Problem 1.6

(a) P1 CPU time =
$$\frac{10^6 * [0.1*1 + 0.2*2 + 0.5*3 + 0.2*3]}{2.5*10^9} = 1.04 * 10^{-3} seconds$$

P2 CPU time = $\frac{10^6 * [0.1*2 + 0.2*2 + 0.5*2 + 0.2*2]}{3*10^9} = 0.67 * 10^{-3} seconds$

P2 is faster than P1

P1's Global CPI =
$$\frac{CPI \text{ time*clock rate}}{IC} = \frac{1.04*10^{-3}*2.5*10^{9}}{10^{6}} = 2.6$$

P2's Global CPI = $\frac{CPI \text{ time*clock rate}}{IC} = \frac{0.67*10^{-3}*3*10^{9}}{10^{6}} = 2.01$

P2's Global CPI =
$$\frac{CPI \text{ time*clock rate}}{IC} = \frac{0.67*10^{-3}*3*10^{9}}{10^{6}} = 2.01$$

- (b) # clock cycle P1 = Global CPI*IC = $2.6*10^6$
- (c) # clock cycle $P2 = Global CPI*IC = 2.01*10^6$

Problem 1.9.1

Execution time = $\frac{Clock\ cycle}{Clock\ rate}$

1 processor:
$$\frac{1*2.56*10^9+12*1.28*10^9+5*2.56*10^8}{2*10^9} = 9.6s$$

$$\begin{array}{l}
2*10^{9} \\
2 \text{ processors:} & \frac{2*10^{9}}{0.7*2} + 2*10^{9} + 5*2.56*10^{8} \\
2 \text{ processors:} & \frac{1*2.56*10^{9} + 12*1.28*10^{9}}{0.7*2} + 5*2.56*10^{8} \\
4 \text{ processors:} & \frac{1*2.56*10^{9} + 12*1.28*10^{9}}{0.7*4} + 5*2.56*10^{8} \\
2*10^{9} \\
2*10^{9} \\
4 \text{ processors:} & \frac{1*2.56*10^{9} + 12*1.28*10^{9}}{0.7*8} + 5*2.56*10^{8} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{9} \\
2*10^{$$

4 processors:
$$\frac{\frac{1*2.56*10^9+12*1.28*10^9+5*2.56*10^8}{0.7*4}}{2*10^9} = 3.84s \text{ (speed up 2.5 times)}$$

8 processors:
$$\frac{\frac{1*2.56*10^7+12*1.28*10^9}{0.7*8}+5*2.56*10^8}{2*10^9} = 2.24s \text{ (speed up 4.29 times)}$$

Problem 1.9.2

1 processor:
$$9.6 + \frac{1*2.56*10^9}{2*10^9} = 10.88s$$
 (slow down 1.13 times)

2 processors:
$$7.04 + \frac{1*2.56*10^9}{0.7*2*2*210^9} = 7.96s$$
 (slow down 1.13 times)

4 processors:
$$3.84 + \frac{1*2.56*10^9}{0.7*4*2*10^9} = 4.3s$$
 (slow down 1.12 times)

8 processors:
$$2.24 + \frac{1*2.56*10^9}{0.7*8*2*10^9} = 2.47s$$
 (slow down 1.1 times)

Problem 1.9.3

$$1*2.56*10^9 + X*1.28*10^9 + 5*2.56*10^8 = \ \tfrac{1*2.56*10^9 + 12*1.28*10^9}{0.7*4} + 5*2.56*10^8$$

$$X = 3$$

$$3/12=0.25$$

Problem 1.12.1

CPU time =
$$\frac{CPI * IC}{Clock \ rate}$$

P1:
$$\frac{0.9*5*10^9}{4*10^9} = 1.125s$$

P2:
$$\frac{0.75*1*10^9}{2*10^9} = 0.25s$$
.....better

Problem 1.12.2

Execution time =
$$\frac{IC*CPI}{Clock\ rate}$$

P1:
$$\frac{10^9 * 0.9}{4 * 10^9} = 0.225s$$

P2:
$$0.225 = \frac{IC*0.75}{3*10^9}$$
; $IC = 9 * 10^8$

P2 has to execute 9*108 instructions

Problem 1.14.1

Execution time =
$$\frac{Clock \ Cycles}{Clock \ Rate} = \frac{50*10^6*1+110*10^6*1+80*10^6*4+16*10^6*2}{2*10^9} = 256 \ ms$$

$$128 = \frac{50*10^6*X+110*10^6*1+80*10^6*4+16*10^6*2}{2*10^9}$$

X = -4.12, which is impossible

Problem 1.14.2

$$128 = \frac{50*10^6*1+110*10^6*1+80*10^6*X+16*10^6*2}{2*10^9}$$

$$X = 0.8$$

Problem 1.14.3

Execution time =
$$\frac{Clock\ Cycles}{Clock\ Rate}$$
 = $\frac{50*10^6*0.6+110*10^6*0.6+80*10^6*2.8+16*10^6*1.4}{2*10^9}$ = 171.2 ms 171.2 / 256 = 1.49

The speed improved 1.49 times