08/09(一)浙江工业大学高等数学 A 考试试卷 A

3	掉院:		班级	:	姓	名:		学号:	
任课教师:									
•	题 号	_	=	三	四	五	六	七	总分
	得 分								
	填空选择题(每小题3分):								
1.	$\lim_{x\to\infty} (1+-\frac{1}{x})$	$\frac{b}{x+c}$) ^{ax} =	=	(c 为常数) 。		
2.	已知当 x	→ 0时,	$e^{ax}-1$	与1-√1	$\overline{1-2x}$ 是	等价无穷	引,则	常数 <i>a</i> =_	o
3.	设 $y = \left(\frac{1}{1}\right)$	$\left(\frac{x}{1+x}\right)^x$,	则 y'=_				o		
	设 $\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}, D \frac{dy}{dx} = \underline{\qquad}$								
5.	方程 e ^y +	- xy - e =	= 0 确定	了隐函数	y = y((x) , $\mathbb{M}^{\frac{\alpha}{\alpha}}$	$\frac{dy}{dx} = \underline{\qquad}$		· · · · · · · · · · · · · · · · · · ·
6.	函数 $f(x)$	$(x) = \frac{x}{1+x}$	$\frac{1}{x^2}$ $(x \ge 0)$	0)的最大	工值是		o		
×	设 $F(x)$	为 f (x) f	的原函数	F(0)	=1, F(x))>0,	$f(x) \cdot F($	(x)=x,	则当 <i>x</i> ≥ 0 в
f	(x) =			.0					
8.	设函数 f	$(x_0) = 0$,则 f'	$(x_0) = 0$	是 $ f(x)$	在 <i>x</i> ₀ 女	上可导的	()
	(A) 充分非必要条件; (B) 充分必要条件;								
	(C) 必	要非充分	条件;		(D) \(\frac{1}{2}\)	非充分非	必要条件	‡ ;	
9.	设 f(x)=	$= \begin{cases} x^2 \sin x & \sin x \\ \cos x & \sin x \end{cases}$	$\frac{1}{x} x \neq 0$	±0,则 _. =0	f(x)在.	x = 0处	()	
	(A) $\lim_{x\to 0}$	f(x)不	存在;	(B	$\lim_{x\to 0} f$	(x) 存在	,但 <i>f</i> (x	x) 在 <i>x</i> =	0处不连续;
	(C) f'(0) 存在;		(D	f(x)		处连续,	但不可	导;

减. 微分方程 $y'' + y' = xe^x$ 的一个特解的形式为(

(A) $y^* = axe^x$; (B) $y^* = ae^x$;

(C)
$$y^* = x(ax+b)e^x$$
; (D) $y^* = (ax+b)e^x$;

(D)
$$v^* = (ax + b)e^x$$

二、试解下列各题(每小题5分):

1. 设
$$f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$$
, 求 $f(x)$ 的间断点并指出类型。

$$2. \quad \lim_{x \to 0^+} \frac{(\cos\sqrt{x} - \cos x)\sin x}{1 - \cos x}$$

3. 求:
$$\int \frac{x}{\sqrt{1+x}} dx$$
。

4. 求:
$$\int_0^4 e^{\sqrt{x}} dx$$
。

三、试解下列各题(每小题6分):

1. 已知曲线 y = xf(x) 有水平渐近线 y = A,试求 a 使函数 $\varphi(x) = \begin{cases} f(\frac{1}{x}), x \neq 0 \\ a, x = 0 \end{cases}$ 在 x = 0 处连续,进而讨论函数 $\varphi(x)$ 在 x = 0 处的可导性。

四、试解下列各题(每小题5分):

$$x$$
 求微分方程 $\frac{dy}{dx} = \frac{1}{x-y} + 1$ 的通解。

2. 若 f(x) 在区间 [a,b] 上连续, f(x) < 0,证明: $F(x) = \int_a^b |x-t| f(t) dt$ 是 (a,b) 上的凸函数。

3. 设 f(x), g(x) 在 [a,b] 上连续,且 g(x)>0,证明:存在 $\xi\in(a,b)$,使

$$\frac{\int_{a}^{b} f(x)dx}{\int_{a}^{b} g(x)dx} = \frac{f(\xi)}{g(\xi)}$$

五、(9分) 计算由摆线 $x = t - \sin t$, $y = 1 - \cos t$ 相应于 $0 \le t \le 2\pi$ 的一拱,直线 y = 0 所 围成的平面图形分别绕 x 轴, y 轴旋转而成的旋转体的体积。

六、 (5 分) 设 f(x) 连续, $F(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = 2$,求: F'(x),并讨论 F'(x) 在 x = 0 处的连续性。

人 (9分) 设函数 f(x) ($x \ge 0$) 二阶可导, f'(x) > 0, f(0) = 1,记曲线 y = f(x) 上任一点 P(x,y) 的切线及该点到 x 轴的垂线和 x 轴所围成三角形面积为 S_1 ,区间 [0,x] 上以 y = f(x) 为曲边是梯形面积为 S_2 ,且 $2S_1 = S_2 + 1$,求此曲线 y = f(x) 的方程。