MANOJ KUMAR - 2048015

P12,P13: Hiearchical Clustering & DBSCAN

Compare and contrast the working of Hiearchical Clustering & DBSCAN on the dataset relevant to your domain.

Importing basic libraries

```
In [38]: import pandas as pd
   import numpy as np
   import time
   import seaborn as sns
   import matplotlib.pyplot as plt
   import matplotlib as mpl
   from dataprep.eda import create_report
```

Reading the dataset

Rename the columns to have meaningful names

```
In [41]: col_dict={"bp":"blood_pressure",
                    "sg": "specific_gravity",
                    "al": "albumin",
                    "su": "sugar",
                    "rbc": "red_blood_cells",
                    "pc": "pus_cell",
                    "pcc": "pus cell clumps",
                    "ba": "bacteria",
                    "bgr": "blood_glucose_random",
                    "bu": "blood_urea",
                    "sc": "serum_creatinine",
                    "sod": "sodium",
                    "pot": "potassium",
                    "hemo": "hemoglobin",
                    "pcv": "packed_cell_volume",
                    "wc": "white blood cell count",
                    "rc": "red_blood_cell_count",
                    "htn": "hypertension",
                    "dm": "diabetes_mellitus",
                    "cad": "coronary artery disease",
                    "appet": "appetite",
                    "pe": "pedal_edema",
                    "ane":"anemia"}
         ckd_df.rename(columns=col_dict, inplace=True)
          #Check the column names again
         ckd df.columns
Out[41]: Index(['id', 'age', 'blood_pressure', 'specific_gravity', 'albumin', 'sugar',
                 'red_blood_cells', 'pus_cell', 'pus_cell_clumps', 'bacteria',
                 'blood_glucose_random', 'blood_urea', 'serum_creatinine', 'sodium',
                 'potassium', 'hemoglobin', 'packed_cell_volume',
                 'white_blood_cell_count', 'red_blood_cell_count', 'hypertension',
```

'diabetes_mellitus', 'coronary_artery_disease', 'appetite',

'pedal_edema', 'anemia', 'classification'],

dtype='object')

In [42]: ckd_df.head(11).T

Out[42]:

•	0	1	2	3	4	5	6	7	8	9	10
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	4
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	present
bacteria	notpresent										
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	4
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.4
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no										
appetite	good	good	poor	poor	good	good	good	good	good	poor	good
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	ckd										

Data DeepDive

unique values in "pus_cell":
 ['normal' 'abnormal' nan]

unique values in "pus_cell_clumps":

```
In [43]: for i in ckd_df.drop("id",axis=1).columns:
            print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
         unique values in "age":
         [48. 7. 62. 51. 60. 68. 24. 52. 53. 50. 63. 40. 47. 61. 21. 42. 75. 69.
         nan 73. 70. 65. 76. 72. 82. 46. 45. 35. 54. 11. 59. 67. 15. 55. 44. 26.
         64. 56. 5. 74. 38. 58. 71. 34. 17. 12. 43. 41. 57. 8. 39. 66. 81. 14.
         27. 83. 30. 4. 3. 6. 32. 80. 49. 90. 78. 19. 2. 33. 36. 37. 23. 25.
         20. 29. 28. 22. 79.]
         unique values in "blood_pressure":
         [ 80. 50. 70. 90. nan 100. 60. 110. 140. 180. 120.]
         unique values in "specific_gravity":
         [1.02 1.01 1.005 1.015 nan 1.025]
         unique values in "albumin":
         [ 1. 4. 2. 3. 0. nan 5.]
         unique values in "sugar":
         [ 0. 3. 4. 1. nan 2. 5.]
         unique values in "red_blood_cells":
         [nan 'normal' 'abnormal']
```

```
In [44]: #Replace incorrect values
         ckd df['diabetes mellitus'] =ckd df['diabetes mellitus'].replace(to replace={'\tno':'no','\tyes':'yes',' yes':'y
         ckd_df['coronary_artery_disease'] = ckd_df['coronary_artery_disease'].replace(to_replace='\tno',value='no')
         ckd_df['white_blood_cell_count'] = ckd_df['white_blood_cell_count'].replace(to_replace='\t8400',value='8400')
         ckd_df["classification"]=ckd_df["classification"].replace("ckd\t", "ckd")
         for i in range(ckd_df.shape[0]):
            if ckd_df.iloc[i,16]=='\t?':
                ckd df.iloc[i,16]=np.nan
            if ckd_df.iloc[i,16]=='\t43':
                ckd_df.iloc[i,16]='43'
            if ckd_df.iloc[i,17]=='\t?':
                ckd_df.iloc[i,17]=np.nan
            if ckd_df.iloc[i,17]=='\t6200':
                ckd_df.iloc[i,17]= '6200'
            if ckd_df.iloc[i,18]=='\t?':
                ckd df.iloc[i,18]=np.nan
            if ckd_df.iloc[i,25]=='ckd':
                ckd_df.iloc[i,25]='1'
            if ckd_df.iloc[i,25]=='notckd':
                ckd_df.iloc[i,25]='0'
         for i in ckd_df.drop("id",axis=1).columns:
            print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
         unique values in "age":
         [48. 7. 62. 51. 60. 68. 24. 52. 53. 50. 63. 40. 47. 61. 21. 42. 75. 69.
         nan 73. 70. 65. 76. 72. 82. 46. 45. 35. 54. 11. 59. 67. 15. 55. 44. 26.
         64. 56. 5. 74. 38. 58. 71. 34. 17. 12. 43. 41. 57. 8. 39. 66. 81. 14.
         27. 83. 30. 4. 3. 6. 32. 80. 49. 90. 78. 19. 2. 33. 36. 37. 23. 25.
         20. 29. 28. 22. 79.]
         unique values in "blood_pressure":
         [ 80. 50. 70. 90. nan 100. 60. 110. 140. 180. 120.]
         unique values in "specific_gravity":
         [1.02 1.01 1.005 1.015 nan 1.025]
         unique values in "albumin":
         [ 1. 4. 2. 3. 0. nan 5.]
         unique values in "sugar":
         [ 0. 3. 4. 1. nan 2. 5.]
         unique values in "red_blood_cells":
         [nan 'normal' 'abnormal']
         unique values in "pus_cell":
         ['normal' 'abnormal' nan]
         unique values in "pus_cell_clumps":
         ['notpresent' 'present' nan]
         unique values in "bacteria":
         ['notpresent' 'present' nan]
         unique values in "blood_glucose_random":
         [121. nan 423. 117. 106. 74. 100. 410. 138. 70. 490. 380. 208. 98.
         157. 76. 99. 114. 263. 173. 95. 108. 156. 264. 123. 93. 107. 159.
         140. 171. 270. 92. 137. 204. 79. 207. 124. 144. 91. 162. 246. 253.
         141. 182. 86. 150. 146. 425. 112. 250. 360. 163. 129. 133. 102. 158.
         165. 132. 104. 127. 415. 169. 251. 109. 280. 210. 219. 295. 94. 172.
         101. 298. 153. 88. 226. 143. 115. 89. 297. 233. 294. 323. 125. 90.
         308. 118. 224. 128. 122. 214. 213. 268. 256. 84. 105. 288. 139. 78.
         273. 242. 424. 303. 148. 160. 192. 307. 220. 447. 309. 22. 111. 261.
         215. 234. 131. 352. 80. 239. 110. 130. 184. 252. 113. 230. 341. 255.
         103. 238. 248. 120. 241. 269. 201. 203. 463. 176. 82. 119. 97. 96.
           81. 116. 134. 85. 83. 87. 75.]
         unique values in "blood_urea":
                 18.
                            56.
                                                                     55.
          [ 36.
                       53.
                                        25.
                                              54.
                                                    31.
                                                          60. 107.
                                                                           72.
                                  26.
                                       27. 148. 180. 163.
                                                                    50.
                                                                          75.
           86.
                90. 162.
                            46.
                                  87.
                                                               nan
           45.
                28. 155.
                            33.
                                 39. 153.
                                             29.
                                                   65.
                                                        103.
                                                               70.
                                                                    80.
                                                                          20.
          202.
                77.
                      89.
                            24.
                                 17.
                                       32. 114.
                                                   66.
                                                         38.
                                                             164.
                                                                   142.
                                                                          96.
                                             35.
          391.
                15. 111.
                           73.
                                 19.
                                       92.
                                                   16. 139.
                                                               48.
                                                                    85.
                                                                          98.
                      47.
                            52.
                                 82.
                                       51. 106.
                                                   22. 217.
                                                               88. 118.
          186.
                37.
                                                                          50.1
                            21. 219.
           71.
                34.
                      40.
                                       30. 125. 166.
                                                        49. 208. 176.
         145. 165. 322.
                           23. 235. 132.
                                             76.
                                                   42. 44.
                                                               41. 113.
                                                   98.6 158.
               58. 133. 137.
                                67. 115.
                                                                    74. 150.
         146.
                                            223.
                                                              94.
                     95. 191.
                                93. 241.
                                                                    10. ]
                57.
                                             64.
                                                   79. 215. 309.
         unique values in "serum creatinine":
                      1.8 3.8 1.4
         [ 1.2
                0.8
                                       1.1 24.
                                                   1.9
                                                        7.2
                                                              4.
                                                                     2.7 2.1
                                       1.3
          4.6
                4.1
                      9.6
                           2.2
                                5.2
                                             1.6
                                                  3.9 76.
                                                               7.7
                                                                     nan 2.4
          7.3
                1.5
                      2.5
                            2.
                                 3.4
                                       0.7
                                             1.
                                                  10.8
                                                         6.3
                                                               5.9
                                                                    0.9
                                                                          3.
          3.25 9.7
                      6.4
                            3.2 32.
                                       0.6
                                             6.1
                                                  3.3
                                                         6.7
                                                              8.5
                                                                    2.8 15.
                                       4.4 10.2 11.5
          2.9
               1.7
                      3.6
                            5.6
                                 6.5
                                                         0.5 12.2
                                                                    5.3
         13.8 16.9
                            7.1 18.
                                       2.3 13.
                                                                    2.6
                     6.
                                                  48.1 14.2 16.4
                                                                          7.5
          4.3 18.1 11.8
                            9.3
                                6.8 13.5 12.8 11.9 12.
                                                              13.4 15.2 13.3
          0.4]
         unique values in "sodium":
         [ nan 111. 142. 104. 114. 131. 138. 135. 130. 141. 139.
                                                                           4.5
         136. 129. 140. 132. 133. 134. 125. 163. 137. 128. 143. 127.
         146. 126. 122. 147. 124. 115. 145. 113. 120. 150. 144. ]
         unique values in "potassium":
         [ nan 2.5 3.2 4. 3.7 4.2 5.8 3.4 6.4 4.9 4.1 4.3 5.2 3.8
          4.6 3.9 4.7 5.9 4.8 4.4 6.6 39. 5.5 5. 3.5 3.6 7.6 2.9
           4.5 5.7 5.4 5.3 47. 6.3 5.1 5.6 3. 2.8 2.7 6.5 3.3]
```

```
unique values in "hemoglobin":
 [15.4 11.3 9.6 11.2 11.6 12.2 12.4 10.8 9.5 9.4 9.7 9.8 5.6 7.6
12.6 12.1 12.7 10.3 7.7 10.9 nan 11.1 9.9 12.5 12.9 10.1 12. 13.
 7.9 9.3 15. 10. 8.6 13.6 10.2 10.5 6.6 11. 7.5 15.6 15.2 4.8
 9.1 8.1 11.9 13.5 8.3 7.1 16.1 10.4 9.2 6.2 13.9 14.1 6. 11.8
11.7 11.4 14. 8.2 13.2 6.1 8. 12.3 8.4 14.3 9. 8.7 10.6 13.1
10.7 5.5 5.8 6.8 8.8 8.5 13.8 11.5 7.3 13.7 12.8 13.4 6.3 3.1
17. 15.9 14.5 15.5 16.2 14.4 14.2 16.3 14.8 16.5 15.7 13.3 14.6 16.4
16.9 16. 14.7 16.6 14.9 16.7 16.8 15.8 15.1 17.1 17.2 15.3 17.3 17.4
17.7 17.8 17.5 17.6]
unique values in "packed_cell_volume":
['44' '38' '31' '32' '35' '39' '36' '33' '29' '28' nan '16' '24' '37' '30'
 '34' '40' '45' '27' '48' '52' '14' '22' '18' '42' '17' '46' '23' '19'
'25' '41' '26' '15' '21' '43' '20' '47' '9' '49' '50' '53' '51' '54']
unique values in "white blood cell count":
['7800' '6000' '7500' '6700' '7300' nan '6900' '9600' '12100' '4500'
 '12200' '11000' '3800' '11400' '5300' '9200' '6200' '8300' '8400' '10300'
 '9800' '9100' '7900' '6400' '8600' '18900' '21600' '4300' '8500' '11300'
 '7200' '7700' '14600' '6300' '7100' '11800' '9400' '5500' '5800' '13200'
 '12500' '5600' '7000' '11900' '10400' '10700' '12700' '6800' '6500'
 '13600' '10200' '9000' '14900' '8200' '15200' '5000' '16300' '12400'
 '10500' '4200' '4700' '10900' '8100' '9500' '2200' '12800' '11200'
 '19100' '12300' '16700' '2600' '26400' '8800' '7400' '4900' '8000'
 '12000' '15700' '4100' '5700' '11500' '5400' '10800' '9900' '5200' '5900'
 '9300' '9700' '5100' '6600']
unique values in "red_blood_cell_count":
['5.2' nan '3.9' '4.6' '4.4' '5' '4.0' '3.7' '3.8' '3.4' '2.6' '2.8' '4.3'
 '3.2' '3.6' '4' '4.1' '4.9' '2.5' '4.2' '4.5' '3.1' '4.7' '3.5' '6.0'
'5.0' '2.1' '5.6' '2.3' '2.9' '2.7' '8.0' '3.3' '3.0' '3' '2.4' '4.8'
'5.4' '6.1' '6.2' '6.3' '5.1' '5.8' '5.5' '5.3' '6.4' '5.7' '5.9' '6.5']
unique values in "hypertension":
['yes' 'no' nan]
unique values in "diabetes_mellitus":
['yes' 'no' nan]
unique values in "coronary artery disease":
['no' 'yes' nan]
unique values in "appetite":
['good' 'poor' nan]
unique values in "pedal_edema":
['no' 'yes' nan]
unique values in "anemia":
['no' 'yes' nan]
unique values in "classification":
['1' '0']
```

In [45]: # Observing the summarized information of data ckd_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

memory usage: 81.4+ KB

#	Column	•	-Null Count	Dtype
0	id	400	non-null	int64
1	age	391	non-null	float64
2	blood_pressure	388	non-null	float64
3	specific_gravity	353	non-null	float64
4	albumin	354	non-null	float64
5	sugar	351	non-null	float64
6	red_blood_cells	248	non-null	object
7	pus_cell	335	non-null	object
8	pus_cell_clumps	396	non-null	object
9	bacteria	396	non-null	object
10	blood_glucose_random	356	non-null	float64
11	blood_urea	381	non-null	float64
12	serum_creatinine	383	non-null	float64
13	sodium	313	non-null	float64
14	potassium	312	non-null	float64
15	hemoglobin	348	non-null	float64
16	<pre>packed_cell_volume</pre>	329	non-null	object
17	white_blood_cell_count	294	non-null	object
18	red_blood_cell_count	269	non-null	object
19	hypertension	398	non-null	object
20	diabetes_mellitus	398	non-null	object
21	coronary_artery_disease	398	non-null	object
22	appetite	399	non-null	object
23	pedal_edema	399	non-null	object
24	anemia	399	non-null	object
25	classification	400	non-null	object
dtype	es: float64(11), int64(1)	, ob	ject(14)	
	0.1 4			

```
In [46]: ckd_df.iloc[:,-1]=ckd_df.iloc[:,-1].astype('int64')
         ckd_df.head(11).T
```

Out[46]:

	0	1	2	3	4	5	6	7	8	9	10
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	4
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	present
bacteria	notpresent										
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	4
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.4
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no										
appetite	good	good	poor	poor	good	good	good	good	good	poor	good
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	1	1	1	1	1	1	1	1	1	1	1

```
In [47]: print(ckd_df['packed_cell_volume'].unique())
         print(ckd_df['white_blood_cell_count'].unique())
         print(ckd_df['red_blood_cell_count'].unique())
         ['44' '38' '31' '32' '35' '39' '36' '33' '29' '28' nan '16' '24' '37' '30'
          '34' '40' '45' '27' '48' '52' '14' '22' '18' '42' '17' '46' '23' '19'
          '25' '41' '26' '15' '21' '43' '20' '47' '9' '49' '50' '53' '51' '54']
         ['7800' '6000' '7500' '6700' '7300' nan '6900' '9600' '12100' '4500'
```

```
'12200' '11000' '3800' '11400' '5300' '9200' '6200' '8300' '8400' '10300'
 '9800' '9100' '7900' '6400' '8600' '18900' '21600' '4300' '8500' '11300'
'7200' '7700' '14600' '6300' '7100' '11800' '9400' '5500' '5800' '13200'
'12500' '5600' '7000' '11900' '10400' '10700' '12700' '6800' '6500'
'13600' '10200' '9000' '14900' '8200' '15200' '5000' '16300' '12400'
'10500' '4200' '4700' '10900' '8100' '9500' '2200' '12800' '11200'
 '19100' '12300' '16700' '2600' '26400' '8800' '7400' '4900' '8000'
'12000' '15700' '4100' '5700' '11500' '5400' '10800' '9900' '5200' '5900'
 '9300' '9700' '5100' '6600']
['5.2' nan '3.9' '4.6' '4.4' '5' '4.0' '3.7' '3.8' '3.4' '2.6' '2.8' '4.3'
'3.2' '3.6' '4' '4.1' '4.9' '2.5' '4.2' '4.5' '3.1' '4.7' '3.5' '6.0'
'5.0' '2.1' '5.6' '2.3' '2.9' '2.7' '8.0' '3.3' '3.0' '3' '2.4' '4.8'
'5.4' '6.1' '6.2' '6.3' '5.1' '5.8' '5.5' '5.3' '6.4' '5.7' '5.9' '6.5']
```

```
In [48]: mistyped=['packed_cell_volume', 'white_blood_cell_count', 'red_blood_cell_count']
         for col in mistyped:
                 ckd_df[col]=ckd_df[col].astype('float')
         numeric=[]
         for i in ckd_df.columns:
             if ckd_df[i].dtype=='float64':
                 numeric.append(i)
         numeric
Out[48]: ['age',
           'blood_pressure',
          'specific_gravity',
          'albumin',
           'sugar',
           'blood_glucose_random',
           'blood_urea',
           'serum_creatinine',
           'sodium',
           'potassium',
          'hemoglobin',
           'packed_cell_volume',
           'white_blood_cell_count',
           'red_blood_cell_count']
In [49]: ckd_df.drop('id',axis=1,inplace=True)
         categoricals=[]
         for col in ckd_df.columns:
             if not col in numeric:
                 categoricals.append(col)
         categoricals.remove('classification')
         categoricals
Out[49]: ['red_blood_cells',
           'pus_cell',
           'pus_cell_clumps',
           'bacteria',
           'hypertension',
           'diabetes_mellitus',
           'coronary_artery_disease',
           'appetite',
           'pedal_edema',
           'anemia']
In [50]: |import warnings
         warnings.simplefilter('ignore')
         import matplotlib.style as style
         style.use('fivethirtyeight')
```

Checking distribution of the numerical features

Checking distribution of the Categorical features

```
In [52]: style.use('fivethirtyeight')
         fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(15,30))
         fig.subplots_adjust(hspace=0.5)
         fig.suptitle('Distributions of Categorical Features')
         n_{rows}, n_{cols} = (5,2)
         for index, column in enumerate(categoricals):
             i,j = index // n_cols, index % n_cols
             miss_perc="%.2f"%(100*(1-(ckd_df[column].dropna().shape[0])/ckd_df.shape[0]))
             collabel=column+"\n({}% is missing)".format(miss_perc)
             fig = sns.countplot(x=column, data=ckd_df,label=collabel,
                                 palette=sns.cubehelix_palette(rot=-.4,light=0.7,hue=1), ax=axes[i,j])
             axes[i,j].set_title(collabel,fontsize=25)
             axes[i,j].set_xlabel(None)
             axes[i,j].set_ylabel("Count",fontsize=20)
             axes[i,j].set_xticklabels(axes[i,j].get_xticklabels(), Fontsize=20)
         plt.show()
```



```
In [53]: import matplotlib.ticker as ticker
         style.use('fivethirtyeight')
         # Some random data
         ncount = 400
         plt.figure(figsize=(15,8))
         ax = sns.countplot(x="classification", data=ckd_df)
         plt.title('Distribution of classification sata')
         plt.xlabel('Type')
         # Make twin axis
         ax2=ax.twinx()
         # Switch so count axis is on right, frequency on left
         ax2.yaxis.tick_left()
         ax.yaxis.tick_right()
         # Also switch the labels over
         ax.yaxis.set_label_position('right')
         ax2.yaxis.set_label_position('left')
         ax2.set_ylabel('Frequency [%]')
         for p in ax.patches:
             x=p.get_bbox().get_points()[:,0]
             y=p.get_bbox().get_points()[1,1]
             ax.annotate('\{:.1f\}%'.format(100.*y/ncount), (x.mean(), y),
                     ha='center', va='bottom') # set the alignment of the text
         # Use a LinearLocator to ensure the correct number of ticks
         ax.yaxis.set_major_locator(ticker.LinearLocator(11))
         # Fix the frequency range to 0-100
         ax2.set_ylim(0,100)
         ax.set_ylim(0,ncount)
         # And use a MultipleLocator to ensure a tick spacing of 10
         ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
         # Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
         ax2.grid(None)
```



```
In [54]: for i in range(ckd_df.shape[0]):
    if ckd_df.iloc[i,24]=='ckd':
        ckd_df.iloc[i,24]='1'
    if ckd_df.iloc[i,24]=='notckd':
        ckd_df.iloc[i,24]='0'
```


In [56]: ckd_df.head(10).T

Out[56]:

	0	1	2	3	4	5	6	7	8	9
age	48	7	62	48	51	60	68	24	52	53
blood_pressure	80	50	80	70	80	90	70	NaN	100	90
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02
albumin	1	4	2	4	2	3	0	2	3	2
sugar	0	0	3	0	0	0	0	4	0	0
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present
bacteria	notpresent									
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70
blood_urea	36	18	53	56	26	25	54	31	60	107
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5
packed_cell_volume	44	38	31	32	35	39	36	44	33	29
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4	3.7
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes
coronary_artery_disease	no									
appetite	good	good	poor	poor	good	good	good	good	good	poor
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes
classification	1	1	1	1	1	1	1	1	1	1

In [58]: ckd_df = ckd_df.dropna()
ckd_df

Out[58]:

	age	blood_pressure	specific_gravity	albumin	sugar	red_blood_cells	pus_cell	pus_cell_clumps	bacteria	blood_glucose_random	 packe
3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	
9	53.0	90.0	1.020	2.0	0.0	abnormal	abnormal	present	notpresent	70.0	
11	63.0	70.0	1.010	3.0	0.0	abnormal	abnormal	present	notpresent	380.0	
14	68.0	80.0	1.010	3.0	2.0	normal	abnormal	present	present	157.0	
20	61.0	80.0	1.015	2.0	0.0	abnormal	abnormal	notpresent	notpresent	173.0	
395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.0	
396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.0	
397	12.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	100.0	
398	17.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	114.0	
399	58.0	80.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	131.0	

158 rows × 25 columns

Hierarchical clustering algorithm is of two types:

- i) Agglomerative Hierarchical clustering algorithm or AGNES (agglomerative nesting) and
- ii) Divisive Hierarchical clustering algorithm or DIANA (divisive analysis).

Both this algorithm are exactly reverse of each other. So we will be covering Agglomerative Hierarchical clustering algorithm in detail.

Agglomerative Hierarchical clustering -This algorithm works by grouping the data one by one on the basis of the nearest distance measure of all the pairwise distance between the data point. Again distance between the data point is recalculated but which distance to consider when the groups has been formed? For this there are many available methods. Some of them are:

1) single-nearest distance or single linkage.

- 2) complete-farthest distance or complete linkage.
- 3) average-average distance or average linkage.
- 4) centroid distance.
- 5) ward's method sum of squared euclidean distance is minimized.

This way we go on grouping the data until one cluster is formed. Now on the basis of dendogram graph we can calculate how many number of clusters should be actually present.

Heatmap

A heat map is a data visualization technique that shows magnitude of a phenomenon as color in two dimen sions. The variation in color may be by hue or intensity, giving obvious visual cues to the reader about how the phenomenon is clustered or varies over space.

Dendrogram

A dendrogram is a diagram representing a tree. This diagrammatic representation is frequently used in different contexts: in hierarchical clustering, it illustrates the arrangement of the clusters produced by the corresponding analyses.

One-Hot Encoding

In [20]: onehotdata=pd.get_dummies(ckd_df,drop_first=True,prefix_sep=': ') onehotdata.head(13).T

Out[20]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	NaN	100.000	90.00	60.00	70.00	70.000
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.015
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
blood_glucose_random	121.00	NaN	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
sodium	NaN	NaN	NaN	111.000	NaN	142.000	104.00	NaN	NaN	114.00	NaN	131.00	138.000
potassium	NaN	NaN	NaN	2.500	NaN	3.200	4.00	NaN	NaN	3.70	NaN	4.20	5.800
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000 12200.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	NaN	6900.000	9600.000	12100.00	NaN	4500.00	
red_blood_cell_count	5.20	NaN	NaN	3.900	4.60	4.400	NaN	5.000	4.000	3.70	NaN	3.80	3.400
classification	1.00	1.00	1.00	1.000	1.00	1.000	1.00	1.000	1.000	1.00	1.00	1.00	1.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000

```
In [21]: # define imputer
         from sklearn.impute import KNNImputer
         imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')
         impute_columns=list(set(onehotdata.columns)-set(["classification"]))
         print(impute_columns)
         ['blood_glucose_random', 'red_blood_cells: normal', 'sugar', 'potassium', 'hemoglobin', 'age', 'bacteria: pre
         sent', 'anemia: yes', 'pus_cell_clumps: present', 'white_blood_cell_count', 'blood_pressure', 'serum_creatini
         ne', 'coronary_artery_disease: yes', 'red_blood_cell_count', 'blood_urea', 'diabetes_mellitus: yes', 'albumi
         n', 'sodium', 'appetite: poor', 'specific_gravity', 'pus_cell: normal', 'pedal_edema: yes', 'hypertension: ye
         s', 'packed_cell_volume']
```

```
In [22]: |imputer.fit(onehotdata[impute_columns])
```

Out[22]: KNNImputer()

```
In [23]: X_trans=pd.DataFrame(imputer.transform(onehotdata[impute_columns]), columns=impute_columns)
```

In [24]: X_trans.head(13).T

Out[24]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
blood_glucose_random	121.00	113.00	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
potassium	4.20	3.92	4.20	2.500	3.98	3.200	4.00	4.200	4.960	3.70	4.56	4.20	5.800
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	10280.00	6900.000	9600.000	12100.00	9260.00	4500.00	12200.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	74.000	100.000	90.00	60.00	70.00	70.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
red_blood_cell_count	5.20	4.96	3.80	3.900	4.60	4.400	4.64	5.000	4.000	3.70	4.92	3.80	3.400
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
sodium	137.60	136.80	133.80	111.000	138.40	142.000	104.00	133.800	134.000	114.00	139.00	131.00	138.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.01{
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000

In [25]: X_trans # final datset

Out[25]:

	blood_glucose_random	red_blood_cells: normal	sugar	potassium	hemoglobin	age	bacteria: present	anemia: yes	pus_cell_clumps: present	white_blood_cell_count	 t
0	121.0	0.0	0.0	4.20	15.4	48.0	0.0	0.0	0.0	7800.0	 _
1	113.0	0.0	0.0	3.92	11.3	7.0	0.0	0.0	0.0	6000.0	
2	423.0	1.0	3.0	4.20	9.6	62.0	0.0	1.0	0.0	7500.0	
3	117.0	1.0	0.0	2.50	11.2	48.0	0.0	1.0	1.0	6700.0	
4	106.0	1.0	0.0	3.98	11.6	51.0	0.0	0.0	0.0	7300.0	
395	140.0	1.0	0.0	4.90	15.7	55.0	0.0	0.0	0.0	6700.0	
396	75.0	1.0	0.0	3.50	16.5	42.0	0.0	0.0	0.0	7800.0	
397	100.0	1.0	0.0	4.40	15.8	12.0	0.0	0.0	0.0	6600.0	
398	114.0	1.0	0.0	4.90	14.2	17.0	0.0	0.0	0.0	7200.0	
399	131.0	1.0	0.0	3.50	15.8	58.0	0.0	0.0	0.0	6800.0	

400 rows × 24 columns

Algorithmic steps for Agglomerative Hierarchical clustering

Let $X = \{x1, x2, x3, ..., xn\}$ be the set of data points.

¹⁾ Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.

²⁾ Find the least distance pair of clusters in the current clustering, say pair (r), (s), according to $d[(r),(s)] = \min d[(i),(j)]$ where the minimum is over all pairs of clusters in the current clustering.

³⁾ Increment the sequence number: m = m + 1. Merge clusters (r) and (s) into a single cluster to form the next clustering m. Set the level of this clustering to L(m) = d[(r),(s)].

- 4) Update the distance matrix, D, by deleting the rows and columns corresponding to clusters (r) and (s) and adding a row and column corresponding to the newly formed cluster. The distance between the new cluster, denoted (r,s) and old cluster(k) is defined in this way: d[(k), (r,s)] = min (d[(k),(r)], d[(k),(s)]).
- 5) If all the data points are in one cluster then stop, else repeat from step 2).

Divisive Hierarchical clustering - It is just the reverse of Agglomerative Hierarchical approach.

Dendrogram

```
In [37]: import scipy.cluster.hierarchy as sch

plt.figure(1, figsize = (16 ,8))
  dendrogram = sch.dendrogram(sch.linkage(X_trans, method = "ward"))
  plt.title('Dendrogram')
  plt.xlabel('Customers')
  plt.ylabel('Euclidean distances')
  plt.show()
```


Advantages

- 1) No apriori information about the number of clusters required.
- 2) Easy to implement and gives best result in some cases.

Disadvantages

- 1) Algorithm can never undo what was done previously.
- 2) Time complexity of at least O(n2 log n) is required, where 'n' is the number of data points.
- 3) Based on the type of distance matrix chosen for merging different algorithms can suffer with one or more of the following:
 - i) Sensitivity to noise and outliers
 - ii) Breaking large clusters
 - iii) Difficulty handling different sized clusters and convex shapes
- 4) No objective function is directly minimized
- 5) Sometimes it is difficult to identify the correct number of clusters by the dendogram.