Thermodynamics & Statistical Physics Exercises

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- §6. Most probable distribution of nearly independent particles
- 2 §7. Boltzmann statistics
- 3 §8. Bose statistics and Fermi statistics
 - Bose statistics
 - Fermi statistics
 - Fermion gas in astrophysics

• For a given distribution $(\varepsilon_l, \omega_l, a_l)$,

- For a given distribution $(\varepsilon_l, \omega_l, a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

- ullet For a given distribution $(arepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

$$\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!}$$

- ullet For a given distribution $(arepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

$$\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!} = \prod \frac{a_l!}{a_l!}$$

- For a given distribution $(\varepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

$$\Omega_{\text{B.S.}} = \prod_{l=0}^{\infty} \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!} = \prod_{l=0}^{\infty} \frac{a_l!}{a_l!} = 1;$$

- For a given distribution $(\varepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6): $\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{a_l!}{a_l!} = 1;$
- for Fermion gas, the number of micro-states (6.5.7):

- ullet For a given distribution $(arepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

$$\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!} = \prod \frac{a_l!}{a_l!} = 1;$$

• for Fermion gas, the number of micro-states (6.5.7):

$$\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l - a_l)!}$$

- ullet For a given distribution $(arepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

$$\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!} = \prod \frac{a_l!}{a_l!} = 1;$$

• for Fermion gas, the number of micro-states (6.5.7):

$$\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l - a_l)!} = \prod \frac{1}{a_l!(1 - a_l)!}$$

- For a given distribution $(\varepsilon_l,\omega_l,a_l)$,
- for Boson gas, the number of micro-states (6.5.6):

$$\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!} = \prod \frac{a_l!}{a_l!} = 1;$$

• for Fermion gas, the number of micro-states (6.5.7):

$$\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l - a_l)!} = \prod \frac{1}{a_l!(1 - a_l)!} = 1;$$

- For a given distribution $(\varepsilon_l, \omega_l, a_l)$,
- for Boson gas, the number of micro-states (6.5.6): $\Omega_{D,\alpha} = \Pi^{(\omega_l + a_l 1)!} = \Pi^{(a_l!} = 1$.
 - $\Omega_{\text{B.S.}} = \prod \frac{(\omega_l + a_l 1)!}{a_l!(\omega_l 1)!} = \prod \frac{a_l!}{a_l!} = 1;$
- for Fermion gas, the number of micro-states (6.5.7): $\Omega_{\text{F.D.}} = \prod \frac{\omega_l!}{a_l!(\omega_l a_l)!} = \prod \frac{1}{a_l!(1 a_l)!} = 1;$
- There is no maximum for the number of micro-states.

Table of contents

- §6. Most probable distribution of nearly independent
- 2 §7. Boltzmann statistics
- 3 §8. Bose statistics and Fermi statistics
 - Bose statistics
 - Fermi statistics
 - Fermion gas in astrophysics

• According to the Maxwell's speed distribution, the number of molecules at (v, v + dv):

• According to the Maxwell's speed distribution, the number of molecules at $(v, v + \mathrm{d}v)$: $\mathrm{d}N(v) = 4\pi N(\tfrac{m}{2kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v.$

• According to the Maxwell's speed distribution, the number of molecules at $(v,v+\mathrm{d}v)$: $\mathrm{d}N(v)=4\pi N(\tfrac{m}{2kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v.$

The most probable speed: $v_m = \sqrt{\frac{2kT}{m}}$.

• According to the Maxwell's speed distribution, the number of molecules at $(v,v+\mathrm{d}v)$: $\mathrm{d}N(v)=4\pi N(\frac{m}{2kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v$. The most probable speed: $v_m=\sqrt{\frac{2kT}{m}}$. $\frac{N_m}{N}=\int_0^{v_m}4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v$

• According to the Maxwell's speed distribution, the number of molecules at $(v,v+\mathrm{d}v)$: $\mathrm{d}N(v)=4\pi N(\frac{m}{2kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v$. The most probable speed: $v_m=\sqrt{\frac{2kT}{m}}$. $\frac{N_m}{N}=\int_0^{v_m}4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v$ $=\int_0^{(\sqrt{\frac{m}{2kT}})\sqrt{\frac{2kT}{m}}}\frac{4}{\sqrt{\pi}}e^{-\frac{m}{2kT}v^2}(\sqrt{\frac{m}{2kT}}v)^2\mathrm{d}(\sqrt{\frac{m}{2kT}}v)$

 According to the Maxwell's speed distribution, the number of molecules at (v, v + dv): $dN(v) = 4\pi N(\frac{m}{2kT})^{\frac{3}{2}} e^{-\frac{\dot{m}}{2kT}v^2} v^2 dv.$ The most probable speed: $v_m = \sqrt{\frac{2kT}{m}}$. $\frac{N_m}{N} = \int_0^{v_m} 4\pi (\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv$ $= \int_0^{(\sqrt{\frac{m}{2kT}})\sqrt{\frac{2kT}{m}}} \frac{4}{\sqrt{\pi}} e^{-\frac{m}{2kT}v^2} (\sqrt{\frac{m}{2kT}}v)^2 d(\sqrt{\frac{m}{2kT}}v)$ $=\frac{4}{\sqrt{\pi}}\int_0^1 x^2 e^{-x^2} dx$

 According to the Maxwell's speed distribution, the number of molecules at (v, v + dv): $dN(v) = 4\pi N(\frac{m}{2kT})^{\frac{3}{2}} e^{-\frac{\dot{m}}{2kT}v^2} v^2 dv.$ The most probable speed: $v_m = \sqrt{\frac{2kT}{m}}$. $\frac{N_m}{N} = \int_0^{v_m} 4\pi (\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv$ $= \int_0^{(\sqrt{\frac{m}{2kT}})\sqrt{\frac{2kT}{m}}} \frac{4}{\sqrt{\pi}} e^{-\frac{m}{2kT}v^2} (\sqrt{\frac{m}{2kT}}v)^2 d(\sqrt{\frac{m}{2kT}}v)$ $=\frac{4}{\sqrt{\pi}}\int_0^1 x^2 e^{-x^2} dx$ $\simeq 0.4276$:

• According to the Maxwell's speed distribution, the number of molecules at $(v,v+\mathrm{d}v)$: $\mathrm{d}N(v)=4\pi N(\tfrac{m}{2kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v.$

The most probable speed:
$$v_m = \sqrt{\frac{2kT}{m}}$$
.

$$\frac{N_m}{N} = \int_0^{v_m} 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv$$

$$= \int_0^{(\sqrt{\frac{m}{2kT}})\sqrt{\frac{2kT}{m}}} \frac{4}{\sqrt{\pi}} e^{-\frac{m}{2kT}v^2} \left(\sqrt{\frac{m}{2kT}}v\right)^2 d\left(\sqrt{\frac{m}{2kT}}v\right)$$

$$= \frac{4}{\sqrt{\pi}} \int_0^1 x^2 e^{-x^2} dx$$

$$\approx 0.4276:$$

Not depending on T.

A8.21 Prove: for monatomic classical ideal gas, entropy:

$$S = \frac{5}{2}Nk - Nk\ln(n\lambda^3).$$

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N!$$
 (7.1.13')

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \quad (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \ (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] - \beta \frac{\partial}{\partial \beta} \ln \beta^{-3/2}] - (\ln N - 1)\}$$

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \quad (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] - \beta \frac{\partial}{\partial \beta} \ln \beta^{-3/2}] - (\ln N - 1)\}$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{3}{2} - (\ln N - 1)\}$$

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \quad (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] - \beta \frac{\partial}{\partial \beta} \ln \beta^{-3/2}] - (\ln N - 1)\}$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{3}{2} - (\ln N - 1)\}$$

$$= Nk\{\ln[\frac{V}{N}(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{5}{2}\}$$

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \quad (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2 \beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] - \beta \frac{\partial}{\partial \beta} \ln \beta^{-3/2}] - (\ln N - 1)\}$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{3}{2} - (\ln N - 1)\}$$

$$= Nk\{\ln[\frac{V}{N}(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{5}{2}\}$$

$$= Nk\{-\ln(n\lambda^3) + \frac{5}{2}\} \quad \text{(before (7.2.7))}$$

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \quad (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2\beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2\beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] - \beta \frac{\partial}{\partial \beta} \ln \beta^{-3/2}] - (\ln N - 1)\}$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{3}{2} - (\ln N - 1)\}$$

$$= Nk\{\ln[\frac{V}{N}(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{5}{2}\}$$

$$= Nk\{-\ln(n\lambda^3) + \frac{5}{2}\} \quad \text{(before (7.2.7))}$$

$$= \frac{5}{2}Nk - Nk\ln(n\lambda^3);$$

A8.21 Prove: for monatomic classical ideal gas, entropy:

$$S = \frac{5}{2}Nk - Nk\ln(n\lambda^3).$$

• Partition function: $Z_1 = V(\frac{2\pi m}{h^2 \beta})^{3/2}$. (7.5.21) Entropy:

$$S = Nk(\ln Z_1 - \beta \frac{\partial}{\partial \beta} \ln Z_1) - k \ln N! \quad (7.1.13')$$

$$\simeq Nk\{\ln[V(\frac{2\pi m}{h^2\beta})^{\frac{3}{2}}] - \beta \frac{\partial}{\partial \beta} \ln[V(\frac{2\pi m}{h^2\beta})^{\frac{3}{2}}]\} - kN(\ln N - 1)$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] - \beta \frac{\partial}{\partial \beta} \ln \beta^{-3/2}] - (\ln N - 1)\}$$

$$= Nk\{\ln[V(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{3}{2} - (\ln N - 1)\}$$

$$= Nk\{\ln[\frac{V}{N}(\frac{2\pi mkT}{h^2})^{3/2}] + \frac{5}{2}\}$$

$$= Nk\{-\ln(n\lambda^3) + \frac{5}{2}\} \quad \text{(before (7.2.7))}$$

$$= \frac{5}{2}Nk - Nk\ln(n\lambda^3);$$

• $S = \frac{3}{2}Nk\ln T + Nk\ln\frac{V}{N} + \frac{3}{2}Nk\left[\frac{5}{3} + \ln\frac{2\pi mk}{h^2}\right]$. (7.6.2)

A8.26 Monatomic classical ideal gas, calculate the probability for atoms at $(\varepsilon, \varepsilon + d\varepsilon)$, $\rho(\varepsilon)$.

A8.26 Monatomic classical ideal gas, calculate the probability for atoms at $(\varepsilon, \varepsilon + d\varepsilon)$, $\rho(\varepsilon)$.

• The Maxwell's speed distribution, the number of molecules at (v, v + dv):

A8.26 Monatomic classical ideal gas, calculate the probability for atoms at $(\varepsilon, \varepsilon + d\varepsilon)$, $\rho(\varepsilon)$.

• The Maxwell's speed distribution, the number of molecules at (v, v + dv):

$$\rho(v) dv = \frac{dN(v)}{N} = 4\pi (\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv.$$

• The Maxwell's speed distribution, the number of molecules at $(v,v+\mathrm{d}v)$: $\rho(v)\mathrm{d}v = \frac{\mathrm{d}N(v)}{N} = 4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v.$ Convert to energy $(v=\sqrt{\frac{2\varepsilon}{m}})$:

• The Maxwell's speed distribution, the number of molecules at (v, v + dv): $a(v)dv = \frac{dN(v)}{dv} = 4\pi (\frac{m}{v})^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv$

$$\rho(v)dv = \frac{dN(v)}{N} = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv.$$

Convert to energy
$$(v = \sqrt{\frac{2\varepsilon}{m}})$$
:

$$\rho(\varepsilon)d\varepsilon = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\frac{2\varepsilon}{m}} \frac{2\varepsilon}{m} d\sqrt{\frac{2\varepsilon}{m}}$$

• The Maxwell's speed distribution, the number of molecules at $(v,v+\mathrm{d}v)$: $\rho(v)\mathrm{d}v = \frac{\mathrm{d}N(v)}{N} = 4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}v^2}v^2\mathrm{d}v.$ Convert to energy $(v=\sqrt{\frac{2\varepsilon}{m}})$: $\rho(\varepsilon)\mathrm{d}\varepsilon = 4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}\frac{2\varepsilon}{m}}\frac{2\varepsilon}{m}\mathrm{d}\sqrt{\frac{2\varepsilon}{m}}$ $= \frac{2}{\sqrt{\pi}}(kT)^{-\frac{3}{2}}\varepsilon^{\frac{1}{2}}e^{-\frac{\varepsilon}{2kT}}\mathrm{d}\varepsilon;$

• The Maxwell's speed distribution, the number of molecules at $(v, v + \mathrm{d}v)$:

$$\rho(v)dv = \frac{dN(v)}{N} = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} v^2 dv.$$

Convert to energy $(v = \sqrt{\frac{2\varepsilon}{m}})$:

$$\rho(\varepsilon)d\varepsilon = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\frac{2\varepsilon}{m}} \frac{2\varepsilon}{m} d\sqrt{\frac{2\varepsilon}{m}}$$
$$= \frac{2}{\sqrt{\pi}} (kT)^{-\frac{3}{2}} \varepsilon^{\frac{1}{2}} e^{-\frac{\varepsilon}{2kT}} d\varepsilon;$$

• Compare with the black-body:

$$\rho(\omega)d\omega = \frac{V}{\pi^2 c^3} \frac{\omega^2}{e^{\frac{\hbar \omega}{kT}} - 1} d\omega.$$
 (8.4.6)

•
$$n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$$
. $n = ?$

• $n\lambda^3=n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}.$ n=? Solar photosphere density $2\times 10^{-4}{\rm kg~m^{-3}}$ (wikipedia);

• $n\lambda^3 = n(\frac{h^2}{2\pi m hT})^{\frac{3}{2}}$. n = ?Solar photosphere density $2 \times 10^{-4} \text{kg m}^{-3}$ (wikipedia); number density $n \simeq \frac{2 \times 10^{-4} \text{kg m}^{-3}}{1.67 \times 10^{-27} \text{kg}} \simeq 10^{23} \text{m}^{-3}$.

• $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$. n=? Solar photosphere density $2\times 10^{-4}{\rm kg~m^{-3}}$ (wikipedia); number density $n\simeq \frac{2\times 10^{-4}{\rm kg~m^{-3}}}{1.67\times 10^{-27}{\rm kg}}\simeq 10^{23}{\rm m^{-3}}$. $n\lambda^3\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot k\cdot \frac{1{\rm eV}}{k}}]^{3/2}$

• $n\lambda^3=n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}.$ n=? Solar photosphere density $2\times 10^{-4}{\rm kg~m^{-3}}$ (wikipedia); number density $n\simeq \frac{2\times 10^{-4}{\rm kg~m^{-3}}}{1.67\times 10^{-27}{\rm kg}}\simeq 10^{23}{\rm m^{-3}}.$ $n\lambda^3\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot k\cdot \frac{1{\rm eV}}{k}}]^{3/2}$ $\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot l\cdot (6\times 10^{-19}{\rm J})}]^{3/2}$

 $\begin{array}{l} \bullet \ n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}. \ n = ? \\ \text{Solar photosphere density } 2\times 10^{-4} \mathrm{kg \, m^{-3}} \ \text{(wikipedia);} \\ \text{number density } n \simeq \frac{2\times 10^{-4} \mathrm{kg \, m^{-3}}}{1.67\times 10^{-27} \mathrm{kg}} \simeq 10^{23} \mathrm{m^{-3}}. \\ n\lambda^3 \simeq 10^{23} \mathrm{m^{-3}} [\frac{(6.626\times 10^{-34}\mathrm{J \cdot s})^2}{2\pi \cdot 1.67\times 10^{-27} \mathrm{kg} \cdot k \cdot \frac{\mathrm{1eV}}{k}}]^{3/2} \\ \simeq 10^{23} \mathrm{m^{-3}} [\frac{(6.626\times 10^{-34}\mathrm{J \cdot s})^2}{2\pi \cdot 1.67\times 10^{-27} \mathrm{kg \cdot 1.6}\times 10^{-19}\mathrm{J}}]^{3/2} \simeq 4.2\times 10^{-10} \\ \end{array}$

• $n\lambda^3=n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}.$ n=? Solar photosphere density $2\times 10^{-4}{\rm kg~m^{-3}}$ (wikipedia); number density $n\simeq \frac{2\times 10^{-4}{\rm kg~m^{-3}}}{1.67\times 10^{-27}{\rm kg}}\simeq 10^{23}{\rm m^{-3}}.$ $n\lambda^3\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot k\cdot \frac{1{\rm eV}}{k}}]^{3/2}$ $\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot 1.6\times 10^{-19}{\rm J}}]^{3/2}\simeq 4.2\times 10^{-10}$ $\ll 1$, Boltzmann statistics.

•
$$n\lambda^3=n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}.$$
 $n=?$ Solar photosphere density $2\times 10^{-4}{\rm kg~m^{-3}}$ (wikipedia); number density $n\simeq \frac{2\times 10^{-4}{\rm kg~m^{-3}}}{1.67\times 10^{-27}{\rm kg}}\simeq 10^{23}{\rm m^{-3}}.$ $n\lambda^3\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot k\cdot \frac{1{\rm eV}}{k}}]^{3/2}$ $\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot 1.6\times 10^{-19}{\rm J}}]^{3/2}\simeq 4.2\times 10^{-10}$ $\ll 1$, Boltzmann statistics.

• 1. $\frac{3}{2}kT = \bar{\varepsilon} = 1eV$;

•
$$n\lambda^3=n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}.$$
 $n=?$ Solar photosphere density $2\times 10^{-4}{\rm kg~m^{-3}}$ (wikipedia); number density $n\simeq \frac{2\times 10^{-4}{\rm kg~m^{-3}}}{1.67\times 10^{-27}{\rm kg}}\simeq 10^{23}{\rm m^{-3}}.$ $n\lambda^3\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot k\cdot \frac{1{\rm eV}}{k}}]^{3/2}$ $\simeq 10^{23}{\rm m^{-3}}[\frac{(6.626\times 10^{-34}{\rm J\cdot s})^2}{2\pi\cdot 1.67\times 10^{-27}{\rm kg}\cdot 1.6\times 10^{-19}{\rm J}}]^{3/2}\simeq 4.2\times 10^{-10}$ $\ll 1$, Boltzmann statistics.

• 1. $\frac{3}{2}kT = \bar{\varepsilon} = 1\text{eV}; \Rightarrow T \simeq 7.7 \times 10^3\text{K}.$

• 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$;

• 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$,

• 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$. so. $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 - \varepsilon_3}{kT}}$

• 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 - \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \text{eV} \cdot 8/9}{2/3 \text{eV}}}$

• 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \mathrm{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 - \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \mathrm{eV} \cdot 8/9}{2/3 \mathrm{eV}}} \simeq 1.33 \times 10^{-8}$.

- 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \text{eV} \cdot 8/9}{2/3 \text{eV}}} \simeq 1.33 \times 10^{-8}$.
- 3. Ionized number:

- 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \text{eV} \cdot 8/9}{2/3 \text{eV}}} \simeq 1.33 \times 10^{-8}$.
- 3. Ionized number: lonized hydrogen, energy is the kinetic energy (continuous), electron's spin (1/2).

- 2. Energy level: $\varepsilon_n = -\frac{13.6}{2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 - \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \text{eV} \cdot 8/9}{2/3 \text{eV}}} \simeq 1.33 \times 10^{-8}.$
- 3. Ionized number: lonized hydrogen, energy is the kinetic energy (continuous), electron's spin (1/2). $a(\varepsilon)d\varepsilon = e^{-\alpha - \beta \varepsilon} \cdot 2 \cdot \frac{2\pi V}{\kappa^3} (2m)^{3/2} \varepsilon^{1/2} d\varepsilon$

- 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \mathrm{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \mathrm{eV} \cdot 8/9}{2/3 \mathrm{eV}}} \simeq 1.33 \times 10^{-8}$.
- 3. Ionized number: lonized hydrogen, energy is the kinetic energy (continuous), electron's spin (1/2). $a(\varepsilon) \mathrm{d}\varepsilon = e^{-\alpha \beta \varepsilon} \cdot 2 \cdot \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} \mathrm{d}\varepsilon$ $N_I = \frac{4\pi V}{h^3} (2m)^{3/2} \int_0^\infty e^{-\alpha \beta \varepsilon} \varepsilon^{1/2} \mathrm{d}\varepsilon$

- ... 2. ratio of the number of hydrogen at the 2nd excited level (n=3) and the ground level (n=1); 3. number of ionized hydrogen.
 - 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \mathrm{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \mathrm{eV} \cdot 8/9}{2/3 \mathrm{eV}}} \simeq 1.33 \times 10^{-8}$.
 - 3. Ionized number: lonized hydrogen, energy is the kinetic energy (continuous), electron's spin (1/2). $a(\varepsilon) d\varepsilon = e^{-\alpha \beta \varepsilon} \cdot 2 \cdot \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} d\varepsilon$ $N_I = \frac{4\pi V}{h^3} (2m)^{3/2} \int_0^\infty e^{-\alpha \beta \varepsilon} \varepsilon^{1/2} d\varepsilon$ $= \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \int_0^\infty e^{-\beta \varepsilon} (\beta \varepsilon)^{1/2} d(\beta \varepsilon)$

- ... 2. ratio of the number of hydrogen at the 2nd excited level (n=3) and the ground level (n=1); 3. number of ionized hydrogen.
 - 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 - \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \text{eV} \cdot 8/9}{2/3 \text{eV}}} \simeq 1.33 \times 10^{-8}$.
 - 3. Ionized number: lonized hydrogen, energy is the kinetic energy (continuous), electron's spin (1/2). $a(\varepsilon) \mathrm{d}\varepsilon = e^{-\alpha \beta \varepsilon} \cdot 2 \cdot \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} \mathrm{d}\varepsilon$ $N_I = \frac{4\pi V}{h^3} (2m)^{3/2} \int_0^\infty e^{-\alpha \beta \varepsilon} \varepsilon^{1/2} \mathrm{d}\varepsilon$ $= \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \int_0^\infty e^{-\beta \varepsilon} (\beta \varepsilon)^{1/2} \mathrm{d}(\beta \varepsilon)$ $= \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \frac{\sqrt{\pi}}{2}.$

- ... 2. ratio of the number of hydrogen at the 2nd excited level (n=3) and the ground level (n=1); 3. number of ionized hydrogen.
 - 2. Energy level: $\varepsilon_n = -\frac{13.6}{n^2} \text{eV}$; Boltzmann distribution: $a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$, so, $\frac{N_3}{N_1} = \frac{a_3}{a_1} = 3^2 \cdot e^{\frac{\varepsilon_1 - \varepsilon_3}{kT}} = 3^2 e^{\frac{-1.36 \text{eV} \cdot 8/9}{2/3 \text{eV}}} \simeq 1.33 \times 10^{-8}$.
 - 3. Ionized number: lonized hydrogen, energy is the kinetic energy (continuous), electron's spin (1/2). $a(\varepsilon) \mathrm{d}\varepsilon = e^{-\alpha \beta \varepsilon} \cdot 2 \cdot \frac{2\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} \mathrm{d}\varepsilon$ $N_I = \frac{4\pi V}{h^3} (2m)^{3/2} \int_0^\infty e^{-\alpha \beta \varepsilon} \varepsilon^{1/2} \mathrm{d}\varepsilon$ $= \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \int_0^\infty e^{-\beta \varepsilon} (\beta \varepsilon)^{1/2} \mathrm{d}(\beta \varepsilon)$ $= \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \frac{\sqrt{\pi}}{2}.$

$$N_I = rac{4\pi V}{h^3} (2m)^{3/2} e^{-lpha} eta^{-3/2} rac{\sqrt{\pi}}{2}$$
 ,

•
$$N_I = \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \frac{\sqrt{\pi}}{2}$$
, $N_1 = N e^{-\alpha - \frac{-13.6 \text{eV}}{kT}}$; (?? see saha.pdf)

•
$$N_I = \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \frac{\sqrt{\pi}}{2}$$
,
 $N_1 = N e^{-\alpha - \frac{-13.6 \text{eV}}{kT}}$; (?? see saha.pdf)
 $\Rightarrow \frac{N_I}{N_1} = \frac{4\pi}{nh^3} (2m)^{3/2} e^{-\frac{13.6 \text{eV}}{kT}} \beta^{-3/2}$

$$\begin{split} \bullet \ N_I &= \tfrac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \tfrac{\sqrt{\pi}}{2}, \\ N_1 &= N e^{-\alpha - \tfrac{-13.6\mathrm{eV}}{kT}}; \ (\ref{eq:see} \ \text{see saha.pdf}) \\ &\Rightarrow \tfrac{N_I}{N_1} = \tfrac{4\pi}{nh^3} (2m)^{3/2} e^{-\tfrac{13.6\mathrm{eV}}{kT}} \beta^{-3/2} \\ &= \tfrac{2}{nh^3} (2\pi mkT)^{3/2} e^{-\tfrac{13.6\mathrm{eV}}{kT}} \end{split}$$

$$\begin{split} \bullet \ N_I &= \frac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \frac{\sqrt{\pi}}{2}, \\ N_1 &= N e^{-\alpha - \frac{-13.6 \text{eV}}{kT}}; \text{ (?? see saha.pdf)} \\ &\Rightarrow \frac{N_I}{N_1} = \frac{4\pi}{nh^3} (2m)^{3/2} e^{-\frac{13.6 \text{eV}}{kT}} \beta^{-3/2} \\ &= \frac{2}{nh^3} (2\pi mkT)^{3/2} e^{-\frac{13.6 \text{eV}}{kT}} \\ \text{with } n &\simeq 10^{23} \text{m}^{-3}, \ h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}, \\ kT &\simeq 2/3 eV, \ m_e = 9.1 \times 10^{-31} \text{kg} \end{split}$$

$$\begin{split} \bullet \ N_I &= \tfrac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \tfrac{\sqrt{\pi}}{2}, \\ N_1 &= N e^{-\alpha - \tfrac{-13.6 \mathrm{eV}}{kT}}; \ (\ref{eq:see} \ \, \mathrm{saha.pdf}) \\ &\Rightarrow \tfrac{N_I}{N_1} = \tfrac{4\pi}{nh^3} (2m)^{3/2} e^{-\tfrac{13.6 \mathrm{eV}}{kT}} \beta^{-3/2} \\ &= \tfrac{2}{nh^3} (2\pi mkT)^{3/2} e^{-\tfrac{13.6 \mathrm{eV}}{kT}} \\ \mathrm{with} \ n &\simeq 10^{23} \mathrm{m}^{-3}, \ h = 6.626 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}, \\ kT &\simeq 2/3 eV, \ m_e = 9.1 \times 10^{-31} \mathrm{kg} \\ &\Rightarrow \tfrac{N_I}{N_1} \simeq \tfrac{2 \cdot (2\pi 9.1 \times 10^{-31} \mathrm{kg} \cdot 2/3 \cdot 1.6 \times 10^{-19})^{3/2}}{10^{23} \mathrm{m}^{-3} \cdot (6.626 \times 10^{-34} \mathrm{J} \cdot \mathrm{s})^3} e^{-\tfrac{13.6 \mathrm{eV}}{2/3 \mathrm{eV}}} \end{split}$$

$$\begin{split} \bullet \ N_I &= \tfrac{4\pi V}{h^3} (2m)^{3/2} e^{-\alpha} \beta^{-3/2} \tfrac{\sqrt{\pi}}{2}, \\ N_1 &= N e^{-\alpha - \tfrac{-13.6\mathrm{eV}}{kT}}; \ (\ref{eq:see} \ \ \text{see} \ \ \text{saha.pdf}) \\ &\Rightarrow \tfrac{N_I}{N_1} = \tfrac{4\pi}{nh^3} (2m)^{3/2} e^{-\tfrac{13.6\mathrm{eV}}{kT}} \beta^{-3/2} \\ &= \tfrac{2}{nh^3} (2\pi mkT)^{3/2} e^{-\tfrac{13.6\mathrm{eV}}{kT}} \\ \text{with } n &\simeq 10^{23} \mathrm{m}^{-3}, \ h = 6.626 \times 10^{-34} \mathrm{J \cdot s}, \\ kT &\simeq 2/3 eV, \ m_e = 9.1 \times 10^{-31} \mathrm{kg} \\ &\Rightarrow \tfrac{N_I}{N_1} \simeq \tfrac{2 \cdot (2\pi 9.1 \times 10^{-31} \mathrm{kg} \cdot 2/3 \cdot 1.6 \times 10^{-19})^{3/2}}{10^{23} \mathrm{m}^{-3} \cdot (6.626 \times 10^{-34} \mathrm{J \cdot s})^3} e^{-\tfrac{13.6\mathrm{eV}}{2/3\mathrm{eV}}} \\ &\simeq 4.5 \times 10^{-5} \ll 1. \end{split}$$

Table of contents

- §6. Most probable distribution of nearly independent particles
- 2 §7. Boltzmann statistics
- 3 §8. Bose statistics and Fermi statistics
 - Bose statistics
 - Fermi statistics
 - Fermion gas in astrophysics

A10.1 Boson gas with number N, two energy levels, $0, \varepsilon$; degeneracy ω_1, ω_2 . Determine the temperature T when $N_1 = 2N_2$.

A10.1 Boson gas with number N, two energy levels, $0, \varepsilon$; degeneracy ω_1, ω_2 . Determine the temperature T when $N_1 = 2N_2$.

•
$$N_1 = \frac{2}{3}N$$
, $N_2 = \frac{1}{3}N$.

• $N_1=\frac{2}{3}N$, $N_2=\frac{1}{3}N$. Bose distribution: $a_l=\frac{\omega_l}{e^{\frac{\varepsilon_l-\mu}{kT}}-1}$.

• $N_1=\frac{2}{3}N$, $N_2=\frac{1}{3}N$. Bose distribution: $a_l=\frac{\omega_l}{e^{\frac{\varepsilon_l-\mu}{kT}}-1}$. $N_1=a_1=\frac{\omega_1}{e^{\frac{\varepsilon_1-\mu}{kT}}-1}=\frac{\omega_1}{e^{\frac{-\mu}{kT}}-1}=\frac{2}{3}N$

• $N_1=\frac{2}{3}N$, $N_2=\frac{1}{3}N$. Bose distribution: $a_l=\frac{\omega_l}{e^{\frac{E_l-\mu}{kT}}-1}$. $N_1=a_1=\frac{\omega_1}{e^{\frac{E_1-\mu}{kT}}-1}=\frac{\omega_1}{e^{\frac{E_1-\mu}{kT}}-1}=\frac{2}{3}N$ $\Rightarrow \mu=-kT\ln(1+\frac{3}{2}\frac{\omega_1}{N});$

• $N_1 = \frac{2}{3}N$, $N_2 = \frac{1}{3}N$. Bose distribution: $a_l = \frac{\omega_l}{e^{\frac{\varepsilon_l - \mu}{kT}} - 1}$. $N_1 = a_1 = \frac{\omega_1}{e^{\frac{\varepsilon_1 - \mu}{kT}} - 1} = \frac{\omega_1}{e^{\frac{\varepsilon_l - \mu}{kT}} - 1} = \frac{2}{3}N$ $\Rightarrow \mu = -kT\ln(1 + \frac{3}{2}\frac{\omega_1}{N});$ $N_2 = a_2 = \frac{\omega_2}{e^{\frac{\varepsilon_2 - \mu}{kT}} - 1} = \frac{\omega_2}{e^{\frac{\varepsilon_2 - \mu}{kT}} - 1} = \frac{1}{3}N$

$$\begin{split} \bullet & \ N_1 = \frac{2}{3}N, \ N_2 = \frac{1}{3}N. \\ \text{Bose distribution:} & \ a_l = \frac{\omega_l}{\frac{\varepsilon_l - \mu}{kT} - 1}. \\ N_1 = a_1 = \frac{\omega_1}{\frac{\varepsilon_1 - \mu}{e^{\frac{1}{kT}} - 1}} = \frac{\omega_1}{e^{\frac{1}{kT}} - 1} = \frac{2}{3}N \\ \Rightarrow \mu = -kT\ln(1 + \frac{3}{2}\frac{\omega_1}{N}); \\ N_2 = a_2 = \frac{\omega_2}{e^{\frac{\varepsilon_2 - \mu}{kT}} - 1} = \frac{\omega_2}{e^{\frac{\varepsilon_2 - \mu}{kT}} - 1} = \frac{1}{3}N \\ \Rightarrow \varepsilon - \mu = kT\ln(1 + \frac{3\omega_2}{N}) \end{split}$$

• $N_1 = \frac{2}{3}N$, $N_2 = \frac{1}{3}N$. Bose distribution: $a_l = \frac{\omega_l}{e^{\frac{\varepsilon_l - \mu}{kT}} - 1}$. $N_1 = a_1 = \frac{\omega_1}{e^{\frac{\varepsilon_1 - \mu}{kT} - 1}} = \frac{\omega_1}{e^{\frac{-\mu}{kT} - 1}} = \frac{2}{3}N$ $\Rightarrow \mu = -kT \ln(1 + \frac{3}{2} \frac{\omega_1}{N});$ $N_2 = a_2 = \frac{\omega_2}{e^{\frac{\varepsilon_2 - \mu}{kT} - 1}} = \frac{\omega_2}{e^{\frac{\varepsilon - \mu}{kT} - 1}} = \frac{1}{3}N$ $\Rightarrow \varepsilon - \mu = kT \ln(1 + \frac{3\omega_2}{N})$ $\Rightarrow T = \frac{\varepsilon}{k \ln(\frac{2N+6\omega_2}{2N+2\cdots})}.$

Table of contents

- §6. Most probable distribution of nearly independent particles
- 2 §7. Boltzmann statistics
- 3 §8. Bose statistics and Fermi statistics
 - Bose statistics
 - Fermi statistics
 - Fermion gas in astrophysics

Fermi distribution at a quantum state:

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}$$
.

Fermi distribution at a quantum state:

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}.$$

The probability to find an electron at $\mu - \Delta$:

$$\frac{1}{e^{\beta[(\mu-\Delta)-\mu]}+1}=\frac{1}{e^{-\beta\Delta}+1};$$

• Fermi distribution at a quantum state:

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}$$
.

The probability to find an electron at $\mu - \Delta$:

$$\frac{1}{e^{\beta[(\mu-\Delta)-\mu]}+1}=\frac{1}{e^{-\beta\Delta}+1};$$

The probability to find an electron at $\mu + \Delta$:

$$\frac{1}{e^{\beta[(\mu+\Delta)-\mu]}+1}=\frac{1}{e^{\beta\Delta}+1};$$

• Fermi distribution at a quantum state:

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}$$
.

The probability to find an electron at $\mu - \Delta$:

$$\frac{1}{e^{\beta[(\mu-\Delta)-\mu]}+1} = \frac{1}{e^{-\beta\Delta}+1};$$

The probability to find an electron at $\mu + \Delta$:

$$\frac{1}{e^{\beta[(\mu+\Delta)-\mu]}+1}=\frac{1}{e^{\beta\Delta}+1};$$

The probability not to find an electron at $\mu + \Delta$:

$$1 - \frac{1}{e^{\beta \Delta} + 1}$$

Fermi distribution at a quantum state:

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}.$$

The probability to find an electron at $\mu - \Delta$:

$$\frac{1}{e^{\beta[(\mu-\Delta)-\mu]}+1} = \frac{1}{e^{-\beta\Delta}+1};$$

The probability to find an electron at $\mu + \Delta$:

$$\frac{1}{e^{\beta[(\mu+\Delta)-\mu]}+1}=\frac{1}{e^{\beta\Delta}+1};$$

The probability not to find an electron at $\mu + \Delta$:

$$1 - \frac{1}{e^{\beta \Delta} + 1} = \frac{e^{\beta \Delta}}{e^{\beta \Delta} + 1} = \frac{1}{e^{-\beta \Delta} + 1}.$$

• 1. For chemical reaction $A \rightleftharpoons B + C$ in equilibrium, there exists $\mu_A = \mu_B + \mu_C$.

• 1. For chemical reaction $A \rightleftharpoons B + C$ in equilibrium, there exists $\mu_A = \mu_B + \mu_C$. And $\mu_{\gamma}=0$,

15 / 32

• 1. For chemical reaction $A \rightleftharpoons B+C$ in equilibrium, there exists $\mu_A=\mu_B+\mu_C$. And $\mu_{\gamma}=0$, so $\mu_{e^+}+\mu_{e^-}=0$.

• 1. For chemical reaction $A \rightleftharpoons B + C$ in equilibrium, there exists $\mu_A = \mu_B + \mu_C$. And $\mu_{\gamma} = 0$, so $\mu_{e^+} + \mu_{e^-} = 0$. Because of the symmetry between electron and positron, $\mu_{e^+} = \mu_{e^-} = 0$.

- 1. For chemical reaction $A \rightleftharpoons B+C$ in equilibrium, there exists $\mu_A=\mu_B+\mu_C$. And $\mu_\gamma=0$, so $\mu_{e^+}+\mu_{e^-}=0$. Because of the symmetry between electron and positron, $\mu_{e^+}=\mu_{e^-}=0$.
- 2. Fermi distribution: $f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}$.

- 1. For chemical reaction $A \rightleftharpoons B + C$ in equilibrium, there exists $\mu_A = \mu_B + \mu_C$. And $\mu_{\gamma} = 0$, so $\mu_{e^+} + \mu_{e^-} = 0$. Because of the symmetry between electron and positron, $\mu_{e^+} = \mu_{e^-} = 0$.
- 2. Fermi distribution: $f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}+1}$. $N_{e^{\pm}} = \int_{0}^{\infty} f(\varepsilon) 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$

- 1. For chemical reaction $A \rightleftharpoons B + C$ in equilibrium, there exists $\mu_A = \mu_B + \mu_C$. And $\mu_{\gamma}=0$, so $\mu_{e^+}+\mu_{e^-}=0$. Because of the symmetry between electron and positron, $\mu_{e^+} = \mu_{e^-} = 0.$
- 2. Fermi distribution: $f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)} + 1}$. $N_{e^{\pm}} = \int_{0}^{\infty} f(\varepsilon) 2 \cdot \frac{V 4\pi p^{2} dp}{h^{3}} = \int_{0}^{\infty} \frac{1}{e^{\frac{1}{kT}+1}} 2 \cdot \frac{V 4\pi p^{2} dp}{h^{3}}$

•
$$N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}+1}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$$
.

•
$$N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}+1}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$$
.

• $kT\gg m_ec^2$, relativistic, $\varepsilon\simeq pc$,

•
$$N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}+1}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$$
.

•
$$kT \gg m_e c^2$$
, relativistic, $\varepsilon \simeq pc$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{\frac{pc}{e^kT + 1}} 2 \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{V(kT)^3}{\pi^2(\hbar c)^3} \int_0^{\infty} \frac{x^2 dx}{e^x + 1}$.

- $N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}} + 1} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$.
- $kT \gg m_e c^2$, relativistic, $\varepsilon \simeq pc$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{1}{kT}} + 1} 2 \cdot \frac{V 4\pi p^2 dp}{h^3} = \frac{V (kT)^3}{\pi^2 (\hbar c)^3} \int_0^{\infty} \frac{x^2 dx}{e^x + 1}$.
- $kT\ll m_ec^2$, $\varepsilon=\sqrt{(pc)^2+(m_ec^2)^2}\simeq m_ec^2+\frac{p^2}{2m_e}$ and $e^{\frac{\varepsilon}{kT}}\gg 1$.

- $N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}} + 1} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$.
- $kT \gg m_e c^2$, relativistic, $\varepsilon \simeq pc$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{1}{kT}} + 1} 2 \cdot \frac{V 4\pi p^2 dp}{h^3} = \frac{V (kT)^3}{\pi^2 (\hbar c)^3} \int_0^{\infty} \frac{x^2 dx}{e^x + 1}$.
- $kT \ll m_e c^2$, $\varepsilon = \sqrt{(pc)^2 + (m_e c^2)^2} \simeq m_e c^2 + \frac{p^2}{2m_e}$ and $e^{\frac{\varepsilon}{kT}} \gg 1$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{1}{m_e c^2 + \frac{p^2}{2m_e}}}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$

•
$$N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}} + 1} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$$
.

- $kT \gg m_e c^2$, relativistic, $\varepsilon \simeq pc$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{pc}{kT}} + 1} 2 \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{V(kT)^3}{\pi^2 (\hbar c)^3} \int_0^{\infty} \frac{x^2 dx}{e^x + 1}$.
- $kT \ll m_e c^2$, $\varepsilon = \sqrt{(pc)^2 + (m_e c^2)^2} \simeq m_e c^2 + \frac{p^2}{2m_e}$ and $e^{\frac{\varepsilon}{kT}} \gg 1$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{m_e c^2 + \frac{p^2}{2m_e}}{kT}}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$ $= e^{-\frac{m_e c^2}{kT}} \int_0^{\infty} e^{-\frac{p^2}{2m_e kT}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$

- $N_{e^{\pm}} = \int_0^\infty \frac{1}{e^{\frac{\varepsilon}{kT}} + 1} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$.
- $kT \gg m_e c^2$, relativistic, $\varepsilon \simeq pc$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{1}{kT}} + 1} 2 \cdot \frac{V 4\pi p^2 dp}{h^3} = \frac{V (kT)^3}{\pi^2 (\hbar c)^3} \int_0^{\infty} \frac{x^2 dx}{e^x + 1}$.
- $kT \ll m_e c^2$, $\varepsilon = \sqrt{(pc)^2 + (m_e c^2)^2} \simeq m_e c^2 + \frac{p^2}{2m_e}$ and $e^{\frac{\varepsilon}{kT}} \gg 1$, $N_{e^{\pm}} = \int_0^{\infty} \frac{1}{e^{\frac{m_e c^2 + \frac{p^2}{2m_e}}{kT}}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3}$ $= e^{-\frac{m_e c^2}{kT}} \int_0^{\infty} e^{-\frac{p^2}{2m_e kT}} 2 \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3} = 2V(\frac{2\pi m_e kT}{h^2})^{\frac{3}{2}} e^{-\frac{m_e c^2}{kT}}.$

ullet Two cases according to the velocity comparing with c.

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$,

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon) \mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2 \mathrm{d}p}{b^3} = C\varepsilon^{1/2} \mathrm{d}\varepsilon$.

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C\varepsilon^{1/2}\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^{3/2}\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^{1/2}\mathrm{d}\varepsilon}$

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C\varepsilon^{1/2}\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^{3/2}\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^{1/2}\mathrm{d}\varepsilon} = \frac{3}{5}\varepsilon_F$.

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C\varepsilon^{1/2}\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^{3/2}\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^{1/2}\mathrm{d}\varepsilon} = \frac{3}{5}\varepsilon_F$.
- b. Relativistic case, $\varepsilon = pc$,

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C\varepsilon^{1/2}\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^{3/2}\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^{1/2}\mathrm{d}\varepsilon} = \frac{3}{5}\varepsilon_F$.
- b. Relativistic case, $\varepsilon = pc$, number of state: $D(\varepsilon) d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = C'\varepsilon^2 d\varepsilon$.

A9.23 Fermi energy of Fermi gas is ε_F . Calculate the average energy at T=0K.

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C\varepsilon^{1/2}\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^{3/2}\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^{1/2}\mathrm{d}\varepsilon} = \frac{3}{5}\varepsilon_F$.
- b. Relativistic case, $\varepsilon = pc$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g\cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C'\varepsilon^2\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^3\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^2\mathrm{d}\varepsilon}$

A9.23 Fermi energy of Fermi gas is ε_F . Calculate the average energy at T=0K.

- ullet Two cases according to the velocity comparing with c.
- a. Non-relativistic case, $\varepsilon = \frac{p^2}{2m}$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C\varepsilon^{1/2}\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^{3/2}\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^{1/2}\mathrm{d}\varepsilon} = \frac{3}{5}\varepsilon_F$.
- b. Relativistic case, $\varepsilon = pc$, number of state: $D(\varepsilon)\mathrm{d}\varepsilon = g\cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = C'\varepsilon^2\mathrm{d}\varepsilon$. average energy: $\bar{\varepsilon} = \frac{\int_0^{\varepsilon_F} \varepsilon^3\mathrm{d}\varepsilon}{\int_0^{\varepsilon_F} \varepsilon^2\mathrm{d}\varepsilon} = \frac{3}{4}\varepsilon_F$.

$$\mathcal{Z}(\alpha, \beta, V) = e^{a[\frac{4}{15}(-\alpha)^{5/2} + \frac{\pi^2}{6}(-\alpha)^{1/2} - \frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}}$$
, where $a = \frac{2\pi g V (2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T, V, \mu)$. (non-relativistic)

$$\mathcal{Z}(\alpha,\beta,V) = e^{a[rac{4}{15}(-lpha)^{5/2} + rac{\pi^2}{6}(-lpha)^{1/2} - rac{7\pi^4}{1440}(-lpha)^{-3/2}]eta^{-3/2}}$$
, where $a = rac{2\pi gV(2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T,V,\mu)$. (non-relativistic)

•
$$D(\varepsilon)d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{2\pi gV(2m)^{3/2}}{h^3} \varepsilon^{1/2} d\varepsilon = a\varepsilon^{1/2} d\varepsilon$$
.

$$\mathcal{Z}(\alpha,\beta,V) = e^{a[rac{4}{15}(-lpha)^{5/2} + rac{\pi^2}{6}(-lpha)^{1/2} - rac{7\pi^4}{1440}(-lpha)^{-3/2}]eta^{-3/2}}$$
, where $a = rac{2\pi gV(2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T,V,\mu)$. (non-relativistic)

•
$$D(\varepsilon)d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{2\pi gV(2m)^{3/2}}{h^3} \varepsilon^{1/2} d\varepsilon = a\varepsilon^{1/2} d\varepsilon.$$

 $\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l})$

Fermi statistics

A9.32 Prove \mathcal{Z} for strong degenerated Fermi gas:

$$\mathcal{Z}(\alpha,\beta,V) = e^{a[rac{4}{15}(-lpha)^{5/2} + rac{\pi^2}{6}(-lpha)^{1/2} - rac{7\pi^4}{1440}(-lpha)^{-3/2}]eta^{-3/2}}$$
, where $a = rac{2\pi gV(2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T,V,\mu)$. (non-relativistic)

• $D(\varepsilon)d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{2\pi gV(2m)^{3/2}}{h^3} \varepsilon^{1/2} d\varepsilon = a\varepsilon^{1/2} d\varepsilon.$ $\ln \mathcal{Z} = \sum_{l} \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l})$ $= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) d\varepsilon$

$$\mathcal{Z}(\alpha,\beta,V)=e^{a[\frac{4}{15}(-\alpha)^{5/2}+\frac{\pi^2}{6}(-\alpha)^{1/2}-\frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}}, \text{ where } a=\frac{2\pi gV(2m)^{3/2}}{h^3}, \ g \text{ is the inner degeneracy. Then calculate the grand potential } J(T,V,\mu). \text{ (non-relativistic)}$$

•
$$D(\varepsilon)d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{2\pi g V(2m)^{3/2}}{h^3} \varepsilon^{1/2} d\varepsilon = a\varepsilon^{1/2} d\varepsilon.$$

 $\ln \mathcal{Z} = \sum_{l} \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l})$
 $= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) d\varepsilon$
 $= a \int_0^\infty \varepsilon^{1/2} \ln(1 + e^{-\alpha - \beta \varepsilon}) d\varepsilon$

$$\mathcal{Z}(\alpha,\beta,V) = e^{a[\frac{4}{15}(-\alpha)^{5/2}+\frac{\pi^2}{6}(-\alpha)^{1/2}-\frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}}$$
, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T,V,\mu)$. (non-relativistic)

•
$$D(\varepsilon)d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{2\pi g V(2m)^{3/2}}{h^3} \varepsilon^{1/2} d\varepsilon = a\varepsilon^{1/2} d\varepsilon.$$

 $\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l})$
 $= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) d\varepsilon$
 $= a \int_0^\infty \varepsilon^{1/2} \ln(1 + e^{-\alpha - \beta \varepsilon}) d\varepsilon$
 $= a \{ \frac{2}{3} \varepsilon^{3/2} \ln(1 + e^{-\alpha - \beta \varepsilon}) |_0^\infty + \frac{2}{3} \int_0^\infty \varepsilon^{3/2} \frac{\beta e^{-\alpha - \beta \varepsilon}}{1 + e^{-\alpha - \beta \varepsilon}} d\varepsilon \}$

$$\mathcal{Z}(\alpha,\beta,V) = e^{a[\frac{4}{15}(-\alpha)^{5/2}+\frac{\pi^2}{6}(-\alpha)^{1/2}-\frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}}$$
, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T,V,\mu)$. (non-relativistic)

•
$$D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = \frac{2\pi gV(2m)^{3/2}}{h^3}\varepsilon^{1/2}\mathrm{d}\varepsilon = a\varepsilon^{1/2}\mathrm{d}\varepsilon.$$

 $\ln \mathcal{Z} = \sum \omega_l \ln(1+e^{-\alpha-\beta\varepsilon_l})$
 $= \int_0^\infty D(\varepsilon) \ln(1+e^{-\alpha-\beta\varepsilon})\mathrm{d}\varepsilon$
 $= a \int_0^\infty \varepsilon^{1/2} \ln(1+e^{-\alpha-\beta\varepsilon})\mathrm{d}\varepsilon$
 $= a\{\frac{2}{3}\varepsilon^{3/2}\ln(1+e^{-\alpha-\beta\varepsilon})|_0^\infty + \frac{2}{3}\int_0^\infty \varepsilon^{3/2}\frac{\beta e^{-\alpha-\beta\varepsilon}}{1+e^{-\alpha-\beta\varepsilon}}\mathrm{d}\varepsilon\}$
..(A grand dic of phys problems & solutions 5, P_{322} .)

$$\mathcal{Z}(\alpha,\beta,V) = e^{a[\frac{4}{15}(-\alpha)^{5/2}+\frac{\pi^2}{6}(-\alpha)^{1/2}-\frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}}$$
, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$, g is the inner degeneracy. Then calculate the grand potential $J(T,V,\mu)$. (non-relativistic)

$$\begin{aligned} \bullet & D(\varepsilon) \mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3} = \frac{2\pi g V(2m)^{3/2}}{h^3} \varepsilon^{1/2} \mathrm{d}\varepsilon = a\varepsilon^{1/2} \mathrm{d}\varepsilon. \\ & \ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l}) \\ & = \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ & = a \int_0^\infty \varepsilon^{1/2} \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ & = a \{\frac{2}{3}\varepsilon^{3/2} \ln(1 + e^{-\alpha - \beta \varepsilon})|_0^\infty + \frac{2}{3} \int_0^\infty \varepsilon^{3/2} \frac{\beta e^{-\alpha - \beta \varepsilon}}{1 + e^{-\alpha - \beta \varepsilon}} \mathrm{d}\varepsilon \} \\ & .. (\text{A grand dic of phys problems \& solutions 5, P}_{322}.) \\ & = a [\frac{4}{15}(-\alpha)^{5/2} + \frac{\pi^2}{6}(-\alpha)^{1/2} - \frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}. \end{aligned}$$

$$\mathcal{Z}(\alpha,\beta,V)=e^{a[\frac{4}{15}(-\alpha)^{5/2}+\frac{\pi^2}{6}(-\alpha)^{1/2}-\frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}}\text{, where }a=\frac{2\pi gV(2m)^{3/2}}{h^3}\text{, }g\text{ is the inner degeneracy. Then calculate the grand potential }J(T,V,\mu)\text{. (non-relativistic)}$$

$$\begin{split} \bullet \ &D(\varepsilon) \mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3} = \frac{2\pi g V(2m)^{3/2}}{h^3} \varepsilon^{1/2} \mathrm{d}\varepsilon = a\varepsilon^{1/2} \mathrm{d}\varepsilon. \\ &\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l}) \\ &= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ &= a \int_0^\infty \varepsilon^{1/2} \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ &= a \{\frac{2}{3}\varepsilon^{3/2} \ln(1 + e^{-\alpha - \beta \varepsilon})|_0^\infty + \frac{2}{3} \int_0^\infty \varepsilon^{3/2} \frac{\beta e^{-\alpha - \beta \varepsilon}}{1 + e^{-\alpha - \beta \varepsilon}} \mathrm{d}\varepsilon \} \\ &..(\text{A grand dic of phys problems \& solutions 5, P}_{322}.) \\ &= a [\frac{4}{15}(-\alpha)^{5/2} + \frac{\pi^2}{6}(-\alpha)^{1/2} - \frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}. \\ \bullet \ &J = -kT \ln \mathcal{Z} = -a (\frac{4}{15}\mu^{5/2} + \frac{\pi^2}{6\beta^2}\mu^{1/2} - \frac{7\pi^2}{1440\beta^4}\mu^{-3/2}). \end{split}$$

• We have $D(\varepsilon)=a\varepsilon^{\frac{1}{2}}$, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$;

• We have $D(\varepsilon)=a\varepsilon^{\frac{1}{2}}$, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N=\int_0^{\mu_0}D(\varepsilon)\mathrm{d}\varepsilon=\frac{2}{2}a\mu_0^{\frac{3}{2}}.$

19 / 32

• We have $D(\varepsilon)=a\varepsilon^{\frac{1}{2}}$, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N=\int_0^{\mu_0}D(\varepsilon)\mathrm{d}\varepsilon=\frac{2}{3}a\mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0=\mu(T=0\mathrm{K})=(\frac{3N}{2a})^{\frac{2}{3}}.....(1)$

- We have $D(\varepsilon)=a\varepsilon^{\frac{1}{2}}$, where $a=\frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N=\int_0^{\mu_0}D(\varepsilon)\mathrm{d}\varepsilon=\frac{2}{3}a\mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0=\mu(T=0\mathrm{K})=(\frac{3N}{2a})^{\frac{2}{3}}.....(1)$
- $\ln \mathcal{Z} = a \left[\frac{4}{15} (-\alpha)^{5/2} + \frac{\pi^2}{6} (-\alpha)^{1/2} \frac{7\pi^4}{1440} (-\alpha)^{-3/2} \right] \beta^{-3/2}$

• We have $D(\varepsilon) = a\varepsilon^{\frac{1}{2}}$, where $a = \frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N = \int_0^{\mu_0} D(\varepsilon) \mathrm{d}\varepsilon = \frac{2}{3}a\mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0 = \mu(T=0\mathrm{K}) = (\frac{3N}{2a})^{\frac{2}{3}}......(1)$ • $\ln \mathcal{Z} = a[\frac{4}{15}(-\alpha)^{5/2} + \frac{\pi^2}{6}(-\alpha)^{1/2} - \frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}$ $= \frac{2}{5}N\beta\mu_0^{-\frac{3}{2}}\mu^{\frac{5}{2}}[1 + \frac{5}{12}(\frac{\pi}{\beta\mu})^2 - \frac{7}{384}(\frac{\pi}{\beta\mu})^4]......(2)$

• We have $D(\varepsilon) = a\varepsilon^{\frac{1}{2}}$, where $a = \frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N = \int_0^{\mu_0} D(\varepsilon) \mathrm{d}\varepsilon = \frac{2}{3}a\mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0 = \mu(T=0\mathrm{K}) = (\frac{3N}{2a})^{\frac{2}{3}}......(1)$ • $\ln \mathcal{Z} = a[\frac{4}{15}(-\alpha)^{5/2} + \frac{\pi^2}{6}(-\alpha)^{1/2} - \frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}$ $= \frac{2}{5}N\beta\mu_0^{-\frac{3}{2}}\mu^{\frac{5}{2}}[1 + \frac{5}{12}(\frac{\pi}{\beta\mu})^2 - \frac{7}{384}(\frac{\pi}{\beta\mu})^4]......(2)$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

 $N = -(\frac{\partial \ln \mathcal{Z}}{\partial \alpha})_{\beta,V}$

• We have $D(\varepsilon) = a\varepsilon^{\frac{1}{2}}$, where $a = \frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N = \int_0^{\mu_0} D(\varepsilon) \mathrm{d}\varepsilon = \frac{2}{3}a\mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0 = \mu(T=0\mathrm{K}) = (\frac{3N}{2a})^{\frac{2}{3}}.....(1)$ • $\ln \mathcal{Z} = a[\frac{4}{15}(-\alpha)^{5/2} + \frac{\pi^2}{6}(-\alpha)^{1/2} - \frac{7\pi^4}{1440}(-\alpha)^{-3/2}]\beta^{-3/2}$ $= \frac{2}{5}N\beta\mu_0^{-\frac{3}{2}}\mu^{\frac{5}{2}}[1 + \frac{5}{12}(\frac{\pi}{\beta\mu})^2 - \frac{7}{384}(\frac{\pi}{\beta\mu})^4].....(2)$ $N = -(\frac{\partial \ln \mathcal{Z}}{\partial \varepsilon})_{\beta,V}$

• We have $D(\varepsilon) = a\varepsilon^{\frac{1}{2}}$, where $a = \frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N = \int_0^{\mu_0} D(\varepsilon) d\varepsilon = \frac{2}{2} a \mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0 = \mu(T = 0K) = (\frac{3N}{2s})^{\frac{2}{3}}.....(1)$ • $\ln \mathcal{Z} = a \left[\frac{4}{15} (-\alpha)^{5/2} + \frac{\pi^2}{6} (-\alpha)^{1/2} - \frac{7\pi^4}{1440} (-\alpha)^{-3/2} \right] \beta^{-3/2}$ $= \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} \left[1 + \frac{5}{12} \left(\frac{\pi}{\beta \mu}\right)^2 - \frac{7}{384} \left(\frac{\pi}{\beta \mu}\right)^4\right] \dots (2)$ $N = -(\frac{\partial \ln \mathcal{Z}}{\partial \alpha})_{\beta,V}$ $= a\left[\frac{2}{3}(-\alpha)^{3/2} + \frac{\pi^2}{12}(-\alpha)^{-1/2} - \frac{7\pi^4}{960}(-\alpha)^{-5/2}\right]\beta^{-3/2}$ $= \frac{2}{3}a(\mu^{\frac{3}{2}} + \frac{\pi^2}{8\beta^2}\mu^{-\frac{1}{2}} + \frac{7\pi^2}{640\beta^4}\mu^{-\frac{5}{2}}).....(3)$

- We have $D(\varepsilon) = a\varepsilon^{\frac{1}{2}}$, where $a = \frac{2\pi gV(2m)^{3/2}}{h^3}$; The total number $N = \int_0^{\mu_0} D(\varepsilon) d\varepsilon = \frac{2}{3} a \mu_0^{\frac{3}{2}}$. $\Rightarrow \mu_0 = \mu(T = 0K) = (\frac{3N}{2s})^{\frac{2}{3}}.....(1)$
- $\ln \mathcal{Z} = a \left[\frac{4}{15} (-\alpha)^{5/2} + \frac{\pi^2}{6} (-\alpha)^{1/2} \frac{7\pi^4}{1440} (-\alpha)^{-3/2} \right] \beta^{-3/2}$ $= \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} [1 + \frac{5}{12} (\frac{\pi}{\beta \mu})^2 - \frac{7}{384} (\frac{\pi}{\beta \mu})^4] \dots (2)$ $N = -(\frac{\partial \ln \mathcal{Z}}{\partial \alpha})_{\beta, V}$ $= a\left[\frac{2}{3}(-\alpha)^{3/2} + \frac{\pi^2}{12}(-\alpha)^{-1/2} - \frac{7\pi^4}{960}(-\alpha)^{-5/2}\right]\beta^{-3/2}$ $= \frac{2}{3}a(\mu^{\frac{3}{2}} + \frac{\pi^2}{8\beta^2}\mu^{-\frac{1}{2}} + \frac{7\pi^2}{640\beta^4}\mu^{-\frac{5}{2}}).....(3)$
- Combine (1) and (3), $\mu = \mu_0 \left[1 + \frac{1}{8} \left(\frac{\pi}{\beta \mu}\right)^2 + \frac{7}{640} \left(\frac{\pi}{\beta \mu}\right)^4\right]^{-\frac{2}{3}}$

$$\ln \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} \left[1 + \frac{5}{12} \left(\frac{\pi}{\beta \mu} \right)^2 - \frac{7}{384} \left(\frac{\pi}{\beta \mu} \right)^4 \right] \dots (2)$$

•
$$\mu = \mu_0 \left[1 + \frac{1}{8} \left(\frac{\pi}{\beta \mu}\right)^2 + \frac{7}{640} \left(\frac{\pi}{\beta \mu}\right)^4\right]^{-\frac{2}{3}}$$
.

$$\ln \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} [1 + \frac{5}{12} (\frac{\pi}{\beta \mu})^2 - \frac{7}{384} (\frac{\pi}{\beta \mu})^4] ... (2)$$

• $\mu = \mu_0 [1 + \frac{1}{8} (\frac{\pi}{\beta \mu})^2 + \frac{7}{640} (\frac{\pi}{\beta \mu})^4]^{-\frac{2}{3}}$. For the strong degenerated Fermi gas, $kT \ll \mu_0$, $\mu \simeq \mu_0$, so, $\beta \mu \gg 1$; and define $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0} \ll 1$.

$$\ln \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} \left[1 + \frac{5}{12} \left(\frac{\pi}{\beta \mu}\right)^2 - \frac{7}{384} \left(\frac{\pi}{\beta \mu}\right)^4\right] ... (2)$$

• $\mu = \mu_0 [1 + \frac{1}{8} (\frac{\pi}{\beta \mu})^2 + \frac{7}{640} (\frac{\pi}{\beta \mu})^4]^{-\frac{2}{3}}$. For the strong degenerated Fermi gas, $kT \ll \mu_0$, $\mu \simeq \mu_0$, so, $\beta \mu \gg 1$; and define $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0} \ll 1$. $\mu \simeq \mu_0 (1 - \frac{1}{12} \theta^2 - \frac{1}{80} \theta^4)$(4)

$$n \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} \left[1 + \frac{5}{12} \left(\frac{\pi}{\beta \mu}\right)^2 - \frac{7}{384} \left(\frac{\pi}{\beta \mu}\right)^4\right] ... (2)$$

- $\mu = \mu_0 [1 + \frac{1}{8} (\frac{\pi}{\beta \mu})^2 + \frac{7}{640} (\frac{\pi}{\beta \mu})^4]^{-\frac{2}{3}}$. For the strong degenerated Fermi gas, $kT \ll \mu_0$, $\mu \simeq \mu_0$, so, $\beta \mu \gg 1$; and define $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0} \ll 1$. $\mu \simeq \mu_0 (1 - \frac{1}{12} \theta^2 - \frac{1}{80} \theta^4)$(4)
- Combine (2) and (4), $\ln \mathcal{Z} \sim$

$$n \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} \left[1 + \frac{5}{12} \left(\frac{\pi}{\beta \mu}\right)^2 - \frac{7}{384} \left(\frac{\pi}{\beta \mu}\right)^4\right] ... (2)$$

- $\mu = \mu_0 [1 + \frac{1}{8} (\frac{\pi}{\beta \mu})^2 + \frac{7}{640} (\frac{\pi}{\beta \mu})^4]^{-\frac{2}{3}}$. For the strong degenerated Fermi gas, $kT \ll \mu_0$, $\mu \simeq \mu_0$, so, $\beta \mu \gg 1$; and define $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0} \ll 1$. $\mu \simeq \mu_0 (1 - \frac{1}{12} \theta^2 - \frac{1}{80} \theta^4)$(4)
- Combine (2) and (4), $\ln \mathcal{Z} \simeq \frac{2\pi}{5} N \theta^{-1} (1 + \frac{5}{12} \theta^2 \frac{1}{16} \theta^4).$

$$n \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} \left[1 + \frac{5}{12} \left(\frac{\pi}{\beta \mu}\right)^2 - \frac{7}{384} \left(\frac{\pi}{\beta \mu}\right)^4\right] ... (2)$$

- $\mu = \mu_0 \left[1 + \frac{1}{8} \left(\frac{\pi}{\beta \mu} \right)^2 + \frac{7}{640} \left(\frac{\pi}{\beta \mu} \right)^4 \right]^{-\frac{2}{3}}$. For the strong degenerated Fermi gas, $kT \ll \mu_0$, $\mu \simeq \mu_0$, so, $\beta \mu \gg 1$; and define $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0} \ll 1$. $\mu \simeq \mu_0 (1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4).....(4)$
- Combine (2) and (4), $\ln \mathcal{Z} \simeq \frac{2\pi}{5} N \theta^{-1} (1 + \frac{5}{12} \theta^2 - \frac{1}{16} \theta^4).$ As $J = -pV = -kT \ln \mathcal{Z}$. $p = \frac{kT}{V} \ln \mathcal{Z} \simeq \frac{2N}{5V} \mu_0 (1 + \frac{5}{12} \theta^2 - \frac{1}{16} \theta^4);$

20 / 32

$$\ln \mathcal{Z} = \frac{2}{5} N \beta \mu_0^{-\frac{3}{2}} \mu^{\frac{5}{2}} [1 + \frac{5}{12} (\frac{\pi}{\beta \mu})^2 - \frac{7}{384} (\frac{\pi}{\beta \mu})^4] ... (2)$$

- $\mu = \mu_0 \left[1 + \frac{1}{8} \left(\frac{\pi}{\beta \mu} \right)^2 + \frac{7}{640} \left(\frac{\pi}{\beta \mu} \right)^4 \right]^{-\frac{2}{3}}$. For the strong degenerated Fermi gas, $kT \ll \mu_0$, $\mu \simeq \mu_0$, so, $\beta \mu \gg 1$; and define $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0} \ll 1$. $\mu \simeq \mu_0 (1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4).....(4)$
- Combine (2) and (4), $\ln \mathcal{Z} \simeq \frac{2\pi}{5} N \theta^{-1} (1 + \frac{5}{12} \theta^2 - \frac{1}{16} \theta^4).$ As $J = -pV = -kT \ln \mathcal{Z}$.

As
$$J = -pV = -kT \text{ in } \mathcal{Z}$$
,
 $p = \frac{kT}{V} \ln \mathcal{Z} \simeq \frac{2N}{5V} \mu_0 (1 + \frac{5}{12} \theta^2 - \frac{1}{16} \theta^4)$;

Internal energy: $U = \frac{3V}{2}p \simeq \frac{3}{5}N\mu_0(1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4)$.

... For the strong degenerated Fermi gas, calculate μ , p,

$$U, F, S \text{ and } H.$$
 $\mu \simeq \mu_0 (1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4).....(4)$

$$p \simeq \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4)$$

• Free energy: $F=N\mu+J=N\mu-pV\simeq N\mu_0(1-\frac{1}{12}\theta^2-\frac{1}{80}\theta^4)-\frac{2N}{5V}\mu_0(1+\frac{5}{12}\theta^2-\frac{1}{16}\theta^4)\cdot V$

... For the strong degenerated Fermi gas, calculate μ , p,

$$U$$
, F , S and H . $\mu \simeq \mu_0 (1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4).....(4)$ $p \simeq \frac{2N}{5V} \mu_0 (1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4)$

• Free energy:
$$F = N\mu + J = N\mu - pV \simeq$$
 $N\mu_0(1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4) - \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4) \cdot V = \frac{3N}{5}\mu_0(1 - \frac{5}{12}\theta^2 + \frac{1}{48}\theta^4).$

... For the strong degenerated Fermi gas, calculate μ , p,

$$U$$
, F , S and H . $\mu \simeq \mu_0 (1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4).....(4)$

$$p \simeq \frac{2N}{5V} \mu_0 (1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4)$$

- Free energy: $F = N\mu + J = N\mu pV \simeq$ $N\mu_0(1 - \frac{1}{12}\theta^2 - \frac{1}{80}\theta^4) - \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4) \cdot V$ $= \frac{3N}{5}\mu_0(1 - \frac{5}{12}\theta^2 + \frac{1}{48}\theta^4).$
- Entropy: $S = \frac{U-F}{T} \simeq \frac{1}{2T} N \mu_0 \theta^2 (1 \frac{1}{10} \theta^2)$ = $\frac{\pi k}{2} N \theta (1 - \frac{1}{10} \theta^2)$.

... For the strong degenerated Fermi gas, calculate μ , p, $U, F, S \text{ and } H. \mid \mu \simeq \mu_0 (1 - \frac{1}{12} \theta^2 - \frac{1}{20} \theta^4).....(4)$

$$p \simeq \frac{2N}{5V} \mu_0 (1 + \frac{5}{12} \theta^2 - \frac{1}{16} \theta^4)$$

- Free energy: $F = N\mu + J = N\mu pV \simeq$ $N\mu_0(1-\frac{1}{12}\theta^2-\frac{1}{80}\theta^4)-\frac{2N}{5V}\mu_0(1+\frac{5}{12}\theta^2-\frac{1}{16}\theta^4)\cdot V$ $=\frac{3N}{5}\mu_0(1-\frac{5}{12}\theta^2+\frac{1}{48}\theta^4).$
- Entropy: $S = \frac{U-F}{T} \simeq \frac{1}{2T} N \mu_0 \theta^2 (1 \frac{1}{10} \theta^2)$ $=\frac{\pi k}{2}N\theta(1-\frac{1}{10}\theta^2).$
- Enthalpy: $H = U + pV = \frac{5}{2}pV \simeq N\mu_0(1 + \frac{5}{12}\theta^2 - \frac{1}{16}\theta^4).$

A9.35 Calculate expansion coefficient α , pressure coefficient β , and isothermal compressibility κ_T , for the strong degenerated Fermi gas.

A9.35 Calculate expansion coefficient α , pressure coefficient β , and isothermal compressibility κ_T , for the strong degenerated Fermi gas.

• (Convert to (p,V,T)) We have $p=\frac{2}{5V}N\mu_0(1+\frac{5}{12}\theta^2)$, where $\theta=\frac{\pi}{\beta\mu_0}=\frac{\pi kT}{\mu_0}$, $\mu_0=(\frac{3N}{2a})^{\frac{2}{3}}$, $a=2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}}$. Define: $b=\frac{h^2}{2m}(\frac{3N}{4\pi a})^{\frac{2}{3}}$.

A9.35 Calculate expansion coefficient α , pressure coefficient β , and isothermal compressibility κ_T , for the strong degenerated Fermi gas.

• (Convert to (p,V,T)) We have $p=\frac{2}{5V}N\mu_0(1+\frac{5}{12}\theta^2)$, where $\theta=\frac{\pi}{\beta\mu_0}=\frac{\pi kT}{\mu_0}$, $\mu_0=(\frac{3N}{2a})^{\frac{2}{3}}$, $a=2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}}$. Define: $b=\frac{h^2}{2m}(\frac{3N}{4\pi g})^{\frac{2}{3}}$. $\Rightarrow p=\frac{2bN}{5}V^{-\frac{5}{3}}+\frac{\pi^2k^2}{6b}NV^{-\frac{1}{3}}T^2$.

A9.35 Calculate expansion coefficient α , pressure coefficient β , and isothermal compressibility κ_T , for the strong degenerated Fermi gas.

• (Convert to (p,V,T)) We have $p=\frac{2}{5V}N\mu_0(1+\frac{5}{12}\theta^2)$, where $\theta=\frac{\pi}{\beta\mu_0}=\frac{\pi kT}{\mu_0}$, $\mu_0=(\frac{3N}{2a})^{\frac{2}{3}}$, $a=2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}}$. Define: $b=\frac{h^2}{2m}(\frac{3N}{4\pi g})^{\frac{2}{3}}$. $\Rightarrow p=\frac{2bN}{5}V^{-\frac{5}{3}}+\frac{\pi^2k^2}{6b}NV^{-\frac{1}{3}}T^2$. • $\alpha\equiv\frac{1}{V}(\frac{\partial V}{\partial T})_p=\frac{\pi^2k^2}{2u_s^2}(1-\frac{1}{12}\theta^2)T$.

 $\beta \equiv \frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_V = \frac{5\pi^2 k^2}{6u^2} \left(1 - \frac{5}{12} \theta^2 \right) T.$

A9.35 Calculate expansion coefficient α , pressure coefficient β , and isothermal compressibility κ_T , for the strong degenerated Fermi gas.

• (Convert to (p,V,T)) We have $p=\frac{2}{5V}N\mu_0(1+\frac{5}{12}\theta^2)$, where $\theta=\frac{\pi}{\beta\mu_0}=\frac{\pi kT}{\mu_0}$, $\mu_0=(\frac{3N}{2a})^{\frac{2}{3}}$, $a=2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}}$. Define: $b=\frac{h^2}{2m}(\frac{3N}{4\pi g})^{\frac{2}{3}}$. $\Rightarrow p=\frac{2bN}{5}V^{-\frac{5}{3}}+\frac{\pi^2 k^2}{6b}NV^{-\frac{1}{3}}T^2$. • $\alpha\equiv\frac{1}{V}(\frac{\partial V}{\partial T})_p=\frac{\pi^2 k^2}{2\mu_0^2}(1-\frac{1}{12}\theta^2)T$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

 $\kappa_T \equiv -\frac{1}{V} (\frac{\partial V}{\partial p})_T = \frac{3}{2n\mu_0} (1 - \frac{1}{12}\theta^2).$

A9.35 Calculate expansion coefficient α , pressure coefficient β , and isothermal compressibility κ_T , for the strong degenerated Fermi gas.

• (Convert to (p,V,T)) We have $p=\frac{2}{5V}N\mu_0(1+\frac{5}{12}\theta^2)$, where $\theta=\frac{\pi}{\beta\mu_0}=\frac{\pi kT}{\mu_0}$, $\mu_0=(\frac{3N}{2a})^{\frac{2}{3}}$, $a=2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}}$. Define: $b=\frac{h^2}{2m}(\frac{3N}{4\pi g})^{\frac{2}{3}}$. $\Rightarrow p=\frac{2bN}{5}V^{-\frac{5}{3}}+\frac{\pi^2k^2}{6b}NV^{-\frac{1}{3}}T^2$. • $\alpha\equiv\frac{1}{V}(\frac{\partial V}{\partial T})_p=\frac{\pi^2k^2}{2\mu_0^2}(1-\frac{1}{12}\theta^2)T$. $\beta\equiv\frac{1}{p}(\frac{\partial p}{\partial T})_V=\frac{5\pi^2k^2}{6\mu_0^2}(1-\frac{5}{12}\theta^2)T$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

• We have $S=\frac{\pi k}{2}N\theta(1-\frac{1}{10}\theta^2)\simeq \frac{\pi k}{2}N\theta=\frac{\pi^2k^2}{2b}NTV^{\frac{2}{3}},$ where $\theta=\frac{\pi}{\beta\mu_0}=\frac{\pi kT}{\mu_0}$, $\mu_0=(\frac{3N}{2a})^{\frac{2}{3}}$, $a=2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}},$ $b=\frac{h^2}{2m}(\frac{3N}{4\pi a})^{\frac{2}{3}}.$

- We have $S = \frac{\pi k}{2} N \theta (1 \frac{1}{10} \theta^2) \simeq \frac{\pi k}{2} N \theta = \frac{\pi^2 k^2}{2b} N T V^{\frac{2}{3}}$, where $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi k T}{\mu_0}$, $\mu_0 = (\frac{3N}{2a})^{\frac{2}{3}}$, $a = 2\pi g V (\frac{2m}{h^2})^{\frac{3}{2}}$, $b = \frac{h^2}{2m} (\frac{3N}{4\pi a})^{\frac{2}{3}}$.
- Reversible adiabatic process is in equal entropy.

- We have $S = \frac{\pi k}{2} N \theta (1 \frac{1}{10} \theta^2) \simeq \frac{\pi k}{2} N \theta = \frac{\pi^2 k^2}{2b} N T V^{\frac{2}{3}}$, where $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi k T}{\mu_0}$, $\mu_0 = (\frac{3N}{2a})^{\frac{2}{3}}$, $a = 2\pi g V (\frac{2m}{h^2})^{\frac{3}{2}}$, $b = \frac{h^2}{2m} (\frac{3N}{4\pi g})^{\frac{2}{3}}$.
- Reversible adiabatic process is in equal entropy. $\Rightarrow TV^{\frac{2}{3}} = \text{Const.}$, or $\theta = \text{Const.}$

- We have $S = \frac{\pi k}{2} N \theta (1 \frac{1}{10} \theta^2) \simeq \frac{\pi k}{2} N \theta = \frac{\pi^2 k^2}{2k} N T V^{\frac{2}{3}}$, where $\theta = \frac{\pi}{\beta\mu_0} = \frac{\pi kT}{\mu_0}$, $\mu_0 = (\frac{3N}{2a})^{\frac{2}{3}}$, $a = 2\pi gV(\frac{2m}{h^2})^{\frac{3}{2}}$, $b = \frac{h^2}{2m} (\frac{3N}{4\pi a})^{\frac{2}{3}}$.
- Reversible adiabatic process is in equal entropy. $\Rightarrow TV^{\frac{2}{3}} = \text{Const... or } \theta = \text{Const.}$
- $p = \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 \frac{1}{16}\theta^4)$,

- We have $S = \frac{\pi k}{2} N \theta (1 \frac{1}{10} \theta^2) \simeq \frac{\pi k}{2} N \theta = \frac{\pi^2 k^2}{2b} N T V^{\frac{2}{3}}$, where $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi k T}{\mu_0}$, $\mu_0 = (\frac{3N}{2a})^{\frac{2}{3}}$, $a = 2\pi g V (\frac{2m}{h^2})^{\frac{3}{2}}$, $b = \frac{h^2}{2m} (\frac{3N}{4\pi g})^{\frac{2}{3}}$.
- Reversible adiabatic process is in equal entropy. $\Rightarrow TV^{\frac{2}{3}} = \text{Const.}$, or $\theta = \text{Const.}$
- $p = \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 \frac{1}{16}\theta^4)$, $\Rightarrow p \propto \frac{2N}{5V}\mu_0 \propto V^{-5/3}$.

- We have $S = \frac{\pi k}{2} N \theta (1 \frac{1}{10} \theta^2) \simeq \frac{\pi k}{2} N \theta = \frac{\pi^2 k^2}{2 h} N T V^{\frac{2}{3}}$, where $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0}$, $\mu_0 = (\frac{3N}{2a})^{\frac{2}{3}}$, $a = 2\pi g V(\frac{2m}{h^2})^{\frac{3}{2}}$, $b = \frac{h^2}{2m} (\frac{3N}{4\pi a})^{\frac{2}{3}}$.
- Reversible adiabatic process is in equal entropy. $\Rightarrow TV^{\frac{2}{3}} = \text{Const.}, \text{ or } \theta = \text{Const.}$
- $p = \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 \frac{1}{16}\theta^4)$, $\Rightarrow p \propto \frac{2N}{5V}\mu_0 \propto V^{-5/3}$.

Comparing with ideal gas: $pV^{\gamma} = \text{Const.}$ ($\gamma = 5/3$, monatomic molecular) (1.8.4)

- We have $S = \frac{\pi k}{2} N \theta (1 \frac{1}{10} \theta^2) \simeq \frac{\pi k}{2} N \theta = \frac{\pi^2 k^2}{2 h} N T V^{\frac{2}{3}}$, where $\theta = \frac{\pi}{\beta \mu_0} = \frac{\pi kT}{\mu_0}$, $\mu_0 = (\frac{3N}{2a})^{\frac{2}{3}}$, $a = 2\pi g V(\frac{2m}{h^2})^{\frac{3}{2}}$, $b = \frac{h^2}{2m} (\frac{3N}{4\pi a})^{\frac{2}{3}}$.
- Reversible adiabatic process is in equal entropy. $\Rightarrow TV^{\frac{2}{3}} = \text{Const.}, \text{ or } \theta = \text{Const.}$
- $p = \frac{2N}{5V}\mu_0(1 + \frac{5}{12}\theta^2 \frac{1}{16}\theta^4)$, $\Rightarrow p \propto \frac{2N}{5V}\mu_0 \propto V^{-5/3}$. Comparing with ideal gas: $pV^{\gamma} = \text{Const.}$ ($\gamma = 5/3$, monatomic molecular) (1.8.4)
- Using these two, $p \propto T^{5/2}$.

December 30, 2013

$$\begin{array}{l} \bullet \ D(\varepsilon) \mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3} = \frac{4\pi g V}{(hc)^3} \varepsilon^2 \mathrm{d}\varepsilon = a\varepsilon^2 \mathrm{d}\varepsilon, \\ \mathrm{where} \ a = \frac{4\pi g V}{(hc)^3}. \end{array}$$

•
$$D(\varepsilon)d\varepsilon = g \cdot \frac{V4\pi p^2 dp}{h^3} = \frac{4\pi gV}{(hc)^3} \varepsilon^2 d\varepsilon = a\varepsilon^2 d\varepsilon$$
,
where $a = \frac{4\pi gV}{(hc)^3}$.
 $\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l})$

•
$$D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = \frac{4\pi gV}{(hc)^3}\varepsilon^2\mathrm{d}\varepsilon = a\varepsilon^2\mathrm{d}\varepsilon$$
,
where $a = \frac{4\pi gV}{(hc)^3}$.
 $\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta\varepsilon_l})$
 $= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta\varepsilon})\mathrm{d}\varepsilon$

•
$$D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = \frac{4\pi gV}{(hc)^3}\varepsilon^2\mathrm{d}\varepsilon = a\varepsilon^2\mathrm{d}\varepsilon$$
,
where $a = \frac{4\pi gV}{(hc)^3}$.
 $\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta\varepsilon_l})$
 $= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta\varepsilon})\mathrm{d}\varepsilon$
 $= a \int_0^\infty \varepsilon^2 \ln(1 + e^{-\alpha - \beta\varepsilon})\mathrm{d}\varepsilon$

•
$$D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = \frac{4\pi gV}{(hc)^3}\varepsilon^2\mathrm{d}\varepsilon = a\varepsilon^2\mathrm{d}\varepsilon$$
,
where $a = \frac{4\pi gV}{(hc)^3}$.
 $\ln \mathcal{Z} = \sum \omega_l \ln(1 + e^{-\alpha - \beta\varepsilon_l})$
 $= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta\varepsilon})\mathrm{d}\varepsilon$
 $= a \int_0^\infty \varepsilon^2 \ln(1 + e^{-\alpha - \beta\varepsilon})\mathrm{d}\varepsilon$
 $= a \{\frac{1}{3}\varepsilon^3 \ln(1 + e^{-\alpha - \beta\varepsilon})|_0^\infty + \frac{1}{3}\int_0^\infty \varepsilon^3 \frac{\beta e^{-\alpha - \beta\varepsilon}}{1 + e^{-\alpha - \beta\varepsilon}}\mathrm{d}\varepsilon\}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\begin{split} \bullet \ D(\varepsilon) \mathrm{d}\varepsilon &= g \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3} = \frac{4\pi g V}{(hc)^3} \varepsilon^2 \mathrm{d}\varepsilon = a \varepsilon^2 \mathrm{d}\varepsilon, \\ \text{where } a &= \frac{4\pi g V}{(hc)^3}. \\ \ln \mathcal{Z} &= \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l}) \\ &= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ &= a \int_0^\infty \varepsilon^2 \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ &= a \{\frac{1}{3}\varepsilon^3 \ln(1 + e^{-\alpha - \beta \varepsilon})|_0^\infty + \frac{1}{3} \int_0^\infty \varepsilon^3 \frac{\beta e^{-\alpha - \beta \varepsilon}}{1 + e^{-\alpha - \beta \varepsilon}} \mathrm{d}\varepsilon \} \\ ..(\text{A grand dic of phys problems \& solutions 5, P}_{332}.) \end{split}$$

$$\begin{split} \bullet \ D(\varepsilon) \mathrm{d}\varepsilon &= g \cdot \frac{V4\pi p^2 \mathrm{d}p}{h^3} = \frac{4\pi g V}{(hc)^3} \varepsilon^2 \mathrm{d}\varepsilon = a \varepsilon^2 \mathrm{d}\varepsilon, \\ \text{where } a &= \frac{4\pi g V}{(hc)^3}. \\ \ln \mathcal{Z} &= \sum \omega_l \ln(1 + e^{-\alpha - \beta \varepsilon_l}) \\ &= \int_0^\infty D(\varepsilon) \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ &= a \int_0^\infty \varepsilon^2 \ln(1 + e^{-\alpha - \beta \varepsilon}) \mathrm{d}\varepsilon \\ &= a \{\frac{1}{3}\varepsilon^3 \ln(1 + e^{-\alpha - \beta \varepsilon})|_0^\infty + \frac{1}{3} \int_0^\infty \varepsilon^3 \frac{\beta e^{-\alpha - \beta \varepsilon}}{1 + e^{-\alpha - \beta \varepsilon}} \mathrm{d}\varepsilon \} \\ &:. \text{(A grand dic of phys problems \& solutions 5, P}_{332}.) \\ &= a [\frac{1}{12}(-\alpha)^4 + \frac{\pi^2}{6}(-\alpha)^2 - \frac{7\pi^4}{180}]\beta^{-3}. \end{split}$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\begin{array}{l} \bullet \ D(\varepsilon)\mathrm{d}\varepsilon = g \cdot \frac{V4\pi p^2\mathrm{d}p}{h^3} = \frac{4\pi gV}{(hc)^3}\varepsilon^2\mathrm{d}\varepsilon = a\varepsilon^2\mathrm{d}\varepsilon, \\ \mathrm{where} \ a = \frac{4\pi gV}{(hc)^3}. \\ \ln \mathcal{Z} = \sum \omega_l \ln(1+e^{-\alpha-\beta\varepsilon_l}) \\ = \int_0^\infty D(\varepsilon) \ln(1+e^{-\alpha-\beta\varepsilon})\mathrm{d}\varepsilon \\ = a \int_0^\infty \varepsilon^2 \ln(1+e^{-\alpha-\beta\varepsilon})\mathrm{d}\varepsilon \\ = a\{\frac{1}{3}\varepsilon^3 \ln(1+e^{-\alpha-\beta\varepsilon})|_0^\infty + \frac{1}{3}\int_0^\infty \varepsilon^3 \frac{\beta e^{-\alpha-\beta\varepsilon}}{1+e^{-\alpha-\beta\varepsilon}}\mathrm{d}\varepsilon\} \\ ...(\mathrm{A} \ \mathrm{grand} \ \mathrm{dic} \ \mathrm{of} \ \mathrm{phys} \ \mathrm{problems} \ \& \ \mathrm{solutions} \ 5, \ \mathrm{P}_{332}.) \\ = a[\frac{1}{12}(-\alpha)^4 + \frac{\pi^2}{6}(-\alpha)^2 - \frac{7\pi^4}{180}]\beta^{-3}. \\ \bullet \ J = -kT \ln \mathcal{Z} = -a(\frac{1}{12}\mu^4 + \frac{\pi^2}{6\beta^2}\mu^2 + \frac{7\pi^2}{180\beta^4}). \end{array}$$

Table of contents

- §6. Most probable distribution of nearly independent particles
- 2 §7. Boltzmann statistics
- 3 §8. Bose statistics and Fermi statistics
 - Bose statistics
 - Fermi statistics
 - Fermion gas in astrophysics

A9.55 He white dwarf in $T_{\rm WD} = 10^7 {\rm K}$ at center.

 $M_{\rm WD} \sim 1 M_{\odot} \simeq 2 \times 10^{30} {\rm kg}$, $R_{\rm WD} \sim 1 R_{\oplus} \simeq 6 \times 10^6 {\rm m}$.

A9.55 He white dwarf in $T_{\rm WD} = 10^7 {\rm K}$ at center.

$$M_{\rm WD} \sim 1 M_{\odot} \simeq 2 \times 10^{30} {\rm kg}$$
, $R_{\rm WD} \sim 1 R_{\oplus} \simeq 6 \times 10^6 {\rm m}$.

• $kT \simeq 862.5 \text{eV}$. ionized.

A9.55 He white dwarf in $T_{\rm WD}=10^7{\rm K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{
 m WD}}{\frac{4}{3}\pi R_{
 m WD}^3 \cdot m_{
 m He}}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

Fermion gas in astrophysics

A9.55 He white dwarf in $T_{
m WD}=10^7{
m K}$ at center.

$$M_{
m WD} \sim 1 M_{\odot} \simeq 2 imes 10^{30} {
m kg}$$
, $R_{
m WD} \sim 1 R_{\oplus} \simeq 6 imes 10^6 {
m m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{
 m WD}}{\frac{4}{3}\pi R_{
 m WD}^3 \cdot m_{
 m He}}$

$$\simeq \frac{2 \cdot 2 \times 10^{30} \text{kg}}{\frac{4}{3}\pi (6 \times 10^6 \text{m})^3 \cdot 4 \times 1.67 \times 10^{-27} \text{kg}}$$

A9.55 He white dwarf in $T_{\rm WD}=10^7{\rm K}$ at center.

$$M_{\rm WD} \sim 1 M_{\odot} \simeq 2 \times 10^{30} {\rm kg}$$
, $R_{\rm WD} \sim 1 R_{\oplus} \simeq 6 \times 10^6 {\rm m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{
 m WD}}{\frac{4}{3}\pi R_{
 m WD}^3 \cdot m_{
 m He}}$

$$\simeq \frac{2 \cdot 2 \times 10^{30} \text{kg}}{\frac{4}{3}\pi (6 \times 10^6 \text{m})^3 \cdot 4 \times 1.67 \times 10^{-27} \text{kg}} \simeq 6.6 \times 10^{35} \text{m}^{-3}.$$

A9.55 He white dwarf in $T_{\rm WD} = 10^7 {\rm K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$. ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm WD}^3 \cdot m_{\rm He}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} \mathrm{kg}}{\frac{4}{3} \pi (6 \times 10^6 \mathrm{m})^3 \cdot 4 \times 1.67 \times 10^{-27} \mathrm{kg}} \simeq 6.6 \times 10^{35} \mathrm{m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi m kT})^{\frac{3}{2}}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

A9.55 He white dwarf in $T_{\rm WD}=10^7{\rm K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm WD}^3 \cdot m_{\rm He}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} {\rm kg}}{\frac{4}{3}\pi (6 \times 10^6 {\rm m})^3 \cdot 4 \times 1.67 \times 10^{-27} {\rm kg}} \simeq 6.6 \times 10^{35} {\rm m}^{-3}.$

• i. Non-relativistic:
$$n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$$

$$= 6.6 \times 10^{35} \mathrm{m}^{-3} (\frac{(6.626 \times 10^{-34} \mathrm{J \cdot s})^2}{2\pi \cdot 9.1 \times 10^{-31} \mathrm{kg \cdot 1.38 \times 10^{-23} J/K \cdot 10^7 K}})^{\frac{3}{2}}$$

A9.55 He white dwarf in $T_{ m WD}=10^7{ m K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm WD}^3 \cdot m_{\rm He}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} {\rm kg}}{\frac{4}{3}\pi (6 \times 10^6 {\rm m})^3 \cdot 4 \times 1.67 \times 10^{-27} {\rm kg}} \simeq 6.6 \times 10^{35} {\rm m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ = $6.6 \times 10^{35} \mathrm{m}^{-3} (\frac{(6.626 \times 10^{-34} \mathrm{J \cdot s})^2}{2\pi \cdot 9.1 \times 10^{-31} \mathrm{kg} \cdot 1.38 \times 10^{-23} \mathrm{J/K \cdot 10^7 K}})^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$

A9.55 He white dwarf in $T_{\rm WD} = 10^7 {\rm K}$ at center.

$$M_{\rm WD} \sim 1 M_{\odot} \simeq 2 \times 10^{30} {\rm kg}$$
, $R_{\rm WD} \sim 1 R_{\oplus} \simeq 6 \times 10^6 {\rm m}$.

- $kT \simeq 862.5 \text{eV}$. ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{5}\pi R_{\rm WD}^3 \cdot m_{\rm Ho}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} \text{kg}}{\frac{4}{3} \pi (6 \times 10^6 \text{m})^3 \cdot 4 \times 1.67 \times 10^{-27} \text{kg}} \simeq 6.6 \times 10^{35} \text{m}^{-3}.$
- i. Non-relativistic: $n\lambda^3=n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ $=6.6\times10^{35}\mathrm{m}^{-3}\left(\frac{(6.626\times10^{-34}\mathrm{J\cdot s})^2}{2\pi\cdot9.1\times10^{-31}\mathrm{kg\cdot 1.38}\times10^{-23}\mathrm{J/K\cdot 10^7K}}\right)^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$
- ii. Relativistic: $n\lambda^3 = n(\frac{n}{n})^3$

26 / 32

A9.55 He white dwarf in $T_{\rm WD} = 10^7 {\rm K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$. ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm NUD}^3 \cdot m_{\rm Ho}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} \text{kg}}{\frac{4}{3} \pi (6 \times 10^6 \text{m})^3 \cdot 4 \times 1.67 \times 10^{-27} \text{kg}} \simeq 6.6 \times 10^{35} \text{m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ $=6.6\times10^{35}\mathrm{m}^{-3}\left(\frac{(6.626\times10^{-34}\mathrm{J\cdot s})^2}{2\pi\cdot9.1\times10^{-31}\mathrm{kg\cdot 1.38}\times10^{-23}\mathrm{J/K\cdot 10^7K}}\right)^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$
- ii. Relativistic: $n\lambda^3 = n(\frac{h}{n})^3 = n(\frac{hc}{\varepsilon})^3$

A9.55 He white dwarf in $T_{ m WD}=10^7{ m K}$ at center.

$$M_{\rm WD} \sim 1 M_{\odot} \simeq 2 \times 10^{30} {\rm kg}$$
, $R_{\rm WD} \sim 1 R_{\oplus} \simeq 6 \times 10^6 {\rm m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm WD}^3 \cdot m_{\rm He}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} {\rm kg}}{\frac{4}{3}\pi (6 \times 10^6 {\rm m})^3 \cdot 4 \times 1.67 \times 10^{-27} {\rm kg}} \simeq 6.6 \times 10^{35} {\rm m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ = $6.6 \times 10^{35} \mathrm{m}^{-3} (\frac{(6.626 \times 10^{-34} \mathrm{J \cdot s})^2}{2\pi \cdot 9.1 \times 10^{-31} \mathrm{kg} \cdot 1.38 \times 10^{-23} \mathrm{J/K \cdot 10^7 K}})^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$
- ii. Relativistic: $n\lambda^3 = n(\frac{h}{p})^3 = n(\frac{hc}{\varepsilon})^3 = n(\frac{hc}{kT_{\rm WD}})^3$

A9.55 He white dwarf in $T_{\rm WD} = 10^7 {\rm K}$ at center.

$$M_{\rm WD} \sim 1 M_{\odot} \simeq 2 \times 10^{30} {\rm kg}$$
, $R_{\rm WD} \sim 1 R_{\oplus} \simeq 6 \times 10^6 {\rm m}$.

- $kT \simeq 862.5 \text{eV}$. ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{5}\pi R_{\rm WD}^3 \cdot m_{\rm Ho}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} \text{kg}}{\frac{4}{3} \pi (6 \times 10^6 \text{m})^3 \cdot 4 \times 1.67 \times 10^{-27} \text{kg}} \simeq 6.6 \times 10^{35} \text{m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ $=6.6\times10^{35}\mathrm{m}^{-3}\left(\frac{(6.626\times10^{-34}\mathrm{J\cdot s})^2}{2\pi\cdot9.1\times10^{-31}\mathrm{kg\cdot 1.38}\times10^{-23}\mathrm{J/K\cdot 10^7K}}\right)^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$
- ii. Relativistic: $n\lambda^3 = n(\frac{h}{p})^3 = n(\frac{hc}{\varepsilon})^3 = n(\frac{hc}{kT_{\rm MD}})^3$ $\simeq 6.6 \times 10^{35} \mathrm{m}^{-3} \left(\frac{6.626 \times 10^{-34} \mathrm{J \cdot s \cdot 3} \times 10^8 \mathrm{m/s}}{1.38 \times 10^{-23} \mathrm{J/K \cdot 10^7 K}} \right)^3$

26 / 32

A9.55 He white dwarf in $T_{ m WD}=10^7{ m K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm WD}^3 \cdot m_{\rm He}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} {\rm kg}}{\frac{4}{3}\pi (6 \times 10^6 {\rm m})^3 \cdot 4 \times 1.67 \times 10^{-27} {\rm kg}} \simeq 6.6 \times 10^{35} {\rm m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ = $6.6 \times 10^{35} \mathrm{m}^{-3} (\frac{(6.626 \times 10^{-34} \mathrm{J \cdot s})^2}{2\pi \cdot 9.1 \times 10^{-31} \mathrm{kg \cdot 1.38 \times 10^{-23} J/K \cdot 10^7 K}})^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$
- ii. Relativistic: $n\lambda^3 = n(\frac{h}{p})^3 = n(\frac{hc}{\varepsilon})^3 = n(\frac{hc}{kT_{\rm WD}})^3$ $\simeq 6.6 \times 10^{35} {\rm m}^{-3} (\frac{6.626 \times 10^{-34} {\rm J} \cdot {\rm s} \cdot 3 \times 10^8 {\rm m/s}}{1.38 \times 10^{-23} {\rm J/K} \cdot 10^7 {\rm K}})^3$ $\simeq 2 \times 10^9 \gg 1$. (Only estimation if using $kT_{\rm WD}$).

A9.55 He white dwarf in $T_{\rm WD}=10^7{\rm K}$ at center.

$$M_{\mathrm{WD}} \sim 1 M_{\odot} \simeq 2 \times 10^{30} \mathrm{kg}$$
, $R_{\mathrm{WD}} \sim 1 R_{\oplus} \simeq 6 \times 10^6 \mathrm{m}$.

- $kT \simeq 862.5 \text{eV}$, ionized.
- Number density: $n_e = 2 \cdot \frac{M_{\rm WD}}{\frac{4}{3}\pi R_{\rm WD}^3 \cdot m_{\rm He}}$ $\simeq \frac{2 \cdot 2 \times 10^{30} {\rm kg}}{\frac{4}{3}\pi (6 \times 10^6 {\rm m})^3 \cdot 4 \times 1.67 \times 10^{-27} {\rm kg}} \simeq 6.6 \times 10^{35} {\rm m}^{-3}.$
- i. Non-relativistic: $n\lambda^3 = n(\frac{h^2}{2\pi mkT})^{\frac{3}{2}}$ = $6.6 \times 10^{35} \mathrm{m}^{-3} (\frac{(6.626 \times 10^{-34} \mathrm{J \cdot s})^2}{2\pi \cdot 9.1 \times 10^{-31} \mathrm{kg} \cdot 1.38 \times 10^{-23} \mathrm{J/K \cdot 10^7 K}})^{\frac{3}{2}}$ $\simeq 8660 \gg 1.$
- ii. Relativistic: $n\lambda^3 = n(\frac{h}{p})^3 = n(\frac{hc}{\varepsilon})^3 = n(\frac{hc}{kT_{\rm WD}})^3$ $\simeq 6.6 \times 10^{35} {\rm m}^{-3} (\frac{6.626 \times 10^{-34} {\rm J} \cdot {\rm s} \cdot 3 \times 10^8 {\rm m/s}}{1.38 \times 10^{-23} {\rm J/K} \cdot 10^7 {\rm K}})^3$ $\simeq 2 \times 10^9 \gg 1$. (Only estimation if using $kT_{\rm WD}$).
- Strong degenerated.

• Fermi energy (non-relativistic) (8.5.6):

$$\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

... He white dwarf.

• Fermi energy (non-relativistic) (8.5.6):

$$\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

$$\simeq \frac{(1.054 \times 10^{-34} \text{J·s})^2}{2 \times 9.1 \times 10^{-31} \text{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \text{m}^{-3})^{2/3}$$

• Fermi energy (non-relativistic) (8.5.6):

$$\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

$$\simeq \frac{(1.054 \times 10^{-34} \text{J·s})^2}{2 \times 9.1 \times 10^{-31} \text{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \text{m}^{-3})^{2/3}$$

$$\simeq 4.4 \times 10^{-14} \text{J} \simeq 2.7 \times 10^5 \text{eV}$$

$$(T_F = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \text{K.})$$

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic).

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic). $D(\varepsilon)d\varepsilon = 2 \cdot \frac{V4\pi p^2 dp}{h^3}$

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic). $D(\varepsilon)d\varepsilon = 2 \cdot \frac{V4\pi p^2 dp}{h^3}$ $\simeq \frac{V8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$.

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic). $D(\varepsilon)d\varepsilon = 2 \cdot \frac{V4\pi p^2 dp}{h^3}$ $\simeq \frac{V8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$. As strong degeneracy indicates $T_{\rm WD} \ll T_F$, $\int_0^{\mu_0} D(\varepsilon) d\varepsilon = N$,

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic). $D(\varepsilon)d\varepsilon = 2 \cdot \frac{V4\pi p^2 dp}{h^3}$ $\simeq \frac{V8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$. As strong degeneracy indicates

$$T_{\rm WD} \ll T_F$$
, $\int_0^{\mu_0} D(\varepsilon) d\varepsilon = N$, $\Rightarrow \mu_0 = hc(\frac{3N}{8\pi V})^{\frac{1}{3}}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \mathrm{J \cdot s})^2}{2 \times 9.1 \times 10^{-31} \mathrm{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \mathrm{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \mathrm{J} \simeq 2.7 \times 10^5 \mathrm{eV} \\ &(T_{\mathrm{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \mathrm{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \mathrm{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic). $D(\varepsilon)d\varepsilon = 2 \cdot \frac{V4\pi p^2 dp}{L^3}$ $\simeq \frac{V8\pi}{h^3c^3}\varepsilon^2\mathrm{d}\varepsilon$. As strong degeneracy indicates $T_{\rm WD} \ll T_F$, $\int_0^{\mu_0} D(\varepsilon) d\varepsilon = N$, $\Rightarrow \mu_0 = hc(\frac{3N}{8\pi V})^{\frac{1}{3}}$ $=6.626 \times 10^{-34} \text{J} \cdot \text{s} \cdot 3 \times 10^8 \text{m/s} \cdot (\frac{3}{8\pi} \cdot 6.6 \times 10^{35} \text{m}^{-3})^{\frac{1}{3}}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

• Fermi energy (non-relativistic) (8.5.6):

$$\begin{split} &\mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\ &\simeq \frac{(1.054 \times 10^{-34} \text{J·s})^2}{2 \times 9.1 \times 10^{-31} \text{kg}} (3\pi^2 \cdot 6.6 \times 10^{35} \text{m}^{-3})^{2/3} \\ &\simeq 4.4 \times 10^{-14} \text{J} \simeq 2.7 \times 10^5 \text{eV} \\ &(T_{\text{F}} = \frac{\mu_0}{k} \simeq 3.2 \times 10^9 \text{K.}) \\ &\mu_0 \sim m_e c^2 \simeq 0.511 \text{MeV}, \text{ roughly relativistic.} \end{split}$$

• Fermi energy (relativistic). $D(\varepsilon)d\varepsilon = 2 \cdot \frac{V4\pi p^2 dp}{h^3}$

 $\simeq \frac{V8\pi}{h^3c^3} \varepsilon^2 \mathrm{d}\varepsilon$. As strong degeneracy indicates

$$T_{\rm WD} \ll T_F$$
, $\int_0^{\mu_0} D(\varepsilon) d\varepsilon = N$, $\Rightarrow \mu_0 = hc(\frac{3N}{8\pi V})^{\frac{1}{3}}$
= $6.626 \times 10^{-34} \, \mathrm{J} \cdot \mathrm{s} \cdot 3 \times 10^8 \, \mathrm{m/s} \cdot (\frac{3}{8\pi} \cdot 6.6 \times 10^{35} \, \mathrm{m}^{-3})^{\frac{1}{3}}$
 $\simeq 8.5 \times 10^{-14} \, \mathrm{J} \simeq 0.53 \, \mathrm{MeV}$. (This is kinetic energy,

mildly relativistic.)

• Internal energy: $U=\int_0^{\mu_0} \varepsilon D(\varepsilon) \mathrm{d}\varepsilon$

December 30, 2013

• Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V8\pi}{h^3c^3} \varepsilon^2 d\varepsilon$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

28 / 32

• Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V8\pi}{h^3c^3} \varepsilon^2 d\varepsilon$ $=\frac{3}{4}N\mu_0$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

• Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) \mathrm{d}\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V8\pi}{h^3c^3} \varepsilon^2 \mathrm{d}\varepsilon$ = $\frac{3}{4}N\mu_0 \simeq \frac{3}{4}Nhc(\frac{3N}{8\pi V})^{\frac{1}{3}}$

• Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V8\pi}{h^3c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V}$

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$ $\simeq \frac{3.8 \times 10^{43} \text{J}}{3 \cdot \frac{4}{3}\pi (6 \times 10^6 \text{m})^3} \simeq 1.4 \times 10^{22} \text{J} \cdot \text{m}^{-3}.$

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$ $\simeq \frac{3.8 \times 10^{43} \text{J}}{3 \cdot \frac{4}{3}\pi (6 \times 10^6 \text{m})^3} \simeq 1.4 \times 10^{22} \text{J} \cdot \text{m}^{-3}.$
- Stability: for a virtual adiabatic variance δR , 1. $\delta E_{\rm tot} = \delta (U + V_p) = 0$, and 2. $\delta^2 E_{\rm tot} > 0$.

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$ $\simeq \frac{3.8 \times 10^{43} \text{J}}{3 \cdot \frac{4}{3}\pi (6 \times 10^6 \text{m})^3} \simeq 1.4 \times 10^{22} \text{J} \cdot \text{m}^{-3}.$
- Stability: for a virtual adiabatic variance δR , 1. $\delta E_{\rm tot} = \delta (U+V_p) = 0$, and 2. $\delta^2 E_{\rm tot} > 0$. Non-relativistic: (8.5.7) $U = \frac{3N}{5} \mu_0 = \frac{3N}{5} \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$ $\simeq \frac{3.8 \times 10^{43} \text{J}}{3 \cdot \frac{4}{3}\pi (6 \times 10^6 \text{m})^3} \simeq 1.4 \times 10^{22} \text{J} \cdot \text{m}^{-3}.$
- Stability: for a virtual adiabatic variance δR , 1. $\delta E_{\rm tot} = \delta (U+V_p) = 0$, and 2. $\delta^2 E_{\rm tot} > 0$. Non-relativistic: (8.5.7) $U = \frac{3N}{5} \mu_0 = \frac{3N}{5} \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \propto \frac{M^{5/3}}{R^2}$;

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$ $\simeq \frac{3.8 \times 10^{43} \text{J}}{3 \cdot \frac{4}{3}\pi (6 \times 10^6 \text{m})^3} \simeq 1.4 \times 10^{22} \text{J} \cdot \text{m}^{-3}.$
- Stability: for a virtual adiabatic variance δR , 1. $\delta E_{\rm tot} = \delta (U+V_p) = 0 \text{, and 2. } \delta^2 E_{\rm tot} > 0.$ Non-relativistic: (8.5.7) $U = \frac{3N}{5} \mu_0 = \frac{3N}{5} \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \propto \frac{M^{5/3}}{D^2}$; $V_p = -\frac{GM^2}{D} \propto -\frac{M^2}{D}$.

- Internal energy: $U = \int_0^{\mu_0} \varepsilon D(\varepsilon) d\varepsilon = \int_0^{\mu_0} \varepsilon \frac{V 8\pi}{h^3 c^3} \varepsilon^2 d\varepsilon$ = $\frac{3}{4} N \mu_0 \simeq \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}}$ $\simeq \frac{3}{4} \cdot \frac{2 \cdot 2 \times 10^{30} \text{kg}}{4 \times 1.67 \times 10^{-27} \text{kg}} \cdot 8.5 \times 10^{-14} \text{J} \simeq 3.8 \times 10^{43} \text{J}.$
- Pressure: $p = \frac{U}{3V} = \frac{N}{4V}\mu_0 = \frac{hc}{4}(\frac{3}{8\pi})^{\frac{1}{3}}n^{\frac{4}{3}}$ $\simeq \frac{3.8 \times 10^{43} \text{J}}{3 \cdot \frac{4}{3}\pi (6 \times 10^6 \text{m})^3} \simeq 1.4 \times 10^{22} \text{J} \cdot \text{m}^{-3}.$
- Stability: for a virtual adiabatic variance δR , 1. $\delta E_{\rm tot} = \delta (U + V_p) = 0$, and 2. $\delta^2 E_{\rm tot} > 0$. Non-relativistic: (8.5.7) $U = \frac{3N}{5} \mu_0 = \frac{3N}{5} \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \propto \frac{M^{5/3}}{R^2}$; $V_p = -\frac{GM^2}{R} \propto -\frac{M^2}{R}$. $E_{\rm tot} = k_1 \frac{M^{5/3}}{R^2} k_2 \frac{M^2}{R}$.

• $E_{\text{tot}} = k_1 \frac{M^{5/3}}{R^2} - k_2 \frac{M^2}{R}$.

•
$$E_{\text{tot}} = k_1 \frac{M^{5/3}}{R^2} - k_2 \frac{M^2}{R}$$
.
 $\delta E_{\text{tot}} = 0 \Rightarrow (-2k_1 \frac{M^{5/3}}{R^3} + k_2 \frac{M^2}{R^2}) \delta R = 0$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

•
$$E_{\text{tot}} = k_1 \frac{M^{5/3}}{R^2} - k_2 \frac{M^2}{R}$$
.
• $\delta E_{\text{tot}} = 0 \Rightarrow (-2k_1 \frac{M^{5/3}}{R^3} + k_2 \frac{M^2}{R^2}) \delta R = 0$
• $\Rightarrow R = k_3 M^{-1/3}$; Minimum.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- $E_{\mathrm{tot}} = k_1 \frac{M^{5/3}}{R^2} k_2 \frac{M^2}{R}$. • $\delta E_{\mathrm{tot}} = 0 \Rightarrow (-2k_1 \frac{M^{5/3}}{R^3} + k_2 \frac{M^2}{R^2}) \delta R = 0$ • $\Rightarrow R = k_3 M^{-1/3}$; Minimum.
- Relativistic: $U=\frac{3}{4}Nhc(\frac{3N}{8\pi V})^{\frac{1}{3}}\propto \frac{M^{4/3}}{R}$

- $E_{\text{tot}} = k_1 \frac{M^{5/3}}{R^2} k_2 \frac{M^2}{R}$. • $\delta E_{\text{tot}} = 0 \Rightarrow (-2k_1 \frac{M^{5/3}}{R^3} + k_2 \frac{M^2}{R^2}) \delta R = 0$ $\Rightarrow R = k_3 M^{-1/3}$; Minimum.
- Relativistic: $U = \frac{3}{4} Nhc(\frac{3N}{8\pi V})^{\frac{1}{3}} \propto \frac{M^{4/3}}{R}$ $E_{\rm tot} = k_4 \frac{M^{4/3}}{R} k_2 \frac{M^2}{R} = \frac{k_5}{R}.$

- $E_{\mathrm{tot}} = k_1 \frac{M^{5/3}}{R^2} k_2 \frac{M^2}{R}$. • $\delta E_{\mathrm{tot}} = 0 \Rightarrow (-2k_1 \frac{M^{5/3}}{R^3} + k_2 \frac{M^2}{R^2}) \delta R = 0$ • $\Rightarrow R = k_3 M^{-1/3}$; Minimum.
- Relativistic: $U = \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}} \propto \frac{M^{4/3}}{R}$ $E_{\rm tot} = k_4 \frac{M^{4/3}}{R} k_2 \frac{M^2}{R} = \frac{k_5}{R}$. No minimum! Not stable.

- $E_{\rm tot} = k_1 \frac{M^{5/3}}{R^2} k_2 \frac{M^2}{R}$. $\delta E_{\rm tot} = 0 \Rightarrow (-2k_1 \frac{M^{5/3}}{R^3} + k_2 \frac{M^2}{R^2}) \delta R = 0$ $\Rightarrow R = k_3 M^{-1/3}$; Minimum.
- Relativistic: $U = \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}} \propto \frac{M^{4/3}}{R}$ $E_{\rm tot} = k_4 \frac{M^{4/3}}{R} k_2 \frac{M^2}{R} = \frac{k_5}{R}$. No minimum! Not stable.

• $E_{\rm tot} > 0, R \nearrow, \rightarrow$ non-relativistic;

• $E_{\rm tot} > 0, R \nearrow, \rightarrow$ non-relativistic; $E_{\rm tot} < 0, R \searrow$, unstable.

30 / 32

- $E_{\mathrm{tot}} > 0, R \nearrow, \rightarrow$ non-relativistic; $E_{\mathrm{tot}} < 0, R \searrow$, unstable.
- For critical relativistic case ($E_{\text{tot}} = 0$):

- $E_{\mathrm{tot}} > 0, R \nearrow, \rightarrow$ non-relativistic; $E_{\mathrm{tot}} < 0, R \searrow$, unstable.
- For critical relativistic case $(E_{\rm tot}=0)$: $E_{\rm tot}=\frac{3}{4}Nhc(\frac{3N}{8\pi V})^{\frac{1}{3}}-\frac{GM^2}{R}=0$

- $E_{\mathrm{tot}} > 0, R \nearrow, \rightarrow$ non-relativistic; $E_{\mathrm{tot}} < 0, R \searrow$, unstable.
- For critical relativistic case ($E_{\text{tot}} = 0$):

$$E_{\text{tot}} = \frac{3}{4} Nhc \left(\frac{3N}{8\pi V}\right)^{\frac{1}{3}} - \frac{GM^2}{R} = 0$$

$$\Rightarrow \frac{3}{4} Nhc \left(\frac{3N}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

- $E_{\rm tot} > 0, R \nearrow, \rightarrow$ non-relativistic; $E_{\rm tot} < 0, R \searrow$, unstable.
- For critical relativistic case ($E_{\text{tot}} = 0$):

$$E_{\text{tot}} = \frac{3}{4} N h c \left(\frac{3N}{8\pi V}\right)^{\frac{1}{3}} - \frac{GM^2}{R} = 0$$

$$\Rightarrow \frac{3}{4} N h c \left(\frac{3N}{8\pi \frac{4}{3}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} N^{\frac{4}{3}} h c \left(\frac{3}{8\pi \frac{4}{2}\pi}\right)^{\frac{1}{3}} = GM^2$$

- $E_{\text{tot}} > 0, R \nearrow, \rightarrow \text{non-relativistic};$ $E_{\rm tot} < 0, R \searrow$, unstable.
- For critical relativistic case $(E_{\text{tot}} = 0)$:

$$E_{\text{tot}} = \frac{3}{4} N h c (\frac{3N}{8\pi V})^{\frac{1}{3}} - \frac{GM^2}{R} = 0$$

$$\Rightarrow \frac{3}{4} N h c (\frac{3N}{8\pi \frac{4}{3}\pi})^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} N^{\frac{4}{3}} h c (\frac{3}{8\pi \frac{4}{3}\pi})^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} \left(\frac{M}{2m_p} \right)^{\frac{4}{3}} hc \left(\frac{3}{8\pi^{\frac{4}{3}\pi}} \right)^{\frac{1}{3}} = GM^2$$

30 / 32

- $E_{\text{tot}} > 0, R \nearrow, \rightarrow \text{non-relativistic};$ $E_{\rm tot} < 0, R \searrow$, unstable.
- For critical relativistic case $(E_{\text{tot}} = 0)$:

$$E_{\text{tot}} = \frac{3}{4} N h c \left(\frac{3N}{8\pi V}\right)^{\frac{1}{3}} - \frac{GM^2}{R} = 0$$

$$\Rightarrow \frac{3}{4} N h c \left(\frac{3N}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} N^{\frac{4}{3}} h c \left(\frac{3}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} \left(\frac{M}{2m_p}\right)^{\frac{4}{3}} h c \left(\frac{3}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow M \simeq \frac{3}{64\pi m_\pi^2} \left(\frac{3hc}{2G}\right)^{\frac{3}{2}} \simeq 5 \times 10^{30} \text{kg} \simeq 2.5 M_{\odot}.$$

30 / 32

- $E_{\text{tot}} > 0, R \nearrow, \rightarrow \text{non-relativistic};$ $E_{\rm tot} < 0, R \searrow$, unstable.
- For critical relativistic case ($E_{\text{tot}} = 0$):

$$E_{\text{tot}} = \frac{3}{4} N h c \left(\frac{3N}{8\pi V}\right)^{\frac{1}{3}} - \frac{GM^2}{R} = 0$$

$$\Rightarrow \frac{3}{4} N h c \left(\frac{3N}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} N^{\frac{4}{3}} h c \left(\frac{3}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4} \left(\frac{M}{2m_p}\right)^{\frac{4}{3}} h c \left(\frac{3}{8\pi^{\frac{4}{3}}\pi}\right)^{\frac{1}{3}} = GM^2$$

$$\Rightarrow M \simeq \frac{3}{64\pi m_\pi^2} \left(\frac{3hc}{2G}\right)^{\frac{3}{2}} \simeq 5 \times 10^{30} \text{kg} \simeq 2.5 M_{\odot}.$$

 More precise results (H component; Density, EOS profile on radius; exact expression for mildly relativistic particle), Chandrasekhar mass limit:

- $E_{\text{tot}} > 0, R \nearrow, \rightarrow \text{non-relativistic};$ $E_{\rm tot} < 0, R \searrow$, unstable.
- For critical relativistic case ($E_{\text{tot}} = 0$):

For Critical relativistic case (
$$E_{\rm tot} = 0$$
).
$$E_{\rm tot} = \frac{3}{4}Nhc(\frac{3N}{8\pi V})^{\frac{1}{3}} - \frac{GM^2}{R} = 0$$

$$\Rightarrow \frac{3}{4}Nhc(\frac{3N}{8\pi^{\frac{4}{3}}\pi})^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4}N^{\frac{4}{3}}hc(\frac{3}{8\pi^{\frac{4}{3}}\pi})^{\frac{1}{3}} = GM^2$$

$$\Rightarrow \frac{3}{4}(\frac{M}{2m_p})^{\frac{4}{3}}hc(\frac{3}{8\pi^{\frac{4}{3}}\pi})^{\frac{1}{3}} = GM^2$$

$$\Rightarrow M \simeq \frac{3}{64\pi m_e^2}(\frac{3hc}{2G})^{\frac{3}{2}} \simeq 5 \times 10^{30} \text{kg} \simeq 2.5 M_{\odot}.$$

 More precise results (H component; Density, EOS profile on radius; exact expression for mildly relativistic particle), Chandrasekhar mass limit: $M \leq 1.4 M_{\odot}$.

References

 A: "A grand dictionary of physics problems and solutions 5", Science press, 2005

Table of contents

- §6. Most probable distribution of nearly independent particles
- 2 §7. Boltzmann statistics
- 3 §8. Bose statistics and Fermi statistics
 - Bose statistics
 - Fermi statistics
 - Fermion gas in astrophysics