Binomial Trees

letslearncs.com/binomial-trees

Shivani 2014년 5월 30일

Computer Science at fingertips

Binomial Trees are one of the type of trees that are defined **recursively**. A Binomial tree of order 0 is a single node and a binomial tree of order n has a root node whose children are roots of binomial trees of order n-1, n-2, n-3, n-4,3,2,1,0.

Properties of Binomial Tree

- There are 2ⁿ nodes in a binomial tree of order n where n is the order and degree of tree(Fig 1).
- Deleting roots yield binomial trees B_{n-1},B_{n-2},....0.
- B_n has $\binom{n}{d}$ **nodes** at depth d.

Binomial Tree of height/order(n)=0

When height =0 then single node will be present in Binomial tree(Fig 2).

Binomial Tree at height (n)=1

When n=1 then $2^1 = 2$ nodes will be present in the tree(Fig 3).

Binomial Tree of order=2

When n=2 then 2^2 = **4 nodes** will be present in the tree. The subtree is **binomially** attached to the root node(Fig 4).

Binomial Tree of order 3

If order of tree is 3,then 2³ nodes are present in the Binomial tree. **The root is connected to subtrees of order 0**(green color), **1**(red) **and 2**(black)(Fig 5).

 B_n has $\binom{n}{d}$ nodes at depth d.

If we have a binomial tree of order n,then we can trace the number of nodes at any depth by $\binom{n}{d}$. For e.g the no of nodes of binomial tree of order 4 at depth 2 will be **6**. (Fig 6). In fig 7, number of nodes at level 2 is 6 and is shown by red highlighted area.

Rate this post

Last posts