Aula 12 - Versao 2

Davi Wentrick Feijó

2024-05-20

Exercicio 1

Considere uma população $U=\{1,2,3\}$ que apresenta os seguintes parâmetros populacionais:

$$\mathbf{D} = \begin{pmatrix} F_i \\ T_i \end{pmatrix} = \begin{pmatrix} 12 & 30 & 18 \\ 1 & 3 & 2 \end{pmatrix}$$

Vamos calcular nosso B_0

```
renda <- c(12, 30, 18)
ntrab = c(1,3,2)
N = length(renda)
n = 2</pre>
```

Para esta população temos:

• $\mu_T = 2$

mean(ntrab)

[1] 2

• $\mu_F = 20$

mean(renda)

[1] 20

• $\sum_{i=1}^{3} F_i T_i = 138$

sum(renda*ntrab)

[1] 138

• $\sum_{i=1}^{3} F_i^2 = 1.368$

```
sum(renda^2)
```

[1] 1368

• $\sum_{i=1}^{3} T_i^2 = 14$

sum(ntrab^2)

[1] 14

Com isso podemos partir para o calculo do B_0

$$B_0 = \frac{\sum_{i=1}^{N} F_i T_i - N\bar{T}\bar{F}}{\sum_{i=1}^{N} T_i^2 - N\bar{T}^2} = \frac{18}{2} = 9$$

B0 = (sum(renda*ntrab) - N*mean(renda)*mean(ntrab))/(sum(ntrab^2)-N*mean(ntrab)^2)

[1] 9

Em seguida vamos calcular nossos parametros amostrais com n=2 (ou seja pegando 2 amostra de cada vez):

```
mut = mean(ntrab)
resultsF = c()
resultsD <- c()
resultsT <- c()
amostra <- c(1,1,1, 2, 1, 3, 2, 1,2,2,2, 3, 3, 1, 3, 2,3,3)
t= 0
for (i in seq(1, length(amostra)/2)) {
    d_bar <- mean(c(renda[amostra[i+t]],renda[amostra[i+t+1]]))
    t_bar <- mean(c(ntrab[amostra[i+t]],ntrab[amostra[i+t+1]]))
    f_reg = d_bar+B0*(mean(ntrab) - t_bar)

resultsF = append(resultsF, f_reg)
resultsD <- append(resultsD, d_bar)
resultsT <- append(resultsT, t_bar)
    t=t+1
}</pre>
```

• d_bar = Média $F_i = \bar{f}$

```
print(resultsD)
```

[1] 12 21 15 21 30 24 15 24 18

• $t_bar = M\'edia T_i = \bar{t}$

print(resultsT)

[1] 1.0 2.0 1.5 2.0 3.0 2.5 1.5 2.5 2.0

• f_reg = Media do estimador tipo regressao = \bar{f}_{reg}

print(resultsF)

[1] 21.0 21.0 19.5 21.0 21.0 19.5 19.5 19.5 18.0

s	11	12	13	21	22	23	31	32	33
P(s)	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9
$ar{f}$	12	21	15	21	30	24	15	24	18
$ar{t}$	1	2	1,5	2	3	2,5	1,5	2,5	2
$ar{f}_{ m Reg}$	21,0	21,0	19,5	21,0	21,0	19,5	19,5	19,5	18,0

Agora podemos ir calcular $Var[\bar{f}_{Reg}]$

Para isso vamos usar a funcao var() do R, porem ela sempre calcula a variancia amostral (no caso dividindo sempre por n-1) para isso temos que fazer uma correcao e multiplicar por (N-1)/N para cancela o n-1 e assim dividir por N

• $\sigma_F^2 = 56$

sigma2f = var(renda)*(N - 1) / N

[1] 56

• $\sigma_T^2 = 2/3$

sigma2t = var(ntrab)*(N - 1) / N

[1] 0.6666667

• $\sigma_{FT}^2 = 6$

sigma2ft = var(ntrab, renda)*(N - 1) / N

[1] 6

Agora pode partir para o calculo da $Var[\bar{f}_{Reg}]$

$$\operatorname{Var}\left[\bar{f}_{\operatorname{Reg}}\right] = \frac{1}{n} \left(\sigma_F^2 - 2b_0 \sigma_{FT}^2 + b_0^2 \sigma_T^2\right) = 1$$

varF_reg = 1/n * (sigma2f - 2*B0*sigma2ft+B0^2*sigma2t)

[1] 1

```
#D - Renda Var e Esp
espD = sum(resultsD * 1/9) #Esperanca
esp_quadD = sum((resultsD^2) * 1/9)
varD = esp_quadD - espD^2 #Variancia
#T - numero de trab Var e Esp
espT = sum(resultsT * 1/9) #Esperanca
esp_quadT = sum((resultsT^2) * 1/9)
varT = esp_quadT - espT^2 #Variancia
#T - regressao entre renda e numero de trabalhadores Var e Esp
espF = sum(resultsF * 1/9) #Esperanca
esp_quadF = sum((resultsF^2) * 1/9)
varF = esp_quadF - espF^2 #Variancia
## [1] "Esperanca da Renda media: 20"
## [1] "Variancia da Renda media: 28"
## [1] "Esperanca do estimador tipo regressao: 20"
## [1] "Variancia do estimador tipo regressao: 1"
```