1.3 70	16). No the algorithm is not stable. If you add
	35' to the end of the list, 35' comes before
	35 in the Sasted list. The algorithm assumes Atj] is greater
	and equal to ALis, if it's not less than ALig.
	10) No it isn't in place. Two new arrays are
	allocated to accomodate sorting. SET and count [].
	a) [] +> (a) +> [a] +> [a] -> [a]
	6) [] Pana + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +
	2.17a) on inputsize of 1000 would yield Ibillion and
	and the Soo inputSize yields 125 million. Therefore
7	the input size of 1000 would take 8 times as many
	multiplications.
	6.) T(n)=T(N) (1)
	$\frac{1}{3}n^{2} = \frac{17(N)}{3}(N)^{3}$
	713
	$(\frac{N}{N})_3 = 10_3 - \frac{N}{N} = \frac{10_3}{10_3} = 10$
	The systems will increase by a factor of 10.
,20	
1-1	

2.1/8, 2.1/9, 2.2/2, 2.3/1, 2.3/5, 2.4/1

2.1/8 a) The function in creases in value by 2 because 10924n = 10924 + 10920 = 2+10920. h.) n/2 + (4n/2 = 2+n, increases twofold. C) N-DYn, increases four fold. d.) 12 increases sixteenfold because n2 +> (4n2) = 16n2 e.) n3 increases 64-fold because n-D (4n)3 = 64n3 f) The value of 2^n gets raised to the third.

Secause $f(4n) = (2n)^4 - 2^n \cdot 2^n \cdot 2^n \cdot 2^n = (2^n)^3$ 2.119) a) Some, because n(n+1): n2+n 2 n2, within a constant routifice b.) lower, because 100 n2 ~ n2 < n3, within a constant mutiple C.) Some because In 1 = 10gen and all log marthic functions have the same order of growth within a constant multiple. d.) higher, because log2n = log2n.log2n, which is Greater than $10g_2\Omega^2 = 2\log_2\Omega$, within a constant multiple. e.) Some. $2^{n-1} = \frac{1}{2} \cdot 2^n \approx 2^n$. F.) lover. (1-1)! will always have a lower order of growth than o!

7.2 (L] 7.3/1, 2.3/5, 2.4/1, 2.4/4

7.2/2 a)
$$\frac{\Omega(A+1)}{2}$$
: $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega + \Omega(\Omega^2)$, $\frac{1}{1}$ b) $\frac{\Omega(A+1)}{2}$: $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega + \Omega(\Omega^2)$, $\frac{1}{2}$

7.2/2 a) $\frac{\Omega(A+1)}{2}$: $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega + \Omega(\Omega^2)$, $\frac{1}{2}$ b) $\frac{\Omega(A+1)}{2}$: $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega + \Omega(\Omega^2)$, $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega + \Omega(\Omega^2)$, $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega^2 + \frac{1}{2}\Omega + \Omega(\Omega^2)$, $\frac{1}{2}\Omega^2 + \frac{1}{2}\Omega^2 + \frac{1}{2}$

LIKE

2315,)	a.) It's finding the difference between the largest and
	Smallest values in an array.
	b.) Comparison
	(.) ((Cn) = \(\frac{2}{2}\) = 2(n-1) +mes
	d.) ((n) = 2(n-1) € O(n), livear.
	e.) The algorithm does comparison twice, It would
	be better if there was one if-else bock
i I	rather than, two if statements.
	if A[i] < minual
	Minual + A[i]
	else marval - Aci]
	i .
1 1	Thus the efficiency class would be:
	\$1 = n & O(n)
7.4/1	a) x(n)=x(n-1)+5 R n>1, x(1)=0
	- D [x(n-z)+5]+5 = x(n-2)+10
	[x(n-3)+5]+10 = x(n-3)+15
85_66	1/x(n)=x(n-i)+5i
t-1=1 MC	4) =M(+-(+-1))+5(+-1)
t-1=0 N	=M(1)+,5(6-1)
i je ji	M(4)=0+5(E-1)= 5(E-1)
	50, 5(n-1)
4	

b
$$x(n): 3x(n-1)$$
 $y(n): 4$

b $x(n): 3x(n-2)$ $y(n): 4$

c $y(n): 3(3x(n-2))$ $y(n): 5$
 $y(n): 3(3x(n-2))$ $y(n): 6$
 $y(n): 3(3x(n-2))$ $y(n): 6$
 $y(n): 3(3x(n-2))$ $y(n): 6$
 $y(n): 3(n-1)$ $y(n): 6$
 $y(n): 6$
 $y(n): 7$
 y

x(n)= x(3)+1; n71, x(1)=1 n=3 K = X(3K-1)+1 1521 $= \left[\times (3^{\kappa-1-1}) + 1 \right] + 1 = \times (3^{\kappa-2}) + 2$ $= \left[\times (3^{\kappa-1-2}) + 2 \right] + 1 = \times (3^{\kappa-2}) + 3$ $= \times (3^{\kappa-i}) + i$ Than x (3 K-K)+ K = x(1)+ K 16=i = 11 + 10g, n 2.4/4 a) Q(n) = Q(n-1)+2n-1; n>1 Q(1)=1 Q(z)=Q(1)+(2\(\chi_2\)/2)-i=1+4-1=4 Q(3) = Q(2) + 2(3) - 1 = 4 + 6 - 1 = 9Q(4) = Q(3) + 2(4)-1 = 9+8-1=16 So (Q(n)= 12=1 b.) Ma) = M(n-1) +10, m(1) =0, h>12n-1 1+[1+(s-a)M)= -D[MCN-3]+2]+1 M(n=(n-1)+(n-1)-D M(1)+n-1 = [n-1] let [:n-1 ((n)= ((n-1)+3; n>1 ((4)=0 (,) -P(((n-2)+3]+3 = ((n-2)+6 -P[((n-3)+6]+3 = ((n-3)+9 -D ((n-i)+ 3: letion-1 ((n-(n-1))+3(n-1) = ((1)+3(n-1)=0+3(n-1)= |3(n-1)|