

Administración de Bases de Datos Grado en Ingeniería Informática

Tema 1 - El Nivel Interno

@0000 I. J. Blanco, A. G. López Herrera

Departamento de Ciencias de la Computación e Inteligencia Artificial http://decsai.ugr.es

- Introducción al tema
- Medidas para evaluar un sistema de archivos
- Registros y bloques
- Organización de archivos y métodos de acceso
- Evaluación del sistema

- Eficiencia en grandes cantidades de datos:
 - forma de almacenamiento de los datos
 - forma de acceso rápido a los datos almacenados
 - arquitecturas para relacionar los datos

Nivel externo

Nivel conceptual

Nivel físico

http://commons.wikimedia.org/wiki/File:FilesAndFolders.png

- Será necesario:
 - Comparar sistemas de ficheros
 - Comparar modos de acceso a los ficheros

Parámetro	Mide
R	la memoria necesaria para almacenar un registro
\mathcal{T}	el tiempo para encontrar un registro arbitrario
$T_{_F}$	el tiempo para encontrar un registro por clave
$T_{_{VV}}$	el tiempo para escribir un registro cuando ya se tiene su posición
T_{N}	el tiempo para encontrar el siguiente registro a uno dado
T_{I}	el tiempo necesario para insertar un registro
$T_{_{U}}$	el tiempo necesario para actualizar un registro
$T_{_{ imes}}$	el tiempo necesario para leer el archivo
$T_{_{Y}}$	el tiempo necesario para reorganizar el archivo

- recuperar un registro por valor de clave
- obtener el siguiente registro
- insertar registro (ampliar el fichero)
- actualización de registro
- leer todo el archivo
- reorganizar el archivo

- Un SGBD almacena la información en tablas
- La estructura de una tabla la determinan las columnas
- La información de una tabla se almacena en filas

¿Y cómo se almacena todo a nivel físico?

- Un SGBD provee de una serie de tipos de datos para las columnas de una tabla:
 - numéricos: enteros y reales,
 - cadenas de caracteres: CHAR, VARCHAR, VARCHAR2
 - fecha: DATE, TIME, TIMESTAMP
 - otros tipos: BLOBs, CLOBs, ...

Tamaño de un registro:

Tipo	Tamaño
CHAR(x)	x Bytes
VARCHAR2(X)	de 1 a $x+1$ Bytes
FLOAT	6 Bytes
BINARY_INTEGER	2 Bytes

- Campo: almacena un valor
- Registro: conjunto de campos
- Bloque: conjunto de registros
- Fichero: conjunto de bloques

 Registro de longitud fija

NRP	Nombre	Coddep	Salario
3477A	María Pérez	5	1527
5 B	30 B	2 B	6 B

 Registro de longitud variable

Factura	Linea	Concepto	Cant	Precio
325	1	Análisis#	1	300
2 B	2 B	9 B	2 B	6 B

 Estructura homogénea, distintos tamaños:

325	1	Análisis#	1	300
325	2	Tratamiento#	1	250
325	3	Chequeo#	1	300

 Estructura heterogénea, distintos tamaños:

NRP=3477A	Nombre=María		Coddep)=	Salar	rio=1527;	
Factura=32 5;	Linea=1 ;	Concep Anális		_	ant= 1;	Precio=3 0;	30

Registro de longitud fija:

• Vi: longitud del valor del campo i-ésimo

$$R = \sum_{i} V_{i}$$

Registro de longitud variable:

- A: longitud media de los nombres de atributo
- V: longitud media de los valores de atributo
- a': número medio de atributos
- s: número de separadores por atributo

$$R = a'(A+V+s)$$

Registro de longitud variable:

Factura=325; Linea=1; Concepto= Análisis; Cant=1; Precio=300;

$$A=(7+5+8+4+6)/5=6$$

$$V=(2+2+8+2+6)/5=4$$

$$s=2$$

$$R=a'(6+4+2)=12a'$$

- Unidad de información:
 - transferida por un dispositivo de almacenamiento masivo
 - almacenada en el área de trabajo de la memoria y denominada buffer
- Características:
 - Tamaño fijo para toda la DB
 - Múltiplo del bloque físico del S. O.

- La forma en la que se ajustan los registros a un bloque
- Un registro en disco tiene que pasar a un bloque de S. O. y después a un bloque de DB para ser tratado.
- El factor de bloqueo, Bfr, es el número de registros que caben en un bloque y depende del tamaño del mismo B y del tamaño de los registros R.

- Puede fijarse a priori por el administrador.
- Incluye una cabecera C con información útil al sistema (referencias, fecha de actualización, número de accesos simultáneos, etc.) que se resta a B.
- Hay dos métodos básicos:
 - bloqueo fijo o entero
 - bloqueo partido o encadenado

- Se rellena el bloque con tantos registros como sea posible.
 - Bloqueo entero con registros de longitud fija

$$Bfr = \left[\frac{B-C}{R} \right]$$

- Bloqueo entero con registros de longitud variable:
 - El siguiente registro cabe en el bloque si hay espacio.
 - Las marcas de separación de registros ocupan espacio:
 - Caracteres especiales
 - Distancia al comienzo del siguiente registro
 - Tabla de posiciones de los campos (con inicial y final)

$$Bfr = \frac{B - C}{R + M}$$

- Se escriben registros en un bloque hasta que no quede espacio.
- El último registro puede caber entero o partirse en dos partes en dos bloques distintos.
- Es necesaria una referencia del primer bloque al segundo.

- Bloqueo entero con registros de longitud variable:
 - El siguiente registro cabe en el bloque si hay espacio.
 - Las marcas de separación de registros ocupan espacio:
 - Caracteres especiales
 - Distancia al comienzo del siguiente registro
 - Tabla de posiciones de los campos (con inicial y final)

$$Bfr = \frac{B - C}{R + M}$$

Problemas:

- Búsqueda difícil de registros partidos
- Actualización de ficheros completos complicada

Ventajas:

- No desperdicia espacio en los bloques.
- Única solución cuando el tamaño del registro es mayor que el de un bloque.

- Bloqueo partido con registros de longitud variable:
 - Las marcas de separación de registros ocupan espacio:
 - Caracteres especiales
 - Distancia al comienzo del siguiente registro
 - Tabla de posiciones de los campos (con inicial y final)

Departamento de Ciencias de la Computación e Inteligencia Artificial - Universidad de Granada

$$Bfr = \frac{B - P - C}{R + M}$$

- El espacio que se pierde en marcas, referencias, espacio en el que no cabe un registro.
 - Un ejemplo para bloqueo partido con registros de longitud variable:

$$W = \frac{(P + Bfr \cdot M)}{Bfr} = \frac{P}{Bfr} + M$$

- El bloqueo fijo es más eficiente para registros pequeños.
- El bloqueo partido es más eficiente para registros grandes.