Тема 2. Введение в интервальный анализ. Интервальные арифметики

А.Н. Баженов

ФТИ им. А.Ф.Иоффе

a_ bazhe nov@in box. ru

20.01.2022

Последний слайд предыдущей лекции

Интервальный анализ. Классическая интервальная арифметика.

Было декларировано

В предыдущей лекции было декларировано освоение инструментов:

- Изучение разрешимости задач и оценка множества решений
- Решение переопределенных задач
- Решение недоопределенных задач
- Регуляризация плоообусловленных задач
- Решение несовместных задач

Первая реакция научного руководителя одного из аспирантов:

«А может последний пункт опустить?!»

Было декларировано

Анализ данных:

- Обработка физ. величины (константы):
- Оценка среднего, моды, медианы, совместности
- Восстановление зависимостей:
- Линейный случай
- Общий случай

ПЛАН

- Неформальное введение
- Введение в вопрос. Первый «интервальщик»
- Сведения об интервальном анализе.
- Мотивации интервального анализа
- Понятие интервала
- Классическая интервальная арифметика
- Независимые и связанные интервальные величины
- Основная теорема интервальной арифметики
- Характеристики интервалов и их свойства
- Алгебраические свойства интервальных операций
- Полная интервальная арифметика

А.Н.Баженов. Естественнонаучные и технические применения интервального анализа. 2021.

https://elib.spbstu.ru/dl/5/tr/2021/tr21-169.pdf/info

Оглавление

Введение

- 0.0.1 Некоторые понятия интервального анализа
- 0.0.2 Исторические сведения

Глава 1. Интервальные величины вприроде и практике

- 1.1 Атомные веса элементов
- 1.1.1 Изотопная подпись
- 1.1.2 Изотопная ниша
- 1.1.3 Изотопные ландшафты

- 1.2 Физические свойства Земли
- 1.3 Измерение фундаментальных констант
- 1.3.1 Гравитационная постоянная
- 1.3.2 Время жизни нейтрона
- 1.3.3 Macca *t*-кварка
- 1.3.4 Масса нейтрино
- 1.4 В технике
- 1.4.1 Система допусков и посадок
- 1.4.2 Электронные компоненты и схемотехника
- 1.4.3 Судовождение

Глава 2. Анализ данных

- 2.1 Совместность измерений
- 2.2 Погрешности во входных переменных
- 2.2.1 Пример несовместности измерений констан-ты. Коллекторные измерения токов.
- 2.2.2 «Внутренняя» несовместность данных.
- 2.2.3 Дополнительные примеры

Глава 3. Другие виды интервалов.

- 3.1 Интервалы полной интервальной арифметики.
- 3.2 Мультиинтервалы.
- 3.3 Твины.

Заключение

Литература

Не все объекты в мире интервальны. Например, сумма на банковской карте — совершенно однозначна.

В современном естествознании полагается, что существуют фундаментальные физические константы.

Математики полагают, что натуральные числа N точны, а также существуют трансцендентные величины e,π,F,C,\ldots , которые нельзя вычислить, но при этом они, по-всей видимости, точные числа.

Интервальный анализ. Задача о числе шагов.

Однако, двустроннее оценивание — весьма основательный подход. Например: «за сколько шагов n можно дойти до двери?» или «сколько единиц n в десятке?» Хотя ответ — целое число, например.

$$n = 10$$
,

для надёжности скажем: от 9 до 11.

Иначе,

$$n = [9, 11].$$

Интервальный анализ. Задача о кворуме.

Другой пример — кворум (лат. quorum praesentia sufficit «которых присутствие достаточно») на заседании Диссертационного совета. По правилам, обычно $\frac{2}{3}$ от полного числа N членов Совета.

Задача секретаря Диссертационного совета.

В Диссертационном совете N=18 членов.

Вопрос: «каково число членов n для кворума?»

Решение:

Формально n=12, но если соискатель хороший, то лучше n=13.

Итак, решение:

$$n = [12, 13].$$

Неинтервальный анализ. Задача первокурсника.

Пример за пределами интервального анализа.

Задача по курсу Общей физики.

Вопрос: «Не в Амерах ли измеряется сила тока?»

Решение тривиальное: «Да, в Амперах».

«Да, в Амперах.». Ответ = $\{Amp\}$

Решение «интервальное»:

«Да, в Амперах. Но можно ещё в Вольтах и Омах». $\mathsf{OTBeT} = \{ Amp, Volt, Omh \}$

Это не наш случай.

История - античность

Вычисление отношения длины окружности к диаметру по Архимеду (287–212 до н.э.) « $K\acute{u}\kappa\lambda$ оv $\mu\acute{e}\tau\rho\eta\sigma\iota\zeta$ » — «Измерение круга»

$$3\frac{10}{71} \leq \frac{\pi\varepsilon\rho i\mu.\kappa \acute{u}\kappa\lambda o\upsilon}{\delta\iota \acute{u}\mu\varepsilon\tau\rho o} \leq 3\frac{1}{7} \Longleftrightarrow \pi = \left[3\frac{10}{71}, 3\frac{1}{7}\right]$$

http://ilib.mccme.ru/djvu/klassik/arhimed.htm

История - античность

Вычисление углового размера Солнца по Архимеду (287–212 до н.э.) « $\Psi\alpha\mu\mu\nu\tau\eta\zeta$ » — «Псаммит - измерение песчинок.» https://ru.wikipedia.org/wiki/Псаммит — работа Архимеда, в которой он пытается определить верхнюю грань числа песчинок, которые занимает в своём объёме Вселенная.

$$rac{1}{200} \leq$$
 угловой размер Солнца $\leq rac{1}{160}$

в единицах прямого угла. Иначе,

угловой размер Солнца
$$=\left[rac{1}{200},rac{1}{160}
ight]\cdot 90^{\circ}.$$

http://ilib.mccme.ru/djvu/klassik/arhimed.htm

История - XIX век

Ф. Клейн (1849—1925) - «толстые геометрические объекты»

История - ХХ век

Подробно - http://www.nsc.ru/interval/?page=Introduction/history

- Программная статья об задании неопределенности величины ее границами Канторович Л.В. О некоторых новых подходах к вычислительным методам и обработке наблюдений // Сибирский Математический Журнал. – 1962. – Т. 3, №5. –С. 701–709.
- Англоязычная книга, привлекшая внимание общественности Moore R.E. Interval analysis. – Englewood Cliffs: Prentice Hall, 1966.
- 1970-е Н.Н. Яненко. https://ru.wikipedia.org/wiki/Яненко, _ Николай _ Николаевич Институт теоретической и прикладной механики СО РАН создание направления.
 - Первая монография на русском языке: Шокин Ю.И. Интервальный анализ. – Новосибирск: Наука, 1981.

Литература

Литература «для математиков»

- 2015 IEEE 1788 «реализация интервальных вычислений на цифровых ЭВМ»
- С.П. Шарый. КОНЕЧНОМЕРНЫЙ ИНТЕРВАЛЬНЫЙ АНАЛИЗ. Институт вычислительных технологий СО РАН. Издательство XYZ. Новосибирск 2021 (КИА-2021) http://www.nsc.ru/interval/
- Электронная библиотека http://www.nsc.ru/interval/?page=Library

Литература учебная

Литература учебная

- Б.С. Добронец. Интервальная математика. Красноярск: Издательство КГУ, 2004. http://www.nsc.ru/interval/Library/InteBooks/InteMath.pdf
- А.Н. Баженов. Интервальный анализ. Основы теории и учебные примеры: учебное пособие. СПб. 2020 https://elib.spbstu.ru/dl/2/s20-76.pdf/info

ПО - 1. Классика

- Ранний период http://www.cs.utep.edu/interval-comp/intsoft.html Interval and Related Software
- Разнообразные средства в Matlab (платная библиотека)
 http://www.nsc.ru/interval/?page=Programing INTLAB INTerval
 LABoratory. The Matlab/Octave toolbox for Reliable Computing
- Java Jinterval https://github.com/jinterval/jinterval (арифметика Каухера)
- Java Kepler https://github.com/Kepler-17c/Interval

ПО - 2. Современное

Для программистов

- Python Sympy https://docs.sympy.org/0.6.7/modules/mpmath/intervals.html
- Python Pyinterval https://pypi.org/project/pyinterval/ и другие пакеты
- Python Kaucherpy https://github.com/lmtortelli/kaucherpy (арифметика Каухера)
- Python https://github.com/AndrosovAS/intvalpy (только что)

•

ПО - 2. Современное

Для «математиков»

- Mathematica встроенная поддержка
- Matlab INTLAB
- Octave / SciLab встроенная поддержка, Kinterval (арифметика Каухера)
- Julia https://github.com/JuliaIntervals/IntervalArithmetic.jl

ПО - 3. On-line

С.И.Жилин.

- Примеры анализа интервальных данных в Octave.
 Сборник jupyter-блокнотов с примерами анализа интервальных данных.
 - https://github.com/szhilin/octave-interval-examples
- Примеры анализа интервальных данных в Julia.
 Сборник jupyter-блокнотов с примерами анализа интервальных данных.
 - https://github.com/szhilin/julia-interval-examples

Система обозначений и терминология

Наиболее современная публикация

«Вычислительные технологии» Том 15, №1, 2010

Standardized notation in interval analysis.

R.B. Kearfott, M.T. Nakao, A. Neumaier, S.M. Rump, S.P. Shary, and P. van Hentenryck.

 $http://ict.nsc.ru/jct/content/t15n1/Shary_n.pdf$

Интервальный анализ и его методы

Интервал — замкнутый отрезок вещественной оси, а **интервальная неопределенность** — состояние неполного знания об интересующей нас величине, когда известна лишь ее принадлежность **некоторому интервалу**.

Интервальный анализ — отрасль математического знания, исследующая задачи с интервальными неопределенностями и методы их решения.

Поиск множества, удовлетворяющего постановке задачи.

Интервальный анализ и его методы

«...В большинстве случаев некорректно говорить о «решении интервальных уравнений» (систем уравнений, неравенств и т. п.) вообще.

Правильнее вести речь о решении тех или иных постановок задач, связанных с интервальными уравнениями (системами уравнений, неравенств и т. п.). В свою очередь, формулировка постановки интервальной задачи подразумевает указание, по крайней мере, множества решений задачи и способа его оценивания». (КИА-2021, стр.13)

Мотивация и примения

- Вычисления Ошибки округления (разрядность)
- Наука Измерения
- Техника Допуски
- Неопределенности в экономических и технических системах
- Интервальнозначные вероятности

Мотивация

Дать «внешнюю» оценку математических объектов

Длина отрезка

Измерения. Какова длина отрезка?

$$L = [3, 5].$$

Примения

Ошибки округления (разрядность)

Обычное представление

Более содержательное представление

$$\frac{2}{3} \approx 0.667$$

$$\frac{2}{3} \in [0.666, 0.667]$$

Понятие интервала

Интервалом [a,b] вещественной оси R называется множество всех чисел, расположенных между заданными числами включая их самих, т.е.

$$[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$

При этом a и b называются концами интервала.

Интервальные арифметики – базовые понятия

Арифметические действия над интервалами
$$\star \in \{\,+\,,-\,,\,\cdot\,\,,,/\,\}$$

Классическая интервальная арифметика

Развёрнутые формулы для арифметических операций выглядят следующим образом:

$$x + y = \left[\underline{x} + y, \ \overline{x} + \overline{y}\right],\tag{1a}$$

$$\mathbf{x} - \mathbf{y} = \left[\underline{\mathbf{x}} - \overline{\mathbf{y}}, \ \overline{\mathbf{x}} - \underline{\mathbf{y}} \right],\tag{1b}$$

$$\mathbf{x} \cdot \mathbf{y} = \left[\min \{ \underline{\mathbf{x}} \ \underline{\mathbf{y}}, \underline{\mathbf{x}} \ \overline{\mathbf{y}}, \overline{\mathbf{x}} \ \underline{\mathbf{y}}, \overline{\mathbf{x}} \ \overline{\mathbf{y}} \right\}, \ \max \{ \underline{\mathbf{x}} \ \underline{\mathbf{y}}, \underline{\mathbf{x}} \ \overline{\mathbf{y}}, \overline{\mathbf{x}} \ \underline{\mathbf{y}}, \overline{\mathbf{x}} \ \overline{\mathbf{y}} \right\} \right], \tag{1c}$$

$$x/y = x \cdot \left[1/\overline{y}, \ 1/\underline{y} \right]$$
 для $y \not\ni 0.$ (1d)

Пример. Два автомобиля

Время в пути первой машины Время в пути второй машины Разница между временами прихода к финишу $\Delta T_{12} = [-1, 1]$

 $T_1 = [9, 10]$ $T_2 = [9, 10]$

Типы интервалов

Типы интервалов в классической интервальной арифметике

Неотрицательные интервалы Нульсодержащие интервалы Неположительные интервалы Символическая формула

$$P = \left\{ \mathbf{a} \in \mathbb{IR} \mid (\underline{a} \ge 0) \& (\overline{a} \ge 0) \right\}$$

$$Z = \left\{ \mathbf{a} \in \mathbb{IR} \mid \underline{a} \le 0 \le \overline{a} \right\}$$

$$-P = \left\{ \mathbf{a} \in \mathbb{IR} \mid -\mathbf{a} \in P \right\}$$

$$\mathbb{IR} = -P \cup Z \cup P$$

Классическая интервальная арифметика

Определение. Алгебраическая система $\{\mathbb{IR}, +, -, \cdot, /\}$, образованная множеством всех вещественных интервалов $[\underline{a}, \overline{a}] := \{x \in \mathbb{R} \mid \underline{a} \leq x \leq \overline{a}\}$ с бинарными операциями сложения, умножения, вычитания и деления, называется классической интервальной арифметикой.

Таблица Кэли

Интервальное умножение в классической интервальной арифметике

Отсутствие обратных элементов для арифметических действий

$$(a+b)-b \neq a$$

 $(a\cdot b)/b \neq a$

$$a - a \neq 0$$
 $a/a \neq 1$

$$(a+b)-b \neq a$$

Пример 1.

$$\mathbf{a} = [1, 2], \quad \mathbf{b} = [-1, 1]$$

$$(\mathbf{a} + \mathbf{b}) - \mathbf{b} = ([1, 2] + [-1, 1]) - [-1, 1] = [0, 3] - [-1, 1] = [-1, 4]$$

$$[1, 2] \neq [-1, 4]$$

$$(\mathbf{a} \cdot \mathbf{b})/\mathbf{b} \neq \mathbf{a}$$

Пример 2.

$$\mathbf{a} = \mathbf{b} = [1, 2]$$

 $(\mathbf{a} \cdot \mathbf{b})/\mathbf{b} = ([1, 2][1, 2])/[1, 2] = [1, 4]/[1, 2] = [0.5, 4]$
 $[1, 2] \neq [0.5, 4]$

$$\mathbf{a} - \mathbf{a} \neq 0$$

Почему?

За попытки приходится платить

$$\mathbf{a} - \mathbf{a} = 2 \cdot [-\text{rad } \mathbf{a}, \text{rad } \mathbf{a}],$$

$$\sum_{n=1}^{\infty} \mathbf{a} - \mathbf{a} = 2n \cdot [-\text{rad } \mathbf{a}, \text{rad } \mathbf{a}]$$

Частичное упорядочение по отношению включения

Интервалы — множества, для них определяется частичное упорядочение по отношению включения друг в друга

$$\mathbf{a} \subseteq \mathbf{b} \iff \underline{\mathbf{a}} \ge \underline{\mathbf{b}} \& \overline{\mathbf{a}} \le \overline{\mathbf{b}}$$

Монотонность по включению

Свойство монотонности по включению: для любых интервалов $\pmb{a}, \pmb{a'}, \pmb{b}, \pmb{b'} \in \mathbb{IR}$ и любых операций $\star \subseteq \{+,-,\cdot,/\}$

$$a \subseteq a', b \subseteq b' \Longrightarrow a \star b \subseteq a' \star b'$$

Свойство монотонности по включению отражает тот факт, что расширение областей определения объектов неизбежно расширяет и область на которую отображаются результаты арифметических операций над объектами.

Независимые и связанные интервальные величины.

Определение. Интервальные величины $a_1 \in \pmb{a}_1, \dots, a_n \in \pmb{a}_n$ называются независимыми (несвязанными), если упорядоченный набора переменных (a_1,\dots,a_n) принимает любые значения из декартова произведения интервалов их изменения $\pmb{a}_1,\dots,\pmb{a}_n$, т.е. из бруса $\pmb{a}_1,\dots,\pmb{a}_n \subset \mathbb{R}^n$.

В противном случае интервальные величины называются зависимыми (связанными).

Независимые и связанные интервальные величины.

Пусть для величин $x_1 \in [0,2]$ и $x_2 \in [0,1]$ имеет место связь:

$$1\leq x_1+2x_2\leq 2.$$

Функции независимых и связанных интервальных величин

Рассмотрим различные функции этих переменных.

$${x_1 - x_2 \mid x_1 \in [0, 2], x_2 \in [0, 1], (x_1, x_2) \in S} = [-1, 2] = [0, 2] - [0, 1],$$

$$\{x_1 + x_2 \mid x_1 \in [0, 2], x_2 \in [0, 1], (x_1, x_2) \in S\} = [0.5, 2]$$

$$\{x_1 \cdot x_2 \mid x_1 \in [0, 2], x_2 \in [0, 1], (x_1, x_2) \in S\} = [0, 0.5]$$

Для независимых x_1 и x_2 имеем:

$$[0,2] + [0,1] = [0,3] \supset [0.5,2]$$

 $[0,2] \cdot [0,1] = [0,2] \supset [0,0.5]$

Основная теорема интервальной арифметики

Теорема Пусть $f(x_1,x_2,\ldots,x_n)$ — рациональная функция вещественных аргументов $x_1,x_2,\ldots x_n$ и для нее определен результат $F(\pmb{X}_1,\pmb{X}_2,\ldots,\pmb{X}_n)$ подстановки вместо аргументов интервалов их изменения $(\pmb{X}_1,\pmb{X}_2,\ldots,\pmb{X}_n)\subset \mathbb{IR}$ и выполнения над ними действий по правилам интервальной арифметики. Тогда

$$\{f(x_1, x_2, ..., x_n) \mid x_1 \in X_1, x_2 \in X_2, ..., x_n \in X_n\} \subseteq F(X_1, X_2, ..., X_n),$$

т.е. $F(\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_n)$ содержит множество значений функции $f(x_1, x_2, \dots, x_n)$ на $\boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n$. Если выражение для $f(x_1, x_2, \dots, x_n)$ содержит не более чем по одному вхождению каждой переменной в первой степени, имеет вместо включения выполняется точное равенство.

Зависимость результата вычислений от вида выражений

Для рациональной функции $f(x,y)=x\cdot y-x+3$ на области определения $x\in[0,1],$ $y\in[1,2],$ оценка области значений

$$[0,1]\cdot [1,2] - [0,1] + 3 = [2,5].$$

Если переписать выражение как $f(x,y) = x \cdot (y-1) + 3$, то

$$([0,1] \cdot [1,2] - 1) + 3 = [3,4].$$

Таким образом, при интервальном оценивании имеет смысл рассуждать не в терминах функций, а в терминах задающих их выражений.

Дерево Канторовича

Деревом Канторовича для выражения f называется изображающее алгоритм вычисления значений для f корневое дерево, в котором:

- Корень соответствует результату выражения
- Прочие концевые вершины соответствуют исходным переменным
- Остальные вершины дерева отображают операции и одновременно результаты операций, являющиеся промежуточными результатами вычисления выражения f

Дерево Канторовича

$$f = x \cdot y - x + 3$$

Характеристики интервалов и их свойства

Середина, радиус, ширина:

mid
$$\mathbf{a} = \frac{1}{2} \cdot (\underline{\mathbf{a}} + \overline{\mathbf{a}}),$$

rad $\mathbf{a} = \frac{1}{2} \cdot (\overline{\mathbf{a}} - \underline{\mathbf{a}}),$
wid $\mathbf{a} = \overline{\mathbf{a}} - \underline{\mathbf{a}}.$

Таким образом,

$$\mathbf{a} = \operatorname{mid} \mathbf{a} + [-1, 1] \cdot \operatorname{rad} \mathbf{a},$$

что равносильно

$$\mathbf{a} = \{ x \in \mathbb{R} : |x - \text{mid } \mathbf{a}| \le \text{rad } \mathbf{a} \}.$$

Характеристики интервалов

Расширение (объитерваливание) объекта

Середина интервала

Середина интервала — это его «наиболее типичный» представитель, который наименее удален от всех точек интервала, а радиус и ширина характеризуют разброс точек интервала, абсолютную меру неопределенности, выражаемой данным интервалом.

Абсолютная величина (модуль, магнитуда) интервала

Определение. Абсолютной величиной интервала a (называемой также модулем или магнитудой интервала) называется наибольшее из абсолютных значений точек интервала a, т. е. величина

$$|\mathbf{a}| := \max\{|\mathbf{a}| \mid \mathbf{a} \in \mathbf{a}\} = \max\{|\underline{\mathbf{a}}|, |\overline{\mathbf{a}}|\}$$

Для произвольного интервала \boldsymbol{a} определение модуля можно переписать также в виде

$$|\boldsymbol{a}| := \max\{-\underline{\boldsymbol{a}}, \overline{\boldsymbol{a}}\}.$$

Мигнитуда интервала

Определение. Мигнитудой интервала a называется наименьшее из абсолютных значений точек интервала a, т. е. величину

$$\langle {m a}
angle := \min\{|{m a}| \mid {m a} \in {m a}\} = \left\{egin{array}{ccc} \min\{|{m a}|,|{m \overline a}|\}, & & ext{если } 0
otin \ 0, & & ext{если } 0 \in {m a}. \end{array}
ight.$$

Уравновешенные интервалы

Определение. Интервал a называется уравновешенным, если

$$\underline{a} = -\overline{a}$$

или, что равносильно,

$$mid \mathbf{a} = 0$$

.

Свойства середины интервалов

Свойства середины:

$$\operatorname{mid} (\boldsymbol{a} \pm \boldsymbol{b}) = \operatorname{mid} \boldsymbol{a} \pm \operatorname{mid} \boldsymbol{b},$$
 $\operatorname{mid} (\boldsymbol{a} \cdot \boldsymbol{b}) = \boldsymbol{a} \cdot \operatorname{mid} \boldsymbol{b}, \quad \text{если } \boldsymbol{a} \in \mathbb{R}.$

Основные свойства радиуса интервалов

Основные свойства радиуса:

$$m{a} \subseteq m{b} \implies \operatorname{rad} m{a} \le \operatorname{rad} m{b},$$
 $\operatorname{rad} (m{a} \pm m{b}) = \operatorname{rad} m{a} + \operatorname{rad} m{b},$ $\operatorname{rad} (m{a} \cdot m{b}) = |m{a}| \cdot \operatorname{rad} m{b}, \quad \operatorname{ecли} \ m{a} \in \mathbb{R}.$ $\operatorname{max}\{|m{a}| \cdot \operatorname{rad} m{b}, \operatorname{rad} m{a} \cdot |m{b}|\} \le \operatorname{rad} (m{a}m{b}) \le |m{a}| \cdot \operatorname{rad} m{b} + \operatorname{rad} m{a} \cdot |m{b},$ $\operatorname{rad} \left(\frac{1}{m{a}}\right) = \frac{\operatorname{rad} m{a}}{\langle m{a} \rangle |m{a}|}.$

Сравнение интервалов

Помимо упорядочения интервалов по включению имеет также смысл распространить отношение « \leq » между вещественными числами на множество всех интервалов из \mathbb{IR} .

Вообще говоря, оно может быть выполнено неединственным образом, приведём наиболее популярное из определений.

Определение. Для интервалов $\pmb{a}, \; \pmb{b} \in \mathbb{IR}$, условимся считать, что \pmb{a} не превосходит \pmb{b} и писать

$$a \leq b$$

тогда и только тогда, когда

$$\underline{\pmb{a}} \leq \underline{\pmb{b}}$$
 и $\overline{\pmb{a}} \leq \overline{\pmb{b}}$.

Свойства абсолютной величины и мигнитуды

Свойства абсолютной величины и мигнитуды:

Возведение интервала в степень определим стандартным образом:

$$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ pas}}$$

Предложение. Для любого интервала $\pmb{a} \in \mathbb{IR}$

$$\operatorname{rad}\left(\boldsymbol{a}^{n}\right)\leq n|\boldsymbol{a}|^{n-1}\operatorname{rad}\,\boldsymbol{a}.\quad(\star)$$

Если 0 ∈ **а**, то

$$\operatorname{rad}(\boldsymbol{a}^n) = |\boldsymbol{a}|^{n-1}\operatorname{rad}\boldsymbol{a}. \quad (\star\star)$$

Доказательство. Неравенство (\star) докажем индукцией по степени n. Замечая его справедливость при n=1, предположим, что оно уже справедливо при некотором натуральном n. Для оценки радиуса \boldsymbol{a}^{n+1} можно воспользоваться правым неравенством из (\star) :

$$\operatorname{rad}(\boldsymbol{a}^{n+1}) = \operatorname{rad}(\boldsymbol{a}^{n}\boldsymbol{a})$$

$$\leq |\boldsymbol{a}|^{n} \cdot \operatorname{rad}\boldsymbol{a} + \operatorname{rad}(|\boldsymbol{a}|^{n}) \cdot |\boldsymbol{a}|$$

$$\leq |\boldsymbol{a}|^{n} \cdot \operatorname{rad}\boldsymbol{a} + n\operatorname{rad}(|\boldsymbol{a}|^{n-1})\operatorname{rad}\boldsymbol{a} \cdot |\boldsymbol{a}|$$

$$\leq (n+1)|\boldsymbol{a}|^{n})\operatorname{rad}\boldsymbol{a},$$

т.е. доказываемое соотношение (\star) для степени (n+1).

При доказательстве равенства (\star) предположим сначала для определённости, что $\mathrm{mid}\ \pmb{a} \geq 0$, т. е. $|\pmb{a}| = \overline{\pmb{a}}$. Покажем, что тогда в условиях предложения

$$\mathbf{a}^n = |\mathbf{a}|^{n-1} \cdot \mathbf{a}.$$
 (\triangle)

Для n=1 это соотношение очевидно. При n=2 по формулам умножения нульсодержащих интервалов имеем

$$\mathbf{a}^2 = \mathbf{a}\mathbf{a} = [\underline{\mathbf{a}}\overline{\mathbf{a}}, \overline{\mathbf{a}}^2] = \overline{\mathbf{a}} \cdot [\underline{\mathbf{a}}, \overline{\mathbf{a}}] = |\mathbf{a}|\mathbf{a}.$$

Далее, если $|oldsymbol{a}|^n = |oldsymbol{a}|^{n-1} \cdot oldsymbol{a}$ для некоторого натурального n, то

$$a^{n+1} = a^n a = |a|^{n-1} a^2 = |a|^{n-1} \cdot |a| \cdot a = |a|^n a.$$

так что в силу принципа математической индукции равенство выполняется для любых n. Беря радиус от обеих частей равенства (\triangle) , получаем $(\star\star)$. \blacksquare

Заметим, что уменьшение радиуса степени нульсодержащего интервала приводит к его «сжатию», что может служить основой для построения итерационного процесса.

Относительные характеристики.

Радиус и ширина интервала характеризуют абсолютный размер интервальной неопределённости, но иногда бывает полезно иметь меру относительного размаха интервала.

Естественно было бы взять для описания относительной неопределённости, выражаемой интервалом ${m a}$, конструкцию вроде отношения ${m \overline a}/{m a}$, но она годится лишь для интервалов, не содержащих нуль.

Относительные характеристики.

X.Рачек рассмотрел не относительную ширину, а противоположную ей по смыслу относительную «узость» (меру сосредоточенности) ненулевых интервалов, и предложил для её описания функционал

$$\chi(\pmb{a}) := \left\{ egin{array}{ll} \underline{\pmb{a}}/\overline{\pmb{a}}, & ext{если } |\underline{\pmb{a}}| \leq |\overline{\pmb{a}}|, \ \overline{\pmb{a}}/\underline{\pmb{a}}, & ext{иначе}. \end{array}
ight.$$

Для нулевых интервалов функционал χ не определён. Ясно, что

$$-1 \leq \chi(\mathbf{a}) \leq 1$$
,

и $\chi({\pmb a})=1$ тогда и только тогда, когда $0 \neq {\pmb a} \in {\mathbb R}$. Значение -1 функционал χ принимает на уравновешенных интервалах вида $[-a,a], a \geq 0$, симметричных относительно нуля.

Относительные характеристики.

Определение. Для ненулевого интервала ${m a}$ относительным интервалом будем называть интервал $[\chi({m a}),1].$ Ширину относительного интервала, т. е. величину $1-\chi({m a})$, назовём относительной шириной интервала ${m a}$.

Характеристики интервалов и их свойства

Радиус (ширина) интервалов при сложении и вычитании может только складываться и поэтому противоположного (обратного по сложению) элемента для невырожденных интервалов в \mathbb{IR} нет.

При умножении невырожденного интервала на ненулевой интервал радиус произведения никогда не может сделаться нулевым.

Характеристики интервалов и их свойства

Вместо полноценной обратимости интервальных арифметических операций имеют более слабые «свойства сокращения»:

$$\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{c} \Longrightarrow \mathbf{a} = \mathbf{b},$$

 $\mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c}, 0 \notin \mathbf{a}, 0 \notin \mathbf{b}, 0 \notin \mathbf{c} \Longrightarrow \mathbf{a} = \mathbf{b}.$

Алгебраические свойства интервальных операций

Интервальная арифметика \mathbb{IR} является алгебраической системой и частично упорядоченным множеством с отношением порядка по включению « \subseteq ». В \mathbb{IR} нейтральными элементами относительно сложения и вычитания является нуль, а относительно умножения и деления — единица:

$$a + 0 = a$$
, $a - 0 = a$, $a \cdot 1 = a$, $a/1 = a$.

Интервальные арифметические операции обладают свойствами:

$$(m{a}+m{b})+m{c}=m{a}+(m{b}+m{c})$$
 — ассоциативность сложения, $(m{a}\cdotm{b})\cdotm{c}=m{a}\cdot(m{b}\cdotm{c})$ — ассоциативность умножения, $m{a}+m{b}=m{b}+m{a}$ — коммутативность сложения. $m{a}\cdotm{b}=m{b}\cdotm{a}$ — коммутативность умножения.

Алгебраические свойства интервальных операций

Дистрибутивность умножения относительно сложения в общем случае отсутствует:

$$a + b \cdot c \neq a \cdot c + b \cdot c$$
.

Пример

$$[1,2] \cdot (1-1) = 0,$$

 $[1,2] \cdot 1 - [1,2] \cdot 1 = [-1,1].$

Имеет место более слабое свойство:

$$a \cdot (b + c) \subseteq a \cdot b + a \cdot c$$
.

называемое субдистрибутивностью умножения относительно сложения. Дистрибутивность выполняется в ряде частных случаев:

$$a \cdot (\boldsymbol{b} + \boldsymbol{c}) = a \cdot \boldsymbol{b} + a \cdot \boldsymbol{c},$$
 если $a \in \mathbb{R},$ $\boldsymbol{a} \cdot (b + c) = \boldsymbol{a} \cdot b + \boldsymbol{a} \cdot c,$ если $b, c \ge 0$ или $b, c \le 0.$

Проблемы интервальной арифметики

- все интервалы с ненулевой шириной, т. е. большинство элементов \mathbb{IR} , не имеют обратных элементов по отношению к арифметическим операциям,
- арифметические операции связаны друг с другом весьма слабым соотношением субдистрибутивности, а полноценная дистрибутивность умножения (и деления) относительно сложения и вычитания не имеет места.

Как следствие, в \mathbb{IR} элементарные уравнения относительно неизвестной переменной x

$$\boldsymbol{a} + \boldsymbol{x} = \boldsymbol{b}, \quad \boldsymbol{a} \cdot \boldsymbol{x} = \boldsymbol{b}$$

и им подобные не всегда имеют решение.

Проблемы интервальной арифметики - упорядочение по включению

Неудовлетворительны порядковые свойства классической интервальной арифметики относительно естественного упорядочения по включению « \subseteq ». В частично упорядоченных множествах важна возможность взятия для любых двух элементов их нижней грани \wedge и верхней грани \vee относительно рассматриваемого порядка.

$$m{a} \wedge m{b} := \inf_{\subseteq} \{ m{a}, m{b} \} = [\max\{ \underline{m{a}}, \underline{m{b}} \}, \min\{ \overline{m{a}}, \overline{m{b}} \}]$$

— взятие нижней грани относительно «⊆».

$$\mathbf{\textit{a}} \vee \mathbf{\textit{b}} := \sup_{\subseteq} \{\mathbf{\textit{a}}, \mathbf{\textit{b}}\} = [\min\{\underline{\mathbf{\textit{a}}}, \underline{\mathbf{\textit{b}}}\}, \max\{\overline{\mathbf{\textit{a}}}, \overline{\mathbf{\textit{b}}}\}]$$

— взятие верхней грани относительно « \subseteq ». Например, не определено $[1,2] \wedge [3,4]$.

Проблемы интервальной арифметики - минимаксные задачи

Это постановки, которые требуют взятия минимаксов функций многих переменных, т. е. смешанных экстремумов, в которых по части аргументов функции берётся минимум, а по оставшимся — максимум.

Но классическая интервальная арифметика (как и её известные обобщения) разработаны для оценивания областей значений арифметических операций и выражений или, иначе, для вычисления чистых минимумов и максимумов по всем переменным сразу.

Полная интервальная арифметика

 Θ .Каухер — в 70-е годы XX века — $\mathbb{K}\mathbb{R}$. Достоинства:

- обратимость арифметических действий
- упорядочение по включению
- минимаксность

Плата — «правильные» и «неправильные» интервалы, операция «дуализации» интервалов.

Реализация — Java Jinterval.

 $http://www.nsc.ru/interval/Programing/S\,MO2011\text{-}JInterval.pdf$

Реализация — Python kaucherpy.

https://github.com/Imtortelli/kaucherpy

Обсудим отдельно.

Метрика и топология на множествах интервалов

Определение. Отображения

$$\mathtt{dist}: \mathbb{IR} imes \mathbb{IR} \longrightarrow \mathbb{R}_+$$

определяемые как

$$dist(\boldsymbol{a}, \boldsymbol{b}) := max\{|\underline{a} - \underline{b}|, |\overline{a} - \overline{b}|\}$$

называют расстоянием (метрикой) на множествах интервалов \mathbb{IR} . Расстояние dist между интервалами является, фактически, чебышёвским расстоянием (максимум-расстоянием) между точками интервальной плоскости \mathbb{R}^2 , изображающими эти интервалы в координатах «левый конец-правый конец».

Метрика и топология на множествах интервалов

Свойства расстояний

- $oldsymbol{0}$ dist $(oldsymbol{a},oldsymbol{b})\geq 0$, dist $(oldsymbol{a},oldsymbol{b})=0$ при $oldsymbol{a}=oldsymbol{b}$
- $2 \operatorname{dist}(\boldsymbol{a}, \boldsymbol{b}) = \operatorname{dist}(\boldsymbol{b}, \boldsymbol{a})$
- dist $(a, c) \leq \text{dist}(a, b) + \text{dist}(b, c)$

Предложение. Для любых интервалов

$$\mathtt{dist}(\pmb{a},\pmb{b}) =$$

$$\max\{\min\{t\in\mathbb{R}_+|\boldsymbol{a}\subseteq\boldsymbol{b}+t\cdot[-1,1]\},\min\{t\in\mathbb{R}_+|\boldsymbol{b}\subseteq\boldsymbol{a}+t\cdot[-1,1]\}\}$$

Метрика и топология на множествах интервалов

если на \mathbb{R}^n задано некоторое расстояние d, то хаусдорфово расстояние между компактными множествами $A,B\subseteq\mathbb{R}^n$ определяется как

$$d(A,B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)\}$$

Геометрический смысл d(A,B) — максимум из таких минимальных возможных неотрицательных чисел r_A и r_B , что r_B -окрестность множества A относительно расстояния d содержит B, а r_A -окрестность множества B относительно расстояния d содержит множество A.

 $\operatorname{dist}({\it a},{\it b})$ является хаусдорфовым расстоянием.

Другие интервальные арифметики

Более общий взгляд

 $\mathbb{R}\subseteq\mathbb{IR}\subseteq\mathbb{KR}\subseteq\mathbb{TR},\mathbb{MR}$

Зачем?!

Не всё сразу . . .

Принцип соответствия

Принцип соответствия в методологии науки — это утверждение, что любая новая научная теория должна включать старую теорию и её результаты как частный предельный случай.

Принцип соответствия

«В наиболее общем виде принцип соответствия может быть сформулирован следующим образом: теории, справедливость которых была экспериментально установлена для определённой группы явлений, с появлением новых теорий не отбрасываются, но сохраняют своё значение для прежней области явлений как предельная форма и частный случай новых теорий. Выводы новых теорий в той области, где была справедлива старая "классическая" теория, переходят в выводы классической теории.

Математический аппарат новой теории, содержащий некоторый характеристический параметр, значения которого различны в старой и новой области явлений, при надлежащем значении характеристического параметра переходит в математический аппарат старой теории».

Принцип соответствия

Методологическое значение принципа соответствия состоит в том, что он может служить средством построения и коррекции новых теоретических систем, новых систем понятий.

Принцип соответствия впервые был предложен Н. Бором в начале XX века для объяснения взаимного соотношения нарождавшейся квантовой механики и традиционной физики макрообъектов. Он понадобился как средство для обеспечения «непрерывной склейки» новой теории с классической физикой, которая прекрасно описывает и объясняет огромное количество окружающих нас явлений и не может быть просто отвергнута на том основании, что она «стара», «немодна» и т.п.

$\mathbb{R} \subseteq \mathbb{IR} \subseteq \mathbb{KR} \subseteq \mathbb{TR}, \mathbb{MR}$

Для любителей математики ...

Предложение. Последовательность интервалов $\{a_k\}_{k=1}^\infty$ сходится тогда и только тогда, когда последовательности концов $\{\underline{a}_k\}$ и $\{\overline{a}_k\}$ сходятся в \mathbb{R}^n . При этом

$$\lim_{k\to\infty} \mathbf{a}_k = [\lim_{k\to\infty} \underline{a}_k, \lim_{k\to\infty} \overline{a}_k].$$

Предложение (принцип вложенных интервалов) В классической интервальной арифметике \mathbb{IR} всякая вложенная последовательность интервалов $\{ {\pmb a}_k \}_{k=1}^\infty$, т. е. такая, что ${\pmb a}_{k+1} \subseteq {\pmb a}_{k+1}, \ k=1,2,\cdots$, имеет предел и

$$\lim_{k\to\infty} \boldsymbol{a}_k = \cap_{k\to\infty} \boldsymbol{a}_k.$$

Следует из теоремы Вейерштрасса о сходимости монотонной ограниченной последовательности

Одномерный случай

Теорема (предельная теорема Крейновича, 1995)

Сумма замкнутых множеств вещественной оси \mathbb{R} , диаметр каждого из которых не превосходит δ , отличается в хаусдорфовой метрике от интервала не более чем на δ . Если для любого $\delta>0$ множество E вещественной оси может быть представлено как конечная сумма замкнутых множеств диаметра не более δ , то E является интервалом.

Теорема В пространстве \mathbb{R}^n сумма замкнутых множеств, диаметр каждого из которых не превосходит δ , отличается в хаусдорфовой метрике не более чем на δ от связного множества. Если для любого положительного δ множество $E\subseteq \mathbb{R}^n$ может быть представлено как конечная сумма замкнутых подмножеств \mathbb{R}^n диаметра не более δ , то E связно.

Определение. Подмножество линейного нормированного пространства назовём бесконечно делимым, если для любого положительного δ оно может быть представлено в виде конечной суммы Минковского замкнутых подмножеств диаметра не более δ . Теорема (теорема Рогинской-Шульмана, 2018) В пространстве \mathbb{R}^n компактное множество является выпуклым тогда и только тогда, когда оно бесконечно делимо.