

BITS Pilani

Pilani Campus

Machine Learning
DSECL ZG565
Problems

Dr. Monali Mavani

Consider the hypothesis function $h(\mathbf{w}, \mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2$; with parameters $\mathbf{w} = \langle w_0, w_1, w_2, w_3, w_4 \rangle = \langle -20, -2, -4, 1, 1 \rangle$.

Here x_1 and x_2 are two features.

• Derive the equation of the decision boundary $g(x_1, x_2)$ for logistic regression given by the equation:

$$y = \frac{1}{1 + \exp\{-h(w, x)\}}$$

Draw the decision boundary and predict the class labels [C₀, C₁] for the examples given by A(-2, 2), B(6, 6) and C(-5, 5).

w= cwo, w, w2, w3 wy = (20, 2, -4, 1, 1) h(w)+) = w0+w1x1+w2x2+w3x12+w1x2 £ w; ki ≥ 0 ; xo= 0 For a decision boundary Put &wixi = 0 >> -20 0-2×4 - 4×2+ ×2= 0 xx + 222-2210-2122-20=0 212 - 22, + 22 - 4x2 = 20 $x_1^2 - 2x_1 + 1 + x_2^2 - 4x_2 + y = 20 + 1 + y$ $(2,-1)^{2} + (22-2)^{2} = 25$ Centre (12), 1= V25 = 5 [29 9 cirde=) (x-h)2+ (y-K)2= e2-) Centre ChiK), landins= 2

x2+y2+29x+29+c=0 (enter = (-9, -+), 1 = Jg2+f2-C XI XZ If paints are greide the clade than class @ C1 . If paints outside ciede then ches co (1) A (-d, 2) , and c(1,2) find kuclidran distance d(A1C)= 1 fe-1)2+ (2-2)2 = 19+0 = 3 3 is L 5 A(A(1) & lading so Ais Inside bonnote chide 5 | class = C1B (616) and (C_{11}^{2}) . $d(B_{1}C) = \sqrt{(6-1)^{2}+(6-2)^{2}} = \sqrt{25+16} = \sqrt{41}$ $d(B_{1}C) = 1$ $d(B_{1}C) = 1$

Consider the loss function of linear regression given by: $J(\theta_0, \theta_1)$. Given $(\theta_0, \theta_1)=0$, 0.5, Estimate $\partial J/\partial \theta_1$ using the data points below:

X	2	4	7.0	8.0	10.0
У	1	2	2.5	3.5	5.5

Vijay is a certified Data Scientist and he has applied for two companies -Google and Microsoft. He feels that he has a 60% chance of receiving an offer from Google and 50% chance of receiving an offer from Microsoft. If he receives an offer from Microsoft, he has belief that there are 80% chances of receiving an offer Google.

- What is the probability that both the companies will make an offer to him?
- If Vijay receives an offer from Microsoft, what is the probability that he will not receive an offer from Google?
- What are his chances of getting an offer from Microsoft, considering he has an offer from Google?

Organy is certified --G=) event of receiving offer from Google m=) Ehend " m Michosoft P(6)= 0.6 , P(m)=0.5 , P(G/m)=0.8 P(m,6). P(G/m) = P(m,G) P(m) 0.8 - P(m, 6) Order from both msa prob that he will not receive offer from gengle if he has received from welesatt P(G/m) = 1-P(G/m) = 0.2 prob. of getting our offer from miclosoft considering offer from Goragle PCMG P(m/6) = P(m,6) = 0.4

Suppose that the lifetime of Badger brand light bulbs is modeled by an exponential distribution with (unknown) parameter λ . We test 5 bulbs and find they have lifetimes of 2, 3, 1, 3, and 4 years, respectively. What is the MLE for λ ?

Light bulbs xj = lifetime of ith bulb ai = value xi takes Gruen=) lifetime of bulbs is modeled by an exponential distribution with unknown parameter & fxi(xi) = je-xi litetime of bulbs are fudgeordent so

joint pdf is product of fudinidual pdf

f(d1, 12, 13, d4, 25 /2) = (2etx) (2etx2)... 三人、と (なけなけなまなれなか) data is fixed sk is variable

this density is likelihered function

21=2, 12=3, 23=1, 24=3, 25=4 f(2,3,1,3,4 /2)= 15. e-13/2 nf (2,3,1,3,4/x)= (n(x5. e-13x) = / 5ln / - 13/

To find MLE 2 (109 liklihord) = 0 A = 5 13

The sales of a company (in million dollars) for each year are shown in the table below.

- a) Find the least square regression line y = a x + b.
- b) Use the least squares regression line as a model to estimate the sales of the company in 2012.

x (year)	2005	2006	2007	2008	2009
y (sales)	12	19	29	37	45

y = ax + b

$$a = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i \right)$$

Suppose we have a sample of real values, called $x_1, x_2, ..., x_n$. Each sampled from p.d.f. p(x) which has the following form:

$$f(x) = \begin{cases} \alpha e^{-\alpha x}, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

where α is an unknown parameter. Which one of the following expressions is the maximum likelihood estimation of α ? (Assume that in our sample, all x_i are large than 1.)

Ans:
$$\frac{\frac{n}{\sum_{i=1}^{n} x_i}}{\sum_{i=1}^{n} x_i}$$

innovate achieve lead

Question 7

 Derive the maximum likelihood estimator (MLE) for the mean μ of a univariate normal distribution. Assume N samples, x₁, ,x_N independently drawn from a normal distribution with known variance σ² and unknown mean μ. Show all intermediate steps and assumptions.

• Given N independent measurements $x_1, x_2, ..., x_N$, determine the optimal parameters of the model, i.e. the parameters that maximize the probability density function (PDF). To model this data, assume Gaussian distribution.

Consider a dataset for binary classification problem with class labels [C₁, C₀]. The features are given by F₁, F₂ and F₃. Each of these features have two values as given in the dataset below. Apply Naïve Bayes classifier by computing the probabilities to classify the new example: <F₁=x₁, F₂=y₂, F₃=z₁>

SI No	F ₁	F ₂	F ₃	Clas s
1	X ₁	y2	z1	C_1
2	x2	y ₁	z2	C_0
3	X ₁	y ₁	z2	C ₁
4	x2	y2	z1	C_0
5	x2	y ₁	z1	C1
6	x2	y2	z1	C_0
7	X ₁	y ₁	z2	C ₁
8	X ₁	y2	z2	C_0

Thank you