

بسم الله الرحمن الرحيم

Project Title: Transistor-Level 4-BIT ALU Design

Module: 4-BIT ARITHMETIC UNIT Design

• Author: Ahmed Assem Mohamed

21 ذو القعدة، 1446

1. Abstraction

This report presents the design and implementation of a **4-bit Arithmetic Logic Unit (ALU)** — a key sub-module in the ALU architecture, implemented at the transistor level using **130nm CMOS technology.** The AU performs binary arithmetic operations on two 4-bit signed inputs, A and B, based on a 3-bit control word, and produces an **8-bit signed output**. The circuit was meticulously developed and simulated using Cadence Virtuoso.

2. Logic Function and Truth Table

OUT[8:0] = A[3:0] FUNC B[3:0]

SEL2	SEL1	SEL0	FUNC
0	0	0	A++
0	0	1	B++
0	1	0	А
0	1	1	В
1	0	0	A
1	0	1	A * B
1	1	0	A + B
1	1	1	A - B

21 نو القعدة، 1446

3. Circuit Design

3.1. Schematic

3.2. Design Approach

- 130nm CMOS process
- 1.2V VDD
- INPUTS: 4-BIT IN0, 4-BIT IN1, 3 SEL
- OUTPUTS: 8-BIT OUT, 3-BIT OVF
- OVF Flags: one for the full adder circuit, one for the A increment circuit, one for the B increment circuit. notes: they are based on signed inputs.
- Input parameter: WN_AU

21 ذو القعدة، 1446

- SIZES: All gates have this size(even if it is the parameter for MUX-8X1)
- why? as already each gate is designed alone which is suitable size. this parameter is only to reduce the number of variables.

3.3. Symbol

21 ذو القعدة، 1446 عند 1446 عند 1446

4. Simulation and Results

Note: the simulation result is performed with a max f = 20.0MHZ

21 ذو القعدة، 1446