Exercises Week 34

Exercise 1

a)

- An unitary matrix U has the property that $U^{-1} = U^{\dagger} \Rightarrow UU^{\dagger} = U^{\dagger}U = I$.
- An orthogonal matrix Q has rows and columns which are orthogonal vectors. It has the properties that $Q^T = Q^{-1} \Rightarrow QQ^T = I$.

b)

A Hermitian matrix has real eigenvalues and real values on its diagonal. It is also symmetric in that $H_{ij} = \overline{H}_{ji} = H_{ji}$

c)

We begin by our transformation:

$$|\psi_p\rangle = U |\phi_\lambda\rangle$$

We check for orthonormality.

$$\left\langle \psi_{p} \middle| \psi_{p} \right\rangle = \left\langle \phi_{\lambda} \middle| UU^{\dagger} \middle| \phi_{\lambda} \right\rangle = \left\langle \phi_{\lambda} \middle| \phi_{\lambda} \right\rangle = 1$$

d)

$$\begin{split} O\left|\phi_{\lambda}\right\rangle &= o\left|\phi_{\lambda}\right\rangle \\ UO\left|\phi_{\lambda}\right\rangle &= oU\left|\phi_{\lambda}\right\rangle \\ UO\left|\phi_{\lambda}\right\rangle &= o\left|\psi_{p}\right\rangle \\ UOU^{\dagger}U\left|\phi_{\lambda}\right\rangle &= o\left|\psi_{p}\right\rangle \\ UOU^{\dagger}\left|\psi_{p}\right\rangle &= o\left|\psi_{p}\right\rangle \end{split}$$

If $|\phi_{\lambda}\rangle$ exist in the Hilbert space \mathcal{H}_{λ} and $|\psi_{p}\rangle$ in \mathcal{H}_{p} , then $U^{\dagger}:\mathcal{H}_{p}\mapsto\mathcal{H}_{\lambda}$, letting us act with $O:\mathcal{H}_{\lambda}\mapsto\mathcal{H}_{\lambda}$ on $|\psi_{p}\rangle$. This is converted back into \mathcal{H}_{p} , as $U:\mathcal{H}_{\lambda}\mapsto\mathcal{H}_{p}$. The vectors therefore share eigenvalues.

Exercise 2

 \mathbf{a}