Qualitative Analysis

(V) Phase Plane:

O suppose a point M is at the place of its ordinate $\vec{x} = (x_1 - x_N)$. With speed $\vec{y}(\vec{x})$ at the time to. Then it satisfies: $\frac{d\vec{x}}{dt} = \vec{y}(\vec{x})$ (E) when $\vec{x}(t) = \vec{x}$, we may solve the $\vec{x}(t)$. $\vec{x} = \vec{y}(t,t,\vec{x}_0)$ as unique solve in $\vec{x}(t) = \vec{x}(t)$.

Def: We can the homem of \vec{x} : phase plane P the homem of (t, \vec{x}) : extended phase plane P'

Remark: Z'Ct, & P. but (t.Z) & P'.

@ Properties:

3) For $\vec{\chi}(t) = \vec{Q}(t, t_0, \chi_0)$ is a solution. Then $\vec{\chi}(t) = \vec{Q}(t + c, t_0, \chi_0)$ is another solution.

it) If the I.V.P has unique solution $\vec{x} = \ell(t, t_1, K)$ Then the bocuses in P won't interseve mutually Pf: If $\exists \ell_1, \ell_2$ the bocuses of point M. St. $\ell_1(t_1) = \ell_2(t_1)$. Then $\ell_1(t_1+t_1) = \ell_2(t_1)$ by uniquenes!

Mark = 2 Co CX-24) 200 3 Cath - " .

ziv) Y(tz, P(t, Xo)) = P(t, +tz, Xo). If exists unique solution

of: binvert to IV.P: Xoto) = Ycti,Xo)

Let, to, Ycti,Xo) is solvering.

Simu Yct +ti, to, Xo) is another solvering By Uniquess.

Let, to, Ycti,Xo) = Yct+ti, to, Xo).

- Y(t)+T) = X(t). Then Yt. X(t+T) = X(t).

 Pf: X(t+T). X(t) is sometim of (E) with X(t)=X0.

 By Unsquences. X(t+T) = X(t).
 - v) { can't arrive a singularity in finite time if it sets up from a nonsingular point.
 - Vi) The only case of 4 is intersected which

 street is 4 is simply closed curve.

 If if not the tangent

 of curve won't be

 same at same point

 X (tt) = X(tx)!

Peralt: For nonhomogeneous case, it win happen.

(2) Stability of Solutions:

For $\frac{\lambda \vec{x}}{\lambda t} = \vec{f}(t, \vec{x})$. \vec{f} satisfies lipschetz

Onlistin on \vec{x} . anti. on $(k \times G)$. (E)

· Def: A solution $\vec{X} = \vec{\varphi}(t)$ of (E) on $[t_0, +\infty)$

is) It's asymptotically Stable. If:

\(\text{Y} \in > 0. \ \text{IS}. \ \text{St}. \ \left(\text{Xo} - \beta(to) \right) = 0.

Then \(\text{Im} \left(\text{X(to, \text{Xo,t})} - \beta(to) \) = 0.

femme: We call the bomain D of Xo. Which satisfies is: asymptotic stable domain.

O Linear Approximation:

· Suppose: $\frac{L\vec{\chi}}{At} = \vec{f}(\vec{\chi},t) \simeq A(t)\vec{\chi} + \vec{N}(\vec{\chi},t)$

where ALL) is a matrix func. A.N. conti.

Under some speisal condition:

It connects to ses limens part: $\frac{L\vec{X}}{Lt} = A(t)\vec{X}$. (E)

Then the Stabslity of & is solution of cE).

Then the Stabslity of & is determined by Ides. Esgenvalues of A.

(Consider the Structure of solution!)

Thm. X(4) =0 is a sometim of (E). If it's asymptotically stable on D Then D=1R. Pf: For $\frac{d\vec{x}}{dt} = A(t)\vec{x}$. Jeneral solution: Zet) = pet) d'. simu xo = peto) c -: 2 = \$\frac{1}{2}(t.)\overline{X}_0 -: \vec{y}(t) = \vec{q}(t)\vec{q}(t)\vec{x}_0. 5mu 38>0: st. 11 puts \$100 \$100 \$100 (t→ 10). 4 11x011<8. ice. Sup | p(t) of (t) xi | -> 0 (t + 0) · 11 pct) pct x 11 = 11 x 11 = 11 pct) pct = 1 x 11 11 $= \frac{211\times011}{8} \quad \text{Sup} \quad 11 \phi(t) \phi'(t) \chi'(1) \longrightarrow 0. \quad (t+1)$ For + Xo & IR? ... D = IR.

Plinark: Stabilista of $\frac{d\vec{x}}{dt} = A(t)\vec{x}$.

For schetzen $\vec{x}(t) = \phi(t) \phi(t) \vec{x}$.

Then $\begin{cases} 1|\phi(t)\phi(t)| \leq m < \infty. \implies \text{Stable} \\ 1|\phi(t)| \to 0. \ (t \to \infty) \implies \text{Asg-stable}. \end{cases}$

Second Method

of liapounous:

Consider $\frac{A\vec{x}}{At} = \vec{f}(\vec{x})$, sortisfies the existence

and Uniqueness Thm.

If exist Vix: IR" - iR. lef on IXIEM.

satisfies: Vio)=0. Vix)>0. \ X+0.

Then. $\int f \frac{dv(\vec{x}(t))}{dt} = I \frac{\partial V}{\partial x_i} f_i > 0. \ \forall \vec{x} \neq 0 \Rightarrow \vec{x}(t) \Rightarrow 0 \text{ is stable.}$ $\int \frac{dv(\vec{x}(t))}{dt} = I \frac{\partial V}{\partial x_i} f_i < 0. \ \forall \vec{x} \neq 0 \Rightarrow \vec{x}(t) \Rightarrow 0 \text{ is stable.}$ $\int \frac{dv(\vec{x}(t))}{dt} = I \frac{\partial V}{\partial x_i} f_i < 0. \ \forall \vec{x} \neq 0 \Rightarrow \vec{x}(t) \Rightarrow 0 \text{ is stable.}$

Fernok: feverse the sign of inequality Vixiso me {

It still holds!

e.g. $V(x,\eta) = \frac{1}{2}(x^2+\eta^2)$. A common V- Function. Sorts fies: V > 0. V(1) = 0. Others: $V = (x+\eta)^2$. $(x+\eta)^2 + \eta^2$. In the generally. $\lambda x^2 + \mu \eta^2$. $\lambda x^4 + \mu \eta^2$. $(\lambda \cdot \mu \cdot v)$. for off setting

(3) Dynasmie System

in dimension 2:

Consider $\begin{cases} \frac{dx}{nt} = X(x, \eta) & \text{conti. on it. Satisfy} \\ \frac{dx}{nt} = Y(x, \eta) & \text{uniqueness condition.} \end{cases}$

O Equilibrim points:

· For $\frac{L}{nt}(\overset{\times}{\eta}) = A(\overset{\times}{\eta})$, $A = (\overset{n}{a}\overset{k}{\lambda})$.

we only consider 1A1+0. Its unique equilibria

point is co.o.

pennok: If 1A1=0. Then A(x)=0 has infiniste

solutions (so that equilibrian points) on a'x+b'q=0.

Unher rotations and Whations:

1°) A = (0 m). Am +0. => solution 1 = CIXIMA. X=0.

λ=M>D:

(0.0) is

a source

不稳定基金结点

λ=M < 0: \$ co.0) \$\$ a \$ sink.

渐近超之多季结点

x = M. x m > 0:

10/2/1. M<200 稳主的两向结

7点(1. 1>11>0

1 *M. 1M<0:

事之 (不稳之)

利作

2>0>M

M>0> X

稳定的争为陆岛

不稳定的革向结点。

→ r= Ce^{等日}, C30, β注主整理方向 { β20 性的针

xpco. 稳之追急 (4 (0. p > 0)

X=0. p>0 Fing

Ap>0.不我之里至 (x70, 820)

- 图不稳是的两句话支
- ① 享安生 图中心.

7+ px+ 9 =0. P= - TrcA) . 9=1A1.

O不稳之这是 @ 稳之过气

图不稳之等向/星形结至

田稳主军的/星形结生

① 稳之的而向指系.

@ Procedure of drawing a Phase Plane:

 $\frac{7hm.}{m} \quad \text{For} \quad \begin{cases} \frac{dx}{dt} = ax + by + y(x,y), & \text{if } \in C'. \\ \frac{dy}{dt} = cx + dy + y(x,y), \end{cases}$

Suppose (0.0) is the unique equilibrim point.

If $p(x,\eta)$, $\gamma(x,\eta) = b(r^{int})$, $\exists \xi>0$, when $r=Jx^{int}\to 0$.

Then its Structure is same as $\begin{cases} \frac{Ax}{At} = ax + b \\ \frac{An}{At} = cx + d \\ \frac{An}{A$

- → 1°) Check whether the montiment system can be reduced to linear system
 - 29 If it can. Then contembare 9.9. figure out what kind of e.p. (0.0) is.
 - 3") If the locus will tend to some direction. then let $\eta = kx$, solve the limit tangent k!

3 limse Cycle:

A isolated abosed orbst in an annulus Romain is called a limit eyele of the system.

If to m, the orbsts outside the Lopain tend to it, then it's stable. If to - w, they tend to it, then it's mostable.

7hm. (Proncari - Bendsson)

If Domain D are contoured by two simply closed curves which we not orbits of the system. Besides. D doesn't contain equilibrian point. The orbits start from L. L. won't have D. Then in D. there exists at hast one limit eyele I.

Perank: The interpretion:

If there housed exist sink or source in D. there're flows from outside D into D. Then there exists a circulation

7/m. If $P(x,\eta)$. $Q(x,\eta) \in C'(D)$. D is simply connected. $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial \eta} \neq 0$. $\forall (x,\eta) \in D$. Then, For the system: $\begin{cases} \frac{\partial x}{\partial t} = P(x,\eta) \\ \frac{\partial x}{\partial t} = Q(x,\eta) \end{cases}$ there

no closed orbit exists.

Pf: If $\chi(t)$, $\eta(t)$ is the periodic solution of system. St. $\chi(0) = \chi(0)$. $\eta(0) = \eta(0)$, generate a cloud orbit I.

Then $\oint P M_1 - \alpha dx = \int_0^T PQ - \alpha P = 0$ $= \iint \frac{\partial P}{\partial x} + \frac{\partial u}{\partial \eta} \neq 0. \quad \text{fortraket!}$

forois)=9.

Then 1=10 is
a closefully

- Pirece Method

O Lot (x=rise)

for limite equili

In the system

O liapounov:

the energy bulance curve function.