LC19: Application du premier principe de la thermodynamique à la réaction chimique

Niveau: CPGE

Prérequis :

- -Premier principe de la thermodynamique
- -Fonctions d'états (énergie interne, enthalpie)
- -Capacité calorifique à pression constante
- -Réaction de combustion

Production d'eau dans « Seul sur Mars » (2015)

https://www.youtube.com/watch?v=BH-UmA5Lt3g (2:54)

Production d'eau dans « Seul sur Mars » (2015)

https://www.youtube.com/watch?v=BH-UmA5Lt3g (2:54)

• Définir l'état initial :

$$T = 300K$$

 $H_2O(l): V = 90mL$
 $H_3O^+: n = 0.01mol$
 $HO^-: n = 0.01mol$

 $P = P^{\circ}$

• Définir l'état <u>final</u> :

$$T = T_f$$

$$H_2O(l): V = 90mL$$

$$P = P^{\circ}$$

• Résumer et décomposer :

$$P = P^{\circ}$$

$$T = 300K$$

 $H_2O(l): V = 90mL$
 $H_3O^+: n = 0.01mol$
 $HO^-: n = 0.01mol$

$$T = T_f$$

$$H_2O(l): V = 90mL$$

• Résumer et décomposer :

$$P = P^{\circ}$$

$$T = 300K$$

$$H_2O(l): V = 90mL$$

$$H_3O^+: n = 0.01mol$$

$$HO^{-}: n = 0.01 mol$$

$$T = T_f$$

$$H_2O(l): V = 90mL$$

Echauffement

Réaction

$$HO^{-}(aq) + H_3O^{+}(aq) \to 2H_2O(l)$$

$$T = 300K$$

$$H_2O(l): V = 90mL$$

• Calculer les variations d'enthalpie de chaque étape

Calculer les variations d'enthalpie de chaque étape

$$HO^{-}(aq) + H_3O^{+}(aq) \to 2H_2O(l)$$

$$\Delta H_1(T) = \Delta_r H^{\circ}(T) \times \xi$$

Calculer les variations d'enthalpie de chaque étape

$$H_2O(l): V = 90mL$$

$$T = T_f$$

$$H_2O(l): V = 90mL$$

• Calculer les variations d'enthalpie de chaque étape

$$\Delta H_2 = m_{eau} \times c_{p,eau} \times (T_f - T_i)$$

• Sommer les étapes et appliquer le premier principe

 Sommer les étapes et appliquer le premier principe H est une fonction d'état :

$$\Delta H = \Delta H_1 + \Delta H_2$$

 Sommer les étapes et appliquer le premier principe H est une fonction d'état :

$$\Delta H = \Delta H_1 + \Delta H_2$$

Premier principe:

$$\Delta H = Q = 0$$

• Extraire les grandeurs que l'on cherche

$$T_f = \frac{c_{p,eau} m_{eau} T_i - \Delta_r H^{\circ}(T_i) \xi_f}{c_{p,eau} m_{eau}}$$

90mL d'eau

10mL de solution de HCI à 2 mol/L

Principe de l'expérience

10mL de solution de NaOH à 2 mol/L

Principe de l'expérience

Valeurs tabulées

Espèce	Δ _f H° (à 298,15K)		
H ₃ O ⁺ (aq)	-285,8 kJ/mol		
HO ⁻ (aq)	-230,0 kJ/mol		
H ₂ O(I)	-285,8 kJ/mol		

Température de flamme

Flamme d'un chalumeau

Températures de flamme

Espèce	Δ _f H° (à 298,15K)	C _{pm} ° (à 298,15K)	
$C_2H_2(g)$	226,7 kJ/mol	1,69 kJ/kg/K	
O ₂ (g)	0 kJ/mol	0,920 kJ/kg/K	
N ₂ (g)	0 kJ/mol	1,04 kJ/kg/K	
CO ₂ (g)	-393,5 kJ/mol	0,850 kJ/kg/K	
H ₂ O(g)	-241.8 kJ/mol	2,01 kJ/kg/K	

Expérience

