Lecture 14: Hidden Markov Models CS480/680 Intro to Machine Learning

2023-3-2

Pascal Poupart
David R. Cheriton School of Computer Science

Sequence Data

- So far, we assumed that the data instances are classified independently
 - More precisely, we assumed that the data is iid (identically and independently distributed)
 - E.g., text categorization, digit recognition in separate images, etc.
- In many applications, the data arrives sequentially and the classes are correlated
 - E.g., weather prediction, robot localization, speech recognition, activity recognition

Speech Recognition

Classification

Extension of some classification models for sequence data

Indonandant

Generative models

Discriminative models

Correlated	Independent
classification	classification
Hidden	Mixture of
Markov Model	Gaussians
Conditional	Logistic
Random Field	Regression
Recurrent	Feed Forward
Neural Network	Neural Network

Hidden Markov Models (HMMs)

Mixture of Gaussians

HMMs

Assumptions

• **Stationary Process**: transition and emission distributions are identical at each time step

$$Pr(x_t|y_t) = Pr(x_{t+1}|y_{t+1}) \ \forall t$$

$$\Pr(y_t|y_{t-1}) = \Pr(y_{t+1}|y_t) \ \forall t$$

 Markovian Process: next state is independent of previous states given the current state

$$Pr(y_{t+1}|y_t, y_{t-1}, ..., y_1) = Pr(y_{t+1}|y_t) \quad \forall t$$

Hidden Markov Model

Graphical Model

- Parameterization
 - Initial distribution:
 - Transition distribution:
 - Emission distribution:
- Joint distribution:

Mobile Robot Localisation

- Example of a Markov process
- Problem: uncertainty grows over time...

Mobile Robot Localisation

Hidden Markov Model:

y: coordinates of the robot on a map

x: distances to obstacles (measured by laser range finders or sonars)

 $Pr(y_t|y_{t-1})$: movement of the robot with uncertainty

 $Pr(x_t|y_t)$: uncertainty in measurements by laser range finders and sonars

• Localisation: $Pr(y_t|x_t,...,x_1)$?

Inference in temporal models

- Four common tasks:
 - Monitoring: $Pr(y_t|x_{1..t})$
 - **Prediction:** $Pr(y_{t+k}|x_{1..t})$
 - **Hindsight:** $Pr(y_k|x_{1..t})$ where k < t
 - Most likely explanation: $argmax_{y_1,...,y_t} Pr(y_{1..t}|x_{1..t})$
- What algorithms should we use?

Monitoring

- $Pr(y_t|x_{1...t})$: distribution over current state given observations
- Examples: robot localisation, patient monitoring
- Recursive computation:

$$\Pr(y_t|x_{1..t}) \propto \Pr(x_t|y_t, x_{1..t-1}) \Pr(y_t|x_{1..t-1})$$
 by Bayes' theorem

- = $Pr(x_t|y_t) Pr(y_t|x_{1..t-1})$ by conditional independence
- = $Pr(x_t|y_t) \sum_{y_{t-1}} Pr(y_t, y_{t-1}|x_{1..t-1})$ by marginalization
- = $\Pr(x_t|y_t) \sum_{y_{t-1}} \Pr(y_t|y_{t-1}, x_{1..t-1}) \Pr(y_{t-1}|x_{1..t-1})$ by chain rule
- = $\Pr(x_t|y_t)\sum_{y_{t-1}}\Pr(y_t|y_{t-1})\Pr(y_{t-1}|x_{1..t-1})$ by conditional independence

Forward Algorithm

• Compute $Pr(y_t|x_{1..t})$ by forward computation

$$\begin{aligned} \Pr(y_1|x_1) &\propto \Pr(x_1|y_1) \Pr(y_1) \\ \text{For } i &= 2 \text{ to } t \text{ do} \\ &\qquad \Pr(y_i|x_{1..i}) &\propto \Pr(x_i|y_i) \sum_{y_{i-1}} \Pr(y_i|y_{i-1}) \Pr(y_{i-1}|x_{1..i-1}) \\ \text{End} \end{aligned}$$

• Linear complexity in *t*

Prediction

- $Pr(y_{t+k}|x_{1..t})$: distribution over future state given observations
- Examples: weather prediction, stock market prediction
- Recursive computation

$$\Pr(y_{t+k}|x_{1..t}) = \sum_{y_{t+k-1}} \Pr(y_{t+k}, y_{t+k-1}|x_{1..t}) \text{ by marginalization}$$

$$= \sum_{y_{t+k-1}} \Pr(y_{t+k}|y_{t+k-1}, x_{1..t}) \Pr(y_{t+k-1}|x_{1..t}) \text{ by chain rule}$$

$$= \sum_{y_{t+k-1}} \Pr(y_{t+k}|y_{t+k-1}) \Pr(y_{t+k-1}|x_{1..t}) \text{ by conditional independence}$$

Forward Algorithm

1. Compute $Pr(y_t|x_{1..t})$ by forward computation

$$\begin{aligned} \Pr(y_{1}|x_{1}) &\propto \Pr(x_{1}|y_{1}) \Pr(y_{1}) \\ \text{For } i &= 1 \text{ to } t \text{ do} \\ \Pr(y_{i}|x_{1..i}) &\propto \Pr(x_{i}|y_{i}) \sum_{y_{i-1}} \Pr(y_{i}|y_{i-1}) \Pr(y_{i-1}|x_{1..i-1}) \end{aligned}$$

2. Compute $Pr(y_{t+k}|x_{1..t})$ by forward computation

For
$$j = 1$$
 to k do
$$\Pr(y_{t+j}|x_{1..t}) = \sum_{y_{t+j-1}} \Pr(y_{t+j}|y_{t+j-1}) \Pr(y_{t+j-1}|x_{1..t})$$

• Linear complexity in t + k

Hindsight

- $Pr(y_k|x_{1..t})$ for k < t: distribution over a past state given observations
- Example: delayed activity/speech recognition
- Computation:

$$\Pr(y_k|x_{1..t}) \propto \Pr(y_k, x_{k+1..t}|x_{1..k})$$
 by conditioning
= $\Pr(y_k|x_{1..k}) \Pr(x_{k+1..t}|y_k)$ by chain rule

Recursive computation

$$\Pr(x_{k+1..t}|y_k) = \sum_{y_{k+1}} \Pr(y_{k+1}, x_{k+1..t}|y_k) \text{ by marginalization}$$

$$= \sum_{y_{k+1}} \Pr(y_{k+1}|y_k) \Pr(x_{k+1..t}|y_{k+1}) \text{ by chain rule}$$

$$= \sum_{y_{k+1}} \Pr(y_{k+1}|y_k) \Pr(x_{k+1..t}|y_{k+1}) \Pr(x_{k+2..t}|y_{k+1}) \text{ by conditional independence}$$

Forward-backward algorithm

1. Compute $Pr(y_k|x_{1..k})$ by forward computation

$$\begin{array}{l} \Pr(y_{1}|x_{1}) \propto \Pr(x_{1}|y_{1}) \Pr(y_{1}) \\ \text{For } i = 2 \text{ to } k \text{ do} \\ \Pr(y_{i}|x_{1..i}) \propto \Pr(x_{i}|y_{i}) \sum_{y_{i-1}} \Pr(y_{i}|y_{i-1}) \Pr(y_{i-1}|x_{1..i-1}) \end{array}$$

2. Compute $Pr(x_{k+1..t}|y_k)$ by backward computation

$$Pr(x_{t}|y_{t-1}) = \sum_{y_{t}} Pr(y_{t}|y_{t-1}) Pr(x_{t}|y_{t})$$
For $j = t - 1$ downto $k + 1$ do
$$Pr(x_{j..t}|y_{j-1}) = \sum_{y_{j}} Pr(y_{j}|y_{j-1}) Pr(x_{j}|y_{j}) Pr(x_{j+1..t}|y_{j})$$

- 3. $\Pr(y_k|x_{1..t}) \propto \Pr(y_k|x_{1..k}) \Pr(x_{k+1..t}|y_k)$
- Linear complexity in t

Most likely explanation

- $argmax_{y_{1..t}} \Pr(y_{1..t}|x_{1..t})$: most likely state sequence given observations
- Example: speech recognition
- Computation:

$$\max_{y_{1..t}} \Pr(y_{1..t}|x_{1..t}) = \max_{y_t} \Pr(x_t|y_t) \max_{y_{1..t-1}} \Pr(y_{1..t}|x_{1..t-1})$$

• Recursive computation:

$$\max_{y_{1..i-1}} \Pr(y_{1..i}|x_{1..i-1}) \propto \max_{y_{i-1}} \Pr(y_i|y_{i-1}) \Pr(x_{i-1}|y_{i-1}) \max_{y_{1..i-2}} \Pr(y_{1..i-1}|x_{1..i-2})$$

Viterbi Algorithm

1. Compute max $Pr(y_{1..t}|x_{1..t})$ by dynamic programming

$$\max_{y_1} \Pr(y_{1..2}|x_1) \propto \max_{y_1} \Pr(y_2|y_1) \Pr(x_1|y_1) \Pr(y_1)$$
For $i = 2$ to $t - 1$ do
$$\max_{y_1} \Pr(y_{1..i+1}|x_{1..i}) \propto \max_{y_i} \Pr(y_{i+1}|y_i) \Pr(x_i|y_i) \max_{y_{1..i-1}} \Pr(y_{1..i}|x_{1..i-1})$$

$$\max_{y_{1..t}} \Pr(y_{1..t}|x_{1..t}) \propto \max_{y_t} \Pr(x_t|y_t) \max_{y_{1..t-1}} \Pr(y_{1..t}|x_{1..t-1})$$

• Linear complexity in *t*

Case Study: Activity Recognition

- Task: infer activities performed by a user of a smart walker
 - Inputs: sensor measurements
 - Output: activity

Backward view

Forward view

Inputs: Raw Sensor Data

- 8 channels:
 - Forward acceleration
 - Lateral acceleration
 - Vertical acceleration
 - Load on left rear wheel
 - Load on right rear wheel
 - Load on left front wheel
 - Load on right front wheel
 - Wheel rotation counts (speed)

Data recorded at 50 Hz and digitized (16 bits)

Data Collection

- 8 walker users at Winston Park (84-97 years old)
- 12 older adults (80-89 years old) in the KW area who do not use walkers

Output: Activities

- Not Touching Walker (NTW)
- Standing (ST)
- Walking Forward (WF)
- Turning Left (TL)
- Turning Right (TR)
- Walking Backwards (WB)
- Sitting on the Walker (SW)
- Reaching Tasks (RT)
- Up Ramp/Curb (UR/UC)
- Down Ramp/Curb (DR/DC)

Hidden Markov Model (HMM)

Parameters

- Initial state distribution: $\pi_{class} = \Pr(y_1 = class)$
- Transition probabilities: $\theta_{class'|class} = \Pr(y_{t+1} = class'|y_t = class)$
- Emission probabilities: $\phi_{val|class}^i = \Pr(x_t^i = val|y_t = class)$

or
$$N(val|\mu_{class}^i, \sigma_{class}^i) = \Pr(x_t^i = val|y_t = class)$$

Maximum likelihood:

- Supervised: $\pi^*, \theta^*, \phi^* = argmax_{\pi,\theta,\phi} \Pr(y_{1:T}, x_{1:T} | \pi, \theta, \phi)$
- Unsupervised: π^* , θ^* , $\phi^* = argmax_{\pi,\theta,\phi} \Pr(x_{1:T} | \pi, \theta, \phi)$

Demo

Maximum Likelihood

- Supervised Learning: y's are known
- Objective: $argmax_{\pi,\theta,\phi} \Pr(y_{1..t}, x_{1..t} | \pi, \theta, \phi)$
- Derivation:
 - Set derivative to o
 - Isolate parameters π , θ , ϕ
- Consider a single input x per time step
- Let $y \in \{c_1, c_2\}$ and $x \in \{v_1, v_2\}$

Multinomial Emissions

- Let $\#c_i^{start}$ be # times of that process **starts** in class c_i
- Let $\#c_i$ be # of times that process is in class c_i
- Let $\#(c_i, c_j)$ be # of times that c_i follows c_j
- Let $\#(v_i, c_j)$ be # of times that v_i occurs with c_j

Multinomial Emissions

• $argmax_{\pi,\theta,\phi} \Pr(y_{1..t}, x_{1..t} | \pi, \theta, \phi)$

$$\begin{cases} argmax_{\pi_{c_{1}}}(\pi_{c_{1}})^{\#c_{1}^{start}}(1-\pi_{c_{1}})^{\#c_{2}^{start}} \\ argmax_{\theta_{c_{1}|c_{1}}}(\theta_{c_{1}|c_{1}})^{\#(c_{1},c_{1})}(1-\theta_{c_{1}|c_{1}})^{\#(c_{2},c_{1})} \\ argmax_{\theta_{c_{1}|c_{2}}}(\theta_{c_{1}|c_{2}})^{\#(c_{1},c_{2})}(1-\theta_{c_{1}|c_{2}})^{\#(c_{2},c_{2})} \\ argmax_{\phi_{v_{1}|c_{1}}}(\phi_{v_{1}|c_{1}})^{\#(v_{1},c_{1})}(1-\phi_{v_{1}|c_{1}})^{\#(v_{2},c_{1})} \\ argmax_{\phi_{v_{1}|c_{2}}}(\phi_{v_{1}|c_{2}})^{\#(v_{1},c_{2})}(1-\phi_{v_{1}|c_{2}})^{\#(v_{2},c_{2})} \end{cases}$$

Multinomial Emissions

Optimization problem:

$$\underset{\pi_{c_1}}{\operatorname{argmax}} \left(\pi_{c_1}\right)^{\#c_1^{start}} \left(1 - \pi_{c_1}\right)^{\#c_2^{start}}$$

$$= \underset{\pi_{c_1}}{\operatorname{argmax}} \left(\#c_1^{start}\right) \log(\pi_{c_1}) + \left(\#c_2^{start}\right) \log(1 - \pi_{c_1})$$

Set derivative to 0:

$$0 = \frac{\#c_1^{start}}{\pi_{c_1}} - \frac{\#c_2^{start}}{1 - \pi_{c_1}}$$

$$\Rightarrow (1 - \pi_{c_1})(\#c_1^{start}) = (\pi_{c_1})(\#c_2^{start})$$

$$\Rightarrow \pi_{c_1} = \frac{\#c_1^{start}}{\#c_1^{start} + \#c_2^{start}}$$

Relative Frequency Counts

Maximum likelihood solution

$$\pi_{c_1^{start}} = \#c_1^{start} / (\#c_1^{start} + \#c_2^{start})$$

$$\theta_{c_1|c_1} = \#(c_1, c_1) / (\#(c_1, c_1) + \#(c_2, c_1))$$

$$\theta_{c_1|c_2} = \#(c_1, c_2) / (\#(c_1, c_2) + \#(c_2, c_2))$$

$$\phi_{v_1|c_1} = \#(v_1, c_1) / (\#(v_1, c_1) + \#(v_2, c_1))$$

$$\phi_{v_1|c_2} = \#(v_1, c_2) / (\#(v_1, c_2) + \#(v_2, c_2))$$

Gaussian Emissions

Maximum likelihood solution

$$\pi_{c_1^{start}} = \#c_1^{start} / (\#c_1^{start} + \#c_2^{start})$$

$$\theta_{c_1|c_1} = \#(c_1, c_1) / (\#(c_1, c_1) + \#(c_2, c_1))$$

$$\theta_{c_1|c_2} = \#(c_1, c_2) / (\#(c_1, c_2) + \#(c_2, c_2))$$

$$\mu_{c_1} = \frac{1}{\#c_1} \sum_{\{t|y_t = c_1\}} x_t, \quad \sigma_{c_1}^2 = \frac{1}{\#c_1} \sum_{\{t|y_t = c_1\}} (x_t - \mu_{c_1})^2$$

$$\mu_{c_2} = \frac{1}{\#c_2} \sum_{\{t|y_t = c_2\}} x_t, \quad \sigma_{c_2}^2 = \frac{1}{\#c_2} \sum_{\{t|y_t = c_2\}} (x_t - \mu_{c_2})^2$$

