M34 TP3

Gestion des feux tricolores d'une intersection : Modélisation en VHDL et implémentation sur la carte DE1 SOC

On veut concevoir et simuler une machine d'état en VHDL pour gérer le trafic à une intersection, et implémenter la solution sur DE1 SOC. Considérons une intersection représentée par la **Figure 1**

Figure 1

La gestion des feux de signalisation suit le diagramme d'état fourni (figure 2), avec les états détaillés dans le **Tableau 1**. Chaque état est caractérisé par la couleur des feux de signalisation pour les directions Nord-Sud et Est-Ouest, ainsi que par un délai spécifique exprimé en cycles d'horloge.

Figure 2

Tableau 1

Nom de l'état	Nord_Sud	Est_Ouest	Délai (cycles)
$V_{ns}R_{eo}$	Vert	Rouge	15
$J_{ns}R_{eo}$	Jaune	Rouge	3
$R_{ns}R_{eo}1$	Rouge	Rouge	3
$R_{ns}V_{eo}$	Rouge	Vert	15
$R_{ns}J_{eo}$	Rouge	Jaune	3
$R_{ns}R_{eo}2$	Rouge	Rouge	3

S'il y a Reset, on va vers l'état $V_{ns}R_{eo}$.

Le **Tableau 2** fournit les valeurs des signaux de sortie associées à chaque état. Ces valeurs seront utilisées pour piloter les feux.

Tableau 2

lights	Nord_Sud	Est_Ouest
"001100"	Vert	Rouge
"010100"	Jaune	Rouge
"100100"	Rouge	Rouge
"100001"	Rouge	Vert
"100010"	Rouge	Jaune
"100100"	Rouge	Rouge

La Figure 3 illustre les résultats attendus de la simulation.

1. Gestion en cycles d'horloge :

- 1.1. Écrire le code VHDL pour gérer les feux de l'intersection en suivant les états et les délais spécifiés dans le **Tableau 1**.
- 1.2. Simuler le code et reproduire les résultats similaires à ceux de la Figure 3.

2. Gestion en secondes:

2.1. Adapter le code VHDL en utilisant les délais exprimés en secondes fournis dans le **Tableau 3**. Considérer que l'horloge est de 50 MHz

Tableau 3

Nom de	Nord_Sud	Est_Ouest	Délai (secondes)
l'état			
$V_{ns}R_{eo}$	Vert	Rouge	15
$J_{ns}R_{eo}$	Jaune	Rouge	3
$R_{ns}R_{eo}1$	Rouge	Rouge	3
$R_{ns}V_{eo}$	Rouge	Vert	15
$R_{ns}J_{eo}$	Rouge	Jaune	3
$R_{ns}R_{eo}2$	Rouge	Rouge	3

2.2. Implémenter la solution sur la plateforme DE1 SOC, en affectant les sorties aux LEDs comme suit :

ledr (9): Rouge Nord-Sud
ledr (8): Jaune Nord-Sud
ledr (7): Vert Nord-Sud
ledr (2): Rouge Est-Ouest
ledr (1): Jaune Est-Ouest

o ledr(0): Vert Est-Ouest