A More Rigorous Proof of Deadlock Freedom

Theorem $Spec \Rightarrow DeadlockFree$

PROOF: This is a standard invariance proof, which is omitted.

1. $Spec \Rightarrow \Box LInv$

- 2. Suffices Assume: $\Box LInv \wedge \Box [Next]_{vars} \wedge Fairness$
- Prove: DeadlockFree
- Proof: By 1 and the definition of Spec.
- 3. Suffices Assume: $\Box \neg Success$
- Prove: $(T0 \lor T1) \rightsquigarrow \text{False}$
- PROOF: This is a standard temporal proof by contradiction, since *DeadlockFree*
- equals $(T0 \vee T1) \rightsquigarrow Success$.
- 4. $T0 \sim \text{False}$

 - 4.1. $T0 \rightarrow \Box(pc[0] = \text{``e2''})$

 - PROOF: Assumption $\Box LInv$ implies process 0 is never at e3 or e4. There-
 - fore, by the code and assumption Fairness, we see that if T0 is true and process 0 never reaches cs (which is implied by the assumption

 - $\Box \neg Success$), then process 0 eventually reaches e2 and stays there forever.
 - 4.2. $\Box(pc[0] = \text{``e2"}) \rightsquigarrow \Box((pc[0] = \text{``e2"}) \land \neg x[1]).$
 - 4.2.1. Suffices Assume: $\Box(pc[0] = \text{``e2''})$ PROVE: TRUE $\rightsquigarrow \Box \neg x[1]$

"The code" is shorthand for "the step 2 assumptions

 $\Box[Next]_{vars}$ and $\Box LInv$ ".

- PROOF: By the $\square \rightsquigarrow \text{Rule}$.
- 4.2.2. TRUE \rightsquigarrow $(\Box(pc[1] = \text{``ncs''}) \lor \Box T1)$. PROOF: The code and assumption *Fairness* imply that if process 1
- never reaches cs (by the assumption $\Box \neg Success$), then eventually it must either reach and remain forever at ncs, or T1 must become true and remain true forever.
- 4.2.3. $\Box(pc[1] = \text{``ncs''}) \Rightarrow \Box \neg x[1].$
- PROOF: $\Box LInv$ implies x[1] equals FALSE when process 1 is at ncs.

- $4.2.4. \square T1 \rightsquigarrow \square \neg x[1]$

- - PROOF: (pc[0] = ``e2'') implies x[0], so the step 4.2.1 assumption

- - implies $\Box x[0]$. The code, Fairness, $\Box \neg Success$, and $\Box x[0]$ imply

with x[1] equal to FALSE.

- that T1 leads to process 1 reaching and remaining forever at e4

4.2.5. Q.E.D.

PROOF: By 4.2.1-4.2.4 and Leads-To Induction, with this proof graph:

4.3. $\Box((pc[0] = \text{``e2''}) \land \neg x[1]) \rightsquigarrow \text{FALSE}$

PROOF: The code and Fairness imply that $(pc[0] = \text{``e2''}) \land \Box \neg x[1]$ leads to process 0 reaching cs, contradicting $\Box \neg Success$.

4.4. Q.E.D.

? ←

C

 \mathbf{S}

PROOF: By 4.1–4.3 and Leads-To Induction, with this proof graph:

$$T0 \longrightarrow \Box(pc[0] = \text{``e2''}) \longrightarrow \Box((pc[0] = \text{``e2''}) \land \neg x[1]) \longrightarrow \text{FALSE}$$

- 5. $T1 \sim \text{false}$
 - 5.1. $T1 \Rightarrow \Box T1$

PROOF: From the code, we see that if T1 is true and process 1 never reaches cs (which is implied by the assumption $\Box \neg Success$), then T1 remains forever true.

5.2. $\Box T1 \rightsquigarrow (T0 \lor \Box (T1 \land \neg T0))$

PROOF: By the tautologies $F \leadsto (G \lor (F \land \Box \neg G))$ and $\Box F \land \Box G \equiv \Box (F \land G)$.

5.3. $\Box (T1 \land \neg T0) \rightsquigarrow \Box (T1 \land \neg x[0])$

PROOF: By the code and Fairness, $\Box \neg T0$ implies that eventually process 0 is always at ncs, which implies that x[0] always equals FALSE.

5.4. $\Box (T1 \land \neg x[0]) \rightsquigarrow \text{FALSE}$

PROOF: The code, Fairness, and $\Box \neg x[0]$ imply that process 1 eventually reaches e2. Assumption Fairness and $\Box \neg x[0]$ then imply that process 1 reaches cs, contradicting the assumption $\Box \neg Success$.

5.5. Q.E.D.

PROOF: By 5.1-5.4, step 4, and Leads-To Induction, with this proof graph:

6. Q.E.D.

← C I

 \mathbf{S}

PROOF: By steps 3–5 and Leads-To Induction, with this simple proof graph:

