What is claimed is:

1. A compound of the formula

$$A = \begin{pmatrix} Y^{3} \\ C \\ Z^{3} \end{pmatrix}_{t} \begin{pmatrix} X^{1} \\ HET \end{pmatrix} \begin{pmatrix} Y \\ C \\ Z \end{pmatrix}_{n} \begin{pmatrix} (CH_{2})_{p} - C - R \\ N - CH \\ R^{11} \\ R^{1} \end{pmatrix}$$

or a pharmaceutically acceptable salt thereof, wherein

is a 5-8 membered monocyclic heterocyclic ring, optionally unsaturated, containing 1 to 4 heteroatoms, selected from the group consisting of O, N or S; wherein X¹ is selected from the group consisting of CH, CH₂, N, NH, O and S;

A is

$$-N$$
 $N-R^7$
 R^5
 R^8

wherein Y¹ is selected from the group consisting of N-R², O, and S;

R² is selected from the group consisting of H; alkyl; aryl; hydroxy; alkoxy; cyano; nitro; amino; alkenyl; alkynyl; amido; alkylcarbonyl; arylcarbonyl; alkoxycarbonyl; aryloxycarbonyl; haloalkylcarbonyl; haloalkylcarbonyl; alkylthiocarbonyl; arylthiocarbonyl;

acyloxymethoxycarbonyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxyl, haloalkyl, cyano, nitro, carboxyl, amino, alkoxy, aryl or aryl optionally substituted with one or more halogen, haloalkyl, lower alkyl, alkoxy, cyano, alkylsulfonyl, alkylthio, nitro, carboxyl, amino, hydroxyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, hydroxy, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, cyano, nitro, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, carboxyl derivatives, amino, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycle; monocyclic heterocycles; and monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, aryl or fused aryl; or

R² taken together with R⁷ forms a 4-12 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, thioalkyl, alkylamino, hydroxy, keto, alkoxy, halo, phenyl, amino, carboxyl or carboxyl ester, spirodioxolane, and fused phenyl;

or R² taken together with R⁷ forms a 4-12 membered heterocycle, optionally unsaturated, containing one or more heteroatom selected from O, N and S;

or R² taken together with R⁷ forms a 5-9 membered heteroaromatic ring optionally substituted with one or more substituent selected from lower alkyl, phenyl, alkoxy and hydroxy;

or R² taken together with R⁷ forms a 5 membered heteroaromatic ring fused with a aryl or heteroaryl ring;

R⁷ (when not taken together with R²) and R⁸ are independently selected from the group consisting of H; alkyl; alkenyl; alkynyl; aralkyl; amino; alkylamino; hydroxy; alkoxy; arylamino; amido, alkylcarbonyl, arylcarbonyl; alkoxycarbonyl; aryloxy; aryloxycarbonyl; haloalkylcarbonyl; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; cycloalkyl; bicycloalkyl; aryl; acyl; benzoyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxy, haloalkyl, cyano, nitro, carboxyl derivatives, amino, alkoxy, thio, alkylthio, sulfonyl, aryl, aralkyl, aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethyl, sulfonyl, alkylsulfonyl, haloalkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; monocyclic heterocycles; monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, aryloxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, aryl, fused aryl; monocyclic and bicyclic heterocyclicalkyls; -SO $_2R^{10}$ wherein R^{10} is selected from the group consisting of alkyl, aryl and monocyclic heterocycles, all optionally substituted with one or more substituent selected from the group consisting of halogen, haloalkyl, alkyl, alkoxy, cyano, nitro, amino, acylamino, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, trifluoromethylthio, trifluoroalkoxy, trifluoromethylsulfonyl, aryl, aryloxy, thio, alkylthio, and monocyclic heterocycles; and

O
$$-C-R^{10}$$
 wherein R^{10} is defined above;

NR⁷ and R⁸ taken together form a 4-12 membered mononitrogen containing monocyclic or bicyclic ring optionally substituted with one or more substituent selected from lower alkyl, carboxyl derivatives, aryl or hydroxy and wherein said ring optionally contains a heteroatom selected from the group consisting of O, N and S;

R⁵ is selected from the group consisting of H, alkyl, alkenyl, alkynyl, benzyl, and phenethyl;

or
$$\frac{\mathbf{v}^2}{\mathbf{N}}$$
 \mathbf{N} \mathbf{N} \mathbf{N}

or

wherein Y² is selected from the group consisting of alkyl; cycloalkyl; bicycloalkyl; aryl; monocyclic heterocycles; alkyl optionally substituted with aryl which can also be optionally substituted with one or more substituent selected from halo, haloalkyl, alkyl, nitro, hydroxy, alkoxy, aryloxy, aryl, or fused aryl; aryl optionally substituted with one or more substituent selected from halo, haloalkyl, hydroxy, alkoxy, aryloxy, aryl, fused aryl, nitro, methylenedioxy, ethylenedioxy, or alkyl; alkynyl; alkenyl; -S-R³ and -O-R³ wherein R³ is selected from the group consisting of H; alkyl;

aralkyl; aryl; alkenyl; and alkynyl; or R⁹ taken together with R⁷ forms a 4-12 membered mononitrogen and monosulfur or monooxygen containing heterocyclic ring optionally substituted with lower alkyl, hydroxy, keto, phenyl, carboxyl or carboxyl ester, and fused phenyl; or R⁹ taken together with R⁷ is thiazole; oxazole; benzoxazole; or benzothiazole; and

R⁵ and R⁷ are as defined above;

or Y² (when Y² is carbon) taken together with R⁷ forms a 4-12 membered mononitrogen or dinitrogen containing ring optionally substituted with alkyl, aryl, keto or hydroxy;

or A is
$$-N = \begin{pmatrix} N - R^2 \\ -N - R^7 \\ R^5 & N - R^7 \\ R^8 \end{pmatrix}$$

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, hydroxy, alkoxy, keto, phenyl, or carboxyl derivatives; and R⁸ is selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, or acyloxymethoxycarbonyl; and

R⁵ is defined as above

or R² and R⁷ taken together form a membered heteroaromatic ring such as imidazole or pyrimidone;

or A is
$$-N=C$$
 $N=R^{5}$
 $N-R^{2}$
 $N-R^{7}$
 R^{8}

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with hydroxy, keto, phenyl, or alkyl; and

R⁸ are both selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl and acyloxymethoxycarbonyl;

Z¹ is one or more substituent selected from the group consisting of H; alkyl; hydroxy; alkoxy; aryloxy; halogen; haloalkyl; haloalkoxy; nitro; amino; alkylamino; acylamino; dialkylamino; cyano; alkylthio; alkylsulfonyl; carboxyl derivatives; trihaloacetamide; acetamide; acyl; aryl; fused aryl; cycloalkyl; thio; monocyclic heterocycles; fused monocyclic heterocycles; and A, wherein A is defined above;

V is selected from the group consisting of -N-(R⁶)- wherein R⁶ is selected from the group consisting of H; lower alkyl; cycloalkyl; aralkyl; aryl; and monocyclic heterocycles; or R⁶ taken together with Y, forms a 4-12 membered mononitrogen containing ring;

Y, Y³, Z and Z³ are independently selected from the group consisting of hydrogen; alkyl; aryl; and cycloalkyl; or Y and Z taken together form a cycloalkyl; or Y³ and Z³ taken together form a cycloalkyl;

n is an integer 1, 2, or 3;

t is an integer 0, 1, or 2;

p is an integer 0, 1, 2, or 3;

R is X-R³ wherein X is selected from the group consisting of O, S and NR⁴, wherein R³ and R⁴ are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; haloalkyl; aryl; arylalkyl; sugars; steroids; polyalkylethers; alkylamido; alkyl N,N-dialkylamido; pivaloyloxymethyl; and in the case of the free acid, all pharmaceutically acceptable salts thereof;

R¹ is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; carboxyl derivatives; haloalkyl; cycloalkyl; monocyclic heterocycles; monocyclic heterocycles optionally substituted with alkyl, halogen, haloalkyl, cyano, hydroxy, aryl, fused aryl, nitro, alkoxy, aryloxy, alkylsulfonyl, arylsulfonyl, sulfonamide, thio, alkylthio, carboxyl derivatives, amino, amido;

alkyl optionally substituted with one or more of halo, haloalkyl, hydroxy, alkoxy, aryloxy, thio, alkylthio, alkynyl, alkenyl, alkyl, arylthio, alkylsulfoxide, alkylsulfonyl, arylsulfoxide, arylsulfonyl, cyano, nitro, amino, alkylamino, dialkylamino, alkylsulfonamide, arylsulfonamide, acylamide, carboxyl derivatives, sulfonamide, sulfonic acid, phosphonic acid derivatives, phosphinic acid derivatives, aryl, arylthio, arylsulfoxide, or arylsulfone all optionally substituted on the aryl ring with halo, alkyl, haloalkyl, cyano, nitro, hydroxy, carboxyl derivatives, alkoxy, aryloxy, amino, alkylamino, dialkylamino, amido, aryl, fused aryl, monocyclic heterocycles; and fused monocyclic heterocycles, monocyclic heterocyclic heterocyclic sulfone, which can be optionally substituted with halo, haloalkyl, nitro, hydroxy, alkoxy, fused aryl, or alkyl;

alkylcarbonyl, haloalkylcarbonyl, and arylcarbonyl;

aryl optionally substituted in one or more positions with halo, haloalkyl, alkyl, alkoxy, aryloxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, acyloxy, carboxyl derivatives, carboxyalkoxy; amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycles; and

R¹¹ is selected from the group consisting of H, alkyl, aralkyl, alkenyl, alkynyl, haloalkyl or haloalkynyl or R¹¹ taken together with Y forms a 4-12 membered mononitrogen containing ring;

or a pharmaceutically acceptable salt thereof.

A compound according to Claim 1 of the formula

wherein

wherein R³² is H, alkyl, alkoxyalkyl, aminoalkyl, dialkylamino alkyl, wherein the alkyl group is optionally substituted by one or more substituent selected from the group consisting of hydroxy, alkoxy, amino, alkylamino, dialkylamino, aryl- or alkyl-sulfonyl, carboxyl, and carboxyl derivatives.

 A compound according to Claim 2 wherein the compound is selected from the group consisting of

$$H$$
 N
 H
 CO_2H
 OH
 OH

$$\begin{array}{c|c} & H & O & H & O \\ \hline & N & N & O & H \\ \hline & N & O & O & O \\ & N & O & O \\ & N & O & O & O \\ & N$$

4. A compound according to Claim 1 of the formula

A
$$X^{1}$$
 V C $CH_{2})_{p}$ R V CH_{2} N CH_{2} N CH_{2} N R^{11} R^{1} R^{1}

wherein

$$X^1$$
(Het) is X^2

 A compound according to Claim 4 wherein the compound is selected from the group consisting of

$$\begin{array}{c|c} N & & & \\ OMe & & & \\ CI & & \\ \end{array}$$

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

6. A compound according to Claim 1 of the formula

wherein

$$Z^1$$
 is Z^2

7. A compound according to Claim 6 selected from the group consisting of

HO
$$\longrightarrow$$
 NH \longrightarrow NH \longrightarrow CO₂H \longrightarrow CI \longrightarrow CI

8. A compound according to Claim 1 wherein the compound is of the formula

$$\begin{array}{c|c} A & X^{1} & O & (CH_{2})_{p} & R \\ \hline A & X^{1} & V + \begin{pmatrix} Y & O & (CH_{2})_{p} & R \\ V + C & N - CH & R^{11} & R^{1} \\ Z^{1} & R^{11} & R^{1} & R^{11} & R^{11} \end{array}$$

wherein

is

$$Z^1$$
 Z^1 Z^1

9. A compound according to Claim 8 of the formula

$$\begin{array}{c} \text{HO} - \overbrace{ \begin{array}{c} N \\ NH \\ \end{array}} \\ \begin{array}{c} N \\ Me \\ \end{array} \\ \begin{array}{c} N \\ NH \\ \end{array} \\ \begin{array}{c} O \\ NH \\ \end{array} \\ \begin{array}{c} CO_2H \\ OH \\ CI \\ \end{array} \\ \begin{array}{c} CI \\$$

10. A compound according to Claim 1 of the formula

wherein
$$X_1$$
 X_2 X_3 X_4 X_4 X_5 X_4 X_5 X_6 X_7 X_8 X_8 X_8 X_8 X_9 $X_$

11. A compound according to Claim 10 of the formula

12. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 and a pharmaceutically acceptable carrier.

- 13. A method for treating conditions mediated by the $\alpha_{\nu}\beta_{3}$ integrin in a mammal in need of such treatment comprising administering a therapeutically effective $\alpha_{\nu}\beta_{3}$ inhibiting amount of a compound according to Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11.
- 14. A method according to Claim 13 wherein the condition treated is tumor metastasis.
- 15. A method according to Claim 13 wherein the condition treated is solid tumor growth.
- 16. A method according to Claim 13 wherein the condition treated is angiogenesis.
- 17. A method according to Claim 13 wherein the condition treated is osteoporosis.
- 18. A method according to Claim 13 wherein the condition treated is humoral hypercalcemia of malignancy.
- A method according to Claim 13 wherein the condition treated is smooth muscle cell migration.
- 20. A method according to Claim 13 wherein restenosis is inhibited.
- 21. A method according to Claim 13 wherein the condition treated is rheumatoid arthritis.
- 22. A method according to Claim 13 wherein the condition treated is macular degeneration.