

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

SIMULACIÓN DE SISTEMAS Tarea 3. Calcular el voltaje final del condensador

Trabajo de: ADRIAN (ADORA) GONZÁLEZ DOMÍNGUEZ [359834]

Asesor: OSCAR RAMSES RUIZ VARELA

18 de noviembre de 2024

Instrucciones

Considerar un circuito RC con R=330 ohms, C= 10 microFaradios. La fuente es de 5v. El circuito se carga durante 5 taus, luego se descarga durante 1 tau, y enseguida se carga durante 0.5ms. Obtener el Voltaje final del condensador.

Resultados

Carga (↑) o Descarga(↓)	Δt	V_C	V_R	I_C	I_R
	0	0V	5V	15mA	15mA
	5τ	4.96V	0.04V	0.121mA	0.121mA
+	1τ	1.824V	1.824V	5.5mA	5.5mA
<u></u>	0.5ms	2.27V	2.73V	8.2mA	8.2mA

Operaciones

En
$$\uparrow$$
 al pasar $\Delta t=0$ En \uparrow al pasar $\Delta t=5\tau$
$$I_R=\frac{5V}{330\Omega}=14mA \qquad \qquad V_C=5V(1-e^{\frac{-5\tau}{\tau}})=4.96V$$

$$I_R=\frac{0.04V}{330\Omega}=0.121mA$$

En
$$\downarrow$$
 al pasar $\Delta t = au$ $V_C = 5Ve^{rac{- au}{ au}} = 1.824V$ $I_R = rac{1.824V}{330\Omega} = 5.5mA$

En \uparrow al pasar $\Delta t = 0.5ms$

$$V_s = 5V$$

Condicion inicial no es nula $V_c = 1.824V$

Se plantea la situación, si se carga a partir de condiciones iniciales nulas ¿en que tiempo t obtendriamos $V_c=1.824V$?

$$V_C = V_s (1-e^{rac{-t}{ au}})$$

$$e^{rac{-t}{ au}}=-rac{V_C}{V_s}+1$$

$$\ln e^{rac{-t}{ au}} = ln(-rac{V_C}{V_s}+1)$$

$$t = - au imes ln(-rac{V_C}{V_s}+1)$$

$$t = -3.3ms imes ln(-rac{1.824V}{5V} + 1) = 1.4975ms$$

$$\Delta t = 1.4975ms + 0.5ms = 1.9975ms$$

Desde $t_0 = 0$, en \uparrow al pasar $\Delta t = 1.9975ms$

$$V_C = 5V(1 - e^{\frac{-1.9975ms}{3.3ms}}) = 2.27V$$

$$I_R = \frac{2.73V}{330\Omega} = 8.2mA$$