

Autómatas de pila

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Mas allá del autómata finito

Una limitación fundamental

de los autómatas finitos es la falta de memoria

El agregado de una memoria

Posibilita reconocer algunos lenguajes no regulares

Existen diferentes formas de memoria

Agregaremos una de las más simples: una pila

Autómatas de pila (AFP)

El Agregado de una memoria de tipo pila a un AFND

Permite leer y guardar un símbolo del alfabeto de pila

(el alfabeto de pila y de input puede ser diferente)

En cada iteración

Se lee un símbolo de la entrada (o ε)

Se lee un símbolo de la pila (ο ε)

Se modifica el estado (o se queda en el mismo)

Se graba un símbolo de la pila (ο ε)

Si se realiza una ramificación

Se duplica el stack con su contenido

Autómatas de pila (Definición formal)

Un autómata de pila "M" es una 6-Tupla (Q, Σ , Γ , δ , q_0 , F) donde:

Q: set finito de "estados"

Σ: alfabeto de entrada

Γ: alfabeto de la pila

δ: $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Gamma_{\varepsilon})$ es la función de transición

 $q_0 \in Q$ estado inicial (ejemplo q0)

F ⊆ Q set de estados de aceptación (ejemplo q3)

Ejemplo

Queremos crear un autómata de pila que reconozca el siguiente lenguaje

$$A = \{0^n 1^n / n \ge 0\}$$

Definimos

Alfabeto de entrada $\Sigma = \{0,1\}$

Alfabeto de pila $\Gamma = \{x, \$\}$

Ejemplo (cont.)

Proponemos el siguiente diagrama de estados

Con su correspondiente tabla de transición

Σ	0	0	0	1	1	1	3	3	3
Γ	Х	\$	3	X	\$	3	X	\$	3
q_0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	{(q ₁ ,\$)}
q_1	Ø	Ø	$\{(q_1,x)\}$	$\{(q_2, \epsilon)\}$	Ø	Ø	Ø	Ø	Ø
q_2	Ø	Ø	Ø	$\{(q_2, \epsilon)\}$	Ø	Ø	Ø	$\{(q_3,\epsilon)\}$	Ø
q_3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Ejemplo (cont.)

Con los siguientes strings

0011 → es reconocido

011 → es rechazado

010 → es rechazado

Presentación realizada en Julio de 2020