

planetmath.org

Math for the people, by the people.

Schur decomposition

Canonical name Schur Decomposition
Date of creation 2013-03-22 13:42:12
Last modified on 2013-03-22 13:42:12

Owner Daume (40) Last modified by Daume (40)

Numerical id 8

Author Daume (40) Entry type Theorem Classification msc 15-00

Related topic An Example For Schur Decomposition Related topic Proof That Det EA Eoperator nametr A If A is a complex square matrix of order n (i.e. $A \in \operatorname{Mat}_n(\mathbb{C})$), then there exists a unitary matrix $Q \in \operatorname{Mat}_n(\mathbb{C})$ such that

$$Q^H A Q = T = D + N$$

where H is the conjugate transpose, $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ (the λ_i are eigenvalues of A), and $N \in \operatorname{Mat}_n(\mathbb{C})$ is strictly upper triangular matrix. Furthermore, Q can be chosen such that the eigenvalues λ_i appear in any order along the diagonal. [?]

References

[GVL] Golub, H. Gene, Van Loan F. Charles: Matrix Computations (*Third Edition*). The Johns Hopkins University Press, London, 1996.