门头沟区 2018 年初三年级综合练习(一)

数学试卷

2018.5

牛

- 1. 本试卷共 10 页, 共三道大题, 28 道小题, 满分 100 分, 考试时间 120 分钟;
- 2. 在试卷和答题卡的密封线内准确填写学校名称、班级和姓名:
- 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效;
- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答;
- 5. 考试结束,将本试卷、答题卡和草稿纸一并交回.

一、选择题(本题共16分,每小题2分) 下列各题均有四个选项,其中只有一个是符合题意的.

- 1. 如图所示,有一条线段是 $\triangle ABC$ (AB > AC)的中线,该线段是
 - A. 线段 *GH*
- B. 线段 AD
- C. 线段 AE D. 线段 AF

- 2. 如果代数式 $\frac{\sqrt{x+3}}{x}$ 有意义,则实数 x 的取值范围是
 - A. $x \ge -3$
- B. $x \neq 0$
- C. $x \ge -3 \pm x \ne 0$ D. $x \ge 3$
- 3. 如图, 两个等直径圆柱构成的 T 形管道,则其俯视图正确的是

- 4. 将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为
 - A. 32°
- B. 58°
- C. 138°
- D. 148°

5. 利用"分形"与"迭代"可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是

6. 整数 a、b 在数轴上对应点的位置如图,实数 c 在数轴上且满足 a \leqslant c \leqslant b ,如果数轴上有

一实数 d, 始终满足 $c+d \ge 0$, 则实数 d 应满足

- A. $d \leq a$
- B. $a \le d \le b$
- C. $d \leq b$
- D. $d \ge b$
- 7. 下面的统计图反映了我市 2011-2016 年气温变化情况,下列说法不合理的是
 - A. 2011-2014年最高温度呈上升趋势;
 - B. 2014年出现了这6年的最高温度;
 - C. 2011-2015年的温差成下降趋势;
 - D. 2016年的温差最大.

8. 甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距 660 米,二人同时出发,走了 24 分钟时,由于乙距离景点近,先到达等候甲,甲共走了 30 分钟也到达了景点与乙相遇. 在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程 y(米)与甲出发的时间 x(分钟)之间的关系如图所示,下列说法错误的是

- A. 甲的速度是 70 米/分;
- B. 乙的速度是 60 米/分;
- C. 甲距离景点 2100 米;
- D. 乙距离景点 420 米.

二、填空题(本题共16分,每小题2分)

9. 如图,两个三角形相似, *AD* = 2. *AE* = 3. *EC* = 1.则 *BD*=

- 10. 如图,在 5×5 的正方形 (每个小正方形的边长为 1) 网格中,格点上有 *A、B、C、D、E* 五个点,如果要求连接两个点之后线段的长度大于 3 且小于 4,则可以连接_____.(写出一个答案即可)
- 11. 如果 $\frac{a}{2} = \frac{b}{3}$, 那么 $\frac{a^2 4b^2}{a^2 2ab}$ 的结果是_____.
- 12. 小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为 330 千瓦时. 请判断小明得到的结论是否合理并且说明理由

月份	六月	七月	八月
用电量 (千瓦时)	290	340	360
月平均用电量(千瓦时)		330	

13. 如图, PC 是 $\odot O$ 的直径, PA 切 $\odot O$ 于点 P, AO 交 $\odot O$ 于点 B; 连接 BC, 若 $\angle C=32^{\circ}$,

- 14. 某小区购买了银杏树和玉兰树共 150 棵用来美化小区环境,购买银杏树用了 12000 元,购买玉兰树用了 9000 元. 已知玉兰树的单价是银杏树单价的 1.5 倍,求银杏树和玉兰树的单价. 设银杏树的单价为 x 元,可列方程为_______.
- 15. 图 1、图 2 的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图 2 进行移动,写出一种拼接成矩形的过程

16. 下图是"已知一条直角边和斜边做直角三角形"的尺规作图过程.

己知:线段 a、b,

求作: $Rt\Delta ABC$. 使得斜边 AB=b, AC=a

作法:如图.

- (2) 以 AB 为直径, 作 $\bigcirc O$;
- (3) 以点 A 为圆心, a 的长为半径作弧交 $\odot O$ 于点 C;
- (4) 连接 AC、CB.

 ΔABC 即为所求作的直角三角形.

请回答:该尺规作图的依据是

三、解答题(本题共 68 分, 第 17-24 题, 每小题 5 分, 第 25 题 6 分, 第 26、27 题 7 分, 第 28 题 8 分)解答应写出文字说明,演算步骤或证明过程.

17. 计算:
$$\left(\frac{1}{3}\right)^{-2} - \left|-2\right| + \left(5 + \pi\right)^0 - 4\sin 60^\circ$$
.

18. 解不等式组:
$$\begin{cases} \frac{x}{3} - 1 < 0, \\ x - 1 \le 3(x+1). \end{cases}$$

19. 如图,在 $\triangle ABC$ 中,AD是 BC 边上的高,BE 平分 $\angle ABC$ 交 AC 边于 E, $\angle BAC$ = 60° ,

$$\angle ABE = 25^{\circ}$$
.

求 $\angle DAC$ 的度数.

- 20. 如图,在平面直角坐标系 xOy 中,一次函数 y = x 与反比例函数 $y = \frac{k}{x}$ ($k \neq 0$)的图象相交于点 $A(\sqrt{3},a)$.
 - (1) 求 a、k 的值;
 - (2) 直线 x=b (b>0) 分别与一次函数 y=x、

反比例函数 $y = \frac{k}{x}$ 的图象相交于点 M、N,

当 MN=2 时, 画出示意图并直接写出 b 的值.

- 21. 在矩形 *ABCD* 中,连接 *AC*, *AC* 的垂直平分线交 *AC* 于点 *O*, 分别交 *AD*、*BC* 于点 *E*、*F*,连接 *CE* 和 *AF*.
 - (1) 求证: 四边形 AECF 为菱形;
 - (2) 若 AB=4, BC=8, 求菱形 AECF 的周长.

- 22. 已知关于x的一元二次方程 $2x^2+4x+k-1=0$ 有实数根.
 - (1) 求k的取值范围;
 - (2) 若k为正整数,且方程有两个非零的整数根,求k的取值.
 - 23. 如图,AB 为 $\odot O$ 直径,过 $\odot O$ 外的点 D 作 $DE \bot OA$ 于点 E,射线 DC 切 $\odot O$ 于点 C、交 AB 的延长线于点 P,连接 AC 交 DE 于点 F,作 $CH \bot AB$ 于点 H.
 - (1) 求证: ∠D=2∠A;
 - (2) 若 HB=2, $\cos D=\frac{3}{5}$, 请求出 AC 的长.

24. 地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态 坏境保护意识,举办了"我参与,我环保"的知识竞赛.以下是从初一、初二两个年级随 机抽取 20 名同学的测试成绩进行调查分析,成绩如下:

初一: 76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92 91 初二: 74 97 96 89 98 74 69 76 72 78 99 72 97 76 99 74 99 73 98 74

(1) 根据上表中的数据,将下列表格补充完整;

整理、描述数据:

人数 成绩 x	50≤x≤59	60≤ <i>x</i> ≤69	70≤ <i>x</i> ≤79	80≤x≤89	90≤ <i>x</i> ≤100
班级					
初一	1	2	3	5	6
初二	0	1	10	1	8

(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)

分析数据:

年级	平均数	中位数	众数
初一	84	88.5	
初二	84.25		74

(2) 得出结论:

你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).

25. 在正方形 ABCD 中,AB = 4cm AC 为对角线,AC 上有一动点 P, M 是 AB 边的中点,连接 PM、PB,设 A 、 P 两点间的距离为 xcm, PM + PB 长度为 ycm.

小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

下面是小东的探究过程,请补充完整:

(1) 通过取点、画图、测量,得到了x与y的几组值,如下表:

x/cm	0	1	2	3	4	5
y/cm	6.0	4.8	4.5		6.0	7.4

(说明: 补全表格时相关数值保留一位小数)

(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

(3) 结合画出的函数图象,解决问题: PM + PB 的长度最小值约为 cm.

26. 有一个二次函数满足以下条件:

- ①函数图象与x轴的交点坐标分别为A(1,0), $B(x_2,y_2)$ (点 B 在点 A 的右侧);
- ②对称轴是x=3;
- ③该函数有最小值是-2.
 - (1) 请根据以上信息求出二次函数表达式;
 - (2) 将该函数图象 $x > x_2$ 的部分图象向下翻折与原图象未翻折的部分组成图象 "G",

平行于 x 轴的直线与图象"G"相交于点 $C(x_3,y_3)$ 、 $D(x_4,y_4)$ 、 $E(x_5,y_5)$ ($x_3 < x_4 < x_5$),结合画出的函数图象求 $x_3 + x_4 + x_5$ 的取值范围.

- 27. 如图,在 \triangle ABC中,AB=AC, $\angle A=2\alpha$,点 D 是 BC 的中点, $DE \perp AB$ 于点E, $DF \perp AC$ 于点F .
 - (1) ∠*EDB* = _____。; (用含α的式子表示)
- (2) 作射线 DM 与边 AB 交于点 M,射线 DM 绕点 D 顺时针旋转 180° -2α ,与 AC 边交 于点 N.
- ①根据条件补全图形;
- ②写出 DM 与 DN 的数量关系并证明;
- ③用等式表示线段 BM、CN 与 BC 之间的数量关系,(用含 α 的锐角三角函数表示)并写出解题思路.

- 28. 在平面直角坐标系 xOy 中,点 M 的坐标为 (x_1, y_1) ,点 N 的坐标为 (x_2, y_2) ,且 $x_1 \neq x_2$, $y_1 = y_2$,我们规定: 如果存在点 P ,使 ΔMNP 是以线段 MN 为直角边的等腰直角三角形,那么称点 P 为点 M 、N 的 "和谐点".
 - (1) 已知点A的坐标为(1,3),
 - ①若点 B 的坐标为(3,3),在直线 AB 的上方,存在点 A, B 的 "和谐点" C,直接写出点 C 的坐标;
 - ②点 C 在直线 x=5 上,且点 C 为点 A,B 的 "和谐点",求直线 AC 的表达式.
 - (2) $\odot O$ 的半径为r, 点 D(1,4) 为点 E(1,2)、F(m,n) 的 "和谐点", 若使得 $\triangle DEF$ 与 \odot

O有交点,画出示意图直接写出半径r的取值范围.

备用图1

备用图 2

数学答案及评分参考

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	
答案	В	C	В	D	A	D	С	

二、填空题(本题共16分,每小题2分)

题 号	9	10	11	12		
答		答案不唯一		不合理,样本数据不具有代表性		
案			4	(例:夏季高峰用电量大不能代表年平		
\wedge	4	例: AD		均用电量)		
题 号	13	14	15			
答 案		$\frac{12000}{x} + \frac{9000}{1.5x} =$	答案7 =150 时针旋转	下唯一 (例: 先将图 1 以点 A 为旋转中心逆 90		
采	26°		再将加	旋转后的图形向左平移 5 各单位)		
题 号	16					
答 案	等圆的半径相等,直径所对的圆周角是直角,三角形定义					

三 、解答题 (本题共 68 分,第 17 년	题-24 题,	每小题 5 分,	第 25 题 6 分,	第26题7分,	第
27 题 7 分, 第 28 题 8 分)解答	应写出文	字说明、演算	步骤或证明过程	星	
17. (本小题满分 5 分)					
解: 原式 =9-2+1-2√3				4	分
$=8-2\sqrt{3}$. ··· ··· ··· ···			••• ••• •••		分
18. (本小题满分5分)					
解不等式①得, x<3,	•••••		•••••	2 分	
解不等式②得, $x \ge -2$,	•••••	•••••	·····4 /	()	
所以,不等式组的解集是-	2≤ <i>x</i> <3.	•••••	·····5 分		

- 19.解 (本小题满分 5 分) $:BE \ \text{平分} \angle ABC$,

 - $::AD \to BC$ 边上的高,
- ∴ ∠DAC=∠BAC ∠BAD=60° 40° =20° ······5 分

- $\therefore A(\sqrt{3}, \sqrt{3})$

- 21. (1) 证明: : EF 是 AC 的垂直平分线,
 - ::AO=OC, ∠AOE=∠COF=90°,1 分
 - ::四边形 ABCD 是矩形,
 - $\therefore AD//BC$, $\therefore \angle EAO = \angle FCO$,

在 $\triangle AEO$ 和 $\triangle CFO$ 中,

- \therefore $\angle EAO = \angle FCO$, AO = CO, $\angle AOE = \angle COF$,
- ∴ $\triangle AEO \cong \triangle CFO$ (ASA),

又:OA=OC, :四边形 AECF 是平行四边形,

又: *EF ⊥ AC, : : 平行四边形 AECF 是菱形: ············3 分

(2) 设 *AF=x*, **∵***EF* 是 *AC* 的垂直平分线,

在 Rt $\triangle ABF$ 中,由勾股定理得: $AB^{2+}BF^{2-}AF^{2}$, 4^{2+} (8 - x) $^{2-}x^{2}$, 解得 x=5, :: AF=5, :: 菱形 AECF 的周长为 20. ······5 分 22 (本小题满分5分) $\therefore k \leq 3$. (2) **∵***k* 为正整数, $\therefore k = 1.2.3$. 当k=1时,方程 $2x^2+4x+k-1=0$ 有一个根为零; 当k=2时,方程 $2x^2+4x+k-1=0$ 无整数根; 当k=3时,方程 $2x^2+4x+k-1=0$ 有两个非零的整数根. 综上所述,k=1和k=2不合题意,舍去; k=3符合题意. ·············5 分 23. (本小题满分5分) (1) 证明: 连接 OC, ∵射线 DC 切 $\bigcirc O$ 于点 C, $\therefore DE \perp AP, \quad \therefore \angle DEP = 90^{\circ}$ $\therefore \angle P^+ \angle D=90^{\circ}$, $\angle P^+ \angle COB=90^{\circ}$ $\therefore \angle COB = \angle D$ \therefore OA=OC, \therefore \angle A= \angle OCA $\therefore \angle COB = \angle A + \angle OCA : \angle COB = 2\angle A$

$$\therefore \cos \angle COP = \cos \angle D = \frac{3}{5},$$

3

(2) 解:由(1)可知:∠OCP=90°,∠COP=∠D,

 $:CH \perp OP$, $:: \angle CHO = 90^{\circ}$,

 $\therefore \angle D=2\angle A$

设 \bigcirc *O* 的半径为 r,则 *OH=r* - 2.

在 Rt
$$\triangle CHO$$
 中, $\cos \angle HOC = \frac{OH}{OC} = \frac{r-2}{r} = \frac{3}{5}$,

 $\therefore r=5,$ 4 β

 $\therefore OH=5 - 2=3$,

∴由勾股定理可知: CH=4, ∴AH=AB - HB=10 - 2=8.

24. (1) 补全表格正确:

(2) 可以从给出的三个统计量去判断

如果利用其它标准推断要有数据说明合理才能得分5 分

25. (本小题满分6分)

26. (本小题满分 7 分)

- (1) 解:有上述信息可知该函数图象的顶点坐标为: (3,-2)设二次函数表达式为: $y = a(x-3)^2 2$ ……1分 : 该图象过 A(1,0)
- ∴ $0 = a(1-3)^2 2$, 解得 $a = \frac{1}{2}$ ····2 分

初三一模 数学试卷 第13页 (共10页)

∴表达式为
$$y = \frac{1}{2}(x-3)^2 - 2$$

- ① 当直线与 x 轴重合时,有 2 个交点,由二次函数的轴对称性可求

②当直线过 $y = \frac{1}{2}(x-3)^2 - 2$ 的图象顶点时,有 2 个交点,

由翻折可以得到翻折后的函数图象为 $y = -\frac{1}{2}(x-3)^2 + 2$

∴令
$$-\frac{1}{2}(x-3)^2+2=-2$$
 时,解得 $x=3\pm2\sqrt{2}$, $x=3-2\sqrt{2}$ 舍去············6 分

$$\therefore x_3 + x_4 + x_5 < 9 + 2\sqrt{2}$$

27. (本小题满分7分)

(2) ①补全图形正确 -----2分

$$AB = AC, BD = DC$$

- ∴DA 平分 ∠BAC
- $:DE \perp AB$ 于点E, $DF \perp AC$ 于点F

∴
$$DE = DF$$
 , $\angle MED = \angle NFD$ ·······4 分

- $\therefore \angle A = 2\alpha$
- \therefore $\angle EDF = 180^{\circ} 2\alpha$

- $\therefore \angle MDN = 180^{\circ} 2\alpha$
- $\therefore \angle MDE = \angle NDF$
- $\therefore \triangle MDE \cong \triangle NDF$
- $\therefore DM = DN$
- ③数量关系: $BM + CN = BC \cdot \sin \alpha$ ·······················6 分

证明思路:

- a. 由 $\triangle MDE \cong \triangle NDF$ 可得 EM = FN
- b. 由 AB = AC 可得 $\angle B = \angle C$,进而通过 $\triangle BDE \cong \triangle CDF$,可得 BE = CF讲而得到 2BE = BM + CN
 - c. 过Rt $\triangle BDE$ 可得 $\sin \alpha = \frac{BE}{BD}$, 最终得到 $BM + CN = BC \cdot \sin \alpha$ ······7 分

28. (本小题满分8分)

解: (1)① $C_1(1,5)$ 或 $C_2(3,5)$.

②由图可知, B(5,3)

- A(1,3) AB=4
- ·· △ABC 为等腰直角三角形
- ∴*BC*=4
- $C_1(5,7)$ 或 $C_2(5,-1)$

$$\therefore \begin{cases} k=1 \\ b=2 \end{cases}$$

$$\therefore y = x + 2$$

$$\begin{cases} k+b=3\\ 5k+b=-1 \end{cases} \therefore \begin{cases} k=-1\\ b=4 \end{cases} \therefore y=-x+4 \qquad \dots \qquad 4$$

:. 综上所述,直线 AC 的表达式是 y = x + 2 或 y = -x + 4

(2) 当点 F 在点 E 左侧时:

$$\therefore 2 \leqslant r \leqslant \sqrt{17}$$

