD (Hutchinson's trace estimator)

3. SDE basics

Let define stochastic process $\mathbf{x}(t)$ with initial condition $\mathbf{x}(0) \sim p_0(\mathbf{x}) = \pi(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ $\mathbf{f}(\mathbf{x},t): \mathbb{R}^m \times [0,1] \to \mathbb{R}^m$ is the **drift** function of $\mathbf{x}(t)$.
- ▶ $g(t) : \mathbb{R} \to \mathbb{R}$ is the **diffusion** function of $\mathbf{x}(t)$.
- $\mathbf{w}(t)$ is the standard Wiener process (Brownian motion):
 - 1. $\mathbf{w}(0) = 0$ (almost surely);
 - 2. $\mathbf{w}(t)$ has independent increments;
 - 3. $\mathbf{w}(t) \mathbf{w}(s) \sim \mathcal{N}(0, (t-s)\mathbf{I})$, for t > s.
- $\mathbf{w} = \mathbf{w}(t + dt) \mathbf{w}(t) = \mathcal{N}(0, \mathbf{l} \cdot dt) = \epsilon \cdot \sqrt{dt}$, where $\epsilon \sim \mathcal{N}(0, \mathbf{l})$.
- ▶ If g(t) = 0 we get standard ODE.

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ In contrast to ODE, initial condition x(0) does not uniquely determine the process trajectory.
- ▶ We have two sources of randomness: initial distribution $p_0(\mathbf{x})$ and Wiener process $\mathbf{w}(t)$.

Discretization of SDE (Euler method) - SDESolve

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t) \cdot dt + g(t) \cdot \epsilon \cdot \sqrt{dt}$$

If dt = 1, then

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, t) + g(t) \cdot \epsilon$$

- At each moment t we have the density $p_t(\mathbf{x}) = p(\mathbf{x}, t)$.
- $p: \mathbb{R}^m \times [0,1] \to \mathbb{R}_+$ is a **probability path** between $p_0(\mathbf{x})$ and $p_1(\mathbf{x})$.
- ▶ How to get the distribution path $p_t(\mathbf{x})$ for $\mathbf{x}(t)$?

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}, \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$

Theorem (Kolmogorov-Fokker-Planck)

Evolution of the distribution $p_t(\mathbf{x})$ is given by the following equation:

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = -\text{div}\left(\mathbf{f}(\mathbf{x}, t)p_t(\mathbf{x})\right) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}p_t(\mathbf{x})$$

Here

$$\operatorname{div}(\mathbf{v}) = \sum_{i=1}^{m} \frac{\partial v_{i}(\mathbf{x})}{\partial x_{i}} = \operatorname{tr}\left(\frac{\partial \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}}\right)$$
$$\Delta_{\mathbf{x}} p_{t}(\mathbf{x}) = \sum_{i=1}^{m} \frac{\partial^{2} p_{t}(\mathbf{x})}{\partial x_{i}^{2}} = \operatorname{tr}\left(\frac{\partial^{2} p_{t}(\mathbf{x})}{\partial \mathbf{x}^{2}}\right)$$
$$\frac{\partial p_{t}(\mathbf{x})}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p_{t}(\mathbf{x})\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2} p_{t}(\mathbf{x})}{\partial \mathbf{x}^{2}}\right)$$

Theorem (Kolmogorov-Fokker-Planck)

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p_t(\mathbf{x})\right] + \frac{1}{2}g^2(t)\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right)$$

- KFP theorem does not define the SDE uniquely in general case.
- ► This is the generalization of continuity equation that we used in continuous-in-time NF:

$$\frac{d \log p_t(\mathbf{x}(t))}{dt} = -\operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial \mathbf{x}}\right).$$

Langevin SDE (special case)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})dt + 1 \cdot d\mathbf{w}$$

Let apply KFP theorem to this SDE.

Langevin SDE (special case)

$$d\mathbf{x} = rac{1}{2}rac{\partial}{\partial\mathbf{x}}\log p_t(\mathbf{x})dt + 1\cdot d\mathbf{w}$$

$$\begin{split} \frac{\partial p_t(\mathbf{x})}{\partial t} &= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[p_t(\mathbf{x})\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right] + \frac{1}{2}\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right) = \\ &= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}p_t(\mathbf{x})\right] + \frac{1}{2}\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right) = 0 \end{split}$$

The density $p_t(\mathbf{x}) = \text{const}(t)!$ If $\mathbf{x}(0) \sim p_0(\mathbf{x})$, then $\mathbf{x}(t) \sim p_0(\mathbf{x})$.

Discretized Langevin SDE

$$\mathbf{x}_{t+1} - \mathbf{x}_t = \frac{\eta}{2} \cdot \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x}) + \sqrt{\eta} \cdot \epsilon, \quad \eta \approx dt.$$

Langevin dynamic

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \frac{\eta}{2} \cdot \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \eta \approx dt.$$

Summary

- Continuity equation allows to calculate $\log p(\mathbf{x}, t)$ at arbitrary moment t.
- FFJORD model makes such kind of NF scalable.
- Adjoint method are the continuous analog of backpropagation in the discrete time. Pontryagin theorem gives the way to compute the adjoint functions.
- ▶ Using numerical solvers it is possible to make forward and backward passes for the continuous-in-time NF.
- SDE defines a stochastic process with drift and diffusion terms. ODEs are the special case of SDEs.