Nondeterministic Protocols

Jake Kinsella

April 6, 2021

"Nondeterministic communication complexity"

Defined similarly to NP

Consider a two party problem (we can generalize to multi-party from here).

Each player is given their input along with some nondeterministic guess z of length m that may depend on the given inputs.

Otherwise the protocol is deterministic.

f(x,y) = 1 iff $\exists z$ that makes the players output 1

C(f) = m + communication

 NP^{CC} is simply nondeterministic communication protocols the have a $C(f) = n^k$ $coNP^{CC}$ is defined similarly

$$g(x,y) = 1 - f(x,y)$$

However it can be shown that: $NP^{CC} \cap coNP^{CC} = P^{CC}$

This is shown by relating the communication complexities of $f \in NP^{CC}$ and $\overline{f} \in coNP^{CC}$

C(f) = k

 $C(\overline{f}) = 10kl$ for some complexity l