CS204: Discrete Mathematics

Ch 9. Discrete Probability (2)

Sungwon Kang

Acknowledgement

- Michael P. Frank, University of Florida, COT 3100, Applications of Discrete Structures, Lecture Slides
- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides
- Milos Hauskrecht, Pittsburgh University, Lecture Slides

Ch 7. Discrete Probability

- 7.1 An Introduction to Discrete Probability
- 7.2 Probability Theory
- 7.3 Bayes' Theorem

Table of Contents

- 1. Finite probability space, events
- 2. Basic concepts of probability theory
- 3. Conditional probability, Bayes' theorem
- 4. Independence
- 5. Integer random variables, Bernoulli trial
- 6. Expected value, Linearity of Expectation, Variance

3. Conditional probability, Bayes' theorem

Definition

The *conditional probability* of E1 given E2, written $P(E1 \mid E2)$, is the probability that E1 would be true, given that E2 is true.

"P(E1 | E2)" reads "probability of E1 given E2".

Which of the following is true?

- (1) $P(E1 \cap E2) \le P(E1 \mid E2)$ Yes
- (2) $P(E1 \cap E2) \ge P(E1 \mid E2)$ No

98 students were surveyed and ...

		C			
		working class		upper middle class	Total
poor subjective working class	poor	0		0	0
	working class		8	0	8
social class	middle class	32		13	45
identity	ntity upper middle		8	37	45
	upper class	0		0	0
	Total		48	50	98

Source) Dr. Mine Çetinkaya-Rundel, Duke University

98 students were surveyed and ...

		objective s		
		working class	s upper middle class	Total
poor subjective working class	poor	0	0	0
	working class	8	0	8
social class	middle class	32	13	45
identity	identity upper middle	8	37	45
	upper class	0	0	0
	Total	48	50	98

What is the probability that a student **is** objectively in the working class **and associates with** (= "subjectively belongs to") the upper middle class?

Source) Dr. Mine Çetinkaya-Rundel, Duke University

98 students were surveyed and ...

		objective soci		
		working class	upper middle class	Total
subjective social class identity	poor	0	0	0
	working class	8	0	8
	middle class	32	13	45
	upper middle	8	37	45
	upper class	0	0	0
	Total	48	50	98

What is the probability that a student who is objectively in the working class associates with (= "subjectively belongs to") the upper middle class?

Source) Dr. Mine Çetinkaya-Rundel, Duke University

conditional

What is the probability that a student who is objectively in the working class associates with upper middle class?

Rsubj UMC 1 obj WC) = 8 / 48 ≈ 0.17

counts

Source) Dr. Mine Çetinkaya-Rundel, Duke University

Sungwon Kang 9

Bayes' Theorem

Theorem Let E1 and E2 be two events such that P(E2) > 0. $P(E1 \mid E2) = P(E1 \cap E2) / P(E2)$

Bayes' theorem:

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

		objective soci		
		working class	upper middle class	Total
subjective social class identity	poor	0	0	0
	working class	8	0	8
	middle class	32	13	45
	upper middle	8	37	45
	upper class	0	0	0
	Total	48	50	98

$$R(subj) \ UMC \ 1 \ obj \ WC) = \frac{R(subj) \ UMC \ \& \ obj \ WC)}{R(obj \ WC)} = \frac{8 \ / \ 98}{48 \ / \ 98} = 8 \ / \ 48 \approx 0.17$$
What is the probability that

What is the probability that a student who is objectively in the working class associates with upper middle class?

Source) Dr. Mine Çetinkaya-Rundel, Duke University

Sungwon Kang 11

General Product Rule

Theorem Let E1 and E2 be two events such that P(E2) > 0. $P(E1 \mid E2) = P(E1 \cap E2) / P(E2)$

Corollary 1. Let E and F be two events such that P(E2) > 0. Then: $P(E1 \cap E2) = P(E1 \mid E2) \times P(E2)$

		(
		working class		upper i	middle class	Total
subjective social class identity	poor	0			0	0
	working class		8		0	8
	middle class		32		13	45
	upper middle		8		37	45
	upper class	0			0	0
	Total	48			50	98

P(E1 ∩ E2) = 8/98

		objective soci		
		working class	upper middle class	Total
subjective social class identity	poor	0	0	0
	working class	8	0	8
	middle class	32	13	45
	upper middle	8	37	45
	upper class	0	0	0
	Total	48	50	98

P(E1 | E2) X P(E2) = 8/48 x 48/98

13

Corollary 1. Let E and F be two events such that P(E2) > 0. Then: $P(E1 \cap E2) = P(E1 \mid E2) \times P(E2)$

→ Called the General Product Rule

Cf 1) The Multiplication Principle

Let A and B be finite sets. The number of elements (i.e., ordered pairs) in $A \times B$ is $|A| \cdot |B|$. So there are $|A| \cdot |B|$ ways to choose two items in sequence, with the first item coming from A and the second item from B.

Cf 2) $P(E1 \cap E2) = P(E1) \times P(E2)$ - Product Rule for Independent Events

Corollary 1. Let E and F be two events such that P(E2) > 0. Then: $P(E1 \cap E2) = P(E1 \mid E2) \times P(E2)$

Called the General Product Rule

Cf 1) The Multiplication Principle

Let A and B be finite sets. The number of elements (i.e., ordered pairs) in $A \times B$ is $|A| \cdot |B|$. So there are $|A| \cdot |B|$ ways to choose two items in sequence, with the first item coming from A and the second item from B.

Cf 2)
$$P(E1 \cap E2) = P(E1) \times P(E2)$$
 - Product Rule for Independent Events

- What if E1 and E2 are dependent?
- E1 affects E2 or E2 affects E1, although we may not know the exact causal relationship.

Sometimes conditional probabilities are easier to find out.

Example

Assume the probability of getting a flu is 0.2 the probability of having a high fever given the flu is 0.9

Would it be easier to find out the probability of a person having a high fever?

What is the probability of getting a flu with fever?

P(flu \cap fever) = P(fever | flu) \times P(flu) = 0.9 \times 0.2 = 0.18

Switching the conditioning events

Corollary 2. Let E1 and E2 be two events such that P(E2) > 0. Then $P(E1 \mid E2) = P(E2 \mid E1) \times P(E1) / P(E2)$

Bayes' Theorem

 $P(E1 \mid E2) = P(E1 \cap E2) / P(E2)$

Proof

$$P(E1 \mid E2) = P(E1 \cap E2) / P(E2) \qquad -- Bayes' Theorem$$

$$= \{P(E1 \cap E2) / P(E1)\} \times \{P(E1) / P(E2)\}$$

$$= \{P(E2 \cap E1) / P(E1)\} \times \{P(E1) / P(E2)\} \qquad -- Commutativity of \cap$$

$$= P(E2 \mid E1) \times \{P(E1) / P(E2)\} \qquad -- Bayes' Theorem$$

 $P(E1 | E2) = P(E2 | E1) \times P(E1) / P(E2)$

Example

Assume the probability of getting a flu is 0.2

the probability of getting a fever is 0.3

the probability of having a high fever given the flu is 0.9

What is the probability of having a flu given the fever?

$P(E1 | E2) = P(E2 | E1) \times P(E1) / P(E2)$

Example

Assume the probability of getting a flu is 0.2

the probability of getting a fever is 0.3

the probability of having a high fever given the flu is 0.9

What is the probability of having a flu given the fever?

```
P(flu | fever) = P(fever | flu) × P(flu) / P(fever)

= 0.9 \times 0.2/0.3

= 0.18/0.3

= 0.6

P(flu \cap fever) = P(fever | flu) × P(flu)

= 0.9 \times 0.2

= 0.18
```


Alternative Form of Bayes' Theorem

Corollary 2. $P(E1 \mid E2) = P(E2 \mid E1) \times P(E1) / P(E2)$

Corollary 3. Let E1 and E2 be two events such that P(E1), P(E2) > 0.

Alternative Form of Bayes' Theorem

Corollary 2. $P(E1 \mid E2) = P(E2 \mid E1) \times P(E1) / P(E2)$

Corollary 3. Let E1 and E2 be two events such that P(E1), P(E2) > 0.

P(E1 | E2) =
$$\frac{P(E2 | E1) \times P(E1)}{P(E2 | E1) \times P(E1) + P(E2 | \sim E1) \times P(\sim E1)}$$

Example

One person in 100,000 has a rare disease for which there is an accurate diagnostic test. This test is correct 99.0% when given to a person selected at random who has disease; it is correct (i.e. tests negative) 99.5% when given to a person selected at random who does not have disease.

What is the probability that a person who tests positive for the disease has the disease?

P(E1 | E2) =
$$\frac{P(E2 | E1) \times P(E1)}{P(E2 | E1) \times P(E1) + P(E2 | \sim E1) \times P(\sim E1)}$$

Example

One person in 100,000 has a rare disease for which there is an accurate diagnostic test. This test is correct 99.0% when given to a person selected at random who has disease; it is correct (i.e. tests negative) 99.5% when given to a person selected at random who does not have disease.

What is the probability that a person who tests positive for the disease has the disease?

E1: event that a person selected at random has the disease

E2: event that a person selected at random tests positive for the disease

$$P(E1) = 1/100,000 = 0.00001$$

$$P(E2|E1) = 0.99;$$

$$P(\sim E2|\sim E1) = 0.995$$

$$P(E1|E2) = ?$$

$$P(\sim E1) = 1 - 0.00001 = 0.99999$$

$$P(E2|\sim E1) = 1 - P(\sim E2|\sim E1) = 1 - 0.995 = 0.005$$

$$P(E1 \mid E2) = \frac{0.99 \times 0.00001}{0.99 \times 0.00001 + 0.005 \times 0.99999} \approx 0.002$$

23

4. Independence

Independent Events

 Two events are independent if knowing the outcome of one provides no useful information about the outcome of the other. (Definition in terms of our knowledge)

Is this a good definition?

Compare the definition above with the following:

 Two events are *independent* if the outcome of one event does not depend on the outcome of the other.

(Definition in terms of the real world.)

Second definition of independence

First definition of independence

Test for independence (Test 1)

Two events E1 and E2 are independent if and only if $P(E1 \cap E2) = P(E1) \times P(E2)$

<= Compare this with the General Product Rule $P(E1 \cap E2) = P(E1 \mid E2) \times P(E2)$

Test for independence (Test 1)

Two events E1 and E2 are independent if and only if

$$P(E1 \cap E2) = P(E1) \times P(E2)$$

<= Compare this with the General Product Rule

$$P(E1 \cap E2) = P(E1 \mid E2) \times P(E2)$$

Example 1.

E1: Flip a coin

E2: Roll a die.

$$P(heads \cap "1") = P(heads) \times P("1")$$

◆ E1 and E2 are independent events.

Test 1 : P(E1 ∩ E2) = P(E1) × P(E2)

Example 2.

Sample Space: The families with three children.

E1: The family has both boy and girl.

E2: The family has at most one boy.

Are E1 and E2 independent?

Sample Space = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} => size = 8 E1 = {BBG, BGB, GBB, BGG, GBG, GGB} => size = 6 E2 = {GGG, GGB, GBG, BGG} => size = 4 E1 \cap E2 = {GGB, GBG, BGG} => size = 3

$$P(E1 \cap E2) = 3/8$$
 and $P(E1) \times P(E2) = 6/8 \times 4/8 = 3/8$

E1 and E2 are independent.

Test for independence (Test 2)

The two events E1 and E2 are independent if and only if $P(E1 \mid E2) = P(E1)$

Example

Test 2: P(E1 | E2) = P(E1)

E1: getting a fever

E2: getting a flu

Assume P(E1) = 0.3

$$P(E2) = 0.2$$

The probability of having a fever given the flu, i.e. P(E1|E2) = 0.9.

Are flu and fever independent?

Example

Test 2: P(E1 | E2) = P(E1)

E1: getting a fever

E2: getting a flu

Assume P(E1) = 0.3

$$P(E2) = 0.2$$

The probability of having a fever given the flu, i.e. P(E1|E2) = 0.9.

Are flu and fever independent?

1st Test

P(flu \cap fever) = P(flu) × P(flu) = 0.9 × 0.2 = 0.18

 $P(flu) \times P(fever) = 0.2 \times 0.3 = 0.06$

Independent or not?

2nd Test

Disjoint vs. Independent

Source)
Dr. Mine Çetinkaya-Rundel
Duke University

Two events are disjoint

(mutually exclusive)

if they

cannot happen

at the same time

Two events are *independent*

if the outcome of one event does not depend on the outcome of the other.

$$P(A \cap B) = 0$$

$$P(A \mid B) = P(A)$$

Sungwon Kang 35

Questions:

- Can two disjoint events be dependent?
 Yes!
- Can two dependent events be disjoint?
 Yes!

36

Quiz 21-1

In the student survey example discussed at the beginning of this lecture, what is the probability that a student who is subjectively in the middle class belongs to the upper middle class?

