Programming and Database Fundamentals for Data Scientists

Classes and Objects

Varun Chandola

School of Engineering and Applied Sciences State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Object Oriented Design

Encapsulation

Object Oriented Design

- Data-centric design instead of logic-centric
- ► Logic-centric design:
 - A program is organized as a logical procedure
 - Have functions as reusable logical blocks
- Data-centric design
 - A program is essentially a way to manipulate data
 - Data encapsulated as objects

How to do OOP?

- ► Identify objects that need to be manipulated in a program (data modeling)
- Define a class as a general description of the desired object
 - Example: Consider a banking application
 - Need to define customers
 - ▶ Each customer has a name, address, and multiple accounts
 - Each account has a type (checking or savings), current amount
 - Application: Read data from csv files containing customer and account information and find all customers with more than \$5,000 in their bank account
 - A class will consist of the data and the methods needed to interact with the data

Encapsulation

- ► A fundamental tenet of **Object Oriented Programming**
- ▶ Allows programmers to control the flow of data in a program
- Every object has some data attached to it
- ▶ Not all data is acessible to the external program
- ► Encapsulation controls what methods and fields are visible and how

Python Classes

- ▶ Define a Python class using the keyword class
- During the program execution, you can instantiate objects of a certain class
- Each class has three entities:
 - A constructor (using a special function called __init__)
 - Fields containing various data elements (mutable or immutable)
 - ▶ Methods that let you manipulate the fields or perform any task
 - Fields and methods can be defined as public or private
 - Private only accessible within the class definition
 - Public accessible outside (objectname.fieldname or objectname.methodname())

Python Namespaces

- Namespaces are used to keep track of variables
 - Like a dictionary where the keys are names of variables and the values are the values of those variables.
- At a given time in a Python program, several namespaces are available:
 - Each function has its own namespace, called the *local namespace*, which keeps track of the function's variables, including function arguments and locally defined variables.
 - Each module has its own namespace, called the global namespace, which keeps track of the module's variables, including functions, classes, any other imported modules, and module-level variables and constants.
 - 3. Finally, a built-in namespace, accessible from any module, which holds built-in functions and exceptions.

Scope of a Namespace

 A textual region within a Python program where a namespace is directly accessible without providing the qualifying object or module name

Global and Local Scope

▶ One can declare a global name using the keyword global

Inheritance and Subclasses

- One of the most important utility of classes is the ability to define subclasses
- A subclass inherits the parent (or base) class's methods and fields
- ▶ Allows you to define new ones or modify existing ones

References