Homework 1 Honors Analysis I

Homework 1

ALECK ZHAO

September 12, 2017

Chapter 1: Calculus Review

3. Let A be a nonempty subset of \mathbb{R} that is bounded above. Prove that $s = \sup A$ if and only if

- (i) s is an upper bound for A
- (ii) for every $\varepsilon > 0$, there is an $a \in A$ such that $a > s \varepsilon$.

State and prove the corresponding result for the infimum of a nonempty subset of \mathbb{R} that is bounded below.

Proof. (\Longrightarrow): By definition, (i) is true. Then suppose for some ε , there is no $a \in A$ such that $a > s - \varepsilon$. Thus, $s - \varepsilon$ is an upper bound since $a \le s - \varepsilon$, $\forall a \in A$, but $s - \varepsilon < s$, contradicting the minimality of s. Thus, such an a must exist.

(\Leftarrow): Suppose there exists an upper bound b for A such that b < s. Then let $\varepsilon = s - b > 0$. Then $s - \varepsilon = s - (s - b) = b$, but since b is an upper bound for A, there cannot exist $a \in A$ such that a > b, contradicting (ii). Thus, b does not exist, so $s \le b$ for all upper bounds b, and thus $s = \sup A$.

The corresponding result for the infimum: Prove that $m = \inf A$ if and only if

- (i) m is a lower bound for A
- (ii) for every $\varepsilon > 0$, there is an $a \in A$ such that $a < m + \varepsilon$.

Proof. (\Longrightarrow): By definition, (i) is true. Then suppose for some ε , there is no $a \in A$ such that $a < m + \varepsilon$. Thus $m + \varepsilon$ is a lower bound since $a \ge m + \varepsilon$, $\forall a \in A$, but $m + \varepsilon > m$, contradicting the maximality of m. Thus, such a a must exist.

(\iff): Suppose there exists a lower bound b for A such that b > m. Then let $\varepsilon = b - m > 0$. Then $m + \varepsilon = m + (b - m) = b$, but since b is a lower bound for A, there cannot exist $a \in A$ such that a < b, contradicting (ii). Thus, b does not exist, so $m \ge b$ for all lower bounds b, and thus $m = \inf A$.

7. If a < b, then there is also an irrational $x \in \mathbb{R} \setminus \mathbb{Q}$ with a < x < b.

Proof. If a < b then $a/\sqrt{2} < b/\sqrt{2}$, so by Theorem 1.3, there exists a rational $p/q \in \mathbb{Q}$ such that $a/\sqrt{2} < p/q < b/\sqrt{2}$. Then $a < \frac{p\sqrt{2}}{q} < b$, and $\frac{p\sqrt{2}}{q}$ is irrational, as desired.

15. Show that a Cauchy sequence with a convergent subsequence actually converges.

Proof. Suppose (x_n) is a sequence with a convergent subsequence $(x_{k_j}) \to y$. Let $\varepsilon > 0$. Since (x_n) is Cauchy, choose $N \in \mathbb{N}$ such that $|x_n - x_m| < \varepsilon/2$ for all $n, m \ge N$. Next, since $(x_{k_j}) \to y$, choose M such that $|x_{k_j} - y| < \varepsilon/2$ for all $k_j \ge M$. Take $K = \max\{N, M\}$, so that $|x_n - x_{k_j}| < \varepsilon/2$ and $|x_{k_j} - y| < \varepsilon/2$ for all $n, k_j \ge K$. By the triangle inequality, we have

$$|x_n - y| \le |x_n - x_{k_j}| + |x_{k_j} - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for all $n \geq K$, as desired.

Homework 1 Honors Analysis I

17. Given real numbers a and b, establish the following formulas:

(a)
$$|a+b| \le |a| + |b|$$

Proof. Using the fact that

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

we have

$$a, b \ge 0 \implies |a+b| = a+b \le a+b = |a|+|b|$$

$$a, b < 0 \implies |a+b| = -(a+b) \le -a-b = |a|+|b|$$

$$a \ge 0, b < 0, a+b \ge 0 \implies |a+b| = a+b \le a-b = |a|+|b|$$

$$a \ge 0, b < 0, a+b < 0 \implies |a+b| = -(a+b) \le a-b = |a|+|b|$$

The case where $a < 0, b \ge 0$ is identical to the third and fourth inequalities.

(b) $||a| - |b|| \le |a - b|$

Proof. If $a, b \ge 0$, then

where the third and fourth inequalities are from the result of (a).

(c) $\max\{a,b\} = \frac{1}{2}(a+b+|a-b|)$

Proof.

$$a \ge b \implies \frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b+(a-b)) = a = \max\{a,b\}$$
$$a < b \implies \frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b-(a-b)) = b = \max\{a,b\}$$

(d) $\min \{a, b\} = \frac{1}{2}(a+b-|a-b|)$

Proof.

$$a \ge b \implies \frac{1}{2}(a+b-|a-b|) = \frac{1}{2}(a+b-(a-b)) = b = \min\{a,b\}$$
$$a < b \implies \frac{1}{2}(a+b-|a-b|) = \frac{1}{2}(a+b+(a-b)) = a = \min\{a,b\}$$

37. If (E_n) is a sequence of subsets of a fixed set S, we define

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k \right)$$
$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right)$$

Show that

Homework 1 Honors Analysis I

(a) $\liminf_{n\to\infty} E_n \subset \limsup_{n\to\infty} E_n$

Proof. If $x \in \liminf E_n$ then $x \in \bigcap_{k=N}^{\infty} E_k$ for some N. It follows that $x \in E_k$ for all $k \geq N$, so $x \in \bigcup_{k=n}^{\infty} E_k$ for all n, and is thus in the intersection of these sets, so $x \in \limsup E_n$, and thus $\lim \inf E_n \subset \limsup E_n$.

(b) $\liminf_{n \to \infty} (E_n^c) = \left(\limsup_{n \to \infty} E_n\right)^c$

Proof. Using the facts $A^c \cap B^c = (A \cup B)^c$ and $A^c \cup B^c = (A \cap B)^c$, we have

$$\lim\inf(E_n^c) = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k^c\right) = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k\right)^c = \left[\bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k\right)\right]^c = (\lim\sup E_n)^c$$

45. Let $f:[a,b]\to\mathbb{R}$ be continuous and suppose that f(x)=0 whenever x is rational. Show that f(x)=0 for every x in [a,b].

Proof. Suppose $f(x') = y \neq 0$ for some $x' \in [a, b]$. Then consider a sequence of rationals $(x_n) \to x'$. Since f is continuous, we must have $f(x_n) \to f(x')$, but the sequence $(f(x_n))$ is entirely 0's since the x_i are rational, whereas $f(x') \neq 0$, contradiction. Thus, x does not exist, so $f(x) \equiv 0$ on [a, b], as desired.

- 46. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous.
 - (a) If f(0) > 0, show that f(x) > 0 for all x in some open interval (-a, a).

Proof. Suppose f(0) = y > 0. Then take $\varepsilon = y/2$. Now, since f is continuous at 0, there must exist a > 0 such that

$$|x| < a \implies |f(x) - y| < \frac{y}{2}$$

$$x \in (-a, a) \implies -\frac{y}{2} < f(x) - y < \frac{y}{2}$$

$$\implies 0 < \frac{y}{2} < f(x)$$

Here, f(x) > 0 for all $x \in (-a, a)$, as desired.

(b) If $f(x) \ge 0$ for every rational x, show that $f(x) \ge 0$ for all real x. Will this result hold with ≥ 0 replaced by > 0? Explain.

Proof. Suppose f(x') = y < 0 for some irrational x'. Then consider a sequence of rationals $(x_n) \to x'$. Since f is continuous, we must have $f(x_n) \to f(x')$, but the sequence $(f(x_n))$ is always non-negative since the x_i are rational, whereas f(x) < 0, contradiction. Thus, x' does not exist, so $f(x) \ge 0$ for all x, as desired.

If ≥ 0 is replaced by > 0, the statement does not hold. Suppose r is a fixed irrational number. Then let $f(x) = (r-x)^2$, which is continuous on \mathbb{R} , and positive for all $x \in \mathbb{Q}$ since r is irrational. However, f(r) = 0, so the statement is false.