

## **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

- Summary of methodologies
  - Data Collection from SpaceX API and Web scraping (Wiki)
  - Data Wrangling and Preprocessing
  - Exploratory Data Analysis
    - SQL
    - Data Visualization
  - Interactive Visual Analysis
    - Geographical Data (Folium)
    - Statistic Data (Dashboard)
  - Machine Learning Prediction
- · Summary of all results
  - Exploratory Data Analysis
  - · Interacting with the Data
  - Machine Learning Predictions

#### Introduction

Today we are in the middle of the Commercial Space era. The space companies are working on making Space travel more affordable. Reusing the First Stage of a rocket means great savings and it is a significant factor of the cost of a rocket launch.

Being able to understand the historical data and predict the probability of a successful recovery of the First Stage of a rocket will provide a better estimate of the cost of a launch.

It could also point to other information like:

- What model of rocket has more recovery successes?
- Is there better locations for launching that improve the probability of recovery?

Let's see what story the data is telling us!!



## Methodology

#### **Executive Summary**

- Data collection methodology:
  - Data Collection Stage 1: SpaceX API <a href="https://api.spacexdata.com/v4/">https://api.spacexdata.com/v4/</a>
  - Data Collection Stage 2: Web Scraping from Wiki https://en.wikipedia.org/w/index.php?title=List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches&oldid=1027686922
- · Perform data wrangling
  - NULL values were replaced for Numeric fields (PayloadMass) using the PayloadMass mean
  - One-hot encoding was applied to Categorical Features.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Logistic Regression
  - SVC
  - Decision Tree
  - KNN

### **Data Collection**

#### Data was collected from 2 Sources:

- SpaceX API
  - Rocket Data
  - Launch Pads Data
  - Payloads Data
  - Cores Data
  - Historical Data
- Web scraping Falcon 9 and Falcon Heavy Launches Records from Wikipedia.

# Data Collection – SpaceX API



### Data Collection – Scraping

VISIT FOR REFERENCE: https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/7a2dd0a04ab13f2c63c0a098237c154402799939/02%20-%20jupyter-labs-webscraping.ipynb Use Create an BeautifulSoup() Extract all empty column/variable Request the to create a Identify dictionary Falcon9 Launch BeautifulSoup names from the relevant with the Wiki from URL object from a HTML table columns columns header response text keys content. Loop the BeautifulSoup Convert the Table to extract The end dictionary into a the data using the "td" identifier dataframe. into the dictionary values

### **Data Wrangling**

VISIT FOR REFERENCE: https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/7a2dd0a04ab13f2c63c0a098237c154402799939/03%20-%20labs-jupyter-spacex-Data%20wrangling.ipynb

- Now we need to convert the data in a format it is meaningful and provides us useful information.
- This involves classification of the data based on different characteristics or column keys.
- We reviewed the following attributes:

| Flight Number | Date | Booster Version | Payload Mass | Launch Site | Outcome(0/1)         |
|---------------|------|-----------------|--------------|-------------|----------------------|
| Grid Fins     | Legs | Block           | Reused count | Serial      | Longitude / Latitude |

 Ordering and grouping the data based on these characteristics will allow us to identify relationship that leads us to decision making strategies in order to increment the possibilities of a successful first stage recovery and reuse in future launches.

#### **EDA** with Data Visualization

VISIT FOR REFERENCE:

https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/7a2dd0a04ab13f2c63c0a098237c154402799939/05%20-%20jupyter-labs-eda-dataviz.ipynb.ipynb

- Catplot: Categorize the Launches by Launch Site versus Payload Mass
- Scatterplot:
  - Compared PayloadMass against Launch Site. A different view.
  - FlightNumber versus the Orbit, having different colors according the Outcome.
  - Compared PayloadMass against Orbit, again using different colors depending on the Outcome.
- Barplot: To have a visual of the average successful rate classified by Orbit.
- Lineplot: Map the success/failure rate through the years 2010-2020.
- Piechart: Show the % of success/failure of launches per Launch Site

#### EDA with SQL (part 1)

VISIT FOR REFERENCE: https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/7a2dd0a04ab13f2c63c0a098237c154402799939/04%20-%20jupyter-labs-eda-sql-coursera\_sqllite.ipynb

- Display the names of the unique launch sites in the space mission %sql select distinct Launch\_Site from SPACEXTABLE
- Display 5 records where launch sites begin with the string 'CCA' %sql select \* from SPACEXTABLE where Launch\_Site like'CCA%' limit 5
- Display the total payload mass carried by boosters launched by NASA (CRS)
   %sql select SUM(PAYLOAD\_MASS\_KG\_) from SPACEXTABLE where Customer like 'NASA (CRS)'
- Display average payload mass carried by booster version F9 v1.1
   %sql select avg(PAYLOAD\_MASS\_\_KG\_) from SPACEXTABLE where Booster\_Version like 'F9 v1.1%'
- List the date when the first successful landing outcome in ground pad was acheived.

  SOLUTION 1: %sql select \* from SPACEXTABLE where Landing\_Outcome like 'Success%ground pad%' order by Date asc limit 1

  SOLUTION 2: %sql select min(Date) from SPACEXTABLE where Landing Outcome like 'Success%ground pad%'
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
%sql select Booster_Version from SPACEXTABLE where Mission_Outcome='Success' and Landing_Outcome like '%drone%' and PAYLOAD_MASS__KG_ > 4000 and PAYLOAD_MASS__KG_ < 6000
```

### EDA with SQL (part 2)

VISIT FOR REFERENCE: https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/49e5dcdc4a339e90a1cde994caef4bc3c8641051/04%20-%20jupyter-labs-eda-sql-coursera\_sqllite.ipynb

- List the total number of successful and failure mission outcomes
   %sql select Mission\_Outcome,count(\*) from SPACEXTABLE group by Mission\_Outcome
- List the names of the booster\_versions which have carried the maximum payload mass. Use a subquery:

```
%sql select Booster_Version from SPACEXTABLE
     where PAYLOAD_MASS__KG_=(select max(PAYLOAD_MASS__KG_) from SPACEXTABLE)
     order by Date
```

• List the records which will display the month names, failure landing\_outcomes in drone ship ,booster versions, launch\_site for the months in year 2015.

```
%sql select substr(Date,6,2) as Month, Landing_Outcome, Booster_Version, Launch_Site from SPACEXTABLE where Landing_Outcome like 'Failure%' and Date like '2015%'
```

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

```
%sql select Landing_Outcome, count(*) as Count_launches from SPACEXTBL where Date between '2010-06-04' and '2017-03-20' group by Landing_Outcome order by Count_launches desc
```

# Build an Interactive Map with Folium

VISIT FOR REFERENCE: https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/7a2dd0a04ab13f2c63c0a098237c154402799939/06%20-%20lab jupyter\_launch site location.ipynb

- Space Y Visualization using Maps
  - Mark all launch sites on a map using Circular markers and Labels.
  - Mark the success/failed launches for each site on the map using markers clusters.
  - Calculate the distances between a launch site to its proximities using the calculate distance function and the Latitude and longitude information
- Visual information in the map helps us to identify important information like:
  - Is launching site a determining factor in the success of a launch?
  - Does the distance between launching site and a specific geographical site has an impact on the successful recovery rate? For example, the distance to the Equator or to the Coast Line?

## Build a Dashboard with Plotly Dash

VISIT for REFERENCE: https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/7a2dd0a04ab13f2c63c0a098237c154402799939/07%20-%20spacex\_dash\_app.py

#### Dashboard Structure:

- SECTION 1: Pie Chart to visualize the Successful Launch rate per Launching Site, where the
  user can dynamically select a summary of ALL Launching sites or a detailed info per each
  Launching site.
- SECTION 2: Scatter Plot to visualize the Success / Failure occurrence versus the Payload Mass and classified per Booster Version (Hue). This will show the result according to the option selected in SECTION 1 (ALL Launching Sites or a specific one). The user can filter per Payload Mass range using the selection bar on top of the plot.
- These plots will let us identify how the launching site can impact the successful rate and how this relates with the Booster Version and Payload Mass of the rocket.

# Predictive Analysis (Classification)

VISIT for REFERENCE: <a href="https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/49e5dcdc4a339e90a1cde994caef4bc3c8641051/08%20-%20SpaceX\_Machine\_Learning\_Prediction\_Part\_5.ipynb">https://github.com/RoxanaJustiniano/FinalProject\_SpaceY/blob/49e5dcdc4a339e90a1cde994caef4bc3c8641051/08%20-%20SpaceX\_Machine\_Learning\_Prediction\_Part\_5.ipynb</a>

#### Methodology:

- 1. Using NumPy create an array from the Class column (Success/Failure)
- 2. Standardize the data using the Scaler to fit and transform the information.
- 3. Split the data in Training Set and Testing Set.
- 4. Apply the Machine Learning algorithms: Logistic regresson, Support Vector Machine, Decision Tree, and K-Nearest Neighbor.
- 5. Calculate each model Accuracy using the function score.
- 6. Assess the confusion matrix for each of the models.
- 7. Evaluate and compare the models using Jaccard\_Score, F1\_Score and Accuracy to determine which is the best model.

## Results Summary

- Launch success has improved over time. We observed big steps one in 2014 and the most important in 2017.
- The launching site with the highest success rate is KSC LC-39A.
- Orbits ES-L1, GEO, HEO, and SSO have the highest success rate.
- When Payload Mass is too high (>6K) the successful rate drops to zero.
- Payload mass range with the highest success rate is between 2K and 5K
- Booster version with the highest rat of success is FT.
- We can observe 2 cluster of Launch Sites, both are close to the coast line.
- Both Launch Site cluster are relatively close to the Equator, but the one tat is closer to the Equator has a higher success rate.
- Launch sites are located away from cities, highways, railways or other locations that could be affected by a failure.
- Decision Tree Model is the most accurate predictive model.



## Flight Number vs. Launch Site



- Success rate improves in time. More recent flights show higher success rate.
- The site CCAFS SLC 40 has the higher number of launches (close to 50%)
- The site VAFB SLC 4E has not been used recently
- The Success rate of most recent flights in the locations CCAFS SLC 40 and KSC LC 39A is almost 100%

## Payload vs. Launch Site

- Most of the launches are for a Payload Mass below 7,000 Kg
- The Location CCAFS SLC 40 has mixed results for Payload Mass less than 8,000 Kg, but a 100% success rate for Payload Mass higher than 12,000 Kg
- The location KSC LC 39A has a 100% success with rockets which Payload Mass is below 5,500 Kg



# Success Rate vs. Orbit Type

- 100% Success Rate
  - ES-L1
  - GEO
  - HEO
  - SSO
- ~80% Success Rate
  - VLEO
- 50 79% Success Rate
  - GTO
  - ISS
  - LEO
  - MEO
  - PO



# Flight Number vs. Orbit Type

- Success rate has improved over time. More recent launches have been more successful.
- There are orbits which show 100% success, but the sample is too small to be relevant.



# Payload vs. Orbit Type

- It seems higher Payload Mass rockets have a better success rate for certain orbits libe ISS, PO and VLEO. But still the sample is too small to reach a conclusive recommendation.
- For the orbits ES-L1, SSO, HEO, LEO, MEO the results show a higher success with lower Payload Mass.
- GTO Orbit shows mixed results for similar ranges of the Payload Mass, which probably indicates that the results are not correlated to the Orbit.



## Launch Success Yearly Trend

 The success rate has significatively improves since 2014. Two big jumps occurred in 2014 and 2017.



### **All Launch Site Names**

• Display the names of the unique launch sites in the space mission %sql select distinct Launch\_Site from SPACEXTABLE



(\*) using the function DISTINCT we remove all the duplicate values, getting the list of unique Launching Sites

## Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'
 %sql select \* from SPACEXTABLE where Launch\_Site like'CCA%' limit 5

| Date           | Time<br>(UTC) | Booster_Version | Launch_Site     | Payload                                                                         | PAYLOAD_MASS_KG_ | Orbit        | Customer              | Mission_Outcome | Landing_Outcome     |
|----------------|---------------|-----------------|-----------------|---------------------------------------------------------------------------------|------------------|--------------|-----------------------|-----------------|---------------------|
| 2010-<br>06-04 | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                   | 0                | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-<br>12-08 | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0                | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-<br>05-22 | 7:44:00       | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C2                                                     | 525              | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |
| 2012-<br>10-08 | 0:35:00       | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX<br>CRS-1                                                                 | 500              | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |
| 2013-<br>03-01 | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX<br>CRS-2                                                                 | 677              | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |

- Using the function "like" and the 'CCA%' at the end of the selection condition we can get the entries which Launch\_Site begin with "CCA"
- Using the LIMIT 5, we limit the number of entries retrieved to 5.

## **Total Payload Mass**

Display the total payload mass carried by boosters launched by NASA (CRS)
 %sql select SUM(PAYLOAD\_MASS\_\_KG\_) from SPACEXTABLE
 where Customer like 'NASA (CRS)'

```
SUM(PAYLOAD_MASS__KG_)
45596
```

- Using the function SUM(Column\_Name) we get the total for that column
- Using like command we filter the customer which contains NASA (CRS)

# Average Payload Mass by F9 v1.1

 Display average payload mass carried by booster version F9 v1.1 %sql select avg(PAYLOAD\_MASS\_\_KG\_) from SPACEXTABLE where Booster\_Version like 'F9 v1.1%'

```
avg(PAYLOAD_MASS__KG_)
2534.666666666665
```

• We get the average of the specified column using the command avg()

## First Successful Ground Landing Date

• List the date when the first successful landing outcome in ground pad was acheived.

%sql select min(Date) from SPACEXTABLE where Landing\_Outcome like 'Success%ground pad%'

min(Date) 2015-12-22

#### Successful Drone Ship Landing with Payload between 4000 and 6000

• List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
%sql select Booster_Version from SPACEXTABLE
where Mission_Outcome='Success' and
Landing_Outcome like '%drone%'
PAYLOAD_MASS__KG_ > 4000 and PAYLOAD_MASS__KG_ < 6000
```

| Booster_Version |
|-----------------|
| F9 FT B1020     |
| F9 FT B1022     |
| F9 FT B1026     |
| F9 FT B1021.2   |
| F9 FT B1031.2   |

#### Total Number of Successful and Failure Mission Outcomes

List the total number of successful and failure mission outcomes
 %sql select Mission\_Outcome,count(Mission\_Outcome) from SPACEXTABLE group by Mission\_Outcome

| Mission_Outcome                  | ${\sf count}({\sf Mission\_Outcome})$ |  |
|----------------------------------|---------------------------------------|--|
| Failure (in flight)              | 1                                     |  |
| Success                          | 98                                    |  |
| Success                          | 1                                     |  |
| Success (payload status unclear) | 1                                     |  |

# **Boosters Carried Maximum Payload**

 List the names of the booster\_versions which have carried the maximum payload mass. Use a subquery

%sql select Booster\_Version from SPACEXTABLE

where PAYLOAD\_MASS\_\_KG\_=(select max(PAYLOAD\_MASS\_\_KG\_) from SPACEXTABLE)

order by Date

| Booster_Version |
|-----------------|
| F9 B5 B1048.4   |
| F9 B5 B1049.4   |
| F9 B5 B1051.3   |
| F9 B5 B1056.4   |
| F9 B5 B1048.5   |
| F9 B5 B1051.4   |
| F9 B5 B1049.5   |
| F9 B5 B1060.2   |
| F9 B5 B1058.3   |
| F9 B5 B1051.6   |
| F9 B5 B1060.3   |
| F9 B5 B1049.7   |
|                 |

### 2015 Launch Records

List the records which will display the month names, failure landing\_outcomes in drone ship ,booster versions, launch\_site for the months in year 2015.
 %sql select substr(Date,6,2) as Month, Landing\_Outcome, Booster\_Version, Launch\_Site from SPACEXTABLE where Landing\_Outcome like 'Failure%' and Date like '2015%'

| Month | Landing_Outcome      | Booster_Version | Launch_Site |
|-------|----------------------|-----------------|-------------|
| 01    | Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
| 04    | Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

%sql select Landing\_Outcome, count(\*) as Count\_launches from SPACEXTBL where Date between '2010-06-04' and '2017-03-20' group by Landing\_Outcome order by Count\_launches desc

| Landing_Outcome        | Count_launches |  |
|------------------------|----------------|--|
| No attempt             | 10             |  |
| Success (drone ship)   | 5              |  |
| Failure (drone ship)   | 5              |  |
| Success (ground pad)   | 3              |  |
| Controlled (ocean)     | 3              |  |
| Uncontrolled (ocean)   | 2              |  |
| Failure (parachute)    | 2              |  |
| Precluded (drone ship) | 1              |  |
|                        |                |  |



# **Space X - Launch Sites**



- All Launch Sites are located in the South of US, closer to the Equator.
- All Launch Sites are close to the coastline.

## Launches Count per Launch Site and Status





- Most of the Launches took place in the Florida Location, probably because it is closer to the Equator.
- We found more successful launches in the Florida Location than in the California Location.

## Launch Site distance to the Coastline





## Interactive Dashboard Results (ALL Launch Sites)

• The Launch Site with highest success rate is KSC LC-39A



# Interactive Dashboard Results (Top Launch Site)

• With a Success rate of 76.9%



### Interactive Dashboard Results (Payoad Mass & Version)

• Among ALL Sites, the rockets with better chance of success are the Booster version FT with a Payload Mass bigger than 2k and less than 5.5k.



### Interactive Dashboard Results (Payoad Mass & Version)

• Same result is observed in the Top Site (KSC LC-39A), the rockets with better chance of success are the Booster version FT with a Payload Mass bigger than 2k and less than 5.5k.





# **Classification Accuracy**

• Decision Tree is the most accurate model for this study case.

| Model                 | Accuracy |
|-----------------------|----------|
| Logaritmic Regression | 0.833333 |
| SVC                   | 0.833333 |
| Decision Tree         | 0.944444 |
| KNN                   | 0.833333 |



#### **Confusion Matrix**

- The confusion matrix is a summary of the performance of the model.
- Here we illustrate the Decision Tree Confusion Matrix
- This model performs beter than the other models because is the one that resulted in less false positives (1 versus 3)
- Outputs:
  - 12 True positive
  - 5 True negative
  - 1 False positive
  - O False negative
- Precision = TP/(TP + FP) = 12 / 15 = 0.8
- Recall = TP / (TP + FN) = 12 / 12 = 1
- F1 Score = 2x(Precision x Recall) / (Precision + Recall)



#### Conclusions

- Launch success has improved over time. We observed big steps one in 2014 and the most important in 2017.
- The launching site with the highest success rate is KSC LC-39A.
- Orbits ES-L1, GEO, HEO, and SSO have the highest success rate.
- When Payload Mass is too high (>6K) the successful rate drops to zero.
- Payload mass range with the highest success rate is between 2K and 5K
- Booster version with the highest rat of success is FT.
- We can observe 2 cluster of Launch Sites, both are close to the coastline.
- Both Launch Site cluster are relatively close to the Equator, but the one tat is closer to the Equator has a higher success rate.
- Launch sites are located away from cities, highways, railways or other locations that could be affected by a failure.
- Decision Tree Model is the most accurate predictive model.

# **Appendix**

• GITHUB LINK:

https://github.com/RoxanaJustiniano/FinalProject\_SpaceY.git

