1

明細書

光ディスク

技術分野

5

15

20

25

本発明は、銀又は銀を主成分とする合金の反射膜を有する光ディスクに関する。

背景技術

10 貼り合わせ型光ディスクの代表例としては、DVD(ディジタルバーサタイル ディスク又はディジタルビデオディスク)がある。このDVDは、少なくとも 1 枚の光ディスク用基板に情報記録層を形成した 2 枚の光ディスク用基板を貼り 合わせる方法で作製する。その際に使用する貼り合わせ剤としては、紫外線硬化型 組成物からなる接着剤が一般的である。

情報記録層とは、ポリカーボネート等の合成樹脂からなる光ディスク用基板上に形成した、ピットと称する凹凸、相変化材料又は色素等からなる層と、その上に形成された情報読み取り用のレーザー光を反射するための半透明反射膜又は完全反射膜とからなる積層体である。半透明反射膜及び完全反射膜は、情報記録層の最上部に形成される層であり、一般的には金属又は金属合金の薄膜からなる層である。

2枚の光ディスク用基板を貼り合わせた構造を有する再生専用型のDVDにおいては、種々のタイプが存在する。例えば、「DVD-10」と称する光ディスクは、基板の片面に、記録情報に対応するピットと称する凹凸を設け、その上に情報読み取り用のレーザー光を反射するための層として、例えばアルミニウムの層を形成した光ディスク用ポリカーボネート基板を2枚用意して、それらをアルミニウムの層を接着面として貼り合わせたものである。「DVD-5」は、「DVD-10」を製造するための前記基板と、情報記録層を設けていない通常の透明なポリカーボネート基板とを貼り合わせたものである。また、「DVD-9」は、基板の片面に設けたピット上にアルミニウムの反射膜を形成した基板と、基

2

板の片面に設けたピット上に金又は金を主成分とする合金、銀又は銀を主成分とする合金或いはケイ素化合物等からなる半透明反射膜を形成した基板とを、反射膜同士を接着面として貼り合わせたものである。更に、「DVD-18」は、片面に2層の情報記録層を有する基板を2枚貼り合わせたものである。現在では、記録容量が大きくて片面から2層の情報を読み取れる「DVD-9」が主流になっている。

このDVD-9等の半透明反射膜としては、金またはケイ素化合物が主として使用されている。しかし、金は材料の値段が非常に高くコスト面で不利であり、またケイ素化合物は成膜が非常に困難であるという欠点がある。そこで、金と比較して低コストであり、成膜も容易であることから、銀または銀を主成分とする合金への置き換えが盛んに検討されている。

10

15

20

25

しかしながら、金またはケイ素化合物を半透明反射膜として有するDVD-9の製造に従来の紫外線硬化型接着剤を使用すると、銀または銀を主成分とする合金を半透明反射膜として使用したDVD-9の耐久性を著しく劣化させるという問題が発生した。具体的には、従来の接着剤を使用した銀または銀を主成分とする合金を半透明反射膜として使用したDVD-9を高温高湿環境下に長時間曝露した場合、その接着剤の影響により銀または銀を主成分とする合金の表面が変質して、信号の読み取りエラーの増加や外観不良などが生じ、このDVD-9の耐久性を著しく低下させるという問題である。

前記高温高湿環境下での問題の解決に対しては、例えば、フェニルチオエチル (メタ) アクリレート類を含有する紫外線硬化型組成物をDVD-9の接着剤として用いる技術が提案されている (例えば、特開2002-212514号公報の特許請求の範囲及び実施例を参照。以下、特許文献1と称する)。この特許文献1には、銀又は銀を主成分とする合金を半透明反射膜として使用したDVD-9でも、80℃,85%RH,500時間の高温高湿環境下での試験を行った後に、半透明反射膜の変色やピンホール発生がなく、金を半透明反射膜として使用したDVD-9と同等の耐久性が得られることが記載されている。

また、DVD-9等の金属反射膜を備えた光ディスクにおける別の課題として、接着剤として使用する紫外線硬化型組成物による金属反射膜の腐食がある。

3

この課題を解決するための技術として、例えば、カチオン重合性化合物、光カチオン重合開始剤、及びアルミニウム腐食防止剤としてヒドロキシカルボン酸を含有する接着剤組成物をアルミニウムの蒸着膜等の薄膜に塗布する技術が報告されている(例えば、特開2002-146331号公報の特許請求の範囲、第6段落、及び第25段落を参照のこと。以下、特許文献2と称する)。ヒドロキシカルボン酸の例としては、クエン酸、イソクエン酸、酒石酸、リンゴ酸、乳酸、2-メチル乳酸、ヒドロキシピルビン酸、ジメチロールブタン酸、ジメチロールプロピオン酸、αーヒドロキシイソ酪酸、α,αージフェニルグリコール酸、マンデル酸、6ーヒドロキシー2ーナフトエ酸、pーヒドロキシ安息香酸、5ーヒドロキシイソフタル酸、pーヒドロキシフェニルプロピオン酸、シトラジン酸、ケリダム酸、没食子酸等が挙げられている。

10

15

20

25

更に、金属反射膜を備えた光ディスクにおいては、接着剤として使用する紫外線硬化型組成物の、金属反射膜に対する密着性も重要な課題である。これを解決するための技術として、例えば、アモルファスシリコン樹脂基板と金、銀、銅、アルミニウム等の金属反射膜の両方に優れた密着性を有する組成物に関する技術が報告されている(例えば、特開2002-285042号公報の特許請求の範囲、第28段落、第29段落、及び第34段落を参照。以下、特許文献3と称する)。この技術では、ジシクロペンタジエンジアクリレート、チオキサントン系化合物及びリン酸基を有する(メタ)アクリレートを含有する光ディスク用紫外線硬化型組成物に関する技術が提案さている。更に、重合禁止剤として、例えば、ハイドロキノンモノメチルエーテル、tーブチルカテコール、pーベンゾキノン、2,5-tーブチルーハイドロキノン、フェノチアジン等を、光ディスク用紫外線硬化型組成物全体に対して0.1~5質量%の範囲で使用できることが記載されている。

ところで、接着性に優れ、且つ速硬性の二液型のアクリル系接着剤として、 (メタ) アクリル酸及びそのエステルから選ばれるアクリル系化合物とパーオキ シエステル系重合開始剤と没食子酸誘導体とその他添加剤を含有する接着剤組成 物を第一液として使用する技術が開示されている(例えば、特開平3-1340 81号公報の特許請求の範囲、第6頁右上欄5行目~同左下欄17行目、及び実

4

施例を参照。以下、特許文献4と称する)。更に、接着時に接着部分からはみ出した第一液を硬化させるために、接着剤組成物に光重合開始剤を添加し、紫外線を照射することにより、はみ出した接着剤を硬化させることが提案されている。

以上の如く、光ディスク技術分野においては、これまで高温高湿環境下に長時間曝露した時の耐久性、金属反射膜の耐腐食性、紫外線硬化型組成物の金属反射膜に対する密着性等の改善が検討されてきた。本発明者等は、このような従来公知の課題を含め、銀又は銀を主成分とする合金の反射膜を有する光ディスクの開発に関して種々検討を進めてきた。その結果、上記課題以外に新たに別の課題があることを見出した。その課題とは、銀又は銀を主成分とする合金の反射膜を備えた光ディスクが蛍光灯等の室内灯に暴露された場合、この反射膜が黒変して反射率の低下やPIエラー(parity of inner-code error)の増加を引き起こし、極端な場合には情報の読み取りが不可能になるという問題である。この課題の克服は、銀又は銀を主成分とする合金からなる反射膜を備えた光ディスクの実用特性を向上させるために非常に重要である。

したがって、本発明の目的は、蛍光灯等の室内灯に曝露された場合であっても 反射膜が黒変することがなく、信号の読み取りエラー (PIエラー) の増加や反 射率低下を起こすことがない、耐光性に優れた、銀又は銀を主成分とする合金か らなる反射膜を備えた光ディスクを提供することにある。

20 発明の開示

10

15

25

本発明者らは、本発明の課題の解決を試みるにあたり、前記の各従来技術(特許文献1~特許文献3)の実施例に記載された紫外線硬化型組成物を使用した光ディスクを検討した。しかしながら、前記の各従来技術においては、銀又は銀を主成分とする合金を半透明反射膜として使用した光ディスクの耐光性に関しては全く触れられておらず、また、銀又は銀を主成分とする合金からなる半透明反射膜を備えた光ディスクに使用する具体的な紫外線硬化型組成物に関すること、及び、この紫外線硬化型組成物に使用する具体的な添加剤について全く記載されていない。実際に前記技術を用いた光ディスクの耐光試験を行うと、銀又は銀を主成分とする合金からなる反射膜の変色が著しく、反射率が低下し、更にPIエラ

一が増加するという問題が確認された。

なお、特許文献4には光ディスクの接着に関して全く開示されていない。まして、特許文献4は、銀又は銀を主成分とする合金を反射膜として使用した光ディスクの耐光性を改善する方法に関して特段の手段を指し示すものではない。

5 次に、本発明者らは、蛍光灯等の室内灯に曝露した後に銀又は銀を主成分とする合金からなる反射膜が黒変する現象を、反射膜の表面酸化によるものと推測し、この反射膜上に設ける樹脂層を形成するための組成物として、種々の酸化防止剤、例えば、クエン酸、酒石酸、リンゴ酸、乳酸、ヒドロキシピルビン酸、ジメチロールプロピオン酸、αーヒドロキシイソ酪酸、マンデル酸、6ーヒドロキシー2ーナフトエ酸、pーヒドロキシ安息香酸、5ーヒドロキシイソフタル酸、pーヒドロキシフェニル酢酸、没食子酸等を添加した紫外線硬化型組成物を検討した。その結果、上記化合物の中では没食子酸を添加した系のみが上記課題を解決できることが判った。

更に検討を進め、没食子酸と類似の化学構造を有する化合物、例えば、フェノール、クレゾール、メシトール等のモノヒドロキシ化合物、ハイドロキノン、2ーヒドロキシハイドロキノン、2,5ーtーブチルーハイドロキノン、カテコール、tーブチルカテコール、レソルシノール、オルシノール等のジヒドロキシ化合物、ピロガロール等のトリヒドロキシ化合物等を検討したところ、これらの中でもフェノール性水酸基を2個以上有する特定構造の化合物が没食子酸と同様な20 効果を示すことを見出し、本発明を完成させた。

すなわち本発明の光ディスクは、第1の基板上に情報読み取り用のレーザー光 を反射するための第1の反射膜を備え、更に前記第1の反射膜上に紫外線硬化型 組成物の硬化皮膜からなる樹脂層を備え、

前記第1の反射膜が、銀又は銀を主成分とする合金からなる反射膜であり、 前記紫外線硬化型組成物が、

- (a) ラジカル重合性化合物、
- (b) 式(1)

25

$$\begin{array}{cccc}
& & & & & \\
R^5 & & & & & \\
R^4 & & & & & \\
& & & & & & \\
R^3 & & & & & \\
\end{array} (1)$$

(式中、R¹、R²、R³、R⁴及びR⁵はそれぞれ独立的に、(i)水素原子、(ii)ハロゲン原子、(iii)水酸基、(iv)炭素数1~8のアルコキシル基、(v)カルボキシル基、(vi)式(2)

5

10

15

(式中、 R^6 は、nロゲン原子で置換されていても良い炭素数 $1 \sim 200$ アルキル基又はnロゲン原子で置換されていても良い炭素数 $1 \sim 200$ アルケニル基を表す)で表される基、或いは(vii) 置換基としてカルボキシル基、アルコキシカルボニル基、アシルオキシル基又はアルコキシル基を有していても良い炭素数 $1 \sim 240$ アルキル基若しくはアルケニル基を表すが、 R^1 、 R^2 、 R^3 、 R^4 及び R^5 の中の少なくともひとつは水酸基である)で表される化合物、及び

(c) ラジカル性の光重合開始剤

を含有する。

本発明によれば、蛍光灯等の室内灯に曝露された場合でも銀又は銀を主成分とする合金からなる反射膜が黒変することがなく、信号の読み取りエラー(PIエラー)の増加や反射率変化が少ない光ディスクを得ることができる。このため、情報記録層を形成する半透明反射膜又は反射膜の材料として、銀又は銀を主成分とする合金を使用することが容易となり、低価格で信頼性の高い「DVD-9」タイプ等の光ディスクの供給が可能になるという著しい効果を奏する。

20

25

発明を実施するための最良の形態

本発明の銀又は銀を主成分とする合金からなる反射膜を備えた光ディスクに使用する紫外線硬化型組成物は、前記式(1)で表される化合物を含有する。

なお、本明細書中における反射膜とは、情報読み取り用のレーザー光を反射するための半透明反射膜又はこのレーザー光を実質的に透過しない完全反射膜のこ

とであり、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸のことであり、アクリル酸又はメタクリル酸の誘導体についても同様である。

前記式(1)で表される化合物としては種々の構造の化合物があるが、中でも 下記式(3)で表される没食子酸又は没食子酸エステルであることが好ましい。

5

15

20

(式中、 R^7 は、水素原子、ハロゲン原子で置換されていても良い炭素数 $1\sim 2$ 0のアルキル基、又はハロゲン原子で置換されていても良い炭素数 $1\sim 2$ 0のアルケニル基を表す)

アルキル基及びアルケニル基は、分岐状又は直鎖状であって良く、ハロゲン原 子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子であることが好ま しい。中でも、R⁷は水素原子、又は無置換の炭素数 1~20の分岐鎖を有して いてもよいアルキル基であることが好ましく、水素原子、又は無置換の炭素数 1 ~8の分岐鎖を有していてもよいアルキル基であることがより好ましい。更に、 水素原子、又は無置換の炭素数 1~4のアルキル基であることが特に好ましい

没食子酸エステルとしては、具体的には、没食子酸メチル、没食子酸エチル、 没食子酸プロピル、没食子酸イソプロピル、没食子酸イソペンチル、没食子酸オ クチル、没食子酸ドデシル、没食子酸テトラデシル、没食子酸ヘキサデシル、没 食子酸オクタデシル等がある。式(3)で表される化合物としては、没食子酸を 使用することが好ましい。没食子酸は、市販品として、例えば、大日本製薬

(株)製が容易に入手可能である。

また、前記式(1)で表される化合物としては、下記式(4)で表される化合物も好ましい。

(式中、R®、R®、R¹º及びR¹¹は、それぞれ独立的に、水素原子、ハロゲン原

15

20

子、炭素数 $1 \sim 8$ のアルコキシル基、置換基として-COOH、 $-COOR^{12}$ 、 $-OCOR^{13}$ 又は $-OR^{14}$ を有していても良い炭素数 $1 \sim 2$ 4 のアルキル基、或いは置換基として-COOH、 $-COOR^{12}$ 、 $-OCOR^{13}$ 又は $-OR^{14}$ を有していても良い炭素数 $1 \sim 2$ 4 のアルケニル基を表す(式中、 R^{12} 、 R^{13} 、及び R^{14} は、それぞれ独立的に、炭素数 $1 \sim 8$ のアルキル基又は炭素数 $1 \sim 8$ のアルケニル基を表す))

式(4)中、R⁸、R⁹、R¹⁰及びR¹¹は、具体的には、(i)水素原子、(ii)フッ素原子、塩素原子、臭素原子又はヨウ素原子等のハロゲン原子、(iii)メトキシ、エトキシ、ブトキシ、オクチロキシ等のアルコキシル基、(iv)メチル、ブチル、ヘキシル、オクチル、ラウリル又はオクタデシル等のアルキル基、(v)エテニル、プロペニル又は2ープテニル等のアルケニル基、(vi) 4ーカルボキシブチル、2ーメトキシカルボニルエチル、メトキシメチル、エトキシメチル等が挙げられる。

式(4)で表される化合物中で好ましいのは、カテコール、 $3-\sec-ブチル$ カテコール、 $3-\sec-ブチルカテコール、4-\sec-ブチルカテコール、4ーtert-ブチルカテコール、3,<math>5-$ ジーtert-ブチルカテコール、 $3-\sec-$ ブチルー4ーtert-ブチルカテコール、3-tert-ブチルカテコール、4-オクチルカテコール及び4-ステアリルカテコールであり、より好ましいのは、カテコール及び4-tert-ブチルカテコールである。特に4-tert-ブチルカテコールを使用することが好ましい。4-tert-ブチルカテコールの市販品としては、例えば、大日本インキ化学工業(株)製の商品名:DIC TB C-5 Pがある。

更に、前記式(1)で表される化合物としては、下記式(5)及び式(6)で表される化合物も好ましい。

25 (式中、R¹⁵、R¹⁶、R¹⁷及びR¹⁸は、それぞれ独立的に、水素原子、ハロゲン原子、炭素数 1 ~ 8 のアルコキシル基、置換基として-C00H、-C00R¹²、-OCOR¹³又

は $-0R^{14}$ を有していても良い炭素数 $1\sim24$ のアルキル基、或いは置換基として-COOH、 $-COOR^{12}$ 、 $-OCOR^{13}$ 又は $-OR^{14}$ を有していても良い炭素数 $1\sim24$ のアルケニル基を表す(式中、 R^{12} 、 R^{13} 、及び R^{14} は、それぞれ独立的に、炭素数 $1\sim8$ のアルキル基又は炭素数 $1\sim8$ のアルケニル基を表す))

5

10

15

20

25

(式中、 R^{19} 、 R^{20} 、 R^{21} 及び R^{22} は、それぞれ独立的に、水素原子、ハロゲン原子、炭素数 $1 \sim 8$ のアルコキシル基、置換基として-COOH、 $-COOR^{12}$ 、 $-OCOR^{13}$ 又は $-OR^{14}$ を有していても良い炭素数 $1 \sim 2$ 4 のアルキル基、或いは置換基として-COOH、 $-COOR^{12}$ 、 $-OCOR^{13}$ 又は $-OR^{14}$ を有していても良い炭素数 $1 \sim 2$ 4 のアルケニル基を表す(式中、 R^{12} 、 R^{13} 、及び R^{14} は、それぞれ独立的に、炭素数 $1 \sim 8$ のアルチル基又は炭素数 $1 \sim 8$ のアルケニル基を表す))

式(5)中のR¹⁵、R¹⁶、R¹⁷及びR¹⁸、及び、式(6)中のR¹⁹、R²⁰、R²¹及びR²²は、具体的には、水素原子、メチル基、プロピル基、ヘキシル基、ノニル基、ドデシル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、iso-ヘキシル基、tert-オクチル基等が挙げられる。

式 (5) で表される化合物の中で好ましいのは、ハイドロキノン、2ーヒドロキシハイドロキノン、2,5ージーtertーブチルハイドロキノン、2,5ービス (1,1,3,3ーテトラメチルブチル) ハイドロキノン又は2,5ービス (1,1ージメチルブチル) ハイドロキノンである。また、式(6)で表される化合物中で好ましいのは、レソルシノール (benzene-1,3-diol)、オルシノール (5-methylbenzene-1,3-diol)である。これらの中では、式(5)で表される化合物の方が式(6)で表される化合物よりも好ましく、式(5)で表される化合物の中でもハイドロキノン (benzene-1,4-diol)、2ーヒドロキシハイドロキノン (benzene-1,2,4-triol)を使用することがより好ましい。また、式(1)で表される化合物の中で、本発明で使用することが好ましいその他の化合物として、ピロガロール (1,2,3-trihydroxybenzene)がある。

上記式(3)~式(6)で表される化合物の中で、式(3)で表される没食子酸又は没食子酸エステル及び式(5)で表されるハイドロキノン系化合物は、銀又は銀を主成分とする合金を反射膜として使用した光ディスクを蛍光灯に曝露した場合におけるこの反射膜の黒変を防止するだけでなく、高温高湿環境下における耐久性も向上させることができる。したがって、本発明の光ディスクに使用する紫外線硬化型組成物に添加する式(1)で表される化合物の中でも、特に好ましい化合物である。また、式(3)及び式(5)で表される化合物の中では、没食子酸が最も好ましい化合物である。

式(1)で表される化合物の紫外線硬化型組成物中への添加量としては、紫外線硬化型組成物全体に対して、0.05~10質量%が好ましく、より好ましくは0.1~10質量%である。0.3~7質量%であることが更に好ましく、1~5質量部であることが特に好ましい。上記範囲であると、耐光性の改良効果が顕著であり、また紫外線硬化型組成物中で、式(1)で表される化合物が析出し難く、この組成物の取り扱いが容易である。

15 式(1)の化合物を使用した紫外線硬化型組成物による硬化皮膜は、銀又は銀を主成分とする合金を反射膜として使用した光ディスクが、蛍光灯等の室内灯、例えば、中心波長領域が500~650nmの光源に晒された場合でも、銀又は銀を主成分とする合金からなる反射膜が黒変することを防ぎ、信号の読み取りエラーや反射率の低下等を起こすことがない。

紫外線硬化型組成物に用いる、ラジカル重合性化合物としては、ラジカル重合性モノマー及びラジカル重合性オリゴマーが使用できる。ラジカル重合性モノマーとしては、単官能(メタ)アクリレートや多官能(メタ)アクリレートを用いることができ、これらは、各々、単独又は2種類以上併用して用いることもできる。

25 ラジカル重合性モノマーとしては、公知の化合物が使用できるが、単官能の (メタ) アクリレートとしては、例えば、エチル(メタ) アクリレート、プチル (メタ) アクリレート、2ーエチルヘキシル(メタ) アクリレート、ノニル(メ タ) アクリレート、トリデシル(メタ) アクリレート、ヘキサデシル(メタ) ア クリレート、オクタデシル(メタ) アクリレート、イソアミル(メタ) アクリレ

11

ート、イソデシル (メタ) アクリレート、イソステアリル (メタ) アクリレート、シクロヘキシル (メタ) アクリレート、ベンジル (メタ) アクリレート、メトキシエチル (メタ) アクリレート、ブトキシエチル (メタ) アクリレート、フェノキシエチル (メタ) アクリレート、フェノキシジエチレングリコール (メェノキシエチル (メタ) アクリレート、テトラヒドロフルフリル (メタ) アクリレート、グリシジル (メタ) アクリレート、2ーヒドロキシエチル (メタ) アクリレート、2ーヒドロキシエチル (メタ) アクリレート、3ークロロー2ーヒドロキシプロピル (メタ) アクリレート、3ークロロー2ーヒドロキシプロピル (メタ) アクリレート、ジエチルアミノエチル (メタ) アクリレート、カプロラクトン変性テトラヒドロフルフリル (メタ) アクリレート、カプロラクトン変性テトラヒドロフルフリル (メタ) アクリレート、イソボルニル (メタ) アクリレート、ジシクロペンタニル (メタ) アクリレート、ジシクロペンテニロキシエチル (メタ) アクリレート等が挙げられる。

また、多官能の(メタ)アクリレートとしては、例えば、1,4ープタンジオ ールジ (メタ) アクリレート、3-メチルー1, 5-ペンタンジオールジ (メ 15 タ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペ ンチルグリコールジ (メタ) アクリレート、2-メチル-1,8-オクタンジオ ールジ (メタ) アクリレート、2ーブチルー2ーエチルー1、3ープロパンジオ ールジ (メタ) アクリレート、トリシクロデカンジメタノールジ (メタ) アクリ レート、エチレングリコールジ(メタ)アクリレート、ポリプロピレングリコー 20 ルジ (メタ) アクリレート等、トリス (2-ヒドロキシエチル) イソシアヌレー トのジ (メタ) アクリレート、ネオペンチルグリコール1モルに4モル以上のエ チレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジ (メタ) アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイド 若しくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレー 25 ト、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくは プロピレンオキサイドを付加して得たトリオールのジ又はトリ(メタ)アクリレ ート、ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロ ピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチ

12

ロールプロパントリ (メタ) アクリレート、ペンタエリスリトールトリ (メタ) アクリレート、ジペンタエリスリトールのポリ (メタ) アクリレート、エチレンオキサイド変性リン酸 (メタ) アクリレート、エチレンオキサイド変性アルキル化リン酸 (メタ) アクリレート等が挙げられる。

更に、ラジカル重合性オリゴマーとしては、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等がある。

紫外線硬化型組成物に使用する光重合開始剤は、ラジカル重合性モノマー及び ラジカル重合性モノマー等の光ラジカル重合性化合物を硬化しうる公知慣用のも のがいずれも使用できる。光重合開始剤としては、分子開裂型又は水素引き抜き 型のものが本発明に好適である。

10

ラジカル性の光重合開始剤としては、ベンゾインイソブチルエーテル、2.4 ージエチルチオキサントン、2ーイソプロピルチオキサントン、ベンジル、2, 4.6-トリメチルベンゾイルジフェニルフォスフィンオキシド、2-ベンジル -2-ジメチルアミノー1-(4-モルフォリノフェニル) ーブタンー1ーオ 15 ン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチル フォスフィンオキシド等が好適に用いられ、また、これら以外の分子開裂型のも のとして、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエ ーテル、ベンジルジメチルケタール、2-ヒドロキシー2-メチルー1-フェニ ルプロパンー1ーオン、1ー(4ーイソプロピルフェニル)―2ーヒドロキシー 20 2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニ ル)-2-モルフォリノプロパン-1-オン等を併用しても良いし、更には、水 素引き抜き型光重合開始剤であるベンゾフェノン、4-フェニルベンゾフェノ ン、イソフタルフェノン、4ーベンゾイルー4'ーメチルージフェニルスルフィ ド等も併用できる。ラジカル性の光重合開始剤の使用量は、紫外線硬化型組成物 25 の全体に対して、2質量%~10質量%の範囲とすることが好ましい。

上記ラジカル性の光重合開始剤に対して増感剤を使用することができ、例えば、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、pージメチルアミノ安息香酸エチル、pージ

15

20

メチルアミノ安息香酸イソアミル、N, Nージメチルベンジルアミン及び4, 4'ービス(ジエチルアミノ)ベンゾフェノン等の、前述ラジカル重合性成分と付加反応を起こさないアミン類を併用することもできる。もちろん、上記光重合開始剤や増感剤は、紫外線硬化型化合物への溶解性に優れ、紫外線透過性を阻害しないものを選択して用いることが好ましい。

また、紫外線硬化型組成物には、必要に応じて、他の添加剤を使用することができ、例えば、熱重合禁止剤、可塑剤、ヒンダードフェノール、ヒンダードアミン、ホスファイト等の酸化防止剤、及びエポキシシラン、メルカプトシラン、

(メタ) アクリルシラン等のシランカップリング剤等を、各種特性を改良する目 的で配合することもできる。これらは、紫外線硬化型化合物への溶解性に優れた もの、紫外線透過性を阻害しないものを選択して用いる。

更に、紫外線硬化型組成物には、酸化防止剤としてヒンダードフェノール系酸化防止剤の添加量は、紫外線硬化型組成物の全体に対して、0.01質量%~5質量%であることが好ましい。ヒンダードフェノール系酸化防止剤としては、下記式(7)で表される化合物を使用することが好ましい。中でも、4,6ービス(オクチルチオメチル)ーoークレゾール(下記式(8))が特に好ましい。そのような化合物の市販品としては、商品名:IRGANOX 1520L(チバスペチャルティケミカルズ(株)製)がある。本発明で使用する紫外線硬化型組成物は、4,6ービス(オクチルチオメチル)ーoークレゾールを含有することにより、高温高湿環境下における耐久性が向上する。特に、高温高湿環境下における反射率低下を防止するため、効果的である。

$$\begin{array}{c}
\left(R^{23}SR^{24}\right)_{n} \\
\left(R^{25}\right)_{n}
\end{array}$$
(7)

(式中、 R^{23} は分岐鎖を有していてもよい炭素原子数 $1\sim10$ のアルキレン基を 25 表し、 R^{24} 及び R^{25} は、各々独立的に分岐鎖を有していてもよい炭素原子数 $1\sim16$ のアルキル基を表し、mは $1\sim5$ の整数であり、nは $0\sim4$ の整数であり、

14

10

15

20

25

$$C_8H_{17}SCH_2$$
 CH_3
 $CH_2SC_8H_{17}$
 (8)

紫外線硬化型組成物としては、常温~40℃において、液状であるものを用いるのが好ましい。溶媒は用いない方が好ましく、用いたとしても極力少量に留めるのがよい。また、前記組成物の塗布をスピンコーターで行う場合には、粘度を20~1000mPa・sとなるように調整するのが好ましく、DVD用途で用いる場合は100~1000mPa・sに調整するのが良い。

上記式(1)で表される化合物を含有する紫外線硬化型組成物を使用した本発明の光ディスクは、第1の基板上に情報読み取り用のレーザー光を反射するための第1の反射膜を備え、更にこの第1の反射膜上に上記紫外線硬化型組成物の硬化皮膜からなる樹脂層を備えた構造を有する。本発明の光ディスクは、このような構造の光ディスク、或いはこのような構造を部分的に有する光ディスクである。そのような光ディスクとしては、銀又は銀を主成分とする合金の薄膜を光反射層とし、この光反射層上に保護層として紫外線硬化型組成物の硬化皮膜からなる樹脂層を備えたCD-ROM又はCD-R等がある。また、銀又は銀を主成分とする合金の薄膜からなる光反射層を有する基板を、この光反射層を接着面として紫外線硬化型組成物により他の基板と貼り合わせたDVD-5がある。

また、本発明の光ディスクは、前記第1の反射膜上に設けた上記紫外線硬化型組成物の硬化皮膜からなる樹脂層上に、更に、情報読み取り用のレーザー光を反射するための第2の反射膜を備えた第2の基板が、前記樹脂層と前記第2の反射膜とが接するように、前記樹脂層上に設けられた構造の光ディスクであっても良い。このような構造の光ディスクとしては、情報読み取り用のレーザー光を反射するための反射膜を備えた2枚の光ディスク用基板の少なくとも一方の基板が、その表面に銀又は銀を主成分とする合金からなる反射膜を有し、2枚の基板の反射膜同士を接着面として前記2枚の光ディスク用基板を貼り合わせたDVD-9、DVD-18、DVD-10等の貼り合わせ型の光ディスクがある。

15

本発明で使用する光ディスク用基板としては、光ディスク用基板として通常用いられるものが使用でき、特にポリカーボネート基板を好適に用いることができる。また、光ディスクに用いられる「銀を主成分とする合金」としては、例えば米国特許第6,007,889号公報に記載されている、銀と金の比率($Ag_x Au_y$)が以下の比率である銀合金が挙げられる。

0.9 < X < 0.999

10

15

20

25

0. $001 \le Y \le 0.10$

本発明の光ディスクのタイプは、好ましくは再生専用型DVDである「DVD-5」、「DVD-10」、「DVD-9」及び「DVD-18」、書き込み可能型のDVD-R、DVD+R、書き換え可能型のDVD-RW、DVD+R W、DVD-RAM等のDVDであり、特に好ましくは「DVD-9」及び「DVD-18」である。「DVD-9」及び「DVD-18」における銀又は銀を主成分とする合金からなる反射膜の膜厚は10~30nmであり、他のタイプのDVDにおける銀又は銀を主成分とする合金からなる反射膜の膜厚よりも薄くなっている。本発明で使用する紫外線硬化型組成物は、このように薄い膜厚の銀又は銀を主成分とする合金の薄膜上で使用しても十分な耐光性を示すため、銀又は銀を主成分とする合金からなる半透明反射膜を有する再生専用型の「DVD-9」及び「DVD-18」に使用する紫外線硬化型組成物として最適である。

また、本発明の光ディスクはこれらには限定されず、例えば、厚さ約1.1mmの光ディスク用基板の銀又は銀を主成分とする合金の薄膜上に、この組成物の硬化膜による、厚さ約0.1mm程度の保護層又はカバー層又は光透過層を形成したもの、すなわち、情報読み書き用のレーザー光として青紫色レーザー光に適したタイプのものであっても良いし、DVDと同様の厚さ0.6mmの基板を2枚貼り合わせた構造を有するSACD(スーパーオーディオCD)であっても良い。

以下に、「DVD-5」、「DVD-10」、「DVD-9」及び「DVD-18」を製造する場合の例を記載する。本発明の光ディスクの例は、これらに限定されるものではない。また、下記製造例で使用する紫外線硬化型組成物は、本発明で使用する上記式(1)で表される化合物を含有した紫外線硬化型組成物を

意味する。

10

15

(DVD-9の製造)

記録情報を担うピットと称する凹凸の上に、40~60nmの金属薄膜(第2の反射膜)が積層された光ディスク用基板(A:第2の基板)1枚と、記録情報を担うピットと称する凹凸の上に10~30nmの銀又は銀を主成分とする合金の半透明反射膜(半透明反射膜:第1の反射膜)が積層された光ディスク用基板(B:第1の基板)1枚を用意する。

なお、前記第2の反射膜としては、例えばアルミニウムを主成分とするものや 銀又は銀を主成分とする合金を使用することができる。また、前記光ディスク用 基板としては、光ディスク用基板として公知のものが使用できる。例えば、アモ ルファスポリオレフィン、ポリメチルメタクリレート、ポリカーボネート等が挙 げられるが、特にポリカーボネート基板を使用することが好ましい。

次いで、紫外線硬化型組成物を前記基板 (A:第2の基板)の金属薄膜 (第2の反射膜)上に塗布し、更に、半透明反射膜 (第1の反射膜)が積層された前記基板 (B:第1の基板)を、半透明反射膜 (第1の反射膜)の膜面が接着面となるように、金属薄膜 (第2の反射膜)面に塗布された紫外線硬化型組成物を介して基板 (A:第2の基板)と貼り合わせ、この貼り合わせた2枚の基板の片面又は両面から紫外線を照射して、両者を接着させ「DVD-9」とする。

(DVD-18の製造)

20 更に、前記のDVD-9を製造した後に、基板(A:第2の基板)上に形成された金属薄膜(第2の反射膜)を基板(B:第1の基板)側に残したまま、基板(A:第2の基板)のみを剥離することにより、基板(B:第1の基板)/半透明反射膜(第1の反射膜)/紫外線硬化型組成物の硬化膜/金属薄膜(第2の反射膜)が順次積層されたディスク中間体を作製する。そのようなディスク中間体を全変する。そのようなディスク中間体を全変である。次いで、この2枚のディスク中間体の金属薄膜(第1の反射膜)を接着面として、それらが対向するように接着することにより「DVD-18」が得られる。

(DVD-10の製造)

記録情報を担うピットと称する凹凸の上に、銀又は銀を主成分とする合金によ

る40~60nmの反射膜が積層された光ディスク用第2の基板枚(C1:第1の基板)及び(C2:第2の基板)を用意する。片方の基板(C1:第1の基板)の反射膜(第1の反射膜)上に紫外線硬化型組成物を塗布し、もう片方の基板(C2:第2の基板)を反射膜(第2の反射膜)の膜面が接着面となるように、基板(C1:第1の基板)の反射膜(第1の反射膜)面に塗布された前記組成物を介して基板(C1:第1の基板)と貼り合わせ、この貼り合わせた2枚の基板の片面又は両面から紫外線を照射して、両者を接着させ「DVD-10」とする。

(DVD-5の製造)

10 記録情報を担うピットと称する凹凸の上に、銀又は銀を主成分とする合金による40~60nmの第1の反射膜が積層された光ディスク用基板(D:第1の基板)を用意する。別に、ピットを有さない光ディスク用基板(E)を用意する。基板(D:第1の基板)の前記第1の反射膜上に紫外線硬化型組成物を塗布し、この組成物を介して基板(D:第1の基板)と基板(E)を貼り合わせ、この貼り合わせた2枚の基板の片面又は両面から紫外線を照射して、両者を接着させ「DVD-5」とする。

紫外線照射にあたっては、例えばメタルハライドランプ、高圧水銀灯などを用いた連続光照射方式で行うこともできるし、米国特許第5,904,795号公報に記載の閃光照射方式で行うこともできる。効率よく硬化出来る点で閃光照射方式がより好ましい。

[実施例]

20

次に、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限 定されるものではない。以下実施例中の「部」は「質量部」を表す。

<実施例1>

25 ウレタンアクリレートとして商品名: FAU-74SN (大日本インキ化学工業(株)製) 7部、ビスフェノールA型エポキシアクリレートとして商品名:ユニディックV-5530 (大日本インキ化学工業(株)製) 8部、下記式9で表されるビスフェノールAのエチレンオキサイド付加物(4モル)のジアクリレート40部、下記式10で表されるビスフェノールAのエチレンオキサイド付加物(1

0モル)のジアクリレート18部、ジプロピレングリコールジアクリレート11部、ラウリルアクリレート8部、下記式11で表されるエチレンオキサイド変性トリメチロールプロパントリアクリレート1.8部、下記式12で表されるエチレンオキサイド変性リン酸メタクリレート0.1部、ジメチルアミノ安息香酸エチル0.1部、光重合開始剤として2,4,6ートリメチルベンゾイルジフェニルフォスフィンオキサイド2部及び1ーヒドロキシシクロヘキシルフェニルケトン4部、没食子酸0.05部、酸化防止剤として商品名:IRGANOX 1520L(チバスペチャルティケミカルズ(株)製)0.2部を配合し、60℃で1時間加熱混合して溶解し、淡黄色透明の紫外線硬化型組成物を調製した。紫外線硬化型組成物全体に対する没食子酸の含有比率は0.05質量%である。

$$CH_{2}=CH-C-O-(CH_{2}CH_{2}-O) \longrightarrow CH_{3} \longrightarrow (O-CH_{2}CH_{2}) \longrightarrow (O-CH_{$$

(式中、m及 v_n は $1\sim3$ の整数であり、 v_n + v_n =4である)

$$CH_2=CH-C-O-(CH_2CH_2O) \xrightarrow{p} CH_3 \xrightarrow{CH_3} (O-CH_2CH_2) \xrightarrow{O} (O-CH_2CH_2) \xrightarrow{O} (1 \ O)$$

(式中、p及びqは1~9の整数であり、p+q=10である)

15

20

10

$$CH_3CH_2C + CH_2OCH_2CH_2O - C - CH = CH_2$$
(1 1)

<実施例2>~<実施例6>

没食子酸の含有比率を 0. 1質量%、 0. 5質量%、5質量%、6質量%とし

た以外は実施例1の組成物と同様にして、実施例2~実施例5の紫外線硬化型組成物を調製した。また、没食子酸に換えて、没食子酸プロピルを0.5質量%使用した以外は実施例1の組成物と同様にして、実施例6の紫外線硬化型組成物を調製した。なお、実施例5の紫外線硬化型組成物は少量の没食子酸が溶解せずに残留したため、濾過処理を行った。

<実施例7>~<実施例10>

実施例1~実施例4の組成物において、酸化防止剤(商品名:IRGANOX 1520L)を使用しない以外は実施例1~実施例4の組成物と同様にして、 実施例7~実施例10の紫外線硬化型組成物を調製した。

10 < 実施例 1 1 > ~ < 実施例 1 5 >

実施例1の没食子酸を4-tert-ブチルカテコールとした以外は実施例1の組成物と同様にして、実施例11の紫外線硬化型組成物を調製した。更に、4-tert-ブチルカテコールの含有比率を0.1質量%(実施例12)、0.5質量%(実施例13)、1質量%(実施例14)、5質量%(実施例15)とした以外は実施例11の組成物と同様にして、実施例12~実施例15の紫外線硬化型組成物を調製した。

<実施例16>

実施例8の没食子酸0.5部をハイドロキノン0.5部とした以外は実施例8の組成物と同様にして、実施例16の紫外線硬化型組成物を調製した。

20 < 実施例 1 7 >

15

実施例8の没食子酸0.5部を2-ヒドロキシハイドロキノン0.5部とした 以外は実施例8の組成物と同様にして、実施例17の紫外線硬化型組成物を調製 した。

<実施例18>

25 実施例8の没食子酸0.5部をレソルシノール0.5部とした以外は実施例8 の組成物と同様にして、実施例17の紫外線硬化型組成物を調製した。

<実施例19>~<実施例21>

更に、実施例8における没食子酸をハイドロキノンとして、含有比率を1質量%(実施例19)、3質量%(実施例20)、5質量%(実施例21)とする

以外は実施例8の組成物と同様にして、実施例19~実施例21の紫外線硬化型組成物を調製した。

<実施例22>

実施例1の没食子酸0.05部をハイドロキノン0.5部とした以外は実施例1の組成物と同様にして、実施例22の紫外線硬化型組成物を調製した。

<比較例1>

5

没食子酸 0.05 部を用いない以外は実施例 1 の組成物と同様にして、紫外線 硬化型組成物を調製した。

<比較例2>

10 没食子酸 0.05部、及び酸化防止剤(商品名:IRGANOX 1520 L) 0.2部を用いない以外は実施例 1 の組成物と同様にして、紫外線硬化型組 成物を調製した。

<比較例3>

没食子酸 0.05部、及び酸化防止剤(商品名:IRGANOX 1520 15 L) 0.2部を用いないで、フェニルチオエチルアクリレート(BIMAX社製 の商品名:BX-PTEA) 0.5部を使用した以外は実施例 1 の組成物と同様 にして、紫外線硬化型組成物を調製した。

<比較例4>

実施例13における4-tert-ブチルカテコールをハイドロキノンモノメチル 20 エーテルとした以外は実施例13の組成物と同様にして紫外線硬化型組成物を調製した。

<比較例5>

実施例8の没食子酸0.5部を4-エトキシフェノール0.5部とした以外は 実施例8の組成物と同様にして、比較例5の紫外線硬化型組成物を調製した。

25 <比較例6>

実施例8の没食子酸0.5部をp-n-ブチルフェノール0.5部とした以外は実施例8の組成物と同様にして、比較例6の紫外線硬化型組成物を調製した。 <比較例7>

実施例8の没食子酸0.5部を2,3-ジヒドロキシナフタレン0.5部とし

15

20

25

た以外は実施例8の組成物と同様にして、比較例7の紫外線硬化型組成物を調製 した。

以上、実施例1~実施例22及び比較例1~比較例7までの紫外線硬化型組成物を用いて、下記試験方法により、銀合金の半透明反射膜を備えた「DVD-9」型貼り合わせ光ディスクの耐光性試験(蛍光灯曝露試験)を行った。評価結果を表1~表4にそれぞれ示す。また、実施例1~実施例10、実施例16~実施例22、比較例1~比較例3及び比較例5~比較例7までの紫外線硬化型組成物を用いて、下記試験方法により銀合金の半透明反射膜を備えた「DVD-9」型貼り合わせ光ディスクの高温高湿環境下における耐久性を評価した。評価結果を表5~表7にそれぞれ示す。

<耐光性試験(蛍光灯曝露試験)>

記録情報のピットが形成され、その上にアルミニウムの薄膜が50nmの厚さで積層されたポリカーボネート製の光ディスク用基板に上記各実施例及び比較例の紫外線硬化型組成物をディスペンサで塗布し、半透明反射膜として銀を主成分とする合金が15nmの厚さで積層されたポリカーボネート製の光ディスク用基板を重ね合わせた。次いでスピンコーターで硬化塗膜の膜厚が約 $50\sim60\mu$ mになるよう回転させた。次いで、ウシオ電機株式会社製「クセノンフラッシュ照射装置 SBC-04型」を用い、設定電圧1800Vで、銀合金半透明反射膜付きの基板側から空気中で10ショット紫外線を照射して、各組成物のDVD-9サンプルを作製した。

上記各サンプルについて蛍光灯下における曝露試験を実施し、耐光性を評価した。20Wの蛍光灯(三菱電気製、ネオルミスーパーFLR20SW/M(20ワット))3本を蛍光灯の中心間距離が9cmになるように同一平面上に並列させ、中央の蛍光灯から10cmの位置に光ディスクの読み取り面側(銀合金半透明反射膜側)が蛍光灯に対向するように配置して、蛍光灯の曝露試験を行った。72時間の曝露を行い、その前後の各サンプルのPIエラー、反射率を測定し耐光性を評価した。

<高温高湿環境下での耐久性試験>

また、前記の耐光性試験とは別に、各サンプルについて高温高湿条件下での曝

露試験を行った。

試験は、エスペック株式会社製「PR-2PK」を使用して、80 $^{\circ}$ 、85 $^{\circ}$ RH, 240時間の高温高湿環境下での曝露試験を行った。試験前後のサンプルについて、銀合金半透明反射膜のついた情報記録層(L0と称す)のPIエラー及び反射率を測定し評価した。

<PIエラー及び反射率の測定>

P I エラー及び反射率は、Audio Development社製の「S A - 300」により測定した。またP I エラー比(試験後のエラー数/試験前のエラー数)、及び反射率の比(%)[(試験後/試験前)×100]を計算により求め、評価した。

PIエラーの判定の欄は、

10

P I エラー比が 5 以下である場合を○
P I エラー比が 5 を越えて 6 以下である場合を△
P I エラー比が 6 を越えた場合を×とした。

15 反射率の判定の欄はDVD-9の規格により、

試験後の反射率が18~30%である場合を○ 試験後の反射率が18%未満、16%以上である場合を△ 試験後の反射率が16%未満である場合を×とした。

また、表中の化合物の略号は以下の化合物を意味する。

- 20 ・ DPGDA: ジプロピレングリコールジアクリレート
 - · LAC: ラウリルアクリレート
 - ・DMAEB:ジメチルアミノ安息香酸エチル
 - ・TMBDPO: 2, 4, 6ートリメチルベンゾイルジフェニルフォスフィンオ キサイド
- 25 ・HCHPK:1-ヒドロキシシクロヘキシルフェニルケトン
 - PTEAC:フェニルチオエチルアクリレート

40 40 18 18 1.8 1.8
_ω ω -
∞,-
,
11
8
2
4
0.1
7.7
13
22
7.
24.3
8.0
74.1
0

0.5 23.8 66.0 ∞ 6.4 40 $|\infty|$ ъ. σ ω 4 l 4 8 比較例 23.8 15.3 [우[으 7.9 X 1 1 1 Ì × 8 ω 4 マ 64 0 24.0 유 _ _ 2.7 O I 実施例 ∞ ω 4 വ 1 1 9 43 実施例9 19.6 24.2 의우 O l ∞ ∞ 7 81 側の信号特性 実施例8 ∞. 0.5 24.4 19.0 7 의위에 _ O 0 1 1 Ю ∞ 1 ന ത (LO 耐光性試験前後の銀合金半透明膜 実施例 24.018.4 ∞ 0.1 0. . O ì 1 76. O ∞ $|\infty|$ 2 0の化合物 1の化合物 2の化合物 試験前のエラー数 試験後のエラー数 HCHPK 没食子酸 没食子酸了。 化 式9の化合物 試験前(%) 試験後(%) 反射率の比(² 判定 FAU-74SN PI巧-比 DMAEB TMBDP0 V-5530 DPGDA PTEAC 判定 520 LAC 14 14 14 % 組成 阿量% 反射率 о О 表

比較例 6.9 8. 0.5 8 5.5 6 ∞ 51 4 ∞ ഗ 23.2 93.5 24.8 <u>∞</u> 49 63 実施例 8 8 4 C 4 <u>ද</u>ු 実施例 80 $|\infty|$ 74. 8 \circ 4 က 19.3 0.58.6 実施例 엉윊 40 ∞ æ О ∞ 4 側の信号特性 2 18.6 実施例 Φ 919 24.7 8 <u>ن</u> (LO) 59.5 24.3 耐光性試験前後の銀合金半透明膜 48 実施例 8 ᅃᄝ ∞ \mathbf{C} ∞ 76. Ю 2 4 八个,叶八天八纤加一洲 0の化合物 1の化合物 2の化合物 試験前のエラー数 試験後のエラー数 4-t-7、チルカテコール 射率の比(% 9の化合物 FAU-74SN PI巧-比 試験後(%) 試驗前(% V-5530 TMBDP0 OPGDA DMAEB 동물 1520 判定 LAC 区 組成 質量% 反射率 ന

比爾茲例了	~	∞	40	18	.8	0.1		∞	0.1	2	4	1	1	1	1	ı	0.5	ļ	17	95	5.6	◁	24.0	16.0	88.7	×
比較利6		œ	40	18	8.	0.1		∞	0.1	2	4	ì	1	1	1	0.5	ì	1	18	92	5.1	Δ	24.1	16.2	67.2	×
上傳交例5	7	8	40	- 18	8.	0.1	=	8	0.1	2	4	. 1	ı	ı	0.5	_	,	1	14	85	6.1	×	23.9	16.0	6.99	×
実施例22	7	8	40	18	1.8	0.1	-	8	0.1	2	4	0.5	ı]	1	1	1	0.2	14	30	2.1	0	23.6	22.1	93.6	0
東通例21	7	8	40	18	1.8	0.1	11	8	0.1	2	4	വ	_	1	1	1	1	1	12	30	2.5	0	23.8	22.8	95.8	0
実施例20		8	40	18	1.8	0.1	11	&	0.1	2	4	ဗ	-	1	ı	1	1	1	61	38	1.9	0	23.8	22.7	95.4	0
美施例19月		8	9	8 2	1.8	0.1	11	8	0.1	2	4	-	ı	1	ı	1	1	1	16	28	8.	0	24.0	22.4	93.3	0
8	-	8	40	<u>&</u>	8.	0.1	=	8	0.1	2	7	,	ı	0.5	ı	,	1	1	13	82	2.2	0	23.8		6.9/	0
(LO) 側の信号特性 実施列17]実施列	_		40	8	8.	0.1	=	∞	0.1	2	7	1	0.5	1		1	1	,	15	29	1.3	C	24.2	22.9	94.6	0
	Ī	∞	40	<u>@</u>	8.	0,1	=	~	0.1	^	4	0.5	1	1	,	1	1	,	15	35	23	C	24.0	22.3	97.9	0
耐光性試験前後の銀合金半透明度 実施例16	FAU-74SN	V-5530	打るの下台が	式100万分	以110元割			AC.	NMER	TWRNPO	HATCH HATCH	がいまか	2-45、时沙/小、时少	A-LOKA	1-1-(7-1)-1	11-1-12/11±, L-u-α	2.3-5.七、1477列ン	1520	試験前の5-数	計画祭の5-数	PIII-IF	過頭	(%) [中国	(3)发票注	万年を (%)	判定
表4. 画		_		約成	海軍%														PIIS				后轨迹	{		

大地内 大地内 大地内 大地内 大地内 大地内 大地内 大型 大型 大型 大型 大型 大型 大型 大	顺	高温高温試験前後の信号特性	等性 电转向工	り回り		4年12月7		Q ₹ {	7 (年十二)
7 7			一天施例!	天施例と	天施彻3	天施例4	実施例 5	美脆例 6	比較例 7
8 8 8 8 - - 40 60	FAU-74SN			7	Ĺ	4	1	7	7
40 40 40 40 18 18 18 18 1.8 1.8 1.8 1.8 1.1 11 11 11 11 11 11 11 8 8 8 8 8 8 8 8 9.1 0.1 0.1 0.1 11 11 11 11 11 11 11 11 11 11 11 11 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 65 34 58 6 65 34 53.4 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	0833-V		8	8	8	8	8	8	ω
18 18 18 1.8 1.8 1.8 1.18 1.8 1.8 0.1 0.1 0.1 0.1 8 8 8 8 8 8 8 8 0.1 0.1 0.1 0.1 2 2 2 2 4 4 4 4 4 4 4 4 0.05 0.1 0.5 5 - - - - - - - - - - - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 15 15 13 17 60 65 34 58 4.0 4.3 2.6 3.4 0 0 0 0 0 0 0 0 23.2 22.1 22.6 21.7 22.1 22.1 0.2 0 0.2 0.3 0 0.3 0.3 0 0 0.3 0 0 0.3 0 0	式9の化合物	-150	40	40	40	40	40	40	40
1.8 1.8 1.8 1.8 0.1 0.1 0.1 0.1 11 11 11 11 11 11 11 11 8 8 8 8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 2 2 2 4 4 4 4 4 0.05 0.1 0.5 5 - - - - - - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 4.3 2.6 3.4 0.0 0.4 0.5 0.5 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2	式10の化合物	字物	18	18	18	18	18	8	18
0.1 0.1 0.1 0.1 11 11 11 11 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 6 65 34 58 6 6 65 34 58 6 6 65 34 58 6 7 0 0 0 0 83.2 23.5 23.4 23.2 21.7 22.1 22.1 22.6 93.5 92.3 94.4 97.4	式11の化合物	字物	1.8	1.8	1.8	1.8	1.8	1.8	1.8
11 11 11 11 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 0.0 0.0 0.0 0.0 0 0.2 0.2 0.2 0.2 15 15 13 17 17 60 65 34 58 9 4.0 4.3 2.6 3.4 0 0 0 0 0 0 23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	式12の化合物	外初	0.1	0.1	0.1	1.0	1.0	0.1	0.1
8 8 8 8 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 1 0.05 0.2 2 2 1 0.05 0.1 0.5 5 1 0.05 0.1 0.5 5 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 1 15 15 13 17 17 17 17 17 17 17 17 18 18 18 18 17 18 17 18 17 18 17 18 <t< td=""><td>DPGDA</td><td></td><td>11</td><td>11</td><td>11</td><td>11</td><td>11</td><td>11</td><td>11</td></t<>	DPGDA		11	11	11	11	11	11	11
0.1 0.1 0.1 0.1 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 0.05 0.1 0.5 5 0 - - - - 0 - - - - - 0 0.2 0.2 0.2 0.2 0.2 15 15 13 17 17 60 65 34 58 4.0 4.3 2.6 3.4 0 O O O 23.2 23.5 23.5 22.1 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	LAC		8	8	8	8	8	8	8
2 2 2 2 4 4 4 4 4 0.05 0.1 0.5 5 6 0.2 0.2 0.2 0.2 0.2 15 15 13 17 6 4.0 4.3 2.6 3.4 58 4.0 4.3 2.6 3.4 58 0 0 0 0 0 23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	DMAEB		0.1	1.0	0.1	0.1	1.0	0.1	0.1
4 4 4 4 4 0.05 0.1 0.5 5 0 - - - - 0.2 0.2 0.2 0.2 0.2 15 15 13 17 17 16 60 65 34 58 9 17 4.0 4.3 2.6 3.4 58 18 4.0 4.3 2.6 3.4 58 19 0 0 0 0 0 19 23.2 23.5 23.4 22.1 22.6 21.7 21.7 21.7 22.1 22.6 33.5 92.3 94.4 97.4	TMBDPO		2	2	2	2	2	2	2
0.05 0.1 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HCHPK		7	Þ	4	4	4	7	4
M — — — — 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 15 15 13 17 60 65 34 58 4.0 4.3 2.6 3.4 O O O O 23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	没食子酸			0.1	0.5	ಬ	9	1	ì
- - <td>没食子酸7° 叱。</td> <td>10.</td> <td>J</td> <td>•••</td> <td>1</td> <td>1</td> <td>ı</td> <td>0.5</td> <td>1</td>	没食子酸7° 叱。	10.	J	•••	1	1	ı	0.5	1
0.2 0.2 0.2 15 15 13 17 60 65 34 58 4.0 4.3 2.6 3.4 O O O O 23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	PTEAC		1	1	ı		ı	1	ı
15 15 13 17 60 65 34 58 4.0 4.3 2.6 3.4 O O O O 23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	1520L		0.2	0.2	0.2	0.2	0.2	0.2	0.2
60 65 34 58 4.0 4.3 2.6 3.4 O O O O 23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	試験前のエラー数	-数	15	15	13	17	13	19	19
4.0 4.3 2.6 3.4 O O O O 23.2 23.5 23.4 23.2 21.7 22.1 22.6 93.5 92.3 94.4 97.4	試験後のエラー数	数	09	92	34	58	43	105	101
23.2 23.4 23.2 21.7 21.7 22.1 22.6 93.5 92.3 94.4 97.4	PlI元比		4.0	4.3	2.6	3.4	3.3	2.3	5.3
23.2 23.5 23.4 23.2 21.7 21.7 22.1 22.6 (%) 93.5 92.3 94.4 97.4	判定		0	0	0	0	0	∇	◁
(%) 21.7 21.7 22.1 22.6 (%) 93.5 92.3 94.4 97.4	試験前(%)	23.2	23.5	23.4	23.2	23.3	23.3	23.3
(%) 93.5 92.3 94.4 97.4	試験後(%	$\tilde{}$	21.7	21.7	22.1	22.6	22.5	21.0	19.2
	بد	%	93.5	92.3	94.4	97.4	96.6	90.1	82.4
	判定		0	0	0	0	0	0	0

ന 比較例 . വ 16.6 9.89 24.2 ω 6.0 ω × ∞ 4 വ 90 S 比較例 ∞ 12.0 24.0 16.5 16 92 8 ∞ 2 4 Ì 88 $\overline{\circ}$ 23.9 22.0 92.1 插囱 & 우 18 O . O 1 38 0 α 2 4 \D 4 EK. ത 実施例 21.9 90.5 ω. 8 O O ∞ 0 σ 4 9 34 ∞ 実施例 24.0 18 _ _ ω σ 4 ١ Ì ч 29 0 O \sim 実施例 21.5 89.6 φ. 8 0. 35 $|\infty|$. O 1 ı $|\infty|$ 2 4 വ 高湿試験前後の信号特性 .10の化合物 .11の化合物 .12の化合物 試験前のエラー数 試験後のエラー数 没食子酸 没食子酸7° 叱" 射率の比(% 式9の化合物 試験前(%) 試験後(%) FAU-74SN V-5530 TMBDPO PIエラー比 OPGDA HCHPK DMAEB PTEAC 判定 LAC 1520L 郭 区 出出出 赙 % 組成 質量名 恒 反射率 Θ 表

10	表7. 尚品尚温现要即後016号刊注 実施	五河土	6 実施例	17	美福列18	3 東海側1	1000	美丽列20	実施例21	実施列22	上海20015	15個数例6	比較例7
	FAU-74SN	-					-		_	,	7	7	_
	V-5530	∞	8		∞	∞	-	8	∞	8	8	8	œ
	式9の化合物	40	40		40	9		40	0þ	40	40	40	40
Ħ	式10の化合物	<u>@</u>	Ĕ	8	<u>∞</u>	<u>∞</u>	\vdash	81	<u>&</u>	81	18	81	18
H	11の5台を	<u>~</u>	- <u>-</u>	∞.	<u>~</u>	æ. -	-	1.8	1.8	1.8	1.8	1.8	1.8
H H	12の化物	0:1	loi L		0.1	0.1	_	0.1	0.1	0.1	0.1	0.1	0.1
		E			=	=		=	F	-	11	11	11
	LAC	<u></u>	000		∞			8	∞	8	8	8	8
	DIMEB	0.1	0	_	0:1	0.1	-	0.1	0.1	0.1	0.1	0.1	0.1
	TMBDFO	2	2		2	2	\vdash	2	2	2	2	2	2
	五天	4	4		4	4	H	7	4	4	4	4	4
	が守が	0.5		,	1	-	-	3	വ	0.5	1	1	1
己	2-45、时沙水、叶グ	-	0	5.	,	_	_	1	1	1	1	_	ı
	小心心	ı		_	0.5	1		1	-	-	1	-	1
	4-11科7山小	1		,	ı	1	_	ı	-	1	0.5		1
۵	小− /≖ረብ <u>ቶ</u> "C−υ−α				,		\vdash	1	1	1	1	0.5	1
2,3	2,3-3'-比'中沙力划少	1			1	1		ı	1	l	1	ı	0.5
	1520L	ı		,	1	1	H	i	1	0.2	1	_	-
()= C	試験前のエラー数	7	16	_	22	<u>&</u>	-	16	13	14	13	13	22
ejs c	式検後の5一数	21	20		260	37	\vdash	38	33	22	170	76	218
	PI巧士比	1.5	3.1		11.8	2.1	-	2.4	1.8	9.1	13.1	1.7	6.6
	判院	þ			×	þ	-	0	b	0	×	×	×
	試験前(%)	24.0	24.	2	23.8	23.8	\vdash	23.9	24.1	23.9	23.9	24.1	24.0
	試験後(%)	23.5	23.5	5	17.6	23.4	H	23.4	23.3	23.4	16.0	16.2	16.0
	反射率の比(%)	97.9	97.	1	73.9	98.3	\vdash	87.8	96.7	97.9	6.99	67.2	66.7
	判定	0) 		×	0	_	0	0	0	×	×	×

30

産業上の利用可能性

本発明によれば、蛍光灯等の室内灯に曝露された場合でも銀又は銀を主成分とする合金からなる反射膜が黒変することがなく、信号の読み取りエラー (PIエラー)の増加や反射率変化が少ない光ディスクを得ることができる。このため、情報記録層を形成する半透明反射膜又は反射膜の材料として、銀又は銀を主成分とする合金を使用することが容易となり、低価格で信頼性の高い「DVD-9」タイプ等の光ディスクの供給が可能になる。

5

請求の範囲

1. 第1の基板上に情報読み取り用のレーザー光を反射するための第1の反射膜を備え、更に前記第1の反射膜上に紫外線硬化型組成物の硬化皮膜からなる樹脂層を備えた光ディスクであって、

前記第1の反射膜が、銀又は銀を主成分とする合金からなる反射膜であり、 前記紫外線硬化型組成物が、

- (a) ラジカル重合性化合物、
- (b) 式(1)

10

20

5

(式中、R¹、R²、R³、R⁴及びR⁵はそれぞれ独立的に、(i)水素原子、(ii)ハロゲン原子、(iii)水酸基、(iv)炭素数 1~8のアルコキシル基、(v)カルボキシル基、(vi)式(2)

$$\bigcirc O$$

$$\bigcirc OR^6$$
(2)

15 (式中、R⁶は、ハロゲン原子で置換されていても良い炭素数 1~20のアルキル基又はハロゲン原子で置換されていても良い炭素数 1~20のアルケニル基を表す)で表される基、或いは(vii)置換基としてカルボキシル基、アルコキシカルボニル基、アシルオキシル基又はアルコキシル基を有していても良い炭素数 1~24のアルキル基若しくはアルケニル基を表すが、R¹、R²、R³、R⁴及びR⁵

の中の少なくともひとつは水酸基である)で表される化合物、及び

(c) ラジカル性の光重合開始剤

を含有することを特徴とする光ディスク。

2. 更に、情報読み取り用のレーザー光を反射するための第2の反射膜を備え 25 た第2の基板が、前記樹脂層と前記第2の反射膜とが接するように、前記樹脂層 上に設けられている請求項1に記載の光ディスク。

3. 前記式(1)で表される化合物が、式(3)

HO
$$OR^7$$
 (3)

- 5 (式中、R⁷は、水素原子、ハロゲン原子で置換されていても良い炭素数1~2 0のアルキル基又はハロゲン原子で置換されていても良い炭素数1~20のアル ケニル基を表す)で表される化合物である請求項1又は2のいずれかに記載の光 ディスク。
- 10 4. 前記式(1)で表される化合物が、カテコール、3-sec-ブチルカテコール、3-tert-ブチルカテコール、4-sec-ブチルカテコール、4-tert-ブチルカテコール、3,5-ジーtert-ブチルカテコール、3-sec-ブチルー4-tert-ブチルカテコール、3-tert-ブチルカテコール、3-sec-ブチルカテコール、4-オクチルカテコール、4-ステアリルカテコール、ハイドロキノン、2,5-ビス(1,1,3,3-テトラメチルブチル)ハイドロキノン、2,5-ビス(1,1-ジメチルブチル)ハイドロキノン、2,5-ビス(1,1-ジメチルブチル)ハイドロキノン、レソルシノール、オルシノール又はピロガロールである請求項1又は2のいずれかに記載の光ディスク。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/014556

	<u></u>	PC1/UPZ	004/014556			
A. CLASSIFIC	CATION OF SUBJECT MATTER 7 G11B7/24					
According to Int	ernational Patent Classification (IPC) or to both national	al classification and IPC				
B. FIELDS SE						
Minimum docum	nentation searched (classification system followed by cl G11B7/24	assification symbols)				
Documentation :	searched other than minimum documentation to the extension	ent that such documents are included in the	fields searched			
		itsuyo Shinan Toroku Koho oroku Jitsuyo Shinan Koho	1996-2004 1994-2004			
Electronic data l	pase consulted during the international search (name of	data base and, where practicable, search te	rms used)			
		,,,,,,,,				
C. DOCUMEN	VTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ar	opropriate, of the relevant passages	Relevant to claim No.			
X	JP 2002-265886 A (Nippon Kay	aku Co., Ltd.),	1-4			
	18 September, 2002 (18.09.02) Full text	',				
	(Family: none)					
A	JP 02-141284 A (Asahi Chemic	Industria	1 4			
11	Co., Ltd.),	ar industry	1-4			
	30 May, 1990 (30.05.90),					
	Full text & EP 361204 A2 & US	5578415 A1				
	4 11 301204 A2	33/6413 AI				
	cuments are listed in the continuation of Box C.	See patent family annex.				
"A" document d	gories of cited documents: efining the general state of the art which is not considered icular relevance	"T" later document published after the inte date and not in conflict with the applica the principle or theory underlying the in	tion but cited to understand			
•	cation or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be considered.	laimed invention cannot be			
"L" document w	hich may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the cl				
special reaso	on (as specified) ferring to an oral disclosure, use, exhibition or other means	considered to involve an inventive s	step when the document is			
"P" document pu	iblished prior to the international filing date but later than	combined with one or more other such obeing obvious to a person skilled in the	art			
the priority o	late claimed	"&" document member of the same patent for	amily			
Date of the actua	completion of the international search	Date of mailing of the international search	ch report			
20 Dece	ember, 2004 (20.12.04)	11 January, 2005 (1	1.01.05)			
	g address of the ISA/	Authorized officer				
Japanes	se Patent Office					
Facsimile No.		Telephone No.				

国際調査報告

		<u></u>					
	風する分野の分類(国際特許分類 (IPC)) Cl. 7 GllB7/24						
	了った分野						
	最小限資料(国際特許分類(IPC)) Cl. 7 GllB7/24						
111.	C1. 7 G11B7/24						
	·	· · · · · · · · · · · · · · · · · · ·					
	トの資料で調査を行った分野に含まれるもの	•					
日本国纪	其用新案公報 1922-1996年 公開実用新案公報 1971-2004年		•				
日本国第	実用新案登録公報 1996-2004年 登録実用新案公報 1994-2004年						
	用した電子データベース(データ ベースの名称、	調査に使用した用語)					
	ると認められる文献	140	T 12127-de 3_ we				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	関連する 請求の範囲の番号				
X	JP 2002-265886 A (日本化	と薬株式会社)	1-4				
_	2002.09.18 全文 (ファミリー無し)						
. A	A JP 02-141284 A (旭化成工業株式会社) 1-4 1990.05.30 全文 1-4						
	1990. 05. 30 至X &EP 361204 A2 &US 55	578415 A1					
		7.5415 111					
	·						
	·	•					
□ C欄の続き	□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。						
* 引用文献		の日の後に公表された文献					
「A」特に関す もの	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表で 出願と矛盾するものではなく、					
「E」国際出願	頭日前の出願または特許であるが 、国際出願日	の理解のために引用するもの					
	公表されたもの 主張に疑義を提起する文献又は他,の文献の発行	「X」特に関連のある文献であって、 の新規性又は進歩性がないと考;					
日若しく	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	当該文献と他の1以				
	理由を付す) よる開示、使用、展示等に言及す る文献	上の文献との、当業者にとって よって進歩性がないと考えられる					
	領日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	2 6 0 .				
国際調査を完了	了した日	国際調査報告の発送日 11.1.1.	20.05				
	20.12.2004	1 . 1.	<u> </u>				
	の名称及びあて先	特許庁審査官(権限のある職員)	5D 8721				
	国特許庁(ISA/JP) 邸便番号100-8915	蔵野 雅昭	· · ·				
	第千代田区段が関三丁目 4番 3 号	電話番号 03-3581-1101	内線 3551				