Niveau	8 0	2ème	Sciences
--------	-----	------	----------

Devoie de synthèse n° 3

Lycée Pilote Gabès 2022/2023

4 (4 4		
BIA	- B #	TO TO THE LOCAL
Po. 16	B PS / N	DELLE BURNER BURNER
JAK	PIVI consequences consequences consequences	PRENOM

EXERCICE 1 (5 points)

Tous les résultats de l'exercice sont arrondis à 10-2 près.

A) Voici les notes d'un devoir de math commun des 52 élèves de 2sc4 et 2sc5.

Note	12	14	15	17	18,5	19	20
Effectif	5	7	8	11	10	9	2

- 1) Déterminer le mode et l'étendue de cette série.
- 2) À l'aide d'une calculatrice déterminer la médiane Me, les quartiles Q1 et Q3, la moyenne, la variance et l'écart type de cette série.
- 3) Construire le diagramme en boîte de cette série.
- B) 60 tireurs ont lancé des fléchettes sur une cible. Pour chacun d'eux, on a mesuré la distance en cm entre la fléchette planté dans la cible et le centre de cible.

On a reparti les résultats dans le tableau suivant :

Classes	[0,5[[5,10[[10,15]	[15,20[[20,25]	[25,30]
Effectifs cumulés croissants	2	12	24	42	56	60

- 1) a) Construire la courbe des effectifs cumulés croissants.
- b) Déterminer la troisième quartile Q3 par la méthode d'interpolation linéaire.
 - 2) Recopier et compléter le tableau suivant:

Classes	[0,5[[5,10[[10,15[[15,20[[20,25]	[25,30[
Centre Ci						
Effectif		10				4
Effectifs cumulés croissants	2	12	24	42	56	60

b) Déterminer alors à l'aide d'une calculatrice la moyenne et l'écart type de cette série.

مكتبة14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267619

_ 1_

Soit $(0, \vec{i}, \vec{j})$ un repère orthonormé.

مكتبة 14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618

On donne A(4, -3), B(0, -1) et C l'ensemble des points M(x,y) tels que :

$$x^2 + y^2 - 8x + 4y - 5 = 0.$$

- 1) Vérifier que ${\cal C}$ est un cercle de centre I(1,2) et dont on déterminer le rayon R .
- 2) Soit Δ la droite d'équation y=-3. Montrer que Δ est la tangente a $\mathcal C$ en $\mathbb A$
- 3) Soit P l'ensemble des points M(x,y) tels que MB = MH où H est le projeté orthogonal de M sur Δ
 - a) Montrer que $I \in \Delta$
 - b) Déterminer les coordonnées du point H.
 - c) Montrer que P a pour équation $y = \frac{1}{4}x^2 2$.

EXERCICE 3 (5 points)

On donne dans un repère orthonormé $(0, \vec{i}, \vec{j})$ l'hyperbole (C_f) et la parabole (C_g) courbes représentatives des fonctions f et g (figure Annexe).

- I) Lecture graphique
- 1) Dresser le tableau de variations de f.
- 2) Résoudre graphiquement l'équation f(x) = g(x).
- 3) Comparer en expliquant $f(\frac{1}{n})$ et $g(\frac{1}{n})$ pour tout entier naturel non nul n et différent de 1.
- 4) Construire la droite Δ : y = -x + 4 puis résoudre graphiquement l'inéquation $f(x) \le -x + 4$.
- II) On prend dans la suite de l'exercice

$$f(x) = \frac{x-4}{x-3} et \ g(x) = \frac{1}{2} x(4-x).$$

- 1) Soit h la fonction définie sur \mathbb{R} par $h(x) = \frac{1}{2}x(4-x)$.
 - a) Montrer que h est une fonction impaire.
 - b) Construire alors en expliquant la courbe (C_h) à partir de (C_g) .
- 2) Soit k la fonction définie sur R par

$$k(x) = \begin{cases} h(x) & \text{si } x < 4 \\ f(x) & \text{si } x \ge 4. \end{cases}$$

- a) Construire (C_k) à partir de (C_f) et (C_h) dans le même repère.
- b) Déterminer graphiquement
 selon le valeur du paramètre m le nombre des solutions de l'équation k(x) = m.

EXERCICE 4 (5 points)

Soit P un plan, C un cercle du plan P de diamètre [AB] et de centre O.

- (AS) la droite perpendiculaire en A au plan P et M un point de C.
- 1) a) Montrer que (MB) est orthogonale au plan (ASM).
- b) En déduire que SMB est un triangle rectangle en M.
- 2) Soit Δ la droite parallèle à (AS) passant par O.
 - a) Montrer que \(\Delta \) est l'axe du cercle \(C. \)
- b) Soit un point E de Δ distinct de O tel que I = M*B.

Montrer que (OIE) est le plan médiateur du segment [MB].

- 3) Soit H le projeté orthogonal de point A sur la droite (SM).
 - a) Montrer que (AH) est orthogonale au plan (SMB).
 - b) En déduire que (ASM) et (SMB) sont perpendiculaires.

* Exercice 1

2)
$$M_e = \frac{Note\ de\ 26 + 27\ eme\ eleve}{2} = \frac{17 + 17}{2} = 17$$

$$\frac{N}{4} = 13 \qquad Q_1 = \frac{15 + 15}{2} = 15$$

$$\frac{3N}{4} = 39. \qquad Q_3 = \frac{16.r + 18r}{2} = 18.5.$$

$$\bar{x} = 16,557... \approx 16,56.$$

$$\sigma = 2,3465...22,35.$$

B) 1)a) Courbe de ECC

1)b)
$$Q_{3} = ?$$

$$\frac{45 - 42}{Q_{3} - 20} = \frac{56 - 42}{25 - 20}$$

$$\frac{3}{Q_{3} - 20} = \frac{14}{5} \Rightarrow Q_{3} - 20 = \frac{15}{14}$$

$$Q_{3} = 20 + \frac{15}{4} = \frac{280 + 15}{14} = \frac{295}{14} = 21,07$$

$$Q_{3} = 20,07$$
2) a)

مكتبة 14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618

Class	[0,	[5,	[10,	[15,	[20,	[25,
es	5]	10]	15]	20]	25]	30]
Centr	2,	7,5	12.	17,	22,	27,
e Ci	5		5	5	5	5
Effec tif	2	10	12	18	12	4
Effec tifs cumu lés croiss ants	2	12	24	42	56	60

b)
$$\bar{x} = 15,948 ... \simeq 15,95$$
 $\sigma = 6,311 ... \simeq 6,31$

Exercice 2

1)

$$x^{2} + y^{2} - 8x - 4y - 5 = 0$$

$$x^{2} - 8x + y^{2} - 4y = 5$$

$$(x - 4)^{2} + (y - 2)^{2} - 16 - 4 = 5$$

$$(x - 4)^{2} + (y - 2)^{2} = 25 = 5^{2}$$

C de contre I(4; 2) er de rayon R = 5.

2)
$$\Delta$$
, $y = (-3) \Rightarrow \Delta$: $0x + y + 3 = 0$

$$A \in \Delta \operatorname{car} y_A = (-3)$$

$$d(I(4;2); \Delta = \frac{|2+3|}{\sqrt{0^2+1^2}} = 5 = Rayon$$

donc Δ est tangente a C_f en A

3) MB=MH; B ∈ C car 0+1-0+4-5=0

$$IB = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$IH = \sqrt{(4-x)^2 + 25} = 5 \text{ si } x = 4$$

Donc $I \in / \varphi$ que si x = 4

b)

$$H(x,-3)$$

$$M\overrightarrow{H} = \begin{pmatrix} 0 \\ -3 - y \end{pmatrix} \Rightarrow MH = \sqrt{(3+y)^2} = |3+y|$$

$$\overline{MB} = \begin{pmatrix} x \\ y+1 \end{pmatrix} \Rightarrow MB = \sqrt{x^2 + (y+1)^2}.$$

$$\Rightarrow (3+y)^2 = x^2 + (y+1)^2$$

$$9 + 6y + y^2 = x^2 + y^2 + 2y + 1$$

 $8 + 4y = x^2$

$$4y = x^2 - 8 \Rightarrow y = \frac{2}{4}x^2 - 2.$$

Exercice 3

1) TVf:

2)
$$f(x) = g(x)$$

 $x \in \{1, 2, 4\}$

3)
$$n > 1 \Rightarrow \frac{1}{n} < 1$$
 on a $f(x) < g(x)$ Sur] –

∞;1[

$$\Rightarrow f\left(\frac{1}{n}\right) < g\left(\frac{1}{n}\right).$$

4)
$$f(x) \le -x + 4 \Rightarrow C_f$$
 est au dessous de Δ
 $x \in]-\infty; 2] \cup [4; +\infty[$

(II)

1)
$$h(x) = \frac{1}{2}x(4 - |x|)$$

a) $x \in \mathbb{R} \Rightarrow -x \in \mathbb{R}$

$$h(-x) = -\frac{1}{2}x(4-|x|) = -h(x)$$

donc h est impaire

b)

$$\begin{split} &\mathcal{C}_h = \mathcal{C}_g \, \sup \, [0, +\infty[\\ &\mathcal{C}_h = \mathcal{C}_0(\mathcal{C}_g) \, \sup \,] - \infty, 0]. \end{split}$$

2)
$$k(x) = \begin{cases} h(x) & \text{si } x \leq 4\\ f_1(x) & \text{si } x \geq 4 \end{cases}$$

a) Voir Annexe.

b)
$$k(x) = m$$

Si m < -2 pas de Sol.

Si $\begin{cases} m = (-2) \\ m > 2 \end{cases}$ une seule Sol °

Si $m \in]-2$; $0[\cup \{2\} \text{ deux Sol }^{\circ}.$

Si m ∈]0, 2[trois Sol °

& Exercice 4

1) a) $(MB) \perp (AM)$ car A; M et B trois pt de C et [AB] sont diamètre.

$$\operatorname{et}(AM) \subset (ASM) \Rightarrow (MB) \perp (ASM)$$

b)

$$(MB) \perp (ASM) (SM) \perp (ASM)$$
 \Rightarrow $(MB) \perp (SM)$

⇒ SMB triangle rectangle en M.

2) a)
$$\Delta \perp (AB)$$
 en O $\Rightarrow \Delta$ axe de C

b) on a AMB triangle rectangle en M et

$$O = A * B$$
 $\Rightarrow OM = OB$
 $\Rightarrow (OIE)$ plan médiateur de [MS]

 $IM = IB$ et FM = EB

3) $(AH) \perp (SM)$

a)

 $(AH) \perp (SM)$
 $(SM) \subset (SMB)$
 $(AH) \perp (ASM)$
 $(AH) \perp (ASM)$
 $(AH) \perp (ASM)$
 $(AH) \perp (ASM)$
 $(AB) \subset (SMB)$
 $(AB) \perp (ASM)$

مختبة 14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618

مكتبة14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618