第30-31讲存储划分技术: 简单分页技术

Simple Paging Technique

Partition memory into small equal-size chunks and divide each process into the same size chunks.

➤ The chunks of a process are called pages and chunks of memory are called frames (页框、页帧).

Figure 7.9 Assignment of Process Pages to Free Frames

Figure 7.9 Assignment of Process Pages to Free Frames

Simple Paging Technique (简单分页技术)

- Operating system maintains a page table (页表) for each process.
 - contains the frame location for each page in the process.
 - logical address consists of a page number (页号) and an offset (偏移量) within the page.
- A single free-frame list (空闲页框表) of all frames in main memory that are currently unoccupied and available for pages.

Page Tables for Example

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Logical-to-Physical Address Translation

- ➤ Address translation is done by processor hardware (MMU,存储管理单元).
- ➤ The processor must know how to access the page table of the current process, using page table register (页表寄存器).
- Logical address :page number, offset.
- Physical address:frame number, offset.

Logical-to-Physical Address Translation

在分页系统中,地址变换步骤:

- 根据逻辑地址及页大小求出页号和页内偏移;
- 用页号检索页表,查找指定页对应的页框号;
- 根据页框号、页内偏移以及页框尺寸求出物理地址

Figure 8.3 Address Translation in a Paging System

Translation Lookaside Buffer (快表 - 加快页表检索速

- Each virtual memory reference can cause two physical memory accesses.
 - one to fetch the page table.
 - one to fetch the data.
- > To overcome this problem a high-speed cache is set up for page table entries.
 - called the TLB Translation Lookaside Buffer.

Translation Lookaside Buffer

Contains page table entries that have been most recently used.

Functions same way as a memory cache.

Translation Lookaside Buffer

- Given a virtual address, processor examines the TLB.
- If page table entry is present (a hit), the frame number is retrieved and the real address is formed.
- If page table entry is not found in the TLB (a miss), the page number is used to index the process page table.

Translation Lookaside Buffer

- First checks if page is already in main memory.
 - if not in main memory a page fault is issued.

The TLB is updated to include the new page entry.

Figure 8.7 Use of a Translation Lookaside Buffer

Size of Page & Page Tables

- 1. Page size
- 2. Page table size
- 3. For huge page table
 - Organization
 - Storage

Page Size

- Less internal fragmentation, small page size
 - Smaller page size, more pages required per process.
 - More pages per process means larger page tables.
 - Larger page tables means large portion of page tables in virtual memory.
- Secondary memory favors large page size
 - Secondary memory is designed to efficiently transfer large blocks of data.

Page Size

Small page size

- large number of pages will be found in main memory.
- As time goes on during execution, the pages in memory will all contain portions of the process near recent references.
- · Page faults (页面访问失败,缺页) low.

Increased page size

- causes pages to contain locations further from any recent reference.
- Page faults rise.

P =size of entire process

W = working set size

N =total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

Page Size

- Multiple page sizes provide the flexibility needed to effectively use a TLB.
- Large pages can be used for program instructions.
- Small pages can be used for threads.
- Most operating system support only one page size.

Example Page Sizes

Table 8.2 Example Page Sizes

Computer	Page Size
Atlas	512 48-bit words
Honeywell-Multics	1024 36-bit word
IBM 370/XA and 370/ESA	4 Kbytes
VAX family	512 bytes
IBM AS/400	512 bytes
DEC Alpha	8 Kbytes
MIPS	4 kbyes to 16 Mbytes
UltraSPARC	8 Kbytes to 4 Mbytes
Pentium	4 Kbytes or 4 Mbytes
PowerPc	4 Kbytes

Page Table Structure

- ▶ 许多计算机系统支持大容量虚拟内存。比如,在 VAX 系统中,每个进程使用的虚拟内存最大容量为 2³¹(= 2G) 个字节。
- 大容量虚拟内存的实现需要大页表。比如,在 VAX 系统中,页面的大小为 2°(=512)个字节,因此 如果某进程使用的虚拟内存容量为系统规定的最大容量,那么该进程的页表将有多达 2°2′(= 4M) 个表项。
- 下面介绍三种解决"大页表占用大内存"的方法

Virtual Page Tables

- The entire page table may take up too much main memory.
- Page tables are also stored in virtual memory.
- When a process is running, part of its page table is in main memory.
- How to deal with it?

多级页表 Two-Level Scheme for 32-bit

addrage

4-kbyte root page table 4-Mbyte user page table 4-Gbyte user address space

Figure 8.4 A Two-Level Hierarchical Page Table [JACO98a]

Inverted Page Table (反置页表)

Virtual Address

Real Address

Inverted Page Table Structure University of Electronic Science and Technology of China