Information Security

2025 Project 1

Decrypt the ciphertext!

Prof. Junbeom Hur
TA. Donghee Kim, Juyeon Yi

Department of Computer Science and Engineering Korea University

1. Project Overview

Given Information and Requirements

- You are given
 - A pair of plaintext P1 and ciphertext C1.
 - A ciphertext C2.
 - The code for the encryption algorithm "enc.py".
 - Graphical ciphertext "clue.png".
- Goal is to recover the key K and decrypt ciphertext C2.

2. Main Task

What are the key *K* and the plaintext *P*2?

Executing the provided encryption algorithm enc.py produces the following result:

- You should
 - Recover the key K using python code.
 - Decrypt the C2 using python code to find P2.

3. Background

Electronic Codebook (ECB) mode encryption

- The simplest way to encrypt with a block cipher.
- Advantage: parallelizable.

3. Background

Electronic Codebook (ECB) mode encryption

• Limitation: equal plaintext blocks \rightarrow equal ciphertext blocks.

in enc.py

Algorithm workflow (Double AES-128)

in enc.py

• When the encryption script **enc.py** is executed, the following plaintext-ciphertext pair is produced:

Plain Text P1 "This is a top secret message. Do not share it with anyone!" (string)

Cipher Text 3e40001d1bc6d179551288606d9404914c002383a158dbc4574

Cipher Text
C1 (hex)

3e40001d1bc6d179551288606d9404914c002383a158dbc4574 8957a845b3195eaf9ac3f1e34dc2ef8888c70399ec0acbed366b

8e1fcc8b501f5763fe91862a3

in enc.py

• Key K (32 bytes)

$$- K = K_1 + K_2$$

- $\bullet \qquad K_1 = a_1 + a_2$
- $\bullet \qquad K_2 = a_3 + a_4$
- Find a_2 and a_4

(hex)	a3f19c8d4e6b72f0 (8 bytes)	a ₂ (hex)	????????????? (8 bytes)
(hex)	5e8b41c2d9f07a36 (8 bytes)	(hex)	************* (8 bytes)

in enc.py

- a_2 (hex) = keyhint (hex, 5 bytes)+ aaaaaaa (hex, 3 bytes)
- a_4 (hex) = keyhint (hex, 5 bytes)+ ###### (hex, 3 bytes)

5. Hints on the key k

Encrypted image "clue.png" with embedded *keyhint*

• Encryption algorithm for "clue.png": AES in ECB mode.

6. Submission Guideline

- Source code (python) for
 - 1. finding the *keyhint* (filename: keyhint_[your student number].py).
 - 2. recovering the key *K* (filename: recover_[your student number].py).
 - 3. decrypting ciphertext c2 (filename: dec_[your student number].py).
- Report (filename: report_[your student number].pdf)
 - Approach for finding the keyhint (Do not use external tools).
 - Approach for recovering the key K (Do not use external tools).
 - Comments in your source codes.
 - Explain the functions, variables, and other elements used in your codes.
 - Answer:
 - 1. Key *K*
 - 2. plaintext *P*2

6. Submission Guideline

- Submit your final deliverable as a single ZIP archive (filename: 2025project1_[your student number]_[your name].zip).
 - 1. keyhint_[your student number].py
 - 2. recover_[your student number].py
 - 3. dec_[your student number].py
 - 4. report_[your student number].pdf

7. Grading Criteria

- 30pt in total
 - 20pt for answers (10pt for each answer)
 - 10pt for the others
- Opt if any of the four files (i.e., source codes, report) is not submitted.
- Late submission is not allowed (0pt will be given for any reason).

8. Submission

- Due date
 - **–** 2025. 10. 5, 23:59.
- Upload the solutions into LMS system.