Marriot Hotel Room Demand Forecasting

Business Forecasting Group 2 - Team 10 :Paraskumar, Karthigeyan, Shanmuga Priya, Raju, Niranjan a.k.a GOD

18/07/2019

Data Cleaning

We First clean the data by converting the respective columns as factors and extract the data subset which will be used in the calculations.

```
#### Data Cleaning
library(readxl)
marriot<-read_excel("Marriot_data (1).xlsx")</pre>
## New names:
## * `` -> ...7
## * `` -> ...8
## * `` -> ...9
## * `` -> ...10
## * `` -> ...11
marriot$`DOW INDICATOR1`<-factor(marriot$`DOW INDICATOR1`)</pre>
DOW<-c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
levels(marriot$`DOW INDICATOR1`)<-DOW</pre>
marriot$WEEK<-factor(marriot$WEEK)</pre>
levels(marriot$WEEK)<-c("Week 1","Week 2","Week 3","Week 4","Week 5","Week 6","Week 7",</pre>
                         "Week 8", "Week 9", "Week 10", "Week 11", "Week 12", "Week 13", "Week 14")
marriot[,c(7,8,9,10,11)]<-NULL
data.subset<-data.frame(Demand= marriot$DEMAND[1:87], Day = marriot$^DOW INDICATOR1^[1:87], Week = marr
str(data.subset)
## 'data.frame':
                     87 obs. of 3 variables:
  $ Demand: num 1417 924 982 1149 1021 ...
            : Factor w/ 7 levels "Saturday", "Sunday", ...: 1 2 3 4 5 6 7 1 2 3 ...
   $ Week : Factor w/ 14 levels "Week 1","Week 2",..: 1 1 1 1 1 1 1 2 2 2 ...
```

Exploratory Data Anlysis

Univariate Analysis

Here we find the descriptive statistics of the hotel room demand.

```
##Univariate Analysis
summary(data.subset$Demand)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 750 1244 1553 1501 1780 1925
```

We are also interested in how the demand varies per day and per week. This is captured in the following plots.

Demand Variation Across Weeks

Time Series Plots

We would like to visually inspect how the demand changes.

```
### Creating a time-series object
library(ggplot2)
library(forecast)
## Registered S3 method overwritten by 'xts':
##
     method
                from
##
     as.zoo.xts zoo
## Registered S3 method overwritten by 'quantmod':
##
     method
                       from
##
     as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##
                        from
     fitted.fracdiff
##
                        fracdiff
     residuals.fracdiff fracdiff
demand.ts<-ts(data.subset$Demand,frequency = 7)</pre>
autoplot(demand.ts, ylab = "Total no. of rooms demanded", xlab = "Week no.",
         main ="Marriot Hotel Rooms Demanded : May 23 - Aug 18,1987 " )+
         theme(plot.title = element_text(hjust = 0.5))
```

Marriot Hotel Rooms Demanded : May 23 - Aug 18,1987


```
ggsubseriesplot(demand.ts) +
  ylab("No. Rooms Demanded") +
  ggtitle("Hotel Room Demand Variation")+theme(plot.title = element_text(hjust = 0.5))
```

Hotel Room Demand Variation

ggseasonplot(demand.ts, year.labels=TRUE, year.labels.left=TRUE) + ylab("No. of rooms demanded") +
ggtitle("Seasonal plot: Room Demand variation")+theme(plot.title = element_text(hjust = 0.5))

Here we don't notice a trend but a seasonality. To further confirm we conduct the unit root test to identify if there are any random walks present.

#Forcasting Procedure

Stationarity Check

```
##Staionarity Tests
library(fUnitRoots)
## Loading required package: timeDate
## Loading required package: timeSeries
## Loading required package: fBasics
adfTest(demand.ts) # #p-value> 0.05 : Fail to reject null hypothesis = Non-stationarity
##
## Title:
##
   Augmented Dickey-Fuller Test
##
## Test Results:
     PARAMETER:
##
##
       Lag Order: 1
     STATISTIC:
##
##
       Dickey-Fuller: -0.5394
     P VALUE:
##
```

```
## 0.4408
##
## Description:
## Thu Jul 18 16:17:27 2019 by user:
library(tseries)
kpss.test(demand.ts) #p-value> 0.05 : Fail to reject null hypothesis = Stationarity
## Warning in kpss.test(demand.ts): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: demand.ts
## KPSS Level = 0.12143, Truncation lag parameter = 3, p-value = 0.1
```

The contradictory results from the above test further leads us to consider not just ARIMA models but also determinsitic trend-seasonality models.

Model Building

Naive

The simplest model to be considered is the naive forcast.

```
#Naive
model.naive<-naive(demand.ts)
model.naive</pre>
```

```
##
           Point Forecast
                              Lo 80
                                       Hi 80
                                                  Lo 95
                                                           Hi 95
## 13.42857
                     1471 1095.2444 1846.756 896.33143 2045.669
## 13.57143
                     1471
                           939.6014 2002.399
                                              658.29592 2283.704
## 13.71429
                     1471 820.1722 2121.828 475.64485 2466.355
## 13.85714
                     1471 719.4888 2222.511
                                              321.66287 2620.337
## 14.00000
                     1471 630.7850 2311.215 186.00202 2755.998
## 14.14286
                     1471 550.5906 2391.409
                                               63.35524 2878.645
## 14.28571
                     1471 476.8442 2465.156 -49.43011 2991.430
## 14.42857
                     1471 408.2027 2533.797 -154.40816 3096.408
## 14.57143
                     1471 343.7333 2598.267 -253.00570 3195.006
                     1471 282.7565 2659.243 -346.26157 3288.262
## 14.71429
```

```
checkresiduals(model.naive$residuals)
```

```
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
```


\mathbf{ETS}

Next, we consider the Holt-winter model.

```
##Trend-Seasonality Decompositions
model.ets<-ets(demand.ts)
model.ets
## ETS(A,N,A)
##</pre>
```

```
## Call:
##
    ets(y = demand.ts)
##
##
     Smoothing parameters:
##
       alpha = 0.9999
       gamma = 1e-04
##
##
##
     Initial states:
##
       1 = 1462.5945
       s = -114.956 - 124.8259 101.4008 160.1854 90.7313 - 223.011
##
##
              110.4753
##
             207.5801
##
     sigma:
##
##
        AIC
                 AICc
                           BIC
## 1327.414 1330.308 1352.073
```

Decomposition by ETS(A,N,A) method

checkresiduals(model.ets\$residuals)

Warning in modeldf.default(object): Could not find appropriate degrees of
freedom for this model.

model.ets\$aic

[1] 1327.414

accuracy(model.ets)

```
## ME RMSE MAE MPE MAPE MASE
## Training set -0.946134 196.5502 155.5432 -1.343285 11.48953 0.4741088
## Training set 0.05008858
```

ARIMA

Here, we consider ARIMA models.

```
#Auto-ARIMA
model.arima<-auto.arima(demand.ts)
model.arima
## Series: demand.ts
```

```
## ARIMA(1,0,0)(2,0,0)[7] with non-zero mean
##
## Coefficients:
## ar1 sar1 sar2 mean
## 0.7421 0.4322 0.2431 1424.5146
## s.e. 0.0711 0.1072 0.1241 226.0695
##
```

sigma^2 estimated as 48984: log likelihood=-593.43

```
## AIC=1196.87 AICc=1197.61 BIC=1209.2
```

checkresiduals(model.arima\$residuals)

Warning in modeldf.default(object): Could not find appropriate degrees of ## freedom for this model.

Residuals

model.arima\$aic

[1] 1196.867

Model Evaluation

Here we plot our models.

```
library(ggplot2)
autoplot(demand.ts) +
  autolayer(fitted(model.ets), series = "ETS") +
  autolayer(fitted(model.arima), series = "Auto-ARIMA") +
  autolayer(fitted(model.naive), series = "Naive")+
  guides(colour = guide_legend(title = " "))
```

Warning: Removed 1 rows containing missing values (geom_path).

Now we compare the model AIC values and the MAPE for the three models.

```
accuracy(model.naive)
##
                              RMSE
                                         MAE
                                                            MAPE
                                                                      MASE
##
   Training set 0.627907 293.2036 223.4186 -2.613412 17.11545 0.6809986
                       ACF1
## Training set -0.2298073
accuracy(model.arima)
##
                       ME
                              RMSE
                                         MAE
                                                   {\tt MPE}
                                                            MAPE
                                                                      MASE
   Training set 5.648762 216.1749 165.3773 -2.300914 12.53645 0.5040838
##
##
                       ACF1
## Training set 0.08927444
accuracy(model.ets)
##
                               RMSE
                                                             MAPE
                                                                        MASE
                        ME
  Training set -0.946134 196.5502 155.5432 -1.343285 11.48953 0.4741088
##
##
                       ACF1
## Training set 0.05008858
```

By looking at the MAPE values we find the Holt-Winter model to give the best prediction.

Forecast Reccomendation

The last row of the output give the best estimate for Saturday (22 August 1987), the start of week 14.

m2<-forecast(model.ets, h=5);m2</pre>

```
Point Forecast
                              Lo 80
                                       Hi 80
                                                 Lo 95
                                                          Hi 95
## 13.42857
                 1540.496 1274.4710 1806.520 1133.6461 1947.345
## 13.57143
                 1481.691 1105.4938 1857.887
                                              906.3473 2057.034
## 13.71429
                 1255.465 794.7277 1716.203
                                              550.8280 1960.102
                                              451.6987 2078.975
## 13.85714
                 1265.337 733.3274 1797.346
## 14.00000
                 1490.759 895.9578 2085.561 581.0889 2400.430
```

Suggestions To Improve Forecasting

We can further imporve the forecasting by considering a longer time interval.