Министерство образования Республики Беларусь

Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

Лабораторная работа №2 по курсу «МРЗвИС» на тему:
«Реализация модели решения задачи на ОКМД архитектуре»

студент группы 821701:

Бутрин С.В.

Крачковский Д.Я.

Выполнил

Проверил:

Цель:

Реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Вариант задания:

Дано: сгенерированные матрицы A, B, E, G заданных размерностей p x m, m x q,

$$c_{ij} = \bigwedge_{k} f_{ijk} * (3 * g_{ij} - 2) * g_{ij} + (\bigvee_{k} d_{ijk} + (4 * (\bigwedge_{k} f_{ijk} \circ \bigvee_{k} d_{ijk}) - 3 * \bigvee_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \stackrel{\sim}{\to} b_{kj}) * (2 * e_{k} - 1) * e_{k} + (b_{kj} \stackrel{\sim}{\to} a_{ik}) * (1 + (4 * (a_{ik} \stackrel{\sim}{\to} b_{kj}) - 2) * e_{k}) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \stackrel{\sim}{\to} b_{kj}$$

1хm, pхq соответственно со значениями в рекомендуемом диапазоне [-1;1].

$$\begin{split} & \tilde{\wedge}_k f_{ijk} = \prod_k f_{ijk} \\ & \tilde{\vee}_k d_{ijk} = 1 - \prod_k \left(1 - d_{ijk}\right) \\ & \tilde{\wedge}_k f_{ijk} \tilde{\circ} \tilde{\vee}_k d_{ijk} = \max\left(\left\{\tilde{\wedge}_k f_{ijk} + \tilde{\vee}_k d_{ijk} - 1\right\} \cup \{0\}\right) \\ & a_{ik} \tilde{\to} b_{kj} = \sup\left(\left\{\delta \left|\left(\min\left(\left\{1 - a_{ik} + \delta\right\} \cup \left\{0\right\}\right) \le b_{kj}\right) \wedge \left(\delta \le 1\right)\right\}\right) \\ & b_{kj} \tilde{\to} a_{ik} = \sup\left(\left\{\delta \left|\left(\min\left(\left\{1 - b_{kj} + \delta\right\} \cup \left\{0\right\}\right) \le a_{ik}\right) \wedge \left(\delta \le 1\right)\right\}\right) \\ & a_{ik} \tilde{\wedge} b_{kj} = \max\left(\left\{a_{ik} + b_{kj} - 1\right\} \cup \left\{0\right\}\right) \end{split}$$

Heoбxoдимо:получить С матрицу значений соответствующей размерности p x q.

Описание модели:

Для вычисления времени T_1 подсчитываются количества вызовов различных операций, а затем время одной операции умножается на количество вызовов данной операции, полученные значения суммируются. Для вычисления T_n необходимо установить зависимости между выполняемыми операциями. Если операции не являются зависимыми и их можно считать на различных процессорах, то время выполнение такой операции будет $t * \lceil \frac{c}{n} \rceil$, где t— время выполнения такой операции, c— количество вызовов данной операции, n—

количество процессоров, на которых выполняется операция. Коэффициент ускорения вычислялся по формуле $Ky = \frac{T_1}{T_n}$, а эффективность по формуле $e^{-\frac{Ky}{n}}$. Для подсчета коэффициента расхождения задачи необходимо измерить две характеристики L_{sum} и L_{avg} , где $-L_{sum}$ суммарная длина программы, а L_{avg} -средняя длина программы. Так как $-L_{sum}$ суммарная длина программы, то она будет равна T_n . Чтобы посчитать L_{avg} , необходимо знать, сколько объектов различных классов выполняется на каком-то из этапов вычислений. Данная задача была решена с помощью подсчета количества вызовов операций и функций на различных ветвях выполнения программой. Зная, количества объектов, выполняющихся на ветвях программы, время выполнения функции или операции, можно подсчитать.

Графики

1. График зависимости коэффициента ускорения от ранга задачи

2. График зависимости коэффициента ускорения от количества процессоров

3. График зависимости эффективности от ранга задачи

4. График зависимости эффективности от количества процессоров

5. График зависимости коэффициента расхождения от ранга задачи

6. График зависимости коэффициента расхождения от количества процессоров

Вопросы:

1. Проверить, что модель создана верно: программа работает правильно;

```
Matrix A
-0,9084074492139776 -0,34829969347841094 -0,9117364352157975 0,021671319390494048
0,43014083776163914 -0,6427231159260138 -0,363646840426967 0,9214172716817899
-1,128324008606525 0,04799756316840542 -0,8791956575024853 0,9266517785967568
-0,3526263015124139 -0,44122190607768563 0,3845955344776602 -0,7195297962611215
-1,6799156925081813 -0,8832297035880524 -0,7316147208826684 -1,5717684866729047

Matrix B
0,02718062979503566 -1,0761975641717192 -0,2080463088155009 -1,5336407886509043 -1,1836446571087673 -0,46742147834385817
-1,659424163708195 -0,6276526551822446 -0,94796356025721208 -0,6993418152906662 0,7630014856173665 -0,603034969700051
0,4590133910342182 0,17932713831743563 -0,9499106509377765 -0,8771656988547955 0,6720670269206478 -0,2683676915561629

Matrix E
-0,037231291195951144 -1,8040954348650273 -0,5043561824152042 -0,08895289669230244

Matrix G
-1,101643212186938 0,4680066944416644 0,1993339439850924 -1,6442650047337009 -0,41121564684958 -1,1168182031795468
0,6344568769667958 -1,7257925089103134 -1,587242769503312 -0,19402057220880897 -0,9526042281429303 0,33759153370633327
0,8822927761274822 -0,579574728932318 -0,618932914699 -0,3904891462952135 -0,38456492237027967 -0,6505886021305753 -0,795739537755096 0,618052923501495 -0,6233122477416473 -1,3699836430000065 -0,004783539569370249

Matrix C
-76,83346913255716 1,9180768297413364 -6,012086025859247 -124,04421354576354 -30,850117290619497 -59,104214021452634 -0,03305449649754066 -0,84628310313347 -170,78866082078561 -14,632180976 474283 -60,11752588559666 0,03347018474709719 -1,2662456500449715 -38,93391882674961 -96,87539836820227 -14,566711734378518 -6,98625855599487 -27,068091608891645 -1,669712816810967 6,999255676183171 8,541966198011503 -108,85098056135686 -260,07792020319494 -21,88779515370402
```

2. Объяснить на графиках точки перегиба и асимптоты;

Асимптотой графика Ky(r) будет прямая y=n. Точки, которые удовлетворяют условию, r% n=0 являются точками перегиба. Асимптотой графика Ky(n) будет прямая y=r. Асимптотой графика e(n) является прямая y=0. Асимптотой графика e(r) будет прямая y=1, при этом точки, которые удовлетворяют условию, r% n=0 являются точками перегиба. Асимптотой графика D(n) будет прямая y=0. У графика D(r) отсутствуют асимптоты и точки и перегиба.

3. Спрогнозировать как изменится вид графиков при изменении параметров модели; если модель позволяет, то проверить на ней правильность ответа;

При увеличении п значение е уменьшается.

При увеличении r значение е изменяется скачками.

При увеличении г значение Ку изменяется скачками.

При увеличении и значение Ку увеличивается.

При увеличении r значение D увеличивается.

При увеличении n значение D уменьшается.

Вывод:

В результате выполнения лабораторной работы была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Были построены и исследованы семейства графиков характеристик данной задачи. С помощью графиков были изучены зависимости коэффициента ускорения, эффективности и коэффициента расхождения программы от ранга задачи и количества процессорных элементов.