2. Динамическое программирование

В основе метода лежит идея рассмотрения исходной задачи как представителя семейства сходных с ней задач. Динамическое программирование (ДП) связано с многошаговым (многоэтапным) процессом принятия решений. При этом под многошаговым процессом принятия решений понимается деятельность, при которой принимаются последовательные решения, направленные на достижение одной цели. Методу ДП посвящено множество публикаций, в частности, работы [1,2,5], в которых достаточно подробно рассмотрена техника решения задач методом динамического программирования.

Мы в данном разделе будем изучать метод постепенно по принципу «от простого к сложному». Начнем с распределительной задачи.

2.1. Распределительная задача

Сформулируем распределительную задачу на примере планирования деятельности предприятия на n лет. Пусть предприятие имеет ресурс в размере Y единиц, который оно может вложить в производство в течение n лет. Функции $f_t(x)$ отражают эффективность использования x единиц ресурса в год t. Требуется определить план расхода имеющегося ресурса по годам, чтобы максимизировать суммарную эффективность.

Обозначим через x_t искомую величину ресурса, вкладываемого в развитие производства в год t=1,...,n. Тогда математическая модель может быть записана в виде

$$\sum_{t=1}^{n} f_t(x_t) \to \max_{\{x_t\}}; \tag{2.1}$$

$$\sum_{t=1}^{n} x_t \le Y; \tag{2.2}$$

$$x_t \ge 0, \ t=1,...,n.$$
 (2.3)

Решение задачи (2.1)-(2.3) будем строить шаг за шагом, оптимизируя на текущем шаге размер инвестиций в год t. Будем предполагать функции $f_t(x)$ неубывающими, что позволяет перейти от исходной задачи к равносильной задаче (2.1), (2.2'), (2.3), в которой неравенство (2.2) заменено равенством

$$\sum_{t=1}^{n} x_t = Y. {(2.2')}$$

Используем для задачи (2.1), (2.2'), (2.3) обозначение $\langle n, Y \rangle$. Кроме того, обозначим:

- S^* оптимальное значение целевой функции (2.1);
- $x^* = (x_1^*, ..., x_n^*)$ оптимальное решение рассматриваемой задачи, т.е.

$$S^* = \sum_{k=1}^n f_k(x_k^*);$$

• $y_k^* = \sum_{i=1}^{K} x_i^*$ – оптимальное вложение ресурса за k первых лет, k=1,...,n.

Далее воспользуемся терминологией и обозначениями из [2]. Наряду с исходной задачей $\langle n, Y \rangle$ рассмотрим семейство задач $\pi = \{\langle k, y \rangle: k = 1, ..., n;$ $0 \le y \le Y$ }. Пусть $S_k(y)$ — оптимальное значение целевой функции задачи < k, y >, тогда $S^* = S_n(Y)$.

Теорема 2.1. Для задачи (2.1), (2.2'), (2.3) справедливы следующие рекуррентные соотношения ДП:

$$S_I(y) = f_I(y), \ 0 \le y \le Y; \tag{2.4}$$

$$S_{I}(y) = f_{I}(y), \ 0 \le y \le Y;$$

$$S_{k}(y) = \max_{0 \le x \le y} [S_{k-1}(y-x) + f_{k}(x)], \ k=2,...,n; \ 0 \le y \le Y.$$
(2.4)
(2.5)

Значение переменной х, при котором достигается максимум в (2.5) обозначим через $x_k(y)$ и назовем условно-оптимальным решением.

<u>Следствие 2.1.</u> Условно-оптимальное решение $x_{k}(y_{k}^{*})$ является оптимальным значением k-ой компоненты вектора x^* исходной задачи $\langle n, Y \rangle$, r.e. $x_k^* = x_k(y_k^*)$, k=1,...,n.

Алгоритм ДП состоит из прямого хода (процесса последовательного вычисления величин $S_k(y)$, k=1,...,n; $0 \le y \le Y$) и обратного хода (восстановления оптимального решения). На последнем шаге прямого хода получаем оптимальное значение последней переменной $x_n^* = x_n(Y)$. Пусть уже найдены оптимальные значения x_n^* ,..., x_{k+1}^* . Тогда $x_k^* = x_k (y_k^*)$, где $y_{k}^{*} = y_{k+1}^{*} - x_{k+1}^{*}$

Схема (2.4), (2.5), как правило, требует численного расчета, но иногда удается получить выражение функций $S_k(y)$ в аналитическом виде.

<u>Пример 2.1.</u> Рассмотрим метод ДП для задачи (2.1)-(2.3) с функциями $f_i(x_i) = \frac{x_i^2}{c_i}, \text{ где } c_i > 0 \text{ и } i = 1, \dots, n.$

<u>Прямой ход.</u> На первом шаге получаем $S_I(y) = \frac{y^2}{c_1}$ и условнооптимальное решение $x_I(y) = y$. Далее

$$S_2(y) = \min_{0 \le x \le y} \left\{ f_2(x) + S_1(y - x) \right\} = \min_{0 \le x \le y} \left\{ \frac{x^2}{c_2} + \frac{(y - x)^2}{c_1} \right\}.$$

Выражение в фигурных скобках представляет выпуклую функцию, минимум которой можно найти, приравняв нулю ее производную.

Получим
$$\frac{x}{c_2} - \frac{y-x}{c_1} = 0$$
, откуда $x_2(y) = \frac{c_2 y}{c_1 + c_2}$, а $S_2(y) = \frac{y^2}{c_1 + c_2}$.

С помощью математической индукции нетрудно доказать, что

$$S_k(y) = \frac{y^2}{\sum_{i=1}^k c_i}, \ x_k(y) = \frac{c_k y}{\sum_{i=1}^k c_i}, \ 0 \le y \le Y.$$

Таким образом

$$S^* = S_n(Y) = \frac{Y^2}{\sum_{i=1}^n c_i}, \ x_n^* = x_n(Y) = \frac{c_n Y}{\sum_{i=1}^n c_i}.$$

<u>Обратный ход.</u> Зная оптимальное значение последней переменной \boldsymbol{x}_n^* , находим

$$y_{n-1}^* = Y - x_n^* = Y - \frac{c_n Y}{\sum_{i=1}^n c_i} = \frac{Y \sum_{i=1}^n c_i - c_n Y}{\sum_{i=1}^n c_i} = \frac{Y \sum_{i=1}^{n-1} c_i}{\sum_{i=1}^n c_i}.$$

Следовательно,

$$x_{n-1}^* = x_{n-1}(y_{n-1}^*) = \frac{c_{n-1}Y}{\sum_{i=1}^n c_i}.$$

Воспользовавшись математической индукцией, получим

$$x_{k}^{*} = \frac{c_{k}Y}{\sum_{i=1}^{n} c_{i}}, k=1,...,n.$$

В общем случае для реализации алгоритма ДП нужна дискретность значений x_k . Пусть переменные x_k целые. Тогда величины y также целые. Следовательно, параметру y достаточно принимать значения из конечного множества $\{0,1,...,Y\}$. Трудоемкость (сложность) алгоритма в этом случае равна $O(nY^2)$, а требуемая память – O(nY).

<u>Пример 2.2.</u> На железнодорожную станцию прибыло 8 контейнеров, которые необходимо развезти по 5 складам. Емкость i-го склада — v_i контейнеров, затраты на транспортировку одного контейнера на этот склад — g_i , а стоимость хранения x контейнеров — $c_i(x)$. Требуется развезти все прибывшие контейнеры по складам, чтобы суммарные затраты на транспортировку и хранение были минимальны.

Исходные данные задачи приведены в таблицах 2.1 и 2.2.

	Склады								
	1	1 2 3 4 5							
g_i	0.5	1	1.2	1.5	2				
v_i	2	3	3	5	5				

Таб. 2.1.

X	$c_I(x)$	$c_2(x)$	$c_3(x)$	$c_4(x)$	$c_5(x)$
1	2	1.5	1	0.5	0.3
2	4	2	2	1	0.5
3	-	3	3	1.5	1
4	-	-	-	2	1.5
5	-	-	-	2.5	2

Таб. 2.2.

<u>Решение.</u> Для записи математической постановки задачи введем функции $h_i(x) = g_i x + c_i(x)$, i = 1, ..., 5, которые задаются таблицей 2.3. Тогда математическая модель имеет следующий вид.

$$\sum_{i=1}^{5} h_{i}(x_{i}) \to \min_{x_{i} \in \{0,1,\dots,v_{i}\}};$$

$$\sum_{i=1}^{5} x_{i} = 8.$$

х	$h_I(x)$	$h_2(x)$	$h_3(x)$	$h_4(x)$	$h_5(x)$
1	2.5	2.5	2.2	2	2.3
2	5	4	4.4	4	4.5
3	-	6	6.6	6	7
4	-	-	-	8	9.5
5	-	-	-	10	12

Таб. 2.3.

Это распределительная задача и для нее справедливы рекуррентные соотношения:

вения:
$$S_{l}(y) = h_{l}(y), y=0, 1, ..., 8;$$

$$S_{k}(y) = \min_{0 \leq x \leq \min\{y, v_{k}\}} [S_{k-l}(y-x) + h_{k}(x)], k=2, ..., 5; y=0, 1, ..., 8.$$

<u>Прямой ход.</u> В результате прямого хода заполняем таблицу 2.4, в которую помещены значения $S_k(y)$, а через дробь (/) указаны условно-оптимальные решения, которые помогут восстановить оптимальное решение на этапе обратного хода.

y	$S_I(y)$	$S_2(y)$	$S_3(y)$	$S_4(y)$	$S_5(y)$
0	0	0	0	0	
1	2.5/1	2.5/0	2.2/1	2/1	
2	5/2	4/2	4/0	4/0	
3	1	6/3	6/0	6/0	
4	ı	8.5/3	8.2/1	8/1	
5	ı	11/3	10.4/2	10/2	
6	ı	ı	12.6/3	12/3	
7	ı	ı	15.1/3	14/4	
8	•	-	17.6/3	16/5	16/0

Таб. 2.4.

Здесь следует сделать несколько замечаний:

- 1. Прочерк в клетке таблицы следует считать «бесконечностью», т.к. при соответствующих значениях параметров допустимого решения не существует.
- 2. Условно-оптимальных решений (как и оптимальных) может быть несколько. Для получения *одного* из оптимальных решений достаточно хранить *любое* условно-оптимальное решение.
- 3. Значения функции $S_5(y)$ для y=0,1,...,7 вычислять нет необходимости. Эти значения понадобились бы при вычислении $S_6(y)$, но в этом нет необходимости т.к. всего 5 складов.

Итак, в результате работы прямого хода алгоритма найдено оптимальное значение целевой функции $S^* = S_5(8) = 16$ и оптимальное значение последней переменной $x_5^* = x_5(8) = 0$.

Обратный ход. Так как на пятый склад в оптимальном решении не надо везти ни одного контейнера $(x_5^*=0)$, то их нужно развести по первым четырем складам. Следовательно, $y_4^*=8-x_5^*=8$. Значит, для определения оптимального значения предпоследней переменной достаточно обратиться к клетке таблицы 2.4 со значением $S_4(8)$. В этой клетке хранится условнооптимальное значение $x_4(8)$. Имеем $x_4^*=x_4(8)=5$. Значит, на склад 4 будет отправлено 5 контейнеров. Следовательно, еще 3 нужно развести по первым трем складам, т.е. $y_3^*=8-x_4^*=3$. Клетка $S_3(3)$ таблицы 2.4 хранит условно-оптимальное значение $x_3(3)=0$. Поэтому $x_3^*=0$ и $y_2^*=3-x_3^*=3$. В клетке таблицы 2.4 со значением $S_2(y_2^*)=S_2(3)$ хранится также значение условно оптимальной переменной $x_2(3)=3$. Значит, $x_2^*=3$ и $y_1^*=3-x_2^*=0$, т.е. все контейнеры распределены и на склад 1 ни один из них не повезут.

Окончательно имеем, что оптимальный вектор рассматриваемой задачи $x^* = (0,3,0,5,0)$, приводит к минимальным затратам $S^* = 16$, связанным с перевозкой и хранением 8 контейнеров. В таблице 2.4 помечены ячейки, по значениям которых было восстановлено оптимальное решение на этапе обратного хода алгоритма.

Заметим, что для вычисления значений $S_k(y)$ нужны значения лишь предыдущего столбца $S_{k-l}(y)$. Не обязательно хранить всю таблицу. Правда, при этом мы потеряем значения условно-оптимальных решений, что приведет к увеличению трудоемкости. Таким образом, можно реализовать вариант алгоритма с трудоемкостью $O(n^2Y^2)$, уменьшив требуемую память до величины O(Y). Такая реализация называется *релаксационным алгоритмом* ДП. Она состоит из (n-1)-го прямого хода решения задач $< k, f, y_k^* > , k=n, n-1,...,2$. В результате первого прямого хода будет найдено оптимальное значение целевой функции исходной задачи < n, f, Y > u последняя компонента вектора решения x_n^* , что позволит определить $y_{n-1}^* = Y - x_n^*$. Затем решаем задачу $< n-1, f, y_{n-1}^* > u$ получаем x_{n-1}^* . Продолжая выполнение прямого хода для задач $< k, f, y_k^* > , k=n-2,...,2$, определим оптимальное решение исходной задачи.

<u>Пример 2.3.</u> Решить задачу из примера 2.2 релаксационным алгоритмом ДП.

Решение. Выполняя прямой ход (без хранения таблицы 2.4) для исходной задачи <5, h, 8>, найдем $S^*=16$ и $x_5^*=0$. Значит, $y_4^*=8-0=8$. Теперь выполним прямой ход для задачи <4, h, 8>. Получим $x_4^*=5$. Следовательно, $y_3^*=8-5=3$. Выполним прямой ход для задачи <3, h, 3>. Имеем $x_3^*=0$. Значит, $y_2^*=3-0=3$. Выполним прямой ход для задачи <2, h, 2> и получим $x_2^*=3$. Очевидно, $y_1^*=3-3=0$ и $x_1^*=0$.

2.2. Задача о ранце

Задача о ранце (3P) формулируется следующим образом. Пусть имеется множество типов предметов k=1,...n, каждый из которых имеет объем (вес) $a_k \ge 0$ и ценность $f_k(x_k)$. Требуется заполнить ранец предметами, суммарная ценность которых максимальна, а суммарный объем не превосходит емкости ранца A. Задачу, математическая модель которой имеет вид

$$\sum_{k=1}^{n} f_k(x_k) \to \max_{x=(x_1,\dots,x_n)\in Z_+^n}$$

$$\sum_{k=1}^{n} a_k x_k \le A,$$

обозначим $< n, f, \le A >$ и поместим в семейство подобных задач $\{< k, f, \le \alpha >, k=1,...,n, \ 0 \le \alpha \le A\}$. Пусть $S_k(\alpha)$ — оптимальное значение целевой функции задачи $< k, f, \le \alpha >$.

Справедливы рекуррентные соотношения

$$S_{l}(\alpha) = \max_{x_{1}=0,...,\lfloor \alpha/a_{1} \rfloor} f_{l}(x_{1}), \ 0 \le \alpha \le A;$$

$$S_{k}(\alpha) = \max_{x_{k}=0,...,\lfloor \alpha/a_{k} \rfloor} \{ S_{k-l}(\alpha - a_{k}x_{k}) + f_{k}(x_{k}) \}, \ k=2,...,n, \ 0 \le \alpha \le A,$$

которые верны для любых a_k и f_k . Для численной реализации схемы достаточно предположить целочисленность a_k . В этом случае $\alpha \in \{0,...,A\}$, где A также можно считать целым числом.

Подробнее рассмотрим линейную задачу о ранце, которая имеет вид:

(I)
$$\begin{cases} \sum_{k=1}^{n} c_{k} x_{k} \to \max; \\ \sum_{k=1}^{n} a_{k} x_{k} \le A; \\ x_{k} \in Z_{+}, k = 1, ..., n. \end{cases}$$

Обозначим эту задачу $< n, \le A >$ и поместим в семейство $\{< n, \le \alpha >, \ 0 \le \alpha \le A \}$. Пусть $S(\alpha)$ — оптимальное значение функционала задачи $< n, \le \alpha >$. <u>Теорема 2.2.</u> Справедливо соотношение

$$S(\alpha) = \max_{k=1,\dots,n|a_k \le \alpha} \{S(\alpha - a_k) + c_k\}, \quad 0 \le \alpha \le A.$$
(2.6)

Когда в результате прямого хода значения $S(\alpha)$, α =0,...,A вычислены, можно восстановить оптимальный вектор x^* следующим образом. Сначала положим x^* =0, α^* =A. Затем последовательно выполним шаги, на каждом из которых найдем индекс k, при котором выполняется равенство $S(\alpha^*)$ = $S(\alpha^*-a_k)+c_k$, $a_k \le \alpha^*$. Положим $x_k^*=x_k^*+1$; $\alpha^*=\alpha^*-a_k$ и повторим шаг. Если допустимого индекса k нет, тогда полученный вектор x^* оптимален.

Использование рекуррентных соотношений (2.6) в случае целочисленных a_k , приводит к трудоемкости O(An) и объему требуемой памяти O(A+n).

Наряду с задачей (I) рассмотрим задачу

(II)
$$\begin{cases} \sum_{k=1}^{n} a_k x_k \to \min; \\ \sum_{k=1}^{n} c_k x_k \ge B; \\ x \in \mathbb{Z}_+^n, \end{cases}$$

которую обозначим $< n, \ge B >$ и назовем *обратной* к задаче (I). Так же как и ранее, поместим задачу (II) в семейство $\{< n, \ge \beta >, \ 0 \le \beta \le B\}$ и обозначим через $Q(\beta)$ оптимальное значение целевой функции, а через $x^0(\beta)$ — оптимальное решение задачи $< n, \ge B >$. Справедливы рекуррентные соотношения:

$$Q(0) = 0;$$

$$Q(\beta) = \min_{1 \le k \le n} \{ Q(\max\{0, \beta - c_k\}) + a_k \}, \ 0 \le \beta \le B.$$

<u>Лемма 2.1.</u> Функция $Q(\beta)$ не убывает.

<u>Теорема 2.3.</u> Пусть $\widetilde{\beta} = \max\{\beta | Q(\beta) \le A, \ \beta \ge 0\}$. Тогда $S(A) = \widetilde{\beta}$ и оптимальное решение $x^0(\widetilde{\beta})$ задачи $< n, \ \ge \widetilde{\beta} >$ является также оптимальным решением задачи $< n, \ \le A >$.

Из неубывания функции $Q(\beta)$ и утверждений теоремы следует, что

$$S^* = \min\{\beta | A < Q(\beta+1), \beta = 0, 1, ...\}.$$

Это позволяет построить другой алгоритм решения задачи (I):

- на этапе прямого хода находим элементы таблицы $Q(\beta)$ по рекуррентным соотношениям для задачи (II), последовательно полагая $\beta=0,1,...$, пока для некоторого $\widetilde{\beta}$ не получим $A< Q(\widetilde{\beta}+1)$. Это значение $\widetilde{\beta}$ и есть оптимальное значение целевой функции S^* задачи $< n, \le A>$;
- по полученной таблице $\{Q(\beta), \beta=0,1,...,S^*\}$ находим оптимальное решение $x^0(S^*)$ обратной задачи $< n, \ge S^*>$, совпадающее с искомым решением $x^*(A)$ прямой задачи $< n, \le A>$.

Справедлива также следующая

<u>Теорема 2.4.</u> Пусть $\widetilde{\alpha}=\min\{\alpha|\ S(\alpha)\geq B,\ \alpha\geq 0\}$. Тогда $Q(B)=\widetilde{\alpha}$ и оптимальное решение $x^*(\widetilde{\alpha})$ прямой задачи $< n, \leq \widetilde{\alpha}>$ является также оптимальным решением $x^0(B)$ обратной задачи $< n, \geq B>$.

Утверждения последних двух теорем позволяют осуществлять переход от прямой задачи к обратной и наоборот. В каких случаях этот переход оправдан? Отметим два случая:

- 1. Если в прямой (обратной) задаче параметры a_k (c_k) не целочисленные, а c_k (a_k) целочисленные;
- 2. Если в прямой (обратной) задаче число A (B) большое, и a_k (c_k) достаточно большие параметры, чтобы быстро выполнилось неравенство $A < Q(\beta+1)$ ($S(\alpha-1) < B$).

В первом случае переход к обратной (прямой) задаче необходим для конечности реализации алгоритма. В случае 2 переход к обратной (прямой) задаче может уменьшить трудоемкость.

Проиллюстрируем решение прямой задачи (ПЗ) путем перехода к обратной задаче (ОЗ) на примере булевой задачи о ранце. Запишем обе задачи:

$$(\Pi 3) \begin{cases} \sum_{i=1}^{n} r_{i} x_{i} \to \max; \\ \sum_{i=1}^{n} h_{i} x_{i} \leq b; \\ x_{i} \in \{0,1\}, i = 1,...,n. \end{cases}$$

$$(O 3) \begin{cases} \sum_{i=1}^{n} h_{i} x_{i} \to \min; \\ \sum_{i=1}^{n} r_{i} x_{i} \geq d; \\ x_{i} \in \{0,1\}, i = 1,...,n. \end{cases}$$

Так как переменные принимают два значения, рекуррентные соотношения для ОЗ запишем в виде:

$$Q_{l}(y) = \begin{cases} 0, & y = 0; \\ h_{1}, & 0 < y \le r_{1}; , y = 0, ..., d; \\ +\infty, & y > r_{1}; \end{cases}$$

$$Q_k(y) = \min \begin{cases} Q_{k-1}(y), & x_k = 0; \\ h_k + Q_{k-1}(\max\{0, y - r_k\}), & x_k = 1; \end{cases}, k=2,...,n, y=0,...,d.$$

Величины $Q_k(y)$, согласно приведенным выше утверждениям, нужно вычислять, увеличивая y=0,1,..., пока не будет выполнено неравенство $A < Q(\beta+1)$. Тогда оптимальное значение функционала ПЗ $S^*=\beta$ и решение ОЗ с $d=\beta$ будет оптимальным и для ПЗ. Разберем следующий

Пример 2.4. Пусть параметры ПЗ заданы таблицей 2.5, а b=110.

i	1	2	3	4	5	6
r_i	6	5	4	3	2	1
h_i	45	33	28	16	13	9

Таб. 2.5.

Решение. Решение ПЗ приведет к заполнению таблицы размерности 6×110 . Чтобы избежать громоздких расчетов, перейдем к ОЗ и в процессе работы прямого хода алгоритма ДП вычислим $Q_k(y)$, k=1,...,6 для тех y=0,1,..., для которых выполняются неравенства $Q_k(y) \le 110$. Прочерками в таблице обозначим бесконечно большие величины (когда нет допустимых решений). В столбцах, соответствующих Q_4 , Q_5 , Q_6 , вычисления прекращены, как только соответствующие величины стали больше b=110. Кроме значений $Q_k(y)$, будем хранить в таблице 2.6 также (через дробь) в соответствующей ячейке значение условно-оптимального решения. Если

условно-оптимальных решений несколько, то мы здесь запоминаем только одно из них.

y	Q_{I}	Q_2	Q_3	Q_4	Q_5	Q_6
0	0	0	0	0	0	0
1	45/1	33/1	28/1	16/1	13/1	9/1
2	45/1	33/1	28/1	16/1	13/1	13/0
3	45/1	33/1	28/1	16/1	16/0	16/0
4	45/1	33/1	28/1	28/1	28/0	25/1
5	45/1	33/1	33/1	33/1	29/1	29/0
6	45/1	45/1	45/1	44/1	41/1	38/1
7	-	78/1	61/1	44/1	44/0	44/0
8	-	78/1	61/1	49/1	49/0	49/0
9	-	78/1	61/1	61/0	57/1	57/0
10	-	78/1	73/1	73/0	62/1	62/0
11	-	78/1	78/0	77/1	74/1	71/1
12	-	-	106/1	77/1	77/0	77/0
13	-	-	106/1	89/1	89/0	86/1
14	-	-	106/1	94/1	90/1	90/0
15	-	-	106/1	106/0	101/1	99/1
16	-	-	-	122/1	107/1	107/0
17	-	-	-	-	119/1	116/0

Таб. 2.6.

Обратный ход. Максимальное значение y, при котором $Q_6(y)=107 \le b=110$, равно 16. Следовательно, оптимальное значение целевой функции ПЗ равно $S^*=16$. При этом условно-оптимальное решение $x_6^0(16)=0$ определяет значение последней компоненты оптимального вектора ПЗ $x_6^*=0$. Отсюда следует, что $\sum_{i=1}^5 r_i x_i \ge 16$. Следовательно, для определения x_5^* следует воспользоваться ячейкой $Q_5(16)$, в которой условно-оптимальное решение определяет $x_5^*=1$. Значит, $\sum_{i=1}^4 r_i x_i \ge 16 - r_5 = 16 - 2 = 14$. Переходим в ячейку $Q_4(14)$ таблицы 2.6, откуда определяем $x_4^*=1$. Следовательно, $\sum_{i=1}^3 r_i x_i \ge 14 - r_4 = 14 - 3 = 11$. Значение $x_3^*=0$ оставляет нас в той же строке таблицы, но переводит в предыдущий столбец, из которого

имеем $x_2^* = 1$. Значит, $r_1 x_1 \ge 11 - r_2 = 11 - 5 = 6$. Шестая строка первого столбца определяет первую компоненту оптимального вектора $x_1^* = 1$ и решение задачи $x^* = (1,1,0,1,1,0)$.

2.3. Задача о ближайшем соседе

Рассмотрим проблему оптимального разбиение линейного объекта на участки, известную под названием задача о ближайшем соседе. Пусть задано целое положительное число M и неотрицательная функция f(x,y), которая отражает затраты, связанные с «обслуживанием» отрезка $[x,y] \subseteq [0,M]$. Требуется разбить отрезок [0,M] на n частей таким образом, чтобы суммарные затраты, соответствующие этому разбиению были минимальны. Ниже приведена математическая постановка задачи

$$\begin{cases} \sum_{k=1}^{n} f(x_{k-1}, x_k) \to \min; \\ 0 = x_0 \le x_1 \le \dots \le x_n = M, \end{cases}$$

которую обозначим < n, M >.

Пусть $S_n(M)$ — оптимальное значение целевой функции задачи $\langle n,M \rangle$, которую поместим в семейство задач $\{\langle k,y \rangle, k=1,...,n, y=1,...,M\}$. Пусть $S_k(y)$ — оптимальное значение целевой функции задачи $\langle k,y \rangle$.

Справедливы рекуррентные соотношения:

$$S_k(y) = \begin{cases} f(0,y), k = 1, & y = 1,...,M; \\ \min_{0 \le x \le y} \{S_{k-1}(x) + f(x,y)\}, & k = 2,...,n; & y = 1,...,M. \end{cases}$$

<u>Пример 2.5.</u> Решить задачу <4,8> с функций f(x,y), заданной таблицей 2.7.

$x \ y$	1	2	3	4	5	6	7	8
0	3	19	24	41	42	63	66	83
1	0	6	18	26	39	48	56	77
2	-	0	11	19	35	44	55	56
3	-	-	0	13	25	27	45	53
4	-	-	-	0	3	15	24	37
5	-	-	-	-	0	3	16	27
6	-	-	-	-	-	0	12	21
7	_	_	-	-	_	_	0	16
8	-	-	-	-	-	-	-	0

Таб. 2.7.

Решение. Прямой ход. Пользуясь рекуррентными соотношениями, заполним таблицу 2.8, в каждой ячейке которой поместим соответствующее значение $S_k(y)$, k=1,...,4, y=0,...,8 и (через дробь /) условно-оптимальное решение x(y), которое соответствует самой правой точке оптимального разбиения отрезка [0,y].

ν	$S_I(y)$	$S_2(v)$	$S_3(y)$	$S_4(y)$
0	0	0	0	0
1	3	3/0	3/0	3/0
2	19	9/1	9/1	9/1
3	24	21/1	20/2	20/2
4	41	29/1	28/2	28/2
5	42	42/0	32/4	31/4
6	63	45/5	44/4	35/5
7	66	58/5	53/4	48/5
8	83	69/5	65/2	59/5

Таб. 2.8.

Обратный ход. На последнем шаге прямого хода найдены минимальные затраты $S^* = S_4(8) = 59$, соответствующие оптимальному разбиению исходного отрезка [0,8], и оптимальное значение последней точки разбиения $x_3^* = 5$. Следовательно, теперь отрезок [0,5] необходимо оптимальное разбить на *три* части. Значение x_2^* получим как условнооптимальное решение, соответствующее величине $S_3(5)$ из таблицы 2.8. Значит, $x_2^* = 4$. Далее, последней точкой оптимального разбиения отрезка [0,4] является $x_1^* = 1$. В результате получили следующие точки оптимального разбиения исходного отрезка [0,8] на 4 части: $x_0^* = 0$, $x_1^* = 1$, $x_2^* = 4$, $x_3^* = 5$, $x_4^* = 8$. В таблице 2.8 выделены ячейки, по значениям которых восстанавливается оптимальное решение.

Методом ДП можно решить также задачу о ближайшем соседе, в которой число отрезков разбиения n не задано:

$$\begin{cases} \sum_{k=1}^{n} f(x_{k-1}, x_k) \to \min_{x,n} \\ 0 = x_0 < x_1 < \dots < x_n = M, \quad n > 0, \end{cases}$$

которую обозначим $\langle M \rangle \in \{\langle y \rangle | y=1,...,M\}$, Эту задачу можно свести к последовательности задач $\langle n,M \rangle$, n=1,...,M, вычислить $S_n(M)$ и найти $n^*=$ arg min $\{S_n(M), n=1,...,M\}$. Такой подход имеет вычислительную сложность

 $O(M^3)$ и требует память – $O(n^*M)$. Однако для нее справедливы простые рекуррентные соотношения:

$$\widetilde{S}(y) = \min_{x=0,1,\dots,y-1} \{\widetilde{S}(x) + f(x,y)\}, y = 1,\dots,M.$$

Заметим, что в постановке задачи мы заменили нестрогие неравенства на строгие. Это можно сделать, если $f(x,x) \ge 0$. Таким образом, в случае, когда оптимальное решение не единственно, будет найдено то из них, в котором n минимально.

<u>Пример 2.6.</u> Решить задачу из примера 2.5 с произвольным n>0.

<u>Решение.</u> <u>Прямой ход.</u> Вычислим значения $\widetilde{S}(y)$ для y=0,1,...,8 и запомним, как и прежде, соответствующие условно-оптимальные решения (см. таблицу 2.9).

y	0	1	2	3	4	5	6	7	8
$\widetilde{S}(y)$	0	3/0	9/1	20/2	28/2	31/4	34/5	46/6	55/6

Таб. 2.9.

Обратный ход. Имеем минимальные затраты, связанные с разбиением отрезка [0,8] на оптимальное количество частей, $S^* = \widetilde{S}$ (M)= \widetilde{S} (8)=55 и последнюю точку оптимального разбиения, равную 6. Здесь необходимо отметить, что количество точек оптимального разбиения неизвестно, и мы пока не можем сказать, какой по счету является точка 6. Следующей (справа) точкой разбиения является 5 (см. столбец 6 таблицы 2.9), затем – 4, 2 и 1. Значит, $x_0^* = 0$, $x_1^* = 1$, $x_2^* = 2$, $x_3^* = 4$, $x_4^* = 5$, $x_5^* = 6$, $x_6^* = 8$. Следовательно, $n^* = 6$.

Если n является переменной, для которой дополнительно требуется выполнение неравенств $a \le n \le b$, то такую задачу о ближайшем соседе следует решать в четыре этапа:

Этап 1. Решить задачу с произвольным n>0. Получим некоторое оптимальное значение n^* . Если $n^* \in [a,b]$, то задача решена. Иначе переходим к выполнению следующего этапа.

<u>Этап 2.</u> Выполнить прямой ход для задачи с фиксированным значением n=b.

<u>Этап 3.</u> Найти n^* , для которого $S_{n^*}(M) = \min_{a \le n \le h} S_n(M)$.

<u>Этап 4.</u> Для восстановления оптимального решения осуществить обратный ход при $n=n^*$.

<u>Пример 2.7.</u> Решить задачу из примера 2.5 с количеством отрезков разбиения n, удовлетворяющим неравенствам $2 \le n \le 5$.

<u>Решение.</u> <u>Этап 1.</u> Из предыдущего примера имеем, что n^* =6, поэтому n^* ∉ [2,5]. Переходим к следующему этапу.

Этап 2. Положим n=b=5 и выполним прямой ход для задачи <5,8>. Результат помещен в таблице 2.10, в которой, как и прежде, кроме значений $S_k(y)$, k=1,...,5, y=0,...,8, в соответствующие ячейки (через дробь /) помещены условно-оптимальные решения.

y	$S_I(y)$	$S_2(y)$	$S_3(y)$	$S_4(y)$	$S_5(y)$
0	0	0	0	0	
1	3	3/0	3/0	3/0	
2	19	9/1	9/1	9/1	
3	24	21/1	20/2	20/2	
4	41	29/1	28/2	28/2	
5	42	42/0	32/4	31/4	
6	63	45/5	44/4	35/5	
7	66	58/5	53/4	48/5	
8	83	69/5	65/2	59/5	56/6

Таб. 2.10.

Этап 3. Найдем n^* , для которого $S_{n^*}(8) = \min_{n=2,\dots,5} S_n(8) = \min\{69, 65, 59, 56\} = 56$. Имеем $n^* = 5$.

Этап 4. Обратный ход для $n^*=5$ позволяет восстановить оптимальное разбиение для последней задачи: $x_0^*=0$, $x_1^*=1$, $x_2^*=4$, $x_3^*=5$, $x_4^*=6$, $x_5^*=8$. В таблице 2.10 выделены ячейки, значения которых позволяют осуществить обратный ход и получить оптимальное решение.

Упражнения.

- 1. Решить распределительную задачу, в которой $f_i(x_i)=f(x_i)$, i=1,...,n и функция f строго выпуклая и дифференцируемая.
- 2. Решить линейную задачу о ранце без требования целочисленности переменных.
- 3. Имеется восемь предметов, каждый из которых характеризуется своей ценностью и весом. Определить набор предметов максимальной ценности, общий вес которых не превосходит 55, если исходные данные заданы следующей таблицей.

Номер предмета	1	2	3	4	5	6	7	8
вес предмета	2	8	17	4	26	2	23	9
стоимость предмета	4	2	3	1	5	2	10	8

4. Завод может производить 4 вида продукции. Обозначим $g_i(x)$ – количество единиц сырья для производства x единиц продукции i-го вида, c_i – доход от реализации единицы продукции i-го вида. Пусть всего имеется 50 единиц сырья. Требуется определить, сколько производить продукции каждого типа, чтобы максимизировать доход, если доходы от реализации единицы продукции заданы таблицей

i	1	2	3	4
c_i	2	3	1	1

а расход сырья на единицу продукции - таблицей

x	g_{l}	g_2	g_3	g_4
1	15	20	20	15
2	25	30	21	18
3	35	35	22	20
4	44	40	23	23
5	48	50	28	25

5. Разбить отрезок [0,8] с минимальными затратами на не более чем четыре части, если затраты f(x,y), связанные с отрезком [x,y] характеризуются следующей таблицей

$x \setminus y$	0	1	2	3	4	5	6	7	8
0	0	0	14	21	95	77	58	81	83
1	-	0	7	8	26	100	59	60	98
2	-	1	0	9	5	1	88	98	64
3	-	1	-	0	0	8	1	78	97
4	-	-	-	-	0	1	9	10	82
5	-	1	-	-	-	0	2	0	0
6	-	1	-	-	-	-	0	2	8
7	-	-	-	-	-	-	-	0	8
8	_	-	-	-	_	_	-	-	0

6. На рисунке изображено дерево T = (V, E) с корнем в $r \in V$ и весами вершин c_v , $v \in V$. С помощью динамического программирования найти поддерево с корнем в r максимального веса.

