9. Integrales múltiples

- 01) Calcule el área de las siguientes regiones planas mediante integrales dobles; se recomienda no aplicar propiedades de simetría, plantee los límites para toda la región.
 - a) $D = \{(x, y) \in \Re^2 / y \ge 2x^2 + 1 \land x + y \le 4\}.$
 - b) D: definida por $x^2 \le y < \sqrt{2-x^2}$.
 - c) D: dominio del campo $\bar{f}(x, y) = (\ln(x + y 2), \sqrt{y 2x + 2}, (2x + 2 y x^2)^{-1/4}).$
 - d) D: limitada por las curvas de ecuación $y = x^3$ e y = x.
 - e) D: conjunto de positividad de $f(x, y) = (y 2|x|)\sqrt{20 x^2 y^2}$.
 - f) D: conjunto donde son positivas las componentes de $\bar{f}(x, y) = (4 x^2 y^2, 2 x y^2)$.
- 02) Calcule las siguientes integrales en ambos órdenes de integración y verifique que los resultados coinciden.
 - a) $\iint_D dx dy$, D definido por: $0 \le y \le \text{sen}(x)$, $0 \le x \le \pi$.
 - b) $\iint_D x \, dx \, dy$, $D = [-1,1] \times [-1,1]$.
 - c) $\iint_D |x| dx dy$, $D = [-1,1] \times [-1,1]$.
 - d) $\iint_D f(x, y) dx dy$, D definido por: $x^2 1 \le y \le 1 x^2$, $f(x, y) = \begin{cases} xy & \text{si } x \ge 0 \\ -2x & \text{si } x < 0 \end{cases}$
 - e) $\int_0^1 dx \int_0^x (x+y) dy + \int_1^4 dx \int_0^1 (x+y) dy$.
 - f) $\iint_D e^{-x} dx dy$, D definido por: $e^x \le y \le e^{2x} \land 0 \le x \le \ln 2$.
- 03) Calcule la masa y el centro de masa de una placa circular con centro en el origen de coordenadas, si su densidad superficial (kg/m^2) en cada punto es proporcional a la distancia desde el punto al eje x.
- 04) Sea D una placa plana con densidad $\delta(x,y)$ y centro de masa \overline{G} . Demuestre que el momento de inercia de D respecto a una recta r paralela a los ejes coordenados es mínimo cuando r pasa por \overline{G} . (*)
- 05) Calcule las siguientes integrales, en algunos casos puede convenirle invertir el orden de integración.
 - a) $\int_0^1 \int_0^{\sqrt{1-x^2}} x dy dx$. b) $\int_0^1 \int_y^1 e^{x^2} dx dy$. c) $\int_{-4}^0 dy \int_{-\sqrt{y+4}}^{\sqrt{y+4}} dx + \int_0^5 dy \int_{y-2}^{\sqrt{y+4}} dx$.
- 06) Resuelva los siguientes ejercicios usando el cambio de coordenadas indicado.
 - a) $\iint_D (6-x-y)^{-1} dx dy$, $D: |x+y| \le 2 \land y \le x+2 \le 4$, usando (x,y) = (v, u-v).
 - b) Calcule el área de la región plana definida por $1 \le \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 4$, $a,b \in \mathbb{R}^+$ aplicando la transformación $(x,y) = (a\rho\cos(\varphi),b\rho\sin(\varphi))$.
 - c) $\iint_D (x-y)^4 dx dy$, $D = \{(x,y) \in \mathbb{R}^2 / |x| + |y| \le 4 \}$, aplicando una transformación lineal apropiada.

 $^{^{(*)}}$ En general, el momento de inercia respecto de una recta es mínimo cuando la recta pasa por $\,\overline{G}\,$.

- d) $\iint_D (x+y-2)^2 dxdy$ aplicando el cambio de variables definido por : (x,y) = (u+v,u-v), con $D = \{(x,y) \in \mathbb{R}^2 / y \ge |x|, x+2y \le 3\}$.
- e) Siendo D la región sombreada del dibujo, **calcule** $\iint_D y(x^2+y^2)^{-1} dx dy$ usando coordenadas polares.

- 07) a) Dada $f(x, y) = e^{x^2 + 2y^2}$, calcule el área de la región plana limitada por las curvas de nivel e^4 y e^8 de la función.
 - b) Calcule $\iint_D e^{x^2 + 2y^2} dx dy \ D = \{(x,y) \in \mathbb{R}^2 / |x^2 + 2y^2 \le 4 \land x \ge \sqrt{2} |y| \}.$
- 08) Dada la $\iint_D e^{-x^2 y^2} dx \, dy \text{ con } D = \mathbb{R}^2$.
 - a) Calcúlela usando coordenadas polares.
 - b) Trabajando en cartesianas, demuestre que su resultado es del tipo $(\int_{-\infty}^{+\infty} e^{-u^2} du)^2$.
 - c) Dada $f(z) = (2\pi)^{-1/2} e^{-z^2/2}$, demuestre que: $\int_{-\infty}^{+\infty} f(z) dz = 1.$

Definida en \mathbb{R} , f es la función de densidad de probabilidad normal estandarizada que se utiliza en múltiples aplicaciones, incluso en teoría de errores. La gráfica de f se denomina "campana de Gauss".

- 09) Calcule $\iint_D \frac{x+4y}{x^2} dxdy$ con $D: x \ge y$, $x+4y \le 4$, $y \ge 0$ usando coordenadas polares.
- 10) En los siguientes casos se indica una integral planteada en coordenadas polares, grafique la región correspondiente en el plano *xy*, plantee la integral en coordenadas cartesianas y resuélvala en alguno de los dos sistemas de coordenadas.
 - a) $\int_0^{\pi/2} d\varphi \int_0^{2\cos(\varphi)} \rho^3 d\rho.$
 - b) $\int_{-\pi/6}^{\pi/3} d\varphi \int_0^{\sqrt{3}/\cos(\varphi)} \rho^2 \cos(\varphi) d\rho.$
- 11) Dada $\int_0^{\pi/2} d\varphi \int_0^2 d\rho \int_0^{4-\rho^2} \rho^2 dz$ planteada en coordenadas cilíndricas, represente la región de integración en el espacio xyz, plantee la integral en coordenadas cartesianas y resuélvala en alguno de los dos sistemas de coordenadas.
- 12) Calcule mediante integrales triples el volumen del cuerpo *H*, usando el sistema de coordenadas que crea más conveniente.
 - a) *H* definido por $2y \ge x^2 + z$, $x + y \le 4$, 1° octante.
 - b) $H = \{(x,y,z) \in \mathbb{R}^3 / x + y + z \le 6 \land z \ge x + y \land x \ge 0 \land y \ge 0 \}.$
 - c) H definido por $x^2 + z^2 \le 2ax$, interior a la esfera de radio 2a con centro en el origen de coordenadas.

- d) *H* definido por $z \ge \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2a^2$ con a > 0.
- e) $H = \{(x,y,z) \in \mathbb{R}^3 / z \ge x^2 \land x \ge z^2 \land x \ge |y| \}.$
- f) H definido por $x^2 + z^2 \le 9$, $y \ge 2x$, $y \le 2x + 4$.
- g) *H* definido por $y \ge x^2$, $x^2 + y^2 \le 2$, $z \ge 0$, $z \le x$.
- h) *H* definido por $x^2 + 2y^2 + z \le 32$, $z \ge x^2$.
- 13) Determine el centro de masa del cuerpo limitado por y=x, y=2x, x+y+z=6, z=0, si su densidad en cada punto es proporcional a la distancia desde el punto al plano yz.
- 14) Dado el cuerpo definido por $\sqrt{y^2 + z^2} \le x \le 4$, calcule su momento de inercia respecto del eje x sabiendo que su densidad es $\delta(x, y, z) = k|y|$ con k constante.
- 15) Determine el volumen de un cuerpo cónico (cono circular recto) de altura h y ángulo de apertura ω ; ubíquelo en la posición más conveniente para facilitar los cálculos.

- 16) Sea el cuerpo H convexo y simétrico respecto del plano xz, calcule $\iiint_H y^n dx dy dz$ cuando n es un número natural impar.
- 17) Calcule la masa de los siguiente cuerpos:
 - a) Cuerpo limitado por $z = 4 x^2 y^2$, $z = 8 2x^2 2y^2$ si la densidad en cada punto es proporcional a la distancia desde el punto al eje z.
 - b) Cuerpo definido por $z \ge |y|$, $x^2 + y^2 + z^2 \le 1$ si la densidad en cada punto es proporcional a la distancia desde el punto al plano xy.
 - c) Cuerpo definido por $x^2 + y^2 \le 9$, $0 \le z \le 2$ con densidad en cada punto proporcional a la distancia desde el punto al plano xz.
- $z = 8x^2 + 8y^2 (x^2 + y^2)^2$ con $(x, y) \in [-2, 2] \times [-2, 2]$; el recipiente se apoya en el plano xy en las puntas y en el origen. Calcule el volumen de líquido que contiene el recipiente cuando se lo llena exactamente hasta el borde superior; considere que la expresión dada permite calcular z en centímetros cuando x e y están expresados en cm.

18) En la figura se representa la forma de un recipiente cuya ecuación es

Cuestionario

- a) ¿Pueden usarse coordenadas polares en regiones que contengan al origen? (recuerde que el jacobiano se anula en el origen).
- b) ¿Por qué el área de un círculo no cambia si se incluye o no la circunferencia frontera?.
- c) Realice una interpretación geométrica de la fórmula de cambio de variables en integrales dobles.
- d) Describa las superficies coordenadas de cilíndricas y esféricas en el espacio *xyz*.

Integrando con el Mathematica

Se dispone de dos funciones básicas, Integrate y NIntegrate.

Integrate[f, x] devuelve una primitiva de f integrada respecto de x.

Integrate[f, {x,a,b}] calcula la integral definida de f respecto de x entre a y b.

Integrate[f, $\{x,a,b\}$, $\{y,y_1(x),y_2(x)\}$] }] calcula la integral doble, integrando primero respecto de y entre $y_1(x)$ e $y_2(x)$ y luego respecto de x entre a y b.

NIntegrate[f, {x,a,b}] calcula una aproximación numérica de la integral definida de f respecto de x entre a y b. Nota: f, a y b deben estar completamente definidos.

El Mathematica admite límites infinitos, **Infinity** lo interpreta como ∞ .

Ejemplos

Integrate[x Cos[x], x] \rightarrow Cos[x] + x Sin[x]

Integrate[x Cos[x], {x,0,Pi/2}] $\rightarrow -1 + \frac{Pi}{2}$

NIntegrate[x Cos[x], $\{x,0,Pi/2\}$] $\rightarrow 0.570796$

Integrate[x Cos[a x], {x,0,Pi/2}]
$$\rightarrow -\frac{1}{a^2} + \frac{\cos[\frac{a Pi}{2}]}{a^2} + \frac{Pi Sin[\frac{a Pi}{2}]}{2 a}$$

NIntegrate[x Cos[a x], $\{x,0,Pi/2\}$] \rightarrow no resuelve ("a" no está previamente definida).

Integrate[Exp[$-x^2$], {x, -Infinity, Infinity}] \rightarrow Sqrt[Pi] (se puede concluir del ítem 08 a y b). NIntegrate[Exp[$-x^2$], {x, -Infinity, Infinity}] \rightarrow 1.77245

Para resolver
$$\int_1^2 dx \int_x^{2x} (x^2 - y) dy$$
 ordenamos: Integrate[x^2-y, {x,1,2}, {y, x, 2 x}] $\rightarrow \frac{1}{4}$

o bien, Integrate[Integrate[x^2-y , {y, x, 2 x}],{x,1,2}] $\rightarrow \frac{1}{4}$.

Resolviendo
$$\int_0^1 dx \int_0^x dy \int_{x+y}^2 x \, y \, dz$$
: Integrate[x y, {x, 0, 1}, {y, 0, x}, {z, x+y, 2}] $\rightarrow \frac{1}{12}$

Resolviendo
$$\int_{-\sqrt{3}}^{\sqrt{3}} dy \int_{-\sqrt{4-y^2}}^{2-y^2} dx$$
 correspondiente al ítem "01f":

Integrate[1, {y, -Sqrt[3], Sqrt[3]}, {x, -Sqrt[4-y^2], 2-y^2}]
$$\rightarrow \frac{1}{3}$$
 (9 Sqrt[3] + 4 Pi)