М. А. Ахметов *ИПКПРО*, *Ульяновск* **О. Н. Исаева** *Гимназия* № 1, *Ульяновск* **Н. Н. Пильникова** *СШ* № 129, Челябинск

К методике применения

СРЕДСТВ НАГЛЯДНОСТИ

при формировании химических понятий

Выбор методов обучения, направленных на достижение образовательной цели, соответствующих содержанию изучаемого материала, уровню мышления учащихся, их знаниям, умениям, навыкам, — наиболее трудная педагогическая задача. Особое место в обучении химии занимают средства наглядности. Среди учителей, методистов, учёных существуют различные взгляды на место наглядных средств обучения при формировании химических понятий. Часть авторов рассматривают средства наглядности в качестве иллюстрации теоретических положений. Другие используют их как опору для формулировки теоретических положений.

Приведём примеры. При ознакомлении учащихся с понятием «реакция окисления» учитель Е. П. Зарубин обращает внимание учащихся на написанное на доске новое понятие — реакция окисления, предлагает записать его в тетрадь и даёт его определение: «Реакция окисления — взаимодействие веществ с кислородом». Записывая, школьники осознают содержание понятия «реакция окисления». Затем учитель предлагает им на конкретных примерах пронаблюдать, как происходит окисление некоторых веществ в кислороде, и демонстрирует взаимодействие кислорода с неметаллами — углеродом, серой, фосфором [1].

Л. М. Кузнецова предлагает иной сценарий: «В соответствии с принципом базировать учебное содержание на реальных веществах и процессах начинаем урок с опыта.

Горящую свечу накроем колбой с кислородом. Свеча горит ярким пламенем.

— Какое вещество сгорает? — Ребята знают, что свеча состоит из парафина и правильно отвечают. Сделаем вывод: кислород вступает в реакции со сложными веществами» [2, с. 111].

Аналогичные различия можно найти в учебниках. Так, И. И. Новошинский и Н. С. Новошинская начинают знакомство учащихся с кислотами с определения понятия [3, с. 87], далее следует классификация. Описание же свойств кислот приведено в конце параграфа. Н. Е. Кузнецова прежде предлагает учащимся получить кислоту, изучить её свойства и только затем выводит из наблюдений определение понятия [4, с. 119].

И. Н. Борисов, опираясь на работы И. П. Павлова о физиологической деятельности коры головного мозга, полагал, что задача учителя состоит в том, «чтобы ощущения, вызванные у учащихся теми или иными раздражителями (самими веществами и явлениями или только словесным сообщением о них), поднять на уровень восприятия — связать их в мозгу учащихся с другими, ранее полученными ощущениями и восприятиями, включить их в общий процесс мышления» [5, с. 85]. Он выделял следующие этапы формирования химических понятий:

- 1) непосредственное наблюдение веществ и явлений:
- 2) объяснение полученных учащимся фактов;

- 3) обобщение;
- 4) систематизацию:
- 5) применение.

В поисках научного обоснования критериев выбора методики обучения нами были определены ведущие типы мыслительной деятельности учащихся в возрасте от 13 до 17 лет в трёх различных образовательных учреждениях Ульяновской обл. (социальнопедагогический колледж, городская и сельская общеобразовательные школы) [6, с. 48]. Проведённое исследование подтвердило имеющиеся в литературе сведения, что подавляющая часть учащихся школьного возраста в настоящее время имеют правополушарный тип мыслительной деятельности (рис. 1).

Согласно выдвинутой нами гипотезе при обучении правополушарных учащихся акцент следует делать на визуально-кинестетическом восприятии, а при обучении левополушарных — на вербально-знаковых моделях. Для проверки гипотезы был проведён педагогический эксперимент при изучении новой темы «Полимеры» в 9-м классе в одной из гимназий Ульяновска (два экспериментальных класса и три контрольных - всего 120 учащихся) и в общеобразовательной школе Челябинска (один экспериментальный класс и один контрольный - всего 42 учащихся). В эксперименте участвовали классы, примерно равные по уровню химических знаний, что подтверждено результатами статистического сравнения.

В каждой из учебных групп изучение нового материала проводилось с использованием одних и тех же учебных средств. Различие

Рис. 1. Соотношение детей по типам мыслительной деятельности

состояло в том, что в экспериментальных группах обучение велось с опорой на визуально-кинестетическое восприятие, т. е. начиналось с изучения свойств образцов полимерных материалов с последующим проникновением в сущность процессов, выявлением внутреннего строения веществ и определением понятий, а в контрольных, напротив, начиналось с определения понятий и проникновения в сущность строения полимеров, а образцы изделий из полимеров, описание их свойств служили не опорой, а иллюстрацией теоретического материала (см. таблицу).

Для сравнения уровня знаний учащихся были проведены проверочные работы. В гимназии Ульяновска результаты проверочной работы оценивали по семибалльной шкале (рис. 2), а в школе Челябинска — по пятибалльной (рис. 3).

Статистический анализ результатов проверочной работы методами непараметрической статистики, безусловно, подтвердил выдвинутую гипотезу только для школы Челябинска. Более детальный анализ результатов

Рис. 2. Доля (%) учащихся, набравших указанное число баллов в экспериментальной и контрольной группах гимназии Ульяновска

Рис. 3. Доля (%) учащихся, набравших указанное число баллов в экспериментальной и контрольной группах школы Челябинска

Различия в методике формирования понятия «полимеры»

Этап урока	Методика проведения урока в группе	
	экспериментальной	контрольной
•	лонятия: полимер, мономер, реакция полимеризац тивные полимеры	ии, степень полимеризации, термопластичные
Подготовка	Учитель демонстрирует предметы, сделанные из полимеров: канцелярские принадлежности, упаковочные материалы, посуду, строительные материалы и др. Учащиеся вместе с учителем формулируют тему и цель урока	Учитель сообщает тему и цель урока, формулирует определение понятия «полимер». Учащиеся записывают его
Усвоение нового материала	1. Учитель демонстрирует наглядную модель образования полиэтилена. Вводит термины «мономер», «полимер», «реакция полимеризации».	1. Учитель записывает уравнение реакции полимеризации этилена, поясняет запись, вводит термины «полимер», «мономер», «реакция полимеризации».
	2. Учащиеся работают с образцами полимеров, рассматривают их внешний вид, сравнивают их свойства.	2. Учитель сообщает, что полимеры могут существенно отличаться по свойствам, объясняет причину этого.
	3. Учитель демонстрирует отношение термопластичных и термореактивных полимеров к нагреванию. Учащиеся записывают определение, выясняют причину разных свойств полимеров	3. Учащиеся изучают свойства образцов полимеров: полиэтилена (крышка), полипропилена (канцелярская ручка, деталь пластмассовой трубы), поливинилхлорида (кусок линолеума), полистирола (одноразовая посуда). Учитель демонстрирует отношение полимеров к нагреванию
Проверка знаний	Самостоятельная работа, направленная на проверку знания и понимания изученных понятий	

проверочной работы в сравнении с текущей успеваемостью позволил выявить группу учащихся (в гимназии -29%, в школе -14%), результаты обучения которых мало зависят от последовательности представления информации в ходе процесса обучения. Это дети с развитыми вербальным и невербальным интеллектом, умением оперировать изображениями фигур как на плоскости, так и в пространстве, развитыми репрезентативными системами и преобладающей визуальной модальностью переработки информации [7, с. 7]. Статистическая обработка результатов с исключением этой группы детей из выборки как в контрольных, так и в экспериментальных группах подтвердила выдвинутую гипотезу о том, что изучение нового материала целесообразно осуществлять с опорой на визуальнокинестетическое восприятие.

ЛИТЕРАТУРА

- 1. Зарубин Е.П. Химические свойства кислорода. Проект урока в 8-м классе // Химия (ИД «Первое сентября»). 2009. № 6. С. 41–48.
- 2. **Кузнецова Л. М.** Новая технология обучения химии. 8 кл.: Методическое пособие для учителя. М.: Мнемозина, 2006.
- 3. **Новошинский И.И., Новошинская Н.С.** Химия. 8 класс: Учебник для общеобр. учреждений. М.: Русское слово РС, 2009.
- 4. **Кузнецова Н. Е.,Титова И. М., Гара Н. Н. и др.** Химия: Учебник для учащихся 8 класса общеобр. учреждений. М.: Вентана-Граф, 2005.
- 5. **Борисов И. Н.** Методика преподавания химии. М.: Учпедгиз, 1956.
- 6. **Ахметов М.А.** Индивидуально ориентированное обучение химии в общеобразовательной школе: Монография. Ульяновск: УИПКПРО, 2009.
- 7. **Носова Н. В.** Интеллектуальные факторы репрезентации химических знаний учащимися старших классов: Автореф. дис. ... канд. психол. наук. Вологда, 2004.