第3章习题

- 1.在 R^3 中,设 $X = (\xi_1, \xi_2, \xi_3)$,定义 $TX = (2\xi_1 \xi_2, \xi_2 + \xi_3, \xi_1)$,试求 T 在基 $e_1 = (1, \xi_1, \xi_2, \xi_3)$
- 0,0), e2 = (0,1,0), e3 = (0,0,1) 下的矩阵.
- 2. 六个函数

$$x_1 = e^{at} \cos bt$$
, $x_2 = e^{at} \sin bt$, $x_3 = t e^{at} \cos bt$

$$x_4 = t e^{at} \sin bt$$
, $x_5 = \frac{1}{2} t^2 e^{at} \cos bt$, $x_6 = \frac{1}{2} t^2 e^{at} \sin bt$

 X_4 , X_5 , X_6), 求微分变换 D 在基 X_1 , X_2 , …, X_6 下的矩阵.

3.在 R^{2×2} 中定义线性变换

$$T_1 \times = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times , T_2 \times = \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} , T_3 \times = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

求 T₁, T₂, T₃在基 E₁₁, E₁₂, E₂₁, E₂₂下的矩阵.

- 4. 设 T 是线性空间 V 的线性变换, 且 $T^{k-1}x \neq 0$, 但 $T^kx = 0$, 证明 x, $T^{k-1}x$, $T^{k-1}x$,
- 5. 给定 R³的两个基

$$x_1 = (1, 0, 1), x_2 = (2, 1, 0), x_3 = (1, 1, 1)$$

$$y_1 = (1, 2, -1), y_2 = (2, 2, -1), y_3 = (2, -1, -1)$$

定义线性变换

 $Tx_i = y_i$ (i = 1, 2, 3)

- (1) 写出由基 x_1, x_2, x_3 到基 y_1, y_2, y_3 的过渡矩阵.
- (2) 写出 T 在基 x₁, x₂, x₃下的矩阵.
- (3) 写出 T 在基 y₁, y₂, y₃下的矩阵.
- 6. 设 T 是数域 C 上线性空间 V^3 的线性变换, 已知 T 在 V^3 的基 x_1 , x_2 , x_3 下的矩阵

$$A = \begin{bmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{bmatrix}$$

求 T 的特征值与特征向量.

7.将矩阵 A 相似的变换为上三角矩阵, 其中

$$A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

8.计算 2A⁸ - 3A⁵ + A⁴ + A² - 4E₃, 其中

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

9. 求矩阵 A 的特征多项式和最小多项式, 其中

$$A = \begin{bmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{bmatrix}$$

- 10.证明任意矩阵与它的转置矩阵有相同的特征多项式和最小多项式.
- 11.求下列各矩阵的 Jordan 标准形.

$$(1) \begin{bmatrix} 3 & 7 & -3 \\ -2 & -5 & 2 \\ -4 & -10 & 3 \end{bmatrix} (2) \begin{bmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -7 & -6 & -1 & 0 \end{bmatrix}$$

12.设有正整数 m, 使 $A^m = I$, 证明 A 与对角矩阵相似.