Analysis

Contents

1	Sets	S	3	
	1.1	Subsets	3	
	1.2	Set operations	3	
	1.3	Algebraic properties	3	
	1.4	Relations	4	
	1.5	Orders and equivalences	4	
2	Functions 4			
	2.1	Properties of functions	5	
	2.2	Groups, monoids, fields	5	
	2.3	Supremum and infimum	6	
	2.4	(Order) Completeness	6	
	2.5	Archimedean property	6	
	2.6	Further properties	7	
	2.7	Properties of sup and inf	7	
	2.8	Intervals and topology of $\mathbb R$	7	
3	The	e absolute value	7	
4	Sequences and limits 7			
	4.1	Properties of limits	8	
	4.2	Monotone sequences	8	
	4.3	$\lim \sup_{n \to \infty} x_n$ and $\lim \inf_{n \to \infty} x_n$	9	
	4.4	Cauchy sequences	10	
	4.5	Subsequences	10	
	4.6	Bolzano-Weierstrass theorem	10	
5	Bin	omial theorem	11	

1 Sets

• **Definition:** A set is a collection of objects, called the *elements* or *members* of the set. We write $x \in X$ if x is an element of the set X and $x \notin X$ if x is not an element of X.

Two sets X = Y, if

$$x \in X \iff x \in Y$$

("iff" or "⇔" both mean "if and only if").

The empty set is denoted by \emptyset , that is, the set without any elements. X is nonempty if it has at least one element.

We can define sets by listing their elements:

$$X = \{a, b, c, d\}.$$

We can also have infinite sets, for example:

$$\mathbb{N}=\{1,2,3,\dots\},\quad \mathbb{N}_0=\{0,1,2,3,\dots\},$$

$$\mathbb{Z}=\{\dots,-3,-2,-1,0,1,2,3,\dots\},\quad \mathbb{Q}=\left\{\frac{p}{q}:p,q\in\mathbb{Z},\ q\neq 0\right\},$$

$$\mathbb{R}=\{\text{all numbers with decimal expansions}\}.$$

1.1 Subsets

A is a subset of a set X or A is included in X, written $A \subseteq X$, if every element of A belongs to X. A is a proper subset of X, written as $A \subset X$, when $A \subseteq X$, but $A \neq X$.

- **Def.:** The power set $\mathcal{P}(X)$ of a set X is the set of all subsets of X.
- Ex.: $X = \{1,2,3\}$, then $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

The power set $\mathcal{P}(X)$ of a set X with |X| = n elements has $|\mathcal{P}(X)| = 2^n$ elements because, in defining a subset, we have two independent choices for each element (does it belong to the subset or not?). Thus, the notation $2^X = \mathcal{P}(X)$ is also in use.

1.2 Set operations

The intersection $A \cap B$ of two sets A, B is the set of all elements that belong to both A and B. Two sets A, B are said to be disjoint if $A \cap B = \emptyset$; that is, if A and B have no elements in common.

The union $A \cup B$ is the set of all elements that belong to A or B. Note that we always use 'or' in an inclusive sense, so that $x \in A \cup B$ if x is an element of A or B, or both A and B. (Thus, $A \cap B \subseteq A \cup B$.)

The set-difference of two sets B and A is the set of elements of B that do not belong to A, that is $B \setminus A = \{x \in B : x \notin A\}$. If we consider sets that are subsets of a fixed set X (called the universe) that is understood from the context, then we write $A^c = \overline{A} = X \setminus A$ to denote the complement of $A \subseteq X$ in X. Note that $(A^c)^c = A$.

The Cartesian product $A \times B$ of sets A, B is the set whose members all possible ordered pairs (a, b) with $a \in A$, $b \in B$, thus $A \times B = \{(a, b) : a \in A, b \in B\}$ and $|A \times B| = |A||B|$.

1.3 Algebraic properties

Intersection is a commutative operation $A \cap B = B \cap A$; and an associative operation, that is:

$$(A \cap B) \cap C = A \cap (B \cap C)$$
, thus $= A \cap B \cap C$

both are also true for the union $A \cup B$. Intersection distributes over union and union distributes over intersection:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

We have De Morgan's laws:

$$(a \cup B)^c = A^c \cap B^c$$
 and $(A \cap B)^c = A^c \cup B^c$

Arbitrary many unions and intersections: Let \mathcal{C} be a collection of sets. Then

$$\bigcup \mathcal{C} = \bigcup_{A \in \mathcal{C}} A = \{x : x \in A, \text{ for some } A \in \mathcal{C}\}$$

$$\bigcap \mathcal{C} = \bigcap_{A \in \mathcal{C}} A = \{x : x \in A, \text{ for some} A \in \mathcal{C}\}\$$

1.4 Relations

Any subset of the Cartesian product of two sets X, Y defines a (binary) relation $R \subseteq X \times Y$ between these two sets. Given $(x,y) \in R$ we may denote this inclusion simply as xRy. Notation: \forall means 'for all', \exists means 'exists'. A binary relation R is univalent if

$$\forall x \in X, \forall y \in Y, \forall z \in Y \text{ we have } (x, y) \in R$$

A binary relation R is total if

$$\forall x \in X, \exists y \in Y \text{ we have } (x, y) \in R$$

• **Def.:** A partially defined function is a univalent binary relation, and a function is a univalent and total binary relation. Thus a function $f: X \mapsto Y$ is defined by a univalent and total $xRy \iff y = f(x)$.

The set of all functions from X to Y is commonly denoted as

$$Y^X = \prod_{x \in X} Y$$

1.5 Orders and equivalences

- **Def.:** An order \leq on a set X is a binary relation on X, s.t. for every $x, y, z \in X$:
 - 1. $x \leq x$ (reflexivity),
 - 2. If $x \le y$ and $y \le x$ then x = y (antisymmetry),
 - 3. If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitivity).

An order is *linear* or *total* if $\forall x, y \in X$ either $x \leq y$ or $y \leq x$. If \leq is an order, then we define a strict order by x < z if $x \leq y$ and $x \neq y$.

If for a relation \sim in 2. instead of antisymmetry we have *symmetry*: If $x \sim y$ then $y \sim x$ then \sim is called an equivalence relation.

2 Functions

Per definition a function $f: X \mapsto Y$ is a univalent and total relation, that is for every $x \in X$ there is a unique $y = f(x) \in Y$. Do(f) = X is called the *domain* of f, and $Ran(f) = \{y \in Y : \exists x \in X, y = f(x)\} \subseteq Y$ is called the range of f. Also $f(A) = \{y \in Y : \exists x \in A, y = f(x)\}$ for some $A \subseteq X$.

- Ex.: The identity function $id_X : X$ on a set X is the function that maps every element of X to itself, that is $id_X(x) = x$ for all $x \in X$.
- Ex.: the characteristic or indicator function $\chi_A: X \mapsto \{0,1\}$ of $A \subseteq X$ is defined as

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

The graph of a function $f: X \mapsto Y$ is defined as

$$G_f = \{(x, y) \in X \times Y : y = f(x)\}$$

2.1 Properties of functions

A function $f: X \mapsto Y$ is

- 1. injective (one-to-one) if it maps distinct elements to distinct elements, that is $x_1, x_2 \in X$ and $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$,
- 2. surjective (onto) if its range Ran(f) = Y, that is for every y there exists an x, s.t. y = f(x).
- 3. If a function is both injective and surjective then its bijective.

We define the composition $f \circ g(z) = f(g(z))$ of functions $f: Y \mapsto X$ and $g: Z \mapsto Y$. Note that we need the inclusion $Ran(g) \subseteq Do(f)$. \circ is associative.

A bijective function $f: X \mapsto Y$ has an inverse $f^{-1}: Y \mapsto X$ defined by

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

that is $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$.

If $f: x \mapsto Y$ is merely injective than still $f: X \mapsto Ran(f)$ is bijective, thus invertible on its range with inverse $f^{-1}: Ran(f) \mapsto X$.

2.2 Groups, monoids, fields

- **Def.:** Given a function $f: X \times X \mapsto X$ we may denote f(x,y) = x * y and consider this as a binary operation on X. For example addition of integers is such an operation. The we say that * is/has
 - 1. Associative, if x * (y * z) = (x * y) * z,
 - 2. Commutative, if x * y = y * x,
 - 3. Neutral element, if there exists $e \in X$ (a neutral element), s.t. x * e = e * x = x,
 - 4. Inverse elements, if for all $x \in X$ there exists $x' \in X$ called an inverse of x, s.t. x * x' = x' * x = e where e is a neutral element.
- **Def.:** (X, *) is called a
 - 1. Semigroup, if * is associative,
 - 2. Monoid, if (X, *) is a semigroup and has a neutral element,
 - 3. Group, if (X, *) is a monoid and every element $x \in X$ has an inverse.
- Theorem: In a group (X,*) the neutral element $e \in X$ and inverse x' for any fixed $x \in X$ are unique.
- **Proof.:** Indeed, if there would be two neutral elements e, e', then e' = e * e' = e. Also assuming x * y = e = x * z, implies x' * (x * y) = x' * (x * z), that is y = z = x'.

Let $(X, \cdot, +)$ be given with binary operations \cdot and +.

- **Def.:** $(X,\cdot,+)$ is a field if
 - 1. $(X, \cdot, +)$ is a commutative group with neutral element 0,
 - 2. $(X \setminus \{0\}, \cdot)$ is a commutative group,
 - 3. · distributes over + (distributivity), that is: $x \cdot (y+z) = x \cdot y + x \cdot z$. In this case + is usually called addition and · multiplication.
- **Ex.:** the rational numbers \mathbb{Q} is a field, moreover an ordered field $(\mathbb{Q}, \cdot, +, \leq)$ equipped with the total order $x \leq y \iff 0 \leq y x$, where 0 is the neutral element of +.
- Ex.: the set of real numbers \mathbb{R} is also a totally ordered field $(\mathbb{R},\cdot,+,\leq)$
- Axiom: the < order of \mathbb{R} satisfies
 - I. $x \leq y$ implies $x + z \leq y + z$,
 - II. x < y and z > 0 implies xz < yz.

2.3 Supremum and infimum

- **Def.:** A set $A \subseteq \mathbb{R}$ is bounded from above, if $\exists M \in \mathbb{R}$ s.t. $x \leq M$ for all $x \in A$; and it is bounded from below, if $\exists m \in \mathbb{R}$ s.t. $x \geq m$ for all $x \in A$. If both holds for A, then it is bounded. ('s.t.' is short hand for 'such that')
- **Def.:** If $M \in \mathbb{R}$ is an upper bound of $A \subseteq \mathbb{R}$ s.t. for any other upper bound $M' \in \mathbb{R}$ of A we have M < M', then M is called the least upper bound of A, denoted as

$$M = \sup A$$

Similarly, the greatest lower bound of $A \subseteq \mathbb{R}$, if exists, is denoted by

$$m = \inf A$$

meaning $m \geq m'$ for any lower bound m of A. If $A = \{x_i : i \in I\} \subseteq \mathbb{R}$ for an index set I, we also write:

$$\sup A = \sup_{i \in I} x_i \text{ and inf } A = \inf_{i \in I} x_i$$

- Fact: by the definition supremum and infimum of a set, if they exist, are both unique and $A \ge \inf A$ for nonempty $A \subseteq \mathbb{R}$.
- **Def.:** if $\sup A \in A$, then we call it the maximum of A denoted by $\max A$, similarly if $\inf A \in A$, then we call it the minimum of A denoted by $\min A$.
- Ex.: Let $\mathbb{R} \supseteq A = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then $\sup A = 1$ belongs to A, while $\inf A = 0$ does not belong to A.
- **Def.:** let us introduce the elements $\infty, -\infty$, so that $\infty > x > -\infty$ for any $x \in \mathbb{R}$ and define the extended real numbers as $\overline{\mathbb{R}} = \{\infty, -\infty\} \cup \mathbb{R}$. If a set $A \subseteq \mathbb{R}$ is not bounded from above then define $\sup A = \infty$, and if $A \subseteq \mathbb{R}$ is not bounded from below then define $\inf A = -\infty$. Also define $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$.

2.4 (Order) Completeness

Consider $A = \{x \in \mathbb{Q} : x^2 \leq 2\}$. This set is bounded from above but has no least upper bound in \mathbb{Q} .

- **Def(Completeness).:** a totally ordered field Z is complete, if all nonempty upper bounded subsets of Z have a least upper bound in Z. We call this the least upper bound property.
- Theorem(Dedekind): There exists a unique (up to $(\cdot, +, \leq)$ -preserving transformation) ordered complete field satisfying the order axioms I., II. that contains \mathbb{Q} and it is the field \mathbb{R} . Such a transformation $\phi : \mathbb{R} \mapsto \mathcal{M}$ satisfies $\phi(x + y) = \phi(x) + \phi(y), \phi(xy) = \phi(x)\phi(y), x \leq y \implies \phi(x) \leq \phi(y)$.

2.5 Archimedean property

- Theorem(Archimedean property): If $x \in \mathbb{R}$, then there exists $n \in \mathbb{Z}$ such that x < n.
- **Proof:** Suppose, for contradiction, that there exists $x \in \mathbb{R}$ s.t. x > n for all $n \in \mathbb{Z}$. Then x is an upper bound of $\mathbb{Z} \subseteq \mathbb{R}$, so $M = \sup \mathbb{Z} \in \mathbb{R}$ exists. Since $n \leq M$ for all $n \in \mathbb{Z}$, we have $n 1 \leq M 1$ for all $n \in \mathbb{Z}$, which implies $n \leq M 1$ for all $n \in \mathbb{Z}$. But then M 1 is an upper bound of \mathbb{Z} that is strictly less than $M = \sup \mathbb{Z}$, a contradiction to $M = \sup \mathbb{Z}$ being the least upper bound.
- Corollary: For every $0 < \varepsilon \in \mathbb{R}$, there exists an $n \in \mathbb{N}$, s.t. $0 < \frac{1}{n} < \varepsilon$.
- Corollary(integer part): If $x \in \mathbb{R}$, then there exists $[x] = n \in \mathbb{Z}$ called the integer part of x, such that $n \le x < n + 1$.

2.6 Further properties

- **Def(dense set):** $A \subseteq \mathbb{R}$ is dense in \mathbb{R} , if for any $0 < \varepsilon, x \in \mathbb{R}$ there exists $a \in A$, s.t. $x \varepsilon < a < x + \varepsilon$.
- Theorem(density of rationals): $\mathbb{Q} \subseteq \mathbb{R}$ is dense in \mathbb{R} .
- **Proof:** Let $0 < \varepsilon, x \in \mathbb{R}$. Then for any $n \in N$ we have

$$[nx] \le nx < [nx] + 1$$

which gives

$$\frac{[nx]}{n} \le x < \frac{[nx]}{n} + \frac{1}{n}$$

Pick $n \in \mathbb{N}$, s.t. $0 < \frac{1}{n} < \varepsilon$. Then we have

$$\frac{[nx]}{n} \le x < \frac{[nx]}{n} + \frac{1}{n} < \frac{[nx]}{n} + \varepsilon$$

which implies $x - \varepsilon < \frac{[nx]}{n} < x + \varepsilon$ as wanted.

2.7 Properties of sup and inf

2.8 Intervals and topology of \mathbb{R}

3 The absolute value

- **Def.:** the absolute value of $x \in \mathbb{R}$ is defined by $\begin{cases} x \text{ if } x \geq 0, \\ -x \text{ if } x < 0. \end{cases}$.
- **Proposition**: $\forall x, y \in \mathbb{R}$ we have
 - 1. $|x| \ge 0$ and $|x| = 0 \iff x = 0$,
 - 2. |-x| = |x|,
 - 3. (triangle inequality) $|x+y| \le |x| + |y|$,
 - 4. |xy| = |x||y|,
 - 5. ||x| |y|| < |x y|.
- **Proof**: 1.,2. and 4. are trivial. To see 3. suppose without loss of generality that $x \ge 0$, $|x| \ge |y|$, in which case $x + y \ge 0$. If $y \ge 0$, then |x + y| = x + y = |x| + |y|. If y < 0, then $|x + y| = x + y = |x| |y| \le |x| + |y|$. To obtain 5. we use 3. to get $|x| = |x y + y| \le |x y| + |y|$.

4 Sequences and limits

- **Def.:** a sequence x_n of real numbers is an ordered list of numbers $x_n \in \mathbb{R}$, called the terms of the sequence, indexed by the natural numbers $n \in \mathbb{N}$. It may be regarded as a function $f : \mathbb{N} \to \mathbb{R}$ with $x_n = f(n)$.
- **Def.:** A sequence (x_n) of real numbers converges to a limit $x \in \mathbb{R}$, written as $x = \lim_{n \to \infty} x_n$, or $x_n \to x$ as $n \to \infty$, if $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $\forall n > N$ we have $|x_n x| < \varepsilon$.

A sequence (x_n) converges if it converges to a limit $x \in \mathbb{R}$, otherwise it diverges. Note that $x_n \to x$ and $|x_n - x| \to 0$ are equivalent statements.

• **Def.:** if (x_n) is a sequence, then $\lim_{n\to\infty} x_n = \infty$, or $x_n \to \infty$ if $\forall M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ s.t. $\forall n > N$ we have $x_n > M$. Similarly, we define $\lim_{n\to\infty} x_n = -\infty$, or $x_n \to -\infty$ if $\forall M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ s.t. $\forall n > N$ we have $x_n < M$.

7

4.1 Properties of limits

- **Proposition**: If a sequence converges, then its limit is unique.
- **Proof**: Suppose that (x_n) is a sequence such that $x_n \to x$ and $x_n \to x'$ as $n \to \infty$. Then $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $|x_n x| < \varepsilon/2$ and $|x_n x'| < \varepsilon/2$ for all n > N. Then $|x x'| = |x x_n + x_n x'| \le |x x_n| + |x_n x'| < \varepsilon$ for all n > N. Since $\varepsilon > 0$ was arbitrary, $|x x'| < \varepsilon$ proves that |x x'| = 0.
- Ex.: Let $x_n = \frac{1}{n} : n \in \mathbb{N}$. Then $x_n \to 0$. Indeed, let $\varepsilon > 0$ be given. Choose $N \in \mathbb{N}$ s.t. $N > \frac{1}{\varepsilon}$. Then $\forall n > N$ we have $|\frac{1}{n} 0| = \frac{1}{n} < \frac{1}{N} < \varepsilon$, which proves that $\lim_{n \to \infty} \frac{1}{n} = 0$.
- Proposition: A convergent sequence is bounded.
- **Proof**: After some index $N \in \mathbb{N}$ for all n > N we have $|x_n x| < 1$ which implies that $x 1 < x_n < x + 1$, thus x_n is bounded.
- Fact: Convergence of x_n to x does not depend on any of the first finitely many elements of (x_n) .
- Theorem: If (x_n) , (y_n) are convergent sequences, then $x_n \leq y_n$ for all $n > N \in \mathbb{N}$ implies $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$.
- **Proof**: $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $|x_n x| < \varepsilon/2$ and $|y_n y| < \varepsilon/2$ for all n > N. Then $x = x_n + x x_n < y_n + \frac{\varepsilon}{2} = y + y_n y + \frac{\varepsilon}{2} < y + \varepsilon$, which implies $x \le y$.
- Theorem(Squeeze, or Sandwich): If (x_n) , (y_n) are convergent sequences with common limit L, then $x_n \leq z_n \leq y_n$ implies $\lim_{n \to \infty} z_n = L$ as well.
- **Proof**: The assumption implies that $\forall \varepsilon > 0$ there exists an index $N \in \mathbb{N}$ s.t. for all n > N we have $L \varepsilon < x_n \le z_n \le y_n < L + \varepsilon$, which means that $z_n \to L$.
- **Theorem**: If (x_n) , (y_n) are convergent sequences and $c \in \mathbb{R}$, then
 - 1. $\lim_{n \to \infty} cx_n = c \lim_{n \to \infty} x_n;$
 - 2. $\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n;$
 - 3. $\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$.
- **Proof**: If c = 0 then 1. is immediate. If $c \neq 0$, then $|x_n x| < \varepsilon/|c|$ for all n > N implies $|cx_n cx| < \varepsilon$.

For the second statement we have $|(x_n+y_n)-(x+y)| \le |x_n-x|+|y_n-y| < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ for all large enough n, which proves that $x_n+y_n\to x+y$.

For the third statement $|x_ny_n - xy| = |(x_n - x)y_n + x(y_n - y)| \le |x_n - x||y_n| + |y_n - y||x| < \varepsilon$ for all large enough n, which proves that $x_ny_n \to xy$.

4.2 Monotone sequences

• **Definition:** A sequence (x_n) is monotone

Increasing:

if
$$x_n \leq x_{n+1}$$
, strictly if $x_n < x_{n+1}$;

Decreasing:

if
$$x_n \ge x_{n+1}$$
, strictly if $x_n > x_{n+1}$.

• Monotone Convergence Theorem:

If
$$(x_n)$$
 is monotone increasing, then $\lim_{n\to\infty} x_n = \sup\{x_n : n \in \mathbb{N}\}.$

If
$$(x_n)$$
 is monotone decreasing, then $\lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}.$

- **Proof:** We prove only the first statement, the second can be proved by choosing $y_n = -x_n$. The least upper bound of the set $\{x_n : n \in \mathbb{N}\}$ is $M = \sup\{x_n : n \in \mathbb{N}\}$, so $x_n \leq M$. Suppose $M < \infty$. Then $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $M \varepsilon < x_N \leq x_n$ where the second inequality holds for all n > N by monotonicity. This implies $M \varepsilon < x_n < M + \varepsilon$ for all n > N, thus $\lim_{n \to \infty} x_n = M$. If $M = \infty$, then still $\forall K > 0$ there exists $N \in \mathbb{N}$ s.t. $K < x_N \leq x_n$ for all n > N by monotonicity. Thus, $\lim_{n \to \infty} x_n = \infty$.
- **4.3** $\lim \sup x_n$ and $\lim \inf x_n$
 - **Def.:** for a sequence (x_n) we define

```
\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} y_n \text{ where } y_n = \sup \{x_k : k \in \mathbb{N}, k \ge n\};\lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} z_n \text{ where } z_n = \inf \{x_k : k \in \mathbb{N}, k \ge n\}.
```

- Note that the above limits exist, because $y_n \ge y_{n+1}$ and $z_n \le z_{n+1}$.
- Theorem: We have $y = \lim_{n \to \infty} \sup x_n \iff -\infty \le y \le \infty$ satisfies one of the following:
 - 1. $-\infty < y < \infty$ and for $\forall \varepsilon > 0$
 - (a) there exists $N \in \mathbb{N}$ s.t. for all n > N we have $x_n < y + \varepsilon$;
 - (b) For every $N \in \mathbb{N}$ there exists n > N s.t. $x_n > y \varepsilon$.
 - 2. $y = \infty$ and for every $M \in \mathbb{R}$ there exists $n \in \mathbb{N}$ s.t. $x_n > M$.
 - 3. $y = -\infty$ and for every $m \in \mathbb{R}$ there exists $N \in \mathbb{N}$ s.t. $x_n < m$ for all n > N.

Analogous results hold for the lim inf as well.

• **Proof:** First suppose that $-\infty < y < \infty$. Then (x_n) is bounded from above and $y_n = \sup\{x_k : k \in \mathbb{N}, k \geq n\}$ is a monotone decreasing sequence with limit y. Therefore $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $y_N < y + \varepsilon$. Since $x_n \leq y_N$ for all n > N we have $x_n < y + \varepsilon$ proving 1.a.

To prove 1.b. let $\varepsilon > 0$ and suppose that $N \in \mathbb{N}$ is arbitrary. $y_N \ge y$ is the sup of $\{x_k : k \in \mathbb{N}, k \ge N\}$, there exists $n \ge N$ s.t. $x_n > y_N - \varepsilon \ge y - \varepsilon$ which proves 1.b.

Conversely, suppose that $-\infty < y < \infty$ satisfies 1. Then given any $\varepsilon > 0$, 1.a. implies that there exists $N \in \mathbb{N}$ s.t. $y_n = \sup\{x_k : k \in \mathbb{N}, k \ge n\} < y + \varepsilon$ for all n > N, and 1.b. implies that $y_n > y - \varepsilon$ for all $n \in \mathbb{N}$. Thus, $|y_n - y| < \varepsilon$ for all n > N, so $y_n \to y$.

• **Theorem:** for a sequence (x_n) we have

$$\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = x \iff \lim_{n \to \infty} x_n = x..$$

• **Proof:** First suppose $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = x$. Then $y_n = \sup\{x_k : k\in\mathbb{N}, k\geq n\}$ is monotone decreasing to x, while $z_n = \inf f x_k : k\in\mathbb{N}, k\geq n$ is monotone increasing to x and also $z_n \leq x_n \leq y_n$, so the squeeze theorem proves $\lim_{n\to\infty} x_n = x$. The reverse implication follows from $x-\varepsilon < x_n < x+\varepsilon$ implying also $x-\varepsilon < z_n \leq y_n < x+\varepsilon$ for all n>N where N is chosen accordingly to given $\varepsilon>0$. Thus, $z_n, y_n \to x$.

In the remaining cases a sequence (x_n) diverges to $\infty \iff \liminf_{n \to \infty} x_n = \infty$, and then $\limsup_{n \to \infty} x_n = \infty$, since $\limsup_{n \to \infty} x_n \ge \liminf_{n \to \infty} x_n$. Similarly, (x_n) diverges to $-\infty \iff \limsup_{n \to \infty} x_n = -\infty$ and then $\liminf_{n \to \infty} x_n = -\infty$ as well.

• Corollary: $\lim_{n\to\infty} x_n = x \iff \limsup_{n\to\infty} |x_n - x| = 0.$

4.4 Cauchy sequences

- **Def(Cauchy sequence):** a sequence (x_n) is a Cauchy sequence if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n x_m| < \varepsilon$ for all n, m > N.
- **Theorem:** A sequence (x_n) converges \iff it is Cauchy.
- **Proof:** First suppose that (x_n) converges to a limit $x \in \mathbb{R}$. Then $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $|x_n x| < \frac{\varepsilon}{2}$ for all n > N. It follows that if n, m > N, then $|x_n x_m| \le |x_n x| + |x_m x| < \varepsilon$ proving that (x_n) is Cauchy.

Conversely suppose that (x_n) is Cauchy. Then there exists $N_1 \in \mathbb{N}$ s.t. for all $n, m > N_1$, we have that $|x_n - x_m| < 1$. Then for $n > N_1$ we have $|x_n| \le |x_n - x_{N_1+1}| + |x_{N_1+1}| \le 1 + |x_{N_1+1}|$.

Thus, the sequence is bounded with

$$|x_n| \le \max\{|x_1|, ..., |x_{N_1}|, 1 + |x_{N_1+1}|\}.$$

Given that (x_n) is bounded, its lim sup and lim inf is bounded. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ s.t. by the assumption $x_n - \varepsilon < x_m < x_n + \varepsilon$ for all $m \ge n > N$. Then we have

$$x_n - \varepsilon \le \inf\{x_m : m \in \mathbb{N}, m \ge n\} \text{ and } \sup\{x_m : m \in \mathbb{N}, m \ge n\} \le x_n + \varepsilon,$$

which implies

$$\sup\{x_m: m \in \mathbb{N}, m \ge n\} - \varepsilon \le \inf\{x_m: m \in \mathbb{N}, m \ge n\} + \varepsilon.$$

Taking the limit $n \to \infty$, we get that

$$\limsup_{n \to \infty} x_n - \varepsilon \le \liminf_{n \to \infty} x_n + \varepsilon$$

and since $\varepsilon > 0$ was arbitrary, this yields $\limsup_{n \to \infty} x_n \le \liminf_{n \to \infty} x_n$, thus

 $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$ which implies convergence.

4.5 Subsequences

- **Def(subsequence):** a subsequence of a sequence (x_n) is a sequence of the form (x_{n_k}) with index $k \in \mathbb{N}$ where $n_1 < n_2 < ... < n_k < ...$ In other words, n_k is a strictly increasing integer valued function with domain \mathbb{N}
- Proposition: Every subsequence of a convergent sequence converges to the limit of the sequence.
- **Proof:** Suppose (x_n) is a convergent sequence with $\lim_{n\to\infty} x_n = x$ and (x_{n_k}) is a subsequence. Given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $|x_n x| < \varepsilon$ for all n > N. Since $n_k \to \infty$ as $k \to \infty$, there exists $K \in \mathbb{N}$ s.t. $n_k > N$ if k > K. Then k > K implies $|x_{n_k} x| < \varepsilon$.
- Corollary: If a sequence has subsequences that converge to different limits, then the sequence diverges.

4.6 Bolzano-Weierstrass theorem

- Theorem(Bolzano-Weierstrass): Every bounded sequence of real numbers has a convergent subsequence.
- **Proof:** The statement will follow from the Monotone Convergence theorem of monotone bounded sequences using the following

Claim: every sequence (x_n) has a monotone subsequence.

Proof: Let us call a positive integer-valued index n of a sequence a "peak" of the sequence when $x_m \leq x_n$ for all m > n. Suppose first that the sequence has infinitely many peaks, which means there is a subsequence (x_{n_k}) consisting of these peaks for which we have $x_{n_1} \geq x_{n_2} \geq x_{n_3} \geq ... \geq x_{n_k} \geq ...$, so (x_{n_k}) is a monotone decreasing subsequence. Now suppose that on the contrary there are only finitely many peaks of (x_n) . Let the index N be the index of the final peak in (x_n) and let $n_1 = N + 1$. Since

 n_1 comes after the final peak, it is not a peak, thus it implies the existence of $n_2 > n_1$ s.t. $x_{n_2} \ge x_{n_1}$. Again n_2 comes after the final peak, it is not a peak, so again it implies the existence $n_3 > n_2$ s.t. $x_{n_3} \ge x_{n_2}$. Repeating this we obtain $x_{n_1} \le x_{n_2} \le x_{n_3} \le \dots \le x_{n_k} \le \dots$ a monotone increasing subsequence (x_{n_k}) .

5 Binomial theorem

- Let $\binom{n}{k} = B(n,k) = \frac{n!}{k!(n-k)!}$ for $n \ge k \ge 0$ integers. It is called the binomial coefficient.
- **Proposition:** $\binom{n}{k}$ gives the number of ways, disregarding order, that k objects can be chosen from among n objects; more formally, the number of k-element subsets (or k-combinations) of an n-element set. Also, $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.
- Theorem(Binomial theorem): Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}_0$. Then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

• Proof: $(x+y)^n = \underbrace{(x+y)}_1 \cdots \underbrace{(x+y)}_n$.

and you count the number of times the term $x^k y^{n-k}$ occurs in the expansion. It is exactly how many ways k objects can be chosen from among n objects.

• Corollary: For $1 < x = 1 + \delta$ the binomial theorem implies that $x^n > 1 + n\delta$, thus $x^n \to \infty$. Similarly, when 1 > x > 0 we have that $\frac{1}{x} > 1$, so $\frac{1}{x^n} \to \infty$ implies that $x^n \to 0$. When -1 < x < 1 these imply $x^n \to 0$.