4D Spatio-Temporal ConvNets

Minkowski Convolutional Neural Networks

Introduction

- 4D Space: 3 spatial dim., 1 time dim.
- 3D Pointcloud as a slice along the time axis
- Captured by depth sensing sensors over time
- Problem statement:
 - Input: 4D data
 - Goal: Segmentation of points

Source: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Motivation

- More and more 4D data, e.g. in robotics
- But: Curse of dimensionality
 - Exponential computational effort
 - Sparse data

Source: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Concepts explained – Sparse Data

[Coordinate], [Value]

Source: https://github.com/facebookresearch/SparseConvNet

From: $28 * 28 = 784 \ values$

To: 50 * 2 + 50 * 1 = 150 *values*

Concepts explained – Sparse Convolutions

- Non-trivial convolutions mapping from input to output
- Computation for just some outputs

Source: https://github.com/facebookresearch/SparseConvNet

Source: Spatially-sparse convolutional neural networks

Concepts explained – Sparse Convolutions

Source: https://medium.com/geekculture/3d-sparse-sabmanifold-convolutions-eaa427b3a196

Concepts explained – Sparsity

- Deals with the curse of dimensionality
- Sparse representation more memory efficient
- Sparse convolutions less computational complexity

Related Work

- 4D perception without NN
 - 4D Markov random field
 - Spatio-temporal CNN
- 2D video perception
- Related Work is in 3D Perception
 - Perception utilizing 3D convolutions
 - Perception without 3D convolutions

Related Work – 3D Convolutions

- Dense 3D convolutions
 - Suffer from the curse of dim. → OctNet
- Sparse 3D convolutions
- Continuous kernels in a continuous space

Source: https://iq.opengenus.org/octree/

Related Work –Without 3D Convolutions

- 2D convolutions for 3D perception
- Perception on pointclouds
 - PointNet/ PointNet++

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Methods – Sparse Tensors

- Coordinates with respective values
- 3 spatial dimensions and 1 temporal dimension
- Data needs to be quantized

$$C = egin{bmatrix} x_1 & y_1 & z_1 & t_1 & b_1 \ & & dots \ x_N & y_N & z_N & t_N & b_N \end{bmatrix}, \ F = egin{bmatrix} \mathbf{f}_1^T \ dots \ \mathbf{f}_N^T \end{bmatrix}$$

Methods – Generalized (sparse) Convolutions

1.
$$\mathbf{x}_{\mathbf{u}}^{\text{out}} = \sum_{\mathbf{i} \in \mathcal{V}^D(K)} W_{\mathbf{i}} \mathbf{x}_{\mathbf{u}+\mathbf{i}}^{\text{in}} \text{ for } \mathbf{u} \in \mathbb{Z}^D$$

2.
$$\mathbf{x}_{\mathbf{u}}^{\text{out}} = \sum_{\mathbf{i} \in \mathcal{N}^D(\mathbf{u}, \mathcal{C}^{\text{in}})} W_{\mathbf{i}} \mathbf{x}_{\mathbf{u}+\mathbf{i}}^{\text{in}} \text{ for } \mathbf{u} \in \mathcal{C}^{\text{out}}$$

> We need an algorithm for this

Methods – Pooling Operations

- Max Pooling
- Global Pooling
- Average Pooling
- Sum Pooling

Non-linearity

Non-trivial algorithm

Trivial

Methods - Kernel Shapes

- Surfaces of objects in 3D are to be perceived
- Kernels are overparametrized
- ➤ Reduce params in kernels

Source: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Methods - Full Architecture

4D input

2D input

Results - Video

Results – ScanNet

Source: http://www.scan-net.org/

Table 1: 3D Semantic Label Benchmark on ScanNet[†] [5]

Method	mIOU
ScanNet [5]	30.6
SSC-UNet [10]	30.8
PointNet++ [24]	33.9
ScanNet-FTSDF	38.3
SPLATNet [29]	39.3
TangetConv [30]	43.8
SurfaceConv [21]	44.2
3DMV [‡] [6]	48.4
3DMV-FTSDF [‡]	50.1
PointNet++SW	52.3
MinkowskiNet42 (5cm)	67.9
MinkowskiNet42 (2cm) [†]	72.1
SparseConvNet [10] [†]	72.5

^{†:} post-CVPR submissions. ‡: uses 2D images additionally. Per class IoU in the supplementary material. The parenthesis next to our methods indicate the voxel size.

Source: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Results – Synthia 4D

Table 3: Segmentation results on the noisy Synthia 4D dataset

IoU	Building	Road	Sidewalk	Fence	Vegetation	Pole	Car	Traffic Sign	Pedestrian	Lanemarking	Traffic Light	mIoU
3D MinkNet42 3D MinkNet42 + TA	87.954 87.796	97.511 97.068	78.346 78.500	84.307 83.938	96.225 96.290	94.785 94.764	87.370 85.248	42.705 43.723	66.666 62.048	52.665 50.319	55.353 54.825	76.717 75.865
4D Tesseract MinkNet42 4D MinkNet42	89.957 88.890	96.917 97.720	81.755 85.206	82.841 84.855	96.556 97.325	96.042 96.147	91.196 92.209	52.149 61.794	51.824 61.647	70.388 55.673	57.960 56.735	78.871 79.836

TA denotes temporal averaging. As the input pointcloud coordinates are noisy, averaging along the temporal dimension introduces noise.

Conclusion – Main Contribution/ Key-Idea

- Generalizes (sparse) convolutions to any dimension
- Introduces different kernel shapes

> Coming up with concrete algorithms for these ideas

Conclusion – Limitations

- Deep Learning on Dynamic 3D Point Cloud Sequences:
 - "Quantization introduces error"
 - Their method looks at the neighbours of each point instead of the space itself

Q&A

