Generic programming

Advanced functional programming - Lecture 10

Wouter Swierstra

Today

- Type-directed programming in action
- Generic programming: theory and practice
- Examples of type families

Motivation

Similar functionality for different types

- equality, comparison
- mapping over the elements, traversing data structures
- serialization and deserialization
- generating (random) data
- **...**

Often, there seems to be an algorithm independent of the details of the datatype at hand. Coding this pattern over and over again is boring and error-prone.

Deriving

We can use Haskell's *deriving* mechanism to get some functionality for free:

```
data Tree = Leaf
  | Node Tree Int Tree
  deriving (Show, Eq)
```

This works for a handful of built-in classes, such as Show, Ord, Read, etc.

But what if we want to derive instances for classes that are not supported?

Example: encoding values

```
data Tree = Leaf | Node Tree Int Tree
data Bit = 0 | I
```

We assume a suitable encoding exists for integers:

```
encodeInt :: Int -> [Bit]
```


Example: encoding values

Encode: Underlying ideas

In both cases we have seen, we:

- encode the choice between different constructors using sufficiently many bits,
- and append the encoded arguments of the constructor being used in sequence.
- use the encode function being defined at the recursive positions

Goal

Express the underlying algorithm for encode in such a way that we do not have to write a new version of encode for each datatype anymore.

The idea

##(Datatype-)Generic Programming

Techniques to exploit the structure of datatypes to define functions by *induction over the type structure*.

Approach taken in this lecture

- define a uniform representation of data types;
- define a functions to and from to convert values between user-defined datatypes and their representations.
- define your generic function by induction on the structure the representation.

Regular datatypes

Most Haskell datatypes have a common structure:

```
data Pair a b = Pair a b
data Maybe a = Nothing | Just a
data Tree a = Tip | Bin (Tree a) a (Tree a)
data Ordering = LT | EQ | GT
```

Informally:

- A datatype can be parameterized by a number of variables.
- A datatype has a number of constructors.
- Every constructor has a number of arguments.
- Every argument is a variable, a different type, or a recursive call.

Constructing regular datatypes

Idea

If we can describe regular datatypes in a different way, using a limited number of combinators, we can use this structure to define algorithms for all regular datatypes.

We proceed in two steps:

- abstract over recursion
- describe the "remaining" structure systematically.

Fixpoints

We can define fix in Haskell using the defining property of fixed point combinators:

$$fix f = f (fix f)$$

This lets us capture recursion explicitly – enabling us to memoize computations, for example.

Question

What is the type of fix?

Fixpoints

We would like to define a similar fixpoint operation to describe recursion in *datatypes*.

For functions, we *abstract over* the recursive calls:

```
fac :: (Int -> Int) -> Int -> Int
fac = \fac x -> if x == 0 then 1 else x * fac (x-1)
```

For data types, let's do the same:

We introduce a separate *type* parameter corresponding to recursive occurrences of trees.


```
data TreeF t = Leaf
  | Node t Int t
```

Now Tree is not recursive – how can we take compute its fixpoint?

We can compute the fixpoint of a *type constructor* analogously to the fix function:

```
fix f = f (fix f)
```

data
$$Fix f = In (f (Fix f))$$

##Question

What is the *kind* of Fix?

We can now define trees using our Fix datatype:

The type TreeF is called the *pattern functor* of trees.

Question

What is the pattern functor for our data type of lambda terms?

This construction works equally well for lists:

Question

Is our type List a the same as [a]?

This construction works equally well for lists:

Question

Is our type List a the same as [a]?

What does 'the same' mean?

Type isomorphisms

Two types A and B are isomorphic if we can define functions

```
f :: A -> B
g :: B -> A
```

such that

```
forall (x :: A) . g (f x) = x forall (x :: B) . f (g x) = x
```

Types Fix (ListF a) and [a] are isomorphic

It is relatively easy to see that these are inverses ...

A single step of recursion

Instead of taking the fixpoint, we can also use the pattern functor to observe a single layer of recursion.

To do so, we consider the type ListF a [a] – the outermost layer is a NilF or ConsF; any recursive children are 'real' lists.

Once again, these are inverses.

Pattern functors are functors

```
data ListF a r = NilF | ConsF a r

instance Functor (ListF a) where
  fmap f NilF = NilF
  fmap f (ConsF x r) = ConsF x (f r)
```

Mapping over the pattern functor means applying the function to all recursive positions.

This is different from what fmap does on lists, normally!

Pattern functors are functors – contd.

```
data TreeF t = LeafF
  | NodeF t Int t

instance Functor TreeF where
  fmap f (LeafF) = LeafF
  fmap f (NodeF l x r) = NodeF (f l) x (f r)
```

Writing pattern functors

Where these pattern functors give us a good way to describe recursive datatypes – how should we write them?

Idea

Haskell data types can typically be described as a combination of a small number of primitive operations.

Building pattern functors systematically

Choice between two constructors can be represented using

```
data (f :+: g) r = L (f r) | R (g r)
```

Choice between constructors can be represented using multiple applications of (:+:).

Two constructor arguments can be combined using

```
data (f : *: g) r = f r : *: g r
```

More than two constructor arguments can be described using multiple applications of (:*:).

Building pattern functors systematically – contd.

A recursive call can be represented using

```
data I r = I r
```

Constants (such as independent datatypes or type variables) can be represented using

$$data K a r = K a$$

Constructors without argument are represented using

data
$$U r = U$$

Example

Our kit of combinators.

The types ListS a r and [a] are isomorphic.

All simple data types in Haskell can be described using these five combinators.

Excursion: algebraic data types

Haskell's data types are sometimes referred to as **algebraic** datatypes.

What does *algebraic* mean?

Excursion: algebraic data types

Haskell's data types are sometimes referred to as **algebraic** datatypes.

What does *algebraic* mean?

Abstract algebra is a branch of mathematics that studies mathematical objects such as monoids, groups, or rings.

These structures are typically generalizations of familiar sets/operations (such as addition or multiplication on natural numbers).

If you prove a property of these structures from the axioms, this property for every structure satisfying the axioms.

Algebraic datatypes

The :*: and :+: behave similarly to * and + on numbers; the I type is similar to 1.

For example, for any type t we can show 1 * t is isomorphic to t.

Or for any types t and u, we can show t * u is isomorphic to u * t.

Similarly, t :+: u is isomorphic to u :+: t.

Question

What is the unit of :+:?

Recap

So far we have seen how to represent data types using pattern functors, built from a small number of combinators.

- How can we define generic functions such as the binary encoding example we saw previously?
- ► How can we convert between user-defined data types and their pattern functor representation?

Defining generic functions

We would like to define a function

```
encode :: f a -> [Bit]
```

that works on all pattern functors f.

Instead, we'll define a slight variation:

```
encode :: (a -> [Bit]) -> f a -> [Bit]
```

which abstracts over the handling of recursive subtrees.

Generic encoding

```
class Encode f where
 fencode :: (a -> [Bit]) -> f a -> [Bit]
instance Encode U where
  fencode \_ U = []
instance Encode (K Int) where
  -- suitable implementation for integers
instance Encode I where
  fencode f(I r) = f r
```

Generic encoding – contd.

```
class Encode f where
 fencode :: (a -> [Bit]) -> f a -> [Bit]
instance (Encode f, Encode g) =>
    Encode (f :+: g) where
      fencode f (L x) = 0 : fencode f x
      fencode f (R \times x) = I: fencode f x
instance (Encode f, Encode g) =>
    Encode (f :*: g) where
      fencode f(x : *: y) =
        fencode f x ++ fencode f y
```

Where are we now?

Using these instances, we can derive fencode for every pattern functor built up from the functor combinators.

How does that give us encode for a concrete datatype?

If we have a conversion function

```
from :: [a] -> ListS a [a]
```

we can define

```
encodeList :: [Int] -> [Bit]
```

encodeList = fencode encodeList . from

The Regular class

We can systematically store the isomorphism using a class:

```
class Regular a where
  from :: a    -> (PF a) a
  to :: PF a a -> a
```

What is PF?

The Regular class

We can systematically store the isomorphism using a class:

```
class Regular a where
 from :: a -> (PF a) a
 to :: PF a a -> a
What is PF?
type family PF a :: * -> *
instance Regular [a] where
  from = \dots
 to = ...
```

type instance PF [a] = ListS a

Generic encode, again

We can write a generic encoding function:

```
encode :: (Regular a, Encode (PF a)) => a -> [Bit]
encode = fencode encode . from
```

This works for *any* regular data type that can be represented as a pattern functor.

Who does what?

Generic library

Provides the functor combinators and some other helper functions.

Library

Provides generic functions by defining instances for all the functor combinators.

User

Per datatype, provides an isomorphism with the pattern functor. Can then use all the generic functions.

The regular library

- Available from Hackage.
- Provides generic programming functionality in the style just described.
- Several generic functions are defined, more in regular-extras.
- Can automatically derive the pattern functor and isomorphism for a datatype (using Template Haskell).

Limitations of the approach

- ► Not all types are regular nested types, mutually recursive types, GADTs are all not supported.
- Encoding type parameters via constants is not optimal. We cannot, for example, generically define the map function over a type parameter using regular.

Beyond simple generic functions

This concept of *pattern functor* gives us the language to study the structure of data structures in greater detail.

The Foldable class in Haskell is defined as follows:

```
class Foldable t where
  fold :: Monoid m => t m -> m
```

But not all folds compute monoidal results...

Can we give a more precise account of folds?

Folding lists

We have seen the fold on lists many times:

```
foldr :: (a -> r -> r) -> r -> [a] -> r
foldr op e [] = e
foldr op e (x:xs) = op x (foldr op e xs)
```

In the other lectures, we saw examples of other folds over natural numbers, trees, etc.

Can we describe this pattern more precisely?

Ideas in foldr

- ► Replace constructors by user-supplied arguments.
- ► Recursive substructures are replaced by recursive calls.

Folding lists – contd.

```
foldr :: (a -> r -> r) -> r -> [a] -> r
```

Compare the types of the constructors with the types of the arguments:

```
(:) :: a -> [a] -> [a]
```

```
[] :: a -> [a]
```

```
cons :: a -> r -> r
```

Folding other structures

```
data Nat = Suc Nat | Zero

foldNat :: (r -> r) -> r -> Nat -> r
foldNat s z Zero = z
foldNat s z (Suc n) = s (foldNat s z n)
```

Folding other structures

```
data Nat = Suc Nat | Zero
foldNat :: (r -> r) -> r -> Nat -> r
foldNat s z Zero = z
foldNat s z (Suc n) = s (foldNat s z n)
data Lam = Var Int | App Lam Lam | Abs Lam
foldLam :: (Int -> r) -> (r -> r -> r) -> (r -> r)
            -> | am -> r
foldLam \ v \ ap \ ab \ (Var \ n) = v \ n
foldLam \ v \ ap \ ab \ (App \ f \ a) = ap \ (foldLam \ v \ ap \ ab \ f)
                                   (foldLam v ap ab a)
foldLam \ v \ ap \ ab \ (Abs \ e) = ab \ (foldLam \ v \ ap \ ab \ e)
```


Catamorphism generically

If we can map over the generic positions, we can express the fold or *catamorphism* generically:

The argument describing how to handle each constructor, $PF \ a \ r \ -> \ r$, is sometimes called an *algebra*.

Question

What about the cata defined over fixpoints?

Alternatively

Or using our fixpoint operation on types we can write:

```
newtype Fix f = In (f (Fix f))
cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)
```


Church encodings revisited

Using this definition, we can now give a more precise account of the *Church encoding* of algebraic data structures that we saw previously.

The idea behind Church encodings is that we identify:

- a data type (described as the least fixpoint of a functor)
- the fold over this datatype

Church encoding: lists

```
type Church a = forall r . r -> (a -> r -> r) -> r
-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = ...
-- map a list to its fold
to :: [a] -> Church a
to xs = ...
```


Church encoding: lists

```
type Church a = forall r . r -> (a -> r -> r) -> r
-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = f [] (:)
-- map a list to its fold
to :: [a] -> Church a
to xs = \nil cons -> foldr cons nil xs
```

Generic Church encoding

```
type Church f = forall r . (f r -> r) -> r

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)

to :: Functor f => Fix f -> Church f
to t = \f -> cata f t

from :: Functor f => Church f -> Fix f
from f = f In
```

Why pattern functors?

The pattern functors give us the right 'language' to describe generic constructions over datatypes – such as Church encodings!

Without having such structure at your disposal, we can study examples (such as the Church encoding of lists, lambda terms, booleans, and natural numbers) – but there's no way to describe the general pattern.

There are many other applications of such pattern functors...

