Solucions comentades

P1) Siguin *A*, *B* conjunts qualssevol. Demostra o refuta

(a)
$$[A \times (A \setminus B)] \cup [(A \setminus B) \times A] = (A \times A) \setminus [(A \cap B) \times (A \cap B)].$$

- **(b)** $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.
- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(A))$.
- (d) $\{\emptyset\} \in \mathcal{P}(A)$.
- (a) <u>Demostrarem</u> que la igualtat és certa. Per això, provarem la doble inclusió, és a dir, veurem que:
 - (I) $[A \times (A \setminus B)] \cup [(A \setminus B) \times A] \subseteq (A \times A) \setminus [(A \cap B) \times (A \cap B)],$
 - (II) $(A \times A) \setminus [(A \cap B) \times (A \cap B)] \subseteq [A \times (A \setminus B)] \cup [(A \setminus B) \times A].$

Per demostrar la primera inclusió, considerem $x \in [A \times (A \setminus B)] \cup [(A \setminus B) \times A]$. Aleshores $x \in A \times (A \setminus B)$ o $x \in (A \setminus B) \times A$. Per tant tenim dos casos:

- Si $x \in A \times (A \setminus B)$, aleshores existeixen $a \in A$ i $b \in A \setminus B$, tals que x = (a,b). Com que $b \in A \setminus B$ implica que $b \in A$ i $b \notin B$, i per definició d'intersecció $b \notin A \cap B$. Com que $a, b \in A$, $x = (a,b) \in A \times A$ i com que $b \notin A \cap B$, $x = (a,b) \notin (A \cap B) \times (A \cap B)$. Per tant $x \in (A \times A) \setminus [(A \cap B) \times (A \cap B)]$.
- Si $x \in (A \setminus B) \times A$, aleshores existeixen $a \in A \setminus B$ i $b \in A$, tals que x = (a,b). Com que $a \in A \setminus B$ implica que $a \in A$ i $a \notin B$, i per definició d'intersecció $a \notin A \cap B$. Aleshores $x = (a,b) \in A \times A$ i $x = (a,b) \notin (A \cap B) \times (A \cap B)$. Per tant $x \in (A \times A) \setminus [(A \cap B) \times (A \cap B)]$.

En qualsevol cas $x \in (A \times A) \setminus [(A \cap B) \times (A \cap B)]$. I això demostra la inclusió (I). Per demostrar l'altra inclusió, considerem $x \in (A \times A) \setminus [(A \cap B) \times (A \cap B)]$. Aleshores $x \in A \times A$ i $x \notin (A \cap B) \times (A \cap B)$. Per tant existeixen $a \in A$ i $b \in A$, tals que x = (a,b) i $(a,b) \notin (A \cap B) \times (A \cap B)$, per tant $a \in A$, $b \in A$ i dos possibilitats $a \notin A \cap B$ oolean (no és "i") $b \notin A \cap B$. Per tant tenim dos casos:

- si $a \notin A \cap B$, aleshores com que $a \in A$ tenim que per definició d'intersecció ha de ser $a \notin B$, per tant, $a \in A \setminus B$ i com que $b \in A$, $x = (a, b) \in (A \setminus B) \times A$. Per definició d'unió, $x \in [A \times (A \setminus B) \cup [(A \setminus B) \times A]$.
- si $b \notin A \cap B$, aleshores com que $b \in A$ tenim que per definició d'intersecció ha de ser $b \notin B$, per tant, $b \in A \setminus B$ i com que $a \in A$, $x = (a, b) \in A \times (A \setminus B)$. Per definició d'unió, $x \in [A \times (A \setminus B) \cup [(A \setminus B) \times A]$.

En qualsevol cas $x \in [A \times (A \setminus B) \cup [(A \setminus B) \times A]$ i això demostra la inclusió (II). **NOTA:** L'error mes comú en aquest apartat, ha estat considerar que $(a,b) \notin (A \cap B) \times (A \cap B)$ és equivalent a que $a \notin (A \cap B)$ " \underline{i} " $b \in (A \cap B)$, la qual cosa no és certa.

(b) Refutarem l'afirmació amb un contra-exemple. Considerem $A = \emptyset$ i $B = \{a\}$. Aleshores $A \times B = \emptyset \times B = \emptyset$, $\mathcal{P}(A \times B) = \{\emptyset\}$, $\mathcal{P}(A) = \{\emptyset\}$, $\mathcal{P}(B) = \{\emptyset, \{a\}\}$, i $\mathcal{P}(A) \times \mathcal{P}(B) = \{(\emptyset, \emptyset), (\emptyset, \{a\})\}$. Aleshores $(\emptyset, a) \in \mathcal{P}(A) \times \mathcal{P}(B)$, i com que $(\emptyset, a) \neq \emptyset$, $(\emptyset, a) \notin \mathcal{P}(A \times B)$, i per tant $\mathcal{P}(A) \times \mathcal{P}(B) \neq \mathcal{P}(A \times B)$. Que és el que volíem veure.

- (c) <u>Demostrarem</u> l'afirmació. Com que per tot conjunt $A, \emptyset \subseteq A$, per definició del conjunt de les parts de $A, \emptyset \in \mathcal{P}(A)$. Per definició de subconjunt, $\{\emptyset\} \subseteq \mathcal{P}(A)$. I per definició del conjunt potència, $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(A))$, que és el que volíem demostrar.
- (d) Refutarem aquesta afirmació amb un contra-exemple. Considerem $A = \{a\}$ amb $\overline{a \neq \emptyset}$, aleshores $\mathcal{P}(A) = \{\emptyset, \{a\}\}$. Observem que $\emptyset \neq \{\emptyset\}$ i donat que $a \neq \emptyset$, $\{a\} \neq \{\emptyset\}$. Per tant $\{\emptyset\} \notin \mathcal{P}(A)$.
- P2) Considera la relació \equiv definida en \mathbb{R} així: Per tots $x, y \in \mathbb{R}$,

$$x \equiv y \iff \text{Existeix } n \in \mathbb{Z} \text{ tal que } x = y \cdot 10^n.$$

- a) Demostra que \equiv és una relació d'equivalència.
- b) És \equiv una relació d'ordre?
- c) Troba les classes d'equivalència de 0, 1, 0.1, 10 i 202.
- d) Dóna raonadament la classe d'equivalència d'un real arbirari a.

L'exemple particular que se'ns proposa estudiar es tracta d'una relació sobre els nombres reals \mathbb{R} . Informalment parlant, dos nombres reals x i y estan relacionats per mitjà de \equiv sempre que poguem passar de y a x corrent la coma cap a l'esquerra o cap a la dreta.

- a) Per tal de provar que \equiv és una relació d'equivalència sobre $\mathbb R$ haurem de comprovar que les propietats reflexiva, simètrica i transitiva són satisfetes per \equiv .
 - **Propietat Reflexiva:** Donat $x \in \mathbb{R}$ arbitrari, notem que $x = x \cdot 10^0$. Com que $0 \in \mathbb{Z}$, per definició de ≡, es té que $x \equiv x$. Com que x va ser pres arbitràriament la reflexivitat es desprèn.
 - **Propietat Simètrica:** Siguen $x, y \in \mathbb{R}$ arbitraris tals que $x \equiv y$. Per definició de \equiv , existeix $n \in \mathbb{Z}$ de forma que $x = y \cdot 10^n$. Operant sobre aquesta expressió hom obté que $y = x \cdot 10^{-n}$. Com $-n \in \mathbb{Z}$, novament per definició de \equiv , es té que $y \equiv x$. De l'arbitrarietat de x i y es desprèn la simetria de la relació.
 - **Propietat Transitiva:** Siguen $x, y, z \in \mathbb{R}$ arbitraris de forma que $x \equiv y$ i $y \equiv z$. Per definició de \equiv existeixen $n, m \in \mathbb{Z}$ de manera que

$$x = y \cdot 10^n$$
$$y = z \cdot 10^m$$

Combinant ambdues expressions i fent les corresponents operacions hom dedueix que $x=z\cdot 10^{n+m}$. Novament fent servir la definició de la relació, com que $n+m\in\mathbb{Z}$, es té que $x\equiv z$. Com que l'elecció de x,y i z fou arbitrària la transitivitat de \equiv es desprèn.

b) Recordem que una relació és d'ordre quan és reflexiva, antisimètrica i transitiva. Atès que anteriorment havíem comprovat que ≡ satisfeia les propietats reflexiva i transitiva que siga una relació d'ordre dependrà de si la propietat antisimètrica és o no certa. Afirmem que ≡ no és antisimètrica, per tant que ≡ no és relació d'ordre, donant un contraexemple.

Considerem x=1 i y=10. Notem que $1\equiv 10$, atès que $1=10\cdot 10^{-1}$, i recíprocament que $10\equiv 1$ donat que \equiv és simètrica. Tanmateix $1\neq 10$ i per tant 1 i 10 donen testimoni de que \equiv no és antisimètrica.

c) Donat $x \in \mathbb{R}$ es defineix la classe d'equivalència de x per \equiv , \bar{x} , com el conjunt

$$\bar{x} = \{ y \in \mathbb{R} : y \equiv x \}.$$

Als casos particulars que se'ns demana estudiar es té que

$$\bar{0} = \{x \in \mathbb{R} : x \equiv 0\} = \{x \in \mathbb{R} : \exists n \in \mathbb{Z} (x = 0 \cdot 10^n)\} = \{x \in \mathbb{R} : x = 0\} = \{0\}.$$

Anàlogament per a 1 es té que

$$\bar{1} = \{x \in \mathbb{R} : x \equiv 1\} = \{x \in \mathbb{R} : \exists n \in \mathbb{Z} (x = 1 \cdot 10^n)\} = \{10^n : n \in \mathbb{Z}\}.$$

Notem que les classes dels reals 0.1 i 10 no cal calcular-les de nou atès que són les mateixes que la generada per 1. En efecte, $0,1\equiv 1$ i $10\equiv 1$, perquè $0,1\equiv 1\cdot 10^{-1}$ i $10\equiv 1\cdot 10^1$, i com \equiv és d'equivalència les igualtats $\overline{0.1}=\overline{1}=\overline{10}$ es desprenen. Finalment,

$$\overline{202} = \{ x \in \mathbb{R} : x \equiv 202 \} = \{ x \in \mathbb{R} : \exists n \in \mathbb{Z} (x = 202 \cdot 10^n) \} = \{ 202 \cdot 10^n : n \in \mathbb{Z} \}.$$

d) Donat $a \in \mathbb{R}$ arbitrari fent servir els arguments anteriorment emprats es té que

$$\bar{a} = \{x \in \mathbb{R} : x \equiv a\} = \{x \in \mathbb{R} : \exists n \in \mathbb{Z} (x = a \cdot 10^n)\} = \{a \cdot 10^n : n \in \mathbb{Z}\}.$$

Nota: Per argumentar que \equiv no era antisimètrica un nombre no menyspreable de vosaltres ha afirmat que com \equiv era simètrica no podía ser antisimètrica. A classe de teoria se us va fer palès reiteradament que aquesta mena d'arguments no eren vàlids atès que hi ha relacions que verifiquen alhora les propietats simètrica i antisimètrica. Penseu en =, per exemple.

P3) Demostra per reducció a l'absurd que si $k \in \mathbb{Z}$ és senar, aleshores $3z^2 + 6z + 6k = 0$ no té solucions enteres.

Tal i com se'ns demana, raonarem per reducció a l'absurd. Suposem doncs que k és un nombre senar i que l'equació $3z^2+6z+6k=0$ té alguna solució entera; sigui $p\in\mathbb{Z}$ aquesta solució. Aleshores, se satisfà

$$3p^2 + 6p + 6k = 0. (1)$$

Observem llavors que tenim les equivalències següents:

$$3p^2 + 6p + 6k = 0 \Leftrightarrow p^2 + 2p + 2k = 0 \Leftrightarrow p^2 = -2(p+k).$$

Així doncs p^2 és parell, i per consegüent, p és parell (en cas contrari, si p fos senar, existiria un cert $r \in \mathbb{Z}$ tal que p = 2r + 1 i $p^2 = 2r(2r + 2) + 1$ seria senar). Aleshores, per definició de nombre parell, existeix $m \in \mathbb{Z}$ tal que p = 2m i, substituint-ho a l'equació (1), tenim que:

$$3(2m)^2 + 6(2m) + 6k = 0 \Leftrightarrow 2m^2 + 2m + k = 0 \Leftrightarrow k = -2(m^2 + m)$$

que contradiu el fet que *k* sigui senar.

Observeu també que aquest exercici és equivalent al P3) del primer examen parcial 2018/2019, així que per a una demostració alternativa, veieu la solució de l'examen que trobareu en el campus virtual.