九州大学大学院数理学府 平成23年度修士課程入学試験 数学専門科目問題(数理学コース数学型)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から 2 題を選択して解答せよ.
 - 解答用紙は,問題番号・受験番号・氏名を記入したものを必ず2題分提出すること.
 - 以下 $\mathbb N$ は自然数の全体 , $\mathbb Z$ は整数の全体 , $\mathbb Q$ は有理数の全体 , $\mathbb R$ は実数の全体 , $\mathbb C$ は複素数の全体を表す .
- [1] 以下の問に答えよ.
 - (1) 位数4の群はアーベル群であることを証明せよ.
 - (2) 4 次対称群 S_4 の位数 4 の部分群をすべて求めよ.
 - (3) 4次対称群 S_4 の位数 4の正規部分群をすべて求めよ.
- [2] 可換環 A ($A \ni 1$) と , A の非零因子 d に対し , 環 B を B = A[X]/(dX-1) (すなわち A 上の多項式環 A[X] を多項式 dX-1 の生成するイデアル (dX-1) で割った剰余環) と定義する . 以下の間に答えよ .
 - (1) 自然な環準同型 $A \to B$ は単射であることを示せ . (以降 , これにより A は B の部分環とみなす .)
 - (2) 剰余環 A/dA は 0 以外の巾零元を持たないと仮定する.このとき,もし B の元 b が A 上整(すなわち,ある A 係数のモニック多項式 f(X) に対し f(b)=0 となる)ならば $b\in A$ であることを示せ.

- [3] \mathbb{Q} の拡大体 $L_1=\mathbb{Q}(\sqrt{2}),\ L_2=\mathbb{Q}(\zeta_3,\sqrt[3]{2}),\ L_3=\mathbb{Q}(\sqrt{2},\zeta_3,\sqrt[3]{2})$ を考える.ここで ζ_3 は 1 の原始 3 乗根, $\sqrt{2}$ は $X^2=2$ の 1 つの根, $\sqrt[3]{2}$ は $X^3=2$ の 1 つの根である.以下の問に答えよ.
 - (1) 体 L_1 , L_2 の $\mathbb Q$ 自己同型群をそれぞれ求めよ .
 - (2) L_2/\mathbb{Q} の中間体をすべて求めよ .
 - (3) 体の拡大 L_3/\mathbb{Q} は正規拡大であるかどうか , 理由をつけて答えよ .
- $m{4}$ σ を 3 単体とし , その 1 次元以下のすべての辺単体からなる複体を K とする . 以下の問に答えよ .
 - (1) *K* のオイラー数を求めよ.
 - (2) K の \mathbb{Z} 係数ホモロジー群を求めよ.
 - (3) 連続写像 $r: \sigma \to |K|$ で,

$$r(a) = a \qquad (\forall a \in |K|)$$

となるものが存在しないことを示せ.ここで $|K| = \bigcup_{\tau \in K} \tau$ は複体 K の定める多面体である.

[5] R > r > 0 とする . 輪環面 (torus)

$$X(\xi,\eta) = ((R + r\cos\xi)\cos\eta, (R + r\cos\xi)\sin\eta, r\sin\xi), (\xi,\eta) \in \mathbb{R}^2$$

について,以下の問に答えよ.

- (1) 写像 $X: \mathbb{R}^2 \to \mathbb{R}^3$ が正則な曲面を定義することを示せ.
- (2) 曲面 X のガウス曲率 K を求め K が正 K , 零 K 負である部分を図で表せ K
- (3) 曲面 X の面積要素を $dA = \left| \frac{\partial X}{\partial \xi} \times \frac{\partial X}{\partial \eta} \right| d\xi \, d\eta \, \, と \, \mathbf{U}$, $D = \{ (\xi, \eta) \in \mathbb{R}^2 \, | \, 0 \leq \xi \leq 2\pi, \, \, 0 \leq \eta \leq 2\pi \} \, \, \mathbf{とおく} \, \, .$ $\iint_D K \, dA = 0 \, \, \mathbf{を示せ} \, \, .$
- (4) 曲面 X 上の曲線

$$\gamma(t) = X(t, 0) = (R + r \cos t, 0, r \sin t), \quad 0 < t < 2\pi$$

を弧長パラメータ s を用いて表示せよ.

(5) 曲線 γ が曲面 X 上の測地線であることを示せ.

- $m{[6]}$ M を n 次元 C^∞ 級多様体とし $(n\geq 1)$, $f:M\to\mathbb{R}$ を C^∞ 級関数とする . 以下の問に答えよ .
 - (1) $p \in M$ のまわりの局所座標系 (u_1, u_2, \ldots, u_n) に対して

$$\frac{\partial f}{\partial u_i}(p) = 0 \qquad (i = 1, 2, \dots, n) \tag{*}$$

が成り立つとき,p は f の臨界点であるという.この定義は p のまわりの 局所座標系の取り方によらないことを示せ.すなわち, (v_1,v_2,\ldots,v_n) を p のまわりのもう 1 つの局所座標系としたとき,(*) が成り立つならば,

$$\frac{\partial f}{\partial v_j}(p) = 0$$
 $(j = 1, 2, \dots, n)$

も成り立つことを示せ.

- (2) M がコンパクトならば , f は臨界点を 2 つ以上持つことを示せ .
- $(3) Sⁿ = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1\} \textbf{ 上の } C^{\infty} \textbf{ 級関数}$ $h: S^n \to \mathbb{R}$ を

$$h(x_1, x_2, \dots, x_{n+1}) = x_{n+1}$$

で定める.このとき h はちょうど 2 つの臨界点を持つことを示せ.

[7] 実数値関数 f(x) についての微分方程式

$$f''(x) + \lambda f'(x) + f(x) = A\cos x \tag{}$$

について,以下の問に答えよ.ただし λ, A は実定数である.

- (1) $\lambda = 1$, A = 0 の場合 () の一般解を求めよ .
- (2) $\lambda = 0$, A = 1 の場合 , () の一般解を求めよ.
- (3) $\lambda = A = 1$ の場合 , () の任意の 2 つの解 $f_1(x), f_2(x)$ に対し

$$\limsup_{x \to \infty} f_1(x) = \limsup_{x \to \infty} f_2(x) < \infty$$

が成り立つことを示せ.

[8] f を単位円板 $\Delta=\{z\in\mathbb{C}\,ig|\,|z|<1\}$ 上の正則関数とする. Δ 内にある f の相異なる零点を a_1,a_2,\ldots,a_n とする.このとき,各零点 a_k ($k=1,2,\ldots,n$) について,次をみたす $m_k\in\mathbb{N}$ が存在する:

$$\begin{cases} f^{(m)}(a_k) = 0 & (m = 0, 1, 2, \dots, m_k - 1) \\ f^{(m_k)}(a_k) \neq 0 & \end{cases}$$

ここで $f^{(m)}$ は f の m 階微分を表す.ただし, $f^{(0)}=f$ とする.以下の問に答えよ.

(1) 各 a_k $(k=1,2,\ldots,n)$ について,ある開近傍 U_k が存在して,その上で f は次のように表されることを示せ.

$$f(z) = (z - a_k)^{m_k} g_k(z)$$

ここで, q_k は零点を持たない U_k 上の正則関数である.

(2) C を , a_1,a_2,\ldots,a_n をその内側に含む Δ 内の C^1 級単純閉曲線とする.この とき , 次が成り立つことを示せ.

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = m_1 + m_2 + \dots + m_n$$

ただし,Cの向きは正とする.

- (3) $\{f_j\}_{j=1}^\infty$ は, Δ 上で f に広義一様収束する正則関数の列とする.このとき,十分大きな f に対しては, f_f は Δ 内に少なくとも f 個の相異なる零点をもつことを示せ.
- [9] 数直線 ℝ 上の関数列

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n$$
 $(n = 1, 2, 3, ...)$

について,以下の問に答えよ.

- (1) (i) 各x について, $\lim_{n\to\infty}f_n(x)$ を求めよ. (ii) $0\leq x\leq n$ において, $e^xf_n(x)\leq 1$ であることを示せ.
- (2) 次の極限を求めよ.

$$\lim_{n\to\infty} \int_0^n f_n(x) \cos x \, dx$$