Ordering: shortest weighted processing time first.

Proof:

Let i(1) be the first job processed, i(2) the second etc

With shortest weighted processing time we have:

$$w_1 p_{i(1)} \le w_2 p_{i(2)} \le \dots \le w_n p_{i(n)}$$

Now consider some order with

$$w_k p_{i(k)} \ge w_{k+1} p_{i(k+1)} \tag{1}$$

Let job i(k-1) be completed at time t, then:

$$C_{i(k)} = t + p_{i(k)}$$

$$C_{i(k+1)} = t + p_{i(k)} + p_{i(k+1)}$$

$$\sum_{i=1}^{n} w_i C_i = \sum_{\substack{j=1 \ j \neq k, j \neq k+1}}^{n} w_j C_{i(j)} + w_k C_{i(k)} + w_{k+1} C_{i(k+1)}$$

The objective function becomes:

$$z_1 = \sum_{\substack{j=1\\j\neq k, j\neq k+1}}^{n} w_j C_{i(j)} + w_k (t + p_{i(k)}) + w_{k+1} (t + p_{i(k)} + p_{i(k+1)})$$

Now swap job order of i(k), i(k+1):

$$z_2 = \sum_{\substack{j=1\\j\neq k, j\neq k+1}}^n w_j C_{i(j)} + w_{k+1}(t + p_{i(k+1)}) + w_k(t + p_{i(k)} + p_{i(k+1)})$$

The change in objective function becomes:

$$\begin{split} z_2 - z_1 &= w_{k+1}(t + p_{i(k+1)}) + w_k(t + p_{i(k)} + p_{i(k+1)}) - w_k(t + p_{i(k)}) - w_{k+1}(t + p_{i(k)} + p_{i(k+1)}) \\ &= w_k p_{i(k+1)} - w_{k+1} p_{i(k)} \\ &= w_{k+1} p_{i(k+1)} \left[\frac{w_k}{w_{k+1}} - \frac{p_{i(k)}}{p_{i(k+1)}} \right] \end{split}$$

From (1), knowing weights and processing times are positive, we can state:

$$\frac{p_{i(k+1)}}{p_{i(k)}} \ge \frac{w_k}{w_{k+1}}$$

Therefore $z_2 - z_1 \le 0$, meaning switching to shortest weighted processing time order can only improve or maintain the solution. This proves shortest weighted processing time order is optimal.

a)

Jobs	Α	В		C
p_j	:	3	3	3
d_j	()	0	0
r_j	1	1	2	3

Optimal solution via rule

L_max = 10

Optimal solution alternative

L_max = 10

b) $1/r_j/C_{\rm max}$

 ${\rm Maximum\ lateness}=21$

Order: 1, 2, 3, 6, 4, 8, 7, 10, 5, 9

1 2 3 6 4 8 7 10 5 9

Let t_j be the time job j starts. Let x_{ij} be 1 if job i precedes job j, 0 otherwise. Let T_j be the tardiness of job j. Let other variables be as defined as in the notes/assignment.

$$\begin{array}{lll} \text{minimize} & \sum T_i \\ \\ \text{subject to} & x_{ij} + x_{ji} = 1 & \forall i, j, i \neq j \\ \\ & t_i - t_j + M x_{ij} \geq p_j & \forall i, j \\ \\ & t_j - t_i \geq p_i & \forall j \in S_i, \forall i \\ \\ & t_i \geq r_i & \forall i \\ \\ & T_i - t_i \geq p_i - d_i & \forall i \\ \\ & T_i \geq 0, \text{ integer} & \forall i \\ \\ & T_i \geq 0, \text{ integer} & \forall i \\ \\ & x_{ij} \text{ binary} & \forall i, j \\ \\ \end{array}$$

Jobs	Α	В	С	D	Е	
p_j		13	9	13	10	8
d_j		6	18	10	11	13
w_j		2	4	3	5	4

K= 2

t=	0	p_avg=		10.6
job	w_j/p_j	slack		l_j(t)
Α	0.153846		0	0.153846
В	0.444444		9	0.290701
C	0.230769		0	0.230769
D	0.5		1	0.476963
E	0.5		5	0.39495

Choose jobs D, E Job D complete at time 10 Job E complete at time 8

Machine 1: D Machine 2: E

Job E complete.

Machine 1: Job D. Machine 2: Free. Jobs A, B, C left.

t=	8	p_avg=		11.66667
job	w_j/p_j	slack		l_j(t)
Α	0.153846		0	0.153846
В	0.444444		1	0.425799
С	0.230769		0	0.230769
D	0.5		0	0.5
Е	0.5		0	0.5

Choose job B Job D complete at time 10

Job B complete at time 17

Machine 1: D Machine 2: E, B

Job D complete

Machine 1: Free. Machine 2: Job B. Jobs A, C left.

t=	10 p_a	avg= 13
job	w_j/p_j sla	ck l_j(t)
Α	0.153846	0 0.153846
В	0.444444	0 0.444444
С	0.230769	0 0.230769
D	0.5	0 0.5
Е	0.5	0 0.5

Choose job C

Job C complete at time 23 Job B complete at time 17

Machine 1: D, C Machine 2: E, B

Job B complete

Machine 1: Job C. Machine 2: Free. Job A left.

t=	17 p	_avg=	13
job	w_j/p_j s	lack	l_j(t)
Α	0.153846	0	0.153846
В	0.444444	0	0.444444
C	0.230769	0	0.230769
D	0.5	0	0.5
Е	0.5	0	0.5

Choose job A

Job C complete at time 23 Job A complete at time 30

Machine 1: D, C Machine 2: E, B, A

	Т	w	wT
Α	24	2	48
В	0	4	0
c	13	3	39
D	0	5	0
Е	0	4	0

obj= 87

Objective = 87

Question 6

Score:

$$\left[\frac{1}{r_j} + \frac{1}{\max(\text{SETUP, 0.5})}\right] * \frac{1}{\max(d_j - p_j - t, 3)} * w_j$$

where SETUP is equal to the setup cost between the current job and job j. Final score: $176\,$

