Diffusion Model 扩散模型

Edited at 2022-10-28 by Song1xinn

1. Introduce

1.1 DALL-E 2

DALL-E2: https://openai.com/dall-e-2/ DALL-E mini: https://huggingface.co/spaces/dalle-mini/dalle-mini Imagen / Parti - Google

DALL·E 2 CLIP + diffusion model

CLIP

1 CLIP pre-trains an image encoder and a text encoder to predict which images were paired with which texts in our dataset. 2 Then use this behavior to turn CLIP into a **zero-shot classifier**. 3 Convert all of a dataset's classes into captions such as "a photo of a *dog*" and **predict the class of the caption** with a given image.

1.2 Generation Models

2. What's Diffusion Model

前提: 所有的图像都满足自然中的分布 (distribution) , 比如所有带有小猫的图都遵循一种分布、所有带有小狗的图都遵循一种分布。

2.1 Forward diffusion process (Training Process ONLY)

Given a data point sampled from a real data distribution $x_0 \sim q(x)$, let us define a **forward diffusion process** in which we add small amount of **Gaussian noise** to the sample in T steps, producing a sequence of noisy samples x_1,\ldots,x_T . The data sample x_0 gradually loses its distinguishable features as the step t becomes larger. Eventually when $T\to\infty$, x_T is equivalent to an isotropic Gaussian distribution.

目标: $q(x_T|x_0)$

给定如下公式,其中 $\beta_t \in (0,1)_{t=1}^T$,可以理解为添加的噪声的占比,是自定的函数,所以可以看作已知量。

$$\alpha_t = 1 - \beta_t \tag{1}$$

那么,如果已知 x_{t-1} ,我们设定 x_t 为下述公式,其中 ϵ_t 表示时刻t加的噪声:

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_t \tag{2}$$

同理, x_{t-1} 可以由 x_{t-2} 表示,再由于每一次添加噪声都是从高斯分布中采样的噪声,即 $\epsilon_t \sim N(0, \mathbf{I})$,基于此,我们还能推理得到 x_t 与 x_{t-2} 的关系,其中 ϵ 合并了两个高斯分布:

$$x_{t} = \sqrt{\alpha_{t}} (\sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_{t-1}} \epsilon_{t-1}) + \sqrt{1 - \alpha_{t}} \epsilon_{t}$$

$$= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t-1}} \epsilon_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \epsilon$$

$$(3)$$

数学解释

- 关于 ϵ_t 的高斯分布可以写作: $\epsilon_t\sim N(0,\sigma_1^2)$,乘上 w 后方差变为 $\sigma_1^2*w^2$,加上 b 后均值变为 0+b。 如果两个相互独立的高斯分布 $\epsilon_1\sim N(\mu_1,\sigma_1^2),\epsilon_2\sim N(\mu_2,\sigma_2^2)$,那么
- 如果两个相互独立的高斯分布 $\epsilon_1 \sim N(\mu_1, \sigma_1^2), \epsilon_2 \sim N(\mu_2, \sigma_2^2)$,那么 $\epsilon = (a\epsilon_1 \pm b\epsilon_2) \sim N(a\mu_1 \pm b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$
- 现在有两个高斯分布: $\sqrt{\alpha_t(1-\alpha_{t-1})}\epsilon_{t-1}\sim N(0,\alpha_t(1-\alpha_{t-1}))$, $\sqrt{1-\alpha_t}\epsilon_t\sim N(0,1-\alpha_t)$ 两个分布相加可以得到: $\sqrt{\alpha_t(1-\alpha_{t-1})}\epsilon_{t-1}+\sqrt{1-\alpha_t}\epsilon_t\sim N(0,1-\alpha_t\alpha_{t-1})$

可以推理得到 x_t 与 x_0 的关系,其中 $\bar{\alpha}_t$ 表示累乘:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \tag{4}$$

回到概率分析

给定初始的数据分布 $x_0 \sim q(x)$,可以不断地向分布中添加高斯噪声,该噪声的方差以固定值 β_t 确定,均值以 β_t 和当前时刻 t 的数据 x_t 决定。基于前一时刻去预测后一时刻是一个条件概率分布,给定 x_0 , x_1 到 x_T 的联合概率分布可以写为条件概率分布相乘:

$$q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1}) \qquad q(x_t|x_{t-1}) = N(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I})$$
 (5)

公式 (5) 中可以看出这个分布的均值是 $\sqrt{1-\beta_t}x_{t-1}$,方差是 β_t ,可以得到由 x_{t-1} 表示的 x_t ,也就是公式 (2) 。 和前面的推理原理相同,通过对高斯分布的相加,得到 x_t 关于 x_0 的条件概率分布。

$$q(x_t|x_0) = N(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)\mathbf{I})$$
(6)

随着 t 的不断增大,当 $T \to \infty$,最终数据分布 x_T 变成了一个各向独立的高斯分布。 注意, 前向过程不包括任何需要学习的参数。

Question Why forward diffusion process ?

2.2 Reverse diffusion process

if we can reverse the above process and sample from $q(x_{t-1}|x_t)$, we will be able to recreate the true sample from a Gaussian noise input, $x_T \sim N(0,I)$. Note that if β_t is small enough, $q(x_{t-1}|x_t)$ will also be Gaussian. Unfortunately, we cannot easily estimate $q(x_{t-1}|x_t)$ because it needs to use the entire dataset and therefore we need to learn a **model** p_{θ} to approximate these conditional probabilities in order to run the reverse diffusion process.

目标: $p_{\theta}(x_0|x_T)$

逆过程是从高斯噪声中回复原始数据,所以可以假设其也是一个高斯分布,在这里需要构建一个模型 p_{θ} 来通过给定的噪声来预测出训练集的分布,从而可以通过从分布中采样来生成新的样本。

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t) \qquad p_{\theta}(x_{t-1}|x_t) = N(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
 (7)

由于反向过程没办法直接求得 x_0 与 x_t 之间的关系,即无法直接从噪声到图像,那么我们转换方式,我们可以先求 x_{t-1} , x_{t-2} … 直到得到 x_0 ,即先求 $q(x_{t-1}|x_t)$,再进一步建模。若给定 x_t,x_0 后验扩散条件概率 $q(x_{t-1}|x_t,x_0)$ 分布用公式表达:

$$q(x_{t-1}|x_t, x_0) = N(x_{t-1}; \tilde{\mu}_t(x_t, x_0), \tilde{\beta}_t \mathbf{I})$$
(8)

根据贝叶斯公式,有:

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}, x_0)}{q(x_t, x_0)}$$

$$(9)$$

将上式用分布表示,同时进行展开

$$(9) \propto exp\left(-\frac{1}{2}\left(\frac{(x_{t}-\sqrt{\alpha_{t}}x_{t-1})^{2}}{\beta_{t}} + \frac{(x_{t-1}-\sqrt{\alpha_{t-1}}x_{0})^{2}}{1-\bar{\alpha}_{t-1}} - \frac{x_{t}-\sqrt{\bar{\alpha}_{t}}x_{0})^{2}}{1-\bar{\alpha}_{t}}\right)\right)$$

$$= exp\left(-\frac{1}{2}\left(\frac{x_{t}^{2}-2\sqrt{\alpha_{t}}x_{t}x_{t-1} + \alpha_{t}x_{t-1}^{2}}{\beta t} + \frac{x_{t-1}^{2}-2\sqrt{\bar{\alpha}_{t-1}}x_{0}x_{t-1} + \bar{\alpha}_{t-1}x_{0}^{2}}{1-\bar{\alpha}_{t-1}} - \frac{(x_{t}-\sqrt{\bar{\alpha}_{t}}x_{0})^{2}}{1-\bar{\alpha}_{t}}\right)\right) \quad (10)$$

$$= exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}^{2} - \left(\frac{2\sqrt{\bar{\alpha}_{t}}}{\beta_{t}}x_{t} + \frac{2\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t-1}}x_{0}\right)x_{t-1} + C(x_{t}, x_{0})\right)\right)$$

数学解释

• 根据前向过程,可以得到:

$$q(x_t|x_{t-1},x_0) = \sqrt{\overline{\alpha}_t}x_{t-1} + \sqrt{1-\alpha_t}\epsilon \sim N(\sqrt{\overline{\alpha}_t}x_{t-1},1-\alpha_t)$$

$$q(x_{t-1},x_0) = \sqrt{\overline{\alpha}_{t-1}}x_0 + \sqrt{1-\overline{\alpha}_{t-1}}\epsilon \sim N(\sqrt{\overline{\alpha}_{t-1}}x_0,1-\overline{\alpha}_{t-1})$$

$$q(x_t,x_0) = \sqrt{\overline{\alpha}_t}x_0 + \sqrt{1-\overline{\alpha}_t}\epsilon \sim N(\sqrt{\overline{\alpha}_t}x_0,1-\overline{\alpha}_t)$$

 $q(x_t,x_0)=\sqrt{\alpha_t}x_0+\sqrt{1-\bar{\alpha}_t}\epsilon\sim N(\sqrt{\alpha_t}x_0,1-\bar{\alpha}_t)$ • 高斯分布的概率密度函数: $f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$, 于是有 $N(\mu,\sigma^2)\propto exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$, 展开后在 exp 中,乘法就是相加,除法就是相减。

又因为 $exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2) = exp(-\frac{1}{2}(\frac{1}{\sigma^2}x^2 - \frac{2\mu}{\sigma^2}x + \frac{\mu^2}{\sigma^2}))$,所以根据 (10) 可以得到关于 x_{t-1} 的分布方差和均值:

$$\tilde{\beta}_{t} = \frac{1}{\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)} = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \cdot \beta_{t}$$

$$\tilde{\mu}_{t}(x_{t}, x_{0}) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}} x_{0}$$

$$(11)$$

由于当前的已知是 x_t ,在前向过程中推理了 x_t 与 x_0 的关系 ,那么利用公式 (4) 将 x_0 用 x_t 来近似,有:

$$x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_t) \tag{12}$$

$$\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t) \tag{13}$$

Question How to get ϵ_t ? $\stackrel{\text{\tiny 60}}{\leftarrow}$ Train a model to predict it.

2.3 Algrithms

2.3.1 Training (Predict the noise)

Algrithm 1 Training	Note
1: repeat	
2: $x_0 \sim q(x_0)$	x_0 为分布 q 中随机采样的图像(数据集中取数据)
3: $t \sim Uniform(\{1,\ldots,T\})$	t 即扩散次数,从 0 到 T ,对不同的图像是不固定的
4: $\epsilon \sim N(0,I)$	ϵ 高斯分布 $N(0,I)$ 中随机采样的噪声 (从前向过程获得)
5: Take gradient descent step on $\qquad \epsilon-\epsilon_0(\sqrt{\bar \alpha_t}x_0+\sqrt{1-\bar \alpha_t},t) ^2 $	$\epsilon_{ heta}$ 即训练的模型,括号内是输入:时间 以及 x_t

6: until converged

2.3.2 Sampling (To get x_0)

Algrithm 2 Sampling	Note
1: $x_T \sim N(0,I)$	x_T 高斯分布 $N(0,I)$ 中随机采样的噪声
2: for $t=T,\ldots,1$ do	
3: $z \sim N(0,I)$ if $t>1$, else $z=0$	$t=1$ 即 x_0 时刻没有噪声,其他时刻都有从分布中采样的噪声(重参数)
4: $x_{t-1}=rac{1}{\sqrt{lpha_t}}(x_t-rac{1-lpha_t}{\sqrt{1-arlpha_t}}\epsilon_ heta(x_t,t))+\sigma_t z$	
5: end for	
6: return x_0	

3. Code

- · diffusion model demo
- diffusion in DALL·E 2 (image generation)

References:

- [1] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning. PMLR, 2021: 8748-8763.
- [2] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.
- [3] https://openai.com/dall-e-2/
- [4] https://huggingface.co/spaces/dalle-mini/dalle-mini
- [5] https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
- [6] https://www.bilibili.com/video/BV1b541197HX/?spm_id_from=333.788&vd_source=7020551ede7e34125c5de7acc9417f8d
- [7] https://www.bilibili.com/video/BV1tY4y1N7jg/?spm_id_from=333.788.recommend_more_video.1&vd_source=70 20551ede7e34125c5de7acc9417f8d
- [8] https://github.com/heejkoo/Awesome-Diffusion-Models
- [9] https://www.bilibili.com/video/BV1ad4y1c7vY/?spm_id_from=333.337.search-card.all.click&vd_source=7020551 ede7e34125c5de7acc9417f8d