Teorema de Liouville

Dado el hamiltoniano de un oscilador no lineal, H(q, p), que describe una variedad simpléctica con coordenadas $(q(t), p(t)) \in \mathbb{R}^2$, las ecuaciones de Hamilton-Jacobi conducen a la siguiente ecuación diferencial:

$$H(q,p) = p^2 + \frac{1}{4}(q^2 - 1)^2 \quad \Rightarrow \quad \dot{q} = -2q(q^2 - 1)$$

que describe la evolución de q(t) y $p(t) = \dot{q}/2$. Supón que disponemos de un conjunto de condiciones iniciales $D_0 := [0,1] \times [0,1]$, y una granularidad del parámetro temporal $t = n\delta$ tal que $\delta \in [10^{-4}, 10^{-3}], n \in \mathbb{N} \setminus \{0\}$, con la que puede estimarse la sensibilidad del sistema al grado de discretización. Se pide:

- i) Representa gráficamente el espacio fásico $D_{(0,\infty)}$ de las órbitas finales del sistema S con las condiciones iniciales D_0 . Considera al menos 20 órbitas finales diferentes.
- ii) Obtén el valor del área de D_t para t=1/3 y una estimación de su intervalo de error, presentando los valores de forma científicamente formal (puedes estimar el error a partir de la sensibilidad al parámetro δ). ¿Se cumple el teorema de Liouville entre D_0 y D_t ? Razona la respuesta.
- iii) Realiza una animación GIF del diagrama de fases de D_t para $t \in (0,5)$.