어셈블리프로그램설계및실습 - term project

이번 학기 설계 프로젝트는 임의의 부동 소수점으로 이루어진 이산 신호(discrete signal)와 부동 소수점으로 이루어져 있는 필터와의 합성곱(Convolution)을 진행하고, 특정 결과를 메모리에 저장하는 코드를 작성한다.

1. Introduction

프로젝트의 전체 동작은 임의의 부동 소수점으로 이루어진 이산 신호와 필터의 합성 곱(그림 1)을 수행한 결과 중 특정 범위 내에 포함되는 값만 추출하여, 해당 결과와 결과의 index 값을 저장한다.

그림 1 이산 합성곱(Discrete Convolution) 연산 예시

2. System Overview

프로젝트의 전체 동작은 제공하는 부동 소수점 데이터를 활용하여, 제시되어있는 필터와 연산한 결과를 특정 메모리 주소에 저장하는 것을 목표로 작성한다.

그림 2 시스템 흐름도

필요한 알고리즘의 사용에는 제한이 없으나, 작성 시 유의사항이 존재한다.

- Code 작성 시 유의사항
 - ✓ Co-Operation을 사용하지 말 것
 - ✓ AREA는 추가선언하지 말 것
 - ✓ 코드의 흐름을 알 수 있는 대략적인 주석을 작성할 것

다음은 코드 작성 시 필수로 사용되거나 작성되어야 하는 부분을 명시한다.

- Discrete Convolution (이산 합성곱)

✓ 본 과제에서는 1D-이산 합성곱을 사용하며, 다음과 같은 수식을 가진다.

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$$

해당 수식에서 x는 연속된 데이터를 의미하여, y는 결과 값, n은 index, h는 filter, M은 filter의 크기를 의미한다.

✓ 본 과제에서 사용할 필터는 다음과 같이 정의된다. h = [1.95, 1.72, -0.431, -1.278, -0.8022, -0.2115] (length-6 filter) x는 Sampled_Data 함수를 통해서 제공되는 480개의 데이터(32-bit, Double Word)를 의미한다.

- Label: Sampled Data

- ✓ DCD 명령어를 이용하여 데이터가 선언되어 있음
- ✓ 임의의 사인 합성파에서 샘플링한 데이터 480개가 명시되어 있음
- ✓ 임의의 데이터는 -4~8 사이의 부동 소수점 값을 원소로 가짐

- Label: Result

- ✓ Convolution의 결과 중 -4.7 이하의 모든 수와 해당 수의 인덱스를 저장
- ✓ 저장 순서는 메모리를 기준으로 모든 수를 저장한 후, 인덱스를 저장한다.
- ✓ 최종 결과는 소수 저장 시 부동 소수점 형태로 32bit(Double Word) 단위로 저장, index는 word 단위로 저장한다.
- ✓ 최종 결과 저장 주소의 시작점은 0xF0000000 번지부터 저장

3. Important dates

- Issue date : 11월 10일(목)
- 최종 결과 제출 : 12월 4일(일) 23시 59분 59초 klas 과제 제출에 아래 파일들 을 zip으로 압축하여 제출
- 제출 양식: Assembly Project StudentID Name.zip (예시 : Assembly Project 2022000000 홍길동.zip)

✓ Softcopy : Assembly_Project_StudentID.pdf

(예시 : Assemply Project 2022000000.pdf)

- ✓ Code : Term project.s
- ✓ memory.ini
- Project 결과 발표 : 12월 6일(화) 수업시간 (1분반, 2분반 모두 진행)
 - ✓ 발표 희망자는 엄태현 조교에게 메일 보낼 것(crackscendo@kw.ac.kr) (선 착순)

4. Report Outline

- 발표 : Powerpoint로 발표 희망자에 한해 10분 분량으로 작성
- 보고서 : 최소한 다음의 내용들이 포함되어야 하며 그 외의 것을 추가하는 것은 자유
 - 1. Introduction
 - 프로젝트에 대한 간단한 설명을 작성
 - 2. Background
 - 과제를 해결하기 위해서 알아야하는 선행 지식들에 대한 설명
 - 3. Algorithm
 - 프로젝트의 문제를 해결하기 위한 접근 법과 해결한 방식(알고리즘)에 대한 설명
 - 4. Performance & Result
 - 프로젝트의 완성된 결과 사진과 이에 대한 설명
 - 5. Considertaion
 - 과제 중 발생한 문제점과 이를 해결한 방법 등을 서술
 - 6. Reference