NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

HTSem B.E. (Credit System) Mid Semester Examinations - II, March 2017

16PH102 - ENGINEERING PHYSICS

Duration: 1 Hour

Max. Marks: 20

Note: Answer any One full question from each Unit.

List of constants: Velocity of light, $c = 3 \times 10^8 \text{ms}^{-1}$, Planck's constant, $h = 6.63 \times 10^{-34} \text{ Js}$, Electron mass, $m = 9.11 \times 10^{-31} \text{kg}$, Electron charge, $e = 1.6 \times 10^{-19} \text{C}$,

Permittivity of vacuum, $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m, Boltzmann constant, k=1.38x10⁻²³J/K

		Permittivity of vacuum, $\epsilon_0 = 0.05 \times 10^{-1711}$, Bottanian			
		Unit-1	Marks	BT*	
1.		What are the assumption of classical free electron theory. Explain the effect of temperature on the electrical resistivity of metals.	3	L*:	2
		Obtain an expression for the electrical conductivity of a metal based on classical free electron theory.	4	L	4
	c)	Mobilities of electrons and holes in a sample of intrinsic germanium at 300K are 0.34m ² V ⁻¹ s ⁻¹ and 0.18m ² V ⁻¹ s ⁻¹ respectively. If the resistivity of the specimen is 2.14 Ωm, compute the intrinsic carrier density.	3	L	.3
2.		What is Hall effect? Explain how Hall field is produced. Mention the applications of Hall effect.	3	L	2
		What are intrinsic and extrinsic semiconductors? Describe the mechanisms of carrier generation in extrinsic semiconductors.	4	1	L3
	c)	Find the temperature at which there is 2% probability that an energy level 0.2 eV above Fermi level being occupied?	3		L3
		Unit – II			
3.		Describe an optical fiber? What is the principle based on which optical transmission is achieved through a fiber? Explain.			L2
	b)	With necessary diagrams explain construction and working of He-Ne laser.	4	+	L3
	c)	All least omits light at a wavelength of 632.8 nm and has an output power	r	3	L3
4.	a)	Explain spontaneous emission. Why it is not desired for lasing action?		3	L2
	b)	Explain the ray propagation through an optical fiber and angle of acceptance. Obtain the expression for numerical aperture in terms of refractive indices core and cladding.		4	L3
	c)	A glass clad fiber is made with core glass of refractive index 1.5 and to cladding is doped to give a fractional index difference of 0.005. Find (a) to acceptance angle (b) the numerical aperture and (c) the critical interpretation angle.		3	L3

BT* Bloom's Taxonomy, L* Level

USN

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

H.Sem B.E. (Credit System) Mid Semester Examinations - I, February 2017

16PH102 - ENGINEERING PHYSICS

Duration: 1 Hour

Max. Marks: 20

Note: Answer any One full question from each Unit.

List of constants:

Velocity of light, c=3x10⁸ms⁻¹. Planck's constant, h=6.63x10⁻³⁴ Js, Electron mass, m=9.11x10⁻³¹kg, Electron charge, e=1.6x10⁻¹⁹C, Permittivity of vacuum, ε_0 = 8.85x10⁻¹² F/m, Boltzmann constant, k=1.38x10⁻²³ J/K.

Avogadro number, N_A = 6.023 x 10²⁶/ kg mole.

		Avogadro number, N _A = 6.023 x 10 7 kg mole.	Marks	BT*	
		Unit – I	3	L*2	
1.	a) b)	What are matter waves? Mention their characteristics. What is a wave function? Derive Schrodinger's time independent wave equation in one dimension for a particle of mass m with energy E.	4	L3	
	c)	Calculate the de Broglie wavelength associated with an electron with a kinetic energy of 2 keV.	3	L4	
2.	a)	Define group velocity. Obtain an expression for the same.	3	L2	
۷.	b)	Solve Schrodinger's wave equation for a particle in an infillitely deep potential.	4	L3	
	c)	An electron is bound in a one dimensional potential well of width 1 Å, but of infinite wall height. Find its energy values in the ground state and also in the first two excited states.	3	L4	
		Unit – II			
3.	a)	What is inter planar distance? Obtain an expression in terms of lattice parameter	3	L2	
	b)	and miller indices for the case of a cubic crystal. Describe the crystal structures of sodium chloride and zinc sulphide. Copper has FCC structure of atomic radius 0.1278 nm. Calculate the inter	4	L3	
	c)	planar spacing for (3 2 1) plane.	3	L4	
4.	a) b)	What are X-rays? Explain the origin of continuous X ray spectrum. What is atomic packing factor? Determine the atomic packing factor for body	3	L2	
		centered cubic lattices by calculating number of atoms per unit cell and atomic	4	L3	
	c)	radius. Draw the following planes: (1 1 0), (3 2 1) and (Ī 1 1) in a cubic unit cell.	3	3 L4	
	()	Dian die ione in grand in die ione in die			

BT* Bloom's Taxonomy, L* Level

USN

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

J. Sym R.E. (Credit System) Mid Semester Examinations - II, October 2017

17PH102 - ENGINEERING PHYSICS

Devadors: 1 Hour

Max. Marks: 20

Note: Answer any One full question from each Unit.

List of constants:

Velocity of light, $c=3x10^8 ms^{-1}$. Planck's constant, h=6.63x10⁻³⁴ Js, Electron mass, m=9.11x10⁻³¹ kg, Electron charge, e=1.6x10⁻¹⁹ C, Permittivity of vacuum, $\epsilon_o=8.85x10^{-12}$ F/m, Boltzmann constant, k=1.38x10⁻²³ J/K. Avogadro number = 6.023x10⁻²⁴ / k mol

		Avogadro number = 6.023x10 ²⁰ / k mol	Marks	BT	
		Unit-1	3	L*	2
*	b)	What is Matthiessen's rule? Explain in detail. Derive an expression for electrical conductivity based on free electron theory.	4	L	
		density as equal to 8.5X10 ²⁸ /m ³ .	3		.3 L2
			3		L. E.
5	200	Afrai is an infinisic sprince document	4	1	L2
	6)	an intrinsic semiconductor. A sample of silicon semiconductor is doped with 10 ²² phosphorous atoms. Calculate its conductivity if mobility of electrons is 0.07 m²/Vs. What is the Hall conductivity if mobility of electrons of 100µm and carrying a current of voltage if this semiconductor with a thickness of 100µm and carrying a current of the placed perpendicular to a magnetic field of 0.1T.		3	L3
		12.10		3	L4
3	a) b)	Distinguish between spontaneous emission and stimulated emission. Distinguish between spontaneous emission and stimulated emission. Ruby laser.	is re	4	L2
	()	responsible for the emission of		3	L3
		300 K.		3	L1
	(a	What is a laser? Explain its properties. What is a laser? Explain its properties. Explain an output power		4	L2
4	b) c)	What is a laser? Explain its properties. What are the conditions required for good lasing action? Explain What are the conditions required for good lasing action? Explain A laser emits light of at a wavelength of 632.8 nm and has an output power 5mW. How many photons are emitted each second by this laser	of	67	3 L3

BT* Bloom's Taxonomy, L* Level