

```
dS = -beta * c*r1*( \Sigma \text{ infected non-isolated } + r2* \Sigma \text{ infected isolated })
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{ infected non-isolated }) + (c*r2 \Sigma \text{ infected isolated }))
dS = -beta * ((c*r1* \Sigma \text{
```

Questions?

- For non-isolated, severe and mild cases should have different contact rate

For age stratification model: c will be developped using the age strata contact matrix and will be cij

- Other cap process in the model?

Param eters	Definition	Values	References
Ctcrs			
С	Number of contact per day per person in a population that is not quarantined and follow social distancing measures	S1=6	Arbitrary scenario
C _r	Number of contact per day per person in a population that is not quarantined and doesn't follow social distancing measures	S1=11	Béraud, G., S. Kazmercziak, et al. (2015). "The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases." PLOS ONE 10(7): e0133203.
C _q	Number of contact per day per person in a population that is quarantined	S1=4	Arbitrary but would correspond to a family of 4
β	Beta – transmission rate when contact	0.05	Stilianakis, N. I. and Y. Drossinos (2010). "Dynamics of infectious disease transmission by inhalable respiratory droplets." Journal of the Royal Society, Interface 7(50): 1355-1366.
σ	sigma = 1 /latency period	0.27=1/3.7 days	Wu, P., X. Hao, et al. (2020). "Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020." Eurosurveillance 25(3): 2000044. (not sure)
λ	Lambda = percentage of exposed (incubant) individuals identified through contact tracing and placed in quarantine	lambda1 =0; lambda2=80	SCENARIO
Q	Rho=quarantine compliency rate	Rho1=0.75; Rho2=0.95	SCenario
ε	Espilon = 1/pre-symptomatic infectious period	S1 = 1/2.5 days	See Vicky's model
εq	Espilon = 1/(pre-symptomatic infectious period +duration between onset of symptoms and diagnostic)	1/4.5	Kappa+epsilon
α	Alpha= percentage of infectious(symptomatic) that develop mild symptoms	0.86	Base on CIRID report March 30th 2020
δ	Delta = percentage of infectious pré-symptomatic who will develop symptoms	87%	Courriel LIsa
Υ	Upsilon = 1/ duration of the asymptomatic period between presymptomatic period and recovery	1/15 days	CDC report (12.5 + 2.5)
ν _m	Nu $_{\rm m}$ = 1/duration of the symptomatic period for Mild cases before they recover	1/12.5 days	See Vicky
V _s	Nu $_{\rm s}$ = 1/duration of the symptomatic period for Severe cases before they recover	1/12.5 days	See Vicky
v_d	Nu $_{\rm d}$ = 1/duration of the symptomatic period for Severe cases before dying	1/12.5 days	See Vicky
К	Kappa= 1/duration between onset of symptoms and diagnostic	1/2 days	Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020; doi: 10.1542/peds.2020-0702
q _m	Fei m= percentage of mild cases who go in isolation	100%; 80%	Scenario to be tested
q _{si}	Fei si= percentage of severe cases who go in isolation	0%	Scenario to be tested
4 _{mr}	Fei si= percentage of severe cases who go in isolation	80%; 80%	Scenario to be tested
Ч _{mq}	Fei mq = percentage of mild cases in quarantine who go in isolation	100; 80%	Scenario to be tested
Ч _{sh}	Fei sh= percentage of severe cases who go in hospital	100%	Scenario to be tested . Note: $4_{si} + 4_{sh} <= 1$
μ	Mu= percentage of severe case dying	12.4%	Wilson et al explored case fatality risk accounting for a 13 day lag time and report the most reasonable estimates should be considered between 0.25% - 3.0% (KS report March 16 th)
τ	Tau = complience rate with social distancing measures	90%; 60%	Scenario to be tested
φ	Phi = parameter to adjust le level of participation of the quarantined to the transmission	0	

