Estadística Inferencial

Capítulo X - Ejercicio 53

Aaric Llerena Medina

La empresa de transporte terrestre de pasajeros "BUS" está por decidir si compra la marca A o la marca B de llantas para su flota de ómnibus. Se sabe que el rendimiento de cada marca tiene distribución normal. Se probaron dos muestras independientes de 9 llantas de las marcas A y B resultando los siguientes rendimientos en kilómetros:

32,000 Marca A: 30,000 33,000 31,000 32,000 35,000 34,000 35,000 31,000 35,000 37,000 Marca B: 37,000 36,000 38,000 39,000 32,000 33,000 40,000 Con un nivel de significación de 0.01

- a) ¿Es razonable concluir que son significativamente diferentes las varianzas de los rendimientos?
- b) ¿Es posible concluir que las dos marcas rinden igual?

Solución:

Para simplificar el cálculo, se divide entre mil y se calcula los datos necesarios:

	Marca A	$(x_i - \bar{x}_A)^2$		Marca B	$(x_i - \bar{x}_B)^2$
	32	0.3086		35	1.7778
	30	6.5309		37	0.4444
	33	0.1975		36	0.1111
	31	2.4198		38	2.7778
	32	0.3086		37	0.4444
	35	5.9753		39	7.1111
	34	2.0864		32	18.7778
	35	5.9753		33	11.1111
	31	2.4198		40	13.4444
Cantidad	9		Cantidad	9	
Suma	293	26.2222	Suma	327	56.0000
Promedio	32.56		Promedio	36.33	
Varianza		3.28	Varianza		7.00

a) Se plantean las hipótesis:

$$H_0: \sigma_A^2 = \sigma_B^2 \quad \leadsto \quad \text{(Las varianzas de los rendimientos son iguales)}$$

$$H_1: \sigma_A^2 \neq \sigma_B^2 \quad \leadsto \quad \text{(Las varianzas de los rendimientos no son iguales)}$$

Para determinar si las varianzas son iguales, se determina el estadístico F:

$$F = \frac{\sigma_B^2}{\sigma_A^2} = \frac{7}{3.28} \approx 2.1341$$

Para un nivel de significación de 0.01 y con 8 grados de libertad para el numerador y 8 grados de libertad para el denominador, el valor crítico de $F_{0.01/2,8,8} \approx 7.4959$.

Como $F_{\rm cal}=2.1341<7.4959$ no se rechaza la hipótesis nula. Por lo tanto, no hay evidencia suficiente para concluir que las varianzas de los rendimientos son significativamente diferentes al nivel de significación de 0.01.

b) Se plantea las hipótesis:

$$H_0: \mu_A = \mu_B quad \rightsquigarrow$$
 (Las dos marcas rinden igual)

$$H_1: \mu_A \neq \mu_B \quad \leadsto \quad \text{(Las dos marcas no rinden igual)}$$

Dado que no se rechaza la hipótesis de igualdad de varianzas, se asume varianzas iguales. La varianza combinada s_p^2 es:

$$s_p^2 = \frac{(n_A - 1) s_A^2 + (n_B - 1) s_B^2}{n_A + n_A - 2} = \frac{(8 \cdot 3.28) + (8 \cdot 7.00)}{9 + 9 - 2} = \frac{82.24}{16} \approx 5.14$$

El estadístico t se calcula como:

$$t = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{s_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} = \frac{32.56 - 36.33}{\sqrt{5.14 \left(\frac{1}{9} + \frac{1}{9}\right)}} \approx \frac{-3.77}{\sqrt{1.1422}} \approx -3.5275$$

Para un nivel de significación de 0.01 y con 16 grados de libertad, el valor crítico de $t_{1-0.01/2,16}$ es aproximadamente 2.9208, por lo que la zona de rechazo es $|t_{\rm calc}| > 2.9208$.

Dado que t = 3.5275 > 2.602 se rechaza H_0 . Por lo tanto, hay evidencia suficiente para concluir que las dos marcas no rinden igual al nivel de significación de 0.01.