Lecture #21

The Rendering Equation

Computer Graphics
Winter Term 2016/17

Marc Stamminger / Roberto Grosso

Up to now

- Very simple lighting model
 - Phong Lighting (or maybe Torrance-Sparrow or similar)
 - Lighting from point lights (or directional lights = point lights at infinity)
- Distribution Ray Tracing
 - supports area lights → how related to point lights?
 - could support indirect illumination → how defined correctly?
 - ...
- We need a physically correct description of lighting!

→ Rendering Equation

Content

- Radiometric Concepts
- BRDFs
- The Rendering Equation

- Physical measurement of light
- "How bright is a light source"?
- "How bright is a surface point?"
- "How much light does a surface point emit towards the camera?"
- For now, we ignore color
- In fact, all following magnitudes are wavelength dependent
- In practice, this means we simply use RGB-triples

Radiant Flux

- Light source emits photons
 - varying frequency, each photon has some small energy
- Radiant Flux: emitted light energy per time
 - = power (energy per time)
 - = flux (term for radiant power)
 - $\Phi = \frac{dE}{dt}$
 - unit: Watts = W
- Simple example: 100 W light bulb, 5% efficiency → radiant flux = 5W

Radiant Flux

- Flux can also be used to describe incident light
- Example:
 - Each pixel on a camera chip counts incident photons
 - Camera chip counts *n* incident photons while shutter is open
 - assume: photon frequency $\nu \rightarrow$ energy of one photon is $h\nu$
 - assume: shutter time $t \to \text{incident radiant flux } \Phi = n \frac{h\nu}{t}$

Radiosity

- Flux is light emitted by **entire** light source
- Does not describe emission of a single point
 - → points on light can have different brightness
 - → "brightness" is probably "emitted light per surface area"
- Area light source
 - Flux Φ emitted over area A
 - "Brightness" is emitted light per area = Radiosity B

$$B = \frac{\Phi}{A} \quad \left[\frac{W}{m^2} \right]$$

- → assumes constant light over light source
- or spatially varying emission:

$$B(x) = \frac{d\Phi(x)}{dA_x}$$

Radiosity

Examples

- a light panel emits 25W of light on an area of 10cm x 10cm
 - \rightarrow Radiosity is $2500 \frac{W}{m^2}$
- another light panel emits the same flux on an area of 1m x 1m
 - \rightarrow Radiosity is $25 \frac{W}{m^2}$
 - → same flux, different radiosity

Radiosity

- another example:
 - Brightness not uniform over panel
- how to measure brightness at x?
 - consider small area around x, measure emitted flux $\rightarrow \Phi$
 - $B(x) = \Phi/A$
 - make area smaller → derivative

$$B(x) = \frac{d\Phi}{dA_x}$$

• B(x) varies over panel (see right)

Irradiance

- also radiosity can be incident = *Irradiance E*
- ullet Example: one pixel on a camera chips has surface area A and counts n photons of frequency v

$$E = n \frac{h\nu}{At}$$

or spatially varying incident light:

$$E(x) = \frac{d\Phi(x)}{dA_x}$$

Intensity

Instead of spatial dependence we can also consider angular dependence =
 Intensity I

$$I(\omega) = \frac{d\Phi(\omega)}{d\omega}$$

• 555

- Angle span of directions in 2D
 - Angle θ of circular arc of length l is equal to l/r [radians \equiv rad]
 - Example of circle: Circumference: $l=2\pi r$; $\theta=\frac{l}{r}=2\pi[rad]$
 - ightarrow total angle of a circle is 2π

- Solid angle equivalent value in 3D
 - Solid angle Ω of spherical area a is equal to α/r^2 [steradians \equiv sr], "radians squared"
 - Example of sphere
 - Surface area: $a = 4\pi r^2$,
 - therefore $\Omega = a/r^2 = 4\pi r^2/r^2$ [sr]
 - The solid angle of the sphere is 4π [sr]

- Differential solid angle $d\Omega$ on sphere using polar coordinates (θ, φ)
 - Length of an arc at $[\theta, \theta + d\theta]$: $r d\theta$
 - Length of an arc at $[\varphi, \varphi + d\varphi]$: $r \sin \theta \ d\varphi$
 - Differential area on sphere:

$$d\Omega = (rd\theta)(r\sin\theta \ d\varphi) = r^2\sin\theta d\theta d\varphi$$

ullet Differential solid angle $d\omega$ on sphere

$$d\omega = \frac{d\Omega}{r^2} = \sin\theta d\theta d\phi$$

• Example: integrate "1" over sphere -> surface area

$$\int_0^{\pi} \int_0^{2\pi} 1 \cdot \sin\theta d\theta \ d\varphi = 4\pi$$

Intensity

- Now back to intensity in direction ω :
 - ullet consider solid angle Ω around ω
 - measure emitted flux Φ
 - $I = \frac{\Phi}{\Omega}$
- make solid angle infinitely small:

$$\Rightarrow I(\omega) = \frac{d\Phi(\omega)}{d\omega}$$

- = light emitted into direction ω
- example:
 - radial intensity plot taken from www.osram.de

Strahlungsverteilung

Intensity

- Incident intensity: think of special measuring device:
 - lengthy tube only lets light pass coming from a restricted range of directions
 → solid angle
 - only counts photons coming from certain directions with some solid angle Ω
 - incident intensity in direction of cylinder:

$$I = \frac{nhv}{t\Omega}$$

- Finally: what we want is incident or exitant light, depending on *position and direction*
 - → Radiance
- let's start with incident radiance of a surface (not the same as irradiance!)
- ullet again, we restrict the solid angle using a tube with some solid angle Ω
- what area should we use ?

- we have to consider the projected area
- ullet for steep angles, the area that emits light increases by $\cos lpha$

•
$$L(x, \omega) = \frac{\Phi}{A \Omega} = \frac{\Phi}{\cos \alpha A' \Omega}$$

• in terms of flux:

•
$$L(x, \omega) = \frac{d^2 \Phi}{\cos \alpha \, dA_x \, d\omega} = \frac{d^2 \Phi}{\langle N_x, \omega \rangle dA_x \, d\omega}$$

$$A' = \frac{A}{\cos \alpha}$$

- Same for exitant flux
- Unit is $\frac{W}{m^2sr}$
- Radiance is what is measured by camera

- In vacuum, radiance does not change along a ray
 - basis for ray tracing

- Radiant flux or radiant power: $\Phi = \frac{dE}{dt}$
- Radiant intensity: $I(\omega) = \frac{d\Phi}{d\omega}$
- Flux density or radiosity: $B(x) = \frac{d\Phi}{dx}$
- Radiance: $L(x, \omega) = \frac{d^2\Phi}{\langle N_x, \omega \rangle d\omega dA_x}$

Integration

- $B(x) = \int_{\Omega^+} L(x, \omega) < N_x, \omega > d\omega$
- $I(\omega) = \int_{S} L(x, \omega) dA_x$
- $\Phi = \int_{S} B(x) dA_x = \int_{\Omega} I(\omega) d\omega = \int_{S} \int_{\Omega} L(x, \omega) < N_x, \omega > d\omega \ dA_x$

Quantity	Definition	Units
Radiant Energy	E	J
radiant flux (power)	$\phi = \frac{dE}{dt}$	W
Radiant Intensity	$I = \frac{d\phi}{d\omega}$	W sr ⁻¹
Radiosity	$B = \frac{d\phi^{out}}{dA}$	W m ⁻¹
Irradiance	$E = \frac{d\phi^{in}}{dA}$	W m⁻¹
Radiance	$L = \frac{dI}{\cos \alpha dA}$	W m ⁻² sr ⁻¹

Photometry

- Radiometric quantities are wave length dependent
- Photometry: measure brightness as perceived by human observer
- Luminosity function $V(\lambda)$ measures perceived brightness over wave length

Photometry

• set of quantities as in radiometry, but wave lengths weighted according to $V(\lambda)$:

$$F = 683 \frac{lm}{W} \int \Phi(\lambda) V(\lambda) d\lambda$$

- *F* = photometric equivalent to flux
 - = luminous flux

Photometry

Radiometry		Photometry	
Energy Energie	Joule [J]	Luminous Energy Lichtmenge	Talbot, Lumen-sekunde [lm s]
Flux Strahlungsfluss	Watts [W= J/s]	Luminous Flux Lichtstrom	Lumen [lm]
Irradiance Flussdichte	W/m ²	Illuminance Beleuchtungsstärke	Lux [lx]
Radiosity Radiometrisches Emmissionsvermögen	W/m ²	Luminosity Photometrisches Emissionsvermögen	Lx / m ²
Intensity Intensität	W / sr	Luminous Intensity Lichtstärke	Candela [cd]
Radiance Strahlungsdichte	W / sr m ²	Luminance Leuchtdichte	cd / m ²

- how can we describe reflection off a surface?
 - e.g. Phong-Model in radiometric context?
- How is light incident at surface point x from direction ω_{in} reflected in direction ω_{out} ?

reflected exitant light: radiance in direction ω_{out}

irradiance from direction ω_{in}

• more precisely:

$$f(x, \omega_{in}, \omega_{out}) = \frac{dL(x, \omega_{out})}{dE(x, \omega_{in}) < N_x, \omega_{in} >}$$
 incident light:

- cosine?
 - similar argument as for radiance definition
 - diffuse BRDF $\rightarrow f = const$

Major types of BRDFs

Much work on measuring realistic BRDFs

Gonioreflectometer

Measuring BRDF of a face

Side remark: BRDF / BSSRDF

BRDF: light leaves surface where it entered

BSSRDF: light leaves surface at a different position. It describes subsurface scattering

Side remark: BRDF / BSSRDF

BRDF

BSSRDF

Back to BRDFs: Phong Lighting Model as BRDF

no ambient term

Reflection

- given:
 - incident light $L_{in}(x, \omega_{in})$
 - BRDF $f(x, \omega_{in}, \omega_{out})$
- to compute: exitant light

$$L_{out}(x, \omega_{out}) = \int f(x, \omega_{in}, \omega_{out}) < N_x, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

Point Lights, Parallel Lights

• Problem:

- point lights and parallel lights have zero area
- thus their radiance is infinite
- these sorts of light do not fit in this context
- We can squeeze them in using Dirac-functions
- Or replacing them by small sphere lights (point lights) or by very distant area lights (parallel lights)

• But:

• In the Phong model, reflected light decreases with the squared distance to the light source. Radiance along a ray is constant. !?!?

Illumination Computation

• Illumination Integral:

$$L_{out}(x, \omega_{out}) = \int f(x, \omega_{in}, \omega_{out}) < N_x, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

- simple integration method for area light sources:
 - ullet sample incident light using n sample directions ω_i
 - if ray hits light source $\rightarrow L_{in} = L_e$ otherwise $L_{in} = 0$
 - $L_{out}(x,\omega) = \int ... d\omega_{in} \approx \frac{2\pi}{n} \sum_{i} L_{in(\omega_i)} f(x,\omega_i,w_{out}) < N_x, \omega_i > 0$

Illumination Computation

• Observation: two rays hit sphere

Illumination Computation

- If we move light away, only one ray hits sphere
 - → reflection decreases
- This is how the distance to the light source comes in !
- The solid angle of the light decreases with its squared distance!

ullet Up to now, we gather incident light over the entire hemisphere Ω_{χ}

$$L_{out}(x, \omega_{out}) = \int_{\Omega_{\mathbf{x}}} f(x, \omega_{in}, \omega_{out}) < N_{\mathbf{x}}, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

- If we want to compute the illumination from an area light source, the integrand is zero in most cases
 - → instead of gathering over all incident directions, we should gather over points on the light source:

X 42

- → Reparameterize integral over surface of light source S!
- Instead of integrating over directions $(d\omega)$, we integrate over light source (dA_y)
- ullet Each little $dA_{\mathcal{V}}$ on light source corresponds to a small solid angle $d\omega$
- simple geometry: $d\omega = \frac{\langle N_y, \omega \rangle}{\|x y\|^2} dA_y$

So our integral

$$L(x, \omega_{out}) = \int_{\Omega_{x}} f(x, \omega_{in}, \omega_{out}) < N_{x}, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

becomes

$$L(x, \omega_{out}) = \int_{S} G(x, y) f(x, \omega_{x,y}, w_{out}) L_{e}(y, \omega_{y,x}) G(x, y) dA_{y}$$

• with
$$G(x, y) = \frac{\langle N_x, \omega_{x,y} \rangle \langle N_y, \omega_{y,x} \rangle}{\|x - y\|^2}$$

Additionally, we have to consider visibility now:

- ullet area light source with emitted radiance L_e
 - sample incident light using n samples on light source y_i
 - $L_{out}(x, \omega) \approx \frac{1}{n} \sum_{i} L_{e} f(x, \omega_{x, y_{i}}, w_{out}) G(x, y_{i}) V(x, y_{i})$

Integration Techniques

- Remember: Illumination from Area Light Sources
 - Area lights cast soft shadows. These become softer with increasing distance to the occluder

Integration Techniques

- Area Lights
 - Shoot multiple rays to the area light. Choose adequate positions on the light source (sampling!)
 - Samples must be weighted by G(x, y)!
 - → more distant samples get lower weight

Rendering Equation

Up to now:Illumination from area lights:

$$L_{\text{refl}}(x, \omega_{out}) = \int_{S} f(x, \omega_{x,y}, \omega_{out}) L_{e}(y, \omega_{y,x}) G(x, y) V(x, y) dy$$

- ullet L_e is self-emittance, making a normal surface a light source
- L_{refl} is the reflected light of a surface
- The final radiance of a surface is the sum of both:

$$L(x, \omega_{out}) = L_e(x, \omega_{out}) + L_{refl}(x, \omega_{out})$$

- But also normal surfaces get indirect light sources when being illuminated
 - \rightarrow replace L_e under integral by L
 - → recursive rendering equation

$$L(\mathbf{x},\omega_{out}) = L_e(x,\omega_{out}) + \int_S f\big(x,\omega_{x,y},\omega_{out}\big) L\big(y,\omega_{y,x}\big) G(x,y) V(x,y) dy$$

Rendering Equation

Rendering Equation as surface integral

$$L(\mathbf{x},\omega_{out}) = L_e(x,\omega_{out}) + \int_S f(x,\omega_{x,y},\omega_{out}) L(y,\omega_{y,x}) G(x,y) V(x,y) dy$$

As directional integral

$$L(\mathbf{x}, \omega_{out})$$

$$= L_e(\mathbf{x}, \omega_{out}) + \int_{\Omega_x} f(\mathbf{x}, \omega_{in}, \omega_{out}) L(\operatorname{ray}(\mathbf{x}, \omega_{in}), -\omega_{in}) \langle N_x | \omega_{in} \rangle d\omega_{in}$$

$$ray(x, \omega_{in}) = y$$

$$L(x, \omega_{in}) = L(y, -\omega_{in})$$

That's it

So much on the rendering equation

How to solve this equation efficiently:

Lecture "Global Illumination" during summer term

2h lecture + 2h programming assignments

• Next week: preparation for exam