Supporting information for the connection between convergence in MSE and AE

This document provides the supporting information for the comment made on Page 29-30 of the manuscript.

It uses two examples to show that the convergence in MSE in order of $\mathcal{O}(\Gamma^{-k})$ does not imply the convergence in probability in order of $\mathcal{O}(\Gamma^{-k/2})$. For the case of a Pareto random variable and a normal random variable, we are not able to prove the convergence in probability based on the convergence in MSE.

Further assumptions are needed to bridge the gap.

Pareto random variable

Consider a random variable $(\rho_{\Gamma}-\rho)$ that follows a Pareto distribution with parameters Γ^{-1} and α .

Its survival function is given by:

$$rac{1}{(x\Gamma)^{lpha}} ext{ for } x \geq \Gamma^{-1}$$

The variance of the random variable is given by:

$$\Gamma^{-2} rac{lpha^2}{(lpha-1)^2(lpha-2)}$$

Let's state the definition of convergence in MSE:

Definition 4 (convergence in MSE):

If there exists a constant C such that:

$$\limsup_{\Gamma o\infty} \ \mathbb{E}[rac{(
ho_\Gamma-
ho)^2}{\Gamma^{-2}}] \leq C$$

The MSE converges in the order of $\mathcal{O}(\Gamma^{-2})$.

Hence, it can be observed that above Pareto random variable converges in MSE in the order of $\mathcal{O}(\Gamma^{-2})$.

Let's state the definition of convergence in probability:

Definition 5 (Convergence in probability):

For any $\epsilon > 0$, there exists a constant C such that:

$$\mathbb{P}\left(|
ho_{\Gamma}-
ho|>C\Gamma^{-1}
ight)<\epsilon$$

For this Pareto random variable, we are able to compute the probability using the survival function:

$$\mathbb{P}\left(|
ho_{\Gamma}-
ho|\geq C\Gamma^{-1}
ight)=rac{1}{(C\Gamma^{-1}\Gamma)^{lpha}}=C^{-lpha}$$

The right hand side of the above equation is a constant, so it can not be smaller than any $\epsilon > 0$.

Hence, **Definition 5** is not satisfied,

Therefore, the above Pareto random variable does not converge in probability in the order of $\mathcal{O}(\Gamma^{-1})$.

Since Professor Weng's comment is related to the convergence in probability, we can easily verify that the above Pareto random variable converges in probability in the order of $\mathcal{O}(\Gamma^{-1-\delta})$ for any $\delta>0$.

Normal random variable

If we try to show the same result for a normal random variable, we can observe that the normal random variable satisfies **Definition 4** with C=1. Therefore, we have:

$$\mathbb{E}[(
ho_{\Gamma}-
ho)^2]=\mathcal{O}(\Gamma^{-2})$$

We observe that:

$$\mathbb{P}(|\rho_{\Gamma} - \rho| \ge C\Gamma^{-1}) = 2\phi\left(\frac{C\Gamma^{-1}}{\Gamma^{-1}}\right)$$

$$= 2\phi\left(C\right)$$
(1)

$$=2\phi\left(C\right) \tag{2}$$

Hence, **Definition 5** is not satisfied for the normal random variable.