Support Vector Machine

SVM help us find Non-Linear Decision boundaries.

SVM is a Supervised Machine Learning Algorithm which can be used for both Classification and Regression.

A

Terminology

HyperPlane

A decision boundary used to separate and classify Data. It is of (n-1) dimensions where n is number of features.

Support Vectors

Vectors\Points that are closest to HyperPlane in each class

Margin

The distance between Hyperplane and Supporting Vector

Here the target DataSet is Labelled as -1 and 1 as in Logistic Regression Labelled as 0 and 1

Linear SVM (Optimal Margin Classifier)

♣ Here it's assumed that the Data Points are Linearly Separable

(Source — Medium.com)Class A and B are divided using Linear Decision Boundary

1

Functional Margin :

Geometric Margin :

$$X = egin{bmatrix} X_1 \ X_2 \ dots \ X_n \end{bmatrix}$$
 and $W = egin{bmatrix} W_1 \ W_2 \ dots \ W_n \end{bmatrix}$

Here g(X) represents the Hyperplane,

$$g(X) = W^T X + b$$

where,

b — Bias/Intercept

n — Number of Features

W - Weight/Regression Coefficients

 Y^\prime — Predicated Class

Equation of Hyperplane is $W^TX+b=0$ and Class A is labelled as 1 $(Y^\prime=1)$ while that of Class B is -1 $(Y^\prime=-1)$,

$$W^TX+b=1$$
 for $Y^\prime=1$

$$W^TX+b=-1$$
 for $Y^\prime=-1$

On combining the above 2 equations,

$$(W^TX + b)Y' \ge -1$$

Source: Medium.com

Calculating the Margin

In this case (Considering 2 Features), Distance between HyperPlane and the Supporting Vector is The Value of Margin is $\frac{2}{||W||}$ (Since 2 Features)

Here our aim is to Maximise the Margin which is to reduce the value of ||W||The objective function of Linear SVM, $\min[rac{||W||^2}{2}]$

Kernel

(Source: Medium.com)Class A and B are separated using Non-Linear Function

For the Data Sets which can be separated better using Polynomial Function, Kernel Function is used. Kernel Function transforms data, most likely to be Linearly Separable.

$$K(X_a,X_b)=(\gamma(X_a.X_b)+r)^d$$

 γ — Kernel Coefficient

 $\left(X_a,X_b
ight)$ — Are two different features

🛖 Gaussian Radial Bias Function (RBF)

This Kernel works when there is no prior knowledge about the data.

$$K(X_a,X_b)=e^{-\gamma ||X_a-X_b||^2}$$

Non-Linear SVM

Linearly Non-separable Data points are handled using Non-Linear SVM.

(Source - Medium.com)Class A and B are divided using Non-Linear Decision Boundary

Here Linear SVM is used but it is allowed to make some mistakes, Which is called as Soft-Margin SVM.

$$\min[rac{||W||^2}{2}+C\sum_{i=1}^m \xi_i]$$

where,
$$(W^TX+b)Y'\geq -1-\xi$$
 $(\xi\geq 0)$

 ξ — Slack Variable/Penalty which tells the distance between misclassified Data Point and Class Margin.

C — Regularisation Parameter

Questions

1) How can Kernel be used for Linear SVM ?

Kernel is used for Linearly Separable data to speed up the calculation of SVM Classifier,

$$K(X_a,X_b)=X_a.X_b$$

2) How does "C" help in Non-Linear SVM ?

 ${\cal C}$ is multiplied so that SVM doesn't try hard to separate the data (For lower values of ${\cal C}$), which produces generalised model.

Support Vector Machine 3