Al 5030: Probability and Stochastic Processes

INSTRUCTOR: DR. KARTHIK P. N.

HOMEWORK 1 TOPICS: FUNCTIONS, CARDINALITY, COUNTABILITY

- 1. Show that $2^{\mathbb{N}}$ is uncountable; here, $2^{\mathbb{N}}$ denotes the power set of \mathbb{N} . Hint: Construct a bijection between $\{0,1\}^{\mathbb{N}}$ and $2^{\mathbb{N}}$, and use the fact from class that $\{0,1\}^{\mathbb{N}}$ is uncountable.
- 2. Show that $\mathbb{N}^2 := \mathbb{N} \times \mathbb{N} = \{(m,n) : m,n \in \mathbb{N}\}$ is countably infinite. Using the principle of mathematical induction, show that \mathbb{N}^d is countably infinite for each $d \in \mathbb{N}$. Hint: For the case n=2, consider $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined as $g(m,n)=(m+n)^2+n$. Argue that g is bijective.
- 3. Show that $\mathbb{N}^{\mathbb{N}} \coloneqq \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots}_{\text{countably infinitely many cartesian products}}$ is uncountable. (Hint: Construct an injection from $\{0,1\}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$.)
- 4. Show that for any set A (finite, countably infinite, or uncountable), $|2^A| > |A|$, where 2^A is the power set of A. Note: This result demonstrates that there are different levels of infinity. Thus, for instance,

$$|\mathbb{N}| < |2^{\mathbb{N}}| = |\mathbb{R}| < |2^{\mathbb{R}}| < |2^{\mathbb{R}}| \cdots$$

- 5. Fix a countable set A.
 - (a) For any $n \in \mathbb{N}$, let B_n denote the collection of all possible n-tuples of the form (a_1, a_2, \dots, a_n) , where $a_k \in A$ for each $k \in \{1, 2, \dots, n\}$. Show that B_n is countable. Hence argue that $\bigcup_{n \in \mathbb{N}} B_n$ is countable.
 - (b) A real number $x_0 \in \mathbb{R}$ is called *algebraic* if it is a root of a polynomial with integer coefficients. For example, $x_0 = \sqrt{2}$ is an algebraic number, as it is a root of the polynomial $x^2 2 = 0$ (whose coefficients are 1, -2). Using the result in part (a) above, show that the set of all algebraic numbers is countable. Hint: Show that the there are only countably many polynomials with integer coefficients.
- 6. Let \mathscr{C} denote the collection of all finite length binary strings. Is \mathscr{C} countable?