Argonne Tandem Linac Accelerator System – линейный ускоритель тяжелых ионов в Argonne National Laboratory (USA)

Керим Гусейнов

МГУ им. М. В. Ломоносова

17 ноября 2021 г.

CARIBU – подача продуктов распада 252 Cf

Программа эксперимента. Структура ядер

- ullet Сравнение свойств ядер A < 20 с вычислениями по модели оболочек.
- Исследование свойств нейтроноизбыточных ядер: изменения в структуре оболочек, спаривание, новые коллективные возбуждения.
- Изучение воздействия слабой энергии связи на ядра вблизи протонной радиоактивности: структура оболочек, деформация, радиоактивность. Особое внимание области N=Z при 50 < A < 100, а также вблизи $^{100}{\rm Sn}$.
- Изучение ядер с зарядом Z>100 и проверка теорий, описывающих сверхтяжелые ядра.
- Изучение свойств ядер при больших спинах и энергиях возбуждения, включая взаимосвязь коллективных и одночастичных степеней свободы, поиск новых коллективных мод и их спектральных сигнатур по всей таблице, изучение зависимости плотности уровней от углового момента и температуры.

Программа эксперимента. Нуклеосинтез в звездах

- Измерение сечений реакций расширенного CNO-цикла.
- ullet Измерение сечений (lpha,p) и (p,γ) реакций на пути rp-процесса.
- Измерение сечений реакций между тяжелыми ионами при энергиях, соответствующих горению в звездах.
- ullet Изучение реакций, ответственных за образование ядер p-процесса.
- Изучение масс и свойств распадов ядер вблизи линии r-процесса, в частности, вблизи N=82,126 и в редкоземельном пике.

Программа эксперимента. Динамика вблизи кулоновского барьера

- Изучение подавления слияния при экстремальных подбарьерных энергиях, особенно в системах, актуальных для ядерной астрофизики.
- Влияние ядерной структуры (деформация, структура оболочек, диссипация и др.) на слияние, особенно для реакций, приводящих к ядрам с Z>100.
- Влияние избытка нейтронов на ядерные реакции вблизи кулоновского барьера.

Программа эксперимента. Проверка симметрий природы

- Поиски возможных расширений Стандартной модели путем улучшения на порядок ограничений на скалярную, тензорную и правую компоненты электрослабых взаимодействий.
- Проверка гипотезы сохранения векторного тока и унитарности первого ряда матрицы Кабиббо-Кобаяши-Маскава путем изучения бета-распадов.
- Изучение спектров антинейтрино в распадах продуктов деления для определения природы видимой аномалии реакторных нейтрино, наблюдавшейся в экспериментах по осцилляции нейтрино.

Программа эксперимента. Приложения ядерной физики

- Использование ускорительной масс-спектрометрии для изучения сечений захвата нейтронов различными изотопами, представляющими интерес для реакторной физики и ядерной астрофизики.
- Изучение свойств распада нейтроноизбыточных изотопов, важных для точного моделирования динамики в новых циклах ядерного топлива.
- Использование бомбардировки тяжелыми ионами для изучения повреждений материалов, рассматриваемых для передовых реакторов, и модификации сверхпроводящих материалов.
- Разработка новых способов образования отдельных изотопов для медицинских нужд.

Публикации

- Proton decay of 108 I and its significance for the termination of the astrophysical rp-process. Phys. Lett. B 792, 187 (2019)
- Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd 160,162 Eu Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98. Phys. Rev. Lett. 120, 182502 (2018)
- Direct Evidence of Octupole Deformation in Neutron-Rich ¹⁴⁴Ba. Phys. Rev. Lett. 116, 112503 (2016)
- Precision Mass Measurements of Neutron-Rich Neodymium and Samarium Isotopes and Their Role in Understanding Rare-Earth Peak Formation. Phys. Rev. Lett. 120, 262702 (2018)
- Shape Coexistence and the Role of Axial Asymmetry in ⁷²Ge. Phys. Lett. B 754, 254 (2016)
- Modeling Multi-Nucleon Transfer in Symmetric Collisions of Massive Nuclei. Phys. Lett. B 771, 119 (2017)
- Reaction rate for carbon burning in massive stars Phys. Rev. C 97, 012801 (2017)

 Керим Гусейнов
 ATLAS – ANL (USA)
 17 ноября 2021 г.

Proton decay of 108 I and its significance for the termination of the astrophysical $\it rp$ -process

 $^{112}_{55}{\rm Cs}$ стабильнее $^{113}_{55}{\rm Cs}$ и, возможно, $^{104}{\rm Sb}$ стабильнее ожидаемого. Тогда именно через него идет путь rp-процесса. Для нахождения $Q_p(^{104}{\rm Sb})$ ищется $Q_p(^{108}{\rm I})$.

58
Ni $+^{54}$ Fe $→^{108}$ I + $p + 3n$

- ullet Выделялись ионы с A=108 и зарядом +26, +27.
- Рассматривались цепи событий попадание-распад и попадание-распад-распад в одном и том же пикселе кремниевого детектора.

Proton decay of 108 I and its significance for the termination of the astrophysical rp-process

Proton decay of 108 I and its significance for the termination of the astrophysical $\it rp$ -process

Proton decay of 108 I and its significance for the termination of the astrophysical rp-process

Fig. 4. Energy-energy correlation matrix for two subsequent decay events in R-d1-d2 chains, when the R-d1 and d1-d2 time differences are less than 130 ms and 18 ms, respectively. The inset provides the energy spectrum of the newly observed ¹⁰⁸ proton decay events, which are highlighted with a dashed circle in the main panel. Due to a high count rate in the DSSD and the long half-life, ¹⁰⁸Te α -decay events self-correlate randomly. The dashed lines mark the energies of selected, previously identified, charged-particle decay activities in this region.

Proton decay of 108 I and its significance for the termination of the astrophysical rp-process

Table 1 Q values, half-lives $T_{1/2}$, and mass excesses Δ obtained in the present study compared to the literature values.

Quantity	This work	AME2016 [31,38,39]	Other studies	
$Q_p(^{108}I) \text{ (keV)}$	597(13)	600(110)	≥240	[19]
•			≲600	[26]
$Q_p(^{104}Sb)$ (keV)	510(20)	510(100)	≥150	[19]
			≤520	[19]
			≲550	[26]
$Q_{\alpha}(^{108}I)$ (keV)	4097(10)	4100(50)	4099(5)	[26]
$Q_{\alpha}(^{107}\text{Te}) \text{ (keV)}$	4007(10)	4008(5)	3982(16)	[40]
			4012(10)	[32]
$Q_{\alpha}(^{112}Cs)$ (keV)	3940(20)	3930(120)	≥3830	[19]
			≤4210	[19]
			≲3940	[29]
$T_{1/2}(^{107}\text{Te}) \text{ (ms)}$	3.6(2)	3.1(1)	$3.6^{+0.6}_{-0.4}$	[40]
	-11(-)	(-)	3.1(1)	[29]
$T_{1/2}(^{108}I) \text{ (ms)}$	26.4(8)	36(6)	36(6)	[29]
$\Delta(^{104}Sb)$ (MeV)	-59.17(8)	- 59.17(12)		
$\Delta(^{108}I)$ (MeV)	-52.65(8)	-52.65(13)		

Будущее ATLAS в ANL

- Использование CARIBU для получения и изучения нейтроноизбыточных ядер при низких энергиях.
- Модернизация сверхпроводников и увеличение максимальной энергии для получения новых радиоактивных изотопов на лету в реакциях с большой передачей импульса.
- Переход на сверхпроводники в источниках ионов для увеличения интенсивности пучков стабильных ядер и ядер, образующихся на лету.
- Создание генератора нейтронов и замена калифорния в CARIBU на тонкую фольгу из актинидов, которые будут испытывать вынужденное деление под действием нейтронов из генератора.
- Внедрить стабильные пучки в интервалы между пучками от CARIBU, что позволит увеличить время работы установки на 35-50%.