

팀장 성민석 고려대학교 인공지능학과 석박통합과정 minsuksung@korea.ac.kr

팀원 조대현 고려대학교 인공지능학과 석박통합과정 1phantasmas@korea.ac.kr

팀원 류회성 고려대학교 인공지능학과 박사과정 hoesungryu@korea.ac.kr

팀원 조희승 고려대학교 인공지능학과 석박통합과정 hscho9384@korea.ac.kr

NS홈쇼핑

, <u>인공지능(AI) 기반</u> `스마트 AI 편성 시스템` 첫

머신 러닝'(빅데이터를 분석하고 가공해서 새로우 저ㅂㅋ ~~~

Byline Network

홍하나 Contributor v

합병 통해 APAC 시장 정조준 도시경제신문 응용 머신러닝(Applied Machine Learning) 기반의 컨텍스츄 [도시경제] AI 패션 스타밀링 서비스 기업

이종철 | 2019년 11월 8일

대학생에게 특정 홈쇼핑의 데이터를 주면 그다음 해 매출을 예측할 수 있을까? SAS코리아에 서 진행한 제17회 SAS 분석 챔피언십 이야기다. 17회를 맞은 SAS 분석 챔피언십은, 현업이 홈쇼핑의 실제 매출 데이터로 2018년 매출을 예측하도록 했다. 주어진 데 이터는 2013년부터 2017년까지의 판매 상품 정보, 프로그램 실적, 프로그램 편성 정보, 편 성 시간표 등이다. 편성정보나 실적에는 쇼 호스트나 PD, 매출액 등이 표기돼 있다.

많이 본 기사

2020. 4. 9.

2020. 2. 6.

ontents

- 1. 데이터 설명 Data Description
- 2. 탐색적 데이터 분석 Exploratory Data Analysis
- 3. 데이터 전처리 Data Preprocessing
- 4. 특성 공학 Feature Engineering
- 5. 모델링 Modeling
- 6. 성능평가 Testing
- 7. 결론 및 토론 Conclusion & Discussion

제공 데이터

Part 1. 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 실적 데이터

- 2019년 1월 ~ 12월 프로그램별 실적 데이터
 - 상품별 과거 (연속편성횟수/편성분), 판매가, 카테고리 정보 제공함
 - 예측 상품 중 판매가 0인 프로그램 실적은 예측에서 제외
 - 예측 상품 중 과거 실적이 없는 경우는 유사 카테고리 혹은 동일 머더코드로 예측

	노출(분)	마더코드	상품코드	상품명	상품군	판매단가	취급액
방송일시							
2019-01-01 06:00:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	2099000.0000
2019-01-01 06:00:00	nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	4371000.0000
2019-01-01 06:20:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	3262000.0000
2019-01-01 06:20:00	nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	6955000.0000
2019-01-01 06:40:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	6672000.0000
2019-12-31 23:20:00	nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	1664000.0000
2019-12-31 23:40:00	20.0000	100448	201383	무이자쿠첸압력밥솥 10인용	주방	178000	9149000.0000
2019-12-31 23:40:00	nan	100448	201390	일시불쿠첸압력밥솥 10인용	주방	168000	15282000.0000
2019-12-31 23:40:00	nan	100448	201384	무이자쿠첸압력밥솥 6인용	주방	158000	2328000.0000
2019-12-31 23:40:00	nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	10157000.0000

제공 데이터

Part 1. 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6

• 시청률 데이터

1441 rows x 366 columns

- 2019년 1월 1일 ~12월 31일까지 시청률 데이터
 - 요일별/시간대별 분 단위 시청률 데이터 (단위 %)
 - 오전 6시부터 익일 오전 2시까지의 일별 시청률

01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10 " 12-23 12-24 12-25 12-26 12-27 12-28 시간 CH **02:00** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 **02:01** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 **02:02** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000 0.0000 0.0170 0.0000 **02:04** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000 0.0000 0.0170 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0270 0.0000 0.0000 0.0000 0.0000 0.0000 ... 0.0130 0.0000 0.0000 0.0000 0.0150 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0130 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0130 0.0170 0.0000 0.0000 0.0150 0.0000 0.0000 0.0190 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 ... 0.0130 0.0000 0.0000 0.0000 0.0150 0.0000 0.0000 0.0000 수목 0.0040 0.0060 0.0020 0.0030 0.0020 0.0030 0.0030 0.0020 0.0030 0.0020 ... 0.0100 0.0060 0.0060 0.0070 0.0040 0.0060 0.0040 0.0050 02:00-01:59

2019- 2019- 2019-

Part 1. 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 네이버 트랜드 데이터 Naver Trend Data

- 해당 검색어가 검색된 횟수를 일별/주별/월별 각각 합산
- 조회기간 내 최다 검색량을 100으로 설정하여 상대적인 변화를 나타냄

	의뉴	농구산물	쪽옷	수망	비용	가진	생활용품	건강기능	십와	717
날짜										
2019-01-01	0.3439	0.1982	5.0683	0.6237	0.3381	3.1349	1.8065	46.1994	5.6853	3.0817
2019-01-02	0.6131	0.1814	5.8685	0.9666	0.7007	5.1652	1.5285	49.4381	8.1430	5.9030
2019-01-03	0.7308	0.2343	7.5706	1.3187	0.7110	4.6937	1.5050	48.6204	8.4690	4.5661
2019-01-04	0.6596	0.1879	6.2758	1.1092	0.5196	4.6175	1.3156	43.9306	7.7646	3.6372
2019-01-05	0.7009	0.3037	10.0166	1.6295	0.9520	2.8369	1.2293	40.5435	6.5957	3.8534
2020-09-15	0.8308	0.6273	8.1722	1.6277	0.8986	4.9475	3.7359	48.6674	9.6931	5.3514
2020-09-16	0.9648	0.5274	8.7811	1.5862	0.7604	5.9928	3.2757	54.5443	9.8525	4.7231
2020-09-17	0.7874	0.3891	5.3985	1.0999	0.4810	6.7892	3.3550	46.5472	9.4838	4.1475
2020-09-18	0.7851	0.5657	5.5878	1.3431	0.6273	5.2291	3.7680	37.2188	8.9458	4.1781
2020-09-19	0.3912	0.3221	4.8608	0.8168	0.4372	3.6183	2.9797	44.9623	7.5558	4.0439

628 rows x 10 columns

새하요프 거가기느

가그

외부 데이터

Part 1. 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 이웃 채널 방송편성표

- MBC와 JTBC의 방송 편성표를 활용
 - : MBC(11) NS홈쇼핑(14) JTBC(15)
 - Olleh TV: MBC(11) NS홈쇼핑(12) JTBC(15)
 - : MBC(11) NS홈쇼핑(13) JTBC(15) U+TV

JTBC 시간표

외부 데이터

Part 1. 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

● 소비자 물가 지수 Custom Price Index

- 포스트 코로나 상황을 반영하기 위한 지표로 활용
- 2019년 1월부터 2020년 6월까지 지출목적별 지수와 한국은행 기준 금리

학습 데이터 기간 (약 1년)

평가 데이터 기간

이 식료품 · 비주류 임 08.800 109.540 108.480 109.400 108.830 107.640 106.680 107.700 110.520 110.740 107.890 109.010 111.180 01.1 식료품 109.220 110.040 108.950 109.990 109.310 108.020 106.980 108.060 111.140 111.290 108.360 109.560 111.770 방및곡물 112.300 112.500 113.260 113.390 113.640 113.500 113.390 113.390 113.200 113.090 113.480 113.380 113.020 113.150 발 118.250 118.070 118.020 117.100 117.410 116.820 116.470 115.820 116.020 116.160 116.390 115.480 114.580 114.580 115.480														
이 식료품·비주류 108.8000 109.5400 108.4800 109.4000 108.8300 107.6400 106.6800 107.7000 110.5200 110.7400 107.8900 109.0100 111.180 01.1 식료품 109.2200 110.0400 108.9500 109.9900 109.3100 108.0200 106.9800 108.0600 111.1400 111.2900 108.3600 109.5600 111.770 방무곡물 112.3000 112.5000 113.2600 113.3900 113.6400 113.5000 113.3900 113.2000 113.0900 113.4800 113.3800 113.0200 113.1500 발무곡물 118.2500 118.0700 118.0200 117.1000 117.4100 116.8200 116.4700 115.8200 116.0200 116.1600 116.3900 115.4800 114.5800 114.5800 115.4800 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 106.3200 10	지출목적별	2019. 01	2019. 02	2019. 03	2019. 04	2019. 05	2019. 06	2019. 07	2019. 08	2019. 09	2019. 10	2019. 11	2019. 12	2020. 0
응료 108.800 109.3400 108.4800 109.4000 108.8300 107.6400 106.8800 107.7000 110.3200 110.7400 107.8900 109.0100 111.180 01.1 식료품 109.2200 110.0400 108.9500 109.9900 109.3100 108.0200 106.9800 108.0600 111.1400 111.2900 108.3600 109.5600 111.770 빵및곡물 112.3000 112.5000 113.2600 113.3900 113.6400 113.5000 113.3900 113.2000 113.0900 113.4800 113.3800 113.0200 113.150 쌀 118.2500 118.0700 118.0200 117.1000 117.4100 116.8200 116.4700 115.8200 116.0200 116.1600 116.3900 115.4800 114.580	0 총지수	104.2400	104.6900	104.4900	104.8700	105.0500	104.8800	104.5600	104.8100	105.2000	105.4600	104.8700	105.1200	104.870
빵 및 곡물 112.3000 113.2600 113.2600 113.3900 113.6400 113.5000 113.3900 113.2000 113.0900 113.4800 113.3800 113.0200 113.1500 쌀 118.2500 118.0700 118.0200 117.1000 117.4100 116.8200 116.4700 115.8200 116.0200 116.1600 116.3900 115.4800 114.5800		108.8000	109.5400	108.4800	109.4000	108.8300	107.6400	106.6800	107.7000	110.5200	110.7400	107.8900	109.0100	111.180
쌀 118.2500 118.0700 118.0200 117.1000 117.4100 116.8200 116.4700 115.8200 116.0200 116.1600 116.3900 115.4800 114.580	01.1 식료품	109.2200	110.0400	108.9500	109.9900	109.3100	108.0200	106.9800	108.0600	111.1400	111.2900	108.3600	109.5600	111.770
	빵 및 곡물	112.3000	112.5000	113.2600	113.3900	113.6400	113.5000	113.3900	113.2000	113.0900	113.4800	113.3800	113.0200	113.150
시험용시료 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 105.2300 110.0200 110.0200 110.0200 장례비 105.4700 105.9900 106.2900 106.3200 106.3500 106.3200 106.3200 106.3200 106.3200 106.3200 106.3400 106.3800 106.4000 106.890	쌀	118.2500	118.0700	118.0200	117.1000	117.4100	116.8200	116.4700	115.8200	116.0200	116.1600	116.3900	115.4800	114.580
장례비 105.4700 105.9900 106.2900 106.3200 106.3500 106.3200 106.3200 106.3200 106.3200 106.3200 106.3400 106.3800 106.4000 106.890														
	시험용시료	105.2300	105.2300	105.2300	105.2300	105.2300	105.2300	105.2300	105.2300	105.2300	110.0200	110.0200	110.0200	110.0200
한국은행기준금리 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.5000 1.5000 1.5000 1.2500 1.2500 1.2500 0.500	장례비	105.4700	105.9900	106.2900	106.3200	106.3500	106.3200	106.3200	106.3200	106.3200	106.3400	106.3800	106.4000	106.890
	한국은행기준금리	1.7500	1.7500	1.7500	1.7500	1.7500	1.7500	1.5000	1.5000	1.2500	1.2500	1.2500	1.2500	0.500

데이터의 형태, 컬럼 그리고 타입

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

데이터 컬럼

	노출(분)	마더코드	상품코드	상품명	상품군	판매단가	취급액
방송일	Ч						
2019-01-01 06:00:0	0 20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	2099000.0000
2019-01-01 06:00:0	0 nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	4371000.0000
2019-01-01 06:20:0	0 20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	3262000.0000
2019-01-01 06:20:0	0 nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	6955000.0000
2019-01-01 06:40:0	0 20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	6672000.0000
2019-12-31 23:20:0	0 nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	1664000.0000
2019-12-31 23:40:0	0 20.0000	100448	201383	무이자쿠첸압력밥솥 10인용	주방	178000	9149000.0000
2019-12-31 23:40:0	0 nan	100448	201390	일시불쿠첸압력밥솥 10인용	주방	168000	15282000.0000
2019-12-31 23:40:0	0 nan	100448	201384	무이자쿠첸압력밥솥 6인용	주방	158000	2328000.0000
2019-12-31 23:40:0	0 nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	10157000.0000
				_			

DatetimeIndex: 38300 entries, 2019-01-01 06 Data columns (total 14 columns): Column Non-Null Count Dtype 노출(분) 38300 non-null float64

<class 'pandas.core.frame.DataFrame'>

마더코드 38300 non-null int64 상품코드 38300 non-null int64 상품명 38300 non-null object 상품군 38300 non-null object 판매단가 38300 non-null int64 취급액 38300 non-null float64 38300 non-null int64 38300 non-null int64 38300 non-null int64 10 int64 38300 non-null 38300 non-null int64 12 38300 non-null int64 13 유일 38300 non-null object

dtypes: float64(2), int64(9), object(3)

memory usage: 4.4+/MB

데이터 타입

38300 rows x 7 columns

데이터 형태

NS홈쇼핑 데이터의 기초 통계량

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

학습 데이터와 평가 데이터의 분포가 유사한 것으로 확인할 수 있음

	노출(분)	마더코드	상품코드	판매단가	취급액		노출(분)	마더코드	상품코드	판매단가	취급액
count	38300.0000	38300.0000	38300.0000	38300.0000	38300.0000	count	2891.0000	2891.0000	2891.0000	2891.0000	0.0000
mean	20.4451	100390.9859	201219.9726	456644.0078	23116300.6789	mean	20.1797	100388.8212	201200.4618	401441.7848	nan
std	3.4164	249.9397	735.7036	726115.8633	20747022.7854	std	4.4062	256.7364	775.0423	604648.0012	nan
min	2.4667	100000.0000	200000.0000	0.0000	103000.0000	min	5.9500	100003.0000	200003.0000	0.0000	nan
25%	20.0000	100155.0000	200550.0000	59000.0000	7712000.0000	25%	20.0000	100148.0000	200417.0000	40900.0000	nan
50%	20.0000	100346.0000	201167.0000	109000.0000	16961000.0000	50%	20.0000	100388.0000	201277.0000	79900.0000	nan
75%	20.0000	100596.0000	201863.0000	499000.0000	32718250.0000	75%	20.0000	100593.0000	201818.0000	548000.0000	nan
max	60.0000	100849.0000	202513.0000	7930000.0000	322009000.0000	max	60.0000	100849.0000	202511.0000	4320000.0000	nan

학습 데이터 평가 데이터

마더코드 / 상품코드

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

마더코드(100000~), 상품코드(200000~)로 상품의 특징 판별

- 같은 상품명이라도 상품 가격이 다르면 상품코드의 차이가 있음을 발견
- 이를 통해 상품코드: 마더코드 + 판매단가를 결합한 Key값으로 인식가능

1271	2019-01- 14 23:40:00	20.0	100049	202044	마리노블 밍크 롱코 트	clothes	499000
2355	2019-01- 26 00:00:00	20.0	100049	202043	마리노블 밍크 롱코 트	clothes	399000

상품군 / 상품명

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

●상품군

• 상품군 별로 통계값들을 살펴보아 전체적인 상품들의 특징들을 잡을 것

●상품명

• 대략 1800개의 상품이 존재함

노출(분)

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 전체 분포 확인

• 무형을 제외한 상품군들의 노출(분)은 20분 전후로 고르게 분포

판매단가

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가 • 가전의 단가가 평균적으로 높음

• 잡화와 가구에 Outlier가 많음

취급액

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

- 5천만원 이하에 집중
- 전체 상품군 별 총 매출
 - 농수축과 이미용의 취급액이 가장 높음

월별 상품 총 판매량

Part 1 데이터 설명 • 연말(11,12월)에 상품 판매량이 높음

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

----- 전체 평균

월별 평균 취급액

주별 상품 총 판매량

Part 1 데이터 설명 • 연말 이외에도 특정 주간(추석, 설날, 여름휴가철)에 판매량이 높음

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

일별 상품 총 판매량

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 매월 25일 이후로 판매량이 많음

시간별 상품 총 판매량

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

- 오후시간(15~18시)과 저녁시간(20~23시)에 판매량이 많음
- 2~5시 사이에는 방영하지 않음

시간별 상품 총 판매량

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 총 판매량과 평균 판매량의 차이가 발생하는 원인

• 저녁에는 가격이 높은 상품들은 오후에는 가격이 낮은 상품들 위주로 판매가 많기 때문이라고 추정

요일별 상품 총 판매량

Part 1 데이터 설명 • 주말(토,일)에 판매량이 많음

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

일별 평균 시청률

Part 1 데이터 설명 • 상반기에 비해 하반기(7월 1일 이후)에 시청률이 높음

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

시간대별 평균 시청률

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가 • 10~12시, 14~18시, 21~01시에 시청률이 높음

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 세부 방송 시간 추출

• 연, 월, 일, 시, 분으로 세부적으로 분리

	노출(분)	마더코드	상품코드	상품명	상품군	판매단가	취급액
방송일시							
2019-01-01 06:00:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	2099000.0000
2019-01-01 06:00:00	nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	4371000.0000
2019-01-01 06:20:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	3262000.0000
2019-01-01 06:20:00	nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	6955000.0000
2019-01-01 06:40:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	6672000.0000
2019-12-31 23:20:00	nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	1664000.0000
2019-12-31 23:40:00	20.0000	100448	201383	무이자쿠첸압력밥솥 10인용	주방	178000	9149000.0000
2019-12-31 23:40:00	nan	100448	201390	일시불쿠첸압력밥솥 10인용	주방	168000	15282000.0000
2019-12-31 23:40:00	nan	100448	201384	무이자쿠첸압력밥솥 6인용	주방	158000	2328000.0000
2019-12-31 23:40:00	nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	10157000.0000

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

- 주어진 데이터에서 가장 핵심이 되는 특성은 **상품명**에 있다고 판단
- 상품명을 추출하기 위해서 자연어처리기술을 활용
 - 사람이 분류할 수 없는 분량의 상품명들에 대한 특성 추출 자동화
 - 사람이 확인할 수 없는 자연어 사이의 관계에 대한 대수적 표현과 내재된 표현 추출

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

불용어 제거

- 상품명 분석 과정에서 성능 저해를 불러 일으키는 큰 요소 제거
- 더 높은 정확도를 위해 특수문자와 큰 공백들, 낱개의 문자들을 제거
 - 예시) 그(관사), 와(전치사), 그리고(접속사)

• 형태소 분석

- 한 문장 내에서 각 단어 요소들이 문장 내 어떤 역할을 하고 있는지 분석
- Java 기반의 한국어 형태소 분석기인 Komoran을 통하여 형태소 분석
 - 1차적으로 고유 상품명에 대해 형태소 분석을 진행

+ 종결어미(EF)

+ 마침표(SF)

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 임베딩 벡터 생성

- Word2Vec 모델을 이용하여 상품명으로부터 유의미한 단어들을 파생변수 추출
- 100차원 공간으로 상품명을 매핑

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• PCA를 통해서 차원 축소

• 모델이 데이터를 해석하는 능력에 있어서 변수의 수를 조절해줄 필요

NS홈쇼핑 특성 생성하기 Feature Generation

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 네이버 트랜드 결합

	노출(분)	마더코드	상품코드	상품명	상품군	판매단가	취급액
방송일시							
2019-01-01 06:00:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	2099000.0000
2019-01-01 06:00:00	nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	4371000.0000
2019-01-01 06:20:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	3262000.0000
2019-01-01 06:20:00	nan	100346	201079	테이트 여성 셀린니트3종	의류	39900	6955000.0000
2019-01-01 06:40:00	20.0000	100346	201072	테이트 남성 셀린니트3종	의류	39900	6672000.0000
2019-12-31 23:20:00	nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	1664000.0000
2019-12-31 23:40:00	20.0000	100448	201383	무이자쿠첸압력밥솥 10인용	주방	178000	9149000.0000
2019-12-31 23:40:00	nan	100448	201390	일시불쿠첸압력밥솥 10인용	주방	168000	15282000.0000
2019-12-31 23:40:00	nan	100448	201384	무이자쿠첸압력밥솥 6인용	주방	158000	2328000.0000
2019-12-31 23:40:00	nan	100448	201391	일시불쿠첸압력밥솥 6인용	주방	148000	10157000.0000

38300 rows x 7 columns

실적 데이터

	의류	농수산물	속옷	주방	미용	가전	생활용품	건강기능	잡화	가구
날짜										
2019-01-01	0.3439	0.1982	5.0683	0.6237	0.3381	3.1349	1.8065	46.1994	5.6853	3.0817
2019-01-02	0.6131	0.1814	5.8685	0.9666	0.7007	5.1652	1.5285	49.4381	8.1430	5.9030
2019-01-03	0.7308	0.2343	7.5706	1.3187	0.7110	4.6937	1.5050	48.6204	8.4690	4.5661
2019-01-04	0.6596	0.1879	6.2758	1.1092	0.5196	4.6175	1.3156	43.9306	7.7646	3.6372
2019-01-05	0.7009	0.3037	10.0166	1.6295	0.9520	2.8369	1.2293	40.5435	6.5957	3.8534
2020-09-15	0.8308	0.6273	8.1722	1.6277	0.8986	4.9475	3.7359	48.6674	9.6931	5.3514
2020-09-16	0.9648	0.5274	8.7811	1.5862	0.7604	5.9928	3.2757	54.5443	9.8525	4.7231
2020-09-17	0.7874	0.3891	5.3985	1.0999	0.4810	6.7892	3.3550	46.5472	9.4838	4.1475
2020-09-18	0.7851	0.5657	5.5878	1.3431	0.6273	5.2291	3.7680	37.2188	8.9458	4.1781
2020-09-19	0.3912	0.3221	4.8608	0.8168	0.4372	3.6183	2.9797	44.9623	7.5558	4.0439

628 rows x 10 columns

네이버 트랜드 데이터

네이버 트랜드 데이터와 결합된 실적 데이터

NS홈쇼핑 특성 생성하기 Feature Generation

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 평일 / 휴일

- EDA에서 주말(토,일)에 상품 판매가 높았음
- 휴일이 있는 특정 주간에 판매량이 높았음을 이용하여 피처 생성
- 휴일에 따른 상품 판매차이를 고려

남성 / 여성

- 같은 상품(주로 의류)일지라도, 남성/여성에 따라 상품의 판매량이 다른 것을 확인
- 성별에 따른 상품 판매차이를 고려

2019-01-01 06:00:00	20.0000	100346	201072	테이트	남성	셀린니트3종	의류	39900	2099000.0000
2019-01-01 06:00:00	nan	100346	201079	테이트	여성	셀린니트3종	의류	39900	4371000.0000
2019-01-01 06:20:00	20.0000	100346	201072	테이트	남성	셀린니트3종	의류	39900	3262000.0000
2019-01-01 06:20:00	nan	100346	201079	테이트	여성	셀린니트3종	의류	39900	6955000.0000

NS홈쇼핑 특성 생성하기 Feature Generation

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 무이자 / 일시불

- 가전과 같이 판매가격이 높은 상품들은 구입 방법으로 무이자, 일시불 선택가능
- 일시불이 무이자보다 가격이 저렴

• 상품별 방영 횟수

- 주력 상품의 경우, 1회성이 아닌 여러 번 방영을 통해 수익을 극대화 가능
- 판매횟수와 취급액의 관계를 확인 가능

2019-06- 01 09:30:00	30.0	100683	202032	무이자 <mark>매직</mark> 쉐프 10리터 듀얼쿡 에어 프라이어	kitchen	164000	55647000.0
2019-06- 01 09:30:00	NaN	100683	202035	일시불 매직 쉐프 10리터 듀얼쿡 에어 프라이어	kitchen	154000	71581000.0

무이자 / 일시불 예시

+101 010 21 101 1121		
한일 대용량 스텐 분쇄믹서기		401
안동간고등어 20팩	318	
무이자 LG전자 매직스페이스 냉장고		308
일시불 LG전자 매직스페이스 냉장고		308
무이자 LG 울트라HD TV 65UK6800HNC	295	
일시불 LG 울트라HD TV 65UK6800HNC	295	
일시불 LG 울트라HD TV 55UK6800HNC	277	
무이자 LG 울트라HD TV 55UK6800HNC	277	
무이자 LG 통돌이 세탁기	27	'5
일시불 LG 통돌이 세탁기	27	'5
AAB의 소곱창전골 800g x 8팩	252	
무이자 LG 울트라HD TV 70UK7400KNA	247	
일시불 LG 울트라HD TV 70UK7400KNA	247	
에코라믹 통주물 스톤 냄비세트		231
일시불 쿠쿠전기밥솥 10인용 (QS)		191
무이자 쿠쿠전기밥솥 6인용(QS)		191
무이자 쿠쿠전기밥솥 10인용(CRP-QS107FG/F	3)	191
일시불 쿠쿠전기밥솥 6인용(QS)		191
(쿠)무이자 쿠첸 압력밥솥 6인용 (A1)		177
(쿠)일시불 쿠첸 압력밥솥 6인용 (A1)		177
사교비 바여 취소 에 다		
상품별 방영 횟수 예시 '		

NS홈쇼핑 특성 생성하기 Feature Generation

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 방송 재핑타임 Zapping Time

- TV 인기 프로그램이 끝난 뒤 시청자들이 리모컨을 들고 채널을 돌리는 짧은 순간
- MBC, JTBC의 사이에 있으므로, 해당 채널들의 주요 방영표를 참고하여 이들을 재핑타임 확인가능

• 방송 골든타임 Golden Time

- 시청취율이 높아서 광고비가 가장 비싼 방송 시간대
- 평일은 오후 8시 ~ 밤 12시 사이, 토요일은 오후 7시 ~ 오후 11시 30분 사이, 일요일은 오후 6시 ~ 오후 11시 30분 사이가 황금시간대

NS홈쇼핑 특성 선택하기 Feature Selection

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능평가

• 생성된 피처들 사이의 상관계수

취급액은 앞서 자연어 처리된 피처와 상대적으로 상관계수가 높은 것을 확인

NS홈쇼핑 특성 선택하기 Feature Selection

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 최종 선택된 피처들

선택된 전체 피처들

학습, 검증 및 평가 데이터 분리

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가 ● 교차 검증 Cross Validation

• 실적 데이터가 충분하지 않으므로 교차검증 진행

• 취급액 데이터 스케일링 처리

• 최소 금액 단위가 100만원이므로 학습 시 모든 취급액을 100만원으로 나눔

data['train']['취급액'] / SCALED_UNIT shuffle=True test_size=TEST_SIZE, random_state=RANDOM_STATE) executed in 30ms, finished 21:37:45 2020-09-27

SCALED_UNIT = 10000000

X_train, X_valid, y_train, y_valid = train_test_split(data['train'].drop('취급맥', axis=1),

• 학습 시 로그 변환

2019년 실적 데이터

머신러닝 모델 Machine Learning Model

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 머신러닝 모델을 선택해본 이유

- 주어진 데이터가 선형적인 관계를 가지고 있다고 가정
- 결과에 대한 모델의 설명가능성(XAI)을 위해서

• 사이킷런에서 제공하는 머신러닝 11개의 모델

 LinearRegression, DecisionTreeRegressor, RandomForestRegressor, XGBRegressor, LGBMRegressor, KNeighborsRegressor, SVR, AdaBoostRegressor, GradientBoostingRegressor, VotingRegressor, BaggingRegressor

LightGBM, Light Gradient Boosting Machine

LightGBM is a gradient boosting framework that uses tree based learning algorithms

머신러닝 모델 Machine Learning Model

ml_models['LinearRegression'] = LinearRegression()

데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6

```
• GridSearhCV를 통해서 모델의 하이퍼파라미터 튜닝 결과
```

```
ml_models['SVR'] = SVR(kernel='rbf',
                                                                                                        degree=3.
ml_models['DecisionTreeRegressor'] = DecisionTreeRegressor(max_depth=20,
                                                                                                        gamma='scale'.
                                                        random_state=RANDOM_STATE)
                                                                                                        coef0=0.0.
                                                                                                        tol = 0.001.
ml_models['RandomForestRegressor'] = RandomForestRegressor(n_estimators=1000,
                                                                                                        C=1.0.
                                                        max depth=20.
                                                        random state=RANDOM STATE.
                                                                                                        epsilon=0.1.
                                                       n_j obs = -1
                                                                                                        shrinking=True
                                                                                                        cache_size=200.
ml_models['XGBRegressor'] = XGBRegressor(n_estimators=1000,
                                                                                                        verbose=False.
                                       max_depth=20.
                                                                                                        \max_{i} ter = -1.
                                       learning_rate=0.001
                                       random_state=RANDOM_STATE,
                                       n_iobs=-1
                                                                               ml_models['AdaBoostRegressor'] = AdaBoostRegressor(base_estimator=RandomForestRegressor(random_state=RANDOM_STATE,
                                                                                                                                                                                n_jobs=-1),
ml_models['LGBMRegressor'] = LGBMRegressor(n_estimators=1000,
                                                                                                                                       n_estimators=100,
                                         max depth=20.
                                                                                                                                       learning_rate=0.1,
                                         learning_rate=0.001,
                                                                                                                                       loss='linear',
                                        random_state=RANDOM_STATE,
                                                                                                                                       random state=RANDOM STATE)
                                        n_j obs = -1.
                                        boosting_type='gbdt',
                                        num_leaves=31,
                                                                               ml_models['GradientBoostingRegressor'] = GradientBoostingRegressor(loss='ls'.
                                        subsample_for_bin=200000.
                                                                                                                                                         learning rate=0.1.
                                         objective=None.
                                                                                                                                                         n_estimators=100,
                                         class_weight=None.
                                                                                                                                                         subsample=0.1.
                                        min_split_gain=0.0,
                                                                                                                                                         criterion='friedman_mse'.
                                        min_child_weight=0.001,
                                        min_child_samples=20,
                                                                                                                                                         min_samples_split=2,
                                        subsample=1.0,
                                                                                                                                                         min_samples_leaf=1.
                                         subsample_freq=0,
                                                                                                                                                         min_weight_fraction_leaf=0.0,
                                         colsample_bytree=1.0,
                                                                                                                                                         max_depth=3,
                                         reg_alpha=0.0,
                                                                                                                                                         min_impurity_decrease=0.0,
                                        reg_lambda=0.0)
                                                                                                                                                         min_impurity_split=None,
ml_models['KNeighborsRegressor'] = KNeighborsRegressor(n_neighbors=5,
                                                                                                                                                         init=None.
                                                    weights='uniform',
                                                                                                                                                         random_state=None,
                                                    algorithm='auto',
                                                                                                                                                         max_features=None,
                                                    leaf_size=30,
                                                                                                                                                         alpha=0.9.
                                                    p=2,
                                                                                                                                                         verbose=0.
                                                    metric='minkowski',
                                                                                                                                                         max leaf nodes=None.
                                                    metric_params=None,
                                                    n_{iobs=-1,}
                                                                                                                                                         warm start=False.)
```


NS홈쇼핑 딥러닝모델 Deep Learning Model

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 딥러닝을 선택한 이유

- 데이터의 비선형성을 보다 효과적으로 파악
- 다층 완전 연결 신경망 Fully-Connected Layer Network
 - 활성화 함수: Leaky ReLU
- 손실함수 Loss Function
 - 평균 제곱 오차 MSE
- 최적화함수 Optimizer Function
 - Adam [Diederik P et al., 2014]
- 학습률 스케쥴러
 - 2만 에폭마다 0.1배로 감소

예측 데이터

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가 • 2020년 6월 1일 오전 6시부터 1달 매출 실적 예측

방송일자	머더코드	상품명	노출(분)	판매가	분당실적
2020-06-01 6:20	12345678	남성 티셔츠 세트	20	59,800	
2020-06-01 6:40	12345678	남성 티셔츠 세트	20	59,800	
2020-06-01 7:00	12345678	남성 티셔츠 세트	20	59,800	
2020-06-01 7:20	23456789	여성 란쥬쉐이퍼&팬티	20	69,900	
2020-06-01 7:40	23456789	여성 란쥬쉐이퍼&팬티	20	69,900	
2020-06-01 8:00	23456789	여성 란쥬쉐이퍼&팬티	20	69,900	
2020-06-01 8:20	34567890	여성 모자 3종	10	29,900	
2020-06-01 8:30	34567890	여성 모자 3종	10	29,900	
2020-06-01 8:40	34567890	여성 모자 3종	10	29,900	
2020-06-01 8:50	34567890	여성 모자 3종	10	29,900	

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

- 평균 절대 비율 오차 (MAPE, Mean Absolute Percentage Error)
 - MAE나 MSE와 달리 크기 의존적 에러의 단점을 커버하기 위한 평가지표

$$MAPE = \frac{100\%}{n} \sum \left| \frac{A_t - F_t}{A_t} \right|$$

 $(A_t: 실제값, F_t: 예측값)$

```
In [140]: 🔻
              1 # MAPE
              2 EPS = 1e-3
              3 def MAPE(y_true, y_pred):
                   y_true, y_pred = np.array(y_true), np.array(y_pred)
                     return np.mean(np.abs((y_true - y_pred) / (y_true + EPS)))
          executed in 15ms, finished 15:39:27 2020-09-27
```


Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 머신러닝 모델에 대한 교차검증 결과

- AdaBoostRegressor, Random ForestRegressor 순서로 평균 MAPE값이 낮은 것을 확인
- DecisionTreeRegressor는 상당히 Overfitting 된 것을 알 수 있음

		•
[1]	LinearRegression LinearRegression LinearRegression	의 평균 Train MAPE 값: 0.7318039926 [0.73545158 0.73393485 0.72745791 0.73131755 0.73085807] 의 Valid MAPE 값: 0.7331396711 모델> 저장 완료
[2]	DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor	의 평균 Train MAPE 값: 0.8301266088 [0.75949131 0.83254713 1.00532472 0.77844082 0.77482906] 의 Valid MAPE 값: 0.8385661175 모델> 저장 완료
[3]	RandomForestRegressor RandomForestRegressor RandomForestRegressor	의 평균 Train MAPE 값: 0.8105587503 [0.8142241 0.81715455 0.80423051 0.81200006 0.80518452] 의 Valid MAPE 값: 0.7948033064 모델 → 저장 완료
[4]	XGBRegressor XGBRegressor XGBRegressor	의 평균 Train MAPE 값: 0.9275779062 [0.92648443 0.88516923 0.96054545 0.93801558 0.92767484] 의 Valid MAPE 값: 0.9409796319 모델 → 저장 완료
[5]	LGBMRegressor LGBMRegressor LGBMRegressor	의 평균 Train MAPE 값: 0.7265386846 [0.72961279 0.73084394 0.72318444 0.72486103 0.72419121] 의 Valid MAPE 값: 0.7351041871 모델> 저장 완료
[6]	KNeighborsRegressor KNeighborsRegressor KNeighborsRegressor	의 평균 Train MAPE 값: 0.8361924741 [0.78715705 0.87533056 0.80119159 0.86129674 0.85598643] 의 Valid MAPE 값: 0.8776096271 모델> 저장 완료
[7]	SVR SVR SVR	의 평균 Train MAPE 값: 3.7231471367 [3.75349046 3.78558863 3.63969259 3.71144483 3.72551917] 의 Valid MAPE 값: 3.6706475529 모델> 저장 완료
[8]	AdaBoostRegressor AdaBoostRegressor AdaBoostRegressor	의 평균 Train MAPE 값: 0.7499168790 [0.74942683 0.7574487 0.74558176 0.75347935 0.74364775] 의 Valid MAPE 값: 0.7499369223 모델> 저장 완료
[9]	GradientBoostingRegressor GradientBoostingRegressor GradientBoostingRegressor	의 평균 Train MAPE 값: 0.9066890942 [0.88868854 0.96839212 0.9080427 0.90510936 0.86321275] 의 Valid MAPE 값: 0.9406838051 모델> 저장 완료

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

● 트리 계열의 모델들의 피처 중요도

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

● 트리 계열의 모델들의 피처 중요도

• 판매단가와 시간과 상품명에 대한 임베딩 벡터를 중요하다고 판단

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

• 딥러닝 모델 성능 결과

• Epoch: 100,000

• MAPE: 0.51

Part 1 데이터 설명

Part 2 탐색적 데이터 분석

Part 3 데이터 전처리

Part 4 특성 공학

Part 5 모델링

Part 6 성능 평가

● 딥러닝 모델 성능 결과

방송일시	노출(분)	마더코드	상품코드	상품명	상품군	판매단가	취급액
2020-06-01 6:20	20	100650	201971	잭필드 남성 반팔셔츠 4종	의류	59800	35764806
2020-06-01 6:40	20	100650	201971	잭필드 남성 반팔셔츠 4종	의류	59800	42647963
2020-06-01 7:00	20	100650	201971	잭필드 남성 반팔셔츠 4종	의류	59800	25745363
2020-06-01 7:20	20	100445	202278	쿠미투니카 쿨 레이시 란쥬쉐이퍼&팬티	속옷	69900	9748303
2020-06-01 7:40	20	100445	202278	쿠미투니카 쿨 레이시 란쥬쉐이퍼&팬티	속옷	69900	12330183
2020-06-01 8:00	20	100445	202278	쿠미투니카 쿨 레이시 란쥬쉐이퍼&팬티	속옷	69900	5540869
2020-06-01 8:20	20	100381	201247	바비리스 퍼펙트 볼륨스타일러	이미용	59000	5527927
2020-06-01 8:40	20	100381	201247	바비리스 퍼펙트 볼륨스타일러	이미용	59000	9026042
2020-06-01 9:00	20	100381	201247	바비리스 퍼펙트 볼륨스타일러	이미용	59000	3186639
2020-06-01 9:20	20	100638	201956	램프쿡 자동회전냄비	주방	109000	31417572
2020-06-01 9:40	20	100638	201956	램프쿡 자동회전냄비	주방	109000	44901996
2020-06-01 10:00	20	100638	201956	램프쿡 자동회전냄비	주방	109000	17039123
2020-06-01 10:20	20	100348	201091	벨레즈온 심리스 원피스 4종 패키지	속옷	59900	26778431
2020-06-01 10:40	20	100348	201091	벨레즈온 심리스 원피스 4종 패키지	속옷	59900	41225848
2020-06-01 11:00	20	100348	201091	벨레즈온 심리스 원피스 4종 패키지	속옷	59900	17432840
2020-06-01 11:20	20	100012	200016	AAC 삼채포기김치 10kg	농수축	40900	33431859
2020-06-01 11:40	20	100012	200016	AAC 삼채포기김치 10kg	농수축	40900	46906843
2020-06-01 12:00	20	100012	200016	AAC 삼채포기김치 10kg	농수축	40900	24293520
2020-06-01 12:20	20	100080	200217	아키 라이크라 릴렉스 보정브라 패키지(뉴아키28차)	속옷	99900	30771537
2020-06-01 12:40	20	100080	200217	아키 라이크라 릴렉스 보정브라 패키지(뉴아키28차)	속옷	99900	39104044
2020-06-01 13:00	20	100080	200217	아키 라이크라 릴렉스 보정브라 패키지(뉴아키28차)	속옷	99900	17847631
2020-06-01 13:20	20	100570	201673	KT휴대폰_삼성갤럭시 노트10	무형	0	0
2020-06-01 13:20	0	100570	201671	(특)KT휴대폰_삼성갤럭시 A31	무형	0	0
2020-06-01 13:40	20	100570	201673	KT휴대폰_삼성갤럭시 노트10	무형	0	0
2020-06-01 13:40	0	100570		(특)KT휴대폰_삼성갤럭시 A31	무형	0	0
2020-06-01 14:00	20	100570	201673	KT휴대폰_삼성갤럭시 노트10	무형	0	0
2020-06-01 14:00	0	100570	201671	(특)KT휴대폰_삼성갤럭시 A31	무형	0	0
2020-06-01 14:20	60	100554	201641	DB손해보험 참좋은운전자보험(1912)	무형	0	0
2020-06-01 15:20	20	100362	201150	에이유플러스 슈퍼선스틱 1004(최저가)	이미용	39900	23456266

● 모델 성능 Performance

- 머신러닝 모델보다 딥러닝 모델의 성능이 더 우수
- 머신러닝 모델 중에서도 랜덤 포레스트 모델이 가장 우수
- 딥러닝 모델에서는 활성화 함수를 Leaky ReLU로 설정하고 레이어를 깊게 쌓지 않았을 때 성능이 더 좋았음

• 한계점 Limitation

- 주어진 데이터의 피처가 풍부했다면 보다 정확한 취급액 예측이 가능
 - 쇼호스트 정보, 제작 PD명, 해당 상품에 대한 소비자 정보 등
- 소비자 물가 지수 Custom Price Index
 - 포스트 코로나 시대의 시장 상황 반영한 취급액 예측

- 상품군별 프라임 시간 활용
 - 상품군 별 최적화 방법
 - 과거 데이터에서 일별, 시간별 매출이 최대인 상품군으로 사전을 생성
 - 최대 3순위까지의 상품군을 선정 후 시간표 생성
 - Ex) prime_dict = {…, '21': [가전, 의류, 주방], '22': [가전, 속옷, 의류],···}

• 한계점

• 상품군 내 상품별 최적화는 힘듦

- 상품 관련 피처(외부 데이터 포함)만으로 최적 방송 시간표 생성
- 상품 별 최대 수익을 고려한 최대 수익 편성표 생성

- 앞서 만든 *수익 예측 모델* 활용하여 최대 수익 편성표 생성
 - 실제 취급액 ⇔ 실제 취급액 분포

• 실제 취급액 분포

각 상품 별 프라임 타임 분포를 따르는 생성 모델 만들기

* 방송편성은 내부사정에 따라 변경될 수 있습니다

시간	09.24 (목)	09.25 (금)	09.26 (토)	Today 09.27 (일)	
02:00	02:00~03:50 (110) [목우촌] 목우촌 흑마늘 훈제오리 20팩 상품보기	02:00~03:30 (90) [이종임] 이종임 부채살 양념구이 300gX12팩 상품보기	02:00~03:30 (90) [로지나] 미녀의 석류콜라겐 8박 스/200포 상품보기	02:00~03:30 (90) [일동후디스] 일동후디스 하이뮨 프로 틴 밸런스 12통+전용보 방송알리미	(일) 스/*
03:00					03: [정! 정는 트(
04:00	04:10~06:00 (110) [꽃같비] LA 꽃 같비 원육 4kg(1kgX4팩) 상품보기	04:10~06:00 (110) [빚은] 빚은 우리썰로빚은 송편 3종(흰송편+쑥송편+호 상품보기	04:10~06:00 (110) (일)관절말팔 6병 상품보기	04:10~06:00 (110) [닥터포유] (4만원할인)(일)닥터포유 마이크로바이옴 포스트 상품보기	
06:00	06:00~07:25 (85) [씨엘팜]	06:00~06:35 (35) [동강마루]	06:00~07:20 (80) [이경제]	06:00~06:45 (45)	06:

최대 수익 반영 시간표 생성

- 실제 취급액 분포와 추천 시간에 대한 취급액 분포가 같게 학습
 - 쿨백-라이블러 발산(Kullback-Leibler divergence)
 - $KL(p||g) = -\sum p_i \log(p_i) (-\sum p_i \log q_i) = -\sum p_i \log(\frac{q_i}{p_i})$

NS홈쇼핑 방송 편성 최적화 모델

- 쿨백-라이블러 발산(Kullback Leibler divergence)
 - 두 확률분포의 차이를 계산하는 데에 사용하는 함수
 - 확률공간 Ω 와 이산확률변수 $X=x_1,x_2...x_n$, 그리고 확률 P,Q가 주어졌을, 두 확률 분포의 차이를 계산

$$KL(p||g) = -(p_1 \log(q_1) + p_2 \log(q_2))$$

= $-(0.5 \log(0.8) + 0.5\log(0.2) = -(-0.916290)$

• *시간 생성 모델* 과 *분포 확인 모델* 로 구성

- 시간 생성 모델
 - 입력값은 상품관련 피처이며 출력은 생성 판매 시간
 - 앞서 만든 수익 예상 모델을 사용하기 위해서는 시간 생성 모델 필수
- 분포 확인 모델
 - 실제 취급액과 예측 취급액 사이에 분포를 확인하는 모델

https://github.com/KUAI-Bigcontest/debug

- https://www.bigcontest.or.kr/
- https://www.mk.co.kr/news/business/view/2018/09/576315/
- https://www.etoday.co.kr/news/view/1882077
- http://www.citydaily.kr/news/articleView.html?idxno=831
- http://plus.hankyung.com/apps/newsinside.view?aid=202003096861A
- https://ko.wikipedia.org/wiki/%ED%99%A9%EA%B8%88%EC%8B%9C%EA%B0%84%EB%8 C%80

