§6. Логарифм комплексного числа

Определение 6.1. *Логарифмом* числа $z, z \in \mathbb{C}, z \neq 0$, называется число $w, w \in \mathbb{C}$, такое, что $e^w = z$.

Запишем число z в показательной форме: $z=re^{i\phi}$, где r=|z|, $\phi=\arg z$. Пусть $u=\operatorname{Re} w$, $v=\operatorname{Im} w$, таким образом, w=u+iv. Теперь равенство $e^w=z$ запишем в виде: $e^{u+iv}=re^{i\phi}$ или $e^ue^{iv}=re^{i\phi}$. Приравняв модули левой и правой частей, получаем: $e^u=r$, значит, $u=\ln r$, где $\ln r$ — натуральный логарифм положительного числа r. Число v найдем из равенства $e^{iv}=e^{i\phi}$: из свойства 3 степени с комплексным показателем следует, что $iv=i\phi+i2k\pi$, $k\in \mathbb{Z}$, т.е. $v=\phi+2k\pi$, $k\in \mathbb{Z}$.

При всяком целом k положим $w_k = \ln r + i(\varphi + 2k\pi)$. Нетрудно увидеть, что каждое из чисел w_k , $k \in \mathbb{Z}$, является логарифмом числа z, и что только эти числа удовлетворяют определению 6.1.

Логарифм комплексного числа z, $z \neq 0$, обозначают через $\ln z$; он имеет бесконечное множество значений,

$$\ln z = \ln r + i(\varphi + 2k\pi), \ k \in \mathbb{Z}. \tag{6.1}$$

Обычно под $\ln z$ понимают какое-либо одно число из этого множества. **Пример 6.1.** Найти все значения $\ln 1$.

▶Пусть z=1. Тогда r = |z|=1, $\varphi = \arg z = 0$. Значит, каждое из чисел $w_k = \ln r + i(\varphi + 2k\pi) = i2k\pi$, $k \in \mathbb{Z}$, является логарифмом единицы, $\ln 1 = i2k\pi$, $k \in \mathbb{Z}$. Среди этих чисел только одно вещественное: $w_0 = 0$. \blacktriangleleft

Пример 6.2. Найти все значения $\ln x$, где x < 0.

▶Пусть z = x, тогда r = -x, $\varphi = \pi$. Каждое из чисел $w_k = \ln |-x| + i(\pi + 2k\pi)$, $k \in \mathbb{Z}$, является логарифмом отрицательного числа x. Среди этих чисел нет вещественных. Таким образом, известное утверждение школьной алгебры «отрицательные числа не имеют логарифмов» следует понимать так: логарифмы отрицательных чисел не имеют вещественных значений. \blacktriangleleft