Urban Area Parking Spot Monitoring System

Thomas Kaufmann

Scenario

- O Distributed monitoring of parking spots
- Smart parking spots with sensors as data sources
- O IoT Gateways retrieve & process real-time data from DS
- O Analytics Services retrieve & process data
 - O Statistics Service (time period & range-queries, global state analytics)
 - Status Service (query current status for a certain position)
 - O Tour Service (request a tour in a certain area)

System Architecture

QoS & Data Concerns (QoD)

Statistics Service (QoD)

- Timeline (considered history)
- Granularity (considered range radius)

O Tour Service

- Elasticity due to different algorithms (optimal vs. heuristic) → Quality of Data (cost)
- Completeness (abort due to time-out for huge instances)

Status Service

- Response Time (e.g. avoid obsolete results)
- Granularity (considered range radius)
- → AOP techniques to trace the response time of service invocations

Elasticity

1. Statistics Service monitors global state

- → recurrent analytics task detects peak loads (MapReduce in MongoDB) and notifies Tour Service
- → Tour Service adapts data quality based on number of tour requests & load
- user is notified
- Master-Worker & Priority Task-Queue allows for elastic utilization of resources
- 3. Evaluation tool monitors all service calls (input & output)
 - → data could be used to determine costs & resource demands in the system

Technologies

- O Docker
- O Spring: Boot, Data, AMQP
- PostgreSQL to persist local
- O MongoDB for global status & request monitoring
- Compare the com
- O Apache Flink
- O IBM CPLEX
- 2-opt neighborhood Simulated Annealing + NN-Heuristic
- O .NET for Simulation Agents

Tour Service Interface

Status Service Interface

