

FACULDADE DE TECNOLOGIA SENAC PELOTAS Fundamentos Computacionais

Exercícios sobre Equivalências Lógicas

- Provar equivalências

Use a tabela-verdade para verificar estas equivalências.

р	V	p^V
٧	V	V
F	V	F

	<u> </u>				
р	F	pvF			
V	F	V			
F	F	F			

Use a tabela-verdade para verificar a propriedade distributiva.

p ^ (q v r) <=> (p ^ q) v (p ^ r)

	Р	(q v	11)	<u> </u>	4) V (P
	р	q	r	qvr	p ^ (q v r)
	V	V	V	V	V
ſ	V	V	F	V	V
ſ	V	F	V	V	V
ſ	V	F	F	F	F
	F	V	V	V	F
ĺ	F	V	F	V	F
ſ	F	F	V	V	F
	F	F	F	F	F

р	q	r	p ^ q	p^r	(p ^ q) v (p ^ r)
V	V	V	V	V	V
V	V	F	V	F	٧
V	F	٧	F	V	V
V	F	F	F	F	F
F	V	V	F	F	F
F	V	F	F	F	F
F	F	V	F	F	F
F	F	F	F	F	F

Use a tabela-verdade para verificar a primeira lei de De Morgan.

		<=>			
 ۱P	47	\-/	٠٠٧	v	4

<u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	17		1
р	q	p ^ q	¬ (p ^ q)
V	٧	V	F
V	F	F	V
F	٧	F	V
F	F	F	V

р	q	Гр	Γq	¬p v ¬q
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Use a tabela-verdade para verificar as propriedades de absorção.

a) $p v (p ^ q) \iff p$

<u> </u>	P *	<u>(P 4)</u>	` ' P
р	q	p^q	pv(p^q)
V	V	٧	V
V	F	F	V
F	V	F	F
F	F	F	F

р
٧
V
F
F

b) $p \land (p \lor q) \iff p$

<u> </u>	٢	(P · 9)	<u> </u>
р	q	pvq	p^(pvq)
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

Use a tabela-verdade para provar que são equivalentes

$$p < -> q < => (p ^ q) v (~p ^ ~q)$$

р	q	p <-> q
V	V	V
V	F	F
F	V	F
F	F	V

р	q	p ^ q	~p	~q	~p ^ ~q	(p ^ q) v (~p ^ ~q)
V	>	V	F	F	F	V
V	F	F	F	V	F	F
F	V	F	V	F	F	F
F	F	F	V	V	V	V

- Marque a resposta correta:

1. Assinale a alternativa que apresenta uma afirmação equivalente à afirmação: "Se Time Marvel é campeão do torneio, então Time DC não é".

- a) Se Time Marvel é campeão do torneio, então Time DC também é.
- b) Se Time Marvel não é campeão do torneio, então Time DC é.
- c) Se Time DC é campeão do torneio, então Time Marvel não é.
- d) Se Time DC é campeão do torneio, então Time Marvel também é.
- e) Se Time DC não é campeão do torneio, então Time Marvel é.

2. Um economista deu a seguinte declaração em uma entrevista: "Se os juros bancários são altos, então a inflação é baixa".

Uma proposição logicamente equivalente à do economista é:

- a) se a inflação não é baixa, então os juros bancários não são altos.
- b) se a inflação é alta, então os juros bancários são altos.
- c) se os juros bancários não são altos, então a inflação não é baixa.
- d) os juros bancários são baixos e a inflação é baixa.
- e) ou os juros bancários, ou a inflação é baixa

3. Dizer que "Ruben é alegre ou Nathalia é feliz" é, do ponto de vista lógico, o mesmo que dizer:

- a) Se Ruben não é alegre, então Nathalia é feliz; p -> q <=> ~p v o
- b) Se Nathalia é feliz, então Ruben é alegre;
- c) Se Ruben é alegre, então Nathalia é feliz;
- d) Se Ruben é alegre, então Nathalia não é feliz;
- e) Se Ruben não é alegre, então Nathalia não é feliz

4. Considere a afirmação: "Se passei no exame, então estudei muito E não fiquei nervoso".

Do ponto de vista lógico, uma afirmação equivalente a essa é:

- a) Se estudei muito, então não fiquei nervoso e passei no exame.
- b) Se passei no exame, então não estudei muito e fiquei nervoso.
- c) Passei no exame porque quem estuda muito só pode passar.
- d) Se não fiquei nervoso, então passei no exame ou estudei muito.

e) Se fiquei nervoso ou não estudei muito, então não passei no exame.

Negar voltando

$$P \rightarrow (E ^ \sim N)$$

5. Se chove então faz frio. Assim sendo:

- a) Chover é condição necessária para fazer frio.
- b) Fazer frio é condição suficiente para chover.
- c) Chover é condição necessária e suficiente para fazer frio.
- d) Chover é condição suficiente para fazer frio.
- e) Fazer frio é condição necessária e suficiente para chover.
- p é suficiente para q

6. No contexto do Cálculo Proposicional, é verdadeira a afirmação

- a) (~p ^ q) é equivalente a ~(p v q)
- b) \sim (p ^ q) é equivalente a (p -> \sim q)
- c) (p v q) é equivalente a ~(p ^ q)
- d) (p -> q) é equivalente a (p ^ ~q)
- e) \sim (p -> q) é equivalente a (\sim p v q)

~p ^ q	<=>	~(p v q)						
	р	q	~p	~p ^ q	р	q	pvq	~ (p v q)
	V	V	F	F	V	V	V	F
	V	F	F	F	V	F	V	F
	F	V	V	V	F	V	V	F
	F	F	V	F	F	F	F	V

~(p ^ q)	<=>	p -> ~q							
	р	q	p ^ q	~(p ^ q)		р	q	~q	p -> ~q
	V	V	V	F	a	V	V	F	F
	V	F	F	V		V	F	V	V
	F	V	F	V		F	V	F	V
	F	F	F	V		F	F	V	V

7. Meninas da mesma classe de uma escola foram a um passeio e tiraram muitas fotos. Vendo as fotos a professora reparou que:

Se Thalia e Gabriela estão em uma foto então Anna não está.

Uma frase que tem o mesmo valor lógico da frase acima é

- a) Se Anna não está em uma foto então Thalia e Gabriela estão.
- b) Se Thalia e Gabriela não estão em uma foto então Anna está.
- c) Se Thalia ou Gabriela não estão em uma foto então Anna está.
- d) Se Anna está em uma foto então Thalia e Gabriela não estão.
- e) Se Anna está em uma foto então Thalia não está ou Gabriela não está.

Negar voltando