

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Специальное машиностроение»
КАФЕДРА	СМ1 «Космические аппараты и ракеты-носители»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

<u>Расч</u>	ет и проектиро	вание подвижного
грунтового ракетн	ого комплекса	
Студент <u>СМ1-81</u> (Группа)	(Подпись, дата)	<u>Н. А. Гусева</u> (И.О.Фамилия)
Руководитель курсовой работы	(Подпись, дата)	<u>К.В.Навагин</u> (И.О.Фамилия)
Консультант		<u>К. В. Навагин</u>
	(Подпись, дата)	(И.О.Фамилия)

Москва 2023 г.

Исходные данные для курсового проектирования:

Дано:

Основные характеристики УБР

 $L_{max} \coloneqq 6000 \ {\it km}$ - дальность полета

 $n_{55} = 4$ - число боевых блоков (ББ)

Параметры поражаемых целей

Точечная цель

 $\Delta P_{\phi} = 8 \; MPa \;$ - давление во фронте ударной волны, требуемое для поражения точечной цели

 $P_{1mp}' \coloneqq 0.9$ - требуемая вероятность поражения точечной цели

 $\sigma_r = 0.15 \ km$ - среднеквадратичное отклонение точки падения боевого блока от точки прицеливания

Площадная цель

 $\Delta p_{\phi} \coloneqq 0.03 \ \textit{MPa}$ - давление во фронте ударной волны, требуемое для поражения площадной цели

 $M_{1mp} := 0.9$ - требуемое математическое ожидание поражения части площадной цели

 $R_{\mu} = 3 \ km$ - требуемый радиус поражения площадной цели

 $\Delta L \coloneqq 200 \ \textit{km}$ - параметры разведения боевых блоков

 $\Delta B = 100 \ km$

Требования к УБР

 $au_{\Sigma} \coloneqq 125 \ s$ - суммарное время работы ДУ маршевых ступеней, не более

 $h_{\kappa} \coloneqq 100 \ \textit{km}$ - высота окончания АУТ, не более

 $n_{x.max} = 20$ - допустимая осевая перегрузка, не более

 $\Delta T = 40$

Характеристики топлива

 $J_{1T.0} = 2520 \frac{m}{s}$ - удельный импульс при стандартных условиях.

 $ho_T \coloneqq 1.81 \; \dfrac{\it gm}{\it cm}^{\,3} \;$ - плотность топлива

 $u_{min} \coloneqq 5 \; \frac{mm}{s} \qquad u_{max} \coloneqq 13 \; \frac{mm}{s} \quad$ - диапазон скоростей горения топлива при стандартных условиях

 ν := 0.25 - показатель степени в законе горения

 $K_T = 0.0015$ - коэффициент теплопроводности топлива

 $\Delta u'_1 = \frac{\Delta u_1}{u_1}$ $\Delta u'_1 = 0.02$ - разброс скоростей горения топлива

 $\Delta_{\it cn}\!:=\!0.035$ - случайная составляющая отклонения давления от номинального значения

 $k \coloneqq 1.15$ - показатель адиабаты продуктов сгорания

 $z \coloneqq 0.33$ - массовая доля конденсированной фазы в продуктах сгорания

 $J_{1,\!I\!J\!Y} = 2100 \frac{m}{s}$ - удельный импульс топлива доводочной ДУ

Базирование: мобильное (ПГРК)

Материалы:

- органопластик

 $\sigma_{K} \coloneqq 130 \; \textit{km}$ - удельная прочность материала силовых оболочек корпусов ДУ ступеней

 $ho_{cp}\coloneqq 1.1~\frac{gm}{cm^3}$ - средняя плотность ТЗП силовых оболочек корпусов ДУ ступеней

1. ФОРМИРОВАНИЕ ПОЛЕЗНОЙ НАГРУЗКИ

1.1 Определение требуемых значений параметров боевого оснащения

Стрельба по точечной цели:

$$K_{\it u}\!:=\!0.97\! \cdot \! \left(\! rac{\Delta P_{\it \phi}}{\it MPa}\!
ight)^{\!-0.37} \!=\!0.449$$
 - коэффициент защищенности точечной цели

$$q_{1nomp.m4} \coloneqq \left(\frac{2}{n_{\rm EB}}\right)^{\frac{3}{2}} \cdot \left(\frac{\sigma_r}{K_{\rm II}}\right)^3 \cdot \left(\ln\left(\frac{1}{1 - P_{1mp'}}\right)\right)^{\frac{3}{2}} \frac{1}{km^3} = 0.046$$

Стрельба по площадной цели:

$$K_{\rm q} \coloneqq 0.78 \cdot \left(\frac{\Delta p_{\phi}}{{\it MPa}}\right)^{-0.5} = 4.503$$
 - коэффициент защищенности площадной цели

$$q_{1nomp.ns} \coloneqq \left(\frac{M_{1mp'}}{n_{EE}}\right)^{\frac{3}{2}} \cdot \left(\frac{R_{u}}{K_{u}}\right)^{3} \frac{1}{km^{3}} = 0.032$$

Выберем большее значение потребной мощности:

$$q_{1 nomp} \coloneqq 0.046$$

Q. Мт	0,1	0,3	0,5	0,8	1,0	1,5
$m_{ m BB}$, кг	100	135	185	270	320	450

Из таблицы выберем ближайшее большее значение массы ББ:

$$m_{55} = 100 \ kg$$
 (при q = 0.1)

Теперь определим геометрические характеристики ББ:

$$d_{\it Б\it E}\!\coloneqq\!0.037 \cdot \sqrt{rac{m_{\it F\it E}}{{m kg}}} ~m m\!=\!0.37~m m$$
 - диаметр ББ

$$l_{\mathit{B}\mathit{B}} \coloneqq 3.5 \boldsymbol{\cdot} d_{\mathit{B}\mathit{B}} = 1.3~m{m}$$
 - длина ББ

$$R\coloneqq 0.1 \cdot d_{\mathit{BB}} = 0.037~\mathbf{m}$$
 - радиус закругления носка ББ

$$m_{50} \coloneqq n_{55} \cdot m_{55} = 400 \; kg$$
 - масса боевого оснащения

1.2 Боевая ступень

$$m_{\Pi\Pi} \coloneqq 10 \; \pmb{kg} \cdot n_{\it B\it B} + 0.1 \cdot m_{\it B\it O} = 80 \; \pmb{kg}$$
 - масса платформы разведения

$$m_{CV} = 95 \ kg + \sqrt[2]{n_{55}} \cdot 5 \ kg = 105 \ kg$$
 - масса системы управления и приборного отсека

$$m_{\textit{KEC}} \coloneqq 45 \; \textit{kg} + 0.06 \cdot m_{\textit{EO}} = 69 \; \textit{kg}$$
 - масса конструкции боевой ступени (приборный и агрегатный отсеки)

Параметры доводочной ДУ

В качестве начального значения массы полезной нагрузки примем ее следующее приближенное значение, полученное по алгоритму из пособия [2].

 $K_3 = 1.10$ - коэффициент учета затрат массы на защиту УБР от ПФЯВ и ОНФП

 $K_S \coloneqq 1.00$ - коэффициент учета влияния размера зоны разведения УБР с РГЧ

$$K_L \coloneqq \left(\frac{10000 \cdot m}{L_{max}} \right)^{0.15} = 0.383$$
 - коэффициент учета значения максимальной дальности стрельбы

Приближенное значение массы полезной нагрузки:

$$m'_{\mathit{\Pi H}} \coloneqq K_{\mathit{3}} \boldsymbol{\cdot} \left(155 \boldsymbol{\cdot} \boldsymbol{kg} \boldsymbol{\cdot} n_{\mathit{55}}^{-0.156} + 1.16 \ m_{\mathit{5O}}\right) \left(1 + 0.132 \boldsymbol{\cdot} \left(2 \boldsymbol{\cdot} n_{\mathit{55}} - 1\right) \boldsymbol{\cdot} \frac{K_{S} \boldsymbol{\cdot} K_{L}}{n_{\mathit{55}}}\right) = 785.958 \ \boldsymbol{kg}$$

 $m_{\Pi H} \coloneqq m'_{\Pi H}$

Полный запас топлива двухрежимной доводочной ДУ с РГЧ

$$\boldsymbol{\omega} = \Delta \omega_{\textit{zap}} + \sum_{q=1}^{q} \Delta \omega_{\textit{HaB}1} + \sum_{p=1}^{p} \Delta \omega_{\textit{pa3B}1}$$

где $\sum_{q=1}^{q} \Delta \omega_{\text{нав}1}$ и $\sum_{p=1}^{p} \Delta \omega_{\text{разв}1}$ - затраты топлива на участках наведения и разведения (переприцеливания); q и р - число участков наведения и операций разведения

$$L'_{Vk} \coloneqq 2.78 \cdot \frac{km}{\frac{m}{s}}$$
 - производная дальность по конечной скорости

$$L'_{Vk}\coloneqq 2.78 \cdot \dfrac{km}{\dfrac{m}{s}}$$
 - производная дальность по конечной скорости
$$B'_{VB}\coloneqq 0.97 \cdot \dfrac{km}{\dfrac{m}{s}}$$
 - производная бокового отклонения по боковой скорости

$$\Delta L_{zap} \coloneqq 0.04 \cdot L_{max} = 240 \ km$$

$$\Delta V_{\it гар} \coloneqq \frac{\Delta L_{\it гар}}{L'_{\it Vk}} = 86.331 \, \frac{\it m}{\it s}$$
 - потребна максимали

 $\Delta V_{\it гар} \coloneqq \frac{\Delta L_{\it гар}}{L'_{\it Vk}} = 86.331 \, \frac{\it m}{\it s}$ - потребная величина приращения скорости для компенсации максимального недолета на участке работы маршевых ступеней

$$\Delta V_{\Delta L1}\!\coloneqq\!\frac{\Delta L}{L'_{Vk}}\!=\!71.942\;\frac{\pmb{m}}{\pmb{s}}$$

 $\Delta V_{\Delta L1} \coloneqq \frac{\Delta L}{L'_{Vk}} = 71.942 \, \frac{\textbf{m}}{\textbf{s}}$ - необходимая величина приращения скорости для единичной операции разведения ББ по дальности на величину ΔL

$$\Delta V_{\Delta B1} \coloneqq \frac{\Delta B}{B'_{VB}} = 103.093 \frac{\mathbf{m}}{\mathbf{s}}$$

 $\Delta V_{\Delta B1} \coloneqq \frac{\Delta B}{B'_{VB}} = 103.093 \ \frac{\textbf{m}}{\textbf{s}} \quad \text{- необходимая величина приращения скорости для единичной операции разведения ББ в боковом направлении на величину } \Delta B$

$$\alpha \coloneqq 15$$

- угол наклона прямых сопел доводочной ДУ к оси БС

Тогда потребные затраты топлива доводочной ДУ на компенсацию погрешностей работы маршевых ступеней:

$$\Delta \omega_{\mathit{rap}} \left(m_{\mathit{\PiH}} \right) \coloneqq \Delta V_{\mathit{rap}} \cdot \frac{m_{\mathit{\PiH}}}{J_{\mathit{1,JJY}} \cdot \cos \left(\alpha \right)}$$

$$\Delta\omega_{eap}\left(m_{\Pi H}\right)=33.451~kg$$

Единичные операции разведения элементов БО по дальности и в боковом направлении:

$$\Delta \omega_{L1} = \Delta V_{\Delta L1} \cdot \frac{m_{\Pi H \lambda}}{J_{1 \Delta \mathcal{Y}} \cdot \cos{(\alpha)}} \qquad \text{, где } m_{\Pi H \lambda} \text{ и } m_{\Pi H \rho} \text{ - текущее значение массы полезной нагрузки в начале единичной операции разведения ББ по λ - направлению
$$\Delta \omega_{B1} = \Delta V_{\Delta B1} \cdot \frac{m_{\Pi H \rho}}{J_{1 \Delta \mathcal{Y}} \cdot \cos{(\alpha)}} \qquad \text{(дальности) и по } \rho \text{ - направлению (по боку)}$$
 Расчет $\sum_{q=1}^{q} \Delta \omega_{H a B 1}$ выполняем с учетом четырех участков наведения одного ББ на одну цель$$

(по числу ББ)

$$P_{min}\left(m_{\Pi H}
ight)\coloneqq 0.5 ullet rac{oldsymbol{m}}{oldsymbol{s}^2} ullet m_{\Pi H}$$

- уровень тяги доводочных ДУ с РГЧ на пониженном режиме

$$\begin{split} P_{max}\left(m_{\Pi H}\right) &\coloneqq 2.5 \cdot \frac{\pmb{m}}{\pmb{s}^2} \cdot m_{\Pi H} \\ t_{\text{HGB1}} &\coloneqq 20 \cdot \pmb{s} \\ \beta &\coloneqq 25 \text{ }^{\circ} \end{split}$$

- уровень тяги доводочных ДУ с РГЧ на повышенном режиме

- продолжительность каждого участка

- угол наклона обратных сопел к оси БС

Расчет $\sum_{p=1}^{p} \Delta \omega_{paзв1}$ проводим для единичных операций разведения по дальности и в боковом направлении по следующей схеме:

$$\sum_{p=1}^{p} \Delta \omega_{pa361} = \sum_{p=1}^{p_L} \Delta \omega_{L1} + \sum_{p=1}^{p_B} \Delta \omega_{B}$$

 $\sum_{p=1}^p \Delta\omega_{pase1} = \sum_{r=1}^{p_L} \Delta\omega_{L1} + \sum_{r=1}^{p_B} \Delta\omega_{B1}$, где p_L и p_B - число реализуемых операций перенацеливания по дальности и в боковом направлении

Так как $m_{\Pi H \lambda} (m_{\Pi H}) \coloneqq m_{\Pi H} - \Delta \omega_{\it cap} (m_{\Pi H}) - m_{\it bb}$

$$\Delta\omega_{L1}\left(m_{\Pi H}\right)\coloneqq\Delta V_{\Delta L1} \cdot \frac{m_{\Pi H\lambda}\left(m_{\Pi H}\right)}{J_{1 \not L y} \cdot \cos\left(\alpha\right)} \\ m_{\Pi H\lambda}\left(m_{\Pi H}\right) = 652.508 \; \textit{kg}$$

$$\Delta\omega_{L1}\left(m_{\Pi H}\right) = 23.142 \; \textit{kg}$$

Соответственно $m_{\Pi H \rho}\left(m_{\Pi H}\right)\coloneqq m_{\Pi H \lambda}\left(m_{\Pi H}\right) - \Delta\omega_{L1}\left(m_{\Pi H}\right) - m_{\mathit{ББ}}$

$$\Delta\omega_{B1}\left(m_{\Pi H}\right) \coloneqq \Delta V_{\Delta B1} \cdot \frac{m_{\Pi H\rho}\left(m_{\Pi H}\right)}{J_{1 \Delta Y} \cdot \cos\left(\alpha\right)} \qquad \qquad m_{\Pi H\rho}\left(m_{\Pi H}\right) = 529.365 \ \textit{kg}$$

$$\Delta\omega_{B1}\left(m_{\Pi H}\right) = 26.904 \ \textit{kg}$$

$$\Delta\omega_{B1}\left(m_{\Pi H}\right) = 73.189 \ \textit{kg}$$

$$\omega\left(m_{\Pi H}\right)\coloneqq\Delta\omega_{\mathit{zap}}\left(m_{\Pi H}\right)+\sum_{g=1}^{4}\Delta\omega_{\mathit{HaB}1}\left(m_{\Pi H}\right)+\sum_{p=1}^{1}\Delta\omega_{\mathit{pa3B}1}\left(m_{\Pi H}\right)$$

 $\omega_{\mathit{ДУБC}}\left(m_{\mathit{\Pi H}}\right)\coloneqq\omega\left(m_{\mathit{\Pi H}}\right)$ - масса топлива доводочной ДУ БС

$$m_{\mathcal{K}}\left(m_{\Pi H}\right)\coloneqq 13.8~{\it kg}^{\frac{2}{3}}\cdot \sqrt[3]{\omega_{\mathcal{Д}\mathcal{Y}\mathcal{B}\mathcal{C}}\left(m_{\Pi H}\right)}$$
 - масса конструкции доводочной $\mathcal{J}\mathcal{Y}$

$$m_{ extit{ДУБС}}\left(m_{ extit{ПH}}
ight)\coloneqq 13.8~{\it kg}^{rac{2}{3}} \cdot \sqrt[3]{\omega_{ extit{ДУБС}}\left(m_{ extit{ПH}}
ight)} + \omega_{ extit{ДУБС}}\left(m_{ extit{ПH}}
ight)$$
 - масса доводочной ДУ БС

где
$$\omega_{\text{ДУБС}}\left(m_{\text{ПH}}\right)=123.158\ \textit{kg}$$
 - масса топлива доводочной ДУ БС
$$m_{\text{K}}\left(m_{\text{ПH}}\right)=191.817\ \textit{kg}$$

$$\omega_{\textit{ДУБС}}\left(m_{\textit{ПH}}\right) = 123.158 \; \textit{kg}$$

$$m_{\textit{ПН}n}\left(m_{\textit{ПH}}\right) \coloneqq K_{\textit{3}} \cdot \left(m_{\textit{БO}} + m_{\textit{ПЛ}} + m_{\textit{CY}} + m_{\textit{KБC}} + m_{\textit{ДУБС}}\left(m_{\textit{ПH}}\right)\right)$$
 - масса полезной нагрузки
$$m_{\textit{ПН}1} \coloneqq m_{\textit{ПН}n}\left(m_{\textit{ПH}}\right) = 930.399 \; \textit{kg}$$

Полученное значение массы полезной нагрузки отличается от значения перового приближения $m'_{\Pi H} = 785.958$ kg на $m_{\Pi H1} - m_{\Pi H} = 144.441$ kg, поэтому требуется второе приближение.

Второе приближение:

$$m_{\Pi H} \coloneqq 935 \ \mathbf{kg}$$

$$m_{\Pi Hn} (m_{\Pi H}) = 964.737 \ kg$$

 $m_{\Pi H n} (m_{\Pi H}) - m_{\Pi H} = 29.737 \ {\it kg}$, поэтому требуется третье приближение.

Третье приближение:

$$m_{\Pi H} \coloneqq 970 \ \textit{kg}$$

$$m_{\Pi H n} (m_{\Pi H}) = 972.712 \ kg$$

Окончательно примем $m_{\Pi H} = 975 \ kg$

$$R_{min\mathcal{A}\mathcal{A}} = 0.5 \cdot \frac{N}{kg} \cdot m_{\Pi H} = 487.5 \; N$$
 - тяга двигателя доводки в пониженном режиме

$$R_{max A\!A\!A} \coloneqq 2.5 \cdot \frac{N}{kq} \cdot m_{\Pi H} = \left(2.438 \cdot 10^3\right) N$$
 - тяга двигателя доводки в повышенном режиме

$$m'_{min\mathcal{A}\mathcal{A}}\coloneqq rac{R_{min\mathcal{A}\mathcal{A}}}{J_{1\mathcal{A}^{\mathcal{Y}}}}=0.232\,rac{m{kg}}{m{s}}$$
 - секундные массовый расход в пониженном режиме

$$m'_{max,D\!\!\!/\!\!\!/\!\!\!/}\coloneqq \frac{R_{max,D\!\!\!/\!\!\!/}}{J_{1,\!\!\!/\!\!\!/\!\!\!/}}=1.161\,rac{{m kg}}{{m s}}$$
 - секундные массовый расход в повышенном режиме

2. ПРИБЛИЖЕННОЕ БАЛЛИСТИЧЕСКОЕ ПРОКТИРОВАНИЕ

2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости по заданной дальности

Для дальности 6000 км из таблицы 2 следует:

Баллистические параметри ракет для различных дальностей полета

L,	ħ _K , κΜ	ŧ _κ ,	8 <mark>*</mark> , град	<i>Y</i> _K . ⊯/o	$\partial L/\partial V_{\rm k}$, in and in a second constant $\delta U_{ m k}$	∂L/∂h _K , KM/KM	ΔV _c
500	50	46	43,9	1986	0,42	0,96	1150
1000	70	60	42,7	2817	0,66	1,08	1150
2500	100	130	38,4	4318	1,234	1,52	1150
4500	135	200	34,9	5476	2,05	2,17	1100
6000	150	250	31,5	6049	2,78	2,83	1100
8000	150	300	27.0	6605	4,04	3,88	1100
10000	150	350	22,5	70I2	5,69	5,33	1000
12000	150	370	18,0	7303	8,0	7,43	1000
6000 8000 10000	150 150 150	250 300 350	3I,5 27,0 22,5	6049 6605 7012	2,78	2,83 3,88 5,33 7,43	1100 1100

$$h_k \coloneqq 150 \; \emph{km}$$
 $\Delta V_C \coloneqq 1100 \; \dfrac{\emph{m}}{\emph{s}}$ $R \coloneqq 6371 \; \emph{km}$

$$\begin{split} r_k &:= R + h_k = \left(6.521 \cdot 10^3\right) \, \textit{km} & \mu_0 := 3.986 \cdot 10^5 \, \, \frac{\textit{km}^3}{\textit{s}^2} \\ V_1 &:= \sqrt[2]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = \left(7.628 \cdot 10^3\right) \, \frac{\textit{m}}{\textit{s}} \end{split}$$

$$V_1 \coloneqq \sqrt[2]{rac{\mu_0}{r_k}} \cdot rac{1}{1 + rac{h_k}{L_{max}}} = (7.628 \cdot 10^3) rac{m{m}}{m{s}}$$

$$\begin{split} V_k \coloneqq & V_1 \boldsymbol{\cdot} \left(1 - \tan \left(\frac{\boldsymbol{\pi}}{4} \boldsymbol{\cdot} \left(1 - \frac{L_{max}}{\boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{R}} \right) \right)^2 \right)^{0.5} = \left(6.026 \boldsymbol{\cdot} 10^3 \right) \frac{\boldsymbol{m}}{\boldsymbol{s}} \\ K_V V_K \coloneqq & V_k + \Delta V_C = \left(7.126 \boldsymbol{\cdot} 10^3 \right) \frac{\boldsymbol{m}}{\boldsymbol{s}} \end{split}$$

2.2 Распределение относительных масс топлива по ступеням ракеты:

Необходимо нулевое приближение:

$$\mu_{cp} = \mu_1 = \mu_2$$

Из опыта ракетостроения можно принять в рамках приближенного проектирования следующие

$$\mu_1 = 0.9 \cdot \mu_{cp} \qquad \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{\left(1 - \mu_1\right)}$$

$$J_{1\Pi 1} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$$

$$J_{1772} := 1.135 \cdot J_{1T.0} = (2.86 \cdot 10^3) \frac{m}{s}$$

$$J_{1cp} := \frac{J_{1\Pi 1} + J_{1\Pi 2}}{2} = (2.81 \cdot 10^3) \frac{\mathbf{m}}{\mathbf{s}}$$

$$\mu := 1 - \sqrt[2]{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)} = 0.719$$

$$\mu_1 := 0.9 \cdot \mu = 0.647$$

$$\mu_2 \coloneqq 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{\left(1 - \mu_1\right)} = 0.776$$

2.3 Время работы ДУ ступеней, уточнение коэффициентов μ_i

Из рекомендаций:

$$\tau_{N1}$$
 = 55 .. 60 **s**

$$au_{N2}$$
 = $50..55$ 8

Необходимо соблюдение условия в связи с отклонением среднего давления от номинального значения:

$$\varSigma \tau_{Ni} \leq \tau_{\varSigma} \cdot \left(1 - \frac{\Delta p}{p_N}\right) \qquad \qquad \frac{\Delta p}{p_N} = \Delta p p_N \qquad \qquad \Delta T \coloneqq 40$$

$$\Delta pp_{N} \coloneqq \frac{1}{1-\nu} \cdot \sqrt[2]{\left(\Delta u'_{1}\right)^{2} + \Delta_{\mathit{CR}}^{2} + \left(K_{T} \cdot \Delta T\right)^{2}} = 0.096$$

$$\Sigma \tau_{Ni} \coloneqq \tau_{\Sigma} \cdot (1 - \Delta p p_N) = 112.953 \ s$$

Примем, что $au_{N1}\coloneqq 57~{\it s}$ $au_{N2}\coloneqq 55~{\it s}$

$$\tau_{N2} = 55$$

Теперь при принятом времени работы каждой ступени необходимо проверить соответствие коэффициентов μ_i на ограничение осевой перегрузки для 2 ступени:

$$\mu_{i} \! \leq \! \frac{\tau_{Ni} \! \cdot \! g \! \cdot \! n_{x.max} \! \left(\! 1 \! - \! \frac{\Delta p}{p_{N}} \! \right)}{J_{1 \sqcap i} \! + \! \tau_{Ni} \! \cdot \! g \! \cdot \! n_{x.max} \! \left(\! 1 \! - \! \frac{\Delta p}{p_{N}} \! \right)}$$

Тогда для второй ступени

$$\frac{\tau_{N2} \cdot \boldsymbol{g} \cdot \boldsymbol{n}_{x.max} \cdot \left(1 - \Delta p p_N\right)}{J_{1/12} + \tau_{N2} \cdot \boldsymbol{g} \cdot \boldsymbol{n}_{x.max} \cdot \left(1 - \Delta p p_N\right)} = 0.773 \qquad \qquad \mu_2 = 0.776 \qquad \text{- условие не выполняется}$$

Переопределим μ_2 из полученных условий. Запишем в блок решения необходимые ограничения для μ_2 в виде:

$$\begin{array}{l} \left(\begin{array}{l} \mu_1 \coloneqq 0.647 \\ \hline J_{1\Pi 2} + \tau_{N2} \cdot g \cdot n_{x.max} \cdot \left(1 - \Delta p p_N \right) \\ \hline J_{1\Pi 2} + \tau_{N2} \cdot g \cdot n_{x.max} \cdot \left(1 - \Delta p p_N \right) \\ \hline \end{array} \right) \geq \mu_2 \\ \end{array} \qquad \qquad \left(1 - \mu_1 \right) \left(1 - \mu_2 \right) = \exp \left(- \frac{K_V V_K}{J_{1cp}} \right) \\ - \frac{1}{J_{1Cp}} \left(\frac{1}{J_{1cp}} \right) = \left[\frac{0.651}{0.773} \right] \end{array}$$

Окончательно примем

$$\mu_1 = 0.651$$

$$\mu_2 := 0.77$$

Для справки приведем значения осевых перегрузок

$$n_{xmax1} \coloneqq \frac{J_{1 \sqcap 1} \boldsymbol{\cdot} \mu_1}{\tau_{N1} \boldsymbol{\cdot} \left(1 - \Delta p p_N\right) \boldsymbol{\cdot} g \boldsymbol{\cdot} \left(1 - \mu_1\right)} = 10.19$$

$$n_{xmax2} \coloneqq \frac{J_{1 \sqcap 2} \boldsymbol{\cdot} \mu_2}{\tau_{N2} \boldsymbol{\cdot} \left(1 - \Delta p p_N\right) \boldsymbol{\cdot} \boldsymbol{g} \boldsymbol{\cdot} \left(1 - \mu_2\right)} = 19.984$$

2.3 Величина стартовой массы ракеты и величины ее относительной грузоподъемности

$$\Lambda_0 \coloneqq 1.65$$

$$m_0 \coloneqq A_0 \cdot m_{\Pi H} \cdot \exp\left(\frac{K_V V_K}{J_{1co}}\right) + 0.01 \cdot \left(\frac{L_{max}}{km}\right)^{\frac{2}{3}} \cdot tonne = 23.623 \ tonne$$

$$m'_{\Pi H} \coloneqq \frac{m_{\Pi H}}{m_0} = 0.041$$

2.4 Относительные массы конструкций ступеней ракеты

Обобщенная относительная масса конструкции

$$\alpha \coloneqq \frac{1 - \mu - \sqrt[2]{m'_{\Pi H}}}{\mu} = 0.109$$

С учетом масштабного эффекта

$$\alpha_1 \coloneqq 0.9 \cdot \alpha = 0.098$$

$$\alpha_2\!:=\!\frac{1-\mu_2}{\mu_2}\!-\!\frac{{m'}_{\Pi H}}{\mu_2\!\cdot\!\left(1-\mu_1\!\cdot\!\left(1+\alpha_1\right)\right)}\!=\!0.106$$

2.5 Определение других параметров

Среднее давление в камерах сгорания двигателей ступеней

$$\begin{aligned} p_{N1} &\coloneqq 12 \; \textit{MPa} & l'_{y1} &\coloneqq 0.15 \\ p_{N2} &\coloneqq 10 \; \textit{MPa} & l'_{y2} &\coloneqq 0.1 \end{aligned}$$

Определим массовые и тяговые характеристики ракеты по ступеням

$$\omega_1 \coloneqq \mu_1 \cdot m_0 = 15.378$$
 tonne $m_{K1} \coloneqq \omega_1 \cdot \alpha_1 = 1.506$ tonne

$$m'_1 := \frac{\omega_1}{\tau_{N1}} = 269.795 \frac{kg}{s}$$

$$P_{\Pi 1} := m'_1 \cdot J_{1\Pi 1} = 744.473 \ kN$$

Масса второй ступени:

$$\begin{split} m_{02} \coloneqq m_0 \cdot \left(1 - \mu_1 \cdot \left(1 + \alpha_1\right)\right) &= 6.738 \ \textit{tonne} \\ \omega_2 \coloneqq \mu_2 \cdot m_{02} &= 5.209 \ \textit{tonne} \\ m_{K2} \coloneqq \omega_2 \cdot \alpha_2 &= 0.555 \ \textit{tonne} \end{split}$$

$$m_2' \coloneqq \frac{\omega_2}{\tau_{N2}} = 94.7 \; \frac{\mathbf{kg}}{\mathbf{s}}$$

$$P_{\Pi 2} := m'_2 \cdot J_{1\Pi 2} = 270.861 \ kN$$

Диаметры ступеней

$$D_1 \coloneqq 0.52 \bullet \sqrt[3]{\frac{m_0}{\textit{tonne}}} \; \textit{m} = 1.492 \; \textit{m}$$

$$D_2 := 0.85 \cdot D_1 = 1.268 \ \mathbf{m}$$

Размеры сопел

$$d'_{a1} \coloneqq \sqrt[2]{0.9 \cdot \frac{p_{N1}}{\textit{MPa}} + 5} = 3.975$$
 - степень расширения сопла первой ступени

Диаметры среза сопел второй ступени рассчитаем из условия их размещения в перехоодных отсеках $d_{a2} \coloneqq 0.85 \cdot D_1 = 1.268 \ m$

Диаметры критических сечений сопел маршевых ДУ ступеней выразим из слудующего соотношения: $m_i' \cdot \beta = p_{Ni} \cdot F_{\kappa pi}$

- расходный комплекс в зависимости от теоретического
$$\beta\coloneqq 0.651 \boldsymbol{\cdot} J_{1T.0} = \left(1.641 \boldsymbol{\cdot} 10^3\right) \frac{\textbf{\textit{m}}}{\textbf{\textit{g}}}$$
 удельного импульса в стандартных условиях

$$F_{\kappa\rho1} \coloneqq \frac{m'_1 \cdot \beta}{p_{N1}} = 0.037 \ \boldsymbol{m}^2 \qquad \qquad d_{\kappa\rho1} \coloneqq \sqrt[2]{\frac{4 \cdot F_{\kappa\rho1}}{\pi}} = 21.671 \ \boldsymbol{cm} \qquad \qquad d_{\kappa\rho1} = 0.217 \ \boldsymbol{m}$$

$$F_{\kappa p2} := \frac{m'_2 \cdot \beta}{p_{N2}} = 0.016 \ m^2$$
 $d_{\kappa p2} := \sqrt[2]{\frac{4 \cdot F_{\kappa p2}}{\pi}} = 14.064 \ cm$ $d_{\kappa p2} = 0.141 \ m$

Рассчитаем диаметр выходного сечения сопла первой ступени, а также степени расширения сопла второй ступени

$$d_{a1} \coloneqq d'_{a1} \cdot d_{\kappa p1} = 0.861 \ m$$

$$d'_{a2} \coloneqq \frac{d_{a2}}{d_{\kappa n2}} = 9.017$$

Зная значения степеней расширения сопел ДУ каждой ступени, можем рассчитать значение практического удельного импульса в пустоте каждого РДТТ

 $J_{1 \sqcap i}$ = $J_{1 \sqcap i}$ • $\left(1-\zeta_i\right)$, где ζ_i - суммарные потери удельного импульса

$$\zeta_{i} = 0.025 \cdot \frac{{d'_{ai}}^{1.25} - 1}{{d'_{ai}}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{d_{\mathit{Kpi}}}}\right)$$

$$J_{1Ti} = J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{ai}}^2} \right)$$
 — теоретичесоке значение удельного импульса в пустоте в зависимости от степени расширения сопла

$$J_{1T1} \coloneqq J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a1}}^2} \right) = 3026.547 \; \frac{\textit{m}}{\textit{s}}$$

$$J_{1T2} \coloneqq J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a2}}^2} \right) = 3305.455 \frac{\textit{m}}{\textit{s}}$$

$$\zeta_1 := 0.025 \cdot \frac{d'_{a1}^{1.25} - 1}{d'_{a1}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{\frac{d_{\kappa p1}}{cm}}}\right) = 0.069$$

$$\zeta_2 \coloneqq 0.025 \bullet \frac{{d'_{a2}}^{1.25} - 1}{{d'_{a2}}} \bullet \left(1 + \frac{11.6 \bullet z}{\sqrt[3]{\frac{d_{\kappa p2}}{cm}}}\right) = 0.105$$

$$J_{1\Pi1} := J_{1T1} \cdot (1 - \zeta_1) = (2.818 \cdot 10^3) \frac{m}{s}$$

$$J_{1\Pi 2} := J_{1T2} \cdot (1 - \zeta_2) = (2.959 \cdot 10^3) \frac{m}{8}$$

2.6 Уточнение времени работы ДУ всех ступеней или их калибров.

Максимальное и минимальное время работы ДУ:

$$\tau_{Nmaxi} = \frac{e^{'}_{\partial oni} \cdot D_{i}}{u^{'}_{min} \cdot p_{Ni}^{\nu}} \qquad \qquad \tau_{Nmaxi} = \frac{e^{'}_{\partial oni} \cdot D_{i}}{u^{'}_{max} \cdot p_{Ni}^{\nu}}$$

$$e'_{\partial oni} = \frac{e_i}{D_i}$$
 — относительный свод горения

 u'_{min} и u'_{max} вычиляются по заданным минимальному и максимальному значению скорости горения при p=4 МПа:

$$\begin{aligned} u_{min} &= 0.005 \, \frac{\boldsymbol{m}}{\boldsymbol{s}} & p_0 &\coloneqq 4 \, \boldsymbol{MPa} & u_{max} &= 0.013 \, \frac{\boldsymbol{m}}{\boldsymbol{s}} \\ u'_{min} &\coloneqq & \frac{u_{min} \cdot \boldsymbol{s}}{\boldsymbol{mm}} \\ & \left(\frac{p_0}{\boldsymbol{MPa}} \right)^{\nu} &= 3.536 & u'_{max} &\coloneqq & \frac{u_{max} \cdot \boldsymbol{s}}{\boldsymbol{mm}} \\ & \left(\frac{p_0}{\boldsymbol{MPa}} \right)^{\nu} &= 9.192 \end{aligned}$$

Определим относительный свод горения для каждой ступени из следдующей системы уравнений:

$$\begin{split} & \left(\varepsilon_T + \varepsilon_p\right) \cdot f \leq \varepsilon_{\partial on} \\ & \varepsilon_T = \frac{\Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 \cdot M^2 - \mu_T\right) \left(M^2 + 1\right)}{\left(M^2 \cdot \left(1 - 2 \ \mu_T\right) + 1\right)} \\ & \varepsilon_p = \frac{p_{maxi} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) \cdot \left(M^2 - 1\right)}{E_T \cdot \left(M^2 \cdot \left(1 - 2 \ \mu_T\right) + 1\right)} \\ & e'_{\partial oni} = \frac{1}{2} \left(1 - \frac{1}{M}\right) \\ & M = \frac{\frac{p_{maxi}}{E_T} \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \mu_T + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{maxi}}{E_T} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{n_{ony}}{e_{maxi}} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right) + \frac{\varepsilon_{\partial on}}{f$$

$$lpha_K\coloneqq 1\cdot rac{10^{-5}}{\emph{K}}$$
 - коэффициент температурного расширения конструкции двигателя
$$lpha_T\coloneqq 1\cdot rac{10^{-4}}{\emph{K}}$$
 - коэффициент температурного расширения топлива

$$\mu_T\!\coloneqq\!0.495$$
 - коэф. Пуассона топлива

$$T_p \coloneqq 50 \text{ }^{\circ}\textbf{\textit{C}}$$

$$\Delta T \coloneqq \left(T_p - T_{min}\right) = 90 \text{ } \textbf{\textit{K}}$$

 $E_T \coloneqq 7.5 \ \textbf{\textit{MPa}}$ - модуль Юнга топлива

 $arepsilon_{\it \partial on}\!\coloneqq\!0.4$ - допускаемая деформация топлива

f := 1.35 - коэф. запаса по деформации

Вычислим М для ДУ первой ступени:

$$p_{max1} = 1.31 \cdot p_{N1} = 15.72 \ MPa$$

$$M_{1} \coloneqq \sqrt[2]{\frac{\frac{p_{max1}}{E_{T}}\left(1 + \mu_{T}\right)\boldsymbol{\cdot}\left(1 - 2\boldsymbol{\cdot}\mu_{T}\right) + \Delta T\boldsymbol{\cdot}\left(\alpha_{K} - \alpha_{T}\right)\boldsymbol{\cdot}\mu_{T} + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{max1}}{E_{T}}\boldsymbol{\cdot}\left(1 + \mu_{T}\right)\boldsymbol{\cdot}\left(1 - 2\boldsymbol{\cdot}\mu_{T}\right) + \Delta T\boldsymbol{\cdot}\left(\alpha_{K} - \alpha_{T}\right)\boldsymbol{\cdot}\left(2 - \mu_{T}\right) - \frac{\varepsilon_{\partial on}}{f}\boldsymbol{\cdot}\left(1 - 2\boldsymbol{\cdot}\mu_{T}\right)}} = 4.472$$

Вторая ступень:

 $p_{max2} := 1.31 \cdot p_{N2} = 13.1 \ MPa$

$$M_{2} \coloneqq \sqrt{\frac{\frac{p_{max2}}{E_{T}} \left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \mu_{T} + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{max2}}{E_{T}} \cdot \left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \left(2 - \mu_{T}\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_{T}\right)}} = 5.39$$

Тогда относительные своды горения будут равны:

Диаметры каналов зарядов ДУ:

$$e'_{\partial on1} \coloneqq \frac{1}{2} \left(1 - \frac{1}{M_1} \right) = 0.388$$

$$d_{\text{KAH1}} \coloneqq \frac{D_1}{M_1} = 0.334 \; \textbf{m}$$

$$e'_{\partial on2} \coloneqq \frac{1}{2} \left(1 - \frac{1}{M_2} \right) = 0.407$$

$$d_{\text{KAH2}} \coloneqq \frac{D_2}{M_2} = 0.235 \; \textbf{m}$$

Скорости горения топлива ДУ:

$$\begin{split} u_{1min} &\coloneqq u'_{min} \cdot \left(\frac{p_{N1}}{\textbf{MPa}}\right)^{\nu} \cdot \frac{\textbf{mm}}{\textbf{s}} = 6.58 \ \frac{\textbf{mm}}{\textbf{s}} \\ \\ u_{2min} &\coloneqq u'_{min} \cdot \left(\frac{p_{N2}}{\textbf{MPa}}\right)^{\nu} \cdot \frac{\textbf{mm}}{\textbf{s}} = 6.287 \ \frac{\textbf{mm}}{\textbf{s}} \\ \\ u_{1max} &\coloneqq u'_{max} \cdot \left(\frac{p_{N1}}{\textbf{MPa}}\right)^{\nu} \cdot \frac{\textbf{mm}}{\textbf{s}} = 17.109 \ \frac{\textbf{mm}}{\textbf{s}} \\ \\ u_{2max} &\coloneqq u'_{max} \cdot \left(\frac{p_{N2}}{\textbf{MPa}}\right)^{\nu} \cdot \frac{\textbf{mm}}{\textbf{s}} = 16.347 \ \frac{\textbf{mm}}{\textbf{s}} \end{split}$$

Тогда максимальное и минимальное время работы ДУ каждой ступени будет равно:

$$\begin{split} \tau_{Nmax1} \coloneqq & \frac{e'_{\partial on1} \cdot D_1}{u_{1min}} = 88.019 \; \boldsymbol{s} \\ \tau_{Nmin1} \coloneqq & \frac{e'_{\partial on1} \cdot D_1}{u_{1max}} = 33.854 \; \boldsymbol{s} \\ \tau_{Nmax2} \coloneqq & \frac{e'_{\partial on2} \cdot D_2}{u_{2min}} = 82.147 \; \boldsymbol{s} \\ \tau_{Nmin2} \coloneqq & \frac{e'_{\partial on2} \cdot D_2}{u_{2max}} = 31.595 \; \boldsymbol{s} \end{split}$$

3. РАСЧЕТНАЯ ОЦЕНКА МАССОВО-ГЕОМЕТРИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЭЛЕМЕНТОВ КОНСТРУКЦИИ УБР

3.1 Расчет массы и размеров элементов корпусов РДТТ маршевых ступеней **Масса корпусов РДТТ**

Корпус рассчитывается на максимальное давление. Его предел прочности приведен в начале записки.

$$\begin{split} S_{max}S_{cp} \coloneqq 1.15 & f \coloneqq 1.15 & K_{\sigma} \coloneqq 1.05 \\ P_{MAX1} \coloneqq f \cdot p_{N1} \cdot \left(1 + \Delta p p_N\right) \cdot S_{max}S_{cp}^{-\frac{1}{1-\nu}} \cdot K_{\sigma} = 19.141 \; \textbf{\textit{MPa}} \\ P_{MAX2} \coloneqq f \cdot p_{N2} \cdot \left(1 + \Delta p p_N\right) \cdot S_{max}S_{cp}^{-\frac{1}{1-\nu}} \cdot K_{\sigma} = 15.951 \; \textbf{\textit{MPa}} \end{split}$$

Массу кокона для каждой ступени можно рассчитать по следующей зависимости:

$$m_{\textit{CK}i} = 3 \cdot K_{\textit{CK}i} \cdot P_{MAXi} \cdot \frac{\omega_i}{\sigma'_K \cdot \rho_T}$$

$$\sigma'_{K} \coloneqq \sigma_{K} \cdot \boldsymbol{g} = (1.275 \cdot 10^{6}) \frac{\boldsymbol{m}^{2}}{\boldsymbol{s}^{2}}$$

$$K_{\text{CK}i} = \frac{K_{\text{U}i}}{\eta_{\text{U}i}} + \frac{K_{Vi} \cdot \boldsymbol{\pi} \cdot {R_i}^3}{\omega_i} \cdot \rho_T$$

$$\sigma'_{K} \cdot 1350 \frac{kg}{m^{3}} = (1.721 \cdot 10^{3}) MPa$$

$$\eta_{\mathit{L}\!\mathit{l}i} = 0.985 \boldsymbol{\cdot} \eta'_{\mathit{L}\!\mathit{l}i}$$

$$\eta_{\mathit{L}\!\mathit{i}} = 0.985 \cdot \eta'_{\mathit{L}\!\mathit{i}} \qquad \eta'_{\mathit{L}\!\mathit{i}} = 4 \cdot e'_{\partial oni} \cdot \left(1 - e'_{\partial oni}\right)$$

- коэффициент объемного заполнения топливом ДУ

 R_i - радиус i-ой ступени

Значения $K_{\rm q},\ K_l,\ K_V$ определяются из таблицы для принятого относительного диаметра заднего полюсного отверстия корпуса ДУ.

Значения коэффициентов

₫ ₀₂	К _ц	Kυ	K
0,2	1,148	0,505	0,89
0,3	I,I7	0,514	0,902
0.4	1,20	0,533	0,922
0,5	1,26	0,546	0,954
0,6	1,335	0,564	1,012
0,7	1,466	0,601	1,109

$$d'_{02i} = \frac{d_{02i}}{D_i}$$
 - относительный диаметр заднего полюсного отверстия ДУ ступени

Диаметр заднего полюсного отверстия можно определить приближенно из схемы, показанной выше. d_{02i} = $2 \cdot d_{\kappa pi} + 2 \cdot (l_{yi} + d_{\kappa pi}) \cdot \tan(30^\circ)$, где l_{yi} - длина утопленной части сопла (его сверхзвуковой части) $l_{ui} = l'_{ui} \cdot l_{ai}$, где l_{ai} - длина сверхзвуковой части сопла

Принимаем $l_{ai} = d_{ai}$

$$l_{a1} := d_{a1} = 86.139$$
 cm
 $l_{a2} := d_{a2} = 126.823$ cm

$$l_{y1} \coloneqq l'_{y1} \cdot l_{a1} = 12.921$$
 cm
 $l_{y2} \coloneqq l'_{y2} \cdot l_{a2} = 12.682$ cm

Тогда

$$d_{021} := 2 \cdot d_{\kappa \rho 1} + 2 \cdot (l_{y1} + d_{\kappa \rho 1}) \cdot \tan(30^{\circ}) = 83.284 \ \textit{cm}$$

$$d_{022} := 2 \cdot d_{\kappa \rho 2} + 2 \cdot (l_{y2} + d_{\kappa \rho 2}) \cdot \tan(30^{\circ}) = 59.013 \ \textit{cm}$$

$$d'_{021} = \frac{d_{021}}{D_1} = 0.558$$

$$d'_{022}\!\coloneqq\!\frac{d_{022}}{D_2}\!=\!0.465$$

Для определение необходимых коэффициентов проведем линейную интерполяцию их значений

$$K_{\mu M} := \begin{bmatrix} 1.148 & 1.17 & 1.2 & 1.26 & 1.335 & 1.466 \end{bmatrix}^{\mathrm{T}}$$

$$K_{VM} \coloneqq \begin{bmatrix} 0.505 & 0.514 & 0.533 & 0.546 & 0.564 & 0.601 \end{bmatrix}^{\mathrm{T}}$$

$$K_{l\text{M}} \!\coloneqq\! \begin{bmatrix} 0.89 & 0.902 & 0.922 & 0.954 & 1.012 & 1.109 \end{bmatrix}^{\mathrm{T}}$$

$$d_{02\text{M}} \!\coloneqq\! \begin{bmatrix} 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 \end{bmatrix}^{\mathrm{T}}$$

$$d' \!\coloneqq\! 0.2, 0.201..0.7$$

$$\begin{split} &K_{\boldsymbol{\mathcal{U}}}(\boldsymbol{\mathcal{U}}') \coloneqq \operatorname{linterp}\left(d_{02\mathsf{M}}, K_{\boldsymbol{\mathcal{U}}\mathsf{M}}, \boldsymbol{\mathcal{U}}'\right) \\ &K_{\boldsymbol{\mathcal{V}}}(\boldsymbol{\mathcal{U}}') \coloneqq \operatorname{linterp}\left(d_{02\mathsf{M}}, K_{\boldsymbol{\mathcal{V}}\mathsf{M}}, \boldsymbol{\mathcal{U}}'\right) \\ &K_{\boldsymbol{\mathcal{U}}}(\boldsymbol{\mathcal{U}}') \coloneqq \operatorname{linterp}\left(d_{02\mathsf{M}}, K_{\boldsymbol{\mathcal{U}}\mathsf{M}}, \boldsymbol{\mathcal{U}}'\right) \end{split}$$

Тогда коэффициенты будут приближенно равны

ДУ 1 ступени

$$K_{u1} := K_u(d'_{021}) = 1.304$$
 $K_{V1} := K_V(d'_{021}) = 0.556$ $K_{l1} := K_l(d'_{021}) = 0.988$

$$K_{V1} := K_V(d'_{021}) = 0.556$$

$$K_{l1} \coloneqq K_l \left(d'_{021} \right) = 0.988$$

ДУ 2 ступени

$$K_{\mathit{u2}} \coloneqq K_{\mathit{u}}\left(d'_{022}\right) = 1.239 \qquad \qquad K_{\mathit{V2}} \coloneqq K_{\mathit{V}}\left(d'_{022}\right) = 0.541 \qquad \qquad K_{\mathit{l2}} \coloneqq K_{\mathit{l}}\left(d'_{022}\right) = 0.943$$

$$K_{V2} := K_V(d'_{022}) = 0.541$$

$$K_{l2} \coloneqq K_l \left(d'_{022} \right) = 0.943$$

Вычислим объемные коэффициенты заполнения цилиндрической части корпуса двигателей

Теперь можем рассчитать массы коконов:

ДУ первой ступени

$$\begin{split} R_1 &\coloneqq \frac{D_1}{2} = 0.746 \; \textbf{\textit{m}} \\ K_{\textit{CK1}} &\coloneqq \frac{K_{\textit{u}1}}{\eta_{\textit{u}1}} + \frac{K_{\textit{V1}} \cdot \textbf{\textit{\pi}} \cdot R_1^{-3}}{\omega_1} \cdot \rho_T = 1.479 \\ m_{\textit{CK1}} &\coloneqq 3 \cdot K_{\textit{CK1}} \cdot P_{\textit{MAX1}} \cdot \frac{\omega_1}{\sigma'_{\textit{K}} \cdot \rho_T} = 565.841 \; \textbf{\textit{kg}} \end{split}$$

ДУ второй ступени

$$\begin{split} R_2 &\coloneqq \frac{D_2}{2} = 0.634 \ \textit{m} \\ K_{\textit{CK2}} &\coloneqq \frac{K_{\textit{H}2}}{\eta_{\textit{H}2}} + \frac{K_{\textit{V2}} \cdot \pi \cdot R_2^{\ 3}}{\omega_2} \cdot \rho_T = 1.454 \\ m_{\textit{CK2}} &\coloneqq 3 \cdot K_{\textit{CK2}} \cdot P_{\textit{MAX2}} \cdot \frac{\omega_2}{\sigma'_{\textit{K}} \cdot \rho_T} = 157.01 \ \textit{kg} \end{split}$$

Размеры силовой оболочки

Коэффициенты объемного заполненияя днищ корпуса РДТТ

$$\begin{split} & \eta'_{\partial \mathcal{H}1} \coloneqq 1 - 1.5 \cdot \left(1 - \eta'_{\mathcal{U}1}\right) = 0.925 \\ & \eta_{\partial \mathcal{H}1} \coloneqq 0.85 \cdot \eta'_{\partial \mathcal{H}1} = 0.786 \end{split}$$

Вторая ступень

$$\eta'_{\partial H^2} := 1 - 1.5 \cdot (1 - \eta'_{L/2}) = 0.948$$
 $\eta_{\partial H^2} := 0.85 \cdot \eta'_{\partial H^2} = 0.806$

Тогда длины цилиндрических участков ДУ каждой ступени

$$l_{\mathbf{41}} \coloneqq \frac{4 \cdot \omega_1}{\boldsymbol{\pi} \cdot D_1^{-2} \cdot \rho_T \cdot \eta_{U1}} - K_{l1} \cdot R_1 \cdot \frac{\eta_{\partial \mathbf{H1}}}{\eta_{\mathbf{41}}} = 4.574 \ \boldsymbol{m}$$

$$l_{\mathit{u2}}\!\coloneqq\!\frac{4\boldsymbol{\cdot}\omega_{2}}{\boldsymbol{\pi}\boldsymbol{\cdot}D_{2}^{\;2}\boldsymbol{\cdot}\rho_{T}\boldsymbol{\cdot}\eta_{\mathit{U2}}}\!-\!K_{l2}\boldsymbol{\cdot}R_{2}\boldsymbol{\cdot}\frac{\eta_{\mathit{\partial}\mathit{H2}}}{\eta_{\mathit{U2}}}\!=\!1.888\;\boldsymbol{m}$$

Посчитаем длину переднего и заднего днища для каждой ДУ

Первая ступень

Вторая ступень

$$\begin{split} l_{\partial \text{Hnep1}} &\coloneqq 0.61 \cdot R_1 = 0.455 \,\, \textbf{m} \\ l_{\partial \text{H3a31}} &\coloneqq \left(0.305 + 0.1 \cdot 0.2 \right) \cdot 2 \,\, R_1 = 0.485 \,\, \textbf{m} \end{split}$$

$$\begin{split} l_{\partial \text{Hnep2}} &\coloneqq 0.61 \cdot R_2 = 0.387 \ \textit{m} \\ l_{\partial \text{H3} \partial \partial 2} &\coloneqq \left(0.305 + 0.1 \cdot 0.2\right) \cdot 2 \ R_2 = 0.412 \ \textit{m} \end{split}$$

Диаметры передних полюсных отверстий:

$$d'_{011} = 0.2$$

$$d_{011} \coloneqq d'_{011} \cdot D_1 = 0.298 \ m$$

$$d'_{012} = 0.2$$

$$d_{012} \coloneqq d'_{012} \cdot D_2 = 0.254 \ m$$

$$d_{021} = 0.833 \ m$$

Масса фланцев

$$m_{\phi \text{\tiny{N}}i} = K_{\phi \text{\tiny{N}}} \boldsymbol{\cdot} \rho_{\phi \text{\tiny{N}}} \boldsymbol{\cdot} r'_{cpi}{}^{3} \boldsymbol{\cdot} D_{i}{}^{3} \boldsymbol{\cdot} \sqrt{\frac{p_{Ni}}{\sigma_{\phi \text{\tiny{N}}}}}$$

Материал фланцев: титановый сплав ВТ-23

 $\sigma_{\phi_{\mathcal{I}}} = 1400 \, \mathbf{MPa}$

- предел прочности материала фланцев

$$\rho_{Ti} := 4540 \frac{\mathbf{kg}}{\mathbf{m}^3}$$

 $ho_{Ti} \coloneqq 4540 \; \dfrac{\pmb{kg}}{\pmb{m}^3} \;\;$ - плотность материала фланцев

$$K_{\phi n} = 0.894$$

- коэффициент согласования для фланцев корпусов ДУ ступеней

Найдем средние относительные диаметры и радиусы полюсных отверстий силовых оболочек корпусов

$$d'_{cp1} := \frac{d'_{011} + d'_{021}}{2} = 0.379$$

$$r'_{cp1} = \frac{d'_{cp1}}{2} = 0.19$$

$$d'_{cp2} := \frac{d'_{012} + d'_{022}}{2} = 0.333$$

$$r'_{cp2} \coloneqq \frac{d'_{cp2}}{2} = 0.166$$

Посчитаем массы фланцев корпусов ДУ ступеней:

$$m_{\phi J 1} \coloneqq K_{\phi \sigma} \cdot \rho_{T i} \cdot r'_{cp1}^{3} \cdot D_{1}^{3} \cdot \sqrt{\frac{p_{N1}}{\sigma_{\phi \sigma}}} = 8.5 \ \textit{kg}$$

$$m_{\phi extstyle au 2} \coloneqq K_{\phi extstyle n} m{\cdot}
ho_{Ti} m{\cdot} r'_{cp2}^{3} m{\cdot} D_{2}^{3} m{\cdot} \sqrt{rac{p_{N2}}{\sigma_{\phi n}}} = 3.22 \ m{kg}$$

Масса юбок корпуса

$$m_{\!\scriptscriptstyle p\!o\!i}\!=\!rac{K_{\!\scriptscriptstyle p\!o}\!\cdot\! p_{\!Ni}\!\cdot\! D_i^{\;3}}{\sigma'_{\!\scriptscriptstyle K}}$$
 $K_{\!\scriptscriptstyle p\!o}\!\coloneqq\!1.61$ - коэф. согласования размерностей

$$\sigma_K' = \left(1.275 \cdot 10^6 \right) \frac{m{m}^2}{m{s}^2}$$
 - удельная прочность органопластика $ho_K \coloneqq 1350 \, rac{m{kg}}{m{m}^3}$

$$m_{\wp 1} \coloneqq \frac{K_{\wp} \cdot p_{N1} \cdot D_1^{\ 3}}{\sigma'_{\wp}} = 50.336 \ \textit{kg}$$
 $l_{\wp 1} \coloneqq 0.15 \cdot D_1 = 0.2238 \ \textit{m}$

$$m_{\wp 2} \coloneqq \frac{K_{\wp} \boldsymbol{\cdot} p_{N2} \boldsymbol{\cdot} D_2^{-3}}{\sigma_K'} = 25.761 \; \textit{kg} \qquad \qquad l_{\wp 2} \coloneqq 0.15 \boldsymbol{\cdot} D_2 = 0.19 \; \textit{m}$$

Зная плотность материала юбок, оценим их толщину, считая что вся их масса заключена в объеме полого цилиндра

$$V_{\text{io1}} \coloneqq \frac{m_{\text{io1}}}{2 \cdot \rho_{K}} = 0.019 \; \pmb{m}^{3} \qquad V_{\text{io2}} \coloneqq \frac{m_{\text{io2}}}{2 \cdot \rho_{K}} = 0.01 \; \pmb{m}^{3}$$

$$\delta_{\text{io1}} \coloneqq 1 \; \pmb{mm} \qquad \delta_{\text{io2}} \coloneqq 1 \; \pmb{mm}$$

$$V_{\text{io1}} = \pi \cdot \left(\left(D_{1} + \delta_{\text{io1}} \right)^{2} - D_{1}^{2} \right) \cdot l_{\text{io1}}$$

$$V_{\text{io2}} = \pi \cdot \left(\left(D_{2} + \delta_{\text{io2}} \right)^{2} - D_{2}^{2} \right) \cdot l_{\text{io2}}$$

$$\text{Find } \left(\delta_{\text{io1}} , \delta_{\text{io2}} \right) = \begin{bmatrix} 8.859 \\ 6.278 \end{bmatrix} \; \pmb{mm}$$

Масса заряда и крышки воспламенительного устройства

$$m_{\mathit{3BYi}} = K_{\mathit{3BY}} \cdot \left(\frac{\omega_i}{\rho_T}\right)^{\frac{2}{3}} \qquad K_{\mathit{3BY}} \coloneqq \frac{2.2}{m^2} \cdot kg \qquad \text{- коэф. согласования размерностей}$$

$$m_{\mathit{3BY1}} \coloneqq K_{\mathit{3BY}} \cdot \left(\frac{\omega_1}{\rho_T}\right)^{\frac{2}{3}} = 9.16 \; kg$$

$$m_{\mathit{3BY2}} \coloneqq K_{\mathit{3BY}} \cdot \left(\frac{\omega_2}{\rho_T}\right)^{\frac{2}{3}} = 4.451 \; kg$$

Масса крышки восплменительного устройства (ВУ)

$$m_{\mathit{BYi}} = \frac{K_{\mathit{BY}} \cdot p_{Ni} \cdot d'_{01i}{}^3 \cdot D_i{}^3}{\sigma'_{\mathit{B}}} \qquad K_{\mathit{BY}} \coloneqq 5.46 \quad \text{- коэф. согласования размерностей}$$

$$\sigma'_{\mathit{B}} \coloneqq \frac{\sigma_{\mathit{B}}}{\rho_{\mathit{ti}}} = \left(3.084 \cdot 10^5\right) \frac{\mathbf{m}^2}{\mathbf{s}^2} \qquad \rho_{\mathit{ti}} \coloneqq 4540 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3} \qquad \sigma_{\mathit{B}} \coloneqq 1400 \; \mathbf{MPa}$$

$$m_{\textit{BY1}} \coloneqq \frac{K_{\textit{BY}} \cdot p_{N1} \cdot d_{011}^{'}{}^{3} \cdot D_{1}^{\ 3}}{\sigma_{01}^{'}} = 5.646 \; \textit{kg}$$
 $m_{\textit{FIJ}} = 80 \; \textit{kg}$

$$m_{\mathit{BY2}} \coloneqq \frac{K_{\mathit{BY}} \cdot p_{N2} \cdot {d'_{012}}^3 \cdot {D_2}^3}{\sigma'_{\mathit{B}}} = 2.889 \; \textit{kg}$$
 $l_{\mathit{TI/I}} \coloneqq \frac{4 \cdot \frac{m_{\mathit{TI/I}}}{\rho_{\mathit{ti}}}}{\pi \cdot {d_{\mathit{TI/I}}}^2} = 0.014 \; \textit{m}$

Масса защитно-крепящего слоя

$$m_{\mathit{3KC}i} = \pi \cdot D_i^{\ 2} \cdot \left(\frac{l_{\mathit{q}i}}{D_i} + 0.615\right) \cdot q_{\mathit{3KC}} \qquad \qquad q_{\mathit{3KC}} \coloneqq 2.4 \cdot \frac{\textit{kg}}{\textit{m}^2} \qquad \qquad \text{- поверхностная плотность}$$
материала ЗКС

$$m_{\rm 3KC1} \coloneqq \pmb{\pi} \boldsymbol{\cdot} {D_1}^2 \boldsymbol{\cdot} \left(\frac{l_{\rm u1}}{D_1} + 0.615 \right) \boldsymbol{\cdot} q_{\rm 3KC} = 61.778 \; \pmb{kg}$$

$$m_{\rm 3KC2} \coloneqq \boldsymbol{\pi} \boldsymbol{\cdot} {D_2}^2 \boldsymbol{\cdot} \left(\frac{l_{\rm 42}}{D_2} + 0.615 \right) \boldsymbol{\cdot} q_{\rm 3KC} = 25.515 \ \textit{kg}$$

Масса теплозашитного покрытия

$$m_{T3\Pi} = \frac{K_{T3\Pi} \cdot \omega_{i} \cdot \sqrt[2]{p_{Ni} \cdot \tau_{Ni}}}{\rho_{T} \cdot D_{i} \cdot \left(\frac{l_{ui}}{D_{i}}\right)^{0.25}} \cdot \rho_{T3\Pi} \qquad K_{T3\Pi} := 1.17 \cdot 10^{-3} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{1}{2}}}{kg^{\frac{3}{2}}} \cdot kg \qquad \rho_{T3\Pi} := 1000 \cdot \frac{kg}{m^{3}}$$

$$\begin{split} m_{\textit{T3} \textit{\Pi}1} &\coloneqq \frac{K_{\textit{T3} \textit{\Pi}} \cdot \frac{\omega_{1}}{1000} \cdot \sqrt[2]{p_{N1} \cdot \tau_{N1}}}{\rho_{T} \cdot D_{1} \cdot \left(\frac{l_{q1}}{D_{1}}\right)^{0.25}} \cdot \rho_{\textit{T3} \textit{\Pi}} = 131.686 \; \textit{kg} \\ \\ m_{\textit{T3} \textit{\Pi}2} &\coloneqq \frac{K_{\textit{T3} \textit{\Pi}} \cdot \frac{\omega_{2}}{1000} \cdot \sqrt[2]{p_{N2} \cdot \tau_{N2}}}{\rho_{T} \cdot D_{2} \cdot \left(\frac{l_{q2}}{D_{2}}\right)^{0.25}} \cdot \rho_{\textit{T3} \textit{\Pi}} = 56.362 \; \textit{kg} \end{split}$$

3.2 Расчет масс сопловых аппаратов

Силовая оболочка утопленной части сопла

$$\rho_{Ti} \coloneqq 4500 \cdot \frac{kg}{m^{3}}$$

$$m_{yoi} = K_{yo} \cdot \left(\frac{\beta \cdot \omega_{i}}{\tau_{Ni}}\right)^{1.5} \cdot d_{yi}^{2.35} \cdot l_{yi}^{\prime}^{0.4} \cdot \frac{d_{ai}^{0.4}}{p_{Ni}^{1.1}} \cdot \frac{\rho_{Ti}}{E_{Ti}^{0.4}}$$

$$E_{Ti} \coloneqq 122000 \text{ MPa}$$

$$d'_{yi} = \frac{d_{02i}}{2 \cdot d_{\kappa pi}}$$
 - коэф. согласования размерностей

$$d'_{y1} \coloneqq \frac{d_{021}}{2 \cdot d_{\text{KD1}}} = 1.922 \qquad \qquad d'_{y2} \coloneqq \frac{d_{022}}{2 \cdot d_{\text{KD2}}} = 2.098$$

$$m_{yo1} \coloneqq K_{yo} \cdot \left(\frac{\beta \cdot \omega_{1}}{\tau_{N1}}\right)^{1.5} \cdot d_{y1}^{\prime}^{2.35} \cdot l_{y1}^{\prime}^{0.4} \cdot \frac{d_{a1}^{\prime}^{0.4}}{\left(\frac{p_{N1}}{10^{6}}\right)^{1.1}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^{6}}\right)^{0.4}} = 49.528 \text{ kg}$$

$$m_{yo2} \coloneqq K_{yo} \cdot \left(\frac{\beta \cdot \omega_{2}}{\tau_{N2}}\right)^{1.5} \cdot d_{y2}^{\prime}^{2.35} \cdot l_{y2}^{\prime}^{0.4} \cdot \frac{d_{a2}^{\prime}^{0.4}}{\left(\frac{p_{N2}}{10^{6}}\right)^{1.1}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^{6}}\right)^{0.4}} = 18.256 \text{ kg}$$

Тепловая защита утопленной оболочки сопла

$$m_{73yoi} = K_{73yo} \cdot \frac{\beta \cdot \omega_i}{\sqrt[2]{p_{Ni} \cdot au_{Ni}}} \cdot d_{yi}^{\prime}^{1.75} \cdot
ho_{73}$$
 $K_{73yo} \coloneqq 3.7 \cdot 10^{-9} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{1}{2}}}{kg^{\frac{3}{2}}} \cdot kg$ — коэф. согласования размерностей

$$\rho_{73} \coloneqq 1400 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3}$$
 - плотность углепластика

$$m_{\textit{T3yo1}}\!\coloneqq\! K_{\textit{T3yo}}\! \cdot\! \frac{\beta \cdot \omega_1}{\sqrt[2]{\frac{p_{N1}}{10^6} \cdot \tau_{N1}}} \cdot d'_{y1}^{1.75} \cdot \rho_{\textit{T3}}\! =\! 15.671 \; \textit{kg}$$

$$m_{\text{T3yo2}} \coloneqq K_{\text{T3yo}} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} \cdot d'_{y2}^{1.75} \cdot \rho_{\text{T3}} = 6.902 \text{ kg}$$

Силовая оболочка раструба сверхзвуковой части

$$m_{\kappa pi} = K_{\kappa p} \cdot \left(\frac{\beta \cdot \omega_i}{\tau_{Ni}}\right)^{1.5} \cdot \left(d'_{pi}\right)^{1.75} \cdot \frac{d'_{ai}^{0.2}}{\frac{p_{Ni}}{10^6}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^6}\right)^{0.5}} \qquad \qquad k_{\kappa p} \coloneqq 11.2 \cdot 10^{-9} \qquad \text{- коэф. согласования размерностей}$$

$$d'_{\rho 1}\!\coloneqq\! d'_{a 1}\!=\!3.975$$
 - относительные диаметры раструбов

$$d'_{n2} := 4.5$$

$$E_{Ti} = 1300 \, MPa$$

$$E_{Ti} \coloneqq 1300 \, \mathbf{MPa}$$

$$\rho_{Ti} = \left(4.5 \cdot 10^3\right) \, \frac{\mathbf{kg}}{\mathbf{m}^3}$$

$$m_{\kappa p1} \coloneqq k_{\kappa p} \cdot \left(\frac{\beta \cdot \omega_{1}}{\tau_{N1}}\right)^{1.5} \cdot \left(d'_{p1}\right)^{1.75} \cdot \frac{1}{\underbrace{\frac{p_{N1}}{10^{6}} \cdot \left(\frac{E_{Ti}}{10^{6}}\right)^{0.5}}} = 383.82 \text{ kg}$$

$$m_{\kappa p2} \coloneqq k_{\kappa p} \cdot \left(\frac{\beta \cdot \omega_{2}}{\tau_{N2}}\right)^{1.5} \cdot \left(d'_{p2}\right)^{1.75} \cdot \frac{d'_{a2}^{0.2}}{10^{6}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^{6}}\right)^{0.5}} = 184.754 \ \textit{kg}$$

Горловина сопла с эластичным шарниром

$$m_{\mathit{\Gamma}i}$$
 = $K_{\mathit{\Pi}} \cdot \frac{\beta \cdot \omega_{i}}{\sqrt[2]{\frac{p_{Ni}}{10^{6}} \cdot \tau_{Ni}}}$ $K_{\mathit{\Pi}} \coloneqq 6.44 \cdot 10^{-5} \cdot \frac{s^{\frac{1}{2}}}{kg^{\frac{1}{2}} \cdot m^{\frac{3}{2}}} \cdot kg$ - коэф. согласования размерностей

$$m_{\Gamma 1} \coloneqq K_{\Pi} \cdot \frac{\beta \cdot \omega_1}{\sqrt[2]{rac{p_{N1}}{10^6} \cdot au_{N1}}} = 62.122 \; extbf{\textit{kg}}$$

$$m_{\Gamma 2} := K_{\Pi} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} = 23.464 \text{ kg}$$

Масса тепловой защиты сверхзвукой части

$$m_{o6i}$$
 = $K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_i}{\sqrt[2]{\frac{p_{Ni}}{10^6} \cdot \tau_{Ni}}} \cdot d'_{ai}^{1.75}$ $K_{o6} \coloneqq 2.81 \cdot 10^{-9} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{1}{2}}}{\frac{3}{2}} \cdot kg$ - коэф. согласования размерностей

$$m_{o61} \coloneqq K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_1}{\sqrt[2]{\frac{p_{N1}}{10^6} \cdot \tau_{N1}}} \cdot d'_{a1}^{1.75} = 42.464 \text{ kg}$$

$$m_{o62} \coloneqq K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} \cdot d'_{a2}^{1.75} = 67.256 \text{ kg}$$

3.3 Масса органов управления

$$3.3~{
m Macca}$$
 органов управления
$$K_{
m PM1} \coloneqq 0.65 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$$
 $m_{
m PMi} = K_{
m PMi} \cdot \frac{\omega_i}{\tau_{Ni} \cdot \sqrt[2]{D_i}}$ $m_{
m PM2} \coloneqq 0.57 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$ - коэф. согласования размерностей $m_{
m PM2} \coloneqq 0.57 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$

$$m_{\text{PM1}} := K_{\text{PM1}} \cdot \frac{\omega_1}{\tau_{N1} \cdot \sqrt[2]{D_1}} = 143.568 \ \textit{kg}$$

$$m_{\text{PM2}}\!:=\!K_{\text{PM2}}\!\cdot\!\frac{\omega_2}{\tau_{N2}\!\cdot\!\sqrt[2]{D_2}}\!=\!47.932\;\pmb{kg}$$

Масса конструкции ДУ

$$\begin{split} m_{\mathcal{A}\mathcal{Y}1} &\coloneqq m_{\mathsf{CK}1} + m_{\Phi\mathcal{I}1} + m_{\mathsf{i}01} + m_{\mathsf{3BY}1} + m_{\mathsf{BY}1} + m_{\mathsf{T3}\mathsf{\Gamma}1} + m_{\mathsf{3KC}1} + m_{\mathsf{y}01} + m_{\mathsf{T3}\mathsf{y}01} + m_{\mathsf{\kappa}\mathsf{p}1} + m_{\mathsf{\Gamma}1} + m_{\mathsf{o}61} + m_{\mathsf{PM}1} = \left(1.53 \cdot 10^3\right) \, \textit{kg} \\ \\ m_{\mathcal{A}\mathcal{Y}2} &\coloneqq m_{\mathsf{CK}2} + m_{\Phi\mathcal{I}2} + m_{\mathsf{i}02} + m_{\mathsf{3BY}2} + m_{\mathsf{BY}2} + m_{\mathsf{T3}\mathsf{\Gamma}2} + m_{\mathsf{3KC}2} + m_{\mathsf{y}02} + m_{\mathsf{T3}\mathsf{y}02} + m_{\mathsf{\kappa}\mathsf{p}2} + m_{\mathsf{F2}} + m_{\mathsf{o}62} + m_{\mathsf{PM}2} = 623.773 \, \textit{kg} \end{split}$$

3.4 Соотношения для расчета масс элементов ракеты

Необходимо построить предварительный чертеж ракеты, из которого определяются точные значения длин переходных и хвостовых отсеков, длина обтекателя и протяженность БКС ракеты.

Определим длину приборного отсека по его усредненной плотности:

$$m_{\text{CY}} = 105 \text{ kg}$$

$$\rho_{\text{CY}} = 300 \frac{\text{kg}}{\text{m}^3}$$

Объем будет равен:

$$V_{\text{CY}} = \frac{m_{\text{CY}}}{\rho_{\text{CY}}} = 0.35 \ \mathbf{m}^3$$

Примем диаметр приборного отсека равным диаметру второй ступени:

$$D_{CY} = D_2 = 1.268 \ m$$

$$l_{CY} \coloneqq \frac{4 \cdot V_{CY}}{\pi \cdot D_{CY}^2} = 0.277 \ \boldsymbol{m}$$

Для расчета масс отсеков, головного обтекателя, а также бортовой кабельной сети приведем предварительную компоновку ракеты

Масса отсеков:

$$m_{\textit{OTC}i} = \pi \cdot D_i \cdot \left(K_{\textit{\Pi XO}} \cdot l_{\textit{\Pi XO}i} + K_{\textit{XO}} \cdot l_{\textit{XO}i} \right)$$

$$K_{\text{XO}} \coloneqq 20 \; \frac{\textit{kg}}{\textit{m}^2} \;\;\;$$
 - коэффициент согласования для хвостовых отсеков

$$K_{\Pi XO1} \coloneqq 20 \; \frac{kg}{m^2} \;$$
 - коэффициент согласования для переходных отсеков в случае поперечного деления

$$K_{ extit{TIXO2}} \coloneqq 24 \; rac{m{kg}}{m{m}^2} \;\;$$
 - коэффициент согласования для переходных отсеков в случае продольно-поперечного деления

Разделение первой и второй ступеней происходит по горячей схеме.

Переходный отсек между первой и второй ступенями делится поперечной рубкой, боевая ступень отделяется от второй ступени продольно-поперечной рубкой. Из чертежа получим следующие длины хвостовых и переходных отсеков.

Я

Переходные отсеки

$$l_{\Pi XO1} \coloneqq 538 \ \textit{mm}$$
 $l_{\Pi XO2} \coloneqq 166 \ \textit{mm}$

Хвостовые отсеки:

$$l_{XO1} := 824.81 \ mm$$
 $l_{XO2} := 1190 \ mm$

Тогда масса отсеков первой ступени будет равна (переходный отсек между первой и второй ступенями относим к первой):

$$m_{OTC1} := \boldsymbol{\pi} \cdot D_1 \cdot (K_{\Pi XO1} \cdot l_{\Pi XO1} + K_{XO} \cdot l_{XO1}) = 127.76 \ \boldsymbol{kg}$$

Второй ступени:

$$m_{OTC2} := \pi \cdot D_2 \cdot (K_{\Pi XO2} \cdot l_{\Pi XO2} + K_{XO} \cdot l_{XO2}) = 110.699 \ kg$$

Бортовая кабельная сеть

$$m_{\mathit{BKC}i} = \left(0.8 \cdot l_{\mathit{cm}i} + 2\right) + \left(0.8 \cdot l_{\mathit{mp}i} + 2\right) \, \left(i - 1\right)$$

 l_{cmi} - длина ступени

 l_{mpi} - длина транзитных кабелей

$$l_{mpi} = l_{\Pi XOi} + 2 \cdot l_{\wp i} + l_{\iota \iota i} + l_{XOi}$$

 l_{cmi} измеряется от среза сопла до плоскости разделения

$$l_{cm1} = 6.534 \ m$$

$$l_{cm2} := 3.638 \ m$$

$$l_{mp2} \coloneqq l_{\Pi XO2} + 2 \cdot l_{\wp 2} + l_{u2} + l_{XO2} = 3.625 \ \boldsymbol{m}$$

$$m_{\text{BKC1}} \coloneqq \left(0.8 \cdot l_{cm1} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \mathbf{kg}\right) = 7.227 \mathbf{kg}$$

$$m_{\mathrm{BKC2}} \coloneqq \left(0.8 \cdot l_{\mathrm{cm2}} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \cdot \mathbf{kg}\right) + \left(0.8 \cdot l_{\mathrm{mp2}} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \cdot \mathbf{kg}\right) = 9.81 \ \mathbf{kg}$$

Масса обтекателя:

$$m_{\Gamma O} = S_{\Gamma O} \cdot K_{\Gamma O} + 10 \ kg$$

$$K_{\Gamma O} \coloneqq 20 \cdot \frac{kg}{m^2}$$
 коэффициент согласования при поперечном отделении ΓO

 $S_{\it \Gamma O}$ определим из чертежа для двух конусов

$$S_{\text{FO}} \coloneqq \boldsymbol{\pi} \boldsymbol{\cdot} \left(\frac{1268}{2} \ \boldsymbol{mm} + \frac{600}{2} \ \boldsymbol{mm} \right) \boldsymbol{\cdot} 1369 \ \boldsymbol{mm} + \boldsymbol{\pi} \boldsymbol{\cdot} \frac{600}{2} \ \boldsymbol{mm} \boldsymbol{\cdot} 860 \ \boldsymbol{mm}$$

$$S_{IO} = 4.828 \ m^2$$

$$L_{\Gamma O} \coloneqq 1600 \ \boldsymbol{mm}$$

$$L_{\Pi H} \coloneqq 1650 \; \boldsymbol{mm}$$

$$m_{\rm FO}\!\coloneqq\!S_{\rm FO}\!\cdot\!K_{\rm FO}\!+\!10~\pmb{kg}\!=\!106.55~\pmb{kg}$$

Приведем значения уточненных стартовых масс ступеней

Масса конструкции по ступеням:

Вторая ступень

$$m_{K\Sigma 2} \coloneqq m_{J\!\!\!/ 2} + m_{OTC2} + m_{FKC2} = 744.282 \ \textit{kg}$$

$$m_{M2} \coloneqq 0.03 \cdot m_{K\Sigma 2} = 22.328 \ \textit{kg}$$

$$m_{K2} \coloneqq m_{K\Sigma2} + m_{M2} = 766.61 \ kg$$

Первая ступень

$$m_{K\Sigma 1} := m_{JJ1} + m_{OTC1} + m_{FKC1} = (1.665 \cdot 10^3) \text{ kg}$$

$$m_{M1} := 0.03 \cdot m_{K\Sigma 1} = 49.953 \ kg$$

$$m_{K1} := m_{K\Sigma 1} + m_{M1} = (1.715 \cdot 10^3) \text{ kg}$$
 $m_0 = (2.362 \cdot 10^4) \text{ kg}$

Стартовые массы ступеней:

$$m_{02} \coloneqq m_{\Pi H} + m_{K2} + \omega_2 = 6.95$$
 tonne $\mu_2 \coloneqq \frac{\omega_2}{m_{02}} = 0.749$ $\alpha_{D/2} \coloneqq \frac{m_{D/2}}{\omega_2} = 0.12$

$$m_0 \coloneqq m_{02} + m_{K1} + \omega_1 = 24.044 \ \textit{tonne} \qquad \qquad \mu_1 \coloneqq \frac{\omega_1}{m_0} = 0.64 \qquad \qquad \alpha_{\text{ДУ1}} \coloneqq \frac{m_{\text{ДУ1}}}{\omega_1} = 0.099$$

4. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ АУТ И МАКСИМАЛЬНОЙ ДАЛЬНОСТИ ПОЛЕТА

Приращение скорости после работы ДУ i-ой ступени

$$V_{\kappa i} = K_{ai} \cdot J_{1i} \cdot \ln \left(\frac{1}{1 - \mu_i} \right) - \Delta V_{gi}$$

 K_{ai} - коэффициент учета потерь скорости i-ой ступени от наличия атмосферы

$$K_{a1} = 1 + K_{\Pi 1} - \frac{0.3 \cdot K_{\Pi 1} + \frac{4.8 \cdot \mu_{1}}{\tau_{N1} \cdot \sqrt[3]{\sin \left(\theta_{1}\right)^{2}}} \cdot \left(\frac{12000}{p_{M}}\right)}{\ln \left(\frac{1}{1 - \mu_{1}}\right)}$$

$$p_{M} \coloneqq \frac{m}{\left(\frac{1-\mu_{1}}{1-\mu_{1}}\right)} = 13088.848 \frac{kg}{m^{2}} \qquad J_{101} \coloneqq J_{1\Pi 1} - \frac{d'_{a1}{}^{2} \cdot 0.1 \frac{MPa \cdot \beta}{p_{N1}}}{p_{N1}} = 2602.19 \frac{m}{s}$$

$$K_{\Pi 1} \coloneqq \frac{J_{1\Pi 1}}{J_{101}} - 1 = 0.083$$

$$\theta_{K}^{\prime}\big(L\big)\!\coloneqq\!\operatorname{linterp}\big(L_{M},\theta_{K\!M}^{\prime},L\big)$$

$$\theta'_K := \theta'_K (11000 \cdot km) = 0.353$$

$${\theta'}_1 \coloneqq \mathrm{asin} \left(1 - \mu_1 \cdot \left(1 - \sin \left({\theta'}_K \right)^{0.8} \right) \right) = 0.687 \qquad \qquad {\theta'}_2 \coloneqq 0.25 \cdot {\theta'}_1 + 0.75 \cdot {\theta'}_K = 0.437$$

$$\theta_{K1} \coloneqq 0.5 \bullet \left(\theta'_1 + \theta'_2\right) = 0.562 \qquad \qquad \theta_{K2} \coloneqq \theta'_K \qquad \qquad \theta_{K3} \coloneqq \theta'_K \qquad \qquad \theta'_3 \coloneqq \theta'_K \qquad \qquad \theta'_4 \coloneqq \theta'_K \qquad \qquad \theta'_5 \coloneqq \theta'_K \qquad \qquad \theta'_$$

$$K_{a1} \coloneqq 1 + K_{\Pi 1} - \frac{4.8 \cdot \mu_1}{\frac{\tau_{N1}}{\textbf{s}} \cdot \sqrt[3]{\sin\left(\theta_{K1}\right)^2}} \cdot \left(\frac{12000 \cdot \frac{\textbf{kg}}{\textbf{m}^2}}{p_M}\right) \\ = 0.985$$

$$K_{a2} \coloneqq 1$$
 считаем, что потери отсутствуют

$$J_{11} := J_{101} = (2.602 \cdot 10^3) \frac{m}{s}$$

$$J_{12}\!\coloneqq\!J_{1 \sqcap 2}$$

$$\Delta V_{g1} = \mathbf{g} \cdot \tau_{N1} \cdot \sin \left(\theta'_{1}\right) = 354.452 \frac{\mathbf{m}}{8}$$

$$\Delta V_{g2}\coloneqq {m g} \cdot au_{N2} \cdot \sin\left({ heta'}_2\right) = 228.167 \, {m m} {m s}$$
 - потери скорости от воздействия гравитации

$$V_{\kappa 1} \coloneqq K_{a1} \cdot J_{11} \cdot \ln \left(\frac{1}{1 - \mu_1} \right) - \Delta V_{g1} = 2261.325 \frac{m}{s}$$

$$V_{{\mbox{\tiny κ}}2}\!\coloneqq\! K_{a2}\!\cdot\! J_{12}\!\cdot\! \ln\!\left(\!\frac{1}{1\!-\!\mu_2}\!\right)\!-\Delta\! V_{g2}\!=\!3866.743\,\frac{{\color{red}\boldsymbol{m}}}{{\color{red}\boldsymbol{s}}}$$

Конечная скорость в конце АУТ:

$$V_K := V_{\kappa 1} + V_{\kappa 2} = 6128.068 \frac{m}{8}$$

Определяем высоту конца активного участка

$$S(\mu) := \mu + (1 - \mu) \cdot \ln(1 - \mu)$$

$$\Delta h_{K1} \coloneqq \left(\frac{K_{a1} \boldsymbol{\cdot} J_{11} \boldsymbol{\cdot} \boldsymbol{\tau}_{N1}}{\mu_{1}} \boldsymbol{\cdot} S\left(\mu_{1}\right) - \frac{\boldsymbol{g} \boldsymbol{\cdot} \boldsymbol{\tau}_{N1}^{2}}{2} \boldsymbol{\cdot} \sin\left(\theta'_{1}\right)\right) \boldsymbol{\cdot} \sin\left(\theta'_{1}\right) = 32.962 \ \boldsymbol{km}$$

$$\Delta h_{K2} \coloneqq \left(V_{\kappa 1} \boldsymbol{\cdot} \boldsymbol{\tau}_{N1} + \frac{K_{a2} \boldsymbol{\cdot} J_{12} \boldsymbol{\cdot} \boldsymbol{\tau}_{N2}}{\mu_{2}} \boldsymbol{\cdot} S\left(\mu_{2}\right) - \frac{\boldsymbol{g} \boldsymbol{\cdot} \boldsymbol{\tau}_{N2}^{2}}{2} \boldsymbol{\cdot} \sin\left(\theta'_{2}\right)\right) \boldsymbol{\cdot} \sin\left(\theta'_{2}\right) = 88.857 \ \boldsymbol{km}$$

$$h_K \coloneqq \Delta h_{K1} + \Delta h_{K2} = 121.819$$
 km

Протяженность активного участка:

$$\Delta l_1 \coloneqq \Delta h_{K1} \cdot \cot \left(\theta_{K1}\right) = 52.364 \text{ km}$$

$$\Delta l_2 \coloneqq \Delta h_{K2} \cdot \cot \left(\theta_{K2} \right) = 240.857 \ \textit{km}$$

$$l_K := \Delta l_1 + \Delta l_2 = 293.221 \ km$$

Определим эллиптическую дальность полета ракеты:

$$R \coloneqq 6371 \ \textit{km} \qquad \mu_0 \coloneqq 3.988 \cdot 10^5 \cdot \frac{\textit{km}^3}{\textit{s}^2} \qquad \qquad r_K \coloneqq R + h_K = 6492.819 \ \textit{km}$$

$$v_K \coloneqq \frac{V_K^2 \cdot r_K}{\mu_0} = 0.611$$

$$L_{\textit{bAJ}} \coloneqq 2 \cdot R \cdot \operatorname{atan} \left(\frac{v_K \cdot \tan \left(\theta'_K \right)}{1 - v_K + \tan \left(\theta'_K \right)^2} \right) = 5173.179 \ \textit{km}$$

Тогда дальность полета будет равна:

$$L'_{max} := L_{\textit{FAJ}} + 2 \cdot l_K = 5759.621 \ \textit{km}$$

Перелет составляет

$$\Delta L \coloneqq L'_{max} - L_{max} = -240.379 \; \textit{km} \qquad \qquad \varepsilon \coloneqq \frac{\Delta L}{L_{max}} \cdot 100 = -4.006$$

Погрешность составляет $\varepsilon = -4.006$ процента, поэтому дальнейшая корректировка не требуется. Рассчитанные ранее параметры ракеты принимаем за конечные.