Intersección, suma y base de módulos Estructuras Algebraicas

Tomás Avila

Universidad Nacional del Comahue

Lema

Sea Γ una familia de submódulos del módulo M, entonces,

$$\bigcap_{A\in\Gamma}A=\{m\in M\ /\ \forall A\in\Gamma\ :\ m\in A\},$$

es un submódulo de M.

Corolario

 $\bigcap A$ es el mayor submódulo que contiene a todos los elementos de la $A \in \Gamma$ familia Γ .

Lema

Sea X un subconjunto del módulo M_R , luego

$$A = \begin{cases} \left\{ \sum_{j=1}^{n} x_{j} r_{j} / x_{j} \in X, \ r_{j} \in R, \ n \in \mathbb{N} \right\}, \text{ si } X \neq \emptyset \\ \left\{ 0 \right\}, \text{ si } X = \emptyset \end{cases}$$

es un submódulo de M.

Demostración:

Si $X = \emptyset$. es trivial.

Si
$$X \neq \emptyset$$
, sean $a_1, a_2 \in A$, así $a_1 = \sum_{i=1}^m x_i r_i$, $a_1 = \sum_{j=1}^n x_j r_j$, luego $a_1 + a_2 \in A$. Además, sea $r \in R$

$$a_1 r = (\sum_{i=1}^{m} x_i r_i) r = \sum_{i=1}^{m} (x_i r_i) r = \sum_{i=1}^{m} x_i r'$$

por lo tanto $a_1r \in A$. Así A es un submódulo de M.

Definición

El conjunto A definido en el lema anterior es llamado **submódulo a derecha generado** por X. Notamos |X|.

Este submódulo generado contiene a todas las combinaciones lineales finitas $\sum x_i r_i$ y lo podemos caracterizar con el siguente lema.

Lema

|X| es el menor submódulo de M que contiene a X, es decir,

$$|X) = \bigcap_{\substack{C \hookrightarrow M \\ X \subset C}} C.$$

Dem. Si $X = \emptyset$, es trivial, pues $|X) = \{0\}$ y X contiene al submódulo trivial $\{0\}$.

Supongamos que $X \neq \emptyset$ y sea C un submódulo de M que contiene a X, luego x_i , x_ir_i y todas las sumas finitas de estos elementos estan en C, sigue que $|X) \hookrightarrow C$.

Como $X \subseteq |X)$, ya que x = x1, $\forall x \in X$, tenemos que |X) es uno de los submódulos de M que contienen a X, entonces $\bigcap_{C \subseteq M} C \subseteq |X|$.

(ロ) (個) (量) (量) (量) (例Qで

Observación

• Sean M un R-módulo a izquierda, $X \subseteq M$ y $X \neq \emptyset$ entonces

$$(X| = \{\sum_{j=1}^{n} r_j x_j / x_j \in X, r_j \in R, n \in \mathbb{N}\}$$

• Sean M un SR-módulo, $X \subseteq M$ y $X \neq \emptyset$ entonces

$$(X) = \{\sum_{j=1}^{n} s_j x_j r_j / x_j \in X, r_j \in R, s_j \in S, n \in \mathbb{N} \}$$

Definición

Sean M un R-módulo a derecha y $X \subseteq M$.

- X es un **conjunto de generadores** de M si y solo si |X| = M.
- Un módulo está finitamente generado si y solo si existe un conjunto finito de generadores.
- Un módulo se denomina cíclico si y solo si es generado por un conjunto con un único elemento.
- X se dice **libre** si y solo si para todo subconjunto finito de X, $\{x_1,\ldots,x_m\}\subset X$, con $x_i\neq x_j$ para $i\neq j,\ i,j=1,\ldots,m$, se cumple que

$$\sum_{i=1}^{m} x_i r_i = 0, \ r_i \in R \Rightarrow r_i = 0, \ \forall i = 1, \ldots, m.$$

Definición

X es una **base** de M si y solo si X es un conjunto libre de generadores de M.

Si X es un conjunto de generdaores de M, entonces podemos escribir a cada elemento de X como una combinación lineal finita de elementos de X, pero esto no significa que la combinación lineal sea única. Veamos que la combinación es única si tenemos una base.

Lema

Sea $X \neq \emptyset$ un conjunto generador de $M = M_R$. Luego X es una base si y solo para todo $m \in M$ la representación

$$m = \sum_{i=1}^{n} x_i r_i$$
, con $x_i \in X$, $r_i \in R$ es única.

Dem

 \Rightarrow) Sea X una base de M y sea $m \in M$, como X es base $m = \sum_{i=1}^{n} x_i r_i$, con

 $x_i \in X$, $r_i \in R$. Supongamos que $m = \sum_{i=1}^n x_i r_i'$, luego

$$\sum_{i=1}^{n} x_{i} r_{i} = \sum_{i=1}^{n} x_{i} r'_{i} \Rightarrow \sum_{i=1}^{n} x_{i} r_{i} - \sum_{i=1}^{n} x_{i} r'_{i} = 0 \Rightarrow \sum_{i=1}^{n} x_{i} (r_{i} - r'_{i}) = 0,$$

como X es libre, por ser base, $r_i - r_i' = 0 \ \forall i = 1, ..., m$, es decir $r_i = r_i'$ $\forall i = 1, ..., n$.

 \Leftarrow) Supongamos que para todo $m \in M$ la representación $m = \sum_{i=1}^{n} x_i r_i$, con

 $x_i \in X$, $r_i \in R$ es única, así claramente X es un conjunto de generadores de M, veamos que X es libre.

Si
$$\sum_{i=1}^n x_i r_i = 0$$
, entonces $\sum_{i=1}^n x_i r_i = \sum_{i=1}^n x_i 0$, así $r_i = 0 \ \forall i = 1, \ldots, n$.

Observación

Si X es un conjunto de generadores infinito no podemos afirmar la unicidad de la combinación pues la suma infinita no está definida.

Ejemplo

- Todo módulo M tiene al propio M como conjunto generador, pues para cada m ∈ M tenemos la combinación lineal finita 1 = m1, 1 ∈ R.
- Si R es un anillo, entonces $\{1\}$ es una base de R_R y de R_R .

Proposición

Si eliminamos un número finito arbitrario de elementos de un conjunto generador X de $\mathbb{Q}_{\mathbb{Z}}$, entonces el nuevo conjunto con estos elemntos eliminados es un generador de $\mathbb{Q}_{\mathbb{Z}}$.

Observación

La proposición anterior nos dice que $\mathbb{Q}_{\mathbb{Z}}$ no tiene un conjunto de generadores finito, porque si lo tuviese $\mathbb{Q}_{\mathbb{Z}}$ seria generado por el conjunto vacio es decir $\mathbb{Q}_{\mathbb{Z}}=0$.

Lemma (Lema de Zorn)

Sea A un conjunto ordenado. Si todo subconjunto totalmente ordenado de A tiene una cota superior en A entonces A posee un elemnto maximal.

Proposición

Todo espacio vectorial sobre un cuerpo K tiene base.

Proposición

Sea $\Lambda = \{A_i \mid i \in I\}$ un conjunto de submódulos de $M, A_i \hookrightarrow M_R$.

Entonces
$$|\bigcup_{i\in I} A_i) = \begin{cases} \{\sum_{i\in I'} a_i \ / \ a_i \in A_i \ \land \ I' \subset I \ \land \ I' \text{ es finito} \} \text{ si } \Lambda \neq \emptyset \\ \{0\} \text{ si } \Lambda = \emptyset \end{cases}$$

Dem. Sea $\Lambda
eq \varnothing$ y $m \in |\bigcup A_i)$, entonces por definición $m = \sum a_j r_j$, con $a_i \in \bigcup A_i, r_i \in R.$

Luego para algún i_0 , $a_i \in A_{i_0}$ y $A_i \hookrightarrow M_R$, para todo $i \in I$ entonces $a_i r_i = a_i' \in A_{i_0}$. Así $|\bigcup A_i) \hookrightarrow \{\sum a_i / a_i \in A_i \land I' \subset I \land I' \text{ es finito}\}.$

Es claro que $|\bigcup_i A_i| \leftarrow \{\sum_i a_i / a_i \in A_i \land I' \subset I \land I' \text{ es finito}\}..$

Definición

Sea $\Lambda = \{A_i \ / \ i \in I\}$ un conjunto de submódulos de M, $A_i \hookrightarrow M_R$, luego

$$\sum_{i\in I} A_i = |\bigcup_{i\in I} A_i|$$

es llamada **suma de submódulos** $\{A_i / i \in I\}$.

Observación

• Si $\Lambda = \{A_1, \dots, A_n\}$, notamos $\sum_{i=1}^n A_i$ y sus elementos son de la forma

$$\sum_{i=1}^{n} a_i \text{ con } a_i \in A_i.$$

 No podemos afirmar que la representacion de los elementos de la suma de submódulos es única.

Lema

Sea $A \hookrightarrow_{\neq} M$, luego es equivalente

- 4 es submódulo máximal de M.

Dem. (1) \Rightarrow (2). Sea $m \notin A$, luego $A \hookrightarrow_{\neq} mR + A$ y como A es submódulo principal mR + A = M.

(2)⇒(1). Considerems $A \hookrightarrow_{\neq} B \hookrightarrow M$ y sea $m \in B$ tal que $m \notin A$.

Como $m \in B$ $mR \hookrightarrow B$, luego $mR + A \hookrightarrow B + A$, así

$$M = mR + A \hookrightarrow B + A \hookrightarrow B \hookrightarrow M$$
.

Por lo tanto M = B.

Teorema

Si el módulo M_R esta finitamente generado entonces cada submódulo propio de M esta contenido en un submódulo maximal.

Dem. Sea $\{m_1,\ldots,m_t\}$ un conjunto de generadores de M y sea $A \hookrightarrow_{\neq} M$, luego el conjunto

$$\Phi = \{B/A \hookrightarrow B \hookrightarrow_{\neq} M\}$$

es distinto de vacio pues $A \in \Phi$.

Buscamos aplicar el Lema de Zorn, para ello debemos ver que todo subconjunto totalmente ordenado tiene cota superior.

Sea $\Gamma\subseteq\Phi$ un subconjunto totalmente ordenado y sea $C=\bigcup_{B\in\Gamma}B$ notamos

que C verifica que $A \hookrightarrow C$.

Si suponemos que C=M entonces $\{m_1,\ldots,m_t\}\subseteq C$ y existe $B\in\Gamma$ tal que $\{m_1,\ldots,m_t\}\subseteq B$, luego B=M, absurdo.

Luego $C \in \Phi$ y por el Lema de Zorn existe un elemento maximal D en Φ . Veamos que D es un submódulo maximal de M_R , sea $D \hookrightarrow L \hookrightarrow_{\neq} M$, entonces $L \in \Phi$ y como D es elemento maximal D = L.

Corolario

Todo módulo $M \neq \varnothing$ finitamente generado tiene un submódulo maximal.

Teorema

El módulo M_R esta finitamente generado si y solo si en todo conjunto $\{A_i/i\in I, A_i\hookrightarrow M\}$ que verifica $\sum_{i\in I}A_i=M$ existe un subconjunto finito $\{A_i/i\in I_0, I_0\subset I \text{ finito}\}$ tal que

$$\sum_{i\in I_0} A_i = M$$

Dem. \Rightarrow). Sea M finitamente generado, entonces existe un conjunto finito de generadores, $\{m_1,\ldots,m_t\}$, así $M=m_1R+\ldots+m_tR$, si el conjunto $\{A_i \ / \ i \in I, \ A_i \hookrightarrow M\}$ verifica $\sum A_i = M$, entonces cada m_i es una suma finita de elementos de A_i . Así existe $I_0 \subset I$ finito tal que $m_1,\ldots,m_t\in\sum A_i$. Sigue que $M=m_1R+\ldots+m_tR\hookrightarrow\sum A_i\hookrightarrow M$. Por lo tanto $\sum A_i = M$. \iff). Consideramos el conjunto $\{mR \mid m \in M\}$ que verifica $\sum mR = M$, por hipótesis existe un conjunto finito $\{m_1R, \ldots, m_tR\}$ tal $m \in M$ que $m_1R + ... + m_tR = M$. Por lo tanto M esta finitamente generado.

Definición

Diremos que M_R es **finitamente congregado** si y solo si para cada conjunto $\{A_i \mid i \in I, A_i \hookrightarrow M\}$ que verifca $\bigcap_{i \in I} A_i = \{0\}$ existe un subconjunto finito $\{A_i \mid i \in I_0, I_0 \subseteq I \text{ finito}\}$ tal que $\bigcap A_i = \{0\}$.

Lemma (Ley Modular)

Sean A, B, $C \hookrightarrow M$ y $B \hookrightarrow C$ entonces

$$(A + B) \cap C = (A \cap C) + (B \cap C) = (A \cap C) + B$$
.

 $i \in I_0$

Dem. Sean $a+b\in (A+B)\cap C$, entonces $a+b=c\in C$, así a=c-b y como $B\hookrightarrow C$, $a=c-b\in A\cap C$, entonces $a+b=c\in (A\cap C)+B$. Por lo tanto $(A+B)\cap C\hookrightarrow (A\cap C)+B$. Sea $d\in (A\cap C)$ y $b\in B$. Como $B\hookrightarrow C$ tenmos que $d+b\in (A+B)\cap C$. Por lo tanto, $(A\cap C)+B\hookrightarrow (A+B)\cap C$