V/S Modellieren in der Landschaftsarchäologie

Freie Universität Berlin M.Sc. Landschaftsarchäologie

Dr. Daniel Knitter

Inverse Distance Weighting

Inverse Distance Weighting

$$\hat{z}_j = \sum_{i=1}^m w_{ij} z_i$$

100

Control point	$Height \ z_i$	x_i	y_i	$egin{aligned} Distance \ d_{ij} \end{aligned}$	Inverse $distance 1/d_{ij}$	$Weight \ w_{ij}$	Weighted $value\ w_{ij}z_i$
1	104	1	2	2.000	0.50	0.1559	16.21
2	100	2	3	1.414	0.71	0.2205	22.05
3	96	3	3	1.000	1.00	0.3118	29.93
4	88	3	1	1.000	1.00	0.3118	27.44
Totals					3.21	1.0000	95.63

Square root differences cloud

1. Describing spatial variation

Square root differences cloud

Distance classes → lags and summary statistics

1. Describing spatial variation

Square differences, i.e. semivariogram cloud

1. Describing spatial variation

Squared height difference

40000

20000

Square differences, i.e. semivariogram cloud

Distance classes → lags and summary statistics → experimental semivariogram [or short variogram]

Semivariance

$$2\hat{\gamma}(d) = rac{1}{n(d)} \sum_{d_{ii}=d} ig(z_i - z_jig)^2$$

1. Describing spatial variation

= mean of sum of squared differences at distance d

Squared height difference

60000

40000

20000

Square differences, i.e. semivariogram cloud

Distance classes → lags and summary statistics → experimental semivariogram

[or short variogram]

Semivariance

$$2\hat{\gamma}(d)=rac{1}{n(d\pm\Delta/2)}{\sum_{d\pm\Delta/2}\left(z_i-z_j
ight)^2}$$

1. Describing spatial variation

= mean of sum of squared differences at distance lags

Fitting a function to the experimental estimates from the semivariogram

Any function? No. Function has to be authorized

- → function can only be positive
- → intercept at zero

2. Summarizing spatial variation

Fitting a function to the experimental estimates from the semivariogram

Exemplary functions to fit

"Elements" of a semivariogram

Nugget effect

- → measurement error
- → variation below shortest sampling interval

Sill

→ where range of semivariance

Range

→ distance at which semivariance reaches maximal value

2. Summarizing spatial variation

