NIKHIL MATHUR

05214802719

COMMUNICATION SYSTEMS

Assignment 4

$$K = 1.38 \times 10^{-23} \text{ J/BK}$$

$$T = 27^{\circ}C = 300^{\circ} \text{ K}$$

$$B = (20 - 18) \text{ MH2} = 2 \times 106 \text{ H2}$$

$$R = 10 \times 103 \text{ V}$$

$$n = 4 \text{ KTf R}$$

$$= 4 \times 1.38 \times 10^{-23} \times 300 \text{ K} \times 2 \times 106 \times 10 \times 103$$

$$= 331.2 \times 10^{-12}$$

$$= 18.2 \times 10^{-6} \text{ V}$$

$$= 18.2 \text{ MV}$$

Ans 2

The noise voltage at the input of the RF amplifier is given by:

where, Reg= RNoise + Rin T = 8 Temperature $K = 1.38 \times 10^{-2.3}$ B = Bandwidth

$$V = \sqrt{4 \times 500} \times 1.38 \times 10^{-23} \times 290 \times 6 \times 10^{6}$$

$$= \sqrt{2 \times 1.38 \times 29 \times 6} \times 10^{-13}$$

$$= 6.92 \,\mu V$$

Data	
Date	

Expt. No	Expt. N	0		<u> </u>
----------	---------	---	--	----------

Page No.

7	Ans 3	R1 = Rin1+ Regs = 700+	1800 = 2500 A	
		R2= (Ros Rin2) + Regz	$= \frac{30 \times 80}{12} + 12 = 40.92 k$	<u>د</u>
		Rost Rinz	30+80	
1	Carlotte Control of the Control of t	R3= R02 = 1.2 M.D.		

Equivalent input noise resistance of a two stage amplifier is given by:

$$\frac{Ref_{1} = \frac{R_{1} + R_{2} + R_{3}}{A_{1}^{2}} + \frac{R_{3}}{A_{1}^{2}} + \frac{R_{3}}{A_{1}^{2}} + \frac{R_{3}}{A_{1}^{2}} + \frac{R_{3}}{A_{1}^{2}} + \frac{R_{3}}{A_{1}^{2}} + \frac{R_{3}}{A_{1}^{2}}$$

$$Reg = 2500 + 40.92 + 1.2 \times 10^6$$

$$(20)^2 (20)^2 (25)^2$$

Any Noise factor=
$$F = \frac{Rp + Rn}{Rp} = \frac{50+30}{50} = 1.6$$

Noise Figure NF = 10 logs F = 10 logs 1.66 = 2.041 dB

Equivalent Noise temperature T = (f-1) To

$$T = (1.6 - 1) 300$$
 (To = 300 k)
= 0.6 x 300
= 180 K

Teacher's Signature :

$$F_N = F_1 + (F_2 - 1) + (F_3 - 1) + \cdots + (F_N - 1) + \cdots + (F_N$$

$$f_1 = 5 dB$$
 $f_2 = 5 dB$ $f_3 = 5 dB$
 $G_1 = 6 dB$ $G_2 = 6 dB$ $G_3 = 6 dB$

$$f_3 = 5 + \frac{(5-1)}{6} + \frac{(5-1)}{6 \times 6}$$

$$= 5 + \frac{4}{6} + \frac{4}{36}$$

$$= \frac{5 \times 36 + 4 \times 6 + 4}{36} = \frac{180 + 24 + 4}{36} = \frac{104}{363}$$

Anni (b) (i) Figure of N		
Ans (1) (1) Figure of 1	Merit in DSB-SC:- NR)O,DSBSC NR)C,DSBSC	-
	F = (3)	NR)O,DSBSC	
	C [A 2 P) [IN 2 D N	001
1	F= (Ac2P)/	(ACV)	1.25
	F = 1		
19	19		9
	(ii) Figure of m	erit in SSB-SC:-	
	F= (wit im SSB-SC:-	
		(SNR)C,SSBSC	/
	70,	2 D2	(2)
	P=(Am2 A		0,0
	(BWN	No / (8WNo)	
0	F=1		0)
	00/		

of FM decreases with the increase in the frequencies. Thus, increasing the relative strength or amplitude of the high frequency components of the mussage signed infore modulation is termeds as Pre-emphasis.

De-emphasis: In de-emphasis circuit, by reducing the amplitude level of the recieved bright frequency signal by the same amount on the increase in pre-emphasis is termed as De-emphasis.