Einführung in die Grundlagen der Numerik

 $Vorlesungsmitschriften\ im\ Wintersemester\ 2018/19$

CONTENTS

1	Ort	hogonalisierungsverfahren	1			
	1.1	Eigenschaften orthogonaler Matrizen	1			
	1.2	Anwendung: Lineare Ausgleichsgeraden				
	1.3	Gram-Schmidt-Verfahren	4			
	1.4	Householder-Transformationen	5			
2	Gra	dienten- und CG-Verfahren	9			
	2.1	Abstiegsverfahren - Basics	9			
	2.2	Konstruktion von Abstiegsverfahren	10			
	2.3	Schrittweitenbestimmung	12			
\mathbf{A}	Insights from the exercise sheets					
	A.0	Sheet 0	13			
	A.1	Sheet 1	13			

VORWORT

Diese Vorlesungsmitschriften werden in der Vorlesung Einführung in die Grundlagen der Numerik von Prof. Ira Neitzel im Wintersemester 2018/19 an der Universität Bonn angefertigt.

Wir versuchen, diese immer unter https://pankratius.github.io zu aktualisieren.

Teile, die von der Vorlesung abweichen, sind in violett markiert.

Betrachte $A \in GL_n(\mathbb{R})$, wobei A schlecht konditioniert sein kann. Wir wollen ein Gleichungssystem der Form Ax = b, mit $b \in \mathbb{R}^n$ gegeben, lösen. Dazu suchen wir eine Orthogonalmatrix $Q \in O_n(\mathbb{R})$ und eine obere Dreiecksmatrix $R \in M_n(\mathbb{R})$ mit A = QR. Diese Zerlegung von A nennt man **Orthogonalzerlegung**. Dann erhalten wir das äquivalente Problem

$$Ax = b \iff QRx = b \iff Rx = Q^Tb.$$

1.1 Eigenschaften orthogonaler Matrizen

Lemma 1.1.1. Sei $Q \in \mathcal{O}_m(\mathbb{R})$ orthogonal. Dann ist auch Q^T orthogonal und es gilt

$$||Qx|| = \left| \left| Q^T x \right| \right| = ||x||$$

Proof. Es gilt

$$||Qx||^2 = x^T Q^T Q x = x^T x = ||x||.$$

Genauso für Q^T .

Lemma 1.1.2. Sei $A \in GL_n(\mathbb{R})$ regulär und $Q \in O_n(\mathbb{R})$ orthogonal. Dann gilt

$$\kappa_2(QA) = \kappa_2(A)$$

Proof. Die Matrixnorm ||A|| ist durch die euklidsche Norm induziert, i.e.

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

Also folgt aus lemma 1.1.1, dass ||(||QA) = ||(||A) gilt. Betrachte jetzt

$$||A^{-1}Q^T|| = \max_{x \neq 0} \frac{||A^{-1}Q^Tx||}{||x||} = \max_{x \neq 0} \frac{||A^{-1}Q^Tx||}{||Q^Tx||} \stackrel{y := Q^Tx}{=} \max_{y \neq 0} \frac{||A^{-1}||}{||y||} = ||A^{-1}||$$

Also ist für das LGS $Rx = Q^Tb : \kappa_2(R) = \kappa_2(A)$. Also hat sich die Kondition des Problems nicht verschlechtert.

1.2 Anwendung: Lineare Ausgleichsgeraden

Betrachte für gegebenes $b \in \mathbb{R}^n$ und $A \in \mathcal{M}_n(\mathbb{R})$ das Optimierungsproblem

$$\min_{x \in \mathbb{R}^n} ||Ax - b|| \,. \tag{O}$$

Dieses Problem ist äquivalent zur Optimierung von $||Ax - b||^2$.

Seien nun m Tupel $(y_i, f_i) \in \mathbb{R}^2$ $(1 \leq i \leq m)$ gegeben. Gesucht ist diejenige affine Gerade c + dy in \mathbb{R}^2 , so dass die Summe der Quadrate der Punkte von der Gerade minimal ist. Wir erhalten also das Optimierungsproblem

$$\min_{(c,d)\in\mathbb{R}^2} \left(\sum_{i=1}^m (c+dy_i - f_i)^2 \right) = \min_{(c,d)\in\mathbb{R}^2} \left\| \begin{pmatrix} 1 & y_1 \\ \vdots & \vdots \\ 1 & y_m \end{pmatrix} \cdot \begin{pmatrix} c \\ d \end{pmatrix} - \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix} \right\|.$$

Betrachte allgemeiner das Polynom

$$p(y) = \sum_{k=0}^{n-1} a_k y^k.$$

Gesucht sind jetzt die Koeffizienten $a_0, ..., a_{n-1}$ mit

$$\sum_{j=1}^{m} (p(y_j) - f_j)^2$$

ist minimal. Schreibe dies ebenfalls als Optimierungsproblem:

$$\min_{a_0,\dots,a_{n-1}} \left\| \begin{pmatrix} y_1^0 & \dots & y_1^{n-1} \\ \vdots & \ddots & \vdots \\ y_m^0 & \dots & y_m \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ \vdots \\ a_{n-1} \end{pmatrix} - \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix} \right\|^2.$$

End of Lecture 1

Die Existenz der Lösung des Optimierungsproblems folgt aus

$$\lim_{x \to \infty} ||Ax - b|| \to \infty,$$

und einer anschließenden Anwendung des Satzes von Weierstraß auf die kompakten Niveaumengen der Abbildung.

Theorem 1.2.1. (Weierstraß) Sei X ein kompakter metrischer Raum und $f: X \to \mathbb{R}$ eine stetige Abbildung. Dann nimmt f auf X sowohl ein Maximum als auch ein Minimum an.

Sei $f: X \to \mathbb{R}$, mit $X \subseteq \mathbb{R}$. Dann heißt $x_0 \in X$ ein **lokales Maximum** bzw. **lokales Minimum**, falls es eine Umgebung $x \in V$ gibt, so dass $f(x) \leq f(x_0)$ bzw. $f(x) \geq f(x_0)$ für alle $x \in V$ gilt.

Lemma 1.2.2. Sei $U \subset \mathbb{R}^n$ offen, und $f: U \to \mathbb{R}$. Angenommen, f hat in $x_0 \in U$ eine Extremstelle und ist in x_0 partiell differenzierbar. Dann gilt

$$\nabla f(a) = 0.$$

Proof. Betrachte für ein hinreichend kleines $\varepsilon > 0$ und $1 \le j \le n$ die Funktion

$$F: (-\varepsilon, \varepsilon) \to \mathbb{R}, \ t \mapsto F(x_0 + te_i).$$

Dann hat F in t = 0 eine Extremstelle, und es gilt

$$0 = F'(0) = \partial_j f(x_0)$$

Betrachte zur Lösung des Optimierungsproblems nun immer die Funktion

$$f: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto \frac{1}{2} ||Ax - b||^2.$$

Dann gilt für beliebiges $\overline{x} \in \mathbb{R}^n$

$$\langle \nabla f(\overline{x}), h \rangle = \langle A\overline{x} - b, Ah \rangle$$
$$= \langle A^T(A\overline{x} - b), h \rangle$$

Also gilt für eine Extremstelle \overline{x}

$$\nabla f(\overline{x}) = A^T (A\overline{x} - b) \stackrel{!}{=} 0 \iff A^T A \overline{x} = A^T b.$$
 (NE)

Zur Lösung des Optimierungsproblems müssen wir also ebenfalls ein Gleichungssystem lösen. Die Gleichung (NE) heißt **Normalengleichung**.

Für $A \in \mathbb{R}^{m,n}$ ist $B := AA^T$ symmetrisch. Weiterhin ist B positiv semi-definit, denn es gilt

$$\langle x, Bx \rangle = x^T Bx = x^T A A^T x = \langle A^T x, A^T x \rangle = ||A^T x|| \ge 0.$$

Weiterhin impliziert dies, dass alle Eigenwerte von x größer gleich null sind. Sei dazu λ ein Eigenwert und x ein korrespondierender Eigenvektor von B,

$$0 \le \langle Bx, x \rangle = \langle \lambda x, x \rangle = \lambda ||x||^2.$$

Also ist B positiv semi-definit. Angenommen, A hat nun vollen Rang. Dann ist A^T injektiv. Sei x ein Eigenvektor von B zum Eigenwert 0. Dann gilt

$$0 = \langle x, Bx \rangle = \left| \left| A^T x \right| \right|^2 \implies A^T x = 0 \implies x = 0.$$

Also hat B nur positive Eigenwerte. Nach dem euklidschen Spektralsatz [schroer] ist B aber diagonalisierbar. Also ist B sogar invertierbar, und die Normalengleichung hat hier jeweils eine eindeutig bestimmte Lösung. Im folgende habe A also immer maximalen Rang. Weil AA^T symmetrisch positiv-definit ist, kann man (NE) mit der Choleskyzerlegung lösen. Es gilt aber $\kappa_2(AA^T) = \kappa_2(A)^2$,

Wie ist die Kondition von A im nicht-quadratischen Fall definiert?

weshalb weitere Lösungsverfahren betrachtet werden müssen.

Dazu definieren wir die **erweiterte Orthogonalzerlegung** von $A \in \mathbb{R}^{m,n}$, mit $m \geq n$ durch

$$A = QR$$
, mit $Q \in \mathcal{O}_m \mathbb{R}$ und $R = \left(\frac{\hat{R}}{0}\right)$,

wobei $\hat{R} \in \mathbb{R}^{n,n}$ eine obere Dreiecksmatrix ist. R heißt in diesem Fall **erweiterte obere** Dreiecksmatrix

Angenommen, eine solche Zerlegung existiert. Dann gilt

$$||Ax - b||^{2} = ||QRx - b||^{2}$$

$$= ||QRX - QQ^{T}b||^{2}$$

$$= ||Q(Rx + Q^{T}b)||$$

$$= \left\| \left(\frac{\hat{R}}{0} \right) x - \left(\frac{y_{1}}{y_{2}} \right) \right\|$$

$$= \left\| \left| \hat{R}x' - y_{1} \right|^{2} + ||y_{2}||^{2},$$

für passend gewählte y_1, y_2 . Weil y_2 aber fix ist, reicht es,

$$\left\| \hat{R}x - y_1 \right\|^2$$

zu minimieren.

Theorem 1.2.3. Sei $1 \le n \le m$ und $A \in \mathbb{R}^{m,n}$, mit deg A = n. Angenommen, A hat eine erweiterte Orthogonalzerlegung. Sei

$$Q^T =: \left(\frac{y_1}{y_2}\right),\,$$

 $mit \ y_1 \in \mathbb{R}^n \ und \ y_2 \in \mathbb{R}^{m-n}$. Dann $sind \ \ddot{a}quivalent$

- i) $\overline{x} \in \mathbb{R}^n$ löst das Optimierungsproblem (O).
- ii) $\hat{R}x = y_1$.

1.3 Gram-Schmidt-Verfahren

Wir wollen die Existenz einer Orthogonalzerlegung von A zeigen. Dazu verwenden wir [schroer]

Proposition 1.3.1. (Gram-Schmidtsches Orthogonalisierungsverfahren) Sei V ein n-dimensionaler euklidischer Vektorraum und $(b_1, ..., b_n)$ eine geordnete Basis von V. Für $1 \le i \le n$ sei

$$V_i := \operatorname{Lin}(b_1, ..., b_i),$$

die also eine Flagge

$$0 = V_0 \subset V_1 \subset ... \subset V_n = V$$

bilden. Dann gibt es eine geordnete Orthogonalbasis $(\hat{b}_n,...,\hat{b}_n)$ von V, so dass

$$V_i = \operatorname{Lin}(\hat{b}_1, \dots, \hat{b}_n) \tag{*}$$

gilt.

Theorem 1.3.2. Für jede reguläre Matrix $A \in GL_n(\mathbb{R})$ existiert eine orthogonale Matrix $Q \in O_n(\mathbb{R})$ und eine obere Dreiecksmatrix $R \in M_n \mathbb{R}$, so dass A = QR gilt.

Proof. Aus (*) folgt, dass für die Abbildung

$$g: V \to V, \ b_i \mapsto \hat{b}_i$$

oben die Koordinatenmatrix bezüglich B in oberer Dreiecksform sein muss. Weiterhin ist g per Definition ein Isomorphismus.

Betrachte nun den konkreten Fall für $A \in GL_n(\mathbb{R})$. Dann bilden die Spalten von A^{-1} eine geordnete Basis von \mathbb{R}^n . Also gibt es eine obere Dreiecksmatrix g, so dass

$$gA^{-1} = Q,$$

wobei $Q \in O_n(\mathbb{R})$ orthogonal ist. Dabei haben wir benutzt, dass eine Matrix Q genau dann orthogonal ist, wenn ihre Spalten eine Orthonormalbasis von \mathbb{R}^n bilden [schroer]. Damit erhalten wir aber

$$A = Q^{-1}g,$$

und $Q^{-1} \in \mathcal{O}_n(\mathbb{R})$, weil die orthogonalen Matrizen eine Gruppe bilden.

1.4 Householder-Transformationen

Betrachte für ein fixes $w \in \mathbb{R}^s$ mit $w^T w = 1$ die Abbildung

$$H: \mathbb{R}^s \to \mathbb{R}^s, x \mapsto x - 2ww^Tx.$$

Die Abbildung H heißt Householder-Spiegelung.

Proposition 1.4.1. Für ein solches H gilt

- $i) H^T = H$
- $ii) H^2 = E_s,$

also ist H insbesondere eine orthogonale Matrix, $H \in O_s(\mathbb{R})$.

Proof. i)
$$H^T = (E_s - 2ww^T)^T = E_s^T - 2(w^T)(w^T) = E_s - 2ww^T = H$$

ii) Es gilt $\mathbb{R}^s = \text{Lin}(w) \perp (\text{Lin}(w))^{\perp}$. Weil H linear ist, genügen die folgenden beiden Ergebnisse

$$H(w) = w - 2(ww^T)w = w - 2w(w^Tw) = w - 2w = -w,$$

und für $v \perp w$

$$H(v) = v - 2(ww^T)v = v - 2w(w^Tv) = v.$$

End of Lecture 2

Die Idee ist jetzt, eine gegebene Matrix A durch Householder-Transformationen in eine verallgemeinerte obere Dreiecksform zu bringen. Dazu wollen wir zuerst einen Vektor $w \in \mathbb{R}^2$ finden, so dass die Spiegelung der ersten Spalte von A an w ein skalares Vielfaches des ersten Einheitsvektors ist. Induktiv fährt man dann mit der $m-1 \times n-1$ -Teilmatrix fort:

Lemma 1.4.2. Sei $0 \neq x \in \mathbb{R}^s$, so dass $x \ni \text{Lin } e_1$. Für

$$w := \frac{x + \sigma e_1}{||x + \sigma e_1||} \ mit \ \sigma = \pm ||x||$$

gilt:

i)
$$||w|| = 1$$
,

$$(E_s - 2ww^T)x = -\sigma e_1$$

Proof. Es gilt $||x + \sigma e_1||$, da x und e_1 nach Voraussetzung linear unabhängig sind. i) folgt dann sofort. ii) folgt durch rechnen:

$$||x + \sigma e_1||^2 = \langle x + \sigma e_1, x + \sigma e_1 \rangle = \langle x, x \rangle + 2\langle x, e_1 \rangle + \sigma^2 \langle e_1, e_1 \rangle$$
$$= 2\langle x, x \rangle + 2\sigma \langle e_1, x \rangle$$
$$= 2\langle x + \sigma e_1, x \rangle$$

Mit der Definition von w folgt

$$2w^{T}x = \frac{2(x + \sigma e_1)^{T}x}{||x + \sigma e_1||}$$
$$= \frac{2\langle x + \sigma e_1, x \rangle}{||x + \sigma e_1||}$$
$$= 2||x + \sigma e_1||,$$

so dass wir schlussendlich

$$2ww^{T}x = \frac{x + \sigma e_{1}}{||x + \sigma e_{1}||} ||x + \sigma e_{1}|| \implies (E_{s} - 2ww^{T})x = x - (x + \sigma e_{1}) = -\sigma e_{1}$$

erhalten. \Box

Sei nun $a \in \mathbb{R}^{m,n}$ mit vollem Rang. Setze

$$A^{(1)} := A$$
, und

matrix $A^{(k)}$ hinzufügen.

Wir suchen nun eine orthogonale Matrix $\hat{H}_k \in \mathcal{O}_m(\mathbb{R})$, so dass

$$A^{(k+1)} = \hat{H}_k A^{(k)} \text{ mit } \hat{H}_k = \begin{pmatrix} I_{k-1} & 0\\ 0 & H_k \end{pmatrix},$$

woher kommen die beiden Matrizen?

Nach lemma 1.4.2 gibt es aber eine Householder-Transformation H_k , so dass

$$H_k \begin{pmatrix} \tilde{a}_{k,k}^{(k)} \\ \vdots \\ \tilde{a}_{m,k}^{(k)} \end{pmatrix} = \begin{pmatrix} -\sigma_k \\ 0 \\ \vdots \end{pmatrix}$$

ist. Iterativ erhalten wir eine Matrix

$$R := \hat{H}_{n^*-1} \dots \hat{H}_1 A \in \mathbb{R}^{m,n}$$

die in verallgemeinerter oberer Dreiecksform ist. Also gilt, weil die \hat{H}_k orthogonal sind,

$$A = (\hat{H}_{n^*-1} \dots \hat{H}_1)^T R = \hat{H}_1^T \dots \hat{H}_{n^*-1}^T R$$

Also haben wir gezeigt:

Theorem 1.4.3 (Existenz einer QR-Zerlegung). Zu jeder Matrix $A \in \mathbb{R}^{m,n}$ mit m > n und maximialem Rang gibt es eine orthogonale Matrix $Q \in O_n(\mathbb{R})$ sowie eine reguläre Matrix $R \in \mathbb{R}m, n$ mit

$$R\left(\frac{\hat{R}}{0}\right)$$
 und $\hat{R} \in \mathcal{M}_n(\mathbb{R})$ in observe Dreiecksform,

so dass

$$A = QR$$
.

Example 1.4.4. Betrachte

$$A = \begin{pmatrix} 3 & 5 \\ 0 & 2 \\ 0 & 0 \\ 4 & 5 \end{pmatrix} \in \mathbb{R}4, 2$$

i) Spiegelung von $v_1 := (3,0,0,4)^T$ auf $(-1,0,0,0)^T$: Setze $\sigma_1 = 1$ und es gilt $||v_1|| = 5$. Nach lemma 1.4.2 ist für

End of Lecture 3

_	
1	Orthogonalisierungsverfahren

End of Lecture 4

The part about $\bf Moore\text{-}Penrose\text{-}Inverse$ is still missing

Wir betrachten eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$, die genügend glatt ist. Was genau das heißt, werden wir später spezifizieren. Für diese wollen wir das **reduzierte Minimierungsproblem**

$$\min_{x \in \mathbb{R}^n} f(x)$$

lösen. Dabei optimieren wir über den ganzen Raum \mathbb{R}^n , es gibt also keine Nebenbedingungen.

Wir nehmen immer an, dass es ein $x_0 \in \mathbb{R}^n$ gibt, so dass die **Niveaumenge**

$$N_{f(x_0)} = \{ x \in \mathbb{R}^n \mid f(x) \le f(x_0) \}$$

kompakt ist. Weil f stetig ist, garantiert diese Annahme die Existenz eines globalen Minimums.

End of Lecture 5 |

2.1 Abstiegsverfahren - Basics

Ausgehend von einem Startwert $x^0 \in \mathbb{R}^n$ wollen wir iterativ zu einer lokalen kritischen Stelle kommen. Dazu gehen wir im k-ten Interationsschritt vom aktuellen Wert x^k eine Schrittweite $\sigma_k \in \mathbb{R}$ entlang des Abstiegsrichtungsvektors $d_k \in \mathbb{R}^n$. Die Parameter wählen wir so, dass

$$f(x^k + \sigma_k d_k) < f(x^k)$$

erfüllt ist, und setzen dann

$$x^{k+1} := x^k + \sigma_k d_k.$$

Es muss jetzt natürlich geklärt werden, unter welchen Bedingungen dieses Verfahren tatsächlich konvergier.

Lemma 2.1.1. Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine in $x \in \mathbb{R}^n$ differenzierbare Funktion. Weiterhin sei $d \in \mathbb{R}^n$ so dass $\nabla f(x)^T d < 0$ gilt. Dann gibt es ein $\overline{\sigma} > 0$, so dass

$$f(x + \sigma d) < f(x)$$
 für alle $\sigma \in (0, \overline{\sigma})$.

Proof. Es gilt

$$0 > \nabla f(x)^T d = \lim_{\sigma \downarrow 0} \frac{f(x + \sigma d) - f(x)}{\sigma}$$

Für σ klein genug folgt damit schon die Behauptung.

Definition 2.1.2. Sei $f: \mathbb{R}^n \to \mathbb{R}$ differnzierbar in $x \in \mathbb{R}^n$. Ein $d \in \mathbb{R}^n$ heißt **Abstiegsrichtung von** f in x, wenn

$$\nabla f(x)^T d < 0$$

gilt.

Remark 2.1.3. Angenommen, $(f(x^k))_k$ ist monton fallend (also bspw. wie oben). Dann ist $x^k \in N_{f(x_0)}$ für alle k. Weil wir diese Menge als kompakt angenommen haben folgt, dass sowohl $(x^k)_k$ und $f(x^k)_k$ beschränkt sind.

Example 2.1.4. Angenommen, $\nabla f(x) \neq 0$. Dann gilt

$$\nabla f(x)^T \nabla f(x) = -\left|\left|\nabla f(x)\right|\right|^2 < 0.$$

Es handelt sich bei $-\nabla f(x)$ also um eine Abstiegsrichtung. Wir $-\nabla f(x)$ auch den **Antigradienten** von f in x.

2.2 Konstruktion von Abstiegsverfahren

2.2.1 effiziente Schrittweiten

Angenommen, wir haben im k-ten Schritt eine Abstiegsrichtung d_k vorgegeben. Dann gibt es nach lemma 2.1.1 ein hinreichend kleines σ_k , sodass $f(x_k + \sigma_k d_k) < f(x_k)$ ist. Wir erhalten also eine streng monoton fallende Folge $(f(x_k))_k$. Das ist aber nicht ausreichend, um Konvergenz zu erhalten.

Example 2.2.1. Betrachte die Funktion $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$, die Abstiegsrichtung $d_k = -1$ und die Schrittweite $\sigma_k = (1/2)^k$. Dann ist

$$x^{k+1} = x^k - \sigma_k = x_0 - \sum_{i=0}^k \left(\frac{1}{2}\right)^i = 1/2 + \left(\frac{1}{2}\right)^{k+1}$$

Also ist $x^{k+1} < x^k$ und $f(x_k)_k$ definiert tatsächlich eine monoton fallende Folge. Allerdings konvergiert $x_k \to 1/2$, und damit $f(x_k) \to 1/4 \neq 0$ nicht gegen einen kritischen Punkt.

Wir müssen also (bei gegebenen Abstiegsrichtungen) bestimmte Vorraussetzungen an $(\sigma_k)_k$ stellen, um tatsächlich die Konvergenz

$$\lim_{k \to \infty} \nabla f(x_k) = 0 \tag{2.1}$$

zu erhalten.

Zunächst (Warum?) wollen wir

$$\lim_{k \to \infty} \frac{\nabla f(x^k)^T d^k}{||d^k||} = 0.$$
 (2.2)

erreichen.

Dazu stellen wir fest, dass für hinreichend kleine Schrittweiten in erster Näherung (Taylor) gilt

$$f(\underbrace{x^k + \sigma_k d^k}_{=x^{k+1}}) - f(x^k) \approx \sigma_k \nabla f(x^k)^T d^k$$

Ist die Folge $(f(x^k))_k$ streng monoton fallend, geht der linke Teil gegen Null $f(x_k)$ (vgl. remark 2.1.3). Es scheint also Sinn zu machen,

$$f(x^k + \sigma^k d^k) - f(x^k) \le C_1 \nabla f(x^k)^T d^k \tag{A}$$

zu fordern, wobei $C_1>0\in\mathbb{R}$ eine von k unabhängige Konstante ist.

In example 2.2.1 haben wir gesehen, dass die Schrittweite auch im Vergleich zu $\nabla f(x^k)^T d^k$ nicht zu schnell gegen null gehen darf, weil wir sonst stecken bleiben. Also fordern wir zusätzlich direkt von der Schrittweite

$$\sigma_k \ge -C_2 \frac{\nabla f(x^k)^T d^k}{||d^k||^2},\tag{B}$$

mit $C_2 > 0$ unabhängig von k.

Diese Bedingung war in example 2.2.1 auch nicht erfüllt, denn es hätte $\sigma_k \geq C_2 x^k$ gelten müssen.

Führen wir die beiden Bedingungen zusammen, erhalten wir die abgeleitete Bedingungen

$$f(x^k + \sigma_k d^k) \le f(x^k) - \underbrace{(c_1 c_2)}_{=:c} \left(\frac{\nabla f(xk)^T d^k}{||d^k||} \right)^2.$$
 (C)

Definition 2.2.2. Eine Schrittweitenfolge (σ_k) erfüllt das **Prinzip des hinreichenden Abstieges**, wenn (A) und (B) für sie gelten. Sie heiß **effizient**, wenn (C) für sie gilt.

Die Existenz von effizienten Schrittweiten wird auf Übungsblatt IV gezeigt (vgl. alternativ [alt2002nichtlineare]).

Wenn eine Schrittweite effizient ist, dann genügt sie schon der vorläufigen Bedingung (2.2), denn die Differenzfolge $f(x^{k+1}) - f(x^k)$ ist eine Nullfolge.

2.2.2 Gradientenbezogene Suchrichtungen

Das $(\sigma_k)_k$ effzient ist, ist aber noch nicht ausreichend, damit $(\sigma_k)_k$ auch tatsächlich (2.1) erfüllt. Beispielsweise kann d_k orthogonal zu $\nabla f(x^k)$ stehen. Setze

$$\beta_k := \frac{\nabla f(x^k)^T d^k}{||\nabla f(x^k)|| \, ||d^k||} = \cos(\angle \nabla f(x^k), d^k).$$

Dann gilt

$$\frac{\nabla f(x^k)^T d^k}{||\nabla f(x^k)|| \, ||d^k||} = \beta_k \left| \left| \nabla f(x^k) \right| \right|.$$

Ist $(\sigma_k)_k$ so, dass (2.2) erfüllt ist, und ist

$$-\beta_k \ge c > 0$$

für ein $c \in \mathbb{R}$, dann ist auch (2.1) erfüllt.

Definition 2.2.3. Eine Richtung d heißt **gradientenbezogen** in $x \in N_{f(x_0)}$, falls

$$\nabla f(x)d \geq C_3 ||\nabla f(x)|| ||d||$$

mit einer von x und d unabhängigen Konstate $C_3 > 0$ gilt. Sie heißt **streng gradientenbezogen**, falls zusätzlich

$$|C_4||\nabla f(x)|| \ge ||d|| \ge \frac{1}{C_4}||\nabla f(x)||$$

mit einer von x und d Konstanten $C_4 > 0$ gilt.

Remark 2.2.4. Setzt man $d = -\nabla f(x)$, so ist d streng gradientenbezogen, mit $C_3 = C_4 = 1$.

2.3 Schrittweitenbestimmung

Nachdem wir Kriterien an Schrittweite und Abstiegsrichtung gefunden haben, mit denen wir eine Konvergenz hin zu einem kritischen Punkt finden können, versuchen wir, genau solche exakten Schrittweiten zu berechnen.

2.3.1 exakte Schrittweiten

Angenommen, wir haben eine Abstiegsrichtung d vorgegeben. Ein Ansatz für die Bestimmung der Schrittweite ist das Lösen des 1-dimensionalen Minimierungsproblem

$$\sigma := \arg\min_{s \ge 0} \varphi(s) \text{ mit } \varphi : \mathbb{R}^{\ge 0} \to \mathbb{R}, s \mapsto f(x + sd). \tag{2.3}$$

Das ist auch nicht wirklich einfacher. Nach der Voraussetzung der kompakten Niveaumenge hat $\phi'(s)$ aber eine kleineste positive Nullstelle σ_E . Diese heißt **exakte Schrittweite**. Man kann dann zeigen, dass σ_E auch effizient ist.

End of Lecture 6

12 2018-11-01,16:20:49

A.0 Sheet 0

Definition A.0.1. Die **Frechet-Ableitung** bezeichnet die gewöhnliche totale Ableitung einer Funktion $\mathbb{R}^n \to \mathbb{R}$.

Definition A.0.2. Sei $A \in M_n(\mathbb{K})$. Der **Spektralradius** von A ist definiert als

$$\rho(A) := \max\{|\lambda_1|, ..., |\lambda_n|\},\$$

wobei $\lambda_1, ..., \lambda_n$ die (möglicherweise komplexen) Eigenwerte von A darstellen.

Proposition A.0.3. Sei $M \in M_n(\mathbb{R})$, und

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Mx + c.$$

Dann sind äquivalent:

- i) Für den Spektralradius p gilt p(M) < 1.
- ii) Die Fixpunktiteration

$$x_{k+1} := \varphi(x_k)$$

konvergiert für ein beliebiges $x_0 \in \mathbb{R}^n$.

Solution A.0.2. Es gilt für das in der Aufgabenstellung spezifizierte ψ :

{Eigenwerte von
$$\psi$$
} = $\lambda + (1 - \lambda) \cdot \{$ Eigenwerte von φ },

wobei jeweils nur der lineare Teil betrachtet wurde. Nutze nun proposition A.O.3.

Proposition A.0.4. Das Jacobi-Verfahren für die Matrix

$$A = D - L - R$$

konvergiert, falls für die Matrix

$$I_{Jac.} := D^{-1}(L+R)$$

der Spektralradius größer 1 ist. Es konvergiert nicht, wenn der Spektralradius kleiner 1 ist.

Definition A.0.5. Die **Newton-Iteration** ist gegeben durch

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)}$$

A.1 Sheet 1

Proposition A.1.1. Für $A \in \mathbb{R}^{m,n}$ ist die Operatornorm bzgl. der eukldischen Norm gegeben durch

$$||A||_2 = \rho(A^T A)$$