Graphical CSS Code Transformation Using ZX Calculus

Jiaxin Huang (Jacky) 1

Sarah Meng Li^{2,3}

Lia Yeh^{4,5}

Aleks Kissinger⁴

Michele Mosca^{2,3,6}

Michael Vasmer^{2,6}

¹ Dept. of Computer Science, University of Hong Kong

² Dept. of Combinatorics & Optimization, University of Waterloo (UW)

³ Institute for Quantum Computing, UW

⁴ University of Oxford

⁵ Quantinuum

⁶ Perimeter Institute

 $\llbracket 4,2,2 \rrbracket$ square code

 $[\![7,1,3]\!]$ Steane code

 $[\![5,1,3]\!]$ code

 $[\![8,3,2]\!]$

cubic code

 $[\![15,1,3]\!]$ quantum Reed-Muller code

 $[\![10,1,2]\!] \ \mathrm{code}$

 $\llbracket 4,2,2 \rrbracket$ $\llbracket 7,1,3 \rrbracket$ Steame code **morphing**

 $[\![5,1,3]\!]$ code

[15, 1, 3] quantum Reed-Muller code

 $[\![8,3,2]\!]$ cubic code

 $[\![10,1,2]\!]$ code

Stabilizers an Abelian subgroup $\mathcal{S} < \mathcal{P}_n$

Stabilizers an Abelian subgroup $\mathcal{S} < \mathcal{P}_n$

 $\textbf{Codespace} \quad \mathcal{C} \coloneqq \{|\psi\rangle \in \mathcal{H}^{\otimes n}: S|\psi\rangle = +|\psi\rangle, \forall S \in \mathcal{S}\}$

Stabilizers an Abelian subgroup $\mathcal{S} < \mathcal{P}_n$

$$\textbf{Codespace} \quad \mathcal{C} \coloneqq \{|\psi\rangle \in \mathcal{H}^{\otimes n}: S|\psi\rangle = +|\psi\rangle, \forall S \in \mathcal{S}\}$$

(Clifford) Encoders $E: \mathcal{H}^{\otimes k} \rightarrow \mathcal{C}$

$$|\psi\rangle \quad \hookrightarrow |\overline{\psi}\rangle \coloneqq E|\psi\rangle \quad \text{logical states}$$

$$k\left\{\begin{array}{c|c} \hline \vdots \\ \hline \end{array}\right\}n$$

Stabilizers an Abelian subgroup $\mathcal{S} < \mathcal{P}_n$ Codespace $\mathcal{C} := \{|\psi\rangle \in \mathcal{H}^{\otimes n} : S|\psi\rangle = +|\psi\rangle, \forall S \in \mathcal{S}\}$ (Clifford) Encoders $E \cdot E^\dagger : \mathcal{U}(\mathcal{H}^{\otimes k}) \to \mathcal{U}(\mathcal{C})$ $U \hookrightarrow \overline{U} := EUE^\dagger$ logical operators

$$\overline{U} \coloneqq EUE^\dagger$$

$$\overline{U} \coloneqq EUE^{\dagger}$$

$$\overline{U} \coloneqq EUE^{\dagger}$$

$$\Rightarrow EU = \overline{U}E$$

$$\overline{U}\coloneqq EUE^\dagger$$

$$\Rightarrow EU = \overline{U}E$$

CSS codes stabilizer codes whose stabilizers can be divided into 2 types: **X-type** or **Z-type**, i.e.,

$$\mathcal{S} = \{\mathcal{X}_1, \mathcal{X}_2 ...\} \cup \{\mathcal{Z}_1, \mathcal{Z}_2 ...\}$$

CSS codes stabilizer codes whose stabilizers can be divided into 2 types: **X-type** or **Z-type**, i.e.,

$$\mathcal{S} = \{\mathcal{X}_1, \mathcal{X}_2 ...\} \cup \{\mathcal{Z}_1, \mathcal{Z}_2 ...\}$$

Every CSS code encoder is a phase-free ZX diagram.

Stabilizers of the **Steane code**:

$Z_1Z_3Z_5Z_7$	$X_1X_3X_5X_7$
1 0 0 1	1 0 0 1

$$Z_2 Z_3 Z_6 Z_7 X_2 X_3 X_6 X_7$$

$$Z_4 Z_5 Z_6 Z_7 X_4 X_5 X_6 X_7$$

$$\overline{Z} = Z_1 Z_4 Z_5$$
 $\overline{X} = X_1 X_4 X_5$

Stabilizers of the **Steane code**:

$$egin{array}{lll} Z_1 Z_3 Z_5 Z_7 & X_1 X_3 X_5 X_7 \ Z_2 Z_3 Z_6 Z_7 & X_2 X_3 X_6 X_7 \ Z_4 Z_5 Z_6 Z_7 & X_4 X_5 X_6 X_7 \ \end{array}$$

$$\overline{Z} = Z_1 Z_4 Z_5$$
 $\overline{X} = X_1 X_4 X_5$

Stabilizers of the **Steane code**:

$$Z_1 Z_3 Z_5 Z_7 X_1 X_3 X_5 X_7$$

$$Z_2 Z_3 Z_6 Z_7$$
 $X_2 X_3 X_6 X_7$

$$Z_4 Z_5 Z_6 Z_7$$
 $X_4 X_5 X_6 X_7$

$$\overline{Z} = Z_1 Z_4 Z_5$$
 $\overline{X} = X_1 X_4 X_5$

Stabilizers of the **Steane code**:

$$Z_1 Z_3 Z_5 Z_7 X_1 X_3 X_5 X_7$$

$$Z_2 Z_3 Z_6 Z_7 X_2 X_3 X_6 X_7$$

$$Z_4 Z_5 Z_6 Z_7$$
 $X_4 X_5 X_6 X_7$

$$\overline{Z} = Z_1 Z_4 Z_5$$
 $\overline{X} = X_1 X_4 X_5$

Stabilizers of the **Steane code**:

$Z_1 Z_3 Z_5 Z_7$	X_1	X_3	X_5	X_7
-------------------	-------	-------	-------	-------

$$Z_2 Z_3 Z_6 Z_7 X_2 X_3 X_6 X_7$$

$$Z_4 Z_5 Z_6 Z_7 X_4 X_5 X_6 X_7$$

$$\overline{Z} = Z_1 Z_4 Z_5$$
 $\overline{X} = X_1 X_4 X_5$

Stabilizers of the **Steane code**:

$$Z_1 Z_3 Z_5 Z_7 X_1 X_3 X_5 X_7$$

$$Z_2 Z_3 Z_6 Z_7 X_2 X_3 X_6 X_7$$

$$Z_4 Z_5 Z_6 Z_7 X_4 X_5 X_6 X_7$$

$$\overline{Z} = Z_1 Z_4 Z_5$$
 $\overline{X} = X_1 X_4 X_5$

Pushing Through the Encoder (PTE)

Pushing Through the Encoder (PTE)

Given a ZX diagram \overline{D} , what is the corresponding diagram \overline{D} , such that the above equation holds?

Lemma: PTE

assuming $\overline{X}_1 = X_1 X_2$

Example: \overline{X}_1

Example: \overline{X}_1

assuming $\overline{X}_1 = X_1 X_2$

Example: \overline{X}_1

assuming $\overline{X}_1 = X_1 X_2$

Example: X_1X_2 measurement

Example: X_1X_2 measurement

Example: X_1X_2 measurement

assuming $\overline{X}_1 = X_1 X_2$

Example: \overline{T} gate

Example: \overline{T} gate

assuming $\overline{Z}_1 = Z_2 Z_3$

Example: \overline{T} gate

assuming $\overline{Z}_1 = Z_2 Z_3$

Example: \overline{H} gate

Example: \overline{H} gate

Example: \overline{H} gate

Example: \overline{H} gate

Given a parent code $\mathcal{C}_{\mathrm{parent}}$, with stabilizers \mathcal{S} and physical qubits Q, choose a subset $R \subset Q$.

child code $\mathcal{C}_{ ext{child}}$ whose stabilizers are

$$\mathcal{S}_{\text{child}} := \{ S \in \mathcal{S} : \text{supp}(S) \subset R \}.$$

Consider the encoders $E_{
m parent}$ and $E_{
m child}$, which are Clifford,

morphed code $\mathcal{C}_{\mathrm{morphed}}$ whose encoder is

$$E_{ ext{morphed}} \coloneqq ig(I^{\otimes |Q \setminus R|} \otimes E_{ ext{child}}^\daggerig) E_{ ext{parent}}.$$

Given an encoder E_{parent} and a subset $R \subset Q$,

$$R = \{2, 3, 6, 7\}$$

$$\begin{array}{c} 2 \\ 5 \\ \end{array}$$

$$E_{\mathrm{parent}}$$

Given an encoder E_{parent} and a subset $R \subset Q$,

1. Unfuse all green spiders which are supported both on R and $Q \setminus R$.

$$R = \{2, 3, 6, 7\}$$

Given an encoder E_{parent} and a subset $R \subset Q$,

2. Add an identity red spider between each pair of unfused green spiders.

$$R = \{2, 3, 6, 7\}$$

Given an encoder E_{parent} and a subset $R \subset Q$,

3. let E_{child} be the subdiagram enclosed by R; let E_{morphed} be the subdiagram enclosed by $Q \setminus R$

$$R = \{2, 3, 6, 7\}$$

$$R = \{2, 3, 6, 7\}$$

$$R = \{2, 3, 6, 7\}$$

$$R = \{4, 5, 6, 7\}$$

$$R = \{4, 5, 6, 7\}$$

 $E_{
m steane}$

$$R = \{4, 5, 6, 7\}$$

 $E_{
m steane}$

$$R = \{4, 5, 6, 7\}$$

Steane & quantum Reed-Muller(QRM) code

	Steane	QRM
qubits	7	15
# stabilizers	6	14

Steane & quantum Reed-Muller(QRM) code

	Steane	ExSteane	QRM
qubits	7	15	15
# stabilizers	6	14	14

$$E_{\rm ex} = E_{\rm steane} \otimes |\Psi\rangle$$
, where

$$|\Psi\rangle := \frac{1}{\sqrt{2}}(|0\rangle \otimes (E_{\text{steane}}|0\rangle) + |1\rangle \otimes (E_{\text{steane}}|1\rangle))$$

Anderson, J. T., Duclos-Cianci, G., & Poulin, D. (2014). Fault-tolerant conversion between the steane and reed-muller quantum codes. Physical review letters, 113(8), 080501.

19

Quantum subsystem code

Gauge group any subgroup $\mathcal{G} < \mathcal{P}_n$

Stabilizer group
$$\mathcal{S} := \mathcal{N}(\mathcal{G}) \cap \mathcal{G} = \{S \in \mathcal{G} : SG = GS, \forall G \in \mathcal{G}\}$$

Gauge operators
$$\mathcal{L}_g\coloneqq\mathcal{G}\,/\,\mathcal{S}$$

$$\cong\langle L_1^X,L_1^Z,...,L_t^X,L_t^Z\rangle<\mathcal{P}_n$$

Subsystem code encoders as ZX diagrams

The $[\![15,1,3,3]\!]$ subsystem code

$$\mathcal{G}_{\mathrm{sub}} \coloneqq \mathcal{S}_{\mathrm{ex}} \cup \mathcal{S}_{\mathrm{qrm}}$$

$$\Rightarrow \mathcal{S}_{\text{sub}} = \mathcal{S}_{\text{ex}} \cap \mathcal{S}_{\text{qrm}}$$

$$\Rightarrow \mathcal{L}_q = \mathcal{S}_{\mathrm{ex}} \odot \mathcal{S}_{\mathrm{qrm}} = \langle L_1^X, L_2^X, L_3^X, L_1^Z, L_2^Z, L_3^Z \rangle$$

ExSteane

Step 1 measure gauge operators L_1^X, L_2^X, L_3^X , obtaining outcomes $k_1, k_2, k_3 \in \mathbb{Z}_2$.

Step 2 For each $k_i = 1$, apply L_i^Z .

Conclusion & outlook

• pushing through the encoder: discover / verify conditions for transversality.

Conclusion & outlook

- pushing through the encoder: discover / verify conditions for transversality.
- code morphing: generic procedure for code search

Conclusion & outlook

- pushing through the encoder: discover / verify conditions for transversality.
- code morphing: generic procedure for code search
- gauge fixing:
 - preservation of error-correcting properties during code transformation
 - code deformation

Thank you.

arXiv:2307.02437