

1036-15a LC_{50} cannot be estimated with the given data. 3 biol. reps; 3 tech. reps; R^2 : 0.0887

1036-15c LC₅₀: 1.35e3 ppm [14.6, 6.62e35] 3 biol. reps; 3 tech. reps; R^2 : 0.0955

 ${\bf 1036\text{-}16b}~LC_{50}$ cannot be estimated with the given data. 3 biol. reps; 3 tech. reps; $R^2\colon \mbox{-}1.14e\mbox{-}2$

1036-15b LC₅₀ cannot be estimated with the given data. 3 biol. reps; 3 tech. reps; R²: 0.0309

1036-16a LC₅₀: 465 ppm [53.7, 3.05e90] 3 biol. reps; 3 tech. reps; \mathbb{R}^2 : 0.117

1036-16c LC₅₀: 390 ppm [76.2, 5.55e10] 3 biol. reps; 3 tech. reps; R^2 : 0.238

1061-11 100 75 Percent Survival 50 25 0 -0.25 0.5 16 32 64 0.062 0.125 128 Concentration (ppm)

1036-3a LC₅₀: 119 ppm [56.3, 306] 1 biol. rep; 1 tech. rep; \mathbb{R}^2 : 0.561

1061-11 LC₅₀: 204 ppm [24.3, 4.43e6] 1 biol. rep; 1 tech. rep; R^2 : 0.323

1061-12a LC_{50} cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : 0.0246

1061-12b LC₅₀: 942 ppm [282, 2.36e90] 3 biol. reps; 3 tech. reps; R^2 : 0.0401

1061-1a LC₅₀: 235 ppm [134, 681] 3 biol. reps; 3 tech. reps; R^2 : 0.153

1061-1b LC₅₀: 919 ppm [28, 7.85e32] 1 biol. rep; 1 tech. rep; \mathbb{R}^2 : 0.416

25 Concentration (ppm)

1061-2a LC₅₀: 1.91e3 ppm [25.3, 5.63e18] 3 biol. reps; 3 tech. reps; R^2 : 0.0508

 $\begin{array}{lll} \textbf{1061-2b} \ LC_{50} \colon \ 1.46e3 \ ppm \ [28.7, \ 2.02e34] \\ 1 \ biol. \ rep; \ 1 \ tech. \ rep; \ R^2 \colon \ 0.25 \end{array}$

1061-3b LC₅₀: 1.15e4 ppm [0.263, 1.08e92] 1 biol. rep; 1 tech. rep; \mathbb{R}^2 : 0.0351

1061-4a LC₅₀ cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : -2.06e-2

1061-4b LC₅₀: 160 ppm [86.7, 1.23e3] 1 biol. rep; 1 tech. rep; R^2 : 0.534

1061-5a LC₅₀: 428 ppm [116, 2.89e90] 1 biol. rep; 1 tech. rep; R^2 : 0.108

Concentration (ppm)

1061-6a

100

1061-5b LC₅₀: 433 ppm [78.4, 1.85e90] 1 biol. rep; 1 tech. rep; R^2 : 0.601

1061-6a LC $_{50}$ cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R 2 : -1.26e-2

1061-7a1 LC_{50} cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : -9.41e-3

1061-7a2 LC₅₀: 87.3 ppm [20.4, 3.05e3] 1 biol. rep; 1 tech. rep; R²: 0.486

1061-9a1 LC₅₀: 172 ppm [28.1, 1.15e6] 1 biol. rep; 1 tech. rep; R^2 : 0.36

1091-14 LC₅₀: 2.29e3 ppm [17.3, 9.27e7] 3 biol. reps; 3 tech. reps; R^2 : 0.156

Acetamiprid LC₅₀: 1.43 ppm [0.981, 2.04] 4 biol. reps; 5 tech. reps; R^2 : 0.82

Aziphos-methyl LC₅₀: 0.17 ppm [0.149, 0.195] 4 biol. reps; 5 tech. reps; R^2 : 0.815

Carbaryl LC₅₀: 553 ppm [23.2, 1.83e4] 8 biol. reps; 9 tech. reps; R^2 : 0.0775

Aldicarb LC₅₀: 0.521 ppm [0.429, 0.636] 4 biol. reps; 5 tech. reps; R^2 : 0.944

Bifenthrin LC₅₀: 1.55 ppm [1.2, 1.97] 7 biol. reps; 8 tech. reps; R^2 : 0.764

Carbofuran LC_{50} : 0.249 ppm [0.195, 0.323] 4 biol. reps; 5 tech. reps; R^2 : 0.898

Concentration (ppm)

Chlorantraniliprole LC_{50} : 5.73 ppm [3.71, 9.9] 9 biol. reps; 10 tech. reps; R^2 : 0.542

Chlorfenapyr LC₅₀: 10.1 ppm [8.39, 12] 4 biol. reps; 5 tech. reps; R^2 : 0.874

Chlorpyrifos LC₅₀: 0.199 ppm [0.164, 0.24] 4 biol. reps; 5 tech. reps; R^2 : 0.956

Clothianidin LC_{50} : 0.73 ppm [0.465, 1.17] 4 biol. reps; 5 tech. reps; R^2 : 0.694

Cyantraniliprole LC₅₀: 0.879 ppm [0.618, 1.27] 9 biol. reps; 10 tech. reps; R^2 : 0.801

 β -Cypermethrin LC₅₀: 0.104 ppm [0.074, 0.143] 7 biol. reps; 8 tech. reps; R²: 0.441

25 Concentration (ppm)

ddvp

DDT LC₅₀: 67.4 ppm [10.5, 1.98e3] 4 biol. reps; 5 tech. reps; R^2 : 0.0819

DDVP LC₅₀: 0.0534 ppm [0.0457, 0.0634] 5 biol. reps; 6 tech. reps; \mathbf{R}^2 : 0.576

Fipronil LC₅₀: 1.79 ppm [1.47, 2.2] 5 biol. reps; 6 tech. reps; R^2 : 0.677

Imidacloprid LC₅₀: 0.557 ppm [0.404, 0.782] 9 biol. reps; 11 tech. reps; R^2 : 0.776

Malathion LC_{50} : 0.353 ppm [0.328, 0.38] 16 biol. reps; 31 tech. reps; R^2 : 0.824

Naled LC₅₀: 0.0645 ppm [0.0449, 0.091] 7 biol. reps; 7 tech. reps; R^2 : 0.605

Naphazoline hydrochloride LC_{50} : 1.67e3 ppm [69.8, 3.91e90]

2 biol. reps; 2 tech. reps; R^2 : 0.0591

Permethrin LC₅₀: 12.1 ppm [7.66, 27] 5 biol. reps; 6 tech. reps; R^2 : 0.224

Propoxur LC₅₀: 1.37 ppm [1.09, 1.71] 6 biol. reps; 7 tech. reps; R^2 : 0.824

S-nicotine LC₅₀: 111 ppm [54.4, 947] 4 biol. reps; 5 tech. reps; R^2 : 0.271

Phorate LC_{50} : 0.246 ppm [0.201, 0.305] 4 biol. reps; 5 tech. reps; R^2 : 0.93

Pyethrum LC₅₀: 77.6 ppm [36.3, 205] 8 biol. reps; 9 tech. reps; R^2 : 0.226

Data analysis was performed using the statistics module for the Merlin Data Analysis program. Live/dead counts from the bioassay were used to generate new survival probabilities using a Beta prior. The user-specified prior is Heldane's prior, the improper prior Beta(0,0), (set by BETA_PRIOR) and 3840 bootstrap iterations were used (set by BOOTSTRAP_ITERS). When either the live count or dead count was equal to 0, the prior the distribution Beta(0.25, 0.25) (set by BETA_PRIOR_0) was used to avoid the sunrise problem. Correlation between wells in a replicate was modelled by generating multivariate normal random variables with correlation $\rho = 0.1$ (set by RHO), which were then converted to quantiles, and then back-converted to probabilities in the appropriate beta distribution.

Each iteration of bootstrapped dose-response data was fit to Least-squares fitting was performed using the Levenberg-Marquardt algorithm with geodesic acceleration algorithm using a C interface to the GNU Scientific Library.

Credible intervals for the data points are shown at the 80% level when fewer than 10 replicates are used. The best-fit line is calculated as the median value of all fitted curves at a given concentration. The error region for the curve respresents a 95% credible region, as determined by quantiles of predicted survivals at each concentration.