第三次作业

洪艺中 12335025

2024年3月23日

0.1 132 页习题 4

题目 1. 设 M 为光滑流形, ∇ 为对称仿射联络. 设 $\{e_i\}$ 是局部基向量场, $\{\omega^i\}$ 和 $\{\omega^i_j\}$ 分别是对偶基和联络 1–形式, 证明:

$$\nabla_X \omega^i = -\omega_j^i(X)\omega^j, \quad \forall X \in \mathscr{X}(M).$$

解答. 取向量场 $Y \in \mathcal{X}(M)$, 设 $Y = Y^i e_i$.

$$\begin{split} (\nabla_X \omega^i)(Y) = & X(\omega^i(Y)) - \omega^i(\nabla_X Y) \\ = & X(Y^i) - \omega^i(X(Y^j)e_j + Y^j\omega_j^k(X)e_k) \\ = & X(Y^i) - X(Y^i) - Y^j\omega_j^i(X) \\ = & -\omega_j^i(X)\omega^j(Y). \end{split}$$

因此 $\nabla_X \omega^i = -\omega^i_j(X)\omega^j$.

0.2 132 页习题 5

题目 2. 设 (M^n, g) 为 Riemann 流形, $\omega = \omega_{i_1 \cdots i_m} dx^{i_1} \wedge \cdots \wedge dx^{i_m}$ 为 m-形式, 其中

$$\omega_{i_1\cdots i_m} = \sqrt{G}\varepsilon_{i_1\cdots i_m},$$

$$\varepsilon_{i_1\cdots i_m} = \begin{cases} 0 & (i_1,\cdots,i_m) \text{中有相同时,} \\ 1 & (i_1,\cdots,i_m) \text{为偶置换,} \\ -1 & (i_1,\cdots,i_m) \text{为奇置换.} \end{cases}$$

证明: $\omega_{i_1\cdots i_m,k}=0$, 即 ω 是平行的.

解答. 如果按照题目, $\omega \equiv 0$, 所以此题应该是说明体积元关于 Riemann 联络是平行的.

由于体积 vol = $\sqrt{G}\,\mathrm{d}x^1\wedge\cdots\mathrm{d}x^m$ 是张量, 其协变导数也是张量. 任取 $\{v_1,\cdots,v_n\}\subset\mathscr{X}(M),$ $v_i=V_i^je_j,$ 则

$$\nabla_{e_k} \operatorname{vol}(v_1, \dots, v_m) = \sum_{\sigma \in S^m} \prod_{i=1}^m V_i^{\sigma(i)} \nabla_{e_k} \operatorname{vol}(e_{\sigma 1}, \dots, e_{\sigma m}).$$

因此可以仅考虑 $\{v_i\}$ 都是基向量场 (即 $\frac{\partial}{\partial x^i}$) 的情况. 此时

$$\nabla_{e_k} \operatorname{vol}(v_1, \dots, v_m) = e_k(\operatorname{vol}(v_1, \dots, v_m)) - \sum_{i=1}^m \operatorname{vol}(v_1, \dots, \nabla_{e_k} e_i, \dots, v_m).$$