# **AN5791**

## Phase Shift Circuit for CRT Displays

#### Qutline

The AN5791 is an integrated circuit designed for phase shift circuit for CRT display.

#### Features

- · Processing for both negative and positive sync. signals
- Wide range of possible phase shift( $1 \mu \text{ s} \sim 40 \mu \text{ s}$ )
- Possible output pulse width  $2 \mu \text{ s} \sim 40 \mu \text{ s}$



### Pin

| Pin No. | Pin Name                | Pin No. | Pin Name                |  |  |
|---------|-------------------------|---------|-------------------------|--|--|
| 1       | H. Sync. Input          | 6       | Vcc                     |  |  |
| 2       | Polarity Switch         | 7       | Trigger for Pulse Width |  |  |
| 3       | Trigger for Phase Shift | 8       | Pulse Width Adj.        |  |  |
| 4       | Phase Shift Adj.        | 9       | Output                  |  |  |
| 5       | GND                     | _       | _                       |  |  |

#### ■ Block Diagram



**Panasonic** 

#### Absolute Maximum Ratings( $Ta=25^{\circ}$ )

|                   | Item                          | Symbol          | Rating   | Unit |  |
|-------------------|-------------------------------|-----------------|----------|------|--|
| Supply Voltage    |                               | V <sub>cc</sub> | 13.2     | v    |  |
| Power Dissipation |                               | $P_D$           | 640      | mW   |  |
| Temperature       | Operating Ambient Temperature | Торг            | -20~+70  | ·c   |  |
| 1 emperature      | Storage Temperature           | Tstg            | -40~+150 | ·c   |  |

#### ■ Electrical Characteristics(Ta=25°C)

| Item                                                           | Symbol                        | Test<br>Circuit | Condition                                                                      | min.     | typ. | max. | Unit |
|----------------------------------------------------------------|-------------------------------|-----------------|--------------------------------------------------------------------------------|----------|------|------|------|
| Circuit Current                                                | I <sub>6</sub>                |                 | V <sub>cc</sub> =11 V                                                          | 18       | 25   | 32   | mA   |
| Circuit Voltage(1)                                             | V <sub>3-5</sub>              |                 | V <sub>CC</sub> =11 V                                                          | 1.3      | 1.6  | 1.9  | v    |
| Circuit Voltage(2)                                             | V <sub>7-5</sub>              |                 | V <sub>cc</sub> =11 V                                                          | 1.3      | 1.6  | 1.9  | v    |
| Polarity Changeover Voltage(1)                                 | V <sub>2-5</sub>              | 1               | Positive Polarity Signal Input                                                 | 0        |      | 0.4  | v    |
| Polarity Changeover Voltage(2)                                 | V <sub>2-5</sub>              | 1               | Negative Polarity Signal Input                                                 | 2.5      |      | 5.5  | v    |
| Phase Shift Time                                               | <b>t</b> (1)                  | 2               | V <sub>cc</sub> =11V                                                           | 4.5      | 5.0  | 5.5  | μs   |
| Enable Pulse Shift Time                                        | t(2)                          | 2               | V <sub>CC</sub> =11V                                                           | 1        |      | 40   | μs   |
| Change with Supply Voltage for Phase Modulation Time           | Δt(1)/V <sub>CC</sub>         | 3               | $V_{CC} = 9.9V \sim 12.1V$                                                     |          |      | 5    | %    |
| Change with Ambient Tempera-<br>ture for Phase Modulation Time | <b>∆</b> t <sub>(1)</sub> /Ta | 3               | $V_{CC} = 11 \text{ V}, Ta = -20^{\circ}\text{C} \sim 60^{\circ}\text{C}$      |          |      | 5    | %    |
| Output Pulse Width                                             | T(HD1)                        | 4               | V <sub>CC</sub> =11V                                                           | 4.4      | 4.9  | 5.4  | μs   |
| Enable Output Pulse Width (HD2)                                |                               | 4               | V <sub>CC</sub> =11 V                                                          | 2        |      | 40   | μs   |
| Change with Supply Voltage<br>for Output Pulse Width           | Δr(HD1)/V <sub>CC</sub>       | 3               | $V_{CC} = 9.9 V \sim 12.1 V$                                                   |          |      | 5    | %    |
| Change with Ambient Temperature for Output Pulse Width         | Δτ(HD1)/Ta                    | 3               | $V_{CC} = 11 \text{ V, } Ta = -20  ^{\circ}\text{C} \sim 60  ^{\circ}\text{C}$ | <b>—</b> |      | 5    | %    |

#### Test Circuit 1 (V<sub>2-5</sub>)



 $\label{eq:test_cont} \text{Test Circuit 3} \left( \frac{\varDelta t_{(1)}/V_{CC},\ \varDelta t_{(1)}/T_{a},\ \varDelta \tau_{(HD1)}/V_{CC},}{\varDelta \tau_{(HD1)}/T_{a}} \right)$ 





Test Circuit 4 ( $\tau_{\text{(HD1)}}$ ,  $\tau_{\text{(HD2)}}$ )





Application Circuit

