6 Multivariate models

- 6.1 Basics of multivariate modelling
- 6.2 Normal mixture distributions
- 6.3 Spherical and elliptical distributions
- 6.4 Dimension reduction techniques

© QRM Tutorial Section 6 | p. 215

6.1 Basics of multivariate modelling

6.1.1 Random vectors and their distributions

Joint and marginal distributions

- Let $X = (X_1, ..., X_d) : \Omega \to \mathbb{R}^d$ be a d-dimensional random vector (representing risk-factor changes, risks, etc.).
- The (joint) distribution function (df) F of X is

$$F(\boldsymbol{x}) = F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathbb{P}(\boldsymbol{X} \le \boldsymbol{x}) = \mathbb{P}(X_1 \le x_1, \dots, X_d \le x_d), \quad \boldsymbol{x} \in \mathbb{R}^d.$$

■ The jth margin F_j of F or jth marginal df F_j of X is

$$F_{j}(x_{j}) = \mathbb{P}(X_{j} \leq x_{j})$$

$$= \mathbb{P}(X_{1} \leq \infty, \dots, X_{j-1} \leq \infty, X_{j} \leq x_{j}, X_{j+1} \leq \infty, \dots, X_{d} \leq \infty)$$

$$= F(\infty, \dots, \infty, x_{j}, \infty, \dots, \infty), \quad x_{j} \in \mathbb{R}, \ j \in \{1, \dots, d\}.$$

(interpreted as a limit).

■ Similarly for k-dimensional margins. Suppose we partition X into $(X_1', X_2')'$, where $X_1 = (X_1, \ldots, X_k)'$ and $X_2 = (X_{k+1}, \ldots, X_d)'$, then the marginal distribution function of X_1 is

$$F_{\mathbf{X}_1}(\mathbf{x}_1) = \mathbb{P}(\mathbf{X}_1 \leq \mathbf{x}_1) = F(x_1, \dots, x_k, \infty, \dots, \infty).$$

■ F is absolutely continuous if

$$F(\boldsymbol{x}) = \int_{-\infty}^{x_d} \cdots \int_{-\infty}^{x_1} f(z_1, \ldots, z_d) \, \mathrm{d}z_1 \ldots \mathrm{d}z_d = \int_{(-\infty, \boldsymbol{x}]} f(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z}$$
 for some $f \geq 0$ known as the *(joint) density of* \boldsymbol{X} *(or* F). Similarly, the j th marginal df F_j is absolutely continuous if $F_j(x) = \int_{-\infty}^x f_j(z) \, \mathrm{d}z$ for some $f_j \geq 0$ known as the density of X_j (or F_j).

■ In case f exists, $F_j(x_j) = \int_{-\infty}^{x_j} \int_{(-\infty,\infty)} f(z) dz_{-j} dz_j = \int_{-\infty}^{x_j} f_j(z_j) dz_j$, so that $f_j(x_j)$ can be recovered from f via

$$\underbrace{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(z_1, \dots, z_{j-1}, x_j, z_{j+1}, \dots, z_d) \, \mathrm{d}z_1 \dots \mathrm{d}z_{j-1} \mathrm{d}z_{j+1} \dots \mathrm{d}z_d}_{z_d}.$$

d-1-many

- Existence of a joint density \Rightarrow Existence of marginal densities for all k-dimensional marginals, $1 \le k \le d-1$. The converse is false in general (counter-examples can be constructed with copulas; see Chapter 7).
- By replacing integrals by sums, one obtains similar formulas for the discrete case, in which the notion of densities is replaced by *probability* mass functions.
- We sometimes work with the survival function \bar{F} of X,

$$\bar{F}(\boldsymbol{x}) = \bar{F}_{\boldsymbol{X}}(\boldsymbol{x}) = \mathbb{P}(\boldsymbol{X} > \boldsymbol{x}) = \mathbb{P}(X_1 > x_1, \dots, X_d > x_d), \quad \boldsymbol{x} \in \mathbb{R}^d,$$
 with corresponding *jth marginal survival function* \bar{F}_j

$$\bar{F}_j(x_j) = \mathbb{P}(X_j > x_j)$$

$$= \bar{F}(-\infty, \dots, -\infty, x_j, -\infty, \dots, -\infty), \quad x_j \in \mathbb{R}, \ j \in \{1, \dots, d\}.$$

• Note that $\bar{F}(x) \neq 1 - F(x)$ in general (unless d = 1).

Conditional distributions and independence

- A multivariate model for risks X in the form of a joint df, survival function or density, implicitly describes the *dependence* of X_1, \ldots, X_d . We can then make statements about conditional probabilities.
- As before, consider $X=(X_1',X_2')\sim F$. The conditional df of X_2 given $X_1=x_1$ is $F_{X_2|X_1}(x_2\,|\,x_1)=\mathbb{P}(X_2\leq x_2\,|\,X_1=x_1)=\mathbb{E}(I_{\{X_2\leq x_2\}}\,|\,X_1=x_1)$, where $\mathbb{E}(\,\cdot\,|\,\cdot\,)$ denotes conditional expectation (not discussed here).
- A useful identity for conditional dfs is

$$F_{X_1,X_2}(x_1,x_2) = \int_{(-\infty,x_1]} F_{X_2|X_1}(x_2|z) dF_{X_1}(z);$$
 (16)

see the appendix for a proof.

- If $x_1 \to \infty$, then $F_{X_2}(x_2) = \int_{\mathbb{R}^d} F_{X_2|X_1}(x_2 \mid z) \, \mathrm{d}F_{X_1}(z)$.
- ▶ If F has a density f, then $f_{X_2}(x_2) = \int_{\mathbb{R}^d} f_{X_2|X_1}(x_2|z) \, \mathrm{d}F_{X_1}(z)$.

• If F has density f and f_{X_1} denotes the density of X_1 , then

$$f(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) = \frac{\partial^{2}}{\partial \boldsymbol{x}_{2} \partial \boldsymbol{x}_{1}} F(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) \underset{\text{(16)}}{=} \frac{\partial}{\partial \boldsymbol{x}_{2}} F_{\boldsymbol{X}_{2} | \boldsymbol{X}_{1}}(\boldsymbol{x}_{2} | \boldsymbol{x}_{1}) f_{\boldsymbol{X}_{1}}(\boldsymbol{x}_{1})$$
$$= f_{\boldsymbol{X}_{2} | \boldsymbol{X}_{1}}(\boldsymbol{x}_{2} | \boldsymbol{x}_{1}) f_{\boldsymbol{X}_{1}}(\boldsymbol{x}_{1}).$$

We call

$$f_{X_2|X_1}(x_2 | x_1) = \frac{f(x_1, x_2)}{f_{X_1}(x_1)}$$

the conditional density of X_2 given $X_1=x_1$. In this case, the conditional df $F_{X_2|X_1}(x_2\,|\,x_1)$ is given by

$$F_{\boldsymbol{X}_2|\boldsymbol{X}_1}(\boldsymbol{x}_2 \mid \boldsymbol{x}_1) = \int_{-\infty}^{x_{k+1}} \cdots \int_{-\infty}^{x_d} f_{\boldsymbol{X}_2|\boldsymbol{X}_1}(z_{k+1}, \dots, z_d \mid \boldsymbol{x}_1) \, \mathrm{d}z_{k+1} \dots \, \mathrm{d}z_d.$$

■ X_1 , X_2 are independent if $F(x_1, x_2) = F_{X_1}(x_1)F_{X_2}(x_2)$ for all x_1, x_2 (if F has density f, then X_1 , X_2 are independent if $f(x_1, x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$ for all x_1, x_2 ; In this case, $f_{X_2|X_1}(x_2|x_1) = f_{X_2}(x_2)$.

The components X_1, \ldots, X_d of \boldsymbol{X} are (mutually) independent if $F(\boldsymbol{x}) = \prod_{j=1}^d F_j(x_j)$ for all \boldsymbol{x} (if F has density f, then X_1, \ldots, X_d are independent if $f(\boldsymbol{x}) = \prod_{j=1}^d f_j(x_j)$ for all \boldsymbol{x}).

Moments and characteristic function

• If $\mathbb{E}|X_j|<\infty$, $j\in\{1,\ldots,d\}$, the *mean vector* of \boldsymbol{X} is defined by $\mathbb{E}\boldsymbol{X}=(\mathbb{E}X_1,\ldots,\mathbb{E}X_d).$

One can show:
$$X_1,\ldots,X_d$$
 independent $\Rightarrow \mathbb{E}(X_1\cdots X_d)=\prod_{j=1}^d\mathbb{E}(X_j)$

• If $\mathbb{E}(X_j^2) < \infty$ for all j, the *covariance matrix* of ${\pmb X}$ is defined by

$$cov(X) = \mathbb{E}((X - \mathbb{E}X)(X - \mathbb{E}X)').$$

If we write $\Sigma = \text{cov}(\boldsymbol{X})$, its (i, j)th element is

$$\sigma_{ij} = \Sigma_{ij} = \operatorname{cov}(X_i, X_j) = \mathbb{E}((X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j))$$
$$= \mathbb{E}(X_i X_j) - \mathbb{E}(X_i)\mathbb{E}(X_j);$$

the diagonal elements are $\sigma_{ij} = \text{var}(X_i), j \in \{1, \dots, d\}.$

© QRM Tutorial

Section 6.1.1 | p. 221

- X_1, X_2 independent $\stackrel{\Rightarrow}{\underset{\neq}{\rightleftharpoons}} \operatorname{cov}(X_1, X_2) = 0$ (counter-example: $X_1 \sim \operatorname{U}(-1, 1)$, $X_2 = X_1^2 \Rightarrow \operatorname{cov}(X_1, X_2) = \operatorname{\mathbb{E}}(X_1^3) 0 \cdot \operatorname{\mathbb{E}}(X_1^2) = 0$).
- The *cross covariance matrix* between two random vectors X, Y is defined by $cov(X, Y) = \mathbb{E}((X \mathbb{E}X)(Y \mathbb{E}Y)')$; note that cov(X, X) = cov(X).
- If $\mathbb{E}(X_j^2) < \infty$, $j \in \{1, \dots, d\}$, the *correlation matrix* of \boldsymbol{X} is defined by the matrix $\operatorname{corr}(\boldsymbol{X})$ with (i,j)th element

$$\operatorname{corr}(X_i, X_j) = \frac{\operatorname{cov}(X_i, X_j)}{\sqrt{\operatorname{var}(X_i)\operatorname{var}(X_j)}}, \quad i, j \in \{1, \dots, d\},$$

which is in [-1,1] with $\operatorname{corr}(X_i,X_j)=\pm 1$ if and only if $X_j\stackrel{\text{a.s.}}{=} aX_i+b$ for some $a\neq 0$ and $b\in\mathbb{R}$.

- Some properties of $\mathbb{E}(\cdot)$ and $cov(\cdot, \cdot)$:
 - 1) For all $A \in \mathbb{R}^{k \times d}$, $\boldsymbol{b} \in \mathbb{R}^k$:
 - $\blacktriangleright \quad \mathbb{E}(AX + b) = A\mathbb{E}X + b;$

$$cov(AX + b) = A cov(X)A' = A\Sigma A'; \text{ if } k = 1 \text{ } (A = a'),$$

$$a'\Sigma a = cov(a'X) = var(a'X) \ge 0, \quad a \in \mathbb{R}^d,$$

$$(17)$$

i.e. covariance matrices are positive semidefinite.

- $ightharpoonup \cot(X_1 + X_2) = \cot(X_1) + \cot(X_2) + 2\cot(X_1, X_2)$
- 2) If Σ is a positive definite matrix (i.e. $a'\Sigma a>0$ for all $a\in\mathbb{R}^d\setminus\{0\}$), one can show that Σ is invertible.
- 3) A symmetric, positive (semi)definite Σ can be written as

$$\Sigma = AA'$$
 Cholesky decomposition (18)

for a lower triangular matrix A with $A_{jj} > 0$ ($A_{jj} \ge 0$) for all j. A is known as *Cholesky factor* (and is also denoted by $\Sigma^{1/2}$).

Properties of X can often be shown with the *characteristic function* (cf) $\phi_{X}(t) = \mathbb{E}(\exp(it'X)), \quad t \in \mathbb{R}^{d}.$

$$X_1,\ldots,X_d$$
 are independent $\Leftrightarrow \phi_{\boldsymbol{X}}(\boldsymbol{t})=\prod_{j=1}^d\phi_{X_j}(t_j)$ for all \boldsymbol{t} .

© QRM Tutorial Section 6.1.1 | p. 223

Proposition 6.1 (Characterization of covariance matrices)

A symmetric matrix $\boldsymbol{\Sigma}$ is a covariance matrix if and only if it is positive semidefinite.

Proof.

- " \Rightarrow " As we have seen in (17), a covariance matrix Σ is positive semidefinite.
- " \Leftarrow " Let Σ be positive semidefinite with Cholesky factor A. Let \boldsymbol{X} be a random vector with $\operatorname{cov} \boldsymbol{X} = I_d = \operatorname{diag}(1,\ldots,1)$ (e.g. $X_j \stackrel{\text{ind.}}{\sim} \operatorname{N}(0,1)$). Then $\operatorname{cov}(A\boldsymbol{X}) = A\operatorname{cov}(\boldsymbol{X})A' = AA' = \Sigma$, i.e. Σ is a covariance matrix (namely that of $A\boldsymbol{X}$).

6.1.2 Standard estimators of covariance and correlation

Assume $X_1, \ldots, X_n \sim F$ (daily/weekly/monthly/yearly risk-factor changes) are serially uncorrelated (i.e. multivariate white noise) with $\mu := \mathbb{E}X_1$, $\Sigma := \operatorname{cov} X_1$ and $P = \operatorname{corr}(X_1)$.

• Standard estimators of μ, Σ, P are

$$egin{aligned} ar{X} &= rac{1}{n} \sum_{i=1}^n m{X}_i \quad (\textit{sample mean}) \ S &= rac{1}{n} \sum_{i=1}^n (m{X}_i - ar{m{X}}) (m{X}_i - ar{m{X}})' \; (\textit{sample covariance matrix}) \ R &= (R_{ij}) \; ext{for} \; R_{ij} = rac{S_{ij}}{\sqrt{S_{ii}S_{ij}}} \; (\textit{sample correlation matrix}) \end{aligned}$$

• Under joint normality (F multivariate normal), \bar{X} , S and R are also MLEs. S is biased, but an unbiased version can be obtained by

$$S_n = \frac{n}{n-1}S.$$

■ X is unbiased. This follows from two observations:

ightharpoonup Since the X_i 's are uncorrelated,

$$\begin{aligned} \operatorname{cov}(\bar{\boldsymbol{X}}) &= \mathbb{E}((\bar{\boldsymbol{X}} - \boldsymbol{\mu})(\bar{\boldsymbol{X}} - \boldsymbol{\mu})') \\ &= \frac{1}{n^2} \mathbb{E}\left(\left(\sum_{j=1}^n (\boldsymbol{X}_j - \boldsymbol{\mu})\right) \left(\sum_{k=1}^n (\boldsymbol{X}_k - \boldsymbol{\mu})\right)'\right) \\ &= \frac{1}{n^2} \sum_{j,k=1}^n \mathbb{E}((\boldsymbol{X}_j - \boldsymbol{\mu})(\boldsymbol{X}_k - \boldsymbol{\mu})') = \frac{1}{n} \Sigma, \end{aligned}$$

where $\mathbb{E}((\boldsymbol{X}_j - \boldsymbol{\mu})(\boldsymbol{X}_k - \boldsymbol{\mu})') = \Sigma$ (for j = k) and = (0) (for $j \neq k$).

Note that

$$\mathbb{E}((\boldsymbol{X}_i - \boldsymbol{\mu})(\bar{\boldsymbol{X}} - \boldsymbol{\mu})') = \frac{1}{n} \sum_{k=1}^n \mathbb{E}((\boldsymbol{X}_k - \boldsymbol{\mu})(\bar{\boldsymbol{X}} - \boldsymbol{\mu})')$$
$$= \mathbb{E}\left(\frac{1}{n} \sum_{k=1}^n (\boldsymbol{X}_k - \boldsymbol{\mu})(\bar{\boldsymbol{X}} - \boldsymbol{\mu})'\right)$$
$$= \mathbb{E}((\bar{\boldsymbol{X}} - \boldsymbol{\mu})(\bar{\boldsymbol{X}} - \boldsymbol{\mu})') = \operatorname{cov}(\bar{\boldsymbol{X}}) = \frac{\Sigma}{n}.$$

■ This implies that S_n is unbiased since

$$\mathbb{E}S_n = \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}((\boldsymbol{X}_i - \bar{\boldsymbol{X}})(\boldsymbol{X}_i - \bar{\boldsymbol{X}})')$$

$$= \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}(((\boldsymbol{X}_i - \boldsymbol{\mu}) - (\bar{\boldsymbol{X}} - \boldsymbol{\mu}))((\boldsymbol{X}_i - \boldsymbol{\mu}) - (\bar{\boldsymbol{X}} - \boldsymbol{\mu}))')$$

$$= \frac{1}{n-1} \sum_{i=1}^n \left(\Sigma - \frac{\Sigma}{n} - \frac{\Sigma}{n} + \frac{\Sigma}{n}\right) = \frac{1}{n-1} \sum_{i=1}^n \left(\Sigma - \frac{\Sigma}{n}\right) = \Sigma.$$

6.1.3 The multivariate normal distribution

Definition 6.2 (Multivariate normal distribution)

 $oldsymbol{X} = (X_1, \dots, X_d)$ has a multivariate normal (or Gaussian) distribution if

$$\boldsymbol{X} \stackrel{\text{d}}{=} \boldsymbol{\mu} + A\boldsymbol{Z},\tag{19}$$

where $\mathbf{Z} = (Z_1, \dots, Z_k)$, $Z_l \stackrel{\text{ind.}}{\sim} \mathrm{N}(0, 1)$, $A \in \mathbb{R}^{d \times k}$, $\boldsymbol{\mu} \in \mathbb{R}^d$.

- \blacksquare Typically k = d
- $\blacksquare \quad \mathbb{E}\boldsymbol{X} = \boldsymbol{\mu} + A\mathbb{E}\boldsymbol{Z} = \boldsymbol{\mu}$
- $cov(\boldsymbol{X}) = cov(\boldsymbol{\mu} + A\boldsymbol{Z}) = A cov(\boldsymbol{Z})A' = AA' =: \Sigma$

Proposition 6.3 (Cf of the multivariate normal distribution)

Let X be as in (19) and $\Sigma = AA'$. Then the cf of X is

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}(\exp(i\boldsymbol{t}'\boldsymbol{X})) = \exp\Big(i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}'\Sigma\boldsymbol{t}\Big), \quad \boldsymbol{t} \in \mathbb{R}^d.$$

Idea of proof. Using the fact that $\phi_Z(t)=\exp(-t^2/2)$ for $Z\sim N(0,1)$ (see the appendix for a proof), we obtain that

$$\begin{split} \phi_{\boldsymbol{X}}(\boldsymbol{t}) &= \mathbb{E}(\exp(i\boldsymbol{t}'(\boldsymbol{\mu} + A\boldsymbol{Z}))) \underset{\tilde{\boldsymbol{t}}' = \boldsymbol{t}'A}{=} \exp(i\boldsymbol{t}'\boldsymbol{\mu}) \mathbb{E}(\exp(i\tilde{\boldsymbol{t}}'\boldsymbol{Z})) \\ &\stackrel{\mathsf{ind.}}{=} \exp(i\boldsymbol{t}'\boldsymbol{\mu}) \prod_{j=1}^{k} \mathbb{E}(\exp(i(\tilde{t}_{j}Z_{j}))) = \exp\left(i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\sum_{j=1}^{k} \tilde{t}_{j}^{2}\right) \\ &= \exp\left(i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\tilde{\boldsymbol{t}}'\tilde{\boldsymbol{t}}\right) = \exp\left(i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}'AA'\boldsymbol{t}\right) \\ &= \exp\left(i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t}\right) \end{split}$$

- We see that the multivariate normal distribution is characterized by μ and Σ , hence the notation $X \sim N_d(\mu, \Sigma)$.
- $N_d(\boldsymbol{\mu}, \Sigma)$ can be characterized by univariate normal distributions.

© QRM Tutorial

Proposition 6.4 (Characterization of $N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$)

$$X \sim N_d(\mu, \Sigma) \iff a'X \sim N(a'\mu, a'\Sigma a) \quad \forall a \in \mathbb{R}^d.$$

Proof. "⇒" via uniqueness of cfs:

$$\begin{split} \phi_{\boldsymbol{a}'\boldsymbol{X}}(t) &= \mathbb{E}(\exp(it\boldsymbol{a}'\boldsymbol{X})) = \mathbb{E}(\exp(i(t\boldsymbol{a})'\boldsymbol{X})) = \phi_{\boldsymbol{X}}(t\boldsymbol{a}) \\ &= \exp\bigg(i(t\boldsymbol{a})'\boldsymbol{\mu} - \frac{1}{2}(t\boldsymbol{a})'\boldsymbol{\Sigma}(t\boldsymbol{a})\bigg) = \exp\bigg(it\boldsymbol{a}'\boldsymbol{\mu} - \frac{t^2}{2}\boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}\bigg). \end{split}$$

Consequences:

- Margins: $\boldsymbol{X} \sim \mathrm{N}_d(\boldsymbol{\mu}, \Sigma) \overset{\boldsymbol{a} = \boldsymbol{e}_j}{\underset{\boldsymbol{\mu}}{\rightleftharpoons}} X_j \sim \mathrm{N}(\mu_j, \Sigma_{jj}), \quad j \in \{1, \dots, d\}.$
- Sums: $X \sim N_d(\mu, \Sigma) \stackrel{a=1}{\Rightarrow} \sum_{j=1}^d X_j \sim N(\sum_{j=1}^d \mu_j, \sum_{i,j} \Sigma_{ij}).$

Proposition 6.5 (Density)

Let $X \sim N_d(\mu, \Sigma)$ with rank A = k = d ($\Rightarrow \Sigma$ pos. definite, invertible). By the density transformation theorem, X can be shown to have density

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}\sqrt{\det\Sigma}} \exp\biggl(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'\Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\biggr), \quad \boldsymbol{x} \in \mathbb{R}^d.$$

Consequences:

- Sets of the form $S_c = \{x \in \mathbb{R}^d : (x \mu)'\Sigma^{-1}(x \mu) = c\}, \ c > 0$, describe points of equal density. Contours of equal density are thus ellipsoids. Whenever a multivariate density $f_X(x)$ depends on x only through the quadratic form $(x \mu)'\Sigma^{-1}(x \mu)$, it is the density of an elliptical distribution (see later).
- The components of $X \sim N_d(\mu, \Sigma)$ are mutually independent if and only if Σ is diagonal, i.e. if and only if the components of X are uncorrelated.

Left: $N_d(\boldsymbol{\mu}, \Sigma)$ for $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\Sigma = \begin{pmatrix} 1 \\ -0.7 \\ 1 \end{pmatrix}$; Right: $t_{\nu}(\boldsymbol{\mu}, \frac{\nu-2}{\nu}\Sigma)$, $\nu = 4$, (same mean and covariance matrix as on the left-hand side)

© QRM Tutorial

Section 6.1.3 | p. 232

The definition of $N_d(\boldsymbol{\mu}, \Sigma)$ in terms of a stochastic representation ($\boldsymbol{X} \stackrel{\text{d}}{=} \boldsymbol{\mu} + A\boldsymbol{Z}$) directly justifies the following sampling algorithm.

Algorithm 6.6 (Sampling $N_d(\mu, \Sigma)$)

Let $\boldsymbol{X} \sim \mathrm{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}$ symmetric and positive definite.

- 1) Compute the Cholesky factor A of Σ ; see, e.g. Press et al. (1992).
- 2) Generate $Z_j \stackrel{\text{ind.}}{\sim} \mathrm{N}(0,1)$, $j \in \{1,\ldots,d\}$.
- 3) Return $\boldsymbol{X} = \boldsymbol{\mu} + A\boldsymbol{Z}$, where $\boldsymbol{Z} = (Z_1, \dots, Z_d)$.

Further useful properties of multivariate normal distributions

Linear combinations

If
$$m{X} \sim \mathrm{N}_d(m{\mu}, \Sigma)$$
 and $B \in \mathbb{R}^{k \times d}, m{b} \in \mathbb{R}^k$, then $Bm{X} + m{b} = B(m{\mu} + Am{Z}) + m{b} = (Bm{\mu} + m{b}) + BAm{Z}$ $\sim \mathrm{N}_k(Bm{\mu} + m{b}, \; BA(BA)') = \mathrm{N}_k(Bm{\mu} + m{b}, \; B\Sigma B').$

© QRM Tutorial

Special case (see variance-covariance method; or Proposition 6.4): $b'X \sim N(b'\mu, b'\Sigma b)$

Marginal dfs

Let $X \sim \mathrm{N}_d(\mu, \Sigma)$ and write $X = (X_1', X_2')$, where $X_1 \in \mathbb{R}^k$, $X_2 \in \mathbb{R}^{d-k}$, and $\mu = (\mu_1', \mu_2')$, $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. Then

$$m{X}_1 \sim \mathrm{N}_k(m{\mu}_1, \Sigma_{11})$$
 and $m{X}_2 \sim \mathrm{N}_{d-k}(m{\mu}_2, \Sigma_{22}).$

Proof. Choose $B=\left(\begin{smallmatrix} I_k & 0 \\ 0 & 0 \end{smallmatrix} \right)$ and $B=\left(\begin{smallmatrix} 0 & 0 \\ 0 & I_{d-k} \end{smallmatrix} \right)$, respectively.

Conditional distributions

Let $oldsymbol{X}$ be as before and Σ be positive definite. One can show that

$$X_2 | X_1 = x_1 \sim N_{d-k}(\mu_{2.1}, \Sigma_{22.1}),$$

where $\mu_{2.1} = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\boldsymbol{x}_1 - \boldsymbol{\mu}_1)$ and $\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$.

Quadratic forms

Let $X \sim N_d(\mu, \Sigma)$ and Σ be positive definite with Cholesky factor A.

Furthermore, let $Z = A^{-1}(X - \mu)$. Then $Z \sim N_d(\mathbf{0}, I_d)$. Moreover,

$$(\boldsymbol{X} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}' \boldsymbol{Z} \sim \chi_d^2, \tag{20}$$

which is useful for (goodness-of-fit) testing of $N_d(\mu, \Sigma)$: We can check whether the squared Mahalanobis distances $D_i^2 = (X_i - \bar{X})'S^{-1}(X_i - \bar{X}), i \in \{1, \ldots, n\}$, form a sample from χ_d^2 .

Convolutions

Let $X \sim \mathrm{N}_d(\mu, \Sigma)$ and $Y \sim \mathrm{N}_d(\tilde{\mu}, \tilde{\Sigma})$ be independent. Via cfs it is then an exercise to show that

$$X + Y \sim N_d(\mu + \tilde{\mu}, \Sigma + \tilde{\Sigma}).$$

6.1.4 Testing multivariate normality

- For testing univariate normality, all tests of Section 3.1.2 can be applied.
- Now consider multivariate normality. By Proposition 6.4,

$$X_1, \ldots, X_n \stackrel{\text{ind.}}{\sim} N_d(\mu, \Sigma) \Rightarrow a'X_1, \ldots, a'X_n \stackrel{\text{ind.}}{\sim} N(a'\mu, a'\Sigma a).$$

This can be tested statistically (for some a) with various goodness-of-fit tests (e.g. Q-Q plots) used for univariate normality (however, for $a=e_j$, $j\in\{1,\ldots,d\}$, we would only test normality of the margins, not joint normality). Alternatively, (20) can be used to test joint normality (see Mardia's test below).

- Multivariate Shapiro-Wilk
- Mardia's test.
 - According to (20), if $X \sim \mathrm{N}_d(\mu, \Sigma)$ with Σ positive definite, then $(X \mu)' \Sigma^{-1} (X \mu) \sim \chi_d^2$ (can approx. be used in a Q-Q plot).
 - Let $D_i^2 = (\boldsymbol{X}_i \bar{\boldsymbol{X}})'S^{-1}(\boldsymbol{X}_i \bar{\boldsymbol{X}})$ denote the squared Mahalanobis distances and $D_{ij} = (\boldsymbol{X}_i \bar{\boldsymbol{X}})'S^{-1}(\boldsymbol{X}_j \bar{\boldsymbol{X}})$ the Mahalanobis angles.
 - ▶ Let $\frac{b_d}{b_d} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n D_{ij}^3$ and $\frac{k_d}{b_d} = \frac{1}{n} \sum_{i=1}^n D_i^4$. Under the null

hypothesis one can show that asymptotically for $n \to \infty$,

$$\frac{n}{6}b_d \sim \chi^2_{d(d+1)(d+2)/6}, \quad \frac{k_d - d(d+2)}{\sqrt{8d(d+2)/n}} \sim N(0,1),$$

which can be used for testing; see Joenssen and Vogel (2014).

Example 6.7 (Multivariate (non-)normality of 10 Dow Jones stocks)

 We apply Mardia's test (of multivariate skewness and kurtosis) to daily/weekly/monthly/quarterly log-returns of 10 (of the 30) Dow Jones stocks from 1993–2000.

n	Daily	Weekly	Monthly	Quarterly
	2020	416	96	32
b_{10} p -value	9.31	9.91	21.10	50.10
	0.00	0.00	0.00	0.02
$k_{10} \ p$ -value	242.45	177.04	142.65	120.83
	0.00	0.00	0.00	0.44

- ⇒ Daily/weekly/monthly data shows evidence against joint normality. For quarterly data, a CLT effect seems to take place (but too little data to say more) and there is still evidence against joint normality.
- We can also compare D_i^2 data to a χ_{10}^2 graphically using a Q-Q plot.

Q-Q plot of D_i^2 data against a χ_{10}^2 distribution: (a) daily data; (b) weekly data; (c) monthly data; and (d) quarterly data

Example 6.8 (Simulated data vs BMW-Siemens)

Is the BMW-Siemens data (see Section 3.2.2) jointly normal?

© QRM Tutorial Section 6.1.4 | p. 240

Considering the first margin only:

Considering the second margin only:

N(0,1) quantiles

3

Q-Q plot for margin 2 (real data)

© QRM Tutorial

0.05

0.00

-0.05

-0.10

Sample quantiles

Q-Q plot of the simulated (left) or real (right) D_i^2 's against a χ_2^2 :

Advantages of $N_d(\mu, \Sigma)$

- Distribution is determined by μ and Σ .
- Inference is thus "easy".
- Linear combinations are normal ($\Rightarrow VaR_{\alpha}$ and ES_{α} calculations for portfolios are easy).
- Marginal distributions are normal.
- Conditional distributions are normal.
- Quadratic forms are known.
- Convolutions are normal.
- Sampling is straightforward.
- Independence and uncorrelatedness are equivalent.

© QRM Tutorial Section 6.1.4 | p. 244

Drawbacks of $N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ for modelling risk-factor changes

- 1) Tails of univariate (normal) margins are too thin (generate too few extreme events).
- 2) Joint tails are too thin (too few joint extreme events). $N_d(\mu, \Sigma)$ cannot capture the notion of tail dependence (see Chapters 3 and 7).
- 3) Very strong symmetry known as radial symmetry: X is called radially symmetric about μ if $X \mu \stackrel{\text{d}}{=} \mu X$. This is true for $N_d(\mu, \Sigma)$.

Short outlook:

- Normal variance mixtures (or, more generally, elliptical distributions) can address 1) and 2) while sharing many of the desirable properties of $N_d(\mu, \Sigma)$.
- Normal mean-variance mixtures can also address 3) (but at the expense of tractability in comparison to $N_d(\mu, \Sigma)$).

6.2 Normal mixture distributions

Idea: Randomize Σ (and possibly μ) with a non-negative rv W.

6.2.1 Normal variance mixtures

Definition 6.9 (Multivariate normal variance mixtures)

The random vector \boldsymbol{X} has a (multivariate) normal variance mixture distribution if

$$\boldsymbol{X} \stackrel{\text{d}}{=} \boldsymbol{\mu} + \sqrt{W} A \boldsymbol{Z},$$

where $Z \sim \mathrm{N}_k(\mathbf{0}, I_k)$, $W \geq 0$ is a rv independent of Z, $A \in \mathbb{R}^{d \times k}$, and $\mu \in \mathbb{R}^d$. μ is called *location vector* and $\Sigma = AA'$ scale (or dispersion) matrix.

Observe that $(\boldsymbol{X} \mid \boldsymbol{W} = \boldsymbol{w}) \stackrel{\text{d}}{=} \boldsymbol{\mu} + \sqrt{w} A \boldsymbol{Z} = N_d(\boldsymbol{\mu}, wAA') = N_d(\boldsymbol{\mu}, \boldsymbol{w}\Sigma);$ or $(\boldsymbol{X} \mid \boldsymbol{W}) \stackrel{\text{d}}{=} N_d(\boldsymbol{\mu}, \boldsymbol{W}\Sigma).$ \boldsymbol{W} can be interpreted as a shock affecting the variances of all risk factors.

Properties of multivariate normal variance mixtures

Let $X = \mu + \sqrt{W}AZ$ and $Y = \mu + AZ$. Assume that $\operatorname{rank}(A) = d \leq k$ and that Σ is positive definite.

- $\qquad \text{If } \mathbb{E}\sqrt{W} < \infty \text{, then } \mathbb{E}(\boldsymbol{X}) \stackrel{\text{ind.}}{=} \boldsymbol{\mu} + \mathbb{E}(\sqrt{W})A\mathbb{E}(\boldsymbol{Z}) = \boldsymbol{\mu} + \boldsymbol{0} = \boldsymbol{\mu} = \mathbb{E}\boldsymbol{Y}$
- If $\mathbb{E}W < \infty$, then

$$\begin{aligned} \operatorname{cov}(\boldsymbol{X}) &= \operatorname{cov}(\sqrt{W}A\boldsymbol{Z}) = \mathbb{E}((\sqrt{W}A\boldsymbol{Z})(\sqrt{W}A\boldsymbol{Z})') \\ &\stackrel{\operatorname{ind.}}{=} \mathbb{E}(W) \cdot \mathbb{E}(A\boldsymbol{Z}\boldsymbol{Z}'A') = \mathbb{E}(W) \cdot A\mathbb{E}(\boldsymbol{Z}\boldsymbol{Z}')A' \\ &= \mathbb{E}(W)AI_kA' = \mathbb{E}(W)\Sigma \neq \sum_{\text{in general}} \mathbb{E}(\boldsymbol{Y}) \end{aligned}$$

■ However, if they exist (i.e. if $\mathbb{E}W < \infty$) $\operatorname{corr}(\boldsymbol{X}) = \operatorname{corr}(\boldsymbol{Y})$ since

$$\operatorname{corr}(X_i, X_j) = \frac{\operatorname{cov}(X_i, X_j)}{\sqrt{\operatorname{var}(X_i)\operatorname{var}(X_j)}} = \frac{\mathbb{E}(W)\Sigma_{ij}}{\sqrt{\mathbb{E}(W)\Sigma_{ii}\mathbb{E}(W)\Sigma_{jj}}}$$
$$= \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}} = \operatorname{corr}(Y_i, Y_j), \quad i, j \in \{1, \dots, d\}.$$

© QRM Tutorial

Section 6.2.1 | p. 247

Lemma 6.10 (Independence in normal variance mixtures)

Let $\pmb{X} = \pmb{\mu} + \sqrt{W} I_d \pmb{Z}$ with $\mathbb{E} W < \infty$ (uncorrelated normal variance mixture). Then

 X_i and X_j are independent $\iff W$ is a.s. constant (i.e. X is normal).

See the appendix for a proof. Intuitively, W affects all components of \boldsymbol{X} and thus creates dependence (unless it is constant).

■ Characteristic function: Recall: If $Y \sim N_d(\mu, \Sigma)$, then $\phi_Y(t) = \exp(it'\mu - \frac{1}{2}t'\Sigma t)$. The cf of a multivariate normal variance mixtures is

$$\begin{split} \phi_{\boldsymbol{X}}(\boldsymbol{t}) &= \mathbb{E}(\exp(i\boldsymbol{t}'\boldsymbol{X})) = \mathbb{E}(\,\mathbb{E}(\exp(i\boldsymbol{t}'\boldsymbol{X})\,|\,\boldsymbol{W})\,) \\ &= \mathbb{E}(\exp(i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{W}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t})) = \exp(i\boldsymbol{t}'\boldsymbol{\mu})\mathbb{E}(\exp(-\boldsymbol{W}\frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t})). \end{split}$$

This depends on the Laplace-Stieltjes transform $\hat{F}_W(\theta) = \mathbb{E}(\exp(-\theta W))$ = $\int_0^\infty e^{-\theta w} \, \mathrm{d}F_W(w)$ of F_W . We thus introduce the notation $X \sim M_d(\mu, \Sigma, \hat{F}_W)$ for a d-dimensional multivariate normal variance mixture.

■ **Density:** If Σ is positive definite, $\mathbb{P}(W=0)=0$, the density of \boldsymbol{X} is

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \int_0^\infty f_{\boldsymbol{X}|W}(\boldsymbol{x} \mid w) \, \mathrm{d}F_W(w)$$
$$= \int_0^\infty \frac{1}{(2\pi)^{d/2} w^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{(\boldsymbol{x} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2w}\right) \, \mathrm{d}F_W(w).$$

- \Rightarrow Only depends on x through $(x-\mu)'\Sigma^{-1}(x-\mu)$.
- ⇒ Multivariate normal variance mixtures are elliptical distributions.

If Σ is diagonal and $\mathbb{E}W<\infty$, X is uncorrelated (as $\mathrm{cov}(X)=\mathbb{E}(W)\Sigma$) but not independent unless W is constant a.s. (see stoch. representation).

■ Linear combinations: For $X \sim M_d(\mu, \Sigma, \hat{F}_W)$ and Y = BX + b, where $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$, we have $Y \sim M_k(B\mu + b, B\Sigma B', \hat{F}_W)$; this can be shown via cfs. If $a \in \mathbb{R}^d$ (b = 0, $B = a' \in \mathbb{R}^{1 \times d}$), $a'X \sim M_1(a'\mu, a'\Sigma a, \hat{F}_W)$.

Sampling:

Algorithm 6.11 (Simulation of $X = \mu + \sqrt{W}AZ \sim M_d(\mu, \Sigma, \hat{F}_W)$)

- 1) Generate $\boldsymbol{Z} \sim \mathrm{N}_d(\boldsymbol{0}, I_d)$.
- 2) Generate $W \sim F_W$ (with LS transform \hat{F}_W), independent of Z.
- 3) Compute the Cholesky factor A (such that $AA' = \Sigma$).
- 4) Return $X = \mu + \sqrt{W}AZ$.

Example 6.12 ($t_d(\nu, \mu, \Sigma)$ distribution)

For Step 2), generate
$$V \sim \chi^2_{\nu}$$
 and set $W = \frac{\nu}{V} \sim \mathrm{Ig}(\nu/2,\nu/2)$; or $W = \frac{1}{V}$ with $V \sim \Gamma(\frac{\nu}{2},\frac{\nu}{2})$ $(\Gamma(\alpha,\beta)$ density: $f(x) = \beta^{\alpha}x^{\alpha-1}e^{-\beta x}/\Gamma(\alpha)$).

© QRM Tutorial

Examples of multivariate normal variance mixtures

Multivariate normal distribution

$$W=1$$
 a.s. (degenerate case)

■ Two point mixture

$$W = \begin{cases} w_1 \text{ with probability } p, \\ w_2 \text{ with probability } 1 - p \end{cases} \quad w_1, \ w_2 > 0, \ w_1 \neq w_2.$$

Can be used to model ordinary and stress regimes; extends to k regimes.

- Symmetric generalised hyperbolic distribution
 - W has a generalised inverse Gaussian distribution (GIG); see McNeil et al. (2015, p. 187)
- Multivariate t distribution

W has an inverse gamma distribution W=1/V for $V\sim \Gamma(\nu/2,\nu/2).$

▶ $\mathbb{E}(W) = \frac{\nu}{\nu - 2} \Rightarrow \operatorname{cov}(X) = \frac{\nu}{\nu - 2} \Sigma$. For finite variances/correlations, $\nu > 2$ is required. For finite mean, $\nu > 1$ is required.

▶ The density of the multivariate t distribution is given by

$$f_{X}(x) = \frac{\Gamma((\nu+d)/2)}{\Gamma(\nu/2)(\nu\pi)^{d/2}|\Sigma|^{1/2}} \left(1 + \frac{(x-\mu)'\Sigma^{-1}(x-\mu)}{\nu}\right)^{-\frac{\nu+d}{2}},$$

where $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ is a positive definite matrix, and ν is the degrees of freedom. Notation: $X \sim t_d(\nu, \mu, \Sigma)$.

- $t_d(\nu, \mu, \Sigma)$ has heavier marginal and joint tails than $N_d(\mu, \Sigma)$.
- ▶ BMW–Siemens data; simulations from fitted $N_d(\mu, \Sigma)$ and $t_d(3, \mu, \Sigma)$:

6.2.2 Normal mean-variance mixtures

- Radial symmetry implies that all one-dimensional margins of normal variance mixtures are symmetric.
- Often visible in data: joint losses have heavier tails than joint gains.

Idea: Introduce asymmetry by mixing normal distributions with different means and variances.

X has a (multivariate) normal mean-variance mixture distribution if

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} \boldsymbol{m}(W) + \sqrt{W} A \boldsymbol{Z},\tag{21}$$

where

- \blacksquare $Z \sim N_k(\mathbf{0}, I_k);$
- $W \ge 0$ is a scalar random variable which is independent of Z;
- $A \in \mathbb{R}^{d \times k}$ is a matrix of constants;
- $m:[0,\infty) \to \mathbb{R}^d$ is a measurable function.

• Normal mean-variance mixtures add skewness: Let $\Sigma = AA'$ and observe that $\boldsymbol{X} \mid W = w \sim \mathrm{N}_d(\boldsymbol{m}(w), w\Sigma)$. In general, they are no longer elliptical (see later).

Example 6.13

• Suppose we have $m(W) = \mu + W\gamma$. Since

$$\mathbb{E}(\boldsymbol{X} \mid W) = \boldsymbol{\mu} + W\boldsymbol{\gamma},$$
$$\operatorname{cov}(\boldsymbol{X} \mid W) = W\Sigma$$

we have

$$\begin{split} \mathbb{E}\boldsymbol{X} &= \mathbb{E}(\mathbb{E}(\boldsymbol{X} \,|\, \boldsymbol{W})) = \boldsymbol{\mu} + \mathbb{E}(\boldsymbol{W})\boldsymbol{\gamma} \quad \text{if } \mathbb{E}\boldsymbol{W} < \infty, \\ & \operatorname{cov}(\boldsymbol{X}) = \mathbb{E}(\operatorname{cov}(\boldsymbol{X} \,|\, \boldsymbol{W})) + \operatorname{cov}(\mathbb{E}(\boldsymbol{X} \,|\, \boldsymbol{W})) \\ &= \mathbb{E}(\boldsymbol{W})\boldsymbol{\Sigma} + \operatorname{var}(\boldsymbol{W})\boldsymbol{\gamma}\boldsymbol{\gamma}' \quad \text{if } \mathbb{E}(\boldsymbol{W}^2) < \infty. \end{split}$$

If W has a GIG distribution, then X follows a generalised hyperbolic distribution. $\gamma = 0$ leads to (elliptical) normal variance mixtures; see McNeil et al. (2015, Sections 6.2.3) for details.

6.3 Spherical and elliptical distributions

Empirical examples (see McNeil et al. (2015, Sections 6.2.4)) show that

- 1) $M_d(\mu, \Sigma, \hat{F}_W)$ (e.g. multivariate t) provide superior models to $N_d(\mu, \Sigma)$ for daily/weekly stock-return data;
- 2) the more general skewed normal mean-variance mixture distributions offer only a modest improvement.

We study elliptical distributions, a generalization of $M_d(\mu, \Sigma, \hat{F}_W)$.

6.3.1 Spherical distributions

Definition 6.14 (Spherical distribution)

A random vector $Y = (Y_1, ..., Y_d)$ has a *spherical distribution* if for every orthogonal $U \in \mathbb{R}^{d \times d}$ (i.e. $U \in \mathbb{R}^{d \times d}$ with $UU' = U'U = I_d$)

 $Y \stackrel{d}{=} UY$ (distributionally invariant under rotations and reflections)

© QRM Tutorial Section 6.3 | p. 255

Theorem 6.15 (Characterization of spherical distributions)

Let $||t|| = (t_1^2 + \cdots + t_d^2)^{1/2}$, $t \in \mathbb{R}^d$. The following are equivalent:

- 1) $m{Y}$ is spherical (notation: $m{Y} \sim S_d(\psi)$ for ψ as below).
- 2) \exists a characteristic generator $\psi:[0,\infty)\to\mathbb{R}$, such that $\phi_Y(t)=\mathbb{E}(e^{it'Y})=\psi(||t||^2), \ \forall\ t\in\mathbb{R}^d.$
- 3) For every $a \in \mathbb{R}^d$, $a'Y \stackrel{d}{=} ||a||Y_1$ (lin. comb. are of the same type). \Rightarrow Subadditivity of VaR_{α} for jointly elliptical losses

Theorem 6.16 (Stochastic representation)

 $m{Y} \sim S_d(\psi)$ if and only if $m{Y} \stackrel{ ext{d}}{=} Rm{S}$ for an independent radial part $R \geq 0$ and $m{S} \sim \mathrm{U}(\{m{x} \in \mathbb{R}^d: \|m{x}\| = 1\}).$

- See the appendix for proofs for Theorems 6.15 and 6.16.
- If Y has a density f_Y , it satisfies $f_Y(y) = g(\|y\|^2)$ for a function $g: [0, \infty) \to [0, \infty)$ referred to as *density generator* (i.e. f_Y is constant on spheres); see the appendix for a proof.

Corollary 6.17

If
$$Y \sim S_d(\psi)$$
 and $\mathbb{P}(Y = \mathbf{0}) = 0$, then $(\|Y\|, \frac{Y}{\|Y\|}) \stackrel{\text{d}}{=} (R, S)$ since

$$(\|Y\|, \frac{Y}{\|Y\|}) \stackrel{d}{=} (\|RS\|, \frac{RS}{\|RS\|}) = (|R|\|S\|, \frac{RS}{\|R\|\|S\|}) = (R, S).$$

 \Rightarrow $\|Y\|$ and $Y/\|Y\|$ are independent (\Rightarrow goodness-of-fit, sampling).

Example 6.18 (Standardized normal variance mixtures)

• $Y \sim M_d(\mathbf{0}, I_d, \hat{F}_W)$ is spherical (recall: $Y \stackrel{d}{=} \mathbf{0} + \sqrt{W}I_d\mathbf{Z}$) since

$$\phi_{\boldsymbol{Y}}(\boldsymbol{t}) = \mathbb{E}(\exp(i\boldsymbol{t}'\sqrt{W}\boldsymbol{Z})) = \mathbb{E}(\mathbb{E}(\exp(i(\boldsymbol{t}\sqrt{W})'\boldsymbol{Z})|W|))$$
$$= \mathbb{E}(\exp(-\frac{1}{2}W\boldsymbol{t}'\boldsymbol{t})) = \hat{F}_{W}(\frac{1}{2}\boldsymbol{t}'\boldsymbol{t}) = \hat{F}_{W}(\frac{1}{2}||\boldsymbol{t}||^{2}),$$

so $m{Y} \sim S_d(\psi)$ by Theorem 6.15 Part 2). We thus have $\psi(t) = \hat{F}_W(t/2)$.

■ For $Y \sim \mathrm{N}_d(\mathbf{0}, I_d)$, $\psi(t) = \exp(-t/2)$. By Corollary 6.17, simulating $S \sim \mathrm{U}(\{x \in \mathbb{R}^d : \|x\| = 1\})$ can thus be done via $S \stackrel{d}{=} Y/\|Y\|$. Fang et al. (1990, pp. 50) show that ψ generates $S_d(\psi)$ for all $d \in \mathbb{N}$ if and only if it is the characteristic generator of a normal variance mixture.

Example 6.19 (R, S, cov, corr)

lacksquare It follows from $m{Y} \sim \mathrm{N}_d(\mathbf{0}, I_d)$ and $R^2 = \|m{Y}\|^2 = m{Y}'m{Y} \sim \chi_d^2$ that

$$\mathbf{0} = \mathbb{E} \mathbf{Y} = \mathbb{E} R \, \mathbb{E} \mathbf{S} \implies \mathbb{E} \mathbf{S} = \mathbf{0},$$

$$I_d = \operatorname{cov} \mathbf{Y} = \operatorname{cov}(R\mathbf{S}) = \mathbb{E}(R^2) \operatorname{cov} \mathbf{S} = d \operatorname{cov} \mathbf{S} \implies \operatorname{cov} \mathbf{S} = I_d/d.$$
(22)

■ For (spherically distributed) $Y \sim S_d(\psi)$ with $\mathbb{E}(R^2) < \infty$, it follows that

$$\begin{array}{c} \operatorname{cov} \boldsymbol{Y} = \operatorname{cov}(R\boldsymbol{S}) = \mathbb{E}(R^2)\operatorname{cov}\boldsymbol{S} = \frac{\mathbb{E}(R^2)}{d}I_d \\ \text{and thus } \operatorname{corr}\boldsymbol{Y} = \frac{(\mathbb{E}(R^2)/d)I_d}{\sqrt{(\mathbb{E}(R^2)/d)(\mathbb{E}(R^2)/d)}} = I_d. \end{array}$$

For (elliptically distributed; see soon) $X = \mu + AY$ with $\mathbb{E}(R^2) < \infty$ and Cholesky factor A of a covariance matrix Σ , we have $\operatorname{cov} X = \frac{\mathbb{E}(R^2)}{d} \Sigma$ and $\operatorname{corr} X = P$ (the correlation matrix corresponding to Σ).

Example 6.20 (t distribution)

For $Y \sim t_d(\nu, \mathbf{0}, I_d)$, $R^2 = Y'Y = WZ'Z$ for $Z \sim N_d(\mathbf{0}, I_d)$. Therefore,

$$\frac{R^2}{d} = \frac{\mathbf{Z}'\mathbf{Z}/d}{(\nu/W)/\nu} = \frac{\chi_d^2/d}{\chi_\nu^2/\nu} \sim F(d,\nu)$$

and thus $\mathbb{E}(R^2/d) = \frac{\nu}{\nu-2}$.

- This, together with Example 6.19, implies that $X \sim t_d(\nu, \mu, \Sigma)$ has $\operatorname{cov} X = \frac{\nu}{\nu-2} \Sigma$ and $\operatorname{corr} X = P$ (which we already know from Section 6.2.1); note that in the univariate case $X \sim t(\nu, \mu, \sigma^2)$ and $\operatorname{var}(X) = \frac{\nu}{\nu-2} \sigma^2$.
- We also see that we can use a Q-Q plot of the order statistics of $R^2/d = \|Y\|^2/d$ versus the theoretical quantiles of a (hypothesized) $F(d,\nu)$ distribution to check the goodness-of-fit of the hypothesized t distribution (in any dimensions).
- See the appendix for the form of the density generator g.

Example 6.21 (Understanding spherical distributions)

n=500 realizations of S (left) and Y=RS (right) for $R\sim \sqrt{dF(d,\nu)}$, $d=2,\ \nu=4$ (as for the multivariate t distribution with $\nu=4$).

6.3.2 Elliptical distributions

Definition 6.22 (Elliptical distribution)

A random vector $\boldsymbol{X} = (X_1, \dots, X_d)$ has an elliptical distribution if

$$oldsymbol{X} \stackrel{ ext{ iny d}}{=} oldsymbol{\mu} + A oldsymbol{Y}, \quad ext{(multivariate affine transformation)}$$

where $Y \sim S_k(\psi)$, $A \in \mathbb{R}^{d \times k}$ (scale matrix $\Sigma = AA'$), and (location vector) $\boldsymbol{\mu} \in \mathbb{R}^d$.

- By Theorem 6.16, an elliptical random vector admits the stochastic representation $X \stackrel{d}{=} \mu + RAS$, with R and S as before.
- The cf of an elliptical random vector \boldsymbol{X} is $\phi_{\boldsymbol{X}}(t) = \mathbb{E}(e^{it'\boldsymbol{X}}) = \mathbb{E}(e^{it'(\boldsymbol{\mu}+A\boldsymbol{Y})}) = e^{it'\boldsymbol{\mu}}\mathbb{E}(e^{i(A't)'\boldsymbol{Y}}) = e^{it'\boldsymbol{\mu}}\psi(t'\boldsymbol{\Sigma}t)$. Notation: $\boldsymbol{X} \sim \mathbb{E}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\psi})$ (= $\mathbb{E}_d(\boldsymbol{\mu}, c\boldsymbol{\Sigma}, \psi(\cdot/c))$, c > 0).
- If Σ is positive definite with Cholesky factor A, then $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$ if and only if $Y = A^{-1}(X \mu) \sim S_d(\psi)$.

• If $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$ with $\mathbb{P}(X = \mu) = 0$, then $Y = A^{-1}(X - \mu) \sim S_d(\psi)$. Corollary 6.17 implies that

$$\left(\sqrt{(\boldsymbol{X}-\boldsymbol{\mu})'\Sigma^{-1}(\boldsymbol{X}-\boldsymbol{\mu})}, \frac{A^{-1}(\boldsymbol{X}-\boldsymbol{\mu})}{\sqrt{(\boldsymbol{X}-\boldsymbol{\mu})'\Sigma^{-1}(\boldsymbol{X}-\boldsymbol{\mu})}}\right) \stackrel{d}{=} (R, \boldsymbol{S}), \quad (23)$$

which can be used for testing elliptical symmetry.

Normal variance mixture distributions are elliptical (most useful examples) since $X \stackrel{\text{d}}{=} \mu + \sqrt{W}AZ = \mu + \sqrt{W}\|Z\|AZ/\|Z\| = \mu + RAS$ with $R = \sqrt{W}\|Z\|$ and $S = Z/\|Z\|$. By Corollary 6.17, R and S are indeed independent.

© QRM Tutorial Section 6.3.2 | p. 262

Example 6.23 (Understanding elliptical distributions)

n=500 realizations of $\pmb{X}=RAS$ (left) and $\pmb{X}=\pmb{\mu}+RAS$ (right) for $R\sim \sqrt{dF(d,\nu)},\ d=2,\ \nu=4;$ based on the same samples as in Example 6.21.

6.3.3 Properties of elliptical distributions

■ Density: Let Σ be positive definite and $Y \sim S_d(\psi)$ have density generator g. The density transformation theorem implies that $X = \mu + AY$ has density

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{\det \Sigma}} g((\mathbf{x} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})),$$

which depends on x only through $(x - \mu)' \Sigma^{-1} (x - \mu)$, i.e. is constant on ellipsoids (hence the name "elliptical").

■ Linear combinations: For $X \sim \mathrm{E}_d(\pmb{\mu}, \Sigma, \psi)$, $B \in \mathbb{R}^{k \times d}$ and $\pmb{b} \in \mathbb{R}^k$,

$$BX + b \sim \mathbb{E}_k(B\mu + b, B\Sigma B', \psi)$$
 (via cfs).

If $oldsymbol{a} \in \mathbb{R}^d$ (take $oldsymbol{b} = oldsymbol{0}$ and $B = oldsymbol{a}' \in \mathbb{R}^{1 imes d}$),

$$\mathbf{a}' \mathbf{X} \sim \mathrm{E}_1(\mathbf{a}' \boldsymbol{\mu}, \mathbf{a}' \Sigma \mathbf{a}, \psi)$$
 (as for $\mathrm{N}(\boldsymbol{\mu}, \Sigma)$). (24)

From $a = e_j = (0, ..., 0, 1, 0, ..., 0)$ we see that all marginal distributions are of the same type.

- Marginal dfs: As for $N_d(\mu, \Sigma)$, it immediately follows that $X = (X_1', X_2')' \sim E_d(\mu, \Sigma, \psi)$ satisfies $X_1 \sim E_k(\mu_1, \Sigma_{11}, \psi)$ and that $X_2 \sim E_{d-k}(\mu_2, \Sigma_{22}, \psi)$; i.e. margins of elliptical distributions are elliptical.
- Conditional distributions: One can also show that conditional distributions of elliptical distributions are elliptical; see Embrechts et al. (2002). For $N_d(\boldsymbol{\mu}, \Sigma)$ the characteristic generator remains the same.
- Quadratic forms: (23) implies that $(X \mu)' \Sigma^{-1} (X \mu) \stackrel{\text{d}}{=} R^2$. If $X \sim N_d(\mu, \Sigma)$, $R^2 \sim \chi_d^2$; and if $X \sim t_d(\nu, \mu, \Sigma)$, $R^2/d \sim F(d, \nu)$.
- Convolutions: Let $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$ and $Y \sim \mathrm{E}_d(\tilde{\mu}, c\Sigma, \tilde{\psi})$ be independent. Then aX + bY is elliptically distributed for $a, b \in \mathbb{R}$, c > 0.
- Conditional correlations remain invariant See Proposition A.13.

Many (but not all) nice properties of $N_d(\mu, \Sigma)$ are preserved. The following result shows why elliptical distributions are known as the "Garden of Eden" of QRM.

Proposition 6.24 (Subadditivity of VaR in elliptical models)

Let $L_i = \lambda_i' X$, $\lambda_i \in \mathbb{R}^d$, $i \in \{1, \dots, n\}$, with $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$. Then $\mathrm{VaR}_{\alpha}(\sum_{i=1}^n L_i) \leq \sum_{i=1}^n \mathrm{VaR}_{\alpha}(L_i)$ for all $\alpha \in [1/2, 1]$.

Proof. Consider a generic $L=\lambda' X\stackrel{\mathrm{d}}{=} \lambda' \mu + \lambda' A Y$ for $Y\sim S_k(\psi)$. By Theorem 6.15 Part 3), $\lambda' A Y\stackrel{\mathrm{d}}{=} \|\lambda' A\| Y_1$, so $L\stackrel{\mathrm{d}}{=} \lambda' \mu + \|\lambda' A\| Y_1$ (all L_i 's are of the same type). By translation invariance and positive homogeneity,

$$VaR_{\alpha}(L) = \lambda' \mu + \|\lambda' A\| VaR_{\alpha}(Y_1).$$
(25)

Applying (25) once to $L = \sum_{i=1}^n L_i = (\sum_{i=1}^n \lambda_i)' X$ and to each $L = L_i = \lambda_i' X$, $i \in \{1, \dots, n\}$, and using that $\operatorname{VaR}_{\alpha}(Y_1) \geq 0$ for $\alpha \in [1/2, 1]$, we obtain $\operatorname{VaR}_{\alpha}(\sum_{i=1}^n L_i) = \sum_{i=1}^n \lambda_i' \mu + \|\sum_{i=1}^n \lambda_i' A\| \operatorname{VaR}_{\alpha}(Y_1)$ $\leq \sum_{i=1}^n \lambda_i' \mu + (\sum_{i=1}^n \|\lambda_i' A\|) \operatorname{VaR}_{\alpha}(Y_1) = \sum_{i=1}^n (\lambda_i' \mu + \|\lambda_i' A\| \operatorname{VaR}_{\alpha}(Y_1))$ $= \sum_{i=1}^n \operatorname{VaR}_{\alpha}(L_i). \text{ For } \lambda_i = e_i, \operatorname{VaR}_{\alpha}(\sum_{i=1}^n X_i) \leq \sum_{i=1}^n \operatorname{VaR}_{\alpha}(X_i). \quad \Box$

6.4 Dimension reduction techniques

6.4.1 Factor models

Explain the variability of \boldsymbol{X} in terms of common factors.

Definition 6.25 (p-factor model)

 $oldsymbol{X}$ follows a p-factor model if

$$X = a + BF + \varepsilon, \tag{26}$$

where

- 1) $B \in \mathbb{R}^{d \times p}$ is a matrix of factor loadings and $a \in \mathbb{R}^d$;
- 2) $\mathbf{F} = (F_1, \dots, F_p)$ is the random vector of *(common) factors* with p < d and $\Omega := \operatorname{cov}(\mathbf{F})$, *(systematic risk)*;
- 3) $\varepsilon = (\varepsilon_1, \dots, \varepsilon_d)$ is the random vector of *idiosyncratic error terms* with $\mathbb{E}(\varepsilon) = \mathbf{0}$, $\Upsilon := \operatorname{cov}(\varepsilon)$ diag., $\operatorname{cov}(\mathbf{F}, \varepsilon) = (0)$ (*idiosync. risk*).

- Goals: Identify or estimate F_t , $t \in \{1, ..., n\}$, then model the distribution/dynamics of the (lower-dimensional) factors (instead of X_t , $t \in \{1, ..., n\}$).
- Factor models imply that $\Sigma := \text{cov}(\boldsymbol{X}) = B\Omega B' + \Upsilon$.
- With $B^* = B\Omega^{1/2}$ and $\mathbf{F}^* = \Omega^{-1/2}(\mathbf{F} \mathbb{E}(\mathbf{F}))$, we have

$$X = \mu + B^* F^* + \varepsilon,$$

where $\mu = \mathbb{E}(X)$. We have $\Sigma = B^*(B^*)' + \Upsilon$. Conversely, if $\operatorname{cov}(X) = BB' + \Upsilon$ for some $B \in \mathbb{R}^{d \times p}$ with $\operatorname{rank}(B) = p < d$ and diagonal matrix Υ , then X has a factor-model representation for a p-dimensional F and d-dimensional ε .

• For a one-factor/equicorrelation example, see the appendix.

6.4.2 Statistical estimation strategies

Consider $X_t = a + BF_t + \varepsilon_t$, $t \in \{1, ..., n\}$. Three types of factor model are commonly used:

- 1) Macroeconomic factor models: Here we assume that F_t is observable, $t \in \{1, \dots, n\}$. Estimation of B, a is accomplished by time series regression.
- 2) Fundamental factor models: Here we assume that the matrix of factor loadings B is known but the factors F_t are unobserved (and have to be estimated from X_t , $t \in \{1, \ldots, n\}$, using cross-sectional regression at each t).
- 3) Fundamental factor models: Here we assume that neither the factors F_t nor the factor loadings B are observed (both have to be estimated from X_t , $t \in \{1, ..., n\}$). The factors can be found with principal component analysis.

6.4.3 Estimating macroeconomic factor models

This is achieved by time series regression.

Univariate regression

Consider the (univariate) time series regression model

$$X_{t,j} = a_j + \boldsymbol{b}'_j \boldsymbol{F}_t + \varepsilon_{t,j}, \quad t \in \{1, \dots, n\}.$$

- To justify the use of the ordinary least-squares (OLS) method to derive statistical properties of the method it is usually assumed that, conditional on the factors, the errors $\varepsilon_{1,j},\ldots,\varepsilon_{n,j}$ form a white noise process (i.e. are identically distributed and serially uncorrelated).
- \hat{a}_j estimates a_j , \hat{b}_j estimates the jth row of B.

Models can also be estimated simultaneously using multivariate regression; see McNeil et al. (2015).

6.4.4 Estimating fundamental factor models

- Consider the cross-sectional regression model $X_t = BF_t + \varepsilon_t$ (B known; F_t to be estimated; $cov(\varepsilon) = \Upsilon$); note that a can be absorbed into F_t . To obtain precision in estimating F_t , we need $d \gg p$.
- First estimate F_t via OLS by $\hat{F}_t^{\text{OLS}} = (B'B)^{-1}B'X_t$. This is the best linear unbiased estimator if the ε is homoskedastic. However, it is possible to obtain linear unbiased estimates with a smaller covariance matrix via generalized least squares (GLS).
- To this end, estimate Υ by $\hat{\Upsilon}$ via the diagonal of the sample covariance matrix of the residuals $\hat{\boldsymbol{\varepsilon}}_t = \boldsymbol{X}_t B\hat{\boldsymbol{F}}_t^{\text{OLS}}$, $t \in \{1, \dots, n\}$.
- Then estimate F_t via $\hat{F}_t = (B'\Upsilon^{-1}B)^{-1}B'\Upsilon^{-1}X_t$.

6.4.5 Principal component analysis

- Goal: Reduce the dimensionality of highly correlated data by finding a small number of uncorrelated linear combinations which account for most of the variance in the data; this can be used for finding factors.
- **Key:** Any symmetric *A* admits a *spectral decomposition*

where
$$A = \Gamma \Lambda \Gamma',$$

- 1) $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ is the diagonal matrix of eigenvalues of A which, w.l.o.g., are ordered so that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$; and
- 2) Γ is an orthogonal matrix whose columns are eigenvectors of A standardized to have length 1.
- Let $\Sigma = \Gamma \Lambda \Gamma'$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$ (positive semidefiniteness \Rightarrow all eigenvalues ≥ 0) and $\boldsymbol{Y} = \Gamma'(\boldsymbol{X} \boldsymbol{\mu})$ (the so-called *principal component transform*). The jth component $Y_j = \gamma'_j(\boldsymbol{X} \boldsymbol{\mu})$ is the jth principal component of \boldsymbol{X} (where γ_j is the jth column of Γ).

- We have $\mathbb{E}Y = 0$ and $\operatorname{cov}(Y) = \Gamma'\Sigma\Gamma = \Gamma'\Gamma\Lambda\Gamma'\Gamma = \Lambda$, so the principal components are uncorrelated and $\operatorname{var}(Y_j) = \lambda_j$, $j \in \{1, \ldots, d\}$. The principal components are thus ordered by decreasing variance.
- One can show:
 - The first principal component is that standardized linear combination of X which has maximal variance among all such combinations, i.e. $var(\gamma_1'X) = max\{var(a'X) : a'a = 1\}.$
 - For $j \in \{2, \ldots, d\}$, the jth principal component is that standardized linear combination of \boldsymbol{X} which has maximal variance among all such linear combinations which are orthogonal to (and hence uncorrelated with) the first j-1-many linear combinations.
- $\sum_{j=1}^{d} \operatorname{var}(Y_j) = \sum_{j=1}^{d} \lambda_j = \operatorname{trace}(\Sigma) = \sum_{j=1}^{d} \operatorname{var}(X_j)$, so we can interpret $\sum_{j=1}^{k} \lambda_j / \sum_{j=1}^{d} \lambda_j$ as the fraction of total variance explained by the first k principal components.

© QRM Tutorial

Principal components as factors

lacksquare Inverting the principal component transform $Y=\Gamma'(X-\mu)$, we have

$$X = \mu + \Gamma Y = \mu + \Gamma_1 Y_1 + \Gamma_2 Y_2 =: \mu + \Gamma_1 Y_1 + \varepsilon$$

where $Y_1 \in \mathbb{R}^k$ contains the first k principal components. This is reminiscent of the basic factor model.

- Although $\varepsilon_1, \dots, \varepsilon_d$ will tend to have small variances, the assumptions of the factor model are generally violated (since they need not have a diagonal covariance matrix and need not be uncorrelated with Y_1). Nevertheless, principal components are often interpreted as factors.
- In principle, the same can be applied to the sample covariance matrix to obtain the sample principal components; see the appendix.