# **Import Libraries**

### In [1]:

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.api as sm
from statsmodels.graphics.regressionplots import influence_plot
```

# 1. Import data set

### In [2]:

```
car_data = pd.read_csv('ToyotaCorolla.csv')
car_data
```

### Out[2]:

|      | ld   | Model                                                           | Price | Age_08_04 | Mfg_Month | Mfg_Year | KM    | Fuel_Type | HP | Met_( |
|------|------|-----------------------------------------------------------------|-------|-----------|-----------|----------|-------|-----------|----|-------|
| 0    | 1    | TOYOTA<br>Corolla 2.0<br>D4D<br>HATCHB<br>TERRA<br>2/3-Doors    | 13500 | 23        | 10        | 2002     | 46986 | Diesel    | 90 |       |
| 1    | 2    | TOYOTA<br>Corolla 2.0<br>D4D<br>HATCHB<br>TERRA<br>2/3-Doors    | 13750 | 23        | 10        | 2002     | 72937 | Diesel    | 90 |       |
| 2    | 3    | ◆TOYOTA<br>Corolla 2.0<br>D4D<br>HATCHB<br>TERRA<br>2/3-Doors   | 13950 | 24        | 9         | 2002     | 41711 | Diesel    | 90 |       |
| 3    | 4    | TOYOTA<br>Corolla 2.0<br>D4D<br>HATCHB<br>TERRA<br>2/3-Doors    | 14950 | 26        | 7         | 2002     | 48000 | Diesel    | 90 |       |
| 4    | 5    | TOYOTA<br>Corolla 2.0<br>D4D<br>HATCHB<br>SOL 2/3-<br>Doors     | 13750 | 30        | 3         | 2002     | 38500 | Diesel    | 90 |       |
|      |      |                                                                 |       |           |           |          |       |           |    |       |
| 1431 | 1438 | TOYOTA<br>Corolla 1.3<br>16V<br>HATCHB<br>G6 2/3-<br>Doors      | 7500  | 69        | 12        | 1998     | 20544 | Petrol    | 86 |       |
| 1432 | 1439 | TOYOTA<br>Corolla 1.3<br>16V<br>HATCHB<br>LINEA<br>TERRA<br>2/3 | 10845 | 72        | 9         | 1998     | 19000 | Petrol    | 86 |       |
| 1433 | 1440 | TOYOTA<br>Corolla 1.3<br>16V<br>HATCHB<br>LINEA<br>TERRA<br>2/3 | 8500  | 71        | 10        | 1998     | 17016 | Petrol    | 86 |       |

|      | ld     | Model                                                           | Price | Age_08_04 | Mfg_Month | Mfg_Year | KM    | Fuel_Type | HP  | Met_( |
|------|--------|-----------------------------------------------------------------|-------|-----------|-----------|----------|-------|-----------|-----|-------|
| 1434 | 1441   | TOYOTA<br>Corolla 1.3<br>16V<br>HATCHB<br>LINEA<br>TERRA<br>2/3 | 7250  | 70        | 11        | 1998     | 16916 | Petrol    | 86  |       |
| 1435 | 1442   | TOYOTA<br>Corolla 1.6<br>LB LINEA<br>TERRA<br>4/5-Doors         | 6950  | 76        | 5         | 1998     | 1     | Petrol    | 110 |       |
| 1436 | rows × | 38 columns                                                      |       |           |           |          |       |           |     |       |
| 4    |        |                                                                 |       |           |           |          |       |           |     | •     |

### In [3]:

```
car_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 38 columns):

| #<br> | Column           | Non-Null Count | Dtype  |
|-------|------------------|----------------|--------|
| 0     | Id               | 1436 non-null  | int64  |
| 1     | Model            | 1436 non-null  | object |
| 2     | Price            | 1436 non-null  | int64  |
| 3     | Age_08_04        | 1436 non-null  | int64  |
| 4     | Mfg_Month        | 1436 non-null  | int64  |
| 5     | Mfg_Year         | 1436 non-null  | int64  |
| 6     | KM               | 1436 non-null  | int64  |
| 7     | Fuel_Type        | 1436 non-null  | object |
| 8     | HP               | 1436 non-null  | int64  |
| 9     | Met_Color        | 1436 non-null  | int64  |
| 10    | Color            | 1436 non-null  | object |
| 11    | Automatic        | 1436 non-null  | int64  |
| 12    | cc               | 1436 non-null  | int64  |
| 13    | Doors            | 1436 non-null  | int64  |
| 14    | Cylinders        | 1436 non-null  | int64  |
| 15    | Gears            | 1436 non-null  | int64  |
| 16    | Quarterly_Tax    | 1436 non-null  | int64  |
| 17    | Weight           | 1436 non-null  | int64  |
| 18    | Mfr_Guarantee    | 1436 non-null  | int64  |
| 19    | BOVAG_Guarantee  | 1436 non-null  | int64  |
| 20    | Guarantee_Period | 1436 non-null  | int64  |
| 21    | ABS              | 1436 non-null  | int64  |
| 22    | Airbag_1         | 1436 non-null  | int64  |
| 23    | Airbag_2         | 1436 non-null  | int64  |
| 24    | Airco            | 1436 non-null  | int64  |
| 25    | Automatic_airco  | 1436 non-null  | int64  |
| 26    | Boardcomputer    | 1436 non-null  | int64  |
| 27    | CD_Player        | 1436 non-null  | int64  |
| 28    | Central_Lock     | 1436 non-null  | int64  |
| 29    | Powered_Windows  | 1436 non-null  | int64  |
| 30    | Power_Steering   | 1436 non-null  | int64  |
| 31    | Radio            | 1436 non-null  | int64  |
| 32    | Mistlamps        | 1436 non-null  | int64  |
| 33    | Sport_Model      | 1436 non-null  | int64  |
| 34    | Backseat_Divider | 1436 non-null  | int64  |
| 35    | Metallic_Rim     | 1436 non-null  | int64  |
| 36    | Radio_cassette   | 1436 non-null  | int64  |
| 37    | Tow_Bar          | 1436 non-null  | int64  |
|       |                  |                |        |

dtypes: int64(35), object(3) memory usage: 426.4+ KB

### In [4]:

```
car_data=pd.DataFrame(data=car_data,columns=["Price","Age_08_04","KM","HP","cc","Doors","Ge
car_data
```

### Out[4]:

|      | Price | Age_08_04 | KM    | HP  | СС   | Doors | Gears | Quarterly_Tax | Weight |
|------|-------|-----------|-------|-----|------|-------|-------|---------------|--------|
| 0    | 13500 | 23        | 46986 | 90  | 2000 | 3     | 5     | 210           | 1165   |
| 1    | 13750 | 23        | 72937 | 90  | 2000 | 3     | 5     | 210           | 1165   |
| 2    | 13950 | 24        | 41711 | 90  | 2000 | 3     | 5     | 210           | 1165   |
| 3    | 14950 | 26        | 48000 | 90  | 2000 | 3     | 5     | 210           | 1165   |
| 4    | 13750 | 30        | 38500 | 90  | 2000 | 3     | 5     | 210           | 1170   |
|      |       |           |       |     |      |       |       |               |        |
| 1431 | 7500  | 69        | 20544 | 86  | 1300 | 3     | 5     | 69            | 1025   |
| 1432 | 10845 | 72        | 19000 | 86  | 1300 | 3     | 5     | 69            | 1015   |
| 1433 | 8500  | 71        | 17016 | 86  | 1300 | 3     | 5     | 69            | 1015   |
| 1434 | 7250  | 70        | 16916 | 86  | 1300 | 3     | 5     | 69            | 1015   |
| 1435 | 6950  | 76        | 1     | 110 | 1600 | 5     | 5     | 19            | 1114   |

1436 rows × 9 columns

### In [5]:

car\_data.isna().sum()

### Out[5]:

| Price         | 0 |
|---------------|---|
| Age_08_04     | 0 |
| KM            | 0 |
| HP            | 0 |
| cc            | 0 |
| Doors         | 0 |
| Gears         | 0 |
| Quarterly_Tax | 0 |
| Weight        | 0 |
| dtype: int64  |   |

### In [6]:

```
car_data.dtypes
```

### Out[6]:

Price int64 Age\_08\_04 int64 int64 ΚM HP int64 int64  $\mathsf{CC}$ Doors int64 Gears int64 Quarterly\_Tax int64 Weight int64 dtype: object

### In [7]:

car\_data = car\_data.rename({'Age\_08\_04':'Age','cc':'CC','Quarterly\_Tax':'QT'},axis=1)
car\_data

### Out[7]:

|      | Price | Age | KM    | HP  | СС   | Doors | Gears | QT  | Weight |
|------|-------|-----|-------|-----|------|-------|-------|-----|--------|
| 0    | 13500 | 23  | 46986 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 1    | 13750 | 23  | 72937 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 2    | 13950 | 24  | 41711 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 3    | 14950 | 26  | 48000 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 4    | 13750 | 30  | 38500 | 90  | 2000 | 3     | 5     | 210 | 1170   |
|      |       |     |       |     |      |       |       |     |        |
| 1431 | 7500  | 69  | 20544 | 86  | 1300 | 3     | 5     | 69  | 1025   |
| 1432 | 10845 | 72  | 19000 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1433 | 8500  | 71  | 17016 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1434 | 7250  | 70  | 16916 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1435 | 6950  | 76  | 1     | 110 | 1600 | 5     | 5     | 19  | 1114   |

1436 rows × 9 columns

### In [8]:

```
car_data.head()
```

### Out[8]:

|   | Price | Age | KM    | HP | CC   | Doors | Gears | QT  | Weight |
|---|-------|-----|-------|----|------|-------|-------|-----|--------|
| 0 | 13500 | 23  | 46986 | 90 | 2000 | 3     | 5     | 210 | 1165   |
| 1 | 13750 | 23  | 72937 | 90 | 2000 | 3     | 5     | 210 | 1165   |
| 2 | 13950 | 24  | 41711 | 90 | 2000 | 3     | 5     | 210 | 1165   |
| 3 | 14950 | 26  | 48000 | 90 | 2000 | 3     | 5     | 210 | 1165   |
| 4 | 13750 | 30  | 38500 | 90 | 2000 | 3     | 5     | 210 | 1170   |

### In [9]:

car\_data.shape

### Out[9]:

(1436, 9)

### In [10]:

car\_data.describe(include ='all')

### Out[10]:

|       | Price        | Age         | KM            | НР          | СС          | Doors       |       |
|-------|--------------|-------------|---------------|-------------|-------------|-------------|-------|
| count | 1436.000000  | 1436.000000 | 1436.000000   | 1436.000000 | 1436.00000  | 1436.000000 | 1436. |
| mean  | 10730.824513 | 55.947075   | 68533.259749  | 101.502089  | 1576.85585  | 4.033426    | 5.    |
| std   | 3626.964585  | 18.599988   | 37506.448872  | 14.981080   | 424.38677   | 0.952677    | 0.    |
| min   | 4350.000000  | 1.000000    | 1.000000      | 69.000000   | 1300.00000  | 2.000000    | 3.    |
| 25%   | 8450.000000  | 44.000000   | 43000.000000  | 90.000000   | 1400.00000  | 3.000000    | 5.    |
| 50%   | 9900.000000  | 61.000000   | 63389.500000  | 110.000000  | 1600.00000  | 4.000000    | 5.    |
| 75%   | 11950.000000 | 70.000000   | 87020.750000  | 110.000000  | 1600.00000  | 5.000000    | 5.    |
| max   | 32500.000000 | 80.000000   | 243000.000000 | 192.000000  | 16000.00000 | 5.000000    | 6.    |
| 4     |              |             |               |             |             |             | •     |

### In [11]:

car\_data.corr()

### Out[11]:

|        | Price     | Age       | KM        | НР        | CC        | Doors     | Gears     | QT        |   |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| Price  | 1.000000  | -0.876590 | -0.569960 | 0.314990  | 0.126389  | 0.185326  | 0.063104  | 0.219197  |   |
| Age    | -0.876590 | 1.000000  | 0.505672  | -0.156622 | -0.098084 | -0.148359 | -0.005364 | -0.198431 | - |
| KM     | -0.569960 | 0.505672  | 1.000000  | -0.333538 | 0.102683  | -0.036197 | 0.015023  | 0.278165  | - |
| HP     | 0.314990  | -0.156622 | -0.333538 | 1.000000  | 0.035856  | 0.092424  | 0.209477  | -0.298432 |   |
| CC     | 0.126389  | -0.098084 | 0.102683  | 0.035856  | 1.000000  | 0.079903  | 0.014629  | 0.306996  |   |
| Doors  | 0.185326  | -0.148359 | -0.036197 | 0.092424  | 0.079903  | 1.000000  | -0.160141 | 0.109363  |   |
| Gears  | 0.063104  | -0.005364 | 0.015023  | 0.209477  | 0.014629  | -0.160141 | 1.000000  | -0.005452 |   |
| QT     | 0.219197  | -0.198431 | 0.278165  | -0.298432 | 0.306996  | 0.109363  | -0.005452 | 1.000000  |   |
| Weight | 0.581198  | -0.470253 | -0.028598 | 0.089614  | 0.335637  | 0.302618  | 0.020613  | 0.626134  |   |

# 2. check for Linearity

### In [12]:

sns.pairplot(car\_data)
plt.show()



### In [13]:

```
sns.lmplot(x='Age', y='Price', data=car_data)
plt.show()
```



# In [14]:

```
sns.scatterplot( x='Age',y='Price',data=car_data)
plt.show()
```



### 3. Model Building

```
In [15]:
```

```
model = smf.ols("Price~Age+KM+HP+CC+Doors+Gears+QT+Weight", data=car_data).fit()
model
```

#### Out[15]:

<statsmodels.regression.linear\_model.RegressionResultsWrapper at 0x222aacfba
30>

### 4. Model Testing

```
In [16]:
```

```
# finding p and t values
np.round(model.pvalues,5),model.tvalues
```

#### Out[16]:

(Intercept

```
Age
              0.00000
KM
              0.00000
ΗP
              0.00000
CC
              0.17909
Doors
              0.96777
Gears
              0.00261
              0.00262
QT
Weight
              0.00000
dtype: float64,
Intercept
              -3.948666
Age
             -46.511852
KM
             -16.621622
ΗP
              11.241018
CC
              -1.344222
Doors
              -0.040410
Gears
               3.016007
ОТ
               3.014535
Weight
              15.879803
dtype: float64)
```

0.00008

#### In [17]:

```
model.rsquared, model.rsquared_adj
```

#### Out[17]:

(0.8637627463428192, 0.8629989775766963)

```
In [18]:
model_2 = smf.ols('Price~CC', data=car_data).fit()
np.round(model_2.pvalues), model_2.tvalues # CC has Significant pvalue
Out[18]:
(Intercept
              0.0
 CC
              0.0
 dtype: float64,
 Intercept
              24.694090
               4.824822
 dtype: float64)
In [19]:
model_3 = smf.ols('Price~Doors', data=car_data).fit()
model 3
Out[19]:
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x222ab6ff4</pre>
90>
In [20]:
model_3.pvalues,model_3.tvalues # Doors has Significant pvalue
Out[20]:
(Intercept
              1.094732e-73
Doors
              1.461237e-12
 dtype: float64,
              19.258097
 Intercept
Doors
               7.141657
 dtype: float64)
In [21]:
model_4 = smf.ols('Price~CC+Doors', data=car_data).fit()
model 4.pvalues, model 4.tvalues #CC and Doors have significant pvalues
Out[21]:
(Intercept
              1.056885e-34
 CC
              1.521992e-05
 Doors
              1.373469e-11
 dtype: float64,
 Intercept
              12.620704
               4.340400
 CC
```

### **Model Validation**

dtype: float64)

Doors

6.816153

#### In [22]:

```
# Collinearity Check
rsq_age = smf.ols('Age~KM+HP+CC+Doors+Gears+QT+Weight',data=car_data).fit().rsquared
vif_age=1/(1-rsq_age)
rsq_km = smf.ols('KM~Age+HP+CC+Doors+Gears+QT+Weight',data=car_data).fit().rsquared
vif_km=1/(1-rsq_km)
rsq_hp = smf.ols('HP~KM+Age+CC+Doors+Gears+QT+Weight',data=car_data).fit().rsquared
vif_hp=1/(1-rsq_hp)
rsq cc = smf.ols('CC~HP+KM+Age+Doors+Gears+QT+Weight', data=car_data).fit().rsquared
vif_cc=1/(1-rsq_cc)
rsq_doors = smf.ols('Doors~CC+HP+KM+Age+Gears+QT+Weight',data=car_data).fit().rsquared
vif_doors=1/(1-rsq_doors)
rsq_gears = smf.ols('Gears~Doors+CC+HP+KM+Age+QT+Weight',data=car_data).fit().rsquared
vif_gears=1/(1-rsq_gears)
rsq_qt = smf.ols('QT~Gears+Doors+CC+HP+KM+Age+Weight', data=car_data).fit().rsquared
vif_qt=1/(1-rsq_qt)
rsq weight = smf.ols('Weight~OT+Gears+Doors+CC+HP+KM+Age',data=car data).fit().rsquared
vif_weight=1/(1-rsq_weight)
df={'Variables':['Age','KM','HP','CC','Doors','Gears','QT','Weight'],
   'vif':[vif_age,vif_cc,vif_doors,vif_gears,vif_hp,vif_km,vif_qt,vif_weight,]}
vif=pd.DataFrame(df)
vif
```

#### Out[22]:

|   | Variables | vif      |
|---|-----------|----------|
| 0 | Age       | 1.884620 |
| 1 | KM        | 1.163894 |
| 2 | HP        | 1.156575 |
| 3 | CC        | 1.098723 |
| 4 | Doors     | 1.419422 |
| 5 | Gears     | 1.756905 |
| 6 | QT        | 2.311431 |
| 7 | Weight    | 2.516420 |

#### In [23]:

```
# Residual Analysis
sm.qqplot(model.resid,line='q')
plt.title('Noarmal Q-Q plots of residuals')
plt.show()
```



#### In [24]:

```
list(np.where(model.resid>6000))
```

### Out[24]:

[array([147, 523], dtype=int64)]

### In [25]:

```
list(np.where(model.resid<-6000))</pre>
```

### Out[25]:

[array([221, 601, 960], dtype=int64)]

#### In [26]:

```
def standard_values(vals) : return (vals-vals.mean())/vals.std()
plt.scatter(standard_values(model.fittedvalues),standard_values(model.resid))
plt.title('Residual plot')
plt.xlabel('standardized fitted values')
plt.ylabel('standardized residual values')
plt.show()
```



### In [27]:

```
#residual plots
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Age',fig=fig)
plt.show()
```



### In [28]:

fig=plt.figure(figsize=(15,8))
sm.graphics.plot\_regress\_exog(model,'KM',fig=fig)
plt.show()



### In [29]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'HP',fig=fig)
plt.show()
```



### In [30]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'CC',fig=fig)
plt.show()
```



#### In [31]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Doors',fig=fig)
plt.show()
```



### In [32]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Gears',fig=fig)
plt.show()
```



### In [33]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'QT',fig=fig)
plt.show()
```



#### In [34]:

fig=plt.figure(figsize=(15,8))
sm.graphics.plot\_regress\_exog(model,'Weight',fig=fig)
plt.show()



#### In [35]:

```
# Model delegation diagotics
#1. cooks distence
(C,_)=model.get_influence().cooks_distance
C
```

### Out[35]:

```
array([7.23682667e-03, 3.96793393e-03, 5.46476784e-03, ..., 8.44762355e-07, 6.97878368e-04, 1.08627724e-02])
```

#### In [36]:

```
#plot the influencers using stem plot
plt.figure(figsize=(25,8))
plt.stem(np.arange(len(car_data)),np.round(C,3))
plt.xlabel('Row index')
plt.ylabel('Cooks distence')
plt.show()
```



#### In [37]:

```
np.argmax(C),np.max(C)
```

### Out[37]:

(80, 79.52010624138181)

### In [38]:

```
#2.Leverage value using high influence points
fig,ax=plt.subplots(figsize=(20,20))
fig=influence_plot(model, ax = ax)
```



#### In [39]:

```
# Levarage Cutoff values
k=car_data.shape[1]
n=car_data.shape[0]
levarage_cutoff=(3*(k+1))/n
levarage_cutoff
```

#### Out[39]:

0.020891364902506964

### In [40]:

```
car_data[car_data.index.isin([80])]
```

#### Out[40]:

|    | Price | Age | KM    | HP  | CC    | Doors | Gears | QT  | Weight |
|----|-------|-----|-------|-----|-------|-------|-------|-----|--------|
| 80 | 18950 | 25  | 20019 | 110 | 16000 | 5     | 5     | 100 | 1180   |

#### In [41]:

```
# improving model
car_new = car_data.copy()
car_new
```

### Out[41]:

|      | Price | Age | KM    | HP  | CC   | Doors | Gears | QT  | Weight |
|------|-------|-----|-------|-----|------|-------|-------|-----|--------|
| 0    | 13500 | 23  | 46986 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 1    | 13750 | 23  | 72937 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 2    | 13950 | 24  | 41711 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 3    | 14950 | 26  | 48000 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 4    | 13750 | 30  | 38500 | 90  | 2000 | 3     | 5     | 210 | 1170   |
|      |       |     |       |     |      |       |       |     |        |
| 1431 | 7500  | 69  | 20544 | 86  | 1300 | 3     | 5     | 69  | 1025   |
| 1432 | 10845 | 72  | 19000 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1433 | 8500  | 71  | 17016 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1434 | 7250  | 70  | 16916 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1435 | 6950  | 76  | 1     | 110 | 1600 | 5     | 5     | 19  | 1114   |

1436 rows × 9 columns

### In [42]:

```
car_data1 = car_new.drop(car_new.index[[80]], axis=0).reset_index()
car_data1
```

### Out[42]:

|      | index | Price | Age | KM    | HP  | CC   | Doors | Gears | QT  | Weight |
|------|-------|-------|-----|-------|-----|------|-------|-------|-----|--------|
| 0    | 0     | 13500 | 23  | 46986 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 1    | 1     | 13750 | 23  | 72937 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 2    | 2     | 13950 | 24  | 41711 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 3    | 3     | 14950 | 26  | 48000 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 4    | 4     | 13750 | 30  | 38500 | 90  | 2000 | 3     | 5     | 210 | 1170   |
|      |       |       |     |       |     |      |       |       |     |        |
| 1430 | 1431  | 7500  | 69  | 20544 | 86  | 1300 | 3     | 5     | 69  | 1025   |
| 1431 | 1432  | 10845 | 72  | 19000 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1432 | 1433  | 8500  | 71  | 17016 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1433 | 1434  | 7250  | 70  | 16916 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1434 | 1435  | 6950  | 76  | 1     | 110 | 1600 | 5     | 5     | 19  | 1114   |

1435 rows × 10 columns

### In [43]:

```
car_data1 = car_data1.drop(['index'], axis=1)
car_data1
```

### Out[43]:

|      | Price | Age | KM    | HP  | CC   | Doors | Gears | QT  | Weight |
|------|-------|-----|-------|-----|------|-------|-------|-----|--------|
| 0    | 13500 | 23  | 46986 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 1    | 13750 | 23  | 72937 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 2    | 13950 | 24  | 41711 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 3    | 14950 | 26  | 48000 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 4    | 13750 | 30  | 38500 | 90  | 2000 | 3     | 5     | 210 | 1170   |
|      |       |     |       |     |      |       |       |     |        |
| 1430 | 7500  | 69  | 20544 | 86  | 1300 | 3     | 5     | 69  | 1025   |
| 1431 | 10845 | 72  | 19000 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1432 | 8500  | 71  | 17016 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1433 | 7250  | 70  | 16916 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1434 | 6950  | 76  | 1     | 110 | 1600 | 5     | 5     | 19  | 1114   |

1435 rows × 9 columns

#### In [55]:

```
while np.max(C) > 0.5:
    model = smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=car_data1).fit()
    (C,_)=model.get_influence().cooks_distance
    C
    np.argmax(C),np.max(C)
    car_data1 = car_data1.drop(car_data1.index[[np.argmax(C)]], axis=1).reset_index()
    car_data1
else:
    final_model = smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=car_data1).fit()
    final_model.rsquared,final_model.aic
    print('Thus model accuracy is improved to', final_model.rsquared)
```

Thus model accuracy is improved to 0.8851845904421739

#### In [57]:

```
if np.max(C)>0.5 :
    model = smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=car_data1).fit()
    (C,_)=model.get_influence().cooks_distance
    C
    np.argmax(C),np.max(C)
    car_data1=car_data1.drop(car_data1.index[[np.argmax(C)]],axis=1).reset_index()
    car_data1
elif np.max(C)<0.5:
    final_model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=car_data1).fit()
    final_model.rsquared,final_model.aic
    print('Thus model accuracy is improved to',final_model.rsquared)</pre>
```

Thus model accuracy is improved to 0.8851845904421739

#### In [58]:

```
final_model.rsquared
```

#### Out[58]:

0.8851845904421739

### In [59]:

car\_data1

#### Out[59]:

|      | level_0 | index | Price | Age | KM    | HP  | СС   | Doors | Gears | QT  | Weight |
|------|---------|-------|-------|-----|-------|-----|------|-------|-------|-----|--------|
| 0    | 0       | 0     | 13500 | 23  | 46986 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 1    | 1       | 1     | 13750 | 23  | 72937 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 2    | 2       | 2     | 13950 | 24  | 41711 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 3    | 3       | 3     | 14950 | 26  | 48000 | 90  | 2000 | 3     | 5     | 210 | 1165   |
| 4    | 4       | 4     | 13750 | 30  | 38500 | 90  | 2000 | 3     | 5     | 210 | 1170   |
|      |         |       |       |     |       |     |      |       |       |     |        |
| 1428 | 1429    | 1430  | 7500  | 69  | 20544 | 86  | 1300 | 3     | 5     | 69  | 1025   |
| 1429 | 1430    | 1431  | 10845 | 72  | 19000 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1430 | 1431    | 1432  | 8500  | 71  | 17016 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1431 | 1432    | 1433  | 7250  | 70  | 16916 | 86  | 1300 | 3     | 5     | 69  | 1015   |
| 1432 | 1433    | 1434  | 6950  | 76  | 1     | 110 | 1600 | 5     | 5     | 19  | 1114   |

1433 rows × 11 columns

### In [70]:

```
# Model prediction for new data
new_data = pd.DataFrame({'Age':15,'KM':50000,'HP':90,'CC':1400,'Doors':4,'Gears':5,'QT':210
new_data
```

### Out[70]:

|   | Age | KM    | KM HP |      | Doors | Gears | QT  | Weight |  |
|---|-----|-------|-------|------|-------|-------|-----|--------|--|
| 0 | 15  | 50000 | 90    | 1400 | 4     | 5     | 210 | 1165   |  |

### In [72]:

final\_model.predict(new\_data)

### Out[72]:

0 19332.917337
dtype: float64

```
In [74]:
```

```
pred_y = final_model.predict(car_data1)
pred_y
```

### Out[74]:

```
16333.273814
1
        15892.326850
2
        16310.886081
3
        15979.990390
4
        15846.536733
1428
         9115.435074
1429
         8499.218117
1430
         8644.947302
1431
         8758.664462
1432
        10641.521002
Length: 1433, dtype: float64
```

### In [ ]: