Matemática atuarial

AULA 26- Reservas

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>leonardo.costa@unifal-mg.edu.br</u>

- ➤ Na prática, para comprar uma anuidade (ou seguro), faz-se necessários vários pagamentos ao longo do ano (ou vários anos).
- Considere um seguro temporário por 5 anos sobre uma pessoa de idade 40. Suponha que o segurado tenha duas opções de pagamentos.
 - > Ele pagará o prêmio nivelado correspondente a cobertura de 5 anos,
 - Ele pagará o segurado correspondente a um ano, renovando por todo o período.
- Assim ao considerar tabela AT-49 e uma taxa de juros i=0.05 tem-se:

\	$A_{40^{1}:\overline{5 }} = \sum_{t=0}^{4} v^{t+1} t p_{40} q_{40+t}$	Х	qx	рх	VX	lx
		36	0,00149	0,99851	0,12274	969912
	$A_{{f 40^1:\bar{5 }}}$	37	0,00161	0,99839	0,11579	968467
	$= v_{0}p_{40}q_{40} + v^{2}p_{40}q_{41} + v^{3}\left(\frac{l_{42}}{l_{40}}\right)q_{42} + v^{4}\left(\frac{l_{43}}{l_{40}}\right)q_{43} + v^{5}\left(\frac{l_{44}}{l_{40}}\right)q_{44} = 0,010839$	38	0,00173	0,99827	0,10924	966908
		39	0,00187	0,99813	0,10306	965235
		40	0,00203	0,99797	0,09722	963430
		41	0,00222	0,99778	0,09172	961474
Ċ	$\ddot{a}_{40:\bar{5} } = \sum_{t=0}^{4} v^{t} _{t} p_{40}$	42	0,00248	0,99752	0,08653	959340
		43	0,00280	0,99720	0,08163	956961
	$\ddot{a}_{40:\bar{5} } = 1_{0}p_{40} + v^{1}p_{40} + v^{2}\left(\frac{l_{42}}{l_{40}}\right) + v^{3}\left(\frac{l_{43}}{l_{40}}\right) + v^{4}\left(\frac{l_{44}}{l_{40}}\right)$ $= 4,5266$ $P = \frac{0,010839}{4,5266} = 0,0023945$	44	0,00319	0,99681	0,07701	954281
		45	0,00363	0,99637	0,07265	951237
		46	0,00412	0,99588	0,06854	947784
		47	0,00466	0,99534	0,06466	943879
		48	0,00525	0,99475	0,06100	939481
		49	0,00588	0,99412	0,05755	934548
		50	0,00656	0,99344	0,05429	929053
		51	0,00728	0,99272	0,05122	922959
		52	0,00804	0,99196	0,04832	916240
		53		0,99116		908873
		54	0,00968	0,99032	0,04300	900839
		55	0,01057	0,98943	0,04057	892118

$$A_{x^{1}:\overline{1}|} = v^{1} {}_{0}p_{x}q_{x}$$

$$A_{40^{1}:\overline{1}|} = v^{1}q_{40} = 0,001933$$

$$A_{41^{1}:\overline{1}|} = v^{1}q_{41} = 0,002114$$

$$A_{42^{1}:\overline{1}|} = v^{1}q_{42} = 0,002361$$

$$A_{43^{1}:\overline{1}|} = v^{1}q_{43} = 0,00266$$

$$A_{44^{1}:\overline{1}|} = v^{1}q_{44} = 0,003038$$

Х	qx	рх	VX	IX
36	0,00149	0,99851	0,12274	969912
37	0,00161	0,99839	0,11579	968467
38	0,00173	0,99827	0,10924	966908
39	0,00187	0,99813	0,10306	965235
40	0,00203	0,99797	0,09722	963430
41	0,00222	0,99778	0,09172	961474
42	0,00248	0,99752	0,08653	959340
43	0,00280	0,99720	0,08163	956961
44	0,00319	0,99681	0,07701	954281
45	0,00363	0,99637	0,07265	951237
46	0,00412	0,99588	0,06854	947784
47	0,00466	0,99534	0,06466	943879
48	0,00525	0,99475	0,06100	939481
49	0,00588	0,99412	0,05755	934548
50	0,00656	0,99344	0,05429	929053
51	0,00728	0,99272	0,05122	922959
52	0,00804	0,99196	0,04832	916240
53	0,00884	0,99116	0,04558	908873
54	0,00968	0,99032	0,04300	900839
55	0,01057	0,98943	0,04057	892118

- Apenas as contribuições que faltam ser feitas ao segurado não são suficientes para pagamento de benefício.
 - Para compor o montante suficiente para pagamento (em média) de benefícios deverá ser usada todas as contribuições já feitas pelo segurado.

- A seguradora deverá, ter investido as contribuições do segurado de forma que, somando-se os valores que estão em poder da seguradora com os prêmios que serão pagos pelo segurado, compõe-se a quantia média de pagamento de benefícios.
- Esse valor que já está em mãos da seguradora é chamado de reserva.
- Reserva num determinado momento, é a diferença entre o valor atuarial das responsabilidades futuras da seguradora e o valor das responsabilidades futuras do segurado, a partir desse momento.

> Segundo o dicionário de seguros, reserva é:

"O sistema técnico-econômico do qual se valem as seguradoras para se precaverem, no tempo, dos riscos assumidos. São os fundos que a seguradoras constituem para garantia de suas operações."

- O cálculo da reserva poderá ser feito de duas maneiras: através do cálculo das reservas retrospectivas ou prospectivas.
- Para exemplificar, considere em um seguro de vida inteiro (tempo discreto).

$$A_x = \sum_{t=0}^{\infty} v^{t+1} t p_x q_{x+t}$$

Ao se decompor o seu VPA em duas parcelas associadas aos períodos [0,m) e $[m,\infty)$

$$A_{x} = \sum_{t=0}^{m-1} v^{t+1} {}_{t} p_{x} q_{x+t} + \sum_{t=m}^{\infty} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = A_{x^{1}:\overline{m}|} + \sum_{t=m}^{\infty} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = A_{x^{1}:\overline{m}|} + v^{m} {}_{m} p_{x} A_{x+m}$$

Agora decompondo em dois momentos o valor presente atuarial para anuidades (fluxo de pagamento antecipado).

$$\ddot{a}_x = \sum_{t=0}^{\infty} v^t p_x$$

$$\ddot{a}_x = \sum_{t=0}^{m-1} v^t p_x + \sum_{t=m}^{\infty} v^t p_x$$

$$\ddot{a}_{x} = \ddot{a}_{x:\overline{m|}} + \sum_{t=m}^{\infty} v^{t}_{t} p_{x}$$

$$\ddot{a}_{x} = \ddot{a}_{x:\overline{m|}} + \sum_{t=0}^{\infty} v^{t+m} _{t+m} p_{x}$$

$$\ddot{a}_{x} = \ddot{a}_{x:\overline{m|}} + v^{m}_{m} p_{x} \ddot{a}_{x+m}$$

Dessa forma tem-se:

$$A_{x} = A_{x^{1}:\overline{m|}} + v^{m} {}_{m} p_{x} A_{x+m}$$

$$\ddot{a}_{x} = \ddot{a}_{x:\overline{m|}} + v^{m} {}_{m} p_{x} \ddot{a}_{x+m}$$

- Esses dois resultados juntos ajudarão a obter a reserva no tempo m qualquer.
- E(L) = 0. Lembrando que o prêmio P é sempre calculado de tal forma que

Um resultado importante pode ser obtido como segue

$$P = \frac{A_{x}}{\ddot{a}_{x}}$$

$$0 = A_{x} - P\ddot{a}_{x}$$

Substituindo pelos resultados anteriores

$$0 = \left(A_{x^1:\overline{m|}} + v^m {}_m p_x A_{x+m}\right) - P\left(\ddot{a}_{x:\overline{m|}} + v^m {}_m p_x \ddot{a}_{x+m}\right)$$

$$0 = \left(A_{x^1:\overline{m|}} + v^m {}_{m} p_x A_{x+m}\right) - P\left(\ddot{a}_{x:\overline{m|}} + v^m {}_{m} p_x \ddot{a}_{x+m}\right)$$

$$0 = A_{x^1:\overline{m|}} - P\ddot{a}_{x:\overline{m|}} + v^m {}_{m}p_x (A_{x+m} - P\ddot{a}_{x+m})$$
Obrigações passadas da seguradora.

Obrigações passadas do segurado.

A reserva (pelo método prospectiva) no tempo $m{m}$ denotado por $\ _{m{m}}m{V}_{m{x}}$.

A reserva será formada pelo valor que a **seguradora** deve pagar em média para o segurado $(de\ x\ +\ m,anos)$ e receberá para garantir esse benefício os prêmios que serão pagos em média por esse segurado até seu falecimento.

➤ A Reserva pelo método prospectivo é calculada a partir de compromissos futuros da seguradora e do segurado.

$$_{m}V_{x} = A_{x+m} - P\ddot{a}_{x+m}$$

> Exemplo 16

Suponha que um segurado de 40 anos tenha comprado um seguro de vida inteiro que paga 1 u.m. ao fim do ano de morte. Esse segurado irá pagar por esse seguro um prêmio P=0.01737 enquanto estiver vivo.

Passados 2 anos de vigência do contrato, qual será a reserva $_2V_{40}$ que a seguradora deverá ter formado?(Considerando tábua de mortalidade AT-49 e i = 3% e o método prospectivo)

> Exemplo 16

A Reserva pelo método prospectivo

$$_{2}V_{40} = A_{42} - P\ddot{a}_{42}$$

$$_{2}V_{40} = 0.393717 - (0.01737)20.8157 \approx 0.032148$$

Uma pessoa de 25 anos deseja fazer um seguro de vida inteiro que paga $1\,u.m.$ ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser bem modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 3% ao ano.

$$_{m}V_{x}=A_{x+m}-P\ddot{a}_{x+m}$$

$$A_{x} = \frac{M_{x}}{D_{x}} \qquad \ddot{a}_{x} = \frac{N_{x}}{D_{x}}$$

a) Calcule o prêmio puro nivelado para esse seguro.

$$P = \frac{A_{25}}{\ddot{a}_{25}}$$

b) Passados 5 anos de vigência do contrato, qual será a reserva que a seguradora deverá ter formado.

$$_5V_{25} = A_{30} - P\ddot{a}_{30}$$

c) Passados 10 anos de vigência do contrato, qual será a reserva que a seguradora deverá ter formado.

$$_{10}V_{25} = A_{35} - P\ddot{a}_{35}$$

d) Passados 15 anos de vigência do contrato, qual será a reserva que a seguradora deverá ter formado.

$$_{15}V_{25} = A_{40} - P\ddot{a}_{40}$$

A Reserva pelo método prospectivo é calculada a partir de compromissos futuros da seguradora e do segurado.

$$_{m}V_{x} = A_{x+m} - P\ddot{a}_{x+m}$$

$$_{m}V_{x^{1}:\overline{n}|} = \begin{cases} A_{x+m^{1}:\overline{n-m}|} - P_{n}\ddot{a}_{x+m:\overline{n-m}|}, & m < n \\ 0, & m = n \end{cases}$$

$$_{m}V_{x:\overline{n}|} = \begin{cases} A_{x+m:\overline{n-m}|} - P_{x:\overline{n}|}\ddot{a}_{x+m:\overline{n-m}|}, & m < n \\ 1, & m = n \end{cases}$$

> Exemplo 18

Seja uma pessoa de 40 anos tenha comprado um seguro de vida temporário por 5 anos. Esse segurado deseja pagar durante a vigência do contrato um prêmio fixo (sem carregamentos).

Passados 2 anos de vigência do contrato, qual será a reserva $_2V_{40^1:\overline{5}|}$ que a seguradora deverá ter formado?(Considerando tábua de mortalidade AT-49 e i = 3% e o método prospectivo)

> Exemplo 18

$$_{2}V_{40^{1}:\overline{5}|} = A_{42^{1}:\overline{3}|} - P\ddot{a}_{42:\overline{3}|}$$

$${}_{2}V_{40^{1}:\overline{5}|} = \frac{M_{42} - M_{45}}{D_{42}} - \left(\frac{\frac{M_{40} - M_{45}}{D_{40}}}{\frac{N_{40} - N_{45}}{D_{40}}}\right) \left(\frac{N_{42} - N_{45}}{D_{42}}\right)$$

$$_{2}V_{40^{1}:\overline{5}|} = 0.007944 - (0.002452)(2.906092)$$

$$_{2}V_{40^{1}:\overline{5}|} = 0,0008182624$$

Reservas-Contínuo

A Reserva pelo método prospectivo é calculada a partir de compromissos futuros da seguradora e do segurado.

$$_{m}\bar{V}_{x}=\bar{A}_{x+m}-\bar{P}\bar{a}_{x+m}$$

$$_{m}\overline{V}_{x^{1}:\overline{n}|} = \begin{cases} \overline{A}_{x+m^{1}:\overline{n-m}|} - \overline{P}_{n}\overline{a}_{x+m:\overline{n-m}|}, & m < n \\ 0, & m = n \end{cases}$$

$$_{m}\overline{V}_{x:\overline{n}|} = \begin{cases} \overline{A}_{x+m:\overline{n-m}|} - \overline{P}_{x:\overline{n}|}\overline{a}_{x+m:\overline{n-m}|}, & m < n \\ 1, & m = n \end{cases}$$

Exemplo 19

Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T(0)}(t) = \frac{1}{120} I_{(0,120]}(t)$$

Suponha que um segurado de 40 anos tenha comprado um seguro de vida inteiro que paga 1 u.m. no momento da morte. Esse segurado irá pagar por esse seguro prêmios niveladados enquanto estiver vivo.

Passados 2 anos de vigência do contrato, qual será a reserva $_2\bar{V}_{40}$ que a seguradora deverá ter formado? (Considerando $\delta=0.06$).

$$_{2}\bar{V}_{40} = \bar{A}_{42} - \bar{P}\bar{a}_{42}$$

$$_{t}p_{42} = \frac{P(T>t+42)}{P(T>42)} = \frac{\frac{120-42-t}{120}}{\frac{120-42}{120}} = \frac{78-t}{78}$$
 $_{t}q_{42} = 1 - \frac{78-t}{78} = \frac{t}{78}$

Considerando que $\frac{\partial F_{T(x)}(t)}{\partial t} = f_{T(x)}(t)$, assim:

$$\frac{\partial \boldsymbol{F}_{T(x)}(\boldsymbol{t})}{\partial t} = \frac{\partial}{\partial t} \left(\frac{t}{78} \right) = \frac{1}{78} = \boldsymbol{f}_{T(x)}(\boldsymbol{t})$$

Logo

$$\mu_{42+t} = \frac{f_{T(42)}(t)}{1 - F_{T(42)}(t)} = \frac{\frac{1}{78}}{\frac{78 - t}{78}} = \frac{1}{78 - t}$$

$$\bar{A}_{42} = \int_0^{78} e^{-0.06t} \,_t p_{42} \mu_{42+t} dt \qquad \qquad \bar{a}_{42} = \int_0^{78} e^{-0.06t} \,_t p_{42} dt$$

$$_{2}\bar{V}_{40} = \bar{A}_{42} - \bar{P}\bar{a}_{42}$$

$$\bar{A}_{42} = \int_0^{78} e^{-0.06t} t p_{42} \mu_{42+t} dt$$

$$\bar{a}_{42} = \int_0^{78} e^{-0.06t} \, _t p_{42} dt$$

$$\bar{A}_{42} = \int_0^{78} e^{-0.06t} \left(\frac{1}{78}\right) dt = 0.211693$$

$$\bar{a}_{42} = \int_0^{78} e^{-0.06t} \left(\frac{78-t}{78}\right) dt = \int_0^{78} \frac{(1-e^{-0.06t})}{0.06} \left(\frac{1}{78}\right) dt = 13,1385$$

$$_{2}\overline{V}_{40} = 0,211693 - \overline{P}13,1385$$

$$_{2}\bar{V}_{40} = 0.213516 - \bar{P} 13.1148$$

$$\bar{A}_{40} = \int_0^{80} e^{-0.06t} \left(\frac{80 - t}{80} \right) \frac{1}{80 - t} dt$$

$$\bar{a}_{40} = \int_0^{80} e^{-0.06t} \left(\frac{80 - t}{80} \right) dt$$

$$\overline{A}_{40} = \int_0^{80} e^{-0.06t} \frac{1}{80} dt = 0.206619$$

$$\overline{a}_{40} = \int_0^{80} e^{-0.06t} \left(\frac{80-t}{80} \right) dt = \int_0^{80} \frac{(1-e^{-0.06t})}{0.06} \left(\frac{1}{80} \right) dt = 13,223$$

$$_{2}\bar{V}_{40} = 0.211693 - \left(\frac{0,206619}{13,223}\right)13,1385 = 0,006394374$$

$$_{2}\bar{V}_{40} = 0.211693 - \left(\frac{0.206619}{13,223}\right)13,1385 = 0.006394374$$

$$\bar{A}_{40} = \int_0^{80} e^{-0.06t} \frac{1}{80} dt = 0.206619$$

$$\bar{A}_{42} = \int_0^{78} e^{-0.06t} \left(\frac{1}{78}\right) dt = 0.211693$$

$$\overline{A}_{x} + \delta \overline{a}_{x} = 1$$

$$\bar{a}_{40} = \frac{1 - 0.206619}{0.06} = 13,22302$$

$$\bar{a}_{42} = \frac{1 - 0.2011693}{0.06} = 12.3185$$

A Reserva pelo método **prospectivo** é calculada a partir de compromissos futuros da seguradora e do segurado.

$$_{m}V_{x} = A_{x+m} - P\ddot{a}_{x+m}$$

➤ A reserva pelo método **retrospectivo** é calculada a partir dos compromissos passados da seguradora e do segurado e, para isso, basta utilizar a relação que acabamos de obter:

$$0 = A_{x^{1}:\overline{m}|} - P\ddot{a}_{x:\overline{m}|} + v^{m} {}_{m}p_{x}(A_{x+m} - P\ddot{a}_{x+m})$$

$$0 = A_{x^{1}:\overline{m}|} - P\ddot{a}_{x:\overline{m}|} + v^{m} {}_{m}p_{x} {}_{m}V_{x}$$

$$mV_{x} = \frac{P\ddot{a}_{x:\overline{m}|} - A_{x^{1}:\overline{m}|}}{v^{m} {}_{m}p_{x}}$$

> Exemplo 20

Suponha que um segurado de 40 anos tenha comprado um seguro de vida inteiro que paga 1 u.m. ao fim do ano de morte. Esse segurado irá pagar por esse seguro um prêmio P=0,01737 enquanto estiver vivo.

Passados 2 anos de vigência do contrato, qual será a reserva $_2V_{40}$ que a seguradora deverá ter formado?(Considerando tábua de mortalidade AT-49 e i = 0,03% e o método retrospectivo.)

> Exemplo 20

A reserva pelo método retrospectivo

$${}_{2}V_{40} = \frac{P\ddot{a}_{40:\bar{2}|} - A_{40^{1}:\bar{2}|}}{v^{2} {}_{2}p_{40}} = \frac{0,01737 \; (1,968904) - 0,004058}{0,9708^{2} \; (0,9957545)} \approx 0,032148$$

$$_{m}V_{x} = \frac{P\ddot{a}_{x:\overline{m}|} - A_{x^{1}:\overline{m}|}}{v^{m}_{m}p_{x}}$$

$$_{m}V_{x} = \frac{P\ddot{a}_{x:\overline{m}|}}{v^{m}_{m}p_{x}} - \frac{A_{x^{1}:\overline{m}|}}{v^{m}_{m}p_{x}}$$

Em que $\frac{P\ddot{a}_{x:\overline{m}|}}{v^m_m p_x}$ é conhecida como anuidades "tontineira" (tontine).

Em que $\frac{A_{x^1:\overline{m|}}}{v^m m^{p_x}}$ é o custo acumulado do seguro.

- ➤ A anuidades "tontineira" foi concebida para pagar benefícios a sobreviventes da seguinte forma:
- ➤ Um grupo de participantes se une e faz pagamentos regulares ao fundo. Os participantes que morrem ao longo do período deixam de contribuir, porém o benefício é pago somente às pessoas que sobreviveram durante todo o período de vigência desta anuidade.

$$\ddot{S}_{x:\overline{m}|} = \frac{P\ddot{a}_{x:\overline{m}|}}{v^m \,_m p_x}$$

- ➤ A anuidade tontineira é o valor acumulado dos prêmios sujeitos a juros e sobrevivência.
- \blacktriangleright Pode-se pensar que essa anuidade é o valor pago ao fim de m anos a todos que sobreviverem.
- Este tipo de seguro pode ser um incentivo ao homicídio de pessoas próximo ao período final de contribuição e, por isso, não pode ser comercializado.