Exercices-types: Mathématiques

Deschasaux Guillaume

Table des matières

1 Réduction des endomorphismes

1) Quelles sont les matrices carrées qui ne sont semblables qu'à elles-mêmes?

2 Nombres complexes

- 1) (Oral X) Montrer la surjectivité de l'application définie sur \mathbb{C} par $f(z)=ze^z$. Indication : On pourra raisonner module/argument.
 - 2) Calculer, en discutant selon les valeurs de $\theta,$ la somme $\sum_{k=0}^{n} \cos(k\theta) \cos^{k}(\theta)$

3 Corps des nombres réels

1) (Mines 2016) a) Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $P_n \in \mathbb{R}[X]$ tel que :

$$\forall t \in]0, \pi/2[, P_n(\cot n^2(t))) = \frac{\sin(2n+1)t}{\sin^{2n+1}(t)}$$
(1)

- b) Trouver toutes les racines de P_n et calculer leur somme.
- c) Montrer que, pour tout $t\in]0,\pi/2[,cotan^2(t)\leq \frac{1}{t^2}\leq 1+cotan^2(t)$
- d) En déduire la valeur de $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2}$

Correction:

a) Pour $t \in \mathbb{R}$, on a :

$$sin(2n+1)t = Im(cos(t) + isin(t))^{2n+1}$$

$$= \sum_{k=0}^{2n+1} {2n+1 \choose k} (isin(t))^k (cos(t))^{2n+1-k}$$

$$= sin^{2n+1}t \sum_{k=0}^{n} {2n+1 \choose 2k+1} (-1)^{k+1} (cotan^2t)^{n-k}$$

donc $P_n = \sum_{k=0}^n \binom{2n+1}{2k+1} (-1)^{k+1} X^{n-k}$ convient. Son unicité est évidente puisqu'on le connaît en une infinité de points.

b) $sin(2n+1)t=0 \iff t=0\left[\frac{\pi}{2n+1}\right]$. On en déduit que les $cotan^2(\frac{k\pi}{2n+1})$ pour $k\in\{1,2,\ldots,n\}$ sont n racines de P_n . Ces racines sont distinctes par injectivité de $cotan^2$ sur l'intervalle $]0,\pi/2[$. En repartant de l'expression de P_n trouvée en a), on a :

$$\sum_{k=1}^{n} \cot^{2}\left(\frac{k\pi}{2n+1}\right) = -\frac{\binom{2n+1}{2k+1}}{(-1)(2n+1)} = \frac{(n+1)(2n+1)}{3}$$
 (2)

c) Soit $t \in]0, \pi/2[$, on a : $tan(t) \ge t \implies tan^2(t) \ge t^2 \implies cotan^2(t) \le \frac{1}{t^2}$. De même, on a : $sin(t) \le t \implies sin^2(t) \le t^2 \implies \frac{1}{t^2} \le 1 + cotan^2(t)$

d) On applique l'inégalité précédente pour $t = \frac{k\pi}{2n+1}$, et on somme :

$$\frac{(n+1)(2n+1)}{3} \le \sum_{k=1}^{n} \frac{(2n+1)^2}{\pi^2 k^2} \le n + \frac{(n+1)(2n+1)}{3}$$
 (3)

$$\frac{n+1}{3(2n+1)}\pi^2 \le \sum_{k=1}^n \frac{1}{k^2} \le \frac{n}{(2n+1)^2}\pi^2 + \frac{n+1}{3(2n+1)}\pi^2 \tag{4}$$

Puis, par passage à la limite, on obtient $\zeta(2) = \frac{\pi^2}{6}$