# Archisman Panigrahi

5<sup>th</sup> Year · UG · Physics Major *Indian Institute of Science, Bangalore, India*□ (+91) 7980591664 | ☑ archismanp@iisc.ac.in

## **Education**

**Master of Science in Physics** 

INDIAN INSTITUTE OF SCIENCE

• Ongoing

**Bachelor of Science (Research) in Physics** 

Indian Institute of Science

• C.G.P.A - 9.8/10

**Higher Secondary Examination (**XII<sup>th</sup> standard)

HOOGHLY COLLEGIATE SCHOOL

• Obtained 1<sup>st</sup> rank in Board, among about 0.7 million candidates

**Secondary Examination** ( $X^{th}$  standard)

HOOGHLY COLLEGIATE SCHOOL

- Obtained  $2^{\text{nd}}$  rank in Board, among about 1 million candidates

Bangalore, India

Aug. 2021 - May 2022 (expected)

Bangalore, India

Aug. 2017 - Jun. 2021

West Bengal Council of Higher Secondary Education, India

2015 - 2017

West Bengal Board of Secondary

MPIPKS, Dresden, Germany

(remotely)

Education, India

2005 - 2015

# **Achievements**

|  | 2017-21 | C.G.P.A 9.8/10 in B.S. (Research), highest GPA in batch                                                   | IISc, Bangalore    |
|--|---------|-----------------------------------------------------------------------------------------------------------|--------------------|
|  | 2017    | 1st rank (99.2 %) in Board in Higher Secondary Examination                                                | West Bengal, India |
|  | 2017    | 10th rank in National Entrance Screening Test (NEST)                                                      | India              |
|  | 2017    | Qualified for JEE Mains (All India Rank - 381) - an all India Engineering entrance                        |                    |
|  | 2017    | Qualified for JEE Advanced examination (All India Rank- 543), Entrance examination of Indian Institute(s) |                    |
|  | 2017    | of Technology (IIT)                                                                                       |                    |
|  | 2017    | Qualified for Indian Statistical Institute, Kolkata and Chennai Mathematical Institute                    |                    |
|  | 2015    | Qualified for K.V.P.Y (All India Rank - 128)                                                              |                    |
|  | 2015    | 2nd rank (97.57 %) in Board in Secondary Examination                                                      | West Bengal, India |

## Research Articles

PREPRINT(S)

- A. Panigrahi, R. Moessner, B. Roy; Non-Hermitian dislocation modes: Stability and melting across exceptional points (2021) arXiv:2105.05244
- A. Panigrahi, S. Mukerjee; Energy magnetization and transport in systems with a non-zero Berry curvature in a magnetic field (2021) arXiv:2111.08026
- A. Panigrahi, V. Juričić, B. Roy; *Projected Topological Branes* (2021) arXiv:

## Talks

### Dislocation as a bulk probe of non-Hermitian topology

bistocution as a bath probe of non-fiermitian topology

Presentation Download Link

July 6, 2021

# **Research Interests**

### **Broadly interested in theoretical Condensed Matter Physics**

- Topological phases of matter and Quantum Phase transitions
- Thermo-electric transport and the effects of Berry curvature
- · Brownian motion
- · Thermalization of quantum systems and Many body localization



**Mathematical skills** Integral Calculus, Linear Algebra, Trigonometry, Differential Equations

Comfortable with performing long algebraic calculations in pen and paper

**Programming skills** MATLAB/Octave, Mathematica, Data structures in C

The state of the s

Advanced Physics Courses Condensed Matter Physics II, Advanced Statistical Physics, Quantum Field Theory I, Relativistic Q.M. (ongoing)

**Languages** Fluent in English, Bengali, Hindi

# **Ongoing Research Projects**

#### Many body localization and thermalization of interacting quantum spin chains

IISc, Bangalore, India (Bachelor's thesis)

WITH PROF. SUBROTO MUKERJEE

September 2021 - Present

# **Research Experience**

#### **Topological phases in projected lower dimensional branes**

MPIPKS, Dresden, Germany (remotely)

JOINTLY WITH PROF. BITAN ROY AND PROF. VLADIMIR JURIČIĆ

June 2021 - September 2021

- · Numerically studied how topological properties of parent systems emerge in projected crystals and Fibonacci quasicrystals
- · Verified the existence of dislocation modes, Weyl points, and Landau levels in projected crystals and quasicrystals
- Proposed how this method can be utilized to study higher dimensional (>3D) topological phases within 3D systems

## Berry curvature effects on thermoelectric transport

IISc, Bangalore, India (Bachelor's thesis)

WITH PROF. SUBROTO MUKERJEE

October 2020 - June 2021

- · Studied how Berry curvature can alter thermoelectric transport, leading to anomalous Hall and anomalous Nernst effects
- Studied the Boltzmann transport formalism
- · Studied how the Onsager relation can be demonstrated from microscopic theories for a system with a non-trivial Berry curvature
- Found a condition on the energy magnetization such that the Einstein relation holds for the transport energy current in these systems
- · Showcased a physical interpretation of this condition, and obtained a closed expression for energy magnetization
- Analytically solved the Boltzmann transport equation (including Berry curvature effects) for two-dimensional systems

## **Non-Hermitian Topological Insulators and Dislocations**

MPIPKS, Dresden, Germany

May 2020 - September 2020

(remotely)

WITH PROF. BITAN ROY

- Studied and numerically implemented SSH Model, Chern Insulators, Quantum Spin Hall Insulators
- Studied the effects of dislocation in Hermitian and Non-Hermitian Chern Insulators
  Obtained phase diagrams for regimes where topological states get pinned at dislocation centers
- Proposed how dislocations can be used to probe topological phases in non-Hermitian systems, where the non-Hermitian skin effect masks the traditional bulk-boundary correspondence

## **Nano Heat Engines beyond the Carnot Efficiency**

IISc, Bangalore, India

WITH PROF. H. R. KRISHNAMURTHY

May 2019 - July 2019

- Studied how harmonic oscillators and two state systems can be used as efficient heat engines
- Read articles claiming Carnot efficiency can be surpassed with "squeezed" thermal baths
- $\bullet \ \ \text{Figured out the sense in which Carnot efficiency is surpassed without violating } 2^{\text{nd}} \ \text{law of thermodynamics} \\$
- Studied about Brownian Motion and Langevin equation
- · Solved the Langevin equation for a special kind of stochastic force, for which a classical harmonic oscillator behaves like a squeezed state
- Created a computer simulation to verify the nature of this solution

# References

- Prof. **Subroto Mukerjee**, Dept. of Physics, Indian Institute of Science, Bangalore, India. Email Address smukerjee@iisc.ac.in
- Prof. **Bitan Roy**, Dept. of Physics, Lehigh University, Bethlehem, PA 18015, USA. Email Address bitan.roy@lehigh.edu
- Prof. **Hulikal Ramaiengar Krishnamurthy**, Dept. of Physics, Indian Institute of Science, Bangalore, India. Email Address hrkrish@iisc.ac.in