Idea: adedalic Tutorial

1288A - Deadline

At first, let's note that if x is integer and x and y are non-negative then x + [y] = [x + y]. So, instead of looking at $x + [\frac{d}{x+1}]$ we can consider $[x + \frac{d}{x+1}]$.

It's easier since the function $x + \frac{d}{x+1} = (x+1) + \frac{d}{(x+1)} - 1$ is more common function and it can be proven that it's concave upward. It means that this function has a unique minimum and, moreover, we can calculate it: $f(x) = x + \frac{d}{x+1}$ has minimum value in $x_0 = \sqrt{d} - 1$ and $f(x_0) = 2\sqrt{d} - 1$.

Since the ceiling function is monotonically increasing so we can assume that $[f(x)] \le [f(x+1)]$ for all $x \ge \sqrt{d}$.

So we can just iterate x from 0 to $\lfloor \sqrt{d} \rfloor$ and check the unequation $\lfloor f(x) \rfloor \leq n$. The total complexity is equal to $O(T\sqrt{d})$.

There is a simple optimization: because of the monotone ceiling we can prove that we need to check only $\lfloor \sqrt{d} - 1 \rfloor$ and $\lfloor \sqrt{d} - 1 \rfloor$.

Solution (adedalic)