Красникова Д.Я., Красников Д.Я., Славный Д.М.

Интерполяция отчет

Интерполяционный полином Лагранжа

Цель

Реализовать алгоритм вычисления приближенного значения функции по данным дискретным точкам. Отобразить график интерполяционного полинома Лагранжа для функции.

Постановка задачи

Разработать программу для интерполяции функции полиномом Лагранжа. Построить интерполяционный полином Лагранжа для функции по узлам.

Задание 1.

Реализовать задачу, рассмотренную на Лекции. Использовать табличный процессор Excel или язык программирования

Начальные условия

Значение аргумента x = 0.263

Значения узлов xi = [0.05, 0.10, 0.17, 0.25, 0.30, 0.36]

Значения функции yi = [0.050042, 0.100335, 0.171657, 0.255342, 0.309336, 0.376403]

```
arg_x = 0.263 # Значение аргумента
# УЗлы и значения функции
x = [0.05, 0.10, 0.17, 0.25, 0.30, 0.36]
y = [0.050042, 0.100335, 0.171657, 0.255342, 0.309336, 0.376403]
d = []

# Вычисляем разности и перемножаем их
for i in range(len(x)):
    mult = 1
    for j in range(len(x)):
        if i != j:
            difference = x[i] - x[j]
            mult *= difference
    d.append(round(mult * (arg_x - x[i]), 11))

# Суммируем частные
sum = 0
for i in range(len(x)):
        sum += y[i]/d[i]

p = 1
for i in range(len(x)):
    p *= arg_x - x[i]

print(round(p*sum, 6))
```

0.269236

Process finished with exit code 0

Задание 2.

Начальные условия

Определить значение функции y(x) при x = 0.1157.

Базовые значения следующие:

X	y
0.101	1.26183
0.106	1.27644
0.111	1.29122
0.116	1.30617
0.121	1.32130
0.126	1.32660

Значение аргумента x = 0.1157

Значения узлов xi = [0.101, 0.106, 0.111, 0.116, 0.121, 0.126]

Значения функции yi = [1.26183, 1.27644, 1.29122, 1.30617, 1.32130, 1.32660]

```
diffs[i].append(round(difference, 6))
```

```
print(header)
print(separator)

def print_table_row(i, di, yi_di, differences):
    # Форматирование строки таблицы
    str_differences = ', '.join([str(i) for i in differences])
    table_row = f"{i:^5} {str_differences:^50} {di:^10} {yi_di:^20}"
    print(table_row)

print_table_header()
for i in range(len(x)):
    print table row(i, round(d[i], 13), round(y[i]/d[i], 1), diffs[i])
```

Из работы программы видно, что у = 1.30524, при данном х и базовых значениях.

```
1.30524

Process finished with exit code 0
```

Таблица промежуточных результатов (структура взята из лекции)

i	differences	di	yi/di
0	0.0147, -0.005, -0.01, -0.015, -0.02, -0.025	-5.5e-12	-228903401360.5
1	0.005, 0.0097, -0.005, -0.01, -0.015, -0.02	7e-13	1754556701030.9
2	0.01, 0.005, 0.0047, -0.005, -0.01, -0.015	-2e-13	-7326070921985.8
3	0.015, 0.01, 0.005, -0.0003, -0.005, -0.01	-0.0	-116103999999996.7
4	0.02, 0.015, 0.01, 0.005, -0.0053, -0.005	4e-13	3324025157232.7
5	0.025, 0.02, 0.015, 0.01, 0.005, -0.0103	-3.9e-12	-343456310679.6

Задание 3.

Найти для функции $\sin(\pi x)$ полином Лагранжа для данных узлов и его значения для аргумента равному x = 1/4 и x = 1/3.

Начальные условия

```
Значение аргумента x = [1/4, 1/3]
Значения узлов xi = [0, 1/6, 1/2]
Значения функции yi = [0.0, 0.5, 1.0]
```

Код программы

Задание 4. Построить интерполяционный полином Лагранжа для функции $f(x) = x^2$ по узлам.

```
x_1 = -1 x_2 = 0 x_3 = 1.
```

В данном случае полином Лагранжа полностью совпадает с исходной функцией.

Начальные условия

```
x = [-1, 0, 1]
y = [1, 0, 1]
```

Код программы

```
import matplotlib.pyplot as plt
def lagrange(x, y, arg x):
    result = sum([y[i] * d[i] for i in range(len(x))])
arg y = [lagrange(x, y, val) for val in arg x]
```


Вывод: Интерполяционный многочлен Лагранжа полезный метод для вычисления промежуточных значений функции, который помогает предугадывать данные для сложных, экспериментальных и табличных графиков.

0

Х

i

2

3

_ _1

<u>-</u>2

0

-3

Интерполяционный полином Ньютона.

Цель

Реализовать алгоритм вычисления приближенного значения функции по данным дискретным точкам.

Постановка задачи

Разработать программу для интерполяции функции с помощью формулы Ньютона. Вычислить значения функции при заданных значения аргумента, используя инторполяционную формулу Ньютона для неравноотстояцщих узлов.

Залание 1.

Определить значения функции y(x) при следующих значениях аргумента: x1 = 0.112, x2 = 0.133

Начальные условия

Значения узлов xi = [0.103, 0.108, 0.115, 0.120, 0.128, 0.136, 0.141, 0.150]

Значения функции yi = [2.01284, 2.03342, 2.06070, 2.07918, 2.10721, 2.13354, 2.14922, 2.17609]

Для вычисления разделенных разностей использовалась формула:

$$f(x_0; x_1; ...; x_{n-1}; x_n) = \sum_{j=0}^{n} \frac{f(x_j)}{\prod_{\substack{i=0\\i\neq j}}^{n} x_j - x_i}$$

Эта формула реализована в программе на языке Python в функции под названием div_diff (divided difference). На вход ей передается смещение относительно списка аргументов и порядок распределенной разности.

Для расчета значения функции использовалась формула Ньютона. Для большей точности она использовалась два раза для разных значений х из списка, а затем находилось среднее арифметическое.

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} f(x_0; ...; x_k) \cdot \prod_{i=0}^{k-1} (x - x_i)$$

```
x = [0.103, 0.108, 0.115, 0.120, 0.128, 0.136, 0.141, 0.150]
y = [2.01284, 2.03342, 2.06070, 2.07918, 2.10721, 2.13354, 2.14922, 2.17609]

def div_diff(bias, n):
    """
```

```
print()
print(' 1. 3a x0 берем x3 = 0.120') result1 = y[3] + div_diff(3, 2)*(0.133-0.120) +
```

```
print(' f(0.133) \approx ', round(result2, 5))
print('Окончательный ответ f(0.133) \approx ', round((result1 + result2) / 2, 5))
```

Задание 2.

Применяя первую интерполяционную формулу Ньютона, приближенно найти значение интеграла вероятностей в точке x = 1.43

Начальные условия

```
x = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]

y = [0.8427, 0.8802, 0.9103, 0.9340, 0.9523, 0.9661, 0.9763, 0.9838, 0.9891, 0.9928, 0.9953]
```

Для вычисления конечных разностей использовался следующий принцип:

- 1) $\Delta y_i = y_{i+1} y_i$ конечные разности первого порядка,
- 2) Δ^2 $y_i = \Delta y_{i+1}$ Δy_i конечные разности второго порядка,
- 3) $\Delta^k y_i = \Delta^{k-1} y_{i+1} \Delta^{k-1} y_i$ конечные разности k- ого порядка.

Эта формула реализована в программе на языке Python в функции под названием finite_diff (finite difference). На вход ей передается смещение относительно списка аргументов и порядок конечной разности.

Для расчета значения интеграла использовалась первая интерполяционная формула Ньютона.

$$y(x) = P_n(x) \approx y_0 + q \Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!} \Delta^3 y_0$$
 где $q = (x - x_0)/h$.

```
x = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
y = [0.8427, 0.8802, 0.9103, 0.9340, 0.9523, 0.9661, 0.9763, 0.9838, 0.9891,
0.9928, 0.9953]

def finite_diff(bias, n):
    """
    Pekypcubhas функция для вычисления разделенных разностей.
    Args:
        bias (int): Смещение для работы с отдельными значениями из
глобального списка у.
        n (int): Размер порядка разделенной разности.

Returns:
        float: Результат вычисления разделенных разностей.
    """
    global y
    # Базовый случай: если n равно 1, вычисляем разность между двумя
соседними значениями
    if n == 1:
        return y[bias + 1] - y[bias]
# Рекурсивно вычисляем разделенную разность n-го порядка через n-1
```

```
Решение для условия x = 1.43
За x0 берем x5 = 1.4
f(1.43) ≈ 0.95687
```

Задание 3.

Построить эмпирическую формулу для функции у, заданной таблично.

Начальные условия

```
x = [0, 1, 2, 3, 4, 5]

y = [5.2, 8.0, 10.4, 12.4, 14.0, 15.2]
```

Для вычисления конечных разностей использовался следующий принцип:

- 1) $\Delta y_i = y_{i+1} y_i$ конечные разности первого порядка,
- 2) Δ^2 y_i = Δy_{i+1} Δy_i конечные разности второго порядка,
- 3) $\Delta^k y_i = \Delta^{k-1} y_{i+1} \Delta^{k-1} y_i$ конечные разности k- ого порядка.

Эта формула реализована в программе на языке Python в функции под названием finite_diff (finite difference). На вход ей передается смещение относительно списка аргументов и порядок конечной разности.

Для расчета значения интеграла использовалась первая интерполяционная формула Ньютона в форме.

$$y(x) = P_n(x) \approx y_0 + q \Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!} \Delta^3 y_0$$
 где $q = (x - x_0)/h$.

Данная программа реализована для упрощения алгебраического выражения, используя библиотеку SymPy в языке программирования Python. Она выполняет задачу упрощения сложных выражений, содержащих переменные, дроби и арифметические операции.

Программа формирует выражение на основе заданных значений х, у и других параметров, затем упрощает это выражение, с участием переменных и арифметических операций, для получения более компактного и понятного вида.

SymPy позволяет работать с символами, решать уравнения, упрощать выражения, находить производные и многое другое. Она широко используется для символьных вычислений в Python и обладает богатыми функциональными возможностями.

```
from sympy import symbols, simplify, expand

x = [0, 1, 2, 3, 4, 5]
y = [5.2, 8.0, 10.4, 12.4, 14.0, 15.2]

def simplify_expression(expression):
    x, y = symbols('x y')
    expr = eval(expression)
    expanded_expr = expand(expr, mul=True)
    simplified_expr = simplify(expanded_expr)
    return str(simplified_expr)
```

```
def finite_diff(bias, n):
    global y
    if n == 1:
        return y[bias + 1] - y[bias]
    return finite_diff(bias + 1, n - 1) - finite_diff(bias, n - 1)

def fact(n):
    factorial_result = 1
    while n > 1:
        factorial_result *= n
        n -= 1
    return factorial_result

h = 1
    q = f'(x - {x[0]})/{h}'
expression = f"{y[0]} + {finite_diff(0, 1)}*{q} + {round(finite_diff(0, 2) / fact(2), 5)}*{q}*({q}-1)"
result = simplify_expression(expression)
print(result)
```

$$-0.2*x**2 + 3.0*x + 5.2$$

Вывод: Интерполяционная формула Ньютона на практике полезна, потому что число используемых узлов может быть увеличено или уменьшено без повторения всех предыдущих вычислений. Первую интерполяционную формулу Ньютона выгодно использовать для интерполирования функции в окрестности начального значения x0, где q мало по абсолютной величине.

Интерполяционный полином Стерлинга.

Цель

Реализовать алгоритм вычисления приближенного значения функции по данным дискретным точкам.

Постановка задачи

Разработать программу для интерполяции функции с помощью полинома Стерлинга. Вычислить значение функции при заданных значения аргумента, используя инторполяционный полинома Стерлинга.

Задание 1.

Вычислить значение функции в точке 4,3. Используя полином Стерлинга.

Даны значения функции:

X	0	1	2	3	4	5	6	7
У	0	2	5	10	15	20	22	24

Выбираем нулевой узел интерполяции. Берем ближайший узел к точке 4,3. В данном случае это будет узел слева от интересующей нас точки. Его принимаем за нулевой узел интерполяции. То есть узел $x_0 = 4$.

Справа и слева выбираем нужное количество точек. Можем взять три точки вправо и три точки влево. $x_1 = 5$ $x_2 = 6$ $x_3 = 7$ $x_{-1} = 3$ $x_{-2} = 2$ $x_{-3} = 1$. В программе для удобства реализации запишем их в списке x = [4, 5, 6, 7, 3, 2, 1]. Эти точки будем использовать для построения инторполяционного полинома Стерлинга и вычисления значения в точке x = 4,3.

Формула для вычисления имеет вид:

Для более понятной структуры программы дополнительно использованы функции для: вычисления факториала (функция fact), вычисления конечной разности (функция finite_diff) и вычисления сокращенного произведения (функция product).

Главная функция, в которой происходит вычисление значения функция через интерполяционную формулу Стирлинга, это stirling_polinomial.

Функция stirling_polynomial(x_value, h) реализует вычисление значения функции в точке с использованием полинома Стирлинга.

Параметры:

- x value: Точка, для которой вычисляется значение функции.
- h: Шаг интерполяции.

Алгоритм:

- 1. Инициализация переменных и расчет переменной и.
- 2. Итерационный расчет суммы полинома Стирлинга для каждого слагаемого.
- 3. Учет разделенных разностей, факториалов и произведений для формирования полинома.

```
16.6025

Process finished with exit code 0
```

Залание 2.

Построить функцию с найденным значением в указанной точке ($x_0 = 4.3$).

Чтобы построить график интерполирующей функции, основанной на полиноме Стирлинга и отметить точки, через которые она проходит, а также точку, в которой мы вычисляем значение, нам понадобится использовать библиотеку Python для построения графиков. Одним из популярных инструментов для этого является matplotlib.

Создадим график для интерполирующей функции, используя данные x и y, а также точку x value = 4.3, через которую проходит наша интерполяционная функция.

```
import matplotlib.pyplot as plt
import numpy as np
def stirling polynomial(x value, h):
   result = y[0]
```

```
h = 1
x_value = 4.3
result = stirling_polynomial(x_value, h)
print(round(result, 5))

# Подготовим данные для графика
x_points = np.linspace(min(x), max(x), 100)
y_points = [stirling_polynomial(point, h) for point in x_points]

plt.figure(figsize=(10, 6))
plt.plot(x_points, y_points, label="Stirling Polynomial Interpolation")
plt.scatter(x, y, color='red', label="Data Points")
plt.scatter(x_value, result, color='green', label="Interpolated Point (x=4.3)")

plt.xlabel('x')
plt.ylabel('Interpolated f(x)')
plt.title('Stirling Polynomial Interpolation')
plt.legend()
plt.grid(True)
plt.show()
```


Вывод: Интерполяционный полином Стерлинга является частным случаем интерполяционного полинома Ньютона. Его имеет смысл использовать только в случае, если узлы интерполяции находятся на фиксированном расстоянии между собой (равноотстоящие узлы). Его преимущество в том, что он строится и вычисляется более быстро, чем интерполяционный полином Ньютона. В отличии от двух интерполяционных формул Ньютона, которые еще называют вперед и назад, интерполяционный полином Стерлинга удобно применять, если нужно проводить вычисление в центре.