Tyler King

Newbury Park, California 🛮 ttk22@cornell.edu 📞 (408) 838-0038 in TylerKing 🎓 Tyler King

Education

B.S. in Computer Science, Cornell University
Coursework: OOP and Data Structures, Differential Equations, Electromagnetism, Discrete Math, Machine
Learning; GPA: 4.10/4.0

Dual Enrollment, Moorpark College
Coursework: Calc III (M25C), Linear Alg (M31A), Solid/Fluid Mechanics (M20A); GPA: 5.0/5.0

High School Diploma, Newbury Park High School

08/2021 – present
09/2020 – 08/2021
09/2020 – 08/2021

Relevant Experience

Machine Learning Intern, Institute for Creative Technologies ☑

05/2022 - present

- Leveraged various deep learning architectures (CNNs, GNNs, ResNets) to try and make predictions on complex dependent choices.
- Preprocessed/augmented data and leveraged hyperband for hyperparameter optimization.
- Gave a poster presentation about complex choices at HCI International conference.

Research Intern, *McMahon Lab* ☑

01/2022 - present

Developed an interruptable implementation for coherent ising machines (CIMs).
 Helped prepare datasets for implementing vehicle routing problems with time windows (VRPTWs) on CIMs in conjunction with ExxonMobil.

Research Intern, Cislunar Explorers ☑

08/2021 - 05/2022

- Established ground station uplinking/downlinking protocol for PSK31 transmission from FlatSat.
- Created unit test cases and worked with Unscented Kalman Filters (UKFs) for Optical Navigation.
- Helped streamline and clean up UKF implementation; built experience working on a large codebase.

Research Assistant, *University of Notre Dame* □

06/2021 - 09/2021

- Analyzed quantum circuits and processors under Professor Hoffman using IBM's Quantum hardware and Qiskit SDK.
- Conducted error analysis of different Grover's algorithm implementations on hardware (ibmq_lima) and noisy simulations (qasm_sim).
- Leveraged MATLAB and Matplotlib to model results and statistically compare error.

Publications

Minimum Path Star Topology Algorithms for Weighted Regions and Obstacles, arXiv ☑

09/14/2021

Novel algorithms for minimum distance computations that generalize Weiszfeld's algorithm to weighted regions and obstacles. Research conducted with Professor Soltys at CSUCI.

Projects

Deep Learning with 2-qubit system

- Done as a part of iQuHACK. Implemented a game that involved using quantum unitary operations to try and match an initial statevector to a target statevector.
- Leveraged deep Q reinforcement learning to train a bot to play the game and implemented a versus mode (player vs bot).

Optimized Weighted Region A* Pathfinding Algorithm

- Applying A* pathfinding on squares under pre-drawn paths.
- Observed results that are within 3% of best-case while achieving exponential speedups in time complexity.

Awards

Engineering Dean's List, *Cornell University*

AT-PAC Math League: Top 3 Nationally, Atlantic-Pacific Math League

SSI: International Environmental Ideathon, Summer STEM Institute

• Finalist, project on theoretical optimization of aquaculture using Naive Bayes

Skills

Languages	Tools	Data Analysis/ML	Misc
Java, Python, MATLAB, Julia, R	Eclipse, JUnit Testing, VS Code, Jupyter Notebook, Anaconda, Git/GitHub	Pandas, Numpy, Matplotlib, Seaborn, Sklearn, Pytorch	Networkx, NI Multisim, WSL, Qiskit, Jira, Microsoft Office