Report: Non-ideal effects in c	p-amps	
Lab work done by	_Sean Gordon	
and	_Tejas Agarwal	
Lab work date: 3-6-2019		
Report submission date: 3-13-	2019	
Lab Section: E		
Graded by		
Score		

Introduction

This lab focuses entirely on the limitations of operational amplifiers. The lab contains several scenarios designed to draw attention to specific limitations, going through each in turn.

A. Power supplies and output voltage limits 324 op amp

Figures: Insert images of the oscilloscope trace of the clipped v_o from the 324 non-inverting amp and the x-y transfer function plot.

660 amp

Figures: Insert images of the oscilloscope trace of the clipped v_o from the 660 non-inverting amp and the x-y transfer function plot.

Measured positive output limit: V_{L+} **8.4v**

Measured negative output limit: V_L _____-8.4v_____

Figures: Insert an image of the oscilloscope trace of the clipped and unclipped v_o from the 660 amp using a single power supply.

B. Output current limits

324: Measured maximum output current:_____48mA_____

Figure: Insert an image of the output voltage when the output current is at its limit.

660: Measured maximum output current:______37mA_

Figure: Insert an image of the output voltage when the output current is at its limit.

C. Gain-bandwidth limitations

FreqA =
$$20.5kHz$$
 FreqB = $9.3kHz$ FreqC = $4.4kHz$ Freq_Avg = $11.4kHz$

Figure: Insert the plot showing the three low-pass responses for the three different gains.

_	А	В	С	D	Е	F	G	Н	I	J
1	Freq	mVo @ G=100	mVo @ G=220	mVo @ G=470	■ mVo @ G=100 ■ mVo @ G=220 ■ mVo @ G=470					
2	100	382	836	1790	2000 ———					
3	1000	382	836	1730	\ \					
4	4400	378	756	1266	1500					
5	5000	370	732	1170	1300					
5	9300	354	591	770	•					
7	10000	342	563	720	1000					
3	15000	309	442	540	_ \					
9	20500	270	354	420						
0	25000	241	305	360	500					
1	30000	217	265	320						
2	50000	153	177	220	0					
3	100000	92	112	160		20000	40000 600	3 000	30000	
4										,
5	Vmax / √2	270	591	1266						
16										

c c1

c c2

D. Slew-rate limitations

324: Measured slew rate:_____.4v/us_____

Figure: Insert an image of slew-rate limited output for the 324 amp.

660: Measured slew rate: 2v/us

Figure: Insert an image of slew-rate limited output for the 660 amp.

082: Measured slew rate:_____10.6v/us_____

Figure: Insert an image of slew-rate limited output for the TL082 amp.

DS0-X 2024A, MY55140906: Wed Mar 13 00:10:43 2019

E. Offset voltage and bias currents

324:

Measured v_o with R_3 in place = _____-7.9v_____

Offset voltage: $V_{OS} =$ ______.016v_____

Measured v_o with R_3 shorted = _____.28v_____

Difference in v_o measurements = ____8.18v____

Bias current: $I_B =$ ______.0005A______

660:

Measured v_o with R_3 in place = _____50mv____

Offset voltage: $V_{OS} =$ ______.0001v_____

Measured v_a with R_3 shorted = _____-20mv_____

Difference in v_o measurements = _____70mv_____

Bias current: $I_B =$ ______.00004A_____

082:

Measured v_o with R_3 in place = ____8v____

Offset voltage: $V_{OS} =$ ______.017v_____

Measured v_o with R_3 shorted = ____8v____

Difference in v_a measurements = ____0v_____

Bias current: $I_B =$ ____0A____

Conclusion

This lab focuses on specific limitations of operational amplifiers, and throughout the course of the lab runs the op-amps in question through a series of tests designed to highlight those limitations. This lab went largely without hitches, however the supplied potentiometers suck and break all the time so part B was very delayed.