Amendments to the Claims:

1. (Currently Amended) A compound of the general formula (I)

in which wherein A is a group of the general formula (II), (III), (IV) or (V)

in whichwherein C and D are an alicyclic or heterocyclic group; R_1 is CN or is a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms <u>selected</u> from the group <u>consisting of</u> N, O, and S, and R_2 and R_3 independently of one another are C_1 - C_{25} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl, OH, OR_4 or NR_4R_5 , in which wherein R_4 and R_5 are identical or different and are hydrogen, C_1 - C_{25} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl which is-unsubstituted or substituted by 1, 2, 3 or 4 radicals halogen, R^0 , OR^0 , SR^0 , NH_2 , NHR^0 , NR^0_2 , NO_2 , COOH, $COOR^0$, $CONH_2$, $CONHR^0$, $CONR^0_2$, CN, SO_3H , $SO_2(OR^0)$, SO_2R^0 , SO_2NHR^0 , $SO_2NR^0_2$ or by a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms <u>selected</u> from the group <u>consisting of</u> N, O, and S, or are a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms <u>selected</u> from the group <u>consisting of</u> N, O, and S,

 R^0 being is C_1 - C_{18} alkyl or C_6 - C_{24} aryl; and B is unsubstituted or mono- to tetrasubstituted ortho- C_6 - C_{18} arylene.

2. (Currently Amended) A compound as claimed in claim 1, in which wherein A is a divalent alicyclic or heterocyclic radical of the formulae (a) to (g)

where R_6 and R_7 independently of one another are hydrogen, C_1 - C_{25} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl, C_1 - C_{25} alkyl(C_6 - C_{10} aryl), a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms <u>selected</u> from the group <u>consisting of</u> N, O, and S, -(CH₂)_n-COR₈ <u>er- and _-(CH₂)_m-OR₉, in which wherein</u> R_8 is hydroxyl, amino, unsubstituted or mono- or polyhydroxyl- or _-amino-substituted C_1 - C_{25} alkoxy, C_1 - C_{25} alkylamino, $di(C_1$ - C_{25} alkyl)amino, C_1 - C_{25} alkyl(C_6 - C_{10} aryl)amino, or C_2 - C_{24} alkenyloxy, and R_9 is hydrogen or _-CO-(C_1 - C_{25} alkyl), and n and m independently of one another are an integer from 0 to 6, and in which wherein in R_6 , R_7 , R_8 , and R_{91} optionally it is also possible for a C-C unit to be is replaced by an ether unit C-O-C, X is =O, =S or =NR₁₀, in which wherein R₁₀ has one of the definitions of R_6 , Y is hydrogen, R_7 , OR_7 , SR_7 , OR_7 , $OR_$

Attorney's Docket: 2003DE119

- 3. (Currently Amended) A compound as claimed in claim 1 or 2, in which wherein R_6 and R_7 are hydrogen, C_1 - C_{18} alkyl, C_5 - C_6 cycloalkyl, C_6 - C_{10} aryl, benzyl, pyridyl, pyrryl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyrimidyl, hydroxycarbonyl- C_0 - C_6 alkyl, C_1 - C_{18} alkoxycarbonyl- C_0 - C_6 alkyl, aminocarbonyl- C_0 - C_6 alkyl, C_1 - C_{18} alkylaminocarbonyl- C_0 - C_6 alkyl, C_6 - C_{10} arylaminocarbonyl- C_0 - C_6 alkyl, di(C_1 - C_{18} alkyl)aminocarbonyl- C_0 - C_6 alkyl, C_1 - C_{18} alkyl- C_6 - C_{10} arylaminocarbonyl- C_0 - C_6 alkyl or di(C_6 - C_{10} aryl)aminocarbonyl- C_0 - C_6 alkyl.
- 4. (Currently Amended) A compound as claimed in claim 2, in which wherein R_8 is hydroxyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkylamino, di(C_1 - C_{18} alkyl)amino, benzylamino, C_6 - C_{10} arylamino, di(C_6 - C_{10} aryl)amino or (C_2 - C_{18}) alkenyloxy.
- 5. (Currently Amended) A compound as claimed in claim 2, in which wherein R_{11} is hydrogen, C_1 , C_1 - C_{18} alkyl, C_5 - C_6 cycloalkyl, benzyl, C_6 - C_{10} aryl, pyridyl, pyrryl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyrimidyl, C_1 - C_{18} alkoxy, C_6 - C_{10} aryloxy, C_1 - C_{18} alkylthio, C_6 - C_{10} arylthio, C_1 - C_{18} alkylamino, C_6 - C_{10} arylamino, di(C_1 - C_{18} alkyl)amino, C_1 - C_{18} alkyl $(C_6$ - C_{10} aryl)amino, di(C_6 - C_{10} aryl)amino, SO₃H, C_1 - C_{18} alkoxysulfonyl, C_1 - C_{18} alkylsulfonyl, C_1 - C_{18} alkylaminosulfonyl or di(C_1 - C_1) alkyl)aminosulfonyl.
- 6. (Currently Amended) A process for preparing a compound as claimed in one or more of claims 1 to 5, by claim 1, comprising the steps of reacting, in a first reaction step a 2,3-dicyanoquinoxaline of the formula (XIV)

with a total of at least 2 equivalents of <u>at least one of ammonia and/or or</u> alkoxides MOR₁₂, <u>in which wherein M</u> is sodium or potassium, to give di- or monoimino-substituted diazabenzoisoindoles of the formulae (VI), (VII) or (VIII)

in which wherein R_{12} is C_1 - C_{18} alkyl or $-(CH_2)_m$ -OH and m is an integer in the range from 1 to 6, and it is also possible for optionally a C-C unit to be is replaced by an ether unit C-O-C,

in a solvent or solvent mixture under basic to neutral conditions at a temperature of -20 to 120°C,

reacting, in a second reacting step, the di- or monoimino-substituted diazabenzoisoindoles of the formulae (VI), (VII) or (VIII) which are subsequently reacted, in a solvent or solvent mixture under neutral to acidic conditions, with at least 2 equivalents of a compound of the formulae (IX), (X), (XI) or (XII)

to give a further intermediate of the general formula (XIIIa) or (XIIIb)

from which subsequently and eliminating one mole of ammonia or HOR₁₂ is eliminated from the further intermediate.

7. (Original) The process as claimed in claim 6, wherein the 2,3-dicyanoquinoxaline is prepared by reacting 2,3-dichloroquinoxalines of the formula (XV)

with a cyanide of a main-group or transition-group metal in an organic solvent in the presence of a phase-transfer catalyst at elevated temperatures.

8. (Currently Amended) A compound of the general formula (XIIIa),

wherein A is a group of the general formula (II), (III), (IV) or (V)

iwherein C and D are an alicyclic or heterocyclic group;

R₁ is CN or is a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, and S, and R₂ and R₃ independently of one another are C₁-C₂₅ alkyl, C₅-C₁₂ cycloalkyl, C₆-C₂₄ aryl, OH, OR₄ or NR₄R₅, in which wherein R₄ and R₅ are identical or different and are hydrogen, C₁-C₂₅ alkyl, C₅-C₁₂ cycloalkyl, C₆-C₂₄ aryl which is unsubstituted or substituted by 1, 2, 3 or 4 radicals halogen, R⁰, OR⁰, SR⁰, NH₂, NHR⁰, NR⁰₂, NO₂, COOH, COOR⁰, CONH₂, CONHR⁰, CONR⁰₂, CN, SO₃H, SO₂(OR⁰), SO₂R⁰, SO₂NHR⁰, SO₂NR⁰₂ or by a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, and S, or are a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, and S,

 R^0 being is C_1 - C_{18} alkyl or C_6 - C_{24} aryl;

and B is unsubstituted or mono- to tetrasubstituted ortho-C₆-C₁₈ arylene in which A and B are as defined in one or more of claims 1 to 5.

- 9. (Currently Amended) A process for coloring an The use of a compound as claimed in one or more of claims 1 to 5 for dyeing or pigmenting organic or inorganic materials material of high or low molecular weight comprising the step of dyeing or pigmenting the organic or inorganic material with a compound as claimed in claim 1.
- 10. (Currently Amended) The <u>use process</u> as claimed in claim 9, <u>wherein the</u> organic or inorganic material is selected from the group consisting of <u>as colorants</u>

in-oil-based or <u>paints</u>, water-based <u>paintspaints</u>, in-coating materials, camouflage paints, for spin coloring, for the mass coloring or pigmenting of plastics, in-printing inks, in the mass coloring of paper, for seed, for preparing inks, water-based or non-water-based ink-jet inks, microemulsion inks, and inks which operate in accordance with the hot-melt process.

- 11. (Currently Amended) The use as claimed in claim 9 as colorants for A colored composition comprising a compound as claimed in claim 1, wherein the composition is selected from the group consisting of electrophotographic toners, electrophotographic and developers, for color filters, for electronic inks, for powder coating materials, and in optical layers for optical data storage.
- 12. (Currently Amended) A composition comprising an organic or inorganic, high or low molecular weight material and a compound as claimed in one or more of claims 1 to 5 claim 1, wherein the compound is present in an amount of 0.005% to 70% by weight, based on the organic or inorganic material.