Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 7: Anualidades

Solución de Ejercicio Nº65

e-financebook

- 65. **Verónica** decidió ahorrar el 5% de su sueldo en una cuenta del **Banco del Rescate** (por si algún día perdía su trabajo) acudiendo a depositar este dinero al final de cada mes, durante los últimos 12 años. Si se sabe que su sueldo mensual fue de S/. 5,000.00, se pide:
 - a) ¿Saber de cuánto dispone hoy día Gisela, un instante después de realizar su depósito número 144, si el Banco le ofreció una tasa efectiva anual (TEA) de 4.2% en los primeros 5 años y una tasa efectiva anual (TEA) de 4.4% en los últimos 7 años?
 - b) Si desea retirar su dinero en 12 cuotas mensuales vencidas y el rendimiento de su cuenta sigue siendo de 4.4% TEA, ¿Cuál será el valor de dicho retiro mensual?
 - c) Si los retiros planteados en el caso b) fueran adelantados ¿Cuál será el valor de dicho retiro mensual?
 - d) Si primero decide esperar 3 meses antes de iniciar el proceso de los 12 retiros mensuales del caso b) ¿Cuál será el valor de dicho retiro mensual?

Repuestas: a) S/. 46,938.62, b) S/. 4,003.55, c) S/. 3,989.21, d) S/. 4,046.88

DATOS		
Nombre	Descripcion	Valor
% Ahorro	Porcentaje a ahorrar mensualmente	5%
f	Frecuencia de depósito	mensual
Sueldo	Sueldo	5,000.00
Tiempo	Tiempo con Sueldo	12 años
TE1	Tasa de Interés Efectiva Anual (TEA 1)	4.2%
Tiempo 1	Tiempo con TEA 1	5 años
TE2	Tasa de Interés Efectiva Anual (TEA 2)	4.4%
Tiempo 2	Tiempo con TEA 2	7 años

FÓRMULAS		
Número	Fórmula	
19	$TEP_2 = (1 + TEP_1)^{\left(\frac{N^{\circ} diasTEP2}{N^{\circ} diasTEP1}\right)} - 1$	
20	$S = C * (1 + TEP)^{\left(\frac{N^{\circ} \text{díasTrasla dar}}{N^{\circ} \text{díasTEP}}\right)}$	

$$R = C * \left(\frac{TEP * (1+TEP)^{n}}{(1+TEP)^{n} - 1}\right)$$

$$S = R * \left(\frac{(1+TEP)^{n} - 1}{TEP}\right)$$

$$Ra = \frac{R}{1+TEP}$$

SOLUCIÓN

a) Calendario ordinario:

$$TEM_{1} = \left(1 + TEA_{1}\right)^{\left[\frac{N^{0} \, diasTEM_{1}}{N^{0} \, diasTEA_{1}}\right]} - 1 = \left(1 + 4.2\%\right)^{\left[\frac{30}{360}\right]} - 1 =$$

 $\mathsf{TEM}_{\mbox{\scriptsize 1}} = 0.00343437929 = 0.343437929\,\%$

$$R = 5\% * 5,000.00 = 250.00$$

$$n_1 = 5 * 12 = 60$$
 depósitos

$$TEM_{2} = \left(1 + TEA_{2}\right)^{\left[\frac{N^{o} diasTEM_{2}}{N^{o} diasTEA_{2}}\right]} - 1 = \left(1 + 4.4\%\right)^{\left[\frac{30}{360}\right]} - 1 =$$

 $TEM_2 = 0.00359473641 = 0.359473641\%$

$$n_2 = 7*12 = 84$$
 depósitos

$$S_{total} = S_1 * \left(1 + TEA_2\right) \frac{N^0 diasTrasladar}{360} + S_2$$

$$S_1 = R_1 * \left(\frac{(1 + \text{TEM}_1)^n - 1}{\text{TEM}_1} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.34343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.34343437929\%)^{60} - 1}{0.343437929\%} \right) = 250.00 * \left(\frac{(1 + 0.34343437929\%)^{60} - 1}{0.343434379929\%} \right) = 250.00 * \left(\frac{(1 + 0.34343437929\%)^{60} - 1}{0.3434379929\%} \right) = 250.00 * \left(\frac{(1 + 0.34343799\%)^{60} - 1}{0.3434379929\%} \right)$$

$$S_1 = 16,625.75$$

$$S_2 = R_2 * \left(\frac{(1 + \text{TEM}_2)^n - 1}{\text{TEM}_2} \right) = 250.00 * \left(\frac{(1 + 0.359473641\%)^{84} - 1}{0.359473641\%} \right) = 10.359473641\%$$

$$S_2 = 24,464.39$$

$$S_{\text{total}} = 16,625.75 * (1 + 4.4\%) + 24,464.39 =$$

$$S_{\text{total}} = 22,474,23 + 24,464.39 =$$

$$S_{total} = 22,474.23 + 24,464.39 =$$

$$S_{total} = 46,938.62$$

b) 12 retiros mensuales vencidos:

$$TEM = \begin{pmatrix} 1 + TEA \end{pmatrix} \begin{pmatrix} \frac{N^0 \, diasTEM}{N^0 \, diasTEA} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} -1 = \begin{pmatrix} 1 + 4.4\% \end{pmatrix} \begin{pmatrix} \frac{30}{360} \end{pmatrix} \begin{pmatrix} \frac{30}{36$$

TEM = 0.00359473641 = 0.359473641

$$n = 1*12 = 12$$
 retiros

$$R = C * \left(\frac{TEM * (1 + TEM)^{n}}{(1 + TEM)^{n} - 1} \right) =$$

$$R = 46,938.62 * \left(\frac{0.359473641 \% * (1+0.359473641 \%)^{12}}{(1+0.359473641 \%)^{12} - 1} \right) =$$

$$R = 4,003.55$$

c) 12 retiros mensuales adelantados:

Ra =
$$\left(\frac{R}{1 + TEM}\right) = \left(\frac{4,003.55}{1 + 0.359473641\%}\right) = 3,989.21$$

d) Si espera 3 meses:

$$S = C * (1 + TEA)^{\left(\frac{N^{\circ} diasTrasladar}{N^{\circ} diasTEA}\right)} = 46,938.62 * (1 + 4.4\%)^{\left(\frac{90}{360}\right)} = S = 47,446.64$$