	(1) A	成绩
	(1) A example of digital model	
	(1) A example of digital modulation is shown as following F	ig:
芸	NRZ Invert (NRZI)	
	These signals represent bit stream (2) Shappon's	1711
	(2) Shannon's major result is that the maximum data rabandwidth is H Hz, and whose signal-to-noise rabandwidth	te of a noisy channel whose atio is S/N, is given by
Γ	(3) Suppose sending an x-bit message over a k-hop path in a network. The propagation delay is d sec per hop, the packet s b bps. The total delay is	(lightly loaded) packet-switched
	(4) Suppose go-back-N protocol uses 4-bit sequence number	
	(5) Consider sending a 4000-byte IP datagram packet (head that has an MTU of 1500 bytes. The fragment offset fields transmitted over the link is	er length is 20 bytes) into a line
	(6) Suppose RIP routing protocol is used in the subnet, routed Dest. Network is Z, Next hop is B, Num. of Hops is 7. information from router A, Dest. Network is Z, Next hop is new routing table: Dest. Network is Z, Next hop is	Now router D receives routing C, Num. of Hops is 4. Now D's , Num. of Hops is
	57.6.112.0/21, and 57.6.120.0/21. If all of them use the aggregated	ses: 37.6.96.0/21, 57.6.104.0/21, e same outgoing line, they be
	(8) Suppose Host A sends two TCP segments back to back to	to Host B over a TCP connection
7	The first segment has sequence number 90; the second has	sequence number is 110 Suppose
th	hat the first segment is lost but the second segment arrives	at B. In the acknowledgment that
H	lost B sends to host A, the acknowledgment number is	6 8 8
(9)) IP loopback address is	
(10	The IP addresses of a subnet arrange from 61.8.0.1 to	61.15.255.254, its subnet mask is

装

订

线

Select the most o	
(1) A network uses a river	
twisted pair it sends ternary di	speed of 25MHz and requires three twisted pairs. On each gits with three different voltage 1
network is	speed of 25MHz and requires three twisted pairs. On each gits with three different voltage levels. The bit rate of this
(2) What are the advantages of	packet switching over circuit switching?
B. Less wasteful in case of	
C. Easier to implement onD. Allows for lower delays	
(3) Suppose you are designing	a sliding winds
the moon, which has a one-wa	a sliding window protocol for a 1-Mbps point-to-point link to
KB of data, what is the minimum	y latency of 1.25 seconds. Assuming that each frame carries 1
A. 6 B.7	C. 8 D o
(4) Suppose selective repeat p	protocol uses 3-bit sequence number. If receiving window size
is 3, the maximum size of send	ding window is
A. 5 B. 6	C. 7 D. 8
(5) The MAC protocol for Eth	ernet is
A. CSMA/CD	B. Token Bus
C. Token Ring	D. MACA/MACAW
	the number of collision domains is the number of
broadcast domains.	the number of
A = B. <	
	s inside it. One of them is responsible for filling in and updating
the routing tables. This proce	
A. routing B. forw	varding C. processing D. queuing
solves the proble	m of finding out which Ethernet address corresponds to a give
P address.	
	B. RARP
A. ARP	
C. BOOTP	D. DHCP
	ber of bytes that may be sent is
A. receiving window	
n action window	indows
C. the minimum of the a	ibove two willdows

(1) Please fill in the f	following table	Tub	Destination IP	Destination Eth.
Frame	Source IP	Source Eth.	70 on 92 30 50 5	
Host 1 to 2, on CS net	10 77 45 49		2 2 04 02	
Host 1 to 4, on CS net	do 3d ch 00 f	3 0 0 0 0	01 61, 04, 04	
Host 1 to 4, on EE net		por El Ga He	1	
(2) What 1 1 C 1	CII	+ 1 and Host??		

- (2) What's the default gateway of Host 1 and Host2?
- (3) Suppose the router is enabled proxy ARP, Host 4 broadcast ARP request to resolve Host 1's Ethernet address. Host 4 will receive the arp response. What's the Ethernet address through ARP resolution?
- 4. (10 points) In a CSMA/CD network with a data rate of 10 Mbps, the maximum distance between any station pair is found to be 2500 m for the correct operation of the collision detection process. What should be the maximum distance if we increase the data rate to 100
- 5. (10 points) Stop-and-Wait (SAW) is a simple protocol for reliable delivery of packets from source to destination. Answer the following questions regarding SAW.
- (1) Sketch the timing diagram for SAW showing both error free and data packet loss cases. (2) Identify all the delay components of SAW.
- 6.(10 points) Suppose OSPF routing protocol is used in the subnet, The link state packets(LSPs) for this subnet are shown as follow:

7. (10 points) A Ir all available available at 120, 60, 26, at 198.101.116.0/24 suppose that four arder. sk in the w.x.y.z/s notation.

TCP congestion control is shown as a strength of the last IP address assigned. The last IP address assigned. (10 points)

7. (10 points)

8. (10 points)

8. (10 points)

8. (10 points)

9. (10 points)

9 order. For the w.x.y.z/s notation, the mask in the w.x.y.z/s notation. order. For order. For

- (1) During what transmission round is TCP slow start operating in TCP Tahoe?
- (1) During what transmission round is TCP congestion avoidance operating in TCP Tahoe?

 Oth transmission round, is segment loss data to the congestion avoidance operating in TCP Tahoe?
- (4) After the 8th transmission round, is segment loss detected by a triple duplicate ACK or by
- (5) What is the initial value of Threshold at the first transmission round?
- (6) What is the value of Threshold at the 9th transmission round?
- (7) During what transmission round is the 18th segment sent?
- (8) Assuming a packet loss is detected after the 8 round by the receipt of a triple duplicate ACK, then in 15th round a packet loss is detected by the receipt of a triple duplicate ACK again. What will be the values of the congestion window size and of Threshold?
- 9. (10 Points) A campus network has public IP address block: 202.115.0.0/24~202.115.3.0/24. This intranet has four routers (R1,R2,R3,R4), Web server's IP address is 202.115.0.10.

Da's Pouting Table

R2's Routing Table		Interface
Destination Network/Prefix	Next Hop	SO
192.168.0.0/24	192.168.2.1	SO
	192.168.2.1	S0
192.168.1.0/24	direct	S0
192.168.2.0/24	192.168.2.1	S0
202.115.0.0/24	192.168.2.1	S0
202.115.1.0/24	192.168.2.1	FastEthernet1
202.115.2.0/24	direct	FastEthernet2
202.115.3.0/26	direct	FastEthernet3
202.115.3.64/26	direct	
202.115.3.128/26		Interface

202.115.3.128/20		S2
R1's Routing Table	Next Hop	S3
Destination Network/Prefix	direct	S1
192.168.0.0/24	direct	FastEthernet0
192.168.1.0/24	direct	

192.168.2.0/24 (a)

女,而共6页

	192.168.0.254	S2 S3
202 115.1.0/24	192.168.1.254 192.168.2.254	SI
202.115.2.0/24 (b)		

- (1) Draw topology map and write each subnet of all routers.
- (2) Fill in the blank (a) and (b) in R1's Routing Table. (3) In Host D console executes "traceroute DNS Server IP" command:
- - 1 49 ms 35 ms 78 ms
 - 192.168.2.1 64 ms 94 ms 80 ms
 - 3 80 ms 140 ms 156 ms 202.115.0.2

What's the host D's IP address, subnet mask, default gateway? What's the DNS Server's IP

Please answer the following questions:

- (1). What is the source MAC address in PDU#1 (in Hex)?
- (2). What is the destination IP address in PDU#1 (in Decimal)?
- (3). What is the destination port number of transport layer in PDU#1 (in Decimal)?
- (4). What kind of transport layer protocol is carried in the PDU#1, PDU#2, PDU#3?
- (5). What is the purpose of transport layer protocol carried in the PDU#1, PDU#2, PDU#3?
- (6). What application protocol is carried in PDU#4?

6	6	2	0-1500	0-46	4
Destination address	Source address	Туре	Data	Pad	Check- sum

			32 Bits	
	The second second		dining the same	
Version	IHL	Type of service	Total length	
	Identi	fication	D M F F F Fragment offset	
Time to live		Protocol	Header checksum	
		Soun	ce address	
		Destina	ation address	
		Ontions in	OF Many	
		aprona (o	or more words)	
	111	1,,,,,,,,	1	
	Source	oe port	Destination port	
	Sequence number			
	Acknowledgement number			
TCP header length		U A P R S P R C S S Y G K H T N I	Window size	
	Check	sum	Urgent pointer	
		Options (0 or r	nore 32-bit words)	
		Deta (optional)	
		25	Bits —	
	.,,1	-32	Linealine	
	Source	port	Destination port	
UDP length			UDP checksum	