Faster R-CNN Real-Time Object Detection with Region Proposal Networks

1st Paper Study

2022.07.06 Wed.

홍 세 현 Hong Sehyun

Outline

- 1. Introduction
- 2. Faster R-CNN
- 3. Experiments & Result
- 4. Reference
- 5. Q & A

Introduction

Introduction

Disadvantages of Existing Models

Using *k anchor Boxes* at each Location

- 3 scale (128x128, 256x256, 512x512)
- 3 ratio (2:1, 1:1, 1:2)

Learning Dataset

$$\{(P^i, G^i)\}_{i=1,\dots,N}$$

Predicted Location

$$P^i = \left(P_x^i, P_y^i, P_w^i, P_h^i\right)$$

Label Location

$$G^{i} = \left(G_{x}^{i}, G_{y}^{i}, G_{w}^{i}, G_{h}^{i}\right)$$

Bounding Box Linear Regression

$$\hat{G}_x = P_w d_x(P) + P_x$$

$$\hat{G}_y = P_h d_y(P) + P_y$$

$$\hat{G}_w = P_w \exp(d_w(P))$$

$$\hat{G}_h = P_h \exp(d_h(P))$$

Intersection Over Union(IoU) = 두 Bounding Box가 겹치는 비율

- 성능 평가 : mAP@0.5는 정답과 예측의 loU가 50% 이상일 때 정답으로 판정하겠다는 의미

Intersection Over Union(IoU) = 두 Bounding Box가 겹치는 비율

Loss Function

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

$$\begin{split} t_{\rm x} &= (x-x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y-y_{\rm a})/h_{\rm a}, \\ t_{\rm w} &= \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}), \\ t_{\rm x}^* &= (x^*-x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^*-y_{\rm a})/h_{\rm a}, \\ t_{\rm w}^* &= \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}), \end{split}$$

$$t_i^* = t_x t_y t_w t_h$$

$$N_{cls}$$
, N_{reg} = Weight Parameter

= Class Label

$$\lambda$$
 = Normalization Parameter (=10)

Intersection Over Union(IoU) = 두 Bounding Box가 겹치는 비율

- NMS 계산 : 같은 클래스(Class)끼리 IoU가 Threshold Value보다 이상일 때, 낮은 Confidence의 Bounding Box를 제거하는 방식 (Non-Maximum Suppression) → 여러 개의 Bounding Box가 겹쳐 있는 경우에 하나로 합치는 방법!

dog : cat

IoU가 특정 임계점(threshold) 이상인 중복 box 제거

train-time region p method	roposals # boxes	test-time region method	mAP (%)	
SS	2000	SS	2000	58.7
EB	2000	EB	2000	58.6
RPN+ZF, shared	2000	RPN+ZF, shared	300	59.9
ablation experiments fo	llow below			
RPN+ZF, unshared	2000	RPN+ZF, unshared	300	58.7
SS	2000	RPN+ZF	100	55.1
SS	2000	RPN+ZF	300	56.8
SS	2000	RPN+ZF	1000	56.3
SS	2000	RPN+ZF (no NMS)	6000	55.2
SS	2000	RPN+ZF (no cls)	100	44.6
SS	2000	RPN+ZF (no cls)	300	51.4
SS	2000	RPN+ZF (no cls)	1000	55.8
SS	2000	RPN+ZF (no reg)	300	52.1
SS	2000	RPN+ZF (no reg)	1000	51.3
SS	2000	RPN+VGG	300	59.2

method	# proposals	data	mAP (%)
SS	2000	07	66.9 [†]
SS	2000	07+12	70.0
RPN+VGG, unshared	300	07	68.5
RPN+VGG, shared	300	07	69.9
RPN+VGG, shared	300	07+12	73.2
RPN+VGG, shared	300	COCO+07+12	78.8

model	system	conv	proposal	region-wise	total	rate
VGG	SS + Fast R-CNN	146	1510	174	1830	0.5 fps
VGG	RPN + Fast R-CNN	141	10	47	198	5 fps
ZF	RPN + Fast R-CNN	31	3	25	59	17 fps

method	# box	data	mAP	areo	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
SS	2000	12	65.7	80.3	74.7	66.9	46.9	37.7	73.9	68.6	87.7	41.7	71.1	51.1	86.0	77.8	79.8	69.8	32.1	65.5	63.8	76.4	61.7
SS	2000	07++12	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	<u>65.7</u>	80.4	64.2
RPN	300	12	67.0	82.3	76.4	71.0	48.4	45.2	72.1	72.3	87.3	42.2	73.7	50.0	86.8	78.7	78.4	77.4	34.5	70.1	57.1	77.1	58.9
RPN	300	07++12	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	<i>77</i> .1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
RPN	300	COCO+07++12	<u>75.9</u>	<u>87.4</u>	<u>83.6</u>	<u>76.8</u>	<u>62.9</u>	<u>59.6</u>	<u>81.9</u>	<u>82.0</u>	<u>91.3</u>	<u>54.9</u>	<u>82.6</u>	<u>59.0</u>	<u>89.0</u>	<u>85.5</u>	<u>84.7</u>	<u>84.1</u>	<u>52.2</u>	<u>78.9</u>	65.5	<u>85.4</u>	<u>70.2</u>

settings	anchor scales	aspect ratios	mAP (%)
1 scale 1 ratio	128^{2}	1:1	65.8
1 scale, 1 ratio	256^{2}	1:1	66.7
1 scale, 3 ratios	128^{2}	{2:1, 1:1, 1:2}	
1 scale, 5 fatios	256^{2}	{2:1, 1:1, 1:2}	67.9
3 scales, 1 ratios	$\{128^2, 256^2, 512^2\}$	1:1	69.8
3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

References

[Paper]

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.

[Lecture]

https://www.youtube.com/watch?v=46SjJbUcO-c

https://www.youtube.com/watch?v=kcPAGIgBGRs&ab_channel=JinWonLee

https://www.youtube.com/watch?v=HmJWvwlpW5g&ab_channel=%EB%94%A5%EB%9F%AC%EB%8B%9D%EB%85%BC%EB%AC%B8%EC%9D%BD%EA%B8%B0%EB%AA%A8%EC%9E%84

[Blog]

https://blog.naver.com/kimsamuel351/222740515349

https://blog.naver.com/koreadeep/222661706323

https://foxtrotin.tistory.com/434

Q & A

Thank you ©