RED-BL: Relocate Energy Demand to Better Locations

Muhammad Saqib Ilyas

Agenda

- Background and motivation
- Problem statement and formulation
- Two case studies simulation results
- Conclusions and future work

- Large scale networks:
 - Enable critical services

- Large scale networks:
 - Enable critical services
 - Consume a lot of energy

- Large scale networks:
 - Enable critical services
 - Consume a lot of energy
- Estimated electricity cost for a 100 MW data center in the US
 - \$114 M/year

- Large scale networks:
 - Enable critical services
 - Consume a lot of energy
- Estimated electricity cost for a 100 MW data center in the US
 - \$114 M/year
- Network electricity costs expected to increase
 - Electricity prices are rising globally

Relocate Energy Demand to Cheaper Locations (RED-CL)

Data Centers

Relocate Energy Demand to Cheaper Locations (RED-CL) Workload relocation can help reduce electricity cost

Workload relocation can help reduce electricity cost Resource pruning can help further reduce electricity cost

This Thesis

- Cut network electricity costs by using:
 - Workload Relocation (WR)
 - Resource Pruning (RP)
- Generic application to other networks
 - Cellular networks

Optimal State Trajectory Problem

Optimal State Trajectory Problem RED-CL might not be optimal

10

Total cost: 40

Total cost: 40 Total cost: 42

Total cost: 40 < Total cost: 42

Total cost: 40 < Total cost: 42

Relocate Energy Demand to **Better** Locations (RED-BL)

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda (f + (1-f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda (f + (1-f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

Workload assigned to data center i during interval j

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda (f + (1-f) \frac{\mathbf{x}_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

Workload assigned to data center i during interval j

Data center i's capacity

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda (f + (1 - f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

Fraction of data center that is active

Workload assigned to data center i during interval j

Data center i's capacity

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda (f + (1 - f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

Subject to several constraints (please see the thesis)

Future Work

- Factor in other forms of transition costs:
 - Cost of change in latency
 - Cost of replication
 - Cost of increase in call blocking probability
- Implementation on software BTS
- Adaptation to recent generations of cellular networks