

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 March 2006 (16.03.2006)

PCT

(10) International Publication Number
WO 2006/029196 A1

(51) International Patent Classification:
C12N 15/864 (2006.01)

(74) Agents: SPRATT, Gwendolyn, D. et al.; Needle & Rosenberg, P.C., Suite 1000, 999 Peachtree Street, Atlanta, GA 30309-3915 (US).

(21) International Application Number:

PCT/US2005/031837

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

8 September 2005 (08.09.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/607,854 8 September 2004 (08.09.2004) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

Published:

(75) Inventors/Applicants (for US only): CHIORINI, John, A. [US/US]; 9611 Hillridge Drive, Kensington, MD 20895 (US). PASQUALE, Giovanni, Di [US/US]; 11701 Goodloe Road, Silver Spring, MD 20906 (US).

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: TRANSCYTOSIS OF ADENO-ASSOCIATED VIRUSES

(57) Abstract: The present invention provides methods of transcytosing barrier epithelial cells using adeno-associated virus-4 (AAV4), adeno-associated virus-5 (AAV5), adeno-associated virus-7 (AAV7), bovine adeno-associated virus (BAAV), and vectors and particles derived therefrom. In addition, the present invention provides methods of delivering a nucleic acid across the barrier epithelia using the AAV4, AAV5, AAV7, and BAAV vectors and particles.

WO 2006/029196 A1

WO 2006/029196 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

TRANSCYTOSIS OF ADENO-ASSOCIATED VIRUSES

CROSS-REFERENCE TO RELATED APPLICATIONS

This claims the benefit of U.S. Provisional Application No. 60/607,854, entitled "Transcytosis of Adeno-Associated Viruses", filed September 8, 2004, by Chiorini *et al*,
10 which is herein incorporated by reference in its entirety.

BACKGROUND

The adeno-associated viruses (AAV) were originally classified according to size, structure, and dependence upon a helper virus for replication. AAV is a member of the Parvoviridae, a virus family characterized by a single stranded linear DNA genome and a small icosahedral shaped capsid measuring about 20nm in diameter. AAV was first described as a contaminant of tissue culture grown simian virus 15, a simian adeno virus and was found dependent on adenovirus for measurable replication. This led to its name, adeno-associated virus, and its classification in the genus Dependovirus. Because the majority of AAV isolates were first identified as contaminants of laboratory stocks of adenovirus, little is known about their natural tissue tropism. However *in vivo* experiments suggest they are effective vectors for gene transfer applications. Currently eleven full-length isolates have been cloned and their initial characterization indicates that each serotype has unique binding/cell tropism characteristics.

Transcytosis is the transport of macromolecular cargo from one side of a cell to the other within membrane-bounded carrier(s). It is a strategy used by multicellular organisms to selectively move material between two different environments while maintaining the distinct compositions of those environments. The ability of a pathogen to spread through a tissue is a critical determinate of its virulence. The process of transcytosis has been reported for a number of viruses. For example, HIV and poliovirus cross simple epithelial cells without infection and are still infectious when they cross into the submucosa. Likewise, the Epstein-Barr virus (EBV) forms a complex with mucosal immunoglobulins (IgA) that are specific for gp350, a viral surface protein that is present in latently infected people. This complex binds to the poly-immunoglobulin receptor at the basal surface of epithelial cells, and is endocytosed and delivered apically without infection. To date, there is no report of transcytosis by any AAV.

5

Provided herein are methods for transcytosis across barrier epithelial cells using AAV vectors. The ability of a non-pathogenic vector to transcytose barrier epithelial cells can be used to deliver genes to sub-epithelial targets. One important example includes the delivery of genes across the blood-brain-barrier without the need for direct injection into the brain. Furthermore, herein is described a method for re-directing virus that enters a cell by transcytosis to result in transduction of the cell by blocking exocytosis.

SUMMARY

In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in one aspect, relates to a method of delivering a heterologous nucleic acid across an epithelial barrier comprising delivering to the epithelial barrier an AAV vector comprising the heterologous nucleic acid. The epithelial cells can be in the gut, lung, genitourinary tract, kidney, blood vessels or brain.

In another aspect, the invention relates to a method of transcytosing epithelial cells of a human subject comprising administering to the subject a viral vector comprising a heterologous nucleic acid, wherein the viral vector is selected from a group consisting of BAAV, AAV4, AAV5, or AAV7.

Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate (one) several embodiment(s) of the invention and together with the description, serve to explain the principles of the invention.

Figure 1 shows that AAV4 transcytosed in CaCo-2, MDCKI, MDCKII, Human primary immortalized epithelial endometrial, Bovine brain primary endothelia cells (BBB). AAV5 transcytosed CaCo-2 cells, whereas BAAV transcytosed in MDCKs, Endometrial,

5 airways epithelia, and BBB. AAV6 did not transcytose in any of cell types tested. Hela cells do not form barrier epithelia and were used as a control.

Figure 2 shows that the treatment of the basal lateral surface of Human primary airways epithelial cell (HAE) with tannic acid blocked the transcytosis of BAAV vector containing a GFP expression cassette from the apical surface to the basal lateral.
10 Furthermore transduction dramatically increased when assayed at 24 hrs post inoculation. In contrast no change was observed in AAV2 transduction, which did not demonstrate any transcytosis activity and has limited binding activity on HAE.

Figure 3 shows AAV7 transcytosis assay on bovine brain endothelial cells. Virus DNA extracted from basal lateral medium after 3H incubation 2×10^9 DRP of AAV were
15 loaded on the apical side of the cell layer. AAV5 is used as a control.

DETAILED DESCRIPTION

The present invention may be understood more readily by reference to the following detailed description of the invention and the Examples included therein and to the Figures and their previous and following description.

20 Before the present compounds, compositions, articles, devices, and/or methods are disclosed and described, it is to be understood that this invention is not limited to specific synthetic methods, specific cell types, or to particular tissues, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.

25 As used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a pharmaceutical carrier" includes mixtures of two or more such carriers, and the like.

Ranges may be expressed herein as from "about" one particular value, and/or to
30 "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint,
35 and independently of the other endpoint.

5 “Optional” or “optionally” as used herein means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.

AAV Transcytosis

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier comprising delivering to the epithelial barrier an AAV vector comprising the heterologous nucleic acid. In one aspect of the method, the AAV is AAV4, AAV5, AAV7, or BAAV. The AAV capsid protein forming the viral particle is understood herein to confer upon the AAV particle the desired transcytosing ability. Thus, “AAV vector”, as used herein, refers to any virion, vector, or viral particle comprising or encoding at least one AAV capsid protein. As an example, an AAV4 vector can encode an AAV4 capsid protein and thus be encapsidated in said protein forming an AAV4 particle. Alternatively the AAV vector can comprise a nucleic acid encoding a modified AAV or a portion of an AAV capsid protein (a capsid protein fragment) that confers serotype-specific transcytotic activity. AAV capsids, capsid protein fragments and capsid modifications are disclosed, for example, in U.S. Patent Application No. 60/526786 (BAAV), U.S. Patent No. 6,468,524 (AAV4), U.S. Patent Application No. 09/717,789 (AAV5), U.S. Patent Application 2003/0228282 (AAV7), International Application No. PCT/US04/15534, filed May 19, 2004 (AAAV), and U.S. Patent Application No. 60/676604, filed April 29, 2005 (AAV-X1, AAV-X1b, AAV-X5, AAV-X19, AAV-X21, AAV-X22, AAV-X23, AAV-X24, AAV-X25, AAV-X26).

25 In another aspect of the method, the epithelial cells are in the gut, lung, genitourinary tract, kidney, blood vessels or brain. In another aspect of the method, the epithelial cells can be selected from a group consisting of bronchial, alveolar, tracheal or upper airway epithelial cells; absorptive enterocytes or M cells; endometrial or urinary epithelial cells; renal collecting duct or proximal tubule epithelial cells; cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells.

Further disclosed is a method of transcytosing epithelial cells of a human subject comprising administering to the subject an AAV vector comprising a heterologous nucleic acid. In one aspect of the method, the vector is AAV4, AAV5, AAV7, or BAAV. In another aspect of the method, the epithelial cells are selected from a group consisting of bronchial, alveolar, tracheal or upper airway epithelial cells; absorptive enterocytes or M cells;

- 5 endometrial or urinary epithelial cells; renal collecting duct or proximal tubule epithelial cells; cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells.

Further contemplated are methods for the delivery of molecules across epithelial cell barriers comprising coupling the molecules to non-recombinant (wild-type) AAV capsids or particles. In one aspect, the molecules are radioligands or enzymes.

- 10 The term “adeno-associated virus (AAV)” is used herein to refer to a genus of viruses in the family Parvoviridae which are all defective viruses (unable to replicate by themselves) and depend on the co-infection of their host cell by other, nondefective viruses to help them replicate.

Transcytosis refers to the transport of macromolecular cargo from one side of a cell 15 to the other, generally within a membrane-bounded carrier(s). Tuma and Hubbard provided a review of transcytosis (Tuma PL and Hubbard AL. 2003. *Physiol Rev.* 83:871-932), herein incorporated by reference for its teaching regarding the nature and uses for transcytosis. Transcytosis is a strategy used by multicellular organisms to selectively move material between two different environments while maintaining the distinct compositions of those 20 environments. N. Simionescu was the first to coin the term transcytosis to describe the vectorial transfer of macromolecular cargo within the plasmalemmal vesicles from the circulation across capillary endothelial cells to the interstitium of tissues. During this same period, another type of transcytosis was being discovered. Immunologists comparing the different types of immunoglobulins found in various secretions (e.g., serum, milk, saliva, 25 and the intestinal lumen) speculated that the form of IgA found in external secretions (called secretory IgA, due to the presence of an additional protein component) was selectively transported across the epithelial cell barrier. More is known about transcytosis as it is expressed in epithelial tissues, which form cellular barriers between two environments. In this polarized cell type, net movement of material can be in either direction, apical to 30 basolateral or the reverse, depending on the cargo and particular cellular context of the process. However, transcytosis is not restricted to only epithelial cells.

Since the 19th century dye experiments of Ehrlich, the brain has been known as a “privileged” organ where access is tightly regulated so that the environment remains chemically stable. The two principal gatekeepers of the brain are the cerebral capillary 35 endothelium and the cuboidal epithelial cells of the choroid plexus. These cellular barriers are specialized for the passage of different nutrients from the blood. The capillaries move

5 nutrients that are required rapidly and in large quantities, such as glucose and amino acids. These small molecules are transported by membrane carriers using facilitated diffusion. The choroid plexus supplies nutrients that are required less acutely and in lower quantities. These are folate and other vitamins, ascorbate, and deoxyribonucleotides.

There are two epithelial cells that participate in transcytosis in the intestine, M cells
10 and enterocytes (adsorptive columnar cells). These cells are very different from one another and the capillary endothelial cell. Depending on the species, M cells comprise a variable but small percentage of the epithelia overlying organized mucosal-associated lymphoid tissue, making them a very minor cell population in the gastrointestinal tract. The transcytotic route across M cells is thought to be part of the mechanism by which antigens are routinely
15 sampled along the entire mucosal surface. Not surprisingly, numerous pathogens have evolved mechanisms to exploit the transcytotic process as a means to invade and disseminate before a strong enough immune response can be mounted.

Absorptive enterocytes are simple columnar cells with several apical features in addition to their brush borders. Clathrin-coated pits are present at the base of microvilli, and
20 a thick glycocalyx composed of integral membrane proteins with glycosaminoglycan side chains emanates from the microvillar membrane. This latter structural feature as well as the rigidity of the microvilli are thought to prohibit microorganisms from attaching and invading enterocytes. The intracellular organization of these columnar epithelial cells is also polarized, with basally located nuclei, supranuclear Golgi, and an abundance of
25 pleiomorphic membrane compartments underlying the terminal web of the brush border. The basolateral-to-apical length of this cell is ~20 versus 0.2 μm for a capillary endothelial cell, making the transcytotic route across enterocytes potentially much longer. Furthermore, microtubules are an important structural element of the transcytotic pathway in enterocytes, but not in M or endothelial cells.

30 Transcytosis also occurs in the upper regions of the respiratory tract and has been demonstrated with two vector systems, pIgA-R and FcRn, but others could exist. Secretory IgA is a known constituent of the lung's immune defense system, with bronchial epithelial cells carrying out basolateral-to-apical transport of dIgA, which is secreted by local plasma cells in underlying lymphoid tissue. Albumin, which is found in lung fluid, is endocytosed
35 specifically at the apical surface of airway epithelia but is then subsequently degraded. At the alveolar level, the question of whether albumin is transcytosed intact is uncertain.

5 The methods and compositions described herein can be used to deliver heterologous
nucleic acids to certain tissues. As used herein, the term "nucleic acid" refers to single-or
multiple stranded molecules which may be DNA or RNA, or any combination thereof,
including modifications to those nucleic acids. The nucleic acid may represent a coding
strand or its complement, or any combination thereof. Nucleic acids may be identical in
10 sequence to the sequences which are naturally occurring for any of the novel genes
discussed herein or may include alternative codons which encode the same amino acid as
those provided herein, including that which is found in the naturally occurring sequence.
These nucleic acids can also be modified from their typical structure. Such modifications
include, but are not limited to, methylated nucleic acids, the substitution of a non-bridging
15 oxygen on the phosphate residue with either a sulfur (yielding phosphorothioate
deoxynucleotides), selenium (yielding phosphorelenoate deoxynucleotides), or methyl
groups (yielding methylphosphonate deoxynucleotides).

As used herein, the term "isolated" refers to a nucleic acid separated or significantly
free from at least some of the other components of the naturally occurring organism, for
20 example, the cell structural components or viral components commonly found associated
with nucleic acids in the environment of the virus and/or other nucleic acids. The isolation
of the native nucleic acids can be accomplished, for example, by techniques such as cell
lysis followed by phenol plus chloroform extraction, followed by ethanol precipitation of the
nucleic acids. The nucleic acids of this invention can be isolated from cells according to any
25 of many methods well known in the art.

The AAV vectors disclose herein can comprise a heterologous nucleic acid
functionally linked to the promoter. The term "heterologous" is used herein to refer to a
nucleic acid which is derived from a different cell, tissue or organism. The nucleic acid can
encode a polypeptide or protein or an antisense RNA, for example. By "functionally linked"
30 is meant such that the promoter can promote expression of the heterologous nucleic acid, as
is known in the art, such as appropriate orientation of the promoter relative to the
heterologous nucleic acid. Furthermore, the heterologous nucleic acid preferably has all
appropriate sequences for expression of the nucleic acid, as known in the art, to functionally
encode, *i.e.*, allow the nucleic acid to be expressed. The nucleic acid can include, for
35 example, expression control sequences, such as an enhancer, and necessary information
processing sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites,

5 and transcriptional terminator sequences.

The heterologous nucleic acid can encode beneficial proteins that replace missing or defective proteins required by the subject into which the vector is transferred or can encode a cytotoxic polypeptide that can be directed, e.g., to cancer cells or other cells whose death would be beneficial to the subject. The heterologous nucleic acid can also encode antisense 10 RNAs that can bind to, and thereby inactivate, mRNAs made by the subject that encode harmful proteins. In one embodiment, antisense polynucleotides can be produced from a heterologous expression cassette in an AAV4 viral construct where the expression cassette contains a sequence that promotes cell-type specific expression (Wirak *et al.*, 1991. *EMBO* 10:289). For general methods relating to antisense polynucleotides, see *Antisense RNA and* 15 *DNA*, D. A. Melton, Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988).

Examples of heterologous nucleic acids which can be administered to a cell or subject as part of the present AAV4 vector can include, but are not limited to the following: nucleic acids encoding therapeutic agents, such as tumor necrosis factors (TNF), such as TNF- α ; interferons, such as interferon- α , interferon- β , and interferon- γ ; interleukins, such as 20 IL-1, IL-1 β , and ILs -2 through -14; GM-CSF; adenosine deaminase; cellular growth factors, such as lymphokines; soluble CD4; Factor VIII; Factor IX; T-cell receptors; LDL receptor; ApoE; ApoC; alpha-1 antitrypsin; ornithine transcarbamylase (OTC); cystic fibrosis transmembrane receptor (CFTR); insulin; Fc receptors for antigen binding domains of 25 antibodies, such as immunoglobulins; and antisense sequences which inhibit viral replication, such as antisense sequences which inhibit replication of hepatitis B or hepatitis non-A, non-B virus. The nucleic acid is chosen considering several factors, including the cell to be transfected. Where the target cell is a blood cell, for example, particularly useful nucleic acids to use are those which allow the blood cells to exert a therapeutic effect, such as a gene encoding a clotting factor for use in treatment of hemophilia. Furthermore, the 30 nucleic acid can encode more than one gene product, limited only, if the nucleic acid is to be packaged in a capsid, by the size of nucleic acid that can be packaged.

The term "polypeptide" as used herein refers to a polymer of amino acids and includes full-length proteins and fragments thereof. Thus, "protein," "polypeptide," and "peptide" are often used interchangeably herein. Substitutions can be selected by known 35 parameters to be neutral (see, e.g., Robinson WE Jr, and Mitchell WM., 1990. AIDS 4:S151-S162). As will be appreciated by those skilled in the art, the invention also includes

- 5 those polypeptides having slight variations in amino acid sequences or other properties. Such variations may arise naturally as allelic variations (e.g., due to genetic polymorphism) or may be produced by human intervention (e.g., by mutagenesis of cloned DNA sequences), such as induced point, deletion, insertion and substitution mutants. Minor changes in amino acid sequence are generally preferred, such as conservative amino acid 10 replacements, small internal deletions or insertions, and additions or deletions at the ends of the molecules. Substitutions may be designed based on, for example, the model of Dayhoff, et al. (in *Atlas of Protein Sequence and Structure* 1978, Nat'l Biomed. Res. Found., Washington, D.C.). These modifications can result in changes in the amino acid sequence, provide silent mutations, modify a restriction site, or provide other specific mutations.

15 The term "epithelia" is used herein to refer to cells which are linked tightly together by intercellular junctions to form a planar sheet. These sheets of cells form a barrier between two compartments. Epithelia therefore line all surfaces and cavities (including skin, peritoneum, linings of the intestine, airways, genitourinary tracts, glands, and blood vessels).

An epithelium has a free or apical surface facing the environment, or lumen of a 20 cavity, and a basal surface facing the underlying connective tissue. The boundary between the basal surface of an epithelium and the underlying connective tissue is usually very sharp, and is the site where the basal lamina (BL) is present. Most BL are too thin to be seen with the light microscope. However, the BL, together with a thin layer of connective tissue, is often times seen at the epithelial/connective tissue interface. This composite layer, visible 25 with the light microscope, was initially called the Basement Membrane. Application of the electron microscope revealed that, in most cases, this Basement Membrane actually consisted of the true basal lamina (lamina lucida plus lamina densa), along with a layer of adherent connective tissue.

For convenience of description, epithelia are classified into different types based on 30 the number of cell layers and the cell shape.

Epithelia which are 1 cell layer thick are called "simple" epithelia. Thus, each cell rests on the basal lamina, but also has a surface facing the lumen/outside world. Epithelia which are 2 or more cell layers thick are called "stratified" epithelia. In stratified epithelia, the basal layer of cells rests on the basal lamina, but subsequent layers do not, and are 35 simply stacked on top of the basal layer. The cells of the most superficial layer have a free surface. "squamous" cells are very flat, like a fried egg, where the yolk is the nucleus. The

5 nucleus is distinctly flattened, the cell is often so thin that this flattened nucleus bulges the cell surface outward. "cuboidal" cells range from true cuboidal where the cell is about as high as it is wide, to a flattened cuboidal where the cell is wider than high. In cuboidal cells the nucleus is usually round, and not flattened as in squamous. "columnar" cells are 2 or more times as high as wide. Nucleus is usually elongated in the long axis of the cell.

10 Squamous cells form the lining of cavities such as the mouth, blood vessels, heart and lungs and make up the outer layers of the skin. Cuboidal epithelium is found in glands and in the lining of the kidney tubules as well as in the ducts of the glands. They also constitute the germinal epithelium which produces the egg cells in the female ovary and the sperm cells in the male testes. Columnar epithelium forms the lining of the stomach and
15 intestines. Some columnar cells are specialized for sensory reception such as in the nose, ears and the taste buds of the tongue.

20 Ciliated columnar epithelial cells posses fine hair-like outgrowths, cilia on their free surfaces. These cilia are capable of rapid, rhythmic, wavelike beatings in a certain direction. Ciliated epithelium is usually found in the air passages like the nose. It is also found in the uterus and Fallopian tubes of females.

25 Columnar epithelium with goblet cells is called glandular epithelium. Some parts of the glandular epithelium consist of such a large number of goblet cells that there are only a few normal epithelial cells left. Columnar and cuboidal epithelial cells often become specialized as gland cells which are capable of synthesizing and secreting certain substances such as enzymes, hormones, milk, mucus, sweat, wax and saliva. Unicellular glands consist of single, isolated glandular cells such as the goblet cells. Sometimes a portion of the epithelial tissue becomes invaginated and a multicellular gland is formed. Multicellular glands are composed of clusters of cells. Most glands are multicellular including the salivary glands.

30 Where body linings have to withstand wear and tear, the epithelia are composed of several layers of cells and are then called compound or stratified epithelium. The top cells are flat and scaly and it may or may not be keratinized (i.e. containing a tough, resistant protein called keratin). The mammalian skin is an example of dry, keratinized, stratified epithelium. The lining of the mouth cavity is an example of an unkeratinized, stratified
35 epithelium.

5 *In vitro* Cell Models of Transcytosis

The use of *in vitro* cell models to study transcytosis has many advantages over *in vivo* systems. First, variation among animals is eliminated, as is the confounding issue of cargo possibly being modified or endocytosed by cell types other than the one under study. Moreover, *in vitro* systems can be manipulated in ways not possible *in vivo*, allowing 10 investigators to measure the effects of different variables (e.g., temperatures, pharmacological agents, etc.) with greater precision and to explore the molecular mechanisms of transcytosis.

The integrity of the monolayer is obviously vital to every study of transcytosis, and there are different methods for assessing it. Transepithelial electrical resistance (TER) 15 measurements are commonly used as an indication of tight junction integrity in a monolayer, and commercial instruments are available for these measurements.

Caco-2 cells, human primary colon carcinoma cells, are a well studied model of intestinal absorptive enterocytes. They are the most commonly used intestinal cell line because they differentiate furthest along the crypto-villus axis and are the easiest to 20 transfet. Caco-2 cells have been especially used to model transcytosis of bacteria, which can cross barrier epithelia in the gut and brain (Zhang JR, et al., 2000. Cell 102(6):827-37), incorporated herein by reference.

There is little evidence for *in vivo* transcytosis of macromolecular cargo in kidney. Nonetheless, MDCK cells, which are derived from dog kidney, are the most-studied 25 epithelial cell model and have been used extensively to study transcytosis. These cells were originally developed by nephrologists for permeability and electrical studies. Their subsequent use by cell biologists for studies of the formation of tight junctions, establishment of polarity, and vesicle traffic have popularized MDCK cells. An advantage is that MDCK cells are easily cultured, easily transfected, and become polarized 3–5 days after 30 seeding. They were used in the now classical studies showing that enveloped viruses bud in a polarized fashion and that the newly synthesized viral membrane glycoproteins are targeted directly from the TGN to the appropriate PM domain. Furthermore, much of the current understanding of the IgA transcytotic pathway and the sorting signals in the pIgA-R comes from the elegant studies performed in MDCK cells. Two MDCK strains with very 35 different features were identified some time ago. The MDCK I cell has a high TER and characteristics reminiscent of the renal collecting duct, whereas the more commonly used

- 5 MDCK II strain, whose TER is one order of magnitude lower than that of MDCK I cells, has phenotypic features closer to those of the renal proximal tubule.

Both primary cells and cell lines, alone and in coculture with endothelial cells, are being used to study transcytosis in the lung. Clonetics bronchial/tracheal epithelial cell systems contain normal human bronchial/treacheal epithelial cells. This cell system has been
10 used for experimental applications in cancer research, respiratory disease, cellular function and differentiation.

The Clonetics® bovine Brain Microvascular Endothelial Cell System (bMVEC-B) is a model of the “Blood Brain Barrier”. The system is designed to significantly improve a researcher’s ability to study active and passive transport of drugs across the blood brain
15 barrier, to study brain endothelial cell tight junctions, and to study the basic biology of brain microvascular endothelial cells (Schinkel AH ,1999. Advanced Drug Delivery Reviews 36:179-194; Tsukita S. et al., 1998. Molecular dissection of tight junctions:occluding and ZO-1 in Introduction to the Blood –Brain Barrier. Edited by William M Partridge; Inglis et al., 2004. Brain Research 998: 218-229), each of which is incorporated by reference for its
20 teaching of *in vitro* endothelial cell modeling of the blood-brain barrier.

Endometrial cells form an important barrier layer in the genitourinary tract. The cells used to model this system were developed by Kyo et al. and are derived from primary cells immortalized by the addition of the papillomavirus E6/E7 genes and human telomerase reverse transcriptase. The isolated cells have a normal chromosomes and retain
25 their responsiveness to sex-steriod hormones, exhibit glandular structure on three dimensional culture , and lack a transformed phenotype (Kyo S, et al. Am J Pathol., 2003. 163(6):2259-69), incorporated herein by reference for its teaching of this endometrial model.

Methods of Use

30 The use of AAVs to deliver genes to the lung would be of benefit in genetic diseases like cystic fibrosis, pseudohypoaldosteronism, and immotile cilia syndrome. Furthermore, delivering genes to the lung would be of impact in several non-genetic diseases. For example, delivering genes that make antibiotic like peptides to the cells underlying the epithelia would be useful to prevent or treat bronchitis; delivering genes that make growth
35 factors would be of value in common diseases like chronic bronchitis. Also, AAVs could be used to deliver genes that may play a role in asthma, like IL-10, or antibodies to IgE and

5 interleukins. The use of an AAV vector to deliver genes through the alveolar epithelia would be of benefit in genetic diseases like alpha-1-antitrypsin deficiency. Furthermore, delivering genes through the alveolar epithelia would be of significance in several pulmonary non-genetic diseases. For example, delivering genes that make antibiotic like peptides would be useful to prevent or treat pneumonia (perhaps of antibiotic-resistant organisms); delivering genes that make growth factors would be of value in emphysema; delivering genes that over-express the epithelial sodium channel or the Na-K ATPase could be used to treat cardiogenic and non-cardiogenic pulmonary edema; delivering genes that have an anti-fibrosis effect like interferon for pulmonary fibrosis would also be useful. Also, AAVs could be used to deliver genes that may have a systemic effect like anti-hypertension drugs, insulin, coagulation factors, antibiotics, growth factors, hormones and others.

10 The use of AAVs to deliver genes to the central nervous system (CNS)/ brain would be of benefit in neurological diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, triplet expansions diseases, psychoses, autism, lysosomal storage diseases, Gaucher's disease, Hurler's disease, Krabbe's disease, batten's disease, and altered behaviors (e.g., disorders in feeding, sleep patterns, balance, and perception).

15 The use of AAVs to deliver genes to the gastrointestinal system/ gut would be of benefit in treatment of diseases and/or Gastrointestinal Disorders such as colon cancers, inflammatory bowel disease, diabetes, or Crohn's disease.

20 The use of AAVs to deliver genes to the genitourinary system would be of benefit in treatment of diseases of the female reproductive tract, molecular defects in implantation disorders, and gynecological cancers. These methods would also have contraceptive applications.

25 The use of AAVs to deliver genes to the kidney would be of benefit in treatment of inherited renal disorders such as polycystic kidney disease, Alport's syndrome, hereditary nephritis, primary hyperoxaluria, and cystinuria.

30 The use of AAVs for wide-spread delivery of genes across blood vessels into the muscle would be of benefit in neuromuscular diseases like muscular dystrophy and 35 Cardiovascular Disorders such as heart disease, restenosis, atherosclerosis, myocarditis, stroke, angina, or thrombosis.

5 The use of AAVs for wide-spread delivery of genes across blood vessels into any/all tissues of a subject would be of benefit in the treatment of certain cancers (e.g., gastric, ovarian, lung, bladder, liver, and breast).

The use of AAVs for wide-spread delivery of genes across blood vessels into any/all tissues of a subject would be of benefit in the treatment of certain inflammatory disorders, 10 including, but not limited to, adrenalitis, alveolitis, angiocholecystitis, appendicitis, balanitis, blepharitis, bronchitis, bursitis, carditis, cellulitis, cervicitis, cholecystitis, chorditis, cochlitis, colitis, conjunctivitis, cystitis, dermatitis, diverticulitis, encephalitis, endocarditis, esophagitis, eustachitis, fibrosis, folliculitis, gastritis, gastroenteritis, gingivitis, glossitis, hepatosplenitis, keratitis, labyrinthitis, laryngitis, lymphangitis, mastitis, 15 media otitis, meningitis, metritis, mucitis, myocarditis, myositis, myringitis, nephritis, neuritis, orchitis, osteochondritis, otitis, pericarditis, peritendonitis, peritonitis, pharyngitis, phlebitis, poliomyelitis, prostatitis, pulpitis, retinitis, rhinitis, salpingitis, scleritis, sclerochoroiditis, scrotitis, sinusitis, spondylitis, steatitis, stomatitis, synovitis, syringitis, tendonitis, tonsillitis, urethritis, and vaginitis; and disorders that are characterized by 20 inflammation such as hepatitis, rheumatoid arthritis, gout, trauma, pancreatitis, sarcoidosis, dermatitis, renal ischemia-reperfusion injury, Grave's disease, systemic lupus erythematosus, diabetes mellitus, and allogenic transplant rejection.

The use of AAVs for wide-spread delivery of genes across blood vessels into any/all tissues of a subject would be of benefit in the treatment of other diseases, syndromes and 25 conditions, such as adenosine deaminase deficiency, sickle cell deficiency, thalassemia, hemophilia, diabetes, phenylketonuria, growth disorders, and defects of the immune system.

BAAV

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier of the lung, comprising delivering to the lung a BAAV vector comprising the nucleic 30 acid. In one aspect of the method, the epithelial barrier comprises human bronchial, alveolar, tracheal or upper airway epithelial cells. Thus, disclosed is a method of delivering a heterologous nucleic acid across human airway epithelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the brain, comprising delivering to the brain a BAAV vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human cerebral 35

5 microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier. Thus, disclosed is a method of delivering a heterologous nucleic acid across human cerebral microvascular endothelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.

Disclosed is a method of delivering a heterologous nucleic acid across the epithelial
10 barrier of blood vessels into the muscle, comprising delivering to the blood stream a BAAV vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human vascular endothelial cells.

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the genitourinary tract, comprising delivering to the genitourinary tract a BAAV
15 vector comprising the nucleic acid genitourinary tract. In one aspect of the method, the epithelial barrier comprises human endometrial or urinary epithelial cells. Thus, disclosed is a method of delivering a heterologous nucleic acid across human endometrial epithelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial
20 barrier in the kidney, comprising delivering to the genitourinary tract a BAAV vector comprising the nucleic acid genitourinary tract. In one aspect of the method, the epithelial barrier comprises human renal collecting ducts or proximal tubules. Thus, disclosed is a method of delivering a heterologous nucleic acid across human kidney epithelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.

25 Disclosed is a method of transcytosing lung epithelial cells of a subject comprising contacting the lung epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human bronchial, tracheal, or upper airway epithelial cells.

Disclosed is a method of transcytosing CNS epithelial cells of a subject comprising
30 contacting the CNS epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.

Disclosed is a method of transcytosing vascular epithelial cells of a subject
35 comprising contacting the vascular epithelial cells of the subject with a BAAV vector

- 5 comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human vascular endothelial cells of the blood brain barrier.

Disclosed is a method of transcytosing genitourinary tract epithelial cells of a subject comprising contacting the genitourinary tract epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human endometrial or urinary tract epithelial cells.

10 Disclosed is a method of transcytosing genitourinary tract epithelial cells of a subject comprising contacting the kidney epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human renal collecting ducts or proximal tubules

15 AAV5

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the gut, comprising delivering to the gut an AAV5 vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human absorptive enterocytes or M cells. Thus, disclosed is a method of delivering a heterologous nucleic acid 20 across human gut epithelial cells enterocytes, comprising delivering to the cells an AAV5 vector comprising the nucleic acid.

Disclosed is a method of transcytosing gut epithelial cells of a subject comprising contacting the gut epithelial cells of the subject with an AAV5 vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human 25 absorptive enterocytes.

AAV4

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the gut, comprising delivering to the gut an AAV4 vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human absorptive 30 enterocytes or M cells. Thus, disclosed is a method of delivering a heterologous nucleic acid across human gut epithelial cells enterocytes, comprising delivering to the cells an AAV4 vector comprising the nucleic acid.

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the lung, comprising delivering to the lung an AAV4 vector comprising the 35 nucleic acid. In one aspect of the method, the epithelial barrier comprises human bronchial,

5 tracheal, or upper airway epithelial cells. Thus, disclosed is a method of delivering a heterologous nucleic acid across human airway epithelial cells, comprising delivering to the cells an AAV4 vector comprising the nucleic acid.

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the CNS, comprising delivering to the CNS an AAV4 vector comprising the 10 nucleic acid. In one aspect of the method, the epithelial barrier comprises human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier. Thus, disclosed is a method of delivering a heterologous nucleic acid across human cerebral microvascular endothelial cells, comprising delivering to the cells a AAV4 vector comprising the nucleic acid.

15 Disclosed is a method of delivering a heterologous nucleic acid across the epithelial barrier of blood vessels into the muscle, comprising delivering to the blood stream an AAV4 vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human vascular endothelial cells of the blood brain barrier.

Disclosed is a method of delivering a heterologous nucleic acid across an epithelial 20 barrier in the genitourinary tract, comprising delivering to the genitourinary tract an AAV4 vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human endometrial or urinary epithelial cells. Thus, disclosed is a method of delivering a heterologous nucleic acid across human endometrial epithelial cells, comprising delivering to the cells an AAV4 vector comprising the nucleic acid.

25 Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the kidneys, comprising delivering to the kidneys an AAV4 vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human renal collecting ducts or proximal tubules. Thus, disclosed is a method of delivering a heterologous nucleic acid across human kidney epithelial cells, comprising delivering to the 30 cells an AAV4 vector comprising the nucleic acid.

Disclosed is a method of transcytosing lung epithelial cells of a subject comprising contacting the lung epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human bronchial, tracheal, or upper airway epithelial cells.

35 Disclosed is a method of transcytosing CNS epithelial cells of a subject comprising contacting the CNS epithelial cells of the subject with an AAV4 vector comprising a

5 heterologous nucleic acid. In one aspect of the method, the epithelial cells are human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.

Disclosed is a method of transcytosing vascular epithelial cells of a subject comprising contacting the vascular epithelial cells of the subject with an AAV4 vector
10 comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are vascular endothelial cells of the blood brain barrier.

Disclosed is a method of transcytosing genitourinary tract epithelial cells of a subject comprising contacting the genitourinary epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are
15 human endometrial or urinary epithelial cells.

Disclosed is a method of transcytosing kidney epithelial cells of a subject comprising contacting the kidney epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human renal collecting ducts or proximal tubules

20 Disclosed is a method of transcytosing gut epithelial cells of a subject comprising contacting the gut epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human absorptive enterocytes.

AAV7

25 Disclosed is a method of delivering a heterologous nucleic acid across an epithelial barrier in the CNS, comprising delivering to the CNS an AAV7 vector comprising the nucleic acid. In one aspect of the method, the epithelial barrier comprises human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier. Thus, disclosed is a method of delivering a heterologous nucleic acid across human
30 cerebral microvascular endothelial cells, comprising delivering to the cells an AAV7 vector comprising the nucleic acid.

Disclosed is a method of transcytosing CNS epithelial cells of a subject comprising contacting the CNS epithelial cells of the subject with an AAV7 vector comprising a heterologous nucleic acid. In one aspect of the method, the epithelial cells are human
35 cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.

5 **Inhibition of Transcytosis to Increase Transduction**

Described herein is a method for re-directing virus that enters a cell by transcytosis to result in transduction of the cell by blocking exocytosis. Thus, provided is a method of improving the efficiency of nucleic acid delivery to epithelial cells, comprising delivering to the cells an inhibitor of exocytosis and an AAV vector containing the nucleic acid. Also 10 provided is a method for transducing cells that have transcytosis activity but are normally resistant to transduction comprising administering to the cells inhibitors of exocytosis.

In one aspect of the methods, the AAV vector is derived from AAV4, AAV5, or BAAV. In a further aspect of the methods, the epithelial cell barriers are located in the kidney, gut, lung or vascular endothelium

15 Thus, disclosed is a method of delivering a heterologous nucleic acid to human airway epithelial cells, comprising delivering to the cells and an inhibitor of exocytosis and an AAV4 vector comprising the nucleic acid.

Further disclosed is a method of delivering a heterologous nucleic acid to human kidney epithelial cells, comprising delivering to the cells and an inhibitor of exocytosis and 20 an AAV4 vector comprising the nucleic acid.

Further disclosed is a method of delivering a heterologous nucleic acid to human vascular endothelial cells, comprising delivering to the cells and an inhibitor of exocytosis and an AAV4 vector comprising the nucleic acid.

25 Further disclosed is a method of delivering a heterologous nucleic acid to human airway epithelial cells, comprising delivering to the cells and an inhibitor of exocytosis and a BAAV vector comprising the nucleic acid.

Further disclosed is a method of delivering a heterologous nucleic acid to human kidney epithelial cells, comprising delivering to the cells and an inhibitor of exocytosis and a BAAV vector comprising the nucleic acid.

30 Further disclosed is a method of delivering a heterologous nucleic acid to human vascular endothelial cells, comprising delivering to the cells and an inhibitor of exocytosis and a BAAV vector comprising the nucleic acid.

Further disclosed is a method of delivering a heterologous nucleic acid to human gut epithelial cells, comprising delivering to the cells and an inhibitor of exocytosis and an 35 AAV5 vector comprising the nucleic acid.

5 In one aspect of the disclosed methods, the inhibitors of exocytosis are chemical modifiers. In a further aspect of the methods, the chemical modifier is tannic acid, wherein the tannic acid is delivered to the basal lateral surface of the epithelial cells.

Compositions and methods for making AAV4 vectors

10 Compositions and methods for making and using AAV4 vectors have been previously described in U.S. Patent No. 6,468,524, which is hereby incorporated herein by reference for this teaching.

Provided is the nucleotide sequence of the adeno-associated virus 4 (AAV4) genome and vectors and particles derived therefrom. Specifically, provided is a nucleic acid vector comprising a pair of AAV4 inverted terminal repeats (ITRs) and a promoter between the 15 inverted terminal repeats. The AAV4 ITRs are exemplified by the nucleotide sequence set forth in SEQ ID NO:6 and SEQ ID NO:20; however, these sequences can have minor modifications and still be contemplated to constitute AAV4 ITRs. The nucleic acid listed in SEQ ID NO:6 depicts the ITR in the "flip" orientation of the ITR. The nucleic acid listed in SEQ ID NO:20 depicts the ITR in the "flop" orientation of the ITR. Minor modifications in 20 an ITR of either orientation are those that will not interfere with the hairpin structure formed by the AAV4 ITR as described herein and known in the art. Furthermore, to be considered within the term "AAV4 ITRs" the nucleotide sequence must retain the Rep binding site described herein and exemplified in SEQ ID NO:6 and SEQ ID NO:20, *i.e.*, it must retain one or both features described herein that distinguish the AAV4 ITR from the AAV2 ITR: 25 (1) four (rather than three as in AAV2) "GAGC" repeats and (2) in the AAV4 ITR Rep binding site the fourth nucleotide in the first two "GAGC" repeats is a T rather than a C.

The promoter can be any desired promoter, selected by known considerations, such as the level of expression of a nucleic acid functionally linked to the promoter and the cell type in which the vector is to be used. Promoters can be an exogenous or an endogenous 30 promoter. Promoters can include, for example, known strong promoters such as SV40 or the inducible metallothionein promoter, or an AAV promoter, such as an AAV p5 promoter. Additional examples of promoters include promoters derived from actin genes, 35 immunoglobulin genes, cytomegalovirus (CMV), adenovirus, bovine papilloma virus, adenoviral promoters, such as the adenoviral major late promoter, an inducible heat shock promoter, respiratory syncytial virus, Rous sarcomas virus (RSV), etc. Specifically, the promoter can be AAV2 p5 promoter or AAV4 p5 promoter. More specifically, the AAV4

- 5 p5 promoter can be about nucleotides 130 to 291 of SEQ ID NO: 1. Additionally, the p5 promoter may be enhanced by nucleotides 1-130. Furthermore, smaller fragments of p5 promoter that retain promoter activity can readily be determined by standard procedures including, for example, constructing a series of deletions in the p5 promoter, linking the deletion to a reporter gene, and determining whether the reporter gene is expressed, *i.e.*,
10 transcribed and/or translated.

The present invention also contemplates any unique fragment of these AAV4 nucleic acids, including the AAV4 nucleic acids set forth in SEQ ID NOs: 1, 3, 5, 6, 7, 12-15, 17 and 19. Fragments can be, for example, at least about 30, 40, 50, 75, 100, 200 or 500 nucleotides in length. The nucleic acid can be single or double stranded, depending upon the
15 purpose for which it is intended.

The present invention further provides an AAV4 Capsid polypeptide or a unique fragment thereof. AAV4 capsid polypeptide is encoded by ORF 2 of AAV4. Specifically, provided is an AAV4 Capsid protein comprising the amino acid sequence encoded by nucleotides 2260-4464 of the nucleotide sequence set forth in SEQ ID NO:1, or a unique
20 fragment of such protein. The present invention also provides an AAV4 Capsid protein consisting essentially of the amino acid sequence encoded by nucleotides 2260-4464 of the nucleotide sequence set forth in SEQ ID NO:1, or a unique fragment of such protein. The present invention further provides the individual AAV4 coat proteins, VP1, VP2 and VP3. Thus, provided is an isolated polypeptide having the amino acid sequence set forth in SEQ
25 ID NO:4 (VP1). The present invention additionally provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO:16 (VP2). The present invention also provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO:18 (VP3). By “unique fragment thereof” is meant any smaller polypeptide fragment encoded by any AAV4 capsid gene that is of sufficient length to be unique to the AAV4 Capsid protein.
30 Substitutions and modifications of the amino acid sequence can be made as described above and, further, can include protein processing modifications, such as glycosylation, to the polypeptide. However, an AAV4 Capsid polypeptide including all three coat proteins will have at least about 63% overall homology to the polypeptide encoded by nucleotides 2260-4464 of the sequence set forth in SEQ ID NO: 1. The protein can have about 65%, about
35 70%, about 75%, about 80%, about 85%, about 90%, about 95% or even 100% homology to the amino acid sequence encoded by the nucleotides 4467 of the sequence set forth in SEQ

5 ID NO:1. An AAV4 VP2 polypeptide can have at least about 58%, about 60%, about 70%,
about 80%, about 90% about 95% or about 100% homology to the amino acid sequence set
forth in SEQ ID NO:16. An AAV4 VP3 polypeptide can have at least about 60%, about
70%, about 80%, about 90% about 95% or about 100% homology to the amino acid
sequence set forth in SEQ ID NO:18.

10 The herein described AAV4 nucleic acid vector can be encapsidated in an AAV
particle. In particular, it can be encapsidated in an AAV1 particle, an AAV2 particle, an
AAV3 particle, an AAV4 particle, or an AAV5 particle by standard methods using the
appropriate capsid proteins in the encapsidation process, as long as the nucleic acid vector
fits within the size limitation of the particle utilized. The encapsidation process itself is
15 standard in the art.

An AAV4 particle is a viral particle comprising an AAV4 capsid protein. An AAV4
capsid polypeptide encoding the entire VP1, VP2, and VP3 polypeptide can overall have at
least about 63% homology to the polypeptide having the amino acid sequence encoded by
nucleotides 2260-4464 set forth in SEQ ID NO:1 (AAV4 capsid protein). The capsid protein
20 can have about 70% homology, about 75% homology, 80% homology, 85% homology, 90%
homology, 95% homology, 98% homology, 99% homology, or even 100% homology to the
protein having the amino acid sequence encoded by nucleotides 2260-4464 set forth in SEQ
ID NO:1. The particle can be a particle comprising both AAV4 and AAV2 capsid protein,
i.e., a chimeric protein. Variations in the amino acid sequence of the AAV4 capsid protein
25 are contemplated herein, as long as the resulting viral particle comprising the AAV4 capsid
remains antigenically or immunologically distinct from AAV2, as can be routinely
determined by standard methods. Specifically, for example, ELISA and Western blots can
be used to determine whether a viral particle is antigenically or immunologically distinct
from AAV2. Furthermore, the AAV4 viral particle preferably retains tissue tropism
30 distinction from AAV2, such as that exemplified in the examples herein, though an AAV4
chimeric particle comprising at least one AAV4 coat protein may have a different tissue
tropism from that of an AAV4 particle consisting only of AAV4 coat proteins.

An AAV4 particle is a viral particle comprising an AAV4 capsid protein. An AAV4
capsid polypeptide encoding the entire VP1, VP2, and VP3 polypeptide can overall have at
35 least about 63% homology to the polypeptide having the amino acid sequence encoded by
nucleotides 2260-4467 set forth in SEQ ID NO:1 (AAV4 capsid protein). The capsid protein

5 can have about 70% homology, about 75% homology, 80% homology, 85% homology, 90% homology, 95% homology, 98% homology, 99% homology, or even 100% homology to the protein having the amino acid sequence encoded by nucleotides 2260-4467 set forth in SEQ ID NO:1. The particle can comprise only VP1 and VP3 and still stably transduce cells.

10 The particle can be a particle comprising both AAV4 and AAV2 capsid protein, *i.e.*, a chimeric protein. Variations in the amino acid sequence of the AAV4 capsid protein are contemplated herein, as long as the resulting viral particle comprising the AAV4 capsid remains antigenically or immunologically distinct from AAV2, as can be routinely determined by standard methods. Specifically, for example, ELISA and Western blots can be used to determine whether a viral particle is antigenically or immunologically distinct from AAV2. Furthermore, the AAV4 viral particle preferably retains tissue tropism distinction from AAV2, such as that exemplified in the examples herein, though an AAV4 chimeric particle comprising at least one AAV4 coat protein may have a different tissue tropism from that of an AAV4 particle consisting only of AAV4 coat proteins.

15 The invention further provides an AAV4 particle containing, *i.e.*, encapsidating, a vector comprising a pair of AAV2 inverted terminal repeats. The nucleotide sequence of AAV2 ITRs is known in the art. Furthermore, the particle can be a particle comprising both AAV4 and AAV2 capsid protein, *i.e.*, a chimeric protein. The vector encapsidated in the particle can further comprise an exogenous nucleic acid inserted between the inverted terminal repeats.

20 The present invention further provides an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:1 (AAV4 genome). This nucleic acid, or portions thereof, can be inserted into other vectors, such as plasmids, yeast artificial chromosomes, or other viral vectors, if desired, by standard cloning methods. The present invention also provides an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:1. The nucleotides of SEQ ID NO:1 can have minor modifications and still be contemplated by the present invention. For example, modifications that do not alter the amino acid encoded by any given codon (such as by modification of the third, "wobble," position in a codon) can readily be made, and such alterations are known in the art. Furthermore, modifications that cause a resulting neutral 25 amino acid substitution of a similar amino acid can be made in a coding region of the genome. Additionally, modifications as described herein for the AAV4 components, such as

- 5 the ITRs, the p5 promoter, etc. are contemplated in this invention.

The present invention additionally provides an isolated nucleic acid that selectively hybridizes with an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:1 (AAV4 genome). The present invention further provides an isolated nucleic acid that selectively hybridizes with an isolated nucleic acid comprising the 10 nucleotide sequence set forth in SEQ ID NO:1 (AAV4 genome). By "selectively hybridizes" as used in the claims is meant a nucleic acid that specifically hybridizes to the particular target nucleic acid under sufficient stringency conditions to selectively hybridize to the target nucleic acid without significant background hybridization to a nucleic acid encoding an unrelated protein, and particularly, without detectably hybridizing to AAV2. Thus, a 15 nucleic acid that selectively hybridizes with a nucleic acid of the present invention will not selectively hybridize under stringent conditions with a nucleic acid encoding a different protein, and vice versa. Therefore, nucleic acids for use, for example, as primers and probes to detect or amplify the target nucleic acids are contemplated herein. Nucleic acid fragments that selectively hybridize to any given nucleic acid can be used, e.g., as primers and or 20 probes for further hybridization or for amplification methods (e.g., polymerase chain reaction (PCR), ligase chain reaction (LCR)). Additionally, for example, a primer or probe can be designed that selectively hybridizes with both AAV4 and a gene of interest carried within the AAV4 vector (*i.e.*, a chimeric nucleic acid).

The present invention further provides an isolated nucleic acid encoding an adeno-associated virus 4 Rep protein. The AAV4 Rep proteins are encoded by open reading frame (ORF) 1 of the AAV4 genome. The AAV4 Rep genes are exemplified by the nucleic acid set forth in SEQ ID NO:3 (AAV4 ORF1), and include a nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:3 and a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:3. The present invention also includes a nucleic 25 acid encoding the amino acid sequence set forth in SEQ ID NO: 2 (polypeptide encoded by AAV4 ORF1). However, the present invention includes that the Rep genes nucleic acid can include any one, two, three, or four of the four Rep proteins, in any order, in such a nucleic acid. Furthermore, minor modifications are contemplated in the nucleic acid, such as silent 30 mutations in the coding sequences, mutations that make neutral or conservative changes in the encoded amino acid sequence, and mutations in regulatory regions that do not disrupt 35 the expression of the gene. Examples of other minor modifications are known in the art.

- 5 Further modifications can be made in the nucleic acid, such as to disrupt or alter expression of one or more of the Rep proteins in order to, for example, determine the effect of such a disruption; such as to mutate one or more of the Rep proteins to determine the resulting effect, etc. However, in general, a modified nucleic acid encoding all four Rep proteins will have at least about 90%, about 93%, about 95%, about 98% or 100% homology to the
- 10 sequence set forth in SEQ ID NO:3, and the Rep polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence set forth in SEQ ID NO:2.

The present invention also provides an isolated nucleic acid that selectively hybridizes with a nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:3 and an isolated nucleic acid that selectively hybridizes with a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:3. "Selectively hybridizing" is defined elsewhere herein.

The present invention also provides each individual AAV4 Rep protein and the nucleic acid encoding each. Thus provided is the nucleic acid encoding a Rep 40 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:12, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:12, and a nucleic acid encoding the adeno-associated virus 4 Rep protein having the amino acid sequence set forth in SEQ ID NO:8. The present invention also provides the nucleic acid encoding a Rep 52 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:13, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:13, and a nucleic acid encoding the adeno-associated virus 4 Rep protein having the amino acid sequence set forth in SEQ ID NO:9. The present invention further provides the nucleic acid encoding a Rep 68 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:14, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:14, and a nucleic acid encoding the adeno-associated virus 4 Rep protein having the amino acid sequence set forth in SEQ ID NO:10. And, further, provided is the nucleic acid encoding a Rep 78 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:15, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:15, and a nucleic acid encoding the adeno-associated virus 4 Rep protein

5 having the amino acid sequence set forth in SEQ ID NO:11. As described elsewhere herein, these nucleic acids can have minor modifications, including silent nucleotide substitutions, mutations causing neutral amino acid substitutions in the encoded proteins, and mutations in control regions that do not or minimally affect the encoded amino acid sequence.

The present invention further provides a nucleic acid encoding the entire AAV4 Capsid polypeptide. Specifically, provided is a nucleic acid having the nucleotide sequence set for the nucleotides 2260-4467 of SEQ ID NO:1. Furthermore, provided is a nucleic acid encoding each of the three AAV4 coat proteins, VP1, VP2, and VP3. Thus, provided is a nucleic acid encoding AAV4 VP1, a nucleic acid encoding AAV4 VP2, and a nucleic acid encoding AAV4 VP3. Thus, provided is a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO:4 (VP1); a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO:16 (VP2), and a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO:18 (VP3). The present invention also specifically provides a nucleic acid comprising SEQ ID NO:5 (VP1 gene); a nucleic acid comprising SEQ ID NO:17 (VP2 gene); and a nucleic acid comprising SEQ ID NO:19 (VP3 gene). The present invention also specifically provides a nucleic acid consisting essentially of SEQ ID NO:5 (VP1 gene), a nucleic acid consisting essentially of SEQ ID NO:17 (VP2 gene), and a nucleic acid consisting essentially of SEQ ID NO:19 (VP3 gene). Furthermore, a nucleic acid encoding an AAV4 capsid protein VP1 is set forth as nucleotides 2260-4467 of SEQ ID NO:1; a nucleic acid encoding an AAV4 capsid protein VP2 is set forth as nucleotides 2668-4467 of SEQ ID NO:1; and a nucleic acid encoding an AAV4 capsid protein VP3 is set forth as nucleotides 2848-4467 of SEQ ID NO:1. Minor modifications in the nucleotide sequences encoding the capsid, or coat, proteins are contemplated, as described above for other AAV4 nucleic acids.

Provided is an isolated AAV4 Rep protein. AAV4 Rep polypeptide is encoded by ORF1 of AAV4. Specifically, provided is an AAV4 Rep polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, or a unique fragment thereof. The present invention also provides an AAV4 Rep polypeptide consisting essentially of the amino acid sequence set forth in SEQ ID NO:2, or a unique fragment thereof. Additionally, nucleotides 291-2306 of the AAV4 genome, which genome is set forth in SEQ ID NO:1, encode the AAV4 Rep polypeptide. The present invention also provides each AAV4 Rep protein. Thus provided is AAV4 Rep 40, or a unique fragment thereof. The present invention particularly

5 provides Rep 40 having the amino acid sequence set forth in SEQ ID NO:8. Provided is
AAV4 Rep 52, or a unique fragment thereof. The present invention particularly provides
Rep 52 having the amino acid sequence set forth in SEQ ID NO:9. Provided is AAV4 Rep
68, or a unique fragment thereof. The present invention particularly provides Rep 68 having
the amino acid sequence set forth in SEQ ID NO:10. Provided is AAV4 Rep 78, or a unique
10 fragment thereof. The present invention particularly provides Rep 78 having the amino acid
sequence set forth in SEQ ID NO:11. By “unique fragment thereof” is meant any smaller
polypeptide fragment encoded by AAV rep gene that is of sufficient length to be unique to
the Rep polypeptide. Substitutions and modifications of the amino acid sequence can be
made as described above and, further, can include protein processing modifications, such as
15 glycosylation, to the polypeptide. However, a polypeptide including all four Rep proteins
will encode a polypeptide having at least about 91% overall homology to the sequence set
forth in SEQ ID NO:2, and it can have about 93%, about 95%, about 98%, about 99% or
100% homology with the amino acid sequence set forth in SEQ ID NO:2.

The present invention further provides an AAV4 Capsid polypeptide or a unique
20 fragment thereof. AAV4 capsid polypeptide is encoded by ORF 2 of AAV4. Specifically,
provided is an AAV4 Capsid protein comprising the amino acid sequence encoded by
nucleotides 2260-4467 of the nucleotide sequence set forth in SEQ ID NO:1, or a unique
fragment of such protein. The present invention also provides an AAV4 Capsid protein
consisting essentially of the amino acid sequence encoded by nucleotides 2260-4467 of the
25 nucleotide sequence set forth in SEQ ID NO:1, or a unique fragment of such protein. The
present invention further provides the individual AAV4 coat proteins, VP1, VP2 and VP3.
Thus, provided is an isolated polypeptide having the amino acid sequence set forth in SEQ
ID NO:4 (VP1). The present invention additionally provides an isolated polypeptide having
the amino acid sequence set forth in SEQ ID NO:16 (VP2). The present invention also
30 provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO:18
(VP3). By “unique fragment thereof” is meant any smaller polypeptide fragment encoded by
any AAV4 capsid gene that is of sufficient length to be unique to the AAV4 Capsid protein.
Substitutions and modifications of the amino acid sequence can be made as described above
and, further, can include protein processing modifications, such as glycosylation, to the
35 polypeptide. However, an AAV4 Capsid polypeptide including all three coat proteins will
have at least about 63% overall homology to the polypeptide encoded by nucleotides 2260-

- 5 4467 of the sequence set forth in SEQ ID NO: 1. The protein can have about 65%, about
70%, about 75%, about 80%, about 85%, about 90%, about 95% or even 100% homology to
the amino acid sequence encoded by the nucleotides 2260-4467 of the sequence set forth in
SEQ ID NO:4. An AAV4 VP2 polypeptide can have at least about 58%, about 60%, about
70%, about 80%, about 90% about 95% or about 100% homology to the amino acid
10 sequence set forth in SEQ ID NO:16. An AAV4 VP3 polypeptide can have at least about
60%, about 70%, about 80%, about 90% about 95% or about 100% homology to the amino
acid sequence set forth in SEQ ID NO:18.

The AAV inverted terminal repeats in the vector for the herein described delivery methods can be AAV4 inverted terminal repeats. Specifically, they can comprise the nucleic acid whose nucleotide sequence is set forth in SEQ ID NO:6 or the nucleic acid whose nucleotide sequence is set forth in SEQ ID NO:20, or any fragment thereof demonstrated to have ITR functioning. The ITRs can also consist essentially of the nucleic acid whose nucleotide sequence is set forth in SEQ ID NO:6 or the nucleic acid whose nucleotide sequence is set forth in SEQ ID NO:20. Furthermore, the AAV inverted terminal repeats in the vector for the herein described nucleic acid delivery methods can also comprise AAV2 inverted terminal repeats. Additionally, the AAV inverted terminal repeats in the vector for this delivery method can also consist essentially of AAV2 inverted terminal repeats.

Compositions and methods for making AAV5 vectors

Compositions and methods for making and using AAV5 vectors have been previously described in U.S. Patent Application No. 09/717,789, filed November 21, 2000, and in U.S. Patent No. 6,855,314, which are hereby incorporated herein by reference for this teaching.

The present application provides a recombinant adeno-associated virus 5 (AAV5). This virus has one or more of the characteristics described below. The compositions of the present invention do not include wild-type AAV5. The methods of the present invention can use either wild-type AAV5 or recombinant AAV5-based delivery.

Provided are novel AAV5 particles, recombinant AAV5 vectors, recombinant AAV5 virions and novel AAV5 nucleic acids and polypeptides. An AAV5 particle is a viral particle comprising an AAV5 capsid protein. A recombinant AAV5 vector is a nucleic acid construct that comprises at least one unique nucleic acid of AAV5. A recombinant AAV5 virion is a particle containing a recombinant AAV5 vector, wherin the particle can be either

- 5 an AAV5 particle as described herein or a non-AAV5 particle. Alternatively, the recombinant AAV5 virion is an AAV5 particle containing a recombinant vector, wherein the vector can be either an AAV5 vector as described herein or a non-AAV5 vector. These vectors, particles, virions, nucleic acids and polypeptides are described below.

Provided is the nucleotide sequence of the AAV5 genome and vectors and particles derived therefrom. Specifically, provided is a nucleic acid vector comprising a pair of AAV5 inverted terminal repeats (ITRs) and a promoter between the inverted terminal repeats. While the rep proteins of AAV2 and AAV5 will bind to either a type 2 ITR or a type 5 ITR, efficient genome replication only occurs when type 2 Rep replicates a type 2 ITR and a type 5 Rep replicates a type 5 ITR. This specificity is the result of a difference in 10 DNA cleavage specificity of the two Reps which is necessary for replication. AAV5 Rep cleaves at CGGT[^]GTGA (SEQ ID NO: 43) and AAV2 Rep cleaves at CGGT[^]TGAG (SEQ ID NO: 44) (Chiorini et al., 1999. J. Virol. 73 (5) 4293-4298). Mapping of the AAV5 ITR terminal resolution site (TRS) identified this distinct cleavage site, CGGT[^]GTGA, which is absent from the ITRs of other AAV serotypes. Therefore, the minimum sequence necessary 15 to distinguish AAV5 from AAV2 is the TRS site where Rep cleaves in order to replicate the virus. Examples of the type 5 ITRs are shown in SEQ ID NO: 41 and SEQ ID NO: 42, AAV5 ITR "flip" and AAV5 "flop", respectively. Minor modifications in an ITR of either orientation are contemplated and are those that will not interfere with the hairpin structure formed by the AAV5 ITR as described herein. Furthermore, to be considered within the 20 term "AAV5 ITR" the nucleotide sequence must retain one or more features described herein that distinguish the AAV5 ITR from the ITRs of other serotypes, e.g. it must retain the Rep binding site described herein.

The D- region of the AAV5 ITR (SEQ ID NO: 45), a single stranded region of the ITR, inboard of the TRS site, has been shown to bind a factor which depending on its 25 phosphorylation state correlates with the conversion of the AAV from a single stranded genome to a transcriptionally active form that allows for expression of the viral DNA. This region is conserved between AAV2, 3, 4, and 6 but is divergent in AAV5. The D+ region is the reverse complement of the D- region.

The promoter can be any desired promoter, selected by known considerations, such 30 as the level of expression of a nucleic acid functionally linked to the promoter and the cell type in which the vector is to be used. That is, the promoter can be tissue/cell-specific.

5 Promoters can be prokaryotic, eukaryotic, fungal, nuclear, mitochondrial, viral or plant promoters. Promoters can be exogenous or endogenous to the cell type being transduced by the vector. Promoters can include, for example, bacterial promoters, known strong promoters such as SV40 or the inducible metallothionein promoter, or an AAV promoter, such as an AAV p5 promoter. Additionally, chimeric regulatory promoters for targeted gene expression can be utilized. Examples of these regulatory systems, which are known in the art, include the tetracycline based regulatory system which utilizes the tet transactivator protein (tTA), a chimeric protein containing the VP16 activation domain fused to the tet repressor of *Escherichia coli*, the IPTG based regulatory system, the CID based regulatory system, and the Ecdysone based regulatory system. Other promoters include promoters
10 derived from actin genes, immunoglobulin genes, cytomegalovirus (CMV), adenovirus, bovine papilloma virus, adenoviral promoters, such as the adenoviral major late promoter, an inducible heat shock promoter, respiratory syncytial virus, Rous sarcomas virus (RSV), etc., specifically, the promoter can be AAV2 p5 promoter or AAV5 p5 promoter. More specifically, the AAV5 p5 promoter can be about same location in SEQ ID NO: 23 as the
15 AAV2 p5 promoter, in the corresponding AAV2 published sequence. An example of an AAV5 p5 promoter is nucleotides 220-338 of SEQ ID NO: 23. Additionally, the p5 promoter may be enhanced by nucleotides 1-130 of SEQ ID NO: 23. Furthermore, smaller fragments of p5 promoter that retain promoter activity can readily be determined by standard procedures including, for example, constructing a series of deletions in the p5 promoter,
20 linking the deletion to a reporter gene, and determining whether the reporter gene is expressed, i.e., transcribed and/or translated. The promoter can be the promoter of any of the AAV serotypes, and can be the p19 promoter (SEQ ID NO: 38) or the p40 promoter set forth in the sequence listing as SEQ ID NO: 39.
25

It should be recognized that any errors in any of the nucleotide sequences disclosed herein can be corrected, for example, by using the hybridization procedure described below with various probes derived from the described sequences such that the coding sequence can be reisolated and resequenced. Rapid screening for point mutations can also be achieved with the use of polymerase chain reaction single strand conformation polymorphism (PCR SSCP). The corresponding amino acid sequence can then be corrected accordingly.

30 The AAV5-derived vector can include any normally occurring AAV5 sequences in addition to an ITR and promoter. Examples of vector constructs are provided below.

5 The present vector or AAV5 particle or recombinant AAV5 virion can utilize any unique fragment of the present AAV5 nucleic acids, including the AAV5 nucleic acids set forth in SEQ ID NOS: 23 and 29-33, 35, 37, 38, 39 and 40. To be unique, the fragment must be of sufficient size to distinguish it from other known sequences, most readily determined by comparing any nucleic acid fragment to the nucleotide sequences of nucleic acids in
10 computer databases, such as GenBank. Such comparative searches are standard in the art. Typically, a unique fragment useful as a primer or probe will be at least about 8 or 10, preferable at least 20 or 25 nucleotides in length, depending upon the specific nucleotide content of the sequence. Additionally, fragments can be, for example, at least about 30, 40, 50, 75, 100, 200 or 500 nucleotides in length and can encode polypeptides or be probes. The
15 nucleic acid can be single or double stranded, depending upon the purpose for which it is intended. Where desired, the nucleic acid can be RNA.

The present invention further provides an isolated AAV5 capsid protein to contain the vector. In particular, provided is not only a polypeptide comprising all three AAV5 coat proteins, i.e., VP1, VP2 and VP3, but also a polypeptide comprising each AAV5 coat
20 protein individually, SEQ ID NOS: 26, 27, and 28, respectively. Thus an AAV5 particle comprising an AAV5 capsid protein comprises at least one AAV5 coat protein VP1, VP2 or VP3. An AAV5 particle comprising an AAV5 capsid protein can be utilized to deliver a nucleic acid vector to a cell, tissue or subject. For example, the herein described AAV5 vectors can be encapsidated in an AAV5 capsid-derived particle and utilized in a gene
25 delivery method. Furthermore, other viral nucleic acids can be encapsidated in the AAV5 particle and utilized in such delivery methods. For example, an AAV1, 2,3,4,or 6 vector (e.g. AAV1,2,3,4,or 6 ITR and nucleic acid of interest)can be encapsidated in an AAV5 particle and administered. Furthermore, an AAV5 chimeric capsid incorporating both AAV2 capsid and AAV5 capsid sequences can be generated, by standard cloning methods,
30 selecting regions from the known sequences of each protein as desired. For example, particularly antigenic regions of the AAV2 capsid protein can be replaced with the corresponding region of the AAV5 capsid protein. In addition to chimeric capsids incorporating AAV2 capsid sequences, chimeric capsids incorporating AAV1, 3, 4, or 6 and AAV5 capsid sequences can be generated, by standard cloning methods, selecting regions
35 from the known sequences of each protein as desired. The particle can also comprise only VP1 and VP3 capsid proteins.

5 The capsids can also be modified to alter their specific tropism by genetically
altering the capsid to encode a specific ligand to a cell surface receptor. Alternatively, the
capsid can be chemically modified by conjugating a ligand to a cell surface receptor. By
genetically or chemically altering the capsids, the tropism can be modified to direct AAV5
to a particular cell or population of cells. The capsids can also be altered immunologically
10 by conjugating the capsid to an antibody that recognizes a specific protein on the target cell
or population of cells.

15 The capsids can also be assembled into empty particles by expression in mammalian,
bacterial, fungal or insect cells. For example, AAV2 particles are known to be made from
VP3 and VP2 capsid proteins in baculovirus. The same basic protocol can produce an empty
AAV5 particle comprising an AAV5 capsid protein.

20 The herein described recombinant AAV5 nucleic acid derived vector can be
encapsidated in an AAV particle. In particular, it can be encapsidated in an AAV1 particle,
an AAV2 particle, an AAV3 particle, an AAV4 particle, an AAV5 particle or an AAV6
particle, a portion of any of these capsids, or a chimeric capsid particle as described above,
25 by standard methods using the appropriate capsid proteins in the encapsidation process, as
long as the nucleic acid vector fits within the size limitation of the particle utilized. The
encapsidation process itself is standard in the art. The AAV5 replication machinery, i.e. the
rep initiator proteins and other functions required for replication, can be utilized to produce
the AAV5 genome that can be packaged in an AAV1, 2, 3, 4, 5 or 6 capsid.

25 The recombinant AAV5 virion containing a vector can also be produced by
recombinant methods utilizing multiple plasmids. In one example, the AAV5 rep nucleic
acid would be cloned into one plasmid, the AAV5 ITR nucleic acid would be cloned into
another plasmid and the AAV1, 2, 3, 4, 5 or 6 capsid nucleic acid would be cloned on
another plasmid. These plasmids would then be introduced into cells. The cells that were
30 efficiently transduced by all three plasmids, would exhibit specific integration as well as the
ability to produce recombinant AAV5 virion. Additionally, two plasmids could be used
where the AAV5 rep nucleic acid would be cloned into one plasmid and the AAV5 ITR and
AAV5 capsid would be cloned into another plasmid. These plasmids would then be
introduced into cells. The cells that were efficiently transduced by both plasmids, would
35 exhibit specific integration as well as the ability to produce recombinant AAV5 virion.

5 An AAV5 capsid polypeptide encoding the entire VP1, VP2, and VP3 polypeptide can have greater than 56% overall homology to the polypeptide having the amino acid sequence encoded by nucleotides in SEQ ID NOS: 29, 30, 31, as shown in figures 4 and 5. The capsid protein can have about 70% homology, about 75% homology, 80% homology, 85% homology, 90% homology, 95% homology, 98% homology, 99% homology, or even 100% homology to the protein having the amino acid sequence encoded by the nucleotides set forth in SEQ ID NOS: 29, 30, or 31. The percent homology used to identify proteins herein, can be based on a nucleotide-by-nucleotide comparison or more preferable is based on a computerized algorithm as described herein. Variations in the amino acid sequence of the AAV5 capsid protein are contemplated herein, as long as the resulting particle 10 comprising an AAV5 capsid protein remains antigenically or immunologically distinct from AAV1, AAV2, AAV3, AAV4 or AAV6 capsid, as can be routinely determined by standard methods. Specifically, for example, ELISA and Western blots can be used to determine whether a viral particle is antigenically or immunologically distinct from AAV2 or the other serotypes. Furthermore, the AAV5 particle preferably retains tissue tropism distinction 15 from AAV2, such as that exemplified in the examples herein. An AAV5 chimeric particle comprising at least one AAV5 coat protein may have a different tissue tropism from that of an AAV5 particle consisting only of AAV5 coat proteins, but is still distinct from the tropism of an AAV2 particle, in that it will infect some cells not infected by AAV2 or an AAV2 particle.

20 The invention further provides a recombinant AAV5 virion, comprising an AAV5 particle containing, i.e., encapsidating, a vector comprising a pair of AAV5 inverted terminal repeats. The recombinant vector can further comprise an AAV5 Rep-encoding nucleic acid. The vector encapsidated in the particle can further comprise an exogenous nucleic acid inserted between the inverted terminal repeats. AAV5 Rep confers targeted 25 integration and efficient replication, thus production of recombinant AAV5, comprising AAV5 Rep, yields more particles than production of recombinant AAV2. Since AAV5 is more efficient at replicating and packaging its genome, the exogenous nucleic acid inserted, or in the AAV5 capsids of the present invention, between the inverted terminal repeats can 30 be packaged in the AAV1, 2, 3, 4, or 6 capsids to achieve the specific tissue tropism 35 conferred by the capsid proteins.

5 The invention further contemplates chimeric recombinant ITRs that contains a rep binding site and a TRS site recognized by that Rep protein. By "Rep protein" is meant all four of the Rep proteins, Rep 40, Rep 78, Rep 52, Rep 68. Alternatively, "Rep protein" could be one or more of the Rep proteins described herein. One example of a chimeric ITR would consist of an AAV5 D region (SEQ ID NO: 45), an AAV5 TRS site (SEQ ID NO: 43), an AAV2 hairpin and an AAV2 binding site. Another example would be an AAV5 D region, an AAV5 TRS site, an AAV3 hairpin and an AAV3 binding site. In these chimeric ITRs, the D region can be from AAV1, 2, 3, 4, 5 or 6. The hairpin can be derived from AAV 1,2 3, 4, 5, 6. The binding site can be derived from any of AAV1, 2, 3, 4, 5 or 6. Preferably, the D region and the TRS are from the same serotype.

10 The chimeric ITRs can be combined with AAV5 Rep protein and any of the AAV serotype capsids to obtain recombinant virion. For example, recombinant virion can be produced by an AAV5 D region, an AAV5 TRS site, an AAV2 hairpin, an AAV2 binding site, AAV5 Rep protein and AAV1 capsid. This recombinant virion would possess the cellular tropism conferred by the AAV1 capsid protein and would possess the efficient 15 replication conferred by the AAV5 Rep.

20 Other examples of the ITR, Rep protein and Capsids that will produce recombinant virion are provided in the list below:

25 5ITR + 5Rep + 5Cap=virion
 5ITR + 5Rep + 1Cap=virion
 5ITR + 5Rep + 2Cap=virion
 5ITR + 5Rep + 3Cap=virion
 5ITR + 5Rep + 4Cap=virion
 5ITR + 5Rep + 6Cap=virion
 1ITR + 1Rep + 5Cap=virion
30 2ITR + 2Rep + 5Cap=virion
 3ITR + 3Rep + 5Cap=virion
 4ITR + 4Rep + 5Cap=virion
 6ITR + 6Rep + 5Cap=virion

35 In any of the constructs described herein, inclusion of a promoter is preferred. As used in the constructs herein, unless otherwise specified, Cap (capsid) refers to any of AAV5 VP1, AAV5 VP2, AAV5 VP3, combinations thereof, functional fragments of any of

- 5 VP1, VP2 or VP3, or chimeric capsids as described herein. The ITRs of the constructs described herein, can be chimeric recombinant ITRs as described elsewhere in the application.

Conjugates of recombinant or wild-type AAV5 virions and nucleic acids or proteins can be used to deliver those molecules to a cell. For example, the purified AAV5 can be
10 used as a vehicle for delivering DNA bound to the exterior of the virus. Examples of this are to conjugate the DNA to the virion by a bridge using poly L lysine or other charged molecule. Also contemplated are virosomes that contain AAV5 structural proteins (AAV5 capsid proteins), lipids such as DOTAP, and nucleic acids that are complexed via charge interaction to introduce DNA into cells.

15 Also provided by this invention are conjugates that utilize the AAV5 capsid or a unique region of the AAV5 capsid protein (e.g. VP1, VP2 or VP3 or combinations thereof) to introduce DNA into cells. For example, the type 5 VP3 protein or fragment thereof, can be conjugated to a DNA on a plasmid that is conjugated to a lipid. Cells can be infected using the targeting ability of the VP3 capsid protein to achieve the desired tissue tropism,
20 specific to AAV5. Type 5 VP1 and VP2 proteins can also be utilized to introduce DNA or other molecules into cells. By further incorporating the Rep protein and the AAV TRS into the DNA-containing conjugate, cells can be transduced and targeted integration can be achieved. For example, if AAV5 specific targeted integration is desired, a conjugate composed of the AAV5 VP3 capsid, AAV5 rep or a fragment of AAV5 rep, AAV5 TRS,
25 the rep binding site, the heterologous DNA of interest, and a lipid, can be utilized to achieve AAV5 specific tropism and AAV5 specific targeted integration in the genome.

Further provided by this invention are chimeric viruses where AAV5 can be combined with herpes virus, herpes virus amplicons, baculovirus or other viruses to achieve a desired tropism associated with another virus. For example, the AAV5 ITRs could be
30 inserted in the herpes virus and cells could be infected. Post-infection, the ITRs of AAV5 could be acted on by AAV5 rep provided in the system or in a separate vehicle to rescue AAV5 from the genome. Therefore, the cellular tropism of the herpes simplex virus can be combined with AAV5 rep mediated targeted integration. Other viruses that could be utilized to construct chimeric viruses include, lentivirus, retrovirus, pseudotyped retroviral vectors,
35 and adenoviral vectors.

5 The present invention further provides isolated nucleic acids of AAV5. For example, provided is an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 23 (AAV5 genome). This nucleic acid, or portions thereof, can be inserted into vectors, such as plasmids, yeast artificial chromosomes, or other viral vector (particle), if desired, by standard cloning methods. The present invention also provides an isolated nucleic acid
10 consisting essentially of the nucleotide sequence set forth in SEQ ID NO: 23. The nucleotides of SEQ ID NO: 23 can have minor modifications and still be contemplated by the present invention. For example, modifications that do not alter the amino acid encoded by any given codon (such as by modification of the third, "wobble," position in a codon) can readily be made, and such alterations are known in the art. Furthermore, modifications that
15 cause a resulting neutral (conserved) amino acid substitution of a similar amino acid can be made in a coding region of the genome. Additionally, modifications as described herein for the AAV5 components, such as the ITRs, the p5 promoter, etc. are contemplated in this invention. Furthermore, modifications to regions of SEQ ID NO: 23 other than in the ITR, TRS Rep binding site and hairpin are likely to be tolerated without serious impact on the
20 function of the nucleic acid as a recombinant vector.

 The present invention additionally provides an isolated nucleic acid that selectively hybridizes with any nucleic acid disclosed herein, including the entire AAV5 genome and any unique fragment thereof, including the Rep and capsid encoding sequences (e.g. SEQ ID NOS: 23, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, and 45). Specifically, the
25 nucleic acid can selectively or specifically hybridize to an isolated nucleic acid consisting of the nucleotide sequence set forth in SEQ ID NO: 23 (AAV5 genome). The present invention further provides an isolated nucleic acid that selectively or specifically hybridizes with an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 23 (AAV5 genome). By "selectively hybridizes" as used herein is meant a nucleic acid that
30 hybridizes to one of the disclosed nucleic acids under sufficient stringency conditions without significant hybridization to a nucleic acid encoding an unrelated protein, and particularly, without detectably hybridizing to nucleic acids of AAV2. Thus, a nucleic acid that selectively hybridizes with a nucleic acid of the present invention will not selectively hybridize under stringent conditions with a nucleic acid encoding a different protein or the
35 corresponding protein from a different serotype of the virus, and vice versa. A "specifically hybridizing" nucleic acid is one that hybridizes under stringent conditions to only a nucleic

- 5 acid found in AAV5. Therefore, nucleic acids for use, for example, as primers and probes to detect or amplify the target nucleic acids are contemplated herein. Nucleic acid fragments that selectively hybridize to any given nucleic acid can be used, e.g., as primers and/or probes for further hybridization or for amplification methods (e.g., polymerase chain reaction (PCR), ligase chain reaction (LCR)). Additionally, for example, a primer or probe
10 can be designed that selectively hybridizes with both AAV5 and a gene of interest carried within the AAV5 vector (i.e., a chimeric nucleic acid).

A nucleic acid that selectively hybridizes to any portion of the AAV5 genome is contemplated herein. Therefore, a nucleic acid that selectively hybridizes to AAV5 can be of longer length than the AAV5 genome, it can be about the same length as the AAV5 genome
15 or it can be shorter than the AAV5 genome. The length of the nucleic acid is limited on the shorter end of the size range only by its specificity for hybridization to AAV5, i.e., once it is too short, typically less than about 5 to 7 nucleotides in length, it will no longer bind specifically to AAV5, but rather will hybridize to numerous background nucleic acids. Additionally contemplated by this invention is a nucleic acid that has a portion that
20 specifically hybridizes to AAV5 and a portion that specifically hybridizes to a gene of interest inserted within AAV5.

The present invention further provides an isolated nucleic acid encoding an adeno-associated virus 5 Rep protein. The AAV5 Rep proteins are encoded by open reading frame (ORF) 1 of the AAV5 genome. Examples of the AAV5 Rep genes are shown in the nucleic acid set forth in SEQ ID NO: 23, and include nucleic acids consisting essentially of the nucleotide sequences set forth in SEQ ID NOS: 32 (Rep52), 33 (Rep78), 35 (Rep40), and 37 (Rep68), and nucleic acids comprising the nucleotide sequences set forth in SEQ ID NOS: 32, 33, 35, and 37. However, the present invention contemplates that the Rep nucleic acid can include any one, two, three, or four of the four Rep proteins, in any order, in such a
25 nucleic acid. Furthermore, minor modifications are contemplated in the nucleic acid, such as silent mutations in the coding sequences, mutations that make neutral or conservative changes in the encoded amino acid sequence, and mutations in regulatory regions that do not disrupt the expression of the gene. Examples of other minor modifications are known in the art. Further modifications can be made in the nucleic acid, such as to disrupt or alter
30 expression of one or more of the Rep proteins in order to, for example, determine the effect of such a disruption; such as to mutate one or more of the Rep proteins to determine the
35 expression of the mutated protein.

5 resulting effect, etc. However, in general, a modified nucleic acid encoding a Rep protein will have at least about 85%, about 90%, about 93%, about 95%, about 98% or 100% homology to the Rep nucleic sequences described herein e.g., SEQ ID NOS: ~~11, 13 and 15~~
10 32, 33, 35 and 37, and the Rep polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence described herein, e.g., SEQ ID NOS: 24, 25, 34 and 36. Percent homology is determined by the techniques described herein.

The present invention also provides an isolated nucleic acid that selectively or specifically hybridizes with a nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NOS: 32, 33, 35 and 37, and an isolated nucleic acid that selectively 15 hybridizes with a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NOS: 32, 33, 35 and 37. "Selectively hybridizing" and "stringency of hybridization" is defined elsewhere herein.

As described above, provided is the nucleic acid encoding a Rep 40 protein and, in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 35, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO: 35, and a nucleic acid encoding the adeno-associated virus 5 protein having the amino acid sequence set forth in SEQ ID NO: 34. The present invention also provides the nucleic acid encoding a Rep 52 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 32, an isolated nucleic acid consisting 25 essentially of the nucleotide sequence set forth in SEQ ID NO: 32, and a nucleic acid encoding the adeno-associated virus 5 Rep protein having the amino acid sequence set forth in SEQ ID NO: 24. The present invention further provides the nucleic acid encoding a Rep 68 protein and, in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 37, an isolated nucleic acid consisting essentially of the nucleotide 30 sequence set forth in SEQ ID NO: 37, and a nucleic acid encoding the adeno-associated virus 5 protein having the amino acid sequence set forth in SEQ ID NO: 36. And, further, provided is the nucleic acid encoding a Rep 78 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 33, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO: 33, and a 35 nucleic acid encoding the adeno-associated virus 5 Rep protein having the amino acid sequence set forth in SEQ ID NO: 25. As described elsewhere herein, these nucleic acids

- 5 can have minor modifications, including silent nucleotide substitutions, mutations causing conservative amino acid substitutions in the encoded proteins, and mutations in control regions that do not or minimally affect the encoded amino acid sequence.

The present invention further provides a nucleic acid encoding the entire AAV5 Capsid polypeptide. Furthermore, provided is a nucleic acid encoding each of the three 10 AAV5 coat proteins, VP1, VP2, and VP3. Thus, provided is a nucleic acid encoding AAV5 VP1, a nucleic acid encoding AAV5 VP2, and a nucleic acid encoding AAV5 VP3. Thus, provided is a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 26 (VP1); a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 27 (VP2), and a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 28 (VP3). 15 The present invention also specifically provides a nucleic acid comprising SEQ ID NO: 29 (VP1 gene); a nucleic acid comprising SEQ ID NO: 30 (VP2 gene); and a nucleic acid comprising SEQ ID NO: 31 (VP3 gene). The present invention also specifically provides a nucleic acid consisting essentially of SEQ ID NO: 29 (VP1 gene), a nucleic acid consisting essentially of SEQ ID NO: 30 (VP2 gene), and a nucleic acid consisting essentially of SEQ 20 ID NO: 31 (VP3 gene). Minor modifications in the nucleotide sequences encoding the capsid, or coat, proteins are contemplated, as described above for other AAV5 nucleic acids. However, in general, a modified nucleic acid encoding a capsid protein will have at least about 85%, about 90%, about 93%, about 95%, about 98% or 100% homology to the capsid nucleic sequences described herein e.g., SEQ ID NOS: 29, 30 and 31, and the capsid 25 polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence described herein, e.g., SEQ ID NOS: 26, 27, and 28. Nucleic acids that selectively hybridize with the nucleic acids of SEQ ID NOS: 29, 30, and 31 under the conditions described above are also provided.

Provided is an isolated AAV5 Rep protein. An AAV5 Rep polypeptide is encoded 30 by ORF1 of AAV5. The present invention also provides each individual AAV5 Rep protein. Thus provided is AAV5 Rep 40 (e.g., SEQ ID NO: 34), or a unique fragment thereof. Provided is AAV5 Rep 52 (e.g., SEQ ID NO: 24), or a unique fragment thereof. Provided is AAV5 Rep 68 (e.g., SEQ ID NO: 36), or a unique fragment thereof. Provided is an example 35 of AAV5 Rep 78 (e.g., SEQ ID NO: 25), or a unique fragment thereof. By "unique fragment thereof" is meant any smaller polypeptide fragment encoded by an AAV5 rep gene that is of sufficient length to be found only in the Rep polypeptide. Substitutions and modifications of

- 5 the amino acid sequence can be made as described above and, further, can include protein processing modifications, such as glycosylation, to the polypeptide.

The present invention further provides an AAV5 Capsid polypeptide or a unique fragment thereof. AAV5 capsid polypeptide is encoded by ORF 2 of AAV5. The present invention further provides the individual AAV5 capsid proteins, VP1, VP2 and VP3 or
10 unique fragments thereof. Thus, provided is an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO: 26 (VP1). The present invention additionally provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO: 27 (VP2). The present invention also provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO: 28 (VP3). By "unique fragment thereof" is meant any smaller
15 polypeptide fragment encoded by any AAV5 capsid gene that is of sufficient length to be found only in the AAV5 capsid protein. Substitutions and modifications of the amino acid sequence can be made as described above and, further, can include protein processing modifications, such as glycosylation, to the polypeptide. However, an AAV5 Capsid polypeptide including all three coat proteins will have greater than about 56% overall
20 homology to the polypeptide encoded by the nucleotides set forth in SEQ ID NOS: 26, 27, or 28. The protein can have about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, 93%, 95%, 97% or even 100% homology to the amino acid sequence encoded by the nucleotides set forth in SEQ ID NOS: 26, 27 or 28. An AAV5 VP1 polypeptide can have at least about 58%, about 60%, about 70%, about 80%, about 90%, 93%, 95%, 97% or
25 about 100% homology to the amino acid sequence set forth in SEQ ID NO: 26. An AAV5 VP2 polypeptide can have at least about 58%, about 60%, about 70%, about 80%, about 90%, 93%, 95%, 97% or about 100% homology to the amino acid sequence set forth in SEQ ID NO: 27. An AAV5 VP3 polypeptide can have at least about 60%, about 70%, about 80%, about 90%, 93%, 95%, 97% or about 100% homology to the amino acid sequence set
30 forth in SEQ ID NO: 28.

The AAV ITRs in the vector for the herein described delivery methods can be AAV5 ITRs (SEQ ID NOS: 41 and 42). Furthermore, the AAV ITRs in the vector for the herein described nucleic acid delivery methods can also comprise AAV1, AAV2, AAV3, AAV4, or AAV6 inverted terminal repeats.

5 Compositions and methods for making BAAV vectors

Compositions and methods for making and using BAAV vectors have been previously described in U.S. Patent Application No. 60/526786, filed December 4, 2003, and in International Patent Application No. PCT/US04/40825, filed December 6, 2004, which are hereby incorporated herein by reference for this teaching.

10 Provided is a recombinant bovine adeno-associated virus (BAAV). This virus has one or more of the characteristics described below. The compositions of the present invention do not include wild-type BAAV. The methods of the present invention can use either wild-type BAAV or recombinant BAAV-based delivery.

Provided are novel BAAV particles, recombinant BAAV vectors and recombinant 15 BAAV virions. An BAAV particle is a viral particle comprising an BAAV capsid protein. A recombinant BAAV vector is a nucleic acid construct that comprises at least one unique nucleic acid of BAAV. A recombinant BAAV virion is a particle containing a recombinant BAAV vector, wherin the particle can be either an BAAV particle as described herein or a non-BAAV particle. Alternatively, the recombinant BAAV virion is an BAAV particle 20 containing a recombinant vector, wherein the vector can be either an BAAV vector as described herein or a non-BAAV vector. These vectors, particles, virions, nucleic acids and polypeptides are described below.

Provided is the nucleotide sequence of the BAAV genome and vectors and particles derived therefrom. Specifically, provided is a nucleic acid vector comprising a pair of 25 BAAV inverted terminal repeats (ITRs) and a promoter between the inverted terminal repeats. The rep proteins of AAV5 and BAAV will bind to the BAAV ITR and it can function as an origin of replication for packaging of recombinant AAV particles. The minimum sequence necessary for this activity is the TRS site where Rep cleaves in order to replicate the virus. Minor modifications in an ITR are contemplated and are those that will 30 not interfere with the hairpin structure formed by the ITR as described herein and known in the art. Furthermore, to be considered within the term e.g. it must retain the Rep binding site described herein.

The D- region of the AAV2 ITR, a single stranded region of the ITR, inboard of the TRS site, has been shown to bind a factor which depending on its phosphorylation state 35 correlates with the conversion of the AAV from a single stranded genome to a transcriptionally active form that allows for expression of the viral DNA. This region is

- 5 conserved between AAV2, 3, 4, and 6 but is divergent in AAV5 and BAAV (SEQ ID NO: 59). The D+ region is the reverse complement of the D- region.

The promoter can be any desired promoter, selected by known considerations, such as the level of expression of a nucleic acid functionally linked to the promoter and the cell type in which the vector is to be used. That is, the promoter can be tissue/cell-specific.

- 10 Promoters can be prokaryotic, eukaryotic, fungal, nuclear, mitochondrial, viral or plant promoters. Promoters can be exogenous or endogenous to the cell type being transduced by the vector. Promoters can include, for example, bacterial promoters, known strong promoters such as SV40 or the inducible metallothionein promoter, or an AAV promoter, such as an AAV p5 promoter. Additionally, chimeric regulatory promoters for targeted gene expression can be utilized. Examples of these regulatory systems, which are known in the art, include the tetracycline based regulatory system which utilizes the tet transactivator protein (tTA), a chimeric protein containing the VP16 activation domain fused to the tet repressor of Escherichia coli, the IPTG based regulatory system, the CID based regulatory system, and the Ecdysone based regulatory system. Other promoters include promoters derived from actin genes, immunoglobulin genes, cytomegalovirus (CMV), adenovirus, bovine papilloma virus, adenoviral promoters, such as the adenoviral major late promoter, an inducible heat shock promoter, respiratory syncytial virus, Rous sarcomas virus (RSV), etc., specifically, the promoter can be AAV2 p5 promoter or AAV5 p5 promoter or BAAV p5 promoter. More specifically, the BAAV p5 promoter can be in about the same location in SEQ ID NO: 47 as the AAV2 p5 promoter, in the corresponding AAV2 published sequence. Additionally, the p5 promoter may be enhanced by nucleotides 1-173 of SEQ ID NO: 47. Furthermore, smaller fragments of p5 promoter that retain promoter activity can readily be determined by standard procedures including, for example, constructing a series of deletions in the p5 promoter, linking the deletion to a reporter gene, and determining whether the reporter gene is expressed, i.e., transcribed and/or translated. The promoter can be the promoter of any of the AAV serotypes, and can be the p19 promoter (SEQ ID NO: 62) or the p40 promoter set forth in the sequence listing as SEQ ID NO: 63.

35 It should be recognized that any errors in any of the nucleotide sequences disclosed herein can be corrected, for example, by using the hybridization procedure described below with various probes derived from the described sequences such that the coding sequence can be reisolated and resequenced. Rapid screening for point mutations can also be achieved

- 5 with the use of polymerase chain reaction single strand conformation polymorphism (PCR SSCP). The corresponding amino acid sequence can then be corrected accordingly.

The BAAV-derived vector can include any normally occurring BAAV nucleic acid sequences in addition to an ITR and promoter. The BAAV-derived vector can also include sequences that are at least 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to 10 the BAAV nucleic acids set forth herein. Examples of vector constructs are provided below.

The present vector or BAAV particle or recombinant BAAV virion can utilize any unique fragment of these present BAAV nucleic acids, including the BAAV nucleic acids set forth in SEQ ID NOS: 47, 48, 50, 52, 54, 56 and 58-63. To be unique, the fragment must be of sufficient size to distinguish it from other known sequences, most readily determined 15 by comparing any nucleic acid fragment to the nucleotide sequences of nucleic acids in computer databases, such as GenBank. Such comparative searches are standard in the art. Typically, a unique fragment useful as a primer or probe will be at least about 8 or 10, preferable at least 20 or 25 nucleotides in length, depending upon the specific nucleotide content of the sequence. Additionally, fragments can be, for example, at least about 30, 40, 20 50, 75, 100, 200 or 500 nucleotides in length and can encode polypeptides or be probes. The nucleic acid can be single or double stranded, depending upon the purpose for which it is intended. Where desired, the nucleic acid can be RNA.

The present invention further provides a BAAV capsid protein to contain the vector. In particular, provided is not only a polypeptide comprising all three BAAV coat proteins, 25 i.e., VP1, VP2 and VP3, but also a polypeptide comprising each BAAV coat protein individually, SEQ ID NOS: 53, 55, and 57, respectively. Thus, an BAAV particle comprising an BAAV capsid protein comprises at least one BAAV coat protein VP1, VP2 or VP3. A BAAV particle comprising an BAAV capsid protein can be utilized to deliver a nucleic acid vector to a cell, tissue or subject. For example, the herein described BAAV 30 vectors can be encapsidated in an AAV5 capsid-derived particle and utilized in a gene delivery method. Furthermore, other viral nucleic acids can be encapsidated in the BAAV particle and utilized in such delivery methods. For example, an AAV1-8 or AAAV vector (e.g. AAV1-8 or AAAV ITR and nucleic acid of interest) can be encapsidated in an BAAV 35 particle and administered. Furthermore, a BAAV chimeric capsid incorporating both AAV1-8 or AAAV capsid and BAAV capsid sequences can be generated, by standard cloning methods, selecting regions from the known sequences of each protein as desired. For

5 example, particularly antigenic regions of the BAAV capsid protein can be replaced with the corresponding region of the BAAV capsid protein. In addition to chimeric capsids incorporating AAV2 capsid sequences, chimeric capsids incorporating AAV1, 3-8, and AAV5 capsid sequences can be generated, by standard cloning methods, selecting regions from the known sequences of each protein as desired. Alternatively a chimeric capsid can be
10 made by the addition of a plasmid that expresses AAV1-8 capsid proteins at a ratio with the BAAV capsid expression plasmid that allows only a few capsid proteins to be incorporated into the BAAV particle. Thus, for example, a chimeric particle may be constructed that contains 6 AAV2 capsid proteins and 54 BAAV capsid proteins if the complete capsid contains 60 capsid proteins.

15 The capsids can also be modified to alter their specific tropism by genetically altering the capsid to encode a specific ligand to a cell surface receptor. Alternatively, the capsid can be chemically modified by conjugating a ligand to a cell surface receptor. By genetically or chemically altering the capsids, the tropism can be modified to direct BAAV to a particular cell or population of cells. The capsids can also be altered immunologically
20 by conjugating the capsid to an antibody that recognizes a specific protein on the target cell or population of cells.

It has been recently reported that insertion of foreign epitopes (RGD motif, LH receptor targeting epitope) in certain regions of AAV2 capsid can redirect viral tropism. However, AAV2 naturally infects a wide variety of cell types and complete retargeting of
25 rAAV2 would be difficult to achieve. Provided are two regions in the capsid of BAAV that are on the virus surface and could tolerate substitution. These two regions are aa 257-264 (GSSNASDT, SEQ ID NO:67) and aa 444-457 (TTSGGTLNQGNSAT, SEQ ID NO:68). Other regions of the BAAV capsid could also accommodate the substitution of amino acids that would allow for epitope presentation on the surface of the virus. All of these regions
30 would have in common 1) Surface exposure 2) able to support a substitution of sequence to insert the epitope 3) still allow for capsid assembly.

Because of the symmetry of the AAV particles, a substitution in one subunit of the capsid will appear multiple times on the capsid surface. For example the capsid is made of approximately 55 VP3 proteins. Therefore an epitope incorporated in the VP3 protein could
35 be expressed 55 times on the surface of each particle increasing the likelihood of the epitope forming a stable interaction with its target. In some cases this may be too high of a ligand

5 density for functional binding or this high density of epitope may interfere with capsid formation. The epitope density could be lowered by introducing another plasmid into the packaging system for production of recombinant particles and the ratio between the packaging plasmid with the modified VP3 protein and the wt VP3 protein altered to balance the epitope density on the virus surface.

10 Epitopes could be incorporated into the virus capsid for the purpose of 1) altering the tropism of the virus 2) blocking an immune response direct at the virus 3) developing a host immune response to the epitope for the purpose of vaccination.

Examples of epitopes that could be added to BAAV capsids include but are not limited to:

15 LH receptor binding epitope

RGD integrin binding epitope

CD13 binding epitope NGRAHA SEQ ID NO:69

The Retanef polyprotein vaccine candidate for HIV-1

single chain antibody fragments directed against tumor cells

20 Endothelial cell binding epitope SIGYPLP SEQ ID NO:70

serpin receptor ligand, KFNKPFVFLI SEQ ID NO:71

protective B-cell epitope hemagglutinin (HA) 91-108 from influenza HA

NDV B-cell immunodominant epitope (IDE) spanning residues 447 to 455

Major immunogenic epitope for parvovirus B19 (NISLDNPLENPSSLFDLVARIK,

25 SEQ ID NO:72) that can elicit protective antibody titers.

The capsids can also be assembled into empty particles by expression in mammalian, bacterial, fungal or insect cells. For example, AAV2 particles are known to be made from VP3 and VP2 capsid proteins in baculovirus. The same basic protocol can produce an empty BAAV particle comprising BAAV capsid proteins and also full particles.

30 The herein described recombinant BAAV nucleic acid derived vector can be encapsidated in an AAV particle. In particular, it can be encapsidated in an AAV1 particle, an AAV2 particle, an AAV3 particle, an AAV4 particle, an AAV5 particle or an AAV6 or AAV7 or an AAV8 or AAAV particle, a portion of any of these capsids, or a chimeric capsid particle as described above, by standard methods using the appropriate capsid

35 proteins in the encapsidation process, as long as the nucleic acid vector fits within the size limitation of the particle utilized. The encapsidation process itself is standard in the art. The

- 5 BAAV replication machinery, i.e. the rep initiator proteins and other functions required for replication, can be utilized to produce the BAAV genome that can be packaged in an AAV1-8 or AAAV capsid.

The recombinant BAAV virion containing a vector can also be produced by recombinant methods utilizing multiple plasmids. In one example, the BAAV rep nucleic acid would be cloned into one plasmid, the BAAV ITR nucleic acid would be cloned into another plasmid and the AAV1-8 capsid nucleic acid would be cloned on another plasmid. These plasmids would then be introduced into cells. The cells that were efficiently transduced by all three plasmids, would exhibit specific integration as well as the ability to produce BAAV recombinant virus. Additionally, two plasmids could be used where the BAAV rep nucleic acid would be cloned into one plasmid and the BAAV ITR and BAAV capsid would be cloned into another plasmid. These plasmids would then be introduced into cells. The cells that were efficiently transduced by both plasmids, would exhibit specific integration as well as the ability to produce BAAV recombinant virus.

An BAAV capsid polypeptide encoding the entire VP1, VP2, and VP3 polypeptide can overall have greater than 56% homology to the polypeptide having the amino acid sequence encoded by nucleotides in SEQ ID NOS: 52, 54 and 56. The capsid protein can have about 70% homology, about 75% homology, 80% homology, 85% homology, 90% homology, 95% homology, 98% homology, 99% homology, or even 100% homology to the protein having the amino acid sequence encoded by the nucleotides set forth in SEQ ID NOS: 52, 54 and 56. The percent homology used to identify proteins herein, can be based on a nucleotide-by-nucleotide comparison or more preferable is based on a computerized algorithm as described herein. Variations in the amino acid sequence of the BAAV capsid protein are contemplated herein, as long as the resulting particle comprising an BAAV capsid protein remains antigenically or immunologically distinct from AAV1-8 or AAAV capsid, as can be routinely determined by standard methods. Specifically, for example, ELISA and Western blots can be used to determine whether a viral particle is antigenically or immunologically distinct from AAV2 or the other serotypes. Furthermore, the BAAV particle preferably retains tissue tropism distinction from other AAVs, such as that exemplified in the examples herein. A BAAV chimeric particle comprising at least one BAAV coat protein may have a different tissue tropism from that of an BAAV particle

- 5 consisting only of BAAV coat proteins, but is still distinct from the tropism of an AAV2
particle.

The invention further provides a recombinant BAAV virion, comprising a BAAV particle containing, i.e., encapsidating, a vector comprising a pair of BAAV inverted terminal repeats. The recombinant vector can further comprise a BAAV Rep-encoding 10 nucleic acid. The vector encapsidated in the particle can further comprise an exogenous nucleic acid inserted between the inverted terminal repeats.

The invention further contemplates chimeric recombinant ITRs that contain a rep binding site and a TRS site recognized by that Rep protein. By "Rep protein" is meant all four of the Rep proteins, Rep 40, Rep 78, Rep 52, Rep 68. Alternatively, "Rep protein" 15 could be one or more of the Rep proteins described herein. One example of a chimeric ITR would consist of an BAAV D region (SEQ ID NO: 59), an BAAV TRS site (SEQ ID NO: 60), an AAV2 hairpin and an AAV2 Rep binding site. Another example would be a BAAV D region, an BAAV TRS site, an AAV3 hairpin and an AAV3 Rep binding site. In these chimeric ITRs, the D region can be from AAV1-8 or AAAV. The hairpin can be derived 20 from AAV 1-8 or AAAV. The binding site can be derived from any of AAV1-8 or AAAV. Preferably, the D region and the TRS are from the same serotype.

The chimeric ITRs can be combined with BAAV Rep protein and any of the AAV serotype capsids to obtain recombinant virion. For example, recombinant virion can be produced by a BAAV D region, an BAAV TRS site, an AAV2 hairpin, an AAV2 binding site, BAAV Rep protein and AAV1 capsid. This recombinant virion would possess the cellular tropism conferred by the AAV1 capsid protein and would possess the efficient replication conferred by the BAAV Rep.

Other examples of the ITR, Rep protein and Capsids that will produce recombinant virus are provided in the list below but not limited to :

- 30 BAAV ITR + BAAV Rep + BAAV Cap=virus
AAV5 ITR + BAAV Rep + BAAV Cap=virus
AAV5 ITR + BAAV Rep + AAV1 Cap=virus
AAV5 ITR + BAAV Rep + AAV2 Cap=virus
AAV5 ITR + BAAV Rep + AAV3 Cap=virus
35 AAV5 ITR + BAAV Rep + AAV4 Cap=virus
AAV5 ITR + BAAV Rep + AAV5 Cap=virus

5 AAV5 ITR + BAAV Rep + AAV6 Cap=virus
AAV5 ITR + BAAV Rep + AAV7 Cap=virus
AAV5 ITR + BAAV Rep + AAV8 Cap=virus
BAAV ITR + AAV5 Rep + BAAV Cap=virus
BAAV ITR + AAV5 Rep + AAV1 Cap=virus
10 BAAV ITR + AAV5 Rep + AAV2 Cap=virus
BAAV ITR + AAV5 Rep + AAV3 Cap=virus
BAAV ITR + AAV5 Rep + AAV4 Cap=virus
BAAV ITR + AAV5 Rep + AAV5 Cap=virus
BAAV ITR + AAV5 Rep + AAV6 Cap=virus
15 BAAV ITR + AAV5 Rep + AAV7 Cap=virus
BAAV ITR + AAV5 Rep + AAV8 Cap=virus
AAV5 ITR + AAV5 Rep + BAAV Cap=virus
AAV1 ITR + AAV1 Rep + BAAV Cap=virus
AAV2 ITR + AAV2 Rep + BAAV Cap=virus
20 AAV3 ITR + AAV3 Rep + BAAV Cap=virus
AAV4 ITR + AAV4 Rep + BAAV Cap=virus
AAV5 ITR + AAV5 Rep + BAAV Cap=virus
AAV6 ITR + AAV6 Rep + BAAV Cap=virus
AAV7 ITR + AAV7 Rep + BAAV Cap=virus
25 AAV8 ITR + AAV8 Rep + BAAV Cap=virus

In any of the constructs described herein, inclusion of a promoter is preferred. As used in the constructs herein, unless otherwise specified, Cap (capsid) refers to any of BAAV VP1, BAAV VP2, BAAV VP3, combinations thereof, functional fragments of any of VP1, VP2 or VP3, or chimeric capsids as described herein. The ITRs of the constructs described herein, can be chimeric recombinant ITRs as described elsewhere in the application.

Conjugates of recombinant or wild-type BAAV virions and nucleic acids or proteins can be used to deliver those molecules to a cell. For example, the purified BAAV can be used as a vehicle for delivering DNA bound to the exterior of the virus. Examples of this are to conjugate the DNA to the virion by a bridge using poly L lysine or other charged molecule. Also contemplated are virosomes that contain BAAV structural proteins (BAAV

- 5 capsid proteins), lipids such as DOTAP, and nucleic acids that are complexed via charge interaction to introduce DNA into cells.

Also provided by this invention are conjugates that utilize the BAAV capsid or a unique region of the BAAV capsid protein (e.g. VP1, VP2 or VP3 or combinations thereof) to introduce DNA into cells. For example, the BAAV VP3 protein or fragment thereof, can 10 be conjugated to a DNA on a plasmid that is conjugated to a lipid. Cells can be infected using the targeting ability of the VP3 capsid protein to achieve the desired tissue tropism, specific to BAAV. BAAV VP1 and VP2 proteins can also be utilized to introduce DNA or other molecules into cells. By further incorporating the Rep protein and the AAV TRS into the DNA-containing conjugate, cells can be transduced and targeted integration can be 15 achieved. For example, if BAAV specific targeted integration is desired, a conjugate composed of the BAAV VP3 capsid, BAAV rep or a fragment of BAAV rep, BAAV TRS, the rep binding site, the heterologous DNA of interest, and a lipid, can be utilized to achieve BAAV specific tropism and BAAV specific targeted integration in the genome.

Further provided by this invention are chimeric viruses where BAAV can be 20 combined with herpes virus, baculovirus or other viruses to achieve a desired tropism associated with another virus. For example, the BAAV ITRs could be inserted in the herpes virus and cells could be infected. Post-infection, the ITRs of BAAV could be acted on by BAAV rep provided in the system or in a separate vehicle to rescue BAAV from the genome. Therefore, the cellular tropism of the herpes simplex virus can be combined with 25 BAAV rep mediated targeted integration. Other viruses that could be utilized to construct chimeric viruses include lentivirus, retrovirus, pseudotyped retroviral vectors, and adenoviral vectors.

The present invention further provides isolated nucleic acids of BAAV. For example, provided is an isolated nucleic acid comprising the nucleotide sequence set forth 30 in SEQ ID NO: 47 (BAAV genome). This nucleic acid, or portions thereof, can be inserted into vectors, such as plasmids, yeast artificial chromosomes, or other viral vector (particle), if desired, by standard cloning methods. The present invention also provides an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO: 47. The nucleotides of SEQ ID NO: 47 can have minor modifications and still be contemplated 35 by the present invention. For example, modifications that do not alter the amino acid encoded by any given codon (such as by modification of the third, "wobble," position in a

5 codon) can readily be made, and such alterations are known in the art. Furthermore, modifications that cause a resulting neutral (conserved) amino acid substitution of a similar amino acid can be made in a coding region of the genome. Additionally, modifications as described herein for the BAAV components, such as the ITRs, the p5 promoter, etc. are contemplated in this invention. Furthermore, modifications to regions of SEQ ID NO: 47
10 other than in the ITR, TRS, Rep binding site and hairpin are likely to be tolerated without serious impact on the function of the nucleic acid as a recombinant vector.

The present invention additionally provides an isolated nucleic acid that selectively hybridizes with any nucleic acid disclosed herein, including the entire BAAV genome and any unique fragment thereof, including the Rep and capsid encoding sequences (e.g. SEQ ID
15 NOS: 47, 48, 50, 52, 54, 56, 58, 59, 60, 61, 62, 63). Specifically, the nucleic acid can selectively or specifically hybridize to an isolated nucleic acid consisting of the nucleotide sequence set forth in SEQ ID NO: 47 (BAAV genome). The present invention further provides an isolated nucleic acid that selectively or specifically hybridizes with an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 47 (BAAV
20 genome). By "selectively hybridizes" as used herein is meant a nucleic acid that hybridizes to one of the disclosed nucleic acids under sufficient stringency conditions without significant hybridization to a nucleic acid encoding an unrelated protein, and particularly, without detectably hybridizing to nucleic acids of AAV2. Thus, a nucleic acid that selectively hybridizes with a nucleic acid of the present invention will not selectively
25 hybridize under stringent conditions with a nucleic acid encoding a different protein or the corresponding protein from a different serotype of the virus, and vice versa. A "specifically hybridizing" nucleic acid is one that hybridizes under stringent conditions to only a nucleic acid found in BAAV. Therefore, nucleic acids for use, for example, as primers and probes to detect or amplify the target nucleic acids are contemplated herein. Nucleic acid fragments
30 that selectively hybridize to any given nucleic acid can be used, e.g., as primers and/or probes for further hybridization or for amplification methods (e.g., polymerase chain reaction (PCR), ligase chain reaction (LCR)). Additionally, for example, a primer or probe can be designed that selectively hybridizes with both BAAV and a gene of interest carried within the BAAV vector (i.e., a chimeric nucleic acid).

35 A nucleic acid that selectively hybridizes to any portion of the BAAV genome is contemplated herein. Therefore, a nucleic acid that selectively hybridizes to BAAV can be

- 5 of longer length than the BAAV genome, it can be about the same length as the BAAV genome or it can be shorter than the BAAV genome. The length of the nucleic acid is limited on the shorter end of the size range only by its specificity for hybridization to BAAV, i.e., once it is too short, typically less than about 5 to 7 nucleotides in length, it will no longer bind specifically to BAAV, but rather will hybridize to numerous background 10 nucleic acids. Additionally contemplated by this invention is a nucleic acid that has a portion that specifically hybridizes to BAAV and a portion that specifically hybridizes to a gene of interest inserted within BAAV.

The present invention further provides an isolated nucleic acid encoding a bovine adeno-associated virus Rep protein. The BAAV Rep proteins are encoded by open reading frame (ORF) 1 of the BAAV genome. Examples of the BAAV Rep genes are shown in the nucleic acid set forth in SEQ ID NO: 47, and include nucleic acids consisting essentially of the nucleotide sequences set forth in SEQ ID NOS: 48 (rep78), 4(rep52) and nucleic acids comprising the nucleotide sequences set forth in SEQ ID NOS: 48 and 50. However, the present invention contemplates that the Rep nucleic acid can include any one, two, three, or 20 four of the four Rep proteins, in any order, in such a nucleic acid. Furthermore, minor modifications are contemplated in the nucleic acid, such as silent mutations in the coding sequences, mutations that make neutral or conservative changes in the encoded amino acid sequence, and mutations in regulatory regions that do not disrupt the expression of the gene. Examples of other minor modifications are known in the art. Further modifications can be 25 made in the nucleic acid, such as to disrupt or alter expression of one or more of the Rep proteins in order to, for example, determine the effect of such a disruption; such as to mutate one or more of the Rep proteins to determine the resulting effect, etc. However, in general, a modified nucleic acid encoding a Rep protein will have at least about 85%, about 90%, about 93%, about 95%, about 98% or 100% homology to the Rep nucleic sequences 30 described herein e.g., SEQ ID NOS: 48 and 50, and the Rep polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence described herein, e.g., SEQ ID NOS: 49 and 51. Percent homology is determined by the techniques described herein.

The present invention also provides an isolated nucleic acid that selectively or 35 specifically hybridizes with a nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NOS: 48 and 50, and an isolated nucleic acid that selectively hybridizes

- 5 with a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NOS: 48 and 50.
“Selectively hybridizing” and “stringency of hybridization” is defined elsewhere herein.

As described above, provided is the nucleic acid encoding a Rep 78 protein and, in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 48, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO: 48, and a nucleic acid encoding the bovine adeno-associated virus protein having the amino acid sequence set forth in SEQ ID NO: 49. The present invention also provides the nucleic acid encoding a Rep 52 protein, and in particular an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 50, an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO: 50, and a nucleic acid encoding the bovine adeno-associated virus Rep 52 protein having the amino acid sequence set forth in SEQ ID NO: 51. As described elsewhere herein, these nucleic acids can have minor modifications, including silent nucleotide substitutions, mutations causing conservative amino acid substitutions in the encoded proteins, and mutations in control regions that do not or minimally affect the encoded amino acid sequence.

The present invention further provides a nucleic acid encoding the entire BAAV Capsid polypeptide. Furthermore, provided is a nucleic acid encoding each of the three BAAV coat proteins, VP1, VP2, and VP3. Thus, provided is a nucleic acid encoding BAAV VP1, a nucleic acid encoding BAAV VP2, and a nucleic acid encoding BAAV VP3. Thus, provided is a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 53 (VP1); a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 55 (VP2), and a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 57 (VP3). The present invention also specifically provides a nucleic acid comprising SEQ ID NO: 52 (VP1 gene); a nucleic acid comprising SEQ ID NO: 54 (VP2 gene); and a nucleic acid comprising SEQ ID NO: 56 (VP3 gene). The present invention also specifically provides a nucleic acid consisting essentially of SEQ ID NO: 52 (VP1 gene), a nucleic acid consisting essentially of SEQ ID NO: 54 (VP2 gene), and a nucleic acid consisting essentially of SEQ ID NO: 56 (VP3 gene). Minor modifications in the nucleotide sequences encoding the capsid, or coat, proteins are contemplated, as described above for other BAAV nucleic acids. However, in general, a modified nucleic acid encoding a capsid protein will have at least about 85%, about 90%, about 93%, about 95%, about 98% or 100% homology to the capsid nucleic sequences described herein e.g., SEQ ID NOS: 52, 54 and 56, and the capsid

- 5 polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence described herein, e.g., SEQ ID NOS: 53, 55 and 57. Nucleic acids that selectively hybridize with the nucleic acids of SEQ ID NOS: 52, 54 and 56 under the conditions described above are also provided.

Provided is an isolated BAAV Rep protein. An BAAV Rep polypeptide is encoded by ORF1 of BAAV. The present invention also provides each individual BAAV Rep protein. Thus provided is BAAV Rep 52 (e.g., SEQ ID NO: 50), or a unique fragment thereof. Provided is BAAV Rep 78 (e.g., SEQ ID NO: 48), or a unique fragment thereof. By "unique fragment thereof" is meant any smaller polypeptide fragment encoded by an BAAV rep gene that is of sufficient length to be found only in the Rep polypeptide. Substitutions and modifications of the amino acid sequence can be made as described above and, further, can include protein processing modifications, such as glycosylation, to the polypeptide.

The present invention further provides a BAAV Capsid polypeptide or a unique fragment thereof. BAAV capsid polypeptide is encoded by ORF 2 of BAAV. The present invention further provides the individual BAAV capsid proteins, VP1, VP2 and VP3 or unique fragments thereof. Thus, provided is an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO:52 (VP1). The present invention additionally provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO: 54 (VP2). The present invention also provides an isolated polypeptide having the amino acid sequence set forth in SEQ ID NO:56 (VP3). By "unique fragment thereof" is meant any smaller polypeptide fragment encoded by any BAAV capsid gene that is of sufficient length to be found only in the BAAV capsid protein. Substitutions and modifications of the amino acid sequence can be made as described above and, further, can include protein processing modifications, such as glycosylation, to the polypeptide. However, an BAAV Capsid polypeptide including all three coat proteins will have greater than about 56% overall homology to the polypeptide encoded by the nucleotides set forth in SEQ ID NOS: 52, 54 or 56. The protein can have about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, 93%, 95%, 97% or even 100% homology to the amino acid sequence encoded by the nucleotides set forth in SEQ ID NOS: 52, 54 or 56. An BAAV VP1 polypeptide can have at least about 58%, about 60%, about 70%, about 80%, about 90%, 93%, 95%, 97% or about 100% homology to the amino acid sequence set forth in SEQ ID NO: 53. An BAAV VP2 polypeptide can have at least about 58%, about 60%, about 70%, about 80%, about 90%,

5 93%, 95%, 97% or about 100% homology to the amino acid sequence set forth in SEQ ID NO: 55. An BAAV VP3 polypeptide can have at least about 60%, about 70%, about 80%, about 90%, 93%, 95%, 97% or about 100% homology to the amino acid sequence set forth in SEQ ID NO: 57.

10 The present invention also provides a method of producing the BAAV virus by transducing a cell with the nucleic acid encoding the virus.

The present method further provides a method of delivering an exogenous (heterologous) nucleic acid to a cell comprising administering to the cell an BAAV particle containing a vector comprising the nucleic acid inserted between a pair of AAV inverted terminal repeats, thereby delivering the nucleic acid to the cell.

15 The AAV ITRs in the vector for the herein described delivery methods can be AAV ITRs (SEQ ID NOS: 58). Furthermore, the AAV ITRs in the vector for the herein described nucleic acid delivery methods can also comprise AAV1-8 or AAAV inverted terminal repeats.

Compositions and methods for making AAV7 vectors

20 Compositions and methods for making and using AAV7 vectors have been previously described in Gao GP, et al. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11854-9; U.S. Patent Application 2003/0228282; and International Patent Application No. PCT/US02/33630, which are hereby incorporated by reference herein for the teaching of compositions and method for making and using AAV7 virions, vectors, and particles.

25 Provided is a recombinant adeno-associated virus-7 (AAV7). This virus has one or more of the characteristics described below. The compositions of the present invention do not include wild-type AAV7. The methods of the present invention can use either wild-type AAV7 or recombinant AAV7-based delivery.

Provided are AAV7 particles, recombinant AAV7 vectors and recombinant AAV7 30 virions. An AAV7 particle is a viral particle comprising an AAV7 capsid protein. A recombinant AAV7 vector is a nucleic acid construct that comprises at least one unique nucleic acid of AAV7. A recombinant AAV7 virion is a particle containing a recombinant AAV7 vector, wherein the particle can be either an AAV7 particle as described herein or a non-AAV7 particle. Alternatively, the recombinant AAV7 virion is an AAV7 particle 35 containing a recombinant vector, wherein the vector can be either an AAV7 vector as

5 described herein or a non-AAV7 vector. These vectors, particles, virions, nucleic acids and polypeptides are described below.

The AAV7-derived vector can include any normally occurring AAV7 nucleic acid sequences. The AAV7-derived vector can also include sequences that are at least 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the AAV7 nucleic acids set forth herein. Examples of vector constructs are provided below.

10 The present vector or AAV7 particle or recombinant AAV7 virion can utilize any unique fragment of the present AAV7 nucleic acids, including the AAV7 nucleic acids set forth in SEQ ID NO:64. Fragments can be, for example, at least about 30, 40, 50, 75, 100, 200 or 500 nucleotides in length. The nucleic acid can be single or double stranded, 15 depending upon the purpose for which it is intended.

15 The present invention further provides an AAV7 capsid protein to contain the vector. In particular, provided is a polypeptide comprising AAV7 capsid protein, SEQ ID NO:66. An AAV7 particle comprising an AAV7 capsid protein can be utilized to deliver a nucleic acid vector to a cell, tissue or subject. For example, the herein described AAV7 vectors can 20 be encapsidated in an AAV5 capsid-derived particle and utilized in a gene delivery method. Furthermore, other viral nucleic acids can be encapsidated in the AAV7 particle and utilized in such delivery methods. For example, an AAV1-6, 8, BAAV or AAAV vector (e.g. AAV1-6, 8, BAAV or AAAV ITR and nucleic acid of interest) can be encapsidated in an AAV7 particle and administered. Furthermore, a AAV7 chimeric capsid incorporating 25 AAV1-6, 8, BAAV or AAAV capsid, and AAV7 capsid sequences can be generated, by standard cloning methods, selecting regions from the known sequences of each protein as desired. For example, particularly antigenic regions of the AAV2 capsid protein can be replaced with the corresponding region of the AAV7 capsid protein. In addition to chimeric capsids incorporating AAV2 capsid sequences, chimeric capsids incorporating AAV1, 3-6, 30 8, BAAV and AAV5 capsid sequences can be generated, by standard cloning methods, selecting regions from the known sequences of each protein as desired. Alternatively a chimeric capsid can be made by the addition of a plasmid that expresses AAV1, 3-6, 8, BAAV or AAV5 capsid proteins at a ratio with the AAV7 capsid expression plasmid that allows only a few capsid proteins to be incorporated into the AAV7 particle. Thus, for 35 example, a chimeric particle may be constructed that contains 6 AAV2 capsid proteins and 54 AAV7 capsid proteins if the complete capsid contains 60 capsid proteins.

5 The capsids can also be assembled into empty particles by expression in mammalian, bacterial, fungal or insect cells. For example, AAV2 particles are known to be made from VP3 and VP2 capsid proteins in baculovirus. The same basic protocol can produce an empty AAV7 particle comprising AAV7 capsid proteins and also full particles.

The herein described recombinant AAV7 nucleic acid derived vector can be
10 encapsidated in an AAV particle. In particular, it can be encapsidated in an AAV1 particle, an AAV2 particle, an AAV3 particle, an AAV4 particle, an AAV5 particle, an AAV6, an AAV8, a BAAV particle or AAAV particle, a portion of any of these capsids, or a chimeric capsid particle as described above, by standard methods using the appropriate capsid proteins in the encapsidation process, as long as the nucleic acid vector fits within the size
15 limitation of the particle utilized. The encapsidation process itself is standard in the art. The AAV7 replication machinery, i.e. the rep initiator proteins and other functions required for replication, can be utilized to produce the AAV7 genome that can be packaged in an AAV1-6, 8, BAAV or AAAV capsid.

The recombinant AAV7 virion containing a vector can also be produced by
20 recombinant methods utilizing multiple plasmids. In one example, the AAV7 rep nucleic acid would be cloned into one plasmid, the AAV2 ITR nucleic acid would be cloned into another plasmid and the AAV7 capsid nucleic acid would be cloned on another plasmid. These plasmids would then be introduced into cells. The cells that were efficiently transduced by all three plasmids, would exhibit specific integration as well as the ability to
25 produce AAV7 recombinant virus. Additionally, two plasmids could be used where the AAV7 rep nucleic acid would be cloned into one plasmid and the AAV7 ITR and AAV7 capsid would be cloned into another plasmid. These plasmids would then be introduced into cells. The cells that were efficiently transduced by both plasmids, would exhibit specific integration as well as the ability to produce AAV7 recombinant virus.

30 An AAV7 capsid polypeptide encoding the entire VP1 polypeptide can overall have greater than 56% homology to the polypeptide having the amino acid sequence encoded by nucleotides in SEQ ID NO:66. The capsid protein can have about 70% homology, about 75% homology, 80% homology, 85% homology, 90% homology, 95% homology, 98% homology, 99% homology, or even 100% homology to the protein having the amino acid sequence encoded by the nucleotides set forth in SEQ ID NO:66. The percent homology used to identify proteins herein, can be based on a nucleotide-by-nucleotide comparison or

5 more preferable is based on a computerized algorithm as described herein. Variations in the amino acid sequence of the AAV7 capsid protein are contemplated herein, as long as the resulting particle comprising an AAV7 capsid protein remains antigenically or immunologically distinct from AAV1-6, 8, BAAV or AAAV capsid, as can be routinely determined by standard methods. Specifically, for example, ELISA and Western blots can
10 be used to determine whether a viral particle is antigenically or immunologically distinct from AAV2 or the other serotypes. Furthermore, the AAV7 particle preferably retains tissue tropism distinction from other AAVs. An AAV7 chimeric particle comprising at least one AAV7 coat protein may have a different tissue tropism from that of an AAV7 particle consisting only of AAV7 coat proteins, but is still distinct from the tropism of an AAV2
15 particle.

The invention further provides a recombinant AAV7 virion, comprising an AAV7 particle containing, i.e., encapsidating, a vector comprising a pair of AAV7 inverted terminal repeats. The recombinant vector can further comprise an AAV7 Rep-encoding nucleic acid. The vector encapsidated in the particle can further comprise an exogenous
20 nucleic acid inserted between the inverted terminal repeats.

For example, recombinant virion can be produced by a AAV2 ITR, AAV2 Rep protein and AAV7 capsid. This recombinant virion would possess the cellular tropism conferred by the AAV7 capsid protein and would possess the efficient replication conferred by the AAV2 Rep.

25 Other examples of the ITR, Rep protein and Capsids that will produce recombinant virus are provided in the list below but not limited to :

AAV5 ITR + AAV7 Rep + AAV1 Cap=virus
AAV5 ITR + AAV7 Rep + AAV2 Cap=virus
AAV5 ITR + AAV7 Rep + AAV3 Cap=virus
30 AAV5 ITR + AAV7 Rep + AAV4 Cap=virus
AAV5 ITR + AAV7 Rep + AAV5 Cap=virus
AAV5 ITR + AAV7 Rep + AAV6 Cap=virus
AAV5 ITR + AAV7 Rep + AAV7 Cap=virus
AAV5 ITR + AAV7 Rep + AAV8 Cap=virus
35 AAV5 ITR + AAV7 Rep + BAAV Cap=virus
AAV5 ITR + AAV7 Rep + AAAV Cap=virus

5 AAV1 ITR + AAV1 Rep + AAV7 Cap=virus
AAV2 ITR + AAV2 Rep + AAV7 Cap=virus
AAV3 ITR + AAV3 Rep + AAV7 Cap=virus
AAV4 ITR + AAV4 Rep + AAV7 Cap=virus
AAV5 ITR + AAV5 Rep + AAV7 Cap=virus
10 AAV6 ITR + AAV6 Rep + AAV7 Cap=virus
AAV8 ITR + AAV8 Rep + AAV7 Cap=virus
BAAV ITR + BAAV Rep + AAV7 Cap=virus
AAAV ITR + AAAV Rep + AAV7 Cap=virus

15 In any of the constructs described herein, inclusion of a promoter is preferred. As used in the constructs herein, unless otherwise specified, Cap (capsid) refers to any of AAV7 VP1, AAV7 VP2, AAV7 VP3, combinations thereof, functional fragments of any of VP1, VP2 or VP3, or chimeric capsids as described herein. The ITRs of the constructs described herein, can be chimeric recombinant ITRs as described elsewhere in the
20 application.

Conjugates of recombinant or wild-type AAV7 virions and nucleic acids or proteins can be used to deliver those molecules to a cell. For example, the purified AAV7 can be used as a vehicle for delivering DNA bound to the exterior of the virus. Examples of this are to conjugate the DNA to the virion by a bridge using poly L lysine or other charged
25 molecule. Also contemplated are virosomes that contain AAV7 structural proteins (AAV7 capsid proteins), lipids such as DOTAP, and nucleic acids that are complexed via charge interaction to introduce DNA into cells.

Also provided by this invention are conjugates that utilize the AAV7 capsid or a unique region of the AAV7 capsid protein (e.g. VP1, VP2 or VP3 or combinations thereof) to introduce DNA into cells. By "unique" is meant any smaller polypeptide fragment encoded by any AAV7 capsid gene that is of sufficient length to be unique to the AAV7 Capsid protein. For example, the AAV7 VP1 protein or fragment thereof, can be conjugated to a DNA on a plasmid that is conjugated to a lipid. Cells can be infected using the targeting ability of the VP1 capsid protein to achieve the desired tissue tropism, specific to AAV7.
30 AAV7 VP1 proteins can also be utilized to introduce DNA or other molecules into cells. By
35

- 5 further incorporating an AAV Rep protein and an AAV TRS into the DNA-containing conjugate, cells can be transduced and targeted integration can be achieved.

The present invention further provides isolated nucleic acids of AAV7. For example, provided is an isolated nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:64. This nucleic acid, or portions thereof, can be inserted into vectors, such as plasmids, 10 yeast artificial chromosomes, or other viral vector (particle), if desired, by standard cloning methods. The present invention also provides an isolated nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:64. The nucleotides of SEQ ID NO:64 can have minor modifications and still be contemplated by the present invention. For example, modifications that do not alter the amino acid encoded by any given codon (such 15 as by modification of the third, "wobble," position in a codon) can readily be made, and such alterations are known in the art. Furthermore, modifications that cause a resulting neutral (conserved) amino acid substitution of a similar amino acid can be made in a coding region of the genome.

The present invention also provides an isolated nucleic acid that selectively or 20 specifically hybridizes with a nucleic acid consisting essentially of the nucleotide sequence set forth in SEQ ID NO:64, and an isolated nucleic acid that selectively hybridizes with a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:64. "Selectively hybridizing" and "stringency of hybridization" is defined elsewhere herein.

The present invention further provides an isolated nucleic acid encoding a AAV7 25 Rep protein. The AAV7 Rep proteins are encoded by open reading frame (ORF) 1 of the AAV7 genome. Examples of the AAV7 Rep genes are shown in the nucleic acid set forth in nucleotides 334-2205 of SEQ ID NO:64, and include nucleic acids consisting essentially of the nucleotide sequences set forth in 334-2205 of SEQ ID NO:64 (rep78). Minor 30 modifications are contemplated in the nucleic acid, such as silent mutations in the coding sequences, mutations that make neutral or conservative changes in the encoded amino acid sequence, and mutations in regulatory regions that do not disrupt the expression of the gene. Examples of other minor modifications are known in the art. Further modifications can be 35 made in the nucleic acid, such as to disrupt or alter expression of one or more of the Rep proteins in order to, for example, determine the effect of such a disruption; such as to mutate one or more of the Rep proteins to determine the resulting effect, etc. However, in general, a modified nucleic acid encoding a Rep protein will have at least about 85%, about 90%,

5 about 93%, about 95%, about 98% or 100% homology to the Rep nucleic sequences described herein e.g., SEQ ID NOS:65, and the Rep polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence described in SEQ ID NO:65. Percent homology is determined by the techniques described herein.

10 The present invention further provides a nucleic acid encoding the entire AAV7 Capsid polypeptide. Thus, provided is a nucleic acid encoding the amino acid sequence set forth in nucleotides 2222-4435 of SEQ ID NO:64 (VP1). Minor modifications in the nucleotide sequences encoding the capsid, or coat, proteins are contemplated, as described above for other AAV7 nucleic acids. However, in general, a modified nucleic acid encoding 15 a capsid protein will have at least about 85%, about 90%, about 93%, about 95%, about 98% or 100% homology to the capsid nucleic sequences described herein e.g., nucleotides 2222-4435 of SEQ ID NO:64, and the capsid polypeptide encoded therein will have overall about 93%, about 95%, about 98%, about 99% or 100% homology with the amino acid sequence described herein, e.g., SEQ ID NO:66.

20 **AAV Vector Generation**

It is understood that as discussed herein the use of the terms "homology" and "identity" mean the same thing as similarity. Thus, for example, if the use of the word homology is used to refer to two non-natural sequences, it is understood that this is not necessarily indicating an evolutionary relationship between these two sequences, but rather 25 is looking at the similarity or relatedness between their nucleic acid sequences. Many of the methods for determining homology between two evolutionarily related molecules are routinely applied to any two or more nucleic acids or proteins for the purpose of measuring sequence similarity regardless of whether they are evolutionarily related.

In general, it is understood that one way to define any known variants and 30 derivatives or those that might arise, of the disclosed nucleic acids and polypeptides herein, is through defining the variants and derivatives in terms of homology to specific known sequences. In general, variants of nucleic acids and polypeptides herein disclosed typically have at least, about 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent homology to the stated sequence or the 35 native sequence. Those of skill in the art readily understand how to determine the homology

- 5 of two polypeptides or nucleic acids. For example, the homology can be calculated after aligning the two sequences so that the homology is at its highest level.

Another way of calculating homology can be performed by published algorithms. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2: 482 (1981), by the homology 10 alignment algorithm of Needleman and Wunsch, J. Mol Biol. 48: 443 (1970), by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI; the BLAST algorithm of Tatusova and Madden FEMS 15 Microbiol. Lett. 174: 247-250 (1999) available from the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html>), or by inspection.

The same types of homology can be obtained for nucleic acids by for example the algorithms disclosed in Zuker, M. Science 244:48-52, 1989, Jaeger et al. Proc. Natl. Acad. Sci. USA 86:7706-7710, 1989, Jaeger et al. Methods Enzymol. 183:281-306, 1989 which 20 are herein incorporated by reference for at least material related to nucleic acid alignment. It is understood that any of the methods typically can be used and that in certain instances the results of these various methods may differ, but the skilled artisan understands if identity is found with at least one of these methods, the sequences would be said to have the stated identity.

25 For example, as used herein, a sequence recited as having a particular percent homology to another sequence refers to sequences that have the recited homology as calculated by any one or more of the calculation methods described above. For example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using the Zuker 30 calculation method even if the first sequence does not have 80 percent homology to the second sequence as calculated by any of the other calculation methods. As another example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using both the Zuker calculation method and the Pearson and Lipman calculation method even if the first 35 sequence does not have 80 percent homology to the second sequence as calculated by the Smith and Waterman calculation method, the Needleman and Wunsch calculation method,

- 5 the Jaeger calculation methods, or any of the other calculation methods. As yet another example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using each of calculation methods (although, in practice, the different calculation methods will often result in different calculated homology percentages).
- 10 Stringency of hybridization is controlled by both temperature and salt concentration of either or both of the hybridization and washing steps. Typically, the stringency of hybridization to achieve selective hybridization involves hybridization in high ionic strength solution (6X SSC or 6X SSPE) at a temperature that is about 12-25°C below the Tm (the melting temperature at which half of the molecules dissociate from their hybridization partners) followed by washing at a combination of temperature and salt concentration chosen so that the washing temperature is about 5°C to 20°C below the Tm. The temperature and salt conditions are readily determined empirically in preliminary experiments in which samples of reference DNA immobilized on filters are hybridized to a labeled nucleic acid of interest and then washed under conditions of different stringencies.
- 15
- 20 Hybridization temperatures are typically higher for DNA-RNA and RNA-RNA hybridizations. The washing temperatures can be used as described above to achieve selective stringency, as is known in the art. (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989; Kunkel et al. Methods Enzymol. 1987:154:367, 1987). A preferable stringent
- 25 hybridization condition for a DNA:DNA hybridization can be at about 68°C (in aqueous solution) in 6X SSC or 6X SSPE followed by washing at 68°C. Stringency of hybridization and washing, if desired, can be reduced accordingly as the degree of complementarity desired is decreased, and further, depending upon the G-C or A-T richness of any area wherein variability is searched for. Likewise, stringency of hybridization and washing, if
- 30 desired, can be increased accordingly as homology desired is increased, and further, depending upon the G-C or A-T richness of any area wherein high homology is desired, all as known in the art.

In vivo administration to a human subject or an animal model can be by any of many standard means for administering viruses, depending upon the target organ, tissue or cell.

- 35 Virus particles can be administered orally, parenterally (e.g., intravenously), by intramuscular injection, intrarectally, by direct tissue or organ injection, by intraperitoneal

5 injection, topically, transdermally, via aerosol delivery, via the mucosa or the like. Viral nucleic acids (non-encapsidated) can also be administered, e.g., as a complex with cationic liposomes, or encapsulated in anionic liposomes. The present compositions can include various amounts of the selected viral particle or non-encapsidated viral nucleic acid in combination with a pharmaceutically acceptable carrier and, in addition, if desired, may
10 include other medicinal agents, pharmaceutical agents, carriers, adjuvants, diluents, etc. Parental administration, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Dosages will depend upon the mode of administration, the disease or condition to be treated, and the
15 individual subject's condition, but will be that dosage typical for and used in administration of other AAV vectors, such as AAV2 vectors. Often a single dose can be sufficient; however, the dose can be repeated if desirable.

Administration of a recombinant AAV virion to the cell can be accomplished by any means, including simply contacting the particle, optionally contained in a desired liquid
20 such as tissue culture medium, or a buffered saline solution, with the cells. The virion can be allowed to remain in contact with the cells for any desired length of time, and typically the virion is administered and allowed to remain indefinitely. For such *in vitro* methods, the virion can be administered to the cell by standard viral transduction methods, as known in the art and as exemplified herein. Titers of virus to administer can vary, particularly
25 depending upon the cell type, but will be typical of that used for AAV transduction in general which is well known in the art. Additionally the titers used to transduce the particular cells in the present examples can be utilized.

The cells that can be transduced by the present recombinant AAV virions can include any desired cell, such as the following cells and cells derived from the following
30 tissues, human as well as other mammalian tissues, such as primate, horse, sheep, goat, pig, dog, rat, and mouse and avian species: Adipocytes, Adenocyte, Adrenal cortex, Amnion, Aorta, Ascites, Astrocyte, Bladder, Bone, Bone marrow, Brain, Breast, Bronchus, Cardiac muscle, Cecum, Cervix, Chorion, Cochlear, Colon, Conjunctiva, Connective tissue, Cornea, Dermis, Duodenum, Embryonic stem cells, Endometrium, Endothelium, Endothelial cells,
35 Epithelial tissue, Epithelial cells, Epidermis, Esophagus, Eye, Fascia, Fibroblasts, Foreskin, Gastric, Glial cells, Glioblast, Gonad, Hepatic cells, Histocyte, Hair cells in the inner ear,

- 5 Ileum, Intestine, small Intestine, Jejunum, Keratinocytes, Kidney, Larynx, Leukocytes, Lipocyte, Liver, Lung, Lymph node, Lymphoblast, Lymphocytes, Macrophages, Mammary alveolar nodule, Mammary gland, Mastocyte, Maxilla, Melanocytes, Mesenchymal, Monocytes, Mouth, Myelin, Myoblasts Nervous tissue, Neuroblast, Neurons, Neuroglia, Osteoblasts, Osteogenic cells, Ovary, Palate, Pancreas, Papilloma, Peritoneum, Pituicytes,
- 10 Pharynx, Placenta, Plasma cells, Pleura, Prostate, Rectum, Salivary gland, Skeletal muscle, Skin, Smooth muscle, Somatic, Spleen, Squamous, Stem cells, Stomach, Submandibular gland, Submaxillary gland, Synoviocytes, Testis, Thymus, Thyroid, Trabeculae, Trachea, Turbinate, Umbilical cord, Ureter, Uterus, and vestibular hair cells.

Stringency of hybridization is controlled by both temperature and salt concentration of either or both of the hybridization and washing steps. Typically, the stringency of hybridization to achieve selective hybridization involves hybridization in high ionic strength solution (6X SSC or 6X SSPE) at a temperature that is about 12-25°C below the Tm (the melting temperature at which half of the molecules dissociate from their hybridization partners) followed by washing at a combination of temperature and salt concentration chosen so that the washing temperature is about 5°C to 20°C below the Tm. The temperature and salt conditions are readily determined empirically in preliminary experiments in which samples of reference DNA immobilized on filters are hybridized to a labeled nucleic acid of interest and then washed under conditions of different stringencies. Hybridization temperatures are typically higher for DNA-RNA and RNA-RNA hybridizations. The washing temperatures can be used as described above to achieve selective stringency, as is known in the art. (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989; Kunkel et al. Methods Enzymol. 1987:154:367, 1987). A preferable stringent hybridization condition for a DNA:DNA hybridization can be at about 68°C (in aqueous solution) in 6X SSC or 6X SSPE followed by washing at 68°C. Stringency of hybridization and washing, if desired, can be reduced accordingly as the degree of complementarity desired is decreased, and further, depending upon the G-C or A-T richness of any area wherein variability is searched for. Likewise, stringency of hybridization and washing, if desired, can be increased accordingly as homology desired is increased, and further, depending upon the G-C or A-T richness of any area wherein high homology is desired, all as known in the art.

5 By the "suitability of an AAV vector for administration to a subject" is meant a determination of whether the AAV vector will elicit a neutralizing immune response upon administration to a particular subject. A vector that does not elicit a significant immune response is a potentially suitable vector, whereas a vector that elicits a significant, neutralizing immune response (e.g. at least 90%) is thus likely to be unsuitable for use in 10 that subject. Significance of any detectable immune response is a standard parameter understood by the skilled artisan in the field. For example, one can incubate the subject's serum with the virus, then determine whether that virus retains its ability to transduce cells in culture. If such virus cannot transduce cells in culture, the vector likely has elicited a significant immune response.

15 Alternatively, or additionally, one skilled in the art could determine whether or not AAV administration would be suitable for a particular cell type of a subject. For example, the artisan could culture muscle cells *in vitro* and transduce the cells with AAV in the presence or absence of the subject's serum. If there is a reduction in transduction efficiency, this could indicate the presence of a neutralizing antibody or other factors that may inhibit 20 transduction. Normally, greater than 90% inhibition would have to be observed in order to rule out the use of AAV-5 as a vector. However, this limitation could be overcome by treating the subject with an immunosuppressant that could block the factors inhibiting transduction.

EXAMPLES

25 The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect 30 to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in °C or is at ambient temperature, and pressure is at or near atmospheric.

Example 1

Previous research had demonstrated that Caco-2 and MDCK cells are model cell 35 lines for the study of macromolecular transport via transcytosis. Furthermore these cell lines

5 have been used to demonstrate transcytosis of both viruses and proteins. Therefore, to test if AAV can spread through tissue by transcytosis, 2×10^8 DNA resistant particles of recombinant AAV2 (rAAV2) AAV4, AAV5, AAV6, BAAV suspended in 50ul of medium were placed in the upper (apical) side of the transwell polycarbonate filter over a monolayer of cells each of the following cells Caco-2, MDCKI, MDCKII, Human primary airways
10 epithelia cells (Airway), Human primary immortalized epithelial endometrial, Bovine brain primary endothelia cells (BBB), or HeLa. All cultures had TERs indicating the formation of tight junctions and polarized phenotype. After 3 hours of incubation the medium in the basal side of the transwell was collected and tested for the presence of transcytosed rAAV DNA. Viral DNA was extracted from 200ul of basal medium and quantified by qPCR.

15 In these cell lines, transcytosis was observed with several AAV serotypes and appeared to be both serotype and tissue-specific (Fig. 1). Three hours after the addition of AAV to the apical surface of the cells, over 800,000 particles of AAV5 were present in the media on the basal lateral side of the trans-well insert of CaCo-2 cells, but not the MDCK, airway epithelia, endometrial, or BBB cells (Fig. 1). Similarly BAAV particles were detected in the media on the
20 basal lateral side of the MDCK, airways epithelia, endometrial, and BBB cells but not the Caco-2 cells. Interestingly, AAV4 was detected in the basal lateral media of all cell types. No virus was detected in the basal lateral media when AAV2 was added to the apical surface in either cell type. AAV6 did not transcytose in any of cell types tested, and was not tested on airway epithelia or BBB. HeLa cells do not form barrier epithelia and were used as a control.

25

Example 2

Previous work has demonstrated that transcytosis is a temperature dependent process than can be inhibited at 4°C. Transcytosis can also be inhibited by the addition of agents that selectively fix the plasma membrane. Recently the addition of tannic acid, a mild fixative agent, to the basal lateral surface blocked the transcytosis of GPI-anchored proteins to the
30 apical surface (Polishchuk R, *Nat Cell Biol.* 2004. 6(4):297-307). Therefore the ability of this agent to block the transcytosis of AAV was tested. Treatment of the basal lateral surface of either Caco-2 or MDCK cells prior to virus addition to the apical surface blocked the accumulation of AAV5 or BAAV in the basal lateral media. Furthermore, quantification of the intracellular virus demonstrated inhibition of exocytosis by tannic acid treatment
35 dramatically increase the amount of AAV DNA in the cell suggesting the viral particles

- 5 detected in the basal lateral media are the result of an intracellular transport process and not
a paracellular route.

Treatment of the basal lateral surface of Human primary airways epithelial cell (HAE) with tannic acid blocked the transcytosis of BAAV or AAV4 vector containing a GFP expression cassette from the apical surface to the basal lateral (Fig. 2). Furthermore 10 transduction dramatically increased when assayed at 24 hrs post inoculation. In contrast no change was observed in AAV2 transduction, which did not demonstrate any transcytosis activity and has limited binding activity on HAE.

Example 3

To confirm the DNA detected in the basal lateral media was indeed extracted from 15 intact virus, the material was tested for DNase resistance after treatment with heat, ionic detergent or protease. The addition of DNase alone or in combination with the ionic detergent deoxycholine had no effect on the viral DNA present in the media suggesting it was not free DNA or complexed in lipid vesicles. However, heating to 95°C prior to treatment with DNAase completely degraded the viral DNA present in the media. This 20 profile is identical to that of the input AAV particles and suggests the viral DNA is still encapsulated. Titration of the DNase resistant virus in the basal lateral media on Cos cells gave a similar particle to infectivity ratio to the input AAV particles.

While it would appear the AAV DNA detected in the basal lateral media is contained in intact particles, its presence on the basal lateral surface could be the result of 25 lyses of the cells or disruption of the monolayer. Therefore the TER was carefully monitored throughout the course of these experiments and was not observed to decrease. To further confirm the integrity of the cell monolayer, mixing experiments were studied in which two viruses with different gene cassettes were added to the apical surface at the same time and three hours post addition the amount of each virus in the basal lateral media was quantified 30 using QPCR specific for each cassette. Both BAAV and AAV5 were able to pass from the apical to the basal lateral surface of MDCK or Caco cells respectively but the AAV2 did not. Therefore the presence of viral particles in the basal lateral media does not appear to be the result of a disruption in the cell monolayer.

Taken together this data suggest that dependoviruses particles are capable of passing 35 through barrier epithelia via transcytosis and the process is both serotype and cell type specific.

5

Example 4

To further characterize the transcytosis activity observed with AAV5 and BAAV, transcytosis was quantified as both a time and concentration dependent event. After the addition of particles to the apical surface, samples were removed from the basal lateral media at different time points and the amount of virus was quantified by QPCR of the extracted DNA. Viral genomes could be detected as soon as 30 minutes after addition and steadily increased with time. By 24 hrs, over 1/3 of the input recombinant AAV5, BAAVvirus added to Caco or MDCK cells respectively had been transported to the basal lateral surface. In contrast, none of the input AAV2 or adenovirus was detected on the basal lateral side after 24 hrs.

If transcytosis is an activity used by AAV to spread through tissue, this finding would help explain the lack of transduction of barrier epithelia reported with some isolates of AAV. Primary human bronchial airway epithelia (HAE) are known to transport albumin from the apical to the basal lateral surface by receptor-mediated transcytosis *in vivo*. While the interaction of BAAV with primary HAE has not been investigated, AAV4, 5 are reported to bind to HAE, however, for AAV4, this interaction does not result in transduction. Because of the interaction of AAV4 with O-link sialic acid, it was proposed, and has been demonstrated, that mucins, which contained large amounts of O-linked sialic acid and are expressed on the apical surface of HAE, can block AAV4 transduction. Alternatively the lack of transduction could be the result of transcytosis of the virus through the tissue.

To test this hypothesis, AAV2, 4, 5, BAAV were added to the apical surface of confluent monolayer cultures of primary human bronchial airway and transcytosis to the basal lateral surface was measured by QPCR after 3 hrs. All cultures had high TERs and expressed ciliated structures on their apical surface. Highly differentiated HAE cultures in contrast to immature cultures are resistant to transduction by adenoviral vectors due to a lack of integrin expression that is necessary for adenovirus entry.

Of the 4 AAVs tested for transcytosis, AAV4 and BAAV were detected in the basal lateral media. No transport of AAV2 or AAV5 was detected. As a control, adenovirus also was tested for transcytosis activity in the HAE cultures, but no transport was detected.

5

Example 5

Epithelial cells that line the genitourinary tract form an important epithelial barrier layer and can transport proteins by transcytosis. AAV2, 4, 5 or BAAV were therefore tested to determine for the ability to penetrate this barrier epithelial layer by transcytosis. A well-characterized model of endometrial cells has been reported by Kyo et al. Following addition 10 of the 4 AAVs to the apical surface, BAAV and AAV4 could be detected in the basal lateral media when assayed at 3hrs post inoculation (Fig. 1).

Example 6

Most AAVs were identified originally as contaminants of laboratory stocks of adenovirus, thus our understanding of their natural biology, cell tropism, and knowledge the 15 cellular components required for virus entry is limited. For AAV5, in addition to N-linked sialic acid, the platelet derived growth factor (PDGF) receptors were identified as protein receptors for AAV5 (Di Pasquale et al., Nat Med. 2003 Oct;9(10):1306-12). This interaction was confirmed by modulation of PDGFR expression by transfection of expression plasmids, inhibitor treatment, or competition experiments with the extracellular domain of PDGFR α . 20 Likewise AAV5 transduction could be blocked with sialolactosamine conjugates kaludov et al 2001.

Previous research had demonstrated that transcytosis is actin dependent and occurs by a cavinolin mediated pathway. Furthermore transcytosis can be blocked by treatment with tannic acid. Therefore to better characterize the transcytosis pathway utilized by AAV5 in 25 Caco cells the cells were treated with a panel of agents known to block either transcytosis in other systems or AAV5 mediated transduction. It was noted that AAV5 transcytosis could be inhibited by filipin and nocozadol as well as treatment with tannic acid.

Caco cells, which actively transcytosis AAV5, are not reported to express PDGFR and are not transduced by AAV5. In agreement, competition experiments with sPDGFR α 30 had little effect on AAV5 transcytosis. Furthermore, competition experiments with 200 ug/ml sialolactosamine or 200 ug/ml heparin did not inhibited AAV5 transcytosis.

Both BSA and transferrin are reported to transcytosis through Caco cells via distinct receptor mediated pathways. However competition with either agent did not inhibit AAV5 transcytosis suggesting the AAV5 could use a distinct pathway.

- 5 In addition to confirming the intracellular nature of AAV5 transcytosis in Caco cells, the above experiments suggest that AAV5 transcytosis is occurring by a pathway independent of the one described for transduction. To confirm this Caco cells were stably transfected with PDGFR α and assayed for both transcytosis and transduction activity. Caco cells were not permissive for AAV5 transduction, however transduction dramatically increase
10 following stable expression of PDGFR α . In contrast only a minor increase in transcytosis activity was detected in the Caco/PDGFR α cells.

Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention
15 pertains.

It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is
20 intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

CLAIMS

What is claimed is:

1. A method of delivering a heterologous nucleic acid across an epithelial barrier comprising delivering to the epithelial barrier an AAV vector comprising the heterologous nucleic acid.
2. The method of claim 1, wherein the epithelial cells are in the gut, lung, genitourinary tract, kidney, blood vessels or brain.
3. The method of claim 1, wherein the epithelial cells can be selected from a group consisting of bronchial, alveolar, tracheal or upper airway epithelial cells; absorptive enterocytes; endometrial or urinary epithelial cells; renal collecting duct or proximal tubule epithelial cells; cerebral microvascular endothelial cells; or Choroidal Plexus epithelial cells .
4. A method of transcytosing epithelial cells of a human subject comprising administering to the subject an AAV vector comprising a heterologous nucleic acid.
5. The method of claim 4, wherein the epithelial cells are selected from a group consisting of bronchial, alveolar, tracheal or upper airway epithelial cells; absorptive enterocytes; endometrial or urinary epithelial cells; renal collecting duct or proximal tubule epithelial cels; cerebral microvascular endothelial cells; or Choroidal Plexus epithelial cells.
6. A method of delivering a heterologous nucleic acid across human airway epithelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.
7. A method of delivering a heterologous nucleic acid across human cerebral microvascular endothelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.
8. A method of delivering a heterologous nucleic acid across human endometrial epithelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.
9. A method of delivering a heterologous nucleic acid across human kidney epithelial cells, comprising delivering to the cells a BAAV vector comprising the nucleic acid.
10. A method of delivering a heterologous nucleic acid across human enterocytes, comprising delivering to the cells a AAV5 vector comprising the nucleic acid.

11. A method of delivering a heterologous nucleic acid across human airway epithelial cells, comprising delivering to the cells a AAV4 vector comprising the nucleic acid.
12. A method of delivering a heterologous nucleic acid across human cerebral microvascular endothelial cells, comprising delivering to the cells a AAV4 vector comprising the nucleic acid.
13. A method of delivering a heterologous nucleic acid across human endometrial epithelial cells, comprising delivering to the cells a AAV4 vector comprising the nucleic acid.
14. A method of delivering a heterologous nucleic acid across human kidney epithelial cells, comprising delivering to the cells a AAV4 vector comprising the nucleic acid.
15. A method of delivering a heterologous nucleic acid across human enterocytes comprising delivering to the cells a AAV4 vector comprising the nucleic acid.
16. A method of delivering a heterologous nucleic acid across human cerebral microvascular endothelial cells, comprising delivering to the cells a AAV7 vector comprising the nucleic acid.
17. A method of delivering a heterologous nucleic acid across an epithelial barrier of the lung, comprising delivering to the lung a BAAV vector comprising the nucleic acid.
18. The method of claim 17, wherein the epithelial barrier comprises human bronchial, alveolar, tracheal or upper airway epithelial cells.
19. A method of delivering a heterologous nucleic acid across an epithelial barrier in the brain, comprising delivering to the brain a BAAV vector comprising the nucleic acid.
20. The method of claim 19, wherein the epithelial barrier comprises human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.
21. A method of delivering a heterologous nucleic acid across the epithelial barrier of blood vessels into the muscle, comprising delivering to the blood stream a BAAV vector comprising the nucleic acid.
22. The method of claim 21, wherein the epithelial barrier comprises human vascular endothelial cells of the blood brain barrier.

23. A method of delivering a heterologous nucleic acid across an epithelial barrier in the genitourinary tract, comprising delivering to the genitourinary tract a BAAV vector comprising the nucleic acid genitourinary tract.
24. The method of claim 23, wherein the epithelial barrier comprises human endometrial or urinary epithelial cells.
25. A method of delivering a heterologous nucleic acid across an epithelial barrier in the kidney, comprising delivering to the genitourinary tract a BAAV vector comprising the nucleic acid genitourinary tract.
26. The method of claim 25, wherein the epithelial barrier comprises human renal collecting ducts or proximal tubules.
27. A method of transcytosing lung epithelial cells of a subject comprising contacting the lung epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid.
28. The method of claim 27, wherein the epithelial cells are human bronchial, tracheal, or upper airway epithelial cells.
29. A method of transcytosing CNS epithelial cells of a subject comprising contacting the CNS epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid.
30. The method of claim 29, wherein the epithelial cells are human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.
31. A method of transcytosing vascular epithelial cells of a subject comprising contacting the vascular epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid.
32. The method of claim 31, wherein the epithelial cells are human vascular endothelial cells of the blood brain barrier.
33. A method of transcytosing genitourinary tract epithelial cells of a subject comprising contacting the genitourinary tract epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid.
34. The method of claim 33, wherein the epithelial cells are human endometrial or urinary tract epithelial cells.

35. A method of transcytosing genitourinary tract epithelial cells of a subject comprising contacting the kidney epithelial cells of the subject with a BAAV vector comprising a heterologous nucleic acid.
36. The method of claim 35, wherein the epithelial cells are human renal collecting ducts or proximal tubules
37. A method of delivering a heterologous nucleic acid across an epithelial barrier in the gut, comprising delivering to the gut an AAV5 vector comprising the nucleic acid.
38. The method of claim 37, wherein the epithelial barrier comprises human absorptive enterocytes.
39. A method of transcytosing gut epithelial cells of a subject comprising contacting the gut epithelial cells of the subject with an AAV5 vector comprising a heterologous nucleic acid.
40. The method of claim 39, wherein the epithelial cells are human absorptive enterocytes.
41. A method of delivering a heterologous nucleic acid across an epithelial barrier in the gut, comprising delivering to the gut an AAV4 vector comprising the nucleic acid.
42. The method of claim 41, wherein the epithelial barrier comprises human absorptive enterocytes.
43. A method of delivering a heterologous nucleic acid across an epithelial barrier in the lung, comprising delivering to the lung an AAV4 vector comprising the nucleic acid.
44. The method of claim 43, wherein the epithelial barrier comprises human bronchial, tracheal, or upper airway epithelial cells.
45. A method of delivering a heterologous nucleic acid across an epithelial barrier in the CNS, comprising delivering to the CNS an AAV4 vector comprising the nucleic acid.
46. The method of claim 45, wherein the epithelial barrier comprises human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.
47. A method of delivering a heterologous nucleic acid across the epithelial barrier of blood vessels into the muscle, comprising delivering to the blood stream an AAV4 vector comprising the nucleic acid.

48. The method of claim 47, wherein the epithelial barrier comprises human vascular endothelial cells of the blood brain barrier.
49. A method of delivering a heterologous nucleic acid across an epithelial barrier in the genitourinary tract, comprising delivering to the genitourinary tract an AAV4 vector comprising the nucleic acid.
50. The method of claim 49, wherein the epithelial barrier comprises human endometrial or urinary epithelial cells.
51. A method of delivering a heterologous nucleic acid across an epithelial barrier in the kidneys, comprising delivering to the kidneys an AAV4 vector comprising the nucleic acid.
52. The method of claim 51, wherein the epithelial barrier comprises human renal collecting ducts or proximal tubules.
53. A method of transcytosing lung epithelial cells of a subject comprising contacting the lung epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid.
54. The method of 53, wherein the epithelial cells are human bronchial, tracheal, or upper airway epithelial cells.
55. A method of transcytosing CNS epithelial cells of a subject comprising contacting the CNS epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid.
56. The method of claim 55, wherein the epithelial cells are human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.
57. A method of transcytosing vascular epithelial cells of a subject comprising contacting the vascular epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid.
58. The method of claim 57, wherein the epithelial cells are vascular endothelial cells of the blood brain barrier.
59. A method of transcytosing genitourinary tract epithelial cells of a subject comprising contacting the genitourinary epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid.

60. The method of claim 59, wherein the epithelial cells are human endometrial or urinary epithelial cells.
61. A method of transcytosing kidney epithelial cells of a subject comprising contacting the kidney epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid.
62. The method of claim 61, wherein the epithelial cells are human renal collecting ducts or proximal tubules
63. A method of transcytosing gut epithelial cells of a subject comprising contacting the CNS epithelial cells of the subject with an AAV4 vector comprising a heterologous nucleic acid.
64. The method of claim 63, wherein the epithelial cells are human absorptive enterocytes.
65. A method of delivering a heterologous nucleic acid across an epithelial barrier in the brain, comprising delivering to the brain a AAV7 vector comprising the nucleic acid.
66. The method of claim 65, wherein the epithelial barrier comprises human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.
67. A method of transcytosing CNS epithelial cells of a subject comprising contacting the CNS epithelial cells of the subject with a AAV7 vector comprising a heterologous nucleic acid.
68. The method of claim 67, wherein the epithelial cells are human cerebral microvascular endothelial cells or Choroidal Plexus epithelial cells of the blood brain barrier.

FIG. 1

FIG. 2

FIG. 3

SEQUENCE LISTING

<110> The Government of the United States of America, as represented by The Secretary, Department of Health and Human Services, National Institutes of Health
 Chiorini, John A.
 DePasquale, Giovanni

<120> TRANSCYTOSIS OF ADENO-ASSOCIATED VIRUSES

<130> 14014/0427P1

<140> TBA
 <141> 2005-09-08

<150> 60/607,854
 <151> 2004-09-08

<160> 72

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 4768
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<221> misc_feature
 <222> (0)...(0)
 <223> n=a,t,c, or g

<221> variation
 <222> (0)...(0)
 <223> Xaa=any amino acid

<400> 1							
ttggccactc	cctctatgcg	cgctcgctca	ctcaactcgcc	cctggagacc	aaaggcttcc	60	
agactgccgg	cctctggccg	gcagggccga	gtgagttagc	gagcgcgcatt	agaggaggatg	120	
gccaactcca	tcatcttagt	ttgcccactg	acgtcaatgt	gacgttcctag	gtttagggag	180	
gtccctgtat	tagcgtcac	gtgagtgtcc	tatttcgcgg	agcgtagcgg	agcgcataacc	240	
aagctggcc	gtcacagcca	cgtgtccgt	ttgcgacagt	ttgcgacacc	atgtggtcag	300	
gagggttat	aaccgcgagt	gagccagcga	ggagctccat	tttgcccgcg	aattttgaac	360	
gagcagcagc	catgcccgggg	ttctacgaga	tcgtgctgaa	ggtgcccagc	gacctggacg	420	
agcacctgcc	cgccatitct	gactttttg	tgagctgggt	ggccgagaag	aatggggagc	480	
tgccgcccgg	ttctgacatg	gacttgaatc	tgatttagca	ggcacccctg	accgtggccg	540	
aaaagctgca	acgcgaggttc	ctggctcgagt	ggcgcggcgt	gagtaaggcc	ccggaggcccc	600	
tcttctttgt	ccagttcgag	aaggggggaca	gctacttcca	cctgcacatc	ctggttggaga	660	
ccgtggccgt	caaattccatg	gtggggggcc	gtacgttag	ccagattaaa	gagaagctgg	720	
tgaccggcat	ctaccggggg	gtcgagccgc	agcttccgaa	ctggttcgcg	gtgaccaaga	780	
cgcgtaatgg	cgccggaggc	gggaacaagg	ttgtggacga	ctgctacatc	cccaactacc	840	
tgcctcccaa	gacccagccc	gagctccagt	ggcggtggac	taacatggac	cagtatataa	900	
gcgcctgttt	gaatctcgcg	gagcgtaaac	ggctgggtggc	gcagcatctg	acgcacgtgt	960	
cgcagacgca	ggagcagaac	aaggaaaaacc	agaaccccaa	ttctgacgcg	ccggcatca	1020	
ggtcggaaaac	ctccggccagg	tacatggac	ttgtgggggt	gctgggtggac	ccggggatca	1080	
cgtcggaaaa	gcaatggatc	caggaggacc	aggcgctcta	catctccctc	aacggccgcct	1140	
ccaaactcgcg	gtcacaaaatc	aaggccgcgc	ttggacaatgc	ctccaaaatc	atgagcctga	1200	
caaagacggc	tccggactac	ctggggggcc	agaacccgcc	ggaggacatt	tccagcaacc	1260	

gcatctaccg	aatcctcgag	atgaacgggt	acgatccgca	gtacgcggcc	tccgtcttcc	1320
tgggctggc	gcaaaaagaag	ttcgggaaaga	ggaacaccat	ctggctcttt	gggccggcca	1380
cgacggtaa	aaccacatc	gcggaaagcca	tcgcccacgc	cgtcccccttc	tacggctcg	1440
tgaactggac	caatgagaac	tttccgttca	acgattgcgt	cgacaagatg	gtgatctgg	1500
gggaggaggg	caagatgacg	gccaaggctcg	tagagagcgc	caaggccatc	ctggcgaa	1560
gcaagggtcg	cgtggaccaa	aagtgcgaat	catcgcccca	gatcgacc	actccctgt	1620
tcgtcaccc	caacaccaac	atgtgcgcgg	tcatgcacgg	aaactcgacc	accttcgagc	1680
accacaaca	actccaggac	cggatgttca	agttcgagct	ccaaggcgc	ctggagcacg	1740
acttggcaa	gttccacca	caggagtcg	aagactttt	ccgggtggcg	tcagatcagc	1800
tgaccgaggt	gactcacgag	ttttacgtca	gaaagggtgg	agctagaaaag	aggcccgc	1860
ccaatgacgc	agatataagt	gagcccaagc	gggcctgtcc	gtcagttcg	cagccatcg	1920
cgtcagacgc	ggaagctccg	gtggactacg	cggacaggta	ccaaaacaaa	tgttctcg	1980
acgtggtat	gaattctatg	ctttttccct	gccggcaatg	cgagagaatg	aatcagaatg	2040
tggacattt	cttcacgcac	ggggcatatgg	actgtgcgcg	gtgtctcc	gtgtcagaat	2100
ctcaaccctg	gtctgtcg	agaaaagcga	cgtatcgaa	actgtgtcc	attcatcaca	2160
tcatggggag	ggcccccggag	gtggcctgtct	cgccctgcga	actggccaaat	gtggacttgg	2220
atgactgtga	catggaaacaa	taaatgactc	aaaccagata	tgactgacgg	ttaccttca	2280
gattggctag	aggacaaac	ctctgaaggc	gttcgagagt	gttggggcgct	gcaacactg	2340
gcccctaaac	ccaaggcaaa	tcaacaacat	caggacaacg	ctcggggtct	tgtgcttccg	2400
ggttacaat	acctcgacc	cggcaacgg	ctcgacaaagg	gggaacccgt	caacgcagcg	2460
gacgcggcag	ccctcgagca	cgacaaggcc	tacgaccagc	agctcaaggc	cgtgacaaac	2520
ccctacccca	agtacaacca	cgccgacggc	gatttccgc	agcggcgttca	gggcgacaca	2580
ccgttttggg	gcaaccctcg	cagagcgtc	ttccaggcca	aaagagggt	tcttgaaact	2640
cttggctcg	tttagcaacg	gggtggagac	gctccggaa	agaagagacc	gttattgt	2700
tcccccac	agcccgactc	ctccacgggt	atcggcaaaa	aaggcaagca	gccggctaaa	2760
aagaagctcg	ttttcaaga	cgaaactgga	gcaggcgac	gaccccttga	gggatcaact	2820
tccggagcc	tgtctatg	cagtggatg	cgtgcagc	ctggcggagc	tgcagtgc	2880
ggsggacaag	gtggcgatgg	agtgggtat	gcctcgggt	attggcattt	cgattccacc	2940
tggctctgagg	gccacgtc	gaccaccagc	accagaacct	gggtcttgcc	cacctacaa	3000
aaccacccnt	acaagcgact	cggagagac	ctgcagttca	acacccatcaa	cggattctcc	3060
acccccctgg	gatacttga	cttcaaccgc	ttccacttgc	acttctcacc	acgtgatcg	3120
cagcgactca	tcaacaacaa	tgggggcat	cgaccggaa	cattgcgggt	caaatacttc	3180
aacatccagg	tcaaggaggt	cacgacgtc	aacggcgaga	caacgggtgg	taataaccc	3240
accagcacgg	ttcagatctt	tgccgactcg	tcgtacgaa	tgccgtacgt	gatggatcg	3300
ggtaagagg	gcagcctg	tcctttccc	aacgacgtc	ttatggtgcc	ccagtagcc	3360
tactgtggac	tggtgacccg	caacacttgc	cagcaacaga	ctgacagaaa	tgccttctac	3420
tgcctggagt	actttcc	gcagatgtc	cggacttggc	acaactttg	aattacgtac	3480
agttttgaga	aggtgcctt	ccatctgt	tacgcgcaca	gcccggctg	ggaccggctg	3540
atgaacccctc	tcatcgacca	gtacctgtgg	ggactgtcaat	cgaccaccc	cggaaaccacc	3600
ctgaatggcg	ggactggcc	caccaactt	accaactgc	gcccattacca	cttttcaac	3660
ttaaaaaaa	actggcttgc	cgggccttca	atcaagc	agggtttctc	aaagactg	3720
aatcaaaaact	acaagatccc	tgccaccggg	tcagacagt	tcatcaaata	cgagacgcac	3780
agcactctgg	acgaaagatg	gagtgcctt	accccccggac	ctccaaatggc	cacggctg	3840
cctcgccgaca	gcaagttcag	caacagccag	ctcatcttgc	cgggggctaa	acagaacggc	3900
aacacggcc	cgatccccgg	gactctgtatc	ttcaccttgc	aggggaggt	ggcagccacc	3960
aacggccacg	atacggacat	gtggggcaac	ctacccggcg	tgacccggag	caacagcaac	4020
ctggcgaccg	tggacagact	gacagccttgc	ggagccgt	cttgaatgg	ctggcaaaac	4080
agagacattt	attaccaggg	tcccatatttgc	gccaagattc	ctcataccga	tggacactt	4140
caccccttac	cgctgatgg	tgggttttgg	ctgaaacacc	cgccctctca	aatttttac	4200
aagaacaccc	cggtacatgc	gaatcttgc	acgaccttca	gctctactcc	gttaaactcc	4260
ttcattactc	agtacagcac	tggccaggt	tcgggtcaga	ttgactggg	gatccagaag	4320
gagcggtcca	aacqctggaa	cccccgagg	cagttaatct	ccaactacgg	acagaaaaac	4380
tctctgttgt	gggctcccg	tgccgctgg	aaatataact	agccttaggg	tatcgttacc	4440
cgttaccc	ccccaccac	gttaataact	gttaatcaat	aaaccgggtt	attcgttca	4500
gttgaactt	ggttcccg	tcttcttata	cttatctcg	ttccatggct	actcgatc	4560
taagcagccg	cctggccgc	ttgcgc	cggtttacaa	ctgcccggta	atcgtact	4620
tctggcaaac	catgtatgt	gagttggcc	ctccctctat	gcccgc	tcactctactc	4680
ggccctggag	accaaagg	tccagactgc	cgccctctgg	ccggcagg	cgagtgagtg	4740
agcgagcgc	catagaggga	gtggccaa				4768

<210> 2
<211> 623
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 2
 Met Pro Gly Phe Tyr Glu Ile Val Leu Lys Val Pro Ser Asp Leu Asp
 1 5 10 15
 Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Ser Trp Val Ala Glu
 20 25 30
 Lys Glu Trp Glu Leu Pro Pro Asp Ser Asp Met Asp Leu Asn Leu Ile
 35 40 45
 Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Glu Phe Leu
 50 55 60
 Val Glu Trp Arg Arg Val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
 65 70 75 80
 Gln Phe Glu Lys Gly Asp Ser Tyr Phe His Leu His Ile Leu Val Glu
 85 90 95
 Thr Val Gly Val Lys Ser Met Val Val Gly Arg Tyr Val Ser Gln Ile
 100 105 110
 Lys Glu Lys Leu Val Thr Arg Ile Tyr Arg Gly Val Glu Pro Gln Leu
 115 120 125
 Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly Gly
 130 135 140
 Asn Lys Val Val Asp Asp Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
 145 150 155 160
 Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Asp Gln Tyr Ile
 165 170 175
 Ser Ala Cys Leu Asn Leu Ala Glu Arg Lys Arg Leu Val Ala Gln His
 180 185 190
 Leu Thr His Val Ser Gln Thr Gln Glu Gln Asn Lys Glu Asn Gln Asn
 195 200 205
 Pro Asn Ser Asp Ala Pro Val Ile Arg Ser Lys Thr Ser Ala Arg Tyr
 210 215 220
 Met Glu Leu Val Gly Trp Leu Val Asp Arg Gly Ile Thr Ser Glu Lys
 225 230 235 240
 Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
 245 250 255
 Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys
 260 265 270
 Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Asn
 275 280 285
 Pro Pro Glu Asp Ile Ser Ser Asn Arg Ile Tyr Arg Ile Leu Glu Met
 290 295 300
 Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
 305 310 315 320
 Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 325 330 335
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
 340 345 350
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 355 360 365
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 370 375 380
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 385 390 395 400
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 405 410 415
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 420 425 430
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 435 440 445

Glu Leu Thr Lys Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 450 455 460
 Glu Val Lys Asp Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 465 470 475 480
 Thr His Glu Phe Tyr Val Arg Lys Gly Gly Ala Arg Lys Arg Pro Ala
 485 490 495
 Pro Asn Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 500 505 510
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Pro Val Asp Tyr Ala Asp
 515 520 525
 Arg Tyr Gln Asn Lys Cys Ser Arg His Val Gly Met Asn Leu Met Leu
 530 535 540
 Phe Pro Cys Arg Gln Cys Glu Arg Met Asn Gln Asn Val Asp Ile Cys
 545 550 555 560
 Phe Thr His Gly Val Met Asp Cys Ala Glu Cys Phe Pro Val Ser Glu
 565 570 575
 Ser Gln Pro Val Ser Val Val Arg Lys Arg Thr Tyr Gln Lys Leu Cys
 580 585 590
 Pro Ile His His Ile Met Gly Arg Ala Pro Glu Val Ala Cys Ser Ala
 595 600 605
 Cys Glu Leu Ala Asn Val Asp Leu Asp Asp Cys Asp Met Glu Gln
 610 615 620

<210> 3

<211> 2495

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 3

Ala Thr Gly Cys Cys Gly Gly Gly Thr Thr Cys Thr Ala Cys Gly
 1 5 10 15
 Ala Gly Ala Thr Cys Gly Thr Gly Cys Thr Gly Ala Ala Gly Gly Thr
 20 25 30
 Gly Cys Cys Cys Ala Gly Cys Gly Ala Cys Cys Thr Gly Gly Ala Cys
 35 40 45
 Met Pro Gly Phe Tyr Glu Ile Val Leu Lys Val Pro Ser Asp Leu Asp
 50 55 60
 Gly Ala Gly Cys Ala Cys Cys Thr Gly Cys Cys Gly Gly Cys Ala
 65 70 75 80
 Thr Thr Thr Cys Thr Gly Ala Cys Thr Cys Thr Thr Thr Gly Thr
 85 90 95
 Gly Ala Gly Cys Thr Gly Gly Thr Gly Gly Cys Cys Gly Ala Gly
 100 105 110
 Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Ser Trp Val Ala Glu
 115 120 125
 Ala Ala Gly Ala Ala Thr Gly Gly Ala Gly Cys Thr Gly Cys
 130 135 140
 Cys Gly Cys Cys Gly Gly Ala Thr Thr Cys Thr Gly Ala Cys Ala Thr
 145 150 155 160
 Gly Gly Ala Cys Thr Thr Gly Ala Ala Thr Cys Thr Gly Ala Thr Thr
 165 170 175
 Lys Glu Trp Glu Leu Pro Pro Asp Ser Asp Met Asp Leu Asn Leu Ile
 180 185 190
 Gly Ala Gly Cys Ala Gly Gly Cys Ala Cys Cys Cys Thr Gly Ala
 195 200 205
 Cys Cys Gly Thr Gly Gly Cys Cys Gly Ala Ala Ala Ala Gly Cys Thr
 210 215 220
 Gly Cys Ala Ala Cys Gly Cys Gly Ala Gly Thr Thr Cys Cys Thr Gly
 225 230 235 240

Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Glu Phe Leu
 245 250 255
 Gly Thr Cys Gly Ala Gly Thr Gly Gly Cys Gly Cys Cys Gly Cys Gly
 260 265 270
 Thr Gly Ala Gly Thr Ala Ala Gly Gly Cys Cys Cys Cys Gly Ala
 275 280 285
 Gly Gly Cys Cys Cys Thr Cys Thr Thr Cys Thr Thr Gly Thr Cys
 290 295 300
 Val Glu Trp Arg Arg val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
 305 310 315 320
 Cys Ala Gly Thr Thr Cys Gly Ala Gly Ala Gly Gly Gly Gly Gly
 325 330 335
 Ala Cys Ala Gly Cys Thr Ala Cys Thr Thr Cys Cys Ala Cys Cys Thr
 340 345 350
 Gly Cys Ala Cys Ala Thr Cys Cys Thr Gly Gly Thr Gly Gly Ala Gly
 355 360 365
 Gln Phe Glu Lys Gly Asp Ser Tyr Phe His Leu His Ile Leu Val Glu
 370 375 380
 Ala Cys Cys Gly Thr Gly Gly Cys Gly Thr Cys Ala Ala Ala Thr
 385 390 395 400
 Cys Cys Ala Thr Gly Gly Thr Gly Gly Thr Gly Gly Cys Cys Gly
 405 410 415
 Cys Thr Ala Cys Gly Thr Gly Ala Gly Cys Cys Ala Gly Ala Thr Thr
 420 425 430
 Thr Val Gly Val Lys Ser Met Val Val Gly Arg Tyr Val Ser Gln Ile
 435 440 445
 Ala Ala Ala Gly Ala Ala Gly Cys Thr Gly Gly Thr Gly Ala
 450 455 460
 Cys Cys Cys Gly Cys Ala Thr Cys Thr Ala Cys Cys Gly Cys Gly
 465 470 475 480
 Gly Gly Thr Cys Gly Ala Gly Cys Cys Gly Cys Ala Gly Cys Thr Thr
 485 490 495
 Lys Glu Lys Leu Val Thr Arg Ile Tyr Arg Gly Val Glu Pro Gln Leu
 500 505 510
 Cys Cys Gly Ala Ala Cys Thr Gly Gly Thr Thr Cys Gly Cys Gly
 515 520 525
 Thr Gly Ala Cys Cys Ala Ala Gly Ala Cys Gly Cys Gly Thr Ala Ala
 530 535 540
 Thr Gly Gly Cys Gly Cys Gly Gly Ala Gly Gly Cys Gly Gly
 545 550 555 560
 Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly
 565 570 575
 Ala Ala Cys Ala Ala Gly Gly Thr Gly Gly Thr Gly Gly Ala Cys Gly
 580 585 590
 Ala Cys Thr Gly Cys Thr Ala Cys Ala Thr Cys Cys Cys Ala Ala
 595 600 605
 Cys Thr Ala Cys Cys Thr Gly Cys Thr Cys Cys Cys Ala Ala Gly
 610 615 620
 Asn Lys Val Val Asp Asp Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
 625 630 635 640
 Ala Cys Cys Cys Ala Gly Cys Cys Cys Gly Ala Gly Cys Thr Cys Cys
 645 650 655
 Ala Gly Thr Gly Gly Cys Gly Thr Gly Gly Ala Cys Thr Ala Ala
 660 665 670
 Cys Ala Thr Gly Gly Ala Cys Cys Ala Gly Thr Ala Thr Ala Thr Ala
 675 680 685
 Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Asp Gln Tyr Ile
 690 695 700
 Ala Gly Cys Gly Cys Cys Thr Gly Thr Thr Thr Gly Ala Ala Ala Thr Cys
 705 710 715 720
 Thr Cys Gly Cys Gly Gly Ala Gly Cys Gly Thr Ala Ala Ala Cys Gly
 725 730 735
 Gly Cys Thr Gly Gly Thr Gly Cys Gly Cys Ala Gly Cys Ala Thr

Ser	Ala	Cys	Leu	Asn	Leu	Ala	Glu	Arg	Lys	Arg	Leu	Val	Ala	Gln	His
740			745				750								
755			760				765								
Cys	Thr	Gly	Ala	Cys	Gly	Cys	Ala	Cys	Gly	Thr	Gly	Thr	Cys	Gly	Cys
770			775				780								
Ala	Gly	Ala	Cys	Gly	Cys	Ala	Gly	Gly	Ala	Gly	Cys	Ala	Gly	Ala	Ala
785			790				795								800
Cys	Ala	Ala	Gly	Gly	Ala	Ala	Ala	Cys	Cys	Ala	Gly	Ala	Ala	Cys	
	805				810									815	
Leu	Thr	His	Val	Ser	Gln	Thr	Gln	Glu	Gln	Asn	Lys	Glu	Asn	Gln	Asn
	820				825									830	
Cys	Cys	Cys	Ala	Ala	Thr	Thr	Cys	Thr	Gly	Ala	Cys	Gly	Cys	Gly	Cys
	835				840									845	
Cys	Gly	Gly	Thr	Cys	Ala	Thr	Cys	Ala	Gly	Gly	Thr	Cys	Ala	Ala	Ala
	850				855									860	
Ala	Ala	Cys	Cys	Thr	Cys	Cys	Gly	Cys	Ala	Gly	Gly	Thr	Ala	Cys	
	865				870									880	
Pro	Asn	Ser	Asp	Ala	Pro	Val	Ile	Arg	Ser	Lys	Thr	Ser	Ala	Arg	Tyr
														885	
Ala	Thr	Gly	Gly	Ala	Gly	Cys	Thr	Gly	Gly	Thr	Cys	Gly	Gly	Gly	Thr
	900				905									910	
Gly	Gly	Cys	Thr	Gly	Gly	Thr	Gly	Gly	Ala	Cys	Cys	Gly	Cys	Gly	Gly
	915				920									925	
Gly	Ala	Thr	Cys	Ala	Cys	Gly	Thr	Cys	Ala	Gly	Ala	Ala	Ala	Gly	
	930				935									940	
Met	Glu	Leu	Val	Gly	Trp	Leu	Val	Asp	Arg	Gly	Ile	Thr	Ser	Glu	Lys
	945				950									955	
Cys	Ala	Ala	Thr	Gly	Gly	Ala	Thr	Cys	Cys	Ala	Gly	Gly	Ala	Gly	
	965				970									975	
Ala	Cys	Cys	Ala	Gly	Gly	cys	Gly	Thr	Cys	Cys	Thr	Ala	Cys	Ala	Thr
	980				985									990	
Cys	Thr	Cys	Cys	Thr	Thr	cys	Ala	Ala	Cys	Gly	Cys	Cys	Gly	Cys	Cys
	995				1000									1005	
Gln	Trp	Ile	Gln	Glu	Asp	Gln	Ala	Ser	Tyr	Ile	Ser	Phe	Asn	Ala	Ala
	1010				1015									1020	
Thr	Cys	Cys	Ala	Ala	Cys	Thr	Cys	Gly	Gly	Thr	Cys	Ala	Cys		
	1025				1030									1035	
Ala	Ala	Ala	Thr	Cys	Ala	Ala	Gly	Gly	Cys	Cys	Gly	Cys	Thr		
	1045				1050									1055	
Gly	Gly	Ala	Cys	Ala	Ala	Ala	Thr	Gly	Cys	Thr	Cys	Cys	Ala	Ala	Ala
	1060				1065									1070	
Ser	Asn	Ser	Arg	Ser	Gln	Ile	Lys	Ala	Ala	Leu	Asp	Asn	Ala	Ser	Lys
	1075				1080									1085	
Ala	Thr	Cys	Ala	Thr	Gly	Ala	Gly	Cys	Cys	Thr	Gly	Ala	Cys	Ala	Ala
	1090				1095									1100	
Ala	Gly	Ala	Cys	Gly	Gly	Cys	Thr	Cys	Cys	Gly	Gly	Ala	Cys	Thr	Ala
	1105				1110									1115	
Cys	Cys	Thr	Gly	Gly	Thr	Gly	Gly	Gly	Cys	Ala	Gly	Ala	Ala	Cys	
	1125				1130									1135	
Ile	Met	Ser	Leu	Thr	Lys	Thr	Ala	Pro	Asp	Tyr	Leu	Val	Gly	Gln	Asn
	1140				1145									1150	
Cys	Cys	Gly	Cys	Cys	Gly	Gly	Ala	Gly	Gly	Ala	Cys	Ala	Thr	Thr	Thr
	1155				1160									1165	
Cys	Cys	Ala	Gly	Cys	Ala	Ala	Cys	Cys	Gly	Cys	Ala	Thr	Cys	Thr	Ala
	1170				1175									1180	
Cys	Cys	Gly	Ala	Ala	Thr	Cys	Cys	Thr	Cys	Gly	Ala	Gly	Ala	Thr	Gly
	1185				1190									1195	
Pro	Pro	Glu	Asp	Ile	Ser	Ser	Asn	Arg	Ile	Tyr	Arg	Ile	Leu	Glu	Met
	1205				1210									1215	
Ala	Ala	Cys	Gly	Gly	Gly	Thr	Ala	Cys	Gly	Ala	Thr	Cys	Cys	Gly	Cys
	1220				1225									1230	
Ala	Gly	Thr	Ala	Cys	Gly	Gly	Cys	Cys	Gly	Cys	Cys	Thr	Cys	Gly	Thr
	1235				1240									1245	

Cys Thr Thr Cys Cys Thr Gly Gly Gly Cys Thr Gly Gly Gly Cys Gly
 1250 1255 1260
 Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
 1265 1270 1275 1280
 Cys Ala Ala Ala Ala Gly Ala Ala Gly Thr Thr Cys Gly Gly Ala
 1285 1290 1295
 Ala Gly Ala Gly Ala Ala Cys Ala Cys Cys Ala Thr Cys Thr Gly
 1300 1305 1310
 Gly Cys Thr Cys Thr Thr Gly Gly Gly Cys Cys Gly Gly Cys Cys
 1315 1320 1325
 Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 1330 1335 1340
 Ala Cys Gly Ala Cys Gly Gly Gly Thr Ala Ala Ala Ala Cys Cys Ala
 1345 1350 1355 1360
 Ala Cys Ala Thr Cys Gly Cys Gly Ala Ala Gly Cys Cys Ala Thr
 1365 1370 1375
 Cys Gly Cys Cys Cys Ala Cys Gly Cys Cys Gly Thr Gly Cys Cys
 1380 1385 1390
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
 1395 1400 1405
 Thr Thr Cys Thr Ala Cys Gly Gly Cys Thr Gly Cys Gly Thr Gly Ala
 1410 1415 1420
 Ala Cys Thr Gly Gly Ala Cys Cys Ala Ala Thr Gly Ala Gly Ala Ala
 1425 1430 1435 1440
 Cys Thr Thr Thr Cys Cys Gly Thr Thr Cys Ala Ala Cys Gly Ala Thr
 1445 1450 1455
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 1460 1465 1470
 Thr Gly Cys Gly Thr Cys Gly Ala Cys Ala Ala Gly Ala Thr Gly Gly
 1475 1480 1485
 Thr Gly Ala Thr Cys Thr Gly Gly Thr Gly Gly Ala Gly Gly Ala
 1490 1495 1500
 Gly Gly Cys Ala Ala Gly Ala Thr Gly Ala Cys Gly Gly Cys Cys
 1505 1510 1515 1520
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 1525 1530 1535
 Ala Ala Gly Gly Thr Cys Gly Thr Ala Gly Ala Gly Ala Cys Gly
 1540 1545 1550
 Cys Cys Ala Ala Gly Gly Cys Cys Ala Thr Cys Cys Thr Gly Gly Gly
 1555 1560 1565
 Cys Gly Gly Ala Ala Gly Cys Ala Ala Gly Gly Thr Gly Cys Gly Cys
 1570 1575 1580
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 1585 1590 1595 1600
 Gly Thr Gly Gly Ala Cys Cys Ala Ala Ala Gly Thr Gly Cys Ala
 1605 1610 1615
 Ala Gly Thr Cys Ala Thr Cys Gly Gly Cys Cys Ala Gly Ala Thr
 1620 1625 1630
 Cys Gly Ala Cys Cys Cys Ala Ala Cys Thr Cys Cys Cys Gly Thr Gly
 1635 1640 1645
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 1650 1655 1660
 Ala Thr Cys Gly Thr Cys Ala Cys Cys Thr Cys Cys Ala Ala Cys Ala
 1665 1670 1675 1680
 Cys Cys Ala Ala Cys Ala Thr Gly Thr Gly Cys Gly Gly Thr
 1685 1690 1695
 Cys Ala Thr Cys Gly Ala Cys Gly Gly Ala Ala Ala Cys Thr Cys Gly
 1700 1705 1710
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 1715 1720 1725
 Ala Cys Cys Ala Cys Cys Thr Thr Cys Gly Ala Gly Cys Ala Cys Cys
 1730 1735 1740
 Ala Ala Cys Ala Ala Cys Cys Ala Cys Thr Cys Cys Ala Gly Gly Ala

1745 1750 1755 1760
 Cys Cys Gly Gly Ala Thr Gly Thr Thr Cys Ala Ala Gly Thr Thr Cys
 1765 1770 1775 1780
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 1780 1785 1790 1795
 Gly Ala Gly Cys Thr Cys Ala Cys Cys Ala Ala Gly Cys Gly Cys Cys
 1795 1800 1805 1810
 Thr Gly Gly Ala Gly Cys Ala Cys Gly Ala Cys Thr Thr Thr Gly Gly
 1810 1815 1820 1825
 Cys Ala Ala Gly Gly Thr Cys Ala Cys Cys Ala Ala Gly Cys Ala Gly
 1825 1830 1835 1840
 Glu Leu Thr Lys Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 1845 1850 1855 1860
 Gly Ala Ala Gly Thr Cys Ala Ala Ala Gly Ala Cys Thr Thr Thr
 1860 1865 1870 1875
 Thr Cys Cys Gly Gly Thr Gly Gly Cys Gly Thr Cys Ala Gly Ala
 1875 1880 1885 1890
 Thr Cys Ala Cys Gly Thr Gly Ala Cys Cys Gly Ala Gly Gly Thr Gly
 1890 1895 1900 1905
 Glu Val Lys Asp Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 1905 1910 1915 1920
 Ala Cys Thr Cys Ala Cys Gly Ala Gly Thr Thr Thr Thr Ala Cys Gly
 1925 1930 1935 1940
 Thr Cys Ala Gly Ala Ala Ala Gly Gly Thr Gly Gly Ala Gly Cys
 1940 1945 1950 1955
 Thr Ala Gly Ala Ala Ala Gly Ala Gly Cys Cys Cys Gly Cys Cys
 1955 1960 1965 1970
 Thr His Glu Phe Tyr Val Arg Lys Gly Gly Ala Arg Lys Arg Pro Ala
 1970 1975 1980 1985
 Cys Cys Cys Ala Ala Thr Gly Ala Cys Gly Cys Ala Gly Ala Thr Ala
 1985 1990 1995 2000
 Thr Ala Ala Gly Thr Gly Ala Gly Cys Cys Cys Ala Ala Gly Cys Gly
 2005 2010 2015 2020
 Gly Gly Cys Cys Thr Gly Thr Cys Cys Gly Thr Cys Ala Gly Thr Thr
 2020 2025 2030 2035
 Pro Asn Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 2035 2040 2045 2050
 Gly Cys Gly Cys Ala Gly Cys Cys Ala Thr Cys Gly Ala Cys Gly Thr
 2050 2055 2060 2065
 Cys Ala Gly Ala Cys Gly Cys Gly Ala Ala Gly Cys Thr Cys Cys
 2065 2070 2075 2080
 Gly Gly Thr Gly Gly Ala Cys Thr Ala Cys Gly Cys Gly Ala Cys
 2085 2090 2095 2100
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Pro Val Asp Tyr Ala Asp
 2100 2105 2110 2115
 Ala Gly Gly Thr Ala Cys Cys Ala Ala Ala Ala Cys Ala Ala Ala Thr
 2115 2120 2125 2130
 Gly Thr Thr Cys Thr Cys Gly Thr Cys Ala Cys Gly Thr Gly Gly
 2130 2135 2140 2145
 Thr Ala Thr Gly Ala Ala Thr Cys Thr Gly Ala Thr Gly Cys Thr
 2145 2150 2155 2160
 Arg Tyr Gln Asn Lys Cys Ser Arg His Val Gly Met Asn Leu Met Leu
 2165 2170 2175 2180
 Thr Thr Thr Cys Cys Thr Gly Cys Cys Gly Gly Cys Ala Ala Thr
 2180 2185 2190 2195
 Gly Cys Gly Ala Gly Ala Ala Thr Gly Ala Ala Thr Cys Ala
 2195 2200 2205 2210
 Gly Ala Ala Thr Gly Thr Gly Ala Cys Ala Thr Thr Thr Gly Cys
 2210 2215 2220 2225
 Phe Pro Cys Arg Gln Cys Glu Arg Met Asn Gln Asn Val Asp Ile Cys
 2225 2230 2235 2240
 Thr Thr Cys Ala Cys Gly Cys Ala Cys Gly Gly Gly Gly Thr Cys Ala
 2245 2250 2255

Thr Gly Gly Ala Cys Thr Gly Thr Gly Cys Cys Gly Ala Gly Thr Gly
 2260 2265 2270
 Cys Thr Thr Cys Cys Cys Gly Thr Gly Thr Cys Ala Gly Ala Ala
 2275 2280 2285
 Phe Thr His Gly Val Met Asp Cys Ala Glu Cys Phe Pro Val Ser Glu
 2290 2295 2300
 Thr Cys Thr Cys Ala Ala Cys Cys Gly Thr Gly Thr Cys Thr Gly
 2305 2310 2315 2320
 Thr Cys Gly Thr Cys Ala Gly Ala Ala Gly Cys Gly Ala Cys
 2325 2330 2335
 Gly Thr Ala Thr Cys Ala Gly Ala Ala Cys Thr Gly Thr Gly Thr
 2340 2345 2350
 Ser Gln Pro Val Ser Val Val Arg Lys Arg Thr Tyr Gln Lys Leu Cys
 2355 2360 2365
 Cys Cys Gly Ala Thr Thr Cys Ala Thr Cys Ala Cys Ala Thr Cys Ala
 2370 2375 2380
 Thr Gly Gly Gly Ala Gly Gly Cys Gly Cys Cys Cys Gly Ala
 2385 2390 2395 2400
 Gly Gly Thr Gly Gly Cys Cys Thr Gly Cys Thr Cys Gly Gly Cys Cys
 2405 2410 2415
 Pro Ile His His Ile Met Gly Arg Ala Pro Glu Val Ala Cys Ser Ala
 2420 2425 2430
 Thr Gly Cys Gly Ala Ala Cys Thr Gly Gly Cys Cys Ala Ala Thr Gly
 2435 2440 2445
 Thr Gly Gly Ala Cys Thr Thr Gly Gly Ala Thr Gly Ala Cys Thr Gly
 2450 2455 2460
 Thr Gly Ala Cys Ala Thr Gly Gly Ala Ala Cys Ala Ala Thr Ala Ala
 2465 2470 2475 2480
 Cys Glu Leu Ala Asn Val Asp Leu Asp Asp Cys Asp Met Glu Gln
 2485 2490 2495

<210> 4

<211> 734

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 4

Met Thr Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu
 1 5 10 15
 Gly Val Arg Glu Trp Trp Ala Leu Gln Pro Gly Ala Pro Lys Pro Lys
 20 25 30
 Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro Gly
 35 40 45
 Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro Val
 50 55 60
 Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln
 65 70 75 80
 Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp
 85 90 95
 Ala Glu Phe Gln Gln Arg Leu Gln Gly Asp Thr Ser Phe Gly Gly Asn
 100 105 110
 Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu
 115 120 125
 Gly Leu Val Glu Gln Ala Gly Glu Thr Ala Pro Gly Lys Lys Arg Pro
 130 135 140
 Leu Ile Glu Ser Pro Gln Gln Pro Asp Ser Ser Thr Gly Ile Gly Lys
 145 150 155 160
 Lys Gly Lys Gln Pro Ala Lys Lys Lys Leu Val Phe Glu Asp Glu Thr
 165 170 175

Gly Ala Gly Asp Gly Pro Pro Glu Gly Ser Thr Ser Gly Ala Met Ser
 180 185 190
 Asp Asp Ser Glu Met Arg Ala Ala Gly Gly Ala Ala Val Glu Gly
 195 200 205
 Gly Gln Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys
 210 215 220
 Asp Ser Thr Trp Ser Glu Gly His Val Thr Thr Ser Thr Arg Thr
 225 230 235 240
 Trp Val Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Arg Leu Gly Glu
 245 250 255
 Ser Leu Gln Ser Asn Thr Tyr Asn Gly Phe Ser Thr Pro Trp Gly Tyr
 260 265 270
 Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln
 275 280 285
 Arg Leu Ile Asn Asn Asn Trp Gly Met Arg Pro Lys Ala Met Arg Val
 290 295 300
 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Thr Ser Asn Gly Glu
 305 310 315 320
 Thr Thr Val Ala Asn Leu Thr Ser Thr Val Gln Ile Phe Ala Asp
 325 330 335
 Ser Ser Tyr Glu Leu Pro Tyr Val Met Asp Ala Gly Gln Glu Gly Ser
 340 345 350
 Leu Pro Pro Phe Pro Asn Asp Val Phe Met Val Pro Gln Tyr Gly Tyr
 355 360 365
 Cys Gly Leu Val Thr Gly Asn Thr Ser Gln Gln Gln Thr Asp Arg Asn
 370 375 380
 Ala Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly
 385 390 395 400
 Asn Asn Phe Glu Ile Thr Tyr Ser Phe Glu Lys Val Pro Phe His Ser
 405 410 415
 Met Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile
 420 425 430
 Asp Gln Tyr Leu Trp Gly Leu Gln Ser Thr Thr Thr Gly Thr Thr Leu
 435 440 445
 Asn Ala Gly Thr Ala Thr Thr Asn Phe Thr Lys Leu Arg Pro Thr Asn
 450 455 460
 Phe Ser Asn Phe Lys Lys Asn Trp Leu Pro Gly Pro Ser Ile Lys Gln
 465 470 475 480
 Gln Gly Phe Ser Lys Thr Ala Asn Gln Asn Tyr Lys Ile Pro Ala Thr
 485 490 495
 Gly Ser Asp Ser Leu Ile Lys Tyr Glu Thr His Ser Thr Leu Asp Gly
 500 505 510
 Arg Trp Ser Ala Leu Thr Pro Gly Pro Pro Met Ala Thr Ala Gly Pro
 515 520 525
 Ala Asp Ser Lys Phe Ser Asn Ser Gln Leu Ile Phe Ala Gly Pro Lys
 530 535 540
 Gln Asn Gly Asn Thr Ala Thr Val Pro Gly Thr Leu Ile Phe Thr Ser
 545 550 555 560
 Glu Glu Glu Leu Ala Ala Thr Asn Ala Thr Asp Thr Asp Met Trp Gly
 565 570 575
 Asn Leu Pro Gly Gly Asp Gln Ser Asn Ser Asn Leu Pro Thr Val Asp
 580 585 590
 Arg Leu Thr Ala Leu Gly Ala Val Pro Gly Met Val Trp Gln Asn Arg
 595 600 605
 Asp Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp
 610 615 620
 Gly His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu Lys His
 625 630 635 640
 Pro Pro Pro Gln Ile Phe Ile Lys Asn Thr Pro Val Pro Ala Asn Pro
 645 650 655
 Ala Thr Thr Phe Ser Ser Thr Pro Val Asn Ser Phe Ile Thr Gln Tyr
 660 665 670
 Ser Thr Gly Gln Val Ser Val Gln Ile Asp Trp Glu Ile Gln Lys Glu

675	680	685
Arg Ser Lys Arg Trp Asn Pro	Glu Val Gln Phe Thr	Ser Asn Tyr Gly
690	695	700
Gln Gln Asn Ser Leu Leu Trp Ala Pro Asp Ala Ala Gly Lys Tyr Thr		
705	710	715
Glu Pro Arg Ala Ile Gly Thr Arg Tyr Leu Thr His His Leu		
725	730	

<210> 5
<211> 2208

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<221> misc_feature

<222> (0)...(0)
<223> n=a,t,c, or g

<221> variation

<222> (0)...(0)

<223> Xaa = any amino acid

<400> 5	60
atgactgacg gttaccttcc agattggcta gaggacaacc tctctgaagg cgttcgagag	120
tggggcgc tgcaacctgg agcccctaaa cccaaggcaa atcaacaaca tcaggacaac	180
gctcggttc ttgtcttcc gggttacaaa tacctcgac ccggcaacgg actcgacaag	240
ggggAACCCG tcaacgcagc ggacgcggca gccctcgagc acgacaaggc ctacgaccag	300
cagctcaagg cccgtgacaa cccctaccc aagtacaacc acgcccacgc ggagttccag	360
cagcggttc agggcgacac atcgtttggg ggcacacccg gcagagcagt cttccaggcc	420
aaaaagaggg ttcttgaaacc tcttggctg gttgagcaag cgggtgagac ggctcctgga	480
aagaagagac cttgtatgtaa atccccccag cagcccgact cctccacggg tatcggcaaa	540
aaaggcaagc agccggctaa aaagaagctc gtttgcgaag acgaaactgg agcaggcgcac	600
ggaccccttg agggatcaac ttccggagcc atgtctgtatc acagttagat gctgtcagca	660
gctggcggag ctgcagtcg gggggacaa ggtgccatg gagtggtaa tgcctcggtt	720
gattggcatt gcgattccac ctggctcgag ggccacgtca cgaccaccc caccagaacc	780
tgggtcttgc ccacctacaa caaccacccn tacaagcgc acggagagag cttgcagtcc	840
aacacccata acggattctc caccctctgg ggataacttgc acttcaaccg cttccactgc	900
cacttctcac cacgtacgt gcagcgactc atcaacaaca actggggcat gcgacccaaa	960
gcacatgcggg tcaaaatctt caacatccag gtcaaggagg tcacgacgtc gaacggcggag	1020
acaacgggtgg ctaataacct taccagcagc gttcagatct ttgcggactc gtcgtacgaa	1080
ctgcccgtacg ttagggatgc gggtaagag ggcagccctgc ctccctttcc caacgacgtc	1140
tttatggtgc cccagttacgg ctactgtggg ctggtgaccg gcaacacttc gcagcaacag	1200
actgacagaaa atgccttca ctggcttggg tactttccctt cgcagatgtc gcgacttgtc	1260
aacaactttg aaattacgtt cttttttttt aagggtccctt tccactcgat gtacgcgcac	1320
agccagagcc tggaccggct gatgaaccct ctcatcgacc agtacctgtg gggactgcaa	1380
tcgaccacca ccggaaaccac cctgtatggc gggactgcca ccaccaactt taccagactg	1440
cggcctacca actttccaa tttaaaaaag aactggctgc ccggcccttc aatcaagcag	1500
cagggtttct caaagactgc caatcaaaaac tacaagatcc ctgcccacccg gtcagacagt	1560
ctccatcaaat acgagacgca cagactctg gacggaaatgg ggagtgcctt gacccgggaa	1620
cctccaatgg ccacggctgg acctgcggac agcaaggatca gcaacagcca gtcatcttt	1680
gcggggcccta aacagaacgg caacacggcc accgtacccg ggactctgtat cttcacctct	1740
gaggaggagc tggcagccac caacgcccacc gatacgacca tggggccaa cttacctggc	1800
ggtgaccaga gcaacagcaa cctgcccacc gtggacagac tgacagccctt gggagccgtg	1860
ccttggaaatgg tctggcaaaa cagagacatt tactaccagg gtcccatgg gccaagatt	1920
cctcataccg atggacactt tcacccctca ccgtatgttgg gtcggaaacac	1980
ccgcctcctc aaatttttat caagaacacc ccgtatgttgg cgaatctgc aacgacccctc	2040
agctctactc cggtaaactc ttcttactt cagtagacca ctggccagggt gtcgggtcag	2100
attgactggg agatccagaa ggagcggtcc aaacgctgg accccgggt ccagtttacc	2160
tccaactacg gacagcaaaa ctctctgttgg tgggctcccg atgcggctgg gaaatacacact	2208
gagcctaggc ctatcggtac ccgtacccctc acccaccacc tctaataaa	

<210> 6
<211> 125
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 6
ttggccactc cctctatgcg cgctcgctca ctcactcgcc cctggagacc aaaggctcc 60
agactgcccgg cctctggccg gcagggccga gtgagtgagc gagcgcgcat agagggagtg 120
gccaa 125

<210> 7
<211> 245
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 7
ctccatcatc taggttgcc cactgacgta aatgtgacgt cctagggtta gggaggtccc 60
tgtttagca gtcacgtgag tgtcgatatt cgcggagcgt agcgagcgc ataccaagct 120
gccacgtcac agccacgtgg tccgttgcg acagttgcg acaccatgtg gtcaggaggg 180
tatataaccg cgagtgagcc agcgaggagc tccatttgc ccgcgaattt tgaacgagca 240
gcagc 245

<210> 8
<211> 313
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 8
Met Glu Leu Val Gly Trp Leu Val Asp Arg Gly Ile Thr Ser Glu Lys
1 5 10 15
Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
20 25 30
Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys
35 40 45
Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Asn
50 55 60
Pro Pro Glu Asp Ile Ser Ser Asn Arg Ile Tyr Arg Ile Leu Glu Met
65 70 75 80
Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
85 90 95
Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
100 105 110
Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
115 120 125
Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
130 135 140
Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
145 150 155 160
Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
165 170 175

Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 180 185 190
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 195 200 205
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 210 215 220
 Glu Leu Thr Lys Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 225 230 235 240
 Glu Val Lys Asp Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 245 250 255
 Thr His Glu Phe Tyr Val Arg Lys Gly Gly Ala Arg Lys Arg Pro Ala
 260 265 270
 Pro Asn Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 275 280 285
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Pro Val Asp Tyr Ala Asp
 290 295 300
 Arg Leu Ala Arg Gly Gln Pro Leu Xaa
 305 310

<210> 9

<211> 399

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 9

Met Glu Leu Val Gly Trp Leu Val Asp Arg Gly Ile Thr Ser Glu Lys
 1 5 10 15
 Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
 20 25 30
 Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys
 35 40 45
 Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Asn
 50 55 60
 Pro Pro Glu Asp Ile Ser Ser Asn Arg Ile Tyr Arg Ile Leu Glu Met
 65 70 75 80
 Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
 85 90 95
 Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 100 105 110
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
 115 120 125
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 130 135 140
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 145 150 155 160
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 165 170 175
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 180 185 190
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 195 200 205
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 210 215 220
 Glu Leu Thr Lys Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 225 230 235 240
 Glu Val Lys Asp Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 245 250 255
 Thr His Glu Phe Tyr Val Arg Lys Gly Gly Ala Arg Lys Arg Pro Ala
 260 265 270

Pro Asn Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 275 280 285
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Pro Val Asp Tyr Ala Asp
 290 295 300
 Arg Tyr Gln Asn Lys Cys Ser Arg His Val Gly Met Asn Leu Met Leu
 305 310 315 320
 Phe Pro Cys Arg Gln Cys Glu Arg Met Asn Gln Asn Val Asp Ile Cys
 325 330 335
 Phe Thr His Gly Val Met Asp Cys Ala Glu Cys Phe Pro Val Ser Glu
 340 345 350
 Ser Gln Pro Val Ser Val Val Arg Lys Arg Thr Tyr Gln Lys Leu Cys
 355 360 365
 Pro Ile His His Ile Met Gly Arg Ala Pro Glu Val Ala Cys Ser Ala
 370 375 380
 Cys Glu Leu Ala Asn Val Asp Leu Asp Asp Cys Asp Met Glu Gln
 385 390 395

<210> 10

<211> 537

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 10

Met Pro Gly Phe Tyr Glu Ile Val Leu Lys Val Pro Ser Asp Leu Asp
 1 5 10 15
 Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Ser Trp Val Ala Glu
 20 25 30
 Lys Glu Trp Glu Leu Pro Pro Asp Ser Asp Met Asp Leu Asn Leu Ile
 35 40 45
 Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Glu Phe Leu
 50 55 60
 Val Glu Trp Arg Arg Val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
 65 70 75 80
 Gln Phe Glu Lys Gly Asp Ser Tyr Phe His Ile Leu Val Glu
 85 90 95
 Thr Val Gly Val Lys Ser Met Val Val Gly Arg Tyr Val Ser Gln Ile
 100 105 110
 Lys Glu Lys Leu Val Thr Arg Ile Tyr Arg Gly Val Glu Pro Gln Leu
 115 120 125
 Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly
 130 135 140
 Asn Lys Val Val Asp Asp Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
 145 150 155 160
 Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Asp Gln Tyr Ile
 165 170 175
 Ser Ala Cys Leu Asn Leu Ala Glu Arg Lys Arg Leu Val Ala Gln His
 180 185 190
 Leu Thr His Val Ser Gln Thr Gln Glu Gln Asn Lys Glu Asn Gln Asn
 195 200 205
 Pro Asn Ser Asp Ala Pro Val Ile Arg Ser Lys Thr Ser Ala Arg Tyr
 210 215 220
 Met Glu Leu Val Gly Trp Leu Val Asp Arg Gly Ile Thr Ser Glu Lys
 225 230 235 240
 Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
 245 250 255
 Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys
 260 265 270
 Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Asn
 275 280 285

Pro Pro Glu Asp Ile Ser Ser Asn Arg Ile Tyr Arg Ile Leu Glu Met
 290 295 300
 Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
 305 310 315 320
 Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 325 330 335
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
 340 345 350
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 355 360 365
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 370 375 380
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 385 390 395 400
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 405 410 415
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 420 425 430
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 435 440 445
 Glu Leu Thr Lys Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 450 455 460
 Glu Val Lys Asp Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 465 470 475 480
 Thr His Glu Phe Tyr Val Arg Lys Gly Gly Ala Arg Lys Arg Pro Ala
 485 490 495
 Pro Asn Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 500 505 510
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Pro Val Asp Tyr Ala Asp
 515 520 525
 Arg Leu Ala Arg Gly Gln Pro Leu Xaa
 530 535

<210> 11

<211> 623

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial sequence; note =
synthetic construct

<400> 11

Met Pro Gly Phe Tyr Glu Ile Val Leu Lys Val Pro Ser Asp Leu Asp
 1 5 10 15
 Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Ser Trp Val Ala Glu
 20 25 30
 Lys Glu Trp Glu Leu Pro Pro Asp Ser Asp Met Asp Leu Asn Leu Ile
 35 40 45
 Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Glu Phe Leu
 50 55 60
 Val Glu Trp Arg Arg Val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
 65 70 75 80
 Gln Phe Glu Lys Gly Asp Ser Tyr Phe His Leu His Ile Leu Val Glu
 85 90 95
 Thr Val Gly Val Lys Ser Met Val Val Gly Arg Tyr Val Ser Gln Ile
 100 105 110
 Lys Glu Lys Leu Val Thr Arg Ile Tyr Arg Gly Val Glu Pro Gln Leu
 115 120 125
 Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly
 130 135 140
 Asn Lys Val Val Asp Asp Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
 145 150 155 160

Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Asp Gln Tyr Ile
 165 170 175
 Ser Ala Cys Leu Asn Leu Ala Glu Arg Lys Arg Leu Val Ala Gln His
 180 185 190
 Leu Thr His Val Ser Gln Thr Gln Glu Gln Asn Lys Glu Asn Gln Asn
 195 200 205
 Pro Asn Ser Asp Ala Pro Val Ile Arg Ser Lys Thr Ser Ala Arg Tyr
 210 215 220
 Met Glu Leu Val Gly Trp Leu Val Asp Arg Gly Ile Thr Ser Glu Lys
 225 230 235 240
 Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
 245 250 255
 Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys
 260 265 270
 Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Asn
 275 280 285
 Pro Pro Glu Asp Ile Ser Ser Asn Arg Ile Tyr Arg Ile Leu Glu Met
 290 295 300
 Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
 305 310 315 320
 Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 325 330 335
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
 340 345 350
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 355 360 365
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 370 375 380
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 385 390 395 400
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 405 410 415
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 420 425 430
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 435 440 445
 Glu Leu Thr Lys Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 450 455 460
 Glu Val Lys Asp Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 465 470 475 480
 Thr His Glu Phe Tyr Val Arg Lys Gly Gly Ala Arg Lys Arg Pro Ala
 485 490 495
 Pro Asn Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 500 505 510
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Pro Val Asp Tyr Ala Asp
 515 520 525
 Arg Tyr Gln Asn Lys Cys Ser Arg His Val Gly Met Asn Leu Met Leu
 530 535 540
 Phe Pro Cys Arg Gln Cys Glu Arg Met Asn Gln Asn Val Asp Ile Cys
 545 550 555 560
 Phe Thr His Gly Val Met Asp Cys Ala Glu Cys Phe Pro Val Ser Glu
 565 570 575
 Ser Gln Pro Val Ser Val Val Arg Lys Arg Thr Tyr Gln Lys Leu Cys
 580 585 590
 Pro Ile His His Ile Met Gly Arg Ala Pro Glu Val Ala Cys Ser Ala
 595 600 605
 Cys Glu Leu Ala Asn Val Asp Leu Asp Asp Cys Asp Met Glu Gln
 610 615 620

<210> 12

<211> 939

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 12

atggagctgg	tcgggtggct	ggtggaccgc	gggatcacgt	cagaaaagca	atggatccag	60
gaggaccagg	cgtcctacat	ctccttcaac	gccgcctcca	actcgcggtc	acaaatcaag	120
gccgcgctgg	acaatgcctc	caaatacatg	agcctgacaa	agacggctcc	ggactacctg	180
gtggggccaga	acccgcggga	ggacatttc	agcaaccgca	tctaccgaat	cctcgagatg	240
aacgggtacg	atccgcgatg	cgcgcctcc	gtcttcctgg	gctgggcgca	aaagaagttc	300
ggaagagaga	acaccatctg	gctctttggg	ccggccacga	cggtaaaaac	caacatcgcg	360
gaagccatcg	cccacgcgt	gcccttctac	ggctgcgtga	actggaccaa	tgagaacttt	420
ccgttcaacg	attgcgtcg	caagatggtg	atctggtggg	aggagggcaa	gatgacggcc	480
aaggctgtag	agagcgc当地	ggccatcctg	ggcggaaagca	aggtgcgcgt	ggacaaaaag	540
tgcgaatcat	cggccagat	cgacccaact	cccgtgatcg	tcacccctcaa	caccaacatg	600
tgcgcgggtca	tcgacggaaa	ctcgaccacc	ttcgagcacc	aacaaccact	ccaggaccgg	660
atgttcaagt	tcgagctcac	caagcgc当地	gagcacgact	ttggcaaggt	caccaaggcag	720
gaagtcaag	acttttccg	gtggcgtca	gatcactgtga	ccgaggtgac	tcacgagttt	780
tacgtcagaa	agggtggagc	tagaaagagg	cccgc当地	atgacgcaga	tataagttag	840
cccaagcggg	cctgtccgtc	agttgcgc当地	ccatcgacgt	cagacgc当地	agctccgggt	900
gactacgc当地	acaggatcca	aaacaaatgt	tctcgatcag	tggtatgaa	tctgatgctt	960
tttccctgcc	ggcaatgcga	gagaatgaat	cagaatgtgg	acatttgctt	cacgcacggg	1020
gtcatggact	gtgccgactg	cttccccgtg	tcagaatctc	aaccctgtc	tgtcgtcaga	1080
aagcggacgt	atcagaaact	gtgtccgatt	catcacatca	tggggagggc	ccccggaggt	1140
gctgtc当地	ccgtc当地	ggccaatgtg	gacttggatg	actgtgacat	ggaacaa	1197

<210> 13

<211> 1197

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 13

atggagctgg	tcgggtggct	ggtggaccgc	gggatcacgt	cagaaaagca	atggatccag	60
gaggaccagg	cgtcctacat	ctccttcaac	gccgcctcca	actcgcggtc	acaaatcaag	120
gccgc当地	acaatgcctc	caaatacatg	agcctgacaa	agacggctcc	ggactacctg	180
gtggggccaga	acccgcggga	ggacatttc	agcaaccgca	tctaccgaat	cctcgagatg	240
aacgggtacg	atccgcgatg	cgcgc当地	gtcttcctgg	gctgggc当地	aaagaagttc	300
ggaagagaga	acaccatctg	gctctttggg	ccggccacga	cggtaaaaac	caacatcgcg	360
gaagccatcg	cccacgcgt	gcccttctac	ggctgcgtga	actggaccaa	tgagaacttt	420
ccgttcaacg	attgcgtcg	caagatggtg	atctggtggg	aggagggcaa	gatgacggcc	480
aaggctgtag	agagcgc当地	ggccatcctg	ggcggaaagca	aggtgcgcgt	ggacaaaaag	540
tgcgaatcat	cggccagat	cgacccaact	cccgtgatcg	tcacccctcaa	caccaacatg	600
tgcgcgggtca	tcgacggaaa	ctcgaccacc	ttcgagcacc	aacaaccact	ccaggaccgg	660
atgttcaagt	tcgagctcac	caagcgc当地	gagcacgact	ttggcaaggt	caccaaggcag	720
gaagtcaag	acttttccg	gtggcgtca	gatcactgtga	ccgaggtgac	tcacgagttt	780
tacgtcagaa	agggtggagc	tagaaagagg	cccgc当地	atgacgcaga	tataagttag	840
cccaagcggg	cctgtccgtc	agttgcgc当地	ccatcgacgt	cagacgc当地	agctccgggt	900
gactacgc当地	acaggatcca	aaacaaatgt	tctcgatcag	tggtatgaa	tctgatgctt	960
tttccctgcc	ggcaatgcga	gagaatgaat	cagaatgtgg	acatttgctt	cacgcacggg	1020
gtcatggact	gtgccgactg	cttccccgtg	tcagaatctc	aaccctgtc	tgtcgtcaga	1080
aagcggacgt	atcagaaact	gtgtccgatt	catcacatca	tggggagggc	ccccggaggt	1140
gctgtc当地	ccgtc当地	ggccaatgtg	gacttggatg	actgtgacat	ggaacaa	1197

<210> 14

<211> 1611

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 14

atgcgggggt	tctacgagat	cgtgctgaag	gtgcccagcg	acctggacga	gcacctgccc	60
ggcatttctg	actcttttgt	gagctgggtg	gccgagaagg	aatgggagct	gccgcggat	120
tctgacatgg	acttgaatct	gattgagcag	gcacccctga	ccgtggccga	aaagctgcaa	180
cgcgagttcc	tggtcgagtg	gcccgcgtg	agtaaggccc	cgagggccct	cttcttgc	240
cagttcgaga	agggggacag	ctacttccac	ctgcacatcc	tggtgagac	cgtggcggtc	300
aaatccatgg	tggtggggcg	ctacgtgagc	cagattaag	agaagctgtt	gaccgcattc	360
taccgcgggg	tcgagccga	gcttccgaac	tggttcgccg	tgaccaagac	gcgtaatggc	420
gccggaggcg	ggaacaaggt	ggtggacgac	tgctacatcc	ccaactacct	gtcccccaag	480
acccagcccg	agctccagtg	ggcgtggact	aacatggacc	agtatataag	cgccctgtttg	540
aatctcgccg	agcgtaaacg	gctgtggcg	cagcatctga	cgcacgtgtc	gcagacgcag	600
gagcagaaca	aggaaaacca	gaaccccaat	tctgacgc	cggtcatcag	gtcaaaaaacc	660
tccgcccagg	acatggagct	ggtcggttgg	ctggtgacc	gcccggatcac	gtcagaaaaag	720
caatggatcc	aggaggacca	ggcgtcctac	atctcttca	acgcccctc	caactcgcgg	780
tcacaaaatca	aggccgcgt	ggacaatgcc	tccaaaatca	tgagcctgac	aaagacggct	840
ccggactacc	tggtggggca	gaacccgcgg	gaggacattt	ccagcaaccg	catctaccga	900
atccctcgaga	tgaacggta	cgatccgcag	tacgcggcct	ccgtcttcc	gggctgggcg	960
caaaaagaagt	tcgggaaagag	gaacaccatc	tggctcttgc	ggccggccac	gacgggtaaa	1020
accaacatcg	cggaaggccat	cgccacgcgc	gtgccccttgc	acggctgcgt	gaactggacc	1080
aatgagaact	ttccgttcaa	cgattgcgtc	gacaagatgg	tgatctgggt	ggaggagggc	1140
aagatgacgg	ccaaggctgt	agagagcgcc	aaggccatcc	tggcggaaag	caaggtgcgc	1200
gtggaccaaa	agtgcagtc	atcgcccag	atcgacccaa	ctccctgtat	cgtcacctcc	1260
aacaccaaca	tgtgcgcgt	catgcacgga	aactcgcacca	ccttcgagca	ccaacaacca	1320
ctccaggacc	ggatgttcaa	gttcgagctc	accaagcgcc	tggagcacga	ctttggcaag	1380
gtcaccaagc	aggaagtcaa	agactttttc	cgggtggcg	cagatcacgt	gaccgagggt	1440
actcacggt	tttacgtcag	aaagggttgg	gctagaaaaga	ggccccc	caatgacgc	1500
gatataatgt	agcccaagcg	ggccgttccg	tcagttgc	agccatcgac	gtcagacgcg	1560
gaagctccgg	tggactacgc	ggacagattt	gctagaggac	aacctctctg	a	1611

<210> 15

<211> 1872

<212> DNA

<213> Artificial sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 15

atgcgggggt	tctacgagat	cgtgctgaag	gtgcccagcg	acctggacga	gcacctgccc	60
ggcatttctg	actcttttgt	gagctgggtg	gccgagaagg	aatgggagct	gccgcggat	120
tctgacatgg	acttgaatct	gattgagcag	gcacccctga	ccgtggccga	aaagctgcaa	180
cgcgagttcc	tggtcgagtg	gcccgcgtg	agtaaggccc	cgagggccct	cttcttgc	240
cagttcgaga	agggggacag	ctacttccac	ctgcacatcc	tggtgagac	cgtggcggtc	300
aaatccatgg	tggtggggcg	ctacgtgagc	cagattaag	agaagctgtt	gaccgcattc	360
taccgcgggg	tcgagccga	gcttccgaac	tggttcgccg	tgaccaagac	gcgtaatggc	420
gccggaggcg	ggaacaaggt	ggtggacgac	tgctacatcc	ccaactacct	gtcccccaag	480
acccagcccg	agctccagtg	ggcgtggact	aacatggacc	agtatataag	cgccctgtttg	540
aatctcgccg	agcgtaaacg	gctgtggcg	cagcatctga	cgcacgtgtc	gcagacgcag	600
gagcagaaca	aggaaaacca	gaaccccaat	tctgacgc	cggtcatcag	gtcaaaaaacc	660
tccgcccagg	acatggagct	ggtcggttgg	ctggtgacc	gcccggatcac	gtcagaaaaag	720
caatggatcc	aggaggacca	ggcgtcctac	atctcttca	acgcccctc	caactcgcgg	780
tcacaaaatca	aggccgcgt	ggacaatgcc	tccaaaatca	tgagcctgac	aaagacggct	840
ccggactacc	tggtggggca	gaacccgcgg	gaggacattt	ccagcaaccg	catctaccga	900
atccctcgaga	tgaacggta	cgatccgcag	tacgcggcct	ccgtcttcc	gggctgggcg	960
caaaaagaagt	tcgggaaagag	gaacaccatc	tggctcttgc	ggccggccac	gacgggtaaa	1020
accaacatcg	cggaaggccat	cgccacgcgc	gtgccccttgc	acggctgcgt	gaactggacc	1080
aatgagaact	ttccgttcaa	cgattgcgtc	gacaagatgg	tgatctgggt	ggaggagggc	1140
aagatgacgg	ccaaggctgt	agagagcgcc	aaggccatcc	tggcggaaag	caaggtgcgc	1200
gtggaccaaa	agtgcagtc	atcgcccag	atcgacccaa	ctccctgtat	cgtcacctcc	1260
aacaccaaca	tgtgcgcgt	catgcacgga	aactcgcacca	ccttcgagca	ccaacaacca	1320
ctccaggacc	ggatgttcaa	gttcgagctc	accaagcgcc	tggagcacga	ctttggcaag	1380
gtcaccaagc	aggaagtcaa	agactttttc	cgggtggcg	cagatcacgt	gaccgagggt	1440

actcacgagt	tttacgtca	aaagggtgga	gctagaaaaga	ggcccgcccc	caatgacgca	1500
gatataagt	agcccaagcg	ggcctgtccg	tcagttgcgc	agccatcgac	gtcagacgcg	1560
gaagctccgg	tggactacgc	ggacaggatc	aaaaacaat	gttctcgta	cgtgggtatg	1620
aatctgtatgc	tttttccctg	ccggcaatgc	gagagaatga	atcagaatgt	ggacatttg	1680
ttcacgcacg	gggtcatgga	ctgtccgag	tgcttccccg	tgtcagaatc	tcaacccgtg	1740
tctgtcgta	gaaagcgac	gtatcagaaa	ctgtgtccg	ttcatcacat	catggggagg	1800
gcgcggagg	tggcctgctc	ggcctgcgaa	ctggccaatg	tggacttgg	tgactgtgac	1860
atggaacaat	aa					1872

<210> 16

<211> 598

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial sequence; note =
synthetic construct

<400> 16

Thr Ala Pro Gly Lys Lys Arg Pro Leu Ile Glu Ser Pro Gln Gln Pro
 1 5 10 15
 Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Lys Gln Pro Ala Lys Lys
 20 25 30
 Lys Leu Val Phe Glu Asp Glu Thr Gly Ala Gly Asp Gly Pro Pro Glu
 35 40 45
 Gly Ser Thr Ser Gly Ala Met Ser Asp Asp Ser Glu Met Arg Ala Ala
 50 55 60
 Ala Gly Gly Ala Ala Val Glu Gly Gly Gln Gly Ala Asp Gly Val Gly
 65 70 75 80
 Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp Ser Glu Gly His
 85 90 95
 Val Thr Thr Ser Thr Arg Thr Trp Val Leu Pro Thr Tyr Asn Asn
 100 105 110
 His Leu Tyr Lys Arg Leu Gly Glu Ser Leu Gln Ser Asn Thr Tyr Asn
 115 120 125
 Gly Phe Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys
 130 135 140
 His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly
 145 150 155 160
 Met Arg Pro Lys Ala Met Arg Val Lys Ile Phe Asn Ile Gln Val Lys
 165 170 175
 Glu Val Thr Thr Ser Asn Gly Glu Thr Thr Val Ala Asn Asn Leu Thr
 180 185 190
 Ser Thr Val Gln Ile Phe Ala Asp Ser Ser Tyr Glu Leu Pro Tyr Val
 195 200 205
 Met Asp Ala Gly Gln Glu Gly Ser Leu Pro Pro Phe Pro Asn Asp Val
 210 215 220
 Phe Met Val Pro Gln Tyr Gly Tyr Cys Gly Leu Val Thr Gly Asn Thr
 225 230 235 240
 Ser Gln Gln Gln Thr Asp Arg Asn Ala Phe Tyr Cys Leu Glu Tyr Phe
 245 250 255
 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Ile Thr Tyr Ser
 260 265 270
 Phe Glu Lys Val Pro Phe His Ser Met Tyr Ala His Ser Gln Ser Leu
 275 280 285
 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Trp Gly Leu Gln
 290 295 300
 Ser Thr Thr Thr Gly Thr Thr Leu Asn Ala Gly Thr Ala Thr Thr Asn
 305 310 315 320
 Phe Thr Lys Leu Arg Pro Thr Asn Phe Ser Asn Phe Lys Lys Asn Trp
 325 330 335
 Leu Pro Gly Pro Ser Ile Lys Gln Gln Gly Phe Ser Lys Thr Ala Asn
 340 345 350

Gln Asn Tyr Lys Ile Pro Ala Thr Gly Ser Asp Ser Leu Ile Lys Tyr
 355 360 365
 Glu Thr His Ser Thr Leu Asp Gly Arg Trp Ser Ala Leu Thr Pro Gly
 370 375 380
 Pro Pro Met Ala Thr Ala Gly Pro Ala Asp Ser Lys Phe Ser Asn Ser
 385 390 395 400
 Gln Leu Ile Phe Ala Gly Pro Lys Gln Asn Gly Asn Thr Ala Thr Val
 405 410 415
 Pro Gly Thr Leu Ile Phe Thr Ser Glu Glu Glu Leu Ala Ala Thr Asn
 420 425 430
 Ala Thr Asp Thr Asp Met Trp Gly Asn Leu Pro Gly Gly Asp Gln Ser
 435 440 445
 Asn Ser Asn Leu Pro Thr Val Asp Arg Leu Thr Ala Leu Gly Ala Val
 450 455 460
 Pro Gly Met Val Trp Gln Asn Arg Asp Ile Tyr Tyr Gln Gly Pro Ile
 465 470 475 480
 Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu
 485 490 495
 Ile Gly Gly Phe Gly Leu Lys His Pro Pro Gln Ile Phe Ile Lys
 500 505 510
 Asn Thr Pro Val Pro Ala Asn Pro Ala Thr Thr Phe Ser Ser Thr Pro
 515 520 525
 Val Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Gln
 530 535 540
 Ile Asp Trp Glu Ile Gln Lys Glu Arg Ser Lys Arg Trp Asn Pro Glu
 545 550 555 560
 Val Gln Phe Thr Ser Asn Tyr Gly Gln Gln Asn Ser Leu Leu Trp Ala
 565 570 575
 Pro Asp Ala Ala Gly Lys Tyr Thr Glu Pro Arg Ala Ile Gly Thr Arg
 580 585 590
 Tyr Leu Thr His His Leu
 595

<210> 17

<211> 1800

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<221> misc_feature

<222> (0)...(0)

<223> n=a,t,c, or g

<221> variation

<222> (0)...(0)

<223> Xaa = any amino acid

<400> 17

acggctcctg	gaaaagaagag	accgttgatt	gaatcccccc	agcagcccga	ctcctccacg	60
ggtatcgca	aaaaaggcaa	gcagccggct	aaaaagaagc	tcgttttgcg	agacgaaaact	120
ggagcaggcg	acggacccccc	tgagggatca	acttccggag	ccatgtctga	tgacagttag	180
atgcgtcag	cagctggcg	agctgcagtc	gagggsgggac	aagggtgccga	tggagtgggt	240
aatgcctcgg	gtgattggca	ttgcgattcc	acctggtctg	agggccacgt	cacgaccacc	300
agcaccagaa	cctgggtctt	gcccacctac	aacaaccacc	tntacaagcg	actcggagag	360
agcctgcagt	ccaacaccta	caacggattc	tccacccctt	ggggataactt	tgacttcaac	420
cgttccact	gccacttctc	accacgtgac	tggcagcgac	tcatcaacaa	caactggggc	480
atgcgaccca	aagccatgcg	ggtcaaaatc	ttcaacatcc	aggtaagga	gttcacgacg	540
tgcacggcg	agacaacggt	ggctaataac	cttaccagca	cggttcagat	ctttgcggac	600
tgcgtacg	aactgcccgt	cgtgatggat	gcccgtcaag	aggcagccct	gcctcctttt	660
cccaacgacg	tctttatggt	gccccagtag	ggctactgtg	qactggtgac	cgcaacact	720

tcgcagcaac	agactgacag	aatgccttc	tactgcctgg	agtactttcc	ttcgcatatg	780
ctgcggactg	gcaacaacctt	tgaaattacg	tacagtttg	agaagggtgcc	tttccactcg	840
atgtacgcgc	acagccagag	cctggaccgg	ctgatgaacc	ctctcatcg	ccagtacctg	900
tggggactgc	aatcgaccac	caccggaaac	accctgaatg	ccgggactgc	caccaccaac	960
tttaccaagc	tgccgcctac	caactttcc	aactttaaa	agaactggct	gcccgggcct	1020
tcaaatcaagc	agcagggttt	ctcaaagact	gccaatcaa	actacaagat	ccctgcccacc	1080
gggtcagaca	gtctcatcaa	ataccagacg	cacagcactc	tggacggaag	atggagtgcc	1140
ctgacccccc	gacctcaat	ggccacggct	ggacctgcgg	acagcaagtt	cagcaacagc	1200
cagctcatct	ttgcggggcc	taaacacagaac	ggcaacacgg	ccaccgtacc	cgggactctg	1260
atcttacact	ctgaggagga	gctggcagcc	accaacgcca	ccgatacgg	catgtggggc	1320
aacctacctg	gcccgtacca	gagcaacagc	aacctgccc	ccgtggacag	actgacagcc	1380
tggggaccc	tgcctggaaat	ggctggcaa	aacagagaca	tttactacca	gggtccccatt	1440
tgggccaaga	ttcctcatac	cgatggacac	tttcacccct	caccgtgtat	tgggtgggttt	1500
ggctgaaac	acccgcctcc	tcaaattttt	atcaagaaca	ccccgttacc	tgcaatcct	1560
gcaacgacct	tcagctctac	tccggtaaac	tccttcattt	ctcagttacag	cactggccag	1620
gtgtcggtgc	agattgactg	ggagatccag	aaggagcgt	ccaaacgctg	gaaccccgag	1680
gtccagttt	cctccaaacta	cggacagcaa	aactcttgt	tgtggctcc	cgatgcggct	1740
ggaaaataca	ctgagcctag	ggctatcggt	acccgttacc	tcacccacca	cctgtataaa	1800

<210> 18

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 18

Met	Ser	Asp	Asp	Ser	Glu	Met	Arg	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Val
1				5		10							15		
Glu	Gly	Gly	Gln	Gly	Ala	Asp	Gly	Val	Gly	Asn	Ala	Ser	Gly	Asp	Trp
					20			25					30		
His	Cys	Asp	Ser	Thr	Trp	Ser	Glu	Gly	His	Val	Thr	Thr	Thr	Ser	Thr
					35			40					45		
Arg	Thr	Trp	Val	Leu	Pro	Thr	Tyr	Asn	Asn	His	Leu	Tyr	Lys	Arg	Leu
					50			55					60		
Gly	Glu	Ser	Leu	Gln	Ser	Asn	Thr	Tyr	Asn	Gly	Phe	Ser	Thr	Pro	Trp
					65			70					75		80
Gly	Tyr	Phe	Asp	Phe	Asn	Arg	Phe	His	Cys	His	Phe	Ser	Pro	Arg	Asp
					85			90					95		
Trp	Gln	Arg	Leu	Ile	Asn	Asn	Asn	Trp	Gly	Met	Arg	Pro	Lys	Ala	Met
					100			105					110		
Arg	Val	Lys	Ile	Phe	Asn	Ile	Gln	Val	Lys	Glu	Val	Thr	Thr	Ser	Asn
					115			120					125		
Gly	Glu	Thr	Thr	Val	Ala	Asn	Asn	Leu	Thr	Ser	Thr	Val	Gln	Ile	Phe
					130			135					140		
Ala	Asp	Ser	Ser	Tyr	Glu	Leu	Pro	Tyr	Val	Met	Asp	Ala	Gly	Gln	Glu
					145			150					155		160
Gly	Ser	Leu	Pro	Pro	Phe	Pro	Asn	Asp	Val	Phe	Met	Val	Pro	Gln	Tyr
					165			170					175		
Gly	Tyr	Cys	Gly	Leu	Val	Thr	Gly	Asn	Thr	Ser	Gln	Gln	Gln	Thr	Asp
					180			185					190		
Arg	Asn	Ala	Phe	Tyr	Cys	Leu	Glu	Tyr	Phe	Pro	Ser	Gln	Met	Leu	Arg
					195			200					205		
Thr	Gly	Asn	Asn	Phe	Glu	Ile	Thr	Tyr	Ser	Phe	Glu	Lys	Val	Pro	Phe
					210			215					220		
His	Ser	Met	Tyr	Ala	His	Ser	Gln	Ser	Leu	Asp	Arg	Leu	Met	Asn	Pro
					225			230					235		240
Leu	Ile	Asp	Gln	Tyr	Leu	Trp	Gly	Leu	Gln	Ser	Thr	Thr	Thr	Gly	Thr
					245			250					255		
Thr	Leu	Asn	Ala	Gly	Thr	Ala	Thr	Thr	Asn	Phe	Thr	Lys	Leu	Arg	Pro
					260			265					270		

Thr Asn Phe Ser Asn Phe Lys Lys Asn Trp Leu Pro Gly Pro Ser Ile
 275 280 285
 Lys Gln Gln Gly Phe Ser Lys Thr Ala Asn Gln Asn Tyr Lys Ile Pro
 290 295 300
 Ala Thr Gly Ser Asp Ser Leu Ile Lys Tyr Glu Thr His Ser Thr Leu
 305 310 315 320
 Asp Gly Arg Trp Ser Ala Leu Thr Pro Gly Pro Pro Met Ala Thr Ala
 325 330 335
 Gly Pro Ala Asp Ser Lys Phe Ser Asn Ser Gln Leu Ile Phe Ala Gly
 340 345 350
 Pro Lys Gln Asn Gly Asn Thr Ala Thr Val Pro Gly Thr Leu Ile Phe
 355 360 365
 Thr Ser Glu Glu Leu Ala Ala Thr Asn Ala Thr Asp Thr Asp Met
 370 375 380
 Trp Gly Asn Leu Pro Gly Gly Asp Gln Ser Asn Ser Asn Leu Pro Thr
 385 390 395 400
 Val Asp Arg Leu Thr Ala Leu Gly Ala Val Pro Gly Met Val Trp Gln
 405 410 415
 Asn Arg Asp Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His
 420 425 430
 Thr Asp Gly His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu
 435 440 445
 Lys His Pro Pro Pro Gln Ile Phe Ile Lys Asn Thr Pro Val Pro Ala
 450 455 460
 Asn Pro Ala Thr Thr Phe Ser Ser Thr Pro Val Asn Ser Phe Ile Thr
 465 470 475 480
 Gln Tyr Ser Thr Gly Gln Val Ser Val Gln Ile Asp Trp Glu Ile Gln
 485 490 495
 Lys Glu Arg Ser Lys Arg Trp Asn Pro Glu Val Gln Phe Thr Ser Asn
 500 505 510
 Tyr Gly Gln Gln Asn Ser Leu Leu Trp Ala Pro Asp Ala Ala Gly Lys
 515 520 525
 Tyr Thr Glu Pro Arg Ala Ile Gly Thr Arg Tyr Leu Thr His His Leu
 530 535 540

<210> 19

<211> 1617

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<221> misc_feature

<222> (0)...(0)

<223> n=a,t,c, or g

<221> variation

<222> (0)...(0)

<223> Xaa = any amino acid

<400> 19

atgcgtgcag	cagctggcg	agctgcagtc	gagggsgggac	aagggtccga	tggagtgggt	60
aatgcctcgg	gtgattggca	ttgcgattcc	acctggtctg	agggccacgt	cacgaccacc	120
agcaccagaa	cctgggtctt	gcccacctac	aacaaccacc	tntacaagcg	actcggagag	180
agccctgcagt	ccaacaccta	caacggattc	tccacccccc	ggggataactt	tgacttcaac	240
cgcttccact	gccacttctc	accacgtgac	tggcagcgcac	tcatcaacaa	caactggggc	300
atgcgaccca	aagccatgcg	ggtcaaataatc	ttcaacatcc	aggtcaagga	gttcacgcacg	360
tcaaacggcg	agacaacggt	ggctaataac	cttaccagca	cggtttagat	ctttgcggac	420
tctgtcgatc	aactgcccgt	cgtgatggat	gccccgtcaag	agggcagcct	gcctcccttt	480
cccaacgcacg	tctttatggt	gccccagtagc	ggctacttg	gactgggtgac	cggcaacact	540
tcgcagcaac	agactgacag	aatgccttc	tactgcctgg	agtactttcc	ttcgcagatg	600

ctgcggactg	gcaacaactt	tgaattacg	tacagttttt	agaaggcgcc	tttccactcg	660
atgtacgcgc	acagccagag	cctggaccgg	ctgatgaacc	ctctcatcg	ccagtacctg	720
tggggactgc	aatcgaccac	caccggaaacc	accctgaatg	ccgggactgc	caccaccaac	780
tttaccaagc	tgcggcttac	caactttcc	aactttaaa	agaacttgct	gccccgggcct	840
tcaatcaagc	agcaggcgtt	ctcaaaagact	gccaatcaaa	actacaagat	ccctgcccacc	900
gggtcagaca	gtctcatcaa	atacgagacg	cacagcactc	tggacggaag	atggagtgcc	960
ctgacccccc	gacctcaat	ggccacggct	ggacctgcgg	acagcaagtt	cagcaacacgc	1020
cagctcatct	ttgcggggcc	taaacagaac	ggcaacacgg	ccaccgtacc	cgggactctg	1080
atcttcaccc	ctgaggagga	gctggcagcc	accaacgcca	ccgatacgga	catgtggggc	1140
aacctacctg	gcgggtacca	gagcaacacgc	aacctgcccga	ccgtggacag	actgacagcc	1200
ttgggagccg	tgcctggaaat	ggtctggcaa	aacagagaca	tttactacca	gggtcccatt	1260
tggccaaga	ttcctcatac	cgtggcac	tttcacccct	caccgctgat	tggtgggttt	1320
gggtgaaac	acccgcctcc	tcaaatttt	atcaagaaca	ccccgttacc	tgcgaatcct	1380
gcaacgacct	tcagctctac	tccgttaaac	tccttcattt	ctcagttacag	cactggccag	1440
gtgtcgggtc	agattgactg	ggagatccag	aaggagcgtt	ccaaacgctg	gaaccccgag	1500
gtccagttt	cctccaaacta	cggacagcaa	aactctctgt	tgtggctcc	cgtatgcggct	1560
ggaaataca	ctgagccat	ggctatcggt	acccgctacc	tcacccacca	cctgtaa	1617

<210> 20

<211> 129

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 20

ttggccactc	cctctatgcg	cgctcgctca	ctcaactcgcc	cctgcggcca	gaggccggca	60
gtctggagac	ctttgggtgc	cagggcaggg	ccgagttagt	gagcgagcgc	gcatacgagg	120
agtggccaa						129

<210> 21

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 21

tctagtctag	acttggccac	tccctctctg	cgcgc			35
------------	------------	------------	-------	--	--	----

<210> 22

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 22

aggcctaag	agcagtcgtc	caccacccgg	ttcc			34
-----------	------------	------------	------	--	--	----

<210> 23

<211> 4652

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =

synthetic construct

<400> 23		
tggcacttc ccccctgtcg cgttcgctcg ctcgctggct cgttttgggg ggtggcagct	60	
caaagactg ccagacgacg gccctctggc cgtcgcccccc ccaaacgagc cagcgcagcg	120	
gcgaacgcga caggggggag agtcccacac tctcaagcaa ggggggtttttaa taagcagtga	180	
tgtcataatg atgtaatgtt tattgtcagc cgatagttaa tgattaacag tcatgtgatg	240	
tgttttatcc aataggaaga aagcgcgcgt atgagttctc gcgagacttc cggggtataaa	300	
aagaccgagt gaacgagccc gccgcattc ttgtctctgg actgttagag gaccctcgct	360	
gcatggcta cttctatga agtcattgtt cgcgtcccat ttgacgtggaa ggaacatctg	420	
cctgaaattt ctgacgctt tggactgtgg gtaactggc aaatttgggaa gtcgcctcca	480	
gagtcagatt taaatttgac tctgggttggaa cagcctcagt tgacgtggc tgatagaatt	540	
cggcgcgtgt tcctgtacga gtggaaacaaa ttttccaagc aggagtccaa attctttgtg	600	
cagttaaaa agggatctga atattttcat ctgcacacgc ttgtggagac ctccggcatc	660	
tcttcatgg tcctcgccg ctacgtgagt cagattcgcg cccagctgg gaaagtggtc	720	
ttccaggaa ttgaacccca gatcaacgcg tgggtcgcca tcaccaaggt aaagaaggaa	780	
ggagccaata aggtgggtga ttctgggtat attcccgct acctgtgcc gaaggtccaa	840	
ccggagcttc agtgggcgtg gacaacacctg gacgagata aattggccgc cctgaatctg	900	
gaggagcga aacggctcgct cgcgcgtt cttggcagaat ctcgcgcgcg ctgcaggag	960	
gcggcttcg tacgtcaactg gctcggtggag cacggcatca cttccggaa gcagtggatc	1020	
caggaaaatc aggagagcta ccttccttc aactccaccc gcaactctcg gagccagatc	1080	
aaggccgcgc tcgacaacgc gaccaaaatt atgagtcgtg caaaagcgc ggtggactac	1140	
ctcgtgggaa gctccgttcc cgaggacatt taaaaaaaaca gaatctggca aattttttag	1200	
atgaatggct acgacccggc ctacggggaa tccatccctc acggatggg ttagcgtctcc	1260	
ttcaacaaga ggaacaccgt ctggctctac gacccggccaa gacccggcaaa gaccaacatc	1320	
gcccggccca tcgcccacac tggcccttt tacggctgctg tgaactggac caatgaaaac	1380	
tttcccttta atgactgtgt ggacaaaatg ctcattttgtt gggaggaggg aaagatgacc	1440	
aacaagggtgg ttgaatccgc caaggccatc ctggggggtt caaaggtgcg ggtcgatcag	1500	
aaatgttaat cctctgttca aattgattct accccctgtca ttgttaacttc caatacaaaac	1560	
atgtgtgtgg tgggtggatgg gaattccacg acctttgaac accagcagcc gttggaggac	1620	
cgcgttca aatttgaact gacttaaggcg ctccggccag atttttggaa gattactaag	1680	
caggaagtca aggactttt tgcttggca aaggtaatcctt aggtggccgg gactcacgag	1740	
tttaaagtcc ctagggaaatt ggcgggaaact aaaggggccgg agaaatctt aaaacgcggca	1800	
ctgggtgacg tcaccaatac tagctataaa agtctggaga agcggggccag gctctcattt	1860	
gttcccggaga cgcctcgca ttcagacgtg actgttgcattt ccgcctctc ggcaccgctc	1920	
aatttggaaat caaggtatga ttgcaaatgt gactatcatg ctcaatttgc caacatttct	1980	
aacaaatgtg atgaatgtga atatttgaat cggggcaaaa atggatgtat ctgtcacaat	2040	
gttaactcaat gtcaaaattt tcatgggatt ccccccctggg aaaaggaaaaa cttgtcagat	2100	
tttggggatt ttgacgtgc caataaaagaa cagtaataaa acggagtagt catgtctttt	2160	
gttgatcacc ctccagatg ttggaaagaa aatcagcagc atcaagatca agcccggtt	2220	
cttgaagcgg gcccaccgaa accaaaaaccctt cccggaaacgc gtctcgatcg aggagagcct	2280	
cttgtgctgc ctggttataa ctatctcgaa cacgacatct cgtacaaacgc gcagcttga	2340	
gtcaacaggc cagacgaggc cgccgcagag cacggatccgcg ccgagttca ggagaagctc	2400	
gcgggagaca accccctaccc caagtacaac cacgcggacg ccgtttca ggagaagctc	2460	
gccgacgaca catccctcg gggaaaacccctt gggaaaggcag tctttcaggc caagaaaaagg	2520	
gttctcgAAC cttttggcct ggttgaagag ggtgctaaaga cggcccttac cggaaagcgg	2580	
atagacgacc actttccaaa aagaaaggaaag gctcggacccgg aagaggactc caagccttc	2640	
acctctgttag acgcccgaacg tggacccaggc ggatcccacgc agctgcaaat cccagccaa	2700	
ccagcctcaa gtttgggagc tgatacaatg tctgcggggag gtggggccc attggcgac	2760	
aataaccaag gtgcccgttgg agtgggcaat gctcggggag attggcattt cgattccacg	2820	
tggatggggg acagagtcgt caccatgtcc acccgaacctt ggggtctgccc cagctacaac	2880	
aaccaccaggc accgagagat caaaaggccgc tccgtcgacg gaagcaacgc caacgcctac	2940	
tttggataca gcaccccttgg ggggtacttt gactttaaacc gtttccacag ccactggagc	3000	
ccccggactt ggcaaaaggact catacaacac tactgggggt tcagaccccg gtccctcaga	3060	
gtcaaaaatct tcaacattca agtcaaaggag gtcacgggtc aggactccac caccaccatc	3120	
gccaacaacc tcacctccac cgttcaagtg tttacggacg acgactacca gtcgcctac	3180	
gtcgtcgccaa acgggaccgaa gggatgcctt cccgccttcc ctccgcagggt cttaacgtct	3240	
ccgcagtagc gttacgcac gctgaaccgc gacaacacag aaaatccac cggagaggac	3300	
agcttcttct gccttagatgat ctttcccaggc aagatgtga gaacgggcaaa caacttttag	3360	
tttacctaca actttggaggat ggtggcccttc cactccacgt tcgctccagg tcagaacctg	3420	
ttcaagctgg ccaaccggctt ggtggaccag tacttgtacc gtttgcgtgag cacaataaac	3480	
actggcgagat tccagttcaa caagaacctg gccgggagat acgccaacac ctacaaaaac	3540	
	3600	

tggccccgg	ggcccatggg	ccgaacccag	ggctggaacc	tgggctccgg	gttcaaccgc	3660
gccagtgtca	gcgccttcgc	cacgaccaat	aggatggagc	tcgagggcgc	gagttaccag	3720
gtgccccccgc	agccgaacgg	catgaccaac	aacctccagg	gcagcaacac	ctatgcccctg	3780
gagaacacta	tgatcttcaa	cagccagccg	gcaaccccg	gcaccacccgc	cacgtacctc	3840
gagggcaaca	tgctcatcac	cagcgagagc	gagacgcagc	cgttgaaccg	cgtggcgtac	3900
aacgtcggcg	ggcagatggc	caccaacaac	casagctcca	ccactgcccc	cgcgaccggc	3960
acgtacaacc	tccaggaaat	cgtgcccggc	acgctgtgga	tggagaggga	cgtgtacctc	4020
caaggaccca	tctgggccaa	gatcccagag	acgggggcgc	actttcaccc	ctctccggcc	4080
atggggcgat	tcggactcaa	acaccacccg	cccatgatgc	tcatcaagaa	cacgcctgtg	4140
cccgaaata	tcaccagctt	ctcgagacgtg	cccgtcagca	gcttcatcac	ccagtacagc	4200
accgggcagg	tcaccgttga	gatggagtggt	gagctcaaga	aggaaaactc	caagaggtgg	4260
aacccagaga	tccagtacac	aaacaactac	aacgacccccc	agtttgtgga	ctttgccccg	4320
gacagcaccg	gggatatacg	aaccacccaga	cctatcgaa	cccgataacct	tacccgaccc	4380
cttaaccca	ttcatgtcgc	ataccctcaa	taaacctgtt	attcgtgtca	gtaaaatact	4440
gcctcttgcg	gtcattcaat	gaataacacgc	ttacaacatc	tacaaaacct	ccttgcttga	4500
gagtggtggca	ctctcccccc	tgtcgcgttc	gctcgctcgc	tggctcgtt	gggggggtgg	4560
cagctcaaag	agctgccaga	cgacggccct	ctggccgtcg	cccccccaaa	cgagccagcg	4620
agcgagcgaa	cgcgacaggg	gggagagtgca	ca			4652

<210> 24

<211> 390

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 24

Met	Ala	Leu	Val	Asn	Trp	Leu	Val	Glu	His	Ile	Thr	Ser	Glu	Lys	
1														15	
Gln	Trp	Ile	Gln	Glu	Asn	Gln	Glu	Ser	Tyr	Leu	Ser	Phe	Asn	Ser	Thr
															30
Gly	Asn	Ser	Arg	Ser	Gln	Ile	Lys	Ala	Ala	Leu	Asp	Asn	Ala	Thr	Lys
															45
Ile	Met	Ser	Leu	Thr	Lys	Ser	Ala	Val	Asp	Tyr	Leu	Val	Gly	Ser	Ser
															55
															60
Val	Pro	Glu	Asp	Ile	Ser	Lys	Asn	Arg	Ile	Trp	Gln	Ile	Phe	Glu	Met
															80
Asn	Gly	Tyr	Asp	Pro	Ala	Tyr	Ala	Gly	Ser	Ile	Leu	Tyr	Gly	Trp	Cys
															95
Gln	Arg	Ser	Phe	Asn	Lys	Arg	Asn	Thr	Val	Trp	Leu	Tyr	Gly	Pro	Ala
															100
															105
															110
Thr	Thr	Gly	Lys	Thr	Asn	Ile	Ala	Glu	Ala	Ile	Ala	His	Thr	Val	Pro
															115
															120
															125
Phe	Tyr	Gly	Cys	Val	Asn	Trp	Thr	Asn	Glu	Asn	Phe	Pro	Phe	Asn	Asp
															130
															135
															140
Cys	Val	Asp	Lys	Met	Leu	Ile	Trp	Trp	Glu	Glu	Gly	Lys	Met	Thr	Asn
															145
															150
															155
Lys	Val	Val	Glu	Ser	Ala	Lys	Ala	Ile	Leu	Gly	Gly	Ser	Lys	Val	Arg
															165
															170
															175
Val	Asp	Gln	Lys	Cys	Lys	Ser	Ser	Val	Gln	Ile	Asp	Ser	Thr	Pro	Val
															180
															185
															190
Ile	Val	Thr	Ser	Asn	Thr	Asn	Met	Cys	Val	Val	Val	Asp	Gly	Asn	Ser
															195
															200
															205
Thr	Thr	Phe	Glu	His	Gln	Gln	Pro	Leu	Glu	Asp	Arg	Met	Phe	Lys	Phe
															210
															215
															220
Glu	Leu	Thr	Lys	Arg	Leu	Pro	Pro	Asp	Phe	Gly	Lys	Ile	Thr	Lys	Gln
															225
															230
															235
Glu	Val	Lys	Asp	Phe	Phe	Ala	Trp	Ala	Lys	Val	Asn	Gln	Val	Pro	Val
															245
															250
															255
Thr	His	Glu	Phe	Lys	Val	Pro	Arg	Glu	Leu	Ala	Gly	Thr	Lys	Gly	Ala
															260
															265
															270

Glu Lys Ser Leu Lys Arg Pro Leu Gly Asp Val Thr Asn Thr Ser Tyr
 275 280 285
 Lys Ser Leu Glu Lys Arg Ala Arg Leu Ser Phe Val Pro Glu Thr Pro
 290 295 300
 Arg Ser Ser Asp Val Thr Val Asp Pro Ala Pro Leu Arg Pro Leu Asn
 305 310 315 320
 Trp Asn Ser Arg Tyr Asp Cys Lys Cys Asp Tyr His Ala Gln Phe Asp
 325 330 335
 Asn Ile Ser Asn Lys Cys Asp Glu Cys Glu Tyr Leu Asn Arg Gly Lys
 340 345 350
 Asn Gly Cys Ile Cys His Asn Val Thr His Cys Gln Ile Cys His Gly
 355 360 365
 Ile Pro Pro Trp Glu Lys Glu Asn Leu Ser Asp Phe Gly Asp Phe Asp
 370 375 380
 Asp Ala Asn Lys Glu Gln
 385 390

<210> 25

<211> 594

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 25

Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Asp Trp Val Thr Gly
 1 5 10 15
 Gln Ile Trp Glu Leu Pro Pro Glu Ser Asp Leu Asn Leu Thr Leu Val
 20 25 30
 Glu Gln Pro Gln Leu Thr Val Ala Asp Arg Ile Arg Arg Val Phe Leu
 35 40 45
 Tyr Glu Trp Asn Lys Phe Ser Lys Gln Glu Ser Lys Phe Phe Val Gln
 50 55 60
 Phe Glu Lys Gly Ser Glu Tyr Phe His Leu His Thr Leu Val Glu Thr
 65 70 75 80
 Ser Gly Ile Ser Ser Met Val Leu Gly Arg Tyr Val Ser Gln Ile Arg
 85 90 95
 Ala Gln Leu Val Lys Val Val Phe Gln Gly Ile Glu Pro Gln Ile Asn
 100 105 110
 Asp Trp Val Ala Ile Thr Lys Val Lys Lys Gly Gly Ala Asn Lys Val
 115 120 125
 Val Asp Ser Gly Tyr Ile Pro Ala Tyr Leu Leu Pro Lys Val Gln Pro
 130 135 140
 Glu Leu Gln Trp Ala Trp Thr Asn Leu Asp Glu Tyr Lys Leu Ala Ala
 145 150 155 160
 Leu Asn Leu Glu Glu Arg Lys Arg Leu Val Ala Gln Phe Leu Ala Glu
 165 170 175
 Ser Ser Gln Arg Ser Gln Glu Ala Ala Ser Gln Arg Glu Phe Ser Ala
 180 185 190
 Asp Pro Val Ile Lys Ser Lys Thr Ser Gln Lys Tyr Met Ala Leu Val
 195 200 205
 Asn Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys Gln Trp Ile Gln
 210 215 220
 Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr Gly Asn Ser Arg
 225 230 235 240
 Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Thr Lys Ile Met Ser Leu
 245 250 255
 Thr Lys Ser Ala Val Asp Tyr Leu Val Gly Ser Ser Val Pro Glu Asp
 260 265 270
 Ile Ser Lys Asn Arg Ile Trp Gln Ile Phe Glu Met Asn Gly Tyr Asp
 275 280 285

Pro Ala Tyr Ala Gly Ser Ile Leu Tyr Gly Trp Cys Gln Arg Ser Phe
 290 295 300
 Asn Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala Thr Thr Gly Lys
 305 310 315 320
 Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro Phe Tyr Gly Cys
 325 330 335
 Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp Cys Val Asp Lys
 340 345 350
 Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Asn Lys Val Val Glu
 355 360 365
 Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg Val Asp Gln Lys
 370 375 380
 Cys Lys Ser Ser Val Gln Ile Asp Ser Thr Pro Val Ile Val Thr Ser
 385 390 395 400
 Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser Thr Thr Phe Glu
 405 410 415
 His Gln Gln Pro Leu Glu Asp Arg Met Phe Lys Phe Glu Leu Thr Lys
 420 425 430
 Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln Glu Val Lys Asp
 435 440 445
 Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val Thr His Glu Phe
 450 455 460
 Lys Val Pro Arg Glu Leu Ala Gly Thr Lys Gly Ala Glu Lys Ser Leu
 465 470 475 480
 Lys Arg Pro Leu Gly Asp Val Thr Asn Thr Ser Tyr Lys Ser Leu Glu
 485 490 495
 Lys Arg Ala Arg Leu Ser Phe Val Pro Glu Thr Pro Arg Ser Ser Asp
 500 505 510
 Val Thr Val Asp Pro Ala Pro Leu Arg Pro Leu Asn Trp Asn Ser Arg
 515 520 525
 Tyr Asp Cys Lys Cys Asp Tyr His Ala Gln Phe Asp Asn Ile Ser Asn
 530 535 540
 Lys Cys Asp Glu Cys Glu Tyr Leu Asn Arg Gly Lys Asn Gly Cys Ile
 545 550 555 560
 Cys His Asn Val Thr His Cys Gln Ile Cys His Gly Ile Pro Pro Trp
 565 570 575
 Glu Lys Glu Asn Leu Ser Asp Phe Gly Asp Phe Asp Asp Ala Asn Lys
 580 585 590
 Glu Gln

<210> 26
 <211> 724
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 26
 Met Ser Phe Val Asp His Pro Pro Asp Trp Leu Glu Glu Val Gly Glu
 1 5 10 15
 Gly Leu Arg Glu Phe Leu Gly Leu Glu Ala Gly Pro Pro Lys Pro Lys
 20 25 30
 Pro Asn Gln Gln His Gln Asp Gln Ala Arg Gly Leu Val Leu Pro Gly
 35 40 45
 Tyr Asn Tyr Leu Gly Pro Gly Asn Gly Leu Asp Arg Gly Glu Pro Val
 50 55 60
 Asn Arg Ala Asp Glu Val Ala Arg Glu His Asp Ile Ser Tyr Asn Glu
 65 70 75 80
 Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp
 85 90 95

Ala Glu Phe Gln Glu Lys Leu Ala Asp Asp Thr Ser Phe Gly Gly Asn
 100 105 110
 Leu Gly Lys Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Phe
 115 120 125
 Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Thr Gly Lys Arg Ile
 130 135 140
 Asp Asp His Phe Pro Lys Arg Lys Ala Arg Thr Glu Glu Asp Ser
 145 150 155 160
 Lys Pro Ser Thr Ser Asp Ala Glu Ala Gly Pro Ser Gly Ser Gln
 165 170 175
 Gln Leu Gln Ile Pro Ala Gln Pro Ala Ser Ser Leu Gly Ala Asp Thr
 180 185 190
 Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala
 195 200 205
 Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp
 210 215 220
 Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro
 225 230 235 240
 Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser Val Asp
 245 250 255
 Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr
 260 265 270
 Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln
 275 280 285
 Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val
 290 295 300
 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Val Gln Asp Ser Thr
 305 310 315 320
 Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp
 325 330 335
 Asp Asp Tyr Gln Leu Pro Tyr Val Val Gly Asn Gly Thr Glu Gly Cys
 340 345 350
 Leu Pro Ala Phe Pro Pro Gln Val Phe Thr Leu Pro Gln Tyr Gly Tyr
 355 360 365
 Ala Thr Leu Asn Arg Asp Asn Thr Glu Asn Pro Thr Glu Arg Ser Ser
 370 375 380
 Phe Phe Cys Leu Glu Tyr Phe Pro Ser Lys Met Leu Arg Thr Gly Asn
 385 390 395 400
 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser
 405 410 415
 Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp
 420 425 430
 Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln
 435 440 445
 Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp
 450 455 460
 Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly
 465 470 475 480
 Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu
 485 490 495
 Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr
 500 505 510
 Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile
 515 520 525
 Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu
 530 535 540
 Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg
 545 550 555 560
 Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Ser
 565 570 575
 Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro
 580 585 590
 Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp

	595	600	605
Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met			
610	615	620	
Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn			
625	630	635	640
Thr Pro Val Pro Gly Asn Ile Thr Ser Phe Ser Asp Val Pro Val Ser			
645	650	655	
Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Thr Val Glu Met Glu			
660	665	670	
Trp Glu Leu Lys Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln			
675	680	685	
Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp			
690	695	700	
Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu			
705	710	715	720
Thr Arg Pro Leu			

<210> 27

<211> 588

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 27

Thr Ala Pro Thr Gly Lys Arg Ile Asp Asp His Phe Pro Lys Arg Lys			
1	5	10	15
Lys Ala Arg Thr Glu Glu Asp Ser Lys Pro Ser Thr Ser Ser Asp Ala			
20	25	30	
Glu Ala Gly Pro Ser Gly Ser Gln Gln Leu Gln Ile Pro Ala Gln Pro			
35	40	45	
Ala Ser Ser Leu Gly Ala Asp Thr Met Ser Ala Gly Gly Gly Pro			
50	55	60	
Leu Gly Asp Asn Asn Gln Gly Ala Asp Gly Val Gly Asn Ala Ser Gly			
65	70	75	80
Asp Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Val Thr Lys			
85	90	95	
Ser Thr Arg Thr Trp Val Leu Pro Ser Tyr Asn Asn His Gln Tyr Arg			
100	105	110	
Glu Ile Lys Ser Gly Ser Val Asp Gly Ser Asn Ala Asn Ala Tyr Phe			
115	120	125	
Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Ser			
130	135	140	
His Trp Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Tyr Trp Gly			
145	150	155	160
Phe Arg Pro Arg Ser Leu Arg Val Lys Ile Phe Asn Ile Gln Val Lys			
165	170	175	
Glu Val Thr Val Gln Asp Ser Thr Thr Ile Ala Asn Asn Leu Thr			
180	185	190	
Ser Thr Val Gln Val Phe Thr Asp Asp Asp Tyr Gln Leu Pro Tyr Val			
195	200	205	
Val Gly Asn Gly Thr Glu Gly Cys Leu Pro Ala Phe Pro Pro Gln Val			
210	215	220	
Phe Thr Leu Pro Gln Tyr Gly Tyr Ala Thr Leu Asn Arg Asp Asn Thr			
225	230	235	240
Glu Asn Pro Thr Glu Arg Ser Ser Phe Phe Cys Leu Glu Tyr Phe Pro			
245	250	255	
Ser Lys Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Thr Tyr Asn Phe			
260	265	270	
Glu Glu Val Pro Phe His Ser Ser Phe Ala Pro Ser Gln Asn Leu Phe			

275	280	285
Lys Leu Ala Asn Pro Leu Val Asp Gln Tyr Leu Tyr Arg Phe Val Ser		
290	295	300
Thr Asn Asn Thr Gly Gly Val Gln Phe Asn Lys Asn Leu Ala Gly Arg		
305	310	315
Tyr Ala Asn Thr Tyr Lys Asn Trp Phe Pro Gly Pro Met Gly Arg Thr		
325	330	335
Gln Gly Trp Asn Leu Gly Ser Gly Val Asn Arg Ala Ser Val Ser Ala		
340	345	350
Phe Ala Thr Thr Asn Arg Met Glu Leu Glu Gly Ala Ser Tyr Gln Val		
355	360	365
Pro Pro Gln Pro Asn Gly Met Thr Asn Asn Leu Gln Gly Ser Asn Thr		
370	375	380
Tyr Ala Leu Glu Asn Thr Met Ile Phe Asn Ser Gln Pro Ala Asn Pro		
385	390	395
Gly Thr Thr Ala Thr Tyr Leu Glu Gly Asn Met Leu Ile Thr Ser Glu		
405	410	415
Ser Glu Thr Gln Pro Val Asn Arg Val Ala Tyr Asn Val Gly Gln		
420	425	430
Met Ala Thr Asn Asn Gln Ser Ser Thr Thr Ala Pro Ala Thr Gly Thr		
435	440	445
Tyr Asn Leu Gln Glu Ile Val Pro Gly Ser Val Trp Met Glu Arg Asp		
450	455	460
Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro Glu Thr Gly Ala		
465	470	475
His Phe His Pro Ser Pro Ala Met Gly Gly Phe Gly Leu Lys His Pro		
485	490	495
Pro Pro Met Met Leu Ile Lys Asn Thr Pro Val Pro Gly Asn Ile Thr		
500	505	510
Ser Phe Ser Asp Val Pro Val Ser Ser Phe Ile Thr Gln Tyr Ser Thr		
515	520	525
Gly Gln Val Thr Val Glu Met Glu Trp Glu Leu Lys Glu Asn Ser		
530	535	540
Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Asn Asn Tyr Asn Asp Pro		
545	550	555
Gin Phe Val Asp Phe Ala Pro Asp Ser Thr Gly Glu Tyr Arg Thr Thr		
565	570	575
Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu		
580	585	

<210> 28

<211> 532

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 28

Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala			
1	5	10	15
Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp			
20	25	30	
Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro			
35	40	45	
Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser Val Asp			
50	55	60	
Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr			
65	70	75	80
Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln			
85	90	95	
Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val			

Lys	Ile	Phe	Asn	Ile	Gln	Val	Lys	Glu	Val	Thr	Val	Gln	Asp	Ser	Thr
100					105							110			
115					120							125			
Thr	Thr	Ile	Ala	Asn	Asn	Leu	Thr	Ser	Thr	Val	Gln	Val	Phe	Thr	Asp
130					135						140				
Asp	Asp	Tyr	Gln	Leu	Pro	Tyr	Val	Val	Gly	Asn	Gly	Thr	Glu	Gly	Cys
145					150					155			160		
Leu	Pro	Ala	Phe	Pro	Pro	Gln	Val	Phe	Thr	Leu	Pro	Gln	Tyr	Gly	Tyr
165					170					175			180		
Ala	Thr	Leu	Asn	Arg	Asp	Asn	Thr	Glu	Asn	Pro	Thr	Glu	Arg	Ser	Ser
180					185					190			195		
Phe	Phe	Cys	Leu	Glu	Tyr	Phe	Pro	Ser	Lys	Met	Leu	Arg	Thr	Gly	Asn
195					200					205			210		
Asn	Phe	Glu	Phe	Thr	Tyr	Asn	Phe	Glu	Glu	Val	Pro	Phe	His	Ser	Ser
210					215					220			225		
Phe	Ala	Pro	Ser	Gln	Asn	Leu	Phe	Lys	Leu	Ala	Asn	Pro	Leu	Val	Asp
225					230					235			240		
Gln	Tyr	Leu	Tyr	Arg	Phe	Val	Ser	Thr	Asn	Asn	Thr	Gly	Gly	Val	Gln
245					250					255			260		
Phe	Asn	Lys	Asn	Leu	Ala	Gly	Arg	Tyr	Ala	Asn	Thr	Tyr	Lys	Asn	Trp
260					265					270			275		
Phe	Pro	Gly	Pro	Met	Gly	Arg	Thr	Gln	Gly	Trp	Asn	Leu	Gly	Ser	Gly
275					280					285			290		
Val	Asn	Arg	Ala	Ser	Val	Ser	Ala	Phe	Ala	Thr	Thr	Asn	Arg	Met	Glu
290					295					300			305		
Leu	Glu	Gly	Ala	Ser	Tyr	Gln	Val	Pro	Pro	Gln	Pro	Asn	Gly	Met	Thr
305					310					315			320		
Asn	Asn	Leu	Gln	Gly	Ser	Asn	Thr	Tyr	Ala	Leu	Glu	Asn	Thr	Met	Ile
325					330					335			340		
Phe	Asn	Ser	Gln	Pro	Ala	Asn	Pro	Gly	Thr	Thr	Ala	Thr	Tyr	Leu	Glu
340					345					350			355		
Gly	Asn	Met	Leu	Ile	Thr	Ser	Glu	Ser	Glu	Thr	Gln	Pro	Val	Asn	Arg
355					360					365			370		
Val	Ala	Tyr	Asn	Val	Gly	Gly	Gln	Met	Ala	Thr	Asn	Asn	Gln	Ser	Ser
370					375					380			385		
Thr	Thr	Ala	Pro	Ala	Thr	Gly	Thr	Tyr	Asn	Leu	Gln	Glu	Ile	Val	Pro
385					390					395			400		
Gly	Ser	Val	Trp	Met	Glu	Arg	Asp	Val	Tyr	Leu	Gln	Gly	Pro	Ile	Trp
405					410					415			420		
Ala	Lys	Ile	Pro	Glu	Thr	Gly	Ala	His	Phe	His	Pro	Ser	Pro	Ala	Met
420					425					430			435		
Gly	Gly	Phe	Gly	Leu	Lys	His	Pro	Pro	Pro	Met	Met	Leu	Ile	Lys	Asn
435					440					445			440		
Thr	Pro	Val	Pro	Gly	Asn	Ile	Thr	Ser	Phe	Ser	Asp	Val	Pro	Val	Ser
450					455					460			465		
Ser	Phe	Ile	Thr	Gln	Tyr	Ser	Thr	Gly	Gln	Val	Thr	Val	Glu	Met	Glu
465					470					475			480		
Trp	Glu	Leu	Lys	Lys	Glu	Asn	Ser	Lys	Arg	Trp	Asn	Pro	Glu	Ile	Gln
485					490					495			500		
Tyr	Thr	Asn	Asn	Tyr	Asn	Asp	Pro	Gln	Phe	Val	Asp	Phe	Ala	Pro	Asp
500					505					510			515		
Ser	Thr	Gly	Glu	Tyr	Arg	Thr	Arg	Pro	Ile	Gly	Thr	Arg	Tyr	Leu	
515					520					525			530		
Thr	Arg	Pro	Leu												

<210> 29

<211> 2307

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =

synthetic construct

<400> 29

aggctctcat	ttgttcccga	gacgcctcg	agttcagacg	tgactgttga	tcccgctcct	60
ctgcgaccgc	tcaattggaa	ttcaagtaaa	taaagcga	agtcatgtct	tttgttgc	120
accctccaga	ttgggttggaa	gaagttgggt	aaggcttcg	cgagttttt	ggccttgaag	180
cgggcccacc	gaaacccaaa	cccaatcagc	agcatcaaga	tcaagcccg	gttcttgc	240
tgcctggta	taactatctc	ggacccggaa	acggctcg	tcgaggagag	cctgtcaaca	300
ggcagacga	gttcgcgcga	gagcacgaca	tctcgta	cgagcagctt	gaggcgggag	360
acaaccccta	cctcaagtac	aaccacgcgg	acgcccga	tcagggagaag	ctcgccgac	420
acacatctt	cgggggaaac	ctcggaaagg	cagtcttc	ggccaagaaaa	agggttctcg	480
aacctttgg	cctgggttga	gagggtgtca	agacggcccc	tacggaaag	cggatagac	540
accactttcc	aaaaaagaag	aaggctcgga	ccgaagagga	ctccaaagcct	tccacac	600
cagacgccga	agctggaccc	agcgatccc	agcagctcg	aatcccagcc	caaccagcct	660
caagtttggg	agctgataca	atgtctgcgg	gaggtggcg	cccattggc	gacaataacc	720
aagggtccga	tggagtgggc	aatgcctcg	gagattggca	ttgcgattcc	acgtggatgg	780
gggacagagt	cgtcaccaa	tccacccgaa	cctgggtgt	gcccga	tacaaaccacc	840
agtaccgaga	gatcaaaggc	ggctccgtcg	acggaagcaa	cgccaaacgc	tactttggat	900
acagcacccc	ctgggggtac	tttgacttta	accgcttc	cagccactgg	agcccccgag	960
actggcaaa	actcatcaac	aactactggg	gcttcagacc	ccgggtccctc	agagtcaaaa	1020
tcttcaacat	tcaagtcaaa	gaggtcacgg	tgcaggactc	caccaccacc	atgcccaaca	1080
acctcacctc	caccgtccaa	gtgttacgg	acgacgacta	ccagctgccc	tacgtcgtc	1140
gcaacgggac	cgagggatgc	ctggccgcct	tccctccgca	ggtcttacg	ctgcccgc	1200
acggttacgc	gacgctgaac	cgcgacaaca	cagaaaatcc	caccgagagg	agcagcttct	1260
tctgcctaga	gtactttccc	agcaagatgc	tgagaacggg	caacaactt	gagtttacct	1320
acaacttgg	ggaggtggcc	ttccacttca	gcttcgtc	cagtcaaac	ctgttcaagc	1380
tggcaaccc	gctgggtggac	cagtagttgt	accgcttc	gagcacaat	aacactggcg	1440
gagtccagtt	caacaaggaa	ctggccggga	gatacgc	cacccatcaaa	aactggttcc	1500
cggggcccat	gggcccgaacc	cagggtgtgg	acctgggctc	cggggtcaac	cgccgcagtg	1560
tcagcgcctt	cgcacgcacc	aataggatgg	agtcgagg	cgcgagg	cagggtcccc	1620
cgcagccgaa	cggcatgacc	aacaacctcc	agggcagcaa	cacccatg	ctggagaaca	1680
ctatgatctt	caacagccag	ccggcgaacc	cgggcaccac	cgccacgtac	ctcgagg	1740
acatgctcat	caccagcgag	agcgagacgc	agccgggtgaa	ccgcgtggcg	tacaacgtc	1800
gccccgcagat	ggcccaaaac	aaccagagct	ccaccactgc	cccccgacc	ggcacgtaca	1860
acctccagga	aatcggtccc	ggcagcgtgt	ggatggagag	ggacgtgtac	ctccaaggac	1920
ccatctgggc	caagatccca	gagacggggg	cgcacttca	ccccctccg	gccatggcg	1980
gattcggact	caaaccacca	ccgcccattga	tgctcatcaa	gaacacgc	gtgcccggaa	2040
atatcaccag	cttctcggac	gtggccgtca	gcagttcat	caccagg	agcacccggc	2100
agtcaccgt	ggagatggag	tggagctca	agaaggaaaa	ctccaaagg	tggaaacccag	2160
agatccagta	cacaacaaac	tacaacgacc	cccagttgt	ggacttttg	ccggacagca	2220
ccgggaaata	cagaaccacc	agacctatcg	gaacccgata	ccttacccga	ccccctttaac	2280
ccattcatgt	cgcataccct	caataaa				2307

<210> 30

<211> 2264

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 30

aggctctcat	ttgttcccga	gacgcctcg	agttcagacg	tgactgttga	tcccgctcct	60
ctgcgaccgc	tcaattggaa	ttcaagattg	gttggaaagaa	gttggtaag	gtcttcgcga	120
gttttgggc	cttgaagcgg	gcccacccgaa	acccaaaaccc	aatcagcagc	atcaagatca	180
agcccggtgt	cttgcgtgc	ctggttataa	ctatctcg	cccgaaacgc	gtctcgatcg	240
aggagagcct	gtcaacacagg	cagacgagg	cgcgcgag	cacgacatct	cgtacaacgc	300
gcagcttgc	gccccggaca	acccttaccc	caagtacaac	cacgcggac	ccgagtttca	360
ggagaagctc	gccgacgaca	catccctcg	ggaaaccc	ggaaggcag	tcttcaggc	420
caagaaaagg	gttctcgaac	cttttggct	ggttgaagag	ggtgtcaaga	cggccctac	480
cggaaagcgg	atagacgacc	actttccaa	aagaaagaag	gctcgaccc	aaggagactc	540
caaggcttcc	acctcgatcg	acggcgaagc	tggaccc	ggatccc	agctgc	600

cccagcccaa	ccagcctcaa	gtttgggagc	tgatacaatg	tctgcggag	gtggcgcccc	660
attggcgac	aataaccaag	gtgccgatgg	agtgggcaat	gcctcggag	attggcattg	720
cgattccacg	tggatgggg	acagagtctg	caccaagtcc	acccgaacct	gggtgctgcc	780
cagctacaa	aaccacagt	accgagagat	caaagaaggc	tccgtcagc	gaagcaacgc	840
caacgcctac	tttggataca	gcacccctg	ggggtaactt	gactttaacc	gcttccacag	900
ccactggagc	ccccgagact	ggcaaagact	catcaacaac	tactgggct	ttagaccccc	960
gtccctcaga	gtcaaatact	tcaacattca	agtcaaagag	gtcacggtgc	aggactccac	1020
caccaccatc	gccaacaacc	tcacccctac	cgtccaagt	tttacggacg	acgactacca	1080
gctgcccata	gtcgtcgca	acgggaccga	gggatgcctg	ccggccttcc	ctccgcagg	1140
ctttagctg	ccgcgtacg	gttacggacg	gctgaaccgc	gacaacacag	aaaatccac	1200
cgagaggagc	agttttcttct	gccttagagta	ctttccacgc	aagatgctga	gaacgggcaa	1260
caacttttag	tttacccata	actttggag	ggtgccttcc	cactccagct	tcgctcccg	1320
ttagaacctg	ttcaagctgg	ccaaacccgt	ggtgaccag	tacttgtacc	gcttcgttag	1380
cacaataaac	actggcgag	tccagttcaa	caagaacctg	gccggagat	acgccaacac	1440
ctacaaaaac	tggttcccg	ggcccatggg	ccgaacccag	ggctgaaacc	ttggctccgg	1500
ggtaaccgc	gccagtgtca	gcgccttcgc	cacgaccaat	aggatggagc	tcgagggcgc	1560
gagttaccag	gtgcccccg	agccgaacgg	catgaccaac	aacctccagg	gcagcaacac	1620
ctatgcccgt	gagaacacta	tgatcttcaa	cagccaggcg	gcgaaccccg	gcaccacccg	1680
cacgtacactc	gagggcaaca	tgctcatcac	cagcggagc	gagacgcagc	cggtgaaccg	1740
cgtggcgatc	aacgtcgcg	ggcagatggc	caccaacaac	cagagctcca	ccactgcccc	1800
cgcaccggc	acgtacacc	tccaggaaat	cgtgcggcgc	agcgtgtgga	tggagaggg	1860
cgtgtaccc	caaggaccca	tctgggcca	gatcccagag	acgggggcgc	actttcaccc	1920
ctctccggcc	atggggcgat	tcggactcaa	acacccaccg	cccatgatgc	tcatcaagaa	1980
cagcctgtg	cccgaaata	tcaccagctt	ctcggacgt	cccgtcagca	gtttcatcac	2040
ccagtagac	accgggcagg	tcaccgtgga	gatggatgg	gagctcaaga	aggaaaactc	2100
caagaggtag	aacccagaga	tccagttcac	aaacaactac	aacgaccccc	agtttggaa	2160
cttgcggcc	gacagcaccg	gggatatacg	aaccacccaga	cctatcgaa	cccgatactt	2220
tacccgaccc	ctttaaccca	ttcatgtcg	ataccctcaa	taaa		2264

<210> 31

<211> 2264

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 31						
aggctctcat	ttgttcccg	gacgcctcg	agttcagacg	tgactgttga	tcccgctcct	60
ctgcgaccgc	tcaattggaa	ttaaagatt	gttggaaagaa	gttggtaag	gtcttcgcga	120
gtttttggc	cttgaagcgg	gcccacccgaa	acccaaaacc	aatcagcagc	atcaagatca	180
agcccggtgt	cttgcgtgc	ctgggtataaa	ctatctcg	cccgaaacg	gtctcgatcg	240
aggagagcct	gtcaacagg	cagacggat	cgcgcgag	cacgacatct	cgtacaacga	300
gcagctttag	gcggggagaca	acccttaccc	caagtacaac	cacgcggacg	ccgagtttca	360
ggagaagctc	gccgacgaca	cattccctcg	ggggaaacctc	ggaaaggcag	tctttcaggc	420
caagaaaagg	gttctcgaa	ctttttggcc	gttggaaag	gttgcataa	cgccccctac	480
cggaaagcgg	atagacgacc	actttccaaa	aagaaaagaag	gctcggaccg	aagaggactc	540
caagccttc	acctcgatc	acgcggaaagc	tggaccacg	ggatcccacg	agctgcataat	600
cccagcccaa	ccagcctcaa	gtttgggagc	tgatacaatg	tctgcggag	gtggcgcccc	660
attggcgac	aataaccaag	gtgccgatgg	agtggcaat	gcctcgccg	attggcattg	720
cgattccacg	tggatgggg	acagagtctg	caccaagtcc	acccgaacct	gggtgctgcc	780
cagctacaa	aaccacagt	accgagagat	caaagaaggc	tccgtcagc	gaagcaacgc	840
caacgcctac	tttggataca	gcacccctg	ggggtaactt	gactttaacc	gtttccacag	900
ccactggagc	ccccgagact	ggcaaaagact	catcaacaac	tactgggct	tcagaccccc	960
gtccctcaga	gtcaaatact	tcaacattca	agtcaaagag	gtcacggtgc	aggactccac	1020
caccaccatc	gccaacaacc	tcacccctac	cgtccaagt	tttacggacg	acgactacca	1080
gctgcccata	gtcgtcgca	acgggaccga	gggatgcctg	ccggccttcc	ctccgcagg	1140
ctttacgctg	ccgcgtacg	gttacgcac	gctgaaccgc	gacaacacag	aaaatccac	1200
cgagaggagc	agttttcttct	gccttagagta	ctttccacgc	aagatgctga	gaacgggcaa	1260
caacttttag	tttacccata	actttggag	ggtgccttcc	cactccagct	tcgctcccg	1320
ttagaacctg	ttcaagctgg	ccaaacccgt	ggtgaccag	tacttgtacc	gtttcgtag	1380
cacaataaac	actggcgag	tccagttcaa	caagaacctg	qccggagat	acgccaacac	1440

ctacaaaaac	tggttcccg	ggcccatggg	ccgaacccag	ggctggaacc	tggttcccg	1500
ggtaaccgc	gccagtgtca	gcgccttcgc	cacgaccaa	aggatggagc	tcgagggcgc	1560
gagttaccag	gtgccccccgc	agccgaacgg	catgaccaa	aacctccagg	gcagcaacac	1620
ctatgccctg	gagaacacta	tgatcttcaa	cagccagccg	gcgaacccgg	gcaccaccgc	1680
cacgtacctc	gagggcaaca	tgctcatcac	cagcgagagc	gagacgcagc	cggtgaaccg	1740
cgtggcgtac	aacgtcgcg	ggcagatggc	caccaacaac	cagagctcca	ccactgcccc	1800
cgcgaccggc	acgtacaacc	tccaggaaat	cgtgcccggc	agcgtgtgg	tggagaggga	1860
cgtgtacctc	caaggacca	tctgggccaa	gatcccagag	acgggggcgc	actttcaccc	1920
ctctccggcc	atgggcgat	tcggactcaa	acacccaccc	cccatgatgc	tcatcaagaa	1980
cacgcctgtg	cccgaaata	tcaccagctt	ctcgacgt	cccgtcagca	gcttcatcac	2040
ccagtagcgc	accggcagg	tcacgtgg	gatggagtt	gagctcaaga	aggaaaactc	2100
caagaggtag	aaccagaga	tccagtagac	aaacaactac	aacgaccccc	agtttgtgg	2160
ctttggccccc	gacagcacc	gggatatacg	aaccaccaga	cctatcgaa	cccgataacct	2220
tacccgaccc	ctttaaccca	ttcatgtcgc	ataccctcaa	taaa		2264

<210> 32

<211> 1292

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 32

agcgaaacg	gctcgtcgcg	cagtttctgg	cagaatctc	gcagcgctcg	caggaggcgg	60
cttcgcagcg	tgagttctcg	gctgacccgg	tcatcaa	aaagacttcc	cagaatataca	120
tggcgctcg	caactggctc	gtggagcagc	gcatacattc	cgagaagcag	ttgatccagg	180
aaaatcagga	gagctaccc	tccttcaact	ccacccggca	ctctcgagc	cagatcaagg	240
ccgcgctcg	caacgcgacc	aaaattatga	gtctgacaaa	aagcgcgg	gactacctcg	300
tggggagctc	cgttcccgag	gacatttcaa	aaaacagaat	ctggcaaaat	tttgagatga	360
atggctacga	ccggccctac	gcccggatcca	tccttctacgg	ctgggtgtcg	cgctcccttc	420
acaagaggaa	caccgtctgg	ctctacggac	ccggccacgac	cgcccaagacc	aacatcgccg	480
aggccatcgc	ccacactgt	cccttttacg	gtgcgtgaa	ctggaccaat	aaaaactttc	540
cctttatgt	ctgtgtggac	aaaatgtca	tttgggtgg	ggagggaaag	atgaccaaca	600
aggtgggtga	atccgcctaa	gcccattctgg	ggggctcaaa	ggtgcgggtc	gatcagaaat	660
gtaaaatctc	tgttcaaatt	gattctaccc	ctgtcattgt	aacttccaa	acaaacatgt	720
gtgtgggtgt	ggatggaaat	tccacgacct	ttgaacacca	gcagccgctg	gaggaccgc	780
tgttcaaatt	tgaactgact	aaggcgctcc	ccggcaggatt	ttggcaagatt	actaaggcagg	840
aagtcaagga	cttttttgc	tggcaaaagg	tcaatcgagg	gccgggtact	cacgagttt	900
aagtcccg	ggaattggcg	ggaactaaag	ggccggagaa	atctttaaaa	cgccccactgg	960
gtgacgtc	caactactg	tataaaatgc	tggagaagcg	ggccaggctc	tcattttgttc	1020
ccgagacgccc	tcgcagttca	gacgtgactg	ttgatcccg	tcctctgcga	ccgctcaatt	1080
ggaattcaag	gtatgattgc	aaatgtgact	atcatgctca	atttgacaac	atttctaaca	1140
aatgtgatga	atgtgaatat	ttgaatcg	gcaaaaatgg	atgtatctgt	cacaatgtaa	1200
ctcaactgtca	aatttgtcat	gggattcccc	cctggggaaa	ggaaaacttg	tcagattttg	1260
gggattttga	cgatgc	aaacaaatgt	aa			1292

<210> 33

<211> 1870

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 33

attctttgct	ctggactgct	agaggaccct	cgctgccatg	gctacccct	atgaagtcat	60
tgttcgcgtc	ccatttgacg	tggaggaaca	tctgcctgg	atttctgaca	gttttgtgg	120
ctgggttaact	ggtaaaat	gggagctgccc	tccagatgt	gattaaatt	tgactctgt	180
tgaacagcct	cagttgacgg	tggctgatag	aattcgccgc	gtgtccctgt	acgagtggaa	240
caaattttcc	aaggaggat	ccaaatttctt	tgtgcagg	gaaaaggat	ctgaatattt	300

tcatctgcac	acgcttgg	agacctccgg	cattttcc	atggccctcg	gcccgtacgt	360
gagttagt	cgcgcggc	tggtaaaagt	ggttttccag	ggaatttgaac	cccagatcaa	420
cgactggtc	gccccatcca	aggtaaaaga	ggcgaggc	aataaaggtg	tggattctgg	480
gttatattcc	gccttaccc	tggccaaagg	ccaaaccggag	cttcagtgg	cgtggacaaa	540
cctggacgag	tataaatgg	ccgcctgaa	tctggaggag	cgcaaacggc	tcgtcgcc	600
gtttctggca	gaatcctcg	agcgctcgca	ggaggcggt	tcgcagcgt	agttctcgcc	660
tgaccggtc	atcaaaagca	agacttccca	gaaatacatg	gcgctcgtca	actggctcg	720
ggagcacggc	atcacttccg	agaagcagt	gatccaggaa	aatcaggaga	gttacccctc	780
cttcaactcc	accggcaact	ctcgagcca	gatcaaggcc	gcmcgtcgaca	acgcgaccaa	840
aattatgagt	ctgacaaaaa	gcccgggtgg	ctacctcg	gggagctcc	ttcccggaga	900
catttcaaaa	aacaaatct	ggcaaaattt	tgagatgaat	ggctacgacc	cggctacgc	960
ggatccatc	ctctacggct	gggtcagcg	ctcccttcaac	aagaggaaca	ccgtctggct	1020
ctacggaccc	gccacgacc	gcaagaccaa	catcgccgg	gccatcgccc	acactgtgccc	1080
cttttacggc	tcgtgaact	ggaccaatga	aaacttccc	tttaatgact	gtgtggacaa	1140
aatgctcatt	ttgtggggagg	agggaaagat	gaccaacaag	gtgggtgaat	ccgccaaggc	1200
catcctgggg	ggctcaaaagg	tgcgggtcg	tcagaaaatgt	aaatccctcg	ttcaaaattga	1260
ttcttacccct	gtcattgtaa	cttccaatac	aaacatgt	gtgggtgtgg	atggaaattc	1320
cacgaccc	gaacaccagg	agccgtgg	ggaccgcat	ttcaaaatttg	aactgactaa	1380
gccccctcccg	ccagattttg	gcaagattac	taagcaggaa	gtcaaggact	ttttgtcttg	1440
ggcaaaaggc	aatcagggtc	cggtgactca	cgagtttaaa	gttcccgagg	atttggcg	1500
aactaaaggg	gcccggaaat	ctctaaaacg	cccactgggt	gacgtcacca	atactagcta	1560
taaaaagtctg	gagaagcggg	ccaggctctc	atttgttccc	gagacgcctc	gcagttcaga	1620
cgtgactgtt	gatcccgtc	ctctgcgacc	gctcaatttg	aattcaagg	atgattgcaa	1680
atgtgactat	catgctcaat	ttgacaaat	ttctaaacaa	tgtgtgat	gtgaatattt	1740
gaatcggggc	aaaaatggat	gtatctgtca	caatgtact	cactgtcaaa	tttgtcatgg	1800
gattcccccc	tggaaaaagg	aaaacttgtc	agatttggg	gattttgacg	atgccaataa	1860
agaacagtaa						1870

<210> 34

<211> 330

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 34

Met	Ala	Leu	Val	Asn	Trp	Leu	Val	Glu	His	Gly	Ile	Thr	Ser	Glu	Lys
1					5			10						15	
Gln	Trp	Ile	Gln	Glu	Asn	Gln	Glu	Ser	Tyr	Leu	Ser	Phe	Asn	Ser	Thr
								20	25					30	
Gly	Asn	Ser	Arg	Ser	Gln	Ile	Lys	Ala	Ala	Leu	Asp	Asn	Ala	Thr	Lys
						35	40							45	
Ile	Met	Ser	Leu	Thr	Lys	Ser	Ala	Val	Asp	Tyr	Leu	Val	Gly	Ser	Ser
							50	55			60				
Val	Pro	Glu	Asp	Ile	Ser	Lys	Asn	Arg	Ile	Trp	Gln	Ile	Phe	Glu	Met
							65	70		75				80	
Asn	Gly	Tyr	Asp	Pro	Ala	Tyr	Ala	Gly	Ser	Ile	Leu	Tyr	Gly	Trp	Cys
							85	90						95	
Gln	Arg	Ser	Phe	Asn	Lys	Arg	Asn	Thr	Val	Trp	Leu	Tyr	Gly	Pro	Ala
							100	105						110	
Thr	Thr	Gly	Lys	Thr	Asn	Ile	Ala	Glu	Ala	Ile	Ala	His	Thr	Val	Pro
							115	120						125	
Phe	Tyr	Gly	Cys	Val	Asn	Trp	Thr	Asn	Glu	Asn	Phe	Pro	Phe	Asn	Asp
							130	135			140				
Cys	Val	Asp	Lys	Met	Leu	Ile	Trp	Trp	Glu	Glu	Gly	Lys	Met	Thr	Asn
							145	150		155				160	
Lys	Val	Val	Glu	Ser	Ala	Lys	Ala	Ile	Leu	Gly	Gly	Ser	Lys	Val	Arg
							165	170						175	
Val	Asp	Gln	Lys	Cys	Lys	Ser	Ser	Val	Gln	Ile	Asp	Ser	Thr	Pro	Val
							180	185						190	
Ile	Val	Thr	Ser	Asn	Thr	Asn	Met	Cys	Val	Val	Val	Asp	Gly	Asn	Ser

195	200	205
Thr Thr Phe Glu His Gln Gln	Pro Leu Glu Asp Arg	Met Phe Lys Phe
210	215	220
Glu Leu Thr Lys Arg Leu Pro Pro Asp Phe Gly	Lys Ile Thr Lys Gln	
225	230	235
Glu Val Lys Asp Phe Phe Ala Trp Ala	Lys Val Asn Gln Val Pro Val	240
245	250	255
Thr His Glu Phe Lys Val Pro Arg Glu Leu Ala	Gly Thr Lys Gly Ala	
260	265	270
Glu Lys Ser Leu Lys Arg Pro Leu Gly Asp Val	Thr Asn Thr Ser Tyr	
275	280	285
Lys Ser Leu Glu Lys Arg Ala Arg Leu Ser Phe Val	Pro Glu Thr Pro	
290	295	300
Arg Ser Ser Asp Val Thr Val Asp Pro Ala Pro	Leu Arg Pro Leu Asn	
305	310	315
Trp Asn Ser Arg Leu Val Gly Arg Ser Trp		320
		325

<210> 35

<211> 1115

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 35

aggagcgc aa acggctcg tc	g c g c a g t t t c	t g g c a g a a t c	c t c g c a g c g c	t c g c a g g a g g	60
c g g c t t c g c a	g c g t g a g g t c	t c g g c t g a c c	c g g t c a t c a a	a a g c a a g a c t	120
a c a t g g c g c t	c g t c a a c t g g	c t c g t g g a g c	a c g g c a t c a c	t c c c a g a a a t	180
a g a a a a t c a	g g a g a g c t a c	c t c t c t t c a	a c t c c a c c g	c a a c t c t c g	240
a g g c c g c g t	c g a c a a c g c g	a c c a a a a t t a	t g a g t c t g a c	a a a a g c g c g	300
t c g t g g g a g	c t c c g t t c c	g a g g a c a t t	a a a a a a c a g	g t g g a c t a c c	360
t g a a t g g c t a	c g a c c c g g c c	t a c g c g g a t	a a t c t g g c a a	a t t t t g a g a	420
t c a a c a a g a g	g a a c a c c g t c	t g g c t c a c g	c c a t c t c t a	c g g t c g t g t	480
c g g a g g c c a t	c g c c c a c a c t	t g g c t c a c g	g a c c c g c c a c	c a g c g t c c t	540
t t c c c t t t a a	g t g c c t t t t	a c g g t c g c t	g a c c c g c a a g	t a c c a a c a t c g	600
t g a c t g t g t	t g a c t g t g t	g a c a a a a t g c	t c a t t t g g t g	g g a g g a g g g a	660
a c a a g g t g g t	t g a a t c c g c c	a a g g c c a t c c	t g g g g g g c t c	a a g g t g c g g	720
a a t g t a a a t c	c t c t g t t c a a	a t t g a t t c t a	a c c c t g t c a t	g t c g a t c a g a	780
t g t g t g t g g t	g g t g g a t t g g	a t t g a t t c a	t g t a a c t t c c	a a t a c a a a c a	840
g c a t g t t c a a	a t t g a a t t g	a t t g a t t c a	t c t t g a a c a	c c a g c a g c c	900
a g g a a g t t t t t	g g a c t t t t t	g c t t g g c a a	t t t t g g c a a g	t t t t g g c a a g	960
t t a a a g t t c c	c a g g a a t t g	g c g g g a a c t a	a t t a c t a a a c a	a t t a c t a a a c a	1020
t g g g t g a c g t	c a c c a a t a c t	a g t a t a a a a	g t c t g g a g a a	g c g g g c c a g g	1080
t t c c c g a g a c	g c c t c g c a g t	t c a g a c t g a	t c t c t c t g	c t c t c a t t t g	
a t t g g a a t t c	a a g a t t g g t t	g g a a g a g t t	g g t g a	c g a c c g c t c a	1115

<210> 36

<211> 550

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 36

Met Ala Thr Phe Tyr Glu Val Ile Val Arg Val Pro Phe Asp Val Glu			
1	5	10	15
Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Asp Trp Val Thr Gly			
20	25	30	
Gln Ile Trp Glu Leu Pro Pro Glu Ser Asp Leu Asn Leu Thr Leu Val			

35	40	45
Glu Gln Pro Gln Leu Thr Val Ala Asp Arg Ile Arg Arg Val Phe Leu		
50	55	60
Tyr Glu Trp Asn Lys Phe Ser Lys Gln Glu Ser Lys Phe Phe Val Gln		
65	70	75
Phe Glu Lys Gly Ser Glu Tyr Phe His Leu His Thr Leu Val Glu Thr		80
85	90	95
Ser Gly Ile Ser Ser Met Val Leu Gly Arg Tyr Val Ser Gln Ile Arg		
100	105	110
Ala Gln Leu Val Lys Val Val Phe Gln Gly Ile Glu Pro Gln Ile Asn		
115	120	125
Asp Trp Val Ala Ile Thr Lys Val Lys Lys Gly Gly Ala Asn Lys Val		
130	135	140
Val Asp Ser Gly Tyr Ile Pro Ala Tyr Leu Leu Pro Lys Val Gln Pro		160
145	150	155
Glu Leu Gln Trp Ala Trp Thr Asn Leu Asp Glu Tyr Lys Leu Ala Ala		
165	170	175
Leu Asn Leu Glu Glu Arg Lys Arg Leu Val Ala Gln Phe Leu Ala Glu		
180	185	190
Ser Ser Gln Arg Ser Gln Glu Ala Ala Ser Gln Arg Glu Phe Ser Ala		
195	200	205
Asp Pro Val Ile Lys Ser Lys Thr Ser Gln Lys Tyr Met Ala Leu Val		
210	215	220
Asn Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys Gln Trp Ile Gln		
225	230	235
Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr Gly Asn Ser Arg		
245	250	255
Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Thr Lys Ile Met Ser Leu		
260	265	270
Thr Lys Ser Ala Val Asp Tyr Leu Val Gly Ser Ser Val Pro Glu Asp		
275	280	285
Ile Ser Lys Asn Arg Ile Trp Gln Ile Phe Glu Met Asn Gly Tyr Asp		
290	295	300
Pro Ala Tyr Ala Gly Ser Ile Leu Tyr Gly Trp Cys Gln Arg Ser Phe		
305	310	315
Asn Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala Thr Thr Gly Lys		
325	330	335
Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro Phe Tyr Gly Cys		
340	345	350
Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp Cys Val Asp Lys		
355	360	365
Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Asn Lys Val Val Glu		
370	375	380
Ser Ala Lys Ala Ile Leu Glu Gly Ser Lys Val Arg Val Asp Gln Lys		
385	390	395
Cys Lys Ser Ser Val Gln Ile Asp Ser Thr Pro Val Ile Val Thr Ser		
405	410	415
Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser Thr Thr Phe Glu		
420	425	430
His Gln Gln Pro Leu Glu Asp Arg Met Phe Lys Phe Glu Leu Thr Lys		
435	440	445
Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln Glu Val Lys Asp		
450	455	460
Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val Thr His Glu Phe		
465	470	475
Lys Val Pro Arg Glu Leu Ala Gly Thr Lys Gly Ala Glu Lys Ser Leu		
485	490	495
Lys Arg Pro Leu Glu Asp Val Thr Asn Thr Ser Tyr Lys Ser Leu Glu		
500	505	510
Lys Arg Ala Arg Leu Ser Phe Val Pro Glu Thr Pro Arg Ser Ser Asp		
515	520	525
Val Thr Val Asp Pro Ala Pro Leu Arg Pro Leu Asn Trp Asn Ser Arg		
530	535	540

Leu Val Gly Arg Ser Trp
545 550

<210> 37
<211> 1690
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 37			
attctttgct ctggactgct agaggaccct	cgctgcccatt	gctaccccttct atgaagtcat	60
tgttcgcgtc ccatttgacg tggaggaaca	tctgccttggaa	atttctgaca gctttgtggaa	120
ctgggttaact ggtcaaaattt gggagctgcc	tccagagtcgaa	gatttaaaattt tgactctgggt	180
tgaacagcct cagttgacgg tggctgatag	aattcgcggc	gtgttccctgt acgagtggaa	240
caaattttcc aaggcaggat ccaaatttctt	tgtgcagttt	aaaaaggat ctgaatattt	300
tcatctgcac acgttgggttgg agacccctgg	catcttcc	atggcttcg gccgctacgt	360
gagttagt cgcggccac tggtaaaatgtt	ggtcttccag	ggaatttgaac cccagatcaa	420
cgtactgggtc gccatcacca aggtttttttt	ggcggaggg	aataaagggtt tggattctgg	480
gttatattttcc gccttacctgc tgccgaaatgtt	ccaaccggag	cttcagtggg cgtggacaaa	540
cctggacgag tataaatttgg ccccccgttggaa	tctggaggag	cgcaaacggc tcgtcgcc	600
gtttctggca gaatccctgc akgcgtcgca	ggaggccgtt	tcgcacgtg agttctcg	660
tgtacccggtc atcaaaagca agacttccccca	gaaatacatg	gcgcgtgtca actggctcg	720
ggagcacggc atcacttccg agaaggcgtt	gatccaggaa	aatcaggaga gcttacccctc	780
cttcaactcc accggcaact ctccggagcc	gatcaaggcc	gctcgacaa acgcgaccaa	840
aattatgttgtt ctgacaaaaaa ggcgggttggaa	tcacctcggt	ggggactccg ttcccgagga	900
catttcaaaa aacagaatct ggcaaaattttt	tgagatgaat	ggctacgacc cggcctacgc	960
gggatccatc ctctacggct ggtgtcagcg	tccttcaac	aagaggaaca cggctcggt	1020
ctacggaccc gccacgaccg gcaagaccaa	catcgcggag	gccatcgccc acactgtg	1080
cttttacggc tgcgtgaact ggaccaatga	aaactttccc	tttaatgact gtgtggacaa	1140
aatgctcatt tgggtgggg aggaaaatgtt	gaccaacaag	gtgggttgaat cggccaaggc	1200
catcctgggg ggctcaaaagg tgggggtcgaa	tcagaaatgt	aaatccctcg ttciaatttga	1260
ttcttacccctt gtcatttggaa ctccaaatac	aaacatgtt	gtgggtggg atggaaatttgc	1320
cacgaccctt gaacaccagg akgcgtcgaa	ggaccgcgtt	ttcaattttt aactgactaa	1380
gcggctcccg ccagattttt gcaagattac	taagcagggaa	gtcaaggact ttttgc	1440
ggcaaaaggc aatcagggtc cggtgactca	cgagttttaa	gttcccaggg aattggcggg	1500
aactaaagggg gcgaggaaaat ctctaaaacg	cccactgggt	gacgtcacca atactagcta	1560
taaaaatctg gagaaggcggg ccaggcttc	atttgttccc	gagacgcctc gcatgtcaga	1620
cgtgactgtt gatcccgctc ctctgcgacc	gctcaatttg	aattcaagat tgggttggaa	1680
aagttttggta			1690

<210> 38
<211> 145
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 38		
ccatcaccaa ggtaaaagg ggcggagccaaataagggtgtt ggattctggg tatattcccg		60
ccttacccgtt ggcggggccaaac ctggacgagt		120
ataaaatttggc cggcccttgcatttgc		145

<210> 39
<211> 174
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 39
taagcaggaa gtcaaggact ttttgctt ggcaaaggc aatcagggtgc cggtgactca 60
cgagttaaa gttcccgagg aattggcggg aactaaaggg gcggagaaat ctctaaaacg 120
cccactgggt gacgtcacca atactagcta taaaagtctg gagaagcggg ccag 174

<210> 40
<211> 187
<212> DNA
<213> Artificial sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 40
cactctcaag caagggggtt ttgttaaggcag ttagtgtata atgatgtaat gcttattgtc 60
acgcgatagt taatgattaa cagtcatgtg atgtttta tccaatagga agaaagcgcg 120
cgtatgagtt ctcgcgagac ttccgggtt taaaagaccg agtgaacgag cccgcccgc 180
ttctttg 187

<210> 41
<211> 168
<212> DNA
<213> Artificial sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 41
aaacccctt gcttggaggt gtggcactct ccccccgttc gcgttcgttc gctcgctggc 60
tcgtttgggg gggcgcacggc tc当地agagct gccagacgac ggcgccttgg ccgtcgcccc 120
cccaaacgag ccagcgagcg agcgaacgcg acagggggga gagtgcca 168

<210> 42
<211> 168
<212> DNA
<213> Artificial sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 42
aaacccctt gcttggaggt gtggcactct ccccccgttc gcgttcgttc gctcgctggc 60
tcgtttgggg gggcgcacggc cagagggccg tcgtctggc gctctttgag ctgccacccc 120
cccaaacgag ccagcgagcg agcgaacgcg acagggggga gagtgcca 168

<210> 43
<211> 8
<212> DNA
<213> Artificial sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 43
cggtgtga 8

<210> 44
 <211> 8
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Description of Artificial Sequence; note = synthetic construct

<400> 44
 cggtttag 8

<210> 45
 <211> 21
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Description of Artificial Sequence; note = synthetic construct

<400> 45
 caaaaacctcc ttgcttgaga g 21

<210> 46
 <211> 4675
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Description of Artificial Sequence; note = synthetic construct

<400> 46
 ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
 cgacgccccg gctttgccc ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
 gccaactcca tcactagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 180
 gtttagggag gtcctgtatt agaggtcacg tgagtgttt gcgcacatttt ggcacaccat 240
 gtggtcacgc tgggtattta agcccgagtg agcacgcagg gtctccattt tgaagcggga 300
 gtttgaacg cgcagccgcc atgccgggtt ttacgagat tgtgattaag gtcccccagcg 360
 accttgacgg gcatctgccc ggcatttctg acagctttt gaactgggtg gcccggaaagg 420
 aatgggagt gccggccagat tctgacatgg atctgaatct gattgagcag gcacccctga 480
 ccgtggccga gaagctgcg cgcgactttc tgacggaatg ggcgcgtgtg agtaaggccc 540
 cggaggccct tttcttgtg caatttgaga agggagagag ctacttccac atgcacgtgc 600
 tcgtggaaac caccgggtg aaatccatgg ttttgggacg ttctcgtgatc cagattcgcg 660
 aaaaactgat tcagagaatt taccgcggga tcgagccgac tttgccaac tgggtcgccg 720
 tcacaaagac cagaaatggc gccggaggcg ggaacaagggt ggtggatgag tgctacatcc 780
 ccaattactt gctccccaacc accagccctg agctccagtg ggcgtggact aatatggAAC 840
 agtatttaag cgccttttg aatctcacgg agcgtaaacg gttgtggcg cagcatctga 900
 cgcacgtgc gcagacgcg gacgagaaca aagagaatca gaatcccaat tctgtgcgc 960
 cgggtatcag ataaaaact tcagccaggt acatggagct ggtcggttgg ctcgtggaca 1020
 aggggattac ctcggagaag cagtggatcc aggaggacca ggcctcatac atctccctca 1080
 atgcggccctc caactcgcgg tcccaaattca aggctgcctt ggacaaatgcg ggaaagatTTA 1140
 tgagcctgac taaaacccgc cccgactacc tggtgggcca gcagccgtg gaggacatTT 1200
 ccagaatcg gatttataaa atttggAAC taaacgggta cgatccccaa tatgcggctt 1260
 ccgtctttct gggatggggcc acgaaaaaaagt tcggcaagag gaacaccatc tggctgtttg 1320
 ggcctgcaac taccggaaag accaacatcg cggaggccat agcccacact gtgccttct 1380
 acgggtgcgt aaactggacc aatgagaact ttcccttcaa cgactgtgtc gacaagatgg 1440
 tcatctggtg ggaggagggg aagatgaccg ccaaggtcgt ggagtccgtt aagccattc 1500
 tcggagggaaAG caagggtgcgc gtggaccaga aatgcaagtc ctcggccag atagacccGA 1560
 ctccctgtat cgtcaccctcc aacaccaaca tggcgcctgt gattgacggg aactcaacga 1620
 ccttcgaaca ccagcagccg ttgcaagacc ggatgttcaa atttgaactc acccggcgtc 1680
 tggatcatga ctggggaaAG gtccaccaacg aggaagtcaa agactttttc cgggtggcaa 1740

aggatcacgt	ggttgaggtg	gagcatgaat	tctacgtcaa	aaagggtgga	gc当地	1800
gaccgc	cagtgacgca	gatataagt	agcccaa	ggtgcgcag	tc当地	1860
agccatcgac	gtcagacgcg	gaagctt	tcaactac	agacaggtac	caaaaca	1920
gttctcgca	cgtggccat	aatctgt	tg	cagacaat	gaga	1980
atcagaattc	aatatctgc	ttcactc	gacagaa	ctgtttagag	tgcttccc	2040
tgtcagaatc	tcaaccgtt	tctgtcgt	aaaagg	tcagaaact	tgctacatt	2100
atcatatcat	gggaaagg	ccagacgtt	gcactgc	cgatctgg	aatgtggatt	2160
tggatgactg	catctt	caataaaat	ttt	gtatgg	cgatgg	2220
cttccagatt	ggctcgag	cactct	gaagg	gacagtgg	gaag	2280
cctggccac	caccac	gcccgcag	cg	acgacag	gggtctt	2340
cttctgggt	acaagta	cggacc	aac	acaagg	gcccgt	2400
gaggcagacg	ccgcggcc	cgagcac	caaa	gaccgg	tcgacag	2460
agacaacc	tac	accacac	cgacgc	tttcagg	gcctt	2520
agatacgt	tttgggg	acctcg	agcagt	caggc	aaaa	2580
tgaacctctg	ggcctgg	aggaac	taagac	ccggg	aaaa	2640
agagactct	cctgtgg	agact	ctcgg	ggaaagg	gccagc	2700
tgc	agaa	ttgg	tggagac	gact	ctgac	2760
gctctcgga	cagccac	cagcccc	tgg	actaa	tacagg	2820
cagtggcga	ccaatgg	acaataac	g	ggagtgg	attc	2880
aaattggcat	tgcgat	catggat	ggc	ggatcc	gcaccc	2940
ctggccctg	cccac	acaacc	ctaca	at	atcagg	3000
ctcgaacgac	aatact	ttgg	caccc	gggttat	acttca	3060
attccactgc	cactt	cacgt	gcaaa	atcaaca	actggg	3120
ccgacccaag	agact	tca	taacatt	taac	actggg	3180
tgacggtacg	acgac	gatt	tacc	gtca	ggagg	3240
ggagtacc	ctcc	gtac	gac	ggat	ctcc	3300
agcagacgtc	ttc	atgtt	g	at	ctgac	3360
atgaggacgc	tct	cat	ta	actt	tcc	3420
aaacaactt	ac	ttt	act	tc	tcgtacc	3480
cagccagagt	ctgg	acc	tct	tc	tcgtacc	3540
cagaacaaac	act	ca	cat	tc	tcgtacc	3600
agcgagt	att	cg	g	tc	tcgtacc	3660
gcgagat	aa	acat	g	tc	tcgtacc	3720
caagtacc	ct	aat	ca	tc	tcgtacc	3780
cgt	aa	gtt	ca	tc	tcgtacc	3840
gaaaacaaat	gt	acat	aa	tc	tcgtacc	3900
caatcccgt	g	tc	ca	tc	tcgtacc	3960
acaagcagct	cc	ac	ca	tc	tcgtacc	4020
cagagatgt	tac	cc	ca	tc	tcgtacc	4080
tcacccctc	cc	ct	ca	tc	tcgtacc	4140
caagaacacc	cc	ct	ca	tc	tcgtacc	4200
cttcatcaca	c	gt	ca	tc	tcgtacc	4260
agaaaaacag	ca	at	tc	tc	tcgtacc	4320
ttaatcg	actt	acc	t	tc	tcgtacc	4380
ccagatacct	gac	tc	ta	tc	tcgtacc	4440
cagttaact	tt	tt	at	tc	tcgtacc	4500
agtagcatgg	gg	tt	aa	tc	tcgtacc	4560
cctctctgcg	cg	tc	gg	tc	tcgtacc	4620
gcttgc	gg	tc	gg	tc	tcgtacc	4675

<210> 47
<211> 4694

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 47	gtggcactcc	ccccctgtc	gcgttcgtc	gttcgttgc	tcgattgggg	gggtggcagc	60
	tcaaagagct	gccagacgac	ggccctctgg	gccgtcccc	ccccaaatcga	gccagcgaac	120
	gagcgaacgc	gacaggggg	ggagtggccac	actctctagc	aagggg	ttgttaggtgt	180

gatgtcattg	ttgatgtcat	tatagttgc	acgcgatagt	taatgattaa	cagtcatgtg	240
atgtgttta	tccaaatagga	tgaaaagcgcg	cgaatgagat	ctcgcgagac	ttccggggta	300
taaaaagggtt	gagtgaacga	gcccggcc	attctctgt	ctggactgt	agaggaccct	360
cgtcgccat	gctaccttct	atgaagtcat	tgttcgctt	ccatttgatg	tggaagagca	420
cctgccttga	atttctgaca	acttgtaga	ctggtaact	ggtcaattt	gggagctgcc	480
tccccagtca	gatttgaatt	tgactctgt	tgagcagcct	cagctgacgg	tggctgacag	540
aattcgcgc	gtgttctgt	acgagtggaa	caaattttcc	aagcaggaga	gcaaattctt	600
tgtgcagttt	aaaaaggat	ctgaatattt	tcatctgcac	acgctgtgg	agacccccc	660
catctcttct	atggtcctt	gccgctacgt	gagtcagatt	cgcgcacgc	tgtgaaggt	720
ggtgttccag	aacattgagc	cgcggattaa	cgaatgggtc	ccatcacca	aggtaaagaa	780
gggcggagcc	aataagggtt	tggattctgg	gtatattcc	gcctacctgc	tgccgaagg	840
ccaaccagag	cttcagttgg	cgttgactaa	cctcgaagag	tataaattgg	ccgcccctcaa	900
tctggaggag	cgcaaaacgc	tcgtcgctca	gtttcagctt	gagtctcgc	agcgctcgca	960
agaggcatct	tcccagaggg	acgtttcgcc	tgaccggtc	atcaagagca	agacttccc	1020
gaaatacatg	gcgctgtta	gctggctgtt	ggaacatggc	atcacttccg	agaagcagt	1080
gattcaggag	aatcaggaga	gctacctgtc	cttcaactcc	acggaaaact	ctcggagcc	1140
gattaagcc	gcgcttgaca	acgcgtcaaa	aattatgagt	ctgaccaat	ctgcctcaga	1200
ctatctcg	ggacagactg	ttccagagga	catttctgaa	aacagaatct	ggcagatttt	1260
tgatctcaac	ggctacgacc	ccgcatacgc	gggctctgtt	ctctacggct	gtgtcactcg	1320
cgccttgg	aagaggaaca	ccgtctggct	gtatggaccc	gcgaccaccg	gaaagaccaa	1380
catcgcggaa	gccatcttc	acaccgtgc	cttttatggc	tgtgtgaact	ggactaatga	1440
gaactttccc	ttaatgact	gtgtggaaaa	aatgttgatc	tgtgtggagg	agggaaagat	1500
gaccagcaag	gtggtggAAC	ccgccaaggc	catcttgggg	gggtcttagag	tacgagtgg	1560
tcaaaaatgt	aaatcctctg	tacaagtata	ctctaccccg	gtgattatca	cctccaaatac	1620
taacatgtgt	gtggtgggtt	atggaaactc	cacgacattt	gaacaccgc	agccgctgg	1680
agaccgcgt	ttcagattt	aactcatgcg	gcggctccc	ccagatttt	gcaagattac	1740
caagcaggaa	gtcaaaagact	tttttgcctt	ggcaaaaggc	aaccagggtc	cggtgactca	1800
cgagtttatg	gttcccaaga	aagtggcggg	aactgagagg	gcggagactt	ctagaaaaacg	1860
cccaactggat	gacgtcacca	ataccaacta	taaaaatccg	gagaagcggg	cccggtcttc	1920
agttgttcct	gagacgcctc	gcagttcaga	cgtgctgtt	gagccgctc	ctctgcgacc	1980
tctcaacttgg	tcttcagg	atgaatgcag	atgtgactat	catgttaaat	tgactctgt	2040
aacgggggaa	tgtgacgagt	gtgatattt	gaatcgggc	aaaaatggg	gtatcttca	2100
taatgttaca	cattgttcaaa	tttgcacgc	tgttcccca	tggggaaaagg	aaaatgtgtc	2160
agattttaat	gattttgtat	actgtataaa	agagcgttaa	ataaaatgtgag	tagtcatgtc	2220
ttttgttgc	caccctccag	atgggttgg	atcgatcgcc	gacgctttc	gtgaatttt	2280
cggccttgg	gcgggtcccc	cgaaacccaa	ggccatcaa	cagaagcaag	ataacgctcg	2340
aggtcttgg	cttcttgggt	acaagtatct	tggtcctgg	aacggcttgc	ataagggcga	2400
tccgttcaat	tttgcgtacg	aggttgcgg	agagcagac	ctctcttacc	agaaacacgt	2460
tgaggcgggc	gataaccctt	acccaatgt	caaccacgc	gacgcagat	ttcaggagaa	2520
actcgcttct	gacacttctt	ttggggaaaa	ccttggggag	gctttttcc	aggctaaaaaa	2580
gaggatttctc	gaacatttttgc	gcctgggttga	gacgcggat	aaaacggcgc	ctgcggcaaa	2640
aaagaggcct	ctagagcaga	gtctcaaga	gccagactcc	tcgagcggag	ttggcaagaa	2700
aggcaaaacag	cctgccccaa	agagactcaa	ctttgacgac	gaacctggag	ccggagacgg	2760
gcctccccc	gaaggaccat	cttccggagc	tatgtctact	gagactgaaa	tgcgtgcagc	2820
agctggcgga	aatggggcg	atgcgggaca	aggtggccag	ggagtggggtt	atgcctccgg	2880
tgattggcat	tgcgatttcca	cttgggttga	gagccacgtc	accaccac	caacccgcac	2940
ctgggtctgt	ccgacacccat	acaaccaccc	gtacctgcgg	ctcgctcga	gcaacgcac	3000
cgacaccc	aacggattct	ccacccccc	gggatacttt	gactttacc	gcttccactg	3060
ccacttctcg	ccaagagact	ggccaaaggct	catcaacaac	cactggggac	tgcccccacaa	3120
aagcatgca	gtccgcattt	tcaacatcca	agtttaaggag	gtcacgacgt	ctaacgggaa	3180
gacgaccgt	tccaaacacc	tcaccagcac	ggtccagatc	tttgcggaca	gcacgtacga	3240
gctcccgat	gtgtatggat	caggtcagga	gggcagcttgc	cctcttccccc	ccaacgcacgt	3300
gttcatgtgt	cctcagttacg	ggtaactgtcg	actgttaacc	ggaggcagat	ctaaaaacca	3360
gacagacaga	aatggcttct	actgtctgg	gtactttttcc	agccagatgc	tgagaacccg	3420
aaacaacttt	gagatgtgt	acaagtttga	aaacgtggcc	tttccacttca	tgtacgctca	3480
cagccagac	ctggataggc	tgatgaaccc	gctgctggac	cagtacatgt	gggagctcca	3540
gtcttaccacc	tctggagggaa	cttcaccca	gggcaatca	gccaccaact	ttgccaagct	3600
gaccaaaaca	aactttctg	gctaccgcaa	aaactggctc	ccggggccca	tgatgaagca	3660
gcagagattc	tccaagactg	ccagtcaaaa	ctacaagatt	ccccagggaa	gaaacaacag	3720
tctgtccat	tatgagacca	gaactaccct	cgacggaga	tggaccaatt	ttgccccggg	3780
aacggccat	gcaaccgcag	ccaaacgcgc	caccgactt	tctcaggccc	agctcatctt	3840
tgcggggcccc	aacatcaccgc	gcaacaccac	cacagatgcc	aataacctga	tgttcacttc	3900
agaagatgaa	cttagggcca	ccaaacccccc	ggacactgac	ctgtttggcc	acctggcaac	3960

caaccagcaa	aacgccacca	ccgttcctac	cgttagacgac	gtggacggag	tcggcgtgt	4020
cccgaaatg	gtgtggcagg	acagagacat	ttactacca	gggcccattt	gggc当地at	4080
tccacacacg	gatggacact	ttcacccgtc	tcctctcatt	ggcggtttt	gactgaaaag	4140
cccgcttcca	caaataatca	tcaaaaaacac	tcctgtaccc	gccaatcccc	caacgacctt	4200
ctctccggcc	agaatcaaca	gcttcatcac	ccagtacagc	accggacagg	tggctgtcaa	4260
aatagaatgg	gaaatccaga	aggagcggtc	caagagatgg	aacccagagg	tccagttcac	4320
gtccaactac	ggagcacagg	actcgcttct	ctgggctccc	gacaacgccc	gagcctacaa	4380
agagccccc	gcccattggat	cccgataacct	caccaaccac	ctctagccca	attctgttgc	4440
ataccctcaa	taaacctgtt	attcggttca	gttaaaatct	gcctcttgg	gtcattcggc	4500
gtacaacacg	ttacaacaac	aacaaaaccc	ccttgctaga	gagtgtggca	ctcccccccc	4560
tgtcgcttc	gctcgcttc	tggctcgatt	gggggggtgg	cagctaaag	agctgccaga	4620
cgacggccct	ctggccgtc	gccccccaa	tcgagccagc	gaacgagcga	acgcgacagg	4680
ggggggagtg	ccac					4694

<210> 48

<211> 1833

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 48

atggctacct	tctatgaagt	cattgttcgc	gttccatttg	atgtggaaga	gcacctgcct	60
ggaatttctg	acaactttgt	agactggta	actggtaaa	tttgggagct	gcctcccgag	120
tcaagattga	atttgactct	gattgagcag	cctcagctga	cggtggctga	cagaattcgc	180
cgcgttcc	tgtacgatg	gaacaaattt	tccaaggcagg	agagacaaatt	ctttgtgcag	240
tttggaaaagg	gatctgaata	ttttcatctg	cacacgctcg	tggagacctc	cgcatctct	300
tctatggtcc	ttggccgcta	cgtgagtcag	attcgccccc	agctggtgaa	gttgggtttc	360
cagaacattg	agccgcggat	taacgactgg	gtcgcctatca	ccaaggtaaa	gaagggcggaa	420
gcacaataagg	ttgtggattc	tggatatata	cccgccttacc	tgctggcggaa	gttccaaacca	480
gagcttcagt	gggcgtggac	taacctcgaa	gagtataaat	tggccccc	caatctggag	540
gagcgc当地ac	ggctcgtcgc	tcagtttcag	cttgagtcct	cgccagcgtc	gcaagaggca	600
tcttcccaaga	gggacgttcc	ggctgaccct	gtcatcaaga	gcaagacttc	ccagaaatac	660
atggcgctgg	taagctggct	ggtggAACAT	ggcatcactt	ccgagaagca	gtggatttcag	720
gagaatcagg	agagctacat	gtccttcaac	tccacgggaa	actctcgag	ccagattaaa	780
gccgc当地tgc	acaacgcgtc	aaaaattatg	agtctgacca	aatctccctc	agactatctc	840
gtggggacaga	ctgttccaga	ggacattttct	gaaaacagaa	tctggcagat	ttttgatctc	900
aacggctacg	acccggcata	cgccggctct	gttctctacg	gctggtgac	tcgcgcctt	960
ggggagagga	acacgtctg	gctgtatgg	cccgcgacca	ccggaaagac	caacatcg	1020
gaagccatct	ctcacaccgt	gcccctttat	ggctgtgtga	actggactaa	tgagaacttt	1080
cccttaatg	actgtgttgg	aaaaatgttg	atctgggtgg	aggagggaaa	gatgaccagc	1140
aagggttgtgg	aacccgccaa	ggccatcttgc	ggggggctta	gagtagcagat	gatcaaaaaa	1200
tgtaaatcct	ctgtacaatgt	agactctacc	ccgggtgat	tcaccccaa	tactaacatg	1260
tgtgttgtgg	tggatggaa	ctccacgacc	tttgaacacc	agcagccgct	ggaagaccgc	1320
atgttcat	tttgcactat	gcgcggcgtc	ccgcccagatt	ttggcaagat	taccaaggcag	1380
gaagtcaaaag	actttttgc	ttgggcaaaag	gtcaaccagg	tgccctgtac	tcacgagttt	1440
atggttccca	agaaaatggc	gggaaactgtag	agggcggaga	tttctagaaa	acgcccactg	1500
gatgacgtca	ccaataaccaa	ctataaaaat	ccggagaagc	gggcccggct	ctcagttgtt	1560
cctgagacgc	ctcgcagttc	agacgtgcct	gtagagcccg	ctccctctgcg	acctctcaac	1620
tgtcttcca	ggtatgaatg	cagatgtgac	tatcatgtc	aatttgactc	tgtAACGGGG	1680
gaatgtgacg	agtgtgataa	tttgaatcg	ggccaaaaatg	gctgtatctt	tcataatgct	1740
acacattgtc	aaatttgc	cgctgttctt	ccatggggaaa	aggaaaaatgt	gtcagatttt	1800
aatgat	tttttttgc	atgactgtaa	taaagagcag	taa		1833

<210> 49

<211> 610

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =

synthetic construct

<400> 49
Met Ala Thr Phe Tyr Glu Val Ile Val Arg Val Pro Phe Asp Val Glu
1 5 10 15
Glu His Leu Pro Gly Ile Ser Asp Asn Phe Val Asp Trp Val Thr Gly
20 25 30
Gln Ile Trp Glu Leu Pro Pro Glu Ser Asp Leu Asn Leu Thr Leu Ile
35 40 45
Glu Gln Pro Gln Leu Thr Val Ala Asp Arg Ile Arg Arg Val Phe Leu
50 55 60
Tyr Glu Trp Asn Lys Phe Ser Lys Gln Glu Ser Lys Phe Phe Val Gln
65 70 75 80
Phe Glu Lys Gly Ser Glu Tyr Phe His Leu His Thr Leu Val Glu Thr
85 90 95
Ser Gly Ile Ser Ser Met Val Leu Gly Arg Tyr Val Ser Gln Ile Arg
100 105 110
Ala Gln Leu Val Lys Val Val Phe Gln Asn Ile Glu Pro Arg Ile Asn
115 120 125
Asp Trp Val Ala Ile Thr Lys Val Lys Gly Gly Ala Asn Lys Val
130 135 140
Val Asp Ser Gly Tyr Ile Pro Ala Tyr Leu Leu Pro Lys Val Gln Pro
145 150 155 160
Glu Leu Gln Trp Ala Trp Thr Asn Leu Glu Glu Tyr Lys Leu Ala Ala
165 170 175
Leu Asn Leu Glu Arg Lys Arg Leu Val Ala Gln Phe Gln Leu Glu
180 185 190
Ser Ser Gln Arg Ser Gln Glu Ala Ser Ser Gln Arg Asp Val Ser Ala
195 200 205
Asp Pro Val Ile Lys Ser Lys Thr Ser Gln Lys Tyr Met Ala Leu Val
210 215 220
Ser Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys Gln Trp Ile Gln
225 230 235 240
Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr Gly Asn Ser Arg
245 250 255
Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys Ile Met Ser Leu
260 265 270
Thr Lys Ser Ala Ser Asp Tyr Leu Val Gly Gln Thr Val Pro Glu Asp
275 280 285
Ile Ser Glu Asn Arg Ile Trp Gln Ile Phe Asp Leu Asn Gly Tyr Asp
290 295 300
Pro Ala Tyr Ala Gly Ser Val Leu Tyr Gly Trp Cys Thr Arg Ala Phe
305 310 315 320
Gly Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala Thr Thr Gly Lys
325 330 335
Thr Asn Ile Ala Ala Ile Ser His Thr Val Pro Phe Tyr Gly Cys
340 345 350
Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp Cys Val Glu Lys
355 360 365
Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Ser Lys Val Val Glu
370 375 380
Pro Ala Lys Ala Ile Leu Gly Gly Ser Arg Val Arg Val Asp Gln Lys
385 390 395 400
Cys Lys Ser Ser Val Gln Val Asp Ser Thr Pro Val Ile Ile Thr Ser
405 410 415
Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser Thr Thr Phe Glu
420 425 430
His Gln Gln Pro Leu Glu Asp Arg Met Phe Arg Phe Glu Leu Met Arg
435 440 445
Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln Glu Val Lys Asp
450 455 460
Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val Thr His Glu Phe
465 470 475 480

Met Val Pro Lys Lys Val Ala Gly Thr Glu Arg Ala Glu Thr Ser Arg
 485 490 495
 Lys Arg Pro Leu Asp Asp Val Thr Asn Thr Asn Tyr Lys Ser Pro Glu
 500 505 510
 Lys Arg Ala Arg Leu Ser Val Val Pro Glu Thr Pro Arg Ser Ser Asp
 515 520 525
 Val Pro Val Glu Pro Ala Pro Leu Arg Pro Leu Asn Trp Ser Ser Arg
 530 535 540
 Tyr Glu Cys Arg Cys Asp Tyr His Ala Lys Phe Asp Ser Val Thr Gly
 545 550 555 560
 Glu Cys Asp Glu Cys Glu Tyr Leu Asn Arg Gly Lys Asn Gly Cys Ile
 565 570 575
 Phe His Asn Ala Thr His Cys Gln Ile Cys His Ala Val Pro Pro Trp
 580 585 590
 Glu Lys Glu Asn Val Ser Asp Phe Asn Asp Phe Asp Asp Cys Asn Lys
 595 600 605
 Glu Gln
 610

<210> 50

<211> 1173

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 50		60
atggcgctgg taagctggct ggttgaacat ggcacactt ccgagaagca gtggattcag		120
gagaatcagg agagctacct gtccttcaac tccacgggaa actctcgag ccagattaaa		180
gcgcgcgtt gacaacgcgtc aaaaattatg agtctgacca aatctgcctc agactatctc		240
gtgggacaga ctgttccaga ggacattttc gaaaacagaa tctggcagat ttttgatctc		300
aacggctacg accccggcata cgcgggctct gttctctacg gctgggtcac tcgcgccttt		360
gaaaagagga acaccgtctg gctgtatgga cccgcgacca ccggaaagac caacatcgcg		420
gaagccatct ctcacaccgt gcccctttat ggctgtgtga actggactaa tgagaacttt		480
cccttaatg actgtgtgga aaaaatgttg atctgggtgg aggagggaaa gatgaccagc		540
aagggttgtgg aaccgccaa ggcacatctt ggggggtcta gagtacgagt ggtataaaaa		600
tgtaaatcct ctgtacaagt agactctacc ccgggtgatta tcacctccaa tactaacatg		660
tgtgttgtgg tggatggaa ctccacgacc ttgaacacc agcagccgct ggaagaccgc		720
atgttcagat ttgaacctat gcggcggctc ccggccagatt ttggcaagat taccaagcag		780
gaagtcaaaag acttttttgc ttgggcaaag gtcaaccagg tgccggtgac tcacgagtt		840
atggttccca agaaaagtggc gggaaactgag agggcggaga cttctagaaa acgcccactg		900
gatgacgtca ccaataccaa ctataaaaatg ccggagaagc gggccggct ctcagttgtt		960
cctgagacgc ctcgcagttc agacgtgcct gttagagcccg ctccctgtcg acctctcaac		1020
tgtcttcca ggtatgaatg cagatgtgac tatcatgcta aatttgactc tgaacgggg		1080
aatgtgacg agtgtgaata tttgaatcg ggcaaaaatg gctgttatctt tcataatgtt		1140
acacattgtc aaatttgtca cgctgttcct ccatggggaaa aggaaaatgt gtcagatttt		1173
aatgattttg atgactgtaa taaagagcag taa		

<210> 51

<211> 390

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 51		
Met Ala Leu Val Ser Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys		
1 5 10 15		
Gln Trp Ile Gln Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr		

Gly	Asn	Ser	Arg	Ser	Gln	Ile	Lys	Ala	Ala	Leu	Asp	Asn	Ala	Ser	Lys
20					25								30		
						40							45		
Ile	Met	Ser	Leu	Thr	Lys	Ser	Ala	Ser	Asp	Tyr	Leu	Val	Gly	Gln	Thr
35													50		
						55							60		
Val	Pro	Glu	Asp	Ile	Ser	Glu	Asn	Arg	Ile	Trp	Gln	Ile	Phe	Asp	Leu
65						70							80		
							75						85		
Asn	Gly	Tyr	Asp	Pro	Ala	Tyr	Ala	Gly	Ser	Val	Leu	Tyr	Gly	Trp	Cys
							90						95		
Thr	Arg	Ala	Phe	Gly	Lys	Arg	Asn	Thr	Val	Trp	Leu	Tyr	Gly	Pro	Ala
							100						105		
Thr	Thr	Gly	Lys	Thr	Asn	Ile	Ala	Glu	Ala	Ile	Ser	His	Thr	Val	Pro
							115						120		125
Phe	Tyr	Gly	Cys	Val	Asn	Trp	Thr	Asn	Glu	Asn	Phe	Pro	Phe	Asn	Asp
							130						135		140
Cys	Val	Glu	Lys	Met	Leu	Ile	Trp	Trp	Glu	Glu	Gly	Lys	Met	Thr	Ser
145							150						155		160
Lys	val	val	Glu	Pro	Ala	Lys	Ala	Ile	Leu	Gly	Gly	Ser	Arg	Val	Arg
							165						170		175
val	Asp	Gln	Lys	Cys	Lys	Ser	Ser	Val	Gln	Val	Asp	Ser	Thr	Pro	Val
							180						185		190
Ile	Ile	Thr	Ser	Asn	Thr	Asn	Met	Cys	Val	Val	Val	Asp	Gly	Asn	Ser
							195						200		205
Thr	Thr	Phe	Glu	His	Gln	Gln	Pro	Leu	Glu	Asp	Arg	Met	Phe	Arg	Phe
							210						215		220
Glu	Leu	Met	Arg	Arg	Leu	Pro	Pro	Asp	Phe	Gly	Lys	Ile	Thr	Lys	Gln
225							230						235		240
Glu	Val	Lys	Asp	Phe	Phe	Ala	Trp	Ala	Lys	Val	Asn	Gln	Val	Pro	Val
							245						250		255
Thr	His	Glu	Phe	Met	Val	Pro	Lys	Lys	Val	Ala	Gly	Thr	Glu	Arg	Ala
							260						265		270
Glu	Thr	Ser	Arg	Lys	Arg	Pro	Leu	Asp	Asp	Val	Thr	Asn	Thr	Asn	Tyr
							275						280		285
Lys	Ser	Pro	Glu	Lys	Arg	Ala	Arg	Leu	Ser	Val	Val	Pro	Glu	Thr	Pro
							290						295		300
Arg	Ser	Ser	Asp	Val	Pro	Val	Glu	Pro	Ala	Pro	Leu	Arg	Pro	Leu	Asn
305							310						315		320
Trp	Ser	Ser	Arg	Tyr	Glu	Cys	Arg	Cys	Asp	Tyr	His	Ala	Lys	Phe	Asp
							325						330		335
Ser	Val	Thr	Gly	Glu	Cys	Asp	Glu	Cys	Glu	Tyr	Leu	Asn	Arg	Gly	Lys
							340						345		350
Asn	Gly	Cys	Ile	Phe	His	Asn	Ala	Thr	His	Cys	Gln	Ile	Cys	His	Ala
							355						360		365
Val	Pro	Pro	Trp	Glu	Lys	Glu	Asn	Val	Ser	Asp	Phe	Asn	Asp	Phe	Asp
							370						375		380
Asp	Cys	Asn	Lys	Glu	Gln								385		390

<210> 52

<211> 2211

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 52

atgtcttttg	ttgaccaccc	tccagattgg	ttggaatcga	tcggcgacgg	ctttcgtgaa	60
tttctcgcc	ttgaggcggg	tcccccgaaa	cccaaggcca	atcaacagaa	gcaagataac	120
gctcgaggtc	ttgtgcctcc	tgggtacaag	tatcttggtc	ctgggaacgg	ctttgataag	180
ggcgatcctg	tcaattttgc	tgacgagggtt	gcccggagac	acgacacctc	ctaccagaaa	240
cagcttgagg	cgggcgataa	cccttacctc	aagtacaacc	acgcggacgc	agagtttcag	300

gagaaaactcg	cttctgacac	ttctttggg	ggaaaccttg	ggaaggctgt	tttccaggct	360
aaaaagagga	ttctcgaacc	tcttgcctg	gtttagacgc	cggataaaac	ggcgccctgcg	420
gcaaaaaaga	ggcctctaga	gcagactcct	caagagccag	actccctcgag	cggagttggc	480
aagaaaggca	aacagccctgc	cagaaagaga	ctcaacttgc	acgacaaacc	tggagccgga	540
gacgggcctc	ccccagaagg	accatcttc	ggagctatgt	ctactgagac	tggaaatgcgt	600
gcagcagt	gcggaaatgg	tggcgatgcg	ggacaagggt	ccgaggggagt	gggtaatgcc	660
tccgggtatt	ggcattgcga	ttccacttgg	tcagagagcc	acgtcaccac	cacctaacc	720
cgcacctggg	tcctgccac	ctacaacaac	cacctgtacc	tgcggctcg	ctcgagcaac	780
gccagcgaca	ccttcaacgg	atttccacc	ccctgggat	actttgactt	taaccgccttc	840
cactgccaact	tctcgccaag	agactggcaa	aggctcatca	acaacactg	gggactgcgc	900
cccaaaagca	tgcaagtccc	catcttcaac	atccaagttt	aggaggtcac	gacgtctaacc	960
ggggagagca	ccgtatccaa	caacccatcc	agcacggtcc	agatcttgc	ggacagcagc	1020
tacagactcc	cgtacgttca	ggatcgaggat	caggaggcga	gcttgcctcc	tttccccaac	1080
gacgtgttca	tgggcctca	gtacgggtac	tgcggacttg	taaccggagg	cagctctcaa	1140
aaccagacag	acagaaatgc	cttctactgt	ctggagtact	ttcccagcca	gatgctgaga	1200
accggaaaca	actttgagat	ggtgtacaag	tttggaaaacg	tgccttcca	ctccatgtac	1260
gctcacagcc	agagccttgg	taggctgtat	aacccgctgc	tggaccaggta	cctgtgggag	1320
ctccagtc	ccacctctgg	aggaaactctc	aaccaggcga	attcagccac	caactttgcc	1380
aagctgacca	aaacaaactt	ttctggctac	cgcaaaaact	ggctcccccgg	gcccattatgt	1440
aagcagcaga	gattctccaa	gacttgcgt	caaaaactaca	agattttccca	gggaaagaaaac	1500
aacagtctgc	tccattatga	gaccagaact	accctcgacg	gaagatggag	caattttgcc	1560
ccggaaacgg	ccatggcaac	cgcagccaaac	gacgccaccg	actttctca	ggcccagctc	1620
atcttgcgg	ggcccaacat	caccggcaac	accaccacag	atgccaataa	cctgtatgttc	1680
acttcagaag	atgaacttag	ggccaccaac	ccccgggaca	ctgaccctgtt	tggccacctg	1740
gcaaccaacc	agcaaaaacgc	caccaccgtt	cctaccgtag	acgacgtgg	cggagtcggc	1800
gtgtacccgg	gaatggtgt	gcaggacaga	gacattttact	accaggggcc	catttgggccc	1860
aaaattccac	acacggatgg	acacccatcc	ccgtctcc	tcattttgg	attttggactg	1920
aaaagcccg	ctccacaaat	atttcataaa	aacactcc	tacccgcaaa	tcccgcaac	1980
accttctctc	cgcccaagaat	caacagcttc	atcacccatg	acagaccgg	acaggtggct	2040
gtcaaaaatag	aatgggaaat	ccagaaggag	cggtccaaga	gatggaaaccc	agaggtccag	2100
ttcacgttca	actacggagc	acaggactcg	tttctctgg	ctcccgacaa	cgccggagcc	2160
tacaaagagc	ccagggccat	tggatcccga	tacctcacca	accaccccta	g	2211

<210> 53

<211> 736

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 53

Met	Ser	Phe	Val	Asp	His	Pro	Pro	Asp	Trp	Leu	Glu	Ser	Ile	Gly	Asp
1					5				10			15			
Gly	Phe	Arg	Glu	Phe	Leu	Gly	Leu	Glu	Ala	Gly	Pro	Pro	Lys	Pro	Lys
								25					30		
Ala	Asn	Gln	Gln	Lys	Gln	Asp	Asn	Ala	Arg	Gly	Leu	Val	Leu	Pro	Gly
								35					40		45
Tyr	Lys	Tyr	Leu	Gly	Pro	Gly	Asn	Gly	Leu	Asp	Lys	Gly	Asp	Pro	Val
								50					55		60
Asn	Phe	Ala	Asp	Glu	Val	Ala	Arg	Glu	His	Asp	Leu	Ser	Tyr	Gln	Lys
								65					70		75
Gln	Leu	Glu	Ala	Gly	Asp	Asn	Pro	Tyr	Leu	Lys	Tyr	Asn	His	Ala	Asp
								85					90		95
Ala	Glu	Phe	Gln	Glu	Lys	Leu	Ala	Ser	Asp	Thr	Ser	Phe	Gly	Gly	Asn
								100					105		110
Leu	Gly	Lys	Ala	Val	Phe	Gln	Ala	Lys	Lys	Arg	Ile	Leu	Glu	Pro	Leu
								115					120		125
Gly	Leu	Val	Glu	Thr	Pro	Asp	Lys	Thr	Ala	Pro	Ala	Ala	Lys	Lys	Arg
								130					135		140
Pro	Leu	Glu	Gln	Ser	Pro	Gln	Glu	Pro	Asp	Ser	Ser	Ser	Gly	Val	Gly
								145					150		155

Lys Lys Gly Lys Gln Pro Ala Arg Lys Arg Leu Asn Phe Asp Asp Glu
 165 170 175
 Pro Gly Ala Gly Asp Gly Pro Pro Pro Glu Gly Pro Ser Ser Gly Ala
 180 185 190
 Met Ser Thr Glu Thr Glu Met Arg Ala Ala Ala Gly Gly Asn Gly Gly
 195 200 205
 Asp Ala Gly Gln Gly Ala Glu Gly Val Gly Asn Ala Ser Gly Asp Trp
 210 215 220
 His Cys Asp Ser Thr Trp Ser Glu Ser His Val Thr Thr Thr Ser Thr
 225 230 235 240
 Arg Thr Trp Val Leu Pro Thr Tyr Asn Asn His Leu Tyr Leu Arg Leu
 245 250 255
 Gly Ser Ser Asn Ala Ser Asp Thr Phe Asn Gly Phe Ser Thr Pro Trp
 260 265 270
 Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp
 275 280 285
 Trp Gln Arg Leu Ile Asn Asn His Trp Gly Leu Arg Pro Lys Ser Met
 290 295 300
 Gln Val Arg Ile Phe Asn Ile Gln Val Lys Glu Val Thr Thr Ser Asn
 305 310 315 320
 Gly Glu Thr Thr Val Ser Asn Asn Leu Thr Ser Thr Val Gln Ile Phe
 325 330 335
 Ala Asp Ser Thr Tyr Glu Leu Pro Tyr Val Met Asp Ala Gly Gln Glu
 340 345 350
 Gly Ser Leu Pro Pro Phe Pro Asn Asp Val Phe Met Val Pro Gln Tyr
 355 360 365
 Gly Tyr Cys Gly Leu Val Thr Gly Gly Ser Ser Gln Asn Gln Thr Asp
 370 375 380
 Arg Asn Ala Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg
 385 390 395 400
 Thr Gly Asn Asn Phe Glu Met Val Tyr Lys Phe Glu Asn Val Pro Phe
 405 410 415
 His Ser Met Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro
 420 425 430
 Leu Leu Asp Gln Tyr Leu Trp Glu Leu Gln Ser Thr Thr Ser Gly Gly
 435 440 445
 Thr Leu Asn Gln Gly Asn Ser Ala Thr Asn Phe Ala Lys Leu Thr Lys
 450 455 460
 Thr Asn Phe Ser Gly Tyr Arg Lys Asn Trp Leu Pro Gly Pro Met Met
 465 470 475 480
 Lys Gln Gln Arg Phe Ser Lys Thr Ala Ser Gln Asn Tyr Lys Ile Pro
 485 490 495
 Gln Gly Arg Asn Asn Ser Leu Leu His Tyr Glu Thr Arg Thr Thr Leu
 500 505 510
 Asp Gly Arg Trp Ser Asn Phe Ala Pro Gly Thr Ala Met Ala Thr Ala
 515 520 525
 Ala Asn Asp Ala Thr Asp Phe Ser Gln Ala Gln Leu Ile Phe Ala Gly
 530 535 540
 Pro Asn Ile Thr Gly Asn Thr Thr Asp Ala Asn Asn Leu Met Phe
 545 550 555 560
 Thr Ser Glu Asp Glu Leu Arg Ala Thr Asn Pro Arg Asp Thr Asp Leu
 565 570 575
 Phe Gly His Leu Ala Thr Asn Gln Gln Asn Ala Thr Thr Val Pro Thr
 580 585 590
 Val Asp Asp Val Asp Gly Val Gly Val Tyr Pro Gly Met Val Trp Gln
 595 600 605
 Asp Arg Asp Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His
 610 615 620
 Thr Asp Gly His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu
 625 630 635 640
 Lys Ser Pro Pro Pro Gln Ile Phe Ile Lys Asn Thr Pro Val Pro Ala
 645 650 655
 Asn Pro Ala Thr Thr Phe Ser Pro Ala Arg Ile Asn Ser Phe Ile Thr

Gln	Tyr	Ser	Thr	Gly	Gln	Val	Ala	Val	Lys	Ile	Glu	Trp	Glu	Ile	Gln
660				665							670				
675					680						685				
Lys	Glu	Arg	Ser	Lys	Arg	Trp	Asn	Pro	Glu	Val	Gln	Phe	Thr	Ser	Asn
690					695						700				
Tyr	Gly	Ala	Gln	Asp	Ser	Leu	Leu	Trp	Ala	Pro	Asp	Asn	Ala	Gly	Ala
705					710						715				720
Tyr	Lys	Glu	Pro	Arg	Ala	Ile	Gly	Ser	Arg	Tyr	Leu	Thr	Asn	His	Leu
											725				730
															735

<210> 54

<211> 1803

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 54

acggcgctg	cggcaaaaaa	gaggcctcta	gagcagagtc	ctcaagagcc	agactcctcg	60
acggagttg	gcaagaaaagg	caaacacgcct	gccagaaaaga	gactcaacctt	tgacgacgaa	120
cctggagccg	gagacggggcc	tcccccaagaa	ggaccatctt	ccggagctat	gtctactgag	180
actgaaatgc	gtgcagcagc	tggcgaaat	gttggcgatg	cgggacaagg	tgcggaggga	240
gtggtaatg	cctccgggtga	ttggcattgc	gattccactt	gttcagagag	ccacgtcacc	300
accaccaa	cccgcacctg	ggtcctgcg	acctacaaca	accacctgtt	cctgcggctc	360
ggctcgagca	acggcaggcg	caccttcaac	ggattctcca	ccccctgggg	atactttgac	420
ttaaccgc	tccactgc	cttctgc	agagactggc	aaaggctcat	caacaaccac	480
tggggactgc	gccccaaaag	catgcaagtc	cgcatcttca	acatccaagt	taaggaggtc	540
acgacgtcta	acggggagac	gaccgtatcc	aacaacctca	ccagcacgg	ccagatctt	600
gcccacagca	cgtacgagct	cccgta	atggatgcag	gtcaggagg	cagcttgcct	660
ccttcccca	acgacgtt	catggtgct	cagtacgggt	actgcggact	ggtAACGGG	720
ggcagctctc	aaaaccacag	agacagaaaat	gccttctact	gtctggagta	ctttcccagc	780
cagatgctga	gaaccggaaa	caactttag	atggtgtaca	agtttaaaaa	cgtgccttc	840
cactccatgt	acgctcacag	ccagagcctg	gataggctga	tgaacccgct	gctggaccag	900
tacctgtggg	agctccagtc	taccacctt	ggaggaactc	tcaaccagg	caattcagcc	960
accaactttg	ccaagctgac	caaaacaaac	ttttctggct	accgaaaaaa	ctggctcccg	1020
gggcccattga	tgaagcagca	gagattctcc	aagactgcca	gtcaaaacta	caagattccc	1080
cagggaaagaa	acaacagtct	gctccattat	gagaccagaa	ctaccctcg	cggaagatgg	1140
accaattttg	ccccgggaaac	ggccatggca	accgcagcca	acgacgccc	cgacttctt	1200
caggcccagc	tcatcttgc	ggggcccaac	atcaccggca	acaccaccac	agatgccaat	1260
aacctgatgt	tcaattcaga	agatgactt	agggccacca	accccccgg	cactgacctg	1320
tttggccacc	tggcaaccaa	ccagcaaaac	gccaccac	ttcctaccgt	agacgacgt	1380
gacggagtcg	gcgtgtaccc	ggaatggtg	tggcaggaca	gagacattt	ctaccaaggg	1440
cccatattggg	ccaaaattcc	acacacggat	ggacactt	acccgtctt	tctattggc	1500
ggatttggac	tgaaaagccc	gcctccacaa	atattcatca	aaaacactt	tgtacccg	1560
aatcccgcaa	cgaccttctc	tccggccaga	atcaacact	tcatcacca	gtacagcacc	1620
ggacagggtgg	ctgtcaaaat	agaatggaa	atccagaagg	agcggtccaa	gagatggaac	1680
ccagagggtcc	agttcacgtc	caactacgg	gcacaggact	cgcttcttg	ggctcccgac	1740
aacgcccggag	cctacaaga	gcccagg	attggatccc	gatacctac	caaccac	1800
tag						1803

<210> 55

<211> 600

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 55

Thr Ala Pro Ala Ala Lys Lys Arg Pro Leu Glu Gln Ser Pro Gln Glu

1 5 10 15
 Pro Asp Ser Ser Ser Gly Val Gly Lys Lys Gly Lys Gln Pro Ala Arg
 20 25 30
 Lys Arg Leu Asn Phe Asp Asp Glu Pro Gly Ala Gly Asp Gly Pro Pro
 35 40 45
 Pro Glu Gly Pro Ser Ser Gly Ala Met Ser Thr Glu Thr Glu Met Arg
 50 55 60
 Ala Ala Ala Gly Gly Asn Gly Asp Ala Gly Gln Gly Ala Glu Gly
 65 70 75 80
 Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp Ser Glu
 85 90 95
 Ser His Val Thr Thr Ser Thr Arg Thr Trp Val Leu Pro Thr Tyr
 100 105 110
 Asn Asn His Leu Tyr Leu Arg Leu Gly Ser Ser Asn Ala Ser Asp Thr
 115 120 125
 Phe Asn Gly Phe Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe
 130 135 140
 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn His
 145 150 155 160
 Trp Gly Leu Arg Pro Lys Ser Met Gln Val Arg Ile Phe Asn Ile Gln
 165 170 175
 Val Lys Glu Val Thr Thr Ser Asn Gly Glu Thr Thr Val Ser Asn Asn
 180 185 190
 Leu Thr Ser Thr Val Gln Ile Phe Ala Asp Ser Thr Tyr Glu Leu Pro
 195 200 205
 Tyr Val Met Asp Ala Gly Gln Glu Gly Ser Leu Pro Pro Phe Pro Asn
 210 215 220
 Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Cys Gly Leu Val Thr Gly
 225 230 235 240
 Gly Ser Ser Gln Asn Gln Thr Asp Arg Asn Ala Phe Tyr Cys Leu Glu
 245 250 255
 Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Met Val
 260 265 270
 Tyr Lys Phe Glu Asn Val Pro Phe His Ser Met Tyr Ala His Ser Gln
 275 280 285
 Ser Leu Asp Arg Leu Met Asn Pro Leu Leu Asp Gln Tyr Leu Trp Glu
 290 295 300
 Leu Gln Ser Thr Thr Ser Gly Gly Thr Leu Asn Gln Gly Asn Ser Ala
 305 310 315 320
 Thr Asn Phe Ala Lys Leu Thr Lys Thr Asn Phe Ser Gly Tyr Arg Lys
 325 330 335
 Asn Trp Leu Pro Gly Pro Met Met Lys Gln Gln Arg Phe Ser Lys Thr
 340 345 350
 Ala Ser Gln Asn Tyr Lys Ile Pro Gln Gly Arg Asn Asn Ser Leu Leu
 355 360 365
 His Tyr Glu Thr Arg Thr Thr Leu Asp Gly Arg Trp Ser Asn Phe Ala
 370 375 380
 Pro Gly Thr Ala Met Ala Thr Ala Ala Asn Asp Ala Thr Asp Phe Ser
 385 390 395 400
 Gln Ala Gln Leu Ile Phe Ala Gly Pro Asn Ile Thr Gly Asn Thr Thr
 405 410 415
 Thr Asp Ala Asn Asn Leu Met Phe Thr Ser Glu Asp Glu Leu Arg Ala
 420 425 430
 Thr Asn Pro Arg Asp Thr Asp Leu Phe Gly His Leu Ala Thr Asn Gln
 435 440 445
 Gln Asn Ala Thr Thr Val Pro Thr Val Asp Asp Val Asp Gly Val Gly
 450 455 460
 Val Tyr Pro Gly Met Val Trp Gln Asp Arg Asp Ile Tyr Tyr Gln Gly
 465 470 475 480
 Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser
 485 490 495
 Pro Leu Ile Gly Gly Phe Gly Leu Lys Ser Pro Pro Pro Gln Ile Phe
 500 505 510

Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ala Thr Thr Phe Ser Pro
 515 520 525
 Ala Arg Ile Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ala
 530 535 540
 Val Lys Ile Glu Trp Glu Ile Gln Lys Glu Arg Ser Lys Arg Trp Asn
 545 550 555 560
 Pro Glu Val Gln Phe Thr Ser Asn Tyr Gly Ala Gln Asp Ser Leu Leu
 565 570 575
 Trp Ala Pro Asp Asn Ala Gly Ala Tyr Lys Glu Pro Arg Ala Ile Gly
 580 585 590
 Ser Arg Tyr Leu Thr Asn His Leu
 595 600

<210> 56

<211> 1617

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 56	60
atgcgtgcag cagctggcgg aaatggtggc gatgcgggac aagggtgccga gggagtgggt	120
aatgcctccg gtgattggca ttgcatttc acttggtcag agagccacgt caccaccacc	180
tcaacccgca cctgggtcct gcccacccatc aacaaccacc tgcacccctt ggggataactt tgactttaac	240
agcaacgcgc gcgacaccctt caacggattc tccacccctt ggggataactt tgactttaac	300
cgcgttccact gccaacttcc gccaagagac tggcaaaggc tcatacaaca ccactgggaa	360
ctgcgcggcc aaagcatgca agtccgcattt tcacacatcc aagtttagga ggtcacgacg	420
tctaacgggg agacgaccgt atccaaacaac ctcaccagca cgggtccatg ctgtgcggac	480
agcacgtacg agctcccgta cgtgatggat gcagggtcagg agggcagctt gcctcccttc	540
cccaacgcgc tgttcatgtt gcctcgttac gggtaactgcg gactgttaac cggaggcagc	600
tctcaaaaacc agacagacag aaatgccttc tactgtctgg agtactttcc cagccagatg	660
ctgagaaccg gaaacaactt tgatgttgt tacaagtttggaaaacgtgcc cttccactcc	720
atgtacgctc acagccagag cctggatagg ctgtatggaaatccatcc aagggcaattc agccaccaac	780
tgggagctcc agtctaccac ctctggagga actctcaacc ggtaactgcg ggcgttccatcc	840
tttgccttcc tgacaaaaac aaacttttctt gccaatggcttccatcc aagggccatgg	900
atgatgaagc agcagagatt ctccttccatcc ttatggatggaaatccatcc aagggccatgg	960
agaaaacaaca gtctgttccatcc ttatggatggaaatccatcc aagggccatgg	1020
tttgccttccatcc tgacggccat ggcacccgcgc gccaacgcgc ccaccactt ctctcaggcc	1080
cagctcatct ttgcggggcc caacatcacc accaacccttccatcc aatccatcc	1140
atgttactt cagaagatgttacttggcc accaacccttccatcc aatccatcc	1200
cacctggcaa ccaaccaggca aaacgcgcacc accgttccatcc cctgtatggaaatccatcc	1260
gtcggcgtgt accccggaaat ggtgtggcggac gacagagaca tttaacttccatcc aatccatcc	1320
tgggcaaaaa ttccacacac ggtatggacac ttccatccatcc cttcttccatcc aatccatcc	1380
ggactgaaaa gccccgccttcc acacatatttccatcc aatccatcc	1440
gcaacgcacct tctctccggc cagaatcaac agtctcatcc cccatggacatccatcc aatccatcc	1500
gtggctgtca aaatagaatggaaatccatcc aaggagcggttccatcc aatccatcc	1560
gttccatccatcc cgtccaaacttccatcc cgagacacatccatcc aatccatcc	1617

<210> 57

<211> 538

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 57

Met Arg Ala Ala Ala Gly Gly Asn Gly Gly Asp Ala Gly Gln Gly Ala
 1 5 10 15

Glu Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp
 20 25 30
 Ser Glu Ser His Val Thr Thr Ser Thr Arg Thr Trp Val Leu Pro
 35 40 45
 Thr Tyr Asn Asn His Leu Tyr Leu Arg Leu Gly Ser Ser Asn Ala Ser
 50 55 60
 Asp Thr Phe Asn Gly Phe Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
 65 70 75 80
 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
 85 90 95
 Asn His Trp Gly Leu Arg Pro Lys Ser Met Gln Val Arg Ile Phe Asn
 100 105 110
 Ile Gln Val Lys Glu Val Thr Thr Ser Asn Gly Glu Thr Thr Val Ser
 115 120 125
 Asn Asn Leu Thr Ser Thr Val Gln Ile Phe Ala Asp Ser Thr Tyr Glu
 130 135 140
 Leu Pro Tyr Val Met Asp Ala Gly Gln Glu Gly Ser Leu Pro Pro Phe
 145 150 155 160
 Pro Asn Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Cys Gly Leu Val
 165 170 175
 Thr Gly Gly Ser Ser Gln Asn Gln Thr Asp Arg Asn Ala Phe Tyr Cys
 180 185 190
 Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu
 195 200 205
 Met Val Tyr Lys Phe Glu Asn Val Pro Phe His Ser Met Tyr Ala His
 210 215 220
 Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Leu Asp Gln Tyr Leu
 225 230 235 240
 Trp Glu Leu Gln Ser Thr Thr Ser Gly Gly Thr Leu Asn Gln Gly Asn
 245 250 255
 Ser Ala Thr Asn Phe Ala Lys Leu Thr Lys Thr Asn Phe Ser Gly Tyr
 260 265 270
 Arg Lys Asn Trp Leu Pro Gly Pro Met Met Lys Gln Gln Arg Phe Ser
 275 280 285
 Lys Thr Ala Ser Gln Asn Tyr Lys Ile Pro Gln Gly Arg Asn Asn Ser
 290 295 300
 Leu Leu His Tyr Glu Thr Arg Thr Leu Asp Gly Arg Trp Ser Asn
 305 310 315 320
 Phe Ala Pro Gly Thr Ala Met Ala Thr Ala Ala Asn Asp Ala Thr Asp
 325 330 335
 Phe Ser Gln Ala Gln Leu Ile Phe Ala Gly Pro Asn Ile Thr Gly Asn
 340 345 350
 Thr Thr Thr Asp Ala Asn Asn Leu Met Phe Thr Ser Glu Asp Glu Leu
 355 360 365
 Arg Ala Thr Asn Pro Arg Asp Thr Asp Leu Phe Gly His Leu Ala Thr
 370 375 380
 Asn Gln Gln Asn Ala Thr Thr Val Pro Thr Val Asp Asp Val Asp Gly
 385 390 395 400
 Val Gly Val Tyr Pro Gly Met Val Trp Gln Asp Arg Asp Ile Tyr Tyr
 405 410 415
 Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His
 420 425 430
 Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu Lys Ser Pro Pro Gln
 435 440 445
 Ile Phe Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ala Thr Thr Phe
 450 455 460
 Ser Pro Ala Arg Ile Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln
 465 470 475 480
 Val Ala Val Lys Ile Glu Trp Glu Ile Gln Lys Glu Arg Ser Lys Arg
 485 490 495
 Trp Asn Pro Glu Val Gln Phe Thr Ser Asn Tyr Gly Ala Gln Asp Ser
 500 505 510
 Leu Leu Trp Ala Pro Asp Asn Ala Gly Ala Tyr Lys Glu Pro Arg Ala

515 520 525
Ile Gly Ser Arg Tyr Leu Thr Asn His Leu
530 535

<210> 58
<211> 150
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 58
gtggcactcc cccccctgtc gcgttcgctc gttcgctggc tcgattgggg gggtggcagc
tcaaagagct gccagacac ggcctctgg gccgtcgccc ccccaatcga gccagcgaac
gagcgaacgc gacagggggg ggagtgccac

<210> 59
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 59
ctcttagcaag ggggttttgt

<210> 60
<211> 7
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 60
agtgtgg

<210> 61
<211> 158
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 61
aggtggtgat gtcattgttg atgtcattat agttgtcacg cgatagttaa tgattaacag
tcatgtatg ttttatcc aataggatga aagcgccgca atgagatctc gcgagacttc
cggggtataa aagggttgag tgaacgagcc cgccgcca

<210> 62
<211> 112
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =

synthetic construct

<400> 62	ggtgattct gggatatattc ccgcctacct gctgccgaag gtcccaaccag agtttcagtg ggcgtggact aacctcgaaat ggccgcccctc aatctggagg ag	60 112
<210> 63		
<211> 169		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence; note = synthetic construct		
<400> 63		
agtcaaagac tttttgtt gggcaaaggta acccagggtt ccggtgactc acgagtttat ggttcccaag aaagtggcg gaaactgagag ggcggagact tttagaaaac gcccactgga tgacgtcacc aataccaaat ataaaagtcc ggagaagcg gccccggctc	60 120 169	
<210> 64		
<211> 4721		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence; note = synthetic construct		
<400> 64		
ttggccactc cctctatcg cgctcgctcg ctgcgtgggg cctgcggacc aaaggccgc agacggcaga gctctgtct gcccggccca ccgagcgagc gagcgcgcatt agagggagtg gccaactcca tcactagggg taccgcgaag cgcctccac gctgcccgt cagcgtcgtac gtaaatcacg tcataggggg gtggccctgt attagctgtc acgtgagtgc ttgcgtcaca ttttgcgaca ccacgtggcc atttgaggta tataggccg agtggcgag caggatctcc attttgaccg cgaatttta acggacgaca gccatggccg gtttctacga gatgtgtac aagggtggca ggcaccttgg cggacacccg cggggcattt ctgactcg ttgtgaactgg gtggccgaga aggaatggg gctgcccccg gatttgcaca tggatctgaa tctgtatcgag caggccaccc tgaccgtggc cggagaactg cagcgcact tcctggtcca atggccgcgc gtgagtaagg ccccgaggc cctgttctt gttcagttcg agaaggcgag gagctacttc cacccacg ttctgggtga gaccacgggg gtcagttccaa ttgtgtctagg cccgttccctg agtcaagattt gggagaagct ggtccagacc atctaccgcg ggggtcgagcc cacgctgccc aactggttcg cggtgaccat gacgcgtaat ggcgcggcg gggggaaacaa ggtgggtggac gagtgttaca tcccaacta cctctgtccc aagaccgcg ccgagctgca gtggccgttgg actaaatcg aggatataat aagcgctgt ttgaacctgg cggacgcacaa acggctcg gcfgcagacc tgaccacatcg cagccagacg caggagcaga acaaggagaa tctgaacccc aattctgacg cgcctgtat caggtaaaa acctccgcg gctacatgaa gctggtcggg tggctgggtt accggggcat cacctccgag aagcagtggaa tccaggagaa ccaggccctcg tacatctcct tcaacgcgcg ctccaaactcg cgttcccaga tcaaggccgc gctggacaat gccggcaaga tcatggcgct gaccaaattcc gcccggact acctgggtgg gcccctcg cccggcgaca taaaaccaa cgcacatctac cgcacatctgg agtgcacccg gtacatctt gcctacggcc gctccgttt tctcggttgg gcccagaaaa atttggggaa ggcacacacc atctgggtt ttggggccgc caccacccgg aagaccaaca ttgcggaaagc catgccccac gccgtggctt tctacggctg cgtcaactgg accaatgaga actttccctt caacgattgc gtcgacaaaga ttgtgatctg gtggggaggag ggcaagatga cggccaaggt cgtggagtcc gccaaggcca ttctcgccgg cagcaagggt cgcgtggacc aaaagtgcac gtcgtccggc cagatcgacc ccaccccgat cgtcgttacc tccaaacacca acatgtgc cgtgttgc gggaacagca ccacccctcgat gcaccagcag cgttgcagg accggatgtt caaatttgaa ctcaccggcc gtcgtggact cgtacttggc aaggatcgac agcaggaaat caaagagttc ttccgtggg ccagtatca cgtgaccgg gttggcgatcatg agttctactgt cagaaaggc ggagcccgca aaagaccggc ccccgatcatc gcgatataa gcgagcccaa gccccctgc ccctcgtcg cggatccatc gacgtcagac gcgaaaggag ctccgggtt gacatgtgc aggatccaaa acaaattgttc tcgtcactcg ggcattgattt agatgtcttt tccctgc aaatggaa	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980	

acgtgcgaga	aatgaaatca	gaatttcaac	atttgcttca	cacacggggt	cagagactgt	2040
ttagagtgtt	tccccggcgt	gtcagaatct	caaccggtcg	tcagaaaaaa	gacgtatcg	2100
aaactctgcg	cgattcatca	tctgctgggg	cgggccccc	agattgctt	ctcggcctgc	2160
gacctggtca	acgtggacct	ggacgactgc	gtttctgagc	aataaatgac	ttaaaccagg	2220
tatggctgcc	gatggttatc	ttccagattt	gctcgaggac	aacctctctg	agggcattcg	2280
cgagtgggtg	gacctaaca	ctggagcccc	gaaacccaaa	gccaaccagc	aaaagcagga	2340
caacggccgg	ggtctggtc	ttccctggcta	caagtacctc	ggacccttca	acggactcga	2400
caagggggag	cccgtcaac	cggcggacgc	agcggccctc	gagcacgaca	aggcctacga	2460
ccagcagctc	aaagcgggt	acaatccgt	cctgcggtat	aaccatcg	acgcggagtt	2520
tcaggagcgt	ctgcaagaag	atacgtcatt	tggggcaac	ctcggcggag	cagtcttcca	2580
ggccaagaag	cgggttcgt	aaccctctcg	tctgggttag	gaaggcgcta	agacggctcc	2640
tcaaagaag	agaccggtag	agccgtcacc	tcagcgttcc	cccgactcct	ccacgggcat	2700
cggcaagaagaa	ggccagcagc	ccgcccagaaa	gagactcaat	ttcggtcaga	ctggcgactc	2760
agagtcaagtc	cccgaccctc	aaccctctcg	agaacctcca	gcagcgcctc	ctagtgtggg	2820
atctggtaca	gtggctgcag	gcccggcgc	accaatggca	gacaataacg	aagggtccga	2880
cggagtgggt	aatgcctcag	gaaattggca	ttgcgattcc	acatggctgg	gcgacagagt	2940
cattaccacc	agcacccgaa	cctgggccc	gcccacccat	aacaaccacc	tctacaagca	3000
aatctccagt	gaaatgcag	gttagtaccaa	cgacaacacc	tacttccgt	acgcacccccc	3060
ctgggggtat	tttgacttta	acagattcca	tcggccactt	tcaccacgt	actggcagcg	3120
actcatcaac	aacaacttgg	gattccggcc	caagaagctg	cggttcaagc	tcttcaacat	3180
ccaggtcaag	gaggtcaca	cgaatgacgg	cgttacgacc	atcgttaata	accttaccag	3240
cacgattcag	gtattctcg	actcggaaata	ccagctggcg	tacgtcctcg	gctctgcgca	3300
ccagggctgc	ctgcctccgt	tcccggcga	cgttccatg	atttctcagt	acgggtactt	3360
gactctcaac	aatggcagtc	agtctgtggg	acgttccccc	tttctactgc	ttggagtactt	3420
ccctctctcg	atgctgagaa	cggcaacaa	ctttagttt	agtacagct	tcgaggacgt	3480
gccttccac	agcagctac	cacacagcc	gagcctggac	cggctgatga	atcccctcat	3540
cgaccaggatc	ttgtactacc	tggccagaa	acagagtaac	ccaggaggca	cagctggcaa	3600
tcgggaactg	cagtttacc	agggcgccc	ttcaactatg	gccgaacaag	ccaagaattt	3660
gttacctgga	ccttgcttcc	ggcaacaaag	agtctccaaa	acgctggatc	aaaacaacaa	3720
cagcaacttt	gcttggactg	gtgccacc	atatcacctg	aacggcagaa	actcggttgt	3780
taatcccccgc	gtgcccatgg	caactcacaa	ggacgacgag	gaccgtttt	tcccattccag	3840
cggagtcctg	atttttggaa	aaactggagc	aactaacaa	actacattgg	aaaatgttt	3900
aatgacaat	gaagaagaaa	ttcgtcttac	taatcctgt	gccacggaa	aatacggat	3960
agttagcagc	aacttacaa	cggctataac	tgccagccag	acacaagtt	tcaacaacca	4020
gggagcctt	cctggcatgg	tctggcagaa	ccgggacgtg	tacctgcagg	gtcccatctg	4080
ggccaagatt	cctcacacgg	atggcaactt	tcaccctgt	cctttagtgg	gcggcttttg	4140
acttaaacat	ccgcctcc	agatccgtat	caagaacact	cccgttcccg	ctaattcc	4200
ggaggtgttt	actcctgcca	agtttgc	gttcatca	cagtacagca	ccggacaagt	4260
cagcgtggaa	atcgagttgg	agctgcagaa	ggaaaacacg	aagcgttgg	acccggagat	4320
tcagtacacc	tccaa	aaaagcagac	tggtgtggac	tttggcgtt	acagccagg	4380
tgttactct	gaggctc	ctattggc	tcgttaccc	acccgtaa	tgtatttgc	4440
tgttaatcaa	taaaccgg	ttt	agttgaactt	tggtctcctg	tgcttcttat	4500
cttatcggtt	tccatagcaa	ctgttacac	attaactgct	tgggtgcgt	tcacgataag	4560
aacactgacg	tcaccgcgtt	acccttagt	atggagtgg	ccactccctc	tatgcgcgt	4620
cgctcgctcg	gtggggcctg	cggaccaa	gtccgcagac	ggcagagctc	tgctctgc	4680
ccccaccga	gcgagcagc	g	ggagtggcca	a		4721

<210> 65

<211> 623

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial sequence; note =
synthetic construct

<400> 65

Met	Pro	Gly	Phe	Tyr	Glu	Ile	Val	Ile	Lys	Val	Pro	Ser	Asp	Leu	Asp
1				5			10				15				
Glu	His	Leu	Pro	Gly	Ile	Ser	Asp	Ser	Phe	Val	Asn	Trp	Val	Ala	Glu
					20			25			30				
Lys	Glu	Trp	Glu	Leu	Pro	Pro	Asp	Ser	Asp	Met	Asp	Leu	Asn	Leu	Ile
					35			40			45				

Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Asp Phe Leu
 50 55 60
 Val Gln Trp Arg Arg Val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
 65 70 75 80
 Gln Phe Glu Lys Gly Glu Ser Tyr Phe His Leu His Val Leu Val Glu
 85 90 95
 Thr Thr Gly Val Lys Ser Met Val Leu Gly Arg Phe Leu Ser Gln Ile
 100 105 110
 Arg Glu Lys Leu Val Gln Thr Ile Tyr Arg Gly Val Glu Pro Thr Leu
 115 120 125
 Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly
 130 135 140
 Asn Lys Val Val Asp Glu Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
 145 150 155 160
 Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Glu Glu Tyr Ile
 165 170 175
 Ser Ala Cys Leu Asn Leu Ala Glu Arg Lys Arg Leu Val Ala Gln His
 180 185 190
 Leu Thr His Val Ser Gln Thr Gln Glu Gln Asn Lys Glu Asn Leu Asn
 195 200 205
 Pro Asn Ser Asp Ala Pro Val Ile Arg Ser Lys Thr Ser Ala Arg Tyr
 210 215 220
 Met Glu Leu Val Gly Trp Leu Val Asp Arg Gly Ile Thr Ser Glu Lys
 225 230 235 240
 Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
 245 250 255
 Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Gly Lys
 260 265 270
 Ile Met Ala Leu Thr Lys Ser Ala Pro Asp Tyr Leu Val Gly Pro Ser
 275 280 285
 Leu Pro Ala Asp Ile Lys Thr Asn Arg Ile Tyr Arg Ile Leu Glu Leu
 290 295 300
 Asn Gly Tyr Asp Pro Ala Tyr Ala Gly Ser Val Phe Leu Gly Trp Ala
 305 310 315 320
 Gln Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 325 330 335
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Ala Val Pro
 340 345 350
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 355 360 365
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 370 375 380
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 385 390 395 400
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 405 410 415
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 420 425 430
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 435 440 445
 Glu Leu Thr Arg Arg Leu Glu His Asp Phe Gly Lys Val Thr Lys Gln
 450 455 460
 Glu Val Lys Glu Phe Phe Arg Trp Ala Ser Asp His Val Thr Glu Val
 465 470 475 480
 Ala His Glu Phe Tyr Val Arg Lys Gly Gly Ala Ser Lys Arg Pro Ala
 485 490 495
 Pro Asp Asp Ala Asp Ile Ser Glu Pro Lys Arg Ala Cys Pro Ser Val
 500 505 510
 Ala Asp Pro Ser Thr Ser Asp Ala Glu Gly Ala Pro Val Asp Phe Ala
 515 520 525
 Asp Arg Tyr Gln Asn Lys Cys Ser Arg His Ala Gly Met Ile Gln Met
 530 535 540
 Leu Phe Pro Cys Lys Thr Cys Glu Arg Met Asn Gln Asn Phe Asn Ile

545 550 555 560
 Cys Phe Thr His Gly Val Arg Asp Cys Leu Glu Cys Phe Pro Gly Val
 565 570 575 575
 Ser Glu Ser Gln Pro Val Val Arg Lys Lys Thr Tyr Arg Lys Leu Cys
 580 585 590 590
 Ala Ile His His Leu Leu Gly Arg Ala Pro Glu Ile Ala Cys Ser Ala
 595 600 605 605
 Cys Asp Leu Val Asn Val Asp Leu Asp Asp Cys Val Ser Glu Gln
 610 615 620

<210> 66

<211> 737

<212> PRT

<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 66
 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
 1 5 10 15
 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
 20 25 30
 Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro
 35 40 45
 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
 50 55 60
 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
 65 70 75 80
 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
 85 90 95
 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
 100 105 110
 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
 115 120 125
 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg
 130 135 140
 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
 145 150 155 160
 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
 165 170 175
 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro
 180 185 190
 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
 195 200 205
 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn
 210 215 220
 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
 225 230 235 240
 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
 245 250 255
 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn
 260 265 270
 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
 275 280 285
 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
 290 295 300
 Asn Trp Gly Phe Arg Pro Lys Lys Leu Arg Phe Lys Leu Phe Asn Ile
 305 310 315 320
 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn
 325 330 335
 Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu

	340	345	350												
Pro	Tyr	Val	Leu	Gly	Ser	Ala	His	Gln	Gly	cys	Leu	Pro	Pro	Phe	Pro
		355	360	365											
Ala	Asp	Val	Phe	Met	Ile	Pro	Gln	Tyr	Gly	Tyr	Leu	Thr	Leu	Asn	Asn
		370	375	380											
Gly	Ser	Gln	Ser	Val	Gly	Arg	Ser	Ser	Phe	Tyr	Cys	Leu	Glu	Tyr	Phe
		385	390	395											
Pro	Ser	Gln	Met	Leu	Arg	Thr	Gly	Asn	Asn	Phe	Glu	Phe	Ser	Tyr	Ser
		405	410	415											
Phe	Glu	Asp	Val	Pro	Phe	His	Ser	Ser	Tyr	Ala	His	Ser	Gln	Ser	Leu
		420	425	430											
Asp	Arg	Leu	Met	Asn	Pro	Leu	Ile	Asp	Gln	Tyr	Leu	Tyr	Tyr	Leu	Ala
		435	440	445											
Arg	Thr	Gln	Ser	Asn	Pro	Gly	Gly	Thr	Ala	Gly	Asn	Arg	Glu	Leu	Gln
		450	455	460											
Phe	Tyr	Gln	Gly	Gly	Pro	Ser	Thr	Met	Ala	Glu	Gln	Ala	Lys	Asn	Trp
		465	470	475											
Leu	Pro	Gly	Pro	Cys	Phe	Arg	Gln	Gln	Arg	Val	Ser	Lys	Thr	Leu	Asp
		485	490	495											
Gln	Asn	Asn	Asn	Ser	Asn	Phe	Ala	Trp	Thr	Gly	Ala	Thr	Lys	Tyr	His
		500	505	510											
Leu	Asn	Gly	Arg	Asn	Ser	Leu	Val	Asn	Pro	Gly	Val	Ala	Met	Ala	Thr
		515	520	525											
His	Lys	Asp	Asp	Glu	Asp	Arg	Phe	Phe	Pro	Ser	Ser	Gly	Val	Leu	Ile
		530	535	540											
Phe	Gly	Lys	Thr	Gly	Ala	Thr	Asn	Lys	Thr	Thr	Leu	Glu	Asn	Val	Leu
		545	550	555											
Met	Thr	Asn	Glu	Glu	Ile	Arg	Pro	Thr	Asn	Pro	Val	Ala	Thr	Glu	
		565	570	575											
Glu	Tyr	Gly	Ile	Val	Ser	Ser	Asn	Leu	Gln	Ala	Ala	Asn	Thr	Ala	Ala
		580	585	590											
Gln	Thr	Gln	Val	Val	Asn	Asn	Gln	Gly	Ala	Leu	Pro	Gly	Met	Val	Trp
		595	600	605											
Gln	Asn	Arg	Asp	Val	Tyr	Leu	Gln	Gly	Pro	Ile	Trp	Ala	Lys	Ile	Pro
		610	615	620											
His	Thr	Asp	Gly	Asn	Phe	His	Pro	Ser	Pro	Leu	Met	Gly	Gly	Phe	Gly
		625	630	635											
Leu	Lys	His	Pro	Pro	Gln	Ile	Leu	Ile	Lys	Asn	Thr	Pro	Val	Pro	
		645	650	655											
Ala	Asn	Pro	Pro	Glu	Val	Phe	Thr	Pro	Ala	Lys	Phe	Ala	Ser	Phe	Ile
		660	665	670											
Thr	Gln	Tyr	Ser	Thr	Gly	Gln	val	Ser	Val	Glu	Ile	Glu	Trp	Glu	Leu
		675	680	685											
Gln	Lys	Glu	Asn	Ser	Lys	Arg	Trp	Asn	Pro	Glu	Ile	Gln	Tyr	Thr	Ser
		690	695	700											
Asn	Phe	Glu	Lys	Gln	Thr	Gly	val	Asp	Phe	Ala	Val	Asp	Ser	Gln	Gly
		705	710	715											
Val	Tyr	Ser	Glu	Pro	Arg	Pro	Ile	Gly	Thr	Arg	Tyr	Leu	Thr	Arg	Asn
		725	730	735											
Leu															

<210> 67

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 67

Gly Ser Ser Asn Ala Ser Asp Thr

1 5

<210> 68
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 68
Thr Thr Ser Gly Gly Thr Leu Asn Gln Gly Asn Ser Ala Thr
1 5 10

<210> 69
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 69
Asn Gly Arg Ala His Ala
1 5

<210> 70
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 70
Ser Ile Gly Tyr Pro Leu Pro
1 5

<210> 71
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 71
Lys Phe Asn Lys Pro Phe Val Phe Leu Ile
1 5 10

<210> 72
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 72
Asn Ile Ser Leu Asp Asn Pro Leu Glu Asn Pro Ser Ser Leu Phe Asp
1 5 10 15
Leu Val Ala Arg Ile Lys
20

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2005/031837

A. CLASSIFICATION OF SUBJECT MATTER
C12N15/864

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	WO 2005/056807 A (THE GOVERNMENT OF THE UNITED STATES OF AMERICA, ASREPRESENTED BY THE S) 23 June 2005 (2005-06-23) example 4	1-68
P, X	GIOVANNI DI PASQUALE, JOHN A. CHIORINI: "AAV transcytosis through barrier epithelia" XTH PARVOVIRUS WORKSHOP PROGRAM, 'Online! 9 September 2004 (2004-09-09), XP002364013 Retrieved from the Internet: URL: http://cme.ufl.edu/conf/parvovirus/program.shtml 'retrieved on 2006-01-23! page 2	1-68

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

24 January 2006

16/02/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Guarinos Viñals, E

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2005/031837

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	<p>GIOVANNI DI PASQUALE, JOHN A. CHIORINI: "AAV transcytosis through barrier epithelia and endothelium" 8TH ANNUAL MEETING AMERICAN SOCIETY OF GENE THERAPY, 'Online' 1 June 2005 (2005-06-01), XP002364014 Retrieved from the Internet: URL:http://www.asgt.org/am05/programm/finaprogram.pdf > 'retrieved on 2006-01-23! right-hand column, paragraph 1</p> <p>-----</p>	1-68
A	<p>WO 01/70276 A (THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE) 27 September 2001 (2001-09-27) example 4</p> <p>-----</p>	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2005/031837

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 1-68 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple Inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2005/031837

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2005056807	A	23-06-2005	NONE			
WO 0170276	A	27-09-2001	AU US	4592401 A 6855314 B1	03-10-2001 15-02-2005	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.