Learning Point Processes via Reinforcement Learning

Published at Conference on in Neural Information Processing Systems (NeurIPS), 2018, spotlight (3.5%)

Motivating Examples

Develop efficient and stable algorithms for learning sophisticated (spatio-temporal) point processes

Bird migration

Chicago crimes

U.S. Confirmed Covid-19
Cases Up to May 2020

Challenges for Maximum-Likelihood

Specify conditional intensity

$$\lambda_{\theta}(t, u | \mathcal{H}_t)dt = \mu(u) + \sum_{i, t_i < t} g_{\theta}(u - u_i, t - t_i)$$

as a parametric/non-parametric/neural-based form

Learn model parameter θ by maximizing likelihood

$$\mathcal{L}(\theta) = \exp\left(-\int\int\int_{(0,T)\times S} \lambda_{\theta}(t,u|\mathcal{H}_{t}) dt du\right) \prod_{i} \lambda_{\theta}(t_{i},u_{i}|\mathcal{H}_{t})$$

Computational challenge

Model-misspecification

How to effectively learn point processes with complex intensity function?

Observations (expert π_E)

Observations (expert π_E)

Policy π_{θ}

Policy Model

Treat $\pi_{\theta}(a|s_t)$ as the conditional density for the next time-to-event and location

$$\pi_{\theta}(a|s_t) = p(a_i \mid a_{i-1}, ..., a_1)$$

 $\pi_{\theta}(a|s_t)$ examples: RNN, LSTM, Attention Model

Flexible model to capture nonlinear and long-range sequential dependency structure in events

Imitation Learning: Minimax Formulation

Given observed sequence of events

$$\xi \coloneqq \{\,e_1, e_2, \dots, e_{N_T^\xi}\} \qquad \quad \xi \sim \pi_E$$

Generate sequence of events from $\pi_{\theta}(a|s_t)$

$$\eta \coloneqq \{ a_1, a_2, \dots, a_{N_T^{\eta}} \} \qquad \eta \sim \pi_{\theta}$$

Imitation Learning requires:

Learn optimal reward function as (consider the worst case)

$$r^* = \arg \max_{r \in \mathcal{F}} \left(\mathbb{E}_{\xi \sim \pi_E} \left[\sum_{i=1}^{N_T^{\xi}} r(e_i) \right] - \max_{\pi_{\theta} \in \mathcal{G}} \mathbb{E}_{\eta \sim \pi_{\theta}} \left[\sum_{i=1}^{N_T^{\eta}} r(a_i) \right] \right)$$

Obtain optimal policy as

Time-consuming!

$$\pi_{\theta^*} = \arg \max_{\pi_{\theta} \in \mathcal{G}} \mathbb{E}_{\eta \sim \pi_{\theta}} \left[\sum_{i=1}^{N_T^{\eta}} r^*(a_i) \right]$$

Choose reward from the unit ball in Reproducing Kernel Hilbert Space (RKHS)

$$r \in \mathcal{F}$$
 $\mathcal{F} = \{ r \mid ||r||_{\mathcal{H}} \leq 1 \}$

Choose reward from the unit ball in Reproducing Kernel Hilbert Space (RKHS)

$$r \in \mathcal{F}$$
 $\mathcal{F} = \{ r \mid ||r||_{\mathcal{H}} \leq 1 \}$

Then

$$J(\pi_{E}) := \mathbb{E}_{\xi \sim \pi_{E}} \left[\sum_{i=1}^{N_{T}^{\xi}} r(e_{i}) \right]$$

$$= \mathbb{E}_{\xi \sim \pi_{E}} \left[\iint_{[0,T] \times S} r(t,u) dN_{t \times u}^{\xi} \right]$$

$$= \mathbb{E}_{\xi \sim \pi_{E}} \left[\iint_{[0,T] \times S} \langle r, k((t,u), \cdot) \rangle dN_{t \times u}^{\xi} \right]$$

$$= \left\langle r, \mathbb{E}_{\xi \sim \pi_{E}} \left[\iint_{[0,T] \times S} k((t,u), \cdot) dN_{t \times u}^{\xi} \right] \right\rangle \longrightarrow \mu_{\pi_{E}}$$

$$= \langle r, \mu_{\pi_{E}} \rangle$$

Imitation Learning

$$r^* = \arg \max_{||r||_{\mathcal{H}} \le 1} \left(\mathbb{E}_{\xi \sim \pi_E} \left[\sum_{i=1}^{N_T^{\xi}} r(e_i) \right] - \max_{\pi_{\theta} \in \mathcal{G}} \mathbb{E}_{\eta \sim \pi_{\theta}} \left[\sum_{i=1}^{N_T^{\eta}} r(a_i) \right] \right)$$

$$\max_{||r||_{\mathcal{H}} \le 1} \left(J(\pi_E) - \max_{\pi_\theta \in \mathcal{G}} J(\pi_\theta) \right)$$

Imitation Learning

$$r^* = \arg \max_{||r||_{\mathcal{H}} \le 1} \left(\mathbb{E}_{\xi \sim \pi_E} \left[\sum_{i=1}^{N_T^{\xi}} r(e_i) \right] - \max_{\pi_{\theta} \in \mathcal{G}} \mathbb{E}_{\eta \sim \pi_{\theta}} \left[\sum_{i=1}^{N_T^{\eta}} r(a_i) \right] \right)$$

$$\max_{||r||_{\mathcal{H}} \leq 1} \left(J(\pi_{E}) - \max_{\pi_{\theta} \in \mathcal{G}} J(\pi_{\theta}) \right)$$

$$= \max_{||r||_{\mathcal{H}} \leq 1} \min_{\pi_{\theta} \in \mathcal{G}} \left(J(\pi_{E}) - J(\pi_{\theta}) \right)$$

$$= \max_{||r||_{\mathcal{H}} \leq 1} \min_{\pi_{\theta} \in \mathcal{G}} \left(\langle r, \mu_{\pi_{E}} \rangle - \langle r, \mu_{\pi_{\theta}} \rangle \right)$$

$$= \max_{||r||_{\mathcal{H}} \leq 1} \min_{\pi_{\theta} \in \mathcal{G}} \left\langle r, \mu_{\pi_{E}} - \mu_{\pi_{\theta}} \right\rangle$$

$$= \min_{\pi_{\theta} \in \mathcal{G}} \max_{||r||_{\mathcal{H}} \leq 1} \left\langle r, \mu_{\pi_{E}} - \mu_{\pi_{\theta}} \right\rangle$$

Imitation Learning

$$r^* = \arg \max_{\|r\|_{\mathcal{H}} \leq 1} \left(\mathbb{E}_{\xi \sim \pi_E} \left[\sum_{i=1}^{N_T^{\xi}} r(e_i) \right] - \max_{\pi_{\theta} \in \mathcal{G}} \mathbb{E}_{\eta \sim \pi_{\theta}} \left[\sum_{i=1}^{N_T^{\eta}} r(a_i) \right] \right)$$

$$\max_{\|r\|_{\mathcal{H}} \leq 1} \left(J(\pi_E) - \max_{\pi_\theta \in \mathcal{G}} J(\pi_\theta) \right)$$

$$= \max_{\|r\|_{\mathcal{H}} \le 1} \min_{\pi_{\theta} \in \mathcal{G}} \left(J(\pi_E) - J(\pi_{\theta}) \right)$$

$$= \max_{\|r\|_{\mathcal{H}} \le 1} \min_{\pi_{\theta} \in \mathcal{G}} \left(\langle r, \mu_{\pi_E} \rangle - \langle r, \mu_{\pi_{\theta}} \rangle \right)$$

$$= \max_{||r||_{\mathcal{H}} \le 1} \min_{\pi_{\theta} \in \mathcal{G}} \langle r, \mu_{\pi_E} - \mu_{\pi_{\theta}} \rangle$$

$$= \min_{\pi_{\theta} \in \mathcal{G}} \max_{||r||_{\mathcal{H}} \le 1} \langle r, \mu_{\pi_{E}} - \mu_{\pi_{\theta}} \rangle$$

$$= \min_{\pi_{\theta} \in \mathcal{G}} \left\| \mu_{\pi_E} - \mu_{\pi_{\theta}} \right\|_{\mathcal{H}} \qquad \text{Minimization}$$

Finite sample estimate

where
$$r^* = \frac{\mu_{\pi_E} - \mu_{\pi_{ heta}}}{\left\|\mu_{\pi_E} - \mu_{\pi_{ heta}}\right\|_{\mathcal{H}}}$$

Policy Learning

Our Reinforcement Learning Framework

$$\pi_{\theta^*} = \arg \min_{\pi_{\theta} \in \mathcal{G}} \|\mu_{\pi_E} - \mu_{\pi_{\theta}}\|_{\mathcal{H}}$$

Learn policy π_{θ}

- Policy gradient
- Reparameterization trick (end-to-end, reduce gradient variance)

Numerical Results: Data Description

2.0 1.5 1.0 -0.5 -0.0 -0.5-1.0 -1.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Generated by learner π_{θ^*}

Baseline (MLE, Triggering function with decomposed spatial and temporal components)

Confirmed COVID Cases until May 20th, 2020

Generated by learner π_{θ^*}

Numerical Results: Data Prediction

Crime Events

O D S C I Valio

Predicted by learner π_{θ^*}

Earthquakes

