Problem Set #2

$\begin{array}{c} {\rm Danny~Edgel} \\ {\rm Econ~709:~Economic~Statistics~and~Econometrics~I} \\ {\rm Fall~2020} \end{array}$

November 22, 2020

Collaborated with Sarah Bass, Emily Case, Michael Nattinger, and Alex Von Hafften

Question 1

Recall that
$$\hat{\beta}_{OLS} = (X'X)^{-1}X'y$$
. Then, if $Z = XC$,

$$\hat{\beta}_Z = (Z'Z)^{-1}Zy = [(XC)'XC]^{-1}(XC)'y$$

$$= (C'X'XC)^{-1}C'X'y = C^{-1}(X'X)^{-1}C'^{-1}C'X'y$$

$$= C^{-1}(X'X)^{-1}X'y = C^{-1}\hat{\beta}_{OLS}$$

Also recall that $\hat{\varepsilon}_{OLS} = Y - X\hat{\beta}_{OLS}$. Then,

$$\hat{\varepsilon}_Z = Y - Z\hat{\beta}_Z = y - Z(Z'Z)^{-1}Zy$$

$$= (I - XC((XC)'XC)^{-1}XC) y = (I - XCC^{-1}(X'X)^{-1}C'^{-1}C'X) y$$

$$= (I - X(X'X)^{-1}X) y = y - X(X'X)^{-1}Xy$$

$$= y - X\hat{\beta}_{OLS} = \hat{\varepsilon}_{OLS}$$

Question 2

3.5) Recall from question 1 that $\hat{\varepsilon}_{OLS} = (I - X(X'X)^{-1}X')Y$. Then,

$$\hat{\beta}_e = (X'X)^{-1}X'\hat{\varepsilon}_{OLS} = (X'X)^{-1}X'(I - X(X'X)^{-1}X')Y$$

$$= ((X'X)^{-1}X' - (X'X)^{-1}X'X(X'X)^{-1}X')Y = ((X'X)^{-1}X' - (X'X)^{-1}X')Y$$

$$= 0$$

3.6) Let $\hat{Y} = X(X'X)^{-1}X'Y$ and $\hat{\beta}_Y$ represent the OLS coefficient from a regression of \hat{Y} on X. Then,

$$\hat{\beta}_Y = (X'X)^{-1}X'\hat{Y} = (X'X)^{-1}X'X(X'X)^{-1}X'Y$$
$$= (X'X)^{-1}X'Y = \hat{\beta}_{OLS}$$

3.7) Let $X = [X_1 \ X_2]$ be an m by n matrix and recall that $P = X(X'X)^{-1}X'$ and M = I - P. Let $n = n_1 + n_2$, where X_1 is an m by n_1 matrix and X_2 is m by n_2 . Then, we can define $\Gamma = \begin{pmatrix} I_{n_1} \\ 0 \end{pmatrix}$ such that $X_1 = X\Gamma$. Thus,

$$PX_1 = PX\Gamma = X(X'X)^{-1}X'X\Gamma = X\Gamma = X_1$$

 $MX_1 = (I - P)X_1 = X_1 - PX_1 = X_1 - X_1 = 0$

Question 3

3.11) Let X contain only a non-zero constant, $c \in \mathbb{R}$, such that $X = c\mathbb{1}_n$, where n is the number of elements in Y and $\mathbb{1}_n$ is an $n \times 1$ vector of ones. Then,

$$\hat{Y} = X(X'X)^{-1}X'Y = (c\mathbb{1}_n) [(c\mathbb{1}_n)'(c\mathbb{1}_n)]^{-1} (c\mathbb{1}_n)'Y
= c\mathbb{1}_n (c^2(\mathbb{1}'_n\mathbb{1}_n))^{-1} c(\mathbb{1}'_nY) = c^2\mathbb{1}_n (c^2n)^{-1} n\bar{Y}
= \frac{c^2n}{c^2n} \bar{Y} \mathbb{1}_n = \bar{Y} \mathbb{1}_n$$

Thus, \hat{Y} is a column vector where every entry is \overline{Y}

- 3.12) Equation (3.53) cannot be estimated by OLS. Equation (3.53) can be rewritten as $Y = X\beta + \varepsilon$, where $X = [\mathbbm{1}_n \ D_1 \ D_2]$ and $\beta = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix}$. $D_1 + D_2 = \mathbbm{1}_n$, so rank $(X) \neq k$, violating the first Gauss-Markov assumption.
 - (a) Neither (3.54) nor (3.55) is more general. The two specifications have the same explanatory power. In (3.54), the average of Y for men is given by α_1 , and the average for women is given by α_2 . In (3.55), the averages are $\mu + \phi$ and μ , respectively. Thus, given the parameters for one specification, you could calculate the parameters of the other with:

$$\mu + \phi = \alpha_1 \qquad \qquad \phi = \alpha_2 - \alpha_1$$

$$\mu = \alpha_2 \qquad \qquad \alpha_2 = \mu$$

- (b) $\mathbb{1}'_n D_1 = n_1, \, \mathbb{1}'_n D_2 = n_2$
- 3.13) (a) Letting $X = [D_1 \ D_2]$ and $\hat{\beta} = \begin{pmatrix} \hat{\gamma}_1 \\ \hat{\gamma}_2 \end{pmatrix}$, we can solve:

$$\begin{split} \hat{\beta} &= (X'X)^{-1}X'Y \\ &= \begin{pmatrix} \mathbb{I}'_n D_1 & 0 \\ 0 & \mathbb{I}_n D_2 \end{pmatrix}^{-1} \begin{pmatrix} D'_1 Y \\ D'_2 Y \end{pmatrix} = \frac{1}{n_1 n_2} \begin{pmatrix} n_2 & 0 \\ 0 & n_1 \end{pmatrix} \begin{pmatrix} \sum_{i=1}^n D_{1i} Y_i \\ \sum_{i=1}^n D_{2i} Y_i \end{pmatrix} \\ &= \frac{1}{n_1 n_2} \begin{pmatrix} n_2 \sum_{i=1}^n D_{1i} Y_i \\ n_1 \sum_{i=1}^n D_{2i} Y_i \end{pmatrix} = \begin{pmatrix} \frac{1}{n_1} \sum_{i=1}^n D_{1i} Y_i \\ \frac{1}{n_2} \sum_{i=1}^n D_{2i} Y_i \end{pmatrix} = \begin{pmatrix} \overline{Y}_1 \\ \overline{Y}_2 \end{pmatrix} \end{split}$$

(b) In plain English, Y^* is the demeaned value of Y, using the means for men and women separately. Econometrically, as shown below, Y^* is the residualized value of Y, or, rather, the value of Y that cannot be explained by gender alone:

$$Y^* = Y - D_1 \overline{Y}_1 - D_2 \overline{Y}_2 = Y - \left(D_1 \overline{Y}_1 + D_2 \overline{Y}_2\right)$$
$$= Y - \left[D_1 \ D_2\right] \begin{pmatrix} \hat{\gamma}_1 \\ \hat{\gamma}_2 \end{pmatrix} = \hat{\mu}$$

It logically follows, then, that X^* is the residualized value of X, from a regression of X on D_1 and D_2 .

(c) Let $D = [D_1 \ D_2]$, $\hat{\alpha} = \begin{pmatrix} \hat{\alpha}_1 \\ \hat{\alpha}_2 \end{pmatrix}$, and $\hat{\gamma} = \begin{pmatrix} \hat{\gamma}_1 \\ \hat{\gamma}_2 \end{pmatrix}$. From part (b), we can rewrite:

$$Y^* = Y - D_1 \hat{\gamma}_1 - D_2 \hat{\gamma}_2 = Y - D\hat{\gamma} = (I_n - D(D'D)^{-1}D')Y = M_D Y$$

Where M_D is the orthogonal projection matrix for D. Similarly, $X^* = M_D X$. Thus, we can derive:

$$Y^* = X^* \widetilde{\beta}$$

$$M_D Y = M_D X \widetilde{\beta}$$

$$\widetilde{\beta} = (X' M_D X)^{-1} M_D X' Y$$

Since The second recgression is a partition of D and X, then by Theorem 3.4,

$$\hat{\beta} = (X'M_D X)^{-1} X' M_D Y$$

Thus, $\hat{\beta} = \widetilde{\beta}$.

Question 4

Let $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$ and $X = [X_1 \ X_2]$. By the definition of R^2 ,

$$R_1^2 = 1 - \frac{\hat{\varepsilon}'\hat{\varepsilon}}{(Y - \overline{Y})'(Y - \overline{Y})} = 1 - \frac{(Y - X\hat{\beta})'(Y - X\hat{\beta})}{(Y - \overline{Y})'(Y - \overline{Y})}$$
$$= 1 - \frac{(Y - X_1\hat{\beta}_1 - X_2\hat{\beta}_2)'(Y - X_1\hat{\beta}_1 - X_2\hat{\beta}_2)}{(Y - \overline{Y})'(Y - \overline{Y})}$$

Now let $\widetilde{\beta}_2 = 0^* \hat{\beta}_2$. Then, for $\widetilde{\beta} = \begin{pmatrix} \widetilde{\beta}_1 \\ \widetilde{\beta}_2 \end{pmatrix}$, $X\widetilde{\beta} = X_1\widetilde{\beta}_1$ and $\widetilde{\beta}_1 = \hat{\beta}_1 = (X_1'M_2X_1)^{-1}X_1'M_2Y$:

$$\begin{split} R_2^2 &= 1 - \frac{(Y - X\widetilde{\beta})'(Y - X\widetilde{\beta})}{(Y - \overline{Y})'(Y - \overline{Y})} = 1 - \frac{(Y - X_1\widetilde{\beta}_1 - X_2\widetilde{\beta}_2)'(Y - X_1\widetilde{\beta}_1 - X_2\widetilde{\beta}_2)}{(Y - \overline{Y})'(Y - \overline{Y})} \\ &= 1 - \frac{(Y - X_1\hat{\beta}_1)'(Y - X_1\hat{\beta}_1)}{(Y - \overline{Y})'(Y - \overline{Y})} \\ &\leq 1 - \frac{(Y - X_1\hat{\beta}_1 - X_2\hat{\beta}_2)'(Y - X_1\hat{\beta}_1 - X_2\hat{\beta}_2)}{(Y - \overline{Y})'(Y - \overline{Y})} = R_1^2 \end{split}$$

It is possible for $R_1^2 = R_2^2$, if $\hat{\beta}_2 = 0$, which occurs if X_2 is orthogonal to Y.

Question 5

3.21) As a standard OLS coefficient in a non-partitioned regression, $\widetilde{\beta}_1 = (X_1'X_1)^{-1}X_1'Y$. By Theorem 3.4, $\hat{\beta}_1 = (X_1'M_2X_1)^{-1}X_1'M_2Y$. Thus, $\widetilde{\beta}_1 = \hat{\beta}_1$ if $X_1'M_2 = X_1'$. This will be true if:

$$X_1'M_2 = X_1'$$

$$X_1'(I - X_2(X_2'X_2)^{-1}X_2') = X_1'$$

$$X_1' - X_1'X_2(X_2'X_2)^{-1}X_2') = X_1'$$

Which holds if $X_1'X_2 = 0$, in which case X_1 and X_2 are orthogonal. The same is true for $\tilde{\beta}_2$ and $\hat{\beta}_2$, by the same mathematical logic. The coefficients will also be equal if either X_1 or X_2 (or both) are orthogonal to Y, since this will lead to OLS coefficients of zero.

3.22) In a partitioned regression, $\hat{\beta}_2 = (X_2'X_2)^{-1}X_2'(y-X_1)\hat{\beta}_1$. Then,

$$\widetilde{u} = Y - X_1 \widetilde{\beta}_1 = Y - X_1 (X_1' X_1)^{-1} X_1' Y = (I - X_1 (X_1' X_1)^{-1} X_1') Y = M_1 Y$$

$$\widetilde{u} = X_2 \widetilde{\beta}_2$$

$$\widetilde{\beta}_2 = (X_2' X_2)^{-1} X_2' \widetilde{u} = (X_2' X_2)^{-1} X_2' (Y - X_1 \widetilde{\beta}_1)$$

Thus, $\widetilde{\beta}_2 = \hat{\beta}_2$ only if $\widetilde{\beta}_1 = \hat{\beta}_1$, which, as we solved in 3.21, is only true if X_1 and X_2 are orthogonal. This is rarely the case, but weirder things have happened in 2020 alone.

3.23) The equation for the regression of Y on X is $Y = X_1\hat{\beta}_1 + X_2\hat{\beta}_2 + \hat{\varepsilon}$, and the equation for the regression of Y on Z can be simplified as follows:

$$Y = Z_1\widetilde{\beta}_1 + Z_2\widetilde{\beta}_2 + \widetilde{\varepsilon} = X_1\widetilde{\beta}_1 + (X_2 - X_1)\widetilde{\beta}_2 + \widetilde{\varepsilon} = X_1(\widetilde{\beta}_1 - \widetilde{\beta}_2) + X_1\widetilde{\beta}_2 + \widetilde{\varepsilon}$$

The two regressions capture the same variation in Y, where $\hat{\beta} = \widetilde{\beta}_1 - \widetilde{\beta}_2$ and $\hat{\beta}_2 = \widetilde{\beta}_2$. Most importantly, $\hat{\varepsilon} = \widetilde{\varepsilon}$, so $\hat{\sigma}^2 = \widetilde{\sigma}^2$.

Question 6

(due w/ PS3)

Question 7

(a) Recall the estimator $\hat{\beta}_1$ for a partition regression: $\hat{\beta}_1 = (X_1'X_1)^{-1}X_1'(Y - X_2\hat{\beta}_2)$. Then,

$$\begin{split} \mathbb{E}(\hat{\beta}_1|X) &= \mathbb{E}\left[(X_1'X_1)^{-1}X_1'(Y - X_2\hat{\beta}_2)|X \right] \\ &= (X_1'X_1)^{-1}X_1' \,\mathbb{E}\left[Y - X_2\hat{\beta}_2|X \right] \\ &= (X_1'X_1)^{-1}X_1' \,\mathbb{E}\left[Y|X \right] - (X_1'X_1)^{-1}X_1'X_2 \,\mathbb{E}\left[\hat{\beta}_2|X \right] \end{split}$$

Where $\hat{\beta}_2 = (X_2' M_1 X_2)^{-1} X_2' M_1 Y$ and $M_1 = I - X_1 (X_1' X_1)^{-1} X_1'$, so:

$$\begin{split} \mathbb{E}(\hat{\beta}_1|X) &= (X_1'X_1)^{-1}X_1' \, \mathbb{E}\left[Y|X\right] - (X_1'X_1)^{-1}X_1'X_2(X_2'M_1X_2)^{-1}X_2'M_1 \, \mathbb{E}\left[Y|X\right] \\ &= (X_1'X_1)^{-1}X_1' \, \left[I - X_2(X_2'M_1X_2)^{-1}X_2'M_1\right] \, \mathbb{E}\left[Y|X\right] \end{split}$$

$$\begin{split} \hat{\hat{\beta}}_1 &= (X_1'X_1)^{-1} X_1' \hat{y} = (X_1'X_1)^{-1} X_1' X \hat{\beta} \\ \mathbb{E}(\hat{\hat{\beta}}_1 | X) &= \mathbb{E}\left[(X_1'X_1)^{-1} X_1' X \hat{\beta} | X \right] = (X_1'X_1)^{-1} X_1' X \, \mathbb{E}\left[\hat{\beta} | X \right] \end{split}$$

Since the Gauss-Markov assumptions are satisfied, $\mathbb{E}(\hat{\beta}|X) = \beta$, so:

$$\mathbb{E}(\hat{\beta}_1|X) = \mathbb{E}\left[(X_1'X_1)^{-1} X_1' X \hat{\beta} | X \right] = (X_1'X_1)^{-1} X_1' X \beta$$

$$= (X_1'X_1)^{-1} X_1' (X_1\beta_1 + X_2\beta_2)$$

$$= (X_1'X_1)^{-1} X_1' X_1\beta_1 + (X_1'X_1)^{-1} X_1' X_2\beta_2$$

$$= \beta_1 + (X_1'X_1)^{-1} X_1' X_2\beta_2$$

Thus, $\hat{\beta}_1$ is only an unbiased estimator of β_1 if $X_1'X_2 = 0$, i.e. if X_1 and X_2 are orthogonal.

(c) Note that
$$X_1 = X\Gamma$$
, where $\Gamma = [I_{k_1} \ 0 * X_2]$

$$\widetilde{\beta}_1 = (X_1'X_1)^{-1}X_1'y$$

$$\widetilde{y} = X_1\widetilde{\beta}_1$$

$$\widetilde{\widetilde{\beta}} = (X'X)^{-1}X'\widetilde{y} = (X'X)^{-1}X'X_1\widetilde{\beta}_1 = \Gamma\widetilde{\beta}_1$$

$$\widetilde{\widetilde{\beta}} = \begin{pmatrix} \widetilde{\beta}_1 \\ 0 \end{pmatrix}$$

(d) $R^2 = 1$, as shown below.

$$\begin{split} R^2 &= 1 - \frac{\widetilde{\varepsilon}'\widetilde{\varepsilon}}{(Y - \overline{Y})'(Y - \overline{Y})} \\ \widetilde{\varepsilon} &= \widetilde{y} - X\widetilde{\widetilde{\beta}} = X_1\widetilde{\beta}_1 - X\begin{pmatrix} \widetilde{\beta}_1 \\ 0 \end{pmatrix} = X_1\widetilde{\beta}_1 - X_1\widetilde{\beta}_1 = 0 \end{split}$$

(e) Note that

$$Var(\widetilde{\beta}_{1}|X) = Var((X'_{1}X_{1})^{-1}X'_{1}y|X)$$

$$= (X'_{1}X_{1})^{-1}X'_{1}Var(y|X)X_{1}(X'_{1}X_{1})^{-1}$$

$$= (X'_{1}X_{1})^{-1}X'_{1}\sigma^{2}IX_{1}(X'_{1}X_{1})^{-1}$$

$$= \sigma^{2}(X'_{1}X_{1})^{-1}X'_{1}X_{1}(X'_{1}X_{1})^{-1}$$

$$= \sigma^{2}(X'_{1}X_{1})^{-1}$$

Where $\widetilde{\widetilde{\beta}} = \begin{pmatrix} \widetilde{\beta}_1 \\ 0 \end{pmatrix}$, such that:

$$Var(\widetilde{\widetilde{\beta}}|X) = \begin{pmatrix} \sigma^2(X_1'X_1)^{-1} & 0\\ 0 & 0 \end{pmatrix}$$