

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA TAREA 6

Pregunta 1

Pregunta 1.1

Demostremos que si $f \in o(g)$ entonces $f \in \mathcal{O}(g)$. Sea $f \in o(g)$. Sea $c' \in \mathbb{R}^+$ cualquiera. Entonces, existe un $n_0 > 0$ tal que:

$$\forall n > n_0. \ f(n) < c'g(n) \implies \forall n > n_0. \ f(n) < cg(n)$$

$$\implies \exists c' \in \mathbb{R}^+. \ \exists n_0 > 0. \ \forall n > n_0. \ f(n) < c'g(n)$$

$$\implies \exists c' \in \mathbb{R}^+. \ \exists n_0 > 0. \ \forall n > n_0. \ f(n) \le c'g(n)$$

$$\implies f \in \mathcal{O}(g)$$

Por lo tanto, $f \in o(g) \implies f \in \mathcal{O}(g)$. Además, tenemos que $c' \in \mathbb{R}^+$ si y solo si $\frac{1}{c'} \in \mathbb{R}^+$. Sea k = c'. Como c' era cualquier número real positivo, k también lo es, y tenemos

$$\forall k > 0. \ \exists n_0 > 0. \ \forall n > n_0. \ kf(n) < g(n) \tag{1}$$

Finalmente, sean k > 0 y $n^* > 0$ cualesquiera, y n_0 tal que $\forall n > n_0$. kf(n) < g(n). Para n^* solo hay dos casos posibles.

Si $n^* \le n_0$, entonces podemos tomar $n = n_0 + 1$, que es tal que $n > n_0$ y por (1) concluimos que kf(n) < g(n). Si, en cambio, $n^* > n_0$, entonces podemos tomar $n = n^* + 1$, que es tal que $n > n_0$ y nuevamente por (1) concluimos que kf(n) < g(n).

En ambos casos tenemos que $n > n^*$ y kf(n) < g(n). Como k y n^* eran números positivos cualesquiera, concluimos que

$$\forall k > 0. \ \forall n^* > 0. \ \exists n > n^*. \ kf(n) < q(n)$$

Es decir, $g \notin \mathcal{O}(f)$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Demostración correcta y clara.
- (3 puntos) Demostración con pequeños errores u omisiones.
- (0 puntos) Otros casos.

Pregunta 1.2

Mostraremos un caso en que $f \in \mathcal{O}(g)$, $g \notin \mathcal{O}(f)$ pero $f \notin o(g)$. Sea $f : \mathbb{N} \to \mathbb{N}$ y $g : \mathbb{N} \to \mathbb{N}$ tales que

$$f(n) = \begin{cases} 0 & n \text{ es par} \\ n & n \text{ es impar} \end{cases}$$
$$g(n) = n$$

Es fácil ver que $f \in \mathcal{O}(g)$ pues $f(n) \leq g(n)$ para todo n natural. Además, $g \notin \mathcal{O}(g)$ ya que para todo c > 0 si n > 0 entonces g(n) > 0, y luego si $g(n) \leq cf(n)$, entonces g(n+1) > cf(n+1) (ya que f(n+1) sería igual a cero). Además, si tomamos c = 1, tenemos que para todo $n_0 > 0$ siempre existirá un $n > n_0$ que sea impar, en cual caso g(n) = f(n) y luego $cg(n) \leq f(n)$. Tenemos entonces que

$$\exists c > 0. \ \forall n_0 > 0. \ \exists n > n_0. \ cg(n) \le f(n)$$

 $\equiv \neg (\forall c > 0. \ \exists n_0 > 0. \ \forall n > n_0. \ f(n) < cg(n))$

Es decir, $f \notin o(g)$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Demostración correcta y clara.
- (3 puntos) Demostración con pequeños errores u omisiones.
- (0 puntos) Otros casos.