标题

Didnelpsun

目录

1	总体	总体与样本													1									
	1.1	总体定	义.																					1
	1.2	样本 .																						1
		1.2.1	定义																					1
		1.2.2	分布															•						1
2	统计量与分布														1									
	2.1	统计量																						1
	2.2	常用统	计量																					2
	2.3	顺序统	计量																					2
		2.3.1	概念																					2
		2.3.2	性质																	•				2
	2.4	三大分	布 .																	•				3
		2.4.1	χ^2 分	布																•				3
			2.4.1.	1	概	念																		3
			2.4.1.	2	性	质																		3
		2.4.2	t 分布	ĵ.																				4
			2.4.2.	1	概	念																		4
		2.4.3	F 分	布																				4
	2.5	正态总	体下组	吉论																				4
3	参数点估计															4								
	3.1	概念 .																						4
	3 2	方法																						4

		3.2.1	矩估计法	4							
		3.2.2	最大似然估计	4							
	3.3	估计量	上平均标准	4							
		3.3.1	无偏性	4							
		3.3.2	有效性	4							
		3.3.3	一致性	4							
4	参数	数区间估计与假设检验									
	4.1	区间估	i计	5							
		4.1.1	概念	5							
		4.1.2	正态总体均值的置信空间	5							
	4.2	检设检	:验	5							
		4.2.1	思想	5							
		4.2.2	正态总体下的六大检验与拒绝域	5							
	4.3	两类错	i误	5							

1 总体与样本

1.1 总体定义

定义:研究对象的全体称为总体,组成总体的每一个元素称为个体。

1.2 样本

1.2.1 定义

定义: n 个相互独立且域总体 X 有相同概率分布的随机变量 X_1, X_2, \cdots, X_n 所组成的整体 (X_1, X_2, \cdots, X_n) 称为来自总体 X,容量为 n 个一个简单随机样本,简称样本。一次抽样结果的 n 个具体值 (x_1, x_2, \cdots, x_n) 称为来自样本 X_1, X_2, \cdots, X_n 的一个观测值或样本值。

在概率论中称为独立同分布,而在数理统计就称为简单随机样本。

1.2.2 分布

对于容量为 n 的样本 X_1, X_2, \cdots, X_n 有如下定理: 假设总体 X 的分布函数 为 F(x) (概率密度为 f(x), 或概率分布为 $p_i = P\{X = x_i\}$), 则 (X_1, X_2, \cdots, X_n) 的分布函数为 $F(x_1, x_2, \cdots, x_n) = \prod_{i=1}^{n} F(x_i)$ 。

的分布函数为 $F(x_1, x_2, \dots, x_n) = \prod_{i=1}^n F(x_i)$ 。 对于离散型随机变量联合分布: $F(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P\{X_i = x_i\}$ 。

对于连续型随机变量联合概率密度: $f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i)$ 。

2 统计量与分布

2.1 统计量

设 X_1, X_2, \dots, X_n 来自总体 X 的一个样本, $g(x_1, x_2, \dots, x_n)$ 为 n 元函数,若 g 中不含有任何未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 为样本 X_1, X_2, \dots, X_n 的一个统计量。若 (x_1, x_2, \dots, x_n) 为样本值,则称 $g(x_1, x_2, \dots, x_n)$ 为 $g(X_1, X_2, \dots, X_n)$ 的观测值。

2.2 常用统计量

- 样本均值: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ 。
- 样本标准差: $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2}$.
- 样本 k 阶(原点)矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ $(k = 1, 2, \cdots)$ 。
- 样本 k 中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^k \ (k = 1, 2, \cdots)$ 。

2.3 顺序统计量

2.3.1 概念

将样本 X_1, X_2, \dots, X_n 的 n 个观测量按其值从小到大的顺序排列,得到 $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ 。

随机变量 $X_{(k)}$ $(k = 1, 2, \dots, n)$ 称为**第** k **顺序统计量**,其中 $X_{(1)}$ 是最小顺序统计量,而 $X_{(n)}$ 是最大顺序统计量。

 $X_{(n)}$ 的分布函数为 $F_{(n)}(x) = [F(x)]^n$,概率密度为 $f_{(n)}(x) = n[F(x)]^{n-1}f(x)$ 。 证明: $F_{(n)}(x) = P\{X_{(n)} \leqslant x\} = P\{\max\{x_1, \cdots, x_n\} \leqslant x\} = P\{x_1 \leqslant x, \cdots, x_n \leqslant x\} = P\{x_1 \leqslant x\} \cdots P\{x_n \leqslant x\} = F_{(1)}(x) \cdots F_{(n)}(x) = [F(x)]^n$ 。

 $X_{(1)}$ 的分布函数为 $F_{(1)}(x) = 1 - [1 - F(x)]^n$,概率密度为 $f_{(1)}(x) = n[1 - F(x)]^{n-1}f(x)$ 。

证明: $F_{(1)}(x) = P\{X_{(1)} \le x\} = P\{\min\{x_1, \cdots, x_n\} \le x\} = 1 - P\{\min\{x_1, \cdots, x_n\} > x\} = 1 - P\{x_1 > x, \cdots, x_n > x\} = 1 - P\{x_1 > x\} \cdots P\{x_n > x\} = 1 - [1 - P\{x_1 \le x\}] \cdots [1 - P\{x_n \le x\}] = 1 - [1 - F_{(1)}(x)] \cdots [1 - F_{(n)}(x)] = 1 - [1 - F_{(n)}(x)]^n$ 。

2.3.2 性质

设总体 X 的期望 $EX = \mu$,方差 $DX = \delta^2$,样本 X_1, X_2, \dots, X_n 取自 X, \overline{X} 和 S^2 分别为样本的均值和方差,则:

- $EX_i = \mu_{\circ}$
- $DX_i = \delta^2$

• $E\overline{X} = EX = \mu$

•
$$D\overline{X} = D\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{1}{n^2}n\delta^2 = \frac{1}{n}DX = \frac{\delta^2}{n}$$

•
$$E(S^2) = E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i - \overline{x})^2\right) = E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i^2 - 2x_i\overline{x} + \overline{x}^2)\right) =$$

$$E\left(\frac{1}{n-1}\left(\sum_{i=1}^nx_i^2 - 2\overline{x}\cdot\sum_{i=1}^nx_i + n\overline{x}^2\right)\right) = E\left(\frac{1}{n-1}\left(\sum_{i=1}^nx_i^2 - n\overline{x}^2\right)\right) =$$

$$\frac{1}{n-1}E\left(\sum_{i=1}^nx_i^2 - n\overline{x}^2\right) = \frac{1}{n-1}\left(\sum_{i=1}^nEx_i^2 - nE\overline{x}^2\right) = \frac{n}{n-1}[(Ex_i)^2 + Dx_i - (E\overline{x})^2 - D\overline{x}] = \frac{n}{n-1}\left(\mu^2 + \delta^2 - \mu^2 - \frac{\delta^2}{n}\right) = DX = \delta^2.$$

2.4 三大分布

2.4.1 χ^2 分布

2.4.1.1 概念

定义: 若随机变量 X_1, X_2, \cdots, X_n 相互独立,且都服从标准正态分布,则随机变量 $X = \sum_{i=1}^n X_i^2$ 服从自由度为 n 的 χ^2 分布,记为 $X \sim \chi^2(n)$,特别地 $X_i^2 \sim \chi^2(1)$ 。

对给定的 α (0 < α < 1) 称满足 $P\{\chi^2 > \chi^2_\alpha(n)\} = \int_{\chi^2_\alpha(n)}^{+\infty} f(x) \, \mathrm{d}x = \alpha$ 的 $\chi^2_\alpha(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点。

2.4.1.2 性质

• 若 $X_1 \sim \chi^2(n_1)$, $X_2 \sim \chi^2(n_2)$, X_1X_2 相互独立,则 $X_1 + X_2 \sim \chi^2(n_1 + n_2)$ 。 一般,若 $X_i \sim \chi^2(n_i)$ $(i = 1, 2, \cdots, m)$, X_1, X_2, \cdots, X_m 相互独立,则

$$\sum_{i=1}^{m} X_i \sim \chi^2 \left(\sum_{i=1}^{m} n_i \right) \circ$$

- 2.4.2.1 概念

也称为学生分布。

若随机变量 $X\sim N(0,1)$, $Y\sim \chi^2(n)$,XY 相互独立,则随机变量 $t=\frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记为 $t\sim t(n)$ 。

当 $t \to \infty$ 时,t 分布就是正态分布。其是偶函数,所以 Et = 0。

2.4.3 F 分布

若随机变量 X_1, X_2, \cdots, X_n

- 2.5 正态总体下结论
- 3 参数点估计

- 3.1 概念
- 3.2 方法
- 3.2.1 矩估计法
- 3.2.2 最大似然估计
- 3.3 估计量平均标准
- 3.3.1 无偏性
- **3.3.2 有效性** 最小方差性。
- 3.3.3 一致性

相合性。

4 参数区间估计与假设检验

- 4.1 区间估计
- 4.1.1 概念
- 4.1.2 正态总体均值的置信空间
- 4.2 检设检验
- 4.2.1 思想
- 4.2.2 正态总体下的六大检验与拒绝域
- 4.3 两类错误