519 Problem Set 5: Joint Densities

Problem 1. (Jan 2014) Let X and Y be independent exponential random variables with mean 1. Let $U = e^X + 2e^Y$, and $V = 2e^{X^2} + e^{Y^2}$. Let g(u, v) be a joint density function for U and V which is as continuous as possible. Find g(3e, 3e).

Problem 2. (Jan 2013) Let X be uniformly distributed on the interval (0,1). Consider a sequence $\{Y_k\}_{k\geq 1}$ of independent random variables that each have density $\frac{1}{(1+y)^2}$ for y>0. Also assume that the Y_k are independent of X. Let N be the index of the first Y_k which is strictly larger than X, and for succinctness, define $Z:=Y_N$. Find the joint probability density function of X and Z.

Problem 3. (Aug 2010) Let X and Y be independent unit exponential random variables, and let W = X/Y. Find the density of W.

Problem 4. Suppose X_1 and X_2 are random variables with joint density

$$f_{X_1, X_2}(x_1, x_2) = \begin{cases} 3x_1 & \text{if } 0 < x_2 < x_1 < 1\\ 0 & \text{otherwise} \end{cases}$$

Let $Y_1 = \frac{1}{X_1}$ and $Y_2 = \frac{1}{X_2}$. Find the joint density $f_{Y_1,Y_2}(y_1,y_2)$ of Y_1 and Y_2 .

Problem 5. Let X and Y be independent exponential random variables each with parameter one. Find the density of |X - Y| and the joint density of X and |X - Y|.

Problem 6. Find the greatest possible value of E(XY), if X is Exponential $(\lambda = 1)$ and Y is discrete uniform on $\{1,2\}$. Justify your answer.

Problem 7. Let T be an exponential random variable with parameter λ . Let X|T be uniformly distributed on [0,T]. Find the joint density of T and X, and find the mean and variance of X.

Problem 8. Suppose X is N(0,1) (i.e. standard normal) and Y|X=x is N(x+1,1).

- 1. Find the marginal distribution of Y.
- 2. Find the correlation between X and Y.
- 3. Find E[X|Y=y].