Chapter 18 Équations différentielles linéaires scalaires à coefficients constants

Exercice 1 (18.2)

Résoudre l'équation différentielle suivante, d'inconnue $y : \mathbb{R} \to \mathbb{R}$.

$$y'(t) - 2y(t) = ch(2t).$$
 (E)

Exercice 2 (18.2)

Résoudre l'équation différentielle

$$y' - 2y = 8\sin(2x) \tag{E}$$

avec la condition initiale y(0) = -1.

Exercice 3 (18.2)

Déterminer les solutions réelles des équations différentielles suivantes sur \mathbb{R} .

1.
$$y'(t) - 2y(t) = 4$$
.

2.
$$v'(t) + v(t) = 2t + 3$$
.

3.
$$v'(t) - v(t) = -3\cos(2t) - \sin(2t)$$
.

4.
$$y'(t) - 2y(t) = \cos(2t) - \sin(2t)$$
.

$$y'(t) + y(t) = a^t(\sin t + \cos t)$$

Exercice 4 (18.2)

Soit f une fonction non nulle et dérivable de $\mathbb R$ dans $\mathbb C$ vérifiant

$$\forall t, u \in \mathbb{R}, f(t+u) = f(t)f(u). \tag{1}$$

- **1.** Montrer que f(0) = 1.
- **2.** Montrer que f est solution d'une équation différentielle d'ordre 1.
- **3.** Montrer qu'il existe $a \in \mathbb{C}$ tel que $f: t \mapsto e^{at}$.

Remarque. L'équation (1) est une équation fonctionnelle, c'est-à-dire que l'inconnue est une fonction.

Exercice 5 (18.3)

Résoudre

1.
$$y'' - 3y' + 2y = 0$$

2.
$$y'' + 2y' + 2y = 0$$

3.
$$y'' - 2y' + y = 0$$

Exercice 6 (18.3)

On considère l'équation différentielle d'inconnue $y : \mathbb{R} \to \mathbb{R}$ suivante

$$y''(t) - 3y'(t) + 2y(t) = te^{t} + \sin(t) - 2\cos(t).$$
 (E)

1. Résoudre l'équation différentielle homogène associée à (E).

2. Déterminer sous la forme $y_1: t\mapsto (at+bt^2)e^t$, $a,b\in\mathbb{R}$, une solution particulière réelle de l'équation différentielle

$$y''(t) - 3y'(t) + 2y(t) = t e^{t}$$
(E₁)

3. Déterminer une solution particulière complexe y_2 de l'équation différentielle

$$y''(t) - 3y'(t) + 2y(t) = e^{it}$$
 (E₂)

4. En déduire une solution particulière réelle y_3 de l'équation différentielle

$$y''(t) - 3y'(t) + 2y(t) = \sin(t) - 2\cos(t). \tag{E_3}$$

- 5. Utiliser le principe de superposition pour obtenir une solution particulière réelle y_0 de (E).
- **6.** En déduire l'ensemble des solutions de (E).

Exercice 7 (18.3)

Résoudre le problème de Cauchy, d'inconnue $y : \mathbb{R} \to \mathbb{R}$,

$$y'' + 2y' + 5y = \cos(x)$$
 (E)
 $y(0) = 1$
 $y'(0) = 0$.

Exercice 8 (18.3)

Résoudre l'équation différentielle

$$y'' - 2y' + 2y = e^x \sin(x).$$

Exercice 9 (18.3)

Résoudre les équations différentielles

- 1. y''(t) + 2y'(t) + 5y(t) = sh(t);
- 2. $y''(t) 2y'(t) + y(t) = \cos(2t)$.
- 3. $y''(t) + y(t) = \cos^3(t)$;

Exercice 10 (18.3)

Résoudre l'équation

$$y'' + k^2 y = \cos mx, \quad k, m \in \mathbb{R}. \tag{1}$$

On discutera suivant les valeurs de *k* et *m*.

Exercice 11 (18.3)

Déterminer les solutions réelles du système

$$\begin{cases} x''(t) = 3x(t) - 4y'(t) \\ y''(t) = 3y(t) + 4x'(t) \end{cases}.$$

Exercice 12 (18.3)

On cherche à résoudre l'équation différentielle

$$y(t)y'(t) + y^{2}(t) = \frac{1}{2}e^{-2t}$$
 (E)

- 1. On pose $z(t) = y(t)^2$. Montrer que si y est solution de (E), alors z est solution d'une équation différentielle simple (E').
- **2.** Résoudre l'équation (E).