離散最適化基礎論 第8回 マトロイドに対する操作

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2015年12月18日

最終更新: 2015年12月18日 16:45

離散最適化基礎論 (8)

★ 休講 (国内出張)	(12/11)
₿ マトロイドに対する操作	(12/18)
9 マトロイドの交わり	(12/25)
★ 冬季休業	(1/1)
Ⅲ マトロイド交わり定理	(1/8)
★ 休講 (センター試験準備)	(1/15)
🔟 マトロイド交わり定理:アルゴリズム	(1/22)
№ 最近のトピック	(1/29)
⋆ 授業等調整日 (予備日)	(2/5)

岡本 吉央 (電通大) 離散最適化基礎論 (8)

今日の目標

* 期末試験

注意: 予定の変更もありうる

岡本 吉央 (電通大)

スケジュール 後半 (予定)

今日の目標

マトロイドから別のマトロイドを得る操作を使えるようになる

扱う操作

- ▶ 打ち切り
- ▶ 制限 (除去)
- 縮約
- ▶ 直和

岡本 吉央 (電通大) 離散最適化基礎論 (8)

目次

- 1 マトロイドの打ち切り
- 2 マトロイドの制限と除去
- 3 マトロイドの縮約
- 4 マトロイドの直和
- 6 今日のまとめ

スケジュール 前半

(10/2)
(10/9)
(10/16)
(10/23)
(10/30)
(11/6)
(11/13)
(11/20)
(11/27)
(12/4)

離散最適化基礎論 (8)

テーマ:解きやすい組合せ最適化問題が持つ「共通の性質」

疑問

どうしてそのような違いが生まれるのか?

→ 解きやすい問題が持つ「共通の性質」は何か?

回答

よく分かっていない

岡本 吉央 (電通大)

しかし、部分的な回答はある

部分的な回答

問題が「マトロイド的構造」を持つと解きやすい

ポイント

(2/12?)

効率的アルゴリズムが設計できる背景に「美しい数理構造」がある

この講義では、その一端に触れたい

岡本 吉央 (電通大) 離散最適化基礎論 (8)

マトロイドの定義:復習

非空な有限集合 E, 有限集合族 $\mathcal{I} \subseteq 2^E$

マトロイドとは?

I が E 上のマトロイド (matroid) であるとは、次の 3 条件を満たすこと

- (I1) $\emptyset \in \mathcal{I}$
- (12) $X \in \mathcal{I}$ かつ $Y \subseteq X$ ならば, $Y \in \mathcal{I}$
- (13) $X, Y \in \mathcal{I}$ かつ |X| > |Y| ならば, ある $e \in X - Y$ が存在して、 $Y \cup \{e\} \in \mathcal{I}$

補足

- ▶ (I1) と (I2) は T が独立集合族であることを意味する
- ▶ (I3) を増加公理 (augmentation property) と呼ぶことがある

用語

▶ \mathcal{I} の要素である集合 $X \in \mathcal{I}$ を、このマトロイドの独立集合と呼ぶ

離散最適化基礎論 (8)

2015年12月18日

マトロイドの打ち切り

岡本 吉央 (電通大)

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 自然数 $k \ge 0$

マトロイドの打ち切り (truncation) とは?

Iの打ち切りとは、次の集合族 I_k

 $\mathcal{I}_k = \{X \mid X \in \mathcal{I}, |X| \le k\}$

マトロイドの打ち切りはマトロイド

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 自然数 $k \ge 0$

命題:マトロイドの打ち切りはマトロイド

マトロイド \mathcal{I} の打ち切り \mathcal{I}_k も E 上のマトロイドである

証明: \mathcal{I}_k も(I1),(I2),(I3)を満たすことを確認すればよい

- \mathcal{I}_k が (I1) を満たすことを確認する ▶ (I1) $\sharp \mathfrak{h}$, $\emptyset \in \mathcal{I}$ $\tau \mathfrak{h}$ \mathfrak{h} , $|\emptyset| = 0 < k$
 - ▶ したがって, $\emptyset \in \mathcal{I}_{k}$

岡本 吉央 (電通大)

離散最適化基礎論 (8)

マトロイドの打ち切りと一様マトロイド (1)

非空な有限集合 E, 自然数 $r \ge 0$

一様マトロイドの定義 (復習)

有限集合族 エを

 $\mathcal{I} = \{ X \subseteq E \mid |X| \le r \}$

と定義すると、 \mathcal{I} はE上のマトロイド (一様マトロイドと呼ばれる)

目次

- マトロイドの打ち切り
- ② マトロイドの制限と除去
- 3 マトロイドの縮約
- 4 マトロイドの直和
- 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (8)

マトロイドの制限はマトロイド

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 部分集合 $S \subseteq E$

マトロイドの制限はマトロイド

マトロイドIの制限I|SはS上のマトロイド

 $\underline{\overline{u}u}:\mathcal{I}|S$ も (I1), (I2), (I3) を満たすことを確認すればよい

- *I ∑ | S が (I1) を満たすことを確認する*
 - ▶ (I1) $\sharp \mathfrak{h}$, $\emptyset \in \mathcal{I}$ $\tau \mathfrak{h} \mathfrak{h}$, $\emptyset \subseteq S$
 - ▶ したがって, $\emptyset \in \mathcal{I}|S$

マトロイドの打ち切りはマトロイド:続き

証明 (続き):

 \mathcal{I}_k が (I2) を満たすことを確認する

- ▶ $X \in \mathcal{I}_k$ かつ $Y \subseteq X$ であると仮定
- ▶ $X \in \mathcal{I}_k$ より、 $X \in \mathcal{I}$ かつ |X| < k
- $Y \subseteq X \downarrow \emptyset, |Y| \leq k$
- ▶ $Y \subseteq X \succeq (12) \curlywedge \emptyset$, $Y \in \mathcal{I}$
- ▶ したがって, $Y \in \mathcal{I}_k$

\mathcal{I}_k が (I3) を満たすことを確認する

- ▶ $X, Y \in \mathcal{I}_k$ かつ |X| > |Y| であると仮定
- $ightharpoonup X, Y \in \mathcal{I}_k$ より、 $X, Y \in \mathcal{I}$ かつ $|X|, |Y| \leq k$
- $X, Y \in \mathcal{I} \text{ book}(X) > |Y| \text{ cools, (I3) }$ ある $e \in X - Y$ が存在して、 $Y \cup \{e\} \in \mathcal{I}$
- ▶ $|X| > |Y| \ge |X| \le k \$$ \$\text{ } \$\text{
- ▶ したがって, $|Y \cup \{e\}| \le (k-1)+1=k$
- ▶ つまり, $Y \cup \{e\} \in \mathcal{I}_k$

岡本 吉央 (電通大)

離散最適化基礎論 (8)

マトロイドの打ち切りと一様マトロイド (2)

非空な有限集合 E, 自然数 $r \ge 0$

【観察:一様マトロイドはマトロイドの打ち切り

有限集合族 エを

 $\mathcal{I} = \{ X \subseteq E \mid |X| \le r \}$

と定義すると、 \mathcal{I} はマトロイド 2^E を r で打ち切ったもの

マトロイドの制限

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 部分集合 $S \subseteq E$

マトロイドの制限 (restriction) とは?

Iの制限とは、次の集合族I|S

 $\mathcal{I}|S = \{X \mid X \in \mathcal{I}, X \subseteq S\}$

岡本 吉央 (電通大)

離散最適化基礎論 (8)

マトロイドの制限はマトロイド:続き

証明 (続き):

- X ∈ I | S かつ Y ⊆ X であると仮定
- ▶ $X \in \mathcal{I}|S$ より、 $X \in \mathcal{I}$ かつ $X \subseteq S$
- $ightharpoonup Y \subseteq X \text{ } Y \subseteq S$
- ▶ $Y \subseteq X \succeq (12) \curlywedge \emptyset$, $Y \in \mathcal{I}$
- ▶ したがって, $Y \in \mathcal{I}|S$

I | *S* が (I3) を満たすことを確認する

- $igwedge X,Y\in \mathcal{I}|S$ かつ |X|>|Y| であると仮定
- $lackbox{} X,Y\in\mathcal{I}|S$ & eta, $X,Y\in\mathcal{I}$ \hbar 0 $X,Y\subseteq S$
- X, Y ∈ I かつ |X| > |Y| なので, (I3) より, ある $e \in X - Y$ が存在して、 $Y \cup \{e\} \in \mathcal{I}$
- e ∈ X ⊆ S なので,e ∈ S
- ▶ したがって, $Y \cup \{e\} \subseteq S$
- ▶ つまり, $Y \cup \{e\} \in \mathcal{I}|S$

岡本 吉央 (電通大)

マトロイドの除去

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 部分集合 $S \subseteq E$

「マトロイドの除去 (deletion) とは?

Iの除去とは、次の集合族 $I\setminus S$

 $\mathcal{I} \setminus S = \{X - S \mid X \in \mathcal{I}\}\$

演習問題

マトロイド \mathcal{I} の除去 $\mathcal{I}\setminus S$ はE-S上のマトロイド

▶ 実際は、 I\S = I|(E - S) となる

岡本 吉央 (電通大)

離散最適化基礎論 (8)

離散最適化基礎論 (8)

G-S

マトロイドの制限の階数関数

非空な有限集合 E, マトロイド $\mathcal{I} \subset 2^E$, 部分集合 $S \subset E$

マトロイドの制限 (restriction) とは?

Iの制限とは、次の集合族I|S

 $\mathcal{I}|S = \{X \mid X \in \mathcal{I}, X \subseteq S\}$

マトロイドの制限の階数関数

(演習問題)

 \mathcal{I} の階数関数を r とするとき、 $\mathcal{I}|S$ の階数関数 r' は次のように書ける 任意の $X \subseteq S$ に対して、 r'(X) = r(X)

後の講義で、これを用いる予定

岡本 吉央 (電通大)

離散最適化基礎論 (8)

岡本 吉央 (電通大)

離散最適化基礎論 (8)

マトロイドの縮約

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 独立 集合 $S \in \mathcal{I}$

マトロイドの縮約 (contraction) とは?

Iの縮約とは、次の集合族I/S

 $\mathcal{I}/S = \{X \mid X \cup S \in \mathcal{I}, X \subseteq E - S\}$

S∉Іのときにも縮約は定義できるが、上とは違う式で行われる

岡本 吉央 (雷诵大)

離散最適化基礎論 (8)

岡本 吉央 (雷诵大)

離散最適化基礎論 (8)

マトロイドの縮約はマトロイド:続き

証明 (続き):

エ/S が (I2) を満たすことを確認する

- X ∈ I/S かつ Y ⊆ X であると仮定
- ▶ $X \in \mathcal{I}/S$ より、 $X \cup S \in \mathcal{I}$ かつ $X \subseteq E S$
- ▶ $Y \subseteq X \downarrow \emptyset$, $Y \cup S \subseteq X \cup S \downarrow \emptyset$ (I2) $\downarrow \emptyset$, $Y \cup S \in \mathcal{I}$
- ▶ したがって, $Y \in \mathcal{I}/S$

目次

● マトロイドの打ち切り

岡本 吉央 (電通大)

閉路マトロイドの制限・除去

閉路マトロイドの除去

グラフG - Sの閉路マトロイド

グラフG = (V, E), 辺部分集合 $S \subseteq E$

グラフGの閉路マトロイドIの除去 $I \setminus S$ は,

 $S=\{e_2,e_4\}$

- ② マトロイドの制限と除去
- 3 マトロイドの縮約
- ₫ マトロイドの直和
- 6 今日のまとめ

マトロイドの縮約はマトロイド

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$, 独立集合 $S \in \mathcal{I}$

マトロイドの縮約はマトロイド

マトロイド \mathcal{I} の縮約 \mathcal{I}/S はE-S上のマトロイド

 $\overline{\underline{\imath}\imath u \eta}: \mathcal{I}/S$ も (I1), (I2), (I3) を満たすことを確認すればよい *エ/S* が (I1) を満たすことを確認する

- ▶ 仮定より、 $\emptyset \cup S = S \in \mathcal{I}$
- ▶ $\emptyset \subseteq E S$ なので、 $\emptyset \in \mathcal{I}/S$

マトロイドの縮約はマトロイド:続き(2)

証明 (続き):

\mathcal{I}/S が (I3) を満たすことを確認する

- ▶ *X*, *Y* ∈ *I*/*S* かつ |*X*| > |*Y*| であると仮定
- ▶ $X, Y \in \mathcal{I}/S$ より, $X \cup S, Y \cup S \in \mathcal{I}$ かつ $X, Y \subseteq E S$
- ▶ $X, Y \subseteq E S \& \emptyset$, $X \cap S, Y \cap S = \emptyset$
- $2n \ge |X| > |Y| \le 9$, $|X \cup S| = |X| + |S| > |Y| + |S| = |Y \cup S|$
- $ightharpoonup X \cup S, Y \cup S \in \mathcal{I} \text{ $\mathcal{Y} \cup S$} | X \cup S | > |Y \cup S| \text{ $\mathcal{Y} \cup S$}| \text{ $\mathcal{Y} \cup S$}|$ ある $e \in (X \cup S) - (Y \cup S)$ が存在して、 $(Y \cup S) \cup \{e\} \in \mathcal{I}$
- $ightharpoonup X, Y \subseteq E S$ なので, $(X \cup S) (Y \cup S) = X Y$ であり, $e \in X - Y$
- ▶ したがって, $Y \cup \{e\} \subseteq E S$ であり, $(Y \cup \{e\}) \cup S = (Y \cup S) \cup \{e\}$
- ▶ つまり, $Y \cup \{e\} \in \mathcal{I}/S$

岡本 吉央 (電通大)

閉路マトロイドの縮約

グラフG = (V, E), 辺部分集合 $S \subseteq E$

閉路マトロイドの縮約

グラフGの閉路マトロイドIの縮約I/Sは、 グラフ G/S の閉路マトロイド

岡本 吉央 (電通大)

目次

- マトロイドの打ち切り
- 2マトロイドの制限と除去
- 3 マトロイドの縮約
- ₫ マトロイドの直和
- 6 今日のまとめ

マトロイドの直和はマトロイド

非空な有限集合 $E_1, E_2, E_1 \cap E_2 = \emptyset$, 2つのマトロイド $\mathcal{I}_1 \subseteq 2^{E_1}, \mathcal{I}_2 \subseteq 2^{E_2}$

マトロイドの直和はマトロイド

マトロイド $\mathcal{I}_1, \mathcal{I}_2$ の直和 $\mathcal{I}_1 \oplus \mathcal{I}_2$ もマトロイド

 $\overline{\underline{u}}$ 明: $\mathcal{I}_1 \oplus \mathcal{I}_2$ も (I1), (I2), (I3) を満たすことを確認すればよい $\mathcal{I}_1 \oplus \mathcal{I}_2$ が (I1) を満たすことを確認する

- ▶ (I1) より, $\emptyset \in \mathcal{I}_1, \mathcal{I}_2$ である
- ▶ $\emptyset \cup \emptyset = \emptyset$ なので、 $\emptyset \in \mathcal{I}_1 \oplus \mathcal{I}_2$

岡本 吉央 (雷诵大)

離散最適化基礎論 (8)

マトロイドの直和はマトロイド:続き(2)

証明 (続き):

 $\mathcal{I}_1 \oplus \mathcal{I}_2$ が (I3) を満たすことを確認する

- ▶ $X, Y \in \mathcal{I}_1 \oplus \mathcal{I}_2$ かつ |X| > |Y| であると仮定
- ▶ $X \in \mathcal{I}_1 \oplus \mathcal{I}_2$ より,ある $X_1 \in \mathcal{I}_1$ と $X_2 \in \mathcal{I}_2$ が存在して, $X = X_1 \cup X_2$
- ▶ 同様に,ある $Y_1 \in \mathcal{I}_1$ と $Y_2 \in \mathcal{I}_2$ が存在して, $Y = Y_1 \cup Y_2$
- $lacksymbol{\triangleright} X_1 \in \mathcal{I}_1, X_2 \in \mathcal{I}_2$ $oldsymbol{\mathfrak{C}}, \ E_1 \cap E_2 = \emptyset$ \$ 9, $X_1 \cap X_2 = \emptyset$
- ▶ 同様に、Y₁ ∩ Y₂ = ∅
- $|X| = |X_1| + |X_2|, |Y| = |Y_1| + |Y_2|$
- ▶ |X| > |Y| より、 $|X_1| > |Y_1|$ または $|X_2| > |Y_2|$ が成り立つ
- ▶ |X₁| > |Y₁| が成り立つとする (|X₂| > |Y₂| の場合も同様になる)
- **▶** X₁, Y₁ ∈ I₁ と (I3) より,ある e ∈ X₁ − Y₁ が存在して, $Y_1 \cup \{e\} \in \mathcal{I}_1$
- $Y \cup \{e\} = (Y_1 \cup Y_2) \cup \{e\} = (Y_1 \cup \{e\}) \cup Y_2 \in \mathcal{I}_1 \oplus \mathcal{I}_2$

マトロイドの縮約の階数関数

非空な有限集合 E, マトロイド $\mathcal{I}\subseteq 2^E$, 独立 集合 $S\in\mathcal{I}$

マトロイドの縮約 (contraction) とは?

Iの縮約とは、次の集合族I/S

 $\mathcal{I}/S = \{X \mid X \cup S \in \mathcal{I}, X \subseteq E - S\}$

マトロイドの縮約の階数関数

(演習問題)

 \mathcal{I} の階数関数を r とするとき、 \mathcal{I}/S の階数関数 r' は次のように書ける 任意の $X \subseteq E - S$ に対して、 $r'(X) = r(X \cup S) - r(S)$

後の講義で、これを用いる予定

岡本 吉央 (電通大)

離散最適化基礎論 (8)

マトロイドの直和

非空な有限集合 $E_1, E_2, E_1 \cap E_2 = \emptyset$, 2つのマトロイド $\mathcal{I}_1 \subseteq 2^{E_1}, \mathcal{I}_2 \subseteq 2^{E_2}$

マトロイドの直和 (direct sum) とは?

 \mathcal{I}_1 と \mathcal{I}_2 の<mark>直和</mark>とは、次の集合族 $\mathcal{I}_1 \oplus \mathcal{I}_2$

 $\mathcal{I}_1 \oplus \mathcal{I}_2 = \{X_1 \cup X_2 \mid X_1 \in \mathcal{I}_1, X_2 \in \mathcal{I}_2\}$

マトロイドの直和はマトロイド:続き

証明 (続き):

 $\mathcal{I}_1 \oplus \mathcal{I}_2$ が (I2) を満たすことを確認する

- ▶ $X \in \mathcal{I}_1 \oplus \mathcal{I}_2$ かつ $Y \subseteq X$ であると仮定
- ightharpoonup ある $X_1 \in \mathcal{I}_1$ と $X_2 \in \mathcal{I}_2$ が存在して, $X = X_1 \cup X_2$
- ightharpoonup ∴ ある $Y_1 \subseteq X_1$ と $Y_2 \subseteq X_2$ が存在して, $Y = Y_1 \cup Y_2$
- (I2) $\sharp \mathfrak{h}$, $Y_1 \in \mathcal{I}_1$, $Y_2 \in \mathcal{I}_2$
- ightharpoonup したがって, $Y\in\mathcal{I}_1\oplus\mathcal{I}_2$

岡本 吉央 (電通大)

蘇散最適化基礎論 (8)

マトロイドの直和と分割マトロイド (1)

非空な有限集合 E, 集合 E の分割 $\{E_1, E_2, \ldots, E_k\}$, 自然数 $r_1, r_2, \ldots, r_k \geq 0$

命題

(証明は後の講義で行う、と第2回で述べた)

有限集合族 エを

 $\mathcal{I} = \{X \subseteq E \mid$ 任意の $i \in \{1, \dots, k\}$ に対して, $|X \cap E_i| \le r_i\}$ と定義すると、IはE上のマトロイド

▶ E上の分割マトロイド (partition matroid) と呼ばれる

例

 $E = \{1, 2, 3, 4, 5\}, E_1 = \{1, 2, 3\}, E_2 = \{4, 5\}, r_1 = 1, r_2 = 1$ のとき $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,4\}, \{1,5\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}\}$

マトロイドの直和と分割マトロイド (2)

 $E = \{1,2,3,4,5\}$, $E_1 = \{1,2,3\}$, $E_2 = \{4,5\}$, $r_1 = 1$, $r_2 = 1$ のとき $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,4\}, \{1,5\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}\}$

直感: \mathcal{I} の要素を作るとき、 E_i から高々 r_i 個の要素を選ぶ

この例において

$$\mathcal{I} = U_{1,3} \oplus U_{1,2}$$

岡本 吉央 (電通大)

離散最適化基礎論 (8)

目次

- マトロイドの打ち切り
- ② マトロイドの制限と除去
- 3マトロイドの縮約
- 4 マトロイドの直和
- 6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (8)

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

岡本 吉央 (電通大) 離散最適化基礎論 (8) 2015年12月18日 37/38

マトロイドの直和と分割マトロイド (3)

非空な有限集合 E, 集合 E の分割 $\{E_1, E_2, \ldots, E_k\}$, 自然数 $r_1, r_2, \ldots, r_k \geq 0$

命題

(証明は後の講義で行う、と第2回で述べた)

有限集合族 エを

 $\mathcal{I} = \{X \subseteq E \mid$ 任意の $i \in \{1, \dots, k\}$ に対して, $|X \cap E_i| \le r_i\}$ と定義すると、 \mathcal{I} はE上のマトロイド

 $n_i = |E_i|$ とすると

$$\mathcal{I} = \textit{U}_{\textit{r}_{1},\textit{n}_{1}} \oplus \textit{U}_{\textit{r}_{2},\textit{n}_{2}} \oplus \cdots \oplus \textit{U}_{\textit{r}_{k},\textit{n}_{k}}$$

と表すことができる

帰結

つまり、分割マトロイドはマトロイド

岡本 吉央 (電通大)

離散最適化基礎論 (8)

今回のまとめ

今日の目標

マトロイドから別のマトロイドを得る操作を使えるようになる

扱う操作

- ▶ 打ち切り
- ▶ 制限 (除去)
- 縮約
- ▶ 直和

次回

マトロイドに対する別の操作

- ▶ マトロイドの交わり:マトロイドであるとは限らない
- ▶ マトロイドの合併:必ずマトロイドになる

この2つは応用上,とても重要

岡本 吉央 (電通大)

離散最適化基礎論 (8)