

EUV source metrology using transmissive and diffractive optics

Muharrem Bayraktar

m.bayraktar@utwente.nl

EUV Source Workshop 23 October 2024

Motivation

- Light outside the 13.5 nm (±1%) band, spans a broad spectrum (DUV, VIS, NIR)
- Can be reflected from the optics and cause contrast loss, and can be absorbed by H₂
- Need for broadband (both in-band and out-of-band) spectral and spatial monitoring

In-band metrology: Flying Circus approach

 Absolutely calibrated measurement in the pass-band of the mirror, <%5 calibration uncertainty

- Enabled a through comparison of early EUV sources in mid-2000s,
- Varieties are in common use nowadays
 F. Bijkerk, et.al. EUV Sources for Lithography, 721-734, (2006)

In-band metrology: Anomalous transmission filters

- Based on anomalous transmission (Borrmann) effect
- Can be coated on photodiodes
- 74 bilayers of Ni/Si transmission 1%, bandwidth FWHM 0.23nm (1.7%) at 13.5nm wavelength
- Passband can be tuned by changing the incidence angle
- Intermixing plays a significant role in the final response, can be improved

J. L. P. Barreaux, et.al. Opt. Exp. 25(3), 1993 (2017)

Broadband spectroscopy: Transmission grating spectrometer

✓ Grating chip developed in MESA+ Nanolab

√ 3x7 grating matrix

Low resolution gratings (500 lines/mm) for VIS range High res. gratings (up to 10.000 lines/mm) for EUV range

XUV transmission grating spectrometer

- ✓ Broadband coverage
- ✓ Compact design (~20x25x30 cm³)

- ✓ Computer controlled positioning
- ✓ Straightforward alignment

M. Bayraktar, et.al. NEVAC Blad, 54, 14-19 (2016).

Scaling of emission in an industrial EUV source

Specific charge states can be resolved clearly in the short wavelength-side of the 13.5nm peak

F. Torretti, et.al. J. Phys. D: Appl. Phys. 53, 055204 (2020)

Absolutely calibrated spectra in the 5.5-265 nm range

- ✓ Strong higher diffractions orders of the 13.5nm peak are suppressed by the set of filters.
- ✓ SiC 4-bounce filter enables to measure the otherwise inaccessible 40-115nm range

Z. Bouza, et.al. AIP Adv. 11, 125003 (2021)

Broadband spectroscopy and imaging using zone-plates Y. Mostafa, Z. Bouza, et. al. Opt. Lett. 48, 4316-4319 (2023)

- Pinhole imaging with foil filters broad spectral coverage but limited spatial resolution
- Imaging using multilayer mirrors decent spatial resolution but limited spectral coverage
- Combination of transmission gratings with dispersion matched zone-plates broadband spectral coverage + decent spatial resolution

- Spectroscopy on x-axis
- Imaging on y-axis
- Light focusing using zoneplates is strongly wavelength dependent
- How to have good focusing for a broad wavelength range (e.g. 5-80 nm)?

Dispersion-matched zone-plates enable broadband spectroscopy and imaging

1D zone-plate designed to focus a single wavelength

- Radius $r_{i,n}$ of each zone n is dependent on the wavelength λ_i
- As the wavelength increases, the zone radius increases
- Resulting in tapered zone plates

1D tapered zone-plate designed to focus 5-80 nm wavelength range

Y. Mostafa, et. al. Opt. Lett. 48, 4316 (2023)

Experimental implementation

ARCNL EUV source and experiments

- Nd-YAG laser at 1 um
- Sn solid target
- Beam size: 60 um FWHM
- Magnification: 1.9
- Design spatial resolution: 10 um
- Spectral resolution: 0.8 nm @13.5nm
- Better spectral and spatial resolutions possible by setup configuration
 - Spectral resolution: < 0.1 nm
 - Spatial resolution: < 1 um

CCD

Transmission grating, zone-plate & spectrometer design and fabrication

UTwente

Y. Mostafa, et. al. Opt. Lett. 48, 4316 (2023)

Results – experiment vs simulation

- Spectrum without zone-plate, as a reference
- Spectral resolution 0.8 nm
- Prominent 13.5 nm peak is visible
- Experimental recording with zone-plate inserted
 - Horizontal band at the center corresponds to the focused plasma light
 - Zero- and other zone-plate orders are visible at both sides of the plasma light
- Wave propagation simulation, assuming zoneplate is illuminated with a plane-wave, yielding the theoretical design resolution (10 um) of the zone-plate

Y. Mostafa, et. al. Opt. Lett. 48, 4316 (2023)

Broadband imaging and spectroscopy in the 5-80 nm range using zone-plates

Broadband imaging and spectroscopy in the 5-80 nm range using zone-plates

- Broadband imaging and spectroscopy in the 5-80 nm range is possible
- Normalized image shows a widening central band, indicating increasing plasma size with increasing wavelength as anticipated

Conclusions

- In-band metrology using Flying Circus and Anomalous transmission filters approaches
- Broadband metrology using transmission gratings
 - Broadband spectroscopy in the EUV-NIR range, compact setup with good spectral resolution
 - Measurements using HHG, prototype EUV light source (ASML) and research type LPP sources (ARCNL)
 - Enables to observe distinct emission lines of the tin plasma
- Dispersion-matched zone-plates enable broadband spectroscopy and imaging
 - 0.8 nm spectral resolution and 10 um design spatial resolution
 - Broad spectral coverage 5-80 nm
 - Better spectral (<0.1 nm) and spatial (<1 um) resolutions possible
 - Wave propagation simulations verify the spatial resolution and the proof-of-principle of the tool
 - Laser-produced-plasma investigated with the tool show increasing plasma size with increase wavelength, as expected

Acknowledgements

Spectrometer Team

Dr. James Byers (UTwente, NL)

Dr. Bert Bastiaens (UTwente, NL)

Dr. Boris Vratzov (NT&D, DE)

Caspar Bruineman (Scientec, NL)

Prof. Dr. Fred Bijkerk (UTwente, NL)

Prof. Dr. Marcelo Ackermann (UTwente, NL)

Collaboration with ASML

Dr. Fei Liu

Dr. Mark van de Kerkhof

ASML Veldhoven Source Performance Team

Dr. Igor Fomenkov and Cymer Team

Collaboration with ARCNL, NL

Dr. Zoi Bouza

Dr. Ievgeniia Babenko

Dr. Yahia Mostafa

Dr. Francesco Torretti

Dr. Ruben Schupp

Dr. Lars Behnke

Prof. Dr. Wim Ubachs

Prof. Dr. Oscar Versolato

Appendix

Resolution test in a HHG source

- Design resolution 0.09 nm at 21 nm (37th harmonic)
- Measured resolution < 0.13 nm^[5]
- Can be configured for 0.05 nm resolution at 13.5 nm

[5] J. Goh et.al. Opt. Exp. 23, 4421 (2015).

Demonstration in the DUV, VIS, NIR range

- Low but detectable DUV-NIR intensity
- Distinct peaks and broad features in the spectra

Assigning emission lines

- Peaks originate from higher diffraction orders, line and continuum emission
- Higher diffraction orders can be filtered out by spectral windows (eg. LiF, MgF₂, UVFS...)
- Sn⁺², Sn⁺³ and H lines correlate with observed spectra

