STAT 500

Two-Way ANOVA Effects Model

Effects Model

$$Y_{ijk} = \mu + \alpha_i + \tau_j + (\alpha \tau)_{ij} + \epsilon_{ijk}$$

$\left[Y_{111} \right]$		1	1	0	1	0	0	1	0	0	0	0	0	$oxed{\mu}$		$\lceil \epsilon_{111} \rceil$
$\mid Y_{112} \mid$		1	1	0	1	0	0	1	0	0	0	0	0	$lpha_{ extsf{1}}$		ϵ_{112}
Y_{121}		1	1	0	0	1	0	0	1	0	0	0	0	$lpha_{2}$		ϵ_{121}
Y_{122}		1	1	0	0	1	0	0	1	0	0	0	0	$ au_1$		ϵ_{122}
Y ₁₃₁		1	1	0	0	0	1	0	0	1	0	0	0	$ au_2$		ϵ_{131}
Y ₁₃₂	_	1	1	0	0	0	1	0	0	1	0	0	0	$ au_3$	+	ϵ_{132}
Y ₂₁₁		1	0	1	1	0	0	0	0	0	1	0	0	$(\alpha \tau)_{11}$		ϵ_{211}
Y ₂₁₂		1	0	1	1	0	0	0	0	0	1	0	0	$(\alpha \tau)_{12}$		ϵ_{212}
Y_{221}		1	0	1	0	1	0	0	0	0	0	1	0	$(\alpha \tau)_{13}$		ϵ_{221}
Y_{222}		1	0	1	0	1	0	0	0	0	0	1	0	$(\alpha \tau)_{21}$		ϵ_{222}
Y ₂₃₁		1	0	1	0	0	1	0	0	0	0	0	1	$(\alpha \tau)_{22}$		<i>€</i> 231
$[Y_{232}]$			0	1	0	0	1	O	0	0	0	0	1 _	$\left[(\alpha \tau)_{23} \right]$		$\left[\begin{array}{c}\epsilon_{232}\end{array}\right]$

Effects Model

- Estimate $a \times b$ Treatment means with
 - $-\mu$
 - a effects for Factor A
 - − b effects for Factor B
 - $-a \times b$ interaction effects for Factors A and B
- ullet Impose constraints on main effects and interaction effects to reduce number of parameters to a imes b

$$Y_{ijk} = \mu + \alpha_i + \tau_j + (\alpha \tau)_{ij} + \epsilon_{ijk}$$

- Set $\alpha_a = 0$ level a of Factor A
- Set $\tau_b = 0$ level b of Factor B
- Set $(\alpha \tau)_{aj} = 0$ for all j = 1, ..., bAll interaction effects with level a of Factor A
- Set $(\alpha \tau)_{ib} = 0$ for all i = 1, ..., aAll interaction effects with level b of Factor B

- $\mu = \mu_{ab}$ mean response at level a of Factor A and level b of Factor B
- $\alpha_i = \mu_{ib} \mu_{ab}$ simple effect of the ith level of Factor A when Factor B is at level b
- $\tau_j = \mu_{aj} \mu_{ab}$ simple effect of the jth level of Factor B when Factor A is at level a
- $(\alpha \tau)_{ij} = \mu_{ij} \mu_{ib} \mu_{aj} + \mu_{ab}$ interaction effect

$$\begin{bmatrix} Y_{111} \\ Y_{112} \\ Y_{121} \\ Y_{122} \\ Y_{131} \\ Y_{132} \\ Y_{211} \\ Y_{212} \\ Y_{221} \\ Y_{231} \\ Y_{232} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \tau_1 \\ \tau_2 \\ (\alpha \tau)_{11} \\ (\alpha \tau)_{12} \end{bmatrix} + \begin{bmatrix} \epsilon_{111} \\ \epsilon_{112} \\ \epsilon_{121} \\ \epsilon_{122} \\ \epsilon_{211} \\ \epsilon_{212} \\ \epsilon_{221} \\ \epsilon_{222} \\ \epsilon_{231} \\ \epsilon_{232} \end{bmatrix}$$

Least squares estimate of β is given by

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$= \begin{pmatrix} \bar{Y}_{23} \\ \bar{Y}_{13} - \bar{Y}_{23} \\ \bar{Y}_{21} - \bar{Y}_{23} \\ \bar{Y}_{22} - \bar{Y}_{23} \\ \bar{Y}_{11} - \bar{Y}_{13} - \bar{Y}_{21} + \bar{Y}_{23} \\ \bar{Y}_{12} - \bar{Y}_{13} - \bar{Y}_{22} + \bar{Y}_{23} \end{pmatrix}$$

Copper	Zinc Concentration					
Conc.	0 ppm	750 ppm	1500 ppm			
0 ppm	$\bar{Y}_{11.} = 193.5$	$\bar{Y}_{12.} = 167.5$	$\bar{Y}_{13.} = 119.5$			
150 ppm	$\bar{Y}_{21.} = 172.5$	$\bar{Y}_{22.} = 170.5$	$\bar{Y}_{23.} = 111$			

$$Y_{ijk} = \mu + \alpha_i + \tau_j + (\alpha \tau)_{ij} + \epsilon_{ijk}$$

- Set $\sum_{i=1}^{a} \alpha_i = 0$
- Set $\sum_{j=1}^b \tau_j = 0$
- Set $\sum_{i=1}^{a} (\alpha \tau)_{ij} = 0$ for all j
- Set $\sum_{j=1}^{b} (\alpha \tau)_{ij} = 0$ for all i

- $\mu = \bar{\mu}$.. overall mean response
- $\alpha_i = \bar{\mu}_i \bar{\mu}$..
 related to main effect of the *i*th level of Factor A
- $au_j = \bar{\mu}_{\cdot j} \bar{\mu}_{\cdot \cdot}$ related to main effect of the jth level of Factor B
- $(\alpha \tau)_{ij} = \mu_{ij} \bar{\mu}_{i.} \bar{\mu}_{.j} + \bar{\mu}_{..}$ interaction effect

- Set $\alpha_2 = -\alpha_1$
- Set $\tau_3 = -\tau_1 \tau_2$
- Set $(\alpha \tau)_{13} = -(\alpha \tau)_{11} (\alpha \tau)_{12}$
- Set $(\alpha \tau)_{21} = -(\alpha \tau)_{11}$
- Set $(\alpha \tau)_{22} = -(\alpha \tau)_{12}$
- Set $(\alpha \tau)_{23} = (\alpha \tau)_{11} + (\alpha \tau)_{12}$

$$\widehat{\beta} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{Y}$$

$$= \begin{pmatrix} \bar{Y}... \\ \bar{Y}_{1..} - \bar{Y}... \\ \bar{Y}_{1..} - \bar{Y}... \\ \bar{Y}_{.2.} - \bar{Y}... \\ \bar{Y}_{11.} - \bar{Y}_{1..} - \bar{Y}_{.1.} + \bar{Y}... \\ \bar{Y}_{12.} - \bar{Y}_{1..} - \bar{Y}_{.2.} + \bar{Y}... \end{pmatrix}$$

Copper	Zi	nc Concentrat	ion	
Conc.	0 ppm	750 ppm	1500 ppm	Mean
0 ppm	$\bar{Y}_{11} = 193.5$	$\bar{Y}_{12\cdot} = 167.5$	$\bar{Y}_{13} = 119.5$	$\bar{Y}_{1} = 160.1667$
150 ppm	$\bar{Y}_{21} = 172.5$	$\bar{Y}_{22\cdot} = 170.5$	$\bar{Y}_{23} = 111$	$\bar{Y}_{2} = 151.3333$
Mean	$ar{Y}_{\cdot 1\cdot} = 182$	$\bar{Y}_{\cdot 2 \cdot} = 169$	$\bar{Y}_{\cdot 3 \cdot} = 115.25$	$ar{Y}_{\cdot \cdot \cdot} = 155.75$

Question 2: Are the response means the same for the two levels of copper, averaging across zinc levels?

 \bullet H_o : $\bar{\mu}_{1.} = \bar{\mu}_{2.}$

$$\bar{\mu}_{1.} = \mu + \alpha_1 + \frac{\sum_{j=1}^{b} \tau_j}{b} + \frac{\sum_{j=1}^{b} (\alpha \tau)_{1j}}{b}$$

$$\bar{\mu}_{2.} = \mu + \alpha_2 + \frac{\sum_{j=1}^{b} \tau_j}{b} + \frac{\sum_{j=1}^{b} (\alpha \tau)_{2j}}{b}$$

$$H_o: \bar{\mu}_{1.} = \bar{\mu}_{2.}$$

is equivalent to testing

$$\alpha_1 + \frac{\sum_{j=1}^b (\alpha \tau)_{1j}}{b} = \alpha_2 + \frac{\sum_{j=1}^b (\alpha \tau)_{2j}}{b}$$

• Baseline Constraints

$$H_0: \alpha_1 + \frac{\sum_{j=1}^b (\alpha \tau)_{1j}}{b} = 0$$

Sum to Zero Constraints

$$H_0: \alpha_1 = 0$$

Question 3: Are the response means the same for the three levels of zinc, averaging across copper levels?

•
$$H_o: \bar{\mu}_{\cdot 1} = \bar{\mu}_{\cdot 2} = \bar{\mu}_{\cdot 3}$$

$$\bar{\mu}_{.1} = \mu + \frac{\sum_{i=1}^{a} \alpha_i}{a} + \tau_1 + \frac{\sum_{i=1}^{a} (\alpha \tau)_{i1}}{a}$$

$$\bar{\mu}_{.2} = \mu + \frac{\sum_{i=1}^{a} \alpha_i}{a} + \tau_2 + \frac{\sum_{i=1}^{a} (\alpha \tau)_{i2}}{a}$$

$$\bar{\mu}_{.3} = \mu + \frac{\sum_{i=1}^{a} \alpha_i}{a} + \tau_3 + \frac{\sum_{i=1}^{a} (\alpha \tau)_{i3}}{a}$$

$$H_o: \bar{\mu}_{.1} = \bar{\mu}_{.2} = \bar{\mu}_{.3}$$

is equivalent to testing

$$H_0: \tau_1 + \frac{\sum_{i=1}^a (\alpha \tau)_{i1}}{a} = \tau_2 + \frac{\sum_{i=1}^a (\alpha \tau)_{i2}}{a} = \tau_3 + \frac{\sum_{i=1}^a (\alpha \tau)_{i3}}{a}$$

Baseline Constraints

$$H_0: \tau_1 + \frac{\sum_{i=1}^a (\alpha \tau)_{i1}}{a} = \tau_2 + \frac{\sum_{i=1}^a (\alpha \tau)_{i2}}{a} = 0$$

• Sum to Zero Constraints

$$H_0: \tau_1 = \tau_2 = 0$$

Question 4: Are differences in mean responses between copper levels consistent across zinc levels?

•
$$H_0: \mu_{11} - \mu_{21} = \mu_{12} - \mu_{22} = \mu_{13} - \mu_{23}$$

$$\mu_{11} - \mu_{21} = (\mu + \alpha_1 + \tau_1 + (\alpha \tau)_{11}) - (\mu + \alpha_2 + \tau_1 + (\alpha \tau)_{21})$$

$$\mu_{12} - \mu_{22} = (\mu + \alpha_1 + \tau_2 + (\alpha \tau)_{12}) - (\mu + \alpha_2 + \tau_2 + (\alpha \tau)_{22})$$

$$\mu_{13} - \mu_{23} = (\mu + \alpha_1 + \tau_3 + (\alpha \tau)_{13}) - (\mu + \alpha_2 + \tau_3 + (\alpha \tau)_{23})$$

$$H_0: \mu_{11} - \mu_{21} = \mu_{12} - \mu_{22} = \mu_{13} - \mu_{23}$$

is equivalent to

$$H_0: (\alpha \tau)_{11} - (\alpha \tau)_{21} = (\alpha \tau)_{12} - (\alpha \tau)_{22} = (\alpha \tau)_{13} - (\alpha \tau)_{23}$$

• Baseline Constraints

$$H_0: (\alpha \tau)_{11} = (\alpha \tau)_{12} = 0$$

• Sum to Zero Constraints

$$H_0: (\alpha \tau)_{11} = (\alpha \tau)_{12} = 0$$

Effects Model - Interactions

• When there are no interaction effects, the effects model becomes an additive model:

$$E(Y_{ijk}) = \mu + \alpha_i + \tau_j$$

- Same effect of factor A at all levels of factor B: $E(Y_{ijk}) E(Y_{rjk}) = (\mu + \alpha_i + \tau_j) (\mu + \alpha_r + \tau_j) = \alpha_i \alpha_r$
- Same effect of factor B at all levels of factor A: $E(Y_{ijk}) E(Y_{isk}) = (\mu + \alpha_i + \tau_j) (\mu + \alpha_i + \tau_s) = \tau_j \tau_s$
- Main effect = Simple effect

STAT 500

Comparing Treatment Means, Simple and Main Effects, Model Diagnostics

Treatment Means

- Treatment mean: $\mu_{ij} = \mu + \alpha + i + \tau_j + (\alpha_i \tau_j)_{ij}$
- Estimate: \bar{Y}_{ij} .
- ullet Std. Error: $\sqrt{MS_{
 m error}/n}$

Simple Effects

- Simple Effects: Difference in treatment means between two levels of one factor at a specific level of the other factor.
 - For Factor A: $\mu_{ij} \mu_{rj}$
 - For Factor B: $\mu_{ij} \mu_{is}$
- Estimate:
 - For Factor A: \bar{Y}_{ij} . $-\bar{Y}_{rj}$.
 - For Factor B: \bar{Y}_{ij} . $-\bar{Y}_{is}$.
- Std. Error: $\sqrt{MS_{\mathrm{error}}\left(\frac{2}{n}\right)}$

Marginal Means

Marginal Means: Mean of level of a Factor

Factor	A	В
Marginal Mean	$ar{\mu}_i$.	$ar{\mu}_{\cdot j}$
Estimate	$ar{Y}_i$	$ar{Y}_{\cdot j}.$
Std. Error	\sqrt{MS} error $\left(\frac{1}{nb}\right)$	$\sqrt{MS} \mathrm{error}\left(\frac{1}{na}\right)$

Main Effects

Main Effects: Difference in means of two levels of a Factor

Factor	Α	В
Main Effect	$ar{\mu}_{i\cdot} - ar{\mu}_{r\cdot}$	$ar{\mu}_{\cdot j} - ar{\mu}_{\cdot s}$
Estimate	$ar{Y}_{i\cdot\cdot\cdot} - ar{Y}_{r\cdot\cdot\cdot}$	$ar{Y}_{\cdot j \cdot} - ar{Y}_{\cdot s \cdot}$
Std. Error	$\sqrt{MS_{ m error}\left(rac{2}{nb} ight)}$	$\sqrt{MS_{ m error}\left(rac{2}{na} ight)}$

Interactions Effects

• Interaction effects are differences of simple effects.

- e.g.
$$(\mu_{ij} - \mu_{rj}) - (\mu_{il} - \mu_{rl})$$

• Estimate:

$$-(\bar{Y}_{ij.}-\bar{Y}_{rj.})-(\bar{Y}_{il.}-\bar{Y}_{rl.})$$

- Std. Error: $\sqrt{MS_{\mathrm{error}}\left(\frac{4}{n}\right)}$
- Interaction effects are the least precisely estimated effects.

Multiple Comparison

- Adjust for multiple comparisons depending on desired analysis
 - Tukey HSD: all pairs of treatment or marginal means
 - Scheffe: all linear contrasts
 - Bonferroni: predetermined comparisons
 - Dunnett: compare many levels to one baseline

Model Assumptions

$$\epsilon_{ijk}$$
 are i.i.d. $N(0, \sigma^2)$

- Independence
- Homogeneous Variance
- Normality

Model Diagnostics

- Independence check details of data collection
- Homogeneous variance
 - Plot residuals vs estimated means
 - Plot residuals vs levels of each factor
- Normality
 - Normal probability plot for residuals
 - Histogram of residuals
 - Tests for Normality

Model Diagnostics

Remedies

- Transformation remedy for non-normality is commonly used
- Remember, transformation changes
 - * Error properties
 - * The model for the mean responses
 - * Can eliminate (reduce) or introduce (enhance) interactions.
- Randomization tests
- Rank tests