S21 – Comprendre les réseaux

CM - DNS - Topologies logiques et matérielles

Julien Gossa

IUT Robert Schuman - Département Informatique

julien.gossa@unistra.fr

2009

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

DNS: Domain Name System

- Fournit l'association : nom de domaine <-> IP
- Demandé par Jon Postel
- Implémenté par Paul Mockapetris en 1983
- Pour faciliter la mémorisation humaine des machines
- Centaines de milliers de serveurs DNS

Fonctionnalités

- Résolution : nom de domaine -> IP
- Résolution inversée : IP -> nom de domaine
- Tourniquet : nom de domaine -> plusieurs IP
 - Données à tour de rôle
 - Équilibrage des charges

DNS: Domain Name System

- Fournit l'association : nom de domaine <-> IP
- Demandé par Jon Postel
- Implémenté par Paul Mockapetris en 1983
- Pour faciliter la mémorisation humaine des machines
- Centaines de milliers de serveurs DNS

Fonctionnalités

- Résolution : nom de domaine -> IP
- Résolution inversée : IP -> nom de domaine
- Tourniquet : nom de domaine -> plusieurs IP
 - Données à tour de rôle
 - Équilibrage des charges

FQDN

- FQDN: Fully Qualified Domain Name
- ou Nom de Domaine Pleinement Qualifié
- Format : hôte.domaine.tld
 - hôte = nom de la machine
 - domaine = domaine d'appartenance de la machine
 - tld = Top Level Domain .fr .com .org .net...
- Exemple : iut-info.unistra.fr

Inversion

- terme plus global à droite dans les noms de domaine
 - iut-info.unistra.fr
- terme plus global à gauche dans les adresses IP
 - 91.198.174.2
- inversion pour la cohérence
 - 91.198.174.2 devient 2.174.198.91.in-addr.arpa

FQDN

- FQDN : Fully Qualified Domain Name
- ou Nom de Domaine Pleinement Qualifié
- Format : hôte.domaine.tld
 - hôte = nom de la machine
 - domaine = domaine d'appartenance de la machine
 - tld = Top Level Domain .fr .com .org .net...
- Exemple : iut-info.unistra.fr

Inversion

- terme plus global à droite dans les noms de domaine
 - iut-info.unistra.fr
- terme plus global à gauche dans les adresses IP
 - **91**.198.174.2
- inversion pour la cohérence :
 - 91.198.174.2 devient 2.174.198.91.in-addr.arpa

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

Fonctionnement

- FQDN = séquence de nœuds, de la machine au tld
- Correspond à une chaine de serveurs DNS
- Organisés en hierarchie

Fonctionnement

- FQDN = séquence de nœuds, de la machine au tld
- Correspond à une chaine de serveurs DNS
- Organisés en hierarchie

Exemple: pour résoudre iut-info.unistra.fr

- le serveur DNS local contacte le serveur DNS racine
- qui renvoie la requête au serveur DNS .fr
- qui renvoie la requête au serveur DNS .unistra.fr
- qui renvoie l'IP de la machine iut-info

Accéléré par des **caches**

Sur les serveurs DNS et sur les machines (fichier host)

Exemple: pour résoudre iut-info.unistra.fr

- le serveur DNS local contacte le serveur DNS racine
- qui renvoie la requête au serveur DNS .fr
- qui renvoie la requête au serveur DNS .unistra.fr
- qui renvoie l'IP de la machine iut-info

Accéléré par des caches

Sur les serveurs DNS et sur les machines (fichier host)

Sécurité

Problème

- Système névralgique d'Internet
- Mais sécurité non prévue à la base
- Objectifs
 - Rendre Internet inutilisable, Fishing
- Ne pas faire confiance
 - Certificats, SSH (fichier known_hosts)

Attaques

- l'interception du paquet (requête ou réponse) et émission d'un autre paquet à sa place
- la fabrication d'une réponse
- la trahison par un serveur ou corruption de données
- l'empoisonnement du cache DNS
- le dé

Sécurité

Problème

- Système névralgique d'Internet
- Mais sécurité non prévue à la base
- Objectifs
 - Rendre Internet inutilisable, Fishing
- Ne pas faire confiance
 - Certificats, SSH (fichier known hosts)

Attaques

- l'interception du paquet (requête ou réponse) et émission d'un autre paquet à sa place
- la fabrication d'une réponse
- la trahison par un serveur ou corruption de données
- l'empoisonnement du cache DNS
- le déni de service

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

Client DNS

• host, nslookup, dig

/etc/host

```
127.0.0.1 localhost.localdomain localhost
130.79.80.4 tetras.u-strasbg.fr tetras
130.79.81.6 phoenix.u-strasbg.fr phoenix
```

/etc/resolv.conf

```
search u-strasbg.fr
nameserver 130.79.80.12
```

/etc/hostname

Client DNS

• host, nslookup, dig

/etc/host

```
127.0.0.1 localhost.localdomain localhost
130.79.80.4 tetras.u-strasbg.fr tetras
130.79.81.6 phoenix.u-strasbg.fr phoenix
```

/etc/resolv.conf

```
search u-strasbg.fr
nameserver 130.79.80.12
```

/etc/hostname

Client DNS

• host, nslookup, dig

/etc/host

```
127.0.0.1 localhost.localdomain localhost
130.79.80.4 tetras.u-strasbg.fr tetras
130.79.81.6 phoenix.u-strasbg.fr phoenix
```

/etc/resolv.conf

```
search u-strasbg.fr nameserver 130.79.80.12
```

/etc/hostname

Client DNS

• host, nslookup, dig

/etc/host

```
127.0.0.1 localhost.localdomain localhost
130.79.80.4 tetras.u-strasbg.fr tetras
130.79.81.6 phoenix.u-strasbg.fr phoenix
```

/etc/resolv.conf

```
search u-strasbg.fr
nameserver 130.79.80.12
```

/etc/hostname

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

N'importe quo

- Totalement décentralisé
- Plusieurs routes entre deux nœuds

Avantages

- Robuste
- Facile à mettre en œuvre

- Difficile à maintenir
- Pas de garantie

N'importe quoi

- Totalement décentralisé
- Plusieurs routes entre deux nœuds

N'importe quoi

- Totalement décentralisé
- Plusieurs routes entre deux nœuds

Avantages

- Robuste
- Facile à mettre en œuvre

- Difficile à maintenir
- Pas de garantie

N'importe quoi

- Totalement décentralisé
- Plusieurs routes entre deux nœuds

Avantages

- Robuste
- Facile à mettre en œuvre

- Difficile à maintenir
- Pas de garantie

Architectures logicielles

- Au dessus de l'architecture matérielle
- Notion de Réseau Logique
- Organisation différente
- Pour un échange performant de l'information
- En fonction des besoins de l'application

Trois types principaux

- Centralisé : clients/serveur
- Hiérarchique : clients/serveurs
- Pair à Pair : tous clients ET serveurs

Architectures logicielles

- Au dessus de l'architecture matérielle
- Notion de Réseau Logique
- Organisation différente
- Pour un échange performant de l'information
- En fonction des besoins de l'application

Trois types principaux

- Centralisé : clients/serveur
- Hiérarchique : clients/serveurs
- Pair à Pair : tous clients ET serveurs

Sans transition...

- **ONS**
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

serveur / n clients

- Totalement centralisé
- Serveur WWW, mail, etc...

Avantages

- Facilité
- Contrôle et sécurité
- Pas cher

- Performance
- Fragilité

1 serveur / n clients

- Totalement centralisé
- Serveur WWW, mail, etc...

Avantages

- Facilité
- Contrôle et sécurité
- Pas cher

- Performance
- Fragilité

1 serveur / n clients

- Totalement centralisé
- Serveur WWW, mail, etc...

Avantages

- Facilité
- Contrôle et sécurité
- Pas cher

1 serveur / n clients

- Totalement centralisé
- Serveur WWW, mail, etc...

Avantages

- Facilité
- Contrôle et sécurité
- Pas cher

- Performance
- Fragilité

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

Lserveur / n clients

- Organisé en pyramide
- Serveur DNS, Grille de calcul

Avantages

- Organisé (contrôle)
- Robuste
- Performant

- Cher (plus de machines)
- Applications limitée
- Mise en oeuvre et maintenance

1 serveur / n clients

- Organisé en pyramide
- Serveur DNS, Grille de calcul

Avantages

- Organisé (contrôle)
- Robuste
- Performant

- Cher (plus de machines)
- Applications limitée
- Mise en oeuvre et maintenance

1 serveur / n clients

- Organisé en pyramide
- Serveur DNS, Grille de calcul

Avantages

- Organisé (contrôle)
- Robuste
- Performant

- Cher (plus de machines)
- Applications limitée
- Mise en oeuvre et maintenance

1 serveur / n clients

- Organisé en pyramide
- Serveur DNS, Grille de calcul

Avantages

- Organisé (contrôle)
- Robuste
- Performant

- Cher (plus de machines)
- Applications limitée
- Mise en oeuvre et maintenance

Sans transition...

- 1 DNS
 - Présentation
 - Topologie
 - Un peu de technique
- Topologies des réseaux
 - Topologies Centralisée
 - Topologies Hiérarchique
 - Topologies Pair à Pair

Tous client et serveu

- Pas de hiérarchie
- Echange de fichier
- Calculs scientifiques

Avantages

- Léger
- Très Robuste
- Autonome

- Peu performant
- Difficile à mettre en œuvre

Tous client et serveur

- Pas de hiérarchie
- Échange de fichier
- Calculs scientifiques

Avantages

- Léger
- Très Robuste
- Autonome

- Peu performant
- Difficile à mettre en œuvre

Tous client et serveur

- Pas de hiérarchie
- Échange de fichier
- Calculs scientifiques

Avantages

- Léger
- Très Robuste
- Autonome

- Peu performant
- Difficile à mettre en œuvre

Tous client et serveur

- Pas de hiérarchie
- Échange de fichier
- Calculs scientifiques

Avantages

- Léger
- Très Robuste
- Autonome

- Peu performant
- Difficile à mettre en œuvre