Algorithm 1: The Perceptron Training Algorithm

Step 1: Initialization

Set initial weights w_1 , w_2 , ..., w_n and threshold θ to random numbers in the range [-0.5, 0.5]. (e.g., $\theta = 0.2$, $\alpha = 0.1$)

Step 2: Activation

Activate the perceptron by applying inputs $x_1(p)$, $x_2(p)$, ..., $x_n(p)$ and **desired output** $Y_d(p)$, where iteration p refers to the pth training example presented to the perceptron (p = 1, 2, ...). Calculate the **actual output** Y(p) at iteration p = 1

$$Y(p) = step \left[\sum_{i=1}^{n} x_i(p) w_i(p) - \theta \right], // Y(X) = step[X] = \begin{cases} 1 & \text{if } X \ge 0 \\ 0 & \text{if } X < 0 \end{cases}$$
 (6.6)

where n is the number of the perceptron inputs, and step is a step activation function.

Step 3: Weight training (learning)

Update the weights of the perceptron

$$w_i(p+1) = w_i(p) + \Delta w_i(p), \tag{6.7}$$

where $\Delta w_i(p)$ is the **weight correction** at iteration p.

The **weight correction** is computed by the **delta rule**:

$$\Delta w_i(p) = \alpha \times x_i(p) \times e(p), \tag{6.8}$$

where α is the **learning rate**, $\alpha \in (0, 1]$; $e(p) = Y_d(p) - Y(p)$, where p = 1, 2, 3, ... (α can be fixed for all iterations changed for different iterations)

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the process until convergence. // until error e = 0

• A single-layer two-input perceptron is shown in Figure 6.5.

Figure 6.5 Single-layer two-input perceptron

Table 6.3 Example of perceptron learning: the logical operation AND

			Desired	Initial		Actual	<u> </u>	Final	
	Inputs		output	weights		output	Error	weights	
Epoch	<i>X</i> 1	<i>X</i> 2	Y_d	<i>W</i> 1	W2	Y	e	<i>W</i> 1	W2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Threshold $\theta = 0.2$, learning rate $\alpha = 0.1$

• The sequence of four input patterns representing an **epoch**. The four input patterns (i.e., training examples) are $(x_1, x_2) = (0, 0)$, $(x_1, x_2) = (0, 1)$, $(x_1, x_2) = (1, 0)$, $(x_1, x_2) = (1, 1)$.

Figure 6.7 Two-dimensional plots of basic logical operations

$$X = \sum_{i=1}^{n} x_{i} w_{i}$$

$$Y = \begin{cases} +1 & \text{if } X \ge \theta \\ -1 & \text{if } X < \theta \end{cases}$$

$$e(p) = Y_{d}(p) - Y(p), \text{ where } p = 1, 2, 3, ...$$

$$w_{i}(p+1) = w_{i}(p) + \alpha \times x_{i}(p) \times e(p)$$

$$(6.1)$$

$$Y = sign\left[\sum_{i=1}^{n} x_{i} w_{i} - \theta\right]$$

$$\sum_{i=1}^{n} x_{i} w_{i} - \theta = 0$$

$$(6.3)$$