Abzahlbarkeit - injektiv, susjektiv.

21.04.23 Kl. Übung 1 Logik

Illnewelliche Potenzuenze:

Annahme zwecks Widerspruch: P(N) ict abzählbar \Rightarrow Es existiert $P(N) \xrightarrow{g} N$, g ist injektiv

K := {g(B) : B ≤ N 1 g(B) & B } ⊆ N

Es mus gelten: entweder $g(K) \in K$ oder $g(K) \notin K$ Es mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ oder g(K) de KEs mus gelten: entweder $g(K) \in K$ Es mus gelten: entweder g(K)

Wenn gilt g(K) ∈ K, dann aufgrund von g(K) ≠ K &

Wenn gilt $g(k) \notin K \Rightarrow g(k) \in K \notin \mathbb{Z}$ $\Rightarrow g \text{ existint nicht.} \notin \mathbb{Z}$

- 2) Abzahlbärkeit dependent on Injektivität und Surjektivität.
- 3) Problem: Interpretation des Signaturkomponenten missen Funktionen seien, aber Division ist nur partielle Funktion, da Division durch 0 nicht definiert.

 Lösung: betrachtele erweiterte Signatur in Q Q + {1}, welche um ein Symbol "undefiniert" erweitert wurde.

Definiere $Q_{\perp} \times Q_{\perp} \longrightarrow Q_{\perp}$ als $p/q := \perp$, were $\{p_1 \neq \} \ni \perp$ oder q = 0, senst "normale" Division.

@ Sei A R. A transitiv, symmetrisch und total.
Sei weiter a eA beliebig.

Z: ara

Bew: Wegen der Totalität existiert bet, sodam arb.
Wegen der Symmetrie ist dann auch bRa.
Daraus folgt aufgrund der Transitivität aRa.

(6) a) Menge R von Relationen $B \xrightarrow{R} B$, $B \xrightarrow{S} B$, $B \xrightarrow{T} B$, ...

Represivitat: Gilt $(x, x) \in R$ für aue $x \in B$, für alle $R \in R$,

dann gilt auch $(x, x) \in R$ und $(x, x) \in UR$

Transitivitàt: Folgt aus <1,4> eR, <y,2> eR \ \x,y,2 eB, für alle ReR.

Dann Telgt aus (X,y>, <y,z> E NR auch <x,z7 E NR.

3) Transitivitàt sist stabil unter Durchschnitt.

Symmetrie: Folgt au $(x,y) \in \mathbb{R}$, $(y,x) \in \mathbb{R}$ $\forall x,y \in \mathbb{B}$, für aue $\mathbb{R} \in \mathbb{R}$.

Dann folgt aus $(x,y) \in \mathbb{N}$, dan $(y,x) \in \mathbb{U}$.

Symmetrie ist Stabil unter \mathbb{U} R and \mathbb{N} R.

Transitivitàt Vereiniques:

Definien $R := \{ \langle 0,1 \rangle \}$, $S := \{ \langle 1,0 \rangle \}$ über B $R \cup S = \{ \langle 0,1 \rangle, \langle 1,0 \rangle \}$ ist nicht transitiv, $Z \cdot B \cdot \langle 0,0 \rangle \not\in R \cup S$.

Anti-symmetrie: Vereinigung Durchschnitt

Lineaustat: V

- Bei B B die Menze

 Sei E die Menze aller ÄR, die R enthalten. Nun bilde NE und erhalte die kleinste ÄR, die R enthalt, bzgl. C.

 Nach Teil (a) ist NE toutsächlich eine ÄR.
- c) RAROP SidB