53. Soit $P = \frac{1 + \log_2 3}{\log_2 3}$. Calculer $3^{\frac{p}{2}}$

1.
$$\sqrt{2}$$
 2. 3^6 $\sqrt{3}$ $\sqrt{6}$ 4. 3 5. $1/2$ (B. -87) 54. Si a > 0. On considere la fonction exponentielle f définie par $f(x) = a^x$.

La proposition fausse est:

1. Si x > 0 et 0 < a < b alors $a^x < b^x$

2. Quel que soit a > 0, la fonction est continue dans R 3. Si 0 < a < 1, la fonction f est décroissante dans R

4. Si
$$x > 0$$
 et $a > 1$, on a $a^{x} > 1$
5. Si $0 < a < 1$, on a $\lim_{x \to 0} a^{x} = 0$

5. Si
$$0 < a < 1$$
, on a $\lim_{x \to -\infty} a^x = 0$

55.
$$\lim_{x \to +\infty} \left(\frac{2x+2}{2x-1} \right)^{x+1} =$$

 $e^{x} \cdot e^{y-1} = 2$

1.
$$\frac{1}{2}$$
 (2) $e^{\frac{3}{2}}$ 3. $e^{\frac{2}{3}}$ 4. $e^{\frac{3}{4}}$, 5. $e^{\frac{4}{3}}$

56.
$$\lim_{x \to 0} \frac{x^2}{x - \ln(1 + x)} = \frac{1}{100} (Mx + 87)$$

1. 0 2. -2 3.
$$+\infty$$
 4. 1 5. $+\infty$ 57. Déterminer la solution de l'équation logarithmique $\log_x \sqrt[4]{3} = \frac{1}{2}$

1.
$$\sqrt[3]{2}$$
 2. $\sqrt[4]{6}$ 3. $\sqrt{3}$ 4. $\sqrt[3]{3}$

58. Dans
$$\mathbf{R} \times \mathbf{R}$$
, déterminer la solution (x, y) du système :

$$\begin{cases} \ln x + \ln y = \ln(x - 1) + \ln(y + 1) \end{cases}$$

$$ln(y+1)$$

$$(\ln 2, 2 + \ln 2)$$

1.
$$(\ln \sqrt{2}, 1 + \ln 2)$$
 3. $(\ln 2, 2 + \ln 2)$ 5. $(2 + \ln 2, \ln 2)$

2. $(1 + \ln \sqrt{2}, \ln \sqrt{2})$ 4. $(\ln \sqrt{2}, 1 + \ln \sqrt{2})$

59. Dans R, on donne l'équation logarithmique :
$$\frac{1}{1+4} + 2\log_4(6x^2 + 1) = 3\log_8 5x^2$$

3. $\frac{3}{5}$ 4. $\frac{1}{2}$ 5. $\frac{2}{5}$ (B.-88)