Examples On Asymptotic Notation

We know that Big D is defined as:

· We will give here some examples on how to find the constants 'C' and 'no'

Example 1:

100 n + 5 1

Here we can easily see that 100n +5 is $O(n^2)$

because

100n +5
$$\leq$$
 100n + n for n 7.5 $=$ 101 n \leq 101 n²

: 100n +5 is O(n2) for no=5, c=101

A150,

150,

$$100n+5 \le 100n+5n$$
, $n > 1$
 $= 105n^2$

: 100n+5 is 0(n2) for no=1, C=105

Here it is important to note that Big O gives the upper bound, so 100n+5 is 0(n²) is correct, but we can tighten the upper bound, as:

$$100n + 5 \le 100n + n$$
 for $n > 5$

$$= 101n$$
i.e. $100n + 5 \le 101n$ for $n > 5$

$$\therefore 100n + 5 \text{ is } O(n) \text{ for } n_0 = 5, C = 101.$$

Enample 2.

$$100 \, \text{n}^2 + 20 \, \text{n} + 5$$
 is $O(n^2)$

Here

$$100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$$
, $n = 125n^2$

50
$$100n^2 + 20n + 5$$
 is $0(n^2)$ for $n_0 = 1$
 $C = 125$

Alternatively,

$$100n^2 + 20n + 5 \le 100n^2 + n^2 + n^2$$
 for $n > 20$

$$= 102n^2$$

50,
$$100n^2 + 20n + 5$$
 is $O(n^2)$
for $n_0 = 20$, $C = 102$

Enample 3

3n3-20n2+5

We see that

$$3n^3 - 20n^2 + 5 \le 3n^3 + 5$$

 $\le 3n^3 + n^3$ for $n > 5$
 $= 4n^3$

So,
$$3n^3 - 20n^2 + 5$$
 is $O(n^3)$

$$\Omega(g(n)) = \begin{cases} f(n) : J \text{ positive constants } c \\ \text{and no such that } f(n) >= cg(n) \\ \forall n>no \end{cases}$$

· We give here some examples on how to find the constants c' and 'no'

Example 1

Here

Enample 2

$$100 n^2 + 20n + 5 is \Omega(n^2)$$

Here,

50,
$$100n^2 + 20n + 5$$
 is $\Omega(n)$ for $n_0 = 1$

Enample 3 3n3-20n°+5

We see that

$$3n^3 - 20n^2 + 5 \gg 3n^3 - 20n^2$$

 $\gg 3n^3 - n^3$ for $n \gg 20$
= $2n^3$

So,
$$3n^3 - 20n^2 + 5$$
 is $\Omega(n^3)$ for $n_0 = 20$

Big D is defined as

G(g(n)): {f(n): I positive constants C, and C2 and no such that 0 \(\) C_1 \(\) G(n) \(\) \

· We give here some enamples

Example 1.

100n+5 £ 101n for n 7,5
and 100n+5 \$ 100n for n 7,1

50

100n £ 100n +5 £ 101 n for não 5

C1 = 100, C2 = 101, no = 5

Example 2 100 n²+20n+5

> $100n^2 + 20n + 5 \le 102 n^2$ for $n \ge 20$ $100n^2 + 20n + 5 > 100 n^2$ for n > 1

50, $100 n^2 \neq 100 n^2 + 20n + 5 \neq 102 n^2$ for $n^2, 20$ i.e. $C_1 = 100$, $C_2 = 102$, $n_0 = 20$

Enample 3

3n3-20n2+5

Here

$$3n^3 - 20n^2 + 5 \le 4n^3$$
 for $n7.5$

3n³-20n²+5 3 2n³ for n7,20

80

$$2n^{\frac{3}{2}} \le 3n^{\frac{3}{2}} - 20n^{2} + 5 \le 4n^{\frac{3}{2}}$$
 for $n > 120$
i.e. $C_{1} = 2$, $C_{2} = 4$, $n_{0} = 20$