MissingData

August 8, 2023

1 Finding and Replacing Missing Data

```
[1]: import pandas as pd import numpy as np import os
```

1.1 Load and Inspect the Data

```
[2]: filename = os.path.join(os.getcwd(), "data", "adult.data.partial.missing")
    df = pd.read_csv(filename, header=0)
[3]: df.shape
[3]: (7000, 15)
   df.head()
[4]:
           workclass
                                               education-num
                                                                   marital-status
        age
                        fnlwgt
                                    education
    0
       36.0
             State-gov
                        112074
                                    Doctorate
                                                           16
                                                                    Never-married
    1 35.0
               Private
                         32528
                                      HS-grad
                                                            9
                                                               Married-civ-spouse
    2 21.0
               Private 270043
                                 Some-college
                                                           10
                                                                    Never-married
                                 Some-college
    3 45.0
               Private 168837
                                                           10
                                                               Married-civ-spouse
    4 39.0
               Private 297449
                                    Bachelors
                                                               Married-civ-spouse
              occupation
                           relationship
                                                 sex_selfID
                                                              capital-gain
                                           race
    0
          Prof-specialty
                          Not-in-family
                                          White
                                                 Non-Female
      Handlers-cleaners
                                 Husband White
                                                 Non-Female
                                                                         0
    1
           Other-service
    2
                                                                         0
                               Own-child White
                                                      Female
    3
            Adm-clerical
                                                      Female
                                                                         0
                                    Wife
                                          White
    4
          Prof-specialty
                                 Husband White
                                                 Non-Female
       capital-loss
                     hours-per-week native-country
                                                      label
    0
                  0
                                45.0
                                      United-States
                                                      <=50K
                  0
                                45.0
                                      United-States
                                                      <=50K
    1
    2
                  0
                                16.0
                                      United-States
                                                      <=50K
                                             Canada
    3
                  0
                                24.0
                                                      >50K
    4
                  0
                                40.0 United-States
                                                       >50K
```

1.2 Dealing with Missing Data

Our goal will be to identify which columns in a dataset have missing values, and to replace a missing value in a column with the mean of the other values in that column. We will add dummy variables to our dataset to indicate which columns initially had missing values.

1.2.1 Step 1: Identify Missing Values Using Pandas isnull() Method

First let us check if there are missing values in DataFrame df.

- [5]: df.isnull().values.any()
- [5]: True

1

2

3

DataFrame df contains missing values! The Pandas isnull() method returns True/False values indicating whether a value is or is not missing in a particular position in a DataFrame or Series. This method recognizes various spellings of missingness like NaN, nan, None, and NA among others. Consult the online documentation for more information.

[6]: df.isnull().head() [6]: workclass fnlwgt education marital-status age education-num False False False False False 0 False 1 False False False False False False 2 False False False False False False 3 False False False False False False 4 False False False False False False occupation relationship sex_selfID capital-gain capital-loss race 0 False False False False False False 1 False False False False False False 2 False False False False False False 3 False 4 False hours-per-week native-country label 0 False False False

The code cell below counts the number of times a missing value occurs in each column. It applies the isnull() method and then aggregates the results by columns using the np.sum() function. For more information about np.sum(), consult the online documentation.

[7]: nan_count = np.sum(df.isnull(), axis = 0)
 nan_count

False

False

False

False

False

False

False

False

[7]: age 35
 workclass 375
 fnlwgt 0
 education 0

False

False

False

False

```
0
education-num
                      0
marital-status
occupation
                   375
relationship
                      0
race
                      0
                      0
sex_selfID
                      0
capital-gain
capital-loss
                      0
hours-per-week
                     70
native-country
                    138
label
                      0
dtype: int64
```

The code cell below stores the names of the columns with detected missing values into a Python list.

```
[8]: condition = nan_count != 0 # look for all columns with missing values

col_names = nan_count[condition].index # get the column names
print(col_names)

nan_cols = list(col_names) # convert column names to list
print(nan_cols)
```

```
Index(['age', 'workclass', 'occupation', 'hours-per-week', 'native-country'],
dtype='object')
['age', 'workclass', 'occupation', 'hours-per-week', 'native-country']
```

1.2.2 Step 2: Choose Which Values to Fill

We can see that five columns in our DataFrame contain missing values. Would you want to replace the missing values with something for every one of these columns?

Let's take a look at the data types of the columns that contain missing values using dtypes.

```
[9]: nan_col_types = df[nan_cols].dtypes
nan_col_types
```

```
[9]: age float64
  workclass object
  occupation object
  hours-per-week float64
  native-country object
  dtype: object
```

For three of the five identified columns, the type is 'object'. Is this a problem? A common approach to dealing with the missing values is to replace those values with either the mean, the median, or some other type of 'representative' value wherever a nan occurs. This, of course, assumes that the column is numerical to begin with. That does not seem to be true for the workclass, occupation, and native-country variables. Let us confirm:

```
[10]: print(df['workclass'].unique())
     print(df['occupation'].unique())
     print(df['native-country'].unique())
    ['State-gov' 'Private' nan 'Self-emp-not-inc' 'Local-gov' 'Self-emp-inc'
     'Federal-gov' 'Without-pay']
    ['Prof-specialty' 'Handlers-cleaners' 'Other-service' 'Adm-clerical'
     'Craft-repair' 'Sales' nan 'Exec-managerial' 'Farming-fishing'
     'Machine-op-inspct' 'Transport-moving' 'Tech-support' 'Priv-house-serv'
     'Protective-serv' 'Armed-Forces']
```

['United-States' 'Canada' 'England' 'Germany' 'Cuba' nan 'Puerto-Rico' 'Mexico' 'Nicaragua' 'China' 'South' 'India' 'Vietnam' 'Philippines' 'El-Salvador' 'Guatemala' 'Japan' 'Jamaica' 'Peru' 'France' 'Greece' 'Italy' 'Columbia' 'Honduras' 'Iran' 'Poland' 'Haiti' 'Dominican-Republic' 'Scotland' 'Yugoslavia' 'Trinadad&Tobago' 'Ireland'

'Portugal' 'Taiwan' 'Hong' 'Ecuador' 'Laos' 'Hungary' 'Thailand'

'Outlying-US(Guam-USVI-etc)' 'Cambodia']

The concept of 'mean' is not defined for string entries, so filling in the missing values with the mean of the column wouldn't work here. In real business settings, one way to go about filling in the missing values would be to fit a model that predicts the country based on other values. All data-filling methods come with caveats, and some may threaten the validity of your larger analytical conclusions.

For the rest of this exercise, we will focus only on the numerical variables, for which it makes sense to replace every missing value with the mean of the column. Those are age and hours-per-week columns.

1.2.3 Step 3: Create 'Dummy' Variables for Missing Values

No method of imputing missing values is perfect, and for this reason it makes sense to keep track of which values we artificially created.

The code cell below looks at the the values in columns age and hours-per-week and stores the corresponding True/False values (True if the value is missing and False if the value is present) in new columns age_na and hours-per-week_na. Run the cell and inspect the new columns.

```
[11]: df['age na'] = df['age'].isnull()
    df['hours-per-week_na'] = df['hours-per-week'].isnull()
    df.head()
[11]:
        age workclass fnlwgt
                                   education education-num
                                                                 marital-status
       36.0 State-gov 112074
                                   Doctorate
                                                                  Never-married
    1 35.0
               Private
                        32528
                                     HS-grad
                                                          9 Married-civ-spouse
                                                                  Never-married
    2 21.0
               Private 270043
                                Some-college
                                                         10
    3 45.0
               Private 168837
                                Some-college
                                                         10 Married-civ-spouse
    4 39.0
               Private 297449
                                   Bachelors
                                                             Married-civ-spouse
               occupation
                           relationship
                                                sex_selfID
                                                            capital-gain
                                          race
    0
          Prof-specialty
                          Not-in-family White
                                                Non-Female
                                                                       0
       Handlers-cleaners
                                                Non-Female
                                                                       0
                                Husband White
```

2	Other-service		Own-child		White I		Female			0
3	Adm-clerical		1	Wife	White		Female			0
4	Prof-specialty		Husl	band	White	Non	-Female			0
	capital-loss	hours-pe	r-week	nati	ve-coun	try	label	age_na	\	
0	0		45.0	Uni	ted-Sta	tes	<=50K	False		
1	0		45.0	Uni	ted-Sta	tes	<=50K	False		
2	0		16.0	Uni	ted-Sta	tes	<=50K	False		
3	0		24.0		Can	ada	>50K	False		
4	0		40.0	Uni	ted-Sta	tes	>50K	False		
	hours-per-wee	k_na								
0	F	alse								
1	False									
2	False									
3	False									
4	F	alse								

1.2.4 Step 4: Fill the Missing Values Using Pandas fillna() Method

The Pandas fillna() method is used to "fill in" missing values in a Series or DataFrame object. Consult the online documentation for more information about how to use the fillna() method. The code cell below uses fillna() to fill in values for the missing values in the age column. It fills in the missing values with the mean value of all of the existing values in the that column. It uses the Pandas mean() method to compute the replacement values. For more information about mean(), consult the online documentation.

Tip: when working with fillna(), make sure that you do not just create a copy object with the filled values, but change the original values of the df object by specifying the inplace = True parameter value.

First inspect some of the columns that contain missing values.

[12]:	2]: df.loc[df['age'].isnull()]							
[12]:		age	workclass	fnlwgt	education	education-num	\	
	453	NaN	Private	117166	Bachelors	13		
	654	NaN	NaN	65545	Masters	14		
	865	NaN	Self-emp-not-inc	93806	Some-college	10		
	1206	NaN	Private	441637	HS-grad	9		
	1262	NaN	Private	350440	HS-grad	9		
	1302	NaN	Private	317443	Some-college	10		
	1496	NaN	Private	99185	HS-grad	9		
	2100	NaN	Private	179271	Some-college	10		
	2581	NaN	Private	145160	Some-college	10		
	2651	NaN	Private	151580	Some-college	10		
	2961	NaN	Private	363219	Some-college	10		
	3174	NaN	Self-emp-not-inc	96245	HS-grad	9		
	3370	NaN	Private	214502	9th	5		
	3594	NaN	Private	265807	Some-college	10		

3721	NaN	Private	322391	11th	7
3769	NaN	Local-gov	82393	HS-grad	9
3993	NaN	Private	232024	11th	7
3997	NaN	Private	235894	11th	7
4048	NaN	Private	202498	11th	7
4100	NaN	Private	33644	HS-grad	9
4253	NaN	Private	148524	HS-grad	9
4670	NaN	Self-emp-not-inc	29054	HS-grad	9
4802	NaN	Private	173208	Masters	14
4828	NaN	Private	191982	Assoc-voc	11
4866	NaN	Local-gov	286342	Masters	14
5299	NaN	Private	329426	Masters	14
5420	NaN	Federal-gov	239074	Assoc-acdm	12
5871	NaN	Private	298635	Masters	14
5949	NaN	Private	157894	Some-college	10
6007	NaN	Private	266635	HS-grad	9
6153	NaN	Private	236818	Assoc-voc	11
6219	NaN	Private	57916	HS-grad	9
6466	NaN	Private	223515	HS-grad	9
6596	NaN	Private	152307	HS-grad	9
6833	NaN	Private	289458	Bachelors	13

	marital-status	occupation	relationship
453	Never-married	Exec-managerial	Not-in-family
654	Divorced	NaN	Own-child
865	Married-civ-spouse	Sales	Husband
1206	Married-civ-spouse	Tech-support	Husband
1262	Married-civ-spouse	Exec-managerial	Husband
1302	Never-married	Adm-clerical	Own-child
1496	Married-civ-spouse	Sales	Husband
2100	Married-civ-spouse	Craft-repair	Husband
2581	Married-civ-spouse	Machine-op-inspct	Husband
2651	Married-civ-spouse	Prof-specialty	Husband
2961	Never-married	Other-service	Not-in-family
3174	Married-civ-spouse	Machine-op-inspct	Husband
3370	Married-civ-spouse	Handlers-cleaners	Husband
3594	Separated	Craft-repair	Not-in-family
3721	Separated	Other-service	Unmarried
3769	Never-married	Handlers-cleaners	Unmarried
3993	Never-married	Machine-op-inspct	Own-child
3997	Married-civ-spouse	Exec-managerial	Husband
4048	Married-civ-spouse	Handlers-cleaners	Husband
4100	Never-married	Adm-clerical	Own-child
4253	Married-civ-spouse	Transport-moving	Husband
4670	Married-civ-spouse	Farming-fishing	Husband
4802	Married-civ-spouse	Prof-specialty	Husband
4828	Never-married	Adm-clerical	Own-child

\

4866	Never-married	Prof-specialty		Not-in-family		
5299	Never-married	Exec-managerial		Not-in	-family	
5420	Married-civ-spouse	Other-service			Husband	
5871	Married-civ-spouse	Prof-specialty		Husband		
5949	Never-married	Other-service		Own-child		
6007	Never-married	Other-s	ervice	Own-child		
6153	Never-married	Prof-spe	cialty	Unmarried		
6219	Separated	Farming-f	ishing	Own-child		
6466	Married-civ-spouse	Craft-	repair	Husband		
6596	Married-civ-spouse	Machine-op-	inspct	Husband		
6833	Never-married	Exec-mana	gerial	Not-in-family		
	race	sex_selfID	capita	l-gain	capital-loss	; \
453	White	Non-Female		0	C	
654	White	Female		0	C	
865	White	Non-Female		0	C)
1206	White	Non-Female		0	C	
1262	Asian-Pac-Islander	Non-Female		0	C	
1302	Black	Female		0	C	
1496	White	Non-Female		7298	C	
2100	White	Non-Female		0	C)
2581	White	Non-Female		0	С)
2651	White	Non-Female		15024	C)
2961	White	Female		0	C)
3174	White	Non-Female		0	C)
3370	White	Non-Female		0	C)
3594	White	Non-Female		0	C)
3721	Black	Female		0	C)
3769	Asian-Pac-Islander	Non-Female		0	1590)
3993	White	Non-Female		0	C)
3997	White	Non-Female		0	C)
4048	White	Non-Female		0	C)
4100	White	Female		0	C)
4253	White	Non-Female		0	2057	,
4670	White	Non-Female		0	C)
4802	White	Non-Female		0	C)
4828	White	Female		0	C)
4866	White	Female		0	C)
5299	White	Non-Female		0	C)
5420	White	Non-Female		0	C)
5871	Asian-Pac-Islander	Non-Female		0	C)
5949	Black	Non-Female		0	C)
6007	Black	Non-Female		0	C)
6153	Black	Female		0	C)
6219	White	Non-Female		0	C)
6466	White	Non-Female		0	C)
6596	White	Non-Female		0	C)

6833 White Female 0 0

```
hours-per-week native-country
                                      label
                                             age_na
                                                     hours-per-week_na
453
                50.0 United-States
                                      <=50K
                                               True
                                                                 False
654
                55.0 United-States
                                      <=50K
                                               True
                                                                 False
865
                55.0 United-States
                                      <=50K
                                               True
                                                                 False
1206
                40.0 United-States
                                      <=50K
                                               True
                                                                 False
1262
                40.0 United-States
                                       >50K
                                               True
                                                                 False
1302
                15.0 United-States <=50K
                                               True
                                                                 False
                50.0 United-States
                                               True
                                                                 False
1496
                                       >50K
2100
                50.0 United-States
                                       >50K
                                               True
                                                                 False
2581
                43.0 United-States <=50K
                                               True
                                                                 False
2651
                40.0 United-States
                                       >50K
                                               True
                                                                 False
2961
                20.0 United-States
                                     <=50K
                                               True
                                                                 False
3174
                40.0 United-States
                                      <=50K
                                               True
                                                                 False
3370
                50.0 United-States
                                       >50K
                                               True
                                                                 False
                                                                 False
3594
                45.0 United-States
                                               True
                                      <=50K
3721
                 NaN
                      United-States
                                      <=50K
                                               True
                                                                   True
3769
                45.0 United-States
                                      <=50K
                                               True
                                                                 False
3993
                55.0 United-States
                                               True
                                                                 False
                                      <=50K
3997
                55.0 United-States
                                      <=50K
                                               True
                                                                 False
                40.0
                                               True
4048
                           Columbia
                                      <=50K
                                                                 False
4100
                30.0 United-States
                                                                 False
                                     <=50K
                                               True
4253
                40.0 United-States
                                      <=50K
                                               True
                                                                 False
4670
                50.0 United-States
                                               True
                                                                 False
                                      <=50K
4802
                25.0 United-States
                                      <=50K
                                               True
                                                                 False
                55.0 United-States
4828
                                     <=50K
                                               True
                                                                 False
4866
                32.0 United-States
                                       >50K
                                               True
                                                                 False
                      United-States
5299
                37.0
                                     <=50K
                                               True
                                                                 False
5420
                40.0 United-States
                                     <=50K
                                               True
                                                                 False
                                               True
5871
                40.0
                               Hong
                                       >50K
                                                                 False
5949
                20.0 United-States
                                               True
                                                                 False
                                      <=50K
6007
                30.0 United-States
                                      <=50K
                                               True
                                                                 False
6153
                26.0 United-States
                                      <=50K
                                               True
                                                                 False
6219
                40.0 United-States
                                               True
                                                                 False
                                      <=50K
6466
                45.0 United-States
                                      <=50K
                                               True
                                                                 False
6596
                40.0 United-States
                                     <=50K
                                               True
                                                                 False
6833
                40.0 United-States <=50K
                                               True
                                                                 False
```

```
[13]: # look at one row that contains a missing value for age
print("Row 654: " + str(df['age'][654]))

# compute mean for all non null age values
mean_ages=df['age'].mean()
print("mean value for all age columns: " + str(mean_ages))

# fill all missing values with the mean
```

```
df['age'].fillna(value=mean_ages, inplace=True)

# look at one of the rows that contained a missing value for age.
# It should now contain the mean
print("Row 654: " + str(df['age'][654]))
```

```
Row 654: nan
mean value for all age columns: 38.61981335247667
Row 654: 38.61981335247667
```

In the code cell below, do the same for the hours-per-week column.

- 1. Compute the mean value of the hours-per-week column and save the result to variable mean_hours
- 2. Use fillna to change the values of the missing columns to mean_hours.

1.2.5 Graded Cell

The cell below will be graded. Remove the line "raise NotImplementedError()" before writing your code.

```
[14]: # YOUR CODE HERE
mean_hours=df['hours-per-week'].mean()
df['hours-per-week'].fillna(mean_hours,inplace=True)
```

1.2.6 Self-Check

Run the cell below to test the correctness of your code above before submitting for grading. Do not add code or delete code in the cell.

```
[15]: # Run this self-test cell to check your code;
# do not add code or delete code in this cell
from jn import testFillNa

try:
    p, err = testFillNa(df)
    print(err)
except Exception as e:
    print("Error!\n" + str(e))
```

Correct!

Check if we successfully converted all missing values to the mean value. Display the sum of missing values for the age column.

```
[16]: np.sum(df['age'].isnull(), axis = 0)
```

[16]: 0

In the code cell below, do the same for the hours-per-week column. Save the result to variable sum_hours.

1.2.7 Graded Cell

The cell below will be graded. Remove the line "raise NotImplementedError()" before writing your code.

```
[23]: # YOUR CODE HERE
sum_hours=np.sum(df['hours-per-week'].isnull(),axis=0)
```

1.2.8 Self-Check

Run the cell below to test the correctness of your code above before submitting for grading. Do not add code or delete code in the cell.

```
[24]: # Run this self-test cell to check your code;
# do not add code or delete code in this cell
from jn import testSumHours

try:
    p, err = testSumHours(df, sum_hours)
    print(err)
except Exception as e:
    print("Error!\n" + str(e))
```

Correct!