Introducción a la Bioinformática: Algoritmos Bioinformáticos

Luis Garreta luis.garreta@javerianacali.edu.co

Doctorado en Ingeniería Pontificia Universidad Javeriana – Cali

5 de marzo de 2017

Contenido

- Dynamic programming: Needleman-Wunsch, Smith-Waterman, and alignment heuristics
- Weight matrices: Sequence weighting, pseudo count correction for low counts, Gibbs sampling, and Psi-Blast Modelos
- Data redundancy and homology reduction: Hobohm and other clustering algorithms.
- Hidden Markov Models: Model construction, Viterbi decoding, posterior decoding, and Baum Welsh HMM learning
- Fragment-Based Computational Protein Structure Prediction
- Neural Networks and Genetic Algorithms

Secuencias Biológicas

http://cureangelman.org/understanding-angelman/testing-101/

Crecimiento Exponencial BD Biológicas

https://www.ncbi.nlm.nih.gov/genbank/genbankstats-2008/

Y ahora qué?

Cuál es la Relación Evolutiva?

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

http://www.bio.miami.edu/dana/160/160S135.html

Cúal es la estructura y la función?

 $https://www.researchgate.net/figure/262561264_fig2_Comparative-analysis-of-SUMO-proteins-A-Multiple-sequence-alignment-was-constructed$

Respuesta: Alineamientos de Secuencias

Unaligned sequences

Human	A	С	A	T	т	Α	т	GG	A	С	Α	G	G	т	A	Α	G	T	A	A	A	ΑZ	AΑ	С	A	т	ΙA	1	ı
																											ΑI		
Macaque	A	T	A	T	A	C.	A	ΤI	A	С	G	G	A	C	A	G	G	T	A	A	G :	C 2	AΑ	A	A	A	C A	1	

Aligned sequences

http://evolution.berkeley.edu/evolibrary/article/0_0_0/evotrees_build_04