Projet SDP Systèmes de Décision

Introduction

Contraintes:

- Qualification du personnel
- Un seul projet en même temps
- Congés du personnel à respecter
- Date de livraison du projet
- Nombre de jours de travail

Objectifs:

- Maximiser le gain financier
- Minimiser le nombre maximum d'affectations par employé
- Minimiser la durée maximale d'un projet

Personnel			
nom	compétences		
alice	A,B		
bob	С		
charlie	Α		
david	В		
eve	A,B,C		

	Projets				
	Α	В	С		
I	4	3	2		
II	3	2	7		
Ш	4	1	5		
IV	3	3	3		
V	1	1	4		

- → Comment modéliser le problème ?
- → Quelles sont les solutions intéressantes ?
- → Comment choisir parmi ces solutions ?

Plan de la présentation

1) Modélisation du problème de planning

2) Calcul de la surface des solutions non-dominées

3) Modèle de préférence

1) Modélisation du problème de planning

Paramètres d'une instance

Paramètres relatifs aux indices :

- $Workers = \{0, ..., W-1\}$ est l'ensemble du personnel $(W \in \mathbb{N} \setminus \{0\})$.
- $\mathcal{J}obs = \{0, \dots, J-1\}$ est l'ensemble des projets $(J \in \mathbb{N} \setminus \{0\})$.
- $Skills = \{0, ..., S-1\}$ est l'ensemble des compétences $(S \in \mathbb{N} \setminus \{0\})$.
- $\mathcal{D}ays = \{0, \dots, D-1\}$ est l'ensemble des jours de travail (horizon $D \in \mathbb{N} \setminus \{0\}$).

Paramètres relatifs aux projets :

- $\forall j \in \mathcal{J}obs$, $Gains[j] \in \mathbb{N}$ est le gain obtenu si le projet j est réalisé.
- $\forall j \in \mathcal{J}obs$, $Penalities[j] \in \mathbb{N}$ est la pénalité par jour de retard du projet j.
- $\forall j \in \mathcal{J}obs$, $Due_Dates[j] \in \mathcal{D}ays$ est la date de livraison du projet j négociée avec le client.
- $\forall (j,s) \in \mathcal{J}obs \times \mathcal{S}kills$, $Work_Days[j,s] \in \mathbb{N}$ est pour une compétence donnée s, le nombre de jours de travail par personne nécessaires pour que le projet j soit réalisé.

Paramètres relatifs au personnel :

- $\forall (w,s) \in Workers \times Skills$, $Qualifications[w,s] \in \{0,1\}$ vaut 1 si le travailleur w possède la compétence s, 0 sinon.
- $\forall (w,d) \in Workers \times \mathcal{D}ays$, $Vacations[w,d] \in \{0,1\}$ vaut 1 si le travailleur w est en congé le jour d, 0 sinon.

Variables de décision pour le planning

Variable modélisant un planning complet :

• $\forall (w, j, s, d) \in Workers \times \mathcal{J}obs \times \mathcal{S}kills \times \mathcal{D}ays$, $Works[w, j, s, d] \in \{0, 1\}$ vaut 1 si le collaborateur w travaille sur le projet j, le jour d, avec la compétence s, 0 sinon.

Variable pour calculer le gain total :

• $\forall j \in \mathcal{J}obs$, $Is_Realized[j] \in \{0,1\}$ vaut 1 si le projet j est réalisé, 0 sinon.

Contraintes liées au planning

• Contrainte de qualification du personnel : $\forall (w, j, s, d) \in Workers \times \mathcal{J}obs \times \mathcal{S}kills \times \mathcal{D}ays$,

$$Works[w, j, s, d] \leq Qualifications[w, s]$$

- Contrainte d'unicité de l'affectation quotidienne du personnel : réalisée par la contrainte de congé
- Contrainte de congé : $\forall (w,d) \in Workers \times Days$,

$$\sum_{(j,s)\in\mathcal{J}obs\times\mathcal{S}kills}Works[w,j,s,d]\leq 1-Vacations[w,d]$$

• Contrainte de couverture des qualifications du projet : $\forall (j, s) \in \mathcal{J}obs \times \mathcal{S}kills$,

$$\sum_{(w,d) \in \mathcal{W}orkers \times \mathcal{D}ays} Works[w,j,s,d] = Is_Realized[j] \times Work_Days[j,s]$$

• Contrainte d'unicité de la réalisation d'un projet : réalisée par définition de $Is_Realized[j] \in \{0,1\}$

Autres variables de décision

- Pour le calcul de la durée et des pénalités en cas de retard :
- $\forall (j,d) \in \mathcal{J}obs \times \mathcal{D}ays$, $Started_After[j,d] \in \{0,1\}$ vaut 1 à partir du jour où le travail est commencé pour un projet donné j, 0 sinon.
- $\forall (j,d) \in \mathcal{J}obs \times \mathcal{D}ays$, $Finished_Before[j,d] \in \{0,1\}$ vaut 1 à partir du jour où le travail est fini pour un projet donné j, 0 sinon.

Indice jour	0	1	2	3	4	5	6	7	8
Jour travaillé	0	0	1	1	0	1	0	0	0
$Started_After$	0	0	1	1	1	1	1	1	1
$Finished_Before$	0	0	0	0	0	0	1	1	1

Autres variables de décision

• Pour le calcul de la durée maximale :

 $Max_Duration \in \mathbb{N}$ représente la durée maximale tout projet confondu.

- Pour le calcul du nombre maximal d'affectations :
- $\forall (w,j) \in Workers \times \mathcal{J}obs$, $Is_Assigned[w,j] \in \{0,1\}$ vaut 1 si le collaborateur w est affecté au projet j, 0 sinon.
- $Max_Assigned \in \mathbb{N}$ représente le nombre maximal de projets auxquels un quelconque collaborateur est affecté.

Objectifs

Objectif principal: Maximisation du gain financier de l'entreprise

$$\max f_1 = \sum_{j \in \mathcal{J}obs} \left(Gains[j] \times Is_Realized[j] - Penalities[j] \times \sum_{d \in \{Due_Dates[j]+1,...,D-1\}} (1 - Finished_Before) \right)$$

Objectifs secondaires:

- Minimisation du nombre maximum d'affectations par employé
- Minimisation de la durée maximale d'un projet

$$\min f_2 = Max_Assigned$$

$$\min f_3 = Max_Duration$$

Résultats sur l'instance toy

	Α	В	С	due date	gain	penalty
Job1	1	1	1	3	20	3
Job2	1	2	0	3	15	3
Job3	1	0	2	4	15	3
Job4	0	2	1	3	20	3
Job5	0	0	2	5	10	3

	qualifications	vacations
Olivia	[A, B, C]	[]
Liam	[A, B]	[0]
Emma	[C]	[1]

Planning obtenu sur *l'instance toy* en optimisant séquentiellement les objectifs.

- Gain financier = 65
- Nombre maximal d'affectations = 2
- Durée maximale = 3

2) Calcul de la surface des solutions non-dominées

Calcul de la surface des solutions non-dominées

$$f = f_1 - \epsilon_2 f_2 - \epsilon_3 f_3$$

```
\begin{split} \varepsilon_{duration} &= \text{horizon} \\ \varepsilon_{assigned} &= \text{len(jobs)} \\ \text{while } \varepsilon_{duration} \geq 0 : \\ &= \text{add constraint(max duration} <= \varepsilon_{duration}) \\ &= \text{next}\_\varepsilon_{duration} = 0 \\ &= \text{while } \varepsilon_{assigned} \geq 0 : \\ &= \text{add constraint(max assigned} <= \varepsilon_{assigned}) \\ &= \text{solution} \leftarrow \text{model.optimize()} \\ &= \text{save(solution)} \\ &= \varepsilon_{assigned} = \text{solution's assigned} - 1 \\ &= \text{next}\_\varepsilon_{duration} = \text{max(next}\_\varepsilon_{duration}, \text{ solution's assigned)} \\ &= \text{remove previous constraint on assigned} \\ &= \varepsilon_{duration} = \text{next}\_\varepsilon_{duration} - 1 \\ &= \text{remove previous constraint on duration} \end{split}
```

Surfaces des instances

Surface de l'instance jouet

Surfaces des instances

3) Modèle de préférence

Modèle de préférence

Objectif : Classer les solutions non-dominées et les séparer en 3 catégories

inacceptable < correct < satisfaisant

Score d'un planning = Somme pondérée des 3 critères normalisés

Labélisation d'un planning = En fonction du score et de 2 seuils

Modèle de préférence

Résolution d'un problème d'optimisation linéaire Exemples de plannings labélisés pour calculer les poids et seuils

3) Contraintes:

Normalisation :

$$\omega_1 + \omega_2 + \omega_3 = 1$$

• Catégorie inacceptable : $\forall (f_1, f_2, f_3) \in \mathcal{I}$,

$$f_1\omega_1 + f_2\omega_2 + f_3\omega_3 \le \theta_1 - \epsilon$$

- Catégorie correcte :
 - \forall (f₁, f₂, f₃) ∈ C,
 - \forall (f₁, f₂, f₃) ∈ C,
- Catégorie satisfaisante : $\forall (f_1, f_2, f_3) \in \mathcal{S}$,

 $f_1\omega_1 + f_2\omega_2 + f_3\omega_3 < \theta_2 - \epsilon$

$$f_1\omega_1 + f_2\omega_2 + f_3\omega_3 \ge \theta_1 + \epsilon$$

 $f_1\omega_1 + f_2\omega_2 + f_3\omega_3 \ge \theta_2 + \epsilon$

- $(\omega_1, \omega_2, \omega_3) \in [0, 1]^3$ sont les poids des trois critères.
- $(\theta_1, \theta_2) \in [0, 1]^2$ sont les seuils des catégories.
- $\epsilon \in [0,1]$ représente la marge de séparation des catégories

4) Objectifs:

 $\max \epsilon$

Afin de séparer au maximum les 3 catégories

Modèle de préférence

Labélisation de 6 solutions non-dominées de toy_instance

inacceptable: résultat financier trop faible ou trop grand nb maximum d'affectations

correct/satisfaisant: gain prioritaire

inacceptables

corrects

satisfaisants

Résultats avec le modèle de préférence

Poids obtenus : $\omega_1 = 0.50$, $\omega_2 = 0.41$ et $\omega_3 = 0.09$.

Cohérents avec les préférences données en entrée du modèle de priorisation des critères.

gain > max_assignations >> duree_max

Meilleur planning obtenu sur le toy_instance :

- Meilleur gain parmi les solutions non-dominées
- Remplit les conditions sur le nombre maximum d'assignations et la durée maximum de projet

Annexe: Création d'instances aléatoires

- Horizon → loi exponentielle privilégiant les horizons courts (~5 jours)
- Nombre de **travailleurs**, **jobs** et **compétences** → randint(1, 10)
- Membre du personnel :
 - Qualifications → Nombre et choix tiré uniformément parmi les compétences existantes
 - Congés → Tirage privilégiant les petits nombres, choix des jours uniforme jusqu'à l'horizon
- Projets à réaliser :
 - \circ **Gain** \rightarrow randint(10, 80)
 - Date de rendu (aléatoire)
 - Nombre de jours de travail
 - Qualifications requises

Annexe: Autres contraintes

```
- \forall (w, j, s, d) \in Workers \times Jobs \times Sills \times Days,
                                                  Works[w, j, s, d] \leq Started\_After[j, d]
- \forall (j,d) \in \mathcal{J}obs \times \mathcal{D}ays \setminus \{D-1\},\
                                             Started\_After[j, d] \leq Started\_After[j, d + 1]
- \forall (j,d) \in \mathcal{J}obs \times \mathcal{D}ays,
                                                1 - Started\_After[j, d] \le Is\_Realized[j]
   (pour des raisons de praticité, on fixe Started_After à 1 lorsque le projet n'est pas réalisé)
- \forall (w, j, s, d) \in Workers \times Jobs \times Sills \times Days,
                                             Works[w, j, s, d] \leq 1 - Finished\_Before[j, d]
- \forall (j,d) \in \mathcal{J}obs \times \mathcal{D}ays \setminus \{D-1\},\
                                         Finished\_Before[j,d] \leq Finished\_Before[j,d+1]
- \forall (j,d) \in \mathcal{J}obs \times \mathcal{D}ays,
                                              1 - Finished\_Before[j, d] \le Is\_Realized[j]
   (pour des raisons de praticité, on fixe Finished_Before à 1 lorsque le projet n'est pas réalisé)
```

Annexe: Autres contraintes

• $Max_Duration : \forall j \in \mathcal{J}obs,$

$$\sum_{d \in \mathcal{D}ays} Started_After[j,d] - Finished_Before[j,d] \leq Max_Duration$$

- *Is_Assigned* :
 - $\forall (w, j, s, d) \in Workers \times Jobs \times Sills \times Days$,

$$Works[w, j, s, d] \leq Is_Assigned[w, j]$$

- $\forall (w, j) \in Workers \times Jobs,$

$$Is_Assigned[w, j] \le \sum_{(s,d) \in Sills \times \mathcal{D}ays} Works[w, j, s, d]]$$

• $Max_Assigned : \forall w \in Workers$,

$$\sum_{j \in \mathcal{J}obs} Is_Assigned[w,j] \leq Max_Assigned$$