1 Quine-McCluskey (10 Pkt.)

Die Funktion $f: \mathbb{B}^4 \to \mathbb{B}$ sei durch ihre OFF-Menge gegeben:

$$OFF(f) := \{0010, 0110, 1011, 1111\}$$

Berechnen sie alle Primimplikanten von f nach dem Verfahren von Quine-McCluskey. Geben sie alle Zwischenschritte (d.h. die Menge L_i^M und $Prim_i$) und das resultierende Minimalpolynom an. Achten Sie darauf, zu welchem Zeitpunkt der Algorithmus die Primimplikanten erkennt.

Hinweis: Sie dürfen in dieser Aufgabe die abkürzende Schreibweise für Monome verwenden (z.B. statt $\overline{x_1}$ $\overline{x_2}$ $\overline{x_4}$: 01-1).

2 Kodierung (2+3+5 Pkt.)

- a) Geben Sie die Interpretationsfunktion $[.]_2$ für Zweierkomplementzahlen mit n+1 Vor- und k Nachkommastellen (also $d_n d_{n-1} \dots d_1 d_0 d_{-1} \dots d_{-k}$) an.
- b) Geben Sie die Werte folgender Zweierkomplementzahlen im Dezimalsystem an:

0101.10

1001.01

c) Beweisen sie folgendes Lemma:

Lemma: Sei $[a]_2 = [a_{n-1}a_{n-2} \dots a_0]_2$ eine ganze Zahl in Zweier-Komplement-Darstellung mit n Vorkommastellen und keinen Nachkommastellen. Dann gilt:

$$[\bar{a}]_2 + 1 = -[a]_2$$

Hierbei sei $[\bar{a}]_2$ die Zahl im Zweier-Komplement, die aus $[a]_2$ durch Invertieren aller Bits hervorgeht. Abgesehen von der geometrischen Summenformel sollen keine Sätze aus der Vorlesung ohne Beweis benutzt werden.

Hinweis: bei Zahlen ohne Nachkommastellen gilt $\mathbf{k}=0,$ allerdings gehört \mathbf{k} immer noch zu den obigen Defintionen

Lösung 1

Korrekturhinweise (streng):

- Aufteilung in L_i^M fehlt oder garnicht verstanden [-10 Pkt]
- \bullet OFF-Menge benutzt [-8 Pkt]
- Prim_i fehlt /-3 Pkt/
- L_0 fehlt [-2.5 Pkt]
- Partitionierung innerhalb L_i^M 's fehlt [-2.5 Pkt]
- Schleifendurchlauf 4 nicht angegeben /-2 Pkt/
- Primimplikanten zu falschem Zeitpunkt hinzugefügt [-2 Pkt]
- Einzeln fehlende L_i^M , einmalig [-1.5 Pkt]
- Minimal polynom nicht angegeben /-1 Pkt/
- $Prim_i$ fortlaufend erweitert /-1 Pkt/
- Pro Fehler bei OFF-Mengen überführung /-0.5 Pkt/
- \bullet Pro falschem/fehlenden Implikanten, auch für Folgefehler innerhalb des Algorithmus /-0.5 Pkt/
- Abbruch Bedingung fehlt /-0.5 Pkt/
- Sonstige leichte Notationsfehler [-0.5 Pkt]

Initialisierung

$L_0^{\{x_1, x_2, x_3, x_4\}}$	$Prim_f = \emptyset$
0000	
0001	
0100	
1000	
0011	
0101	
1001	
1010	
1100	
0111	
1101	
1110	

1. Schleifendurchlauf

$L_1^{\{x_1,x_2,x_3\}}$	$L_1^{\{x_1,x_2,x_4\}}$	$L_1^{\{x_1,x_3,x_4\}}$	$L_1^{\{x_2,x_3,x_4\}}$
000-	00-1	0-00	-000
010-	10-0	0-01	-001
100-	01-1	1-00	-100
110-	11-0	0-11	-101
		1-01	
		1-10	

$$Prim_f = \emptyset$$

2. Schleifendurchlauf

3. Schleifendurchlauf

4. Schleifendurchlauf

$$L_4^{\{\}}$$

$$Prim_f = \{0 - -1, 1 - -0, - -0 -\}$$

Abbruch

$$\bigcup_{M} L_{4}^{M}(f) = \emptyset$$
 \Rightarrow Abbruch der Schleife und $return\ Prim(f)$

Lösung 2

Korrekturhinweise (streng):

- a) Nachkommastellen nicht mitangegeben [-1.5 Pkt.]
 - n Vorkomma stellen benutzt [-1] Pkt
 - Einerkomplement hingeschrieben [-1.5 Pkt.]
 - Klammerung nicht eindeutig /-0.5 Pkt/
 - Kleine Fehler /-1 Pkt./
- b) Jeweils [1.5 Pkt], Richtig/Falsch, keine Teilpunkte
- c) -d statt a benutzt [-1] Pkt.
 - Klammerung nicht eindeutig, jeweils /-0.5 Pkt/ maximal /-1 Pkt./
 - Für jeden fehlenden Schritt (vgl. Musterlösung), der nicht klar herausgestellt wurde /-1 Pkt./
 - Für n+1 Vorkomma stellen gezeigt [-1 Pkt.]
 - Lösungen mit falscher Definitionen von Zweierkomplement können maximal
 2.5 Punkte erhalten.
 - Nicht k = 0 gesetzt [-1 Pkt]
 - Die −1 nicht heraus gezogen /-1 Pkt./

 $L\ddot{o}sungen$

a)

$$[d]_2 := \left(\sum_{i=-k}^n d_i \cdot 2^i\right) - d_{n+1} \cdot 2^{n+1}$$

b)

$$[0101.10]_2 = 5.5_{dez}$$

 $[1001.01]_2 = -6.75_{dez}$

c)

$$\begin{aligned} [\bar{a}]_2 &= \left(\sum_{i=0}^{n-1} (1 - a_i) \cdot 2^i\right) - (1 - a_n) \cdot 2^n \\ &= \left(\sum_{i=0}^{n-1} 2^i - a_i \cdot 2^i\right) - (2^n - a_n \cdot 2^n) \\ &= \left(\sum_{i=0}^{n-1} 2^i\right) - \left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) - (2^n - a_n \cdot 2^n) \\ &\stackrel{GS}{=} (2^n - a_n \cdot 2^n) - \left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) - (2^n - a_n \cdot 2^n) \\ &= - \left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) \\ &\stackrel{Def}{=} -[a]_2 \end{aligned}$$