АСТРАДЬ

Содержание

1	Небесная механика												2												
	1.1	Расстояние и размеры																							2

1 Небесная механика

1.1 Расстояние и размеры

Годичный параллакс — это угол, под которым видно орбиту Земли с какойлибо звезды.

$$\sin \pi = \frac{R}{r} \tag{1}$$

Где R и r имеют одинаковые еденицы измернеий, но так как в одном парсеке 206265 а.е. и в одном радиане 206265 секунд, то,записывая радиус орбиты Земли в а.е., а расстояние звезды в парсеках, параллакс получается в секундах. Также, можно изменить $\sin \pi$ на π , потому что угол π является малым углом. Таким образом, получается следующая формула:

$$r_{\text{IIK}} = \frac{1 \text{ a.e.}}{\pi_{\text{CEK}}} \tag{2}$$

Где r — расстояние до звезды (в парсеках), π — годичный параллакс звезды (в секундах).

Рис. 1: Параллакс в одну секунду

Если R — радиус орбиты Земли, r — расстояние до объекта, π — годовой параллакс, то параллакс будет равен $\pi=1''$ с расстояния r=1пк.

Угловой размер объекта — это угол, под которым видно радиус объекта с Земли.

$$\rho = \frac{R}{r} \tag{3}$$

Где R — радиус объекта, ρ — угловые размеры объекта, r — растояние до объекта. Здесь также можно использовать приближение для малых углов: $\sin \rho \approx \rho$

$$\sin p_0 = \frac{R_3}{r} \tag{4}$$

Где R_3 — радиус Земли, p_0 — горизонтальный экваториальный параллакс, r — расстояние до объекта.

Правило Тициуса-Боде — эмпирическая формула приблизительно описывающая радиусы орбит планет от Солнца:

$$r = \frac{3 \cdot 2^n + 4}{10} \tag{5}$$

Где $n=-\infty,0,1,2...$