Integer Valued Polynomials

Rama Kocherlakota

December 14, 2019

1 Beginning

Let's start with a simple question: which polynomials with integer coefficients only produce integers when applied to integers? In other words, if

$$p(x) = \sum_{k=0}^{n} a_k x^k$$

is a polynomial with $a_k \in \mathbb{Q}$, then what are necessary and sufficient conditions on a_k for $p(\mathbb{Z}) \subset \mathbb{Z}$?

It's not hard to come up with an obvious sufficient condition: if $a_k \in \mathbb{Z}$ for all k then clearly p(j) is going to be an integer for every integer value of j. But a little thought tells us that this condition is not necessary. For instance,

$$\frac{x(x-1)}{2} = \frac{x^2 - x}{2}$$

is always an integer because $x^2 \equiv x \pmod{2}$.

It's worth noting that $\frac{x(x-1)}{2}$ is a special kind of polynomial - it's the binomial coefficient $\binom{x}{2}$. This turns out not be coincidental. In particular:

Theorem 1. Let p(x) be a polynomial of degree n with rational coefficients. Then $p(\mathbb{Z}) \subset \mathbb{Z}$ if and only if there exist integers a_i such that:

$$p(x) = \sum_{i=0}^{n} a_i \binom{x}{i}$$

Proof. One direction is simple - if x is an integer then so is $\binom{x}{i}$ and so is an integer linear combination of $\binom{x}{i}$. The converse is more interesting and it is what we need to prove.

First, note that the polynmoial

$$c_i(x) = \begin{pmatrix} x \\ i \end{pmatrix}$$

is a product of i linear polynomials in x and thus has degree i and a non-zero coefficient on x^i . It is therefore clear that the n+1 polynomials $\{c_0(x), c_1(x), \ldots c_n(x)\}$ are linearly independent over \mathbb{Q} and hence form a basis for the rational polynomials of degree at most n.

Now, let p(x) be a rational polynomial of degree n with $p(x) \in \mathbb{Z}$ whenever $x \in \mathbb{Z}$. Choose rational numbers $a_0, a_1, \ldots a_n$ so that

$$p(x) = \sum_{i=0}^{n} a_i c_i(x)$$

We want to prove that $a_i \in \mathbb{Z}$ for all i. Consider:

$$p(x+1) - p(x) = \sum_{i=0}^{n} a_i (c_i(x+1) - c_i(x))$$
$$= \sum_{i=0}^{n} a_i \left({x+1 \choose i} - {x \choose i} \right)$$

But by Pascal's Identity, when i > 0

$$\binom{x+1}{i} - \binom{x}{i} = \binom{x}{i-1}$$

and when i = 0, $\binom{x+1}{i} - \binom{x}{i} = 0$. We have:

$$p(x+1) - p(x) = \sum_{i=0}^{n} a_i(c_{i-1}(x))$$
$$= \sum_{j=0}^{n-1} a_{j+1}c_j(x)$$

We can now proceed by induction. First, consider the case n = 0. Because $c_0(x) = 1$, if p(x) is an integer for all (even just one) x and $p(x) = a_0 c_0(x)$, it's clear that a_0 is an integer.

Now, for the general inductive case. If p(x) of degree n is always an integer for integer x, then so is q(x) = p(x+1) - p(x). But q(x) is of degree at most n-1 and by the above equation

$$q(x) = \sum_{j=0}^{n-1} a_{j+1} c_j(x)$$

By our induction hypothesis, that implies that a_j is an integer for all j > 0. Finally, $a_0 = p(0)$ must be an integer, so that proves that all of the a_i are integers.

2 Relationship between $\binom{x}{n}$ and x^n

Since x^n is an integer whenever x is an integer, Theorem 1 shows that x^n must be expressible as an integer linear combination of the polynomials $c_j(x) = \binom{x}{j}$. Specifically, there must be integers $b_{n,r}$ such that:

$$x^n = \sum_{r=0}^n b_{n,r} \binom{x}{r}$$

What are these integers?

What we are doing here is just changing the basis on the vector space of polynomials over \mathbb{Q} of degree at most n from the standard basis $\{1, x, x^2, \dots x^n\}$ to the new basis $\{c_0(x), c_1(x), c_2(x), \dots c_n(x)\}$. This change of basis can be expressed by a rational matrix $(a_{i,j})$ where

$$c_i(x) = \sum_{j=0}^{i} a_{i,j} x^j$$

and the matrix $(b_{i,j})$ corresponds to the opposite change in basis, i.e. to the inverse matrix $(a_{i,j})^{-1}$.

We can explicitly compute $a_{i,j}$ using our formula for $c_j(x)$.

$$c_j(x) = \frac{x(x-1)(x-2)\cdots 1}{n(n-1)(n-2)\cdots 1}$$

We can write a simple Python program using sympy to compute $(a_{i,j})$ and its inverse $(b_{i,j})$. A version of this program is at https://github.com/ramakocherlakota/c-matrix/blob/master/rows.py and its output (for the first few rows and columns

of the b matrix) is:

/1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	1	2	0	0	0	0	0	0	0
0	1	6	6	0	0	0	0	0	0
0	1	14	36	24	0	0	0	0	0
0	1	30	150	240	120	0	0	0	0
0	1	62	540	1560	1800	720	0	0	0
0	1	126	1806	8400	16800	15120	5040	0	0
0	1	254	5796	40824	126000	191520	141120	40320	0
$\int 0$	1	510	18150	186480	834120	1905120	2328480	1451520	362880

Some facts about this matrix are not surprising. It is lower triangular and the diagonal terms are factorials (this follows from the fact that the coefficient on x^n in $\binom{x}{n}$ is $\frac{1}{n!}$). The zero'th column is just 1 followed by 0's and the first column is 0 followed by 1's (this follows from the facts that $c_0(x) = 1$ and $c_1(x) = x$).

Theorem 2. (Recurrence relation) The coefficients $b_{n,r}$ of $\binom{x}{n}$ in x^n , defined by

$$x^n = \sum_{r=0}^n b_{n,r} \binom{x}{n}$$

satisfy the following recurrence relation, for n > 0, r > 0:

$$b_{n,r+1} = \sum_{i=1}^{n-1} \binom{n}{i} b_{i,r}$$

Proof. By defintion of $b_{n,r}$

$$x^n = \sum_{i=0}^n b_{n,i} \binom{x}{i}$$

So

$$(x+1)^n = \sum_{i=0}^n b_{n,i} {x+1 \choose i}$$

$$= \sum_{i=0}^n b_{n,i} {x \choose i} + {x \choose i-1}$$

$$= \sum_{i=0}^n b_{n,i} {x \choose i} + \sum_{i=0}^n b_{n,i} {x \choose i-1}$$

$$= x^n + \sum_{i=0}^n b_{n,i} {x \choose i-1}$$

Because

$$(x+1)^n - x^n = \sum_{r=0}^{n-1} \binom{n}{r} x^r$$

we see that

$$\sum_{j=0}^{n-1} {x \choose j} b_{n,j+1} = \sum_{r=0}^{n-1} {n \choose r} x^r$$

$$= \sum_{r=0}^{n-1} {n \choose r} \sum_{i=0}^r b_{r,i} {x \choose i}$$

$$= \sum_{r=0}^{n-1} \sum_{i=0}^r b_{r,i} {n \choose r} {x \choose i}$$

$$= \sum_{i=0}^{n-1} \sum_{r=0}^{n-1} b_{r,i} {n \choose r} {x \choose i}$$

$$= \sum_{i=0}^{n-1} \sum_{r=1}^{n-1} b_{r,i} {n \choose r} {x \choose i}$$

The last two equalities rely on the facts that the b matrix is lower triangular, so that $b_{r,i} = 0$ for i > r and further, that $b_{i,0} = 0$ when i > 0.

Since the $\binom{x}{i}$ form a basis for the polynomials of a given degree, we can equate coefficients of $\binom{x}{i}$ on the left and right hand sides of the above and conclude that

$$b_{n,i+1} = \sum_{r=1}^{n-1} b_{r,i} \binom{n}{r}$$

Hence the recurrence relation.

The recurrence relation, together with the already observed values for $b_{0,r}$, means that $b_{n,r} >= 0$ for all n,r. Of course, (by virtue of Theorem 1) they are also integers. Can we find an explicit formula for the entries?

Since the n'th enry in column 1 $b_{n,1} = 1$ for n > 1, the recurrence relation implies that

$$b_{n,2} = \sum_{r=1}^{n-1} \binom{n}{r} = 2^n - 2$$

And

$$b_{n,3} = \sum_{r=1}^{n-1} \binom{n}{r} b_{n,2}$$

$$= \sum_{r=1}^{n-1} \binom{n}{r} (2^n - 2)$$

$$= \sum_{r=1}^{n-1} \binom{n}{r} 2^n - 2 \sum_{r=1}^{n-1} \binom{n}{r}$$

$$= (3^n - 2^n - 1) - 2(2^n - 2)$$

$$= 3^n - 3 \cdot 2^n + 3$$

More generally, $b_{n,r}$ is the alternating sum of n-th powers, up to r^n , multiplied by binomial coefficients.

Theorem 3. (Explicit formula) The coefficients $b_{n,r}$ can be written as follows, for n > 0, r > 0:

$$b_{n,r} = (-1)^r \sum_{j=1}^r (-1)^j \binom{r}{j} j^n$$

Proof. We proceed by induction on r. We have already seen the equation is

valid for r = 1. By the recurrence relation,

$$\begin{split} b_{n,r+1} &= \sum_{i=1}^{n-1} \binom{n}{i} b_{i,r} \\ &= \sum_{i=1}^{n-1} \binom{n}{i} (-1)^r \sum_{j=1}^r (-1)^j \binom{r}{j} j^i \\ &= (-1)^r \sum_{j=1}^r \sum_{i=1}^{n-1} \binom{n}{i} (-1)^j \binom{r}{j} j^i \\ &= (-1)^r \sum_{j=1}^r (-1)^j \binom{r}{j} \sum_{i=1}^{n-1} \binom{n}{i} j^i \\ &= (-1)^r \sum_{j=1}^r (-1)^j \binom{r}{j} ((j+1)^n - j^n - 1) \\ &= (-1)^r \left\{ \left(\sum_{j=1}^r (-1)^j \binom{r}{j} (j+1)^n \right) - \left(\sum_{j=1}^r (-1)^j \binom{r}{j} j^n \right) - \left(\sum_{j=1}^r (-1)^j \binom{r}{j} \right) \right\} \end{split}$$

The third term in the braces is:

$$\sum_{j=1}^{r} (-1)^{j} {r \choose j} = (1-1)^{n} - 1 = -1$$

The second term is:

$$\sum_{i=1}^{r} (-1)^{j} {r \choose j} j^{n} = -\sum_{i=0}^{r-1} (-1)^{i+1} {r \choose i+1} (i+1)^{n}$$

Taking the sum of the first and second terms we have:

$$\left(\sum_{j=1}^{r} (-1)^{j} {r \choose j} (j+1)^{n}\right) + \left(\sum_{i=0}^{r-1} (-1)^{i+1} {r \choose i+1} (i+1)^{n}\right)$$

Again using Pascal's Identity to combine the binomial coefficients, the above expression is:

$$\left(\sum_{j=1}^{r-1} (-1)^j \binom{r+1}{j+1} (j+1)^n\right) - \binom{r}{1} - (-1)^r (r+1)^n = -\sum_{k=2}^r (-1)^k \binom{r+1}{k} k^n - r + (-1)^r (r+1)^n$$

Combining all the terms (including the -1 from the third term) and not neglecting to multiply by $(-1)^r$ we end up with:

$$b_{n,r+1} = (r+1)^n + (-1)^r (-r-1) - \sum_{k=2}^r (-1)^{r+k} \binom{r+1}{k} k^n$$

$$= (-1)^{r+1} \left((-1)^{r+1} (r+1)^n + \sum_{k=2}^r (-1)^k \binom{r+1}{k} k^n - (r+1) \right)$$

$$= (-1)^{r+1} \sum_{k=1}^{r+1} (-1)^k \binom{r+1}{k} k^n$$

Looking specifically at the diagonal and above-diagonal elements of the matrix, we have:

Corollary 1. For n > 0

$$(-1)^n \sum_{j=1}^n (-1)^j \binom{n}{j} j^n = n!$$

For r > n > 0,

$$\sum_{j=1}^{r} (-1)^j \binom{r}{j} j^n = 0$$

For example, taking n = r = 3:

$$3! = {3 \choose 1} - {3 \choose 2} 2^3 + 3^3 = 3 - 24 + 27 = 6$$

And, taking n=3 and r=4,

$$\binom{4}{1} - \binom{4}{2}2^3 + \binom{4}{3}3^3 - 4^3 = 4 - 6 \cdot 8 + 4 \cdot 27 - 64 = 0$$

Taking n = 3 and r = 5,

$$\binom{5}{1} - \binom{5}{2} 2^3 + \binom{5}{3} 3^3 - \binom{5}{4} 4^3 + 5^3 = 5 - 10 \cdot 8 + 10 \cdot 27 - 5 \cdot 64 + 125 = -75 + 270 - 320 + 125 = 0$$

3 Conditions for a polynomial to take integer values

We're now in a position to give necessary and sufficient conditions for a polynomial with rational coefficients to map integers to integers.

Theorem 4. A polynomial f(x) of degree n satisfies $f(\mathbb{Z}) \subset \mathbb{Z}$ if and only if $f(i) \in \mathbb{Z}$ for $i \in \{0, 1, 2, \dots n\}$.

Proof. One direction is clear - if $f(\mathbb{Z}) \subset \mathbb{Z}$ then $f(\{0,1,2,\ldots n\}) \subset \mathbb{Z}$. What we want to prove is that $f(\{0,1,2,\ldots n\}) \in \mathbb{Z}$ implies that $f(\mathbb{Z}) \subset \mathbb{Z}$.

First choose $a_i \in \mathbb{Q}$ so that

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

By the definition of $b_{i,r}$,

$$f(x) = \sum_{i=0}^{n} a_i \sum_{r=0}^{i} b_{i,r} {x \choose r}$$

Because, by the Corollary to the Explicit Formula, $b_{i,r} = 0$ for r > i,

$$f(x) = \sum_{r=0}^{n} \left(\sum_{i=0}^{n} a_i b_{i,r} \right) {x \choose r}$$

Because the $\binom{x}{r}$ are integer-valued, it is enough to prove, that for all $r \in \{0, 1, \dots n\}$

$$\sum_{i=0}^{n} a_i b_{i,r} \in \mathbb{Z}$$

We can use the Explicit Formula for $b_{i,r}$ to prove this.

$$\sum_{i=0}^{n} a_i b_{i,r} = (-1)^r \sum_{i=0}^{n} a_i \sum_{j=1}^{r} (-1)^j \binom{r}{j} j^i = (-1)^r \sum_{j=1}^{r} (-1)^j \binom{r}{j} \sum_{i=0}^{n} a_i j^i = (-1)^r \sum_{j=1}^{r} (-1)^j \binom{r}{j} f(j)$$

But, because $\sum_{i=0}^{n} a_i j^i \in \mathbb{Z}$ for all $j \in \{0, 1, 2, \dots n\}$, this last expression must be an integer. So the coefficients of $\binom{x}{r}$ in the expression for f(x) are integers and f(x) maps integers to integers.