Билет 19

1) Оптимальный прием сигналов. Согласованный фильтр.

Задача обнаружения сигналов:

Есть аддитивная смесь сигнал-шум:

$$y_i = S_i + \eta_i \tag{2.1}$$

i —дискретное время $y_i = y(t_i), \ S_i = S(t_i), \ \eta_i = \eta(t_i), \ t_i = \Delta t i, \ \Delta t$ - шаг дискретизации, η_i — аддитивный шум , S_i — полезный сигнал, причем, $\mathrm{E}\eta_i = 0$, $\mathrm{E}\eta_i^{\ 2} = \sigma_\eta^{\ 2}$, E — оператор математического ожидания.

Задача обнаружения – это задача проверки двух статистических гипотез:

 H_1 : на входе приёмника присутствует сигнал в смеси с шумом $y_i = S_i + \eta_i$,

 H_0 : на входе приёмника есть только шум $y_i = \eta_i$;

Нужно определить оптимальный прием по любому критерию, а то есть \vec{y}_n (алгоритм выборки):

- 1. γ_1 верно Н1
- 2. γ_0 верно H0
- Т. к. полезный сигнал наблюдается в шумах, то при принятии решения неизбежны ошибки. Возможны ошибки двух родов:
- 1. α вероятность ложной тревоги. Принимается решение γ_1 , в то время как имеет место гипотеза H_0 .
- 2. β —вероятность пропуска сигнала. Принимается решение γ_0 , а на самом деле имеет место гипотеза H_1

Или можно объяснить обстрактно:

Есть область пространства значений \vec{y}_n :

2.
$$\gamma_0$$
, если $\vec{y}_n \in G_0$ (верно НО)

Значит:

$$\begin{split} &\alpha \!\!=\!\! \mathsf{P}\{\,\gamma_1|\mathsf{H}_0\} = \mathsf{P}\{\,\,\vec{\mathsf{y}}_n\,\in\,\mathsf{G}_1|\mathsf{H}_0\};\\ &\beta \!\!=\!\! \mathsf{P}\{\,\gamma_0|\mathsf{H}_1\} = \mathsf{P}\{\,\,\vec{\mathsf{y}}_n\,\in\,\mathsf{G}_0|\mathsf{H}_1\}; \end{split}$$

Многомерные функции плотности верояности (ФПВ):

$$\alpha = \int \dots \int \omega(\vec{y}_n | H_0) d\vec{y}_n$$

$$\beta = \int \dots \int \omega(\vec{y}_n | H_1) d\vec{y}_n$$

$$G_0$$

где $\omega(\vec{\mathbf{y}}_n|\mathbf{H}_j)$ – многомерная ФПВ выборки $\vec{\mathbf{y}}_n$ при условии \mathbf{H}_j $\mathbf{j}=\overline{\mathbf{0,1}}$. (функция правдоподобия)

- 1. $P(H_0) = q$ априорная вероятность действия гипотезы H_0
- 2. $P(H_1) = 1 q$ априорная вероятность действия гипотезы H_1 .

Совместные вероятности действия гипотезу Нк и принятие решения γ_j :

$$P(\gamma_0 H_0) = P(H_0) \cdot P(\gamma_0 | H_0) = q(1 - \alpha)$$

$$P(\gamma_0 H_1) = P(H_1) \cdot P(\gamma_0 | H_1) = p\beta$$

$$P(\gamma_1 H_0) = P(H_0) \cdot P(\gamma_1 | H_0) = q\alpha$$

$$P(\gamma_1 H_1) = P(H_1) \cdot P(\gamma_1 | H_1) = p(1 - \beta)$$

Критерии качества (оптимальности):

1. Критерий идеального наблюдения

Регетрируется сигнал Ski (полезный сигнал), если для всех I (l±k) выполняется m-1 неравенство

2. Критерий максимума апостериорной вероятности/критерий Котельникова

3. Критерий максимального отношения правдоподобия

Алгоритмы обнаружения с различными критериями качества (оптимальности):

1. Байесовский обнаружитель

Критерий: критерий минимума среднего риска

$$R = R_{min}$$

Понятие среднего риска:

$$R = \sum_{k=0}^{1} \sum_{j=0}^{1} \Pi_{kj} P(\gamma_{j}, H_{k})$$

 $\Pi = \begin{pmatrix} \Pi_{00} & \Pi_{01} \\ \Pi_{10} & \Pi_{11} \end{pmatrix}$ номера строк в платёжной матрице соответствуют номерам гипотез H_k , а номера столбцов — номерам принимаемых решений γ_{j} :

ВЫВОД ФОРУЛЫ

$$R = \Pi_{00}q(1-\alpha) + \Pi_{11}p(1-\beta) + \Pi_{01}q\alpha + \Pi_{10}p\beta$$

Учитывая, что $\alpha = 1 - (1 - \alpha)$, получим

$$\begin{split} R &= \Pi_{00} q (1-\alpha) + \Pi_{11} p - \Pi_{11} p \beta + \Pi_{01} q - \Pi_{01} q (1-\alpha) + \Pi_{10} p \beta \\ &= q (1-\alpha) (\Pi_{00} - \Pi_{01}) - p \beta (\Pi_{11} - \Pi_{10}) + \Pi_{01} q + \Pi_{11} p \end{split}$$

Вместо β подставим (2.2), а (1- α)= $\int ... \int \omega(\vec{y}_n|\mathbf{H}_0) d\vec{y}_n$ Тогда получим G_0

$$R = \Pi_{11}p + \Pi_{01}q + \int \cdots \int [q(\Pi_{00} - \Pi_{01})w(\vec{\mathbf{y}}_{\mathbf{n}} / H_0) - p(\Pi_{11} - \Pi_{10})w(\vec{\mathbf{y}}_{\mathbf{n}} / H_1)]d\vec{\mathbf{y}}_{\mathbf{n}}.$$

$$G_0$$

$$\frac{dR}{d\vec{\mathbf{y}}_n} = 0 \implies q(\Pi_{00} - \Pi_{01}) w(\vec{\mathbf{y}}_\mathbf{n} \ / \ H_0) - (\Pi_{11} - \Pi_{10}) w(\vec{\mathbf{y}}_\mathbf{n} \ / \ H_1) = 0 \ . \ Откуда$$
 получим

$$\frac{w(\vec{y}_n|H_1)}{w(\vec{y}_n|H_0)} = \frac{q(\Pi_{00} - \Pi_{01})}{p(\Pi_{11} - \Pi_{10})} = C$$
 (2.5)

Закончился вывод формулы

Левая часть формулы (2.5) — <u>отношение правдоподобия</u>, правая часть (2.5) — порог C.

$$\Lambda(\vec{y}_n) = \frac{\omega(\vec{y}_n | H_1)}{\omega(\vec{y}_n | H_0)}, C = \frac{q(\Pi_{00} - \Pi_{01})}{p(\Pi_{11} - \Pi_{10})}.$$
 (2.6)

Алгоритм принятия решения состоит в вычислении значения отношения правдоподобия и сравнении его с порогом:

Если
$$\Lambda(\vec{y}_n) \ge C =>$$
 принимается решение γ_1 (2.7)
Если $\Lambda(\vec{y}_n) < C =>$ принимается решение γ_0

Этот алгоритм – оптимальный алгоритм обработки выборки для всех критериев. Различие состоит только в способе нахождение порога С.

Оптимальный способ обработки входного воздействия — подстановка \vec{y}_n в $\Lambda(\vec{y}_n)$ и сравнение с порогом С. НО! это не удобно. (прямое вычисление отношения правдоподобия сложно). Для успрощения прнимают т. Лемана:

если $\Lambda(\vec{y}_n) = \Lambda(\lambda(\vec{y}_n))$, где $\Lambda(\lambda)$ - монотонная функция от λ , то решение можно принимать по $\lambda(\vec{y}_n)$ т.е.

если
$$\lambda(\vec{y}_n) \ge C'$$
, то принимается решение γ_1 , (2.12)

если $\lambda(\vec{y}_n) < C'$, то принимается решение γ_0 ,

где C' - пересчитанный порог.

При этом $\Lambda(\vec{y}_n)$ называют достаточной статистикой, а $\lambda(\vec{y}_n)$ минимально достаточной статистикой.

Допущения/способ нахождения порога С:

Вычисление порога С по формуле (2.6) встречает затруднения, т.к. сложно задать платежную матрицу. Поэтому используют следующие допущения:

а) платы за принятие верных решений полагают равными 0 =>

$$C = \frac{q(\Pi_{01})}{p(\Pi_{10})}$$

б)
$$\Pi_{01} = \Pi_{10} = >$$

$$C = \frac{q}{p},\tag{2.8}$$

критерий минимума среднего риска (2.4) становится критерием идеального наблюдателя (или критерием Зигерта -Котельникова); средний риск сводится к средней вероятности ошибки

$$P_{\text{OIII}} = P(H_0)P(\gamma_1|H_0) + P(H_1)P(\gamma_0|H_1) = q\alpha + p, \tag{2.9}$$

т.е. $R = R_{min}$ превращается в

$$P_{\text{ош}} = P_{\text{ош}_{min}} \tag{2.10}$$

в) если априорные вероятности q и р равны, тогда систему называют системой с симметричным каналом и

$$C=1$$
 (2.11)

2. Обнаружение детерминированных сигналов на фоне аддитивного ГБШ

ГБШ - Гауссовский Белый шум

 η_i — аддитивный шум $_{ ext{-}}$ распределяетя по гаусовскому закону

$$w_{\eta}(x) = \frac{1}{\sqrt{2\pi}\sigma_{\eta}}e^{\frac{-x^2}{2\sigma_{\eta}^2}},$$
, с мат. ожиданием = 0 и дисперсией σ_{η}^2

Отсчёты такой помехи независимы, спектральная плотность мощности равномерна.

Значит функция правдоподобия:

$$w(\vec{\mathbf{y}}_n|\mathbf{H}_k) = \prod_{i=1}^n w(y_i|\mathbf{H}_k), \ \mathbf{k} = \overline{0;1}$$

Мнгновенные значения входного воздействия

1. При НО распределеы по закону:

$$w(y_i|\mathbf{H}_0) = \frac{1}{\sqrt{2\pi}\sigma_{\eta}} e^{\frac{-y_i^2}{2\sigma_{\eta}^2}}$$

2. При Н1:

$$w(y_i|H_1) = \frac{1}{\sqrt{2\pi}\sigma_{\eta}} e^{\frac{-(y_i - S_i)^2}{2\sigma_{\eta}^2}}$$

ВЫВОД ФОРМУЛЫ

$$w(\vec{\mathbf{y}}_{n}|\mathbf{H}_{0}) = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} \prod_{i=1}^{n} e^{\frac{-y_{i}^{2}}{2\sigma_{\eta}^{2}}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} e^{\frac{-\sum_{i=1}^{n}y_{i}^{2}}{2\sigma_{\eta}^{2}}}$$

$$w(\vec{\mathbf{y}}_{n}|\mathbf{H}_{1}) = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} \prod_{i=1}^{n} e^{\frac{-(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = >$$

$$\Lambda(\vec{\mathbf{y}}_{n}) = \frac{\left(\frac{1}{\sqrt{2\pi}\sigma_{\eta}}\right)^{n} e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}}}{\left(\frac{1}{\sqrt{2\pi}\sigma_{\eta}}\right)^{n} e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}}} = \frac{e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}}}{e^{\frac{-\sum_{i=1}^{n}y_{i}^{2}}{2\sigma_{\eta}^{2}}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}S_{i}-S_{i}^{2})}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}S_{i}-S_{i}^{2})}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}S_{i}-S_{i}^{2})}{2\sigma_{\eta}^{2}}} = \ln C =>$$

$$rac{1}{\sigma_{\eta}^2}\sum_{i=1}^n y_i S_i = \ln C + rac{1}{\sigma_{\eta}^2}\sum_{i=1}^n rac{S_i^2}{2}$$
 или $\sum_{i=1}^n y_i S_i = \sigma_{\eta}^2 \ln C + \sum_{i=1}^n rac{S_i^2}{2}$.

Закончился вывод формулы

Алгоритм обнаружения:

1. Для дискретного детерминированного сигнала на фоне ГБШ

если
$$\sum_{i=1}^{n} y_i S_i \ge C' => \gamma_1$$
 (2.13)
если $\sum_{i=1}^{n} y_i S_i < C' => \gamma_0$

 $E = \sum_{i=1}^{n} S_i^2$ - энергия сигнала =>

$$C' = \sigma_{\eta}^2 \ln C + \frac{E}{2} \tag{2.14}$$

Корреляционная обработка детерминированного дискретного сигнала на фоне ГБШ:

2. Для неприрывного сигнала y(t)

Сумма заменяется интегралом:

$$\lambda(y(t)) = \int_0^T y(t) S(t) dt$$
 - корреляционный интеграл T – длительность сигнала C'

Если
$$\lambda(y(t)) \ge C' => \gamma_1$$
, (2.15) если $\lambda(y(t)) < C' => \gamma_0$, где $E = \int_0^T S(t)^2 dt$

Корреляционная обработка детерминированного непрерывного сигнала на фоне ГБШ:

Согласованный фильтр. (С.Ф)

Можно обнаружать сигналы еще и СФ.

Согласованный фильтр — линейный фильтр, на выходе которого получается максимально возможное пиковое отношение сигнал/шум при приёме полностью известного сигнала на фоне БГШ.

Согласованный фильтр применяется при обнаружении и различении детерминированных сигналов. (В отличие от линейных фильтров, предназначенных для оптимальной фильтрации случайных сигналов)

Критерий оптимальности согласованного фильтра:

$$q_{\rm B} = q_{\rm Bmax} \,, \tag{2.16}$$

т. е. на выходе согласованного фильтра должно реализоваться максимальное отношение сигнал/шум.

$$t \in [0;T] \xrightarrow{y(t) = s(t) + \eta(t)} \xrightarrow{K(j\omega), h(t)} \xrightarrow{y_{B}(t) = s_{B}(t) + \eta_{B}(t)}$$

Рисунок 2.2. К выводу характеристик С.Ф.

 $S(j\omega) = \int_{-\infty}^{\infty} s(t)e^{-j\omega t} dt$ - спектр входного сигнала S(t) $S_{\rm B}(j\omega) = S(j\omega)K(j\omega)$ - спектр сигнала на выходе фильтра $=> s_{\rm B}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{\rm B}(j\omega)e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\omega)K(j\omega)e^{j\omega t} d\omega \qquad (2.17)$

$$q_{\rm B} = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} \frac{2|S(j\omega)|^2}{N_0} d\omega = \frac{2E}{N_0},$$

где $\mathrm{E}=rac{1}{2\pi}\cdot\int_{-\infty}^{\infty}|S(j\omega)|^2d\omega$ — энергия сигнала т. е.

$$q_{\rm B} = \frac{2E}{N_0}$$

$$K(j\omega) = const \cdot S^*(j\omega) \cdot e^{-j\omega t_0}$$
 (2.22)

Т.о. АЧХ согласованного фильтра ~ амплитудному спектру сигнала, а ФЧХ равна сумме фазового спектра сигнала, взятого с обратным знаком, и фазового спектра задержки:

$$\varphi(\omega) = -\varphi_c(\omega) - \omega t_0 \tag{2.23}$$

Вывод импульсной характеристики С.Ф.

Импульсная характеристика согласованного фильтра определяется, как обратное преобразование Фурье от КЧХ (2.22):

$$\begin{split} h(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} K(\mathrm{j}\omega) e^{j\omega t} \, d\omega = \frac{\mathrm{const}}{2\pi} \int_{-\infty}^{\infty} S^*(j\omega) e^{j\omega(t-t_0)} d\omega = \\ &\frac{\mathrm{const}}{2\pi} \int_{-\infty}^{\infty} S(-j\omega) e^{j\omega(t-t_0)} d\omega \,, \text{ так как } S^*(j\omega) = S(-j\omega) \\ &\mathrm{Пусть } \, \omega_1 = -\omega => d\omega = -d\omega_1 => \\ &h(t) = -\frac{\mathrm{const}}{2\pi} \int_{+\infty}^{-\infty} S(j\omega_1) e^{j\omega_1(t_0-t)} d\omega_1 = \frac{\mathrm{const}}{2\pi} \int_{-\infty}^{\infty} S(j\omega_1) e^{j\omega_1(t_0-t)} d\omega_1 = \\ &= \mathrm{const} \cdot S(t_0-t). \end{split}$$

Т.о. импульсная характеристика согласованного фильтра целиком определяется формой сигнала (согласована с сигналом):

$$h(t) = const \cdot S(t_0 - t) \tag{2.24}$$

2) Многоканальные системы связи. Системы с кодовым разделением каналов.

Многоканальная система связи — CC, которая обеспечивает передачу нескольких сообщений по одной общей линии связи.

Структурная схема простейшей многоканальной системы связи:

Рис. 1.4. Структурная схема многоканальной системы связи

Сообщения a_1 , a_2 ,...., a_n , подлежащие передаче, преобразуются в электрические сигналы $u_1(t)$, $u_2(t)$,...., $u_n(t)$, а затем смешиваются в аппаратуре уплотнения.

Полученный групповой сигнал u(t) передается по линии связи.

Приемник преобразует принятое колебание z(t) = u(t) + n(t) в исходный групповой сигнал, из которого затем с помощью устройства разделения выделяются индивидуальные сигналы $\hat{u}_i(t)$, преобразуемые в соответствующие сообщения \hat{a}_n .

Для разделения сигналов на приемном конце необходимо, чтобы они различались между собой по некоторому признаку. В практике многоканальной связи преимущественно применяют частотный и временной способы разделения.

Системы с кодовым разделением каналов

Системы с кодовым разделением каналов (Code Division Multiple Access, CDMA) — технология множественного доступа, которая используется для передачи и приема данных в беспроводных коммуникационных системах.

Основная идея: разные пользователи могут одновременно использовать одну и ту же частоту для передачи своих сигналов, используя различные коды.

Основные принципы работы CDMA:

1. Кодовое разделение

Каждому пользователю присваивается уникальный код (код распределения спектра/код Чипа). Этот код используется для разделения сигналов разных пользователей на приемной стороне. Коды различаются по своим математическим свойствам и обеспечивают минимальное взаимное влияние при одновременной передаче разных сигналов.

2. Расширение спектра

Каждый бит данных умножается на код Чипа, который имеет гораздо большую скорость передачи данных, чем сам сигнал. Это приводит к расширению спектра сигнала и увеличению его пропускной способности.

На приемной стороне, при использовании правильного кода, сигнал выбирается и восстанавливается, а остальные сигналы, умноженные на другие коды, становятся шумом.

3. Обработка интерференции

Способны эффективно справляться с интерференцией. (все пользователи используют одну и ту же частоту, на приемной стороне сигналы от других пользователей рассматриваются как шум).

Использование методов обработки интерференции, таких как многолучевое расширение и адаптивная фильтрация, позволяет уменьшить влияние интерференции и улучшить качество связи.

СDMA является одной из основных технологий в сотовых сетях третьего поколения (3G) и четвертого поколения (4G). Она обеспечивает высокую пропускную способность, надежность и эффективность использования частотного ресурса. Кроме того, CDMA также используется в других беспроводных системах связи, таких как беспроводные локальные сети (Wi-Fi) и спутниковая связь.

Как формируются сигналы при CDMA

Рассмотрим? как формируется сигнал для кодового разделения каналов на примере 2-ФМн сигнала и кодах Уолша.

Каждому абоненту назначается своя последовательность Уолша.

Структура модулятора CDMA

Структура демодулятора CDMA

Рассмотрим более сложную структуру демодулятора.

Если кому будет интересно, то можно вот этот видос посмотреть:

https://www.youtube.com/watch?v=y8CkwkcrJQg

ЗАДАЧА

Задача. Задана корреляционная функция стационарного случайного процесса $R(\tau) = \begin{cases} 1 - |\tau|, |\tau| \leq 1, \\ 0, uhave \end{cases}$

Найти спектральную плотность мощности $G(\omega)$ случайного процесса.

