WHAT IS CLAIMED IS:

1		1.	A method for treating existing and/or potential presbyopia of a
2	patient, the pa	tient ha	ving an eye with a pupil, a change in viewing distance with the eye
3	inducing a cha	ange in	pupil dimension, the method comprising:
4		measu	ring a first dimension of the pupil at a first viewing distance;
5		determ	nining a first desired power for the eye at the first viewing distance;
6		determ	nining a prescription for the eye such that the prescription provides
7	the first desire	d powe	r when the pupil has the first dimension, and such that the
8	prescription e	ffects a	desired change in power in response to the change in pupil
9	dimension, the	e desire	d change in power mitigating the presbyopia.
1		2.	The method of claim 1, wherein a rate of the desired change in
2	power for the	change	in pupil dimension comprises from about 0.25 D/mm to about 5.0
3	D/mm.		
1		3.	The method of claim 2, wherein the patient is about 45 years old or
2	less, and the ra	ate com	prises from about 0.25 D/mm to about 1.0 D/mm.
1		4.	The method of claim 2, wherein the patient is about 60 years old or
2	more, and the	rate co	mprises from about 1.0 D/mm to about 5.0 D/mm.
1		5.	The method of claim 1, further comprising determining a second
2	desired optica	l power	for the eye at a second viewing distance.
1		6.	The method of claim 5, further comprising determining at least a
2	third desired o	ptical p	ower for the eye, each optical power having an associated viewing
3	condition, a ra	ite of ar	incremental desired change in power for an incremental change in
4	pupil size vary	ying wit	thin a pupil size range of the patient.
1		7.	The method of claim 5, further comprising measuring the change in
2	pupil dimensi	on of th	e patient by measuring a second pupil dimension of the pupil at the
3	second viewin	ng distan	nce.
1		8.	The method of claim 1, wherein a rate of the desired change in
2	optical power	for the	change in pupil dimension is assumed consistent for a plurality of
3	patients.		

1	9. The method of claim 1, wherein the eye has a residual
2	accommodation range, and wherein the first desired power for the eye is determined so
3	that the eye adjusts within the residual accommodation range when viewing at the first
4	viewing distance with the first desired optical power.
•	
1	10. The method of claim 1, wherein the patient is about 60 years old or
2	less, and further comprising adjusting at least one of the first desired power for the eye and
3	the desired change in power in response to at least one of an anticipated shrinkage of the
4	pupil and anticipated reduction of residual accommodation.
1	11. The method of claim 1, wherein the prescription is determined at
2	least in part by iteratively optimizing a goal function.
_	reason part of notarivery optimizing a goal fanotion.
1	12. The method of claim 1, wherein the prescription is determined at
2	least in part by scaling a refractive shape.
1	13. The method of claim 1, wherein the prescription is determined at
2	least in part by deriving an optical shape providing a plurality of desired optical powers at
3	an associated plurality of viewing conditions.
1	14. A system for treating existing and/or potential presbyopia a patient,
2	the patient having an eye with a pupil, a change in viewing distance with the eye inducing
3	a change in pupil dimension, the system comprising:
4	a device for measuring a first dimension of the pupil while the eye is
5	• • • • • • • • • • • • • • • • • • • •
	viewing at a first viewing distance;
6	a prescription generating module having an input accepting a desired power
7	for the eye and the first dimension, the module determining a prescription for the eye
8	providing a first desired power when the pupil has the first dimension, the prescription
9	effecting a desired change in power in response to the change in pupil dimension, the
10	desired change in power mitigating the presbyopia.
1	15. The system of claim 14, wherein the pupil measurement device

comprises a pupilometer, and wherein the prescription generating module comprises at

least one member selected from the group consisting of:

2

4	an optimizer module that determines the prescription based on the pupil		
5	diameter and the desired power using a goal function appropriate for the presbyopia;		
6	a scaling module that scales a central portion of a prescription shape based		
7	on the pupil dimension such that the prescription shape ameliorates presbyopia, and such		
8	that the central portion has a dimension between about 0.35 and about 0.55 of the pupil		
9	dimension; and		
10	a prescription calculating module, the module calculating a presbyopia-		
11	mitigating prescription for the eye in response to the pupil dimension and the change in		
12	pupil dimension so that the eye has the first desired power suitable for the first viewing		
13	distance and so that the eye has a second desired power for a second viewing distance.		
1	16. A method for determining a prescription that mitigates or treats		
2	presbyopia in a particular patient, the method comprising:		
3	(a) selecting a goal function appropriate for presbyopia of an eye;		
4	(b) inputting a set of patient parameters specific for the particular patient;		
5	and		
6	(c) determining an optical shape for the particular patient appropriate for		
7	differing viewing conditions based on the set of patient parameters per the goal function so		
8	as to mitigate or treat the presbyopia in the patient.		
1	17. The method of claim 16, wherein the goal function reflects optical		
2	quality throughout a vergence range.		
1	18. The method of claim 16, wherein the goal function comprises a		
2	ratio of an optical parameter of the eye with a diffraction theory parameter.		
1	19. The method of claim 18, wherein the goal function comprises		
2	at least one parameter selected from the group consisting of Strehl Ratio (SR), modulation		
3	transfer function (MTF), point spread function (PSF), encircled energy (EE), MTF volume		
4	or volume under MTF surface (MTFV), compound modulation transfer function (CMTF),		
5	and contrast sensitivity (CS).		
1	20. The method of claim 19, wherein the optical shape is determined		
2	such that it has a value of about 25% CMTF over a vergence.		

1	21.	The method of claim 16, wherein the goal function is based on
2	geometrical optics.	
1	22.	The method of claim 21, wherein the goal function is determined
2	using ray tracing.	The method of claim 21, wherein the goal function is determined
_	using ray tracing.	
1	23.	The method of claim 16, wherein the set of patient parameters
2	comprises at least on	e parameter selected from the group consisting of pupil size, residual
3	accommodation, and	desired power.
1 .	24.	The method of claim 23, further wherein additional patient
2.	parameters comprise	at least one of the group consisting of preferences for distance or
3	near sight, preferenc	es for sight under bright or dim conditions, and preferences for
4	contrast sensitivity.	
1	25.	The method of claim 16, wherein the optical shape is further
2	determined based on	an expansion selected from the group consisting of a regular
3	polynomial (EPTP o	r non-EPTP), a Zernike polynomial, a Fourier series, and a discrete
4	shape entirety.	
1	26.	The method of claim 16, wherein the optical shape is further
2	determined based on	a presbyopia-add to pupil ratio (PAR), the PAR ranging from about
3	0.2 to about 1.0.	
1	27.	The method of claim 25, wherein the expansion is a 3rd order or 4th
2	order non-EPTP exp	ansion.
1	28.	The method of claim 25, wherein the expansion is a 6th order or 8th
2	order EPTP expansion	on.
1	29.	The method of claim 16, wherein the optical shape has an optimizer
2	value of about 5.0 or	
1	30.	A method for establishing a prescription that mitigates or treats
2	presbyopia of an eye	in a particular patient, the method comprising:

(a) inputting a set of patient parameters specific for the particular patient

3

4

into an optimizer; and

5	(b) deriving a prescription for the particular patient with the optimizer per a				
6	goal function, the goal function related to a plurality of viewing conditions, so as to				
7	mitigate or treat the presbyopia in the patient.				
1	31. The method of claim 30, further comprising inputting a radially				
2	symmetric initial optical shape.				
1	32. The method of claim 31, wherein the radially symmetric shape is				
2	decomposed into a set of polynomials having at least two independent variables.				
1	33. The method of claim 32, wherein one of the at least two				
2	independent variables is the ratio of a customized prescription shape diameter to pupil				
3	diameter.				
1	34. The method of claim 30, wherein the goal function comprises a				
2	ratio of an optical parameter of the eye with a diffraction theory parameter.				
1	35. The method of claim 30, wherein the iterative optimizer is				
2	configured to employ a method selected from the group consisting of Downhill Simplex				
3	method, Direction set method, and Simulated Annealing method.				
1	36. A method for treating or mitigating presbyopia in a particular				
2	patient, the method comprising:				
3	(a) selecting a goal function appropriate for presbyopia of an eye;				
4	(b) inputting a set of patient parameters specific for the particular patient;				
5	(c) determining an optical shape for the particular patient based on the set				
6	of patient parameters per the goal function; and				
7	(d) mitigating or treating the presbyopia in the patient by administering to				
8	the patient a procedure selected from the group consisting of:				
9	(i) ablating a corneal surface of the patient to provide a corneal				
0	shape that corresponds to the optical shape,				
1	(ii) providing the patient with a contact lens or spectacle lens that				
2	has a shape that corresponds to the optical shape, and				
3	(iii) providing the patient with an intra-ocular lens that has a shape				
4	that corresponds to the optical shape				

1	37. A system for establishing a prescription that mitigates or treats
2	presbyopia in a particular patient, the system comprising:
3	(a) an input that accepts a set of patient parameters; and
4	(b) an optimizer module that determines the prescription for the particular
5	patient based on the set of patient parameters, using a goal function appropriate for
6	presbyopia of an eye.
1	38. The system of claim 37, wherein the goal function reflects optical
2	38. The system of claim 37, wherein the goal function reflects optical quality throughout a vergence range.
4	quanty unoughout a vergence range.
1	39. The system of claim 37, wherein the goal function comprises a ratio
2	of an optical parameter of the eye with a diffraction theory parameter.
1	40 TI 4 C.1: 20 1 : 4 1 C. :
1	40. The system of claim 39, wherein the goal function comprises at
2	least one parameter selected from the group consisting of Strehl Ratio (CS), modulation
3	transfer function (MTF), point spread function (PSF), encircled energy (EE), MTF volume
4	or volume under MTF surface (MTFV), compound modulation transfer function (CMTF),
5	and contrast sensitivity (CS).
1	41. The system of claim 37, wherein the goal function is based on
2	geometrical optics.
	S
1	42. The system of claim 41, wherein the goal function is determined
2	using ray tracing.
1	43. The system of claim 37, wherein the set of patient parameters
1	, F
2	comprises at least one parameter selected from the group consisting of pupil size, residual
3	accommodation, and power need.
1	44. The system of claim 37, wherein the module makes use of an initial
2	optical shape, a set of initial conditions, and the set of patient parameters for an iterative
3	optimization so as to establish an optical shape for the particular patient, using a goal
4	function appropriate for presbyopia of an eye.
1	45. The system of claim 44, wherein the initial optical shape is radially
2	symmetric.

1	46. The system of claim 45, wherein the radially symmetric shape is
2	decomposed by the module into a set of polynomials having at least two independent
3	variables.
1	47. The system of claim 46, wherein one of the at least two independent
2	variables is the ratio of the customized shape diameter to pupil diameter.
1	48. The system of claim 44, wherein the goal function comprises a ratio
2	of an optical parameter of the eye with a diffraction theory parameter.
1	49. The system of claim 44, wherein the optimizer is configured to
2	employ a method selected from the group consisting of Downhill Simplex optimization,
3	Direction set optimization, and Simulated Annealing optimization.
1	50. The system of claim 44, wherein the set of patient parameters
2	comprises at least one parameter selected from the group consisting of pupil size, residual
3	accommodation, and desired power.
1	51. A system for reprofiling a surface of a cornea of an eye of a
2	particular patient from a first shape to a second shape having correctively improved optical
3	properties, the system comprising:
4	(a) an input that accepts a set of patient parameters;
5	(b) a module that determines an optical shape for the particular patient
6	based on the set of patient parameters, using a goal function appropriate for presbyopia of
7	an eye;
8	(c) a processor that generates an ablation profile; and
9	(d) a laser system that directs laser energy onto the cornea according to the
10	ablation profile so as to reprofile a surface of the cornea from the first shape to the second
11	shape, the second shape corresponding to the determined optical shape.
1	52. A method for defining a prescription for treating presbyopia in a
2	particular patient, the method comprising:
3	(a) providing an optical shape configured to treat the vision condition;
4	(b) determining a pupil diameter of the particular patient; and

3	(c)	defini	ng a prescription shape comprising a central portion, the
6	central portion having	g a dim	ension within a range between about 0.35 and about 0.55 of
7	the pupil diameter, th	e presc	ription shape based on:
8		(i)	the pupil diameter;
9		(ii)	an inner region of the optical shape; and
10		(iii)	an attribute of at least one eye previously treated with the
11	optical shape.		
1	53.	The m	nethod of claim 52, wherein the pupil diameter of the particular
2	patient comprises a d		based on at least one member selected from the group
3	consisting of:	-	
4	(a)	a pupi	il diameter as measured when focusing on a near object;
5	(b)	a pupi	il diameter as measured when focusing on a distant object;
6	(c)	a pupi	il diameter as measured under photopic conditions;
7	(d)	a pupi	il diameter as measured under mesopic conditions; and
8	(e)	a pupi	il diameter as measured under scotopic conditions.
1	54.	The m	nethod of claim 52, wherein the prescription shape is
2	aspherical, and the ce	entral po	ortion of the prescription shape is aspherical; the prescription
3	shape is spherical and	d the ce	ntral portion of the prescription shape is spherical; the
4	prescription shape is	aspheri	cal, and the central portion of the prescription shape is
5	spherical; or the prese	cription	shape is spherical, and the central portion of the prescription
6	shape is aspherical.		
1	55.	The m	nethod of claim 52, wherein the dimension of the prescription
2	shape central portion	compri	ses a diameter of the central portion and remains within a
3	range between about	0.4 and	about 0.5 of the pupil diameter of the particular patient.
1	56.	The m	nethod of claim 52, wherein the dimension of the central
2	portion comprises a d		r of the central portion and remains within a range between
3			the pupil diameter of the particular patient.
1	57.	The m	nethod of claim 52, wherein a power of the central portion is
2			and about 4.0 diopters.
			· · · · · · · · · · · · · · · · · · ·

1	58.	The method of claim 52, wherein a power of the central portion is
2	about 3.1 diopters.	
1	59.	The method of claim 52, further comprising:
2	(d)	treating the particular patient's eye with the defined prescription
3		
3	snape such that the p	presbyopia of the patient is ameliorated.
1	60.	The method of claim 59, wherein the prescription shape is defined
2	such that following t	treatment an acuity measurement of the particular patient's eye is
3	optimized.	
1	61.	The method of claim 59, wherein the treating comprises
2		particular patient a procedure selected from the group consisting of:
3	(a)	ablating a corneal surface of the patient to provide a corneal surface
4	, ,	nsion that corresponds to a dimension of the defined prescription
5	shape,	isson that corresponds to a difficultion of the defined prescription
6	(b)	providing the patient with a contact lens having a dimension that
7	•	nension of the defined prescription shape, and
8	(c)	providing the patient with an intra-ocular lens having a dimension
9	, ,	dimension of the defined refractive shape.
	and corresponds to t	dimension of the defined fertactive shape.
1	62.	The method of claim 59, wherein the defined refractive shape
2	includes an aspheric	portion.
	60	
1	63.	A system for scaling a prescription shape that treats a vision
2	-	ular patient, the system comprising:
3	(a)	an input that accepts a prescriptive shape specific for treating the
4	vision condition;	
5	(b)	an input that accepts a pupil dimension of the particular patient; and
6	(c)	a module that scales a central portion of the prescription shape
7	based on the pupil d	imension of the particular patient and an attribute of at least one eye
8	previously treated w	ith the prescriptive shape such that the prescription shape ameliorates
9	an indication of the	vision condition of the particular patient, and such that the central
10	portion has dimension	on between about 0.35 and about 0.55 of the pupil diameter.

The system of claim 63, further comprising:

1

64.

2		(d)	a processor that generates an ablation profile; and
3		(e)	a laser system that directs laser energy onto the cornea according to
4	the ablation pr	rofile so	as to reprofile a surface of the cornea according to the prescription
5	shape.		
	•		
1		65.	A method for treating presbyopia of an eye of a patient, the method
2	comprising:		
3		identif	ying a first pupil size of the eye under a first viewing condition;
4		identif	ying a second pupil size of the eye under a second viewing condition;
5		calcula	ating a presbyopia-mitigating prescription for the eye in response to
6	the pupil sizes	so that	the eye has a first power suitable for the first viewing condition at
7	the first size a	nd so th	at the eye has a second power suitable for the second viewing
8	condition at th	ne secon	d size.
1		66.	The method of claim 65, wherein calculating the prescription
2	comprises cale	culating	a power map of the eye.
1		67.	The method of claim 65, wherein calculating the prescription
2	comprises cale	culating	a first effective power of the eye with the first pupil size and
3	_	_	effective power of the eye with the second pupil size.
	0		· · · · · · · · · · · · · · · · · · ·
1		68.	The method of claim 65, wherein the first and second pupil
2	diameters are	measure	ed from the eye of the patient while the eye is viewing with the first
3	and second vie	ewing c	onditions, respectively.
1		60	
1	• ,• 1	69.	The method of claim 65, wherein the prescription comprises a
2			d further comprising altering the refraction of the eye with the
3	prescription sl	nape.	
1		70.	The method of claim 69, wherein the refraction of the eye is altered
2	using at least	one of a	laser, a contact lens, an intraocular lens, and a spectacle.
_			,,
1		71.	The method of claim 65, further comprising identifying a third pupil
2	diameter of th	e eye ur	nder a third viewing condition, wherein the prescription is calculated
3	so that the eye	has a t	hird power suitable for the third viewing condition at the third

diameter.

1	72. The method of claim 65, further comprising identifying a plurality
2	of additional pupil diameters of the eye under an associated plurality of additional viewing
3	conditions, wherein the prescription is calculated so that the eye has, for each additional
4	viewing condition, an associated suitable power at an associated additional diameter.
1	73. The method of claim 65, wherein calculating the prescription
2	comprises determining at least one coefficient of a set of Zernike polynomials.
1	74. The method of claim 73, wherein calculating the prescription
2	comprises determining a plurality of selected Zernike coefficients of spherical aberration
3	at various orders.
1	75. The method of claim 65, wherein the eye at the first viewing
2	condition is viewing at a first viewing distance, and wherein the eye at the second viewing
3	condition is viewing at a second viewing distance which is less than the first distance, and
4	wherein the first power is more negative than the second power.
1	76. The method of claim 75, wherein the eye at the first viewing
2	condition has a power between 0.25D and -0.25D, and wherein the eye at the second
3	viewing condition has a power between -0.5D and -3.0D.
1	77. A method for deriving a prescription for an eye, the method
2	comprising:
3	determining a polynomial expansion from a wavefront of an eye;
4	calculating a plurality of effective powers based on a plurality of expansion
5	coefficients of the polynomial expansion at different viewing pupil sizes; and
6	generating the prescription so as to provide a plurality of desired effective
7	powers at said pupil sizes.
1	78. A method for determining an effective power of an eye under a
2	viewing condition, the method comprising;
3	determining a plurality of coefficients of a Zernike polynomial expansion
4	from a wavefront of an eye while the eye has a first pupil size;
5	determining a second pupil size of the pupil under the viewing condition:

6	calculating the effective power of the eye from at least one of the				
7	coefficients of the Zernike polynomial from a relationship between effective power and				
8	pupil size.				
1	79. A system for correcting refraction of an eye, the system comprising:				
2	at least one input for a first pupil size of the eye under a first viewing				
3	condition and a second pupil size of the eye under a second viewing condition;				
4	a prescription calculating module, the module calculating a presbyopia-				
5					
	mitigating prescription for the eye in response to the pupil sizes so that the eye has a first				
6	power suitable for the first viewing condition at the first size and so that the eye has a				
7	second power suitable for the second viewing condition at the second size.				
1	80. A system for deriving a prescription for an eye, the system				
2	comprising:				
3	a polynomial expansion module having an input for a wavefront of an eye				
4	and an output for a polynomial expansion;				
5	an effective power module having an input coupled to the output of the				
6	polynomial expansion module and an output, the effective power module determining an				
7	effective power from the polynomial expansion; and				
8	a prescription module coupled to the effective power module, the				
9	prescription module generating the prescription so as to provide a plurality of different				
10	desired effective powers at an associated plurality of different viewing pupil sizes.				
1	81. A system for determining an effective power of an eye under a				
2	viewing condition, the system comprising;				
3	a first input for a plurality of coefficients of a Zernike polynomial				
4	expansion from a wavefront of an eye while the eye has a first pupil size;				
5	a second input for a second pupil size of the pupil under the viewing				
6	condition;				
7	an effective power calculating module for calculating the effective power of				
8	the eye from at least one of the coefficients of the Zernike polynomial and a relationship				
9	between effective power and pupil size.				
	- · · · · · · · · · · · · · · · · · · ·				