Unit 7: Karnaugh Maps

CSE 220: System Fundamental I Stony Brook University Joydeep Mitra

Motivation

- Boolean Algebra simplification requires skill and experience
 - You may not always end up with the simplest form
- Fortunately, we have a mechanical and graphical way to simplify Boolean equations called Karnaugh Maps (or K-Maps)
- Recall that simplification involves combining minterms of the form PA + PA' to obtain P
- K-Maps make it easy to spot such patterns by placing minterms in a grid

K-Map Rules

- Works best with 3-4 variables
- The top row of the K-map holds the four possible values of for inputs A and B
- The left column holds the two possible values for input C
- Each square corresponds to a row in the truth table and its value is the output for the row
- Each square (or minterm) differs from its adjacent by a single variable
- This arrangement is called gray code; it differs from regular binary ordering
 - Regular ordering => 00, 01, 10, 11
 - Gray code => 00, 01, 11, 10
- The squares in a K-map also wrap around, i.e., squares in the far right differ from squares in the far left by a single element.
 - Same for top and bottom (applicable when K-map has more than 2 rows)

A	\boldsymbol{B}	\boldsymbol{C}	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Simplification Using K-Maps

- We encircle adjacent squares with 1's in the K-map
- For each circle, note the corresponding implicant (product of one or more literals)
- Exclude variables whose true and complement forms are both in the circle

$$Y = A'B'$$

Simplification Rules Using K-Maps

- 1. Use the fewest circles necessary to cover all the 1's
- 2. Each circle should be as large as possible
- 3. All the squares in each circle must contain 1's
- 4. Each circle must span a rectangular block that is a power of 2 squares in each direction
- 5. A circle may wrap around the edges of the K-map
- 6. A 1 may be circled multiple times if that helps using fewer circles

• Simplify a function Y = F(A,B,C) with the following K-map:

- A seven-segment display decoder takes 4-bit data input $(D_{3:0})$ and produces 7 outputs (S_a-S_g) to control the display of numbers 0-9 in a light emitting diode.
- We will write a truth table and use K-maps to find the Boolean equation between inputs and outputs

Inputs marked in blue are set to 1 for each digit

Example 2 – Truth Table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

- For each output a K-map needs to be drawn
 - For demonstration, we will draw the K-maps for S_a and then S_b

Sa				
D _{1:0} D _{3:2}	00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	0

Alternative K-map for S_a

Notice how we can pair the top left and bottom left cells instead of the top left and top right cells

• K-map for S_b

Don't Cares

- Recall that don't care entries can be used to reduce the no. of rows in a truth table
 - X indicates don't care values meaning it can be 0 or 1
 - They appear when the output values are inconsequential, or the input combinations can never happen

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	Х	X	Х	Х	Х	X	Х

Don't Cares in K-Maps

- In a K-map, X's allow for further simplification
- We can treat them as 1's or 0's as per our convenience
- We can circle a don't care if it helps us reduce the expression
- A circled don't care counts as 1; a non-circled don't care counts as 0

Example 2 with Don't Cares

K-map for S_a

Example 2 with Don't Cares

• K-map for S_b

$$S_b = \overline{D}_2 + D_1 D_0 + \overline{D}_1 \overline{D}_0$$

K-Map with POS Form

- For POS form, we group the 0s and not 1s
- Each cell indicates a maxterm (and not minterm)

 $S_a = (D1 + D0 + D2')(D3' + D2')(D1' + D3')(D1 + D0' + D3 + D2)$

• Write a simplified Boolean equation in SOP form for the truth table

Α	В	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	
0	0	1	1	1
0	1	0	1 0	1 1 0
0	1	0	1 0	
0	1			0 1 1 1 0
0	1	1 1 0	1 0	1
1	0	0		1
1	0	0	1 0	0
1	0	1	0	1
1	0		1 0	1 0
1	1	1 0		0 0
1	1	0	1	0
0 0 0 0 0 0 1 1 1 1 1	1	1	0	
1	1	1	1	0

$$Y = A'C + B'D'$$

• Write the equivalent POS form for the same truth table

Α	В	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0 0 0	1	0	1 0	0
0	1	0	1	0
0	1	1	0	1
0 0 1	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	1 0	1
1	0		1	0
1 1 1	1	1 0	0	0
1	1	0	1	0
1	1	1	0	1 0 1 0 0 1 1 0 0 0 0 0
1	1	1	1	0

$$Y = (A'+B')(C+D')(C+B')(D'+A')$$

• Find a minimal Boolean equation for the truth table

Α	В	С	D	Y
0	0	0	0	X
0	0	0	1	Х
0	0	1	0	X
0	0	1	1	X X X 0
0	1	0	0	0
	1	0	1	X
0	1	1	0	0
0	1	1	1	Х
1	1 1 1 0 0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1	0	1	1 0 1 0 1 0 1 0 1 0 1	1
1	1	0	0	1
1	1	0	1	1
0 0 0 1 1 1 1 1 1	1 1 1	1	0	0 X 0 X 1 0 X 1 1 1 X
1	1	1	1	1

$$Y = AD' + AC + BD$$

- Simplify the Boolean equation Y = BC + A'B'C' + BC' using K-maps
- Convert to SOP form and fill in the k-map

Y CAB	00	01	11	10
0	1	1	1	0
1	0	1	1	0

- Simplify the Boolean equation Y = A'BC + (BC')' + BC using K-maps
- Convert to SOP form and fill in the k-map

Y AB	00	01	11	10
0	1	0	0	1
1	1	1	1	1

Simplify the Boolean equation

$$Y = ABCD + A'BC'D + (B' + D)'C using K-maps$$

Convert to SOP form and fill in the k-map

Υ				
AB	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	0	1	1
10	0	0	0	0

$$Y = ABC + BCD' + A'BC'D$$

Write the simplified POS form for

$$Y = ABCD + A'BC'D + (B' + D)'C using K-maps$$

Convert to SOP form and fill in the k-map

Υ				
AB	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	0	1	1
10	0	0	0	0

$$Y = B(C+D)(A'+C)(A+C'+D')$$

• Write a Boolean equation for the following circuit and simplify it using a K-map

$$Y = D + AB'C$$