

Joint meeting

Andrea Pierré March 4th, 2024

Brown University

Outline

1. Online Deep RL training

2. Generalization experiment

3. Discussion

Outline

1. Online Deep RL training

Generalization experiment

3. Discussion

Rewards & steps

- · Lights cues in the state?
- Start training once replay buffer is full (5000 transitions) instead of when there are enough transitions for a batch (32 transitions)
- Soft update of the networks weights (instead of sharp transition)
- Huber loss instead of mean squared error → should be less sensible to outliers
- · Remove ReLU on output layer.

- · Lights cues in the state?
- Start training once replay buffer is full (5000 transitions) instead of when there are enough transitions for a batch (32 transitions)
- Soft update of the networks weights (instead of sharp transition)
- Huber loss instead of mean squared error → should be less sensible to outliers
- · Remove ReLU on output layer!

- · Lights cues in the state?
- Start training once replay buffer is full (5000 transitions) instead of when there are enough transitions for a batch (32 transitions)
- Soft update of the networks weights (instead of sharp transition)
- Huber loss instead of mean squared error → should be less sensible to outliers
- · Remove ReLU on output layer!

- · Lights cues in the state?
- Start training once replay buffer is full (5000 transitions) instead of when there are enough transitions for a batch (32 transitions)
- Soft update of the networks weights (instead of sharp transition)
- Huber loss instead of mean squared error \rightarrow should be less sensible to outliers
- · Remove ReLU on output layer!

- · Lights cues in the state?
- Start training once replay buffer is full (5000 transitions) instead of when there are enough transitions for a batch (32 transitions)
- Soft update of the networks weights (instead of sharp transition)
- Huber loss instead of mean squared error \rightarrow should be less sensible to outliers
- Remove ReLU on output layer!

Loss, rewards & steps distributions, exploration/exploitation rate

Policy learned

Outline

1. Online Deep RL training

2. Generalization experiment

3. Discussion

Training only in the lower triangle

Training only in the lower triangle then switch to the upper triangle

Training only in the lower triangle then switch to the upper triangle

Outline

1. Online Deep RL training

Generalization experiment

3. Discussion

- · Debrief from the meeting with Thomas
- Topics of discussion for future meetings?
 - How to compare neural data with simulation data?
 Journal club (e.g. MINDS paper, etc.)
 Any other topics to add?

- Debrief from the meeting with Thomas
- Topics of discussion for future meetings?
 - How to compare neural data with simulation data?
 - · Journal club (e.g. MINDS paper, etc.)
 - Any other topics to add?

- Debrief from the meeting with Thomas
- Topics of discussion for future meetings?
 - How to compare neural data with simulation data?
 - · Journal club (e.g. MINDS paper, etc.)
 - Any other topics to add?

- Debrief from the meeting with Thomas
- Topics of discussion for future meetings?
 - How to compare neural data with simulation data?
 - · Journal club (e.g. MINDS paper, etc.)
 - Any other topics to add?

- Debrief from the meeting with Thomas
- Topics of discussion for future meetings?
 - · How to compare neural data with simulation data?
 - · Journal club (e.g. MINDS paper, etc.)
 - Any other topics to add?

