Assignment 8

Steven Raaijmakers — Irene Vega Ramón November 2019

Part I

Q1. See Figure 1.

Figure 1: Visualization of simulation of run.

Q2. a) See b).

- b) Values for $\eta X12$ (first value is X_{11} , second value corresponds to X_{13}):
 - $\eta X12=0$ Average square residuals=0.105761359
 - $\eta X12 = 0.05$ Average square residuals= 0.106122618

- $\eta X12=0.1$ Average square residuals= 0.080643816
- $\eta X12=0.15$ Average square residuals=0.065455519
- $\eta X12 = 0.20$ Average square residuals=0.057852398
- $\eta X12=0.25$ Average square residuals=0.054834022
- $\eta X12=0.3$ Average square residuals=0.057956277
- $\eta X12=0.35$ Average square residuals=0.049806877
- $\eta X12=0.4$ Average square residuals=0.161059962
- $\eta X12=0.45$ Average square residuals=0.05250719
- $\eta X12=0.5$ Average square residuals=0.051689699
- c) The new best value of the speed factor nX_{12} is 0.35.

Figure 2: States X11 and X12 with Nx12 = 0.35

Figure 3: Remaining deviations for different Nx12

- d) 51 values, as there are 51 points between 0 and 0.5 if each point is a = 0.1 increase starting from 0.
- e) dt=0.1 presents a smoother graph, as more points are calculated. However, it does not affect the result that $\eta X12=0.35$ is the most precise result.

Part II

Q3. a) See Table:

DOC TOOLO.	
m_s^{tuning}	
X_1	1
X_2	2
$\overline{X_3}$	3
X_4	4
X_5	5
X_6	6
X_7	7
X_8	8
X_9	9
$\overline{X_{10}}$	10
X_{11}	11
X_{12}	12

- b) $S_1 = 0.8872227907483419$
 - $S_2 = 0.11851401889617294$
 - $S_3 = 0.3922792803550513$
 - $S_4 = 0.009228958845663807$
 - $S_5 = 0.3528136642249054$
 - $S_6 = 0.19146882553206565$
 - $S_7 = 0.9840477022290043$
 - $S_8 = 0.975840692726246$
 - $S_9 = 0.04693090767555643$
 - $\bullet \ S_{10} = 0.9999869084786855$
 - $S_{11} = 0.003666540720424448$
 - $S_{12} = 0.07723510802738674$
 - RMSE = 0.017079936684310442
- c) See Figure 4 for the RMSE as a function of the number of iterations.
- d) See Figure 5.
- e) Yes the RMSE is in accordance to the answer in B.
- Q4. a) Same as above.
 - b) $S_1 = 0.9107343324367214$
 - $\bullet \ S_2 = 0.0014907327786511176$
 - $S_3 = 0.05582283573994806$
 - $S_4 = 0.7708301498853044$
 - $S_5 = 0.3207627960888332$
 - $S_6 = 0.11497904154899773$
 - $S_7 = 0.35071576587881603$

Figure 4: RMSE as a function of iterations.

Figure 5: Result of simulation versus the empirical data points.

- $S_8 = 0.14290414025707876$
- $S_9 = 0.269149413866663$
- $\bullet \ S_{10} = 0.023806261402755383$
- $S_{11} = 0.447741696018896$
- $\bullet \ S_{12} = 0.2647859873414261$

- RMSE = 0.03508473072978626
- c) See Figure 6.

Figure 6: RMSE as a function of iterations.

d) See Figure 7.

Figure 7: Result of simulation versus the empirical data points.

- e) Yes the RSME is in accordance with the results found in b).
- Q5. a) See tables below:

DCC Gabies	DOI	, ,,,					
m_{cw}^{tuning}	1	2	3	4	5	6	7
X_1							
X_2							
X_3							
X_4							
X_5	1	2	3	4	5	6	7
X_6							
X_7							
X_8							
X_9							
X_{10}							
X_{11}							
X_{12}							

 m_s^{tuning}

	3	
X	1	
X	$\overline{\zeta}_2$	
\overline{X}	3	
λ	4	

 X_{5} 8 X_{6} X_{7}

 $\begin{array}{c|c} X_8 \\ X_9 \\ X_{10} \end{array}$

 X_{11} X_{12}

- b) RMSE = 0.03724545435264507
- c) $\bullet \omega_{1,5} = 0.9995965713393494$
 - $\omega_{2,5} = 0.9998917260328566$
 - $\omega_{3,5} = 0.9959614012303794$
 - $\bullet \ \omega_{6,5} = 0.99970764007448$
 - $\omega_{7,5} = 0.9958953340738674$
 - $\bullet \ \omega_{10,5} = 0.9995795204425464$
 - $\bullet \ \omega_{11,5} = 0.9956450658127269$
 - $s_5 = 0.9997863960478829$
- d) See Figure 8.
- e)

Figure 8: Result of simulation versus the empirical data points.

Figure 9: RMSE as a function of iterations.