Introdução ao aprendizado de máquina

Aula 8:

- Aprendizado não supervisionado
- K-médias
- Mixturas Gaussianas
- Sistemas de recomendação
- Recomendações baseadas no conteúdo
- Filtro Colaborativo

Aprendizado não supervisionado

Aprendizado não supervisionado

Aprendizado Supervisionado

Aprendizado Não Supervisionado

Não há rótulos

Perguntas de aprendizado não supervisionado

- Pergunta comum: "ache algum padrão nos dados"
- Esses algoritmos são chamados de agrupamento (clustering)
- Aplicações::
 - Segmentação do mercado
 - Organizer grupos de servidores
 - Agrupar galáxias
 - Analizar redes sociais

k-médias

Algoritmo de agrupamento de K-médias

Há 2 passos em cada iteração do algoritmo:

- 1 Atribuir cada observação a um grupo
- 2- Atualizar o centro do grupo

Exemplo de grupos não separados

Função Custo e Algoritmo

Função custo: Soma dos quadrados dos grupos

$$J(X,\mu) = rac{1}{N} \sum_{i=1}^{N} \|x_i - \mu_{c_i}\|^2$$

 $c_i = ext{grupo}$ ao qual a obs i pertence $\mu_{ci} = ext{centro}$ do grupo que i pertence

Pseudo código de k-médias

KMedia(dados, k):

Continuar Iterando = True

Aleatoriamente selecionar k centroides iniciais

Enquanto Continuar Iterando:

Para cada ponto, calcular a distância até cada centróide

Atribuir cada ponto ao grupo com centróide mais próximo

Calcular a média (em cada dimensão) dos pontos de cada grupo

Atualizar o centróide do grupo para o valor médio de seus elementos

Se novos centróides são iguais aos centróides anteriores

Continuar Iterando = False

Retornar valor dos centroides

Detalhes de Implementação

Ótimo Global versus ótimo local

Implementação de K-Médias

- Depois de cada iteração o custo nunca aumentará
- O algoritmo sempre converge, mas não necessariamente para para a mesma solução
- Podemos melhorar a performance usando iniciações aleatórias diferentes e escolhendo aquela com menor custo final
- Boa prática é iniciar os centróides com valores de observados na base de dados.

Como escolher K

Método da quina para escolher K

Mixturas Gaussianas

Ótimo Global versus ótimo local

Mixturas Gaussianas

- Mixturas Gaussinas é um outro algoritmo de agrupamento.
- Nele presumimos que os dados vem de k distribuições gaussianas
- Para cada uma dessas distribuições estimamos:
 - \circ a média (j dimensões) μ_j
 - \circ a matriz de variância-covariância Ω_{jXj}
 - $\circ \quad$ a proporção dos dados que vem de cada gaussiana $\, \Sigma_{i=1}^k \pi_i = 1 \,$
- Para tal usamos o método de máxima verosimilhança
- Isso permite que os grupos se pareçam não apenas como bolas nas J dimensões, mas também como elipses.
- Além disso temos uma medida de quão provável é que cada observação venha de cada gaussiana.
- Isso permite detectar anomalias nos dados

Sistemas de Recomendação

Sistemas de recomendação são onipresentes

Related to items you've viewed See more

New for you See more

Formulação do problema

Shows\Pessoa	André	Breno	Ricardo	Rodrigo	Tiago
Game of Thrones	***	***	***		***
Attack on Titan	***		****	***	***
Billions		****			***
Suits		****		**	
The wire				***	****
Narcos		*			****

Notação matemática

$$R = egin{bmatrix} 1 & 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \hspace{1cm} Y = egin{bmatrix} 4 & 4 & 3 & 3 \ 3 & 4 & 3 & 3 \ 5 & & & & & 3 \ & 4 & & 2 & & \ & 1 & & & 4 \end{bmatrix}$$

 $n_u=$ número de usuários $n_s=$ número de shows

Recomendação baseada no conteúdo

Recomendação baseada no conteúdo

Shows	André	Breno	Ricardo	Rodrigo	Tiago	X1 Fantasia	X2 Trabalho	X3 Violência
Game of Thrones	4	4	3		3	0.99	0.1	0.9
Attack on Titan	3		4	3	3	0.8	0.05	0.95
Billions		5			3	0.3	0.95	0.1
Suits		4		2		0.4	0.85	0.2
The wire				4	5	0.1	0.45	0.8
Narcos		1			4	0.05	0.55	0.8

Recomendação baseada no conteúdo

- Para cada usuário, podemos ter uma regressão linear
- Estimamos o quão cada pessoa valoriza cada conteúdo baseado nos shows que ela deu nota
- Estimamos o quão Breno valoriza shows de fantasia, trabalho e violência
- Em seguida podemos prever as notas dos shows que ele não viu, baseado em seus conteúdos
- Podemos usar outros modelos de machine learning além de regressão linear.
- Mas precisamos de uma base de dados onde todo mundo deu notas para vários shows!!
- Também precisamos saber o conteúdo dos shows!!

Problema sem conteúdo

Filtro Colaborativo

Shows	André	Breno	Ricardo	Rodrigo	Tiago	X1	X2	X3
Game of Thrones	4	4	3		3	??	??	??
Attack on Titan	3		4	3	3	??	??	??
Billions		5			3	??	??	??
Suits		4		2		??	??	??
The wire				4	5	??	??	??
Narcos		1			4	??	??	??

Estimado conteúdo iterativamente

• Dados os gostos theta, podemos estimar os conteúdos x que minimizam os custos

$$\min_{x_1,x_2,x_3} rac{1}{2} \sum_{i=1}^{n_m} \sum_{i: r(i,j)=1} ig(heta_j x_i - y_{ij}ig)^2 + rac{\lambda}{2} ig(\sum_{i=1}^{n_m} \sum_{k=1}^n x_{ki}^2ig)^2$$

• Dados os conteúdos x, podemos estimar os gostos theta que minimizam os custos

$$\min_{ heta_1, heta_2, heta_3} rac{1}{2} \sum_{i=1}^{n_m} \sum_{i:r(i,i)=1} ig(heta_j x_i - y_{ij}ig)^2 + rac{\lambda}{2} ig(\sum_{i=1}^{n_m} \sum_{k=1}^n heta_{ki}^2ig)^2$$

• Logo podemos iniciar aleatoriamente todos os parâmetros, depois calcular X, depois calcular theta, calcular X, até convergir.

$$\Theta \to X \to \Theta \to X \to \dots$$

Filtro Colaborativo

Filtro Colaborativo faz isso diretamente

• Basta resolver simultaneamente para gostos e conteúdos

$$\min_{\Theta,X} rac{1}{2} \sum_{i,j:r(i,j)=1} ig(heta_j x_i - y_{ij}ig)^2 + rac{\lambda}{2} ig(\sum_{i=1}^{n_m} \sum_{k=1}^n x_{ki}^2ig) + rac{\lambda}{2} ig(\sum_{i=1}^{n_u} \sum_{k=1}^n heta_{ki}^2ig)$$

Mais sobre filtro colaborativo

Alguns detalhes importantes:

- Quando estimamos os conteúdos, não sabemos o que eles significam
- Podemos usar os conteúdos estimados para encontrar shows parecidos.
 Basta olhar para filmes cuja distância dos conteúdos é pequena
- A média das notas dos filmes nos ajuda a gerar recomendações para pessoas sem nenhuma nota
- Isso é só uma breve introdução a filtro colaborativo. Há várias técnicas de deep learning sendo desenvolvidas nesse tópico.