Group 5: German Credit Data Analysis

By Kamerin Vesajd & Chiayu Tu

Table of Contents:

- Exploratory Analysis of Data
 - Objective
 - Observing Unusual Observations
 - Examining Data Distribution & Relationship
- Examining the Logistic Regression Model
 - Comparing Initial Model to StepAIC
- Data Analysis
- Investigating the best classifier
 - o KNN
 - o LDA
 - o QDA
 - o Naive Bayes
- Conclusion

Exploratory Analysis of Data

Data Overview

Imported 1000 observations of German bank applicants profile data

Predictors:

20 Columns:

- 6 Numeric Columns
- 14 Categorical Columns

48 Columns:

• After Dummy Variables: 41 Categorical Columns

Response: Default

Account holder failed to repay debts or financial obligations

- Default = 0 (Good)
- Default = 1 (Bad)

No Missing/NA Values:

Objective:

- To minimize the bank's potential losses by evaluating the demographic and socio-economic characteristics of loan applicants in order to determine whether to approve or reject their loan application.
- Determine the best logistic regression model to improve risk management and predictions

Numerical Predictors:

- Duration (Months): Length of time the individual is expected to take to repay the credit.
- Amount: Credit amount requested (DM)
- **Residence:** Length of time lived in current residence
- Age: Age of applicant by years
- **Cards:** Numbers of existing credit cards at the bank
- **Liable:** Number of people liable to provide maintenance for

Categorical Predictors:

- Checking account (4 Levels)
- Credit history (5 Levels)
- Purpose (4 Levels)
- Savings account/bonds (5 Levels)
- Employment Length (5 Levels)
- Personal status and sex (4 Levels)
- Installment (4 Levels)
- Property (4 Levels)
- Job (4 Levels)
- ..

Predictor List:

(Numerical:Int — Categorical:Factor with Levels)

```
'data.frame': 1000 obs. of 21 variables:
                : Factor w/ 2 levels "0","1": 1 2 1 1 2 1 1 1 1 2 ...
$ Default
$ checkingstatus1: Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
$ duration
            : int 6 48 12 42 24 36 24 36 12 30 ...
$ history : Factor w/ 5 levels "A30","A31","A32",...: 5 3 5 3 4 3 3 3 5 ...
$ purpose
               : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
$ amount
               : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
$ savings
               : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
$ employ
               : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
$ installment
               : int 422232324...
$ status
                : Factor w/ 4 levels "A91", "A92", "A93", ...: 3 2 3 3 3 3 3 1 4 ....
                : Factor w/ 3 levels "A101", "A102", ...: 1 1 1 3 1 1 1 1 1 1 ...
$ others
$ residence
                : int 4234444242...
$ property : Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
$ age
               : int 67 22 49 45 53 35 53 35 61 28 ...
$ otherplans
                : Factor w/ 3 levels "A141", "A142", ...: 3 3 3 3 3 3 3 3 3 ...
$ housing
                : Factor w/ 3 levels "A151", "A152", ...: 2 2 2 3 3 3 2 1 2 2 ...
$ cards
               : int 2111211112...
$ job
               : Factor w/ 4 levels "A171", "A172", ...: 3 3 2 3 3 2 3 4 2 4 ...
$ liable
               : int 1122221111...
$ tele
                : Factor w/ 2 levels "A191", "A192": 2 1 1 1 1 2 1 2 1 1 ...
$ foreign
                : Factor w/ 2 levels "A201", "A202": 1 1 1 1 1 1 1 1 1 1 ...
```

Attribute Appendix

```
Default: 0 (no) and 1 (yes)
Attribute 1: (qualitative) Status of existing checking account
  A11 : ... < 0 DM
  A12 : 0 <= ... < 200 DM
  A13 : ... >= 200 DM / salary assignments for at least 1 year
  A14 : no checking account
Attribute 2: (numerical)
                             Duration in month
Attribute 3: (qualitative)
                                Credit history
  A30 : no credits taken/ all credits paid back duly
  A31 : all credits at this bank paid back duly
  A32 : existing credits paid back duly till now
  A33 : delay in paying off in the past
  A34 : critical account/ other credits existing (not at this bank)
Attribute 4: (qualitative)
                                     Purpose
  A40 : car (new)
  A41 : car (used)
  A42 : furniture/equipment
  A43 : radio/television
  A44 : domestic appliances
  A45 : repairs
  A46 : education
  A47 : (vacation - does not exist?)
  A48 : retraining
  A49 : business
  A410 : others
Attribute 5: (numerical)
                             Credit amount
Attibute 6: (qualitative)
                              Savings account/bonds
  A61 : ... < 100 DM
  A62: 100 <= ... < 500 DM
  A63 : 500 <= ... < 1000 DM
  A64 : .. >= 1000 DM
  A65 : unknown/ no savings account
Attribute 7: (qualitative)
                                     Present employment since
  A71 : unemployed
  A72 : ... < 1 year
  A73 : 1 <= ... < 4 years
  A74 : 4 <= ... < 7 years
  A75 : .. >= 7 years
Attribute 8: (numerical)
                             Installment rate in percentage of disposable
income
Attribute 9: (qualitative)
                                     Personal status and sex
  A91 : male : divorced/separated
  A92 : female : divorced/separated/married
  A93 : male : single
  A94 : male : married/widowed
  A95 : female : single
```

```
A102 : co-applicant
   A103 : quarantor
Attribute 11: (numerical)
                                Present residence since
Attribute 12: (qualitative)
                                 Property
   A121 : real estate
  A122 : if not A121 : building society savings agreement/ life insurance
  A123 : if not A121/A122 : car or other, not in attribute 6
  A124 : unknown / no property
Attribute 13: (numerical)
                                 Age in years
Attribute 14: (qualitative)
                                Other installment plans
  A141 : bank
  A142 : stores
  A143 : none
Attribute 15: (qualitative)
                                 Housing
  A151 : rent
  A152 : own
  A153 : for free
Attribute 16: (numerical)
                                Number of existing credits at this bank
Attribute 17: (qualitative)
                                 Job
   A171 : unemployed/ unskilled - non-resident
  A172 : unskilled - resident
  A173 : skilled employee / official
   A174 : management/ self-employed/
   highly qualified employee/ officer
Attribute 18: (numerical) Number of people being liable to provide
maintenance for
Attribute 19: (qualitative)
                                Telephone
   A191 : none
  A192: ves, registered under the customer name
Attribute 20: (qualitative)
                                 foreign worker
  A201 : yes
  A202 : no
```

Observing Unusual Observations

General Logistic Regression Model:

glm(Default ~ . , data=Credit, family= "binomial")

Residual Plot of GLM Model:

Influential Points' Highest Leverages

General Logistic Regression Model:

glm(Default ~ . , data=Credit, ...)

Original Model:

Influentials Removed Model:

glm(Default ~ . , data=Credit[-influential,] ,...)

New Model:

Examining Data Distribution & Relationship

Default Response Frequency

Age, Duration (Months), Credit Amount

Filtered by Ages 20-30

Age vs Default Status

Credit History Status Results

Checking Status Results

Housing Status Results

Summary of Data Distributions

Applicant's characteristics that are least likely to Default:

- Own their own home
- No Checking Account
- Pays Back their Credit on Time
 - Age pass 30

Logistic Regression Model Overview

glm(Default ~ . , data=Credit, family= "binomial")

checkingstatus1A13 0.008905 **checkingstatus1A14** 1.664e-13 **duration** 0.002724 **historvA34** 0.001099

 :

purposeA41

purposeA42

purposeA43

purposeA49

amount

savingsA64

savingsA65

installment

statusA93

othersA103

otherplansA143

foreignA202

8.508e-06

Significant_P_Values

0.002421

0.0003078

0.02667

0.003894

0.01073

0.00031

0.0001846

0.03172

0.02107

0.006871

0.02609

purposeA44 **purposeA45** **purposeA46** **purposeA49**

savinasA62

savinasA63

installment

othersA102

othersA103

residence

otherplansA142

otherplansA143

checkingstatus1A12

checkingstatus1A13

purposeA410

6.509 7.467

9.767

7.562

9.498 9.743

6.614

Non_Collinear_Variables

9.338

8.046

7.146

6.889

8.873

9.086

7.6

8.657

Correlation Plot of Credit Data (Numerical)

Examining the "good" logistic regression

Training Set: 80% of Data Testing Set: 20% of Data

ROC Curve: Initial Model

ROC Curve: StepAIC Model

Performance: Initial Model VS StepAIC Model

```
[1] "Initial Model Confusion Matrix"
      Reference
Prediction 0 1
     0 117 36
[1] "StepAIC Model Confusion Matrix"
      Reference
Prediction 0 1
     0 116 33
     1 17 34
     Initial_Model_Rates Step_Model_Rates
**Sensitivity** 0.8797 0.8722
**Specificity** 0.4627 0.5075
  **Accuracy** 0.74 0.75
```

AUC

Final Equation (StepAIC) Model Equation

```
 \hat{Y} = 1.95 - .61 \ checkingstatus 1A12 - 1.16 \ checkingstatus 1A13 - 1.76 \ checkingstatus 1A14 \\ + .0245 \ duration - 1.27 \ history A34 - 1.62 \ purpose A41 - 2.38 \ purpose A410 - .94 \ purpose A43 \\ + .0001 \ amount - 1.26 \ savings A64 - .91 \ savings A65 + .38 \ installment \\ - .84 \ status A93 - .021 \ age - .81 \ other plans A143 - .51 \ housing A152 - 1.61 \ foreign A202
```


Applying Odd Ratio

1 - exp(Coefficient Estimate)

Odd Ratio Concept:

+ Regression Coefficient:

Predictor Increase | Probability of Response Increase

- Regression Coefficient:

Predictor Increase | Probability of Response Decrease

Interpreting Regression Coefficients:

- Default ~ Age (Year): 2% Decrease odds of Default for every 1 Year of age increase
- Default ~ Duration (Months): 2% Increase odds of Default for every 1 month increase of duration

Investigating Classifiers: KNN, LDA, QDA, Naive Bayes

[1] "AUC: 0.664835164835165"

Naive-Bayes

22"

"Error rate: 0.22"
"Sensitivity: 0.9"

Reference

31 39

"Specificity: 0.557142857142857"

"AUC: 0.728571428571429"

Compare all models

##		ER	SENS	SPEC	AUC
##	KNN	0.3450	0.9923077	0.02857143	0.4517033
##	LDA	0.2400	0.8769231	0.54285714	0.7098901
##	QDA	0.2900	0.8153846	0.51428571	0.6648352
##	LOG(IMR)	0.2433	0.8798000	0.47830000	0.6712000
##	LOG(SMR)	0.2667	0.8462000	0.47830000	0.6898000
##	NAIVE-B	0.2200	0.9000000	0.55714286	0.7285714

Finish