

Wydział Elektroniki, Fotoniki i Mikrosystemów

SPD

Problem przepływowy - sprawozdanie

Członkowie grupy: Aleksander Biskup, 264346

Eryk Sikora, 263453

Prowadzący zajęcia: dr inż. Agnieszka Wielgus

Grupa zajęciowa: Środa $11^{15} - 13^{00}$

1 Wstęp

Problem uszeregowania zadań na maszynach jednorodnych (problem przepływowy) jest kluczowym zagadnieniem w teorii harmonogramowania i zarządzania produkcją. Skupimy się na problemie minimalizacji maksymalnego czasu zakończenia wszystkich zadań (makespan, $C_{\rm max}$). Problem ten należy do klasy NP-trudnych, co oznacza, że jego optymalne rozwiązanie jest wysoce nieefektywne do obliczenia w czasie wielomianowym dla dużych instancji.

1.1 Cel i Zakres Pracy

Celem listy zadań jest opracowanie i implementacja różnych algorytmów rozwiązujących problem uszeregowania zadań na maszynach jednorodnych, a następnie analiza ich efektywności na podstawie dostępnych benchmarków. W ramach zadania zostaną zrealizowane następujące podejścia:

- Algorytmy deterministyczne: przegląd zupełny, algorytm NEH (Nawaz-Enscore-Ham), algorytm Johnsona dla dwóch maszyn, FNEH (szybsza wersja NEH)
- Algorytmy metaheurystyczne oparte na przeszukiwaniu sąsiedztwa: symulowane wyżarzanie, tabu search.

2 Analiza eksperymentów

	٠,

Rozmiar instancii	Wartość przegladu	Czas przeglądu [ms]	Wartość Johnson	Czas Johnson [ms]	Wartość NEH	Blad NEH [%]	Czas NEH [ms]	Wartość ONEH	Bład ONEH [%]	Czas ONEH Imsl	Wartość wyżarzanie	Bład wyżarzanie [%]	Czas wyżarzanie [ms]	Wartość Tabu	Bład Tabu [%]	Czas Tabu [msl
2\5	303	279	303	14	310	5.98	75	310	5.28	44	303	Diqu wyzarzanie [70]	3361	303	0	3794
2 \0	210	1022	210	07	207	4.01	107	207	4.01	C2	210	0	1270	312	0	4197
2\0	312	1833	312	20	321	4.61	121	321	4.61	03	312	0	4379	312	0	
2\7	464	10329	464	22	483	04.09	111	520	12.07	46	464	0	6472	464	0	6622
2\8	609	55755	609	21	629	3.28	100	629	3.28	42	609	0	7227	609	0	7747
2\10	544	5610786	544	26	549	0.92	170	550	1.1	52	544	0	16948	544	0	17597
2\20	-	-	1006	49	1017	01.09	1638	1023	1.69	241	1006	0	90314	1006	0	95763
2\30	-	-	1484	139	1605	8.15	4588	1524	2.7	419	1484	0	176721	1484	0	171770
2\40	-	-	2247	123	2331	3.74	8803	2314	2.98	392	2248	0.04	240531	2248	0.04	242198
2\50	-	-	2600	167	2706	04.08	13869	2647	1.81	526	2600	0	450750	2600	0	464812

Tabela 1: Testy dla dwóch maszyn

Rozmiar instancji	Benchmark	Wartość NEH	Bład NEH [%]	Czas NEH [ms]	Wartość QNEH	Błąd QNEH [%]	Czas QNEH [ms]	Wartość wyżarzanie	Błąd wyżarzanie [%]	Czas wyżarzanie [ms]	Wartość Tabu	Błąd Tabu [%]	Czas Tabu [ms]
5\20	1235	1584	28.26	1899	1616	30.85	379	1258	1.86	119991	1254	1.54	109573
5\50	2751	3128	13.7	16376	3169	15.19	1004	2782	1.13	413275	2782	1.13	395506
5\100	5274	5750	09.03	101477	5528	4.82	4101	5290	0.3	1398898	5316	0.8	1332489
10\50	3011	3942	30.92	19582	3410	13.25	1362	3172	5.35	335079	3147	4.52	325457
10\100	5491	6513	18.61	130743	6123	11.51	4771	5633	2.59	831670	6239	13.62	816208
20\50	3673	4890	33.13	29332	4384	19.36	3655	3912	6.51	595209	3959	7.79	600749
20\100	6320	7610	20.41	196278	7056	11.65	8624	6668	5.51	1131947	7124	12.72	1106574

Tabela 2: Testy dla większej ilości maszyn

3 Wnioski

- Rozbieżność w wynikach algorytmu NEH oraz FNEH wynika z różnicy w akceptacji najlepszego ułożenia zadań. W momencie kiedy jest więcej niż jedno uszeregowanie które daje taki sam czas, wybierane jest pierwsze z nich. Algorytm NEH bierze pierwsze od początku, FNEH pierwsze od końca.
- Algorytm symulowanego wyżarzania daje na ogół lepsze wyniki od algorytmu tabu search podczas gdy oba mają podobny czas działania. Może to wynikać z zastosowanego typu zamian zadań w algorytmie tabu search.