Python Fundamentals for Bioinformatics

Day 1

Module 1: Introduction to Python and Bioinformatics

- Lesson 1.1: Overview of Bioinformatics and Its Importance
 - Introduction to bioinformatics and its applications.
 - Why Python is the preferred language for bioinformatics.
- Lesson 1.2: Setting Up the Python Environment
 - Installing Python, Jupyter Notebook, and IDEs.
 - Overview of Command Line Python and Jupyter Notebook
- Lesson 1.3: Basic Python Syntax
 - Understanding variables, data types, and basic operations.
 - Writing and running your first Python script.

Day 2

Module 2: Core Python Concepts

- Lesson 2.1: Control Structures
 - Conditional Statements:
 - if, else, and elif statements with examples relevant to bioinformatics.
 - Loops:
 - for and while loops, with examples like iterating over sequence data or lists of gene names.
 - Introduction to list comprehensions for efficient looping.

Day 3

- Lesson 2.2: Functions and Modules
 - Writing Functions:
 - Defining functions, using parameters, return statements.
 - Importance of reusable code, with examples of bioinformatics functions (e.g., calculating GC content).
 - Using Modules:
 - Importing and using standard Python libraries (e.g., math, os).

■ Writing and importing custom modules for bioinformatics tasks.

Day 4

- Lesson 2.3: Working with Data Structures
 - Lists, Tuples, and Dictionaries:
 - Creating, accessing, and modifying lists, tuples, and dictionaries.
 - Practical examples: storing sequences, gene annotation data, or feature sets.
 - Basic Operations on Data Structures:
 - Sorting, slicing, filtering, and iterating over data structures.
 - Examples: Filtering genes based on expression levels, working with dictionaries to map gene IDs to descriptions.

Day 5

Module 3: Handling Biological Data

- Lesson 3.1: Introduction to Biological Data Formats
 - Overview of key biological data formats: FASTA, FASTQ, GenBank, GFF, VCF.
 - Understanding the structure and content of these formats.
 - Reading and writing biological data files using Python.

Day 6

- Lesson 3.2: String Manipulation for Sequence Analysis
 - Working with DNA, RNA, and protein sequences as strings.
 - Basic operations: reverse complement, transcription (DNA to RNA), translation (RNA to protein).
 - Finding orfs and introns in sequences using Python's string methods and regular expressions.
- Lesson 3.3: Parsing and Analyzing Sequence Data
 - Parsing FASTA/FASTQ files to extract sequence information.
 - Basic sequence analysis tasks: calculating counting nucleotides, GC content etc.
 - Read and handling quality information in FASTQ file.

Day 7

Module 4: Working with Bioinformatics Libraries

• Lesson 4.1: Introduction to Biopython

- Overview of Biopython and its key modules for sequence analysis, structure analysis, and more.
- Reading, writing, and manipulating sequence data using Biopython.
- Practical examples: reading different file formats (e.g., FASTA to GenBank).
- Lesson 4.2: Sequence Alignments
 - Pairwise Sequence Alignment:
 - Introduction to global and local alignments.
 - Performing pairwise alignments using Biopython's Align module.
 - Multiple Sequence Alignment:
 - Overview of multiple sequence alignment and its applications.
 - Using tools like ClustalW or MUSCLE with Biopython integration.
- Lesson 4.3: Handling Genomic Data
 - Working with GenBank files: parsing and extracting features, annotations, and sequences.
 - Understanding the structure and content of GenBank files.

Day 8

Module 5: Data Analysis and Visualization

- Lesson 5.1: Introduction to NumPy and Pandas
 - Fundamentals of NumPy:
 - Creating and manipulating arrays, performing mathematical operations.
 - Applying NumPy for matrix operations relevant to bioinformatics (e.g., working with gene expression matrices).
 - Fundamentals of Pandas:
 - Introduction to Pandas DataFrames for handling tabular data.
 - Loading, cleaning, and analyzing datasets such as gene expression data or SNP data.

Day 9

- Lesson 5.2: Introduction to Matplotlib and Seaborn
 - Fundamentals of Matplotlib:
 - Creating basic plots: line plots, scatter plots, histograms.
 - Customizing plots: adding titles, labels, legends, and color schemes.
 - Advanced Visualization with Seaborn:

- Creating box plots, violin plots, and heatmaps.
- Visualizing complex datasets like expression data or genotype-phenotype associations.

Day 10

- Lesson 5.3: Differential Gene Expression Analysis
 - Loading and Preprocessing Gene Expression Data:
 - Loading gene expression data (e.g., from RNA-Seq) into Pandas DataFrames.
 - Normalizing data and handling batch effects.
 - Calculating Differential Expression:
 - Calculating base mean, log2 fold change, p-values using Python (e.g., using statsmodels).
 - Visualizing Results:
 - Plotting volcano plots to highlight differentially expressed genes.
 - Creating heatmaps to visualize expression patterns across samples.

Day 11

Module 6: Automating Bioinformatics Tasks

- Lesson 6.1: Retrieving Data from Online Databases
 - NCBI:
 - Using Biopython's Entrez module to query and retrieve data from NCBI databases.
 - Downloading sequence data, gene annotations, and literature references.
 - Ensembl:
 - Accessing Ensembl data using RESTful APIs or FTP.
 - Fetching genomic coordinates, sequence variants, and regulatory elements.

Day 12

- Lesson 6.2: Integrating Python with Command-Line Tools
 - BLAST:
 - Running BLAST searches from within Python using subprocess.
 - Parsing and analyzing BLAST results programmatically.
 - FastQC:
 - Automating quality control for sequencing data using FastQC.

• Parsing FastQC reports to identify quality issues in FASTQ files.

• Trimmomatic:

- Automating sequence trimming for NGS data using Trimmomatic.
- Integrating Trimmomatic with other tools in a preprocessing pipeline.

Day 13

Module 7: Capstone Project

- Lesson 7.1: Project Introduction and Planning
 - Defining a real-world bioinformatics problem.
 - Planning the project scope and objectives.

Day 14

- Lesson 7.2: Project Implementation
 - Applying Python skills to solve the bioinformatics problem.
 - Writing code and analyzing results.
- Lesson 7.3: Project Presentation and Review
 - Presenting the project findings.
 - Code review and feedback.

3 Lectures in a Week # Friday, Sunday, Tuesday # Start Date: 11 October, 2024

Learning Outcomes

- Understand basic Python syntax, control structures, and functions.
- Grasp core bioinformatics concepts and data formats (FASTA, FASTQ, GenBank, PDB, GFF/GTF, Newick, Clustal, Count Tables).
- Apply Biopython for sequence manipulation and biological data analysis.
- Use NumPy and Pandas to handle and analyze bioinformatics datasets.
- Visualize biological data using Matplotlib and Seaborn.

- Perform differential gene expression analysis and basic sequence analysis.
- Automate bioinformatics tasks, including data retrieval from NCBI/Ensembl and running tools like BLAST, FastQC, and Trimmomatic.
- Complete a real-world bioinformatics project, applying Python skills and collaborating in a team.