

Set : Unique Values

Enums: uniques

Hashing:

HashSet : Table Hashing

LinkedHashSet: Linked Hashing

SortedSet: maintain data in sorted

NavigableSet : Quick Navigation functionalities

Red-Black Tree

Algorithm Classes

- 1. Arrays.
- 2. Collections.
- @ Provide common functionalities can be applied on Array int [] and Collection

Collections.concurrentList(); // Thread safe equivalent

4....

Java - 8

Functional-Programming

- # functional interface
- # default methods
- # static methods
- # lambdas
- # streams
- # methods references

DateTime API

Optional

Nashorn engine (javascript engine)

Extension in collection API

Traditional :(Pure OOPs) : Imperative

Functional: Declarative

Imperative:

How: focus

Pure OOPs

Embraces data mutability

Declarative

What : focus

Functional Programming (pure function)

Data immutabilty

SQL style


```
LAmbda Syntax for pure function
1. not have any accessiblity modifier (nothing related to class)
2. Do not any name (anonymous function)
3. no return type
4. no param type
5. (<param>) -> { <definition>}
void fun(String str1, int n){
(str1,n) -> {
}
void fun(String str1){
}
str1 -> {
}
void fun(){
}
() -> {
}
void fun(String str1){
    // only single instruction
}
str1 -> single instruction
void fun(String str1){
    // instruction
    return a;
}
str1 -> {
    // instruction
    return a;
}
int add(int a, int b){
return a+b;
}
// for single inst not bounded in braces return is default associated
(a, b) -> a+b;
```

interface <reference> = <lambda expression>
only when interface is functional interface:
 contains only one abstract methods
 can have any number of default/static
refrence of an interface can refer to only those lambda expression whose signature matches with the only abstract method inside the interface

Runnable:
Comparator
Comparable

few protoypes have been identified which are common in use

api : functional interface

Consumer : void accept(<>), BiConsumer [two param], IntegerConsumer()

Predicate: boolean test(<>)

Function : <> apply(<>)

Supplier : <> get()

result = 25 + 6

```
# stream : external mutable resource
# inherently complex (JVM)

want to use calculator to perform addition of stream of number

1 2 3 4 5..... result : mutable (not thread safe)

1 Data inconsistency
3

25 : result 5,6,7

result = result + v
result = 25 + 5
```


pre jak 8		
Date		
Calander		
Time API :	7	
java.time		
LocalDate		
LocalDate		
LocalDateTime		
	_	

Multi-Threading

Multi-Programming:

O/S to reside more than 1 exe program in memory , not necessarily executing them Multi-Tasking :

O/S execute more than 1 program simultaneously , interleaved fashion (time sharing) Multi-Processing

O/S to manage more than 1 processing units (parallel / array)

O/S

Multi-tasking:

multi-core processor: multi-processing


```
class Thread implements Runnable{
    public void run(){} // empty
    public final void start(){
        // low level functionality to spawn a new thread
        // native coding : C/C++
        // call the run() : assigning thread capacity
    }
}
```


locking of functionality : sync method [permanent] : Resource owner locking of objects : sync block [temp] : user

Concurrent-Collection API

High level of concurrency with Thread Safety

synchronized: method/block: Wide Spectrum of locking

granular locking : ReentrantLock();

Java way to create web based Server resources

Server based API: can integrate with web server(Tomcat, Websphere..) and can deal with HTTP Request and Response

Servlet-API

Lot of frameworks uses this API

eg: Java EE, Spring

Core/Key class of Servlet-API :has complete access over Web Server

GenericServlet : old version : not able to diffrentiate between HTTP Verbs (GET,POST,PUT,DELETE,PATCH...)

HttpServlet : new version (extention) : can identify

```
// Servlet class : part of the server

class <Custom Class> extends HttpServlet{

    // business logic and use the server info
}
```


service:

Web Server encapsulate the request related details in a Servlet-API class : HttpServletRequest/GenericRequest

==> use request data for processing
Server Waiting for response

==> Respond back by encapsulating response in a Servlet-API class :

HttpServletResponse/GenrericResponse

Tomcat (Apache Foundation): download (9) and install

Explicitly to deploy an web-application

- 1. Create web application
- 2. build and package in war:
- 3. copy war file webapp folder of Tomcat

Eclipse can deploy in web server can launch web server

Need to connect Tomcat with eclipse (workspace)

