COMP3670/6670: Introduction to Machine Learning

Question 1

Permutation Matrix

(5+5=10 credits)

A *permutation matrix* is a square matrix that has exactly a single 1 in every row and column, and zeros elsewhere. For example,

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Let **P** be an **arbitrary** $n \times n$ permutation matrix.

- 1. Prove that **P** is always invertible.
- 2. Prove that \mathbf{P}^T is a permutation matrix.

Question 2 Distinct eigenvalues and linear independence

(20+5 credits)

Let **A** be a $n \times n$ matrix.

1. Suppose that **A** has *n* distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, and corresponding non-zero eigenvectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Prove that $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is linearly independent.

Hint: You may use without proof the following property: If $\{\mathbf{y}_1, \dots, \mathbf{y}_m\}$ is linearly dependent then there exists some p such that $1 \leq p < m$, $\mathbf{y}_{p+1} \in \text{span}\{\mathbf{y}_1, \dots, \mathbf{y}_p\}$ and $\{\mathbf{y}_1, \dots, \mathbf{y}_p\}$ is linearly independent.

2. Hence, or otherwise, prove that for any matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$, there can be at most n distinct eigenvalues for \mathbf{B} .

Question 3

Properties of Upper Triangular

(10+15=25 credits)

- 1. Prove the set of all lower triangular matrices is closed under matrix multiplication.
- 2. Let **U** be an square $n \times n$ lower triangular matrix. Prove that the determinant of **U** is equal to the product of the diagonal elements of **U**.

Question 4

Eigenvalues of symmetric matrices

(15 credits)

1. Let **A** be a symmetric matrix. Let \mathbf{v}_1 be an eigenvector of **A** with eigenvalue λ_1 , and let \mathbf{v}_2 be an eigenvector of **A** with eigenvalue λ_2 . Assume that $\lambda_1 \neq \lambda_2$. Prove that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. (Hint: Try proving $\lambda_1 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$. Recall the identity $\mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a}$.)

Question 5

Computations with Eigenvalues

(3+3+3+3+3=15 credits)

Let
$$\mathbf{A} = \begin{bmatrix} 6 & 4 \\ 3 & 5 \end{bmatrix}$$
.

1. Compute the eigenvalues of **A**.

- 2. Find the eigenspace E_{λ} for each eigenvalue λ . Write your answer as the span of a collection of vectors.
- 3. Verify the set of all eigenvectors of **A** spans \mathbb{R}^2 .
- 4. Hence, find an invertable matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
- 5. Hence, find a formula for efficiently ¹ calculating \mathbf{A}^n for any integer $n \geq 0$. Make your formula as simple as possible.

¹That is, a closed form formula for \mathbf{A}^n as opposed to multiplying \mathbf{A} by itself n times over.