The Network Layer

Chapter 5

Network Layer Design Issues

- Store-and-forward packet switching
- Services provided to transport layer
- Implementation of connectionless service
- Implementation of connection-oriented service
- Comparison of virtual-circuit and datagram networks

Store-and-Forward Packet Switching

The environment of the network layer protocols.

Services Provided to the Transport Layer

- 1. Services independent of router technology.
- 2. Transport layer shielded from number, type, topology of routers.
- 3. Network addresses available to transport layer use uniform numbering plan
 - even across LANs and WANs

Implementation of Connectionless Service

Routing within a datagram network

Implementation of Connection-Oriented Service

Routing within a virtual-circuit network

Implementation of Connection-Oriented Service

Multi Protocol Label Switching (MPLS)

Comparison of Virtual-Circuit and Datagram Networks

Issue	Datagram network	Virtual-circuit network		
Circuit setup	Not needed	Required		
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number		
State information	Routers do not hold state information about connections	Each VC requires router table space per connection		
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it		
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated		
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC		
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC		

Comparison of datagram and virtual-circuit networks

Routing Algorithms (1)

- Optimality principle
- Shortest path algorithm
- Flooding
- Distance vector routing
- Link state routing
- Routing in ad hoc networks

Routing Algorithms (2)

- Broadcast routing
- Multicast routing
- Anycast routing
- Routing for mobile hosts
- Routing in ad hoc networks

Routing Algorithms (3)

- Routing Algorithm: part of network layer software responsible for deciding which output line an incoming packet should be transmitted on (forwarding).
- Routing table
- Updating the routing tables
- Simplicity, correctness, robustness, stability, fairness, efficiency

Routing Algorithms

- Nonadaptive algorithms
 Root is computed in advance, off-line, and downloaded to routers when the network is booted
- Adaptive algorithms
 They change their rooting decisions to reflect changes in topology, and usually the traffic as well
- Adaptive algorithms differ in where they get their information (e.g. locally, from adjacent routers, or from all routers).
- When do they change the routes? (every ΔT sec)
- What metric is used for optimization? (distance, number of hops, estimated transfer time)

Fairness vs. Efficiency

Network with a conflict between fairness and efficiency.

The Optimality Principle

(a) A network. (b) A sink tree for router B (DAG).

Shortest Path Algorithm (1)

The first five steps used in computing the shortest path from *A* to *D*. The arrows indicate the working node

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Shortest Path Algorithm (2)

```
/* maximum number of nodes */
#define MAX_NODES 1024
#define INFINITY 1000000000
                                             /* a number larger than every maximum path */
                                             /* dist[i][j] is the distance from i to j */
int n, dist[MAX_NODES][MAX_NODES];
void shortest_path(int s, int t, int path[])
{ struct state {
                                             /* the path being worked on */
     int predecessor:
                                             /* previous node */
                                             /* length from source to this node */
     int length;
                                             /* label state */
     enum {permanent, tentative} label;
 } state[MAX_NODES];
 int i, k, min;
 struct state *p;
```

Dijkstra's algorithm to compute the shortest path through a graph.

Shortest Path Algorithm (3)

```
for (p = &state[0]; p < &state[n]; p++) { /* initialize state */
    p->predecessor = -1:
    p->length = INFINITY;
    p->label = tentative;
state[t].length = 0; state[t].label = permanent;
k = t;
                                               /* k is the initial working node */
                                                /* Is there a better path from k? */
do {
    for (i = 0; i < n; i++)
                                                /* this graph has n nodes */
         if (dist[k][i] != 0 && state[i].label == tentative) {
               if (state[k].length + dist[k][i] < state[i].length) {
                    state[i].predecessor = k;
                    state[i].length = state[k].length + dist[k][i];
```

Dijkstra's algorithm to compute the shortest path through a graph.

Shortest Path Algorithm (4)

- - -

```
/* Find the tentatively labeled node with the smallest label. */
    k = 0; min = INFINITY;
    for (i = 0; i < n; i++)
         if (state[i].label == tentative && state[i].length < min) {
               min = state[i].length;
               k = i:
    state[k].label = permanent;
} while (k != s);
/* Copy the path into the output array. */
i = 0; k = s;
do {path[i++] = k; k = state[k].predecessor; } while (k >= 0);
```

Dijkstra's algorithm to compute the shortest path through a graph.

Flooding (Taşkın)

- Every incoming packet is sent out on every outgoing link except the one it arrived on
- It generates vast number of duplicate packets
- A hop counter is kept at the header of each packet which is decremented at each hop, with the packet being discarded when the counter reaches to zero
- Keeping track of floooding packet could be an alternative technique to avoid sending them out second time
- Selective flooding could be another alternative solution
- It is very robust
- It finds the shortest path

Distance Vector Routing

(a)

- (a) A network.
- (b) Input from A, I, H, K, and the new routing table for J.

The Count-to-Infinity Problem

The **core of the problem** is that when X tells Y that it has a path somewhere, Y has no way of knowing whether it itself is on the path.

The count-to-infinity problem

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Link State Routing

- 1. Discover neighbors, learn network addresses.
- 2. Set distance/cost metric to each neighbor.
- Construct packet telling all learned.
- 4. Send packet to, receive packets from other routers.
- Compute shortest path to every other router.

Learning about the Neighbors (1)

Nine routers and a broadcast LAN.

Learning about the Neighbors (2)

A graph model of previous slide.

Building Link State Packets

(a) A network. (b) The link state packets for this network.

Possible problems

- Sequence numbers wrap around
- If a router crashes, it will start with seq no 0!
- If a sequence number gets corrupted

- Solution: Age field which is decremented once per second while being kept in a router. If it gets zero, the packet will be discarded.
- + Some refinements: holding area and ACK

Distributing the Link State Packets

			Ser	nd fla	igs	AC	K fla	gs	
Source	Seq.	Age	Á	С	È	Á	С	F	Data
Α	21	60	0	1	1	1	0	0	
F	21	60	1	1	0	0	0	1	
E	21	59	0	1	0	1	0	1	
С	20	60	1	0	1	0	1	0	
D	21	59	1	0	0	0	1	1	

The packet buffer for router *B* in previous slide

Hierarchical Routing

(a)

_						
	II ta	h	\sim 1	O.	-1	Δ
ı u	пта	u	_	OI.		_

Dest.	Line	Hops
1A	_	-
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
3A	1C	3
3B	1C	2
4A	1C	3
4B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5
	(k	o)

Hierarchical table for 1A

Dest.	Line	Hops		
1A	_	_		
1B	1B	1		
1C	1C	1		
2	1B	2		
3	1C	2		
4	1C	3		
5	1C	4		

(c)

Hierarchical routing.

Broadcast Routing – Reverse Path Forwarding

Reverse path forwarding. (a) A network. (b) A sink tree. (c) The tree built by reverse path forwarding.

Multicast Routing – Multicast OSPF

- Broadcasting + pruning
- The simplest solution is to use link state routing at each router which constructs a spanning tree for each sender to the group
- With distance vector routing another pruning strategy should be used (READ)

Multicast Routing (1)

(a) A network. (b) A spanning tree for the leftmost router. (c) A multicast tree for group 1. (d) A multicast tree for group 2.

Multicast Routing (2)

- (a) Core-based tree for group 1.
- (b) Sending to group 1.

Anycast Routing

Job of DNS!

- (a) Anycast routes to group 1.
- (b) Topology seen by the routing protocol.

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Routing for Mobile Hosts

Packet routing for mobile hosts

Routing in Ad Hoc Networks

Possibilities when the routers are mobile:

- 1. Military vehicles on battlefield.
 - No infrastructure.
- 2. A fleet of ships at sea.
 - All moving all the time
- 3. Emergency works at earthquake.
 - The infrastructure destroyed.
- 4. A gathering of people with notebook computers.
 - In an area lacking 802.11.

Routing in Ad Hoc Networks, AODV (Ad hoc On-demand Distance Vector)

- (a) Range of A's broadcast.
- (b) After B and D receive it.
- (c) After C, F, and G receive it.
- (d) After E, H, and I receive it.

The shaded nodes are new recipients. The dashed lines show possible reverse routes. The solid lines show the discovered route.

Route Discovery, AODV

Source	Request	Destination	Source	Dest.	Нор
address	ID	address	sequence #	sequence #	count

Format of a ROUTE REQUEST packet.

Source	Destination	Destination	Нор	Lifetime
address	address	sequence #	count	Lifetime

Format of a ROUTE REPLY packet.

AODV

- Intermediate nodes only store the routes in use
- Route information learned during the broadcast is timed out after a short delay
- Intermediate nodes can be used to form a route (If B asks for a route to I before D refreshes its table)

Route Maintenance, AODV

	Next		Active	Other
Dest.	hop	Distance	neighbors	fields
Α	Α	1	F, G	
В	В	1	F, G	
С	В	2	F	
Е	G	2		
F	F	1	A, B	
G	G	1	A, B	
Н	F	2	A, B	
I	G	2	A, B	
		(a)		

- (a) D's routing table before G goes down.
- (b) The graph after G has gone down.

Congestion Control Algorithms (1) - SKIPPED

- Approaches to congestion control
- Traffic-aware routing
- Admission control
- Traffic throttling
- Load shedding

Congestion Control Algorithms (2) - SKIPPED

When too much traffic is offered, congestion sets in and performance degrades sharply.

Approaches to Congestion Control - SKIPPED

Timescales of approaches to congestion control

Traffic-Aware Routing - SKIPPED

A network in which the East and West parts are connected by two links.

Traffic Throttling (1) - SKIPPED

(a) A congested network. (b) The portion of the network that is not congested. A virtual circuit from A to B is also shown.

Traffic Throttling (2) - SKIPPED

Explicit congestion notification

Load Shedding (1)

A choke packet that affects only the source..

Load Shedding (2)

A choke packet that affects each hop it passes through.

Quality of Service

- Application requirements
- Traffic shaping
- Packet scheduling
- Admission control
- Integrated services
- Differentiated services

Application Requirements (1)

Application	Bandwidth	Delay	Jitter	Loss
Email	Low	Low	Low	Medium
File sharing	High	Low	Low	Medium
Web access	Medium	Medium	Low	Medium
Remote login	Low	Medium	Medium	Medium
Audio on demand	Low	Low	High	Low
Video on demand	High	Low	High	Low
Telephony	Low	High	High	Low
Videoconferencing	High	High	High	Low

How stringent the quality-of-service requirements are.

Categories of QoS and Examples

- 1. Constant bit rate
 - Telephony
- 2. Real-time variable bit rate
 - Compressed videoconferencing
- 3. Non-real-time variable bit rate
 - Watching a movie on demand
- 4. Available bit rate
 - File transfer

Traffic Shaping (1)

(a) Shaping packets. (b) A leaky bucket. (c) A token bucket

Traffic Shaping (2)

(a) Traffic from a host. Output shaped by a token bucket of rate 200 Mbps and capacity (b) 9600 KB, (c) 0 KB.

Traffic Shaping (3)

Token bucket level for shaping with rate 200 Mbps and capacity (d) 16000 KB, (e) 9600 KB, and (f) 0KB..

Packet Scheduling (1)

Kinds of resources can potentially be reserved for different flows:

- 1. Bandwidth.
- 2. Buffer space.
- 3. CPU cycles.

Packet Scheduling (2)

Round-robin Fair Queuing

Packet Scheduling (3)

Packet	Arrival	Length	Finish	Output
	time		time	order
Α	0	8	8	1
В	5	6	11	3
С	5	10	10	2
D	8	9	20	7
Ε	8	8	14	4
F	10	6	16	5
G	11	10	19	6
Н	20	8	28	8

(b)

- (a) Weighted Fair Queueing.
- (b) Finishing times for the packets.

Admission Control (1)

Parameter	Unit
Token bucket rate	Bytes/sec
Token bucket size	Bytes
Peak data rate	Bytes/sec
Minimum packet size	Bytes
Maximum packet size	Bytes

An example flow specification

Admission Control (2)

Bandwidth and delay guarantees with token buckets and WFQ.

Integrated Services (1)

(a) A network.(b) The multicast spanning tree for host 1.(c) The multicast spanning tree for host 2.

Integrated Services (2)

- (a) Host 3 requests a channel to host 1. (b) Host 3 then requests a second channel, to host 2.(c) Host 5 requests a channel to host 1.
- Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Differentiated Services (1)

Expedited packets experience a traffic-free network

Differentiated Services (2)

A possible implementation of assured forwarding

Internetworking

- How networks differ
- How networks can be connected
- Tunneling
- Internetwork routing
- Packet fragmentation

How Networks Differ

Item	Some Possibilities
Service offered	Connectionless versus connection oriented
Addressing	Different sizes, flat or hierarchical
Broadcasting	Present or absent (also multicast)
Packet size	Every network has its own maximum
Ordering	Ordered and unordered delivery
Quality of service	Present or absent; many different kinds
Reliability	Different levels of loss
Security	Privacy rules, encryption, etc.
Parameters	Different timeouts, flow specifications, etc.
Accounting	By connect time, packet, byte, or not at all

Some of the many ways networks can differ

How Networks Can Be Connected

- (a) A packet crossing different networks.
- (b) Network and link layer protocol processing.

Tunneling (1)

Tunneling a packet from Paris to London.

Tunneling (2)

Tunneling a car from France to England

Packet Fragmentation (1)

Packet size issues:

- 1. Hardware
- Operating system
- 3. Protocols
- 4. Compliance with (inter)national standard.
- 5. Reduce error-induced retransmissions
- 6. Prevent packet occupying channel too long.

Packet Fragmentation (2)

- (a) Transparent fragmentation.
- (b) Nontransparent fragmentation

Packet Fragmentation (3)

Number of the first elementary fragment in this packet

Fragmentation when the elementary data size is 1 byte.

(a) Original packet, containing 10 data bytes.

Packet Fragmentation (4)

Fragmentation when the elementary data size is 1 byte
(b) Fragments after passing through a network
with maximum packet size of 8 payload bytes plus header.

Packet Fragmentation (5)

Fragmentation when the elementary data size is 1 byte (c) Fragments after passing through a size 5 gateway.

Packet Fragmentation (6)

Path MTU Discovery

The Network Layer Principles (1)

- 1. Make sure it works
- 2. Keep it simple
- 3. Make clear choices
- 4. Exploit modularity
- 5. Expect heterogeneity

. . .

The Network Layer Principles (2)

- . . .
- 6. Avoid static options and parameters
- 7. Look for good design (not perfect)
- 8. Strict sending, tolerant receiving
- Think about scalability
- 10. Consider performance and cost

The Network Layer in the Internet (1)

- The IP Version 4 Protocol
- IP Addresses
- IP Version 6
- Internet Control Protocols
- Label Switching and MPLS
- OSPF—An Interior Gateway Routing Protocol
- BGP—The Exterior Gateway Routing Protocol
- Internet Multicasting
- Mobile IP

The Network Layer in the Internet (2)

The Internet is an interconnected collection of many networks.

The IP Version 4 Protocol (1)

The IPv4 (Internet Protocol) header.

The IP Version 4 Protocol (2)

Option	Description
Security	Specifies how secret the datagram is
Strict source routing	Gives the complete path to be followed
Loose source routing	Gives a list of routers not to be missed
Record route	Makes each router append its IP address
Timestamp	Makes each router append its address and timestamp

Some of the IP options.

IP Addresses (1)

IP addresses are written in dotted decimal notation like 128.208.2.51

IP Addresses

A: 128 networks with 16 million hosts

B: 16384 networks with 64K hosts

C: 2 million networks with 256 hosts

IP address formats.

Subnets

- Hard to put all hosts on a single network.
- Soln: Split a network into smaller parts (subnets) for internal use which still acts like a single network to the outside world
- Subnetting is not visible outside the network.

Subnets

 Host number in the IP packet is partitioned into (subnet+host)

Ex: A class B network subnetted into 64 subnets.

IP Addresses (2)

Splitting an IP prefix into separate networks with subnetting.

Outside the network, subnetting is not visible.

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

CIDR- Classless InterDomain Routing

- -Aim is to reduce the size of the routing tables.
- -Default entry is possible for outgoing link. However, a university router must have an entry for each of its subnets.
- -The problem is worse for ISPs.
- -To reduce the size of the routing tables we can apply the same insight like subnetting.
- -We combine the addresses with the same prefixes into a single prefix, called route aggregation.

IP Addresses (3)

University	First address	Last address	How many	Prefix
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

A set of IP address assignments

IP Addresses (4)

Aggregation of IP prefixes

IP Addresses (5)

Longest matching prefix routing at the New York router.

IP Addresses (6)

IP address formats

IP Addresses (7)

Special IP addresses

IP Addresses (8)

Placement and operation of a NAT box.

Network address translation

- Solution to increase address space of networks
- b) Ranges 10.0.0.0-10.255.255.255/8

172.16.0.0-172.31.255.255/12

192.168.0.0-192.168.255.255/16

reserved for internal use inside company/ISP premises

- a) Int. IP address => Ext. IP address
- b) Index(TCP Source port + Int. IP address)=>TCP Source port

Problems with NAT

- a) Every IP address does not uniquely identify a single machine
- NAT changes the network from connectionless to connection oriented (if NAT box crashes address mapping lost)
- c) Protocol layers are no longer independent.
- d) Depends on the use of TCP/UDP.
- e) Assumes IP addresses are found in the IP address field.
- Limited to less than 65536 internal IP addresses for each ext.
 IP address (TCP source port field is 16 bits)
- g) Transition to IPv6 (128 bit IP addresses) delayed

IP Version 6 Goals

- Support billions of hosts
- Reduce routing table size
- Simplify protocol
- Better security
- Attention to type of service
- Aid multicasting
- Roaming host without changing address
- Allow future protocol evolution
- Permit coexistence of old, new protocols...

IP Version 6 (1)

The IPv6 fixed header (required).

IP Version 6 (2)

Extension header	Description
Hop-by-hop options	Miscellaneous information for routers
Destination options	Additional information for the destination
Routing	Loose list of routers to visit
Fragmentation	Management of datagram fragments
Authentication	Verification of the sender's identity
Encrypted security payload	Information about the encrypted contents

IPv6 extension headers

IP Version 6 (3)

Next header	0	194	4
Jumbo payload length			

The hop-by-hop extension header for large datagrams (jumbograms).

IP Version 6 (4)

The extension header for routing.

Internet Control Protocols (1)

Message type	Description
Destination unreachable	Packet could not be delivered
Time exceeded	Time to live field hit 0
Parameter problem	Invalid header field
Source quench	Choke packet
Redirect	Teach a router about geography
Echo and Echo reply	Check if a machine is alive
Timestamp request/reply	Same as Echo, but with timestamp
Router advertisement/solicitation	Find a nearby router

The principal ICMP message types.

Internet Control Protocols (2)

Frame	Source IP	Source Eth.	Destination IP	Destination Eth.
Host 1 to 2, on CS net	IP1	E1	IP2	E2
Host 1 to 4, on CS net	IP1	E1	IP4	E3
Host 1 to 4, on EE net	IP1	E4	IP4	E6

Two switched Ethernet LANs joined by a router

Label Switching and MPLS (1)

Transmitting a TCP segment using IP, MPLS, and PPP.

Label Switching and MPLS (2)

Forwarding an IP packet through an MPLS network

OSPF—An Interior Gateway Routing Protocol (1)

An autonomous system

OSPF—An Interior Gateway Routing Protocol (2)

A graph representation of the previous slide.

OSPF—An Interior Gateway Routing Protocol (3)

The relation between ASes, backbones, and areas in OSPF.

OSPF—An Interior Gateway Routing Protocol (4)

Message type	Description
Hello	Used to discover who the neighbors are
Link state update	Provides the sender's costs to its neighbors
Link state ack	Acknowledges link state update
Database description	Announces which updates the sender has
Link state request	Requests information from the partner

The five types of OSPF messages

BGP—The Exterior Gateway Routing Protocol (1)

Examples of routing constraints:

- 1. No commercial traffic for educat. network
- 2. Never put Iraq on route starting at Pentagon
- 3. Choose cheaper network
- 4. Choose better performing network
- 5. Don't go from Apple to Google to Apple

BGP—The Exterior Gateway Routing Protocol (2)

Routing policies between four Autonomous Systems

BGP—The Exterior Gateway Routing Protocol (3)

Propagation of BGP route advertisements

Mobile IP

Goals

- 1. Mobile host use home IP address anywhere.
- 2. No software changes to fixed hosts
- 3. No changes to router software, tables
- 4. Packets for mobile hosts restrict detours
- 5. No overhead for mobile host at home.

End

Chapter 5