Third Normal Form (3NF) Decomposition (I)

The algorithm presented is called the 3NF synthesis algorithm ☐ This algorithm yields a decomposition of a (universal) relation schema R with the set F of FDs into relation schemas $R_1, ..., R_n$ so that the following three criteria are fulfilled: The decomposition is lossless The decomposition is dependency-preserving Each relation schema R_i (1 $\leq i \leq n$) of the decomposition is in the 3NF The proof for correctness can be found in the textbook [SKS] The 3NF synthesis algorithm does not check whether R is already in the 3NF: Use the algorithm *RelationSchemalsIn3NF* for this purpose ☐ Interesting: Frequently, the 3NF synthesis algorithm yields a decomposition into relation schemas $R_1, ..., R_n$ where all R_i are not only in the 3NF but even in the BCNF

Third Normal Form (3NF) Decomposition (II)

☐ 3NF synthesis algorithm $\{(R_1, F_1), ..., (R_n, F_n)\}\ Calculate 3NFDecomposition(R, F)$ // Input: A relation schema R and a set F of FDs on R // Output: A decomposition of R into the 3NF relation schemas R_1, \ldots, R_n with the corresponding sets $F_1, ..., F_n$ of FDs // Step 1: Find a minimal cover F_c for F in nonstandard form (i.e., left reduction of the FDs, right reduction of the remaining FDs, removal of FDs of the form $A \rightarrow \emptyset$, union rule for identical left-hand sides) $F_c := CalculateMinimalCover(F)$ // Step 2: Generate relation schemas from the FDs in F_c by forming the union of the attribute sets on both sides of each FD i := 0for each $X \rightarrow Y$ in F_c do $i := i + 1; R_i := X \cup Y$ $B\setminus D \cap R_i = \emptyset$ } // Largest subset D of B must be contained in R_i *n* := *i* // Number of generated relation schemas

Third Normal Form (3NF) Decomposition (III)

☐ 3NF synthesis algorithm (*continued*) // Step 3: If none of the generated relation schemas contains a candidate key, create an additional relation schema that contains a(n arbitrary) candidate key $\{K_1, ..., K_m\} := CalculateAllCandidateKeys(R, F_c)$ found := false i := 1while not found and $i \le m$ do // Traverse all candidate keys $K_1, ..., K_m$ *i* := 1 **while not** found and $j \le n$ do // Traverse all relation schemas $R_1, ..., R_n$ if $K_i \subseteq R_j$ then found := true else j := j + 1if not found then i := i + 1**if not** found then // Add an additional schema with the candidate key K_1 n := n + 1 $R_n := K_1$ $F_n := \emptyset$

Third Normal Form (3NF) Decomposition (IV)

☐ 3NF synthesis algorithm (*continued*)

```
// Step 4: Remove redundant relation schemas, i.e., relation schemas that are contained in another relation schema
```

```
i := 1
while i \le n-1 do
                                                     // Traverse all relation schemas R_i, ..., R_{n-1}
    j := j + 1
                                                     // Compare R_i with R_{i+1}
                                                     // Keep if schema R_i has to be later considered again
    visitIndexIAgain := false
    while not visitIndexIAgain and j \le n do // Compare to all relation schemas R_{i+1}, \ldots, R_n
         if R_i \subseteq R_i then
                                                     // Case 1: R_i is contained in R_i
              R_i := R_n; F_i := F_n
                                                     // Delete R_i / F_i by replacing it with R_n / F_n
              n := n - 1
                                                     // Reduce the number of relation schemas
              visitIndexIAgain := true
                                                     // The new R_i has still to be checked
         else if R_i \supset R_i then
                                                     // Case 2: R_i contains R_i
                                                    // Delete R_i / F_i by replacing it with R_n / F_n
              if j < n then R_i := R_n; F_i := F_n
                      else R_i := \emptyset; F_i := \emptyset
                                                     // or by setting R_i / F_i to the empty set
              n := n - 1
                                                     // Reduce the number of relation schemas
              i := i + 1
                                                     // Continue to compare R_i with R_{i+1}
                                                     // Case 3: R_i is unequal to R_i
         else
              j := j + 1
                                                     // Continue to compare R_i with R_{i+1}
                                                     // If R_i has been replaced by R_n, explore index i again
    if not visitIndexIAgain then
         i := i + 1
                                                     // Otherwise, continue with R_{i+1}
```

Third Normal Form (3NF) Decomposition (V)

☐ 3NF synthesis algorithm (*continued*)

```
// Step 5: Return the decomposition R_1, ..., R_n together with their respective sets F_1, ..., F_n of FDs as the result return \{(R_1, F_1), ..., (R_n, R_n)\}
```

- Example: Universal relation schema *ProfAddr*(pers-id, name, rank, room, city, street, zipcode, area-code, state, government)
- Assumptions
 - ❖ A city denotes the residence of a professor.
 - Government is the party of the president.
 - City names are unique within a state.
 - The zipcode does not change within a street.
 - Cities and streets lie completely in the single states.
 - A professor has exactly one office that he does not share

Third Normal Form (3NF) Decomposition (VI)

- ☐ {pers-id} and {room} are candidate keys of the relation *ProfAddr*
- □ The relation is not in the 3NF since, e.g., the FD {city, state} → {area-code} violates the 3NF
- Step 1: Computation of a minimal cover (precomputed)
 - ❖ $f_1 = \{\text{pers-id}\} \rightarrow \{\text{name, rank, room, city, street, state}\}$

 - $f_3 = \{\text{city, street, state}\} \rightarrow \{\text{zipcode}\}$
 - $f_4 = \{\text{city, state}\} \rightarrow \{\text{area-code}\}\$
 - $f_5 = \{\text{state}\} \rightarrow \{\text{government}\}$
 - $f_6 = \{\text{zipcode}\} \rightarrow \{\text{city, state}\}$
- \square Step 2: Generation of relation schemas from the FDs f_1 to f_6
 - ❖ From f_1 = {pers-id} → {name, rank, room, city, street, state} we obtain:
 - R₁ = {pers-id, name, rank, room, city, street, state}
 - $F_1 = \{f_1, f_2\}$

Third Normal Form (3NF) Decomposition (VII)

- \square Step 2: Generation of relation schemas from the FDs f_1 to f_6 (continued)
 - From $f_2 = \{\text{room}\} \rightarrow \{\text{pers-id}\}\$ we obtain:
 - R_2 = {room, pers-id}
 - $F_2 = \{f_2\}$
 - ❖ From f_3 = {city, street, state} → {zipcode} we obtain:
 - R₃ = {city, street, state, zipcode}
 - $F_3 = \{f_3, f_6\}$
 - ❖ From f_4 = {city, state} → {area-code} we obtain:
 - R₄ = {city, state, area-code}
 - $F_4 = \{f_4\}$
 - ❖ From f_5 = {state} → {government} we obtain:
 - R₅ = {state, government}
 - $F_5 = \{f_5\}$

Third Normal Form (3NF) Decomposition (VIII)

- \square Step 2: Generation of relation schemas from the FDs f_1 to f_6 (continued)
 - ❖ From f_6 = {zipcode} → {city, state} we obtain:
 - R₆ = {zipcode, city, state}
 - $F_6 = \{f_6\}$
- ☐ Step 3: Check if a relation schema contains a candidate key
 - \Leftrightarrow The candidate keys are K_1 = {pers-id} and K_2 = {room}
 - ❖ Both keys are contained in relation schema R₁
- \square Step 4: Test for containment relationships between the schemas R_1 to R_6
 - ❖ {room, pers-id} \subseteq {pers-id, name, rank, room, city, street, state} [$R_2 \subseteq R_1$]
 - \Leftrightarrow {zipcode, city, state} \subseteq {city, street, state, zipcode} $[R_6 \subseteq R_3]$

Third Normal Form (3NF) Decomposition (IX)

☐ Step 5: Return the decomposition after renumbering the relation schemas and FDs

```
\{(R_1, F_1), (R_2, F_2), (R_3, F_3), (R_4, F_4)\} =
   ({pers-id, name, rank, room, city, street, state},
           \{\{pers-id\} \rightarrow \{name, rank, room, city, street, state\},\
            \{\text{room}\} \rightarrow \{\text{pers-id}\}\}).
   ({city, street, state, zipcode},
           \{\{\text{city, street, state}\} \rightarrow \{\text{zipcode}\},\
             \{zipcode\} \rightarrow \{city, state\}\}\)
   ({city, state, area-code},
           \{\{\text{city, state}\} \rightarrow \{\text{area-code}\}\}\}
   ({state, government},
           \{\{\text{state}\} \rightarrow \{\text{government}\}\}\}
```

Boyce-Codd Normal Form (BCNF) Decomposition (I)

- \square A BCNF decomposition of a (universal) relation schema R with the set F of FDs into relation schemas $R_1, ..., R_n$ fulfills the following two criteria:
 - The decomposition is lossless
 - **to Each relation schema** R_i ($1 \le i \le n$) of the decomposition is in the BCNF
- ☐ This means: We cannot always find a BCNF decomposition which is also dependency-preserving
- But: This case is rare in practice
- The BCNF decomposition algorithm below includes the check if relation schema R and any relation schema R_i of the decomposition is already in the BCNF
 - It uses the predicate RelationSchemalsInBCNF for this purpose
 - Note that this predicate does not work for the decomposed schemas R_i if F is used as a basis (see example below)
 - \diamond To work correctly, the restriction F_i of F for R_i has to be taken as a basis

Boyce-Codd Normal Form (BCNF) Decomposition (II)

 \square Algorithm for computing the restriction of F for a relation schema $S \subseteq R$ F_{\circ} FDRestriction(F, S) // Input: A set F of FDs on R and a relation schema $S \subseteq R$ // Output: The restriction F_S of F for S $F_{\rm S} := \emptyset$ // Compute the attribute closures of all subsets of S with attributes in S only, // construct nontrivial FDs from them, and insert them into $F_{\rm S}$ for each $X \subseteq S$ do // Compute the attribute closure of X under F_{s} $X^+ := CalculateAttributeClosure(F, X) \cap S$ // $X^+ \subseteq S$ holds // Add a nontrivial FD in F_S for the left-hand side X with respect to X^+ if $X^+ \supset X$ then $F_S := F_S \cup \{X \to (X^+ - X)\}$ // if-condition excludes trivial FDs // Compute the minimal cover of F_S to minimize the FDs $F_c := CalculateMinimalCover(F_S)$ // Note that $F_c = F_S$ $F_S := F_c // \text{ Select } F_c \text{ for } F_S$

return F_{S}