C'est quoi faire des maths après le bac ?

Théo Ternier

18 juin 2025

1 Mon parcours académique post-bac

2 Le sujet de recherche de mon stage

3 Activité sur les arbres

Mon parcours académique post-bac

Lycée (BAC S spé maths)

Équivalent aujourd'hui:

- Options en première générale : Maths, Physique, SVT
- Options en Terminale : Maths expertes, Physique

Une prépa?

- Préparation de deux ans aux concours des Grandes Écoles (Polytechnique, ENS, Centrale...)
- Pluridisciplinaire (Maths, Physique, Informatique, Français, Anglais...)

Et pour la suite ?

Doctorat

- **Durée** : 3 ans (en général en maths).
- Objectif: mener un travail de recherche, encadré par un chercheur (Inria, CNRS, université...).
- Débouchés :
 - Enseignant-chercheur (maître de conférences),
 - Chercheur (Inria, CNRS, etc.),
 - Secteur privé (R&D, data science...).

Et avec l'agrégation ?

- Enseignant au lycée/collège,
- Enseignant en classes préparatoires (CPGE),
- PRAG à l'université.

Le sujet de recherche de mon stage

Sujet de stage :

Traitement efficace des signatures pour le calcul de bases de Gröbner

Motivation : résoudre des systèmes d'équations

- En maths, on aime résoudre des équations !
- Parfois, on a plusieurs équations en même temps, avec plusieurs inconnues.
- Exemple:

$$\begin{cases} x^2 + y^2 &= 1 \\ y - x &= 0 \end{cases}$$

Résolvons le système précédent...

On cherche à résoudre le système :

$$\begin{cases} x^2 + y^2 &= 1 \\ y - x &= 0 \end{cases}$$

Regardons déjà géométriquement!

... à la main!

$$\left\{\begin{array}{cccc} x^2 + y^2 & = & 1 \\ y - x & = & 0 \end{array}\right. \iff \left\{\begin{array}{cccc} x^2 + y^2 & = & 1 \\ y & = & x \end{array}\right.$$

... à la main!

On a:

$$\begin{cases} x^2 + y^2 &= 1 \\ y - x &= 0 \end{cases} \iff \begin{cases} x^2 + y^2 &= 1 \\ y &= x \end{cases}$$
$$\iff \begin{cases} 2x^2 &= 1 \\ y &= x \end{cases}$$

... à la main !

On a:

$$\begin{cases} x^2 + y^2 &= 1 \\ y - x &= 0 \end{cases} \iff \begin{cases} x^2 + y^2 &= 1 \\ y &= x \end{cases}$$
$$\iff \begin{cases} 2x^2 &= 1 \\ y &= x \end{cases}$$
$$\iff \begin{cases} x^2 &= 1/2 \\ y &= x \end{cases}$$

... à la main !

On a:

$$\begin{cases} x^2 + y^2 &= 1 \\ y - x &= 0 \end{cases} \iff \begin{cases} x^2 + y^2 &= 1 \\ y &= x \end{cases}$$

$$\iff \begin{cases} 2x^2 &= 1 \\ y &= x \end{cases}$$

$$\iff \begin{cases} x^2 &= 1/2 \\ y &= x \end{cases}$$

$$\iff \begin{cases} x &= 1/\sqrt{2} \\ y &= x \end{cases} \text{ ou } \begin{cases} x &= -1/\sqrt{2} \\ y &= x \end{cases}$$

Solutions:

$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 et $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

Et on retrouve les solutions!

Les systèmes polynomiaux

■ Maintenant, imaginons que l'on veut résoudre :

$$\begin{cases} x^2 + y^2 = 1\\ x^3 - y = 0 \end{cases}$$

■ Pour résoudre ça, on a besoin d'outils plus puissants.

Une idée : transformer le système

- L'idée est de transformer le système compliqué en un autre équivalent, mais plus facile à résoudre.
- Dans la même idée que précédemment !
- En algèbre, on fait ça grâce à un outil : les bases de Gröbner.

Les bases de Gröbner

- Une base de Gröbner, c'est un système "bien rangé" équivalent au système de départ.
- Elle nous permet (dans les meilleurs cas) de :
 - savoir s'il y a une solution,
 - trouver toutes les solutions,
 - simplifier les calculs.
- On peut les calculer avec un algorithme.

Et c'est long de les calculer informatiquement ?

Soit $n \in \mathbb{N}$ le nombre de variables. L'algorithme nécessite dans les pires cas

$$\approx 2^{2^n}$$
 opérations

C'est beaucoup ? Pour n = 10 on a :

$$2^{2^{10}}\approx 1,79\times 10^{308}$$

Un algorithme beaucoup trop long!

On cherche alors à améliorer l'algorithme pour qu'il soit beaucoup plus rapide !

On utilise alors des "bases de Gröbner signées" !

- Ce sont des bases de Gröbner, mais avec des informations en plus (les "signatures").
- Ces signatures aident à :
 - éviter des calculs inutiles,
 - aller plus vite,
 - mieux comprendre la structure du système.

Les bases de Gröbner signées

- Les bases de Gröbner sont des outils puissants pour résoudre des systèmes compliqués.
- Les bases "signées" rendent les calculs plus efficaces.

Même si ça a l'air compliqué, tout part d'une idée simple : transformer un système compliqué en un système simple pour facilement le résoudre.

Et quelles sont mes contributions ?

Dans l'algorithme des bases de Gröbner signées, on a très souvent besoin de savoir si plusieurs objets mathématique sont présents dans un ensemble (un gros sac contenant plein d'objets).

On suppose qu'on peut ranger le sac au préalable.

Quel algorithme pour tester efficacement la présence de l'objet ?

Comment faire pour savoir si des lunettes sont présentes dans mon sac contenant 10 objets ?

Quel algorithme pour tester efficacement la présence de l'objet ?

Et maintenant avec 100 objets?

Quel algorithme pour tester efficacement la présence de l'objet ?

Et avec 1 000 000 000 objets?

On range les objets du sac au préalable !

On range les objets par type (couleur, utilité, ...) et ensuite on cherche les lunettes selon ces critères, c'est beaucoup plus simple ! (et moins coûteux en temps...)

Utilisation d'arbres

Afin de ranger efficacement les objets, on va faire ce que l'on appelle des arbres !

Après un peu de théorie, c'est à vous de comprendre cette notion !

Activité sur les arbres

Un arbre... ressemblant à un arbre généalogique

Définition : arbre binaire

Un **arbre binaire** est un arbre dans lequel chaque nœud a au plus **deux enfants** :

- Un fils gauche
- Un fils droit

Définition : arbre binaire

Un **arbre binaire** est un arbre dans lequel chaque nœud a au plus **deux enfants** :

- Un fils gauche
- Un fils droit

Vocabulaire associé

- Racine : point de départ (en haut)
- Fils gauche/droit : descendants immédiats
- Feuille : nœud sans enfant
- Profondeur : distance d'un nœud à la racine
- **Hauteur** : plus grande profondeur de l'arbre

Vocabulaire associé

- Racine : point de départ (en haut)
- Fils gauche/droit : descendants immédiats
- Feuille : nœud sans enfant
- Profondeur : distance d'un nœud à la racine
- Hauteur : plus grande profondeur de l'arbre

Exemple:

Maintenant à vous !

Faites l'activité à plusieurs et n'hésitez pas à m'appeler si vous avez besoin d'aide !

Et n'hésitez pas aussi à poser des questions sur la recherche, les études...