Package 'VertexWiseR'

December 12, 2024

Title Simplified Vertex-Wise Analyses of Whole-Brain and Hippocampal Surface

Version 1.2.0 **Date** 2024-12-09

Maintainer Charly Billaud <charly.billaud@ntu.edu.sg>

Description Provides functions to run statistical analyses on surface-based neuroimaging data, computing measures including cortical thickness and surface area of the whole-brain and of the hippocampi. It can make use of 'FreeSurfer', 'fMRIprep' and 'HCP' preprocessed datasets and 'HippUnfold' hippocampal segmentation outputs for a given sample by restructuring the data values into a single file. The single file can then be used by the package for analyses independently from its base dataset and without need for its access.

License GPL-3

URL https://cogbrainhealthlab.github.io/VertexWiseR/

Suggests R.rsp

VignetteBuilder R.rsp

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

SystemRequirements Miniconda3 (v24.9.2), Python (<= v3.12), BrainStat (v0.4.2), vtk (v9.3.1)

Depends R (>= 4.0.0)

Imports ciftiTools, doParallel, doSNOW, foreach, freesurferformats, fs, gifti, grDevices, igraph, methods, plotly, png, rappdirs, reticulate, stats, stringr, utils

NeedsCompilation no

Author Junhong Yu [aut] (https://orcid.org/0000-0002-2563-9658), Charly Billaud [aut, cre] (https://orcid.org/0009-0001-3466-9963)

Repository CRAN

Date/Publication 2024-12-12 07:30:02 UTC

2 atlas_to_surf

Contents

	atlas_to_surf
	CAT12vextract
	decode_surf_data
	edgelist-class
	edgelist_hip
	fs5_to_fs6
	fs6_to_fs5
	fs6_to_fs5_map
	FSLRvextract
	fs_stats
	HIPvextract
	hip_points_cells
	MNImap_hip
	MNIsurface-class
	plot_surf
	plot_surf3d
	RFT_vertex_analysis
	ROImap-class
	ROImap_fs5
	ROImap_fs6
	ROImap_fslr32k
	ROImap_hip
	smooth_surf
	SURFvextract
	surf_to_atlas
	surf_to_vol
	TFCE_threshold
	TFCE_vertex_analysis
	TFCE_vertex_analysis_mixed
	VWRfirstrun
Index	31
atla	s_to_surf Atlas to surface

Description

Maps average parcellation surface values (e.g. produced with the surf_to_atlas() function) to the fsaverage5, fsaverage6 or fslr32k space

Usage

```
atlas_to_surf(parcel_data, template)
```

CAT12vextract 3

Arguments

parcel_data A matrix or vector object containing average surface measures for each region

of interest, see the surf_to_atlas() output format.

template A string object stating the surface space on which to map the data ('fsaverage5',

'fsaverage6', 'fslr32k', 'CIT168' (hippocampal)).

Details

The function currently supports the Desikan-Killiany-70, Schaefer-100, Schaefer-200, Schaefer-400, Glasser-360, or Destrieux-148 atlases for cortical surfaces, and the 'bigbrain' 10-parcels atlas for hippocampal surfaces. ROI to vertex mapping data for 1 to 4 were obtained from the 'ENIGMA toolbox'; and data for 5 from 'Nilearn' 's nilearn.datasets.fetch_atlas_surf_destrieux atlas_to_surf() will automatically detect the atlas based on the number of columns.

Value

A matrix or vector object containing vertex-wise surface data mapped in fsaverage5, fsaverage6, fslr32k, or CIT168 space

See Also

```
surf_to_atlas
```

Examples

```
parcel_data = t(runif(100,min=0, max=100));
surf_data = atlas_to_surf(parcel_data, template='fsaverage5');
```

CAT12vextract

CAT12vextract

Description

Extracts vertex-wise surface-based measures for each subject from a CAT12 preprocessed directory, resampled to a 32k mesh, and stores them all as a single .RDS file.

Usage

```
CAT12vextract(
  sdirpath = "./",
  filename,
  measure = "thickness",
  subj_ID = TRUE,
  silent = FALSE,
  VWR_check = TRUE
)
```

4 CAT12vextract

Arguments

sdirpath	A string object containing the path to the CAT12 subjects preprocessed directory. Default is the current working directory ("./").
filename	A string object containing the desired name of the output RDS file. Default is 'CAT12_measure.rds' in the R temporary directory (tempdir()).
measure	A string object containing the name of the measure of interest. Options are 'thickness', 'depth', 'fractaldimension', 'gyrification', and 'toroGI20mm'. Default is 'thickness.'
subj_ID	A logical object to determine whether to return a list object containing both subject ID and data matrix. Subject IDs are assumed to be the top directory names in the sdirpath.
silent	A logical object to determine whether messages will be silenced. Set to 'FALSE' by default
VWR_check	A boolean object specifying whether to check and validate system requirements. Default is TRUE.

Details

The function searches inside the CAT12 preprocessed for 32k meshes (.gii) with the user-selected measure, extracts the data from these files, and organizes the left and right hemisphere vertex data for each subject as rows in a N x 64984 data matrix within a .rds object. Python and reticulate are required as the NiBabel package is used to import .gii files outputted by CAT12.

Value

A .RDSfile with a list containing 1. the list of subject IDs (first element) and 2. a surface data matrix object (second element), or only a data matrix object. The matrix has N subjects x M vertices dimensions and can be readily used by VertexWiseR statistical analysis functions. Each row corresponds to a subject (in the order they are listed in the folder) and contains the left to right hemispheres' vertex-wise values.

```
CAT12vextract(sdirpath="./",
filename='thickness.rds',
measure='thickness',
subj_ID = TRUE,
VWR_check=FALSE)
```

decode_surf_data 5

ıta	
-----	--

Description

Correlates the significant clusters of an earlier vertex-wise analysis with a database of task-based fMRI and voxel-based morphometric statistical maps and associate them with relevant key words. Decoding currently works with surfaces in fsaverage5 space only."

Usage

```
decode_surf_data(surf_data, contrast = "positive", VWR_check = TRUE)
```

Arguments

surf_data	A numeric vector or object containing the surface data, in fsaverage5 (1 x 20484 vertices). It can only be one row of vertices (not a cohort surface data matrix).
contrast	A string object indicating whether to decode the positive or negative mask ('positive' or 'negative')
VWR_check	A boolean object specifying whether to check and validate system requirements. Default is TRUE.

Details

The 'NiMARE' python module is used for the imaging decoding and is imported via the reticulate package. The function also downloads the 'Neurosynth' database in the package's inst/extdata directory (~8 Mb) for the analysis.

Value

A data.frame object listing the keywords and their Pearson's R values

```
CTv = rbinom(20484, 1, 0.001)
decoding = decode_surf_data(CTv, 'positive', VWR_check=FALSE);
head(decoding)
```

6 fs5_to_fs6

edgelist-class

Edge list object

Description

A class for adjacent vertex correspondance

Slots

matrix A N x 2 matrix object listing each vertex of the template and the vertices adjacent to it (making an edge together).

name The name of the template surface

edgelist_hip

List of edges for the hippocampal template

Description

A Nx2 matrix object listing each vertex of the hippocampal template and the vertices adjacent to it (making an edge together).

Usage

edgelist_hip

Format

edgelist_hip:

Nx2 matrix object Matrix with two columns and N rows corresponding to the unique edges in the fsaverage5 surface

fs5_to_fs6

fsaverage5 to fsaverage6

Description

Remaps vertex-wise surface data in fsaverage5 space to fsaverage6 space using the nearest neighbor approach

Usage

```
fs5_to_fs6(surf_data)
```

fs6_to_fs5

Arguments

surf_data

A N x V matrix object containing the surface data (N row for each subject, V for each vertex), in fsaverage5 (20484 vertices) space. See also SURFvextract() output format.

Value

A matrix object containing vertex-wise surface data mapped in fsaverage6 space

See Also

```
fs6_to_fs5
```

Examples

```
CTv = runif(20484,min=0, max=100);
CTv_fs6 = fs5_to_fs6(CTv);
```

fs6_to_fs5

fsaverage6 to fsaverage5

Description

Remaps vertex-wise surface data in fsaverage6 space to fsaverage5 space using the nearest neighbor approach

Usage

```
fs6_to_fs5(surf_data)
```

Arguments

surf_data

A N x V matrix object containing the surface data (N row for each subject, V for each vertex), in fsaverage6 (81924 vertices) space. See also SURFvextract() output format.

Value

A matrix object containing vertex-wise surface data mapped in fsaverage5 space

See Also

```
fs5_to_fs6
```

```
surf_data = runif(81924,min=0, max=100);
fs5_data=fs6_to_fs5(surf_data)
```

8 FSLRvextract

Description

fsaverage6 template object for nearest neighbor conversion in fs6_to_fs5()

Usage

```
fs6_to_fs5_map
```

Format

```
fs6_to_fs5_map:
An array of 81924 integers ()
```

vertices 81924 integers corresponding to each fsaverage6 vertex

FSLRvextract

FSLRvextract

Description

Extracts vertex-wise surface-based measures for each subject from HCP and fMRIprep preprocessed directory, and stores it as a single .RDS file.

Usage

```
FSLRvextract(
   sdirpath = "./",
   wb_path,
   filename,
   dscaler,
   subj_ID = TRUE,
   silent = FALSE
)
```

Arguments

sdirpath	A string object containing the path to the HCP or fMRIprep preprocessed directory. Default is the current working directory ("./").
wb_path	The filepath to the workbench folder that you have previously downloaded and unzipped
filename	A string object containing the desired name of the output RDS file. Default is 'fslr32k.rds' in the R temporary directory (tempdir()).

FSLRvextract 9

dscaler

A string object containing the filename suffix of the dscaler file. These dscaler files are named differently depending on the preprocessing pipeline used. Examples of filename suffixes are shown below

- .thickness_MSMAll.32k_fs_LR.dscalar.nii (HCP MSMAll pipeline)
- .sulc_MSMAll.32k_fs_LR.dscalar.nii (HCP MSMAll pipeline)
- .thickness.32k_fs_LR.dscalar.nii (HCP legacy pipeline)
- .sulc.32k_fs_LR.dscalar.nii (HCP legacy pipeline)
- _space-fsLR_den-91k_thickness.dscalar.nii (fMRIprep; using the --cifti-output 91k flag)
- _space-fsLR_den-91k_curv.dscalar.nii (fMRIprep; using the --cifti-output 91k flag)
- _space-fsLR_den-91k_sulc.dscalar.nii (fMRIprep; using the --cifti-output 91k flag)

subj_ID

A logical object to determine whether to return a list object containing both subject ID and data matrix.

silent

A logical object to determine whether messages will be silenced. Set to 'FALSE' by default

Details

The function searches for the HCP preprocessed directory by listing out files with certain suffixes, extract the data from these files, and organize the left and right hemisphere vertex data for each subject as rows in a N x 64984 data matrix within a .rds object.

Value

A .RDSfile with a list containing 1. the list of subject IDs (first element) and 2. a surface data matrix object (second element), or only a data matrix object. The matrix has N subjects x M vertices dimensions and can be readily used by VertexWiseR statistical analysis functions. Each row corresponds to a subject (in the order they are listed in the folder) and contains the left to right hemispheres' vertex-wise values.

```
dat_fslr32k=FSLRvextract(sdirpath="./",
wb_path="/path/to/workbench",
filename="dat_fslr32k.rds",
dscaler=".thickness_MSMAll.32k_fs_LR.dscalar.nii",
subj_ID = TRUE, silent=FALSE)
```

10 HIPvextract

Description

Extracts descriptive statistics, for the whole-brain and subcortical region-of-interests (ROI), within a FreeSurfer subjects directory. It reads them from the aseg.stats file, as generated by the default FreeSurfer preprocessing pipeline.

Usage

```
fs_stats(sdirpath = "./", sublist, ROImeasure = "Volume_mm3")
```

Arguments

sdirpath	A string object indicating the path to the 'FreeSurfer' subjects directory. Default is the current working directory ("./").
sublist	A string object indicating the path to the subject list generated by SURFvextract as 'sublist.txt' (optional). This allows users to retrieve stats only from a selected list of subjects. The subject list is a list with 1 subject ID per line.
ROImeasure	A string object indicating what summary measure to extract for the subocrtical ROIs. Choices include: 'NVoxels', 'Volume_mm3', 'StructName', 'norm-

Mean', 'normStdDev', 'normMin', 'normMax', and 'normRange'. Default is 'Volume_mm3'.

Value

A data.frame object with N columns per aseg.stats measures and N row per subjects.

Examples

```
fs_stats(sdirpath="freesurfer_subjdir")
```

Description

Extracts hippocampal vertex-wise surface-based measures for each subject in the 'HippUnfold' subjects directory, and stores it as a single .RDS file.

Usage

```
HIPvextract(sdirpath = "./", filename, measure = "thickness", subj_ID = TRUE)
```

hip_points_cells 11

Arguments

sdirpath	A string object containing the path to the 'HippUnfold' subjects directory. Default is the current working directory ("./").
filename	A string object containing the desired name of the output RDS file. Default is 'hip_measure.rds' in the R temporary directory (tempdir()).
measure	A string object containing the name of the measure of interest. Options are 'thickness', 'curvature', 'gyrification' and 'surfarea' (For more information see the 'HippUnfold' documentation). Default is thickness.
subj_ID	A logical object stating whether to return a list object containing both subject ID and data matrix.

Details

The function searches for the hippocampal surface data by listing out files with certain suffixes, extract the data from these files, and organize the left and right hippocampal vertex data for each subject as rows in a N x 14524 data matrix within a .rds object.

Value

A .RDSfile with a list containing 1. the list of subject IDs (first element) and 2. a surface data matrix object (second element), or only a data matrix object. The matrix has N subjects x M vertices dimensions and can be readily used by VertexWiseR statistical analysis functions. Each row corresponds to a subject (in the order they are listed in the folder) and contains the left to right hemispheres' hippocampal vertex-wise values.

Examples

```
HIPvextract(sdirpath = "./", filename = paste0(tempdir(), "/hip_data.RDS"), measure = "thickness")
```

hip_points_cells	points and cells data required to build the hippocampus surface template
------------------	--

Description

points and cells data required to build the hippocampus surface template

Usage

hip_points_cells

12 MNIsurface-class

Format

hip_points_cells:

A list object with two data frame objects: ()

vertices data frame with 7262 rows (vertices), 3 columns (MNI coordinates X, y, Z)

vertices data frame with 14266 rows (vertices), 3 columns (vertices of all unique triangles

vertices data frame with 7262 rows (vertices), 3 columns (MNI coordinates X, y, Z for unfolded hippocampal surface)

MNImap_hip

Hippocampal surface in MNI space

Description

A matrix with 14524 columns corresponding to the hippocampal template vertices and 3 rows corresponding to each vertex's X,Y,Z coordinates in MNI space

Usage

MNImap_hip

Format

MNImap_hip:

A 3x14524 matrix object

coordinates 14524 rows (vertices), 3 columns (X,Y,Z coordinates)

MNIsurface-class

MNI surface map object

Description

A class for surface coordinates in MNI space

Slots

matrix A matrix object with N vertices columns x 3 rows corresponding to each vertex's X,Y,Z coordinates in MNI space.

name The name of the template surface

plot_surf 13

plot_surf

Surface plotter

Description

Plots surface data in a grid with one or multiple rows in a .png file

Usage

```
plot_surf(
    surf_data,
    filename,
    title = "",
    surface = "inflated",
    cmap,
    limits,
    colorbar = TRUE,
    size,
    zoom,
    show.plot.window = TRUE,
    VWR_check = TRUE
```

Arguments

surf	da ⁻	ata

A numeric vector (length of V) or a matrix (N rows x V columns), where N is the number of subplots, and V is the number of vertices. It can be the output from SURFvextract(), FSLRvextract(), HIPvextract() as well as masks or vertexwise results outputted by analyses functions. Alternatively, atlas ROI values as supported by atlas_to_surf() may be given.

filename

A string object containing the desired name of the output .png. Default is 'plot.png' in the R temporary directory (tempdir()).Only filenames with a .png extension are allowed.

title

A string object for setting the title in the plot. Default is none. For titles that too long to be fully displayed within the plot, we recommend splitting them into multiple lines by inserting "\n".

surface

A string object containing the name of the type of cortical surface background rendered. Possible options include "white", "smoothwm", "pial" and "inflated" (default). The surface parameter is ignored for hippocampal surface data.

cmap

A string object specifying the name of an existing colormap or a vector of hexadecimal color codes to be used as a custom colormap. The names of existing colormaps are listed in the 'Matplotlib' plotting library.

Default cmap is set to "Reds" for positive values, "Blues_r" for negative values and "RdBu" when both positive and negative values exist.

14 plot_surf3d

limits A combined pair of numeric vector composed of the lower and upper color scale limits of the plot. If the limits are specified, the same limits will be applied to all subplots. When left unspecified, the same symmetrical limits c(-max(abs(surf_dat),max(abs(surf_dat)))) will be used for all subplots. If set to NULL, each subplot will have its own limits corresponding to their min and

max values

colorbar A logical object stating whether to include a color bar in the plot or not (default

is TRUE).

size A combined pair of numeric vector indicating the image dimensions (width and

height in pixels). Default is c(1920,400) for whole-brain surface and c(400,200)

for hippocampal surface.

zoom A numeric value for adjusting the level of zoom on the figures. Default is 1.25

for whole-brain surface and 1.20 for hippocampal surface.

show.plot.window

A logical object to determine if the generated plot is to be shown within RStu-

dio's plot window

VWR_check A boolean object specifying whether to check and validate system requirements.

Default is TRUE.

Value

Outputs the plot as a .png image

Examples

```
results = runif(20484,min=0, max=1);
plot_surf(surf_data = results,
filename=paste0(tempdir(),"/output.png"),
title = 'Cortical thickness',
surface = 'inflated', cmap = 'Blues',
VWR_check=FALSE)
```

plot_surf3d

3D Surface plotter

Description

Plots 3D cortical surfaces

Usage

```
plot_surf3d(
   surf_data,
   surf_color = "grey",
   cmap,
   limits,
```

plot_surf3d 15

```
atlas = 1,
hemi = "b",
medial_gap = 0,
orientation_labels = TRUE,
VWR_check = TRUE
```

Arguments

surf_data A numeric vector (length of V)

surf_color color of the cortical surface. Set to 'grey' by default

cmap A string vector containing 2 to 4 color names/codes specifying the colors to be

used for the color scale. See RColorBrewer::display.brewer.all() for all possible cmap options. If none are specified, appropriate colors will be automat-

ically selected according to range(surf_data)

limits A combined pair of numeric vector composed of the lower and upper color scale

limits of the plot. When left unspecified, the symmetrical limits c(-max(abs(surf_dat), max(abs(surf_dat), m

will be used.

atlas atlas used for identifying region labels. 1=Desikan, 2=Destrieux-148, 3=Glasser-

360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400. Set to 1 by default.

This argument is ignored for hippocampal surfaces.

hemi A string specifying the hemisphere to plot. Possible values are 1 (left), r (right)

or b (both).

medial_gap A numeric value specifying the amount of gap (in MNI coordinate units) to

separate the left and right hemispheres. Set to \emptyset (no gap between hemispheres) by default. In order to view the medial surfaces clearly, it is recommended that

this value is set to 20. This argument is ignored if hemi!='b'

orientation_labels

A boolean object specifying if orientation labels are to be displayed. Set to TRUE

by default

VWR_check A boolean object specifying whether to check and validate system requirements.

Default is TRUE.

Value

```
a plot_ly object
```

```
surf_data = runif(20484);
plot_surf3d(surf_data = surf_data, VWR_check=FALSE)
```

RFT_vertex_analysis

Vertex-wise analysis with random field theory cluster correction

Description

Fits a linear or linear mixed model with the cortical or hippocampal surface data as the predicted outcome, and returns cluster-thresholded (Random field theory) t-stat map selected contrast.

Usage

```
RFT_vertex_analysis(
  model,
  contrast,
  random,
  formula,
  formula_dataset,
  surf_data,
  p = 0.05,
  atlas = 1,
  smooth_FWHM,
  VWR_check = TRUE
)
```

Arguments

model

An N X P data frame object containing N rows for each subject and P columns for each predictor included in the model. This data frame should not include the random effects variable.

contrast

A N x 1 numeric vector or object containing the values of the predictor of interest. Its length should equal the number of subjects in model (and can be a single column from model). The cluster-thresholded t-stat maps will be estimated only for this predictor.

random

A N x 1 numeric vector or object containing the values of the random variable (optional). Its length should be equal to the number of subjects in model (it should NOT be inside the model data.frame).

formula

An optional string or formula object describing the predictors to be fitted against the surface data, replacing the model, contrast, or random arguments. If this argument is used, the formula_dataset argument must also be provided.

- The dependent variable is not needed, as it will always be the surface data values.
- The first independent variable in the formula will always be interpreted as the contrast of interest for which to estimate cluster-thresholded t-stat maps.
- Only one random regressor can be given and must be indicated as '(1|variable_name)'.

RFT_vertex_analysis 17

formula_dataset

An optional data frame object containing the independent variables to be used with the formula (the IV names in the formula must match their column names in the detect)

in the dataset).

surf_data A N x V matrix object containing the surface data (N row for each subject,

V for each vertex), in fsaverage5 (20484 vertices), fsaverage6 (81924 vertices), fslr32k (64984 vertices) or hippocampal (14524 vertices) space. See also Hipvextract(), SURFvextract() or FSLRvextract output formats. Alternatively, a string object containing the path to the surface object (.rds file) outputted by extraction

functions may be given.

p A numeric object specifying the p-value to threshold the results (Default is 0.05)

atlas A numeric integer object corresponding to the atlas of interest. 1=Desikan,

2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400. Set to 1 by default. This argument is ignored for hippocampal surfaces.

smooth_FWHM A numeric vector object specifying the desired smoothing width in mm

VWR_check A boolean object specifying whether to check and validate system requirements.

Default is TRUE.

Details

The function imports and adapts the 'BrainStat' Python library.

By default, false discovery rate correction is used together with the Random field theory (RFT) cluster correction. To look at data without any form of cluster correction, users can simply refer to the outputted 'tstat_map'.

Output definitions:

- nverts: number of vertices in the cluster
- P: p-value of the cluster
- X, Y and Z: MNI coordinates of the vertex with the highest t-statistic in the cluster.
- tstat: t statistic of the vertex with the highest t-statistic in the cluster
- region: the region this highest -statistic vertex is located in, as determined/labelled by the selected atlas

Value

A list object containing the cluster level results, unthresholded t-stat map, thresholded t-stat map, positive, negative and bidirectional cluster maps, and a FDR-corrected p-value map.

See Also

TFCE_vertex_analysis, TFCE_vertex_analysis_mixed

18 ROImap_fs5

Examples

```
demodata = readRDS(system.file('demo_data/SPRENG_behdata_site1.rds',
package = 'VertexWiseR'))[1:100,]
CTv = readRDS(file = url(paste0("https://github.com",
   "/CogBrainHealthLab/VertexWiseR/blob/main/inst/demo_data/",
   "SPRENG_CTv_site1.rds?raw=TRUE")))[1:100,]

vertexwise_model=RFT_vertex_analysis(model=demodata[,c("sex","age")],
contrast=demodata[,"age"], surf_data = CTv, atlas=1,p = 0.05,
VWR_check=FALSE)

#Description of the output:
#vertexwise_model$cluster_level_results

#Formula alternative:
#formula= as.formula("~ age + sex")
#vertexwise_model=RFT_vertex_analysis(formula=formula,
#formula_dataset=demodata, surf_data = CTv, atlas=1, p = 0.05,
#VWR_check=FALSE)
```

ROImap-class

Region-of-Interest mapping object

Description

A class for surface vertices mapping on atlas labels

Slots

matrix A matrix object with N vertices from a template and each parcellation number the vertices correspond in 6 atlases (6 columns).

atlases Each available of the 6 available atlases and their corresponding labels (1=aparc, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400).

name The name of the template surface

ROImap_fs5

Atlas parcellations of fsaverage5

Description

A list containing two data frames, 1) listing fsaverage5 vertices and each parcellation number they correspond to, and 2) listing each available atlas and their corresponding labels (1=aparc, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400).

Usage

ROImap_fs5

ROImap_fs6

Format

```
ROImap_fs5:
```

A list object with two data frame objects: ()

vertices data frame with 20484 rows (vertices), 6 columns (atlases)

atlases data frame with 400 rows (labels, not all are filled depending on atlas), 6 columns (atlases)

ROImap_fs6

Atlas parcellations of fsaverage6

Description

A list containing two data frames, 1) listing fsaverage6 vertices and each atlas parcellation number they correspond to, and 2) listing each available atlas and their corresponding labels (1=aparc, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400).

Usage

ROImap_fs6

Format

ROImap_fs6:

A list object with two data frame objects: ()

vertices data frame with 81924 rows (vertices), 6 columns (atlases)

atlases data frame with 400 rows (labels, not all are filled depending on atlas), 6 columns (atlases)

ROImap_fslr32k

Atlas parcellations of FS_LR32k

Description

A list containing two data frames, 1) listing FS_LR32k vertices and each atlas parcellation number they correspond to, and 2) listing each available atlas and their corresponding labels (1=aparc, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400).

Usage

```
ROImap_fslr32k
```

Format

```
ROImap_fslr32k:
```

A list object with two data frame objects: ()

vertices data frame with 64984 rows (vertices), 6 columns (atlases)

atlases data frame with 400 rows (labels, not all are filled depending on atlas), 6 columns (atlases)

20 smooth_surf

ROImap_hip	Atlas parcellations of the hippocampus (CITI168)	

Description

A list containing 1) a matrix listing CITI168 vertices and each parcellation number they correspond to, and 2) a data frame listing the hippocampal atlas labels.

Usage

ROImap_hip

Format

ROImap_hip:

A list object with two data frame objects: ()

vertices array of 14524 numeric vectors (vertices)

atlases data frame with 10 rows listing names of left and right hippocampal subfields

urf Smooth surface

Description

Smooths surface data at defined full width at half maximum (FWHM) as per the corresponding template of surface data

Usage

```
smooth_surf(surf_data, FWHM, VWR_check = TRUE)
```

Arguments

surf_data A N x V matrix object containing the surface data (N row for each subject,

V for each vertex), in fsaverage5 (20484 vertices), fsaverage6 (81924 vertices), fslr32k (64984 vertices) or hippocampal (14524 vertices) space. See also Hipvextract(), SURFvextract() or FSLRvextract output formats. Alternatively, a string object containing the path to the surface object (.rds file) outputted by extraction

functions may be given.

FWHM A numeric vector object containing the desired smoothing width in mm

VWR_check A boolean object specifying whether to check and validate system requirements.

Default is TRUE.

SURFvextract 21

Value

A matrix object with smoothed vertex-wise values

Examples

```
surf_data = readRDS(file = url(paste0("https://github.com",
   "/CogBrainHealthLab/VertexWiseR/blob/main/inst/demo_data/",
   "FINK_Tv_ses13.rds?raw=TRUE")))[1:3,]
surf_data_smoothed=smooth_surf(surf_data, 10, VWR_check=FALSE);
```

SURFvextract

SURFvextract

Description

Extracts whole-brain vertex-wise surface-based measures for each subject in a 'FreeSurfer' output subjects directory, resamples the data to a common surface template, and stores it as a .rds file. This function requires the 'FreeSurfer' environment to be preset in the unix environment and a 'FreeSurfer' license key.

Usage

```
SURFvextract(
  sdirpath = "./",
  filename,
  template = "fsaverage5",
  measure = "thickness",
  subj_ID = TRUE,
  fshomepath
)
```

Arguments

sdirpath	A string object containing the path to the 'FreeSurfer' preprocessed subjects directory. This directory must be the output directory from a FreeSurfer preprocessing recon-all pipeline. Default is the current working directory ("./").
filename	A string object containing the desired name of the output RDS file. Default is 'brain_measure.rds' in the R temporary directory (tempdir()).
template	A string object containing the name of surface template (available: 'fsaverage5', 'fsaverage6'). Default is fsaverage5.
measure	A string object containing the name of the measure of interest. Options are thickness, curv, sulc, area, and volume (for freesurfer 7.4.1 or later). Default is thickness.
subj_ID	A logical object stating whether to include subject IDs (folder names in the subjects directory) as a first column to the output matrix. Default is TRUE.

22 surf_to_atlas

fshomepath

An optional string object containing the path to the FreeSurfer installation directory. This makes sure R accesses FreeSurfer if the system environment variables are not inherited — as would be the case if you are running the function from RStudio.

Details

Note that RStudio does not inherit the shell environment variables if it is open from a terminal. In that case, the fshomepath argument needs to be provided. The function runs system shell commands that will produce in the set subjects directory: 1) a sorted list of subjects "sublist.txt"; 2) a link file to the selected surface fsaverage template. 3) left and right hemisphere .mgh maps outputted by 'FreeSurfer' 's mris_preproc.

Value

A .RDSfile with a list containing 1. the list of subject IDs (first element) and 2. a surface data matrix object (second element), or only a data matrix object. The matrix has N subjects x M vertices dimensions and can be used readily by VertexWiseR statistical analysis functions. Each row corresponds to a subject (in the order they are listed in the folder) and contains the left to right hemispheres' vertex-wise values.

Examples

```
SURFvextract(sdirpath = "freesurfer_subjdir",
filename=paste0(tempdir(), "/CTv.rds"), template="fsaverage5",
measure="curv")
```

surf_to_atlas

Surface to atlas

Description

Returns the mean or sum of vertex-wise surface data for each ROI of a selected atlas

Usage

```
surf_to_atlas(surf_data, atlas, mode = "mean")
```

Arguments

surf_data	A N x V matrix object containing the surface data (N row for each subject, V for each vertex), in fsaverage5 (20484 vertices), fsaverage6 (81924 vertices), fslr32k (64984 vertices) or hippocampal (14524 vertices) space. See also Hipvextract(), SURFvextract() or FSLRvextract output formats.
atlas	A numeric integer object corresponding to the atlas of interest. 1=Desikan, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400. Set to 1 by default. This argument is ignored for hippocampal surfaces.
mode	A string indicating whether to extract the sum ('sum') or the average ('mean') of the ROI vertices values. Default is 'mean'.

surf_to_vol 23

Details

The function currently works with the aparc/Desikan-Killiany-70, Destrieux-148, Glasser-360, Schaefer-100, Schaefer-200, Schaefer-400 atlases. ROI to vertex mapping data were obtained from the 'ENIGMA toolbox'; data for Destrieux came from 'Nilearn' 's nilearn.datasets.fetch_atlas_surf_destrieux

For hippocampal data, the function currently works with the "bigbrain" 10-parcels atlas integrated in 'HippUnfold.' See also doi:10.1016/j.neuroimage.2019.116328.

Value

A matrix object with ROI as column and corresponding average vertex-wise values as row

See Also

```
atlas_to_surf
```

Examples

```
CTv = runif(20484,min=0, max=100)
parcel_data = surf_to_atlas(CTv, 1)
```

surf_to_vol

Surface to volume

Description

Converts surface data to volumetric data (.nii file)

Usage

```
surf_to_vol(surf_data, filename, VWR_check = TRUE)
```

Arguments

A numeric vector or object containing the surface data, either in fsaverage5 (1 x 20484 vertices) or fsaverage6 (1 x 81924 vertices) space. It can only be one row

of vertices (not a cohort surface data matrix).

filename A string object containing the desired name of the output .nii file (default is

'output.nii' in the R temporary directory (tempdir())).

VWR_check A boolean object specifying whether to check and validate system requirements.

Default is TRUE.

Value

A .nii volume file

```
CTv = runif(20484,min=0, max=100);
surf_to_vol(CTv, filename = paste0(tempdir(),'/volume.nii'), VWR_check=FALSE)
```

24 TFCE_threshold

TFCE_threshold	Thresholding TFCE output	

Description

Threshold TFCE maps from the TFCE_vertex_analysis() output and identifies significant clusters at the desired threshold.

Usage

```
TFCE_threshold(TFCEoutput, p = 0.05, atlas = 1, k = 20, VWR_check = TRUE)
```

Arguments

TFCEoutput	An object containing the output from TFCE_vertex_analysis()
р	A numeric object specifying the p-value to threshold the results (Default is 0.05)
atlas	A numeric integer object corresponding to the atlas of interest. 1=Desikan, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400. Set to 1 by default. This argument is ignored for hippocampal surfaces.
k	Cluster-forming threshold (Default is 20)
VWR_check	A boolean object specifying whether to check and validate system requirements. Default is TRUE.

Value

A list object containing the cluster level results, thresholded t-stat map, and positive, negative and bidirectional cluster maps.

```
model1_TFCE=readRDS(system.file('demo_data/model1_TFCE.rds',
package = 'VertexWiseR'))

TFCEanalysis_output=TFCE_threshold(model1_TFCE, p=0.05, atlas=1,
VWR_check=FALSE)

TFCEanalysis_output$cluster_level_results
```

Description

Fits a linear model with the cortical or hippocampal surface data as the predicted outcome, and returns t-stat and threshold-free cluster enhancement (TFCE) statistical maps for the selected contrast.

Usage

```
TFCE_vertex_analysis(
  model,
  contrast,
  formula,
  formula_dataset,
  surf_data,
  nperm = 100,
  tail = 2,
  nthread = 10,
  smooth_FWHM,
  VWR_check = TRUE
)
```

Arguments

mode1

An N X P data.frame object containing N rows for each subject and P columns for each predictor included in the model

contrast

A N x 1 numeric vector or object containing the values of the predictor of interest. Its length should equal the number of subjects in model (and can be a single column from model). The t-stat and TFCE maps will be estimated only for this predictor.

formula

An optional string or formula object describing the predictors to be fitted against the surface data, replacing the model, contrast, or random arguments. If this argument is used, the formula_dataset argument must also be provided.

- The dependent variable is not needed, as it will always be the surface data values.
- The first independent variable in the formula will always be interpreted as the contrast of interest for which to estimate cluster-thresholded t-stat maps.
- Only one random regressor can be given and must be indicated as '(1|variable_name)'.

formula_dataset

An optional data.frame object containing the independent variables to be used with the formula (the IV names in the formula must match their column names in the dataset).

surf_data	A N x V matrix object containing the surface data (N row for each subject, V for each vertex), in fsaverage5 (20484 vertices), fsaverage6 (81924 vertices), fslr32k (64984 vertices) or hippocampal (14524 vertices) space. See also Hipvextract(), SURFvextract() or FSLRvextract output formats. Alternatively, a string object containing the path to the surface object (.rds file) outputted by extraction functions may be given
	•
nperm	A numeric integer object specifying the number of permutations generated for the subsequent thresholding procedures (default = 100)
tail	A numeric integer object specifying whether to test a one-sided positive (1), one-sided negative (-1) or two-sided (2) hypothesis
nthread	A numeric integer object specifying the number of CPU threads to allocate
smooth_FWHM	A numeric vector object specifying the desired smoothing width in mm
VWR_check	A boolean object specifying whether to check and validate system requirements.
tail nthread smooth_FWHM	object containing the path to the surface object (.rds file) outputted by extraction functions may be given. A numeric integer object specifying the number of permutations generated for the subsequent thresholding procedures (default = 100) A numeric integer object specifying whether to test a one-sided positive (1), one-sided negative (-1) or two-sided (2) hypothesis A numeric integer object specifying the number of CPU threads to allocate A numeric vector object specifying the desired smoothing width in mm

Details

This TFCE method is adapted from the 'Nilearn' Python library.

Default is TRUE.

Value

A list object containing the t-stat and the TFCE statistical maps which can then be subsequently thresholded using TFCE_threshold()

See Also

```
{\tt RFT\_vertex\_analysis}, {\tt TFCE\_vertex\_analysis\_mixed}, {\tt TFCE\_threshold}
```

```
demodata = readRDS(system.file('demo_data/SPRENG_behdata_site1.rds',
package = 'VertexWiseR'))[1:5,]
CTv = readRDS(file = url(paste0("https://github.com",
"/CogBrainHealthLab/VertexWiseR/blob/main/inst/demo_data/",
"SPRENG_CTv_site1.rds?raw=TRUE")))[1:5,]
TFCEpos=TFCE_vertex_analysis(model=demodata[,c("sex","age")],
contrast=demodata[,"age"], surf_data=CTv, tail=1,
nperm=5, nthread = 2, VWR_check=FALSE)
#To threshold the results, you may then run:
#results=TFCE_threshold(TFCEpos, p=0.05, atlas=1)
#results$cluster_level_results
#Formula alternative:
#formula= as.formula("~ age + sex")
#TFCEpos=TFCE_vertex_analysis(formula=formula,
#formula_dataset=demodata, surf_data=CTv, tail=1,
#nperm=5, nthread = 2, VWR_check=FALSE)
```

```
TFCE_vertex_analysis_mixed
```

Vertex-wise analysis with threshold-free cluster enhancement (mixed effect)

Description

Fits a linear mixed effects model with the cortical or hippocampal surface data as the predicted outcome, and returns t-stat and threshold-free cluster enhancement (TFCE) statistical maps for the selected contrast.

Usage

```
TFCE_vertex_analysis_mixed(
   model,
   contrast,
   random,
   formula,
   formula_dataset,
   surf_data,
   nperm = 100,
   tail = 2,
   nthread = 10,
   smooth_FWHM,
   perm_type = "row",
   VWR_check = TRUE
)
```

Arguments

model

An N X P data.frame object containing N rows for each subject and P columns for each predictor included in the model. This data.frame should not include the random effects variable.

contrast

A N x 1 numeric vector or object containing the values of the predictor of interest. Its length should equal the number of subjects in model (and can be a single column from model). The t-stat and TFCE maps will be estimated only for this predictor.

random

A N x 1 numeric vector or object containing the values of the random variable (optional). Its length should be equal to the number of subjects in model (it should NOT be inside the model data.frame).

formula

An optional string or formula object describing the predictors to be fitted against the surface data, replacing the model, contrast, or random arguments. If this argument is used, the formula_dataset argument must also be provided.

 The dependent variable is not needed, as it will always be the surface data values.

- The first independent variable in the formula will always be interpreted as the contrast of interest for which to estimate cluster-thresholded t-stat maps.
- Only one random regressor can be given and must be indicated as '(1|variable name)'.

formula_dataset

An optional data frame object containing the independent variables to be used with the formula (the IV names in the formula must match their column names in the dataset).

surf_data A N x V matrix object containing the surface data (N row for each subject,

V for each vertex), in fsaverage5 (20484 vertices), fsaverage6 (81924 vertices), fslr32k (64984 vertices) or hippocampal (14524 vertices) space. See also Hipvextract(), SURFvextract() or FSLRvextract output formats. Alternatively, a string object containing the path to the surface object (.rds file) outputted by extraction

functions may be given.

nperm A numeric integer object specifying the number of permutations generated for

the subsequent thresholding procedures (default = 100)

tail A numeric integer object specifying whether to test a one-sided positive (1),

one-sided negative (-1) or two-sided (2) hypothesis

nthread A numeric integer object specifying the number of CPU threads to allocate smooth_FWHM A numeric vector object specifying the desired smoothing width in mm

perm_type A string object specifying whether to permute the rows ("row"), between sub-

jects ("between"), within subjects ("within") or between and within subjects

("within_between") for random subject effects. Default is "row".

VWR_check A boolean object specifying whether to check and validate system requirements.

Default is TRUE.

Details

This TFCE method is adapted from the 'Nilearn' Python library.

Value

A list object containing the t-stat and the TFCE statistical maps which can then be subsequently thresholded using TFCE_threshold()

See Also

```
RFT_vertex_analysis, TFCE_vertex_analysis, TFCE_threshold
```

TFCEpos=TFCE_vertex_analysis_mixed(model=demodata[,c("sex",

VWRfirstrun 29

```
"age")], contrast=demodata[,"age"], random=demodata[,"id"],
surf_data=CTv, nperm =5,tail = 1, nthread = 2, VWR_check=FALSE)

#To get significant clusters, you may then run:
#results=TFCE_threshold(TFCEpos, p=0.05, atlas=1)
#results$cluster_level_results

#Formula alternative:
#formula= as.formula("~ age + sex + (1|id)")
#TFCEpos=TFCE_vertex_analysis_mixed(formula=formula,
#formula_dataset=demodata, surf_data=CTv, tail=1,
#nperm=5, nthread = 2, VWR_check=FALSE)
```

VWRfirstrun

VertexWiseR system requirements installation

Description

Helps the user verify if VertexWisrR's system requirements are present and install them ('Miniconda', 'BrainStat' toolbox and libraries). If they are installed already, nothing will be overwritten.

Usage

```
VWRfirstrun(requirement = "any", n_vert = 0, promptless = FALSE)
```

Arguments

requirement

String that specifies a requirement to enquire about:

- For only Python/Conda installation: 'python/conda only'
- For Python/Conda and Brainstat installation: 'conda/brainstat'
- For specific 'BrainStat' libraries: 'fsaverage5', 'fsaverage6', 'fslr32k', 'yeo_parcels'
- For the neurosynth database: 'neurosynth'. Default is 'any' and checks everything.

n_vert

Numeric vector indicating the number of vertices of a given surface data so that only the required templates are asked for. It will modify the requirement argument accordingly.

promptless

A boolean object specifying whether to prompt the user for action when system requirements are missing. If TRUE, VWRfirstrun() will simply inform of what is missing and will not prompt for action. Default is FALSE.

Details

VertexWiseR imports and makes use of the R package 'reticulate.' 'reticulate' is a package that allows R to borrow or translate Python functions into R. Using 'reticulate', the package calls functions from the 'BrainStat' Python module. For 'reticulate' to work properly with VertexWiseR,

30 VWRfirstrun

'Miniconda' needs to be installed with it — 'Miniconda' is a lightweight version of Python, specifically for use within 'RStudio'. If for a reason Miniconda cannot be installed, the function gives the choice to install a reticulate-suitable Python environment. Vertex-wise statistical analyses of cortical surface require fsaverage and parcellation templates as imported by default in 'BrainStat'. The decode_surf_data() function also requires the 'Neurosynth' database to be downloaded.

Value

No returned value in interactive session. In non-interactive sessions, a string object informing that system requirements are missing.

Examples

VWRfirstrun()

Index

* datasets edgelist_hip, 6 fs6_to_fs5_map, 8 hip_points_cells, 11 MNImap_hip, 12 ROImap_fs5, 18 ROImap_fs6, 19 ROImap_fs1r32k, 19 ROImap_hip, 20	surf_to_atlas, 3, 22 surf_to_vol, 23 SURFvextract, 21 TFCE_threshold, 24, 26, 28 TFCE_vertex_analysis, 17, 25, 28 TFCE_vertex_analysis_mixed, 17, 26, 27 VWRfirstrun, 29
atlas_to_surf, 2, 23	
CAT12vextract, 3	
decode_surf_data, 5	
edgelist-class, 6 edgelist_hip, 6	
fs5_to_fs6, 6, 7 fs6_to_fs5, 7, 7 fs6_to_fs5_map, 8 fs_stats, 10 FSLRvextract, 8	
hip_points_cells, 11 HIPvextract, 10	
MNImap_hip, 12 MNIsurface-class, 12	
plot_surf, 13 plot_surf3d, 14	
RFT_vertex_analysis, 16, 26, 28 ROImap-class, 18 ROImap_fs5, 18 ROImap_fs6, 19 ROImap_fslr32k, 19 ROImap_hip, 20 smooth_surf, 20	