

Figure 44.5: An icosahedron is an example of an \mathcal{H} -polytope.

which is tangent to the x-axis at the origin. Then the cone(D) consists of the open upper half-plane plus the origin (0,0), but this set is not closed.

Proposition 44.2. Every polyhedral cone C is closed.

Proof. This is proven by showing that

- 1. Every primitive cone is closed, where a *primitive cone* is a polyhedral cone spanned by linearly independent vectors.
- 2. A polyhedral cone C is the union of finitely many primitive cones.

Assume that (a_1, \ldots, a_m) are linearly independent vectors in \mathbb{R}^n , and consider any sequence $(x^{(k)})_{k\geq 0}$

$$x^{(k)} = \sum_{i=1}^{m} \lambda_i^{(k)} a_i$$

of vectors in the primitive cone cone($\{a_1,\ldots,a_m\}$), which means that $\lambda_j^{(k)} \geq 0$ for $i=1,\ldots,m$ and all $k\geq 0$. The vectors $x^{(k)}$ belong to the subspace U spanned by (a_1,\ldots,a_m) , and U is closed. Assume that the sequence $(x^{(k)})_{k\geq 0}$ converges to a limit $x\in\mathbb{R}^n$. Since U is closed and $x^{(k)}\in U$ for all $k\geq 0$, we have $x\in U$. If we write $x=x_1a_1+\cdots+x_ma_m$, we would like to prove that $x_i\geq 0$ for $i=1,\ldots,m$. The sequence the $(x^{(k)})_{k\geq 0}$ converges to x iff

$$\lim_{k \to \infty} \left\| x^{(k)} - x \right\| = 0,$$

iff

$$\lim_{k \to \infty} \left(\sum_{i=1}^m |\lambda_i^{(k)} - x_i|^2 \right)^{1/2} = 0$$

iff

$$\lim_{k \to \infty} \lambda_i^{(k)} = x_i, \quad i = 1, \dots, m.$$