堆的数据结构

2023年7月28日 10:05

优先队列:

优先队列(Priority Queue):特殊的"队列",取出元素的顺序是依照元素的优先权(关键字)大小,而不是元素进入队列的先后顺序。

屏幕剪辑的捕获时间: 2023/7/28 10:18

若采用数组或链表实现优先队列

插入 — 元素总是插入尾部 $\sim \Theta(1)$ 删除 — 查找最大(或最小)关键字 $\sim \Theta(n)$

从数组中删去需要移动元素 $\sim O(n)$

≤ 链表:

插入 — 元素总是插入链表的头部 $\sim \Theta(1)$ 删除 — 查找最大(或最小)关键字 $\sim \Theta(n)$ 删去结点 $\sim \Theta(1)$

≥ 有序数组:

插入 — 找到合适的位置 ~ O(n) 或 $O(\log_2 n)$ 移动元素并插入 ~ O(n) — 删去最后一个元素 ~ O(n)

≥ 有序链表:

插入 — 找到合适的位置 ~ O(n) 插入元素 ~ Θ(1)

<u>删除 — 删除首元素或最后元素 ~ Θ(1)</u>

屏幕剪辑的捕获时间: 2023/7/28 10:19

如果用树来存储:

优先队列的完全二叉树表示

- > 堆的两个特性
- **⑤**结构性:用数组表示的完全二叉树;
- **一**有序性: 任一结点的关键字是其子树所有结点的最大值(或最小值)
 - □ "最大堆(MaxHeap)",也称"大顶堆":最大值
 - □ "最小堆(MinHeap)",也称"小顶堆": 最小值

屏幕剪辑的捕获时间: 2023/7/28 10:19

堆的抽象数据类型描述

类型名称:最大堆(MaxHeap)

数据对象集:完全二叉树,每个结点的元素值不小于其子结点的元素值

操作集: 最大堆H∈ MaxHeap, 元素item ∈ ElementType, 主要操作有:

- •MaxHeap Create(int MaxSize): 创建一个空的最大堆。
- •Boolean IsFull(MaxHeap H): 判断最大堆H是否已满。
- •Insert(MaxHeap H, ElementType item): 将元素item插入最大堆H。
- •Boolean IsEmpty(MaxHeap H): 判断最大堆H是否为空。
- •ElementType DeleteMax(MaxHeap H): 返回H中最大元素(高优先级)。

堆的创建、插入与删除

2023年7月28日 10:20

1.创建堆时,从数组1位置开始存储,而0位置设置为**哨兵**(作用后面再讲)

最大堆的操作

屏幕剪辑的捕获时间: 2023/7/28 12:20

在创建最大、最小堆时,如果按照自顶向下建堆,时间复杂度就是O(NlogN),**但是还有一种 O(N)方法**:

把所有元素顺序放入树中,此时还不是堆,然后从后往前找出第一个有儿子的结点,将其调整为堆(利用了左儿子是一个堆,右儿子是一个堆,然后向两个堆中插入元素使其形成堆的思路),之后连续地调整这个结点之前的各个结点,使其均成为堆,最终得到了自下向上的建堆过程,可以证明其时间复杂度为**O(N)**

※已经自行证明了,考虑堆为h高的满二叉树情况(h=0,1,2...),利用N=2^(h+1)-1即可。

最终结果是T=N-(log(N+1)+1),甚至比N还要再小一些,调整过程比插入数据还要省时间 XD

分区堆的第3页

屏幕剪辑的捕获时间: 2023/8/11 15:25

2. 堆的插入操作:

❖ 算法: 将新增结点插入到从其父结点到根结点的有序序列中

屏幕剪辑的捕获时间: 2023/7/28 12:21

观察上述循环,注意到如果这个元素要放入根部时,还要再与Emelent[0]位置进行判断,也即上面创建堆时提到的哨兵,所以哨兵的作用就是控制循环退出,而无需再每次判断i的值来控制循环,提高了程序效率

3. 堆的删除操作:

```
ElementType DeleteMax( MaxHeap H )
                                           [1] (58) Elements [1]
  /* 从最大堆H中取出键值为最大的元素,并删厚
   int Parent, Child;
                                       [2](44
                                              [3](25
   ElementType MaxItem, temp;
   if ( IsEmpty(H) ) {
       printf("最大堆已为空");
                                           31)Elements[size]
       return;
                                      [4]
   }
   MaxItem = H->Elements[1]; /* 取出根结点最大值 */
   /* 用最大堆中最后一个元素从根结点开始向上过滤下层结点 */
   temp = H->Elements[H->Size--];
   for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
       Child = Parent * 2;
       if( (Child!= H->Size) &&
           (H->Elements[Child] < H->Elements[Child+1]) )
          Child++; /* Child指向左右子结点的较大者 */
       if( temp >= H->Elements[Child] ) break;
       else /* 移动temp元素到下一层 */
          H->Elements[Parent] = H->Elements[Child];
   H->Elements[Parent] = temp;
   return MaxItem;
```

哈夫曼树的定义

2023年7月28日 12:25

□ 如果考虑学生成绩的分布的概率:

分数段	0-59	60-69	70-79	80-89	90-100
比例	0 . 05	0.15	0.40	0.30	0.10

▶ 查找效率: 0.05× 1+0.15 × 2+0.4× 3+0.3 × 4+0.1× 4 = 3.15

屏幕剪辑的捕获时间: 2023/7/28 12:26

□ 如果考虑学生成绩的分布的概率:

分数段	分数段 0-59		70-79	80-89	90-100	
比例	0.05	0. 15	0.40	0.30	0.10	

□ 修改判定树:

如何根据结点不同的查找频率构造更有效的搜索树?

❖ 哈夫曼树的定义

带权路径长度(WPL): 设二叉树有n个叶子结点,每个叶子结点带有权值 w_k ,从根结点到每个叶子结点的长度为 l_k ,则每个叶子结点的带权路径长度之和就是: $WPL = \sum_{k=1}^{n} w_k l_k$

最优二叉树或哈夫曼树: WPL最小的二叉树

哈夫曼树的构造

2023年7月28日 12:28

哈夫曼树构造比较简单,每次将两个权重最小的二叉树合并即可

每次把权值最小的两棵二叉树合并

屏幕剪辑的捕获时间: 2023/7/28 12:33

C++实现:

```
typedef struct TreeNode *HuffmanTree;
struct TreeNode{
 int Weight;
 HuffmanTree Left, Right;
HuffmanTree Huffman( MinHeap H )
   /* 假设H->Size个权值已经存在H->Elements[]->Weight里*/
   int i; HuffmanTree T;
   BuildMinHeap(H); /*将H->Elements[]按权值调整为最小堆*/
   for (i = 1; i < H->Size; i++) { /*做H->Size-1次合并*/
       T = malloc( sizeof( struct TreeNode) ); /*建立新结点*/
       T->Left = DeleteMin(H);
                   /*从最小堆中删除一个结点,作为新T的左子结点*/
       T->Right = DeleteMin(H);
                  /*从最小堆中删除一个结点,作为新T的右子结点*/
       T->Weight = T->Left->Weight+T->Right->Weight;
                  /*计算新权值*/
       Insert( H, T ); /*将新T插入最小堆*/
   T = DeleteMin(H);
   return T;
```

Huffman树的特点:

❖ 哈夫曼树的特点:

- ☞ 没有度为1的结点;
- ☞ n个叶子结点的哈夫曼树共有2n-1个结点;
- ☞ 哈夫曼树的任意非叶节点的左右子树交换后仍是哈夫曼树;
- 对同一组权值 $\{w_1, w_2, \dots, w_n\}$,是否存在不同构的两棵哈夫曼树呢?

对一组权值{1,2,3,3},不同构的两棵哈夫曼树:

哈夫曼编码

2023年7月28日 13:14

不等长编码:

怎么进行不等长编码?

如何避免二义性?

- ◎ 前缀码prefix code: 任何字符的编码都不是另一字符编码的前缀
 - ◆ 可以无二义地解码

a: 1

e: 0

s: 10

屏幕剪辑的捕获时间: 2023/7/29 7:15

❖二叉树用于编码

用二叉树进行编码:

- (1) 左右分支: 0、1
- (2) 字符只在叶结点上

四个字符的频率: a:4, u:1, x:2, z:1

Cost ($aaaxuaxz \rightarrow 00010110010111$) = $1\times4 + 3\times1 + 2\times2 + 3\times1 = 14$

Cost ($aaaxuaxz \rightarrow 0000001001001011$) = $2\times4 + 2\times1 + 2\times2 + 2\times1 = 16$

屏幕剪辑的捕获时间: 2023/7/29 7:16

所有字符都在二叉树叶结点上, 可以保证都是前缀码

〖例〗哈夫曼编码

Ci	а	е	i	s	t	sp	nl
f_i	10	15	12	3	4	13	1

屏幕剪辑的捕获时间: 2023/7/29 7:16

集合

2023年7月29日 7:16