Quantum Error Correction

Louis Golowich Wenjie Gong Ari Hatzimemos Dylan Li Dylan Zhou

> Physics 160 Harvard University

Final Project Presentation, 13 May 2020

Table of Contents

- 1 Introduction and Review of Quantum Error Correction
- The 3-Qubit Codes
- The Shor Code
- 4 The 7-Qubit Code

Introduction

"To be an Error and to be Cast out is part of God's Design."

William Blake

- Noise as a longstanding problem in information processing systems
 e.g., classical computers, modems, CD players, etc.
- Noise is still a problem in quantum information
- Key idea: to protect a message against noise, encode the message by adding redundant information; even if some information is corrupted, redundancy allows us to decode and recover the original message

Project Framework

- Goals:
 - to implement various quantum error-correcting codes
 - we chose the 3-qubit, 9-qubit, 7-qubit codes
 - to analyze and compare their performances
 - when are they effective?
 - when should we use error-correcting codes?
- Tools:
 - Python's Qiskit package
 - IBM's quantum machines

3-Qubit Codes: A Review

Classical Inspiration

Encoding by repetition codes:

$$0
ightarrow 000$$
 $1
ightarrow 111$.

• Decoding by majority voting:

Ex.:
$$001 \rightarrow 0$$
.

• Analysis: Let p be the probability that a bit is flipped. This method fails when 2 or more bits are flipped, which occurs with probability $3p^2(1-p)+p^3$, so the probability of error is $p_e=3p^2-2p^3$. Then this method is preferred when $p_e < p$, or p < 1/2.

3-Qubit Codes: A Review

The Quantum Version: 3-Qubit Bit Flip Code

• Encoding:

$$|0\rangle \rightarrow |0_L\rangle \equiv |000\rangle$$

$$|1
angle
ightarrow |1_L
angle \equiv |111
angle$$
 .

The Shor Code

7-Qubit Code