7.19. Let B_t^x be 1-dimensional Brownian motion starting at x > 0. Define

$$\tau = \tau(x, \omega) = \inf\{t > 0; B_t^x(\omega) = 0\}$$
.

From Exercise 7.4 we know that

$$\tau < \infty$$
 a.s. P^x and $E^x[\tau] = \infty$.

What is the distribution of the random variable $\tau(\omega)$?

a) To answer this, first find the Laplace transform

$$g(\lambda)$$
: = $E^x[e^{-\lambda \tau}]$ for $\lambda > 0$.

(Hint: Let $M_t = \exp(-\sqrt{2\lambda} B_t - \lambda t)$. Then

 $\{M_{t\wedge\tau}\}_{t\geq 0}$ is a bounded martingale .

[Solution: $g(\lambda) = \exp(-\sqrt{2\lambda} x)$.]

and

Thus

b) To find the density f(t) of τ it suffices to find f(t) = f(t,x) such

$$\int\limits_{0}^{\infty}e^{-\lambda t}f(t)dt=\exp(-\sqrt{2\lambda}\;x)\qquad\text{for all }\;\lambda>0$$

i.e. to find the inverse Laplace transform of $g(\lambda)$. Verify that

$$f(t,x) = \frac{x}{\sqrt{2\pi t^3}} \exp\left(-\frac{x^2}{2t}\right); \qquad t > 0.$$

Define
$$g(\lambda, x) = \int_{0}^{\infty} e^{-\lambda t} f(t) dt$$

and notice that it satisfies the ODE q"= 2/2 with solution

C, e + C, e