1 Binary Logistic Regression

Model

1. Binary classification: $y \in \{0, 1\}$

2. Want to predict probability of being in a particular class: $P(y=1|\mathbf{x};\mathbf{w})$

3. Could fit a linear model: $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$

4. But this could give predictions outside [0,1] for some test inputs (invalid probabilities)

5. Use the sigmoid function to force the output to lie in the [0,1] range:

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

6. Interpret $f(\mathbf{x}; \mathbf{w}) = P(y = 1 | \mathbf{x}; \mathbf{w})$, implying $P(y = 0 | \mathbf{x}; \mathbf{w}) = 1 - f(\mathbf{x}; \mathbf{w})$

Figura 1: Function used to force the output to lie in the [0,1] range

Loss Funciton

We observe data $\{(x^{(n)},y^{(n)})\}_{n=1}^N,$ with $y\in\{0,1\},$ Using maximum likehood:

L(w)