

CHEMICAL ARITHMETIC (MOLE CONCEPT)

Atomic, Molecular and Equivalent masses

25. (a) 6×10^{23} molecules has mass = 18 gm

1 molecules has mass =
$$\frac{18}{6 \times 10^{23}} = 3 \times 10^{-23} gm$$

= $3 \times 10^{-26} kg$.

- **26.** (a) Choice (a) is P_4S_3
 - $\therefore \frac{31\times4}{(124)}gmP$ is present in $220gmP_4S_3$
 - ∴ 1.24gm P is present in = $\frac{220}{124}$ × 1.24 = 2.2gm
- **27.** (c) Number of moles of $A = \frac{x}{40}$

Number of atoms of
$$A = \frac{x}{40} \times \text{Avogadro} \Rightarrow \text{no.} = y \text{ (say)}$$

Or
$$x = \frac{40y}{\text{Avogadro no.}}$$

Number of moles of
$$B = \frac{2x}{80}$$

Number of atoms of
$$B = \frac{2x}{80} \times \text{Av. no.} = \frac{2}{80} \times \frac{40y}{\text{Av. no.}} \times \text{Av. no.} = y$$

28. (d) $BaCO_3 \rightarrow BaO + CO_2 \uparrow$

Molecular weight of $BaCO_3 = 137 + 12 + 3 \times 16 = 197$

- ∴ 197gm produces 22.4L at S.T.P.
- ∴ 9.85 gm produces $\frac{22.4}{197}$ × 9.85 = 1.12 Lat S.T.P.
- **29.** (a) 14 $gm N^{3-}$ ions have = $8N_A$ valence electrons

4.2gm of
$$N^{3-}$$
 ions have $=\frac{8N_A\times 4.2}{14}=2.4N_A$

CHEMICAL ARITHMETIC (MOLE CONCEPT)

30. (c) [:Molecular weight of
$$CuSO_4$$
. $5H_2O = 63.5 + 32 + 64 + 90 = 249.5$] 6×10^{23} molecules has weight = $249.5gm$

$$1 \times 10^{22}$$
 molecules has weight = $\frac{249.5 \times 1 \times 10^{22}}{6 \times 10^{23}}$ = $41.58 \times 10^{-1} = 4.158$

- 31. (a) (l) 1 molecule of oxygen
 - : 6 × 10²³ molecule has mass = 32gm

$$\therefore$$
 1 molecule of O_2 has mass = $\frac{32}{6 \times 10^{23}}$

$$=5.3\times10^{-23}gm$$

- (II) 1 atom of nitrogen
- \therefore 2 × 6 × 10²³ atoms of N_2 has mass = 28 gm

$$\therefore 1 \text{ atom of } N_2 \text{has mass} = \frac{28}{2 \times 6 \times 10^{23}}$$
$$= 2.3 \times 10^{-23} \text{ gm}$$

- (III) $1\times 10^{-10}g$ molecular weight of oxygen $g \text{ atomic weight} = 2\times 1\times 10^{-10} = 2\times 10^{-10}g$
- (IV) $1 \times 10^{-10} g$ atomic weight of copper

So, order of increasing masses II < I < III < IV.

32. (d)
$$\frac{\text{wt. of metal hydroxide}}{\text{wt. of metal oxide}} = \frac{EM + EOH^{-}}{EM + EO^{-}} = \frac{1.520}{0.995} = \frac{x + 17}{x + 8}$$

= 1.520x + 1.520 × 8 = 0.995x + 0.995 × 17

$$1.520x + 12.160 = 0.995x + 16.915$$

or
$$0.525x = 4.755$$

$$x = \frac{4.755}{0.525} = 9.$$

IIT-JEE CHEMISTRY

CHEMICAL ARITHMETIC (MOLE CONCEPT)

33. (b) One ion carries
$$3 \times 1.6 \times 10^{-19} coulomb$$

Then 1 gm ion N^{3-} (1 mole) carries

$$= 3 \times 1.6 \times 10^{-19} \times 6.02 \times 10^{23}$$

$$= 2.89 \times 10^5 coulomb$$

34. (a)
$$\frac{c_P}{c_V} = 1.4$$
 so, given gas is diatomic

$$11.2L = 3.01 \times 10^{23}$$
 molecules

∴No. of atoms =
$$3.01 \times 10^{23} \times 2 = 6.023 \times 10^{23}$$
 atoms

Molecular weight of
$$H_3PO_3 = 3 + 31 + 48 = 82$$

∴ Equivalent weight =
$$\frac{\text{Molecular weight}}{\text{Basicity}} = \frac{82}{2} = 41.$$

37. (b) : 22400 *ml* at NTP has 6.023×10^{23} molecule

∴1 *mI* at NTP has =
$$\frac{6.023 \times 10^{23}}{22400}$$

$$=0.0002688 \times 10^{23} = 2.69 \times 10^{19}$$

$$0.16 \times \text{atomic wt.} = 6.4$$

Atomic wt. =
$$\frac{6.4}{0.16}$$
 = 40.

39. (a) Molecular weight of
$$C_{60}H_{122} = 12 \times 60 + 122 \times 1$$

$$=720+122=842$$

$$:$$
 6×10^{23} molecule $C_{60}H_{122}$ has mass = $842gm$

CHEMICAL ARITHMETIC (MOLE CONCEPT)

: 1 molecule
$$C_{60}H_{122}$$
 has mass $\frac{842}{6\times 10^{23}}=140.333\times 10^{-23}gm=1.4\times 10^{-21}gm$.

40. (b)
$$C_2H_4 + 2O_2 \rightarrow 2CO_2 + 2H_2O$$

: 28gm C_2H_4 requires 64gm oxygen

$$\therefore$$
 2.8 × 10³ gm C_2H_4 requires = $\frac{64}{28}$ × 2.8 × 10³ gm = 6.4 × 10³ gm = 6.4 kg.

41. (c) 2.5 molal NH_4OH means 2.5 moles of NH_3 in $1000g\,H_2O$ (1000cc of solution) Hence, 100cc solution of NH_3 requires = 0.25 mole = $0.25 \times 22.4L = 5.6L$.

42. (d)
$$d = \frac{M}{V}$$
; $1 = \frac{M}{V}$ or $M = V$; $18gm = 18mI$

 6×10^{23} molecule of water has volume = 18 cc

1 molecule of water has volume =
$$\frac{18}{6 \times 10^{23}} = 3 \times 10^{-23} cm^3$$
.

43. (a) 100gm caffeine has 28.9gm nitrogen 194gm caffeine has $=\frac{28.9}{100} \times 194 = 56.06gm$

$$\therefore$$
 No. of atoms in caffeine = $\frac{56.06}{14} \approx 4$.

44. (d) Molecular weight of $(CHCOO)_2Fe = 170$ Fe present in 100mg of $(CHCOO)_2Fe$ $= \frac{56}{170} \times 100mg = 32.9mg$

This is present in 400mg of capsule

% of Fe in capsule =
$$\frac{32.9}{400} \times 100 = 8.2$$
.