

Plan d'expérience DOE

Etape 1: énoncer le problème pratique

Un ingénieur qualité travaillant pour un fabricant de pièces plastique développe un nouveau produit. Il conçoit un plan factoriel complet à 2 niveaux pour étudier les effets de plusieurs facteurs sur la variabilité du poids du composant.

Etape 2: énoncer les facteurs et niveaux auxquels on s'intéresse, créer une feuille de données de l'expérience avec les facteurs dans leurs colonnes respectives.

4 Facteurs

1. Cavités du moule C1 C2

2. Pression d'injection en bars P1 : 75 P2: 150

3. Température d'injection en °C : Ti1: 85 Ti2: 100

4. Temps de refroidissement en seconde Tr1: 25 Tr2: 45

Nombre d'expérience : full factorielle $2^k = 2^4 = 16$

Plan non codé

Cavité Temp Inj **Temp Refr Poids** Press Inj C1 C2 C1 C2

Plan codé

Cavité	Press Inj	Temp Inj	Temp Refr	Poids
-1	-1	-1	-1	
1	-1	-1	-1	
-1	1	-1	-1	
1	1	-1	-1	
-1	-1	-1	-1	
1	-1	-1	-1	
-1	1	-1	-1	
1	1	-1	-1	
-1	-1	-1	1	
1	-1	-1	1	
-1	1	-1	1	
1	1	-1	1	
-1	-1	-1	1	
1	-1	-1	1	
-1	1	-1	1	100
1	1	-1	1	

Etape 3: sélectionner la taille d'échantillon appropriée et randomiser les passages en machine. Réaliser l'expérience.

Cavité	Press Inj	Temp Inj	Temp Refr	Poids
-1	-1	-1	-1	13,29
1	-1	-1	-1	19,44
-1	1	-1	-1	17,05
1	1	-1	-1	22,63
-1	-1	-1	-1	14,10
1	-1	-1	-1	19,75
-1	1	-1	-1	16,73
1	1	-1	-1	23,70
-1	-1	-1	1	15,34
1	-1	-1	1	20,35
-1	1	-1	1	19,07
1	1	-1	1	23,13
-1	-1	-1	1	19,78
1	-1	-1	1	24,53
-1	1	-1	1	24,35
1	1	-1	1	27,72

Etape 4: élaborer le tableau ANOVA pour le modèle complet

 Calculer la moyenne de la réponse (poids moyenne) et les moyennes de la réponse pour chaque niveau par facteur M₋₁; M₊₁

Niveau	Poids	Cavité	Pression	T° injection	Temps ref	
-1	20,06	17,46	18,32	18,79	18,34	
1		22,66	21,80	21,33	21,78	

Etablir le tableau des interactions

Moule	PressInj	TempInj	TempRafr	M*PI	M*TI	M*TR	PI*TI	PI*TR	TI*TR	M*PI*TI	M*PI*TR	M*TI*TR	PI*TI*TR	M*PI*TI*TR
-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1
1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1
-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Calculer les moyennes de la réponse pour chaque niveau d'interaction I₋₁; I₊₁

Niveau	M*PI	M*TI	M*TR	PI*TI	PI*TR	TI*TR	M*PI*TI	M*PI*TR	M*TI*TR	PI*TI*TR	M*PI*TI*TR
-1	20,16	20,06	20,51	20,01	20,01	19,02	19,97	20,25	20,17	19,96	20,20
1	19,96	20,06	19,61	20,11	20,11	21,10	20,15	19,87	19,94	20,16	19,92

Calculer les sommes des carrées pour la réponse, les facteurs et les interactions

	SSt	SSm	SSpi	M*TR	PI*TR	M*PI*TI	M*TI*TR	M*PI*TI*TR
CC	251,67	107,83	48,22	3,226	0,034	0,131	0,210	0,329
SS	SSti	SStr	M*PI	M*TI	PI*TI	TI*TR	M*PI*TR	PI*TI*TR
	25,91	47,53	0,157	0,000	0,047	17,272	0,593	0,162

Calculer les effets et les coefficients des facteurs principaux de la régression

	M	PI	TI	TR
Coef	2,60	1,74	1,27	1,72
Effet	5,19	3,47	2,54	3,45

Calculer les effets et les coefficients des interactions de la régression

	M*PI		M*TR		PI*TR		M*PI*TI		M*TI*TR		M*PI*TI*TR	
Coot Letter	(0,099)	(0,198)	(0,449)	(0,898)	0,046	0,092	0,090	0,180	(0,115)	(0,230)	(0,144)	(0,288)
Coef +Effet	*M	'TI	PI'	'TI	TI*	TR	M*P	I*TR	PI*T	*TR		
	(0,004)	(0,008)	0,054	0,108	1,039	2,078	(0,193)	(0,386)	0,100	0,200		

Etablir le tableau ANOVA et procéder au filtrage (screening)

Source	Df	ss	MSS	F	Р
Modèle	14	251,313	17,95	49,66	0,1108
Linéaire	4	229,48	57,37	158,72	0,0595
Moule	1	107,83	107,83	298,31	0,0368
Pression	1	48,22	48,22	133,40	0,055
Températur	1	25,91	25,91	71,68	0,0748
Temps ref	1	47,53	47,53	131,49	0,0554
2-Intéraction	6	20,735	3,46	9,56	0,2426
M*PI	1	0,187	0,16	0,43	0,6292
M*TI	1	0,000	0,00	0,00	0,9851
M*TR	1	3,226	3,23	8,92	0,2056
PI*TI	1	0,047	0,05	0,13	0,7804
PI*TR	1	0,034	0,03	0,09	0,8109
TI*TR	1	17,272	17,27	47,79	0,0915
3-Intéraction	4	1,095	0,27	0,76	0,6854
M*PI*TI	1	0,131	0,13	0,36	0,655
M*PI*TR		0,593	0,59	1,64	0,422
M*TI*TR	1	0,210	0,21	0,58	0,5856
PI*TI*TR		0,162	0,16	0,45	0,6248
Erreur	1)	0,361	0,36	1,00	0,5
Total	15	251,67			

Etape 7: examiner les interactions significatives (valeur-p < .05). Evaluer la signification des interactions les plus importantes d'abord.

Pour les interactions à 3 directions, déclasser les données superposées et analyser. Une fois que les interactions les plus importantes ont été interprétées, analyser l'ensemble suivant d'interactions un peu moins importantes.

Etape 8: examiner les interactions significatives (valeur-p < .05).

		1			
Source	Df	SS	MSS	F	Р
Modèle	10	250,217	25,02	85,9	0,000
Linéaire	4	229,48	57,37	196,9	0,000
Moule	1	107,83	107,8	370,1	0,000
Pression	1	48,22	48,22	165,5	0,000
Température	1	25,91	25,91	88,9	0,000
Temps ref	1	47,53	47,53	163,1	0,000
2-Intéraction	6	20,735	3,46	11,9	0,008
M*PI	1	0,157	0,16	0,5	0,496
M*TI	1	0,000	0,00	0,0	0,980
M*TR	1	3,226	3,23	11,1	0,021
PI*TI	1	0,047	0,05	0,2	0,706
PI*TR	1	0,034	0,03	0,1	0,747
TI*TR	1	17,272	17,27	59,3	0,001
Erreur	5	1,457	0,29	1,0	0,500
Total	15	251,67			

On élimine les interactions niveaux -2 non significative du modèle et on rétabli le tableau ANOVA

Source	Df	SS	MSS	F
Modèle	10	249,980	25,00	85,8
Linéaire	4	229,48	57,37	196,9
Moule	1	107,83	107,8	370,1
Pression	1	48,22	48,22	165,5
Température	1	25,91	25,91	88,9
Temps ref	1	47,53	47,53	163,1
2-Intéraction	6	20,498	3,42	11,7
M*TR	1	3,226	3,23	11,1
TI*TR	1	17,272	17,27	59,3
Erreur	5	1,694	0,34	1,2
Total	15	251,67		

Etape 9: énoncer le modèle mathématique obtenu. Si possible calculer epsilon au carré et déterminer la signification pratique.

Coded Coefficients

Term	Effect	Coef	SE Coef	T-Value	P-Value
Constant	20,059	0,107	186,76		0,000
Cavité	5,192	2,596	0,107	24,17	0,000
Press Inj	3,472	1,736	0,107	16,16	0,000
Temp Inj	2,545	1,272	0,107	11,85	0,000
Temp Refr	3,448	1,724	0,107	16,05	0,000
Cavité*Temp Refr	-0,898	-0,449	0,107	-4,18	0,002
Temp Inj*Temp Refr	2,078	1,039	0,107	9,67	0,000

Poids = 20,059 + 2,596 Cavité + 1,736 Press Inj + 1,272 Temp Inj + 1,724 Temp Refr - 0,449 Cavité*Temp Refr + 1,039 Temp Inj*Temp Refr

-1

Temp Inj

Fethi Derbeli . 2021

Cavité

17,5-15,0-

Etape 6: examiner les graphiques de valeurs résiduelles pour s'assurer que le modèle est adéquat.

- > Etape 10: traduire le modèle mathématique en termes de processus et formuler des conclusions et recommandations.
- Etape 11: reproduire les conditions optimales. Planifier l'expérience suivante ou mettre en œuvre le changement.

Questions?