

October 17, 2019

Gavin Ha, Ph.D.

Assistant Member

Public Health Sciences

Overview

I. Sequence data

II. Tools for analyzing and visualizing sequencing data

III.Genome variant analysis

Overview: Learning Objectives

1. Sequence data

- Databases and online resources for sequence data
- Learn the common sequence data file formats

2. Tools for sequencing data

- Tools to query, inspect, visualize an aligned sequence file
- Learn the contents of sequence data files
- Learn to generate sequencing metrics and to process sequence data
- Learn about Python and R libraries/packages to read sequence data

3. Genome variant analysis

- Types of genomic variation
- Tools to predict genomic variations
- Learn the common file formats for variation data
- Databases and online resources for human variation data

Sequence Data: International Consortia and Projects

- 1. What is DNA/RNA sequencing?
 - Types of nucleic acids
 - Types of sequencing platforms

Slides on sequencing projects and consortia

Disclaimer about lecture:

Focused on short read sequencing data

Variant analysis on genomes and less about transcriptomes

No single-cell sequencing data

Repositories/Databases for sequence data

1.NCBI Sequence Read Archive (SRA)

- Publicly available data submitted from studies (e.g. Gene Expression Omnibus [GEO])
 - https://www.ncbi.nlm.nih.gov/gds/
 - Controlled access (e.g. dbGaP)

2. European Genome Phenome Archive (EGA)

https://www.ebi.ac.uk/ega/home

3.NIH NCI Genomic Data Commons (GDC) Data Portal

- https://portal.gdc.cancer.gov/
- Harmonized Cancer Datasets

Sequence Read Archive (SRA) & GEO example (GSE71378)

Sequence Read

GSE71378 CH01.bb

GSE71378_IH01.bb

GSE71378_IH02.bb

SRA Run Selector 2

Contributor(s) Citation(s)	Shendure J Snyder MW, Kircher M, Hill AJ, Vivo Nucleosome Footprint tha 14;164(1-2):57-68. PMID: 267	t Informs I		
Submission date Last update date Contact name Organization name Department Lab Street address City State/province ZIP/Postal code Country				
Platforms (1)	GPL11154 Illumina HiSeq 200	0 (Homo sa	piens)	
Samples (60)	GSM1833219 BH01 GSM1833220 IA01 GSM1833221 IA02			
Relations BioProject SRA	PRJNA291063 SRP061633			
Download family	1		F	ormat
SOFT formatted fa	7 - 3		_	OFT 2
MINIML formatted				IINIML 2
Series Matrix File(S)		Т	XT 🛮
Sup	plementary file	Size	Download	File type/resource
GSE71378_BH01.	bb	311.8 Mb	(ftp)(http)	ВВ

325.0 Mb (ftp)(http)

319.7 Mb (ftp)(http)

296.6 Mb (ftp)(http)

248.3 Mb (ftp)(http) BB

BB

BB

Sequence Read Archive (SRA) & GEO example (GSE71378)

SRA Toolkit required to download and extract .sra files

Download .sra file

```
prefetch SRR2130004
```

Convert .sra file to fastq

```
fastq-dump SRR2130004 # use accession
fastq-dump SRR2130004.sra # use file if already downloaded
```

Convert .sra file to SAM/BAM file

```
# will write data to a SAM file
sam-dump --header SRR2130004.sra > SAMN03160688.sam
# will write data to a BAM file
sam-dump --header SRR2130004.sra | samtools view -bS - > BRCA_IDC_cfDNA.bam
```


Sequence Data: File formats

Sequences

- Genome sequences FASTA (.fasta or .fa)
- Sequenced reads FASTQ (.fastq or .fq)

Sequence Alignment/Map Format

- https://samtools.github.io/hts-specs/SAMv1.pdf
- Sequence Alignment SAM (.sam)
- Binary Alignment BAM (.bam)

Sequence Data: Sequence alignment

Burrows-Wheeler Aligner, bwa (http://bio-bwa.sourceforge.net/)

- aln for 35bp to 100bp reads
- mem for reads with length 70bp to 1Mb (Recommended for most)

```
# If two fastq files, one for each mate of paired-end reads
bwa mem -M reference.fa BRCA_IDC_cfDNA_R1.fq BRCA_IDC_cfDNA_R2.fq > BRCA_IDC_cfDNA.bam

# If single fastq file with paired-end reads interleaved
bwa mem -M -p reference.fa BRCA_IDC_cfDNA.fq > BRCA_IDC_cfDNA.bam
```


Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [PMID: 19451168]

Sequence Data: Inspecting and Reading SAM/BAM Files

SAMtools (http://www.htslib.org/)

Indexing

```
samtools index BRCA_IDC_cfDNA.bam #required for all BAM files
```

File operations

```
samtools sort BRCA_IDC_cfDNA.bam #sort by coordinate
```

Statistics

```
samtools flagstat BRCA_IDC_cfDNA.bam #get general alignment metrics
```

Viewing

```
# view header information
samtools view -H BRCA_IDC_cfDNA.bam

# view aligned reads at chr17:25,000,000
samtools view BRCA_IDC_cfDNA.bam 17:37844393
```


https://samtools.github.io/hts-specs/SAMv1.pdf

A. Header information

```
samtools view -H BRCA IDC cfDNA.bam
       VN:1.2
@HD
               SO:coordinate
@SQ
       SN:1
               LN:249250621
@SQ
       SN:2 LN:243199373
@SQ
       SN:3
             LN:198022430
                                               Show description
@SO
       SN:4
             LN:191154276
                                               One field per slide
@SO
       SN:5
             LN: 180915260
@SQ
       SN:6
             LN:171115067
@SO
       SN:7
             LN:159138663
@SO
       SN:8
             LN:146364022
@SQ
       SN:9
               LN:141213431
. . .
@RG
       ID:P12.17.7 Breast
```


https://samtools.github.io/hts-specs/SAMv1.pdf

A. Header information

- @нр: Header line
 - SO: Sorting order of alignments (unknown, unsorted, coordinate, queryname)
- @SD: Reference sequence dictionary
 - SN: Reference sequence name typically, one row for each chromosome
 - LN: Length of reference sequence
- @RG: Read group
 - ID: Read group identifier (must be unique)
 - PL: Platform or technology used (e.g. ILLUMINA)
 - SM: Sample ID and/or pool being sequenced
- @PG: Program/tool information
 - ID: Unique name, PN: Program name; CL: Command line

https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment information

Show description
One field per slide

https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment Format

- 1. QNAME: query (read) template name
- 2. FLAG: bitwise value describing the alignment
 - e.g. 0x4 (=4) read is unmapped; 0x2 (=2) proper pair; 0x400 (=1024) PCR duplicate
- 3. RNAME: reference sequence name (i.e. chr1 or 1)
- 4. POS: position of aligned read (leftmost; 1-based)
- 5. MAPQ: Mapping quality
- 6. CIGAR: Code string to describe read alignment sequence match to reference
- 7. RNEXT: reference sequence name of mate read
- 8. PNEXT: position of mate read
- 9. TLEN: template (read) length; 0 if mates on different chromosomes
- 10.SEQ: sequence of mapped reads on forward genomic strand
- 11.QUAL: base qualities (Phred-scale)

https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment Format: CIGAR string (common operators)

M	alignment match (sequence match or mismatch)
- 1	insertion relative to reference
D	deletion relative to reference
S	soft clipping (mismatch bases included in SEQ)
Н	hard clipping (mismatch bases excluded in SEQ)
N	skipped sequence from reference
=	sequence match
X	sequence mismatch

Reference: GACCTTACTTCATCTTGTG--CTTACTATCAAGTGATTA

Read: TTACTT----TTCTGAACTTACTGCTCCTA What is the CIGAR?

Tools for Sequencing Data: Overview

1. Inspecting and Reading SAM/BAM files

SAMtools

2. Interactive Visualization

- Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)
- BioViz (https://bioviz.org/)
- Table (https://ics.hutton.ac.uk/tablet/)

3. Sequencing metrics and Processing

- SAMtools
- Picard Tools
- Genomic Analysis Toolkit (GATK)

4. Genome Variation Analysis

Tools for Sequencing Data: Interactive Visualization

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

Tools for Sequencing Data: Interactive Visualization

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

Tools for Sequencing Data: Interactive Visualization

m chr17:37,868,259

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

314M of 436M

Tools for Sequencing Data: Processing

Picard Tools & GATK4: Best practices

- 1. Mark Duplicates
 - MarkDuplicates + SortSam (Picard)
- 2. Base Quality Score Recalibration (BQSR)
 - 1. BaseRecalibrator (GATK4)
 - 2. ApplyBQSR (GATK4)

```
java -jar picard.jar \
MarkDuplicates \
INPUT=BRCA_IDC_cfDNA.bam \
REMOVE_DUPLICATES=false \
OUTPUT=BRCA_IDC_cfDNA.marked_duplicates.bam \
METRIC_FILE=BRCA_IDC_cfDNA.markDupMetrics.txt
```


Tools for Sequencing Data: Sequencing Metrics

Picard Tools & GATK4: Best practices

- 3. Generate alignment metrics
 - a. CollectMultipleMetrics
 - CollectAlignmentSummaryMetrics
 - CollectInsertSizeMetrics
 - b. Collect assay-specific metrics
 - CollectWgsMetrics Whole genome sequencing
 - CollectHsMetrics Hybrid Selection (i.e. whole exome)
 - CollectRnaSeqMetrics RNA-seq
 - CollectTargetedPcrMetrics Targeted PCR amplicon sequencing
 - C. EstimateLibraryComplexity
 - a. Estimates the number of unique molecules in the library

Tools for Sequencing Data: Sequencing Metrics

Picard Tools & GATK4: Best practices

3. Generate alignment metrics: (a) CollectAlignmentSummaryMetrics

```
java -jar picard.jar CollectAlignmentSummaryMetrics \
INPUT=BRCA_IDC_cfDNA.bam \
OUTPUT=BRCA_IDC_cfDNA.alignMetrics.txt \
REFERENCE_SEQUENCE=hs37d5.fa \
```

CATEGORY	TOTAL_READS	PF_READS	PCT_PF_ READS	PF_READS_ ALIGNED	PCT_PF_READS _ALIGNED	PF_ALIGNED_ BASES	PF_HQ_ALIGNED _READS	PF_HQ_ALIGNED _BASES	MEAN_READ_ LENGTH	STRAND_ BALANCE	PCT_CHIMERAS
FIRST_OF_PAIR	49333221	49333218	1	49333218	1	1920603633	42832799	1667902478	39	0.50011	0.019043
SECOND_OF_PAIR	49333221	49333218	1	49333218	1	1918882942	42822426	1665977301	39	0.500715	0.019904
PAIR	98666442	98666436	1	98666436	1	3839486575	85655225	3333879779	39	0.500412	0.019474
UNPAIRED	3371706	3349869	0.993523	3349869	1	106596546	2050309	69312874	31.872292	0.501895	0

http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics

Tools for Sequencing Data: Sequencing Metrics

Picard Tools & GATK4: Best practices

3. Generate alignment metrics: (a) CollectWgsMetrics

```
java -jar picard.jar CollectWgsMetrics \
INPUT=BRCA_IDC_cfDNA.bam \
OUTPUT=BRCA_IDC_cfDNA.alignMetrics.txt \
REFERENCE_SEQUENCE=hs37d5.fa \
```

2900340137 1.053882 1.383867 1 0.137741 0 0.578236 0.015963	GENOME_TERRITORY	MEAN_COVERAGE	SD_COVERAGE	MEDIAN_COVERAGE	PCT_EXC_MAPQ	PCT_EXC_DUPE	PCT_1X	PCT_5X
	2900340137	1.053882	1.383867	1	0.137741	0	0.578236	0.015963

https://broadinstitute.github.io/picard/picard-metric-definitions.html#CollectWgsMetrics.WgsMetrics

Tools for Sequencing Data: Accessing BAM files in R & Python

Python

PySam

https://pysam.readthedocs.io/en/latest/api.html

R and Bioconductor

- Rsamtools
 - Import BAM files into R
 - View the header information
 - Accessing read sequences, aligned positions, CIGAR, read names, etc
 - Large BAM files can be read in chunks to optimize memory
 - Create new BAM files using "Views" of a subset of reads

https://bioconductor.org/packages/release/bioc/vignettes/Rsamtools/inst/doc/Rsamtools-Overview.pdf

Genome Variant Analysis: Overview

- 1. Types of genomic variation
- 2. Visualization using IGV
- 3. Tools for Predicting Genome Variation
- 4. File Formats for Variation Data

5. Variant Annotation Tools

6. Variant databases

Genome Variant Analysis: Types of Genomic Variation

Variant or Mutation or Alteration or Polymorphism)

- Changes in the genome sequence of a sample compared to a reference sequence
- Chromosomes: 22 autosomal pairs + 1 sex pair
 - Each set inherited from maternal and paternal germline cells

Germline Variant

- Variant inherited from one or both parental chromosomes
- Source of genetic differences between ancestral populations and individuals
- Polymorphism: >1% frequency in a population

Somatic Variant

- Mutation acquired during individual's lifetime
- Important to identify in sporadic cancers and other non-familial diseases

Genome Variant Analysis: Types of Genomic Variation

a. Single nucleotide base substitutions

- Germline single nucleotide polymorphism (SNP)
- Somatic single nucleotide variant (SNV)

b. Small insertions or deletions

Germline or somatic insertion or deletion (INDEL)

c. Copy number changes

- Germline copy number variant (CNV) or polymorphism (CNP)
- Somatic copy number variant (CNV) or alterations (CNA)

d. Structural rearrangements

Germline or Somatic structural variant (SV)

Genome Variant Analysis: Single Nucleotide Polymorphism

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)

Heterozygous SNP with 37 reads containing the variant and having depth 79 reads

37/79 (47%) variant allele fraction (VAF)

Genome Variant Analysis: Single Nucleotide Polymorphism

Human hg19

chr17

chr17:37,868,691-37,868,742

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)

Genome Variant Analysis: Single Nucleotide Variant (SNV)

 Somatic SNV requires comparing case (tumor) with control (PBMC)

Potential SNV with 128/342 (37%) VAF

p.V1181I

Genome Variant Analysis: Single Nucleotide Variant (SNV)

Genome Variant Analysis: Insertion & Deletion (INDEL)

- 1 to 10,000 bps size range
- Can lead to in-frame or frame-shift mutations
- Recall: CIGAR strings

Genome Variant Analysis: Tools to Predict SNP/SNV/INDEL

- 1. GATK4 (https://software.broadinstitute.org/gatk/)
 - a.HaplotypeCaller
 - Call germline SNPs and INDELs using local reassembly of haplotypes
 - Variant Quality Score Recalibration (VQSR)
 - VariantRecalibrator + ApplyVQSR
 - b. Mutect2
 - Call somatic SNVs using with tumor and normal pairing
 - https://software.broadinstitute.org/gatk/documentation/tooldocs/4.beta.5/ org broadinstitute hellbender tools walkers mutect Mutect2.php
- 2. Strelka (https://github.com/Illumina/strelka, Kim et al. Nature Methods, 2018)
- 3. Others: VarScan2, SomaticSniper, MuSE, LoLoPicker, deepSNV, FreeBayes, Platypus,
 - CaVEMan, DeepVariant, JointSNVMix2, ShearWater,

Genome Variant Analysis: Copy Number and Structural Variation

Genome Variant Analysis: Structural Variation

Deletion

Genome Variant Analysis: Structural Variation

Deletion

Tandem Duplication

Genome Variant Analysis: Structural Variation

Genome Variant Analysis: Tools to Predict SVs

1.Germline SV

- GATK4
- LUMPY (https://github.com/arq5x/lumpy-sv)
- DELLY (<u>https://github.com/dellytools/delly</u>)
- Manta (<u>https://github.com/Illumina/manta</u>)

2. Somatic SV

- BreakDancer (https://github.com/genome/breakdancer)
- SvABA (https://github.com/walaj/svaba)
- 3. Others: Comparison of 69 SV tools (Kosugi et al. *Genome Biol*, 2019)

Genome Variant Analysis: Copy Number Variation

Genome Variant Analysis: Tools to Predict CNVs

1. Germline CNV

- GATK4
- DNAcopy (https://github.com/veseshan/DNAcopy)
- Others: cn.MOPS, VarScan2

2. Somatic CNV for Cancer

- ASCAT (<u>https://github.com/Crick-CancerGenomics/ascat</u>)
- ABSOLUTE (https://software.broadinstitute.org/cancer/cga/absolute)
- TITAN (https://github.com/gavinha/TitanCNA)
- Battenberg (<u>https://github.com/cancerit/cgpBattenberg</u>)
- Others: CNVkit, Sequenza, ichorCNA, HMMcopy

Genome Variant Analysis: Common Variant File Formats

a. Variant Call Format (VCF)

- http://samtools.github.io/hts-specs/VCFv4.2.pdf
- Used mostly for SNV/SNP, INDEL, and SV

b. Mutation Annotation Format (MAF)

- https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/
- http://software.broadinstitute.org/software/igv/MutationData
- Tab-delimited format containing columns for mutation information and annotations
- Used primarily for SNV/SNP and INDEL data

c. Browser Embedded Data (BED)

- a. https://bedtools.readthedocs.io/
- b. Used for any genomic features/region and annotations, including CNV and SV (BEDPE)

d. Others

- a. http://genome.ucsc.edu/FAQ/FAQformat
- b. GFF, WIG/bigWIG, etc.

Genome Variant Analysis: Variant Call Format (VCF)

http://samtools.github.io/hts-specs/VCFv4.2.pdf

a. Header information

```
##fileformat=VCFv4.2
##GATKCommandLine=<ID=HaplotypeCaller,CommandLine="HaplotypeCaller">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">
##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype">
##FORMAT=<ID=CT,Number=1,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specification">
##FORMAT=<ID=PS,Number=1,Type=Integer,Description="ID of Phase Set for Variant">
##FILTER=<ID=PASS,Description="All filters passed">
##FILTER=<ID=DLowQual,Description="Low quality">
##FILTER=<ID=LowQual,Description="Low quality">
##FILTER=<ID=LowQual,Description="Low quality">
##FILTER=<ID=LowQual,Description="Low quality">
##FILTER=<ID=DLowQual,Description="Low quality">
##FILTER
```

b. Variant record

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	Sample_1
chr1	11542	•	A	Т	49.77	PASS	AC=1; AF=0.5; AN=2; DP=4	GT:AD:DP:GQ:PL:PS	0 1:2,2:4:78:78,0,78

Genome Variant Analysis: Variant Call Format (VCF)

http://samtools.github.io/hts-specs/VCFv4.2.pdf

- c. Genotype Field (GT)
 - a. 0=Reference allele, 1=Alternate allele
 - b. 0/1=heterozygous, 0/0 or 1/1=homozygous
 - c. 0|1 or 1|0 = heterozygous (phased)

SNP	S1	S2	S 3
Reference	A	T	G
Haplotype 1	A	С	G
Haplotype 2	С	Т	A
GT (unphased)	0/1	0/1	0/1
GT (phased)	0 1	1 0	??

Haplotype 1 | Haplotype 2

$$C(1) \mid T(0)$$

Genome Variant Analysis: Variant Annotation Tools

ANNOVAR (http://annovar.openbioinformatics.org)

SnpEff (http://snpeff.sourceforge.net)

SIFT (https://sift.bii.a-star.edu.sg/) - predict amino acid substitution effects on protein function

GATK VariantAnnotator

VariantAnnotation R Package (https://bioconductor.org/packages/release/bioc/ httml/VariantAnnotation.html)

Variant Annotation Integrator (USCS, https://genome.ucsc.edu/cgi-bin/hgVai)

Genome Variant Analysis: Variant Databases

1000 Genomes Project (https://www.internationalgenome.org/)

dbSNP (https://www.ncbi.nlm.nih.gov/snp/)

dbVar (https://www.ncbi.nlm.nih.gov/dbvar/)

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)

Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/)

Lek et al. Nature, 536, 285-91 (2016)

Genome Aggregation Database (gnomAD, https://gnomad.broadinstitute.org/)

Karczewski et al. bioRxiv (2019)

Genome Data Commons (https://portal.gdc.cancer.gov/)

