GENERAL NOTES

GENERAL NOTES

ABSTRACT

Rough general notes.

1 Geometry

1.1 Symplectic Geometry

1.1.1 The Differential of the Moment Map

Given a symplectic manifold with a Hamiltonian G-action, (M, ω, μ) , where $\mu : M \to \mathfrak{g}^*$ is the moment map, the tangent map to μ at a point $p \in M$ is

$$d_pM:T_pM\longrightarrow \mathfrak{g}^*$$

which, by definition, is the transpose of

$$(d_p\mu)^T: \mathfrak{g} \longrightarrow T_p^*M; \qquad X \longmapsto (\imath_{X_M}\omega)_p.$$

In particular, its image $\operatorname{Im}(d_p\mu)$ is the annihilator in \mathfrak{g}^* of $\ker\left((d_p\mu)^T\right)$, that is, the annihilator of

$$\{\ X\in \mathfrak{g}\mid (\imath_{X_M}\omega)_p=0\ \}=\{\ X\in \mathfrak{g}\mid X_M(p)=0\ \}=\mathfrak{g}_p.$$

Proposition 1.1. The annihilator in \mathfrak{g}^* of \mathfrak{g}_p is the subspace $\operatorname{Im} d_p \mu$. Dually, the annihilator in \mathfrak{g} of $\operatorname{Im} d_p \mu \subset \mathfrak{g}^*$ is \mathfrak{g}_p . Thus the rank of $d_p \mu$ is the dimension of the orbit of p. Thus we deduce, in particular:

Corollary 1.2. The momentum mapping μ is a submersion at the point p if and only if the stabiliser subgroup G_p is discrete.

Proposition 1.3. The kernel ker $d_p\mu$ is the orthogonal (for ω_p) of the tangent space to the orbit though p, that is

$$\ker d_p \mu = \left(T(G \cdot p)\right)^{\circ}.$$

Proof. $d_p\mu(Y)$ is zero if and only if $\langle d_p\mu(Y), X\rangle = 0$ for all vectors $X \in \mathfrak{g}$, i.e. if and only if $\omega_p(X_M(p), Y) = 0$ for all X, and that is, if and only if Y is orthogonal to the subspace generated by the fundamental vector fields. \square

1.2 Principal Bundles

Definition 1.4. Let G be a Lie group. A principal G-bundle is a smooth manifold P with a smooth right G-action

$$P\times G\to P; \qquad (p,g)\longmapsto p\cdot g,$$

such that the action is free, the quotient space B=P/G is a manifold, and the natural projection map $\pi:P\to B$ is a locally trivial fibration. If G is compact, then the first condition implies the second and third.

Denote by $T_pP \to T_{p\cdot g}P$; $v\mapsto v\cdot g$ for the induced action on the tangent bundle, and

$$p \cdot \xi := \frac{d}{dt} \Big|_{t=0} p \cdot \exp(t\xi) \in T_p M; \quad p \in P, \, \xi \in \mathfrak{g},$$

for the infinitesimal action of the Lie algebra g.

Definition 1.5. The vertical tangent bundle $V \subset TP$ has fibres

$$V_p := \{ p \cdot \xi \mid \xi \in \mathfrak{g} \}.$$

1.3 Quotient Manifolds

If we consider now a topological space M and its quotient M/G in the place of P and B, respectively, then the space of orbits -that is M/G - can be given the structure of a manifold with respect to the projection $\pi:M\to M/G$ is a smooth submersion, provided that G acts **freely** on M. As the action is free, non-zero vector fields generated by $\mathfrak g$ have no zeroes and so for each point $p\in M$ there is a subspace $V_pM\subset T_pM$, with $\dim V_pM$ $\dim G$, spanned by the vector fields in $\mathfrak g$. This **vertical** space is the tangent space to the orbit of G through G. The tangent space to G is then isomorphic to the quotient vector space G is then isomorphic to the quotient vector space G is the first orbit of G through G.

Now let M be given a Riemannian metric g, and suppose G acts as isometries. We may define an **induced Riemannian metric** on M/G as follows: Let $H_pM \subset T_pM$ be the subspace of vectors orthogonal to V_pM , called the **horizontal space**. Then the derivative of π maps H_pM isomorphically to the tangent space of the quotient at $\pi(p)$. A tangent vector $X \in T_{\pi(p)}(G \cdot p)$ then has a unique horizontal lift $\tilde{X} \in H_pM \subset T_pM$, and we define an inner-product h on $T_{\pi(p)}(G \cdot p)$ by:

$$h: T_{\pi(p}(G \cdot p) \times T_{\pi(p}(G \cdot p) \longrightarrow \mathbb{R}; \qquad h(X, Y) := g(\tilde{X}, \tilde{Y}).$$

As G preserves the metric g, this is independent on the choice of point p in the orbit $\pi^{-1}(\pi(p))$.

This family of horizontal subspaces has an interpretation in terms of **connections**; the manifold M is a principal G-bundle over M/G, by definition of the free action of G. And the vector fields corresponding to a basis of the Lie algebra $\mathfrak g$ form a basis for V_pM at each point $p\in M$, thus the orthogonal projection from T_pM to V_pM defines a 1-form θ with values in $\mathfrak g$ and transforming under the adjoint representation of G, which determines a connection form for the principal bundle.

1.4 Symplectic Reduction

Now let (M, ω, μ) be a G-manifold with associated moment map $\mu: M \to \mathfrak{g}$, and consider the submanifold $N := \mu^{-1}(\mu(p)) \subseteq M$. Let Y be a tangent vector to N, then $d\mu(Y) = 0$, and thus

$$0 = d\mu^X(Y) = \omega(X, Y)$$

for all vector fields X generated by \mathfrak{g} . As the form ω is non-degenerate, this gives $\dim G$ independent equations for Y giving

$$\dim \ker d\mu = \dim M - \dim G$$
,

so (if dim M=2n) N is a submanifold of dimension $2n-\dim G$.

Now suppose that there exists a $p \in M$ such that $\mu(p) = 0$, and let $N = \mu^{-1}(0)$. As G keeps the origin in \mathfrak{g}^* fixed and μ is equivariant, G acts on the manifold N, and can form the quotient N/G which is a manifold of dimension $2n - 2\dim G$. It possesses a natural 2-form ρ , defined by

$$\rho(Y_1, Y_2) = \omega(\tilde{Y}_1, \tilde{Y}_2),$$

where \tilde{Y}_i is any tangent vector on to N which projects to Y_i , a tangent vector to N/G. One can show that ρ is a well-defined 2-form on the quotient N/G, and moreover is a symplectic 2-form, making (N/G,/w) a symplectic manifold.

More generally, if we take a point $x \in \mathfrak{g}^*$ which is not fixed by G, but has isotropy subgroup H, then $\mu^{-1}(x)/H$ has a symplectic structure in the same way.

[TODO: see Guillemin's 'Moment Maps and Combinatorial Invariants of T^n -Actions' for similar material]

2 Residue Theorems

Lemma 2.1 ([1]). Let A be a graded commutative algebra over \mathbb{C} and let f = f(x) be a polynomial in x with coefficients in A. Then for indeterminants z_1, \ldots, z_d ,

$$\operatorname{Res}_{x} \frac{f(x)}{(x-z_{1})\dots(x-z_{d})} = \sum_{i=1}^{d} \frac{f(z_{i})}{\prod_{j\neq i}(z_{i}-z_{j})}.$$

Proof. Decompose into simple fractions:

$$\frac{f(x)}{(x-z_1)\dots(x-z_d)} = F(x) + \sum_{i=1}^d \frac{f(z_i)}{\prod_{j\neq i} (z_i - z_j)} \frac{1}{(x-z_i)}.$$

Here F(x) is a polynomial term in x.

Let

$$h = \frac{f}{\prod_{j=1}^d (x-z_j)} \quad \text{and} \quad h_j = \frac{f(z_j)}{\prod_{r \neq j} (z_j - z_r)}, \quad \text{for all } j.$$

Lemma 2.2 ([1]). $h \in A[x]$ if and only if $\operatorname{Res}_x(x^k h) = 0$, for all $k \geq 0$.

Proof. From Lemma 2.1, we get that

$$\operatorname{Res}_{x}(x^{k}h) = \sum_{j=1}^{d} (z_{j})^{k} h_{j}.$$

Then the condition that $\operatorname{Res}_x(x^kh) = 0$ for every $k = 1, \dots, d$ can be written as

$$\begin{pmatrix} z_1^1 & \dots & z_j^1 & \dots & z_d^1 \\ \vdots & & \vdots & & \vdots \\ z_1^k & \dots & z_j^k & \dots & z_d^k \\ \vdots & & \vdots & & \vdots \\ z_1^d & \dots & z_j^d & \dots & z_d^d \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_j \\ \vdots \\ h_d \end{pmatrix} = 0.$$

As the corresponding Van der Monde determinant is non-zero, we deduce that $h_1 = \ldots = h_d = 0$, that is, $f(z_j) = 0$, for all $j = 1, \ldots, d$, from which we obtain that $h \in A[x]$.

Theorem 2.3 ([2]). Let V be an n-dimensional vector space over \mathbb{C} , and let τ_k be the standard representation of $\mathrm{GL}(V)$ on the k-th symmetric product, $S^k(V)$. Then for $z \in \mathbb{C}$ large and $B \in \mathrm{GL}(V)$,

$$\det(z - B)^{-1} = z^{-n} \sum_{k=0}^{\infty} z^{-k} \operatorname{Tr}(\tau_k(B)).$$

Proof. Without loss of generality, assume that B is diagonalisable with eigenvalues, $\lambda_1, \ldots, \lambda_n$. The left-hand side then becomes

$$\det(z-B)^{-1} = z^{-n} \prod_{j=1}^{n} (1 - \lambda_j z^{-1})^{-1}.$$

Expanding each of the factors $(1 - \lambda_j z^{-1})^{-1}$ into a geometric series, we then get

$$z^{-n} \prod_{j=1}^{n} (1 - \lambda_j z^{-1})^{-1} = z^{-1} \left(\sum_{k=0}^{\infty} z^k t_k \right),$$

where

$$t_k = \sum_{|I|=k} \lambda_1^{i_1} \dots \lambda_n^{i_n} = \operatorname{Tr} (\tau_k(B)).$$

Corollary 2.4 ([2]). Let Γ be a contour about the origin containing the zeroes of det(z-B). Then

$$\frac{1}{2\pi i} \int_{\Gamma} z^{n+k-1} \det(z-B)^{-1} dz = \operatorname{Tr} \left(\tau_k(B) \right).$$

3 Representation Theory

3.1 Symmetric Polynomials

Definition 3.1 ([3]). A representation of $\Gamma = \mathrm{GL}(\mathbb{C}^n)$ (or Γ -module) is a pair (V, ρ) , where V is a \mathbb{C} -vector space and

$$\begin{split} \rho: \Gamma &\longrightarrow \mathrm{GL}(V), \\ A &= (a_{ij})_{1 \leq i, j \leq n} \longmapsto \rho(A) = (\rho_{kl}(A))_{1 < k, l < N} \end{split}$$

is a group homomorphism. The **dimension** N of the representation (V, ρ) is the dimension of the vector space V. We say that (V, ρ) is a **polynomial representation** (of **degree** d) if the matrix entries $\rho_{kl}(A) = \rho_{kl}(a_{11}, a_{12}, \dots, a_{nn})$ are polynomial functions (homogeneous of degree d).

Example 1. The d-th symmetric power representation: $V = S_d(\mathbb{C}^n)$ = the space of homogeneous polynomials of degree d in x_1, x_2, \ldots, x_n , ρ = action by linear substitution, $N = \binom{n+d-1}{d}$.

For example, for d=3, n=2, we have $S_3(\mathbb{C}^2)=$ binary cubics $=\operatorname{Span}\{x^3, x^2y, xy^2, y^3\}\cong \mathbb{C}^4$, and ρ is the group homomorphism

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \begin{pmatrix} a_{11}^3 & a_{11}^2 a_{12} & a_{11}a_{12}^2 & a_{12}^3 \\ 3a_{11}^2 & a_{11}^2 a_{22} + 2a_{11}a_{12}a_{21} & 2a_{11}a_{12}a_{22} + a_{12}a_{21}^2 & 3a_{12}^2 a_{22} \\ 3a_{11}^2 a_{21}^2 & 2a_{11}a_{21}a_{22} + a_{12}a_{21}^2 & a_{11}a_{22}^2 + 2a_{12}a_{21}a_{22} & 3a_{12}a_{22}^2 \\ a_{21}^3 & a_{21}^2 a_{22} & a_{21}a_{22}^2 & a_{21}a_{22}^2 & a_{22}^3 \end{pmatrix}.$$

4 Orbifolds

4.1 The Associated Inertia Orbifold

Definition 4.1. Given an orbifold M, the **associated orbifold** \hat{M} has charts (\hat{V}, Γ, ψ) built as follows:

For each chart $(\tilde{U}, \Gamma, \phi)$ of M, let

$$\hat{V} := \left\{ (u, g) \in \tilde{U} \times \Gamma \mid g \cdot u = u \right\}.$$

 Γ acts on \hat{V} by

$$h \cdot (u, g) = (h \cdot u, hgh^{-1}).$$

Let $V := \hat{V}/\Gamma$ be the space of orbits with projection $\phi : \hat{V} \to V$. The orbifold charts (\hat{V}, Γ, ϕ) inherit the compatibility conditions from the $(\tilde{U}, \Gamma, \phi)$. As a set,

$$\hat{M} = \bigsqcup_{p \in M} \operatorname{Conj}(\Gamma_p),$$

where $\operatorname{Conj}(\Gamma_p)$ is the set of conjugacy classes in Γ_p .

4.2 From Simple Rational Polytopes

4.2.1 Weighted Projective Space $\mathbb{CP}^2_{(1,1,2)}$, from [?]

Consider the following polytope with facets H_i , facet labels all (implicitly) 1, and the corresponding primitive inward-pointing normal vectors u_i to the facets.

The polytope is given by

$$\Delta = \{ v \in \mathbb{R}^2 \mid \langle u_i, v \rangle \ge -\eta_i , \ i = 1, 2, 3 \}$$

where
$$(\eta_1,\eta_2,\eta_3)=(0,2,0)$$
. The corresponding matrix B is $\begin{pmatrix} 0 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ and A is $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. Thus M is given by $|z_1|^2+|z_2|^2+2|z_3|^2=2$ in C^3 and $S=\{(t,t,t^2)\mid t\in U(1)\}\subset T^3=U(1)^3$. The only elements g of S such that G_g is not empty are $(1,1,1)=(-1,-1,1)$

5 Equivariant Localisation

5.1 Kawasaki-Riemann-Roch Formula for Orbifolds

5.1.1 C.f. 'On Riemann-Roch for Multiplicities', [4]

Let $\mathcal{L} \to M$ be a G-equivariant Hermitian vector bundle over M, with fibre dimension n. Let $\mathcal{A}(M;\mathcal{L})$ be the \mathcal{L} -valued differential forms, and $\mathcal{A}_G(M;\mathcal{L})$ their equivariant counter-part. For each G-invariant Hermitian connection $\nabla: \mathcal{A}(M;\mathcal{L}) \to \mathcal{A}(M;\mathcal{L})$ the moment map $\mu \in \mathcal{A}_G(M;\operatorname{End}(\mathcal{L}))$ of Berline and Vergne [5] is defined by

$$\mu(\xi) \cdot \sigma := \xi \cdot \sigma - \nabla_{\xi_M} \cdot \sigma,$$

where $\sigma \mapsto \xi \cdot \sigma$ denote the representation of g on the space of sections.

Geometrically, $\mu(\xi)$ is the vertical part (with respect to the connection ∇) of the fundamental vector field $\xi_{\mathcal{L}}$ on \mathcal{L} . Let $F(\mathcal{L}) \in \mathcal{A}^2(M; \operatorname{End}(\mathcal{L}))$ denote the curvature of ∇ ; then the **equivariant curvature** $F_{\mathfrak{g}}(\mathcal{L}; \xi)$ is defined by

$$F_{\mathfrak{q}}(\mathcal{L};\xi) := F(\mathcal{L}) + 2\pi i \mu(\xi),$$

and it satisfies the Bianchi identity with respect to the equivariant covariant derivative

$$\nabla_{\mathfrak{g}} := \nabla - 2\pi i \cdot \iota(\xi_m).$$

Suppose now that $A \mapsto f(A)$ is the germ of an $\mathrm{U}(n)$ -invariant analytic function on $\mathfrak{u}(n)$; then $f(F_{\mathfrak{g}}) \in \mathcal{A}_G(M)$ is $d_{\mathfrak{g}}$ -closed, and moreover one can show that choosing a different equivariant connection changes $f(F_{\mathfrak{g}})$ by a $d_{\mathfrak{g}}$ -exact form. The corresponding cohomology classes are the **equivariant characteristic classes** of the bundle $\mathcal{L} \to M$.

If the action on M is locally free, one can choose ∇ in such a way that $\mu=0$, which shows that the mapping $H_G^\omega(M) \to H(M/G)$ sends the equivariant characteristic classes of $\mathcal L$ to the usual characteristic classes of the orbifold bundle $\mathcal L/G$.

The following characteristic classes will play an important role:

• The equivariant Chern character, defined by

$$\operatorname{Ch}_{\mathfrak{g}}(\mathcal{L};\xi) := \operatorname{Tr}\left(e^{\frac{i}{2\pi}F_{\mathfrak{g}}(\mathcal{L};\xi)}\right).$$

In the setting of geometric quantisation, \mathcal{L} is a line bundle, and for the equivariant curvature one has

$$\frac{i}{2\pi}F_{\mathfrak{g}}(\mathcal{L};\xi) = \omega + 2\pi i \langle J, \xi \rangle,$$

thus

$$\operatorname{Ch}_{\mathfrak{g}}(\mathcal{L};\xi) = e^{\omega + 2\pi i \langle J,\xi \rangle}.$$

More generally, if $g \in G$ acts trivially on the base M, one defines

$$\operatorname{Ch}_{\mathfrak{g}}^{g}(\mathcal{L};\xi) = \operatorname{Tr}\left(\rho(g)e^{\frac{i}{2\pi}F_{\mathfrak{g}}(\mathcal{L};\xi)}\right),$$

where $\rho(g) \in \Gamma(M; \operatorname{End}(\mathcal{L}))$ is the induced action of g on \mathcal{L} .

In the line bundle case, this s simply $c_{\mathcal{L}}(g) \cdot \operatorname{Ch}_{\mathfrak{q}}(\mathcal{L}; \xi)$, where $c_L(g) \in S^1$ is the action of g on the fibres.

• The equivariant Todd class,

$$\operatorname{Td}_{\mathfrak{g}}(\mathcal{V};\xi) := \det \left(\frac{\frac{i}{2\pi} F_{\mathfrak{g}}(\mathcal{V};\xi)}{\left(1 - e^{-\frac{i}{2\pi} F_{\mathfrak{g}}(\mathcal{V};\xi)}\right)} \right).$$

The Todd class of a complex manifold is defined as the Todd class of its tangent bundle.

• The equivariant Euler class,

$$\chi_{\mathfrak{g}}(\mathcal{V};\xi) := \det\left(\frac{i}{2\pi}F_{\mathfrak{g}}(\mathcal{V};\xi)\right).$$

· The class

$$D_{\mathfrak{g}}^g := \det \left(\operatorname{Id} - \rho(g)^{-1} \cdot e^{-\frac{i}{2\pi} F_{\mathfrak{g}}(\mathcal{V};\xi)} \right),$$

for $g \in G$ acting trivially on M.

The equivariant Euler class occurs in the Localisation Formula for Atiyah-Bott-Berline-Vergne:

Theorem 5.1. Suppose that M is an orientable G-manifold, and $\sigma \in \mathcal{A}_G^{\omega}(M)$ is $d_{\mathfrak{g}}$ -closed. Assume that $\xi \in \mathfrak{g}$ is in the domain of definition of $\sigma(\xi)$, and let F be the set of zeros of ξ_M . The connected components of F are then smooth submanifolds of even codimension, and the normal bundle N_F admits a Hermitian structure which is invariant under the flow of ξ_M . Choose orientations on F and M which are compatible with the corresponding orientation of N_F . Then

$$\int_{M} \sigma(\xi) = \int_{F} \frac{\imath_{F}^{*} \sigma(\xi)}{\chi_{\mathfrak{g}}(N_{F}; \xi)},$$

where $i_F: F \hookrightarrow M$ denotes the embedding.

5.1.2 C.f. 'The Heat Kernel Lefschetxz Fixed-Point Formula', [6]

Lemma 5.2. The linear transformations $\gamma_{L,x}$ and $\gamma_{N,x}$ in L_x and N_x , respectively, are diagonalisable. The respective eigenvalues $\lambda_{L,j}$ and $\lambda_{N,k}$ are constant when x varies in a connected component F of M^{γ} , the fixed-point set of γ in M. The corresponding eigenspaces $L_{j,x} \subset L_x$ and $N_{k,x} \subset N_x$, with x ranging over F, form smooth complex vector subbundles L_j and N_j of L and N, respectively.

Proof. We may assume that γ_L belongs to a compact group K of transformations¹. Now let H be the closure in K of the set of γ^p with $p \in \mathbb{Z}$. Then H is a compact abelian group of automorphisms of our structure, and h(x) = x for each $x \in M^{\gamma}$, $h \in H$. We therefore have, for each $x \in M^{\gamma}$, the complex representations

$$h \longmapsto T_x h_M \big|_{N_x}$$

and

$$h \longmapsto h_{L,x}$$

of H in N_x and L_x , respectively.

¹In Section 10.1 of [6], it is remarked that the isometry group of a fixed-point is compact.

$$z_1^4w_3 \quad z_1^3z_2w_3 \quad z_1^2z_2^2w_3 \quad z_1z_2^3w_3 \quad z_2^4w_3$$

$$z_2^4 w_1 \quad z_2^3 z_3 w_1 \quad z_2^2 z_3^2 w_1 \quad z_2 z_3^3 w_1 \quad z_3^4 w_1$$

$$z_3^4 w_2$$
 $z_3^3 z_1 w_2$ $z_3^2 z_1^2 w_2$ $z_3 z_1^3 w_2$ $z_1^4 w_2$

6 Personal Calculations

6.1 Index Formulae

Recall from Lemma (2.1) and (2.2):

$$\operatorname{Res}_{x} \frac{f(x)}{(x-z_{1})\dots(x-z_{d})} = \sum_{i=1}^{d} \frac{f(z_{i})}{\prod_{j\neq i}(z_{i}-z_{j})}.$$

and

$$\frac{1}{2\pi i} \int_{\Gamma} z^{n+k-1} \det(z-B)^{-1} dz = \operatorname{Tr} \left(\tau_k(B) \right),$$

for Γ a contour circling the origin and the zeros of $\det(z-B)$.

6.1.1 Ind(\mathbb{CP}^2 , $\mathcal{O}(k)$, T^2)

$$\operatorname{Ind}(\mathbb{CP}^2, \mathcal{O}(k), T^2)(z_1, z_2) = \frac{1}{(1 - z_1)(1 - z_2)} + \frac{z_1^k}{(1 - z_1^{-1})(1 - z_1^{-1}z_2)} + \frac{z_2^k}{(1 - z_2^{-1})(1 - z_2^{-1}z_1)}$$

$$= \frac{1}{(1 - z_1)(1 - z_2)} + \frac{z_1^{k+2}}{(z_1 - 1)(z_1 - z_2)} + \frac{z_2^{k+2}}{(z_2 - 1)(z_2 - z_1)}$$

6.2 Representation Theory of Polynomial Rings

6.2.1 k = 3, a = 2 **Polyptych**

Set

$$V := \mathbb{C}[z_1, z_2, z_3]$$

, the polynomial

 \mathbb{C}

-algebra in three variables.

a = 0 monomials:

So we have $S_3[V]$

a = 1 monomials:

a=2 monomials:

a=3 monomials:

References

- [1] V. Guillemin and C. Zara. Equivariant de Rham theory and graphs. volume 3, pages 49–76. 1999. Sir Michael Atiyah: a great mathematician of the twentieth century.
- [2] A. Canas da Silva and V. Guillemin. On the Kostant multiplicity formula for group actions with non-isolated fixed points. *Advances in Mathematics*, 123(1):1–15, 1996.
- [3] Bernd Sturmfels. *Algorithms in invariant theory*. Texts and Monographs in Symbolic Computation. SpringerWien-New York, Vienna, second edition, 2008.
- [4] Eckhard Meinrenken. On Riemann-Roch formulas for multiplicities. *Journal of the American Mathematical Society*, 9(2):373–389, 1996.
- [5] Nicole Berline and Michèle Vergne. The equivariant index and Kirillov's character formula. *American Journal of Mathematics*, 107(5):1159–1190, 1985.
- [6] J. J. Duistermaat. *The heat kernel Lefschetz fixed point formula for the spin-c Dirac operator*. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2011. Reprint of the 1996 edition.