INV_M

Table of Contents

Calling Syntax	
/O Variables	
Example	
Hypothesis	
imitations	
Version Control	2
Group Members	2
Function	2
Validity	
Main Calculations	
Output Data	
1	

Calcula a matriz $M^{-1}(\Theta)$ para determinação do vetor de forças dinâmicas τ . Derivada das equações da dinâmica do movimento a partir da seção 6.7 do Craig.

Calling Syntax

inv_m=inv_m(theta)

I/O Variables

IN Double Array **theta**: *Joint angles* [$\theta_1 \theta_2 \theta_3$] [degrees degrees]

OU Double List ${f inv}_{f m}$: $M^{-1}(\Theta)$ 3x3 Inverse inertia matrix

Example

theta = $[-30\ 30\ 10]$;

inv_m=inv_m(theta)

Hypothesis

RRR planar robot.

Limitations

A "Forma do usuário" é específica para o exercício de simulação e não tem validade para qualquer configuração de robô. Considera o robô planar com os valores de comprimentos dos ligamentos = {0.5, 0.3, 0} e Massas = {4.6, 2.3, 1} fixos.

Version Control

1.0; Grupo 04; 2025/31/05; First issue.

Group Members

· Guilherme Fortunato Miranda

13683786

João Pedro Dionizio Calazans

13673086

Function

```
function inv_m=inv_m(theta)
```

Validity

Not apply

Main Calculations

```
theta = theta*pi/180;
L = [0.5, 0.3, 0];
M = [4.6, 2.3, 1];
Mega_M = zeros(3,3);
Mega_M(1,:) = [4*L(1)^2*M(1) + L(1)^2*M(2) + L(1)^2*M(3) + 4*L(2)^2*M(2) + L(1)^2*M(3) + L(1)^2*M(
L(2)^2M(3) + L(3)^2M(3) + 2L(1)L(3)M(3)cos(theta(2) + theta(3)) +
4*L(1)*L(2)*M(2)*cos(theta(2)) + 2*L(1)*L(2)*M(3)*cos(theta(2)) +
2*L(2)*L(3)*M(3)*cos(theta(3)) + 1/10, 4*L(2)^2*M(2) + L(2)^2*M(3) +
L(3)^2*M(3) + L(1)*L(3)*M(3)*cos(theta(2) + theta(3)) +
2*L(1)*L(2)*M(2)*cos(theta(2)) + L(1)*L(2)*M(3)*cos(theta(2)) +
2*L(2)*L(3)*M(3)*cos(theta(3)) + 1/10, L(3)^2*M(3) +
L(1)*L(3)*M(3)*cos(theta(2) + theta(3)) + L(2)*L(3)*M(3)*cos(theta(3)) +
1/10];
Mega_M(2,:) = [
                                                                                                                                                    4*L(2)^2*M(2) +
L(2)^2M(3) + L(3)^2M(3) + L(1)L(3)M(3)cos(theta(2) + theta(3)) +
2*L(1)*L(2)*M(2)*cos(theta(2)) + L(1)*L(2)*M(3)*cos(theta(2)) +
2*L(2)*L(3)*M(3)*cos(theta(3)) +
1/10,
4*L(2)^2*M(2) + L(2)^2*M(3) + L(3)^2*M(3) + 2*L(2)*L(3)*M(3)*cos(theta(3)) +
1/10,
                                                                                               L(3)*M(3)*(L(3) + L(2)*cos(theta(3))) +
1/10];
Mega_M(3,:) =
[
                                                                  L(3)^2*M(3) + L(1)*L(3)*M(3)*cos(theta(2) + theta(3))
+ L(2)*L(3)*M(3)*cos(theta(3)) +
1/10,
```

```
M(3)*L(3)^2 + L(2)*M(3)*cos(theta(3))*L(3) + 1/10, M(3)*L(3)^2 + 1/10];
```

Output Data

```
inv_m = inv(Mega_M);
end

ans =

0.2062  -0.3697    0.1634
  -0.3697    1.7520   -1.3823
    0.1634   -1.3823    11.2188
```

Published with MATLAB® R2024b