Métricas de Evaluación

IIC 3633 - Sistemas Recomendadores

Denis Parra

1 of 20

TOC

En esta clase

- 1. Prediccion de Ratings: MAE, MSE, RMSE
- 2. Evaluacion via Precision-Recall
- 3. Metricas P@n, MAP,
- 4. Metricas de Ranking: DCG, nDCG,
- 5. Metricas en Tarea 1

Con respecto al paper sobre CF de Resnick et al. (1994)

· Ver Video de "re-presentación" del paper por P. Resnick y John Riedl en CSCW 2013, conmemorando que ha sido el paper más citado de dicha conferencia:

Video CF paper re-presented at CSCW2013

3/20

3 of 20

Evaluación Tradicional: Predicción de Ratings

MAE: Mean Absolute Error

$$MAE = \frac{\sum_{i=1}^{n} |\hat{r}_{ui} - r_{ui}|}{n}$$

MSE: Mean Squared Error

$$MSE = \frac{\sum_{i=1}^{n} (\hat{r}_{ui} - r_{ui})^2}{n}$$

RMSE: Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{r}_{ui} - r_{ui})^2}{n}}$$

Evaluación de una Lista de Recomendaciones

Si consideramos los elementos recomendados como un conjunto S y los elementos relevantes como el conjunto R, tenemos:

Luego, Precision es:

$$Precision = \frac{|Recomendados \cap Relevantes|}{|Recomendados|}, y$$

$$Recall = \frac{|Recomendados \cap Relevantes|}{|Relevantes|}$$

Ejemplo 1: Precision y Recall

Si bien la lista de recomendaciones está rankeada, para estas métricas la lista se entiende más

Precision = ??

Recall = ??

Ejemplo 1: Precision y Recall

Total Relevantes X 20

$$Precision = \frac{5}{10} = 0,5$$

$$Recall = \frac{5}{20} = 0,25$$

Recomendador 2 1 2 3 4 5

$$Precision = \frac{3}{5} = 0, 6$$

$$Recall = \frac{3}{20} = 0,15$$

Compromiso entre Precision y Recall

Al aumentar el Recall (la proporción de elementos relevantes) disminuimos la precision, por lo cual hay un compromiso entre ambas métricas.

► Figure 8.2 Precision/recall graph.

Por ello, generalmente reportamos la media harmónica entre ambas métricas:

$$F_{\beta=1} = \frac{2 * Precision * Recall}{P + R}$$

Ref: http://nlp.stanford.edu/IR-book/pdf/08eval.pdf

De evaluación de Conjuntos a Ranking

- · Mean Recicropal Rank (MRR)
- · Precision@N
- MAP
- · Rank score
- · DCG
- · nDCG

Mean Reciprocal Rank (MRR)

Consideramos la posición en la lista del primer elemento relevante.

$$MRR = \frac{1}{r}$$
, donde r: ranking del 1er elemento relevante

$$MRR_1 = ??$$

$$MRR_2 = ??$$

Problema: Usualmente tenemos más de un elemento relevante!!

Mean Reciprocal Rank (MRR)

Consideramos la posición en la lista del primer elemento relevante.

$$MRR = \frac{1}{r}$$
, donde r: ranking del 1er elemento relevante

Recomendador 1 2 3 4 5 6 7 8 9 10

$$MRR_1 = \frac{1}{2} = 0,5$$

Recomendador 2 1 2 3 4 5

$$MRR_2 = \frac{1}{2} = 0,5$$

Problema: Usualmente tenemos más de un elemento relevante!!

Precision at N (P@N)

Corresponde a la *precision* en puntos específicos de la lista de items recomendados. En otras palabras, dado un ranking específica en la lista de recomendaciones, qué proporción de elementos relevantes hay hasta ese punto

$$Precision@n = \frac{\sum_{i=1}^{n} Rel(i)}{n}$$
, $donde Rel(i) = 1si elemento es relevante$

$$Precision@5 = ??$$

$$Precision@5 = ??$$

Precision at N (P@N)

Corresponde a la *precision* en puntos específicos de la lista de items recomendados. En otras palabras, dado un ranking específica en la lista de recomendaciones, qué proporción de elementos relevantes hay hasta ese punto

$$Precision@n = \frac{\sum_{i=1}^{n} Rel(i)}{n}$$
, $donde\ Rel(i) = 1si\ elemento\ es\ relevante$

Recomendador 1 2 3 4 5 6 7 8 9 10

Precision@5 =
$$\frac{2}{5}$$
 = 0,4

Recomendador 2 2 3 4 5

$$Precision@5 = \frac{3}{5} = 0,6$$

Pro: permite evaluar topN; Problema: aún no permite una evalución orgánica del los items con ranking < n.

Mean Average Precision (MAP)

Average Precision (AP)

• El AP se calcula sobre una lista única de recomendaciones, al promediar la precision cada vez que encontramos un elemento relevante, es decir, en cada recall point.

$$AP = \frac{\sum_{k \in K} P@k \times rel(k)}{|relevantes|}$$

donde P@k es la precision en el recall point k, rel(k) es una función que indica 1 si el ítem en el ranking j es relevante (0 si no lo es), y K son posiciones de ranking con elementos relevantes.

MAP es la media de varias "Average Precision"

· Considerando n usuarios en nuestro dataset y que a cada uno de dimos una lista de recomendaciones,

$$MAP = \frac{\sum_{u=1}^{n} AP(u)}{m}$$
, donde m es el numero de usuarios.

Mean Average Precision (MAP) - II

Como no siempre sabemos de antemano el número de relevantes o puede que hagamos una lista que no alcanza a encontrar todos los elementos relevantes, podemos usar una formulación alternativa** para Average Precision (AP@n)

$$AP@n = \frac{\sum_{k \in K} P@k \times rel(k)}{min(m, n)}$$

donde n es el máximo número de recomendaciones que estoy entregando en la lista, y m es el número de elementos relevantes.

· Ejericio: calcule AP@n y luego MAP@n, con n=10, y m=20 de:

** https://www.kaggle.com/wiki/MeanAveragePrecision

Rankscore

· Rank Score se define como la tasa entre el Rank Score de los items correctos respecto al mejor Rank Score alcanzable por el usuario en teoría.

PARAMETROS

- h el conjunto de items correctamente recomendados, i.e. hits
- · rank retorna la posición (rank) de un item
- · T es el conjunto de items de interés
- \cdot α es el ranking half life, i.e. un factor de reducción exponencial

FORMULA

$$rankscore = \frac{rankscore_p}{rankscore_{max}}$$

$$rankscore_p = \sum_{i \in h} 2^{\frac{-rank(i)-1}{\alpha}}$$

$$rankscore_{max} = \sum_{i=1}^{|T|} 2^{-\frac{i-1}{\alpha}}$$

DCG y nDCG

· DCG: Discounted cummulative Gain

$$DCG = \sum_{i}^{p} \frac{2^{rel_i} - 1}{\log_2(1+i)}$$

 nDCG: normalized Discounted cummulative Gain, para poder comparar listas de distinto largo

$$nDCG = \frac{DCG}{iDCG}$$

Ejercicio: Calcular nDCG para

Coverage

- · Como no a todos los usuarios se logran hacer recomendaciones, consideramos en la evaluación el **User Coverage**, el porcentaje de usuarios a los cuales se les pudo hacer recomendaciones.
- · Como no a todos los items pueden ser recomendaciones, consideramos en la evaluación el **Item Coverage**, el porcentaje de items que fueron recomendados al menos una vez.

18/20

8/21/18,09:15

Rendimiento de una lista: Kendall-Tau

Se compara el resultado de ranking como lista, respecto a una lista que representa el "ground truth". En el contexto RecSys, se ha usado una modificación llamada AP correlation:

$$\tau_{a\rho} = \frac{2}{N-1} \cdot \left[\sum_{i \in I} \frac{C(i)}{index(i) - 1} \right] - 1$$

N es el numero de items rankeados en la lista, C(i) el numero de items reankeados bajo index(i) de forma correcta. Valores de APcorrelation van entre +1 to -1. Un problema que tiene es que asume un orden total, con un orden parcial de los elementos no es útil.

Diversity (Ziegler)

Esta métrica se calcula sobre una lista de recomendaciones. Se compara la similaridad entre los pares de elementos recomendados, obteniendo la **Intra-list Similarity**

$$ILS(P_{w_i}) = \frac{\sum_{b_k \in P_{w_i}} \sum_{b_k \in P_{w_i}, b_k \neq b_c} c_o(b_k, b_c)}{2}$$

Valores altos de ILS denotan menor diversidad en la lista. Basado en esta métrica, los autores proponen un algoritmo de diversificación. Los resultados de un estudio off-line y online muestran que la satisfacción del usuario va más allá de la precisión de la recomendación, incluyendo la diversidad percibida de las recomendaciones.

Ref: Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32). ACM.

Diversidad (Lathia) en el tiempo

Lathia compara diversidad y novedad a lo largo del tiempo. La razón L2/L1 corresponde a la fracción de elementos de L2 que no están en la lista L1.

$$diversity(L1, L2, N) = \frac{|\frac{L2}{L1}|}{N}$$

Por otro lado, "novelty" compara la última lista recomendada L2 con respecto al conjunto de todos los ítems recomendados a la fecha A_t .

$$novelty(L2, N) = \frac{|\frac{L2}{A_t}|}{N}$$

Ref: Lathia, N., Hailes, S., Capra, L., & Amatriain, X. (2010, July). Temporal diversity in recommender systems. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 210-217). ACM.

Mean Percentage Ranking (Implicit Feedback)

$$MPR = \frac{\sum_{ui} r_{ui}^{t} \cdot \overline{rank_{ui}}}{\sum_{ui} r_{ui}^{t}}$$

Donde r_{ui} indica si el usuario u consumio el item i y $rank_{ui}$ denota el percentile-ranking de i dentro de una lista ordenada. De esta forma, $\overline{rank_{ui}} = 0\%$ significa que i está al tope de la lista.

Ref: Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on (pp. 263-272). IEEE.

10 grandes problemas en sistemas de recomendación - 2020

Denis Parra

Profesor Asociado, Depto de Ciencia de la Computación

Escuela de Ingeniería

Pontificia Universidad Católica de Chile & IMFD

Problema #5 Métricas

Netlifx Prize

 Joe Konstan << terminado el Netflix prize, se vio que mejoras en décimas o centésimas del error de predicción no necesariamente se relacionaban con una mejor experiencia del usuario >>

Academia vs. industria vs. utilidad

Métricas de error y ranking

- RMSE, MAE
- Top-N ranking metrics

Business KPIs

- CTR
- Conversion rates
- Sales increase
- Engagement

Utilidad para el usuario

- Diversidad
- Novedad
- Serendipia
- Objetivos de vida

Comentarios

• [Tao Ye] ¿Cómo vincular fácilmente los objetivos comerciales (por ejemplo, más usuarios que regresan, duración de las sessiones) con las métricas de un recsys?

• [Tao Ye] ¿debería uno siempre optimizar todo lo que pueda? ¿Qué margen de ética debe establecer una empresa para equilibrar la ética con los KPI del negocio?

Comentarios

- [Pablo Castells] Veo que los desafíos de la evaluación off-line (procedimientos, dimensiones, sesgos, conjuntos de datos y recursos, etc.) siguen siendo relevantes y también clave para ayudar a que la investigación académica sea relevante para la industria.
- [Pablo Castells] También relacionado con esto, la perspectiva de recomendación **como un proceso cíclico** pueden ser una dirección importante que necesita más trabajo y reflexión (¿relacionado con arreglar Netflix?)

Xiao y Benbasat

Fig. 2 Updated conceptual model

Framework I - ResQue

 Identifica qué variables definen la experiencia de un usuario con un sistema recomendador

Figure 1: Constructs of an Evaluation Framework on the Perceived Qualities of Recommenders (ResQue).

Framework II

Fig. 1 An updated version of the User-Centric Evaluation Framework [61].

Referencias

- Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval (Vol. 1, p. 6). Cambridge: Cambridge university press.
- · Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463). New York: ACM press.
- Slides "Evaluating Recommender Systems" http://www.math.uci.edu/icamp/courses/math77b/lecture_12w
 /pdfs/Chapter%2007%20-%20Evaluating%20recommender%20systems.pdf