

Toward Practical Threshold FHE: Low Communication, Computation and Interaction

Hyeongmin Choe

Seoul National University

Oct 14, 2024 Salt Lake City, USA

ACM CCS'24 Doctoral Symposium

Table of Contents

- Brief Introduction
 - Homomorphic Encryption (HE)
 - Threshold HE
 - Challenges
- This Work
 - 0. Another new challenge in efficient Threshold HE [CCS:CCP+24].
 - 1. Simpler, more efficient, and more secure construction based on [AC:BS23].
 - 2. Infeasibility of the assumption used in both [AC:BS23] and 1.
- 3. New definition for Threshold HE achieving Sim-security, efficiency in practical scenarios, whose performance close to HE.

Homomorphic Encryption (HE)

Encryption scheme for computing without decryption.

Homomorphic Encryption (HE)

- Privacy Enhancing Technology (PET)
 - Private Al or Privacy-preserving ML (PPML)

Training Inference

Homomorphic Encryption (HE)

- Privacy Enhancing Technology (PET)
 - Private AI or Privacy-preserving ML (PPML) with multiple parties

Fine-tuning with global model

Inference

■ Extension of HE: 2-party → n-party

 $\mathsf{Enc}(f(m_1,\cdots,m_5))$

Threshold

Decryption

- Encryption/Decryption in 2-party HE
 - based on Ring LWE (Learning-With-Errors)

over a polynomial ring
$$R_Q = \mathbb{Z}_Q[x]/(x^N + 1)$$

- $\operatorname{Enc}(m) = (a, b = -a \cdot s + \Delta \cdot m + e)$

- Threshold Decryption in Threshold HE
 - The secret is additively shared: $s = s_1 + \cdots + s_n$
 - Partial Dec by i-th party:

Smudging error

Correct if $\Delta > e + \sum e_i$

$$(a,b) \in R_Q^2 \mapsto p_i \coloneqq as_i + e_i \in R_Q$$

Aggregation by receiver party:

$$\left| \frac{b + p_1 + \dots + p_n}{\Delta} \right| = \left| \frac{b + as + e_1 + \dots + e_n}{\Delta} \right| = m$$

- Exponentially large smudging error
 - Exponentially large $\Delta = O(\sqrt{n} \cdot 2^{\lambda}) \& Q = O(\sqrt{n} \cdot 2^{\lambda})$
 - Introducing comp & comm inefficiency

- Threshold Decryption in Threshold HE
 - The secre
 - Partial D

One of the main challenges for efficient Threshold HE compared to 2-party HE!

Aggregat

 $e + \sum e_i$

- Exponentially large smudging error
 - Exponentially large $\Delta = O(\sqrt{n} \cdot 2^{\lambda}) \& Q = O(\sqrt{n} \cdot 2^{\lambda})$
 - Introducing comp & comm inefficiency

- Prior works reducing smudging errors
 - Weaker security definition
 - Bounded queries, ROM [DWF22]
 - IND-security, non-adaptive [CSS+22]
 - IND-security, ROM, Circuit Privacy [AC:BS23] which is claimed wrong [AC:PS24]
 - New assumption
 - Known-norm RLWE [MS23]
 - RLWE + error sharing [OT24]
 - Mitigating/generalizing Threshold HE definition
 - Sanitizing algorithm [AC:PS24]

Threshold PKE not HE

Weak for MPC

Need "non-corrupting" party

[DWF22] Dai, Wu, and Feng. Key lifting: Multi-key fully homomorphic encryption in plain model without noise flooding.

[CSS+22] Chowdhury et al. Efficient threshold FHE with application to real-time systems.

[AC:BS23] Boudgoust and Scholl. Simple Threshold (Fully Homomorphic) Encryption From LWE With Polynomial Modulus, Asiacrypt 2023.

[AC:PS24] Passelegue and Stehle. Low Communication Threshold Fully Homomorphic Encryption, Asiacrypt 2024.

[MS23] Micciancio and Suhl. Simulation-Secure Threshold PKE from LWE with Polynomial Modulus.

[OT24] Okada and Takagi. Simulation-Secure Threshold PKE from Standard (Ring-)LWE.

- Prior works reducing smudging errors
 - 0. Another challenge in efficient Threshold HE: Requiring "IND-CPA^D" security and overwhelming correctness [CCS:CCP+24].
 - IND-security, non-adaptive [CSS+22]
 - IND-security, ROM, Circuit Privacy [AC:BS23] which is claimed wrong [AC:PS24]
 - 1. Simpler and efficient variant with Sim-security under weaker assumptions.
 - 2. Infeasibility of the "Circuit Privacy" assumption in both [AC:BS23] and 1.

DIME Larrar charing [OT24]

11116311010 1 TVL

- 0, 1, 2: Hardness of achieving both "efficiency" close to HE & the strongest "Sim-security."
- Mitigating/generalizing Threshold HE definition

Need

3. New definition, which is efficient in practical scenarios, achieving Sim-security, and performance close to HE.

[CSS+22] Chowdhury et al. Efficient threshold FHE with application to real-time systems.

[AC:BS23] Boudgoust and Scholl. Simple Threshold (Fully Homomorphic) Encryption From LWE With Polynomial Modulus, Asiacrypt 2023.

[AC:PS24] Passelegue and Stehle. Low Communication Threshold Fully Homomorphic Encryption, Asiacrypt 2024.

[MS23] Micciancio and Suhl. Simulation-Secure Threshold PKE from LWE with Polynomial Modulus.

[OT24] Okada and Takagi. Simulation-Secure Threshold PKE from Standard (Ring-)LWE.

- Mitigate the "Threshold Decryption"
 - Trade-off: comp. + comm. cost vs. rounds:
 - 1-round threshold dec.
 - Exponentially large Δ & Q

- Constant-round threshold dec.
- Small ∆ & *Q*

$$a, b, [s] \mapsto [\Delta m + e] \mapsto \left[\left|\frac{\Delta m + e}{\Delta}\right|\right] = m\right]$$

$$p_i \coloneqq as_i + e_i \in \mathcal{P} \text{ Given } ctxt = (a,b), \text{ each party makes secret share of } b + as = \Delta m + e \text{ mod } Q:$$

$$[b+as]_i = \begin{cases} b + as_1 & (i=1) \\ as_i & (i \neq 1) \end{cases}$$

Exact division (truncation)

Cf. [X]: secret share of $X = \sum X_i$, where each party holds a random X_i

- More practical approach: mitigate the definition
 - Trade-off between communication cost and rounds:

Decrypting parties require to be on-line

Threshold HE

This Work

General MPC

A trade-off between Threshold HE & MPC

- We instantiate exact truncation from [SCN:CT10]
 - 3-round Threshold Dec
 - Comp cost: $O(\log \Delta) \mathbb{Z}_q$ -inverse per party
 - Comm cost: each transcript size of $O(\log \Delta)$
- Advantages
 - Parameter sizes □, Performance û (close to HE)
 - Especially benefit from large & deep circuits
- Disadvantages
 - #Rounds ① (for threshold decryption)
 - But... for online parties who want to decrypt

- Advantages
 - Parameter sizes □, Performance □ (close to HE)
 - Especially benefit from large & deep circuits
- Disadvantages
 - #Rounds ① (for threshold decryption)
 - But... for online parties who want to decrypt

f: evaluating function, n: number of parties, $\Delta \approx Q \ll Q_{comp}$, where Δ is the smallest possible one.

	# Rounds	Comp. cost	Comm. Cost (per party, per round)		
Threshold HE	2=1+1	$O(f \cdot \log Q_{comp} + n \cdot \log(\Delta \cdot 2^{\lambda} \cdot \sqrt{n}))$	$O(\log(\Delta \cdot 2^{\lambda} \cdot \sqrt{n}))$		
MPC	O(f)	$O(n \cdot f \cdot \log \Delta)$	$O(\log \Delta)$		
This work	4=1+3	$O(f \cdot \log Q_{comp} + n \cdot \log \Delta)$	$O(\log \Delta)$		

Further (On-going) Directions

- Implementations and Applications
- Mitigation on Security Definition
 - with practical scenarios
- Threshold-CKKS
 - HE over real numbers
 - More complicated due to some related attacks [EC:LM21], [USENIX:GNSJ24], [CCS:CCP+24].
- MPC Triple Generation
 - Threshold HE-based (Top/Low Gear) with smaller modulus

Thank You!

From Feb. 2025, I am on the job market! Please take a look:

Appendix: Applications in Threshold HE vs. MPC

- Naïve examples for comparison in [MTBH20]
 - Secure input selection
 - Compute $f(r, x_1, ..., x_n) = x_r$ where all the inputs and outputs are encrypted state (or owned by each party)

		Time (sec)		Comm. / party (MB)			
#	parties	2	4	8	2	4	8
MP-SPDZ	off	0.35	1.04	3.56	6.58	25.74	101.82
	on	0.02	0.04	0.07	1.31	4.72	17.83
total		0.37	1.08	3.66	7.89	30.46	119.65
MTBH20	Setup	0.59	0.58	0.69	42.93	42.93	42.93
	Eval	0.27	0.28	0.31	1.31	1.31	1.31

Appendix: Key Components of Threshold FHE

- From FHE to Threshold FHE: What is needed?
 - Threshold KeyGen/Enc/Eval/Dec
 - pk-Enc: (R)LWE-based.
 - pk-Eval: usually same, but maybe larger params.
 - KeyGen/Dec: in a distributed manner.
 - Threshold SIM/IND-Security
 - Trusted vs. Untrusted Setup
 - Honest vs Dishonest Majority
 - IND-CPA^D security

:

Appendix: Key Components of Threshold FHE

- Distributed Key Generation
 - Top-down with trusted dealer [C:BGG+18]:
 - (pk, sk) ← FHE.KeyGen
 - $(sk_1, \dots, sk_N) \leftarrow Share(sk)$ so that any set $|I| \ge t$ can reveal sk.

$$\{0,1\}$$
-LSSS: $q=O(N)$, but $O(N^{5.3})$ shares

Shamir Secret Sharing: N shares, but q=O(N!) TreeSSS [CCK23]: trade-off

Bottom-up without trusted dealer:

[EC:AJL+12] Only for t=N, use CRS.

Each party generates s_i and $b_i = a \cdot s_i + e_i$ $\Rightarrow pk = (a, \sum b_i = a \cdot \sum s_i + e')$ [Access:KJY+20] Generalize [EC:AJW12] for t<N.

Having s_i and pk for $\sum s_i$, distribute $(s_{i1}, \dots, s_{iN}) \leftarrow \text{Share}(s_i)$. Then, $(s_1', \dots, s_N') := \sum (s_{i1}, \dots, s_{iN}) \sim \text{Share}(\sum s_i)$,

[C:BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Rasmussen, Amit Sahai. Threshold Cryptosystems From Threshold Fully Homomorphic Encryption, Crypto 2018. [CCK23] Jung Hee Cheon, Wonhee Cho and Jiseung Kim. Improved Universal Thresholdizer from Iterative Shamir Secret Sharing. Eprint 2023.

[EC:AJL+12] Gilad Asharov, Abhishek Jain, Adriana L´opez-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE. EUROCRYPT 2012.

[Access:KJY+20] Eunkyung Kim, Jinhyuck Jeong, Hyojin Yoon, Younghyun Kim, Jihoon Cho, and Jung Hee Cheon. How to securely collaborate on data: Decentralized threshold he and secure key update. IEEE Access, 2020.

Appendix: Exponentially large $\Delta \& Q$

- In RLWE-based FHEs, $Q \gg |e|$ already.
- Δ is usually set smaller, \approx 32-60 bits
 - Δ may become 96-124 bits
- Indeed, the gap between m & e is implertant!
 - BGV: $b = a \cdot s + m + \Delta e$ in R_q
 - CKKS/BFV: $b = a \cdot s + \Delta m + e \text{ in } R_a$
 - CGGI: $\vec{b} = \vec{a} \cdot \vec{s} + \Delta \vec{m} + \vec{e}$ in \mathbb{Z}_q

Appendix: Exponentially large $\Delta \& Q$

The modulus during the protocols:

Appendix: Exponentially large $\Delta \& Q$

The modulus during the protocols:

Appendix: A bit more details on 1 & 2

- 1. Simpler than [AC:BS23] under the same assumption
 - Assuming "Circuit Privacy (CP)" in the multi-party setting.
 - More efficient than [AC:BS23].

- 2. HOWEVER, the assumption cannot be achieved.
 - [AC:BS23] uses tools for circuit-private "HE"
 - → Do not work in the multi-party setting.

Appendix: Asymptotic Comparison

- We instantiate exact truncation from [SCN:CT10]
 - Rounds: 3 rounds (assuming precomputations, e.g., triples)
 - Computation cost: $O(\log \Delta) \mathbb{Z}_q$ -inverse per party
 - Communication cost: each component of $O(\log \Delta)$ size
- Asymptotic comparison

	# Rounds	Comp. cost	Comm. Cost (per party, per round)		
Threshold HE	2=1+1	$O(f \cdot \log Q_{comp} + n \cdot \log(\Delta \cdot 2^{\lambda} \cdot \sqrt{n}))$	$O(\log(\Delta \cdot 2^{\lambda} \cdot \sqrt{n}))$		
MPC	O(f)	$O(n \cdot f \cdot \log \Delta)$	$O(\log \Delta)$		
This work	4=1+3	$O(f \cdot \log Q_{comp} + n \cdot \log \Delta)$	$O(\log \Delta)$		

f: evaluating function, n: number of parties, $\Delta \approx Q \ll Q_{comp}$, where Δ is the smallest possible one.

Appendix: Homomorphic Encryption (HE)

