EECS 4101/5101

Prof. Andy Mirzaian

Assignment Project Exam Help

https://powcoder.com

Sealth poweder ces

TOPICS

Binary Trees

- Birtary Searchar Helps
 https://powcoder.com
- > Multi-Way Search Trees

References:

• [CLRS] chapter 12

Assignment Project Exam Help

https://powcoder.com

Binary Trees: A Quick Review

n (internal) nodesn-1 (internal) edgesn+1 external nodes (nil)n+1 external edges (nil)

Binary Tree Traversals

- Inorder(T): Inorder(h): r: Inorder(B): wcoder.com

 location
- Levelorder(T): non-decreasing depth order dbeacgf ______ graph BFS (same depth left-to-right)

Traversals in O(n) time

```
Running Time Analytsissby povocotleg:com

Line 1: n+1 external nodes (return), n (internal) nodes (continue).

Line 3: Assume visit takes O(1) time hat powcoder

Lines 2 & 4: After recursive expansion:

Each node x (internal or external) visited exactly once.

O(1) time execution of lines 1 & 3 charged to node x.

Total n + (n+1) nodes, each charged O(1) time.

Total time = O(2n+1) = O(n).
```

- Preorder and Postorder are similar and take O(n) time.
- Exercise: Write a simple O(n) time algorithm for Levelorder. [Hint: use a queue.]

Running Time Analysis by Recurrence

$$Time(T) = \begin{cases} Time(L) + Time(R) + 1 & \text{if } T \neq \text{nil} \\ 1 & \text{if } T = \text{nil} \end{cases}$$

CLAIM: Time Assign and Project Exam Help

Proof: By induction on https://powcoder.com

Basis (|T|=0): Time(T) = Add|WeChat powcoder

Induction Step (|T| > 0):

$$Time(T) = Time(L) + Time(R) + 1$$
 [by the recurrence]
= $(2|L|+1) + (2|R|+1) + 1$ [by the Induction Hypothesis]
= $2(|L|+|R|+1) + 1$
= $2|T|+1$.

Binary Search Trees https://powcoder.com

E0 < K1 < E1 < K2 < E2 < K3 < E3 < K4 < E4 < K5 < E5 < K6 < E6 < ••• < Kn < En

Assignment Project Exam Help

https://powcoder.com

E0 < K1 < E1 < K2 < E2 < K3 < E3 < K4 < E4 < K5 < E5 < K6 < E6 < ••• < Kn < En

E0 < K1 < E1 < K2 < E2 < K3 < E3 < K4 < E4 < K5 < E5 < K6 < E6 < ••• < Kn < En

E0 < K1 < E1 < K2 < E2 < K3 < E3 < K4 < E4 < K5 < E5 < K6 < E6 < ••• < Kn < En

E0 < K1 < E1 < K2 < E2 < K3 < E3 < K4 < E4 < K5 < E5 < K6 < E6 < ••• < Kn < En

BST Definition

BST is a binary tree T with one distinct key per node such that:

- Inorder node sequence of T encounters keys in sorted order.
- Equivalent definition: For all nodes x & y in T:

 Assignment Project bure any, Helpkey[x] < key[y], and
 - If x is in the right subtree of y, then key[x] > key[y]. https://powcoder.com
- > Wrong definition: A of all wees hat you wooder
 - If x is left child of y, then key[x] < key[y], Pandssary
 - If x is right child of y, then key[x] > key[y]. but not sufficient

Path following routines

- Search(K,x): access the (possibly external) node with key K in the BST rooted at Insert(K,x): insert key K in the BST rooted at x. (No duplicates.) delete key K from the BST rooted at x. Delete(K,x): Some auxiliary routines: use find the minimum key node in the BST rooted at x. find the maximum key node in the BST rooted at x. Minimum(x): parent Maximum(x): pointers Predecessor(x,T): find the Inorder predecessor of node x in binary tree T. find the hottes supposer code of endewind in any tree T. Successor(x,T): Add Weachat powcoder These operations take O(h) time.
- Dictionary:
 Delete
 Delete
 Delete
 Delete Insert
 Delete Insert
 DeleteMin (or Delete Insert)
 DeleteMin (or Delete Insert)

Examples

Search (48)	Predecessor (c)	Minimum (i)
Search (33)	Successor (b)	Maximum (c)
Insert (33)	Predecessor (a)	Minimum (a)
Delete (32)	Predecessor (f)	Minimum (f)
Delete (58)	Successor (e)	Maximum (f)

Search

K

X

R

procedure Search(K,x)

- If x = nil then return nil 1.
- if K = key[x] then return x 2.
- if K < key[x] then return Search(K, left[x])</pre> 3.
- 4.

if K > key[x] then return Search(K, right[x])
Assignment Project Exam Help end

Running Time: https://powcoder.com We spend O(1) time per node, going down along the search path of K.

Total time = O(length of search path of K) = O(h).

Add WeChat powcoder

Minimum & Maximum

procedure Minimum(x)

- if x = nil then return nil
- **y** ← **X**
- while $left[y] \neq nil$ do $y \leftarrow left[y]$
- return y

end

min

https://powcoder.com
Maximum is left-right symmetric. Follow rightmost path down from x.

Add WeChat powcoder

Running Time of Minimum (resp., Maximum):

We spend O(1) time per node along the leftmost (resp., rightmost) path down from x. Total time = O(h).

Successor & Predecessor

Find s = successor of x.

case 2: right[x] = nil.
 x is max of left subtree of s.

s is min of right subtree of x.

Assignment Project Exam Help x

https://powcoder.com

Add WeChat powcoder

procedure Successor(x, T)

- 1. if $right[x] \neq nil$ then return Minimum(right[x])
- 2. $y \leftarrow x$
- 3. **while** $p[y] \neq nil$ and y = right[p[y]] **do** $y \leftarrow p[y]$
- 4. return p[y]

end

Predecessor is symmetric.

Running Time: O(h).

Non-recursive Inorder

Running Time: Minimum & Successor are called O(n) times, each time taking O(h) time. Is the total O(nh) time? POWCOGET.COM

It's actually O(n) time total: garhof Q(n) jedges of the tree are traversed twice (once down, once up). Why?

Also can do amortized analysis using stack with multipop analogy.

See Exercise 8:

- This linear-time non-recursive Inorder procedure uses parent pointers.
- If parent pointers are not available, one could maintain a stack of the ancestral nodes of x. Fill in the details.
- Write a linear-time non-recursive in-place Inorder procedure without parent pointers. (In-place means you cannot use any stack or equivalent; use just the given tree and O(1) additional scalar variables.)

Insert

```
procedure Insert(K,T)1. AuxInsert(K, T, root[T], nil)end
```

```
procedure AuxInsert(K,T,x,y) (* y = parent of x *)
          if x = nil then denment Project Exam Help
z ← a new node
1a.
1b.
                      key[z] \leftarrow K; left[z] \leftarrow right[z] \leftarrow nil; p[z] \leftarrow y
if y = nih therefore room(0) vcoder.com(0)
1c.
1d.
                                             else if K < key[y]
1e.
                               Add WeChat prowedderz
1f.
1g.
                                                        else right[y] \leftarrow z
1h.
                      return
1i.
           end-if
2.
           if K < key[x] then AuxInsert(K, T, left[x], x)
3.
           if K > key[x] then AuxInsert(K, T, right[x], x)
end
```


Running Time: O(length of search path of K) = O(h).

Delete

procedure SpliceOut(z) O(1) time
(* Exercise *) Add WeChat
remove node z and
bypass link between p[z] and
lone child of z (maybe nil too)
end

Running Time:

O(length of search path of z) = O(h).

BST Height h

Search Minimum Predecessor Insert **Maximum** Successor Delete

- All these path following routines take at most O(h) time. Assignment Project Exam Help
- $\lfloor \log n \rfloor \le h < n.$ https://powcoder.com
- h could be as bad as $\Theta(n)$ if the tree is extremely unbalanced.

Add WeChat powcoder

To improve, we will study search trees that are efficient in the

worst-case sense: Red-Black trees, B-trees, 2-3-4 trees.

amortized sense: Splay trees.

> these are multi-way search trees

Multi-way Search Trees https://powcoder.com

Split: Multi-Way vs Binary

Multi-Way Search Tree

root x (a d-node)

- 1. Root is a d-nodettps://powgoder.com
- 2. $K_1 < K_2 < ... < And Me Chat powcoder$
- 3. (every key in T_i) < K_i < (every key in T_{i+1}), for i = 1..d-1. (3 implies 2.)
- 4. Each subtree T_i, i=1..d, is a multi-way search tree.
- 5. The empty tree is also a multi-way search tree.

Example

Assignment Project Exam Help LXCISCS https://powcoder.com

- 1. [CLRS, Exercise 12.2-1, page 293] Suppose that we have numbers between 1 and 1000 in a binary search tree and want to search for the number 363. Which of the following sequences could **not** be the sequence of nodes examined? Explain.
 - (a) 2, 252, 401, 398, 330, 344, 397, 363.
 - (b) 924, 220, 911, 244, 898, 258, 362, 363.
 - (c) 925, 202, 911, 240, 912, 245, 363.
 - (d) 2, 399, 387, 219, 266, 382, 381, 278, 363.
 - (e) 935, 278, 347, 621, 299, 392, 358, 363.
- 2. [CLRS, Exercise 12.2-4, page 293] Suppose the search path for a key K on a BST ends up in an external node. Let A be the set of keys to the left of the search path; B be the set of keys on the search path. Give a smallest counter-example to refute the claim that ∀a∈A, ∀b∈B, ∀c∈C, we must have a ≤ b ≤ c.
 https://powcoder.com
- 3. [CLRS, Exercise 12.3-4, page 299] Is the Delete operation on BST "commutative" in the sense that deleting x and then y from the BST leaves the same tree as deleting y and then x? Argue why it is or give a counter-example 1 DOWCOCCT
- **4. [CLRS, Exercise 12.2-8, page 294]** Give a proof by the **potential function method** for the following fact: No matter what node x we start at in an arbitrary height h BST T, R successive calls to Successor, as shown below

for $i \leftarrow 1..R$ do $x \leftarrow Successor(x,T)$ takes at most O(h+R) time. [Note: O(h·R) is obvious.] Carefully define the potential function.

5. Range-Search Reporting in BST: Let T be a given BST. We are also given a pair of key values a and b, a < b (not necessarily in T). We want to report every item x in T such that a ≤ key[x] ≤ b. Design an algorithm that solves the problem and takes O(h+R) time in the worst case, where h is the height of T and R is the number of reported items (i.e., the output size). Prove the correctness of your algorithm and the claimed time complexity. [Hint: there is a short and elegant recursive solution.]</p>

- **6. Binary Tree Reconstruction:** Which of the following pairs of traversal sequences uniquely determine the Binary Tree structure? Fully justify each case.
 - (a) Preorder and Postorder.
 - (b) Preorder and Inorder.
 - (c) Levelorder and Inorder.

7. [CLRS, Problem 12-2, page 304] Radix Trees:

Given two strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, where each a_i and each b_j is in some ordered set of characters, we say that string a is **lexicographically less than** string b if either

- (i) \exists an integer j, where $0 \le j \le \min\{p,q\}$, such that $a_i = b_i \ \forall i = 0,1,...,j-1$, and $a_j < b_j$, or
- For example, if a and to are bit strings, then Juliu 1010 by rule (i) (j=3) and 10100 < 101000 by rule (ii). This is similar to the ordering used in English-language dictionaries. The radix tree data structure shown below stored the bit strings 1011, 10, 011, 100, and 0. When searching for a key $a = a_0 a_1 \dots a_p$, we go left at a node of depth i if $a_i = 0$ and right if $a_i = 1$. Note that the tree uses some extra "empty" nodes (the dark ones). Let S be a set of distinct binary strings given in pome arbitrary unsorted order, whose string lengths sum to n.
- (a) Show an O(n) time algorithm to construct a radix tree with O(n) nodes that stores the strings in S.
- (b) Show how to use the radix tree just constructed to sort S lexicographically in O(n) time. In the figure below, the output of the sort should be the sequence 0, 011,10,100,1011.

32

- **8. Iterative Inorder:** We gave a linear-time non-recursive Inorder procedure using parent pointers.
 - (a) If parent pointers are not available, one could maintain a stack holding the ancestors of the current node. Write such a procedure and analyze its running time.
 - (b) Write a linear-time non-recursive in-place Inorder procedure without parent pointers. (In-place

means you cannot use any stack or equivalent; just the given tree and O(1) additional scalar

variables.) [Hint: temporarily modify the tree links then put them back into their original form.]

- **9. BST construction lower bound:** We are given a set S of n keys and want to algorithmically construct a BST that stores these keys.
 - (a) Show that it is solved in the solution.
 - (b) Show that if the keys in S are given in arbitrary order, then any off-line algorithm that solves the problem must, in the worst-case, take at least Ω(n log n) time in the decision tree model of

 | Output | Description | Note: there are algorithms that do not sert S as a first step!

computation. [Note: there are algorithms that do not sort S as a first step!]

10. Split and Join on BSTATUS e WELLAND as POP ATIONS COLLEGE COLLEGE. The Split operation takes as input a dictionary (a set of keys) A and a key value K (not necessarily in A), and splits A into two disjoint dictionaries B = { $x \in A \mid key[x] \le K$ } and C = { $x \in A \mid key[x] > K$ }. (Dictionary A is destroyed as a result of this operation.) The Join operation is essentially the reverse; it takes two input dictionaries A and B such that every key in A < every key in B, and replaces them with their union dictionary C = $A \cup B$. (A and B are destroyed as a result of this operation.) Design and analyze efficient Split and Join on binary search trees.

[Note: there is a naïve slow solution for Split (similarly for Join) that deletes items from A one at a time and inserts them in B or C as appropriate. Can you do it more efficiently?]

- **11. Multi-way Search Tree Traversals:** Given a multi-way search tree with n keys, give O(n) time algorithms to print its keys in Preorder, Postorder, Inorder, Levelorder.
- 12. Multi-way Search Tree Search: Given a multi-way search tree T and a key K, describe how to

Assignment Project Exam Help https://powcoder.com