Single-Cycle CPU Control Logic

Putting it All Together: A Single Cycle Datapath

We have everything except control signals

Okay, then, what about those Control Signals?

ALU control bits

• Recall: 5-function ALU

ALU control input	Function	Operations
000	And	and
001	Or	or
010	Add	add, lw, sw
110	Subtract	sub, beq
111	Slt	slt

- based on opcode (bits 31-26) and function code (bits 5-0) from instruction
- ALU doesn't need to know all opcodes--we will summarize opcode with ALUOp (2 bits):

Jeff Brown

Generating ALU control

Instruction opcode	ALUOp	Instruction operation	Function code	Desired ALU action	ALU control input
lw	00	load word	XXXXXX	add	010
SW	00	store word	XXXXXX	add	010
beq	01	branch eq	XXXXXX	subtract	110
R-type	10	add	100000	add	010
R-type	10	subtract	100010	subtract	110
R-type	10	AND	100100	and	000
R-type	10	OR	100101	or	001
R-type	10	slt	101010	slt	111

Generating individual ALU signals

ALUop	Function	ALUCtrl signals
00	XXXX	010
01	XXXX	110
10	0000	010
10	0010	110
10	0100	000
10	0101	001
10	1010	111

ALUctr2 =

ALUctr1 =

ALUctr0 =

R-Format Instructions (e.g., Add)

Instruction	RegDst	ALUSrc	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOp1	ALUp0
R-format								1	0
lw								0	0
SW								0	0
beq								0	1

Iw Control

Instruction	RanDet	ALUSrc	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw								0	0
SW								0	0
beq								0	1

sw Control

Instruction	RegDst	ALUSrc	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW								0	0
beq								0	1

beq Control

Instruction	RegDst	ALUSrc	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW	Х	1	Х	0	0	1	0	0	0
beq								0	1

Control Truth Table

		R-format	lw	SW	beq
Opcode		000000	100011	101011	000100
	RegDst	1	0	X	X
	ALUSrc	0	1	1	0
	MemtoReg	0	1	X	X
	RegWrite	1	1	0	0
Outputs	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

CSE 141, S2'06

Jeff Brown

Control

• Simple combinational logic (truth tables)

Single-Cycle CPU Summary

- Easy, particularly the control
- Which instruction takes the longest? By how much? Why is that a problem?
- ET = IC * CPI * CT
- What else can we do?
- When does a multi-cycle implementation make sense?
 - e.g., 70% of instructions take 75 ns, 30% take 200 ns?
 - suppose 20% overhead for extra latches
- Real machines have much *more* variable instruction latencies than this.

CSE 141, S2'06 Jeff Brown