

## Departamento de Matemáticas Grado en Matemáticas Cálculo I

## Parcial - 15 de Octubre de 2025

Nombre: \_\_\_\_\_ Apellidos: \_\_\_\_\_

| Ejercicio 1 | Ejercicio 2 | Ejercicio 3 | Ejercicio 4 | Ejercicio 5 | Total |
|-------------|-------------|-------------|-------------|-------------|-------|
| 3           | 1.5         | 1.5         | 2           | 2           | 10    |
|             |             |             |             |             |       |

**Ejercicio 1. (3 puntos)** Calcula el siguiente límite:

$$\lim_{x\to 0}\frac{\sin(x)}{x}$$

## Solución:

Aplicando la regla de L'Hôpital o conociendo el límite notable:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = \frac{1}{1} = 1$$

**Ejercicio 2. (1.5 puntos)** Deriva las siguientes funciones:

a) 
$$f(x) = x^3 + 2x^2 - 5x + 1$$

Solución:

$$f'(x) = 3x^2 + 4x - 5$$

**b)** 
$$q(x) = e^{2x}$$

Solución:

$$g'(x) = 2e^{2x}$$

Ejercicio 3. (1.5 puntos) Deriva las siguientes funciones:

a) 
$$f(x) = 2x^3 + x^2 + 2x$$

Solución:

$$f'(x) = 6x^2 + 2x + 2$$

$$\mathbf{b)} \ g(x) = \log 2x$$

Solución:

$$g'(x) = \frac{1}{x}$$

Ejercicio 4. (2 puntos) Indica si las siguientes afirmaciones son verdaderas o falsas:

- 1) La integral de una constante es una función lineal.  $\boxed{V}$   $\boxed{V}$
- 2) La derivada de  $x^2$  es  $2x^2$ .  $\square$  V  $\square$  F

Ejercicio 5. (2 puntos) Indica si las siguientes afirmaciones son verdaderas o falsas:

- a) La derivada de una constante es cero.
- **b)**  $\int x dx = x^2 + C$   $\square$  V  $\checkmark$  **F**

Cálculo I