```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Importing our dataset
data = pd.read csv(r"C:\Users\Raman\Downloads\heart.csv")
data
      age sex cp trestbps chol fbs restecg thalach exang
oldpeak \
       52
              1
                  0
                            125
                                  212
                                          0
                                                            168
                                                                      0
1.0
                           140
                                  203
                                                            155
1
       53
              1
                  0
                                                                      1
3.1
2
       70
                           145
                                  174
                                                    1
                                                            125
                                                                      1
              1
                  0
                                          0
2.6
3
                           148
                                                            161
       61
                                  203
                                                    1
                                                                      0
0.0
4
       62
              0
                  0
                           138
                                  294
                                                    1
                                                            106
                                                                      0
1.9
. . .
. . .
                            140
1020
       59
                                  221
                                                            164
                                                                      1
0.0
                            125
                                  258
                                                            141
                                                                      1
1021
       60
                  0
                                          0
2.8
1022
       47
                           110
                                  275
                                                            118
                                                                      1
1.0
1023
       50
              0
                  0
                           110
                                  254
                                          0
                                                    0
                                                            159
                                                                      0
0.0
1024
       54
              1
                  0
                           120
                                  188
                                          0
                                                    1
                                                            113
                                                                      0
1.4
      slope
              ca
                  thal
                         target
                      3
0
           2
               2
                               0
1
           0
               0
                      3
                               0
2
           0
               0
                      3
                               0
3
           2
               1
                      3
                               0
4
           1
               3
                      2
                               0
                    . . .
1020
           2
               0
                      2
                               1
               1
                               0
1021
           1
                      3
1022
               1
                      2
                               0
           1
1023
           2
               0
                      2
                               1
1024
           1
               1
                      3
                               0
```

[1025 rows x 14 columns]

```
# Accessing Only the column names
data.columns.values
array(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg',
       'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal',
'target'],
     dtype=object)
# Checking for the Null values
data.isna().sum()
age
           0
sex
           0
ср
trestbps
           0
chol
fbs
           0
           0
restecq
thalach
           0
           0
exang
           0
oldpeak
           0
slope
           0
ca
           0
thal
target
dtype: int64
# Summary of our Dataset
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
              Non-Null Count Dtype
#
    Column
     -----
              1025 non-null
 0
    age
            1025 non-null
                              int64
 1
                              int64
    sex
 2
             1025 non-null
                              int64
    ср
 3
    trestbps 1025 non-null
                              int64
4
                              int64
    chol
              1025 non-null
 5
              1025 non-null
    fbs
                              int64
 6
              1025 non-null
    restecg
                              int64
 7
    thalach 1025 non-null
                              int64
 8
              1025 non-null
                              int64
    exang
    oldpeak 1025 non-null
 9
                              float64
                              int64
10 slope
             1025 non-null
 11
              1025 non-null
                              int64
    ca
 12 thal
             1025 non-null
                              int64
 13 target
              1025 non-null
                              int64
```

```
dtypes: float64(1), int64(13)
memory usage: 112.2 KB
# Plotting Histograms of All Numeric Values:
data.hist(bins = 100, grid = False, figsize = (20,15))
array([[<Axes: title={'center': 'age'}>, <Axes: title={'center':</pre>
'sex'}>,
        <Axes: title={'center': 'cp'}>,
        <Axes: title={'center': 'trestbps'}>],
       [<Axes: title={'center': 'chol'}>,
        <Axes: title={'center': 'fbs'}>,
        <Axes: title={'center': 'restecg'}>,
        <Axes: title={'center': 'thalach'}>],
       [<Axes: title={'center': 'exang'}>,
        <Axes: title={'center': 'oldpeak'}>,
        <Axes: title={'center': 'slope'}>,
<Axes: title={'center': 'ca'}>],
       [<Axes: title={'center': 'thal'}>,
        <Axes: title={'center': 'target'}>, <Axes: >, <Axes: >]],
      dtype=object)
```


#Generating the Descriptive Statistics

data.describe()

	age	sex	ср	trestbps	chol
\					
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000
mean	54.434146	0.695610	0.942439	131.611707	246.00000
std	9.072290	0.460373	1.029641	17.516718	51.59251
min	29.000000	0.000000	0.000000	94.000000	126.00000
25%	48.000000	0.000000	0.000000	120.000000	211.00000
50%	56.000000	1.000000	1.000000	130.000000	240.00000
75%	61.000000	1.000000	2.000000	140.000000	275.00000
max	77.000000	1.000000	3.000000	200.000000	564.00000

\	fbs	restecg	thalach	exang	oldpeak
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.000000
mean	0.149268	0.529756	149.114146	0.336585	1.071512
std	0.356527	0.527878	23.005724	0.472772	1.175053
min	0.000000	0.000000	71.000000	0.000000	0.000000
25%	0.000000	0.000000	132.000000	0.000000	0.000000
50%	0.000000	1.000000	152.000000	0.000000	0.800000
75%	0.000000	1.000000	166.000000	1.000000	1.800000
max	1.000000	2.000000	202.000000	1.000000	6.200000
count mean std min 25% 50% 75% max	slope 1025.000000 1.385366 0.617755 0.000000 1.000000 2.000000 2.000000	ca 1025.000000 0.754146 1.030798 0.000000 0.000000 1.000000 4.000000	thal 1025.000000 2.323902 0.620660 0.000000 2.000000 2.000000 3.000000 3.000000	target 1025.000000 0.513171 0.500070 0.000000 1.000000 1.000000 1.000000	

questions = ["1. How Many people have heart disease and how many people doesn't have heart disease ?",

- "2. People of which sex has most heart disease ?",
- "3. People of which sex has which type of chest pain most?",

"4. People with which chest pain are most pron to have heart disease?"]

questions

- ["1. How Many people have heart disease and how many people doesn't have heart disease ?",
 - '2. People of which sex has most heart disease ?',
 - '3. People of which sex has which type of chest pain most?',
- '4. People with which chest pain are most pron to have heart disease?']

1. How Many people have heart disease and how many people doesn't have heart disease?

```
data.head()
   age sex cp trestbps
                             chol fbs
                                         restecg thalach exang
                                                                    oldpeak
slope \
          1
               0
                        125
                              212
                                                       168
                                                                        1.0
    52
                                      0
2
                        140
1
    53
           1
               0
                              203
                                      1
                                                       155
                                                                 1
                                                                        3.1
0
2
                        145
                              174
                                                       125
                                                                        2.6
    70
          1
               0
                                      0
0
3
           1
               0
                        148
                              203
                                      0
                                                       161
                                                                        0.0
    61
2
4
    62
          0
               0
                        138
                              294
                                      1
                                                       106
                                                                 0
                                                                        1.9
1
       thal
              target
   ca
0
    2
           3
           3
1
                   0
    0
2
    0
           3
                   0
           3
3
                   0
    1
          2
                   0
    3
data['target'].value_counts()
target
     526
1
     499
Name: count, dtype: int64
data.target.value counts().plot(kind = 'bar', color =
["orchid", "salmon\overline{}])
plt.title("Heart Disease Values")
plt.xlabel("1 = Heart Disease, 0 = No Heart Disease")
plt.ylabel("Amount")
Text(0, 0.5, 'Amount')
```



```
# Plotting a Pie Chart

data.target.value_counts().plot(kind = 'pie', figsize = (8, 6))
plt.legend(["Disease", "No Disease"])

<matplotlib.legend.Legend at 0x1b8e9a34250>
```



```
# Checking the Number of Males and Females in the Dataset
# 1 - represents the MALE; 0 - represents the FEMALE
# 0 - represents No Disease; 1 - represents the Disease

data.sex.value_counts()

sex
1    713
0    312
Name: count, dtype: int64
# Plotting a Pie Chart

data.sex.value_counts().plot(kind = 'pie', figsize = (8, 6))
plt.title("Male Female Ratio")
plt.legend(["Male", "Female"])
<matplotlib.legend.Legend at 0x1b8ea4f40d0>
```


2. People of which sex has most heart disease?

```
pd.crosstab(data.target,data.sex)

sex      0    1
    target
      0      86    413
      1      226    300

sns.countplot( x = 'target', data = data, hue = 'sex')
plt.title("Heart Disease frequence for sex")
plt.xlabel("0 = No Heart Disease, 1 = Heart Disease")

Text(0.5, 0, '0 = No Heart Disease, 1 = Heart Disease')
```


3. People of which sex has which type of chest pain most?

data.head()										
c 1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak
0	ope 52	1	0	125	212	0	1	168	0	1.0
2 1	53	1	0	140	203	1	0	155	1	3.1
0	70	1	0	145	174	0	1	125	1	2.6
0 3 2 4	61	1	0	148	203	0	1	161	0	0.0
2	62	0	0	138	294	1	1	106	0	1.9
1		_				_	_	_,_		
0 1 2 3 4	ca 2 0 0 1 3	thal 3 3 3 3 2	tar	get 0 0 0 0 0						

```
# Counting the values for different chest pain:
data.cp.value_counts()
ср
0
     497
2
     284
1
     167
3
     77
Name: count, dtype: int64
# Plottting a Bar Chart
data.cp.value_counts().plot(kind = 'bar', color =
['salmon','lightskyblue','springgreen','khaki'])
plt.title('Chest Pain type vs Count')
Text(0.5, 1.0, 'Chest Pain type vs Count')
```



```
pd.crosstab(data.sex, data.cp)

cp  0  1  2  3
sex
```

```
0   133   57   109   13
1   364   110   175   64

pd.crosstab(data.sex, data.cp).plot(kind = 'bar', color = ['coral', 'lightskyblue', 'plum', 'khaki'])
plt.title('Type of Chest pain for Sex')
plt.xlabel("0 = Female,   1 = Male")

Text(0.5, 0, '0 = Female ,  1 = Male')
```


4. People with which chest pain are most pron to have heart disease?

```
pd.crosstab(data.cp, data.target)
       0 1
target
ср
0
        375
            122
1
             134
         33
2
         65
            219
3
         26
             51
sns.countplot(x = 'cp', data = data, hue = 'target')
<Axes: xlabel='cp', ylabel='count'>
```



```
# Create a Distribution plot with a Normal Distribution curve
sns.displot( x = 'age', data = data, bins = 30, kde = True)
C:\Users\Raman\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
UserWarning: The figure layout has changed to tight
    self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.FacetGrid at 0x1b8edb47b50>
```


58-59 years people are more in number according to the data set
sns.displot(x = 'thalach', data = data, bins = 30, kde = True, color
= 'chocolate')
C:\Users\Raman\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.FacetGrid at 0x1b8f313c5d0>

