

OLS: Properties of Estimates

 \square Both $\hat{\beta}_{\mathbb{Q}}$ and $\hat{\beta}_{\mathbb{I}}$ estimates are unbiased

$$E[\hat{\beta}_0] = \beta_0, \quad E[\hat{\beta}_1] = \beta_1$$

□ Variance of the estimates

$$\operatorname{var}[\hat{\beta}_1] = \frac{\sigma^2}{S_{xx}}, \quad \operatorname{var}[\hat{\beta}_0] = \sigma^2 \frac{\sum x_i^2}{n \, S_{xx}}$$

 \Box Estimate of σ^2

$$\hat{\sigma}^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n-2} = \frac{\text{SSE}}{n-2}$$

 \Box Distribution of slope estimate $\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \frac{\sigma^2}{S_{xx}})$

Data Analytics

rivate Limited

OLS: Confidence Intervals on regression coefficients

 \square 95% two-sided confidence intervals (CI) for $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\beta_1 \in [\hat{\beta}_1 - 2.18\, s_{\hat{\beta}_1}, \hat{\beta}_1 + 2.18\, s_{\hat{\beta}_1}], \quad s_{\hat{\beta}_1} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{(n-2)S_{xx}}}$$

$$\begin{split} \beta_0 \in [\hat{\beta}_0 - 2.18 \, s_{\hat{\beta}_0}, \hat{\beta}_0 + 2.18 \, s_{\hat{\beta}_0}], \quad s_{\hat{\beta}_0} &= s_e \sqrt{\frac{\sum x_i^2}{n \, S_{xx}}} \\ s_e &= \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{(n-2)}} \end{split}$$

Data Analy

3

OLS: Hypotheses test on regression coefficients

- \square In order to check if linear model fit is good or not we can test whether estimate $\hat{\beta}_1$ is significant (different from zero) or not
- \square Null hypothesis $H_0: \beta_1 = 0$
- \square Alternative hypothesis $H_1: \beta_1 \neq 0$
- \square Null hypothesis implies $\hat{y}_i = \hat{\beta}_0 + \epsilon_i$ Reduced Model
- \Box Alternative hypothesis implies $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i$ Full Model
- \square Do not Reject null hypothesis if CI for β_1 includes 0
- \square Similarly if CI for $\hat{\beta}_0$ includes 0, then intercept term is insignificant

Data Analytics

33

GyanData Private Limiter

OLS: Confidence Intervals on regression coefficients

 \square 95% two-sided confidence intervals (CI) for $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\beta_1 \in [\hat{\beta}_1 - 2.18\,s_{\hat{\beta}_1}, \hat{\beta}_{\mathbf{l_t}} + 2.18\,s_{\hat{\beta}_1}], \quad s_{\hat{\beta}_1} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{(n-2)S_{xx}}}$$

$$\begin{split} \beta_0 \in [\hat{\beta}_0 - 2.18\,s_{\hat{\beta}_0}, \hat{\beta}_0 + 2.18\,s_{\hat{\beta}_0}], \quad s_{\hat{\beta}_0} &= s_e \sqrt{\frac{\sum x_i^2}{n\,S_{xx}}} \\ s_e &= \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{(n-2)}} \end{split}$$

Data Analytics

32

OLS: Sum Squared Quantities - Definitions

$$SSE = \sum (y_i - \hat{y}_i)^2$$
$$SSR = \sum (\hat{y}_i - \bar{y})^2$$
$$SST = \sum (y_i - \bar{y})^2$$

Data Analytics

GyanData Private Limited

OLS: F-Test for choosing between models

- ☐ F-test for rejecting reduced model
- □ SST is goodness of fit for reduced model (null hypothesis)
- □ SSE is goodness of fit for full model (alternative hypothesis)
- \Box F-statistic $F_o = \frac{SST SSE}{SSE/(n-2)} = \frac{SSR}{SSE/(n-2)}$
- □ At 5% level of significance reject null hypothesis if $F_o \ge F_{(1,n-2;0.05)}$ (upper critical value of F distribution with 1 and n-2 dfs)
 - ☐ Note that the numerator has 1 df

Data Analytic

35

OLS: Example using R

Call: lm(formula = Minutes ~ Units)

Residuals: Min 1Q Median 3Q Max -9.2318 -3.3415 -0.7143 4.7769 7.8033

Residual standard error: 5.392 on 12 degrees of freedom Multiple R-squared: 0.9874, Adjusted R-squared: 0.9864 F-statistic: 943.2 on 1 and 12 DF, p-value: 8.916e-13

Data Analytics

GyanData Private Limited

OLS: Example

Call: lm(formula = Minutes ~ Units)

Residuals: Min 1Q Median 3Q Max -9.2318 -3.3415 -0.7143 4.7769 7.8033

Coefficients: Estimate Std. Error t value Pr(>|t|) (Inter $\hat{\beta}_0$ t) 4.162 $\hat{\beta}_0$ 3.355 1.24 0.239 Units $\hat{\beta}_1$ 15.509 $\hat{\beta}_0$ 0.505 30.71 8.92e-13 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.392 on 12 degrees of freedom Multiple R-squared: 0.9874, Adjusted R-squared: 0.9864 F-statistic: 943.2 on 1 and 12 DF, p-value: 8.916e-13

 β_0 (Intercept) -3.148 11.472 β_1 Units 14.409 16.609

Data Analytics