Álgebra lineal – Semana 2 Combinación lineal, espacio generado e independencia lineal

Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Definición 1 (Combinación lineal)

Un vector ${\bf v}$ en un espacio vectorial V se dice que es ${\it combinaci\'on\ lineal}$ de los vectores

$$v_1, v_2, \dots, v_k$$

de V, si existen escalares c_1, c_2, \ldots, c_k tales que

$$\mathbf{v} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \ldots + c_k \mathbf{v_k}.$$

Definición 1 (Combinación lineal)

Un vector \mathbf{v} en un espacio vectorial V se dice que es **combinación lineal** de los vectores $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$ de V si existen escalares c_1, c_2, \dots, c_k tales que

$$\mathbf{v} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \ldots + c_k \mathbf{v_k}$$

Ejemplo 1

Muestre que en el conjunto de vectores de \mathbb{R}^3 ,

$$S = \{ \underbrace{(1,3,1)}_{\mathbf{v_1}}, \underbrace{(0,1,2)}_{\mathbf{v_2}}, \underbrace{(1,0,-5)}_{\mathbf{v_3}} \},$$

el vector $\mathbf{v_1}$ es *combinación lineal* de los vectores $\mathbf{v_2}$ y $\mathbf{v_3}$.

Muestre que en el conjunto de vectores de M_{22} ,

$$S = \left\{ \underbrace{\begin{pmatrix} 0 & 8 \\ 2 & 1 \end{pmatrix}}_{\mathbf{v_1}}, \underbrace{\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}}_{\mathbf{v_2}}, \underbrace{\begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix}}_{\mathbf{v_3}}, \underbrace{\begin{pmatrix} -2 & 0 \\ 1 & 3 \end{pmatrix}}_{\mathbf{v_4}} \right\},$$

el vector v_1 es combinación lineal de los vectores v_2, v_3 y v_4 .

En $V=\mathbb{R}^3,$ escriba al vector $\mathbf{v}=(1,1,1)$ como combinación lineal de los vectores en el conjunto

$$S = \{ \underbrace{(1,2,3)}_{\mathbf{v_1}}, \ \underbrace{(0,1,2)}_{\mathbf{v_2}}, \ \underbrace{(-1,0,1)}_{\mathbf{v_3}} \}.$$

En $V=\mathbb{R}^3$, escriba al vector $\mathbf{w}=(1,-2,2)$ como combinación lineal de los vectores en el conjunto

$$S = \{ \underbrace{(1,2,3)}_{\mathbf{v_1}}, \underbrace{(0,1,2)}_{\mathbf{v_2}}, \underbrace{(-1,0,1)}_{\mathbf{v_3}} \}.$$

Definición 2 (Conjunto generador)

Se dice que un conjunto de vectores $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ en un espacio vectorial V genera a V si todo vector en V se puede escribir como combinación lineal de los vectores en S. Es decir, para todo vector $\mathbf{v} \in V$, existen escalares c_1, c_2, \dots, c_k tales que

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

Ejemplo 5

El conjunto de vectores

$$S = \{ (\underbrace{1,0,0)}_{\mathbf{i}}, (\underbrace{0,1,0)}_{\mathbf{j}}, (\underbrace{0,0,1)}_{\mathbf{k}} \}.$$

genera a \mathbb{R}^3 .

Definición 2 (Conjunto generador)

Se dice que un conjunto de vectores $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ en un espacio vectorial V genera a V si todo vector en V se puede escribir como combinación lineal de los vectores en S. Es decir, para todo vector $\mathbf{v} \in V$, existen escalares c_1, c_2, \dots, c_k tales que

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

Ejemplo 6

El conjunto de vectores

$$S = \left\{1, x, x^2\right\}$$

genera a P_2 .

Definición 2 (Conjunto generador)

Se dice que un conjunto de vectores $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ en un espacio vectorial V genera a V si todo vector en V se puede escribir como combinación lineal de los vectores en S. Es decir, para todo vector $\mathbf{v} \in V$, existen escalares c_1, c_2, \dots, c_k tales que

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

Ejemplo 7

Ningún conjunto finito de polinomios genera a P.

El conjunto de vectores

$$S = \{ \underbrace{(1,2,3)}_{\mathbf{v_1}}, \underbrace{(0,1,2)}_{\mathbf{v_2}}, \underbrace{(-2,0,1)}_{\mathbf{v_3}} \},$$

genera a \mathbb{R}^3 .

El conjunto de vectores

$$S = \left\{ \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{v_1}}, \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{\mathbf{v_2}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}_{\mathbf{v_3}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{\mathbf{v_4}} \right\},$$

genera a M_{22} .

Espacio generado por un conjunto de vectores

Definición 3 (Espacio generado)

El *espacio generado* por un conjunto de vectores

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

en un espacio vectorial V, se define como el conjunto de TODAS las combinaciones lineales de S. Al espacio generado por S se le denota por

$$gen(S)$$
 ó $gen\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

gen
$$(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \text{ son números reales } \}.$$

Ejemplo 10

Halle el espacio generado por el vector $\mathbf{v} = (2,1)$ de \mathbb{R}^2 .

Espacio generado por un conjunto de vectores

Definición 3 (Espacio generado)

El *espacio generado* por un conjunto de vectores

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

en un espacio vectorial V, se define como el conjunto de TODAS las combinaciones lineales de S. Al espacio generado por S se le denota por

$$gen(S)$$
 ó $gen\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

gen
$$(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \text{ son números reales } \}.$$

Propiedad 1

Si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ son vectores en un espacio vectorial V, entonces

gen
$$\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}$$

es un subespacio vectorial de V.

Definición 3 (Espacio generado)

El espacio generado por un conjunto de vectores

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

en un espacio vectorial V, se define como el conjunto de TODAS las combinaciones lineales de S. Al *espacio generado* por S se le denota por

$$gen(S)$$
 ó $gen\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

gen
$$(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \text{ son números reales } \}.$$

Ejemplo 11

Demuestre que si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ son vectores que generan un espacio vectorial V, entonces para todo vector \mathbf{w} en V, los vectores $\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ también generan a V.

Espacio generado por un conjunto de vectores

Definición 3 (Espacio generado)

El espacio generado por un conjunto de vectores

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

en un espacio vectorial V, se define como el conjunto de TODAS las combinaciones lineales de S. Al *espacio generado* por S se le denota por

$$gen(S)$$
 ó $gen\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

gen
$$(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \text{ son números reales } \}.$$

Ejemplo 12

Demuestre que si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ son vectores que generan un espacio vectorial V y que si uno de los vectores \mathbf{v}_k es combinación lineal del resto, entonces los vectores $\mathbf{v}_1, \dots, \mathbf{v}_m$ sin el vector \mathbf{v}_k también generan a V.

Espacio generado por un conjunto de vectores

Definición 3 (Espacio generado)

El espacio generado por un conjunto de vectores

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

en un espacio vectorial V, se define como el conjunto de TODAS las combinaciones lineales de S. Al *espacio generado* por S se le denota por

$$gen(S)$$
 ó $gen\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

gen
$$(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \text{ son números reales } \}.$$

Ejemplo 13

Demuestre que si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ son vectores que generan un espacio vectorial V y que si uno de los vectores \mathbf{v}_k es el vector cero, entonces los vectores $\mathbf{v}_1, \dots, \mathbf{v}_m$ sin el vector cero también generan a V.

Observación 1

 ${\color{red} \bullet}$ Dado un conjunto de vectores $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\},$ la ecuación

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0}$$

siempre tiene la solución trivial

$$c_1 = 0, c_2 = 0, \ldots, c_k = 0.$$

 \bullet En el ejemplo 1 vimos que $\mathbf{v}_1 = 3\mathbf{v}_2 + \mathbf{v}_3$, donde

$$\mathbf{v_1} = (1, 3, 1), \ \mathbf{v_2} = (0, 1, 2) \ \ \mathbf{v_3} = (1, 0, -5)$$

y por tanto la ecuación

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

tiene la solución NO trivial

$$c_1 = 1$$
, $c_2 = -3$, $c_3 = -1$.

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 $\ \, \ \,$ Se dice que S es $\it linealmente$ $\it independiente$ (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

 Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Ejemplo 1

Muestre que el conjunto de vectores $S = \{(1,2),(2,4)\}$ en \mathbb{R}^2 es linealmente dependiente (LD).

Conjuntos linealmente dependientes

Definición 1 (Independencia lineal)

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Ejemplo 2

Muestre que el conjunto de vectores $S = \{(0,0),(1,2)\}$ en \mathbb{R}^2 es linealmente dependiente (LD).

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Ejemplo 3

Muestre que el conjunto de vectores $S = \{(1,0), (0,1), (-2,5)\}$ en \mathbb{R}^2 es linealmente dependiente (LD).

Conjuntos linealmente dependientes

Definición 1 (Independencia lineal)

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 ${\color{red} \bullet}$ Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Propiedad 1

Dos vectores en un espacio vectorial son linealmente dependientes si y sólo si uno de ellos es un múltiplo escalar del otro.

Determine si el conjunto de vectores

$$S = \{ \underbrace{(1,2,3)}_{\mathbf{v_1}}, \underbrace{(0,1,2)}_{\mathbf{v_2}}, \underbrace{(-2,0,1)}_{\mathbf{v_3}} \}$$

en $V = \mathbb{R}^3$ es linealmente dependiente (LD) o independiente (LI).

Procedimiento 1

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V. Para determinar si S es LI o LD efectúe los siguientes pasos:

A partir de la ecuación vectorial

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0}$$

escriba un sistema homogéneo de ecuaciones lineales en las variables $c_1, \ldots, c_k.$

- O Utilice eliminación gaussiana para resolver el sistema.
- Si el sistema tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0,$$

entonces el conjunto S es linealmente independiente (LI).

 \odot Si el sistema tiene soluciones no triviales, entonces el conjunto S es linealmente dependiente (LD).

Determine si el siguiente conjunto de vectores en P_2 es LI o LD.

$$\left\{\underbrace{1+x-2x^{2}}_{\mathbf{v_{1}}}, \ \underbrace{2+5x-x^{2}}_{\mathbf{v_{2}}}, \ \underbrace{x+x^{2}}_{\mathbf{v_{3}}}\right\}$$

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 \odot Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

 Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Propiedad 2

Un conjunto de vectores $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ es linealmente dependiente (LD) si y sólo si al menos uno de los vectores \mathbf{v}_j puede escribirse como combinación lineal de los otros vectores en S.

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 $\bullet \;$ Se dice que S es $\it linealmente \; independiente (LI)$ si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

 Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Ejemplo 6

Suponga que \mathbf{v} es un vector de un espacio vectorial V. Determine si el conjunto $\{\mathbf{v}\}$ es LI o LD.

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

 Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Ejemplo 7

Suponga que $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ son vectores en un espacio vectorial V y que \mathbf{v}_1 es el vector cero. Determine si el conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ es LI o LD.

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ un conjunto de vectores en un espacio vectorial V.

 Se dice que S es linealmente independiente (LI) si la ecuación vectorial

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

tiene solamente la solución trivial

$$c_1 = 0, \ c_2 = 0, \ \dots, \ c_k = 0.$$

 Si existen soluciones no triviales de (1), se dice que S es linealmente dependiente (LD).

Ejemplo 8

Suponga que en el listado de vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ uno de ellos es múltiplo escalar de otro. Determine si el conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ es LI o LD.

Bibliografía

Stanley Grossman Álgebra lineal McGraw-Hill Interamericana, Edición 8, 2019.

David Poole

Álgebra lineal: una introducción moderna

Cengage Learning Editores, 2011.

Bernard Kolman Álgebra lineal Pearson Educación, 2006.

Ron Larson
Fundamentos de Álgebra lineal
Cengage Learning Editores, 2010.

