Task Introduction

Task: Multiclass Classification

Framewise phoneme prediction from speech.

What is a phoneme?

A unit of speech sound in a language that can serve to distinguish one word from the other.

- <u>b</u>at / <u>p</u>at , b<u>a</u>d / b<u>e</u>d
- Machine Learning → M AH SH IH N
 L ER N IH NG

Task Introduction

Data Preprocessing

Task Introduction

Acoustic Features - MFCCs (Mel Frequency Cepstral Coefficients)

For more details, please refer to Prof. Lin-Shan Lee's [Introduction to Digital Speech Processing] Chap.7

Image ref.
Prof. Hung-Yi Lee
[2020Spring DLHLP] Speech Recognition

More Information About the Data

Since each frame only contains 25 ms of speech, a single frame is unlikely to represent a complete phoneme

- Usually, a phoneme will span several frames
 - Hint: post-processing may help
- Concatenate the neighboring phonemes for training
 - In this HW, we concatenate the past and the future five frames for training (total 11 frames)
 - You may reshape the input (1,429) back to (11,39) to get separated 11 frames
 - Just remember that the label corresponds to the center frame
- Finding testing labels or doing human labeling are strictly prohibited!

Introduction to Digital Speech Processing

Dataset & Data Format

- Dataset: <u>TIMIT Acoustic-Phonetic Continuous Speech Corpus</u>
 - Phonetically balanced for English
- Data Format (The TAs have already preprocessed the data)
 timit 11/
 - train_11.npy → training data (# of training frames, 11 x feature dim)
 - train_label_11.npy → framewise phoneme label (0-38)
 - test_11.npy → testing data (# of testing frames, 11 x feature dim)
 - Acoustic features (39-dim MFCC)
 - \circ Concatenate the past and the future five frames (feature dim = 11 x 39)
 - o The phoneme label of each input corresponds to the center frame
- Using additional data is prohibited. Your final grade will be multiplied by 0.9!

Class	Phoneme	Example	Class	Phoneme	Example	Class	Phoneme	Example
0	iy	b ee t	13	I	I ay	26	dx	mu dd y
1	ih	b <i>i</i> t	14	r	r ay	27	g	g ay
2	eh	b e t	15	У	y acht	28	р	p ea
3	ae	b a t	16	W	w ay	29	t	t ea
4	ah	b u t	17	er	b <i>ir</i> d	30	k	k ey
5	uw	b oo t	18	m	<i>m</i> om	31	z	z one
6	uh	b oo k	19	n	n oon	32	V	v an
7	aa	b o b	20	ng	si ng	33	f	<i>f</i> in
8	ey	b ai t	21	ch	<i>ch</i> oke	34	th	<i>th</i> in
9	ay	b <i>i</i> te	22	jh	<i>j</i> oke	35	S	s ea
10	oy	b о у	23	dh	t h en	36	sh	<i>sh</i> e
11	aw	b ou t	24	b	b ee	37	hh	h ay
12	ow	b oa t	25	d	d ay	38	sil	silence/closure sounds