Entropy of a bit

Binary Channel Model

Usually, the transmitter controls P[IN=0] and P[IN=1]
e.g. P[IN=0] = P[IN=1] = 0.5

Entropy

Let
$$p_1 = P[IN=1]$$

 $p_0 = P[IN=0]$

Entropy:

$$H = -p_0 \log_2(p_0) - p_1 \log_2(p_1)$$

$$= -(1 - p_1) \log_2(1 - p_1) - p_1 \log_2(p_1)$$
(since $p_0 + p_1 = 1 \implies p_0 = 1 - p_1$)

Expected Value

Consider a random variable I that assumes one of two possible values:

 $I = i_0$ with probability p_0

 $I = i_1$ with probability p_1

The expected value of X is $E[X] = p_0 \cdot i_0 + p_1 \cdot i_1$

Intuitively, the expected value is the long term average.

Entropy as Average Information

Define the "information" gained when observing a bit is 0 or 1 as

$$i_0 = -log_2(p_0) = -log_2(1-p_1)$$

 $i_1 = -log_2(p_1)$

The entropy of the bit is the average information

$$H = -p_0 \cdot \log_2(p_0) - p_1 \cdot \log_2(p_1)$$

Entropy

Entropy is a measure of the average information carried by a binary random variable.

$$H = -p_0 \log_2(p_0) - p_1 \log_2(p_1)$$

= -(1 - p_1) \log_2(1 - p_1) - p_1 \log_2(p_1)

The units of entropy are bits.