Lecture evaluation

Satisfiability Checking 20 Subtropical satisfiability

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 22/23

	+	+ , •
Reals ℝ	linear real arithmetic decidable Gauß+ Fourier-Motzkin Simplex	non-linear real arithmetic decidable Interval constraint propagation Subtropical satisfiability Virtual substitution Cylindrical algebraic decomposition
Integers $\mathbb Z$	linear integer arithmetic decidable Branch-and-bound	non-linear integer arithmetic undecidable Bit-blasting Branch-and-bound Interval constraint propagation

Notations

- Unless noted otherwise, vectors are row vectors.
- Assume: variables x_1, \ldots, x_d , coefficient domain D (we use \mathbb{Q}).
- Monomial: product of variables (the empty product represents the constant 1). Examples: xv^2 , u^3vz^2 , 1 变量乘积
- Term: product of a coefficient and a monomial. Examples: $2xy^2$, $3u^3vz^2$, -5 变量乘积× 系数
- Polynomial (in normal form): sum of terms with pairwise different monomials.
 - Example: $2xy^2 + 3u^3vz^2 5$
- $D[x_1, \ldots, x_d]$ $(d \ge 1)$: set of all polynomials in variables x_1, \ldots, x_d with coefficients from D. 最简式

 Polynomial constraint (in canonical form): $p \sim 0$, $\sim \in \{<, \le, =, \ge, >\}$.
- Example: $2xy^2 + 3u^3vz^2 5 < 0$
- A polynomial in one variable is called univariate.

 A polynomial in more than one variables is called multivariate.

 Multivariate polynomials can be seen as univariate polynomials with polynomial coefficients (notation: $p \in \mathbb{D}[x_1, \dots, x_{d-1}][x_d]$).

Reminder: SMT

The subtropical method is an efficient but incomplete way to check polynomial constraint sets for satisfiability.

Subtropical satisfiability

In this lecture:

- Let $p \sim 0$ with $p \in \mathbb{Q}[x_1, \dots, x_d]$ $(d \ge 1)$ and $\sim \in \{>, \ge, =, \le, <\}$.
- Either quickly find a positive solution to $p \sim 0$ or return unknown. If a solution is found: The constraint is satisfiable.

Else:
$$p \sim 0$$
 might still be satisfiable \rightarrow combine with a complete technique.

Not shown here:

- 1 extension to the negative space;
- 2 deal with multiple constraints at once.

Subtropical satisfiability

- First we discuss We now know a method to find a (positive) solution for p > 0.
- Constraints p < 0 can be transformed to -p > 0, to which the previous method can be applied.
- Handle $p \le 0$ resp. $p \ge 0$ strict as p < 0 resp. p > 0.
- For equalities p = 0:
 - 1 If p(1,...,1) = 0 we have a solution.

If
$$p(1,...,1) > 0$$
, consider $-p = 0$ instead of $p = 0$.

Assume we now have p(1,...,1) < 0.

- 2 Find a (positive) solution v for p(v) > 0.
- By the Intermediate Value Theorem (a continuous function with positive and negative values has a root) we are now able to construct a root of p using the knowledge gained in steps 1 and 2.

>0 Ti

Intuition: The univariate case

We observe for a univariate p(x):

$$\lim_{x \to \infty} p(x) = \begin{cases} \infty & \text{if the coefficient of the monomial with the} \\ & \text{largest exponent is positive} \\ \hline -\infty & \text{else} \end{cases}$$

Leading coefficient in p(x) is positive \Rightarrow Large enough x satisfies p(x) > 0.

Intuition: The multivariate case I

Intuition: The multivariate case II

$$f(x,y) = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

Handling multivariate polynomials

多变量

- Let $p \in \mathbb{Q}[x_1, \dots, x_d]$ and $n = (n_1, \dots, n_d) \in \mathbb{R}^d$.
- We consider the value of

$$p(a^{n_1},\ldots,a^{n_d})$$

for increasing $a \in \mathbb{R}_{>0}$.

- For large enough a, one of p's terms will become 'dominating': its absolute value will be larger than the sum of the absolute values of all other terms.
- Thus the coefficient of the dominating term will determine the sign of the polynomial.
- Since we want to satisfy p > 0, we search for a direction for which the dominating term has a positive coefficient.

How do we find such a direction?

The frame of a multivariate polynomial p

Definition

For
$$p = \sum_{i=1,2,...,k} c_i x_1^{e_{i,1}} \dots x_d^{e_{i,d}} \in \mathbb{Q}[x_1,\dots,x_d]$$
 with $k > 0$ and $(e_{i,1},\dots,e_{i,d}) \neq (e_{j,1}\dots,e_{j,d})$ for $i \neq j$ we define:
$$frame(p) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,k\} \land c_i \neq 0\}$$

$$frame^+(p) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,k\} \land c_i \geq 0\}$$

$$frame^-(p) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,k\} \land c_i \leq 0\}$$

Example:

$$p(x,y) = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

$$frame(p) = \{(0,1), (1,3), (2,2), (3,0), (4,4)\}$$

$$frame^+(p) = \{(0,1), (1,3)\}$$

$$frame^-(p) = \{(2,2), (3,0), (4,4)\}$$

The frame of a multivariate polynomial p

The Newton polytope of a polynomial p

Convex hull

Given $S \subseteq \mathbb{R}^d$, the *convex hull conv*(S) $\subseteq \mathbb{R}^d$ is the smallest (inclusion-minimal) convex set containing S.

Newton polytope

The Newton polytope of a polynomial $p \not\equiv 0$ is the convex hull of its frame:

This is indeed a polytope because the convex hull of finite non-empty set of points is bounded.

The Newton polytope of a polynomial p visualized

The shaded region is the Newton polytope Newton(p) of p.

The vertices of a Newton polytope

A face of a convex polytope is any intersection of the polytope with a halfspace, such that, none of the interior points of the polytope lie on the boundary of the halfspace.

Faces of a polytope

Given a polytope $P \subseteq \mathbb{R}^d$, the face of P with respect to a vector $n \in \mathbb{R}^d$ is: $face(n, P) = \{v \in P \mid nv^T \ge nu^T \text{ for all } u \in P\}$.

Vertices of a polytope

The faces of dimension 0 are called vertices. The set of all vertices of a given polytope P is V(P). edge: 1 # face

Note: $v \in V(P)$ iff there exists $n \in \mathbb{R}^d$ with $nv^T > nu^T$ for all $u \in P \setminus \{v\}$.

The faces of a Newton polytope visualized

The shaded region is the Newton polytope P of p.

face(
$$(1,1), P$$
) = {(4,4)} has dimension 0.
1.e. (4,4) is a vertex of P .

The faces of a Newton polytope visualized

The shaded region is the Newton polytope P of p.

face(
$$(4,-1)$$
, P) = {(3,0) + t (1,4)|0 $\leq t \leq 1$ } has dimension 1.
I.e., it is a face but not a vertex of P .

Hyperplanes separating vertices of the polytope

Hyperplanes

A <u>hyperplane</u> H is the solution set of an equation $n \times^T = b$ for some d > 0, $x = (x_1, \dots, x_d)$, $n \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

Lemma 1

For each $p \in \mathbb{Q}[x_1, \dots, x_d]$, $v \in frame(p)$ and $n \in \mathbb{R}^d$, the following are equivalent:

- 1 v is a vertex of Newton(p) with respect to n.
- There exists $b \in \mathbb{R}$ such that the hyperplane $H : n \times^T = b$ strictly separates v from $frame(p) \setminus \{v\}$. The normal vector n is directed from H towards v. hyperplane H将v从点集中分开

从H指向v的为正交向量n

Hyperplanes separating vertices of the polytope visualized

The shaded region is the Newton polytope P of p.

-2x + 3y - 6 = 0 strictly separates (1,3) from $frame(p) \setminus \{(1,3)\}$.

Vertices as dominating monomials

If v is a vertex of the Newton polytope with respect to n, then the corresponding monomial will dominate the entire polynomial in the direction of n.

Lemma 2

Assume

- \blacksquare a polynomial $p \in \mathbb{Q}[x_1, \dots, x_d], p \not\equiv 0$;
- **a** a vertex $v \in frame(p)$ of Newton(p) with respect to $n \in \mathbb{R}^d$, where
- $(a^n)^{\vee} = (a^{n_1})^{\nu_1} (a^{n_2})^{\nu_2} ... (a^{n_d})^{\nu_d}.$

Then there exists $a_0 \in \mathbb{R}_{>0}$ such that for all $a \in \mathbb{R}$ with $a \geq a_0$:

- 1 $|c_v(a^n)^v| > |\sum_{u \in frame(p)\setminus\{v\}} c_u(a^n)^u|$ and rest of the rolytype is the sign($p(a^{n_1}, \ldots, a^{n_d})$) = $sign(c_v)$.

Thus solution for p > 0 can be given based on some $v \in frame^+(p)$ that is a vertex of Newton(p).

Example

Assume

$$p(x,y) = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

- \bullet (1,3) \in V(Newton(p)) with normal vector (-2,3).
- Lemma $2 \Rightarrow p(a^{-2}, a^3) > 0$ for sufficiently large a.
- For example: a = 2, $p(2^{-2}, 2^3) = \frac{51193}{256}$.
- Generally, a suitable a can be found by starting with a = 2 and doubling a until the constraint is satisfied.

The linear problem

- Remaining problem: Find a hyperplane $H: nx^T = b$ separating a $v \in frame^+(p)$ from $frame(p) \setminus \{v\}$ where $frame(p) \subset \mathbb{R}^d$ and $n \in \mathbb{R}^d$ points from H towards v.
- This can be expressed as a linear problem with d+1 real variables $n_1 \dots, n_d, b$:

$$(nv^T) > b \land \bigwedge_{u \in frame(p) \setminus \{v\}} (nu^T < b)$$

Example:

有2个frame+,选择hyperplane使得法向量指向其中一个即可

- Constraint: $p(x, y) = y + 2xy^3 3x^2y^2 x^3 4x^4y^4 > 0$
- Check the separating hyperplane existence for each $v \in frame^+(p)$.
- Encoding for $(1,3) \in frame^+(p)$:

$$1 \cdot n_x + 3 \cdot n_y > b \quad \land 0 \cdot n_x + 1 \cdot n_y < b$$

$$\land 2 \cdot n_x + 2 \cdot n_y < b$$

$$\land 3 \cdot n_x + 0 \cdot n_y < b$$

$$\land 4 \cdot n_x + 4 \cdot n_y < b$$

$$\rightsquigarrow (n_x, n_y) = (-2, 3), b = 6 \text{ is a solution}$$

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University)

Example I

- Constraint: $\underbrace{2x^2y 3x 4y}_{p(x,y)} > 0$
- $frame^+(p) = \{(2,1)\}, frame^-(p) = \{(1,0),(0,1)\}$
- Halfplane encoding for the only positive frame point (2,1):

$$2n_x + 1n_y > b \wedge 1n_x + 0n_y < b \wedge 0n_x + 1n_y < b$$

- Solution: $n_x = (n_x, n_y)$ to normal vector, #6 V
- $p(a^1, a^0) = 2a^2 3a 4$
- Check a = 2: $p(a^1, a^0) = 2 \cdot 2^2 3 \cdot 2 4 = -2 < 0$
- Check a = 4: $p(a^1, a^0) = p(4, 1) = 2 \cdot 4^2 3 \cdot 4 4 = 16 > 0$
- Solution found: $x = a^1 = 4$, $y = a^0 = 1$

Example II

- Constraint: $\underbrace{2x^3y^2 3x^4y}_{p(x,y)} > 0$
- $frame^+(p) = \{(3,2)\}, frame^-(p) = \{(4,1)\}$
- Halfplane encoding for only positive frame point (3, 2):

$$3n_x + 2n_y > b \wedge 4n_x + 1n_y < b$$

- Solution: $n_x = -1$, $n_y = 1$, b = -2
- $p(a^{-1}, a^1) = 2a^{-3}a^2 3a^{-4}a = 2a^{-1} 3a^{-3}$
- Check a = 2: $p(a^{-1}, a^{1}) = 2 \cdot 2^{-1} 3 \cdot 2^{-3} = 1 3/8 = 5/8 > 0$
- Solution found: $x = a^{-1} = 0.5$, $y = a^{1} = 2$

Subtropical satisfiability

- First we discuss We now know a method to find a (positive) solution for p > 0.
- Constraints p < 0 can be transformed to -p > 0, to which the previous method can be applied.
- Handle $p \le 0$ resp. $p \ge 0$ strict as p < 0 resp. p > 0.
- For equalities p = 0:
 - If p(1,...,1) = 0 we have a solution. If p(1,...,1) > 0, consider -p = 0 instead of p = 0. Assume we now have p(1,...,1) < 0.
 - Find a (positive) solution v for p(v) > 0.
 - 3 By the Intermediate Value Theorem (a continuous function with positive and negative values has a root) we are now able to construct a root of *p* using the knowledge gained in steps 1 and 2.

Constructing the root

Given: p(1,...,1) < 0 < p(v) for some real coordinates v.

Find root of p on the line from (1, ..., 1) to v.

The Intermediate Value Theorem tells us this root exists.

- Construct a new univariate polynomial p^* from p by parameterising the variables in a new variable t such that we traverse the line from (1,...,1) to v for $t \in [0,1]$.
- **2** Find root t_0 of this new polynomial p^* by common techniques e.g. bisection.
- Construct root of p as point on the line from (1, ..., 1) to v for parameter t_0

Constructing the root

- Let $p(x, y) = x^2 + y^2 4$.
- We have p(1,1) < 0 and p(2,2) > 0 and can construct a root of p on (1,1)—(2,2).
- $x \to 1 + (2 1) \cdot t = 1 + t$ $y \to 1 + (2 - 1) \cdot t = 1 + t$
- Then $p^* = (1+t)^2 + (1+t)^2 4$.
- There ex. $t \in [0,1]$ such that $p^*(t) = 0$.
- Here we have: $t = \sqrt{2} 1$.
- $(1 + (\sqrt{2} 1), 1 + (\sqrt{2} 1)) =$ $(\sqrt{2}, \sqrt{2}) \text{ is a root of } p.$ exp,

Example III

- Constraint: $\underbrace{x-2y}_{p(x,y)} = 0$
- $p(1,1) = 1 2 \cdot 1 = -1 < 0$
- Assume we computed solution for p(x, y) > 0: x = 1, y = 0
- Connecting line: (x, y) = (1, 1) + t (1 1, 0 1) for some $0 \le t \le 1$ x = 1, y = 1 t

Substituted in p(x, y) = 0:

$$p(1, 1-t) = 1 - 2(1-t) = 1 - 2 + 2t = 2t - 1 = 0$$

Solution: t = 0.5

- $x_0 = 1$, $y_0 = 1 t = 1 0.5 = 0.5$
- Control: $p(x_0, y_0) = p(1, 0.5) = 1 2 \cdot 0.5 = 0$

Example IV

- Constraint: $\underbrace{2x^2y 3x 4y}_{p(x,y)} = 0$
- $p(1,1) = 2 \cdot 1^2 \cdot 1 3 \cdot 1 4 \cdot 1 = -5 < 0$
- Solution for p(x, y) > 0 from Example I: p(4, 1) = 16 > 0
- Connecting line: $(x, y) = (1, 1) + t \cdot (4 1, 1 1) = (1, 1) + t(3, 0)$ for some $0 \le t \le 1$ $\Rightarrow x = 1 + 3t, y = 1$

Substituted in p = 0:

$$2(1+3t)^2(1) - 3(1+3t) - 4(1) = 18t^2 + 3t - 5 = 0$$

Solution:
$$t = \frac{\sqrt{41}-1}{12} \approx 0.450260353$$

- $x_0 = 1 + 3t \approx 2,350781059, y_0 = 1$
- Control: $p(x_0, y_0) = 0$

Learning target

- Which sufficient condition is used by the subtropical satisfiability method for the existence of a real-valued solution of a multivariate polynomial constraint?
- If the sufficient condition holds, how can we construct a solution?