Assignment #2

Gustavo Estrela de Matos CSCE 433: Formal Languages and Automata

February 16, 2016

Question 1. Construct the NFA that accepts the language $\{w|w \text{ contains an odd number of 1's and exactly two 0's}\}$ with exactly six states.

First let's build a machine that accepts strings with odd number of 1's:

Now we build a machine that accepts strings with exactly 2 zeros:

Notice that we used 6 states already. Then, since we don't need to keep track of strings that go to state r_3 , we could simply remove this state, then all the strings with more than 2 zeros would halt on this machine.

Now we can create a new state that goes to both machines without consuming characters of the string:

Question 2. Construct an NFA that accepts the set of binary strings that contain both substrings 010 and 101.

A machine that accepts strings with both substrings 010 and 101 has either the substring 010 or 101 first, then we could build different machines for both cases:

 \bullet 010 and then 101

Notice that the machine consider the case in which 010 and 101 overlaps.

 $\bullet~101$ and then 010

• Which brings us to the final machine:

Question 3. Convert the NFA below to a DFA

To solve this question we are going to use the same algorithm used to proove that ϵ -NFAs are equivalent to DFAs. We are going to call this NFA $N=(Q,\Sigma,\delta,q,F)$ and build an equivalent DFA $M=(Q',\Sigma,\delta',q',F')$ such that $q'=C_{\epsilon}(0)=\{0,1\};\ \delta':\mathcal{P}(Q)\times\Sigma\to\mathcal{P}(Q)$ where $\delta'(R,a)=\bigcup_{r\in R}C_{\epsilon}(\delta(r,a))$ as it follows:

• Start with the initial state

• Calculate the transitions of $\{0,1\}$

$$\delta'(\{0,1\}, a) = C_{\epsilon}(1) \cup \emptyset = \{1\}$$

$$\delta'(\{0,1\}, b) = \emptyset \cup C_{\epsilon}(2) = \{0,1,2\}$$

• Calculate the transitions of $\{1\}$ and $\{0, 1, 2\}$

$$\delta'(\{1\}, a) = \emptyset$$

$$\delta'(\{1\}, b) = C_{\epsilon}(2) = \{0, 1, 2\}$$

$$\delta'(\{0, 1, 2\}, a) = C_{\epsilon}(1) \cup \emptyset \cup C_{\epsilon}(3) = \{1, 3\}$$

$$\delta'(\{0, 1, 2\}, b) = \emptyset \cup C_{\epsilon}(2) \cup \emptyset = \{0, 1, 2\}$$

• Calculate the transitions of {1, 3}

$$\begin{split} \delta'(\{1,3\},a) &= \emptyset \cup \emptyset = \emptyset \\ \delta'(\{1,3\},b) &= C_{\epsilon}(2) \cup C_{\epsilon}(1) = \{0,1,2\} \end{split}$$

Question 4. Prove that for every NFA with an arbitrary number of final states, there is an equivalent NFA with only one final state

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be an NFA with an arbitrary number of final states. We are going to build equivalent NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ with only one final state that is reachable from N_1 final states by ϵ -transitions:

- First we determine F_2 , which should composed by just one state, then $F_2 = q_f$.
- The inicial state stays the same $q_2 = q_1$.
- The final state q_f should be the only new state added to N_1 , then $Q_2 = Q_1 \cup q_f$
- Now we only need to determine $\delta_2: Q_2 \times \Sigma \to \mathcal{P}(Q_2)$ such that we keep the dynamics of N_1 and also add the ϵ -transitions from the final states of N_1 to the new final state f_2 . Then we define:

$$\delta_2(q, a) = \begin{cases} \delta_1(q, a) \cup \{q_f\} & \text{if } q \in F_1 \text{ and } a = \epsilon \\ \delta_1(q, a) & \text{if } q \in Q_1 \text{ and } (q \notin F_1 \text{ or } a \neq \epsilon) \\ \emptyset & \text{otherwise} \end{cases}$$

Question 5. Give an inductive definition for the set S, of all strings in $\{0,1\}^*$ with an equal number of 0's and 1's

• Base case: $\epsilon \in S$

• Induction: if $z \in S$, then 01z, 0z1, z01, 10z, 1z0 and z10 are also in S

Question 6. What is wrong with the following proof?

Proposition: 6n = 0 for all $n \in \mathbb{N}$

Proof. We will prove the above proposition by mathematical induction on $n \geq 0$.

• Base case: If n = 0, then 6n = 0.

• Induction hypothesis: Suppose that 6n = 0 for $0 \le n \le k$.

• Induction step: Let n = k + 1 = a + b, where a and b are natural numbers less than k + 1. By induction hypothesis, 6a = 0 and 6b = 0. Therefore,

$$6n = 6(k+1) = 6(a+b) = 6a + 6b = 0 + 0 = 0$$

The wrong statement in this proof is:

Let n = k + 1 = a + b, where a and b are natural numbers less than k + 1.

If we choose n = 1 we have that it is impossible to find a and b such that a < 1 and b < 1 and a + b = 1. Therefore everything that follows on the existence of a and b can't be guaranteed to be true.