CARLINGFORD HIGH SCHOOL

Year 12 Mathematics Extension 1 HSC Assessment Task 3 2019

Time allowed: 55 minutes

Student Number:	

Instructions:

- All questions should be attempted
- Show all necessary working
- Marks may not be awarded for careless or badly arranged work
- Only board-approved calculators may be used
- Start each question on a new sheet

	Question	Question	Question	Mark
	1	2	3	
Integration				
Techniques	/3	/3		/6
Exponential				
and				
Logarithmic				
Functions	/9			/9
Trigonometric				
Functions		/9		/9
Inverse				
Functions			/12	/12
	/12	/12	/12	/36

	-	

Question 1

- (a) Use the substitution u = 1 + 2x to find the exact value of $\int_1^2 \frac{x}{1+2x} dx$. [3]
- (b) \$500 is deposited into an account that pays 1.25% p. a. interest, compounded annually. [3] How many years and months will it take for this deposit to grow to \$1000?
- (c) (i) Differentiate $2xe^{-x}$. [1] (ii) Hence find $\int 2xe^{-x}dx$.
- (d) Find the volume of the solid of revolution formed when $y = \frac{2}{\sqrt{2-x}}$ is revolved around the x-axis between x = 0 and x = 1. (Leave your answer in exact form)

Question 2

(a) Find
$$\int \frac{x^2}{(4-x^2)^{\frac{3}{2}}} dx$$
 by making the substitution $x = 2\sin u$. [3]

- (b) Given $cos A = \frac{2}{5}$ and $tan B = \frac{1}{2}$, where $\pi \le A \le 2\pi$ and $\pi \le B \le 2\pi$, find the exact value of sin(2A+B).
- (c) (i) Write $\sqrt{3}\cos\theta \sin\theta$ in the form $R\cos(\theta + \alpha)$. [1]
 - (ii) Hence or otherwise, solve $\sec \theta + \tan \theta = \sqrt{3}$, for $0 \le \theta \le \frac{\pi}{2}$. [2]
- (d) Evaluate $\lim_{x\to 0} \frac{\sin\frac{x}{2}}{x}$. [1]
- (e) Evaluate $\int_0^{\frac{\pi}{3}} \cos^2 3x \, dx$. [2]

Question 3

(a) The graph of $f(x) = \frac{e^x}{e^{x-1}}$ is shown below.

Find $f^{-1}(x)$, and state its domain.

(b) Explain why $sin^{-1}(cos^{-1}(-1))$ cannot be evaluated.

[2]

[3]

(c) Evaluate $\int_0^1 \frac{-1}{\sqrt{4-x^2}} dx$.

[2]

(d) Sketch $y = sin^{-1}(\frac{x}{2}) + cos^{-1}(\frac{x}{2})$, for the correct domain.

[2]

(e) (i) Find the domain and range for the function $y = 2tan^{-1}(\frac{x}{3} + 1)$.

[1]

(ii) Hence or otherwise, sketch = $2tan^{-1}(\frac{x}{3}+1)$, labelling any axes intercepts.

[2]

END OF TEST

MATHEMATICS EXTENSION 1 - HSC AT3 2019. SOLUTIONS
QUESTION (GF)
$\int_{1}^{2} \frac{\pi_{4}}{1+2\pi} d\pi = \int_{3}^{5} \frac{y-1}{2} dx$
$\left(1+2n\right)_3 \frac{2}{u}$
$u = 1 + 2 - \lambda \rightarrow \pi = u - 1 \qquad = \qquad \frac{1}{4} \int_{2}^{\pi} u - 1 du$
du = 2 da - 2 da = 1 du
$x = 1, y = 3$ $= \frac{1}{4} \int_{3}^{2} 1 - \frac{1}{4} du$
$= \frac{1}{4} \left[\frac{1}{4} - \frac{1}{4} \right]_{3}^{2}$
$= \frac{1}{4} \left[5 - \ln 5 - (3 - \ln 3) \right]$
$=\frac{1}{4}\left(2-\ln 7+\ln 3\right)$
4 (2 1/1, 7 1/1)
1 (2 + In)
4 (3)
$(b) A = P(1+r)^n$
1000 = 500 (1 + 1.25%)
2 = 1.0125"
some happinessi
rag 2
$\frac{100^{2}}{10025}$ $\frac{100^{2}}{10025}$
$-1. N = \frac{\log 2}{\log 2}$
10g10125° = 55.7976
/= 55 years 10 months (or 55 years 9.6 months)
(or 35 years 1.6 months)

Quarrow 1 (cont) (af)

(c) D
$$y = 2\pi e^{-\pi}$$
 $y' = 2e^{-\pi} + (-2\pi)e^{-\pi}$
 $y' = 2e^{-\pi} - 2\pi e^{-\pi}$
 $y' = 2\pi e^{-\pi} + 2\pi e^{-\pi}$
 $y' =$

Querron/2 (55)

(a)
$$\int_{2^{-1}}^{2^{-1}} dz = \int_{4^{-1}}^{4^{-1}} \int_{4^{-1}}^{2^{-1}} dz = \int_{4^{-1}}^{4^{-1}} \int_{4^{-1}}^{2^{-1}} dz = \int_{4^{-1}}^{4^{-1}} \int_{4^{-1}}^{2^{-1}} dz = \int_{4^{-1}}^{4^{-1}} \int_{4^{-1}}^{2^{-1}} dz = \int_{4^{-1}}^{4^{-1}} \int_{4^{-1}}^{4^{-1}} dz = \int_{4^{-1}}^{4^{-1}}$$

QUISTION 2 (cont.) (15)

(c)
$$1$$
; $R = 13^{2} + 1^{2}$ $x = 16m^{3} + 1$
 $= 2$
 $= 7$

(v). $Sec 0 + 16n 0 = 13$
 $\frac{1}{5} + 5i n 0 = 13$
 $\frac{1}$

QUATION 2 (101). (55)

(c)
$$\cos 2m = 2 \cos^2 n - 1$$
 $\frac{1}{2} \cos^2 2n = 2 \cos^2 3n - 1$
 $2 \cos^2 3n = \frac{1}{2} (\cos y \ln n + 1)$
 $\frac{1}{2} \cos^2 3n = \frac{1}{2} (\cos y \ln n + 1) \cos n + 1 \cos n + 1$

QUESTION 3 (KC)

(a)
$$y = e^{x}$$
 e^{x}
 $f'': x = e^{y}$
 e^{y}
 $xe^{y} - x = e^{y}$
 $xe^{y} - x = e^{y$

