92

Appendix A

Letter to the Adviser

February 24, 2021

Г

DR. MA. BETH S. CONCEPCION

Dean, College of Information and Communications Technology West Visayas State University Luna St., La Paz, Iloilo City

Dear Dr. Concepcion,

The undersigned are BS Information Systems Research 1/Thesis 1 students of CICT, this university. Our thesis/capstone project title is "Crop Suitability Mapping Using GIS".

Knowing of your expertise in research and on the subject matter, we would like to request you to be our **ADVISER**.

We are positively hoping for your acceptance. Kindly check the corresponding box and affix your signature in the space provided. Thank you very much.

Respectfully yours,

Mary Jarnellen V. Daria

Camille Aryne Sevillena

Aphrodite Labraque

Ma. Jessa Panizal

Soulton Friendagen -

93

Appendix B

Letter to the Grammarian

September 1, 2022

Г

DR. JOY PANTINO
Faculty, College of Arts and Sciences
This University

Dear Dr. Pantino,

We are 4th year BSIT students of CICT in West Visayas State University - Main Campus. Our thesis project is entitled, "Crop Suitability Mapping Using Geographic Information System", under the supervision of Dr. Ma. Beth S. Concepcion. Knowing your expertise in research, we would like to request you to be our thesis grammarian.

We believe that your expertise on this field will significantly improve and help us for the manuscript format and editing of our thesis worthy to be an example or guide for the future BSIT students.

We are hoping for your positive response regarding this request.

Respectfully yours,

Daria, Mary Jarnellen V.

Labrague, Aphrodite E.

Panizal, Ma Jessa P.

Sevillena, Camille Aryne S.

Millionias Friendrafine a Migrangar Soultan

94_

Appendix C

Data Dictionary

A. Login Table

Г

Field Type	Data Type	Field Size	Description	Example
id	integer	10	Primary Key of login credential	1
username	varchar	50	Username of the admin	admin
password	varchar	50	Password of the admin	Admin1234

B. Adding Municipal Admin

Field Type	Data Type	Fiel d Size	Description	Example
email	varchar	50	Email address of the municipal admin	ajuy@gmail.com
password	varchar	50	Password of the admin	Ajuy1234
firstName	varchar	50	First Name of the admin	Juan
middleName	varchar	50	Middle Name of the admin	Santos
lastName	varchar	50	Last Name of the admin	Dela Cruz

La Paz, Iloilo City 95 Г

West Visayas State University COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY

gender	varchar	50	Gender option of the admin	Male
contactNumber	integer	11	Contact Number of the admin	+639584574598
municipality	varchar	50	Municipalit y to which the admin is located	Ajuy
elevation	Double	10	Elevation of the municipalit y to which the admin is located	458 masl
soilpH	Double	10	Soil pH of the municipalit y to which the admin is located	5.5
latitude	Double	10	Latitude of the municipalit y to which the admin is located	11.1246° N
longtitude	Double	10	Longtitude of the municipalit y to which the admin is located	123.0114° E

96

C. Crop Table

Field Type	Data Type	Field Size	Description	Example
name	varchar	50	Name of the crop	Rice

elevation	double	10	Elevation required for the crop to grow	900
minimumTemp	Double	10	Minimum temperature required for the crop to grow	22
maximumTemp	Double	10	Maximum Temperature required for the crop to grow	26
minimumHumidit Y	Double	10	Minimum number of humidity required for the crop to grow	60
maximumHumidit Y	Double	10	Maximum number of humidity required for the crop to grow	80
minimumRainfal l	Double	10	Minimum rainfall required for the crop to grow	450

97

Γ					<i>J</i> ,
	maximumRainfal l	Double	10	Maximum rainfall required for the crop to grow	700
	soilpH	Double	10	Soil pH required for the crop to grow	5.5
	instruction	varchar	100	Further instructions for the crop	

D. Agro Climatic Table

Field Type	Data Type	Field Size	Description	Example
date	Date	10	Date of when is the agro- climat ic data is added	(yyyy-mm-dd)
minimumTemp	double	10	Minimum Temperature of the agro-climat ic data	30 degrees Celcius
maximumTemp	double	10	Maximum Temperature of the agro-climat ic data	32 degrees Celsius

98

Appendix D

Sample Program Codes

```
A. Encoding
```

Г

```
<label for="cropnameID">Name</label>
<input type="text" class="form-control"
id="cropnameID" name="cropname" required>
<label

for="elevationID">Elevation*</label>
<input type="text" class="form-control"
id="elevationID" name="elevation"
required> <label
for="min_temperature">Minimum
```

Temperature*</label> <input type="text"

class="form-control" id="min_temperature"

name="min_temperature" required>

A. Forecasting

```
$dateToday = date('2021-06-01');
$dateToday2 = date('Y-m-d');
if($request_municipalityID == ""){
$query = "SELECT * FROM
municipality climatic data Where min temp
```

```
= '0' or max temp = '0' or humidity = '0'
or rainfall = '0' order by todate asc ";
}else{    $query = "SELECT * FROM
municipality climatic data where
municipality id =
'".$request municipalityID."' and todate
between '".\from date."' AND
'".$to date."' order by todate asc "; }
$result = mysqli query($conn, $query);
$chart data = ''; while($row =
mysqli fetch array($result)) {
$month = date('Y-m', strtotime($row['todate']));
$chart data .= "{ month:".$month.",
min temp:".$row["min temp"].",
max temp:".$row["max temp"].",
humidity:".$row["humidity"].",
rainfall:".$row["rainfall"]."}, ";
$chart data = substr($chart data, 0, -1);
```

100 A. Recommendation System \$request municipalityID = \$ REQUEST['municipality']; \$monthyear = \$ REQUEST['monthyear']; \$from date = \$ REQUEST['date from']; \$to date = \$ REQUEST['date to']; \$getMunicipalityID = mysqli fetch array(mysqli query(\$conn, "SELECT * FROM municipality account where id = '".\$request municipalityID."' ")); \$monthFirstDate = date("Y-m-d", strtotime("-3 months")); \$monthLastDate = date('Y-m-d'); <label for="todate">Select Municipality To</label> <select class="form-control" name="municipality"</pre> required=""> <?php if(\$request municipalityID == "") { ?> <option value=""</pre> selected="" disabled>Select Municipality.. <?php }else{ ?> <option value="<?php echo</pre> \$request municipalityID ?>"><?php echo</pre> \$getMunicipalityID['municipality']; ?></option>

```
101
Г
                  <?php } ?>
                    <?php $getCrops = mysqli query($conn,</pre>
     "SELECT * FROM municipality account where del =
     'N'");
                            while($row =
     mysqli fetch array($getCrops)){
                                                         ?>
                     <option value="<?php echo $row['id'];</pre>
     ?>"><?php echo $row['municipality']; ?></option>
     <?php } ?>
     <label for="todate">Date From</label>
                 <?php if($from date == ""){ ?>
<input type="date" class="form-control"</pre>
name="date from" value="<?php echo $monthFirstDate;</pre>
?>">
                 <?php }else{ ?>
<input type="date" class="form-control"</pre>
name="date from" value="<?php echo</pre>
$from date; ?>">
```

							103
Γ	Appendix E						٦
	ISO 25010 Software Quality Evaluation	Ins	tru	men	ıt		
I.	Software:						_
Name	of Juror:						_
Posi	tion/ Designation:						_
II. 1	Instructions. Please rate the following putting a check mark on how you agree - Unacceptable	_				_	
2	- Weak						
3	- Very Good						
4	- Excellent						
		1	2	3	4	5	
P	. Functional Suitability						
1. F	unctional completeness. The system						
C	overs all the specified tasks and						
u	ser objectives						
2. 1	Functional correctness. The system						
I	provides the correct results with						
+	the needed degree of precision.						

_			-
3. Functional appropriateness. The			
system facilitates the			
accomplishment of specified tasks			
and objectives.			
B. Performance Efficiency			
1. Time behavior. The system response			
and processing times perform its			
functions and meet requirements.			
2. Resource utilization. The systemamounts			
and types of resources perform its			
functions and meet requirements.			
3. Capacity. The system has the			
maximum limits/capacity that meet			
requirements.			
C. Compatibility			
1. Co-existence. The system can			
perform its required functions			
efficiently while sharing a common			
environment and resources with other			
products, without detrimental impact on			
any other product.			
	ì		

l			
2. Interoperability. Two or more			
system components can exchange			
information that has been exchanged.			
D. Usability			
1. Appropriateness recognizability.			
The users can recognize whether the			
system is appropriate to their			
needs.			
2. Learnability. The system can be used			
by specified goals of learningwith			
effectiveness, efficiency, freedom			
from risk and satisfaction in a			
specified context of use.			
3. Operability. The system has attributes			
that makes it easy tooperate and to			
control.			
4. User error protection. The system			
protects users against making errors.			

Г			,
5. User interface aesthetics. The			
system has a user interface that			
enables pleasing and satisfying			
interaction for the user.			
6. Accessibility. The system can be used			
by people with widest range of			ĺ
characteristics and capabilities to			
achieve a specified goal in a			
specified context of use.			ĺ
E. Reliability			
1. Maturity. The system meets needs for			
reliability under normal operation.			ĺ
2. Availability. The system is			
operational and accessible when			
required for use.			ĺ
3. Fault tolerance. The system operates			
as intended despite the presence of			
hardware and software faults.			1

•			
4. Recoverability. The system can recover			
the data directly affected and re-			
established the desired state of the			
system in the event of an interruption			
or a failure.			
F. Security			
1. Confidentiality. The system ensures			
that data are accessible only to those			
authorized to have access.			
2. Integrity. The system prevents			
unauthorized access to, or			
modification of computer programs or			
data.			
3. Non-repudiation. Actions or vents can			
be proven to have taken place so that			
the events or actions cannot be			
repudiated later in the system.			
4. Accountability. The actions of an			
entity can be traced uniquely to the			
entity in the system.			

5. Authenticity. The identity of a			
subject or resource can be proved to			
be the one claimed in the system.			
G. Maintainability			
1. Modularity. The system is composed of			
discrete components such that a change			
to the component has minimal impact on			
other components.			
2. Reusability. A system asset can be			
used in more than one system, or in			ĺ
building other assets.			
3. Analyzability. The system is effective			
and efficient with which it is			
possible to assess the impact on a			
product or system of an intended			
change to one or more of its parts, or			
to diagnose a product for deficiencies			
or causes of failures, or to identify			
parts to be modified.			
4. Modifiability. The system can be			
effectively and efficiently modified			ĺ

without introducing defects or			
degrading existing product quality.			
5. Testability. The system is effective			
and efficient with which test criteria			
can be established for a system,			
product or component and tests can be			
performed to determine whether those			
criteria have been met.			
H. Portability			
1. Adaptability. The system can			
effectively and efficiently be			
adapted for different or evolving			
hardware, software or other			
operational or usage environments.			
2. Installability. The system is			
effective and efficient with which			
a system can be successfully			
installed and/or uninstalled in a			
specified environment.			
3. Replaceability. The system can			
replace another specified software			
for the purpose in the same			
environment.			

110

Appendix F

Disclaimer

This software project and its corresponding documentation entitled "Crop Suitability Mapping Using Geographic Information System" is submitted to the College of Information and Communications Technology, West Visayas State University, in partial fulfillment of the requirements for the degree, Bachelor of Science in Information Systems. It is the product of our own work, except where indicated text.

We hereby grant the College of Information and Communications Technology permission to freely use, publish in local or international journal/conferences, reproduce, or distribute publicly the paper and electronic copies of this software project and its corresponding documentation in whole or in part, provided that we are acknowledged.

MARY JARNELLEN V. DARIA

MA. JESSA P. PANIZAL

APHRODITE E. LABRAGUE

Г

CAMILLE ARYNE S. SEVILLENA