Baez Exercises: Vector Bundle Constructions

78. Prove that if $g_{\infty}=1$ and $g_{\infty}g_{\beta}g_{\beta}xg_{\gamma}x=1$ where defined, $\pi: E \to M$ is a vector bundle.

We start with the disjoint union $\bigcup_{\alpha} \mathcal{U}_{\alpha} \times \mathcal{V}$, where the \mathcal{U}_{α} are open sets on M.

Points $(p, v) \in U_{\alpha} \times V$ and $(p, v') \in U_{\beta} \times V$ are to be identified when $V = P(g_{\alpha\beta}(p)) V'$.

Now we need to be able to add points in the fiber E_p above P. For a given open set U_{α} we have $(p, v_1)_{\alpha} + (p, v_2)_{\alpha} = (p, v_1 + v_2)_{\alpha}$

Seen from the point of view of open set Up the rule holds,

$$(p, g_{\beta\alpha}V_{1})_{\beta} + (p, g_{\beta\alpha}V_{2})_{\beta} = (p, g_{\beta\alpha}V_{1} + g_{\beta\alpha}V_{2})_{\beta}$$

= $(p, g_{\beta\alpha}(V_{1}+V_{2}))_{\beta}$,

Since the transition function gap is linear.

Similarly, we could use an open set Uy and mix things up: $(p, v_1)_{\alpha} + (p, g_{\beta\alpha}v_2)_{\beta} \stackrel{?}{=} (p, g_{\gamma\alpha}(v_1 + v_2))_{\gamma}$

LHS: $(p, v_1)_{\alpha} = (p, g_{\gamma \alpha} v_1)_{\gamma}$ $(p, g_{\beta \alpha} v_2)_{\rho} = (p, g_{\gamma \beta} g_{\beta \alpha} v_2)_{\gamma}$

= gragargraga = gra by tocycle condition

 $(p, v_1)_{x} + (p, g_{px}v_2)_{p} = (p, g_{yx}v_1)_{y} + (p, g_{yx}v_2)_{y} = RHS$ which is what we wanted to prove. So the cocycle condition ensures that if we add vectors belonging to a given open set U_{x} , this sum can be translated into a sum of vectors corresponding to a different open set U_{p} in a unique way.

To define the projection operator TT, just use T_{x} for any x: $T(P,V)_{\beta} = T_{x}(P,g_{x\beta}V)_{x} = P$ Locally it's trivial by construction (any open set U_{β} and we get $E \cong U_{\beta} \times V$)

Finally, it's a vector bundle since under a local trivialization induced by choice of U_{α} , each fiber $E_P = P \times V$ can be mapped to $P \times \mathbb{R}^n$ by choosing a basis for V.

79. Show that if $T: E_p \to E_p$ is of the form $[p, v]_x \mapsto [p, dp(x)v]_x$ and $p \in U_x \cap U_p$, then T is also of the form $[p, v']_p \mapsto [p, dp(x')v']_p$ for some $x' \in g$ (typo?)

Choose $v' = g_{pa}v$, so $[p,v]_{x} = [p,g_{pa}v]_{p}$ This is mapped to $[p,d_{p}(x)v]_{x} = [p,g_{pa}d_{p}(x)v]_{p}$ Picking $x' = g_{pa} \times g_{ap}$ so $d_{p}(x') = g_{pa}d_{p}(x)g_{ap}$ Then $d_{p}(x')v' = g_{pa}d_{p}(x)v$, whence the T map has the desired property.