Вычисление up(x) через моменты.

$$a_n = \int_{-1}^{1} x^n \operatorname{up}(x) dx$$

$$b_n = \int_{0}^{1} x^n \operatorname{up}(x) dx$$

$$a_0 = 1, \quad a_{2n} = (-1)^n c_{2n}(2n)!, \quad a_{2n-1} = 0$$

$$b_0 = \frac{1}{2}, \quad b_{2n} = \frac{a_{2n}}{2}, \quad b_{2n-1} = \frac{1}{n2^{2n+1}} \sum_{j=0}^{n} C_{2n}^{2j} a_{2j}$$

$$c_0 = 1, \quad c_{2n} = \frac{1}{4^{n-1}} \sum_{j=0}^{n-1} \frac{(-1)^{n-j} c_{2j}}{(2n-2j+1)!}$$

$$\operatorname{up}(x) = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{s_k} p_k}{2^{k(k-1)/2}} \sum_{j=0}^{k} \frac{b_{k-j-1}}{(k-j-1)! j!} (\{|x| \cdot 2^k\})^j \quad \text{где}$$

$$b_{-1} = 1, \qquad p_k = [|x| \cdot 2^k] \mod 2, \qquad s_k = \sum_{j=1}^{k} p_j$$

Результаты вычислений по этим формулам согласуются с результатами, полученными численным интегрированием. Таблица значений $a,\,b,\,c$:

n	a_n	b_n	c_n
0	1.000000	0.500000	1.000000
1	0.000000	0.138889	-0.055556
2	0.111111	0.055556	0.001173
3	0.000000	0.026481	-0.000014
4	0.028148	0.014074	0.000000
5	0.000000	0.008069	-0.000000
6	0.009793	0.004896	0.000000
7	0.000000	0.003105	-0.000000
8	0.004082	0.002041	-0.000000
9	0.000000	0.001382	-0.000000
10	0.001919	0.000960	0.000000
11	0.000000	0.000681	0.000000
12	0.001026	0.000513	0.000000
13	0.000000	0.000362	0.000000
14	0.000048	0.000024	0.000000
15	0.000000	0.000204	0.000000
16	-0.000105	-0.000053	0.000000
17	0.000000	0.000120	0.000000
18	-0.000031	-0.000015	0.000000
19	0.000000	0.000000	0.000000

В двоично-рациональных точках: