

Abteilung	Werkstätten Abteilung	
FI	мт	

MÜ I – Anwenden des Ohm'schen Gesetzes

_ehrer:	Klasse:	Name:

Vorübung:

Finde den Innenwiderstand eines Amperemeters und den Innenwiderstand eines Voltmeters heraus.

Ri_A = _____

 $Ri_V =$

Worauf muss deshalb besonders geachtet werden, wenn z.B. die unten gezeigte Schaltung aufgebaut wird?

Aufbau folgender Messschaltung:

- Strombegrenzung des Netzgerätes auf den jeweils zulässigen I_{max} einstellen
- Ein aufgeräumter Arbeitsplatz und ein übersichtlicher Aufbau sind die Grundvoraussetzungen für Messungen
- Inbetriebnahme nur nach Freigabe durch den Fachlehrer

Wahl dreier unterschiedlicher Widerstande aus der E12 Reihe

Widerstandsbez.	Farbring 1	Farbring 2	Farbring 3	Wert
R1				
R2				
R3				

PRAN, 11.2011 Seite **1** von **3**

Abteilung	Werkstätten Abteilung	
EL	МТ	

MÜ I – Anwenden des Ohm'schen Gesetzes

Aufgabe 1 - Messungen

Beachte dabei die maximal zulässige Verlustleistung (P) der Widerstände von 250mW!

Nelche Versorgungsspannung wird maximal verwendet: U =			
Benötigte Formeln: $U = R * I$	P = U * I		
Berechne: I _{max} für alle drei Widerstän	de: I _{max1} =		
	I _{max2} =		

Messe sowohl Strom als auch Spannung entsprechend der - auf Seite 1 abgebildeten - Messschaltung und trage die Werte in die Tabelle ein:

I_{max3} = _____

Für R1:		Für R2:		Für R3:	
U	I	U	I	U	1

PRAN, 11.2011 Seite **2** von **3**

Abteilung	Werkstätten Abteilung	
FI	мт	

MÜ I – Anwenden des Ohm'schen Gesetzes

Aufgabe 2 - Graphische Darstellung

Zeichne die Kennlinien aller zuvor gemessenen Widerstände und kennzeichne die Messpunkte. Beschrifte jede Kennlinie mit dem entsprechenden Widerstandswert!

Bild 1: Widerstandskennlinien U / V

Abgegeben am:	Erreichte Punkteanzahl:	Note:

PRAN, 11.2011 Seite **3** von **3**