TITLEPAGE NOT RENDERED! RECOMPILE WITH LUATEX!

Contents

0.1	Semi Conduttori	
	0.1.1 Introduzione ai Semiconduttori (Saltabile)	
0.2	MOSFET	:
	0.2.1 NMOS ed PMOS	:
	0.2.2 Come capire in che stato di funzionamento e' il MOSFET	
	0.2.3 Caratteristiche Importanti dei MOSFET	(
	0.2.4 Tips and Tricks	(
	0.2.5 Come Risolvere gli esercizi sui MOSFET	
0.3	Diodi	1
	0.3.1 Metodi di risoluzione per circuiti con diodi	1
	0.3.2. Raddrizzatori di tensione	2

Chapter 1

Chapter 1

1.1 Semi Conduttori

1.1.1 Introduzione ai Semiconduttori (Saltabile)

I semi conduttori sono una categoria di materiali che hanno una conduttivita' a meta' tra conduttori ed isolanti.

Ci sono due principali tipi di semiconduttori:

- 1. Semiconduttori ad elemento singolo: ad esempio quelli al silicio o al germanio.
- 2. Semiconduttori composti:ad esempio quelli a lega di gallio-arsenico.

Quindi quelli ad elemento singolo sono tutti elementi con 4 elettroni di valenza nel orbitale piu' esterno, mentre quelli composti sono lege di elementi con valenza 3-5 o 2-6 in modo che in media si comporti come se avesse valenza 4 cosi che si possa formare un reticolo di legami covalenti.

Il principale utilizzo di semiconduttori composti e' per i LED.

Il reticolo di legami covalenti non conduce poiche' non vi e' carica libera pero' col aumentare della temperatura i legami si rompono e generano coppie di elettrone-lacuna ,che in quanto cariche libere rendono il materiale capace di condurre, poi si ricombinano.

Le lacune possono essere modellizzate come particelle di carica opposta al elettrone.

Ovviamente il numero di elettroni liberi e di lacune sono uguali e questo numero per cm^3 vale:

$$n_i = BT^{\frac{3}{2}}e^{\frac{-E_g}{2kT}}$$

T e' la temperatura espressa in gradi Kelvin B e' un valore che dipende dal materiale e nel silicio vale $7.3 \times 10^{15} cm^{-3} K^{-\frac{3}{2}}$ E_g e' l'er a temperatura ambiente

$$n_i \sim 1.5 \times 10^{10} \frac{tdc}{cm^3}$$

(tdc = Trasportatori di Carica)

Chapter 2

Chapter 2

2.1 MOSFET

2.1.1 NMOS ed PMOS

Esistono due tipi duali e complementari di MOSFET: NMOS (Piu' usati e con caratteristiche migliori) e i PMOS. Definisco due costanti:

$$K_n = \frac{1}{2}\mu_n C'_{ox} \left(\frac{W}{L}\right)$$

$$K'_n = \frac{1}{2}\mu_n C'_{ox}$$

 μ_n e' la costante di mobilita' degli elettroni C'_{ox} e' la capacita' del condesatore che si forma tra il gate ed il canale W e' la larghezza del canale L e' la lunghezza del canale

quindi $K_n = K'_n\left(\frac{W}{L}\right)$

NMOS

Il NMOS e' spento se la $V_{GS} < V_t$ e quindi la corrente

$$I_{DS}=0$$

Il NMOS e' in regime ohmico o lineare se $V_{DS} < V_{GS} - V_t$ e quindi la corrente

$$I_{DS} = K_n \left[2 (V_{GS} - V_t) V_{DS} - V_{DS}^2 \right]$$

Il NMOS e' in zona di saturazione se $V_{DS} > V_{GS} - V_t$ e quindi la corrente

$$I_{DS} = K_n \left(V_{GS} - V_t \right)^2$$

PMOS

ATTENZIONE AI SEGNI

Il PMOS e' spento se la $|V_{GS}| < |V_t|$ e quindi la corrente

$$I_{SD} = 0$$

Il PMOS e' in regime ohmico o lineare se $V_{SD} < V_{SG} - |V_t|$ e quindi la corrente

$$I_{SD} = K_p \left[2 \left(V_{GS} - |V_t| \right) V_{SD} - V_{SD}^2 \right]$$

Il PMOS e' in zona di saturazione se $V_{SD} > V_{GS} - |V_t|$ e quindi la corrente

$$I_{SD} = K_p (|V_{GS}| - |V_t|)^2$$

2.1.2 Come capire in che stato di funzionamento e' il MOSFET

Prendiamo un NMOS per comodita'. Metodo per assurdo:

Si suppone che il mosfet sia in un certo funzionamento e poi si va avanti a risolvere fino ad un assurdo logico.

Metodo dei Diodi:

Il Mosfet essendo in fondo una giunzione NPN e' approssimabile a due diodi in antiserie. Quindi sostanzialmente ci sono 3 fasi di funzionamento del MOSFET: Off,Ohm,Sat (Spento,Ohmmica,Saturazione).

Off e' quando non vi e' canale da nessuno dei due lati.

Ohm e' quando vi e' canale da entrambi i lati.

Sat quando vi e' canale da solo un lato.

Le regole normali sono:

Se la tensione $V_{GS} < V_t$ allora il MOSFET e' Off

Altrimenti se $V_{DS} < V_{GS} - V_t$ Il MOSFET e' Ohm

Ed in fine se $V_{DS} > V_{GS} - V_t$ Il Mosfet e' Sat

Ora osserviamo che

$$V_{DS} < V_{GS} - V_t$$

$$V_{DS} - V_{GS} < -V_t$$

$$-V_{GS} < -V_t$$

$$V_{DG} > V_t$$

quindi se $V_{GS} < V_t$ allora vi e' canale dal lato del Source

e se $V_{DG} > V_t$ allora vi e' canale dal lato del Drain

ora se sono entrambe vere si e' in zona Ohmmica, se una sola delle due e' vera si e' in Saturazione, quando sono entrambe false il MOSFET e' spento.

Metodo Grafico: Basta seguire 4 punti:

- (1) Verificare che la $V_{GS} > V_t$
- (2) Calcolare la corrente I_{DS} del NMOS quando $V_{DS} = V_{ow} = V_{GS} V_t$
- (3) Calcolare le correnti ad un nodo a scelta tra SOURCE e DRAIN imponendo che $V_{DS} = V_{ow}$
- (4) Confrontare i due valori.

Se la corrente del NMOS e' maggiore della somma di quelle del nodo allora il NMOS e' in zona ohmmica.

Altrimenti Se la somma delle correnti del nodo e' maggiore di quella del NMOS allora esso e' in saturazione.

Dimosrazione:

QUA METTI GRAFICI BELLI PLZ

2.1.3 Caratteristiche Importanti dei MOSFET

Tensione di Overdrive V_{ow}

$$V_{ow} = V_{GS} - V_t$$

e' utile per scrivere le formule in modo piu' compatto.

Tensione di soglia logica V_{th}

$$V_{th} \triangleq V \text{ t.c. } V_{in} = V_{out}$$

Potenza Statica P_{STAT} Sono le potenze consumate dalla porta per rimanere in ogni suo stato.

Potenza Statica P_{DIM} Sono le potenze consumate dalla porta per commutare da stato a stato.

Tempo di propagazione t_p Il Tempo di propagazione e' quanto ci mette la porta a fare da 0% al 50% della sua escurisione di tensione. Vi sono due approssimazioni usabili per calcolarla:

(1) Approssimazione a corrente costante In questa approssimazione si considera il mosfet sempre in saturazione, questa approssimazione di solito sottostima del 10%.

$$I_{DS} = K_n \left(V_{GS} - V_t \right)^2$$

(2) Approssimazione a Resistenza In questa approssimazione si approssima il mosfet ad una resistenza di resistivita', questa approssimazione di solito sovrastima.

$$R_{eq} = \frac{V_f}{I_{sat}}$$

Comunque una volta decisa l'approssimazione si calcola la corrente del condensatore I_c poi si calcola il delta di carica che serve per caricare il condensatore:

$$\begin{aligned} Q_i &= CV_i \\ Q_f &= CV_f \\ \Delta Q &= Q_f - Q_i = C\left(V_f - V_i l\right) \end{aligned}$$

a questo punto vale la relazione:

$$I_c = \frac{\triangle Q}{t_n}$$

e si ricava t_p :

$$t_p = \frac{\triangle Q}{I_c} = C \frac{V_f - V_i}{I_c}$$

2.1.4 Tips and Tricks

(1) I MOSFET sono simmetrici e quindi non ha senso parlare di Source e Drain pero' per aiutare convenzione si ha che: La corrente nei MOSFET scorre sempre in senso concorde alla freccia.

La tensione V_{GS} si misura sempre tra il piedino dove vi e' la freccia e il gate ed ha sempre senso contrario alla freccia.

In pratica queste sono convenzioni per suggerire il funzionamento del MOSFET a chi sta studiando il circuito.

(2) Per Piccole V_{DS} si puo' approssimare:

$$I_n = K_n \left[2 \left(V_{GS} - V_t \right) V_{DS} - V_{DS}^2 \right] \sim K_n \left[2 \left(V_{GS} - V_t \right) V_{DS} \right]$$

Poiche' se V_{DS} e' piccolo V_{DS}^2 e' ancora piu' piccolo e quindi si puo' trascurare senza grossi problemi.

La quale e' una equazione lineare e quindi piu' semplice da risolvere.

Per esempio sul circuito del esercizio 1 con la equazione corretta si ottiene

 $V_r = 0.1416V$

mentre con la seconda equazione si ottiene

$$V_r = 0.1435 V$$

2.1.5 Come Risolvere gli esercizi sui MOSFET

Esercizio 1

Dato il Circuito sottostante

- 1. Calcolare V_{out} nel caso $V_{in} = 0V$
- 2. Calcolare V_{out} nel caso $V_{in} = 3.3V$
- 3. Calcolare Soglia logica V_{th}
- 4. Potenza Statica P_{STAT}

$$V_{cc} = 3.3V$$

$$R = 1k\Omega$$

$$K_n = 5\frac{mA}{V^2}$$

$$|V_t| = 1V$$

$$C_l = 10pF$$

Risoluzione Esercizio 1

Caso $V_{in} = 0V$

poiche' sia V_{in} che la tensione al SOURCE allora la tensione $V_{GS} = V_G - V_S = 0$ quindi l'NMOS e' spento o in saturazione. la $V_{DG} = V_{in} - V_{out} = -V_{out}$ e piche' V_{out} ha solo valori positivi allora $-V_{out} < V_t$ a prensindere dal valore, quindi non vi e' canale sul lato del drain e quindi il NMOS e' spento quindi $I_n = 0$ e poiche' il NMOS si comporta come circuito aperto anche la corrente della resistenza $I_r = I_n = 0$ e di conseguenza anche la caduta di tensione sulla resistenza e' $V_{out} = V_{cc} = 3.3V$.

Quindi:

$$V_{in} = 0V \Rightarrow V_{out} = 3.3V$$

Caso $V_{in} = V_{GS} = 3.3V$

quindi $V_{ow} = |V_{GS}| - |V_t| = 2,3V$ quindi $V_{GS} > V_t$ quindi l'NMOS e' Acceso. Ora bisogna stabilire se si trova in regime ohmmico o di saturazione e procediamo per metodo grafico:

(1) Calcoliamo la corrente I_{DS} quando $V_{DS} = V_{ow}$ e possiamo usare una qualunque tra le due equazioni poiche' in corrispondenza di V_{ow} si raccordano entrambe nello stesso punto, quindi usiamo quella in regime di saturazione poiche' piu' semplice.

$$I_n|_{ow} = K_n (V_{ow})^2 = 26 mA$$

(2) Calcoliamo la corrente del carico $I_L = I_R$ che in questo caso coincide con quella della resistenza.

$$I_R|_{ow} = \frac{V_{cc} - V_{ow}}{R} = 1mA$$

(3) Ora si confrontano le due correnti:

Poiche' $I_n|_{ow} = 26mA > I_R|_{ow} = 1mA$ ci si trova in zona Ohmmica, nel caso opposto sarebbe in saturazione.

Quindi ora si calcola V_{DS} Col bilancio delle correnti $I_R = I_n$

$$\frac{V_{cc} - V_{DS}}{R} = K_n \left[2 \left(V_{GS} - V_t \right) V_{DS} - V_{DS}^2 \right]$$

Che e' una equazione di secondo grado in V_{DS}

$$(K_n R) V_{DS}^2 - (2K_n R (V_{GS} - V_t) + 1) V_{DS} + V_{cc} = 0$$

La quale parabola ha come radici:

$$V_{DS1} = 4.6V$$

$$V_{DS2} = 0.14V$$

Ovviamente ci puo' essere un solo valore vero, quindi uno e' da scartare. In questo caso Poiche' $V_{DS1} > V_{cc}$ e $V_{DS1} > V_{ow}$ ci porta a scartare V_{DS1}

Quindi $V_{DS} = V_{DS2} = 0.14V$

E poiche' $V_{out} = V_{DS}$ allora $V_{out} = 0.14V$

E quindi in sinossi:

$$V_{in} = 3.3V \Rightarrow V_{out} = 0.14V$$

Calcolo della soglia logica V_{th} :

La soglia logica e' la tensione che separa la zona che consideriamo ON da quella che consideriamo OFE

L'ideale sarebbe $V_{th} = \frac{V_{cc}}{2}$

$$V_{in} = V_{out}$$

quindi la $V_{GD} = 0V$ quindi non vi e' canale dal lato del drain quindi il mosfet puo' essere o spento o in saturazione.

Procediamo per assurdo:

Supponiamo che il Mosfet fosse spento: Se il Mosfet e' spento allora $I_{DS} = 0A$ e (supponendo a regime quindi $I_c = 0A$) allora la tensione $V_r = I_{DS}R = 0V$ quindi $V_{out} = V_{in} = V_{GS} = V_{cc} = 3.3V$ Ma se $V_{GS} = 3.3V > V_t$ quindi il mosfet sarebbe acceso! ASSURDO.

Quindi il mosfet e' in saturazione

$$I_{DS} = K_n \left(V_{ow} \right)^2$$

e quindi poiche' consideriamo a regime quindi $I_c = 0A$ da una KCL al nodo del drain abiamo che

$$I_r = I_{DS}$$

quindi la tensione

$$V_{out} = V_{in} = V_{GS} = V_{cc} - V_r = V_{cc} - RI_r$$
$$V_{GS} = V_{cc} - RK_n (V_{GS} - V_t)^2$$

Ora si ha una eq di secondo grado da risolvere in V_{GS}

$$(RK_n)V_{GS}^2 - (2RK_nV_t + 1)V_{GS} + V_t^2 + V_{cc} = 0$$

questa la risolvo a casa couz sbatta

$$V_{GS,1} = 0.7753V$$

$$V_{GS,2} = 1.2047V$$

Ovviamente la prima e' sbagliata poiche' $0.7753V < V_t$ quidni il mos sarebbe spento e quindi in contraddizione con quanto detto prima.

Quindi La soglia logica e'

$$V_{th} = V_{GS,2} = 1.2047V$$

Calcolo Delle Potenze Statiche P_{STAT} :

In questo circuito abbiamo due potenze statiche, quando la porta e' ON e quando e' OFF.

Caso ON $V_{in} = 0V$:

$$P_{STAT,On} = V_{cc}I_n = 0W$$

Poiche' non scorre corrente, il consumo di corrente e' 0 watt. Ottimo.

Caso OFF $V_{in} = 3.3V$:

$$P_{STAT,Off} = V_{cc}I_n = 3.3V * I_n$$

coi dati prima calcolati possiamo ricavare \mathcal{I}_n

$$I_n = I_r = \frac{V_{cc} - V_{DS}}{R} = \frac{3.3V - 0.14V}{1k\Omega} = 3.16mA$$

$$P_{STAT,Off} = V_{cc}I_n = 3.3V * 3.16mA = 10,4mW$$

Un consumo veramente grande per una porta cosi piccola. SI puo' fare di meglio.

Esercizio 2

Dato il Circuito sottostante

- 1. Calcolare V_{out} nel caso $V_{in} = 0V$
- 2. Calcolare V_{out} nel caso $V_{in} = 3.3V$
- 3. Calcolare soglia logica V_{th}
- 4. Potenza Statica P_{STAT}
- 5. Tempo di propagazione t_p

$$V_{cc} = 3.3V$$

$$R=1k\Omega$$

$$C = 1pF$$

$$|K_p| = 2\frac{mA}{V^2}$$

$$|V_t| = 1V$$

Risoluzione Esercizio 2

Caso $V_{in} = 3.3V$

Poiche' $V_{cc} = V_{in} = 3.3V$ allora $V_{SG} = V_{cc} - V_{in} = 0V$ e $V_{SG} < |V_t|$ quindi il PMOS e' spento! Quindi $I_p = I_{SD} = 0A$ ora con una KCL al nodo del DRAIN otteniamo che $I_p = I_r + I_c$ quindi $I_r + I_c = 0$ ora poiche' l'eq caratteristica del condensatore e' $i_c(t) = C\frac{d}{dt}V_c$ e si suppone sempre che i transitori siano finiti allora il condensatore e' scarico $V_c = 0$ e quindi la sua corrente $I_c = 0$, il che implica che $I_r + I_c = I_r = 0$ e quindi la tensione $V_r = RI_r = 0$ e di conseguenza: $V_{out} = V_c = V_r = 0V$.

$$V_{in} = 3.3V \Rightarrow V_{out} = 0V$$

Caso $V_{in} = 0V$

 $V_{SG} = V_{in} - V_{cc} = -3.3V$ e $|V_{SG}| > |V_t|$ e $V_{ow} = |V_{SG}| - |V_t| = -2.3V$ quindi il PMOS e' Acceso. Ora bisogna stabilire in che zona di lavoro sia, procediamo per metodo grafico.

(1) Calcoliamo la corrente del PMOS alla tensione di overdrive V_{ow} :

$$I_n|_{ow} = K_n (V_{ow})^2 = 10.58 mA$$

(2) Calcoliamo la corrente di carico assumendo che $V_{DS} = V_{ow}$

Poiche' la resistenza ed il condensatore sono in parallelo $V_r = V_c$ e cosi con una KVL si ottiene che $V_r = V_c = V_{cc} - V_{DS} = 1V$ poiche' si calcola in condizioni di regime Il condensatore e' completamente carico a $V_c = 1V$ e quindi come sopra poiche' il consensatore e' carico la sua corrente $I_c = 0$.

Quindi dalla KCL al nodo del DRAIN la corrente

$$I_{DS}|_{ow} = I_r + I_c = I_r = \frac{V_r}{R} = \frac{V_{cc} - V_{ow}}{R} = \frac{V_{cc} - V_{cc} + V_t}{R} = \frac{V_t}{R} = 1mA$$

(3) Confrontando le due correnti $I_{DS}|_{ow} = 1mA < I_p|_{ow} = 26mA$ quindi il PMOS si trova in zona Ohmmica.

Stabilito cio' si calcola il punto di lavoro col bilancio delle correnti: $I_r = I_{DS,Ohm}$

$$\frac{V_{cc} - |V_{SD}|}{R} = K_p \left[2(|V_{GS}| - |V_t|) V_{SD} - V_{SD}^2 \right]$$

e quindi otteniamo una equazione di secondo grado in V_{SD} che risolvendola ha come soluzioni:

 $V_{SD1} = 4.75V$ che scarteremo poiche' $V_{SD1} > V_{cc}$ e $V_{SD1} > |V_{GS}| - |V_t|$ quindi dovrebbe essere in saturazione quando abbiamo gia' dimostrato che e' in zona ohmmica.

e

 $V_{SD2} = V_{SD} = 0.347V$ che e' la soluzione corretta.

Ora concludiamo con una KVL dalla quale si ottiene $V_{out} = V_{cc} - V_{SD} = 2.96V$

In Sinossi:

$$V_{in} = 0V \Rightarrow V_{out} = 2.96V$$

Calcolo del Tempo Di Propagazione t_p :

Il Tempo di propagazione e' il tempo che la porta ci mette per fare dal 0% al 50% della transizione.

Calcoliamo il tempo di propagazione sul fronte di discesa:

Il PMOS e' spento quindi e' un circuito aperto ed il condensatore puo' scaricarsi solo sulla resistenza quindi

$$\tau_{FE} = R * C = 1 ns$$

quindi

$$t_{p,FE} = 0.69 * \tau = 0.69 ns$$

Calcoliamo il tempo di propagazione sul fronte di salita: Approssimiamo il PMOS acceso ad una resistenza

$$R_{eq} = \frac{V_{cc}}{I_{SAT}} \sim 330\Omega$$

quindi a questo punto la resistenza vista dal condesnatore (poiche' si deve cortocircuitare masse ed alimentazioni) e' il parallelo tra le due resistenze. E poiche' $R_{eq} << R$ allora il loro parallelo $R_p \sim 320\Omega$ quindi

$$\tau_{RE} = C * R_p << \tau_{FE}$$

$$t_{p,RE} << t_{p,FE}$$

quindi prendiamo

$$t_p = t_{p,FE} = 0.69 ns$$

Calcolo della Potenza Statica P_{STAT} :

Nel caso il PMOS sia spento la corrente che circola nel circuito e' 0A quindi la $P_{STAT,OFF} = 0W$

Nel caso il PMOS sia acceso la potenza, calcoliamo la corrente: precedentemente avevamo calcolato $V_{out} = 2.95V$ il consatore e' gia' carico perche' guardiamo a regime quindi non assorbe corrente quindi la corrente

$$I_r = \frac{V_{out}}{R} = 2.95 mA$$

$$P_{STAT,ON} = I_r V_c c = 9.74 mW$$

Esercizio 3

Dato il Circuito sottostante,

- 1. Calcolare V_{out} quando $V_{in} = 0V$
- 2. Dimensionare $\frac{W}{L}$ in modo che $V_{in} = 5V \Rightarrow V_{out} = 0.5V$
- 3. Calcolare il tempo di propagazione t_p
- 4. Calcolare Potenze statiche P_{STAT} e dinamiche P_{DIN} con un clock di $T_{CLK}=0.5\mu s$.

$$V_{cc} = 5V$$

$$C = 10pF$$

$$|K_p| = 200 \frac{\mu A}{V^2}$$

$$K'_n = 50 \frac{\mu A}{V^2}$$

$$|V_{t,n}| = |V_{t,p}| = 1V$$

$$T_{CLK} = 0.5 \mu s$$

Risoluzione Esercizio 3

Caso $V_{in} = 0V$

 $V_{in} = V_{GS,n} = 0V < |V_{t,n}|$ quindi il NMOS e' spento o in saturazione. Pero' per essere in saturazione $V_{GD} = V_{out} - V_{in} = V_{out} < -V_{t,n}$ e poiche' V_{out} puo' assumere solo valori positivi cio' implica che il NMOS e' spento.

 $|V_{SG,p}| = 5V > |V_{t,p}|$ quindi il PMOS e' acceso.

Poiche' il condensatore non assorbe corrente poiche' presupposto a regime e l'NMOS e' spento allora la corrente che passa da entrambi i MOS $I_{mos} = 0A$

Per caratteristica dei MOS il PMOS anche se acceso ha tensione $V_{DS,p} = 0V$

Per KVL si ha che $V_{out} = 5V - V_{DS,p} = 5V$

Quindi

$$V_{in} = 0V \Rightarrow V_{out} = 5V$$

Dimensionamento di $\frac{W}{L}$ in modo che $V_{in} = 5V \Rightarrow V_{out} = 0.5V$

$$K_n = K_n' \frac{W}{L}$$

Iniziamo a studiare le fasi di funzionamento dei MOS. la tensione $|V_{GD,p}| = 5V > |V_{t,p}|$ quindi il PMOS e' acceso.

la tensione $|V_{GS,p}| = |V_{out}| = 0.5V < |V_{t,p}|$ quindi il PMOS e' in Saturazione.

La tensione $V_{GS,n} = V_{in} > V_{t,n}$ quindi il NMOS e' acceso.

La tensione $|V_{GD,n}| = |V_{in} - V_{out}| > |V_{t,n}|$ quindi l'NMOS e' in Ohmmica.

La corrente dei due mos e' uguale poiche' sono in serie e il condensatore e' gia' a regime. Quindi dal bilancio delle correnti posso ricavare il parametro ricercato.

$$\begin{split} I_{SAT,p} &= I_{OHM,n} \\ K_p \left(V_{SG} - |V_{t,p}| \right)^2 &= K_n' \frac{W}{L} \left[2 \left(V_{GS} - V_{t,n} \right) V_{DS} - V_{DS}^2 \right] \\ \frac{W}{L} &= 17 \end{split}$$

Calcolo del tempo di propagazione t_p

Calcoliamo solo il tempo di propagazione del fronte di discesa del input poiche' con quello di salita il condensatore si scarica a massa attraverso l'NMOS ed ha sicuramente un tempo inferiore a quello di salita.

Usiamo l'approssimazione a corrente costante.

$$I_p = K_p (|V_{GS}| - |V_{t,p}|)^2 = 3.2 mA$$

 $I_p = C \frac{V_f - V_i}{t_p} = C \frac{2.25 V}{t_p}$

ora basta unire le due equazioni

$$K_p (|V_{GS}| - |V_{t,p}|)^2 = 3.2 mA = C \frac{2.25 V}{t_p}$$

 $t_p = C \frac{2.25 V}{3.2 mA} = 7.03 ns$

VALORE DA CONTROLLARE NON SON SICURO SIA GIUSTO

Calcolo delle Potenze Statiche P_{STAT}

(a) $V_{in} = 0V$ per i motivi sopra scritti Il' NMOS e' spento quindi la corrente del generatore e' I = 0 quindi la potenza statica off

$$P_{STAT,Off} = 0W$$

(b) $V_{in} = 5V$ abbiam gia' calcolato che la corrente nei MOS e' $I = 3.2 \, mA$ quindi

$$P_{STAT,On} = IV_{cc} = 16mW$$

Calcolo delle Potenze Dinamiche P_{DIN} con un clock T_{CLK} = $10 \mu s$

$$I = \frac{\Delta Q}{T_{CLK}} = C \frac{V_f - V_i}{T_{CLK}}$$

$$P_{DIN} = V_{cc}I = V_{cc}C \frac{V_f - V_i}{T_{CLK}}$$

$$P_{DIN} = V_{cc}C \Delta V f_{CLK} = 225 \mu W$$

Esercizio 4

Dato il Circuito sottostante,

- 1. Trovare la tabella di verita' della porta (aka Calcolare V_{out} quando $V_{in}=0V$ e quando $V_{in}=V_{cc}$)
- 2. Calcolare la soglia logica V_{th}
- 3. Calcolare il tempo di propagazione t_p sul fronte di salita del ingresso
- 4. Calcolare le Potenze statiche P_{STAT} e dinamiche P_{DIN} con un clock TTL¹ ideal di $T_{CLK} = 0.5 \mu s$.

$$V_{cc} = 5V$$

$$C = 100 f F$$

$$K_n = |K_p| = 500 \frac{\mu A}{V^2}$$

$$|V_{t,n}| = |V_{t,p}| = 1V$$

$$T_{CLK} = 0.5 \mu s$$

 $^{^{1}}$ Tensioni secondo lo standard Transistor Transistor Logic, LOW = 0V , HIGH = 5V

Risoluzione Esercizio 4

Caso $V_{in} = 0V$

 $V_{GS,n} = 0V < V_{t,n}$ quindi non vi e' canale dal lato del source del NMOS.

 $V_{DG,n} = -V_{out}$ e poiche' V_{out} puo' assumere solo valori positivi allora $V_{DG,n} = -V_{out} < V_{t,n}$ quindi non vi e' canale neanche dal lato del drain.

Quindi non essendoci canale da nessuno dei due lati allora il NMOS e' spento e quindi la corrente che circola nei due MOS in serie I = 0A.

 $V_{GS,p} = V_{dd} > V_{t,p}$ quindi vi e' canale dal lato del source del PMOS.

Quindi il PMOS puo' essere o in zona ohmmica o in saturazione.

Ora se il condesatore e' scarico allora il PMOS e' in saturazione poiche' $V_{GD,p} = V_{out} = 0V < V_{t,p}$ quindi non vi e' canale.

quindi il condensatore si carica con la corrente $I_{SAT,p}$ fino a raggiungere $V_{t,p}$ al quale punto il mosfet diventa in zona ohmmica e continua a caricarsi fino a V_{dd} dove il mos e' acceso in zona ohmmica pero' la sua $V_{SD} = 0V$ quindi ha corrente I = 0.

In conclusione dopo i transitori il condensatore , quindi V_{out} si carica a V_{dd}

$$V_{in} = 0V \Rightarrow V_{out} = 5V$$

Caso $V_{in} = 5V$

 $V_{GS,p} = V_{dd} - V_{in} = 0V < V_{t,p}$ quindi non vi e' canale al source.

 $V_{DG,p} = V_{out} - V_{in}$ e poiche' $V_{in} = V_{dd}$ e la V_{out} e' la tensione sul condesnatore ,il quale puo' caricarsi al massimo a V_{dd} allora $V_{out} - V_{in} \le 0 < V_{t,p}$

Quindi non vi puo' essere canale al lato del drain quindi il PMOS e' sicuraemnte spento il che implica che la corrente che circola nei MOS in serie e' I = 0.

 $V_{GS,n} = V_{in} > V_{t,n}$ quindi vi e' canale dal lato del source del NMOS.

Quindi il NMOS puo' essere in zona ohmmica o in saturazione.

 $V_{DG,n} = V_{in} - V_{out}$ ora supponiamo che il condensatore sia carico a V_{dd} in questo caso le $V_{DG,n} = 0V < V_{t,n}$ quindi non vi e' canale e quindi il NMOS e' in saturazione.

Il consenatore si scarica a massa attraverso l'NMOS finche' non arriva alla tensione $V_{out} = V_{dd} - V_{t,n}$ alla quale l'NMOS passa in zona Ohmmica e il condensatore si scarica piu' lentamente fino ad arrivare $V_{out} = 0V$.

Quindi finiti i transitori $V_{out} = 0V$

$$V_{in} = 5V \Rightarrow V_{out} = 0V$$

Calcolo della soglia logica V_{th}

La soglia logica e' la tensione V_{in} per la quale $V_{in} = V_{out}$.

Quindi Sicuraemnte $|V_{DG,n}| = |V_{DG,p}| = |V_{in} - V_{out}| = 0V$ quindi entrambi i MOS non hanno canale dal lato del drain quindi sono o spenti o in saturazione.

Ora procediamo per assurdo.

Supponiamo $V_{in} = 1V$

Allora $V_{GS,p} = V_{dd} - V_{in} = 4V > V_{t,p}$ quindi vi e' canale al source e quindi il PMOS e' in sautrazione.

E $V_{GS,n} = V_{in} = 1V = V_{t,n}$ quindi vi e' canale al source e quindi l'NMOS e' in saturazione.

E poiche' non sembra ci siano contraddizioni prendiamo per vero che entrambi i MOS siano in saturazione.

Ora supponendo che il condensatore sia completamente carico esso non assorbe corrente quindi la corrente dei due MOS e' uguale poiche' in serie.

$$I_{SAT,n} = I_{SAT,p}$$

$$K_n \left(V_{in}-V_{t,n}\right)^2 = K_p \left(V_{dd}-V_{in}-|V_{t,p}|\right)^2$$

e da questo bilancio delle correnti si ricava che la tensione

$$V_{in} = V_{th} = 2.5V$$

Chapter 3

Chapter 3

3.1 Diodi

Il diodo è un componente elettronico composto da una giunzione PN. Il lato P è chiamato "anodo", mentre il lato N è chiamato "catodo". La presenza delle zone N e P fa sì che gli elettroni liberi e le lacune si muovano, svuotando così la parte centrale del diodo. A seconda del segno tensione applicata ai capi del diodo, cambia l'estensione della zona centrale svuotata:

- Se la tensione è positiva: il diodo lavora in regime di polarizzazione diretta e la zona svuotata si restringe.
- Se la tensione è negativa: il diodo lavora in regime di polarizzazione inversa e la zona svuotata si allarga.

In un diodo ideale, in regime di polarizzazione diretta nel diodo scorre corrente, mentre in regime di polarizzazione inversa non scorre corrente: in questo caso il diodo (ideale) si comporta infatti come un circuito aperto.

Consideriamo invece un diodo reale. Le cariche all'interno del diodo si muovono di moto casuale dovuto all'agitazione termica. Questo moto causa una corrente di diffusione non nulla, che può essere calcolata attraverso la **Legge di Fick**:

$$I_{diff} = A \left[(-q) D_p \frac{\partial p(x)}{\partial x} - (-q) D_n \frac{\partial n(x)}{\partial x} \right]$$

Dove D_p e D_n sono detti "coefficienti di diffusione".

Per calcolare la corrente in regime di polarizzazione diretta si usa la seguente formula:

$$I_D = I_0 \left[e^{\frac{V_D}{V_{Th}}} - 1 \right]$$

Dove I_0 è detta "corrente inversa di saturazione" e V_{Th} è detta "Tensione Termica". La tensione termica viene calcolata come segue:

 $V_{Th} = \frac{KT}{a}$

essendo K la costante di Bolzmann. A temperatura ambiente (circa 300 K) essa vale circa 26 mV.

Possiamo descrivere un diodo attraverso tre modelli, con diversi gradi di precisione.

Modello 0:

- Inversa: I=0 ⇒ Il diodo può essere approssimato a un circuito aperto.
- Diretta: $I \rightarrow \infty \Rightarrow Il$ diodo può essere approssimato a un circuito chiuso.

Modello 1:

- Inversa: I=0 ⇒ Il diodo può essere approssimato a un circuito aperto come nel modello precedente.
- Diretta: Il diodo può essere approssimato a un circuito chiuso a cui sia stato aggiunto un generatore che imponga una tensione di 0.7 V.

Modello 2:

• Inversa: I=0 ⇒ Il diodo può essere approssimato a un circuito aperto come nei modelli precedenti.

• Diretta: Oltre a collegare in serie al circuito chiuso un generatore di tensione da 0.7 V, aggiungiamo anche una resistenza R_D tale che

 $R_D = \frac{V_{Th}}{I_D}$

In un diodo reale può verificarsi l'**Effetto di Run-Out**: questo fenomeno consiste nel fatto che, a mano a mano che il circuito si scalda, il diodo porta una quantità maggiore di corrente per Effetto Joule, scaldandosi così maggiormente e dissipando maggiore potenza. Per evitare questo può essere collegata in serie al diodo una resistenza "limite", che limiti, appunto, la corrente passante per il diodo.

Diodi Zener Quando il diodo lavora in regime di polarizzazione inversa (quindi con valori negativi di tensione), esiste una soglia di tensione, detta tensione di Break-Down, oltre la quale nel diodo ricomincia a scorrere corrente. Lavorando a tensione di Break-Down (V_{BD}) nel diodo passerà corrente a tensione costante. Questo può essere utile in alcune circostanze, e per questo esiste un tipo di diodi, detti diodi **Zener**, che lavorano sempre a V_{BD} .

3.1.1 Metodi di risoluzione per circuiti con diodi

Per risolvere un circuito contenente un diodo come il seguente, esistono tre differenti metodi.

- 1. Metodo analitico
- 2. Metodo grafico
- 3. Approssimazione

Prendiamo in esame il seguente circuito:

1. Metodo analitico:

Si imposta il sistema:

$$I_D = I_0 \left[e^{\frac{V_D}{V_{Th}}} - 1 \right]$$
$$V_D = V_{IN} - RI_D$$

Da esso ricaviamo:

$$V_D = V_{IN} - RI_0[e^{\frac{V_D}{V_{Th}}} - 1]$$

Questa equazione può essere risolta iterativamente, "provando" diversi valori fino ad arrivare a una convergenza, oppure con un simulatore (ad esempio Spice). Si tratta però di un metodo poco efficiente.

2. Metodo grafico:

Si "divide" il circuito:

Si disegnano su un grafico le caratteristiche delle due "porzioni di circuito": quella del resistore (in verde) e quella del diodo (in blu)

La retta di carico del resistore è:

$$V_D = V_{IN} - RI_D$$

La disegniamo sul grafico ricavando i due punti di intersezione con gli assi (cioè ponendo prima I_D nulla e ricavando così l'intersezione con l'asse delle ascisse, poi V_D nulla per ottenere l'intersezione con l'asse delle ordinate.)

Figure 3.1

Si può ora notare che la retta e la curva del diodo si intersecano in un unico punto Q, che rappresenta il punto dal quale il circuito "funziona". Possiamo ora ricavare dal grafico le coordinate di Q, che rappresentano rispettivamente la tensione e la corrente cercate e dunque la nostra soluzione.

3. Linearizzazione a tratti

Possiamo considerare il diodo con il suo modello ideale (Modello 0) e "linearizzare" così il circuito. Esistono ora due casi possibili: diodo ON e diodo OFE. Poiché stiamo approssimando il diodo a un diodo ideale, nel caso ON potremo sostituirlo con un generatore di tensione da 0.7 Volt, mentre nel caso OFF lo sostituiremo con un circuito aperto.

Diodo on:

Diodo OFF:

Alimentiamo il circuito preso in esame precedentemente e analizziamo i due casi.

Diodo ON:

$$I_D = \frac{V_{IN} - (5V + 0.7V)}{R}$$

Se il diodo è ON, I_D deve essere >0, $\Rightarrow V_{IN}$ > 5.7V Quindi il diodo è acceso per valori di V_{IN} che siano maggiori di 5.7V Diodo OFF:

Per $0 < V_{IN} < 5.7$ il diodo è OFF.

Dopo aver studiato i due casi, possiamo guardare la V_{IN} data dal testo dell'esercizio che ci interessa risolvere, vedere in quale dei due casi cade e risolvere il circuito lineare del caso di nostro interesse.

3.1.2 Raddrizzatori di tensione

I diodi possono essere utilizzati per realizzare un raddrizzatore di tensione, ovvero convertire una tensione alternata in una tensione continua. Quando consideriamo un alimentatore che fornisce tensione alternata, ci interessa sapere il suo valore efficace. Esso viene calcolato con la seguente formula:

$$V_{eff} = \frac{V_{Picco}}{\sqrt{2}}$$

Componente necessario per il raddrizzatore di tensione, insieme al diodo, è il trasformatore. Il trasformatore è una macchina elettrica, composta da due avvolgimenti di spire su un nucleo:

Figure 3.2: Un trasformatore

Essendo V_1 e V_2 le tensioni sui due avvolgimenti, n_1 e n_2 i rispettivi numeri di spire, l'equazione del trasformatore è

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

Consideriamo un trasformatore collegato ad alimentazione, con l'alimentatore che lavora in regime sinusoidale. La tensione trasmessa dal trasformatore è a sua volta sinusoidale:

Figure 3.3: Tensione sinusoidale

Di seguito mostriamo la struttura di un semplice raddrizzatore:

Figure 3.4: Un semplice raddrizzatore di tensione

Quando il circuito della **figura 4** viene alimentato, V_{OUT} raggiunga il valore $V_{Picco} - VON$ quando l'ingresso raggiunge il valore di picco. Nel mentre il condensatore si carica. Quando l'ingresso comincia a diminuire, il diodo si spegne e il condensatore inizia a scaricarsi. Quando $V_{IN} - VOUT$ torna ad essere maggiore di V_{ON} , il diodo torna ON e il condensatore ricomincia a caricarsi.