In addition to the words "and" and "or," the word "not" is an important word in logic. If p is a statement, then the statement "p is not true." usually shortened to "not p" and written $\sim p$, is called the negation of p.

Example 2 Statement: p Will is sleeping in class.

> $\sim p$ It is not true that Will is sleeping in class. Negation:

or $\sim p$ Will is not sleeping in class.

> Truth table for negation

The truth table for negation shows that when p is true, $\sim p$ is false. When p is false, $\sim p$ is true. Note that it is impossible for a statement and its negation to be both true or both false at the same time. The conjunction $p \land \neg p$ would have Fs in both rows of its truth table. Such a statement is called a contradiction.

p	~p
T	F
F	T

An example will show how to make truth tables for some other compound statements.

Example 3 Make a truth table for $\sim p \vee \sim q$.

Solution

1. Make a column for p and a column for q. Write all possible combinations of T and F in the standard pattern

	p	q	\sim_p	$\sim q$	$\sim_p \vee \sim_q$
I	T	Т	F	F	F
۱	T	F	F	T	T
ı	F	T	T	F	T
ı	F	F	T	T	Т

- 2. Since $\sim p$ is a part of the given statement, add a column for $\sim p$. To fill out this column, use the first column and refer to the truth table for negation above. Similarly, add a column for $\sim q$.
- 3. Using the columns for $\sim p$ and $\sim q$, refer to the truth table for disjunction on the preceding page in order to fill out the column for $\sim p \vee \sim q$. Remember that a disjunction is false only when both of its statements are false.

To make a truth table for a compound statement involving three simple statements p, q, and r, you would need an eight-row table to show all possible combinations of T and F. The standard pattern across the three columns headed p, q, and r is as follows: TTT, TTF, TFT, TFF, FTT, FFF, FFT, FFF.

Exercises

Suppose p stands for "I like the city," and q stands for "You like the country." Express in words each of the following statements.

1.
$$p \wedge q$$

$$2. \sim p$$

3.
$$\sim q$$

4.
$$p \lor q$$

5.
$$p \lor \sim q$$

6.
$$\sim (p \wedge q)$$

7.
$$\sim p \vee \sim q$$

8.
$$\sim_p \wedge_q$$

9.
$$\sim (p \vee q)$$

1.
$$p \wedge q$$
 2. $\sim p$ 3. $\sim q$ 4. $p \vee q$ 5. $p \vee \sim q$ 6. $\sim (p \wedge q)$ 7. $\sim p \vee \sim q$ 8. $\sim p \wedge q$ 9. $\sim (p \vee q)$ 10. $\sim p \wedge \sim q$