CHEM 1A03: Intro. Chemistry I

Essential Elements: Chemistry, Life & Health

Ch.10: Chemical Bonding

Bonding

 Involves transfer or sharing of outer electrons, usually to acquire a stable configuration (Lewis)

lonic bonding
$$Na \times + \cdot Cl : \longrightarrow [Na]^+[\times Cl :]^-$$
 (transfer of electrons) Lewis symbols Lewis structure

Usually between a metal and non-metal

```
Na [Ne]3s¹ becomes Na+ [Ne] and CI [Ne]3s²3p⁵ becomes CI- [Ar]
```

p. 396 (374, 9th ed.)

Covalent Bonding

- Covalent bonding
 - Sharing of electrons
 - Often to attain an octet of electrons
 - Often between 2 non-metals
 - Lewis structure shows all electrons as equivalent
- Coordinate covalent bond
 - One atom provides both e⁻ for a bond
 - e.g. $NH_3 + H^+ \rightarrow NH_4^+$

p. 399-401 (375-377, 9th ed.)

Electronegativity (EN) - Fig. 10-6

1	ı															
H 2.1	2		be	elow 1	1.0		2.0	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5			0-1.4 5-1.9				5-2.9 0-4.0				B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	Al 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	T1 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac [†] 1.1			ides: 1 s: 1.3-									-	. 404 881-	
														(3	001-	30Z

- Atom's ability to compete for e⁻ in a bond
- Trend: EN increases across a period and up a group
- Pauling scale: F 4.0 (highest EN)

Bond Polarity

- Polar covalent bonds
 - Unequal sharing of e⁻
 - Indicated by polar arrow and partial charges

Dictated by ΔEN between atoms

ΔEN	Bonding	Example
Large	Ionic	NaCl
Intermediate	Polar Covalent	PCI ₅
Zero (Small)	Pure Covalent	Cl_2

 Percent ionic character of a bond involving a certain element (e.g. CI) decreases across a period

p. 402-404 (378-380, 9th ed.)

Percent ionic character vs. AEN

Approximately:

0 – 0.4 Covalent (weakly polar covalent)

0.4 – **1.9 Polar covalent**; > **1.9 Ionic**

Fig. 10-7

p. 406 (382, 9th ed.)

Electrostatic potential maps: Fig. 10-5

Effect of EN on charge distribution

Lewis Structures

Show bonding (b) and non-bonding (nb)
 e⁻, and formal charges

 Octet* can be achieved by combination of bonding and nonbonding e⁻

*(not all atoms will have an octet)

 Bonding e⁻ can be single, double, triple bonds

p. 408 (384, 9th ed.)

Drawing Lewis Structures

- 1. Count total # of e⁻ (include charge)
 - Add e⁻ for negative charge, subtract e⁻ for positive charge
- 2. Draw skeletal structure (central & terminal atoms)
 - The least electronegative atom is generally the central atom
 - H and F are always terminal
- 3. Deduct 2 e⁻ for each single bond of skeleton
- 4. Use remaining e⁻ to complete octet of terminal atoms
 - Only 2 e⁻ for H
- 5. Subtract e- used for terminal octets
- 6. If e-remain, place on central atom

p. 409-411 (385-388, 9th ed.)

Drawing Lewis Structures...continued

- 7. Do all atoms have octet (2 for H)?
 - If not: use lone pairs to form multiple bonds
 - But note: Often Group 2, 3 elements have < 8 e⁻¹
- 8. Calculate formal charges on each atom
 FC = (Group A # # non-bonding e⁻ # bonds)
 All formal charges must add up to total charge
- 9. Minimize formal charges to zero, where possible*, by creating multiple bonds (*more notes on this later)

Steps 8 and 9: may be new to you!

Examples: Draw BF₃, NO₃⁻, BrOF₂⁺

BF₃

Formal Charge:

F: 7-1-6= 0

B: 3-3-0= 0

NO_3^-

Formal Charge:

O: 6-1-6= -1

N: 5-3-0= +2

Initial e⁻: 24

Bonds: $\frac{-6}{100}$

Outer e⁻: <u>-18</u>

Formal Charge:

O: 6-1-6= -1

O: 6-2-4= 0

N: 5-4-0= +1

BrOF₂⁺

Center e⁻: $\frac{2}{-2}$

Formal Charge:

F: 7-1-6= 0

O: 6-1-6= -1

Br: 7-3-2= +2

Formal Charge:

F: 7-1-6= 0

O: 6-2-4= 0

Br: 7-4-2= +1

Notes about Lewis structures

Octet is not exceeded in Period 2

p. 413, 418-421

– C N O F <u>c</u>an <u>n</u>ot <u>o</u>ver <u>f</u>ill

- (389, 9th ed.)
- cannot exceed the "octet rule" even if there are adjacent formal charges that could be minimized
- For elements in Periods 3, 4, etc., <u>minimizing</u> formals charges is the priority, even if it means breaking the "octet rule".
- Usually don't have adjacent atoms with same formal charge
- Negative formal charges usually appear on the most electronegative atoms, positive charges on the most electropositive atoms

i-Clicker Question #1

1. Select the **most** appropriate Lewis structure for chlorate anion: ClO_3^- .

CIO₃-

- Cl is in period 3 and can accommodate more than an octet of electrons.
- A charge-minimized Lewis structure shows that formal charges have been made as close to zero as possible; for elements in periods 3, 4, 5, ... this can often be achieved by creating multiple bonds in order to minimize formal charges towards zero.
- Structure (b) on the previous page shows this.

Hemoglobin

http://en.wikipedia.org/wiki/Image:1GZX_Haemoglobin.png

 $C_{738}H_{1166}N_{812}O_{203}S_{2}Fe$ - human

Heme structure

• Structure details:

http://www.umass.edu/molvis/tutorials/hemoglobin/heme.htm

$$H_3C$$
 H_3C
 H_3C

Animation of O₂ binding to Hb

 http://www.chemistry.wustl.edu/~edudev/ LabTutorials/Hemoglobin/changemovie.h tml

O₂ molecule binds to iron of the heme unit

Note how the geometry around iron changes as O₂ is bound vs. free

What do we know about hemoglobin?

Carboxyhemoglobin: The Silent Killer

CO binds competitively to the heme unit and displaces O₂

< 50 ppm: Upper safety limit

CO poisoning can result! 50-200ppm: Headache/nausea

> 200 ppm: Dizziness/convulsions

Treatment?

Saturation with O_2 can reverse the process (the binding is an equilibrium process – Ch 15)

FOCUS:

Why does CO bind so well to the heme unit?

i-Clicker Question #2

Select from the following Lewis structures the one that is the most appropriate for CO?

(a)
$$C \equiv O$$
: $C \equiv O$

The Lewis structure of O_2 is:

$$0=0$$

Earth CO Atmospheric Concentrations

Identify patterns and sources of CO emissions in summer/winter world maps (2000-2004) below:

http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=16550

Resonance structures

- Average formal charge
- Average bond order
- Recall: Teeth!
 - Fluorapatite
 - -Ca₅(PO₄)₃F
 - Look at PO₄³⁻ ions

Draw

Resonance structures for PO₄3-

 For each PO₄³⁻ there are 4 equivalent chargeminimized structures (resonances structures)

Resonance structures for PO₄³-

Average formal charge for an atom = total charges on atom total # of that atom
 Average formal charge on O: = 0 + (-1) + (-1) + (-1) = -3/4

Average bond order = total number of 1 type of bond
 # of places where the bond is found

Average P-O bond order =
$$1 + 1 + 1 + 2 = 5/4$$
 or 1.25

Molecular Shape

VSEPR* (valence shell electron pair repulsion)
 Theory [Ron Gillespie, McMaster Chemistry!]

*50+ Years of VSEPR!

http://www.chemistry.mcmaster.ca/extracts/extracts99/ronald_gillespie/

- Electron pairs repel one another
- Repulsion decreases:

lone pair/lone pair >
 bonded pair/lone pair >
 bonded pair - bonded pair

Note: double bonds occupy slightly <u>more</u> space than a lone pair

p. 421-424 (395-398, 9th ed.)

VSEPR classes

- AX_nE_m
 - A = central atom
 - X = atoms bonded to central atom
 - E = lone electron pairs
- <u>Electron pair geometry</u> dictates the observed <u>molecular shape</u> (watch where they are <u>different!</u>)
- Table 10.1 know the shapes!
 - **Note:** Table 10.1 gives only ideal angles; know which ones are <u>non-ideal</u> also! (class notes)
- p. 424-428 (398-402, 9th ed.)

• AX₂ linear 180°

AX₃
Trigonal planar
120°

AX₂E
Bent
< 120° (non-ideal)

AX₄
Tetrahedron
109.5°

AX₃E
Trigonal pyramidal
< 109.5° (non-ideal)
NH₃: 107°

 $AX_{2}E_{2}$ Bent < 109.5° H₂O: 104.5°

AX₅ Trigonal bipyramidal 90°, 120° AX₄E Seesaw AX₃E₂ T-shape AX_2E_3

linear

non-ideal

non-ideal

180°

AX₆
Octahedral
90°

AX₅E Square pyramidal not ideal (< 90°) AX₄E₂ Square planar 90° (or 180°)

i-Clicker Question # 3

Which statement is true regarding the shape/symmetry of formaldehyde (H₂CO)?

- (a) Trigonal Planar, Ideal H-C-H angle
- (d) See-saw Non-ideal H-C-H angle
- (b) Trigonal Pyramidal Non-ideal H-C-H angle
- (e) Trigonal Planar, Non-ideal H-C-H angle
- (c) T-shape Ideal H-C-H angle

Dipole moments

 A molecule with polar bonds can, as an entity, be polar or non-polar!

• Polar molecules have a permanent dipole (polarization of charge): $\mu = \delta \times d$

```
\mu = dipole moment (Debye, D)
```

 δ = partial charge (Coulomb, C)

d = distance (m)

Identifying polar molecules (Fig. 10-14)

 When an electric field is applied, polar molecules will orient such that opposite charges attract

Guidelines for nonpolar molecules

- Symmetrical molecules are nonpolar because dipole moments cancel out
 - AX_n molecules where all X are the same
 - $-AX_2E_3$ and AX_4E_2 also

Copyright © 2007 Pearson Prentice Hall, Inc.

$$\mu = 0$$

Guidelines for polar molecules

- Asymmetric molecules are Polar
 - All other AX_nE_m
 - Any AX_n where X groups differ, as long as there is an electronegativity difference

Bond order, length & energy

- Bond order: single (1), double (2), triple (3)
- Covalent bond length (Table 10.2)
 - Approximately the sum of covalent radii
 - Diatomic molecules allow precise values; other values are averages

- Bond dissociation energy, D
 - Energy required to break 1 mol of bonds in gas phase
 - Diatomic molecules allow precise values; other values are averages

Bond energy - Fig. 11-2 (11-1 9th ed.)

Energy is <u>absorbed</u> in order to break bonds:

$$H_2(g) \rightarrow 2H(g)$$

 $\Delta H = D(H-H)$ or BE(H-H)

Energy is <u>released</u> when bonds form:

 $2H(g) \rightarrow H2(g)$

 $\Delta H = -D(H-H)$ or -BE(H-H)

 Δ Hrxn = Σ BE (reactants) – Σ BE (products) Bond energies or to estimate

 Δ Hrxn = Δ H(bonds broken) + Δ H(bonds formed)

∆Hrxn ©

Department of 39 © Chemistry

Bond order, length & energy

Direct and inverse relationships:

Bond	Order	Length, pm	Energy, kJ mol ⁻¹
C-C	1	154	347
C=C	2	134	611
C≡C	3	120	837
N≡N	3	109.8	946

Note: Bond energy calculations (p. 434-437 or 409- 412 9th ed.) will be included with Ch 7

Practice - Lewis, shape, polarity

For the following molecules

- Draw Lewis structures and correct shapes
- Name the shapes
- Give approximate bond angles
- Indicate if polar or non-polar
- 1. PF₅, BrF₅, SF₆
- 2. CF₄, XeF₄, SF₄
- 3. CO₂, H₂O, SO₂
- 4. BF₃, PF₃, SO₃, BrCl₃

Solutions to these questions have been posted in a separate file in Avenue.

