(1) Given a 2-qubit state $|\Psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$. s.T. its not possible to find $|\Psi_1\rangle & |\Psi_2\rangle$.

Now, |Ψ1> @ |Ψ2> = α1α2 |0> ® |0> + α, β2 |0> ® |1> + β1α2 |1> ® 10> + β, β2 [1> ® 11>

$$|\Psi\rangle = \langle 1/\sqrt{2} \rangle = |\Psi_1\rangle \otimes |\Psi_2\rangle = \langle 1/\sqrt{2} \rangle = \langle 1/\sqrt{2$$

Now,
$$|\alpha_1 \alpha_2|^2 + |\alpha_1 \beta_2|^2 = \frac{1}{2}$$

 $= |\alpha_1|^2 (|\alpha_2|^2 + |\beta_2|^2) = \frac{1}{2}$
 $= |\alpha_1|^2 |\alpha_2|^2 + |\beta_2|^2$ as $|\alpha_2|^2 + |\beta_2|^2 = 1$.

again,
$$|\beta_{1}\alpha_{2}|^{2} + |\beta_{1}\beta_{2}|^{2} = \frac{1}{2}$$

= $|\beta_{1}|^{2} (|\alpha_{2}|^{2} + |\beta_{2}|^{2})^{2} = \frac{1}{2}$
= $|\beta_{1}|^{2} = \frac{1}{2}$ as previous.

=)
$$| d_1 \beta_2 |^2 = 0$$

=)
$$|\beta_2|^2 = 0$$
 as $|\alpha_1| = \frac{1}{2}$.

also,
$$42\beta_1 = 0$$

also,
$$42\beta_1 = 0$$

 $\Rightarrow |\alpha_2\beta_1|^2 = 0$

$$=) | \sqrt{2} |^{2} | \beta_{1} |^{2} = 0$$

$$\Rightarrow |\alpha_2|^2 = 0 (a8|\beta_1| = \frac{1}{2})$$

which is a contradiction to the

assumption that
$$|a_2|^2 + |b_2|^2 = 1$$
.

2) Matrix representation of CCNOT GATE:

```
Output
 Input
0 0 1
100
1 1 0
```

```
Matrix 18
          0010
          0 0 0 1 0
```

Matrix representation of CSWAP GIATE

```
Ontput
Input
abc
0 1 0
      1 0 1
```

```
Matrix 18
    0 0 0 0 0
 01000000
 00100000
 000 10000
  000 0 1 00
  000000100
  0000001
```