Chapter Three

Part-2

Interrupts

Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing

Program

- · e.g. overflow, division by zero
- Timer
 - Generated by internal processor timer
 - Used in pre-emptive multi-tasking
- I/O
 - from I/O controller
- Hardware failure
 - e.g. memory parity error

Program Flow Control

Interrupt Cycle

Added to instruction cycle

Processor checks for interrupt

Indicated by an interrupt signal

If no interrupt, fetch next instruction

If interrupt pending:

Suspend execution of current program

Save context

Set PC to start address of interrupt handler routine

Process interrupt

Restore context and continue interrupted program

Transfer of Control via Interrupts

Instruction Cycle with Interrupts

Program Flow Control

Program Timing Short I/O Wait

Program Flow Control

Program Timing Long I/O Wait

(a) Without interrupts

Instruction Cycle (with Interrupts) - State Diagram

Multiple Interrupts

Disable interrupts

Processor will ignore further interrupts whilst processing one interrupt

Interrupts remain pending and are checked after first interrupt has been processed

Interrupts handled in sequence as they occur

Define priorities

Low priority interrupts can be interrupted by higher priority interrupts

When higher priority interrupt has been processed, processor returns to previous interrupt

Multiple Interrupts - Sequential

Multiple Interrupts – Nested

Time Sequence of Multiple Interrupts

Connecting

All the units must be connected

Different type of connection for different type of unit

Memory
Input/Output
CPU

PCI Express bus card slots (from top to bottom: x4, x16, x1 and x16), compared to a traditional 32-bit PCI bus card slot (bottom). (PCI = Peripheral Component Interconnect)

Computer Modules

Memory Connection

Receives and sends data

Receives addresses (of locations)

Receives control signals

Read

Write

Timing

Computer Modules

Input/Output Connection(1)

Similar to memory from computer's viewpoint Output

Receive data from computer Send data to peripheral

Input

Receive data from peripheral Send data to computer

Input/Output Connection(2)

Receive control signals from computer

Send control signals to peripherals

e.g. spin disk

Receive addresses from computer

e.g. port number to identify peripheral

Send interrupt signals (control)

Computer Modules

CPU Connection

Reads instruction and data
Writes out data (after processing)
Sends control signals to other units
Receives (& acts on) interrupts

Buses

There are a number of possible interconnection systems

Single and multiple BUS structures are most common

e.g. Control/Address/Data bus (PC)

e.g. Unibus (DEC-PDP)

What is a Bus?

A communication pathway connecting two or more devices

Usually broadcast

Often grouped

A number of channels in one bus

e.g. 32 bit data bus is 32 separate single bit channels

Power lines may not be shown

Bus Interconnection Scheme

Data Bus

Carries data

Remember that there is no difference between "data" and "instruction" at this level

Width is a key determinant of performance

8, 16, 32, 64 bit

Address bus

Identify the source or destination of data

e.g. CPU needs to read an instruction (data) from a given location in memory

Bus width determines maximum memory capacity of system

e.g. 8080 has 16 bit address bus giving 64k address space

$$2^{16}$$
 = $2^{10} \times 2^{6}$
= $2^{6} \times 2^{10}$
= 64×2^{10}

Control Bus

Control and timing information

Memory read/write signal

Interrupt request

Clock signals

Bus Interconnection Scheme

Big and Yellow?

What do buses look like?

Parallel lines on circuit boards

Ribbon cables

Strip connectors on mother boards

e.g. PCI

Sets of wires

Bus

Physical Realization of Bus Architecture

Single Bus Problems

Lots of devices on one bus leads to:

Propagation delays

Long data paths mean that co-ordination of bus use can adversely affect performance

If aggregate data transfer approaches bus capacity

Most systems use multiple buses to overcome these problems

High Performance Bus

Bus Types

Dedicated

Separate data & address lines

Multiplexed

Shared lines

Address valid or data valid control line

Advantage - fewer lines

Disadvantages

More complex control

Ultimate performance

Reading Assignment

Bus Arbitration

Timing

Co-ordination of events on bus Synchronous

Events determined by clock signals

Control Bus includes clock line

A single 1-0 is a bus cycle

All devices can read clock line

Usually sync on leading edge

Usually a single cycle for an event

Synchronous Timing Diagram

Asynchronous Timing - Read Diagram

Asynchronous Timing – Write Diagram

NEXT LECTURE

Chapter Four: Cache Memory