МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студентка гр. 7304	Нгуен Т.Т.3.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Исследовать показатели надёжности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных.

Постановка задачи.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- A) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - Б) экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{9KCII} = s_{9KCII} = 1/b = 10$.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

 $W(y)=(y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход выполнения.

1. Равномерный закон

Был сгенерирован и отсортирован по возрастанию массивы данных $\{X_i\}$, где X_i – случайное значение *интервала между соседними на интервале* [0,20].

а. Равномерный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0.542	11	7.084	21	13.983
2	1.183	12	7.330	22	14.044
3	1.279	13	7.819	23	14.112
4	1.714	14	8.962	24	15.254
5	2.220	15	9.737	25	15.601
6	2.614	16	10.931	26	16.453
7	2.693	17	11.044	27	16.805
8	3.696	18	11.346	28	17.004
9	4.020	19	12.219	29	18.675
10	5.336	20	13.278	30	19.553

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19.769$$
$$A > \frac{n+1}{2} = 15.5$$

19.769 > 15.5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m,A) $
31	3.0272452	2.67128313	0.3559620

32	2.5584952	2.45287256	0.10562263
33	2.25546489	2.26747807	0.0120131
34	2.03487666	2.10813941	0.0732627
35	1.86344809	1.96972429	0.1062762
36	1.7245592	1.84836529	0.1238061

Минимум при m = 33,
$$\hat{B} = m - 1 = 32$$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.00932$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$
i 31 32

i	31	32
\widehat{X}_{i}	53.648	107.296

Время до завершения тестирования = $\sum_{i=31}^{32} \widehat{X}_i = 160.944$ дней Полное время тестирования $\sum_{i=1}^{30} \widehat{X}_i + \sum_{i=31}^{32} \widehat{X}_i = 447.475$ дней

b. Равномерный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0.017	9	8.495	17	14.679
2	0.047	10	8.742	18	15.245
3	0.353	11	9.096	19	16.396
4	3.152	12	9.541	20	16.756
5	3.232	13	10.263	21	16.998
6	4.734	14	12.741	22	18.957
7	4.867	15	13.148	23	19.047
8	5.867	16	14.193	24	19.687

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 15.686$$
$$A > \frac{n+1}{2}$$

15.686 > 12,5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
25	2.81595818	2.57679681	0.23916137
26	2.35441972	2.32695926	0.02746046
27	2.05812342	2.12128646	0.06316304
28	1.84383771	1.94901867	0.10518097
29	1.67832046	1.80262879	0.12430833
30	1.54498713	1.67669315	0.13170602

Минимум при m = 26, $\hat{B} = m - 1 = 25$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.01172$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)} = 85.324$$

Время до завершения тестирования = 85.324дней

Полное время тестирования = 331.577 дней

с. Равномерный закон распределения (60% входных данных)

i	X	i	X	i	X
1	0.333	7	5.500	13	15.763
2	0.401	8	6.164	14	16.307
3	0.898	9	6.465	15	16.416

4	1.724	10	6.784	16	18.267
5	3.170	11	7.506	17	18.606
6	3.613	12	10.417	18	18.863

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.341$$
$$A > \frac{n+1}{2}$$

12.341 > 9.5 = > существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m,A) $
19	2.54773966	2.70320182	0.15546216
20	2.09773966	2.35024675	0.25250709
21	1.81202537	2.07881712	0.26679175
22	1.60747992	1.86359127	0.25611135
23	1.45095818	1.68875015	0.23779198
24	1.32595818	1.5439021	0.21794392

Минимум при m = 19, $\hat{B} = m - 1 = 18$

 $\widehat{B}=$ n => найдены все ошибки — тестирование завершено. Полное время тестирования $\sum_{i=1}^{30} X_i = 157.204$ дней

2. Экспоненциальный закон

а. Экспоненциальный закон (100% входных данных)

i	X	i	X	i	X
1	0.050	11	6.185	21	13.863

2	0.456	12	6.447	22	16.606
3	0.873	13	7.525	23	18.256
4	1.389	14	8.571	24	19.336
5	1.629	15	10.007	25	19.998
6	1.832	16	10.238	26	21.730
7	2.409	17	10.348	27	26.238
8	3.109	18	11.424	28	28.148
9	5.431	19	12.426	29	28.460
10	5.512	20	12.684	30	29.973

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 21.1276$$
$$A > \frac{n+1}{2} = 15.5$$

21.1276 > 15.5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m,A) $
31	3.0272452	3.0387755	0.0115303
32	2.5584952	2.7592810	0.2007858
33	2.2554648	2.5268695	0.2714047
34	2.0348766	2.3305681	0.2956915
35	1.8634480	2.1625678	0.2991197

Минимум при m = 31, $\hat{B} = m - 1 = 30$

 $\widehat{B}=$ n => найдены все ошибки — тестирование завершено. Полное время тестирования $\sum_{i=1}^{30} X_i = 341.152$ дней

b. Экспоненциальный закон (80% входных данных)

i	X	i	X	i	X
1	0.0012	9	6.534	17	9.975
2	0.145	10	6.567	18	14.417
3	1.733	11	6.907	19	14.778
4	1.835	12	7.243	20	15.551
5	1.893	13	7.768	21	17.763
6	1.954	14	8.262	22	18.801
7	2.937	15	8.334	23	22.342
8	5.789	16	9.803	24	23.223

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 16.550$$
$$A > \frac{n+1}{2} = 12.5$$

16.550 > 12,5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m, A) $
25	2.81595818	2.84034861	0.02439043
26	2.35441972	2.53977203	0.18535231
27	2.05812342	2.2967239	0.23860048
28	1.84383771	2.09613082	0.25229312
29	1.67832046	1.9277624	0.24944194

Минимум при m = 25, $\hat{B} = m - 1 = 24$

 $\widehat{B} = n \Longrightarrow$ найдены все ошибки — тестирование завершено.

Полное время тестирования $\sum_{i=1}^{24} X_i = 199.195$ дней

с. Экспоненциальный закон (60% входных данных)

i	X	i	X	i	X
1	0.669	7	1.875	13	8.012
2	0.828	8	2.619	14	15.390
3	0.878	9	2.836	15	21.554
4	1.273	10	3.156	16	25.090
5	1.687	11	3.845	17	30.066
6	1.862	12	7.936	18	56.376

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 14.211$$
$$A > \frac{n+1}{2} = 9.5$$

14.211 > 9.5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m, A) $
19	2.54773966	2.54773966	1.2110318
20	2.09773966	2.09773966	1.0117137
21	1.81202537	1.81202537	0.839401
22	1.60747992	1.60747992	0.7035311
23	1.45095818	1.45095818	0.5971032

Минимум при m = 23, $\hat{B} = m - 1 = 22$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.01425$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	19	20	21	22
\widehat{X}_{i}	5.0125	23.3918	35.0877	70.1754

Время до завершения тестирования: $\sum_{i=1}^{18} X_i = 185.952$ дней Полное время тестирования $\sum_{i=1}^{18} X_i + \sum_{i=19}^{22} \widehat{X}_i = 319.619$ дней

3. Релеевский закон

а. Релеевский закон (100% входных данных)

i	X	i	X	i	X
1	3.294	11	8.070	21	10.811
2	3.574	12	8.143	22	10.841
3	5.858	13	8.247	23	12.135
4	6.176	14	9.481	24	12.613
5	6.204	15	9.780	25	13.364
6	6.228	16	9.974	26	13.783
7	6.668	17	10.245	27	14.079
8	6.693	18	10.328	28	16.083
9	6.879	19	10.580	29	17.284
10	7.621	20	10.708	30	23.426

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 17.85781$$
$$A > \frac{n+1}{2} = 15.5$$

17.85781 > 15.5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m,A) $
31	3.0272452	2.2827245	0.744520
32	2.5584952	2.1213121	0.437183
33	2.2554648	1.9812193	0.274245
34	2.0348766	1.8584838	0.176392
35	1.8634480	1.7500681	0.113379

Минимум при m = 35, $\hat{B} = m - 1 = 34$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.006622$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	31	32	33	34
\widehat{X}_{i}	37.7529	50.3372	75.5058	151.0117

Время до завершения тестирования: $\sum_{i=1}^{30} X_i = 299.172$ дней Полное время тестирования $\sum_{i=1}^{30} X_i + \sum_{i=31}^{34} \widehat{X}_i = 613.779$ дней

b. Релеевский закон (80% входных данных)

i	X	i	X	i	X
1	0.377	9	8.886	17	10.692
2	1.677	10	8.929	18	12.200
3	3.326	11	8.953	19	12.244
4	3.501	12	9.452	20	13.275
5	3.510	13	9.535	21	13.508

6	5.888	14	9.713	22	15.463
7	7.681	15	9.899	23	16.083
8	8.352	16	10.134	24	17.733

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 14.708$$
$$A > \frac{n+1}{2} = 12.5$$

14.708 > 12,5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

29	1.67832046	1.6793123	0.0009919
28	1.84383771	1.8056566	0.0381811
27	2.05812342	1.9525587	0.1055647
26	2.35441972	2.1254806	0.2289391
25	2.81595818	2.3320071	0.4839510
m	f(m)	g(m,A)	$ f_i(m) - g_i(m,A) $

Минимум при m = 29, $\hat{B} = m - 1 = 28$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.00883$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	25	26	27	28
\widehat{X}_{i}	28.3125	37.7501	56.6251	113.2502

Время до завершения тестирования: $\sum_{i=1}^{24} X_i = 221.011$ дней

Полное время тестирования $\sum_{i=1}^{24} \mathbf{X_i} + \sum_{i=25}^{28} \widehat{\mathbf{X}_i} = 456.949$ дней

с. Релеевский закон (60% входных данных)

i	X	i	X	i	X
1	0.699	7	6.658	13	14.254
2	3.452	8	9.514	14	14.518
3	4.479	9	9.525	15	14.563
4	4.709	10	11.406	16	15.959
5	4.738	11	11.599	17	16.499
6	5.752	12	13.515	18	20.096

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 11.131$$
$$A > \frac{n+1}{2} = 9.5$$

11.131 > 9.5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	$ f_i(m) - g_i(m, A) $
19	2.54773966	2.30006967	0.24766998
20	2.09773966	2.03946365	0.05827601
21	1.81202537	1.8319026	0.01987723
22	1.60747992	1.66268701	0.05520709
23	1.45095818	1.52208934	0.07113116

Минимум при m = 21, $\hat{B} = m - 1 = 20$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.01264$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	19	20
\widehat{X}_{i}	39.5569	79.1139

Время до завершения тестирования: $\sum_{i=1}^{18} X_i = 181.935$ дней

Полное время тестирования $\sum_{i=1}^{18} \mathbf{X_i} + \sum_{i=19}^{20} \widehat{\mathbf{X}_i} = 300.606$ дней

4. Полученные результаты

Таблица 1 – Оценка первоначального числа ошибок

Закон	N=30	N=24	N=18
распределения			, -
Равномерный	32	25	18
Экспоненциальный	30	24	22
Релеевский	34	28	20

Таблица 2 – Оценка полного времени проведения тестирования (дней)

Закон	N=30	N=24	N=18
распределения			
Равномерный	447.475	331.577	157.204
Экспоненциальный	341.152	199.195	319.619
Релеевский	613.779	456.949	300.606

Выводы

В ходе выполнения лабораторной работы были исследованы показатели обнаружения надёжности программ, характеризуемые моделью ошибок Джелинского-Моранды ДЛЯ различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных. Были генерированы массивы по разным законам в процессе исследования. Как видно наилучший результат получачется при использовании экспоненциального закона распределения.