Linear Methods Lecture

isakhammer

2020

Contents

1	\mathbf{Lec}	ture 1	2	
	1.1	Set Theory	2	
		Functions		
2	Lecture 2			
	2.1	Recall	5	
	2.2	Cardinality	6	
	2.3	Schroeder Bernstein Theorem	7	
3	Lecture 3			
	3.1	Sequences	10	
	3.2	Infima and Suprema	10	
		Known material (self-study)		

1 Lecture 1

1.1 Set Theory

Definition 1.1. A **set** is a collection of distinct objects, its elements.

 $x \in X$ x is a element of the set X

and similary

 $x \notin X$ x is not an element of X

Two sets are identical X = Y, if

$$x \in X \leftrightarrow x \in Y$$

for any element x.

Definition 1.2. Y is a subset of X, YCX if for all $y \in X$. If $Y \subset X$ and $Y \neq X$, we write $y \subset X$ (or $Y \not\subset X$). Y is then a proper subset of X. Showing to sets are equal,

- $x \in X \leftrightarrow x \in Y$
- $x \subset Y$ and $y \subset X$

The empty set are denoted by null.

Example 1. • $\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$

- $\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$
- $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- $\mathbb{R} = \text{reals}$
- \mathbb{C} : Complex numbers a+ib
- Finite set $\{3, 4, 5, 6\}$
- Intervals in $\mathbb R$ For real numbers $a < b < \infty$

Definition 1.3. Let X and Y be two sets then

- Union. $X \cup Y = \{z \mid z \in X \text{ or } z \in Y\}$ $\bigcup_{i \in I} X_i = \{z \mid z \in X_i \text{ for some } i \in I\}$
- Intersection if $\bigcap_{i \in I} = \{z \mid z \in X_i \text{ For every } i \in I\}$
- ullet Complement if S is a subset of X , then the complement of S is

$$X \setminus S = S^c = \{x \in X : x \not\in S\}.$$

• Cartesian product

$$X \times Y = \{(x, y) : x \in X, \quad y \in Y\}$$

Lemma 1.1. •
$$x \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$
 and
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

- $(X \cup Y)^c = X^c \cap Y^c$
- $(X \cap Y)^c = X^c \cup Y^c$
- Demo organs law

$$X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z)$$

$$\bullet \ (X^c)^c = X$$

Proof. Proof of $(X \cup Y)^c = X^c \cap Y^c$

$$\begin{split} x \in (X \cup Y)^c &\to x \in X \cup U \\ & x \not \in X \quad \text{and} \quad x \not \in Y \\ & x \in X^c \quad \text{and} \quad x \in Y \\ & x \in X^c \cap Y^c \end{split}$$

1.2 Functions

Let X,Y be sets. A function f from X to Y, denoted $f:X\to Y$, is defined by a set G of ordered pairs (x,y), where $x\in X,\quad y\in Y$ and with the property that;

For each set is there a unique $y \in Y$ s.t. $(x,y) \in G$. We write f(x) = y.

- We say that X is the domain and Y is the codomain.
- The (direct) image of a set $A \subset X$ under f is

$$f(A) = \{f(t) : t \in A\} \subset Y$$

• The inverse image of a set $B \subset Y$ under f is

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X$$

• The range if f is the image of its domain X is

$$ran\left(f\right)=f\left(X\right)=\left\{ f\left(t\right):t\in X\right\}$$

Example 2. Let $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = max\{x, 0\} = x^+$$

Then is the $ran(f)=[0,\infty)$. The inverse is $f^{-1}(\{y\})=\{y\}$ and $f^{-1}(\{0\})=(-\infty,0]$ and

$$f^{-1}(\{y\}) = \text{NULL}$$
 if $y < 0$

Definition 1.4. Let $f: X \to Y$ be a function

- f is injective or one-to-one if $f(x_1) \rightarrow x_1 = x_1$
- f is surjective or onto if ran(f) = y
- f is bijective if it is both surjective and injective.

Example 3. Lets continue the example.

- Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \max\{x, 0\}$. Injective? No; $f(x_1) = \underbrace{f(x_2)}_{=0}$ for any two $x_1, x_1 < 0$.
- A bijection $f: X \in Y$ has a inverse function $f^{-1}: Y \to X$, defined by $f^{-1}(y) = x$ if f(x) = y.

THe inverse function f^{-1} is also a bijection.

Remark. Not to be confused with the inverse image of a set $f^{-1}\left(B\right)$ introduced earlier.

2 Lecture 2

2.1 Recall

Let $f: X \to Y$ then is

- i) Inective: $f(x_1) = f(x_2) \rightarrow x_1 = x_2$
- ii) Surjective: For all y in Y there is a x in X s.t. f(x) = y.
- iii) Bijective if i) and ii) holds.
 - If $F: X \to Y$ is a bijective then there is an inverse

$$f^{-1}: Y \to X$$

Given by

$$f^{-1}(y) = x$$
 if $f(x) = y$

- Identify function/map
 - $id: X \to X$
 - $-id_x(x) = x \text{ for all } x \in X$
- The composition of a function

$$q: Y \to Z$$
 with $f: X \to X$

is the function $g \cdot f : X \to Y$ defined by

$$(g \cdot f)(x) = g(f(x))$$
 for $x \in X$

Definition 2.1. Anternative version. Given a bijection $f: X \to Y$ the inverse function $f^{-1}: Y \to X$ is the unique function satisfying $f^{-1} \cdot f = id_x$ and $f \cdot f^{-1} = id_y$

Example 4. $\frac{d}{dx}:C^{1}(\mathbb{R},\mathbb{R})\to C(\mathbb{R},\mathbb{R})$. Inverse? no. Let $g\in C^{1}(\mathbb{R},\mathbb{R})$. Then is

$$\frac{d\left(g+c\right)}{dx} = \frac{dg}{dx} \quad \text{where c is the constant.}$$

It is surjective because given any $f \in C(\mathbb{R}, \mathbb{R})$ we can define $F \in C^1(\mathbb{R}, \mathbb{R})$ by

$$F: X \to \int_0^x f(t) dt$$

and

$$\frac{dF}{dx} = f$$
 fundamental theorem of calculus.

2.2 Cardinality

Cardinality is a tool for comparing the sizes of sets.

Definition 2.2. We say that two sets A and B has the same cardinality if there exist a bijection between A and B.

Example.

i) The two inervals [0,2] and [0,1] have the same cardinality.

$$f:[0,2]\to[0,1]$$

$$f\left(t\right) = \frac{t}{2}$$

ii) Let $\mathbb{N}=\{1,2,3,4,\ldots\}$ and $\mathbb{N}\setminus\{1\}=\{2,3,4,5,\ldots\}$ have the same cardinality

$$f\left(n\right) = n + 1$$

iii) n is finite integer. Then there is no bijection

$$f: \{1, 2, 3, \dots, n\} \to \mathbb{N}$$

These two sets **do not** have the same cardinality.

Definition 2.3. Let X be a set. We say X is **finite** if either X = NULL or there exist $n \in \mathbb{N}$ s. T. X has the same cardinality as $\{1, 2, 3, 4, \ldots, n\}$ if

There exist $f: \{1, 2, 3, \dots mb\} \to X$ for some n

X is infinite if it is not finite.

Definition 2.4. A set X is

• Countable infinite if it has the same cardinality as \mathbb{N} .

$$\exists bijection \quad f: X \to \mathbb{N}$$

- Countable if it is either countably infinite or finite. or equivalently
 - if \exists injection $f: X \to \mathbb{N}$
 - $-\exists surjection f: \mathbb{N} \to X$
- Uncountable if it is not countable.

Example.

- Any finitie set is, e.g. $\{2, 5, 9\}$
- $X = \{1, 4, 9, 16, \dots, n^2, \dots\}$ such that

$$f: \mathbb{N} \to X, \quad f(n) = n^2$$

• $\mathbb{N} \times \mathbb{N}$ is countable ;

We arrange $N \times N$ in a table.

$$f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$$

$$f(1) = (1,1)$$

$$f(2) = (2,1)$$

$$f(3) = (1,2)$$

$$f(4) = (3,1)$$

:

- \mathbb{Z} and \mathbb{Q} are countable (Prob set 1).
- If X and Y are countable, then so is $X \cup Y$.

2.3 Schroeder Bernstein Theorem

Let X and Y by two be two sets. Suppose there are injective maps $f: X \to Y$ and $g: Y \to X$. Then there exists a bijection between X and Y.

Example. The interval $(0,1) \subseteq \mathbb{R}$. Claim it is uncountable.

Proof. The Cantor diagonalization argument. Suppose that (0,1) is countable.

$$(0,1) = \{x_1, x_2, x_3, x_4, \ldots\}$$
$$f(1), f(2), f(3), \ldots$$

$$f: \mathbb{N} \to (0,1)$$

 $x_i = 0, x_{i1}, x_{i2}, x_{i3}, \dots$

Now let

$$a = 0, a_1, a_2, a_3, a_4, a_5, \dots$$

where

$$a_i = \begin{cases} 3 & \text{if } x_{ii} \neq 3\\ 1 & \text{if } x_{ii} = 3 \end{cases}$$

Then $a_i \neq x_{ii}$, so by construction $a \neq x_i$ for all i. Moreover, we must have $a \in (0,1)$. This is a contradiction, so (0,1) cannot be countable. \square

Example. The set of all binary sequences $X = \{(x_1, x_2, x_3, \ldots)\}$: $x_i \in \{0, 1\}$ is uncountable .

Proof. Problem set 2.

Lemma 2.1. Let X and Y be sets. Then

• If X is countable and $Y \subseteq X$, then Y is also countable.

$$\{1,2,3,4,5,\ldots\} \to \{x_1,x_2,x_3,x_4,\ldots\}$$

- If X is uncountable and $X \subseteq Y$, then Y is uncountable.
- ullet If X is countable and there is an injection

$$f: Y \to X$$

 $then\ Y\ is\ countable.$

 \bullet If X is uncountable and

$$\exists$$
 injective $f: X \to Y$,

then Y is uncountable.

Example. Have proved formally that $(0,1) \subseteq \mathbb{R}$ is countable $\xrightarrow{n} \mathbb{R}$ must be uncountable

$$R \subset \mathbb{C} \xrightarrow{\text{ii}} \mathbb{C}$$
 is uncountable

Example. $R = \mathbb{Q} \cup \mathbb{I}$. Know: \mathbb{Q} countable.

Assume $\mathbb I$ countable. Then $R \cup \mathbb I$ which is a contradiction. So $\mathbb I$ is uncountable

3 Lecture 3

3.1 Sequences

Fixed set J and set X with elements $x_j \in X$ for $j \in J$. J is a **index set**, x_j is the j-th component of the sequence $\{x_{j \in J}\}_j$.

Remark. (x_j) is equivalent to $(x_j)_j$. More technically $x: J \to X$ s.t. $x_{(j)} = x_j$.

3.2 Infima and Suprema

Definition 3.1. Suppose $A \subseteq \mathbb{R}$ is nonempty.

1. A is bounded if

$$\exists M \in \mathbb{R} \quad s.t. \quad a \leq M \quad for \ all \quad a \in A$$

2. A is bounded below if

$$\exists \quad m \in \mathbb{R} \quad s.t.a \geq m \quad \textit{for all } a \in A$$

- 3. A is **bounded** is 1., 2.
- 4. v is a **maximal element** of A if $v \in A$ and $a \le v$ for every $a \in A$. We write $v = \max(A)$
- 5. v is a minimal element of A if $v \in A$ and $a \ge v$ for every $a \in A$. We write $v = \min(A)$

Definition 3.2 (Infimum and supremum). Suppose $A \subseteq \mathbb{R}$ is nonemtpy.

- 1. We say that $M \in \mathbb{R}$ is the supreme or least upper bound of A if
 - (a) M is a upper bound of A, i.e. $a \leq M$ for every $a \in A$.
 - (b) All other upper bounds M' of A satisfied $M' \geq M$. We write $M = \sup(A)$ (and if it exists a max element $u \in A$, then $u = \sup(A) = \max(A)$
- 2. $m \in \mathbb{R}$ is the **infimum** or the **greated lower bound** of A if
 - (a) It is a lower bound, $a \ge m \forall a \in A$
 - (b) All other lower bounds $m^{'}$ are smaller $m^{'} < m$

Example.

$$A = \begin{pmatrix} 0 & 1 \end{pmatrix} \rightarrow \begin{cases} & inf(A) = 0 \\ & sup(A) = 1 \end{cases}$$

Remark. • If $A \subset \mathbb{R}$ is not bounded from above, we write $\sup(A) = \infty$

• If $A \subset \mathbb{R}$ is not bounded below, we write $\inf(A) = -\infty$

Lemma 3.1. $A \subseteq \mathbb{R}$ is nonemtpy.

- 1. Say A is bounded above. Then $M \in \mathbb{R}$ is the sup of A if
 - (a) $a \ll M \quad \forall \quad a \in A$
 - (b) $\forall \epsilon > 0 \quad \exists \quad a \in A \quad s.t. \quad a > M \epsilon$
- 2. Say A is bounded from below. Then $m \in \mathbb{R}$ is the inf of A if
 - (a) $a \ge m \quad \forall \quad a \in A$
 - (b) $\forall \epsilon > 0 \quad \exists a \in A \quad s.t. \quad a < m + \epsilon$

Example. Let $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ then is

- 1. inf (A)=0, since $\frac{1}{n}\geq 0 \quad \forall n\in \mathbb{N},$ and for any $\epsilon>0$ we can find N s.t. $\frac{1}{N}<\epsilon$
- 2. $\sup{(A)}=1$, since $\frac{1}{n}\leq 1$ for all $n\in\mathbb{N}$ and for any $\epsilon>0$ we have $1>1-\epsilon$ which concludes

$$\max\left(A\right) = \sup\left(A\right) = 1$$

• From our definitnion, it follows that

$$\inf\left(A\right) \geq \sup\left(A\right)$$

• If $A = (a_n)_n$ then we usually write

$$sup_{\cap}(a_n)$$

• If we have a function $f: X \to Y$ then

$$sup_{x}f=sup\left\{ f\left(x\right) :x\in X\right\}$$

Definition 3.3 (Dilate Set). We define the **dilate** by $c \in \mathbb{R}$ of a set $A \subseteq \mathbb{R}$ by

$$cA = \{b \in \mathbb{R} : b = ca, a \in A\}$$

Lemma 3.2 (Properties of dilates, subsets, sums). Let $A, B \subseteq \mathbb{R}$ be nonempty and bounded.

- 1. if c > 0, then $\sup cA = c \sup A$ and $\inf cA = c \inf A$
- 2. If c < 0, then $\sup cA = c \inf A$ and $\inf cA = c \sup A$
- 3. $\sup (A + B) = \sup A + \sup B$ and $\inf (A + B) = \inf A + \inf B$
- 4. If $B \subset A$, then is $\inf B \ge \inf A$ and $\sup B \le \sup A$

Proof. We want to show that $\sup cA = c \sup A$ for c > 0. Let $\sup A = M$. Then is $\forall a \in A$, $a \leq M \implies ca \geq cM$ and $\sup cA \leq cM$. Moroever, for every $\epsilon > 0$ does exist $a \in A$ s.t. $a \geq M - \frac{\epsilon}{c}$. This can be rewritten such that

$$ca \ge cM - \epsilon \implies \sup cA = cM$$

Example. Let $X = \{g \in C[0,2] : |g| < M\}$ and

$$\begin{split} f: X &\to \mathbb{R} \\ g: &\to \int_0^2 g\left(x\right) dx \\ \sup_x f &= \sup \left\{ f\left(g\right) : g \in X \right\} \\ &= \sup \left\{ \int_0^2 g\left(x\right) dx : g \in X \right\} \end{split}$$

We can show that

$$\int_{0}^{2} g(x) dx \le \underbrace{\sup_{x \in [0,2]} g(x)}_{=2} \underbrace{\int_{0}^{2} dx}_{=2} \le 2M$$

Claim that $\sup_x f = 2M.$ And then is the task: For any $\epsilon > 0$, find $g \in X$ s.t.

$$\int_{0}^{2} g(x) dx > 2M - \epsilon$$

3.3 Known material (self-study)

- 1.7 : Convergent sequenxes of numbers.
 - Say $(x_n)_{n\in\mathbb{N}}$ sequenc of real/complex numbers. (x_n) converges if \exists some x in \mathbb{R} s.t.

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \quad \text{s.t.} n \ge N \implies ||x_n - x|| < \epsilon$$

We write $x_n \to x$, $\lim_{n \to \infty} x_n = x$, $\lim x_n = x$

– If (x_n) sequence of real numbers, then we say that (x_n) diverges to ∞ if

$$\forall R > 0 \exists N > 0$$
 s.t. $x_n > R \forall n > N$

We write $\lim_{n\to\infty} = \infty$, $\lim x_n \to \infty$, $x_n \to \infty$

- 1.8: Infinite Series of numbers
 - $-\sum_{n=1}^{\infty} c_n$ series of real/complex numbers converges if the sequence of partial sums

$$s_n = \sum_{n=1}^{N} c_n$$

Converges as $N \to \infty$. Say $S_N \to S$. We then write $\sum_{i=1}^\infty c_i = s$.

- Recall if $\sum_{i=1}^{\infty} c_i$ converges, then $\lim_{i \to \infty} c_i = 0$
- Recall if $\sum_{i=1}^{\infty} c_i$ converges, then $\lim_{N\to\infty} (\sum_{i=N} c_i) = 0$
- Concerning $1.9 \rightarrow \text{read it!}$