

Mahatma Gandhi Mission's College of Engineering and Technology Kamothe, Navi Mumbai

Branch: ALL Academic Year: 2020-21

Course Code: FE-C 201 Course Name: Engineering Mathematics II [Choice Based]

Assignment 2

	Assignment 2				
Ques. No.	Question	Module	Level*	PI	CO
1	Choose the correct answer from the options	2	1	1.1.1	2
	below:				
	1. The roots of the auxiliary equation are imaginary				
	and repeated $(m = \alpha \pm i\beta)$ in the differential				
	equation $f(D)y = 0$ then its solution is				
	a) $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$				
	b) $y = e^{\alpha x}[(C_1 + C_2 x) \cos \beta x + (C_3 + C_4 x) \sin \beta x]$				
	$c)y = e^{\alpha x} (C_1 cosh \sqrt{\beta}x + C_2 sinh \sqrt{\beta}x)$				
	d) $y = e^{\alpha x}[(C_1 + C_2 x) \cosh \sqrt{\beta} x + C_3 \sinh \sqrt{\beta} x]$				
	2. $e^{-x}(c_1\cos\sqrt{3x}+c_2\sin\sqrt{3x})+c_3e^{2x}$ is the	2	1	1.1.1	2
	general solution of				
	$a \cdot \frac{d^3y}{dx^3} + 4y = 0$ $b \cdot \frac{d^3y}{dx^3} - 8y = 0$				
	c. $\frac{d^3y}{dx^3} + 8y = 0$ d. $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2}y + \frac{dy}{dx} - 2 = 0$				
	3. The D.E. whose auxiliary equation has the roots 0,-				
	1,-1 is-				
	$a \cdot \frac{d^4 y}{dx^4} + 4y = 0$ $b \cdot \frac{d^3 y}{dx^3} - 8y = 0$	2	1	1.1.1	2
	c. $\frac{d^3y}{dx^3} + 8y = 0$ d. $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2}y + \frac{dy}{dx} = 0$				
	4. If $f(D) = D^2 - 2$, $\frac{1}{f(D)}e^{2x} = \cdots$	2	1	1.1.1	2
	a) $\frac{1}{4}e^{2x}$ b) $\frac{1}{2}e^{2x}$				
	c) $\frac{1}{-4}e^{2x}$ d) $2e^{2x}$				
	5.If $f(D) = (D - a)^r \emptyset(D)$ then	2	1	1.1.1	2
	$\frac{1}{f(D)}e^{ax}=\cdots\ldots$				
	a) $\frac{x^r}{r!} \cdot \frac{1}{\varphi(a)} e^{ax}$ b) $x \cdot \frac{1}{\varphi(a)} e^{ax}$ c) $\frac{1}{f(a)} e^{ax}$ d) $e^{ax} \frac{1}{f(D+a)}$				
	c) $\frac{1}{f(a)}e^{ax}$ d) $e^{ax}\frac{1}{f(D+a)}$				

2	Match the following	2	1	1.1.1	2
	A B				
	1. $\frac{1}{f(D)}e^{ax}$ a) $\int \frac{y_1X}{W}dx$				
	$2.\frac{1}{f(D)}.a^{x}$ b) $-\int \frac{y_{2}x}{W}dx$				
	$3.\frac{1}{(D^2+a^2)^2}\cos ax$ c) $\frac{-x\cos ax}{2a}$				
	4. $\frac{1}{f(D)}e^{-ax}$. V d) $\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$				
	5.U (variation of parameter) $e)\frac{1}{f(\log a)} \cdot a^x$				
	6. V (variation of parameter) f) $e^{ax} \int e^{-ax} x dx$				
	7.W g) $\frac{x^r}{r!} \cdot \frac{1}{\varphi(a)} e^{ax}$				
	$8.\frac{\sin ax}{f(D^2+a^2)} \qquad \qquad \mathbf{h})\frac{-x^2 \sin ax}{4a^2}$				
	$9.\frac{X}{(D-a)}$ i) $e^{-ax} \frac{1}{f(D-a)} V$				
3	Fill in the blanks	2	1	1.1.1	2
	1.P.I.of $(D^2 + 4)y = \sin 3x is \dots \dots$				
	2.P.I.of $(D^2 - 2D + 1)y = e^x is \dots \dots \dots$				
	3. If the characteristic equation of the D.E.				
	$\frac{d^2y}{dx^2} + 2\alpha \frac{dy}{dx} + y = 0$ Have two equal roots,				
	then $\alpha = \cdots$				
4	Define the following	2	1	1.1.1	2
	i)Complementary function				
	ii)Particular integral				
5.	State True or False	3	2	1.1.1	3
	i) The differential equation $y'' - sinyy' + 2y = 0$ is a linear equation with constant coefficient.				
	ii)The method of variation of parameters can be				
	used to solve the equation $y'' + e^t y' + t^2 y = \sin t$				
	iii)General solution of the differential equation				
	$\frac{d^3y}{dx^3} + 4y = 0$ must contain four arbitrary				
	constants.				

6.	i. Solve $(D^2 - 2D + 1)y = e^x + 1$	2	2	1.1.1	2
	ii. Solve $(D^4 + 1)y = \cosh 4x \cdot \sinh 3x$	2	2	1.1.1	2
	iii. Solve: $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = x^2 + e^x + \cos 2x$	2	2	1.1.1	2
	iv. Solve $(D^2 + 2)y = e^x \cos x + x^2 e^{3x}$	2	2	1.1.1	2
	$v. Solve \frac{d^3y}{dt^3} + \frac{dy}{dt} = \cos t + t^2 + 3$	1	2	1.1.1	1
7	i. Solve. $(D^2 - D - 2)y = 2logx + \frac{1}{x} + \frac{1}{x^2}$	3	2	1.1.1	3
	ii. Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$	3	2	1.1.1	3
	iii. Solve by method of variation of parameters $\frac{d^2y}{dx^2} + y = \frac{1}{1 + sinx}$	3	2	1.1.1	1
	iv. Solve by method of variation of parameters $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$	3	2	1.1.1	1
8	i)Application of first order and first degree differential equation	2	3	1.1.1	2