Class 9 Science - Chapter 1: Matter in Our Surroundings

NCERT Solutions - Questions & Answers
Q1: Convert the following temperatures to Celsius scale:
(a) 293 K
(b) 470 K
A1:
(a) 293 K - 273 = 20°C
(b) 470 K - 273 = 197°C
Q2: Convert the following temperatures to Kelvin scale:
(a) 25°C
(b) 373°C
A2:
(a) 25 + 273 = 298 K
(b) 373 + 273 = 646 K
Q3: Give reason for the following observations:
Q3: Give reason for the following observations: (a) Naphthalene balls disappear with time without leaving any solid.
<u>-</u>
(a) Naphthalene balls disappear with time without leaving any solid.
(a) Naphthalene balls disappear with time without leaving any solid.(b) We can get the smell of perfume sitting several metres away.
(a) Naphthalene balls disappear with time without leaving any solid.(b) We can get the smell of perfume sitting several metres away.
 (a) Naphthalene balls disappear with time without leaving any solid. (b) We can get the smell of perfume sitting several metres away. A3: (a) Naphthalene undergoes sublimation, turning directly into vapour.
 (a) Naphthalene balls disappear with time without leaving any solid. (b) We can get the smell of perfume sitting several metres away. A3: (a) Naphthalene undergoes sublimation, turning directly into vapour. (b) Perfume particles diffuse through air to reach our nose.
 (a) Naphthalene balls disappear with time without leaving any solid. (b) We can get the smell of perfume sitting several metres away. A3: (a) Naphthalene undergoes sublimation, turning directly into vapour. (b) Perfume particles diffuse through air to reach our nose. Q4: Arrange the following substances in increasing order of forces of attraction:
 (a) Naphthalene balls disappear with time without leaving any solid. (b) We can get the smell of perfume sitting several metres away. A3: (a) Naphthalene undergoes sublimation, turning directly into vapour. (b) Perfume particles diffuse through air to reach our nose. Q4: Arrange the following substances in increasing order of forces of attraction: Water, sugar, oxygen
 (a) Naphthalene balls disappear with time without leaving any solid. (b) We can get the smell of perfume sitting several metres away. A3: (a) Naphthalene undergoes sublimation, turning directly into vapour. (b) Perfume particles diffuse through air to reach our nose. Q4: Arrange the following substances in increasing order of forces of attraction: Water, sugar, oxygen A4: Oxygen < Water < Sugar

Q6: Give two reasons to justify:

(a) At 250°C - water is in gaseous state (steam)

(b) At 100°C - both liquid and gaseous state exist (boiling point)

A5:

- (a) Water at room temperature is a liquid.
- (b) An iron almirah is a solid at room temperature.

A6:

- (a) Water has no fixed shape but definite volume and flows easily.
- (b) Iron almirah has a fixed shape and is rigid.

Q7: Why is ice at 273 K more effective in cooling than water at the same temperature?

A7: Ice absorbs latent heat during melting, thus drawing more heat from surroundings and cooling more effectively.

Q8: What produces more severe burns, boiling water or steam?

A8: Steam causes more severe burns as it carries latent heat of vaporization, releasing more energy on contact.