ΠΟΛΥΤΕΧΝΙΚΉ ΣΧΟΛΉ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΗΛΕΚΤΡΟΝΙΚΏΝ ΥΠΟΛΟΓΙΣΤΏΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΉΣ

Επιστημονικός Υπολογισμός

Χειμερινό Εξάμηνο Εργαστηριακή Άσκηση

Καθηγητές: Ευστράτιος Γαλλόπουλος

AM	Επώνυμο	Όνομα	Έτος	
1084567	Βιλλιώτης	Αχιλλέας	4^o	

Περιεχόμενα

0	Στοιχεία υπολογιστικού συστήματος	3
1	Χρονομετρήσεις	4
	i	4
	ii	4
2	Ειδικοί επιλυτές και αραιά μητρώα	6
	i	6
	ii	6
3	Τανυστές	7
	i	7
	ii	7
4	Επίλυση ΣΘΟ συστημάτων με PCG	7

0 Στοιχεία υπολογιστικού συστήματος

ενδεικτική απάντηση
16/1/21 - 20/1/21
Custom Desktop
Windows 11 Pro 23H2
AMD Ryzen 5 5600G
3.9Ghz (base)
1
6
12
yes
2x6x32 KBytes (instruction + data),
8-way write-back
6x512 KBytes, 8-way write-back
1x16 Mbytes, 16-way write-back
528
32GB DDR4 @ 3200MHz, CL16
51.196GB/s
'23.2.0.2485118 (R2023b) Update 6'
'Intel(R) oneAPI Math Kernel Li-
brary Version 2021.3-Product Build
20210611 for Intel(R) 64 architecture
applications (CNR branch auto)'
'Intel(R) oneAPI Math Kernel Li-
brary Version 2021.3-Product Build
20210611 for $Intel(R)$ 64 architec-
ture applications (CNR branch auto)
supporting Linear Algebra PACKage
(LAPACK 3.9.0)'

Σ τοιχεία συστήματος [2]

Computer Type	LU	FFT	ODE	Sparse	2-D	3-D
Mac mini, Apple M2 @ 3.50 GHz	0.5551	0.1516	0.0767	0.2470	0.1682	0.1430
Windows 11, Intel Core i9-12900 @ 2.4 GHz	0.2516	0.1523	0.0881	0.4521	0.1890	0.2359
This machine	0.5087	0.1988	0.1574	0.4930	0.2405	0.2416
Windows 11, AMD Ryzen Threadripper(TM) 3970x @ 3.7 GHz	0.1945	0.1662	0.1723	1.2129	0.1981	0.1274
Windows 11, Intel Core i7-1185G7 @ 3.00 GHz.	0.6690	0.3013	0.1433	0.3440	0.2774	0.1461
iMac, macOS 13.2.1, Intel Core i9 @ 3.6 GHz	0.3347	0.2679	0.1336	0.2840	0.6960	0.3816
Debian 11(R), AMD Ryzen Threadripper 2950x @ 3.50 GHz	0.3384	0.2465	0.1597	1.2545	0.2516	0.1971
Windows 11, AMD Ryzen(TM) 5 Pro 6650U @ 2.9 GHz	0.6419	0.3626	0.1273	0.5449	0.3753	0.2346
MacBook Pro, macOS 11.7.2, Intel(R) Core(TM) i7 @ 2.9 GHz	0.8710	0.5960	0.2006	0.5297	1.7433	0.7368
Place the cursor near a computer name for system and version details. Before using this data to compare different versions of MATLAB, or to download an updated timing data file, see the help for the bench function by typing "help bench" at the MATLAB prompt.						

Αποτελέσματα εντολής bench

Επιστημονικός Τπολογισμός Σελίδα 3/8

1 Χρονομετρήσεις

i.

Υλοποιήθηκαν δύο αρχεία κώδικα, τα question1.m και chol_timeit.m. Το πρώτο υπολογίζει τον χρόνο εκτέλεσης της Cholesky και εμφανίζει τα απαιτούμενα γραφήματα. Η δεύτερη παρέχει εύκολη πρόσβαση στον υπολογισμό χρόνου εκτέλεσης της Cholesky.

ii.

Παρατηρούμε πως όλα τα πολυώνυμα καταφέρνουν να προσεγγίσουν τον πραγματικό χρόνο εκτέλεσης. Ειδικά, για τους χρόνους εκτέλεσης που δεν εκτελέστηκε η polyfit (150:100:1550), τα πολυώνυμα τρίτου και τέταρτου βαθμού έχουν αρκετά καλύτερη απόδοση από το δεύτερου βαθμού. Επίσης υπάρχει μεγάλη ομοιότητα μεταξύ των δύο, το οποίο σημαίνει πως ένα πολυώνυμο τρίτου βαθμού αρκεί για να υπολογιστεί ο χρόνος εκτέλεσης και άρα όντως επιβεβαιώνεται πειραματικά το Ω της Cholesky.

Εκτίμηση χρόνου Cholesky με πολυώνυμο δευτέρου βαθμού.

Εκτίμηση διαφορετικών Cholesky με το προηγούμενο πολυώνυμο δευτέρου βαθμού.

Εκτίμηση χρόνου Cholesky με πολυώνυμο τρίτου βαθμού.

Εκτίμηση διαφορετικών Cholesky με το προηγούμενο πολυώνυμο τρίτου βαθμού.

Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Εκτίμηση χρόνου Cholesky με πολυώνυμο τετάρτου βαθμού.

Εκτίμηση διαφορετικών Cholesky με το προηγούμενο πολυώνυμο τετάρτου βαθμού.

2 Ειδικοί επιλυτές και αραιά μητρώα

i.

Στα πλαίσια του ερωτήματος υλοποιήθηκαν τρεις συναρτήσεις, η num2band.m η οποία μετατρέπει τετράγωνα μητρώα σε μορφή band-storage [1] η question2.m η οποία παρουσιάζει την λύση στο ερώτημα καθώς και η band_cyclic_reduction_tridiag.m. Η τελευταία χρησιμοποιεί έξυπνους τρόπους διαχείρισης των διανυσμάτων, όπως left-right shifts, αξιοποιώντας το τριδιαγώνιο (αρχικά) σχήμα του μητρώοου έτσι ώστε να εκτελέσει την μετατροπή μόνο με πράξεις διανύσματος-διανύσματος.

ii.

Με χρήση των παραπάνω, καταφέρνουμε να παράγουμε αποτελέσματα ίδια με τον επιλυτή της MATLAB. Όσον αφορά τα διαγώνια κυρίαρχα μητρώα, μπορούμε να διακρίνουμε πως οι τιμές στις υπέρ και υπό διαγώνιους μειώνονται σημαντικά με κάθε βήμα. Παρακάτω υπάρχουν εικόνες από την εκτέλεση του κώδικα.

Normal solve

	NOIMAI BOIV		
	ans =		
Solve with cyclic reduction	14.8138	35.3094	
ans =	3.6007	1.3884	
	-5.1912	-7.4231	
14.8138 35.3094	4.1499	8.2741	
3.6007 1.3884			
-5.1912 -7.4231	6.4993	5.1754	
4.1499 8.2741	-4.8875	-1.7624	
6.4993 5.1754	4.5583	5.1699	K>> [U;D;L]
-4.8875 -1.7624	17.7059	19.5058	ans =
4.5583 5.1699			
17.7059 19.5058	1.4373	1.7637	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.4373 1.7637	15.5388	16.9689	15 -4 0 -37 0
15.5388 16.9689	-1.4728	-1.4402	K>> [U;D;L]
-1.4728 -1.4402			ans =
25.9131 27.8262	25.9131	27.8262	0 0 9.3023 -6.4815 6.2222 -36.4186 40.9894 -29.3256 -82.0000 -72.8889
12.1574 13.0776	12.1574	13.0776	-1.3953 0 0 0 0
-20.3378 -21.7510	-20.3378	-21.7510	K>> [U;D;L]
95.5182 101.9878	95.5182	101.9878	ans =
Αποτελέσματα από την	55.0102	101.5070	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
επίλυση του συστήματος	Αποτελέσμο	ατα από την	>>
Ax=b με χρήση της	επίλυση του	επίλυση του συστήματος Βήματα τ Αx=b μέσω του επιλυτή της κυκλική	
συνάρτησής που	$Ax-0$ $\mu \epsilon 0\omega t$	ou eminutify the	κυκλικής μείωσης για

MATLAB

υλοποιήθηκε.

διαγώνια κυρίαρχο μητρώο

3 Τανυστές

i.

Υλοποιήθηκαν ο πολλαπλασιασμός με τανυστή-μητρώοου καθώς και εσωτερικού (πλήρους τάξης) και εξωτερικού γινομένου τανυστή-τανυστή πάνω σε MDM (multi-dimensional matrices) δεδομένα. Οι συναρτήσεις περιέχουν βασικό έλεγχο εσφαλμένης εισόδου και εκτελούν τις πράξεις μέσω ξεδιπλώματος των διαστάσεων με συναρτήσεις MATLAB, χωρίς την χρήση βρόγχων.

ii.

Στη συνάρτηση test_tensor ο υπολογισμός του σφάλματος τροποποιήθηκε ελαφρώς, λόγω του τύπου δεδομένων. Το αποτέλεσμα είναι ίδιο με αυτό του Tensor Toolbox.

				Btemp(:,:	:,1) =		
	Atemp(:,:			3 4	3 2		
	5 5	1 5	1	Btemp(:,:	:,2) =		
Atemp(:,:,4) =	Atemp(:,:	,2) = 5 5	1		2		
4 4 5 5 1 5	Atemp(:,:		5	Btemp(:,:	:,3) =		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 1	3 5		4 1	2	
>> ttm_1084567(Atemp,X(5, 1:ndim(k)), k) ans = -4 -4 -5 -5 -1 -5	Atemp(:,:,4) =		Btemp(:,:	:,4) =		>> ttt_1084567(Atemp, Btemp, 'all') ans =	
>> Σρήση της συνάρτησης ttm		4 1 πής Ατ	5	4 4 Τανυστ		2 3	A ποτέλεσμα ttt_1084567(Atemp, Btemp,
C CIII	1 ανυσ	ing At	remb	Τ άληου	ile prei	пÞ	ccc_1004507(Acemp, Bremp,

4 Επίλυση ΣΘΟ συστημάτων με PCG

Λόγω χρονικής πίεσης το 4ο ερώτημα δεν υλοποιήθηκε :(.

Βιβλιογραφία

[1] Susan Blackford. Band storage. https://www.netlib.org/lapack/lug/node124.html, 1999.

[2] Wiki Chip. Ryzen 5 5600g. https://en.wikichip.org/wiki/amd/ryzen_5/5600g, March 18, 2022.