Project: Data-Path

Course: Computer Architecture

Dr. Khalid Elshafey

Participance:

- 1- Sherif Gamal Abdelatif (45)
- 2- Abdelrahman Farouk Sayed (52)
- 3- Elsayed Khalid Elsayed Elrefaey (32)
- 4- Hossam Shaaban Sayed (38)
- 5- Attia Sayed Attia (60)
- 6- Ahmed Sedek Ali (10)

Objective:

Building a <u>data-path</u> which includes the following parts:

- Register File
- ALU

Tools: Proteus simulator

Design: -

1- Register file design:

The register file contains:

- Reg Decoder (2x4).
- Four (4-bit) Registers.
- Two (4x1) registers' Multiplexers; one for bus A and the other is for bus B.

2- ALU: -

The ALU has: two (4-bit) inputs, Carry input, and Three select lines.

Following is the functional table of the ALU:

	FUNCTION TAB	LE			
	<i>S</i> 2	<i>S1</i>	SO	CIN	OPERATION
	0	0	0	0	G = A
	0	0	0	1	G = A + 1
	0	0	1	0	G = A + B
	0	0	1	1	G = A + B + 1
Arithmetic •	< 0	1	0	0	$G = A + \overline{B}$
	0	1	0	1	$G = A + \overline{B} + 1$
	0	1	1	0	G = A - 1
	0	1	1	1	G = A
I i -	1	0	0	X	$G = A \wedge B$
	1	0	1	X	$G = A \vee B$
Logic	1	1	0	X	$G = A \oplus B$
	1	1	1	X	$G = \overline{A}$

ALU consists of two main parts {Arithmetic, Logic}

• Arithmetic Part: -

As shown in the previous image, the arithmetic Part consists of, one Full adder for each bit of the input; and the B input logic which is derived from the following table:

☐ TABLE 1
Function Table for Arithmetic Circuit

S	Select	Input	$G = (A 1 Y 1 C_{in})$		
S ₁	S ₀	Y	C _{in} = 0	C _{in} = 1	
0	0	all 0s	G = A (transfer)	G = A + 1 (increment)	
0	1	B	G = A + B (add)	G = A + B + 1	
1	0	\overline{B}	$G = A + \overline{B}$	$G = A + \overline{B} + 1$ (subtract)	
1	1	all 1s	G = A - 1 (decrement)	,	

Inputs			Output	
S_1	S_0	\mathbf{B}_{i}	Yi	
0	0	0	$0 Y_{i} = 0$	
0	0	1	0	
0	1	0	$0 Y_i = B$	
0	1	1	1	
1	0	0	$1 Y_i = \overline{B}$	
1	0	1	0	
1	1	0	1 $Y_i = 1$	
1	1	1	1	

• Logic Part: -

As shown in the previous image, the Logic Part consists of:

- Two (4-bit) input AND
- Two (4-bit) input OR
- Two (4-bit) input XOR
- Four NOT gates
- (4x1) Registers' Multiplexer

The Logic part circuit is derived from the following table:

Steps: -

- 1- Connect Bus A, to the first input of the ALU
- 2- Connect Bus B, to the first input of MUX B which selects either of Bus B or Constant input (which is connected to the second input of the MUX B), to be the second input of the ALU.
- 3- Connect the output of the ALU, to the first input of MUX D, which selects either the

ALU output, or the Data-in (which is coming from the input probes), to be the input of the Register file

Code: -

• Subtraction Result: (8 - 5)

• $XOR\ Result$: $(8 \oplus (8 - 5))$

