dr hab. inż. Mirosław Łątka mgr inż. Klaudia Kozłowska Metody numeryczne Semestr zimowy 2019/20

Projekt 1 Równania Keplera

Napisz program z graficznym interfejsem użytkownika (JavaFX), który umożliwi rysowanie trajektorii planet Układu Słonecznego. Sposób obliczania trajektorii omawialiśmy trakcie laboratorium 5.

Podstawowe wymagania. Użytkownik powinien mieć możliwość:

- wprowadzenia parametrów orbity (odległość w jednostkach astronomicznych i ekscentryczność),
- wyboru metody znajdowania pierwiastka i określenia błędu ε_a,
- rysowania na wykresie kilku trajektorii,
- zapisu trajektorii do pliku.

Dla zaawansowanych. Wykonaj animację ruchu wybranej planety.

Planets: Orbital Properties

Planet	distance	revolution	eccentricity	inclination
	(A.U.)			(deg)
Mercury	0.387	87.969 d	0.2056	7.005
Venus	0.723	224.701 d	0.0068	3.3947
Earth	1.000	365.256 d	0.0167	0.0000
Mars	1.524	686.98 d	0.0934	1.851
Jupiter	5.203	11.862 y	0.0484	1.305
Saturn	9.537	29.457 y	0.0542	2.484
Uranus	19.191	84.011 y	0.0472	0.770
Neptune	30.069	164.79 y	0.0086	1.769
Pluto	39.482	247.68 y	0.2488	17.142

http://www.astronomynotes.com/tables/tablesb.htm