Ce sujet à tiroirs « à la française » est autant un exercice de compréhension que de rédaction. Les questions forment une progression de difficulté croissante et on s'attend pas à ce que vous ayez le temps de tout traiter: le but est plutôt de se rendre le plus loin possible avec un niveau de qualité élevée.

- 1. Un *pré-ordre* est une relation binaire, réflexive et transitive. Expliciter ce que cela signifie en termes d'ensembles et d'éléments.
 - Un pré-ordre sur un ensemble E est une relation binaire sur E: c'est-à-dire une partie \mathcal{R} du produit $E \times E$. Par convention, pour $x, y \in E$, on note « $x \mathcal{R} y$ » pour dire « $(x, y) \in \mathcal{R}$. »
 - Réflexive : pour tout $x \in E$, on a $x \mathcal{R} x$.
 - Transitive : si $x \mathcal{R} y$ et $y \mathcal{R} z$, alors $x \mathcal{R} z$.
- 2. La relation $\mathcal{R} = \{(a,a),\,(a,b),\,(b,b),\,(b,c),\,(c,b),\,(c,c)\}$ est-elle un préordre sur $X=\{a,b,c\}$?

 - Réflexive : oui, on a $a \mathcal{R} a$, $b \mathcal{R} b$ et $c \mathcal{R} c$.
 - Transitive: non, $a \mathcal{R} b$ et $b \mathcal{R} c$ mais $a \mathcal{R} c$.
- 3. Montrer que la relation de dominance « f est O(g) en $+\infty$ » est un pré-ordre sur l'ensemble Y des fonctions de ${\bf N}$ dans ${\bf R}$.

Pour $f,g\in Y$, notons $f\preceq g$ lorsque f est O(g) en $+\infty$, c'est-à-dire quand il existe des constantes C et N pour lesquelles

$$|f(n)| \leqslant C|g(n)|$$
 pour tout $n \geqslant N$.

- Réflexivité : pour tout $f \in Y$ on a bien $f \leq f$, il suffit de prendre C = 1 et N = 0.
- Transitivité : si $f \leq g$ et $g \leq h$, alors il existe des constantes C_1, C_2, N_1, N_2 pour lesquelles

$$\begin{cases} |f(n)| \leqslant C_1 |g(n)| & \text{pour tout } n \geqslant N_1 \\ |g(n)| \leqslant C_2 |h(n)| & \text{pour tout } n \geqslant N_2. \end{cases}$$

Il suit que pour tout $n \ge \max(N_1, N_2)$, on a

$$|f(n)| \leqslant C_1|g(n)| \leqslant C_1C_2|h(n)|,$$

on a donc bien $f \leq h$.

4. Est-ce une relation d'équivalence? (preuve ou un contre-exemple)

Non, on n'a pas la symétrie. Par exemple : $n \leq n^2$ mais $n^2 \not\leq n$.

5. La dominance est-elle une relation d'ordre? (idem)

Non : on n'a pas non plus l'antisymétrie. Par exemple : $1 + \sin n \le 1$ et $1 \le 1 + \sin n$ mais $1 + \sin n \ne 1$.

6. Soit \vdash un pré-ordre sur un ensemble E et \sim la relation sur E définie par

$$x \sim y \iff x \vdash y \text{ et } y \vdash x.$$

Montrer que \sim est une relation d'équivalence.

- Réflexivité : pour tout $x \in E$, $x \sim x$ car $x \vdash x$ (et $x \vdash x$).
- Symétrie : si $x \sim y$, alors $x \vdash y$ et $y \vdash x$; puisque $y \vdash x$ et $x \vdash y$, alors $y \sim x$.
- Transitivité : si $x \sim y$ et $y \sim z$, alors

$$\begin{cases} x \vdash y \text{ et } y \vdash z \\ z \vdash y \text{ et } y \vdash x \end{cases} \implies \begin{cases} x \vdash z \\ z \vdash x \end{cases}$$

donc $x \sim z$.

7. Vérifier que \vdash et \sim sont compatibles : si $x \sim x'$ et $y \sim y'$, alors

$$x \vdash y \iff x' \vdash y'$$
.

Par hypothèse : $x \vdash x', x' \vdash x, y \vdash y', y' \vdash y$.

 $(\Leftarrow): x' \vdash x, \, x \vdash y, \, y \vdash y' \implies x' \vdash y'$ par transitivité.

 $(\Rightarrow): \text{de même } x \vdash x', \, x' \vdash y', \, y' \vdash y \implies x \vdash y.$

8. Pour \overline{x} et \overline{y} deux classes d'équivalence pour \sim , on définit

$$\overline{x} \leqslant \overline{y} \iff x \vdash y$$

(la propriété précédente garantit que cela ne dépend pas du choix des éléments x et y dans leur classe respective). Montrer que \leq est une relation d'ordre sur l'ensemble E/\sim des classes d'équivalence.

- Réflexivité : $\overline{x} \leq \overline{x} \operatorname{car} x \vdash x$.
- Antisymétrie : si $\overline{x} \leq \overline{y}$ et $\overline{y} \leq \overline{x}$, alors $x \vdash y$ et $y \vdash x$. Mais cela signifie que $x \sim y$, donc $\overline{x} = \overline{y}$.
- Transitivité : si $\overline{x} \leqslant \overline{y}$ et $\overline{y} \leqslant \overline{z}$, alors $x \vdash y$ et $y \vdash z$ donc $x \vdash z$ d'où $\overline{x} \leqslant \overline{z}$.
- 9. Cet ordre est-il forcément total? (démonstration ou contre-exemple)

Non : par exemple dans Y pré-ordonné par la dominance, 1 et $e^n \sin n$ ne sont pas comparables; leurs classes ne le sont pas non plus dans Y/\sim .

10. La relation $x \vdash y \iff x \vdash y \text{ ou } y \vdash x \text{ est-elle d'équivalence sur } E$?

En général : non, on a la réflexivité et la symétrie mais il n'y a pas de raison que cette relation soit transitive.

Par exemple, dans Y on a $1 \mapsto e^n$ (car $1 \leq e^n$) et $e^n \mapsto e^n \sin n$ (car $e^n \sin n \leq e^n$) mais pas $1 \mapsto e^n \sin n$.