

On Lazy Training in Differentiable Programming

Lénaïc Chizat³, Édouard Oyallon⁴ and Francis Bach^{1,2} ¹INRIA, ²ENS-PSL Paris, ³CNRS, ⁴Centrale-Supélec

Abstract

Recent theory shows that training large neural net-Context. works amounts to doing regression with a positive-definite kernel.

Contributions. This phenomenon, that we call lazy training:

- is not intrinsically due to width but to a degenerate relative **scale** → depends on early stopping, initialization and normalization
- removes some benefits of depth and hinders generalization

Lazy Training

Setting. Adjust parameters of a differentiable model $h: \mathbb{R}^p \to \mathcal{F}$ by minimizing a loss $R:\mathcal{F} o\mathbb{R}_+$ using gradient flow on the objective

$$F(w) = R(h(w))$$

- $ullet \mathcal{F}$ is a Hilbert space of predictors, R typically the empirical or population risk, h typically a neural network
- gradient flows approximate (stochastic, accelerated) gradient descent

Training paths. For initialization w_0 and stopping time T, let

- \bullet $(w(t))_{t \in [0,T]}$ be the *original* optimization path
- \bullet $(\bar{w}(t))_{t\in[0,T]}$ be the *tangent* optimization path, for the tangent model

$$\bar{h}(w) = h(w_0) + Dh(w_0)(w - w_0)$$

Lazy Training (definition)

When the *original* and *tangent* optimization paths are close

Consequences. Lazy training is a type of implicit bias for gradient descent that leads to strong guarantees:

- on optimization speed (theory of convex optimization)
- on generalization (theory of kernel regression)

When does lazy training occur?

Simple (sufficient) criterion. If over a training step it holds

 $\frac{\text{relative change of }F}{\text{relative change of }Dh} \ll 1$

For the square loss $R(y) = ||y - y^{\star}||^2$, leads to

$$\kappa_h(w_0) \coloneqq \|h(w_0) - y^*\| \frac{\|D^2 h(w_0)\|}{\|D h(w_0)\|^2} \ll 1,$$
(1)

Case 1: Rescaled models

For $\alpha > 0$, one has $\kappa_{\alpha h}(w_0) \lesssim \|h(w_0) - y^*/\alpha\|$

Case 2: Homogeneous models

If $h(\lambda w) = \lambda^q h(w)$, one has $\kappa_h(\lambda w_0) \lesssim \|h(w_0) - y^*/\lambda^q\|$ ightarrow lazy if $h(w_0)$ small and λ large

Case 3: Wide neural networks

If $h_m(w) = \alpha \sum_{i=1}^m \phi(\theta_i)$ where $w = (\theta_1, \dots, \theta_m)$ are i.i.d. and satisfy $\mathbb{E}\phi(\theta_i)=0$ (two-layer neural network), then

$$\kappa_{h_m}(w_0) \lesssim m^{-1/2} + (\alpha m)^{-1}$$

- \rightarrow lazy if $\lim_{m\to\infty} \alpha m = \infty$ (e.g. $\alpha = 1/\sqrt{m}$)
- \rightarrow can be extended to deep networks (Jacot et al.)

Theoretical results

Finite horizon

If $h(w_0) = 0$, then training αh always becomes lazy as α grows. If in particular $R(y) = \frac{1}{2}||y - y^{\star}||^2$, it holds

$$\frac{\|h(w(t)) - \bar{h}(\bar{w}(t))\|}{\|h(w_0) - y^\star\|} \lesssim (\underbrace{T \cdot \|Dh(w_0)\|^2})^2 \cdot \kappa_h(w_0).$$

Infinite horizon

If $h(w_0) = 0$, and R is strongly convex, then training αh converges exponentially fast for large α , towards global (if overparameterized) or local (if under-parameterized) minima.

• see paper for precise statements.

Is lazy training desirable? —

Synthetic experiments. Two-layer ReLU neural network in the teacher student-setting (square loss), initialized with variance τ .

Lazy Training ($\tau = 0.1$)

Non-Lazy Training ($\tau = 2$)

Trajectory of each "hidden" neuron during training (2-D input)

Over-parameterized (GD on train loss until 0 loss)

Under-parameterized (SGD on population loss)

Impact of laziness on performance (100-D input)

Image recognition task.

learning?

	100 -	•	<u>,</u>		
	90 -				
%	80 -	\i.'.\		accuracy accuracy	
	70 -	Λ	 stab	ility of activ	ations
	60 -	/ >	<u>;</u>		
		101	10 ³	105	107
		α	(scale of the	e model)	

Model	Train acc.	Test acc.
ResNet wide, linearized	55.0	56.7
VGG-11 wide, linearized	61.0	61.7
Prior features (Ovallon et al.)	_	82.3

84.2

Does lazy training explain deep

Effect on laziness (VGG11 model)

VGG-11 wide, standard 89.7 ResNet wide, standard

Linear vs. lazy vs. deep models

Random features (Recht et al.)

Theoretical arguments. Neural networks can be superior to

kernel/fixed features methods, thanks to their adaptivity (Bach 2017).

Main references —

- Jacot et al., Neural Tangent Kernel: Convergence and Generalization in Neural Networks. 2018.
- Du et al., Gradient Descent Provably Optimizes Over-parameterized Neural Networks. 2018.
- Bach. Breaking the Curse of Dimensionality with Convex Neural Networks). 2017.