Esercizi

De Cecco Paolo

April 20, 2020

1 Esercizio 9(vi)

- Descrivi esplicitamente un isomorfismo d'ordine $\mathbb{Q} \to \mathbb{Q} \setminus \{0\}$.
- Mostra che ℝ non è isomorfo d'ordine all'insieme ℝ\{0}.
 [Questo esercizio mostra che il Teorema di Cantor non si generalizza agli insiemi non numerabili]

Dimostrazione:

Costriuamo un isomorfismo d'ordine tra \mathbb{Q} e $\mathbb{Q}\setminus\{0\}$ in maniera esplicita. Posso scegliere un enumerazione di \mathbb{Q} fatta in questo modo:

$$q_i = \begin{cases} 0 & \text{se } i = 0 \\ \text{il più piccolo razionale positivo non ancora enumerato} & \text{se } i \text{ è pari} \\ \text{il più grande razionale negativo non ancora enumerato} & \text{se } i \text{ è dispari} \end{cases}$$

Con questa enumerazione si ha che: ... $< q_5 < q_3 < q_1 < 0 < q_2 < q_4 < ...$ Inoltre osservo che $\{q_1, q_2, ...\}$ è una enumerazione di $\mathbb{Q}\setminus\{0\}$. Definisco ora la funzione ϕ :

$$\phi: \quad \mathbb{Q} \to \mathbb{Q} \setminus \{0\}$$

$$0 \mapsto q_2$$

$$q_{2i} \mapsto q_{2(i+1)}$$

$$q_{2i+1} \mapsto q_{2i+1}$$

Tale funzione è iniettiva (perchè se due razionali sono uguali in $\mathbb{Q}\setminus\{0\}$ lo sono anche in \mathbb{Q}), suriettiva (è anche facilmente invertibile) e conserva l'ordine.

Mostriamo ora che non è possibile definire una funzione analoga per \mathbb{R} .

Supponiamo per assurdo che invece esista un isomorfismo d'ordine $\theta : \mathbb{R} \to \mathbb{R} \setminus \{0\}$. Voglio mostrare che θ non può essere suriettivo.

Osserviamo prima di tutto che gli insiemi $\mathbb{R}, \mathbb{R} \setminus \{0\}, \mathbb{R}^+, \mathbb{R}^-$ godono tutti delle proprietà (i)-(vi) definite a pag. 77 del Bhattacharjee. Osserviamo inoltre che la proprietà (v) è condizione necessaria, ma non sufficiente affinchè un insieme sia un intervallo.

Possiamo scrivere $\mathbb{R}\setminus\{0\}=\mathbb{R}^+\cup\mathbb{R}^-$. Mostriamo che l'immagine di θ è inclusa o tutta in \mathbb{R}^+ oppure tutta in \mathbb{R}^- . Definisco l'insieme:

$$A = \left\{ x \in \mathbb{R} \mid \theta(x) \in \mathbb{R}^+ \right\}$$

Se $A = \emptyset$ allora siamo a posto perchè l'immagine è tutta contenuta in \mathbb{R}^- . Sia allora $x \in A \neq \emptyset$ e $\theta(x) \in \mathbb{R}^+$. Mostriamo che A gode delle proprietà (i)-(vi):

- $A \subseteq \mathbb{R}$ e quest'ultimo è un insieme totalmente ordinato, quindi anche A lo è, cioè valgono le proprietà (i)-(iv).
- Per la (v) basta mostrare che $\forall x, y \in A, \exists a \in \mathbb{R}^+$ tale che $\theta(x) < a < \theta(y)$ per la proprietà (v) di \mathbb{R}^+ . θ è suriettivo e conserva l'ordine, quindi $x < \theta^{-1}(a) < y$. Inoltre $\theta^{-1}(a) \in A$, quindi A è un intervallo e cioè gode della prop. (v).
- Per la (vi) si fa un ragionamento analogo: $\exists a,b \in \mathbb{R}^+$ tali che $a < \theta(x) < b$. θ è suriettivo e conserva l'ordine, cioè $\exists x,y \in \mathbb{R}$ (e quindi $x,y \in A$) tali che $\theta(y)=a,$ $\theta(z)=b$ e inoltre y < x < z.

Osserviamo che $\sup(A), \inf(A) \notin A$: infatti se fossero in A per la proprietà (vi) potremmo sempre trovare un valore più grande (piccolo) che appartiene ad A.

Questo implica che $\sup(A) = +\infty$ e che $\inf(A) \in \mathbb{R}^- \cup \{-\infty\}$. Mostriamo che $\inf(A) = -\infty$. Supponiamo $\theta(\inf(A)) \in \mathbb{R}^-$. Sempre per la proprietà (vi) di $\mathbb{R}^- \exists c \in \mathbb{R}^-$ tale che $c > \theta(\inf(A))$. Come prima θ è suriettiva e conserva l'ordine e quindi $\theta^{-1}(c) > \inf(A)$ e $\theta^{-1}(c) \notin A$, ma questo è assurdo perchè ho preso l'inf. Allora $\inf(A) = -\infty$.

Quindi A è un intervallo illimitato superiormente e inferiormente in \mathbb{R} , cioè $A = \mathbb{R}$. Questo significa che tutta l'immagine di θ è contenuta in \mathbb{R}^+ o in \mathbb{R}^- ma questo è assurdo perchè per ipotesi θ è un isomorfismo, quindi suriettivo.