GPT

Improving Language Understanding by **G**enerative **P**re-**T**raining Radford et al.

Outline

- Generative pre-training of a language model on a diverse corpus of unlabeled text
- Followed by discrimitative fine-tuning on each specific task
- The rise of ImageNet and transfer learning for text!

Dataset

- Large corpus of unlabeled text (BookCorpus)
 - 7000 unique unpublished books
 - Train a Language Model
- Several dataset with manually annotated exemples (translation, Q&A)
 - Specific architecture

Unsupervised pre-training

- The goal is to find a good initialization point
- Acts as a regularization scheme and enables better generalization in deep neural networks

Unsupervised pre-training

- They use the T-D (same as Transformer-Decoder from Peter J. Liu et al.)

Supervised fine-tuning

- Inputs passed through the pre-trained network
- Simple classification layer on top of it (think ResNet)
- They include language modeling as an auxiliary objective

Supervised fine-tuning

Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Results

Too many, see the paper!

Analysis

Impact of the number of layers transferred

Ablation study

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

Conclusion

Differences from the Transformer-Decoder

- Doubled the layers (from 6 to 12)
- Specific input depending on the target task
- Applied model to 4 different tasks, 12 datasets in total