

E3020 Systèmes embarqués

CM2-CARACTÉRISTIQUES D'UN MICROCONTRÔLEUR

Objectifs

- Evaluer l'ensemble des modules/fonctions insérables dans un microcontrôleur
- 2. Pour chaque fonction déterminer les données caractéristiques
- 3. Sélectionner un microcontrôleur pour une application
- 4. Evaluer les suites logiciels mises à disposition

Quelles sont les modules/le cœur d'un microcontrôleur?

Quelles sont les modules/le cœur d'un microcontrôleur?

Liste:

PIC18(L)F2X/4XK22

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with XLP Technology

High-Performance RISC CPU:

- . C Compiler Optimized Architecture: - Optional extended instruction set designed to
- optimize re-entrant code

 Up to 1024 Bytes Data EEPROM
- . Up to 64 Kbytes Linear Program Memory
- Addressing

 Up to 3896 Bytes Linear Data Memory Address-
- Up to 16 MIPS Operation
- 16-bit Wide Instructions, 8-bit Wide Data Path
 Priority Levels for Interrupts
- 31-Level. Software Accessible Hardware Stack
- · 8 x 8 Single-Cycle Hardware Multiplier

Flexible Oscillator Structure:

- · Precision 16 MHz Internal Oscillator Block:
- Factory calibrated to ± 1% Selectable frequencies, 31 kHz to 16 MHz
- 64 MHz performance available using PLL –
- no external components required Four Crystal modes up to 64 MHz
- . Two External Clock modes up to 64 MHz
- 4X Phase Lock Loop (PLL)
- Secondary Oscillator using Timer1 @ 32 kHz
- Fall-Safe Clock Monitor:
 Allows for safe shutdown if peripheral clock
- Two-Speed Oscillator Start-up

Analog Features:

- · Analog-to-Digital Converter (ADC) module:
- 10-bit resolution, up to 30 external channels Auto-acquisition capability
- Conversion available during Sleep
- Fixed Voltage Reference (FVR) channel Independent input multiplexing
- · Analog Comparator module:
- Two rail-to-rail analog comparators
- Independent input multiplexing
- . Digital-to-Analog Converter (DAC) module: Fixed Voltage Reference (FVR) with 1.024V, 2.048V and 4.096V output levels
- 5-bit rail-to-rail resistive DAC with positive and negative reference selection
- . Charge Time Measurement Unit (CTMU) module Supports capacitive touch sensing for touch screens and capacitive switches

Extreme Low-Power Management PIC18(L)F2X/4XK22 with XLP:

- · Sleep mode: 20 nA, typical
- Watchdog Timer: 300 nA, typical
 Timer1 Oscillator: 800 nA @ 32 kHz
- · Peripheral Module Disable
- Special Microcontroller Features:
- 2.3V to 5.5V Operation PIC18FXXK22 devices
- 1.8V to 3.6V Operation PIC18LFXXK22 devices · Self-Programmable under Software Control
- . High/Low-Voltage Detection (HLVD) module:
- Programmable 16-Level
 Interrupt on High/Low-Voltage Detection
- . Programmable Brown-out Reset (BOR): With software enable option
- Configurable shutdown in Sleep
- · Extended Watchdog Timer (WDT): - Programmable period from 4 ms to 131s
- In-Circuit Serial Programming™ (ICSP™)
- · In-Circuit Debug (ICD)

Peripheral Highlights:

- · Up to 35 I/O Pins plus 1 Input-Only Pin:
- High-Current Sink/Source 25 mA/25 mA
- Three programmable external interrupts
- Four programmable interrupt-on-change
 Nine programmable weak pull-ups
- Programmable slew rate
- SR Latch:
 Multiple Set/Reset input options
- Two Capture/Compare/PWM (CCP) modules
 Three Enhanced CCP (ECCP) modules:
- Selectable polarity
- Programmable dead time
 Auto-Shutdown and Auto-Restart PWM steering
- Two Master Synchronous Serial Port (MSSP) modules:
- 3-wire SPI (supports all 4 modes) I²CTH Master and Slave modes with address

EFM32G890F128 de chez EnergyMicro

Microchip Block Diagram Support

Première définition (wikipedia)

A **microcontroller** (or **MCU** for *microcontroller unit*) is a small <u>computer</u> on a single <u>integrated circuit</u>. In modern terminology, it is similar to, but less sophisticated than, a <u>system on a chip</u> or SoC; an SoC may include a microcontroller as one of its components. A microcontroller contains one or more <u>CPUs</u> (processor cores) along with <u>memory</u> and programmable <u>input/output</u> peripherals. Program memory in the form of <u>ferroelectric RAM</u>, <u>NOR flash</u>or <u>OTP ROM</u> is also often included on chip, as well as a small amount of <u>RAM</u>. Microcontrollers are designed for <u>embedded</u> applications, in contrast to the <u>microprocessors</u> used in <u>personal computers</u> or other general purpose applications consisting of various discrete chips.

Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, implantable medical devices, remote controls, office machines, appliances, power tools, toys and other embedded systems. By reducing the size and cost compared to a design that uses a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to digitally control even more devices and processes. Mixed signal microcontrollers are common, integrating analog components needed to control non-digital electronic systems.

Some microcontrollers may use four-bit <u>words</u> and operate at frequencies as low as 4 kHz, for low power consumption (single-digit milliwatts or microwatts). They will generally have the ability to retain functionality while waiting for an event such as a button press or other interrupt; power consumption while sleeping (CPU clock and most peripherals off) may be just nanowatts, making many of them well suited for long lasting battery applications. Other microcontrollers may serve performance-critical roles, where they may need to act more like a <u>digital signal processor</u> (DSP), with higher clock speeds and power consumption.

Quelles différences entre :

Quelles différences entre :

Bus de données	Freq. Max	Mémoire ROM
8 bits	2 MHz	32 kB
32 bits	60 MHz	18 MB
64 bits	2,34GHz	256 GB
64 bits	3,10GHz	ТВ

BeagleBone Black

Caractéristiques:

~50€

■ RAM: 512MB

■ Fréquence : 1GHz

■ Flash: 4GB

Caractéristiques de chaque module ?

Fonctionnement d'une PWM (Partie avec comparateur omise)

Caractéristiques

Sélectionner un microcontrôleur

Liste des constructeurs :

- Microchip
- Motorola
- ST-micro
- NEC
- ATMEL
- Sunplus
- Hitachi
- Fujitsu

- NXP
- Toshiba
- Intel
- Zilog
- EnergyMicro
- Texas Instrument
- Analog device
- ...

Critère de sélection

Aptitude de la puce à faire le travail (une seule puce nécessaire?)

- Nbre d'entrées/sorties :
 - trop peu ne peut pas faire le job.
 - trop élevé, cela représente un surcoût
- Autres périphériques présents en nombre suffisants?
 - ADC RAM ROM DAC port série
 - Est-ce qu'il y en à d'autres qui ne sont pas nécessaire
- Rendement du CPU : puissance de calcul
 - Trop faible => ne marchera jamais
 - Trop élevé => gaspillage
- Prix du microcontrôleur est-il envisageable ?

Critère de sélection

Disponibilité

- Quel est l'état du stock actuellement
- Est-il toujours en production
- Quels sont les productions futures

Support de développement disponible:

- Assemblage
- Compilateur
- Outils de debugging
- Exemples d'applications

Mise en situation

Sélectionner un candidat parmi la suite Microchip pour ...

Mise en situation

Liens Microchip:

http://www.microchip.com/maps/main.aspx

http://www.microchip.com/ParamChartSearch/chart.
aspx?branchID=1005

Where would you like to start? Analog Interface Memory MCUs & MPUs Wireless Do you have a part number? Click this button to fi

obal Part Search

8-bit PIC® Microcontroller Peripheral Integration

Quick Reference Guide

				Peripheral Function Focus																																				
		Intelligent Analog									Waveform Control							Timing and Measurements ⁽¹⁾						Logic and Math			Safety and Monitoring			Communications				User Interface			Low Power and System Flexibility			
Product Family O O E	Program Flash Memo	Data EE (B)	ADC (# of bits)	Comp	HSComp	DAC (# of bits)	HC I/O (mA)	OPA		SlopeComp	CCP/ECCP	10-bit PWM	16-bit PWM	500	5 CWG	NCO	AnaTMR	HLT (8-bit)	16-bit PWM (16-bit)	NCO (20-bit)	SMT (24-bit)	нтсс	TEMP/TS	CLC	MathAcc	CRC/SCAN	HLT	WWDT	EUSART/AUSART	UART with Protocols	_ :	USB with ACI	LIN Capable	5		000	IDLE/DOZE/PMD	DMAVI	DIA/MAP	
PIC10(L)F3XX	6	384-896 B	HEF	8						Т		Т	~	П	٦,	7	7	Г			1		Т	7	1	Т					\exists	Т	Т	1		Т	Т		П	П
PIC16(L)F151X/2X	28-64	3.5-28	HEF	10								1				T								1						2		2		1						
PIC12LF1552	8	3.5	HEF	10								Г				Т								7								/		-	1		Т			
PIC16LF155X/6X	14-20	7-14	HEF	10 ²⁰								Г	~			Т		Г						/						1		2		/ /	1		Т			П
PIC16(L)F145X	14-20	14	HEF	10	1								1			4								1						1		v ,	/ 4	1						
PIC1X(L)F157X	8-20	1.75-14	HEF	10	4		5			Т		Г	Г	~	١,	7	Т	Г		1			П	7		Т				1	\neg	Т		/ /	1	Т	7		П	П
PIC16(L)F153XX	8-48	3.5-28	HEF	10	1		5				1	1	4			-	/		1		1			1	1			1	1	2		2	Т	~			-	1		1
PIC1X(HV)F752/53	8-14	1.75-3.5	-	10		1	5/9	50	1		1	1			/				1							T		1						1						

Suite logiciel

Microchip:

Suite logiciel

ST MICROELECTRONIC: CUBE MX

Question de réflexion

Comment échanger des informations entre deux éléments électroniques intelligents?