Market Basket insight phase 3

Introducing:

Market Basket Analysis using a real-world dataset. Market Basket Analysis is a powerful technique that allows us to uncover patterns and associations between items that customers tend to purchase together. By analyzing these patterns, we can gain valuable insights that can drive business decisions and strategies.

In this notebook, we will work with a Market Basket dataset that captures customer transactions in a retail or e-commerce setting. The dataset provides a wealth of information about customer purchases, allowing us to dive deep into their buying behavior. By leveraging data mining techniques and association rule mining algorithms, we will unravel the relationships between items and discover interesting patterns.

Through this analysis, we can derive actionable insights to improve various aspects of business operations. We can identify frequently co-purchased items, enabling us to make targeted product recommendations and enhance cross-selling and upselling opportunities. By optimizing product placement and store layout based on association patterns, we can create more enticing shopping experiences. Furthermore, we can design effective promotional campaigns by leveraging the discovered item associations, resulting in higher customer engagement and increased sales.

In this notebook, we will take you through the entire process of Market Basket Analysis, from data preprocessing to association rule mining and visualization. By following along with the provided code and explanations, you will gain a solid understanding of how to extract valuable insights from Market Basket datasets and apply them to real-world scenarios.

So let's dive in and unlock the secrets hidden within the Market Basket dataset to gain a deeper understanding of customer behavior and optimize business strategies!

Overview of the Market Basket Analysis dataset:

This dataset contains 522,065 rows and 7 attributes that provide valuable information about customer transactions and product details. Here is a breakdown of the attributes:

BillNo: This attribute represents a 6-digit number assigned to each transaction. It serves as a unique identifier for identifying individual purchases.

Itemname: This attribute stores the name of the product purchased in each transaction. It provides nominal data representing different products.

Quantity: This attribute captures the quantity of each product purchased in a transaction. It is a numeric value that indicates the number of units of a specific item.

Date: The Date attribute records the day and time when each transaction occurred. It provides valuable information about the timing of purchases.

Price: This attribute represents the price of each product. It is a numeric value that indicates the cost of a single unit of the item.

CustomerID: Each customer is assigned a 5-digit number as their unique identifier. This attribute helps track customer-specific information and analyze individual buying patterns.

Country: The Country attribute denotes the name of the country where each customer resides. It provides nominal data representing different geographic regions.

By analyzing this dataset, we can gain insights into customer purchasing behavior, identify popular products, examine sales trends over time, and explore the impact of factors such as price and geography on customer preferences. These insights can be used to optimize marketing strategies, improve inventory management, and enhance customer satisfaction

Data Preprocessing.

Importing Required Libraries

import numpy as np # Import numpy library for efficient array operations import pandas as pd # Import pandas library for data processing import matplotlib.pyplot as plt # Import matplotlib.pyplot for data visualization

Data Loading

Retrieving and Loading the Dataset
df = pd.read_csv('//content/market basket .csv', sep=';',parse_dates=['Date'])
df.head()
Output

BillNo Itemnam Quantity Date Price Custome Country

0	536365	WHITE HANGIN G HEART T-LIGHT HOLDER	6.0	2010-01- 12 08:26:00	2,55	17850.0	United Kingdom
1	536365	WHITE METAL LANTER N	6.0	2010-01- 12 08:26:00	3,39	17850.0	United Kingdom
2	536365	CREAM CUPID HEARTS COAT HANGER	8.0	2010-01- 12 08:26:00	2,75	17850.0	United Kingdom
3	536365	KNITTED UNION FLAG HOT WATER BOTTLE	6.0	2010-01- 12 08:26:00	3,39	17850.0	United Kingdom
4	536365	RED WOOLLY HOTTIE	6.0	2010-01- 12 08:26:00	3,39	17850.0	United Kingdom

WHITE

HEART.

Convert the 'Price' column to float64 data type after replacing commas with dots

df['Price'] = df['Price'].str.replace(',', '.').astype('float64')

Display the information about the DataFrame which is to provide an overview of the DataFrame's structure and column data types.

df.info()

Output

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 451856 entries, 0 to 451855
Data columns (total 7 columns):
# Column Non-Null Count Dtype
0
  BillNo 451856 non-null object
1
  Itemname 450457 non-null object
    Quantity 451856 non-null int64
2
3
    Date 451856 non-null datetime64[ns]
4
    Price 451856 non-null float64
    CustomerID 337788 non-null float64
6
    Country 451855 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
```

```
memory usage: 24.1+ MB
```

Calculate the number of missing values for each column and sort them in descending order

df.isna().sum().sort values(ascending=False)

Output;

CustomerID	114068
Itemname	1399
Country	1
BillNo	0
Quantity	0
Date	0
Price	0
dtype: int64	

rrybe: Ture

Calculate the total price by multiplying the quantity and price columns df['Total_Price'] = df.Quantity * df.Price df.describe(include='all')

Output:

<ipython-input-24-174ba9bf1a5c>:1: FutureWarning: Treating datetime data as categorical rather than numeric in `.describe` is deprecated and will be removed in a future version of pandas. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now.

df.describe(include='all')

	BillNo	Itemnam	Quantity	Date	Price	Custome	Total_Pri	
		е				rID	се	
count	451856.0	450457	451856.0	451856	451856.0	337788.0	451856.0	
count			00000		00000	00000	00000	
unique	19231.0	4131	NaN	17479	NaN	NaN	NaN	
	573585.0	WHITE	NaN	2011-10-	NaN	NaN	NaN	
		HANGIN		31				
		G		14:41:00				
top		HEART						
		T-LIGHT						
		HOLDER						
freq	1114.0	2070	NaN	1114	NaN	NaN	NaN	
ireq	1114.0	2070	ivaiv	1114	Ivaiv	Ivaiv	INAIN	
	NaN	NaN	NaN	2010-01-	NaN	NaN	NaN	
first				12				
				08:26:00				
	NaN	NaN	NaN	2011-12-	NaN	NaN	NaN	
last				10				
				17:19:00				
10.0244.0200	NaN	NaN	10.19838	NaN	3.823006	15313.05	19.77163	
mean			6			9783	0	

atd	NaN	NaN	122.4009	NaN	43.54639	1718.808	151.0128
std			85		9	141	23
min	NaN	NaN	-9600.00	NaN	-11062.0	181.0000	-11062.0
			0000		60000	00	60000
25%	NaN	NaN	1.000000	NaN	1.250000	13924.00	3.750000
25%						0000	
	NaN	NaN	3.000000	NaN	2.080000	15265.00	9.900000
50%						0000	
	NaN	NaN	11.00000	NaN	4.130000	16817.00	17.70000
75%			0			0000	0
	NaN	NaN	74215.00	NaN	13541.33	18287.00	77183.60
max	IVAIV	INGIN	0000	IVAIN	0000	0000	0000
			0000		0000	0000	0000

Print the number of unique countries in the 'Country' column
print("Number of unique countries:", df['Country'].nunique())

Calculate and print the normalized value counts of the top 5
countries in the 'Country' column

print(df['Country'].value_counts(normalize=True)[:5])

Output:

Number of unique countries: 30

United Kingdom 0.931721

Germany 0.017827

France 0.016311

Spain 0.005035

Netherlands 0.004730

Name: Country, dtype: float64

Considering that the majority of transactions (approximately 93%) in the dataset originate from the UK, the 'Country' column may not contribute significant diversity or variability to the analysis.

Therefore, we can choose to remove the 'Country' column from the DataFrame df. we indicate that we want to drop a column, This step allows us to focus on other attributes that may provide more valuable insights for our analysis.

```
# Delete the 'Country' column from the DataFrame
```

```
df.drop('Country', axis=1, inplace=True)
```

Filter the DataFrame to display rows where 'BillNo' column contains non-digit values

```
df[df['BillNo'].str.isdigit() == False]
```

Output:

	BillNo	Itemnam	Quantity	Date	Price	Custome	Total_Pri
		е				rID	ce
	A563185	Adjust	1.0	2011-12-	11062.06	NaN	11062.06
288772		bad debt		80			
				14:50:00			
	A563186	Adjust	1.0	2011-12-	-11062.0	NaN	-11062.0
288773		bad debt		80	6		6
				14:51:00			
	A563187	Adjust	1.0	2011-12-	-11062.0	NaN	-11062.0
288774		bad debt		08	6		6
				14:52:00			

Since the item name "Adjust bad debt" was filled accidentally and does not provide any useful information for our analysis, we can choose to remove the corresponding rows from the DataFrame. The code snippet above filters the DataFrame df to retain only the rows where the 'Itemname' column does not contain the value "Adjust bad debt". This operation effectively eliminates the rows associated with the accidental data entry, ensuring the dataset is free from this irrelevant item name.

[#] Remove rows where the 'Itemname' column contains "Adjust bad debt"

df = df[df['Itemname'] != "Adjust bad debt"]

[#] Here to check if all BillNo doesn't inculde letters

```
Output:
0 536365
1
     536365
2
   536365
3
   536365
   536365
4
        . . .
465135 577504
465136 577504
465137 577504
465138 577504
465139 577504
Name: BillNo, Length: 465137, dtype: int64
# Calculate the sum of 'Price' for rows where 'Itemname' is missing
df[df['Itemname'].isna()] ['Price'].sum()
Output:
0.0
```

Exploring Rows with Missing Item Names:

df['BillNo'].astype("int64")

To investigate the data where the 'Itemname' column has missing values, we can filter the dataset to display only those rows. This subset of the data will provide insights into the records where the item names are not available.

Filter the DataFrame to display rows where 'Itemname' is missing
df[df['Itemname'].isna()]

Output:

BillNo	Itemnam	Quantity	Date	Price	Custome	Total_Pri	
	е				rID	се	
	536414	NaN	56.0	2010-01-	0.0	NaN	0.0
613				12			
				11:52:00			
	536545	NaN	1.0	2010-01-	0.0	NaN	0.0
1937				12			
				14:32:00			
	536546	NaN	1.0	2010-01-	0.0	NaN	0.0
1938				12			
				14:33:00			
	536547	NaN	1.0	2010-01-	0.0	NaN	0.0
1939				12			
				14:33:00			
	536549	NaN	1.0	2010-01-	0.0	NaN	0.0
1940				12			
				14:34:00			

461979	577264	NaN	3.0	2011-11- 18 12:32:00	0.0	NaN	0.0
461980	577265	NaN	2.0	2011-11- 18 12:33:00	0.0	NaN	0.0
462301	577306	NaN	12.0	2011-11- 18 13:06:00	0.0	NaN	0.0
462902	577339	NaN	9.0	2011-11- 18 14:57:00	0.0	NaN	0.0
462903	577340	NaN	40.0	2011-11- 18 14:57:00	0.0	NaN	0.0

1410 rows × 7 columns

Upon examining the data where the 'Itemname' column has missing values, it becomes evident that these missing entries do not contribute any meaningful information. Given that the item names are not available for these records, it suggests that these instances may not be crucial for our analysis. As a result, we can consider these missing values as non-significant and proceed with our analysis without incorporating them.

Filter the DataFrame to exclude rows where 'Itemname' is missing (not NaN)

df = df[df['Itemname'].notna()]

Print the number of unique items in the 'Itemname' column print("Number of unique items:", df['Itemname'].nunique())

Calculate and print the normalized value counts of the top 5 items in the 'Itemname' column print(df['Itemname'].value counts(normalize=True)[:5])

Output:

Number of unique items: 4144

WHITE HANGING HEART T-LIGHT HOLDER 0.004546

JUMBO BAG RED RETROSPOT 0.004194

REGENCY CAKESTAND 3 TIER 0.003864

PARTY BUNTING 0.003489

LUNCH BAG RED RETROSPOT 0.003170

Name: Itemname, dtype: float64

A curious observation has caught our attention—the presence of a negative quantity in the 515,623rd row.

we are intrigued by the existence of negative quantities within the dataset. To gain a deeper understanding of this phenomenon, we focus our attention on these specific instances and aim to uncover the underlying reasons behind their occurrence. Through this exploration, we expect to gain valuable insights into the nature of these negative quantities and their potential impact on our analysis. Our investigation aims to reveal the intriguing stories that lie within this aspect of the data.

Filter the DataFrame to display rows where 'Quantity' is less than 1 df[df['Quantity'] < 1]

Output:

BillNo	Itemnam	Quantity	Date	Price	Custome	**************************************	
	е				rID	ce	
	537032	?	-30.0	2010-03-	0.0	NaN	-0.0
7122				12			
				16:50:00			
	537425	check	-20.0	2010-06-	0.0	NaN	-0.0
12926				12			
				15:35:00			
	E27426	ah a ak	25.0	2010.06	0.0	NoN	0.0
12927	537426	check	-35.0	2010-06-	0.0	NaN	-0.0
12321				15:36:00			
				10.00.00			
	537432	damages	-43.0	2010-06-	0.0	NaN	-0.0
12973				12			
				16:10:00			
	538072	faulty	-13.0		0.0	NaN	-0.0
20844				12			
				14:10:00			
	•••				•••		•••
	577123	check	-63.0	2011-11-	0.0	NaN	-0.0
460954				17			
				18:34:00			
	577124	check	-327.0	2011-11-	0.0	NaN	-0.0
460955				17			
				18:41:00			

	577304	check	-152.0	2011-11-	0.0	NaN	-0.0
462299				18			
				13:04:00			
	577305	check	-21.0	2011-11-	0.0	NaN	-0.0
462300				18			
				13:06:00			
	577307	check	-313.0	2011-11-	0.0	NaN	-0.0
462302				18			
				13:06:00			

409 rows × 7 columns

```
# Remove rows where 'Quantity' is less than 1
df = df[df['Quantity'] >= 1]
```

Next, we turn our attention to the presence of missing values in the 'CustomerlD' column. By investigating these missing values, we aim to identify any potential issues or data quality concerns associated with them. Analyzing the impact of missing 'CustomerlD' values will help us assess the completeness and reliability of the dataset, enabling us to make informed decisions on handling or imputing these missing values. Let's dive deeper into this aspect and gain a comprehensive understanding of any issues related to missing 'CustomerlD' values.

```
# Select a random sample of 30 rows where 'CustomerID' is missing
df[df['CustomerID'].isna()].sample(30)
```

Output

BillNo	Itemnam	Quantity	Date	Price	Custome	Total_Pri	
	е				rID	ce	
	554544	DARER	4.0	0044.05	0.00	NI-NI	0.00
	554514	PAPER	1.0	2011-05-	0.83	NaN	0.83
196380		POCKET		24			
		TRAVELI		15:58:00			
		NG FAN					
67851	541975	RED	24.0	2011-01-	1.25	NaN	30.00
		RETROS		24			
		POT		14:24:00			
		BOWL		10 10 10 10 10 10 10 10 10 10 10 10 10 1			
86621	543909	RED	1.0	2011-02-	2.46	NaN	2.46
		HARMO		14			
		NICA IN		12:32:00			
		BOX					
	565396	SET/6	3.0	2011-02-	0.83	NaN	2.49
		RED		09			
312028		SPOTTY		16:39:00			
		PAPER					
		PLATES					
	543097	RED	1.0	2011 03	9.13	NaN	9.13
	545097	HEARTS	1.0	02	9.13	Ivaiv	9.13
78692		LIGHT		11:41:00			
		CHAIN		11.41.00			
		CHAIN					
	574074	LETTER	1.0	2011-02-	7.46	NaN	7.46
418522		HOLDER		11			
		HOME		15:33:00			

SWEET

HOME

386865	571508	MODER N FLORAL STATION ERY SET	2.0	2011-10- 17 15:27:00	2.46	NaN	4.92
26113	538524	PORCEL AIN BUTTER FLY OIL BURNER	1.0	2010-12- 13 09:35:00	5.91	NaN	5.91
189643	553849	SET OF 6 SPICE TINS PANTRY DESIGN	1.0	2011-05- 19 12:54:00	3.95	NaN	3.95
89919	544208	ILLUSTR ATED CAT BOWL	1.0	2011-02- 17 10:34:00	4.96	NaN	4.96
413702	573585	MULTIC OLOUR CONFET TI IN TUBE	1.0	2011-10- 31 14:41:00	1.63	NaN	1.63

60980	541508	JUMBO BAG RED RETROS POT	1.0	2011-01- 18 16:06:00	4.13	NaN	4.13
305731	564817	GIRLS ALPHAB ET IRON ON PATCHE S	19.0	2011-08- 30 12:02:00	0.42	NaN	7.98
37057	539492	GREEN REGENC Y TEACUP AND SAUCER	1.0	2010-12- 20 10:14:00	5.91	NaN	5.91
440011	575739	CLOTHE S PEGS RETROS POT PACK 24	1.0	2011-11- 11 09:05:00	3.29	NaN	3.29
203694	555336	BAG 125g SWIRLY MARBLE S	2.0	2011-02- 06 11:13:00	0.42	NaN	0.84

	559338	TRIPLE	1.0	2011-07-	4.13	NaN	4.13
		WIRE		07			
245994		HOOK		16:30:00			
		IVORY					
		HEART					
	559491	JUMBO	5.0	2011-08-	4.13	NaN	20.65
247195		STORAG		07			
247 133		E BAG		13:53:00			
		SUKI					
	574950	WOODL	1.0	2011-08-	1.63	NaN	1.63
430039		AND		11			
400000		STICKER		09:29:00			
		S					
	544434	BATHRO	1.0	2011-02-	1.25	NaN	1.25
91940		OM		18			
0.0.0		METAL		16:12:00			
		SIGN					
	576618	DIAMAN	1.0	2011-11-	1.65	NaN	1.65
		TE HAIR		15			
453296		GRIP		17:00:00			
		PACK/2					
		RUBY					
	550000	DEOVO	4.0	0044.07	40.00	N. N	40.00
	559338	RECYCL	1.0	2011-07-	16.63	NaN	16.63
0.45007		ED		07			
245987		ACAPUL		16:30:00			
		CO MAT					
		BLUE					

	551718	JUMBO	2.0	2011-03-	4.13	NaN	8.26
		SHOPPE		05			
167542		R		16:06:00			
		VINTAGE					
		RED					
		PAISLEY					
	577078	TOILET	1.0	2011-11-	1.25	NaN	1.25
460086	3//0/0	METAL	1.0	17	1.23	Ivaiv	1.20
400000		SIGN		15:17:00			
		OIGIT		10.17.00			
	559055	BOYS	4.0	2011-05-	2.46	NaN	9.84
		VINTAGE		07			
242816		TIN		17:09:00			
		SEASIDE					
		BUCKET					
	EE0E1E	CINCHA	1.0	2011 08	9.20	NoN	9.20
	559515	GINGHA M	1.0	2011-08-	8.29	NaN	8.29
247946		HEART		15:58:00			
247 340		DOORST		13.36.00			
		OP RED					
		OI KED					
	541971	PURPLE					
		BOUDIC					
		CA					
67763		LARGE					
		BRACEL					
		ET					

This sample can provide us with a glimpse into the specific instances where 'CustomerID' is missing, aiding us in further analysis or decision-making related to handling these missing values.

Upon analyzing a sample of rows where the 'CustomerID' is missing, it appears that there is no discernible pattern or specific reason behind the absence of these values. This observation suggests that the missing 'CustomerID' entries were not filled accidentally or due to a systematic issue. Instead, it is possible that these missing values occur naturally in the dataset, without any particular significance or underlying cause.

Identifying Issues in the Price Column: Ensuring Data Quality

In our analysis, we shift our focus to the 'Price' column and investigate it for any potential issues or anomalies. By thoroughly examining the data within this column, we aim to identify any irregularities, inconsistencies, or outliers that may affect the overall quality and integrity of the dataset. Analyzing the 'Price' column is crucial in ensuring accurate and reliable pricing information for our analysis. Let's dive deeper into the 'Price' column and uncover any issues that may require attention.

Counting the number of rows where the price is zero

zero_price_count = len(df[df['Price'] == 0])

print("Number of rows where price is zero:", zero price count)

Counting the number of rows where the price is negative

negative price count = len(df[df['Price'] < 0])

print("Number of rows where price is negative:", negative price count)

Output:

Number of rows where price is zero: 547

Number of rows where price is negative

our attention now turns to the presence of zero charges in the 'Price' column. It is important to explore instances where products were offered free of cost, as this information can provide valuable insights into promotional activities, giveaways, or other unique aspects of the dataset. By examining the data related to zero charges in the 'Price' column, we can gain a deeper

understanding of these transactions and their potential impact on our analysis. Let's delve into the details of these zero-priced transactions and uncover any significant findings.

Selecting a random sample of 20 rows where the price is zero
df[df['Price'] == 0].sample(20)

Output

	BillNo	Itemnam	Quantity	Date	Price	Custome	Total_Pri
		е				rID	ce
	574138	BISCUIT	216.0	2011-03-	0.0	12415.0	0.0
		TIN		11			
419600		VINTAGE		11:26:00			
		CHRIST					
		MAS					
	539856	RED	2.0	2010-12-	0.0	NaN	0.0
		RETROS		22			
40241		POT		14:41:00			
		CHARLO					
		TTE BAG					
	564530	OWL	1.0	2011-08-	0.0	NaN	0.0
301848		DOORST		25			
		OP		14:57:00			

	558340	KINGS	3.0	2011-06-	0.0	NaN	0.0
233693		CHOICE		28			
200000		BISCUIT		14:01:00			
		TIN					
	564530	FRENCH	3.0	2011-08-	0.0	NaN	0.0
		BLUE		25			
301840		METAL		14:57:00			
		DOOR					
		SIGN 8					
	539856	AIRLINE	3.0	2010-12-	0.0	NaN	0.0
		BAG		22			
40285		VINTAGE		14:41:00			
		JET SET					
		RED					
	545176	GLASS	2.0	2011-02-	0.0	NaN	0.0
101119		JAR		28			
101119		KINGS		14:19:00			
		CHOICE					
	577314	SET OF	2.0	2011-11-	0.0	12444.0	0.0
		2 TRAYS		18			
462450		HOME		13:23:00			
		SWEET					
		HOME					
	573495	check	184.0	2011-10-	0.0	NaN	0.0
412073				31			
				11:58:00			

37190	539494	?	752.0	2010-12- 20 10:36:00	0.0	NaN	0.0
14040	537534	BOX OF 24 COCKTA IL PARASO LS	2.0	2010-07- 12 11:48:00	0.0	NaN	0.0
341902	567920	found	5.0	2011-09- 22 17:21:00	0.0	NaN	0.0
20555	538071	PACK OF 6 BIRDY GIFT TAGS	1.0	2010-09- 12 14:09:00	0.0	NaN	0.0
40253	539856	BISCUIT TIN VINTAGE RED	1.0	2010-12- 22 14:41:00	0.0	NaN	0.0
40261	539856	FRENCH BLUE METAL DOOR SIGN 6	1.0	2010-12- 22 14:41:00	0.0	NaN	0.0

	573880	check	48.0	2011-01-	0.0	NaN	0.0
415931				11			
				13:21:00			
	571633	found	100.0	2011-10-	0.0	NaN	0.0
387664				18			
				11:27:00			
	558340	RECIPE	1.0	2011-06-	0.0	NaN	0.0
	000010	BOX	1.0	28	0.0	11011	0.0
		BLUE		14:01:00			
233713		SKETCH		14.01.00			
		BOOK					
		DESIGN					
					Tarrier 1		
	561916	Manual	1.0	2011-01-	0.0	15581.0	0.0
275167				08			
				11:44:00			
	558340	OWL	1.0	2011-06-	0.0	NaN	0.0
233696		DOORST		28			
		OP		14:01:00			

Removing Rows with Zero Price: Eliminating Misleading Data Entries

Upon reviewing the sample of rows where the price is zero, we have identified that these entries might provide misleading or inaccurate information for our analysis. Therefore, it is prudent to proceed with removing these rows from the dataset to ensure the integrity and reliability of our analysis.

```
# Remove rows where the price is zero
df = df[df['Price'] != 0]
```

Data Understanding: Exploring and Interpreting the Dataset

In the data analysis process, data understanding plays a crucial role in gaining insights and formulating meaningful conclusions. By thoroughly examining the dataset, we aim to understand its structure, contents, and underlying patterns. This understanding empowers us to make informed decisions regarding data cleaning, feature engineering, and subsequent analysis steps.

Key aspects of data understanding include:

Exploring the Dataset: We investigate the dataset's dimensions, such as the number of rows and columns, to gauge its size and complexity.

Additionally, we examine the data types of each column to understand the nature of the variables.

Assessing Data Quality: We scrutinize the data for inconsistencies, outliers, or other data quality issues that may require attention.

Addressing these issues ensures the reliability and accuracy of the data.

Identifying Relationships: We analyze the relationships between variables by examining correlations, associations, or dependencies. This analysis allows us to uncover meaningful connections that can drive insights and guide our analysis.

Detecting Patterns and Trends: We look for recurring patterns, trends, or distributions within the data. This step can reveal valuable information about customer behavior, market dynamics, or other relevant factors.

By thoroughly understanding the dataset, we lay the foundation for meaningful data analysis and generate insights that contribute to informed decision-making and problem-solving.

```
# Grouping the data by month and summing the total price for the year
2010
df[df["Date"].dt.year ==
2010].groupby(df["Date"].dt.month)["Total Price"].sum().plot()
# Grouping the data by month and summing the total price for the year
2011
df[df["Date"].dt.year ==
2011].groupby(df["Date"].dt.month)["Total_Price"].sum().plot()
# Adding legend and plot labels
plt.legend(["2010", "2011"])
plt.title("Income over time")
plt.ylabel('Total Income (Million)')
plt.xlabel("Date (Month)")
Output:
```

```
Text(0.5, 0, 'Date (Month)')
```


The code snippet above creates a line plot to visualize the income over time for the years 2010 and 2011. First, the data is filtered based on the year using the dt.year attribute of the 'Date' column. The data is then grouped by month, and the 'Total_Price' column is summed. Two line plots are created, one for each year, showing the monthly total income. The legend is added to indicate the respective years, and the plot is labeled with a title, y-axis label, and x-axis label. This visualization allows us to observe the trend and compare the income between the two years.

Upon observing the line plot of income over time for the years 2010 and 2011, it becomes apparent that the sales remained relatively stable and consistent until October 2010. This suggests that the business was growing steadily during this period, as the sales continued to increase.

However, a significant drop in sales is observed in the last month of the dataset. This sudden decline indicates a notable deviation from the previously observed growth trend. Exploring the potential factors contributing to this drop becomes crucial in understanding the underlying reasons for the decline in sales during that specific period.

To verify if the data is complete for the entire last month in the dataset, we can compare the maximum date in the 'Date' column with the last day of that month. If they match, it indicates that the data is filled for the entire last month.

```
df["Date"].max()
Output:
Timestamp('2011-12-10 17:19:00')
```

Based on the finding that the data is only available for 10 days in the last month, it becomes evident that the significant drop in sales observed during that period is likely due to the limited data rather than an actual decline in sales. The incomplete data for the last month may not provide a comprehensive representation of the sales performance during that period.

To gain a more accurate understanding of the sales trend, it is advisable to consider a broader time frame with complete data. Analyzing a more extended period that encompasses multiple

months or years would provide a more reliable assessment of the sales performance and allow for more meaningful insights and conclusions.

```
# Plotting the top 10 most sold products by quantity

df.groupby('Itemname')['Quantity'].sum().sort_values(ascending=False)[:
10].plot(kind='barh', title='Number of Quantity Sold')

plt.ylabel('Item Name')

plt.xlim(20000, 82000)

plt.show()

# Plotting the top 10 most sold products by count

df['Itemname'].value_counts(ascending=False)[:10].plot(kind='barh', title='Number of Sales')

plt.ylabel('Item Name')

plt.xlim(1000, 2300)

plt.show()
```

Output:

The code snippet above creates two horizontal bar plots to visualize the most sold products based on quantity and count, respectively.

In the first plot, the top 10 items are determined by summing the 'Quantity' column for each unique 'Itemname' and sorting them in descending order. The plot displays the number of quantities sold for each item.

The second plot showcases the top 10 items based on the count of sales for each unique 'Itemname'. The value_counts function counts the occurrences of each item and sorts them in descending order. The plot represents the number of times each item has been sold.

Observing the plots, we can infer that there are products that are sold more frequently (higher count) compared to others, despite having relatively lower quantities sold per transaction. This indicates the presence of items that are commonly purchased in larger quantities at once. These products might include items that are frequently bought in bulk or items that are typically sold in larger packages or quantities.

This insight highlights the importance of considering both the quantity sold and the count of sales when analyzing the popularity and demand for different products. It suggests that some items may have a higher turnover rate due to frequent purchases, while others may have a higher quantity per sale, leading to different sales patterns and customer behaviors. Understanding these dynamics can be valuable for inventory management, pricing strategies, and identifying customer preferences.

Conclusion:

In conclusion, loading and preprocessing transaction data are crucial steps in generating market basket insights. These initial data preparation tasks help in identifying patterns and associations among items purchased by customers, which can ultimately lead to valuable insights for businesses, such as product recommendations, inventory management, and marketing strategies.