

THE TEAM

YONATHAN PURBA

JAPPY SIRAIT

Analisis data deret waktu COVID-19 di Indonesia sangat penting untuk memahami dinamika penyebaran virus, mengidentifikasi pola kasus harian, kematian, kesembuhan, dan progres vaksinasi, yang semuanya berfungsi sebagai landasan pengambilan keputusan berbasis bukti bagi pemerintah. Proyek analisis eksploratif dan visualisasi ini bertujuan memberikan wawasan mendalam mengenai tren, memprediksi potensi lonjakan, menilai efektivitas intervensi kesehatan publik, dan mengukur kesiapan kesehatan melalui visualisasi data yang mudah dipahami, sehingga mendukung pengambilan keputusan strategisi yang cepat, adaptif, dan proaktif dalam manajemen krisis kesehatan nasional.

RUMUSAN MASALAH

- Bagaimana tren jumlah kasus positif COVID-19 di setiap provinsi di Indonesia dari waktu ke waktu?
- Apakah terdapat hubungan antara tingkat kematian (Case Fatality Rate) dengan tingkat kesembuhan (Case Recovered Rate) di setiap provinsi?
- Apakah terdapat perbedaan signifikan antara provinsi dengan jumlah kasus tinggi dan rendah terhadap tingkat kematian?
- Bagaimana pengaruh faktor pertumbuhan kasus baru (Growth Factor of New Cases) terhadap pertumbuhan kematian (Growth Factor of New Deaths)?
- Provinsi mana yang memiliki tingkat kesembuhan tertinggi dan tingkat kematian terendah selama periode pandemi COVID-19?

DATA COLLECTION

Dataset diperoleh dari Kaggle dengan judul "COVID-19 Indonesia Dataset" Deskripsi singkat:

- Jumlah baris: 31.822 Baris
- Jumlah kolom: 38 Attribut

Dataset ini valid dan dapat dipertanggungjawabkan karena berasal dari sumber terbuka terpercaya (open data platform).

ACK TO A CK TO THE STATE OF THE

WHAT IS THE INDUSTRY'S HISTORY
DO YOU SEE NEW PATTERNS
OR OUTLOOK ABOUT WHERE THE

STRUKTUR DAN BENTUK DATA

WHAT IS THE INDUSTRY'S HIS AND WHAT ARE ITS USUAL TR DO YOU SEE NEW PATTERNS DEVELOPING? GIVE A PREDICTION OR OUTLOOK ABOUT WHERE TH

FINANCIAL OUTLOOK					
INCOME OVERVIEW	•••	YOY FROFIT	****	BUSINESS GROWTH	•••
50		67%			73 %
40					
30		WEDSITE TRAFFIC	***	INCOME EXPENSES	***
10		(070)		Total \$13	7,000
		67%		Expenses \$1	5,048
March April M	ay June				

NO	Nama Kolom	Deskripsi		
1	Date	Tanggal pencatatan data		
2	Location	Nama Provinsi atau wilayah		
3	New Cases	Jumlah kasus baru yang		
4	New Deaths	Jumlah Kematian Baru yang		
5	New Recovered	Jumlah Pasien yang dinyatakan		
6	Total Cases	Jumlah Kasus hingga tanggal		
7	Tota Deaths	Jumlah Kumulatif Kematian		
8	Total Active Cases	Jumlah pasien yang masih		
9	Total Vaccine 1	Jumlah orang yang telah		
10	Total Vaccine 2	Jumlah orang yang telah		
11	Population	Jumlah Penduduk di wilayah		
13	Island	Pulau besar tempat provinsi		

PEMERIKSAAN AWAL KUALITAS DATA

KONSISTENSI DATA

STATISTIK DESKRIPTIF AWAL

Statistik	New Cases	New Deaths	New Recovered	Total Cases	Total Deaths	Total Recovered
Mean	950.4	45.2	870.3	254,300	9,430	230,000
Median	620	28	590	230,000	8,200	210,000
Max	56,757	2,069	43,649	6,000,000	160,000	5,700,000
Min	0	0	0	0	0	0

INTERPRETASI

- Nilai rata-rata kasus baru harian (New Cases) menunjukkan pola fluktuatif dengan puncak signifikan selama gelombang besar pandemi (Juli 2021 & Februari 2022).
- New Deaths memiliki korelasi kuat terhadap New Cases, menandakan bahwa peningkatan kasus diikuti oleh peningkatan angka kematian dengan lag waktu tertentu.
- Jumlah kasus sembuh (New Recovered) umumnya sebanding dengan kasus baru, menandakan sistem kesehatan mampu menyesuaikan kapasitas perawatan.
- Tren Total Cases dan Total Deaths menunjukkan pertumbuhan eksponensial pada fase awal pandemi dan mulai melambat setelah program vaksinasi berjalan.

FINANCIAL OUTLOOK

DATA CLEANING


```
# Filter hanya level provinsi
df = df[df["Location Level"] == "Province"]
# Hapus kolom tidak relevan
df.drop(columns=["City or Regency"], errors="ignore", inplace=True)
# Konversi kolom tanggal
df["Date"] = pd.to_datetime(df["Date"], errors="coerce")
df = df.dropna(subset=["Date"])
# Bersihkan kolom persen dan ubah jadi float
df["Case Fatality Rate"] = df["Case Fatality Rate"].astype(str).str.replace("%", "").astype(float)
df["Case Recovered Rate"] = df["Case Recovered Rate"].astype(str).str.replace("%", "").astype(float)
# Isi missing values sesuai konteks
df["Total Rural Villages"] = df["Total Rural Villages"].fillna(0)
df["Growth Factor of New Deaths"] = df["Growth Factor of New Deaths"].fillna(1.0)
df["Growth Factor of New Cases"] = df["Growth Factor of New Cases"].fillna(1.0)
```

WHAT IS THE INDUST
AND WHAT ARE ITS US
DEVELOPING? GIVE A PRI
INDUSTRY IS HEAD.

FINANCIAL OUTLOOK

ADVANCED PREPROCESSION \$15,048

```
from sklearn.preprocessing import StandardScaler
                      # --- Normalisasi ---
                      scaler = StandardScaler()
                      cols_to_scale = ["Total Cases", "Total Deaths", "Total Recovered", "Population Density"]
                      df_scaled = df.copy()
                      df_scaled[cols_to_scale] = scaler.fit_transform(df_scaled[cols_to_scale])
                      # --- Deteksi dan hapus outlier (IQR) ---
  WHAT IS THE INDUSTRY'S HISTOR
                      Q1 = df["Total Cases"].quantile(0.25)
 AND WHAT ARE ITS USUAL TREND
 DO YOU SEE NEW PATTERNS
                      Q3 = df["Total Cases"].quantile(0.75)
DEVELOPING? GIVE A PREDICTION
OR OUTLOOK ABOUT WHERE THE
                      IOR = 03 - 01
INDUSTRY IS HEADED.
                      lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
                      df = df[(df["Total Cases"] >= lower) & (df["Total Cases"] <= upper)]</pre>
                      print("  Outlier dihapus berdasarkan IQR (Total Cases)")
```


ANOVA (ONE-WAY ANOVA)

```
# --- ANOVA antar 3 provinsi ---
prov_list = ['DKI Jakarta', 'Jawa Barat', 'Jawa Tengah']
df_prov = df[df["Province"].isin(prov_list)]
data_jakarta = df_prov[df_prov["Province"] == "DKI Jakarta"]["Total Cases"]
data_jabar = df_prov[df_prov["Province"] == "Jawa Barat"]["Total Cases"]
data jateng = df prov[df prov["Province"] == "Jawa Tengah"]["Total Cases"]
f_stat, p_val = f_oneway(data_jakarta, data_jabar, data_jateng)
print("\n=== Uji ANOVA (Total Kasus antar Provinsi) ===")
print(f"F-Statistic: {f_stat:.4f}")
print(f"P-value: {p_val:.4e}")
if p_val < 0.05:
   else:
   print("  Tidak ada perbedaan signifikan jumlah kasus antar provinsi.")
```


F-Statistic: 8.6112 P-value: 1.9621e-04

Ada perbedaan signifikan jumlah kasus antar provinsi.

MANN-WHITNEY U TEST

HASIL:

T-test New Cases DKI Jakarta vs Jawa Barat: t=1.601, p=1.100e-01 Mann-Whitney U Test: U=59088.000, p=1.973e-06

UJI KORELASI PEARSON DAN SPEARMAN

```
# --- Korelasi ---
cases = df["Total Cases"]
deaths = df["Total Deaths"]
recovered = df["Total Recovered"]

pearson_corr, _ = pearsonr(cases, deaths)
spearman_corr, _ = spearmanr(cases, recovered)

print(f"\nKorelasi Pearson (Kasus vs Kematian): {pearson_corr:.3f}")
print(f"Korelasi Spearman (Kasus vs Sembuh): {spearman_corr:.3f}")
```


Korelasi Pearson (Kasus vs Kematian): 0.850 Korelasi Spearman (Kasus vs Sembuh): 0.996

WE WANT TO SAY

THANK OUT TO SERVICE T

HE INDUSTRY'S HISTORY

ROUND