Math265 Real Analysis Class Notes

Based on lectures by Prof. Huang Notes taken by Kaifeng Lu

Fall 2024

1 Preliminaries

1.1 Sets and Functions

1.2 Mathematical Induction

1.3 Finite and Infinite Sets

2 The Real Numbers

2.1 The Algebraic and Order Properties of $\mathbb R$

2.2 Absolute Value and the Real Line

2.3 The Completeness Property of $\mathbb R$

2.4 Applications of Supremum

2.5 Intervals

3 Sequences and Series

3.1 Sequences and their limits

Definition (Seuqence). A <u>sequence of real numbers</u> is a function from \mathbb{N} to \mathbb{R} .

We adopt the notation with a sequence:

$$a: \mathbb{N} \to \mathbb{R}$$

where instead of writing $a(1), a(2), \ldots$, we write it as a_1, a_2, \ldots which we called them <u>terms</u> or <u>elements</u> of the sequence.

Notation.

$$(a_n)_{n=1}^{\infty}$$
 or $(a_n)_{n\in\mathbb{N}}$ or (a_n) or $(a_n|n\in\mathbb{N})$

Definition (Converge to x). A sequence $(x_n) \in \mathbb{R}$ <u>converges</u> to $x \in \mathbb{R}$ if

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \text{ such that } n \geq N_{\epsilon} \rightarrow |x_n - x| < \epsilon$$

We write

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (x_n) = x$$

Definition (Convergent & Divergent). A sequence is $\underline{convergent}$ if it has a \underline{limit} in \mathbb{R} , and is $\underline{divergent}$ if it has $no \ limit$ in \mathbb{R} .

Theorem (Uniqueness of Limit). A sequence in \mathbb{R} can have <u>at most one</u> limit. Or, the limit of a sequence is <u>unique</u> if the limit exists

Proof. Let (x_n) be a sequence of real numbers. Suppose x, x' are limits of (x_n) . We want to prove x = x' by controdiction.

Assume |x-x'| > 0. If we consider $\epsilon := \frac{1}{3} |x-x'| > 0$, then The existence of $\lim_{x_n \to x} \text{implies that } \exists N_1 \in \mathbb{N} \text{ such that } |x_n - x| < \epsilon \text{ if } n \ge \mathbb{N}_1$. Similarly, existence of $\lim_{x_n \to x'} \text{implies that } \exists N_2 \in \mathbb{N} \text{ such that } |x_n - x'| < \epsilon \text{ if } n \ge \mathbb{N}_2$. Thus,

$$|x - x'| \le |x - x_{N_1 + N_2} + x_{N_1 + N_2} - x'|$$

 $\le |x - x_{N_1 + N_2}| + |x_{N_1 + N_2} - x'|$ by triangle inequality
 $< \epsilon + \epsilon$
 $= \frac{2}{3} |x - x'|$

Then,

$$\frac{1}{3}|x-x'| < 0$$
, which is a controdiction

we thereby prove by controdiction that

$$|x - x'| = 0$$
, which is equivalent to $x = x'$

Example.

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$$

Goal: $\forall \epsilon > 0$, want to find N_{ϵ} such that $\left| \frac{1}{n} - 0 \right| < \epsilon$ for n > N, so it suffices to show that

$$\frac{1}{n} < \epsilon \Leftrightarrow \frac{1}{\epsilon} < n$$

Proof. Let $\epsilon > 0$. Apply Archemedian's property to $\frac{1}{\epsilon}$, then

$$\exists N \in \mathbb{N} \text{ such that } \frac{1}{\epsilon} < N$$

$$\Rightarrow \forall n \ge N, \left| \frac{1}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$$

Theorem. Let (x_n) be a sequence of real numbers, and let $x \in \mathbb{R}$. The following theorems are equivalent:

- 1. $x_n \to x$
- 2. $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } |x_n x| < \epsilon, \text{ for } n \geq \mathbb{N}$
- 3. $\dots x \epsilon < x_n < x + \epsilon \dots$
- 4. $\forall \epsilon$ -neighborhood $V_{\epsilon}(x), \exists N \in \mathbb{N}$ such that $x_n \in V_{\epsilon}(x)$ for $n \geq N$

Sketch of proof:

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$$

Proposition.

$$\lim_{n \to \infty} (2\sqrt{2n+1} - \sqrt{2n}) = 0$$

Proof. Let $\epsilon > 0$. Consider

$$N = \lceil \frac{1}{2} (\frac{1}{2\epsilon})^2 \rceil \in \mathbb{N}$$

$$n > N \Rightarrow n > \frac{1}{2} (\frac{1}{2\epsilon})^2 \Rightarrow \frac{1}{2\sqrt{2n}} < \epsilon \Rightarrow \left| \sqrt{2n+1} - \sqrt{2n} \right| = \dots = \frac{1}{\sqrt{2n+1} + \sqrt{2n}} < \epsilon$$

Remark.

$$\lim_{n\to\infty} (-1)^n$$
 is undefined.

Definition (m-tail). If (x_n) is a sequence of real numbers and $m \in \mathbb{N}$, then the <u>m-tail</u> of (x_n) is the sequence

$${x_{n+m}: n \in \mathbb{N}} = {x_{m+1}, x_{m+2}, \dots}$$

Theorem. Let (x_n) be a sequence and $m \in \mathbb{N}$. Then (x_n) is <u>convergent</u> iff (x_{n+m}) is <u>convergent</u>. Moreover,

$$\lim_{n \to \mathbb{N}} (x_n) = \lim_{n \to \mathbb{N}} (x_{n+m})$$

Proof. (\Rightarrow)

Suppose $x_n \to x$. Let

$$\epsilon > 0, \exists N_{\epsilon} > 0, \text{ such that } |x_n - x| < \epsilon \text{ for } n \geq N_{\epsilon}$$

Consider $N_{\epsilon}' := N_{\epsilon} + m$ then

$$n+m > N_{\epsilon}' \Rightarrow n > N_{\epsilon} \Rightarrow n+m > N_{\epsilon} \Rightarrow |x_{n+m}-x| < \epsilon$$

It follows that

$$n \ge N_{\epsilon} \Rightarrow n + m \ge N_{\epsilon} \Rightarrow |x_{n+m} - x| < \epsilon$$

 (\Leftarrow)

Suppose $x_{n+m} \to x$.

$$\forall \epsilon > 0, \exists N_{\epsilon} > 0 \text{ such that } |x_{n+m} < \epsilon|, \forall n \geq N_{\epsilon}$$

Consider $N := N_{\epsilon} + m$. Then

$$n \ge N = N_{\epsilon} + m$$

$$\Rightarrow n - m \ge N_{\epsilon}$$

$$\Rightarrow |x_{(n-m)+m} - x| < \epsilon$$

$$\Rightarrow |x_n - x| < \epsilon$$

Remark. We say that a sequence (x_n) **ultimately** has a property if that property holds for some tail of (x_n)

Theorem. Let x_n be a sequence of real numbers. Let a_n be a sequence of positive real numbers such that $\lim_{n\to\infty} a_n = 0$. If $\exists c > 0, m \in \mathbb{N}, x \in \mathbb{R}$ such that

$$|x_n - x| \le c \cdot a_n, \forall n \ge m$$

then

$$x_n \to x$$

Proof. We know that

$$\forall \epsilon > 0, \exists N \geq 0 \text{ s.t. } |a_n| < \frac{\epsilon}{c}, \forall n \geq N$$

Consider $N' = max\{N, m\}, \forall n \geq N'$. Then

$$|x_n - x| \le Ca_n = c |a_n| < c \cdot \frac{\epsilon}{c} = \epsilon$$

 $\Rightarrow x_n \to x$

Proposition.

$$\lim_{n \to \infty} \frac{17}{2 + 3n} = 0$$

Proof.

$$\left| \frac{17}{2+3n} - 0 \right| = \frac{17}{2+3n} \le \frac{13}{3n} = \frac{17}{3} \cdot \frac{1}{n}$$

Apply the theorem above with

$$a_n = \frac{1}{n}, c = \frac{17}{3}, m = 1$$

$$\Rightarrow \lim_{n \to \infty} \frac{17}{2+3n} = 0, \text{ since } \lim_{n \to \infty} \frac{1}{n} = 0$$

Proposition.

$$\forall c > 0, \lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

Proof. Case 1: c = 1

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

Case 2: c > 1

Let $d_n = c^{\frac{1}{n}} - 1$. Then $\forall n, d_n > 0$. It follows that

$$(d_n + 1) = c^{\frac{1}{n}} \Rightarrow c = (1 + d_n)^n \ge 1 + n \cdot d_n$$
 by Bernoulli's inequality
$$\Rightarrow d_n \le (c - 1) \cdot \frac{1}{n}$$

$$\Rightarrow \left| c^{\frac{1}{n}} - 1 \right| = d_n \le (c - 1) \cdot \frac{1}{n}$$

Apply the theorem with

$$C = c - 1, a_n = \frac{1}{n}, m = 1, x = 1$$

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

Case 3: c < 1(Note that we cannot use Bernoulli inequality here)

Define e_n to be a sequence that satisfies

$$c^{\frac{1}{n}} = \frac{1}{1 + e_n}$$

Then $e_n > 0 \forall n$.

$$c = \frac{1}{(1+e_n)^n} \le \frac{1}{1+n \cdot e_n} < \frac{1}{n \cdot e_n}$$

$$\Rightarrow e_n < \frac{1}{c} \cdot \frac{1}{n}$$

$$1 - c^{\frac{1}{n}} = 1 - \frac{1}{1+e_n} = \frac{e_n}{1+e_n} < e_n < \frac{1}{c} \cdot \frac{1}{n}$$

Apply the theorem with

$$a_n = \frac{1}{n}, m = 1, C = \frac{1}{c}, x = 1$$

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

3.2 Limit Theorems

3.3 Monotone sequence

Definition. Let (x_n) be a sequence of real numbers

Theorem (Monotone Convergence Theorem). A monotone sequence of real numbers is <u>convergent</u> iff it is bounded. Moreover, if (x_n) is increasing, then

$$\lim(x_n) = \sup x_n : n \in \mathbb{N}$$

If (x_n) is decreasing, then

$$\lim(x_n) = \inf x_n : n \in \mathbb{N}$$

Example. Consider the sequence (x_n) is given by

$$\begin{cases} x_0 = \frac{1}{2} \\ x_{n+1} = \frac{3}{2}x_n(1 - x_n) \end{cases}$$

 (x_n) is decreasing and bounded.

Thoughts: Assume (x_n) converges, then by limit law,

$$x = \frac{3}{2}x(1-x)$$
 where $x = \lim(x_n) \Rightarrow x = 0$ or 3

then, by proof of controdiction, it is not convergent.

Proof. Claim:
$$\frac{1}{3} < x_{n+1} < x_n \le \frac{1}{2}, \forall n \in \mathbb{N} \cup \{0\}$$

Proof of the claim by induction:

When n = 0:

$$x_0 = \frac{1}{2}, x_1 = \frac{3}{2} \cdot \frac{1}{2} (1 - \frac{1}{2}) = \frac{3}{8}$$

$$\frac{1}{3} < \frac{3}{8} < \frac{1}{2} \le \frac{1}{2}$$

Suppose this is true for n=k:

$$\frac{1}{3} < x_{k+1} < x_k \le \frac{1}{2}$$

Goal:

$$\frac{1}{3} < x_{k+2} < x_{k+1} \le \frac{1}{2}$$

$$x_{k+1} = \frac{3}{2}x_k(1 - x_k)$$

$$\frac{1}{3} < x_k \le \frac{1}{2} \Rightarrow \frac{2}{3} > 1 - x_k \ge \frac{1}{2}$$

$$x_{k+1} < \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{2}$$

Complete the square:

$$x_{k+1} - \frac{1}{3} = \frac{3}{2}x_k(1 - x_k) - \frac{1}{3}$$
$$= -\frac{3}{2}[(x_k - \frac{1}{2})^2 - \frac{1}{36}]$$

So

$$\frac{1}{3} < x_k \le \frac{1}{2} \Rightarrow \left| x_k - \frac{1}{2} \right| < \frac{1}{6}$$

$$\Rightarrow (x_k - \frac{1}{2})^2 < \frac{1}{36}$$

$$\Rightarrow x_{k+1} - \frac{1}{3} > 0$$

$$\Rightarrow \frac{1}{3} < x_{k+1} \le \frac{1}{2}$$

With the similar process, we can derive that

$$\frac{1}{3} < x_{k+2} \le \frac{1}{2}$$
$$x_{k+2} = \frac{3}{2} x_{k+1} (1 - x_{k+1}) < \frac{3}{2} x_{k+1} \cdot \frac{3}{2} = x_{k+1}$$

Therefore, this claim is also true for n=k+1:

$$\frac{1}{3} < x_{k+2} < x_{k+1} \le \frac{1}{2}$$

We thereby prove the theorem by induction:

$$\frac{1}{3} < x_{n+1} < x_n \le \frac{1}{2}$$

Exercise: Textbook p.75: A sequence that converges to \sqrt{a} for a > 0.

Definition (Euler's Number).

$$e = \lim(1 + (\frac{1}{n})^n)$$

Goal: (x_n) is convergent where $x_n = (1 + \frac{1}{n})^n$

$$x_n = \left(1 + \frac{1}{n}\right)^n = 1 + nC1 \cdot \frac{1}{n} + nC2 \cdot \frac{1}{n^2} + \dots + nCn\frac{1}{n^n}$$

$$= 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1) \cdot 3 \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^2}$$

$$= 1 + 1 + \frac{1}{2}(1 - \frac{1}{n}) + \frac{1}{6}(1 - n)(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots \frac{2}{n} \cdot \frac{1}{n}$$

Write x_{n+1} in a similar way, we obserbe that

$$x_n < x_{n+1}$$

<u>Facts</u> $2^{m-1} \le m!$ for $m \in \mathbb{N} \Rightarrow \frac{1}{m!} \le \frac{1}{2^{m-1}}$

$$x_n < 1 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} < 3$$

 \Rightarrow (x_n) is increasing and bounded

3.4 Subsequence and the Bolzono-Weierstress Theorem

Example.

$$(x_n) = ((-1)^n)$$
$$x_{2n} = (-1)^{2n}$$
$$x_{2n+1} = (-1)^{2n-1}$$

So $a_n = x_{2n}$ is a sequence, while $b_n = x_{2n+1}$ is a subsequence of x_n .

Definition (Subsequences). Let (x_n) be a real sequence and consider a strickly increasing sequence of natural numbers $n_1 < n_2 < n_3 < \dots$ The sequence

$$x_{n_k}: k \in \mathbb{N}$$

is call a **subsequence** of (x_n)

Example. Any tails of a squence is a subsequence: (x_n) n-th dail: (x_{m+k}) is a subsequence

Theorem. Suppose (x_n) converges to x. Then $x_{x_k} \to x$ for any subsequence of (x_n) .

Proof. Let $\epsilon > 0$

$$\exists N_{\epsilon} > 0 \text{ s.t. } |x_n - x| < \epsilon \text{ for } n > N_{\epsilon}.$$

Note that

$$n_k \geq k, \, \forall k \in \mathbb{N}.$$

The proof of the observation is exercise:

Exercise. By induction, $n_1 \ge 1, n_2 \ge n_1 \ge 1 \Rightarrow n_2 \ge 2$

When $k > N_k$, $n_k > N_{\epsilon}$,

$$\Rightarrow |x_{n_k} - x| < \epsilon$$

Therefore

$$(x_{n_k}) \to x$$

Theorem. Let (x_n) be a sequence of real numbers, and let $x \in \mathbb{R}$. Then the following are equivalent:

- 1. (x_n) does not converge to x.
- 2. $\exists \epsilon_0 > 0$, s.t. $\forall k \in \mathbb{N}, \exists n_k \in \mathbb{N}$ s.t.

$$n_k \ge k \, \& \, |x_{n_k} - x| > \epsilon_0$$

3. $\exists \epsilon_0 > 0 \& \text{ a subsequence } x_{n_k} \text{ s.t.}$

$$|x_{n_k} - x| > \epsilon_0, \, \forall k \in \mathbb{N}$$

Proof.

 $3 \rightarrow 1$: by the contropositive statuent of definition

 $3 \rightarrow 2$: 3 is a stronger statement of 2

 $1 \rightarrow 2$: left as exercise

Theorem. If x_n satisfies either of the following property if it is **divergent**:

- There exists two subsequence (x_{n_k}) & (x_{m_k}) whose limits are NOT equal.
- (x_n) is unbouded.

Example.

- 1. $(-1)^n$
- 2. (n)
- 3. (x_n) such that

$$x_{2k} = k$$
$$x_{2k+1} = (-1)^k$$

Proof. exercise

Theorem (Bolzano-Weierstrass Theorem). A boudned sequence of real numbers has a <u>convergent subsequence</u>. Example.

$$x_n = (-1)^n$$

Proof.

Lemma. If (x_n) is a sequence of real numbers, there exists a subsequence of (x_n) which is monotone.

proof of lemma:

Call the m-th term x_m a "peek" if x_m is at least as large as any term after it in the sequence.

Case 1: (x_n) has infinitely many peaks

List the peaks of (x_n) in order of increasing index

$$x_{n_1}, x_{n_2}, \ldots$$

 $\Rightarrow (x_{n_i})$ is a decreasing sequence.

Case 2: (x_n) has a finite number of peaks

Let s_1 be the first index after the last peak of (x_n) . Then for every $n \geq s_1$, $\exists m \in \mathbb{N}$ such that $x_m > x_n$.

Choose

$$s_2 \ge s_1$$
 such that $x_{s_2} > x_{s_1}$, $s_2 \ge s_1$ such that $x_{s_2} > x_{s_1}$, ... $\Rightarrow (x_{s_i})$ is an increasing sequence.

Remark. Lemma + monotone convergent theorem implies Bolzano-Weierstrass theorem.

Second proof

Suppose (x_n) is a bounded sequence.

$$\Rightarrow \exists I_1 = [a_1, b_1] \text{ such that } (x_n) \in I_1$$

Consider

$$I_2' = [a_1, \frac{a_1 + b_1}{2}], I_2'' = [\frac{a_1 + b_1}{2}, b_1]$$

Let $I_2 = [a_2, b_2]$ be one of I'_2, I''_2 such that I_2 contains infinitely many terms of (x_n) .

For $n \in \mathbb{N}$, define $I_n = [a_n, b_n]$ in a similar way.

For $i \in \mathbb{N}$, choose a term x_{n_i} such that $x_{n_i} \in I_i$ and $n_i > n_{i-1}$

Then

$$i=1, \qquad n_i=1$$

$$i=2, \qquad \text{choose } n_2 \in \mathbb{N} \text{ such that } n_2 > n_1 \& x_{n_2} \in I_2$$

$$\vdots \qquad \vdots$$

- $\forall i \in \mathbb{N}, a_i \leq x_{n_i} \leq b_i$
- (a_i) increases, bounded above by $b_1 \Rightarrow (a_i) \rightarrow \sup(a_i)$
- (b_i) decreases, bounded below by $a_1 \Rightarrow (b_i) \rightarrow \inf(b_i)$
- $\inf |a_i b_i| = \inf \frac{b_1 a_1}{2^n} = 0 \Rightarrow \sup (a_i) = \inf (b_i)$

Thus (x_{n_i}) is convergent by squeeze theorem.

Theorem. Let (x_n) be a bounded sequence, and $x \in \mathbb{R}$ has the property that every convergent subsequence of (x_n) converges to x. Then x_n converges to x

Proof. Let $\forall \epsilon > 0$

By Bolzano-Weierstrass theorem, \exists a convergent subsequence (x_{n_i}) such that

$$\exists N_{\epsilon} \in \mathbb{N} \text{ s.t. for } i > N_{\epsilon}, |x_{n_{\epsilon}} - x| < \epsilon$$

Assume (x_n) does not converge to x. Then by previous theorem of subsequence,

$$\exists \epsilon_0 > 0 \text{ and a subsequence } (x_{n_k}) \text{ s.t. } |x_{n_k} - x| > \epsilon_0, \forall k \in \mathbb{N}$$

Since (x_n) is bounded, (x_{n_k}) is also bounded. Thus there exists a convergent subsequence of (x_{n_k}) as (x_{n_k}) .

Note that (x_{n_k}) is a convergent subsequence of (x_n) , thus

 $(x_{n_{k_i}}) \to x$ which is controdiction to previous assumption

Definition. Let (x_n) be a sequence of real numbers. A point is called a <u>subsequential limit</u> of (x_n) if it is the limit of a subsequence of (x_n) .

 $S = \{\alpha \in \mathbb{R} : x \text{ is a subsequential limit}\}$ (NOTE: may be infinite set)

Example. Consider $(x_n) = \{(-1)^n | n \in \mathbb{N}\}$. Then

$$S \supseteq \{1, -1\}$$

Definition. Let (x_n) be a sequence of real numbers.

• The <u>limit superior</u> of (x_n) is the infimum of the set of $v \in \mathbb{R}$ s.t. $v < x_n$ for at most a finite number of $n \in \mathbb{N}$. We write it as

 $\limsup (x_n) = \limsup x_n = \overline{\lim} x_n = \inf \{v \in \mathbb{R} | v < x_n \text{ for at most a finite number of n} \}$

Example. Consider $(x_n) = \frac{1}{n}$

Let

$$X = \{v \in \mathbb{R} | v < x_n \text{ for at most a finite number of n} \}$$

- $-1 \notin X$ because there are infinitely many x_n such that $v < x_n$.
- $-\frac{1}{2} \in X$ becasue there are finitely many x_n such that $v < x_n$.
- $-2 \in X$ because there is no x_n such that $v < x_n$, which is smaller than finite and thereby satisfies the definition.

We thus conclude that

$$(0,\infty)\subset X$$
 and $\limsup x_n=\inf X$

Example. Consider $(x_n) = (-1)^n$:

- $-1 \in X$ because there is no x_n such that $v < x_n$.
- $-2 \in X$ because there is no x_n such that $v < x_n$.
- $-0, -1 \notin X$ becasue there are infinitely many x_n such that $v < x_n$.

We thus conclude that

$$[1,\infty)\subset X$$
 (in fact they are equal)

• The <u>limit inferior</u> of (x_n) is the supremum of the set of $w \in \mathbb{R}$ s.t. $w > x_m$ for at most a finite number of $n \in \mathbb{N}$. We write it as

 $\liminf (x_n)$ or $\liminf x_n$ or $\overline{\lim} x_n = \sup \{w \in \mathbb{R} | w > x_n \text{ for at most a finite number of n} \}$

<u>Intuition</u>

- Suppose $v < x_n$ for at most finitely many $n \in \mathbb{N}$, then for all large $n, v \ge x_n$. \Rightarrow No subsequential limit of (x_n) can possibly exceed v.
- Similar observation for $\underline{\lim} x_n$

Theorem. Let (x_n) be a bounded sequence of real numbers, and let $x^* \in \mathbb{R}$. Then TFAE:

- 1. $x^* = \lim \sup(x_n)$
- 2. If $\epsilon > 0$, there are at most a finite number of $n \in \mathbb{N}$ s.t. $x^* + \epsilon < x_n$, but infinitely many n for which $x^* \epsilon < x_n$
- 3. If $u_m = \sup \{x_n | n \ge m\}$ (sup of (m-1)-th tail), then $x^* = \inf \{u_m | m \in \mathbb{N}\} = \lim u_m$
- 4. If S is the set of subsequential limits of x_n , then $x^* = \sup S$.

Remark. .

- u_m is decreasing.
- There is a similar such list of equivalent properties for liminf.

Corollary. A bounded sequence (x_n) is convergent iff $\overline{\lim} x_n = \lim x_n$

Proof. A direct result of the theorem:

$$\overline{\lim} x_n = \sup S$$
 and $\underline{\lim} x_n = \inf S$

Proof of thm. (a) \Rightarrow (b). Let $\epsilon > 0$. Then

 $x^* + \epsilon > x^* = X = \inf \{ v \in \mathbb{R} | v < x_n \text{ for at most a finite number of n.} \}$

$$\Rightarrow \exists v \in \mathbb{R} \text{ s.t. } x^* \leq v < x^* + \epsilon$$

and there are only finitely mant n with $v < x_n$.

For any n for which $x^* + \epsilon < x_n$, $v < x_n$. Thus there are only finitely many such n.

If $x^* - \epsilon \notin X$, then there are infinityly many n such that $x^* - \epsilon < x_n$

Proof of thm. (b) \Rightarrow (c). Fix $\epsilon > 0$.

By (b), there are only finitely many n with $x^* + \epsilon < x$.

Take $N \in \mathbb{N}$ large enough such that

$$x^* + \epsilon \ge x_n \qquad \forall n \ge N$$

$$\Rightarrow \qquad x^* + \epsilon \ge u_N$$

$$\Rightarrow \qquad x^* + \epsilon \ge \lim u_n$$

$$\Rightarrow \qquad x^* \ge \lim u_m \qquad \forall n \ge N$$

On the other hand, there are infinitely many n with $x^* - \epsilon < x_n \le u_n$. Thus, there exists a subsequence of

$$x^* - \epsilon \le u_{n_k}$$

26