Ramsey Theory Graphs, Equations, and Rainbows

Gabriel Elvin

California State University, San Bernardino

October 29, 2024

What is a Graph?

A bunch of dots and lines connecting some of them:

Subgraph: any subset of vertices and edges that is itself a graph

This edge-colored graph contains two monochromatic triangle subgraphs.

Minimizing Monochromatic Subgraphs

Edge colorings of K_n (graph with all possible edges):

This edge-colored graph (K_6) contains two monochromatic triangle (K_3) subgraphs.

Theorem (Ramsey, 1928)

For every graph H, there exists an n so that every possible coloring of the edges of a K_n contains a monochromatic subgraph H.

Traditional Ramsey theory: Find the smallest such *n*.

Ramsey multiplicities: How many monochromatic Hs are guaranteed as $n \to \infty$?

A Fundamental Example

Question

What is the minimum number of monochromatic triangles in a coloring of K_n ? Stated another way: what *fraction* of triangles are guaranteed to be monochromatic? 2/3? 1/2? 21%?

Asymptotic questions: Does this fraction approach something as $n \to \infty$? If so, what? (Less concerned with exact value.)

The Best Way to Color?

What kind of colorings produce these minimum values?

One way to color (not necessarily best): randomly

Probability that some fixed triangle in a randomly colored K_n is monochromatic:

$$\frac{1 \text{ red } \triangle + 1 \text{ blue } \triangle}{8 \text{ total colorings}} = \frac{1}{2}$$

 \Rightarrow We expect 1/4 of all \triangle s to be monochromatic in a randomly colored K_n

Is random the best way?

Theorem (Goodman, 1959)

$$\frac{\textit{min.} \ \# \ \textit{of monochr.} \ \triangle \textit{s in } K_n}{\textit{total} \ \# \ \textit{of} \ \triangle \textit{s in } K_n} \to \frac{1}{4} \ \textit{as } n \to \infty.$$

Takeaway: Every coloring of K_n has at least as many monochromatic triangles as what you would expect from a random coloring, i.e. random colorings achieve the (asymptotic) minimum.

We refer to a graph with this property as **common**. So the graph \triangle is common.

What other graphs are common?

A Classification Question

"Triangle" (K_3) can be replaced with any fixed graph H.

Question

For which graphs H is the minimum number of monochromatic copies of H in K_n (asymptotically) the same as what you would expect from a random coloring, i.e. which graphs are common?

Some results:

- Common: paths, cycles, trees, even-spoked wheels
- Uncommon: \searrow , K_s for $s \ge 4$
- Unknown: bipartite graphs (see Sidorenko's conjecture)

Avoiding Monochromatic Solutions to x + y = z

Question

Suppose we have 2 colors and want to color $[n] = \{1, 2, ..., n\}$ in order to minimize the number of monochromatic solutions to x + y = z.

- What is the minimum fraction of monochromatic solutions?
- Which coloring(s) achieve(s) this minimum?

Notation: A solution is a triple (x, y, z), e.g. (1,3,4) is a solution.

Example:
$$n = 5$$
 1 2 3 4 5

$$(1, 1, 2)$$
 $(1, 2, 3)$ $(2, 1, 3)$ $(1, 3, 4)$ $(2, 2, 4)$ $(3, 1, 4)$ $(1, 4, 5)$ $(2, 3, 5)$ $(3, 2, 5)$ $(4, 1, 5)$ mc. frac. $=\frac{2}{10}$.

Question: Does the minimum fraction of monochromatic solutions approach something as $n \to \infty$? If so, what?

Best Way to Color

Question: If we colored each element of [n] or \mathbb{Z}_n uniformly randomly and independently, what would we expect the monochromatic fraction to be?

Answer: 1/4. An arbitrary* solution (x, y, z) has a 1/4 probability of being monochromatic.

Question: Is this also the minimum?

Theorem (Robertson-Zeilberger, 1998)

The minimum fraction of monochromatic solutions to x + y = z over [n] approaches 2/11 as $n \to \infty$.

This coloring achieves the minimum:

Pop Quiz

Which coloring of \mathbb{Z}_n do you think minimizes the fraction of monochromatic solutions to x + y = z? (e.g. n = 12: 8 + 6 = 2)

Answer: All achieve the minimum!

Theorem (Datskovsky, 2003)

The minimum fraction of monochromatic solutions is 1/4, which is achieved whenever there are an equal number of blues and reds.

Comparing to Random Colorings

Recall: Over [n] or \mathbb{Z}_n , the expected proportion of monochromatic solutions to x + y = z approaches 1/4 as $n \to \infty$.

Definition: Uncommon: random is not best, Common: random is best.

Flipping the Script

Recall goal:

- Minimize the number of monochr. H inside a large K_n , or
- Minimize the number of monochr. solns. to an equation over [n] or \mathbb{Z}_n .

"Flipped" goal:

- Maximize the number of rainbow H inside a large K_n , or
- Maximize the number of rainbow solns. to an equation over [n] or \mathbb{Z}_n .

Examples

"Flipped" goal:

- Maximize the number of rainbow H inside a large K_n , or
- Maximize the number of rainbow solns. to an equation over [n] or \mathbb{Z}_n .

<u>Definition</u>: A graph/equation is **rainbow-common** if the maximum number of rainbow subgraphs/solutions is maximized by uniformly random colorings.

Rainbow Classification of Graphs

Conjecture

A graph is rainbow-common if and only if it is a forest (contains no cycles).

Theorem (Sun 2024)

If a graph contains a cycle, then it is rainbow-uncommon.

What's left to prove

If a graph is a forest (contains no cycles), then it is rainbow-common.

Known rainbow-common: Stars (DeSilva et al 2019)

Unknown: Everything else (without a cycle), e.g. P_4 : ••••

Rainbow Solutions to x + y = z

Question

What is the maximum number (or proportion) of rainbow solutions to x + y = z?

Answer:

• Over [n]: nobody knows

rb. prop. $\rightarrow \frac{2}{5}$ as $n \rightarrow \infty$

• Over \mathbb{Z}_n : nobody knows

rb. prop. $\rightarrow \frac{3}{8}$ as $n \rightarrow \infty$

Everything is Uncommon?

Recall: Every graph that contains a cycle is rainbow-uncommon.

Conjecture

Every equation is rainbow-uncommon.

Questions:

- What is the analogy of "containing a cycle" for an equation?
- Do all equations "contain a cycle"?

List of Open Questions

- Prove (or disprove) P_4 is rainbow-common when using 3 colors,
- Show certain equations are rainbow-uncommon, i.e. given an equation, find a coloring that asymptotically beats uniformly random colorings,
- Prove (or disprove) the max. prop. of rainbow solutions to x + y = z
 - $\rightarrow 2/5$ as $n \rightarrow \infty$, over [n],
 - o 3/8 as $n o \infty$, over \mathbb{Z}_n ,
- Prove (or disprove) that for every equation over [n],

$$\lim_{n\to\infty} \frac{\text{min. } \# \text{ monochr. solns.}}{\# \text{ solns.}} \quad \text{exists,}$$

- Determine whether or not there is a useful correspondence between graphs and equations when using more than 2 colors (minimizing monochr. or maximizing rainbow),
- Prove (or disprove) every equation is rainbow-uncommon (over [n] or \mathbb{Z}_n).

Thank You!

Questions?

For references, contact Gabriel.Elvin@csusb.edu