多元函数微分法及应用

全微分:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$

全微分的近似计算: $\Delta z \approx dz = f_x(x, y) \Delta x + f_y(x, y) \Delta y$

多元复合函数的求导法

$$z = f[u(t), v(t)] \qquad \frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial t}$$
$$z = f[u(x, y), v(x, y)] \qquad \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \qquad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

隐函数的求导公式:

隐函数
$$F(x,y) = 0$$
, $\frac{dy}{dx} = -\frac{F_x}{F_y}$, $\frac{d^2y}{dx^2} = \frac{\partial}{\partial x}(-\frac{F_x}{F_y}) + \frac{\partial}{\partial y}(-\frac{F_x}{F_y}) \cdot \frac{dy}{dx}$

隐函数
$$F(x, y, z) = 0$$
, $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

隐函数方程组
$$\begin{cases} F(x,y,u,v)=0 \\ G(x,y,u,v)=0 \end{cases}$$

$$J = \frac{\partial (F,G)}{\partial (u,v)} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

$$\frac{\partial u}{\partial x} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (x,v)} \qquad \frac{\partial v}{\partial x} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (u,x)}$$

$$\frac{\partial u}{\partial y} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (y,v)} \qquad \frac{\partial v}{\partial y} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (u,v)}$$

微分法在几何上的应用:

在点M处的法平面方程: $\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$

若空间曲线方程为
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
,则切向量 $\vec{T} = \{ \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}, \begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix}, \begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix} \}$

曲面F(x, y, z) = 0上一点 $M(x_0, y_0, z_0)$,则:

- 1、过此点的法向量: $\vec{n} = \{F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0)\}$
- 2、过此点的切平面方程 $F_x(x_0, y_0, z_0)(x-x_0) + F_y(x_0, y_0, z_0)(y-y_0) + F_z(x_0, y_0, z_0)(z-z_0) = 0$

3、过此点的法线方程:
$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$

方向导数与梯度:

函数z = f(x, y)在一点p(x, y)沿任一方向l的方向导数为 $\frac{\partial}{\partial l} = \frac{\partial}{\partial x} \cos \varphi + \frac{\partial}{\partial y} \sin \varphi$ 其中 φ 为x轴到方向l的转角。

函数
$$z = f(x, y)$$
在一点 $p(x, y)$ 的梯度: $\operatorname{grad} f(x, y) = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j}$

它与方向导数的关系是 $\frac{\partial f}{\partial l} = \operatorname{grad} f(x,y) \cdot \bar{e}$,其中 $\bar{e} = \cos \varphi \cdot \bar{i} + \sin \varphi \cdot \bar{j}$,为l方向上的单位向量。

$$\therefore \frac{\partial f}{\partial l}$$
 是grad $f(x, y)$ 在 l 上的投影。

多元函数的极值及其求法:

设
$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$
, 令: $f_{xx}(x_0, y_0) = A$, $f_{xy}(x_0, y_0) = B$, $f_{yy}(x_0, y_0) = C$
$$\begin{cases} AC - B^2 > 0 \text{时}, \begin{cases} A < 0, (x_0, y_0) \text{为极大值} \\ A > 0, (x_0, y_0) \text{为极小值} \end{cases} \\ AC - B^2 < 0 \text{时}, \end{cases} \qquad \text{无极值} \\ AC - B^2 = 0 \text{时}, \qquad \text{不确定} \end{cases}$$

重积分及其应用:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D'} f(r\cos\theta, r\sin\theta)rdrd\theta$$

曲面
$$z = f(x, y)$$
的面积 $A = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy$

平面薄片的重心:
$$\bar{x} = \frac{M_x}{M} = \frac{\iint\limits_{D} x \rho(x, y) d\sigma}{\iint\limits_{D} \rho(x, y) d\sigma}, \qquad \bar{y} = \frac{M_y}{M} = \frac{\iint\limits_{D} y \rho(x, y) d\sigma}{\iint\limits_{D} \rho(x, y) d\sigma}$$

平面薄片的转动惯量: 对于x轴 $I_x = \iint_D y^2 \rho(x,y) d\sigma$, 对于y轴 $I_y = \iint_D x^2 \rho(x,y) d\sigma$

平面薄片(位于xoy平面)对z轴上质点M(0,0,a),(a>0)的引力: $F=\{F_x,F_y,F_z\},$ 其中:

$$F_{x} = f \iint_{D} \frac{\rho(x, y)xd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}, \qquad F_{y} = f \iint_{D} \frac{\rho(x, y)yd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}, \qquad F_{z} = -fa \iint_{D} \frac{\rho(x, y)xd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}$$

柱面坐标和球面坐标:

柱面坐标
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta, & \iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} F(r, \theta, z) r dr d\theta dz, \\ z = z & \end{cases}$$

其中: $F(r,\theta,z) = f(r\cos\theta,r\sin\theta,z)$

球面坐标
$$\begin{cases} x = r\sin\varphi\cos\theta \\ y = r\sin\varphi\sin\theta, \qquad dv = rd\varphi \cdot r\sin\varphi \cdot d\theta \cdot dr = r^2\sin\varphi drd\varphi d\theta \end{cases}$$

$$z = r\cos\varphi$$

$$\iint_{\Omega} f(x,y,z) dx dy dz = \iint_{\Omega} F(r,\varphi,\theta) r^2 \sin \varphi dr d\varphi d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\pi} d\varphi \int_{0}^{r(\varphi,\theta)} F(r,\varphi,\theta) r^2 \sin \varphi dr$$
重心: $\overline{x} = \frac{1}{M} \iiint_{\Omega} x \rho dv$, $\overline{y} = \frac{1}{M} \iiint_{\Omega} y \rho dv$, $\overline{z} = \frac{1}{M} \iiint_{\Omega} z \rho dv$ 其中 $M = \overline{x} = \iiint_{\Omega} \rho dv$ 转动惯量: $I_x = \iiint_{\Omega} (y^2 + z^2) \rho dv$ $I_y = \iiint_{\Omega} (x^2 + z^2) \rho dv$ $I_z = \iiint_{\Omega} (x^2 + y^2) \rho dv$

曲线积分:

第一类曲线积分(对弧长的曲线积分):

设
$$f(x,y)$$
在 L 上连续, L 的参数方程为 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $(\alpha \le t \le \beta)$,则:

$$\int_{T} f(x,y)ds = \int_{\alpha}^{\beta} f[\varphi(t),\psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt \quad (\alpha < \beta) \qquad \text{特殊情况} \begin{cases} x = t \\ y = \varphi(t) \end{cases}$$

第二类曲线积分(对坐标的曲线积分):

设
$$L$$
的参数方程为 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$,则:

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{\alpha}^{\beta} \{P[\varphi(t),\psi(t)]\varphi'(t) + Q[\varphi(t),\psi(t)]\psi'(t)\}dt$$

两类曲线积分之间的关系: $\int_{L} P dx + Q dy = \int_{L} (P \cos \alpha + Q \cos \beta) ds$,其中 α 和 β 分别为

L上积分起止点处切向量的方向角。

格林公式:
$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \int_{L} P dx + Q dy$$
格林公式:
$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \int_{L} P dx + Q dy$$

当
$$P = -y, Q = x$$
, 即: $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2$ 时,得到 D 的面积: $A = \iint_D dx dy = \frac{1}{2} \oint_L x dy - y dx$

.平面上曲线积分与路径无关的条件:

1、G是一个单连通区域;

2、P(x,y),Q(x,y)在G内具有一阶连续偏导数 且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 。注意奇点,如(0,0),应

减去对此奇点的积分,注意方向相反!

二元函数的全微分求积

在
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
时, $Pdx + Qdy$ 才是二元函数 $u(x, y)$ 的全微分,其中:

$$u(x,y) = \int_{0}^{(x,y)} P(x,y)dx + Q(x,y)dy, \quad \text{iff } \exists x \exists y \in \mathbb{Z}_0 = 0.$$

曲面积分:

对面积的曲面积分
$$\iint_{\Sigma} f(x,y,z)ds = \iint_{D_{xy}} f[x,y,z(x,y)]\sqrt{1+z_x^2(x,y)+z_y^2(x,y)}dxdy$$
 对坐标的曲面积分 $\iint_{\Sigma} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy$ 其中:
$$\iint_{\Sigma} R(x,y,z)dxdy = \pm \iint_{D_{xy}} R[x,y,z(x,y)]dxdy$$
 取曲面的上侧时取正号;
$$\iint_{\Sigma} P(x,y,z)dydz = \pm \iint_{D_{yz}} P[x(y,z),y,z]dydz$$
 取曲面的前侧时取正号;
$$\iint_{\Sigma} Q(x,y,z)dzdx = \pm \iint_{D_{zx}} Q[x,y(z,x),z]dzdx$$
 取曲面的右侧时取正号。 两类曲面积分之间的关系: $\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy = \iint_{\Sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds$

高斯公式:

$$\iint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds$$
 高斯公式的物理意义——通量与散度:

散度: $\operatorname{div} \bar{v} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$,即: 单位体积内所产生的流体质量,若 $\operatorname{div} \bar{v} < 0$,则为消失...

通量:
$$\iint_{\Sigma} \vec{A} \cdot \vec{n} ds = \iint_{\Sigma} A_n ds = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds$$
,

因此,高斯公式又可写成:
$$\iint_{\Omega} \operatorname{div} \bar{A} dv = \iint_{\Sigma} A_n ds$$

斯托克斯公式——曲线积分与曲面积分的关系:

$$\iint_{\Sigma} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) dy dz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) dz dx + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint_{\Gamma} P dx + Q dy + R dz$$

上式左端又可写成
$$\iint_{\Sigma} \begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \iint_{\Sigma} \begin{vmatrix} \cos\alpha & \cos\beta & \cos\gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

空间曲线积分与路径形的条件: $\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}$, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

旋度:
$$rot\overline{A} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

向量场 \bar{A} 沿有向闭曲线 \bar{C} 的环流量 $\oint_{\Gamma} Pdx + Qdy + Rdz = \oint_{\Gamma} \bar{A} \cdot \bar{t} ds$

常数项级数:

等比数列
$$1+q+q^2+\cdots+q^{n-1}=\frac{1-q^n}{1-q}$$

等差数列 $1+2+3+\cdots+n=\frac{(n+1)n}{2}$

调和级数
$$1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$$
是发散的

级数审敛法:

1、正项级数的审敛法——根植审敛法(柯西判别法):

设:
$$\rho = \lim_{n \to \infty} \sqrt[n]{u_n}$$
, 则 $\begin{cases} \rho < 1$ 时,级数收敛 $\rho > 1$ 时,级数发散 $\rho = 1$ 时,不确定

2、比值审敛法:

设:
$$\rho = \lim_{n \to \infty} \frac{U_{n+1}}{U_n}$$
, 则 $\begin{cases} \rho < 1$ 时,级数收敛 $\rho > 1$ 时,级数发散 $\rho = 1$ 时,不确定

3、定义法:

$$s_n = u_1 + u_2 + \dots + u_n$$
; $\lim_{n \to \infty} s_n$ 存在,则收敛;否则发散。

交错级数 $u_1-u_2+u_3-u_4+\cdots$ (或 $-u_1+u_2-u_3+\cdots,u_n>0$)的审敛法——莱布尼兹定理: 如果交错级数满足 $\lim_{n\to\infty} u_n = 0$,那么级数收敛且其和 $\leq u_1$,其余项 r_n 的绝对值 $r_n \leq u_{n+1}$ 。

绝对收敛与条件收敛:

 $(1)u_1 + u_2 + \cdots + u_n + \cdots$, 其中 u_n 为任意实数;

$$(2)|u_1|+|u_2|+|u_3|+\cdots+|u_n|+\cdots$$

如果(2)收敛,则(1)肯定收敛,且称为绝对收敛级数:

如果(2)发散,而(1)收敛,则称(1)为条件收敛级数。

调和级数:
$$\sum_{n=1}^{\infty}$$
发散,而 $\sum_{n=1}^{\infty}$ 收敛;

级数:
$$\sum \frac{1}{n^2}$$
收敛;

$$p$$
级数: $\sum \frac{1}{n^p}$ $\begin{cases} p \le 1 \text{ 时发散} \\ p > 1 \text{时收敛} \end{cases}$

幂级数:

次数:

$$1+x+x^2+x^3+\cdots+x^n+\cdots$$
 $\left| |x| < 1$ 时,收敛于 $\frac{1}{1-x}$
 $|x| \ge 1$ 时,发散

对于级数 $(3)a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots$,如果它不是仅在原点处敛,也不是在全

数轴上都收敛,则必存在R,使 $\begin{vmatrix} |x| < R$ 时收敛 |x| > R时发散,其中R称为收敛半径。 |x| = R时不定

求收敛半径的方法: 设
$$\frac{a_{n+1}}{a_n} = \rho$$
, 其中 a_n , a_{n+1} 是(3)的系数,则 $\rho \neq 0$ 时, $R = \frac{1}{\rho}$ $\rho = 0$ 时, $R = +\infty$ $\rho = +\infty$ 时, $R = 0$

函数展开成幂级数:

函数展开成泰勒级数:
$$f(x) = f(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

余项:
$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, f(x)$$
可以展开成泰勒级数的充要条件是 $\lim_{n\to\infty} R_n = 0$

$$x_0 = 0$$
时即为麦克劳林公式: $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$

一些函数展开成幂级数:

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^{n} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$(-\infty < x < +\infty)$$

欧拉公式:

$$e^{ix} = \cos x + i \sin x$$

$$\begin{cases}
\cos x = \frac{e^{ix} + e^{-ix}}{2} \\
\sin x = \frac{e^{ix} - e^{-ix}}{2}
\end{cases}$$

三角级数:

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中,
$$a_0 = aA_0$$
, $a_n = A_n \sin \varphi_n$, $b_n = A_n \cos \varphi_n$, $\omega t = x_0$

正交性 1, $\sin x$, $\cos x$, $\sin 2x$, $\cos 2x$ · · · · · · · · 任意两个不同项的乘积在[$-\pi$, π] 上的积分=0。

傅立叶级数:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
, 周期 = 2π

$$\sharp + \begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx & (n = 0, 1, 2 \cdots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx & (n = 1, 2, 3 \cdots) \end{cases}$$

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$
(相加)
$$1 - \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots = \frac{\pi^2}{12}$$
(相減)

正弦级数:
$$a_n = 0$$
, $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$ $n = 1, 2, 3 \cdots$ $f(x) = \sum b_n \sin nx$ 是奇函数

余弦级数:
$$b_n = 0$$
, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$ $n = 0,1,2 \cdots$ $f(x) = \frac{a_0}{2} + \sum a_n \cos nx$ 是偶函数

周期为21的周期函数的傅立叶级数:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}), \quad$$
 周期 = 2 l
其中
$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx & (n = 0,1,2\cdots) \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx & (n = 1,2,3\cdots) \end{cases}$$

微分方程的相关概念:

一阶微分方程: y' = f(x,y) 或 P(x,y)dx + Q(x,y)dy = 0 可分离变量的微分方程 一阶微分方程可以化为g(y)dy = f(x)dx的形式,解法: $\int g(y)dy = \int f(x)dx$ 得: G(y) = F(x) + C称为隐式通解。

齐次方程: 一阶微分方程可以写成 $\frac{dy}{dx} = f(x,y) = \varphi(x,y)$, 即写成 $\frac{y}{x}$ 的函数,解法:

设
$$u = \frac{y}{x}$$
, 则 $\frac{dy}{dx} = u + x\frac{du}{dx}$, $u + \frac{du}{dx} = \varphi(u)$, $\therefore \frac{dx}{x} = \frac{du}{\varphi(u) - u}$ 分离变量,积分后将 $\frac{y}{x}$ 代替 u , 即得齐次方程通解。

一阶线性微分方程:

2、贝努力方程:
$$\frac{dy}{dx} + P(x)y = Q(x)y^n, (n \neq 0,1)$$

全微分方程:

如果P(x,y)dx+Q(x,y)dy=0中左端是某函数的全微分方程,即:

$$du(x,y) = P(x,y)dx + Q(x,y)dy = 0, \quad \text{$\not=$} \\ \text{\downarrow} \frac{\partial u}{\partial x} = P(x,y), \\ \frac{\partial u}{\partial y} = Q(x,y)$$

 $\therefore u(x,y) = C$ 应该是该全微分方程的通解。

二阶微分方程:

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = f(x), \begin{cases} f(x) \equiv 0$$
时为齐次
$$f(x) \neq 0$$
时为非齐次