Methoden und Anwendungen der Optimierung Übung 2 - $Musterl\ddot{o}sung$ -

Aufgabe 5:

Lieferzeitverzögerung minimieren

Schritt 1 Generieren einer zulässigen Lösung, um obere Schranke zu erhalten. z.B. wähle Reihenfolge nach Lieferdatum:

Auftrag	1	3	4	2
t_i	6	5	4	8
l_i	5	9	10	17
v_i	1	2	5	6

 \rightsquigarrow gesamte Verzögerung: 1 + 2 + 5 + 6 = 14 = UB

Schritt 2 Bestimmen einer unteren Schranke:

- z.B. geeignete Verzögerung des letzten Auftrags
- \rightarrow Auftrag 2 als letzten
- \rightarrow Verzögerung von mindestens 6 ZE

Mit mehr Aufwand bessere Schranken

z.B. Auftrag 1 wird mindestens 1 ZE zu spät produziert \Rightarrow LB = 7

Schritt 3 Verzweige nach dem Auftrag, der zuletzt produziert werden soll. Relaxation: Betrachte lediglich die Verzögerung des letzten Auftrags.

Damit ist die Reihenfolge 1-4-3-2 optimal.

Aufgabe 6

Problem lässt sich als offenes TSP interpretieren, d.h. es ist keine geschlossene Rundtour gesucht.

offenes TSP \to es liegt ein Minimierungsproblem vor. D.h. die Rollen von LB und UB sind gegenüber Maximierungsproblem vertauscht.

Schritt 1 Bestimmen einer UB durch Bestimmen einer zulässigen Lösung

z.B.
$$A \to C \to D \to B$$

Gesamtrüstzeit: 4 + 2 + 2 = 8 = UB

Schritt 2 Verzweige nach der Anbindung des Auftrags A

Welche LB?

- Kanten für Anbindung von A
- noch 2 zusätzliche Kanten sind zu benutzen
- eine beliebige Kante kostet mindestens 2

Alle Knoten terminiert, d.h. Knoten 11 ist optimal. \to optimale Reihenfolge $A \to B \to C \to D$ minimale Rüstzeit 7

Das Verfahren von Dakin:

Folgendes Problem:

$$\max z = c^T x$$
 s.d. $Ax \le b$
$$x \ge 0$$

$$x_j \text{ ganzzahlig für } j = 1, \dots, p, \ x^T = (x_1, \dots, x_p, \dots x_n)$$

Schritt 1 Löse LP-Relaxation (Ganzzahligkeit) \rightarrow Simplex

Schritt 2 Existiert in der optimalen Lösung der LP-Relaxation ein nicht-ganzzahliges x_j ($1 \le j \le p$), so wird nach diesem x_j wie folgt verzweigt:

Schritt 3 x_j lässt sich wie folgt darstellen: $x_j = \lfloor x_j \rfloor + l_j, \ 0 \le l_j \le 1$. Verzweige in 2 TP mit zusätzlichen Restriktionen:

TP1:
$$x_j \leq \lfloor x_j \rfloor$$

TP2: $x_j \geq \lfloor x_j \rfloor + 1$

Schritt 4 Löse noch offene TP:

- a) alle x_j mit $1 \le j \le p$ ganzzahlig \to terminieren
- b) nicht alle x_j ganzzahlig \rightarrow vergleiche mit letzter Lösung mit ganzzahligem x_j
 - i) ist Lsg. nicht besser \rightarrow terminieren
 - ii) ist Lsg. besser \rightarrow weiter verzweigen

Aufgabe 7:

Löse LP-Relaxation:

$$\max z = x_1 + 4x_2$$

s.d. $-2x_1 + 3x_2 \le 3$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \in \mathbb{R}, x_1, x_2 \ge 0$

opt. Lösung der Relaxation: $x_1=4\frac{1}{5},~x_2=3\frac{4}{5},$ ZFW = $19\frac{2}{5}$ unzulässig \to verzweigen nach x_1 (UB= 19)

TP1: $x_1 \le 4$ TP2: $x_1 \ge 5$

TP1:

neue Nebenbedingung: $x_1 \leq 4$

Nicht neu lösen, sondern Reoptimierung mit dualem Simplex.

 \rightarrow neue Zeile hinzufügen (und zusätzliche Spalte für Schlupfvariable):

→ Überführung in Basisdarstellung: Ausdrücken der BV durch die NBV und Einsetzen.

$$x_1 = 4\frac{1}{5} + \frac{1}{5}s_1 - \frac{3}{5}s_2$$

$$0\ 0\ \frac{1}{5}\ -\frac{3}{5}\ 1\ |\ -\frac{1}{5}$$

(primale Zulässigkeit: BV mit $b_i < 0$ nur möglich, wenn pv < 0)

Lsg.: $x_1 = 4$, $x_2 = 3\frac{2}{3}$, ZFW = $18\frac{2}{3}$ \Rightarrow UB₁ = 18

unzulässig \rightarrow weiter verzweigen nach x_2 :

TP3: $x_2 \le 3$ TP4: $x_2 \ge 4$

TP3:

Neue Nebenbedingung $x_2 \leq 3$ Zeile hinzufügen:

$$0\; 1\; 0\; 0\; 0\; 1\; |\; 3$$

bzw. 0 0
$$\,-\,\frac{1}{3}$$
0 $\,-\,\frac{2}{3}$ 1 | $\,-\,\frac{2}{3}$

 $0 \quad 1 \quad 0 \quad 2$

Lösung:
$$x_1 = 4$$
, $x_2 = 3$, ZFW= 16 zulässig \rightarrow LB₁ = 16

<u>TP4</u>:

Neue Nebenbedingung $x_2 \ge 4$ Zeile hinzufügen:

Es existiert keine zulässige Lösung, da $b_4 < 0$, aber Elemente der 4. Zeile ≥ 0

<u>TP2</u>:

neue Nebenbedingung: $x_1 \geq 5$ Zeile hinzufügen

$$-1\ 0\ 0\ 0\ 1\ |\ -5$$
 bzw. $0\ 0\ -\frac{1}{5}\ \frac{3}{5}\ 1\ |\ -\frac{4}{5}$

Lsg.:
$$x_1 = 5$$
, $x_2 = 3$, ZFW= 17 zulässig \rightarrow LB₂ = 17

Alle Knoten terminiert bzw. entwickelt \rightarrow Fertig. LB₂ optimal.

Aufgabe 8:

 $\overline{\text{Optimale L\"osung der LP-Relaxation}}$ (\rightarrow grafisch; siehe n\"achste Seite):

$$x_1^* = 0.75, \ x_2^* = 2.5, \ z^* = 5.75 \ \leadsto UB = 5$$

Verzweige nach der Variable mit dem höchsten nichtganzzahligen Anteil.

Alle Knoten terminiert $\rightsquigarrow x_1 = 1, \ x_2 = 2, \ z = 5$ ist optimale Lösung.

$$TP_1: x_1 < = 0$$

$$TP_2: x_1 > = 1$$

$$TP_3: x_1 > = 1, x_2 < = 2$$

$$x_1^* = 0, x_2^* = 2, z^* = 4$$

 $x_1^* = 1,5, x_2^* = 2, z^* = 5,5$

=> UB=5 >LB

=> UB=5 >LB

=> terminiere

=> weiter verzweigen

=> weiter verzweigen

$$TP_4: X_1 > = 1, X_2 > = 3$$

TP_s:
$$x_1 > = 1$$
, $x_2 < = 2$, $x_1 < = 1$

TP₄:
$$x_1 > = 1$$
, $x_2 > = 3$ TP₅: $x_1 > = 1$, $x_2 < = 2$, $x_1 < = 1$ TP₆: $x_1 > = 1$, $x_2 < = 2$, $x_1 > = 2$

keine zulässige Lösung

zulässig LB₂=5

=> terminiere

=>terminiere

=> terminiere

Aufgabe 9:

$$\max z = 8x_1 + 2x_2 - 4x_3 - 7x_4 - x_5$$
 s.d.
$$3x_1 + 3x_2 + x_3 + 2x_4 + 3x_5 \le 4$$

$$5x_1 + 3x_2 - 2x_3 - 4x_4 + x_5 \le 4$$

$$x_i \in \{0, 1\}$$

Umformen, sodass $c_i < 0$

 \rightarrow Substitutieren von $x_1, x_2: x_1 = 1 - x_1'$ und $x_2 = 1 - x_2'$

$$\max z = -8x_1' - 2x_2' - 4x_3 - 7x_4 - x_5 + 10$$
s.d.
$$-3x_1' - 3x_2' + x_3 + 2x_4 + 3x_5 \le -2$$

$$-5x_1' - 3x_2' - 2x_3 - 4x_4 + x_5 \le -4$$

$$x_i \in \{0, 1\}$$

$$N_0 = \{1, \dots, 5\}, L_0^1 = L_0^0 = \{\},$$
 $UB = 10, LB_1 = -12$
 $S_0 = (-2, -4), U_0 = 6,$ $Q_0 = \{1, 2, 3, 4\}$

Unzulässigkeiten im Knoten 1: $U_1(1) = 0$, $U_1(2) = 1$, $U_1(3) = 5$, $U_1(4) = 4$ \rightarrow Entwickeln nach x_1 :

Knoten 1 $(x_1 = 1)$

$$\max z = -2x_2' - 4x_3 - 7x_4 - x_5 + 2$$
s.d.
$$-3x_2' + x_3 + 2x_4 + 3x_5 \le 1$$

$$-3x_2' - 2x_3 - 4x_4 + x_5 \le 1$$

$$x_i \in \{0, 1\}$$

 $S_1=(1,1) \leadsto \text{Zulässigkeit}$ erreicht \leadsto terminieren $x^T=(1,0,0,0,0), z=2=LB_{G_1}$

Knoten 2 $(x_1 = 0)$

$$\max z = -2x_2' - 4x_3 - 7x_4 - x_5 + 10$$
s.d.
$$-3x_2' + x_3 + 2x_4 + 3x_5 \le -2$$

$$-3x_2' - 2x_3 - 4x_4 + x_5 \le -4$$

$$x_i \in \{0, 1\}$$

$$N_0 = \{2, 3, 4, 5\}, L_2^1 = \{\}, L_2^0 = \{1\},$$
 $UB = 10, LB = -4$
 $S_2 = (-2, -4), U_2 = 6,$ $Q_2 = \{2, 3, 4\}$

Unzulässigkeiten im Knoten 3: $U_3(2) = 1$, $U_3(3) = 5$, $U_3(4) = 4$ \rightsquigarrow Entwickeln nach x_2

Knoten 3
$$(x_1' = 0, x_2' = 1)$$

$$\max z = -4x_3 - 7x_4 - x_5 + 8$$
s.d. $x_3 + 2x_4 + 3x_5 \le 1$

$$-2x_3 - 4x_4 + x_5 \le -1$$

$$x_i \in \{0, 1\}$$

$$N_3 = \{3, 4, 5\}, L_3^1 = \{2\}, L_3^0 = \{1\},$$
 $UB = 8, LB = -4$
 $S_3 = (1, -1), U_3 = 1,$ $Q_3 = \{3, 4\}$

Unzulässigkeiten im Knoten 4: $U_4(3) = 0$, $U_4(4) = 1$ \rightarrow Entwickeln nach x_3

Knoten 3
$$(x'_1 = 0, x'_2 = 1, x_3 = 1)$$

$$\max z = -7x_4 - x_5 + 4$$
s.d. $2x_4 + 3x_5 \le 0$

$$-4x_4 + x_5 \le 1$$

$$x_i \in \{0, 1\}$$

$$S_4 = (0,1) \rightsquigarrow$$
 Zulässigkeit erreicht \leadsto terminieren $x^T = (0,1,1,0,0), \ z = 4 = LB_{G_2}$

Knoten 5
$$(x_1' = 0, x_2' = 1, x_3 = 0)$$

$$\max z = -7x_4 - x_5 + 8$$
s.d. $2x_4 + 3x_5 \le 1$

$$-4x_4 + x_5 \le -1$$

$$x_i \in \{0, 1\}$$

$$N_5 = \{4, 5\}, L_5^1 = \{2\}, \ L_5^0 = \{1, 3\},$$
 $UB = 8, \ LB = 0$
 $S_5 = (1, -1), U_5 = 1,$ $Q_5 = \{4\}$

Unzulässigkeit im Knoten 6: $U_6(4) = 1$

Knoten 6
$$(x_1' = 0, x_2' = 1, x_3 = 0, x_4 = 1)$$

 $\max z = 1 - x_5$
s.d. $3x_5 \le -1$
 $x_5 \le 3$
 $x_5 \in \{0, 1\}$

Es existiert keine zulässige Lösung → terminieren

Knoten 7
$$(x_1' = 0, x_2' = 1, x_3 = 0, x_4 = 0)$$

 $\max z = -x_5 + 8$
s.d. $3x_5 \le 1$
 $x_5 \le -1$
 $x_5 \in \{0, 1\}$

Es existiert keine zulässige Lösung \leadsto terminieren

Knoten 8
$$(x'_1 = 0, x'_2 = 0)$$

$$\max z = -4x_3 - 7x_4 - x_5 + 10$$
s.d. $x_3 + 2x_4 + 3x_5 \le -2$

$$-2x_3 - 4x_4 + x_5 \le -4$$

$$x_i \in \{0, 1\}$$

Es existiert keine zulässige Lösung \leadsto terminieren

Alle Knoten terminiert
$$\Rightarrow LB_2$$
 optimal $\Rightarrow x_1^* = 1, x_2^* = 0, x_3^* = 1, x_4^* = 0, x_5^* = 0, z^* = 4$

Ersatznebenbedingungen

- Erlauben das frühzeitige Erkennen, ob der Lösungsraum des betrachteten Knotens leer ist
- Ggf. auch Fixieren von Variablen möglich

Zu zeigen: optimale Werte der Dualvariablen v_i stellen optimale Gewichte für die Bestimmung der Ersatznebenbedingung im Verfahren der impliziten Enumeration dar.

Beweis: Im Knoten K wird folgendes Modell betrachtet:

$$\max \sum_{j \in N_k} c_j \cdot x_j$$

s.d.
$$\sum_{j \in N_k} a_{ij} \cdot x_j \le S_i \ \forall i = 1, \dots, m$$
$$0 \le x_j \le 1 \ \forall j \in N_k$$

Duales Modell:

$$\min \sum_{i=1}^{m} S_i \cdot v_i + \sum_{j \in N_k} w_j$$

s.d.
$$\sum_{i=1}^{m} a_{ij} \cdot v_i + w_j \ge c_j$$

$$v_i, \ w_j \ge 0$$

Definition von Stärke:

 $L_k(\alpha)$ heißt stärker als $L_k(\alpha')$ genau dann, wenn $L_k(\alpha) \subseteq L_k(\alpha')$ bzw.

$$\max \sum_{j \in N_k} c_j \cdot x_j \le \max_{j \in N_k} c_j \cdot x_j$$

$$\text{s.d. } \alpha \cdot A \cdot x \le \alpha \cdot S$$

$$x_j \in \{0, 1\}$$

$$\Leftrightarrow$$

$$\max_{x_j} \sum_{j \in N_k} c_j \cdot x_j + \alpha \cdot S - \alpha \cdot A \cdot x \le \max_{x_j} \sum_{j \in N_k} c_j \cdot x_j + \alpha' \cdot S - \alpha' \cdot A \cdot x$$

(D.h. das Maximum der Summe aus ZFW und Überfüllung der NB ist für $L_k(\alpha)$ nicht größer als für $L_k(\alpha')$.)

Gesucht ist also ein Vektor $\alpha = (\alpha_1, \dots, \alpha_m)^T \geq 0$, der den Ausdruck

$$\begin{aligned} \max_{x_j} \sum_{j \in N_k} c_j \cdot x_j + \alpha \cdot S - \alpha \cdot A \cdot x \text{ bzw.} \\ \max_{x_j} \sum_{j \in N_k} \left(c_j \cdot x_j + \sum_{i=1}^m -\alpha_i \cdot a_{ij} \cdot x_j \right) + \sum_{i=1}^m \alpha_i \cdot S_i \end{aligned}$$

minimiert.

D.h.
$$\min_{\alpha_i \ge 0} \max_{x_j} \sum_{j \in N_k} \left(c_j \cdot x_j + \sum_{i=1}^m -\alpha_i \cdot a_{ij} \cdot x_j \right) + \sum_{i=1}^m \alpha_i \cdot S_i$$
 (*)

Für festes α gilt nun

$$\begin{aligned} \max_{x_j \in \{0,1\}} \sum_{j \in N_k} \left(c_j \cdot x_j + \sum_{i=1}^m -\alpha_i \cdot a_{ij} \right) \cdot x_j \\ &= \max_{0 \leq x_j \leq 1} \sum_{j \in N_k} \left(c_j \cdot x_j + \sum_{i=1}^m -\alpha_i \cdot a_{ij} \right) \cdot x_j \\ &(\text{Setze } x_j = 1, \text{ falls } \left(c_j + \sum_{i=1}^m -\alpha \cdot a_{ij} \right) \geq 0, \text{ 0 sonst}) \\ &= \min_{w_j \geq 0} \sum_{j \in N_k} w_j \text{ s.d. } w_j \geq c_j - \sum_{i=1}^m \alpha_i a_{ij} \text{ } \forall j \in N_k \end{aligned} \tag{***) in (*) einsetzen liefert: \\ &\min_{\alpha_i \geq 0} \min_{w_j \geq 0} \sum_{j \in N_k} w_j + \sum_{i=1}^m \alpha_i \cdot S_i \\ &\text{s.d. } w_j + \sum_{i=1}^m \alpha_i \cdot a_{ij} \geq c_j \text{ } \forall j \in N_k \square \end{aligned}$$

Aufgabe 10:

optimale Werte der dualen Vaiablen stellen optimale Gewichte für das Aufstellen der besten Ersatznebenbedingung dar.

 \leadsto Bestimmen der optimalen dualen Lösung mittels complementary slackness duales Modell zur LP-Relaxation von B:

$$\min z' = -2v_1 - 6v_3 + w_1 + w_2 + w_3 + w_4 + w_5$$
s.d.
$$-2v_1 + 4v_2 - 4v_3 + w_1 \ge -8$$

$$3v_1 - 2v_2 + v_3 + w_2 \ge -4$$

$$-4v_1 + 3v_2 + 3v_3 + w_3 \ge -5$$

$$-8v_1 - 4v_3 + w_4 \ge -12$$

$$3v_1 - 4v_2 + v_3 + w_5 \ge -6$$

$$v_1, v_2, v_3, w_1, w_2, w_3, w_4, w_5 \ge 0$$

Aus der optimalen primalen Lösung x^* folgt mittels complementary slackness:

- $x_1^*, x_4^*, x_5^* > 0 \leadsto 1.,4$. und 5. duale Nebenebedingungen sind in der optimalen dualen Lösung bindend
- 1.,4.,5.,6. und 8. primale Nebenbedingungen sind in x^* nicht bindend \rightsquigarrow in der optimalen Lösung gilt $v_1 = w_1 = w_2 = w_3 = w_5 = 0$

Somit gilt:

In der optimalen dualen Lösung gilt also $v_1^*=0, v_2^*=\frac{8}{3}$ und $v_3^*=\frac{14}{3}$.

 \leadsto beste Ersatznebenbedingung für B:

$$0 \cdot (-2x_1 + 3x_2 - 4x_3 - 8x_4 + 3x_5) + \frac{8}{3} \cdot (4x_1 - 2x_2 + 3x_3 - 4x_5)$$

$$+ \frac{14}{3}(-4x_1 + x_2 + 3x_3 - 4x_4 + x_5) \le 0 \cdot (-2) + \frac{8}{3} \cdot 0 + \frac{14}{3} \cdot (-6)$$

$$\Leftrightarrow -8x_1 - \frac{2}{3}x_2 + 22x_3 - \frac{56}{3}x_4 - 6x_5 \le -28$$

Aus der Ersatznebenbedingung folgt: $x_1 = x_4 = x_5 = 1$ und $x_3 = 0$

-18-

Aufgabe 11:

Zunächst Lösen der LP-Relaxation:

$$\max z = 2x_1 + 3x_2$$

$$s.d.2x_1 + 2x_2 \le 7$$

$$-x_1 + 2x_2 \le 3$$

$$x_1, x_2 \ge 0$$

opt. Lösung der LP-Relaxation: $x_1 = \frac{4}{3}, \ x_2 = \frac{13}{6}, \ z = \frac{55}{6}$ Lösung ist nicht ganzzahlig.

 \rightarrow Einfügen einer Gomory-Restriktion

Hier: Einfügen einer Gomory-Restriktion für die Zeile i, in welcher der nichtganzzahlige Anteil von b_i^* maximal ist. Also Zeile 1!

Basisdarstellung der 1. Basisvariable

$$x_{1} = \frac{4}{3} - \left(\frac{1}{3}s_{1} - \frac{1}{3}s_{2}\right)$$

$$= 1 + \frac{1}{3} - \left(0 \cdot s_{1} - 1 \cdot s_{2} + \frac{1}{3} \cdot s_{1} + \frac{2}{3} \cdot s_{2}\right)$$

$$= \underbrace{1 - (0 \cdot s_{1} - 1 \cdot s_{2})}_{\text{ganzzahlig}} + \underbrace{\frac{1}{3} - \left(\frac{1}{3} \cdot s_{1} + \frac{2}{3} \cdot s_{2}\right)}_{\text{muss ganzzahlig sein, damit } x_{1} \text{ ganzzahlig}}$$

$$= \underbrace{1 - (0 \cdot s_{1} - 1 \cdot s_{2})}_{\text{ganzzahlig}} + \underbrace{\frac{1}{3} - \left(\frac{1}{3} \cdot s_{1} + \frac{2}{3} \cdot s_{2}\right)}_{\text{muss ganzzahlig sein, damit } x_{1} \text{ ganzzahlig}}$$

Es gilt:
$$\frac{1}{3} \cdot s_1 + \frac{2}{3} \cdot s_2 \ge 0$$
, d.h. $-\left(\frac{1}{3} \cdot s_1 + \frac{2}{3} \cdot s_2\right) \le 0$
 $\Rightarrow \frac{1}{3} - \left(\frac{1}{3} \cdot s_1 + \frac{2}{3} \cdot s_2\right) \le \frac{1}{3} < 1$

Notwendige Bedingung für Ganzzahligkeit ist also

$$\frac{1}{3} - \left(\frac{1}{3} \cdot s_1 + \frac{2}{3} \cdot s_2\right) \le 0$$

Schlupfvariable einfügen:

$$-\frac{1}{3} \cdot s_1 - \frac{2}{3} \cdot s_2 + G_1 = -\frac{1}{3}$$

Lösung ist dual zulässig, primal jedoch unzulässig \rightarrow dualer Simplex-Schritt

Lösung nicht ganzzahlig \to zusätzliche Gomory-Restriktion (wieder 1. Zeile) Basisdarstellung:

$$x_1 = \frac{3}{2} - \left(\frac{1}{2} \cdot s_1 - \frac{1}{2}G_1\right)$$
$$= 1 - (0 \cdot s_1 - 1 \cdot G_1) + \frac{1}{2} - \left(\frac{1}{2} \cdot s_1 + \frac{1}{2} \cdot G_1\right)$$

 \rightarrow zusätzliche Gomory-Restriktion

$$-\frac{1}{2} \cdot s_1 - \frac{1}{2} \cdot G_1 + G_2 = -\frac{1}{2}$$

 \rightarrow zu obigem Endtableau hinzufügen

Lösung erneut nicht ganzzahlig \to zusätzliche Gomory-Restriktion erforderlich (2.Zeile) Basisdarstellung:

$$x_2 = \frac{3}{2} - \left(-\frac{1}{2} \cdot s_1 + G_2\right)$$
$$= 1 - (-1 \cdot s_1 + 1 \cdot G_2) + \frac{1}{2} - \left(\frac{1}{2} \cdot s_1\right)$$

 \rightarrow zusätzliche Gomory-Restriktion

$$-\frac{1}{2} \cdot s_1 + G_3 = -\frac{1}{2}$$

Lösung ganzzahlig \leadsto optimale Lösung gefunden

$$x_1^* = 1, \ x_2^* = 2, \ z^* = 8$$

Grafische Darstellung:

ightarrow Basisdarstellung der Gomory-Restriktionen bezüglich Basis des Starttableaus

1. Gomory-Restriktion:
$$-\frac{1}{3}\cdot s_1-\frac{2}{3}\cdot s_2+G_1=-\frac{1}{3}$$

Basisdarstellung von $s_1,\ s_2$ bezühlich Basis des Starttableau

$$s_1 = 7 - 2x_1 - 2x_2$$
 und $s_2 = 3 + x_1 - 2x_2$

Einsetzen in Gomory-Restriktion liefert:

$$-\frac{1}{3}(7-2x_1-2x_2)-\frac{2}{3}(3+x_1-2x_3)+G_1=-\frac{1}{3} \Rightarrow 2x_2+G_1=4 \text{ bzw. } x_2 \leq 2$$

Analog für die 2. und 3. Gomory-Restriktion liefert:

$$x_1 + 2x_2 \le 5$$
 und $x_1 + x_2 \le 3$

