

# DSSISCLAIMAR



# **PREREQUISITE**

- INSTALL WELLENDOWNLOAD AUDACITY



# CHAOTIC SIGNAL PROCESS (CSP)

C = CHAOTIC

S = SIGNAL

P = PROCESS

REASON#1
LEARN THE VERY BASIC, BECOME LITERATE.
DO NOT JUST CONSUME BUT ALSO PRODUCE.

# REASON#2 TRANSLATES WELL INTO OTHER CONTEXTS E.G MCU

```
HOW TO LEARN + USE DSP: MENTAL MODELS + PAPER ( + CHATGPT )
```

WHAT ARE SIGNALS?
>ROTATE YOUR HEAD TO THE SIDE <
STREAM OF WAVES</pre>

# THE SAMPLE

- CONTINUOUS TO DISCRETE
- TIME DOMAIN

**#VISUALIZE** 

# @AUDACITY LOOK AT RECORDINGS GENERATE TONE

#### ANATOMY OF A DSP SYSTEM

ADC > PROCESSOR > DAC

```
ANALOG TO DIGITAL CONVERTER (ADC)
PROCESSING UNIT (PROCESSOR)
DIGITAL TO ANALOG CONVERTER (DAC)
#VISUALIZE
```

#### **CONVENTIONS**

- VALUES ARE FLOATS
- RANGE FROM (-1.0, 1.0)
- SIGNAL ARE PROCESSED IN AUDIO BLOCKS
- SAMPLING RATE IS 48KHZ ( BIT-DEPTH 16BIT )

#### PROCESSOR=IN+OUPUT-FUNCTION

- @WELLEN
- FLOAT AUDIO(FLOAT) {}
- MAGIC FUNCTION
- ( E.G RANDOM )

**#HANDS\_ON** 



3 KINDS OF NODES: GENERATOR, PROCESSOR, CONSUMER

#### NODE CATEGORIES

- OSCILLATOR
- WAVETABLE
- NOISE
- FILTERS
- EFFECTS ( E.G DISTORTION )
- ENVELOPE
- INSTRUMENTS

**#VISUALIZE** 

```
REASON#3
CREATE YOUR OWN NODES
#HANDS_ON
( E.G AMPLIFIER ) #PYO
```

OBSERVE+MODIFY #HANDS\_ON

- COMPOSING WITH NODES
- COMPOSING WITH STRUCTURES

# ADDITIVE VS SUBTRACTIVE VS FM SYNTHESIS



ADDITIVE SYNTHESIS #VISUALIZE #HANDS ON

### STRUCTURES

- BEAT
- EVENTS/TRIGGER ( MODULO )
- PATTERNS/ARPEGGIO
- LOOPS/PHASING

# REASON#4 GENERATIVE COMPOSITION CAN CREATE TRUELY COMPLEX STRUCTURES

```
REASON#5
SONIFICATION ( DATA + PARAMETERS + INTERACTIONS )
```

#### ASK CHATGPT SOME QUESTIONS:

- CAN YOU LIST DIGITAL AUDIO EFFECTS?
- CAN YOU LIST DIGITAL AUDIO FILTERS?
- CAN YOU EXPLAIN ADDITIVE, SUBTRACTIVE AND OTHER FORMS OF AUDIO SYNTHESIS?
- WHAT MAKES A SQUARE WAVE A "COMPLEX" WAVEFORM?
- CAN YOU SHOW SOME DISTORTION ALGORITHMS?
- CAN YOU WRITE AN ALGORITHM IN C++ THAT PERFORMS AN OVERDRIVE DISTORTION?
- CAN YOU WRITE C++ CODE THAT EMULATES AN ANALOG SPEAKER DISTORTION?

#### IDEAS FOR EXPERIMENTS

- EXTERNAL DEVICES ( MIDI, GUITAR, MULTI-CHANNEL )
- PLAYING WITH GUIS
- SIMPLE GRANUALAR SYNTHESIS ( MANY FRAGEMENTS OF THE SAME SAMPLE )
- THE HUMAN VOICE ( SYNTHESIZED, RECORDED )

#HANDS\_ON