HW 6 PROBLEMS

- 1-8. Hassett, Chapter 3, #6, 7, 8, 9, 11, 12, 14, 15
 - 9. Prove that any bijective function $f: \mathbb{C} \to \mathbb{C}$ is Zariski continuous.
- 10. Consider the complex affine line $\mathbb{A}^1(\mathbb{C})$. Show that any open subset $U \subset \mathbb{A}^1(\mathbb{C})$ is dense. Then show that the Zariski topology on $\mathbb{A}^1(\mathbb{C})$ is not Hausdorff.
- 11. Give the Zariski closure of the interval $(0,1) \subset \mathbb{A}^1(\mathbb{R})$.
- 12. (a) Let $V \subset \mathbb{A}^2(\mathbb{R})$ be the variety $V(y-x^2)$. Show that the coordinate ring $\mathbb{R}[V]$ is isomorphic to a polynomial ring in one variable over \mathbb{R} .
 - (b) Let $Z \subset \mathbb{A}^2(\mathbb{R})$ be the variety V(xy-1). Show that the coordinate ring $\mathbb{R}[Z]$ is not isomorphic to a polynomial ring in one variable over \mathbb{R} . What does this say about $\mathbb{A}^1(\mathbb{R})$ and Z?
- 13. Some ring theory problems: Let $f: R \to S$ be a ring homomorphism. Prove the following
 - (a) If $J \subset S$ is an ideal of S, then $I = f^{-1}(J)$ is an ideal of R. I is called the *contraction* of J.
 - (b) If $J \subset S$ is a prime ideal, show that its contraction is R or a prime ideal of R.
 - (c) If $I \subset R$ is an ideal, show that its extension J = f(I)S is an ideal of S.
 - (d) Give an example to show that if I is a prime ideal of R, then its extension may not be a prime ideal of S.