CS 1.2: Intro to Data Structures & Algorithms

Linked List Time Complexity Worksheet	Name:
---------------------------------------	-------

Linked List Diagram – organization of data structure in memory

<u>Draw a diagram</u> of how a linked list data structure is organized in memory using references. The linked list
should contain exactly 5 items: 'mango', 'peach', 'honeydew', 'pear', and 'kiwi'.
<u>Label</u> the head, tail, data, and next properties in appropriate places to complete the diagram.

Linked List Operations – implementation and time complexity

Using your diagram above to guide you, complete the table below. First, <u>write a short summary in pseudocode</u> (English) of the major steps performed in the implementation of each operation. Then, <u>analyze</u> each operation's <u>best case</u> and <u>worst case time complexity</u> using big-O notation. Use the variable *n* for the number of items stored in the list (equivalently, the number of nodes).

Linked List operation	short summary in pseudocode (English) of the major steps performed in the implementation	<u>best case</u> running time	worst case running time
is_empty			
length			
append			
prepend			
find			
delete			