Python Tutorial

Release 3.7.0

Guido van Rossum and the Python development team

September 02, 2018

Python Software Foundation Email: docs@python.org

CONTENTS

Ι	Whetting Your Appetite	3
2	Using the Python Interpreter 2.1 Invoking the Interpreter	5 5
3	An Informal Introduction to Python 3.1 Using Python as a Calculator	9 9 16
4	More Control Flow Tools 4.1 if Statements 4.2 for Statements 4.3 The range() Function 4.4 break and continue Statements, and else Clauses on Loops 4.5 pass Statements 4.6 Defining Functions 4.7 More on Defining Functions 4.8 Intermezzo: Coding Style	19 19 20 21 22 22 24 29
5	Data Structures 5.1 More on Lists 5.2 The del statement 5.3 Tuples and Sequences 5.4 Sets 5.5 Dictionaries 5.6 Looping Techniques 5.7 More on Conditions 5.8 Comparing Sequences and Other Types	31 35 36 37 38 39 40 40
6	Modules 6.1 More on Modules 6.2 Standard Modules 6.3 The dir() Function 6.4 Packages	43 44 46 47 48
7	Input and Output 7.1 Fancier Output Formatting	53 53 57
8	Errors and Exceptions	61

All command line options are described in using-on-general.

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings and assigned to the argv variable in the sys module. You can access this list by executing import sys. The length of the list is at least one; when no script and no arguments are given, sys.argv[0] is an empty string. When the script name is given as '-' (meaning standard input), sys.argv[0] is set to '-'. When -c command is used, sys.argv[0] is set to '-c'. When -m module is used, sys.argv[0] is set to the full name of the located module. Options found after -c command or -m module are not consumed by the Python interpreter's option processing but left in sys.argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in *interactive mode*. In this mode it prompts for the next command with the *primary prompt*, usually three greater-than signs (>>>); for continuation lines it prompts with the *secondary prompt*, by default three dots (...). The interpreter prints a welcome message stating its version number and a copyright notice before printing the first prompt:

```
$ python3.7
Python 3.7 (default, Sep 16 2015, 09:25:04)
[GCC 4.8.2] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this if statement:

```
>>> the_world_is_flat = True
>>> if the_world_is_flat:
... print("Be careful not to fall off!")
...
Be careful not to fall off!
```

For more on interactive mode, see *Interactive Mode*.

2.2 The Interpreter and Its Environment

2.2.1 Source Code Encoding

By default, Python source files are treated as encoded in UTF-8. In that encoding, characters of most languages in the world can be used simultaneously in string literals, identifiers and comments — although the standard library only uses ASCII characters for identifiers, a convention that any portable code should follow. To display all these characters properly, your editor must recognize that the file is UTF-8, and it must use a font that supports all the characters in the file.

To declare an encoding other than the default one, a special comment line should be added as the *first* line of the file. The syntax is as follows:

```
# -*- coding: encoding -*-
```

where *encoding* is one of the valid codecs supported by Python.

AN INFORMAL INTRODUCTION TO PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (>>> and ...): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the start of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted when typing in examples.

Some examples:

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn't take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages (for example, Pascal or C); parentheses (()) can be used for grouping. For example:

```
>>> 2 + 2
4
>>> 50 - 5*6
20
>>> (50 - 5*6) / 4
5.0
>>> 8 / 5 # division always returns a floating point number
1.6
```

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have type float. We will see more about numeric types later in the tutorial.

```
>>> i = 256*256
>>> print('The value of i is', i)
The value of i is 65536
```

The keyword argument end can be used to avoid the newline after the output, or end the output with a different string:

```
>>> a, b = 0, 1

>>> while a < 1000:

... print(a, end=',')

... a, b = b, a+b

...

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,
```

CHAPTER

FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python knows the usual control flow statements known from other languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

There can be zero or more elif parts, and the else part is optional. The keyword 'elif' is short for 'else if', and is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and halting condition (as C), Python's for statement iterates over the items of any sequence (a list or a string), in the order that they appear in the sequence. For example (no pun intended):

```
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12
```

(continued from previous page)

```
25
>>> squares[-3:] # slicing returns a new list
[9, 16, 25]
```

All slice operations return a new list containing the requested elements. This means that the following slice returns a new (shallow) copy of the list:

```
>>> squares[:]
[1, 4, 9, 16, 25]
```

Lists also support operations like concatenation:

```
>>> squares + [36, 49, 64, 81, 100]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

Unlike strings, which are *immutable*, lists are a *mutable* type, i.e. it is possible to change their content:

```
>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!
64
>>> cubes[3] = 64 # replace the wrong value
>>> cubes
[1, 8, 27, 64, 125]
```

You can also add new items at the end of the list, by using the append() method (we will see more about methods later):

```
>>> cubes.append(216) # add the cube of 6
>>> cubes.append(7 ** 3) # and the cube of 7
>>> cubes
[1, 8, 27, 64, 125, 216, 343]
```

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

```
>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> # replace some values
>>> letters[2:5] = ['C', 'D', 'E']
>>> letters
['a', 'b', 'C', 'D', 'E', 'f', 'g']
>>> # now remove them
>>> letters[2:5] = []
>>> letters
['a', 'b', 'f', 'g']
>>> # clear the list by replacing all the elements with an empty list
>>> letters[:] = []
>>> letters
```

The built-in function len() also applies to lists:

```
>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4
```

It is possible to nest lists (create lists containing other lists), for example:

```
>>> a = ['a', 'b', 'c']
>>> n = [1, 2, 3]
>>> x = [a, n]
>>> x
[['a', 'b', 'c'], [1, 2, 3]]
>>> x[0]
['a', 'b', 'c']
>>> x[0][1]
```

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can write an initial sub-sequence of the Fibonacci series as follows:

```
>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while a < 10:
... print(a)
... a, b = b, a+b
...
0
1
1
2
3
5
8</pre>
```

This example introduces several new features.

- The first line contains a *multiple assignment*: the variables a and b simultaneously get the new values 0 and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the right.
- The while loop executes as long as the condition (here: a < 10) remains true. In Python, like in C, any non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence; anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than), == (equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal to).
- The body of the loop is indented: indentation is Python's way of grouping statements. At the interactive prompt, you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot guess when you have typed the last line). Note that each line within a basic block must be indented by the same amount.
- The print() function writes the value of the argument(s) it is given. It differs from just writing the expression you want to write (as we did earlier in the calculator examples) in the way it handles multiple arguments, floating point quantities, and strings. Strings are printed without quotes, and a space is inserted between items, so you can format things nicely, like this: