Università degli Studi di Verona Dipartimento di Informatica A.A. 2018-2019

APPUNTI DI "SISTEMI"

Creato da $Davide\ Zampieri$

Guida per la risoluzione degli esercizi ed esempi svolti

Indice degli argomenti

1	Seg	ementari 3					
2	Sist	semi LTI a tempo continuo					
	2.1	Analisi nel tempo					
		2.1.1 Risposta libera					
		2.1.2 Stabilità asintotica					
		2.1.3 Risposta impulsiva					
		2.1.4 Risposta forzata					
	2.2	Analisi nelle frequenze					
		2.2.1 Trasformata di Laplace					
		2.2.2 Risposta totale					
		2.2.3 BIBO stabilità					
		2.2.4 Metodo dei fratti semplici					
		2.2.5 Anti-trasformata di Laplace					
	2.3	Studio della stabilità al variare di un parametro k					
_							
3		grammi di flusso 7					
	3.1	Formula della trasmittanza totale					
4	Tra	sformata di Fourier 7					
-	4.1	Trasformate notevoli					
	4.2	Proprietà					
	4.3	Ampiezze dei segnali					
	4.4	Aliasing					
	1.1	Through S					
5	Diagrammi di Bode 9						
	5.1	Forma di Bode					
	5.2	Diagrammi elementari					
		5.2.1 Termine costante					
		5.2.2 Zeri e poli nell'origine					
		5.2.3 Zeri e poli reali					
		5.2.4 Zeri e poli complessi coniugati					
6	Sistemi LTI a tempo discreto 11						
	6.1	Analisi nel tempo					
		6.1.1 Risposta libera					
		6.1.2 Stabilità asintotica					
		6.1.3 Risposta impulsiva					
		6.1.4 Risposta forzata					
	6.2	Analisi nelle frequenze					
		6.2.1 Trasformata zeta					
		6.2.2 Risposta totale					
		6.2.3 BIBO stabilità					
		6.2.4 Metodo dei fratti semplici					

7	zeempi ai eccicizi evetti				
	7.1	Sistem	ni LTI a tempo continuo	. 15	
		7.1.1	Esercizio 1	. 15	
			Esercizio 2		
		7.1.3	Esercizio 3	. 18	
	7.2	Diagra	ammi di flusso	. 19	
			Esercizio 1	_	
	7.3	Diagra	ammi di Bode	. 20	
		7.3.1	Esercizio 1	. 20	
	7.4	Sistem	ni LTI a tempo discreto	. 24	
		7.4.1	Esercizio 1	. 24	
		7.4.2	Esercizio 2	. 25	
		7.4.3	Esercizio 3	. 27	
8	Cre	dits		29	

1 Segnali elementari

• Impulso

$$\delta(t) = \begin{cases} 1 & \text{se } t = 0 \\ 0 & \text{altrimenti} \end{cases}$$

• Gradino

$$\delta_{-1}(t) = \begin{cases} 1 & \text{se } t \ge 0 \\ 0 & \text{se } t < 0 \end{cases}$$

Nota: ricorda che $\delta_{-1}(t) = \int \delta(t) \ dt$ e che $\frac{d\delta(t)}{dt} = \delta_{-1}(t)$

2 Sistemi LTI a tempo continuo

• Forma generale

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = \sum_{j=0}^{m} b_j \frac{d^j u(t)}{dt^j}$$

• Forma usata negli esercizi

$$a_2\ddot{v}(t) + a_1\dot{v}(t) + a_0v(t) = b_2\ddot{u}(t) + b_1\dot{u}(t) + b_0u(t)$$

2.1 Analisi nel tempo

La risposta totale del sistema si scrive come

$$v(t) = v_l(t) + v_f(t)$$

dove $v_l(t)$ è la risposta libera e $v_f(t)$ è la risposta forzata.

2.1.1 Risposta libera

Per trovare la risposta libera bisogna:

1. Trovare le radici $\lambda_{1,2}$ dell'equazione caratteristica delle uscite

$$a_2s^2 + a_1s + a_0 = 0$$

2. Scrivere la risposta libera come

$$v_l(t) = \sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} c_{i,l} \cdot e^{\lambda_i t} \cdot \frac{t^l}{l!}$$

3. Usare le condizioni iniziali sulle uscite

Esempio: se le molteplicità μ_i delle radici sono tutte pari a 1, avremo

$$v_l(t) = c_1 \cdot e^{\lambda_1 t} + c_2 \cdot e^{\lambda_2 t}$$

$$\dot{v}_l(t) = c_1 \cdot \lambda_1 \cdot e^{\lambda_1 t} + c_2 \cdot \lambda_2 \cdot e^{\lambda_2 t}$$

e quindi bisognerà risolvere il sistema

$$\begin{cases} c_1 + c_2 = v(0) \\ c_1 \cdot \lambda_1 + c_2 \cdot \lambda_2 = \dot{v}(0) \end{cases}$$

2.1.2 Stabilità asintotica

Grazie ai modi elementari, ovvero le radici λ_i dell'equazione caratteristica delle uscite, possiamo studiare la stabilità asintotica di un sistema LTI.

Infatti, un sistema LTI a tempo continuo è asintoticamente stabile se e solo se $Re(\lambda_i) < 0$.

Infine, si può dire che: se un sistema LTI è asintoticamente stabile, allora è anche BIBO stabile.

2.1.3 Risposta impulsiva

Per trovare la risposta impulsiva bisogna:

1. Scrivere la forma generale

$$h(t) = d_0 \cdot \delta(t) + \sum_{i=1}^{r} \sum_{l=0}^{\mu_i - 1} d_{i,l} \cdot e^{\lambda_i t} \cdot \frac{t^l}{l!} \cdot \delta_{-1}(t)$$

Nota: il termine con il coefficiente d_0 è presente solo quando il sistema LTI ha n=m

2. Porre v(t) = h(t) e $u(t) = \delta(t)$ per trovare i coefficienti d_i

Esempio: se il sistema LTI ha n=2, bisognerà calcolare la derivata prima e la derivata seconda della risposta impulsiva ricordando che i termini che moltiplicano il gradino vanno eliminati; a questo punto basta raccogliere i termini che moltiplicano l'impulso e le sue derivate e risolvere un sistema

2.1.4 Risposta forzata

La risposta forzata si può calcolare come

$$v_f(t) = [h * u](t) = \int_0^t h(\tau) \cdot u(t - \tau) d\tau$$

che è equivalente a

$$v_f(t) = [u * h](t) = \int_0^t u(\tau) \cdot h(t - \tau) d\tau$$

2.2 Analisi nelle frequenze

A volte lavorare nel dominio delle frequenze è più semplice che lavorare in quello del tempo.

2.2.1 Trasformata di Laplace

Per passare dal dominio del tempo a quello delle frequenze si utilizza la trasformata di Laplace.

Trasformate notevoli:

• Uscite

$$\mathcal{L}\left[\frac{d^{i}v(t)}{dt^{i}}\right] = s^{i} \cdot V(s) - \left(\sum_{k=0}^{i} \left. \frac{d^{k}v(t)}{dt^{k}} \right|_{t=0^{-}} \cdot s^{i-1-k} \right)$$

• Ingressi

$$\mathcal{L}\left[\frac{d^i u(t)}{dt^i}\right] = s^i \cdot U(s)$$

• Esponenziale causale

$$\mathcal{L}\left[e^{\lambda t} \cdot \delta_{-1}(t)\right] = \frac{1}{s - \lambda}$$

2.2.2 Risposta totale

Una volta calcolate le trasformate di Laplace di tutti i termini del sistema LTI si arriva ad una forma del tipo

$$V(s) = V_l(s) + V_f(s) = V_l(s) + H(s) \cdot U(s) = \frac{P(s)}{D(s)} + \frac{N(s)}{D(s)} \cdot U(s)$$

dove D(s) è l'equazione caratteristica delle uscite, N(s) è l'equazione caratteristica degli ingressi e P(s) è la parte relativa alle condizioni iniziali sulle uscite.

2.2.3 BIBO stabilità

Per studiare la BIBO stabilità è necessario ricavare la funzione di trasferimento H(s), che abbiamo visto essere pari a $\frac{N(s)}{D(s)}$.

In particolare, bisogna vedere se i poli p_i (ovvero le radici di D(s)) rimasti dopo eventuali semplificazioni con gli zeri z_i (ovvero le radici di N(s)) hanno la parte reale negativa.

Quindi, un sistema LTI a tempo continuo è BIBO stabile se e solo se $Re(p_i) < 0$.

2.2.4 Metodo dei fratti semplici

Partendo dalla forma usata negli esercizi si arriva, usando la trasformata di Laplace, ad una forma del tipo

$$a_2[s^2 \cdot V(s) - (v(0) \cdot s + \dot{v}(0))] + a_1[s \cdot V(s) - v(0)] + a_0 \cdot V(s) = b_2 s^2 \cdot U(s) + b_1 s \cdot U(s) + b_0 \cdot U(s)$$

A questo punto, dopo alcuni calcoli, si può riuscire a trovare la risposta totale del sistema usando il metodo dei fratti semplici.

Esempi:

 $\bullet\,$ Tre poli di molteplicità pari a 1

$$V(s) = \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)} = \frac{A}{s - \lambda_1} + \frac{B}{s - \lambda_2} + \frac{C}{s - \lambda_3}$$

$$A = (s - \lambda_1) \cdot \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)} \Big|_{s = \lambda_1}$$

$$B = (s - \lambda_2) \cdot \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)} \Big|_{s = \lambda_2}$$

$$C = (s - \lambda_3) \cdot \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)} \Big|_{s = \lambda_2}$$

• Due poli di cui uno di molteplicità pari a 2

$$V(s) = \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)^2} = \frac{A}{s - \lambda_1} + \frac{B}{s - \lambda_2} + \frac{C}{(s - \lambda_2)^2}$$

$$A = (s - \lambda_1) \cdot \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)^2} \Big|_{s = \lambda_1}$$

$$B = \frac{d}{ds} \left((s - \lambda_2)^2 \cdot \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)^2} \right) \Big|_{s = \lambda_2}$$

$$C = (s - \lambda_2)^2 \cdot \frac{f(s)}{(s - \lambda_1)(s - \lambda_2)^2} \Big|_{s = \lambda_2}$$

Nota: il metodo dei fratti semplici si può usare anche per trovare la sola risposta libera, forzata o impulsiva. In quest'ultimo caso però, occorre ricordare che se il sistema LTI ha n=m=2, la forma da cui partire diventa

$$H(s) = b_2 + \frac{A}{s - \lambda_1} + \frac{B}{s - \lambda_2}$$

2.2.5 Anti-trasformata di Laplace

Una volta trovata la soluzione nel dominio delle frequenze, è possibile tornare nel dominio del tempo utilizzando l'anti-trasformata di Laplace.

Anti-trasformate notevoli:

• Costante

$$\mathcal{L}^{-1}\left[A\right] = A \cdot \delta(t)$$

• Fratti semplici

$$\mathcal{L}^{-1}\left[\frac{A}{(s-\lambda)^{\alpha}}\right] = Ae^{\lambda t} \cdot \frac{t^{\alpha-1}}{(\alpha-1)!} \cdot \delta_{-1}(t)$$

2.3 Studio della stabilità al variare di un parametro k

Se in un sistema LTI è presente un parametro k, la condizione per garantire la stabilità asintotica (ovvero $Re(\lambda_i) < 0$) diventa

$$\begin{cases} \frac{c}{a} > 0 \\ -\frac{b}{a} < 0 \end{cases}$$

dove a, b e c sono i coefficienti delle uscite.

Anche in questo caso possiamo dire che: se un sistema LTI è asintoticamente stabile, allora è anche BIBO stabile.

3 Diagrammi di flusso

Dopo aver trasformato lo schema a blocchi in un diagramma di flusso, è possibile trovare la funzione di trasferimento tra ingresso e uscita andando a calcolare la trasmittanza totale.

3.1 Formula della trasmittanza totale

La trasmittanza totale si calcola come

$$T = \frac{\sum_{i} P_i \cdot \Delta_i}{\Delta}$$

con

$$\Delta = 1 - \sum_{j} P_{j1} + \sum_{j} P_{j2}$$

dove P_i sono i cammini aperti, P_{j1} sono gli anelli singoli, P_{j2} sono le coppie di anelli che non si toccano e Δ_i sono pari a Δ ma senza i contributi degli anelli che toccano il cammino aperto P_i a cui si riferiscono.

4 Trasformata di Fourier

Dato uno schema a blocchi, è possibile trovare l'uscita del sistema per via grafica lavorando nel dominio delle frequenze, utilizzando la trasformata di Fourier e le sue proprietà.

4.1 Trasformate notevoli

• Funzione costante

$$\mathcal{F}[A] = A \cdot \delta(f)$$

• Fasore

$$\mathcal{F}\left[A \cdot e^{j2\pi f_0 t}\right] = A \cdot \delta(f - f_0)$$

• Funzione coseno

$$\mathcal{F}\left[A \cdot \cos(2\pi f_0 t)\right] = \frac{A}{2} \left(\delta(f - f_0) + \delta(f + f_0)\right)$$

• Funzione seno

$$\mathcal{F}\left[A \cdot \sin(2\pi f_0 t)\right] = \frac{A}{2j} \left(\delta(f - f_0) - \delta(f + f_0)\right)$$

• Finesta rettangolare

$$\mathcal{F}\left[A \cdot \Pi\left(\frac{t}{T}\right)\right] = AT \cdot sinc(fT)$$

Nota: valgono anche in senso inverso

4.2 Proprietà

• Prodotto nel dominio del tempo: in via grafica consiste nel centrare il segnale $v_1(t)$ nel segnale $v_2(t)$ o viceversa.

$$v_1(t) \cdot v_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} V_1(f) * V_2(f)$$

• Convoluzione nel dominio del tempo: in via grafica consiste nell'applicare il filtro $v_2(t)$ al segnale $v_1(t)$; bisogna cioè tenere le parti di $v_1(t)$ contenute in $v_2(t)$.

$$v_1(t) * v_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} V_1(f) \cdot V_2(f)$$

• Campionamento nel dominio del tempo: in via grafica consiste nel replicare il segnale v(t) ogni $f = \frac{1}{T}$; bisogna cioè centrare v(t) ogni f Hz.

$$[\operatorname{samp}_T v](t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{T} [\operatorname{rep}_{\frac{1}{T}} V](f)$$

4.3 Ampiezze dei segnali

Nelle operazioni di prodotto e convoluzione, le ampiezze dei due segnali vanno sempre moltiplicate tra di loro.

Le ampiezze vanno invece sommate solo nel caso in cui due segnali si sovrappongano.

Nell'operazione di campionamento, infine, tutti i segnali vanno moltiplicati per la frequenza di campionamento $f = \frac{1}{T}$.

4.4 Aliasing

Il fenomeno di aliasing si verifica quando f < 2B, dove con B si intende la banda del segnale, ovvero quanto il segnale è largo nelle frequenze positive.

L'aliasing consiste nella possibile sovrapposizione di due o più segnali, dovuta al fatto che si va a replicare secondo una frequenza che è minore dello spazio che occupa l'intero segnale.

5 Diagrammi di Bode

Forma di Bode 5.1

Data una funzione di trasferimento nella forma

$$G(s) = K \cdot \frac{\prod_{i} (s - z_i)^{\mu_i} \cdot \prod_{k} (s - z_k)(s - \overline{z_k})}{\prod_{i} (s - p_i)^{\mu_i} \cdot \prod_{k} (s - p_k)(s - \overline{p_k})}$$

è possibile passare alla sua forma di Bode definita come

$$G(j\omega) = K_B \cdot \prod_{l} \frac{1}{(j\omega)^{\nu_l}} \cdot \prod_{i} (1 + j\omega\tau_i)^{\mu_i} \cdot \prod_{k} \left(1 + 2j\zeta_k \cdot \frac{\omega}{\omega_{n_k}} - \frac{\omega^2}{{\omega_{n_k}}^2} \right)^{\mu_k}$$

Esempio:

Esemplo:
$$G(s) = K \cdot \frac{(s-z_i) \cdot (s-z_k)(s-\overline{z_k})}{(s-0) \cdot (s-p_i) \cdot (s-p_k)(s-\overline{p_k})}$$

$$G(s) = K \cdot \frac{(-z_i) \left(1 + s \cdot \frac{1}{-z_i}\right) \cdot |z_k|^2 \left(1 - 2\frac{Re(z_k)}{|z_k|} \cdot \frac{s}{|z_k|} + \frac{s^2}{|z_k|^2}\right)}{s \cdot (-p_i) \left(1 + s \cdot \frac{1}{-p_i}\right) \cdot |p_k|^2 \left(1 - 2\frac{Re(p_k)}{|p_k|} \cdot \frac{s}{|p_k|} + \frac{s^2}{|p_k|^2}\right)}$$

$$G(j\omega) = \left[K \cdot \frac{(-z_i)}{(-p_i)} \cdot \frac{|z_k|^2}{|p_k|^2}\right] \cdot \frac{(1 + j\omega\tau_{z_i}) \cdot \left(1 + 2j\zeta_{z_k} \cdot \frac{\omega}{\omega_{n_{z_k}}}\right)}{(j\omega) \cdot (1 + j\omega\tau_{p_i}) \cdot \left(1 + 2j\zeta_{p_k} \cdot \frac{\omega}{\omega_{n_{p_k}}}\right)}$$

$$G(j\omega) = K_B \cdot \frac{1}{(j\omega)^1} \cdot (1 + j\omega\tau_{z_i})^1 \cdot (1 + j\omega\tau_{p_i})^{-1} \cdot \left(1 + 2j\zeta_{z_k} \cdot \frac{\omega}{\omega_{n_{z_k}}}\right)^{-1}$$

5.2Diagrammi elementari

Di seguito si elencano le formule per ricavare i diagrammi di modulo e fase di ogni termine della forma di Bode.

Termine costante

Forma: $H(j\omega) = K_B$

• Modulo

$$|H(j\omega)|_{dB} = 20 \cdot log|K_B|$$

• Fase

$$arg(H(j\omega)) = \begin{cases} 0 & \text{se } K_B > 0\\ -180 & \text{se } K_B < 0 \end{cases}$$

5.2.2 Zeri e poli nell'origine

Forma: $H(j\omega) = \frac{1}{(j\omega)^{\nu}}$

• Modulo

$$|H(j\omega)|_{dB} = 20 \cdot (-\nu) \cdot log|\omega|$$

Nota: il diagramma del modulo passa per 10^0

• Fase

$$arg(H(j\omega)) = -\nu \cdot 90$$

5.2.3 Zeri e poli reali

Forma: $H(j\omega) = (1 + j\omega\tau)^{\mu}$

• Modulo

$$|H(j\omega)|_{dB} = \begin{cases} 0 & \text{se } \omega << \frac{1}{|\tau|} \\ 20 \cdot \mu \cdot \log|\omega\tau| & \text{se } \omega >> \frac{1}{|\tau|} \end{cases}$$

• Fase

$$arg(H(j\omega)) = \begin{cases} 0 & \text{se } \omega << \frac{1}{|\tau|} \\ \mu \cdot sgn(\tau) \cdot 90 & \text{se } \omega >> \frac{1}{|\tau|} \end{cases}$$

Nota: il diagramma della fase si può approssimare facendolo passare per i punti

$$A = \left(\frac{1}{5|\tau|}, 0\right) \text{ e } B = \left(\frac{5}{|\tau|}, \mu \cdot sgn(\tau) \cdot 90\right)$$

5.2.4 Zeri e poli complessi coniugati

Forma: $H(j\omega) = \left(1 + 2j\zeta \cdot \frac{\omega}{\omega_n} - \frac{\omega^2}{{\omega_n}^2}\right)^{\mu}$

• Modulo

$$|H(j\omega)|_{dB} = \begin{cases} 0 & \text{se } \omega << \omega_n \\ 40 \cdot \mu \cdot \log \left| \frac{\omega}{\omega_n} \right| & \text{se } \omega >> \omega_n \end{cases}$$

• Fase

$$arg(H(j\omega)) = \begin{cases} 0 & \text{se } \omega << \omega_n \\ \mu \cdot sgn(\zeta) \cdot 180 & \text{se } \omega >> \omega_n \end{cases}$$

Nota: il diagramma della fase si può approssimare facendolo passare per i punti

$$A = \left(\frac{1}{5^{|\zeta|}} \cdot \omega_n, 0\right) \in B = \left(5^{|\zeta|} \cdot \omega_n, \mu \cdot sgn(\zeta) \cdot 180\right)$$

6 Sistemi LTI a tempo discreto

• Forma generale

$$\sum_{i=0}^{n} a_i \cdot v(k-i) = \sum_{j=0}^{m} b_j \cdot u(k-j)$$

• Forma usata negli esercizi $(n \ge m)$

$$a_0v(k) + a_1v(k-1) + a_2v(k-2) = b_0u(k) + b_1u(k-1) + b_2u(k-2)$$

6.1 Analisi nel tempo

La risposta totale del sistema si scrive come

$$v(k) = v_l(k) + v_f(k)$$

dove $v_l(k)$ è la risposta libera e $v_f(k)$ è la risposta forzata.

6.1.1 Risposta libera

Per trovare la risposta libera bisogna:

1. Trovare le radici $\lambda_{1,2}$ dell'equazione caratteristica delle uscite

$$a_0 z^0 + a_1 z^{-1} + a_2 z^{-2} = 0 \Big|_{z^n = z^2}$$

 $a_0 z^2 + a_1 z + a_2 = 0$

2. Scrivere la risposta libera come

$$v_l(k) = \sum_{i=1}^{r} \sum_{l=0}^{\mu_i - 1} c_{i,l} \cdot \lambda_i^{\ k} \cdot \frac{k^l}{l!}$$

3. Usare le condizioni iniziali sulle uscite

Esempio: se le molteplicità μ_i delle radici sono tutte pari a 1, avremo

$$v_l(k) = c_1 \cdot \lambda_1^{\ k} + c_2 \cdot \lambda_2^{\ k}$$

e quindi bisognerà risolvere il sistema

$$\begin{cases} c_1 \cdot \lambda_1^{-1} + c_2 \cdot \lambda_2^{-1} = v(-1) \\ c_1 \cdot \lambda_1^{-2} + c_2 \cdot \lambda_2^{-2} = v(-2) \end{cases}$$

6.1.2 Stabilità asintotica

Grazie ai modi elementari, ovvero le radici λ_i dell'equazione caratteristica delle uscite, possiamo studiare la stabilità asintotica di un sistema LTI.

Infatti, un sistema LTI a tempo discreto è asintoticamente stabile se e solo se $|\lambda_i| < 1$.

Infine, si può dire che: se un sistema LTI è asintoticamente stabile, allora è anche BIBO stabile.

6.1.3 Risposta impulsiva

Per trovare la risposta impulsiva bisogna:

1. Scrivere la forma generale

$$h(k) = d_0 \cdot \delta(k) + \sum_{i=1}^{r} \sum_{l=0}^{\mu_i - 1} d_{i,l} \cdot \lambda_i^{\ k} \cdot \frac{k^l}{l!} \cdot \delta_{-1}(k - m + n - 1)$$

Nota: il termine con il coefficiente d_0 è presente solo quando il sistema LTI ha n=m

2. Trovare i coefficienti d_i ponendo v(k) = h(k), $u(k) = \delta(k)$ e cercando una funzione ricorsiva andando a sostituire nell'equazione ottenuta diversi valori di k fino a che non si arriva a riconoscere uno schema ricorsivo; dopodiché basta sostituire i valori della funzione ricorsiva appena trovata nella forma generale e risolvere un sistema

6.1.4 Risposta forzata

La risposta forzata si può calcolare come

$$v_f(k) = [h * u](k) = \sum_{i=0}^{k} h(i) \cdot u(k-i)$$

che è equivalente a

$$v_f(k) = [u * h](k) = \sum_{i=0}^{k} u(i) \cdot h(k-i)$$

La risposta forzata si può calcolare anche come funzione ricorsiva andando a sostituire nel sistema LTI diversi valori di k fino a che non si arriva a riconoscere uno schema ricorsivo.

6.2 Analisi nelle frequenze

A volte lavorare nel dominio delle frequenze è più semplice che lavorare in quello del tempo.

6.2.1 Trasformata zeta

Per passare dal dominio del tempo a quello delle frequenze (e viceversa) si utilizza la trasformata zeta.

Trasformate notevoli:

• Uscite

$$\mathcal{Z}\left[v(k-i)\right] = z^{-i} \cdot V(z) + \left(\sum_{l=-i}^{-1} v(l) \cdot z^{-i-l}\right)$$

• Ingressi

$$\mathcal{Z}\left[u(k-i)\right] = z^{-i} \cdot U(z)$$

• Impulso

$$\mathcal{Z}\left[\delta(k)\right] = 1$$

• Gradino

$$\mathcal{Z}\left[\delta_{-1}(k)\right] = \frac{z}{z-1}$$

• Modo elementare di molteplicità pari a 1

$$\mathcal{Z}\left[\lambda^k \cdot \delta_{-1}(k)\right] = \frac{z}{z - \lambda}$$

• Modo elementare di molteplicità pari a 2

$$\mathcal{Z}\left[k \cdot \lambda^k \cdot \delta_{-1}(k)\right] = \frac{z\lambda}{(z-\lambda)^2}$$

6.2.2 Risposta totale

Una volta calcolate le trasformate zeta di tutti i termini del sistema LTI si arriva ad una forma del tipo

$$V(z) = V_l(z) + V_f(z) = V_l(z) + H(z) \cdot U(z) = \frac{P(z)}{D(z)} + \frac{N(z)}{D(z)} \cdot U(z)$$

dove D(z) è l'equazione caratteristica delle uscite, N(z) è l'equazione caratteristica degli ingressi e P(z) è la parte relativa alle condizioni iniziali sulle uscite.

6.2.3 BIBO stabilità

Per studiare la BIBO stabilità è necessario ricavare la funzione di trasferimento H(z), che abbiamo visto essere pari a $\frac{N(z)}{D(z)}$.

In particolare, bisogna vedere se i poli p_i (ovvero le radici di D(z)) rimasti dopo eventuali semplificazioni con gli zeri z_i (ovvero le radici di N(z)) sono in modulo minori di 1.

Quindi, un sistema LTI a tempo discreto è BIBO stabile se e solo se $|p_i| < 1$.

6.2.4 Metodo dei fratti semplici

Partendo dalla forma usata negli esercizi si arriva, usando la trasformata zeta, ad una forma del tipo

$$a_0[z^0 \cdot V(z)] + a_1[z^{-1} \cdot V(z) + v(-1) \cdot z^0] + a_2[z^{-2} \cdot V(z) + v(-1) \cdot z^{-1} + v(-2) \cdot z^0] =$$

$$= b_0 z^0 \cdot U(z) + b_1 z^{-1} \cdot U(z) + b_2 z^{-2} \cdot U(z) \Big|_{z^n = z^2}$$

$$a_0[z^2 \cdot V(z)] + a_1[z \cdot V(z) + v(-1) \cdot z^2] + a_2[V(z) + v(-1) \cdot z + v(-2) \cdot z^2] = b_0 z^2 \cdot U(z) + b_1 z \cdot U(z) + b_2 \cdot U(z) + b_3 z \cdot$$

A questo punto, dopo alcuni calcoli, si può riuscire a trovare la risposta totale del sistema usando il metodo dei fratti semplici come per i sistemi LTI a tempo continuo, ricordando però di dividere per z prima dei calcoli e di moltiplicare per z dopo gli stessi, per riuscire poi a fare la trasformata zeta.

La sequenza dei passaggi sarà quindi la seguente:

- 1. Trovo la risposta totale V(z)
- 2. Divido per z

$$V_1(z) = \frac{V(z)}{z}$$

- 3. Uso il metodo dei fratti semplici
- 4. Moltiplico per z

$$V(z) = V_1(z) \cdot z$$

5. Faccio la trasformata zeta e ottengo v(k)

Nota: il metodo dei fratti semplici si può usare anche per trovare la sola risposta libera, forzata o impulsiva

Esempi di esercizi svolti

Sistemi LTI a tempo continuo

7.1.1Esercizio 1

Testo:

$$\ddot{v}(t) + \dot{v}(t) - 2v(t) = \dot{u}(t) + u(t)$$

$$v(0) = 2, \ \dot{v}(0) = 0, \ u(t) = e^{-3t} \cdot \delta_{-1}(t)$$

Stabilità asintotica:

$$s^{2} + s - 2 = 0$$

$$\lambda_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2} = \frac{-1 \pm 3}{2}$$

$$\lambda_{1} = 1, \ \lambda_{2} = -2$$

Il sistema non è asintoticamente stabile perché $Re(\lambda_1) > 0$

Risposta libera:

$$v_l(t) = c_1 \cdot e^t + c_2 \cdot e^{-2t}$$

$$\dot{v}_l(t) = c_1 \cdot e^t - 2c_2 \cdot e^{-2t}$$

$$\begin{cases} c_1 + c_2 = 2 \\ c_1 - 2c_2 = 0 \end{cases} \longrightarrow \begin{cases} c_1 = 2 - c_2 \\ 2 - c_2 - 2c_2 = 0 \end{cases} \longrightarrow \begin{cases} c_1 = 2 - c_2 \\ -3c_2 = -2 \end{cases} \longrightarrow \begin{cases} c_1 = \frac{4}{3} \\ c_2 = \frac{2}{3} \end{cases}$$

La risposta libera del sistema è $v_l(t) = \frac{4}{3} \cdot e^t + \frac{2}{3} \cdot e^{-2t}$

Risposta impulsiva:

$$\begin{split} h(t) &= (d_1 \cdot e^t + d_2 \cdot e^{-2t}) \cdot \delta_{-1}(t) \\ \dot{h}(t) &= (d_1 \cdot e^t - 2d_2 \cdot e^{-2t}) \cdot \delta_{-1}(t) + (d_1 \cdot e^t + d_2 \cdot e^{-2t}) \cdot \delta(t) \\ \ddot{h}(t) &= (d_1 \cdot e^t + 4d_2 \cdot e^{-2t}) \cdot \delta_{-1}(t) + (d_1 \cdot e^t - 2d_2 \cdot e^{-2t}) \cdot \delta(t) + (d_1 \cdot e^t - 2d_2 \cdot e^{-2t}) \cdot \delta(t) + (d_1 \cdot e^t + d_2 \cdot e^{-2t}) \cdot \frac{d\delta(t)}{dt} \\ \begin{cases} v(t) &= h(t) \\ u(t) &= \delta(t) \end{cases} &\longrightarrow \ddot{h}(t) + \dot{h}(t) - 2h(t) = \frac{d\delta(t)}{dt} + \delta(t) \\ \delta(t) \cdot (d_1 \cdot e^t - 2d_2 \cdot e^{-2t} + d_1 \cdot e^t - 2d_2 \cdot e^{-2t} + d_1 \cdot e^t + d_2 \cdot e^{-2t} - 1) + \frac{d\delta(t)}{dt} \cdot (d_1 \cdot e^t + d_2 \cdot e^{-2t} - 1) = 0 \\ \begin{cases} 3d_1 - 3d_2 - 1 = 0 \\ d_1 + d_2 - 1 = 0 \end{cases} &\longrightarrow \begin{cases} 3 - 3d_2 - 3d_2 - 1 = 0 \\ d_1 = 1 - d_2 \end{cases} &\longrightarrow \begin{cases} -6d_2 = -2 \\ d_1 = 1 - d_2 \end{cases} &\longrightarrow \begin{cases} d_2 = \frac{1}{3} \\ d_1 = \frac{2}{3} \end{cases} \end{split}$$

La risposta impulsiva del sistema è $h(t) = \left(\frac{2}{3} \cdot e^t + \frac{1}{3} \cdot e^{-2t}\right) \cdot \delta_{-1}(t)$

Risposta forzata:

$$v_f(t) = [h * u](t) = \int_0^t h(\tau) \cdot u(t - \tau) d\tau$$

$$v_f(t) = \int_0^t \left(\frac{2}{3} \cdot e^{\tau} + \frac{1}{3} \cdot e^{-2\tau}\right) \cdot \delta_{-1}(\tau) \cdot e^{-3(t - \tau)} \cdot \delta_{-1}(t - \tau) d\tau$$

$$v_f(t) = e^{-3t} \cdot \int_0^t \left(\frac{2}{3} \cdot e^{4\tau} + \frac{1}{3} \cdot e^{\tau}\right) d\tau = e^{-3t} \cdot \left(\frac{2}{3} \cdot \frac{1}{4} \cdot \int_0^t 4e^{4\tau} d\tau + \frac{1}{3} \cdot \int_0^t e^{\tau} d\tau\right)$$

$$v_f(t) = e^{-3t} \cdot \left(\frac{1}{6} \cdot \left[e^{4\tau}\right]_0^t + \frac{1}{3} \cdot \left[e^{\tau}\right]_0^t\right) = e^{-3t} \cdot \left[\frac{1}{6} \cdot \left(e^{4t} - 1\right) + \frac{1}{3} \cdot \left(e^t - 1\right)\right]$$

$$v_f(t) = \frac{1}{6}e^t - \frac{1}{6}e^{-3t} + \frac{1}{3}e^{-2t} - \frac{1}{3}e^{-3t} = \frac{1}{6}e^t - \frac{1}{2}e^{-3t} + \frac{1}{3}e^{-2t}$$

BIBO stabilità:

$$H(s) = \frac{s+1}{s^2+s-2} = \frac{s+1}{(s-1)(s+2)}$$

Il sistema non è BIBO stabile perché $Re(p_1) > 0$

Risposta impulsiva (fratti semplici):

$$H(s) = \frac{A}{s-1} + \frac{B}{s+2}$$

$$A = (s-1) \cdot \frac{s+1}{(s-1)(s+2)} \Big|_{s=1} = \frac{s+1}{s+2} \Big|_{s=1} = \frac{2}{3}$$

$$B = (s+2) \cdot \frac{s+1}{(s-1)(s+2)} \Big|_{s=-2} = \frac{s+1}{s-1} \Big|_{s=-2} = \frac{1}{3}$$

$$h(t) = \mathcal{L}^{-1}[H(s)] = \mathcal{L}^{-1} \left[\frac{2}{3} \cdot \frac{1}{s-1} + \frac{1}{3} \cdot \frac{1}{s+2} \right] = \left(\frac{2}{3} \cdot e^t + \frac{1}{3} \cdot e^{-2t} \right) \cdot \delta_{-1}(t)$$

Risposta forzata (fratti semplici):

$$U(s) = \mathcal{L}\left[e^{-3t} \cdot \delta_{-1}(t)\right] = \frac{1}{s+3}$$

$$V_f(s) = H(s) \cdot U(s) = \frac{s+1}{(s-1)(s+2)(s+3)} = \frac{A}{s-1} + \frac{B}{s+2} + \frac{C}{s+3}$$

$$A = (s-1) \cdot \frac{s+1}{(s-1)(s+2)(s+3)} \Big|_{s=1} = \frac{s+1}{(s+2)(s+3)} \Big|_{s=1} = \frac{1}{6}$$

$$B = (s+2) \cdot \frac{s+1}{(s-1)(s+2)(s+3)} \Big|_{s=-2} = \frac{s+1}{(s-1)(s+3)} \Big|_{s=-2} = \frac{1}{3}$$

$$C = (s+3) \cdot \frac{s+1}{(s-1)(s+2)(s+3)} \Big|_{s=-3} = \frac{s+1}{(s-1)(s+2)} \Big|_{s=-3} = -\frac{1}{2}$$

$$v_f(t) = \mathcal{L}^{-1}[V_f(s)] = \mathcal{L}^{-1}\left[\frac{1}{6} \cdot \frac{1}{s-1} + \frac{1}{3} \cdot \frac{1}{s+2} - \frac{1}{2} \cdot \frac{1}{s+3}\right]$$

$$v_f(t) = \left(\frac{1}{6} \cdot e^t + \frac{1}{3} \cdot e^{-2t} - \frac{1}{2} \cdot e^{-3t}\right) \cdot \delta_{-1}(t)$$

7.1.2 Esercizio 2

Testo:

$$\ddot{v}(t) - \dot{v}(t) - 2v(t) = \ddot{u}(t) + 2\dot{u}(t) + u(t)$$
$$v(0) = 1, \ \dot{v}(0) = -1, \ u(t) = e^{-3t} \cdot \delta_{-1}(t)$$

Stabilità asintotica:

$$s^{2} - s - 2 = 0$$

$$\lambda_{1,2} = \frac{1 \pm \sqrt{1+8}}{2} = \frac{1 \pm 3}{2}$$

$$\lambda_{1} = 2, \ \lambda_{2} = -1$$

Il sistema non è asintoticamente stabile perché $Re(\lambda_1) > 0$

Risposta libera:

$$v_l(t) = c_1 \cdot e^{2t} + c_2 \cdot e^{-t}$$

$$\dot{v}_l(t) = 2c_1 \cdot e^{2t} - c_2 \cdot e^{-t}$$

$$\begin{cases} c_1 + c_2 = 1 \\ 2c_1 - c_2 = -1 \end{cases} \longrightarrow \begin{cases} c_1 = 1 - c_2 \\ 2 - 2c_2 - c_2 = -1 \end{cases} \longrightarrow \begin{cases} c_1 = 1 - c_2 \\ -3c_2 = -3 \end{cases} \longrightarrow \begin{cases} c_1 = 0 \\ c_2 = 1 \end{cases}$$

La risposta libera del sistema è $v_l(t) = e^{-t}$

Risposta impulsiva (caso particolare n = m):

$$\begin{split} h(t) &= d_0 \cdot \delta(t) + (d_1 \cdot e^{2t} + d_2 \cdot e^{-t}) \cdot \delta_{-1}(t) \\ \dot{h}(t) &= d_0 \cdot \frac{d\delta(t)}{dt} + (2d_1 \cdot e^{2t} - d_2 \cdot e^{-t}) \cdot \delta_{-1}(t) + (d_1 \cdot e^{2t} + d_2 \cdot e^{-t}) \cdot \delta(t) \\ \ddot{h}(t) &= d_0 \cdot \frac{d^2\delta(t)}{dt^2} + (4d_1 \cdot e^{2t} + d_2 \cdot e^{-t}) \cdot \delta_{-1}(t) + 2 \cdot (2d_1 \cdot e^{2t} - d_2 \cdot e^{-t}) \cdot \delta(t) + (d_1 \cdot e^{2t} + d_2 \cdot e^{-t}) \cdot \frac{d\delta(t)}{dt} \\ \begin{cases} v(t) &= h(t) \\ u(t) &= \delta(t) \end{cases} &\longrightarrow \ddot{h}(t) - \dot{h}(t) - 2h(t) = \frac{d^2\delta(t)}{dt^2} + 2\frac{d\delta(t)}{dt} + \delta(t) \\ \delta(t) \cdot (3d_1 \cdot e^{2t} - 3d_2 \cdot e^{-t} - 2d_0 - 1) + \frac{d\delta(t)}{dt} \cdot (d_1 \cdot e^{2t} + d_2 \cdot e^{-t} - d_0 - 2) + \frac{d^2\delta(t)}{dt^2} \cdot (d_0 - 1) = 0 \\ \begin{cases} 3d_1 - 3d_2 - 2d_0 - 1 = 0 \\ d_1 + d_2 - d_0 - 2 = 0 \\ d_0 - 1 = 0 \end{cases} &\longrightarrow \begin{cases} -3d_2 + 9 - 3d_2 - 3 = 0 \\ d_1 = -d_2 + 3 \\ d_0 = 1 \end{cases} &\longrightarrow \begin{cases} d_2 = 1 \\ d_1 = 2 \\ d_0 = 1 \end{cases} \end{split}$$

La risposta impulsiva del sistema è $h(t) = \delta(t) + (2 \cdot e^{2t} + e^{-t}) \cdot \delta_{-1}(t)$

BIBO stabilità:

$$H(s) = \frac{s^2 + 2s + 1}{s^2 - s - 2} = \frac{(s+1)^2}{(s-2)(s+1)} = \frac{s+1}{s-2}$$

Il sistema non è BIBO stabile perché $Re(p_1) > 0$

Risposta impulsiva (fratti semplici con caso particolare n=m):

$$\begin{split} H(s) &= 1 + \frac{A}{s-2} + \frac{B}{s+1} \\ A &= (s-2) \cdot \frac{(s+1)^2}{(s-2)(s+1)} \bigg|_{s=2} = \frac{(s+1)^2}{s+1} \bigg|_{s=2} = 3 \\ B &= (s+1) \cdot \frac{(s+1)^2}{(s-2)(s+1)} \bigg|_{s=-1} = \frac{(s+1)^2}{s-2} \bigg|_{s=-1} = 0 \\ h(t) &= \mathcal{L}^{-1}[H(s)] = \mathcal{L}^{-1} \left[1 + \frac{3}{s-2} + \frac{0}{s+1} \right] = \delta(t) + \left(3 \cdot e^{2t} + 0 \cdot e^{-t} \right) \cdot \delta_{-1}(t) \end{split}$$

Nota: si può notare che la risposta impulsiva calcolata in questo modo è diversa da quella calcolata precedentemente, ciò è dovuto al fatto che l'impulso e le sue derivate sono linearmente indipendenti e quindi le soluzioni trovate sono combinazioni lineari

7.1.3 Esercizio 3

Testo:

$$\ddot{v}(t) - 2(k-1)\dot{v}(t) + (k+5)v(t) = 2\dot{u}(t) - u(t)$$
$$v(0) = 2, \ \dot{v}(0) = -3, \ u(t) = e^{-3t} \cdot \delta_{-1}(t)$$

Stabilità:

$$\begin{cases} k+5 & > 0 \\ 2(k-1) & < 0 \end{cases} \longrightarrow \begin{cases} k>-5 \\ k<1 \end{cases} \longrightarrow -5 < k < 1$$

Se -5 < k < 1, il sistema è asintoticamente stabile e quindi anche BIBO stabile

Risposta totale (con k = -1):

$$s^{2} \cdot V(s) - (2s - 3) + 4 \cdot (s \cdot V(s) - 2) + 4 \cdot V(s) = 2s \cdot U(s) - U(s)$$

$$V(s) \cdot (s^{2} + 4s + 4) - 2s + 3 - 8 = U(s) \cdot (2s - 1)$$

$$V(s) = \frac{2s - 1}{s^{2} + 4s + 4} \cdot U(s) + \frac{2s + 5}{s^{2} + 4s + 4}$$

$$U(s) = \mathcal{L} \left[e^{-3t} \cdot \delta_{-1}(t) \right] = \frac{1}{s + 3} \longrightarrow V(s) = \frac{2s - 1}{(s + 2)^{2} \cdot (s + 3)} + \frac{2s + 5}{(s + 2)^{2}}$$

$$V(s) = \frac{2s - 1 + (2s + 5)(s + 3)}{(s + 2)^{2} \cdot (s + 3)} = \frac{2s^{2} + 13s + 14}{(s + 2)^{2} \cdot (s + 3)} = \frac{A}{s + 3} + \frac{B}{s + 2} + \frac{C}{(s + 2)^{2}}$$

$$A = (s + 3) \cdot \frac{2s^{2} + 13s + 14}{(s + 2)^{2} \cdot (s + 3)} \Big|_{s = -3} = \frac{2s^{2} + 13s + 14}{(s + 2)^{2}} \Big|_{s = -3} = -7$$

$$B = \frac{d}{ds} \left((s + 2)^{2} \cdot \frac{2s^{2} + 13s + 14}{(s + 2)^{2} \cdot (s + 3)} \right) \Big|_{s = -2} = \frac{2s^{2} + 12s + 25}{(s + 3)^{2}} \Big|_{s = -2} = 9$$

$$C = (s + 2)^{2} \cdot \frac{2s^{2} + 13s + 14}{(s + 2)^{2} \cdot (s + 3)} \Big|_{s = -2} = \frac{2s^{2} + 13s + 14}{s + 3} \Big|_{s = -2} = -4$$

$$v(t) = \mathcal{L}^{-1}[V(s)] = \mathcal{L}^{-1} \left[-\frac{7}{s + 3} + \frac{9}{s + 2} - \frac{4}{(s + 2)^{2}} \right]$$

$$v(t) = \left(-7 \cdot e^{-3t} + 9 \cdot e^{-2t} - 4t \cdot e^{-2t} \right) \cdot \delta_{-1}(t)$$

7.2 Diagrammi di flusso

7.2.1 Esercizio 1

Testo: trovare la funzione di trasferimento tra ingresso e uscita del seguente diagramma di flusso

Cammini aperti:

$$P_1 = \frac{R_3 \cdot R_4}{R_1 \cdot R_2}$$

Anelli singoli:

$$P_{11} = -\frac{R_3}{R_1}$$

$$P_{21} = -\frac{R_3}{R_2}$$

$$P_{31} = -\frac{R_4}{R_2}$$

Coppie di anelli che non si toccano:

$$P_{12} = \left(-\frac{R_3}{R_1} \right) \cdot \left(-\frac{R_4}{R_2} \right) = \frac{R_3 \cdot R_4}{R_1 \cdot R_2}$$

Delta:

$$\Delta = 1 - \left(-\frac{R_3}{R_1} - \frac{R_3}{R_2} - \frac{R_4}{R_2} \right) + \frac{R_3 \cdot R_4}{R_1 \cdot R_2}$$

$$\Delta_1 = 1$$

Trasmittanza totale:

$$T = \frac{\frac{R_3 \cdot R_4}{R_1 \cdot R_2} \cdot 1}{\frac{R_1 \cdot R_2 + R_3 \cdot R_2 + R_3 \cdot R_1 + R_4 \cdot R_1 + R_3 \cdot R_4}{R_1 \cdot R_2}} = \frac{R_3 \cdot R_4}{R_1 \cdot R_2 + R_3 \cdot R_2 + R_3 \cdot R_1 + R_4 \cdot R_1 + R_3 \cdot R_4}$$

7.3 Diagrammi di Bode

7.3.1 Esercizio 1

Testo: tracciare i diagrammi di Bode della seguente funzione di trasferimento

$$G(s) = \frac{s+1}{s^4 + 2s^3 + 100s^2} = \frac{s+1}{s^2 \cdot (s^2 + 2s + 100)}$$

Forma di Bode:

$$G(j\omega) = \frac{1}{100} \cdot \frac{1}{(j\omega)^2} \cdot \frac{1 + j\omega}{1 + \frac{2}{100} \cdot j\omega - \frac{\omega^2}{100}}$$

Termine costante:

$$H(j\omega) = 10^{-2}$$

• Modulo

$$|H(j\omega)|_{dB} = 20 \cdot log|10^{-2}| = -40 \ dB$$

• Fase

$$arg(H(j\omega)) = 0$$

Zeri e poli nell'origine:

$$H(j\omega) = \frac{1}{(j\omega)^2}$$

• Modulo

$$|H(j\omega)|_{dB} = 20 \cdot (-2) \cdot log|\omega| = -40 \frac{dB}{dec}$$

• Fase

$$arg(H(j\omega)) = -2 \cdot 90 = -180$$

Zeri e poli reali:

$$\tau = 1, \ \mu = 1$$

$$H(j\omega) = 1 + j\omega$$

• Modulo

$$|H(j\omega)|_{dB} = \begin{cases} 0 & \text{se } \omega << 10^{0} \\ 20 \frac{dB}{dec} & \text{se } \omega >> 10^{0} \end{cases}$$

• Fase

$$arg(H(j\omega)) = \begin{cases} 0 & \text{se } \omega << 10^{0} \\ 90 & \text{se } \omega >> 10^{0} \end{cases}$$

Approssimazione:

$$A = (0.2, 0) \text{ e } B = (5, 90)$$

Zeri e poli complessi coniugati:

$$\omega_n = \sqrt{100} = 10, \ \frac{2}{10}\zeta = \frac{2}{100} \longrightarrow \zeta = \frac{1}{10}, \ \mu = -1$$

$$H(j\omega) = \left(1 + \frac{2}{100} \cdot j\omega - \frac{\omega^2}{100}\right)^{-1}$$

• Modulo

$$|H(j\omega)|_{dB} = \begin{cases} 0 & \text{se } \omega << 10^1 \\ -40 \frac{dB}{dec} & \text{se } \omega >> 10^1 \end{cases}$$

• Fase

$$arg(H(j\omega)) = \begin{cases} 0 & \text{se } \omega << 10^1 \\ -180 & \text{se } \omega >> 10^1 \end{cases}$$

Approssimazione:

$$A = (8.5, 0) e B = (11.7, -180)$$

Diagramma globale: unendo tutti i diagrammi si ricava il seguente

7.4 Sistemi LTI a tempo discreto

7.4.1 Esercizio 1

Testo:

$$v(k) + v(k-1) = u(k) - u(k-1)$$

Stabilità asintotica:

$$z^{0} + z^{-1} = 0|_{z^{n} = z^{1}}$$

 $z + 1 = 0 \longrightarrow \lambda_{1} = -1$

Il sistema non è asintoticamente stabile perché $|\lambda_1|=1$

BIBO stabilità:

$$H(z) = \frac{z-1}{z+1}$$

Il sistema non è BIBO stabile perché $|p_1| = 1$

Risposta impulsiva (ricorsione):

$$\begin{cases} v(k) = h(k) \\ u(k) = \delta(k) \end{cases} \longrightarrow h(k) + h(k-1) = \delta(k) - \delta(k-1)$$

$$k = 0 \longrightarrow h(0) + h(-1) = \delta(0) - \delta(-1) \longrightarrow h(0) = 1 - 0 - 0 \longrightarrow h(0) = 1$$

$$k = 1 \longrightarrow h(1) + h(0) = \delta(1) - \delta(0) \longrightarrow h(1) = 0 - 1 - 1 \longrightarrow h(1) = -2$$

$$k = 2 \longrightarrow h(2) + h(1) = \delta(2) - \delta(1) \longrightarrow h(2) = 0 - 0 + 2 \longrightarrow h(2) = 2$$

$$h(k) = \begin{cases} 1 & \text{se } k = 0 \\ -2 & \text{se } k \ge 1 \text{ e dispari} \\ 2 & \text{se } k \ge 1 \text{ e pari} \end{cases}$$

$$h(k) = d_0 \cdot \delta(k) + d_1 \cdot (-1)^k \cdot \delta_{-1}(k-1)$$

$$\begin{cases} h(0) = d_0 \cdot \delta(0) + d_1 \cdot (-1)^0 \cdot \delta_{-1}(-1) \\ h(1) = d_0 \cdot \delta(1) + d_1 \cdot (-1)^1 \cdot \delta_{-1}(0) \end{cases} \longrightarrow \begin{cases} d_0 = 1 \\ -d_1 = -2 \end{cases} \longrightarrow \begin{cases} d_0 = 1 \\ d_1 = 2 \end{cases}$$

La risposta impulsiva del sistema è $h(k) = \delta(k) + 2 \cdot (-1)^k \cdot \delta_{-1}(k-1)$

Risposta forzata (ricorsione):

$$k = 0 \longrightarrow v(0) + v(-1) = u(0) - u(-1) \longrightarrow v(0) = u(0) - 0 - 0 \longrightarrow v(0) = u(0)$$

$$k = 1 \longrightarrow v(1) + v(0) = u(1) - u(0) \longrightarrow v(1) = u(1) - u(0) \longrightarrow v(1) = u(1) - 2u(0)$$

$$k = 2 \longrightarrow v(2) + v(1) = u(2) - u(1) \longrightarrow v(2) = u(2) - u(1) - u(1) + 2u(0) \longrightarrow v(2) = u(2) - 2u(1) + 2u(0)$$

La risposta forzata del sistema è

$$v_f(k) = u(k) + \sum_{i=0}^{k-1} 2 \cdot (-1)^{k-i} \cdot u(i)$$

Risposta forzata (convoluzione):

$$h(k-i) = \delta(k-i) + 2 \cdot (-1)^{k-i} \cdot \delta_{-1}(k-i-1)$$

$$v_f(k) = [u * h](k) = \sum_{i=0}^k u(i) \cdot h(k-i) = \sum_{i=0}^k u(i) \cdot [\delta(k-i) + 2 \cdot (-1)^{k-i} \cdot \delta_{-1}(k-i-1)]$$

$$v_f(k) = [\delta(k-k) + 2 \cdot (-1)^{k-k} \cdot \delta_{-1}(k-k-1)] \cdot u(k) + \sum_{i=0}^{k-1} 2 \cdot (-1)^{k-i} \cdot u(i)$$

$$v_f(k) = [\delta(0) + 2 \cdot (-1)^0 \cdot \delta_{-1}(-1)] \cdot u(k) + \sum_{i=0}^{k-1} 2 \cdot (-1)^{k-i} \cdot u(i)$$

$$v_f(k) = [1+0] \cdot u(k) + \sum_{i=0}^{k-1} 2 \cdot (-1)^{k-i} \cdot u(i) = u(k) + \sum_{i=0}^{k-1} 2 \cdot (-1)^{k-i} \cdot u(i)$$

7.4.2 Esercizio 2

Testo:

$$v(k) - \frac{3}{10}v(k-1) - \frac{1}{10}v(k-2) = u(k) - \frac{2}{5}u(k-2)$$
$$v(-1) = 2, \ v(-2) = -2, \ u(k) = 2^k \cdot \delta_{-1}(k)$$

Stabilità:

$$z^{0} - \frac{3}{10}z^{-1} - \frac{1}{10}z^{-2} = 0 \Big|_{z^{n} = z^{2}}$$

$$z^{2} - \frac{3}{10}z - \frac{1}{10} = 0$$

$$\lambda_{1,2} = \frac{\frac{3}{10} \pm \sqrt{\frac{9}{100} + \frac{4}{10}}}{2} = \frac{\frac{3}{10} \pm \frac{7}{10}}{2}$$

$$\lambda_{1} = \frac{1}{2}, \ \lambda_{2} = -\frac{1}{5}$$

Il sistema è asintoticamente stabile e quindi anche BIBO stabile

Risposta libera:

$$v_l(k) = c_1 \cdot \left(\frac{1}{2}\right)^k + c_2 \cdot \left(-\frac{1}{5}\right)^k$$

$$\begin{cases} 2c_1 - 5c_2 = 2\\ 4c_1 + 25c_2 = -2 \end{cases} \longrightarrow \begin{cases} c_1 = 1 + \frac{5}{2}c_2\\ 4 + 10c_2 + 25c_2 = -2 \end{cases} \longrightarrow \begin{cases} c_1 = 1 + \frac{5}{2}c_2\\ 35c_2 = -6 \end{cases} \longrightarrow \begin{cases} c_1 = \frac{4}{7}\\ c_2 = -\frac{6}{35} \end{cases}$$

La risposta libera del sistema è $v_l(k)=\frac{4}{7}\cdot\left(\frac{1}{2}\right)^k-\frac{6}{35}\cdot\left(-\frac{1}{5}\right)^k$

Risposta impulsiva (fratti semplici):

$$H(z) = \frac{z^2 - \frac{2}{5}}{z^2 - \frac{3}{10}z - \frac{1}{10}} = \frac{z^2 - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})}$$

$$H_1(z) = \frac{H(z)}{z} = \frac{z^2 - \frac{2}{5}}{z(z - \frac{1}{2})(z + \frac{1}{5})} = \frac{A}{z} + \frac{B}{z - \frac{1}{2}} + \frac{C}{z + \frac{1}{5}}$$

$$A = z \cdot \frac{z^2 - \frac{2}{5}}{z(z - \frac{1}{2})(z + \frac{1}{5})} \Big|_{z=0} = \frac{z^2 - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})} \Big|_{z=0} = 4$$

$$B = \left(z - \frac{1}{2}\right) \cdot \frac{z^2 - \frac{2}{5}}{z(z - \frac{1}{2})(z + \frac{1}{5})} \Big|_{z=\frac{1}{2}} = \frac{z^2 - \frac{2}{5}}{z(z + \frac{1}{5})} \Big|_{z=\frac{1}{2}} = -\frac{3}{7}$$

$$C = \left(z + \frac{1}{5}\right) \cdot \frac{z^2 - \frac{2}{5}}{z(z - \frac{1}{2})(z + \frac{1}{5})} \Big|_{z=-\frac{1}{5}} = \frac{z^2 - \frac{2}{5}}{z(z - \frac{1}{2})} \Big|_{z=-\frac{1}{5}} = -\frac{18}{7}$$

$$H_1(z) = \frac{4}{z} - \frac{3}{7} \cdot \frac{1}{z - \frac{1}{2}} - \frac{18}{7} \cdot \frac{1}{z + \frac{1}{5}}$$

$$H(z) = H_1(z) \cdot z = 4 - \frac{3}{7} \cdot \frac{z}{z - \frac{1}{2}} - \frac{18}{7} \cdot \frac{z}{z + \frac{1}{5}}$$

$$h(k) = \mathcal{Z}[H(z)] = 4 \cdot \delta(k) + \left[-\frac{3}{7} \cdot \left(\frac{1}{2}\right)^k - \frac{18}{7} \cdot \left(-\frac{1}{5}\right)^k \right] \cdot \delta_{-1}(k)$$

Risposta forzata (fratti semplici):

$$U(z) = \mathcal{Z}\left[2^{k} \cdot \delta_{-1}(k)\right] = \frac{z}{z-2}$$

$$V_{f}(z) = H(z) \cdot U(z) = \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})} \cdot \frac{z}{z-2}$$

$$V_{f_{1}}(z) = \frac{V_{f}(z)}{z} = \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})(z - 2)} = \frac{A}{z - \frac{1}{2}} + \frac{B}{z + \frac{1}{5}} + \frac{C}{z - 2}$$

$$A = \left(z - \frac{1}{2}\right) \cdot \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})(z - 2)}\Big|_{z = \frac{1}{2}} = \frac{z^{2} - \frac{2}{5}}{(z + \frac{1}{5})(z - 2)}\Big|_{z = \frac{1}{2}} = \frac{1}{7}$$

$$B = \left(z + \frac{1}{5}\right) \cdot \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})(z - 2)}\Big|_{z = -\frac{1}{5}} = \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z - 2)}\Big|_{z = -\frac{1}{5}} = -\frac{18}{77}$$

$$C = (z - 2) \cdot \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})(z - 2)}\Big|_{z = 2} = \frac{z^{2} - \frac{2}{5}}{(z - \frac{1}{2})(z + \frac{1}{5})}\Big|_{z = 2} = \frac{12}{11}$$

$$V_{f_{1}}(z) = \frac{1}{7} \cdot \frac{1}{z - \frac{1}{2}} - \frac{18}{77} \cdot \frac{1}{z + \frac{1}{5}} + \frac{12}{11} \cdot \frac{1}{z - 2}$$

$$V_{f}(z) = V_{f_{1}}(z) \cdot z = \frac{1}{7} \cdot \frac{z}{z - \frac{1}{2}} - \frac{18}{77} \cdot \frac{z}{z + \frac{1}{5}} + \frac{12}{11} \cdot \frac{z}{z - 2}$$

$$v_{f}(k) = \mathcal{Z}[V_{f}(z)] = \left[\frac{1}{7} \cdot \left(\frac{1}{2}\right)^{k} - \frac{18}{77} \cdot \left(-\frac{1}{5}\right)^{k} + \frac{12}{11} \cdot (2)^{k}\right] \cdot \delta_{-1}(k)$$

7.4.3 Esercizio 3

Testo:

$$v(k) - v(k-1) + \frac{1}{4}v(k-2) = u(k) - 3u(k-1)$$
$$v(-1) = 4, \ v(-2) = 3, \ u(k) = \left(-\frac{1}{2}\right)^k \cdot \delta_{-1}(k)$$

Stabilità:

$$z^{0} - z^{-1} + \frac{1}{4}z^{-2} = 0 \Big|_{z^{n} = z^{2}}$$

$$z^{2} - z + \frac{1}{4} = 0$$

$$\lambda_{1,2} = \frac{1 \pm \sqrt{1 - 1}}{2} = \frac{1 \pm 0}{2} = \frac{1}{2}$$

Il sistema è asintoticamente stabile e quindi anche BIBO stabile

Risposta libera:

$$v_l(k) = c_1 \cdot \left(\frac{1}{2}\right)^k + c_2 \cdot k \cdot \left(\frac{1}{2}\right)^k$$

$$\begin{cases} 2c_1 - 2c_2 = 4 \\ 4c_1 - 8c_2 = 3 \end{cases} \longrightarrow \begin{cases} c_1 = 2 + c_2 \\ 8 + 4c_2 - 8c_2 = 3 \end{cases} \longrightarrow \begin{cases} c_1 = 2 + c_2 \\ -4c_2 = -5 \end{cases} \longrightarrow \begin{cases} c_1 = \frac{13}{4} \end{cases}$$

La risposta libera del sistema è $v_l(k) = \frac{13}{4} \cdot \left(\frac{1}{2}\right)^k + \frac{5}{4} \cdot k \cdot \left(\frac{1}{2}\right)^k$

Risposta totale:

$$\begin{split} z^0 \cdot V(z) - \left(z^{-1} \cdot V(z) + 4z^0\right) + \frac{1}{4} \cdot \left(z^{-2} \cdot V(z) + 4z^{-1} + 3z^0\right) &= z^0 \cdot U(z) - 3z^{-1} \cdot U(z) \bigg|_{\cdot z^n = z^2} \\ V(z) \cdot \left(z^2 - z + \frac{1}{4}\right) - 4z^2 + z + \frac{3}{4}z^2 &= U(z) \cdot (z^2 - 3z) \\ V(z) &= \frac{z^2 - 3z}{z^2 - z + \frac{1}{4}} \cdot U(z) + \frac{\frac{13}{4}z^2 - z}{z^2 - z + \frac{1}{4}} \\ U(z) &= \mathcal{Z} \left[\left(-\frac{1}{2} \right)^k \cdot \delta_{-1}(k) \right] &= \frac{z}{z + \frac{1}{2}} \longrightarrow V(z) = \frac{z^3 - 3z^2}{(z - \frac{1}{2})^2 \cdot (z + \frac{1}{2})} + \frac{\frac{13}{4}z^2 - z}{(z - \frac{1}{2})^2} \\ V(z) &= \frac{z^3 - 3z^2 + \frac{13}{4}z^3 - z^2 + \frac{13}{8}z^2 - \frac{1}{2}z}{(z - \frac{1}{2})^2 \cdot (z + \frac{1}{2})} \\ V_1(z) &= \frac{V(z)}{z} = \frac{\frac{17}{4}z^2 - \frac{19}{8}z - \frac{1}{2}}{(z - \frac{1}{2})^2 \cdot (z + \frac{1}{2})} = \frac{A}{z + \frac{1}{2}} + \frac{B}{z - \frac{1}{2}} + \frac{C}{(z - \frac{1}{2})^2} \\ A &= \left(z + \frac{1}{2}\right) \cdot \frac{\frac{17}{4}z^2 - \frac{19}{8}z - \frac{1}{2}}{(z - \frac{1}{2})^2 \cdot (z + \frac{1}{2})} \bigg|_{z = -\frac{1}{2}} = \frac{\frac{17}{4}z^2 - \frac{19}{8}z - \frac{1}{2}}{(z - \frac{1}{2})^2} \bigg|_{z = -\frac{1}{2}} = \frac{7}{4} \end{split}$$

$$B = \frac{d}{dz} \left(\left(z - \frac{1}{2} \right)^2 \cdot \frac{\frac{17}{4}z^2 - \frac{19}{8}z - \frac{1}{2}}{(z - \frac{1}{2})^2 \cdot (z + \frac{1}{2})} \right) \Big|_{z = \frac{1}{2}} = \frac{\frac{17}{4}z^2 + \frac{17}{4}z - \frac{11}{16}}{(z + \frac{1}{2})^2} \Big|_{z = \frac{1}{2}} = \frac{5}{2}$$

$$C = \left(z - \frac{1}{2} \right)^2 \cdot \frac{\frac{17}{4}z^2 - \frac{19}{8}z - \frac{1}{2}}{(z - \frac{1}{2})^2 \cdot (z + \frac{1}{2})} \Big|_{z = \frac{1}{2}} = \frac{\frac{17}{4}z^2 - \frac{19}{8}z - \frac{1}{2}}{z + \frac{1}{2}} \Big|_{z = \frac{1}{2}} = -\frac{5}{8}$$

$$V_1(z) = \frac{7}{4} \cdot \frac{1}{z + \frac{1}{2}} + \frac{5}{2} \cdot \frac{1}{z - \frac{1}{2}} - \frac{5}{8} \cdot \frac{1}{(z - \frac{1}{2})^2}$$

$$V(z) = V_1(z) \cdot z = \frac{7}{4} \cdot \frac{z}{z + \frac{1}{2}} + \frac{5}{2} \cdot \frac{z}{z - \frac{1}{2}} - \frac{5}{8} \cdot \frac{z}{(z - \frac{1}{2})^2} = \frac{7}{4} \cdot \frac{z}{z + \frac{1}{2}} + \frac{5}{2} \cdot \frac{z}{z - \frac{1}{2}} - \frac{5}{4} \cdot \frac{z \cdot \frac{1}{2}}{(z - \frac{1}{2})^2}$$

$$v(k) = \mathcal{Z}[V(z)] = \left[\frac{7}{4} \cdot \left(-\frac{1}{2} \right)^k + \frac{5}{2} \cdot \left(\frac{1}{2} \right)^k - \frac{5}{4} \cdot k \cdot \left(\frac{1}{2} \right)^k \right] \cdot \delta_{-1}(k)$$

Credits