Application 1

Réglage de correcteurs P et PI – Sujet

Ressources de P. Dupas.

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{10}{p(1+p+p^2)}$ placé dans une boucle à retour unitaire. On souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de $45\,^{\circ}$ et une marge de gain de $10\,\mathrm{dB}$.

D'après ressources P. Dupas.

C1-02

C2-04

On donne le diagramme de Bode associé à cette fonction de transfert.

Question 1 Mesurer puis calculer la marge de phase.

Question 2 Mesurer puis calculer la marge de gain.

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

Correcteur proportionnel intégral

Soit un système de fonction de transfert $G(p)=\frac{1}{(p+1)\left(\frac{p}{8}+1\right)}$ placé dans une boucle

à retour unitaire.

Éléments de correction

- 1. $M_{\varphi} = -60^{\circ}$.
- 2. $M_G = -20 \,\mathrm{dB}$.
- 3. $K_P = 0.054 \text{ et } M_G$
- 4. $K_P = 0.0316$ et $M_{\varphi} = 70^{\circ}$.

D'après ressources P. Dupas.

On souhaite disposer d'une marge de phase de 45° en utilisant un correcteur proportionnel intégral de la forme $C(p)=K_p\frac{1+\tau p}{\tau p}$.

Question 5 Justifier le diagramme de Bode de la boucle ouverte non corrigée.

Question 6 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45° .

Question 7 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

Éléments de correction

1.

2. $C(p) = 15, 7\frac{1+1,018p}{1,018p}$

3.