Activity No. 5		
Advanced Da	atabase	
Programming		
Course Code: CPE011	Program:BSCPE	
Course Title: Database Management System	Date Performed: 16/09/2022	
Section: S3	Date Submitted: 16/09/2022	
Name:	Instructor: Engr. Jonathan Taylar	
CARO, AARON MARTIN		
EFA, CHRISTIAN ED		
1 Objective(s):		

1. Objective(s):

This activity aims to introduce the Structured Query Language (SQL) using the Data Definition Language (DDL) commands in a MySQL Database

2. Intended Learning Outcomes (ILOs):

The students should be able to:

- 2.1 Use SQL Built-in functions in an SQL Script
- 2.2 Use JOIN SQL Commands to perform complex queries in databases
- 2.2 Create subqueries and correlated queries

3. Discussion:

As your databases becomes more complex and more relations between entities are created, we would need to implement queries that can retrieve records from multiple tables and display them in one single query. Some queries may require outputs from nested queries also called subqueries in order to get more specific results. Some tasks such as date generation, and summing quantities of products can also be automated through the use of SQL built-in functions similar to a programming language built-in function.

SQL Function

SQL

Functions

An SQL function is similar to a function in programming language both in syntax and in its general use. A function in SQL can be defined with the following syntax function_name(). The opening and closing parentheses is the main indicator that it is a function. There are many built-in SQL Functions available. Some of the possible SQL functions are given below:

SQL Functio	n Description
COUNT()	Returns the number of the rows in a table.
SUM()	Returns the sum of a set of values. The
	SUM function ignores NULL values. If
	no matching row found, the SUM
	function returns a NULL value.
AVG()	Calculates the average value of a set of values.
	It ignores NULL values in the calculation.
MAX()	Returns the maximum value in a set of values.
MIN()	Returns the minimum value in a set of values.
ROUND(number, decimals)Rounds a number to a specified number of
	decimal places.
ABS()	Return the absolute value of a
number CURRE	ENT_DATE() Returns the current date
NOW()	Returns the current date and time

More functions can be found through the official documentation:

https://dev.mysql.com/doc/refman/5.6/en/functions.html Sample use:

ID	NAME	AGE	AMOUNT
3	Kaushik	23	3000
3	Kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be used to join tables, such as =, <, >,

<>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to join tables. However, the most common operator is the equal symbol.

4. Materials and Equipment:

Desktop

Comput

er

Window

S

Operati

ng

System

XAMPP

Applicati

on

5. Procedure

1. CREATE DATABASE myDatabase5_<LASTNAME>.

```
Query OK, 0 rows affected (0.010 sec)
MariaDB [mydatabase5_efa_caro]>
```

2. Create three tables named Item_List, Nanays, Kaloys and Supplier.

ltem List		
PID	Product	supID
p01	Beef Steak	mla2
p02	Beef Cutlet	mla1
p03	Pork Steak	mla1
p04	Chicken Wings	mla4
p05	Ground Pork	mla6
p06	Chicken Liver	mla7
p07	Beef Liver	mla1
p08	Chicken Feet	mla6
p09	Chicken Skin	mla5
p10	Whole Pork	mla5
p11	Whole Chicken	mla1
p12	Whole Cow	mla2
p13	Young Pork	mla6
p14	One Day Old	mla4
p15	Beef Franks	mla2

Kaloys Diner		
PID	QTY	
p01		1
p04		5
p06		4
p10		4
p12		1
p14		6

Nanay's Eatery		
PID	QTY	
p04		5
p09		4
p13		3

SupplierList	
supID	Location
mla1	Navotas
mla2	Navotas
mla3	Marikina
mla4	Marikina
mla5	Paranaque
mla6	Paranaque
mla7	Quezon City
mla8	Quezon City
mla9	Zapote
mla10	Zapote

```
MariaDB [mydatabase5_efa_caro]> SELECT * FROM ITEM_LIST;
  PID | PRODUCT
                      SUPID
  P01 |
        BEEF STEAK
                       MLA2
        BEEF CUTLET
                        MLA1
  P02
  P03
        PORK STEAK
                        MLA1
  P04
       CHICKEN WINGS
                       MLA4
  P05
       GROUND PORK
                       MLA6
        CHICKEN LIVER
  P06
                        MLA7
  P07
        BEEF LIVER
                        MLA1
  P08
       CHICKEN FEET
                        MLA6
  P09
        CHICKEN SKIN
                        MLA5
  P10
        WHOLE PORK
                        MLA5
  P11
       WHOLE CHICKEN
                        MLA1
  P12
       WHOLE COW
                        MLA2
        YOUNG PORK
  P13
                        MLA6
  P14
        ONE DAY OLD
                        MLA4
  P15 | BEEF FRANKS
                      MLA2
15 rows in set (0.001 sec)
MariaDB [mvdatabase5 efa carol>
MariaDB [mydatabase5_efa_caro]> CREATE TABLE KALOYS_DINER(
    -> PID VARCHAR(100) PRIMARY KEY, QTY INT);
Query OK, 0 rows affected (0.018 sec)
MariaDB [mydatabase5_efa_caro]> _
MariaDB [mydatabase5_efa_caro]> INSERT INTO KALOYS_DINER(PID,QTY)
    -> VALUES('P01',1),
    -> ('P04',5),
    -> ('P06',4),
    -> ('P10',4),
    -> ('P12',1),
    -> ('P14',6);
Query OK, 6 rows affected (0.006 sec)
Records: 6 Duplicates: 0 Warnings: 0
```

```
MariaDB [mydatabase5_efa_caro]> SELECT * FROM KALOYS_DINER;
  PID | QTY
  P01
           1
  P<sub>0</sub>4
           5
  P06
           4
  P10
           4
  P12
           1
  P14
           6
6 rows in set (0.000 sec)
MariaDB [mydatabase5 efa caro]>
MariaDB [mydatabase5_efa_caro]> CREATE TABLE NANAYS_EATERY(
     -> PID VARCHAR(100) PRIMARY KEY, QTY INT);
Query OK, 0 rows affected (0.018 sec)
MariaDB [mydatabase5_efa_caro]>
 MariaDB [mydatabase5_efa_caro]> INSERT INTO NANAYS_EATERY(PID,QTY)
      -> VALUES('P04',5),
      -> ('P09',4),
      -> ('P13',3);
  Query OK, 3 rows affected (0.003 sec)
  Records: 3 Duplicates: 0 Warnings: 0
 MariaDB [mydatabase5_efa_caro]> _
MariaDB [mydatabase5_efa_caro]> SELECT * FROM NANAYS_EATERY;
 PID | QTY
 P04
           5
  P09
           4
 P13
           3
3 rows in set (0.000 sec)
MariaDB [mydatabase5_efa_caro]>
MariaDB [mydatabase5_efa_caro]> CREATE TABLE SUPPLIERLIST(
    -> SUPID VARCHAR(100),
    -> LOCATION VARCHAR(100));
Query OK, 0 rows affected (0.018 sec)
MariaDB [mydatabase5_efa_caro]>
```

```
MariaDB [mydatabase5_efa_caro]> INSERT INTO SUPPLIERLIST(SUPID,LOCATION)
      -> VALUES
     -> ('MLA1','NAVOTAS'),
-> ('MLA2','NAVOTAS'),
     -> ('MLA3', 'MARIKINA'),
-> ('MLA4', 'MARIKINA'),
-> ('MLA5', 'PARANAQUE'),
     -> ('MLA6', 'PARANAQUE'),
-> ('MLA7', 'QUEZON CITY'),
-> ('MLA8', 'QUEZON CITY'),
-> ('MLA9', 'ZAPOTE'),
      -> ('MLA10','ZAPOTE');
Query OK, 10 rows affected (0.003 sec)
Records: 10 Duplicates: 0 Warnings: 0
MariaDB [mydatabase5_efa_caro]> _
MariaDB [mydatabase5_efa_caro]> SELECT * FROM SUPPLIERLIST;
 SUPID | LOCATION
  MLA1 | NAVOTAS
  MLA2
          NAVOTAS
          MARIKINA
  MLA3
  MLA4
          MARIKINA
  MLA5
           PARANAQUE
  MLA6
           PARANAQUE
```

QUEZON CITY

QUEZON CITY

MariaDB [mydatabase5_efa_caro]>

ZAPOTE

10 rows in set (0.000 sec)

MLA10 | ZAPOTE

MLA7 MLA8

MLA9

Perform the following tasks using JOIN commands.

• List of Product ID's, Product Names and Quantities That Kaloys dinner need

```
MariaDB [mydatabase5_efa_caro]> SELECT I.PID, I.PRODUCT, K.QTY
    -> FROM ITEM_LIST I
    -> INNER JOIN KALOYS_DINER K USING(PID);
 PID |
       PRODUCT
                       | QTY
       BEEF STEAK
 P01
 P04
        CHICKEN WINGS
       CHICKEN LIVER
 P06
       WHOLE PORK
WHOLE COW
                           4
 P10
 P12
 P14 ONE DAY OLD
6 rows in set (0.003 sec)
MariaDB [mydatabase5_efa_caro]> _
```

• Combined List of products that Both Customers need, including quantites

List of suppliers that Kaloy's need and their location

List of Suppliers that Nanay's need to contact and their location

Determine which Products are not being used by Nanays.

```
MariaDB [mydatabase5_efa_caro]> SELECT I.PID, I.PRODUCT
     -> FROM ITEM_LIST I
-> LEFT JOIN NANAYS_EATERY N USING (PID)
-> WHERE N.PID IS NULL;
| PID | PRODUCT
          BEEF STEAK
BEEF CUTLET
  P<sub>02</sub>
  P03
          PORK STEAK
           GROUND PORK
  P06
P07
          CHICKEN LIVER
BEEF LIVER
           CHICKEN FEET
          WHOLE PORK
WHOLE CHICKEN
WHOLE COW
  P10
P11
  P14 | ONE DAY OLD
P15 | BEEF FRANKS
12 rows in set (0.001 sec)
MariaDB [mydatabase5_efa_caro]>
```

Determine which Products are not being used by Kaloy

Conclusion:

In this activity we are able to use complex commands to make queries and subqueries. Through this activity we learned the different usage of join clause, where there are 4 main command being use inner, left, right and full join. All of which can be used depending on the requirements of the program being made. Join clause will be useful in sorting data and joining separate tables together.

Proof of collaboration:

