Sistemas de Inteligencia Artificial

Perceptrón Simple y Multicapa

ITBA 2024 - Grupo 02

El equipo

Girod, Joaquín

ljjas, Christian

Magliotti, Gianfranco

Ferrutti, Francisco

AND logico

El problema típico de clasificación con separación lineal

Cuando el problema deja de ser linealmente separable los perceptrones simples empiezan a demostrar debilidades.

Problema del XOR en 2D: no existe ningún hiperplano que logre separar linealmente las posibles salidas.

Pseudo Kernel Trick

Posible solución para el XOR

Capacidad de Aprendizaje

```
dif_x_min = (x - min_valor)
dif_max_min = (max_valor - min_valor)
x_normalizado = dif_x_min / dif_max_min
```

Mirando el **learning rate** elegimos 0.001

Se nota la diferencia de capacidad de fitting

Capacidad de Aprendizaje

seed = 42 learninga_rate = 0.001 epochs = 10000

Se puede ver que la función tanh tiene mayor velocidad de convergencia.

Capacidad de Generalización

Usando validación cruzada evaluamos la capacidad de generalización de los modelos y vemos que sigmoide se porta bien

Elección

Un buen conjunto de entrenamiento

Diversidad y representatividad Tamaño del conjunto de entrenamiento Buen desempeño en cross-validation

Aprender patrones generales Evitar subajuste Evitar sobreajuste

Discriminación de Paridad

Resultados

 Se logra una precision del 100% rapidamente

```
topology = [35, 10, 1]
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 4
learning_rate = 8
seed = 23
```


- Dígitos con ruido Gaussiano de media 0 y desvío estándar 0.75
- Pesos y bias iniciales aleatorios
- Conjunto de 300 elementos con K-fold cross-validation, K = 10

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 5
learning_rate = 3
```


Luego optamos por verificar con 2 capas ocultas, nuevamente variando la cantidad de neuronas en las mismas.

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 5
learning_rate = 3
```


Finalmente, simplemente por curiosidad, optamos por poner a prueba una arquitectura 35-100-70-40-25-15-10, de 5 capas ocultas.

Aumentamos las epochs a 1000 para ver comportamiento, el resto de hiperparametros se mantiene.

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 5
learning_rate = 3
```


- Dígitos sin ruido
- Pesos y bias iniciales random
- Training set igual al testing set (10 elementos)
- Topologia de [35, 20, 10]

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 5
learning_rate = 8
```


Aumentamos el ruido para el testing set...

Ruido gaussiano con media 0 y desvío estándar 0.4 para un testing set con ruido de 100 elementos

Ruido gaussiano con media 0 y desvío estándar 0.75 para un testing set con ruido de 100 elementos

Entrenamos al perceptrón con ruido...

- Weights y biases iniciales obtenidos del entrenamiento sin ruido
- K-Fold Cross-Validation con K = 10
- Tamaño del training set: 1000 dígitos
- Agregamos al training set ruido gaussiano con media 0 y desvío estándar 0.4

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 50
learning_rate = 16
```


Evaluemos cómo fue el desempeño para cada dígito

- Evaluamos los resultados del entrenamiento anterior para un conjunto de 300 números con más ruido
- Ruido gaussiano con media 0 y desviación estándar 0.75

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 50
learning_rate = 16
epochs = 100
```


¿Qué pasa si entrenamos ahora con salt and pepper?

- Seguimos aprendiendo
 - Usamos los pesos y bias del entrenamiento anterior
- Salt and pepper
 - o Salt prob 0.4
 - Pepper prob 0.4
- Mayor error en el entrenamiento
- Probable overfitting

```
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
mini_batch_size = 50
learning_rate = 16
epochs = 200
```


Comparando Optimizadores

topology = [784,30,10]
actiation = sigmoid
beta = 1
seed = 42
epochs = 20
mini_batch_size = 16
learning_rate = 0.1

gradient_descent

adam

beta_1 = 0.9

beta_2 = 0.999

epsilon = 1e-8

momentum

Discriminación de dígito manuscrito

epsilon = 0.01

Nuestros mejores resultados

94.92%

94.84%

• • •

```
topology = [784, 30, 10]
activation_function = sigmoid
sigmoid_beta = 1
optimizer = adam
beta_1 = 0.9
beta_2 = 0.999
adam_epsilon = 1e-8
seed = 42
epochs = 30
mini_batch_size = 16
learning_rate = 0.1
epsilon = 0.01
```

```
topology = [784, 30, 10]
activation_function = sigmoid
sigmoid_beta = 1
optimizer = momentum
alpha = 0.9
seed = 42
epochs = 30
mini_batch_size = 16
learning_rate = 0.1
```

90.05%


```
topology = [784, 30, 10]
activation_function = sigmoid
sigmoid_beta = 1
optimizer = gradient_descent
seed = 42
epochs = 30
mini_batch_size = 16
learning_rate = 0.1
epsilon = 0.01
```


Pero cambiando la topología

Nuestros mejores resultados

97.16%

topology = [784, 128, 10]
activation_function = sigmoid
sigmoid_beta = 1
optmizer = adam
beta_1 = 0.9
beta_2 = 0.999
adam_epsilon = 1e-8
epochs = 30
mini_batch_size = 16
learning_rate = 0.1
epsilon = 0.01

+170 épocas

97.56%

```
topology = [784, 128, 10]
activation_function = sigmoid
sigmoid_beta = 1
optmizer = adam
beta_1 = 0.9
beta_2 = 0.999
adam_epsilon = 1e-8
epochs = 200
mini_batch_size = 16
learning_rate = 0.1
epsilon = 0.01
```


Demo Time!

Matrices de Confusión

Accuracy

topology = [794, 30, 10] activation_function = sigmoid sigmoid_beta = 1 seed = 42 mini_batch_size = 16 learning_rate = 0.1 epsilon = 0.01

Adam

Gradient Descent

Conclusiones Generales

- Los modelos simples reducen la probabilidad de overfitting, ajustar el modelo al problema no el problema al modelo
- Importancia de la función de activación no lineal para flexibilizar la red
- 3) La elección de la topología es un arte
- 4) Potencial de las MLP para problemas con dominio de entrada no explorable
- Capacidad de representar cualquier función a cambio de poder de cómputo
- Se aproxima asintóticamente al máximo de accuracy
- 7) Peligro del overfitting y relevancia de la validación junto con el noise
 - mportancia del dataset, preparar para el mundo real, no el ideal

Black Box?

Initial Classification (Cat Image): Class Name: tabby, Probability: 0.7971 Class Name: tiger cat, Probability: 0.1733 Class Name: Egyptian cat, Probability: 0.0222 Class Name: carton, Probability: 0.0007 Class Name: Persian cat, Probability: 0.0006

Modified Classification (Cat + Tennis Image): Class Name: tennis ball, Probability: 0.9961 Class Name: spider web, Probability: 0.0028 Class Name: chainlink fence, Probability: 0.0009 Class Name: hare, Probability: 0.0002 Class Name: puffer, Probability: 0.0000

Futuros Posibles

- Sería interesante analizar el ejercicio 3 o 4 agregando la opción de clasificar el número en una categoría "desconocido"
- 2) Data sets desbalanceados
- 3) Usar CUDA para aprovechar la GPU, actualmente la red es CPU-intensive. O en su defecto usar una librería que aproveche la GPU (cómo Torch).
- 4) Agrupar biases y weights en la misma matriz
- 5) Sparse Neural Networks
- 6) Múltiples funciones de activaciones para las distintas capas

