Modeling **Forest Fires Using** Bayesian Regression Amanda West, Nikki Aaron, & Bev

Dobrenz

Outline

Problem Description

Mathematical Linkage

Bayesian Method(s) Used

Results and Conclusions

Background

On average, forest fires in the US burn **7 million acres** per year and cost taxpayers upwards of **\$2.4 billion** in prevention and maintenance.

Additional Information About Forest Fires

Goal

Analyze various weather, climate, fuels, and fire activity factors to model the probability of the occurrence and the burn area of a forest fire.

Results can inform prepositioning of firefighting assets and fire management strategies

Where Our Data Is From

Data

Response: Burn area of forests in Montesinho National Park (NE Portugal) from January 2000 - December 2003

Predictors: Fire Weather Index, Canadian system for quantifying

fire danger

Attribute name	Description	Unit
FFMC	Fine Fuel Moisture Code	
DMC	Duff Moisture Code	
DC	Drought Code	
ISI	Initial Spread Index	
Temp	Temperature	°C
RH	Relative Humidity	0/0
Wind	Wind speed	km/h
Rain	Rain volume	mm/m^2
Area	Total burned area	ha

Fire Weather Index

Basic Description (Continued)

- Predictors:
- FFMC: A numerical rating of the moisture content of litter and other cured fine fuels: 18.7 to 96.2
- DMC: A numerical rating of the average moisture content of loosely compacted organic layers and medium-size woody material: 1.1 to 291.3
- DC: A numerical rating of the average moisture content of deep, compact, organic layers: 7.9 to 860.6
- ISI: A numerical rating of the expected rate of fire spread: 0.0 to 56.10
- Month: month of the year: 1 to 12
- Day: day of the week: 1 to 7
- Temp: temperature in Celsius degrees: 2.2 to 33.30
- RH: relative humidity in %: 15.0 to 100
- Wind: wind speed in km/h: 0.40 to 9.40
- Rain: outside rain in mm/m2: 0.0 to 6.4

Bayesian Methods Used

Quantify uncertainty in response given the predictor data and prior

Bayesian Logistic Regression:

Did a forest fire occur or not

Bayesian Linear Regression:

Total burn area of forest fire

Mathematical Linkage Bayesian Regression

Loss Function

$$-\left(\sum_{i=1}^{N} log(f(y_i|X,\theta)) + (\lambda * |\theta|^2\right)$$

Logistic

$$p(y|X) = 1 / 1 + e^{-(\theta_0 + \theta_1 X)}$$

Linear

where the posterior theta is estimated using:

$$p(\theta \mid X, y) = (p(X, y \mid \theta)p(\theta)) / p(X, y)$$

Results: Logistic Model

Results: Linear Model

Source: Vecteezy

RH:

Conclusion

It is possible to model the probability of burn area and general occurrence of forest fires using Fire Weather Index Factors

Next steps:

- Collect data about first responder resources to inform burn area analysis
- Hierarchical model to accommodate diverse landscapes in regions of the park

