Section 3. Monte Carlo Methods

Vincent Dorie

New York University

Part I

Integration

Monte Carlo

Monte Carlo Calculation of π

- · Computing $\pi=3.14\ldots$ via simulation is *the* textbook application of Monte Carlo methods.
- Generate points uniformly at random within the square
- Calculate proportion within circle (x² + y² < 1) and multiply by square's area
 (4) to produce the area of the circle.
- This area is π (radius is 1, so area is $\pi r^2 = \pi$)

Monte Carlo Calculation of π (cont.)

· R code to calcuate π with Monte Carlo simulation:

```
> x <- runif(1e6,-1,1)
> y <- runif(1e6,-1,1)
> prop_in_circle <- sum(x^2 + y^2 < 1) / 1e6
> 4 * prop_in_circle
[1] 3.144032
```

Accuracy of Monte Carlo

- · Monte Carlo is not an approximation!
- · It can be made exact to within any ϵ
- · Monte Carlo draws are i.i.d. by definition
- · Central limit theorem: expected error decreases at rate of

$$\frac{1}{\sqrt{N}}$$

- · 3 decimal places of accuracy with sample size 1e6
- \cdot Need 100 imes larger sample for each digit of accuracy

General Monte Carlo Integration

MC can calculate arbitrary definite integrals,

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

- Let d upper bound f(x) in (a,b); tightness determines computational efficiency
- Then generate random points uniformly in the rectangle bounded by (a,b) and (0,d)
- Multiply proportion of draws (x, y) where y < f(x) by area of rectangle, $d \times (b a)$.
- Can be generalized to multiple dimensions in obvious way

Expectations of Function of R.V.

- · Suppose $f(\theta)$ is a function of random variable vector θ
- · Suppose the density of θ is $p(\theta)$
- · Then $f(\theta)$ is also random variable, with expectation

$$\mathbb{E}[f(\theta)] = \int f(\theta)p(\theta) \,\mathrm{d}\theta.$$

Qol as Expectations

- Most Bayesian quantities of interest (QoI) are expectations over the posterior $p(\theta \mid y)$ of functions $f(\theta)$
- · Bayesian parameter estimation: $\hat{ heta}$
 - $-f(\theta) = \theta$
 - $\hat{\theta} = \mathbb{E}[\theta \mid y]$ minimizes expected square error
- · Bayesian parameter (co)variance estimation: $var[\theta \mid y]$
 - $f(\theta) = (\theta \mathbb{E}[\theta \mid y])^2$
- Bayesian event probability: $Pr[A \mid y]$
 - $f(\theta) = I[\theta \in A]$

Expectations via Monte Carlo

- · Generate draws $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(M)}$ drawn from $p(\theta)$
- · Monte Carlo Estimator plugs in average for expectation:

$$\mathbb{E}[f(\theta) \mid y] \approx \frac{1}{M} \sum_{m=1}^{M} f(\theta^{(m)})$$

· Can be made as accurate as desired, because

$$\mathbb{E}[f(\theta)] = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} f(\theta^{(m)})$$

· Reminder: By CLT, error goes down as $1/\sqrt{M}$

Part II

Monte Carlo

Markov Chain

Markov Chain Monte Carlo

· Standard Monte Carlo draws i.i.d. draws

$$\theta^{(1)},\ldots,\theta^{(M)}$$

according to a probability function $p(\theta)$

- Drawing an i.i.d. sample is often impossible when dealing with complex densities like Bayesian posteriors $p(\theta \mid y)$
- · So we use Markov chain Monte Carlo (MCMC) in these cases and draw $\theta^{(1)}, \dots, \theta^{(M)}$ from a Markov chain

Markov Chains

· A Markov Chain is a sequence of random variables

$$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(M)}$$

such that $\theta^{(m)}$ only depends on $\theta^{(m-1)}$, i.e.,

$$p(\theta^{(m)} \mid y, \theta^{(1)}, \dots, \theta^{(m-1)}) \; = \; p(\theta^{(m)} \mid y, \theta^{(m-1)})$$

- Drawing $\theta^{(1)},\dots,\theta^{(M)}$ from a Markov chain according to $p(\theta^{(m)}\mid\theta^{(m-1)},y)$ is more tractable
- Require marginal of each draw, $p(\theta^{(m)} midy)$, to be equal to true posterior

Applying MCMC

- · Plug in just like ordinary (non-Markov chain) Monte Carlo
- · Adjust standard errors for dependence in Markov chain

MCMC for Posterior Mean

· Standard Bayesian estimator is posterior mean

$$\hat{\theta} = \int \theta \, p(\theta|y) \, \mathrm{d}\theta$$

- Posterior mean minimizes expected square error
- · Estimate is a conditional expectation

$$\hat{\theta} = \mathbb{E}[\theta \mid y]$$

· Compute by averaging

$$\hat{\theta} \approx \frac{1}{M} \sum_{m=1}^{M} \theta^{(m)}$$

MCMC for Posterior Variance

· Posterior variance works the same way,

$$\mathbb{E}[(\theta - \mathbb{E}[\theta \mid y])^2 \mid y] \approx \frac{1}{M} \sum_{m=1}^{M} (\theta^{(m)} - \hat{\theta})^2$$

MCMC for Event Probability

· Event probabilities are also expectations, e.g.,

$$\Pr[\theta_1 > \theta_2] \ = \ \mathbb{E}[\mathsf{I}[\theta_1 > \theta_2]] \ = \ \int_{\Theta} \mathsf{I}[\theta_1 > \theta_2] \, p(\theta \mid y) \mathrm{d}\theta.$$

· Estimation via MCMC just another plug-in:

$$\Pr[\theta_1 > \theta_2] \approx \frac{1}{M} \sum_{m=1}^{M} \mathsf{I}[\theta_1^{(m)} > \theta_2^{(m)}]$$

· Again, can be made as accurate as necessary

MCMC for Quantiles (incl. median)

- · These are not expectations, but still plug in
- · Alternative Bayesian estimator is posterior median
 - Posterior median minimizes expected absolute error
- Estimate as median draw of $\theta^{(1)}, \dots, \theta^{(M)}$
 - just sort and take halfway value
 - e.g., Stan shows 50% point (or other quantiles)
- Other quantiles including interval bounds similar
 - estimate with quantile of draws
 - estimation error goes up in tail (based on fewer draws)

Part III

MCMC Algorithms

Random-Walk Metropolis

- · We want to sample from a density $p(\theta)$
- · Take current state, add random pertubation
 - Proposal $\theta^* = \theta^{(m)} + \epsilon$
- · Accept new θ with a probability that gives samples desired probability

Demo

· Proposal distribution determines behavior of chain

Random-Walk Formal Def

- · Draw random initial parameter vector $\theta^{(1)}$ (in support)
- For $m = 2, \dots, M$
 - Sample proposal from a (symmetric) jumping distribution, e.g.,

$$\theta^* \sim \text{MultiNormal}(\theta^{(m-1)}, \sigma I)$$

where I is the identity matrix

- Draw $u \sim \text{Uniform}(0,1)$ and set

$$\theta^{(m)} = \begin{cases} \theta^* & \text{if } u < \frac{p(\theta^* \mid y)}{p(\theta^{(m-1)} \mid y)} \\ \theta^{(m-1)} & \text{otherwise} \end{cases}$$

Metropolis-Hastings

- Generalizes Metropolis to asymmetric proposals (i.e. $I(\theta^* \mid \theta^{(m)}) \neq I(\theta^{(m)} \mid \theta^*)$)
- · Acceptance ratio is

$$\frac{J(\theta^{(m)}\mid\theta^*)\times p(\theta^*\mid y)}{J(\theta^*\mid\theta^{(m-1)})\times p(\theta^{(m)}\mid y)}$$

where J is the proposal density

· i.e.,

probability of being at θ^* and jumping to $\theta^{(m-1)}$ probability of being at $\theta^{(m-1)}$ and jumping to θ^*

Metropolis-Hastings (cont.)

- General form ensures equilibrium by maintaining detailed balance
- · Like Metropolis, only requires ratios
- · Many algorithms involve a Metropolis-Hastings "correction"
 - Including vanilla HMC and RHMC and ensemble samplers
- Detailed Balance & Reversibility formal conditions to guarantee convergence of chain to desired distribution

Optimal Proposal Scale?

· Proposal scale σ is a free; too low or high is inefficient

- Traceplots show parameter value on y axis, iterations on x
- · Empirical tuning problem; theoretical optima exist for some cases

Roberts and Rosenthal (2001) Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science.

Convergence

- · Markov chains depend on previous state
- · Construct so that stationary (long-run) state is target
- · What about starting state?
- · Imagine a signal problem on the MTA
 - A trains on the F line to Brooklyn, C service suspended...
 - Substantial delays at W 4th St
 - Eventually... service returns to normal
- May take many iterations for Markov chain to reach equilibrium

Convergence: Example

 Test for convergence: start multiple Markov chains at diffuse points

Four chains with different starting points

- Left: 50 iterations

Center: 1000 iterations

- Right: Draws from second half of each chain

Gelman et al., Bayesian Data Analysis

Convergence Diagnostic (\hat{R})

- Gelman & Rubin recommend M chains of N draws with diffuse initializations
- Measure that each chain has same posterior mean and variance
- If not, may be stuck in multiple modes or just not converged yet
- Define statistic \hat{R} of chains s.t. at convergence, $\hat{R} \rightarrow 1$
 - $\hat{R} >> 1$ implies non-convergence
 - $\hat{R} \approx 1$ does not guarantee convergence
 - Only measures marginals

Effective Sample Size

- · Markov chains typically display autocorrelation in the series of draws $\theta^{(1)}, \dots, \theta^{(m)}$
- · Without i.i.d. draws, central limit theorem does not apply
- · Effective sample size Neff divides out autocorrelation
- $\cdot N_{\rm eff}$ must be estimated from sample
- · Estimation accuracy proportional to

$$rac{1}{\sqrt{N_{\mathsf{eff}}}}$$

Reducing Posterior Correlation

- · Tuning algorithm parameters to ensure good mixing
- Recall Metropolis traceplots of Roberts and Rosenthal:

- Good jump scale σ produces good mixing and high $N_{
m eff}$

Gibbs Sampling

- · Draw random initial parameter vector $\theta^{(1)}$ (in support)
- For $m = 2, \dots, M$:
 - For n = 1, ..., N:
 - * draw $heta_n^{(m)}$ according to conditional

$$p(\theta_n \mid \theta_1^{(m)}, \dots, \theta_{n-1}^{(m)}, \theta_{n+1}^{(m-1)}, \dots, \theta_N^{(m-1)}, y).$$

- e.g, with $\theta = (\theta_1, \theta_2, \theta_3)$:
 - draw $\theta_1^{(m)}$ according to $p(\theta_1 \mid \theta_2^{(m-1)}, \theta_3^{(m-1)}, y)$
 - draw $\theta_2^{(m)}$ according to $p(\theta_2 \mid \theta_1^{(m)}, \theta_3^{(m-1)}, y)$
 - draw $\theta_3^{(m)}$ according to $p(\theta_3 \mid \theta_1^{(m)}, \theta_2^{(m)}, y)$

Generalized Gibbs

- · "Proper" Gibbs requires conditional Monte Carlo draws
 - typically works only for conjugate priors
- In general case, may need to use less efficient conditional draws
 - Slice sampling is a popular general technique that works for discrete or continuous θ_n (JAGS)
 - Adaptive rejection sampling is another alternative (BUGS)
 - Very difficult in more than one or two dimensions

Sampling Efficiency

- · We care only about $N_{\rm eff}$ per second
- · Decompose into
 - 1. Iterations per second
 - Effective sample size per iteration
- Gibbs and Metropolis have high iterations per second (especially Metropolis)
- But they have low effective sample size per iteration (especially Metropolis)
- Both are particular weak when there is high correlation among the parameters in the posterior

Hamiltonian Monte Carlo & NUTS

- · Slower iterations per second than Gibbs or Metropolis
- Much higher effective sample size per iteration for complex posteriors (i.e., high curvature and correlation)
- · Overall, much higher $N_{
 m eff}$ per second

- Details in the next talk . . .
- · Along with details of how Stan implements HMC and NUTS

Why Stan is Great

· Writing a sampler for model:

$$y \mid \beta, \sigma^2 \sim \mathsf{Normal}(x\beta, \sigma_y^2),$$

 $\beta \sim \mathsf{Normal}(0, \sigma_\beta^2),$
 $\sigma \sim \mathsf{Half-Cauchy}.$

The End (Section 3)

Part I

What Stan Does

Full Bayes: No-U-Turn Sampler

- Adaptive Hamiltonian Monte Carlo (HMC)
 - Potential Energy: negative log posterior
 - Kinetic Energy: random standard normal per iteration
- · Adaptation during warmup
 - step size adapted to target total acceptance rate
 - mass matrix estimated with regularization
- Adaptation during sampling
 - simulate forward and backward in time until U-turn
- · Slice sample along path

(Hoffman and Gelman 2011, 2014)

Sample: Hamiltonian Flow

- Generate random kinetic energy
 - random Normal(0,1) in each parameter
- Use negative log posterior as potential energy
- · Hamiltonian is kinetic plus potential energy
- Leapfrog Integration: for fixed stepsize (time discretization), number of steps (total time), and mass matrix,
 - update momentum half-step based on potential (gradient)
 - update position full step based on momentum
 - update momentum half-step based on potential
- Numerical solution of Hamilton's first-order version of Newton's secondorder diff-eqs of motion (force = mass × acceleration)

Sample: Leapfrog Example

• Trajectory of 25 leapfrog steps for correlated 2D normal (ellipses at 1 sd from mean), stepsize of 0.25, initial state of (-1,1), and initial momentum of (-1.5,-1.55).

Radford Neal (2013) MCMC using Hamiltonian Dynamics. In *Handbook of MCMC*. (free online at http://www.mcmchandbook.net/index.html)

Sample: No-U-Turn Sampler (NUTS)

- · Adapts Hamiltonian simulation time
 - goal to maximize mixing, maintaining detailed balance
 - too short devolves to random walk
 - too long does extra work (i.e., orbits)
 - · For exponentially increasing number of steps up to max
 - Randomly choose to extend forward or backward in time
 - Move forward or backward in time number of steps
 - * stop if any subtree (size 2, 4, 8, ...) makes U-turn
 - * remove all current steps if subtree U-turns (not ends)
- · Randomly select param with density above slice (or reject)

Sample: NUTS Binary Tree

 Example of repeated doubling building binary tree forward and backward in time until U-turn.

Hoffman and Gelman. 2014. The No-U-Turn Sampler. *JMLR*. (free online at http://jmlr.org/papers/v15/hoffman14a.html)

Sample: NUTS U-Turn

- Example of trajectory from one iteration of NUTS.
- Blue ellipse is contour of 2D normal.
- Black circles are leapfrog steps.
- Solid red circles excluded below slice
- U-turn made with blue and magenta arrows
 - Red crossed circles excluded for detailed balance

Sample: HMC/NUTS Warmup

- · Estimate stepsize
 - too small requires too many leapfrog steps
 - too large induces numerical inaccuracy
 - need to balance
- Estimate mass matrix
 - Diagonal accounts for parameter scales
 - Dense optionally accounts for rotation

Sample: Warmup (cont.)

- · Initialize unconstrained parameters as for optimization
- · For exponentially increasing block sizes
 - for each iteration in block
 - generate random kinetic energy
 - * simulate Hamiltonian flow (HMC fixed time, NUTS adapts)
 - * choose next state (Metroplis for HMC, slice for NUTS)
 - update regularized point estimate of mass matrix
 - * use parameter draws from current block
 - * shrink diagonal toward unit; dense toward diagonal
 - tune stepsize (line search) for target acceptance rate

Sample: HMC/NUTS Sampling

- · Fix stepsize and and mass matrix
- · For sampling iterations
 - generate random kinetic energy
 - simulate Hamiltonian flow
 - apply Metropolis accept/reject (HMC) or slice (NUTS)

NUTS vs. Gibbs and Metropolis

- · Two dimensions of highly correlated 250-dim normal
- · 1,000,000 draws from Metropolis and Gibbs (thin to 1000)
- · 1000 draws from NUTS; 1000 independent draws

NUTS vs. Basic HMC

- · 250-D normal and logistic regression models
- Vertical axis is effective sample size per sample (bigger better)
- · Left) NUTS; Right) HMC with increasing $t = \epsilon L$

NUTS vs. Basic HMC II

- · Hierarchical logistic regression and stochastic volatility
- · Simulation time t is ϵ L, step size (ϵ) times number of steps (L)
- · NUTS can beat optimally tuned HMC (latter very expensive)

Part III

Under Stan's Hood

Euclidean Hamiltonian

- · Phase space: q position (parameters); p momentum
- Posterior density: $\pi(q)$
- Mass matrix: M
- Potential energy: $V(q) = -\log \pi(q)$
- Kinetic energy: $T(p) = \frac{1}{2}p^{T}M^{-1}p$
- Hamiltonian: H(p,q) = V(q) + T(p)
- Diff eqs:

$$\frac{dq}{dt} = +\frac{\partial H}{\partial p} \qquad \qquad \frac{dp}{dt} = -\frac{\partial H}{\partial c}$$

Leapfrog Integrator Steps

- Solves Hamilton's equations by simulating dynamics (symplectic [volume preserving]; ϵ^3 error per step, ϵ^2 total error)
- · Given: step size ϵ , mass matrix M, parameters q
- · Initialize kinetic energy, $p \sim \text{Normal}(0, \mathbf{I})$
- Repeat for L leapfrog steps:

$$p \leftarrow p - \frac{\epsilon}{2} \frac{\partial V(q)}{\partial q}$$
 [half step in momentum]
 $q \leftarrow q + \epsilon M^{-1} p$ [full step in position]
 $p \leftarrow p - \frac{\epsilon}{2} \frac{\partial V(q)}{\partial q}$ [half step in momentum]

Part IV

Mixutre Models

Mixture Models

Class of models with observations coming from than one distribution, membership unknown

Mixture Model Density

· Depends on a latent class membership

$$y_i \mid z_i \sim egin{cases} p_1(y_i) & \text{if } z_i = 1 \\ p_2(y_i) & \text{if } z_i = 2 \\ \vdots & & \\ p_K(y_i) & \text{if } z_i = K \end{cases}$$
 $z_i \sim \mathsf{Categorical}(\lambda).$

$$\lambda \geq 0, \sum_{k=1}^{K} \lambda_k = 1$$

Example Density

- $y_i | z_i \sim \text{Normal}(4.5, 0.1) \text{ if } z_i = 1,$
- $y_i \mid z_i \sim \text{Normal}(2, 2) \text{ if } z_i = 2$,
- $y_i | z_i \sim \text{Normal}(7, 1.25) \text{ if } z_i = 3,$
- $\lambda = (0.2, 0.5, 0.3)$

```
data {
  int<lower = 0> N;
  int<lower = 0> K;
  real y[N];
parameters {
  simplex[K] lambda;
  int z[K];
  real[K] mu;
  real<lower = 0> sigma[K];
model {
  z ~ categorical(lambda);
  for (n in 1:n)
    y[n] \sim normal(mu[z[n]], sigma[z[n]])
```

```
data {
  int<lower = 0> N;
  int<lower = 0> K;
  real y[N];
parameters {
  simplex[K] lambda;
  int z[K];
  real[K] mu;
  real<lower = 0> sigma[K];
model {
  z ~ categorical(lambda);
  for (n in 1:n)
    y[n] \sim normal(mu[z[n]], sigma[z[n]])
}
integer parameters or transformed parameters are not allowed;
found declared type int, parameter name=z Problem with
declaration.
```

Integrate/Sum Out z

$$p(y_i, z_i) = [I[z_i = 1]p_1(y_i) + I[z_i = 2]p_2(y_i) + \cdots + I[z_i = K]p_K(y_i)] \prod_{k=1}^K \lambda_k^{I[z_i = k]}.$$

$$\sum_{z_i=1}^K p(y_i, z_i) = \lambda_1 p_1(y_i) + \lambda_2 p_2(y_i) + \cdots + \lambda_K p_K(y_i),$$

$$= p(y_i).$$

Multiply together to get likelihood:

$$p(y) = \prod_{i=1}^{N} \left[\lambda_1 p_1(y_i) + \lambda_2 p_2(y_i) + \cdots + \lambda_K p_K(y_i) \right].$$

log **Problem**

- Operate on log probability as multiplication leads to underflow
 - small $\# \times$ small $\# \times ...$
 - $\log(\text{small } \#) + \log(\text{small } \#) + \dots$
- Log-likelihood is unwieldy:

$$\log p(y) = \sum_{i=1}^{N} \log \left[\lambda_1 p_1(y_i) + \lambda_2 p_2(y_i) + \cdots + \lambda_K p_K(y_i) \right].$$

log_sum_exp