UNCLASSIFIED

AD 426344

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

DMIC Report 189 September 13, 1963

THE ENGINEERING PROPERTIES OF TANTALUM AND TANTALUM ALLOYS

tre97

DEFENSE METALS INFORMATION CENTER
Battelle Memorial Institute
Columbus 1, Ohio

The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, refractory metals, high-strength alloys for high-temperature service, corrosion- and oxidation-resistant coatings, and thermal-protection systems. Its functions, under the direction of the Office of the Secretary of Defense, are as follows:

- To collect, store, and disseminate technical information on the current status of research and development of the above materials.
- To supplement established Service activities in providing technical advisory services to producers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.
- 5. To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.
- 4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

Contract No. AF 33(616) -7747 Project No. 2(8-8975)

The information in this report came from many sources, and the should credit the original authors and the where patent questions appear to be involved, the originating agence further publication.

For publication, and the second the statement of the statement o

CONTRACTION OF S

THE ENGINEERING PROPERTIES OF TANTALUM AND TANTALUM ALLOYS

Ьу

F. F. Schmidt and H. R. Ogden

:0

OFFICE OF THE DIRECTOR OF DEFENSE RESEARCH AND ENGINEERING

DEFENSE METALS INFORMATION CENTER
Battelle Memorial Institute
Columbus 1, Ohio

FOREWORD

The growing interest in the use of columbium, molybdenum, tantalum, and tungsten metals and their alloys for structural applications has emphasized the need for an upto-date review of some of the more important physical, mechanical, and metallurgical properties of these materials. Four consecutively numbered reports covering columbium and columbium alloys, molybdenum and molybdenum alloys, tantalum and tantalum alloys, and tungsten and tungsten alloys have been prepared. The intent of these reports has been to assemble, present, and summarize, in easy reference form, the engineering-property data of these four refractory metals and alloys. This report covers tantalum and tantalum alloys.

In addition to data available from the published literature, numerous organizations have contributed data for inclusion in this report. The Defense Metals Information Center gratefully acknowledges the assistance of the following individuals and organizations who contributed valuable information used in the preparation of this report.

- G. D. McArdle and F. Nair, Climax Molybdenum Company
- H. Peters, E. I. du Pont de Nemours Company, Inc.
- R. L. Wilkey, Fansteel Metallurgical Corporation
- R. Bancroft and M. Schussler, Haynes Stellite Company
- R. W. Werner, Lawrence Radiation Laboratory
- G. P. Trost, Metals and Controls, Inc.
- M. Torti, National Research Corporation
- W. Bauer, Stauffer Metals Company
- R. B. Bargainnier, Sylvania Electric Products, Inc.
- C. Mueller and G. A. Liadis, Universal Cyclops Steel Corporation
- S. A. Worcester, Wah Chang Corporation
- R. L. Ammon, R. T. Begley, and H. G. Sell, Westinghouse Electric Corporation

TABLE OF CONTENTS

																			Page
SUMMARY															ı				1
INTRODUCTION															•				3
ORGANIZATION OF D	ATA	\ P	RE	SÆ	NΤ	ED	IN	TI	ŀΕ	AP	PE	ND	ıχ	٠					5
TANTALUM AND TAN	JT A	1.111	M .	. 1 1	ι . Ο .	vs.			PE										A-:
																			-
Unalloyed Tanta	lum																		A-1
Ta-10W																			A-37
Ta-12.5W																			A-67
Ta-30Cb-7.5V .																			A-71
Ta-5W-2.5Mo .																			A-79
Ta-8W-2Hf .												,							A-87
Ta-10W-2.5Hf.																			
Ta-10W-2.5Mo																			4-10:

THE ENGINEERING PROPERTIES OF TANTALUM AND TANTALUM ALLOYS

SUMMARY

This report presents the results of a state-of-the-art survey covering tantalum and seven of its alloys. All data are given in tabular and graphical form covering some of the more important physical, mechanical, and metallurgical properties for each material. References are given at the conclusion of each material section.

INTRODUCTION

The requirements for structural materials for service temperatures in excess of those attainable with present materials of construction has provided the stimulus for the development of refractory metals and alloys. Interest has stemmed largely from the high-temperature structural-engineering requirements associated with military hardwars. In the development of the refractory metals, columbium, molybdenum, tantalum, and tungsten, and their alloys, extensive studies have been conducted and are in progress which are aimed toward the investigation of fundamental metallurgical concepts, alloy development, pilot scale-up development of promising compositions, and, ultimately, alloy commercialization.

This report reviews some of the more important properties of tantalum and seven of its alloys. Of this group of alloys, several have not reached true commercial status; however the potential of these advanced experimental and pilot-production alloys warrants consideration. All data are presented in tabular and graphical form according to a number of important physical, mechanical, and metallurgical properties for tantalum and each of its seven alloys. Properties and alloys covered in this report are listed in Table 1.

Tantalum is the most recent of the refractory metals to undergo extensive study. Present work includes attempts to improve basic high-temperature strength capabilities through both solution and dispersion strengthening while maintaining cryogenic ductility. Efforts have also been directed toward the addition of lighter elements to improve the strength-to-weight ratio.

In preparing this state-of-the-art survey, technical journals and publications, research reports, and trade literature made available to the Defense Metals Information Center were supplemented with personal contacts with a number of individuals and organizations actively engaged in the refractory-metals field. References are given at the conclusion of each material section.

TABLE 1. ALLOYS AND PROPERTY DATA COVERED IN THIS REPORT

İ	Rectystallization Temperature	*	×	×	×	×	×	×	×	
ļ	Sucas-Rellef Temperature	×	×	×	×	×	×	×	×	٦
i	VillidabiloW	_ ×	×	×	×	×	×	×	×	_
il	engine T molifation T	×	×	×	×	×	×		×	
II.	Fabricability		×	Ħ	×	×	×	×	H	_
il	Metallurgical Properties	l 								7
ļ'	Other Selected Mechanical Properties	×	×	×	×	×			Ħ	j
1	Creep and Stress-Rupture Properties	×	×			×	×		_	_
از	seimegord elizaeT budatoM	×	×							٦
l. i	Modulus of Elasticity	*	×		×		×			_
I	Reduction in Area	×	×					×		٦
ľ	Elongation	. *	×	×	×	×	H	×	ж	-
lį	Tensile Yield Strength	_ *	×	×	H	×	ĸ	×	×	7
i	dignesse silane T esamidU	×	×	×	×	×	×	×	×	1
	Tenstle Properties									
 -	Mechanical Properties					_				
! .i	Electical Restitivity	×		_			×			
ï	Thermal Conductivity	×	e:							~
: }	Thermal Expansion	×	×				×			٦
	Denatey	×	×	×	×	×	×	×	×	i
ı	Melting Point	×	۲.	×	×		×		_	ᆌ
	Physical Properties								_	1
	Forms Available	×	ĸ	ĸ	×	×	×	×	<u> </u>	1!
	Chemical Composition	×	×	×	×	×	*	×	×	Ì
	noireagies⊂ "	×	×	×	_		بر	×		- 1
	Identification of Material									1
	ı									1
	:									ļ
	ຕ ວ									
!	************************************			į	<u> </u>	0 10	, ,,	5	OMC	ll.
İ	Iloy Composition	E E	≥ :	We 21-6	1 a - 30Cb - 7. 5V		•	1	į	
ļ	alloy	[antalam	W01-6	21-61						
!	~	٠,٠,١	- !	- 1	٠,	٠,	٠,		~	il

ORGANIZATION OF DATA PRESENTED IN THE APPENDIX

1. Identification of Material

Designation
Chemical composition
Forms available

2. Physical Properties

Melting point
Density
Thermal expansion
Thermal conductivity
Electrical resistivity

3. Mechanical Properties

Tensile Properties at Room Temperature

Ultimate tensile strength Tensile yield strength Elongation Reduction in area Modulus of elasticity

Effect of Temperature on Tensile Properties

Ultimate tensile strength Tensile yield strength Elongation Reduction in area Modulus of clasticity

Notched Tensile Properties

Creep and Stress-Rupture Properties

Other Selected Mechanical Properties

4. Metallurgical Properties

Fabricability
Transition temperature
Weldability
Stress-relief temperature
Recrystallization temperature

References

APPENDIX

TANTALUM AND ITS ALLOYS

APPENDIX

TANTALUM AND ITS ALLOYS

Unalloyed Tantalum

- 1. Identification of Material
 - a. Designation: many, depending upon individual supplier
 - b. Chemical composition: Tables A-1 through A-3
 - c. Forms available: ingot, bar, plate, sheet, strip, foil, rod, and wire(1,2)

TABLE A-1. CHEMICAL REQUIREMENTS FOR POWDER-METALLURGY, ARC-CAST, AND ELECTRON-BEAM-CAST TANTALUM(4X1, 2)

lement	Impurity Content(b), Maximum weight per cent
с	0, 08
0	003
N	0, 015
H	0,01
Ch	0.10
7e	0, 02
Ti	0.01
W	0, 03
Si	0.02
Ni	9,02

⁽a) For ingot, bar, plate, sheet, strip, foil, rod, and wire products.

TABLE A-2. PURITY RANGES SPECIFIED FOR TANTALUM POWDERS

	Impurity Content,	weight per cent
Element	Sintered Product(3)	Melted Product(4)
С	0.16	0,0025-0.04
C	0.17	0,035-0,08
N	0.01	0.002-0.02
Н	••	0.005-0.05
Ai	<0.02	<0.0025-0.005
Съ	C. 03	0.0025-0.05
Fe	0.015	0,005-0,CI
Mo	0.009	<0.001-0.008
Ni	<0.002	0,003-0,005
Si	0.02	0.02-0.03

TABLE A-3, REPRESENTATIVE ANALYSES OF TANTALUM AS PRODUCED BY VARIOUS PROCESSES

		Impurity Content, ppm	
		Ingot, Made	e by
Element	Powder-Metal Product(3)	Consumable - Electrode Process(5)	Electron-Beam Process (6
С	30	23-30	30-60
O	166	34 -65	<50
N	<100	27	39 - 43
11		1 -5	3
41	₹2%€		<20
C:	**	14	e26
C::		••	<40
Fc	100	36	₫ 00
N1	2 00	28	<20
Mo	≼ 80	••	<20
Si	2 00	30	<100

⁽b) The total of all impurities shall not be over 0.2 per cent.

2. Physical Properties

a. Melting point: 5425 $F^{(7)}$

b. Density: 0,600 lb/in.3(7)

c. Thermal expansion: Tables A-4 and A-5

d. Thermal conductivity: Figures A-1 and A-2

e. Electrical resistivity: Figures A-3 and A-4

TABLE A-4. LINEAR THERMAL EXPANSION OF TANTALUM(8)

Lemperature,	Linear Expansio(a)
С	per cent
127	0.07
327	0.20
527	0.34
727	0.48
927	0.64
1127	0.81
1327	0.99
1527	1.16
1727	1.34
1927	1.53
2127	1.72
2327	1.93
2 52 7	2.15
2727	2.40
2927	2,69

(a) The linear coeffic ent of thermal expansion can be expressed by the following equation:

$$a = 10^6 = 0.5 + 0.34 \times 10^{-3} t + 0.12 \times 10^{-6} t^2$$

where

a = per degree, C

t = temperature, C.

TABLE A-5. THERMAL EXPANSION OF TANTALUM SUPPLIED BY FANSTEEL METALLURGICAL AND NATIONAL RESEARCH^{(a)(9)}

		Coefficient,			Coefficient
	Linear	27 C to		Linear	85 r to
Temp,	Expansion,	Temp,	Temp,	Expansion,	Temp,
<u> </u>	per cent	10 ⁻⁶ /C	F	per cent	10 ⁻⁶ /F
1600	1.04	6.61	3000	1.09	3,74
1800	1.23	6.93	3400	1.30	3,92
2600	1.45	7.35	3800	1.56	4.20
Section	1.71	7.88	4200	1.88	4.56
234 (10)	2.04	8.60	4600	2,33	5.15
2000	2.47	9.61	5000	2.88	5,86
2806	2.99	10.79	5200	3.18	6.21
2900	3.26	11.35			

Composition, per cent, Balance Tantalum Others 0 C Fe Si Mo Cb <0.02 900.0 Fausteel 0.005 0.003 <0.05 $\theta_{\bullet}|\theta\theta1\theta$ 0.0035 0.001 0.0032 0.0028 0.01750.005

FIGURE A-1. THERMAL CONDUCTIVITY OF TANTALUM AT LOW TEMPERATURES(10)

FIGURE A-2. THERMAL CONDUCTIVITY OF COMMERCIAL-PURITY TANTALUM(11)

THE RESERVE OF THE PARTY OF THE

FIGURE A-3. ELECTRICAL RESISTIVITY OF TANTALUM AT LOW TEMPERATURES (10)

FIGURE A-4. ELECTRICAL RESISTIVITY OF TANTALUM AND ITS TEMPERATURE COEFFICIENT

3, Mechanical Properties

a. Tensile Properties at Room Temperature

Ultimate tensile strength: Tables A-6 and A-7

Tensile yield strength: Table A-8

Elongation: Tables A-6 through A-8

Reduction in area: Table A-8

Modulus of elasticity: 27 x 106 psi(8)

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Tables A-9 through A-13

Figures A-5 through A-7

Tensile yield strength: Tables A-9 through A-13

Figures A-6 and A-7

Elongation: Tables A-9 through A-13

Figures A-5 through A-7

Reduction in area: Table A-9

Modulus of elasticity: Tables A-12 and A-13

Figures A-7 and A-8

c. Notched Tensile Properties

Figures A-9 through A-16

d. Creep and Stress-Rupture Properties

Figures A-17 through A-20

e. Other Selected Mechanical Properties

Impact: Figure A-21

Fatigue: Figures A-22 and A-23

Table a-6. Minimum tensile-property requirements for powder-metallurgy, arc-cast, and electron-beam-cast tantalum ingots and flat mill products($^4\chi^1$)

		Elongation in 2	Inches, per cent
Condition	Tensile Strength, 1000 psi	Specimens 0,021 In. Thick and Over	Specimens 0,020 In, Thick and Under
Cold worked	75	2	2
Stress relieved	55	18	7.5
Full annealed		30	25

⁽a) For bar, place, sheet, surp, and foil. Tensile properties shall be determined using a strain rate of 0,005 inch per inch per minute through 0.6 per cent offset, and 0.92 to 0,05 inch per inch per minute to fracture.

TABLE A-7. MINIMUM TENSILE-PROPERTY REQUIREMENTS FOR POWDER-METALLURGY, ARC-CAST, AND ELECTRON-BEAM-CAST TANTALUM ROD AND WIRE(AX2)

Condition	Tensile Strength, 1000 psi	Elongation, per cent	Gage Langth Inches
Gold worked	70	1	10
Annesled, commercial punty		: 0	10
Annealed, high purity		20	10

⁽a) Crosshead speed to be used is 2 per cent of gage length per minute.

TABLE A 8. SOME SELECTED ROOM-TEMPERATURE TENSILE PROPERTIES OF TANTALUM⁽⁸⁾

Condition	Tensile Strength, 1000 psi	Yield Strength, 1000 psi	Elongation, per cent	Reduction in Area, per cent
Recrystallized(a)	27.5		38	89
Recrystallized high-purity sheet (1 hr at 2190 F; 0.040 inch thick)	29.4	26.3	36	
Recrystallized rod (1 hr at 2600 F)(c)	33.5		50	
Recrystallized sheet	40.0/50.0	30.0/40.0	30/40	
Recrystallized rod (1 hr at 3090 F)(d)	49.8	39,3	45	86
Annealed sheet (0.010 inch thick)	50.0	·	40	 .
Cold-worked high-purity sheet (cold reduced 95%; 0.040 inch thick) ^(b)	60.5	49.0		·
Recrystallized sheet (0.010 inch thick) ^(e)	67.1	57.4	25	
Annealed wire (0,002-inch diameter)	100.0		. 11	
Cold-worked sheet	100.0/120.0	95.0/105.0	3	
Cold-worked sheet (0,010 inch thick)	1 0.0		1	,
lardened plate (0.010 inch thick)	145.0		18	
As-drawn wire (0,002-inch diameter)	180.0	 	2	

⁽a) Degassed: <0.01% C.

⁽b) Electron-beam-melted tantalum supplied by Temescal Metallurgical Corporation: 0.0010% O, 0.0010% N, 0.00014% H, 0.0030% C, 0.0003% Cr, 0.01-0.03% Cb, 0.003% Cu, 0.0008% Fe, 0.0003% Ni.

⁽c) From hydrogen-reduced powder: 99.9% Ta, traces of Ni, Fe, W, Cu, Ca, Si, Pb, Sn, Cr.

⁽d) Supplied by Fanstee! Metallurgical Corporation: 0.01% N, 0.010% C, 450 grains/min².

⁽e) Powder-metallurgy ingots supplied by Fanstee, Metallurgical Corporation: 0.0050% O, 0.013% N, 0.02% C, 0.10% Cb, 0.01% W, 0.015% Fe, 512-1024 grains/mm².

Table A-9. Tensile properties of recrystallized tantalum $\mathtt{Rod}^{(a)(14)}$

							Frac	ture
					Maxim	um Load		Total
	Strain	Yield		Point,	Tensile	Uniform	Total	Reduction
l'emperature,	Rate,	Strength(b),) psi	Strengti,	Elongation,	Elongation,	in Area,
F	in./in./sec	.30 psi	Upper	Lower	1000 pst	per cont	per cent	percent
-320	2.8 x 10 ⁻⁴	124,0	124,6	110,0	(c)	C	12	75
-320	9.2 x 10 ⁻³	127.0	128.5	110,0	(c)	C	11	71
-320	5.0 x 10 ⁻¹		139,5	••	(c)	C	11	76
-2 90	2.8 x 10 ⁻⁴	104.5	105,2	94.0	(c)	c	:3	78
-200	2.8 x 10 ⁻⁴	82.7	84.2	78.C	(e)	c	15	81
-190	2.8 x 10 ⁻⁴	60.3	61.0	54, 5	58.7	10	37	*9
-22	2.8 x 10 *4	5ű . 5	5€.5	50,2	55.7	20	34	5
40	2.8 x 10 ⁻⁴	39, 3	(d)	39.7	49.8	25	45	83
340	2.8 x 13 ⁻⁴	26,2	(ರ)	25, 2	45.6	24	3.	5.
780	2,8 x 10 ⁻⁴	22.4	(d)	22,4	62,2	18	27	84

⁽a) Commercial-purity recrystallized tantalum rod (1 hr at 1700 C; 450 grams/mm²); 0.01% N, 0.01% C.

⁽b) Yield strongth defined as the stress at which the curve of load versus per cent elongation deviates from linearity.

⁽c) Specimens and not have ultimate tensile strengths in the usual significance attached to the term since the load and not increase after the yield-point elongation.

⁽d) No pronounced upper yield point, but a definite yield-point elongation,

TABLE A-10. TENSILE PROPERTIES OF RECRYSTALLIZED TANTALUM SHEET PRODUCED FROM POWDER-METALLURGY INGOT (a)(10)

l'emperature,	Tensile Strength,	Yield Strength (0.2% Offset),	Elongation
F	1000 psi	1000 psi	per cent
-320	148.0	148.0	4
-100	73.2	72.5	23
8¢	67.1	57.4	25
210	59.3	42.5	25
400	56.1	35.4	13
60.	74.0	37.9	18
800	65.3	33.4	. 24
1000	59.9	26.1	16
1205	44.7	18.9	17
1400	30.3	16.9	23
159	22.2	12.1	33
1800	21.0	12.4	33
200.)	16.8	8.1	43
2200	14.7	7.5	48

⁽a) Recrystallized powder-metallurgy tantalum sheet (0.010 inch thick); strain rate 0.09 inch per inch per minute; 0.0056% O, 0.013% N, 0.02% C, 0.10% Cb, 0.01% W, 0.015% Fe, 512-1024 grains/mm², ASTM 6-7.

TABLE A-11. HIGH-TEMPERATURE TENSILE PROPERTIES OF ANNEALED TANTALUM SHEET (a)(17)

Temperature,	Time at Temp,	Strain Rate,	Tensile Strength,	Yield Strength,	Elongation,
F	sec	in./in./sec	1000 psi	1000 psi	per cent
3000	10	0.1	10.70	7,49	30
	90	0.1	10.78	6,96	30
	10	0.00005	4.03	3,78	19
	90	0.00005	4.12	3.86	19
3 500	10	0.00005	0.915	0.611	(b)
	90	0,€ 005	1.81	0.792	(b)
4000	10	0. !	3.69	1.76	44
	90	0.1	3,95	1.61	46
	90	0.00005	0.420	0.42	(b)
5000	10	0.1	2.43	1.29	48
	90	0,1	2.06	1.17	

⁽a) Sintered, relled, annealed, tantalum sheet. Specimens heated to test temperature in 20 seconds. Tests conducted in argon atmosphere. Values reported are average of at least three tests.

⁽b) Specimens were not strained to fracture.

TABLE A-12. HIGH-TEMPERATURE TENSILE PROPERTIES OF POWDER-METALLURGY-PRODUCED TANTALUM SHEET(4)(9)

Temperature, F	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Modulus of Elasticity, 10 ⁶ psi	Load Rate, psi/sec	Elongation, per cent
34 20	6.160	3.200	3.6	267	39
3670	5.110	2,550	0.6	197	46
3955	3.025	1.510	0.7	63	* 34
3955	2.740	1,850	0.2	16	32
4380	2.460	1.240	1.1	63	4.1
4380	2.640			66	38
4470	2,290	1.320	0.4	64	37
4525	2.650	1.350	1.5	54	34
4525	2.060	1.270	0.4	57	38 -
4985	1.870	1.140	0.4	67	25
5010	1.240	0.800	0.3	10	1.1
5100	0.977	0.800	0.1	7.5	13

⁽a) Powder-metallurgy-produced sheet (0.050 to 0.060 inch thick); 0.03% max C, 0.03% max Te, <0.005% Si, 0.24% Mo, and <0.05% other impurities.

TABLE A-13. HIGH-TEMPERATURE TENSILE PROPERTIES OF ARC-MELTED TANTALUM SHEET (a)(9)

remperature, F	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Proportional Limit, 1000 psi	Modulus of Elasticity, 10 ⁶ psi	Load Rate, psi/sec	Elongation per cent
3210	4.370	1.950	1.150	1.0	59	35
3690	3.800	1.550	1.450	.0.3	146	47
3725	2.780	1.260	1.100	0.2	¢3	43
4345	2.380	0.600	0.450	0.04	92	47
4530	1.730	0.640	0.550	0.07	62	35
5⊍15 ·	0.705	0.360		-,-	9	26
5040	1.170	0.350	0.250	0.07	35	31

⁽a) Consumable-electrode, arc-mielted tantalum sheet (0.060 inch thick); 0.0015% G, 0.0028% Fe, 0.0002% Cb, 0.0003-0.0008% H, 0.002-0.000% N, 0.0035-0.0059% O, and 0.173% other impurities.

TENSILE PROPERTIES OF ELECTRON-BEAM-MELTED TANTALUM SHEET (0.040 INCH) $^{(15)}$ FIGURE A-5.

Impurity	Weight Per Cent		
C	0.0030		
0	0.0016		
N	0.0010		
Others	<0.040		

Crosshead speed: 0.05 inch per minute for a 1-1/4-inch reduced section

Wrought: Cold rolled $75~\mathrm{per}$ cent and stress relieved 1/4

hour at 1350 F

Recrystallized: Cold rolled 75 per cent and recrystallized 1 hour at 2190 F.

FIGURE A-6. EFFECT OF TEMPERATURE ON THE TENSILE STRENGTH OF TANTALUM(8)

FIGURE A-7. TENSILE-PROPERTY DIRECTIONALITY OF ANNEALED (1 HOUR 2550 F) TANTALUM SHEET (0.02 INCH)(18)

Test rate 0.002 inch per inch per minute.

FIGURE A-8. EFFECT OF TEMPERATURE ON THE MODULUS OF ELASTICITY OF TANTALUM

FIGURE A-9. UNNOTCHED AND NOTCHED BAR TENSILE TEST SPECIMENS USED TO OBTAIN DATA SHOWN IN FIGURES A-10 AND A-11

All dimensions are in inches.

FIGURE A-10. TENSILE PROPERTIES FOR WROUGHT, STRESS-RELIEVED, ELECTRON-BEAM-MELTED TANTALUM BAR (: HR AT 750 C; HARDNESS 145 VHN)(21)

	Unnotched	Notched
Crosshead Speed, in. fmin	0.02	0.005
Impurity	Weight Per Cent	
С	<0.003	
O	<0.003	
N	0.0008	
Others	<0.08	

FIGURE A-11. TENSILE PROPERTIES FOR RECRYSTALLIZED, ELECTRON-BEAM-MELTED TANTALUM BAR (3 HR AT 1200 C; HARDNESS 83 VHN; ASTM 4, 8)(21)

C . 15 1	Unnotched	Notched
Crosshead Speed, in,/min	0.02	0.005
Impurity	Weight Per Ce	<u>nt</u>
С	<0.003	
0	<0,003	
N	0.0008	
Others	₹0,08	

FIGURE A-12. UNNOTCHED AND NOTCHED-BAR TENSILE TEST SPECIMENS USED TO OBTAIN DATA SHOWN IN FIGURES A-13 THROUGH A-16

FIGURE A-13. TENSILE PROPERTIES FOR WROUGHT AND RECRYSTALLIZED, ELECTRON-BEAM-MELTED TANTALUM BAR CONTAINING 489 PPM OXYGEN AND 5 PPM HYDROGEN⁽²²⁾

	Unnotched	Notched
Crosshead Speed,		
in./min	0.02	0,005

PROPERTY AND A SECOND

FIGURE A-14. TENSILE PROPERTIES FOR WROUGHT AND RECRYSTALLIZED, ELECTRON-BEAM-MELTED TANTALUM BAR CONTAINING 758 PPM OXYGEN AND 4 PPM HYDROGEN (22)

	Unnotched	Notched
Crosshead Speed,		
in./min	0.02	0,005

FIGURE A-15. TENSILE PROPERTIES FOR WROUGHT AND RECRYSTALLIZED, ELECTRON-BEAM-MELTED TANTALUM BAR CONTAINING 82 PPM OXYGEN AND 135 PPM HYDROGEN⁽²²⁾

	Unnotched	Notched
Crosshead Speed,		
in.,min	0.02	0.005

CANADA SA CONTRACTOR

FIGURE A-16. TENSILE PROPERTIES FOR WROUGHT AND RECRYSTALLIZED, ELECTRON-BEAM-MELTED TANTALUM BAR CONTAINING "HIGH" HYDROGEN⁽²²⁾

O Unnotched specimens

Notched specimens (K₁=3)

Notch-unnotched strength ratio
Fracture at maximum load

1 hr 1380 F 153 VHN

	Unnotched	Notched
Grosshead Speed,		
in,/min	5,02	0,005

3 hr 2190 F 91 VHN ASTM 2-4

Cold rolled 95 per cent and stress relieved $\frac{1}{4}$ hour at I380 F

Cold rolled 75 per cent and recrystallized I hour at 2190 F

FIGURE A-17. CREEP AND RUPTURE CURVES FOR RECRYSTALLIZED ELECTRON-BEAM-MELTED TANTALUM SHEET (0, 040 INCH)⁽¹⁵⁾

<u>Impurity</u>	Weight Per Cent
C	0.0030
0	0.0016
N	0.0010
Others	< 0.040

CHANGE OF THE STREET

FIGURE A-18. EFFECT OF TEMPERATURE ON THE CREEP STRENGTH OF RECRYSTALLIZED ELECTRON-BEAM-MELTED TANTALUM SHEET (0.040 INCH)(15)

Cold rolled 75 per cent and recrystallized 1 hour at 2190 F.

Impurity	Weight Per Cent
С	0.0030
0	0.0016
N	0.0010
Others	< 0.040

FIGURE A-10. LARSON-MILLER PLOT COMPARING RUPTURE PROPERTIES OF ELECTRON-BEAM-MELTED TANTALUM SHEET (0.040 INCH)⁽¹⁵⁾

FIGURE A-20. LARSON-MILLER PLOT COMPARING RUPTURE PROPERTIES OF RECRYSTALLIZED ELECTRON-BEAM-MELTED TANTALUM, Ta-C. Ta-N, AND Ta-O ALLOYS IN SHEET (0.040 INCH) FORM⁽¹⁵⁾

FIGURE A-21. EFFECT OF OXYGEN CONTENT ON THE IMPACT PROPERTIES OF WROUGHT ELECTRON-BEAM-MELTED TANTALUM $(^{23})$

Starting material contained <44 ppm combined carbon and nitrogen.

FIGURE A-22. EFFECT OF OXYGEN CONTENT ON THE IMPACT PROPERTIES OF WROUGHT ELECTRON-BEAM-MELTED TANTALUM(23)

Starting material contained <44 ppm combined carbon and nitrogen.

FIGURE A-23. FATIGUE CHARACTERISTICS OF ANNEALED TANTALUM WIRE (0.004 INCH)(18)

- 4. Metallurgical Properties
 - a. Fabricability: possesses excellent room-temperature fabrication characteristics amenable to all conventional fabrication practices and can be fabricated to large reductions (>95 per cent) without the need for process annealing(3)
 - b. Transition temperature: <-420 F(21)
 - c. Weldability: can be welded using conventional techniques wherein, air is excluded, such as inert-gas-shielded tungsten-arc welding, inert-atmosphere chamber, electron-beam welding, and resistance spot or seam welding⁽⁷⁾
 - d. Stress-relief temperature: 1 hour at 1800 F(24)
 - e. Recrystallization temperature: Tables A-14 and A-15 Figures A-24 through A-26

TABLE A-14. RECRYSTALLIZATION BEHAVIOR OF ELECTRON-BEAM-MELTED TANTALUM SHEET (0.040 INCH)⁽⁴⁾(16)

		mperature, F. for Indicated Amoun of Recrystallization in 1 Hour		
Gondition	50 Per Cent	100 Per Cent		
Cold reduced 50 per cent from as-cast ingot	2010	2550		
Cold reduced 75 per cent from as-east ingot	1830	2:90		
Colu reduced 05 per cent from as-cost rigot	1060	2370		
Cold reduced 75 per cent after intermediate annealing	1920	2190		

(a) Impurity Weight Per Gen

C 0,0030

O 0,0016

N 0,0010

Others <0,040

- :

FIGURE A-24. ANNEALING CURVE FOR ELECTRON-BEAM-MELTED TANTALUM BAR⁽²¹⁾

1/4 hour at temperature, furnace cooled.

Electron-beam-melted inget cold forged and swaged 87 per cent.

Element	Weight Per Cent
C	<0.003
0	< 0.003
N	0.0008
Others	<0.08

FIGURE A-25. EFFECT OF ANNEALING TIME AND REDUCTION ON THE RECRYSTALLIZATION BEHAVIOR OF TANTALUM(25)

1. Hour Annealing Temperature, F	Average ASTM Grain Size at 1002			
2190	5-d			
2370	4			
2550	9-4			
2595	3-4			
2910	2			
3090	1			
3270	0-1			

(a) Gold rolled 75 per cent.

Impurity	Weight Per Cent
С	0.0030
0	0.0016
N	0.0010
Others	<0.040

FIGURE A-26. ANNEALING TEMPERATURE VERSUS GOLD REDUCTION AND GRAIN SIZE (26)

References

- Tentative Specification for Tantalum Ingots and Flat Mill Products, American Society for Testing and Materials, ASTM Designation: B 364-62T (Issued, 1961; Revised, 1962).
- (2) Tentative Specifications for Tantalum Rod and Wire, American Society for Testing and Materials, ASTM Designation: B 365-627 (Issued, 1961; Revised, 1962).
- (3) Miller, G. L., Tantalum and Niobium, Academic Press, Inc. (1959).
- (4) "Development of Extrusion Processes for Tantalum Alloys", Wah Chang Corp., First Interim Report on Contract AF 33(600)-42396 (March, 1961).
- (5) Torti, M. L., "Purification of Tantalum Obtained by Arc Melting", J. Electrochem Soc., 107 (1), 33-35 (January, 1960).
- (6) Schmidt, F. F., et al., "Investigation of the Properties of Tantalum and Its Alloys", Battelle Memorial Institute, WADD TR 61-106 (March, 1961).
- (7) Metals Handbook, 8th Edition, Vol. 1, "Properties and Selection of Metals", American Society for Metals, Cleveland (1961), pp 1222-24.
- (8) Schmidt, F. F., "Tantalum and Tantalum Alloys", Battelle Memorial Institute, DMIC Report 133 (July 25, 1960).
- (9) Glazier, L. F., Jr., Allen, R. D., and Saldinger, I. L., "Mechanical and Physical Properties of the Refractory Metals, Tungsten, Tantalum, and Molybdenum, Above 4000 F., Report No. M1826, Aerojet-General Corp.
- (10) Rosenberg, H. M., "The Thermal Conductivity of Metals at Low Temperatures", Phil. Trans., <u>A247</u>, 441 (1954-55).
- (11) Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J., "Thermophysical Properties of Solid Materials" (Melting Temperature Above 1000 F), Vol. 1, Elements, WADC TR 58-476, Revised Edition (August, 1960).
- (12) Langmuir, D. B., and Malter, L., "Resistance, Emissivities and Melting Point of Tantalum", Phys. Rev., 55, 743 (1939).
- (13) Taylor, R. E., and Finch, R. A., "The Specific Heats and Resistivities of Molybdenum, Tantalum, and Rhenium From Low to Very High Temperatures", Atomics International, Contract AT (Ii-1)-GEN-8, NAA-SR-6034.
- (14) Bechtold, J. H., "Tensile Properties of Annealed Tantalum at Low Temperatures", Acta Met., 3 (3), 249-54 (1955).
- (15) Schmidt, F. F., et al., "Investigation of the Properties of Tantaium and Its Alloys", Battelie Memorial Institute, WADD TR 59-13 (December 31, 1959).

- (16) Pugh, J. W., "Temperature Dependence of the Tensile Properties of Tantalum", Trans. ASM, 48, 677-88 (1956).
- (17) Preston, J. B., Roe, W. P., and Katters, J. R., "Determination of the Mechanical Properties of Aircraft Structural Materials at Very High Temperatures After Rapid Heating", WADC TR 57-649, Part I (January, 1958).
- (18) Bornemann, A., et al., "Studies in the Behavior of Certain Nonferrous Metals at Low Temperatures", Report No. PB-111657, U. S. Dept. of Commerce, O. T.S. (1953).
- (19) Begley, R. T., "Development of Niobium-Base Alloys", Westinghouse Electric Corp., WADC TR 57-344, Part II (December, 1958).
- (20) Köster, W., "The Temperature Dependence of the Elastic Modulus of Pure Metals", Z. Metallk., 39 (1), 1-9 (1948).
- (21) Imgram, A. G., et al., "Notch Sensitivity of Refractory Metals", Battelle Memorial Institute, WADD TR 60-278 (April, 1960).
- (22) Imgram, A. G., et al., "Notch Sensitivity of Refractory Metals", Battelle Memorial Institute, ASD TR 61-474 (August, 1961).
- (23) Imgram, A. G., unpublished data, Battelle Memorial Institute (1963).
- (24) Unpublished data, Battelle Memoriai Institute (1959-1961).
- (25) Yancey, R. W., "Metallurgical Characteristics of Tantalum and Their Relation to the Fabrication of Tantalum Products", Proceedings of the 1956 Regional Conference on Reactive Metals (AIME) IMD Special Report.
- (26) Savitskii, E. M., Tylkina, M. A., and Tayganova, I. A., "The Recrystallization Diagram of Tantalum", Doklady Akad. Nauk S.S.S.R., 118, 720 (1958).

Ta-10W

- 1. Identification of Material
 - a. Designation: several, depending upon individual supplier
 - b. Chemical composition: Tables A-16 and A-17
 - c. Forms available: ingot, billet, bar, plate, sheet, strip, foil, rod, and wire (1,2)

Table a-16. Chemical requirements for arc-cast and electron-beam cast ${\tt Ta-10w(a)(1,2)}$

Element	Impurity Content ^(b) , Maximum weight per cent
	0.010
0	0.010
N	0.005
C .	0,005
Ср	0.10
Fe	0.01
Mo	0.10
Ni	0.005
Si	0.015
Ti	0.01
W	9-11

⁽a) For ingot, billet, bar, plate, sheet, strip, foil, rod, and wire.

TABLE A-17. REPRESENTATIVE ANALYSES OF Ta-10W AS PRODUCED BY ARC MELTING AND ELECTRON-BEAM MELTING PROCESSES

	Arc 1	Impurity Content, ppm, for I Arc Melting			ctron-Beam Meltin	ıg	
Element	Ref. (3)	Ref. (4)	Ref. (5)	Ref. (6) ^(a)	Ref. (3), To;	Ref. (3), Bottom	Ref. (6)(b
Al	<20				<20	<20	
В	<1				<1	<1	
С	<30	19	15	17	<30	<30	. 11
Cb	<100				980	1500	
Cd	<5				< 5	<5	
Cr	<20	5	10	<10	<20	<20	<10
Cu	<40	- ~			<40	<40	
Fe	<100	15	50	<10	<100	<100	<10
Н	4						
Hf	<80				**	· ·	
Mg	<20				<20	<20	
Mn	<20				<20	<20	
Mo	<20	<10	25		50	250	
N	11	19	25	36	28	20	35
Ni	<20	5	50	<10	<20	<20	<10
0	140	18	110	52	50	60	22
Pb 1	<20				<20	<20	
Si	<100		25		<100	<100	
Sn	<20				<20	<20	
Ta	Bal	Bal			Bal	Bal	
Ti	<150		10		<150	<150	~-
v	<20				<20	<20	
W	10.0%	9.8%			9.0%	8.6%	+ =
Zn	<20	• •			<20	<20	
Zr	<500				-	<500	- .

⁽a) Starting stock 150 to 450 ppm oxygen. Average values from 14 double-arc-melted ingots.

⁽b) Any other one impurity to be less than 100 ppm.

⁽b) Starting stock 150 to 450 ppm oxygen. Average values from 7 electron-beam-melted ingots.

2. Physical Properties

a. Melting point: 5495 F(7)

b. Density: 0.608 lb/in.3(7)

c. Thermal expansion: Table A-18
Figures A-27 and A-28

d. Thermal conductivity: Table A-19

TABLE A-18. THERMAL EXPANSION OF Ta-10W(8)

Temperature, F	\ L/L ^{(a}	
1830	0.0084	
2010	0.0062	
2190	0,0070	
2370	0.0079	
2550	0,0088	
2730	0,0098	
2910	0.0107	
1000	0,0117	
1270	0,6007	
3450	0.0138	
3630	0,0148	
ዓጵ10	0,0160	
+ 1,+2	(.177)	
4170	0,0182	
4350	0.0192	
4530	0,0200	
4710	0,0207	
4980	0.0213	
5070	0,0218	
5050	0,0202	

(a) From room temperature to indicated temperature,

FIGURE A-27. THERMAL EXPANSION OF Ta-10W(9)

FIGURE A-28. MEAN COEFFICIENT OF THERMAL EXPANSION OF Ta-10W(9)

TABLE A-19. THERMAL CONDUCTIVITY OF Ta-10w(8)

Temperature, K	Thermal Conductivity, cal/(cm ² XsecXK/cm)		
1700	0,135		
1800	0.131		
1900	0, 128		
2000	0.124		
2100	0.121		
2260	6.117		
2300	0,114		
2400	0,110		
2500	0,107		
2600	6. :63		
2700	0,100		
2800	0.096		
2900	0.092		
3000	0,089		
3100	0,085		
3200	0.082		

- 3. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate tensile strength: Tables A-20 through A-22 Figure A-29

Tensile yield strength: Tables A-20 through A-22 Figure A-29

Elongation: Tables A-20 through A-22 Figure A-30

Reduction in area: Table A-22

Modulus of elasticity: 28-30 x 106 psi(4)

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Tables A-23 through A-26 Figures A-31 through A-34

Tensile yield strength: Tables A-23 through A-26 Figures A-32 and A-34

Elongation: Tables A-23 through A-26 Figures A-32 and A-35

Modulus of elasticity: Tables A-25 and A-26 Figure A-31

c. Notched Tensile Properties

Figures A-36 and A-37

d. Creep and Stress-Rupture Properties

Tables A-27 through A-30 Figures A-38 through A-39

e. Other Selected Mechanical Properties

Hardness: Figure A-40

Impact: Figure A-41

Fatigue: Figure A-42

Table A-20. Tensile-property requirements for arg-cast and electron-beam-cast τ_{a-10w} flat mill products^(a,X,1)

			Yield 8	Strength	Elongation in 2	Inches, per cent
	Tensile Strength, 1000 psi		(0, 2% Offset), 1000 psi		Specimens 0.021 -	Specimens 0,005
Condition	Min	Max	Min	Max	0,1875 In. Thick	0.020 in. Thick
As :olled	150	190	140	180		
Stress relieved	90	130	80	120	5	3
Recrystallization annealed	70	100	60	90	20	15

⁽a) For bar, plate, sheet, strip, and foil. Tensile properties shall be determined using a strain rate of 0,005 inch per minute through 0,6 per cent offset, and 0,02 to 0,05 inch per inch per minute to fracture.

TABLE A-21. TENSILE-PROPERTY REQUIREMENTS FOR ARC-CAST AND ELECTRON-BEAM-CAST Ta-10W ROD WIRE $^{(a}X^{(c)})$

	Tensile Strangti:, 1000 psi		Yield Strength (৫, ৫% Offset), 1000 psi		Elongation, per cent	
Condition	Min	Max	Min	Max	In 2 In, (Rod)	In 10 In, (Wire)
As worked	150	190	140	180	••	
Stress relieved	33	137	•	1.33	5	ä
Recrystallization annealed	70	100	60	90	10	:0

⁽a) Tensile properties shall be determined using a strain rate of 0,02 inch per inch per minute,

TABLE A-22. SOME SELECTED ROOM-TEMPERATURE TENSILE PROPERTIES OF Ta-10W

Condition	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation, per cent	Reduction in Area, per cent	Reference
Annealed sheet (2200 F, 0.028 inch) ^(a)	123.3	114.1	13		. 10
Annealed sheet (2600 F, '0, 028 inch) ^(a)	96.0	82.2	26		10
Stress-relieved sheet (3 hr 2250 F, 0.040 inch) ^(b)	109.1(L) 112.9(T)	101.1(L) 112.9(T)	15.8(.) 14.7(T)	. <u>I</u>	4
Cold-worked sheet (95%, 0,060 inch)	180.0	164.0	4		11
Recrystallized sheet (6, 060 inch)	90.0	83.5	28,5		. 11
Annealed sheet (0,020- 0,250)(c)	70, 0(min)	60. 0(min)	15(min)	· ••	12
Annealed sheer(d)	80.0	67.0	25		7
Cold-rolled sheet (50%) ^(d)	147.0	146.5	3	••	7
Cold-rolled sheet (90%)(d)	160.0		1		7
Stress-relieved rod (rolled 83%, 1 hr 2190 F. 0.125 inch) ^(e)	134.8	125.9	31	83.2	. 5
Recrystallized rod (rolled 83%, 1 hr 2730 F, 0.125 inch) ^(e)	90.1	76.5	35	59.0	5
Annealed bar (2200 F, 1/4 inch) ^(a)	106.4	99.6	24	" -	10
Annealed bar (2600 F _a 1/4 inch) ^(a)	84.2	70.6	34	'-	10

⁽a) Average of two values. Test rate 0.005 inch per inch per minute to 0.2 per cent yield, 0.02 inch per inch per minute to faiture. Typical analyses 0.0080% C, 0.0040% O, 0.0100% N, and 0.0005% H.

⁽b) Arc Melted. Test rate 0.005 inch per inch per minute to 0.6 per cent offset, and 0.05 inch per inch per minute to fracture. Analyses 9.8% W. 0.0019% C. 0.0018% O. 0.0019% N. 0.0015% Fe, 0.0005% Cr. 0.0005% Ni, and <0.0010% Mo.

⁽c) Test rate 0.005 inch per inch per minute to 0.0 per cent offset, and 0.02 to 0.05 inch per inch per minute to fracture. Composition shall conform to the following maximums 0.0050% C, 0.0070% O, 0.0030% N, 0.0006% H, 0.10% Cb, 0.0070% Fe, 0.0300% Mo, 0.0070% Ni, and have a tangeten range of 8.5 to 11 per cent.

⁽d) Electron-Beam Melted. Typical analyses 9-11% W. 0.0060% O. 0.0030% N. <0.0010% H. 0.0020% C. 0.050% Cb. and others 0.020%.

⁽c) Air Melted. Average of two values. Crosshead speed 0.02 inch per minute. Analyses 0.0015% C, 0.0010% Cr, 0.0005% Fe, 0.0025% Mo, 0.0025% N, 0.0050% Ni, 0.0110% Ni, 0.0025% Si, and 0.0010% Ti.

FIGURE A-29. EFFECT OF ROLLING TEMPERATURE, CHAMBER PRESSURE, AND PER CENT DEFORMATION ON THE ROOM-TEMPERATURE STRENGTH OF AS-ROLLED Ta-10W SHEET (13)

Tested at 0,005 inch per inch per minute.

Impurity	PPM
C	12-26
0	12-36
N	22-44
H	1, 9-2, 5

FIGURE A-3C. EFFECT OF ROLLING TEMPERATURE, CHAMBER PRESSURE, AND PER CENT DEFORMATION ON THE ROOM-TEMPERATURE TENSILE DUCTILITY OF AS-ROLLED Ta-10W SHEET⁽¹³⁾

Tested at 0,005 inch per inch per minute.

Impurity	_PPM_
С	12-26
0	12-36
N	22-44
н	1,9-2,5

TABLE A-23. TENSILE PROPERTIES OF ANNEALED Ta-10W SHEET AND BAR AT 2200 F(A)(10)

Form	Annealing Temperature, F	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation, per cent
Sheet, 0.028 inch	2200	58.8	33. 7	11
	2600	37.1	02, 3	36
Bar, 9/8 inch	2200	38.3	34, 1	13
	2600	36.2	28, 3	30

(a) Average of two values. Test rate 0.005 inch per inch per minute to 0.2 per cent yield, and 0.02 inch per inch per minute to failure. Typical analyses 0.0080% C, 0.0040% O, 0.0100% N, and 0.0005% H.

TABLE A -24. TENSILE PROPERTIES OF ARC-CAST STRESS-RELIEVED Ta-10W SHEET (0.040 INCH) AT 2000 TO 3000 F(8)(4)

Temperature, F	Tensile Strength, 1000 pu	Yiele Strengt: (0,2% Offiet), 1000 pri	Elongation, per cent
2000	60.7	55.1	11
2400	39.5	34,7	19
3000	19, 2	16,4	84

(a) Stress relieved for 3 hours at 2250 F. Tested at 0.05 inch per inch per minute. Analyses 9.8% W, 0.0019% C, 0.0018% O, 0.0010% N, 0.0019% Fe, 9.005% Or, 0.009% NL, and <0.0010% No.</p>

TABLE A-25. TENSILE PROPERTIES OF ARC-CAST STRESS-RELIEVED Ta-10W SHEET(4X14)

l'emperature, F	Tensile Strength, 1000 psi	Yield Strength (0,2% Offset); 1000 pai	Elongation, per cent	Modulus o Elasticity, 10 ⁶ psi
RT	165,0	165.0	1.3	25.0
	164.0	162.0	3.3	25.3
	186, C	160.0	3.3	24.0
500	138.1	137.0	0.8	24,0
	143.0	140.0	2,0	23.0
1000	181.0	128.0	0.9	21.8
	132.0	129.0	1.3	20,8
1500	104.0	96.3	2,7	19.0
	104.0	96,4	3.3	18,0
2000	77.9	64. 4	6.7	15.6
	77.8	64.7	7.3	15.1
	75.1	62, 4	7.3	15.1
2500	50.5	39.0	6.4	10.6
	53.5	40.2	8.3	9.4
	61.4	48.5	8.7	10.5
	PN. 1	40,1	7.0	10.5
3000	19.0	13.0	33, 4	5, 5
	20,2	14.2	33.0	5.2
	21. 8	15. 1	20.0	5.0

(a) Test Conditions:

Atmosphere

Argon 1.6 in.

Gage Length

Sheet Thickness

0.040 in.

Analyses

0.0051% U, <0.0001% H, 0.0015% N, 0.0014% C, 0.0012% Fe, 0.0010% Cr, and 0.0010% Ni

Resistance

Method of Heating Time to Temperature

200 F/sec

Hold at Temperature

Strain Rates

5 minutes

0.001 in./in./sec to yield 0.01 in. / m. / see to fracture

FIGURE A-31. TYPICAL ELEVATED-TEMPERATURE TENSILE PROPERTIES OF ELECTRON-BEAM-MELTED Ta-10W SHEET⁽⁷⁾

Typic	- 1	2 2 2	١.,	~	٥	c	•

Impurity	Weight Per Cent		
w	9-11		
0	0.0060		
N	0.0030		
H	<0.0010		
С	0.0020		
Cb	0.050		
Others	0.0200		

FIGURE A-32. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF WROUGHT ARC-CAST Ta-10W SHEET (0,060 INCH)(15)

Approximate strain rate of 0,01 inch per inch per minute. Total interstitial content approximately 0,0070 per cent. Tested in argon.

FIGURE A-33. EFFECT OF TEMPERATURE AND STRAIN RATE ON THE TENSILE STRENGTH OF WROUGHT ARC-CAST Ta-10W SHEET (0,060 INCH)⁽¹⁵⁾

Total interstitial content approximately 0,0070 per cent. Tested in argon,

TABLE A-26. TENSILE PROPERTIES OF Ta-10W AT 2500 TO 4500 F USING RAPID LOADING RATES (a)(15)

l'emperature, F	Loading Rate, psi/sec	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation in 1 Inch, per cent	Modulus of Elasticity, 10 ⁶ psi
2500	12,400	63.4		3.0	. 5, 3
	-	59.2	44.0	3.3	8.5
4		51.4	44.0	11.0	G. 1
3000	4,500	24.7	17.7	7.4	5.8
		25.8	14.3	15.0	3.6
		25.6	13.3	16.9	2.0
3500	1,960	17.1	12.4	21.2	1.22
		15.4	12.75	25.6	1.35
		15.6	8.8	26.0	1,39
4500	1,930	8.6	3.6	16.8	0.19
		6.3		21.2	
		7.7	3.5	11.9	0.19

⁽a) Annealed 0.000-inch sheet tested in argon.

F'GURE A-34. EFFECT OF ROLLING TEMPERATURE, CHAMBER PRESSURE, AND PER CENT DEFORMATION ON THE -300 F TENSILE STRENGTH OF AS-ROLLED Ta-10W SHEET (13)

-

Tested at 0,005 inch per inch per minute.

Impurity	PPM
С	12-26
0	12-36
N	22-44
H	1, 9-2, 5

FIGURE A-35. EFFECT OF ROLLING TEMPERATURE, CHAMBER PRESSURE, AND PER CENT DEFORMATION ON THE -300 F TENSILE DUCTILITY OF AS-ROLLED Ta-10W SHEET (13)

Tested at 0,005 inch per inch per minute.

Impurity	PPM
С	12-26
0	12-36
N	22-44
H	1,9-2,5

FIGURE A-36. UNNOTCHED AND NOTCHED-BAR TENSILE TEST SPECIMENS USED TO OBTAIN DATA SHOWN IN FIGURE A-37

FIGURE A-37. TENSILE PROPERTIES FOR WROUGHT AND RECRYSTALLIZED, ARC-MELTED Ta-10W BAR(5)

Crosshead Speed,	Unnotched	Notched
in./min	0.02	0,005
<u>Impurity</u>	Weight Pe	r Cent
С	0.001	
0	0.011	0
N	6.002	5
Others	0.017	С

TABLE 4-27, STRESS-RUPTURE CHARACTERISTICS OF ARC-CAST Ta-10W SHEET (0.040 INCH)

Temperature,		Stress,	Time to Rupture,	
F	Condition	1000 psi	nouts	Reference
2000	Stress relieved(3)	53.3	1,5	(4)
		50.0	2,4	
		47.0	6.8	- 2 - 5 - 5 - 5
		45.0	20.0	
2400	Stress relieved(a)	38.0	0.1	(4)
		28.0	2, 8	• • • • • • • • • • • • • • • • • • • •
		25.0	4.0	
		22.0	16.4	
2700	Recrystallized(b)	19.0	1,93	(17)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16.5	4.83	` '
3500	Recrystallized(b)	8.0	0.53	(17)
		5.6	3.4	,,

⁽a) 3 hours at 2250 F. Analyses 9.8% W. 0.0019% C. 0.0018% O. 0.0019% N. 0.0015% Fe. 0.0005% Ct. 0.0005% Ni, and <0.0010% Mo.

FIGURE A-38. TIME FOR 0.2 PER CENT CREEP AT VARIOUS STRESS LEVELS FOR Ta-10W(16)

⁽b) I hour at 2730 F. Data obtained from small button-type ingots.

TABLE A -28. CREEP-RUPTURE PROPERTIES FOR ELECTRON-BEAM-MELTED STRESS-RELIEVED Ta-10W SHEET(8)(14)

Temp,	Stress, 1000 psi	Approx. Thermal Exp., in.	Loading Strain, per cent	0.05%		0.5%	Produce	2.0%	4.09	stic C1	8.0%			Elong., per cent
2000	6.5	0.0105	0.53	0.6	7, 1	80	67	95		e.e.		-	99	
2000	60	0.0108		8.0	36	121	470	770						8.8
2800	50	0.0138	0.27		0.6	2.0	4.8	13	45	60			67	1470
2500	45	0.0138	0.27	0.1	0.3	3.0	8.0	22	78	101	114		119	19.3
2500	40	0,0138	0,30	0.1	2.0	11.0	28	44	80	199	••		910	14.6
3000	18	0.0162	0.53		0,4	1.0	2.4	5.1	13	38	58	81	250	38.6
3000	16	0.0162	0.23	7.0	60	137	258	526	975	1387	1740	2140		21.3
3 50 0	8	0.0193	0.07	3.1	8.5	28	53	97	172	232	280	325	466	90.0
3500	6	0.0193	0.02	31	165	305	501	815	1370	1760	1980	2150	2550	30.0
4000	6	0.0240	0.07	0.1	1.6	3.3	6.C	11	21	26	31	35	49	30.0
4000	4	0.0240	••	5.5	52	130	225		••		••		349	(b)

(a) Test Conditions:

Atmosphere

Argon 1,5 in,

Gage Length Sheet Thickness

1,5 in, 0.040 in,

Analyses

0.0206% O, <0.0001% H, and 0.0005% N

Method of Heating Resistance

(b) Specimen failed in radius.

TABLE A-29. CREEP-RUPTURE PROPERTIES FOR ARC-CAST STRESS-RELIEVED Ta-10W SHEET AT 2000 F(a)(14)

Strew,	Approx. Thermal Exp.,	Loading Strain,	Time	sec, to P	Time to	Elong.,				
1000 pai	in.	per cent	0,05%	0,2%	0.5%	1%	2%	45	#80	Det Cent
70	0.0105	0.4	••	C.4	1,4	2.7	6.5	12	14	7,3
65	0.0108	0.47	0.4	2.5	9.5	21	46	74	84	7.3
65	0.0105	0.46	1.8	9.0	32	98	148	270	280	€.7
60	0.0105	0.33	0.1	0.5	2.8	10	27	45	49	6.7
60	0.0105	0.39	2.0	12	34	82	174	328	332	8.0
55	0.0105	0.27	3.0	32	140	415	841	1746	1749	5.3
50	0.0105	0.25	10	80	235	945	2940		3685	3.3

(a) Test Conditions:

Atmosphere

Argon

Gage Length

1.5 in.

Sheet Titlekness

0.040 in.

Analyses

0.0051% O, <0.0001% H, 0.0015% N, 0.0014% C, 0.0012% Fe,

0.0010% Ct, and 0.0010% Ni

Method of Heating

Resistance

TABLE A-30. CREEP-RUPTURE PROPERTIES FOR ARC-CAST STRESS-RELIEVED Ta-10W SHEET(a)(14)

Stress,	Approx. Thermal	Loading Strain,		Time	e, sec,	to Prod	uce Ind	icated	Plastic C	Creep		Time to	Elong.,
1000 psi	in.	per cent	0.05%	0.2%	0.5%	1%	2%	4%	6%	8%	10%	sec	per cent
					<u>A</u>	t 2500	<u>F</u>						
55	0.0138	0.35	~- .	 ,	0.9	1.5	2.6	3.0	4.0			5.0	8.7
50	0.0138											3.2	18.7
50	0.0138								·			2.0	8.0
45	0.0138	0.27	0.5	3.0	10	31	68	166	185			187	12.7
45	0.0138	0.27		0.2	1.2	3.0	5.0	10	11			13	8.0
- 40	0.0138	0.3	0.1	1.2	3.0	8.5	18	36	3 9			43	10.0
35	0.0138	0.26	0.1	3.4	15	35	76	134	170	179		183	12.0
					. <u>A</u>	t 3000	F						
20	0.0162								w =.			14	33.3
18	0.0162											43	37.4
18	0.0162				***							49	36.7
16	0.0162	0.5	1.0	2.0	7.0	25	5 9	110	161	225	263	522	30.0
16	0.0162	0.67		0.9	1.3	2.0	5.0	14	57	87	122	235	36.0
14	0.0162	0.7		0.2	1.1	1.9	4.0	19	52	86	107	167	22.6
12	0.0162	0.16	17	45	92	185	344	672	1095	1430	1786	1780+	33.2
					. A	t 3500	F						
10	0.0193	0.54		0.4	0.9	2.0	3.5	7.0	12	16	23	76	31.3
8	0.0193	0.07	13	33	51	83	143	242	275	345	393	462	24.0
8	0.0193	0.13			1.0	5	30	110	185	220	260	405	27.3
6 -	0.0193	0.07	17	63	145	278	490	871	1145	1280	1395	1663	22.0
4	0.0193	0.03	52	187	440	905	1624	2410				2490	6.0
					<u>A</u>	t 4000	<u>F</u>						
6	0.024	0.07		0.2	1,1	2.0	3.0	6.0	10	13	18	41	30.7
6	0.024	0.13		0.3	1.0	1.7	3.2	5.0	7.0	9.0	10	21	26.7
4	0.024	0.03	4.0	35	76	142		•-	2	·		220	(b)
2	0.024		57	180	450							503	(b)

⁽a) Test Conditions:

Atmosphere Argon Gage Length 1.5 in.

Sheet Thickness 0.040 in.

Analyses

⁽b) Specimen failed in radius.

^{0.0051%} O, <0.0001% H, 0.0015% N, 0.0015% C. 0.0012% Fe, 0.0010% Cr, and 0.0010% Ni

Method of Heating Resistance

FIGURE A-39. STRESS-RUPTURE STRENGTHS OF WROUGHT (REDUCED >90%) Ta-10W SHEET AT ELEVATED TEMPERATURES

Note: Material from Reference (19).

Analyses 0.0110% C, 0.0015% C, 0.0025% N, 0.0050% Fe, <0.0001% Cr, 0.0050% Ni, <0.0003% Si, <0.0010% Ti, and <0.0003% Mo.

FIGURE A-40. EFFECT OF COLD ROLLING ON THE HARDNESS OF Ta-10W SHEET (7)

FIGURE A-41. CHARPY-KEYHOLE IMPACT CURVE FOR ELECTRON-BEAM-MELTED Ta-10W(20)

FIGURE A-42. COMPLETELY REVERSED SHEET-BENDING FATIGUE PROPERTIES OF COLD ROLLED Ta-10W SHEET (0, 025 INCH) AT ROOM TEMPERATURE (21)

4. Metallurgical Properties

a. Fabricability: forging temperatures range from about 2200 F for breakdown to as low as 1500 F after 50 per cent reduction. It is important to maintain temperatures below 2300 F, to maintain a slightly reducing atmosphere at all times, and to minimize furnace heating time. Open hammer upsetting, piercing, and drawing, as well as closed die forging, may all be satisfactorily accomplished. Breakdown temperatures for annealed sheet bar range from 500 to 700 F, and 80 per cent reductions are possible between anneals. Finish rolling is accomplished at room temperatures, and cold reductions up to 90 per cent may be obtained between anneals. (7)

b. Transition temperature:

	Transition Temp, $F^{(22)}$		
	Unnotched	Notched	
Wrought	<-420	<-420	
Recrystallized	<-420	-360	

- c. Weldability: electron-beam welding or inert-gas fusion welding are used.

 Stress-relieved or, preferably, fully recrystallized starting material should be used. The properties of properly welded Ta-10W are essentially the same as those of the base metal. (7)
- d. Stress-relief temperature: 1 to 3 hours at 2000 to 2250 F(4, 5, 23)
- e. Recrystallization temperature: 1 hour at 2400 to 2730 $F^{(4, 5, 7, 23)}$ Figures A-43 and A-44

FIGURE A-43. ANNEALING AND HARDNESS CURVES FOR Ta-10W(15)

Double-arc-melted 3-1/2-inch-diameter ingot, forged at 1500 F to 1-inch-thick sheet bar; annealed 1/2 hour at 2730 F, cold rolled to 0.060-inch-thick sheet, 95 per cent reduction in area.

FIGURE A-44. EFFECT OF 15-MINUTE ANNEALING TEMPERATURE ON THE HARDNESS OF 90 PER CENT COLD-ROLLED ELECTRON-BEAM-MELTED Ta-10W SHEET⁽⁷⁾

- Proposed ASTM Specification For Tantalum 10 Per Cent Tungsten Alloy Flat Mill Products, Second Draft, American Society For Testing and Materials (1963).
- (2) Proposed ASTM Specification For Tantalum 10 Per Cent Tungsten Alloy Ingot, Billet, Rod, and Wire, Second Draft, American Society For Testing and Materials (1963).
- (3) "Tantalum 10% Tungsten Consolidation and Fabrication Methods", Wah Chang Corp. (1962).
- (4) National Research Corp., Data Sheet on Ta-10W and Ta-8W-2Hf Alloy Sheet (May 2, 1963).
- (5) Imgram, A. G., et al., "Notch Sensitivity of Refractory Metals", Battelle Memorial Institute, ASD TR 61-474 (August, 1961).
- (6) Torti, M. L., "Physical Properties and Fabrication Techniques For The Tantalum-10% Tungsten Alloy", paper presented at the AIME Technical Conference on High-Temperature Materials, Cleveland, Ohio (April 26-27, 1961).
- (7) "STa-900 Electron Beam Tantalum Alloy", Stauffer Metals Division Data Sheet.
- (8) Emmons, W. F., and Allen, R. D., "90 Ta-10W Alloy: Summary of Thermal Properties to Melting Point and Tensile Properties from 2500 to 4500 F", Aerojet-General Corp., Contract NOrd 18161.
- (9) Powers, D. J., "Thermal Expansion Determinations on Tantalum 90-Tungsten 10 Alloy, A-286 Steel, and BICO-LOY Steel", Bell Aerosystems Co., Report 63-3(M), (March, 1963).
- (10) Haynes Alloy Ta-782, New Product Data, Haynes Stellite Co.
- (11) "Physical and Mechanical Properties of Tantalum-Tungsten Alloys (Preliminary Data)", National Research Corp.
- (12) Technical Data Bulletin TD 623 A, Fansteel 60 Metal Sheet, Fansteel Metallurgical Corp. (March 7, 1962).
- (13) Cortes, F. R., "Determination of the Effects of Processing Refractory Metals Under Vacuum", Universal Cyclops Steel Corp., ASD-TDR-62-618 (February, 1963).
- (14) A. S. Rabensteine, "Tensile and Creep Rupture Properties of Tantalum-10% Tungsten Alloy Sheet", Marquardt Corp., Contract No. AF 33(657)-8706, Report PR 281-IQ-2 (September 12, 1962).
- (15) Torti, M. L., "Development of Tantalum-Tungsten Alloys for High Performance Propulsion System Components", unpublished data obtained on Centract No. NOrd-18787, National Research Corp. (1959-1961).

A-65 and A-66

- (16) Moorhead, P. E., "Tensile and Creep Properties of Columbium, Tantalum, and Titanium Alloys at Elevated Temperatures", Bell Aerosystem Co., BLR 62-26(M) (December, 1962).
- (17) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594, Part II (May, 1963).
- (18) Donlevy, A., and Hum, J. K. Y., "Some Stress-Rupture Properties of Columbium, Molybdenum, Tantalum, and Tungsten Metals and Alloys Between 2400-5000 F", paper presented at 1961 SAE National Aeronautic Meeting, New York.
- (19) "Tantalum, Tungsten Fill Hot Needs", Chem. and Engr. News, 37 (42), 52 (1959).
- (20) Preliminary Information Bulletin on 90 Tantalum-10 Tungsten Alloy, Stauffer-Temescal, Richmond, California (1960).
- (21) Foster, L. R., and Stein, B. A., "Tensile Properties and Sheet-Bending Fatigue Properties of Same Refractory Metals at Room Temperature", National Aeronautics and Space Administration, NASA TN D-1592 (January, 1963).
- (22) Imgram, A. G., et al., "Low-Temperature Tensile and Notched Tensile Behavior of Mo-0.5Ti, Cb-15W-5Mo-1Zr, and Ta-1CW", Battelle Memorial Institute, paper presented at the Fall Meeting of ASM, New York (1962).
- (23) Schmidt, F. F., et al., "Investigation of the Properties of Tantalum and Its Alloys", Battelle Memorial Institute, WADD TR 61-106 (March, 1960).

Ta-12,5W

- 1. Identification of Material
 - a. Designation: STa-880 (Stauffer)
 - b. Chemical composition: typical analyses of electron-beam-melted ingot(1)

Element	Weight Per Cent		
w	11.5-13.5		
0	0.0020		
N	0.0020		
С	0.0020		
H	C. CO10		
СЪ	0.0500		
Others	0.0200		
∵a	Bai,		

- c. Forms available: ingot, billet, bar, forgings, plate, sheet, foil, wire, and tubing(1)
- 2. Physical Properties
 - a. Melting point: 5520 F (calculated)(1)
 - b. Density: 0.610 lb/in. 3 (calculated)(1)
- 3. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate Tensile Strength (0.040-In. Sheet),

	1000 psi				
Melting	Condition	Longitudinal	Transverse	Reference	
Electron beam	Annealed	102.0	102.0	(1)	
Arc	l hour at 2910 F	103.0(a)		(2)	

(a) Button ingot, 0,05 inch per minute crosshead speed.

Tensile Yield Strength (0.2% Offset) (0.040-In. Sheet),

Melting	Condition	Longitudinal	Transverse	Reference
Electron beam	Annealed	35.0	90.0	(1)
Arc	l hour at 2910 F	95.6(a)		(2)

(a) Button ingot, 0.02 inch per minute crosshead speed,

Elongation (0.040-In. Sheet),

Tensile Yield

		per cent		
Melting	Condition	Longitudinal	Transverse	Reference
Electron beam	Annealed	23 (2 in.)	23 (2 in.)	(1)
$Arc^{(a)}$	1 hour at 2910 F	13 (1 in.)		(Z)
(a) Button	n ingot,			

b. Effect of Temperature on Tensile Properties

Melting	Condition	Temperature,	Ultimate Tensile Strength (0.040-In. Sheet), 1000 psi	Reference
Arc	I hour at 2910 F	2190	50. 5 (a)	(2)
Arc	1 hour at 2910 F	2700	33. l ^(a)	(2)
Arc	1 hour at 2910 F	3000	22. o(a)	(5)
Arc	1 hour at 2910 F	3500	13.0(a)	(2)
Electron beam	Annealed	4900	1.860	(1)
Electron beam	Annealed	5300	C.930	(1)

(a) Button ingot, 0, 05 inch per minute crosshead speed.

Melting	Condition	Temperature,	Strength (0.2% Offset)(0.040-In. Sheet), 1000 psi	Reference
Arc	1 hour at 2910 F	2190	38.0 ^(a)	(2)
Arc	: hour at 2910 F	2700	23. 2 ^(a)	(2)
Arc	! hour at 2910 F	3000	16.7 ^(a)	(2)
Arc	1 hour at 2910 F	3500	10.0(a)	(2)
Electron beam	Annealed	4900	1.430	(1)
Electron beam	Annealed	5300	0.880	(1)

(a) Button ingot, 0.01 inch per minute crosshead speed,

Melting	Condition	Temperature,	Elongation (0.040-In. Sheet) ⁽²⁾ in 1 Inch, per cent
Arc(a)	I hour at 2910 F	2190	18
$_{Arc}^{(a)}$	1 hour at 2910 F	2700	30
$\nabla^{ac}(x)$	1 hour at 2910 F	3000	55
$Arc^{(a)}$	1 hour at 2910 F	3500	52
(a) Butto	n inget.		

c. Other Selected Mechanical Properties

Bend ductility: 0.040-inch sheet, annealed 1 hour at 2910 $F^{(2)}$

Temperature,	Minimum Bend Radius,
F	<u> </u>
75	O
-320	3

4. Metallurgical Properties

- a. Fabricability: breakdown temperatures should be above 2000 F. After at least 50 per cent reduction and process annealing, temperatures for final sheet rolling can be reduced to as low as 700 F. (2) Ta-12.5W can be rolled to thin sheet, spun into various shapes, and formed and welded into tubing. Annealed sheet can be spun without difficulty at room temperature. (1)
- b. Transition temperature: <-320 F for a 4T minimum bend radius(2)
- c. Weldability: sheet can readily be welded by either electron-beam or inertgas-fusion techniques. As-welded sheet has properties
 essentially the same as those of the base material; (1,3) however welding increases the transition temperature markedly. (3)
- d. Stress-relief temperature: I hour at 2000 to 2370 F(2)
- e. Recrystallization temperature: 1 hour at 2730 to 2910 F(2)

	Hardness (^{!)} , vhn
1-Hour Annealing Temperature, F	Rolled 45%	Rolled 65%
Cast	260	272
Wrought	345	366
2010		31.)
3100	300	51.7
3370	297	317
2550	287	292
2730	276	256(a)
2910 (a) ≥75 per cent recrystallized.	264(a)	251

- (1) "STa-880, Ta-12.5W Alloy", Stauffer Metals Division Data Sheet (March, 1963).
- (2) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594 (July, 1962).
- (3) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594, Part II (May, 1963).

Ta-30Cb-7, 5V

- 1. Identification of Material
 - a. Chemical composition: Ta-(28-32)Cb-(5-8)V
 - b. Forms available: ingot-and-fabricated shapes available from suppliers on a best efforts basis
- 2. Physical Properties
 - a. Melting point: $4405 \text{ F} \pm 90 \text{ F} \text{ (for Ta-28.8Cb-7.1V)}^{(1)}$
 - b. Density: 0.425 lb/in.3 (calculated)
- 3. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate tensile strength: Tables A-31 and A-32

Tensile yield strength: Tables A-31 and A-32

Elongation: Tables A-31 and A-32

Modulus of elasticity: $21.5-33.5 \times 10^6 \text{ psi}^{(2)}$

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength. Figures A=45 and A=46

Tensile yield strength: Figure A-45

Elongation: Figure A-45

c. Other Selected Mechanical Properties

Bend ductility:

Test Direction	Sheet Thickness,	Temperature,	Minimum Bend Radius, T
	Ta-32Cb-5. 1V (1 Hr 2300 F)(2)	
Longitudinal	0.040	75	О
Longitudinal	0.040	- 320	0
Transverse	0.040	75	0
Transverse	0.040	- 3 40	0
	Ta-28, 8 Cb-7, 1V	7 (1 Hr 3200 F) ⁽²⁾	
Longitudinal	0.045	75	0
Longitudinal	0.045	-320	0
Transverse	0.045	75	0
Transverse	0.045	- 320	0

TABLE A:31. ROOM-TEMPERATURE TENSILE DATA FOR ARC-CAST Ta-28. 8Ch-7. 1V SHEET (0. 045 INCH)(a)(2)

Test Condition	Test Direction .	Tensile Strength, 1000 psi	Yield Strength (9.2% Offset), 1000 psi	Elongation i 1 Inch, per cent
Stress relieved	Longitudinal.	154	139	16
(4/2 hour 1800 F)	Longitudinal	155	139	18
	Transverse	154	142	13
	Transverse	155	142	13
Recrystallized	Longitudinal	120	104	29
(1 hour 2200 F)	Longitudinal	120	107	. 28
	Transverse	120	105	26
	Transverse	121	106.5	26

⁽a) Crosshead speed 0.02 inch per minute up to yielding, and 0.05 inch per minute to fracture. Analyses 0.013% \odot , 0.005% N, 0.0088% O, and <0.0001% H.

TABLE A-32. COMPARISON OF ROOM-TEMPERATURE TENSILE PROPERTIES OF RECRYSTALLIZED Ta-Ch-V ALLOY SHEET (a)(2)

Ailoy Composition	Test Direction	Tensile Strength, 1000 psi	Yield Strength (0,2% Offset), 1000 psi	Elongation in 1 Inch, per cent
Ta-32Cb-5.1V ^(b)	Longitudinal	98	80,5	32
(I hour 2300 F;	Longitudinal	100	80	25
v. 040 Inch)	Longitudinal	1 05	87	26
	Transverse	100	77	28
	Transverse	11 0	89	26
	Transverse	<u>104</u>	85	-18
	Average	103	83	$\frac{18}{26}$
ra-08.8Cb-7.1V(c)	Longitudinal	120	104	29
(1 hour 2200 F;	Longitudinal	120	106	28
0.045 inch)	Transverse	120	105	26
	Fransverse	<u>121</u>	107	26
	Average	120	105.5	$\frac{26}{27}$

⁽a) Crosshead speed 5.02 inch per minute up to yielding, and 0.05 inch per minute to fracture.

⁽b) Analyses 0.0025% C, 0.005% N, 0.0042% O, and 0.0002% H.

⁽c) Analyses 0.013% C, 0.005% N, 0.0088% O, and <0.0001% H.

FIGURE A-45. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF ARC-CAST Ta-28.8Cb-7.1V SHEET (0.045 INCH) $^{(2,3)}$

Impurity	Weight Per Cent
С	0.013
N	0.005
O	0.0088
11	< 0.0001

FIGURE A-46. STRENGTH COMPARISONS OF RECRYSTALLIZED
Ta-Cb-V ALLOY SHEET PREPARED FROM 30AND 1/3-POUND ARC-CAST INGOTS

4. Metallurgical Properties

- a. Fabricability: extrusion temperatures should be on the order of 3200 to 3600 F; forging can readily be accomplished at 2200 to 2400⁽²⁾, while rolling breakdown is conducted at about 1800 F⁽⁴⁾; final rolling, after intermediate annealing, is performed at room temperature ^(2, 4)
- b. Transition temperature: <-320 F(2,4)
- c. Weldability: inert-gas-fusion welds of sheet material present no problem.

 As-welded properties closely approximate those of the base metal at room temperature. (2)
- d. Stress-relief temperature: 1/2 hour 1800 F(2)
 1 hour 2010 F(4)
- e. Recrystallization temperature:

Prior Cold Work,	1-Hr Recrystallization Temperature(2), F				
per cent reduction	Ta-32Cb-5. 1V ^(a)	Ta-28.8Ch-7.1V(E)			
25	2300	2300			
50	2200	2300			
75	2100	2200			

- (a) 0.00025% C, 0.005% N, 0.0042% O, and 0.0002% H.
- (b) 0.013% C, 0.005% N. 0.0088% O, and <0.0001% II.

Table A-33 Figure A-47

TABLE A-33. EFFECT OF TEMPERATURE AND COLD WORK ON THE RECRYSTALLIZED GIAIN SIZE OF Ta-28.8Cb-7.1V SHEET($^{a}X^{2}$)

225 Per Cent Cold Worked		irked	50 Per C	Cent Cold Wo	rked	75 Per Cent Cold Worked		
1-Hour Annealing Temperature, F	Hardness, VHN ^(b)	Average Grain Diametér, mm	1-Hour Annealing Temperature, F	Hardness, VHN(b)	Average Grain Diameter, inm	1-Hour Annealing Temperature, F	Hardness, VIIN(b)	Average Grain Diameter, mm
2200	291	PR(c)	2200	319	PR(c)	2200	218	0 .03 5
240 J	279	0.090	2400	267	0.055	2400	211	0.055
2600	285	0.110	2600	289	0.090	2600	225	0.090
6008.	298	0.180	3000	297	0.150	3000	276	0.130
3500	295	>0.282	3500	285	>0.282	3500	229	>0.282

⁽a) Analyses 0.013% C, 0.005% N, 0.0088% O, <0.0001% H.

⁽b) 10-kg load.(c) PR = partially recrystallized.

FIGURE A-47. EFFECT OF ANNEALING TEMPERATURE ON THE ROOM-TEMPERATURE HARDNESS OF Ta-28.8Cb-7, IV ALLOY

Solid symbols indicate complete recrystallization,

Impurity	Weight Per Cent
С	0,013
**	3,65%
()	J,00 ₀ 8
H	<0.0001

A-78

- (1) Unpublished data obtained under Contract AF 33(616)-7452, Battelle Memorial Institute (1961).
- (2) Ogden, H. R., et al., "Scale-Up Development of Tautalum-Base Alloys", Battelle Memorial Institute, ASD TR 61-684 (November, 1961).
- (3) Private communication from R. W. Hall of NASA Lewis Research Center to ASD (November 22, 1961).
- (4) Schmidt, F. F., et al., "Investigation of the Properties of Tantalum and Its Alloys", Battelle Memorial Institute, WADD TR 61-106 (March, 1960).

Ta-5W-2.5Mo

- 1. Identification of Material
 - a. Chemical composition: Ta-5W-2.5Mo
 - b. Forms available: ingot and fabricated shapes available from suppliers on a best efforts basis
- 2. Physical Properties
 - a. Density: 0.595 lb/in. 3 (calculated)
- 2. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate tensile strength: Table A-34

Tensile yield strength: Table A-34

Elongation: Table A-34

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Table A-35

Figure A-48

Tensile yield strength: Table A-35

Figure A-48

Elongation: Table A-35

c. Creep and Stress-Rupture Properties

Figure A-49

d. Other Selected Mechanical Properties

Bend ductility: reverse bend testing for annealed 0.040-inch sheet material(1)

Number of Successful Bending Operations Before Fracture,
Bend Axis, Relative to Final Rolling Direction

Trans	verse	Parallel			
Forward(a)	Reverse(b)	Forward(a)	Reverse(b)		
2-4	1-3	2-4	2-3		

- (a) Bent around 0 T radius (<0.0156 inch) through a 105-degree angle.
- (b) Flattened to original condition by pressing in a vise.

1 ABLL A 34. ROOM-TEMPERATURE TENSILE PROPERTIES OF ARC-CAST Ta-5W-2.5Mo SHEET (0.040 INCH)(a)(1)

Rolling Direction Relative to Extrusion	Rolling	Rolling Temp,	No. of In-Process	Final Rolling Reduction,		ensile h, 1000 psi	(0, 2)	d Strength % Offset), 000 psi	• •	ation in 1/2 , per cent
Direction	Procedure	F	Anneals	per cent	Long.	Transverse	Long.	Transverse	Long.	Transverse
	Straight	800	0 .	90	98.9	100.8	94.1	96.6	36	37
-L	Straight	1000	. 0	90	99.4	102.3	99.2	100.4	37	36
-L .	Cross	800 and 1000	. (1	90	100,0	102.7	91.9	96.6	36	36
	Cross	800 and 1000	0	90	96.7	96.5	89.0	88.5	35	38
	Cross	800	1	65	102.6	105.3	90.4	98.7	37	38
	Cross	800	1	35	101.6	103.8	88.0	94.4	36	34
	Cross	800	3	35	103.9	105.7	94.5	96.8	3.5	34

⁽a) Extruded at 2600 F and forged to sheet par at 2200 to 2300 F. Test rate 0,005 inch per inch per minute to 0.6 per eer, yield, and 0,25 inch per inch per minute to fracture.

Typical analyses of extraded bars(2)

Per (•		PP	NI	
W	Mo	<u>c</u>	0	<u>N</u>	11
4.6	2.5	4	166	35	2

TABLE A-35. TENSILE PROPERTIES OF ARC-CAST Ta-5W-2.5Mo SHEET (0.040 INCH) AT 2700 F(a)(1)

Rolling Direction Relative to Extrusion Direction	Rolling Procedure	Rolling Temp, F	No. of In-Process Anneals	Final Rolling Reduction, per cent	Tensile Strength, 1000 psi	Yield Strength (0,2% Offset), 1000 psi	Elongation in 1/2 Inch, per cent
1	Straight	1000	U	90	20.7	19.5	-84
	Cross	800 and 1000	0	90	22.2	20.7	82
	Cross	800 and 1000	U	90	20.7	19.8	86
	Cross	800	1	65	20.4	18.9	84
	Cross	800	1	35	22.4	20.6	76
	Cross	800	.3	35	21.9	19.9	80

⁽a) Extraded at 2000 F and forged to short bar at 2200 to 2300 F. Test rate 0,025 inch per inch per minute.

Typical analyses of extraded ban(")

No	ight					
Per	Cent	PPM1				
<i>V.</i>	1.14	r:		N	Н	
			,		_	
		1	1	19.2		

FIGURE A-48. EFFECT OF TEMPERATURE ON THE STRENGTH OF ANNEALED (1 HOUR, 2550 F) Ta-5 W-2.5 Mo SHEET (0.040 INCH)(3)

FIGURE A-40. HIGH-TEMPERATURE RUPTURE CHARACTERISTICS OF ANNEALED (1 HOUR, 2550 F) Ta-5 W-2.5 Mo SHEET (0.040 INCH)(4)

Laboratory-produced bufton ingot.

TABLE A-36. EFFECTS OF ROLLING HISTORY AND ANNEALING ON THE ROOM-TEMPERATURE BEND DUCTILITY OF ARC-CAST Ta-5W-2.5Mo SHEET (0.040 INCH)(1)

	Rolling	\		rature Minimum Stress-Relie		Recrystallizo	Annealed
	Temperature,	As-W rought	Condition	1 Hr at 1	2000 F	1 Hr at :	2600 F
Prior History	F	Longitudinal	Transverse	Longitudinal	Transverse	Longitudinal	Transverse
	90 Per Cent	Finish Reductio	m: Straight Ro	lled; No In-Proc	ess Anneals		
Extruded 2600 F, 1 hr 3000 F; forged 2300 F,							
1 hr 2800 F	800(h)	1-3	10-13	Ü	0	O	0
Ditto	1000 ^(b)	1-3	7-9	U	0	0	0
	800(c)	3-4	8-13	0	0	U .	0
	90 Per Cent 1	inish Reduction	: Cross Rolled	(d) No In-Proce	ess Anneals		
Ditto Extraded 2600 F; forged	800-1000	0-2	1-4	0	0	Ü	0
2200 F. 1 hr 2800 F	800-1000	1-3	4-5	0	. 0	0	0 -
	65 Per Cent	Finish Reductio	n: Cross Rolled	i;(d) One In-Proc	ess Anneal		
 Xiruded 2600 F; 1 hr 3000 F; forged 2300 F,							
1 hr 2800 F	800	0-3	2-3	O	0	0	U
	35 Per Cent	Finish Reductio	n: Cross Rolled	(d) One In-Proc	cess Anneal		
Datto	800	0-2	0-2	. 0	0	0	0
	35 Per Cent	Finish Reductio	n: Cross Rolle	;(d) Three In-Pr	ocess Anneals	•	
Ditto	800	2-4	0	0	. 0	υ · ·	0

⁽a) Values obtained from two to four tests for each condition cited.

Typical analyses of extruded ban(2)

Wei	ght						
Per (Cent	PPM					
W	Mo	$\overline{\mathbf{c}}$	0	N	H		
4.1		4	1:1:5	35	2		

⁽b) Rolled perpendicular to the original extrusion direction.

⁽c) Rolled parallel to the original extrusion direction.

⁽d) Equal reductions in original length and width dimensions before annealing.

4. Metallurgical Properties

- a. Fabricability: ingots can be successfully extruded at 2600 F followed by forging at 2200 to 2300 F; after conditioning and process annealing, rolling to sheet is performed at 800 to 1000 $F^{(1,2)}$; after breakdown, final sheet rolling has been conducted at room temperature(3)
- b. Transition temperaure: <-320 F for annealed 0.040-inch sheet material(3)
- c. Weldability: annealed 0.050-inch sheet material can readily be joined by either inert-gas tungsten-arc or electron-beam processes: welds are room-temperature ductile⁽⁴⁾
- d. Stress-relief temperature: 1 hour at 2000 F(1,3)
- e. Recrystallization temperature: Tables A-37 and A-38

Table 4-37. Effect of annealing treatments on the recrystallization and grain size of extruded and forged sheet bars $^{(2)}$

Prior History	Per Cent Recrystallization After Annealing 1-Hour at Indicated Temperature, F			1-Hour	ASTM Size Ran Anne.	ge After aling	Anne	ize After aling			
	As Forged	2400	2500	2700	2800	3000	Recrystallization Temperature, F	2800 F	3000 F	2800 F	3000 F
Extraded 2000 F; forged 2000 F	o	. 0	75	100	100	100	2700	3-8	1-7	G.3	5, 6
Extruded 2600 F; recrystallized 1 hour, 3000 F; forged 2300 F	0	2	30 .	75	90	100	~·2900	3-9	2-7	6. 2	6.0
Extruded 2600 F; recrystallized I hour, 3000 F; forged 2200 F	o	U	75	95	100	100	2800	3-8	2-7	6.7	5.8

Typical analyses of extruded bar-

Wes	ight				
Per 0	Cent	PPM			
W	Мо	$\overline{\mathbf{c}}$	0	N	!!
4.6	2.5	-\$	166	35	2

TABLE A -38. RECRYSTALLIZATION AND HARDNESS OF ARC-CAST Ta-5W 2,5Mo SHEET (0,040 INCH)(4)(2)

	Total	Approximate 1-Hour		Hardnes	s, VIIN	
Rolling	Reduction,	Recrystallization		As	Anneated 1 Ho	ur
l'emperature, F	per cent	Temperature, F	Initial	Wrought	2000 F	2600 F
. Sug	45	2600	241	369		240
. Σ → (ξ +	7.0	2500	241	384		246
5.00	85	2400	241	388	••	245
2 000	90	2400	241	395	348	242
tour	9a	2400	- 211.	410	350	243

(a) Extraded at 2000 F and forced to sheet bar at 2200 to 2200 F.

Typical analyses of extruded bar:

We	iylit				
Per	Cent		PP	M	
V	Mile	<u>. </u>	()	::	Н
a .		1	1	*:	.,

A-85 and A-86

- (1) Maykuth, D. J., Hallowell, J. B., and Ogden, H. R., "Tantalum-Alloy-Processing Development", Battelle Memorial Institute, Contract No. AF 33(657)-8911, ASRCT TR 7-781 (IV) (June 1, 1963).
- (2) Maykuth, D. J., and Ogden, H. R., "Tantalum-Alloy-Processing Development", Battelle Memorial Institute, Contract No. AF 33(657)-8911, ASRCT TR 7-781 (III) (March 1, 1963).
- (3) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594 (July, 1962).
- (4) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594 (Part II) (May, 1963).

Ta-8W-2Hf

1. Identification of Material

a. Designation: T-111 (Westinghouse)

b. Chemical composition: the base composition has been made with varying interstitial contents; however, moderate and low interstitial grades can be identified as follows:(1)

	Weight Per Cent				
Element	Moderate	Low			
W	7.0-9.0	7.0-9.0			
Hi	2.0-2.8	2.0-2.8			
O (nominal)	0.010	0.003			
N (nominal)	0.007	0.003			
C (nominal)	0.003	0.001			
Ta	Bal.	Bal.			

c. Forms available: plate, sheet, strip, foil, bar, wire, and tubing(1)

2. Physical Properties

a. Melting point: 5400 F (estimated)(1)

b. Density: 0.604 lb/in. 3(1)

c. Thermal expansion: Table A-39 Figure A-50

d. Electrical resistivity: Figure A-51

TABLE A-39. COEFFICIENT OF THERMAL EXPANSION OF T-111(1)

Temperature		Coefficient of Thermal Expansion			
F	С	10-6 In./In./F	10 ⁻⁶ ln./In./C		
80-500	25-260	3, 1	5, 5		
80-1000	25-540	3, 5	6.3		
80 - 1500	25-815	3.9	7.0		
80-2000	25-1095	3,9	7.0		
80-2500	25-1365	4.0	7.2		
30-3000	25-1650	4.2	7.5		
80-3500	25-1925	4.2	7.5		
80-4000	25-2205	4.2	7.6		
80-4350	25-2400	4.3	7.8		

FIGURE A-50. THERMAL EXPANSION OF T-111(2)

FIGURE A-51. ELECTRICAL RESISTIVITY OF RECRYSTALLIZED T-111(2)

- 3. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate tensile strength: Table A-40

Tensile yield strength: Table A-40

Elongation: Table A-40

Modulus of elasticity: $28-30 \times 10^6 \text{ psi}(3)$

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Tables A-41 and A-42

Tensile yield strength: Tables A-41 and A-42

Elongation: Tables A-41 and A-42

c. Creep and Stress-Rupture Properties

Table A-43

TABLE A-40. ROOM-TEMPERATURE TENSILE PROPERTIES OF ARC-MELTED T-111 SHEET

Condition	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation, per cent	Reference
Stress-relieved sheet (3 hr 2250 F, 0.040 inch) ^(a)	112.3(L) 113.7(T)	96.0(L) 100.7(T)	21.8(L) 17.9(T)	(3) (3)
Stress-relieved sheet (1 hr 2000 F) ^(b)	150.0	144.8	9.0	(1)
Stress-relieved sheet (i hr 2000 F) ^(c)	135.0	130.0	15.0	(1)
Recrystallized sheet (1 hr 3000 F) ^(b)	90.4	90.4	29.0	(1)

⁽a) Test rate 0.005 inch per inch per minute to 0.6 per cent offset, and 0.05 inch per inch per minute to fracture. Analyses 7.8% W, 1.95% Hf, 0.0027% C, 0.0023% O, 0.0026% N, 0.0035% Fe, 0.0008% Cr, 0.0005% Ni, and 0.0100% Mo.

TABLE A-41. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF ARC-CAST T-111 SHEET (0.040 INCH)(a)(3)

Temperature,	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation,
2400	40.0	33.1	41.7
3000	20.3	17.9	29
3500	11,2	11.2	31

⁽a) Stress-relieved 3 hours at 0250 F. Test take 0.05 inch per hield per minute. Analyses 7.8% W. 1.95% Hf. 0.0027% C. 0.0023% O. 0.0020% N. 0.0035% Fe. 0.0008% Cr. 0.0005% Ni. and 0.0100% Mo.

⁽b) Low interstitial grade. Cold rolled 90 per cent prior to final annealing. Test rate 0.006 inch per inch per minute through 0.2 per cent yield strength, and 0.05 inch per inch per minute to fracture.

⁽c) Moderate intenstitial grade. Warm rolled 95 per cent prior to final annealing. Test rate 0.04 to 0.06 inch per inch per minute.

TABLE A-42. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF ARC-CAST LOW AND MODERATE INTERSTITIAL-GRADE T-111 SHEET

Temperature, F	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation in Inch, per cen
Lo		ade, Cold Rolled 90 Pe	r Cent,
	Stress Reliev	ed 1 Hour at 2000 F(a)	
-452		232.2	0.3(b)
-320	194, 5	188.5	12.6
-100	15-1, 0	157.7	12.0
75	150.0	144.8	9.0
400	124.0	121.6	4.0
800	114.8	111.6	3.6
2000	92.1	67.5	8.0
2200	67.1	52.2	20.0
2400	42.4	38.6	28.0
2400(c)	50.7	43.8	
2700	25.4	21.0	26.0
3000			76.0
3500	16.3	14.1	52.0
3.500	11.3	10.9	43.0
Lov		ide, Cold Rolled 90 Pe	r Cent,
	Recrystallize	ed 1 Hour at 3000 F(a)	
-452	187.7		17.5
-300	150.6	145, 2	27.0
-100	108.8	93.8	24.0
75	90.4	90.4	29.0
400	68.0	68.0	23.0
800	57.2	43.0	15, 5
2000	61.1	34.9	18.0
2200	49,3	28,6	25,0
2400	37.3	23;5	36.0
2700	30.9	24,4	30.0
3000	14,8	11,9	48.0
3500	13.0	12.6	34.0
Madas	na Imagentisi al C		_
Modera		rade, Warm Rolled 95	Per Cent,
	Sucss Reffeve	u , nom at 2000 F(4)	
-320	190.0	184.0	10.0
-100	150.0	146.0	18,0
75	135.0	130.0	17.0
2200	85.0	78.0	15.0
2400	57.6	49.5	15.0 24.7
2500	54.0	38.0	
2700	29.0	23.7	26.0
3000	20.5	19.5	64.0
		17.57	P11 11
Modera	te Interstitial Gr	ade, Warm Rolled 95 F	Per Cent.

³⁰⁰⁰ 46.0 (a) Test rate at -452 to 800 F 0.005 inch per inch per minute through

^{0,2} per cent yield, and 0,5 inch per inch per minute to fracture; above 800 F, 0,04 to 0,06 inch per inch per minute.

⁽b) Ductile fracture, 41 per cent reduction in area.
(c) Gold rolled 65 per cent.
(d) Test rate 0.04 to 0.06 inch per inch per minute.

TABLE A-43. STRESS-RUPTURE PROPERTIES OF ARC-CAST T-111 SHEET AT 2400 F

Condition	Stress, 1000 psi	Time to Rupture, hours	Elongation, per cent	Reference
Stress relieved sheet (3 hr	35.0	0.5		(3)
2250 F, 0, 040 inch)(a)	33.0	0.8		
,	30,0	7,3	•-	
	25.7	5.0		
	23.0	5.0		
	20.0	19.8		
Stress-relieved sheet (reduced	30.0	2.3	50	(1)
65 per cent, 1 hr 2000 F)(b)	25.0	4.3	58	
	20.0	25.7	94	
Recrystalled sheet (reduced 80	30.0	3.0	30	(1)
per cent, 1 hr 3000 F)(b)	25.0	7.3	40	

⁽a) Analyses 7.8% W, 1.95% Hf, 0.0027% C, 0.0023% O, 0.0026% N, 0.0035% Fc, 0.0009% Cr. 0.0005% Ni, and 0.0100% Mo.
(b) Low interstitial grade.

- 4 Metallurgical Properties
 - a. Fabricability: ingot breakdown temperatures should be above 2000 F, while intermediate fabrication can be conduced at somewhat lower temperatures. (4) Final forming such as punching, blanking, shearing, bending, brake forming, drawing, and spinning can be performed at room temperature without edge cracking.(1)
 - b. Transition temperature: <-452 F(1)
 - c. Weldability: inert-gas fusion welding has been used exclusively in welding T-111. In addition to sheet butt welds, half-tube to half-tube seam welds have been made. T-111 has also been welded to columbium alloys. Helium welding atmospheres have proved to be more satisfactory than argon with regard to as-welded ductility. Weld-ductility at -200 F is essentially the same as that for the base metal. (1)
 - d. Stress-relief temperature 1 hour 2400 F(1)
 3 hours 2250 F(3)
 - e, Recrystallization temperature: Table A-44

Table A-44. Recrystallization behavior of arc-cast T-111 sheet $^{(1)}$

Annealing		0% Cold Work	759	% Cold Work	90	90% Cold Work	
l'emperature, F	Hardness	Recrystallization ^(a) ,	Hardness	Recrystallization ^(a) , %	Hardness	Recrystallization ^(a) %	
As worked	3 53	0	370	0	375	. 0	
2000	361	. 0	373	0	360	. 0	
2200	340	0	350	. 0	335	0	
2400	295	0	305	0	295	. 0	
2600	287	. 0	282	0	245	50	
2800	270	50	263	50	232	100	
3000	277	100	270	100	259	100	

⁽a) Metallographic determination.

- (1) "T-111, Tantalum Base Alloy Refractory Metal", Westinghouse Electric Corp., Special Technical Data 52-363 (March, 1963).
- (2) Ammon, R. L., and Begley, R. T., "Pilot Production and Evaluation of Tantalum Alloy Sheet", Westinghouse Electric Corp., Contract NOw-62-0656-d, Quarterly Report No. 3 (February 16, 1963).
- (3) National Research Corp., Data Sheet on Ta-10W and Ta-8W-2Hf Alloy Sheet (May 2, 1963).
- (4) Unpublished data obtained under Contract AF 33(616)-7688, Battelle Memorial Institute (1962).

Ta-10W-2.5Hf

- 1. Identification of Material
 - a. Designation: T-222 (Westinghouse)
 - b. Chemical composition: Ta-10W-2.5Hf
 - c. Forms available: ingot and fabricated shapes available from suppliers on a best efforts basis
- 2. Physical Properties
 - a. Density: 0.604 lb/in. 3 (calculated)
- 3. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate tensile strength: Table A-45

Tensile yield strength: Table A-45

Elongation: Table A-45

Reduction in area: Table A-45

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Table A-46

Tensile yield strength: Table A-46

Elongation: Table A-46

Reduction in area: Table A-46

TABLE A-45. ROOM-TEMPERATURE TENSILE PROPERTIES OF RECRYSTALLIZED T-222 SHEET(aX1)

Tensile Strength, 1000 psi	Yield Strongth (0,2% Offset), 1000 psi	Total Elongation, per cent	Reduction in Area, per cent
110.0	105.0	25	
110.6	100.2	30	63

⁽a) Data for same material, two different tests. Material reduced 90 per cent, recrystallized 1 hour at 3000 F. Test rate 0.005 inch per inch per minute. Analyses 9.5% W, 2.44% HF, 0.011% C, 0.0029% O, and 0.0034% N.

TABLE A-46. LOW- AND HIGH-TEMPERATURE TENSILE PROPERTIES OF T-222 SHEET(aX1)

Temperature, F	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Total Elongation, per cent	Reduction in Area, per cent
	Reduced	90 Per Cent, Stress Relie	ved	
		1 Hour at 2000 F		
1800	112.3	107.0	6	 -
2000	100.0	89.2	10	
2200	78.8	68.8	18	
	Reduced	90 Per Cent, Recrystalliz	ed	
		1 Hour at 3000 F	,	
-320	184.6	175.0	28	51
75	110.0	105.0	25	
75	110.6	100.2	30	63
2000	77.6	10.3	18	
2200	67.3	38.4	17	
2400	53.4	37.8	20	
2600	36.8	29.3	3-1	
2800	30.5	27.7	48	
3000	24.9	24.1	24	
3500	14.2	14.2	43	

⁽a) Test rate 0.005 inch per inch per minute for -320 and 75 F tests, and 0.05 inch per inch per minute for all other tests. Analyses 9.5% W, 2.44% HF, 0.011% C, 0.0020% O, and 0.0034% N.

4. Metallurgical Properties

- a. Fabricability: arc-cast ingots can be forged directly in a dynamic argon atmosphere at 2200 F; after conditioning and recrystallizing for 1 hour at 3000 F the forged slabs can be cold rolled 5 to 10 per cent per pass to high-quality sheet (0.040 to 0.050-inch sheet)(2)
- b. Transition temperature: <-320 F for sheet material reduced 90 per cent and recrystallized 1 hour at 3000 $F^{(1)}$
- c. Stress-relief temperature: 1 hour at 2000 F for material reduced 90 per cent(1)
- d. Recrystallization temperature: 1 hour at 3000 F for material reduced 90 per cent(1)

References

- (1) Private communications from R. L. Ammon, Westinghouse Electric Corporation.
- (2) Ammon, R. L., and Begley, R. T., "Pilot Production and Evaluation of Tantalum Alloy Sheet", Westinghouse Electric Corporation, Contract N600 (19) 59762, Quarterly Report No. 4 (August 15, 1963).

Ta-10W-2.5Mo

- 1. Identification of Material
 - a. Chemical composition: Ta-10W-2.5Mo
 - b. Forms available: ingot and fabricated shapes available from suppliers on a best efforts basis
- 2. Physical Properties
 - a. Density: 0.599 lb/in.3 (calculated)
- 3. Mechanical Properties
 - a. Tensile Properties at Room Temperature

Ultimate tensile strength: Table A-47

Tensile yield strength: Table A-47

Elongation: Table A-47

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Table A-48

Figure A-52

Tensile yield strength: Table A-48

Figure A-52

Elongation: Table A-48

c. Creep and Stress-Rupture Properties

Figure A-53

d. Other Selected Mechanical Properties

Bend ductility: reverse bend testing for annealed 0.040-inch sheet material(1)

Number of successful bending operations before fracture: bend axis, relative to final rolling direction

Trans	sverse	Par	allel
Forward(a)	Reverse(b)	Forward(a)	Reverse(b)
2-3	1-2	 2-4	1-3

- (a) Bent around 0 T radius (+0.0156 inch) through a 105-degree angle.
- (b) Plattened to original condition by pressing in a vise.

TABLE A-47. ROOM-TEMPERATURE TENSILE PROPERTIES OF ARC-CAST Ta-10W-2, SMG SHEET (0,040 INCH) 2X1)

Rolling Direction Relative to Extrusion	Rolling	Rollins Temp,	No. of In-Process	Final Ralling Reduction,		a Strength, 10 0 psi	(. :	Strength © Offset), 000 psi	in 1	ngation 2 Inch, c cent
Direction	Procedure	F	Anneals	per cent	Long.	Transverse	Long.	Transverse	Long.	Transverse
	Straight	800	0	90	111. C	113, 1	106.6	107,8	34	36
1	Straight	1000	¢	9C	110.0	112. 3	102.3	104.3	36	9 6
	Cross	800 and 1000	0	90	111,1	112.8	102,5	107.1	36	34
	Cross	800 and 1000	C	90	111.7	114. 6	104.7	107.6	35	36
	Cross	800	1	65	111.5	115. 1	103.8	110.1	36	36
	Cross	800	:	88	120.1	118.8	111.7	111.4	28	31
	Cross	830	3	25	117.9	116, 7	165.2	106,9	30	31

⁽a) Extruded at 2800 F and forged to sheet bar at 2200 to 2300 F. Test rate 0, 305 inch per inch per minute to 0,6 per cent yield, and 0,25 inch per inch per minute to fracture.

Typical analyses of extruded bers(2)

	ight Cent		PP	м	
W	Мо	<u>c</u>	0	N	ŀ
9.6	2.5	7	107	37	1

TABLE A-48. TENSILE PROPERTIES OF ARC -CAST Ta-10W-2, 5Mo SHEET (0.040 INCH) AT 2700 F(aX1)

d Alloy Direction Relative to Extrusion Direction	rection clative to trusion Rolling	Rolling Temp, F	No. of In-Process Anneals	Final Rolling Reduction, per cent	Tensile Strength, 1000 psi	Yield Strength (0.2% Offset), 1000 psi	Elongation in 1/2 Inch, per cent
	Stratght	800	ί	9:	26.7	24,6	70
Τ	Straight	1000	0	90	25.6	23,4	86
	Cross	800 and 1000	0	90	28.3	25,2	78
	Cross	800 and 1500	С	90	2 7. 2	24,4	76
	Cross	800	1	65	26.2	25,6	88
	Cross	800	1	35	31,6	28.8	68
	Ctoss	800	3	35	29.8	26.5	66

⁽a) Extraced at 0.5 % Fland forged to sheet bar at 2200 to 2000 F. Test rate 0,025 inch per inch per manute,

Typical analyses of extrided basi(2)

We:	(21.1				
Par 6	Per Cent		FP	M.	
W	Mo	<u>c</u>	0	N	H
9.6	2.5	7	107	37	1

FIGURE A-52. EFFECT OF TEMPERATURE ON THE STRENGTH OF ANNEALED (1 HOUR, 3090 F) Ta-10 W-2.5 Mo SHEET (0.040 INCH)(3)

Laboratory-produced button ingot.

FIGURE A-53. HIGH-TEMPERATURE RUPTURE CHARACTERISTICS OF ANNEALED (1 HOUR, 3090 F) Ta-10 W-2.5 Mo SHEET (0.040 INCH)(4)

Laboratory-produced button ingot.

TABLE A-4.0. SEFECTS OF ROLLING HISTORY AND ANNEALING ON THE POOM-TEMPERATURE MEND DUCTIVITY OF ARC-CAST Ta-10w-2, 6Mo SHEET (0,040 INCH)⁽¹⁾

			oom - 1 emper	ture Mini	mum Bend Rad	lus, I Va	rne.
					ss-Relief		rystallize
	Rolling		-Wrought		nealed	Annealed 1 Hr at 2600 F	
Prior History	Temp, F	Long.	Transverse	1 Hr at 2000 F Long. Transverse		Long. Transverse	
Filer timesy		2081		208			
90 Per Cent Finish R	eduction: St	raight Ro	iled; No In-P:	ocuss Ann	ea:s		
Extraded 1600 F, 1 hr 3000 F; forged 2860 F, 1 hr 2800 F	800(°)	3-4	ò-9	0-1	0-1	o o	Ü
Ditto	1000(2)	0-2	5-7	0	С	0	0
	₈₀₀ (c)	0-1	6-7	0-1	0-1	0-1	9-1
90 Per Cent Finish I	anduntians C	Dal'	ad.(d) 3:a ta=0		2021		
SO PET CERT FIRM I	Reduction: C	IOS ROIL	665 - NO 1P	Tocess All.	16871		
Extruded 2600 F, 1 hr 3000 F; forged 2300 F, 1 hr 2800 F	803 -1 000	1-4	3-5	c	С	0	0
Extruded 2600 F; forged 2200 F, 1 hr 2800 F	E00-1000	2-3	2 - 3	0-1	0-1	3	0
65 Per Cent Chaish	Rgginetrous (lross (tell	ed;(9) Oge In-	Process A:	inçal		
Extruded 2500 F, 1 hr 3000 F; forged 2300 F, 1 hr 2800 F	800	1-5	0 - 3	C	0	c	C
35 Per Cent Finish	Reduction: (Cioss Roll	ed; ^(C) One In-	Process A	nneal		
Extruded 2500 F, 1 hr 3000 F; forged 2300 F, 1 hr 2800 F	800	1-4	1-3	O	0	0	0
35 Per Cent Finish 1	Reduction: C	ross Reli	ed; ^(d) Three I	n -Process	Anneals		
Entrided 2000 F. 1 hr 3000 F; forged 2000 F. 1 hr 2800 F	5 ^.	3-7	9 - 7	· ·	Ü	2	\$

⁽a) Values obtained from 2 to 4 tests for each condition cited.

Typical analyses of extruded bar:(2)

⁽b) Rolled perpendicular to the original extrusion direction,

⁽c) Rolled parallel to the original extrusion direction.

⁽c) Equal reductions in original length a.m. width Jimensions before annualing,

A-105

4. Metallurgical Properties

- a. Fabricability: ingots can be successfully extraded at 2000 F followed by forging at 2200 to 2300 F; after conditioning and process annealing, rolling to sheet is performed at 800 to 1000 F(1,2)
- 5. Transition temperature: ~-150 F for annealed 0.040-inch sheet material(4)
- c. Weldability: annealed 0.050-inch sheet material can readily be joined by either inert-gas tungsten-arc or electron-beam processes; welds are room-temperature brittle(1)
- d. Stress-relief temperature: 1 hour at 2000 F(1); 1 hour at 2370 F(3)
- e. Recrystallization temperature: Tables A=50 and A=51

Per Cent Recrystallization After Annealing 1 How at Indicated Temp. F							i-Hour Recrystal-	ASTM Grain - Size Range After Annealing 1 Hour at Indicated		Annesing 1 Hour at Indicated	
Prior History	A: Uzation Prior History Forged 2400 2800 2700 2800 3000 Temp, F	2800	3000	Z800	3000						
Extruded 2600 F, forged 2200 F	0	С	10	98	1600	100	2800	3-9	3-8	7.0	6.8
Extruded 2600 F, recrystallized 1 hour 3000 F, forged 2300 F	0	0	10	70	95	100	~2900	3-8	3-7	7.1	6.3
Extruded 2600 F, recrystallized 1 hour 3000 F, forged 2200 F	0	0	20	70	95	100	~ 2900	4-3	2-7	7.5	5,7

Typical analyses of extruded bar:

We:	ight Cent		PP	м	
W	Мо	<u>c</u>	0	<u>N</u>	II.
3.0	2. 1		1.64	47	

TABLE A-51. RECRY STALLIZATION AND HARDNESS OF ARC-CAST Ta-10W-2. δ Mo δ HEET (0.040 INCH)(4 X^2)

Rolling	Total	Approximate 1-Hour		Hardness,	VHN	
Temperature, F	Reduction, per cent	Recrystallization Temperature, F	Initial	As Wrought	Anneale 2000 F	d 1 Hour 2600 I
800	45	2800	267	379		267
8°	~;	ي بين ا	267	302		200
860	85	2600	267	401		284
6 00	90	2500	267	428	374	273
1000	90	250n	267	431	382	277

⁽a) Extruded at 2600 F and forged to sheet bar at 2200 to 2300 F.

Typic Munallyses of Cytrided Surr-

	işilit Gelit		PP	M	
ب	Мо	<u>c</u>	0	N	Н
9.6	0.5	-	. 0.5	0.7	

A-107 and A-108

References

- Maykuth, D. J., Hallewell, J. B., and Ogden, H. R., "Tantalum-Alloy-Processing Development", Battelle Memorial Institute, Contract No. AF 33(657)-8911, ASRCT TR 7-781 (IV) (June 1, 1963).
- (2) Maykuth, D. J. and Ogden, H. R., "Tantalum-Alloy-Processing Development", Battelie Memorial Institute, Contract No. AF 33(657)-8911, ASRCT TR 7-781 (III) (March 1, 1963).
- (3) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594 (July, 1962).
- (4) Schmidt, F. F., et al., "Investigation of Tantalum and Its Alloys", Battelle Memorial Institute, ASD-TDR-62-594 (Part II) (May, 1963).

ā.

LIST OF DMIC TECHNICAL REPORTS ISSUED DEFENSE METALS INFORMATION CENTER

Battelle Memorial Institute

Columbus 1, Ohio

Copies of the technical reports listed below may be obtained from DMIC at no cost by Government agencies, and by Government contractors, subcontractors, and their suppliers. Others may obtain copies from the Office of Technical Services, Department of Commerce, Washington 25, D. C. See PB numbers and prices in parentheses.

DMIC Report Number	Title
46D	Department of Defense Titanium Sheet-Rolling Program - Uniform Testing Procedure for Sheet Materials. September 12, 1958 (PB 121649 \$1.25)
46E	Department of Defense Titanium Sheet-Rolling Program - Thermal Stability of the Titanium Sheet-Rolling- Program Alloys, November 25, 1958 (PB 151061 \$1, 25)
46F 46G	Department of Defense Titanium Sheet-Rolling Program Status Report No. 4, March 20, 1959 (PB 151065 \$2.25) Department of Defense Titanium Sheet-Rolling Program - Time-Temperature-Transformation Diagrams of the Titanium Sheet-Rolling Program Alloys, October 19, 1959 (PB 151075 \$2.25)
46H 46I	Department of Defense Titanium Sheet-Rolling Program, Status Report No. 5, June 1, 1960 (PB 151087 \$2.00) Statistical Analysis of Tensile Properties of Heat-Treated Ti-4A1-3Mo-1V Sheet, September 16, 1960 (PB 151095 \$1.25)
461	Statistical Analysis of Tensile Properties of Hear-Treated Ti-4A1-3Mo-1V and Ti-2, 5A1-16V Sheet, June 6, 1961 (AD 259284 \$1.25)
106	Betyllium for Structural Applications, August 15, 1958 (PB 121648 \$3.00)
107	Tensile Properties of Titanium Alloys at Low Temperature, January 15, 1959 (PB 151062 \$1, 25)
108	Welding and Brazing of Molybdenum, March 1, 1959 (PB 151063 \$1, 25)
109	Coatings for Protecting Molybdenum From Oxidation at Elevated Temperature, March 6, 1959 (PB 131064 \$1.25)
110	The All-Beta Titanium Alloy (Ti-13V-11Cr-3A1), April 17, 1959 (PB 151066 \$3.00)
111	The Physical Metallurgy of Precipitation-Hardenable Stainless Steels, April 20, 1959 (PB 151067 \$2.00)
112	Physical and Mechanical Properties of Nine Commercial Precipitation-Hardenable Stainless Steels, May 1, 1959 (PB 151068 \$3,25)
113	Properties of Certain Cold-Rolled Austenitic Stainless Sheet Steels, May 15, 1959 (PB 151069 \$1.75)
114	Ductile-Brittle Transition in the Refractory Metals, June 25, 1959 (PB 151070 \$2.00)
115	The Fabrication of Tungsten, August 14. 1959 (PB 151071 \$1.75)
116R	Design Information on 5Cr-Mo-V Alloy Steels (H-11 and 5Cr-Mo-V Aircraft Steel) for Aircraft and Missiles (Revised), September 30, 1960 (PB 151072-R \$1.50)
117	Titanium Alloys for High-Temperature Use Strongthened by Fibers or Dispersed Particles, August 31, 1959 (PB 151073 \$2.00)
118	Welding of High-Strength Steels for Aircraft and Missile Applications, October 12, 1959 (PB 151074 \$2.25)
119 120	Heat Treatment of High-Strength Steels for Aircraft Applications, November 27, 1959 (PB 151076 \$2.50) A Review of Certain Ferrous Castings Applications in Aircraft and Missiles, December 18, 1959 (PB 151077
121	\$1.50) Methods for Conducting Short-Time Tensile, Creep, and Creep-Rupture Tests Under Conditions of Rapid Heating, December 20, 1959 (PB 151078 \$1.25)
122	The Welding of Titanium and Titanium Alloys, December 31, 1959 (PB 151079 \$1.75)
123	Oxidation Behavior and Protective Coatings for Columbium and Columbium-Base Alloys, January 15, 1960 (PB 151080 \$2, 25)
124	Current Tests for Evaluating Fracture Toughness of Sheet Metals at High Strength Levels, January 28, 1960 (PB 451031 \$2.00)
126	Physical and Mechanical Properties of Columbium and Columbium-Base Alloys, February 22, 1960 (PB 151082 \$1.75)
126	Structural Damage in Thermally Cycled René 41 and Astrolog Sheet Materials, February 29, 1960 (PB 151080 \$6, 37)
127	Physical and Mechanical Properties of Tungsten and Tungsten-Base Alloys, March 15, 1960 (PB 151084 \$1.75)
128	A Summary of Competative Properties of Air-Melted and Vacuum-Melted Steels and Superalloys, March 28, 1960 (PB 181080 \$2,75)
123	Physical Properties of Some Nickel-Base Alloys, May 20, 1960 (PB 151086 \$2,75)
130	Selected Short-Time Tensile and Greep Data Obtained Under Conditions of Eapid Heating, June 17, 1960 (PB 151088 \$2.25)
131	New Developments of the Welding of Metals. June 24, 1969 (19 151089 \$1, 25)
132	Design Information on Nickel-Base Alloys for Afreraft and Missiles, July 20, 1960 (PB 151090 \$3.00)
133	Tantalium and Tantalium Alloys, July 25, 1969 (PB 151031 89,00)
134	Strain Aging of Refractory Metals, August 12, 1969 (PB 161092 \$1.75)
1337	Design intermation on CH 15 to the Stainless Steel for Aircraft and Missiles, August 22, 1969 (PB 151000 \$1,25)

DMIC Report Number	Title
136A	The Effects of Alloying Elements in Titanium, Volume A. Constitution, September 15, 1960 (PB 151094 \$3.50)
13 6 B	The Effects of Alloying Elements in Titanium, Volume B. Physical and Chemical Properties, Deformation and Transformation Characteristics, May 29, 1961 (AD 260226 \$3.00)
137	Design Information on 17-7 PH Stainless Steels for Aircraft and Missiles, September 23, 1960 (PB 151096 \$1.00)
138 139	Availability and Mechanical Properties of High-Strength Steel Extrusions, October 26, 1960 (PB 151097 \$1,75) Melting and Casting of the Refractory Metals Molybdenum, Columbium, Tantalum, and Tungsten, November 18, 1960 (PB 151098 \$1,00)
140	Physical and Mechanical Properties of Commercial Molybdenum-Base Alloys, November 30, 1960 (PB 151099 \$3.00)
141 142	Titanium-Alloy Forgings, December 19, 1960 (PB 151100 \$2.25) Environmental Factors Influencing Metals Applications in Space Vehicles, December 27, 1960 (PB 151101
143	\$1,25) High-Strength-Steel Forgings, January 5, 1961 (PB 151102 \$1,75)
144	Stress-Corrosion Cracking - A Nontechnical Introduction to the Problem, January 6, 1961 (PB 151103 \$0.75)
145	Design Information on Titanium Alloys for Aircraft and Missiles, January 10, 1961 (PB 151104 \$2.25)
146	Manual for Beryllium Prospectors, January 18, 1961 (2B 151105 \$1,00)
147	The Factors influencing the Fracture Characteristics of High-Strength Steel, February 6, 1961 (PB 151106 \$1,25)
148	Review of Current Data on the Tensile Properties of Metals at Very Low Temperatures, February 4, 1961 (PB 151107 \$2,00)
149	Brazing for High Temperature Service, February 21, 1961 (PB 151108 \$1.00)
150	A Review of Bending Methods for Stainless Steel Tubing, March 2, 1961 (PB 151109 \$1.50)
151	Environmental and Metallurgical Factors of Stress-Corrosion Cracking in High-Strength Steels, April 14, 1961 (PB 151110 \$0,75)
152	Binary and Temary Phase Diagrams of Columbium, Molybdenum, Tantalum, and Tungsten, April 28, 1901 (AD 257739 \$3, 50)
153 154	Physical Netallurgy of Nickel-Base Superalloys, May 5, 1961 (AI 258041 \$1.25) Evolution of Ultrahigh-Strength, Hardenable Steels for Solid-Propellant Rocket-Motor Cases, May 25, 1961 (AD 257976 \$1.25)
155	Oxidation of Tungsten, July 17, 1961 (AD 263598 \$3.00)
156	Design Information on AM-350 Stainless Steel for Aircraft and Missiles, July 28, 1961 (AD 262407 \$1.50)
157 158	A Summary of the Theory of Fracture in Metals, August 7, 1961 (PB 181081 \$1,75) Stress-Corrosion Cracking of High-Strength Stainless Steels in Atmospheric Environments, September 15, 1961
	(AD 266005 \$1.25)
159	Gas-Pressure Bonding, September 25, 1961 (AD 265133 \$1.25)
160 161	Introduction to Metals for Elevated-Temperature Use, October 27, 1961 (AD 268647 \$2, 50) Status Report No. 1 on Department of Defense Refractory Metals Sheet-Rolling Program, November 2, 1961
162	(AD 267077 \$1.00)
163	Coatings for the Protection of Refractory Metals From Oxidation, November 24, 1961 (AD 271384 \$3.50) Control of Dimensions in High-Strength Heat-Treated Steel Parts, November 29, 1961 (AD 270045 \$1.00)
164	Semiaustenitic Precipitation-Hardenable Stainless Steels, December 6, 1961 (AD 274805 \$2,75)
165	Methods of Evaluating Welded Joints, December 28, 1961 (AD 272088 \$2.25)
106	The Effect of Nuclear Radiation on Structural Metals, September 15, 1961 (AD 265839 \$2,50)
167	Summary of the Fifth Meeting of the Refractory Composites Working Group, March 12, 1962 (AD 27-1804 \$2.00)
1€8 169	Beryllium for Structural Applications, 1958-1960, May 18, 1962 (AD 278723 \$3.50) The Effect of Molten Alkali Metals on Containment Metals and Alloys at High Temperatures, May 18, 1962
170	(AD 282932 \$1.50) Chemical Vapor Deposition, June 4, 1962 (AD 281887 \$2.25)
171	The Physical Metallurgy of Cobalt-Base Superalloys, July 6, 1962 (AD 283356 \$2.25)
172	Background for the Development of Materials To Be Used in High-Strength-Steel Structural Weldments, July 31, 1962 (AD 264265 \$3.00)
173	New Developments in Welded Fabrication of Large Solid-Fuel Rocket-Motor Cases, August 6, 1962 (AD 284829 \$1,00)
174	Electron-Beam Processes, September 15, 1962 (AD 287483 \$1,75)
175	Summary of the Sixth Meeting of the Refractory Composites Working Group, September 24, 1902 (AD 287029 \$1.76)
176	Status Report No. 2 on Department of Defense Refractory Metals Sheet-Rolling Program, October 15, 1962 (AD 288127 \$1.25)
177	Thermal Radiative Properties of Selected Materials, November 15, 1902, Vol. 1 (AD 294345 \$3,00)
177.	Thermal Radiative Properties of Selected Materials, November 15, 1962, Vol. II (AD 294346 \$4,00)
178 179	Steels for Large Solid-Propellant Rocket-Motor Cases, November 20, 1962 A Guide to the Literature on High-Velocity Metalworking, December 3, 1962
180	Design Considerations in Selecting Materials for Large Solid-Propellant Rocket-Motor Cases, December 10, 1962
181	Journag of Nickel-Base Alloys, December 20, 1962
i tu Lett	Structural Considerations in Developing Refractory Metal Alloys, January 31, 1963. Binary and Ternary Phase Diagrams of Commbium, Molybdenum, Tantalum, and Tungaten (supplement to DMIC
	Report 152), February 7, 1963
184	Summary of the Seventh Meeting of the Refractory Composites Working Group, May 30, 1963
186 186	The Matus and Properties of Tiranium Alloys for Thick Plate, June 14, 1963. The Effect of Fabrication History and Microtrocture on the Mechanical Properties of Refractory Metals and Alloys July 19, 1963.
1.47	The Application of Oltrasonic Energy in the Deformation of Metals, August 16, 1963

DMIC Report Number

Title

140

The Engineering Properties of Columbium and Columbium Alloys, September 6, 1963

UNCLASSIFIED 1. Tantalum 2. Physical Properties 3. Mechanical Properties 4. Metallurgical Properties 1. Barrelle Memorial Institute 11. Defense Metals Information Center III. Contract AF 33(61£)-7747 UNCLASS. FIED	UNCLASSIFIED 1. Tantalum 2. Physical Properties 3. Mechanical Properties 4. Metallurgical Properties II. Batteile Memorial Institute III. Defense Metale Information Center III. Contract AF 33(616)-7747
Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THE ENGINEERING PROPERTIES OF TANTALUM AND TANTALUM ALCOYS, by F. F. Schmidt and H. R. Ogden. September 13, 1963. [112] pp incl. illus., tables, refs. DMIC Report 189. [AF 33(616)-7747] Unclassified report This report presents the results of a state-of-the-art survey covering tantalum and seven of its alloys. All data are given in tabular and graphical form covering some of the more important physical, mechanical, and metallurgical properties for each material. References are given at the conclusion of each material section.	Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THE ENGINEERING PROPERTIES OF TANTALUM AND TANTALUM ALLOYS, by F. F. Schmidt and H. R. Ogden. September 13, 1963. [112] pp incl. illus., tables, refs. DMIC Report 189. [AF 33(616)-7747] Unclassified report This report presents the results of a state-of-theatt survey covering tantalum and seven of its alloys. All data are given in tabular and graphical form covering some of the more important physical, mechanical, and metallurgical properties for each material. References are given at the conclusion of each material section.
UNCLASSIFIED 1. Tantalum 2. Physical Properties 3. Mechanical Properties 4. Metallurgical Properties 1. Battelle Memorial Institute 11. Defense Metals Information Center 111. Contract AF 33(616)-7747 UNCLASSIFIED	1. Tantalum 2. Physical Properties 3. Mechanical Properties 4. Metallurgical Properties I. Battelle Memorial Listitute II. Defense Metals Information Center III. Contract AF 33(616)-7747
Battelle Memorial Institute, Defense Metals Informatiot. Center, Columbus, Ohio. THE ENGINEERING PROPERTIES OF TANTALUM AND TANTALUM ALLOYS, by F. F. Schmidt and H. R. Ogden. September 13, 1963. [112] pp inclinius., tables, refs. DMIC Report 189. [AF 33(616)-7747] Unclassified report This report presents the results of a state-of-theart survey covering tantalum and seven of its ailoys. All data are given in tabular and graphical form covering some of the more important physical, mechanical, and metallurgical properties for each material. References are given at the conclusion of each material section.	Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THE ENGINEERING FROPERTIES OF TANTALUM AND TANTALUM ALLOYS, by F. F. Schmidt and H. R. Ogden. September 13, 1963. [112] pp incl. tilus., tables, refs. DMIC Report 189. [AF 33(616)-1747] Unclassified report This repett presents the results of a state-of-theast survey covering tantalum and seven of its alloys. All data are given in tabular and graphical form covering some of the more important physical, mechanical, and metallurgical properties for each material. References are given at the conclusion of each material section.

est Available Copy