Архитектура процессоров RISC-V

31 25	24 20	19 15	14 12	11 7	6	0
funct7	rs2	rs1	funct3	rd	opcode	\square R
imm[11:	0]	rs1	funct3	rd	opcode	
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S
imm[12 10:5]	rs2	rs1	funct3	imm[4:1 11]	opcode	В
	imm[31:12]			rd	opcode	U
imm[20 10:	1 11]	imm[19:1	12]	rd	opcode	J

Особенности

RISC-V — расширяемая открытая и свободная система команд и процессорная архитектура на основе концепции RISC для управления микропроцессорами и микроконтроллерами.

Спецификации архитектурных описаний RISC-V **свободно доступны** и бесплатны для любого использования, включая коммерческие реализации непосредственно в кремнии или для конфигурирования ПЛИС.

Участие в проектировании и обсуждении спецификаций архитектурных описаний **открытое**.

Система команд имеет зарезервированные в спецификации биты для кодирования расширений без ограничения области применения.

В отличие от других академических проектов, которые обычно сосредоточены на простоте и образовательных целях, системы команд RISC-V проектируется для широкого круга компьютерных применений.

Особенности

Архитектура RISC-V формировалась из желания разработчиков следовать четырем простым принципам:

- 1) для простоты придерживайтесь единообразия (единообразный формат команд); 2) типичный сценарий должен быть быстрым
- 2) типичный сценарий должен быть быстрым (несколько простых инструкций для выполнения более сложных операций);
- 3) чем меньше, тем быстрее (относительно небольшое число регистров);
- 4) хорошая разработка требует хороших компромиссов (четыре формата команд не один, не много форматов).

(Паттерсон и Хеннесси)

Даты

2010 — исследовательский проект при непосредственном участии Дэвида Паттерсона в Калифорнийском университете Беркли в США.

В настоящее время многие нынешние участники проектов развития RISC-V являются добровольцами, не связанными с университетом.

2015 — создан международный фонд RISC-V и ассоциация со штаб-квартирой в Цюрихе в Швейцарии (для устойчивого развития, стандартизации и продвижения RISC-V).

2018 – партнёрство с The Linux Foundation.

В руководство и технические комитеты входят две российские компании разработчики процессорных ядер — Syntacore и CloudBEAR, разработчики Альт Линукс, Астра Линукс.

2022 – корпорация Intel объявила об инвестировании в развитие RISC-V одного миллиарда долларов и вошла в состав руководства RISC-V.

2022 – в РФ образован Альянс RISC-V.

В совете директоров RISC-V ведущие роли занимают китайские компании и организации, включая Китайскую академия наук.

Базовая спецификация «RV32I»

RV — RISC-V, 32-разрядная, I - Integer (целочисленная арифметика)

- 32 регистра
- 39 инструкций.
- 6 форматов инструкций.

Базовые расширения:

- М целочисленное умножение/деление
- А атомарные операции с памятью
- F и D вычисления с плавающей точкой с дополнительным набором регистров (одинарной Float и двойной Double точности)
- С сжатый формат команд (подмножество RV32I), для удвоения плотности упаковки в машинном слове наиболее востребованных стандартных инструкций

Базовый набор RV32E для встраиваемых систем совпадает по кодированию и набору инструкции с RV32I, но содержит только 16 регистров. Применяется в основном в недорогих микроконтроллерах.

Ряд особенностей системы команд RISC-V

- Обязательное для реализации подмножество инструкций I (Integer).
- Несколько стандартных опциональных расширений.
- Операции ветвления не используют флагов, а непосредственно сравнивают свои регистровые операнды.
- Минимальный набор регистров: регистр x0 (zero), 31 целочисленный регистр (x1 x31), регистр счётчика команд (PC), множество CSR (Control and Status Registers, до 4096).
- RV32E (Embedded): 16 регистров общего назначения. Экономия аппаратные ресурсы, сокращение затрат на память, и на время сохранения/восстановления регистров при **переключениях контекста**.
- При одинаковой кодировке инструкций предусмотрены реализации архитектур с 32-, 64- и 128-битными регистрами и операциями (RV32I, RV64I и RV128I).
- Нет операций над частями регистров, нет выделенных «регистровых пар».
- Операции не сохраняют биты переноса или переполнения (как в Си). Не генерируются исключения по переполнению и делению на 0.
- Целочисленная арифметика расширенной точности должна отдельно обрабатывать старшие разряды результата (умножение спец. инструкции).

Ряд особенностей системы команд RISC-V

- Инструкции базового набора имеют длину 32 бита с выравниванием на границу 32-битного слова
- В общем формате предусмотрены инструкции различной длины (от 16 до 192 бит с шагом в 16 бит) с выравниванием на границу 16-битного слова. Полная длина инструкции декодируется унифицированным способом из её первого 16-битного слова.
- Для часто используемых инструкций стандартизовано применение их аналогов в 16-битной кодировке (С Compressed extension).
- Так как кодировка базового набора инструкций не зависит от разрядности архитектуры, то один и тот же код потенциально может запускаться на различных RISC-V архитектурах, определять разрядность и другие параметры текущей архитектуры, наличие расширений системы инструкций, а потом автоконфигурироваться для целевой среды выполнения.
- Спецификацией RISC-V предусмотрено несколько областей в пространстве кодировок инструкций для пользовательских «Х-расширений» архитектуры, которые поддерживаются на уровне ассемблера, как группы инструкций custom0 и custom1.

Сокращение	ращение Наименование В								
	Базовые наборы								
RVWMO	RVWMO Базовая модель согласованности памяти								
RV32I	Базовый набор с целочисленными операциями, 32-битный	2.1	Ratified						
RV64I	Базовый набор с целочисленными операциями, 64-битный	2.1	Ratified						
RV32E	Базовый набор с целочисленными операциями для встраиваемых систем, 32-битный, 16 регистров	1.9	Draft						
RV128I	Базовый набор с целочисленными операциями, 128-битный	1.7	Draft						
	Часть 1 Стандартные непривилегированные наборы команд								
М	Целочисленное умножение и деление (Integer Multiplication and Division)	2.0	Ratified						
Α	Атомарные операции (Atomic Instructions)	2.1	Ratified						
F	Арифметические операции с плавающей запятой над числами одинарной точности (Single-Precision Floating-Point)	2.2	Ratified						
D	Арифметические операции с плавающей запятой над числами двойной точности (Double-Precision Floating-Point)	2.2	Ratified						
Q	Арифметические операции с плавающей запятой над числами четверной точности	2.2	Ratified						
С	Сокращённые имена для команд (Compressed Instructions)	2.2	Ratified						

Сокращение	Наименование	Версия	Статус					
	Часть 1 Стандартные непривилегированные наборы команд							
Counters	Инструкции для счетчиков производительности и таймеров — наборы Zicntr и Zihpm	2.0	Draft					
L	L Арифметические операции над десятичными числами с плавающей запятой (Decimal Floating-Point)		Open					
В	В Битовые операции (Bit Manipulation)							
J	J Двоичная трансляция и поддержка динамической компиляции (Dynamically Translated Languages)							
Т	Транзакционная память (Transactional Memory)		Open					
P	Короткие SIMD-операции (Packed-SIMD Instructions)	0.1	Open					
V	Векторные расширения (Vector Operations)	1.0	Frozen					
Zicsr	Инструкции для работы с контрольными и статусными регистрами (Control and Status Register (CSR) Instructions)	2.0	Ratified					
Zifencei	Инструкции синхронизации пототоков команд и данных (Instruction-Fetch Fence)	2.0	Ratified					
Zihintpause	Zihintpause Pause Hint		Ratified					
Zihintntl	Non-Temporal Locality Hints	0.2	Draft					
Zam	Zam Расширение для смещённых атомарных операций (Extension for Misaligned Atomics)							

Наименование

соприщение	Tidvimenobalive	Берсия	ciuije				
	Часть 1 Стандартные непривилегированные наборы команд						
Zfh	Zfh Extensions for Half-Precision Floating-Point						
Zfhmin	Zfhmin Extensions for Half-Precision Floating-Point						
Zfinx	Standard Extensions for Floating-Point in Integer Registers	1.0	Ratified				
Zdinx	Standard Extensions for Floating-Point in Integer Registers	1.0	Ratified				
Zhinx	Standard Extensions for Floating-Point in Integer Registers	1.0	Ratified				
Zhinxmin	Standard Extensions for Floating-Point in Integer Registers	1.0	Ratified				
Ztso	Расширение для модели согласованности памяти RVTSO (Extension for Total Store Ordering)	0.1	Frozen				
00							

= IMAFD Zicsr Zifencei Обобщенное/сокращёное обозначение для набора расширений

Сокрашение

G

Н/Д

Версия Статус

Н/Д

Сокращение	Наименование	Версия	Статус		
	Часть 2 Стандартные наборы команд для привилегированных режимов				
Machine ISA	A Инструкции аппаратного уровня				
Supervisor ISA Инструкции уровня супервизора					
Svnapot Extension	(Extension for NAPOT Translation Contiguity)	1.0	Ratified		
Sypbmt Extension	(Extension for Page-Based Memory Types)	1.0	Ratified		

Svinval Extension (Extension for Fine-Grained Address-Translation Cache Invalidation)

Инструкции уровня гипервизора

Hypervisor ISA

Ratified

Ratified

1.0

1.0

Форматы команд

Тип	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3 2	2 1	0
Регистр/регистр		funct7			rs2		rs1 funct3		3	rd			код операции		1 1	1															
С операндом	±		imm[10:0]						rs1			f	unct	3	rd				ко	д о	пер	ациі	1 1	1							
С длинным операндом	±		imm[30:12]):12]									rd			ко	д о	пер	ациі	1 1	1								
Сохранение	±		imm[10:5] rs2					rs1			f	unct:	3	imm[4:0]			ко	д о	пер	ациі	1 1	1									
Ветвление	±		i	mm	[10:5	[]				rs2	2				rs1			f	unct:	3	in	nm[4	4:1]		[11]	ко	д о	пер	ациі	1 1	1
Переход	±		imm[10:1] [11]			[11]			in	nm[1	9:12	2]					rd			ко	д о	пер	ациі	1 1	1						

Регистры. Соглашения о псевдонимах

Имя регистра в RISC-V	Имя в ЕАВІ	Имя в psABI	Описание в psABI	Кто сохраняет в psABI
			32 целочисленных регистра	
x0	zero	zero	Всегда ноль	
x1	ra	ra	Адрес возврата (return address)	Вызывающий
x2	sp	sp	Указатель стека (stack pointer)	Вызываемый
х3	gp	gp	Глобальный указатель (global pointer)	
x4	tp	tp	Потоковый указатель (thread pointer)	
x5	t0	t0	Temporary / альтернативный адрес возврата	Вызывающий
хб	s3	t1	Temporary	Вызывающий
x7	s4	t2	Temporary	Вызывающий
x8	s0/fp	s0/fp	Saved register / frame pointer	Вызываемый
x9	s1	s1	Saved register	Вызываемый
x10	a0	a0	Аргумент (argument) / возвращаемое значение	Вызывающий
x11	a1	a1	Аргумент (argument) / возвращаемое значение	Вызывающий
x12	a2	a2	Аргумент (argument)	Вызывающий
x13	a3	a3	Аргумент (argument)	Вызывающий
x14	s2	a4	Аргумент (argument)	Вызывающий
x15	t1	a5	Аргумент (argument)	Вызывающий
x16	s5	a6	Аргумент (argument)	Вызывающий
x17	s6	a7	Аргумент (argument)	Вызывающий
x18-27	s7-16	s2-11	Saved register	Вызываемый
x28-31	s17-31	t3-6	Temporary	Вызывающий

	32 дополнительных регистра с плавающей точкой							
f0-7	ft0-7	Floating-point temporaries	Вызывающий					
f8-9	fs0-1	Floating-point saved registers	Вызываемый					
f10-11	fa0-1	Floating-point arguments/return values	Вызывающий					
f12-17	fa2-7	Floating-point arguments	Вызывающий					
f18-27	fs2-11	Floating-point saved registers	Вызываемый					
f28-31	ft8-11	Floating-point temporaries	Вызывающий					

Регистры

Базовы	е регист	ры расш	ирени	ЯΙ
(в расши	ирении Е	только	x0 -	x15)
×0	x1	x2		х3

x0	x1	x2	х3
Zero	ra	sp	gp
x4	x5	x6	x7
tp	t0	s3/t1	s4/t2
x8	x9	x10	x11
s0/fp	s1	a0	a1
x12	x13	x14	x15
a2	a3	s2/a4	t1/a5

x16	x17	x18	x19
s5/a6	s6/a7	s7/s2	s8/s3
x20	x21	x22	x23
s9/s4	s10/s5	s11/s6	s12/s7
x24	x25	x26	x27
s13/s8	s14/s9	s15/	s16/
x28	x29	x30	x31
s17/t3	s18/t4	s19/t5	s20/t6

Легенда цветов ячеек

xθ	глобальный
x1	сохр. вызывающий
x2	сохр. вызываемый

Вещественные регистры расширения F, D, Q, L

f0	f1	f2	f3
ft0	ft1	ft2	ft3
f4	f5	f6	f7
ft4	ft5	ft6	ft7
f8	f9	f10	f11
fs0	fs1	fa1-0	fa1-1
f12	f13	f14	f15
fa2	fa3	fa4	fa5
f16	f17	f18	f19
fa6	fa7	fs2	fs3
f20	f21	f22	f23
fs4	fs5	fs6	fs7
f24	f25	f26	f27
fs8	fs9	fs10	fs11
f28	f29	f30	f31
ft3	tf4	tf5	ft6

расширение V

v0	v1	v2	v3
v4	v5	v6	v7
v8	v9	v10	v11
v12	v13	v14	v15
v16	v17	v18	v19
v20	v21	v22	v23
v24	v25	v26	v27
v28	v29	v30	v31

vtvpe

32 (или 16 для встраиваемых систем) целочисленных регистра. При реализации вещественных групп команд 32 регистра.

Для операций над числами с плавающей запятой 32 регистра FPU (Floating Point Unit), которые используются совместно разными расширениями базового набора инструкций для трёх вариантов точности: одинарной — 32 бита (F extension), двойной — 64 бита (D — Double precision extension), четверной — 128 бит (Q — Quadruple precision extension).

Дополнительно: 32 векторных регистра с векторами переменной длины, (указывается в регистре vlenb блока CSR).

Легенда содержания ячеек

ISA числите

EABI / рѕАВІ знаменателі

Цифровая схемотехника и архитектура компьютера: RISC-V

Дэвид М. Харрис Сара Л. Харрис Сара Л. Харрис, Дэвид Харрис Цифровая схемотехника и архитектура компьютера: RISC-V –

М.: ДМК Пресс, 2021. – 810 с.

Guide to Computer Processor Architecture

A RISC-V Approach, with High-Level Synthesis


```
book-owner a
      .ootion nopic
       .attribute arch, "rv3212p8"
      .attribute unaligned_access, 0
      .attribute stack align. 16
   compute the answer to the ultimate question of life the universe and everything:
     li a0,42
      align 2
      .globl do_something_1000_times
       .type do something 1800 times, @function
   do somethino 1888 times:
      addi sp,sp,-16
            ra,12(sp)
                                 An Introduction to
                            Assembly Programming
            do something
            se, zero, . L6
                                                    with RISC-V
            ca. 8(cn)
                .rodata.str1.4,"aMS",@progbits,1
   -1.00:
      .asciz "those who understand binary and those who don't"
     .string "Assembly language you must learn!"
      .asciz "The first one in Brazil!"
     byte 78, 105, 99, 101, 33, 32, 89, 111, 117, 32, 107
      .byte 110, 111, 119, 32, 65, 83, 67, 73, 73, 33, 0
      .section .text.startup, "ax", @progbits
      .globl main
       .type main, @function
           a0,%hi(.LC0)
           sp,sp,-16
                                             Prof. Edson Borin
      addi a0,a0,%lo(.LC0)
                                 Institute of Computing
      lui a0, %hi(.LC1)
                                                                   Unicamp
      addi
            a0,a0,%lo(.LC1)
      lui a0.5hi(.LC2)
      addi
            a0, a0, %lo(.LC2)
      lui a0.4hi(.LC3)
            a0.a0.%lo(.LC3)
            ra,12(sp)
                                                            1st edition
```


Википедия. RISC-V:

https://ru.wikipedia.org/wiki/RISC-V

Эмуляция с использованием языков программирования С и С++

RISC-V GNU Compiler Toolchain:

https://github.com/riscv-collab/riscv-gnu-toolchain

Spike RISC-V ISA Simulator:

https://github.com/riscv-software-src/riscv-isa-sim

RISC-V Proxy Kernel and Boot Loader

https://github.com/riscv-software-src/riscv-pk

Примеры командной строки

```
#include <stdio.h>
                           Компиляция и запуск в 64-разрядном режиме
int func(int x)
                          > riscv64-unknown-elf-gcc main.c -o main
 return x + 10;
                          > spike pk main
int main()
                           bbl loader
 int r = func (10); r = 20
 printf("r = %d\n", r);
 return r+1;
```

Примеры командной строки

Получение ассемблерного кода в 64-разрядном режиме

> riscv64-unknown-elf-gcc -S main.c -o main.s

```
#include <stdio.h>
int func(int x)
  return x + 10;
int main()
  int r = func (10);
  printf("r = %d\n", r);
  return r+1;
```

```
.file "main.c"
       .option nopic
       .attribute arch, "rv64i2p0 m2p0
       .attribute unaligned access, 0
       .attribute stack align, 16
       .text
       .align 1
       .globl func
       .type func, @function
10
     func:
       addi sp, sp, -32
       sd > s0,24(sp)
       addi s0, sp, 32
       mv a5, a0
       sw = a5, -20(s0)
     » lw» a5,-20(s0)
       addiw a5, a5, 10
       sext.w a5.a5
19
       mv a0.a5
      » ld» s0,24(sp)
       addi sp, sp, 32
       ir⇒ ra
       .size func. .-func
       .section .rodata
       .align 3
     .LCO:
       .string "r = %d\n"
28
       .text
       .align 1
       .qlobl main
       .type main, @function
32
     main:
       addi sp.sp.-32
       sd ra, 24(sp)
       sd s0, 16(sp)
       addi s0, sp, 32
37
       li a0,10
```

Примеры командной строки

Получение ассемблерного кода в 32-разрядном режиме

```
$ riscv64-unknown-elf-gcc -mabi=ilp32 -march=rv32i -S main.c -o main.s
$ riscv64-unknown-elf-as -mabi=ilp32 -march=rv32i main.s -o main.o
??? $ riscv64-unknown-elf-ld -m elf32lriscv main.o -o main
```

Преобразование ассемблерных RISC-V программ, полученных с использованием riscv64-unknown-elf-gcc в ассемблерные программы для эмулятора RARS

