Motivation Monte Carlo Important Sampling Acceptance Rejection Conclusion

Simulation Based Inference

Chris Men

BI Data Science Capital Markets, Quicken Loans

September 10, 2017

Outline

Motivation

Monte Carlo

Important Sampling

Acceptance Rejection

Conclusion

Motivation
Monte Carlo
Important Sampling
Acceptance Rejection
Conclusion

Why Simulation Based Inference

▶ In statistics, direct calculation of the moments of a random variable is usually not feasible.

- ▶ In statistics, direct calculation of the moments of a random variable is usually not feasible.
- ► This is even harder in Baysiean statistics because posterior distributions are usually not simple distributions.

- ▶ In statistics, direct calculation of the moments of a random variable is usually not feasible.
- ► This is even harder in Baysiean statistics because posterior distributions are usually not simple distributions.
- Maximum likelihood estimation (MLE) is not always available to fit a model.

- ▶ In statistics, direct calculation of the moments of a random variable is usually not feasible.
- This is even harder in Baysiean statistics because posterior distributions are usually not simple distributions.
- Maximum likelihood estimation (MLE) is not always available to fit a model.
- ▶ Latent time series models are overly parameterized and simulation based methods are very common.

- ▶ In statistics, direct calculation of the moments of a random variable is usually not feasible.
- This is even harder in Baysiean statistics because posterior distributions are usually not simple distributions.
- Maximum likelihood estimation (MLE) is not always available to fit a model.
- Latent time series models are overly parameterized and simulation based methods are very common.
- ► Markov Chain Monte Carlo (MCMC) methods are more popular but take time to run. C/C++, MATLAB call C, and R call C have to be used.

Motivation
Monte Carlo
Important Sampling
Acceptance Rejection
Conclusion

Why Monte Carlo (MC)?

▶ Direct calculation is not possible. How to calculate π .

Motivation
Monte Carlo
Important Sampling
Acceptance Rejection
Conclusion

Why Monte Carlo (MC)?

- ▶ Direct calculation is not possible. How to calculate π .
- ► The original MC approach was a method developed by physicists to use random number generation to compute integrals.

Why Monte Carlo (MC)?

- ▶ Direct calculation is not possible. How to calculate π .
- ► The original MC approach was a method developed by physicists to use random number generation to compute integrals.
- Suppose we what to compute an integral

$$\int_{a}^{b} f(x)dx = ?$$

Sometimes we can but most of times we can't get this done analytically.

Why Monte Carlo (MC)?

- ▶ Direct calculation is not possible. How to calculate π .
- ► The original MC approach was a method developed by physicists to use random number generation to compute integrals.
- Suppose we what to compute an integral

$$\int_{a}^{b} f(x)dx = ?$$

Sometimes we can but most of times we can't get this done analytically.

▶ If we can decompose f(x) = h(x)p(x), where p(x) is a probability density function (pdf), then we have

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} h(x)p(x)dx = \mathcal{E}_{p(x)}[h(x)]$$

Law of Large Numbers (LLN)

▶ Given an independent and identically distributed sequence of randome variables $Y_1, Y_2, ..., Y_n$ with $\bar{Y}_n = n^{-1} \sum_{i=1}^n Y_i$ and $E(Y_i) = \mu$, then for any $\epsilon > 0$ we have

$$P(|\hat{Y} - \mu| > \epsilon) \to 0$$

as $n \to \infty$.

Law of Large Numbers (LLN)

▶ Given an independent and identically distributed sequence of randome variables $Y_1, Y_2, ..., Y_n$ with $\bar{Y}_n = n^{-1} \sum_{i=1}^n Y_i$ and $E(Y_i) = \mu$, then for any $\epsilon > 0$ we have

$$P(|\hat{Y} - \mu| > \epsilon) \to 0$$

as $n \to \infty$.

According to Law of Large Numbers, as $n \to \infty$, \bar{Y}_n will close to μ , and the approximation will be more accurate.

MC for integral

▶ If we can generate a random sample $\{x_1, ..., x_n\}$ from p(x), then

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} h(x)p(x)dx = E_{p(x)}[h(x)] \approx \frac{1}{n} \sum_{i=1}^{n} h(x_{i})$$

MC for integral

▶ If we can generate a random sample $\{x_1, ..., x_n\}$ from p(x), then

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} h(x)p(x)dx = E_{p(x)}[h(x)] \approx \frac{1}{n} \sum_{i=1}^{n} h(x_{i})$$

▶ A simple case. Integrating a function of f(x) over [a,b] is nothing else than computing the mean of f(x) assuming that $x \sim U[0,1]$, then

$$\int_{a}^{b} f(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

MC for integral

▶ If we can generate a random sample $\{x_1, ..., x_n\}$ from p(x), then

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} h(x)p(x)dx = E_{p(x)}[h(x)] \approx \frac{1}{n} \sum_{i=1}^{n} h(x_{i})$$

▶ A simple case. Integrating a function of f(x) over [a,b] is nothing else than computing the mean of f(x) assuming that $x \sim U[0,1]$, then

$$\int_{a}^{b} f(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} f(x_{i})$$

▶ If we can simulate a random variable *X* over many times we will know almost everything about *X*.

► In Bayesian inference, MC integration can be used to approximate posterior distributions

$$I(y) = \int_a^b f(y|x)p(x)dx \approx \hat{I}(y) = \frac{1}{n} \sum_{i=1}^n f(y|x_i)$$

 In Bayesian inference, MC integration can be used to approximate posterior distributions

$$I(y) = \int_{a}^{b} f(y|x)p(x)dx \approx \hat{I}(y) = \frac{1}{n} \sum_{i=1}^{n} f(y|x_{i})$$

▶ The estimated MC standard error is given by

$$SE^{2}[\hat{I}(y)] = \frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(f(y|x_{i}) - \hat{I}(y) \right)^{2} \right)$$

► In Bayesian inference, MC integration can be used to approximate posterior distributions

$$I(y) = \int_{a}^{b} f(y|x)p(x)dx \approx \hat{I}(y) = \frac{1}{n} \sum_{i=1}^{n} f(y|x_{i})$$

▶ The estimated MC standard error is given by

$$SE^{2}[\hat{I}(y)] = \frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(f(y|x_{i}) - \hat{I}(y) \right)^{2} \right)$$

► This is often used to fit latent time series models where augumented parameters are highly correlated.

► In Bayesian inference, MC integration can be used to approximate posterior distributions

$$I(y) = \int_{a}^{b} f(y|x)p(x)dx \approx \hat{I}(y) = \frac{1}{n} \sum_{i=1}^{n} f(y|x_{i})$$

▶ The estimated MC standard error is given by

$$SE^{2}[\hat{I}(y)] = \frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(f(y|x_{i}) - \hat{I}(y) \right)^{2} \right)$$

- ► This is often used to fit latent time series models where augumented parameters are highly correlated.
- ► This is also widely applied in particle filter methods in terms of one-step and multi-step ahead forecasting.

Suppose we want to calculate the expectation of $g(x) = x^d$, where $x \sim N(0, \sigma^2)$ with pdf $p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ truncated in [a, b].

$$E[g(x)] = \int_{a}^{b} g(x)p(x)dx$$
$$= \int_{a}^{b} x^{d} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right) dx$$

► Suppose we want to calculate the expectation of $g(x) = x^d$, where $x \sim N(0, \sigma^2)$ with pdf $p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ truncated in [a, b].

$$E[g(x)] = \int_{a}^{b} g(x)p(x)dx$$
$$= \int_{a}^{b} x^{d} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right) dx$$

• We can simulate either the normal distribution or a uniform distribution on [a, b].

$$E[g(x)] = \int_a^b \frac{b-a}{\sqrt{2\pi}\sigma} x^d \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \frac{1}{b-a} dx$$

▶ Suppose we want to calculate the expectation of $g(x) = x^d$, where $x \sim Gamma(\alpha, \beta)$ with pdf $p(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp\left(-\frac{x}{\beta}\right)$ truncated in [a,b].

$$E[g(x)] = \int_{a}^{b} g(x)f(x)dx$$
$$= \int_{a}^{b} x^{d} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right) dx$$

▶ Suppose we want to calculate the expectation of $g(x) = x^d$, where $x \sim Gamma(\alpha, \beta)$ with pdf $p(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp\left(-\frac{x}{\beta}\right)$ truncated in [a,b].

$$E[g(x)] = \int_{a}^{b} g(x)f(x)dx$$
$$= \int_{a}^{b} x^{d} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right) dx$$

• We can simulate either the normal distribution or a uniform distribution on [a, b].

$$E[g(x)] = \int_{a}^{b} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{d+\alpha-1} \exp\left(-\frac{x}{\beta}\right) \frac{1}{b-a} dx$$

▶ Suppose we want to estimate $F_Y(y) = P(Y \ge y) = \mathbb{E}[I_{[y,+\infty]}(Y)]$, where $Y \sim N(0,1)$.

$$E[I_{[y,+\infty]}(Y)] = \int_{y}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$
$$= \int_{-\infty}^{+\infty} h(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$

where h(x) = 0 if x < y and h(x) = 1 if $x \ge y$.

▶ Suppose we want to estimate $F_Y(y) = P(Y \ge y) = \mathbb{E}[I_{[y,+\infty]}(Y)]$, where $Y \sim N(0,1)$.

$$E[I_{[y,+\infty]}(Y)] = \int_{y}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$
$$= \int_{-\infty}^{+\infty} h(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$

where h(x) = 0 if x < y and h(x) = 1 if $x \ge y$.

▶ Draw an iid sample $\{Y_1, ..., Y_n\}$ from N(0, 1), then the estimator is

$$E[I_{[y,+\infty]}(Y)] = \frac{1}{n} \sum_{i=1}^{n} h(Y_i) = \frac{\text{\# of draws } \ge y}{n}$$

Motivation Monte Carlo Important Sampling Acceptance Rejection Conclusion

Why Important Sampling (IS)?

▶ MC sampling is either impossible or not accurate.

Why Important Sampling (IS)?

- ▶ MC sampling is either impossible or not accurate.
- Suppose the density p(x) roughly approximates the density (of interest) q(x), then

$$\int_{a}^{b} f(x)q(x)dx = \int_{a}^{b} f(x)\left(\frac{q(x)}{p(x)}\right)p(x)dx = \mathbf{E}_{p(x)}\left[f(x)\left(\frac{q(x)}{p(x)}\right)\right]$$

Why Important Sampling (IS)?

- ▶ MC sampling is either impossible or not accurate.
- Suppose the density p(x) roughly approximates the density (of interest) q(x), then

$$\int_{a}^{b} f(x)q(x)dx = \int_{a}^{b} f(x) \left(\frac{q(x)}{p(x)}\right) p(x)dx = \mathbf{E}_{p(x)} \left[f(x) \left(\frac{q(x)}{p(x)}\right) \right]$$

▶ Give a sample $\{x_i, i = 1, ..., n\}$ drawn from p(x), the IS estimator is

$$\int_{a}^{b} f(x)q(x)dx = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \left(\frac{q(x_i)}{p(x_i)}\right)$$

Why Important Sampling (IS)?

▶ In Bayesian statistics.

$$J(y) = \int_{a}^{b} f(x)q(x)dx$$

can be approximated by

$$J(y) \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i) \left(\frac{q(x_i)}{p(x_i)} \right)$$

An alternative

► An alternative formulation of IS is

$$\int_{a}^{b} f(x)q(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} \omega_{i} f(x_{i}) / \sum_{i=1}^{n} \omega_{i}, \text{ where } \omega_{i} = \frac{q(x_{i})}{p(x_{i})}$$

An alternative

► An alternative formulation of IS is

$$\int_{a}^{b} f(x)q(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} \omega_{i} f(x_{i}) / \sum_{i=1}^{n} \omega_{i}, \text{ where } \omega_{i} = \frac{q(x_{i})}{p(x_{i})}$$

► The associated MC variance is

$$\operatorname{Var}(\hat{I}) = \frac{1}{n} \sum_{i=1}^{n} \omega_i (f(x_i) - \hat{I})^2 / \sum_{i=1}^{n} \omega_i$$

IS – Example 1

▶ Suppose we want to estimate $P(Y \ge 3)$, where $Y \sim N(0, 1)$.

$$P(Y > 3) = \int_{3}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx = \int_{-\infty}^{+\infty} h(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx,$$

where h(x) = 0 if x < 3 and h(x) = 1 if $x \ge 3$.

IS - Example 1

▶ Suppose we want to estimate $P(Y \ge 3)$, where $Y \sim N(0, 1)$.

$$P(Y > 3) = \int_{3}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx = \int_{-\infty}^{+\infty} h(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx,$$
where $h(x) = 0$ if $x < 3$ and $h(x) = 1$ if $x > 3$.

▶ Draw an iid sample $\{Y_1, ..., Y_n\}$ from N(0, 1), then the estimator is

$$E[I_{[3,+\infty]}(Y)] = \frac{1}{n} \sum_{i=1}^{n} h(Y_i) = \frac{\text{\# of draws } \ge 3}{n}$$

IS – Example 1 (Cont'd)

▶ Draw an iid sample $\{Y_1, ..., Y_{100}\}$ from N(0, 1), then the estimator is

$$E[I_{[3,+\infty]}(Y)] = \frac{1}{100} \sum_{i=1}^{100} h(Y_i) = \frac{\text{\# of draws } \ge 3}{100}$$

IS – Example 1 (Cont'd)

▶ Draw an iid sample $\{Y_1, ..., Y_{100}\}$ from N(0, 1), then the estimator is

$$E[I_{[3,+\infty]}(Y)] = \frac{1}{100} \sum_{i=1}^{100} h(Y_i) = \frac{\text{\# of draws } \ge 3}{100}$$

▶ Draw an iid sample $\{Y_1, ..., Y_{100}\}$ from N(3, 1), then the estimator is

$$E[I_{[3,+\infty]}(Y)] = \frac{1}{100} \sum_{i=1}^{100} \frac{h(Y_i)f(y_i)}{g(Y_i)},$$

where f(y) is the density of a N(0, 1) and g(x) is the density of N(4, 1).

Motivation
Monte Carlo
Important Sampling
Acceptance Rejection
Conclusion

Accept Rejection

Suppose that we wish to generate samples from a distribution $\pi(x) \propto f(x)/k$, where k is the unknown normalizing constant.

Accept Rejection

- Suppose that we wish to generate samples from a distribution $\pi(x) \propto f(x)/k$, where k is the unknown normalizing constant.
- Let g(x) be the density function that can be sampled by a known method.

Accept Rejection

- Suppose that we wish to generate samples from a distribution $\pi(x) \propto f(x)/k$, where k is the unknown normalizing constant.
- Let g(x) be the density function that can be sampled by a known method.
- Suppose that their is a known constant c satisfying $f(x) \le cg(x)$ for any x.

- ► The AR procedure
 - 1. Generate a candidate y from g(.) and a value u from a uniform distribution $\mathcal{U}(0,1)$.
 - 2. If $u \le f(y)/(cg(y))$, then return x = y; else go to step 1.

- ► The AR procedure
 - 1. Generate a candidate y from g(.) and a value u from a uniform distribution $\mathcal{U}(0,1)$.
 - 2. If $u \le f(y)/(cg(y))$, then return x = y; else go to step 1.
- ▶ The expected number of iterations of the AR algorithm to generate a sample point from f(x) is 1/c.

- ▶ The AR procedure
 - 1. Generate a candidate y from g(.) and a value u from a uniform distribution $\mathcal{U}(0,1)$.
 - 2. If $u \le f(y)/(cg(y))$, then return x = y; else go to step 1.
- ▶ The expected number of iterations of the AR algorithm to generate a sample point from f(x) is 1/c.
- ► The AR sampling method can be optimized by setting

$$c = \sup_{x} \left\{ \frac{f(x)}{g(x)} \right\}.$$

- ▶ The AR procedure
 - 1. Generate a candidate y from g(.) and a value u from a uniform distribution $\mathcal{U}(0,1)$.
 - 2. If $u \le f(y)/(cg(y))$, then return x = y; else go to step 1.
- ▶ The expected number of iterations of the AR algorithm to generate a sample point from f(x) is 1/c.
- ► The AR sampling method can be optimized by setting

$$c = \sup_{x} \left\{ \frac{f(x)}{g(x)} \right\}.$$

▶ Note: Usually the value of *c* is small and then the AR method may not be efficient.

▶ Want to simulate a Beta distribution, $f(x) = \gamma x^a (1-x)^b$, where γ is the normalizing constant.

- ▶ Want to simulate a Beta distribution, $f(x) = \gamma x^a (1 x)^b$, where γ is the normalizing constant.
- ▶ We choose a uniform distribution g(y) = 1 on the [0, 1] as the proposal distribution.

- ▶ Want to simulate a Beta distribution, $f(x) = \gamma x^a (1-x)^b$, where γ is the normalizing constant.
- We choose a uniform distribution g(y) = 1 on the [0, 1] as the proposal distribution.
- ► The AR method to simulation $f(x) = \gamma x^a (1 x)^b$ as follows:
 - Generate a candidate y from g(y) and a value u from a uniform distribution U(0, 1).
 - 2. If $u \le f(y)$, then return x = y; else go to step 1.

- ▶ Want to simulate a Beta distribution, $f(x) = \gamma x^a (1 x)^b$, where γ is the normalizing constant.
- We choose a uniform distribution g(y) = 1 on the [0, 1] as the proposal distribution.
- ► The AR method to simulation $f(x) = \gamma x^a (1 x)^b$ as follows:
 - Generate a candidate y from g(y) and a value u from a uniform distribution U(0, 1).
 - 2. If $u \le f(y)$, then return x = y; else go to step 1.
- ▶ Note: For large values of a, this AR method may not be efficient.

▶ Want to simulate a Gamma distribution,

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp(-x/\beta).$$

- ▶ Want to simulate a Gamma distribution, $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp(-x/\beta)$.
- ▶ Consider a special case: $\alpha = 3/2, \beta = 1$, then

$$f(x) = 2\sqrt{\frac{x}{\pi}}e^{-x}$$

- ▶ Want to simulate a Gamma distribution, $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp(-x/\beta)$.
- ▶ Consider a special case: $\alpha = 3/2, \beta = 1$, then

$$f(x) = 2\sqrt{\frac{x}{\pi}}e^{-x}$$

▶ Let $g(x) = \lambda e^{-\lambda x}$, then

$$c = \sup_{x>0} \left\{ \frac{f(x)}{g(x)} \right\} = \sup_{x>0} \left\{ \frac{2\sqrt{x}e^{-x}}{\sqrt{\pi}\lambda e^{-\lambda x}} \right\} = \frac{1}{\sqrt{2e\pi\lambda^2(1-\lambda)}}$$

- ▶ Want to simulate a Gamma distribution, $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp(-x/\beta)$.
- ▶ Consider a special case: $\alpha = 3/2, \beta = 1$, then

$$f(x) = 2\sqrt{\frac{x}{\pi}}e^{-x}$$

▶ Let $g(x) = \lambda e^{-\lambda x}$, then

$$c = \sup_{x>0} \left\{ \frac{f(x)}{g(x)} \right\} = \sup_{x>0} \left\{ \frac{2\sqrt{x}e^{-x}}{\sqrt{\pi}\lambda e^{-\lambda x}} \right\} = \frac{1}{\sqrt{2e\pi\lambda^2(1-\lambda)}}$$

- Note: The smallest c is most efficient, which is $c^* = 1.257$ with $\lambda = 2/3$.
- ► That is, $g(x) = \frac{2}{3}e^{-2x/3}$ and $c^* = 1.257$.

Motivation
Monte Carlo
Important Sampling
Acceptance Rejection
Conclusion

Summary

Monte Carlo methods are useful for obtaining integrals, especially for moment calculation.

Summary

- Monte Carlo methods are useful for obtaining integrals, especially for moment calculation.
- ▶ Important sampling is usful for integrals with complicated functions.

Summary

- Monte Carlo methods are useful for obtaining integrals, especially for moment calculation.
- ▶ Important sampling is usful for integrals with complicated functions.
- ► Acceptance-rejection methods are more popular in generating random numbers from partially known density functions.

Summary

- Monte Carlo methods are useful for obtaining integrals, especially for moment calculation.
- ▶ Important sampling is usful for integrals with complicated functions.
- ► Acceptance-rejection methods are more popular in generating random numbers from partially known density functions.
- ► These three simulation methods are basic tools for Markov chain Monte Carlo (MCMC) methods.

Motivation Monte Carlo Important Sampling Acceptance Rejection Conclusion

Thank you!

References

- [1] Chib, S. and Greenberg E. 1995. Understanding the Metropolis-Hastings Algorithm. *The American Statistician* Vol. 49, No. 4: 327-335.(full text).
- [2] McLeish, D. L. and Z. Men. 2015. Extreme Value Importance Sampling for Rare Event Risk Measurement. K. Glau et al. (eds.), Innovations in Quantitative Risk Management. Springer Proceedings in Mathematics & Statistics. Volume 99, 2015, pp 317-335. (full text).