Quiz 2 practice questions solutions

themis.gouleakis

February 2025

1 Solutions/answers

Question 1 The number of iphones sold per day is a Poisson random variable. What is the average number of iphone sold per day if the probability of selling at least 1 iphone per day is a?

The p.m.f of a Poisson r.v. X with mean μ is:

$$P(X = x) = \frac{e^{-\mu} \cdot \mu^x}{x!}$$

solution/answer We have that: $P(X \ge 1) = 1 - P(X = 0) = a$. Thus,

$$1 - \frac{e^{-\mu} \cdot \mu^0}{0!} = a$$
$$e^{-\mu} = 1 - a$$
$$\mu = \ln\left(\frac{1}{1-a}\right) = \ln\left(\frac{1}{1-a}\right)$$

Question 2 The circumference of a circle is cut at 2 points which are selected uniformly at random. What is the probability that the longer arc is at least [N] times the length of the shorter arc?

solution/answer Fix the location of the first point and let the circumference of the circle be ℓ . The 2 points split the circle into 2 arcs of length ℓ_1, ℓ_2 , such that $\ell_1 + \ell_2 = \ell$. Without loss of generality, suppose that $\ell_1 < \ell_2$. We have that:

$$\ell_2 > N \cdot \ell_1$$

$$\ell_1 + \ell_2 > (N+1) \cdot \ell_1$$

$$\ell_1 < \frac{\ell}{N+1}$$

Thus, the length ℓ_1 of the arc between the 2 points has to be a most $\frac{\ell}{N+1}$, which happens with probability $\frac{2}{N+1}$ (since the second point can be either to the left or to the right of the first one).

Question 3 The probability that a student fails a certain test is [p]. Ten students take the test. Determine the probability that at most 1 student will fail the test.

solution/answer The number of students who fail the test is distributed according to the Binomial distribution B(p, 10), which has the following probability mass function:

$$P(X = i) = {10 \choose i} p^{i} (1 - p)^{10 - i}$$

Thus, we have:

$$P(X \le 1) = P(X = 0) + P(X = 1) = (1 - p)^{10} + {10 \choose 1}p(1 - p)^9$$

Question 4 Consider a 90 minutes soccer match between teams A and B. The number of goals scored by each team is modeled by an independent Poisson process. Given that the average number of goals per minute scored by team A and B are [a] and [b] respectively, what is the probability that Team A won the match with the final score 2-0?

solution/answer Let G_A and G_B be the amount of goals scored in the game by team A and B respectively. Since the above variables follow the Poisosn process we have that:

$$P(G_A = k) = \frac{(a \cdot t)^k \cdot e^{-a \cdot t}}{k!}$$

and

$$P(G_B = k) = \frac{(b \cdot t)^k \cdot e^{-b \cdot t}}{k!}$$

We need to compute the following probability:

$$P(\{G_A = 2\} \cap \{G_B = 0\}) = P(\{G_A = 2\}) \cdot P(\{G_B = 0\})$$

So, for t = 90, we get:

$$P(\{G_A = 2\} \cap \{G_B = 0\}) = \frac{(90 \cdot a)^2 \cdot e^{-90 \cdot a}}{2!} \cdot \frac{(90 \cdot b)^0 \cdot e^{-90 \cdot b}}{0!}$$

$$P(\{G_A = 2\} \cap \{G_B = 0\}) = \frac{(90 \cdot a)^2 \cdot e^{-90 \cdot a}}{2!} \cdot e^{-90 \cdot b}$$

Question 5 Figure below shows the probability density function f(x) of the continuous random variable X that takes values between 0 and 2.

In text form:

f(x) = K for $0 \le x \le 1$, where K is a constant

$$f(x) = 2K - Kx$$
 for $1 \le x \le 2$

Determine the following:

- (1) The value of K is [A]
- (2) The probability that X = 1.5 is [C]

solution/answer To determine the value of K, note that the area below the graph of the probability density function is equal to 1. The shape is a trapezoid and can be split into a rectangle for $0 \le x \le 1$ with area $1 \cdot K = K$ and a triangle for $1 \le x \le 2$ with area $\frac{1 \cdot K}{2} = K/2$. Thus, we conclude that:

$$K + K/2 = 3K/2 = 1$$

$$K = 2/3 = 0.667$$

For the probability of X=1.5, we know that $P(X=1.5)\int_{1.5}^{1.5}f(x)dx=0$, since the event contains a single value.

Question 6 Consider a random variable X with variance = [a]. Given Y = [b] X + 5, determine the Cov(X,Y).

solution/answer We have the following:

$$Cov(X,Y) = E[(X - \mu_X) \cdot (Y - \mu_Y)] = E[(X - \mu_X) \cdot (b \cdot X + 5 - (b \cdot \mu_X + 5))]$$
$$Cov(X,Y) = E[b \cdot (X - \mu_X)^2] = b \cdot E[(X - \mu_X)^2] = b \cdot Var(X) = b \cdot a$$

Question 7 A component factory has six Class A and four Class B machines that produce certain transistors. Each transistor is independently produced by the machines. The probability that a Class A machine produces a defective transistor is p_A . For Class B machine, the probability of getting a defective transistor is p_B .

A machine is randomly selected and 10 transistors produced by the machine are inspected. Out of the 10 transistors inspected, 2 are found to be defective. What is the probability that the machine selected is a Class A machine?

solution/answer We define the events:

- A: "The transistors were produced by a class A machine"
- B: "The transistors were produced by a class B machine"

and the random variable:

• D: "The number of defective transistors produced"

Since there are 6 class A machines and 4 class B machines, we have for the initial machine selection that: $P(A) = \frac{6}{10} = 0.6$ and $P(B) = \frac{4}{10} = 0.4$.

We now need to compute: P(A|D=2). By applying Bayes theorem, we have the following:

$$P(A|D=2) = \frac{P(D=2|A) \cdot P(A)}{P(D=2)} = \frac{\binom{10}{2} p_A^2 (1 - p_A)^8 \cdot 0.6}{P(D=2)}$$

where

$$P(D=2) = P(\{D=2\} \cap A) + P(\{D=2\} \cap B)$$

by applying the formula $P(X|Y) = \frac{P(X \cap Y)}{P(Y)}$ for each term, we get:

$$P(D=2) = P(D=2|A) \cdot P(A) + P(D=2|B) \cdot P(B)$$

$$P(D=2) = \binom{10}{2} p_A^2 (1 - p_A)^8 \cdot 0.6 + \binom{10}{2} p_B^2 (1 - p_B)^8 \cdot 0.4$$

Substituting above, we get:

$$P(A|D=2) = \frac{\binom{10}{2}p_A^2(1-p_A)^8 \cdot 0.6}{\binom{10}{2}p_A^2(1-p_A)^8 \cdot 0.6 + \binom{10}{2}p_B^2(1-p_B)^8 \cdot 0.4}$$

Question 8 Two boys play a game where each rolls a fair die concurrently and repeatedly until the sum of the 2 numbers is more than 8. What is the probability that they roll the dice exactly [A] times?

solution/answer The number of times follows a geometric distribution: $A \sim G(p)$, where p is the probability of success in each pair of concurrent rolls. To compute p, we count the number of successful pairs of rolls (having a sum > 8) out of the 36 possible ones.

We observe that the following 10 pairs of rolls satisfy the requirement: (3,6), (4,5), (5,4), (6,3), (4,6), (5,5), (6,4), (5,6), (6,5), (6,6). Thus, p=10/36 and the probability is as follows:

$$P(X = A) = (1 - p)^{A-1} \cdot p = \left(\frac{26}{36}\right)^{A-1} \cdot \frac{10}{36}$$

Question 9 The probability density function f(x) of a continuous random variable X that takes values between 0 and 5 is given by:

$$f(x) = \begin{cases} \frac{2x}{25}, & \text{for } 0 < x < 5\\ 0, & \text{otherwise} \end{cases}$$

Determine the [K]th percentile of X.

solution/answer To compute the K-th percentile (P_K) , we write:

$$\int_{-\infty}^{P_K} f(x) = \int_{0}^{P_K} \frac{2x}{25} = \left[\frac{x^2}{25} \right]_{0}^{P_K} = \frac{K}{100}$$

Thus, we get:

$$\frac{P_K^2}{25} = \frac{K}{100}$$

$$P_K = \frac{\sqrt{K}}{2}$$

Question 10 A biased coin of which the probability of getting a Head equals [p] is repeatedly flipped until either Head or Tail has occurred twice. Determine the expected number of flips.

solution/answer Let F be the discrete random variable describing the number of flips. We observe that after 3 flips, the condition of either Heads or Tails having appeared twice will be satisfied (pigeonhole principle). Thus,

$$P(F \le 3) = 1$$

The only way the number of flips is less than 3, is when the first 2 flips are either both HEADS or both TAILS. Thus,

$$P(F=2) = p^2 + (1-p)^2$$

Also, observe that: P(F = 1) = 0.

Therefore, we have:

$$E(F) = 2 \cdot P(F = 2) + 3 \cdot P(F = 3) = 2 \cdot (p^2 + (1 - p)^2) + 3 \cdot (1 - p^2 - (1 - p)^2)$$
$$E(F) = 3 - p^2 - (1 - p)^2$$

Question 11 A bag contains 2 fair coins and 1 biased coin of which the probability of getting the outcome "Head" is 0.75.

- (1) You randomly pick a coin and toss it. The probability of getting a "Head" is [A].
- (2) You randomly pick a coin and toss it, and get a "Head". The probability that it is the biased coin is [B].

solution/answer

1. We have: P(HEADS) = P(HEADS|Fair)P(Fair) + P(HEADS|Biased)P(Biased). Thus,

$$P(HEADS) = \frac{1}{2} \cdot \frac{2}{3} + 0.75 \cdot \frac{1}{3} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12} = 0.583$$

2. Using Bayes theorem, we get:

$$P(Biased|HEADS) = \frac{P(HEADS|Biased) \cdot P(Biased)}{P(HEADS)}$$

$$P(Biased|HEADS) = \frac{0.75 \cdot \frac{1}{3}}{7/12} = \frac{12 \cdot 0.25}{7} = \frac{3}{7} = 0.428$$

Question 12 The probability density function of X is

$$f(x) = \begin{cases} e^x, & \text{for } x < 0\\ 0, & \text{otherwise} \end{cases}$$

Determine the [K]th percentile of X.

solution/answer To compute the K-th percentile (P_K) , we write:

$$\int_{-\infty}^{P_K} f(x) = \int_{-\infty}^{P_K} e^x = [e^x]_{-\infty}^{P_K} = e^{P_K}$$

Thus, we get:

$$e^{P_K} = \frac{K}{100}$$

$$P_K = \ln\left(\frac{K}{100}\right)$$

Question 13 Two fair dice are rolled. What is the probability that the sum of the two outcomes is divisible by 3?

solution/answer The possible outcomes that sum to a multiple of 3 are: 3, 6, 9, 12 and the possible pairs or rolls:

$$(1,2), (2,1), (1,5), (2,4), (3,3), (4,2), (5,1), (3,6), (4,5), (5,4), (6,3), (6,6)$$

Thus the probability is $\frac{12}{36} = 0.333$.

Question 14 The cumulative distribution function F(x) of a random variable X is given by:

$$F(x) = \begin{cases} 1 - e^{-\frac{x - \alpha}{2}}, & \text{for } x > \alpha \\ 0, & \text{otherwise} \end{cases}$$

Determine the mean of X.

solution/answer For the mean of X, we need to compute the following integral:

$$\int_{-\infty}^{\infty} x f(x) dx =$$

where f(x) is the probability density function, which is obtained by taking the derivative of F(x) as follows:

$$f(x) = \frac{d}{dx}F(x) = \begin{cases} \frac{1}{2}e^{-\frac{x-\alpha}{2}}, & \text{for } x > \alpha \\ 0, & \text{otherwise} \end{cases}$$

We observe that the random variable $Y=X-\alpha$ has the following density function:

$$g(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & \text{for } y > 0\\ 0, & \text{otherwise} \end{cases}$$

which is an exponential distribution with parameter $\lambda = \frac{1}{2}$. Thus,

$$E[Y] = \frac{1}{\lambda} = 2$$

$$E[X] = E[Y + \alpha] = E[Y] + \alpha = 2 + \alpha$$

Question 15 Given that X is a continuous random variable with probability density function $f_X(x) > 0$ for any $-\infty < x < \infty$, what is the probability of X = b for some $b \in R$

solution/answer The probability is $\int_b^b f(x)dx = 0$, since the event only contains a single value rather than an inteval.

Question 16 Given that a continuous random variable X is uniformly distributed between [A] and [B], what is the variance of X?

solution/answer The probability density function is the following:

$$f(x) = \begin{cases} \frac{1}{B-A}, & \text{for } A < x < B\\ 0, & \text{otherwise} \end{cases}$$

The variance is given by the following integral

$$Var(X) = E[X^2] - (E[X])^2$$

We also have that:

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{A}^{B} \frac{x^{2}}{B - A} = \frac{1}{B - A} \left[\frac{x^{3}}{3} \right]_{A}^{B} = \frac{A^{2} + AB + B^{2}}{3}$$

while

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{A}^{B} \frac{x}{B - A} = \frac{1}{B - A} \left[\frac{x^2}{2} \right]_{A}^{B} = \frac{1}{B - A} \frac{B^2 - A^2}{2} = \frac{A + B}{2}$$

Thus, we have:

$$Var(X) = E[X^2] - (E[X])^2 = \frac{A^2 + AB + B^2}{3} - \frac{(A+B)^2}{4} = \frac{4A^2 + 4AB + 4B^2}{12} - \frac{3(A^2 + 2AB + B^2)}{12}$$
$$Var(X) = \frac{A^2 - 2AB + B^2}{12} = \frac{(A-B)^2}{12}$$

Question 17 Given that $X \sim U(0,10)$ and Y = 0.5X + [b]. Determine P(X > 1|Y < [c]).

solution/answer The variable X has the following pdf:

$$f(x) = \begin{cases} \frac{1}{10}, & \text{for } 0 < x < 10\\ 0, & \text{otherwise} \end{cases}$$

We have:

$$P(X > 1|Y < c) = P(X > 1|0.5X + b < c) = P(X > 1|X < 2(c - b))$$

Since P(X < 10) = 1, if 2(c - b) > 10, we get that:

$$P(X > 1|Y < c) = P(X > 1|X < 2(c - b)) = P(X > 1) = (10 - 1) \cdot \frac{1}{10} = 0.9$$

If 2(c-b) > 10, we get that:

$$P(X > 1 | Y < c) = P(X > 1 | X < 2(c - b)) = \frac{P(\{X > 1\} \cap \{X < 2(c - b)\})}{P(X < 2(c - b))}$$
$$P(X > 1 | Y < c) = \frac{P(1 < X < 2(c - b))}{P(0 < X < 2(c - b))} = \frac{2(c - b) - 1}{2(c - b)}$$

Question 18 In a certain district, there are [a] households with 1 member, [b] households with 2 members, [c] households with 3 members and [d] households with 4 members. A person in the district is randomly selected. Let X be the number of people in the household where the selected person lives. Determine the expected value of X.

solution/answer The total number of people in the district is: $\alpha \cdot 1 + b \cdot 2 + c \cdot 3 + d \cdot 4 = a + 2b + 3c + 4d$ people. The expected value is given by the following formula:

$$E[X] = \sum_{i=1}^{N} p_i x_i$$

$$E[X] = 1 \cdot \frac{a}{a + 2b + 3c + 4d} + 2 \cdot \frac{2b}{a + 2b + 3c + 4d} + 3 \cdot \frac{3c}{a + 2b + 3c + 4d} + 4 \cdot \frac{4d}{a + 2b + 3c + 4d}$$

Question 19 Given that X is a normally distributed random variable, $X \sim N(3,2)$, what is the probability that X is within 40% of a standard deviation from the mean?

You are required to use the following standard normal distribution table for $P(Z < z), 0 \le z \le 2.08$ to determine your answer.

z	0.00	0.02	0.04	0.06	0.08
0.00	0.5000	0.5080	0.5160	0.5239	0.5319
0.20	0.5793	0.5871	0.5948	0.6026	0.6103
0.40	0.6554	0.6628	0.6700	0.6772	0.6844
0.60	0.7257	0.7324	0.7389	0.7454	0.7517
0.80	0.7881	0.7939	0.7995	0.8051	0.8106
1.00	0.8413	0.8461	0.8508	0.8554	0.8599
1.20	0.8849	0.8888	0.8925	0.8962	0.8997
1.40	0.9192	0.9222	0.9251	0.9279	0.9306
1.60	0.9452	0.9474	0.9495	0.9515	0.9535
1.80	0.9641	0.9656	0.9671	0.9686	0.9699
2.00	0.9772	0.9783	0.9793	0.9803	0.9812

solution/answer Regardless of the parameters of the given distribution, The probability its value is within 40% of its standard daviation from the mean is equal to: P(-0.4 < Z < 0.4) for $Z \sim N(0,1)$ following the standard normal distribution. We have that:

$$P(-0.4 < Z < 0.4) = P(Z < 0.4) - P(Z < -0.4) = P(Z < 0.4) - P(Z > 0.4)$$

$$P(-0.4 < Z < 0.4) = P(Z < 0.4) - (1 - P(Z < 0.4)) = 2P(Z < 0.4) - 1$$

From the table, we can see that P(Z < 0.4) = 0.6554. Thus,

$$P(-0.4 < Z < 0.4) = 2 \cdot P(Z < 0.4) - 1 = 2 \cdot 0.6554 - 1 = 0.3108$$

Question 20 For each of the following probability distributions, determine the expected value of X:

- (1) Binomial distribution: $X \sim B(10, 0.225)$, the value of E[X] is [A].
- (2) Uniform distribution: $X \sim U(1.3, 4.5)$, the value of E[X] is [B].
- (3) Geometric distribution: $X \sim G(0.32)$, the value of E[X] is [C].

solution/answer We compute the expected value for each case as follows:

1.
$$E[X] = 10 \cdot 0.225 = 2.25$$

2.
$$E[X] = \frac{4.5+1.3}{2} = 2.9$$

3.
$$E[X] = \frac{1}{0.32} = 3.125$$

Question 21 $\,$ Figure below shows the probability mass function (pmf) of the random variable X.

pmf(X)

i.e. P(X=1)=0.15, P(X=2)=0.3, P(X=3)=0.3, P(X=4)=0.15 and P(X=5)=0.1

Determine the following:

- (1) The expected value of X^2 , $E[X^2] = [A]$
- (2) The variance of X, Var(X) = [B]
- (3) Probability that X is less than 3, P(X < 3) = [C]

solution/answer We calculate as follows:

1.
$$E[X^2] = \sum_{i=1}^5 p_i \cdot X_i^2 = 0.15 \cdot 1^2 + 0.3 \cdot 2^2 + 0.3 \cdot 3^2 + 0.15 \cdot 4^2 + 0.1 \cdot 5^2 = 8.95$$

2.
$$Var(X) = E[X^2] - (E[X])^2$$

Since $E[X] = \sum_{i=1}^5 p_i \cdot X_i = 0.15 \cdot 1 + 0.3 \cdot 2 + 0.3 \cdot 3 + 0.15 \cdot 4 + 0.1 \cdot 5 = 2.75$, we get:

$$Var(X) = E[X^2] - (E[X])^2 = 8.95 - 2.75^2 = 1.387$$

3.
$$P(X < 3) = P(X = 1) + P(X = 2) = 0.15 + 0.3 = 0.45$$