HDAT9800 Health Data Visualisation & Communication

Chapter 4 Interactive Tutorial — more on visualisation with ggplot2

Tim Churches

UNSW Medicine

22nd June 2022

Agenda for Chapter 4 ggplot2 interactive session

- recap core readings (Wilke Chapters 6)
- reproduce and extend the example charts Wilke provides using different (medical) datasets
- a quick look at the **patchwork** package

Wilke Chapter 6 - visualising amounts

- let's use the **medicaldata** library again
- if not installed:

remotes::install_github("CBDRH-HDAT9800/medicaldata")

Wilke section 6.1 - Bar plots

- write some R code using **ggplot2** to make a bar chart using the **esoph_ca** dataset in the **medicaldata** package to create a bar chart which shows:
 - nsubjects on the y-axis (you'll need to add (sum) ncases and ncontrols to create an nsubjects column using dplyr
 - alcgrp on the x-axis
- examine the **esoph_ca** dataset and its documentation (**?esoph_ca**) first!

```
library(tidyverse)
library(medicaldata)

esoph_ca %>%
  mutate(nsubjects = ncases + ncontrols) %>%
  ggplot(aes(x = alcgp, y = nsubjects)) +
    geom_bar()
```

Why?

```
State Line 153 Error in `f()`:

           ! stat_count() can only have an x or y aesthetic.
           Backtrace:
             1. rmarkdown::render(...)
             2. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet)
             3. knitr:::process_file(text, output)
             6. knitr:::process_group.block(group)
             7. knitr:::call_block(x)
            29. ggplot2 f(l = layers[[i]], d = data[[i]])
            30. l$compute_statistic(d, layout)
            31. ggplot2 f(..., self = self)
            32. self$stat$setup_params(data, self$stat_params)
            33. ggplot2 f(...)
           Execution halted
```



```
esoph_ca %>%
  mutate(nsubjects = ncases + ncontrols) %>%
  ggplot(aes(x = alcgp, y = nsubjects)) +
    geom_bar(stat = "identity")
```



```
esoph_ca %>%
  mutate(nsubjects = ncases + ncontrols) %>%
  ggplot(aes(x = alcgp, y = nsubjects)) +
    geom_bar(stat = "identity", col = "cyan")
```



```
esoph_ca %>%
  mutate(nsubjects = ncases + ncontrols)
```

##		agegp	alcgp	tobgp	ncases	ncontrols	nsubjects
##	1	25-34	0-39g/day	0-9g/day	0	40	40
##	2	25-34	0-39g/day	10-19	0	10	10
##	3	25-34	0-39g/day	20-29	0	6	6
##	4	25-34	0-39g/day	30+	0	5	5
##	5	25-34	40-79	0-9g/day	0	27	27
##	6	25-34	40-79	10-19	0	7	7
##	7	25-34	40-79	20-29	0	4	4
##	8	25-34	40-79	30+	0	7	7
##	9	25-34	80-119	0-9g/day	0	2	2
##	10	25-34	80-119	10-19	0	1	1
##	11	25-34	80-119	30+	0	2	2
##	12	25-34	120+	0-9g/day	0	1	1
##	13	25-34	120+	10-19	1	1	2
##	14	25-34	120+	20-29	0	1	1
##	15	25-34	120+	30+	0	2	2
##	16	35-44	0-39g/day	0-9g/day	0	60	60
##	17	35-44	0-39g/day	10-19	1	14	15
##	18	35-44	0-39g/day	20-29	0	7	7
##	19	35-44	0-39g/day	30+	0	8	8
##	20	35-44	40-79	0-9g/day	0	35	35
##	21	35-44	40-79	10-19	3	23	26

2 40-79

4 120+

430

112

3 80-119 189

3 80-119 189

112

4 120+

2 40-79

4 120+

3 80-119 189

430

112

```
esoph_ca %>%
  group_by(alcgp) %>%
  summarise(nsubjects = sum(ncases + ncontrols)) %>%
  ggplot(aes(x = alcgp, y = nsubjects)) +
    geom_bar(stat = "identity", colour = "cyan")
```


Make it prettier

- add theme_minimal()
- choose and set a fill colour for the bars
- label the x-axis and y-axis better

```
esoph_ca %>%
  group_by(alcgp) %>%
  summarise(nsubjects = sum(ncases + ncontrols)) %>%
  ggplot(aes(x = alcgp, y = nsubjects)) +
    geom_bar(stat = "identity", fill = "lightblue") +
    labs(x="Alcohol consumption",
        y="Number of subjects",
        title="Oesophageal cancer study") +
    theme_minimal()
```


Return to Wilke section 6.1

Flip the coordinates

Substitute agegp for the x-axis

Re-order the x-axis by descending number of subjects

- bad!
 - agegrp has a natural order, we shouldn't mess with it
 - but just as an exercise...
- note that **agegp** is a factor variable
 - hint: see fct_reorder() in the forcats package (part of tidyverse meta-package)

Section 6.2 - grouped and stacked bars

Grouped bars

- write some R code using **ggplot2** to make a bar chart using the **esoph_ca** dataset in the **medicaldata** package to create a bar chart which shows:
 - nsubjects on the y-axis (you'll need to add ncases and ncontrols to create an nsubjects column using dplyr
 - **alcgrp** on the x-axis
 - grouped bars for each value of agegp
- hint: the position argument to geom_col() or geom_bar()

`summarise()` has grouped output by 'alcgp'. You can override using the
`.groups` argument.

Change to facetting by agegrp with just one fill colour

as suggested by Wilke

`summarise()` has grouped output by 'alcgp'. You can override using the
`.groups` argument.

Can you label the facets to show they are age group?

• hint: the labeller= argument to facet_wrap() and facet_grid()

Let's stack the bars by whether they are a case or control

- we need to reshape our dataset
 - one column holding the count of subjects
 - one column holding whether the count is for cases or control
- hint: the pivot_longer() function the tidyr package (part of the tidyverse)

Data tidying with tidyr:: cheat sheet

Tidy data is a way to organize tabular data in a consistent data structure across packages. A table is tidy if:

&

Each variable is in its own column

Each **observation**, or **case**, is in its own row

Access variables
as vectors

Preserve **cases** in vectorized operations

Tibbles

AN ENHANCED DATA FRAME

Tibbles are a table format provided by the **tibble** package. They inherit the data frame class, but have improved behaviors:

- · Subset a new tibble with], a vector with [[and \$.
- · No partial matching when subsetting columns.
- Display concise views of the data on one screen.

options(tibble.print_max = n, tibble.print_min = m, tibble.width = Inf) Control default display settings.

View() or glimpse() View the entire data set.

CONSTRUCT A TIBBLE

tibble(...) Construct by columns. tibble(x = 1:3, y = c("a", "b", "c"))

tribble(...) Construct by rows.

A tibble: 3 x 2 <int> x y y y chr> 1 a b

Both make this tibble

Reshape Data - Pivot data to reorganize values into a new layout.

pivot_longer(data, cols, names_to = "name",
values_to = "value", values_drop_na = FALSE)

"Lengthen" data by collapsing several columns into two. Column names move to a new names_to column and values to a new values_to column.

pivot_longer(table4a, cols = 2:3, names_to ="year", values_to = "cases")

table2 ntry year type count 1999 cases 0.7K 1999 pop 19M A 2000 cases 2K A 2000 cases 2K B 1999 cases 37K C 1999 cases 37K C 1999 cases 17K B 1999 pop 172M C 2000 cases 80K

pivot_wider(data, names_from = "name",
values from = "value")

The inverse of pivot_longer(). "Widen" data by expanding two columns into several. One column provides the new column names, the other the values.

pivot_wider(table2, names_from = type, values from = count)

Expand Tables

variables not present in the data).

expand(data, ...) Create a new tibble with all possible combinations of the values of the variables listed in ... Drop other variables. expand(mtcars, cyl, gear, carb)

complete(data, ..., fill = list()) Add missing possible | list()) Add missing possible | list() add missing possible | list()

plit Cells - Use these functions to split or combine cells into individual, isolated values.

213K

2000 pop

	table:	3					
country	year	rate		country	year	cases	рор
Α	1999	0.7K/19M		Α	1999	0.7K	19M
Α	2000	2K/20M	\rightarrow	Α	2000	2K	20M
В	1999	37K/172M		В	1999	37K	172
В	2000	80K/174M		В	2000	80K	174

unite(data, col, ..., sep = "_", remove = TRUE,
na.rm = FALSE) Collapse cells across several
columns into a single column.

unite(table5, century, year, col = "year", sep = "")

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE, extra = "warn", fill = "warn", ...) Separate each cell in a column into several columns. Also **extract()**.

separate/table3 rate sep = "/"

Handle Missing Values

Drop or replace explicit missing values (NA).

drop_na(data, ...**)** Drop rows containing NA's in ... columns.

drop_na(x, x2)

fill/w way

fill(data, ..., .direction = "down") Fill in NA's in ... columns using the next or previous value.

Reshape Data - Pivot data to reorganize values into a new layout.

table4a

country	1999	2000		country	year	cases
Α	0.7K	2K	\rightarrow	Α	1999	0.7K
В	37K	80K		В	1999	37K
С	212K	213K		С	1999	212K
				Α	2000	2K
				В	2000	80K
				С	2000	213K

```
pivot_longer(data, cols, names_to = "name",
values_to = "value", values_drop_na = FALSE)
```

"Lengthen" data by collapsing several columns into two. Column names move to a new names_to column and values to a new values_to column.

```
pivot_longer(table4a, cols = 2:3, names_to ="year",
  values_to = "cases")
```

table2

Step by step!

esoph_ca

##		agegp	alcgp	tobgp	ncases	ncontrols
##	1	25-34	0-39g/day	0-9g/day	0	40
##	2	25-34	0-39g/day	10-19	0	10
##	3	25-34	0-39g/day	20-29	0	6
##	4	25-34	0-39g/day	30+	0	5
##	5	25-34	40-79	0-9g/day	0	27
##	6	25-34	40-79	10-19	0	7
##	7	25-34	40-79	20-29	0	4
##	8	25-34	40-79	30+	0	7
##	9	25-34	80-119	0-9g/day	0	2
##	10	25-34	80-119	10-19	0	1
##	11	25-34	80-119	30+	0	2
##	12	25-34	120+	0-9g/day	0	1
##	13	25-34	120+	10-19	1	1
##	14	25-34	120+	20-29	0	1
##	15	25-34	120+	30+	0	2
##	16	35-44	0-39g/day	0-9g/day	0	60
##	17	35-44	0-39g/day	10-19	1	14

```
esoph_ca %>%
  group_by(alcgp, agegp) %>%
  summarise(ncases = sum(ncases),
            ncontrols = sum(ncontrols))
## `summarise()` has grouped output by 'alcgp'. You can override using the
## `.groups` argument.
## # A tibble: 24 × 4
## # Groups: alcgp [4]
     alcgp agegp ncases ncontrols
##
   <ord> <ord> <dbl>
                              <dbl>
##
## 1 0-39g/day 25-34
                                 61
## 2 0-39g/day 35-44
                                 89
   3 0-39g/day 45-54
##
                                 78
   4 0-39g/day 55-64 12
##
                                 89
   5 0-39g/day 65-74 11
##
                                 71
   6 0-39g/day 75+
##
                                 27
  7 40-79 25-34
##
                                 45
## 8 40-79 35-44
                                 80
## 9 40-79 45-54
                       20
                                 81
## 10 40-79 55-64
                                 84
## # ... with 14 more rows
```

```
esoph_ca %>%
  group_by(alcqp, ageqp) %>%
   summarise(ncases = sum(ncases),
            ncontrols = sum(ncontrols)) %>%
  pivot_longer(cols = c(ncases, ncontrols),
               names_to = "arm",
               values_to = "nsubjects")
## `summarise()` has grouped output by 'alcgp'. You can override using the
## `.groups` argument.
## # A tibble: 48 × 4
## # Groups: alcgp [4]
##
     alcgp agegp arm nsubjects
## <ord> <ord> <chr>
                                  <dbl>
## 1 0-39g/day 25-34 ncases
## 2 0-39g/day 25-34 ncontrols
                                     61
##
   3 0-39g/day 35-44 ncases
##
   4 0-39g/day 35-44 ncontrols
                                     89
   5 0-39g/day 45-54 ncases
##
   6 0-39g/day 45-54 ncontrols
##
                                     78
## 7 0-39g/day 55-64 ncases
                                     12
## 8 0-39g/day 55-64 ncontrols
                                     89
   9 0-39g/day 65-74 ncases
                                     11
##
## 10 0-39g/day 65-74 ncontrols
                                     71
```

```
esoph_ca %>%
 group_by(alcgp, agegp) %>%
 summarise(ncases = sum(ncases),
            ncontrols = sum(ncontrols)) %>%
 pivot_longer(cols = c(ncases, ncontrols),
               names_to = "arm",
               values_to = "nsubjects") %>%
 qqplot(aes(x = alcqp, y = nsubjects, fill = arm)) +
   geom_col() +
    facet_wrap(~agegp, labeller = label_both) +
    labs(x="Alcohol consumption",
        y="Number of subjects",
        title="Oesophageal cancer study") +
    theme_minimal()
```


Section 6.3 Dotplots and heatmaps

Draw a dotplot

- using the **esoph_ca** dataset in the **medicaldata** package to create a dot plot which shows:
 - nsubjects on the y-axis (you'll need to add ncases and ncontrols to create an nsubjects column using dplyr
 - alcgrp on the x-axis
 - fill the co-ordinates by 90 degrees
- hint: not geom_dotplot()!

Heatmap of oesophageal cancer risk

- summarise the **esoph_ca** so that we have the proportion of cases (that is, **ncases/(ncases + ncontrols)**) as a heatmap by **agegp** and **alcgp**
- hint: geom_tile()

Challenge

• improve the colour palette and legend

patchwork

combine + arrange your 99plots!

