Lecture 12: Convergence

What we need to do

Convergence in probability

Definition: A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0$$

$$\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0$$
 We write $X_n \stackrel{p}{\to} X$.

Example: (Weak law of large numbers)

Let
$$X_{ij}X_{2j}$$
.... be iid with $E[X_i] = M$

and $V_{cr}(X_i) = \sigma^2 < \infty$

Let $X_n = \frac{1}{n} \stackrel{?}{\underset{i=1}{2}} X_i$. Then $X_n \stackrel{?}{\Rightarrow} M$
 $M-S$ M $M+S$ M $M+S$

WLLN
$$E[Xn] = M$$

 $Var(Xn) = \frac{1}{n} \cdot Var(Xi) = \frac{0^2}{n}$

Theorem: Let X_1, X_2, \ldots be iid random variables with $\mathbb{E}[X_i] = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then

$$\overline{X_n} \stackrel{p}{\Rightarrow} \mu$$

Working with your neighbor, apply Chebyshev's inequality to prove the WLLN.

prove the WLLN.

Pf: Let
$$\varepsilon > 0$$
, with $P(l \times n - \mu l) \ge \varepsilon$ $\Rightarrow 0$ as $n \Rightarrow \infty$
 $0 \le P(l \times n - \mu l) \ge \varepsilon$ $\le \frac{V_{cr}(x_n)}{\varepsilon^2}$ (checky sher)

 $= \frac{\sigma^2}{n \varepsilon^2} \Rightarrow 0$ as $n \Rightarrow \infty$
 $\Rightarrow P(l \times n - \mu l) \ge \varepsilon$ $\Rightarrow 0$ as $n \Rightarrow \infty$

Another example

Let $U \sim Uniform(0, 1)$, and let $X_n = \sqrt{n} \mathbb{I}\{U \le 1/n\}$.

Show that $X_n \stackrel{p}{\longrightarrow} 0$.

Pf: Let
$$270$$
. WTS $P(|X_n-0|\geq E) \rightarrow 0$ as $n\rightarrow\infty$

$$x_{n} = \begin{cases} 0 & u > \frac{1}{n} \\ \sqrt{n} & u \leq \frac{1}{n} \end{cases}$$

For sufficiently large
$$n$$
,
 $\sqrt{n} \geq \xi$
 $=> \sqrt{n} 15 U \leq \frac{1}{n} \geq \xi$
if and only if $15 U \leq \frac{1}{n} = 1$
(i.e., $u \leq \frac{1}{n}$)

$$\lim_{n \to \infty} P(1 \times n - 01 \ge 2) = \lim_{n \to \infty} P(1 \times n - 1)$$

$$= \lim_{n \to \infty} (\frac{1}{n}) = 0$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} \right) = 0$$

Almost sure convergence

Definition: A sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X if, for every $\varepsilon > 0$,

$$P(\lim_{n\to\infty} |X_n - X| < \varepsilon) = 1$$

We write $X_n \stackrel{a.s.}{\longrightarrow} X$.

Example: (Strong law of large numbers)

Let
$$X_1, X_{21}$$
 be ind with $E[X_i] = M$ and $V = r(X_i) = \sigma^2 \times \infty$. Then $X_n = \frac{s}{2}$.

i.e., $P(X_n \Rightarrow M) = 1$ (proof sketch in $C \nmid B$)

"calculus"

Convergence in distribution

Definition: A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$
 (pointwise convergence of the cof)

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\to} X$.

Example: (Central limit theorem)

Another example

Let $X \sim N(0, 1)$, and let $X_n = -X$ for n = 1, 2, 3, ...

Show that $X_n \stackrel{d}{\to} X$, but X_n does *not* converge to X in probability.

Relationships between types of convergence