Why $\mathbf{u}_1\mathbf{u}_1^{\mathsf{T}}$ is the Orthogonal Projection Matrix

Goal

Let $\mathbf{u}_1 \in \mathbb{R}^n$ be a unit vector (i.e., $\|\mathbf{u}_1\| = 1$). We want to find the matrix P that orthogonally projects any vector $\mathbf{x} \in \mathbb{R}^n$ onto the line spanned by \mathbf{u}_1 .

Geometric Definition of Orthogonal Projection

The orthogonal projection $\hat{\mathbf{x}} = P\mathbf{x}$ must satisfy:

- 1. $\hat{\mathbf{x}}$ lies on the line: $\hat{\mathbf{x}} = c\mathbf{u}_1$ for some scalar c,
- 2. The error $\mathbf{x} \hat{\mathbf{x}}$ is perpendicular to the line: $(\mathbf{x} \hat{\mathbf{x}})^{\top} \mathbf{u}_1 = 0$.

Deriving the Projection Formula

From condition (2):

$$(\mathbf{x} - c\mathbf{u}_1)^{\mathsf{T}}\mathbf{u}_1 = 0 \quad \Rightarrow \quad \mathbf{x}^{\mathsf{T}}\mathbf{u}_1 - c\,\mathbf{u}_1^{\mathsf{T}}\mathbf{u}_1 = 0.$$

Since \mathbf{u}_1 is a unit vector, $\mathbf{u}_1^{\top}\mathbf{u}_1 = 1$, so

$$c = \mathbf{u}_1^{\mathsf{T}} \mathbf{x}.$$

Thus, the projection is

$$\hat{\mathbf{x}} = (\mathbf{u}_1^{\top} \mathbf{x}) \, \mathbf{u}_1.$$

Expressing as a Matrix Multiplication

We now seek a matrix P such that $\hat{\mathbf{x}} = P\mathbf{x}$ for all \mathbf{x} . Rewrite the expression using associativity of matrix multiplication:

$$\hat{\mathbf{x}} = (\mathbf{u}_1^{\top}\mathbf{x})\,\mathbf{u}_1 = \mathbf{u}_1(\mathbf{u}_1^{\top}\mathbf{x}) = (\mathbf{u}_1\mathbf{u}_1^{\top})\mathbf{x}.$$

Since this holds for every \mathbf{x} , we identify

$$P = \mathbf{u}_1 \mathbf{u}_1^{\mathsf{T}}.$$

Verifying Projection Properties

• Idempotent:

$$P^2 = (\mathbf{u}_1 \mathbf{u}_1^{\top})(\mathbf{u}_1 \mathbf{u}_1^{\top}) = \mathbf{u}_1(\mathbf{u}_1^{\top} \mathbf{u}_1)\mathbf{u}_1^{\top} = \mathbf{u}_1(1)\mathbf{u}_1^{\top} = P.$$

• Symmetric:

$$P^{\top} = (\mathbf{u}_1 \mathbf{u}_1^{\top})^{\top} = \mathbf{u}_1 \mathbf{u}_1^{\top} = P.$$

Thus, P is an orthogonal projection matrix.

Geometric Interpretation

The matrix $\mathbf{u}_1\mathbf{u}_1^{\top}$ is the **outer product** of \mathbf{u}_1 with itself. - The inner product $\mathbf{u}_1^{\top}\mathbf{x}$ gives the scalar coordinate along \mathbf{u}_1 , - The outer product $\mathbf{u}_1\mathbf{u}_1^{\top}$ converts this into a linear transformation that projects any vector onto the line.

Example: 2D Projection

Let
$$\mathbf{u}_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
. Then

$$P = \mathbf{u}_1 \mathbf{u}_1^{\top} = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix},$$

the standard orthogonal projection matrix onto a line at angle θ .

Conclusion

The matrix $\mathbf{u}_1\mathbf{u}_1^{\top}$ is the unique orthogonal projection matrix onto the line spanned by the unit vector \mathbf{u}_1 . It arises naturally from the geometric definition of orthogonal projection and satisfies all the required algebraic properties.

1 Higher Dimensions

Theorem

Let $S \subseteq \mathbb{R}^n$ be a k-dimensional subspace, and let $U \in \mathbb{R}^{n \times k}$ be a matrix whose columns $\mathbf{u}_1, \dots, \mathbf{u}_k$ form an orthonormal basis for S (i.e., $U^{\top}U = I_k$).

Then the matrix

$$P = UU^{\top}$$

is the unique orthogonal projection matrix onto \mathcal{S} .

Proof

We verify that P satisfies the defining properties of an orthogonal projection onto S.

1. $P\mathbf{x} \in \mathcal{S}$ for all $\mathbf{x} \in \mathbb{R}^n$

For any $\mathbf{x} \in \mathbb{R}^n$,

$$P\mathbf{x} = UU^{\top}\mathbf{x} = U(U^{\top}\mathbf{x}).$$

Let $\mathbf{z} = U^{\top} \mathbf{x} \in \mathbb{R}^k$. Then

$$P\mathbf{x} = U\mathbf{z} = z_1\mathbf{u}_1 + z_2\mathbf{u}_2 + \dots + z_k\mathbf{u}_k,$$

which is a linear combination of the basis vectors of S. Hence, $P\mathbf{x} \in S$.

2. The error $\mathbf{x} - P\mathbf{x}$ is orthogonal to \mathcal{S}

We show $\mathbf{x} - P\mathbf{x} \perp \mathbf{v}$ for every $\mathbf{v} \in \mathcal{S}$. Since $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ spans \mathcal{S} , it suffices to show orthogonality to each basis vector \mathbf{u}_i .

Compute the inner product with \mathbf{u}_i :

$$\mathbf{u}_i^{\top}(\mathbf{x} - P\mathbf{x}) = \mathbf{u}_i^{\top}\mathbf{x} - \mathbf{u}_i^{\top}UU^{\top}\mathbf{x}.$$

Note that $\mathbf{u}_i^{\top}U$ is the *i*-th row of $U^{\top}U = I_k$, so $\mathbf{u}_i^{\top}U = \mathbf{e}_i^{\top}$, where \mathbf{e}_i is the *i*-th standard basis vector in \mathbb{R}^k . Thus,

$$\mathbf{u}_i^{\mathsf{T}} U U^{\mathsf{T}} \mathbf{x} = \mathbf{e}_i^{\mathsf{T}} U^{\mathsf{T}} \mathbf{x} = (U^{\mathsf{T}} \mathbf{x})_i = \mathbf{u}_i^{\mathsf{T}} \mathbf{x}.$$

Therefore,

$$\mathbf{u}_i^{\top}(\mathbf{x} - P\mathbf{x}) = \mathbf{u}_i^{\top}\mathbf{x} - \mathbf{u}_i^{\top}\mathbf{x} = 0.$$

Since this holds for all i = 1, ..., k, the error $\mathbf{x} - P\mathbf{x}$ is orthogonal to every vector in S.

3. P is symmetric and idempotent

- Symmetric: $P^{\top} = (UU^{\top})^{\top} = UU^{\top} = P$.
- **Idempotent**: $P^2 = (UU^{\top})(UU^{\top}) = U(U^{\top}U)U^{\top} = UI_kU^{\top} = UU^{\top} = P$, where we used the orthonormality condition $U^{\top}U = I_k$.

4. Uniqueness

Suppose Q is another matrix such that $Q\mathbf{x} \in \mathcal{S}$ and $\mathbf{x} - Q\mathbf{x} \perp \mathcal{S}$ for all \mathbf{x} . Since $Q\mathbf{x} \in \mathcal{S}$, we can write $Q\mathbf{x} = U\mathbf{w}$ for some $\mathbf{w} \in \mathbb{R}^k$. Orthogonality implies $U^{\top}(\mathbf{x} - Q\mathbf{x}) = \mathbf{0}$, so

$$U^{\top} \mathbf{x} - U^{\top} U \mathbf{w} = \mathbf{0} \quad \Rightarrow \quad U^{\top} \mathbf{x} - I_k \mathbf{w} = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = U^{\top} \mathbf{x}.$$

Thus, $Q\mathbf{x} = UU^{\mathsf{T}}\mathbf{x} = P\mathbf{x}$ for all \mathbf{x} , so Q = P.

Conclusion

The matrix $P = UU^{\top}$ is the unique orthogonal projection matrix onto the subspace $S \subseteq \mathbb{R}^n$, for any dimension $k = \dim(S) \ge 1$.