



## Beléptető rendszer tervezése

No. 1 Team

Kotán Tamás Balázs

Regyep György

Szüts Gábor



#### Bemutató rövid vázlata

- No. 1 Team bemutatása
- Feladat leírása
- Arduino ismertetése
- Arduino előnyei
- Arduino Mega bemutatása
- Feladat megoldásához felhasznált főbb eszközök
- Üzenetküldési módszerek
- Opcionális feladatok megvalósítása
- Kapcsolási rajz
- UML diagarmmok ismertetése (Deployment Diagram, Use-Case Diagram, Állapot diagram)
- Megvalósítás lépései
- Saját beléptető rendszerünk
- Beléptető rendszerünk aakalmazása
- Projekt innovációja
- Beléptető rendszer működése
- Összegzés





### No. 1 Team bemutatása



Kotán Tamás Balázs

Villamosmérnök

Regyep György

Villamosmérnök

Szüts Gábor

Villamosmérnök



#### Feladat leírása

#### Célunk:

- Egy beléptető rendszer tervezése és megépítése
- Sikeres TDK és OTDK szereplés

#### Elvárt követelmények:

- Arduino mikrovezérlővel való megvalósítás
- RFID technológia alkalmazása
- A megfelelő kártya leolvasása után, kód beírásával tudjunk belépni
- Legyen jelzés LED-del vagy más kijelzési móddal
- Legyenek hangjelzések
- Egyéb opcionális megoldások (pl.: üzenetküldés)





#### Arduino ismertetése

Atmel AVR mikroprocesszorokra épülő, szabad szoftveres elektronikai fejlesztőplatform.

#### Főbb részei

- IDE (Integrated Development Environment)
  - Integrált fejlesztői környezet
  - Programokat írhatunk vele
- Aurdino Board
  - USB porton csatlakozik
  - Elektronikus eszközöket vezérelhetünk vele





#### Arduino előnyei

Könnyen beszerezhető

Olcsó

Nem igényel magas programozói ismereteket

Sok kiegészítő szerezhető be hozzá

Tökéletes programozási alapot ad





#### Arduino Mega bemutatása

- ATmega2560-on alapuló nagyméretű platform.
- Haladó Arduino-soknak ajánlott.
- Miért választottuk?
  - Az UNO-nak nem volt elég I/O-ja.

| Mikroprocesszor               | Atmel ATmega 2560                         |
|-------------------------------|-------------------------------------------|
| Ajánlott bemeneti felszültség | 7-12 V                                    |
| Bemeneti feszültség limitek   | 6-20 V                                    |
| Digitális I/O lábak           | 54 db (ebből 15 db PWM)                   |
| Analóg bemenetek              | 16 db                                     |
| DC áram lábanként             | 20 mA                                     |
| Flash memória                 | 256 kB amiből 8 kB-t használ a bootloader |
| SRAM (statikus RAM)           | 8 kB                                      |
| EEPROM                        | 4 kB (ATmega328)                          |
| Órajel                        | 16 MHz                                    |
| Méret                         | 53,3 mm x 101,52 mm                       |
| Tömeg                         | 37 g                                      |





#### Mifare MFRC522-es RFID író/olvasó

Egy olcsó RFID modul



#### MFRC522

 SPI (Serial Peripheral Interface) kommunikációja a host-tal.







#### Membrános billentyűzet

 4x4-es membrános billentyűzetet használtunk fel.



#### 16×2-es Liquidcrystal LCD kijelző

 LED-ekkel való kijelzés mellett egy LCD kijelzőt is használtunk.







#### Buzzer

 Az ajtó nyitásánál, zárásánál és kitiltásnál használjuk



#### Érintőgomb

 Az objektumból való kiléptetéshez használtuk fel.







#### SG90-es mikro szervo

 Ez a szervo 180°-ban képes forogni.



#### **RTC DS3231**

 Precíziós, hőmérséklet kompenzált Real Time Clock (RTC) modul







#### Mifare MFRC522-es RFID író/olvasó

Egy olcsó RFID modul



#### MFRC522

 SPI (Serial Peripheral Interface) kommunikációja a host-tal.







### Effective Stable 1 Channel 5V Indicator Light LED Relay Module

• Relé



#### Cabinet Door Drawer Electric Lock Assembly Solenoid Lock

- 12V-ról nyit
- Nagy a nyitási és zárási sebessége







#### Ujjlenyomat olvasó egység

 Ujjlenyomat felismerés kevesebb, mint 1 másodperc







#### Üzenetküldési módszerek

Üzenetküldés

ESP8266 Wi-Fi modul

> JY-MCU Bluetooth modul

> > modul









#### Üzenetküldési módszerek



ESP8266 Wi-Fi modul





JY-MCU Bluetooth modul



Ez a modul is arról gondoskodik, hogy egy eszköz vezeték nélkül csatlakozhasson egy számítógéphez vagy mobiltelefonhoz, hogy adatot küldhessen és fogadhasson.





### Opcionális megvalósítások

Üzenetküldés

Érintőgomb segítségével

Yarirányító vészhelyzet esetére Varantén mód

Helyes belépés és kilépés esetén nyit/ zár

Szervo motor

Események pontos idejét jelzi és menti

16X2 kijelző segíti a beléptető rendszer működését

LCD kijelző





### Kapcsolási rajz







### Deployment Diagram







### Use-Case Diagram







### Állapot diagram







#### Megvalósítás lépései







## Saját beléptető rendszerünk













#### Beléptető rendszerünk alkalmazása

#### Általunk elképzelt védett szerver terem







### Projekt innovációja

- Rengeteg továbbfejlesztési lehetőséget rejt magában:
  - Wi-Fi modullal Webservert hozhatunk létre.
  - A távirányítón lévő többi gombhoz is lehet funkciót rendelni.
  - Érintőkijelzőt lehetne beleszerelni, így lehetne azon is kódot írni.
  - Végül lehet a külsővel is foglalkozni.





# Beléptető rendszer működése Master kártyával







# Beléptető rendszer működése jó kártyával, jó kóddal







# Beléptető rendszer működése jó kártyával, rossz kóddal







# Beléptető rendszer működése nem megfelelő kártyával







# Beléptető rendszer működése kilépéskor







### Beléptető rendszer működése karantén módban







### Összegzés

- A megépítés és a tesztelés során megtapasztaltuk az Arduino kártya sokszínűségét.
- Különböző technikákkal, látásmóddal, szenzorokkal ismerkedtünk meg.
- A megvalósítás során sok hasznos tudással gazdagodtunk.
- Megismertük alaposan az SPI protokollt és az RFID-t.
- A csapatmunka kiválóan működött közöttünk
- Összességében a kitűzött célt sikeresen elértük.





# Köszönjük a megtisztelő egész napos figyelmeteket!

