ENEL 573 - Assignment #3
- Kyle Derby MacInnis (10053959)

ved

T -	. //	for DE	D F2	×/nex	DF3	e e	753	
₹	A	B		D	E	1	6	_
(6) ACK	0-1	1-2	1-2	0-	0-3	1-4	1-4	
T _×	0-1	0-1 1- 2	0-1	0-1	0-1 1-2(2) 0-3	0-1 1-2(2) 0-3(2)	0-1 1-2(2) 0-3(2)	
Rx	6-1	0-1	0-1	1-2	0-1	0-1 1-2 1-2 0-3	0-103 1-2 1-2 0-3	
tosels	2,-1 Ty-1	Rx-1 Tx-1	R×-2 T×-3	Rx-3 Tx-3	Rx-4 Tx-4	1x-4 1x-5	Rx-5	- Recu - sent
	لمارية	Aacke	ha	re c	rossed	out	- 14	

$$Q2$$
: $N_F = 2000 \text{ bits}$ overhead = 0.05 (5%) ACK - 0.10 (10%)

$$ACK = 0.10(N_F) = 200 \text{ bits}$$

overhead = 0.05(N_F) = 100 \text{ bits}
length = 2000 + 200 + 100

$$U = \frac{L/R}{L}$$

$$R + T_{total}$$

$$0.05 = \frac{2380/10.2^{20}}{2300} + T_{total}$$

$$T_{total} = \frac{2300}{10.2^{20}} (1 - 0.05)$$

$$-3356 (10000 + 208 + 112)$$

$$-10320 (3356) = 34633920 \text{ Bits}$$

$$\frac{36.8\%}{100\%} = \frac{3636}{1}$$

$$\chi = 9/23.0099 \approx 9/23$$

$$10320(9/23) = 94/49360 \text{ bits}$$

$$94/49360 = 44.894 \text{ sec}$$

$$2^{21}$$

$$2^{21}$$

$$2^{21}$$

$$2^{21}$$

$$P[fame emor 226/k] = [-P[Interme]]$$

$$P[None] = (I-P)^{N}$$

$$P[Int] = (N)(P)(I-P)^{(N-1)}$$

$$P[Int] = (N)(P)(I-P)^{(N-1)} + (I-P)^{N}$$

Corrections
$$P[rehansmit] = |-[loss(o.coo)(0.9997) + 0.9999]$$

$$= |-[(0.9999) + 0.9999]$$

$$= |-[0.3679 + 0.3677]$$

$$= |-[0.7357]$$

$$= |-[0.7357]$$

$$= 0.264 = [26.4\%]$$
No corrections
$$P[retransmit] = |-[0.9999]$$

$$= 0.632 = [63.7\%]$$

C) Assuming a file size and header the vertical into as given in Q36

Frames > 336

No correction > [9123] Correction -> (0.7357) (3356) = 4561.6 24562 d) 4562 = 0.50 -> 50% of retrainsmiss reboursmissions It improves the efficiency of transmission by 50% (100% better) QS_6^0 error free: P = 0.001 \rightarrow (0.999) = PepRec = 0.75 (0.999) = 0.75 Nlog (0.999) = log (0.75) N = log (0.75) = 1287.538, log (0.999) = 1000

N=287 of 287 bits