Épreuve de mathématique II Concours commun MINES-PONTS-TELECOM

Session 1991

Corrigé

Partie I

Quelques propriétés de l'exponentielle de matrices

- 1. (a) La série $\sum_{k\in\mathbb{N}}\frac{A^k}{k!}$ est absolument convergente, car $\frac{\|A^k\|}{k!}\leq \frac{\|A\|^k}{k!}$ et la série numérique $\sum_{k\in\mathbb{N}}\frac{\|A\|^k}{k!}$ converge et comme $\mathscr{M}_n(\mathbb{K})$ est complet, en tant qu'espace vectoriel normé de dimension fini, la série $\sum_{k\in\mathbb{N}}\frac{A^k}{k!}$ est convergente.
 - (b) Notons, pour tout $n \in \mathbb{N}$, $S_n(A) = \sum_{k=0}^n \frac{A^k}{k!}$ la suite de sommes partielles associée à la série $\sum_{k \in \mathbb{N}} \frac{A^k}{k!}$. Par l'inégalité triangulaire, on peut écrire :

$$||S_n(A)|| \le \sum_{k=0}^n \frac{||A||^k}{k!}.$$

Par passage à la limite et par continuité de l'application norme $\|.\|$, on obtient $\|\exp(A)\| \le \exp(\|A\|)$.

(c) Pour tout $n \in \mathbb{N}$, on a $BS_n(A) = \sum_{k=0}^n \frac{BA^k}{k!}$, la série $\sum_{n \in \mathbb{N}} \frac{BA^k}{k!}$ existe car $\frac{\|BA^k\|}{k!} \le \frac{\|B\| \|A\|^k}{k!}$, donc par passage à la limite et par continuité de l'application produit $(A,B) \mapsto AB$ (bilinéaire en dimension finie), on obtient l'égalité :

$$B\exp(A) = \sum_{k=0}^{\infty} \frac{BA^k}{k!}.$$

Si A_1 et A_2 sont semblables, alors il existe une matrice P inversible telle que $A_2 = PA_1P^{-1}$. Donc pour tout $n \in \mathbb{N}$, on a

$$S_n(A_2) = PS_n(A_1)P^{-1}.$$

L'application $M\mapsto PMP^{-1}$ étant continue (linéaire en dimension finie), donc par passage à la limite on obtient :

$$\exp(A_2) = P \exp(A_1) P^{-1}.$$

Donc les deux matrices $\exp(A_1)$ et $\exp(A_1)$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

 $\textbf{2.} \quad \text{(a) Pour tout } n \in \mathbb{N}, \, \frac{D^n}{n!} = \operatorname{diag}\left(\frac{1}{n!}, \frac{2^n}{n!}, \frac{3^n}{n!}\right), \, \operatorname{donc} \exp(D) = \operatorname{diag}(e, e^2, e^3).$

On a
$$F^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $F^3 = 0$. Donc

$$\exp(F) = I + F + \frac{F^2}{2!} = \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

La matrice E étant diagonalisable, car elle admet trois valeurs propres distinctes 1, 2 et 3. Des vecteurs propres associes sont respectivement $u_1 = (1,0,0)$, $u_2 = (1,1,0)$ et $u_3 = (1,2,2)$. Donc on a l'égalité :

$$E = PDP^{-1}$$

1

avec
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
, d'où

$$\exp(E) = P \exp(D) P^{-1} = P \begin{pmatrix} e & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^3 \end{pmatrix} P^{-1} = \begin{pmatrix} e & e^3 - e & \frac{e^3}{2} - e^2 + \frac{e}{2} \\ 0 & e^2 & e^3 - e^2 \\ 0 & 0 & e^3 \end{pmatrix}.$$

On remarque $\exp(E) = \exp(D + F) \neq \exp(D) \exp(F)$, en effet les matrices D et F ne commutent pas.

- 3. (a) Posons l(x) = xA pour tout $x \in \mathbb{R}$. Donc $f_A = \exp \circ l$, c'est une application continue comme composée de deux applications continues.
 - (b) La série $\sum_{k\in\mathbb{N}}\frac{x^k}{k!}A^k$ converge normalement sur tout segment [-a,a] de \mathbb{R} (a>0) puisque

$$\forall x \in [-a, a], \quad \left\| \frac{x^k}{k!} A^k \right\| \le \frac{(a||A||)^k}{k!}$$

et la série numérique $\sum_{k\in\mathbb{N}} \frac{(a\|A\|)^k}{k!}$ converge, donc on peu intégrer terme à terme :

$$\forall x > 0, \quad \int_0^x f_A(t) dt = \sum_{k=0}^\infty \int_0^x \frac{t^k}{k!} A^k dt = \sum_{k=0}^\infty \frac{x^{k+1}}{(k+1)!} A^k.$$

D'où $f_A(x) = I_n + A \int_0^x f_A(t) dt$, ceci montre que f_A est dérivable sur $\mathbb R$ et que $\forall x \in \mathbb R, \ f_A'(x) = A f_A(x)$.

Par récurrence on montre que f_A est de classe \mathscr{C}^{∞} sur \mathbb{R} et que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f_A^{(n)}(x) = A^n f_A(x)$.

4. (a) On peut montrer par récurrence que

$$\forall p \in \mathbb{N}, \ C_{\theta}^{2p} = \begin{pmatrix} (-1)^p \theta^{2p} & 0\\ 0 & (-1)^p \theta^{2p} \end{pmatrix}$$

et

$$\forall p \in \mathbb{N}, \ C_{\theta}^{2p+1} = \begin{pmatrix} 0 & (-1)^p \theta^{2p+1} \\ (-1)^{p+1} \theta^{2p+1} & 0 \end{pmatrix}.$$

D'où

$$\exp(C_{\theta}) = \sum_{p=0}^{\infty} \frac{C_{\theta}^{2p}}{(2p)!} + \sum_{p=0}^{\infty} \frac{C_{\theta}^{2p+1}}{(2p+1)!} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Posons, pour $n \geq 3$, $A_{\theta} = \begin{pmatrix} C_{\theta} & 0 \\ 0 & I_{n-2} \end{pmatrix}$. On a $A_{\theta} \neq A_{\theta+2\pi}$, cependant $\exp(A_{\theta}) = \exp(A_{\theta+2\pi})$, donc l'application $A \mapsto \exp(A)$ n'est pas injective.

- (b) On a $\exp(A) I_n = \sum_{k=1}^{\infty} \frac{A^k}{k!} = A(I_n + S_A)$ avec $S_A = \sum_{k=0}^{\infty} \frac{A^k}{(k+1)!}$. Par continuité $\lim_{A \to 0} S_A = 0$, donc il existe $\alpha > 0$ tel que $||A|| \le \alpha \Rightarrow ||S_A|| \le 1$.
- (c) Soit $X \in \mathbb{R}^n$ tel que $(I_n + T)X = 0$ ou encore TX = -X. Si $X \neq 0$, alors $\frac{\|TX\|}{\|X\|} = 1$ et donc $\|T\| \geq 1$, ce qui est absurde, d'où X = 0.
- (d) Soit $M \in \mathscr{M}_n(\mathbb{R})$ tel que $||M|| \le \alpha$ et $\exp(M) = I_n$. Donc $\exp(M) I_n = M(I_n + S_M) = 0$, mais $||M|| \le \alpha \Rightarrow ||S_M|| < 1$, donc $I + S_M$ est inversible et par conséquent M = 0.

5. (a) g_k est une fonction polynômiale en x, donc de classe \mathscr{C}^1 sur \mathbb{R} . D'autre pat, pour tout entier $n \geq 1$ et pour toutes matrices M et N, nous avons

$$M^{n} - N^{n} = \sum_{i=0}^{n-1} (N^{i} M^{n-i} - N^{i+1} M^{n-i-1}) = \sum_{i=0}^{n-1} N^{i} (M - N) N^{n-i-1},$$

d'où nous déduisons, pour tout $h \in \mathbb{R}^*$,

$$\frac{g_k(x+h) - g_k(x)}{h} = \sum_{i=0}^{k-1} (B+xH)^i H(B+(x+h)H)^{k-i-1}.$$

Le second membre il a une limite fini quand h tend vers 0, donc g_k est dérivable en x et

$$g'_k(x) = \sum_{i=0}^{k-1} (B + xH)^i H(B + xH)^{k-i-1}.$$

En particulier, $g'_1(x) = H$, $g'_2(x) = H(B + xH) + (B + xH)H$ et

$$g_3'(x) = H(B+xH)^2 + (B+xH)H(B+xH) + (BH+xH)^2H.$$

(b) D'après ce qui précède, on a pour tout $x\in\mathbb{R}^+$:

$$||g'_{k}(x)|| \leq \sum_{i=0}^{k-1} ||(B+xH)^{i}H(B+xH)^{k-i-1}||$$

$$\leq ||H|| \sum_{i=0}^{k-1} (||B|| + x||H||)^{i} (||B|| + x||H||)^{k-i-1}$$

$$= k||H||(||B|| + x||H||)^{k-1}$$

L'inégalité des accroissements fini, appliqué à g_k sur [0,1], entraı̂ne $||g_k(1)-g_k(0)|| \leq \sup_{x\in[0,1]} ||g_k'(x)||$, inégalité qui s'écrit encore

$$||(B+H)^k - B^k|| \le k||H||(||B|| + ||H||)^{k-1}.$$

6. (a) On a $T(A,x)=\frac{1}{x^2}(\exp(xA)-I_n-xA)=\sum_{k=0}^\infty\frac{x^kA^{k+2}}{(k+2)!}=\frac{A^2}{2}+\sum_{k=1}^\infty\frac{x^kA^{k+2}}{(k+2)!}$ qui est la somme d'une série normalement convergente sur tout segment [-a,a] de $\mathbb R$ (a>0), et comme les termes de cette série sont bien définis en 0, alors l'application $x\mapsto T(A,x)$ se prolonge par continuité en 0, en posant $T(A,0)=\frac{A^2}{2}$. La formule de Taylor à l'ordre 2 avec reste intégral, appliquée à la fonction f_A s'écrit :

$$\exp(xA) = I_n + xA + \frac{x^2A^2}{2} \int_0^1 (1-t) \exp(txA) dt.$$

D'où $T(A,x) = \frac{A^2}{2} \int_0^1 (1-t) \exp(txA) dt$ et donc $||T(A,x)|| \le \frac{1}{2} ||A||^2 \exp(x||A||)$.

(b) On a

$$\exp\left(\frac{1}{k}A\right) - \frac{1}{k^2}T\left(A, \frac{1}{k}\right) = I_n + \frac{1}{k}A$$

et

$$\left(\exp\left(\frac{1}{k}A\right)\right)^k = \exp A$$

D'où

$$\left(I_n + \frac{1}{k}A\right)^k - \exp A = \left(\exp\left(\frac{1}{k}A\right) - \frac{1}{k^2}T\left(A, \frac{1}{k}\right)\right)^k - \left(\exp\left(\frac{1}{k}A\right)\right)^k.$$

La formule de la question 5.(b) donne, avec $B = \exp\left(\frac{1}{k}A\right)$ et $H = -\frac{1}{k^2}T\left(A, \frac{1}{k}\right)$:

$$\left\| \left(I_{n} + \frac{1}{k} A \right)^{k} - \exp A \right\| \leq \frac{1}{k} \left\| T \left(A, \frac{1}{k} \right) \right\| \left[\exp \left(\frac{1}{k} \|A\| \right) + \frac{1}{k^{2}} \left\| T \left(A, \frac{1}{k} \right) \right\| \right]^{k-1}$$

$$\leq \frac{1}{2k} \|A\|^{2} \exp \left(\frac{1}{k} \|A\| \right) \left[\exp \left(\frac{1}{k} \|A\| \right) + \frac{1}{2k^{2}} \|A\|^{2} \exp \left(\frac{1}{k} \|A\| \right) \right]^{k-1}$$

$$\leq \frac{1}{2k} \|A\|^{2} \exp \left(\frac{1}{k} \|A\| \right) \exp \left(\frac{k-1}{k} \|A\| \right) \left[1 + \frac{1}{2k^{2}} \|A\|^{2} \right]^{k-1}$$

$$\leq \frac{1}{2k} \|A\|^{2} \exp (\|A\|) \left[1 + \frac{1}{2k^{2}} \|A\|^{2} \right]^{k-1}$$

On peut vérifier facilement que $\lim_{k \to \infty} \left[1 + \frac{1}{2k^2} \|A\|^2\right]^{k-1} = 1$, d'où $\lim_{k \to \infty} \left(I_n + \frac{1}{k}A\right)^k = \exp(A)$.

(c) Notons \mathscr{B} la base canonique de \mathbb{R}^n et $C_1, C_2, ..., C_n$ les colonnes de A. Alors $\det = \det_{\mathscr{B}} \circ l$ où $l(A) = (C_1, C_2, ..., C_n)$, donc det est continue, comme composée d'applications continues (l linéaire et $\det_{\mathscr{B}} n$ -linéaire en dimension finie).

On sait que le polynôme caractéristique de A s'écrit

$$\chi_A(X) = \det(XI_n - A) = X^n - \operatorname{tr}(A)X^{n-1} + \dots + (-1)^n \operatorname{tr}(A),$$

donc si $x \neq 0$, $\det(I_n + xA) = (-x)^n \chi_A\left(\frac{-1}{x}\right) = 1 + \operatorname{tr}(A)x + o(x)$, en particulier :

$$\det\left(I_n + \frac{1}{k}A\right) = 1 + \frac{\operatorname{tr}(A)}{k} + o\left(\frac{1}{k}\right).$$

Par continuité de det, on a donc :

$$\det \exp(A) = \lim_{k \to \infty} \det \left(I_n + \frac{1}{k} A \right)^k = \lim_{k \to \infty} \left(1 + \frac{\operatorname{tr}(A)}{k} + o\left(\frac{1}{k}\right) \right)^k = \exp(\operatorname{tr}(A)).$$

7. (a) En remplaçant A et B dans l'égalité $\exp(xM) = I_n + xM + x^2T(M,x)$, on obtient :

$$U(A, B, x) = T(A, x) + T(B, x) + AB + x[AT(B, x) + T(A, x)B] + x^{2}T(A, x)T(B, x)$$

et, en passant à la limite lorsque x tend vers 0:

$$\lim_{x \to 0} U(A, B, x) = \lim_{x \to 0} T(A, x) + \lim_{x \to 0} T(B, x) + AB = \frac{1}{2} (A^2 + B^2) + AB.$$

1. Remarque: On a

$$\exp(A) - \left(I_n + \frac{1}{k}\right)^k = \sum_{i=0}^{\infty} \frac{1}{i!} A^i - \sum_{i=0}^{k} \frac{0_k^i}{k^i} A^i$$

Or $\forall k \in [1, n]$,

$$\frac{\mathbb{G}_k^i}{k^i} = \frac{k}{k} \frac{k-1}{k} ... \frac{k-i+1}{k} \frac{1}{i!} \leq \frac{1}{i!},$$

donc

$$\left\| \exp(A) - \left(I_n - \frac{A}{k} \right)^k \right\| \le \sum_{i=1}^k \left(\frac{1}{i!} - \frac{\mathfrak{l}_k^i}{k^i} \right) \|A\| + \sum_{i=k+1}^\infty \frac{\|A\|^i}{i!} = \exp(\|A\|) - \left(1 + \frac{\|A\|}{k} \right)^k.$$

Le second terme tend vers quand k tend vers l'infini. Donc $\lim_{k\to\infty} \left(I_n + \frac{A}{k}\right)^k = \exp(A)$.

De plus, comme x > 0,

$$||U(A,B,x)|| \le \frac{1}{2}||A||^2 \exp(x||A||) + \frac{1}{2}||B||^2 \exp(x||B||) + ||A|||B||$$
$$+ \frac{x}{2}||A|||B||(||B|| \exp(x||A||) + ||A|| \exp(x||B||)$$
$$+ \frac{x^2}{4}||A||^2||B||^2 \exp(x(||A|| + ||B||).$$

(b) On a

$$P_{k} = \left[I_{n} + \frac{1}{k}(A+B) + \frac{1}{k^{2}}U\left(A, B, \frac{1}{k}\right) \right]^{k} - \left[I_{n} + \frac{1}{k}(A+B) \right]^{k}$$

et, appliquant l'inégalité du I.5.b. on obtient

$$||P_k|| \le \frac{1}{k} ||U(A, B, \frac{1}{k})|| \left[1 + \frac{1}{k}(||A|| + ||B||) + \frac{1}{k^2} ||U(A, B, \frac{1}{k})||\right]^{k-1}.$$

 $\label{eq:pk} \mbox{Donc} \lim_{k \to \infty} P_k = 0.$ (c) On a alors immédiatement :

$$\lim_{k \to \infty} Q_k = \lim_{k \to \infty} \left[\exp\left(\frac{1}{k}A\right) \exp\left(\frac{1}{k}B\right) \right]^k = \exp(A + B).$$

Partie II

Groupes à un paramètre

1. On sait déjà que f_A est continue de $\mathbb R$ dans $\mathscr M_n(\mathbb R)$ (d'après **I.3.a.**). Comme pour tout $x,y\in\mathbb R$, xA et yA commutent, on a:

$$f_A(x+y) = \exp(xA + yA) = \exp(xA) \cdot \exp(yA) = f_A(x) \cdot f_A(y)$$

Il suffit de prouver que $f_A(\mathbb{R})$ est un sous-ensemble de $\operatorname{GL}_n(\mathbb{R})$ pour conclure. Or $f_A(0) = I_n$ et $f_A(x) f_A(-x) = I_n$, ce qui prouve que $f_A(x)$ est inversible pour tout $x \in \mathbb{R}$. f_A est bien un morphisme continu du groupe additif $(\mathbb{R},+)$ dans $\operatorname{GL}_n(\mathbb{R})$. Donc $f_A(\mathbb{R})$ est un groupe à un paramètre.

- **2.** On sait que $\mathscr{O}_+(2) = \left\{ r_\theta = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$. Si on prend $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ alors on a $f_A(\mathbb{R}) = \mathscr{O}_+(2)$ (d'après la question **I.4.a.**) et donc $\mathcal{O}_{+}(2)$ est un groupe à un paramètre
- **3.** On considère la fonction h_{α} définie par :

$$h_{\alpha}(t) = \begin{cases} (t^2 - \alpha^2)^2 & \text{si } |t| \le \alpha \\ 0 & \text{si } |t| > \alpha \end{cases}.$$

Il est clair que cette fonction est positive et de classe \mathscr{C}^1 sur \mathbb{R} . Si on pose $I=\int^{\alpha}h_{\alpha}(t)\mathrm{d}t$ et $g_{\alpha}=\frac{h_{\alpha}}{I}$, alors cette fonction g_{α} vérifie bien les conditions de la question.

Les fonctions g_{α} et g'_{α} sont continues sur $[-\alpha, \alpha]$ donc uniformément continues sur cette intervalle. Comme elles sont nulles en dehors de cet intervalle, elles sont uniformément continues sur \mathbb{R} .

4. (a) Pour $t \in [-t_0, t_0]$, on a $[t - \alpha, t + \alpha] \subset [-t_0 - \alpha, t_0 + \alpha]$ et $g_{\alpha}(t - u) = 0$ pour $u \in [-t_0 - \alpha, t - \alpha] \cup [t + \alpha, t_0 + \alpha]$

$$\int_{-t_0-\alpha}^{t_0+\alpha} g_{\alpha}(t-u)\Phi(u)\mathrm{d}u = \int_{-t_0-\alpha}^{t+\alpha} g_{\alpha}(t-u)\Phi(u)\mathrm{d}u + \int_{t+\alpha}^{t-\alpha} g_{\alpha}(t-u)\Phi(u)\mathrm{d}u + \int_{t-\alpha}^{t_0+\alpha} g_{\alpha}(t-u)\Phi$$

(b) En remarquant que g_{α} est polynômiale, on obtient une expression de la forme

$$\psi(t) = \sum_{k=0}^{4} t^k \int_{t-\alpha}^{t+\alpha} \Phi_k(u) du$$

où les fonctions Φ_k sont continues. Ceci montre que ψ est de classe \mathscr{C}^1 comme somme et produit de fonctions de classe \mathscr{C}^1 .

(c) Si on utilise le changement de variables x=t-u dans l'intégrale définissant ψ , on obtient

$$\psi(t) = \int_{-\alpha}^{\alpha} g_{\alpha}(u) \Phi(t - u) du$$

et comme $\Phi(t-u) = \Phi(t)\Phi(-u) = \Phi(-u+t) = \Phi(-u)\Phi(t)$ on en déduit

$$\psi(t) = M_{\alpha}.\Phi(t) = \Phi(t).M_{\alpha}.$$

5. (a) Vu que $\Phi(0) = I_n$ et que $\int_{-\alpha}^{\alpha} g_{\alpha}(u) du = 1$ pour tout $\alpha > 0$ alors

$$M_{\alpha} - I_n = \int_{-\alpha}^{\alpha} g_{\alpha}(u) [\Phi(-u) - \Phi(0)] du.$$

Comme Φ est continue en 0, on sait que pour tout $\varepsilon > 0$ il existe $\eta > 0$ tel que $|u| \le \eta \Rightarrow \|\Phi(u) - \Phi(0)\| \le \varepsilon$. À l'aide de l'inégalité triangulaire de l'intégrale, on obtient

$$||M_{\alpha} - I_n|| \le \int_{-\alpha}^{\alpha} g_{\alpha}(u) ||\Phi(-u) - \Phi(0)|| du \le \varepsilon$$

- dès que $|\alpha| \leq \eta$ et donc $\lim_{\alpha \to 0} M_{\alpha} = I_n$. (b) Comme $\lim_{\alpha \to 0} M_{\alpha} = I_n$, il existe $\eta > 0$ tel que $0 < \alpha < \eta$ entraı̂ne $\|M_{\alpha} I_n\| < 1$. D'autre pat, $M_{\alpha} = I_n$ de I_n $I_n + (M_\alpha - I_n)$, donc d'après le résultat de la question **I.4.c.**, on en déduit que M_α est inversible pour $\alpha \in]0, \eta[$.
- (c) Pour tout $\alpha \in]0, \eta[, \Phi(t) = (M_{\alpha})^{-1}\psi(t)$ donc Φ est continûment dérivable.
- (a) On dérive par rapport à u la relation $\Phi(t+u) = \Phi(t).\Phi(u)$ (Φ est de classe \mathscr{C}^1), on obtient

$$\Phi'(t+u) = \Phi(t)\Phi'(u)$$

et, avec u=0,

$$\Phi'(t) = \Phi(t)\Phi'(0) = \Phi'(0)\Phi(t) = \Phi(t)A = A\Phi(t).$$

(b) Pour $t \in \mathbb{R}$, on pose $d(t) = \Phi(t) \exp(-tA)$. d est de classe \mathscr{C}^1 sur \mathbb{R} , $d(0) = I_n$ et

$$d'(t) = \Phi'(t) \exp(-tA) - \Phi(t)A \exp(-tA) = 0,$$

donc d est constante et $\Phi(t) = \exp(tA)$.

Conclusion : pour tout sous-groupe à paramètre de $GL_n(\mathbb{R})$, il existe une seule matrice A de $\mathcal{M}_n(\mathbb{R})$ telle que $G = f_A(\mathbb{R}).$

Partie III

Algèbre de Lie

- 1. Vérification immédiate.
- 2. Il suffit de vérifier que E et F sont stables par la loi [.,.]. En effet, si $A,B \in E$ alors tr[A,B] = tr(AB BA) = $\operatorname{tr}(AB) - \operatorname{tr}(BA) = \operatorname{tr}(AB) - \operatorname{tr}(AB) = 0$. De même, si $A, B \in F$ on a ${}^t\![A, B] = {}^t\!(AB) - {}^t\!(BA) = {}^t\!B^t\!A - {}^t\!A^t\!B = 0$ BA - AB = -[A, B].

- 3. (a) Pour tout $x \in \mathbb{R}$, $f_{I_n}(x) = e^x I_n$. Comme G est un sous-groupe de $GL_n(\mathbb{R})$ et $e^x \neq 0$, alors $e^x I_n \in G$. Donc g contient la matrice I_n .
 - (b) Soit $A, B \in g$. Il est clair que $\lambda A \in g$ pour tout $\alpha \in \mathbb{R}$, donc il suffit de montrer que $A + B \in g$, c'est-à-dire $\forall x \in \mathbb{R}, \exp(x(A+B)) \in G$.

Fixons $x \in \mathbb{R}$ et soit $k \in \mathbb{N}^*$. Comme $A, B \in g$, alors $\exp\left(\frac{tA}{k}\right)$ et $\exp\left(\frac{tB}{k}\right)$ appartiennent à G, et comme G est un groupe, il contient aussi le produit $\left[\exp\left(\frac{tA}{k}\right)\exp\left(\frac{tB}{k}\right)\right]^k$ et comme G est fermé dans $GL_n(\mathbb{R})$ il contient aussi $\lim_{k \to \infty} \left[\exp\left(\frac{tA}{k}\right)\exp\left(\frac{tB}{k}\right)\right]^k$ qui vaut $\exp(x(A+B))$ (d'après la question).

(c) Il suffit de montrer que $[A,B] \in g$ pour tout A,B de g. Comme $\exp(-A) = \exp(A)^{-1}$, il suffit de montrer que $\exp(x[A,B]) \in g$ pour tout $x \ge 0$, soit donc $t \in \mathbb{R}$ fixé tel que $x=t^2$, on a :

$$\lim_{k\to\infty} \left[\exp\left(\frac{tA}{k}\right) \exp\left(\frac{tB}{k}\right) \right] \left[\exp\left(-\frac{tA}{k}\right) \exp\left(-\frac{tB}{k}\right) \right]^{k^2} = \exp(x[A,B])$$

Comme $A, B \in g$, alors G contient le terme de gauche pour tout k, et comme G est fermé il contient aussi la limite $\exp(x[A,B])$. Ceci montre que $[A,B] \in g$.

4. L'application déterminant, noté det, est un morphisme de groupe de $(\mathbf{GL}_n(\mathbb{R}),.)$ dans $(\mathbb{R}^*,.)$. Le noyau étant $\mathbf{SL}_n(\mathbb{R}) = \{ A \in \mathbf{GL}_n(\mathbb{R}) \mid \det(A) = 1 \} = \det^{-1}\{1\}$, c'est un sous-groupe de $\mathbf{GL}_n(\mathbb{R})$. Comme det est une application continue, alors $\det^{-1}\{1\}$ est un fermé comme image réciproque d'un fermé par une application continue. Déterminons l'algèbre de Lie de g. Soit $A \in \mathcal{M}_n(\mathbb{R})$, pour tout $x \in \mathbb{R}$, on a :

$$f_A(x) = \exp xA \in \mathbf{SL}_n(\mathbb{R}) \Leftrightarrow \exp(xA) \exp(x^tA) = I_n \Leftrightarrow x(A + {}^tA) = 0 \Leftrightarrow A + {}^tA = 0.$$

Ainsi la matrice A est antisymétrique. D'où g = F.

5. Soit A une matrice antisymétrique réelle et $x \in \mathbb{R}^*$, on a :

$$A + {}^{t}A = 0 \Leftrightarrow xA + {}^{t}xA = 0 \Leftrightarrow \exp(xA)^{t}\exp(xA) = I_{n} \Leftrightarrow \exp(xA) \in \mathscr{O}_{n}(\mathbb{R})$$

où $\mathscr{O}_n(\mathbb{R})=\left\{\,A\in\mathscr{M}_n(\mathbb{R})\;\middle|\;A^t\!A=I_n\;\right\}$ désigne le groupe orthogonal. Ainsi, $g=\{\,A\in F\;|\;f_A(\mathbb{R})\subset\mathscr{O}_n(\mathbb{R})\,\}.$