iztitel	21.12
Skelerprodukt/Vektorprodukt in R3	
There because I have been been been been been been been be	
$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} : \langle \vec{a}, \vec{b} \rangle =$	$= a_1b_1 + a_2b_2 + a_3b_3$
az l az l	72
geometrish Dentry $\langle \vec{a}, \vec{c} \rangle = \vec{a} $	21-161. co(q) (x)
	$0 \le \varphi \le \pi \left(0 \le \varphi \right)$
$a_2b_3-b_2a_3$	3, 12, 12, 12, 12, 2, 2, 2, 2
$\vec{a} \times \vec{b} = \begin{pmatrix} a_2 b_3 - b_2 a_3 \\ b_1 a_3 - a_1 b_3 \\ a_1 b_2 - b_1 a_2 \end{pmatrix}$ $\vec{a} \times \vec{b} = \begin{pmatrix} a_2 b_3 - b_2 a_3 \\ b_1 a_3 - a_1 b_3 \\ a_1 b_2 - b_1 a_2 \end{pmatrix}$	y = 1 al · 161 - < a,67
_ 2	
geometrishe Dentuy: a x e = 1	$ \vec{a} ^2 \vec{k} ^2 < \vec{a}, \vec{k} > 2$
axb	$ \vec{a} ^2 \vec{b} ^2 - \vec{a} ^2 \vec{b} ^2 \cos^2(\varphi)$
å b axb	
Lean reporter.	$ \vec{a} ^2 \vec{b} \left(1 - \cos^2(\varphi) \right) + \cos^2(\varphi) + \sin(\varphi) = \sin(\varphi)$
Stringer-Regel du rechter Hand = 1	1212. 1512. Sih2(4)
a a	
=> a x &	= 1 = 1 a 1 · b 1 · sm(4) /
D	
	- Parallelogramm erzugt un à wal D
A a B	Fläche (P) = Fläche (R) = 121.h)
	$n(\varphi) \Rightarrow h = \vec{b} \cdot SM(\varphi)$
insgesant: Fläche (P) = 121.4 = 1	$ \vec{a} \cdot \vec{b} \cdot \vec{a} = \vec{a} \times \vec{b} $
ERRE: 1 C'XB) ent sprilt dem F	
tuglen Parallelogramus; die Richtung	
Doei-Finger-Regel du reilla Hard!	

Rights

$$\begin{array}{c}
\lambda \tilde{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \tilde{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}; \tilde{c}(\tilde{b}) = \frac{\langle \tilde{a}, \tilde{b} \rangle}{160^{12}}, \tilde{a}^2 = \frac{1}{14}, \tilde{a} = \frac{1}{4}, \tilde{a} = \begin{pmatrix} 41 \\ 42 \end{pmatrix} \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, A - 2 + 3 = 2 \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, A - 2 + 3 = 2 \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, A^2 = 3
\end{array}$$

$$\begin{array}{c}
\lambda \tilde{c}(\tilde{a}) = \frac{2}{3}, \tilde{d} = \begin{pmatrix} -25 \\ 3 \end{pmatrix}, \\
\tilde{c}(\tilde{a}) = \frac{2}{3}, \tilde{d} = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \tilde{c}(\tilde{a}) = \frac{2}{3}, \tilde{d} = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \tilde{c}(\tilde{a}) = \frac{2}{3}, \tilde{d} = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \tilde{c}(\tilde{a}) = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \\
\tilde{c}(\tilde{a}) = \begin{pmatrix} -25 \\ 43 \end{pmatrix}, \\$$

$$3(u) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + u \cdot \begin{bmatrix} \begin{pmatrix} -A \\ -A \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{bmatrix}$$
which sinkright and do generally the service of the confidence of