Chapter 9 Sinusoidal Steady-State Analysis – Homework Solutions James W. Nilsson and Susan A. Riedel, *Electric Circuits*, 6th Edition, 2001

Problems 3 a thru h, 6 a & b, 9, 14, 16, 23, 29, 36, 39, 45, 47, 48, 49

- a) 170 V
 - b) 60 Hz
 - c) 376.99 rads/sec
 - d) -1.05 rads
 - e) -60°
 - f) 16.67 msec
 - g) t = 2.78 msec
 - h) $v(t) = 170 \sin(120 \pi t) \text{ Volts}$
- 6 a) $y = 483.8 \cos (300 t 48.49^{\circ})$
 - b) $y = 120.5 \cos (377 t + 4.8^{\circ})$
- 9 a) $Z_C = -j 20 \Omega$ and $Z_L = j 2 \Omega$. Redraw the circuit with all the phasor info
 - b) $V = 46.5 < 34.46^{\circ} \text{ Volts}$
 - c) $v_{ss}(t) = 46.5 \cos (50,000 t + 34.46^{\circ}) \text{ Volts}$
- 14 $i_{ss}(t) = 1.5 \cos(5,000 t + 36.87^{\circ}) \text{ mA}$
- 16 a) $f = 5/\pi \approx 1.59 \text{ Hz}$
 - b) $i_{ss}(t) = 50 \cos(10 t) \text{ mA}$
- Zab = $50 < -53.15^{\circ} \Omega$ in polar form
- 29 a) $Z = 5 < 72^{\circ} \Omega$
 - b) $T = 50 \mu s$
- $Z_{TH} = 3,500 j$ 12,000 Ω and also redraw the equivalent circuit
- $Z_{TH} = 50 j$ 25 Ω and $I_{Norton} = 6.4 j$ 4.8 Amp Redraw the circuit in the Norton equiv form.
- 45 $Ig = 3 < -90^{\circ}$ Amp (what is this in rectangular form?)
- 47 $V_0 = 15.81 < 18.4^{\circ} \text{ Volts}$

- 48 Voss = $11.31 \cos (5,000 \text{ t} 45^\circ) \text{ Volts}$
- 49 Voss = 12 cos (5,000 t) Volts

Engr 17 Chapter 9 Homework
$$9.3 \quad v = 170 \quad \omega_0 \quad (120\pi \, t - 60^\circ) \quad volto$$

a)
$$V_{m} = 170 \text{ V}$$

b)
$$f = \frac{\omega}{2\pi} = \frac{120\pi}{2\pi} = 60 \text{ Hz}$$

d)
$$\phi = -60^{\circ} = -60^{\circ} \left(\frac{\pi}{180^{\circ}} \right) = -\frac{\pi}{3} = -1.05$$
 rado

$$f) T = \frac{1}{f} = \frac{1}{60} = 16.67 \text{ MA}$$

g)
$$find t = 20$$
 for $U = 170 U$ in $U = 100 = 1$

$$120\pi t - \frac{\pi}{3} = 0 \implies 120\pi t = \frac{\pi}{3} \implies t = \frac{1}{360}$$

$$t = 2.78 \text{ m/s}$$

h) shift left
$$\frac{125}{18}$$
 ms = $\frac{.125}{18}$ sec

$$\nabla = 170 \cos \left[120\pi \left(t + \frac{125}{18}\right) - \frac{\pi}{3}\right] \\
= 170 \cos \left(120\pi t + 120\pi \left(\frac{125}{18}\right) - \frac{\pi}{3}\right)$$

= 170
$$\omega_{S}(120\pi t + \frac{15\pi}{18} - \frac{\pi}{3})$$

= 170
$$\cos(120\pi t + \frac{9\pi}{18})$$
 $\frac{9\pi}{18} = \frac{\pi}{2} = 90^{\circ}$

$$\frac{9\pi}{18} = \frac{\pi}{2} = 90^{\circ}$$

9.6

a)
$$y = 100 \cos (300 t + 45^{\circ}) + 500 \cot (300 t - 60^{\circ})$$
 $Y = 100(45^{\circ} + 500(-60^{\circ}) - 60^{\circ})$
 $= 100(\cos 45 + \cos (45^{\circ}) + 500 \cos (60^{\circ}) - \sin (60^{\circ}))$
 $= 70.7 + i 70.7 + 250 - i 433$
 $= 320.7 - i 362.3$
 $= \sqrt{320.7^2 + 362.3^2} < tan^{-1} \left(\frac{-3622}{320.7}\right)$
 $= 483.8 < -48.49^{\circ}$
 $y = 9^{-1} < y > = 483.8 \cos (300t - 48.49^{\circ})$

b) $y = 250 \cos (377t + 30^{\circ}) - 150 \sin (377t + 140^{\circ})$
 $y = 250 < 30^{\circ} - 150 < (140^{\circ} - 90^{\circ})$
 $= 250 < 30^{\circ} - 150 < 50^{\circ}$
 $= (216.5 + i 125) - (96.42 + i 114.91)$
 $= 120.5 < 4.8^{\circ}$
 $y = 120.5 \cos (377t + 4.8^{\circ})$

()
$$y = 60 \cos(100t + 60^\circ) - 120 \sin(100t - 125^\circ)$$

 $+ 100 \cos(100t + 90^\circ)$
 $V = 60 < 60^\circ - 120 < -125^\circ - 90^\circ + 100 < 90^\circ$
 $= 152.88 < 32.94^\circ$
 $y = 152.88 \cos(100t + 32.94^\circ)$

9.6.
d)
$$y = 100 \cos (\omega t + 40^{\circ}) + 100 (\omega s \omega t + 160^{\circ})$$

 $+ 100 \cos (\omega t - 80^{\circ})$
 $7 = 100 < 40^{\circ} + 100 < 160^{\circ} + 100 < -80^{\circ}$
 $= (76.6 + 364.279) + (-93.969 + 34.20) + (17.36 - 398.48)$
 $= -0.009 + 30.079$
 $= 0.08 < -83.5^{\circ})$ pretty much = 300

9.9

$$I_{S} = 20 \cos (50,040t - 30^{\circ})A$$
 $I_{S} = 20 \cos (50,040t - 30^{\circ})A$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I = 30 \cot I$
 $I_{S} = 30 \cot I = 30 \cot I$

9.9

c) Vss = 46.5 cos (50,000 t + 34.46°) Volto

Z2-141 SO SUBETS
Z2-142 TOD SUBETS
Z2-144 Z00 SUBETS

Sind iss (t)

$$Z_{L} = j WL = j (5000) (40MH) = j 200 \text{ A}$$

 $Z_{C} = j (-\frac{1}{WC}) = -j 500 \text{ N}$

$$2eq = 400N + f_{200N} - f_{500N} = (400 - f_{300})N$$

= 500 \(-36.870

$$\hat{i}_{35}(t) = 1.5 \cos(5000t + 36.87^{\circ}) \text{ mA}$$

Note that wenent leads the voltage

We changed until vg "in phase" with io (remember in class we showed this means the behavior of the circuit is purely resistive)

$$Z_{eq} = 150 \text{ N} + \left[j\left(\overline{\omega}^2\right)\right] \left(10 \text{ N} + j\omega^2\right)$$

$$= 150 + \frac{1}{j\left(\overline{\omega}^2\right)} + \frac{1}{10 + j\omega^2}$$

$$= 150 + j\omega(4x^{-3}) + \frac{10 - j\omega^2}{100 + 4\omega^2}$$

$$= real (only) \quad \text{when imaginary terms cancel.}$$

$$= 150 + j\omega(4x^{-3}) = \frac{100 + 4\omega^2}{100 + 4\omega^2}$$

$$= 150 + j\omega(4x^{-3}) = \frac{100 + 4\omega^2}{100 + 4\omega^2}$$

$$= 100 + 4\omega^2 = 500 \implies \omega^2 = 100$$

$$W = 10 \text{ rad/scc} = 2\pi f$$

$$f = \frac{10}{2\pi} = \frac{5}{\pi} \approx 1.59 \text{ Hz}$$

9.16 b) owen $ug = 10 \cos \omega t$ volts at w = 10 rad/s (parta) sind iss

 $Z_{eq} = 150 + \left[\frac{10}{10+4\omega^2}\right]^{-1}$ we have found were the imaginary terms cancel—so if we terms ignored. $= 150 + \left[\frac{10}{500}\right]^{-1} = 150 + 50 = 200 \text{ A}$

$$\mathbf{I} = \frac{\sqrt{1000}}{2000} = 5000^{\circ} \text{ mA}$$

iss = 50 cos 10t mA

 $V_g = 150 \cos(800071 + 20^\circ)$ Volts $V_g = 30 \sin(800071 + 38^\circ)$ Amps

a)
$$\frac{1}{2}$$
 circuit = $\frac{\sqrt{1}}{1} = \frac{150(20^{\circ})}{30(38^{\circ}-90^{\circ})} = \frac{150(20^{\circ})}{30(-52^{\circ})} = \frac{5(72^{\circ})}{30(-52^{\circ})}$

b) Current logs voltage by $72^\circ = how many usec?$ $2\pi f = 8000\pi \Rightarrow f = 4000Hz \Rightarrow T = \frac{1}{f} = 250us$

so every T = 250 u sec the angular freq w goes thur 21 (or equivalently goes thur 360°)

thus $t = 72^{\circ} \left(\frac{250 \text{usec}}{360^{\circ}}\right) = \frac{50 \text{usec}}{250 \text{usec}}$

W= 25,000 rad/sec

Note is = I Test

find ZEn

$$Z_{c_1} = \dot{j} \left(\frac{-1}{wc_1} \right) = - f \lambda k N$$

$$V_{T} = I_{T} (1 - \dot{\beta} | 2) A A + 20 I_{T} (125 A N)$$

$$= I_{T} (3.5 - ila) k A$$

$$\overline{Z}_{Th} = \frac{U_{T}}{I_{T}} = (3.5 - 1/2) kN = (3,500 - 1/2,000) N$$

tind the Norton Equiv.

$$I_{Noton} = I_{short circuit}$$
 | $I_{Noton} = I_{short circuit}$ | $I_{SC} = I_$

$$Z_{Th} = (-\frac{1}{3}50) || (\frac{1}{3}0 + 25 + 15)$$

$$= \frac{(-\frac{1}{3}50)(40 + \frac{1}{3}30)}{-\frac{1}{3}50 + 40 + \frac{1}{3}30} = 50 - \frac{1}{3}25 \text{ A}$$

 \pm ind the phason \mathbf{I}_{g} by mesh current analysis Note that $\mathbf{I}_{C}=5<0^{\circ}$

loopa
$$Ia(j3N) + (5N)(Ia - Ib) - j3N(Ia - 5<0°) = 0$$

$$Ia(5) - Ib(5) + (j3N)(5<0°) = 0$$

$$Ia(5) + Ib(-5) = -j15 \text{ Volt}$$

$$loopb$$

$$(j2N)(Ib - 5) + 5N(Ib - Ia) - j5V = 0$$

$$Ia(-5) + Ib(5+j2N) - j10V - j5V = 0$$

$$Ia(-5) + Ib(5+j2N) = j15V$$
Subin from loopa
$$Ia(-5) + (Ia+j3V)(5+j2N) = j15V$$

Ia[(-575) + j2] + j15 - 6 = j15 Ia(j2) = 6 $Ia = \frac{6}{j2} = -j3 \text{ Amp} = Ig = 3(-90° \text{ Amp})$

sind to by node voltage method

$$\frac{V_1}{40N} + \frac{V_1 - 100}{$^{40}N} + \frac{V_1}{60 + j \cdot 20N} = 0$$
rotice I write only
later)

do the math & V = 30-340 Volts

$$V_0 = \frac{\text{j}_{20}}{60 + \text{j}_{20}} (V_i)$$
 by voltage divide rule

$$=\frac{1}{60+30}(30-140)=\frac{1}{3+1}(30-140)$$

$$= \frac{1+3f}{10}(30+f^{2}40) = -9 + 13 \text{ volts}$$

Vg_ = 8 sin 5000t = 8 cos (5000t-900) Volta

5 ind Voss by the node voltage method

ZL=jUL= jaN ₹c = j(1) = -j4~

 $\frac{V_0 - (6t_j 8)}{j 2W} + \frac{V_0}{6} + \frac{V_0 + (-j 8)}{-j 4} = 0$ Be careful here-note the source polarity!

Solving this equation gives us To = 12<0

so vos = 12 cos (5000 t) Volts