

Control Plots

P. Dunne

Overview

- Pre-selection has been reoptimised
- First focus on agreement in control regions
 - This minimises effect of mismodelled QCD
- ► Have seen previously significant top contribution to W control regions
- Investigated m_T as a means to discriminate
- lacktriangle Initially just varied met significance and leading jets-metnomu min $\Delta\phi$ cuts
- Tried adding all jets $p_T > 30$ to the min $\Delta \phi$ calculation

New Control Plots

- Cuts applied in all following plots are:
 - metnomu> 90 jet_1p_t > 50, $\Delta\eta_{jj}$ > 3.6, metnomu_significance> 3, $jet_{1,2}\eta<$ 4.7, $jet_1\eta\cdot jet_2\eta<$ 0, m_{jj} >= 800, jet_2p_T > 40
- met, $jet2p_T$ and m_{jj} cuts chosen to be above highest trigger threshold and at at least 50% efficiency for run D trigger

mT in W control regions

▶ Top contamination of W regions is up to 30% in some regions

mT in W control regions

- mt doesn't seem to give any discrimination against top
- ► For tau does allow removal of QCD contamination
- Have added an mt $> 20\, GeV$ cut on tau control region

$\Delta\phi(j,met)$ variables - intro

- n.b. scale is different between plots
- ▶ Version with all jets $p_T > 30$ GeV has better data MC agreement
- QCD almost all moves to low values of variable

$\Delta\phi(j,met)$ variables - cut efficiency

Process	no cut	$j_{1,2} > 0.5$	$j_{1,2} > 1.0$	$j_{1,2} > 1.5$	all> 0.5	all> 1.0	all> 1.5
wel	2187	1854	1477	1073	1682	1185	727
wmu	2445	2087	1697	1243	1889	1379	901
wtau	5618	3392	2391	1653	2755	1763	1482
ZVV	3924	3425	2977	2086	3170	2559	1556
qcd	80400	16088	9488	7363	7079	1597	489
VV	133	119	103	88	101	75	55
wg	421	349	306	248	292	209	135
top	1349	1180	1006	795	764	395	185
Signal	1488	1430	1354	1239	1407	1313	1178
Data	97100	29035	19927	14904	18192	9524	5753

- ▶ All jets cut keeps more signal for an 80% reduction of QCD
- Also reduces top by a factor of 2
- Propose moving to all jets cutting at 1

Data driven weights

- ► W and Z normalised to:
- $N_C^{Data} N_C^{Bkg}/N_C^{MC}$
- ▶ QCD normalised to difference between data and all other backgrounds

Background	Weight		
$Z \rightarrow \nu \nu$	0.58		
W o e u	0.42		
$W o \mu u$	0.45		
W o au u	0.68		
QCD	6.51		

Conclusions

- ► Focused on agreement in control regions
- This minimises effect of mismodelled QCD
- New pre-selection proposed:
- $ightharpoonup m_T$ cut added to taunu to reduce QCD
- could consider also adding to munu region
- Added all jets-met $\Delta \phi$ cut
- Significant improvement over leading jets-met $\Delta\phi$ cut

Backup