AMAZON SAGEMAKER PROJECT DOCUMENTATION

A Comprehensive Guide to Training a Logistic Regression Model Using Amazon Sage Maker

Abstract

This document outlines the steps to train a logistic regression model using Amazon Sage Maker. It covers importing libraries, setting up the Sage Maker session, configuring the estimator, and managing input data. The guide provides clear instructions for setting hyperparameters and starting the training job, offering a concise roadmap for leveraging Sage Maker's capabilities in machine learning.

About the Dataset

The Synthetic Employee Attrition Dataset is designed for analysing and predicting employee turnover. It includes 74,498 samples with detailed employee information such as demographics, job roles, and personal circumstances.

Introduction

This documentation provides a detailed guide to using Amazon Sage Maker for training a logistic regression model. It includes code snippets and explanations of each step in the process, from data preparation to model training. The goal is to help users understand and execute a machine learning training job using Sage Maker efficiently.

Attrition: Indicates whether the employee has left the company (0 for stayed, 1 for left).

This dataset is valuable for HR analytics and machine learning, helping to understand and predict

Model deployment process

Create Notebook instance

Importing Libraries

```
#import the packages or libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
import seaborn as sns
pd.set_option('display.max_columns', None)
import warnings
warnings.filterwarnings('ignore')
```

Loading the Data from the Dataset

	Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Education Level	Marital Status	Number of Dependents
0	8410	31	Male	19	Education	5390	Excellent	Medium	Average	2	No	22	Associate Degree	Married	0
1	64756	59	Female	4	Media	5534	Poor	High	Low	3	No	21	Master's Degree	Divorced	3
2	30257	24	Female	10	Healthcare	8159	Good	High	Low	0	No	11	Bachelor's Degree	Married	3
3	65791	36	Female	7	Education	3989	Good	High	High	1	No	27	High School	Single	2
4	65026	56	Male	41	Education	4821	Fair	Very High	Average	0	Yes	71	High School	Divorced	0
5	24368	38	Female	3	Technology	9977	Fair	High	Below Average	3	No	37	Bachelor's Degree	Married	0
6	64970	47	Male	23	Education	3681	Fair	High	High	1	Yes	75	High School	Divorced	3
7	36999	48	Male	16	Finance	11223	Excellent	Very High	High	2	No	5	Master's Degree	Married	4

Exploratory Data Analysis (EDA)

	Employee ID	Age	Years at Company	Monthly Income	Number of Promotions	Distance from Home	Number of Dependents	Company Tenure
count	8186.000000	8186.000000	8186.000000	8186.000000	8186.000000	8186.000000	8186.000000	8186.000000
mean	37287.220743	38.615075	15.667237	7336.613609	0.827144	49.724408	1.649890	55.863059
std	21446.665299	12.135169	11.291536	2141.167892	0.996414	28.518282	1.556062	25.546607
min	8.000000	18.000000	1.000000	1855.000000	0.000000	1.000000	0.000000	2.000000
25%	18757.250000	28.000000	7.000000	5714.000000	0.000000	25.000000	0.000000	36.000000
50%	37088.500000	39.000000	13.000000	7373.000000	0.000000	50.000000	1.000000	56.000000
75%	55937.750000	49.000000	23.000000	8879.500000	1.000000	74.000000	3.000000	76.000000
max	74488.000000	59.000000	51.000000	15495.000000	4.000000	99.000000	6.000000	127.000000

Viewing the First Few Rows of the Dataset

Checking for Missing Values in the Dataset

Viewing the Dataset Information

#Get_the_information_about_the_datasets df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8186 entries, 0 to 8185
Data columns (total 24 columns):
     Column
                               Non-Null Count
                                               Dtype
     -----
                               -----
     Employee ID
                                               int64
 0
                               8186 non-null
    Age
                               8186 non-null
                                               int64
 1
 2
    Gender
                               8186 non-null
                                               object
                               8186 non-null
                                               int64
 3
    Years at Company
 4
    Job Role
                               8186 non-null
                                               object
 5
    Monthly Income
                               8186 non-null
                                               int64
 6
    Work-Life Balance
                               8186 non-null
                                               object
    Job Satisfaction
                               8186 non-null
                                               object
 7
    Performance Rating
 8
                               8186 non-null
                                               object
    Number of Promotions
                               8186 non-null
                                               int64
 9
 10 Overtime
                               8186 non-null
                                               object
   Distance from Home
 11
                               8186 non-null
                                               int64
    Education Level
                               8186 non-null
                                               object
                               8186 non-null
 13 Marital Status
                                               object
 14 Number of Dependents
                               8186 non-null
                                               int64
 15
    Job Level
                               8186 non-null
                                               object
 16 Company Size
                               8186 non-null
                                               object
    Company Tenure
                               8186 non-null
                                               int64
 17
    Remote Work
                               8186 non-null
                                               object
 18
    Leadership Opportunities 8186 non-null
                                               object
 19
    Innovation Opportunities 8186 non-null
 20
                                               object
 21
    Company Reputation
                               8185 non-null
                                               object
 22
                               8185 non-null
     Employee Recognition
                                               object
 23 Attrition
                               8185 non-null
                                               object
dtypes: int64(8), object(16)
memory usage: 1.5+ MB
```

Analyzing the 'Attrition' Column

#Get the count of the number of Employee that stayed or left the company df['Attrition'].value_counts()

```
Attrition
Stayed 4282
Left 3903
```

Name: count, dtype: int64

Analyzing Categorical Columns

```
Gender : ['Male' 'Female']
Gender
Male
        4500
Female
        3686
Name: count, dtype: int64
Job Role : ['Education' 'Media' 'Healthcare' 'Technology' 'Finance']
Job Role
Technology
            2201
Healthcare
            1852
Education
            1638
Media
            1322
Finance
             1173
Name: count, dtype: int64
Work-Life Balance : ['Excellent' 'Poor' 'Good' 'Fair']
Work-Life Balance
Good
           3089
Fair
            2525
Excellent
           1436
            1136
Poor
Name: count, dtype: int64
Job Satisfaction : ['Medium' 'High' 'Very High' 'Low']
Job Satisfaction
High
Very High
            1647
Medium
            1612
Low
            827
Name: count, dtype: int64
```

Encoding Categorical Data

	Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Education Level	Marital Status	Number of Dependents
0	8410	31	Male	19	Education	5390	Excellent	Medium	Average	2	No	22	Associate Degree	Married	0
1	64756	59	Female	4	Media	5534	Poor	High	Low	3	No	21	Master's Degree	Divorced	3
2	30257	24	Female	10	Healthcare	8159	Good	High	Low	0	No	11	Bachelor's Degree	Married	3
3	65791	36	Female	7	Education	3989	Good	High	High	1	No	27	High School	Single	2
4	65026	56	Male	41	Education	4821	Fair	Very High	Average	0	Yes	71	High School	Divorced	0
5	24368	38	Female	3	Technology	9977	Fair	High	Below Average	3	No	37	Bachelor's Degree	Married	0
6	64970	47	Male	23	Education	3681	Fair	High	High	1	Yes	75	High School	Divorced	3

Creating Boolean Masks for 'Attrition' Column

```
stayed = df.Attrition == 0
left = df.Attrition == 1
```

Plotting Histogram of Ages for Employees Who Stayed

```
plt.hist(df[stayed].Age, alpha=0.5, label='stayed')
plt.title('Age')
plt.xlabel ('Age')
plt.ylabel('Samples')
plt.legend()
plt.show()
```


Plotting Histogram of Ages for Employees Who Left

```
plt.hist(df[left].Age, alpha = 0.5, label = 'left')
plt.title('Age')
plt.xlabel('Age')
plt.ylabel('Samples')
plt.legend()
plt.show()
```


Viewing Encoded Class Labels

```
: le.classes_
: array(['Left', 'Stayed', nan], dtype=object)
```

Displaying Encoded Class Labels

```
5]: Attrition_Employee = le.classes_
print(Attrition_Employee)

['Left' 'Stayed' nan]
```

Plotting the Distribution of Numerical Columns

```
#ploting the distribution
p = df.hist(figsize = (20,20))
```


Mapping Colors and Plotting Bar Chart for 'Attrition'

```
#check the balance of the data by plotting the count of Attrition
Color wheel = {1: "0392cf", 2: "#7bc043"}
Colors = df["Attrition"].map(lambda x: Color wheel.get(x+1))
print(df.Attrition.value_counts())
p =df.Attrition.value_counts().plot(kind= "bar")
```

Attrition 1 4282 0 3903 2 1

Name: count, dtype: int64

Label Encoding Categorical Columns

df_head(19)														Î					
	Employee ID	Age	Gender	Years at Company		Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Level		Number of Dependents		Company Size	Company Tenure	Rem W
0	8410	31	1	19	0	5390	0	2	0	2	0	22	0	1	0	1	1	89	
1	64756	59	0	4	3	5534	3	0	3	3	0	21	3	0	3	1	1	21	
2	30257	24	0	10	2	8159	2	0	3	0	0	11	1	1	3	1	1	74	
3	65791	36	0	7	0	3989	2	0	2	1	0	27	2	2	2	1	2	50	
4	65026	56	1	41	0	4821	1	3	0	0	1	71	2	0	0	2	1	68	
5	24368	38	0	3	4	9977	1	0	1	3	0	37	1	1	0	1	1	47	
6	64970	47	1	23	0	3681	1	0	2	1	1	75	2	0	3	0	2	93	
7	36999	48	1	16	1	11223	0	3	2	2	0	5	3	1	4	0	1	88	
8	32714	57	1	44	0	3773	2	2	2	1	1	39	2	1	4	0	1	75	
9	15944	24	0	1	2	7319	3	0	0	1	1	57	4	2	4	0	0	45	
		_			_														

Removing the Last Column and Selecting Remaining Columns

x=df.iloc[:, :-1] #remove the last column Attrition

Selecting the Target Column

i]: y = df.iloc[:, -1]
i]: y.head()

i]: 0 1 1 1 2 1 3 1 4 1

Name: Attrition, dtype: int64

Splitting Data into Training and Testing Sets

Creating and Inspecting the Training DataFrame

Creating and Inspecting the Testing DataFrame

Defining a List of Specific Columns

Filtering the Training DataFrame to Specific Columns

25. Filtering the Testing DataFrame to Specific Columns (Excluding the First Column)

26. Saving the Filtered Training DataFrame to a CSV File

```
trainDF.to_csv('testddataattritions.csv',index=False, index_label='Row',header=False, columns=column)
```

Importing Libraries for Cloud Integration and Pattern Matching

```
import boto3 #this package is to integrate with s3 bucket or other cloude service//
import re #this package is to folow a strict pattern to save your work/regular expresession//
```

Specifying Bucket Name and File Paths

```
#Specify bucket name
bucketNM='romeodiabetecbucket'
TrainFile = r'attritiondata/traineddataattritions/traineddataattritions.csv'
TestFile = r'attritiondata/testddataattritions/testddataattritions.csv'
ValFile = r'attritiondata/Val/Val.csv'
ModelFolder = r'attritiondata/model/'
```

Constructing S3 Paths for Data and Model Storage

```
#Loading
s3ModelOutput=r's3://{0}/{1}'.format(bucketNM, ModelFolder)|
s3Train=r's3://{0}/{1}'.format(bucketNM, TrainFile)
s3Test=r's3://{0}/{1}'.format(bucketNM, TestFile)
s3Val=r's3://{0}/{1}'.format(bucketNM, ValFile)
```

Constructing the S3 Path for Model Output

```
s3ModelOutput
```

To document the code for uploading a file to an S3 bucket using boto3, you can structure it like this in your Word document:

Uploading a File to an S3 Bucket

```
with open('traineddataattritions.csv','rb') as f:
   boto3.Session().resource('s3').Bucket(bucketNM).Object(TrainFile).upload_fileobj(f)
```

Uploading a Test Data File to an S3 Bucket

```
with open('testddataattritions.csv','rb') as f:
   boto3.Session().resource('s3').Bucket(bucketNM).Object(TestFile).upload_fileobj(f)
```

Importing SageMaker and Getting Execution Role

```
import sagemaker
from sagemaker import get_execution_role
```

Creating a SageMaker Session and Retrieving the Execution Role

```
57]: sagemakerSess=sagemaker.Session()
role=get_execution_role()
```

Retrieving Docker Image URI for SageMaker Estimator

```
ECR docker container = sage maker. a mazon\_a mazon\_estimator.get\_image\_uri(sage maker Sess.boto\_region\_name, 'linear-learner', 'latest')
```

```
WARNING:sagemaker.deprecations:The method get_image_uri has been renamed in sagemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.

INFO:sagemaker.image_uris:Same images used for training and inference. Defaulting to image scope: inference.

WARNING:sagemaker.image_uris:Defaulting to the only supported framework/algorithm version: 1. Ignoring framework/algorithm version: latest.

INFO:sagemaker.image_uris:Ignoring unnecessary instance type: None.
```

^{&#}x27;s3://romeodiabetecbucket/attritiondata/model/'

Configuring a SageMaker Estimator for Logistic Regression Model

Setting and Retrieving Hyperparameters for SageMaker Estimator

```
LogisticModel.set_hyperparameters(predictor_type='binary_classifier', mini_batch_size=100)

LogisticModel.hyperparameters()

{'predictor_type': 'binary_classifier', 'mini_batch_size': 100}
```

Configuring S3 Input Data for SageMaker Training

```
trainConfig=sagemaker.session.s3_input(s3_data=s3Train,content_type='text/csv')

WARNING:sagemaker.deprecations:The class sagemaker.session.s3_input has been renamed in sagemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
```

Starting the Training Job for SageMaker Estimator

```
INFO:sagemaker:Creating training-job with name: Logistic-Demo-v1-2024-08-20-12-34-10-548

2024-08-20 12:34:10 Starting - Starting the training job...

2024-08-20 12:34:50 Starting - Preparing the instances for training...

2024-08-20 12:34:50 Downloading - Downloading in purp data...

2024-08-20 12:34:50 Downloading - Downloading in purp data...

2024-08-20 12:35:26 Downloading - Downloading the training image.....

2024-08-20 12:35:26 Downloading - Downloading the training image.....

2024-08-20 12:35:27 Training - Training image download completed. Training in progress...Docker entrypoint called with argument(s): train

Running default environment configuration script

[88/20/2024 12:37:01 IMFO 139985293625152] Reading default configuration from /opt/amazon/lib/python3.8/site-packages/algorithm/resources/default-input.json: ('mini_batch_siz' et': '1000', 'epochs': '15', 'feature_dim': 'auto', 'use_pias': 'true', 'binary_classifier_model_selection_criteria': 'accuracy', 'f_beta': '1.0', 'target_recall': '0.8', 'target_precision': '0.8', 'num_models': 'auto', 'umm_calibration_samples': '1000', 'init_method': 'uniform', 'init_scale': '0.80', 'init_sigma': '0.81', 'init_bias': '0.6', 'o ptimizer': 'auto', 'loss': 'auto', 'margin': '1.0', 'sos': 'auto', 'bea_1: 'auto', 'bea_1: 'auto', 'bea_1: 'auto', 'bea_1: 'auto', 'bea_1: 'auto', 'bea_1: 'auto', 'bea_2: 'auto', 'binary_classifier' 'los', 'los method': 'uniform', 'init_scale': '0.80', 'los': 'auto', 'los
```

Deploying the Trained Model

Verifying the Deployed Model

Create a lambda function to consume the model using test dataset

Configure the lambda function

Go to IAM to create role

-The predicted label indicates "0" That means the Employee will stay

-The predicted label indicates "1" That means the Employee will Leave

Conclusion

In this project, we successfully developed a logistic regression model to predict employee attrition using the Synthetic Employee Attrition Dataset. The process involved multiple steps, from data preparation and exploratory data analysis to model training and deployment using Amazon SageMaker.

This demonstrates the end-to-end process of building, training, and deploying a machine learning model in a cloud environment. The deployed model can now be used for HR analytics to predict employee turnover, providing valuable insights for decision-making. By leveraging Amazon SageMaker, the process was efficient and scalable, showcasing the power of cloud-based machine learning.