REDES SOCIAIS

Entrega: Medidas de Centralidade

Aluno(s): Martim Ferreira José e Leonardo Medeiros

Data: 04/11/2018

4: Interpretação dos resultados

Ao analisar o **gráfico 1** é possível perceber visualmente que o valor da closeness simulada varia de acordo com o tipo de trajetória e transferência que é escolhida para cada nó. O mesmo pode ser observado no **gráfico 2**, com o betweenness simulado. Portanto, a hipótese parece ser corroborada somente ao analisar a closeness, pois ao observar o **gráfico 1**, é nítido que a closeness apresenta resultados maiores na simulação que use uma trajetória geodésica com difusão de transferência. Em contrapartida, o betweenness nunca alcança seu maior valor quando utilizada a trajetória geodésica com difusão de transferência, mas isso não pode ser afirmado sem teste de hipóteses.

Para verificar a consistência desta afirmação, foi realizado um teste t com duas populações, a primeira sendo 100 amostras de closeness que utilizaram diferentes trajetórias e difusões, e a segunda população sendo o nosso benchmark, 100 amostras de closeness que utilizaram apenas a trajetória de geodésica com difusão de transferência. Como pode ser observado na **tabela 3**, os maiores valores de betweenness foram obtidos em simulações em que se usou o tipo de sucessão *walk* e os menores valores podem ser atrelados às simulações em que foi usado a sucessão de tipo *geodesic* (excluindo os valores que dão zero independente da simulação). Já na **tabela 1**, os maiores valores de closeness foram obtidos em simulações em que se usou o tipo de sucessão *geodesic* e os menores valores foram obtidos

nas simulações em que se usou o tipo de sucessão *walk*. Essas afirmações podem ser corroboradas pelas **tabelas 2 e 4**, respectivamente, que apresentam as médias das diferentes simulações.

Para todas os valores obtidos nas medidas de centralidade, os p-values são ínfimos (e.g. 1.66e-150), o que nos possibilita, por ser menor que 0.05, rejeitar a hipótese nula de que a média dessas populações é igual. Porém há alguns valores em que o p-value é maior que 0.05 assumindo valor 1, em todas as simulações de trajetória *geodesic*, pois as populações comparadas nesses teste t passam a ser iguais. Outro valor obtido para o p-value foi *NaN (not a number)*, que ocorreu para todos os casos em que as amostras de uma das populações era composta por zeros.

Portanto, a hipótese de que os nós com os maiores valores de closeness simulado e betweenness simulado não são necessariamente pertencentes às simulações que utilizam o tipo de sucessor *geodesic* e tipo de difusão *transferência*, é corroborada em partes. Isso ocorre visto que nas simulações de closeness, <u>necessariamente</u> os maiores valores foram obtidos com o tipo de transferência *geodesic* (independente do tipo de difusão)

A mudança de ordem é explicada pela definição de cada tipo de nas medida de usado simulações. Α centralidade sucessor betweenness nó é a característica dele um atuar como intermediador da rede, ou seja, a conexão entre nós. Nesta situação, o tipo de sucessor que proporciona o maior valor de betweenness comparado com outros, é o walk que utiliza qualquer nó, sem restrições, permitindo que o nó e as arestas possam ser repetidas. Já o closeness de um nó, é a característica dele de estar próximos de todos os outros nós, ou seja, quanto mais central esse nó é, mais perto de todos os outros ele está. Nesta situação, o tipo de sucessor que proporciona o maior valor de closeness comparado com outros, é o geodesic que utiliza o nó que tenha o menor caminho possível.

Gráficos

Gráfico 1. Dispersão da **closeness** de cada família para os quatro tipos de sucessor e para os dois tipos de difusão.

Gráfico 2. Dispersão da **betweenness** de cada família para os quatro tipos de sucessor e para os dois tipos de difusão.

Tabelas

Família	Geodesic Transf	Path Transf.	Trail Transf.	Walk Transf.	Geodesic Dupl.	Path Dupl.	Trail Dupl.	Walk Dupl.
ginori	0.333333	0.203762	0.219295	0.0392968	0.333333	0.230447	0.222415	0.142594
lambertes	0.325581	0.209811	0.209865	0.0377029	0.325581	0.231648	0.228333	0.145145
albizzi	0.482759	0.255336	0.265276	0.0359827	0.482759	0.257133	0.24791	0.157777
guadagni	0.466667	0.264144	0.272909	0.0355945	0.466667	0.264453	0.253395	0.15911
pazzi	0.285714	0.202703	0.199604	0.0405814	0.285714	0.20411	0.199741	0.127429
salviati	0.388889	0.246126	0.241919	0.0386599	0.388889	0.22642	0.218336	0.142512
medici	0.56	0.30159	0.280575	0.0342665	0.56	0.264743	0.254853	0.167424
tornabuon	0.482759	0.257587	0.254562	0.035464	0.482759	0.281818	0.26528	0.170741
bischeri	0.4	0.248828	0.233342	0.0352194	0.4	0.263802	0.250542	0.157672
ridolfi	0.482759	0.258884	0.236774	0.0366744	0.482759	0.276447	0.264253	0.168317
acciaiuol	0.368421	0.238998	0.221739	0.0380767	0.368421	0.23804	0.230273	0.154796
strozzi	0.424242	0.236999	0.225265	0.0352991	0.424242	0.264565	0.251065	0.157553
peruzzi	0.35	0.227519	0.244469	0.0376768	0.35	0.253175	0.237174	0.146578
barbadori	0.4375	0.241832	0.261089	0.0373295	0.4375	0.265118	0.253397	0.169907
castellan	0.388889	0.259496	0.228273	0.0366236	0.388889	0.256607	0.243689	0.152232

Tabela 1. Valores de **closeness simulado** para cada família obtidos em diferentes tipos de trajetória e *difusão*, *quanto mais escura a cor maior o valor agregado.*

	geodesic		path		trail		walk	
	média	std	média	std	média	std	média	std
Transfer	0.4118	0.0742	0.2435	0.0258	0.2396	0.0235	0.0369	0.0017
Duplication	0.4118	0.0742	0.2519	0.0212	0.2413	0.0183	0.1546	0.0122

Tabela 2. Valores de média e desvio padrão para medida de centralidade **closeness** referentes às combinações entre diferentes tipos de **difusão** e **sucessores**..

Família	Geodesic Transf	Path Transf.	Trail Transf.	Walk Transf.	Geodesic Dupl.	Path Dupl.	Trail Dupl.	Walk Dupl.
ginori	0	0	0	0.742418	0	0.393791	0.371319	0.796374
lambertes	0	0	0	0.762033	0	0.401978	0.394835	0.698297
albizzi	0.212473	0.228187	0.263132	2.42885	0.572088	0.615604	0.684725	3.04225
guadagni	0.256703	0.406593	0.402418	3.28736	0.692088	0.740385	0.893242	4.47676
pazzi	0	0	0	0.68478	0	0.257308	0.263187	0.768407
salviati	0.142857	0.142857	0.142857	1.52769	0.406593	0.437033	0.422747	1.82033
medici	0.522527	0.622802	0.699451	4.96962	1.38775	0.822637	1.26044	6.97412
tornabuon	0.0889011	0.329615	0.319396	2.44324	0.245275	0.679835	0.927802	2.4472
bischeri	0.120659	0.365714	0.342747	2.42813	0.31533	0.647747	0.780275	2.77692
ridolfi	0.0891209	0.358407	0.333242	2.43401	0.246264	0.700824	0.927363	2.54203
acciaiuol	0	0	0	0.755165	0	0.389725	0.371209	0.586758
strozzi	0.0775275	0.367527	0.328846	2.41253	0.204505	0.679945	0.888571	2.69434
peruzzi	0.0223626	0.248462	0.230275	1.57044	0.0556044	0.518516	0.588242	1.68126
barbadori	0.11522	0.244396	0.268242	1.5978	0.317857	0.578736	0.597692	1.5017
castellan	0.0879121	0.390769	0.376703	2.41582	0.23044	0.613791	0.834066	3.1283

Tabela 3. Valores de **betweenness simulado** para cada família obtidos em diferentes tipos de trajetória e *difusão*, *quanto mais escura a cor maior o valor agregado*.

	geodesic		path		trail		walk	
	média	std	média	std	média	std	média	std
Transfer	0.1157	0.1366	0.2470	0.1871	0.2471	0.1945	2.0306	1.1501
Duplication	0.3115	0.3645	0.5651	0.1589	0.6803	0.2814	2.3956	1.6798

Tabela 4. Valores de média e desvio padrão para medida de centralidade **betweenness**, referentes às combinações entre diferentes tipos de **difusão** e **sucessores**.