

Università degli studi di Padova

Dipartimento di Fisica e Astronomia "Galileo Galilei" Dipartimento di Matematica "Tullio Levi-Civita"

Laurea Triennale in Fisica

La stabilità dei punti lagrangiani L_4 e L_5 : sviluppi recenti

Riccardo Milocco

Relatore: Prof. Giancarlo Benettin

Indice

🚺 Introduzione al pCRTBP e criticità analitiche

- $m{2}$ Studio della stabilità di L_4 con "metodi perturbativi" $(t\sim 14\cdot 10^9 y)$
- lacksquare Sviluppi Recenti: approccio numerico alla stabilità di L_4 $(t\sim 6\cdot 10^3y)$

Introduzione

Hamiltoniana nel sistema baricentrico e corotante

Assunte
$$\mathfrak{G}=1, \left(m_S+m_J\right)=1, \omega=1, \mu:=rac{m_J}{m_S+m_J}, |q_S-q_J|=1,$$

$$H = \frac{1}{2}(p_1^2 + p_2^2) + q_2p_1 - q_1p_2 - \frac{1 - \mu}{\sqrt{(q_1 - \mu)^2 + q_2^2}} - \frac{\mu}{\sqrt{(q_1 + 1 - \mu)^2 + q_2^2}}$$
(1)

- 4 □ ▶ 4 @ ▶ 4 분 ▶ 4 분 ▶ 9 Q @

Cambio di Coordinate

$$i) \begin{cases} Q_1 = q_1 - \mu \\ Q_2 = q_2 \\ P_1 = p_1 \\ P_2 = p_2 - \mu \end{cases} \qquad ii) \begin{cases} p_\rho = P_1 \cos(\theta) + P_2 \sin(\theta) \\ p_\theta = \rho(P_2 \cos(\theta) - P_1 \sin(\theta)) \\ Q_1 = \rho \cos(\theta) \\ Q_2 = \rho \sin(\theta) \end{cases} \qquad iii) \begin{cases} x = \rho - 1 \\ y = \theta - \pi/3 \\ p_x = p_\rho \\ p_y = p_\theta - 1 \end{cases}$$

◆□ > ◆□ > ◆■ > ◆■ > ◆□ > ●

4 / 22

Riccardo Milocco Laurea Triennale in Fisica A.A. 2016-2017

Hamiltoniana nelle nuove coordinate

$$H = \frac{1}{2} \left[\rho_x^2 + \left(\frac{\rho_y + 1}{x + 1} \right)^2 \right] - \rho_y + \mu(x + 1) \cos(y + \frac{\pi}{3}) + \frac{1 - \mu}{1 + x} + \frac{\mu}{\sqrt{(x + 1)^2 + 1 + 2(x + 1)\cos(y + \frac{\pi}{3})}}$$
(2)

Sviluppo in serie

$$H = H_2 + H_3 + \cdots$$

$$H_2 = \frac{1}{2}(\rho_x^2 + \rho_y^2) - 2x\rho_y + \left(\frac{1}{2} + \frac{9\mu}{8}\right)x^2 - \frac{9\mu}{8}y^2 + \frac{3\sqrt{3\mu}}{4}xy$$
 (3)

e H_s è un polinomio omogeneo

◆ロト ◆問 > ◆意 > ◆意 > ・意 ・ の Q (*)

Riccardo Milocco

Criticità analitica

Stabilità secondo Lyapunov di H_2

- se $\mu \leq \mu_R$, $\mu \geq 1 \mu_R$ allora l'equilibrio è "ellittico";
- se $\mu_R < \mu < 1 \mu_R$ "iperbolico".

H_2 in coordinate normali

$$H_2 = \frac{\omega_1(x_1^2 + y_1^2)}{2} + \frac{\omega_2(x_2^2 + y_2^2)}{2} \quad \omega_1 > 0, \quad \omega_2 < 0$$
 (4)

dove ω_1 , ω_2 sono le frequenze di oscillazione rispetto a L_4 .

Dato che ω_1 e ω_2 sono discordi H_2 non ha un minimo stretto nell'origine \Rightarrow non vale il "teorema di Lagrange-Dirichlet". Pertanto, non si può concludere che l'aggiunta dei termini di ordine superiore che formano H non inficino la natura ellittica di L_4 .

La stabilità di L_4 deve essere trattata con altri metodi analitici.

Studio della stabilità di L4 con "metodi perturbativi"

Obbiettivo

Individuare la regione di stabilità per $T(\rho_0)\sim 14\cdot 10^9 y$ e confrontarla con gli asteroidi catalogati il 14/12/94.

Metodologia sviluppata:

- A) Construzione della "forma normale di Birkhoff (all' ordine r)" $H^{(r)}$:
- $H^{(r)}:=H_2+\cdots+Z_r+\mathfrak{R}^{(r+1)}$, dove $Z_s=(rac{x'_j^2+y'_j^2}{2})^s$ dipendono solo dalle azioni $I_j'=rac{x'_j^2+x'_j^2}{2}$
- B) Individuazione di una famiglia (parametrica) di intorni di L_4 ($\Delta_{\rho R}$) e introduzione di una norma su di essi;
- C) Stima del resto $\mathbb{R}^{(r+1)}$ e del "tempo di fuga" $T(\rho_0)$ di un'orbita con dato iniziale in $\Delta_{\rho_0 R}$;
- D) Confronto tra la regione di stabilità teorica e gli asteroidi osservati.

- A.1: Costruzione di $H^{(r)}$ con "metodo di Birkhoff"

Per portare H nella forma normale si utilizza l' "Operatore di Lie" T_χ tale che $T_\chi H^{(r)} = H$.

Definizione Operatore di Lie \mathcal{T}_χ

Sia Π lo spazio vettoriale dei polinomi omogenei, definiamo la successione di polinomi omogenei di grado s come $\chi:=\{\chi_s\}_{s\geq 3}$, con $\chi_s\in\Pi$. Definiamo, inoltre, $E_s\in\Pi$ e $T_\chi:\Pi\longrightarrow\Pi$ "operatore di Lie" tale che

$$T_{\chi} = \sum_{s>0} E_s$$

$$E_0 = 1,$$
 $E_s = \sum_{j=1}^{s} \frac{j}{s} L_{\chi_{j+2}} E_{s-j}$

dove $L_{\chi}*=\{\chi,*\}$ è la derivata di Lie di * rispetto a χ detta "hamiltoniana generatrice della forma normale (fino) all'ordine s"

A.2: Osservazioni sull'Operatore di Lie

Confronto con la serie di Lie:

Posta $\chi_s = \{\chi_3, 0, ...\} \Rightarrow E_0 = 1, E_s = \frac{1}{s} L_{\chi_3} E_{s-1} = \frac{1}{s!} L_{\chi_3}^s$. Generalizzando: $T_{\chi_k} = \exp(L_{\chi_k})$

Proprietà T_{χ}

- lineare, invertibile, conserva il prodotto e preserva le parentesi di Poisson.

Osservazioni:

- Trasformazione canonica alle coordinate normali: Se $(x,y) \in \Pi \Rightarrow (x',y') = T_{\chi}(x,y) \in \Pi$;
- Vale il Teorema di scambio: Se $f(x,y) \in \Pi \Rightarrow f(x,y)|_{(x,y)=T_\chi^{-1}(x',y')} = (T_\chi^{-1}f)(x',y').$

A.3.1: Dimostrazione $T_{\chi^{(r)}}H^{(r)}=H$

- $-\sum_{s\geq 0} E_s(H_2+Z_3+\cdots+Z_r+\mathbb{R}^{(r+1)})=H_2+H_3+\ldots$
 - Osservazione 1: Se $g \in \Pi^r \Rightarrow E_k g \in \Pi^{k+r}$
- Definendo $Z_{s-k}^k := E_k Z_{s-k}$ e uguagliando ogni ordine, si ottiene

$$\begin{cases} Z_2 = H_2 \\ Z_s = H_s - \sum_{k=1}^{s-2} Z_{s-k}^k & s=3,\dots,r \end{cases}$$

Osservazione 2: E_{s-2} contiene per definizione la successione χ_1, \cdots, χ_s

$$\Rightarrow Z_s - \mathcal{L}_{H_2} \chi_s = H_s + Q_s =: P_s^{(s-1)} \qquad s = 2, \dots, r \qquad (5)$$

ove $\mathcal{L}_{H_2}*=\{H_2,*\}$ e Q_s è un polinomio di ordine s, dipendente da χ_t e Z_t con $t=3,\ldots,s-1$.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ · 불 · 釣९♡

A.3.1: Gerarchia determinata da $Z_s - \mathcal{L}_{H_2} \chi_s = P_s^{(s-1)}$

g_0	f_0					
	\downarrow					
g_1	$E_1 f_0$ \downarrow	$\overset{f_1}{\downarrow}$				
g_2	$E_2 f_0$	E_1f_1	f_2			
	\downarrow	↓	↓			
g_3	$E_3 f_0$	E_2f_1	E_1f_2	f_3		
	↓	↓	↓	\downarrow		
g_4	$E_4 f_0$	E_3f_1	E_2f_2	E_1f_3	f_4	
	↓	\downarrow	\downarrow	↓	\downarrow	
:	÷	÷	:	÷	÷	٠

Figure: Schema del processo risolutivo del sistema: $g = T_{\chi} f$.

Nelle righe si sono allineati i termini con dello stesso ordine; mentre in colonna si trovano i termini generati da $T_{\chi} f_k$.

Riccardo Milocco Laurea Triennale in Fisica A.A. 2016-2017 11 / 22

A.3.2: Dimostrazione $Z_s - \mathcal{L}_{H_2} \chi_s = P_s^{(s-1)}$

A.3.3 Integrali del moto: le azioni I_j^\prime

 $\textit{Osservazione:} H^{(r)}(x',y') = \mathcal{T}_{\chi^{(r)}}^{-1} H$ è in forma normale fino all'ordine r.

(Quasi) costanti del moto

$$I'_j(x',y') = \frac{{x'_j}^2 + {y'_j}^2}{2}$$
 $j = 1, 2.$

Infatti,

$$\dot{I}_j'=\{I_j',\mathcal{R}^{(r+1)}\}\neq 0$$

Per la parte di H in forma normale il sistema è integrabile secondo Liouville. Dunque, si può immaginare graficamente che le orbite giacciano su un toro r-dimensionale \mathbb{T}^r .

D'altra parte con l'aggiunta di $\mathbb{R}^{(r+1)}$, le azioni non sono esattamente delle costanti del moto e il sistema perde la proprietà di integrabilità.

4□ > 4□ > 4 = > 4 = > = 90

B) Individuazione di una famiglia (parametrica) di intorni di L_4 $(\Delta_{ ho R})$ e introduzione di una norma su di essi

Famiglia di intorni

$$\Delta_{
ho R} := \{(x, y) \in \mathbb{R}^4 : x_j^2 + y_j^2 \le (
ho R_j)^2\} \qquad \text{per } j = 1, 2$$

Individuazione di una norma di facile calcolo numerico:

- Sia
$$f \in \Pi^s$$
, $f(\xi, \eta) = \sum_{j_1+j_2+k_1+k_2=s} \mathcal{C}_{j_1j_2k_1k_2} \xi_1^{j_1} \xi_2^{j_2} \eta_1^{k_1} \eta_2^{k_2}$

$$-|f|_{
ho R} = \sup_{\Delta_{
ho R}} |f(x, y)| \le ||f||_{
ho R} :=$$

$$(\frac{\rho}{\sqrt{2}})^s \sum_{j_1+j_2+k_1+k_2=s} |\mathcal{C}_{j_1j_2k_1k_2}| R_1^{j_1+k_1} R_2^{j_2+k_2} = \rho^s ||f||_R$$

Norma

$$|f|_{\rho R} \leq ||f||_{\rho R} := \left(\frac{\rho}{\sqrt{2}}\right)^s \sum_{j_1 + j_2 + k_1 + k_2 = s} |\mathcal{C}_{j_1 j_2 k_1 k_2}| R_1^{j_1 + k_1} R_2^{j_2 + k_2}$$

D) Stima del resto $\mathbb{R}^{(r+1)}$ e del "tempo di fuga" $T(\rho_0)$ di un'orbita con dato iniziale in $\Delta_{\rho_0 R}$;

Osservazione:
$$|I_j(t) - I_j(0)| \leq \sup_{\Delta_{oR}} |\dot{I}_j||t|$$

"Tempo di Fuga" da $\Delta_{\rho R}$ con $\rho > \rho_0$

$$\tau_r(\rho_0,\rho) = \min_{j=1,2} \frac{R_j^2(\rho^2 - \rho_0^2)}{2 \sup_{\Delta_{\rho R}} |\dot{l_j}|}$$

Rielaborazione di $\tau_r(\rho_0,\rho)$:

- $||H_s||_R < (R^*)^{r+1-s} ||H_{r+1}||_R \Rightarrow \rho \le \frac{R^*}{2}, \sum_{s>r} ||H_s||_{\rho R} < 2||H_{r+1}||_{\rho R}$
- Si massimizza rispetto ρ e $r \in [3, 35 =: \tilde{r}]$

"Tempo di Fuga"

$$T(\rho_0) := \max_{3 \le r \le \tilde{r}} \sup_{\rho_0 > \rho} \tau_r(\rho_0, \rho)$$

Riccardo Milocco Laurea Triennale in Fisica 15 / 22

D.1) Risultati generali per $T(\rho_0)$ e r

Andamento del "tempo di fuga" e dell'ordine ottimale \tilde{r}_{opt} in funzione di ρ_0 nel caso Sole-Giove:

$$LogT(\rho_0) \sim -mLog(\rho_0) + q,$$
 $m = \frac{1}{2\rho^{r+1}||\{I_j, H_{r+1}^{(r)})\}||_R}$

Parametri caso Sole-Giove:

$$- \mu = 9.5387536 \cdot 10^{-4};$$

$$- \omega_1 = 9.9675752552 \cdot 10^{-1};$$

$$- \omega_2 = -8.0463875837 \cdot 10^{-2};$$

$$-R_1 = 1 = R_2$$
 (generale)

□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○

D.2) Stima della regione di stabilità teorica

Raggio di stabilità ho_0 per unità di ω_J in coordinate normali

$$T_J = \frac{T_{Jup}}{2\pi} \Rightarrow T_{uni} = 14 \cdot 10^9 y \sim 10^{10} T_J \Rightarrow \rho_0 = 2.911 \cdot 10^{-2}$$

Osservazione:
$$T_{\chi^{(r)}}^{-1}\Delta_{\rho_0R}' = T_{\chi^{(r)}}^{-1}(\frac{x_j'^2 + y_j'^2}{2}) = \frac{x_j^2 + y_j^2}{2}$$
 (th. di scambio)

- Raggio di stabilità ho in coordinate polari: $ho=\sqrt{(
 ho_0^2-2|\emph{I}_j-\emph{I}_j'|)};$
- $-|I_{j}(x,y)|_{x=T_{\chi}^{-1}(x'_{i},y'_{i})}=(T_{\chi}^{-1}I_{j})(x',y')$
- $-|I_j I_j'|_{\rho_0 R} \le ||I_j I_j'||_{\rho_0 R} = \sum_{k=3}^{\tilde{r}} \rho_0^{\tilde{r}} ||\Phi_j^{(\tilde{r})}||_R < 2||\Phi_j^{(3)}||_{\rho_0 R}, \rho_0 \le \frac{R*}{2}$
- Avendo E_k , $ho_0 \Rightarrow |I_1 I_1'|_{
 ho_0 R} \simeq 5.032 \cdot 10^{-5}; \ |I_2 I_2'|_{
 ho_0 R} \simeq 1.834 \cdot 10^{-4}$

Raggio di Stabilità

$$\rho = \sqrt{(\rho_0^2 - 2|I_2 - I_2'|)} \simeq 2.912 \cdot 10^{-2} \simeq \rho_0$$

D.3) Insoddisfacente confronto con gli asteroidi esistenti

N_A	R_1	R_2	ρ	\tilde{r}_{opt}	N_A	R_1	R_2	ρ	\tilde{r}_{opt}
88181612	3.13023010^{-2}	$2.101250 10^{-3}$	1.487790	33	4348	1.26520010^{-1}	7.45012010^{-2}	2.97780010^{-1}	34
89211605	$3.314960 10^{-2}$	1.95937010^{-2}	1.135130	34	4827	5.76019010^{-2}	1.21310010^{-1}	2.86840010^{-1}	34
41790004	1.65166010^{-2}	3.10631010^{-2}	1.100990	34	4722	1.35410010^{-1}	8.20477010^{-2}	2.75560010^{-1}	34
1870	3.87141010^{-2}	1.71761010^{-2}	1.048060	33	1173	1.60090010^{-1}	4.98362010^{-2}	2.72180010^{-1}	32
2357	4.23462010^{-2}	$2.850950 10^{-2}$	8.47020010^{-1}	34	10240002	8.41222010^{-2}	1.36820010^{-1}	2.43450010^{-1}	34
5257	$3.183610 10^{-2}$	4.24241010^{-2}	7.50450010^{-1}	34	2594	$9.109540 10^{-2}$	1.39350010^{-1}	2.36010010^{-1}	34
88181912	$7.083260 10^{-2}$	6.68710010^{-3}	$6.597200 10^{-1}$	33	4829	6.67966010^{-2}	1.48650010^{-1}	2.35850010^{-1}	34
5233	4.16330010^{-2}	$4.662950 10^{-2}$	6.49500010^{-1}	34	88180812	1.67190010^{-1}	9.92753010^{-2}	2.24720010^{-1}	34
4708	$7.099190 10^{-2}$	1.89485010^{-2}	$6.275300 10^{-1}$	32	4754	4.80664010^{-2}	1.67730010^{-1}	2.15760010^{-1}	34
88181311	$3.914500 10^{-2}$	5.26212010^{-2}	6.06380010^{-1}	34	4707	$1.470000 10^{-1}$	1.29450010^{-1}	$2.138800 10^{-1}$	34
1871	$5.121390 10^{-2}$	$4.691570 10^{-2}$	6.00070010^{-1}	34	43170004	$1.345900 10^{-1}$	1.40340010^{-1}	2.10690010^{-1}	34
31080004	$7.002890 10^{-2}$	$2.745100 10^{-2}$	5.95660010^{-1}	32	89210305	1.88130010^{-1}	1.05730010^{-1}	2.03220010^{-1}	34
94031908	$1.443780 10^{-2}$	$6.123500 10^{-2}$	$5.928600 10^{-1}$	34	88182012	1.91040010^{-1}	1.09440010^{-1}	$1.989500 10^{-1}$	34
2674	$6.527500 10^{-2}$	$3.592170 10^{-2}$	$5.894200 10^{-1}$	34	4805	1.22180010^{-1}	1.60670010^{-1}	1.97460010^{-1}	34
88180412	$7.829610 10^{-2}$	1.45112010^{-2}	$5.876200 10^{-1}$	32	5511	$1.328100 10^{-1}$	1.63180010^{-1}	1.90860010^{-1}	34
88180710	$5.420360 10^{-2}$	5.33874010^{-2}	5.42560010^{-1}	34	89211505	1.13940010^{-1}	1.73920010^{-1}	1.89010010^{-1}	34
88191102	$9.320020 10^{-2}$	1.31637010^{-2}	$4.979700 10^{-1}$	33	20350004	1.75420010^{-1}	1.47510010^{-1}	$1.838900 10^{-1}$	34
88182510	$8.859670 10^{-2}$	3.63849010^{-2}	4.65850010^{-1}	32	884	1.44110010^{-1}	1.68670010^{-1}	$1.820300 10^{-1}$	34
2207	1.74715010^{-2}	8.09347010^{-2}	4.48790010^{-1}	34	2893	1.21920010^{-1}	1.87130010^{-1}	1.75880010^{-1}	34
89201902	$7.247770 10^{-2}$	6.84455010^{-2}	4.16390010^{-1}	34	1872	$8.983270 10^{-2}$	$2.039900 10^{-1}$	$1.723100 10^{-1}$	34
94031500	4.55255010^{-2}	8.35832010^{-2}	4.07530010^{-1}	34	90202212	$2.078400 10^{-1}$	6.03210010^{-1}	5.96315010^{-2}	34
89212405	$3.008840 10^{-2}$	8.99236010^{-2}	4.00500010^{-1}	34	2895	$1.843700 10^{-1}$	6.29460010^{-1}	$5.746530 10^{-2}$	34
89211705	$6.369570 10^{-2}$	8.26166010^{-2}	3.82640010^{-1}	34	5120	$2.533600 10^{-1}$	6.21010010^{-1}	$5.713580 10^{-2}$	34
5907	$9.759570 10^{-2}$	6.06286010^{-2}	$3.790100 10^{-1}$	34	3451	$2.285800 10^{-1}$	6.28890010^{-1}	$5.705220 10^{-2}$	34
88181411	$9.442780 10^{-2}$	6.52350010^{-2}	$3.757900 10^{-1}$	34	4791	$1.298900 10^{-1}$	6.81160010^{-1}	$5.332690 10^{-2}$	34
4792	$1.091900 10^{-1}$	5.44857010^{-2}	3.61770010^{-1}	34	4709	$1.737100 10^{-1}$	6.85190010^{-1}	$5.294080 10^{-2}$	34
88180811	1.16010010^{-1}	5.00157010^{-2}	$3.519900 10^{-1}$	33	3317	$3.085000 10^{-1}$	7.05100010^{-1}	$4.989590 10^{-2}$	34
3240	$1.362500 10^{-1}$	$2.751300 10^{-2}$	$3.359200 10^{-1}$	32	4867	2.33120010^{-1}	7.36260010^{-1}	$4.901550 10^{-2}$	34
5638	1.07990010^{-1}	8.12458010^{-2}	3.16200010^{-1}	34	1867	$2.169200 10^{-1}$	7.58250010^{-1}	4.77326010^{-2}	34
43690004	1.01830010^{-1}	9.10143010^{-2}	3.06160010^{-1}	34	88172500	2.42970010^{-1}	9.02080010^{-1}	4.01731010^{-2}	34
31630002	1.43030010^{-1}	4.44949010^{-2}	3.04670010^{-1}	32	1208	3.61920010^{-1}	9.97570010^{-1}	3.59704010^{-2}	34
	-	-			2363	2.93730010^{-1}	1.012520	3.57336010^{-2}	34

Sviluppi Recenti: approccio numerico alla stabilità di L_4

(a) "curve di velocità zero" al variare di $C_I := 2U - v_2^2$

(b) Moto di un asteroide nei pressi di L4 con dettaglio nelle orbite "a larva" (rosa) e "a ferro di cavallo" (azzurro)

Confronto tra hamiltoniana "mediata" \mathcal{Z} e completa H

Hamiltoniana normalizzata e autonoma

$$H^{(R_1,R_2)}(\rho,\xi,\tau,\eta) = \mathcal{Z}^{(R_1,R_2)}(\rho,\frac{\eta^2+\xi^2}{2},\tau) + \mathcal{R}^{(R_1,R_2)}(\rho,\xi,\tau,\eta)$$

Figure: Confronto delle orbite di Z (azzurro) e H (rosa) nel il problema Sole-Terra (sinistra) e Sole-Giove (destra) in prossimità di L5, per un tempo di integrazione di $6 \cdot 10^3 v$

A.A. 2016-2017

Conclusioni

Approccio analitico $(t \sim 14 \cdot 10^9 y)$

- Attraverso la costruzione in "forma normale di Birkhoff" di H, si sono ottenute le costanti del moto fino all'ordine r: le azioni I'_i ;
- Valutando il resto $\mathcal{R}^{(r+1)}$ e la norma $||f||_{\rho R}$, è stato determinato il minimo "tempo di fuga" con il quale si è stimata la regione di stabilità;
- il raggio del dominio di stabilità è insoddisfacente e va migliorato

Approccio numerico $(t \sim 6 \cdot 10^3 y)$

- Si sono individuate la "curve di velocità zero" e le orbite "a larva" e "a ferro di cavallo" per μ del caso Sole-Giove ($\mu = 0.001$).
- Si sono confrontate le hamiltoniane "mediata" Z e completa H nei problemi Sole-Terra ($\mu = 0.3 \cdot 10^{-5}$) e Sole-Giove ($\mu = 0.95 \cdot 10^{-3}$). Solo il caso Sole-Terra, poichè caratterizzato da μ piccolo, si può ritenere valido.

GRAZIE PER L'ATTENZIONE!