Логика высших порядков

P является биекцией из A в B

$$\forall x \forall y \forall z \ P(x,y) \land P(x,z) \rightarrow Eq(y,z)$$

$$\forall x \exists y \ A(x) \land B(y) \land P(x,y)$$

$$\forall y \exists x \ A(x) \land B(y) \land P(x,y)$$

$$\forall x \forall y \ \forall z P(x,z) \land P(y,z) \rightarrow Eq(x,y)$$

Логика высших порядков

P является биекцией из A в B

$$\forall x \forall y \forall z \ P(x,y) \land P(x,z) \rightarrow Eq(y,z)$$

$$\forall x \exists y \ A(x) \land B(y) \land P(x,y)$$

$$\forall y \exists x \ A(x) \land B(y) \land P(x,y)$$

$$\forall x \forall y \ \forall z P(x,z) \land P(y,z) \rightarrow Eq(x,y)$$

$\mathsf{Paв}$ номощность A и B :

$$\exists P \left[\forall x \forall y \forall z \ P(x,y) \land P(x,z) \rightarrow Eq(y,z) \right] \land \dots$$

▶ Необходимо доказать, что $\exists x P(x)$

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$
- ▶ Придем к противоречию

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$
- ▶ Придем к противоречию
- ightharpoonup Следовательно, $\exists x P(x)$

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$
- ▶ Придем к противоречию
- ightharpoonup Следовательно, $\exists x P(x)$

Ho чему равен x?

- ► *KA* известно
- ▶ $\Diamond A A$ возможно

Модальные операторы:

- ► *KA* известно
- ▶ <A A возможно</p>

Α1	Принцип объективности знания	$\mathcal{K} \mathcal{A} o \mathcal{A}$
A2	Дистрибутивность знания и конъюнкции	$K(A \wedge B) o KA \wedge KB$
	_	

АЗ Принцип познаваемости мира $A o \diamond KA$

Модальные операторы:

- ► KA известно
- $\triangleright \Diamond A A$ возможно
- Принцип объективности знания
- Дистрибутивность знания и конъюнкции Α2
- А3 Принцип познаваемости мира
 - $A \rightarrow \diamond KA$

 $KA \rightarrow A$

 $K(A \wedge B) \rightarrow KA \wedge KB$

▶ Предположим, $A \land \neg KA$

- ► KA известно
- \triangleright ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира
- ▶ Предположим, A ∧ ¬KA
- ► Πο A3, $\diamond K(A \land \neg KA)$

- $KA \rightarrow A$
- $K(A \wedge B) \rightarrow KA \wedge KB$
- $A \rightarrow \diamond KA$

- ▶ КА известно
- ▶ ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира

- $KA \rightarrow A$
- $K(A \wedge B) \rightarrow KA \wedge KB$
- $A \rightarrow \diamond KA$

- ▶ Предположим, A ∧ ¬KA
- ▶ По A3, $\diamond K(A \land \neg KA)$
- ▶ Πο A2, \Diamond ($KA \land K(\neg KA)$)

- ► KA известно
- \triangleright ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира

$$KA \rightarrow A$$

- $K(A \wedge B) \rightarrow KA \wedge KB$
- $A \rightarrow \diamond KA$

- ▶ Предположим, A ∧ ¬KA
- ▶ По A3, $\diamond K(A \land \neg KA)$
- ▶ Πο A2, \Diamond ($KA \land K(\neg KA)$)
- ► Πο Α1, ⋄(KA ∧ ¬KA)

Модальные операторы:

- ► KA известно
- \triangleright ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира
 - познаваемости мира
- ▶ Предположим, A ∧ ¬KA
- ► Πο A3, $\diamond K(A \land \neg KA)$
- ► Πο A2, ⋄(KA ∧ K(¬KA))
- ▶ Πο A1, \Diamond ($KA \land \neg KA$)
- ▶ Противоречие. Все уже познано.

 $K(A \wedge B) \rightarrow KA \wedge KB$

