

Supervised Learning with Python

Dr. Tulasi Prasad Sariki Associate Professor, SCOPE VIT, Chennai

www.learnersdesk.weebly.com

https://github.com/stulasiprasad/Machine-Learning-with-Python

Outline

- What is Supervised Learning?
- Tools used
- Categorization of Supervised Learning Algorithms
 - Regression
 - Classification
- Implementation steps
 - Regression
 - Classification

What is Supervised Learning?

- Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples.
- In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal).
- A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

Tools and Libraries used

- We use Colab from Google: Colaboratory or Colab, allows us to write and execute Python in your browser, with
 - Zero configuration required
 - Free access to GPUs
 - Easy sharing
- Python libraries:
 - numpy
 - pandas
 - mathplotlib
 - sklearn

Tools and Libraries used

Categorization of Supervised Learning Algorithms

Regression

- A regression problem is when the output variable is a real or continuous value, such as "temperature".
- Many different models can be used, the simplest is the linear regression. It tries to fit data with the best hyperplane which goes through the points.

Regression

What is the temperature going to be tomorrow?

1. Load and describe the data

2. Exploratory Data Analysis

- Exploratory data analysis numerical
- Exploratory data analysis visual
- Analyse the target variable
- Compute the correlation

3. Pre-process the data

- Dealing with missing values
- Treatment of categorical values
- Remove the outliers
- Normalise the data

- 4. Split the data
- 5. Choose a Baseline algorithm
- defining / instantiating the baseline model
- fitting the model we have developed to our training set
- Define the evaluation metric
- predict scores against our test set and assess how good it is
- 6. Refine our dataset with additional columns
- 7. Test Alternative Models
- 8. Choose the best model and optimise its parameters
- Gridsearch

Classification

- A classification problem is when the output variable is a category, such as "red" or "blue" or "disease" and "no disease".
- A classification model attempts to draw some conclusion from observed values.

- 1. Load the data
- 2. Exploratory data analysis
 - Analyse the target variable
 - Check if the data is balanced
 - Check the co-relations
- 3. Split the data
- 4. Choose a Baseline algorithm
- 5. Train and Test the Model

- 6. Choose an evaluation metric
- 7. Refine our dataset
- 8. Feature engineering
- 9. Test Alternative Models
- 10. Ensemble models
- 11. Choose the best model and optimize its parameters

Machine Learning Algorithms Cheat Sheet

References

- https://en.wikipedia.org/wiki/Supervised_learning
- https://pandas.pydata.org/
- https://numpy.org/
- https://matplotlib.org/
- https://scikit-learn.org/stable/https://scikit-learn.org/stable/
- https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week

Happy Learning!