Approximating exponential family models (not single distributions) with a two-network architecture

Sean R. Bittner¹, John P. Cunningham²

 1 Department of Neuroscience and 2 Department of Statistics, Columbia University Medical Center

Motivation

- Variational inference (VI) incurs a cost of optimization to find optimal variational parameters $\theta^* \in \Theta$ of the approximate inference model.
- Intractable exponential family models
- an exp fam likelihood
- -i.i.d. observations
- a nonconjugate prior
- We can learn a smooth function $f_{\phi^*}: H \to \Theta$ ture called exponential family networks (EFN).

• EFNs learn models of exponential families (not single distributions), and afford substantial computational savings through amortized VI.

mapping η to θ* using a two-network architec- Exponential family networks (EFNs) — More stuff.

Methods

Exponential families as target models

ullet Exponential family models $\mathcal P$ have the form

$$\mathcal{P} = \left\{ \frac{h(\cdot)}{A(\eta)} \exp\left\{ \eta^{\top} t(\cdot) \right\} : \eta \in H \right\}$$

with natural parameter η , sufficient statistics $t(\cdot)$, base measure $h(\cdot)$, and log normalizer $A(\eta)$.

 We focus on the fundamental problem setup of probabilistic inference: N conditionally independent observations x_i given latent variable z.

Summary

- Summary point 1
- Summary point 2

References

- Loaiza-Ganem, G., Y. Gao., and J. P. Cunիլիցիаm. "Maximum entropy flow networks." ICLR (2017).
 - 2. Dipoppa, M., et al. "Vision and locomotion shape the interactions between neuron types in mouse visual cortex." Neuron (2018).
 - 3. Mastrogiuseppe, F., and S. Ostojic. "Linking connectivity, dynamics, and computations in lowrank recurrent neural networks." Neuron (2018).

Acknowledgements

NSF Graduate Research Fellowship, DGE-1644869, McKnight Endowment Fund, NIH NINDS 5R01NS100066, Simons Foundation 542963, NSF 1707398, The Gatsby Charitable Foundation