Towards Energy-Aware Al Deployment Investigating the Interplay of Model Quantization and Hardware Platforms

Haoji Bian Zinan Wang Renyuan Lu

Northwestern University

June 5, 2025

Research Motivation

Energy Challenge in LLMs

- Training a large Transformer: 1,287,000 kWh
- Equivalent to lifetime emissions of multiple vehicles
- Growing inference demands in production systems

Research Gap

Inference-stage energy optimization receives insufficient attention despite its critical importance in deployment scenarios.

Figure: LLM Energy Distribution

Core Research Question

How can we achieve energy-efficient LLM deployment through systematic optimization of quantization techniques and hardware platforms?

Existing Limitations

- Focus on isolated optimization factors
- Lack of systematic evaluation frameworks
- Limited deployment guidance

Our Contribution

- Systematic co-optimization approach
- Comprehensive evaluation framework
- Practical deployment guidelines

Methodology: Three-Pillar Approach

Pillar 1: Quantization Analysis

- ► INT8, FP16, Dynamic quantization
- Performance-energy trade-offs
- Memory optimization

Pillar 2: Hardware Evaluation

- ▶ 6 GPU platforms
- 3 hardware generations
- Comprehensive energy profiling

Pillar 3: Energy Metrics

- Novel EOR/TWEOR metrics
- ► 1Hz precision monitoring
- Deployment optimization

Systematic Co-optimization Framework: 6 Platforms \times 6 Models \times 5 Tasks

Novel Energy Efficiency Metrics

Energy Output Ratio (EOR)

$$EOR = \frac{Performance Score}{Energy (Wh)}$$

Time-Weighted Energy Output Ratio (TWEOR) Incorporates both energy consumption and inference time for comprehensive efficiency evaluation

Metric Advantages

- ► Captures complex trade-offs
- Incorporates temporal efficiency
- Enables deployment optimization

Data Collection NVIDIA SMI 1Hz sampling rate Precise energy measurements

Experimental Configuration

Hardware & Models

6 GPU Platforms: A100, RTX 4090/3090Ti/4060Ti, V100, L40S

6 Language Models: Qwen2.5,

DeepSeek-R1, Mistral, Neural-Chat,

Bloomz, Yi

3 Quantization: INT8, FP16,

Dynamic

Benchmark Tasks

- ► MMLU: Multi-task language understanding
- ► HellaSwag: Commonsense reasoning
- ► **ARC**: Science question answering
- ► TruthfulQA: Truthfulness evaluation
- ► **GSM8K**: Mathematical reasoning

Finding 1: Quantization Techniques Effectiveness

Strategy	Energy Red.	Acc. Loss	EOR Imp.	Rating	
INT8 Quantization	25.0%	j1.0%	32.1%	Excellent	
FP16 Mixed Precision	16.3%	0.2%	19.4%	Good	
Dynamic Quantization	10.5%	1.5%	11.7%	${\sf Moderate}$	

INT8 Quantization Results

- **▶** DeepSeek-7B: **39.65Wh** → **29.74Wh**
- ► Accuracy degradation: 0.7-0.9 percentage points
- ► Reduced memory bandwidth requirements
- ▶ Optimized integer arithmetic on modern GPUs

Figure: Quantization Trade-offs

Finding 2a: A100 PCIE Leadership

A100 PCIE: Energy Efficiency Champion

Technical Specifications

- ► Memory Bandwidth: 1,555 GB/s
- ► **Tensor Cores**: 3rd generation
- ► **Memory**: 40GB HBM2
- ► **Architecture**: Ampere

Performance Leadership

- Highest energy efficiency across all scenarios
- Optimized for AI workloads
- Superior memory bandwidth utilization
- Enterprise-grade reliability

Consistent leader in EOR and TWEOR metrics across all benchmark tasks

Finding 2b: Hardware Platform Analysis

Platform Categories

- ► High bandwidth: A100, V100
- ► Power optimized: RTX 4060Ti
- ► **High-performance**: RTX 4090

Ada Lovelace Architecture **20-30%** energy efficiency improvement over previous generation

Figure: Platform Performance Heatmap

Finding 3: Synergistic Optimization Effects

40% Overall Energy Efficiency Improvement

A100 PCIE + INT8 Quantization

Optimization Strategy	Efficiency Gain
A100 + INT8	40.0%
RTX 4090 + FP16	35.2%
RTX 4060Ti + Dynamic	25.1%

Additional Benefits

- ► Knowledge Distillation: Additional 19.8% energy reduction
- ► Accuracy Preservation: Maintains 98%+ performance

Hardware-software co-optimization enables multiplicative benefits

Deployment Decision Flow

Systematic Decision Process: Assessment \rightarrow Analysis \rightarrow Consideration \rightarrow Optimization

Deployment Decision Matrix

Use Case	Hardware	Quantization	Performance	Efficiency Gain	Cost
Data Center Production	A100 PCIE	INT8	98%	40%	High
Enterprise Applications	RTX 4090	FP16	99%	35%	Medium-High
R&D Testing	RTX 3090Ti	FP16	97%	30%	Medium
Edge Computing	RTX 4060Ti	Dynamic	95%	25%	Low
Budget-Constrained	V100	ÎNT8	94%	28%	Low

Selection Principles

- ► Accuracy Priority → FP16 mixed precision
- ► Energy Priority → INT8 quantization
- ► Flexibility Priority → Dynamic quantization

Scenario-Specific Recommendations

- ▶ Data Center Production: Maximum efficiency, high-end hardware, controlled environment
- ► Enterprise Applications: Balanced performance-cost, reliable hardware, business continuity
- ► Edge Computing Deployment: Power constraints, compact hardware, real-time processing

Application Guidelines: Deployment Recommendations

Data Center Production

A100 PCIE INT8 Quantization

98% Performance **40% Efficiency Gain**

High throughput, controlled environment

Enterprise Applications

RTX 4090 FP16 Mixed Precision

99% Performance **35% Efficiency Gain**

Balanced cost-performance

Edge Computing Deployment

RTX 4060 Ti Dynamic Quantization

95% Performance **25% Efficiency Gain**

Power constraints, compact

Tailored recommendations for diverse deployment scenarios and operational requirements

Research Contributions and Impact

Key Contributions

- Quantization-hardware co-optimization framework
- ► Novel EOR/TWEOR energy efficiency metrics
- Evidence-based deployment guidelines

Key Results

25% Energy reduction 40% Co-optimization gains 98%+ Accuracy preserved

Questions & Discussion

Questions and Discussion

Thank you for your attention