

Sec: INCOMING JUNIORS NEET WEEKEND TEST - 09 KEY DATE: 25-07-2021

BOTANY

1)	2	2) 4	3) 2	4) 4	5) 3	6) 4	7) 2	8) 3	9) 4	10) 1
11)	1	12) 3	13) 4	14) 1	15) 1	16) 2	17) 3	18) 1	19) 4	20) 3
21)	2	22) 3	23) 3	24) 2	25) 1	26) 1	27) 4	28) 2	29) 2	30) 1
31)	4	32) 2	33) 3	34) 1	35) 3	36) 2	37) 1	38) 2	39) 2	40) 2
41)	1	42) 4	43) 2	44) 3	45) 1	46) 4	47) 2	48) 1	49) 2	50) 1

ZOOLOGY

51) 4	52) 2	53) 4	54) 1	55) 4	56) 4	57) 1	58) 3	59) 4	60) 4
61) 3	62) 4	63) 2	64) 4	65) 1	66) 2	67) 3	68) 4	69) 4	70) 3
71) 4	72) 2	73) 1	74) 3	75) 4	76) 2	77) 2	78) 3	79) 2	80) 4
81) 3	82) 1	83) 2	84) 3	85) 2	86) 4	87) 3	88) 1	89) 2	90) 3
91) 4	92) 2	93) 1	94) 3	95) 4	96) 4	97) 2	98) 1	99) 1	100) 3

PHYSICS

101) 2	102) 3	103) 2	104) 3	105) 4	106) 2	107) 2	108) 4	109) 3	110) 2
111) 3	112) 4	113) 3	114) 1	115) 1	116) 4	117) 3	118) 3	119) 2	120) 3
121) 2	122) 3	123) 2	124) 4	125) 2	126) 3	127) 2	128) 3	129) 2	130) 3
131) 1	132) 2	133) 3	134) 4	135) 2	136) 1	137) 2	138) 3	139) 3	140) 2
141) 4	142) 2	143) 2	144) 2	145) 3	146) 1	147) 3	148) 3	149) 2	150) 3

CHEMISTRY

151) 2	152) 3	153) 4	154) 2	155) 4	156) 2	157) 3	158) 4	159) 1	160) 2
161) 4	162) 3	163) 2	164) 1	165) 3	166) 4	167) 2	168) 4	169) 2	170) 1
171) 4	172) 2	173) 3	174) 4	175) 2	176) 4	177) 3	178) 2	179) 1	180) 3
181) 4	182) 3	183) 1	184) 3	185) 4	186) 2	187) 3	188) 4	189) 4	190) 1
191) 2	192) 3	193) 1	194) 3	195) 3	196) 3	197) 1	198) 2	199) 3	200) 2

SOLUTIONS BOTANY SECTION - A

- 1) XI NCERT Pg No. 168
- 2) Basic concept
- 3) XI NCERT Pg No. 167
- 4) XI NCERT Pg No. 167
- 5) XI NCERT Pg No. 167
- 6) XI NCERT Pg No. 168
- 7) XI NCERT Pg No. 169
- 8) XI NCERT Pg No. 168
- 9) XI NCERT Pg No. 167
- 10) XI NCERT Pg No. 65, 66
- 11) XI NCERT Pg No. 66
- 12) XI NCERT Pg No. 66
- 13) XI NCERT Pg No. 66
- 14) XI NCERT Pg No. 169
- 15) XI NCERT Pg No. 169
- 16) XI NCERT Pg No. 169 / 170
- 17) XI NCERT Pg No. 168
- 18) XI NCERT Pg No. 168
- 19) XI NCERT Pg No. 170
- 20) XI NCERT Pg No. 168
- 21) XI NCERT Pg No. 169
- 22) XI NCERT Pg No. 168 / 169
- 23) Concept based
- 24) XI NCERT Pg No. 168
- 25) XI NCERT Pg No. 169
- 26) Concept based
- 27) XI NCERT Pg No. 168
- 28) XI NCERT Pg No. 168
- 29) Concept based
- 30) XI NCERT Pg No. 168
- 31) XI NCERT Pg No. 166 / 170
- 32) XI NCERT Pg No. 167
- 33) XI NCERT Pg No. 166 / 170
- 34) Concept based
- 35) XI NCERT Pg No. 170

SECTION - B

- 36) Concept based
- 37) XI NCERT Pg No. 169
- 38) XI NCERT Pg No. 169
- 39) XI NCERT Pg No. 168
- 40) XI NCERT Pg No. 168
- 41) XI NCERT Pg No. 167
- 42) Concept based

- 43) Concept based
- 44) XI NCERT Pg No. 168
- 45) XI NCERT Pg No. 168
- 46) XI NCERT Pg No. 164
- 47) XI NCERT Pg No. 168
- 48) XI NCERT Pg No. 169
- 49) XI NCERT Pg No. 167
- 50) XI NCERT Pg No. 164

ZOOLOGY SECTION - A

- 51) Worm casting
- 52) Peristomium
- 53) 14, 15 & 16
- 54) Earth worms are terrestrial Invertebrates that live in burrows during day time
- 55) Setae made with chitin
- 56) Cuticle is non-cellular
- 57) Spermathecal Apertures : 5/6, 6/7, 7/8, 8/9

Female genital pore: - Mid ventral surface of 14th the segment

Male genital pore: Ventrolateral side of 18th segment

Pygidium: Posterior surface of last

- 58) Spermathecal apertures
- 59) 1st, Last & clitellar region
- 60) Typhlosol
- 61) Humic acid
- 62) Calciferous glands present in stomach (9-14)
- 63) Buccal chamber 1-3

Oesophagus - 5-7

Pharynx - 4

Stomach - 9-14

Gizzard - (8-9)

- 64) Closed type & haemoglobin in Plasma
- 65) Moist body wall
- 66) 4, 5, 6 segments
- 67) Pharyngeal & septal nephridia open into gut
- 68) Integumentary, open directly out side
- 69) 1st & 2nd segments
- 70) Integumentary
- 71) Septal nephridia have nephrostome & Open into alimentary canal
- 72) Ureotelic
- 73) Cerebral ganglia
- 74) Pharynx
- 75) touch, Taste, light senses
- 76) Pharyngeal & septal nephridia open into gut
- 77) Pharyngeal nephridia closed & enteronephric nephridia present in 4, 5, 6 segments
- 78) Double ventral nerve cord
- 79) Sensory system of earthworm no eyes
- 80) Spermatheca apertures 5/6, 6/7, 7/8, 8/9

Spermatheca, 6, 7, 8, 9 segments

- 81) Receive sperm during copulation for storage
- 82) 10 & 11
- $16^{th}/17^{th}$ to $20^{th}/21^{st}$ segments 83)
- 84)
- Spermatozoa mature in seminal vesicles (11th & 12th segment) 85)

SECTION - B

- 86) Many cocoons
- 87) 4
- Pheretima & Lumbricus (NCERT) 88)
- Testes 10^{th} , 11^{th} segments 89) Ovaries – 13th Seminal vesicles - 11th & 12th

Prostatic gland - 16/17 - 20/21

Accessory gland – 17 & 19

- 90) Peristomium
- 91) Porphyrin
- 92) Blood glands produce hemoglobin & blood cells
- 93) Prostomium is not segment muscular lobe First body segment is peristomium
- 94) Both are correct
- 95) Earth worm development is direct there is not larva stages
- 96) Cuticle → Epidermis → Circular muscles → Longitudinal muscles → Parietal peritoneum
- 97) In segment - 2
- 98) 4.5.6 segments
- 99) Gizzard – Grinding mill Typhlosole – Absorption Setae – Locomotion

Clitellum – Formation of cocoon

100) Schizocoelom

- 101) Conceptual \overline{V}_{rm}
- 102) $\sin \alpha = \frac{V_r}{V_{rr}} = \frac{2}{3}$ $\Rightarrow \tan \alpha = \frac{2}{\sqrt{5}}$
- $103) \quad \frac{V_{rm}}{V_r} = \frac{2}{\sqrt{3}} = \frac{1}{\cos \alpha}$

$$\alpha = 30^{\circ}$$
 $\theta = 60^{\circ}$ with horizontal

104) From figure $\alpha = 30^{\circ}$

$$x = u \sin \theta$$
; $y = u \cos \theta$

$$\tan \phi = \frac{\mathbf{v} + \mathbf{x}}{\mathbf{y}} = \frac{\mathbf{v} + \mathbf{u}\sin\theta}{\mathbf{u}\cos\theta}$$

106)
$$V_{\rm w} = \sqrt{V_{\rm r\,w}^2 - V_{\rm r}^2}$$

$$V_{\rm w} = \sqrt{25 - 9} = 4 \text{ m/s}$$

107)
$$V_{rm} \alpha V_{r}$$

$$\sin\alpha = \frac{V_{m}}{V} = \frac{1}{2} ; \quad \alpha = 30^{0}$$

$$\tan \alpha = \frac{V_{m}}{V_{r}} = \frac{1}{\sqrt{3}} ; \frac{V_{r}}{V_{m}} = \frac{\sqrt{3}}{1}$$

$$108) \quad \overline{\overline{V}}_{r\,m} = \overline{\overline{V}}_r - \overline{\overline{V}}_m$$

$$-4j = \overline{V}_{\rm r} - \left(2i + 3j\right)$$

$$\overline{V}_r = 2i - j$$

$$\overline{V}_{r\,m} = \overline{V}_r - \left(-\overline{V}_m\right)$$

$$\overline{V}_{rm} = 4i + 2j$$
 $V_{rm} = \sqrt{20} = 2\sqrt{5}$

- 109) Conceptual
- 110)

$$\tan 60^{\circ} = \sqrt{3} = \frac{y}{x}$$
; $y = \sqrt{3}x - (1)$

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{y}{3+x}$$
; $\sqrt{3}y = 3+x-(2)$

From (1) and (2) 3x = 3 + x

$$x = \frac{3}{2}$$

$$\sin 30^{0} = \frac{1}{2} = \frac{x}{V_{r}} = \frac{3}{2V_{r}}$$

$$V_r = 3 \text{ m/s}$$

111)
$$V_m = 10.8 \times \frac{5}{18} = 3 \text{ m/s}$$

$$\tan \alpha = \frac{V_{m}}{V_{r}} = \frac{3}{4} \; ; \; \alpha = 37^{0}$$

$$\theta = 90 - \alpha = 53^{\circ}$$

112)
$$\tan \alpha = \frac{7-3}{3} = \frac{4}{3} \Rightarrow \alpha = 53^{\circ}$$

113)
$$t_1 = 20 \, \text{min}$$
 $t_2 = 10 \, \text{min}$

$$t_3 = \frac{t_1^2}{t_2} = \frac{20 \times 20}{10} = 40 \,\text{min}$$

114)
$$\sin \alpha = \frac{\sqrt{3}}{2} = \frac{V_r}{V_b} \Rightarrow \frac{V_b}{V_r} = 2 : \sqrt{3}$$

115)
$$x = \left(\frac{V_r}{V_b}\right) d$$
; $d = \frac{100 \times 2}{0.5} = 400 \text{ m}$

117)
$$\frac{4}{2} = \frac{V_b + V_r}{V_b - V_r} \Rightarrow \frac{V_b}{V_r} = \frac{3}{1}$$

118)
$$S = \sqrt{x^2 + d^2} \Rightarrow 16 = x^2 + 12$$
 $x = 2$ KM

$$119) \quad x = V_r(t_{SP})$$

$$t_{SP} = \frac{x}{V_c} = \frac{150}{2} = 75 \text{ sec}$$
 or $1 \text{min } 15 \text{ sec}$

120)
$$\theta = 90 + \alpha \Rightarrow \alpha = 30^{\circ}$$

 $\sin \alpha = \frac{1}{2} = \frac{V_{r}}{V_{r}} \quad V_{r} = \frac{1}{4} \text{ m/s}$

121)
$$x = \left(\frac{V_r}{V_b}\right) d$$
 $x = \frac{3 \times 3}{4}$

$$X = 2.25 \text{ Km} = 2250 \text{ m}$$

122)
$$x = (V_r - V_b \sin \alpha) \frac{d}{V_b \cos \alpha}$$
$$x = 150 \text{ m} \qquad V_r = 8 \text{ m/s} \qquad V_b = 5 \text{ m/s}$$
$$d = 120 \text{ m}$$

123)
$$t_{SP} = \frac{d}{\sqrt{V_b^2 - V_r^2}} = 50 \text{ sec}$$

$$t_{St} = \frac{d}{V_b} = 40 \text{ sec}$$

$$\Delta t = 10 \text{ sec}$$

124)
$$\tan \alpha = \frac{V_r}{V_{hr}} = \frac{1}{2}$$

 $tan^{-1}(2)$ with flow of water

125)
$$\Delta t = d \left[\frac{1}{\sqrt{V_b^2 - V_r^2}} - \frac{1}{V_b} \right]$$
$$5 = d \left[\frac{1}{\sqrt{25 - 9}} - \frac{1}{5} \right] \qquad d = 100 \text{ m}$$

126)
$$\Delta t = d \left[\frac{1}{\sqrt{V_b^2 - V_r^2}} - \frac{1}{V_b} \right]$$

$$2 = 80 \left[\frac{1}{\sqrt{100 - V_r^2}} - \frac{1}{10} \right] \Rightarrow V_r = 6 \text{m/s}$$

127)
$$t_{SP} = \frac{d}{\sqrt{V_b^2 - V_r^2}} \Rightarrow \frac{1}{2} = \frac{2}{\sqrt{25 - V_r^2}} \Rightarrow V_r = 3 \text{ KMPH}$$

$$V_r = \frac{5}{6} \text{ m/s}$$

- 128) Conceptual
- 129) Conceptual
- 130) Conceptual

131)
$$\frac{x}{t} = \frac{1}{t_u} + \frac{1}{t_d} \Rightarrow \frac{2}{t} = \frac{1}{6} + \frac{1}{4}$$
 $t = 4.8$ hours

132)
$$x = (V_r - V_b \sin \theta) \frac{d}{V_b \cos \theta}$$

 $\frac{x_p}{x_0} = \frac{10 - 3}{10 - 4} \times \frac{3}{4} = \frac{7}{8}$

133)
$$t_{SP} = \frac{d}{\sqrt{V_b^2 - V_r^2}} = \frac{2}{\sqrt{36 - 9}} = \frac{2}{3\sqrt{3}} \times 60 \approx 23 \,\text{min}$$

134)
$$t_D = \frac{d}{V_b + V_r}$$
; $V_r = 2m/s$
 $t_U = \frac{d}{V_b - V_r} = 100 \text{ sec}$

135)
$$\Delta t = d \left[\frac{1}{\sqrt{V_b^2 - V_r^2}} - \frac{1}{V_b} \right] \Rightarrow \Delta t = 5 \sec x = \left(\frac{V_r}{V_b} \right) d = \frac{3}{5} \times 100 = 60 \text{m}$$

$$V_B = \frac{X}{\Delta t} = 12 \text{m/s}$$

SECTION - B

136)
$$t_D = \frac{d}{V_b + V_r} = \frac{0.5}{5}$$

 $t_D = 0.1 \text{ hour } = 6 \text{ min}$

137)
$$d = t_u [V_b - V_r]$$

$$d = \frac{15}{60}[6 - 4] = \frac{1}{2}KM$$

$$t_D = 1 \quad V_b - V_b$$

138)
$$\frac{t_{D}}{t_{u}} = \frac{1}{4} = \frac{V_{b} - V_{r}}{V_{b} + V_{r}}$$
$$\frac{1}{4} = \frac{V_{b} - 3}{V_{b} + 3} \quad V_{b} = 5 \text{m/s}$$

139)
$$T = d \left[\frac{1}{V_b + V_r} + \frac{1}{V_b - V_r} \right]$$
$$T = 200 \left[\frac{1}{3} + \frac{1}{2} \right]$$

$$T = 125 \text{ sec}$$
 or $2 \text{ min } 5 \text{ sec}$

140)
$$\sin \alpha = \frac{V_r}{V_b} = \frac{1}{2}$$
; $\alpha = 30^{\circ}$
 $\theta = 90 + \alpha$ $\theta = 120^{\circ}$

141)
$$t_{SP} = \frac{d}{\sqrt{V_b^2 - V_r^2}}$$
$$\frac{15}{60} = \frac{1}{\sqrt{25 - V_r^2}} \quad V_r = 3KMPH$$

142)
$$x = \left(\frac{V_r}{V_b}\right).d \Rightarrow 200 = \frac{V_r}{2.2} \times 400$$

 $V_r \simeq 1 \text{m/s}$

143)
$$W \xrightarrow{\overline{V}_r} \overline{V}_{rm} E$$

$$\tan \alpha = \frac{V_m}{V_r} = \frac{4}{6} \Rightarrow \alpha = \tan^{-1} \left(\frac{2}{3}\right)$$
 towards west

144)
$$\overline{V}_{r,n}$$
 \overline{V}_{r}

$$V_r = \sqrt{V_{r m}^2 - V_m^2} = \sqrt{13^2 - 5^2} \Rightarrow V_r = 12 \text{ KMPH}$$

145)
$$\overline{V}_{rm} \alpha \overline{V}_{r} N$$

$$\tan \alpha = \frac{V_m}{V_r} = \sqrt{3}$$
 $\alpha = 60^{\circ}$ with horizontal is 30°

$$\begin{array}{c|c} \overline{V}_r & \overline{V}_{r\,m} \\ \hline W & V_m & -V_m \end{array}$$

$$V_{rm} = \sqrt{V_r^2 + V_m^2} = \sqrt{4^2 + 3^2} = 5 \text{ KMPH towards West}$$

147)

$$\tan \beta = \frac{3+5}{4} = 2$$

 $\beta = \tan^{-1}(2)$ towards west

148)
$$\frac{V_b}{V_r} = \frac{3}{2} \frac{t_u}{t_D} = \frac{V_b + V_r}{V_b - V_r} = \frac{5}{1}$$

149)
$$\frac{t_{SP}}{t_{st}} = \frac{V_b}{\sqrt{V_b^2 - V_r^2}} = \frac{5}{4}$$

150)
$$x = V_r \times t_{st}$$

CHEMISTRY SECTION - A

- 151) Conceptual
- 152) Conceptual
- 153) Conceptual
- 154) Conceptual
- 155) Conceptual
- 156) Conceptual
- 157) When the neutral atom is converted into anion its effective nuclear charge decreases, hence size increases.
- 158) Along the period atomic size decreases, but noble gas element has large size.
- 159) As the positive charge increases, the effective nuclear charge increases, hence size decreases.
- 160) Screening effect depends on the proximity of the orbital to the nucleus.
- 161) Conceptual
- 162) Alkali metal : Na K Rb Cs Screening const (σ) : 8.8 16.8 34.8 52.8 Effective nuclear charge $(Z-\sigma)$: 2.2 2.2 2.2
- 163) Conceptual
- 164) He has duplet configuration (1s²)
- 165) Size of anion is larger than neutral atom, and in isoelectronic species size decreases with an increase of atomic number.
- 166) Conceptual
- 167) The screening constant for 3d electron in Zn

$$\sigma$$
 = (no. of e⁻¹s is 3d subshell – 1) x 0.35 + (Rest of all inner electrons x 1.0)
 σ = (9 x 0.35) + (18 x 1.0)
= 21.15

- 168) Ionic radius of Si⁺⁴ is smaller than O⁻²
- 169) Size of anion is larger than neutral atom and cation is smaller than neutral atom.

- 170) A crystal radius is always longer than covalent radius.
- 171) Conceptual
- 172) In homo diatomic molecule the covalent radius $(r) = \frac{\text{Bond length}}{2}$
- 173) In isoelectronic species as $\left(\frac{Z}{e}\right)$ ratio increases, size decreases
- 174) $\left(\frac{Z}{e}\right)$ value is maximum for Ca⁺², Hence it has smallest size.
- 175) Atomic radius of Noble gas is larger than halogen of the same period.
- 176) Conceptual
- 177) Conceptual
- 178) Conceptual
- 179) Conceptual
- 180) Conceptual
- 181) Conceptual
- 182) The amount of energy required to remove an electron from unipositive ion is called second ionization enthalpy.
- 183) Conceptual
- 184) In case of nonmetals covalent radius is considered as Atomic radius.
- 185) $1s^2 2s^2 2p^3 N$, $1s^2 2s^2 2p^2 C$, $1s^2 2s^2 2p^4 O$ and $1s^2 2s^2 Be$ \therefore Order of size Be > C > N > O

SECTION - B

- 186) Since inert gases do not form chemical compounds, the atomic radius is used in terms of Vander Waal radius.
- 187) σ of Oxygen = $(5 \times 0.35) + (2 \times 0.85) = 3.45$
- 188) Conceptual
- 189) Conceptual
- 190) As the no. of e⁻¹s decreases effective nuclear charge increases. Hence IE increases.
- 191) $IE_3 > IE_2 > IE_1$
- 192) Conceptual
- 193) Penetration order is s > p > d > f
- 194) Covalent radius in case of homo diatomic molecule = $\frac{\text{Inter nuclear distance}}{2}$

$$\therefore r_{\rm C} = \frac{154}{2} = 77 \text{ pm}$$

- 195) Conceptual
- 196) Conceptual
- 197) Effective nuclear charge (Zeff) \propto +ve charge

Ionic radius
$$\propto \frac{1}{\text{Zeff}}$$

- 198) Conceptual
- $199) \quad 2s^{2} \ 2p^{5}\big(F\big), 3s^{2}3p^{4}\left(S\right), 3s^{2}3p^{4}\left(Cl\right), 2s^{2}2p^{4}\big(O\big)$

$$\therefore$$
 F < O < Cl < S

200)
$$K^+ = Ca^{+2} = Sc^{+3} = Cl^- = 18 e^- each$$