

f is continuous on set D when f is cts at every member of D

ex in 2
var
with polaris

Ex: Every polynomial in n -variables is cts on \mathbb{R}^n .

Ex: Every rational function of n -variables is cts on its

domain.

rational
function?

Ex: $\frac{x^2 - y^2}{x^2 + y^2}$ is cts on its domain. This means that

it is continuous everywhere but $(0,0)$

ccts \downarrow ccts, so composition is ccts.

Ex: $\frac{\sin(x^2+y^2)}{-x^2-y^2}$ is cts everywhere ~~but~~ but $(0,0)$,

at it is non-domain point.

is it ccts
no matter
what?

On the other hand \rightarrow DTHM $f(x,y) = \begin{cases} \frac{\sin(x^2+y^2)}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$ is

continuous

ccts everywhere

xy plane

NB: usual rules for continuity apply (from calc I).

Derivatives of Multivariable functions.

Idea: The derivative measures change in output from corresponding small change in input. In some direction

How do we
know + or -
limit
& both

Defn: Let f be a function of n -variable and pick \vec{u} , a unit vector in \mathbb{R}^n . Let $\vec{a} \in \text{dom}(f)$. The directional derivative of f at \vec{a} in direction of \vec{u} is

$$D_{\vec{u}} f(\vec{a}) = \lim_{h \rightarrow 0^+} \frac{f(\vec{a} + h\vec{u}) - f(\vec{a})}{h}$$

tells
how much

we want
to change
in this
direction

$$\text{the direction } \vec{v} = \frac{1}{2} \langle \sqrt{2}, \sqrt{2} \rangle$$

$$\text{Sol: } D_{\vec{v}} f(\vec{a}) = \lim_{h \rightarrow 0^+} \frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h} = \lim_{h \rightarrow 0^+} \frac{f(1, 3) + \frac{h}{2} \langle \sqrt{2}, \sqrt{2} \rangle - f(1, 3)}{h}$$

$$= \lim_{h \rightarrow 0^+} \frac{f\left(1 + \frac{\sqrt{2}h}{2}, 3 + \frac{\sqrt{2}h}{2}\right) - f(1, 3)}{h} = \lim_{h \rightarrow 0^+} \frac{\left(f\left(\frac{\sqrt{2}h}{2}\right), 3 + \frac{\sqrt{2}h}{2}\right) - 3}{h} =$$

$$= \lim_{h \rightarrow 0^+} \frac{3 + \frac{1}{4}h^2 + \frac{3\sqrt{2}h}{2} + \frac{\sqrt{2}h}{2} - 3}{h} = \lim_{h \rightarrow 0^+} \frac{h\left(\frac{h}{2} + 2\sqrt{2}\right)}{h} =$$

$$= \lim_{h \rightarrow 0^+} \frac{h}{2} \cdot 2\sqrt{2} = 2\sqrt{2}$$

$$3 + \frac{1}{4}h^2 + \frac{3\sqrt{2}h}{2} = h + h\left(\frac{h}{2} + 2\sqrt{2}\right)$$

□

Exercise: Repeat the exercise with $\vec{a} = \langle x, y \rangle$.

NB: The directional derivative is very general. We want something like the "rule" from Calculus I.

Def: Let f be a function of n -variables and let \vec{e}_k be the k -th standard basis vector in \mathbb{R}^n , i.e. $\vec{e}_k = \langle 0, 0, \dots, 1, 0, \dots, 0 \rangle$ (position

The k^{th} partial derivative of f (alt. partial derivative of f wrt x_k) $\vec{D}_{\vec{e}_k} f(\vec{a})$

1st of Oct.

Last time: Derivatives of multivariate Functions

directional derivative : $D_{\vec{u}} f(\vec{a}) = \lim_{h \rightarrow 0^+} \frac{f(\vec{a} + h\vec{u}) - f(\vec{a})}{h}$

unit point (vector) in $\text{Dom}(f) \subset \mathbb{R}^n$
vectors in \mathbb{R}^n

Partial derivatives

x_1, x_2, \dots, x_n , special

vectors $\vec{e}_k = \underbrace{0, \dots, 0}_{\text{o}} \underbrace{1}_{\text{k-th position}}, \underbrace{0, \dots, 0}_{\text{o}}$

$$\frac{\partial f}{\partial x_k} = \vec{D}_{\vec{e}_k} f$$

1
notation for
k-th partial
derivative

Ex. (small what is going on?)

Let's think about $k=2$: $f(x, y)$

$$\left. \frac{\partial f}{\partial x} \right|_{(a, b)} = \vec{D}_{\vec{e}_1} f(a, b) = \lim_{h \rightarrow 0^+} \frac{f(a, b) + h\vec{e}_1 - f(a, b)}{h}$$

$$= \lim_{h \rightarrow 0^+} \frac{f(a + h\vec{e}_1, b) - f(a, b)}{h} = \lim_{h \rightarrow 0^+} \frac{f(a + h, b) - f(a, b)}{h}$$

Define $g(x)$ to be $f(x, b)$. The previous line becomes

$$\frac{\partial f}{\partial x}(a, b) = \lim_{h \rightarrow 0^+} \frac{g(a+h) - g(a)}{h}$$

→ the point is that the second variable is constant

\leftarrow usual derivative! All the usual properties hold!

$$= g'(a)$$

(def. of derivatives) → by calc 1.

point: $\frac{\partial f}{\partial x}$ is the "usual derivative" of f , pretending that every variable except for x is constant!

Similarly, partial $\frac{\partial f}{\partial y}$ is the derivative of f , holding x constant.

Ex: Consider the partial derivatives of $f(x, y) = xy + \sqrt{y} - \sin(x-y)$.

Sol:

$$\begin{aligned} \frac{\partial f}{\partial x} &= \frac{\partial}{\partial x} [xy + \sqrt{y} - \sin(x-y)] \leftarrow \text{use single variable derivative properties} \\ &= \frac{\partial}{\partial x} [xy] + \frac{\partial}{\partial x} [\sqrt{y}] - \frac{\partial}{\partial x} \sin(x-y) \\ &= y \frac{\partial}{\partial x}[x] + \underset{\substack{\text{constant} \\ \text{wrt to } x}}{0} - \cos(x-y) \frac{\partial}{\partial x}(x-y) \\ &= y - \cos(x-y) \end{aligned}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} [xy + \sqrt{y} - \sin(x-y)].$$

$$\begin{aligned} &= \frac{\partial}{\partial y} [xy] + \frac{\partial}{\partial y} [\sqrt{y}] - \frac{\partial}{\partial y} [\sin(x-y)] \\ &= x \frac{\partial}{\partial y}[y] + \frac{\partial}{\partial y}[\sqrt{y}] - \cos(x-y) \frac{\partial}{\partial y}[x-y] \end{aligned}$$

$$= x + \frac{1}{2\sqrt{y}} + \cos(x-y)$$

Ex. Compute partial derivatives of $f(x, y, z) e^{x^2+y^2} \sin(yz) \cos(yz)$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[e^{x^2+y^2} \sin(yz) \cos(yz) \right] =$$

$$= \sin(yz) \frac{\partial}{\partial x} \left[e^{x^2+y^2} \sin(yz) \right] = \cos(yz) \left(\frac{\partial}{\partial x} [e^{x^2+y^2}] \sin(yz) \right) +$$

$$+ e^{x^2+y^2} \frac{\partial}{\partial x} [\sin(yz)] = \cos(yz) \left(e^{x^2+y^2} 2x \sin(yz) + \right.$$

$$\left. + e^{x^2+y^2} z \cos(yz) \right) = \cos(yz) e^{x^2+y^2} (2x \sin(yz) + z \cos(yz))$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[e^{x^2+y^2} \sin(yz) \cos(yz) \right] =$$

$$= \sin(yz) \frac{\partial}{\partial y} \left[e^{x^2+y^2} \cos(yz) \right] =$$

$$= \sin(yz) \left(e^{x^2+y^2} 2y \cos(yz) + z(-\sin(yz)) e^{x^2+y^2} \right) =$$

$$= \sin(yz) (2y \cos(yz) e^{x^2+y^2} - z \sin(yz) e^{x^2+y^2}) =$$

$$= \sin(yz) e^{x^2+y^2} (2y \cos(yz) - z \sin(yz))$$

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[e^{x^2+y^2} \sin(xz) \cos(yz) \right] =$$

$$e^{x^2+y^2} \frac{\partial}{\partial z} [\sin(xz) \cos(yz)] =$$

$$= e^{x^2+y^2} (x \cos(xz) \cos(yz) + y \sin(xz) (-\sin(yz))) =$$

$$= e^{x^2+y^2} (x \cos(xz) \cos(yz) - y \sin(xz) \sin(yz))$$

↓ more clear

$$y \sin(xz) \sin(yz)$$

NB: Higher order partial derivatives still make sense just like higher order derivatives make sense in Calc. I.

Except: There's a lot more of them

If $f(x, y)$ is given, the second order partials are:

$$\frac{\partial^2 f}{(\partial x)^2}, \frac{\partial^2 f}{(\partial y)^2}, \frac{\partial^2 f}{\partial y \partial x}, \frac{\partial^2 f}{\partial x \partial y}$$

↓
 1st
 2nd

↓
 1st
 2nd

↓
 mixed partial derivatives

pure partials
 as wrt to the
 same variable

Ex: Compute 2nd order partial derivatives of $f(x, y) = x^2 y + \sqrt{y} \sin(x-y)$

$$\frac{\partial f}{\partial x} = y - \cos(x-y) \quad \text{and} \quad \frac{\partial f}{\partial y} = x + \frac{1}{2} y^{-1/2} + \cos(x-y)$$

Now,

$$\frac{\partial^2 f}{(\partial x)^2} = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial}{\partial x} \left[y - \cos(x-y) \right] = 0 + \sin(x-y) \frac{\partial}{\partial x}(x-y) =$$
$$= \sin(x-y)$$

$$\frac{\partial^2 f}{(\partial y)^2} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial}{\partial y} \left[x + \frac{1}{2} y^{-1/2} + \cos(x-y) \right] =$$
$$= -\frac{1}{4} y^{-3/2} + \sin(x-y)$$

partial w.r.t. y holding x

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial}{\partial y} \left[y - \cos(x-y) \right] = 1 + \sin(x-y) \cdot (-1) =$$
$$= 1 - \sin(x-y)$$

partial of f w.r.t. x

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial}{\partial x} \left[x + \frac{1}{2} y^{-1/2} + \cos(x-y) \right] =$$
$$= 1 + (-\sin(x-y)) = 1 - \sin(x-y)$$

look for
diff equations
and appl

Interlude: these are truly Calc I derivatives ...

Working with 1 variable at a time allows us to do everything
we were doing in Calc I.

Back to the mixed partials (somehow different!)

1) Why were these equal in our example and can we guarantee this? 14 failure examples?

Recall some Calc I: Mean value theorem.

("nice average" value theorem)

(MVT)

Prop: (Mean Value Theorem): Let $f(x)$ be a function that is differentiable on (a, b) and continuous on $[a, b]$. Then

$$\exists c \in (a, b) \text{ s.t. } f'(c)(b-a) = f(b) - f(a)$$

(There is $a < c < b$)

$$(f'(c) = \frac{f(b) - f(a)}{b-a})$$

Idea: There is a point c in $\text{dom}(f)$ or (a, b) so that

Next time: We use MVT to prove the following: $\boxed{\text{Clairaut's Theorem}}$

Prop (Clairaut's Theorem): Suppose $f(x, y)$ has continuous second order partial derivatives. Then the second order partial derivative

on the
a disk, including point (a, b)

$$\frac{\partial^2 f}{\partial y \partial x} \Big|_{(a, b)} = \frac{\partial^2 f}{\partial x \partial y} \Big|_{(a, b)}$$