Function Approximation & DQN

Slides from

- 1. 이웅원 외, 파이썬과 케라스로 배우는 강화학습, 주교재
- 2. 이웅원, 가깝고도 먼 DeepRL, PPT
- 3. David Silver, Reinforcement Learning, PPT

References

- 1. Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, MIT Press
- 2. 유튜브, 전민영, 노승은, 강화학습의 기초 이론, 팡요랩

Contents

- 1. 강화학습이 풀고자 하는 문제 : Sequential Decision Problem
- 2. 문제에 대한 수학적 정의 : MDP & Bellman Equation
- 3. MDP를 계산으로 푸는 방법 : Dynamic Programming
- 4. MDP를 학습으로 푸는 방법 : Reinforcement Learning
- 5. 상태공간이 크고 차원이 높을 때 쓰는 방법 : Function Approximation & DQN
- 6. 인공신경망으로 정책을 근사하는 방법: Policy Gradient & Actor-Critic

고전 강화학습의 한계

- Tabular Solution Methods
 - 모든 상태의 큐함수를 테이블의 형태로 저장
 - 모든 상태의 큐함수를 방문할 때마다 하나씩 업데이트
 - 모든 상태를 충분히 방문해야 최적의 큐함수에 수렴
- >비효율적인 업데이트 방식
- ▶적용할 수 있는 문제의 제한
 - 간단한 문제
 - 환경이 변하지 않는 문제

고전 강화학습 알고리즘의 한계

1. 환경이 변하지 않는 Grid world

상태 : 2차원, 25개 (1) 에이전트 의 위치 (x, y)

2. 환경이 변하는 Grid world

상태 : 15차원,

18,225,000개

- (1) 에이전트에 대한 도착지 점의 상대 위치 (x, y)
- (2) 도착지점의 레이블
- (3) 에이전트에 대한 장애물 의 상대 위치 (x, y)
- (4) 장애물의 레이블
- (5) 장애물의 속도(방향)

고전 강화학습 알고리즘의 한계

- 1. TD-gammon이 학습했던 Backgammon의 가능한 state 수 ▶10²⁰개
- 2. AlphaGo가 학습했던 바둑의 가능한 state 수 ▶10²⁷⁰개
- 3. Possible Camera image?
- 4. Robot, Drone -> Continuous state space

근사함수를 통한 일반화

- 1. 대부분 강화학습을 적용하고 싶은 문제 -> Large state space
- 2. Large state space : 많은 양의 메모리, 계산량, 데이터 필요
- 3. 한정된 양의 자원 -> Good approximate solution
- 4. 비슷한 state는 비슷한 function의 output을 가질 것 -> Generalization!!
 - 어떻게 지금까지 방문한 state들에 대한 경험으로 전체 문제에 대해 generalize 할 수 있을까?
- 5. Generalization을 하기 위해 Supervised Learning의 기법을 가져다 쓰자!
 - Function Approximation : Target function 이 있고 그 target function을 approximate 하는 function을 찾기

매개변수로 근사

$$y = ax^3 + bx^2 + cx + d$$

좌측의 데이터를 3차 함수로 근사

- ▶ 4개의 매개변수(a,b,c,d)만으로 좌측의 데이터를 대체
- > Function Approximation!

강화학습과 Function approximation

Q-Learning에서

- 1. Target function : 큐함수
- 2. 방문한 상태들에 대한 경험 -> 다른 상태들의 큐함수를 generalize
- 3. Approximate하는 함수의 parameter : θ

$$q_{\theta}(s,a) \sim q_{\pi}(s,a)$$

강화학습과 Function approximation

1. Table 형태의 큐함수

AS	s_0	s_1	s_2	s_3	<i>s</i> ₄	
a_0	$q(s_0,a_0)$	$q(s_1,a_0)$	$q(s_2,a_0)$	$q(s_3,a_0)$	$q(s_4,a_0)$	
a_1	$q(s_0, a_1)$	$q(s_1,a_1)$	$q(s_2, a_1)$	$q(s_3,a_1)$	$q(s_4,a_1)$	
a_2	$q(s_0, a_2)$	$q(s_1, a_2)$	$q(s_2,a_2)$	$q(s_3,a_2)$	$q(s_4, a_2)$	
a_3	$q(s_0,a_3)$	$q(s_1,a_3)$	$q(s_2,a_3)$	$q(s_3,a_3)$	$q(s_4,a_3)$	

Types of Value Function Approximation

강화학습과 Function approximation

2. 함수 형태로 근사한 큐함수

Which Function Approximator?

There are many function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- ...

근사함수로 인공신경망을 이용

인공신경망의 학습

- Function approximation으로 인공신경망을 사용하므로 지도 학습의 기법들을 가져올 수 있음
- 지도학습의 학습 데이터

- 인공신경망의 출력 : 큐함수에 대한 예측 ▶큐함수의 값은 continuous -> Regression
- 오차함수 (Loss Function) ➤Mean square error : 오차 = (정답 – 예측)²
- 인공신경망의 학습
 ▶오차함수를 최소화 하도록 인공신경망의 파라미터를 업데이트

인공신경망의 학습

• 업데이트 대상 : 각 큐함수의 값 -> 큐함수의 parameter 값 $q_{\theta}(s,a)$ -> θ

• 업데이트 방법 : Back-propagation & Gradient descent

>업데이트 값 ∝ 오차 × 오차기여도

강화학습과 Neural Network

- 1. Nonlinear function approximation -> Neural Network
 - Neural Network의 activation function이 nonlinear
- 2. Neural Network를 이용한 큐함수 근사
- 3. 큐함수의 업데이트
 - MSE error에 대한 gradient

>SARSA:
$$\nabla_{\theta}(r + \gamma q_{\theta}(s', a') - q_{\theta}(s, a))^2$$

$$ightharpoonup$$
Q-Learning: $\nabla_{\theta} \left(r + \gamma \max_{a'} q_{\theta}(s', a') - q_{\theta}(s, a) \right)^2$

■ 계산한 gradient를 backpropagation

SARSA with function approximation

• SARSA의 큐함수 업데이트 식

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

- 경사하강법
 - 정답 역할: $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$
 - 예측 역할 : $Q(S_t, A_t)$
 - MSE = (정답 예측)² = $(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t))^2$

SARSA with function approximation

SARSA with function approximation

- 신경망을 이용한 SARSA 학습 과정
- 1. 상태 관찰
- 2. 신경망을 이용하여 행동 선택 -> $q_{\theta}(s,a)$
- 3. 행동하고 다음 상태와 보상을 받음 -> $r + \gamma q_{\theta}(s', a')$
- 4. TD error의 gradient를 따라 큐함수의 parameter를 업데이트 $-> (r + \gamma q_{\theta}(s', a') q_{\theta}(s, a))^2$

Deep SARSA

MDP 상태 정의

- (1) 에이전트에 대한 도착지점의 상대 위치 (x, y)
- (2) 도착지점의 레이블
- (3) 에이전트에 대한 장애물의 상대 위치 (x, y)
- (4) 장애물의 레이블
- (5) 장애물의 속도(방향)
- ▶ (1)+(2)+3*{(3)+(4)+(5)} = 15 특징벡터

Deep SARSA

입력 = 상태의 특징벡터

Q-Learning with function approximation

- Q-Learning에서 큐함수의 업데이트 식 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') Q(S_t, A_t) \right)$
- 경사하강법
 - 정답 역할: $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$
 - 예측 역할 : $Q(S_t, A_t)$
 - MSE = (정답 예측)² = $\left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') Q(S_t, A_t)\right)^2$

Q-Learning with function approximation

Q-Learning with function approximation

- 신경망을 이용한 Q-Learning 학습 과정
- 1. 상태 관찰
- 2. 신경망을 이용하여 행동 선택 -> $q_{\theta}(s,a)$
- 3. 행동하고 다음 상태와 보상을 받음 -> $r + \gamma \max_{a'} q_{\theta}(s', a')$
- 4. TD error의 gradient를 따라 큐함수의 parameter를 업데이트 -> $\left(r + \gamma \max_{a'} q_{\theta}(s', a') q_{\theta}(s, a)\right)^2$

Deep Q-Learning

- Deep Reinforcement Learning = Reinforcement Learning + Deep Learning
- DQN (Deep Q-Network)
 - ➤ "Playing Atari with Deep Reinforcement Learning"-Mnih, 2013
 - ➤ DeepMind의 초창기 논문
 - ▶ Atari game을 화면으로부터 학습
 - ▶화면은 high-dimension -> Deep Learning을 사용
- DQN의 핵심 개념
 - ➤ Experience Replay
 - ➤ Target Network

Cart-Pole

- 카트폴
 - 카트폴이 일정 각도 이상으로 떨어지거나 화면을 벗어나면 에피소드가 끝남
 - 학습목표 : 카트폴을 5초 동안 세우는 것
- MDP 상태 정의
 - 카트의 위치 *x*
 - 카트의 속도 *ẋ*
 - 폴의 각도 *θ*
 - 폴의 각속도 *⋳*

에이전트의 상태 =
$$\begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix}$$

DQN - Experience Replay

- Off-Policy
- Experience Replay
 - Sample 들의 상관관계를 깸 -> Neural Network의 안정적인 학 습
 - 일정한 크기를 가지는 memory (FIFO)
- Online update with stochastic gradient descent
 - 매 스텝마다 replay memory에 서 추출한 mini-batch로 Qfunction 업데이트
 - 점진적으로 변하는 Q-function 에 대해 ε-greedy policy로 행 동 선택

DQN - Target Network

• Q-Learning에서 큐함수의 업데이트

MSE =
$$(정답 - 예측)^2 = \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a', \theta) - Q(S_t, A_t, \theta)\right)^2$$

- Target Network
 - Target network θ^- 의 사용 : update의 target이 계속 변하는 문제를 개선
 - lacktriangle 일정주기마다 현재의 network $heta^-$ 를 heta로 업데이트

MSE =
$$(정답 - 예측)^2 = \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a', \theta^-) - Q(S_t, A_t, \theta)\right)^2$$

DQN의 학습과정

- 1. exploration
- 2. append sample to replay memory
- 3. random sampling, training
- 4. target Q-network update

DQN의 학습과정

1. exploration

- 정책은 큐함수에 대한 ε -greedy policy
- ε 은 time-step에 따라서 decay -> 점점 수렴
- ε은 1에서 시작해서 0.1까지 decay, 0.1을 계속 유지 -> 지속적 탐험

2. append sample to replay memory

- 에이전트는 ε -greedy policy에 따라 샘플 [s, a, r, s']을 생성
- 샘플을 replay memory에 append
- Replay memory가 다 차면 오래된 sample부터 하나씩 빼고 새로운 sample을 memory에 넣기

DQN의 학습과정

- 3. random sampling, training
 - Mini-batch (32개) 샘플을 추출
 - 샘플로부터 target값과 prediction 값을 구하기 (32개)
 - \bigstar MSE error : $(target prediction)^2$
 - *Target: $r + \gamma \max_{a'} q_{\theta^-}(s', a')$
 - ❖ Prediction : $q_{\theta}(s, a)$
 - MSE error에 대한 gradient backpropagation
- 4. target Q-network update : 일정 주기마다 target Q-network 를 현재 Q-network로 업데이트

DQN의 학습과정 정리

- 1) 상태에 따른 행동 선택
- 2) 선택한 행동으로 환경에서 한 타임스텝을 진행
- 3) 환경으로부터 다음 상태와 보상을 받음
- 4) 샘플(s,a,r,s')을 리플레이 메모리에 저장
- 5) 리플레이 메모리에서 무작위 추출한 샘플로 학습
- 6) 일정 주기마다 Target network 업데이트

Summary

- 매개변수로 큐함수를 근사
- 근사함수로 인공신경망을 이용
- Deep SARSA

■ MSE = (정답 – 예측)² =
$$(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))^2$$

- DQN (Deep Q-Network)
 - Experience Replay
 - Target Network
 - MSE = $(정답 예측)^2 = \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a', \theta^-) Q(S_t, A_t, \theta)\right)^2$