Nom:

Question de cours :

- Décrire les ensembles $\{0,1,2\} \cup \{0,1,3\}$ et $[0,5] \cap [-1,0[$.
- Rappeler la loi de De Morgan donnant $\overline{(A \cup B)}$.

Exercice:

Dire si les propositions sont vraies ou fausses :

a)
$$\emptyset \in \mathbb{R}$$

b)
$$\frac{-8}{4} \in \mathbb{N}$$
e) $\frac{1}{5} \in \mathbb{Q}$

c)
$$\{-1,0,1\}\subset\mathbb{Z}$$

d)
$$\sqrt{2} \in \mathbb{Q}$$

e)
$$\frac{1}{5} \in \mathbb{Q}$$

f)
$$[0,1] \subset \mathbb{R}_+$$

Exercice:

Décrire les ensembles suivants :

a)
$$(\{x \in \mathbb{R}, \ |x| \le 1\} \cup \{-2\}) \cap [-2, -1]$$

b)
$$\{x \in \mathbb{R}, \ x^2 + x + 1 = 0\}$$

c)
$$([0,2] \times [0,2]) \cap ([-1,1] \times [-1,1])$$

Exercice:

Soient E, F deux ensembles, soient $A, B \in \mathcal{P}(E)$ et $C, D \in \mathcal{P}(F)$. Montrer que :

$$(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$$

Commentaire:

Nom:

Question de cours :

- Décrire les ensembles $\{0, 1, 2\} \cap [0, 1]$ et $[0, 5] \cup [0, 2]$.
- Rappeler la loi de De Morgan donnant $\overline{(A \cap B)}$.

Exercice:

Dire si les propositions sont vraies ou fausses :

a)
$$\sqrt{2} \in \mathbb{R}$$

b)
$$\frac{12}{4} \subset \mathbb{N}$$

c)
$$\emptyset \subset [0,5]$$

d)
$$[-1,1] \subset \mathbb{Q}$$

e)
$$\{0,1\} \in \{0,1,2\}$$

f)
$$\mathbb{N} \subset \mathbb{R}_+$$

Exercice:

Décrire les ensembles suivants :

a)
$$(\{x \in \mathbb{R}, |x| \le 2\} \cap \{2\}) \cup [2,3]$$

b)
$$\{x \in \mathbb{R}, \ x^2 - x - 1 = 0\}$$

c)
$$(\{0,1\} \times \{1,2,3\}) \cap ([-1,1[\times[0,2])$$

Exercice:

Soit E un ensemble et soient $A, B, C \in \mathcal{P}(E)$.

- a) Montrer que si $A \cap B = A \cup B$, alors A = B.
- b) Montrer que si $A \cap B = A \cap C$ et $A \cup B = A \cup C$, alors B = C.

Commentaire:

Nom:

Question de cours :

- Décrire les ensembles $\{0,1,2\} \cap \{0,1,3\}$ et $[0,1] \cup [-2,0[$.
- Développer $A \cap (B \cup C)$ et $A \cup (B \cap C)$.

Exercice:

Dire si les propositions sont vraies ou fausses :

a)
$$\mathbb{Q}\subset\mathbb{R}$$

b)
$$\frac{-6}{2} \in \mathbb{Z}$$

c)
$$\{-1,0,1\} \subset [-1,1[$$

d)
$$\sqrt{4} \in \mathbb{Z}$$

e)
$$10 \in \mathbb{Q}$$

f)
$$[0,1] \in \mathbb{R}$$

Exercice:

Décrire les ensembles suivants :

a)
$$(\{x \in \mathbb{R}, x \le -1\} \cup [1, 5]) \cap [-1, 2]$$

b)
$$\{x \in \mathbb{R}, \ x^2 - 4 = 0\}$$

c)
$$([0,1] \times [0,1]) \cup ([1,2] \times [0,1])$$

Exercice:

Soit E un ensemble et soient $A,B\in\mathcal{P}(E)$. On définit :

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

- a) Représenter $A\Delta B$ par un diagramme de Venn.
- b) Si $E = \mathbb{R}$, $A =]-\infty, 2]$ et $B = [1, +\infty[$, déterminer $A\Delta B$.
- c) Montrer que $A\Delta B=(\overline{A}\cap B)\cup (A\cap \overline{B}).$
- d) Montrer que $A\Delta B=B\Delta A$.
- e) Déterminer $E\Delta A$, $A\Delta A$ et $\overline{A}\Delta A$

Commentaire: