Quoridor Al Battle

PPCA 2022

What can you learn from this project?

What can you learn from this project?

- Week 1 ~ 2:
 - Gain a solid understanding of game tree search algorithms (Minimax & MCTS)
 - Practice various pruning and techniques for optimizing your search
 - Improve your coding skills and experience how powerful Al is in board games

What can you learn from this project?

■ Week 1 ~ 2:

- Gain a solid understanding of game tree search algorithms (Minimax & MCTS)
- Practice various pruning and techniques for optimizing your search
- Improve your coding skills and experience how powerful Al is in board games

■ Week 3 ~ 4:

- Understand the basics of Neural Network and classical neural network architectures
- Learn the basic usage of Python and Pytorch
- Write and train your first(?) neural network model

Week 1 ~ Week 2

Game Rules of Quoridor

- Play on a 9x9 game board.
- Each player is represented by a pawn (1x1).
- The objective is to be the first player to move their pawn to opposite side of the game board.
- Each player has 10 two-space-wide walls which can be placed in the groove that runs between the spaces.
- Walls block the path of all pawns, which must go around them.

Game Rules of Quoridor

- Each turn a player may either move their pawn, or, if possible, place a wall.
- If adjacent to another pawn, the pawn may jump over that pawn.
- A wall must not be placed which cuts off the only remaining path of any pawn to the side of the board it must reach.

Game Rules of Quoridor

- Week 1: Create your Al using game tree search algorithms
 - Minimax Search & Alpha-beta Pruning
 - Monte-Carlo Tree Search

- Week 1: Create your Al using game tree search algorithms
 - Minimax Search & Alpha-beta Pruning
 - Monte-Carlo Tree Search
- Week 2: Try to defeat others' Al to get better ranking with your wisdom
 - Implement more advanced pruning techniques
 - Well-tune your evaluation function
 - Analyze the weaknesses of others' Al for targeted attacks
 - Apply human intelligence to design some strong openings
 - **-** ...

Requirements

- Language support: C++ and Python
- Code length limit: 50 kb
- Time limit per turn: 2s
- **■** Prohibition:
 - Open files
 - Hack the server
 - Copy codes from the Internet
 (No AI can be found online that can beat baselines)

Scoring

- Implement the algorithm (code review): 60%
- Beat baseline (score by gradient): 20 %
 - Average 75% win rate against weak baselines for full score
 - Average 40% win rate against strong baselines for full score
- Final ranking: 20 %

■ PS: Above scores account for 70% for ACM Class

Week 3 ~ Week 4

Learning Goals

- Learn to program in **Python**
- Understand the basic usage of Pytorch
- Explore how Neural Networks work
- Have a glimpse of some classic neural network architectures
 - CNN
 - ResNet
 - Transformer

...

- Week 3: Learning
 - Follow the given guide and tutorial to learn Python and Pytorch
 - Learn the basics of **Neural Network**

Week 3: Learning

- Follow the given guide and tutorial to learn Python and Pytorch
- Learn the basics of Neural Network
- Week 4: Train a policy neural network for 9x9 Gomoku
 - The dataset and all neural network unrelated code will be released
 - Only need to design your own NN Architecture and train it
 - Construct game-specific feature planes to improve the performance

Scoring

■ Understanding of NNet (code review): 20 %

■ Model performance (beat baseline): 10 %

Thanks!

Q & A