Topic 5. Random Effects Models (GLM)

Random effects GLM -

(a)
$$Y_{ij} \mid (x_{ij}, u_i)$$
's $\stackrel{independent}{\sim} f_Y(y_{ij} \mid x_{ij}, u_i, \beta, \phi), \quad j = 1, \dots, m_i$.

(b)
$$U_i$$
's $\sim f_U(u | G)$.

Estimation for generalized linear mixed models -

Conditional maximum likelihood estimation:

To simplify the discussion, let $a(\phi) = 1$ and $\theta_{ij} = x_{ij}^T \beta + d_{ij}^T \psi_{k}$

Treating $U = (U_1, \dots, U_n)^T$ as fixed, the likelihood function for β , ϕ , and U is

$$L(\beta, \phi, U) = \prod_{i=1}^{n} \prod_{j=1}^{m_i} f_Y(y_{ij} | u_i, \beta) = \prod_{i=1}^{n} \prod_{j=1}^{m_i} \exp\{\frac{y_{ij}\theta_{ij} - \psi(\theta_{ij})}{a(\phi)} + c(y_{ij}; \phi)\}$$

$$\propto \exp(\beta^T \sum_{i=1}^{n} T_{1i}(y_i) + \sum_{i=1}^{n} u_i^T T_{2i}(y_i) - \sum_{i=1}^{n} \sum_{j=1}^{m_i} \psi(\theta_{ij})),$$

where
$$T_{1i}(y_i) = \sum_{j=1}^{m_i} x_{ij} y_{ij}$$
 and $T_{2i}(y_i) = \sum_{j=1}^{m_i} d_{ij} y_{ij}$.

It implies that

$$f_{\underline{y}_{i}|T_{2i}}(y_{i1},\dots,y_{im_{i}}|t_{2i},\beta) = \frac{f_{\underline{y}_{i},T_{2i}}(y_{i1},\dots,y_{im_{i}},t_{2i}|\beta)}{f_{T_{2i}}(t_{2i}|\beta)} = \frac{\exp(\beta^{T}T_{1i}(\underline{y}_{i}) + U_{i}^{T}t_{2i})}{\sum_{\{\underline{y}_{i}:T_{2i}=t_{2i}\}} \exp(\beta^{T}T_{1i}(\underline{y}_{i}) + U_{i}^{T}t_{2i})}$$

$$= \frac{\exp(\beta^{T}T_{1i}(\underline{y}_{i}))}{\sum_{\{\underline{y}_{i}:T_{2i}=t_{2i}\}} \exp(\beta^{T}T_{1i}(\underline{y}_{i}))}$$

$$\operatorname{or} f_{T_{1i}|T_{2i}}(t_{1i} \mid t_{2i}, \beta) = \frac{\sum_{\{\underline{y}_i:T_{1i}=t_{1i},T_{2i}=t_{2i}\}} \exp(\beta^T t_{1i})}{\sum_{\{\underline{y}_i:T_{2i}=t_{2i}\}} \exp(\beta^T T_{1i}(\underline{y}_i))}, i = 1, \dots, n.$$

Thus, the conditional likelihood for β is defined to be the maximizer of

$$L_c(\boldsymbol{\beta}) = \prod\nolimits_{i=1}^n \frac{\sum\limits_{\{\boldsymbol{y}_i: T_{1i} = t_{1i}, T_{2i} = t_{2i}\}} \exp(\boldsymbol{\beta}^T t_{1i})}{\sum\limits_{\{\boldsymbol{y}_i: T_{2i} = t_{2i}\}} \exp(\boldsymbol{\beta}^T T_{1i}(\boldsymbol{y}_i))} \text{, i.e., } \hat{\boldsymbol{\beta}}_c = \arg\max_{\boldsymbol{\beta}} L_c(\boldsymbol{\beta}).$$

Maximum likelihood estimation:

Assume further that $u_i \sim N_q(0, G)$.

Let $\delta = (\beta, G)$. The likelihood function of δ is

$$L(\delta|y) = \prod_{i=1}^{n} \int (\prod_{j=1}^{m_i} f(y_{ij} | x_{ij}, u_i)) f_U(u_i | G) du_i$$

$$\propto \prod_{i=1}^{n} \int (\prod_{j=1}^{m_i} \exp(\beta^T x_{ij} y_{ij} + u_i^T d_{ij} y_{ij} - \psi(\theta_{ij}))) |G|^{-\frac{1}{2}} \exp(\frac{-u_i^T G^{-1} u_i}{2}) du_i.$$

The score function for β , based on the complete data (y,U), is

$$S_{\beta}(\delta \mid y, U) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} x_{ij} (y_{ij} - \mu_{ij}(u_i)) = 0 \text{,where } \mu_{ij}(u_i) = h^{-1} (x_{ij}^T \beta + d_{ij}^T u_i).$$

Similarly, the score function for G is $S_G(\delta \mid y, U) = \frac{1}{2} [G^{-1}(\sum_{i=1}^n u_i u_i^T) G^{-1} - nG^{-1}] = 0$.

The observed score functions are then defined to be

$$\begin{cases} S_{\beta}(\delta \mid \underline{y}) = \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} x_{ij} (y_{ij} - E[\mu_{ij}(u_{i}) \mid y_{ij}]) = 0 \\ S_{G}(\delta \mid \underline{y}) = \frac{1}{2} [G^{-1} \sum_{i=1}^{n} E[u_{i}u_{i}^{T} \mid y_{ij}])G^{-1} - nG^{-1}] = 0 \end{cases}.$$

Methods to solve for the MLE of δ :

- (1) EM algorithm (Dempster et al.(1977))
- (2) Monte Carlo integration methods. (For example, Gibbs sampling (See Appendix).)
- (3) Approximated score functions without computing the integrations. (The central idea of the approximated score functions is to use conditional modes rather than conditional means and approximate the conditional distribution of U_i given y_i via a

Gaussian distribution with the same mode and curvature.)

(3*)Let the surrogate response variable
$$Z_{ij} = h(\mu_{ij}) + h'(\mu_{ij})(y_{ij} - \mu_{ij}) = x_{ij}^T \beta + d_{ij}^T u_{ij} + d_{ij}^T u_{ij}$$

$$h'(\mu_{ij})(y_{ij} - \mu_{ij})$$
 with $y_{ij} - \mu_{ij} \triangleq \varepsilon_{ij}$. It implies that $Z_i = (z_{i1}, \dots, z_{im_i})^T \sim (X_i \beta, V_i)$, where

$$X_{i} = \begin{pmatrix} x_{i1}^{T} \\ x_{i2}^{T} \\ \vdots \\ x_{im_{i}}^{T} \end{pmatrix} \text{ and } \underline{V_{i} = D_{i}GD_{i}^{T} + Q_{i}} \text{ with } D_{i} = \begin{pmatrix} d_{i1}^{T} \\ d_{i2}^{T} \\ \vdots \\ d_{im_{i}}^{T} \end{pmatrix}, Q_{i} = Diag(E[V(y_{ij} \mid u_{i})(h'(\mu_{ij}))^{2}]).$$

Approximate
$$\begin{pmatrix} Z_i \\ u_i \end{pmatrix}$$
 by $N_{m_i+q} \begin{pmatrix} \begin{pmatrix} X_i \beta \\ 0 \end{pmatrix}, \begin{pmatrix} V_i & D_i G \\ GD_i^T & G \end{pmatrix}$, one has $E[u_i \mid z_i] = GD_i^T V_i^{-1}(z_i - Q_i^T)$

$$x_{i}^{T}\beta$$
) and $V[u_{i}|z_{i}] = G - GD_{i}^{T}V_{i}^{-1}D_{i}G$.

For fixed
$$\hat{G}$$
, updated values of β and U are obtained by iterative solving
$$\hat{\beta} = (\sum_{i=1}^{n} X_i^T \hat{V}_i^{-1} X_i)^{-1} (\sum_{i=1}^{n} X_i^T \hat{V}_i^{-1} \hat{Z}_i) \text{ and } \hat{u}_i = \hat{G}D_i^T \hat{V}_i^{-1} (\hat{z}_i^{-1} - x_i \hat{\beta}).$$

Using the score function $S_G(\delta \mid y) = \frac{1}{2} [G^{-1} \sum_{i=1}^n E[u_i u_i^T \mid y_{ij}] G^{-1} - nG^{-1}] = 0$, G can be

estimated by
$$G = \frac{1}{n} \sum_{i=1}^{n} E[u_{i}u_{i}^{T} | y_{i}] = \frac{1}{n} \sum_{i=1}^{n} E[u_{i} | y_{i}] (E[u_{i} | y_{i}])^{T} + \frac{1}{n} \sum_{i=1}^{n} V[u_{i} | y_{i}] \text{ with } E[u_{i} | y_{i}] \text{ and}$$

$$V[u_i|y_i]$$
 being separated u_i and $G - GD_i^TV_i^{-1}D_iGG - (D_i^TQ_i^{-1}D_i + G^{-1})^{-1}$.

Logistic regression for binary responses -

Consider $\log itP(Y_{ij} = 1 | U_i) = \beta_0 + U_i + X_{ij}^T \beta$: random intercept logistic model.

Let $r_i = \beta_0 + U_i$. The joint likelihood function for β and r_i is

$$L(\beta, r_1, \dots, r_n) = \prod_{i=1}^n \exp[r_i \sum_{j=1}^{m_i} y_{ij} + (\sum_{j=1}^{m_i} y_{ij} x_{ij}^T) \beta - \sum_{j=1}^{m_i} \ln(1 + \exp(r_i + x_{ij}^T \beta))].$$

The conditional likelihood, which is equivalent to that derived in stratified

case-control studies, is
$$L_{c}(\beta) = \prod_{i=1}^{n} \left[\frac{\exp(\sum_{j=1}^{m_{i}} y_{ij} x_{ij}^{T} \beta)}{\sum_{\{\underline{y}_{i}: \sum_{l=1}^{m_{i}} y_{il} = t_{i2}\}} \exp(\sum_{l=1}^{m_{i}} y_{il} x_{ij}^{T} \beta)} \right].$$

Example: 2 × 2 cross-over trial

Group
$$(1,1)$$
 $(1,0)$ $(0,1)$ $(0,0)$

placebo-treatment
$$(0,1)$$
 a_1 b_1 c_1 a_2 treatment-placebo $(1,0)$ a_2 b_2 c_2 a_2

$$L_c(\beta) = \left(\frac{\exp(\beta_1)}{1 + \exp(\beta_1)}\right)^{b_2 + c_1} \left(\frac{1}{1 + \exp(\beta_1)}\right)^{b_1 + c_2}.$$

Remark.

- (1) Conventionally, zero cell is replaced with 0.5 in calculation.
- (2) $(a_1 + d_1 + a_2 + d_2)$ pairs are uninformative. Consequently, standard errors of regression estimates tend to be larger than in a marginal or random effects analysis.

Beta-binomial distribution:

(1)
$$Y_{ij}$$
's $|u_i|^{iid} \sim Bernoulli(u_i), j = 1, \dots, m_i$.

$$(2) u_i' s \overset{iid}{\sim} Beta(a,b) \text{ with } E[u_i] = \frac{a}{a+b} \triangleq \mu \text{ and } V[u_i] = \mu(1-\mu) \frac{1}{a+b+1} \triangleq \mu(1-\mu)\delta.$$

Let
$$Y_i = Y_{i1} + \cdots + Y_{im_i}, i = 1, \cdots, n$$
.

$$\begin{split} P(Y_i = y \middle| m_i) &= \binom{m_i}{y} \int_0^1 \frac{u_i^{y} (1 - u_i)^{m_i - y} u_i^{a-1} (1 - u_i)^{b-1}}{B(a, b)} du_i \\ &= \binom{m_i}{y} \frac{\prod_{i=0}^{y-1} (a+i) \prod_{i=0}^{m_i - y-1} (b+i)}{\prod_{i=0}^{m_i - 1} (a+b+i)} = \binom{m_i}{y} \frac{\prod_{i=0}^{y-1} (\mu + r_i^*) \prod_{i=0}^{m_i - y-1} (1 - \mu + ri)}{\prod_{i=0}^{m_i - 1} (1 + ri)}, \end{split}$$

where
$$a = \mu r^{-1}$$
, $b = (1 - \mu)r^{-1}$, and $r = \frac{\delta}{1 - \delta}$.

It implies that $\mu + (m_i - 1) \ge 0$ and $(1 - \mu) + (m_i - 1)r \ge 0$,

or
$$r \ge \max\{\frac{-\mu}{(m_i - 1)}, \frac{-(1 - \mu)}{(m_i - 1)}\}$$

or $\delta \ge \max\{\frac{-\mu}{(m_i - \mu - 1)}, \frac{-(1 - \mu)}{(m_i + \mu)}\}$
 $\ge \max\{\frac{-\mu}{(n_0 - \mu - 1)}, \frac{-(1 - \mu)}{(n_0 + \mu)}\}$, where $n_0 = \min\{m_1, \dots, m_n\}$.

Rosaer (1984) extended the beta-binomial to allow the covariates to vary within clusters as

$$\log itP(Y_{ij} = 1 \mid y_{i1}, \dots, y_{ij-1}, y_{ij+1}, \dots, y_{im_i}, x_{ij}) = \log(\frac{\theta_{i1} + (y_i - y_{ij})\theta_{i2}}{1 - \theta_{i1} + ((m_i - 1) - (y_i - y_{ij}))\theta_{i2}}) + x_{ij}^T \beta,$$

 $j = 1, \dots, m_i$, where θ_{i1} is the intercept parameter and θ_{i2} characterizes the association between pairs of response for the same cluster.

limitations: β measures the effect of x_{ij} on Y_{ij} , which cannot first be explained by the other responses in the cluster.

Logistic models with Gaussian random effects:

$$L(\beta, G | \underline{y}) \propto \prod_{i=1}^{n} \int \exp[\beta^{T} \sum_{j=1}^{m_{i}} x_{ij} y_{ij} + u_{i}^{T} \sum_{j=1}^{m_{i}} d_{ij} y_{ij} - \sum_{j=1}^{n} \ln(1 + \exp(x_{ij}^{T} \beta + d_{ij}^{T} u_{i})))]$$

$$\cdot |G|^{\frac{-q}{2}} \exp(\frac{-u_{i}^{T} G^{-1} u_{i}}{2}) du_{i}. \qquad (\beta, G) = \underset{(\beta, G)}{\operatorname{argmax}} L(\beta, G | \underline{y}).$$

Counted responses -

Consider $\ln(E[Y_{ij} | U_i]) = \beta_0 + U_i + x_{ij}^T \beta + \ln(t_{ij})$: random intercept log-linear model

for count data where $\beta_0 + U_i \triangleq r_i$.

The conditional likelihood approach:

The joint likelihood function for β and (r_1, \dots, r_n) is

$$L(\beta, r_1, \dots, r_n) = \prod_{i=1}^n \exp\{r_i \sum_{j=1}^{m_i} y_{ij} + \beta^T \sum_{j=1}^{m_i} y_{ij} x_{ij} + \sum_{j=1}^{n_i} y_{ij} \ln(t_{ij}) - \sum_{j=1}^{m_i} t_{ij} \exp(r_i + x_{ij}^T \beta)\}.$$

The conditional likelihood is

$$L_c(\beta) = \prod_{i=1}^n \frac{\exp(\beta^T \sum_{j=1}^{m_i} y_{ij} x_{ij} + \sum_{j=1}^{m_i} y_{ij} \ln(t_{ij}))}{\sum_{\{\sum_{j=1}^{m_l} y_{ij} = y_i\}} \exp(\beta^T \sum_{j=1}^{m_l} y_{ij} x_{lj} + \sum_{j=1}^{m_l} y_{lj} \ln(t_{lj}))}.$$

Example:

(1)
$$Y_{ij}$$
's $|u_i|^{indep}$. Poisson (u_i) . (2) $u_i^{iid} \sim Gamma(\alpha, \beta)$, where $\alpha\beta \triangleq \mu$ and $\alpha\beta^2 \triangleq \phi\mu^2$.

It implies that Y_{ij} is Negative-binomial with $E[Y_{ij}] = \mu$ and $V[Y_{ij}] = \mu + \phi \mu^2$.

(Extension 1)

(1)
$$Y_{ij}$$
's $|x_{ij}, u_i^{independent} \sim (u_i \exp(x_{ij}^T \beta), \phi u_i \exp(x_{ij}^T \beta))$, where U_i is a latent variable.

$$(2)U_i^{iid} \sim (1,\sigma^2)$$
.

(Extension 2)

(1)
$$Y_{ij}$$
's $|x_{ij}, u_i| \sim Poisson(x_{ij}^T \beta + d_{ij}^T u_i)$

(2)
$$U_i$$
's $\sim f(u_i \mid G)$

Appendix

Gibbs Sampler – (A Monte Carlo method for estimating the desired posterior distributions)

<u>Premise</u>: Consider three variables (U, V, W) and the conditional distributions of each given the remainder has a simple form while the joint distribution is more complicated.

Let [U, V, W] represent the joint distribution, and [U | V, W], [V | U, W], and [W | U, V] denote the conditional distributions.

The Gibbs Sampler is a method for generating a random variable from [U, V, W] as below.

Step 0: Given arbitrary starting values $U^{(0)}, V^{(0)}, W^{(0)}$.

Step 1: Generate
$$U^{(1)} \sim [U \mid V^{(0)}, W^{(0)}], V^{(1)} \sim [V \mid U^{(1)}, W^{(0)}], \text{ and } W^{(1)} \sim [W \mid U^{(1)}, V^{(1)}].$$

Step B :Generate $U^{(B)} \sim [U \mid V^{(B-1)}, W^{(B-1)}], V^{(B)} \sim [V \mid U^{(B)}, W^{(B-1)}], \text{ and } W^{(B)} \sim [W \mid U^{(B)}, V^{(B)}].$

Under some regularity conditions, Geman and Geman (1984)) showed that $[U^{(B)}, V^{(B)}, W^{(B)}] \xrightarrow{d} [U, V, W]$ at an exponential rate as $B \to \infty$.

The distribution [U,V,W] can be approximated by the empirical distribution of the M values $[U^{(B+k)},V^{(B+k)},W^{(B+k)}]$, k=1,...,M, where B is large enough and M is chosen to give sufficient precision to the empirical distribution of interest.

Gibbs Sampling approach for GLM with random effects -

Consider
$$f(y_{ij} | u_i, \beta) = e^{\frac{(y_{ij}\theta_{ij} - \psi(\theta_{ij})}{a(\phi)} - c(y_{ij};\phi))}$$
 with $g(u_i | G) = (2\pi)^{\frac{-q}{2}} | G|^{\frac{-1}{2}} e^{\frac{-u_i^T G^{-1}u_i}{2}}$, and $h(\mu_{ij}) = x_{ij}^T \beta + z_{ij}^T u_i$.

The likelihood function of (β, G) is

$$L(\beta, G|y) \propto \prod_{i=1}^{n} \int \prod_{j=1}^{m_i} f(y_{ij}|u_i, \beta) |G|^{\frac{-1}{2}} \exp(\frac{-u_i^T G^{-1} u_i}{2}) du_i.$$

In a Bayesian approach to analyzing the random effects GLM, the parameters (β, G) are random variables and are treated symmetrically with the longitudinal measurements and unobserved latent variables. Thus, the random effects GLM is an example of a hierarchical Bayes model.

Assumptions: $[\beta | G, U, y] = [\beta | U, y], [G | \beta, U, y] = [G | U] \text{ and } [U | \beta, G, y].$

1. Assume that β has a flat prior function. Then,

$$[\beta | U^{(k)}, y] \propto \prod_{i=1}^{n} \prod_{j=1}^{m_i} f(y_{ij} | U_i^{(k)}, \beta) \approx N(\beta^{(k)}, V_{\beta}^{(k)}), \text{ as } n \to \infty, \text{ where } \beta^{(k)} \text{ is the}$$

maximum likelihood estimator and $V_{\beta}^{\ (k)}$ is the inverse of the Fisher information.

Adjustment for smaller samples - "Rejection sampling" (Ripley, 1987)

Let $f(\beta | U^{(k)}, y)$ and $\phi(\beta | \beta^{(k)}, V_{\beta}^{(k)})$ denote separately the true density and Gaussian

density. Choose a constant $c \ge 1$ such that $c\phi(\beta \mid \beta^{(k)}, V_{\beta}^{(k)}) \ge f(\beta \mid U^{(k)}, y)$.

Step1: Generate $\beta^* \sim \phi(\beta \mid \beta^{(k)}, V_{\beta}^{(k)})$ and $u \sim U(0,1)$.

Step2: If
$$\frac{f(\beta^* | b^{(k)}, y)}{c\phi(\beta^* | \beta^{(k)}, V_{\beta}^{(k)})} < \mu, \beta^{(k+1)} = \beta^*$$
. Otherwise, the process returns to Step1.

$$2.[G\big|U^{\scriptscriptstyle(k)}]$$

Assume that $\pi(G) \propto |G|^{-1}$: non-informative prior (see Box and Tiao 1973). Then,

$$[G|U^{(k)}] \sim \text{Inverted Wishart}(S^{(k)}, n-q+1), \text{ where } S^{(k)} = \sum_{i=1}^{n} U_i^{(k)} U_i^{(k)^T}.$$

Remark.

If $A \sim \text{Wishart}(\Sigma_{p \times p}, n)$, the p.d.f of A is $f_A(A) \propto |A|^{\frac{-1}{2}(n-p-1)} e^{\frac{-1}{2}tr\Sigma^{-1}A}$. It implies that $B = A^{-1} \sim \text{Inverted Wishart}(\Sigma^{-1}, n)$ with p.d.f. $f_B(B) \propto |B|^{\frac{-1}{2}(n+p+1)} e^{\frac{-1}{2}tr\Sigma^{-1}B^{-1}}$. Thus, $\pi(G|U^{(k)}) \propto |G|^{\frac{-1}{2}(n+2)} e^{\frac{-1}{2}tr(S^{(k)}G^{-1})}, \text{ i.e., } [G|U^{(k)}] \sim \text{Inverted Wishart}(S^{(k)}, n-q+1).$

$$3.[U\big|\beta^{\scriptscriptstyle(k)},G^{\scriptscriptstyle(k)},y]$$

Using $f(U_i | \hat{\beta}^{(k)}, G^{(k)}, \underline{y}_i) \propto f(\underline{y}_i | U_i, \hat{\beta}^{(k)}) g(U_i | G^{(k)}) \triangleq f_n(U_i | \hat{\beta}^{(k)}, G^{(k)}, \underline{y}_i)$, we can find the mode and curvature of $f_n(U_i | \hat{\beta}^{(k)}, G^{(k)}, \underline{y}_i)$, which matches a Gaussian density.

Using the surrogate response $Z_i^* = X_i \beta + D_i U_i + Diag(h'(\mu_i))(\underline{y}_i - \mu_i)$, the maximum value of $f_n(U_i | \hat{\beta}^{(k)}, G^{(k)}, \underline{y}_i)$ occurs at $U_i = (D_i^T Q_i^{-1} D_i + G^{(k)^{-1}})^{-1} D_i^T Q_i^{-1} (Z_i^* - X_i \beta^{(k)})$ = $G^{(k)} D_i (D_i G^{(k)} D_i^T + Q_i)^{-1} (Z_i^* - X_i \hat{\beta}^{(k)})$ and its curvature is $V_i = (D_i^T Q_i^{-1} D_i + G^{(k)^{-1}})^{-1}$. Similar to the method in $(3), U_i^{(k)}$ can be obtained.