

Nom:	Prénom:	GROUPE:	QUESTION:

Durée: 15'

DOCUMENTS, CALCULETTES, TÉLÉPHONES ET ORDINATEURS INTERDITS

Auto-évaluation						
\mathbf{M}	V	\mathbf{R}				
Méthode(s)	Vérification(s)	Résultat(s)				
3 2 1 0	3 2 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Développements limités

Question : Ecrire un algorithme qui calcule y = f(x) en fonction du développement en série entière de la fonction $f: f(x) = \sum u_k$, en respectant les contraintes suivantes :

- les calculs seront arrêtés lorsque la valeur absolue du terme u_k ($|u_k|$) sera inférieure à un certain seuil s (avec 0 < s < 1);
- on n'utilisera ni la fonction puissance (x^n) ni la fonction factorielle (n!) pour effectuer le calcul du développement.

1.
$$\arcsin(x) \approx x + \sum_{k=1}^{n} \frac{1 \times 3 \times \dots \times (2k-1)}{2 \times 4 \dots \times 2k} \frac{x^{2k+1}}{2k+1} = x + \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \frac{3}{4} \frac{x^5}{5} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{x^7}{7} + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \dots \times 2n} \frac{x^{2n+1}}{2n+1}$$
 $\forall x \in]-1;1[$

2.
$$\arccos(x) \approx \frac{\pi}{2} - x - \sum_{k=1}^{n} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)x^{2k+1}}{2 \cdot 4 \cdot 6 \cdots (2k) \cdot (2k+1)} = \frac{\pi}{2} - x - \frac{x^3}{2 \cdot 3} - \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} - \dots - \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdots (2n) \cdot (2n+1)}$$
 $\forall x \in]-1;1[$

3.
$$\arctan(x) \approx \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)}$$
 $\forall x \in \mathbb{R}$

4.
$$\frac{1}{1+x} \approx \sum_{k=0}^{n} (-1)^k x^k = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n \qquad \forall x \in]-1;1[$$

5.
$$\frac{1}{1-x} \approx \sum_{k=0}^{n} x^k = 1 + x + x^2 + x^3 + \dots + x^n$$
 $\forall x \in]-1;1[$

6.
$$\frac{1}{1+x^2} \approx \sum_{k=0}^{n} (-1)^k x^{2k} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n}$$
 $\forall x \in]-1;1[$

7.
$$\frac{1}{1-x^2} \approx \sum_{k=0}^{n} x^{2k} = 1 + x^2 + x^4 + \dots + x^{2n}$$
 $\forall x \in]-1;1[$

8.
$$\sqrt{1+x} \approx 1 + \frac{x}{2} + \sum_{k=2}^{n} (-1)^{k-1} \frac{1 \times 3 \times \dots \times (2k-3)}{2^k} \frac{x^k}{k!} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \dots + (-1)^{n-1} \frac{1 \times 3 \times \dots \times (2n-3)}{2^n} \frac{x^n}{n!}$$
 $\forall x \in]-1;1[$

9.
$$\frac{1}{\sqrt{1+x}} \approx 1 + \sum_{k=1}^{n} (-1)^k \frac{1 \times 3 \times \dots \times (2k-1)}{2 \times 4 \dots \times 2k} x^k = 1 - \frac{1}{2}x + \frac{1}{2}\frac{3}{4}x^2 - \frac{1}{2}\frac{3}{4}\frac{5}{6}x^3 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \dots \times 2n} x^n \qquad \forall x \in]-1;1[$$
10.
$$\frac{1}{\sqrt{1-x^2}} \approx \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(k!)^2} x^{2k} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + \dots + \frac{(2n)!}{2^{2n}(n!)^2} x^{2n} \qquad \forall x \in]-1;1[$$

11.
$$\frac{1}{(a-x)^2} \approx \sum_{k=0}^n \frac{k+1}{a^{k+2}} x^k = \frac{1}{a^2} \left(1 + \frac{2x}{a} + \frac{3x^2}{a^2} + \dots + \frac{(n+1)x^n}{a^n} \right) \qquad \forall x \in]-|a|;|a|[a]|$$

12.
$$\frac{1}{(a-x)^3} \approx \sum_{k=0}^n \frac{(k+1)(k+2)}{2a^{k+3}} x^k = \frac{1}{a^3} \left(1 + \frac{3x}{a} + \frac{6x^2}{a^2} + \dots + \frac{(n+1)(n+2)}{2a^n} x^n \right) \qquad \forall x \in]-|a|;|a|[$$

13.
$$\frac{1}{(a-x)^5} \approx \sum_{k=0}^{n} \frac{(k+1)(k+2)(k+3)(k+4)}{24a^{k+5}} x^k = \frac{1}{a^5} \left(1 + \frac{5x}{a} + \frac{15x^2}{a^2} + \dots + \frac{(n+1)(n+2)(n+3)(n+4)}{24a^n} x^n \right) \qquad \forall x \in]-|a|;|a|[$$

14.
$$\exp(x) \approx \sum_{k=0}^{n} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}$$
 $\forall x \in \mathbb{R}$

15.
$$\exp(-x) \approx \sum_{k=0}^{n} (-1)^k \frac{x^k}{k!} = 1 - x + \frac{x^2}{2} + \dots + (-1)^n \frac{x^n}{n!}$$
 $\forall x \in \mathbb{R}$

16.
$$\log(1+x) \approx \sum_{k=1}^{n} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n}$$
 $\forall x \in]-1;1]$

17.
$$\log(1-x) \approx \sum_{k=1}^{n} -\frac{x^k}{k} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n}$$
 $\forall x \in [-1; 1[$

18.
$$\log\left(\frac{1+x}{1-x}\right) = 2\sum_{k=0}^{n} \frac{x^{2k+1}}{2k+1} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1}\right)$$
 $\forall x \in [-1; 1[$

19.
$$\sinh(x) \approx \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{6} + \frac{x^5}{120} + \dots + \frac{x^{2n+1}}{(2n+1)!}$$
 $\forall x \in \mathbb{R}$

20.
$$\cosh(x) \approx \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{x^{2n}}{(2n)!}$$

$$\forall x \in \mathbb{R}$$

21.
$$\operatorname{arg\,sinh}(x) \approx x + \sum_{k=1}^{n} (-1)^k \frac{1 \times 3 \times \dots \times (2k-1)}{2 \times 4 \dots \times 2k} \frac{x^{2k+1}}{2k+1} = x - \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \frac{3}{4} \frac{x^5}{5} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{x^7}{7} + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \dots \times 2n} \frac{x^{2n+1}}{2n+1} \qquad \forall x \in]-1;1[$$

22.
$$\operatorname{arg} \tanh(x) \approx \sum_{k=0}^{n} \frac{1}{2k+1} x^{2k+1} = x + \frac{x^3}{3} + \frac{x^5}{5} \dots + \frac{1}{2n+1} x^{2n+1} \quad \forall x \in]-1;1[$$

23.
$$\sin(x) \approx \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 $\forall x \in \mathbb{R}$

3/3

24.	$\cos(x) \approx \sum_{n=0}^{\infty} (-1)^{n}$	$(1)^k \frac{x^{2k}}{(2k)!} = 1$	$1 - \frac{x^2}{2} +$	$-\frac{x^4}{24} +$	$\cdots + (-1)^n \frac{x^{2n}}{(2n)!}$	$\forall x \in \mathbb{R}$
	k=0	(=)	_		(=,,).	

Réponse :				