AI in Built Environment DCP4300

Lec07-08: Deep Learning

Part A

Dr. Chaofeng Wang
Jianhao Gao (TA)
University of Florida
College of Design Construction and Planning

Artificial Intelligence Vs. Machine Learning Vs. Deep Learning?

AI IN THE BUILT ENVIRONMENT DCP4300

Week 2: Deep Learning

Part A

Dr. Chaofeng 'Charles' Wang

University of Florida College of Design Construction and Planning

AI: Techniques that enable machines to mimic human.

Robotics

Machine Learning

Neural Networks

Computer Vision

Natural Language Processing

Expert System

Fuzzy Logic

. . .

Machine Learning

Deep Learning

AI: Techniques that enable machines to mimic human.

ML: Techniques that enable machines to learn from data, without being explicitly programmed.

Machine Learning

Deep Learning

What is AI but not ML?

Doesn't learn. Explicitly programmed.

Example: Programmed expert systems.

AI: Techniques that enable machines to mimic human.

Machine Learning

ML: Techniques that enable machines to learn from data, without being explicitly programmed.

Deep Learning

DL: Techniques that enable machines to learn from data, hierarchically, using neural networks.

Machine Learning

Deep Learning

What is ML but not DL?

ML that doesn't use (deep) neural networks that are capable of hierarchical learning.

You can call them **traditional ML** or conventional ML

How 'deep' should it be for DL?

Machine Learning

Deep Learning? Deep Neural Networks

Deep Learning

Types of Machine Learning, what are the differences

Machine Learning:

Techniques that enable machines to learn from data, without being explicitly programmed.

Types of Machine Learning:

Supervised Learning: Learn a function from labeled data.

- Classification
- Regression

Semi-supervised Learning

Unsupervised Learning: Learn the pattern from unlabeled data.

- Clustering
- Dimension reduction

Reinforcement Learning: Learn to react to an environment by trial and error.

- Decision making
- Robotics
- •

Fit a function: $f: X \to Y$

Supervised Learning: Learn a function from labeled data.

- Classification
- Regression

Regressions
Decision trees
Support Vector Machines
Linear discriminant analysis
K-nearest neighbor algorithm
Multilayer perceptron

x1	x2	x3	x4	x5	у
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

Basic frame of Supervised Learning:

Use data to set the parameters of a model to fit the labels.

• • •

Unsupervised Learning: Learn the patterns from **unlabeled** data.

- Clustering
- Dimension reduction

Algorithms:

K-means
Principal component analysis
Autoencoder
Generative adversarial networks

Classification

Trained with labeled data

Can predict the class name

Clustering

Trained with unlabeled data
Similar data points are grouped together

Group A

Group B

Reinforcement Learning:

Learn to react to an environment by trial and error.

- Decisions
- Robotics

•

Algorithms:

Q-learning SARSA DQN

• • •

Reinforcement Learning:

Learn to react to an environment by trial and error.

- Decisions
- Robotics

•

Algorithms:

Q-learning SARSA DQN

• • •

Supervised Learning Vs Reinforcement Learning

They are both trained to learn some functions: $f: X \to Y$

x1	x2	x3	x4	x5	у
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

X is a space of [x1,x2,x3,x4,x5]

Y is a space of [y]

The differences:

Training data is labeled: pairs of ([x1,x2,x3,x4,x5], [y])

No training data.

The agent has to interact with environment to generate the data on the run.
And the generated data is unlabeled.

Deep Learning

DL: Techniques that enable machines to to learn from data, hierarchically, using neural networks.

x1	x2	x3	x4	x5	у
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

x1		x2		х3		x4		x5		v			х3		x4		x5		v		_					
0.21		0.20		0.65		0.87	•	0.29		0.22			0.65		0.87		0.29		0.22							
0.83	x1	-	x2	-	x3		x4		x5		v			хЗ		x4		x5		v		1				
	0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22						
0.83	0.83	x1		x2		x3		x4		x5		٧			х3	_	x4	-	x5	_	v	_	1			
0.99		0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22					
0.31		0.83	x1		x2		хЗ		x4		x5		v			х3		x4		x5		v	_	1		
			0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22				
			0.83	x1		x2		x3		x4		x5		٧			x3		x4		x5		v		1	
				0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22			
				0.83	x1		x2		x3		x4		x5		v			х3		x4		x5		v		
					0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22		
					0.83	x1		x2		x3		x4		x5		v	_		х3		x4		x5		v	
						0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22	
							x1		x2		x3		x4		x5		у			x3		x4		x5		v
							0.21		0.20		0.65		0.87		0.29		0.22			0.65		0.87		0.29		0.22
							0.83		0.47		0.14		0.77		0.43		0.63			0.14		0.77		0.43		0.63
					_		0.42		0.31		0.41		0.43		0.11		0.92			0.41		0.43		0.11		0.92
							0.83		0.49		0.52		0.01		0.94		0.17			0.52		0.01		0.94		0.17
							0.99		0.05		0.47		0.72		0.01		0.60			0.47		0.72		0.01		0.60
							0.31		0.31		0.74		0.41		0.93		0.13			0.74		0.41		0.93		0.13
							0.29		0.03		0.32		0.16		0.24		0.33			0.32		0.16		0.24		0.35
					$\overline{}$		0.47		0.91		0.24		0.23		0.34		0.23			0.24		0.23		0.34		0.23
							0.10	_	0.10		0.73		0.82		0.32		0.23			0.73		0.77		0.34		0.08
							0.09		0.66		0.10		0.98		0.21		0.66			0.10		0.98		0.21		0.66
							0.00		0.35		0.38		0.18		0.89		0.02			0.38		0.18		0.89		0.02

Small data Big data

x1	x2	x3	x4	x5	У
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

x1	x2	x3	x4	x5	у
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

5 columns

>thousands of columns

Dimension

128x128 pixels

x1	x2	x3	x4	x5	у
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

4						
x1	x2	x3	x4	x5		у
0.21	0.20	0.65	0.87	0.29		0.22
0.83	0.47	0.14	0.77	0.43		0.63
0.42	0.31	0.41	0.43	0.11		0.92
0.83	0.49	0.52	0.01	0.94		0.17
0.99	0.05	0.47	0.72	0.01		0.60
0.31	0.31	0.74	0.41	0.93		0.13
0.29	0.03	0.32	0.16	0.24	,	0.35
0.91	0.91	0.24	0.23	0.51		0.23
0.47	0.04	0.17	0.77	0.34		0.08
0.10	0.10	0.73	0.82	0.32		0.23
0.09	0.66	0.10	0.98	0.21		0.66
0.00	0.35	0.38	0.18	0.89		0.02

5 columns

>thousands of columns

Dimension

Neural networks

Deep learning \approx (Deep) neural networks

Nuts and Bolts of a neural network (multilayer perceptron)

Neuro (perceptron)
Activation
Architecture
Loss function
Learning rate
Optimizer
Hyperparameter

• • •

Perceptron

Sum then Activate

Perceptron

Perceptron

$$= \hat{y}$$

Activation functions: why they are needed?

1. Limit the output

Hyperbolic tangent (tanh)

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Sigmoid

$$S(x)=rac{1}{1+e^{-x}}$$

More: https://www.tensorflow.org/api_docs/python/tf/keras/activations

Rectified linear unit (ReLU)

$$f(x) = x^+ = \max(0,x)$$

Activation functions: why they are needed?

2. Provide non-linearity

Activation functions: why they are needed?

2. Provide non-linearity

Neural network (Multilayer perceptron)

Architecture

The structure (topology and size) of the network

Hyperparameter

A parameter controlling the learning process. e.g., values that describe the architecture, learning rate

Neural network (Multilayer perceptron)

Weights

The weight linking the 1st hidden layer and its prior layer W_{31}^{\perp} Neuron 3 from Neuron 1 in the previous layer current layer

True Value (target)	Error
0	-0.3
0	-0.4
1	0.2

Forward propagation

 \mathbf{X}_{n}

Backpropagation

Calculate loss

Loss function (Cost function / Objective function)

A function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event.

Example: Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
Truth Prediction

More loss functions:

https://www.tensorflow.org/api_docs/python/tf/keras/losses

How to choose a loss function

For regression models (the output of the model is a real-valued quantity)

Mean Squared Error Loss

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Mean Squared Logarithmic Error Loss $MSLE = \frac{1}{n} \sum_{i=1}^{n} (\log(Y_i) - \log(\widehat{Y}_i))^2$

Mean Absolute Error Loss

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

How to choose a loss function

For classification models (the output of the model is a categorical quantity)

Binary classification

Binary Cross-Entropy
$$BCE = \frac{1}{n} \sum_{i=1}^{n} \left(-Y_i(class0) log \hat{Y}_i(class0) - Y_i(class1) log \hat{Y}_i(class1) \right)$$
Entropy for class0

Multi-class classification

Multi-class Cross-Entropy
$$BCE = \frac{1}{n} \sum_{i=1}^{n} (-Y_i(class0) log \hat{Y}_i(class0) - Y_i(class1) log \hat{Y}_i(class1) - \cdots)$$

More loss functions:

https://www.tensorflow.org/api docs/python/tf/keras/losses

Choose a loss function:

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

Neural network (Multilayer perceptron)

Weights

The weight linking the 1st hidden layer and its prior layer

Neuron 3 from Neuron 1 in the previous layer current layer

X_1	4	$s neuron = f(x_1 * w_{11}^1)$
X_2	B_1	Predicted
(x_3) w_3^1	B_2	0.3
X_4	B_3	0.4
X_5	B ₄	0.8

True Value (target)	Error
0	-0.3
0	-0.4
1	0.2

 $+ x_3 * w_{31}^1 + B_1$

Forward propagation

 B_5

 \mathbf{X}_{n}

Backpropagation

Calculate loss

The training of a neural network is the process of minimizing the loss function.

How?

Gradient Descent + Backpropagation

Gradient of a (loss) function:

J can be any function.w is the parameter of the function.(It is the weights in a neural network.)

Gradient descent:

1. Compute the slope (gradient) at the current step

$$\frac{\partial J}{\partial w}$$

(Modified From Andrew Ng)

2. Make a move in the direction opposite to the slope

This means we need to modify the parameters (w) during the backpropagation.

Learning rate

Gradient descent:

- 1. Compute the slope (gradient) at the current step $\frac{\partial J}{\partial w}$
- 2. Make a move in the direction opposite to the slope

The move =
$$-\eta \frac{\partial J}{\partial w}$$

Learning rate

Next class:

Python

ML algorithms and demos

Build a neural network

You can install Python and Jupyter notebook on your computer, or use Google Colab in the browser instead, which needs your Google account.

For deep learning demonstrations, we'll always use Google Colab.

Run codes on your computer

pip3 install jupyter

1.Install Python: https://www.python.org/downloads/2.Install Jupyter: Run this in the command linepip3 install --upgrade pip

3. How to use Jupyter: https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

Run codes in the cloud: Google Colab

Google Colab:

- 1. First you need a Google Account
- 2. Go to https://colab.research.google.com
- 3. Create a New notebook

