1. In this problem $y = x \sin(x)$.

(a)
$$\frac{dy}{dx} = 1 \cdot \sin(x) + \chi \cos(x) = \left[\sin(x) + \chi \cos(x) \right]$$
 (product $\int \sin(x) dx = 1 \cdot \sin(x) + \chi \cos(x) = \left[\sin(x) + \chi \cos(x) \right]$

(b)
$$\frac{d^2y}{dx^2} = \cos(\alpha) + 1\cos(\alpha) + \chi(-\sin(\alpha)) = \left[2\cos(\alpha) - \chi\sin(\alpha)\right]$$

(c)
$$\frac{d^3y}{dx^3} = -2\sin(x) - \left(1\sin(x) + \chi\cos(x)\right) = \left[-3\sin(x) - \chi\cos(x)\right]$$

2. Find the derivative of $y = \tan(3x^2 + x)$.

$$\frac{dy}{dx} = \left[\sec^2 \left(3x^2 + x \right) \left(6x + 1 \right) \right]$$
(chain rule)

3. Find the derivative of $y = \cos\left(\frac{1}{x}\right)$. $= \cos\left(\chi^{-1}\right)$

$$\frac{dy}{dx} = -\sin\left(\frac{1}{x}\right)\left(-1, x^{-1-1}\right) = -\sin\left(\frac{1}{x}\right)\left(\frac{-1}{x^2}\right)$$
(chain rule)
$$= \frac{\sin\left(\frac{1}{x}\right)\left(\frac{1}{x^2}\right)}{x^2}$$

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(3).

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
	2	1	1	3	5	- 1
g(x)	10	9	7	4	0	-4
g'(x)	0	-0.5	-1	_3	- 4	-4

$$h(x) = f(g(x))g'(x)$$

$$h'(3) = f'(g(3))g'(3)$$

$$= f'(4)(-3)$$

$$= 5 \cdot (-3) = -15$$

1. In this problem $y = xe^x$.

(a)
$$\frac{dy}{dx} = |\cdot|e^{\chi} + \chi e^{\chi}| = |e^{\chi} + \chi e^{\chi}|$$
 (product rule)

(b)
$$\frac{d^2y}{dx^2} = e^{\chi} + 1 \cdot e^{\chi} + \chi e^{\chi} = \boxed{2e^{\chi} + \chi e^{\chi}}$$

(c)
$$\frac{d^3y}{dx^3} = 2e^{\chi} + 1.e^{\chi} + \chi e^{\chi} = \left[3e^{\chi} + \chi e^{\chi}\right]$$

2. Find the derivative of $y = \sin(\sqrt{x})$. $= \int_{1}^{x} \sqrt{x} \left(\frac{1}{2} \right)$

$$\frac{dy}{dx} = \cos(x^{\frac{1}{2}}) \frac{1}{2} x^{\frac{1}{2}-1} = \cos(\sqrt{x}) \frac{1}{2\sqrt{x}}$$
(chain rule)

3. Find the derivative of $y = \tan(3x^3 + x)$.

$$\frac{dy}{dx} = \left[\sec^2(3x^3 + x) \left(9x^2 + 1 \right) \right]$$
(chain Rule)

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(4).

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	0.5	$^{\circ}-1$
g(x)	10	9	7	4	0	-4
g'(x)	0	-0.5	1	-3	-4	-4

$$h'(x) = f'(g(x))g(x)$$

$$h'(4) = f'(g(4))g'(4)$$

$$= f'(0)(-4) = 2 \cdot (-4)$$

$$= [-8]$$

1. In this problem $y = \frac{2}{x^2}$. $= 2 \chi^{-2}$

(a)
$$\frac{dy}{dx} = -4\chi^{-3} = -\frac{4}{\chi^3}$$

(b)
$$\frac{d^2y}{dx^2} = /2 \chi^{-4}$$
 $= \left| \frac{12}{\chi^4} \right|$

(c)
$$\frac{d^3y}{dx^3} = -48 \chi^{-5} = \boxed{-\frac{48}{\chi^5}}$$

2. Find the derivative of $y = \cos(xe^x)$.

$$y' = -\sin(xe^{x}) D_{x}[xe^{x}] \leftarrow (\text{chain rule})$$

$$= -\sin(xe^{x}) (\text{i.ex} + xe^{x}) \leftarrow (\text{product rule})$$

$$= -\sin(xe^{x}) (e^{x} + xe^{x})$$

3. Find the derivative of $y = \cot(3x^2 + x)$.

$$y'=\left[-sc^{2}\left(3\chi^{2}+\chi\right)\left(6\chi+1\right)\right]\leftarrow\left(chain\ rule\right)$$

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(0).

x	0	1	2	3	4	5
f(x)	-4	- 2	0	1	1	0
f'(x)	2	1	1	3	0.5	-1
g(x)	5	9	7	4	0	-4
g'(x)	3	-0.5	-1	- 3	-4	-4

$$h(x) = f(g(x))g(x)$$
 (chain rule)
 $h'(0) = f'(g(0))g'(0)$
 $= f'(5) \cdot 3$
 $= (-1) \cdot 3 = [-3]$

1. In this problem $y = x^2 + \frac{1}{x}$. $= \chi^2 + \chi^{-1}$

(a)
$$\frac{dy}{dx} = 2\chi - \chi^{-2} = \left[2\chi - \frac{1}{\chi^2}\right]$$

(b)
$$\frac{d^2y}{dx^2} = 2 - (-2)\chi^{-3} = 2 + \frac{2}{\chi^3}$$

(c)
$$\frac{d^3y}{dx^3} = 0 - 6 \chi^{-4} = \frac{-6}{\chi^4}$$

2. Find the derivative of $y = \sin(x^2 e^x)$.

Chain rule:
$$y' = cos(x^2e^x) D_x [x^2e^x]$$

$$= [cos(x^2e^x)(2xe^x + x^2e^x)]$$

3. Find the derivative of $y = \tan\left(\frac{1}{x^2}\right)$. $= +\cos\left(\chi^{-2}\right)$

Chain rule:
$$y' = \sec^2(\frac{1}{x^2})(-2)x$$

$$= \left[-\frac{2\sec^2(\frac{1}{x})}{x^3}\right]$$

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(1). $f'(x) = f'(g(x)) \cdot g'(x)$

x	0	1	2	3	4.	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	6	-1
g(x)	10	4	7	4	0	-4
g'(x)	0	-0.5	-1	-3	-4	-4

$$f_{i}(1) = f'(g(1))g'(1)$$

$$= f'(4)(-0.5)$$

$$= 6 \cdot (-0.5) = -3$$

(chain rule)