An Implementation of Shor's r-Algorithm

FRANZ KAPPEL franz.kappel@kfunigraz.ac.at
ALEXEI V. KUNTSEVICH alex@bedvgm.kfunigraz.ac.at
Institute for Mathematics, University of Graz, Heirichstr., 36, A-8010 Graz, Austria

Received April 7, 1998; Accepted January 6, 1999

Abstract. Here we introduce a new implementation of well-known Shor's *r*-algorithm with space dilations along the difference of two successive (sub)gradients for minimization of a nonlinear (non-smooth) function (N.Z. Shor, Minimization methods for Non-Differentiable Functions, Springer-Verlag: Berlin, 1985. Springer Series in Computational Mathematics, vol. 3). The modifications made to Shor's algorithm are heuristic. They mostly concern the termination criteria and the line search strategy. A large number of test runs indicate that this implementation is very robust, efficient and accurate. We hope that this implementation of Shor's *r*-algorithm will prove to be useful for solving a wide class of non-smooth optimization problems.

Keywords: nonsmooth, nondifferential optimization, nonlinear programming

1. Introduction

Shor's *r*-algorithm seems to be a very efficient method for minimization of non-smooth (i.e., almost differentiable) functions. However, a serious problem for Shor's algorithm is the design of an efficient stopping criterion, a difficulty common to all algorithms for optimization of non-smooth functions. A further difficulty is the choice of the initial step size. Below we describe in detail the modifications and the additions which resulted in a robust and efficient algorithm.

We start with a description of Shor's original algorithm with space dilation along the difference of two successive subgradients. In Section 3 we present in detail the main features of our implementation. Main emphasis is on those parts which had to be added in order to get a robust and efficient algorithm. Finally, in Section 5 we give some information on the program and on the performance of the algorithm.

2. Shor's r-algorithm

The main idea of the algorithm is to make steps in the direction opposite to a sub-gradient at the current point. However, the steps are to be made in the transformed space. The way to perform this transformation is quite simple. At each iteration one calculates the difference between a subgradient at the current point and that calculated at the previous step. The direction obtained is used to perform dilation of the space with a priori given coefficient. For a more detailed description we refer to [6].

Let $f(\cdot)$ be an almost differentiable convex function defined on \mathbb{R}^n which is differentiable on its domain except on a set of measure zero. Let us denote an almost gradient of $f(\cdot)$ at the point x by $g_f(x)$. Consider the following iterative algorithm for minimization of the function $f(\cdot)$.

At the initial step, compute a subgradient $g_f(x_0)$ for a given starting point x_0 , choose $h_1 > 0$ and find $x_1 = x_0 - h_1 g_f(x_0)$, set $\tilde{g}_1 = g_f(x_0)$ and $B_0 = I$ (the unit $n \times n$ matrix).

Assume that after k iterations one has obtained the point x_k , the space transformation matrix B_k and the subgradient \tilde{g}_k of the function $\varphi_k(y) = f(B_k y)$ at the point $\tilde{y}_k = B_k^{-1} x_{k-1}$. At the (k+1)-st iteration the following calculations have to be performed:

- 1. Calculate $g_f(x_k)$, a subgradient of f at x_k .
- 2. Calculate $g_k^* = B_k^T g_f(x_k)$, a subgradient of φ_k at the point $y_k = B_k^{-1} x_k$.
- 3. Calculate $r_k = g_k^* \tilde{g}_k$, the difference of the two subgradients of φ_k at y_k and \tilde{y}_k .
- 4. Set $\xi_{k+1} = r_k / \|r_k\|$. The normalized vector ξ_{k+1} is the direction of the next space dilation to be performed.
- 5. Calculate $B_{k+1} = B_k R_{\beta}(\xi_{k+1})$, where $\beta = 1/\alpha$, $\alpha > 1$ is a fixed constant. The matrix $R_{\beta}(\xi_{k+1})$ is the inverse of $R_{\alpha}(\xi_{k+1})$, the matrix of the space dilation in the direction ξ_{k+1} with coefficient α given by

$$R_{\alpha}(\xi_{k+1})x = x + (\alpha - 1)(x^{T}\xi_{k+1})\xi_{k+1}, \quad x \in \mathbb{R}^{n}.$$

- 6. Calculate $\tilde{g}_{k+1} = B_{k+1}^T g_f(x_k)$, a subgradient of the function $\varphi_{k+1}(y) = f(B_{k+1}y)$ at the point $\tilde{y}_{k+1} = B_{k+1}^{-1} x_k$.
- 7. Choose a step size h_{k+1} .
- 8. Set $x_{k+1} = x_k h_{k+1}B_{k+1}\tilde{g}_{k+1}$.
- Check the stopping criterion and stop if it is satisfied. Otherwise proceed to the next iteration.

3. Modifications to Shor's algorithm

To turn the r-algorithm as presented above into an efficient and robust optimization routine, one has to find solutions to the following problems:

- Initialization and re-initialization of the space transformation matrix B_k and initialization of the step size h_k .
- Choice of the step size h_{k+1} to optimize the efficiency of space dilation in the direction of the difference of two successive subgradients (of the transformed function φ_k).
- Construction of a stopping criterion which does not need information on gradients.

In the following subsections we describe the solutions to these problems implemented in *SolvOpt* (*Solver* for local nonlinear *Opt*imization problems). The solutions are heuristic.

3.1. Initial trial step size

The stepsize \hat{h}_1 should not be too small if a function is flat, and not too large if a function is steep. How can we satisfy these requirements, having no other information on the objective function but the starting point and the gradient calculated at this point? In view of these conditions and our limited knowledge the following formula is suggested for the first trial step along the gradient calculated at the starting point:

$$\hat{h} = \frac{c}{\log_2(\|g_0\|_2 + 1)},\tag{1}$$

where c > 0 is a factor which can be chosen. The default value 1.

3.2. Re-initialization

The space transformation matrix reflects the history of the optimization process. It should cause the algorithm to make steps mainly towards the optimum instead of making steps along the current gradient, which may be almost orthogonal to the desired direction. A similar strategy is pursued in quasi-Newton methods. However, occasionally one has to forget the history of the optimization process. Since the space dilation coefficient is larger than 1, the norm of the gradients in the transformed space decreases from iteration to iteration. If the dilations occur more or less in the same direction, which is the most preferable situation, then the norm of the transformed gradients possibly becomes close to zero only near the optimum. However, if space dilations are repeatedly made in different directions which almost give an orthogonal basis of the space, then the norm of the transformed gradients may become very small also far away from the optimum. In this case, it is advisable to start the algorithm anew at the best point obtained so far. Such a situation can occur for ravine shaped functions (e.g. the Shell Dual Problem [4] and for functions which are badly scaled. The problem is to decide when one should reset the algorithm, so that it starts anew at the present point and the past history of the process does not interfere in choosing the next direction to go. The following simple criterion is based on heuristics and proved to be efficient:

Resetting of the space dilation matrix: If at the *k*th iteration the inequality

$$\|\tilde{g}_k\|_2 \le 10^{-15} \|g_k\|_2$$

is satisfied, where g_k , \tilde{g}_k are the gradients of the functions f(x) and $\varphi(y)$, then set $B_{k+1} = I$, i.e., the space transformation at the next step is the identity transformation.

3.3. The step size strategy

Any optimization algorithm which uses the gradient of the objective function invokes at each iteration a line search procedure to determine the step size. In algorithms for smooth

problems, the line search procedure usually tries to find or to approximate the optimizer of the objective function f in the chosen direction. However, in Shor's r-algorithm it seems to be necessary to find a step size such that the optimizer for f in the chosen direction is a point between the current point and the next point of the solution path. This is the most efficient way to guarantee that the direction for space dilation at the next step (the difference of the gradients of φ at y_k and \tilde{y}_k) points in the direction where the valley of the objective function which just has been crossed descends to a local minimum or ascends to a local maximum. The step size strategy implemented in SolvOpt also avoids increasing the objective function too much in one step. However, the objective function might increase occasionally, so the algorithm is not a true descent algorithm. This fact, together with the difficulty of keeping track of the successive space transformations, is the main reason that at present there does not exist a sufficiently general proof of convergence for the r-algorithm.

In the description below it is understood that the task is to find a local minimum of the objective function. We assume that steps 1–6 of the (k + 1)-st iteration of the r-algorithm have been completed, so that x_k , g_k , \tilde{g}_{k+1} and B_{k+1} are already computed. Moreover, the trial step size \hat{h}_{k+1} for the line search in the (k+1)-st iteration has also been determined. Then we have to perform the following calculations:

a) Set
$$j_{k+1} = 0$$
, $h_{k+1} = \hat{h}_{k+1}$, $x_{k+1}^{(0)} = x_k$ and $f^{(0)} = f(x_{k+1}^{(0)})$.

b) Calculate

$$\gamma = \min \left\{ 1 + b_1^{(p-\tau)n}, b_2^{\max(\log_{10}(\|g_k\|+1), 1)} \right\}, \tag{2}$$

where $b_1 = 1 + 1/(10n^2)$, $b_2 = 1.15$ and p = 10 are the chosen a priori constants, τ is the number of iterations made after the last resetting. By calculating γ the way it is done in (2), one specifies a new, more strict, upper bound on an occasional increase of the function value every next iteration, hence brings the next point closer to the line search

- c) Calculate $x_{k+1}^{(j_{k+1}+1)} = x_{k+1}^{(j_{k+1})} h_{k+1}B_{k+1}\tilde{g}_{k+1}, f^{(j_{k+1}+1)} = f(x_{k+1}^{(j_{k+1}+1)}).$ d) Set $j_{k+1} = j_{k+1} + 1$.
- d) Set $j_{k+1} = j_{k+1} + 1$. e) If $f^{(j_{k+1})} \ge \gamma f^{(j_{k+1}-1)}$, then set $h_{k+1} = h_{k+1}/5.1$, $j_{k+1} = 0$ and continue with c) (the used stepsize is too large). Otherwise go to f).
- f) If $f^{(j_{k+1})} < f^{(j_{k+1}-1)}$, check the step counter. Set

$$h_{k+1} = \begin{cases} 2h_{k+1}, & \text{if } j_{k+1} > 20, \\ 1.5h_{k+1}, & \text{if } 20 \ge j_{k+1} > 10, \\ 1.05h_{k+1}, & \text{if } 10 \ge j_{k+1} > 2, \\ h_{k+1}, & \text{if } j_{k+1} \le 2 \end{cases}$$

and continue with c). Otherwise go to g).

g) Set
$$x_{k+1} = x_{k+1}^{(j_{k+1}+1)}$$
 and $\tilde{j} = (j_{k-1} + 2j_k + 3j_{k+1})/6$ assuming $k \ge 2$. Check the value

 \tilde{j} and set

$$\tilde{h}_{k+2} = \begin{cases} \sqrt{\tilde{j} - j_0 + 1} \ \tilde{h}_{k+1}, & \text{if } \tilde{j} > j_0, \\ \tilde{h}_{k+1}, & \text{if } \tilde{j} = j_0, \\ \sqrt{\tilde{j}/j_0} \ \tilde{h}_{k+1}, & \text{if } \tilde{j} < j_0, \end{cases}$$

where $j_0 = 3.3$, if the gradients are calculated analytically and $j_0 = 6.3$, otherwise.

Note that item g) is reached only if $f(x_{k+1}^{(j_{k+1})}) \ge f(x_{k+1}^{(j_{k+1}-1)})$.

3.4. Termination

The stopping criterion used in SolvOpt (besides the condition that the maximum number of iterations is not exceeded) can only be seen in connection with the step size strategy implemented in SolvOpt. The efficiency of the stopping criterion can be explained by the fact that, in general, the minimum (maximum) of the objective function on the line joining x_k and x_{k+1} is attained at a point between x_k and x_{k+1} . This prevents the step size from becoming too small if x_k is not close enough to the local minimizer (maximizer). In our test the stopping criterion always guaranteed the required accuracy by choosing the parameters δ_x and δ_f appropriately.

The criterion:

If both the set of inequalities

$$|x_{k+1}^i - x_k^i| \le \delta_x |x_{k+1}^i|, \quad i = 1, \dots, n,$$
 (3)

and the inequality

$$|f(x_{k+1}) - f(x_k)| < \delta_f |f(x_{k+1})|, \tag{4}$$

are fulfilled, terminate the algorithm.

Here δ_x and δ_f are the required relative errors for the argument and function value at the solution, respectively.

4. Constrained minimization

The new implementation of Shor's *r*-algorithm concerns also the solution of constrained minimization problems by taking into account the constraints

$$h(x) \le 0,\tag{5}$$

where $h(x): \mathbb{R}^n \to \mathbb{R}^m$ is a vector valued proper function, by the method of exact penalization. Here we assume that the first m_e constraints are equalities and the next m_n , $m = m_e + m_n$, are inequalities.

Minimization of the function f(x) subject to the constraints (5) can be reformulated in its equivalent form:

minimize

$$F(x) = f(x) + \lambda \max\left(0, \max_{i=1,\dots,m_e} |h_i(x)|, \max_{j=m_e+1,\dots,m} h_j(x)\right),$$
(6)

where λ is a penalty coefficient satisfying the inequality $\lambda > \|u^*\|_{\infty}$, u^* is a vector of the optimal dual parameters corresponding to the constraints (5).

Since no a priori information is available on the exact value u^* , the penalty coefficient has to be chosen sufficiently large (but finite) with the aim to satisfy the constraints. Even though, it may happen that the rate of decrease of the objective function at an infeasible point is still higher than λ . This may lead to an infinite solution of the minimization problem (6) and hence, to no solution of the initial convex programming problem. On the other hand, the use of an extremely large value λ , which makes the penalty function extremely steep at the boundary of a feasible set, may prevent to obtaining the exact solution of the problem.

The above mentioned reasons perceive the use of self-adjusting penalties that would make it possible to solve the problem at one run of a minimization algorithm. An adjusting procedure should provide desirably the use of the smallest admissible value λ at a solution point. This requires possibly both, reduction and increase of a penalty coefficient rather often and the need to restart anew every time λ takes a new value, meaning the need of resetting the transformation matrix B and hence, a loss of the collected data.

The aforesaid was fully taken into account when designing the penalty adjusting procedure as follows.

It starts with $\lambda = 1$. At each iteration k, where the two successive points x_{k-1} and x_k are infeasible by means of the constraints (5), we calculate

$$\tilde{\lambda} = -q_1 \frac{f(x_k) - f(x_{k-1})}{\|x_k - x_{k-1}\|}. (7)$$

Next, we compare the two values λ and $\tilde{\lambda}$ and if $\tilde{\lambda} > q_2 \lambda$, we set $\lambda = \tilde{\lambda}$.

The choice of the constants q_1 and q_2 should be based on a practical experience and the only condition $q_1 > q_2 > 1$. In particular, the values $q_1 = 15$ and $q_2 = 1.2$ provide a satisfactory performance of the algorithm. The latter means that the constraints are not over penalized and λ takes a new, larger, value, if "it seems" to be necessary. By doing this, one guarantees obtaining a finite solution for the problem (6) in practice.

On the other hand, a better efficiency might be achieved by a reduction of the value λ when it becomes reasonable. Assume for a number K of successive iterations, the inequality

$$||g_F(x_k)|| \le \lambda/r_1, \quad g_F(x_k) \in \partial F(x_k),$$
 (8)

has been taking place. Here

$$k \in \{k : \exists i(k) \le m_e : h_{i(k)}(x_k) \ne 0 \text{ or } \exists j(k) > m_e : h_{j(k)}(x_k) > 0\}$$

and $r_1 > 1$ is a constant. The fulfillment of inequality (8) for at least K = 20 successive infeasible points x_k provides a strong basis for a safe reduction of λ in $r_2 < r_1$ times. Practically, the values $r_1 = 100$ and $r_2 = 10$ are used.

5. The program

The program solvopt is concerned with minimization or maximization of nonlinear, possibly non-smooth objective functions and with the solution of nonlinear programming problems taking into account constraints by the method of exact penalization. Recently, the routine is available as an M-function to be used with Matlab, as a Fortran (MS Fortran, HP-UX Fortran 90) subroutine and as a C (MS VC, HP-UX C) function. We provide also a set of standard test functions for local optimization algorithms and an extensive manual.

The routine solvopt takes very few arguments at a call. These are a starting point, entry names of routines, which calculate the objective function value and the gradient at a point, a vector of optional parameters and the names of routines, which calculate the maximal residual for a set of constraints and the gradient of a function $h_j(x)$ taking the maximal positive value at a point x. The optional parameters and their default values are discussed in the manual for the program [3]. Here, a few of them are to be mentioned. It is assumed that the required accuracy for the argument $\delta_x = 10^{-4}$ (see (3)) and for the function $\delta_f = 10^{-6}$ (see (4)), the coefficient for space dilation $\alpha = 2.5$, the factor for the first trial step size c = 1 (see (1)) and an adjusting procedure for γ is invoked (see (2)).

5.1. Gradient approximation

Calculating gradients, when they are not user-supplied, is a very important issue in view of the efficiency and robustness of a minimization algorithm. In *SolvOpt* package, the routine apprgrdn performs the finite difference approximation of the gradient. Normally, it calculates the forward differences with the exception of the case, when the coordinates of a point are smaller than 1 in absolute values. If the latter takes place, the routine calculates the central differences for the coordinates that have small absolute values.

The stepsizes which are used when calculating forward (central) differences are also of a great importance. This specially concerns the case, when the objective function cannot be calculated precisely, i.e. it is perturbed by a noise (see Table 6). The user has to estimate the upper bound of a noise and choose an appropriate relative stepsize for the argument, since this cannot be done automatically.

5.2. Performance of the algorithm

When *SolvOpt* was developed, the goal was to design an algorithm for smooth and non-smooth optimization problems, which combines efficiency, robustness and accuracy. Many

 $\textit{Table 1.} \quad \text{The solution for UNC-problems (the tests by Mor\'e et al.) by } \textit{SolvOpt} \text{ with user-supplied analytically determined gradients and standard starting points.}$

Function name	Known	Function value	Rel. error for		
(dimension)	minimum	at the solution	the minimizer	N_f	N_g
Rosenbrock (2)	0.00000e+00	6.51487e-14	4.57175e-07	177	38
Freudenstein and Roth (2)	4.89843e+01	4.89843e+01	2.19319e-04	92	27
Powell Badly Scaled (2)	0.00000e+00	4.15387e-13	5.77221e-04	754	149
Brown Badly Scaled (2)	0.00000e+00	2.81555e-15	4.66825e-14	222	37
Beale (2)	0.00000e+00	9.73165e-16	3.29049e-08	94	20
Jennrich and Sampson (2)	1.24362e+02	1.24362e+02	1.88848e-05	56	20
Helical Valley (3)	0.00000e+00	2.67613e-14	4.12264e-08	153	36
Bard (3)	8.21487e-03	8.21488e-03	2.95678e-05	107	33
Gaussian (3)	1.12793e-08	1.12793e-08	1.90770e-05	71	19
Meyer (3)	8.79458e+01	8.79459e+01	1.70764e-05	2246	521
Gulf Research and Dvlp. (3)	0.00000e+00	2.97735e-15	1.09601e-05	1152	258
Box 3-Dimensional (3)	0.00000e+00	4.73124e-13	1.32117e-06	116	23
Powell Singular (4)	0.00000e+00	1.42035e-13	2.52338e-04	133	31
Wood (4)	0.00000e+00	7.05286e-15	6.70780e-08	248	56
Kowalik and Osborne (4)	3.07506e-04	3.07506e-04	6.01813e-05	108	36
Brown and Dennis (4)	8.58222e+04	8.58222e+04	2.59210e-05	158	53
Osborne 1 (5)	5.46489e-05	5.46489e-05	1.94239e-04	305	89
Biggs EXP6 (6)	5.65565e-03	5.65565e-03	9.59768e-06	141	43
Osborne 2 (11)	4.01377e-02	4.01377e-02	1.73261e-05	216	75
Watson (9)	1.39976e-06	1.39976e-06	1.81276e-05	304	97
Extended Rosenbrock (10)	0.00000e+00	1.78220e-13	4.75103e-07	321	81
Extended Powell Singular (4)	0.00000e+00	1.42035e-13	2.52338e-04	133	31
Penalty I (4)	2.24998e-05	2.24998e-05	5.60111e-05	254	67
Penalty II (4)	9.37629e-06	9.37629e-06	8.78873e-05	986	264
Variably Dimensioned (10)	0.00000e+00	2.08035e-13	2.51484e-07	399	86
Trigonometric (10)	2.79506e-05	2.79506e-05	0.00000e+00	143	49
Discrete Boundary Value (10)	0.00000e+00	8.52721e-14	4.58385e-06	161	40
Discrete Integral Equat. (10)	0.00000e+00	6.85021e-13	7.15789e-06	111	27
Broyden Tridiagonal (10)	0.00000e+00	8.91327e-14	7.27062e-07	119	30
Broyden Banded (10)	0.00000e+00	6.75979e-13	9.80184e-07	141	30
Linear—Full Rank (10)	1.00000e+01	1.00000e+01	3.23741e-05	379	113
Linear—Rank 1 (10)	4.63415e+00	4.63415e+00	0.00000e+00	133	24
Linear—Rank 1 with Zero	6.13514e+00	6.13514e+00	0.00000e+00	289	24
Columns and Rows (10)					

 $Table\ 2.$ The solution for UNC-problems (the tests by Moré et al.) by SolvOpt without user-supplied gradients and standard starting points.

Function name (dimension)	Known minimum	Function value at the solution	Rel. error for the minimizer	N_f
Rosenbrock (2)	0.00000e+00	7.50463e-15	1.67244e-07	285
Freudenstein and Roth (2)	4.89843e+01	4.89843e+01	2.40831e-04	147
Powell Badly Scaled (2)	0.00000e+00	4.70720e-21	1.97603e-08	1241
Brown Badly Scaled (2)	0.00000e+00	6.14504e-13	7.74628e-13	293
Beale (2)	0.00000e+00	1.78959e-14	1.20877e-07	113
Jennrich and Sampson (2)	1.24362e+02	1.24362e+02	7.09685e-06	90
Helical Valley (3)	0.00000e+00	2.11807e-15	4.11560e-09	283
Bard (3)	8.21487e-03	8.21488e-03	1.11801e-05	189
Gaussian (3)	1.12793e-08	1.12793e-08	1.90422e-05	118
Meyer (3)	8.79458e+01	8.79459e+01	7.12908e-05	4584
Gulf Research and Dvlp. (3)	0.00000e+00	7.63487e-16	2.55022e-05	2119
Box 3-Dimensional (3)	0.00000e+00	3.31440e-15	2.53636e-07	165
Powell Singular (4)	0.00000e+00	1.41568e-13	2.39728e-04	269
Wood (4)	0.00000e+00	1.62095e-13	3.66083e-07	486
Kowalik and Osborne (4)	3.07506e-04	3.07506e-04	6.85225e-06	253
Brown and Dennis (4)	8.58222e+04	8.58222e+04	3.00919e-05	243
Osborne 1 (5)	5.46489e-05	5.46489e-05	1.99793e-04	882
Biggs EXP6 (6)	0.00000e+00	6.92153e-14	1.49201e-05	1382
Osborne 2 (11)	4.01377e-02	4.01377e-02	3.71987e-05	1024
Watson (9)	1.39976e-06	1.39977e-06	3.43343e-03	1055
Extended Rosenbrock (10)	0.00000e+00	1.87397e-13	4.10093e-07	1968
Extended Powell Singular (4)	0.00000e+00	1.41568e-13	2.39728e-04	269
Penalty I (4)	2.24998e-05	2.24998e-05	3.85047e-05	483
Penalty II (4)	9.37629e-06	9.37629e-06	2.64325e-05	2387
Variably Dimensioned (10)	0.00000e+00	5.29850e-13	4.45526e-07	333
Trigonometric (10)	2.79506e-05	2.79506e-05	0.00000e+00	459
Discrete Boundary Value (10)	0.00000e+00	6.59758e-14	3.43634e-06	586
Discrete Integral Equat. (10)	0.00000e+00	6.28448e-14	3.16254e-06	349
Broyden Tridiagonal (10)	0.00000e+00	4.26345e-14	6.94252e-07	420
Broyden Banded (10)	0.00000e+00	4.98694e-13	9.26124e-07	376
Linear—Full Rank (10)	1.00000e+01	1.00000e+01	1.43688e-05	305
Linear—Rank 1 (10)	4.63415e+00	4.63415e+00	0.00000e+00	1180
Linear—Rank 1 with Zero	6.13514e+00	6.13514e+00	0.00000e+00	847
Columns and Rows (10)				

runs with test functions known to be a challenge for any optimization routine indicate that these design goals have been achieved.

Despite *SolvOpt* is claimed to be an optimization tool for almost every problem, the weak point of the code is seen in its general applicability. The latter means that it cannot compete in efficiency with the optimization codes designed specifically for a particular class of problems.

Below we provide representative samples of our tests. These have been run with the standard starting points, unless stated otherwise. For all runs the default values for the parameters were used.

5.2.1. Unconstrained minimization of smooth functions. Tables 1 and 2 contain the results for known differentiable functions by Moré et al. [5]. The first column of both tables displays the title and the dimension of the test function. The second column provides the known function value at the minimum. The third displays the minimum value obtained by the M-function solvopt with default optional parameter settings (see above). The fourth gives the relative error (in terms of ℓ_{∞} -norm) for the minimizer obtained. The numbers of function (N_f) and gradient (N_g) evaluations are presented in columns 5 and 6 respectively.

5.2.2. *Unconstrained minimization of non-smooth functions.* The two Tables 3 and 4 contain the results for the minimization of non-smooth functions. As previously, the optional parameters take the default values.

 $Table\ 3.$ The solution for the selected non-smooth problems by SolvOpt with user-supplied analytically determined subgradients.

Function name (dimension)	Known minimum	Function value at the solution	Rel. error for the minimizer	N_f	N_g
Shor's Piece-wise Quadr. (5)	2.260016e+01	2.260016e+01	1.02286e-04	179	61
Exact penalty function for the Shell Dual Problem (15)	3.234868e+01	3.234868e+01	1.04073e-03	1081	311
Exact penalty function for the III-Conditioned LPP (15)	-2.004200e+01	-2.004200e+01	1.11044e-04	740	246
Lemarechal's MaxQuad (10)	-8.414083e-01	-8.414083e-01	1.79634e-04	324	109

Table 4. The solution for the selected non-smooth problems by SolvOpt without user-supplied subgradients.

Function name (dimension)	Known minimum	Function value at the solution	Rel. error for the minimizer	N_f
Shor's Piece-wise Quadr. (5) [6]	2.260016e+01	2.260016e+01	6.90639e-05	539
Exact penalty function for the Shell Dual Problem (15) [2]	3.234868e+01	3.234869e+01	1.25461e-02	5892
Exact penalty function for the Ill-Conditioned LPP (15) [2]	-2.004200e+01	-2.004200e+01	3.14566e-04	780
Lemarechal's MaxQuad (10) [4]	-8.414083e-01	-8.414083e-01	9.00188e-04	1289

One can find many more test results at SolvOpt web page. In particular, we have collected there the results for Moré set of tests at a) 10-, 100-, 1000-fold standard starting points and b) $\tilde{f}(\cdot) = 10^{16} f(\cdot)$ and $\tilde{f}(\cdot) = 10^{-8} f(\cdot)$. These sets of tests were run for the both cases, when the gradients are analytically calculated and approximated by the finite differences. By these runs, we have proven that the convergence behavior of SolvOpt depends insignificantly on a starting point. This is true for both "flat" and "steep" functions too.

5.2.3. Constrained minimization. The following runs illustrate minimization of a function under constraints. In Table 5, the first column provides the title (identifier) of a test problem. The second one displays the number of variables (n). The numbers of equality (m_e) and inequality (m_n) constraints are found in the third and the fourth columns respectively. The fifth column provides the function value at the solution found and the other four columns display the values for the counters: objective function values (N_f) , gradients (N_g) of the

Table 5. The solution for constrained problems selected from the CUTE [1] by SolvOpt with user-supplied gradients.

Problem identifier	n	m_e	m_n	Minimum	N_f	N_g	N_{Fcn}	N_{Gcn}
ANTEN1	7	0	333	333 .854175437D-01		195	634	123
ANTEN2	7	0	333	.113104704D+00	793	245	793	161
ANTEN3	7	0	333	.220519858D+00	376	125	376	122
ROBOTA	21	0	1458	.105606403D+01	1106	344	1106	218
ROBOTB	21	0	1458	.237778642D+01	2172	676	2172	442
ROBOTC	21	0	1458	.147365200D+01	1853	548	1853	321
DEMBO1B (SCALING)	12	0	15	.316867632D+01	902	273	902	80
DEMBO4C	9	0	23	.360509830D+01	4281	1326	4281	1325
DEMBO7N16	16	0	51	.174793463D+01	2449	787	2449	731
HS114EXTD	18	11	28	176879039D+04	1667	540	1667	537
HS118	15	0	59	.664826996D+03	1584	516	1584	361
HS118M1	15	0	59	.128559996D+05	677	219	677	126
HS118M2	15	1	59	.662121592D+03	1188	396	1188	393
HS119 COLVILLE NO 7	16	8	32	.244899701D+03	1236	405	1236	400
HS108XMOD O	9	0	14	674974711D+00	495	153	495	91
HS69	4	2	8	956711996D+03	3537	963	3537	908
HS84ORIG	5	0	16	528033302D+07	501	114	501	60
HS84SCAL	5	0	16	528033517D+02	646	161	646	82
HS85ORIG	5	0	48	190515360D+01	315	86	315	58
HS85REG	5	0	48	190515360D+01	315	86	315	58
HIM13BOXPROBLEM	12	7	16	523801553D+07	22061	6476	22061	6471
HIM20PAVIANIN24	24	14	32	.556580411D+01	3943	1250	3943	1145
HIM6MINOS	45	16	45	.122502412D+06	151	27	151	26
HIM6SPELLUCCI	45	16	45	191037195D+04	3939	1309	3939	1266

m 11 /	3 ft 1 1 CT	1 11 0		C 1.111
Table b	Minimization of F	Cosenbrock's filma	tion in presence	of an additive noise.

No.	Function value at solution \bar{x}	ℓ_{∞} -norm for $\bar{x} - x_{\star}$	N_f	No.	Function value at solution \bar{x}	ℓ_{∞} -norm for $\bar{x} - x_{\star}$	N_f
1	8.04800e-10	4.27244e-05	413	2	9.61321e-12	6.19792e-06	244
3	1.83812e-09	8.50340e-05	225	4	1.10704e-09	4.80238e-05	283
5	2.51601e-09	5.12358e-05	242	6	6.00402e-09	1.50768e-04	423
7	3.02638e-11	1.02842e-05	275	8	2.86855e-09	1.53632e-05	234
9	5.76961e-10	4.46547e-05	286	10	6.46889e-10	4.44173e-05	274
11	3.03039e-09	9.66342e-05	279	12	3.20924e-09	1.00841e-04	264
13	4.26250e-12	3.01130e-06	262	14	5.87820e-11	5.37228e-06	237
15	4.56702e-09	1.19603e-04	258	16	5.95747e-09	1.29142e-04	245
17	2.12739e-12	2.88789e-06	311	18	4.04631e-09	1.27245e-04	254
19	1.15334e-09	5.53757e-05	281	20	4.22626e-10	1.39456e-05	267
21	9.60271e-09	1.96189e-04	282	22	3.47445e-10	1.10488e-06	258
23	4.60912e-11	9.56332e-06	278	24	1.04007e-10	1.66566e-05	276
25	6.04415e-09	1.36153e-04	245	26	4.56546e-09	6.76059e-05	263
27	4.32422e-10	4.16216e-05	257	28	1.57247e-10	2.41977e-05	263
29	2.32686e-09	9.65815e-05	284	30	3.48260e-10	2.88937e-05	233

objective function, maximal residuals for constraints (N_{Fcn}) and gradients for constraints (N_{Gcn}) respectively. These results were obtained by the FORTRAN subroutine solvopt.

5.2.4. *Minimization of a perturbed function.* Another very important feature of any optimization routine is its robustness under bounded perturbations. In many practical applications one faces the necessity of optimizing a perturbed function or a function which cannot be computed exactly, i.e., it can be computed only with finite accuracy only. The table below shows the robustness of *SolvOpt* in this respect by minimizing perturbed Rosenbrock's function. The values of Rosenbrock's function were perturbed by additive noise by adding

1.e-7*(rand(1)-0.5)

to the function value. The results presented in Table 6 have been obtained at the required relative errors $\delta_x = 10^{-4}$ and $\delta_f = 10^{-5}$. The lower bound for the relative stepsize used in the difference approximation of gradients has been set to 10^{-6} .

6. Concluding remarks

The data on test runs presented above are certainly incomplete. In total, about 20,000 runs have been made with various test functions and at dimensions from 2 up to 500. With all these runs, *SolvOpt* has shown a great robustness in achieving the required accuracy. This proves *SolvOpt* to be a very useful optimization tool. Nevertheless, the authors do not claim the robustness of the code in every single case. Obviously, there is no optimization code

that never fails. The case of a particular difficulty for *SolvOpt* is a ravine-like function with very steep and almost parallel walls and a flat bottom. As a rule, this is caused by a finite accuracy of computations.

Concerning constrained minimization, the use of penalty functions restricts the area of applicability of SolvOpt to objective functions defined everywhere in \mathbb{R}^n . Obviously, one can complete the function definition by introducing a linear penalty function taking a nonzero value outside the domain. However, this requires from the user to define a penalty function and to choose a proper penalty coefficient a priori.

The Matlab, C and Fortran source codes for *SolvOpt* are available for downloading from http://bedvgm.kfunigraz.ac.at:8001/alex/solvopt/ (the Internet addresses are under changes). One can find also the online manual and its postscript version, the test descriptions and the results at the web site.

Since the newest version 1.1 had been announced in August, 1997, *SolvOpt* has got over 1200 users and this number grows up constantly by about 3 downloads per day in average.

The present paper does not provide a comparison of the efficiency of SolvOpt and other existing implementations of the r-algorithm. The reason is that there is no source code available in public except SolvOpt and we could not find a single comprehensive description of test results that would be useful to compare with.

Acknowledgments

The authors acknowledge support by FWF (Austria) under grant F003.

References

- I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph.L. Toint, "CUTE: constrained and unconstrained testing environment," Research Report, IBM, T.J. Watson Research Center, Yorktown, USA, 1993.
- K.C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Springer-Verlag: Berlin, 1985. Lecture Notes in Mathematics, vol. 1133.
- A.V. Kuntsevich and F. Kappel, The solver for local nonlinear optimization problems (version 1.1), University
 of Graz. Graz. 1997.
- 4. C. Lemarechal and R. Mifflin, (Eds.), Nonsmooth Optimization, Pergamon Press: Oxford, 1978.
- J.J. Moré, B.S. Garbow, and K.E. Hillstrom, "Testing unconstrained optimization software," ACM Transactions on Mathematical Software, vol. 7, no. 1, pp. 17–41, 1980.
- N.Z. Shor. Minimization methods for Non-Differentiable Functions, Springer-Verlag: Berlin, 1985. Springer Series in Computational Mathematics, vol. 3.