Art Of Numbers: Assignment #1

Due on January 24, 2017

Dr. Neha Gupta

Vishal Gauba

(1410110501)

Problem 1

Write the expression for Gamma factorial function.

Solution

The gamma function is an extension of the factorial function,

$$\Gamma(z) = \int_0^1 (\ln \frac{1}{t})^{z-1} dt$$

Problem 2

For which values is this function defined?

Solution

The gamma function is defined for all complex numbers (including all real positive numbers) except the non-positive integers.

Problem 3

Give the recurrence relation which it satisfies.

Solution

If n is a positive integer, it's relation to the factorial can be represented as:

$$\Gamma(n) = (n-1)!$$

(Source: http://mathworld.wolfram.com/GammaFunction.html)

Problem 4

Using Pascal's triangle, calculate 11⁸

Solution

n=0:	1								1								
n = 1:								1		1							
n=2:							1		2		1						
n = 3:						1		3		3		1					
n=4:					1		4		6		4		1				
n = 5:				1		5		10		10		5		1			
n = 6:			1		6		15		20		15		6		1		
n = 7:		1		7		21		35		35		21		7		1	
n = 8:	1		8		28		56		70		56		28		8		1

Thus, $11^8 = 214358881$

Problem 5

Write the seventh Tetrahedron number. Show calculation.

Solution

$$1 + (1+2) + (1+2+3) + (1+2+3+4) + (1+2+3+4+5) + (1+2+3+4+5+6) + (1+2+3+4+5+6+7) = 84.$$

Problem 6

Write the statement of Binomial Theorem.

Solution

Binomial is a sum or difference of two terms, eg a-b or a+b. The binomial theorem describes the algebraic expansion of powers of a binomial:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Problem 7

Give it's generalisation.

Solution

Let, for an arbitrary n, factorial be defined as:

$$\binom{r}{k} = \frac{r(r-1)\dots(r-k+1)}{k!} = \frac{(r)_k}{k!}$$

Using this, Newton's generalisation can be expressed as:

$$(x+y)^r = \sum_{k=0}^{\infty} {r \choose k} x^{r-k} y^k$$

= $x^r + rx^{r-1}y + \frac{r(r-1)}{2!} x^{r-2} y^2 + \dots$

Problem 8

Write the expansion of $(1+x)^{-1/2}$

Solution

It can be expressed as an infinite sum series using Newton's expansion:

$$(1+x)^{-1/2} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots$$

Problem 9

Describe the golden angle, and write its value.

Solution

In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio. [Figure 1]

$$Golden Angle = 360(1 - \frac{1}{\phi}) = 360(1 + (1 - 1) - \frac{1}{\phi})) = 360(2 - \phi) = \frac{360}{\phi^2} = 137.508^{\circ}$$

Problem 10

Write the Fibonacci coding for:

(i): 96

 $\textbf{Solution}:\,100101011$

(ii): 45

 $\textbf{Solution}:\,101101011$

Problem 11

Write the Fibonacci decoding for:

(i): 1001001011Solution: 42(ii): 101010101011Solution: 42