Heuristic Analysis

Andrew Cai

Synopsis

The goal of this project is to create an agent to play the game of "Isolation". The agent will use iterative deepening search base on mini-max search with alphabeta pruning to search the best moves with given time limitation. With that I implemented three different heuristic functions to evaluate the moves.

1. custom score

This heuristic function will penalize a player if he has more corner moves and reward a player with less corner moves. Since if a player move to a corner, then he will have less opportunity to get rid of isolation and then have less opportunity to win the game.

2. custom_score2

This heuristic function will reward a player if he has more central moves and penalize a player with less central moves. Since with a central position, a player has more legal moves and more opportunities to win the game.

3. custom score3

This heuristic function just return the value of number of current player's legal moves minus number of opponent's legal moves. Normally a player has more legal moves win the isolation game.

Here is the result of the tournament with these heuristics.

	Playing Matches ************************************								
Match #	# Opponent	AB_Improved		AB_Custom		AB_Custom_2		AB_Cu	stom_3
		Won	Lost	Won	Lost	Won	Lost	Won	Lost
1	Random	9	1	9	1	9	1	9	1
2	MM_Open	8	2	6	4	6	4	5	5
3	MM Center	9	1	10	0	8	2	9	1
4	MM Improved	4	6	7	3	5	5	6	4
4 5	AB Open	6	4	7	3	4	6	6	4
6	AB Center	8	2	4	6	5	5	6	4
7	AB_Improved	4	6	6	4	4	6	5	5
	Win Rate:	68.6%		70.0%		58.6%		65	 .7%

I chose custom_score method as the heuristic used in score evaluation with the following reasons:

- 1. It outperforms all other heuristics with win rate 70.0%, which is higher than other heuristics.
- $2. \ The \ logic \ is \ simple, easy to \ understand \ and \ implement.$
- 3. It only check the current state and no need to track history states. So no additional space needed.