Dataset Description and PCA Analysis

Your Name

2024-11-15

1. Dataset Description

1.1 Overview

The dataset contains multivariate data, including quantitative, binary, and categorical variables. It has 12,330 rows and 18 columns, representing user online shopping behavior. ## 1.2 Feature Breakdown

Below is a table representation with all the key features:

Feature Name	Type	Description
Administrative	Quantitative	Number of administrative pages visited
Administrative_Duration	Quantitative	Time spent on administrative pages in seconds
Informational	Quantitative	Number of informational pages visited
Informational_Duration	Quantitative	Time spent on informational pages in seconds
ProductRelated	Quantitative	Number of product-related pages visited
${\bf ProductRelated_Duration}$	Quantitative	Time spent on product-related pages in seconds
BounceRates	Quantitative	Percentage of visitors leaving after one page
ExitRates	Quantitative	Percentage of sessions exiting from each page
PageValues	Quantitative	Average value attributed to a page
SpecialDay	Quantitative	Metric indicating proximity to significant holidays
Weekend	Binary	Indicates if the session occurred on a weekend (1 = Yes, $0 = No$)
Revenue	Binary	Indicates if the session resulted in a purchase $(1 = Yes, 0 = No)$
VisitorType	Categorical	Visitor category (e.g., Returning, New, Other)
Month	Categorical	Month of the visit (e.g., Jan, Feb)
OperatingSystems	Categorical	Visitor 2019s operating system
Browser	Categorical	Browser used by the visitor
Region	Categorical	Visitor 2019s geographical region
TrafficType	Categorical	Type of traffic source leading to the visit

1.3 Initial Observations

```
# Load necessary libraries
library(ggplot2)  # For data visualization
library(readr)  # For reading datasets
library(lattice)  # For lattice-based visualizations
library(reshape2)  # For reshaping data
```

```
library(dplyr)
                    # For data manipulation
library(pander)
data <- readRDS('/Users/despoinaiapona/Downloads/processed_dataset.rds')</pre>
# Checking for missing values
sapply(data, function(x) sum(is.na(x)))
           Administrative AdministrativeDuration
##
                                                            Informational
##
    InformationalDuration
                                   ProductRelated ProductRelatedDuration
##
##
              BounceRates
                                        ExitRates
                                                               PageValues
##
                                            Month
##
               SpecialDay
                                                         OperatingSystems
##
                                                0
##
                  Browser
                                           Region
                                                              TrafficType
##
##
              VisitorType
                                          Weekend
                                                                  Revenue
##
                                                0
                                                                         0
# Split numeric and categorical variables
numeric_vars <- data %>% select(where(is.numeric))
categorical_vars <- data %>% select(where(is.factor))
# Summarize numeric variables
numeric_summary <- summary(numeric_vars)</pre>
# Display the summary
```

Table 2: Summary of Numeric Variables (continued below)

pander(numeric_summary, caption = "Summary of Numeric Variables")

Administrative	${\bf Administrative Duration}$	Informational
Min.: 0.000	Min.: 0.00	Min.: 0.000
1st Qu.: 0.000	1st Qu.: 0.00	1st Qu.: 0.000
Median: 1.000	Median: 10.05	Median: 0.000
Mean: 2.321	Mean: 79.24	Mean: 0.577
3rd Qu.: 4.000	3rd Qu.: 94.00	3rd Qu.: 0.000
Max. $:24.000$	Max. $:2629.25$	Max. $:24.000$

Table 3: Table continues below

InformationalDuration	${\bf ProductRelated}$	${\bf Product Related Duration}$
Min.: 0.00	Min.: 0.00	Min.: 0.0
1st Qu.: 0.00 Median : 0.00	1st Qu.: 7.00 Median : 18.00	1st Qu.: 187.7 Median : 602.0

Mean: 1161.3 3rd Qu.: 1459.5 Max.:43171.2

BounceRates	ExitRates	PageValues
Min. :0.000000	Min. :0.00000	Min.: 0.000
1st Qu.:0.000000	1st Qu.:0.01467	1st Qu.: 0.000
Median $:0.003089$	Median: 0.02581	Median: 0.000
Mean $:0.023104$	Mean $:0.04380$	Mean: 5.899
3rd Qu.:0.018182	3rd Qu.:0.04839	3rd Qu.: 0.000
Max. $:0.200000$	Max. $:0.20000$	Max. $:255.569$

```
# Summarize categorical variables
categorical_summary <- summary(categorical_vars)

# Display the summary
pander(categorical_summary, caption = "Summary of Categorical Variables")</pre>
```

Table 5: Summary of Categorical Variables (continued below)

SpecialDay	Month	OperatingSystems	Browser	Region
0:1810	May :518	2:1049	2:1267	1:779
0.2: 19	Nov :470	1:422	1:426	3:375
0.4: 39	Mar :322	3:410	4:123	4:196
$0.6:\ 52$	Dec: 300	4:98	5:67	2:178
0.8: 51	Oct: 99	8:17	10:31	7:120
1:29	Aug: 78	6:3	6:26	6:114
NA	(Other):213	(Other): 1	(Other): 60	(Other):238

${\bf Traffic Type}$	VisitorType	Weekend	Revenue
2:648	New_Visitor: 287	0:1535	0:1684
1:406	Other: 17	1: 465	1: 316
3:305	Returning_Visitor:1696	NA	NA
4:186	NA	NA	NA
13:104	NA	NA	NA
10:83	NA	NA	NA
(Other):268	NA	NA	NA

1.4 Visualizations

1.4.1 Barplots for Categorical Variables

```
# Set the layout for 3 rows and 3 columns (9 plots per page)
par(mfrow = c(3, 3), mar = c(4, 4, 2, 1)) # Adjust margins

# Create barplots
for (var_name in names(categorical_vars)) {
   barplot(table(categorical_vars[[var_name]]),
        main = paste("Distribution of", var_name),
        xlab = var_name,
        ylab = "Count",
        col = "lightblue")
}
```


1.4.1.1 General Observations

- Most sessions happen on regular days, with little activity on holidays.
- There are seasonal patterns, with high points in May and November.
- Most users go with Operating System 2 and Browser 2.
- Traffic comes mostly from Region 1 and Traffic Type 2.

- Returning visitors account for a significant part of site sessions, indicating that users enjoy the content and experience.
- The majority of sessions are on weekdays, and only a small part lead to sales.

```
# Set layout for 3 rows and 3 columns (9 plots per page)
par(mfrow = c(3, 3), mar = c(4, 4, 2, 1)) # Adjust margins

# Create histograms for each numeric variable
for (var_name in names(numeric_vars)) {
   hist(numeric_vars[[var_name]],
        main = paste("Histogram of", var_name),
        xlab = var_name,
        col = "lightgreen",
        breaks = 20)
}
```



```
main = paste("Boxplot of", var_name),
        xlab = "Values")
# Histogram
hist(numeric_vars[[i]], breaks = 20,
     main = paste("Histogram of", var_name),
     xlab = var_name,
     ylab = "Frequency")
# Add mean and median to the title
mtext(paste("Variable:", var_name, "| Mean:", round(mean(numeric_vars[[i]]), 2),
            "| Median:", round(median(numeric_vars[[i]]), 2)),
      outer = TRUE, cex = 1, line = -1)
```

Variable: Administrative | Mean: 2.32 | Median: 1

Boxplot of Administrative

Histogram of Administrative

15

20

Variable: AdministrativeDuration | Mean: 79.24 | Median: 10.05

Boxplot of AdministrativeDuratic Histogram of AdministrativeDurat

Variable: Informational | Mean: 0.58 | Median: 0

Boxplot of Informational

Histogram of Informational

Variable: InformationalDuration | Mean: 36.28 | Median: 0

Boxplot of InformationalDuratio Histogram of InformationalDuration

Variable: ProductRelated | Mean: 30.53 | Median: 18

Boxplot of ProductRelated

Histogram of ProductRelated

Variable: ProductRelatedDuration | Mean: 1161.28 | Median: 601.97

Boxplot of ProductRelatedDuratic Histogram of ProductRelatedDurat

Variable: BounceRates | Mean: 0.02 | Median: 0

Boxplot of BounceRates

Histogram of BounceRates

Variable: ExitRates | Mean: 0.04 | Median: 0.03

Boxplot of ExitRates

Histogram of ExitRates

Variable: PageValues | Mean: 5.9 | Median: 0

Boxplot of PageValues

Histogram of PageValues


```
# Compute the correlation matrix
correlation_matrix <- cor(numeric_vars)

correlation_melted <- melt(correlation_matrix)

# Heatmap of the correlation matrix with values
ggplot(correlation_melted, aes(Var1, Var2, fill = value)) +
    geom_tile() + # Create the heatmap tiles
    geom_text(aes(label = round(value, 2)), color = "black", size = 3) + # Add the correlation values in
    scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, limit = c(-1, 1)) + #
    labs(title = "Correlation Matrix Heatmap", x = "Variables", y = "Variables") + # Title and labels
    theme_minimal() + # Clean theme
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-ax</pre>
```

Correlation Matrix Heatmap


```
# PCA with R built in function
pca <- prcomp(numeric_vars, center = TRUE, scale. = TRUE)
pca$rotation</pre>
```

```
PC1
                                             PC2
                                                          PC3
                                                                      PC4
##
                           0.37105796
                                       0.0329912
                                                   0.21953028 -0.05220820
## Administrative
  AdministrativeDuration
                           0.34714509
                                       0.1235379
                                                   0.19485757
                                                               0.01541194
   Informational
                           0.37346416
                                       0.2609986
                                                   0.04525560 -0.39448582
   InformationalDuration
                           0.31872058
                                       0.2662497
                                                   0.07498729 -0.54298773
  ProductRelated
                           0.41740872
                                       0.1120424 -0.22096803
                                                               0.47422249
  ProductRelatedDuration 0.41707403
                                       0.1563865 -0.21780465
                                                               0.45935918
  BounceRates
                          -0.25010949
                                       0.6305022
                                                  0.16507323
  ExitRates
                          -0.29019922
                                       0.6081152
                                                  0.11151647
                                                               0.11549280
  PageValues
                           0.07613712 -0.2007321
                                                   0.87761893
                                                               0.26375189
##
##
                                  PC5
                                                PC6
                                                             PC7
                                                                           PC8
  Administrative
                           0.52507075
                                       0.713679807 -0.045214693 -0.1457811805
## AdministrativeDuration 0.60278060 -0.662670738 -0.049419726
                                                                  0.1448946839
  Informational
                          -0.23809702 -0.024825486
                                                    0.759799087
                                                                  0.0007661561
## InformationalDuration
                         -0.33796380 -0.026948406 -0.641251513
                                                                  0.0299799561
## ProductRelated
                          -0.20213008
                                       0.153751548 -0.040885215
                                                                  0.6700840381
## ProductRelatedDuration -0.18765289 -0.123524046 -0.071149018 -0.6888790978
## BounceRates
                           0.04411895
                                      0.098547988 -0.010363055
                                                                  0.1339391720
## ExitRates
                           0.02890485
                                      0.006699396
                                                   0.007341775 -0.1234750628
## PageValues
                          -0.33345823 -0.039138054 0.010958484 -0.0100583735
##
                                   PC9
```

```
## Administrative
                        0.044425841
## AdministrativeDuration 0.010389639
## Informational -0.011634553
## InformationalDuration 0.004633944
## ProductRelated
                        0.155956055
## ProductRelatedDuration -0.114255943
## BounceRates -0.674668205
## ExitRates
                        0.709947449
## PageValues
                        0.034384375
# PCA step by step
eig_result <- eigen(correlation_matrix)</pre>
# Get the eigenvalues and eigenvectors
Lambda <- eig result$values # Eigenvalues
T <- eig_result$vectors
                          # Eigenvectors
# Sort eigenvalues and eigenvectors in descending order
sorted_indices <- order(Lambda, decreasing = TRUE) # Indices for sorting
# Apply the sorting
Lambda_sorted <- Lambda[sorted_indices] # Sorted eigenvalues
T_sorted <- T[, sorted_indices]</pre>
                                    # Sorted eigenvectors
# Show the sorted eigenvalues
Lambda sorted
## [1] 3.57835089 1.72376992 0.96781746 0.93079294 0.88913071 0.40830014 0.32216982
## [8] 0.11170116 0.06796695
# Show the eigenvectors
T_sorted
##
                         [,2]
                                    [,3]
                                               [, 4]
                                                          [,5]
               [,1]
                                                                       [,6]
   [1,] 0.37105796 -0.0329912 0.21953028 -0.05220820 0.52507075 0.713679807
## [2,] 0.34714509 -0.1235379 0.19485757 0.01541194 0.60278060 -0.662670738
## [3,] 0.37346416 -0.2609986 0.04525560 -0.39448582 -0.23809702 -0.024825486
## [4,] 0.31872058 -0.2662497 0.07498729 -0.54298773 -0.33796380 -0.026948406
## [5,] 0.41740872 -0.1120424 -0.22096803 0.47422249 -0.20213008 0.153751548
  [6,] 0.41707403 -0.1563865 -0.21780465 0.45935918 -0.18765289 -0.123524046
## [7,] -0.25010949 -0.6305022 0.16507323 0.16667502 0.04411895 0.098547988
## [9,] 0.07613712 0.2007321 0.87761893 0.26375189 -0.33345823 -0.039138054
##
               [,7]
                            [,8]
## [1,] 0.045214693 -0.1457811805 0.044425841
   [2,] 0.049419726 0.1448946839 0.010389639
##
## [3,] -0.759799087 0.0007661561 -0.011634553
## [4,] 0.641251513 0.0299799561 0.004633944
## [5,] 0.040885215 0.6700840381 0.155956055
## [6,] 0.071149018 -0.6888790978 -0.114255943
## [7,] 0.010363055 0.1339391720 -0.674668205
## [8,] -0.007341775 -0.1234750628 0.709947449
## [9,] -0.010958484 -0.0100583735 0.034384375
```