A Multi-Objective Decision Support for AutoML Frameworks

Data Systems Group

Table of contents

- 1. Motivation
- 2. Experimental setup
- 3. Analyzing classifiers performance
- 4. Weka vs Scikit-Learn comparison
- 5. Predictions
 - a. Best classifiers
 - b. Runtime
 - c. Performance
 - d. Tunability

5. Conclusions

How to

Experimental setup

200 datasets from OpenML:

- 54% binary and 46 % multiclass classification tasks
- 5 Kb to 350 Mb

30 classifiers:

- 13 from Scikit-Learn (Python)
- 17 from Weka (R)

27 meta features:

- simple
- statistical
- information-theoretic types.

Meta features distribution

Experimental setup

Different combinations of hyperparameters (ceiling 40)

No preprocessing

New dataset = 132K records

< Meta features, classifier, hyperparameters, performance metrics >

Time out to prevent long runtime

Classifier performance

Classifier performance

Classifier performance

SMO is solving the quadratic programming (QP) of SVM

AdaBoost:

- Scikit-learn uses SAMME algorithm
- Weka uses M1 algorithm

Decision Tree base classifier:

- Scikit-learn uses DecisionTreeClassifier(max_depth=1)
- Weka uses DecisionStump

Scikit-Learn	Weka
AdaBoost	AdaBoostM1
SVM	SMO
KNeighborsClassifier	IBk
RandomForestClassifier	RandomForest
Logistic Regression	Logistic Regression

Same, same but different!

Random Forest base classifier:

- Scikit-Learn uses Decision Tree
- Weka uses Random Tree

The **Logistic Regression** in Scikit-Learn supports much more hyper parameters and optimizations than Weka.

KNeighbors in Scikit-Learn supports different algorithms for computing the nearest neighbors.

Scikit-Learn	Weka
AdaBoost	AdaBoostM1
SVM	SMO
KNeighborsClassifier	IBk
RandomForestClassifier	RandomForest
Logistic Regression	Logistic Regression

Same, same but different!

Scikit-Learn classifier is better: 50

Weka classifier is better: 96

Equal: 54

How to

Predicting best classifiers

Select classifier best result and create a new dataset (5432 instances)

Binary classifications:

- Class 0 Best classifiers
- Class 1 Not good classifier

Take into consideration the accuracies standard deviation

Fit a decision tree after performing Randomized Search

84 % recall on Class 0

How to

To tune or not to tune?

No difference between best and worst run

AdaBoostM1	23.5 %
LogisticRegression	22.4 %
OneR	18.2 %
Decision Table	11.5 %

To tune or not to tune?

No difference between best and worst run

GaussianProcessClassifier 63.5 % LinearDiscriminantAnalysis 47.7 % ComplementNB 20.7 % QDA 19.1 %

To tune or not to tune?

Define a tuning score s as:

$$s = \mu + \frac{T \cdot \sigma}{{c_t}^2}$$

Use autoSklearn Regressor to predict:

- Training accuracy
- Accuracy standard deviation
- Training time
- Confidence interval

RMSE: 0.12

RMSE: 0.07

RMSE: 154.8 MAE: 23.98

RMSE: 0.06

Future work

How to

Conclusions

Not all classifiers are worth including in AutoML pipeline

Not all classifiers are worth tuning

There is always going to be a trade-off between time and accuracy