CALCOLO NUMERICO 1 - PROVA MATLAB - 1 febbraio 2018

1) Si consideri la seguente matrice $A \in \mathbb{R}^{n \times n}$, con n = 2

$$A = \begin{bmatrix} 10^{-10} & 1\\ 1 & 2 \end{bmatrix}$$

e il termine noto b tale che il sistema Ax = b abbia come soluzione esatta il vettore $x = [1, 1]^t$.

- 1.1) si calcolino a mano i fattori L e U tali che A = LU
- 1.2) si risolva a calcolatore il sistema Ax = b utilizzando i fattori precedentemente ottenuti. Alternativamente, si usi il comando Matlab 1u. Siano x_a e x_b le rispettive soluzioni calcolate.
- 1.3) quale è l'errore relativo commesso $||x x_a||_2/||x||_2$ e $||x x_b||_2/||x||_2$ in ciascuno dei due casi? Si dia una spiegazione dei risultati trovati

RISULTATI

$$||x - x_a||_2 / ||x||_2 =$$
 $||x - x_b||_2 / ||x||_2 =$

spiegazione:

2) Sia $f(x) = \sin(x)$ e si voglia approssimare numericamente

$$I = \int_0^{\pi/2} f(x) \, dx = 1.$$

A questo scopo, si costruisca con il comando Matlab spline la spline cubica $s_3(x)$ che interpola f(x) considerando una discretizzazione in m intervalli omogenei. Sia C la matrice dei coefficienti di tale spline. Utilizzando gli elementi di C si calcoli in modo esatto l'integrale $I_s = \int_0^{\pi/2} s_3(x) \, ds$. Si ricordi che la spline calcolata da Matlab è, sul generico intervallo di discretizzazione $[x_i, x_{i+1}]$, della forma

$$s_3(x) = a(x - x_i)^3 + b(x - x_i)^2 + c(x - x_i) + d,$$

essendo a, b, c, d gli appropriati coefficienti del polinomio cubico sull'intervallo considerato ricavati dalla matrice C. Si riporti per i valori m = 5, 50, 500 l'errore $|I - I_s|$.

RISULTATI

$$\begin{array}{ll} {\rm m}=5 & |I-I_s| = \\ {\rm m}=50 & |I-I_s| = \\ {\rm m}=500 & |I-I_s| = \end{array}$$

- 3) Si consideri l'equazione non lineare $f(x)=x-\sin(x)=0$ avente radice $\alpha=0$ di molteplicità p>1.
 - 3.1) Costruire la successione $\{x_n\}$, $n \ge 0$ del metodo di Newton applicato alla funzione f (metodo (1)) per approssimare α , utilizzando $x_0 = 2.3$ e test d'arresto $|f(x_n)| < \varepsilon$, con $\varepsilon = 10^{-4}$ oppure $\varepsilon = 10^{-6}$. Sia n_1 il numero di iterazioni eseguite e x_{n_1} la corrispondente iterata n_1 -esima.
 - 3.2) Successivamente si costruisca la successione $\{t_n\}$, $n \geq 0$ del metodo di Newton applicato alla funzione $\Phi(t) = \frac{f(t)}{f'(t)}$ (metodo (2)) per ottenere un'approssimazione più accurata di α , utilizzando $t_0 = x_{n_1}$ e test d'arresto $|f(t_n)| < \varepsilon^2$. Sia n_2 il numero di iterazioni eseguite e t_{n_2} la corrispondente iterata n_2 -esima.

Si riportino i valori di $n_1,\ x_{n_1}$ e di $n_2,\ t_{n_2}$ per i due valori di $\varepsilon.$

Commentare i risultati ottenuti.

	n_1	x_{n_1}	n_2	t_{n_2}
$\varepsilon = 10^{-4}$				
$\varepsilon = 10^{-6}$				