Worksheet 15

Limits of Sequences

Problem 1. Let $\vec{\mathbf{a}} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find $\vec{\mathbf{a}}^{//}$ and $\vec{\mathbf{a}}^{\perp}$ such that $\vec{\mathbf{a}} = \vec{\mathbf{a}}^{//} + \vec{\mathbf{a}}^{\perp}$, where $\vec{\mathbf{a}}^{//}$ is parallel to $\vec{\mathbf{b}}$ and $\vec{\mathbf{a}}^{\perp}$ is perpendicular to $\vec{\mathbf{b}}$.

Problem 2. Let $\vec{\mathbf{a}} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$ and $\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find $\vec{\mathbf{a}}^{//}$ and $\vec{\mathbf{a}}^{\perp}$ where $\vec{\mathbf{a}} = \vec{\mathbf{a}}^{//} + \vec{\mathbf{a}}^{\perp}$ as described in the previous problem.

Problem 3. Consider the line defined by the equation 2x + 3y = 5.

- (a) Write out a parametric equation for the line.
- **(b)** Write out $\vec{\mathbf{a}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ as $\vec{\mathbf{a}} = \vec{\mathbf{a}}^{//} + \vec{\mathbf{a}}^{\perp}$, where $\vec{\mathbf{a}}^{//}$ is parallel to the line, and $\vec{\mathbf{a}}^{\perp}$ is perpendicular to the line.

Problem 4. Consider the plane containing the points $(1,0,0)$, $(1,0,1)$, and $(0,1,0)$.		
(a)	Write out an	equation for the plane.
(b)	Which of the	following points are on the plane: $(1,0,-3)$, $(-1,2,1)$, and $(2,0,1)$?
(c)	Consider the	line through the points $(1, 2, 1)$ and $(0, 1, 1)$. Where does this line intersect the plane?
(d)	What is the c	listance of the point $(1, 2, 1)$ from the plane?

Problem 5. Simplify the following expressions:

(a)
$$\vec{i} \times (\vec{i} - \vec{j})$$

(e)
$$\vec{i} \cdot (\vec{i} - \vec{j})$$

(b)
$$(\vec{a} + \vec{b}) \times (\vec{a} + \vec{b})$$

$$(f) \hspace{0.5cm} (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b})$$

(c)
$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$$

$$(g) \hspace{0.5cm} (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$(d) \quad \vec{a} \cdot \left[\vec{b} \times \left(\vec{a} + \vec{b} \right) \right]$$

$$(\mathbf{h}) \quad \left\| \vec{\mathbf{a}} + 2\vec{\mathbf{b}} \right\|^2$$

Problem 6. Find the area of the triangle whose vertices are (1,0,1), (0,2,1), and (3,0,1).

Problem 7. Which of the follow collections of points form a parallelogram?

(a)
$$(1, 1, 1), (1, 2, -1), (1, 3, 1), (1, 4, -1)$$

(b)
$$(1,0,1), (1,2,1), (1,1,1), (1,3,1)$$