Lab 5

Filip Jedrzejewski

April 4, 2023

Zadanie 1

Opis problemu

Celem zadania było wykonanie aproksymacji średniokwadratowej punktowej populacji Stanów Zjednoczonych wielomianami stopnia m (0 $\leq m \leq$ 6) dla danych:

Rok	Populacja
1900	76 212 168
1910	92 228 496
1920	106 021 537
1930	123 202 624
1940	132 164 569
1950	151 325 798
1960	179 323 175
1970	203 302 031
1980	226 542 199

Ekstrapolacja do roku 1990

Wielomian wyznaczano za pomoca funkcji numpy.polynomial.polynomial.Polynomial.fit(). Dla każdego wielomianu dokonano jego ekstrapolacji do roku 1990 i porównywano jego wartość z wartościa prawdziwa wynoszaca 248709873. Wyniki błedu wzglednego dla każdego wielomianu przedstawiono w tabeli:

Stopień wielomianu	Bład wzgledny
0	0,4235
1	0,0519
2	0,0241
3	0,0512
4	0,0225
5	0,1137
6	0,0255

Najmniejszym błedem obarczony był wielomian stopnia 4.

Wykres

Aproksymowane wielomiany, dane wejściowe i prawdziwa wartość dla 1990 roku zostały przedstawione na wykresie:

Kryterium informacyjne Akaikego

W celu znalezienia najlepszego stopnia wielomianu aproksymujacego dane, można sie posłużyć kryterium informacyjnym Akaikego:

$$AIC = 2k + n \ln \left(\frac{\sum_{i=1}^{n} [y_i - \hat{y}(x_i)]^2}{n} \right)$$
 (1)

gdzie: k = m + 1, y_i - prawdziwa wartość funkcji dla argumentu x_i , $\hat{y}(x_i)$ - wartość funkcji przewidywana przez model (wartośc wielomianu dla argumentu x_i). Jeżeli rozmiar próbki (n) jest niewielki, czyli $\frac{n}{k} < 40$, to należy dodać do wzoru (1) składnik korygujacy:

$$AIC = AIC + \frac{2k(k+1)}{n-k-1}$$
 (2)

Im wartość AIC jest mniejsza, tym model jest lepszy. Obliczone wartości AIC dla wyznaczonych wielomianów zapisano w tabeli:

Stopień wielomianu	AIC
0	321.01
1	289.06
2	279.45
3	284.88
4	290.93
5	311.26
6	381.27

Według kryterium informacyjnego Akaikego najlepszym wielomianem aproksymujacym dane jest wielomian stopnia 2.

Wnioski

Stopień wielomianu, który najlepiej aproksymuje dane, według kryterium informacyjnego Akaikego jest różny od stopnia wielomianu, dla którego bład wzgledny ekstrapolacji do roku 1990 jest najmniejszy. Ta różnica może wynikać z tego, że AIC analizuje przebieg funkcji na całym przedziale danych, natomiast bład wzgledny był wyznaczany jedynie dla jednego punktu poza przedziałem danych, co czyni go dużo mniej dokładnym wyznacznikiem jakości aproksymacji.

Zadanie 2

Opis problemu

Celem zadania było wykonanie aproksymacji średniokwadratowej ciagłej funkcji f(x) wielomianem drugiego stopnia używajac wielomianów Czebyszewa.

$$f(x) = \sqrt{x} \quad , \quad x \in [0, 2] \tag{3}$$

Podejście do problemu

Do wykonania zadaia użyto następujaca funkcje wagi:

$$w(x) = \frac{1}{\sqrt{1 - x^2}} \quad , \quad x \in [-1, 1]$$
 (4)

Dla wielomianu drugiego stopnia należy użyć pierwszym trzech wielomianów Czebyszewa, danych wzorami:

$$T_0(x) = 1 (5)$$

$$T_1(x) = x \tag{6}$$

$$T_2(x) = 2x^2 - 1 (7)$$

W celu wykonania aproksymacji należało przesunać funkcje f(x) z przedziału [0,2] na przedział [-1,1], w tym celu przesunieto ja o wektor v=[-1,0]. Otrzymano:

$$f_p(x) = \sqrt{x+1} \tag{8}$$

Wielomian aproksymujacy wyznaczono według wzoru:

$$p(x) = \sum_{k=0}^{2} c_k T_k \tag{9}$$

gdzie: T_k - k-ty wielomian Czebyszewa, c_k - współczynnik danego wielomianu Czebyszewa dany wzorem:

$$c_k = \frac{\int_{-1}^1 w(x) f_p(x) T_k(x) dx}{\int_{-1}^1 w(x) T_k^2(x) dx}$$
(10)

gdzie w(x) to funkcja wag ze wzoru (4).

Wyniki

Ze wzoru (10) otrzymano nastepujace współczynniki:

$$c_0 = 0.9126$$

$$c_1 = 0.5705$$

$$c_2 = -0.3187$$

Po stworzeniu wielomianu aproksymujacego funkcje $f_p(x)$, przesunieto go o wektor -v=[1,0], aby przybliżał funkcje f(x).

Wykonano wspólny wykres wielomianu aproksymujacego oraz funkcji f(x):

