System Windows 11 x64, Środowisko PyCharm

MOWNIT – Sprawozdanie 2b

Polecenie:

Dla zadanej funkcji należy przeprowadzić analizę dla zagadnienia Hermite'a

Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20).

Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa.

Oceń dokładność, z jaką wielomian przybliża zadaną funkcję.

Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję.

Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa

Zadana funkcja:

$$f(x) = 10 \cdot m + \frac{x^2}{k} - 10 \cdot m \cdot \cos(kx)$$
 dla: k=1, m=3, [-4pi, 4pi]

Wykonanie:

Funkcje liczące:

Zostały opisane w kodzie

Obliczenia

Wykonano obliczenia podanej funkcji w zadanym przedziale z zadaną ilością węzłów w 2 wariantach:

- Według wzoru Hermite'a (węzły rozmieszczone równomiernie na przedziale)
- Według wzoru Hermite'a (węzły rozmieszczone zgodnie z zerami wielomianu Czebyszewa)

Użyto próbkowania przedziału dla p=100 punktów.

Błąd maksymalny: $\max(abs(f(x)-W(x)))$, gdzie f-funkcja właściwa, W-funkcja interpolująca

Błąd średniokwadratowy: $\frac{1}{p}\sqrt{\sum_{1}^{p}(f(x)-W(x))^{2}}$, gdzie f-funkcja właściwa, W-funkcja interpolująca, p-próbkowanie

Wyniki

Dla n=3 węzłów

Funkcja interpolująca znacznie odbiega od właściwej, jest to spowodowane małą ilością węzłów. Metoda z węzłami rozłożonymi zgodnie z zerami wielomianu Czebyszewa nieznacznie lepie przybliża funkcję oryginalną

Dla n=4 węzłów

Funkcja jest przybliżona gorzej niż poprzednio co wiąże się z niekorzystnym ułożeniem węzłów na tej konkretnej funkcji. Na ogół im większa ilość węzłów tym większa dokładność funkcji interpolującej. Obserwujemy to zarówno dla węzłów równoodległych jak i dla rozmieszczonych zgodnie z zerami wielomianu Czebyszewa.

Dla n=6 węzłów

Tutaj obserwujemy pierwsze oznaki **Efektu Rungego**, czyli pogorszenie jakości interpolacji wielomianowej, mimo zwiększenia liczby jej węzłów, co jest szczególnie widoczne na końcach przedziałów. Rozmieszczenie węzłów zgodnie z zerami wielomianu Czebyszewa skutecznie niweluje to zjawisko

Dla n=9 węzłów

Funkcja jest przybliżana coraz dokładniej. Funkcje niemalże się pokrywają (wersja dla Czebyszewa bardzo, a z węzłami równoodległymi odstaje na krańcach przedziału). Efekt Rungego w dalszym ciągu jest obserwowany

Wykres 8

Wykres 10

Dla n=15 węzłów

Efekt Rungego nie jest już zauważalny. Tak duża liczbą węzłów pozwala nawet dla wersji z równoodległymi węzłami skutecznie przybliżyć funkcję

Wykres 11

Wykres 12

Dla n=16 węzłów

Tutaj różnice przybliżenia są praktycznie nierozróżnialne

Hermite z 16 węzłami równoodległymi 160 Funkcja oryginalna Węzły Funkcja interpolująca 140 Max różnica: 0.0000 120 Odchylenie: 0.0000 100 80 60 40 20 0 5 -io -5 ò 10

Wykres 13

Wykres 14

Tabele

Błąd maksymalny

	Zagadnienie Hermite'a		Zagadnienie Lagrange'a	
n	równomiernie	zera Czebyszewa	równomiernie	zera Czebyszewa
3	59.9849	56.0205	59.9849	63.3664
4	111.2683	135.3760	50.3785	53.0215
6	129.8032	57.0934	59.2944	61.3727
9	13.6612	0.6116	321.4545	47.6745
11	0.6252	0.0075	422.8790	30.0696
15	0.0001	0.0000	134.8723	3.3533
16	0.0000	0.0000	86.4046	2.7546

Tabela 1

Błąd średniokwadratowy

	Zagadnienie Hermite'a		Zagadnienie Lagrange'a	
n	równomiernie	zera Czebyszewa	równomiernie	zera Czebyszewa
3	3.6558	2.9940	3.6560	3.8215
4	5.5995	5.4743	2.5435	2.7180
6	5.0945	2.3624	3.0350	3.1405
9	0.3921	0.0326	11.3015	2.5370
11	0.0157	0.0004	12.6035	1.6295
15	0.0000	0.0000	3.2625	0.1435
16	0.0000	0.0000	2.0445	0.1450

Tabela 2

(należy pamiętać, że zera pojawiające się z tabelce powstały z zaokrąglenia wyniku do 4 miejsca po przecinku)

Wnioski

Wraz ze wzrostem stopnia wielomianu interpolującego wzrasta dokładność przybliżenia funkcji.

Początkowo ze wzrostem liczby węzłów *n* przybliżenie pogarsza się, co jest spowodowane ustawieniem węzłów w tej funkcji. Natomiast później sytuacja znacznie się poprawia

Od około 6 stopnia, zaczyna pojawiać się Efekt Rungego

Aby uniknąć tego efektu, stosuje się interpolację z węzłami coraz gęściej upakowanymi na krańcach przedziału interpolacji. Np. węzłami interpolacji *n*-punktowej wielomianowej powinny być miejsca zerowe wielomianu Czebyszewa *n*-tego stopnia.

Interpolacja Hermite'a w porównaniu z interpolacją Lagrange'a oraz Newtona początkowo znacznie traci dokładność, natomiast wraz z kolejnymi n-kami (ilością wezłów) dużo szybciej zbliża funkcję interpolującą do interpolowanej. Należy jednak pamiętać, że w zagadnieniu Lagrange'a oraz Newtona stopień wielomianu jest o 1 mniejszy od ilości węzłów, natomiast z zagadnieniu Hermite'a stopień wielomianu jest równy podwojonej liczbie węzłów minus 1.

Poprawiono:

- -Metoda->zagadnienie
- -opis stopni wielomianu
- -opis zer w tabelce (że nie są rzeczywiście zerem)