IF2120 Matematika Diskrit

Aljabar Boolean (Bag.2) (Update 2023)

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Penyederhanaan Fungsi Boolean

 Menyederhanakan fungsi Boolean artinya mencari bentuk fungsi lain yang ekivalen tetapi dengan jumlah literal atau operasi yang lebih sedikit.

• Contoh: f(x, y) = x'y + xy' + y' disederhanakan menjadi f(x, y) = x' + y'

• Dipandang dari segi aplikasi aljabar Boolean, fungsi Boolean yang lebih sederhana berarti rangkaian logikanya juga lebih sederhana (menggunakan jumlah gerbang logika lebih sedikit).

- Tiga metode yang dapat digunakan untuk menyederhanakan fungsi Boolean:
 - 1. Secara aljabar, menggunakan hukum-hukum aljabar Boolean.
 - 2. Metode Peta Karnaugh.
 - 3. Metode Quine-McCluskey (metode tabulasi)

Yang dibahas hanyalah Metode Peta Karnaugh

Peta Karnaugh

- Peta Karnaugh (atau *K-map*) merupakan metode grafis untuk menyederhanakan fungsi Boolean.
- Metode ini ditemukan oleh Maurice Karnaugh pada tahun 1953. Peta Karnaugh adalah sebuah diagram/peta yang terbentuk dari kotak-kotak (berbentuk bujursangkar) yang bersisian.
- Tiap kotak merepresentasikan sebuah minterm.
- Tiap kotak dikatakan bertetangga jika *minterm-minterm* yang merepresentasikannya berbeda hanya 1 buah literal.

Maurice Karnaugh (/ˈkɑːrnɔː/; October 4, 1924 – November 8, 2022) was an American physicist, mathematician, computer scientist, and inventor known for the Karnaugh map used in Boolean algebra. (Sumber: Wikipedia)

Peta Karnaugh dengan dua peubah

Penyajian 1

Penyajian	2

 $\begin{array}{c|cccc}
 & y \\
 & 0 & 1 \\
 & x & 0 & 00 & 01 \\
 & 1 & 10 & 11
\end{array}$

 y'
 y

 x'
 x'y'
 x'y

 x
 xy'
 xy

Penyajian 3

Peta Karnaugh dengan tiga peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

	00	yz 01	11	10
<i>x</i> 0	<i>x</i> ' <i>y</i> ' <i>z</i> '	x' y ' z	x'yz	x'yz'
1	xy'z'	xy'z	xyz	xyz'

Peta Karnaugh dengan empat peubah

					yz			
					00	01	11	10
m_0	m_1	m_3	m_2	wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
m_4	m_5	m_7	m_6	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
m_{12}	m_{13}	m_{15}	m_{14}	11	wxy'z'	wxy'z	wxyz	wxyz'
m_8	m_9	m_{11}	m_{10}	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Cara mengisi peta Karnaugh

- Kotak yang menyatakan minterm diisi "1"
- Sisanya diisi "0"

• Contoh: f(x, y, z) = x'yz' + xyz' + xyz

	00	<i>yz</i> 01	11	10
x 0	0	0	0	1
1	0	0	1	1

Contoh: f(x, y, z) = xz' + y

xz': Irisan antara:

 $x \rightarrow$ semua kotak pada baris ke-2

 $z' \rightarrow$ semua kotak pada kolom ke-1 dan kolom ke-4

y:

y → semua kotak pada kolom ke-3 dan kolom ke-4

		yz 00	01	11	10	
X	0	0	0	1	1	
	1	1	0	1	1	
		xz' + y				

Pengisian peta Karnaugh dari tabel kebenaran

х	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Tinjau hanya nilai fungsi yang memberikan 1. Fungsi Boolean yang merepresentasikan tabel kebenaran adalah f(x, y) = x'y'z + xy'z' + xy'z + xyz.

	00	<i>yz</i> 01	11	10
x 0	0	1	0	0
1	1	1	1	0

Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh

 Penggunaan Peta Karnaugh dalam penyederhanaan fungsi Boolean dilakukan dengan cara menggabungkan kotak-kotak yang bernilai 1 dan saling bersisian.

- Kelompok kotak yang bernilai 1 dapat membentuk:
 - pasangan (dua),
 - kuad (empat),
 - oktet (delapan).

Pasangan

wx VZ	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	1	1)
10	0	0	0	0

Bukti secara aljabar:

$$f(w, x, y, z) = wxyz + wxyz'$$

$$= wxy(z + z')$$

$$= wxy(1)$$

$$= wxy$$

Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz'

Sesudah disederhanakan: f(w, x, y, z) = wxy

Kuad (1)

wx VZ	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1)
10	0	0	0	0

Bukti secara aljabar (kuad = 2 buah pasangan):

$$f(w, x, y, z) = wxy' + wxy$$

$$= wx(z' + z)$$

$$= wx(1)$$

$$= wx$$

Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wxyz + wxyz'

Sesudah: f(w, x, y, z) = wx

Kuad (2)

wx Vz	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	0	0
10	1_1_	1	0	0

Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wx'y'z' + wx'y'z

Sesudah: f(w, x, y, z) = wy'

Oktet

Sebelum:
$$f(w, x, y, z) = wxy'z' + wxy'z + wxyz' + wxy'z + wxy'z' + wx'y'z' + wx'yz' + wx'yz'$$

Sesudah: f(w, x, y, z) = w

Penggulungan (1)

- Gambar (a) Peta Karnaugh "normal" dengan 3 peubah
 - (b) Peta Karnaugh dengan sisi kiri dan sisi kanan ditautkan (seperti digulung).

Rinaldi Munir - IF2120 Matematika Diskrit

Penggulungan (2)

Contoh: Sederhanakan f(x, y, z) = x'yz + xy'z' + xyz + xyz'.

Sebelum: f(x, y, z) = x'yz + xy'z' + xyz + xyz'

Sesudah: f(x, y, z) = yz + xz'

Ketidakunikan Hasil Penyederhanaan

Hasil penyederhanaan dengan peta Karnaugh tidak selalu unik. Artinya, mungkin terdapat beberapa bentuk fungsi minimasi yang berbeda

meskipun jumlah literal dan jumlah term-nya sama

$$f(w,x,y,z) = w'x'y + w'xy'z + wxy + wy'z' + wx'z$$

$$f(w,x,y,z) = w'x'y + w'xy'z + wxz' + wyz + wx'y'$$

Tips menyederhanakan dengan Peta Karnaugh

Kelompokkan 1 yang bertetangga sebanyak mungkin

 Dimulai dengan mencari oktet sebanyak-banyaknya terlebih dahulu, kemudian kuad, dan terakhir pasangan.

Hasil penyederhanaan: f(w, x, y, z) = wy' + yz' + w'x'z

Hasil penyederhanaan: f(w, x, y, z) = z + xy + wx'y'

Hasil penyederhanaan: f(w, x, y, z) = wx + wz + wy + xyz

Tentukan bentuk sederhana dari fungsi Boolean yang merepresentasikan tabel kebenaran berikuit dalam bentuk baku SOP dan bentuk baku POS.

x	y	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Penyelesaian:

(a) Bentuk baku SOP: kelompokkan 1

Fungsi minimasi: f(x, y, z) = x'z + xz'

(b) Bentuk baku POS: kelompokkan 0

Fungsi minimasi: f(x, y, z) = (x' + z')(x + z)

Minimisasi fungsi Boolean $f(x, y, z) = \Sigma (0, 2, 4, 5, 6)$

Penyelesaian:

Peta Karnaugh untuk fungsi tersebut adalah:

Hasil penyederhanaan: f(x, y, z) = z' + xy'

Minimisasi f(w, x, y, z) = w'x'y' + x'yz' + w'xyz' + wx'y'Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = x'y' + x'z' + w'yz'

Minimisasi fungsi Boolean $f(w, x, y, z) = \Sigma (0,1,2,4,5,6,8,9,12,13,14)$

Penyelesaian:

yz wx	00	01	11	10
00	1	1	0	1
01_	1	1	0	1
11_	1)	1	0	1
10	1	1)	0	0

Hasil penyederhanaan: f(w, x, y, z) = y' + w'z' + xz'

Sederhanakan fungsi f(w,x,y,z) = (w + x')(w + x + y)(w' + x' + y')(w' + x + y + z'). Hasil penyederhanaan dalam bentuk baku SOP dan POS.

Penyelesaian:

Hasil penyederhanaan

SOP: f(w, x, y, z) = x'y + wxy' + wy'z' (garis penuh)

POS: f(w, x, y, z) = (x' + y')(w + y)(x + y + z') (garis putus-putus)

Sederhanakan fungsi f(x, y, z, t) = xy' + xyz + x'y'z' + x'yzt'Penyelesaian:

Pengelompokan yang berlebihan

Pengelompokan yang benar

Fungsi minimasi: f(x, y, z, t) = y'z' + xz + yzt'

Minimasi fungsi yang telah dipetakan ke peta Karnaugh di bawah ini dalam bentuk baku SOP dan bentuk baku POS.

Penyelesaian:

SOP: f(w, x, y, z) = yz + wz + xz + w'xy'

POS: f(w, x, y, z) = (y' + z)(w' + z)(x + z)(w + x + y)

(garis penuh)
(garis putus-putus

Sederhanakan rangkaian logika berikuit:

<u>Penyelesaian</u>: Fungsi yang berkoresponden dengan rangkaian logika tsb: f(x, y, z) = x'yz + x'yz' + xy'z' + xy'z

Fungsi Boolean hasil minimisasi:

$$f(x, y, z) = x'y + xy'$$

Rangkaian logika hasil penyederhanaan:

Peta Karnaugh untuk Lima Peubah

Garis pencerminan

Dua kotak dianggap bertetangga jika secara fisik berdekatan dan merupakan pencerminan terhadap garis ganda

Contoh: Carilah fungsi sederhana dari

$$f(v, w, x, y, z) = \Sigma (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)$$

Peta Karnaugh dari fungsi tersebut adalah:

vw xyz	000	001	011	010	110	111	101	100
00_	1	0	0	1	1)	0	0	1
01	0	1	1	0	0	1	1	0
11	0	1	1	0	0	1	1	0
10	0	1	0	0	0	0	1	0

Fungsi minimasi: f(v, w, x, y, z) = wz + v'w'z' + vy'z

Keadaan don't care

- Keadaan don't care adalah kondisi nilai peubah yang tidak diperhitungkan oleh fungsinya.
- Artinya nilai 1 atau 0 dari peubah don't care tidak berpengaruh pada hasil fungsi tersebut.

Contoh:

- Peraga digital angka desimal 0 sampai 9.
- Jumlah bit yang diperlukan untuk merepresentasikan angka 0 sampai 9 = 4 bit.
- Sehingga, bit-bit untuk angka 10-15 tidak terpakai

w	х	У	Z	Desimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4 5
0	1	0	1	5
0	1	1	0	6 7
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	X X X X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X X
1	1	1	1	X

don't care

- Dalam menyederhanakan Peta Karnaugh yang mengandung keadaan don't care, ada dua hal penting sebagai pegangan.
- Pertama, kita anggap semua nilai don't care (X) sama dengan 1 dan kemudian membentuk kelompok sebesar mungkin yang melibatkan angka 1 termasuk tanda X tersebut.
- Kedua, semua nilai X yang tidak termasuk dalam kelompok tersebut kita anggap bernilai 0.
- Dengan cara ini, keadaan-keadaan X telah dimanfaatkan semaksimal mungkin, dan kita boleh melakukannya secara bebas.

Contoh: Sebuah fungsi Boolean, f, dinyatakan dengan tabel berikut. Minimisasi fungsi f sesederhana mungkin.

+				
w	х	у	Z	f(w, x, y, z)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	X
1	0	0	1	X
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = xz + y'z' + yz

Contoh: Minimisasi fungsi Boolean berikut (dalam bentuk baku SOP dan bentuk baku POS): $f(w, x, y, z) = \Sigma (1, 3, 7, 11, 15)$

dengan kondisi don't care adalah $d(w, x, y, z) = \Sigma (0, 2, 5)$.

Penyelesaian:

yz wx	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

Hasil penyederhanaan:

SOP: f(w, x, y, z) = yz + w'z

(kelompok garis penuh)

POS: f(w, x, y, z) = z (w' + y)

(kelompok garis putus-putus)

Latihan (UTS 2022)

Diberikan dua buah fungsi Boolean f dan g. Maka, fungsi h = f + g diperoleh dengan meng-OR-kan f dan g:

$$f = wxy' + y'z + w'yz' + x'yz'$$

$$g = (w + x + y' + z') (x' + y' + z) (w' + y + z')$$

Dengan mengunakan peta Karnaugh, temukan bentuk yang paling sederhana dari h = f+g. Gambarkan juga rangkaian logika hasil akhirnya.

Jawaban:

Tabel Kebenaran

ш

1						
W	Х	у	Z	f	g	h = (f OR g)
1	1	1	1	0	1	1
1	1	1	0	0	0	0
1	1	0	1	1	0	1
1	1	0	0	1	1	1
1	0	1	1	0	1	1
1	0	1	0	1	1	1
1	0	0	1	1	0	1
1	0	0	0	0	1	1
0	1	1	1	0	1	1
0	1	1	0	1	0	1
0	1	0	1	1	1	1
0	1	0	0	0	1	1
0	0	1	1	0	0	0
0	0	1	0	1	1	1
0	0	0	1	1	1	1
0	0	0	0	0	1	1

Peta Karnaugh:

	אַע' <u>'</u>	Z,Z	XX	אַגַ'
<u>x</u> ,x,	1)	1	0	(
W'X	1	1	1	1
WX	1	1	1)	0
WX'	1	1	_1	(1

Hasil penyederhanaan:

$$h(\underline{w_x}\underline{y_z}) = y' + \underline{w'}\underline{x} + \underline{w}\underline{z} + \underline{x'}\underline{z'}$$

Bersambung ke Bagian 3