Niech X będzie zmienną losową na przestrzeni (Ω, \mathcal{F}, P) .

- Wartość oczekiwana X to $\mathbb{E}[X] := \int_{\Omega} X \, dP$
- *n*-ty moment centralny to $\mu_n = \mathbb{E}[(X \mathbb{E}[X])^n]$.
- Wariancja \mathbb{V} jest drugim momentem, pierwiastek z niej to **odchylenie standardowe**, σ .
- Skośność $\gamma = \mu_3/\sigma^3$ i kurtoza $\kappa = \mu_4/\sigma^4 3$.
- Funkcja charakterystyczna: $\mathbb{E}[e^{itX}]$
- Informacja Fishera $\mathcal{I}(\theta) \coloneqq \int (\partial_{\theta} \log f(x,\theta))^2 f(x,\theta) dx$.

Wszystkie rozkłady w wersji "probabilistycznej".

Rozkłady dyskretne

1. **Borela** $(0 < \mu < 1)$. Opisuje potomstwo wątrobowca, gdy dzietność w kolonii podlega λ -rozkładowi Poissona. Jego gęstość to $(\lambda k)^{k-1}$: $(k! \exp \lambda k)$.

$$\mathbb{E} = \frac{1}{1-\lambda} \bullet \mathbb{V} = \frac{\lambda}{(1-\lambda)^3}$$

2. **Dwumianowy** (z $n \in \mathbb{N}$ i 0). Liczba sukcesów w <math>n próbach Bernoulliego. Gęstość $\binom{n}{k} p^k q^{n-k}$, gdzie q = 1-p. Moda $\lfloor (n+1)p \rfloor$ lub $\lfloor (n+1)p \rfloor - 1$.

$$\mathbb{E} = np \bullet \mathbb{V} = npq \bullet \gamma = \frac{1 - 2p}{\sqrt{npq}} \bullet \kappa = \frac{1 - 6pq}{npq}.$$

F. charakterystyczna $(q + p \exp(it))^n$, entropia:

$$H = \frac{1}{2}\log(2\pi enpq) + O(1/n).$$

3. **Beta-dwumianowy** (z $n \in \mathbb{N}$ i $\alpha, \beta > 0$). W urnie jest α kul czarnych i β zielonych. Ciągniemy n-krotnie, za każdym razem dokładając zobaczoną kulę. Ile będzie czarnych? Gęstość $\binom{n}{k}B(k+\alpha,n-k+\beta)/B(\alpha,\beta)$.

$$\mathbb{E} = \frac{n\alpha}{\alpha + \beta} \bullet \mathbb{V} = \frac{n\alpha\beta(\alpha + \beta + n)}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

4. **Ujemny dwumianowy** (r > 0, 0 . Ile sukcesów w próbie Bernoulliego, zanim poniesiemy <math>r porażek. Ma gęstość $\binom{k+r-1}{k}q^rp^k$. $\mathcal{I} = r/(p^2q)$, gdzie q = 1 - p.

$$\mathbb{E} = \frac{pr}{q} \bullet \mathbb{V} = \frac{pr}{q^2} \bullet \gamma = \frac{1+p}{\sqrt{pr}} \bullet \kappa = \frac{6p+q^2}{pr}$$

Funkcja charakterystyczna:

$$\left(\frac{q}{1-p\exp(it)}\right)^r.$$

5. **Geometryczny** (z 0). Proces Bernoulliego dopiero w <math>k-tej próbie ($k \ge 1$) zakończy się sukcesem. Niech q to 1 - p. Gęstość $q^{k-1}p$, dystrybuanta $1 - q^k$, moda 1.

$$\mathbb{E} = \frac{1}{p} \bullet \mathbb{V} = \frac{q}{p^2} \bullet \gamma = \frac{2-p}{\sqrt{q}} \bullet \kappa = 6 + \frac{p^2}{q}$$

Funkcja charakterystyczna i entropia:

$$\varphi(t) = \frac{p \exp(it)}{1 - q \exp(it)} \bullet H = \frac{q \log q + p \log p}{-p}$$

6. **Hipergeometryczny** (z $0 \le K, n \le N$). W stawie pływa N ryb, K spośród nich jest jadalna. Ile z n wyciągniętych sztuk nie będzie trujących? Gęstość $\binom{K}{k}\binom{N-K}{n-k}/\binom{N}{n}$, zaś moda to $\lfloor (n+1)(K+1)/(N+2) \rfloor$.

$$\mathbb{E} = \frac{nK}{N} \bullet \mathbb{V} = \frac{nK(N-K)(N-n)}{N^3 - N^2}$$

7. **Jednostajny** (na $[a,b] \cap \mathbb{Z}$ z n = b - a + 1). Gęstość 1/n, entropia $\log n$.

$$\mathbb{E} = \frac{1}{2}(a+b) \bullet \mathbb{V} = \frac{n^2 - 1}{12} \bullet \gamma = 0 \bullet \kappa = -\frac{6(n^2 + 1)}{5(n^2 - 1)}$$

Funkcja charakterystyczna:

$$\frac{\exp(iat) - \exp(i(b+1)t)}{n(1 - \exp(it))}$$

8. Odwrotny **Markova-Polyi** $(\alpha, \beta, r > 0)$. Ile porażek trzeba ponieść przed r sukcesami w próbach Bernoulliego, kiedy stałe p-stwo sukcesu p pochodzi z rozkładu beta? Gęstość $\Gamma(r+k)B(a+r,\beta+k)/(k!\Gamma(r)B(\alpha,\beta))$, dla $\alpha \leq 1$, $\mathbb E$ nie istnieje, zaś dla $\alpha \leq 2$: $\mathbb V$ nie istnieje.

$$\mathbb{E} = \frac{r\beta}{\alpha - 1} \bullet \mathbb{V} = \frac{r(\alpha + r - 1)\beta(\alpha + \beta - 1)}{(\alpha - 2)(\alpha - 1)^2}$$

Skośność dla $\alpha > 3$:

$$\frac{(\alpha+2r-1)(\alpha+2\beta-1)\sqrt{\alpha-2}}{(\alpha-3)\sqrt{r(\alpha+r-1)\beta(\alpha+\beta-1)}}$$

9. **Poissona** (z λ > 0). P-stwo danej liczby zdarzeń w stałym przedziale, kiedy znana jest ich średnia, a wystąpienie nie zależy od czasu, jaki upłynął od poprzedniego. Gęstość $\lambda^k \exp(-\lambda)/k!$, moda $\lceil \lambda \rceil - 1 \operatorname{lub} \lfloor \lambda \rfloor$. Informacja Fishera $1/\lambda$ F. charakterystyczna: $\exp(\lambda(\exp(it)-1))$.

$$\mathbb{E} = \lambda \bullet \mathbb{V} = \lambda \bullet \gamma = \lambda^{-1/2} \bullet \kappa = \lambda^{-1}$$

Przybliżona entropia:

$$\frac{\log(2\pi e\lambda)}{2} - \frac{1}{12\lambda} - \frac{1}{24\lambda^2} - \frac{19}{360\lambda^3} + O(\lambda^{-4}).$$

10. **Skellama** (z $\lambda_1, \lambda_2 > 0$). Różnica zmiennych losowych z rozkładu Poissona (niezależnych).

$$\mathbb{E} = \lambda_1 - \lambda_2 \bullet \mathbb{V} = \lambda_1 + \lambda_2 \bullet \gamma = \frac{\mathbb{E}}{(\mathbb{V})^{3/2}} \bullet \kappa = \frac{1}{\mathbb{V}}$$

Gęstość:

$$\exp(-\lambda_1 - \lambda_2)\lambda_1^k \cdot \sum_{m=0}^{\infty} \frac{(\lambda_1 \lambda_2)^m}{m!(m+k)!}$$

Funkcja charakterystyczna

$$\varphi(t) = \exp(-(\lambda_1 + \lambda_2) + \lambda_1 \exp(it) + \lambda_2 \exp(-it))$$

11. **Delaporte** $(\alpha, \beta, \lambda > 0)$: Poissona, z losowym parametrem $\lambda + \text{Gamma}(\alpha, \beta)$. $\mathbb{E} = \lambda + \alpha\beta$, $\mathbb{V} = \lambda + \alpha\beta(1 + \beta)$. Mamy $(\text{dla } z = 1 + 6\lambda + 6\lambda\beta + 7\beta + 12\beta^2 + 6\beta^3 + 3\alpha\beta(1 + \beta)^2)$:

$$\gamma = \frac{\lambda + \alpha\beta(1 + 3\beta + 2\beta^2)}{(\lambda + \alpha\beta(1 + \beta))^{3/2}} \bullet \kappa = \frac{\lambda + 3\lambda^2 + \alpha\beta \cdot z}{(\lambda + \alpha\beta(1 + \beta))^2}$$

12. **Zeta** (s>1). Gęstość $k^{-s}/\zeta(s)$. $\mathbb E$ istnieje dla s>2, $\mathbb V$: dla s>3. Jest nieskończenie podzielny.

$$\mathbb{E} = \frac{\zeta(s-1)}{\zeta(s)} \bullet \mathbb{V} = \frac{\zeta(s)\zeta(s-2) - \zeta(s-1)^2}{\zeta(s)^2}$$