

Compartments

1 nephrons

Rat

nephron

C. Sint

Overview of structures

- 2 medullary vasculature
- 3 medullary interstitium

MCD MCD

Overview of structures

Compartments

Rat nephron

Compartments

The model has 3 compartments: nephrons, medullary vasculature and medullary interstitium.

Nephrons and blood vessels are divided into multiple segments. In terms of spatial dimension, each segment has only length with the direction either going up or down the medulla.

The interstitial compartment is divided into 8 different homogeneous sub-compartments; each represents different depth and contains some segments of blood vessels and nephrons.

Figure 1: model compartments [Weinstein, 2017]¹

Alan M. Weinstein. A mathematical model of the rat kidney: K⁺-induced natriuresis.

American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017. doi: 10.1152/ajprenal.00536.2016

URL https://doi.org/10.1152/ajprenal.00536.2016

^{4 / 26}

Tubular segments of nephrons (1/2)

Rat nephron

C. Sint

Overview of structures

odel

mulation

- 1 unbranched segments
 - 1 Superficial (SF) nephrons
 - 2 Juxtamedullary (JM) nephrons
- 2 distal nephron ensembles: collecting ducts

Rat nephron

Overview of structures

| Substantial appears | Structures | Structure

The nephron compartment is composed of many distinct tubular segments which can be grouped into unbranched segments and the distal nephron ensembles or the collecting ducts.

Tubular segments of nephrons (1/2)

Rat nephron

C. Sint

Overview of structures

unbranched segments

1 Superficial (SF) nephrons

2 Juxtamedullary (JM)

nephrons

IDHL

Cortex-1

CMJ-1

Cortex-1

IMPCT

2023-04-06

Cortex-2

Cortex-2

CMJ-2

AHLm

Overview of structures

Rat nephron

Tubular segments of nephrons (1/2)

Tubular segments of nephrons (1/2)

The unbranched segments are connected in series in mainly two different ways resulting the superficial or SF and juxtamedullary or JM nephron.

These nephrons have distal segments that are identical, which are the thick ascending limbs, or AHL, in the outer medulla and the cortex. Meanwhile, the proximal convoluted tubule, or PCT, and straight tubule, or PST, of these two differ in the glomerular filtration rate, which determines the initial flow and pressure at the PCT, and ion permeabilities — which are mostly higher in the JM nephron.

For the segments in the middle, the SF nephron has only one segment of the descending Henle's limb, or DHL, at the outer medulla; while in JM nephron, DHL descends into the inner medulla in 5 different depths and comes back up via thin ascending Henle's limb, or tAHL.

Figure 2: Unbranched tubules [Weinstein, 2015]¹ Alan M. Weinstein, A mathematical model of rat proximal tubule and loop of henle. American Journal of Physiology-Renal Physiology, 308(10):F1076-F1097, May 2015. doi: 10.1152/ajprenal.00504.2014

Tubular structure of DHL and tAHL

Rat nephron C. Sint

Overview of

structures

Figure 3: transepithelial fluxes of DHL and tAHL [Weinstein, 2015]¹

Figure 4: epithelial cells and lateral interspaces [Weinstein and Krahn, 2010]²

doi: 10.1152/ajprenal.00231.2009

URL https://doi.org/10.1152/ajprenal.00231.2009

Overview of structures

Rat nephron

2023-04-06

6/26

Tubular structure of DHL and tAHL

Tubular structure of DHL and tAHI

These segments of DHL and tAHL in the middle, which are parts of the thin Henle's loop, do not have cellular structures and lateral interspaces. So transepithelial fluxes of ions and water are all passive.

The rest of the tubular segments including those of collecting ducts, however, have epithelial cells and lateral interspaces included which separate the luminal and the basement membranes.

Alan M. Weinstein. A mathematical model of rat proximal tubule and loop of henle. American Journal of Physiology-Renal Physiology, 308(10):F1076-F1097, May 2015. doi: 10.1152/ajprenal.00504.2014.

URL https://doi.org/10.1152/ajprenal.00504.2014 $^2\mathrm{Alan}$ M. Weinstein and Thomas A. Krahn. A mathematical model of rat ascending henle limb, II, epithelial function. American Journal of Physiology-Renal Physiology, 298(3):F525-F542, March 2010.

Rat nephron C. Sint

Overview of structures

collecting ducts

1 Superficial (SF)

2 Juxtamedullary (JM)

distal nephron ensembles:

Alan M. Weinstein. A mathematical model of distal nephron acidification: diuretic effects.

 $2008]^{1}$

DCT

CCD

OMCD

IMCD

American Journal of Physiology-Renal Physiology, 295(5):F1353-F1364, November 2008. doi: 10.1152/ajprenal.90356.2008

URL https://doi.org/10.1152/ajprenal.90356.2008

7/26

2023-04-06

identical.

ducts, or IMCD.

Rat nephron Overview of structures

Lagrangian Lagrangian

flow from either 1 SF nephron or 5 JM nephrons. All of these flows

into the connecting tubule, or CNT, in the way that each CNT are

Similar branching can also be found at the inner medullary collecting

Tubular segments of nephrons (2/2)

In distal nephron, the distal convoluted tubules, or DCT, come after the AHL. So there are total of 6 different profiles of DCT which receive

Figure 5: distal nephron [Weinstein,

Cortex

OIMJ

URL https://doi.org/10.1152/ajprenal.00536.2016

OMVR

- the short one, the long ones which reaches 5 different depths, and the

Alan M. Weinstein. A mathematical model of the rat kidney: K⁺-induced natriuresis. American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017. doi: 10.1152/ajprenal.00536.2016.

Figure 6: 7 distinct types of vasa recta [Weinstein, 2017]¹

OIVR

IMVR

Med. Ray

Rat nephron

Overview of structures

-Vasa recta

surround the cortical AHL.

In the vascular compartments, there are 5 different kinds of vasa recta:

of segments with 3 different profiles of solute permeability, first at outer medulla and MRVR, which is assumed to be the same as MRVR, second

at the inner medulla vasa recta, or IMVR, at the descending direction;

and this is different from the third profile of ascending IMVR.

2023-04-06

AVR:DVR = 2:1.

Cortex

CMJ-1 OMVR

OIMJ

Med. Ray

CMJ-2

MRVR

OIVR

IMVR

Figure 6: 7 distinct types of vasa recta [Weinstein, 2017]¹

URL https://doi.org/10.1152/ajprenal.00536.2016

doi: 10.1152/ajprenal.00536.2016.

8/26

└Vasa recta

Overview of structures

Rat nephron

2023-04-06

It is also worth noting that, the branching of vasa recta is represented by the ratio between the number ascending vasa recta or AVR to the descending DVR; which was set to be 2:1.

Alan M. Weinstein. A mathematical model of the rat kidney: K⁺-induced natriuresis. American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017.

Medullary interstitium

Cortex = MR(0)

MR(1)

MR(1)

OM(1) = MR(2)

OM(2) = MR(3)

OM(2) = IM(0)

IM(1)

IM(5)

Med. Ray

Cortex

CMJ-1

OIMJ

Figure 7: interstitial sub-compartments [Weinstein, 2017]¹

Alan M. Weinstein. A mathematical model of the rat kidney: K⁺-induced

American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017.

8 sub-compartments

Cortex = OM(0)

doi: 10.1152/ajprenal.00536.2016

Cortex

OIMJ

natriuresis.

Rat nephron

C. Sint

Overview of

structures

2023-04-06

CNT.

vasa recta.

Rat nephron

Overview of structures

—Medullary interstitium

hydrostatic pressure are kept constant.

The third and last compartment is the medullary interstitium which

is divided into 8 sub-compartments: 2 outer medulla, 5 inner medul-

lae, and part of medullary ray that reaches the superficial layer. The

cortical interstitium is not included and its solute concentrations and

At the outer medulla junction, the cortex-medulla junction is separated

into the part that continues from the cortex, which contains the PST, and from the medullary ray, which has the distal portion of medulla AHL. The two outer medulla sub-compartments then contain the short

DHL, upper long DHL, and the outer medullary collecting duct and

At the cortex, we have the PCT of SF and JM nephron, DCT, and

Medullary interstitium

URL https://doi.org/10.1152/ajprenal.00536.2016

SEPCT, JMPCT

DCT. CNT

SFPST, JMPST

sDHL, IDHLu

OM-VR

IDHLI, tAHL

IM-VR

AHLc

CCD

MR-VR

AHLm

OMCD

OI-VR

Med. Ray

CMJ-2

9/26

Medullary interstitium

Rat nephron

C. Sint

Overview of structures

8 sub-compartments

Figure 7: interstitial sub-compartments [Weinstein, 2017]¹

URL https://doi.org/10.1152/ajprenal.00536.2016

2023-04-06

The inner medulla has 5 levels of depth after the outer-inner medullary junction. These contain the rest of the thin Henle's loop, and the inner medullary collecting ducts and vasa recta.

Lastly, the medullary ray. This contains the AHL, cortical collecting ducts, or CCD, and the MRVR.

Alan M. Weinstein. A mathematical model of the rat kidney: K⁺-induced natriuresis. American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017. doi: 10.1152/ajprenal.00536.2016.

Rat nephron

Blood vessels (C)

doi: 10.1152/ajprenal.00536.2016.

American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017. URL https://doi.org/10.1152/ajprenal.00536.2016

Rat nephron

2023-04-06

Model formulation Flow-dependent transport of PCT

Flow-dependent transport of PCT

References I

Rat nephron

C. Sint

References

Alan M. Weinstein. A mathematical model of the inner medullary collecting duct of the rat: pathways for na and k transport. American Journal of Physiology-Renal Physiology, 274(5):F841-F855, May 1998. doi: 10.1152/ajprenal.1998.274.5.f841. URL https://doi.org/10.1152/ajprenal.1998.274.5.f841.
Alan M. Weinstein. A mathematical model of distal nephron acidification: diuretic effects. American Journal of Physiology-Renal Physiology, 295(5):F1353-F1364, November 2008. doi: 10.1152/ajprenal.90356.2008. URL https://doi.org/10.1152/ajprenal.90356.2008.
Alan M. Weinstein. A mathematical model of rat proximal tubule and loop of henle. American Journal of Physiology-Renal Physiology, 308(10):F1076-F1097, May 2015. doi: 10.1152/ajprenal.00504.2014. URL https://doi.org/10.1152/ajprenal.00504.2014.

American Journal of Physiology-Renal Physiology, 312(6):F925-F950, June 2017. doi: 10.1152/ajprenal.00536.2016. URL https://doi.org/10.1152/ajprenal.00536.2016. Alan M. Weinstein and Thomas A. Krahn. A mathematical model of rat ascending henle limb. II. epithelial function. American Journal of Physiology-Renal Physiology, 298(3): F525-F542, March 2010. doi: 10.1152/ajprenal.00231.2009. URL https://doi.org/10.1152/ajprenal.00231.2009. Alan M. Weinstein, Sheldon Weinbaum, Yi Duan, Zhaopeng Du, QingShang Yan, and Tong Wang. Flow-dependent transport in a mathematical model of rat proximal tubule. American Journal of Physiology-Renal Physiology, 292(4):F1164-F1181, April 2007. doi: 10.1152/ajprenal.00392.2006. URL https://doi.org/10.1152/ajprenal.00392.2006. A.M. Weinstein. Nonequilibrium thermodynamic model of the rat proximal tubule

epithelium. Biophysical Journal, 44(2):153-170, November 1983. doi:

Alan M. Weinstein. A mathematical model of the rat kidney: K⁺-induced natriuresis. 10.1016/s0006-3495(83)84287-8. URL https://doi.org/10.1016/s0006-3495(83)84287-8. 2023-04-06

References I Rat nephron Model formulation nat: pathways for na and is transport. Assertion Journal of Physiology-Senal Physiol. 271(5):P441-P935, May 1998. doi: 10.1132/ajpenal.1998.271.5.041. URL. 273(3):F41:F555, May 1998, doi: 28.113/ajpmai.1998.75.1.641. UNL https://doi.org/16.1032/ajpmai.1998.75.2.636.
Man M. Wrinstein, A mathematical model of distal asylone aridification: discretic effective for Juneau Juneau of Physiology, Sunal Physiology, 20(5):P3335-F1564, November 20 doi: 10.113/ajpmai.1998.2004.2009.113. -References Sinds, H. spikhelial Function. Ascrine Journal of Physiology Senal Physiology, 298() F335-F542, March 2020. doi: 10.1132/sprenal.0021.2000. USL https://doi.org/10.1132/sprenal.0021.2000. Majarottas, organistica, Statistas Wittishama, Yi Duan, Zhanyeng Du, QingChang Yan, and Ting Wang. From dependent transport in a mathematical model of nat proximal studies. Interview Journal of Physiology, Ranal Psyciology, 202(4):97166–97185, Apr 2007. doi: 10.1103/ajprosai.00302.2006. USL.