number of roll numbers to be inserted, and table_size is the size of the hash table.

The second line contains n space-separated integers — the roll numbers to insert into the hash table.

Output Format

The output should print a single line with table_size space-separated integers representing the final state of the hash table after all insertions.

If any slot remains unoccupied, it should be represented as -1.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 4 7 50 700 76 85
```

Output: 700 50 85 -1 -1 -1 76

Answer

```
#include <stdio.h>
```

```
#define MAX 100
```

void initializeTable(int table[], int size){

```
for (int i = 0; i < size; i++)
{
    table[i] = -1;
```

1010

2,40801015

```
int linearProbe(int table[], int size, int num)
    {
      int index = num % size;
      while (table[index] != -1)
    {
         index = (index + 1) % size;
      return index;
    }
    void insertIntoHashTable(int table[], int size, int arr[], int n)
    {
      for (int i = 0; i < n; i++)
         int index = linearProbe(table, size, arr[i]);
         table[index] = arr[i];
    }
    }
    void printTable(int table[], int size)
```

```
for (int i = 0; i < size; i++)
                                                                                    240807018
         printf("%d ", table[i]);
     }
       printf("\n");
int main() {
    int n
       int n, table_size;
       scanf("%d %d", &n, &table_size);
       int arr[MAX];
       int table[MAX];
       for (int i = 0; i < n; i++)
         scanf("%d", &arr[i]);
printTable(table, table_size);
return Ω
       initializeTable(table, table_size);
                                                        240807078
       insertIntoHashTable(table, table_size, arr, n);
     Status: Correct
                                                                             Marks: 10/10
```

240801018

240801018

240801018

Name: akshara G

Email: 240801018@rajalakshmi.edu.in

Roll no: 240801018 Phone: 8015557847

Branch: REC

Department: I ECE FA

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Priya is developing a simple student management system. She wants to store roll numbers in a hash table using Linear Probing, and later search for specific roll numbers to check if they exist.

Implement a hash table using linear probing with the following operations:

Insert all roll numbers into the hash table. For a list of query roll numbers, print "Value x: Found" or "Value x: Not Found" depending on whether it exists in the table.

Input Format

The first line contains two integers, n and table_size — the number of roll numbers to insert and the size of the hash table.

The second line contains n space-separated integers — the roll numbers to insert.

The third line contains an integer q — the number of queries.

The fourth line contains q space-separated integers — the roll numbers to search for.

Output Format

The output print q lines — for each query value x, print: "Value x: Found" or "Value x: Not Found"

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5 10
21 31 41 51 61
3
31 60 51
Output: Value 31: Found
Value 60: Not Found
Value 51: Found

Answer

#include <stdio.h>
#define MAX 100

#include <stdio.h>
#define MAX 100

void initializeTable(int table[], int size)

{

for (int i = 0; i < size; i++)
```

2,40801010

```
table[i] = -1;
     }
     }
     int linearProbe(int table[], int size, int num)
     {
       int index = num % size;
       int original_index = index;
       while (table[index] != -1)
     {
          index = (index + 1) % size;
          if (index == original_index)
     {
            return -1;
     }
       return index;
     }
240867018
     void insertIntoHashTable(int table[], int size, int arr[], int n)
                                                                                      240807018
                                                         240801018
```

```
for (int i = 0; i < n; i++)
                                                                                        240801018
                                                           240801018
          int index = linearProbe(table, size, arr[i]);
          if (index != -1)
      {
             table[index] = arr[i];
      }
      }
      int searchInHashTable(int table[], int size, int num)
      {
 int index = num % size;
int original_index -
        int original_index = index;
        while (table[index] != -1)
      {
          if (table[index] == num)
      {
24080101<sup>8</sup> return 1;
                                                                                        240807018
                                                           240801018
```

```
index = (index + 1) % size;
    if (index == original_index)
       break;
}
return 0;
int main() {
  int n, table_size;
  scanf("%d %d", &n, &table_size);
                                                    240801018
  int arr[MAX], table[MAX];
  for (int i = 0; i < n; i++)
    scanf("%d", &arr[i]);
  initializeTable(table, table_size);
  insertIntoHashTable(table, table_size, arr, n);
  int q, x;
  scanf("%d", &q);
  for (int i = 0; i < q; i++) {
    scanf("%d", &x);
    if (searchInHashTable(table, table_size, x))
       printf("Value %d: Found\n", x);
    else
       printf("Value %d: Not Found\n", x);
```

return 0; 2,40801018 Marks : 10/10 Status: Correct

Name: akshara G

Email: 240801018@rajalakshmi.edu.in

Roll no: 240801018 Phone: 8015557847

Branch: REC

Department: I ECE FA

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In a messaging application, users maintain a contact list with names and corresponding phone numbers. Develop a program to manage this contact list using a dictionary implemented with hashing.

The program allows users to add contacts, delete contacts, and check if a specific contact exists. Additionally, it provides an option to print the contact list in the order of insertion.

Input Format

The first line consists of an integer n, representing the number of contact pairs to be inserted.

Each of the next n lines consists of two strings separated by a space: the name of the contact (key) and the corresponding phone number (value).

The last line contains a string k, representing the contact to be checked or removed.

Output Format

If the given contact exists in the dictionary:

- 1. The first line prints "The given key is removed!" after removing it.
- 2. The next n 1 lines print the updated contact list in the format: "Key: X; Value: Y" where X represents the contact's name and Y represents the phone number.

If the given contact does not exist in the dictionary:

- 1. The first line prints "The given key is not found!".
- 2. The next n lines print the original contact list in the format: "Key: X; Value: Y" where X represents the contact's name and Y represents the phone number.

Refer to the sample outputs for the formatting specifications.

Sample Test Case

Input: 3 Alice 1234567890 Bob 9876543210 Charlie 4567890123 Bob

> Output: The given key is removed! Key: Alice; Value: 1234567890 Key: Charlie; Value: 4567890123

Answer

#include <stdio.h> #include <stdlib.h> #include <string.h>

#define INITIAL_CAPACITY 10

```
240801018
                                                          240801018
     typedef struct
       char key[50];
       char value[50];
     } KeyValuePair;
     typedef struct
       KeyValuePair *pairs;
       int size;
       int capacity;
     } Dictionary;
     void initDictionary(Dictionary *dict)
     {
dict->capacity = INITIAL_CAPACITY;
dict->pairs = (KeyValuePair *\--- ''
       dict->pairs = (KeyValuePair *)malloc(dict->capacity * sizeof(KeyValuePair));
     }
     int hash(const char *key)
     {
       int hash = 0;
       for (int i = 0; key[i] != '\0'; i++)
240861018
                                                          240801018
```

```
hash += key[i];
       return hash;
    }
    void insertKeyValuePair(Dictionary *dict, const char *key, const char *value)
    {
       if (dict->size == dict->capacity)
         dict->capacity *= 2;
         dict->pairs = (KeyValuePair *)realloc(dict->pairs, dict->capacity *
    sizeof(KeyValuePair));
       strcpy(dict->pairs[dict->size].key, key);
dict->size++;
       strcpy(dict->pairs[dict->size].value, value);
    int doesKeyExist(Dictionary *dict, const char *key)
    {
       for (int i = 0; i < dict->size; i++)
         if (strcmp(dict->pairs[i].key, key) == 0)
```

```
240867018
                                                                                  240807018
            return i;
     }
     }
       return -1;
 void removeKeyValuePair(Dictionary *dict, const char *key)
     {
       int index = doesKeyExist(dict, key);
       if (index != -1)
     {
for (int i = index; i < dict->size - 1; i++)
            strcpy(dict->pairs[i].key, dict->pairs[i + 1].key);
            strcpy(dict->pairs[i].value, dict->pairs[i + 1].value);
     }
          dict->size--;
          printf("The given key is removed!\n");
240887018
                                                       240801018
```

```
void printDictionary(Dictionary *dict)
      for (int i = 0; i < dict->size; i++)
    {
         printf("Key: %s; Value: %s\n", dict->pairs[i].key, dict->pairs[i].value);
    int main()
    {
      Dictionary dict;
      initDictionary(&dict);
      int numPairs;
     scanf("%d", &numPairs);
      char key[50], value[50];
      for (int i = 0; i < numPairs; i++)
    {
         scanf("%s %s", key, value);
         insertKeyValuePair(&dict, key, value);
if (doesKeyExist(&dict, key) != -1)
                                                      240801018
```

```
240801018
                                                                                  240801018
                                                       240801018
          removeKeyValuePair(&dict, key);
          printDictionary(&dict);
      } else
      {
ויק ntf("The given key is
printDictionary(&dict);
}
          printf("The given key is not found!\n");
                                                                                  240801018
                            240801018
        free(dict.pairs);
        return 0;
      }
      Status: Correct
                                                                           Marks: 10/10
240801018
                                                       240801018
```

240801018

240801018

240801018

Name: akshara G

Email: 240801018@rajalakshmi.edu.in

Roll no: 240801018 Phone: 8015557847

Branch: REC

Department: I ECE FA

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Develop a program using hashing to manage a fruit contest where each fruit is assigned a unique name and a corresponding score. The program should allow the organizer to input the number of fruits and their names with scores.

Then, it should enable them to check if a specific fruit, identified by its name, is part of the contest. If the fruit is registered, the program should display its score; otherwise, it should indicate that it is not included in the contest.

Input Format

The first line consists of an integer N, representing the number of fruits in the contest.

The following N lines contain a string K and an integer V, separated by a space, representing the name and score of each fruit in the contest.

The last line consists of a string T, representing the name of the fruit to search for.

Output Format

If T exists in the dictionary, print "Key "T" exists in the dictionary.".

If T does not exist in the dictionary, print "Key "T" does not exist in the dictionary.".

Refer to the sample outputs for the formatting specifications.

Sample Test Case

```
Input: 2
banana 2
apple 1
Banana
Output: Key "Banana" does not exist in the dictionary.

**Answer**

// You are using GCC
#include <stdio.h>
#include <string.h>
#define MAX_FRUITS 15

typedef struct

{
    char name[20];
    int score;
} Fruit;
```

void insertFruits(Fruit fruits[], int *size, int n)

```
240867018
        for (int i = 0; i < n; i++)
      {
          scanf("%s %d", fruits[*size].name, &fruits[*size].score);
          (*size)++;
      int searchFruit(Fruit fruits[], int size, char key[])
      {
        for (int i = 0; i < size; i++)
      {
          if (strcmp(fruits[i].name, key) == 0)
             return 1;
      }
refurn 0;
```

```
240801018
                                                       240807018
int main()
       int n;
       scanf("%d", &n);
       Fruit fruits[MAX_FRUITS];
       int size = 0;
       insertFruits(fruits, &size, n);
       char key[20];
       scanf("%s", key);
       if (searchFruit(fruits, size, key))
         printf("Key \"%s\" exists in the dictionary.\n", key);
     } else
     {
         printf("Key \"%s\" does not exist in the dictionary.\n", key);
       return 0;
     }
                                                                           Marks: 10/10
     Status: Correct
```

1,40801018

240801018

240801018

Name: akshara G

Email: 240801018@rajalakshmi.edu.in

Roll no: 240801018 Phone: 8015557847

Branch: REC

Department: I ECE FA

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 7_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are provided with a collection of numbers, each represented by an array of integers. However, there's a unique scenario: within this array, one element occurs an odd number of times, while all other elements occur an even number of times. Your objective is to identify and return the element that occurs an odd number of times in this arrangement.

Utilize mid-square hashing by squaring elements and extracting middle digits for hash codes. Implement a hash table for efficient integer occurrence tracking.

Note: Hash function: squared = key * key.

Example

Input:

7

2233445

Output:

5

Explanation

The hash function and the calculated hash indices for each element are as follows:

2 -> hash(2*2) % 100 = 4

3 -> hash(3*3) % 100 = 9

4 -> hash(4*4) % 100 = 16

5 -> hash(5*5) % 100 = 25

The hash table records the occurrence of each element's hash index:

Index 4: 2 occurrences

Index 9: 2 occurrences

Index 16: 2 occurrences

Index 25: 1 occurrence

Among the elements, the integer 5 occurs an odd number of times (1 occurrence) and satisfies the condition of the problem. Therefore, the program outputs 5.

Input Format

The first line of input consists of an integer N, representing the size of the array.

The second line consists of N space-separated integers, representing the elements of the array.

Output Format

The output prints a single integer representing the element that occurs an odd

```
number of times.
```

If no such element exists, print -1.

Refer to the sample output for the formatting specifications.

```
Sample Test Case
    Input: 7
    2233445
    Output: 5
    Answer
#include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <stdbool.h>
    #define MAX_SIZE 100
    unsigned int hash(int key, int table_size){
     unsigned int squared = key * key;
      return squared % table_size;
    }
    int getOddOccurrence(int arr[], int size)
    {
      int table_size = 100;
      int hash_table[table_size];
memset(hash_table, 0, sizeof(hash_table));
```

```
240801018
                                                             240801018
        for (int i = 0; i < size; i++)
          int index = hash(arr[i], table_size);
          hash_table[index]++;
     }
        for (int i = 0; i < size; i++)
          int index = hash(arr[i], table_size);
          if (hash_table[index] % 2 != 0)
     {
             return arr[i];
        return -1;
     }
     int main() {
        int n;
        scanf("%d", &n);
___;
, (int i = 0; i < n; i++)
scanf("%d", &arr[i]);
}
        int arr[MAX_SIZE];
                                                                                            240801018
                                                             240801018
        for (int i = 0; i < n; i++) {
```

<pre>printf("%d\n", ge return 0; } Status : Correct</pre>	etOddOccurrence(arr, n));	240801018	2 ^{A0801018} Marks : 10/10
240801018	240801018	240801018	240801018
240807018	240801018	240801018	240801018

2,40801018