

OCTAL DUAL SUPPLY BUS TRANSCEIVER

- HIGH SPEED: t_{PD} = 8ns (MAX.) at T_A=25°C V_{CCA} = 3.3V, V_{CCB} = 5.0V
- LOW POWER DISSIPATION: $I_{CCA} = I_{CCB} = 5\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- LOW NOISE: V_{OLP} =0.3V (TYP.) at V_{CCA}=3.3V
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE:
 V_{CCA}(OPR)=2.7V to 3.6V (1.2V Data Retention)
 V_{CCB}(OPR)=2.7V to 5.5V (1.2V Data Retention)
 PIN AND FUNCTION COMPATIBLE WITH
 74 SERIES C3245
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74LVXC3245 is a dual supply 8 bit configurable low voltage CMOS OCTAL BUS TRANSCEIVER fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. Designed for use as an interface between a 3.3V bus and a 3.3V to 5V bus in a mixed 3.3V/5V supply systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

Table 1: Order Codes

PACKAGE	T&R
SOP	74LVXC3245MTR
TSSOP	74LVXC3245TTR

This IC is intended for two-way asynchronous communication between data buses and the direction of data transmission is determined by DIR input. The enable input \overline{G} can be used to disable the device so that the buses are effectively isolated.

The A-port interfaces with the 3V bus, the B-port with the 5V bus.

All inputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

August 2004 1/14

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
2	DIR	Directional Control
3, 4, 5, 6, 7, 8, 9, 10	A1 to A8	Data Inputs/Outputs
21, 20, 19, 18, 17, 16, 15, 14	B1 to B8	Data Inputs/Outputs
22	G	Output Enable Input
11, 12, 13	GND	Ground (0V)
23	NC	Not Connected
1	V _{CCA}	Positive Supply Voltage
24	V _{CCB}	Positive Supply Voltage

Table 3: Truth Table

INP	итѕ	FUNC	OUTPUT	
G	DIR	A BUS	B BUS	OUTFOI
L	L	OUTPUT	INPUT	A = B
L	Н	INPUT OUTPUT		B = A
Н	X	Z	Z	Z

X : Don't Care Z : High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CCA}	Supply Voltage	-0.5 to +7.0	V
V _{CCB}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to V _{CCA} + 0.5	V
V _{I/OA}	DC I/O Voltage	-0.5 to V _{CCA} + 0.5	V
V _{I/OB}	DC I/O Voltage	-0.5 to V _{CCB} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 50	mA
I _{OA}	DC Output Current	± 50	mA
I _{OB}	DC Output Current	± 50	mA
I _{CCA}	DC V _{CC} or Ground Current	± 200	mA
I _{CCB}	DC V _{CC} or Ground Current	± 100	mA
P _d	Power Dissipation	180	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

47/

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CCA}	Supply Voltage (note 1)	2.7 to 3.6	V
V _{CCB}	Supply Voltage (note 1)	2.7 to 5.5	V
V _I	Input Voltage	0 to V _{CCA}	V
V _{I/OA}	I/O Voltage	0 to V _{CCA}	V
V _{I/OB}	I/O Voltage	0 to V _{CCB}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

Table 6: DC Specifications For V_{CCA}

			Test	Condition				Value				
Symbol	Parameter	V _{CCA}	V _{CCB}		T,	_A = 25	°C	-40 to	85 °C	-55 to	125°C	Unit
		(V)	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IHA}	High Level Input	2.7	3.0		2.0			2.0		2.0		
	Voltage	3.0	3.6		2.0			2.0		2.0		V
		3.6	5.5		2.0			2.0		2.0		
V_{ILA}	Low Level Input	2.7	3.0				0.8		0.8		0.8	
	Voltage	3.0	3.6				0.8		8.0		0.8	V
		3.6	5.5				0.8		8.0		0.8	
V_{OHA}	High Level	3.0	3.0	I _O =-100 μA	2.9	2.99		2.9		2.9		
	Output Voltage	3.0	3.0	I _O =-12 mA	2.56	2.85		2.46		2.46		
		3.0	3.0	I _O =-24 mA	2.35	2.65		2.25		2.25		V
		2.7	3.0	I _O =-12 mA	2.3	2.5		2.2		2.2		
		2.7	4.5	I _O =-24 mA	2.1	2.3		2.0		2.0		
V _{OLA}	Low Level Output	3.0	3.0	I _O =100 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	3.0	I _O =24 mA		0.21	0.36		0.44		0.44	,,
		2.7	3.0	I _O =12 mA		0.11	0.36		0.44		0.44	V
		2.7	4.5	I _O =24 mA		0.22	0.42		0.5		0.5	
I _{IA}	Input Leakage Current	3.6	5.5	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZA}	High Impedance Output Leakage Current	3.6	5.5	$V_{IA} = V_{IHA}$ or V_{ILA} $V_{IB} = V_{IHB}$ or V_{ILB} $V_{I/OA} = V_{CCA}$ or GND			± 0.5		± 5		± 5	μА
I _{CCtA}	Quiescent Supply Current	3.6	5.5	$V_{IA} = V_{CCA}$ or GND $V_{IB} = V_{CCB}$ or GND			5		50		50	μΑ
I _{CCtAF}	Quiescent V _{CCA} Supply Current as B Port Floats	3.6	Open	$V_{\underline{IA}} = V_{\mathtt{CCA}} \text{ or GND}$ $\overline{G} = DIR = V_{\mathtt{CCA}}$ $V_{\mathtt{IB}} = Open$			5		50		50	μΑ
Δl _{CCtA}	Maximum Quiescent Supply Current / Input (An, DIR, G)	3.6	5.5	$V_{IA} = V_{CCA} - 0.6V$ $V_{IB} = V_{CCB}$ or GND			0.35		0.5		0.5	mA

¹⁾ V_{IN} from 30% to 70% of V_{CC} 2) V_{CCA} = 2.7 to 3.6V; V_{CCB} = 2.7 to 5.5V;

Table 7: DC Specifications For $\rm V_{CCB}$

		Test Condition						Value				
Symbol	Parameter	Vcca	V _{CCB}		T _A = 25 °C		,C	-40 to	85 °C	-55 to	125°C	Unit
			(V)	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.
V _{IHB}	High Level Input	2.7	3.0		2.0			2.0		2.0		
	Voltage	3.0	3.6		2.0			2.0		2.0		V
		3.6	5.5		3.85			3.85		3.85		
V_{ILB}	Low Level Input	2.7	3.0				0.8		0.8		0.8	
	Voltage	3.0	3.6				0.8		0.8		8.0	V
		3.6	5.5				1.65		1.65		1.65	
V _{OHB}	High Level	3.0	3.0	I _O =-100 μA	2.9	3.0		2.9		2.9		
	Output Voltage	3.0	3.0	I _O =-12 mA	2.56	2.85		2.46		2.46		\ ,,
		3.0	3.0	I _O =-24 mA	2.35	2.65		2.25		2.25		V
		3.0	4.5	I _O =-24 mA	3.86	4.25		3.76		3.76		
V_{OLB}	Low Level Output	3.0	3.0	I _O =100 μA		0.00	0.1		0.1		0.1	
	Voltage	3.0	3.0	I _O =24 mA		0.21	0.36		0.44		0.44	V
		3.0	4.5	I _O =24 mA		0.18	0.36		0.44		0.44	
I _{IB}	Input Leakage Current	3.6	5.5	$V_I = V_{CCA}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZB}	High Impedance Output Leakage Current	3.6	5.5	$V_{IA} = V_{IHA}$ or V_{ILA} $V_{I/OB} = V_{CCB}$ or GND			± 0.5		± 5		± 5	μΑ
I _{CCtB}	Quiescent Supply Current	3.6	5.5	$V_{IA} = V_{CCA}$ or GND $V_{IB} = V_{CCB}$ or GND			5		50		50	μΑ
ΔI _{CCtB}	Maximum Quiescent Supply Current / Input	3.6	5.5	$V_{IA} = V_{CCA}$ or GND $V_{IB} = V_{CCB} - 2.1V$			1.35		1.5		1.5	mA

Table 8: Dynamic Switching Characteristics

		-	Test Co	ndition	Value							
Symbol	Parameter	VCCA	V _{CCB}		T _A = 25 °C			-40 to	85 °C	-55 to 125°C		Unit
		(V)	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	•
V _{OLPA}	Dynamic Low Level	3.3	5.5			1.0	1.5					
Quiet Output (note 1, 2)	3.3	5.5		-1.2	-0.6						V	
V _{OLPB}	Dynamic Low Level	3.3	5.5			0.8	1.2					
	Quiet Output (note 1, 2)	3.3	5.5		-0.8	-0.5						V
V_{IHDA}	Dynamic High Voltage Input (note 1, 3)	3.3	5.5				2					V
V_{ILDA}	Dynamic Low Voltage Input (note 1, 3)	3.3	5.5		0.8							V
V_{IHDB}	Dynamic High Voltage Input (note 1, 3)	3.3	5.5				2					V
V_{ILDB}	Dynamic Low Voltage Input (note 1, 3)	3.3	5.5		0.8							٧

¹⁾ Worst case package 2) Max number of output defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND 3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3V to threshold (V_{ILD}) . 0V to threshold (V_{IHD}) f = 1MHz

Table 9: AC Electrical Characteristics ($C_L = 50 pF$, Input $t_r = t_f = 3 ns$)

		Te	est Condition			,	Value ⁽³	3)				
Symbol	Parameter	V _{CCB}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{PLH}	Propagation Delay	3.0(*)		1.0	5.5	8.5	1.0	9.0	1.0	9.5		
	Time (An to Bn)	5.0(**)		1.0	4.8	8.0	1.0	8.5	1.0	9.	ns	
t _{PHL}	Propagation Delay	3.0(*)		1.0	5.2	8.0	1.0	8.5	1.0	9.0	113	
	Time (An to Bn)	5.0(**)		1.0	3.9	6.5	1.0	7.0	1.0	7.5	1	
t_{PZL}	Output Enable	3.0(*)		1.0	6.0	9.0	1.0	9.5	1.0	9.5		
	Time (G to Bn)	5.0(**)		1.0	4.7	8.0	1.0	8.5	1.0	8.5	ns	
t _{PZH}	Output Enable	3.0(*)		1.0	6.1	9.5	1.0	10.0	1.0	10.5	115	
	Time (G to Bn)	5.0(**)		1.0	4.8	8.5	1.0	9.0	1.0	9.5		
t _{PLZ}	Output Disable	3.0(*)		1.0	6.3	9.5	1.0	10.0	1.0	10.5		
	Time (G to Bn)	5.0(**)		1.0	4.0	8.0	1.0	8.5	1.0	8.5		
t _{PHZ}		3.0(*)		1.0	4.5	8.0	1.0	8.5	1.0	8.5	ns	
	Time (G to Bn)	5.0(**)		1.0	3.8	7.5	1.0	8.0	1.0	8.5		
t _{PLH}	Propagation Delay	3.0(*)		1.0	4.4	7.0	1.0	7.5	1.0	7.5		
	Time (Bn to An)	5.0(**)		1.0	3.8	6.5	1.0	7.0	1.0	7.5		
t _{PHL}	Propagation Delay	3.0(*)		1.0	5.1	7.5	1.0	8.0	1.0	8.5	ns	
	Time (Bn to An)	5.0(**)		1.0	4.3	7.5	1.0	8.0	1.0	8.5		
t _{PZL}	Output Enable	3.0(*)		1.0	6.4	10.0	1.0	10.5	1.0	10.5		
	Time (G to An)	5.0(**)		1.0	5.9	9.5	1.0	10.0	1.0	10.5		
t _{PZH}	Output Enable	3.0(*)		1.0	5.8	9.0	1.0	9.5	1.0	9.5	ns	
	Time (G to An)	5.0(**)		1.0	5.4	9.0	1.0	9.5	1.0	9.5		
t _{PLZ}	Output Disable	3.0(*)		1.0	5.2	9.5	1.0	10.0	1.0	10.5		
	Time (G to An)	5.0(**)		1.0	4.6	9.5	1.0	10.0	1.0	10.5		
t _{PHZ}	Output Disable	3.0(*)		1.0	3.4	6.5	1.0	7.0	1.0	7.5	ns	
	Time (G to An)	5.0(**)		1.0	3.1	6.5	1.0	7.0	1.0	7.5		
t _{OSLH}	Output To Output	3.0(*)			0.5	1.0		1.5		1.5		
toshl	Skew Time (note1, 2)	5.0(**)			0.5	1.0		1.5		1.5	ns	

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tosh = | tphh - tphh|, tosh = | tphh - tphh |
2) Parameter guaranteed by design
3) Typical values referred at V_{CCA} = 3.3V, V_{CCB} = 5.0V or V_{CCA} = 3.3V, V_{CCB} = 3.3V
(*) Voltage Range is 3.0V ± 0.3
(**) Voltage Range is 5.0V ± 0.5

Table 10: Capacitive Characteristics

			Test Condi	ion	Value						
Symbol	Parameter	eter V _{CCA}	V _{CCB}	Т	T _A = 25 °C			-40 to 85 °C -55 to 125°C			
		(V)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{INA}	Input Capacitance	open	open		4.5	10		10		10	V
C _{I/O}	Input/Output Capacitance	3.3	5.0		10						V
C _{PD}	Dynamic Low Level Quiet Output (note 1) A to B	3.3	5.0		55						V
C _{PD}	Dynamic Low Level Quiet Output (note 1) B to A	3.3	5.0		40						V

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per circuit)

Figure 3: Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZLH} , t _{PLZ}	2V _{CC}
t _{PZH} , t _{PHZ}	Open

 $C_L=50 pF$ or equivalent (includes jig and probe capacitance) $R_L=R_1=500\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

Figure 4: Waveform - Propagation Delays (f=1MHz; 50% duty cycle)

Figure 5: Waveform - Output Enable And Disable Time (f=1MHz; 50% duty cycle)

SO-24 MECHANICAL DATA

DIM.		mm.		inch				
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	2.35		2.65	0.093		0.104		
A1	0.1		0.30	0.004		0.012		
В	0.33		0.51	0.013		0.020		
С	0.23		0.32	0.009		0.013		
D	15.20		15.60	0.598		0.614		
E	7.4		7.6	0.291		0.299		
е		1.27			0.050			
Н	10.00		10.65	0.394		0.419		
h	0.25		0.75	0.010		0.030		
L	0.4		1.27	0.016		0.050		
k	0°		8°	0°		8°		
ddd			0.100			0.004		

TSSOP24 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.1			0.043
A1	0.05		0.15	0.002		0.006
A2		0.9			0.035	
b	0.19		0.30	0.0075		0.0118
С	0.09		0.20	0.0035		0.0079
D	7.7		7.9	0.303		0.311
E	4.3		4.5	0.169		0.177
е		0.65 BSC			0.0256 BSC	
Н	6.25		6.5	0.246		0.256
К	0°		8°	0°		8°
L	0.50		0.70	0.020		0.028

Tape & Reel SO-24 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11.0	0.425		0.433
Во	15.7		15.9	0.618		0.626
Ko	2.9		3.1	0.114		0.122
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP24 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	8.2		8.4	0.323		0.331
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Table 11: Revision History

Date	Revision	Description of Changes
27-Aug-2004	4	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

