논리적모델링 : 관계형모델(Relational Data Model)

Introduction to Database Systems Data Modeling(Logical)

Relational Data Model

● 테이블

용어	설명
Table (Relation) 테이블(관계)	행과 열의 2차원 구조를 가진 데이터 저장 개체
Column (Field, Attribute) 열(필드, 속성)	테이블에서 세로 방향의 개별 속성
Row (Record, Tuple) 행(레코드, 튜플)	테이블에 가로로 정렬된 연결된 데이터

플레이어 번호	이름	팀 코드	위치	등번호
1	존 스미스	T123	MF	10
2	사라 존슨	T456	DF	7
3	데이비드 리	T789	MF	5

[선수 테이블]

- 도메인 제약 (Domain Constraints)
 - **속성**(Attribute)에 대한 제약
- 키 제약 (Key Constraints)
 - **릴레이션**(Relation)에 대한 제약
- 개체 무결성 제약 (Entity Integrity Constraints)
 - **기본키**(Primary Key)에 대한 제약
- 참조 무결성 제약 (Referential Integrity Constraints)
 - **외래키**(Foreign Key)에 대한 제약

- 도메인 제약 (Domain Constraints)
 - 속성 값은 원자성(atomicity)을 가지며, 도메인에서 정의된 값이어야 함
 - Composite Attribute와 Multivalued Attribute는 허용되지 않음
 - cf) 주소 = 시군구 + 상세주소
 - Null 값은 허용됨 (Not Null이 아닌 경우)

학생

<u>학번</u>	이름	나이	차량번호	취미
1	존 미상	20	01가1234	축구
2	데이비드 존슨	이십		사진, 요리

● 키 제약 (Key Constraints)

- 릴레이션의 모든 튜플(Tuples)은 서로 식별 가능해야 함
- <u>Q) 다음 중 **키 제약**을 위반하고 있는 릴레이션은?</u>

이름	나이	혈액형	전공
존 미상	20	А	컴퓨터 과학
데이비드 존슨	21	0	경영학

이름	나이	학번	주민번호
존 미상	20	1234	111-1111
데이비드 존슨	21	5678	222-2222

2

cf) **Super Key**, Candidate Key(후보키), Primary Key(기본키,주키,PK)

- 개체 무결성 제약 (Entity Integrity Constraints)
 - 기본키 (PK Primary Key) 는 UNIQUE & NOT NULL 이어야 함
 - <u>Q) 다음 중 개체 무결성 제약에 위배되지 않는 튜플은?</u>

학생

	<u>학번</u>	이름	나이	차량번호
1	1234	홍길동	20	01가1234
2	5678	강감찬	22	
NOT NULL 3	?	김유신	23	
UNIQUE 4	1234	유관순		02나3456

- 참조 무결성 제약 (Referential Integrity Constraints)
 - 외래키 (FK Foreign Key)
 - 릴레이션 R1이 릴레이션 R2를 참조하는 경우, R2의 기본키는 R1 에서 외래키로 사용됨
 - FK는 자기 자신이 속한 릴레이션을 참조할 수도 있음

학생			FK			학과		
<u>학번</u>	이름	나이	소속	멘토 FI	(학과명	정원	위치
1234	홍길동	20	MIS			MIS	100	경상관
2345	강감찬	22	MIS	1234		경영	200	경상관
3456	김유신	23	경영			컴공	100	공학관
4567	유관순	22	컴공	2345		수학	50	자연관

- 참조 무결성 제약 (Referential Integrity Constraints)
 - 릴레이션 R1 이 릴레이션 R2 를 참조하는 경우, **R1 의 FK**는…
 - (1) Null 이거나
 - (2) Null 이 아닌 경우 **R2 에 실제로 존재하는 값**으로 구성되어야 함
 - *Q) 다음 중 참조 무결성을 위배하는 튜플은?*

	학생			FK	FK
	<u>학번</u>	이름	나이	소속	멘토
$\underbrace{1}$	1234	홍길동	20	MIS	
(2)	2345	강감찬	22	MIS	1234
→ 3	3456	김유신	23		5678
4	4567	유관순	22	자동치	2345

학과

<u>학과명</u>	정원	위치
MIS	100	경상관
경영	200	경상관
컴공	100	공학관
수학	50	자연관

Constraint Violations

● *Q) 다음 연산들은 어떤 문제를 야기하는가?*

- 새 직원 〈'유관순', '555', NULL, 4〉 삽입 *개체 무결성에 위배*

- 새 직원 ⟨'이방원', '123', '456', 5〉 삽입 참조 무결성에 위배

- SSN='666' 인 직원 삭제 *참조 무결성에 위배*

이름	<u>주민번호</u>	감독자주민번호	부서번호
강감찬	111	222	5
김유신	222	888	5
이성계	333	444	4
이순신	444	888	4
정몽주	555	222	5
최무선	666	222	1
최치원	777	444	4
홍길동	888	NULL	1

부서명	부서번호	관리자주민번호
개발팀	5	222
인사팀	4	444
기획팀	1	666

Relational Data Modeling

- ER-to-Relational Model 변환 규칙
- Step 1: Mapping of Strong **Entity** Types
- Step 2: Mapping of Weak **Entity** Types
- Step 3: Mapping of Binary 1:N Relationship Types
- Step 4: Mapping of Binary 1:1 Relationship Types
- Step 5: Mapping of Binary M:N Relationship Types
- Step 6: Mapping of **N-ary Relationship** Types
- Step 7: Mapping of **Multivalued attributes**

Relational Schema

ER Diagram→Relational Schema

STEP 1 - Strong Entity Types

- STEP 1
- 각 strong entity E에 대응되는 릴레이션 R을 생성함
 - E의 Single-valued/Simple/Stored attributes를 모두 R의 속성으로 포함시킴
 - Composite Attributes의 경우 각 하위 컴포넌트만 포함시킴
 - Multivalued Attributes는 추후 고려
- E의 키 속성 중 하나를 선택하여 R의 기본키(Primary Key)로 정함
 - Composite Key의 경우, 이에 속한 속성들의 조합이 R의 기본키가 됨

STEP 1 - Strong Entity Types

• STEP 1

STEP 2 - Weak Entity Types

• STEP 2

- 각 weak entity W에 대응되는 릴레이션 R을 생성하고, W의 Single-valued/Simple/Stored attributes를 모두 R 의 fields로 포함시킴
- W의 식별 개체 E에 대해서, E의 기본키를 R의 외래키로 포함시킴
- R의 기본키는 E의 기본키와 W의 부분키(Partial Key)의 조합으로 구성

부양가족

<u>직원_</u> <u>주민번호</u>	<u>부양가족명</u>	성별	생년월일	관계
---------------------------	--------------	----	------	----

STEP 3 - Binary 1:N Relation Types

- STEP 3
- 각 Binary 1:N Relationship RS에 대해, 이 Relationship에 참여하는 두 entity를 각각 S(N-side)와 T(1-side)라고 하면...
 - T의 기본키를 S의 외래키로 포함
 - RS에 속한 모든 simple attributes를 S에 포함시킴

STEP 3 - Binary 1:N Relation Types

STEP 4 - Binary 1:1 Relation Types

- STEP 4
- 각 Binary 1:1 Relationship RS에 대해, 이 Relationship에 참여하는 두 entity를 각각 S와 T라고 하면…
- (대안 1) T → S 방향
 - T의 기본키를 S의 외래키로 포함
 - RS에 속한 모든 simple attributes를 S에 포함시킴
- (대안 2) S → T 방향
 - S의 기본키를 T의 외래키로 포함
 - RS에 속한 모든 simple attributes를 T에 포함시킴

STEP 4 - Binary 1:1 Relation Types

부서

부서명 <u>부서번호</u>	관리자_ 주민번호	관리시작일
-----------------	--------------	-------

STEP 5 - Binary M:N Relationship Types

• STEP 5

- 각 Binary M:N Relationship RS에 대해, 이 Relationship에 참여하는 두 entity를 각각 S와 T라고 하면…
- RS에 대응되는 새로운 릴레이션 R을 생성함
- RS에 속한 모든 simple attributes를 R에 포함시킴
- S와 T의 기본키를 R의 외래키로 포함
 - R의 기본키는 S에서 온 외래키와 T에서 온 외래키의 조합으로 구성

참여

<u>직원</u> <u>프로젝트</u>	주당
<u>주민번호</u> <u>번호</u>	근무시간

STEP 6 - N-ary Relationship Types

• STEP 6

- 각 N-ary Relationship RS에 대해, 새로운 릴레이션 R을 생성함
 - (N > 2 인 경우에 해당됨)
- RS의 모든 simple attributes를 R의 속성으로 포함시킴
- RS에 참여하는 모든 entity의 기본키를 R의 외래키로 포함시킴
- R의 기본키는 모든 외래키의 조합으로 구성됨
 - 단 대응수가 1인 관계로부터 가져온 외래키는 기본키의 조합에서 빠짐

STEP 7 - Multivalued attributes

• STEP 7

- Entity E에 속한 multivalued attribute MA에 대해 릴레이션 R 생성
- MA의 속성을 R에 포함시킴 (→ attribute A)
- E의 기본키 K를 R의 외래키로 포함시킴
- R의 기본키는 K와 A의 조합으로 구성됨

부서명 보서번호 관리자 - 주민번호 관리시작일

END