CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

EXERCICE 1

Q1. Pour tout
$$(x_1, x_2) \in \mathbb{C}^2$$
, $V(x_1, x_2) = \begin{vmatrix} 1 & 1 \\ x_1 & x_2 \end{vmatrix} = x_2 - x_1$.

Soient $n \ge 2$ puis $(x_1, \ldots, x_n) \in \mathbb{C}^n$. On suppose qu'il existe $(i, j) \in [1, n]^2$ tel que $i \ne j$ et $x_i = x_j$. Alors, les colonnes numéros i et j de $V(x_1, \ldots, x_n)$ sont égales et donc $V(x_1, \ldots, x_n) = 0$.

Q2. Soient $n \ge 2$ puis $x_1, \ldots, x_{n-1}, n-1$ nombres complexes deux à distincts. Pour tout $t \in \mathbb{C}$,

$$P(t) = \begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ x_1 & x_2 & \dots & x_{n-1} & t \\ x_1^2 & x_2^2 & \dots & x_{n-1}^2 & t^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_{n-1}^{n-1} & t^{n-1} \end{vmatrix}.$$

En développant ce déterminant suivant sa dernière colonne, on obtient une expression de la forme $\sum_{k=0}^{n-1} a_k t^k$ ce qui

montre que P est un polynôme de degré inférieur ou égal à n-1. Le coefficient de t^{n-1} est le cofacteur de t^{n-1} :

Si $V(x_1, \dots x_{n-1}) \neq 0$, P est un polynôme de degré n-1 exactement, de coefficient dominant $V(x_1, \dots, x_{n-1})$, admettant les n-1 nombres deux à deux distincts x_1, \dots, x_{n-1} , pour racines (de nouveau, déterminant ayant deux colonnes égales). Dans ce cas,

$$\forall t \in \mathbb{C}, \ P(t) = V(x_1, \dots, x_{n-1}) \prod_{i=1}^{n-1} (t - x_i).$$

Si $V(x_1, \dots x_{n-1}) = 0$, P est un polynôme de degré inférieur ou égal à n-2 admettant toujours les n-1 nombres deux à deux distincts x_1, \dots, x_{n-1} , pour racines. Dans ce cas,

$$\forall t \in \mathbb{C}, \ P(t) = 0 = V(x_1, \dots, x_{n-1}) \prod_{i=1}^{n-1} (t - x_i).$$

 $\mathrm{Finalement,\ dans\ tous\ les\ cas,\ }\forall t\in\mathbb{C},\ P(t)=V\left(x_{1},\ldots,x_{n-1}\right)\prod_{i=1}^{n-1}\left(t-x_{i}\right)\mathrm{.\ En\ particulier,}$

$$V(x_1,...,x_{n-1},x_n) = P(x_n) = V(x_1,...,x_{n-1}) \prod_{i=1}^{n-1} (x_n - x_i).$$

Cette dernière égalité reste vraie si les x_i , $1 \le i \le n$, ne sont pas deux à deux distincts car dans ce cas, les deux membres sont nuls.

 $\text{Montrons alors par récurrence que pour tout } n\geqslant 2, \text{ pour tout } (x_1,\ldots,x_n)\in\mathbb{C}^n, \ V\left(x_1,\ldots,x_n\right)=\prod_{1\leqslant i< j\leqslant n}(x_j-x_i).$

• L'égalité est vraie quand n = 2 d'après la question précédente.

 $\bullet \ \mathrm{Soit} \ n \geqslant 2. \ \mathrm{Supposons} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ (x_1, \ldots, x_n) \in \mathbb{C}^n, \ V(x_1, \ldots, x_n) = \prod_{1 < i_1 < i_2 < i_3 < n} (x_j - x_i). \ \mathrm{Alors}$

$$V(x_1, \dots, x_n, x_{n+1}) = V(x_1, \dots, x_n) \prod_{i=1}^n (x_{n+1} - x_i) = \prod_{1 \leqslant i < j \leqslant n} (x_j - x_i) \times \prod_{i=1}^n (x_{n+1} - x_i) = \prod_{1 \leqslant i < j \leqslant n+1} (x_j - x_i).$$

Le résultat est démontré par récurrence.

$$\mathbf{Q3.} \ A = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 2 & 2^2 & \dots & 2^{n-1} & 2^n \\ \vdots & \vdots & & \vdots & \vdots \\ n-1 & (n-1)^2 & \dots & (n-1)^{n-1} & (n-1)^n \\ n & n^2 & \dots & n^{n-1} & n^n \end{pmatrix}.$$
 Par linéarité par rapport à chacune des lignes et puisque le déterminant d'une matrice est égal au déterminant de sa transposée,

$$\begin{split} \det(A) &= 2 \times 3 \times \ldots \times n \times V(1,2,\ldots,n) = n! \prod_{1 \leqslant i < j \leqslant n} (j-i) = n! \prod_{j=2}^{n} \left(\prod_{i=1}^{j-1} (j-i) \right) \\ &= n! \prod_{j=2}^{n} (j-1)! = \prod_{k=1}^{n} k!. \end{split}$$

 $\mathbf{Q4.} \text{ Pour } k \in [\![1,n]\!], \text{ posons } \mathfrak{a}_{k} = e^{\frac{\mathfrak{i}(k-1)\pi}{n}}. \text{ Les nombres } \mathfrak{a}_{k}, \ 1 \leqslant k \leqslant n, \text{ sont } n \text{ nombres complexes deux à deux distincts}$ $({\rm car\ pour\ tout\ }k\in [\![1,n]\!],\, 0\leqslant \frac{(k-1)\pi}{n}<2\pi)\ {\rm et\ tous\ non\ nuls}.$

De plus, $\sum_{k=1}^n \alpha_k^2 = \sum_{k=1}^n e^{\frac{2\mathfrak{i}(k-1)\pi}{n}} = 0$ (la somme des $\mathfrak n$ racines $\mathfrak n$ -èmes de l'unité est nulle).

Soient x_1, \ldots, x_n, n nombres complexes deux à deux distincts et tous non nuls. Donc, $V(x_1, \ldots, x_n) \neq 0$. Maintenant, par linéarité par rapport à chaque colonne,

$$\begin{vmatrix} x_1 & x_2 & \dots & x_{n-1} & x_n \\ x_1^2 & x_2^2 & \dots & x_{n-1}^2 & x_n^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_{n-1}^{n-1} & x_n^{n-1} \\ x_1^n & x_2^n & \dots & x_{n-1}^n & x_n^n \end{vmatrix} = \prod_{k=1}^n x_k \begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ x_1 & x_2 & \dots & x_{n-1} & x_n \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-2} & x_2^{n-2} & \dots & x_{n-1}^{n-2} & x_n^{n-2} \\ x_1^{n-1} & x_2^{n-1} & \dots & x_{n-1}^{n-1} & x_n^{n-1} \end{vmatrix} = \left(\prod_{k=1}^n x_k\right) V(x_1, \dots, x_n) \neq 0.$$

$$\text{La matrice B} = \begin{pmatrix} x_1 & x_2 & \dots & x_{n-1} & x_n \\ x_1^2 & x_2^2 & \dots & x_{n-1}^2 & x_n^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_{n-1}^{n-1} & x_n^{n-1} \\ x_1^n & x_2^n & \dots & x_{n-1}^n & x_n^n \end{pmatrix} \text{ est donc une matrice inversible. Si toutes les sommes } \sum_{k=1}^n x_k^j,$$

nes de B est nulle puis la famille des colonnes de B est liée, ce qui contredit l'inversibilité de B. Donc, il existe $j \in [\![1,n]\!]$ tel que $\sum^{\cdots} x_k^j \neq 0.$

EXERCICE 2

Q5. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Puisque $\| \|$ est sous-multiplicative, pour tout $k \in \mathbb{N}$, $\left\| \frac{1}{k!} A^k \right\| = \frac{1}{k!} \left\| A^k \right\| \leqslant \frac{\|A\|^k}{k!}$. La série de terme général $\frac{\|A\|^k}{k!}$, $k \in \mathbb{N}$, converge et a pour somme $e^{\|A\|}$. Donc, la série de terme général $\left\|\frac{1}{k!}A^k\right\|$, $k \in \mathbb{N}$, converge ou encore la série de terme général $\frac{1}{k!}A^k$, $k \in \mathbb{N}$, converge absolument. Puisque $\mathscr{M}_n(\mathbb{R})$ est de dimension finie, on en déduit que la série de terme général $\frac{1}{k!}A^k$ converge.

Q6.

1ère solution. Pour $A \in \mathcal{M}_n(\mathbb{R})$, posons $f(A) = e^A$ puis, pour $k \in \mathbb{N}$ et $A \in \mathcal{M}_n(\mathbb{R})$, posons $f_k(A) = \frac{1}{k!}A^k$ de sorte que $f = \sum_{k=0}^{+\infty} f_k$. Soit R > 0 puis \mathcal{B} la boule fermée de centre 0 et de rayon R de l'espace vectoriel normé $(\mathcal{M}_n(\mathbb{R}), \| \ \|)$.

Soit $k \in \mathbb{N}$. Pour tout $A \in \mathcal{B}$, $\|f_k(A)\| = \frac{\|A^k\|}{k!} \leqslant \frac{\|A\|^k}{k!} \leqslant \frac{R^k}{k!}$ puis $\|f_k\|_{\infty,\mathscr{B}} \leqslant \frac{R^k}{k!}$. La série numérique de terme général $\frac{R^k}{k!}$, $k \in \mathbb{N}$, converge et a pour somme e^R . On en déduit que la série de fonctions de terme général f_k , $k \in \mathbb{N}$, converge normalement et en particulier uniformément sur \mathscr{B} . Puisque chaque fonction f_k , $k \in \mathbb{N}$, est continue sur \mathscr{B} en tant que produit de fonctions continues sur \mathscr{B} , on en déduit que f est continue sur \mathscr{B} .

Ainsi, pour tout R > 0, la fonction $A \mapsto e^A$ est continue sur la boule fermée de centre 0 et de rayon R. Mais alors, la fonction $A \mapsto e^A$ est continue sur $\mathcal{M}_n(\mathbb{R})$.

2ème solution. Soit $(A, H) \in (\mathcal{M}_n(\mathbb{R}))^2$

$$\left\| e^{A+H} - e^{A} \right\| = \left\| \sum_{k=0}^{+\infty} \frac{1}{k!} \left((A+H)^k - A^k \right) \right\| \leqslant \sum_{k=0}^{+\infty} \frac{\left\| (A+H)^k - A^k \right\|}{k!}.$$

Soit $k \in \mathbb{N}$. On développe $(A+H)^k$ (sans utiliser la formule du binôme de Newton car A et H ne commutent pas nécessairement). On obtient une somme de 2^k termes tous produits de k matrices égales à A ou H. $(A+H)^k - A^k$ est une somme de $2^k - 1$ tels termes à l'exception du terme $AA \dots A$. $\|(A+H)^k - A^k\|$ est majoré par une somme analogue où on a remplacé A par $\|A\|$ et H par $\|H\|$ ou encore

$$||(A+H)^k - A^k|| \le (||A|| + ||H||)^k - ||A||^k.$$

On en déduit que

$$\|e^{A+H} - e^A\| \leqslant \sum_{k=0}^{+\infty} \frac{(\|A\| + \|H\|)^k - \|A\|^k}{k!} = e^{\|A\| + \|H\|} - e^{\|A\|}.$$

Quand H tend vers 0, $e^{\|A\|+\|H\|}-e^{\|A\|}$ tend vers 0 et donc $e^{A+H}-e^{A}$ tend vers la matrice nulle quand H tend vers 0_n . Ceci montre la continuité de la fonction $M \mapsto e^M$ en A.

Q7. Soit $H \in (B_o(0,r) \setminus \{0\})$.

$$\left\|\frac{1}{\|H\|}\sum_{k=2}^{+\infty}\frac{1}{k!}H^k\right\|\leqslant \frac{1}{\|H\|}\sum_{k=2}^{+\infty}\frac{\|H\|^k}{k!}=\frac{e^{\|H\|}-1-\|H\|}{\|H\|}.$$

De plus, $\frac{e^{\|H\|}-1-\|H\|}{\|H\|} \underset{H\to 0}{=} \frac{o\left(\|H\|\right)}{\|H\|} \underset{H\to 0}{=} o(1). \text{ Donc, } \frac{e^{\|H\|}-1-\|H\|}{\|H\|} \text{ tend vers 0 quand H tend vers 0}_n. \text{ On en déduit } \frac{1}{\|H\|}$

que $\frac{1}{\|H\|} \sum_{k=2}^{+\infty} \frac{1}{k!} H^k$ tend vers la matrice nulle quand H tend vers $\mathfrak{0}_n$.

Pour $H \in B_o(0,r) \setminus \{0\}$, posons $\epsilon(H) = \frac{1}{\|H\|} \sum_{k=2}^{+\infty} \frac{1}{k!} H^k$ si $H \neq 0$ et posons d'autre part, $\epsilon(0) = 0$. ϵ est une fonction définie sur $B_o(0,r)$, tendant vers 0 quand H tend vers 0 et vérifiant pour tout $H \in B_o(0,r)$,

$$e^{H} - I_n - H = \|H\|\epsilon(H).$$

Ainsi, $e^{0_n+H} = e^{0_n} + H + o(H)$. De plus, la fonction $H \mapsto H$ est linéaire. Ceci montre que la fonction $A \mapsto e^A$ est différentiable en 0_n et que sa différentielle en 0_n est l'application $H \mapsto H$.

Ainsi, $f:A\mapsto e^A$ est différentiable en \mathfrak{O}_n et $df_{\mathfrak{O}_n}=Id_{\mathscr{M}_n(\mathbb{R})}.$

PROBLEME

Partie I - Exponentielle d'une matrice symétrique

Q8. A est symétrique réelle. D'après le théorème spectral, χ_A est scindé sur $\mathbb{R}.$

 $\operatorname{rg}(A-(\mathfrak{a}-\mathfrak{b})I_3)=\operatorname{rg}(\mathfrak{b}J)\leqslant 1$. D'après le théorème du rang, $\dim\left(\operatorname{Ker}(A-(\mathfrak{a}-\mathfrak{b})I_3)\right)\geqslant 3-1=2$ puis $(\mathfrak{a}-\mathfrak{b})$ est valeur propre d'ordre au moins 2 de A. Il manque une valeur propre λ de A. La trace de A est égale à la somme des valeurs propres de A, chacune comptée un nombre de fois égale à son ordre de multiplicité. Donc,

$$3a = Tr(A) = \lambda + 2(a - b)$$

puis $\lambda = \alpha + 2b$. Ainsi, $\operatorname{Sp}(A) = (\alpha + 2b, \alpha - b, \alpha - b)$ (y compris quand $\alpha + 2b = \alpha - b$ ce qui équivaut à b = 0). Mais alors, $A \in S_3^+ \Leftrightarrow \alpha + 2b \geqslant 0$ et $\alpha - b \geqslant 0$.

Q9. Tout d'abord,
$$J^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = 3J.$$

Montrons par récurrence que pour tout $k \in \mathbb{N}^*$, $J^k = 3^{k-1}J$.

- \bullet L'égalité est vraie quand k = 1.
- Soit $k \ge 1$. Supposons que $J^k = 3^{k-1}J$. Alors $J^{k+1} = J^k \times J = 3^{k-1}J \times J = 3^{k-1} \times 3J = 3^{(k+1)-1}J$.

On a montré par récurrence que pour tout $k \in \mathbb{N}^*$, $J^k = 3^{k-1}J$.

Cette égalité n'est pas valable quand k=0 car $J^0=I_3\neq 3^{-1}J$.

Les matrices $(a - b)I_3$ et bJ commutent. Donc,

$$\begin{split} e^A &= e^{(\alpha-b)I_3+bJ} = e^{(\alpha-b)I_3} e^{bJ} = e^{\alpha-b}I_3 \times e^{bJ} \\ &= e^{\alpha-b} \left(I_3 + \sum_{k=1}^{+\infty} \frac{1}{k!} (bJ)^k \right) = e^{\alpha-b} \left(I_3 + \left(\sum_{k=1}^{+\infty} \frac{1}{k!} b^k 3^{k-1} \right) J \right) \\ &= e^{\alpha-b} \left(I_3 + \frac{1}{3} \left(\sum_{k=1}^{+\infty} \frac{1}{k!} (3b)^k \right) J \right) = e^{\alpha-b} \left(I_3 + \frac{e^{3b} - 1}{3} J \right) = e^{\alpha-b}I_3 + \frac{e^{\alpha+2b} - e^{\alpha-b}}{3} J \\ &= \frac{1}{3} \left(\begin{array}{ccc} e^{\alpha+2b} + 2e^{\alpha-b} & e^{\alpha+2b} - e^{\alpha-b} & e^{\alpha+2b} - e^{\alpha-b} \\ e^{\alpha+2b} - e^{\alpha-b} & e^{\alpha+2b} + 2e^{\alpha-b} & e^{\alpha+2b} - e^{\alpha-b} \\ e^{\alpha+2b} - e^{\alpha-b} & e^{\alpha+2b} - e^{\alpha-b} & e^{\alpha+2b} + 2e^{\alpha-b} \end{array} \right). \end{split}$$

 e^A est symétrique réelle. En appliquant le résultat de la question Q8 à e^A , le spectre de e^A est

$$\begin{split} \operatorname{Sp}\left(e^{A}\right) &= \left(\frac{e^{\alpha + 2b} + 2e^{\alpha - b} + 2\left(e^{\alpha + 2b} - e^{\alpha - b}\right)}{3}, \frac{e^{\alpha + 2b} + 2e^{\alpha - b} - \left(e^{\alpha + 2b} - e^{\alpha - b}\right)}{3}, \frac{e^{\alpha + 2b} + 2e^{\alpha - b} - \left(e^{\alpha + 2b} - e^{\alpha - b}\right)}{3}\right) \\ &= \left(e^{\alpha + 2b}, e^{\alpha - b}, e^{\alpha - b}\right). \end{split}$$

Les trois valeurs propres de e^A sont des réels positifs et donc $e^A \in S_3^+$.

Q10. Soit $P \in GL_n(\mathbb{R})$. L'application $f: M \mapsto PMP^{-1}$ est un endomorphisme de l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$. Donc, f est continue sur $\mathcal{M}_n(\mathbb{R})$.

Soit $A \in S_n^+$. D'après le théorème spectral, A est diagonalisable dans $\mathscr{M}_n(\mathbb{R})$. De plus, les valeurs propres de A sont des réels positifs. Soient $P \in GL_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \in \mathscr{D}_n(\mathbb{R}^+)$ telles que $A = PDP^{-1}$.

$$\begin{split} \varepsilon^A &= \sum_{k=0}^{+\infty} \frac{1}{k!} \left(PDP^{-1} \right)^k = \sum_{k=0}^{+\infty} \frac{1}{k!} PD^k P^{-1} \\ &= \lim_{p \to +\infty} \left(\sum_{k=0}^p \frac{1}{k!} PD^k P^{-1} \right) = \lim_{p \to +\infty} \left(P\left(\sum_{k=0}^p \frac{1}{k!} D^k \right) P^{-1} \right) = \lim_{p \to +\infty} f\left(\sum_{k=0}^p \frac{1}{k!} D^k \right) \\ &= f\left(\lim_{p \to +\infty} \sum_{k=0}^p \frac{1}{k!} D^k \right) \text{ (par continuit\'e de f sur } \mathscr{M}_n(\mathbb{R}) \text{ et donc en } e^D \text{)}. \\ &= f\left(e^D \right) = Pe^D P^{-1}. \end{split}$$

De plus,
$$e^D = \operatorname{diag}\left(\sum_{k=0}^{+\infty} \frac{\lambda_1^k}{k!}, \ldots, \frac{\lambda_n^k}{k!}\right) = \operatorname{diag}\left(e^{\lambda_1}, \ldots, e^{\lambda_n}\right).$$

Ainsi, e^A est semblable à la matrice diag $(e^{\lambda_1}, \ldots, e^{\lambda_n})$ et en particulier, $\operatorname{Sp}(e^A) = (e^{\lambda_1}, \ldots, e^{\lambda_n})$. Puisque les λ_k , $1 \leq k \leq n$, sont des réels, les valeurs propres de la matrice e^A sont des réels positifs.

Enfin, l'application $A \mapsto {}^t A$ est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire. On en déduit par le même raisonnement que précédemment que ${}^t \left(e^A\right) = e^{{}^t A} = e^A$. Donc, $e^A \in S_n^+$.

Partie II - Produit de Hadamard de deux matrices

$$\begin{aligned} \mathbf{Q11.} & \operatorname{Soit} A = \left(\begin{array}{ccc} \alpha & b & b \\ b & \alpha & b \\ b & b & \alpha \end{array} \right) \in S_3^+. \text{ Alors } \alpha + 2b \geqslant 0 \text{ et } \alpha \geqslant b. \\ E(\alpha) = \left(\begin{array}{ccc} e^{\alpha} & e^{b} & e^{b} \\ e^{b} & e^{\alpha} & e^{b} \\ e^{b} & e^{b} & e^{\alpha} \end{array} \right). \text{ D\'ej\`a}, E(A) \text{ est sym\'etrique r\'eelle puis, en appliquant la question Q8 à E(A),} \end{aligned}$$

$$\operatorname{Sp}(\mathsf{E}(\mathsf{A})) = \left(e^{\alpha} + 2e^{\mathsf{b}}, e^{\alpha} - e^{\mathsf{b}}, e^{\alpha} - e^{\mathsf{b}}\right).$$

Puisque a et b sont réels et que $a \ge b$, les trois valeurs propres de E(A) sont des réels positifs. On a montré que $E(A) \in S_3^+$.

Q12. Posons
$$Y = (y_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R})$$
 et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathcal{D}_n(\mathbb{R}^+)$. Alors,

$${}^{t}YDY = \sum_{i=1}^{n} \lambda y_{i}^{2} \geqslant 0.$$

Soit $A \in S_n$.

• Supposons $A \in S_n^+$. A est orthogonalement semblable à une matrice diagonale à coefficients réels positifs. Posons $A = PD^tP$ où $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \in \mathscr{D}_n(\mathbb{R}^+)$. Soient $X \in \mathscr{M}_{n,1}(\mathbb{R})$ puis $Y = {}^tPX$. D'après le début de la question,

$${}^{t}XAX = {}^{t}XPD^{t}PX = {}^{t}({}^{t}PX)D({}^{t}PX) = {}^{t}YDY \geqslant 0.$$

Donc, $A \in S_n^+ \Rightarrow \forall X \in \mathscr{M}_{n,1}(\mathbb{R}), \ ^tXAX \geqslant 0.$

• Supposons que $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^tXAX \geqslant 0$. Soit $\lambda \in \mathbb{R}$ une valeur propre de A puis $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ un vecteur propre associé.

$${}^{t}XAX = {}^{t}X(\lambda X) = \lambda {}^{t}XX = \lambda ||X||^{2}.$$

Puisque $X \neq 0$, $||X||^2 > 0$ puis $\lambda = \frac{{}^t X A X}{||X||^2} \geqslant 0$. Les valeurs propres de A sont donc des réels positifs.

 $\mathrm{Finalement},\,\forall A\in S_{\mathfrak{n}},\,(A\in S_{\mathfrak{n}}^{+}\Leftrightarrow\forall X\in\mathscr{M}_{\mathfrak{n},1}(\mathbb{R}),\,\,{}^{t}XAX\geqslant 0).$

Q13. Soient $(A,B) \in (S_n^+)^2$ et $(\alpha,\beta) \in (\mathbb{R}^+)^2$. $\alpha A + \beta B \in S_n$ car S_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Ensuite, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$${}^{t}X(\alpha A + \beta B)X = \alpha^{t}XAX + \beta^{t}XBX \geqslant 0.$$

On a montré que $\alpha A + \beta B \in S_n^+$.

Soit $(A,B) \in (S_n)^2$. $AB \in S_n \Leftrightarrow {}^t(AB) = AB \Leftrightarrow {}^tB^tA = AB \Leftrightarrow BA = AB$. Donc, si A et B ne commutent pas, AB n'est même pas symétrique. Par exemple, si $A = E_{1,1} \in S_2$ et $B = E_{1,1} + E_{1,2} + E_{2,1} + E_{2,2} \in S_2$, alors $AB = E_{1,1} + E_{1,2} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \notin S_2$.

Q14. Soit $A \in S_n^+$. D'après le théorème spectral, A est orthogonalement semblable à une matrice diagonale à coefficients réels positifs.

Posons $A = PD^tP$ où $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathcal{D}_n(\mathbb{R}^+)$. Soient $\Delta = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\right)$ puis $R = P\Delta^tP$. R est orthogonalement semblable à une matrice diagonale à coefficients réels positifs et donc $R \in S_n^+$. De plus,

$$R^2 = P\Delta^t PP\Delta^t P = P(\Delta^2)^t P = PD^t P = A.$$

 $\mathbf{Q15.} \text{ On pose } A = (\mathfrak{a}_{\mathfrak{i},\mathfrak{j}})_{1\leqslant \mathfrak{i}\leqslant \mathfrak{j}} \text{ et } B = (\mathfrak{b}_{\mathfrak{i},\mathfrak{j}})_{1\leqslant \mathfrak{i},\mathfrak{j}\leqslant \mathfrak{n}}.$

 $\mathrm{Soit}\;(i,j) \in [\![1,n]\!]^2.\;\alpha_{i,j} = \sum_{k=1}^n u_{i,k} u_{k,j} = \sum_{k=1}^n u_{k,i} u_{k,j} \;\mathrm{car}\; U \;\mathrm{est}\; \mathrm{sym\acute{e}trique}.\;\mathrm{De}\; \mathrm{m\acute{e}me},\; b_{i,j} = \sum_{l=1}^n \nu_{l,i} \nu_{l,j} \;\mathrm{et}\; \mathrm{finalement}$

$$c_{i,j} = a_{i,j} b_{i,j} = \left(\sum_{k=1}^{n} u_{k,i} u_{k,j} \right) \left(\sum_{l=1}^{n} v_{l,i} v_{l,j} \right).$$

Déjà, pour
$$(i,j) \in [\![1,n]\!]^2$$
, $c_{j,i} = \left(\sum_{k=1}^n u_{k,j} u_{k,i}\right) \left(\sum_{l=1}^n v_{l,j} v_{l,i}\right) = c_{i,j}$ et donc $A*B \in S_n$.

 $\mathrm{Soit}\ X = (x_i)_{1\leqslant i\leqslant n} \in \mathscr{M}_{n,1}(\mathbb{R}).\ \mathrm{Pour}\ l \in [\![1,n]\!],\ \mathrm{posons}\ X_l = (\nu_{l,i}x_i)_{1\leqslant i\leqslant n} \in \mathscr{M}_{n,1}(\mathbb{R}).$

$$\begin{split} {}^tX(A*B)X &= \sum_{1\leqslant i,j\leqslant n} x_i c_{i,j} x_j = \sum_{1\leqslant i,j\leqslant n} x_i x_j \alpha_{i,j} \left(\sum_{l=1}^n \nu_{l,i} \nu_{l,j}\right) \\ &= \sum_{l=1}^n \left(\sum_{1\leqslant i,j\leqslant n} \nu_{l,i} x_i \alpha_{i,j} \nu_{l,j} x_j\right) = \sum_{l=1}^n {}^tX_l A X_l \geqslant 0 \; (\operatorname{car} \; A \in S_n^+). \end{split}$$

Donc, $A * B \in S_n^+$.

$$\mathbf{Q16.} \text{ On pose } A = (\alpha_{i,j})_{1\leqslant i,j\leqslant n}. \text{ Pour tout } N\in \mathbb{N}, \, T_N = \left(\sum_{p=0}^N \frac{\alpha_{i,j}^p}{p!}\right)_{1\leqslant i,j\leqslant n} \text{ et donc,} \\ \lim_{N\to\infty} T_N = (e^{\alpha_{i,j}})_{1\leqslant i,j\leqslant n} = E(A).$$

Q17. S_n est un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant que sous-espace de $\mathcal{M}_n(\mathbb{R})$ qui est de dimension finie.

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. L'application $f_X : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est linéaire sur l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$ et donc $M \mapsto {}^t X M X$

continue sur cet espace. L'ensemble $K_X = f_X^{-1}([0,+\infty[)$ est donc un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé de \mathbb{R} ($[0,+\infty[$ est le complémentaire de l'ouvert $]-\infty,0[$) par l'application continue f_X .

$$\text{Mais alors, } S_{\mathfrak{n}}^{+} = S_{\mathfrak{n}} \cap \left(\bigcap_{X \in \mathscr{M}_{\mathfrak{n},1}(\mathbb{R})} \mathsf{K}_{X} \right) \text{ est un ferm\'e de } \mathscr{M}_{\mathfrak{n}}(\mathbb{R}) \text{ en tant qu'intersection de ferm\'es de } \mathscr{M}_{\mathfrak{n}}(\mathbb{R}).$$

Pour tout $p \in \mathbb{N}$, $A^{*p} \in S_n^+$ car $A^{*0} = I_n \in S_n^+$ par par récurrence sur p d'après la question Q16. Mais alors, pour tout $N \in \mathbb{N}$, $T_N \in S_n^+$ par récurrence sur N et d'après la question Q13. Puisque S_n^+ est un fermé de $\mathscr{M}_n(\mathbb{R})$, toute suite convergente d'éléments de S_n^+ converge dans S_n^+ . En particulier,

$$E(A) = \lim_{N \to +\infty} T_N \in S_n^+.$$