CLAIMS:

5

10

15

20

25

- 1. A three-dimensional (3D) video coding method for the compression of a bitstream corresponding to an original video sequence that has been divided into successive groups of frames (GOFs) the size of which is $N = 2^n$ with n being an integer, these GOFs being themselves subdivided into successive couples of frames (COFs), said coding method comprising the following steps, applied to each successive GOF of the sequence:
- a) a spatio-temporal analysis step, performed with a given number of levels at most equal to n and leading to a spatio-temporal multiresolution decomposition of the current GOF into low and high frequency temporal subbands, said step itself comprising:
 - a motion estimation sub-step;
- based on said motion estimation, a motion compensated temporal filtering sub-step, performed on each of the 2ⁿ⁻¹ COFs of the current GOF;
- -a spatial analysis sub-step, performed on the subbands resulting from said temporal filtering sub-step;
- b) an encoding step, said step itself comprising:
- an entropy coding sub-step, performed on said low and high frequency temporal subbands resulting from the spatio-temporal analysis step and on motion vectors obtained by means of said motion estimation step;
- an arithmetic coding sub-step, applied to the coded sequence thus obtained and delivering an embedded coded bitstream;
- said coding method being further characterized in that, when said temporal filtering sub-step comprises (n-1) decomposition levels so that the final temporal decomposition level that would have led to a single low-frequency subband is omitted, the spatio-temporal analysis and encoding steps are performed according to the following rules:
 - (a) each current input GOF is splitted into two new GOFs with half the original size and half the number of COFs, said new GOFs being independent and comprising respectively the 2ⁿ⁻¹ first frames and the 2ⁿ⁻¹ last ones of said original input GOF;
 - (b) in each of these two new GOFs, a complete spatio-temporal multiresolution decomposition with (n-1) levels is performed down to the last low frequency temporal subband in order to get only one final approximation subband for each of said new GOFs;

5

10

15

20

25

30

- (c) a modified 3D-SPIHT scanning is applied consecutively and independently on these two new GOFs, the spatio-temporal orientation trees used by said SPIHT scanning for defining the spatio-temporal relationships inside the hierarchical pyramid of the wavelet coefficients including now half the original number of subbands with respect to a spatio-temporal decomposition as conventionally performed on the original GOF.
- 2. A video coding device for the implementation of the three-dimensional video coding method according to claim 1, said device comprising:
- (a) spatio-temporal analysis means applied to each successive GOF of the sequence with a given number of levels at most equal to n and leading to a spatio-temporal multiresolution decomposition of the current GOF into low and high frequency temporal subbands, said analysis means performing:
 - a motion estimation sub-step;
- based on said motion estimation, a motion compensated temporal filtering sub-step, performed on each of the 2ⁿ⁻¹ COFs of the current GOF;
 - a spatial analysis sub-step, performed on the subbands resulting from said temporal filtering sub-step;
 - b) encoding means, themselves comprising:
- entropy coding means, applied to said low and high frequency temporal subbands resulting from the spatio-temporal analysis step and to motion vectors obtained by means of said motion estimation sub-step;
- arithmetic coding means, applied to the coded sequence thus obtained and delivering an embedded coded bitstream;
- said video coding device being further characterized in that, when said temporal filtering sub-step comprises (n-1) decomposition levels so that the final temporal decomposition level that would have led to a single low-frequency subband is omitted, the spatio-temporal analysis and encoding means use the following rules:
- (a) each current input GOF is splitted into two new GOFs with half the original size and half the number of COFs, said new GOFs being independent and comprising respectively the 2ⁿ⁻¹ first frames and the 2ⁿ⁻¹ last ones of said original input GOF;
- (b) in each of these two new GOFs, a complete spatio-temporal multiresolution decomposition with (n-1) levels is performed down to the last low frequency temporal subband in order to get only one final approximation subband for each of said new GOFs;

5

(c) a modified 3D-SPIHT scanning is applied consecutively and independently on these two new GOFs, the spatio-temporal orientation trees used by said SPIHT scanning for defining the spatio-temporal relationships inside the hierarchical pyramid of the wavelet coefficients including now half the original number of subbands with respect to a spatio-temporal decomposition as conventionally performed on the original GOF.