

Álgebra Linear – AL

Luiza Amalia Pinto Cantão

Depto. de Engenharia Ambiental Universidade Estadual Paulista – UNESP luiza@sorocaba.unesp.br

Transformações Lineares

- 1 Definição e Exemplos
- 2 Núcleo e Imagem de uma Transformação Linear
- 3 Matriz de uma Transformação Linear

Transformação Linear

Idéia: Uma transformação linear L do espaço vetorial V em W escrevese $L:V\to W$. Sendo L uma função, cada vetor $\mathbf{v}\in V$ tem um só vetor imagem $\mathbf{w}\in W$.

Exemplo (1) Se $L:\mathbb{R}^2\to\mathbb{R}^3$ associa vetores $\mathbf{v}=(x,y)\in\mathbb{R}^2$ com vetores $\mathbf{w}=(x,y,z)\in\mathbb{R}^3$, a lei que define a transformação for

$$\begin{array}{lll} L(x,y) &=& (3x,\, -2y,\, x-y) & {\tt ent\~ao} \\ L(2,1) &=& (3\cdot 2,\, -2\cdot 1,\, 2-1) = (6,-2,1) \end{array}$$

Definição: Sejam V e W espaços vetoriais. Uma **transformação linear** L de V em W ($L:V\to W$) é uma função que atribui um único vetor $L(\mathbf{u})$ em W a cada $\mathbf{u}\in V$ tal que:

- a. $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$, para todos $\mathbf{u}, \mathbf{v} \in V$.
- b. $L(k\mathbf{u}) = kL(\mathbf{u})$, para todo $\mathbf{u} \in V$ e todo escalar k.

Transformação Linear: Exemplos

4 b

Exemplo (2) Seja $L: P_1 \rightarrow P_2$ definida por:

$$L(at + b) = t(at + b).$$

Mostre que L é uma transformação linear.

Exemplo (3) Seja $L: P_1 \rightarrow P_2$ definida por:

$$L(p(t)) = tp(t) + t^2.$$

L é uma transformação linear?

Exemplo (4) Seja $L: M_{mn} \to M_{mn}$ definida por

$$L(A) = A^T$$

para A em M_{mn} . L é uma transformação linear ?

Exemplo (5) $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (3x,-2y,x-y) é uma transformação linear ?

Exemplo (6) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (x^2,3y)$ é uma transformação linear ?

4 >

44 bb

Transformação Linear: Teoremas

Teorema (1) Se $L: V \to W$ é uma transformação linear, então

$$L(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n) = c_1L(\mathbf{v}_1) + c_2L(\mathbf{v}_2) + \dots + c_nL(\mathbf{v}_n)$$

para quaisquer $\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_n$ em V e quaisquer escalares $c_1,c_2,\dots,c_n.$

Teorema (2) Seja $L: V \to W$ uma transformação linear. Então:

- a. $L(\mathbf{0}_V)=\mathbf{0}_W$, onde $\mathbf{0}_V$ e $\mathbf{0}_W$ são os vetores nulos em V e W, respectivamente.
- b. $L(\mathbf{u} \mathbf{v}) = L(\mathbf{u}) L(\mathbf{v})$.
- Corolário (1) Seja $L:V\to W$ uma função. Se $L(\mathbf{0}_V)\neq \mathbf{0}_W$ então L não é uma transformação linear.
- **Exemplo (7)** Seja $L: P_1 \to P2$ definida por $L(p(t)) = tp(t) + t^2$. Como $L(0) = t(0) + t^2 = t^2$, segue que L não é uma transformação linear.

Transformação Linear: Teoremas (Continuação)

Teorema (3) Seja $L:V\to W$ uma transformação linear de um espaço vetorial V em um espaço vetorial W. Além disso, seja $S=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ uma base para V. Se \mathbf{u} é qualquer vetor em V, então $L(\mathbf{u})$ fica completamente determinado por $\{L(\mathbf{v}_1),L(\mathbf{v}_2),\ldots,L(\mathbf{v}_n)\}$.

4 b

44 >>>

Demonstração Como $\mathbf{u} \in V$, podemos escrever

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$$

onde $c_1,\ c_2,\dots,\ c_n$ são números reais determinados de maneira única. Então

$$L(\mathbf{u}) = L(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n) = c_1L(\mathbf{v}_1) + c_2L(\mathbf{v}_2) + \cdots + c_nL(\mathbf{v}_n),$$
 pelo Teorema (1). Assim, $L(\mathbf{u})$ foi completamente determinado pelos elementos $L(\mathbf{v}_1)$, $L(\mathbf{v}_2)$, ..., $L(\mathbf{v}_n)$.

Exemplo (8) Seja $L: P_1 \to P_2$ uma transformação linear para a qual sabemos que

$$L(t+1) = t^2 + 1$$
 e $L(t-1) = t^2 + t$.

a. Qual o valor de L(7t+3) ?

Transformação Linear: Injetora

Definição: $L:V\to W$ é chamada de **injetora** se para todo $\mathbf{v}_1,\,\mathbf{v}_2\in V$, $\mathbf{v}_1\neq\mathbf{v}_2$, implica que $L(\mathbf{v}_1)\neq L(\mathbf{v}_2)$. Uma afirmação equivalente é a de que L é injetora se para todos $\mathbf{v}_1,\,\mathbf{v}_2\in V$, $L(\mathbf{v}_1)=L(\mathbf{v}_2)$ implica $\mathbf{v}_1=\mathbf{v}_2$.

Exemplo (9) Seja $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por L(x,y) = (x+y,x-y). Verifique se L é injetora.

Exemplo (10) Seja $L: \mathbb{R}^3 \to \mathbb{R}^2$ definida por L(x,y,z) = (x,y). Verifique se L é injetora.

Transformação Linear: Núcleo

- **Definição** Seja $L:V\to W$ uma transformação linear. O **núcleo** de L, ker(L), é o subconjunto de V que consiste em todos os vetores, tais que $L(\mathbf{v})=\mathbf{0}_W$.
- **Exemplo (11)** Encontre o núcleo da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x,y) = (x+y,2x-y).
- **Exemplo (12)** Encontre o núcleo da transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x,y,z) = (x-y+4z,3x+y+8z).
- **Exemplo (13)** Encontre o núcleo da transformação linear $L: \mathbb{R}^4 \to$

$$\mathbb{R}^2$$
, $L\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = \begin{bmatrix} x+y \\ z+w \end{bmatrix}$.

Q

Transformação Linear: Propriedades do Núcleo

Teorema (4) Se $L:V\to W$ é uma transformação linear, então ker(L) é um subespaço de V.

Demonstração ker(L) não é o conjunto vazio, pois $\mathbf{0}_V \in ker(L)$. Além disso, sejam $\mathbf{u}, \mathbf{v} \in ker(L)$. Então, como L é uma transformação linear

$$L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v}) = \mathbf{0}_W + \mathbf{0}_W = \mathbf{0}_W$$

logo $\mathbf{u}+\mathbf{v}\in ker(L)$. E mais, se k é um escalar, então como L é uma transformação linear

$$L(k\mathbf{u}) = kL(\mathbf{u}) = k\mathbf{0}_W = \mathbf{0}_W$$

logo $k\mathbf{u} \in ker(L)$. Portanto, ker(L) é um subespaço de V.

Exemplo (14) Se L é como no Exemplo (13), então uma base para ker(L) consiste nos vetores $\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}^T$ e $\begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T$. Assim, dim(ker(L)) = 2.

Q 4 b

Transformação Linear: Prop. do Núcleo (2)

Teorema (5) Uma transformação linear $L:V\to W$ é injetora se e somente se $ker(L)=\mathbf{0}_V$.

Demonstração (\Longrightarrow) Seja L injetora. Mostramos que $ker(L) = \{\mathbf{0}_V\}$. Seja $\mathbf{x} \in \ker(L)$. Então $L(\mathbf{x}) = \mathbf{0}_W$. Além disso, já sabemos que $L(\mathbf{0}_V) = \mathbf{0}_W$. Assim, $L(\mathbf{x}) = L(\mathbf{0}_V)$. Como L é injetora, concluímos que $\mathbf{x} = \mathbf{0}_V$. Portanto, $ker(L) = \{\mathbf{0}_V\}$. (\Longleftrightarrow) Suponha $ker(L) = \{\mathbf{0}_V\}$. Desejamos mostrar que L é injetora. Considere que $L(\mathbf{u}) = L(\mathbf{v})$, para $\mathbf{u}, \mathbf{v} \in V$. Então

$$L(\mathbf{u}) - L(\mathbf{v}) = \mathbf{0}_W$$

logo, pelo Teorema (2), $L(\mathbf{u}-\mathbf{v})=\mathbf{0}_W$, o que significa que $\mathbf{u}-\mathbf{v}\in V$. Portanto, $\mathbf{u}-\mathbf{v}=\mathbf{0}_V$, logo $\mathbf{u}=\mathbf{v}$. Assim, L é injetora.

Exemplo (15) A transformação linear do exemplo (9) é injetora e a do Exemplo (10) **não** o é.

Q

Transformação Linear: Imagem

Definição Se $L:V\to W$ é uma transformação Linear, então a **imagem** de L, representada por Im(L), é o conjunto de todos os vetores em W que são imagens, sob L, dos vetores em V. Assim, um vetor \mathbf{w} está na imagem de L se existir algum vetor $\mathbf{v}\in V$ tal que $L(\mathbf{v})=\mathbf{w}$. Se a Im(L)=W, dizemos que L é **sobrejetora**. Isto é, L é sobrejetora se e somente se, dado qualquer $\mathbf{w}\in W$, houver um $\mathbf{v}\in V$ tal que $L(\mathbf{v})=\mathbf{w}$.

Teorema (6) Se $L:V\to W$ é uma transformação linear, então Im(L) é um subespaço de W.

Demonstração Note que Im(L) **não** é um conjunto vazio, pois $\mathbf{0}_W=L(\mathbf{0}_V)$, logo $\mathbf{0}_W\in Im(L)$. Sejam $\mathbf{w}_1,\,\mathbf{w}_2\in Im(L)$. Então $\mathbf{w}_1=L(\mathbf{v}_1)$ e $\mathbf{w}_2=L(\mathbf{v}_2)$ para alguns \mathbf{v}_1 e \mathbf{v}_2 em V. Agora

$$\mathbf{w}_1 + \mathbf{w}_2 = L(\mathbf{v}_1) + L(\mathbf{v}_2) = L(\mathbf{v}_1 + \mathbf{v}_2),$$

o que implica que $\mathbf{w}_1+\mathbf{w}_2\in Im(L)$. Além disso, se k é um escalar, então $k\mathbf{w}_1=kL(\mathbf{v}_1)=L(k\mathbf{v}_1)$, logo $k\mathbf{w}_1\in Im(L)$. Portanto Im(L) é um subespaço de W.

Transformação Linear: Imagem - Exemplos

Exemplo (16) Seja $L: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear definida por L(x,y,z)=(x,y). Verifique se L é sobrejetora.

Exemplo (17) Seja $L: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$L\left(\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}.$$

- a. L é sobrejetora ?
- b. Encontre uma base para Im(L).
- c. Encontre ker(L).
- d. L é injetora ?

Exemplo (18) Seja $L: \mathbb{R}^4 \to \mathbb{R}^3$ definida por

$$L(a_1, a_2, a_3, a_4) = (a_1 + a_2, a_3 + a_4, a_1 + a_3).$$

Encontre uma base para Im(L).

Observação: Para determinar se uma transformação linear é injetora ou sobrejetora, devemos resolver um sistema linear.

Q 4 b 44 b

Transformação Linear: Imagem - Teorema

Teorema (7) Se $L:V\to W$ é uma transformação linear de um espaço vetorial de dimensão n,V, no espaço vetorial W, então:

$$dim(ker(L)) + dim(Im(L)) = dim(V).$$

Observação: A dimensão de ker(L) também é conhecida como **nulidade** de L, e da dimensão de Im(L) é chamada de **posto** de L.

Exemplo (19) Seja $L: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por:

$$L\left(\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\right) = \begin{bmatrix} a_1 + a_3 \\ a_1 + a_2 \\ a_2 - a_3 \end{bmatrix}.$$

- a. Encontre dim(ker(L)).
- b. Encontre dim(Im(L)).
- c. Verifique o Teorema (7).

Q 4 b 44 bb

Transformação Linear: Imagem - Corolário

Corolário Seja $L:V\to W$ uma transformação linear e dimV=dimW.

- a. Se L é injetora, então ela é sobrejetora.
- b. Se L é sobrejetora, então ela é injetora.

Exemplo (20) Seja $L: P_2 \rightarrow P_2$ a transformação linear definida por:

$$L(at^{2} + bt + c) = (a + 2b)t + (b + c).$$

- a. $-4t^2 + 2t 2$ está em ker(L) ?
- b. $t^2 + 2t + 1$ está em Im(L) ?
- c. Encontre uma base para ker(L).
- d. L é injetora ?
- e. Encontre uma base para Im(L).
- f. L é sobrejetora ?
- g. Verifique o Teorema (7).

Transformações Lineares Planas

Idéia Transformações lineares de $\mathbb{R}^2 o \mathbb{R}^2$.

Reflexões

- a. Em torno do eixo x: $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por L(x,y) = (x,-y).
- b. Em torno do eixo y: $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por L(x,y) = (-x,y).
- c. Na origem: $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por L(x,y) = (-x,-y).
- d. Na reta y=x: $L:\mathbb{R}^2\to\mathbb{R}^2$ definida por L(x,y)=(y,x).
- e. Na reta y=-x: $L:\mathbb{R}^2 \to \mathbb{R}^2$ definida por L(x,y)=(-y,-x).

Q 4 b

Transformações Lineares Planas (1)

Dilatação e Contrações

a. Dilatação ou contração na direção do vetor: $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $L(x,y) = k(x,y), \ k \in \mathbb{R}$.

Observação:

- Se |k| > 1, L dilata o vetor;
- Se |k| < 1, L contrai o vetor;
- Se k = 1, L é a identidade I;
- Se k <), L troca o sentido do vetor.
- b. Dilatação ou contração na direção do eixo dos x: $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $L(x,y)=(kx,y), \ k>0$.

Observação:

- Se k > 1, L dilata o vetor;
- Se 0 < k < 1, L contrai o vetor.
- c. Dilatação ou contração na direção do eixo dos y: $L: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $L(x,y)=(x,ky), \ k>0$.

44)

Transformações Lineares Planas (2)

Cisalhamento

- a. Na direção do eixo dos x: $L:\mathbb{R}^2\to\mathbb{R}^2$ definida por $L(x,y)=(x+ky,y),\ k\in\mathbb{R}.$
- b. Na direção do eixo dos $y{:}\ L:\mathbb{R}^2\to\mathbb{R}^2$ definida por L(x,y)=(x,y+kx) , $k\in\mathbb{R}.$

Rotação $L_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ cuja matriz canônica é:

$$L_{\theta}(x,y) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Transformações Lineares no Espaço

Reflexões

- a. Em relação aos planos coordenados: $L:\mathbb{R}^3 \to \mathbb{R}^3$ definido por L(x,y,z)=(x,y,-z).
- b. Em relação aos eixo coordenados: $L:\mathbb{R}^3\to\mathbb{R}^3$ definido por L(x,y,z)=(x,-y,-z).
- c. Na origem: $L: \mathbb{R}^3 \to \mathbb{R}^3$ definido por L(x,y,z) = (-x,-y,-z).

Rotações em torno do eixo z: $L: \mathbb{R}^3 \to \mathbb{R}^3$ definido por $L(x,y,z) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, z)$.

Exemplo

- **Exemplo (21)** Determinar, em cada caso, a matriz da transformação linear $L: \mathbb{R}^2 \to \mathbb{R}^2$ que representa a sequência de transformações dadas:
 - (a) Reflexão em torno do eixo dos y, seguida de um cisalhamento de fator 5 na direção horizontal.
 - (b) Rotação de 30° no sentido horário, seguida de uma duplicação dos módulos e inversão dos sentidos.
 - (c) Rotação de 60^o , seguida de uma reflexão em relação ao eixo dos y.
 - (d) Rotação de um ângulo θ , seguida de uma reflexão na origem.
 - (e) Reflexão em torno da reta y=-x, seguida de uma dilatação de fator 2 na direção Ox e, finalmente, um cisalhamento de fator 3 na direção vertical.