

2018 -2019

Chapitre II Expression de l'information génétique

Le dogme centrale de la Biologie Moléculaire

Représente le mécanisme d'expression de l'information génétique (Francis Crick (fin des années 50) et Nature (années 70))

La transcription

✓✓ = La Copie d'ADN en ARN

✓✓ Besoin d'un ADN et d'une ARNlymérase polymérase

L'expression des gènes

Processus entier qui permet le décodage de l'information portée un gène donnée. Cette information **pa**r sera traduite en protéine.

La transcription différentielle des gènes dans une cellule (spatio-temporelle) qui permet de déterminer sa fonction et ses propriétés.

Introduction:

Les types d'ARN

Structure d'ARN

Transcription et ARN polymérases

Les types d'ARN:

ARN codant: ARN messager (ARNm)

ARN non codant:

- •ARN ribosomique (ARNr)
- -> Chez les procaryotes on trouve les 16S 5S 23
- -> Chez les eucaryotes on trouve les 18S -- 5.8S 28S 5S
- •ARN de transfert (ARNt)
- Small ARN
- -> Small nuclear ARN
- -> Micro ARN

Structure de l'ARN

- Simple brin
- Sucre: Ribose
- L'Adenine est complémentaire à l'Uracile

<u>Introduction</u> RNA contains uracil in place of thymine. H_2 OH 0 H_2 ADN (T) vers ARN (U) ÓН H_2 H OH N-H Phosphate 0 H_2 Base RNA has a hydroxyl group on Ribose the 2'-carbon atom of its sugar sugar ÓН 3' component, whereas DNA has a hydrogen atom. RNA is more reactive than DNA.

<u>Introduction</u>

La même structure de base pour les différents ARN:

Structure primaire & structure secondaire

<u>Introduction</u>

Visualisation de la transcription

Le processus de la transcription peut être visualiser par microscopie électronique (première fois en 1970)

Les molécules d'ADN: filaments

Les molécules d'ARN: Branches

L'ADN est double brin et seulement un des brins sert comme matrice pour la transcription: le brin non codant Le brin complémentaire (qui ne sert pas de matrice): brin codant

Le processus de la transcription

1ère étape de synthèse d'une protéine = copie du gène (ADN) en une molécule d'ARN

- Assurée par l'ARN polymérase
 - Nécessite ADN double brin (matrice), des précurseurs (ribonucléosides triphosphates: ATP, GTP, UTP et CTP) et pas d'amorce
 - Formation des liaisons phosphodiester entre les ribonucléotides dans la direction 5' - 3'
 - Un seul brin servira à la synthèse d'ARN
- Déroulement en 3 étapes:

Initiation, élongation, terminaison

L'ARNm se détache et la molécule d'ADN se referme

Le processus de transcription est initié quand l'ARN polymérase se fixe sur un ADN modèle au niveau d'un promoteur

- L'ADN double brin se dénoue.
- L'ARN polymérase fait la lecture de l'ADN matrice et ajoute les nucléotides à l'extrémité 3' d'un ARN croissant

Arrêt de la transcription

Quand l'ARN polymérase rencontre un séquence de terminaison au niveau du brin d'ADN matrice:

- Relâchement de l'ARNm et de l'ARN polymérase (du complexe)

Les ARN polymérases

Chez les procaryotes Une seule ARN polymérase

Le core de l'enzyme est un complexe protéique multimérique: 4 sousunités a_2 , β , β ' et ϖ ($a_2\beta\beta$ ' ϖ).

L'association du facteur σ au core de l'enzyme = holoenzyme ($a_2\beta\beta'\varpi\sigma$)

- La sous unité β assure la liaison à l'ADN.
- La sous unité β' possède le site actif de la polymérase
- Les 2 sous unité a permettent
 l'assemblage des autres sous unités
- La sous unité π rétablit la fonctionnalité de l'ARNp dénaturée in vitro
- Intervention du facteur σ pour la reconnaissance du site d'initiation.

Site de liaison à l'ADN et polymérisation de l'ARN

Les ARN polymérases

Chez les eucaryotes

4 types d'ARN polymérase

- ✓ RNA-polymérase I qui synthétise les RNA cytoplasmiques : RNA ribosomiques (185-5,85-285)
- ✓ RNA-polymérase II qui synthétise les RNA messagers certains des snRNA
- ✓ RNA-polymérase III qui synthétise les petits RNA (tRNA, rRNA 5 S, snRNA, 7SL-RNA).
- ✓ RNA-polymérase IV spécialisé dans la transcription de l'ADN
 mitochondrial et la synthèse de l'hétérochromatine chez les plantes

Transcription chez les bactéries

ARN polymérase se fixe à l'ADN au niveau d'une courte séquence d'ADN placée juste avant le début du gène = promoteur reconnu par le facteur σ

1 - Organisation d'un gène bactérien

Promoteur Procaryote

Initiation de la polymérisation et rôle du facteur sigma :

- Assure la reconnaissance des séquences clé du promoteur
- Positionne l'ARNp sur le promoteur qui l'oriente dans une direc
- Facilite l'ouverture de la double hélice

- Association de 7 ou 8 ribonucléotides sous forme d'un polymère hybridé au brin matrice ADN
- □ Forte affinité de l'ARNp avec l'hybride ADN/ARN d'où décrochage du facteur sigma et liaison de la protéine NusA permettant la stabilisation de l'enzyme

Chez E.coli, 7 facteurs sigma qui reconnaissent des séquences différentes

- Sigma de la famille 70: σ⁷⁰ standards (reconnaît différentes séquences de promoteurs)
- Sigma de la famille 32: σ³² spécifique à la réponse au choc thermique
- Sigma de la famille 54: σ⁵⁴ spécifique à l'assimilation de l'azote

```
5'---TTGACA----TATAAT-----3' Standard promoter
5'----TNNCNCNCTTGAA---------CCCATNT------3' Heat-shock promoter
5'----CTGGGNA-------TTGCA-----3' Nitrogen-starvation promoter
```

3- Élongation de la chaîne d'ARN:

Unité de transcription

- · assurée par le core de la polymérase à une vitesse d'environ 30 nucl/sec
- ·Topoisomérases précèdent et suivent la polymérase
- ·Souvent plusieurs transcrits de la même matrice

· Unité de transcription mono ou polycistronique

A- Transcription chez les

procaryotes L'initiation de la transcription nécessite que la sous-unité sigma σ de l'ARN polymérase se fixe Sur l'oligomère $\alpha_2\beta\beta$ ' « Core-enzyme » pour former l'holoenzyme $\alpha_2\beta\beta$ ' σ.

M.Hunter, 2009

- -- Fixation non spécifique du complexe à l'ADN moyennant la sous--unité sigma
- -- Déplacement jusqu'au promoteur entre les séquences:
- -- Boite TATA située à --10 pb
- -- Boite pribnow située à --35 p

M.Hunter, 2009

Gene					-	35 r	egior	1										omos O neg					itiat te (1					
araBAD araC	GGAT																							1000				
bioA bioB	TTCC	AA	A.A	CC	T(TI	TTT	TT	G	TTO	TI	CAA	T1	CC	3 G	TG	TA	.G/	C)	TO	TA	AA	CO	T	A.A	A I	CI	TT
galP2	ATTT	AI	TO	C	T	3 T (CAC	A C	T	TTT	CCC	CA	Τ (CT.	ГТ	GT	TA	TO	C)	r a t	GO	TI	A	T	r c	A.3	AC	CA
lac laci	CCAT	CO	AA	TO	GG	CGC	CAA	AA	C	CTI	r T (3 G C	GC	3 T .	١T	GG	CA	TO	A	FAG	CO	CO	C	G_{I}	A.A	GJ	GA	GT
rrsAI rrsDI	CAAA								10000	T. C. C.								10000					OTTO DE					CT
rmEI RNA ^{Tyr}	CAAT																							_				CG
tryb	AAAT																											GT
	-35 region										Pribnow box								Initiation									
Consensus				-34) Les	pion.									FT	ши	year to	OK						site	8			
equence:	T	C	T	T	G	A	C	A	T	[1	11-15	5 bp		T	A.	T	A	A	T	cost2	-8 b	ф] · ·	-	A				
	42	38	82	84	79	64	5.5	45	41					79	95	44	59	51	96				6 5	S.	T.			

Chez E.coli, 7 facteurs sigma qui reconnaissent des séquences différentes

- Sigma de la famille 70: σ⁷⁰ standards (reconnaît différentes séquences de promoteurs)
- Sigma de la famille 32: σ^{32} spécifique à la réponse au choc thermique
- Sigma de la famille 54: σ^{54} spécifique à l'assimilation de l'azote

5- Terminaison de la transcription

Processus conduisant à la dissociation des sous unités de l'ARNp après la rencontre des signaux de terminaison

Deux mécanismes:

- Terminaison « rhô-indépendante »: terminateurs intrinsèques
- Terminaison « rhô-dépendante »: dépend de la présence d'une protéine rho

Terminaison Rhodépendante

- Transcription en épingle à cheveux d'une courte séquence d'ADN riche en paires G-C suivie de plusieurs U, et arrêt de polymérase. l'ARN
- -Fixation sur l'ARN d'une protéine de terminaison appelée Rho (une hélicase ARN-ADN/ATP-dépendante sous forme d'homohexamère) et le complexe d'élongation est dissocié.
- -Libération du brin néo-synthétisé du brin d'ADN matrice.
- -Enroulement de l'ARN autour de la protéine Rho au niveau d'une région d'environ 70 nucléotides (jusqu'à 100 nucléotides)

Terminaison Rho-indépendante ou intrinsèque

- -Au niveau d'une séquence répétée inversée située après la partie codante et riche en G-C et suivie de 6A
- -Formation d'une structure en épingle à cheveux dans l'ARN transcrit et bloque la transcription.
- -Rupture des liaisons entre le brin complémentaire néo-synthétisé polyU et le brin complémentaire poly-A et libération du brin d'ARN de l'ADN matrice.

DISASSEMBLY

Particularités du génome des eucaryotes

- · Diploïde
- ·Éclaté ou en mosaïque: introns et exons
- ·Expression compartimentée
- ·Unité de transcription est monocystronique

Génome en mosaïque

Introns: A, B, C, D, E, F, G

A-- Transcription chez les eucaryotes

A chaque type d'ARN correspond une ARN polymérase

ARN polymérase	ARN transcrits					
type I (Pol I)	ARN ribosomique 5,8 S, 18 S et 28 S					
type II (Pol II)	ARN messagers et petits ARN nucléaires					
type III (Pol III)	ARN de transfert, ARN ribosomique 5 S et petits ARN nucléaires					
des organites	ARN mitochondriaux et chloroplastiques					

La structure de l'ARN polymerase II à une résolution de 2,8 A.

En blanc, l'ARN polymerase II; En bleu, la double hélice d'ADN; En rouge, L'ARN en cours de formation; En vert, La structure qui fait avancer le brin d'ADN dans

L'ARN polymérase III

Par Cryo-microscopie électronique (2007) on a obtenue la structure tridimensionnelle de l'ARN polymérase .

- -Présence de cinq sous-unités supplémentaires qui interviennent dans la transcription (étapes initiale et finale).
- Les sous-unités assurent la fixation des facteurs de transcription et la recnnaissance de l'ADN.

L'initiation de la transcription chez les Eucaryotes

Elle est plus complexe chez les eucaryotes car les ARN polymérases ne reconnaissent pas directement leurs séquences promotrices :

→→5 facteurs de transcription généraux (Transcription Factor) :

TFII- B, TFII- D, TFII- E, TFII- F et TFII- H)

doivent d'abord médier la Oixation des ARN polymérases et l'initiation de la transcription.

Le complexe complet [ARN polymérase - facteurs de transcription - séquence ADN du promoteur] est appelé <u>complexe de pré-initiation</u> <u>de la transcription</u>.

Ce complexe assure:

•le chargement précis de l'ARN polymérase II (Pol II) sur le bon site de démarrage de la transcription

1 - Initiation de la transcription et terminaison

Signaux moléculaires nécessaires à l'initiation:

- 30 PB: Boite TATA (équivalente de la Pribnow des procaryotes)
- * 70 PB: CAAT ou Enhancer (virus): stabilisation du complexe ADN-ARNp

Signal de terminaison:

- Séquence de 6 pb à la fin du gène reconnue par ARN-endonucléase
- >>> Extrémité 3' formée est polyadénylée dans le nucléoplasme

2- Modification post-transcriptionnelle:

a- Coiffe ou capping

signal de reconnaissance pour les ribosomes

Dernière base du messager inaccessible aux ribonucléases

Guanosine méthylée sur l'azote 7 fixée à l'extrémité 5' par une liaison pyrophasphate 5'-5' à la première base de l'ARN (A ou G)

Augmente l'efficacité de la traduction

b- Polyadénylation

- La longueur de la queue poly A varie de 100 à 200 nuc.
- Absente chez les ARNt, les ARNr et les ARNm codant pour les protéines histories

La queue polyA sera raccourcie dans le cytoplasme

Récapitulatif

