MCSC 6020G - Numerical Analysis Assignment 1

Parikshit Bajpai

Question 1

(a) Skew-symmetric matrix

A square matrix A is called skew-symmetric if $A^T = -A$ i.e. $a_{ij} = -aji$. A general example of such a matrix is:

$$A = \begin{bmatrix} 0 & \lambda_{11} & \dots & \lambda_{1n} \\ -\lambda_{11} & 0 & \dots & \lambda_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -\lambda_{1n} & -\lambda_{2n} & \dots & 0 \end{bmatrix}$$

where, $\lambda_{ij} \in \mathbb{R}$.

A specific example of a skew-symmetric matrix is as follows:

$$A = \begin{bmatrix} 0 & \pi & \sqrt{2} \\ -\pi & 0 & -e \\ -\sqrt{2} & e & 0 \end{bmatrix}$$

(b) Orthogonality

To prove. If B is a skew-symmetric matrix, then $A = (\mathbb{I} + B)(\mathbb{I} - B)^{-1}$ is orthogonal, where \mathbb{I} is an identity matrix.

Proof. For a matrix A to be orthogonal, $A^TA = 1$, i.e., $A^T = A^{-1}$. For a skew-symmetric matrix B, we can define $A = (\mathbb{I} + B)(\mathbb{I} - B)^{-1}$. Then,

$$A^{T} = \left((\mathbb{I} + B) (\mathbb{I} - B)^{-1} \right)^{T}$$

$$= \left((\mathbb{I} - B)^{-1} \right)^{T} (\mathbb{I} + B)^{T} \qquad (\because (XY)^{T} = X^{T}Y^{T})$$

$$= \left((\mathbb{I} - B)^{T} \right)^{-1} (\mathbb{I} + B)^{T} \qquad (\because (X^{-1})^{T} = (X^{T})^{-1})$$

$$= (\mathbb{I}^{T} - B^{T})^{-1} (\mathbb{I}^{T} + B^{T}) \qquad (\text{Distributivity})$$

$$= (\mathbb{I} + B)^{-1} (\mathbb{I} - B) \qquad (\because B^{T} = -B)$$

$$= (\mathbb{I} - B) (\mathbb{I} + B)^{-1} \qquad (\text{Commutativity}^{1})$$

$$= A^{-1}$$

 $[\]overline{(I+B)^{-1}}$ and $\overline{(I-B)}$ are simultaneously diagonalisable matrices and, in such cases, matrix multiplication is commutative.

Question 2

To prove. For a complex-valued vector $v \in \mathbb{C}^n$, $\frac{1}{n}||v||_1 \leq ||v||_\infty \leq ||v||_2$

Proof. Let
$$||v||_{\infty} = \max_{i} |v_i|$$
 and $||v||_p = \left(\sum_{i} |v_i|^p\right)^{\frac{1}{p}}$

$$\begin{split} \|v\|_p &= \|v\|_{\infty} \frac{(\sum_i |v_i|^p)^{\frac{1}{p}}}{\|v\|_{\infty}} \\ &= \|v\|_{\infty} \left(\sum_i \frac{|v_i|^p}{\|v\|_{\infty}^p}\right)^{\frac{1}{p}} \\ &= \|v\|_{\infty} \left(\sum_i \left(\frac{|v_i|}{\|v\|_{\infty}}\right)^p\right)^{\frac{1}{p}} \\ &\leq \|v\|_{\infty} n^{\frac{1}{p}} \qquad \qquad \left(\because \left(\frac{|v_i|}{\|v\|_{\infty}}\right)^p \leq 1, \forall i\right) \end{split}$$

Thus we have 2

$$||v||_{\infty} \le ||v||_p \le ||v||_{\infty} n^{\frac{1}{p}}$$

So, taking p = 1 and p = 2, we get

$$||v||_{\infty} \le ||v||_{1} \le ||v||_{\infty} n$$
 $(p=1)$
 $||v||_{\infty} \le ||v||_{p} \le ||v||_{\infty} \sqrt{n}$ $(p=2)$

Therefore, from the above two inequalities,

$$\frac{1}{n} \|v\|_1 \le \|v\|_{\infty} \le \|v\|_2$$

Question 3

(a) Determinant of a matrix using LU factorisation

Since determinant respects matrix multiplication,

$$PA = LU$$

$$\det PA = \det LU$$

$$\det P \det A = \det L \det U$$

$$\det A = \begin{cases} -\det L \det U & \text{Odd number of row exchanges} \\ \det L \det U & \text{Even number of row exchanges} \end{cases}$$

²Since $||v||_{\infty} = \max_{i} |v_i|$ while the other norms can be expressed as $||v||_p = \max_{i} |v_i| + C$, where C is a positive number, $|v||_{\infty} \le ||v||_p$.