M374MHomework #10

Logan.

Sections 4.2, 4.3: p.234 print [p.405 ut ebook] $(\#3^1,13^2)$. p.243 print [p.419 ut ebook] $(\#2^3ab,4)$.

¹Find first variation at y_0 for arbitrary h as described, and show result vanishes. The functional is $J(y) = \int_0^1 (1+x)(y')^2 dx$.

²For arbitrary y and h consider $J(y+\epsilon h)$. Find an expression for the second variation $\frac{d^2}{d\epsilon^2}J(y+\epsilon h)|_{\epsilon=0}$.

³Assume [a, b] = [1, 2] and y(1) = 0 and y(2) = 1.

Mini-project.

When stretched between two symmetrically placed rings, a thin soap film will form a curved surface of revolution. If we denote the profile curve by y(x) where $x \in [-L, L]$, then the surface area is given by

The specific shape adopted by the film can be described as that which minimizes the functional A(y) in a given function space. Here we find candidates for local minimizers in the C^2 -norm in the space $V = \{y \in C^2[-L, L] \mid y(-L) = \alpha, \ y(L) = \beta, \ y(x) > 0\}$. For simplicity, we assume $\alpha = \beta > 0$.

(a) After a change of variable $x \to x/L$ and $y \to y/L$, show that any local minimizer $y_* \in V$ must satisfy the following boundary-value problem, where $\gamma = \alpha/L$:

$$yy'' - (y')^2 = 1, \quad -1 \le x \le 1. \qquad y(-1) = \gamma, \quad y(1) = \gamma.$$
 (1)

(b) Consider the smooth function $y_*(x) = \frac{1}{c} \cosh(cx+d)$, where c > 0 and d are arbitrary constants. Show that y_* satisfies the differential equation. Moreover, show that y_* will satisfy the boundary conditions and hence will be in the space V only if d = 0 and c > 0 satisfies the equation

$$\cosh(c) = \gamma c. \tag{2}$$

- (c) Show that (2) has two solutions for c if $\gamma > \gamma_{\#}$, one solution if $\gamma = \gamma_{\#}$, and no solution if $0 < \gamma < \gamma_{\#}$, where $\gamma_{\#}$ is an appropriate constant which you should find. Hence we have two, one or no candidates for a local minimizer $y_* \in V$ depending on the value of γ .
- (d) In the case when $\gamma > \gamma_{\#}$ and there are two candidate curves y_* , it can be shown that the candidate with the smaller c is indeed a local minimizer whereas the other is not. Find and make plots of these curves on [-1,1] for the case $\gamma=2$ and indicate which is the local minimizer. When $\gamma \leq \gamma_{\#}$, it can be shown that there are no local minimizers of A in V; in this case, a surface of minimum area no longer has a class C^2 profile graph. What do you think might happen to the soap film in this case? [Try it by direct experiment with some bubble solution and wire rings! Note that decreasing γ is equivalent to increasing L with fixed α .]

Turn in: responses to (a)–(d).