FMD_QNC_amps_filled Release 0.1

oliver munz

CONTENTS

1	specifications 1.1 pinout 1.2 signals	2
2	amplifier 2.1 schematic	4
3	differential amplifier 3.1 schematic	3
4	dual input differential amplifier4.1 schematic4.2 layout	9 9 10
5	amplifier simulations	11
6	shunt regulator 3.3V 6.1 schematic	13 14 14 14 14
	7.1 OTA 7.2 bias generator	13 16 17 17 18
8	experiments 8.1 RPPD 8.2 sg13g2 8.3 calibration kit	19 19 19 19
9	design data and design process description9.1 iHP 130nm BiCMOS process sg13g2	21 21 21 21

10 validation of the circuits 23

A Warning

this chip is designed without correct LVS. only parts are really verified...

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

SPECIFICATIONS

there are 3 different amplifiers, a voltage-regulator and some experiments

1. single ended lowpower amplifier

- 3.3V power supply
- < 3.5mA current including powering of a laser-diode
- > 30dB gain at 1GHz
- 0..60°C
- low-pass corner programmable via capacitor

2. dual input differential lowpower amplifier

- 3.3V power supply
- < 3.5mA current including powering of a laser-diode
- > 10dB gain at 1GHz
- 0..60°C

3. differential lowpower amplifier

- 3.3V power supply
- < 3.5mA current including powering of a laser-diode
- 0dB gain at 1GHz
- 0..60°C

4. shunt-regulator 3.3V

- max. 50mA
- delta tc = 0 @ 10..30°C
- trimmable
- possibility for lowpass filter

5. test-structure for RPPD matching

- see differences in x and y build resistors, does it really matter?
- see differences in middle and edge resistors, do we need dummy resistors?

6. a sg13g2 transistor

• if nothing else is working, we get at least a transistor:)

7. open, short & load

• to calibrate the pads and connections out, and measure the impedances of the amplifiers

1.1 pinout

1.2 signals

pin name	whats it
GND	supply and signal ground
SH_GND	shunt-anode, connect to GND, optional current measurement
3.3V	positive supply & shunt regulator cathode
ref	reference output & input. optional low-pass capacitor to GND
adj	adjust the band-gap-reference via resistor to 3.3V or GND
in	amplifier input
out	amplifier out
d-	differential amplifier inverting input
d+	differential amplifier non-inverting input
dout	differential amplifier laser diode output
dd-	double differential amplifier inverting input. connected together over two 50Omega
dd+	double differential amplifier non-inverting input. connected together over two 500mega
ddout	double differential amplifier laser diode output

AMPLIFIER

2.1 schematic

this single input amplifier ist DC-coupled and GND referenced. it drives a laser diode over Q1. its bias current is measured via Q8 and regulated from a norton amplifier build from Q11, Q7 and Q9. the low-pass-corner is set by R12 and C2 (that is also available over test-pads inside the power-ring of the chip). the RF-path goes over a base-circuit Q6 to Q10 and Q1. R3 is used to set the gain. Q2's job is to improve the temperature dependence of the bias-current.

2.2 layout

the RPPD resistors are layout that way, because i had problems using LVS with resistors and was hoping it works with the simples shape. but in the end, i didn't manage to make LVS work anyway.

DIFFERENTIAL AMPLIFIER

3.1 schematic

a simple voltage feedback (R9, R10 to R20, R21) differential amplifier, without common-mode-regulator. the output is converted over a current differencing amplifier (Q5, Q9 and Q14, Q3, Q6, Q11) to a single-ended signal.

3.2 layout

DUAL INPUT DIFFERENTIAL AMPLIFIER

4.1 schematic

a simple current feedback (R10,R12) differential amplifier, without common-mode-regulator. the output is converted over a current differencing amplifier (Q12,Q10,Q11) to a single-ended signal.

the input ip is connected over two 50Omega resistors to both dd+ pads. the input in is connected over two 50Omega resistors to both dd- pads. its thought for compensation circuits that compensate capacitive coupled signals at the input.

4.2 layout

on the left side of the amplifier the for 500mega resistors are connected to the input-microstriplines.

CHAPTER	
FIVE	

AMPLIFIER SIMULATIONS

PDF with Xyce simulation

SHUNT REGULATOR 3.3V

6.1 schematic

this is a shunt-regulator for 3.3V and max. 50mA using a simple band-gap-reference. the reference uses MOSFET and BjT temperature coefficients, and needs only one BjT.

6.2 layout

6.3 options

there is the option to filter the reference output via a capacitor from the ref-pad to GND. its also possible to adjust the temperature-turning-point via the adj-pad and the voltage via the ref pad.

6.4 simulation

PDF with Xyce simulation

HIGH VOLTAGE OTA

1.1. the OTA the circuit should be used with iHPs PNP-device pnpMPA, so it should be working from VSS. this called for an PMOS input. the design is a simplified version of The Recycling Folded Cascode: A General Enhancement of the Folded Cascode Amplifier

because of the used CMOS-process the PMOS transistors could have an isolated bulk, without special effort. the simulations showed that the isolated versions had a bigger gain, but a smaller common-mode-range, and i preferred the later. the bias-current is programmable an so also the band-width. the bias-voltages should allow wide-swing output voltages. in the space the circuit uses are 3 MiM-capacitors placed. they are intended to use for frequency-compensation or as power-rail decoupling.

7.1 OTA

7.2 bias generator

7.3 layout

7.4 simulations

using different bias-currents of 1, 3 and $10\mu A$ a few simulations are printed into a PDF that allow to see the gain, common-mode-range, bandwidth and a slew-rate:

PDF with Xyce simulations .ac .dc .trans

the schematics of this simulations is Xschem document

7.3. layout 17

7.5 ETHZ feedback

its a bit stupid to design OTAs that fit in a square, if there is no such space-requirement. the layout should be changed to minimize the conductor-length of the signals between the differential-stage and the current-mirrors.

EXPERIMENTS

8.1 RPPD

there are 6 resistors available to measure: 3 in X and Y orientations and both versions as dummy and normal resistors

8.2 sg13g2

there is a fast BjT for measurements.

8.3 calibration kit

to measure the amplifier impedances and to see the effect of pads and wire-bonding, there are an open, short and load calkit.

CHAPTER

NINE

DESIGN DATA AND DESIGN PROCESS DESCRIPTION

9.1 iHP 130nm BiCMOS process sg13g2

the process is useable via iHPs openPDK:

source https://github.com/IHP-GmbH/IHP-Open-PDK

documentation https://ihp-open-pdk-docs.readthedocs.io/en/latest/index.html

 $\begin{tabular}{lll} open-source & runs: & https://www.ihp-microelectronics.com/services/research-and-prototyping-service/fast-design-enablement/open-source-pdk \end{tabular}$

9.2 Xschem schematics:

folder	for	
design_data/xschem/OTA	design and simulation of the OTA	
design_data/xschem/amplifiers	simulations of the three amplifiers	
design_data/xschem/shunt_regulator	simulations of the voltage regulators	
design_data/xschem/symbol	symbols for Xschem schematics	

9.3 KLayout .GDS:

file	for
design_data/FMD_QNC_amps_filled.gds	layout of the chip

CHAPTER

TEN

VALIDATION OF THE CIRCUITS

asap & subito...

Table of Contents

• Three SiGe HBT amplifiers