



#### Lab5 - Where to Start?

- Get HW for Lab5: MAX518, (USB2RS232 adapter), adjustable resistor, ...
- RS232-based communication with PC
  - Establish connections between ATmega88 board & converter (2 options!)
  - Configure terminal software on PC
  - Write a test program (e.g., echo) to see if the USART on the  $\mu\text{C}$  is correctly configured

USART initialization, print char, send char, ... you can use libraries ... Use the oscilloscope for troubleshooting (timing, ...)

- Start with the main program
  - Consider a finite-state machine (FSM) for parsing commands
  - Several options for string2number and number2string conversion
  - Implement ADC function (read section in ATmega88 documentation!)
  - Implement EEPROM storage and retrieval
  - Implement DAC I2C communication (<u>upcoming</u> lecture notes, MAX518 datasheet, ...)
  - Can use library for I2C communication
  - \_ ..

Embedded Systems, ECE:3360. The University of Iowa, 2019















| not connected                           | A Designation of the last of t | Quick Connect Menu                                   |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| and | ions Transfer Script Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quiek Connect Wend                                   |
|                                         | Quick Connect  Protocol SSH2 ▼ Hostname:  Port 22 Fi Username:  Authenication  ∀Paseword  ∀Publickey  ∀Keyboard interactive  Show quick connect on startup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fropertes  Save session Open in a tab Connect Cancel |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |











| SecureC                       | RT Terminal         | Emulator                            |  |
|-------------------------------|---------------------|-------------------------------------|--|
| Quick Connect                 |                     | Set the rest of the parameters as r |  |
| Protocol: Serial              |                     |                                     |  |
| Port COM3                     | Flowcontrol         | 1                                   |  |
| Baud rate: 9600               | A PAYDSR            |                                     |  |
| Data bits: 8                  | RTS/CTS<br>XON/XOFF |                                     |  |
| Parity: None                  |                     |                                     |  |
| Stop bits: 1                  |                     |                                     |  |
| Show quick connect on startup | ☐ Save sess         |                                     |  |
|                               | Connect             | Cancel                              |  |

```
static const char fdata[] PROGMEM = "Flash Gordon\n"; // String in
Flash
int main(void)
  unsigned char c;
  char str[25];
  int adH,adL,dac;
  int i;
                 // Enable interrupts
  sei();
  usart_init();
                          // Initialize the USART
  usart_prints(sdata); // Print a string from SRAM
  usart_printf(fdata);
                          // Print a string from FLASH
You have to implement
                           Refer to previous lecture on serial
these routines.
                           communication.
Also, there are many resources available on the internet: Peter Fluery,
http://winavr.scienceprog.com/avr-gcc-tutorial/programing-avr-usart-module.html,
etc. You can user these, but need to understand how the software works.
             Embedded Systems, ECE:3360. The University of Iowa, 2019
                                                     Lab 6 Considerations, Slide 18
```

```
static const char fdata[] PROGMEM = "Flash Gordon\n"; // Str Flash
int main(void)
  unsigned char c;
                    This is how to get the characters
  char str[25];
  int adH,adL,dac;
                    the user types at the PC keyboard
  int i;
                    into a character string.
 // "echo" test
  usart prints("Please type 4 characters!");
                                             This routine also echo's
  for (i=0;i<=4-1;i++) {
                                              the typed characters
     c = usart_getc();  // Get character
     usart_putc(c);
                        // Echo it back
                                             back so the user can
     str[i] = c;
                                              see what he/she is
                                             typing.
  str[i] = '\0';
Use code such as this for your user interface routine.
             Embedded Systems, ECE:3360. The University of Iowa, 2019
                                                     Lab 6 Considerations, Slide 19
```

```
const char sdata[] = "Hello World!\n";
                                                    // String in SRAM
static const char fdata[] PROGMEM = "Flash Gordon\n"; // Str Flash
int main(void)
  unsigned char c;
                             You have to implement this routine.
  char str[25];
  int adH,adL,dac;
  int i;
  float v;
   // Get the voltage, make a formatted string, and then
   // send via the USART.
  readADC(&v);
   sprintf(str, "v = %.3f V\n",v);
  usart_prints(str);
                  Review the C standard library sprintf function.
                  Make sure you include the proper header files
                  This will significantly increase the size of your
                  code.
               Embedded Systems, ECE:3360. The University of Iowa, 2019
                                                           Lab 6 Considerations, Slide 20
```

#### **String Conversion**

How does one convert from a string to a number? For example, consider the string str:

```
const char str[] = "123";
```

We want to convert this to a number n = 123 so we can do arithmetic:

```
n = str2num(str);  // Convert to number
n = n + 10;  // Do arithmetic
...
```

Where do I get a "str2num" routine? An easy method is to use the C compiler's string scan routine **sscanf** (next slide) or **atoi/atof**.

Potential problem with this is that it pulls in large chunks of code which can quickly fill up flash memory.

Embedded Systems, ECE:3360. The University of Iowa, 2019

#### C - Resources

- https://www.gnu.org/software/gnu-c-manual/
- Arrays
  - https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Arrays
- Pointers
  - https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Pointers
- · Useful libraries
  - <string.h>
  - <stdio.h> → sprintf, scanf, ...
  - <stdlib.h> → itoa, ...

Embedded Systems, ECE:3360. The University of Iowa, 2019

Lab 6 Considerations, Slide 23

# **ADC**

Embedded Systems, ECE:3360. The University of Iowa, 2019

# ADC (Analog to Digital Converter)

- · 10-bit Resolution
- · 0.5 LSB Integral Non-linearity
- · ± 2 LSB Absolute Accuracy
- · 13 260 µs Conversion Time
- · Up to 76.9 kSPS (Up to 15 kSPS at Maximum Resolution)
- 6 Multiplexed Single Ended Input Channels
- · 2 Additional Multiplexed Single Ended Input Channels (TQFP and QFN/MLF Package only)
- · Temperature Sensor Input Channel
- · Optional Left Adjustment for ADC Result Readout
- 0 V<sub>CC</sub> ADC Input Voltage Range
- Selectable 1.1V ADC Reference Voltage
- · Free Running or Single Conversion Mode
- · Interrupt on ADC Conversion Complete
- · Sleep Mode Noise Canceler

Embedded Systems, ECE:3360. The University of Iowa, 2019





#### **Conversion Modes**

**Single Conversion Mode**. As the name implies, application software instructs the ADC to start a conversion. Flags are used to indicate while the conversion is in progress and/or done.

**Auto Triggering.** Various sources (see table below) can trigger a conversion automatically. This allows for background processing: Timer overflow can trigger ADC which makes conversion automatically.

Table 23-6. ADC Auto Trigger Source Selections

| ADTS2 | ADTS1 | ADTS0 | Trigger Source                 |
|-------|-------|-------|--------------------------------|
| 0     | 0     | 0     | Free Running mode              |
| 0     | 0     | 1     | Analog Comparator              |
| 0     | 1     | 0     | External Interrupt Request 0   |
| 0     | 1     | 1     | Timer/Counter0 Compare Match A |
| 1     | 0     | 0     | Timer/Counter0 Overflow        |
| 1     | 0     | 1     | Timer/Counter1 Compare Match B |
| 1     | 1     | 0     | Timer/Counter1 Overflow        |
| 1     | 1     | 1     | Timer/Counter1 Capture Event   |

Embedded Systems, ECE:3360. The University of Iowa, 2019











# ATmega88PA – EEPROM

- Electrically Erasable Programmable Read-Only Memory
- Nonvolatile memory
- The ATmeag88PA has 512 bytes of data EEPROM
  - It is organized as a separate data space
  - Can read/write single bytes
- The EEPROM has an endurance of at least 100,000 write/erase cycles
- Programming can take several ms
- Access to EEPROM is accomplished by reading/writing:
  - EEPROM address registers (EEARH & EEARL),
  - EEPROM data register (EEDR), and
  - EEPROM control register (EECR)
- See Section 8.4 "EEPROM Data Memory" in datasheet for details!

Embedded Systems, ECE:3360. The University of Iowa, 2019

# Electrically Erasable Programmable Read-Only Memory (EEPROM)

- EEPROM memory consists of independent cells each representing a single bit → cells are combined to form bytes
- Cells are based on floating-gate transistor technology:
  - An electrical charge trapped on the transistor gate determines the logic level of the cell
- · Erasing a cell
  - → a charge is placed on the gate and the cell is read as logic one (1)
- · Programming a cell
  - → discharge the gate and the cell is read as logic zero (0)
- It is only possible to program (discharge) a cell that has been erased (charged)!
  - Programming a byte that is already programmed, without erasing in between, will
    result in a bit-wise AND between the old value and the new value
  - Use combined "erase and program" operation! → EEPMn bits in EECR

Embedded Systems, ECE:3360. The University of Iowa, 2019

Lab 6 Considerations, Slide 35

# ATmega88PA - EEPROM Registers

- EEAR: specifies which EEPROM byte to read or write
- ATmega88PA: address values between 0 and 511
  - → 16-bit register

#### EEARH and EEARL - The EEPROM Address Register



The initial value of EEAR is undefined → proper value must be written before the EEPROM can be accessed

Embedded Systems, ECE:3360. The University of Iowa, 2019

## ATmega88PA - EEPROM Registers

- Write: the EEDR register contains the data to be written to the EEPROM in the address given by the EEAR register
- Read: the EEDR contains the data read out from the EEPROM at the address given by EEAR

#### EEDR - The EEPROM Data Register



Embedded Systems, ECE:3360. The University of Iowa, 2019

Lab 6 Considerations, Slide 37

#### ATmega88PA - EEPROM Read

- EEPROM read enable bit EERE → read strobe to the EEPROM
  - Important: the user must poll the EEPE bit before starting the read operation:
    - → If a write operation is in progress (EEPE=1), it is neither possible to read the EEPROM, nor to change the address register.
  - Set up correct address in EEAR register,
  - Set EERE bit to trigger the EEPROM read
  - EEPROM read access takes one instruction
    - · Requested data is available immediately
    - When the EEPROM is read, the CPU is halted for four cycles before the next instruction is executed

#### **EECR - The EEPROM Control Register**



Embedded Systems, ECE:3360. The University of Iowa, 2019

#### ATmega88PA - EEPROM Write

- The EEPROM programming mode bit setting defines which programming action that will be triggered when writing EEPE
  - Can program data in one atomic operation (erase the old value and program the new value) or
  - split the erase and write operations in two different operations.
- While EEPE is set, any write to EEPMn will be ignored.



# ATmega88PA - EEPROM Write

- EEMPE: EEPROM Master Write Enable
- The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written
  - When EEMPE is set, setting EEPE within 4 clock cycles will write data to the EEPROM at the selected address
  - If EEMPE is zero, setting EEPE will have no effect!
  - When EEMPE has been set by software, hardware clears the bit to zero after four clock cycles



# ATmega88PA - EEPROM Write

- EEPE: EEPROM Write Enable → write strobe to the EEPROM
- Procedure for writing the EEPROM:
  - 1. Wait until EEPE becomes zero
  - 2. Write new EEPROM address to EEAR
  - 3. Write new EEPROM data to EEDR
  - 4. Clear EEPM1 and EEPM0 (→ set erase & write mode)
  - 5. Write a logical one to the EEMPE bit while writing a zero to EEPE
  - 6. Within 4 clock cycles after setting EEMPE, set EEPE bit
- It is recommended to have the global interrupts disabled during EEPROM write operations!

**EECR - The EEPROM Control Register** 



Embedded Systems, ECE:3360. The University of Iowa, 2019

Lab 6 Considerations, Slide 41

#### ATmega88PA - EEPROM Write

- When the write access time has elapsed, the EEPE bit is cleared by hardware
  - →The user software can poll this bit and wait for a zero before writing the next byte
- When EEPE has been set, the CPU is halted for two cycles before the next instruction is executed

**EECR - The EEPROM Control Register** 



Embedded Systems, ECE:3360. The University of Iowa, 2019

# · For more information see datasheet → read/write C code snippets - application note: - https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appn ote=en591206 Embedded Systems, ECE:3360. The University of Iowa, 2019 Lab 6 Considerations, Slide 43

DAC

Embedded Systems, ECE:3360. The University of Iowa, 2019 Lab 6 Considerations, Slide 44

#### I2C DAC - MAX518

19-0393; Rev 1; 9,02



#### 2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs

#### **General Description**

The MAX517/MAX518/MAX519 are 8-bit voltage output digital-to-analog converters (DACs) with a simple 2-wire serial interface that allows communication between multiple devices. They operate from a single 5V supply and their internal precision buffers allow the DAC out-puts to swing rail-to-rail.

The MAX517 is a single DAC and the MAX518/MAX519 are dual DACs. The MAX518 uses the supply voltage as the reference for both DACs. The MAX517 has a reference input for its single DAC and each of the MAX519's two DACs has its own reference input.

The MAX517/MAX518/MAX519 feature a serial interface and internal software protocol, allowing communication at data rates up to 400kbps. The interface, combined with the double-buffered input configuration, allows the DAC registers of the dual devices to be updated individually or simultaneously. In addition, the devices can be put into a low-power shutdown mode that reduces supply current to 4µA. Power-on reset ensures the DAC outputs are at 0V when power is initially applied.

The MAX517/MAX518 are available in space-saving 8-pin DIP and SO packages. The MAX519 comes in 16-pin DIP and SO packages.

#### Features

- ♦ Single +5V Supply
- ♦ Simple 2-Wire Serial Interface
- ♦ I<sup>2</sup>C Compatible
- ♦ Output Buffer Amplifiers Swing Rail-to-Rail
- ♦ Space-Saving 8-pin DIP/SO Packages (MAX517/MAX518)
- ♦ Reference Input Range Includes Both Supply Rails (MAX517/MAX519)
- ♦ Power-On Reset Clears All Latches
- 4μA Power-Down Mode

#### **Ordering Information**

| PART       | TEMP RANGE   | PIN-PACKAGE   | TUE<br>(LSB) |  |
|------------|--------------|---------------|--------------|--|
| MAX517ACPA | 0°C to +70°C | 8 Plastic DIP | 1            |  |
| MAX517BCPA | 0°C to +70°C | 8 Plastic DIP | 1.5          |  |
| MAX517ACSA | 0°C to +70°C | 8 SO          | 1            |  |
| MAX517BCSA | 0°C to +70°C | 8 SO          | 1.5          |  |
| MAX517BC/D | 0°C to +70°C | Dice*         | 1.5          |  |

Ordering information continued at end of data sheet.

\*Dice are specified at T<sub>A</sub> = +25°C, DC parameters only.

\*\*Contact factory for availability and processing to MIL-STD-883.

Embedded Systems, ECE:3360. The University of Iowa, 2019

Lab 6 Considerations, Slide 45

### MAX518 - Pin Description



Don't forget to add decoupling capacitors!

| PIN    |           | NAME        | FUNCTION |                                                 |
|--------|-----------|-------------|----------|-------------------------------------------------|
| MAX517 | MAX518    | MAX519      | NAME     | FUNCTION                                        |
| 1      | 1         | 1           | OUT0     | DAC0 Voltage Output                             |
| 2      | 2         | 4           | GND      | Ground                                          |
| -      | · · · · · | 5           | AD3      | Address Input 3; sets IC's slave address        |
| 3      | 3         | 6           | SCL      | Serial Clock Input                              |
| 4      | 4         | 8           | SDA      | Serial Data Input                               |
| -      | -         | 9           | AD2      | Address Input 2; sets IC's slave address        |
| 5      | 5         | 10          | AD1      | Address Input 1; sets IC's slave address        |
| 6      | 6         | 11          | AD0      | Address Input 0; sets IC's slave address        |
| 7      | 7         | 12          | VDD      | Power Supply, +5V; used as reference for MAX518 |
| -      | -         | 13          | REF1     | Reference Voltage Input for DAC1                |
| 8      |           | 15          | REF0     | Reference Voltage Input for DAC0                |
| _      | 8         | 16          | OUT1     | DAC1 Voltage Output                             |
| -      | _         | 2, 3, 7, 14 | N.C.     | No Connect—not internally connected.            |

Embedded Systems, ECE:3360. The University of Iowa, 2019





# MAX518 - Output Register/Byte

Table 1. Unipolar Code Table

| DAC CONTENTS | ANALOG OUTPUT                                                  |
|--------------|----------------------------------------------------------------|
| 11111111     | + V <sub>REF</sub> ( 255 )                                     |
| 10000001     | + V <sub>REF</sub> ( 129 )                                     |
| 10000000     | $+ V_{REF} \left( \frac{128}{256} \right) = \frac{V_{REF}}{2}$ |
| 01111111     | + V <sub>REF</sub> ( 127 )                                     |
| 0000001      | + V <sub>REF</sub> ( 1 256                                     |
| 00000000     | OV                                                             |



Figure 15. DAC Simplified Circuit Diagram

Embedded Systems, ECE:3360. The University of Iowa, 2019

Lab 6 Considerations, Slide 49

# MAX518 - Setting One vs Both Channels



Figure 8a. Setting One DAC Output (MAX517/MAX518/MAX519)



Figure 8b. Setting Both DAC Outputs (MAX518/MAX519)

Embedded Systems, ECE:3360. The University of Iowa, 2019

