

Quality criteria for an optical system

What will be study

- Spot size, resolution
- Encircled energy
- WFE PV and RMS
- Zernike polynomials (see special course later)
- Strehl ratio
- Rayleigh's criterion
- Maréchal's criterion
- MTF (see special course later)

- Diffraction
- Geometric and chromatic aberrations
- Diffusion from surfaces and volumes
- Fabrication and alignment (see course on tolerancing later)
- The detector (sampling)
- The environnement (temperature, turbulence...)

• ...

Spot diagram

Geometric size of the spot: total width

Resolution

Thierry Lépine - Optical design

Encircled energy

W_{PV} et W_{RMS}

•
$$W_{PV}$$
:
 $W_{PV} = |\max(W(x_P, y_P)) - \min(W(x_P, y_P))|, (x_P, y_P) \in pupil$

$$W_{RMS} = \sigma_W = \sqrt{(W - \overline{W})^2}$$

with:

$$\overline{W} = \frac{1}{area} \times \int_{pupil} W(x_P, y_P) dx_P dy_P$$

Modern optical engineering, Fisher

Strehl ratio

$$Strehl \approx 1 - \frac{4\pi^2}{\lambda^2} \sigma_W^2$$

Modern optical engineering, W. Smith

Proof

In the exit pupil: $E(x_p, y_p) = U(x_p, y_n)e^{-ikW(x_p, y_p)}$

In the focal plane (ie. far field):
$$E(x_0, y_0) \propto \int_{-\infty}^{+\infty} U(x_P, y_P) e^{-ikW(x_P, y_P)} e^{-i\frac{k}{z}(x_0x_P + y_0y_P)} dx_P dy_P$$

$$S = \frac{I_a(0,0)}{I(0,0)} = \left(\frac{\left|\int_{-\infty}^{+\infty} U(x_P, y_P) e^{-ikW(x_P, y_P)} e^{-i\frac{k}{z}(x_0x_P + y_0y_P)} dx_P dy_P\right|^2}{\left|\int_{-\infty}^{+\infty} U(x_P, y_P) e^{-i\frac{k}{z}(x_0x_P + y_0y_P)} dx_P dy_P\right|^2}\right) = \frac{\left|\int_{-\infty}^{+\infty} U(x_P, y_P) e^{-ikW(x_P, y_P)} dx_P dy_P\right|^2}{\left|\int_{-\infty}^{+\infty} U(x_P, y_P) dx_P dy_P\right|^2}$$

Assuming that the amplitude $U(x_P, y_P)$ is constant other the pupil, we get:

$$S \approx \frac{\left| \int_{-\infty}^{+\infty} e^{-ikW(x_P, y_P)} dx_P dy_P \right|^2}{\left| \int_{-\infty}^{+\infty} dx_P dy_P \right|^2} = \frac{1}{A^2} \left| \int_{-\infty}^{+\infty} e^{-ikW(x_P, y_P)} dx_P dy_P \right|^2$$

Proof

If $W \ll \frac{\lambda}{2\pi}$, we can write:

$$S \approx \frac{1}{A^{2}} \left| \int_{-\infty}^{+\infty} e^{-ikW(x_{P}, y_{P})} dx_{P} dy_{P} \right|^{2} = \left| \frac{1}{A} \int_{-\infty}^{+\infty} \left(1 - ikW(x_{P}, y_{P}) - \frac{1}{2} k^{2}W^{2} \right) dx_{P} dy_{P} \right|^{2}$$

Hence:

$$S \approx \left| \frac{1}{A} \int_{-\infty}^{+\infty} dx_P dy_P - \frac{1}{A} \int_{-\infty}^{+\infty} ikW(x_P, y_P) dx_P dy_P - \frac{1}{2} \frac{1}{A} \int_{-\infty}^{+\infty} k^2 W^2(x_P, y_P) dx_P dy_P \right|^2$$

$$S \approx \left| 1 - i \frac{1}{A} \int_{-\infty}^{+\infty} kW(x_P, y_P) dx_P dy_P - \frac{1}{2} \frac{1}{A} \int_{-\infty}^{+\infty} k^2 W^2(x_P, y_P) dx_P dy_P \right|^2$$

$$S \approx \left| 1 - i\overline{kW} - \frac{1}{2} \overline{k^2 W^2} \right|^2$$

$$S \approx 1 - \left(\overline{k^2 W^2} - \overline{kW}^2 \right)$$

Hence:
$$S \approx 1 - \sigma_{kW}^2 = 1 - k^2 \sigma_W^2$$

Rayleigh's criterion (1879)

Studying the <u>spherical aberration</u>, Rayleigh noticed that, if $|W| \le \frac{\lambda}{4}$ on the edge of the pupil, then the decrease of the irradiance in the image is less than 20 % and the optical system is still <u>visually</u> diffraction limited

INSTITUT d'OPTIQUE RADUATE S CHOOL Maréchal's criterion (1943)

Extending Rayleigh's criterion to the other aberrations, and considering that the system is diffraction limited if the decrease of the irradiance of the image is less than 20 %, we get:

$$S \approx 1 - \frac{4\pi^2}{\lambda^2} \sigma_W^2 > 0.8 \Leftrightarrow \sigma_W < \frac{\lambda}{14}$$

% energy in

P-V OPD	RMS OPD	Strehl ratio	Airy disk	Rings
0.0	0.0	1.00	84	16
$0.25RL = \lambda/16$	0.018λ	0.99	83	17
$0.5RL = \lambda/8$	0.036λ	0.95	80	20
$1.0RL = \lambda/4$	0.07λ	0.80	68	32
$2.0RL = \lambda/2$	0.14λ	0.4*	40	60
$3.0\text{RL} = 0.75\lambda$	0.21λ	0.1*	20	80
$4.0 RL = \lambda$	0.29λ	0.0*	10	90

^{*}The smaller values of the Strehl ratio do not correlate well with image quality.