Multitasking

E' stato richiesto di considerare 4 processi (P1, P2, P3, P4) con i tempi di esecuzione e di attesa input/output dati in tabella. I processi arrivano alle CPU in ordine P1, P2, P3, P4. L'obbiettivo era individuare il modo più efficace per la gestione e l'esecuzione dei processi.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	1 secondo	1 secondo
P2	1 secondo	2 secondi	-
Р3	2 secondi	-	-
P4	4 secondi	1 secondo	-

Tabella input/output

Con il monotasking i processi terminano dopo un totale di 15 secondi e non si sfruttano i momenti di attesa il che è chiaramente sconveniente

Multitasking

Migliore gestione dei tempi morti che danno come risultato il risparmio di 3s

Possiamo notare come in questo caso specifico, **multitasking** e **timesharing** impieghino lo stesso tempo a svolgere tutti i processi