

SEQUENCE LISTING

<110> Cherkasky, Alexander

<120> PCT/IB 2004/003536:CHERKASKY PROTEINS CONTAINING ANTIBODY-,
ANTIGEN- AND MICROTUBULE-BINDING REGIONS AND IMMUNE
RESPONSE-TRIGGERING REGIONS

<130> -

<140> US/10/577,613

<141> 2006-11-28

<160> 14

<170> PatentIn version 3.4

<210> 1

<211> 676

<212> PRT

<213> Artificial

<220>

<223> 1a SPA-5G-gephyrin

<220>

<221> FUSION_PRT

<222> (1)..(676)

<223> fusion protein Staph. aureus Protein A and H. sapiens gephyrin

<400> 1

Ala Ala Gln His Asp Glu Ala Gln Gln Asn Ala Phe Tyr Gln Val Leu

1 5 10 15

Asn Met Pro Asn Leu Asn Ala Asp Gln Arg Asn Gly Phe Ile Gln Ser

20 25 30

Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Val Leu Gly Glu Ala Lys

35 40 45

Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn Lys
50 55 60

Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn
65 70 75 80

Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser
85 90 95

Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln
100 105 110

Ala Pro Lys Ala Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe
115 120 125

Tyr Glu Ile Leu His Leu Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly
130 135 140

Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu
145 150 155 160

Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Ala Asp Asn
165 170 175

Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu
180 185 190

Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys
195 200 205

Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu
210 215 220

Asn Asp Ala Gln Ala Pro Lys Glu Glu Asp Asn Asn Lys Pro Gly Lys
225 230 235 240

Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp Gly Asn Gly Gly Gly
245 250 255

Gly Met Ser Pro Phe Pro Leu Thr Ser Met Asp Lys Ala Phe Ile Thr
260 265 270

Val Leu Glu Met Thr Pro Val Leu Gly Thr Glu Ile Ile Asn Tyr Arg
275 280 285

Asp Gly Met Gly Arg Val Leu Ala Gln Asp Val Tyr Ala Lys Asp Asn
290 295 300

Leu Pro Pro Phe Pro Ala Ser Val Lys Asp Gly Tyr Ala Val Arg Ala
305 310 315 320

Ala Asp Gly Pro Gly Asp Arg Phe Ile Ile Gly Glu Ser Gln Ala Gly
325 330 335

Glu Gln Pro Thr Gln Thr Val Met Pro Gly Gln Val Met Arg Val Thr
340 345 350

Thr Gly Ala Pro Ile Pro Cys Gly Ala Asp Ala Val Val Gln Val Glu
355 360 365

Asp Thr Glu Leu Ile Arg Glu Ser Asp Asp Gly Thr Glu Glu Leu Glu
370 375 380

Val Arg Ile Leu Val Gln Ala Arg Pro Gly Gln Asp Ile Arg Pro Ile
385 390 395 400

Gly His Asp Ile Lys Arg Gly Glu Cys Val Leu Ala Lys Gly Thr His
405 410 415

Met Gly Pro Ser Glu Ile Gly Leu Leu Ala Thr Val Gly Val Thr Glu
420 425 430

Val Glu Val Asn Lys Phe Pro Val Val Ala Val Met Ser Thr Gly Asn
435 440 445

Glu Leu Leu Asn Pro Glu Asp Asp Leu Leu Pro Gly Lys Ile Arg Asp
450 455 460

Ser Asn Arg Ser Thr Leu Leu Ala Thr Ile Gln Glu His Gly Tyr Pro
465 470 475 480

Thr Ile Asn Leu Gly Ile Val Gly Asp Asn Pro Asp Asp Leu Leu Asn
485 490 495

Ala Leu Asn Glu Gly Ile Ser Arg Ala Asp Val Ile Ile Thr Ser Gly
500 505 510

Gly Val Ser Met Gly Glu Lys Asp Tyr Leu Lys Gln Val Leu Asp Ile
515 520 525

Asp Leu His Ala Gln Ile His Phe Gly Arg Val Phe Met Lys Pro Gly
530 535 540

Leu Pro Thr Thr Phe Ala Thr Leu Asp Ile Asp Gly Val Arg Lys Ile
545 550 555 560

Ile Phe Ala Leu Pro Gly Asn Pro Val Ser Ala Val Val Thr Cys Asn
565 570 575

Leu Phe Val Val Pro Ala Leu Arg Lys Met Gln Gly Ile Leu Asp Pro
580 585 590

Arg Pro Thr Ile Ile Lys Ala Arg Leu Ser Cys Asp Val Lys Leu Asp
595 600 605

Pro Arg Pro Glu Tyr His Arg Cys Ile Leu Thr Trp His His Gln Glu
610 615 620

Pro Leu Pro Trp Ala Gln Ser Thr Gly Asn Gln Met Ser Ser Arg Leu
625 630 635 640

Met Ser Met Arg Ser Ala Asn Gly Leu Leu Met Leu Pro Pro Lys Thr
645 650 655

Glu Gln Tyr Val Glu Leu His Lys Gly Glu Val Val Asp Val Met Val
660 665 670

Ile Gly Arg Leu
675

<210> 2
<211> 2092
<212> DNA
<213> Artificial

<220>
<223> 1b SPA-5G-gephyrin

<220>
<221> misc_recomb
<222> (1)..(2092)
<223> nucleic acid encoding Staph. aureus Protein A and H. sapiens
gephyrin fusion prt

<400> 2
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtcttaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caatttcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaacttgaa 240

cgaagaaca cgcaatggtt tcatccaaag cttaaaagat gacccaagtc aaagtgctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg ctttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaacccttt 480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa 540
agaacaaca aatgctttct atgaaatttt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc ttaaagacga tcctcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaagcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtaacggc ggccggccgc gcgttaggt 780
cacagtgtcg tcgatatac caaggtggct agaagacatc gcatgtctcc tttcctctg 840
acatctatgg acaaagcctt tatcacagtc ctggagatga ctccggtgct tggcacagaa 900
atcatcaatt accgagatgg aatggggcga gtccttgctc aagatgtata tgcaaaagac 960
aatttacccc cttcccagc atcagtaaaa gatggctatg ctgtccgagc tgctgatggc 1020
ccaggagatc gttcatcat tgggaatcc caagctggtg aacagccaac tcagacagta 1080
atgccaggac aagtcatgcg gttacaaca ggtgctccaa taccctgcgg tgctgatgca 1140
gtagtacaag tggaaagatac cgaacttac agggaatcag atgatggcac tgaagaactt 1200
gaagtgcgaa ttctggtgca agctcgccca ggc当地 aacccat cggccatgac 1260
ataaaaagag gggaaatgtgt tttggccaaa ggaaccacata tggccccc当地 agagattgg 1320
cttctggcaa ctgttaggtgt cacagaggaa gaagttaata agttccagt ggtgcagtc 1380
atgtcaacag ggaatgagct gctaaatcct gaagatgacc tcttaccagg gaagattcga 1440
gacagcaatc gttcaactct tctagcaaca attcaggaac atggttaccc cacgtcaac 1500
ttgggtattg taggagacaa cccagatgac ttactcaatg cttgaatga gggtatcagt 1560
cgtgctgatg tcatcatcac atcagggggt gtatccatgg gggaaaagga ctatctcaag 1620

caggtgctgg acattgatct tcatgctcag atccatttg gcagggttt tatgaaacca 1680
ggcttgccaa caacattgc aactttggat attgatggtg taagaaaaat aatcttgca 1740
ctacctggga atcctgtatc ggctgtggc acctgcaatc tcttggtgt gcctgcactg 1800
aggaaaaatgc agggcatctt ggatcctcg ccaaccatca tcaaagcaag gttatcatgt 1860
gatgtaaaac ttgatcctcg tccagaatac catcggtgta tactaacttg gcatcacca 1920
gaaccactac ctgggcaca gagtacaggt aatcaaatga gcagccgtct gatgagcatg 1980
cgcagtgccca atggattgtt gatgctacct ccaaagacag aacagtacgt ggagctccac 2040
aaaggcgagg tggtggatgt catggtcatt ggacggctat gatggtcacc ag 2092

<210> 3
<211> 300
<212> PRT
<213> Artificial

<220>
<223> 2a SPA-5G-MBP

<220>
<221> FUSION_PRT
<222> (1)..(300)
<223> Fusion Protein of Staph. aureus Protein A and H. sapiens MBP

<220>
<221> MISC_FEATURE
<222> (264)..(264)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (278)..(278)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (281)..(281)
<223> Xaa can be any naturally occurring amino acid

<400> 3

Ala Ala Gln His Asp Glu Ala Gln Gln Asn Ala Phe Tyr Gln Val Leu
1 5 10 15

Asn Met Pro Asn Leu Asn Ala Asp Gln Arg Asn Gly Phe Ile Gln Ser
20 25 30

Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Val Leu Gly Glu Ala Lys
35 40 45

Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn Lys
50 55 60

Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn
65 70 75 80

Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser
85 90 95

Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln
100 105 110

Ala Pro Lys Ala Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe
115 120 125

Tyr Glu Ile Leu His Leu Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly
130 135 140

Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu
145 150 155 160

Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Ala Asp Asn
165 170 175

Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu
180 185 190

Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys
195 200 205

Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu
210 215 220

Asn Asp Ala Gln Ala Pro Lys Glu Glu Asp Asn Asn Lys Pro Gly Lys
225 230 235 240

Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp Gly Asn Gly Gly Gly
245 250 255

Gly Ala Ala Ala Ser Thr Ala Xaa Ala Ser Thr Ala Lys Glu Thr Ala
260 265 270

Glu Ala Val Ala Asp Xaa Ile Leu Xaa Lys Ala Gly Pro Leu Val Ala
275 280 285

Val Ser Ala Val Ala Leu Asp Ile Thr Ala Tyr Pro
290 295 300

<210> 4
<211> 912
<212> DNA
<213> Artificial

<220>
<223> 2b SPA-5g-MBP

<220>
<221> misc_recomb
<222> (1)..(912)
<223> nucleic acid encoding Staph. aureus Protein A and H. sapiens MBP
fusion prt

<220>
<221> misc_feature
<222> (792)..(792)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (835)..(835)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (844)..(844)
<223> n is a, c, g, t or u

<400> 4
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caatttcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaacttcaa 240
cgaagaacaa cgcaatggtt tcattccaaag cttaaaagat gacccaagtc aaagtgcata 300
cctattgtca gaagctaaaa agttaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg ctttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcacaaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaatttt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc ttaaagacga tccttcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaaggcacc aaaagagggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtaacggc ggcggcggcgc gcgcggccgc 780
gtcgaccgcg gnccgcgtcga cggcaaagga gactgctgag gctgttgctg atganatact 840
gganaaggct gggccacttg ttgctgtgtc tgctgttgca cttgatataa ctgcctaccc 900

ctaaaagcca aa 912

<210> 5
<211> 3718
<212> DNA
<213> Artificial

<220>
<223> 3 SPA-5g-FLJ 314424 fis (MBP)

<220>
<221> misc_recomb
<222> (1)..(3718)
<223> nucleic acid encoding Staph. aureus Protein A and H. Sapiens FLJ
314424 fis fusion prt

<400> 5
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caattcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaactgaa 240
cgaagaacaa cgcaatggtt tcataccaaag cttaaaagat gacccaaagtc aaagtgctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg ctttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcacaaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaattt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc ttaaagacga tccttcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaagcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtAACGGC ggcggcggcg gcaatgtccc 780

gaattccagg ctcaccacc ccttctcagt aatgaccctg gttgggtgca ggaggtacct 840
actccatact gagggtaaaa ttaagggaag gcaaagtcca ggcacaagag tgggacccca 900
gcctctcact ctcagttcca ctcatccaac tgggaccctc accacgaatc tcatgatctg 960
attcggttcc ctgttcctc ctccgtcac agatgtgagc cagggcactg ctcagctgtg 1020
acccttaggtg tttctgcctt gttgacatgg agagagccct ttcccctgag aaggcctggc 1080
cccttcctgt gctgagccca cagcagcagg ctgggtgtct tggttgtcag tggtggcacc 1140
aggatggaag ggcaaggcac ccagggcagg cccacagtcc cgctgtcccc cacttgacc 1200
ctagcttcta gctgccaacc tcccagacag cccagccgc tgctcagctc cacatgcata 1260
gtatcagccc tccacaccccg acaaaggaa acacacccccc ttggaaatgg ttctttccc 1320
ccagtccagg ctggaagcca tgctgtctgt tctgctggag cagctgaaca tatacataga 1380
tgttgccctg ccctccccat ctgcaccctg ttgagttgta gttggatttg tctgtttatg 1440
cttggattca ccagagtgac tatgatagtg aaaagaaaaa aaaaaaaaaa aaaggacgca 1500
tgtatcttga aatgcttcta aagaggttc taacccaccc tcacgaggtg tctctcaccc 1560
ccacactggg actcgtgtgg cctgtgtggt gccaccctgc tggggcctcc caagtttga 1620
aaggcttcc tcagcacctg ggacccaaca gagaccagct tctagcagct aaggaggccg 1680
ttcagctgtg acgaaggcct gaagcacagg attaggactg aagcgatgtat gtccccttcc 1740
ctacttcccc ttggggctcc ctgtgtcagg gcacagacta ggtcttggc ctggctggc 1800
ttgcggcgcg aggatggttc tctctggta tagcccgaag tctcatggca gtcccaaagg 1860
aggcttacaa ctcctgcata acaagaaaaa ggaagccact gccagctggg gggatctgca 1920
gctcccagaa gctccgttag cctcagccac ccctcagact gggccctct ccaagctgc 1980
cctctggagg ggcagcgcag cctccacca agggccctgc gaccacagca gggattggga 2040
tgaattgcct gtcctggatc tgctctagag gcccaagctg cctgcctgag gaaggatgac 2100
ttgacaagtc aggagacact gttccaaag ccttgaccag agcacctcag cccgctgacc 2160

ttgcacaaac tccatctgct gccatgagaa aagggaagcc gccttgcaa aacattgctg 2220
cctaaagaaa ctcagcagcc tcaggccaa ttctgccact tctggttgg gtacagttaa 2280
aggcaaccct gagggacttg gcagtagaaa tccagggcct cccctggggc tggcagctc 2340
gtgtcagct agagtttac ctgaaaggaa gtctctggc ccagaactct ccaccaagag 2400
cctccctgcc gttcgctgag tcccagcaat tctcctaagt tgaaggatc tgagaaggag 2460
aaggaaatgt gggtagatt tggtggttgt tagagatatg cccccctcat tactgccaac 2520
agtttcggct gcattcttc acgcacctcg gttcctttc ctgaagttct tgtccctgc 2580
tcttcagcac catgggcctt cttatacgga aggctctggg atctccctt tgtgggcag 2640
gctcttgggg ccagcctaag atcatggttt agggtgatca gtgctggcag ataaattgaa 2700
aaggcacgct ggcttgcgtat cttaaatgag gacaatcccc ccagggctgg gcactcctcc 2760
cctccctca cttctccac ctgcagagcc agtgccttg ggtggctag ataggatata 2820
ctgtatgccg gtccttcaa gctgctgact cactttatca atagttccat taaattgac 2880
ttcagtggtg agactgtatc ctgtttgcta ttgcttggtg tgctatgggg ggagggggga 2940
ggaatgtta agatagttaa catggcaaa gggagatctt ggggtgcagc acttaaactg 3000
cctcgtaacc ctttcatga ttcaaccac attgctaga gggagggagc agccacggag 3060
ttagaggccc ttggggtttc tctttccac tgacaggctt tcccaggcag ctggctagtt 3120
cattccctcc ccagccaggt gcaggcgtag gaatatggac atctggttgc ttggcctgc 3180
tgccctttt caggggtcct aagccacaa tcatgcctcc ctaagacctt ggcatttc 3240
cctctaagcc gttggcacct ctgtgccacc tctcacactg gctccagaca cacagcctgt 3300
gctttggag ctgagatcac tcgcttcacc ctccatctt ttgttctcca agtaaagcca 3360
cgaggtcggg gcgagggcag aggtgatcac ctgcgtgtcc catctacaga cctgcagctt 3420
cataaaaactt ctgatttctc ttcatgtttt aaaaagggtta ccctgggcac tggcctagag 3480
cctcacctcc taatagactt agcccatga gtttgccatg ttgagcagga ctattctgg 3540

cacttgcaag tcccatgatt tcttcggtaa ttctgagggt ggggggaggg acatgaaatc 3600
atcttagctt agctttctgt ctgtaatgt ctatatagtg tattgtgtgt tttaacaaat 3660
gatttacact gactgttgct gtaaaagtga atttggaaat aaagttatta ctctgatt 3718

<210> 6
<211> 2553
<212> DNA
<213> Artificial

<220>
<223> 4 IL 15-5G-gephyrin-Fc

<220>
<221> misc_recomb
<222> (1)..(2553)
<223> nucleic acid encoding H. sapiens IL 15 and H. sapiens gephyrin fusion protein

<400> 6
ccatccagtg ctacttgtt ttacttctaa acagtcattt tctaactgaa gctggcattc 60
atgtcttcat tttgggctgt ttcagtgcag ggcttcctaa aacagaagcc aactgggtga 120
atgtataataag tgatttggaaa aaaattgaag atcttattca atctatgcat attgatgcta 180
ctttatatac ggaaagtgtat gttcacccca gttgcaaagt aacagcaatg aagtgcattc 240
tcttggagtt acaagttatt tcacttgagt ccggagatgc aagtattcat gatacagtag 300
aaaatctgtat catccttagca aacaacagtt tgtcttctaa tggaaatgta acagaatctg 360
gatgcaaaga atgtgaggaa ctagaggaaa aaaatattaa agaatttttgc cagagtttgc 420
tacatattgt ccaaatttttc atcaacactt cttggcgccg gcggcgccgt ttaggtcaca 480
gtgctgtcga tatcaccaag gtggcttagaa gacatgcgt gtctcctttt cctctgacat 540
ctatggacaa agccttatac acagtcctgg agatgactcc ggtgcttggg acagaatca 600
tcaattaccg agatggaatg gggcgagtcc ttgctcaaga tgtatatgca aaagacaatt 660
taccccccctt cccagcatca gtaaaagatg gctatgctgt ccgagctgct gatggcccag 720

gagatcgttt catcattggg gaatcccaag ctggtaaca gccaactcag acagtaatgc 780
caggacaagt catcggtt acaacaggtg ctccaatacc ctgcggtgct gatgcagtag 840
tacaagtgga agataccgaa cttatcaggg aatcagatga tggcactgaa gaacttgaag 900
tgcgaattct ggtgcaagct cggccaggcc aagatatcag acccatcgcc catgacatta 960
aaagagggaa atgtgttttgc cccacatggg cccctcagag attggcttc 1020
tggcaactgt aggtgtcaca gaggttgaag ttaataagtt tccagtggtt gcagtcgt 1080
caacaggaa tgagctgcta aatcctgaag atgaccttaccaggaaatcgagaca 1140
gcaatcggtc aactttcta gcaacaattc aggaacatgg ttaccccacg atcaacttgg 1200
gtattttagg agacaacccaa gatgacttac tcaatgcctt gaatgagggt atcagtcgt 1260
ctgatgtcat catcacatca ggggtgtat ccatggggaa aaaggactat ctcaaggcagg 1320
tgctggacat tgatttcat gctcagatcc attttggcag ggttttatg aaaccaggct 1380
tgccaacaac atttgcaact ttggatattg atgggttaag aaaaataatc tttgcactac 1440
ctgggaatcc tgtatcggtt gtggcacct gcaatctttt tggtgcct gcactgagga 1500
aaatgcaggg catcttggat cctcgccaa ccatcatcaa agcaaggta tcatgtgatg 1560
taaaacttga tcctcggttca gaataccatc ggtgtatact aacttggcat caccaagaac 1620
cactaccttg ggcacagagt acaggtaatc aaatgagcag ccgtctgatg agcatgcgc 1680
gtgccaatgg attgttcatg ctacccaa agacagaaca gtacgtggag ctccacaaag 1740
gcgagggtgggt ggtatgtcatg gtcatggac ggctatgtatg gtcaccagct gttgacaatt 1800
aatcatcggtt tcgtataatg tgtggatttgc tgagcggata acaatttcac acaggaaaca 1860
ggatccgata atgacatgcc caccgtgcc agcacctgaa ctcctggggg gaccgtcagt 1920
cttcctttc cccccaaaac ccaaggacac cctcatgtatc tcccgaccc ctgaggtcac 1980
atgcgtgggtg gtggacgtga gccacgaaga ccctgaggc aagttcaact ggtacgtgga 2040
cggcgtggag gtgcataatg ccaagacaaa gccgcgggag gagcagtaca acagcacgt 2100

ccgggtggc agcgtcctca ccgtcctgca ccaggactgg ctgaatggca aggagtacaa 2160
gtgcaaggc tccaacaaag ccctcccagc ccccatcgag aaaaccatct ccaaagccaa 2220
agggcagccc cgagaaccac aggtgtacac cctgccccca tcccgggagg agatgaccaa 2280
gaaccaggc agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgcccgtgga 2340
gtgggagagc aatgggcagc cggagaacaa ctacaagacc acgcctcccg tgctggactc 2400
cgacggctcc ttcttcctct atagcaagct caccgtggac aagagcaggt ggcagcaggg 2460
gaacgtttc tcatgctccg tcatgcata ggctctgcac aaccactaca cgcagaagag 2520
cctctccctg tccccggta aataatagga tcc 2553

<210> 7
<211> 2505
<212> DNA
<213> Artificial

<220>
<223> 5 IL 2-5G-gephyrin -Fc

<220>
<221> misc_recomb
<222> (1)..(2505)
<223> nucleic acid encoding H. sapiens IL 2, H. sapiens gephyrin and H.
sapiens IgG Fc fusion protein

<400> 7
atgcctactt caagttctac aaagaaaaca cagctacaac tggagcattt actgctggat 60
ttacagatga tttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 120
acatttaagt ttacatgcc caagaaggcc acagaactga aacatctca gtgtcttagaa 180
gaagaactca aacctctgga ggaagtgcta aatttagctc aaagcaaaaa ctttcactta 240
agacccaggg acttaatcag caatatcaac gtaatagttc tggaaactaaa gggatctgaa 300
acaacattca tgtgtgaata tgctgtatgag acagcaacca ttgtagaatt tctgaacaga 360

tggattacctttctcaaagcatcatctcaacactgacttgataaggcggcgccggc 420
gtttaggtcacagtgcgtc gatatcaccaaggtggctagaagacatcgcatgttcctt 480
ttcctctgacatctatggacaagcctta tcacagtccctgagatgactccgggtgctg 540
ggacagaaatcatcaattac cgagatggaa tggggcgagt cttgctaaagatgtatatg 600
caaaaagacaa ttaccccccttcccagcatcagtaaaaga tggctatgctgtccgagctg 660
ctgatggcccaggagatcgtttcatcattgggaatcccaagctggtaa cagccaactc 720
agacagtaatgccaggacaa gtcatgcggg ttacaacagg tgctccaata ccctgcggtg 780
ctgatgcagt agtacaagtgaagataccg aacttacgat ggaatcagat gatggcactg 840
aagaacttga agtgcgaatt ctggcgaagctcggccaggccaagatatc agaccatcg 900
gccatgacat taaaagaggg gaatgtgttt tggccaaagg aacccacatggccctcag 960
agattggctctggcaact gtaggtgtcacagaggtaa agttaataag tttccagtg 1020
ttgcagtcatgtcaacagggaatgagctgc taaatcctga agatgaccttttaccaggga 1080
agattcgaga cagcaatcgttcaactcttc tagcaacaat tcaggaacat ggttacccca 1140
cgatcaacttggatttgta ggagacaacc cagatgactt actcaatgcc ttgaatgagg 1200
gtatcagtcgtctgatgtcatcatcacat caggggggtatccatgggg gaaaaggact 1260
atctcaagcagggtgctggacattgatcttc atgctcagatccatttggcagggtttta 1320
tgaaccaggcttgcacacaacatttgcacattggatattgtatggtaagaaaaataa 1380
tcttcactacctggaaatcctgtatcggctgtggcacactgcaatctcttgc 1440
ctgcactgag gaaaatgcaggcatcttggatcctcgcc aaccatcatcaagcaagg 1500
tatcatgtatgtaaacttgatcctcgccagaatacca tcgggtataacttggc 1560
atcaccaagaaccactacccatggcacaga gtacaggtaa tcaaatgagc agccgtctga 1620
tgagcatgcgcgtgcattggatgtatgtacccatccaaagacagaa cagtcgtgg 1680
agctccacaaaggcgagggtgtggatgtca tggcattggacggctatgatggcaccag 1740

ctgttgacaa ttaatcatcg gctcgataa tgtgtggaat tgtgagcggtaacaattc 1800
acacaggaaa caggatccga taatgacatg cccaccgtgc ccagcacctg aactcctgg 1860
gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac 1920
ccctgaggc acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa 1980
ctggtagctg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta 2040
caacagcacg taccgggtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg 2100
caaggagtac aagtgcagg tctccaacaa agccctccca gccccatcg agaaaaaccat 2160
ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcccc catccggga 2220
ggagatgacc aagaaccagg tcagcctgac ctgcctggc aaaggcttct atcccagcga 2280
catcgccgtg gagtgggaga gcaatggca gccggagaac aactacaaga ccacgcctcc 2340
cgtgctggac tccgacggct ctttttcct ctatagcaag ctcaccgtgg acaagagcag 2400
gtggcagcag gggAACgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta 2460
cacgcagaag agcctctccc tgtccccggg taaataatag gatcc 2505

<210> 8
<211> 1373
<212> DNA
<213> Artificial

<220>
<223> 6 IL 15-5G-MBP-Fc

<220>
<221> misc_recomb
<222> (1)..(1373)
<223> nucleic acid encoding H.sapiens IL 15, H.sapiens MBP and
H.sapiens IgG Fc fusion prt

<220>
<221> misc_feature
<222> (488)..(488)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (531)..(531)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (540)..(540)
<223> n is a, c, g, t or u

<400> 8
ccatccagtg ctacttgtt ttacttctaa acagtcattt tctaactgaa gctggcattc 60
atgtcttcat tttgggctgt ttcagtgcag ggcttcctaa aacagaagcc aactgggtga 120
atgtaataag tgatttgaaa aaaattgaag atcttattca atctatgcat attgatgcta 180
ctttatatac ggaaagtgat gttcacccca gttgcaaagt aacagcaatg aagtgcattc 240
tcttgaggat acaagttatt tcacttgagt ccggagatgc aagtattcat gatacagtag 300
aaaatctgat catcctagca aacaacagtt tgtcttctaa tggaaatgta acagaatctg 360
gatgcaaaga atgtgaggaa ctagaggaaa aaaatattaa agaattttg cagagtttg 420
tacatattgt ccaaatgttc atcaacactt cttggcggcg gcggcggcgc ggccgcgtcg 480
accgcggncg cgtcgacggc aaaggagact gctgaggctg ttgctgatga natactggan 540
aaggctggc cacttgtgc tgtgtctgct gttgcacttg atataactgc ctaccctaa 600
aagccaaact gttgacaatt aatcatcggc tcgtataatg tgtggaattt tgagcggata 660
acaatttcac acagggaaaca ggtatccgata atgacatgcc caccgtgcc agcacctgaa 720
ctcctgggg gaccgtcagt cttcccttc cccccaaaac ccaaggacac cctcatgatc 780
tcccgaccc ctgaggtcac atgcgtggtg gtggacgtga gccacgaaga ccctgaggc 840
aagttcaact ggtacgtgga cggcgtggag gtgcataatg ccaagacaaa gccgcgggag 900
gagcagtaca acagcacgta ccgggtggc agcgtcctca ccgtcctgca ccaggactgg 960
ctgaatggca aggagtacaa gtgcaaggc tccaacaaag ccctcccagc ccccatcgag 1020

aaaaccatct ccaaagccaa agggcagccc cgagaaccac aggtgtacac cctgccccca 1080
tcccgaggagg agatgaccaa gaaccagggtc agcctgacct gcctggtaa aggttctat 1140
cccagcgaca tcgccgtgga gtgggagagc aatgggcagc cggagaacaa ctacaagacc 1200
acgcctcccg tgctggactc cgacggctcc ttcttcctct atagcaagct caccgtggac 1260
aagagcaggt ggcagcaggg gaacgtcttc tcatgctccg tgatgcata ggctctgcac 1320
aaccactaca cgcagaagag cctctccctg tccccggta aataatagga tcc 1373

<210> 9
<211> 1325
<212> DNA
<213> Artificial

<220>
<223> 7 IL 2-5G-MBP-Fc

<220>
<221> misc_recomb
<222> (1)..(1325)
<223> nucleic acid encoding H.sapiens IL 2, H.sapiens MBP and H.sapiens IgG Fc fusion prt

<220>
<221> misc_feature
<222> (440)..(440)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (483)..(483)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (492)..(492)
<223> n is a, c, g, t or u

<400> 9
atgcctactt caagttctac aaagaaaaaca cagctacaac tggaggcattt actgctggat 60

ttacagatga tttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 120
acatttaagt ttacatgcc caagaaggcc acagaactga aacatctca gtgtctagaa 180
gaagaactca aacctctgga ggaagtgcta aatttagctc aaagcaaaaa cttcactta 240
agaccaggc acttaatcag caatatcaac gtaatagttc tggactaaa gggatctgaa 300
acaacattca tgtgtgaata tgctgatgag acagcaacca ttgtagaatt tctgaacaga 360
tggattacct ttctcaaag catcatctca acactgactt gataaggcgg cggcgccggc 420
gcggccgcgt cgaccgcgn cgctgcgacg gcaaaggaga ctgctgaggc tgttgctgat 480
ganatactgg anaaggctgg gccacttgtt gctgtgtctg ctgttgact tgcataact 540
gcctaccct aaaagccaaa ctgtgacaa ttaatcatcg gctcgataa tgtgtggaat 600
tgtgagcggta aacaatttc acacaggaaa caggatccga taatgacatg cccaccgtgc 660
ccagcacctg aactcctggg gggaccgtca gtcttcctt tcccccaaa acccaaggac 720
accctcatga tctccggac ccctgaggc acatgcgtgg tggtgacgt gagccacgaa 780
gaccctgagg tcaagttcaa ctggtagtg gacggcgtgg aggtgcataa tgccaagaca 840
aagccgcggg aggagcagta caacagcacg taccgggtgg tcagcgtcct caccgtcctg 900
caccaggact ggctgaatgg caaggagtagc aagtgcagg tctccaacaa agccctccc 960
gccccatcg agaaaaccat ctccaaagcc aaaggcagc cccgagaacc acaggtgtac 1020
accctgcccc catccggga ggagatgacc aagaaccagg tcagcctgac ctgcctggc 1080
aaaggcttct atcccagcga catgcccgtg gagtgggaga gcaatggca gccggagaac 1140
aactacaaga ccacgcctcc cgtgctggac tccgacggct cttcttcct ctatagcaag 1200
ctcaccgtgg acaagagcag gtggcagcag gggAACGTCT tctcatgctc cgtgatgcat 1260
gaggctctgc acaaccacta cacgcagaag agcctctccc tgtccccggg taaataatag 1320
gatcc 1325

<210> 10

<211> 4178

<212> DNA

<213> Artificial

<220>

<223> 8 IL 15-5G-FLJ 314424 fis (MBP)-Fc

<400> 10

ccatccagtg ctacttgtt ttacttctaa acagtcattt tctaactgaa gctggcattc 60

atgtcttcat tttgggctgt ttcagtgcag ggcttcctaa aacagaagcc aactgggtga 120

atgtaataag tgatttgaaa aaaattgaag atcttattca atctatgcat attgatgcta 180

ctttatatac ggaaagtgtat gttcacccca gttgcaaagt aacagcaatg aagtgcattc 240

tcttggagtt acaagttatt tcacttgagt ccggagatgc aagtattcat gatacagtag 300

aaaatctgtat catcctagca aacaacagtt tgtcttctaa tggaaatgta acagaatctg 360

gatgcaaaga atgtgagggaa ctagaggaaa aaaatattaa agaatttttgc cagagtttg 420

tacatattgt ccaaattgttc atcaacactt cttggcgccg gcggcgccaa tgtcccgaat 480

tcccagcctc accacccctt ctcagtaatg accctgggttgc gttgcaggag gtacctactc 540

catactgagg gtgaaattaa ggaaaggcaa agtccaggca caagagtggg accccagcct 600

ctcaactctca gttccactca tccaactggg accctcacca cgaatctcat gatctgattc 660

ggttccctgt ctcctcctcc cgtcacagat gtgagccagg gcactgctca gctgtgaccc 720

taggtgtttc tgccttggat acatggagag agccctttcc cctgagaagg cctggccct 780

tccctgtctg agcccacagc agcaggctgg gtgtcttgcgttgttgcaccaggaa 840

tggaaaggca aggacccag ggcaggccca cagtcccgct gtccccact tgcaccctag 900

ctttagctg ccaacctccc agacagccca gcccgcgtcgtcgttgcaccata tgcatagtat 960

cagccctcca cacccgacaa agggaaacac acccccttgg aaatggttct tttccccag 1020

tcccagctgg aagccatgctgtcgttgcgttgcgtcgttgcaccata catagatgtt 1080

gccctgcctt cccatctgc accctgttga gttgttagttg gatttgcgttgcgttgcaccata 1140

gattcaccag agtactatg atagtaaaaa gaaaaaaaaaaa aaaaaaaaaaag gacgcata 1200
tcttggaaatg cttgtaaaga ggtttctaac ccaccctcac gaggtgtctc tcaccccac 1260
actgggactc gtgtggcctg tgtgggccca ccctgctgg gcctcccaag ttttggaaagg 1320
cttcctcag cacctggac ccaacagaga ccagcttcta gcagctaagg aggccgtca 1380
gctgtgacga aggccctgaag cacaggatta ggactgaagc gatgatgtcc cttccctac 1440
ttccccitgg ggctccctgt gtcagggcac agacttagtc ttgtggctgg tctggcttgc 1500
ggcgcgagga tggttctctc tggtcatagc ccgaagtctc atggcagtcc caaaggaggc 1560
ttacaactcc tgcatacaca gaaaaaggaa gccactgccca gctgggggga tctgcagctc 1620
ccagaagctc cgtgagcctc agccaccct cagactgggt tcctctccaa gctgcctc 1680
tggaggggca ggcgcagcctc ccaccaaggg ccctgcgacc acagcaggaa ttggatgaa 1740
ttgcctgtcc tggatctgct ctagaggccc aagctgcctg cctgaggaag gatgacttga 1800
caagtcagga gacactgttc ccaaagcctt gaccagagca cctcagcccg ctgaccttgc 1860
acaaactcca tctgctgccca tgagaaaagg gaagccgcct ttgcaaaaca ttgctgccta 1920
aagaaaactca gcagcctcag gcccattct gccacttctg gtttgggtac agttaaaggc 1980
aaccctgagg gacttggcag tagaaatcca gggcctcccc tggggctggc agcttcgtgt 2040
gcagctagag ctttacctga aaggaagtct ctggcccg aactctccac caagagcctc 2100
cctgccgttc gctgagtc agcaattctc ctaagttgaa gggatctgag aaggagaagg 2160
aatgtgggg tagatttggg ggtggtaga gatatgc(cc) cctcattact gccaacagt 2220
tcggctgcac ttcttcacgc acctcggttc ctcttcctga agttctgtg ccctgcttt 2280
cagcaccatg ggccttctta tacggaaggc tctggatct ccccttgc gggcaggctc 2340
ttggggccag cctaagatca tggtttaggg tgcgtgc tggcagataa attgaaaagg 2400
cacgctggct tgtgtatctta aatgaggaca atccccccag ggctgggcac tcctccctc 2460
ccctcacttc tcccacactgc agagccagtg tcctgggtg ggcttagatag gatatactgt 2520

atgccggctc cttcaagctg ctgactcaact ttatcaatag ttccatttaa attgacttca 2580
gtggtagagac tgtatcctgt ttgctattgc ttgttgtgct atggggggag gggggaggaa 2640
tgtgtaaat agttaaacatg ggcaaaggga gatctgggg tgcagcactt aaactgcctc 2700
gtaaccctt tcatgatttc aaccacattt gctagaggga gggagcagcc acggagtttag 2760
aggcccttgg ggttcttctt ttccactgac aggcttccc aggtagctgg ctagttcatt 2820
ccctccccag ccaggtgcag gcgttagaat atggacatct ggttgcttg gcctgctgcc 2880
ctcttcagg ggtcctaagc ccacaatcat gcctccctaa gaccttggca tcctccctc 2940
taagccgttg gcacctctgt gccacctctc acactggctc cagacacaca gcctgtgctt 3000
ttggagctga gatcactcgc ttcaccctcc tcatttgt tctccaagta aagccacgag 3060
gtcggggcga gggcagaggt gatcacctgc gtgtcccatc tacagacctg cagttcata 3120
aaacttctga ttctcttca gcttgaaaa ggttaccct gggcactggc ctagaggctc 3180
acctcctaata agacttagcc ccatgagttt gccatgttga gcaggactat ttctggact 3240
tgcaagtccc atgatttctt cgtaattct gagggtgggg ggagggacat gaaatcatct 3300
tagcttagct ttctgtctgt gaatgtctat atagtgtatt gtgtgtttt acaaatttatt 3360
tacactgact gttgctgtaa aagtgaattt gaaaataaag ttattactct gattctgttg 3420
acaattaatc atcggtcgta ataatgtgtg gaattgttag cgatataacaa tttcacacag 3480
gaaacaggat ccgataatga catgcccacc gtgcccagca cctgaactcc tgggggaccg 3540
tcagtcttcc tttcccccc aaaacccaag gacaccctca tgatctcccg gaccctgag 3600
gtcacatgcg tgggggttggc cgtgagccac gaagaccctg aggtcaagtt caactggtag 3660
gtggacggcg tggaggttgc taatgccaag acaaagccgc gggaggagca gtacaacagc 3720
acgtaccggg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaggag 3780
tacaagtgcg aggtctccaa caaagccctc ccagccccca tcgagaaaac catctccaaa 3840
gccaaggggc agccccgaga accacaggtt tacaccctgc ccccatcccg ggaggagatg 3900

accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctatccag cgacatgcc 3960
gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg 4020
gactccgacg gctccttctt cctctatagc aagtcaccg tggacaagag caggtggcag 4080
caggggaacg tcttctcatg ctccgtgatg catgaggctc tgcacaacca ctacacgcag 4140
aagagcctct ccctgtcccc gggtaataa taggatcc 4178

<210> 11
<211> 4131
<212> DNA
<213> Artificial

<220>
<223> 9 IL 2-5G-FLJ 314424 fis-Fc

<400> 11
atgcctactt caagttctac aaagaaaaca cagctacaac tggagcattt actgctggat 60
ttacagatga tttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 120
acatttaagt ttacatgcc caagaaggcc acagaactga aacatttca gtgtctagaa 180
gaagaactca aacctctgga ggaagtgcta aatttagctc aaagcaaaaa ctttactta 240
agacccaggg acttaatcag caatatcaac gtaatagttc tggactaaa gggatctgaa 300
acaacattca tgtgtgaata tgctgatgag acagcaacca ttgtagaatt tctgaacaga 360
tggattacct ttctcaaag catcatctca acactgactt gataaggcgg cggcgccggc 420
aatgtcccga attcccagcc tcaccacccc ttctcagtaa tgaccctggt tggttgcagg 480
aggtacctac tccatactga gggtaaaatt aaggaaaggc aaagtccagg cacaagagt 540
ggaccccagc ctctcactct cagttccact catccaactg ggaccctcac cacgaatctc 600
atgatctgat tcggttccct gtctcctcct cccgtcacag atgtgagcca gggcactgct 660
cagctgtac cctaggtgtt tctgccttgt tgacatggag agagccctt cccctgagaa 720
ggcctggccc cttcctgtgc tgagcccaca gcagcaggct ggggtcttg gttgtcagt 780

gtggcaccag gatggaaggg caaggcaccc agggcaggcc cacagtcccg ctgtccccca 840
cttgcaccct agctttagc tgccaacctc ccagacagcc cagcccgctg ctcagctcca 900
catgcatagt atcagccctc cacacccgac aaaggggaac acacccctt ggaaatggtt 960
ctttcccccc agtcccagct ggaagccatg ctgtctgttc tgctggagca gctgaacata 1020
tacatagatg ttgccctgcc ctcccatct gcaccctgtt gagttgttagt tggattgtc 1080
tgtttatgct tggattcacc agagtgacta ttagatgtgaa aaaaaaaa aaaaaaaaaa 1140
aggacgcacg tatcttgaaa tgcttgtaaa gaggttcta acccaccctc acgagggtgc 1200
tctcacccccc acactgggac tcgtgtggcc tgtgtggtgc caccctgctg gggcctccca 1260
agtttgaaa ggcttcctc agcacctggg acccaacaga gaccagctc tagcagctaa 1320
ggaggccgtt cagctgtgac gaaggcctga agcacaggat taggactgaa gcgatgatgt 1380
cccctccct acttccctt gggctccct gtgtcagggc acagactagg tcttgtggct 1440
ggctggctt gcggcgcgag gatggttctc tctggcata gccgaagtc tcatggcagt 1500
cccaaaggag gcttacaact cctgcatcac aagaaaaagg aagccactgc cagctggggg 1560
gatctgcagc tcccagaagc tccgtgagcc tcagccaccc ctcagactgg gttcctctcc 1620
aagctcgccc tctggagggg cagcgcagcc tcccaccaag gccctgcga ccacagcagg 1680
gattggatg aattgcctgt cctggatctg ctctagaggc ccaagctgcc tgcctgagga 1740
aggatgactt gacaagtcag gagacactgt tcccaaagcc ttgaccagag cacctcagcc 1800
cgctgacctt gcacaaactc catctgctgc catgagaaaa gggaaagccgc ctttgcaaaa 1860
cattgctgcc taaagaaact cagcagcctc aggcccaatt ctgccacttc tggttgggt 1920
acagttaaag gcaaccctga gggacttggc agtagaaatc cagggcctcc cctggggctg 1980
gcagcttcgt gtgcagctag agcttacct gaaaggaagt ctctggccccc agaactctcc 2040
accaagagcc tccctgccgt tcgctgagtc ccagcaattc tcctaagttg aaggatctg 2100
agaaggagaa ggaaatgtgg ggttagatttg gtgggttta gagatatgcc cccctcatta 2160

ctgccaacag ttcggctgc atttctcac gcacctcggt tcctttcct gaagttctg 2220
tgccctgctc tttagcacca tgggcattctatacggaag gctctggat ctccccctg 2280
tggggcaggc tctggggcc agcctaagat catggtttag ggtgatcagt gctggcagat 2340
aaattgaaaa ggcacgctgg cttgtatct taaatgagga caatcccccc agggctggc 2400
actcctcccc tcccctact tctccacct gcagagccag tgtccttggg tgggctagat 2460
aggatatact gtatgccggc tcctcaagc tgctgactca ctatcaat agttccattt 2520
aaattgactt cagtggtgag actgtatcct gtttgctatt gcttgggtg ctatgggggg 2580
aggggggagg aatgtgtaag atagttaca tggcaaagg gagatctgg ggtgcagcac 2640
ttaaactgcc tcgtaaccct tttcatgatt tcaaccacat ttgctagagg gagggagcag 2700
ccacggagtt agaggccctt ggggttctc tttccactg acaggcttc ccaggcagct 2760
ggctagttca ttccctcccc agccaggtgc aggcgtagga atatggacat ctgggtgctt 2820
tggcctgctg ccctttca ggggtcctaa gcccacaatc atgcctccct aagacctgg 2880
catcctccc tctaagccgt tggcacctct gtgccacctc tcacactggc tccagacaca 2940
cagcctgtgc tttggagct gagatcactc gcttcaccct cctcatctt gtttccaag 3000
taaagccacg aggtcggggc gagggcagag gtgatcacct gcgtgtccca tctacagacc 3060
tgcaagttca taaaacttct gatttcttt cagcttgaa aagggttacc ctgggcactg 3120
gcctagagcc tcacccctta atagacttag cccatgagt ttgccatgtt gagcaggact 3180
atttctggca cttgcaagtc ccatgatttc ttggtaatt ctgaggggtgg ggggagggac 3240
atgaaatcat ctttagcttag ctttctgtct gtgaatgtct atatagtgtt ttgtgtgtt 3300
taacaaatga tttacactga ctgttgctgt aaaagtgaat ttggaaataa agttattact 3360
ctgattctgt tgacaattaa tcatcggtc gtataatgtg tgaaattgtg agcggataac 3420
aatttcacac agggaaacagg atccgataat gacatgccca ccgtgcccag cacctgaact 3480
cctggggggga ccgtcagtct tcctttccc cccaaaaccc aaggacaccc tcatgatctc 3540

ccggaccct gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtaa 3600
gttcaactgg tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga 3660
gcagtacaac agcacgtacc gggtggtcag cgtcctcacc gtcctgcacc aggactggct 3720
aatggcaag gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa 3780
aaccatctcc aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgccccatc 3840
ccgggaggag atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttcttatcc 3900
cagcgacatc gccgtggagt gggagagcaa tggcagccg gagaacaact acaagaccac 3960
gcctcccggt ctggactccg acggctcctt cttcctctat agcaagctca ccgtggacaa 4020
gagcaggtgg cagcagggga acgtttctc atgctccgtg atgcatgagg ctctgcacaa 4080
ccactacacg cagaagagcc tctccctgtc cccgggtaaa taataggatc c 4131

<210> 12

<211> 1677

<212> DNA

<213> Artificial

<220>

<223> 10 SPA-5G-MBP-Fc

<220>

<221> misc_feature

<222> (792)..(792)

<223> n is a, c, g, t or u

<220>

<221> misc_feature

<222> (835)..(835)

<223> n is a, c, g, t or u

<220>

<221> misc_feature

<222> (844)..(844)

<223> n is a, c, g, t or u

<400> 12

tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaagcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caattcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaactgaa 240
cgaagaacaa cgcaatggtt tcatccaaag cttaaaagat gacccaagtc aaagtgctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaaatt 360
caacaaagaa caacaaaatg cttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcacaaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaattt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc ttaaagacga tccttcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaagcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggttaacggc ggcggcggcg gcgcggccgc 780
gtcgaccgcfg gnccgcgtcga cggcaaagga gactgctgag gctgtgctg atganatact 840
gganaaggct gggccacttg ttgctgtgtc tgctgttgca cttgatataa ctgcctaccc 900
ctaaaagcca aactgttgac aattaatcat cggctcgat aatgtgtgga attgtgagcg 960
gataacaatt tcacacagga aacaggatcc gataatgaca tgcccacccgt gcccagcacc 1020
tgaactcctg gggggaccgt cagtcttcct cttccccca aaacccaagg acaccctcat 1080
gatctcccg acccctgagg tcacatgcgt ggtggggac gtgagccacg aagaccctga 1140
ggtcaagttc aactggtagc tggacggcgt ggaggtgcat aatgccaaga caaagccgcfg 1200
ggaggagcag tacaacagca cgtaccgggt ggtcagcgct ctcaccgtcc tgcaccagga 1260
ctggctgaat ggcaaggagt acaagtgcaa ggtctccaac aaagccctcc cagccccat 1320
cgagaaaaacc atctccaaag ccaaaggca gccccgagaa ccacaggtgt acaccctgcc 1380

cccatcccg gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt 1440
ctatcccagc gacatcgccg tggagtggga gagcaatggg cagccggaga acaactaca 1500
gaccacgcct cccgtgctgg actccgacgg ctcccttc tcctatagca agtcaccgt 1560
ggacaagagc aggtggcagc agggAACGT cttctcatgc tccgtatgc atgaggctct 1620
gcacaaccac tacacgcaga agagccttc cctgtccccg ggtaaataat aggatcc 1677

<210> 13
<211> 2857
<212> DNA
<213> Artificial

<220>
<223> 11 SPA-5G-gephyrin-Fc

<220>
<221> misc_recomb
<222> (1)..(2857)
<223> nucleic acid encoding Staph aureus Protein A, H.sapiens gephyrin
and H.sapiens IgG Fc fusion prt

<400> 13
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtcttaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaagcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caatttcaac aaagaacaac aaaatgcttt ctatgaaatc ttgaacatgc ctaacttcaa 240
cgaagaacaa cgcaatgggt tcatccaaag cttaaaagat gacccaagtc aaagtgcata 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg cttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaacccttt 480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaatttt acatttacct aacttaactg aagagcaacg 600

taacggctc atccaaagcc taaaagacga tccttcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaaggcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggttaacggc ggcggcggcg gcgtttaggt 780
cacagtgcgt tcgatatac caaggtggct agaagacatc gcatgtctcc tttcctctg 840
acatctatgg acaaagcctt tatcacagtc ctggagatga ctccggtgct tggacagaa 900
atcatcaatt accgagatgg aatggggcga gtccttgctc aagatgtata tgcaaaagac 960
aatttacccc cttcccagc atcagtaaaa gatggctatg ctgtccgagc tgctgatggc 1020
ccaggagatc gttcatcat tgggaatcc caagctggtg aacagccaac tcagacagta 1080
atgccaggac aagtcatgcg gttacaaca ggtgctccaa taccctgcgg tgctgatgca 1140
gtagtacaag tggaaagatac cgaacttac aggaaatcag atgatggcac tgaagaactt 1200
gaagtgcgaa ttctggtgca agctcgccca ggccaagata tcagacccat cggccatgac 1260
attaaaagag gggaaatgtgt tttggccaaa ggaaccacca tggcccccctc agagattgg 1320
cttctggcaa ctgttaggtt cacagaggaa gaagttata agttccagt ggttgcagtc 1380
atgtcaacag ggaatgagct gctaaatcct gaagatgacc tcttaccagg gaagattcga 1440
gacagcaatc gttcaactct tctagcaaca attcaggaac atggttaccc cacgtcaac 1500
ttgggtattt taggagacaa cccagatgac ttactcaatg ctttgaatga gggtatcagt 1560
cgtgctgatg tcatcatcac atcaggggt gtatccatgg gggaaaagga ctatctcaag 1620
caggtgctgg acattgatct tcatgctcag atccattttg gcagggttt tatgaaacca 1680
ggcttgccaa caacattgc aactttggat attgatggtg taagaaaaat aatcttgca 1740
ctacctggaa atcctgtatc ggctgtggtc acctgcaatc tctttgtgt gcctgcactg 1800
aggaaaaatgc agggcatctt ggatcctcgg ccaaccatca tcaaagcaag gttatcatgt 1860
gatgtaaaac ttgatcctcg tccagaatac catcggtgt tactaacttg gcatcaccaa 1920
gaaccactac cttggcaca gagtacaggt aatcaaatga gcagccgtct gatgagcatg 1980

cgcagtgccca atggattgtt gatgctacct ccaaagacag aacagtacgt ggagctccac 2040
aaaggcgagg tggtggtatgt catggtcatt ggacggctat gatggtcacc agctgttgc 2100
aattaatcat cggctcgtat aatgtgtgga attgtgagcg gataacaatt tcacacagga 2160
aacaggatcc gataatgaca tgcccaccgt gcccagcacc tgaactcctg gggggaccgt 2220
cagtcttcct cttccccca aaacccaagg acaccctcat gatctcccg acccctgagg 2280
tcacatgcgt ggtgggtggac gtgagccacg aagaccctga ggtcaagttc aactggtagc 2340
tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagcag tacaacagca 2400
cgtaccgggt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctaat ggcaaggagt 2460
acaagtgc当地 ggtctccaac aaagccctcc cagccccat cgagaaaacc atctccaaag 2520
ccaaaggca gccccgagaa ccacaggtgt acaccctgcc cccatcccg gaggagatga 2580
ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc gacatcgccg 2640
tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct cccgtgctgg 2700
actccgacgg ctcccttc ctctatagca agtcaccgt ggacaagagc aggtggcagc 2760
aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac tacacgcaga 2820
agagcctctc cctgtcccg ggtaaataat aggatcc 2857

<210> 14
<211> 4483
<212> DNA
<213> Artificial

<220>
<223> 12 SPA-5G-FLJ 314424 fis-Fc

<220>
<221> misc_recomb
<222> (1)..(4483)
<223> nucleic acid encoding Staph. aureus Protein A, H.sapiens FLJ
314424 fis and H.sapiens IgG Fc fusion prt

<400> 14

tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaagcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caattcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaactgaa 240
cgaagaacaa cgcaatggtt tcatccaaag cttaaaagat gacccaagtc aaagtgctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaaatt 360
caacaaagaa caacaaaatg cttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcacaaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcittct atgaaatttt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc ttaagacga tcctcagt agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgtg ctcaagcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtAACGGC ggcggcggcg gcaatgtccc 780
gaattcccgag cctcaccacc ccttctcagt aatgaccctg gttggttgca ggaggtacct 840
actccatact gagggtgaaa ttaagggaag gcaaagtcca ggcacaagag tgggacccca 900
gcctctcaact ctcagttcca ctcatccaac tgggaccctc accacgaatc tcatgatctg 960
attcggttcc ctgttcctc ctcccgac agatgtgagc cagggcactg ctcagctgtg 1020
accctagggtg ttctgcctt gttgacatgg agagagccct ttccctgag aaggcctggc 1080
cccttcctgt gctgagccca cagcagcagg ctgggtgtct tggttgtcag tggcggcacc 1140
aggatggaag ggcaaggcac ccagggcagg cccacagtcc cgctgtcccc cacttgaccc 1200
ctagcttgcata gctgccaaacc tcccagacag cccagccgc tgctcagctc cacatgcata 1260
gtatcagcccc tccacaccccg acaaaggaa acacacccccc ttggaaatgg ttctttccc 1320

ccagtcccag ctggaagcca tgctgtctgt tctgctggag cagctgaaca tatacataga 1380
tggccctg ccctccccat ctgcaccctg ttgagttgta gttggatttg tctgttatg 1440
ctggattca ccagagtgac tatgatagtg aaaagaaaaa aaaaaaaaaa aaaggacgca 1500
tgtatcttga aatgcttgc aagaggttc taacccaccc tcacgaggtg tcttcaccc 1560
ccacactggg actcggtgg cctgtgtgg gccaccctgc tggggcctcc caagtttga 1620
aaggcttcc tcagcacctg ggacccaaca gagaccagct tctagcagct aaggaggccg 1680
ttcagctgtg acgaaggcct gaagcacagg attaggactg aagcgatgtat gtcccttcc 1740
ctactcccc ttggggctcc ctgtgtcagg gcacagacta ggtctgtgg ctggctggc 1800
ttgcggcgcg agatggttc tctctggta tagcccgaag tctcatggca gtcccaaagg 1860
aggcttacaa ctccatgc acaagaaaaa ggaagccact gccagctggg gggatctgca 1920
gctccagaa gctccgtgag ctcagccac ccctcagact gggccctct ccaagctgc 1980
cctctggagg ggcagcgcag ctcacccacca agggccctgc gaccacagca gggattggga 2040
tgaattgcct gtcctggatc tgctctagag gccaagctg ctcctgtgg gaaggatgac 2100
ttgacaagtc aggagacact gttccaaag cttgaccag agcacctcag cccgtgacc 2160
ttgcacaaac tccatctgct gccatgagaa aagggaaagcc gccttgcaa aacattgctg 2220
cctaaagaaa ctcagcagcc tcaggccaa ttctgccact tctggttgg gtacagttaa 2280
aggcaaccct gaggacttg gcagtagaaa tccagggcct cccctgggc tggcagcttc 2340
gtgtcagct agactttac ctgaaaggaa gtctctggc ccagaactct ccaccaagag 2400
cctccctgcc gttcgctgag tccagcaat tccctaagt tgaagggatc tgagaaggag 2460
aaggaaatgt gggtagatt tgggtgggt tagagatag ccccccatt tactgccaac 2520
agttcggct gcattcttc acgcaccccg gttcccttc ctgaagttct tggccctgc 2580
tcttcagcac catggccctt cttatacgg aaggctctggg atctcccttgtggcag 2640
gctctgggg ccagcctaag atcatggttt agggtgatca gtgctggcag ataaattgaa 2700

aaggcacgct ggcttgtat cttaaatgag gacaatcccc ccagggctgg gcactcctcc 2760
cctccccccta cttctccac ctgcagagcc agtgccttg ggtgggctag ataggatata 2820
ctgtatgccg gtccttcaa gctgctgact cacttatca atagttccat ttaaattgac 2880
ttcagtggtg agactgtatc ctgtttgcta ttgcttggtg tgctatgggg ggagggggga 2940
ggaatgtgt aagatagttaa catggcaaa gggagatctt ggggtgcagc acttaaactg 3000
cctcgtaacc ctttcatga ttcaaccac atttgctaga gggagggagc agccacggag 3060
ttagaggccc ttggggtttc tctttccac tgacaggctt tcccaggcag ctggctagtt 3120
cattccctcc ccagccaggt gcaggcgtag gaatatggac atctggttgc tttggcctgc 3180
tgccctctt caggggcct aagcccacaa tcatgcctcc ctaagacctt ggcaccccttc 3240
cctctaagcc gttggcacct ctgtgccacc tctcacactg gctccagaca cacagcctgt 3300
gctttggag ctgagatcac tcgcttcacc ctccatctt ttgttctcca agtaaagcca 3360
cgaggtcggg gcgagggcag aggtgatcac ctgcgtgtcc catctacaga cctgcagctt 3420
cataaaactt ctgatttctc tttagctttt aaaaagggtt ccctggcac tggcttagag 3480
cctcacctcc taatagactt agccccatga gttgccatg ttgagcagga ctattctgg 3540
cacttgcaag tcccatgatt tctcggtaa ttctgagggt ggggggaggg acatgaaatc 3600
atcttagctt agctttctgt ctgtgaatgt ctatatagtt tattgtgtt tttaacaaat 3660
gatttacact gactgttgct gtaaaagtga atttggaaat aaagtatttta ctctgattct 3720
gttgacaatt aatcatcgcc tcgtataatg tgtggattt tgagcggata acaatttcac 3780
acaggaaaca ggtatccgata atgacatgcc caccgtcccc agcacctgaa ctccctgggg 3840
gaccgtcagt cttcccttcc cccccaaaac ccaaggacac cctcatgatc tcccgaccc 3900
ctgaggtcac atgcgtggtg gtggacgtga gccacgaaga ccctgaggc aagttcaact 3960
ggtagtggc cgccgtggag gtgcataatg ccaagacaaa gccgcgggag gagcagtaca 4020
acagcacgta ccgggtggc agcgtcctca ccgtcctgca ccaggactgg ctgaatggca 4080

aggagtacaa gtgcaaggc tccacaacaaag ccctcccagc ccccatcgag aaaaccatct 4140
ccaaagccaa agggcagccc cgagaaccac aggtgtacac cctgccccca tcccgggagg 4200
agatgaccaa gaaccaggc agcctgacct gcctggtaa aggttctat cccagcgaca 4260
tcgccgtgga gtgggagagc aatgggcagc cggagaacaa ctacaagacc acgcctccg 4320
tgctggactc cgacggctcc ttcttcctct atagcaagct caccgtggac aagagcaggt 4380
ggcagcaggg gaacgtcttc tcatgctccg tgatgcatga ggctctgcac aaccactaca 4440
cgcagaagag cctctccctg tccccggta aataatagga tcc 4483