

CDS1114 Introduction to Digital Systems

Tutorial 3

Tutorial outcomes

By the end of today's tutorial, you should be able to

- describe the operations of basic logic gates AND, OR, NOT, XOR, NAND
- recognize the different logic symbols of each gate
- construct timing diagrams for input and output signals for various logic gates

Theory based questions

Draw the logic symbol and construct the truth tables and timing diagrams for the following gates showing all possible input combinations

- 1. 1-input inverter
- 2. 4-input (quad-input) AND gate
- 3. 4-input OR gate
- 4. 4-input NAND gate
- 5. 4-input NOR gate
- 6. 3-input (tri-input) XOR gate
- 7. 3-input XNOR gate
- 8. 4-input XOR gate
- 9. 4-input XNOR gate
- 10. 3-input negative-AND gate
- 11. 3-input negative-OR gate

Applied knowledge questions

1. A series of *cascaded* inverters is shown in the figure below. Determine the logic level outputs at B, C, D and F if the V_{in} signal at A is given as shown.

2. Determine the individual outputs of X to the tri-input gates below based on the timing diagrams shown for inputs A, B and C

3. Determine the individual outputs of X to the quad-input gates below based on the timing diagrams shown for inputs A, B, C and D

4. Complete the timing diagram for the two gates below based on the inputs A and B shown. What conclusions can you derive from the output of the gates?

5. The headlights of a car only turn on (light up) when the car's ignition is turned ON with the key and the headlight switch is turned ON. Assuming that the headlight requires a LOW signal to turn it ON, what gate would be suitable to fit in the blank below to complete the circuit? Explain your answer.

