PHYS358: Session 13

Bayesian Model Comparison

(1) Model Comparison: Given a set of models k = 1...K with parameter vectors θ_k , and a set of measurements y_i , i = 1...N at positions x_i , the goal is to decide which model best fits the data. This can be done by either calculating the *evidence* for each model k,

$$p(y|k) = \int_{\theta_k} p(y|\theta_k, k) p(\theta_k|k) d\theta_k \tag{1}$$

and calculating the posterior model probability via

$$p(k|y) = \frac{p(y|k)p(k)}{\sum_{j=1}^{K} p(y|j)p(j)}.$$
 (2)

Or, we can calculate the posterior probability for the parameters and models, given the data,

$$p(\theta_k, k|y) \propto p(y|\theta_k, k)p(\theta_k|k)p(k).$$
 (3)

Eq. 2 we can determine with the tools we already have available.

- Why is χ^2 minimization not an ideal approach for model comparison?
- What problems to you foresee when implementing eq. 3? *Hint: Metropolis-Hastings, polynomials.*
- (2) The code: Check out bayes_infer.py, run it with the parameters bayes_infer.py 20000 2 3 0.2, and answer the following questions:
 - What parameters is the program taking?
 - The program generates a polynomial data set which order does the polynomial have?
 - If you tried to test polynomials of order 4, what problems do you foresee?
 - What's the advantage of "Reversible Jump MCMC" in this specific context?