Professor: Alexander Givental

Math 215A: Algebraic Topology

Homework 6

kdeoskar@berkeley.edu

Question 1: Compute $\pi_2(\mathbb{S}^1 \vee \mathbb{S}^2)$ and the action of $\pi_1(\mathbb{S}^1 \vee \mathbb{S}^2)$ on it.

Solution: (Inspired by this stackexchange post.)

To compute $\pi_2(\mathbb{S}^1 \vee \mathbb{S}^2)$ we'll use the following lemma:

Lemma 0.0.1. For the universal cover $\widetilde{U} \to U$ of a CW Complex U, we have

$$\pi_n(\widetilde{X}) \cong \pi_n(X)$$

for all $n \in \mathbb{N}$.

Proof.

Going back to the computation, we have

$$\pi_2(\mathbb{S}^1 \vee \mathbb{S}^2) \cong \pi_2(\widetilde{\mathbb{S}^1 \vee \mathbb{S}^2})$$

where $\widetilde{\mathbb{S}^1 \vee \mathbb{S}^2}$ is the universal covering of $\mathbb{S}^1 \vee \mathbb{S}^2$, visualized as:

Include picture

Then, contracting each of the segments between the consecutive integers, we have

$$\widetilde{\mathbb{S}^1 \vee \mathbb{S}^2} \cong \bigvee\nolimits_{k \in \mathbb{Z}} \mathbb{S}^2_k$$

where each \mathbb{S}^2_k is a copy of \mathbb{S}^2 , labelled by the integer k.

So, we have

$$\pi_2\left(\widetilde{\mathbb{S}^1\vee\mathbb{S}^2}\right)\cong\pi_2\left(\bigvee\nolimits_{k\in\mathbb{Z}}\mathbb{S}_k^2\right)$$

What is this space? (Fill this in.)

Thus,

$$\pi_2(\mathbb{S}^1 \vee \mathbb{S}^2) \cong \bigoplus_{k \in \mathbb{Z}} \mathbb{Z}$$

Action of π_1 : Generally, $\pi_1(X)$ acts on $\pi_n(X)$ $(n \ge 1)$ by "prepending" a loop i.e. move along a circle before an n-spheriod.

The inclusion of $\mathbb{S}^2 \hookrightarrow X$: = $\mathbb{S}^1 \vee \mathbb{S}^2$ gives us an element $\alpha \in \pi_2(X)$, which generates a cyclic subgroup of $\pi_2(X)$.

However, notice that if we consider a loop γ that goes around the \mathbb{S}^1 factor once in $\mathbb{S}^1 \vee \mathbb{S}^2$ then first moving along γ brings us back to the basepoint in $\mathbb{S}^1 \vee \mathbb{S}^2$ so following it up with some $\alpha \in \pi_2(X)$ is just another element of 2-spheroid i.e. $\alpha \cdot \gamma \in \pi_2(X)$. This $\gamma \cdot \alpha$ also generates a cyclic subgroup of $\pi_2(X)$. Continuing on with this patter we can see that $\gamma^n \circ \alpha \in \pi_2(X)$ for every $n \in \mathbb{N}$ and each of these generate (disjoint) cyclic subgroups.

Question 2: Compute the 2nd Homotopy Groups of Grassmannians G(n,k) when k,n-k>1

Solution:

Let G(n,k) denote the set of k-dimensionl subspaces of \mathbb{R}^n . We know that

$$G(n,k) \cong O(n)/(O(n) \times O(n-k))$$

so we have a (serre) fibration

$$O(n-k) \hookrightarrow O(n) \to G(n,k)$$

which induces the exact sequence

$$\pi_2(O(n)) \to \pi_2(G(n,k)) \to \pi_1(O(n) \times O(n-k)) = \pi_1(O(n)) \times \pi_1(O(n-k)) \to \pi_1(O(n))$$

Now, to actually calculate $\pi_2(G(n,k))$ for the different n,k values we'll need to use the following results (common in the literature) which can be obtained using fibrations as well:

(a)
$$\pi_1(O(N)) = \begin{cases} \mathbb{Z}_2, & n = 1 \\ \mathbb{Z}, & n = 2 \\ \mathbb{Z}_2, & n > 3 \end{cases}$$

(b)
$$\pi_2(O(2)) = 0$$

(c)
$$\pi_2(O(3)) = 0$$

(d) When it comes to the homotopy groups of O(N) for $N \in \mathbb{Z}$ we have, for $n \geq k+2$, by **Bott Periodicity**:

$$\pi_k(O(N)) \cong \pi_k(SO(N)) = \begin{cases} 0, & k = 2, 4, 5, 6 \pmod{8} \\ \mathbb{Z}_2, & k = 0, 1 \pmod{8} \\ \mathbb{Z}, & k = 7 \pmod{8} \end{cases}$$

Now, in our question, we have the following cases (we're considering n, n-k > 1)

1. n, k such that $n, (n-k) \ge 3$ n-k > 2 and:

$$\pi_2(O(n)) \to \pi_2(G(n,k)) \to \pi_1(O(n)) \times \pi_1(O(n-k)) \to \pi_1(O(n))$$

Question 3: Let X be a K(G, n) and Y a cellular K(H, n). Show that the map of Y to X inducing a given group homomorphism $\phi: H \to G$ exists, and is unique up to homotopy.

Solution:

We know there exists group homomorphism $\phi: H \to G$ and recall that an Eilenberg-Maclane Space X = K(F, n) is one for which

$$\pi_k(X) = \begin{cases} F, & k = n \\ 0, & k \neq n \end{cases}$$

Now, we have X = K(G, n), Y = K(H, n), and Y is known to be a CW complex. We can assume that Y is a CW Complex obtained from $\operatorname{sk}_n Y := \bigwedge_{\alpha} \mathbb{S}^n_{\alpha}$ where each α corresponds to a generator of H and attaching all cells (attach (n+1)-cells according to the relations in H and (Fill in some more.)

We can define $f_n: \operatorname{sk}_n Y \to X$ by mapping each S^n_α to a corresponding spheroid $f_n(\alpha) \in \pi_n(X, x_0)$.

Also, the attaching maps $\partial D^{n+1} \to \operatorname{sk}_n Y$ for (n+1)-dimensional cells represent the identity element in H (so its image under f_n is trivial in G +), which we can use to extend f_n to f_{n+1} : $\operatorname{sk}_{n+1} Y \to X$.

We can do this inductively to extend f_{n+1} to $f_{n+k}: \operatorname{sk}_{n+k} X \to Y$ with k > 1.

We want to show that any two maps $f, g: X \to Y$ which induce a given homomorphism $\phi: H \to G$ are the same up to homotopy. To do so, let's use cell induction.

Suppose y_0 and x_0 are the basepoints on Y and X respectively. For the base case, let's assume there exists some path in X between $f(y_0)$ and $g(y_0)$. This path then gives us the homotopy between $f|_{\operatorname{sk}_0 Y}: \operatorname{sk}_0 Y \to X$ and $g|_{\operatorname{sk}_0 Y}: \operatorname{sk}_0 Y \to X$.

For the induction step, suppose we already have a homotopy $h_{k-1} \times [0,1] : \operatorname{sk}_{k-1}Y \to X$ between $f|_{\operatorname{sk}_{k-1}Y}$ and $g|_{\operatorname{sk}_{k-1}Y}$ and a k-cell D^k of Y with characteristic map $\Phi: D^k \to \operatorname{sk}_k Y$. We want to extend this to a map $D^k \times [0,1] \to X$ such that the map agrees with $f \circ \Phi$ on $D^k \times \{0\}$, with $g \circ \Phi$ on $D^k \times \{1\}$, and with $h \circ \Phi|_{partial D^k}$ on $\partial D^k \times [0,1]$.

Note that $(D^k \times \{0\}) \cup (D^k \times \{1\}) \cup (\partial D^k \times [0,1]) \approx \partial (D^k \times [0,1])$, so all of the conditions listed above together encode a k-spheroid $\partial (D^k \times [0,1]) \to X$, and the extension to $D^k \times [0,1]$ we desired can be define if the spheroid can be contracted in X. Since we're working with Eilenberg-Maclane spaces, we have $\pi_k(X) = 0$ for $k \neq n$, so we can make the extension. For the k = n case we can argue that the claim holds because $f|_{\operatorname{sk}_n Y}$ and $g|_{\operatorname{sk}_n Y}$ represent the same element in $G = \pi_n(X)$ and are thus homotopic.