COGNOME NOME MATRICOLA.......

 \bigcirc Gr. 1 Bader (A-G)

○ Gr. 2 Cioffi (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

1. Dire, giustificando la risposta, se il seguente sistema lineare è compatibile o incompatibile, e calcolarne le soluzioni:

$$\begin{cases} 2x_1 - x_2 + x_3 = 2\\ x_1 + 2x_2 + x_4 = 0\\ x_1 - 3x_2 + x_3 - x_4 = 2\\ 5x_2 - x_3 + x_4 = 1 \end{cases}$$

2. Sia $S = \{v_1, \dots, v_t\}$ un sistema di t vettori di uno spazio vettoriale V su \mathbb{R} . Cosa vuol dire che S è linearmente indipendente?

Se S è linearmente indipendente, è vero che $dim(V) \ge t$? Osi O No Perché?

3. Dimostrare che $\mathcal{R} = ((0,0,1),(1,2,-1),(1,1,0))$ è un riferimento di \mathbb{R}^3 e determinare le componenti in \mathcal{R} del vettore u = (1,-1,-1).

4. Determinare la matrice associata all'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}[x]_{\leq 2}$ tale che $f(a,b,c)=(a+c)+(b-a)x+(b+c)x^2$ nei riferimenti canonici di \mathbb{R}^3 e di $\mathbb{R}[x]_{\leq 2}$, rispettivamente. Determinare una base di Ker(f) e una di Im(f). Dire se f è iniettiva e suriettiva.

5. Studiare la diagonalizzabilità della matrice $A = \begin{pmatrix} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$. Se A è diagonalizzabile, determinarne una base di autovettori.

6. Fissato un riferimento cartesiano monometrico ortogonale di un piano della geometria elementare, verificare che i punti A(1,0), B(2,1), C(1,-1) non sono allineati e determinare la circonferenza \mathcal{C} passante per essi. Determinare la retta tangente a \mathcal{C} in A.

7. Fissato un riferimento cartesiano monometrico ortogonale dello spazio della geometria elementare, le rette r:(x,y,z)=(-1,0,1)+(1,1,1)t e $s:\begin{cases} x+z&=-1\\ x-y+z&=-\frac{1}{2} \end{cases}$ sono parallele, incidenti o sghembe?

8. Fissato un riferimento cartesiano monometrico ortogonale dello spazio della geometria elementare, si consideri il piano $\pi: x-2y+2z=1$ e il punto A(1,1,1). Calcolare la distanza di π da A e determinare il piano per A ortogonale a π e parallelo alla retta r(x,y,z)=(0,0,1)+(1,-1,0)t.