题目 1. 求证: $S = \{x \in \mathbb{R}^n | x = Ay, A \in \mathcal{M}(\mathbb{R})_{n \times m}, y \in \mathbb{R}^m, y \geq 0\}$ 是凸集.

证明. $\forall x_1, x_2 \in S, \exists y_1, y_2 \in \mathbb{R}^m \text{ s.t. } x_1 = Ay_1, x_2 = Ay_2, 其中 <math>y_1, y_2 \geq 0.$

 $\forall \lambda \in [0,1], \ \lambda x_1 + (1-\lambda)x_2 = \lambda Ay_1 + (1-\lambda)Ay_2 = A(\lambda y_1 + (1-\lambda)y_2).$ 因为 $\lambda y_1 + (1-\lambda)y_2 \ge 0$, 得 $\lambda x_1 + (1 - \lambda)x_2 \in S$. 所以 S 是凸集.

题目 2. $S \in E_n$ 中的一个非空凸集. 求证: $\forall k \geq 2, k \in \mathbb{N}$,若 $x^{(1)}, x^{(2)}, \dots, x^{(k)} \in S$,则 $\sum_{i=1}^{k} \lambda_i x^{(i)} \in S$, $\not = \sum_{i=1}^{k} \lambda_i = 1, \ \lambda_i \ge 0 \ (i = 1, 2, \dots k).$

证明. 使用归纳法. 归纳基础: k=2 时: 若 $x^{(1)}, x^{(2)} \in S$,由 S 是凸集,立得命题成立.

假设 k = m - 1 $(m \ge 3, m \in \mathbb{N})$ 时命题成立. 考虑 k = m 时: 若 $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{N}$

$$\sum_{i=1}^{m} \lambda_i x^{(i)} = \sum_{i=1}^{m-1} \lambda_i x^{(i)} + \lambda_m x^{(m)} = \left(\sum_{i=1}^{m-1} \lambda_i\right) \left(\sum_{i=1}^{m-1} \frac{\lambda_i}{\sum_{i=1}^{m-1} \lambda_i} x^{(i)}\right) + \lambda_m x^{(m)}$$

因为 $\sum_{i=1}^{m-1} \frac{\lambda_i}{\sum_{i=1}^{m-1} \lambda_i} = 1$,由归纳假设, $\sum_{i=1}^{m-1} \frac{\lambda_i}{\sum_{i=1}^{m-1} \lambda_i} x^{(i)} \in S$. 又因为 $\sum_{i=1}^{m-1} \lambda_i + \lambda_m = 1$, 得 $\sum_{i=1}^{m} \lambda_i x^{(i)} \in S$. 所以命题对 k = m 成立.

归纳知命题对 $\forall k > 2, k \in \mathbb{N}$ 成立.

用图解法解线性规划问题.

1.
$$\max -20x_1 + 10x_2$$
 s.t.

$$\begin{cases} x_1 + & x_2 \ge 10 \\ -10x_1 + & x_2 \le 10 \\ -5x_1 + & 5x_2 \le 25 \\ x_1 + & 4x_2 \ge 20 \\ x_1, & x_2 \ge 0 \end{cases}$$

$$x_1, \quad x_2 \ge 0$$

2. $\min -3x_1 - 2x_2$ s.t.

$$\begin{cases} 3x_1 + 2x_2 \le 6 \\ x_1 - 2x_2 \le 1 \\ x_1 + x_2 \ge 1 \\ -x_1 + 2x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$

解.

- 1. 如图 1a,阴影部分为可行域,点 $A=(\frac{5}{2},\frac{15}{2})$. 最优解在点 A 取得,最优值 $f^*=25$.
- 2. 如图 1b,阴影部分为可行域,点 $A=(\frac{7}{4},\frac{3}{8}),\ B=(\frac{5}{4},\frac{9}{8}).$ 最优解在线段 AB 取得,最优值 $f^*=-6.$

题目 1. 习题 2.4. 设 $S = \{x \mid Ax \ge b\}$,其中 $A \notin B = \{m \times n \in B \mid m > n\}$, A 的秩为 n. 证明 $x^{(0)} \notin B$ 的极点的充要条件是 $A \cap B$ 可作如下分解:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} \boldsymbol{b_1} \\ \boldsymbol{b_2} \end{bmatrix}$$

其中, A_1 有 n 个行, 且 A_1 的秩为 n, b_1 是 n 维列向量, 使得 $A_1x^{(0)} = b_1$, $A_2x^{(0)} \ge b_2$.

证明. 先证明 \implies 已知 $\mathbf{x^{(0)}}$ 是 S 的极点. 假设 A 和 \mathbf{b} 不可作题设分解,即分解后找不到 A 的 n 个线性无关的行组成 A_1 使 $A_1\mathbf{x^{(0)}} = \mathbf{b_1}$.

设 A 和 b 可作分解: $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ 使得 $A_1 x^{(0)} = b_1$, $A_2 x^{(0)} > b_2$, 且 A_1 的秩 r < n. 解线性方程组 $A_1 x = 0$,其解的自由度为 n - r,存在 n - r 个线性无关的解 $x_1, x_2, \cdots, x_{n-r}$,解集为 $N(A_1) = \{x \mid x = \sum_{j=1}^{n-r} c_j x_j\}$. 则方程 $A_1 x = b_1$ 的解集为 $X = \{x \mid x = x^{(0)} + \sum_{j=1}^{n-r} c_j x_j\}$.

已知在 S 中存在 $\mathbf{x^{(0)}} \in S$. 以下证明引理: $\exists \delta > 0$ s.t. $\forall \mathbf{x} \in X$,若 $\|\mathbf{x} - \mathbf{x^{(0)}}\|_{\infty} < \delta$,则 $\mathbf{x} \in S$. $\forall \mathbf{x} \in X$,由于 $A\mathbf{x} = \begin{bmatrix} A_1 \mathbf{x} \\ A_2 \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{b_1} \\ A_2 \mathbf{x} \end{bmatrix}$,所以 $\mathbf{x} \in S$ 只需 $A_2 \mathbf{x} \geq \mathbf{b_2}$. 由于 $A_2 \mathbf{x^{(0)}} > \mathbf{b_2}$,知向量 $A_2 \mathbf{x^{(0)}} - \mathbf{b_2}$ 的各个分量的最小值 $m = \min\{(A_2 \mathbf{x^{(0)}} - \mathbf{b_2})_i\} > 0$. 取 $\delta = \frac{m}{\|A_2\|_{\infty}} > 0$,若 $\|\mathbf{x} - \mathbf{x^{(0)}}\|_{\infty} < \delta$,有

$$||A_2(\boldsymbol{x} - \boldsymbol{x}^{(0)})||_{\infty} \le ||A_2||_{\infty} ||\boldsymbol{x} - \boldsymbol{x}^{(0)}||_{\infty} \le \delta ||A_2||_{\infty} = m$$

从而 $A_2 \boldsymbol{x} - \boldsymbol{b_2} = A_2 (\boldsymbol{x} - \boldsymbol{x^{(0)}}) + (A_2 \boldsymbol{x^{(0)}} - \boldsymbol{b_2}) \ge \boldsymbol{0}, \ \boldsymbol{x} \in S$,引理得证.

对 $\delta = \frac{m}{\|A_2\|_{\infty}} > 0$,取 $\boldsymbol{x^{(1)}} = \boldsymbol{x^{(0)}} + \sum_{j=1}^{n-r} \frac{\delta}{2(n-r)} \frac{x_j}{\|x_j\|_{\infty}} \in X$,则

$$\|\boldsymbol{x^{(1)}} - \boldsymbol{x^{(0)}}\|_{\infty} = \left\| \sum_{j=1}^{n-r} \frac{\delta}{2(n-r)} \frac{\boldsymbol{x_j}}{\|\boldsymbol{x_j}\|_{\infty}} \right\|_{\infty} \le \sum_{j=1}^{n-r} \left\| \frac{\delta}{2(n-r)} \frac{\boldsymbol{x_j}}{\|\boldsymbol{x_j}\|_{\infty}} \right\|_{\infty} = \frac{\delta}{2} < \delta$$

取 $x^{(2)} = 2x^{(0)} - x^{(1)}$, 满足 $A_1x^{(2)} = 2A_1x^{(0)} - A_1x^{(1)} = 2b_1 - b_1 = b_1$, 故 $x^{(2)} \in X$. 并且 $\|x^{(2)} - x^{(0)}\|_{\infty} = \|x^{(0)} - x^{(1)}\|_{\infty} < \delta$. 根据引理, $x^{(1)}, x^{(2)} \in S$,且 $x^{(0)} = \frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}$,与 $x^{(0)}$ 是 $x^{(0)}$ 的极点矛盾. 所以假设错误, $x^{(0)}$ 可作题设分解.

再证明 \iff . 已知 A 和 b 可作题设分解. 假设 $\exists x^{(1)}, x^{(2)} \in S, \lambda \in (0,1)$ s.t. $x^{(0)} = \lambda x^{(1)} + (1-\lambda)x^{(2)}$.

由于 $x^{(1)}, x^{(2)} \in S$,满足 $Ax^{(1)} \ge b$, $Ax^{(2)} \ge b$,知 $A_1x^{(1)} \ge b_1$, $A_1x^{(2)} \ge b_1$. 由于

$$b_1 = A_1 x^{(0)} = \lambda A_1 x^{(1)} + (1 - \lambda) A_1 x^{(2)} \ge \lambda b_1 + (1 - \lambda) b_1 = b_1$$

知 $\lambda A_1 \boldsymbol{x^{(1)}} + (1 - \lambda) A_1 \boldsymbol{x^{(2)}} = \lambda \boldsymbol{b_1} + (1 - \lambda) \boldsymbol{b_1}$,从而 $\lambda (A_1 \boldsymbol{x^{(1)}} - \boldsymbol{b_1}) + (1 - \lambda) (A_1 \boldsymbol{x^{(2)}} - \boldsymbol{b_1}) = \boldsymbol{0}$. 由于 $\lambda > 0$, $\beta A_1 \boldsymbol{x^{(1)}} = \boldsymbol{b_1}$, $\beta A_1 \boldsymbol{x^{(2)}} = \boldsymbol{b_1}$.

由于 $A_1 x^{(0)} = A_1 x^{(1)} = A_1 x^{(2)} = b_1$ 且 A_1 可逆,得 $x^{(0)} = x^{(1)} = x^{(2)} = A_1^{-1} b_1$,即 $x^{(0)}$ 是极点.

题目 2. 习题 3.6. 假设用单纯形方法解线性规划问题

 $\min cx$

s.t.
$$A\boldsymbol{x} = \boldsymbol{b}$$

$$x \geq 0$$

在某次迭代中对应变量 x_j 的判别数 $z_j-c_j>0$,且单纯形表中对应的列 $\boldsymbol{y_j}=B^{-1}\boldsymbol{p_j}\leq \boldsymbol{0}$.

证明: $d = \begin{bmatrix} -y_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$ 是可行域的极方向. 其中分量 1 对应 x_j . (假设 B 为 A 的前 m 列)

证明. $\ \ \mathrm{i} \ \ A = \begin{bmatrix} B & \boldsymbol{p_{m+1}} & \cdots & \boldsymbol{p_j} & \cdots & \boldsymbol{p_n} \end{bmatrix}$,则

$$Ad = \begin{bmatrix} B & \mathbf{p}_{m+1} & \cdots & \mathbf{p}_j & \cdots & \mathbf{p}_n \end{bmatrix} \begin{bmatrix} -\mathbf{y}_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = -B\mathbf{y}_j + \mathbf{p}_j = \mathbf{0}$$

且 $d \ge 0$, 所以 d 是可行域的方向.

设 $d_1, d_2 \ge 0$ 是可行域的方向,满足 $d = \lambda d_1 + \mu d_2 (\lambda, \mu > 0)$. 则 d_1, d_2 形如

$$oldsymbol{d_1} = egin{bmatrix} oldsymbol{a_1} \ 0 \ dots \ b_1 \ dots \ 0 \end{bmatrix}, \; oldsymbol{d_2} = egin{bmatrix} oldsymbol{a_2} \ b_2 \ dots \ 0 \end{bmatrix}$$

由于 $Ad_1 = Ad_2 = 0$,得

$$\begin{cases} B\boldsymbol{a_1} + b_1\boldsymbol{p_j} = \mathbf{0} \\ B\boldsymbol{a_2} + b_2\boldsymbol{p_j} = \mathbf{0} \end{cases}$$

从而 $b_2Ba_1 = b_1Ba_2$, $b_2d_1 = b_1d_2$. 易知 $b_1, b_2 > 0$ (否则,若 $b_1 = 0$,由 B 可逆,得 $a_1 = 0$, $d_1 = 0$, b_2 同理),得 $d_1 \parallel d_2$,所以 d 是可行域的极方向.

题目 3. 习题 3.2(4)(5). 用单纯形方法解下列线性规划问题.

- 1. $\min 3x_1 5x_2 2x_3 x_4$ s.t.
- 2. $\min -3x_1 x_2$ s.t.

$$\begin{cases} x_{1} + x_{2} + x_{3} & \leq 4 \\ 4x_{1} - x_{2} + x_{3} + 2x_{4} \leq 6 \\ -x_{1} + x_{2} + 2x_{3} + 3x_{4} \leq 12 \end{cases} \begin{cases} 3x_{1} + 3x_{2} + x_{3} & = 30 \\ 4x_{1} - 4x_{2} + x_{4} = 16 \\ 2x_{1} - x_{2} & \leq 12 \end{cases}$$
$$x_{j} \geq 0, \ j = 1, \dots, 4$$
$$x_{j} \geq 0, \ j = 1, \dots, 4$$

解.

1. 引入松弛变量, 化为标准形

$$\begin{cases} x_{1} + x_{2} + x_{3} + x_{5} & = 4 \\ 4x_{1} - x_{2} + x_{3} + 2x_{4} + x_{6} & = 6 \\ -x_{1} + x_{2} + 2x_{3} + 3x_{4} + x_{7} & = 12 \end{cases}$$

$$x_j \ge 0, \ j = 1, \cdots, 7$$

使用单纯形表求解

	c =	3	-5	-2	-1	0	0	0	
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
0	x_5	1	1	1	0	1	0	0	4
0	x_6	4	-1	1	2	0	1	0	6
0	x_7	-1	1	2	3	0	0	1	12
		-3	5	2	1	0	0	0	0
-5	x_2	1	1	1	0	1	0	0	4
0	x_6	5	0	2	2	1	1	0	10
0	x_7	-2	0	1	3	-1	0	1	8
		-8	0	-3	1	-5	0	0	-20
-5	x_2	1	1	1	0	1	0	0	4
0	x_6	19/3	0	4/3	0	5/3	1	-2/3	14/3
-1	x_4	-2/3	0	1/3	1	-1/3	0	1/3	8/3
		-22/3	0	-10/3	0	-14/3	0	-1/3	-68/3

最优解 $\boldsymbol{x}^* = \begin{bmatrix} 0 & 4 & 0 & 8/3 & 0 & 14/3 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f^* = -68/3$.

2. 引入松弛变量, 化为标准形

$$\begin{cases} 3x_1 + 3x_2 + x_3 & = 30 \\ 4x_1 - 4x_2 & + x_4 & = 16 \\ 2x_1 - x_2 & + x_5 = 12 \end{cases}$$

$$x_j \ge 0, \ j = 1, \cdots, 5$$

使用单纯形表求解

	c =	-3	-1	0	0	0	
		x_1	x_2	x_3	x_4	x_5	
0	x_3	3	3	1	0	0	30
0	x_4	4	-4	0	1	0	16
0	x_5	2	-1	0	0	1	12
		3	1	0	0	0	0
0	x_3	0	6	1	-3/4	0	18
-3	x_1	1	-1	0	1/4	0	4
0	x_5	0	1	0	-1/2	1	4
		0	4	0	-3/4	0	-12
-1	x_2	0	1	1/6	-1/8	0	3
-3	x_1	1	0	1/6	1/8	0	7
0	x_5	0	0	-1/6	-3/8	1	1
		0	0	-2/3	-1/4	0	-24

最优解 $x^* = \begin{bmatrix} 7 & 3 & 0 & 0 & 1 \end{bmatrix}^T$. 最优值 $f^* = -24$.

题目 1. 习题 3.2(3)(4). 用两阶段法求解下列线性规划.

1. $\max 3x_1 - 5x_2$ s.t.

2.
$$\min x_1 - 3x_2 + x_3$$
 s.t.

$$\begin{cases}
-x_1 + 2x_2 + 4x_3 \le 4 \\
x_1 + x_2 + 2x_3 \le 5 \\
-x_1 + 2x_2 + x_3 \ge 1
\end{cases}$$

$$x_j \ge 0, \ j = 1, 2, 3$$

$$\begin{cases} 2x_1 - x_2 + x_3 = 8 \\ 2x_1 + x_2 \ge 2 \\ x_1 + 2x_2 \le 10 \end{cases}$$

$$x_j \ge 0, \ j = 1, 2, 3$$

解.

1. 引入松弛变量 x_4, x_5, x_6 ,化为标准形,并引入人工变量 x_7 . 第一阶段先求解: $\min x_7$ s.t.

$$\begin{cases}
-x_1 + 2x_2 + 4x_3 + x_4 & = 4 \\
x_1 + x_2 + 2x_3 + x_5 & = 5 \\
-x_1 + 2x_2 + x_3 & - x_6 + x_7 = 1
\end{cases}$$

$$x_j \ge 0, \ j = 1, \cdots, 7$$

	$oldsymbol{c} =$	0	0	0	0	0	0	1	
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
0	x_4	-1	2	4	1	0	0	0	4
0	x_5	1	1	2	0	1	0	0	5
1	x_7	-1	2	1	0	0	-1	1	1
		-1	2	1	0	0	-1	0	1
0	x_4	0	0	3	1	0	1	-1	3
0	x_5	3/2	0	3/2	0	1	1/2	-1/2	9/2
0	x_2	-1/2	1	1/2	0	0	-1/2	1/2	1/2
		0	0	0	0	0	0	-1	0

一个基本可行解是 $\begin{bmatrix} 0 & 1/2 & 0 & 3 & 9/2 & 0 & 0 \end{bmatrix}^T$,人工变量 $x_7 = 0$ 且为非基变量,知找到了原问题的一个基本可行解 $\begin{bmatrix} 0 & 1/2 & 0 & 3 & 9/2 & 0 \end{bmatrix}^T$,进行第二阶段求解 $\min -3x_1 + 5x_2$.

	c =	-3	5	0	0	0	0	
		x_1	x_2	x_3	x_4	x_5	x_6	
0	x_4	0	0	3	1	0	1	3
0	x_5	3/2	0	3/2	0	1	1/2	9/2
5	x_2	-1/2	1	1/2	0	0	-1/2	1/2
		1/2	0	5/2	0	0	-5/2	5/2
				不妨	♦ x ₄ ±	基		
0	x_3	0	0	1	1/3	0	1/3	1
0	x_5	3/2	0	0	-1/2	1	0	3
5	x_2	-1/2	1	0	-1/6	0	-2/3	0
		1/2	0	0	-5/6	0	-10/3	0
0	x_3	0	0	1	1/3	0	1/3	1
-3	x_1	1	0	0	-1/3	2/3	0	2
5	x_2	0	1	0	-1/3	1/3	-2/3	1
		0	0	0	-2/3	-1/3	-10/3	-1

最优解
$$\boldsymbol{x}^* = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$
, $\begin{bmatrix} x_1^* & x_2^* & x_3^* \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\max}^* = -f_{\min}^* = 1$.

2. 引入松弛变量 x_4, x_5 ,化为标准形,并引入人工变量 x_6 . 第一阶段先求解: $\min x_6$ s.t.

$$\begin{cases} 2x_1 - & x_2 + & x_3 & = & 8 \\ 2x_1 + & x_2 & - & x_4 & + & x_6 = & 2 \\ x_1 + & 2x_2 & & + & x_5 & = & 10 \end{cases}$$

$$x_i \ge 0, \ j = 1, \cdots, 6$$

	c =	0	0	0	0	0	1	
		x_1	x_2	x_3	x_4	x_5	x_6	
0	x_3	2	-1	1	0	0	0	8
1	x_6	2	1	0	-1	0	1	2
0	x_5	1	2	0	0	1	0	10
	2	1	0	-1	0	0	2	
0	x_3	0	-2	1	1	0	-1	6
0	x_1	1	1/2	0	-1/2	0	1/2	1
0	x_5	0	3/2	0	1/2	1	-1/2	9
		0	0	0	0	0	-1	0

一个基本可行解是 $\begin{bmatrix} 1 & 0 & 6 & 0 & 9 & 0 \end{bmatrix}^{T}$,人工变量 $x_{6} = 0$ 且为非基变量,知找到了原问题的一个基本可行解 $\begin{bmatrix} 1 & 0 & 6 & 0 & 9 \end{bmatrix}^{T}$,进行第二阶段求解 $\min x_{1} - 3x_{2} + x_{3}$.

	c =	1	-3	1	0	0	
		x_1	x_2	x_3	x_4	x_5	
1	x_3	0	-2	1	1	0	6
1	x_1	1	1/2	0	-1/2	0	1
0	x_5	0	3/2	0	1/2	1	9
		0	3/2	0	1/2	0	7
1	x_3	4	0	1	-1	0	10
-3	x_2	2	1	0	-1	0	2
0	x_5	-3	0	0	2	1	6
		-3	0	0	2	0	4
1	x_3	5/2	0	1	0	1/2	13
-3	x_2	1/2	1	0	0	1/2	5
0	x_4	-3/2	0	0	1	1/2	3
		0	0	0	0	-1	-2
1	x_1	1	0	2/5	0	1/5	26/5
-3	x_2	0	1	-1/5	0	2/5	12/5
0	x_4	0	0	3/5	1	4/5	54/5
		0	0	0	0	-1	-2

最优解 $x_1^* = \begin{bmatrix} 0 & 5 & 13 & 3 & 0 \end{bmatrix}^T$, $x_2^* = \begin{bmatrix} 26/5 & 12/5 & 0 & 54/5 & 0 \end{bmatrix}^T$, $\begin{bmatrix} x_1^* & x_2^* & x_3^* \end{bmatrix}^T = \begin{bmatrix} 0 & 5 & 13 \end{bmatrix}^T$ 或 $\begin{bmatrix} 26/5 & 12/5 & 0 \end{bmatrix}^T$. 最优值 $f_{\min}^* = -2$.

题目 2. 习题 3.2(5)(7). 用大 M 法求解下列线性规划.

1.
$$\max -3x_1 + 2x_2 - x_3$$
 s.t.

2.
$$\min 3x_1 - 2x_2 + x_3$$
 s.t.

$$\begin{cases} 2x_1 + & x_2 - x_3 \le 5 \\ 4x_1 + & 3x_2 + x_3 \ge 3 \\ -x_1 + & x_2 + x_3 = 2 \end{cases}$$

$$\begin{cases} 2x_1 - & 3x_2 + x_3 = 1 \\ 2x_1 + & 3x_2 \ge 8 \\ x_j \ge 0, \ j = 1, 2, 3 \end{cases}$$

$$x_j \ge 0, \ j = 1, 2, 3$$

解.

1. 引入松弛变量 x_4, x_5 ,化为标准形,并引入人工变量 x_6, x_7 . 求解: $\min 3x_1 - 2x_2 + x_3 + M(x_6 + x_7)$ s.t.

$$\begin{cases} 2x_1 + & x_2 - x_3 + x_4 & = 5 \\ 4x_1 + & 3x_2 + x_3 & - x_5 + x_6 & = 3 \\ -x_1 + & x_2 + x_3 & + x_7 = 2 \end{cases}$$

$$x_j \ge 0, \ j = 1, \cdots, 7$$

	c =	3	-2	1	0	0	M	M	
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
0	x_4	2	1	-1	1	0	0	0	5
M	x_6	4	3	1	0	-1	1	0	3
M	x_7	-1	1	1	0	0	0	1	2
		3M - 3	4M+2	2M-1	0	-M	0	0	5M
0	x_4	2/3	0	-4/3	1	1/3	-1/3	0	4
-2	x_2	4/3	1	1/3	0	-1/3	1/3	0	1
M	x_7	-7/3	0	2/3	0	1/3	-1/3	1	1
		$\frac{-7M-17}{3}$	0	$\frac{2M-5}{3}$	0	$\frac{M+2}{3}$	$\frac{-4M-2}{3}$	0	M-2
0	x_4	-4	0	0	1	1	-1	2	6
-2	x_2	5/2	1	0	0	-1/2	1/2	-1/2	1/2
1	x_3	-7/2	0	1	0	1/2	-1/2	3/2	3/2
		-23/2	0	0	0	3/2	-3/2 - M	5/2 - M	1/2
0	x_4	3	0	-2	1	0	0	-1	3
-2	x_2	-1	1	1	0	0	0	1	2
0	x_5	-7	0	2	0	1	-1	3	3
		-1	0	-3	0	0	-M	-2-M	-4

最优解
$$\boldsymbol{x}^* = \begin{bmatrix} 0 & 2 & 0 & 3 & 3 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$
, $\begin{bmatrix} x_1^* & x_2^* & x_3^* \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\max}^* = -f_{\min}^* = 4$.

2. 引入松弛变量 x_4 , 化为标准形, 并引入人工变量 x_5 . 求解: $\min 3x_1 - 2x_2 + x_3 + Mx_5$ s.t.

$$\begin{cases} 2x_1 - 3x_2 + x_3 & = 1 \\ 2x_1 + 3x_2 & - x_4 + x_5 = 8 \end{cases}$$

$$x_j \ge 0, \ j = 1, \cdots, 5$$

	c =	3	-2	1	0	M	
		x_1	x_2	x_3	x_4	x_5	
1	x_3	2	-3	1	0	0	1
M	x_5	2	3	0	-1	1	8
		2M-1	3M - 1	0	-M	0	8M + 1
1	x_3	4	0	1	-1	1	9
-2	x_2	2/3	1	0	-1/3	1/3	8/3
	-1/3	0	0	-1/3	1/3 - M	11/3	

最优解 $\boldsymbol{x}^* = \begin{bmatrix} 0 & 8/3 & 9 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$, $\begin{bmatrix} x_1^* & x_2^* & x_3^* \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 0 & 8/3 & 9 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\min}^* = 11/3$.

题目 1. 习题 4.7(3)(5). 用对偶单纯形法解下列问题.

1. $\max x_1 + x_2$ s.t.

$$\begin{cases} x_1 - x_2 - x_3 = 1 \\ -x_1 + x_2 + 2x_3 \ge 1 \end{cases}$$
$$x_j \ge 0, \ j = 1, 2, 3$$

2. $\min 4x_1 + 3x_2 + 5x_3 + x_4 + 2x_5$ s.t.

$$\begin{cases}
-x_1 + 2x_2 - 2x_3 + 3x_4 - 3x_5 + x_6 + x_8 = 1 \\
x_1 + x_2 - 3x_3 + 2x_4 - 2x_5 + x_8 = 4 \\
- 2x_3 + 3x_4 - 3x_5 + x_7 + x_8 = 2
\end{cases}$$

$$x_j \ge 0, \ j = 1, 2, \dots, 8$$

解.

1. 引入松弛变量 x_4 , 化为标准形, 求解 $\min -x_1 - x_2$ s.t.

$$\begin{cases} x_1 - x_2 - x_3 &= 1 \\ -x_1 + x_2 + 2x_3 - x_4 &= 1 \end{cases}$$
$$x_j \ge 0, \ j = 1, 2, 3, 4$$

经尝试,不易找到初始对偶可行的基本解. 以 x_3, x_4 为初始基变量,增加变量 x_5 与约束条件 $x_1 + x_2 + x_5 = M$ (M > 0 充分大),解扩充问题.

	c =	-1	-1	0	0	0	
		x_1	x_2	x_3	x_4	x_5	
0	x_3	-1	1	1	0	0	-1
0	x_4	-1	1	0	1	0	-3
0	x_5	1	1	0	0	1	M
		1	1	0	0	0	
0	x_3	0	2	1	0	1	M-1
0	x_4	0	2	0	1	1	M-3
-1	x_1	1	1	0	0	1	M
		0	0	0	0	-1	-M

扩充问题的最优解是 $x^* = \begin{bmatrix} M & 0 & M-1 & M-3 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f^*_{\max} = -f^*_{\min} = M \; (M \geq 3)$. 原问题无界.

2. 设 x_6, x_8, x_7 为初始基变量, $c_B B^{-1} A - c = -c = \begin{bmatrix} -4 & -3 & -5 & -1 & -2 & 0 & 0 \end{bmatrix} \le 0$, 找到了对偶可行的基本解.

	$oldsymbol{c} =$	4	3	5	1	2	0	0	0	
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
0	x_6	-2	1	1	1	-1	1	0	0	-3
0	x_8	1	1	-3	2	-2	0	0	1	4
0	x_7	-1	-1	1	1	-1	0	1	0	-2
		-4	-3	-5	-1	-2	0	0	0	0
4	x_1	1	-1/2	-1/2	-1/2	1/2	-1/2	0	0	3/2
0	x_8	0	3/2	-5/2	5/2	-5/2	1/2	0	1	5/2
0	x_7	0	-3/2	1/2	1/2	-1/2	-1/2	1	0	-1/2
		0	-5	-7	-3	0	-2	0	0	6
4	x_1	1	-2	0	0	0	-1	1	0	1
0	x_8	0	9	-5	0	0	3	-5	1	5
2	x_5	0	3	-1	-1	1	1	-2	0	1
		0	-5	-7	-3	0	-2	0	0	6
		存在	判别数	为0的	非基变量	量, 令其	进基求	另外的	力最优解	
0	x_7	1	-2	0	0	0	-1	1	0	1
0	x_8	5	-1	-5	0	0	-2	0	1	10
2	x_5	2	-1	-1	-1	1	-1	0	0	3
		0	-5	-7	-3	0	-2	0	0	6

最优解是 $x^* = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 5 \end{bmatrix}^T$ 或 $\begin{bmatrix} 0 & 0 & 0 & 0 & 3 & 0 & 1 & 10 \end{bmatrix}^T$.

最优值 $f_{\min}^* = 6$.

题目 2. 习题 4.2. 给定原问题.

 $\min 4x_1 + 3x_2 + x_3$ s.t.

$$\begin{cases} x_1 - x_2 + x_3 \ge 1 \\ x_1 + 2x_2 - 3x_3 \ge 2 \end{cases}$$
$$x_j \ge 0, \ j = 1, 2, 3$$

已知对偶问题的最优解 $(w_1, w_2) = (5/3, 7/3)$,利用对偶性质求原问题的最优解.

解. 原问题的对偶问题为 $\max w_1 + 2w_2$ s.t.

$$\begin{cases} w_1 + & w_2 \le 4 \\ -w_1 + & 2w_2 \le 3 \\ w_1 - & 3w_2 \le 1 \end{cases}$$

$$w_i > 0, \ j = 1, 2$$

由互补松弛定理:由于 $w_1, w_2 > 0$,知原问题前 2 个约束在最优解处是紧的.由于对偶问题第 3 个约束在最优解处是松的,知原问题最优解 $x_3 = 0$.

$$\begin{cases} x_1 - & x_2 + & x_3 = 1 \\ x_1 + & 2x_2 - & 3x_3 = 2 \\ & & x_3 = 0 \end{cases}$$

原问题的最优解 $(x_1, x_2, x_3) = (4/3, 1/3, 0)$,最优值 $f^* = 19/3$.

题目 3. 习题 4.4. 给定线性规划问题.

 $\min 5x_1 + 21x_3$ s.t.

$$\begin{cases} x_1 - x_2 + 6x_3 \ge b_1 \\ x_1 + x_2 + 2x_3 \ge 1 \end{cases}$$
$$x_j \ge 0, \ j = 1, 2, 3$$

其中 b_1 是某一个正数,已知这个问题的一个最优解为 $(x_1, x_2, x_3) = (1/2, 0, 1/4)$.

- 1. 写出对偶问题.
- 2. 求对偶问题的最优解.

解.

1. 原问题的对偶问题为 $\max b_1 w_1 + w_2$ s.t.

$$\begin{cases} w_1 + & w_2 \le 5 \\ -w_1 + & w_2 \le 0 \\ 6w_1 + & 2w_2 \le 21 \end{cases}$$
$$w_j \ge 0, \ j = 1, 2$$

2. 由互补松弛定理: 由于 $x_1, x_3 > 0$,知对偶问题第 1、3 个约束在最优解处是紧的.

$$\begin{cases} w_1 + & w_2 = 5 \\ 6w_1 + & 2w_2 = 21 \end{cases}$$

对偶问题的最优解 $(w_1, w_2) = (11/4, 9/4)$,最优值 $f^* = 31/4$ (计算原问题最优值即得)

题目 4. 习题 4.6. 考虑线性规划问题

 $\min cx$ s.t.

$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

其中 A 是 m 阶对称矩阵, $c^{T}=b$. 证明若 $x^{(0)}$ 是上述问题的可行解,则它也是最优解.

证明. 法一. 原问题的对偶问题为 $\max wb$ s.t.

因为 $x^{(0)}$ $^{\mathrm{T}}A = (Ax^{(0)})^{\mathrm{T}} = b^{\mathrm{T}} = c$,知 $x^{(0)}$ 是对偶问题可行解,且此时 $f = x^{(0)}$ $^{\mathrm{T}}b = (x^{(0)})^{\mathrm{T}}b^{\mathrm{T}} = cx^{(0)}$ (注意 f 是数, $f^{\mathrm{T}} = f$),知 $x^{(0)}$ 是原问题最优解, $x^{(0)}$ 是对偶问题最优解.

法二. 下证 $\forall x$ 满足 Ax = b, $x \geq 0$, f = cx 恒为定值. 假设 $x^{(0)}$ 是可行解, $Ax^{(0)} = b$, $x^{(0)} \geq 0$, $f = cx^{(0)}$. 假设 $x^{(1)}$ 也是可行解,满足 $Ax^{(1)} = b$, $x^{(1)} \geq 0$, 则 $f = cx^{(1)} = b^{\mathrm{T}}x^{(1)} = x^{(0)\mathrm{T}}Ax^{(1)} = x^{(0)\mathrm{T}}b = (x^{(0)\mathrm{T}}b)^{\mathrm{T}} = b^{\mathrm{T}}x^{(0)} = cx^{(0)}$ (注意 f 是数, $f^{\mathrm{T}} = f$),从而 f 恒为定值 $cx^{(0)}$,其可行解均为最优解.

题目 5. 习题 4.9. 给定下列线性规划问题:

 $\min -2x_1 - x_2 + x_3$ s.t.

$$\begin{cases} x_1 + & x_2 + 2x_3 \le 6 \\ x_1 + & 4x_2 - & x_3 \le 4 \end{cases}$$
$$x_j \ge 0, \ j = 1, 2, 3$$

它的最优单纯形表如下表:

- 1. 若右端向量 $b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ 改为 $b' = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$,原来的最优基是否还是最优基?利用原来的最优表求新问题的最优表。
- 2. 若目标函数中 x_1 的系数由 $c_1 = -2$ 改为 c'_1 ,那么 c'_1 在什么范围内时原来的最优解也是新问题的最优解?

解.

1. 计算
$$B^{-1}b' = \begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2/3 \\ 10/3 \end{bmatrix} \not \geq 0$$
,所以原来的最优基不再可行. 以下使用对偶单纯形法求解.

	c =	-2	-1	1	0	0	
		x_1	x_2	x_3	x_4	x_5	
1	x_3	0	-1	1	1/3	-1/3	-2/3
-2	x_1	1	3	0	1/3	2/3	10/3
		0	-6	0	-1/3	-5/3	-22/3
0	x_5	0	3	-3	-1	1	2
-2	x_1	1	1	2	1	0	2
	0	-1	-5	-2	0	-4	

原最优基改变. 新问题的最优解是 $x^* = \begin{bmatrix} 2 & 0 & 0 & 0 & 2 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\min}^* = -4$.

2. 重新计算各非基变量判别数:

$$\begin{cases} z_2' - c_2 = 3c_1' \le 0 \\ z_4' - c_4 = \frac{c_1' + 1}{3} \le 0 \\ z_5' - c_5 = \frac{2c_1' - 1}{3} \le 0 \end{cases}$$

解得 $c_1' \le -1$,此时原最优解也是新问题的最优解.

题目 1. 习题 4.10. 考虑下列线性规划问题: $\max -5x_1 + 5x_2 + 13x_3$ s.t.

$$\begin{cases}
-x_1 + & x_2 + & 3x_3 \le 20 \\
12x_1 + & 4x_2 + & 10x_3 \le 90
\end{cases}$$

$$x_1, x_2, x_3 \ge 0$$

先用单纯形方法求出上述问题的最优解,然后对原来问题分别进行下列改变,试用原来问题的最优表求新问题的最优解:

- 1. 目标函数中 x_3 系数 c_3 由 13 改变为 8;
- 2. b₁ 由 20 改变为 30;
- 3. b₂ 由 90 改变为 70;
- 4. A的列由 $\begin{bmatrix} -1 \\ 12 \end{bmatrix}$ 改变为 $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$;
- 5. 增加约束条件: $2x_1 + 3x_2 + 5x_3 \le 50$.

解. 引入松弛变量 x_4, x_5 , 化为标准形, 求解 $\min 5x_1 - 5x_2 - 13x_3$ s.t.

$$\begin{cases}
-x_1 + & x_2 + & 3x_3 + & x_4 & = 20 \\
12x_1 + & 4x_2 + & 10x_3 & + & x_5 = 90
\end{cases}$$

$$x_j \ge 0, \ j = 1, 2, \cdots, 5$$

初始单纯形表如下:

	c =	5	-5	-13	0	0	
		x_1	x_2	x_3	x_4	x_5	b
0	x_4	-1	1	3	1	0	20
0	x_5	12	4	10	0	1	90
		-5	5	13	0	0	0
-13	x_3	-1/3	1/3	1	1/3	0	20/3
0	x_5	46/3	2/3	0	-10/3	1	70/3
		-2/3	2/3	0	-13/3	0	-260/3
-5	x_2	-1	1	3	1	0	20
0	x_5	16	0	-2	-4	1	10
		0	0	-2	-5	0	-100

- 一个最优解是 $x^* = \begin{bmatrix} 0 & 20 & 0 & 0 & 10 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\text{max}}^* = -f_{\text{min}}^* = 100$.
- 1. 目标函数中 x_3 系数 c_3 由 13 改变为 8. 由于 x_3 是非基变量,只有 x_3 的判别数改变. $z_3' c_3' = (z_3 c_3) + (c_3 c_3') = -2 5 = -7 < 0$,故最优解不变.
- 2. b_1 由 20 改变为 30. 则最优表右端向量变为 $b' = B^{-1}b = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 30 \\ 90 \end{bmatrix} = \begin{bmatrix} 30 \\ -30 \end{bmatrix} \not\geq 0$. 使用对偶单纯形法求解.

	c =	5	-5	-13	0	0	
		x_1	x_2	x_3	x_4	x_5	b
-5	x_2	-1	1	3	1	0	30
0	x_5	16	0	-2	-4	1	-30
		0	0	-2	-5	0	-150
-5	x_2	23	1	0	-5	3/2	-15
-13	x_3	-8	0	1	2	-1/2	15
		-16	0	0	-1	-1	-120
0	x_4	-23/5	-1/5	0	1	-3/10	3
-13	x_3	6/5	2/5	1	0	1/10	9
		-103/5	-1/5	0	0	-13/10	-117

最优解是 $x^* = \begin{bmatrix} 0 & 0 & 9 & 3 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\text{max}}^* = -f_{\text{min}}^* = 117$.

3. b_2 由 90 改变为 70. 则最优表右端向量变为 $b' = B^{-1}b = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 70 \end{bmatrix} = \begin{bmatrix} 20 \\ -10 \end{bmatrix} \not\geq 0$. 使用对偶单纯形法求解.

	c =	5	-5	-13	0	0	
		x_1	x_2	x_3	x_4	x_5	b
-5	x_2	-1	1	3	1	0	20
0	x_5	16	0	-2	-4	1	-10
		0	0	-2	-5	0	-100
-5	x_2	23	1	0	-5	3/2	5
-13	x_3	-8	0	1	2	-1/2	5
		-16	0	0	-1	-1	-90

最优解是 $x^* = \begin{bmatrix} 0 & 5 & 5 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\text{max}}^* = -f_{\text{min}}^* = 90$.

$$4. A$$
 的列由 $\begin{bmatrix} -1 \\ 12 \end{bmatrix}$ 改变为 $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$. x_1 的判别数改变.

$$z'_1 - c_1 = c_B B^{-1} P_1 - c_1 = \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \end{bmatrix} - 5 = -5 < 0, \text{ 故最优解不变.}$$

5. 增加约束条件: $2x_1 + 3x_2 + 5x_3 \le 50$. 原最优解不满足此约束. 引入松弛变量 x_6 ,使用对偶单纯形法求解.

	c =	5	-5	-13	0	0	0	
		x_1	x_2	x_3	x_4	x_5	x_6	b
-5	x_2	-1	1	3	1	0	0	20
0	x_5	16	0	-2	-4	1	0	10
0	x_6	2	3	5	0	0	1	50
		0	0	-2	-5	0	0	-100
-5	x_2	-1	1	3	1	0	0	20
0	x_5	16	0	-2	-4	1	0	10
0	x_6	5	0	-4	-3	0	1	-10
		0	0	-2	-5	0	0	-100
-5	x_2	11/4	1	0	-5/4	0	3/4	25/2
0	x_5	27/2	0	0	-5/2	1	-1/2	15
-13	x_3	-5/4	0	1	3/4	0	-1/4	5/2
		-5/2	0	0	-7/2	0	-1/2	-95

最优解是 $x^* = \begin{bmatrix} 0 & 25/2 & 5/2 & 0 & 15 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f_{\text{max}}^* = -f_{\text{min}}^* = 95$.

题目 2. 习题 4.5. 给定原始的线性规划问题: min cx s.t.

$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

假设这个问题与其对偶问题是可行的,令 $w^{(0)}$ 是对偶问题的一个已知的最优解.

- 1. 若用 $\mu \neq 0$ 乘原问题的第 k 个方程,得到一个新的原问题,试求其对偶问题的的最优解.
- 2. 若将原问题第 k 个方程的 μ 倍加到第 r 个方程上,得到新的原问题,试求其对偶问题的的最优解.
- 解. 原问题的对偶问题为 max wb s.t.

$$wA \leq c$$

1. 记矩阵 $P_1 = \text{diag}(1, \dots, 1, \mu, 1, \dots, 1)$, 其中 μ 在第 k 个位置. 新的原问题为 $\min cx$ s.t.

$$\begin{cases} P_1 A x = P_1 b \\ x \ge 0 \end{cases}$$

即原问题 $A \mapsto P_1 A$, $b \mapsto P_1 b$, 对偶问题为 $\max w P_1 b$ s.t.

$$wP_1A \le c$$

即对偶问题 $w \mapsto wP_1$. 其最优解 $w^{(1)}$ 满足 $w^{(0)} = w^{(1)}P_1$, 即

$$w^{(1)} = w^{(0)} P_1^{-1} = \begin{bmatrix} w_1^{(0)} & \cdots & w_{k-1}^{(0)} & w_k^{(0)} / \mu & w_{k+1}^{(0)} & \cdots & w_m^{(0)} \end{bmatrix}$$

2. 以下只讨论 $r \neq k$ 的情形,否则同 1,将 1 答案中的 μ 替换为 $\mu + 1$ 即可. 记矩阵 $P_2 = I + \mu e_r e_k^{\rm T}$,其中 μ 在第 r 行第 k 列位置. 与 1 同理,对偶问题最优解 $w^{(2)}$ 满足

$$w^{(0)} = w^{(2)} P_2$$
, \mathbb{P}

$$w^{(2)} = w^{(0)} P_2^{-1} = w^{(0)} (I - \mu e_r e_k^{\mathrm{T}}) = \begin{bmatrix} w_1^{(0)} & \cdots & w_{k-1}^{(0)} & w_k^{(0)} - \mu w_r^{(0)} & w_{k+1}^{(0)} & \cdots & w_m^{(0)} \end{bmatrix}$$

题目 2 的注记. P_1, P_2 为初等变换阵: 左乘表示行变换, 右乘表示列变换.

题目 3. 习题 15.3(1). 求解下列 0-1 规划: $\min 2x_1 + 3x_2 + 4x_3$ s.t.

$$\begin{cases}
-3x_1 + 5x_2 - 2x_3 \ge -4 \\
3x_1 + x_2 + 4x_3 \ge 3 \\
x_1 + x_2 \ge 1
\end{cases}$$

$$x_j = 0 \ \vec{\boxtimes} 1, \ j = 1, 2, 3$$

解. 使用隐枚举法求解. 先用试探法求出一个可行解,如 $x_0 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$. 其目标函数值为 $f(x_0) = 2 + 3 + 0 = 5$. 增加约束 4: $2x_1 + 3x_2 + 4x_3 \le 5$,进行枚举.

点	过滤条件(约束 4)	约束 4	约束 1	约束 2	约束 3	目标函数值
$(0,0,0)^{\mathrm{T}}$	$2x_1 + 3x_2 + 4x_3 \le 5$	О	О	X		
$(0, 0, 1)^{\mathrm{T}}$		O	O	O	X	
$(0,1,0)^{\mathrm{T}}$		O	O	X		
$(0, 1, 1)^{\mathrm{T}}$		X				
$(1,0,0)^{\mathrm{T}}$		O	O	O	O	2
$(1, 0, 1)^{\mathrm{T}}$	$2x_1 + 3x_2 + 4x_3 \le 2$	X				
$(1, 1, 0)^{\mathrm{T}}$		X				
$(1,1,1)^{\mathrm{T}}$		X				

故最优解是 $x^* = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$. 最优值 $f^*_{\min} = 2$.

题目 1. 习题 1.5. 设 $A \in M_{m \times n}$, $B \in M_{l \times n}$, $c \in E^n$, 证明下列两个系统恰有一个有解:

- <math> <math>

证明. 系 1 有解 \iff $\begin{bmatrix} A \\ B \\ -B \end{bmatrix}$ $x \le 0$, $c^{\mathrm{T}}x > 0$ 有解 $\stackrel{\mathrm{Farkas}}{\iff}$ $\begin{bmatrix} A^{\mathrm{T}} & B^{\mathrm{T}} & -B^{\mathrm{T}} \end{bmatrix}$ $\begin{bmatrix} y \\ z_1 \\ z_2 \end{bmatrix} = c$, $\begin{bmatrix} y \\ z_1 \\ z_2 \end{bmatrix} \ge 0$ 无解 \iff $A^{\mathrm{T}}y + B^{\mathrm{T}}(z_1 - z_2) = c$, $y \ge 0$, $z_1 \ge 0$, $z_2 \ge 0$ 无解 $\stackrel{z=z_1-z_2}{\iff}$ 系 2 无解.

题目 2. 习题 1.6. 设 $A \in M_{m \times n}$, $c \in E^n$, 证明下列两个系统恰有一个有解:

证明. 系 1 有解 \iff $\begin{bmatrix} A \\ -I \end{bmatrix} x \le 0, \ c^{\mathrm{T}}x > 0$ 有解 $\stackrel{\mathrm{Farkas}}{\iff}$ $\begin{bmatrix} A^{\mathrm{T}} & -I \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = c, \ \begin{bmatrix} y \\ z \end{bmatrix} \ge 0$ 无解 \iff $A^{\mathrm{T}}y - z = c, \ y \ge 0, \ z \ge 0$ 无解 \iff 系 2 无解.

题目 3. 习题 1.10. $f(x_1, x_2) = 10 - 2(x_2 - x_1^2)^2$, $S = \{(x_1, x_2) \mid -11 \le x_1 \le 1, -1 \le x_2 \le 1\}$. $f(x_1, x_2)$ 是否为 S 上的凸函数?

解. $f(x_1, x_2)$ 不是 S 上的凸函数. 取 $x^{(1)} = (-1, 0), x^{(2)} = (1, 0), 则 <math>f(x^{(1)}) = f(x^{(2)}) = 8,$ 但 $f(\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}) = 10, f(\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}) \le \frac{1}{2}f(x^{(1)}) + \frac{1}{2}f(x^{(2)})$ 不成立.

实际上, $f(x_1,x_2)$ 也不是 S 上的凹函数. 取 $x^{(1)}=(-1,1), x^{(2)}=(1,1)$,则 $f(x^{(1)})=f(x^{(2)})=10$,但 $f(\frac{1}{2}x^{(1)}+\frac{1}{2}x^{(2)})=8$, $f(\frac{1}{2}x^{(1)}+\frac{1}{2}x^{(2)})\geq \frac{1}{2}f(x^{(1)})+\frac{1}{2}f(x^{(2)})$ 不成立.

题目 4. 习题 1.12. 设 f 是定义在 E^n 上的凸函数. $x^{(1)}, x^{(2)}, \ldots, x^{(k)} \in E^n$, 证明: $f(\lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \cdots + \lambda_k x^{(k)}) \le \lambda_1 f(x^{(1)}) + \lambda_2 f(x^{(2)}) + \cdots + \lambda_k f(x^{(k)})$, 其中 $\lambda_1 + \lambda_2 + \cdots + \lambda_k = 1, \lambda_1, \lambda_2, \ldots, \lambda_k \ge 0$.

证明. 对 k 归纳: k=2 时,即为凸函数定义. 假设命题对 k-1 成立 $(k=3,4,\cdots)$,则对 $x^{(1)}, x^{(2)}, \ldots, x^{(k)} \in E^n$, $\lambda_1 + \lambda_2 + \cdots + \lambda_k = 1$, $\lambda_1, \lambda_2, \ldots, \lambda_k \geq 0$,由凸函数定义与归纳假设,有

$$f(\lambda_{1}x^{(1)} + \lambda_{2}x^{(2)} + \dots + \lambda_{k}x^{(k)})$$

$$= f\left((1 - \lambda_{k})\left(\frac{\lambda_{1}}{1 - \lambda_{k}}x^{(1)} + \dots + \frac{\lambda_{k-1}}{1 - \lambda_{k}}x^{(k-1)}\right) + \lambda_{k}x^{(k)}\right)$$

$$\leq (1 - \lambda_{k})f\left(\frac{\lambda_{1}}{1 - \lambda_{k}}x^{(1)} + \dots + \frac{\lambda_{k-1}}{1 - \lambda_{k}}x^{(k-1)}\right) + \lambda_{k}f(x^{(k)})$$

$$\leq (1 - \lambda_{k})\left(\frac{\lambda_{1}}{1 - \lambda_{k}}f(x^{(1)}) + \dots + \frac{\lambda_{k-1}}{1 - \lambda_{k}}f(x^{(k-1)})\right) + \lambda_{k}f(x^{(k)})$$

$$= \lambda_{1}f(x^{(1)}) + \dots + \lambda_{k}f(x^{(k)})$$

其中利用了 $\sum_{i=1}^{k-1} \frac{\lambda_i}{1-\lambda_k} = \frac{1-\lambda_k}{1-\lambda_k} = 1$,故命题对 k 成立. 归纳知命题对任意 $k=2,3,\cdots$ 成立.

题目 5. 习题 1.14. 设 f 是定义在 R^n 上的函数,如果对每一个点 $x \in R^n$ 及正数 t 均有 f(tx) = tf(x),则称 f 为正齐次函数. 证明 R^n 上的正齐次函数 f 为凸函数的充要条件是: 对任意的 $x^{(1)}, x^{(2)} \in R^n$,有 $f(x^{(1)} + x^{(2)}) \le f(x^{(1)}) + f(x^{(2)})$.

证明. 充分性: 若 R^n 上的正齐次函数 f 为凸函数, $\forall x^{(1)}, x^{(2)} \in R^n, \lambda \in (0,1)$,有

$$f(x^{(1)} + x^{(2)}) = 2f\left(\frac{1}{2}(x^{(1)} + x^{(2)})\right) \le 2 \times \left(\frac{1}{2}(f(x^{(1)}) + \frac{1}{2}f(x^{(2)}))\right) = f(x^{(1)}) + f(x^{(2)})$$

必要性: 设 R^n 上的正齐次函数 f 满足 $\forall x^{(1)}, x^{(2)} \in R^n$,有 $f(x^{(1)} + x^{(2)}) \leq f(x^{(1)}) + f(x^{(2)})$. 则 $\forall x^{(1)}, x^{(2)} \in R^n$, $\forall \lambda \in (0, 1)$,有

$$f(\lambda x^{(1)} + (1 - \lambda)x^{(2)}) \le f(\lambda x^{(1)}) + f((1 - \lambda)x^{(2)}) = \lambda f(x^{(1)}) + (1 - \lambda)f(x^{(2)})$$

故 f 为凸函数.

题目 1. 习题 7.4. 给定非线性规划问题:
$$\min(x_1-\frac{9}{4})^2+(x_2-2)^2$$
 s.t.
$$\begin{cases} -x_1^2+x_2\geq 0\\ x_1+x_2\leq 6\\ x_1,x_2\geq 0 \end{cases}$$

判断下列各点是否为最优解: $x^{(1)}=\begin{bmatrix}\frac{3}{2}\\\frac{9}{4}\end{bmatrix},\ x^{(2)}=\begin{bmatrix}\frac{9}{4}\\2\end{bmatrix},\ x^{(3)}=\begin{bmatrix}0\\2\end{bmatrix}.$

解. 非线性规划问题标准形式为: $\min(x_1 - \frac{9}{4})^2 + (x_2 - 2)^2$ s.t. $\begin{cases} -x_1^2 + x_2 \ge 0 \\ -x_1 - x_2 + 6 \ge 0 \end{cases}$. $x_1 \ge 0$ $x_2 \ge 0$

由于 $f(x_1,x_2)=(x_1-\frac{9}{4})^2+(x_2-2)^2$ 是凸函数, $g_1(x_1,x_2)=-x_1^2+x_2$, $g_2(x_1,x_2)=-x_1-x_2+6$, $g_3(x_1,x_2)=x_1$, $g_4(x_1,x_2)=x_2$ 是凹函数,因此该问题是凸规划. 只需验证 $x^{(1)},x^{(2)},x^{(3)}$ 是否为 KKT 点.

目标函数与约束函数的梯度是

$$\nabla f = \begin{bmatrix} 2(x_1 - \frac{9}{4}) \\ 2(x_2 - 2) \end{bmatrix}, \quad \nabla g_1 = \begin{bmatrix} -2x_1 \\ 1 \end{bmatrix}, \quad \nabla g_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \nabla g_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \nabla g_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

验证 $x^{(1)}$. 只有 $g_1 \ge 0$ 是起作用约束,KKT 条件如下:

$$\nabla f(x^{(1)}) - w_1 \nabla g_1(x^{(1)}) = \begin{bmatrix} -\frac{3}{2} + 3w_1 \\ \frac{1}{2} - w_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

解得 $w_1 = \frac{1}{2} \ge 0$,因此 $x^{(1)}$ 是 KKT 点.

验证 $x^{(2)}$. 其不是可行解,因此不是 KKT 点.

验证 $x^{(3)}$. 只有 $g_3 \ge 0$ 是起作用约束,KKT 条件如下:

$$\nabla f(x^{(3)}) - w_3 \nabla g_3(x^{(3)}) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} - w_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

解得 $w_3 = -\frac{9}{2} < 0$,因此 $x^{(3)}$ 不是 KKT 点.

综上, $x^{(1)}$ 是最优解, 最优值 $f(x^{(1)}) = \frac{5}{8}$.

习题 7.7. 求原点 $x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 到凸集 $S = \{x \mid x_1 + x_2 \ge 4, \ 2x_1 + x_2 \ge 5\}$ 的最小 距离.

该非线性规划问题的标准形式为: $\min x_1^2 + x_2^2$ s.t. $\begin{cases} x_1 + x_2 - 4 \ge 0 \\ 2x_1 + x_2 - 5 \ge 0 \end{cases}$

凹函数, 因此该问题是凸规划. 只需求解 KKT 点.

目标函数与约束函数的梯度是

$$\nabla f = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}, \quad \nabla g_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \nabla g_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

KKT 条件如下:

$$\begin{cases} \nabla f(x) - w_1 \nabla g_1(x) - w_2 \nabla g_2(x) = \begin{bmatrix} 2x_1 - w_1 - 2w_2 \\ 2x_2 - w_1 - w_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ w_1 g_1(x) = w_1(x_1 + x_2 - 4) = 0 \\ w_2 g_2(x) = w_2(2x_1 + x_2 - 5) = 0 \\ w_1 \ge 0, \ w_2 \ge 0, \ g_1(x) \ge 0, \ g_2(x) \ge 0 \end{cases}$$

若
$$g_1(x) > 0$$
, $g_2(x) > 0$, 解得 $w = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, 舍去. 若 $g_1(x) = 0$, $g_2(x) > 0$, 解得 $w = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. 若 $g_1(x) > 0$, $g_2(x) = 0$, 解得 $w = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, 舍去. 若 $g_1(x) = 0$, $g_2(x) = 0$, 解得 $w = \begin{bmatrix} 10 \\ -4 \end{bmatrix}$, $x = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, 舍去. 综上,最优解为 $x^* = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, 最小距离为 $d^* = \sqrt{f(x^*)} = 2\sqrt{2}$.

题目 3. 习题 7.6. 求解下列问题:
$$\max 14x_1 - x_1^2 + 6x_2 - x_2^2 + 7$$
 s.t.
$$\begin{cases} x_1 + x_2 \le 2 \\ x_1 + 2x_2 \le 3 \end{cases}$$

解. 该非线性规划问题的标准形式为: $\min -14x_1 + x_1^2 - 6x_2 + x_2^2 - 7$ s.t. $\begin{cases} -x_1 - x_2 + 2 \ge 0 \\ -x_1 - 2x_2 + 3 \ge 0 \end{cases}$ 由于 $f(x_1, x_2) = -14x_1 + x_1^2 - 6x_2 + x_2^2 - 7$ 是凸函数, $g_1(x_1, x_2) = -x_1 - x_2 + 2$, $g_2(x_1, x_2) = -x_1 - 2x_2 + 3$ 是凹函数,因此该问题是凸规划.只需求解 KKT 点.

目标函数与约束函数的梯度是

$$\nabla f = \begin{bmatrix} -14 + 2x_1 \\ -6 + 2x_2 \end{bmatrix}, \quad \nabla g_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \nabla g_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}.$$

KKT 条件如下:

$$\begin{cases} \nabla f(x) - w_1 \nabla g_1(x) - w_2 \nabla g_2(x) = \begin{bmatrix} -14 + 2x_1 + w_1 + w_2 \\ -6 + 2x_2 + w_1 + 2w_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ w_1 g_1(x) = w_1(-x_1 - x_2 + 2) = 0 \\ w_2 g_2(x) = w_2(-x_1 - 2x_2 + 3) = 0 \\ w_1 \ge 0, \ w_2 \ge 0, \ g_1(x) \ge 0, \ g_2(x) \ge 0 \end{cases}$$

若
$$g_1(x) > 0$$
, $g_2(x) > 0$, 解得 $w = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$, 舍去.
若 $g_1(x) = 0$, $g_2(x) > 0$, 解得 $w = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.
若 $g_1(x) > 0$, $g_2(x) = 0$, 解得 $w = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$, $x = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$, 舍去.
若 $g_1(x) = 0$, $g_2(x) = 0$, 解得 $w = \begin{bmatrix} 20 \\ -8 \end{bmatrix}$, $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, 舍去.
综上,最优解为 $x^* = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, 最优值为 $f(x^*) = 33$.

题目 1. 习题 7.11. 给定非线性规划问题

$$\max \quad b^{\mathrm{T}}x, \quad x \in \mathbb{R}^n$$
 s.t. $x^Tx \le 1$

其中 $b \neq 0$. 证明向量 $\overline{x} = \frac{b}{\|b\|}$ 满足最优性的充分条件.

证明. 非线性规划问题标准形式为

$$\begin{aligned} & \min & -b^{\mathrm{T}}x, & x \in \mathbb{R}^n \\ & \text{s.t. } 1 - x^Tx > 0 \end{aligned}$$

由于 $f(x) = -b^{T}x$ 是凸函数 (线性函数), $g(x) = 1 - x^{T}x$ 是凹函数, 故该问题是凸规划. 目标函数与约束函数的梯度是

$$\nabla f(x) = -b, \quad \nabla g(x) = -2x$$

求解 KKT 条件 $(x \in \mathbb{R}^n, w \in \mathbb{R})$

$$\int \nabla f(x) - w \nabla g(x) = -b + 2wx = 0 \tag{1}$$

$$\begin{cases} \nabla f(x) - w \nabla g(x) = -b + 2wx = 0 \\ wg(x) = w(1 - x^{T}x) = 0 \\ w \ge 0, \ g(x) = 1 - x^{T}x \ge 0 \end{cases}$$
 (2)

$$w \ge 0, \ g(x) = 1 - x^{\mathrm{T}} x \ge 0$$
 (3)

- 1. 若 w = 0, 代入 (1) 得 -b = 0, 矛盾.
- 2. 所以 w > 0, 代入互补松弛条件 (2) 得 $x^{T}x = 1$.

由 (1) 得
$$x = \frac{b}{2w}$$
, 所以 $x^{\mathrm{T}} = \frac{b^{\mathrm{T}}}{2w}$, $x^{\mathrm{T}} x = \frac{b^{\mathrm{T}}b}{4w^2} = 1$, 解得 $w = \frac{\|b\|}{2}$.

从而
$$x = \frac{b}{2w} = \frac{b}{\|b\|}$$
.

综上
$$x=\frac{b}{\|b\|}=\overline{x},\ w=\frac{\|b\|}{2}>0,\ \mathrm{KKT}$$
 条件成立, 所以 $\overline{x}=\frac{b}{\|b\|}$ 满足最优性的充分条件. $\ \square$

习题 7.10. 给定非线性规划问题 题目 2.

$$\begin{aligned} & \text{min} \quad c^{\text{T}}x \\ & \text{s.t.} \ Ax = 0 \\ & \quad x^{\text{T}}x \leq \gamma^2 \end{aligned}$$

其中 A 为 $m \times n$ 矩阵 (m < n), A 的秩为 $m, c \in \mathbb{R}^n$ 且 $c \neq 0$, γ 是一个正数, 试求问题 的最优解及目标函数最优值.

非线性规划问题标准形式为 解.

$$\min \quad c^{\mathsf{T}} x$$
 s.t. $Ax = 0$
$$\gamma^2 - x^{\mathsf{T}} x \ge 0$$

由于 $f(x) = c^{\mathrm{T}}x$ 是凸函数 (线性函数), $g_1(x) = Ax$ 是线性函数, $g_2(x) = \gamma^2 - x^{\mathrm{T}}x$ 是凹函 数,故该问题是凸规划.

目标函数与约束函数的梯度是

$$\nabla f(x) = c, \quad \nabla g_1(x) = A^{\mathrm{T}}, \quad \nabla g_2(x) = -2x$$

求解 KKT 条件 $(x \in \mathbb{R}^n, v \in \mathbb{R}^m, w \in \mathbb{R})$

$$\begin{cases} \nabla f(x) - \nabla g_1(x)v - w\nabla g_2(x) = c - A^{\mathrm{T}}v + 2wx = 0 \\ g_1(x) = Ax = 0 \\ wg_2(x) = w(\gamma^2 - x^{\mathrm{T}}x) = 0 \\ w \ge 0, \ g_2(x) = \gamma^2 - x^{\mathrm{T}}x \ge 0 \end{cases}$$
(4)
$$(5)$$

$$(6)$$

$$(7)$$

$$g_1(x) = Ax = 0 (5)$$

$$wg_2(x) = w(\gamma^2 - x^{\mathrm{T}}x) = 0$$
 (6)

$$w \ge 0, \ g_2(x) = \gamma^2 - x^{\mathrm{T}} x \ge 0$$
 (7)

- 1. 若 w = 0, 代入 (4) 得 $A^{\mathrm{T}}v = c$. 左乘 x^{T} 结合 (5) 得 $f_{\min} = c^{\mathrm{T}}x = 0$.
- 2. 若 w > 0, 代入互补松弛条件 (6) 得 $x^{T}x = \gamma^{2}$.
- (4) 左乘 A 结合 (5) 得 $AA^{\mathrm{T}}v=Ac$, 由 A 行满秩知 AA^{T} 可逆, $v=(AA^{\mathrm{T}})^{-1}Ac$.
- (4) 左乘 x^{T} 结合 (5) 得 $x^{\mathrm{T}}c + 2wx^{\mathrm{T}}x = 0$, $w = -\frac{x^{\mathrm{T}}c}{2x^{\mathrm{T}}x} = -\frac{c^{\mathrm{T}}x}{2\gamma^{2}}$.

(4) 左乘 c^{T} 得 $c^{\mathrm{T}}(c - A^{\mathrm{T}}v) + 2wc^{\mathrm{T}}x = 0$, 代入 $c^{\mathrm{T}}x = -2\gamma^{2}w$ 解得 $w = \frac{1}{2\gamma}\sqrt{c^{\mathrm{T}}(c - A^{\mathrm{T}}v)} = \frac{1}{2\gamma}\sqrt{c^{\mathrm{T}}(I_{n} - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}$.

由 (4) 得
$$x = -\frac{1}{2w}(c - A^{\mathrm{T}}v) = \frac{-\gamma(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}{\sqrt{c^{\mathrm{T}}(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}}.$$
此时 $f_{\min} = c^{\mathrm{T}}x = -2\gamma^2 w = -\gamma\sqrt{c^{\mathrm{T}}(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}.$

3. 以下证明: 若 KKT 条件成立, 则 $w = 0 \iff c \in \text{Im}(A^T)$.

若 w = 0, 代入 KKT 条件 (4) 得 $A^{T}v = c$, 即 $c \in Im(A^{T})$.

否则 w > 0, 则 $w = \frac{1}{2\gamma} \sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A) c}$. 由于 $\mathbb{R}^n = \mathrm{Ker}(A) \oplus \mathrm{Im}(A^{\mathrm{T}})$, 则 $\exists c_1 \in \mathrm{Ker}(A), c_2 \in \mathrm{Im}(A^{\mathrm{T}})$ s.t. $c = c_1 + c_2$ 且 $c_1^{\mathrm{T}} c_2 = 0$. 进一步地, $\exists v$ s.t. $A^{\mathrm{T}} v = c_2$. 代入 w 表达式得 $w = \frac{1}{2\gamma} \sqrt{c^{\mathrm{T}} (c - c_2)} = \frac{1}{2\gamma} \sqrt{c_1^{\mathrm{T}} c_1} > 0$. 所以 $c_1 \neq 0$, $c = c_1 + c_2 \notin \mathrm{Im}(A^{\mathrm{T}})$.

综上, KKT 条件的解为: 若 $c \in \text{Im}(A^T)$, 则 w = 0, x 不唯一, $f_{\min} = 0$. 若 $c \notin \text{Im}(A^T)$, 则

$$w = \frac{1}{2\gamma} \sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A)c} > 0$$

$$x = \frac{-\gamma (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A)c}{\sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A)c}}$$

$$f_{\min} = -\gamma \sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A)c}$$

题目 3. 习题 7.8. 考虑下列非线性规划问题

min
$$x_2$$

s.t. $-x_1^2 - (x_2 - 4)^2 + 16 \ge 0$
 $(x_1 - 2)^2 + (x_2 - 3)^2 - 13 = 0$

判断下列各点是否为局部最优解

$$x^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad x^{(2)} = \begin{bmatrix} \frac{16}{5} \\ \frac{32}{5} \end{bmatrix}, \quad x^{(3)} = \begin{bmatrix} 2 \\ 3 + \sqrt{13} \end{bmatrix}$$

解. 目标函数与约束函数的梯度是

$$\nabla f(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \nabla g(x) = \begin{bmatrix} -2x_1 \\ -2(x_2 - 4) \end{bmatrix}, \quad \nabla h(x) = \begin{bmatrix} 2(x_1 - 2) \\ 2(x_2 - 3) \end{bmatrix}$$

该问题不是凸规划, 因为 h(x) 不是线性函数.

Lagrange 函数为 $L_x(x, w, v) = f(x) - wg(x) - vh(x) = x_2 - w[-x_1^2 - (x_2 - 4)^2 + 16] - v[(x_1 - 2)^2 + (x_2 - 3)^2 - 13]$. Hesse 矩阵为

$$\nabla^2 L_x(x, w, v) = \begin{bmatrix} 2(w - v) & 0\\ 0 & 2(w - v) \end{bmatrix}$$

1. 检验 $x^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. $x^{(1)}$ 是可行解, 两个约束均为起作用约束. 求解 KKT 条件

$$\nabla f(x^{(1)}) - w \nabla g(x^{(1)}) - v \nabla h(x^{(1)}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - w \begin{bmatrix} 0 \\ 8 \end{bmatrix} - v \begin{bmatrix} -4 \\ -6 \end{bmatrix} = \begin{bmatrix} 4v \\ 6v + 1 - 8w \end{bmatrix} = 0$$

解得 $w = \frac{1}{8}$, v = 0. 满足一阶必要条件. $\nabla^2 L_x(x^{(1)}, w, v) = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$ 是正定矩阵, 不必求方向集 G 即知 $x^{(1)}$ 是局部最优解.

2. 检验 $x^{(2)} = \begin{bmatrix} \frac{16}{5} \\ \frac{32}{5} \end{bmatrix}$. $x^{(2)}$ 是可行解, 两个约束均为起作用约束. 求解 KKT 条件

$$\nabla f(x^{(2)}) - w \nabla g(x^{(2)}) - v \nabla h(x^{(2)}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - w \begin{bmatrix} -\frac{32}{5} \\ -\frac{24}{5} \end{bmatrix} - v \begin{bmatrix} \frac{12}{5} \\ \frac{34}{5} \end{bmatrix} = \begin{bmatrix} \frac{32}{5}w - \frac{12}{5}v \\ \frac{24}{5}w - \frac{34}{5}v + 1 \end{bmatrix} = 0$$

解得 $w = \frac{3}{40}, v = \frac{1}{5}$. 满足一阶必要条件. $\nabla^2 L_x(x^{(2)}, w, v) = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & -\frac{1}{4} \end{bmatrix}$ 是负定矩阵. 求解方向集 G

$$\begin{cases} \nabla g(x^{(2)})^{\mathrm{T}} d = -\frac{32}{5} d_1 - \frac{24}{5} d_2 = 0 \\ \nabla h(x^{(2)})^{\mathrm{T}} d = \frac{12}{5} d_1 + \frac{34}{5} d_2 = 0 \end{cases}$$

解得 d=0, 从而 $G=\emptyset$, $x^{(2)}$ 是局部最优解.

3. 检验 $x^{(3)} = \begin{bmatrix} 2 \\ 3 + \sqrt{13} \end{bmatrix}$. $x^{(3)}$ 是可行解, 约束 h(x) = 0 为起作用约束. 求解 KKT 条件

$$\nabla f(x^{(3)}) - v \nabla h(x^{(3)}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - v \begin{bmatrix} 0 \\ 2\sqrt{13} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 - 2\sqrt{13}v \end{bmatrix} = 0$$

解得 $v = \frac{\sqrt{13}}{26}$. 满足一阶必要条件. $\nabla^2 L_x(x^{(3)}, w, v) = \begin{bmatrix} -\frac{\sqrt{13}}{13} & 0 \\ 0 & -\frac{\sqrt{13}}{13} \end{bmatrix}$ 是负定矩阵. 求解方向集 G

$$\nabla h(x^{(3)})^{\mathrm{T}} d = 0d_1 + 2\sqrt{13}d_2 = 0$$

解得 $G = \{d \mid d_1 \neq 0, d_2 = 0\},\$

$$d^{\mathsf{T}}\nabla^{2}L_{x}(x^{(3)}, w, v)d = -\frac{\sqrt{13}}{13}d_{1}^{2} < 0$$

从而 $x^{(3)}$ 不是局部最优解.

题目 4. 习题 7.9. 考虑下列非线性规划问题

min
$$\frac{1}{2} [(x_1 - 1)^2 + x_2^2]$$

s.t. $-x_1 + \beta x_2^2 = 0$

讨论 β 取何值时 $\overline{x} = (0,0)^{T}$ 是局部最优解?

解. 目标函数与约束函数的梯度是

$$\nabla f(x) = \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix}, \quad \nabla h(x) = \begin{bmatrix} -1 \\ 2\beta x_2 \end{bmatrix}$$

该问题不是凸规划, 因为 h(x) 不是线性函数.

Lagrange 函数为 $L_x(x,v) = f(x) - vh(x) = \frac{1}{2}[(x_1-1)^2 + x_2^2] - v[-x_1 + \beta x_2^2]$. Hesse 矩阵

为

$$\nabla^2 L_x(x,v) = \begin{bmatrix} 1 & 0 \\ 0 & 1 - 2\beta v \end{bmatrix}$$

在 $\overline{x} = (0,0)^T$ 处, h(x) 是起作用约束. 求解 KKT 条件

$$\nabla f(\overline{x}) - v \nabla h(\overline{x}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix} - v \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} v - 1 \\ 0 \end{bmatrix} = 0$$

解得 v=1. 满足一阶必要条件. $\nabla^2 L_x(\overline{x},v)=\begin{bmatrix}1&0\\0&1-2\beta\end{bmatrix}$.

若 $\beta < \frac{1}{2}$, 则 $\nabla^2 L_x(\overline{x}, v)$ 是正定矩阵, 不必求方向集 \overline{G} 即知 \overline{x} 是局部最优解. 求解方向集 G

$$\nabla h(\overline{x})^{\mathrm{T}}d = -d_1 = 0$$

解得 $G = \{d \mid d_1 = 0, d_2 \neq 0\},\$

$$d^{\mathrm{T}}\nabla^{2}L_{x}(\overline{x},v)d = (1-2\beta)d_{2}^{2}$$

若 $\beta > \frac{1}{2}$, 则 $d^{\mathrm{T}}\nabla^{2}L_{x}(\overline{x},v)d < 0$, 从而 \overline{x} 不是局部最优解.

若 $\beta = \frac{1}{2}$, 无法利用二阶条件, 消去 x_2 , 将原问题转化为

min
$$\frac{1}{2}x_1^2 + \frac{1}{2}$$

知 \overline{x} 是局部最优解.

综上, $\bar{x} = (0,0)^{\mathrm{T}}$ 是局部最优解的充要条件是 $\beta \leq \frac{1}{2}$.

题目 1. 习题 7.13. 考虑下列原问题:

min
$$(x_1 - 1)^2 + (x_2 + 1)^2$$

s.t. $-x_1 + x_2 - 1 \ge 0$

- (1) 分别用图解法和最优性条件求解原问题.
- (2) 写出对偶问题. (集约束为整个空间)

解. (1) 非线性规划问题标准形式为

min
$$(x_1 - 1)^2 + (x_2 + 1)^2$$

s.t. $-x_1 + x_2 - 1 \ge 0$

使用图解法, 即在直线 $-x_1+x_2-1=0$ 上寻找到点 (1,-1) 距离最近的点. 如图 1 所示, 该点为 $(-\frac{1}{2},\frac{1}{2})$, $f_{\min}=\frac{9}{2}$.

图 1: 图解法

由于 $f(x) = (x_1 - 1)^2 + (x_2 + 1)^2$ 是凸函数, $g(x) = -x_1 + x_2 - 1$ 是凹函数 (线性函数), 故该问题是凸规划.

目标函数与约束函数的梯度是

$$\nabla f(x) = \begin{bmatrix} 2(x_1 - 1) \\ 2(x_2 + 1) \end{bmatrix}, \quad \nabla g(x) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

求解 KKT 条件 $(x \in \mathbb{R}^2, w \in \mathbb{R})$

$$\begin{cases} \nabla f(x) - w \nabla g(x) = \begin{bmatrix} 2(x_1 - 1) + w \\ 2(x_2 + 1) - w \end{bmatrix} = 0 \\ wg(x) = w(-x_1 + x_2 - 1) = 0 \\ w \ge 0, \ g(x) \ge 0 \end{cases}$$

- 1. 若 w = 0, 代入 KKT 条件得 $x_1 = 1$, $x_2 = -1$, g(x) < 0, 舍去.
- 2. 若 w > 0, 代入互补松弛条件得 $g(x) = -x_1 + x_2 1 = 0$, 解得 $x_1 = -\frac{1}{2}$, $x_2 = \frac{1}{2}$, w = 3, $f_{\min} = \frac{9}{2}$. 与图解法结果一致.
 - (2) Lagrange 函数为

$$L(x, w) = (x_1 - 1)^2 + (x_2 + 1)^2 - w(-x_1 + x_2 - 1)$$

则

$$\theta(w) = \inf_{x \in \mathbb{R}^2} L(x, w) = \inf_{x \in \mathbb{R}^2} \{ (x_1 - 1)^2 + (x_2 + 1)^2 - w(-x_1 + x_2 - 1) \}$$

$$= \inf_{x_1 \in \mathbb{R}} \{ x_1^2 + (w - 2)x_1 \} + \inf_{x_2 \in \mathbb{R}} \{ x_2^2 + (2 - w)x_2 \} + w + 2$$

$$= -\frac{(w - 2)^2}{4} - \frac{(w - 2)^2}{4} + w + 2 \qquad \left(x_1 = \frac{2 - w}{2}, \ x_2 = \frac{w - 2}{2} \right)$$

$$= -\frac{w^2}{2} + 3w$$

所以对偶问题为

$$\max -\frac{w^2}{2} + 3w$$

s.t. $w \ge 0$

习题 7.10. 给定非线性规划问题: 题目 2.

$$\begin{aligned} & \text{min} & & c^{\text{T}}x \\ & \text{s.t.} & & Ax = 0 \\ & & & x^{\text{T}}x = \gamma^2 \end{aligned}$$

其中 A 为 $m \times n$ 矩阵 (m < n) 且秩为 $m, c \in \mathbb{R}^n$ 且 $c \neq 0, \gamma > 0$. 试求问题的最优解及目标 函数最优值.

解. (作业 08 已布置过本题)

非线性规划问题标准形式为

$$\begin{aligned} & \min \quad c^{\mathrm{T}}x \\ & \text{s.t. } Ax = 0 \\ & \gamma^2 - x^{\mathrm{T}}x \geq 0 \end{aligned}$$

由于 $f(x) = c^{\mathrm{T}}x$ 是凸函数 (线性函数), $g_1(x) = Ax$ 是线性函数, $g_2(x) = \gamma^2 - x^{\mathrm{T}}x$ 是凹函 数,故该问题是凸规划.

目标函数与约束函数的梯度是

$$\nabla f(x) = c, \quad \nabla g_1(x) = A^{\mathrm{T}}, \quad \nabla g_2(x) = -2x$$

求解 KKT 条件 $(x \in \mathbb{R}^n, v \in \mathbb{R}^m, w \in \mathbb{R})$

$$\begin{cases} \nabla f(x) - \nabla g_1(x)v - w\nabla g_2(x) = c - A^{\mathrm{T}}v + 2wx = 0 \\ g_1(x) = Ax = 0 \\ wg_2(x) = w(\gamma^2 - x^{\mathrm{T}}x) = 0 \\ w \ge 0, \ g_2(x) = \gamma^2 - x^{\mathrm{T}}x \ge 0 \end{cases}$$
(1)
(2)
(3)

$$g_1(x) = Ax = 0 (2)$$

$$wg_2(x) = w(\gamma^2 - x^{\mathrm{T}}x) = 0$$
 (3)

$$w \ge 0, \ g_2(x) = \gamma^2 - x^{\mathrm{T}} x \ge 0$$
 (4)

- 1. 若 w = 0, 代入 (1) 得 $A^{T}v = c$. 左乘 x^{T} 结合 (2) 得 $f_{min} = c^{T}x = 0$.
- 2. 若 w > 0,代入互补松弛条件 (3) 得 $x^T x = \gamma^2$.
- (1) 左乘 A 结合 (2) 得 $AA^{T}v = Ac$, 由 A 行满秩知 AA^{T} 可逆, $v = (AA^{T})^{-1}Ac$.

- (1) 左乘 x^{T} 结合 (2) 得 $x^{\mathrm{T}}c + 2wx^{\mathrm{T}}x = 0$, $w = -\frac{x^{\mathrm{T}}c}{2x^{\mathrm{T}}x} = -\frac{c^{\mathrm{T}}x}{2\gamma^{2}}$.
- (1) 左乘 c^{T} 得 $c^{\mathrm{T}}(c A^{\mathrm{T}}v) + 2wc^{\mathrm{T}}x = 0$,代入 $c^{\mathrm{T}}x = -2\gamma^{2}w$ 解得 $w = \frac{1}{2\gamma}\sqrt{c^{\mathrm{T}}(c A^{\mathrm{T}}v)} = \frac{1}{2\gamma}\sqrt{c^{\mathrm{T}}(I_{n} A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}$.

由 (1) 得
$$x = -\frac{1}{2w}(c - A^{\mathrm{T}}v) = \frac{-\gamma(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}{\sqrt{c^{\mathrm{T}}(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}}.$$

此时 $f_{\min} = c^{\mathrm{T}}x = -2\gamma^2 w = -\gamma\sqrt{c^{\mathrm{T}}(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}.$

3. 以下证明: 若 KKT 条件成立, 则 $w = 0 \iff c \in \text{Im}(A^T)$.

若 w = 0, 代入 KKT 条件 (1) 得 $A^{T}v = c$, 即 $c \in \text{Im}(A^{T})$.

否则 w > 0, 则 $w = \frac{1}{2\gamma} \sqrt{c^{\mathrm{T}}(I_n - A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}A)c}$. 由于 $\mathbb{R}^n = \mathrm{Ker}(A) \oplus \mathrm{Im}(A^{\mathrm{T}})$, 则 $\exists c_1 \in \mathrm{Ker}(A), c_2 \in \mathrm{Im}(A^{\mathrm{T}})$ s.t. $c = c_1 + c_2$ 且 $c_1^{\mathrm{T}}c_2 = 0$. 进一步地, $\exists v$ s.t. $A^{\mathrm{T}}v = c_2$. 代入 w 表达式得 $w = \frac{1}{2\gamma} \sqrt{c^{\mathrm{T}}(c - c_2)} = \frac{1}{2\gamma} \sqrt{c_1^{\mathrm{T}}c_1} > 0$. 所以 $c_1 \neq 0$, $c = c_1 + c_2 \notin \mathrm{Im}(A^{\mathrm{T}})$.

综上, KKT 条件的解为: 若 $c \in \text{Im}(A^T)$, 则 w = 0, x 不唯一, $f_{\min} = 0$. 若 $c \notin \text{Im}(A^T)$, 则

$$w = \frac{1}{2\gamma} \sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A) c} > 0$$

$$x = \frac{-\gamma (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A) c}{\sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A) c}}$$

$$f_{\min} = -\gamma \sqrt{c^{\mathrm{T}} (I_n - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A) c}$$

题目 3. 习题 8.1. 定义算法映射如下:

$$A(x) = \begin{cases} \left[\frac{3}{2} + \frac{1}{4}x, 1 + \frac{1}{2}x \right] & (x \ge 2) \\ \frac{1}{2}(x+1) & (x < 2) \end{cases}$$

证明 A 在 x=2 处不是闭的.

证明. 注意到 $\lim_{x\to 2^-} A(x) = \frac{3}{2} \notin A(2)$,据此构造反例. 取序列 $x_k = 2 - \frac{1}{k} \to 2$,由 $y_k \in A(x_k) = \{\frac{1}{2}(x+1)\}$ 得 $y_k = \frac{1}{2}(x_k+1) \to \frac{3}{2}$. 但 $\frac{3}{2} \notin A(2) = \{2\}$,故 A 在 x=2 处不是闭的.

题目 4. 习题 8.2. 在集合 X = [0,1] 上定义算法映射

$$A(x) = \begin{cases} [0, x) & (0 < x \le 1) \\ 0 & (x = 0) \end{cases}$$

讨论在以下各点处 A 是否为闭的: $x^{(1)} = 0$, $x^{(2)} = \frac{1}{2}$.

解. A 在 $x^{(1)} = 0$ 处是闭的. 任取序列 $\{x_k\} \subseteq [0,1]$ 且 $x_k \to 0$, 任取序列 $\{y_k\}$ 满足 $y_k \in A(x_k) = \begin{cases} [0,x_k) & (0 < x_k \le 1) \\ 0 & (x_k = 0) \end{cases}$ 且 $y_k \to y$, 由夹逼定理知 y = 0. 由 $y \in A(0) = \{0\}$, 知 A 在 $x^{(1)} = 0$ 处是闭的.

A 在 $x^{(2)}=\frac{1}{2}$ 处不是闭的. 注意到 $[0,\frac{1}{2})$ 不是闭集, 据此构造反例: 取序列 $x_k=\frac{1}{2}+\frac{1}{k}\to\frac{1}{2},$ 取 $y_k=\frac{1}{2}-\frac{1}{k}\in A(x_k)$, 但 $y_k\to\frac{1}{2}\notin A(\frac{1}{2})=[0,\frac{1}{2})$, 故 A 在 $x^{(2)}=\frac{1}{2}$ 处不是闭的.

题目 1. 习题 9.14. 设函数 f(x) 在 $x^{(1)}$ 和 $x^{(2)}$ 之间存在极小点, 又知

$$f_1 = f(x^{(1)}), f_2 = f(x^{(2)}), f'_1 = f'(x^{(1)})$$

作二次插值多项式 $\varphi(x)$, 使

$$\varphi(x^{(1)}) = f_1, \ \varphi(x^{(2)}) = f_2, \ \varphi'(x^{(1)}) = f'_1$$

求 $\varphi(x)$ 的极小点.

解. 设 $\varphi(x) = a(x - x^{(1)})^2 + b(x - x^{(1)}) + c$, 代入已知条件得

$$\varphi(x^{(1)}) = c = f_1$$

$$\varphi(x^{(2)}) = a(x^{(2)} - x^{(1)})^2 + b(x^{(2)} - x^{(1)}) + f_1 = f_2$$

$$\varphi'(x^{(1)}) = b = f_1'$$

解得

$$a = \frac{f_2 - f_1 - f_1'(x^{(2)} - x^{(1)})}{(x^{(2)} - x^{(1)})^2}, \quad b = f_1', \quad c = f_1$$

从而 $\varphi(x)$ 的极小点为

$$x^* = x^{(1)} - \frac{b}{2a} = x^{(1)} - \frac{f_1'(x^{(2)} - x^{(1)})^2}{2(f_2 - f_1 - f_1'(x^{(2)} - x^{(1)}))}$$

题目 2. 习题 10.2. 给定函数

$$f(x) = (6 + x_1 + x_2)^2 + (2 - 3x_1 - 3x_2 - x_1x_2)^2$$

求在点 $\hat{x} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$ 处的最速下降方向.

解. 目标函数的梯度为

$$\nabla f(x) = \begin{bmatrix} 2(6+x_1+x_2) + 2(2-3x_1-3x_2-x_1x_2)(-3-x_2) \\ 2(6+x_1+x_2) + 2(2-3x_1-3x_2-x_1x_2)(-3-x_1) \end{bmatrix}$$

在 û 处的最速下降方向为

$$d = -\nabla f(\hat{x}) = -\begin{bmatrix} 2(6-4+6) + 2(2+12-18+24)(-3-6) \\ 2(6-4+6) + 2(2+12-18+24)(-3+4) \end{bmatrix} = \begin{bmatrix} 344 \\ -56 \end{bmatrix}$$

题目 1. 习题 10.2. 给定函数

$$f(x) = (6 + x_1 + x_2)^2 + (2 - 3x_1 - 3x_2 - x_1x_2)^2$$

求在点
$$\hat{x} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$$
 处的牛顿方向.

解. 目标函数的梯度为

$$\nabla f(x) = \begin{bmatrix} 2(6+x_1+x_2) + 2(2-3x_1-3x_2-x_1x_2)(-3-x_2) \\ 2(6+x_1+x_2) + 2(2-3x_1-3x_2-x_1x_2)(-3-x_1) \end{bmatrix}$$

Hesse 矩阵为

$$\nabla^2 f(x) = \begin{bmatrix} 2 + 2(3 + x_2)^2 & 2 + 2(7 + 6x_1 + 6x_2 + 2x_1x_2) \\ 2 + 2(7 + 6x_1 + 6x_2 + 2x_1x_2) & 2 + 2(3 + x_1)^2 \end{bmatrix}$$

在 x 处的牛顿方向为

$$d = -\nabla^2 f(\hat{x})^{-1} \nabla f(\hat{x}) = -\begin{bmatrix} 164 & -56 \\ -56 & 4 \end{bmatrix}^{-1} \begin{bmatrix} -344 \\ 56 \end{bmatrix} = \begin{bmatrix} \frac{22}{31} \\ -\frac{126}{31} \end{bmatrix}$$

题目 2. 习题 10.5. 设有函数 $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$, 其中 A 为对称正定矩阵. 又设 $x^{(1)} \neq \overline{x}$ 可表示为 $x^{(1)} = \overline{x} + \mu p$, 其中 \overline{x} 是 f(x) 的极小点, p 是 A 的属于特征值 λ 的特征向量. 证明:

- $(1) \nabla f(x^{(1)}) = \mu \lambda p$
- (2) 如果从 $x^{(1)}$ 出发, 沿最速下降方向作一维搜索, 则一步达到极小点 \bar{x} .

证明. (1) 由
$$\nabla f(x) = Ax + b$$
 且 $\nabla f(\overline{x}) = A\overline{x} + b = 0$ 知

$$\nabla f(x^{(1)}) = Ax^{(1)} + b = A(\overline{x} + \mu p) + b = A\overline{x} + \mu Ap + b = \mu Ap = \mu \lambda p$$

(2) $x^{(1)}$ 处的最速下降方向 $d = -\nabla f(x^{(1)}) = -\mu \lambda p$. 设 $g(c) = f(x^{(1)} + cd)$, 则

$$\nabla g(c) = \nabla f(x^{(1)} + cd)^{\mathrm{T}} d = (A(\overline{x} + \mu p + cd) + b)^{\mathrm{T}} d$$

$$\xrightarrow{A\overline{x} + b = 0} (A(\mu p + cd))^{\mathrm{T}} d \xrightarrow{Ap = \lambda p \atop d = -\mu \lambda p} (\mu \lambda (1 - \lambda c)p)^{\mathrm{T}} (-\mu \lambda p)$$

$$= -\mu^{2} \lambda^{2} (1 - \lambda c)p^{\mathrm{T}} p \begin{cases} < 0, & c < \frac{1}{\lambda} \\ = 0, & c = \frac{1}{\lambda} \\ > 0, & c > \frac{1}{\lambda} \end{cases}$$

注: 由于 A 对称正定, 知 $\lambda > 0$. 由于 $x^{(1)} \neq \overline{x}$, 有 $\mu \neq 0$, $p \neq 0$.

所以 g(c) 在 $c=\frac{1}{\lambda}$ 处取最小值, $\min g(c)=\min f(x^{(1)}+cd)=f(x^{(1)}+\frac{d}{\lambda})=f(\overline{x})$, 即沿 d作一维搜索一步达到极小点 亚.

习题 10.12. 设 A 为 n 阶实对称正定矩阵, 证明 A 的 n 个互相正交的特征向量 $p^{(1)}, p^{(2)}, \cdots, p^{(n)}$ 关于 A 共轭.

证明. 设 $Ap^{(i)} = \lambda_i p^{(i)}$ $(i = 1, 2, \dots, n)$. 由于 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 两两正交, 得

$$p^{(i) T} A p^{(j)} = \lambda_i p^{(i) T} p^{(j)} = 0, \quad i, j \in \{1, 2, \dots, n\}, \ i \neq j$$

即 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 关于 A 共轭.

习题 10.16. 设 A 为 n 阶对称正定矩阵, 非零向量 $p^{(1)}, p^{(2)}, \ldots, p^{(n)} \in E_n$ 关于矩阵 A 共轭. 证明:

- (1) $\forall x \in E_n, \ x = \sum_{i=1}^n \frac{p^{(i) \mathrm{T}} A x}{p^{(i) \mathrm{T}} A p^{(i)}} p^{(i)}.$ (2) $A^{-1} = \sum_{i=1}^n \frac{p^{(i)} p^{(i) \mathrm{T}}}{p^{(i) \mathrm{T}} A p^{(i)}}.$

(1) 由于 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 关于 A 共轭, 知其线性无关, 是 E_n 的一组基. $\forall x \in$ E_n , 设 $x = \sum_{i=1}^n c_i p^{(i)}$, 左乘 $p^{(j) \mathrm{T}} A$ 得 $p^{(j) \mathrm{T}} A x = \sum_{i=1}^n c_i p^{(j) \mathrm{T}} A p^{(i)} = c_j p^{(j) \mathrm{T}} A p^{(j)}$, 即 $c_j = \sum_{i=1}^n c_i p^{(i)} A p^{(i)}$ $\frac{p^{(j) \, \mathrm{T}} A x}{p^{(j) \, \mathrm{T}} A p^{(j)}} \ (j = 1, 2, \cdots, n). \ \text{MU} \ x = \sum_{i=1}^n \frac{p^{(i) \, \mathrm{T}} A x}{p^{(i) \, \mathrm{T}} A p^{(i)}} p^{(i)}.$

(2)
$$\mbox{\mathcal{U}} A^{-1} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$
. $\mbox{$\mathrm{in}$} (1)$ $\mbox{$\mathrm{fiv}$} (3)$

$$u_j = \sum_{i=1}^n \frac{p^{(i) \mathrm{T}} A u_i}{p^{(i) \mathrm{T}} A p^{(i)}} p^{(i)} = \sum_{i=1}^n \frac{p^{(i)} p^{(i) \mathrm{T}} A u_i}{p^{(i) \mathrm{T}} A p^{(i)}} (j = 1, 2, \dots, n)$$

注: $p^{(i)T}Au_i$ 是数字, 与 $p^{(i)}$ 可交换. 所以

$$A^{-1} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \frac{p^{(i)}p^{(i)} T_A u_1}{p^{(i)} T_A p^{(i)}} & \sum_{i=1}^n \frac{p^{(i)}p^{(i)} T_A u_2}{p^{(i)} T_A p^{(i)}} & \cdots & \sum_{i=1}^n \frac{p^{(i)}p^{(i)} T_A u_n}{p^{(i)} T_A p^{(i)}} \end{bmatrix}$$

$$= \sum_{i=1}^n \frac{p^{(i)}p^{(i)} T_A}{p^{(i)} T_A p^{(i)}} A \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \sum_{i=1}^n \frac{p^{(i)}p^{(i)} T_A}{p^{(i)} T_A p^{(i)}} A A^{-1} = \sum_{i=1}^n \frac{p^{(i)}p^{(i)} T_A}{p^{(i)} T_A p^{(i)}}$$

题目 5. 习题 10.17. 设有非线性规划问题

$$\min \frac{1}{2} x^T A x$$

s.t. $x > b$

其中 A 为 n 阶对称正定矩阵. 设 \overline{x} 是问题的最优解, 证明: \overline{x} 与 \overline{x} -b 关于 A 共轭.

目标函数 $f(x) = \frac{1}{2}x^T Ax$ 的梯度为 $\nabla f(x) = Ax$. 约束 g(x) = x - b 的梯度为 证明. $\nabla q(x) = I.$

由已知, \bar{x} 是 KKT 点, 即

$$\int \nabla f(\overline{x}) - \nabla g(\overline{x}) w^{\mathrm{T}} = A\overline{x} - w^{\mathrm{T}} = 0$$
(1)

$$\begin{cases} \nabla f(\overline{x}) - \nabla g(\overline{x}) w^{\mathrm{T}} = A\overline{x} - w^{\mathrm{T}} = 0 \\ wg(\overline{x}) = w(\overline{x} - b) = 0 \\ w > 0, \ g(\overline{x}) > 0 \end{cases} \tag{1}$$

$$w \ge 0, \ g(\overline{x}) \ge 0$$
 (3)

由 (1) 得 $w = \overline{x}^T A^T = \overline{x}^T A$. 由 (2) 得 $\overline{x}^T A(\overline{x} - b) = w(\overline{x} - b) = 0$, 即 \overline{x} 与 $\overline{x} - b$ 关于 A共轭. **题目 1. 习题 10.13.** 设 $p^{(1)}, p^{(2)}, \dots, p^{(n)} \in \mathbb{R}^n$ 为一组线性无关向量, H 是 n 阶对称正定矩阵, 令向量 $d^{(k)}$ 为

$$d^{(k)} = \begin{cases} p^{(k)}, & k = 1, \\ p^{(k)} - \sum_{i=1}^{k-1} \frac{d^{(i) \mathrm{T}} H p^{(k)}}{d^{(i) \mathrm{T}} H d^{(i)}} d^{(i)}, & k = 2, 3, \dots, n. \end{cases}$$

证明 $d^{(1)}, d^{(2)}, \ldots, d^{(n)}$ 关于 H 共轭.

证明. 使用数学归纳法. n=2 时,

$$d^{(1) \mathrm{\,T}} H d^{(2)} = p^{(1) \mathrm{\,T}} H \left(p^{(2)} - \frac{d^{(1) \mathrm{\,T}} H p^{(2)}}{d^{(1) \mathrm{\,T}} H d^{(1)}} d^{(1)} \right) = p^{(1) \mathrm{\,T}} H p^{(2)} - \frac{p^{(1) \mathrm{\,T}} H p^{(2)}}{p^{(1) \mathrm{\,T}} H p^{(1)}} p^{(1) \mathrm{\,T}} H p^{(1)} = 0$$

假设 n = k 时成立 $(k \ge 2)$, 即 $d^{(1)}, d^{(2)}, \ldots, d^{(k)}$ 关于 H 共轭. 则

$$\begin{split} d^{(j)}{}^{\mathrm{T}}Hd^{(k+1)} &= d^{(j)}{}^{\mathrm{T}}H\left(p^{(k+1)} - \sum_{i=1}^{k} \frac{d^{(i)}{}^{\mathrm{T}}Hp^{(k+1)}}{d^{(i)}{}^{\mathrm{T}}Hd^{(i)}}d^{(i)}\right) \\ &= d^{(j)}{}^{\mathrm{T}}Hp^{(k+1)} - \sum_{i=1}^{k} \frac{d^{(i)}{}^{\mathrm{T}}Hp^{(k+1)}}{d^{(i)}{}^{\mathrm{T}}Hd^{(i)}}d^{(j)}{}^{\mathrm{T}}Hd^{(i)} \\ &= d^{(j)}{}^{\mathrm{T}}Hp^{(k+1)} - \frac{d^{(j)}{}^{\mathrm{T}}Hp^{(k+1)}}{d^{(j)}{}^{\mathrm{T}}Hd^{(j)}}d^{(j)}{}^{\mathrm{T}}Hd^{(j)} = 0 \qquad (j=1,2,\ldots,k) \end{split}$$

故 $d^{(1)}, d^{(2)}, \dots, d^{(k+1)}$ 关于 H 共轭. 归纳知 $d^{(1)}, d^{(2)}, \dots, d^{(n)}$ 关于 H 共轭 $(n \ge 2)$. **题目 1 的注记.** 此为 Gram-Schmidt 正交化方法的推广. 若 H = I, 即为 Gram-Schmidt 正交化方法.

题目 2. 习题 10.15. 设将 FR 共轭梯度法用于有三个变量的函数 f(x), 第 1 次迭代, 搜索方向 $d^{(1)} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$, 沿 $d^{(1)}$ 作精确一维搜索,得到点 $x^{(2)}$, 又设 $\frac{\partial f(x^{(2)})}{\partial x_1} = -2$, $\frac{\partial f(x^{(2)})}{\partial x_2} = -2$, 那么按共轭梯度法的规定,从 $x^{(2)}$ 出发的搜索方向是什么?

解.

$$g_{1} = \nabla f(x^{(1)}) = -d_{1} = \begin{bmatrix} -1 & 1 & -2 \end{bmatrix}^{T}$$

$$g_{2} = \nabla f(x^{(2)}) = \begin{bmatrix} -2 & -2 & \frac{\partial f(x^{(2)})}{\partial x_{3}} \end{bmatrix}^{T} \xrightarrow{g_{2}^{T}d_{1}=0} \begin{bmatrix} -2 & -2 & 0 \end{bmatrix}^{T}$$

$$d_{2} = -g_{2} + \beta_{1}d_{1} = -g_{2} + \frac{\|g_{2}\|^{2}}{\|g_{1}\|^{2}}d_{1} = -g_{2} + \frac{4}{3}d_{1} = \begin{bmatrix} \frac{10}{3} & \frac{2}{3} & \frac{8}{3} \end{bmatrix}^{T}$$

题目 3. 习题 12.2. 考虑下列问题:

min
$$x_1^2 + x_1x_2 + 2x_2^2 - 6x_1 - 2x_2 - 12x_3$$

s.t. $x_1 + x_2 + x_3 = 2$
 $-x_1 + 2x_2 \le 3$
 $x_1, x_2, x_3 \ge 0$

求出在点 $\hat{x} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ 处的一个下降可行方向.

解. 在点 \hat{x} 处起作用的约束为 $g(x)=x_3=\begin{bmatrix}0&0&1\end{bmatrix}x\geq 0,\ h(x)=x_1+x_2+x_3=\begin{bmatrix}1&1&1\end{bmatrix}x=2.$ 求解

$$\nabla f(\hat{x})^{\mathrm{T}} d = \begin{bmatrix} 2x_1 + x_2 - 6 & x_1 + 4x_2 - 2 & -12 \end{bmatrix} \Big|_{\hat{x}} d = \begin{bmatrix} -3 & 3 & -12 \end{bmatrix} d < 0$$

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} d \ge 0$$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} d = 0$$

满足上述条件的 d 即为下降可行方向. 可取 $d = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^{T}$.

题目 1. 习题 12.8. 考虑下列问题:

$$\min f(x)$$
s.t. $g_i(x) \ge 0$, $i = 1, 2, \dots, m$
 $h_j(x) = 0$, $j = 1, 2, \dots, l$

设 \hat{x} 是可行点, $I = \{i \mid g_i(\hat{x}) = 0\}$. 证明 \hat{x} 为 KKT 点的充要条件是下列问题的目标函数的最优值为零:

$$\min \nabla f(\hat{x})^{\mathrm{T}} d$$
s.t.
$$\nabla g_i(\hat{x})^{\mathrm{T}} d \ge 0, \quad i \in I$$

$$\nabla h_j(\hat{x})^{\mathrm{T}} d = 0, \quad j = 1, 2, \dots, l$$

$$-1 \le d_j \le 1, \quad j = 1, 2, \dots, n$$

证明. \hat{x} 为 KKT 点 $\iff \exists w_i \geq 0 \ (i \in I), \ v_i \ (j = 1, 2, \dots, l) \ \text{s.t.}$

$$\nabla f(\hat{x}) - \sum_{i \in I} w_i \nabla g_i(\hat{x}) - \sum_{j=1}^l v_j \nabla h_j(\hat{x}) = 0$$

$$\iff \exists w \geq 0, \ v \text{ s.t. } \left[\nabla g(\hat{x}) \quad \nabla h(\hat{x}) \right] \begin{bmatrix} w \\ v \end{bmatrix} = \nabla f(\hat{x}).$$

$$\Leftrightarrow v = v_1 - v_2, \ v_1, v_2 \ge 0$$

$$\iff \exists w, v_1, v_2 \ge 0 \text{ s.t. } \left[\nabla g(\hat{x}) \quad \nabla h(\hat{x}) \quad -\nabla h(\hat{x}) \right] \begin{bmatrix} w \\ v_1 \\ v_2 \end{bmatrix} = \nabla f(\hat{x}).$$

由 Farkas 定理

$$\iff \nexists d_1 \text{ s.t.} \begin{bmatrix} \nabla g(\hat{x})^{\mathrm{T}} \\ \nabla h(\hat{x})^{\mathrm{T}} \\ -\nabla h(\hat{x})^{\mathrm{T}} \end{bmatrix} d_1 \leq 0, \ \nabla f(\hat{x})^{\mathrm{T}} d_1 > 0.$$

$$\iff \nexists d \text{ s.t. } \begin{bmatrix} \nabla g(\hat{x})^{\mathrm{T}} \\ \nabla h(\hat{x})^{\mathrm{T}} \\ -\nabla h(\hat{x})^{\mathrm{T}} \end{bmatrix} d \geq 0, \ \nabla f(\hat{x})^{\mathrm{T}} d < 0.$$

$$\iff \nexists d \text{ s.t. } \nabla g(\hat{x})^{\mathrm{T}} d \geq 0, \ \nabla h(\hat{x})^{\mathrm{T}} d = 0, \ \nabla f(\hat{x})^{\mathrm{T}} d < 0.$$

$$\iff \mathsf{F}$$
可问题的目标函数的最优值为零, 在 $d = 0$ 时取得.

$$\min \nabla f(\hat{x})^{\mathrm{T}} d$$
s.t.
$$\nabla g_i(\hat{x})^{\mathrm{T}} d \ge 0, \quad i \in I$$

$$\nabla h_j(\hat{x})^{\mathrm{T}} d = 0, \quad j = 1, 2, \dots, l$$

$$-1 \le d_j \le 1, \quad j = 1, 2, \dots, n$$

题目 1. 习题 13.4. 考虑下列问题:

min
$$x_1x_2$$

s.t. $g(x) = -2x_1 + x_2 + 3 \ge 0$

- (1) 用二阶最优性条件证明点 $\bar{x} = \begin{bmatrix} \frac{3}{4} \\ -\frac{3}{2} \end{bmatrix}$ 是局部最优解, 并说明它是否为全局最优解?
- (2) 定义障碍函数为 $G(x,r)=x_1x_2-r\ln g(x)$, 试用内点法求解此问题,并说明内点法产生的序列趋向点 \overline{x} .

解.

(1) 目标函数和约束函数的梯度为

$$\nabla f(x) = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}, \quad \nabla g(x) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Lagrange 函数为 $L_x(x,w) = x_1x_2 - w(-2x_1 + x_2 + 3)$, Hesse 矩阵为 $\nabla^2 L_x(x,w) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. 在 \overline{x} 处, $g(\overline{x}) = 0$, g(x) 是起作用约束. 解 KKT 条件

$$\nabla f(\overline{x}) - w \nabla g(\overline{x}) = \begin{bmatrix} -\frac{3}{2} + 2w \\ \frac{3}{4} - w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

解得 $w = \frac{3}{4} > 0$, 故 \overline{x} 是 KKT 点.

求解方向集 G:

$$\nabla g(\overline{x})^{\mathrm{T}}d = -2d_1 + d_2 = 0$$

解得 $G = \{d \mid d \neq 0, d_1 = \frac{1}{2}d_2\}.$

$$d^{\mathrm{T}}\nabla^{2}L_{x}(\overline{x}, w, v)d = 2d_{1}d_{2} = 4d_{1}^{2} > 0$$

故 \overline{x} 是局部最优解. $f(\overline{x}) = -\frac{9}{8}$.

记
$$x^{(1)} = \begin{bmatrix} -100 \\ 100 \end{bmatrix}$$
,则 $g(x^{(1)}) \ge 0$, $f(x^{(1)}) < f(\overline{x})$. 故 \overline{x} 不是全局最优解. (2) 令

$$\frac{\partial G}{\partial x_1} = x_2 + \frac{2r}{g(x)} = x_2 + \frac{2r}{-2x_1 + x_2 + 3} = 0$$
$$\frac{\partial G}{\partial x_2} = x_1 - \frac{r}{g(x)} = x_1 - \frac{r}{-2x_1 + x_2 + 3} = 0$$

整理得 $4x_1^2 - 3x_1 + r = 0$, $x_2 = -2x_1$, $x_1 = \frac{3\pm\sqrt{9-16r}}{8}$

$$\nabla_x^2 G(x,r) = \begin{bmatrix} \frac{4r}{(-2x_1+x_2+3)^2} & 1 - \frac{2r}{(-2x_1+x_2+3)^2} \\ 1 - \frac{2r}{(-2x_1+x_2+3)^2} & \frac{r}{(-2x_1+x_2+3)^2} \end{bmatrix}$$
$$\det \nabla_x^2 G(x,r) = \frac{4r}{(-2x_1+x_2+3)^2} - 1$$

令 $\det \nabla_x^2 G(x,r) \ge 0$,解得 $x_1 \ge \frac{3-2\sqrt{r}}{4}$. 所以 $x_1 = \frac{3+\sqrt{9-16r}}{8}$, $x_2 = -\frac{3+\sqrt{9-16r}}{4}$ 是 G(x,r) 的极小点. 令 $r \to 0^+$,则 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \begin{bmatrix} \frac{3}{4} \\ -\frac{3}{2} \end{bmatrix} = \overline{x}$. 故内点法产生的序列趋向点 \overline{x} .