GÖRAN KIRCHNER

NOTES ON R

Packages

Visualization

2.1 Data

movies <- read.csv("data/movies.csv")
head(movies)</pre>

Title	Year	Rating	Runtime	Critic.Score	Box.Office	Awards	International
The Whole Nine Yards	2000	R	98	45	57.3	FALSE	FALSE
Cirque du Soleil: Journey of Man	2000	G	39	45	13.4	TRUE	FALSE
Gladiator	2000	\mathbf{R}	155	76	187.3	TRUE	TRUE
Dinosaur	2000	PG	82	65	135.6	TRUE	FALSE
Big Momma's House	2000	PG-13	99	30	0.5	TRUE	TRUE
Gone in Sixty Seconds	2000	PG-13	118	24	101	TRUE	FALSE

2.2 One Categorical Variable

2.2.1 base


```
movies <- read.csv("data/movies.csv")
dotchart(
    x = table(movies$Rating),
    pch = 16,
    main = "Count of Movies by Rating",
    xlab = "Count of Movies",
    ylab = "Rating")</pre>
```

Count of Movies by Rating

```
PG -13
PG
```

Proportion of Movies that Won Awards

2.2.2 lattice

```
library(lattice)
# Create frequency table of ratings
movies <- read.csv("data/movies.csv")
table <- table(movies$Rating)
ratings <- as.data.frame(table)
names(ratings)[1] <- "Rating"
names(ratings)[2] <- "Count"
print(ratings)</pre>
```

Rating	Count
G	93
PG	497
PG-13	1225
R	1423

PG-13 PG G G Count of Movies by Rating

```
library(lattice)
# Create frequency table of ratings
movies <- read.csv("data/movies.csv")
table <- table(movies$Rating)
ratings <- as.data.frame(table)
names(ratings)[1] <- "Rating"
names(ratings)[2] <- "Count"
histogram(
    x = ~Rating,
    data = movies,
    main = "Percent of Movies by Rating")</pre>
```


2.2.3 ggplot2

2.3.1 base


```
movies <- read.csv("data/movies.csv")</pre>
hist(
                x = movies$Runtime,
                breaks = 30,
                main = "Distribution of Movie Runtimes",
                xlab = "Runtime (minutes)")
```


2.3.2 lattice


```
movies <- read.csv("data/movies.csv")
library(lattice)</pre>
densityplot(
                        x = \text{-Runtime},
                        data = movies,
                        main = "Distribution of Movie Runtimes",
xlab = "Runtime (minutes)")
```


2.3.3 ggplot2


```
library(ggplot2)
movies <- read.csv("data/movies.csv")</pre>
ggplot(
                  data = movies,
                  aes(x = Runtime, y = Runtime)) +
                  geom_boxplot() +
                  coord_flip() +
                  ggtitle("Distribution of Movie Runtimes") +
                  xlab("") +
                  ylab("Runtime (minutes)") +
                  theme(
                                    axis.text.y = element_blank(),
axis.ticks.y = element_blank())
```



```
library(ggplot2)
movies <- read.csv("data/movies.csv")</pre>
ggplot(
                        data = movies,
                        aes(x = Runtime)) +
                        geom_density() +
ggtitle("Distribution of Movie Runtimes") +
xlab("Runtime (minutes)")
```


22 GÖRAN KIRCHNER

- 2.4 Two Categorical Variables
- 2.5 Two Numeric Variables
- 2.6 Both a Categorical and a Numeric Variable
- 2.7 Moving Beyond