Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

PATIENT			
Name: 吳拯			Patient ID: 45363722
Date of Birth: Jun 27, 1955			Gender: Male
Diagnosis: Hepatocellular carcinom	a		
ORDERING PHYSICIAN			
Name: 陳三奇醫師			Tel: 886-228712121
Facility: 臺北榮總			
Address: 臺北市北投區石牌路二段 201 號			
SPECIMEN			
Specimen ID: S11020877H Collection site: Liver			Type: FFPE tissue
Date received: Jun 08, 2022 Lab ID: AA-22-03027			D/ID: NA

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other	
Alterations/Biomarkers	markers Sensitive Resistant		Cancer Types	
Not detected				

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
ARID1A M1564*	Dasatinib, Niraparib, Olaparib,	
ARIDTA WT504"	Rucaparib, Talazoparib	-
CDKN2A D74Y	Abemaciclib, Palbociclib, Ribociclib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027 ONC

Report No.: AA-22-03027_ONO Date Reported: Jun 21, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
ARID1A	M1564*	77.3%
CDKN2A	D74Y	50.7%
CTNNB1	T41I	32.9%
NFE2L2	R34G	26.0%

- Copy Number Alterations

Chromosome	Chromosome Gene		Copy Number
Chr11	ATM, CHEK1, MRE11	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	1.9 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 65% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3B		
ARID1A M1564*	Niraparib, Olaparib	sensitive
CDKN2A D74Y	Abemaciclib, Palbociclib, Ribociclib	sensitive
Level 4		
ARID1A M1564*	Dasatinib, Rucaparib, Talazoparib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description	
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication	
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication	
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type	
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)	
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
ARID1A	Platinum-based	Less sensitive	Clinical	Ovarian cancer
M1564*	regimens	Less sensitive	Cillical	Ovarian Cancer

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 29

Project ID: C22-M001-01709

Report No.: AA-22-03027 ONC Date Reported: Jun 21, 2022

VARIANT INTERPRETATION

ARID1A M1564*

Biological Impact

The AT-rich interactive domain 1A (ARID1A) gene encodes the BAF250A protein, a component of the SWI/SNF chromatin remodeling complex that plays a role in various cellular functions, including DNA repair, DNA synthesis, and transcription^{[1][2]}. Haploinsufficiency of ARID1A is associated with tumor formation in some cancers^[3]. Inactivation of ARID1A is commonly observed in ovarian, endometrial, uterine, and, gastric cancers [4][5][6][7][8].

M1564* mutation results in a premature truncation of the ARID1A protein at amino acid 1564 (UniProtKB). This mutation is predicted to lead to a loss of ARID1A function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

ARID1A is the most frequently mutated genes in ovarian clear cell carcinoma and several synthetic lethality hypothesisbased therapeutic targets in ARID1A mutated cancer are in development. For examples, 1) EZH2 inhibitor[9][10]; 2) AKTinhibitors MK-2206 and perifosine, as well as PI3K-inhibitor buparlisib[11]; 3) multiple kinase inhibitor, dasatinib[12]. Some preclinical evidences suggested that reduced ARID1A expression confers resistance to several HER2/PI3K/mTOR signaling cascade inhibitors such as AZD8055 and trastuzumab, through activation of annexin A1 expression^[13]. Loss or decreased expression of ARID1A has been reported to associate with resistance to platinum-based chemotherapies, shorter overall survival and lower complete response rate in ovarian cancer patients[14][15].

Low expression of ARID1A is a significant and independent prognostic factor for poor disease-free and overall survival in breast cancer patients^{[16][17]}. Besides, loss of ARID1A expression was more frequently seen in mismatch repair (MMR)-deficient colorectal cancers, predominantly in tumor with MLH1 promoter hypermethylation[18]. Positive ARID1A expression could independently predict worse overall survival in stage IV CRC patients compared with negative ARID1A expression[19]. ARID1A mutation has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831), and niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), or any malignancy, except prostate cancer (NCT03207347). The preclinical study discovered that ARID1A deficiency sensitized some tumors to PARP inhibitor drugs, such as olaparib, rucaparib, talazoparib, and veliparib, which block DNA damage repair pathways^[20].

CDKN2A D74Y

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53[21][22][23]. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions[24]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation [25][26].

The D74Y mutation is located at the ankyrin repeat domain of the CDKN2A protein (UniProtKB). This mutation has been shown to confer a loss-of-function to the CDKN2A protein as demonstrated by loss of CDK4 binding[27].

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors[28][29]. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments[30][31][32]. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients[33][34][35]. However, CDKN2A loss or mutation has

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 5 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[29][36][37]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[31]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[38]. A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[39].

CTNNB1 T411

Biological Impact

The CTNNB1 gene encodes for the β -catenin, a transcriptional activator involves in the canonical Wnt signaling pathway^{[40][41]}. β -catenin also regulates cyclin D1 and MYC expression, which play important roles in cancer development^{[42][43]}. Mutations of CTNNB1 are common in a wide range of solid tumors, including liver, endometrial, colorectal, and lung cancer^{[44][45][46][47][48][49]}. CTNNB1 mutations are more frequently found in hepatocellular carcinomas (HCCs) patients without hepatitis B virus (HBV) infection, which is mostly developed on the well-differentiated, noncirrhotic liver, and displayed cholestasis^{[50][51][52][53]}. Of note, the majority of CTNNB1 alterations identified in cancers are missense mutations and all of which localize in the hotspot exon 3 at S33, S37, S45, T41, D32, and G34^{[54][55]}.

CTNNB1 T41I is a mutation that lies at a GSK3-beta phosphorylation site of the beta-catenin protein (UniProtKB), abrogates the phosphorylation of the beta-catenin protein and in consequence its degradation and activation of downstream Wnt signaling pathway^[56]. T41I has been identified in patients with endometrial cancer, colorectal cancer, craniopharyngioma, and hepatocellular carcinomas^{[57][58][59]}.

Therapeutic and prognostic relevance

In a retrospective study, patients with desmoid fibromatosis harboring CTNNB1 activating mutations such as S45F or T41A demonstrated a greater progression arrest rate (PAR) at 6 months compared to patients with wild-type CTNNB1 when treated with imatinib, a multi-target inhibitor of c-KIT, PDGFR, and BCR-ABL^[60].

Results from a Phase II study of temsirolimus-containing regiments in advanced endometrial cancer (EC) showed that CTNNB1 exon 3 mutations were associated with longer PFS on temsirolimus^[61]. Besides, patients with recurrent endometrial carcinoma harboring CTNNB1 mutations on exon 3 also responded well to everolimus and letrozole, based on the results of a Phase II study^[62].

NFE2L2 R34G

Biological Impact

The NFE2L2 (Nuclear factor, erythroid 2-related factor 2), also known as NRF2, encodes a transcription factor which is a member of a small family of basic leucine zipper (bZIP) proteins. NRF2 plays an important role in protecting cells from exogenous and endogenous oxidative stresses by transactivating the expressions of antioxidant proteins^[63]. NRF2 also exerts chemoprotective roles against certain chemical carcinogens^[64]. However, chronic activation of NRF2 was shown to confer chemo- and radio-resistance in cancer cells^[65]. Tumor-associated NRF2 activation can result from inactivation of KEAP1 through mutation, loss of heterozygosity or epigenetic silencing^[66], as well as direct mutations of

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **6** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

NFE2L2 in the KEAP1-binding domains^{[67][68]}.

R34 locates within the NEH2 domain and is the most frequently mutated residue in the NRF2 protein. Functional assay has revealed the R34 mutations prevents KEAP1-mediated NRF2 degradation and drives constitutive NRF2 activation. Therefore, R34G mutation was predicted to be an oncogenic mutation^[69].

Therapeutic and prognostic relevance

Both clinical and preclinical studies showed that aberrations in the KEAP1-NRF2 axis could confer chemo-resistance in multiple cancer types, including 5-fluorouracil in esophageal^[70], gallbladder^[71], and pancreatic cancer^[72]cell lines; gemcitabine resistance in pancreatic cancer cell line^[72]; etoposide, cisplatin or carboplatin in non-small cell lung cancer (NSCLC)^{[73][74][75]}, endometrial^[76], and pancreatic cancer cell lines^[72]; doxorubicin resistance in NSCLC^[77], and ovarian cancer cell lines^[78]; paclitaxel resistance in endometrial cancer cell line^[76]. Results of a retrospective study of Japanese esophageal squamous cell carcinoma (ESCC) (n=46) suggested that expression of NRF2 is correlated with unfavorable response to chemoradiation therapy consisting of cisplatin and 5-fluorouracil^[79].

ATM Heterozygous deletion

Biological Impact

The ataxia-telangiectasia mutated protein kinase (ATM) gene encodes a PI3K-related serine/threonine protein kinase involved in genomic integrity maintenance and plays central roles in DNA double-strand break (DSB) repair, which can be induced by ionizing radiation, chemotherapy drugs, or oxidative stress^[80]. ATM is a well-characterized tumor suppressor gene, hereditary mutations and haploinsufficiency of ATM result in markedly increased susceptibility to a variety of cancer types^{[81][82][83][84][85]}. Results from a case-cohort study of colorectal cancer and cancer-free control individuals suggested that germline pathogenic mutations in ATM and PALB2 should be added to established CRC risk genes as part of standard tumor genetic testing panels^[86]. ATM is among the most commonly aberrant genes in sporadic cancers. Somatic ATM aberrations are frequently observed in hematologic malignancies^{[87][88][89][90]} and a board range of tumors such as prostate cancer^[91], head and neck squamous cell carcinoma (HNSCC)^[92], pancreatic cancer^[93], lung adenocarcinoma^[94], breast cancer^[95], and ovarian cancer^[82].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[96].

In addition, ATM has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer^[97]or prostate cancer^[98], niraparib efficacy in pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in advanced or metastatic cancer (NCT02286687), HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

Besides, another randomized, double-blind Phase II trial in patients with metastatic gastric cancer has shown that addition of olaparib to paclitaxel significantly increased the overall survival in both the overall population and patients with low or undetectable ATM protein expression^[99]. Also, a prospective study in muscle-invasive bladder cancer patients suggested that genomic alternations in the DNA repair genes ATMs, RB1 and FANCC could be recognized as biomarkers predictive of response to cisplatin-based neoadjuvant chemotherapy^[100]. However, loss-of-function of the ATM-CHEK2-TP53 cascade is associated with resistance to anthracycline/mitomycin-containing chemotherapy in patients with breast cancer^[101].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

A retrospective study of VICTOR trial demonstrated that ATM loss was associated with worse prognosis in colorectal cancer^[102].

CHEK1 Heterozygous deletion

Biological Impact

The checkpoint kinase 1 (CHEK1 or CHK1) gene encodes a protein kinase involved in transducing DNA damage signals and is required for both the intra-S phase and G2/M checkpoints^[103]. CHEK1 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[104][105]}. Despite acting as a tumor suppressor, homozygous loss-of-function mutations in CHEK1 have not been identified in tumors^[106], and CHEK1 mutations are extremely rare^[103]. Overexpression of CHEK1 has been observed in a variety of tumors, including liver cancer^[107], breast cancer^[108], colorectal cancer^[109], non-small cell lung (NSCLC) cancer^[110], and nasopharyngeal cancer^[111].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[96].

In addition, CHEK1 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in advanced solid tumors (NCT03297606; CAPTUR trial), rucaparib efficacy in ovarian cancer^[97], prostate cancer (NCT03533946), niraparib efficacy in pancreatic cancer (NCT03553004), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in lung cancer (NCT03377556), respectively.

Selective inhibitors for CHEK1 and CHEK2 alone or in combination with other agents are currently being investigated in clinical trials^[112].

MRE11 Heterozygous deletion

Biological Impact

The MRE11 gene encodes a protein that forms the MRE11-RAD50-NBS (MRN) complex involved in sensing and repairing DNA double-strand breaks via homologous recombination and non-homologous end joining^{[113][114]}. MRE11 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[113]. The carrier of MRE11 mutation may confer elevated risks for numerous types of cancers including breast cancer, ovarian cancer, endometrial cancer, colorectal cancer, and lymphoid cancer^{[113][114][115][116][117][118][119]}.

Therapeutic and prognostic relevance

In a Phase II clinical trial (n=50), one castration-resistant prostate cancer patient harboring an MRE11 inactivating mutation responded to olaparib^[120]. Preclinically, loss of MRE11 also predicted sensitivity to PARP inhibitor talazoparib and ABT-888 in endometrial cancer^[121] and microsatellite unstable colorectal cancer (CRC) cell lines^[122].

CRC patients with tumor deficient of MRE11 showed initially reduced disease-free survival (DFS) and overall survival (OS) but improved long-term DFS and OS compared with patients with an intact MRE11^[123].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **8** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)		
monarchE	HR-positive, HER2-negative		
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36		
	months(%): 86.1 vs. 79.0]		
MONARCH 3 ^[124]	Breast cancer (Approved on 2018/02/26)		
NCT02246621	HR-positive, HER2-negative		
110102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.8]		
MONARCH 2 ^[37]	Breast cancer (Approved on 2017/09/28)		
NCT02107703	HR-positive, HER2-negative		
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]		
MONARCH 1 ^[125]	Breast cancer (Approved on 2017/09/28)		
NCT02102490	HR-positive, HER2-negative		
140102102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]		

Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

- FDA Approval Summary of Dasatinib (SPRYCEL)

DASISION ^[126]	Chronic myeloid leukemia (Approved on 2010/10/28)
NCT00481247	
NG100461247	Dasatinib vs. Imatinib [ORR(%): 76.8 vs. 66.2]
[127]	Chronic myeloid leukemia (Approved on 2007/11/08)
NCT00123474	-
NC100123474	Dasatinib [ORR(%): 63.0]
[128]	Acute lymphocytic leukemia (Approved on 2006/06/28)
NCT00123487	-
140100123407	Dasatinib [ORR(%): 38.0]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approve	ed on 2020/04/29)
PRIMA		
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 9 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)
QUADRA ^[129]	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation,
NCT02354586	and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
NOVA ^[130]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
	-
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

01 14	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA	gBRCA					
NCT02032823	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
	Prostate cancer (Approved on 2020/05/19)					
PROfound ^[96] NCT02987543	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm					
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
	Ovarian cancer (Approved on 2020/05/08)					
PAOLA-1 ^[131] NCT02477644	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation and/or genomic instability)					
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
POLO ^[132]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)					
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
SOLO-1 ^[133]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)					
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
OlympiAD ^[134]	Breast cancer (Approved on 2018/02/06)					
NCT02000622	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative					
NC102000022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
SOLO-2/ENGOT-Ov21 ^[135]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
NCT01874353	gBRCA+					
110101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
Study19 ^[136]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
NCT00753545	-					
INC 1 007 00040	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]					
Study 42 ^[137]	Ovarian cancer (Approved on 2014/12/19)					
NCT01078662	Germline BRCA mutation (deleterious/suspected deleterious)					
140 10 107 0002	Olaparib [ORR(%): 34.0, DOR(M): 7.9]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027 ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[138]	Breast cancer (Approved on 2017/03/31)
NCT01740427	ER+, HER2-
NC101/4042/	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
DAL ON A 0[139]	Breast cancer (Approved on 2016/02/19)
PALOMA-3 ^[139]	ER+, HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONAL FEGA 2[36]	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[36] NCT01958021	HR+, HER2-
	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONS	Prostate cancer (Approved on 2020/05/15)
TRITON2	gBRCA+, sBRCA
NCT02952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [97]	AII HRD tBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]
ARIEL2 [140]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[141]	Breast cancer (Approved on 2018/10/16)
	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **13** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027 ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ARID1A	M1564*	18	c.4689del	NM_006015	COSM132998	77.3%	415
CDKN2A	D74Y	2	c.220G>T	NM_000077	COSM12509	50.7%	296
CTNNB1	T41I	3	c.122C>T	NM_001904	COSM5676	32.9%	956
NFE2L2	R34G	2	c.100C>G	NM_006164	COSM132847	26.0%	411

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 14 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Accession Change Number		COSMIC ID	Allele Frequency	Coverage	
ADGRA2	Splice region	-	c.1833+7G>A	NM_032777	-	60.1%	213	
ADGRA2	L474W	10	c.1421T>G	NM_032777	-	51.9%	618	
ERCC5	P1137A	15	c.3409C>G	NM_000123	-	50.8%	419	
GRIN2A	1876T	14	c.2627T>C	NM_000833	-	47.4%	1028	
HSP90AB1	P588A	11	c.1762C>G	NM_001271969	-	55.5%	990	
KDR	D814N	17	c.2440G>A	NM_002253	-	50.9%	1057	
KDR	T98N	3	c.293C>A	NM_002253	-	35.0%	512	
LCK	R480H	13	c.1439G>A	NM_005356	-	82.9%	1470	
NOTCH3	Splice region	-	c.2567-4G>A	NM_000435	-	51.9%	901	
POLE	A992T	25	c.2974G>A	NM_006231	COSM5881468	49.1%	1153	
PRKN	R366W	10	c.1096C>T	NM_004562	-	47.6%	1092	
USH2A	S5032N	70	c.15095G>A	NM_206933	-	37.6%	769	

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **15** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027 ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Jul 2021 Facility retrieved: 臺北榮總

H&E-stained section No.: S11020877H

Collection site: Liver

Examined by: Dr. Yeh-Han Wang

- The percentage of viable tumor cells in total cells in the whole slide (%): 30% 1.
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 90%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole 4. slide (%): 0%
- Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

Mean Depth: 771x

Target Base Coverage at 100x: 93%

RNA test

Average unique RNA Start Sites per control GSP2: 85

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660

AG4-QP4001-02(06) page 16 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027 ONC

Date Reported: Jun 21, 2022

ACTOnco® + Report

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 25, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫藥資訊研究員 楊杭哲 博士 Hang-Che Yang Ph.D. hay

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號 Jehn-

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-503

AG4-QP4001-02(06) page 18 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
ЕРНА2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	КІТ	KMT2A	KMT2C	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
<i>NOTCH4</i>	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
ATM	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
CHEK1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
MRE11	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

1: Abemaciclib, Ribociclib, Palbociclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **20** of **29**

吳採

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **21** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

REFERENCE

- PMID: 10757798; 2000, Mol Cell Biol;20(9):3137-46
 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
- PMID: 25387058; 2015, Annu Rev Pathol;10():145-71 SWI/SNF chromatin remodeling and human malignancies.
- PMID: 23208470; 2013, Cancer Discov;3(1):35-43
 ARID1A mutations in cancer: another epigenetic tumor suppressor?
- PMID: 20826764; 2010, Science; 330(6001):228-31
 Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.
- PMID: 20942669; 2010, N Engl J Med;363(16):1532-43
 ARID1A mutations in endometriosis-associated ovarian carcinomas.
- PMID: 21590771; 2011, J Pathol;224(3):328-33
 Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas.
- PMID: 21412130; 2011, Am J Surg Pathol;35(5):625-32
 Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma.
- PMID: 22037554; 2011, Nat Genet;43(12):1219-23
 Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.
- PMID: 26125128; 2015, Expert Opin Ther Targets;19(11):1419-22
 Potential therapeutic targets in ARID1A-mutated cancers.
- PMID: 29093822; 2017, Gynecol Oncol Res Pract;4():17
 EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers.
- PMID: 24979463; 2014, Oncotarget;5(14):5295-303
 Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition.
- PMID: 27364904; 2016, Mol Cancer Ther;15(7):1472-84
 Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
- PMID: 27172896; 2016, Clin Cancer Res;22(21):5238-5248
 Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance.
- PMID: 22101352; 2012, Mod Pathol;25(2):282-8
 Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma.
- PMID: 24459582; 2014, J Gynecol Oncol;25(1):58-63
 Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer.
- PMID: 26770240; 2015, J Breast Cancer;18(4):339-46
 Loss of Tumor Suppressor ARID1A Protein Expression Correlates with Poor Prognosis in Patients with Primary Breast Cancer.
- 17. PMID: 21889920; 2012, Cancer Epidemiol;36(3):288-93
 Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance.
- 18. PMID: 25311944; 2014, Hum Pathol;45(12):2430-6 Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
- PMID: 25561809; 2014, World J Gastroenterol;20(48):18404-12
 Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

- PMID: 26069190; 2015, Cancer Discov;5(7):752-67
 ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.
- 21. PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 22. PMID: 8521522; 1995, Cell;83(6):993-1000

 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 23. PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 24. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 27. PMID: 19260062; 2009, Hum Mutat;30(4):564-74
 Functional, structural, and genetic evaluation of 20 CDKN2A germ line mutations identified in melanoma-prone families or patients.
- PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 29. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 30. PMID: 28283584; 2017, Oncologist;22(4):416-421 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 31. PMID: 27217383; 2016, Cancer Discov;6(7):740-53 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 32. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- 33. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 34. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 35. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 37. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884

 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

- 38. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33

 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 39. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- 40. PMID: 22682243; 2012, Cell;149(6):1192-205 Wnt/β-catenin signaling and disease.
- 41. PMID: 22617422; 2012, EMBO J;31(12):2714-36 The many faces and functions of β -catenin.
- PMID: 10201372; 1999, Nature; 398(6726): 422-6
 Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells.
- 43. PMID: 9727977; 1998, Science; 281(5382):1509-12 Identification of c-MYC as a target of the APC pathway.
- PMID: 23788652; 2013, Genome Res;23(9):1422-33
 Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma.
- 45. PMID: 22634756; 2012, Nat Genet;44(7):760-4
 Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators.
- 46. PMID: 23636398; 2013, Nature;497(7447):67-73
 Integrated genomic characterization of endometrial carcinoma
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- 48. PMID: 25079552; 2014, Nature;511(7511):543-50 Comprehensive molecular profiling of lung adenocarcinoma.
- PMID: 22980975; 2012, Cell;150(6):1107-20
 Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.
- PMID: 17187432; 2007, Hepatology;45(1):42-52
 Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.
- PMID: 17487939; 2007, J Pathol;212(3):345-52
 Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations.
- 52. PMID: 19101982; 2009, Hepatology;49(3):821-31
 Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene.
- PMID: 26171210; 2015, Mol Clin Oncol;3(4):936-940
 β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma.
- PMID: 11957146; 2002, Hum Pathol;33(2):206-12
 CTNNB1 mutations and beta-catenin expression in endometrial carcinomas.
- PMID: 11955436; 2002, Cell;108(6):837-47
 Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism.
- PMID: 12799363; 2003, J Biol Chem;278(34):31781-9
 Functional correlates of mutations in beta-catenin exon 3 phosphorylation sites.
- 57. PMID: 10416591; 1999, Cancer Res;59(14):3346-51

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **29**

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway.

- 58. PMID: 24715106; 2014, Acta Neuropathol;127(6):927-9
 BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma.
- PMID: 25536643; 2015, Ann Hepatol;14(1):64-74
 Wnt/beta-catenin signaling pathway in hepatocellular carcinomas cases from Colombia.
- 60. PMID: 26861905; 2016, Ann Surg Oncol;23(6):1924-7
 Correlation of CTNNB1 Mutation Status with Progression Arrest Rate in RECIST Progressive Desmoid-Type Fibromatosis Treated with Imatinib: Translational Research Results from a Phase 2 Study of the German Interdisciplinary Sarcoma Group (GISG-01).
- 61. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8
 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- PMID: 25624430; 2015, J Clin Oncol;33(8):930-6
 Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma.
- PMID: 16968214; 2007, Annu Rev Pharmacol Toxicol;47():89-116
 Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.
- 64. PMID: 11248092; 2001, Proc Natl Acad Sci U S A;98(6):3410-5

 Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice.
- PMID: 24142871; 2013, Genes Dev;27(20):2179-91
 The emerging role of the Nrf2-Keap1 signaling pathway in cancer.
- 66. PMID: 19321346; 2009, Trends Biochem Sci;34(4):176-88 NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer.
- PMID: 18757741; 2008, Proc Natl Acad Sci U S A;105(36):13568-73
 Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
- PMID: 19967722; 2010, J Pathol;220(4):446-51
 Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin.
- PMID: 30150714; 2018, Sci Rep;8(1):12846
 A catalogue of somatic NRF2 gain-of-function mutations in cancer.
- PMID: 21969819; 2011, Neoplasia;13(9):864-73
 NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer.
- PMID: 18692501; 2008, Gastroenterology;135(4):1358-1368, 1368.e1-4
 Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer.
- PMID: 21489257; 2011, Mol Cancer;10():37
 Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy.
- PMID: 17020408; 2006, PLoS Med;3(10):e420
 Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer.
- PMID: 18316592; 2008, Cancer Res;68(5):1303-9
 Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth.
- PMID: 19417020; 2009, Clin Cancer Res;15(10):3423-32
 Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 25 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

- PMID: 20530669; 2010, Cancer Res;70(13):5486-96
 High levels of Nrf2 determine chemoresistance in type II endometrial cancer.
- PMID: 18413364; 2008, Carcinogenesis;29(6):1235-43
 Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2.
- PMID: 19751820; 2009, Free Radic Biol Med;47(11):1619-31
 Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway.
- PMID: 24599410; 2014, Ann Surg Oncol;21(7):2347-52
 Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma.
- PMID: 22079189; 2012, Trends Biochem Sci;37(1):15-22
 The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
- 81. PMID: 1548942; 1992, Leukemia;6 Suppl 1():8-13 Cancer susceptibility in ataxia-telangiectasia.
- PMID: 12810666; 2003, Cancer Res;63(12):3325-33
 Contributions of ATM mutations to familial breast and ovarian cancer.
- PMID: 1961222; 1991, N Engl J Med;325(26):1831-6
 Incidence of cancer in 161 families affected by ataxia-telangiectasia.
- 84. PMID: 28779002; 2017, J Med Genet;54(11):732-741

 Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.
- PMID: 16400190; 2006, Carcinogenesis;27(4):848-55
 Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors.
- PMID: 29478780; 2018, Am J Hum Genet; 102(3):401-414
 Inherited DNA-Repair Defects in Colorectal Cancer.
- PMID: 9488043; 1998, Oncogene;16(6):789-96
 ATM is usually rearranged in T-cell prolymphocytic leukaemia.
- PMID: 11429421; 2001, J Clin Pathol;54(7):512-6
 Ataxia telangiectasia gene mutations in leukaemia and lymphoma.
- 89. PMID: 11756177; 2002, Blood;99(1):238-44

 ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances.
- 90. PMID: 21993670; 2012, Haematologica;97(1):47-55
 ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression.
- 91. PMID: 22981675; 2013, Eur Urol;63(5):920-6
 Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
- 92. PMID: 22410096; 2012, Oral Oncol;48(8):698-702
 Correlation of Ataxia-Telangiectasia-Mutated (ATM) gene loss with outcome in head and neck squamous cell carcinoma.
- PMID: 23103869; 2012, Nature;491(7424):399-405
 Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
- PMID: 18948947; 2008, Nature;455(7216):1069-75
 Somatic mutations affect key pathways in lung adenocarcinoma.
- PMID: 30537493; 2019, Hum Pathol;86():85-92
 Molecular characterization of metaplastic breast carcinoma via next-generation sequencing.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 26 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 97. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 98. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496
 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 99. PMID: 26282658; 2015, J Clin Oncol;33(33):3858-65 Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer.
- 100. PMID: 26238431; 2015, Eur Urol;68(6):959-67
 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 101. PMID: 22420423; 2012, Breast Cancer Res;14(2):R47 Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
- 102. PMID: 23154512; 2012, Oncotarget;3(11):1348-55 Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN.
- PMID: 12781359; 2003, Cancer Cell;3(5):421-9
 Chk1 and Chk2 kinases in checkpoint control and cancer.
- 104. PMID: 15261141; 2004, Cancer Cell;6(1):45-59 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- PMID: 15459660; 2004, Nat Rev Mol Cell Biol;5(10):792-804
 Checking on DNA damage in S phase.
- PMID: 22585575; 2012, J Clin Invest;122(6):2165-75
 CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma.
- 108. PMID: 17638866; 2007, Cancer Res;67(14):6574-81
 The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas.
- PMID: 17848589; 2007, Mol Cell Proteomics;6(12):2150-64
 A proteomics analysis of cell signaling alterations in colorectal cancer.
- 110. PMID: 24418519; 2014, J Surg Res;187(1):6-13 Checkpoint kinase 1 protein expression indicates sensitization to therapy by checkpoint kinase 1 inhibition in non-small cell lung cancer.
- 111. PMID: 15297395; 2004, Clin Cancer Res;10(15):4944-58
 Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays.
- 112. PMID: 21458083; 2011, Trends Pharmacol Sci;32(5):308-16 Anticancer therapy with checkpoint inhibitors: what, where and when?
- PMID: 19910469; 2010, J Biol Chem;285(2):1097-104
 MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 27 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

- 114. PMID: 20655309; 2010, FEBS Lett;584(17):3682-95 The MRN complex in double-strand break repair and telomere maintenance.
- 115. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.
- 116. PMID: 23755103; 2014, PLoS One;8(6):e63313
 Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A.
- PMID: 11196167; 2001, Cancer Res;61(1):23-6
 Alterations of the double-strand break repair gene MRE11 in cancer.
- 118. PMID: 11850399; 2002, EMBO Rep;3(3):248-54 Human MRE11 is inactivated in mismatch repair-deficient cancers.
- 119. PMID: 16959974; 2006, Science;314(5797):268-74
 The consensus coding sequences of human breast and colorectal cancers.
- PMID: 26510020; 2015, N Engl J Med;373(18):1697-708
 DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
- 121. PMID: 24927325; 2014, PLoS One;9(6):e100041 Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro.
- 122. PMID: 21300766; 2011, Cancer Res;71(7):2632-42 MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers.
- 123. PMID: 25310185; 2014, PLoS One;9(10):e108483

 MRE11-deficiency associated with improved long-term disease free survival and overall survival in a subset of stage III colon cancer patients in randomized CALGB 89803 trial.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 125. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- PMID: 20525995; 2010, N Engl J Med;362(24):2260-70
 Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
- 127. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12
 Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.
- 128. PMID: 17496201; 2007, Blood;110(7):2309-15
 Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.
- 129. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- 132. PMID: 31157963; 2019, N Engl J Med;381(4):317-327

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 28 of 29

Project ID: C22-M001-01709 Report No.: AA-22-03027_ONC Date Reported: Jun 21, 2022

ACTOnco® + Report

Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.

- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 135. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 136. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 25366685; 2015, J Clin Oncol;33(3):244-50
 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 140. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87
 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2
- 141. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 29 of 29