COT3210–Computability and Automata Homework Problem Set 02 Solutions

Page 84: Exercise 1.7 The required NFAs are shown below.

1.7b. $L(M) = \{w \mid w \text{ contains the substring 0101}\}$ with five states.

1.7c $L(M) = \{w \mid w \text{ contains an even number of 0s, or contains exactly two 1s} \}$ with six states.

1.7d $L(M)=\{0\}$ with two states.

1.7e $L(M)=\left\{0^*1^*0^+\right\}$ with three states.

$$\xrightarrow{0} \varepsilon \xrightarrow{1} \xrightarrow{0} 0$$

1.7g. $L(M)=\{\varepsilon\}$ with one state.

1.7h. $L(M) = 0^*$ with one state.

Page 84: Exercise 1.8 The required NFAs are shown below.

1.8a. Let

 $A = \{w \,|\, w \text{ begins with a 1 and ends in a 0}\},$ $B = \{w \,|\, w \text{ has at least three 1s}\}.$

Construct the NFA M with $L(M) = A \cup B$.

1.8b. Let

 $A = \{w \,|\, w \text{ contains the substring 0101}\},$ $B = \{w \,|\, w \text{ doesn't contain the substring 110}\}.$

Construct the NFA M with $L(M) = A \cup B$.

Page 85: Exercise 1.9 The answers are given below:

1.9a. Let

 $A = \{ w \mid w \text{ has length at most 5} \},$ $B = \{ w \mid w \text{ every odd position of } w \text{ is a 1} \}.$

Construct M with $L(M) = A \circ B$.

1.9b. Let

 $A = \{ w \mid w \text{ has lat least three 1s} \},$ $B = \mathsf{The \ empty \ set}.$

Construct M with $L(M) = A \circ B$.

M is as shown below.

Page 85: Exercise 1.10 The answers are given below:

1.10a. Let $A = \{w \mid w \text{ has at least three 1s}\}$. Construct M with $L(M) = A^*$.

1.10b.Let $A = \{w \mid w \text{ has at least two 0s and at most one 1}\}$. Construct M with $L(M) = A^*$.

1.10c. Let A =The empty set. Construct M with $L(M) = A^*$.

Page 85: Exercise 1.12 D does not contain the substring ab. Therefore, D must contain strings with an odd number of b's followed by an even number of a's. These strings are represented by $b(bb)^*(aa)^*$.

Page 85: Exercise 1.14 The answers are given below:

1.14a. Proving regular languages are closed under the complement.

Given the DFA $D=(Q,\Sigma,\delta,q_0,F)$, define $D'=(Q,\Sigma,\delta,q_0,F')$ where F'=Q-F. In other words, the accept states are swapped with the nonaccept states.

Suppose $w\in L(D)$, then the computation ends in state $q\in F$, so $q/\in F'$ and so $w/\in L(D')$. Similarly, suppose $w\in L(D')$. Then the computation ends in state $q\in F'$, so $q/\in F$ and so $w/\in L(D)$. Therefore $L(D')=\overline{L(D)}$.

1.14b. Languages accepted by NFAs are not closed under complementation.

Let M be the machine with $L(M) = \{w \mid w \text{ ends in } 00\}.$

Then, $\overline{L(M)} = \{w \mid w \text{ does not end in } 00\}$. Now, let M' represent the machine obtained by swapping the accept states with the non-accept states, as shown in the state diagram below:

However, note that the string 100, which ends in 00, is accepted by M'.

Thus,
$$L(M') \neq \overline{L(M)}$$
.

Page 86: Exercise 1.16 The answers are given below:

1.16a. Let
$$1 \equiv \{1\}$$
; $12 \equiv \{1, 2\}$; $2 \equiv \{2\}$.

The state diagram for the desired DFA is as shown below:

It is customary to not show the \emptyset state. Thus, not every state will necessarily have a transition for each symbol in the alphabet. The revised state diagram with this modification of the above DFA is shown below:

1.16b.Let

$$12 \equiv \{1, 2\}, 123 \equiv \{1, 2, 3\}, 23 \equiv \{2, 3\}, 13 \equiv \{1, 3\},$$

$$3 \equiv \{3\}, \quad 1 \quad \equiv \{1\}, \qquad 2 \quad \equiv \{2\}.$$

The state diagram for the desired DFA is as shown below:

Note that states 13, 3, 1, 2, and \emptyset can be removed.

Now the following FA is obtained:

Page 86: Exercise 1.17 The answers are given below:

1.17a. A NFA that recognizes the language $(01 \cup 010 \cup 001)^*$:

1.17b. The equivalent DFA:

Page 86: Exercise 1.18 Note that any string of 0s and 1s is denoted by Σ^* .

- a. $\{w\,|\,w$ begins with a 1 and ends with a 0 $\}\equiv 1\Sigma^*0$
- b. $\{w \mid w \text{ contains at least three 1s}\} \equiv \Sigma^* 1 \Sigma^* 1 \Sigma^* 1 \Sigma^*$
- c. $\{w \mid w \text{ contains the substring 0101}\} \equiv \Sigma^* 0101 \Sigma^*$
- d. $\{w \mid w \text{ has length at least 3 and its third symbol is a 0}\} \equiv \Sigma\Sigma 0\Sigma^*$
- e. $\{w \mid w \text{ starts with 0 and has odd length,} \}$

or starts with 1 and has even length $= 0(\Sigma \Sigma)^* \cup 1\Sigma(\Sigma \Sigma)^*$

- f. $\{w \mid w \text{ doesn't contain the substring } 110 \} \equiv (0 \cup 10)^*1^*$
- g. $\{w \mid w \text{ the length of } w \text{ is at most 5} \} \equiv (\varepsilon \cup \Sigma)^5$
- h. $\{w \mid \text{ is any string except } 11 \text{ and } 111\} \equiv \varepsilon \cup 1 \cup (0 \cup 10 \cup 110 \cup 111\Sigma)\Sigma^*$
- i. $\{w \mid \text{ every odd position of } w \text{ is a } 1\} \equiv (1\Sigma)^*(1 \cup \varepsilon)$
- j. $\{w \mid \text{ contains at least two 0s and at most one 1}\} \equiv 000^* \cup (000^*1 \cup 100 \cup 010)0^*$
- k. $\{\varepsilon,0\} = \varepsilon \cup 0$
- I. $\{w|w \text{ contains an even number of 0s or exactly two 1s}\} \equiv (1*01*01*)* \cup (0*10*10*)$
- m. Ø
- n. $\{w|w \text{ is any string except the empty string}\} \equiv \Sigma^+$

Page 86: Exercise 1.19 The answers are given below:

a. The NFA for $(0 \cup 1)^*000(0 \cup 1)^*$

b. The NFA for $(((00)^*(11)) \cup 01)^*$

c. The NFA for \emptyset^* is show below:

Page 87: Exercise 1.20 The answers are given below: (Assume $\Sigma = \{a,b\}$)

	RE	Members	Non-members
a.	a^*b^*	ε , a , b , aa , aab , bb	ba, aba
b.	$a(ba)^*b$	abab, $ababab$	ε , abb , ba
C.	$a^* \cup b^*$	a, aa , b , bb	ab, ba
d.	$(aaa)^*$	ε , aaa , $aaaaaa$	a, aa, aaaa
e.	$\Sigma^*a\Sigma^*b\Sigma^*a\Sigma^*$	aba, $baba$	ε , a , b ab
f.	$aba \cup bab$	aba, bab	ε , aa
g.	$(\varepsilon \cup a)b$	b, ab	ε , a , aa
h.	$(a \cup ba \cup bb)\Sigma^*$	a, ba, bb	ε , b

Page 86: Exercise 1.21 The answers are give below:

a. $a*b(a\cup ba*b)*$

b. $\varepsilon \cup (a \cup b)a^*b((b \cup a(a \cup b)) \ a^*b)^*(\varepsilon \cup a)$

