Mining Software Repositories 2023 (MSR 2023) Data and Tool Showcase Track

DeepScenario: An Open Driving Scenario Dataset for Autonomous Driving System Testing

<u>Chengjie Lu</u>^{1,2}, Tao Yue¹ and Shaukat Ali¹

¹Simula Research Laboratory, ²University of Oslo

DeepScenario Dataset (Github repository): https://github.com/Simula-COMPLEX/DeepScenario

DeepScenario Toolset: https://github.com/Simula-COMPLEX/DeepScenario/tree/main/deepscenario-toolset

CONTENTS

PART 1 Motivation

PART 2 Methodology

PART3 Dataset Analysis

PART 4 Dataset Usages

Testing autonomous driving system (ADS) is important and challenging

Importance

Safety-critical system

Continuous evolution

Insufficient test data

No sufficient test data or test scenarios for testing ADS

Limited budget

Exhaustive ADS testing is impossible due to practical constraints

Challenges

Not adapted to evolution

Current approaches are not adapted to system evolution

DeepScenario: An Open Driving Scenario Dataset for ADS Testing

DeepScenario dataset was created by executing an environment configuration framework

DeepCollision

RL-based environment configuration learning

Baselines

Random & Greedy

Lu, Chengjie, et al. "Learning configurations of operating environment of autonomous vehicles to maximize their collisions." *IEEE Transactions on Software Engineering* 49.1 (2022): 384-402.

Reward

Safety: R_{TTC}, R_{DTO} Comfort: R_{Jerk}

Road/Task

R1, R2 R3, R4

Weather

Rainy day, Sunny day Rainy night, Sunny night

TTC: Time-To-Collision
DTO: Distance-To-Obstacle
Jerk: The changing rate of
acceleration

We design DeepScenario toolset to facilitate recording and executing driving scenarios

 $S = \langle scene_1, scene_2, ..., scene_n, T \rangle$

ScenarioRunner

Scenario diagnoses

Dataset Analysis

We show Scenario distribution across roads and weather conditions

Scenario distribution across roads

Road 4 has the least number of scenarios generated.

R4 has more complicated road structure, which is more prone to collisions. Therefore, test ends earlier.

Scenario distribution across weather conditions

There is not much difference observed among the four weather conditions.

One plausible explanation is that the ADS is advanced enough to handle different weather conditions.

Dataset Analysis

We show scenario attributes and their statistics

Reward attributes

Time-To-Collision (TTC)
Distance-To-Obstacle (DTO)

Jerk

Collision attributes

Collision (COL)
Collision-Type (COLT)
Speed-At-Collision (SAC)

Scenario attributes are used to characterize driving scenarios in the dataset.

Statistics of reward attributes

RLS outperforms RS and GS in terms of all three reward attributes.

Statistics of collision attributes

ST	COLT	R_{TTC}		R_{DTO}		R_{Jerk}		$\#C_{ST}$	SAC_{ST}
		#C	SAC	#C	SAC	#C	SAC	51	
RLS	NPC	250	4.97	222	3.76	153	5.83	625	4.75
	PED	2	6.27	21	5.04	27	5.27	50	5.21
	STA	4	6.08	5	3.30	16	3.39	25	3.80
	SUM	256	5.00	248	3.86	196	5.55	700	4.75
RS	NPC	36	3.31	47	3.17	53	2.87	136	3.09
	PED	5	3.49	8	4.54	9	3.88	22	4.03
	STA	0	N/A	0	N/A	0	N/A	0	N/A
	SUM	41	3.34	55	3.37	62	3.02	158	3.22
GS	NPC	60	3.81	44	3.87	52	3.24	156	3.64
	PED	13	3.63	11	3.83	9	4.56	33	3.95
	STA	0	N/A	3	0.63	0	N/A	3	0.63
	SUM	73	3.78	58	3.70	61	3.43	192	3.64
Total		370	4.57	361	3.76	319	4.65	1050	4.32

RLS achieved the best performance in generating collision scenarios.

Dataset Usages

DeepScenario can be used in various ADS development contexts

Analyze scenarios for further diagnoses

Select and prioritize test scenarios for regression testing

Replay scenarios to detect system-level failures

With ADS enabled

Without ADS enabled

Usage example 1: https://www.youtube.com/watch?v=M1c0zP cKz8
Usage example 2: https://www.youtube.com/watch?v=M1c0zP cKz8
Usage example 4: https://www.youtube.com/watch?v=M1c0zP cKz8

Questions?