Grundlagen der künstlichen Intelligenz - Übungsblatt $4\,$

June 27, 2012

Viktor Kurz, Stefan Wrobel {kurzv,wrobels}@informatik.uni-freiburg.de

Aufgabe 4.1:

(a)

(i)

Rauch	$Rauch \Rightarrow Rauch$
true	true
false	true

Gültige Aussage!

(ii)

Rauch	Feuer	$Rauch \Rightarrow Feuer$
true	true	true
true	false	false
false	true	true
false	$_{ m false}$	true

Erfüllbare Aussage!

(iii)

Rauch	Feuer	$Rauch \Rightarrow Feuer$	$\neg Feuer \Rightarrow \neg Rauch$	$(Rauch \Rightarrow Feuer) \Rightarrow (\neg Feuer \Rightarrow \neg Rauch)$
true	true	true	true	true
true	false	false	false	true
false	true	true	true	true
false	false	true	true	true

Gültige Aussage!

(iv)

Rauch (R)	Feuer(F)	Hitze(H)	$R \Rightarrow F$	$(R \wedge H) \Rightarrow F$	$(R \Rightarrow F) \Rightarrow ((R \land H) \Rightarrow F)$
true	true	true	true	true	true
true	false	true	false	false	true
false	true	true	true	true	true
false	false	true	true	true	true
true	true	false	true	true	true
true	false	false	false	true	true
false	true	false	true	true	true
false	false	false	true	true	true

Gültige Aussage!

(v)

DeutschlandGewinnt (DG)	$Der Bessere Wird Europameister\ (DBWE)$	$DG \Leftrightarrow DBWE$
true	true	true
true	false	${ m false}$
false	true	${ m false}$
$_{ m false}$	false	${ m true}$

Erfüllbare Aussage!

(b)

$$K = \{\{A, B, \neg C\}, \{\neg A, C\}, \{\neg A, \neg B\}, \{A, C\}\}\}$$

$$(\neg B \Rightarrow (A \land C)) = (B \lor (A \land C)) = ((B \lor A) \land (B \lor C))$$

$$\neg(\neg B \Rightarrow (A \land C)) = \neg(B \lor (A \land C)) = (\neg B \land \neg(A \land C)) = (\neg B \land (\neg A \lor \neg C))$$

$$K \cup \neg(\neg B \Rightarrow (A \land C)) = \{\{A, B, \neg C\}, \{\neg A, C\}, \{\neg A, \neg B\}, \{A, C\}, \{\neg B\}, \{\neg A, \neg C\}\}\}$$

$$\rightarrow \{\{A, B, \neg C\}, \{\neg A\}, \{\neg A, \neg B\}, \{A, C\}, \{\neg B\}\}\}$$

$$\rightarrow \{\{A, B\}, \{\neg A, \neg B\}, \{\neg B\}\}\}$$

$$\rightarrow \{\{A, B\}, \{\neg A, \neg B\}, \{\neg B\}\}$$

Leere Klausel enthalten, d.h. $K \cup \neg(\neg B \Rightarrow (A \land C))$ nicht erfüllbar, d.h. $K \models (\neg B \Rightarrow (A \land C))$.

Aufgabe 4.2:

(a)

0. initiale Klauselmenge:

$$\{\{P, \neg Q\}, \{\neg P, Q\}, \{Q, \neg R\}, \{S\}, \{\neg S, \neg Q, \neg R\}, \{S, R\}\}$$

1. unit propagation: $S \mapsto true$

$$\{\{P, \neg Q\}, \{\neg P, Q\}, \{Q, \neg R\}, \{\neg Q, \neg R\}\}$$

2a. splitting rule: $P \mapsto true$

$$\{\{Q\}, \{Q, \neg R\}, \{\neg Q, \neg R\}\}$$

3a. unit propagation: $Q \mapsto true$

$$\{\{\neg R\}\}$$

4a. unit propagation: $R \mapsto false$

{}

Die Belegung $(P \mapsto true, Q \mapsto true, R \mapsto false)$ ist Modell der Klauselmenge.

(b)

0. initiale Klauselmenge:

$$\{\{P,Q,S,T\},\{P,S,\neg T\},\{Q,\neg S,T\},\{P,\neg S,\neg T\},\{P,\neg Q\},\{\neg R,\neg P\},\{R\}\}\}$$

1. unit propagation: $R \mapsto true$

$$\{\{P,Q,S,T\},\{P,S,\neg T\},\{Q,\neg S,T\},\{P,\neg S,\neg T\},\{P,\neg Q\},\{\neg P\}\}$$

2. unit propagation: $P \mapsto false$

$$\{\{Q, S, T\}, \{S, \neg T\}, \{Q, \neg S, T\}, \{\neg S, \neg T\}, \{\neg Q\}\}$$

3. unit propagation: $Q \mapsto false$

$$\{\{S,T\},\{S,\neg T\},\{\neg S,T\},\{\neg S,\neg T\}\}\$$

4a. splitting rule: $S \mapsto true$

$$\{\{T\}, \{\neg T\}\}$$

5a. unit propagation: $T \mapsto true$

 $\{\Box\}$

4b. splitting rule: $S \mapsto false$

$$\{\{T\}, \{\neg T\}\}$$

5b. unit propagation: $T \mapsto true$

 $\{\Box\}$

Es exisitert kein Modell für die Klauselmenge.

Aufgabe 4.3:

(a)

$$\neg \forall x(student(x) \Rightarrow belegt(x, KI) \land belegt(x, ST))$$

(b)

$$\exists x(student(x) \land istDurchgefallen(x, KI) \land istDurchgefallen(x, ST))$$

(c)

 $\exists x \exists y \neg \exists z (student(x) \land istDurchgefallen(x,KI) \land student(y) \land istDurchgefallen(y,KI) \land student(z) \land istDurchgefallen(y,KI) \land student(z) \land istDurchgefallen(y,KI) \land student(z) \land istDurchgefallen(z,KI) \land student(z) \land s$

(d)

$$\forall y \exists x (\neg rasiert(y, y) \Rightarrow barbier(x) \land rasiert(x, y))$$

(e)

$$\neg \exists x \exists y (professor(y) \land \neg klug(y) \land mag(x,y))$$

Aufgabe 4.4:

(a)

nein:

für $x \mapsto d_1$ und $x \mapsto d_3$ ist die Interpretation true,

für $x \mapsto d_2$ ist die Interpretation false.

(b)

ja:

 α setzt $x \mapsto d_1$ ein, $d_1 \in Mensch^I = \{d_1, d_2, d_3\}$ und $d_1 \in Klein^I = \{d_1\}$, daher ergibt die Implikation true.

(c)

nein:

 $\alpha \text{ setzt } y \mapsto d_2 \text{ ein, } d_2 \notin Klein^I = \{d_1\}$

(d)

ja.

für $y \mapsto d_3$ ist die Interpretation true, da $d_3 \in Dumm^I = \{d_3\}$

(e)

ja:

Ja.

Aufgabe 4.5:

(a)

$$\forall z \exists y (P(x, g(y), z) \lor \neg \forall x Q(x)) \land \neg \forall z \exists x \forall t \neg R(f(x, z), z, t)$$

¬ nach innen verschieben:

$$\forall z \exists y (P(x, g(y), z) \lor \exists x \neg Q(x)) \land \exists z \neg \exists x \forall t \neg R(f(x, z), z, t)$$

$$\forall z \exists y (P(x, g(y), z) \lor \exists x \neg Q(x)) \land \exists z \forall x \neg \forall t \neg R(f(x, z), z, t)$$

$$\forall z \exists y (P(x, g(y), z) \lor \exists x \neg Q(x)) \land \exists z \forall x \exists t \neg \neg R(f(x, z), z, t)$$

$$\forall z \exists y (P(x, g(y), z) \lor \exists x \neg Q(x)) \land \exists z \forall x \exists t R(f(x, z), z, t)$$

Variablen standardisieren:

$$\forall z \exists y (P(x, g(y), z) \lor \exists u \neg Q(u)) \land \exists w \forall v \exists t R(f(v, w), w, t)$$

Skolemisierung:

$$\forall z (P(x, g(F(z)), z) \lor \neg Q(G(u))) \land \forall v R(f(v, W), W, H(v))$$

Weglassen der Universalquantifizierer:

$$(P(x, g(F(z)), z) \vee \neg Q(G(u))) \wedge R(f(v, W), W, H(v))$$

Distribute \land over \lor :

$$(P(x, g(F(z)), z) \vee \neg Q(G(u))) \wedge R(f(v, W), W, H(v))$$

$$\theta^* = \{c, b, f(c, b), f(b, b), g(c), g(b), g(g(c)), g(g(b)), f(g(c), b), f(g(b), b), \ldots\}$$