Corrigé du devoir maison 5.

$$\mathbf{1}^{\circ}) \ u_0 = \int_0^1 \sqrt{1-x} \, \mathrm{d}x = -\int_0^1 \left(-(1-x)^{\frac{1}{2}} \right) \, \mathrm{d}x = -\left[\frac{2}{3} (1-x)^{\frac{3}{2}} \right]_0^1 = \boxed{\frac{2}{3}}.$$

2°) **a**) Soit
$$n \in \mathbb{N}$$
. $u_{n+1} = \int_0^1 x^{n+1} \sqrt{1-x} \, dx$.

On pose, pour tout $x \in [0,1]$, $f(x) = x^{n+1}$ et $g(x) = -\frac{2}{3}(1-x)^{\frac{3}{2}}$. Les fonctions f et g sont de classe C^1 , et pour tout $x \in [0,1]$,

$$f'(x) = (n+1)x^n$$
 et $g'(x) = \sqrt{1-x} = (1-x)^{\frac{1}{2}}$

Par intégration par parties,

$$u_{n+1} = \left[-\frac{2}{3} x^{n+1} (1-x)^{\frac{3}{2}} \right]_0^1 + \frac{2}{3} (n+1) \int_0^1 x^n (1-x) \sqrt{1-x} \, dx$$
$$= \frac{2}{3} (n+1) \left(\int_0^1 x^n \sqrt{1-x} \, dx - \int_0^1 x^{n+1} \sqrt{1-x} \, dx \right)$$
$$u_{n+1} = \frac{2}{3} (n+1) (u_n - u_{n+1})$$

b) On a donc, pour tout $n \in \mathbb{N}$,

$$3u_{n+1} = 2(n+1)u_n - 2(n+1)u_{n+1}$$
$$(2n+5)u_{n+1} = 2(n+1)u_n$$
$$u_{n+1} = \frac{2n+2}{2n+5}u_n$$

c) Pour tout $n \in \mathbb{N}^*$,

$$\alpha_{n+1} = \frac{(2(n+1)+3)!}{(n+1)!((n+1)+1)!} u_{n+1}$$

$$= \frac{(2n+5)!}{(n+1)!(n+2)!} \frac{2n+2}{2n+5} u_n \quad \text{par la question précédente}$$

$$= \frac{(2n+4)!}{(n+1)n!(n+2)!} 2(n+1) u_n$$

$$= \frac{(2n+4)(2n+3)!}{n!(n+2)(n+1)!} 2u_n$$

$$= \frac{2(2n+3)!}{n!(n+1)!} 2u_n \quad \text{car } 2n+4=2(n+2)$$

$$= 4\alpha_n$$

Ainsi, la suite (α_n) est géométrique de raison 4.

d) On a donc, pour tout $n \in \mathbb{N}$, $\alpha_n = 4^n \alpha_0$.

Or
$$\alpha_0 = \frac{(3)!}{0!(1)!}u_0 = 6u_0 = 6\frac{2}{3} = 4.$$

Ainsi, pour tout
$$n \in \mathbb{N}$$
, $\alpha_n = 4^{n+1}$ d'où $u_n = \frac{n!(n+1)!}{(2n+3)!} 4^{n+1}$

 3°) Soit $n \in \mathbb{N}$.

Posons $x = 1 - t^2$; la fonction $t \mapsto 1 - t^2$ est bien de classe \mathcal{C}^1 sur \mathbb{R} . On a $\mathrm{d} x = -2t\,\mathrm{d} t$. On a x = 0 pour t = 1 et x = 1 pour t = 0, donc, par changement de variable dans u_n :

$$\begin{split} u_n &= \int_1^0 (1-t^2)^n \sqrt{1-(1-t^2)} (-2t) \, \mathrm{d}t \\ &= \int_0^1 (1-t^2)^n \sqrt{t^2} 2t \, \mathrm{d}t \\ &= 2 \int_0^1 (1-t^2)^n t^2 \, \mathrm{d}t \quad \text{car } \sqrt{t^2} = t \text{ lorsque } t \in [0,1] \\ &= 2 \int_0^1 \left(\sum_{k=0}^n \binom{n}{k} 1^{n-k} (-t^2)^k \right) t^2 \, \mathrm{d}t \\ &= 2 \int_0^1 \left(\sum_{k=0}^n \binom{n}{k} (-1)^k t^{2k+2} \right) \, \mathrm{d}t \\ &= 2 \sum_{k=0}^n \binom{n}{k} (-1)^k \left(\int_0^1 t^{2k+2} \, \mathrm{d}t \right) \quad \text{par linéarité de l'intégrale} \\ &= 2 \sum_{k=0}^n \binom{n}{k} (-1)^k \left[\frac{1}{2k+3} t^{2k+3} \right]_0^1 \\ &= 2 \sum_{k=0}^n \binom{n}{k} (-1)^k \left(\frac{1}{2k+3} - 0 \right) \\ &= 2 \sum_{k=0}^n \binom{n}{k} (-1)^k \left(\frac{1}{2k+3} - 0 \right) \\ &= 2 \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{2k+3} \quad \text{en utilisant la question précédente} \\ &\text{d'où} \quad \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{2k+3} = \frac{n!(n+1)!}{(2n+3)!} \frac{(2^2)^{n+1}}{2} \\ &= \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{2k+3} = \frac{n!(n+1)!}{(2n+3)!} 2^{2n+1} \end{split}$$

4°) **a**) $I_0 = \int_0^{\frac{\pi}{2}} \sin\theta \, d\theta = [-\cos\theta]_0^{\frac{\pi}{2}} = -0 + 1 = 1.$

b) Soit $n \in \mathbb{N}$.

$$I_n - I_{n+1} = \int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+1} d\theta - \int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+3} d\theta$$
$$= \int_0^{\frac{\pi}{2}} ((\sin \theta)^{2n+1} - (\sin \theta)^{2n+3}) d\theta$$
$$= \int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+1} (1 - (\sin \theta)^2) d\theta$$

Posons $x = (\sin \theta)^2$, la fonction $\theta \mapsto (\sin \theta)^2$ est bien de classe \mathcal{C}^1 sur $[0, \frac{\pi}{2}]$.

On a $dx = 2\cos\theta\sin\theta d\theta$, ce qui peut s'écrire $2\sqrt{1-(\sin\theta)^2}\sin\theta d\theta$ sur $[0,\frac{\pi}{2}]$ car $\cos\theta \ge 0$ sur cet intervalle.

Si $\theta = 0$ alors x = 0, si $\theta = \frac{\pi}{2}$ alors x = 1.

$$I_n - I_{n+1} = \frac{1}{2} \int_0^{\frac{\pi}{2}} \left((\sin \theta)^2 \right)^n \sqrt{1 - (\sin \theta)^2} 2\sqrt{1 - (\sin \theta)^2} \sin \theta \, d\theta$$
$$= \frac{1}{2} \int_0^1 x^n \sqrt{1 - x} \, dx \quad \text{par le changement de variable}$$

On obtient bien, pour tout $n \in \mathbb{N}$, $I_n - I_{n+1} = \frac{1}{2}u_n$.

c) Soit $n \in \mathbb{N}$. $I_{n+1} = \int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+2} \sin \theta \, d\theta$.

On pose, pour tout $\theta \in [0, \frac{\pi}{2}]$, $u(\theta) = (\sin \theta)^{2n+2}$ et $v(\theta) = -\cos \theta$. Les fonctions u et v sont de classe C^1 , et pour tout $\theta \in [0, \frac{\pi}{2}]$,

$$u'(\theta) = (2n+2)\cos\theta(\sin\theta)^{2n+1}$$
 et $v'(\theta) = \sin\theta$

Par intégration par parties,

$$I_{n+1} = \left[-(\sin \theta)^{2n+2} \cos \theta \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (2n+2) \cos \theta (\sin \theta)^{2n+1} (-\cos \theta) d\theta$$

$$= 0 - 0 + \int_0^{\frac{\pi}{2}} (2n+2) (\cos \theta)^2 (\sin \theta)^{2n+1} d\theta$$

$$= (2n+2) \int_0^{\frac{\pi}{2}} \left(1 - (\sin \theta)^2 \right) (\sin \theta)^{2n+1} d\theta$$

$$= (2n+2) \left(\int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+1} d\theta - \int_0^{\frac{\pi}{2}} (\sin \theta)^{2n+3} d\theta \right)$$

$$I_{n+1} = (2n+2) (I_n - I_{n+1})$$

d) On a donc, pour tout $n \in \mathbb{N}$, $I_{n+1} = (2n+2)\frac{u_n}{2} = (n+1)u_n$, donc pour tout $n \in \mathbb{N}^*$,

$$I_n = nu_{n-1}$$

$$= n\frac{(n-1)!n!}{(2n+1)!}4^n$$

$$I_n = \frac{(n!)^2}{(2n+1)!}4^n.$$

Et c'est encore valable pour n = 0 car $I_0 = 1$ et $\frac{(0!)^2}{(1)!}4^0 = 1$.