SMART AGRICULTURE

AGENDA

- Introduction
- Main idea
- AI
- IOT
- Flutter
- Cloud computing

Introduction

Smart Agriculture combines modern science and technology with agricultural cultivation, to achieve unmanned, automatic, intelligent management of agricultural production, such as intelligent fertilization.

It is the application of artificial intelligence (AI) and Internet of Things (IOTs) in the field of modern agriculture.

"SMART AGRICULTURE" is the project of various information technologies and their cross-application in the field of agriculture, including intelligent equipment, IOTs, intelligent perception, deep learning, machine learning, agricultural cognitive computing, etc.

MAIN IDEA

- The app "Smart agriculture" uses AI to help farmers to detect plant diseases. Then generates ideas to help fight these diseases.
- Also generates ideas that help maintain and preserve the environment and decrease dependence on chemical pesticides.
- Using IOT to monitor soil PH, soil moisture, soil salinity, air temperature, air humidity.
- Management system viewing agriculture news, time of harvest and weather broadcasting news.

Artificial Intelligence

DATASETS

One shape of plant and different diseases

One shape of different plants and different diseases

Different shapes of different plants and one diseases

Different shapes of one plant and different diseases

Different shapes of different plants and different disease

WE FIND ONE

One shape -> different plants -> different disease

PLANT

- o Blueberry
- o Cherry
- o Corn
- o Orange
- o Peach
- o Pepper
- o Potato
- Raspberry
- o Soybean
- Strawberry
- o Tomato
- o Grape
- o APPLE

DISEASE

```
Blueberry (Healthy)
Apple (Scab)
```

(Black rot)

(Cedar apple rust)

(Healthy)

Cherry (Powdery mildew)

(Healthy)

Peach (Bacterial_spot)

(Healthy)

Pepper (Bell bacterial spot)

(Bell healthy)

Potato (Early blight)

(Late_blight)

(Healthy)

MODELS

prediction

print("Head of the dataset:")
df.head()

Head of the dataset:

	N	P	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice

Using logistic Regression Model

Detection

Using CNN

ACCURACY

Plant Disease Detection Using CNN with 96.84 %

Notebook

Input

Output Logs Comments (1)

Copy & Edit 413

00fee259-67b7-4dd7-... 21.83 kB

00fee259-67b7-4dd7-... 21.81 kB

00fee259-67b7-4dd7-... 5.92 kB

011405e4-a92a-44b6-... 20.07 kB

0137389a-9b78-4a94-... 16.37 kB

013ffdc5-cbd1-4202-b... 14.52 kB

01ca7a9f-80a6-4693-a... 18.91 kB

01ca7a9f-80a6-4693-a... 18.91 kB

01ca7a9f-80a6-4693-a... 18.87 kB

01ca7a9f-80a6-4693-a... 18.07 kB

01ca7a9f-80a6-4693-a... 6.66 kB

02159532-6430-4006... 20.62 kB

- New Plant Diseases Dat New Plant Diseases
 - ▼ New Plant Disease
 - ▼ □ train
 - Apple__App
 - Apple__Blac
 - □ Apple__Ced
 - Apple_heal
 - ▼ □ Blueberry___
 - 00fee259
 - □ 00fee259
 - □ 00fee259

 - □ 011405e4
 - □ 0137389a
 - □ 013ffdc5-
 - □ 01ca7a9f-
 - 01ca7a9f-
 - □ 01ca7a9f-
 - 01ca7a9f-
 - 01ca7a9f-
 - 02159532

IMPROVEMENT AND TESTING

