Announcements

- To receive course-related announcements, sign up to the course list: cse478@lists.iiit.ac.in
- All assignments will be managed via the course portal
- For <u>off-campus access to the course portal</u>, contact the server room staff

TAs:

Aditi Gupta (aditi.gupta@students.iiit.ac.in)

Shantanu Patil (shantanu.patil@students.iiit.ac.in)

Point processing

Point (local) processing

 $g[m,n] \rightarrow r[m,n]$ where r = f(g); $g, r \in [0, L-1]$

- f can be a one to one/many to one; linear/nonlinear mapping function
- This is <u>zero-memory</u> filtering
- Implementable using a look up table (LUT)

Point processing ..application

• r = f(g) is *Contrast* manipulation

Used to

- compensate for differences in the dynamic range of the image vs. display devices
 - Ex. display a 16 bit image on 8 bit display
 - Ex. log (1+|F|) to display Fourier amplitude spectrum which has a huge dynamic range
- improve contrast of a given image
 - Ex. Image editing in Photoshop

Contrast Stretching - example

Piecewise linear function

Improving a poor contrast image

Before After

What is the mapping function?

Examples of point processing

- Negative image: r = L g; g, $r \in [0,L]$
 - Negation of a part of the range is solarisation

- Binarisation
 - With single threshold or dual thresholds
- Clipping

Intensity slicing

Intensity slicing - example

Before After

What is the mapping function?

Global operations

$$I_{0ut}[m_0,n_0] = f(I_{in}[m,n])$$

$f(I_{in})$

• f needs to represent some global information about the input image

- Global info: grey level statistics or occurrence of greyvalues in the image
 - Ideally, all greyvalues should occur in equal measure

Probability density function - review

- The probability density function (pdf) of a (continuous) random variable *x* satisfies the following axioms.
 - Probability of x is a non-zero value for all x $p(x) \ge 0$; $\forall x$
 - The area under the pdf is 1 $\int_{-\infty}^{\infty} p(x)dx = 1$
 - The running integral_x of the pdf is called the cumulative distribution function or cdf $\int_{a}^{b} p(a)da = F(x)$
 - The probability x takes on values in an interval is given by the area under the pdf in this interval

$$\int_{x_1}^{x_2} p(x) dx = P(x_1 < x \le x_2)$$

Cumulative distribution function

- Cumulative distribution function (cdf)
 - describes the probability that a random variable `x' with a given probability distribution will be found at a value less than or equal to x.

$$F(a) = P(x \le a)$$

- it is the "area so far" function of the pdf

1.
$$F(-\infty) = 0$$

2.
$$F(\infty) = 1$$

3.
$$0 \le F(x) \le 1$$

4.
$$F(x_1) \le F(x_2)$$
 if $x_1 < x_2$

5.
$$P(x_1 < x \le x_2) = F(x_2) - F(x_1)$$

$$p(x) = \frac{dF(x)}{dx}$$

Grey level statistics

- Image histogram $h_I(g)$; $g \in [0,L-1]$
 - the distribution of the grey values in an image
 - frequency plot giving count of grey value occurrence in the image
- For a MxN image $h_I \in [0,MN]$
- After normalisation $(h_I \in [0,1])$, $h_I \sim \text{pdf}$ of the random variable g
- Key statistical metrics
 - $-g_{mean}$ mean grey value
 - $-\sigma_g$, standard deviation / variance

Ex: narrow histogram ⇔ low contrast image (small std. devn.)

Caution

 Grey level statistics for an image is different from statistics across images

- Natural images have some regularity in their statistics
 - The power spectrum(2^{nd} order statistics) falls as $1/f^2$

Global processing

Image processing in the histogram space:

- Histogram manipulation
 - Transforming the pdf of the input image to a desired one
- Histogram equalisation
 - Special case of manipulation where the desired pdf is 'uniform'

Histogram manipulation (HM)

- Find r = f(g) such that $p_g(g)$ is modified to $p_r(r)$
 - $-p_g$ and p_r are probability density functions

Desirable properties of f

- 1. It is single-valued and monotonically increasing in [0, L-1]
 - To preserve the brightness order
- 2. Mapped values also lie in [0,L-1]
 - To satisfy the BIBO condition

HM for continuous case

- Let r and g be random variables with probability density functions $p_g(g)$ and $p_r(r)$
- HM requires the mapping:

$$[g+dg] \rightarrow [r+dr] => p_g(g) dg = p_r(r) dr$$

where r and g are $\in [0,L-1]$

$$\int_{0}^{r} p_{r}(\lambda) d\lambda = \int_{0}^{g} p_{g}(\alpha) d\alpha$$

i.e. the two grey level <u>cumulative</u> <u>distribution</u> functions are equal

Special case: $p_r(r)$ is a *uniform* density function

Histogram Equalisation (HE)

- When $p_r(r)$ is a uniform density function, we have histogram equalisation
- This process aims to <u>uniformly</u> distribute all the grey values in the final processed image
 - i.e. $p_r(r) = \text{constant}$ for $r \in [0, L]$

The required mapping is

$$\int_{0}^{r} d\lambda = r = \int_{0}^{g} p_{g}(\alpha) d\alpha$$

• Useful to *optimally* improve global contrast

HE mapping - discrete case

• g and r are discrete random variables taking values g_i and $r_i \in [0,1]; \ 0 \le i \le L$

•
$$p_g(g_i) = n_i/N$$
;

 n_i is the no. of pixels with grey value g_i N is the total no. of pixels in the image

$$r = \int_{0}^{g} p_{g}(\alpha) d\alpha$$
 \longrightarrow $r_{k} = \sum_{i=0}^{k} \frac{n_{i}}{N}$ Real-valued

Required mapping

HE..contd

• Finally, rescale the range of r_k to [0,L]

$$\gamma_k = \max\{0, round(L\sum_{i=0}^k \frac{n_i}{N})\}$$

Example: 8x8, 3-bit image

g (given grey value)	n _i	Cumulative value	$r = f(g)$ $r \in R$	r = f(g) $r \in \mathbb{Z}+$	
0	8	8	$(8/64) \times 7 = 0.875$	1	
1	10	18	$(18/64) \times 7 = 1.968$	2	
2	10	28	3.062	3	
3	2	30	3.281	3	
4	12	42	4.593	5	
5	16	58	6.343	6	
6	4	62	6.781	7	
7	2	64	7	7	

r	0	1	2	3	4	5	6	7
count	0	8	10	12	0	12	16	6

Example: 4x4 image

2	3	3	2
4	2	4	თ
3	2	3	5
2	4	2	4

4x4 image Gray scale = [0,9]

Gray Level(j)	0	1	2	3	4	5	6	7	8	9
No. of pixels	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^{k} n_{j}$	0	0	6	11	15	16	16	16	16	16
$s = \sum_{j=0}^{k} \frac{n_j}{n}$	0	0	6 / 16	11 / 16	15 / 16	16 / 16	16 / 16	16 / 16	16 / 16	16 / 16
s x 9	0	0	3.3 ≈3	6.1 ≈6	8.4 ≈8	9	9	9	9	9

3	6	6	3
8	3	8	6
6	3	6	9
3	8	3	8

Output image Gray scale = [0,9]

After Histogram equalization

Effects of HE

- Brightness order of pixels is retained
- Minor variations in pixel values are amplified added discrimination
- Pixels of different grey value can be assigned same value – loss of information

Quantization prevents obtaining a flat histogram in practice

Histogram Specification

• Here $p_r(r)$ is some specified function

These functions are sampled versions of continuous density functions
 OR

Specified interactively

Global information source - grey level statistics

CT slice

Histogram of the slice

HE – example 1

A dark image

Its histogram

HE- example 1

After HE

HE - example 2

Before After HE

HE - example 3

Before After HE

HE – example 3

Before

Mean: 135.8

Std Dev: 45.3

Median: 151.0

Pixels: 49152.0

After

Intensity: 0..255

Count: 49152.0

Percentile: 100.00

Mean: 128.7

Std Dev: 74.3

Median: 128.0

Pixels: 49152.0

Intensity: 0..255

Count: 49152.0

Percentile: 100.00

Adaptive HE

 HE works well for images with homogeneous contrast (poor)

- Many images have <u>inhomogeneous</u> contrast
 - ex. Images with partial shadows

Solution: Adaptive HE

Approach: use local statistics to do HE

- 1. divide the image into blocks/regions
- 2. apply HE to each region

Original

Adaptive HE with 3 X 3

What if we increase the block size?

Usefulness of HE

- So far we saw HE helps in image enhancement
- It can also be used to binarise a greyscale image

Example:

$$g(x,y) = \begin{cases} 1 & if \quad f(x,y) > T \\ 0 & if \quad f(x,y) \le T \end{cases}$$

- How can we choose T?
 - –Trial and error
 - –Use the histogram of f(x,y)

Histogram

Low SNR

Evaluating enhanced images

- Image enhancement seeks to alter the <u>subjective</u> appearance of an image
 - Improve contrast, remove shadows, correct for nonuniform illumination

How do you evaluate the results?

• Need a metric to quantify improvement

Global Contrast of an Image I

Contrast is a measure of the dynamic range of the grey (pixel) values

• Simple definition $g \text{ is the grey value} \quad C_I = \frac{g_{\text{max}}}{g_{\text{min}}}$

• Statistical definition $C_S = \sigma_I$

Global Contrast ...contd.

• Weber's definition

$$C_{WI} = \frac{g_{\text{max}} - g_{\text{mean}}}{g_{\text{mean}}}$$

• Michelson's definition (for sinusoidal gratings)

$$C_{MI} = \frac{g_{\text{max}} - g_{\text{min}}}{2g_{\text{mean}}} = \frac{g_{\text{max}} - g_{\text{min}}}{g_{\text{max}} + g_{\text{min}}}$$