

"Why should I postpone my nap today?"

- 2 approaches to mathematically model an ecological system
- approaching an ancient history riddle
- find the hidden Trump quote → earn a high-five

Bachelor in Physics (Erlangen, Germany)

Master in (Climate) Physics (Potsdam, Germany)

COSSE Year 2018 (Berlin, Stockholm) now: Master's thesis in Bremen, Germany

https://en.wikipedia.org/wiki/File:Thomas_Robert_Malthus.jpg

Thomas Malthus, 1798. An Essay on the Principle of Population, Chapter II.

Collapse of Easter Island population?

Diamond, 2005

https://www.amazon.de/Collapse-Societies-Choose-Fail-Survive/dp/0241958687

Diamond, J. (2005). Collapse: How States Choose to Fail or Succeed. In Penguin Group.

Easter Island – Overview

Easter Island – The Facts

Polynesian/Pacific Rat

(com m

(2)

Advanced culture (1250-1500)

Europeans arrive in 1722+x

bring diseases and slave trade

https://www.nytimes.com/2017/10/12/science/easter-island-dna-south-america.html

Hunt, T. (2006). Rethinking the Fall of Easter Island. American Scientist.

Brandt, G., & Merico, A. (2015). The slow demise of Easter Island: Insights from a modeling investigation. Frontiers in Ecology and Evolution.

SUMMARY

The Problem:

turn from

via

to

?

Is it an example of a Malthusian Collapse?

Modelling Ancient Societies

(1) (simple) Macroscopic System Models

- coupled differential equations (highly non-linear)
 - for the Population Size
 - for the Resource Stock (here: Trees)
 - (- for other invasive species)
- modelled as simple predator (humans) vs. prey (resource) model (`Lotka-Volterra-Model')
- decision makers (humans) maximise their utility (here: through harvest and manufactured goods)
- control variable
 (here: consumption rate, i.e. resource extraction rate)

Reuveny, R. (2012). Taking Stock of Malthus: Modeling the Collapse of Historical Civilizations. Annual Review of Resource Economics.

The First Model: Brander and Taylor (1998) ZMT LEIBNIZ CENTRE for Tropical Marine Research

Variables

Exponential growth/decay more population growth
$$\frac{dL}{dt} = L \cdot (b-d) + \phi \cdot H(L,S)$$

$$\frac{dS}{dt} = G(S) \cdot S - H(L,S)$$
 Logistic growth Harvest

Parameters

```
= birth rate
       = death rate
       = relation between
         fertility and consumption
H(L,S) = harvest rate of population
       = logistic growth rate
             of resource
```

Brander, J. A., & Taylor, M. S. (1998). The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use. American Economic Review.

Extensions to Brander and Taylor (1998)

How could we improve this model?

Agriculture

Far-sightedness vs. short-sightedness of the population

Social/Organisational Responses:

- positive
 - + institutions i.e. social planning
 - + technological advances
- negative
 - + war, rivalry

Reuveny, R. (2012). Taking Stock of Malthus: Modeling the Collapse of Historical Civilizations. Annual Review of Resource Economics.

Hunt (2006): Role of the Pacific Rat

New Archaeological Evidence:

- Pacific rat responsible for ecological catastrophe

New Narrative about population collapse:

- Not an example of an `ecocide'.
- "Consequence of European contacts, with Old World diseases and slave-trading"
 - → genocide

Hunt, T. (2006). Rethinking the Fall of Easter Island. American Scientist.

Adjusted Model

- 3 instead of 2 variables and differential equations (Basener, 2008):

Human Population (L) Resource Stock (S) Rat Population (R)

- Include a Diseases Spread Model after European Contact (Brandt and Merico, 2015)

Brandt, G., & Merico, A. (2015). The slow demise of Easter Island: Insights from a modeling investigation. Frontiers in Ecology and Evolution.

Basener, W., Brooks, B., Radin, M., & Wiandt, T. (2008). Rat instigated human population collapse on Easter Island. Nonlinear Dynamics, Psychology, and Life Sciences.

So which theory is the right one now?

Brandt, G., & Merico, A. (2015). The slow demise of Easter Island: Insights from a modeling investigation. Frontiers in Ecology and Evolution.

SUMMARY

The Problem:

How did

turn from

via

to

?

Is it an example of a Malthusian Collapse?

Modelling Approaches:

(1) Macroscopic System Models

(2) Microscopic Agent Based Modelling (ABM)

Now: ABM, but why?

- Agents are unique and heterogeneous
- Agents act in response to **local** environment/context
- System Models assume a fixed relationship between Environment and Behaviour (except for global change of an equation; no bottom-up emergence)

Benefits of Agent Based Model (ABM):

- can capture emergent phenomena
- explicit space dependency of microscopic behaviour
- natural description of a social system
- very flexible

Economics-interaction-ebboniup/BotivizBvO/W

Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecological Modelling. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the USA.

What exactly is an ABM?

	discrete, independent, heterogeneous entities
Agents	placed in a dynamic, spatial environment
	rule-based interactions with the environment and each other given the local context
Environment /Resource	(dynamic) map that influences the agents' behaviour
	responds to agents' actions
Update	select agents randomly and update them autonomously

e.g. modelling Swarm behaviour

Comparison to simple System Model

A first Easter Island ABM

.ipynb

A first Easter Island ABM (here or .ipynb) ZMT for Tropical Marine Research

- Map is a homogeneous square filled with trees
- Agents are initialised (1) at an edge or (2) equally distributed

A first Easter Island ABM

A first Easter Island ABM

.gif

Time

My Master's Thesis

Experiments:

- Are there limits to the scenarios introduced by the spatial constraints?
- Impact of fresh water availability on movement of settlements?
- Drying of a lake in 1450?

SUMMARY

The Problem:

turn from

via

Is it an example of a Malthusian Collapse?

Modelling Approaches:

(1) Macroscopic System Models

(2) Microscopic Agent Based Modelling (ABM)

Backup and Old Versions

$$\frac{dL}{dt} = L \cdot (b - d) + \phi \cdot \alpha \cdot \beta \cdot L \cdot S$$

$$\frac{dS}{dt} = r \cdot S \cdot \left(1 - \frac{S}{K}\right) - \alpha \cdot \beta \cdot L \cdot S$$

Variables

L = Population size

S = Resource Stock

Parameters

b = birth rate

d = death rate

 ϕ = relation between fertility and consumption

 α = resource exploitation rate β = how much we value

harvest over manufactured goods (e.g. leisure)

K = resource carrying capacity r = resource growth rate

Good and Reuveny (2012):

A far-sighted social planner tries to maximise utility not instantaneously but over a certain, discounted timespan, then he/she tells everyone how much they should harvest

$$max_{f(t)} \int_{0}^{T} [\alpha \cdot f(t) \cdot S(t)]^{\beta} \cdot [1 - f(t)]^{(1-\beta)} \cdot e^{-\rho t} \text{ subject to}$$

$$\frac{dS}{dt} = G(S) \cdot S - H(L, S, f)$$

$$\frac{dL}{dt} = L(t) \cdot (b - d) + \phi \cdot H(L, S, f)$$

Result:

Even with optimal planning, collapse can't be averted

Good and Reuveny (2012):

A far-sighted social planner tries to maximise utility not instantaneously but over a certain, discounted timespan, then he/she tells everyone how much they should harvest

$$max_{f(t)} \int_{0}^{T} [\alpha \cdot f(t) \cdot S(t)]^{\beta} \cdot [1 - f(t)]^{(1-\beta)} \cdot e^{-\rho t} \text{ subject to}$$

$$\frac{dS}{dt} = rS(t)[1 - s(t)/K] - L(t) \cdot [\alpha \cdot f(t) \cdot S(t)]$$

$$\frac{dL}{dt} = L(t) \cdot (b - d) + \phi \cdot L(t) \cdot \alpha \cdot f(t) \cdot S(t)$$

Result:

Even with optimal planning, collapse can't be averted

What exactly is an ABM?

		Python
Agents	Independent, heterogeneous entities that are placed in a dynamic, spatial environment	objects of class `agent' with different params/attributes
	Rule-based interactions with the Env and each other given the local context	Class functions
Environment/ Resource	(dynamic) map that influences the agents' behaviour Environment responds to agents' actions	Here: list of objects of class `tree' located on map
Update	Each agent updates autonomously	Select random agent, Update given the local, current environment

Comparison to simple System Model

What	Description	Python
Age s	Independ tities that are 1 "representative" agent Interested in 1 aggregate variable and each out.	obje Fixed parameters, 1 Variable
Environment/ Resource	(dynami agents) b 1 Variable and DiffEqu Environment actions	1 Variable and DiffEqu
Update	Following Trajectory from DiffEqus	Solve DiffEqu