Код Хэмминга

Тронин Олег Александрович

БОУ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИММАНУИЛА КАНТА

Формулировка задачи

Рассмотрим четыре круга, пересекающиеся так, как показано на рисунке. Назовём лепестком каждую из трёх фигур, образованных пересечением трёх кругов. Запишем в каждом из кругов ноль или единицу. После этого в каждом лепестке запишем остаток при делении на два суммы чисел во всех кругах, в которых содержится этот лепесток. Например, если в кругах были записаны числа 0, 1, 0, 1, то в лепестках будут записаны числа 0, 1, 0 (круги и лепестки перечислены в порядке, указанном на рисунке).

Описанная схема называется кодом Хэмминга и обладает интересным свойством. Если ваш враг в тайне от вас изменит любое из семи записанных по этой схеме чисел, вы сможете однозначно определить, какое число он изменил. Решив эту задачу, вы узнаете, как это сделать.

Условия задачи

• Исходные данные: В единственной строке через пробел записаны семь чисел. Каждое из чисел равно нулю или единице. Сперва идут четыре числа, записанные в кругах в порядке, указанном на рисунке. Далее идут три числа, записанные в лепестках в порядке, указанном на рисунке.:

• Результат В единственной строке выведите через пробел семь чисел, образующие код Хэмминга. Набор чисел должен отличаться от исходного не более чем в одном числе. Гарантируется, что любой набор входных данных либо сам является кодом Хэмминга, либо в нём можно изменить в точности одну цифру и получить код Хэмминга.

Решение задачи

Так как на вход мы получаем семь цифр,состоящих из нулей и единиц. При этом первые четыре цифры это условие, оставшиеся три это результат. Нам достаточно проверить что бы при сложении по модулю два, первой, второй, и четвёртой мы получили число которое стоит на позиции пять, тоже самое для цифр на первой, третьей и четвертой соответствует результат на шетой позиции, и для цифр на второй, третьей и четвёртой - цифра на седьмой позиции.

Так как в условии задачи сказано что необходимо изменить одно и только одно число, то самый простой способ это перебор всех цифр подряд, то есть мы просто меняем первую цифру на противоположную и снова проверяем изначальное условие, если ответ утвердителен, код найден, в противном случае возвращаем значение первой цифры и меняем уже вторую, и так мы делаем до самой последней цифры, когда она поменяется в значении, мы получим положительный ответ и найдём код Хэмминга.

Код программы

```
a.b.c.d.e.f.g = map(int.input().split())
if (a+b+d)%2 == g and (a+c+d)%2 == f and (b+c+d)%2 == e:
   print (a, b, c, d, e, f, g)
else:
    a = (a+1) %2
    if (a+b+d)%2 == g and (a+c+d)%2 == f and (b+c+d)%2 == e:
        print (a. b. c. d. e. f. g)
   else:
        a = (a+1) %2
        b = (b+1) %2
        if (a+b+d) %2 == g and (a+c+d) %2 == f and (b+c+d) %2 == e:
            print (a. b. c. d. e. f. g)
        else:
            b = (b+1) %2
            c = (c+1) %2
            if (a+b+d) %2 == g and (a+c+d) %2 == f and (b+c+d) %2 == e:
                print (a, b, c, d, e, f, g)
            else:
                c = (c+1) %2
                d = (d+1) %2
                if (a+b+d) %2 == g and (a+c+d) %2 == f and (b+c+d) %2 == e:
                    print (a, b, c, d, e, f, g)
                else:
                    d = (d+1) %2
                    e = (e+1) %2
                    if (a+b+d) %2 == g and (a+c+d) %2 == f and (b+c+d) %2 == e:
                         print (a, b, c, d, e, f, q)
```



```
else:
    e = (e+1) %2
    f = (f+1) %2
    if (a+b+d) %2 == g and (a+c+d) %2 == f and (b+c+d) %2 == e:
        print (a, b, c, d, e, f, g)
else:
    f = (f+1) %2
    g = (g+1) %2
    if (a+b+d) %2 == g and (a+c+d) %2 == f and (b+c+d) %2 == e:
        print (a, b, c, d, e, f, g)
```

