Convocatoria extraordinaria - Geometría II 1º Grado en Matemáticas 11 de julio 2018

Apellidos	v nombre:	Grupo
- who constituted "	T LLUXLEUL CT	

 En el espacio M₂(R) de las matrices cuadradas de orden dos con coeficientes reales se considera la métrica dada por

$$g(A, C) = \det(A + C) - \det(A - C)$$
, $A, C \in \mathcal{M}_2(\mathbb{R})$.

a) (1 PUNTO) Calcula la matriz de g en la base canónica de $\mathcal{M}_2(\mathbb{R})$,

$$B = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \} .$$

- b) (1 PUNTO) Encuentra una base de M₂(R) en la que g adopte su matriz de Sylvester. Calcula el índice, el rango y clasifica la métrica g.
- c) (1 PUNTO) Sea f el endomorfismo de $(\mathcal{M}_2(\mathbb{R}), g)$ dado por $f(A) = P^{-1}AP$, para P una matriz regular en $\mathcal{M}_2(\mathbb{R})$. Comprueba que f es una isometría de $(\mathcal{M}_2(\mathbb{R}), g)$.
- 2) (2,5 puntos) Prueba que dada una matriz $A \in \mathcal{M}_n(\mathbb{R})$, existe una única matriz $A_0 \in \mathcal{M}_n(\mathbb{R})$ con traza $(A_0) = 0$ tal que

$$A = \frac{\operatorname{traza}(A)}{n} I_n + A_0 \;,$$

donde I_n es la matriz identidad de orden n. Además A es diagonalizable si y sólo si A_0 es diagonalizable. ¿Qué relación hay entre los valores propios de A y de A_0 ? ¿Y entre los vectores propios?

3) En \mathbb{R}^2 se considera la métrica g, cuya matriz en una base $B=\{e_1,e_2\}$ es

$$M(g,B) = \left(\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array} \right) \ .$$

Se pide:

- a) (0.5 PUNTOS) Comprueba que g es una métrica euclídea.
- b) (1,5 puntos) Sea $f \in \text{End}(\mathbb{R}^2)$ tal que $f(e_1) = 3e_1 2e_2$, $\det(f) = -5$ y f es autoadjunto respecto de g. Halla una base ortonormal de (\mathbb{R}^2, g) formada por vectores propios de f.
- 4) (2,5 PUNTOS) Sean (V, g) un espacio métrico euclídeo con dim(V) ≥ 2 y {v₁, v₂,..., v_k}, k vectores distintos de V, k ≤ dim(V). Prueba que son equivalentes las siguientes afirmaciones:
 - a) $\{v_1, v_2, \dots, v_k\}$ es un conjunto linealmente dependiente.
 - b) det(M) = 0, donde $M = (m_{i,j})_{1 \le i,j \le k}$ es la matriz cuadrada de orden k cuya entrada (i,j) es $m_{i,j} = g(v_i,v_j)$.