(12) INTERNATIONAL A CICATION PUBLISHED UNDER THE PATENT COPERATION TREATY (PCT)

# (19) World Intellectual Property Organization International Bureau



**10**/ 5295**04** 

(43) International Publication Date 8 April 2004 (08.04.2004)

**PCT** 

(10) International Publication Number WO 2004/029019 A2

- (51) International Patent Classification<sup>7</sup>: C07C 233/78, 311/18, C07D 335/06, A61K 31/166, 31/18, 31/382, A61P 25/28
- (21) International Application Number:

PCT/US2003/030388

(22) International Filing Date:

26 September 2003 (26.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/414,287

27 September 2002 (27.09.2002) US

- (71) Applicant (for all designated States except US): ELAN PHARMACEUTICALS, INC. [US/US]; 800 Gateway Boulevard, South San Francisco, CA 94080 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HOM, Roy [US/US]; 82 Ina Court, San Francisco, CA 94112 (US). VARGHESE, John [US/US]; 1722 18th Avenue, San Francisco, CA 94122 (US).

- (74) Agent: SHALTOUT, Raafat, M.; McDonnell Boehnen Hulbert & Berghoff, Suite 3200, 300 South Wacker Drive, Chicago, IL 60606 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOUNDS FOR THE TREATMENT OF ALZHEIMER'S DISEASE

$$R_N$$
  $N$   $N$   $N$   $R_2$   $R_3$ 

(57) Abstract: The invention relates to compounds of formula (I). Useful in treating Alzheimer's disease and other similar diseases. These compounds include inhibitors of the beta-secretase enzyme that are useful in the treatment of Alzheimer's disease and other diseases characterized by deposition of A beta peptide in a mammal. The compounds of the invention are useful in pharmaceutical compositions and methods of treatment to reduce A beta peptide formation.

20

25

30



# COMPOUNDS FOR THE TREATMENT OF ALZHEIMER'S DISEASE

#### CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application Serial No. 60/414,287, filed September 27, 2002, which is incorporated herein by reference in its entirety.

#### BACKGROUND OF THE INVENTION

#### Field of the Invention

The invention relates to substituted amino alcohols and to such compounds that are useful in the treatment of Alzheimer's disease and related diseases. More specifically, it relates to such compounds that are capable of inhibiting beta-secretase, an enzyme that cleaves amyloid precursor protein to produce amyloid beta peptide (A beta), a major component of the amyloid plaques found in the brains of Alzheimer's sufferers.

#### Background of the Invention

Alzheimer's disease (AD) is a progressive degenerative disease of the brain primarily associated with aging. Clinical presentation of AD is characterized by loss of memory, cognition, reasoning, judgment, and orientation. As the disease progresses, motor, sensory, and linguistic abilities are also affected until there is global impairment of multiple cognitive functions. These cognitive losses occur gradually, but typically lead to severe impairment and eventual death in the range of four to twelve years.

Alzheimer's disease is characterized by two pathologic observations in the brain: neurofibrillary tangles amyloid (or neuritic) plagues, predominantly of an aggregate of a peptide fragment know as A Individuals with AD exhibit characteristic beta-amyloid deposits in the brain (beta amyloid plaques) and in cerebral vessels (beta amyloid angiopathy) as well as neurofibrillary tangles. Neurofibrillary tangles occur not

10

15

20

25

30

35

only in Alzheimer's disease but also in other dementiainducing disorders. On autopsy, large numbers of these lesions are generally found in areas of the human brain important for memory and cognition.

Smaller numbers of these lesions in a more restricted anatomical distribution are found in the brains of most aged humans who do not have clinical AD. Amyloidogenic plaques and vascular amyloid angiopathy also characterize the brains of individuals with Trisomy 21 (Down's Syndrome), Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type (HCHWA-D), and other neurodegenerative disorders. Beta-amyloid is a defining feature of AD, now believed to be a causative precursor or factor in the development of disease. Deposition of A beta in areas of the brain responsible for cognitive activities is a major factor in the development of AD. amyloid plaques are predominantly composed of amyloid beta peptide (A beta, also sometimes designated betaA4). peptide is derived by proteolysis of the amyloid precursor protein (APP) and is comprised of 39-42 amino acids. proteases called secretases are involved in the processing of APP.

Cleavage of APP at the N-terminus of the A beta peptide by beta-secretase and at the C-terminus by one or more gamma-secretases constitutes the beta-amyloidogenic pathway, i.e. the pathway by which A beta is formed. Cleavage of APP by alpha-secretase produces alpha-sAPP, a secreted form of APP that does not result in beta-amyloid plaque formation. This alternate pathway precludes the formation of A beta peptide. A description of the proteolytic processing fragments of APP is found, for example, in U.S. Patent Nos. 5,441,870; 5,721,130; and 5,942,400.

An aspartyl protease has been identified as the enzyme responsible for processing of APP at the beta-secretase cleavage site. The beta-secretase enzyme has been disclosed using varied nomenclature, including BACE, Asp, and Memapsin.

10

15

35

See, for example, Sinha et al., 1999, Nature 402:537-554 (p501) and published PCT application WO00/17369.

Several lines of evidence indicate that progressive cerebral deposition of beta-amyloid peptide (A beta) plays a seminal role in the pathogenesis of AD and can precede cognitive symptoms by years or decades. See, for example, Selkoe, 1991, Neuron 6:487. Release of A beta from neuronal cells grown in culture and the presence of A beta in cerebrospinal fluid (CSF) of both normal individuals and AD patients has been demonstrated. See, for example, Seubert et al., 1992, Nature 359:325-327.

It has been proposed that A beta peptide accumulates as a result of APP processing by beta-secretase, thus inhibition of this enzyme's activity is desirable for the treatment of AD. In vivo processing of APP at the beta-secretase cleavage site is thought to be a rate-limiting step in A beta production, and is thus a therapeutic target for the treatment of AD. See for example, Sabbagh, M., et al., 1997, Alz. Dis. Rev. 3, 1-19.

20 BACE1 knockout mice fail to produce A beta, and present a normal phenotype. When crossed with transgenic mice that over express APP, the progeny show reduced amounts of A beta in brain extracts as compared with control animals (Luo et al., 2001 Nature Neuroscience 4:231-232). This evidence further supports the proposal that inhibition of beta-secretase activity and reduction of A beta in the brain provides a therapeutic method for the treatment of AD and other beta amyloid disorders.

At present there are no effective treatments for halting, 30 preventing, or reversing the progression of Alzheimer's disease. Therefore. there is an urgent need pharmaceutical agents capable of slowing the progression of Alzheimer's disease and/or preventing it in the first place.

Compounds that are effective inhibitors of betasecretase, that inhibit beta-secretase-mediated cleavage of

10

25

30

APP, that are effective inhibitors of A beta production, and/or are effective to reduce amyloid beta deposits or plaques, are needed for the treatment and prevention of disease characterized by amyloid beta deposits or plaques, such as AD.

#### SUMMARY OF THE INVENTION

The invention encompasses the compounds of formula (I) shown below, pharmaceutical compositions containing the compounds and methods employing such compounds or compositions in the treatment of Alzheimer's disease and more specifically compounds that are capable of inhibiting beta-secretase, an enzyme that cleaves amyloid precursor protein to produce A-beta peptide, a major component of the amyloid plaques found in the brains of Alzheimer's sufferers.

In one aspect, the invention provides compounds of the formula I:

$$R_N$$
 OH  $R_{20}$   $R_2$   $R_3$ 

and pharmaceutically acceptable salts or esters thereof, wherein  $R_{20}$  is H,  $C_{1-6}$  alkyl or alkenyl,  $C_{1-6}$  haloalkyl or  $C_{4-7}$  cycloalkyl;

 $R_1$  is  $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$ , or

- $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C=N, -CF<sub>3</sub>, -C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, mono- or dialkylamino, -N(R)C(O)R'-, -OC(=O)-amino and -OC(=O)-mono- or dialkylamino, or
- $C_2$ - $C_6$  alkenyl or  $C_2$ - $C_6$  alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently

selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, and mono- or dialkylamino, or aryl, heterocyclyl,  $-C_1-C_6$  alkyl-aryl,  $-C_1-C_6$ alkyl-heteroaryl, or  $-C_1-C_6$  alkyl-heterocyclyl, where 5 the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C≡N, -NR<sub>105</sub>R'<sub>105</sub>, -CO<sub>2</sub>R, -N(R)COR', or  $-N(R)SO_2R'$ ,  $-C(=O)-(C_1-C_4)$  alkyl,  $-SO_2-C_4$ amino,  $-SO_2$ -mono or dialkylamino, -C(=0)-amino, -C(=0)-mono or dialkylamino, -SO<sub>2</sub>-( $C_1$ - $C_4$ ) alkyl, or 10  $C_1$ - $C_6$  alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or  $C_3$ - $C_7$  cycloalkyl optionally substituted with 1, 2, or 15 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, -C<sub>1</sub>-C<sub>6</sub> alkyl and mono- or dialkylamino, or  $C_1$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -20 -C=N,  $-CF_3$ ,  $-C_1-C_3$  alkoxy, amino, OH, -SH, mono- or dialkylamino and  $-C_1-C_3$  alkyl, or  $C_2-C_{10}$  alkenyl or  $C_2-C_{10}$  alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, C<sub>1</sub>-C<sub>6</sub> alkyl and 25 mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo; independently are hydrogen,  $C_1 - C_{10}$  alkyl,  $C_1 - C_{10}$ 30 alkylaryl or C<sub>1</sub>-C<sub>10</sub> alkylheteroaryl;  $R_{C}$  is hydrogen, -( $CR_{245}R_{250}$ )<sub>0-4</sub>-aryl, -( $CR_{245}R_{250}$ )<sub>0-4</sub>-heteroaryl, - $(CR_{245}R_{250})_{0-4}$ -heterocyclyl,  $-(CR_{245}R_{250})_{0-4}$ -aryl-heteroaryl, -(CR<sub>245</sub>R<sub>250</sub>)<sub>0-4</sub>-aryl-heterocyclyl,  $-(CR_{245}R_{250})_{0-4}$ -aryl-aryl, -  $(CR_{245}R_{250})_{0-4}$ -heteroaryl-aryl, -  $(CR_{245}R_{250})_{0-4}$ -heteroaryl-35 heterocyclyl,  $-(CR_{245}R_{250})_{0-4}$ -heteroaryl-heteroaryl,

```
(CR<sub>245</sub>R<sub>250</sub>)<sub>0-4</sub>-heterocyclyl-heteroaryl,
                                                                                                                                                                                                                  -(CR_{245}R_{250})_{0-4}-
                                     heterocyclyl-heterocyclyl,
                                                                                                                                                               - (CR_{245}R_{250})_{0-4}-heterocyclyl-
                                     aryl,
                                                                                   - [C(R_{255})(R_{260})]_{1-3}-CO-N-(R_{255})_{2},
                                                                                                                                                                                                                           -CH(aryl)<sub>2</sub>,
                                     -CH(heteroaryl)<sub>2</sub>,
                                                                                                                                                                                            -CH (heterocyclyl) 2,
                                     -CH(aryl)(heteroaryl), -(CH<sub>2</sub>)<sub>0-1</sub>-CH((CH<sub>2</sub>)<sub>0-6</sub>-OH)-(CH<sub>2</sub>)<sub>0-1</sub>-
     5
                                     aryl, -(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-heteroaryl, -CH(-aryl)_{0-1}-heteroaryl, -CH(-ary
                                     or -heteroaryl)-CO-O(C_1-C_4 alkyl), -CH(-CH_2-OH)-CH(OH)-
                                    phenyl-NO<sub>2</sub>, (C_1-C_6 alkyl)-O-(C_1-C_6 alkyl)-OH; -CH<sub>2</sub>-NH-CH<sub>2</sub>-
                                     CH(-O-CH_2-CH_3)_2, -(CH_2)_{0-6}-C(=NR_{235})(NR_{235}R_{240}), or
                                     C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups
 10
                                                        independently selected from the group consisting of
                                                                                   -OC=ONR_{235}R_{240},
                                                                                                                                              -S(=0)_{0-2}(C_1-C_6)
                                                                                                                                                                                                        alkyl),
                                                        -NR_{235}C = ONR_{235}R_{240}, \quad -C = ONR_{235}R_{240}, \quad \text{and} \quad -S \; (=O) \; _2NR_{235}R_{240}, \quad \text{or} \quad -C = ONR_{235}R_{240}, \quad -C = ONR_{235}R_{240}, \quad \text{or} \quad -C = ONR_{235}R_{240}, \quad \text{or} \quad -C = ONR_{235}R_{240}, \quad -C = ONR_{235}R_{240}, \quad -C = ONR_{235
                                     -(CH_2)_{0-3}-(C_3-C_8) cycloalkyl wherein the cycloalkyl
                                                        optionally substituted with 1, 2, or 3 groups
 15
                                                        independently selected from the group consisting of
                                                        R_{205}, -CO_2H, and -CO_2-(C_1-C_4 \text{ alkyl}), or
                                    cyclopentyl, cyclohexyl, or cycloheptyl ring fused to
                                                        aryl, heteroaryl, or heterocyclyl wherein one, two
20
                                                       or three carbons of the cyclopentyl, cyclohexyl, or
                                                       cycloheptyl is optionally replaced with a heteroatom
                                                       independently selected from NH, NR_{215}, O, or S(=0)_{0-2},
                                                                              wherein the
                                                                                                                                           cyclopentyl, cyclohexyl,
                                                       cycloheptyl group can be optionally substituted with
25
                                                       one or two groups that are independently R_{205}, =0,
                                                       -CO-NR<sub>235</sub>R<sub>240</sub>, or -SO<sub>2</sub>-(C_1-C_4 alkyl), or
                                   C_2\text{-}C_{10} alkenyl or C_2\text{-}C_{10} alkynyl, each of which is
                                                       optionally substituted with 1, 2, or 3 R_{205} groups,
                                                      wherein
                                   each aryl and heteroaryl is optionally substituted with
30
                                                       1, 2, or 3 R_{200}, and wherein each heterocyclyl is
                                                      optionally substituted with 1, 2, 3, or 4 R_{210};
                R_{200} at each occurrence is independently selected from -OH,
                                   -NO<sub>2</sub>, halogen, -CO<sub>2</sub>H, C=N, -(CH<sub>2</sub>)_{0-4}-CO-NR<sub>220</sub>R<sub>225</sub>, -(CH<sub>2</sub>)_{0-4}-
                                  CO-(C_1-C_{12} alkyl), -(CH_2)_{0-4}-CO-(C_2-C_{12} alkenyl), -(CH_2)_{0-4}-
35
```

10

15

20

25

30

- $\text{C}_{\text{1}}\text{-}\text{C}_{\text{10}}$  alkyl optionally substituted with 1, 2, or 3  $R_{\text{205}}$  groups, or
- $\text{C}_2\text{-C}_{10}$  alkenyl or  $\text{C}_2\text{-C}_{10}$  alkynyl, each of which is optionally substituted with 1 or 2  $R_{205}$  groups, wherein
- the aryl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 groups that are independently  $R_{205},\ R_{210},$  or
  - $C_1\text{-}C_6$  alkyl substituted with 1, 2, or 3 groups that are independently  $R_{205}$  or  $R_{210},$  and wherein
- the heterocyclyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently  $R_{210}$ ;
- $R_{205}$  at each occurrence is independently selected from  $C_1$ - $C_6$  alkyl, halogen, -OH, -O-phenyl, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1$ - $C_6$  alkoxy, NH $_2$ , NH( $C_1$ - $C_6$  alkyl) or N-( $C_1$ - $C_6$  alkyl);
- $R_{210}$  at each occurrence is independently selected from halogen,  $C_1\text{-}C_6 \text{ alkoxy, } C_1\text{-}C_6 \text{ haloalkoxy, } -NR_{220}R_{225}, \text{ OH, } C\equiv N, \text{ } -CO\text{-}(C_1\text{-}C_4 \text{ alkyl}), \text{ } -SO_2\text{-}NR_{235}R_{240}, \text{ } -CO\text{-}NR_{235}R_{240}, \text{ } -SO_2\text{-}(C_1\text{-}C_4 \text{ alkyl}), \text{ } =O, \text{ or }$

10



- $C_1-C_6$  alkyl,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl or  $C_3-C_7$  cycloalkyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups;
- $R_{215}$  at each occurrence is independently selected from  $C_1$ - $C_6$  alkyl,  $-(CH_2)_{0-2}$ -(aryl),  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_7$  cycloalkyl, and  $-(CH_2)_{0-2}$ -(heteroaryl),  $-(CH_2)_{0-2}$ -(heterocyclyl), wherein
  - the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently  $R_{205}$  or  $R_{210}$ , and wherein
  - the heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3  $R_{210}$ ;
- R<sub>220</sub> and R<sub>225</sub> at each occurrence are independently selected from
  -H, -C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -(C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>3</sub>-C<sub>7</sub> cycloalkyl), 
  (C<sub>1</sub>-C<sub>6</sub> alkyl)-O-(C<sub>1</sub>-C<sub>3</sub> alkyl), -C<sub>2</sub>-C<sub>6</sub> alkenyl, -C<sub>2</sub>-C<sub>6</sub>
  alkynyl, -C<sub>1</sub>-C<sub>6</sub> alkyl chain with one double bond and one
  triple bond, -aryl, -heteroaryl, and -heterocyclyl, or
  -C<sub>1</sub>-C<sub>10</sub> alkyl optionally substituted with -OH, -NH<sub>2</sub> or
  halogen, wherein
- the aryl, heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or  $3\ R_{270}$  groups
  - $R_{235}$  and  $R_{240}$  at each occurrence are independently H, or  $C_1\text{--}C_6$  alkyl;
- 25 R<sub>245</sub> and R<sub>250</sub> at each occurrence are independently selected from -H, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkylaryl, C<sub>1</sub>-C<sub>4</sub> alkylheteroaryl, C<sub>1</sub>-C<sub>4</sub> hydroxyalkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, -(CH<sub>2</sub>)<sub>0-4</sub>-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl, and phenyl; or
- 30 R<sub>245</sub> and R<sub>250</sub> are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, where one carbon atom is optionally replaced by a heteroatom selected from -O-, -S-, -SO<sub>2</sub>-, and -NR<sub>220</sub>-;
- 35  $R_{255}$  and  $R_{260}$  at each occurrence are independently selected from -H,  $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6$  alkyl),  $-(C_1-C_4$  alkyl)-aryl,

10

-(C<sub>1</sub>-C<sub>4</sub> alkyl)-heteroaryl, -(C<sub>1</sub>-C<sub>4</sub> alkyl)-heterocyclyl, - aryl, -heteroaryl, -heterocyclyl, -(CH<sub>2</sub>)<sub>1-4</sub>-R<sub>265</sub>-(CH<sub>2</sub>)<sub>0-4</sub>-aryl, -(CH<sub>2</sub>)<sub>1-4</sub>-R<sub>265</sub>-(CH<sub>2</sub>)<sub>0-4</sub>-heteroaryl, -(CH<sub>2</sub>)<sub>1-4</sub>-R<sub>265</sub>-(CH<sub>2</sub>)<sub>0-4</sub>-heterocyclyl, or

- $C_1-C_6$  alkyl,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl or  $-(CH_2)_{0-4}-C_3-C_7$  cycloalkyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups, wherein
- each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently  $R_{205},\ R_{210},$  or  $C_1$ - $C_6$  alkyl substituted with 1, 2, or 3 groups that are independently  $R_{205}$  or  $R_{210},$  and wherein
- each heterocyclyl is optionally substituted with 1, 2, 3, or 4  $R_{210}$ ;
- $R_{265}$  at each occurrence is independently -O-, -S- or -N( $C_1$ - $C_6$  alkyl)-;
  - $R_{270}$  at each occurrence is independently  $R_{205},$  halogen  $C_1-C_6$  alkoxy,  $C_1-C_6$  haloalkoxy,  $NR_{235}R_{240},$  -OH, -C=N, -CO-( $C_1-C_4$  alkyl),  $_{2}SO_{2}-NR_{235}R_{240},$  -CO-NR\_{235}R\_{240}, -SO\_{2}-( $C_1-C_4$  alkyl), e0, or
- C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl or  $-(CH_2)_{0-4}-C_3-C_7$  cycloalkyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups;
- R<sub>N</sub> is R'<sub>100</sub>, -C(=O)-NR<sub>100</sub>-R'<sub>100</sub>, -C(=O)O-R'<sub>100</sub>, -SO<sub>2</sub>R'<sub>100</sub>, -(CRR')<sub>1-6</sub>R'<sub>100</sub>, -C(=O)-(CRR')<sub>0-6</sub>R<sub>100</sub>, -C(=O)-(CRR')<sub>1-6</sub>-O-R'<sub>100</sub>, -C(=O)-(CRR')<sub>1-6</sub>-C(=O)-(CRR')<sub>1-6</sub>-C(=O)-R<sub>100</sub>, -C(=O)-(CRR')<sub>1-6</sub>-C(=O)-R<sub>100</sub>, -C(=O)-(CRR')<sub>1-6</sub>-NR<sub>100</sub>-R'<sub>100</sub>, or  $\frac{Z}{X'} \frac{(CH_2)_{07}-CHC(O)}{R_4}$

wherein

 $R_4$  is selected from the group consisting of H;  $NH_2$ ;  $-NH-(CH_2)_{n6}-R_{4-1}$ ;  $-NHR_8$ ;  $-NR_{50}C(O)R_5$ ;  $C_1-C_4$  alkyl- $NHC(O)R_5$ ;  $-(CH_2)_{0-4}R_8$ ;  $-O-C_1-C_4$  alkanoyl; OH;  $C_6-C_{10}$  aryloxy optionally substituted with 1, 2, or 3 groups that are independently halogen,  $C_1-C_4$  alkyl,  $-CO_2H$ ,  $-C(O)-C_1-C_4$  alkoxy, or  $C_1-C_4$  alkoxy;  $C_1-C_6$  alkoxy; aryl  $C_1-C_4$  alkoxy;  $-NR_{50}CO_2R_{51}$ ;  $-C_1-C_4$  alkyl-

10

15

20

25

30

35



$$\begin{split} & \text{NR}_{50}\text{CO}_2\text{R}_{51}; \quad \text{C}\equiv\text{N}; \quad \text{-CF}_3; \quad \text{-CF}_2\text{-CF}_3; \quad \text{-C}\equiv\text{CH}; \quad \text{-CH}_2\text{-CH}=\text{CH}_2; \quad \text{-}(\text{CH}_2)_{1-4}\\ & \quad \text{-R}_{4-1}; \quad \text{-}(\text{CH}_2)_{1-4}\text{-NH}-\text{R}_{4-1}; \quad \text{-O}-(\text{CH}_2)_{n6}\text{-R}_{4-1}; \quad \text{-S}-(\text{CH}_2)_{n6}\text{-R}_{4-1}; \quad \text{-}(\text{CH}_2)_{0-4}\text{-NHC}(\text{O}) - (\text{CH}_2)_{0-6}\text{-R}_{52}; \quad \text{-}(\text{CH}_2)_{0-4}\text{-R}_{53}\text{-}(\text{CH}_2)_{0-4}\text{-R}_{54}; \\ & \text{wherein} \end{split}$$

n<sub>6</sub> is 0, 1, 2, or 3; n<sub>7</sub> is 0, 1, 2, or 3;

 $R_{4-1}$  is selected from the group consisting of  $-SO_2-(C_1-C_8$  alkyl),  $-SO-(C_1-C_8$  alkyl),  $-S-(C_1-C_8$  alkyl),  $-S-CO-(C_1-C_6$  alkyl),  $-SO_2-NR_{4-2}R_{4-3}$ ;  $-CO-C_1-C_2$  alkyl;  $-CO-NR_{4-3}R_{4-4}$ ;

 $R_{4-2}$  and  $R_{4-3}$  are independently H,  $C_1-C_3$  alkyl, or  $C_3-C_6$  cycloalkyl;

 $R_{4-4}$  is alkyl, arylalkyl, alkanoyl, or arylalkanoyl;  $R_{4-6}$  is-H or  $C_1$ - $C_6$  alkyl;

 $R_5$ is selected from the group consisting of C3-C7 cycloalkyl;  $C_1$ - $C_6$  alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, - $NR_6R_7$ ,  $C_1-C_4$  alkoxy,  $C_5-C_6$  heterocycloalkyl,  $C_5-C_6$ heteroaryl, C<sub>6</sub>-C<sub>10</sub> aryl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl·C<sub>1</sub>-C<sub>4</sub> alkyl,  $-S-C_1-C_4$  alkyl,  $-SO_2-C_1-C_4$  alkyl,  $-CO_2H$ ,  $-CONR_6R_7$ , -CO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>6</sub>-C<sub>10</sub> aryloxy; heteroaryl optionally substituted with 1, 2, or 3 groups that are independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $C_1 C_4$  haloalkyl, or OH; heterocycloalkyl optionally substituted with 1, 2, or 3 groups that are independently  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, halogen, or C2-C4 alkanoyl; aryl optionally substituted with 1, 2, 3, or 4 groups that are independently halogen, OH,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $C_1$ - $C_4$  haloalkyl; and -NR<sub>6</sub>R<sub>7</sub>; wherein

 $R_6$  and  $R_7$  are independently selected from the group consisting of H,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkanoyl, phenyl,  $-SO_2$ - $C_1$ - $C_4$  alkyl, phenyl  $C_1$ - $C_4$  alkyl;

 $R_8$  is selected from the group consisting of  $-SO_2$ -heteroaryl,  $-SO_2$ -aryl,  $-SO_2$ -heterocycloalkyl,  $-SO_2$ - $C_1$ -

10 -

15

20

25

30

35

 $C_{10}$  alkyl,  $-C(0)NHR_9$ , heterocycloalkyl,  $-S-C_1-C_6$  alkyl,  $-S-C_2-C_4$  alkanoyl, wherein

 $R_9$  is aryl  $C_1\text{--}C_4$  alkyl,  $C_1\text{--}C_6$  alkyl, or H;  $R_{50}$  is H or  $C_1\text{--}C_6$  alkyl;

 $R_{51}$  is selected from the group consisting of aryl  $C_1\text{-}C_4$ alkyl;  $C_1-C_6$  alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, cyano, heteroaryl,  $-NR_6R_7$ ,  $-C(O)NR_6R_7$ ,  $C_3-C_7$  cycloalkyl, or -C<sub>1</sub>-C<sub>4</sub> alkoxy; heterocycloalkyl optionally substituted with 1 or2 groups that independently  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, halogen,  $C_2$ - $C_4$  alkanoyl, aryl  $C_1$ - $C_4$  alkyl, and  $-SO_2$   $C_1$ - $C_4$  alkyl; alkenyl; alkynyl; heteroaryl optionally substituted with 1, 2, or 3 groups that are independently OH,  $C_1$ - $C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $NH_2$ ,  $NH(C_1-C_6$  alkyl)  $N(C_1-C_6)$  $alkyl)(C_1-C_6)$ alkyl); heteroarylalkyl optionally substituted with 1, 2, or 3 groups that are independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $NH_2$ ,  $NH(C_1-C_6$  alkyl) or  $N(C_1-C_6$  alkyl)( $C_1-C_6$  alkyl); heterocycloalkyl; C<sub>3</sub>-C<sub>8</sub> cycloalkyl; aryl; cycloalkylalkyl; wherein the aryl; heterocycloalkyl,  $C_3$ - $C_8$  cycloalkyl, and cycloalkylalkyl groups are optionally substituted with 1, 2, 3, 4 or 5 groups that are independently halogen, CN,  $NO_2$ ,  $C_1$ - $C_6$  alkyl,  $C_1-C_6$  alkoxy,  $C_2-C_6$  alkanoyl,  $C_1-C_6$  haloalkyl,  $C_1-C_6$ haloalkoxy, hydroxy,  $C_1-C_6$  hydroxyalkyl,  $C_1-C_6$  alkoxy  $C_1-C_6$  alkyl,  $C_1-C_6$  thioalkoxy,  $C_1-C_6$  thioalkoxy  $C_1-C_6$ alkyl, or C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> alkoxy;

R<sub>52</sub> is heterocycloalkyl, heteroaryl, aryl, cycloalkyl, -  $S(O)_{0-2}$ - $C_1$ - $C_6$  alkyl,  $CO_2$ H, - $C(O)_{0}$ NH<sub>2</sub>, - $C(O)_{0}$ NH(alkyl), - $C(O)_{0}$ N(alkyl)(alkyl), - $CO_2$ -alkyl, -NHS(O)<sub>0-2</sub>- $C_1$ - $C_6$  alkyl, -N(alkyl) $S(O)_{0-2}$ - $C_1$ - $C_6$  alkyl, - $S(O)_{0-2}$ -heteroaryl, - $S(O)_{0-2}$ -aryl, -NH(arylalkyl), -N(alkyl)(arylalkyl), thioalkoxy, or alkoxy, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy,

10

15

20

25

30

35



thioalkoxy, halogen, haloalkyl, haloalkoxy, alkanoyl, NO2, CN, alkoxycarbonyl, or aminocarbonyl;

- $R_{53}$  is absent, -O-, -C(O)-, -NH-, -N(alkyl)-, -NH-S(O)<sub>0-2</sub>-, -N(alkyl)-S(O)<sub>0-2</sub>-, -S(O)<sub>0-2</sub>-NH-, -S(O)<sub>0-2</sub>- N(alkyl)-, -NH-C(S)-, or -N(alkyl)-C(S)-;
- is heteroaryl, aryl, arylalkyl, heterocycloalkyl,  $R_{54}$ CO<sub>2</sub>H,  $-CO_2$ -alkyl, -C(0)NH(alkyl), -C(0)N(alkyl) (alkyl),  $-C(0)NH_2$ ,  $C_1-C_8$  alkyl, OH, aryloxy, alkoxy, arylalkoxy, NH2, NH(alkyl), N(alkyl) (alkyl), or -C1-C<sub>6</sub> alkyl-CO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, CO<sub>2</sub>H, -CO<sub>2</sub>-alkyl, thioalkoxy, halogen, haloalkyl, haloalkoxy, hydroxyalkyl, alkanoyl,  $NO_2$ , CN, alkoxycarbonyl, or aminocarbonyl;
- X' is selected from the group consisting of  $-C_1-C_6$  alkylidenyl optionally optionally substituted with 1, 2, or 3 methyl groups; and  $-NR_{4-6}-$ ; or

 $R_4$  and  $R_{4-6}$  combine to form  $-(CH_2)_{n10}-$ , wherein  $n_{10}$  is 1, 2, 3, or 4;

- Z is selected from the group consisting of a bond;  $SO_2$ ;  $SO_3$ ; and C(O);
- Y is selected from the group consisting of H; C<sub>1</sub>-C<sub>4</sub> haloalkyl; C<sub>5</sub>-C<sub>6</sub> heterocycloalkyl; C<sub>6</sub>-C<sub>10</sub> aryl; OH; -N(Y<sub>1</sub>)(Y<sub>2</sub>); C<sub>1</sub>-C<sub>10</sub> alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are selected from the group consisting of halogen, hydroxy, alkoxy, thioalkoxy, and haloalkoxy; C<sub>3</sub>-C<sub>8</sub> cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from C<sub>1</sub>-C<sub>3</sub> alkyl, and halogen; alkoxy; aryl optionally substituted with halogen, alkyl, alkoxy, CN or NO<sub>2</sub>; arylalkyl optionally substituted with halogen, alkyl, alkoxy, cn alkyl, alkoxy, CN or NO<sub>2</sub>; wherein
  - $Y_1$  and  $Y_2$  are the same or different and are H;  $C_1$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen,  $C_1$ - $C_4$

10

15

20

alkoxy,  $C_3-C_8$  cycloalkyl, and OH;  $C_2-C_6$  alkenyl;  $C_2-C_6$  alkanoyl; phenyl;  $-SO_2-C_1-C_4$  alkyl; phenyl  $C_1-C_4$  alkyl; or  $C_3-C_8$  cycloalkyl  $C_1-C_4$  alkyl; or

- $Y_1$ ,  $Y_2$  and the nitrogen to which they are attached form a ring selected from the group consisting piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring is optionally substituted with 1, 2, 3, or 4 groups that are independently C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> alkyl, or halogen;
- R<sub>100</sub> and R'<sub>100</sub> independently represent aryl, heteroaryl, -aryl-W-aryl, -aryl-W-heteroaryl, -aryl-W-heterocyclyl, -heteroaryl-W-aryl, -heteroaryl-W-heteroaryl, -heteroaryl-Wheterocyclyl, -heterocyclyl-W-aryl, -heterocyclyl-W-heteroaryl, -heterocyclyl-W-heterocyclyl, -CH[(CH<sub>2</sub>)<sub>0-2</sub>-O-R<sub>150</sub>]-(CH<sub>2</sub>)<sub>0-2</sub>-aryl, -CH[(CH<sub>2</sub>)<sub>0-2</sub>-O-R<sub>150</sub>]-(CH<sub>2</sub>)<sub>0-2</sub>  $_2$ -heterocyclyl or -CH[(CH $_2$ ) $_{0-2}$ -O-R $_{150}$ ]-(CH $_2$ ) $_{0-2}$ -heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from
- -OR,  $-NO_2$ , halogen, -C≡N, -OCF<sub>3</sub>, -CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-O-P(=O) (OR) (OR'), -(CH<sub>2</sub>)<sub>0-4</sub>-CO-NR<sub>105</sub>R'<sub>105</sub>, $-(CH_2)_{0-4}-O (CH_2)_{0-4}-CONR_{102}R_{102}'$ ,  $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$ ,  $-(CH_2)_{0-4}$  $_{4}\text{-CO-}(C_{2}\text{-}C_{12} \text{ alkenyl}), -(CH_{2})_{0-4}\text{-CO-}(C_{2}\text{-}C_{12} \text{ alkynyl}),$ 25  $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-R_{110},$  $-(CH_2)_{0-4}-R_{120}$ ,  $-(CH_2)_{0-4}-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{110}$ ,  $-(CH_2)_{0-4}-CO-R_{110}$  $CO-R_{120}$ ,  $-(CH_2)_{0-4}-CO-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$  $CO-O-R_{150}$ ,  $-(CH_2)_{0-4}-SO_2-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-SO-(C_1-C_8)$ alkyl),  $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12})$ alkyl),  $-(CH_2)_{0-4}-SO_2 (CH_2)_{0-4}-(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-N(R_{150})-CO-O-R_{150},$ 30 -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-N(R<sub>150</sub>)<sub>2</sub>, $-(CH_2)_{0-4}-N(R_{150})-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$ ,  $-(CH_2)_{0-4}-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-R_{140}$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 \ alkyl)$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 \ alkyl)$  $P(O) - (O-R_{110})_2$ ,  $-(CH_2)_{0-4} - O-CO-N(R_{150})_2$ ,  $-(CH_2)_{0-4} - O-CS-$ 35  $N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-(R_{150})$ ,  $-(CH_2)_{0-4}-O-R_{150}'-COOH$ , -

25



 $(CH_2)_{0-4}-S-(R_{150})$ ,  $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$ ,  $-(CH_2)_{0-4}-C_3-C_7$  cycloalkyl,  $(C_2-C_{10})$  alkenyl, or  $(C_2-C_{10})$  alkynyl, or

- $R_{100}$  is  $C_1\text{-}C_{10}$  alkyl optionally substituted with 1, 2, or 3  $R_{115}$  groups, or
- $R_{100}$  is  $-(C_1-C_6 \text{ alkyl})-O-C_1-C_6 \text{ alkyl})$  or  $-(C_1-C_6 \text{ alkyl})-S-(C_1-C_6 \text{ alkyl})$ , each of which is optionally substituted with 1, 2, or 3  $R_{115}$  groups, or
- $R_{100}$  is  $C_3$ - $C_8$  cycloalkyl optionally substituted with 1, 2, or 3  $R_{115}$  groups;
  - W is  $-(CH_2)_{0-4}$ , -O-,  $-S(O)_{0-2}$ -,  $-N(R_{135})$ -, -CR(OH)- or -C(O)-;
  - $\mbox{R}_{\mbox{\scriptsize 102}}$  and  $\mbox{R}_{\mbox{\scriptsize 102}}{}^{\prime}$  independently are hydrogen, or
    - $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, aryl or  $-R_{110}$ ;
- 15  $R_{105}$  and  $R'_{105}$  independently represent -H,  $-R_{110}$ ,  $-R_{120}$ ,  $C_3$ - $C_7$  cycloalkyl,  $-(C_1$ - $C_2$  alkyl)- $(C_3$ - $C_7$  cycloalkyl),  $-(C_1$ - $C_6$  alkyl)-O- $(C_1$ - $C_3$  alkyl),  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl, or  $C_1$ - $C_6$  alkyl chain with one double bond and one triple bond, or
- C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with -OH or -NH<sub>2</sub>; or, C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, or
  - $R_{105}$  and  $R'_{105}$  together with the atom to which they are attached form a 3 to 7 membered carbocylic ring, where one member is optionally a heteratom selected from -O-, -S(O) $_{0-2}$ -,  $N(R_{135})$ -, the ring being optionally substituted with 1, 2 or three  $R_{140}$  groups;
- $R_{115} \text{ at each occurrence is independently halogen, -OH, -CO}_2R_{102}, \\ -C_1-C_6 \text{ thioalkoxy, -CO}_2-\text{phenyl, -NR}_{105}R'_{135}, -SO}_2-(C_1-C_8) \\ \text{alkyl), -C(=O)R}_{180}, R_{180}, -\text{CONR}_{105}R'_{105}, -\text{SO}_2NR}_{105}R'_{105}, -\text{NH-CO}-(C_1-C_6 \text{ alkyl), -NH-C(=O)-OH, -NH-C(=O)-OR, -NH-C(=O)-O-phenyl, -O-C(=O)-(C_1-C_6 \text{ alkyl), -O-C(=O)-amino, -O-C(=O)-mono- or dialkylamino, -O-C(=O)-phenyl, -O-(C_1-C_6 \text{ alkyl)-CO}_2H, -NH-SO}_2-(C_1-C_6 \text{ alkyl), C}_1-C_6 \text{ alkoxy or } C_1-C_6 \\ \text{haloalkoxy;}$



- $R_{135}$  is  $C_1-C_6$  alkyl,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl,  $C_3-C_7$  cycloalkyl,  $-(CH_2)_{0-2}-(aryl)$ ,  $-(CH_2)_{0-2}-(heteroaryl)$ , or  $-(CH_2)_{0-2}-(heterocyclyl)$ ;
- R<sub>140</sub> is heterocyclyl optionally substituted with 1, 2, 3, or 4
  groups independently selected from C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub>
  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono(C<sub>1</sub>-C<sub>6</sub>) alkylamino, di(C<sub>1</sub>-C<sub>6</sub>) alkylamino, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub>
  alkynyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, amino(C<sub>1</sub>-C<sub>6</sub>) alkyl, mono(C<sub>1</sub>-C<sub>6</sub>) alkylamino(C<sub>1</sub>-C<sub>6</sub>) alkylamino(C<sub>1</sub>-C<sub>6</sub>) alkylamino(C<sub>1</sub>-C<sub>6</sub>) alkylamino(C<sub>1</sub>-C<sub>6</sub>) alkyl, and =O;
  - R<sub>150</sub> is hydrogen, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -(C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>3</sub>-C<sub>7</sub> cycloalkyl), C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl, C<sub>1</sub>-C<sub>6</sub> alkyl with one double bond and one triple bond, -R<sub>110</sub>, -R<sub>120</sub>, or C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH<sub>2</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, R<sub>110</sub>, and halogen:
  - $R_{150}{}^\prime$  is  $C_3-C_7$  cycloalkyl,  $-(C_1-C_3$  alkyl)-( $C_3-C_7$  cycloalkyl),  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl,  $C_1-C_6$  alkyl with one double bond and one triple bond,  $-R_{110},\ -R_{120},\ or$
- C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH<sub>2</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy,  $R_{110}$ , and halogen;
- ìs R<sub>180</sub> selected from morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, 25 homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl pyrrolidinyl, each of which is optionally substituted with 1, 2, 3, or 4 groups independently selected from  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono  $(C_1-C_6)$  alkylamino, di  $(C_1-C_6)$  alkylamino,  $C_2-C_6$ 30 alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  haloalkoxy, amino  $(C_1-C_6)$  alkyl, mono  $(C_1-C_6)$  alkylamino  $(C_1-C_6)$  alkyl, di  $(C_1-C_6)$  $C_6$ ) alkylamino  $(C_1-C_6)$  alkyl, and =0;
  - $R_{110}$  is aryl optionally substituted with 1 or 2  $R_{125}$  groups;

20



- $R_{125}$  at each occurrence is independently halogen, amino, monoor dialkylamino, -OH, -C $\equiv$ N, -SO<sub>2</sub>-NH<sub>2</sub>, -SO<sub>2</sub>-NH-C<sub>1</sub>-C<sub>6</sub> alkyl, -SO<sub>2</sub>-N(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>4</sub> alkyl), -CO-NH<sub>2</sub>, -CO-NH-C<sub>1</sub>-C<sub>6</sub> alkyl, or -CO-N(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, or
  - C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>2</sub>-C<sub>6</sub> alkenyl or C<sub>2</sub>-C<sub>6</sub> alkynyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently selected from C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, -OH, -SH, -C≡N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, and mono- and dialkylamino, or
- 10 C<sub>1</sub>-C<sub>6</sub> alkoxy optionally substituted with one, two or three of halogen;
  - $R_{120}$  is heteroaryl, which is optionally substituted with 1 or 2  $R_{125}$  groups; and
- $R_{130}$  is heterocyclyl optionally substituted with 1 or 2  $R_{125}$  groups; and
  - $R_2$  is selected from the group consisting of H;  $C_1$ - $C_6$  alkyl, optionally substituted with 1, 2, or 3 substituents that are independently selected from the group consisting of  $C_1$ - $C_3$  alkyl, halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>,  $C_1$ - $C_3$  alkoxy, and -NR<sub>1-a</sub>R<sub>1-b</sub>; wherein

25 R<sub>3</sub> is selected from the group consisting of H; C<sub>1</sub>-C<sub>6</sub> alkyl, optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, -OH, -SH, -C≡N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, and -NR<sub>1-a</sub>R<sub>1-b</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>-aryl; -(CH<sub>2</sub>)<sub>0-4</sub>-heteroaryl; C<sub>2</sub>-C<sub>6</sub> alkenyl; C<sub>2</sub>-C<sub>6</sub> alkynyl; -CO-NR<sub>n-2</sub>R<sub>n-3</sub>; -SO<sub>2</sub>-NR<sub>n-2</sub>R<sub>n-3</sub>; -CO<sub>2</sub>H; and -CO-O-(C<sub>1</sub>-C<sub>4</sub> alkyl);

wherein

 $R_{N-2}$  and  $R_{N-3}$  at each occurrence are independently selected from the group consisting of

10

15

20

25

30

35



-C<sub>1</sub>-C<sub>8</sub> alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of -OH, -NH<sub>2</sub>, phenyl and halogen; -C<sub>3</sub>-C<sub>8</sub> cycloalkyl; -(C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>3</sub>-C<sub>8</sub> cycloalkyl); -(C<sub>1</sub>-C<sub>6</sub> alkyl)-O-(C<sub>1</sub>-C<sub>3</sub> alkyl); -C<sub>2</sub>-C<sub>6</sub> alkenyl; -C<sub>2</sub>-C<sub>6</sub> alkynyl; -C<sub>1</sub>-C<sub>6</sub> alkyl chain with one double bond and one triple bond; aryl; heteroaryl; heterocycloalkyl; or

 $R_{N-2},\ R_{N-3}$  and the nitrogen to which they are attached form a 5, 6, or 7 membered heterocycloalkyl or heteroaryl group, wherein said heterocycloalkyl or heteroaryl group is optionally fused benzene, pyridine, or pyrimidine ring, groups are unsubstituted or substituted with 1, 2, or 5 groups that at each occurrence are independently C1-C6 alkyl, C1-C6 alkoxy, halogen, halo  $C_1-C_6$  alkyl, halo  $C_1-C_6$  alkoxy, -CN,  $-NO_2$ ,  $-NH_2$ ,  $NH(C_1-C_6)$  $C_6$  alkyl),  $N(C_1-C_6$  alkyl)( $C_1-C_6$  alkyl), -OH,  $-C(O)NH_2$ ,  $-C(0)NH(C_1-C_6)$ alkyl),  $-C(0)N(C_1-C_6)$  $alkyl)(C_1-C_6)$ alkyl),  $C_1-C_6$  alkoxy  $C_1-C_6$  alkyl,  $C_1-C_6$  thioalkoxy, and C<sub>1</sub>-C<sub>6</sub> thioalkoxy C<sub>1</sub>-C<sub>6</sub> alkyl;

or wherein,

 $R_2$ ,  $R_3$  and the carbon to which they are attached form a carbocycle of three thru seven carbon atoms, wherein one carbon atom is optionally replaced by a group selected from-O-, -S-, -SO<sub>2</sub>-, or -NR<sub>N-2</sub>-.

The invention also provides methods for the treatment or prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease compriseing administration of a therapeutically effective amount of a

15

20

25

30

35



compound or salt or ester of formula I, to a patient in need thereof.

Preferably, the patient is a human.

More preferably, the disease is Alzheimer's disease.

More preferably, the disease is dementia.

The invention also provides pharmaceutical compositions comprising a compound or salt or ester of formula I and at least one pharmaceutically acceptable carrier, solvent, adjuvant or diluent.

The invention also provides the use of a compound or salt or ester according to formula I for the manufacture of a medicament.

The invention also provides the use of a compound or salt or ester of formula I for the treatment or prevention of Alzheimer's disease,  ${\tt mild}$ cognitive impairment syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of Dutch-Type, cerebral amyloid angiopathy, degenerative dementias, dementias of mixed vascular degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease.

The invention also provides compounds, pharmaceutical compositions, kits, and methods for inhibiting beta-secretase-mediated cleavage of amyloid precursor protein (APP). More particularly, the compounds, compositions, and methods of the invention are effective to inhibit the production of A-beta peptide and to treat or prevent any human or veterinary disease or condition associated with a pathological form of A-beta peptide.

The compounds, compositions, and methods of the invention are useful for treating humans who have Alzheimer's Disease (AD), for helping prevent or delay the onset of AD, for treating patients with mild cognitive impairment (MCI), and preventing or delaying the onset of AD in those patients who would otherwise be expected to progress from MCI to AD, for

10

15

20

25

treating Down's syndrome, for treating Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch Type, for treating cerebral beta-amyloid angiopathy and preventing its potential consequences such as single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias mixed vascular and degenerative origin, for treating of dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, and diffuse Lewy body type AD, and for treating frontotemporal dementias with parkinsonism (FTDP).

The compounds of the invention possess beta-secretase inhibitory activity. The inhibitory activities of the compounds of the invention is readily demonstrated, for example, using one or more of the assays described herein or known in the art.

Unless the substituents for a particular formula are expressly defined for that formula, they are understood to carry the definitions set forth in connection with the preceding formula to which the particular formula makes reference.

The invention also provides methods of preparing the compounds of the invention and the intermediates used in those methods. More particularly, the invention provides a method for making a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, wherein  $R_{20}$ ,  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_1$  and  $R_2$  are as defined above or below.

The invention further contemplates metabolites of compounds of formula (I).

## DETAILED DESCRIPTION OF THE INVENTION

As noted above, the invention provides compounds of formula I.

Preferred compounds of formula I include those of formula I-1, i.e., compounds of formula I wherein,  $R_{N}\ \mbox{is}$ 

30

### Y Z X' (CH<sub>2</sub>)<sub>n7</sub>-CHC(O)-R<sub>4</sub>

wherein

5

10

15

20

25

30

35

R<sub>4</sub> is selected from the group consisting of H; NH<sub>2</sub>; -NH-(CH<sub>2</sub>)<sub>n6</sub>-R<sub>4-1</sub>; -NHR<sub>8</sub>; -NR<sub>50</sub>C(O)R<sub>5</sub>; C<sub>1</sub>-C<sub>4</sub> alkyl-NHC(O)R<sub>5</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>R<sub>8</sub>; -O-C<sub>1</sub>-C<sub>4</sub> alkanoyl; OH; C<sub>6</sub>-C<sub>10</sub> aryloxy optionally substituted with 1, 2, or 3 groups that are independently halogen, C<sub>1</sub>-C<sub>4</sub> alkyl, -CO<sub>2</sub>H, -C(O)-C<sub>1</sub>-C<sub>4</sub> alkoxy, or C<sub>1</sub>-C<sub>4</sub> alkoxy; C<sub>1</sub>-C<sub>6</sub> alkoxy; aryl C<sub>1</sub>-C<sub>4</sub> alkoxy; -NR<sub>50</sub>CO<sub>2</sub>R<sub>51</sub>; -C<sub>1</sub>-C<sub>4</sub> alkyl-NR<sub>50</sub>CO<sub>2</sub>R<sub>51</sub>; -C≡N; -CF<sub>3</sub>; -CF<sub>2</sub>-CF<sub>3</sub>; -C≡CH; -CH<sub>2</sub>-CH=CH<sub>2</sub>; -(CH<sub>2</sub>)<sub>1-4</sub>-R<sub>4-1</sub>; -(CH<sub>2</sub>)<sub>1-4</sub>-NH-R<sub>4-1</sub>; -O-(CH<sub>2</sub>)<sub>n6</sub>-R<sub>4-1</sub>; -S-(CH<sub>2</sub>)<sub>n6</sub>-R<sub>4-1</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>-NHC(O)-(CH<sub>2</sub>)<sub>0-6</sub>-R<sub>52</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>53</sub>-(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>54</sub>; wherein

n<sub>6</sub> is 0, 1, 2, or 3; n<sub>7</sub> is 0, 1, 2, or 3;

 $R_{4-1}$  is selected from the group consisting of  $-SO_2-(C_1-C_8$  alkyl),  $-SO-(C_1-C_8$  alkyl),  $-S-(C_1-C_8$  alkyl),  $-S-CO-(C_1-C_6$  alkyl),  $-SO_2-NR_{4-2}R_{4-3}$ ;  $-CO-C_1-C_2$  alkyl;  $-CO-NR_{4-3}R_{4-4}$ ;

 $R_{4-2}$  and  $R_{4-3}$  are independently H,  $C_1-C_3$  alkyl, or  $C_3-C_6$  cycloalkyl;

 $R_{4-4}$  is alkyl, arylalkyl, alkanoyl, or arylalkanoyl;  $R_{4-6}$  is-H or  $C_1$ - $C_6$  alkyl;

selected from the group consisting of C3-C7  $R_5$ cycloalkyl; C1-C6 alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, -NR<sub>6</sub>R<sub>7</sub>,  $C_1$ - $C_4$  alkoxy,  $C_5$ - $C_6$  heterocycloalkyl,  $C_5$ - $C_6$ heteroaryl,  $C_6-C_{10}$  aryl,  $C_3-C_7$  cycloalkyl  $C_1-C_4$  alkyl,  $-S-C_1-C_4$  alkyl,  $-SO_2-C_1-C_4$  alkyl,  $-CO_2H$ ,  $-CONR_6R_7$ ,  $-CO_2H$  $CO_2-C_1-C_4$  alkyl,  $C_6-C_{10}$  aryloxy; heteroaryl optionally substituted with 1, 2, or 3 groups that independently  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, halogen,  $C_1$ or OH; heterocycloalkyl optionally C<sub>4</sub> haloalkyl, or 3 groups that substituted with 1, 2, independently C1-C4 alkyl, C1-C4 alkoxy, halogen, or C2-C4 alkanoyl; aryl optionally substituted with 1,

10

15

20

25

30

35



 $C_1$ ,  $C_2$ , or 4 groups that are independently halogen, OH,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $C_1$ - $C_4$  haloalkyl; and  $-NR_6R_7$ ; wherein

 $R_6$  and  $R_7$  are independently selected from the group consisting of H,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkanoyl, phenyl,  $-SO_2$ - $C_1$ - $C_4$  alkyl, phenyl  $C_1$ - $C_4$  alkyl;

 $R_8$  is selected from the group consisting of  $-SO_2-heteroaryl, -SO_2-aryl, -SO_2-heterocycloalkyl, -SO_2-C_1-C_10 alkyl, -C(0)NHR_9, heterocycloalkyl, -S-C_1-C_6 alkyl, -S-C_2-C_4 alkanoyl, wherein$ 

 $R_9$  is aryl  $C_1\text{--}C_4$  alkyl,  $C_1\text{--}C_6$  alkyl, or H;  $R_{50}$  is H or  $C_1\text{--}C_6$  alkyl;

 $R_{51}$  is selected from the group consisting of aryl  $C_1$ - $C_4$ alkyl; C1-C6 alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, cyano, heteroaryl,  $-NR_6R_7$ ,  $-C(O)NR_6R_7$ ,  $C_3-C_7$  cycloalkyl, or  $-C_1-C_4$ alkoxy; heterocycloalkyl optionally substituted with 1 or 2 groups that independently  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, halogen,  $C_2$ -C<sub>4</sub> alkanoyl, aryl C<sub>1</sub>-C<sub>4</sub> alkyl, and -SO<sub>2</sub> C<sub>1</sub>-C<sub>4</sub> alkyl; alkenyl; alkynyl; heteroaryl optionally substituted with 1, 2, or 3 groups that are independently OH,  $C_1$ - $C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $NH_2$ ,  $NH(C_1-C_6$  alkyl)  $N(C_1-C_6)$ alkyl)(C<sub>1</sub>-C<sub>6</sub> alkyl); heteroarylalkyl optionally substituted with 1, 2, or 3 groups that are independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $\mathrm{NH_2}$ ,  $\mathrm{NH}\left(\mathrm{C_1-C_6} \text{ alkyl}\right)$  or  $\mathrm{N}\left(\mathrm{C_1-C_6} \text{ alkyl}\right)\left(\mathrm{C_1-C_6} \text{ alkyl}\right)$ ; heterocycloalkyl; C<sub>3</sub>-C<sub>8</sub> cycloalkyl; aryl; cycloalkylalkyl; wherein the aryl; heterocycloalkyl,  $C_3$ - $C_8$  cycloalkyl, and cycloalkylalkyl groups are optionally substituted with 1, 2, 3, 4 or 5 groups that are independently halogen, CN, NO2, C1-C6 alkyl,  $C_1-C_6$  alkoxy,  $C_2-C_6$  alkanoyl,  $C_1-C_6$  haloalkyl,  $C_1-C_6$ haloalkoxy, hydroxy,  $C_1-C_6$  hydroxyalkyl,  $C_1-C_6$  alkoxy  $C_1-C_6$  alkyl,  $C_1-C_6$  thioalkoxy,  $C_1-C_6$  thioalkoxy  $C_1-C_6$ alkyl, or C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> alkoxy;

10

15

20

35



is heterocycloalkyl, heteroaryl, aryl, cycloalkyl,  $R_{52}$  $-S(O)_{0-2}-C_1-C_6$  alkyl,  $CO_2H$ ,  $-C(O)NH_2$ , -C(O)NH(alkyl), -C(0)N(alkyl)(alkyl), -CO<sub>2</sub>-alkyl,-NHS (O)  $_{0-2}$ -C<sub>1</sub>-C<sub>6</sub> alkyl,  $-N(alkyl)S(0)_{0-2}-C_1-C_6$  alkyl, heteroaryl,  $-S(0)_{0-2}-aryl$ , -NH (arylalkyl), -N(alkyl)(arylalkyl), thioalkoxy, or alkoxy, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, thioalkoxy, halogen, haloalkyl, haloalkoxy, alkanoyl, NO2, CN, alkoxycarbonyl, or aminocarbonyl;  $R_{53}$  is absent, -O-, -C(O)-, -NH-, -N(alkyl)-, -NH-S(O)<sub>0-2</sub>-,  $-N(alkyl)-S(O)_{0-2}-$ ,  $-S(O)_{0-2}-NH-$ ,  $-S(O)_{0-2}-N(alkyl)-$ , -NH-C(S)-, or -N(alkyl)-C(S)-;

is heteroaryl, aryl, arylalkyl, heterocycloalkyl,  $R_{54}$  $-CO_2$ -alkyl, -C(O)NH(alkyl), -C(O)N(alkyl)CO<sub>2</sub>H, (alkyl),  $-C(0)NH_2$ ,  $C_1-C_8$  alkyl, OH, aryloxy, alkoxy, arylalkoxy,  $NH_2$ , NH(alkyl), N(alkyl) (alkyl), or  $-C_1$ - $C_6$  alkyl- $CO_2$ - $C_1$ - $C_6$  alkyl, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, CO<sub>2</sub>H, -CO<sub>2</sub>-alkyl, thioalkoxy, halogen, haloalkyl, haloalkoxy, hydroxyalkyl, alkanoyl,  $NO_2$ , CN, alkoxycarbonyl, or aminocarbonyl;

X' is selected from the group consisting of -C<sub>1</sub>-C<sub>6</sub> alkylidenyl optionally optionally substituted with 1, 2, or 3 methyl groups; and -NR<sub>4-6</sub>-; or

 $R_4$  and  $R_{4-6}$  combine to form  $- (CH_2)_{\,\rm nl0}-$  , wherein  $n_{10}$  is 1, 2, 3, or 4;

- Z is selected from the group consisting of a bond;  $SO_2$ ;  $SO_3$ ;  $SO_4$ ;  $SO_5$ ;  $SO_7$ ; S
  - Y is selected from the group consisting of H;  $C_1$ - $C_4$  haloalkyl;  $C_5$ - $C_6$  heterocycloalkyl;  $C_6$ - $C_{10}$  aryl; OH; -N(Y<sub>1</sub>)(Y<sub>2</sub>);  $C_1$ - $C_{10}$  alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are selected from the group consisting of halogen, hydroxy, alkoxy, thioalkoxy, and haloalkoxy;  $C_3$ - $C_8$  cycloalkyl optionally

10

15

20

25

substituted with 1, 2, or 3 groups independently selected from  $C_1$ - $C_3$  alkyl, and halogen; alkoxy; aryl optionally substituted with halogen, alkyl, alkoxy, CN or  $NO_2$ ; arylalkyl optionally substituted with halogen, alkyl, alkoxy, CN or  $NO_2$ ; wherein

Y<sub>1</sub> and Y<sub>2</sub> are the same or different and are H; C<sub>1</sub>-C<sub>10</sub> alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>3</sub>-C<sub>8</sub> cycloalkyl, and OH; C<sub>2</sub>-C<sub>6</sub> alkenyl; C<sub>2</sub>-C<sub>6</sub> alkanoyl; phenyl; -SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub> alkyl; phenyl C<sub>1</sub>-C<sub>4</sub> alkyl; or C<sub>3</sub>-C<sub>8</sub> cycloalkyl C<sub>1</sub>-C<sub>4</sub> alkyl; or

 $Y_1$ ,  $Y_2$  and the nitrogen to which they are attached form a ring selected from the group consisting of piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring is optionally substituted with 1, 2, 3, or 4 groups that are independently  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkyl, or halogen.

Preferred compounds of formula I-1 also include those wherein  $R_{N}\ \text{is}$ 

Y<sup>Z</sup>X'-ÇHC(O)-NH<sub>2</sub>

wherein

X' is  $C_1-C_4$  alkylidenyl optionally substituted with 1, 2, or 3 methyl groups; or  $-NR_{4-6}-$ , where  $R_{4-6}$  is-H or  $C_1-C_6$  alkyl; or

 $$\rm R_4$$  and  $\rm R_{4-6}$  combine to form  $-(\rm CH_2)_{n10}-$  , where  $\rm R_4$  and  $\rm R_{4-6}$  are as defined above, wherein

 $n_{10}$  is 1, 2, 3, or 4;

Z is selected from a bond; SO<sub>2</sub>; SO; S; and C(O);

Y is selected from H;  $C_1$ - $C_4$  haloalkyl;  $C_5$ - $C_6$  heterocycloalkyl containing at least one N, O, or S; phenyl; OH; -N(Y<sub>1</sub>)(Y<sub>2</sub>);  $C_1$ - $C_{10}$  alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are selected from halogen, hydroxy, alkoxy, thioalkoxy, and

10

15

20

30

35



haloalkoxy;  $C_3$ - $C_8$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from  $C_1$ - $C_3$  alkyl, and halogen; alkoxy; phenyl optionally substituted with halogen,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, CN or NO<sub>2</sub>; phenyl  $C_1$ - $C_4$  alkyl optionally substituted with halogen,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, CN or NO<sub>2</sub>; wherein

 $Y_1$  and  $Y_2$  are the same or different and are H;  $C_1$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_8$  cycloalkyl, and OH;  $C_2$ - $C_6$  alkenyl;  $C_2$ - $C_6$  alkanoyl; phenyl; -SO<sub>2</sub>- $C_1$ - $C_4$  alkyl; phenyl  $C_1$ - $C_4$  alkyl; and  $C_3$ - $C_8$  cycloalkyl  $C_1$ - $C_4$  alkyl; or

-N( $Y_1$ )( $Y_2$ ) forms a ring selected from piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring is optionally substituted with 1, 2, 3, or 4 groups that are independently  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkoxy, or halogen.

Preferred compounds of formula I-1 also include those wherein  $R_N$  is  $-C(=0)O-(C_1-C_6$  alkyl)-aryl, wherein the aryl group may be substituted with  $R_{100}$  or  $R'_{100}$ , which are defined as above. In other embodiment,  $R_N$  is  $-C(=0)O-CH_2$ -phenyl.

Preferred compounds of formula I also include compounds of formula I-2, i.e., compounds of formula I wherein  $R_N$  is -C (=0)-(CRR')<sub>0-6</sub> $R_{100}$ ; and

25 R<sub>100</sub> represents aryl, heteroaryl, or heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from

10

15

20

25

30



alkyl),  $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12} \text{ alkyl})$ ,  $-(CH_2)_{0-4}-SO_{2-}(CH_2)_{0-4}-(C_3-C_7 \text{ cycloalkyl})$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-O-R_{150}$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-N(R_{150})_2$ ,  $-(CH_2)_{0-4}-N(R_{150})-CS-N(R_{150})_2$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$ ,  $-(CH_2)_{0-4}-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-R_{140}$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 \text{ alkyl})$ ,  $-(CH_2)_{0-4}-O-CS-P(O)-(O-R_{110})_2$ ,  $-(CH_2)_{0-4}-O-CO-N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-CS-N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-(R_{150})$ ,  $-(CH_2)_{0-4}-O-R_{150}'-COOH$ ,  $-(CH_2)_{0-4}-S-(R_{150})$ ,  $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$ ,  $-(CH_2)_{0-4}-CCS-C_3-C_7$  cycloalkyl,  $-(C_2-C_{10})$  alkenyl, or  $-(C_2-C_{10})$  alkynyl.

Preferred compounds of formula I-2 include compounds wherein

 $R_N$  is  $-C(=0)-R_{100}$ ; and

 $R_{100}$  represents aryl, or heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from

-OR, -NO<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub> alkyl, halogen, -C $\equiv$ N, -OCF<sub>3</sub>, -CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>0</sub>- $_{4}$ -O-P(=O)(OR)(OR'), -(CH<sub>2</sub>) $_{0-4}$ -CO-NR<sub>105</sub>R'<sub>105</sub>, -(CH<sub>2</sub>) $_{0-4}$ -O- $(CH_2)_{0-4}-CONR_{102}R_{102}'$ ,  $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$ ,  $-(CH_2)_{0-4}$  $_{4}$ -CO-( $C_{2}$ - $C_{12}$  alkenyl), -( $CH_{2}$ )<sub>0-4</sub>-CO-( $C_{2}$ - $C_{12}$  alkynyl),  $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-R_{110},$  $-(CH_{2})_{0-4}-R_{120}, -(CH_{2})_{0-4}-R_{130}, -(CH_{2})_{0-4}-CO-R_{110}, -(CH_{2})_{0-4} CO-R_{120}$ ,  $-(CH_2)_{0-4}-CO-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$  $CO-O-R_{150}$ ,  $-(CH_2)_{0-4}-SO_2-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-SO-(C_1-C_8)$ alkyl),  $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12} \text{ alkyl})$ ,  $-(CH_2)_{0-4}-SO_{2-}$  $(CH_2)_{0-4}-(C_3-C_7)_{0-4}-(CH_2)_{0-4}-N(R_{150})_{0-6}-CO-C_{150}$ -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-N(R<sub>150</sub>)<sub>2</sub>, $-(CH_2)_{0-4}-N(R_{150})-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$ ,  $-(CH_2)_{0-4}-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-R_{140}$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$  $P(O) - (O-R_{110})_2$ ,  $-(CH_2)_{0-4} - O-CO-N(R_{150})_2$ ,  $-(CH_2)_{0-4} - O-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-(R_{150})$ ,  $-(CH_2)_{0-4}-O-R_{150}'$ -COOH, - $(CH_2)_{0-4}-S-(R_{150})$ ,  $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$ ,  $-(CH_2)_{0-4} C_3-C_7$  cycloalkyl,  $(C_2-C_{10})$  alkenyl, or  $(C_2-C_{10})$  alkynyl.

Preferred compounds of formula I-2 also include compounds wherein

10

15

20

25



 $R_N$  is -C(=0)-aryl or -C(=0)-heteroaryl where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from

-OR, -NO<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub> alkyl, halogen, -C $\equiv$ N, -OCF<sub>3</sub>, -CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>0-4</sub> -CO-NR<sub>105</sub>R'<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-O-(CH<sub>2</sub>)<sub>0-4</sub>-CONR<sub>102</sub>R<sub>102</sub>', -(CH<sub>2</sub>)<sub>0-4</sub> -CO-(C<sub>1</sub>-C<sub>12</sub> alkyl), -(CH<sub>2</sub>)<sub>0-4</sub>-CO-(C<sub>2</sub>-C<sub>12</sub> alkenyl), -(CH<sub>2</sub>)<sub>0-4</sub>-CO-(C<sub>2</sub>-C<sub>12</sub> alkenyl), -(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>110</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-R<sub>120</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>130</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-R<sub>110</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-R<sub>120</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-R<sub>130</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-R<sub>140</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-O-R<sub>150</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-SO<sub>2</sub>-NR<sub>105</sub>R'<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-SO-(C<sub>1</sub>-C<sub>8</sub> alkyl), -(CH<sub>2</sub>)<sub>0-4</sub>-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>12</sub> alkyl), -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-O-R<sub>150</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-N(R<sub>150</sub>)<sub>2</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-R<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-NR<sub>105</sub>R'<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>140</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-O-CO-(C<sub>1</sub>-C<sub>6</sub> alkyl), -(CH<sub>2</sub>)<sub>0-4</sub>-O-CO-N(R<sub>150</sub>)<sub>2</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-O-CO-(R<sub>150</sub>), -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-SO<sub>2</sub>-R<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, (C<sub>2</sub>-C<sub>10</sub>) alkenyl, or (C<sub>2</sub>-C<sub>10</sub>) alkynyl.

Other preferred compounds of formula I-2 include compounds wherein

 $R_N$  is -C(=0)-aryl or -C(=0)-heteroaryl where the ring portions of each are optionally substituted with 1 or 2 groups independently selected from

Other preferred compounds of formula I-2 also include compounds wherein  $R_{\mbox{\scriptsize N}}$  is:

wherein sub is hydrogen or is  $C_1$ - $C_6$  alkyl, halogen, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-NR<sub>105</sub>R'<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-O-CO-N(R<sub>150</sub>)<sub>2</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-SO<sub>2</sub>-R<sub>105</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-SO<sub>2</sub>-NR<sub>105</sub>R'<sub>105</sub>, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -(C<sub>2</sub>-R<sub>105</sub>R'<sub>105</sub>)

15

20

25

30

35



 $C_{10}$ ) alkenyl,  $-(CH_2)_{0-4}-R_{110}$ ,  $-(CH_2)_{0-4}-R_{120}$ ,  $-(CH_2)_{0-4}-R_{130}$ , or  $(C_2-C_{10})$  alkynyl.

Preferred compounds of formula I, formula I-1 and formula I-2 include compounds of formula I-3, i.e., compounds of formula I, I-1 or I-2 wherein:

 $R_1$  is  $(CH_2)_{n1}$ - $(R_{1-aryl})$  where  $n_1$  is zero, one, or two and  $R_{1-aryl}$  is phenyl optionally substituted with 1, 2, 3, or 4 groups independently selected from  $C_1$ - $C_6$  alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of  $C_1$ - $C_3$  alkyl, halogen, -OH, -SH,  $-NR_{1-a}R_{1-b}$ ,  $-C\equiv N$ ,  $-CF_3$ , and  $C_1$ - $C_3$  alkoxy; halogen;  $C_1$ - $C_6$  alkoxy;  $-NR_{N-2}R_{N-3}$ ; and OH; wherein

 $R_{1-a}$  and  $R_{1-b}$  are -H or  $C_1-C_6$  alkyl;

R<sub>N-2</sub> and R<sub>N-3</sub> at each occurrence are independently selected from the group consisting of -C<sub>1</sub>-C<sub>8</sub> alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of -OH, -NH<sub>2</sub>, phenyl and halogen; -C<sub>3</sub>-C<sub>8</sub> cycloalkyl; -(C<sub>1</sub>-C<sub>2</sub> alkyl) - (C<sub>3</sub>-C<sub>8</sub> cycloalkyl); -(C<sub>1</sub>-C<sub>6</sub> alkyl)-O-(C<sub>1</sub>-C<sub>3</sub> alkyl); -C<sub>2</sub>-C<sub>6</sub> alkenyl; -C<sub>2</sub>-C<sub>6</sub> alkynyl; -C<sub>1</sub>-C<sub>6</sub> alkyl chain with one double bond and one triple bond; aryl; heteroaryl; heterocycloalkyl; or

R<sub>N-2</sub>, R<sub>N-3</sub> and the nitrogen to which they are attached form a 5, 6, or 7 membered heterocycloalkyl or heteroaryl group, wherein said heterocycloalkyl or heteroaryl group is optionally fused to a benzene, pyridine, or pyrimidine ring, and said groups are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that at each occurrence are independently C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, halogen, halo C<sub>1</sub>-C<sub>6</sub> alkyl, halo C<sub>1</sub>-C<sub>6</sub> alkoxy, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>6</sub> alkyl), N(C<sub>1</sub>-C<sub>6</sub> alkyl), N(C<sub>1</sub>-C<sub>6</sub> alkyl), -C(O)NH<sub>2</sub>, -C(O)NH<sub>2</sub>, -C(O)NH(C<sub>1</sub>-C<sub>6</sub>

10

15

20

25

30



alkyl),  $-C(0)N(C_1-C_6$  alkyl)( $C_1-C_6$  alkyl),  $C_1-C_6$  alkoxy  $C_1-C_6$  alkyl,  $C_1-C_6$  thioalkoxy, and  $C_1-C_6$  thioalkoxy  $C_1-C_6$  alkyl.

- Preferred compounds of formula I-3 include compounds wherein:
- R<sub>1</sub> is aryl, heteroaryl, heterocyclyl, -C<sub>1</sub>-C<sub>6</sub> alkyl-aryl, -C<sub>1</sub>-C<sub>6</sub> alkyl-heterocyclyl, or -C<sub>1</sub>-C<sub>6</sub> alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C≡N, -NO<sub>2</sub>, -NR<sub>105</sub>R'<sub>105</sub>, -CO<sub>2</sub>R, -N(R)COR', or -N(R)SO<sub>2</sub>R' (where R<sub>105</sub>, R'<sub>105</sub>, R and R' are as defined above), -C(=O)-(C<sub>1</sub>-C<sub>4</sub>) alkyl, -SO<sub>2</sub>-amino, -SO<sub>2</sub>-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>4</sub>) alkyl, or
  - $C_1\text{-}C_6$  alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or
  - C<sub>3</sub>-C<sub>7</sub> cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, -C<sub>1</sub>-C<sub>6</sub> alkyl and mono- or dialkylamino, or
  - $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, -C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, mono- or dialkylamino and -C<sub>1</sub>-C<sub>3</sub> alkyl, or
  - $C_2-C_{10}$  alkenyl or  $C_2-C_{10}$  alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1-C_3$  alkoxy, amino,  $C_1-C_6$  alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

Preferred compounds of formula I-3 include compounds 35 wherein:

10

15

20

25

- R<sub>1</sub> is -C<sub>1</sub>-C<sub>6</sub> alkyl-aryl, -C<sub>1</sub>-C<sub>6</sub> alkyl-heteroaryl, or -C<sub>1</sub>-C<sub>6</sub> alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C=N, -NO<sub>2</sub>, -NR<sub>105</sub>R'<sub>105</sub>, -CO<sub>2</sub>R, -N(R)COR', or -N(R)SO<sub>2</sub>R' (where R<sub>105</sub>, R'<sub>105</sub>, R and R' are as defined above), -C(=O)-(C<sub>1</sub>-C<sub>4</sub>) alkyl, -SO<sub>2</sub>-amino, -SO<sub>2</sub>-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>4</sub>) alkyl, or C<sub>1</sub>-C<sub>6</sub> alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or
  - $C_3$ - $C_7$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1$ - $C_3$  alkoxy, amino, - $C_1$ - $C_6$  alkyl and mono- or dialkylamino, or
  - $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, -C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, mono- or dialkylamino and -C<sub>1</sub>-C<sub>3</sub> alkyl, or
  - C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, C<sub>1</sub>-C<sub>6</sub> alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

Preferred compounds of formula I-3 include compounds wherein:

R<sub>1</sub> is -(CH<sub>2</sub>)<sub>n</sub>-aryl, -(CH<sub>2</sub>)<sub>n</sub>-heteroaryl, or -(CH<sub>2</sub>)<sub>n</sub>-heterocyclyl,

where n is one or two and where the ring portions of each
are optionally substituted with 1, 2, 3, or 4 groups
independently selected from halogen, -OH, -SH, -C≡N, -NO<sub>2</sub>,
-NR<sub>105</sub>R'<sub>105</sub>, -CO<sub>2</sub>R, -N(R)COR', or -N(R)SO<sub>2</sub>R' (where R<sub>105</sub>,
R'<sub>105</sub>, R and R' are as defined above), -C(=O)-(C<sub>1</sub>-C<sub>4</sub>)

10

15

20

25

30



- $C_1\text{-}C_6$  alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or
- $C_3-C_7$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1-C_3$  alkoxy, amino, - $C_1-C_6$  alkyl and mono- or dialkylamino, or
- $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, -C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, mono- or dialkylamino and -C<sub>1</sub>-C<sub>3</sub> alkyl, or
- $C_2-C_{10}$  alkenyl or  $C_2-C_{10}$  alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C=N, -CF<sub>3</sub>,  $C_1-C_3$  alkoxy, amino,  $C_1-C_6$  alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

Preferred compounds of formula I-3 include compounds wherein:

 $R_1$  is  $-(CH_2)_n$ -phenyl or  $-(CH_2)_n$ -pyridinyl where n is one or two and where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen,  $C_1$ - $C_4$  alkoxy, hydroxy,  $-NO_2$ , and

 $C_1\text{-}C_4$  alkyl optionally substituted with 1, 2, or 3 substituents independently selected from halogen, OH, SH, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>6</sub> alkyl), N-(C<sub>1</sub>-C<sub>6</sub> alkyl)(C<sub>1</sub>-C<sub>6</sub> alkyl), C $\equiv$ N, CF<sub>3</sub>.

Preferred compounds of formula I-3 include compounds wherein:  $R_1$  is  $-(CH_2)_n$ -phenyl or  $-(CH_2)_n$ -pyridinyl where n is one or two and where the phenyl or pyridinyl rings are each optionally substituted with 1 or 2 groups independently

10

15

25

30



selected from halogen,  $C_1\text{-}C_2$  alkyl,  $C_1\text{-}C_2$  alkoxy, hydroxy, -CF3, and -NO2.

Preferred compounds of formula I-3 include compounds wherein:  $R_1$  is  $-CH_2$ -phenyl or  $-CH_2CH_2$ -phenyl where the phenyl ring is optionally substituted with 2 groups independently selected from halogen,  $C_1$ - $C_2$  alkyl,  $C_1$ - $C_2$  alkoxy, hydroxy, and -NO<sub>2</sub>.

Preferred compounds of formula I-3 include compounds wherein:  $R_1$  is benzyl, 3,5-difluorobenzyl, or 2-(3,5-difluorophenyl)ethyl.

Preferred compounds of formula I-1, I-2, and I-3 also include compounds of formula I-4, i.e., those of formula I-1, I-2, or I-3 wherein:

- $R_{C}$  is hydrogen,  $-(CR_{245}R_{250})_{0-4}$ -aryl,  $-(CR_{245}R_{250})_{0-4}$ -heteroaryl,  $-(CR_{245}R_{250})_{0-4}$ -heterocyclyl,
  - $C_2$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of  $R_{205}$ ,  $R_{110}$ ,  $R_{120}$ ,  $R_{130}$ ,  $-OC=ONR_{235}R_{240}$ ,  $-S(=O)_{0-2}(C_1-C_6$  alkyl), -SH, and  $-S(=O)_2NR_{235}R_{240}$ ,
- - $C_2$ - $C_{10}$  alkenyl or  $C_2$ - $C_{10}$  alkynyl, each of which is optionally substituted with 1, 2, or 3 independently selected  $R_{205}$  groups, wherein
  - each aryl and heteroaryl is optionally substituted with 1, 2, or 3  $R_{200}$ , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 independently selected  $R_{210}$  groups.

Preferred compounds of formula I-4 also include compounds wherein

- $R_{C}$  is -(CR<sub>245</sub>R<sub>250</sub>)-aryl, -(CR<sub>245</sub>R<sub>250</sub>)-heteroaryl, -(CR<sub>245</sub>R<sub>250</sub>)-heterocyclyl,
- $C_2$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of

15

25

 $R_{205}$ ,  $R_{110}$ ,  $R_{120}$ ,  $R_{130}$ ,  $-OC=ONR_{235}R_{240}$ ,  $-S(=O)_{0-2}(C_1-C_6$  alkyl), -SH, and  $-S(=O)_2NR_{235}R_{240}$ , wherein

each aryl and heteroaryl is optionally substituted with 1, 2, or 3  $R_{200}$ , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 independently selected  $R_{210}$  groups.

Preferred compounds of formula I-4 also include compounds wherein

 $R_C$  is  $-(CH_2)$  -aryl,  $-(CH_2)$  -heteroaryl, or

C<sub>2</sub>-C<sub>10</sub> alkyl optionally substituted with 1, 2, or 3 groups independently selected from C<sub>1</sub>-C<sub>6</sub> alkyl, halogen,
-OH, -O-phenyl, -SH, -S-C<sub>1</sub>-C<sub>6</sub> alkyl, -C≡N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> alkoxy, and NH<sub>2</sub>, wherein

each aryl and heteroaryl is optionally substituted with 1, 2, or 3 groups selected from OH,  $-NO_2$ , halogen,  $-CO_2H$ ,  $C\equiv N$ ,  $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$ ,  $-(CH_2)_{0-4}-CO-(C_1-C_{12}$  alkyl), and  $-(CH_2)_{0-4}-SO_2-NR_{220}R_{225}$ .

Preferred compounds of formula I-4 also include compounds wherein

20  $R_C$  is -(CH<sub>2</sub>)-phenyl, wherein phenyl is optionally substituted with 1, 2, or 3 groups selected from OH, -NO<sub>2</sub>, halogen, -CO<sub>2</sub>H, and C $\equiv$ N, or

 $R_C$  is  $C_2-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from  $C_1-C_6$  alkyl, halogen, -OH,  $-C\equiv N$ ,  $-CF_3$ ,  $C_1-C_6$  alkoxy, and  $NH_2$ .

Preferred compounds of formula I-4 also include compounds wherein  $R_{\text{C}}$  is benzyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl or iso-butyl.

Preferred compounds of the formula I-4 also include those 30 wherein:

R<sub>c</sub> is



wherein  $x_1$ ,  $x_2$ , and  $x_3$  are independently -CHR<sub>245</sub>, SO<sub>2</sub>, or NH, and wherein the phenyl ring is optionally substituted with 1 or 2 -R<sub>245</sub> groups.

More preferred compounds of the formula I-6 also include those wherein one of  $x_1,\ x_2,$  or  $x_3$  is  $SO_2$ .

More preferred compounds of the formula I-6 also include those wherein one of  $\mathbf{x}_1,\ \mathbf{x}_2,$  or  $\mathbf{x}_3$  is NH.

More preferred compounds of the formula I-6 also include those wherein  $x_1,\ x_2,$  and  $x_3$  are each  $CH_2$ .

Preferred compounds of formula I-1, I-2, I-3, and I-4 also include compounds of formula I-5, i.e., those of formula I-1, I-2, I-3, or I-4 wherein each of  $R_2$ ,  $R_3$ , and  $R_{20}$  are independently hydrogen.

15

20

25

30

35

5

The invention also provides methods for treating patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment, comprising administering to such patient

20

30

35



therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, wherein  $R_{20}$ ,  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_N$  and  $R_C$  are as defined above or below.

In an embodiment, this method of treatment can be used where the disease is Alzheimer's disease.

In an embodiment, this method of treatment can help prevent or delay the onset of Alzheimer's disease.

In an embodiment, this method of treatment can be used where the disease is mild cognitive impairment.

In an embodiment, this method of treatment can be used where the disease is Down's syndrome.

In an embodiment, this method of treatment can be used where the disease is Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type.

In an embodiment, this method of treatment can be used where the disease is cerebral amyloid angiopathy.

In an embodiment, this method of treatment can be used where the disease is degenerative dementias.

In an embodiment, this method of treatment can be used where the disease is diffuse Lewy body type of Alzheimer's disease.

In an embodiment, this method of treatment can treat an existing disease.

In an embodiment, this method of treatment can prevent a disease from developing.

In an embodiment, this method of treatment can employ therapeutically effective amounts: for oral administration from about 0.1 mg/day to about 1,000 mg/day; for parenteral, sublingual, intranasal, intrathecal administration from about 0.5 to about 100 mg/day; for depo administration and implants from about 0.5 mg/day to about 50 mg/day; for topical administration from about 0.5 mg/day to about 200 mg/day; for rectal administration from about 0.5 mg to about 500 mg.

In an embodiment, this method of treatment can employ therapeutically effective amounts: for oral administration

10

15

20

25

30

35



from about 1 mg/day to about 100 mg/day; and for parenteral administration from about 5 to about 50 mg daily.

In an embodiment, this method of treatment can employ therapeutically effective amounts for oral administration from about 5 mg/day to about 50 mg/day.

The invention also includes pharmaceutical compositions which include a compound of formula (I) or a pharmaceutically acceptable salt or ester thereof.

The invention also includes the use of a compound of formula (I) or pharmaceutically acceptable salts or esters thereof for the manufacture of a medicament for use treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment.

In an embodiment, this use of a compound of formula (I) can be employed where the disease is Alzheimer's disease.

In an embodiment, this use of a compound of formula (I) can help prevent or delay the onset of Alzheimer's disease.

In an embodiment, this use of a compound of formula (I) can be employed where the disease is mild cognitive impairment.

10

15

20

25

30

35



In an embodiment, this use of a compound of formula (I) can be employed where the disease is Down's syndrome.

In an embodiment, this use of a compound of formula (I) can be employed where the disease is Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type.

In an embodiment, this use of a compound of formula (I) can be employed where the disease is cerebral amyloid angiopathy.

In an embodiment, this use of a compound of formula (I) can be employed where the disease is degenerative dementias.

In an embodiment, this use of a compound of formula (I) can be employed where the disease is diffuse Lewy body type of Alzheimer's disease.

In an embodiment, this use of a compound employs a pharmaceutically acceptable salt selected from the group consisting of salts of the following acids hydrochloric, hydrobromic, hydroiodic, nitric, sulfuric, phosphoric, citric, methanesulfonic,  $CH_3$ - $(CH_2)_n$ -COOH where n is 0 thru 4, HOOC- $(CH_2)_n$ -COOH where n is as defined above, HOOC-CH=CH-COOH, and phenyl-COOH.

The invention also includes methods for inhibiting betasecretase activity, for inhibiting cleavage of precursor protein (APP), in a reaction mixture, at a site between Met596 and Asp597, numbered for the APP-695 amino acid isotype, or at a corresponding site of an isotype or mutant thereof; for inhibiting production of amyloid beta peptide (A beta) in a cell; for inhibiting the production of beta-amyloid plaque in an animal; and for treating or preventing a disease characterized by beta-amyloid deposits in the brain. methods each include administration of a therapeutically effective amount of a compound of formula (I) orа pharmaceutically acceptable salt or ester thereof.

The invention also includes a method for inhibiting betasecretase activity, including exposing said beta-secretase to an effective inhibitory amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

25



In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of less than 200 micromolar.

In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of less than 50 micromolar.

In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of 10 micromolar or less.

In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of 1 micromolar or less.

In an embodiment, this method includes exposing said beta-secretase to said compound in vitro.

In an embodiment, this method includes exposing said beta-secretase to said compound in a cell.

In an embodiment, this method includes exposing said beta-secretase to said compound in a cell in an animal.

In an embodiment, this method includes exposing said 20 beta-secretase to said compound in a human.

The invention also includes a method for inhibiting cleavage of amyloid precursor protein (APP), in a reaction mixture, at a site between Met596 and Asp597, numbered for the APP-695 amino acid isotype; or at a corresponding site of an isotype or mutant thereof, including exposing said reaction mixture to an effective inhibitory amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

In an embodiment, this method employs a cleavage site:

30 between Met652 and Asp653, numbered for the APP-751 isotype;
between Met 671 and Asp 672, numbered for the APP-770 isotype;
between Leu596 and Asp597 of the APP-695 Swedish Mutation;
between Leu652 and Asp653 of the APP-751 Swedish Mutation; or
between Leu671 and Asp672 of the APP-770 Swedish Mutation.

20

35



In an embodiment, this method exposes said reaction mixture in vitro.

In an embodiment, this method exposes said reaction mixture in a cell.

In an embodiment, this method exposes said reaction mixture in an animal cell.

In an embodiment, this method exposes said reaction mixture in a human cell.

The invention also includes a method for inhibiting production of amyloid beta peptide (A beta) in a cell, including administering to said cell an effective inhibitory amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

In an embodiment, this method includes administering to an animal.

In an embodiment, this method includes administering to a human.

The invention also includes a method for inhibiting the production of beta-amyloid plaque in an animal, including administering to said animal an effective inhibitory amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

In an embodiment, this method includes administering to a human.

The invention also includes a method for treating or preventing a disease characterized by beta-amyloid deposits in the brain including administering to a patient an effective therapeutic amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of less than 50 micromolar.

In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of 10 micromolar or less.

15

30



In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of 1 micromolar or less.

In an embodiment, this method employs a compound that inhibits 50% of the enzyme's activity at a concentration of 10 nanomolar or less.

In an embodiment, this method employs a compound at a therapeutic amount in the range of from about 0.1 to about 1000 mg/day.

In an embodiment, this method employs a compound at a therapeutic amount in the range of from about 15 to about 1500 mg/day.

In an embodiment, this method employs a compound at a therapeutic amount in the range of from about 1 to about 100 mg/day.

In an embodiment, this method employs a compound at a therapeutic amount in the range of from about 5 to about 50 mg/day.

In an embodiment, this method can be used where said 20 disease is Alzheimer's disease.

In an embodiment, this method can be used where said disease is Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch Type.

The invention also includes a composition including betasecretase complexed with a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

The invention also includes a method for producing a beta-secretase complex including exposing beta-secretase to a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, in a reaction mixture under conditions suitable for the production of said complex.

In an embodiment, this method employs exposing in vitro.

In an embodiment, this method employs a reaction mixture 35 that is a cell.

10

20

25

30

35

The invention also includes a component kit including component parts capable of being assembled, in which at least one component part includes a compound of formula I enclosed in a container.

In an embodiment, this component kit includes lyophilized compound, and at least one further component part includes a diluent.

The invention also includes a container kit including a plurality of containers, each container including one or more unit dose of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof.

In an embodiment, this container kit includes each container adapted for oral delivery and includes a tablet, gel, or capsule.

In an embodiment, this container kit includes each container adapted for parenteral delivery and includes a depot product, syringe, ampoule, or vial.

In an embodiment, this container kit includes each container adapted for topical delivery and includes a patch, medipad, ointment, or cream.

The invention also includes an agent kit including a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof; and one or more therapeutic agent selected from the group consisting of an antioxidant, an anti-inflammatory, a gamma secretase inhibitor, a neurotrophic agent, an acetyl cholinesterase inhibitor, a statin, an A beta peptide, and an anti-A beta antibody.

The invention also includes a composition including a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, and an inert diluent or edible carrier.

In an embodiment, this composition includes a carrier that is an oil.

The invention also includes a composition including: a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, and a binder, excipient, disintegrating agent, lubricant, or gildant.

10

15

20

25

30

35

The invention also includes a composition including a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof; disposed in a cream, ointment, or patch.

The invention provides compounds of formula (I) that are useful in treating and preventing Alzheimer's disease. compounds of the invention can be prepared by one skilled in the art based only on knowledge of the compound's chemical The chemistry for the preparation of the compounds structure. of this invention is known to those skilled in the art. fact, there is more than one process to prepare the compounds of the invention. Specific examples of methods of preparation can be found in the art. For examples, see J. Org. Chem. 1998, 63, 4898-4906; J. Org. Chem. 1997, 62, 9348-9353; J. Org. Chem. 1996, 61, 5528-5531; J. Med. Chem. 1993, 36, 320-330; J. Am. Chem. Soc. 1999, 121, 1145-1155; and references cited See also U.S. Patent Nos. 6,150,530, therein. 5,892,052, 5,696,270, and 5,362,912, which are incorporated herein by reference, and references cited therein.

The anti-Alzheimer's substituted alcohols (I) are made by methods well known to those skilled in the art from starting compounds known to those skilled in the art. The process chemistry is well known to those skilled in the art. The most general process to prepare the substituted amino alcohols (I) of the invention is set forth below in Scheme I.

Scheme I describes the synthesis of compounds (VIII). The procedure is based on that outlined in Tung, R.D., et al. US Patent 6,127,372. Compounds (II) and (III) were coupled according to standard coupling methods orsulfonamide formation. The anion of compound (IV) was formed, and treated with compound (V) to form epoxide (VI). This epoxide was then ring-opened using amine (VII) to afford inhibitor (VIII).

The chemistry is straight forward and in summary involves the acylation or sulfonylation of an appropriate amine (III). The product (IV) is further used in the displacement of comercially available glycidyl tosylate (V). The epoxide (VI)



thus obtained was further reacted with the amine VII to open the epoxide and yield the desired substituted alcohol (VIII). One skilled in the art will appreciate that these are all well known reactions in organic chemistry. A chemist skilled in the art, knowing the chemical structure of the biologically active substituted alcohol end product (VIII) of the invention would be able to prepare them by known methods from known starting materials without any additional information.

Scheme I sets forth a general method used in the 10 invention to prepare the appropriately substituted alcohols (I). The anti-Alzheimer substituted alcohols of the invention are prepared by starting with the appropriately selected carboxylic acid or sulfonyl chloride (II). The nitrogenacylation of primary amines to produce secondary amides is one of the oldest known reactions. In a general aspect of Scheme 15  $\underline{\text{I}}$ ,  $R_{N-1}$  or  $R_{N-2}$  or  $R_{N-3}$  are defined as is  $R_N$  above or below. amide forming agents, (R<sub>1</sub>-X<sub>N</sub>)<sub>2</sub>O or R  $_{\rm N-1}$ -X $_{\rm N}$ -Cl or R  $_{\rm N-1}$ -X $_{\rm N}$ -OH are known to those skilled in the art and are commercially available or can be readily prepared from known starting 20 materials by methods known in the literature. It is preferred to use an isophthalic acid acylating agent (IX) of the formula  $R_{N-2}R_{N-3}N$ -CO- $\phi$ -CO- or a methylisophthalic acid acylating agent (X)  $R_{N-2}R_{N-3}N$ -CO-(CH<sub>3</sub>-) $\phi$ -CO- where the substitution is 5-methyl-1,3-isophthalic acid. These compounds are preferably prepared as set forth as follows. An ester, preferably the methyl 25 ester of isophthalate or methyl 5-methyl-1,3-isophthalate (1 equiv, 11.1 mmol) is dissolved in a THF/DMF mixture (1/1; 20 1,1'-carbonyldiimidazole (CDI, 1.2 equiv, 13.3 mmol) is added at 20-25°. Next the desired amine (H-NR $_{N-2}$ R $_{N-3}$ ; 1.2 equiv, 13.3 mmol) is added. After 12 hr of stirring at 20-25°, the 30 reaction mixture is partitioned between saturated aqueous ammonium chloride and a water immiscible organic solvent such ethyl acetate. The aqueous layer is separated and extracted twice more with the organic solvent (ethyl acetate). The organic extracts are combined and then washed with 35

10

15

20

25



saturated aqueous solutions of bicarbonate and saline and dried over anhydrous sodium sulfate or magnesium sulfate. Filtration of the drying agent and removal of solvents by reduced pressure (with heat) gives crude methyl ester of the desired  $R_{N-2}R_{N-3}N$ -CO- $\phi$ -CO-O-CH $_3$  or a methylisophthalic acid acylating agent (IX)  $R_{N-2}R_{N-3}N$ -CO-(CH<sub>3</sub>-) $\phi$ -CO-O-CH<sub>3</sub>. Purification of the (methyl) ester can be achieved via chromatography on silica gel eluting with 30-40% ethyl acetate in hexanes. isophthalate ester ormethylisophthalate ester the mono-alkyl or di-alkyl amide is then treated with an aqueous solution of base such as lithium hydroxide (3 equiv, 33.3 mmol) in a minimum amount of THF/methanol/water (1/2/1) and stirred overnight at 20-25°. After 12 hr, the solvents are removed under reduced pressure preferably with heat and subsequently partitioned between water and ethyl acetate. Ιf emulsions prohibit separation of the two phases, a small amount of saline is added to aid in separation. The aqueous phase is separated and extracted once more with ethyl acetate. The aqueous phase was then acidified with concentrated acid, preferably hydrochloric until pH  $\leq$  3. The mixture obtained is then extracted three times with ethyl acetate. These combined organic extracts are dried over anhydrous sodium or magnesium The drying agent is removed by filtration and the sulfate. organic solvent remove under reduced pressure preferably with heat to gave crude product. The crude product is column purified and used for coupling with the amine (III) to give the desired product (IV). This coupling can be done using CDI as described above.

The selected amine (III) is commercially available or can

be readily prepared from known compounds by either reductive
amination of the appropriate aldehyde or reduction of a
nitrile these are methods well known to those skilled in the
art. Substituted epoxide tosylates (V) may be synthesized from
the corresponding allylic alcohols. The following reference
describes the asymmetric synthesis of epoxide alcohols from

10



allylic alcohols. The allylic alcohols may be available commercially or synthesized according to references cited therein. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. Catalytic Asymmetric Epoxidation and Kinetic Resolution: Modified Procedures Including in Situ Derivatization. J. Am. Chem. Soc. 1987, 109, 5765-5780. The epoxide alcohols can then be readily converted to the epoxide tosylates: Klunder, Janice M.; Ko, Soo Y.; Sharpless, K. Barry. Asymmetric Epoxidation of Allyl Alcohol: Efficient Routes to Homochiral  $\beta$ -Adrenergic Blocking Agents. J. Org. Chem. (1986), 51(19), 3710-12.

## Scheme I

R<sub>N-1</sub> 
$$X_N$$
 (III)  $X_N = SO_2$  or C=O  $Y_N =$ 

5

The epoxide (VI) is then reacted with the appropriately substituted C-terminal amine,  $R_{\text{C}}\text{-NH}_2$  (VII) by means known to those skilled in the art which opens the epoxide to produce 10

ÓН

10

15

20

25

30

35



the desired alcohol (VIII). The substituted C-terminal amines,  $R_{C}$ -NH $_{2}$  (VI) of this invention are commercially available or are known to those skilled in the art and can be readily prepared from known compounds.

Suitable reaction conditions for opening the epoxide (VI) include running the reaction in a wide range of common and inert solvents.  $C_1$ - $C_6$  alcohol solvents are preferred and isopropyl alcohol most preferred. The reactions can be run at temperatures ranging from 20-25° up to the reflux temperature of the alcohol employed. The preferred temperature range for conducting the reaction is between 500 up to the reflux temperature of the alcohol employed. When the substituted Cterminal amine (VII) is a 1-amino-3,5-cis-dimethyl cyclohexyldicarboxylate it is preferably prepared as follows. To dimethyl-5-isophthalate in acetic acid and methanol, added rhodium in alumina in a high-pressure bottle. bottle is saturated with hydrogen at 55 psi and shaken for one week of time. The mixture is then filtered through a thick layer of celite cake and rinsed with methanol three times, the solvents are removed under reduced pressure (with heat) to give a concentrate. The concentrate is triturated with ether and filtered again to give the desired C-terminal amine (VI). When the substituted C-terminal amine (VII) is 1-amino-3,5cis-dimethoxy cyclohexane it is preferably following general procedure above and making non-critical variations but starting wth 3,5-dimethoxyaniline. When the substituted Cterminal amine (VII) is an aminomethyl group where the substituent on the methyl group is an aryl group, for example  $\mathrm{NH_2-CH_2-R_{C-aryl}}$ , and  $\mathrm{NH_2-CH_2-R_{C-aryl}}$  is not commercially available it is preferably prepared as follows. A suitable starting material is the (appropriately substituted) aralkyl compound. The first step is bromination of the alkyl substituent via methods known to those skilled in the art, see for example R.C. Larock in Comprehensive Organic Transformations, VCH Publishers, 1989, p. 313. Next the alkyl halide is reacted

with azide to produce the aryl-(alkyl)-azide. Last the azide is reduced to the corresponding amine by hydrogen/catalyst to give the C-terminal amine (VII) of formula  $NH_2-CH_2-R_{C-aryl}$ .

An alternative and exemplary preparation route for various compounds is shown below in Scheme II.

### Scheme II

5

Another example of one of many various processes that can be used in the preparation of intermediates for the preparation of compounds of the invention is forth in Scheme III.

15

When utilized in the preparation of compounds of the invention, the protection of amines is conducted, where appropriate, by methods known to those skilled in the art. Amino protecting groups are known to those skilled in the art.

See for example, "Protecting Groups in Organic Synthesis", John Wiley and sons, New York, N.Y., 1981, Chapter 7; "Protecting Groups in Organic Chemistry", Plenum Press, New York, N.Y., 1973, Chapter 2. When the amino protecting group is no longer needed, it is removed by methods known to those 5 skilled in the art. By definition the amino protecting group must be readily removable. Α variety of methodologies are known to those skilled in the art; see also T.W. Green and P.G.M. Wuts in "Protective Groups in Organic 10 Chemistry, John Wiley and Sons, 1991. Suitable amino protecting groups include t-butoxycarbonyl, benzyloxycarbonyl, formyl, trityl, phthalimido, trichloro-acetyl, chloroacetyl, bromoacetyl, iodoacetyl, phenylbenzyloxycarbonyl, 2-methylbenzyloxycarbonyl, 4 -15 ethoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4 chlorobenzyloxycarbonyl, 3-chlorobenzyloxycarbonyl, 2 chlorobenzyloxycarbonyl, 2,4-dichlorobenzyloxycarbonyl, 4 bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4 nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, xenyl) isopropoxycarbonyl, 20 1,1-diphenyleth-1-yloxycarbonyl, 1,1-diphenylprop-1-yloxycarbonyl, 2-phenylprop-2yloxycarbonyl, 2-(p-toluyl)prop-2-yloxy-carbonyl, cyclopentanyloxycarbonyl, 1-methylcyclo-pentanyloxycarbonyl, cyclohexanyloxycarbonyl, 1-methyl-cyclohexanyloxycabonyl, methylcyclohexanyloxycarbonyl, 25 2-(4toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphino)ethoxycarbonyl, fluorenylmethoxycarbonyl, 2-(trimethylsilyl)ethoxy-carbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 30 4 acetoxybenzyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 2ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, 4 -(decyloxyl)benzyloxycarbonyl, isobrornyloxycarbonyl, piperidyloxycarbonyl, 9-fluoroenylmethyl carbonate,  $-CH-CH=CH_2$ 35 and phenyl-C(=N-)-H.

10

15

20

25

30

35



It is preferred that the protecting group be t-butoxycarbonyl (BOC) and/or benzyloxycarbonyl (CBZ), it is more preferred that the protecting group be t-butoxycarbonyl. One skilled in the art will recognize suitable methods of introducing a t-butoxycarbonyl or benzyloxycarbonyl protecting group and may additionally consult T.W. Green and P.G.M. Wuts in "Protective Groups in Organic Chemistry, John Wiley and Sons, 1991 for guidance.

The compounds of the invention may contain geometric or optical isomers as well as tautomers. Thus, the invention includes all tautomers and pure geometric isomers, such as the E and Z geometric isomers, as well as mixtures thereof. Further, the invention includes pure enantiomers diastereomers as well as mixtures thereof, including racemic mixtures. The individual geometric isomers, enantiomers or diastereomers may be prepared or isolated by methods known to those skilled in the art, including but not limited to chiral chromatography; preparing diastereomers, separating diastereomers and converting the diastereomers into enantiomers through the use of a chiral resolving agent.

Compounds of invention the with designated stereochemistry can be included in mixtures, including racemic mixtures, with other enantiomers, diastereomers, geometric isomers or tautomers. In a preferred aspect, compounds of the invention with (S, R, R), (S, S, s), or (S, stereochemistry are typically present in these mixtures in excess of 50 percent. Preferably, compounds of the invention with designated stereochemistry are present in these mixtures in excess of 80 percent. More preferably, compounds of the invention with designated stereochemistry are present in these mixtures in excess of 90 percent. Even more preferably, compounds of the invention with designated stereochemistry are present in these mixtures in excess of 99 percent.

Several of the compounds of formula (I) are amines, and as such form salts when reacted with acids. Pharmaceutically

15

20

25

30

acceptable salt or esters are preferred over the corresponding amines of formula (I) since they produce compounds, which are more water soluble, stable and/or more crystalline. Pharmaceutically acceptable salts are any salt which retains the activity of the parent compound and does not impart any deleterious or undesirable effect on the subject to whom it is administered and in the context in which it is administered. Pharmaceutically acceptable salts include salts of both inorganic and organic acids. The preferred pharmaceutically acceptable salts include salts of the following acids acetic, aspartic, benzenesulfonic, benzoic, bicarbonic, bisulfuric, bitartaric, butyric, calcium edetate, camsylic, carbonic, chlorobenzoic, citric, edetic, edisylic, estolic, esylic, formic, fumaric, gluceptic, gluconic, glutamic, glycollylarsanilic, hexamic, hexylresorcinoic, hydrabamic, hydrobromic. hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, maleic, malic, mandelic, methanesulfonic, methylnitric, methylsulfuric, mucic, muconic, napsylic, nitric, oxalic, nitromethanesulfonic, pamoic, pantothenic, phosphoric, monohydrogen phosphoric, dihydrogen phosphoric, phthalic, polygalactouronic, propionic, salicylic, stearic, succinic, succinic, sulfamic, sulfamilic, sulfonic, sulfuric, tannic, tartaric, teoclic and toluenesulfonic. For other acceptable salts, see Int. J. Pharm., 33, 201-217 (1986) and J. Pharm. Sci., 66(1), 1, (1977).

The invention provides compounds, compositions, kits, and methods for inhibiting beta-secretase enzyme activity and A beta peptide production. Inhibition of beta-secretase enzyme activity halts or reduces the production of A beta from APP and reduces or eliminates the formation of beta-amyloid deposits in the brain.

# Methods of the Invention

The compounds of the invention, and pharmaceutically acceptable salts or esters thereof, are useful for treating

10

15

20

25

30

35

humans or animals suffering from a condition characterized by a pathological form of beta-amyloid peptide, such as betaamyloid plaques, and for helping to prevent or delay the onset of such a condition. For example, the compounds are useful for treating Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with MCI (mild cognitive impairment) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and its potential consequences, preventing i.e. single recurrent lobal hemorrhages, for treating other degenerative dementias, including dementias of  $\mathtt{mixed}$ vascular degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, and diffuse Lewy body type Alzheimer's disease. The compounds and compositions of the invention are particularly useful for treating or preventing Alzheimer's disease. When treating or preventing these diseases, the compounds of the invention can either be used individually or in combination, as is best for the patient.

As used herein, the term "treating" means that the compounds of the invention can be used in humans with at least a tentative diagnosis of disease. The compounds of the invention will delay or slow the progression of the disease thereby giving the individual a more useful life span.

The term "preventing" means that the compounds of the invention are useful when administered to a patient who has not been diagnosed as possibly having the disease at the time of administration, but who would normally be expected to develop the disease or be at increased risk for the disease. The compounds of the invention will slow the development of disease symptoms, delay the onset of the disease, or prevent the individual from developing the disease at all. Preventing

10

15

20

25

30

35

also includes administration of the compounds of the invention to those individuals thought to be predisposed to the disease due to age, familial history, genetic or chromosomal abnormalities, and/or due to the presence of one or more biological markers for the disease, such as a known genetic mutation of APP or APP cleavage products in brain tissues or fluids.

In treating or preventing the above diseases, the compounds of the invention are administered in a therapeutically effective amount. The therapeutically effective amount will vary depending on the particular compound used and the route of administration, as is known to those skilled in the art.

In treating a patient displaying any of the diagnosed above conditions a physician may administer a compound of the invention immediately and continue administration indefinitely, as needed. In treating patients who are not diagnosed as having Alzheimer's disease, but who are believed be at substantial risk for Alzheimer's disease, physician should preferably start treatment when the patient first experiences early pre-Alzheimer's symptoms such as, memory or cognitive problems associated with aging. addition, there are some patients who may be determined to be at risk for developing Alzheimer's through the detection of a genetic marker such as APOE4 or other biological indicators that are predictive for Alzheimer's disease. situations, even though the patient does not have symptoms of the disease, administration of the compounds of the invention may be started before symptoms appear, and treatment may be continued indefinitely to prevent or delay the onset of the disease.

#### Dosage Forms and Amounts

The compounds of the invention can be administered orally, parenterally, (IV, IM, depo-IM, SQ, and depo SQ), sublingually, intranasally (inhalation), intrathecally,

10

15

20

25



topically, or rectally. Dosage forms known to those of skill in the art are suitable for delivery of the compounds of the invention.

Compositions are provided that contain therapeutically effective amounts of the compounds of the invention. compounds are preferably formulated into suitable pharmaceutical preparations such as tablets, capsules, or elixirs for oral administration or in sterile solutions or suspensions for parenteral administration. Typically the compounds described above are formulated into pharmaceutical compositions using techniques and procedures well known in the art.

About 1 to 500 mg of a compound or mixture of compounds of the invention or a physiologically acceptable salt or ester or ester is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, flavor, etc., in a unit dosage form as called for by accepted pharmaceutical practice. The amount of active substance in those compositions or preparations is such that a suitable dosage in the range indicated is obtained. The compositions are preferably formulated in a unit dosage form, each dosage containing from about 2 to about 100 mg, more preferably about 10 to about 30 mg of the active ingredient. The term "unit dosage from" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, association with a suitable pharmaceutical excipient.

To prepare compositions, one or more compounds of the 30 invention mixed are with suitable а pharmaceutically acceptable carrier. Upon mixing or addition the compound(s), the resulting mixture may be а solution, suspension, emulsion, or the like. Liposomal suspensions may also be suitable as pharmaceutically acceptable carriers. These may be prepared according to methods known to those 35 skilled in the art. The form of the resulting mixture depends

10

15

20

25

30

35

upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. The effective concentration is sufficient for lessening or ameliorating at least one symptom of the disease, disorder, or condition treated and may be empirically determined.

Pharmaceutical carriers or vehicles suitable for administration of the compounds provided herein include any such carriers known to those skilled in the art to be suitable for the particular mode of administration. In addition, the active materials can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, or have another action. The compounds may be formulated as the sole pharmaceutically active ingredient in the composition or may be combined with other active ingredients.

Where the compounds exhibit insufficient solubility, methods for solubilizing may be used. Such methods are known and include, but are not limited to, using cosolvents such as dimethylsulfoxide (DMSO), using surfactants such as Tween®, and dissolution in aqueous sodium bicarbonate. Derivatives of the compounds, such as salt or ester or prodrugs may also be used in formulating effective pharmaceutical compositions.

The concentration of the compound is effective for delivery of an amount upon administration that lessens or ameliorates at least one symptom of the disorder for which the compound is administered. Typically, the compositions are formulated for single dosage administration.

The compounds of the invention may be prepared with carriers that protect them against rapid elimination from the body, such as time-release formulations or coatings. Such carriers include controlled release formulations, such as, but not limited to, microencapsulated delivery systems. The active compound is included in the pharmaceutically acceptable carrier in an amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on

10

15

20



the patient treated. The therapeutically effective concentration may be determined empirically by testing the compounds in known in vitro and in vivo model systems for the treated disorder.

The compounds and compositions of the invention can be enclosed in multiple or single dose containers. The enclosed compounds and compositions can be provided in kits, for example, including component parts that can be assembled for For example, a compound inhibitor in lyophilized form and a suitable diluent may be provided as separated components for combination prior to use. A kit may include a compound inhibitor and a second therapeutic agent administration. The inhibitor and second therapeutic agent may be provided as separate component parts. A kit may include a plurality of containers, each container holding one or more unit dose of the compound of the invention. The containers are preferably adapted for the desired mode of administration, including, but not limited to tablets, capsules, sustained-release capsules, and the like for oral administration; depot products, pre-filled syringes, ampoules, vials, and the like for parenteral administration; medipads, creams, patches, and the like for topical administration.

The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the active compound, the dosage schedule, and amount administered as well as other factors known to those of skill in the art.

The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test data. It is to be noted that concentrations and dosage

20

25

30

35



values may also vary with the severity of the condition to be It is to be further understood that for any particular subject, specific dosage regimens adjusted over time according to the individual need and the professional judgment of the person administering supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed compositions.

If oral administration is desired, the compound should be provided in a composition that protects it from the acidic environment of the stomach. For example, the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active compound in the intestine. The composition may also be formulated in combination with an antacid or other such ingredient.

Oral compositions will generally include an inert diluent or an edible carrier and may be compressed into tablets or enclosed in gelatin capsules. For the purpose of oral therapeutic administration, the active compound or compounds can be incorporated with excipients and used in the form of tablets, capsules, or troches. Pharmaceutically compatible binding agents and adjuvant materials can be included as part of the composition.

The tablets, pills, capsules, troches, and the like can contain any of the following ingredients or compounds of a similar nature: a binder such as, but not limited to, gum tragacanth, acacia, corn starch, or gelatin; an excipient such as microcrystalline cellulose, starch, or lactose; a disintegrating agent such as, but not limited to, alginic acid and corn starch; a lubricant such as, but not limited to, magnesium stearate; a gildant, such as, but not limited to, colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; and a flavoring agent such as peppermint, methyl salicylate, or fruit flavoring.

10

35

When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials, which modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents. The compounds can also be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings, and flavors.

The active materials can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action.

Solutions orsuspensions used for parenteral, intradermal, subcutaneous, or topical application can include 15 any of the following components: a sterile diluent such as water for injection, saline solution, fixed oil, a naturally occurring vegetable oil such as sesame oil, coconut oil, peanut oil, cottonseed oil, and the like, or a synthetic fatty vehicle such as ethyl oleate, and the like, polyethylene 20 glycol, glycerine, propylene glycol, or other synthetic solvent; antimicrobial agents such as benzyl alcohol methyl parabens; antioxidants such as ascorbic acid and sodium bisulfite; chelating agents such as ethylenediaminetetraacetic 25 acid (EDTA); buffers such as acetates, citrates, phosphates; and agents for the adjustment of tonicity such as sodium chloride and dextrose. Parenteral preparations can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass, plastic, or other suitable material. Buffers, preservatives, antioxidants, and the like can be 30 incorporated as required.

Where administered intravenously, suitable carriers include physiological saline, phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents such as glucose, polyethylene glycol, polypropyleneglycol, and mixtures thereof. Liposomal suspensions including tissue-

30

35

targeted liposomes may also be suitable as pharmaceutically acceptable carriers. These may be prepared according to methods known for example, as described in U.S. Patent No. 4,522,811.

The active compounds may be prepared with carriers that protect the compound against rapid elimination from the body, such as time-release formulations or coatings. Such carriers include controlled release formulations, such as, but not limited to, implants and microencapsulated delivery systems, and biodegradable, biocompatible polymers such as collagen, ethylene vinyl acetate, polyanhydrides, polyglycolic acid, polyorthoesters, polylactic acid, and the like. Methods for preparation of such formulations are known to those skilled in the art.

The compounds of the invention can be administered orally, parenterally (IV, IM, depo-IM, SQ, and depo-SQ), sublingually, intranasally (inhalation), intrathecally, topically, or rectally. Dosage forms known to those skilled in the art are suitable for delivery of the compounds of the invention.

Compounds of the invention may be administered enterally or parenterally. When administered orally, compounds of the invention can be administered in usual dosage forms for oral administration as is well known to those skilled in the art. These dosage forms include the usual solid unit dosage forms of tablets and capsules as well as liquid dosage forms such as solutions, suspensions, and elixirs. When the solid dosage forms are used, it is preferred that they be of the sustained release type so that the compounds of the invention need to be administered only once or twice daily.

The oral dosage forms are administered to the patient 1, 2, 3, or 4 times daily. It is preferred that the compounds of the invention be administered either three or fewer times, more preferably once or twice daily. Hence, it is preferred that the compounds of the invention be administered in oral dosage form. It is preferred that whatever oral dosage form

15

20

25

30

35



is used, that it be designed so as to protect the compounds of the invention from the acidic environment of the stomach. Enteric coated tablets are well known to those skilled in the art. In addition, capsules filled with small spheres each coated to protect from the acidic stomach, are also well known to those skilled in the art.

administered orally, When an administered amount therapeutically effective to inhibit beta-secretase activity, to inhibit A beta production, to inhibit A beta deposition, or to treat or prevent AD is from about 0.1 mg/day to about 1,000 mg/day. It is preferred that the oral dosage is from about 1 mg/day to about 100 mg/day. It is more preferred that the oral dosage is from about 5 mg/day to about 50 mg/day. understood that while a patient may be started at one dose, that dose may be varied over time as the patient's condition In certain embodiments and situations, it may be necessary to administer up to about 10 mg/kg or 30 mg/kg of the compound per day, resulting in dosages of about, example, 1500 mg/day or even about 2500 mg/day, either in one dose or two doses per day.

Compounds of the invention may also be advantageously delivered in a nano crystal dispersion formulation. Preparation of such formulations is described, for example, in U.S. Patent 5,145,684. Nano crystalline dispersions of HIV protease inhibitors and their method of use are described in U.S. Patent No. 6,045,829. The nano crystalline formulations typically afford greater bioavailability of drug compounds.

The compounds of the invention can be administered parenterally, for example, by IV, IM, depo-IM, SC, or depo-SC. When administered parenterally, a therapeutically effective amount of about 0.5 to about 100 mg/day, preferably from about 5 to about 50 mg daily should be delivered. When a depot formulation is used for injection once a month or once every two weeks, the dose should be about 0.5 mg/day to about 50 mg/day, or a monthly dose of from about 15 mg to about 1,500 mg. In part because of the forgetfulness of the patients with

10

15

20

25

30

35



Alzheimer's disease, it is preferred that the parenteral dosage form be a depo formulation.

The compounds of the invention can be administered sublingually. When given sublingually, the compounds of the invention should be given one to four times daily in the amounts described above for IM administration.

The compounds of the invention can be administered intranasally. When given by this route, the appropriate dosage forms are a nasal spray or dry powder, as is known to those skilled in the art. The dosage of the compounds of the invention for intranasal administration is the amount described above for IM administration.

The compounds of the invention can be administered intrathecally. When given by this route the appropriate dosage form can be a parenteral dosage form as is known to those skilled in the art. The dosage of the compounds of the invention for intrathecal administration is the amount described above for IM administration.

The compounds of the invention can be administered topically. When given by this route, the appropriate dosage form is a cream, ointment, or patch. Because of the amount of the compounds of the invention to be administered, the patch is preferred. When administered topically, the dosage is from about 0.5 mg/day to about 200 mg/day. Because the amount that can be delivered by a patch is limited, two or more patches The number and size of the patch is not may be used. important, what is important is that a therapeutically effective amount of the compounds of the invention delivered as is known to those skilled in the art. compounds of the invention can be administered rectally by suppository as is known to those skilled in the art. administered by suppository, the therapeutically effective amount is from about 0.5 mg to about 500 mg.

The compounds of the invention can be administered by implants as is known to those skilled in the art. When administering a compound of the invention by implant, the

15

30

25

0

5



therapeutically effective amount is the amount described above for depot administration.

Given a particular compound of the invention and a desired dosage form, one skilled in the art would know how to prepare and administer the appropriate dosage form.

The compounds of the invention are used in the same manner, by the same routes of administration, using the same pharmaceutical dosage forms, and at the same dosing schedule described above, for preventing disease or treating patients with MCI (mild cognitive impairment) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating or preventing Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, treating cerebral amyloid angiopathy and preventing potential consequences, i.e. single and recurrent lobar hemorrhages, treating other degenerative for dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, associated with progressive supranuclear palsy, associated with cortical basal degeneration, and diffuse Lewy body type of Alzheimer's disease.

The compounds of the invention can be used in combination, with each other or with other therapeutic agents or approaches used to treat or prevent the conditions listed Such agents or approaches include: above. acetylcholine esterase inhibitors such as tacrine (tetrahydroaminoacridine, marketed as COGNEX®), donepezil hydrochloride, (marketed as Aricept® and rivastigmine (marketed as Exelon®); secretase inhibitors; anti-inflammatory agents cyclooxygenase II inhibitors; anti-oxidants such as Vitamin E and ginkolides; immunological approaches, such as, for example, immunization with A beta peptide or administration of anti-A beta peptide antibodies; statins; and direct or indirect neurotropic agents such as Cerebrolysin®, AIT-082

15

20

25

30

(Emilieu, 2000, Arch. Neurol. 57:454), and other neurotropic agents of the future.

In addition, the compounds of formula (I) can also be inhibitors of P-glycoprotein (P-gp). inhibitors and the use of such compounds are known to those skilled in the art. See for example, Cancer Research, 53, 4595-4602 (1993), Clin. Cancer Res., 2, 7-12 (1996), Cancer Research, 56, 4171-4179 (1996), International Publications WO99/64001 and WO01/10387. The important thing is that the blood level of the P-gp inhibitor be such that it exerts its effect in inhibiting P-gp from decreasing brain blood levels of the compounds of formula (A). To that end the P-qp inhibitor and the compounds of formula (A) can be administered the same time, by the same or different route of administration, or at different times. The important thing is not the time of administration but having an effective blood level of the P-gp inhibitor.

Suitable P-gp inhibitors include cyclosporin verapamil, tamoxifen, quinidine, Vitamin E-TGPS, ritonavir, megestrol acetate, progesterone, rapamycin, methanodibenzosuberane, phenothiazines, acridine derivatives such as GF120918, FK506, VX-710, LY335979, PSC-833, GF-102,918 and other steroids. It is to be understood that additional agents will be found that have the same function and therefore achieve the same outcome; such compounds are also considered to be useful.

The P-gp inhibitors can be administered orally, parenterally, (IV, IM, IM-depo, SQ, SQ-depo), topically, sublingually, rectally, intranasally, intrathecally and by implant.

therapeutically effective amount of the inhibitors is about  ${ t from}$ 0.1 to about 300 mg/kg/day, preferably about 0.1 to about 150 mg/kg daily. understood that while a patient may be started on one dose,

10

15

20

30

35



that dose may have to be varied over time as the patient's condition changes.

When administered orally, the P-gp inhibitors can be administered in usual dosage forms for oral administration as is known to those skilled in the art. These dosage forms include the usual solid unit dosage forms of tablets and capsules as well as liquid dosage forms such as solutions, suspensions and elixirs. When the solid dosage forms are used, it is preferred that they be of the sustained release type so that the P-gp inhibitors need to be administered only once or twice daily. The oral dosage forms are administered to the patient one thru four times daily. It is preferred that the P-gp inhibitors be administered either three or fewer times a day, more preferably once or twice daily. Hence, it is preferred that the P-gp inhibitors be administered in solid dosage form and further it is preferred that the solid dosage form be a sustained release form which permits once or twice daily dosing. It is preferred that what ever dosage form is used, that it be designed so as to protect the P-gp inhibitors from the acidic environment of the stomach. Enteric coated tablets are well known to those skilled in the art. addition, capsules filled with small spheres each coated to protect from the acidic stomach, are also well known to those skilled in the art.

In addition, the P-gp inhibitors can be administered parenterally. When administered parenterally they can be administered IV, IM, depo-IM, SQ or depo-SQ.

The P-gp inhibitors can be given sublingually. When given sublingually, the P-gp inhibitors should be given one thru four times daily in the same amount as for IM administration.

The P-gp inhibitors can be given intranasally. When given by this route of administration, the appropriate dosage forms are a nasal spray or dry powder as is known to those skilled in the art. The dosage of the P-gp inhibitors for

10

15

20

25

30



intranasal administration is the same as for IM administration.

The P-gp inhibitors can be given intrathecally. When given by this route of administration the appropriate dosage form can be a parenteral dosage form as is known to those skilled in the art.

The P-gp inhibitors can be given topically. When given by this route of administration, the appropriate dosage form is a cream, ointment or patch. Because of the amount of the P-gp inhibitors needed to be administered the patch is preferred. However, the amount that can be delivered by a patch is limited. Therefore, two or more patches may be required. The number and size of the patch is not important, what is important is that a therapeutically effective amount of the P-gp inhibitors be delivered as is known to those skilled in the art.

The P-gp inhibitors can be administered rectally by suppository as is known to those skilled in the art.

The P-gp inhibitors can be administered by implants as is known to those skilled in the art.

There is nothing novel about the route of administration nor the dosage forms for administering the P-gp inhibitors. Given a particular P-gp inhibitor, and a desired dosage form, one skilled in the art would know how to prepare the appropriate dosage form for the P-gp inhibitor.

It should be apparent to one skilled in the art that the exact dosage and frequency of administration will depend on the particular compounds of the invention administered, the particular condition being treated, the severity of the condition being treated, the age, weight, general physical condition of the particular patient, and other medication the individual may be taking as is well known to administering physicians who are skilled in this art.

## Inhibition of APP Cleavage

10

15

20 ·

25

30

The compounds of the invention inhibit cleavage of APP between Met595 and Asp596 numbered for the APP695 isoform, or a mutant thereof, or at a corresponding site of a different such as APP751 or APP770, or a mutant thereof isoform, (sometimes referred to as the "beta secretase site"). not wishing to be bound by a particular theory, inhibition of beta-secretase activity is thought to inhibit production of amyloid peptide (A beta). Inhibitory activity demonstrated in one of a variety of inhibition assays, whereby cleavage of an APP substrate in the presence of a betasecretase enzyme is analyzed in the presence of the inhibitory compound, under conditions normally sufficient to result in cleavage at the beta-secretase cleavage site. Reduction of APP cleavage at the beta-secretase cleavage site compared with an untreated or inactive control is correlated with inhibitory Assay systems that can be used to demonstrate efficacy of the compound inhibitors of the invention are Representative assay systems are described, example, in U.S. Patents No. 5,942,400, 5,744,346, as well as in the Examples below.

enzymatic activity of beta-secretase and The production of A beta can be analyzed in vitro or in vivo, using natural, mutated, and/or synthetic APP substrates, natural, mutated, and/or synthetic enzyme, and the test The analysis may involve primary or secondary cells compound. expressing native, mutant, and/or synthetic APP and enzyme, animal models expressing native APP and enzyme, or may utilize transgenic animal models expressing the substrate and enzyme. Detection of enzymatic activity can be by analysis of one or more of the cleavage products, for example, by immunoassay, fluorometric or chromogenic assay, HPLC, or other means of Inhibitory compounds are determined as those detection. having the ability to decrease the amount of beta-secretase cleavage product produced in comparison to a control, where



beta-secretase mediated cleavage in the reaction system is observed and measured in the absence of inhibitory compounds.

#### Beta-Secretase

Various forms of beta-secretase enzyme are known, and are available and useful for assay of 5 enzyme activity and inhibition of enzyme activity. These include recombinant, and synthetic forms of the enzyme. Human betasecretase is known as Beta Site APP Cleaving Enzyme (BACE), Asp2, and memapsin 2, and has been characterized, for example, Patent No. 5,744,346 and published PCT patent 10 WO98/22597, WO00/03819, applications WO01/23533, WO00/17369, as well as in literature publications (Hussain et al., 1999, Mol. Cell. Neurosci. 14:419-427; Vassar et al., 1999, Science 286:735-741; Yan et al., 1999, Nature 402:533-537; Sinha et al., 1999, Nature 40:537-540; and Lin et al., 15 2000, PNAS USA 97:1456-1460). Synthetic forms of the enzyme have also been described (WO98/22597 and WO00/17369). Betasecretase can be extracted and purified from human brain tissue and can be produced in cells, for example mammalian cells expressing recombinant enzyme. 20

Preferred compounds are effective to inhibit 50% of betasecretase enzymatic activity at a concentration of less than 200 micromolar, preferably, 50 micromolar, preferably at a concentration of 10 micromolar or less, more preferably 1 micromolar or less, and most preferably 10 nanomolar or less.

10

15

20

25

30

;5



### APP Substrate

Assays that demonstrate inhibition of beta-secretasemediated cleavage of APP can utilize any of the known forms of APP, including the 695 amino acid "normal" isotype described by Kang et al., 1987, Nature 325:733-6, the 770 amino acid isotype described by Kitaguchi et. al., 1981, Nature 331:530-532, and variants such as the Swedish Mutation (KM670-1NL) (APP-SW), the London Mutation (V7176F), and others. example, U.S. Patent No. 5,766,846 and also Hardy, 1992, Nature Genet. 1:233-234, for a review of known variant Additional useful substrates include the dibasic mutations. amino acid modification, APP-KK disclosed, for example, in WO 00/17369, fragments of APP, and synthetic peptides containing the beta-secretase cleavage site, wild type (WT) or mutated form, e.g., SW, as described, for example, in U.S. Patent No 5,942,400 and WO00/03819.

The APP substrate contains the beta-secretase cleavage site of APP (KM-DA or NL-DA) for example, a complete APP peptide or variant, an APP fragment, a recombinant or synthetic APP, or a fusion peptide. Preferably, the fusion peptide includes the beta-secretase cleavage site fused to a peptide having a moiety useful for enzymatic assay, for example, having isolation and/or detection properties. A useful moiety may be an antigenic epitope for antibody binding, a label or other detection moiety, a binding substrate, and the like.

#### Antibodies

Products characteristic of APP cleavage can be measured by immunoassay using various antibodies, as described, for example, in Pirttila et al., 1999, Neuro. Lett. 249:21-4, and in U.S. Patent No. 5,612,486. Useful antibodies to detect A beta include, for example, the monoclonal antibody 6E10 (Senetek, St. Louis, MO) that specifically recognizes an epitope on amino acids 1-16 of the A beta peptide; antibodies 162 and 164 (New York State Institute for Basic Research,



Staten Island, NY) that are specific for human A beta 1-40 and 1-42, respectively; and antibodies that recognize the junction region of beta-amyloid peptide, the site between residues 16 and 17, as described in U.S. Patent No. 5,593,846. Antibodies raised against a synthetic peptide of residues 591 to 596 of APP and SW192 antibody raised against 590-596 of the Swedish mutation are also useful in immunoassay of APP and its cleavage products, as described in U.S. Patent Nos. 5,604,102 and 5,721,130.

## 10 Assay Systems

5

15

20

25

30

35

Assays for determining APP cleavage at the beta-secretase cleavage site are well known in the art. Exemplary assays, are described, for example, in U.S. Patent Nos. 5,744,346 and 5,942,400, and described in the Examples below.

# Cell Free Assays

Exemplary assays that can be used to demonstrate the inhibitory activity of the compounds of the invention are described, for example, in WO00/17369, WO 00/03819, and U.S. Patents No. 5,942,400 and 5,744,346. Such assays can be performed in cell-free incubations or in cellular incubations using cells expressing a beta-secretase and an APP substrate having a beta-secretase cleavage site.

An APP substrate containing the beta-secretase cleavage site of APP, for example, a complete APP or variant, an APP or a recombinant orsynthetic APP substrate containing the amino acid sequence: KM-DA or NL-DA, incubated in the presence of beta-secretase enzyme, fragment thereof, or a synthetic or recombinant polypeptide variant having beta-secretase activity and effective to cleave the beta-secretase cleavage site of APP, under incubation conditions suitable for the cleavage activity of the enzyme. Suitable substrates optionally include derivatives that may be fusion proteins or peptides that contain the substrate peptide and a modification useful to facilitate the purification or detection of the peptide or its beta-secretase cleavage

10

15

20

25

30

15



products. Useful modifications include the insertion of a known antigenic epitope for antibody binding; the linking of a label or detectable moiety, the linking of a binding substrate, and the like.

Suitable incubation conditions for a cell-free in vitro assay include, for example: approximately 200 nanomolar to 10 micromolar substrate, approximately 10 to 200 picomolar enzyme, and approximately 0.1 nanomolar to 10 micromolar inhibitor compound, in aqueous solution, at an approximate pH of 4 -7, at approximately 37 degrees C, for a time period of approximately 10 minutes to 3 hours. These conditions are exemplary only, and can be varied as required for the particular assay components and/or desired measurement Optimization of the incubation conditions for the particular assay components should account for the specific beta-secretase enzyme used and its pH optimum, any additional enzymes and/or markers that might be used in the assay, and Such optimization is routine and will not require the like. undue experimentation.

One useful assay utilizes a fusion peptide having maltose binding protein (MBP) fused to the C-terminal 125 amino acids The MBP portion is captured on an assay substrate of APP-SW. by anti-MBP capture antibody. Incubation of the captured fusion protein in the presence of beta-secretase results in cleavage of the substrate at the beta-secretase cleavage site. Analysis of the cleavage activity can be, for example, by immunoassay of cleavage products. One such immunoassay detects a unique epitope exposed at the carboxy terminus of the cleaved fusion protein, for example, using the antibody This assay is described, for example, in U.S. Patent No 5,942,400.

#### Cellular Assay

Numerous cell-based assays can be used to analyze betasecretase activity and/or processing of APP to release A beta. Contact of an APP substrate with a beta-secretase enzyme

10

15

30

within the cell and in the presence or absence of a compound inhibitor of the invention can be used to demonstrate beta-secretase inhibitory activity of the compound. Preferably, assay in the presence of a useful inhibitory compound provides at least about 30%, most preferably at least about 50% inhibition of the enzymatic activity, as compared with a non-inhibited control.

In one embodiment, cells that naturally express betasecretase are used. Alternatively, cells are modified to
express a recombinant beta-secretase or synthetic variant
enzyme as discussed above. The APP substrate may be added to
the culture medium and is preferably expressed in the cells.
Cells that naturally express APP, variant or mutant forms of
APP, or cells transformed to express an isoform of APP, mutant
or variant APP, recombinant or synthetic APP, APP fragment, or
synthetic APP peptide or fusion protein containing the betasecretase APP cleavage site can be used, provided that the
expressed APP is permitted to contact the enzyme and enzymatic
cleavage activity can be analyzed.

Human cell lines that normally process A beta from APP provide a useful means to assay inhibitory activities of the compounds of the invention. Production and release of A beta and/or other cleavage products into the culture medium can be measured, for example by immunoassay, such as Western blot or enzyme-linked immunoassay (EIA) such as by ELISA.

Cells expressing an APP substrate and an active betasecretase can be incubated in the presence of a compound
inhibitor to demonstrate inhibition of enzymatic activity as
compared with a control. Activity of beta-secretase can be
measured by analysis of one or more cleavage products of the
APP substrate. For example, inhibition of beta-secretase
activity against the substrate APP would be expected to
decrease release of specific beta-secretase induced APP
cleavage products such as A beta.

35 Although both neural and non-neural cells process and release A beta, levels of endogenous beta-secretase activity

10

15

are low and often difficult to detect by EIA. The use of cell types known to have enhanced beta-secretase activity, enhanced processing of APP to A beta, and/or enhanced production of A beta are therefore preferred. For example, transfection of cells with the Swedish Mutant form of APP (APP-SW); with APP-KK; or with APP-SW-KK provides cells having enhanced beta-secretase activity and producing amounts of A beta that can be readily measured.

In such assays, for example, the cells expressing APP and beta-secretase are incubated in a culture medium under conditions suitable for beta-secretase enzymatic activity at its cleavage site on the APP substrate. On exposure of the cells to the compound inhibitor, the amount of A beta released into the medium and/or the amount of CTF99 fragments of APP in the cell lysates is reduced as compared with the control. The cleavage products of APP can be analyzed, for example, by immune reactions with specific antibodies, as discussed above.

Preferred cells for analysis of beta-secretase activity include primary human neuronal cells, primary transgenic animal neuronal cells where the transgene is APP, and other cells such as those of a stable 293 cell line expressing APP, for example, APP-SW.

# In vivo Assays: Animal Models

animal models can be used to analyze beta-Various secretase activity and /or processing of APP to release A 25 beta, as described above. For example, transgenic animals expressing APP substrate and beta-secretase enzyme can be used to demonstrate inhibitory activity of the compounds of the invention. Certain transgenic animal models described, for example, in U.S. Patent Nos.: 30 5,612,486; 5,387,742; 5,720,936; 5,850,003; 5,877,015,, and 5,811,633, and in Ganes et al., 1995, Nature 373:523. Preferred are animals that exhibit characteristics associated the pathophysiology of AD. Administration of the compound inhibitors of the invention to the transgenic mice 35

10

L5

0

5

)



described herein provides alternative an method for demonstrating the inhibitory activity of the compounds. Administration of the compounds in a pharmaceutically effective carrier and via an administrative route that reaches the target tissue in an appropriate therapeutic amount is also preferred.

Inhibition of beta-secretase mediated cleavage of APP at the beta-secretase cleavage site and of A beta release can be analyzed in these animals by measure of cleavage fragments in the animal's body fluids such as cerebral fluid or tissues. Analysis of brain tissues for A beta deposits or plaques is preferred.

On contacting an APP substrate with a beta-secretase enzyme in the presence of an inhibitory compound of the invention and under conditions sufficient to permit enzymatic mediated cleavage of APP and/or release of A beta from the substrate, the compounds of the invention are effective to reduce beta-secretase-mediated cleavage of APP at the betasecretase cleavage site and/or effective to reduce released amounts of Α beta. Where such contacting administration of the inhibitory compounds of the invention to animal model, for example, as described above, compounds are effective to reduce A beta deposition in brain tissues of the animal, and to reduce the number and/or size of beta amyloid plaques. Where such administration is to a human subject, the compounds are effective to inhibit or slow the progression of disease characterized by enhanced amounts of A beta, to slow the progression of AD in the, and/or to prevent onset or development of AD in a patient at risk for the disease.

Unless defined otherwise, all scientific and technical terms used herein have the same meaning as commonly understood by one of skill in the art to which this invention belongs. All patents and publications referred to herein are hereby incorporated by reference for all purposes.

10

15

20

25

30



#### Definitions

The definitions and explanations below are for the terms as used throughout this entire document including both the specification and the claims.

It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.

The symbol "-" in general represents a bond between two atoms in the chain. Thus  $CH_3-O-CH_2-CH(R_1)-CH_3$  represents a 2-substituted-1-methoxypropane compound. In addition, the symbol "-" represents the point of attachment of the substituent to a compound. Thus for example  $aryl(C_1-C_6)alkyl-indicates$  an alkylaryl group, such as benzyl, attached to the compound at the alkyl moiety.

Where multiple substituents are indicated as being attached to a structure, it is to be understood that the substituents can be the same or different. Thus for example " $R_m$  optionally substituted with 1, 2 or 3  $R_q$  groups" indicates that  $R_m$  is substituted with 1, 2, or 3  $R_q$  groups where the  $R_q$  groups can be the same or different.

APP, amyloid precursor protein, is defined as any APP polypeptide, including APP variants, mutations, and isoforms, for example, as disclosed in U.S. Patent No. 5,766,846.

A beta, amyloid beta peptide, is defined as any peptide resulting from beta-secretase mediated cleavage of APP, including peptides of 39, 40, 41, 42, and 43 amino acids, and extending from the beta-secretase cleavage site to amino acids 39, 40, 41, 42, or 43.

Beta-secretase (BACE1, Asp2, Memapsin 2) is an aspartyl 35 protease that mediates cleavage of APP at the amino-terminal

10

15

20

25



edge of A beta. Human beta-secretase is described, for example, in WO00/17369.

Pharmaceutically acceptable refers to those properties and/or substances that are acceptable to the patient from a pharmacological/toxicological point of view and to the manufacturing pharmaceutical chemist from a physical/chemical point of view regarding composition, formulation, stability, patient acceptance and bioavailability.

A therapeutically effective amount is defined as an amount effective to reduce or lessen at least one symptom of the disease being treated or to reduce or delay onset of one or more clinical markers or symptoms of the disease.

By "alkyl" and " $C_1$ - $C_6$  alkyl" in the invention is meant straight or branched chain alkyl groups having 1-6 carbon atoms, such as, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl. It is understood that in cases where an alkyl chain of a substituent (e.g. of an alkyl, alkoxy or alkenyl group) is shorter or longer than 6 carbons, it will be so indicated in the second "C" as, for example, " $C_1$ - $C_{10}$ " indicates a maximum of 10 carbons.

By "alkoxy" and "C<sub>1</sub>-C<sub>6</sub> alkoxy" in the invention is meant straight or branched chain alkyl groups having 1-6 carbon atoms, attached through at least one divalent oxygen atom, such as, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, neopentoxy, hexoxy, and 3-methylpentoxy.

By the term "halogen" in the invention is meant fluorine, bromine, chlorine, and iodine.

"Alkenyl" and "C<sub>2</sub>-C<sub>6</sub> alkenyl" means straight and branched hydrocarbon radicals having from 2 to 6 carbon atoms and from one to three double bonds and includes, for example, ethenyl, propenyl, 1-but-3-enyl, 1-pent-3-enyl, 1-hex-5-enyl and the like.

"Alkynyl" and " $C_2$ - $C_6$  alkynyl" means straight and branched hydrocarbon radicals having from 2 to 6 carbon atoms and one

10

15

20

25

30

35



or two triple bonds and includes ethynyl, propynyl, butynyl, pentyn-2-yl and the like.

As used herein, the term "cycloalkyl" refers to saturated carbocyclic radicals having three to twelve carbon atoms. The cycloalkyl can be monocyclic, or a polycyclic fused system. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The cycloalkyl groups herein are unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. For example, such cycloalkyl groups may be optionally substituted with  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono( $C_1$ - $C_6$ ) alkylamino, di( $C_1$ - $C_6$ ) alkylamino,  $C_2$ - $C_6$ alkenyl,  $C_2$ - $C_6$ alkynyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  haloalkoxy, amino( $C_1$ - $C_6$ ) alkyl, mono( $C_1$ - $C_6$ ) alkylamino( $C_1$ - $C_6$ ) alkyl, mono( $C_1$ - $C_6$ ) alkylamino( $C_1$ - $C_6$ ) alkyl

By "aryl" is meant an aromatic carbocyclic group having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple condensed rings in which at least one is aromatic, (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl), which optionally mono-, di-, or trisubstituted. Preferred aryl groups of the invention are phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl or 6,7,8,9tetrahydro-5H-benzo[a]cycloheptenyl. The aryl groups herein are unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. For example, such aryl groups may be optionally substituted with, example,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono  $(C_1-C_6)$  alkylamino, di  $(C_1-C_6)$  alkylamino,  $C_2 C_6$ alkenyl,  $C_2$ - $C_6$ alkynyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  haloalkoxy, amino  $(C_1-C_6)$  alkyl, mono  $(C_1-C_6)$  alkylamino  $(C_1-C_6)$  alkyl,  $C_6$ ) alkylamino  $(C_1-C_6)$  alkyl, -COOH, -C (=O) O (C<sub>1</sub>-C<sub>6</sub> alkyl), -C(=0)NH<sub>2</sub>, -C(=0)N(mono- or di-C<sub>1</sub>-C<sub>6</sub> alkyl), -S(C<sub>1</sub>-C<sub>6</sub> alkyl),  $-SO_2(C_1-C_6 \text{ alkyl}), -O-C(=O)(C_1-C_6 \text{ alkyl}), -NH-C(=O)-(C_1-C_6)$ alkyl),  $-N(C_1-C_6 \text{ alkyl})-C(=0)-(C_1-C_6 \text{ alkyl})$ ,  $-NH-SO_2-(C_1-C_6)$ alkyl),  $-N(C_1-C_6 \text{ alkyl})-SO_2-(C_1-C_6 \text{ alkyl})$ ,  $-NH-C(=O)NH_2$ ,  $-NH-C(=O)NH_2$ 



 $\label{eq:condition} $C(=O) N (mono- \ or \ di-C_1-C_6 \ alkyl)$, $-NH(C_1-C_6 \ alkyl)-C(=O)-NH_2$ or $-NH(C_1-C_6 \ alkyl)-C(=O)-N-(mono- \ or \ di-C_1-C_6 \ alkyl)$.$ 

By "heteroaryl" is meant one or more aromatic ring systems of 5-, 6-, or 7-membered rings which includes fused ring systems of 9-11 atoms containing at least one and up to 5 four heteroatoms selected from nitrogen, oxygen, or sulfur. Preferred heteroaryl groups of the invention include pyridinyl, pyrimidinyl, quinolinyl, benzothienyl, indolyl, indolinyl, pryidazinyl, pyrazinyl, isoindolyl, isoquinolyl, 10 quinazolinyl, quinoxalinyl, phthalazinyl, imidazolyl, isoxazolyl, pyrazolyl, oxazolyl, thiazolyl, indolizinyl, indazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, furanyl, thienyl, pyrrolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, oxazolopyridinyl, imidazopyridinyl, isothiazolyl, naphthyridinyl, cinnolinyl, carbazolyl, 15 carbolinyl, isochromanyl, chromanyl, tetrahydroisoquinolinyl, isoindolinyl, isobenzotetrahydrofuranyl, isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, pyridopyridinyl, benzotetrahydrofuranyl, benzotetrahydrothienyl, purinyl, benzodioxolyl, triazinyl, 20 phenoxazinyl, phenothiazinyl, pteridinyl, benzothiazolyl, imidazopyridinyl, imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, benzoxazinyl, dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, 15 chromonyl, chromanonyl, pyridinyl-N-oxide, tetrahydroquinolinyl, dihydroquinolinyl, dihydroquinolinonyl, dihydroisoquinolinonyl, dihydrocoumarinyl, dihydroisocoumarinyl, isoindolinonyl, benzodioxanyl, benzoxazolinonyl, pyrrolyl N-oxide,, pyrimidinyl N-oxide, pyridazinyl N-oxide, pyrazinyl N-oxide, quinolinyl N-oxide, 0 indolyl N-oxide, indolinyl N-oxide, isoquinolyl N-oxide, quinazolinyl N-oxide, quinoxalinyl N-oxide, phthalazinyl Noxide, imidazolyl N-oxide, isoxazolyl N-oxide, oxazolyl Noxide, thiazolyl N-oxide, indolizinyl N-oxide, indazolyl Noxide, benzothiazolyl N-oxide, benzimidazolyl N-oxide, pyrrolyl 5 N-oxide, oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl

10

15

N-oxide, tetrazolyl N-oxide, benzothiopyranyl S-oxide, benzothiopyranyl S,S-dioxide. The heteroaryl groups herein are unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. For example, such heteroaryl groups may be optionally substituted with  $C_1 - C_6$ alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono  $(C_1-C_6)$  alkylamino, di  $(C_1-C_6)$  alkylamino,  $C_2-C_6$  alkenyl,  $C_6$ alkynyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  haloalkoxy, amino( $C_1$ - $C_6$ )alkyl,  $mono(C_1-C_6)$  alkylamino( $C_1-C_6$ ) alkyl or  $di(C_1-C_6)$  alkylamino  $(C_1 C_6$ ) alkyl, -COOH, -C(=O)O( $C_1$ - $C_6$  alkyl), -C(=O)NH<sub>2</sub>, -C(=O)N (monoor  $di-C_1-C_6$  alkyl),  $-S(C_1-C_6$  alkyl),  $-SO_2(C_1-C_6$  alkyl),  $-O-C_6$  $C(=0)(C_1-C_6 \text{ alkyl}), -NH-C(=0)-(C_1-C_6 \text{ alkyl}), -N(C_1-C_6 \text{ alkyl}) C(=0) - (C_1 - C_6 \text{ alkyl}), -NH - SO_2 - (C_1 - C_6 \text{ alkyl}), -N(C_1 - C_6 \text{ alkyl}) - SO_2 - C_6$  $(C_1-C_6 \text{ alkyl})$ , -NH-C (=O)  $NH_2$ , -NH-C (=O) N  $(mono- or di-C_1-C_6)$ alkyl), -NH( $C_1$ - $C_6$  alkyl)-C(=0)-NH $_2$  or -NH( $C_1$ - $C_6$  alkyl)-C(=0)-N-(mono- or  $di-C_1-C_6$  alkyl).

By "heterocycle", "heterocycloalkyl" or "heterocyclyl" is meant one or more carbocyclic ring systems of 3-, 4-, 5-, 6-, or 7-membered rings which includes fused ring systems of 9-11 atoms containing at least one and up to four heteroatoms 20 selected from nitrogen, oxygen, or sulfur. Preferred heterocycles of the invention include morpholinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S,Spiperazinyl, homopiperazinyl, pyrrolidinyl, pyrrolinyl, tetrahydropyranyl, piperidinyl, tetrahydrofuranyl, 25 tetrahydrothienyl, homopiperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S,S-dioxide, oxazolidinonyl, dihydropyrazolyl, dihydropyrrolyl, dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, 30 dihydrofuryl, dihydropyranyl, azepanyl, diazepanyl, tetrahydrothienyl S-oxide, tetrahydrothienyl S,S-dioxide and homothiomorpholinyl S-oxide. The heterocycle groups herein maybe unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. example, such heterocycle groups may be optionally substituted 35 with  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro,

10

25



amino, mono  $(C_1-C_6)$  alkylamino, di  $(C_1-C_6)$  alkylamino,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl,  $C_1-C_6$  haloalkyl,  $C_1-C_6$  haloalkoxy, amino  $(C_1-C_6)$  alkyl, mono  $(C_1-C_6)$  alkylamino  $(C_1-C_6)$ 

All patents and publications referred to herein are hereby incorporated by reference for all purposes.

Structures were named using Name Pro IUPAC Naming Software, version 5.09, available from Advanced Chemical Development, Inc., 90 Adelaide Street West, Toronto, Ontario, M5H 3V9, Canada.

The invention may be better understood with reference to the following examples. These examples are intended to be representative of specific embodiments of the invention, and are not intended as limiting the scope of the invention.

### 15 CHEMISTRY EXAMPLES

The following abbreviations may be used in the Examples:

EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide or the hydrochloride salt or ester);

DIEA (diisopropylethylamine);

20 PyBOP (benzotriazol-1-yloxy)tripyrrolidinophosphonium

hexafluorophosphate);

HATU (O-(7-azabenzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate);

DCM (dichloromethane).

### Examples

The following examples are given as non-limiting illustration of the invention.

Synthesis of Compound (IVa): N-(3,5-Difluorobenzyl)-5-methyl-N',N'-dipropylisophthalamide from 5-methyl-N,N-dipropylisophthalamic acid and 3,5-difluorobenzylamine.

10

15

20

25

30

5-Methyl-N, N-dipropylisophthalamic acid (1.0 mmol) in dry dichloromethane (10 mL) and 3,5difluorobenzylamine (1.0 equiv) was added by syringe at 0 °C. Triethylamine (3.0 equiv), 1-hydroxybenzotriazole hydrate (1.5 equiv) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.5 equiv) were added in succession with stirring at 0 °C. The resulting mixture was stirred at 0 °C for 10 min. then allowed to warm to rt for 2 h. The reaction mixture was then cooled to 0 °C, diluted with 10% citric acid (aq), and extracted with ethyl acetate (3X). The combined organic extracts were washed (saturated NaHCO3, saturated NaCl), dried (MgSO4), filtered and concentrated under vacuum. This oil was >95% pure by HPLC/MS analysis:  $R_{\rm f}$  = 0.27 (40% ethyl acetate/hexanes); MS(ES) = 389.2.

Synthesis of Compound (VIa): N-(3,5-Difluorobenzyl)-5-methyl-N-(R)-oxiranylmethyl-N',N'-dipropylisophthalamide from N-(3,5-Difluorobenzyl)-5-methyl-N',N'-dipropylisophthalamide and (R)-glycidyl toluenesulfonate.

N-(3,5-Difluorobenzyl)-5-methyl-N',N'-

dipropylisophthalamide (1.0 equiv) was dissolved in dry DMF (0.06 M in amide) and cooled to 0 °C. Sodium hydride (60% dispersion in mineral oil, 1.3 equiv) was added at 0 °C. After stirring at 0 °C for 30 min, (R)-glycidyl toluenesulfonate

(1.2 equiv) was added. The resulting mixture was allowed to warm to rt for 17.5 h, whereupon methanol was added, and the mixture was concentrated. The residue was partitioned between ethyl acetate and water. The organic layer was washed with water, dried (MgSO<sub>4</sub>), filtered, and concentrated. The residue was purified by flash chromatography (ethyl acetate/hexanes elution) to give the title compound:  $R_f = 0.13$  (40% ethyl acetate/hexanes); MH+ (ES) = 445.2.

10

15

5

Synthesis of Compound (VIIIa): N-(3,5-Difluorobenzyl)-N[2-hydroxy-3-(3-iodobenzylamino)propyl]-5-methyl-N',N'dipropylisophthalamide from N-(3,5-Difluorobenzyl)-5-methyl-N(R)-oxiranylmethyl-N',N'-dipropylisophthalamide and 3iodobenzylamine.

20

25

30

N-(3,5-Difluorobenzyl)-5-methyl-N-(R)- oxiranylmethyl-N',N'-dipropylisophthalamide (1.0 equiv) was dissolved in isopropanol, and 3-iodobenzylamine (1.5 equiv) was added at rt. This mixture was heated to reflux for 3 h, whereupon the mixture was concentrated. The residue was purified by flash chromatography (methanol/dichloromethane elution) and then reversed phase HPLC: MH+(ES)=678.2.

(sat'd NaHCO<sub>3</sub>, H2O, sat'd NaCl), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure to give the crude product 2 which was used in the next step without further purification (mass spec (ES) (MNa+): 367.1.).



Synthesis of (2): phenyl [2-(3,5-difluorophenyl)ethyl] (3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4yl]amino}-2-hydroxypropyl)carbamate.

5

The compound (2) can be prepared as follows:

он й

(2)

LO

## Synthesis of the isopthalic amide (IIa)



These compounds are preferably prepared as set forth as follows. An ester, preferably the monomethyl ester of isophthalic acid or methyl 5-methyl-1,3-isophthalate is dissolved in a THF/DMF mixture. 1,1'-Carbonyldiimidazole is added at 20-25 degrees C. The diisopropyl amide is added. After 3-24 hr of stirring at 20 degrees C to the reflux temperature of the solvent, the reaction mixture is partitioned between saturated aqueous ammonium chloride and a water immiscible organic solvent such as ethyl acetate. The aqueous layer is separated and extracted twice more with the organic solvent (ethyl acetate). The solvent removed and the residue thus obtained is basified to yield the isophthalic amide (IIa) in 80% yield.

The following compounds are prepared essentially according to the procedures described in the schemes, charts, examples and preparations set forth herein.

Cmpd

5

10

15

Structure and/or Name

No.

3

N-(3,5-difluorobenzyl)-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide

N-[2-(3,5-difluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide

3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N,N-dipropylbenzamide

 $N-(3,5-\text{difluorobenzyl})-N-((2R)-3-\{[(4R)-6-\text{ethyl}-2,2-dioxido}-3,4-\text{dihydro}-1H-\text{isothiochromen}-4-\text{yl}]\text{ amino}\}-2-hydroxypropyl)-5-methyl-N', N'-dipropylisophthalamide}$ 

7

 $N-[2-(3,5-difluorophenyl)]-N-((2R)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N', N'-dipropylisophthalamide$ 

8

 $3-\{ \ [\ [2-(3,5-difluorophenyl)\ ethyl\ ]\ ((2R)-3-\{\ [\ (4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl\ ]\ amino\}-2-hydroxypropyl)\ amino\ ]\ sulfonyl\ \}-N,N-$ 



dipropylbenzamide

9

 $N-(3,5-\text{difluorobenzyl})-N-\{(2R)-2-\text{hydroxy}-3-[(3-\text{iodobenzyl})\,\text{amino}]\,\text{propyl}\}-N',N',5-$ trimethylisophthalamide

- 10 N-[2-(3,5-difluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-N',N',5-trimethylisophthalamide
- 3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N,Ndimethylbenzamide

12

 $N-(3,5-difluorobenzyl)-N-((2R)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-N',N',5-trimethylisophthalamide$ 

N-[2-(3,5-difluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-N<sup>i</sup>,N<sup>i</sup>,5-trimethylisophthalamide

 $3-\{[[2-(3,5-difluorophenyl)ethyl]((2R)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino\}-2-hydroxypropyl)amino]sulfonyl\}-N,N-dimethylbenzamide$ 

- N-(3-chloro-5-fluorobenzyl) -N-{(2R) -2-hydroxy-3-[(3-iodobenzyl) amino] propyl}-5-methyl-N', N'dipropylisophthalamide
- 16 N-[2-(3-chloro-5-fluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N', N'-dipropylisophthalamide
- 3-[([2-(3-chloro-5-fluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N, N-dipropylbenzamide

18

N-(3-chloro-5-fluorobenzyl)-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-



2-hydroxypropyl)-5-methyl-N',N'-dipropylisophthalamide

N-[2-(3-chloro-5-fluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N',N'-dipropylisophthalamide

20 OSNOH OH H

 $3-\{[[2-(3-\text{chloro}-5-\text{fluorophenyl})\,\text{ethyl}]\,((2R)-3-\{[(4R)-6-\text{ethyl}-2,2-\text{dioxido}-3,4-\text{dihydro}-1H-\text{isothiochromen}-4-yl]\,\text{amino}\}-2-\text{hydroxypropyl})\,\text{amino}]\,\text{sulfonyl}\}-N,N-\text{dipropylbenzamide}$ 

21 O O H O O H

N-[(2R)-3-(benzylamino)-2-hydroxypropyl]-N-(3,5-difluorobenzyl)-5-methyl-N', N'-dipropylisophthalamide

- N-[(2R)-3-(benzylamino)-2-hydroxypropyl]-N-[2-(3,5-difluorophenyl)ethyl]-5-methyl-N',N'-dipropylisophthalamide
- 23 3-({[(2R)-3-(benzylamino)-2-hydroxypropyl][2-(3,5-



diffluorophenyl) ethyl] aminosulfonyl) -N, N-dipropylbenzamide.

### BIOLOGY EXAMPLES

### Example A

5

10

15

20

25

30

### Enzyme Inhibition Assay

compounds of the invention analyzed are inhibitory activity by use of the MBP-C125 assay. This assay determines the relative inhibition of beta-secretase cleavage of a model APP substrate, MBP-C125SW, by the compounds assayed as compared with an untreated control. A detailed description of the assay parameters can be found, for example, in U.S. Patent No. 5,942,400. Briefly, the substrate is a fusion peptide formed of maltose binding protein (MBP) and the carboxy terminal 125 amino acids of APP-SW, the Swedish The beta-secretase enzyme is derived from human brain tissue as described in Sinha et al, 1999, Nature 40:537-540) or recombinantly produced as the full-length enzyme (amino acids 1-501), and can be prepared, for example, from 293 cells expressing the recombinant cDNA, as described in WO00/47618.

Inhibition of the enzyme is analyzed, for example, by immunoassay of the enzyme's cleavage products. One exemplary ELISA uses an anti-MBP capture antibody that is deposited on precoated and blocked 96-well high binding plates, followed by incubation with diluted enzyme reaction supernatant, incubation with a specific reporter antibody, for example, biotinylated anti-SW192 reporter antibody, and further incubation with streptavidin/alkaline phosphatase. In the assay, cleavage of the intact MBP-C125SW fusion protein results in the generation of a truncated amino-terminal fragment, exposing a new SW-192 antibody-positive epitope at the carboxy terminus. Detection is effected by a fluorescent substrate signal on cleavage by the phosphatase. ELISA only

30

5



detects cleavage following Leu 596 at the substrate's APP-SW 751 mutation site.

## Specific Assay Procedure:

Compounds are diluted in a 1:1 dilution series to a sixpoint concentration curve (two wells per concentration) in one 5 96-plate row per compound tested. Each of the test compounds is prepared in DMSO to make up a 10 millimolar stock solution. The stock solution is serially diluted in DMSO to obtain a final compound concentration of 200 micromolar at the high point of a 6-point dilution curve. 10 Ten (10) microliters of each dilution is added to each of two wells on row C of a corresponding V-bottom plate to which 190 microliters of 52 millimolar NaOAc, 7.9% DMSO, pH 4.5 are pre-added. diluted compound plate is spun down to pellet precipitant and 20 microliters/well is transferred to a corresponding flatbottom plate to which 30 microliters of ice-cold enzymesubstrate mixture (2.5 microliters MBP-C125SW substrate, 0.03 microliters enzyme and 24.5 microliters ice cold 0.09% TX100 per 30 microliters) is added. The final reaction mixture of 200 micromolar compound at the highest curve point is in 5% DMSO, 20 millimolar NaOAc, 0.06% TX100, at pH 4.5.

Warming the plates to 37 degrees C starts the enzyme reaction. After 90 minutes at 37 degrees C, microliters/well cold specimen diluent is added to stop the reaction and 20 microliters/well was transferred corresponding anti-MBP antibody coated ELISA plate for containing 80 microliters/well specimen capture, This reaction is incubated overnight at 4 degrees C and the ELISA is developed the next day after a 2 hour incubation with anti-192SW antibody, followed by Streptavidin-AP conjugate and fluorescent substrate. The signal is read on a fluorescent plate reader.

Relative compound inhibition potency is determined by calculating the concentration of compound that showed a fifty percent reduction in detected signal ( $IC_{50}$ ) compared to the



enzyme reaction signal in the control wells with no added compound. In this assay, preferred compounds of the invention exhibit an  $IC_{50}$  of less than 200 micromolar, preferably less than 50 micromolar.

#### Example B

5

10

# Cell Free Inhibition Assay Utilizing a Synthetic APP Substrate

A synthetic APP substrate that can be cleaved by beta-secretase and having N-terminal biotin and made fluorescent by the covalent attachment of Oregon green at the Cys residue is used to assay beta-secretase activity in the presence or absence of the inhibitory compounds of the invention. Useful substrates include the following:

15 Biotin-SEVKM-DAEFRC[oregon green] KK [SEQ ID NO: 2]

Biotin-GLNIKTEEISEISY-

EVEFRC[oregon green] KK [SEQ ID NO: 3]

Biotin-ADRGLTTRPGSGLTNIKTEEISEVNL-

DAEFRC[oregon green] KK [SEQ ID NO:4]

20 Biotin-FVNQHLCoxGSHLVEALY-

LVCoxGERGFFYTPKAC[oregon green] KK [SEQ ID NO: 5]

The enzyme (0.1 nanomolar) and test compounds (0.001 -100 micromolar) are incubated in pre-blocked, low affinity, black plates (384 well) at 37 degrees for 30 minutes. 25 reaction is initiated by addition of 150 millimolar substrate to a final volume of 30 microliter per well. The final assay conditions are: 0.001 - 100 micromolar compound inhibitor; 0.1 molar sodium acetate (pH 4.5); 150 nanomolar substrate; 0.1 nanomolar soluble beta-secretase; 0.001% Tween 20, and 2% 30 The assay mixture is incubated for 3 hours at 37 DMSO. degrees C, and the reaction is terminated by the addition of a saturating concentration of immunopure streptavidin. incubation with streptavidin at room temperature for minutes, fluorescence polarization is measured, for example, 35



using a LJL Acqurest (Ex485 nm/ Em530 nm). The activity of the beta-secretase enzyme is detected by changes in the fluorescence polarization that occur when the substrate is cleaved by the enzyme. Incubation in the presence or absence of compound inhibitor demonstrates specific inhibition of beta-secretase enzymatic cleavage of its synthetic APP substrate. In this assay, preferred compounds of the invention exhibit an  $IC_{50}$  of less than 200 micromolar, preferably less than 50 micromolar.

10

15

5

#### Example C

## Beta-Secretase Inhibition: P26-P4'SW Assay

Synthetic substrates containing the beta-secretase cleavage site of APP are used to assay beta-secretase activity, using the methods described, for example, in published PCT application WO00/47618. The P26-P4'SW substrate is a peptide of the sequence:

(biotin) CGGADRGLTTRPGSGLTNIKTEEISEVNLDAEF [SEQ ID NO: 6].

20

The P26-P1 standard has the sequence:

(biotin) CGGADRGLTTRPGSGLTNIKTEEISEVNL [SEQ ID NO: 7].

Briefly, the biotin-coupled synthetic substrates 25 incubated at a concentration of from about 0 to about 200 micromolar in this assay. When testing inhibitory compounds, substrate concentration of about 1.0 micromolar Test compounds diluted in DMSO are added to the reaction mixture, with a final DMSO concentration of 30 Controls also contain a final DMSO concentration of 5%. concentration of beta secretase enzyme in the reaction is varied, to give product concentrations with the linear range of the ELISA assay, about 125 to 2000 picomolar, 35 dilution.

10

15

20

25

30

The reaction mixture also includes 20 millimolar sodium acetate, pH 4.5, 0.06% Triton X100, and is incubated at 37 degrees C for about 1 to 3 hours. Samples are then diluted in assay buffer (for example, 145.4 nanomolar sodium chloride, 9.51 millimolar sodium phosphate, 7.7 millimolar sodium azide, 0.05% Triton X405, 6g/liter bovine serum albumin, pH 7.4) to quench the reaction, then diluted further for immunoassay of the cleavage products.

Cleavage products can be assayed by ELISA. Diluted samples and standards are incubated in assay plates coated with capture antibody, for example, SW192, for about 24 hours at 4 degrees C. After washing in TTBS buffer (150 millimolar sodium chloride, 25 millimolar Tris, 0.05% Tween 20, pH 7.5), the samples are incubated with streptavidin-AP according to the manufacturer's instructions. After a one hour incubation at room temperature, the samples are washed in TTBS and incubated with fluorescent substrate solution A (31.2 g/liter 2-amino-2-methyl-1-propanol, 30 mg/liter, pH 9.5). Reaction with streptavidin-alkaline phosphate permits detection by fluorescence. Compounds that are effective inhibitors of beta-secretase activity demonstrate reduced cleavage of the substrate as compared to a control.

#### Example D

## Assays using Synthetic Oligopeptide-Substrates

Synthetic oligopeptides are prepared that incorporate the known cleavage site of beta-secretase, and optionally detectable tags, such as fluorescent or chromogenic moieties. Examples of such peptides, as well as their production and detection methods are described in U.S. Patent No: 5,942,400, herein incorporated by reference. Cleavage products can be detected using high performance liquid chromatography, or fluorescent or chromogenic detection methods appropriate to the peptide to be detected, according to methods well known in the art.

10

25

30

By way of example, one such peptide has the sequence SEVNL-DAEF [SEQ ID NO: 8], and the cleavage site is between residues 5 and 6. Another preferred substrate has the sequence ADRGLTTRPGSGLTNIKTEEISEVNL-DAEF [SEQ ID NO: 9], and the cleavage site is between residues 26 and 27.

These synthetic APP substrates are incubated in the presence of beta-secretase under conditions sufficient to result in beta-secretase mediated cleavage of the substrate. Comparison of the cleavage results in the presence of the compound inhibitor to control results provides a measure of the compound's inhibitory activity.

### Example E

# Inhibition of Beta-Secretase Activity - Cellular Assay

An exemplary assay for the analysis of inhibition of beta-secretase activity utilizes the human embryonic kidney cell line HEKp293 (ATCC Accession No. CRL-1573) transfected with APP751 containing the naturally occurring double mutation Lys651Met52 to Asn651Leu652 (numbered for APP751), commonly called the Swedish mutation and shown to overproduce A beta (Citron et al., 1992, Nature 360:672-674), as described in U.S. Patent No. 5,604,102.

The cells are incubated in the presence/absence of the inhibitory compound (diluted in DMSO) at the desired concentration, generally up to 10 micrograms/ml. At the end of the treatment period, conditioned media is analyzed for beta-secretase activity, for example, by analysis of cleavage A beta can be analyzed by immunoassay, using fragments. specific detection antibodies. The enzymatic activity is in the presence and absence of the compound inhibitors to demonstrate specific inhibition of betasecretase mediated cleavage of APP substrate.

### Example F

## Inhibition of Beta-Secretase in Animal Models of AD

Various animal models can be used to screen for inhibition of beta-secretase activity. Examples of animal

10

15

20

25

30



models useful in the invention include, but are not limited to, mouse, guinea pig, dog, and the like. The animals used can be wild type, transgenic, or knockout models. In addition, mammalian models can express mutations in APP, such as APP695-SW and the like described herein. Examples of transgenic non-human mammalian models are described in U.S. Patent Nos. 5,604,102, 5,912,410 and 5,811,633.

PDAPP mice, prepared as described in Games et al., 1995, Nature 373:523-527 are useful to analyze in vivo suppression of A beta release in the presence of putative inhibitory compounds. As described in U.S. Patent No. 6,191,166, 4 month old PDAPP mice are administered compound formulated in vehicle, such as corn oil. The mice are dosed with compound (1-30 mg/ml; preferably 1-10 mg/ml). After time, e.g., 3-10 hours, the animals are sacrificed, and brains removed for analysis.

Transgenic animals are administered an amount of the compound inhibitor formulated in a carrier suitable for the chosen mode of administration. Control animals are untreated, treated with vehicle, or treated with an inactive compound. Administration can be acute, i.e., single dose or multiple doses in one day, or can be chronic, i.e., dosing is repeated daily for a period of days. Beginning at time 0, brain tissue or cerebral fluid is obtained from selected animals and analyzed for the presence of APP cleavage peptides, including A beta, for example, by immunoassay using specific antibodies for A beta detection. At the end of the test period, animals are sacrificed and brain tissue or cerebral fluid is analyzed for the presence of A beta and/or beta-amyloid plaques. The tissue is also analyzed for necrosis.

Animals administered the compound inhibitors of the invention are expected to demonstrate reduced A beta in brain tissues or cerebral fluids and reduced beta amyloid plaques in brain tissue, as compared with non-treated controls.

35 Example G

10

15



### Inhibition of A Beta Production in Human Patients

Patients suffering from Alzheimer's Disease (AD) demonstrate an increased amount of A beta in the brain. AD patients are administered an amount of the compound inhibitor formulated in a carrier suitable for the chosen mode of administration. Administration is repeated daily for the duration of the test period. Beginning on day 0, cognitive and memory tests are performed, for example, once per month.

Patients administered the compound inhibitors are expected to demonstrate slowing or stabilization of disease progression as analyzed by changes in one or more of the following disease parameters: A beta present in CSF or plasma; brain or hippocampal volume; A beta deposits in the brain; amyloid plaque in the brain; and scores for cognitive and memory function, as compared with control, non-treated patients.

#### Example H

# Prevention of A Beta Production in Patients at Risk for AD

Patients predisposed or at risk for developing AD are 20 identified either by recognition of a familial inheritance pattern, for example, presence of the Swedish Mutation, and/or by monitoring diagnostic parameters. Patients identified as predisposed or at risk for developing AD are administered an amount of the compound inhibitor formulated in a carrier 25 suitable for the chosen mode of administration. Administration is repeated daily for the duration of the test Beginning on day 0, cognitive and memory tests are performed, for example, once per month.

Patients administered the compound inhibitors are expected to demonstrate slowing or stabilization of disease progression as analyzed by changes in one or more of the following disease parameters: A beta present in CSF or plasma; brain or hippocampal volume; amyloid plaque in the



brain; and scores for cognitive and memory function, as compared with control, non-treated patients.

The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.



What is claimed is:

1. A compound of the formula I:

$$R_N$$
 OH  $R_{20}$   $R_{20}$   $R_{20}$   $R_{20}$   $R_{3}$ 

5

or a pharmaceutically acceptable salt or ester thereof, wherein  $R_{20}$  is H,  $C_{1-6}$  alkyl or alkenyl,  $C_{1-6}$  haloalkyl or  $C_{4-7}$  cycloalkyl;

 $R_1$  is  $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$ , or

10

 $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =0, -SH, -C $\equiv$ N, -CF<sub>3</sub>, -C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, mono- or dialkylamino, -N(R)C(O)R'-, -OC( $\equiv$ O)-amino and -OC( $\equiv$ O)-mono- or dialkylamino, or

15

 $C_2$ - $C_6$  alkenyl or  $C_2$ - $C_6$  alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C=N, -CF<sub>3</sub>,  $C_1$ - $C_3$  alkoxy, amino, and mono- or dialkylamino, or

20

aryl, heteroaryl, heterocyclyl,  $-C_1-C_6$  alkyl-aryl,  $-C_1-C_6$  alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH,  $-C\equiv N$ ,  $-NR_{105}R'_{105}$ ,  $-CO_2R$ , -N(R)COR', or  $-N(R)SO_2R'$ ,  $-C(=O)-(C_1-C_4)$  alkyl,  $-SO_2-C(=O)$  amino,  $-SO_2$ -mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino,  $-SO_2-(C_1-C_4)$  alkyl, or  $-C_1-C_6$  alkoxy optionally substituted with 1, 2, or 3

25

groups which are independently selected from halogen, or

 $C_3-C_7$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, -C<sub>1</sub>-C<sub>6</sub> alkyl and mono- or dialkylamino, or  $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 5 groups independently selected from halogen, -OH, -SH,  $-C \equiv N$ ,  $-CF_3$ ,  $-C_1-C_3$  alkoxy, mono- or dialkylamino and -C1-C3 alkyl, or  $C_2\text{-}C_{10}$  alkenyl or  $C_2\text{-}C_{10}$  alkynyl each of which is 10 optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, C<sub>1</sub>-C<sub>6</sub> alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with 15 oxo; independently are hydrogen,  $C_1 - C_{10}$  alkyl,  $C_1 - C_{10}$ R and R' alkylaryl or C<sub>1</sub>-C<sub>10</sub> alkylheteroaryl;  $R_C$  is hydrogen, -( $CR_{245}R_{250}$ )<sub>0-4</sub>-aryl, -( $CR_{245}R_{250}$ )<sub>0-4</sub>-heteroaryl, - $(CR_{245}R_{250})_{0-4}$ -heterocyclyl,  $-(CR_{245}R_{250})_{0-4}$ -aryl-heteroaryl, -20  $(CR_{245}R_{250})_{0-4}$ -aryl-heterocyclyl, -(CR<sub>245</sub>R<sub>250</sub>)<sub>0-4</sub>-aryl-aryl,-  $(CR_{245}R_{250})_{0-4}$ -heteroaryl-aryl, -  $(CR_{245}R_{250})_{0-4}$ -heteroarylheterocyclyl,  $-(CR_{245}R_{250})_{0-4}$ -heteroaryl-heteroaryl, (CR<sub>245</sub>R<sub>250</sub>)<sub>0-4</sub>-heterocyclyl-heteroaryl,  $-(CR_{245}R_{250})_{0-4}$ heterocyclyl-heterocyclyl, -  $(CR_{245}R_{250})_{0-4}$ -heterocyclyl-25 -  $[C(R_{255})(R_{260})]_{1-3}$ - $CO-N-(R_{255})_{2}$ , aryl, -CH(aryl)<sub>2</sub>, -CH(heteroaryl)<sub>2</sub>, -CH(heterocyclyl)<sub>2</sub>, -CH(aryl)(heteroaryl), -(CH $_2$ ) $_{0-1}$ -CH((CH $_2$ ) $_{0-6}$ -OH)-(CH $_2$ ) $_{0-1}$ aryl,  $-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-heteroaryl, -CH(-aryl)_{0-1}-heteroaryl$ -heteroaryl)-CO-O( $C_1$ - $C_4$  alkyl), -CH(-CH<sub>2</sub>-OH)-CH(OH)phenyl-NO<sub>2</sub>, ( $C_1$ - $C_6$  alkyl)-O-( $C_1$ - $C_6$  alkyl)-OH; -CH<sub>2</sub>-NH-CH<sub>2</sub>-30  $\label{eq:charge_charge} \text{CH}\left(-\text{O-CH}_2\text{-CH}_3\right)_2, \quad -\left(\text{CH}_2\right)_{0\text{-}6}\text{-C}\left(=\text{NR}_{235}\right) \left(\text{NR}_{235}\text{R}_{240}\right), \quad \text{or} \quad$  $C_1\text{-}C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of  $-OC=ONR_{235}R_{240}$ ,  $-S(=O)_{0-2}(C_1-C_6)$ alkyl), 35  $-NR_{235}C = ONR_{235}R_{240}\,, \quad -C = ONR_{235}R_{240}\,, \quad \text{and} \quad -S \; (=O) \; _2NR_{235}R_{240}\,, \quad \text{or} \quad -C = ONR_{235}R_{240}\,, \quad \text{o$ 

10

15

- -(CH<sub>2</sub>)<sub>0-3</sub>-(C<sub>3</sub>-C<sub>8</sub>) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of  $R_{205}$ , -CO<sub>2</sub>H, and -CO<sub>2</sub>-(C<sub>1</sub>-C<sub>4</sub> alkyl), or
- cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocyclyl wherein one, two or three carbons of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with a heteroatom independently selected from NH, NR<sub>215</sub>, O, or S(=O)<sub>0-2</sub>, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with one or two groups that are independently R<sub>205</sub>, =O, -CO-NR<sub>235</sub>R<sub>240</sub>, or -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>4</sub> alkyl), or
  - $C_2-C_{10}$  alkenyl or  $C_2-C_{10}$  alkynyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups, wherein
  - each aryl and heteroaryl is optionally substituted with 1, 2, or 3  $R_{200}$ , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4  $R_{210}$ ;
- $R_{200}$  at each occurrence is independently selected from -OH, 20 -NO<sub>2</sub>, halogen, -CO<sub>2</sub>H, C $\equiv$ N, -(CH<sub>2</sub>)<sub>0-4</sub>-CO-NR<sub>220</sub>R<sub>225</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>- $CO-(C_1-C_{12} \text{ alkyl}), -(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkenyl}), -(CH_2)_{0-4} CO-(C_2-C_{12} \text{ alkynyl})$ ,  $-(CH_2)_{0-4}-CO-(C_3-C_7 \text{ cycloalkyl})$ , -(CH<sub>2</sub>)<sub>0-4</sub>-CO-aryl, - (CH<sub>2</sub>)<sub>0-4</sub>-CO-heteroaryl, $-(CH_2)_{0-4}-CO-$ 25 heterocyclyl,  $-(CH_2)_{0-4}-CO-O-R_{215}$ ,  $-(CH_2)_{0-4}-SO_2-NR_{220}R_{225}$ , - $(CH_2)_{0-4}-SO-(C_1-C_8 \quad alkyl), \quad -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \quad alkyl), \quad R_{215}$ ,  $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-CO-N(R_{215})_2$ ,  $-(CH_2)_{0-4}-N-CS N(R_{215})_2$ ,  $-(CH_2)_{0-4}-N(-H \text{ or } R_{215})-CO-R_{220}$ ,  $-(CH_2)_{0-4}-NR_{220}R_{225}$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6)$  alkyl),  $-(CH_2)_{0-4}-O-P(O)-(OR_{240})_2$ , 30  $-(CH_2)_{0-4}-O-CO-N(R_{215})_2$ ,  $-(CH_2)_{0-4}-O-CS-N(R_{215})_2$ ,  $-(CH_2)_{0-4}-O-CS-N(R_{215})_2$  $(R_{215})$ ,  $-(CH_2)_{0-4}-O-(R_{215})$  -COOH,  $-(CH_2)_{0-4}-S-(R_{215})$ ,  $-(CH_2)_{0-4}-S$  $O-(C_1-C_6 \text{ alkyl optionally substituted with 1, 2, 3, or 5 -}$ F),  $C_3-C_7$  cycloalkyl,  $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220}$ ,  $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220}$ 35 4- C3-C7 cycloalkyl, or

10

30

0





- $C_2\text{-}C_{10}$  alkenyl or  $C_2\text{-}C_{10}$  alkynyl, each of which is optionally substituted with 1 or 2  $R_{205}$  groups, wherein
- the aryl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 groups that are independently  $R_{205},\ R_{210},$  or
  - $\text{C}_{1}\text{-C}_{6}$  alkyl substituted with 1, 2, or 3 groups that are independently  $R_{205}$  or  $R_{210},$  and wherein
- the heterocyclyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently  $R_{210}\,;$
- R<sub>205</sub> at each occurrence is independently selected from  $C_1$ - $C_6$  alkyl, halogen, -OH, -O-phenyl, -SH, -C $\equiv$ N, -CF<sub>3</sub>,  $C_1$ - $C_6$  alkoxy, NH<sub>2</sub>, NH( $C_1$ - $C_6$  alkyl) or N-( $C_1$ - $C_6$  alkyl);
  - $R_{210}$  at each occurrence is independently selected from halogen,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  haloalkoxy,  $-NR_{220}R_{225}$ , OH,  $C\equiv N$ , -CO- $(C_1$ - $C_4$  alkyl),  $-SO_2$ - $NR_{235}R_{240}$ , -CO- $NR_{235}R_{240}$ ,  $-SO_2$ - $(C_1$ - $C_4$  alkyl), -CO- $C_4$ 
    - $C_1-C_6$  alkyl,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl or  $C_3-C_7$  cycloalkyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups;
- :5  $R_{215}$  at each occurrence is independently selected from  $C_1$ - $C_6$  alkyl,  $-(CH_2)_{0-2}$ -(aryl),  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_7$  cycloalkyl, and  $-(CH_2)_{0-2}$ -(heteroaryl),  $-(CH_2)_{0-2}$ -(heterocyclyl), wherein
  - the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently  $R_{205}$  or  $R_{210}$ , and wherein
  - the heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3  $R_{210}$ ;
- $R_{220}$  and  $R_{225}$  at each occurrence are independently selected from -H,  $-C_3-C_7$  cycloalkyl,  $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$ , -

.5

0

5



 $(C_1-C_6 \ alkyl)-O-(C_1-C_3 \ alkyl)$ ,  $-C_2-C_6 \ alkenyl$ ,  $-C_2-C_6$  alkynyl,  $-C_1-C_6 \ alkyl$  chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocyclyl, or  $-C_1-C_{10}$  alkyl optionally substituted with -OH,  $-NH_2$  or halogen, wherein

- the aryl, heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3  $R_{\rm 270}$  groups
- $R_{235}$  and  $R_{240}$  at each occurrence are independently H, or  $C_1$ - $C_6$  alkyl;
  - $R_{245}$  and  $R_{250}$  at each occurrence are independently selected from -H,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkylaryl,  $C_1$ - $C_4$  alkylheteroaryl,  $C_1$ - $C_4$  hydroxyalkyl,  $C_1$ - $C_4$  alkoxy,  $C_1$ - $C_4$  haloalkoxy, -(CH<sub>2</sub>)<sub>0-4</sub>- $C_3$ - $C_7$  cycloalkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl, and phenyl; or
  - $R_{245}$  and  $R_{250}$  are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, where one carbon atom is optionally replaced by a heteroatom selected from -O-, -S-, -SO<sub>2</sub>-, and -NR<sub>220</sub>-;
  - R<sub>255</sub> and R<sub>260</sub> at each occurrence are independently selected from -H,  $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$ ,  $-(C_1-C_4 \text{ alkyl})-\text{aryl}$ ,  $-(C_1-C_4 \text{ alkyl})-\text{heteroaryl}$ ,  $-(C_1-C_4 \text{ alkyl})-\text{heterocyclyl}$ , -aryl, -heteroaryl, -heterocyclyl,  $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-\text{aryl}$ ,  $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-\text{heterocyclyl}$ , or
    - $C_1-C_6$  alkyl,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl or  $-(CH_2)_{0-4}-C_3-C_7$  cycloalkyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups, wherein
    - each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently  $R_{205},\ R_{210},$  or  $C_1$ - $C_6$  alkyl substituted with 1, 2, or 3 groups that are independently  $R_{205}$  or  $R_{210},$  and wherein
    - each heterocyclyl is optionally substituted with 1, 2, 3, or 4  $R_{210}\,;$

30



 $R_{265}$  at each occurrence is independently -O-, -S- or -N( $C_1$ - $C_6$  alkyl)-;

 $R_{270}$  at each occurrence is independently  $R_{205},$  halogen  $C_1-C_6$  alkoxy,  $C_1-C_6$  haloalkoxy,  $NR_{235}R_{240},$  -OH, -C=N, -CO-( $C_1-C_4$  alkyl),  $_{-}SO_{2}-NR_{235}R_{240},$  -CO-NR $_{235}R_{240},$  -SO $_{2}-(C_1-C_4$  alkyl), =O, or

 $C_1-C_6$  alkyl,  $C_2-C_6$  alkenyl,  $C_2-C_6$  alkynyl or  $-(CH_2)_{0-4}-C_3-C_7$  cycloalkyl, each of which is optionally substituted with 1, 2, or 3  $R_{205}$  groups;

10  $R_N$  is  $R'_{100}$ ,  $-C(=O) - NR_{100} - R'_{100}$ ,  $-C(=O) O - R'_{100}$ ,  $-SO_2R'_{100}$ ,  $-(CRR')_{1-6}$   $-R'_{100}$ ,  $-C(=O) - (CRR')_{1-6} - O - R'_{100}$ ,  $-C(=O) - (CRR')_{1-6} - C(=O) - (CRR')_{1-6} - NR_{100} - R'_{100}$ , or  $Y = X_1 - CHC(O) - R_4$ 

wherein

15 R<sub>4</sub> is selected from the group consisting of H; NH<sub>2</sub>; -NH-(CH<sub>2</sub>)<sub>n6</sub>-R<sub>4-1</sub>; -NHR<sub>8</sub>; -NR<sub>50</sub>C(O)R<sub>5</sub>; C<sub>1</sub>-C<sub>4</sub> alkyl-NHC(O)R<sub>5</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>R<sub>8</sub>; -O-C<sub>1</sub>-C<sub>4</sub> alkanoyl; OH; C<sub>6</sub>-C<sub>10</sub> aryloxy optionally substituted with 1, 2, or 3 groups that are independently halogen, C<sub>1</sub>-C<sub>4</sub> alkyl, -CO<sub>2</sub>H, -C(O)-C<sub>1</sub>-C<sub>4</sub> alkoxy, or C<sub>1</sub>-C<sub>4</sub> alkoxy; C<sub>1</sub>-C<sub>6</sub> alkoxy; aryl C<sub>1</sub>-C<sub>4</sub> alkoxy; -NR<sub>50</sub>CO<sub>2</sub>R<sub>51</sub>; -C<sub>1</sub>-C<sub>4</sub> alkyl-NR<sub>50</sub>CO<sub>2</sub>R<sub>51</sub>; -C $\equiv$ N; -CF<sub>3</sub>; -CF<sub>2</sub>-CF<sub>3</sub>; -C $\equiv$ CH; -CH<sub>2</sub>-CH=CH<sub>2</sub>; -(CH<sub>2</sub>)<sub>1-4</sub>-R<sub>4-1</sub>; -O-(CH<sub>2</sub>)<sub>n6</sub>-R<sub>4-1</sub>; -S-(CH<sub>2</sub>)<sub>n6</sub>-R<sub>4-1</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>-NHC(O)-(CH<sub>2</sub>)<sub>0-6</sub>-R<sub>52</sub>; -(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>53</sub>-(CH<sub>2</sub>)<sub>0-4</sub>-R<sub>54</sub>; wherein

n<sub>6</sub> is 0, 1, 2, or 3; n<sub>7</sub> is 0, 1, 2, or 3;

 $R_{4-1}$  is selected from the group consisting of  $-SO_2-(C_1-C_8 \ alkyl)$ ,  $-SO-(C_1-C_8 \ alkyl)$ ,  $-S-(C_1-C_8 \ alkyl)$ ,  $-S-CO-(C_1-C_6 \ alkyl)$ ,  $-SO_2-NR_{4-2}R_{4-3}$ ;  $-CO-C_1-C_2 \ alkyl$ ;  $-CO-NR_{4-3}R_{4-4}$ ;

 $R_{4\text{--}2}$  and  $R_{4\text{--}3}$  are independently H,  $C_1\text{--}C_3$  alkyl, or  $C_3\text{--}C_6$  cycloalkyl;

 $R_{4-4}$  is alkyl, arylalkyl, alkanoyl, or arylalkanoyl;

10

15

20

25

30

35



 $R_{4-6}$  is-H or  $C_1-C_6$  alkyl;

is selected from the group consisting of  $C_3-C_7$  $R_5$ cycloalkyl; C1-C6 alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, - $NR_6R_7$ ,  $C_1-C_4$  alkoxy,  $C_5-C_6$  heterocycloalkyl,  $C_5-C_6$ heteroaryl, C<sub>6</sub>-C<sub>10</sub> aryl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl C<sub>1</sub>-C<sub>4</sub> alkyl,  $-S-C_1-C_4$  alkyl,  $-SO_2-C_1-C_4$  alkyl,  $-CO_2H$ ,  $-CONR_6R_7$ , -CO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>6</sub>-C<sub>10</sub> aryloxy; heteroaryl optionally substituted with 1, 2, or 3 groups that independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $C_1-$ C4 haloalkyl, or OH; heterocycloalkyl optionally substituted with 1, 2, or 3 groups that are independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen, or C2-C4 alkanoyl; aryl optionally substituted with 1, 2, 3, or 4 groups that are independently halogen, OH,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $C_1$ - $C_4$  haloalkyl; and -NR<sub>6</sub>R<sub>7</sub>; wherein

 $R_6$  and  $R_7$  are independently selected from the group consisting of H,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkanoyl, phenyl,  $-SO_2$ - $C_1$ - $C_4$  alkyl, phenyl  $C_1$ - $C_4$  alkyl;

 $R_8$  is selected from the group consisting of  $-SO_2-heteroaryl,\, -SO_2-aryl,\, -SO_2-heterocycloalkyl,\, -SO_2-C_1-C_{10}$  alkyl, -C(0)NHR9, heterocycloalkyl, -S-C\_1-C\_6 alkyl, -S-C\_2-C\_4 alkanoyl, wherein

 $$R_9$$  is aryl  $C_1\!-\!C_4$  alkyl,  $C_1\!-\!C_6$  alkyl, or H;  $R_{50}$  is H or  $C_1\!-\!C_6$  alkyl;

 $R_{51}$  is selected from the group consisting of aryl  $C_1$ - $C_4$ alkyl;  $C_1$ - $C_6$  alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, cyano, heteroaryl,  $-NR_6R_7$ ,  $-C(0)NR_6R_7$ ,  $C_3-C_7$  cycloalkyl, or -C<sub>1</sub>-C<sub>4</sub> alkoxy; heterocycloalkyl optionally substituted with 1 or 2 groups that independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $C_2-$ C<sub>4</sub> alkanoyl, aryl C<sub>1</sub>-C<sub>4</sub> alkyl, and -SO<sub>2</sub> C<sub>1</sub>-C<sub>4</sub> alkyl; alkenyl; alkynyl; heteroaryl optionally substituted with 1, 2, or 3 groups that are independently OH, C1-

10

15

20

25

30

35



 $C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $NH_2$ ,  $NH(C_1-C_6$  alkyl)  $N(C_1-C_6 \quad alkyl)(C_1-C_6 \quad alkyl);$  heteroarylalkyl optionally substituted with 1, 2, or 3 groups that are independently  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy, halogen,  $\mathrm{NH_2}$ ,  $\mathrm{NH}\left(\mathrm{C_1-C_6} \text{ alkyl}\right)$  or  $\mathrm{N}\left(\mathrm{C_1-C_6} \text{ alkyl}\right)\left(\mathrm{C_1-C_6} \text{ alkyl}\right)$ ; heterocycloalkyl; C<sub>3</sub>-C<sub>8</sub> aryl; cycloalkyl; cycloalkylalkyl; wherein the aryl; heterocycloalkyl,  $C_3$ - $C_8$  cycloalkyl, and cycloalkylalkyl groups are optionally substituted with 1, 2, 3, 4 or 5 groups that are independently halogen, CN,  $NO_2$ ,  $C_1$ - $C_6$  alkyl,  $C_1-C_6$  alkoxy,  $C_2-C_6$  alkanoyl,  $C_1-C_6$  haloalkyl,  $C_1-C_6$ haloalkoxy, hydroxy,  $C_1$ - $C_6$  hydroxyalkyl,  $C_1$ - $C_6$  alkoxy  $C_1-C_6$  alkyl,  $C_1-C_6$  thioalkoxy,  $C_1-C_6$  thioalkoxy  $C_1-C_6$ alkyl, or C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> alkoxy;

 $R_{52}$  is heterocycloalkyl, heteroaryl, aryl, cycloalkyl, - $S(O)_{0-2}-C_1-C_6$  alkyl,  $CO_2H$ ,  $-C(O)NH_2$ , -C(O)NH(alkyl), -C(O)N(alkyl)(alkyl), -CO<sub>2</sub>-alkyl, $-NHS(0)_{0-2}-C_1-C_6$  $-N(alkyl)S(O)_{0-2}-C_1-C_6$ alkyl, alkyl,  $-S(0)_{0-2}$ heteroaryl,  $-S(0)_{0-2}$ -aryl, -NH(arylalkyl), -N(alkyl)(arylalkyl), thioalkoxy, or alkoxy, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, thioalkoxy, halogen, haloalkyl, haloalkoxy, alkanoyl, NO2, CN, alkoxycarbonyl, or aminocarbonyl;

R<sub>54</sub> is heteroaryl, aryl, arylalkyl, heterocycloalkyl, CO<sub>2</sub>H, -CO<sub>2</sub>-alkyl, -C(O)NH(alkyl), -C(O)N(alkyl) (alkyl), -C(O)NH<sub>2</sub>, C<sub>1</sub>-C<sub>8</sub> alkyl, OH, aryloxy, alkoxy, arylalkoxy, NH<sub>2</sub>, NH(alkyl), N(alkyl) (alkyl), or -C<sub>1</sub>-C<sub>6</sub> alkyl-CO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, CO<sub>2</sub>H, -CO<sub>2</sub>-alkyl, thioalkoxy, halogen, haloalkyl, haloalkoxy,

25

30



hydroxyalkyl, alkanoyl,  $NO_2$ , CN, alkoxycarbonyl, or aminocarbonyl;

- X' is selected from the group consisting of  $-C_1-C_6$  alkylidenyl optionally optionally substituted with 1, 2, or 3 methyl groups; and  $-NR_{4-6}-$ ; or
  - $R_4$  and  $R_{4-6}$  combine to form  $-(CH_2)_{n10}$ , wherein  $n_{10}$  is 1, 2, 3, or 4;
- Z is selected from the group consisting of a bond;  $SO_2$ ;  $SO_3$ ; and C(O);
- Y is selected from the group consisting of H; C1-C4 haloalkyl; 10  $C_5-C_6$  heterocycloalkyl;  $C_6-C_{10}$  aryl; OH; -N(Y<sub>1</sub>)(Y<sub>2</sub>);  $C_1-C_{10}$ alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are selected from group consisting of halogen, hydroxy, alkoxy, thioalkoxy, and haloalkoxy; C3-C8 cycloalkyl optionally 15 substituted with 1, 2, or 3 groups independently selected from  $C_1$ - $C_3$  alkyl, and halogen; alkoxy; aryl optionally substituted with halogen, alkyl, alkoxy, CN or NO2; arylalkyl optionally substituted with halogen, 20 alkoxy, CN or NO2; wherein
  - $Y_1$  and  $Y_2$  are the same or different and are H;  $C_1$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_8$  cycloalkyl, and OH;  $C_2$ - $C_6$  alkenyl;  $C_2$ - $C_6$  alkanoyl; phenyl;  $-SO_2$ - $C_1$ - $C_4$  alkyl; phenyl  $C_1$ - $C_4$  alkyl; or  $C_3$ - $C_8$  cycloalkyl  $C_1$ - $C_4$  alkyl; or
  - $Y_1$ ,  $Y_2$  and the nitrogen to which they are attached form a ring selected from the group consisting of piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring optionally is substituted with 1, 2, 3, or 4 groups that are independently  $C_1-C_6$  alkyl,  $C_1-C_6$  alkoxy,  $C_1-C_6$  alkoxy C<sub>1</sub>-C<sub>6</sub> alkyl, or halogen;
- R<sub>100</sub> and R'<sub>100</sub> independently represent aryl, heteroaryl, -aryl-W-aryl, -aryl-W-heteroaryl, -aryl-W-heterocyclyl, -heteroaryl-W-aryl, -heteroaryl-W-heteroaryl,

10

15

20

25

30



-heteroaryl-W- heterocyclyl, -heterocyclyl-W-aryl, -heterocyclyl-W-heteroaryl, -heterocyclyl-W-heterocyclyl, -CH[( $\text{CH}_2$ ) $_{0-2}$ -O-R<sub>150</sub>]-( $\text{CH}_2$ ) $_{0-2}$ -aryl, -CH[( $\text{CH}_2$ ) $_{0-2}$ -O-R<sub>150</sub>]-( $\text{CH}_2$ ) $_{0-2}$ -heterocyclyl or -CH[( $\text{CH}_2$ ) $_{0-2}$ -O-R<sub>150</sub>]-( $\text{CH}_2$ ) $_{0-2}$ -heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from

-OR, -NO<sub>2</sub>, halogen, -C $\equiv$ N, -OCF<sub>3</sub>, -CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>0-4</sub>-O-P(=O) (OR) (OR'),  $-(CH_2)_{0-4}-CO-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-O (CH_2)_{0-4}-CONR_{102}R_{102}'$ ,  $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$ ,  $-(CH_2)_{0-4}$  $_{4}$ -CO-( $C_{2}$ - $C_{12}$  alkenyl), -( $CH_{2}$ ) $_{0-4}$ -CO-( $C_{2}$ - $C_{12}$  alkynyl),  $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-R_{110},$  $-(CH_2)_{0-4}-R_{120}$ ,  $-(CH_2)_{0-4}-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{110}$ ,  $-(CH_2)_{0-4}-CO-R_{110}$  $CO-R_{120}$ ,  $-(CH_2)_{0-4}-CO-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$ ,  $-(CH_2)_{0-4} CO-O-R_{150}$ ,  $-(CH_2)_{0-4}-SO_2-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-SO-(C_1-C_8)$ alkyl),  $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12})$  alkyl),  $-(CH_2)_{0-4}-SO_{2-}$  $(CH_2)_{0-4}-(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-N(R_{150})-CO-O-R_{150},$ -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-N(R<sub>150</sub>)<sub>2</sub>, $-(CH_2)_{0-4}-N(R_{150})-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$ ,  $-(CH_2)_{0-4}-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-R_{140}$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$  $P(O) - (O-R_{110})_2$ ,  $-(CH_2)_{0-4} - O-CO-N(R_{150})_2$ ,  $-(CH_2)_{0-4} - O-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-(R_{150})$ ,  $-(CH_2)_{0-4}-O-R_{150}'-COOH$ , - $(CH_2)_{0-4}-S-(R_{150})$ ,  $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$ ,  $-(CH_2)_{0-4} C_3-C_7$  cycloalkyl,  $(C_2-C_{10})$  alkenyl, or  $(C_2-C_{10})$  alkynyl,

 $R_{100}$  is  $C_1\text{-}C_{10}$  alkyl optionally substituted with 1, 2, or 3  $R_{115}$  groups, or

 $R_{100}$  is  $-(C_1-C_6$  alkyl)-O-C<sub>1</sub>-C<sub>6</sub> alkyl) or  $-(C_1-C_6$  alkyl)-S- $(C_1-C_6$  alkyl), each of which is optionally substituted with 1, 2, or 3  $R_{115}$  groups, or

 $R_{100}$  is  $C_3\text{-}C_8$  cycloalkyl optionally substituted with 1, 2, or 3  $$R_{115}$$  groups;

W is  $-(CH_2)_{0-4}-$ , -O-,  $-S(O)_{0-2}-$ ,  $-N(R_{135})-$ , -CR(OH)- or -C(O)-;  $R_{102}$  and  $R_{102}$ ' independently are hydrogen, or

10

15

20

30



 $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, aryl or  $-R_{110}$ ;

 $R_{105}$  and  $R^\prime{}_{105}$  independently represent -H, -R\_{110}, -R\_{120}, C\_3-C\_7 cycloalkyl, -(C\_1-C\_2 alkyl)-(C\_3-C\_7 cycloalkyl), -(C\_1-C\_6 alkyl)-O-(C\_1-C\_3 alkyl), C\_2-C\_6 alkenyl, C\_2-C\_6 alkynyl, or C\_1-C\_6 alkyl chain with one double bond and one triple bond, or

 $C_1-C_6$  alkyl optionally substituted with -OH or -NH<sub>2</sub>; or,  $C_1-C_6$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, or

 $R_{105}$  and  $R'_{105}$  together with the atom to which they are attached form a 3 to 7 membered carbocylic ring, where one member is optionally a heteratom selected from -O-, -S(O) $_{0-2}$ -, -  $N(R_{135})$ -, the ring being optionally substituted with 1, 2 or three  $R_{140}$  groups;

R<sub>135</sub> is  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_7$  cycloalkyl, -(CH<sub>2</sub>)<sub>0-2</sub>-(aryl), -(CH<sub>2</sub>)<sub>0-2</sub>-(heteroaryl), or -(CH<sub>2</sub>)<sub>0-2</sub>-(heterocyclyl);

 $R_{140}$  is heterocyclyl optionally substituted with 1, 2, 3, or 4 groups independently selected from  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono( $C_1$ - $C_6$ ) alkylamino, di( $C_1$ - $C_6$ ) alkylamino,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  haloalkoxy, amino( $C_1$ - $C_6$ ) alkyl, mono( $C_1$ - $C_6$ ) alkylamino( $C_1$ - $C_6$ ) alkyl, and =0;

 $R_{150}$  is hydrogen,  $C_3$ - $C_7$  cycloalkyl,  $-(C_1$ - $C_2$  alkyl)- $(C_3$ - $C_7$  cycloalkyl),  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkyl with one double bond and one triple bond,  $-R_{110}$ ,  $-R_{120}$ , or

30



- $C_1-C_6$  alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH<sub>2</sub>,  $C_1-C_3$  alkoxy,  $R_{110}$ , and halogen;
- $R_{150}$ ' is  $C_3$ - $C_7$  cycloalkyl, -( $C_1$ - $C_3$  alkyl)-( $C_3$ - $C_7$  cycloalkyl),  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkyl with one double bond and one triple bond, - $R_{110}$ , - $R_{120}$ , or
  - $C_1-C_6$  alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH<sub>2</sub>,  $C_1-C_3$  alkoxy,  $R_{110}$ , and halogen;
- 10 R<sub>180</sub> is selected from morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl homothiomorpholinyl S,S-dioxide, pyrrolinyl pyrrolidinyl, each of which is optionally substituted with 1, 2, 3, or 4 groups independently selected from  $C_1$ -15  $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, cyano, nitro, amino, mono  $(C_1-C_6)$  alkylamino, di  $(C_1-C_6)$  alkylamino,  $C_2-C_6$ alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  haloalkoxy,  $amino\left(C_{1}-C_{6}\right)alkyl,\ mono\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkyl,\ di\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6}\right)alkylamino\left(C_{1}-C_{6$ 20  $C_6$ ) alkylamino  $(C_1-C_6)$  alkyl, and =0;
  - $R_{110}$  is aryl optionally substituted with 1 or 2  $R_{125}$  groups;  $R_{125} \text{ at each occurrence is independently halogen, amino, mono-or dialkylamino, -OH, -C=N, -SO_2-NH_2, -SO_2-NH-C_1-C_6 alkyl, -SO_2-N(C_1-C_6 alkyl)_2, -SO_2-(C_1-C_4 alkyl), -CO-NH_2, -CO-NH-C_1-C_6 alkyl, or -CO-N(C_1-C_6 alkyl)_2, or <math display="block"> C_1-C_6 \text{ alkyl}, \text{ or } -CO-N(C_1-C_6 alkyl)_2, \text{ or }$ 
    - $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl or  $C_2$ - $C_6$  alkynyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently selected from  $C_1$ - $C_3$  alkyl, halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1$ - $C_3$  alkoxy, amino, and mono- and dialkylamino, or
    - $C_1\text{-}C_6$  alkoxy optionally substituted with one, two or three of halogen;
  - $R_{120}$  is heteroaryl, which is optionally substituted with 1 or 2  $$R_{125}$$  groups; and

10

15

20

25

10



 $R_{130}$  is heterocyclyl optionally substituted with 1 or 2  $R_{125}$  groups; and

 $R_2$  is selected from the group consisting of H;  $C_1$ - $C_6$  alkyl, optionally substituted with 1, 2, or 3 substituents that are independently selected from the group consisting of  $C_1$ - $C_3$  alkyl, halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1$ - $C_3$  alkoxy, and -NR $_1$ - $_a$ R $_1$ - $_b$ ; wherein

 $R_3$  is selected from the group consisting of H;  $C_1$ - $C_6$  alkyl, optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of  $c_1$ - $c_3$  alkyl, halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ ,  $C_1$ - $C_3$  alkoxy, and -NR $_1$ -aR $_1$ -b; -(CH $_2$ ) $_0$ -4-aryl; -(CH $_2$ ) $_0$ -4-heteroaryl;  $C_2$ - $C_6$  alkenyl;  $C_2$ - $C_6$  alkynyl; -CO-NR $_1$ -2R $_1$ -3; -SO $_2$ -NR $_1$ -2R $_1$ -3; -CO $_2$ H; and - CO-O-( $_1$ - $_4$  alkyl);

wherein

 $R_{N-2}$ and  $R_{N-3}$ at each occurrence independently selected from the group consisting of  $-C_1-C_8$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from the consisting of -OH, -NH $_2$ , phenyl and halogen; -C $_3$ -C $_8$ cycloalkyl;  $-(C_1-C_2 \text{ alkyl})-(C_3-C_8 \text{ cycloalkyl}); -(C_1-C_6)$  $alkyl) - O - (C_1 - C_3)$ alkyl);  $-C_2-C_6$ alkenyl; alkynyl;  $-C_1-C_6$  alkyl chain with one double bond and one triple bond; aryl; heteroaryl; heterocycloalkyl; or

 $R_{N-2}$ ,  $R_{N-3}$  and the nitrogen to which they are attached form a 5, 6, or 7 membered heterocycloalkyl or heteroaryl group, wherein said heterocycloalkyl or heteroaryl group is optionally fused to a benzene, pyridine, or pyrimidine ring, and said

20

groups are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that at each occurrence are independently  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, halo  $C_1$ - $C_6$  alkyl, halo  $C_1$ - $C_6$  alkoxy, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, NH( $C_1$ - $C_6$  alkyl), N( $C_1$ - $C_6$  alkyl)( $C_1$ - $C_6$  alkyl), -OH, -C(O)NH<sub>2</sub>, -C(O)NH( $C_1$ - $C_6$  alkyl), -C(O)N( $C_1$ - $C_6$  alkyl)( $C_1$ - $C_6$  alkyl),  $C_1$ - $C_6$  alkoxy  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  thioalkoxy, and  $C_1$ - $C_6$  thioalkoxy  $C_1$ - $C_6$  alkyl;

or wherein,

- $R_2$ ,  $R_3$  and the carbon to which they are attached form a carbocycle of three thru seven carbon atoms, wherein one carbon atom is optionally replaced by a group selected from-O-, -S-, -SO<sub>2</sub>-, or -NR<sub>N-2</sub>-.
- 15 2. A compound according to claim 1 wherein RN is  $R_N$  is  $R'_{100}$ ,  $-C(=O) NR_{100} R'_{100}$ ,  $-C(=O) O R'_{100}$ ,  $-SO_2R'_{100}$ ,  $-(CRR')_{1-6}R'_{100}$ ,  $-C(=O) (CRR')_{0-6}R_{100}$ ,  $-C(=O) (CRR')_{1-6} O R'_{100}$ ,  $-C(=O) (CRR')_{1-6} S R'_{100}$ ,  $-C(=O) (CRR')_{1-6} C(=O) R_{100}$ ,  $-C(=O) (CRR')_{1-6} SO_2 R_{100}$ , or  $-C(=O) (CRR')_{1-6} NR_{100} R'_{100}$ .

3. A compound according to claim 1, wherein  $R_{N}$  is

wherein

25 X' is  $C_1-C_4$  alkylidenyl optionally substituted with 1, 2, or 3 methyl groups; or -NR<sub>4-6</sub>-, where R<sub>4-6</sub> is-H or  $C_1-C_6$  alkyl; or

 $R_4$  and  $R_{4-6}$  combine to form  $-(CH_2)_{n10}-$ , wherein  $n_{10}$  is 1, 2, 3, or 4;

- 30 Z is selected from a bond;  $SO_2$ ;  $SO_3$ ; and C(O);
  - Y is selected from H;  $C_1$ - $C_4$  haloalkyl;  $C_5$ - $C_6$  heterocycloalkyl containing at least one N, O, or S; phenyl; OH; -N(Y<sub>1</sub>)(Y<sub>2</sub>);  $C_1$ - $C_{10}$  alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are



selected from halogen, hydroxy, alkoxy, thioalkoxy, and haloalkoxy;  $C_3$ - $C_8$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from  $C_1$ - $C_3$  alkyl, and halogen; alkoxy; phenyl optionally substituted with halogen,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, CN or  $NO_2$ ; phenyl  $C_1$ - $C_4$  alkyl optionally substituted with halogen,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, CN or  $NO_2$ ; wherein

 $Y_1$  and  $Y_2$  are the same or different and are H;  $C_1$ - $C_{10}$  alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_8$  cycloalkyl, and OH;  $C_2$ - $C_6$  alkenyl;  $C_2$ - $C_6$  alkanoyl; phenyl; -SO<sub>2</sub>- $C_1$ - $C_4$  alkyl; phenyl  $C_1$ - $C_4$  alkyl; and  $C_3$ - $C_8$  cycloalkyl  $C_1$ - $C_4$  alkyl; or

 $-N(Y_1)(Y_2)$  forms a ring selected from piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring is optionally substituted with 1, 2, 3, or 4 groups that are independently  $C_1-C_6$  alkyl,  $C_1-C_6$  alkoxy,  $C_1-C_6$  alkoxy,  $C_1-C_6$  alkoxy, or halogen.

20

25

15

5

10

- 4. A compound according to claim 1, wherein  $R_1$  is aryl, heteroaryl, heterocyclyl,  $-C_1$ - $C_6$  alkyl-aryl,  $-C_1$ - $C_6$  alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH,  $-C\equiv N$ ,  $-NO_2$ ,  $-NR_{105}R'_{105}$ ,  $-CO_2R$ , -N(R)COR', or  $-N(R)SO_2R'$  (where  $R_{105}$ ,  $R'_{105}$ , R and R' are as defined above),  $-C(=O)-(C_1-C_4)$  alkyl,  $-SO_2$ -amino,  $-SO_2$ -mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -C(=O)-alkyl, or
- $C_1\text{-}C_6$  alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or
  - $C_3$ - $C_7$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen,

10

25



-OH, -SH, -C $\equiv$ N, -CF $_3$ , C $_1$ -C $_3$  alkoxy, amino, -C $_1$ -C $_6$  alkyl and mono- or dialkylamino, or

- $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>, -C<sub>1</sub>-C<sub>3</sub> alkoxy, amino, mono- or dialkylamino and -C<sub>1</sub>-C<sub>3</sub> alkyl, or
- $C_2-C_{10}$  alkenyl or  $C_2-C_{10}$  alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>,  $C_1$ -C<sub>3</sub> alkoxy, amino,  $C_1$ -C<sub>6</sub> alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.
- 5. A compound according to claim 4, wherein R<sub>1</sub> is -C<sub>1</sub>-C<sub>6</sub> alkyl-aryl, -C<sub>1</sub>-C<sub>6</sub> alkyl-heteroaryl, or -C<sub>1</sub>-C<sub>6</sub> alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C=N, -NO<sub>2</sub>, -NR<sub>105</sub>R'<sub>105</sub>, -CO<sub>2</sub>R, -N(R)COR', or -N(R)SO<sub>2</sub>R' (where R<sub>105</sub>, R'<sub>105</sub>, R and R' are as defined above), -C(=O)-(C<sub>1</sub>-C<sub>4</sub>) alkyl, -SO<sub>2</sub>-amino, -SO<sub>2</sub>-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>4</sub>) alkyl, or

 $C_1\text{--}C_6$  alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or

 $C_3$ - $C_7$  cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF<sub>3</sub>,  $C_1$ - $C_3$  alkoxy, amino, - $C_1$ - $C_6$  alkyl and mono- or dialkylamino, or

 $C_1-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ , -C $_1$ -C $_3$  alkoxy, amino, mono- or dialkylamino and -C $_1$ -C $_3$  alkyl, or

 $C_2\text{--}C_{10}$  alkenyl or  $C_2\text{--}C_{10}$  alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from



halogen, -OH, -SH, -C $\equiv$ N, -CF $_3$ , C $_1$ -C $_3$  alkoxy, amino, C $_1$ -C $_6$  alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

- 5 6. A compound according to claim 1 wherein:  $R_N$  is  $-C(=0)-R_{100}$ ; and
  - $R_{100}$  represents aryl, or heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from
- -OR, -NO<sub>2</sub>,  $C_1$ - $C_6$  alkyl, halogen, -C $\equiv$ N, -OCF<sub>3</sub>, -CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>0</sub>-10  $_{4}$ -O-P(=O)(OR)(OR'), -(CH $_{2}$ ) $_{0-4}$ -CO-NR $_{105}$ R' $_{105}$ , -(CH $_{2}$ ) $_{0-4}$ -O- $(CH_2)_{0-4}-CONR_{102}R_{102}'$ ,  $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$ ,  $-(CH_2)_{0-4}$  $_4$ -CO-(C $_2$ -C $_{12}$  alkenyl), -(CH $_2$ ) $_{0-4}$ -CO-(C $_2$ -C $_{12}$  alkynyl),  $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-R_{110},$  $-(CH_2)_{0-4}-R_{120}$ ,  $-(CH_2)_{0-4}-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{110}$ ,  $-(CH_2)_{0-4}-CO-R_{110}$ 15  $CO-R_{120}$ ,  $-(CH_2)_{0-4}-CO-R_{130}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$ ,  $-(CH_2)_{0-4}-CO-R_{140}$ CO-O-R<sub>150</sub>,  $-(CH_2)_{0-4}-SO_2-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-SO-(C_1-C_8)$ alkyl),  $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12})$ alkyl),  $-(CH_2)_{0-4}-SO_2 (CH_2)_{0-4}$ - $(C_3-C_7)$  cycloalkyl), - $(CH_2)_{0-4}$ - $N(R_{150})$ - $CO-O-R_{150}$ , 20 -(CH<sub>2</sub>)<sub>0-4</sub>-N(R<sub>150</sub>)-CO-N(R<sub>150</sub>)<sub>2</sub>, $-(CH_2)_{0-4}-N(R_{150})-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$ ,  $-(CH_2)_{0-4}-NR_{105}R'_{105}$ ,  $-(CH_2)_{0-4}-R_{140}$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$ ,  $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$  $P(O) - (O-R_{110})_2$ ,  $-(CH_2)_{0-4}-O-CO-N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-CS N(R_{150})_2$ ,  $-(CH_2)_{0-4}-O-(R_{150})$ ,  $-(CH_2)_{0-4}-O-R_{150}'-COOH$ , -25  $(CH_2)_{0-4}-S-(R_{150})$ ,  $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$ ,  $C_3-C_7$  cycloalkyl,  $(C_2-C_{10})$  alkenyl, or  $(C_2-C_{10})$  alkynyl.
  - 7. A compound according to claim 1 wherein:
- - $C_2-C_{10}$  alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of  $R_{205},\ R_{110},\ R_{120},\ R_{130},\ -OC=ONR_{235}R_{240},\ -S(=O)_{0-2}(C_1-C_6$  alkyl), -SH, and -S(=O)\_2NR\_{235}R\_{240},

10

15





- -( $\rm CH_2$ ) $_{0-3}$ -( $\rm C_3$ - $\rm C_8$ ) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of  $\rm R_{205}$ , - $\rm CO_2H$ , and - $\rm CO_2$ -( $\rm C_1$ - $\rm C_4$  alkyl), or
- $C_2\text{--}C_{10}$  alkenyl or  $C_2\text{--}C_{10}$  alkynyl, each of which is optionally substituted with 1, 2, or 3 independently selected  $R_{205}$  groups, wherein
- each aryl and heteroaryl is optionally substituted with 1, 2, or 3  $R_{200}$ , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 independently selected  $R_{210}$  groups.
- 8. A compound according to claim 1 wherein  $R_2,\ R_3,\ and$   $R_{20}$  are each hydrogen.
- 9. A compound according to claim 1 selected from the group consisting of:

N-(3,5-difluorobenzyl)-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;

N-[2-(3,5-difluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;

3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N,N-dipropylbenzamide;

N-(3,5-difluorobenzyl)-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N',N'-dipropylisophthalamide;

N-[2-(3,5-difluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N',N'-dipropylisophthalamide;

 $3 - \{ [[2-(3,5-difluoropheny1)ethy1]((2R)-3-\{[(4R)-4](2R)-3-\{[(4R)-4](2R)-3-4\}((2R)-3-4\}((2R)-3-4)((2R)-3-4\}((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-3-4)((2R)-4)((2R)-4)((2R)-4)((2R)-4)((2R)-4)((2R)-4)((2R)-4)$ 



```
6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)amino]sulfonyl}-N,N-dipropylbenzamide;
```

N-(3,5-difluorobenzyl)-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-N',N',5-trimethylisophthalamide;

 $N-[2-(3,5-difluorophenyl)ethyl]-N-\{(2R)-2-.hydroxy-3-[(3-iodobenzyl)amino]propyl\}-N',N',5-trimethylisophthalamide;$ 

3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N,N-dimethylbenzamide;

 $N-(3,5-\text{difluorobenzyl})-N-((2R)-3-\{[(4R)-6-\text{ethyl-}2,2-\text{dioxido}-3,4-\text{dihydro}-1H-\text{isothiochromen}-4-\text{yl}]\ amino}-2-\text{hydroxypropyl})-N',N',5-\text{trimethylisophthalamide};$ 

N-[2-(3,5-difluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-N',N',5-trimethylisophthalamide;

 $3-\{[[2-(3,5-difluorophenyl)ethyl]((2R)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)amino]sulfonyl}-N,N-dimethylbenzamide;$ 

 $N-(3-\text{chloro}-5-\text{fluorobenzyl})-N-\{(2R)-2-\text{hydroxy}-3-[(3-\text{iodobenzyl}) amino] propyl\}-5-methyl-N', N'-dipropylisophthalamide;$ 

 $N-[2-(3-\text{chloro}-5-\text{fluorophenyl})\,\text{ethyl}]-N-\{(2R)-2-\text{hydroxy-3-[(3-iodobenzyl)amino]propyl}}-5-\text{methyl}-N',N'-dipropylisophthalamide;}$ 

3-[([2-(3-chloro-5-fluorophenyl)ethyl]{(2R)-2hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]N, N-dipropylbenzamide;

 $N-(3-\text{chloro}-5-\text{fluorobenzyl})-N-((2R)-3-\{[(4R)-6-\text{ethyl}-2,2-\text{dioxido}-3,4-\text{dihydro}-1H-\text{isothiochromen}-4-\text{yl}]\\ \text{amino}\}-2-\text{hydroxypropyl})-5-\text{methyl}-N',N'-$ 



dipropylisophthalamide;

dipropylbenzamide.

5

(3,5-difluorophenyl) ethyl] amino} sulfonyl) -N, N-

physiologically acceptable carrier or excipient.

- 10. A pharmaceutical composition comprising a compound according to any one of claims 1-9, in combination with a
- 11. The use of a compound or salt according to claim 1 for the manufacture of a medicament.
- 12. The use of a compound or salt according to claim 1 for the manufacture of a medicament for use in the treatment 10 Alzheimer's disease, prevention of mild cognitive syndrome, Hereditary Cerebral Hemorrhage impairment Down's with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed 15 vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal

10

15

20





degeneration, or diffuse Lewy body type of Alzheimer's disease.

- 13. A method for treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment, comprising administering to such patient a therapeutically effective amount of a compound of claim 1.
- method for the treatment Α or prevention 25 Alzheimer's disease, mild cognitive impairment syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed vascular degenerative origin, dementia associated with Parkinson's dementia associated with progressive supranuclear 30 palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease comprising administration of a therapeutically effective amount of a compound or salt according to Claim 1, to a patient in need 35 thereof.



15. A method for making a compound of claim 1.