Machine Learning en Profundidad

Delta Analytics construye capacidad técnica alrededor del mundo.

El contenido de este curso está siendo desarrollado activamente por Delta Analytics, una organización sin fines de lucro 501(c)3 del Área de la Bahía que apunta a capacitar a las comunidades para aprovechar sus datos.

Por favor comuníquese con cualquier pregunta o comentario a inquiry@deltanalytics.org.

Descubre más sobre nuestra misión a

Module 2: Bloques componentes de Machine Learning.

Course overview:

✓ Módulo 1: Introducción a Machine Learning
 ✓ Módulo 2: Machine Learning en Profundidad
 ☐ Módulo 3: Selección y Evaluación del Modelo
 ☐ Módulo 4: Regresión Lineal
 ☐ Módulo 5: Árboles de Decisión
 ☐ Módulo 6: Algoritmos de Conjunto
 ☐ Módulo 7: Algoritmos de Aprendizaje no Supervisados
 ☐ Módulo 8: Procesamiento del Lenguaje Natural Parte 1
 ☐ Módulo 9: Procesamiento del Lenguaje Natural Parte 2

Module Checklist

□ Desarrollo del Modelo
 □ Definición de la tarea de machine learning
 □ Medición del rendimiento del modelo
 □ Métodos de aprendizaje supervisados y no supervisados
 □ Validación del Modelo

 Q_{Δ}

Fase de Modelado

Ahora que tenemos nuestra pregunta de investigación, podemos comenzar a modelar

Now we have our research question, we are able to start modeling!

Fase de Modelado

Empecemos por lo básico. ¿Por qué queremos construir un modelo?

Machine learning nos permite abordar tareas que son demasiado difíciles para codificar todos los enfoques posibles por nuestra cuenta.

Al permitir que las máquinas aprendan de la experiencia, evitamos la necesidad de que los humanos especifiquen todo el conocimiento que necesita una

Fuente: Deep Learning Book -

Chanter 5: Introduction to Machine Learning

Intuición Humana

Basados en nuestra experiencia del mundo, entendemos las relaciones entre las características

Modelo de Machine

Lasearningloras adquieren la intuición humana y la cuantifican, extrayendo patrones de datos en bruto

Los modelos de Machine learning cuantifican y aprenden los patrones que observamos en los datos..

Fase de Modelado Todos los modelos tienen 3 componentes clave: una tarea, una metodología de aprendizaje y una medida de rendimiento

¿Cuál es el problema que queremos que resuelva Tarea nuestro modelo? Los algoritmos ML pueden ser Metodologí supervisados o no a de supervisados. Esto determina aprendizaje la metodología de aprendizaje. Medida de Medida cuantitativa que utilizamos para evaluar el rendimient desempeño del modelo.

Fuente: Deep Learning Book -

Chapter 5: Introduction to Machine Learning

Aquí ya miramos más de cerca cada componente del dataframe:

Tarea

¿Cuál es el problema que queremos que resuelva nuestro modelo? ¿Qué función asignará nuestra x (entrada) lo más cerca Definiendo posible de la verdadera Y f(x)(salida)? Ingenieria de ¿Qué es x? ¿Cómo decidimos qué características característic explicativas incluir en nuestro as & modelo? selección ¿Es nuestra f ¿Qué suposiciones hace nuestro modelo sobre los (x) correcta para este datos? ¿Tenemos que transformar los datos? problema?

Metodología de aprendizaje: ¿cómo aprende el modelo la función que mejor mapea x con la verdadera Y?

Metodologí a de aprendizaje Es nuestro modelo supervisado o no supervisado; ¿Cómo afecta eso al proceso de aprendizaje?

¿Cómo aprende nuestro modelo MI?

Visión general de cómo el modelo se enseña a sí mismo.

¿Cuál es nuestra función de pérdida?

Cada modelo supervisado tiene una <u>función de pérdida</u> que se quiere minimizar.

Proceso de optimizació n

¿Cómo minimiza el modelo la función de pérdida?

Desempeño: ¿Cómo evaluamos cuán útil es el modelo y cómo podemos mejorarlo?

Tarea y metodología de aprendizaje.

¡Espera! Importante revelación:

Para las siguientes diapositivas, presentaremos la intuición detrás de los modelos de machine learning utilizando ejemplos de **aprendizaje supervisado**. Más adelante en este módulo, veremos cómo es diferente elapequizaje no supervisado.

(tenemos Y en nuestros datos)
Algoritmo
ML
ado

<u>Datos no etiquetados</u> (no tenemos Y en nuestros datos)

1.Tarea

Tarea

¿Cuál es el problema que queremos que resuelva nuestro modelo?

Pregunta de Investigaci ón

Resumen: ¿Cómo varía el monto del préstamo solicitado en Kiva por ciudad en Kenia?

Tenemos datos de KIVA sobre el monto del préstamo solicitado por prestatarios en todo Kenia

Queremos saber cómo el monto del préstamo

colicitado varia cogun

Tarea

Construir un modelo implica convertir tu pregunta de investigación en una pregunta de machine learning.

En primer lugar, establezcamos un vocabulario común para hablar sobre los datos. Ubicación de

Características

lender count loan amount location.country location.country code location.geo.level location.geo.pairs location.geo.type location.town -1.166667 225 ΚE Kiambu Kenva town point 36.833333 0.516667 350 KE Eldoret Kenya point town 35.283333 Kakamega 1075 Kenya KE town 1 38 point North

Ubicación de la ciudad es un ejemplo de una

característica. Cada columna en nuestro conjunto de datos es una característica

Cada fila de nuestro
 conjunto de datos es
 una <u>observación</u>.

Tarea

Una tarea de Machine Learning tiene características explicativas y una característica de salida o resultado.

Características explicati

El prestatario del pueblo vive en

¿Cuáles serían las características de resultado y las características explicativas en las preguntas de investigación a continuación?

Intenta identificar algunas:

- ¿Cuál será el precio de una acción mañana?
- ¿Este paciente tiene malaria?
- ¿Esta persona compraría un carro?

Soluciones:

La función de resultado podría ser una <u>regresión</u> (por ejemplo, \$ 12) o una <u>clasificación</u> (por ejemplo, Sí o No). Hablaremos de esto más tarde

Características explicatorias	Características de salida
Precio de un índice del mercado de valores hoy	El precio de las acciones de la compañía X mañana
Edad, síntomas, historia de viaje	Si un paciente tiene malaria o no
Ingresos, ubicación	Si una persona compraría o no un coche

Tarea

Definamos nuestras características explicativas y de resultados para esta tarea

Problema:

Soy el alcalde de una ciudad de 30,000 personas y necesito justificar el presupuesto de gasto en mosquiteras.

Quiero pruebas de cómo el número de mosquiteros afecta al número de casos de malaria. ¿Puedes ayudar?

1.Pregunta de investigaci ón

2.Tarea

Comencemos por identificar la pregunta de investigación

La pregunta de investigación es qué queremos averiguar a partir de los datos, formalmente establecidos.

Tarea

A continuación definamos nuestra tarea

1

2

3

Definir característica explicativa y de salida.

Definir f(x)

Juntar todo

Definir característica explicativa y de resultado.

¿Cómo cambia el número de casos de malaria cuando cambia el número de mosquiteros?

característica(s) explicativa

resutando ero de mosquiteras

2007: 1000 2008: 2200

2009: 6600

2010: 12600

característica de

Y Número de personas con malaria

2007: 80

2008: 40

2009: 42

2010: 35

También llamamos a nuestras características explicativas x, y nuestra característica de resultado Y.

Parece que a medida que las mosquiteras aumentan, el número de casos de malaria disminuve.

Tarea

¿Qué concluirías al mirar estos datos? ¿Cuántas redes recomendarías?

X Número de mosquiteras

2007: 1000 2008: 2200

2009: 6600

2010: 12600 Y Número de personas con malaria

2007: 80 2008: 40 2009: 42

2010: 35

Llegaste a una conclusión al **reconocer un patrón en los datos**. Esto es similar a cómo un algoritmo de aprendizaje automático abordaría el mismo problema.

Tarea

El aprendizaje automático nos permite aprender de patrones históricos.

Si el Sr. Alcalde no tuviera métodos de aprendizaje automático, podría encontrar una respuesta probando un número diferente de redes año tras año.

Pero esto tiene un **costo humano** obvio, y sería muy difícil actualizar el modelo para dar cuenta, por ejemplo, de los nuevos residentes de su ciudad.

Intuición

humana cuatro
años, un número
creciente de
mosquiteros
disminuye el
número de casos de

Un aumento en x (mosquiteros) <u>causa</u> una disminución en Y (casos de malaria).

 Los seres humanos forman reglas basadas en la observación y el reconocimiento de patrones..
 El modelo ML toma la entrada x y la asigna a la salida Y.

Nuestro modelo f (x) es una función que asigna nuestra entrada x a una Y * predicha.

El objetivo de f (x) es predecir una Y * tan cerca de la verdadera Y como sea posible.

Nuestra función f(x) asigna una entrada x a una Y predicha, a la que nos referimos como Y*. Queremos elegir una f (x) que asigne x lo más cerca posible de la Y*Número previsto de personas con malaria

e es un <u>error irreducible</u>. Esto captura el error causado por factores como el error de medición, la aleatoriedad en los datos y la elección inadecuada del modelo. No importa qué tan bien optimice su modelo, esto nunca se reducirá a 0.

Queremos que Y * esté cerca de la Y verdadera porque queremos que la función genere predicciones útiles.

En este ejemplo, la Y predicha aparece Y verdadera cerca de la Y Y*=f(x)+everdadera. Hablaremos sobre cómo cuantificar esto en la siguiente sección.

sección

Queremos que Y * esté cerca de la Y verdadera porque queremos que la función genere predicciones útiles.

En este ejemplo, la Y predicha aparece lejos de la Y verdadera. Esto probablemente Y*=f(x)+eno sea muy útil. Hablaremos sobre cómo cuantificar esto en la siguiente

¿Qué es f (x)? Depende del algoritmo de aprendizaje automático que elijamos.

característica(s) explicativa(s), como el número de mosquiteras

resultado predicho, por ej. Número de personas con malaria

Ejemplo de f(x):
Algoritmos de

aprendizaje supervisado:

- Regresión lineal
- Árbol de decisiones
- Random forest

. . .

Juntar todo

Vamos a juntar todo.

<u>Pregunta de</u> <u>investigación</u> ¿Cómo cambia el número de casos de malaria cuando cambia el número de mosquiteros?

Tarea de Machine

larea de aprendizaj supervisad

La función de tarea depende del tipo de datos que desea predecir. Los problemas de aprendizaje supervisados se dividen en dos categorías principales: regresión y clasificación.

Variable categórica

Regressión es cuando estamos tratando de predecir un valor numérico, como "costo" o "peso".

Un problema de clasificación Clasificación ámos tratando de predecir si algo pertenece a una categoría, como "rojo" o

Fuente: Andrew Ng, Stanford CS229 Machine Learning Course Zul" o "enfermedad" y enfermedad".

Metodologí a de aprendizaje Los algoritmos ML pueden ser supervisados o no supervisados. Esto determina la metodología de aprendizaje.

Metodología de aprendizaje: ¿cómo aprende el modelo la función que mejor mapea x con la verdadera Y?

¿Nuestro modelo es Metodologí supervisado o no supervisado? a de ¿Cómo afecta eso al proceso aprendizaje de aprendizaje? How does our ML Visión general de cómo se model enseña el modelo. learn? ;Cuál es Cada modelo <u>supervisado</u> tiene una función de nuestra función de pérdida que quiere pérdida? minimizar. Proceso de ¿Cómo minimiza el modelo optimizació la función de pérdida?

Recuerda que el Machine Learning es un subconjunto de la inteligencia artificial que permite a las máquinas aprender desde los datos.

Machine learning

La programación de software tradicional implica dar a las máquinas las instrucciones para las acciones que realizan. Machine Learning implica permitir que las máquinas aprendan de datos en bruto para que el programa computacional pueda cambiar cuando se expone a nuevos datos (aprendiendo de la experiencia).

¿Qué queremos decir cuando decimos que una máquina "aprende de la experiencia"?

Machine learning es un subconjunto de la IA que permite a las máquinas aprender de datos sin procesar.

¿Cómo aprende el modelo de los datos en bruto?

La forma en que el algoritmo aprende depende del tipo de datos que tenga.

¿Qué significan los datos etiquetados?

Si

La característica de salida (Y) que te interesa predecir se encuentra registrada en los datos. Si tienes Y etiquetada, puede usar métodos de aprendizaje supervisado.

Y = Número de personas con malaria 2007: 80

2007: 00

2009: 42

2010: 35

¿Tienes datos etiquetados?

No

La característica de salida (Y) no se encuentra registrada en los datos. No tienes Y etiquetado.

Y = Número de personas con malaria:

2008:

2009:

2010:

Si tienes o no datos etiquetados, determina si se trata de un problema de aprendizaje supervisado o no supervisado

La mayoría de los problemas con los que te encontrarás inicialmente son algoritmos supervisados. ¿Cómo aprenden los algoritmos supervisados?

Explicación intuitiva de cómo los algoritmos supervisados aprenden:

Y Número de personas con

malaria 2007: 80

2008: 40

2009: 42

2010: 35

Imagina que eres profesor y le haces una pregunta a tus alumnos.

Las etiquetas Y proporcionan la respuesta correcta al problema que los estudiantes intentan resolver. Ya que sabes la respuesta correcta, puedes recompensar el buen desempeño de los alumnos y castigar el mal desempeño. Esto fomenta el aprendizaje continuo

Extendiendo este ejemplo, usted (el investigador) es el maestro y el Modelo es el estudiante.

Quiero obtener la respuesta correcta para predecir Y y ser el mejor estudiante de la clase.

¡Muy bien Sr. Modelo! Una vez que me des tu respuesta, te haré saber la respuesta correcta.

Modelo

Cada vez que el Sr. Modelo predice Y *, comparas Y * con la Y verdadera para ver

Nuestro modelo comienza a tratar de proporcionar un Y * estimado adivinando.

Nunca he visto este problema antes!
Comenzaré adivinando una respuesta al azar y veré qué sucede.

Y

Número previsto de personas con malaria

2007: 1

2008: 2000 2009: 300

2010: 40

Número real de personas con malaria

2007: 80

2008: 40 2009: 42

2010: 35

Modelo

Como era de esperar, los resultados parecen terribles, a juzgar por el hecho de que los números reales son muy diferentes de los números predichos. **Para cuantificar qué tan malos o buenos son los resultados,**

utilizamos Y-Y *.

Cuál es nuestra función de pérdida?

¿Qué modelo es más útil para mapear x cerca del Y verdadero?

¿Qué predicción fue peor, a) o b)?

Cuál es nuestra función de pérdida?

¡Podemos decir de inmediato que b es mejor!

Podemos ver que f (x) en b mapea x a una Y * mucho más cerca de la verdadera Y. Una <u>función de pérdida</u> nos permite cuantificar

El objetivo de un modelo es minimizar la función de perdida

de pérdida.

cuantifica qué tan insatisfecho estarías si usaras f (x) para predecir Y * cuando la salida correcta es Y. Es lo que queremos minimizar.

Otra forma de pensarlo es que una función de pérdida cuantifica qué tan bien nuestra f (x) se ajusta a

Ya hemos visto un ejemplo simple: YY *, o la diferencia entre la Y predicha y la Y real. Más adelante, veremos funciones de per da más sofisticadas.

Fuente: Stanford ML Lecture 1

Ya que sé la respuesta correcta, puedo comparar la predicción de Y * con la verdadera Y para ayudar a guiar al Sr. Modelo. **Y***

Número previsto de personas con malaria

2007: 1

2008: 2000

2009: 300

2010: 40

Y

Número real de personas con malaria

> 2007: 80 2008: 40

> 2009: 42

2010: 35

Primero decidimos cómo medir cuán insatisfechos estamos con estos resultados. A esto le llamamos nuestra **función de pérdida**. En la siguiente diapositiva, mostraremos algunas funciones de pérdida posibles diferentes que podemos usar para evaluar al Sr. Modelo.

larea de aprendizaj e supervisad

Recuerda que hay dos tipos diferentes de tareas:

Variable continua

Variable categórica

Regresión es graficos de predecir un valor numérico, como "costo" o "peso".

Un problema de clasificación

Clasificación tratando de predecir si algo pertenece a una categoría, como "rojo" o

"azul" o "enfermedad" y "nc

Fuente: Andrew Ng, Stanford CS229 Machine Learning Course enfermedad".

¿Cuál es nuestra función de pérdida?

La elección de la función de pérdida depende del tipo de tarea. Discutiremos las funciones de pérdida para ambos tipos de tareas.

Variable continua

Error absoluto (L1)

Error de mínimos cuadrados (L2)

Incluyendo error cuadrático medio (MSE), error cuadrático medio (RMSE)

Variable categórica

log loss

hinge loss

Fuente: Andrew Ng, Stanford CS229 Machine Learning Course

¿Cuál es nuestra función de pérdida?

Hay algunas funciones de pérdida diferentes que podríamos elegir, dependiendo del problema que estamos Regresión tratando de resolver.

Va Caba sinfineación

Variable continua

error absoluto

raíz cuadrada del error cuadrático medio (RMSE)

error de mínimos cuadrados (L2)

error cuadrático medio (MSE)

log loss

hinge loss

Funciones de pérdida de la regresión.

- 1. L1 norm (error absoluto medio)
- 2. L2 norm (error de mínimos cuadrados)
 - Error cuadrático medio

¿Cuál es nuestra función de pérdida? Nuestra característica de salida es continua: la cantidad de personas que tienen malaria.

La característica de ——— salida en los datos es continua

Υ

Número de personas con malaria: 80

2008: 40

2009: 42

2010: 35

→ Tarea de — Función de regresión pérdida L1 o L2

¿Cuál es nuestra función de pérdida? L1 y L2 son dos opciones posibles para evaluar cuán descontentos estamos con la elección de f (x) del Sr. Modelo.

error absoluto (L1)

También llamada pérdida L1, ésta minimiza la **suma** de errores absolutos entre la Y verdadera v

$$S = \sum_{i=1}^{n} |y_i - f(x_i)|.$$

error de mínimos cuadrados (L2)

También llamada pérdida L2, ésta minimiza el **cuadrado** del error entre la Y verdadera y la Y *

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

error cuadrático medio

Toma la media de la pérdida L2 sobre todas las observaciones.

¿Cuál es nuestra función de pérdida?

¿Qué tan malos fueron los resultados iniciales del Sr. Modelo? Vamos a calcular la norma L1.

¿Qué tan bien funcionó la suposición aleatoria del Sr. Modelo?

$$S = \sum_{i=1}^{n} |y_i - f(x_i)|.$$

error absoluto (L1)

Y*

Número previsto de personas con malaria

2007: 1 2008: 2000

2009: 300

2010: 40

Y

Número real de personas con malaria

2007: 80 2008: 40 2009: 42

2010: 35

(|1-80|+|2000-40|+|300-42|+|40-35|)= 2,302

Fuente: Intro to Stat - Introduction to Linear Regression

¿Cuál es nuestra función de pérdida?

¿Qué tan malos fueron los resultados iniciales del Sr. Modelo? Vamos a calcular la norma L2.

¿Cómo estuvo la estimación aleatoria inicial del Sr.
Model?

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

error de mínimos cuadrados (L2)

\	/	>	k
			•

Número previsto de personas con malaria

2007: 1 2008: 2000 2009: 300 2010: 40 Y

Número real de personas con malaria

2007: 80 2008: 40 2009: 42 2010: 35

(80-1)²+(40-2000)²+(42-300)² +(35-40)²=3,914,430

Fuente: Intro to Stat -Introduction to Linear Regression

¿Cuál es nuestra función de pérdida? Podemos normalizar nuestra pérdida de L2 calculando el error cuadrático medio o la raíz del error cuadrático medio.

error de mínimos cuadrados (L2)

También llamada pérdida L2, ésta minimiza el cuadrado del error entre la Y verdadera y la Y *

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

error cuadrático medio

Toma la media de la pérdida L2 sobre todas las observaciones.

$$MSE = mean(S)$$

raíz del error cuadrático medio

Toma la raíz cuadrada de la media de la pérdida de L2.

Fuente: <u>L1 and L2</u>,

¿Cuál es nuestra función de pérdida?

El error cuadrático medio toma el error L2 promedio por observación.

¿Cómo estuvo la estimación aleatoria inicial del Sr. Model?

MSE = mean(S)

error cuadrático medio **Y***

Número previsto de personas con malaria

2007: 1 2008: 2000 2009: 300

2010: 40

Y

Número real de personas con malaria

2007: 80 2008: 40 2009: 42

2010: 35

((80-1)^2+(40-2000)^2+(42-300)^2+(35-40)^2)/4 = 978.607.5

Fuente: Intro to Stat -Introduction to Linear Regression

¿Cuál es nuestra función de pérdida? La raíz del error cuadrático medio toma la raíz cuadrada del error L2 promedio por observación.

	Υ*	Υ
	Número previsto de	Número real de
	personas con	personas con
	malaria	malaria_
	2007: 1	2007: 80
	2008: 2000	2008: 40
	2009: 300	2009: 42
	2010: 40	2010: 35
(((80-1)^2+(40-	
20	000)^2+(42-300)^2	2+(35-
40))^2)/4)^(½)	
= !	989.25	

Fuente: Intro to Stat -Introduction to Linear Regression

Podemos calcular para cada una de las funciones de pérdida lo insatisfechos que estamos con los modelos de estimación aleatoria inicial.

No te preocupes por estos números. Lo importante es que entiendas cómo los estamos transformando paso a

paso. 2,302

3,914,430

978,608

989

error absoluto (L1)

error de mínimos cuadrados (L2)

error cuadrático medio raíz del error cuadrático medio

También llamada pérdida L1, ésta minimiza la **suma** de errores absolutos entre la Y verdadera y

$$S = \sum_{i=1}^{n} |y_i - f(x_i)|.$$

También llamada pérdida L2, ésta minimiza el cuadrado del error entre la Y verdadera y la Y *

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Toma a media de la pérdida L2 por observación en los datos.

$$MSE = mean(S)$$

Toma la raíz cuadrada de la pérdida de L2 promedio por observación en los datos. RMSE = sgrt(mean(S))

Fuente: L1 and L2

RMSE es la raíz cuadrada de la pérdida media de L2 por observación.

Este trabajo no termina hasta calcular RMSE. Modelo

Hay cinco pasos para RMSE:

Y-Y*	Para cada observación en nuestro conjunto de datos, mide la diferencia entre la Y verdadera y la Y predicha.
^2	Cuadrar cada Y-Y * para obtener la distancia absoluta, así los valores positivos no cancelan los negativos cuando sumamos.
Sum	Suma todas las observaciones para obtener el error total.
mean	Divide la suma por el número de observaciones que tenemos
eg raot n	Tome la raíz cuadrada de la media calculada anteriormente.

Fuente: Intro to Stat -Introduction to Linear Re

MSE

¿Qué función de pérdida deberíamos usar?

- 1. L1 norm (error absoluto medio)
- 2. L2 norm (error de mínimos cuadrados)

¿Cuál es nuestra función de pérdida?

Cada función de pérdida tiene ventajas y desventajas importantes.

error absoluto (L1)

VS

error de mínimos cuadrados (L2)

	¿Robusto?	Stable Solution?	How many solutions?
L1	Robusto	No estable	Múltiples soluciones posibles
L2	No muy robusto	Estable	Una splución posible

MSE y RMSE son versiones <u>normalizadas</u> del error L2. Si decidimos utilizar L2, elegiremos MSE o RMSE.

Fuente: L1 and L2

¿Cuál es nuestra función de pérdida?

Si decidimos utilizar el error de mínimos cuadrados (L2), podemos usar RMSE O MSE

MSE

VS.

RMSE

La diferencia clave entre RMSE y MSE es que tomar la raíz en RMSE <u>normaliza el error</u> a las mismas unidades de medida.

Esto hace que el término de error sea más interpretable.

Tanto MSE como RMSE amplifican y penalizan severamente los errores grandes más que los pequeños al elevar al cuadrado el error.

Funciones de pérdida en clasificación

- 1. Log loss
- 2. Hinge loss

Definir característica explicativa y de resultado.

Definamos una tarea ligeramente diferente para poder discutir las pérdidas hinge y log.

Tarea: Queremos predecir si un paciente tiene malaria usando su temperatura.

X Temperatura del paciente

39.5°C 37.8°C 37.2°C Y ¿El paciente tiene malaria?

No Yes Yes No

¿Cuál es nuestra función de pérdida?

Nuestra característica de salida es <u>categórica</u>: queremos predecir si alguien tiene malaria o no. Este es un <u>problema de clasificación binario</u>.

Esta es una tarea de clasificación, por lo que podemos usar la pérdida <u>log</u> o <u>hinge</u>.

Pero primero, ¿qué es una tarea de clasificación?

Clasificación basada en el umbral de probabilidad

Las tareas de clasificación generan la **probabilidad de pertenecer a una clase**. Normalmente, en función de un umbral del 50%, asignamos la clase predicha.

<u>resultado predicho</u>	probabilidad predicha ¿Cuál es la probabilidad V		¿Predice el
tiene malaria?	de que el paciente tenga malaria?	Y *	modelo que el paciente tiene malaria?
No	0.55		Yes
Yes	0.80		Yes
Yes	0.85		Yes
No	0.2		No

Clasificación basada en el umbral de probabilidad Podemos evaluar la precisión observando solo el resultado predicho frente al resultado real. Aquí, la precisión es del 75%!

característica de salida	<u>probabilidad predicha</u>		
resultado proadiente tiene malaria?	¿Cuál es la probabilidad de que el paciente tenga malaria?	Υ*	¿Predice el modelo que el paciente tiene malaria?
No	0.55		Yes
Yes	0.80		Yes
Yes	0.85		Yes
No	0.2		No

Sin embargo, **nos estamos perdiendo en el uso de la probabilidad**, que es información importante acerca de cuán cierto es el modelo acerca de su predicción. Veamos algunas

funciones de nórdide que utilizan este métrica

Log loss

Para cada predicción que hace el modelo, podemos medir la pérdida logarítmica. ¿Qué es la pérdida logarítmica?

$$L = -rac{1}{n} \sum_{i=1}^{n} \left[y_i log(\hat{y}_i) + (1-y_i) log(1-\hat{y}_i)
ight]$$

- Cuanto menor sea la pérdida logarítmica, menor será la incertidumbre, mejor será el modelo
 - Un clasificador perfecto tendría un log loss = 0
- Log loss penaliza en gran medida a los clasificadores que confían en una clasificación incorrecta
- Maneras de mejorar la pérdida de registro:

Fuente: https://www.r-bloggers.com/making-sense-of-logarithmic-loss/

emos suavizar las probabilidades?

Hinge loss

Para cada predicción de nuestro modelo, también podemos medir el hinge loss. ¿Qué es hinge loss?

Hinge loss es la extensión lógica de la función de pérdida de regresión, **pérdida absoluta**.

Pérdida absoluta: Y- Y*, donde Y e Y* son enteros.

Hinge loss: $max(0,1-(Y^*)(Y))$

Donde Y puede ser igual a -1 (no) o 1 (yes) para casa clase.

Para cada observación, si $Y^* == Y$ (ambos son 1 o ambos son -1), hinge loss = 0. If $Y = /= Y^*$, hinge loss **se incrementa**.

La hinge loss acumulada es, por lo tanto, el límite superior del número de errores cometidos por el clasificador.

Fuentes: https://en.wikipedia.org/wiki/Hingeloss;

¿Cuál es nuestra función de pérdida?

¿Cómo elegimos una función de pérdida para un problema de clasificación?

Log Loss

Conduce a **probabilidades más exactas**, pero a costa de la precisión

VS.

Hinge Loss

Conduce a una **mayor precisión**, pero a costa de probabilidades exactas

¿Cuál es nuestra función de pérdida?

¿Cómo elegimos una función de pérdida para un problema de clasificación?

Depende de la pregunta que quieras responder!

Por ejemplo, para un problema en el que estamos tratando de evaluar la salud del paciente, sabemos que los falsos positivos (el modelo predice que usted tiene malaria, pero en realidad no la tiene) son más seguros y generalmente más preferibles que los falsos negativos (el modelo predice que no tienes malaria, pero en realidad la tienes.)

Por lo tanto, probablemente sea más seguro evaluar nuestra producción como una **probabilidad** de que usted tenga malaria

¿Cuál es nuestra función de pérdida?

Una nota sobre las funciones de pérdida categóricas ...

Proporcionamos sólo una amplia descripción conceptual de las pérdidas log loss e hinge ya que no los utilizaremos en nuestro laboratorio de codificación. Sin embargo, te animamos a explorarlas más a fondo.

Se pueden encontrar más recursos al final de este módulo..

Nuestro modelo calculó una aproximación inicial utilizando RMSE.

¿Cómo puede mejorar en su aproximación inicial?

¿Cuál es nuestra función de pérdida?

Nuestro RMSE inicial es muy alto. Nuestro modelo intenta un f (x) diferente y compara RMSE.

¡Oh no! Eso no fue muy bueno, ¡intentemos algo más!

Si el nuevo f(x) reduce la pérdida, nuestro modelo cambia constantemente la f (x) en esa dirección. Después de cada cambio, el modelo mide si la pérdida ha aumentado, disminuido o se ha mantenido igual.

	Suposició n inicial	2nd actualización	3rd actualización
RMSE	1,000	1,300	800
# redes	300	100	400

A medida que el modelo actualiza la predicción en cada paso, vemos que el modelo está **aprendiendo**.

Fuente: Intro to Stat -Introduction to Linear Regression

¿Cómo aprende nuestro modelo MI?

El proceso de cambiar f (x) para reducir la función de pérdida se denomina **aprendizaje**. Es lo que hace que la regresión de mínimos cuadrados ordinarios (OLS) sea un algoritmo de aprendizaje automático..

Para cada f (x) elegimos hay una pérdida asociada.

El proceso de aprendizaje implica la actualización de f (x) para alcanzar la pérdida mínima global

¿Cómo aprende nuestro modelo MI?

Nuestro modelo comienza con un f (x) aleatorio y una actualización de f (x) para que nuestra pérdida sea lo más pequeña posible.

El trabajo de nuestro modelo es cambiar los parámetros para que cada vez que cambie f(x), la pérdida disminuya.

Nuestro modelo tiene éxito cuando reduce el error a su **mínimo**.

¿Cómo aprende nuestro modelo MI?

¿Cuándo se detiene nuestro modelo?

El trabajo de nuestro modelo es cambiar los parámetros para que cada vez que cambie f(x), la pérdida disminuya.

Nuestro modelo tiene éxito cuando reduce el error a su **mínimo**.

¿Cómo aprende nuestro modelo MI ?

¿Qué pasa si no tenemos datos etiquetados?

Si

La característica de salida (Y) que te interesa predecir está <u>registrada</u> en los datos. Tienes Y etiquetada, puedes usar <u>métodos de aprendizaje</u> <u>supervisado</u>.

Y=Número de personas con malaria

2007: 80 2008: 40 2009: 42 2010: 35

No

La característica de resultado (Y) no está registrada en los datos. No tienes Y etiquetada.

Y=Número de personas con malaria

2007: 2008: 2009: 2010:

¿Tienes datos etiquetados?

¿Como aprende nuestro modelo MI ?

¿Cuándo se detiene nuestro modelo si no tenemos <u>datos</u> <u>etiquetados</u>?

Nuestro modelo puede actualizar los parámetros sólo si tenemos datos etiquetados. ¿Qué sucede si no tenemos

una Y en nuestros datos?

Nos dirigimos a las técnicas de aprendizaje no supervisado.

El aprendizaje no supervisado no tiene datos etiquetados. Sin embargo, es el área de investigación actual más prometedora en aprendizaje automático. Desbloquear el aprendizaje sin supervisión cambiará fundamentalmente nuestro mundo.

Algoritmos no supervisados

- Para cada x, no hay Y.
- No sabemos las respuestas correctas, por lo que no podemos actuar como profesor.
- En su lugar, tratamos de comprender la distribución de x para obtener una inferencia sobre Y.

Fuente: Machine Learning Mastery - Supervised and Unsupervised Learning

¿Por qué es importante el aprendizaje no supervisado?

El aprendizaje supervisado es la guinda del pastel.

El aprendizaje no supervisado es el pastel en sí mismo. Yann Lecun, un investigador de aprendizaje profundo, hizo la analogía de que si la inteligencia fuera una torta, el aprendizaje no supervisada sería la torta y el aprendizaje supervisado sería la guinda del pastel.

Sabemos cómo hacer el granizado, pero no sabemos cómo hacer el pastel. El aprendizaje no supervisado es el santo grial del aprendizaje automático.

Para alcanzar la verdadera inteligencia de la máquina, ML necesita mejorar en el aprendizaje no supervisado.

Los humanos aprenden principalmente a través de un aprendizaje no supervisado: absorbemos grandes cantidades de datos de nuestro entorno sin necesidad de una etiqueta.

Ejemplos de aprendizaje no supervisado: este algoritmo de agrupamiento (clustering) predice los amigos de un usuario en función de su actividad en las redes sociales.

Social Network Analysis: In a social network, clustering can be used to find users that interact a lot with each other (say, via e-mails). This is shown in the figure below where the users have been clustered into four clusters - A.B.C and D.

No tenemos ningún dato etiquetado que nos diga que cualquier nodo es amigo de otro nodo.

En su lugar, podemos utilizar las interacciones del usuario para proporcionar las etiquetas. La suposición es que si estás interactuando fuertemente con alguien, es más probable que sea tu amigo.

Fuente: Quora - What is unsupervised learning with an example.

El algoritmo de clstering utiliza patrones de correo electrónico para predecir la jerarquía de una organización empresarial.

Este algoritmo no solo toma en cuenta a las personas involucradas en una interacción sino también la direccionalidad de la interacción.

Figure 1: Enron North American West Power Traders Extracted Social Network

En la próxima clase, presentaremos la selección y evaluación de modelos.

Vamos a resumir rápidamente lo que hemos aprendido en este módulo.

¿Cuál es la tarea y la medida de rendimiento para nuestro ejemplo de red de malaria?

¿Cuál es la tarea y la medida de rendimiento para nuestro ejemplo de red de malaria?

¿Cuál es la tarea y la medida de rendimiento para nuestro ejemplo de paciente con malaria?

¿Cuál es la tarea y la medida de rendimiento para nuestro ejemplo de paciente con malaria?

Obtén más información sobre el machine learning de Delta para una buena misión <u>aquí</u>.

Recursos adicionales

Recursos adicionales

Rosasco, Lorenzo, et al. "Are loss functions all the same?." Neural Computation 16.5 (2004): 1063-1076. http://web.mit.edu/lrosasco/www/publications/loss.pdf

"Loss Functions for Regression and Classification", David Rosenberg, NYU: https://davidrosenberg.github.io/ml2015/docs/3a.loss-functions.pdf

