第五十三單元 隨機的意義

(甲)隨機變數

◆ 隨機變數:

(1)隨機現象與隨機試驗

我們生活的世界上,充滿著不確定性。從擲硬幣、丟骰子、玩撲克牌等簡單的機會遊戲,到複雜的社會現象;從嬰兒誕生,到世間萬物的繁衍生息;從天氣變化到大自然的千變萬化,…這其中充滿著隨機的現象,彷彿上帝是在擲骰子。

自然現象與社會現象,大致上分成兩種,例如上拋的物體一定會落下,無論是什麼形狀的三角形,它的兩邊之和總是大於第三邊,這些現象用比較科學的語言來表達,那就是它們都服從特定的因果關係,從一定的條件出發,必定可以推出某一結果;但是在自然界與社會中還存有另一類現象,稱之爲隨機現象,例如,在馬路交叉口通過的車輛數,股市的點數,擲一粒骰子出現的點數,樂透彩券所開出的號碼,這些隨機現象天天都在發生。很多隨機現象可以大量重複,如擲一枚硬幣可以一直擲下去,可重複的隨機現象稱爲隨機試驗,簡稱爲試驗。爲了方便可以應用這些隨機試驗的結果,我們可以將其數量化,即將隨機試驗的每一種結果對應到一個數值。例如:(1°)擲一均勻銅板 3 次,令 X 表示出現正面的次數,則 X 可爲 0,1,2,3。

(2°)擲一均勻骰子 2 次,令 Y 表示出現的點數和,則 Y 可為 2,3,4,5,6,7,8,9,10,11,12

◆ 隨機變數

(1) 隨機變數的定義

隨機變數是定義在某一個樣本空間上的實數值函數,此樣本空間中的每一個樣本點 (代表試驗結果)都對應到一個實數。

隨機變數中之"隨機"表示結果的不可預知,而"變數"表示每次結果會有不同的變化。通常隨機變數以英文大寫字母 X, Y, Z表示。

(X=k) 表隨機變數 X 對應到數值 k 的事件,

P(X=k)代表 X 對應到數值 k 的事件發生的機率。

例如: 擲一均勻銅板 3 次, 令 X 表示出現正面的次數,

$$P(X=0) = \frac{1}{8}, P(X=1) = \frac{3}{8}, P(X=2) = \frac{3}{8}, P(X=3) = \frac{1}{8}$$

(2)隨機變數的類型:

當隨機變數X對應的數值可以形成有限數列或無窮數列,則稱爲**維散型隨機變數**,例如:

丟一個銅板3次,X表出現正面的次數,則X的可能值只有4個,

所以*X* 爲離散型隨機變數。

例如:

投擲硬幣 n 次,出現正面 X 次,X 的可能值爲 $0,1,2,3,4,\cdots$

當隨機變數X對應的數值可以是連續的實數時,則稱爲**連續型隨機變數**,

例如:

點亮一支新的燈管,連續使用直到壞掉,壽命爲X小時,X的可能值爲所有正實數。

(3)機率分布

將離散型隨機變數 X 各種可能結果發生的機率列出來,稱爲隨機變數 X 的機率分布。

隨機變數X	x_1	x_2	•••	x_n
機率	p_1	p_2	•••	p_n

例如: 擲一均勻銅板 3 次的試驗,令 X 表示出現正面次數的隨機變數,

則 X 的機率分布如下:

X	0	1	2	3
機率	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

離散型隨機變數的機率分布與第二冊的相對次數分配表類似,但理論的機率分布與試驗結果的相對次數不完全相同,例如:張三實際每回丟一個銅板3次,共做80回的

試驗,結果 80 回中出現正面次數 0 次有 8 回,出現正面次數 1 次有 31 回,出現正面次數 2 次有 28 回,出現正面次數 3 次有 13 回,出現正面的相對次數分布表如下:

正面次數	0	1	2	3
相對次數	80	31 80	<u>28</u> 80	<u>13</u> 80

[**例題**1] 老張與三個兒子張一、張二、張三玩擲骰子遊戲,若老張擲出骰子點數 k,則老張分別給張一、張二、張三 k 元、(10k+5) 元、 k^2 元,令 X,Y,Z 分 別表示張一、張二、張三玩此擲骰子遊戲所得的錢。求 X,Y,Z 的機率分布。 [解法]:

X的機率分布如下:

X	1	2	3	4	5	6
機率	1/6	1 6	1/6	1/6	1/6	1/6

Y 的機率分布如下:

Y	15	25	35	45	55	65
機率	1 6	1 6	1/6	1/6	1/6	1 6

Z 的機率分布如下:

Z	1	4	9	16	25	36
機率	1 6	1 6	1 6	1 6	1/6	1 6

例題 1 中,因對一試驗結果,隨機變數 Y 可能值 y 與隨機變數 X 可能值 x 的對應關係 爲 y=10x+5,所以隨機變數 Y 與隨機變數 X 的關係可表爲 Y=10X+5,而隨機變數 Z 可能值 z 與隨機變數 X 可能值 x 的對應關係爲 $z=x^2$,所以隨機變數 Z 與隨機變數 X 的關係可表爲 $Z=X^2$ 。

一般而言,若X是一個隨機變數,G(x) 爲一個數值函數,例如: G(x)=ax+b或 $G(x)=x^2$,則 G(X) 也是隨機變數,G(X) 的機率分布可以由X 的機率分布對應求出。

[**例題21** 設X的機率分布如下:

X	-2	-1	0	1	2	3
機率	0.1	0.2	0.1	0.05	0.4	0.15

若隨機變數 Y=3X+5, 隨機變數 $Z=X^2$, 試求 $Y \times X$ 的機率分布。

[解法]:

Y 的機率分布:

Y	-1	2	5	8	11	14
機率	0.1	0.2	0.1	0.05	0.4	0.15

Z的機率分布:

Z	0	1	4	9
機率	0.1	0.25	0.5	0.15

- (練習1)甲、乙兩人玩擲骰子遊戲,由甲擲骰子,約定甲如擲出骰子點數是 1 時,甲需付給乙 1 元,如擲出骰子點數是 2,3,4,5 時,甲、乙兩人沒有輸贏,如擲出骰子點數是 6 時,則乙需付給甲 1 元。令 X 表甲擲 1 次骰子後所得的錢,而 $Y=X^2$,求:
 - (1) X的機率分布。(2) Y的機率分布。

Ans: (1)

X	-1	0	1
機率	1 6	<u>4</u> 6	1/6

(2)

Y	0	1
機率	4 6	<u>2</u> 6

(練習2)一袋中有紅球 2 個,藍球 3 個,編號 $1\sim5$,由袋中每次取 1 球,取後不放回取 2 次,令 X 表 2 次中取到紅球的次數,Y 表 2 次中取到兩球的號碼和,求 X,Y的機率分布。

Ans: (1)

X		0	1	2
機	率	<u>3</u>	6 10	1 10

(2)

Y	2	3	4	5	6	7	8	9	10
機率	<u>1</u> 25	2 25	3 25	<u>4</u> 25	<u>5</u> 25	<u>4</u> 25	3 25	2 25	<u>1</u> 25

(4)機率質量函數

離散型的機率分布除了可以列表表示,也可以用函數形式表示。

例如:擲一均匀銅板 3 次,令 X 表 3 次中出現正面的次數,事件(X=x) 發生的機率以函數 f(x) 表示,則

$$f(0) = \frac{1}{8}, f(1) = \frac{3}{8}, f(2) = \frac{3}{8}, f(3) = \frac{1}{8}$$

此函數關係可以單一式子表示如下:

$$f(x) = \frac{C_x^3}{8}$$
, $x = 0$, 1, 2, 3.

函數 f(x) 可用來描述隨機變數 X 的機率分布,稱 f(x) 爲 X 的機率質量函數,一般而言,離散型隨機變數的機率質量函數(簡稱機率函數)定義如下: 將離散型隨機變數 X 的每一個數值 x 對應其所發生的機率,即

$$x \rightarrow P(X=x)$$
,

此種對應關係所成的函數f(x) 稱爲X的機率質量函數,簡稱機率函數,即 $f(x)=P(X=x) \circ$

根據機率函數的定義,可以得到以下的性質:

令X是一離散型隨機變數,其可能值爲 x_1 , x_2 ,…, x_n ,且f爲X的機率函數,則

 (1°) 任何可能値發生的機率介於 0 與 1 之間,即 $0 \le f(x_i) \le 1$,i=1,2,…,n。

(2°)所有可能値發生的機率和為
$$1$$
,即 $\sum\limits_{i=1}^{n} f(x_i)=1$ 。

將各種可能值所對應的機率值畫圖,稱爲**機率函數圖**。機率函數圖外表是一連串垂直於 x 軸的線段,每一個線段之高度代表其對應的機率值,

例如:擲銅板3次,令X表出現正面次數的隨機變數,則X的機率函數圖如下:

機率函數圖與第二冊的相對次數分配圖類似,例如:張三實際擲一個銅板 3 次共做 80 次的試驗,其相對次數分配圖如下:

- [**例題**3] 令隨機變數 X 表某種儀器維修所需時間,以小時計算,採四捨五入,其 機率分布爲 $f(x) = \frac{x}{15}$, x = 1, 2, 3, 4, 5
 - (1) 維修所需時間爲2小時的機率。
 - (2) 維修所需時間不超過2小時的機率。
 - (3) 維修所需時間超過2小時的機率。
 - (4) 畫機率函數圖。

[解法]:

(1)
$$P(X=2) = f(2) = \frac{2}{15}$$

$$(2) P(X \le 2) = P(X=1) + P(X=2) = f(1) + f(2) = \frac{1}{15} + \frac{2}{15} = \frac{1}{5} \circ$$

(3)
$$P(X>2)=1-P(X\leq 2)=1-\frac{1}{5}=\frac{4}{5}$$

(練習3)設隨機變數 X 表示一週內某汽車經銷商賣出汽車的數目,

設隨機變數
$$X$$
 表示一週內某汽車經銷商賣出汽車的數目,
而 $f(x)$ 為 X 的機率質量函數,若 $f(x) = \begin{cases} \frac{kx^2}{x!}, x=1,2,3,4\\ 0,x=$ 其他値

試求 k 値。 Ans: $\frac{6}{31}$

- (練習4)袋中裝有相同大小的紅球 4 顆,白球 2 顆,自袋中取出 2 球,令隨機變數 X表示取出的紅球數,
 - (1)試求 X 的機率分布。
 - (2)求 P(X<2)的值。
 - (3)畫機率函數圖。

Ans: (1)路(2) $\frac{3}{5}$ (3)路

(乙)期望值、變異數與標準差

在第二冊第四章討論了一組數據的次數分布狀況,最常用的兩個指標(統計量)是平均數與標準差,平均數代表一組數據的中心位置,標準差描述一組數據的分散狀況。對一個隨機變數 X 的機率分布也有相同的情形,一個隨機變數的期望值量測此隨機變數的中心位置。隨機變數的標準差量測此隨機變數所有可能值與中心位置分散狀況。一個隨機變數 X 的機率分布可以用期望值及標準差做摘要。

◆ 期望値

高三某班舉行同樂會,會中準備了40份獎品,獎品的價值與數量如表所示:

獎品	A	В	С
價値(元)	120	60	40
數量(份)	5	20	15

試問每份獎品的平均價值是是多少?

每份獎品的平均價值是

$$\frac{120\times5+60\times20+40\times15}{40}$$
=60(元),左式可以改寫成 $120\times\frac{5}{40}$ +60 $\times\frac{20}{40}$ +40 $\times\frac{15}{40}$,

從機率的觀點來說, $\frac{5}{40}$ 、 $\frac{20}{40}$ 、 $\frac{15}{40}$ 分別代表抽中 A、B、C 三種將品的機率

所以平均價值
$$60=$$
 $120 \times \frac{5}{40}$ + $60 \times \frac{20}{40}$ + $40 \times \frac{15}{40}$ + $40 \times \frac{15}{40}$

設隨機變數 X 表示抽中獎品的價值,將 X 的可能值 $120 \times 60 \times 40$ (元)分別乘上相對應發生的機率,就是一份獎品的平均價值,稱爲隨機變數 X 的**數學期望值**(簡稱**期望值**)。 (1)期望值的定義:

令 X 是一離散型隨機變數,其可能值爲 x_1 , x_2 , ..., x_n , 其機率分布如下表:

隨機變數 X	x_1	x_2	•••	x_n
機率	p_1	p_2	•••	p_n

則稱 $E(X)=x_1p_1+x_2p_2+\cdots+x_np_n=\sum_{i=1}^n x_ip_i$ 為隨機變數 X 的期望值。

若f 爲 X 的機率函數,即 $f(x_i)=p_i$,則 X 的期望値亦可寫成 $E(X)=\sum_{i=1}^n x_i f(x_i)$ 。

例題一:丟銅板 3 次,令 X 表出現正面的次數,則 X 的可能值 x,機率函數 f(x),列表如下:

X	0	1	2	3
f(x)	1/8	3 8	3 8	1/8
xf(x)	0	3/8	<u>6</u> 8	3/8

由上表最後一列合計得 X 的期望値爲 $E(X)=0\times\frac{1}{8}+1\times\frac{3}{8}+2\times\frac{3}{8}+3\times\frac{1}{8}=1.5$ 。

[例題4] 依據經驗某人完成一件工作,可能是 1 天,2 天,3 天,4 天,在 1 天完成的機率是 0.2,2 天完成的機率是 0.4,3 天完成的機率是 0.3,4 天完成的機率是 0.1,請問完成此工作天數的期望值是多少?

[解法]:

令 X 表完成此工作天數,則 X 有 4 種可能結果分別爲 1 , 2 , 3 , 4 天,而其機率分別爲 0.2 , 0.4 , 0.3 , 0.1 , X 的機率分布爲

X	1	2	3	4
機率	0.2	0.4	0.3	0.1

所以完成此工作天數的期望值爲

 $E(X) = 0.2 \times 1 + 0.4 \times 2 + 0.3 \times 3 + 0.1 \times 4 = 2.3 (\Xi)$

[**例題5**] 一箱中有 10 個燈泡,其中有 2 個是壞的,今從箱中取 3 個燈泡測試,求取出 的燈泡中壞燈泡個數的期望值。 $Ans:\frac{3}{5}$ (個)

[**例題6**] 根據統計資料得知,一個 50 歲的人,在一年內存活的機率為 98.5%,今有一個 50 歲的人參加一年期保險額度為五十萬元的意外保險,須繳保費一萬元,則保險公司獲利的期望值為_____。Ans: 2500 元

[**例題7**] 甲、乙兩人玩擲骰子遊戲,由甲擲骰子,約定甲如擲出骰子點數是 1 時,甲需付給乙 1 元,如擲出骰子點數是 2,3,4,5 時,甲、乙兩人沒有輸贏,如 擲出骰子點數是 6 時,則乙需付給甲 1 元。令 X 表甲擲 1 次骰子後所得的錢,而 $Y=X^2$,求:(1) X 的期望值。 (2) Y 的期望值。

Ans: $(1)0 (2)\frac{2}{6}$

[**例題8**] 摸彩箱裝有若干編號為 1, 2, ... 10 的彩球,其中各種編號的彩球數目可能不同。今從中隨機摸取一球,依據所取球的號數給予若干報酬。現有甲、乙兩案:甲案爲當摸得彩球的號數爲 k 時,其所獲報酬同爲 k; 乙案爲當摸得彩球的號數爲 k 時,其所獲報酬爲 11-k (k=1, 2, ... 10)。已知依甲案每摸取一球的期望值爲 $\frac{67}{14}$,則依乙案每摸取一球的期望值爲 $\underline{}$ 。(化成最簡分數) \mathbf{Ans} : $\frac{87}{14}$ (2007 學科)

- (練習5)袋中有 12 個球,其中有 3 個白球。若機會均等,試求袋中任取 3 個球時,選中白球個數的期望值。 Ans: $\frac{3}{4}$ 個
- (練習6)(1)9個樣品中有2個不良品,今取出3個,則含有不良品個數的期望 個為 個。
 - 值爲______個。 (2) 40 個樣品中有 4 個不良品,今取出 2 個,則含有不良品個數的期望值爲______個。Ans: $(1)\frac{2}{3}$ $(2)\frac{1}{5}$
- (練習7)袋中有 k 號球有 k^2 個(k=1,2,3...,n),今從其中選取一個,設選取之球的球號為 X,試求隨機變數 X 的期望值。 Ans: $\frac{3n(n+1)}{2(2n+1)}$
- (練習8)(1)在五選一的單選題中,若答對得5分,反之答錯應倒扣_____ 分才公平。
 - (2)有一複選題,有五個敘述,其中至少有一個敘述是正確的,若此題 答對得5分,若答錯則應倒扣______分才公平。

Ans: $(1)\frac{5}{4}(2)\frac{1}{6}$

◆ 變異數與標準差

回顧一組數據的平均數與變異數的算法:

設一組數據 x_1 , x_2 , ..., x_n 的平均數 μ 與變異數 σ^2 ,

$$\mu = \frac{1}{n} (x_1 + x_2 + \dots + x_n) = x_1 \cdot \frac{1}{n} + x_2 \cdot \frac{1}{n} + \dots + x_n \cdot \frac{1}{n}$$

$$\sigma^2 = \frac{1}{n} \left[(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2 \right]$$

$$= (x_1 - \mu)^2 \cdot \frac{1}{n} + (x_2 - \mu)^2 \cdot \frac{1}{n} + \dots + (x_n - \mu)^2 \cdot \frac{1}{n}$$

$$\sim 53 - 9 \sim$$

當一隨機變數X其可能值爲 x_1, x_2, \dots, x_n ,且每一種可能值發生的機率都是 $\frac{1}{n}$,

即 $f(x_i) = \frac{1}{n}$,則隨機變數X的期望値即爲上述數據的平均數,

$$\mu = \frac{1}{n} (x_1 + x_2 + \cdots + x_n) = x_1 f(x_1) + x_2 f(x_2) + \cdots + x_n f(x_n) = E(X) \circ$$

隨機變數X的變異數可以表成

$$\sigma^{2} = \frac{1}{n} \left[(x_{1} - \mu)^{2} + (x_{2} - \mu)^{2} + \dots + (x_{n} - \mu)^{2} \right]$$

$$= (x_{1} - \mu)^{2} f(x_{1}) + (x_{2} - \mu)^{2} f(x_{2}) + \dots + (x_{n} - \mu)^{2} f(x_{n})$$

$$= \sum_{i=1}^{n} (x_{i} - \mu)^{2} f(x_{i})$$

$$= E((X - \mu)^{2})$$

一般而言離散型隨機變數 X 的變異數與標準差定義爲:

令X是一離散型隨機變數,其可能值爲 x_1, x_2, \dots, x_n ,其機率分布如下表:

隨機變數 X	x_1	x_2	•••	X_n
機率	p_1	p_2	•••	p_n

Var
$$(X) = E((X-\mu)^2) = \sum_{i=1}^{n} (x_i - \mu)^2 p_i$$

若f爲X的機率函數,即 $f(x_i)=p_i$,則X的**變異數** (variance) 定義如下:

Var
$$(X) = E((X-\mu)^2) = \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i)$$

變異數的正平方根稱爲此隨機變數的標準差,以 σ 表示,即 $\sigma = \sqrt{\mathrm{Var}\left(X\right)}$ 。

[例題9] 證明: Var(X)=
$$E(X^2)-\mu^2$$
。
由變異數定義
Var(X)
= $E((X-\mu)^2)=\sum_{i=1}^n(x_i-\mu)^2f(x_i)$
= $\sum_{i=1}^n(x_i^2-2\mu x_i+\mu^2)f(x_i)$
= $\sum_{i=1}^nx_i^2f(x_i)-2\mu\sum_{i=1}^nx_if(x_i)+\mu^2\sum_{i=1}^nf(x_i)$
= $E(X^2)-2\mu\mu+\mu^2$
= $E(X^2)-\mu^2$ 。

[**例題10**] (均勻機率分布, Uniform distribution)

X 是一個在 1 , 2 , \cdots , n 均匀分布的離散型隨機變數 , 即 X 的機率函數 $f(x) = \frac{1}{n}$, x = 1 , 2 , \cdots , n , \vec{x} X 的期望值與變異數 。

Ans:
$$E(X) = \frac{n+1}{2}$$
, $Var(X) = \frac{n^2-1}{12}$

[**例題**11] (白努利分布,Bernoulli distribution)

隨機變數 X 的分布如下:

X	1	0
P	р	1-р

其中0 ,這種機率分布稱爲參數爲<math>p的白努利分布。

試求X的期望值與變異數。

Ans : E(X)=p, $Var(X)=p-p^2$

[**例題12**] 一箱子中有 3 顆紅球和 2 顆白球,今從箱中取出 3 球,試求取出白球個數的期望值、變異數與標準差。 $Ans:\frac{6}{5}$ 個, $\frac{9}{25}$ 個, $\frac{3}{5}$ 個

(練習9)依據過去經驗,在臺北車站排班的計程車,載客時的乘客人數 1 人的機率是 0.5,2 人的機率是 0.3,3 人的機率是 0.1,4 人的機率是 0.1,今 X 表一部計程車在臺北車站載客時的乘客人數,求:(1) X 的期望值。 (2) X 的變異數。 Ans:(1)1.8 人 (2)0.96 人

(練習10)設隨機變數 X 的機率分布如下:

X	1	2	3	4
P	1	2	3	4
	10	$\overline{10}$	$\overline{10}$	10

試求 X 的期望值與標準差。 Ans:3,1

(練 $\mathbf{7}$ 11)丟一均勻骰子 $\mathbf{3}$ 次,令 \mathbf{X} 表示出現正面的次數,試求 \mathbf{X} 的期望値與標準

差。 Ans:
$$E(X) = \frac{3}{2}$$
次, $\sigma_X = \frac{\sqrt{3}}{2}$ 次

(練習12)已知一個不公正的骰子,其擲出點數的機率與該點數成正比,試求擲此骰子一次出現點數的期望值與變異數。 Ans: $\frac{13}{3}$ 點, $\frac{20}{9}$ 點

◆ 變異數與標準差的性質:

(1)若 Y 爲隨機變數的線性函數,令 Y=aX+b,則 Y 亦爲隨機分布,隨機變數 $X \times Y$ 的期望値、變異數與標準差的關係如下:

- (a)E(Y)=aE(X)+b •
- (b) $Var(Y) = a^2 Var(X) \circ$
- $(c)\sigma_{Y}=|a|\sigma_{X}$ •

[**例題13**] 合作社舉辦年終抽獎活動,原本所有獎額的期望值為 250 元,標準差為 120 元。現在爲了擴大回饋消費者,將每個獎額提高 20%,再贈送 150 元現金,試求年終抽獎活動中抽獎一次所得獎額的期望值與標準差。

Ans: 450 元, 144 元

- [例題14] 設有一顆公正四面體骰子,四面分別標示 1,2,3,4 點;及另一顆公正六面體骰子,六面分別標示 1,2,3,4,5,6 點。並設隨機變數 X 為擲四面體骰子所得的點數;隨機變數 Y 為擲六面體骰子所得的點數,設同時擲這兩個骰子時,所出現點數情形的機率均相等,試求:
 - (1)試求隨機變數 X 與 Y 的期望值。
 - (2)試求同時擲兩顆骰子所得點數和 X+Y 的期望值。
 - (3)E(X+Y)會等於 E(X)+E(Y)嗎?

上例中, $X \times Y$ 雖然來自不同的隨機變數,但是 E(X+Y)等於 E(X)+E(Y)這個性質是成立的。

(2)設 X、Y 為兩個隨機變數,則 E(cX+dY)=c E(X)+d E(Y)。

[證明]:

設 X 與 Y 的聯合分布如下表所示:

	$X=x_1$	$X=x_2$	$X=x_3$		$X=x_m$
$Y=y_1$	p_{11}	p_{21}	p_{31}		p_{m1}
$Y=y_2$	p_{12}	p_{22}	p_{31}		p_{m1}
$Y=y_3$	p_{13}	p_{23}	p_{33}		p_{m1}
:	:	:	:	:	:
$Y=y_n$	p_{1n}	p_{2n}	p_{3n}		p_{mn}

其中 p_{ij} = $P(X=x_i 且 Y=y_j)$

$$P(X=x_i) = \sum_{j=1}^{n} p_{ij} \cdot P(Y=y_j) = \sum_{i=1}^{m} p_{ij}$$

E(cX+dY)

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} (cx_i + dy_j) \cdot p_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} (cx_i \cdot p_{ij} + dy_j p_{ij}) = \sum_{i=1}^{m} c \cdot x_i (\sum_{j=1}^{n} p_{ij}) + \sum_{j=1}^{n} d \cdot y_j (\sum_{i=1}^{m} p_{ij})$$

$$= \sum_{i=1}^{m} c \cdot x_{i} P(X = x_{i}) + \sum_{j=1}^{n} d \cdot y_{j} P(Y = y_{j}) = c E(X) + d E(Y) \circ$$

一般而言,對於 n 個隨機變數 $X_1 \cdot X_2 \cdot ... \cdot X_n$,

 $E(c_1X_1+c_2X_2+...+c_nX_n)=c_1E(X_1)+c_2E(X_2)+...+c_nE(X_n)$

[例題15] 設一次擲 10 顆公正骰子, 試求點數和的期望值。 Ans: 35

(練習13)已知隨機變數 X 滿足 E(-2X+10)=54,Var(-2X+10)=196,試求隨機變數 X 的期望值 E(X),變異數 Var(X)與標準差 σ_X 。

Ans : E(X) = -22 , Var(X) = 49 , $\sigma_X = 7$

- (練習14)一箱中有 3 個紅球與 2 個白球,已知每個球被取中的機會均等,今自箱中任取一球,取得紅球給 5 元,白球給 10 元,設隨機變數 X 代表所給的錢的數目,並令 Y=2X+3。
 - (1)試寫出隨機變數 X 與 Y 的機率函數。
 - (2)試求隨機變數 X 的期望值、變異數與標準差。
 - (3)利用(2)的結果求隨機變數 Y 的期望值、變異數與標準差。

Ans: (1)略 (2)E(X)=7,
$$Var(X)=6$$
, $\sigma_X = \sqrt{6}$
(3)E(Y)=17, $Var(Y)=24$, $\sigma_Y = \sqrt{24}$

(練習15)某公司在年終的聚餐活動中,老闆自一副 52 張撲克牌,抽一張依其抽得 的花色給予員工獎金,獎金如下表所示:

花色	黑桃	紅桃	方塊	黑梅
獎金	1萬元	5 千元	3 千元	2 千元

- (1)若只抽一次,試求公司對每一個員工應付獎金的期望值。
- (2)若抽完之後放回,連抽四次,獎金爲四次結果的總和,試求公司對每一個員工 應付獎金的期望值。 Ans: (1)5000 元 (2)20000 元
- (練習16)一箱中有 100 個燈泡,其中有 5 個是壞的,今從箱中取 10 個燈泡測試,求取出的燈泡中壞燈泡個數的期望值。 Ans:2(個)

[研究與討論]:

期望值的應用

二次大戰期間美國新兵入伍前要進行血液檢驗,有某種疾病的人不可入伍,如果當地有 5000 人,若逐個檢驗就需要檢驗 5000 次,那麼採取什麼方法減少檢驗工作?

檢驗方法一:逐個檢查,共需要檢驗 5000 次,即每個人要檢查一次。

檢驗方法二:把檢驗者分爲 k 個人一組,把一組人的血液混在一起進行檢驗,

如過檢驗結果爲陰性,說明這一組的血液全爲陰性;如果檢驗結果爲陽性,說明了這組中至少有一人有某種疾病,必須要對這組人再進行逐個檢驗。

我們利用期望值的觀念來分析這兩種方法的檢驗次數:

在接受檢驗的人群中,各個人的檢驗結果是陽性或陰性,一般而言都是獨立的。可設每個人是陽性的機率爲 p , k 個人一組混合血液裡呈現陰性的機率爲 $(1-p)^k$, 故呈現陽性的機率爲 $1-(1-p)^k$ 。

設X代表k個人一組混合檢驗時需要檢驗次數,其機率分布爲

$$X$$
 | 1 | $k+1$ | 機率 $|(1-p)^k| |1-(1-p)^k$ $|E(X)=1\times(1-p)^k+(k+1)[1-(1-p)^k]$

$$E(X)=1\times(1-p)^k+(k+1)[1-(1-p)^k]=(k+1)-k(1-p)^k$$

故每個人平均檢驗 $\frac{(k+1)-k(1-p)^k}{k}=1-(1-p)^k+\frac{1}{k}$ 次

利用檢驗方法二會比檢驗方法一少 $(1-p)^k - \frac{1}{k}$ 次

下表爲當 *p*=0.1 時 :

	p=0.1			
	平均檢驗次數	檢驗二-檢驗一		
2	0.69	0.31		
3	0.604333333	0.395666667		
4	0.5939	0.4061		
5	0.60951	0.39049		
6	0.635225667	0.364774333		
7	0.664560243	0.335439757		
8	0.69453279	0.30546721		
9	0.723690622	0.276309378		
10	0.75132156	0.24867844		
11	0.777098495	0.222901505		
12	0.800903797	0.199096203		
13	0.822736494	0.177263506	25	0.9
14	0.842660647	0.157339353	26	0.
15	0.860775535	0.139224465	27	0.
16	0.877197981	0.122802019	28	0.983
17	0.892051712	0.107948288	29	0.987
18	0.90546092	0.09453908	30	0.9909
19	0.917546407	0.082453593	31	0.9941
20	0.928423345	0.071576655	32	0.9969
21	0.938200058	0.061799942	33	0.99939
22	0.946977455	0.053022545	34	1.00159
23	0.95484888	0.04515112	35	1.00353
24	0.961900224	0.038099776	36	1.00524

由上表可以得知,若 p=0.1 時,k=4 時,檢驗方法二的效益最佳;在 $k\geq34$ 時,用檢驗方法二反而增加平均檢驗次數。

(練習17)若設p=0.05,要使檢驗方法二達到最大效益,那麼每組人數k應爲多少呢?

綜合練習

(1) 設函數f(x) 爲

$$f(x) = \begin{cases} \frac{1}{2^x}, & x = 1, 2, 3 \\ a, & x = 4 \\ 0, & \text{ 其他値} \end{cases}$$

若f(x) 爲一機率函數,求a的値。並書機率函數圖。

- (2) 下列各敘述, 正確打O, 錯誤打×
 - (a)()設離散型隨機變數 X 的可能值為 x_1 , x_2 , x_3 , ..., x_n , 且 f(x)為隨機變數 X 的機率函數,則 $f(x_1)=f(x_2)=...=f(x_n)=\frac{1}{n}$ 。
 - (b)()均匀分布的隨機變數 X 的期望值就是其可能值所成數據的算術平均數。
 - (c)()設 X 爲隨機變數,則 E(X²)=[E(X)]²。
 - (d)()若 X 的平均數爲 μ ,則 $(X-\mu)^2$ 的期望值就是隨機變數 X 的變異數。
 - (e)()設 X 爲隨機變數,且 a,b 爲常數,則 $\sigma_{aX+b}=a\sigma_{X}$ 。
 - (f)()隨機變數 X 的變異數 Var(X)的大小可以衡量 X 之值的離散程度。 當 Var(X)愈小,X 的值愈偏離其平均數,表示數據的離散程度大。
- (3) 某電視台舉辦抽獎遊戲,現場準備的抽獎箱裡放置了四個分別標有 1000、800、600、0 元獎額的球。參加者自行從抽獎箱裡摸取一球(取後即放回),主辦單位 即贈送與此球上數字等額的獎金,並規定抽取到 0 元的人可以再摸一次,但是所得獎金折半(若再摸到 0 就沒有第三次機會);則一個參加者可得獎金的期望值是 元。(2004 學測)
- (5) 同時擲三粒公正的骰子,試求
 - (a)三粒骰子的點數均相同時,可得 300 元; 恰有兩粒點數相同時,可得 200 元,則其期望值為_____元。 (b)出現最大點數的期望值為。。
- (6) 袋中有 1 號球 1 個, 2 號球 2 個, ... , n 號球 n 個,自袋中任取一球,若取得 r 號球可得 r 1 元,請問得到錢數 X 的期望值。
- (7) 甲乙兩人相約玩遊戲,由乙擲一個公正骰子,若乙擲出的點數爲質數點,則可以得到該點數3倍的金額;若出現其它點數,則要付該點數的金額給甲,試問此遊戲乙所得金額的期望值爲多少?

- (8) 甲乙兩人做對局遊戲,二人獲勝的機率均等,誰先勝三局可得獎金 5600 元, 進行至第二局且甲都獲勝時,因故遊戲必須停止。現依先勝三局的機會來分 錢,請問甲乙二人各應分得多少元?
- (9) 若X 爲離散型隨機變數,X 的機率分布如下:

X	-2	-1	0	1	2
機率	0.1	0.2	0.2	0.3	0.2

- (a) $E(X) \circ$ (b) $E(X^2) \circ$ (c) $E(5X+3) \circ$ (d) $Var(X) \circ$
- (10) 若刮刮樂彩券設計有 16 格,其中有一格中獎,16 格中只能任意選刮一格,刮中中獎可得 2000 元,否則得 0 元,令 X 表得獎金的隨機變數,求:
 - (a)X的期望值。
 - (b)刮刮樂彩券一張賣 150 元,彩券券商每月平均賣 3000 張, 請問彩券券商每月平均賺多少?
- (11) 甲、乙、丙三人玩擲骰子遊戲,由丙擲兩個公正骰子,約定丙如擲出兩個骰子 點數和小於 5 時,甲輸丙 1 元,乙、丙沒有輸贏;如擲出兩個骰子點數和 5,6, 7 時,甲、丙沒有輸贏,乙輸丙 1 元;如擲出兩個骰子點數和是 8,9,10 時, 甲贏丙 1 元,乙、丙沒有輸贏;如擲出兩個骰子點數和大於 10 時,則甲贏丙 2 元、乙贏丙 3 元。令 X, Y 分別表甲、乙擲 1 次骰子後所得的錢。
 - (a) 求X,Y的機率分布。
 - (b) 求E(X), E(Y)。
- (12) 一個袋子中有 10 個球,分別標有 1 , 2 , \cdots , 10 號,若每次取 3 個球,令 X 表 這 3 個球之中位數的隨機變數。
 - (a) \bar{x} *P* (*X*=6) ∘
 - (b) 求X的機率分布。
 - (c) $\equiv X$ 的機率函數圖。
- (13) 求下列隨機變數的期望值及變異數。
 - (a)X的分布遵循均勻機率分布,且其可能值為1至20的正整數。
 - (b)X 的分布遵循參數為 0.3 的白努利分布。
- (14) 設袋中有 3 個紅球, 4 個白球, 從中取出 3 球, 試求取得紅球個數的期望值與 變異數。
- (15) 袋中有 1,2,3 號卡片各 2 張,每張卡片被取中的機率相等,現在從袋中一次取出 2 張卡片時,X 代表兩張卡片數字的乘積,試求 X 的期望值與變異數。
- (16) 設隨機變數 X 的機率分布如下:

$$\frac{X}{\text{機率}} = \frac{1}{15} = \frac{2}{15} = \frac{3}{15} = \frac{4}{15} = \frac{5}{15}$$
試求 $E(X)$ 與標準差 σ_X 。

(17) 設 X 為隨機變數,且 $Y = \frac{2}{3}X + 10$,已知 E(X) = 6,Var(X) = 0.9,試求 E(Y)、Var(Y)。

- (18) 帽子裡有五張卡片,其中兩張寫著 1,另三張寫著 2,從中抽出兩張,令 X 表示兩張數字的和,求 X 的機率分布、期望値與標準差。
- (19) 擲一公正骰子兩次,設兩次的點數差的絕對值為X,
 - (a)試求 X 的分布。
 - (b)P(3≤X≤5)與P(X=0)的值。
 - (c)求 X 的期望值與變異數。
- (20) 一箱中有 2 顆白球和 7 顆紅球,從箱中隨機取球,一次一球取後不放回,直到取得紅球爲止,設隨機變數 X 代表取出球的個數,試求 X 的期望值與標準差。

綜合練習解答

(1)
$$a = \frac{1}{8}$$

- (2) $(a) \times (b) O(c) \times (d) O(e) \times (f) \times$
- (3) 675
- (4) 23
- (5) (a) $\frac{275}{3}$ (b) $\frac{119}{24}$ [提示: 設最大點數爲 k, 最大點數爲 k 的機率= $\frac{k^3 (k-1)^3}{6^3}$]
- (6) $\frac{2(n-1)}{3}$
- (7) $\frac{19}{6}$ $\vec{\pi}$
- (8) 甲 4900 元, 乙 700 元
- (9) (a)0.3 (b)1.7 (c)4.5 (d)1.61
- (10) (a)125 元 (b)75000 元
- (11) (a)

X	-1	0	1	2
機率	<u>6</u>	15	12	3
	36	36	36	36

Y	0	-1	3
機率	18	15	3
	36	36	36

(b)E(X)=
$$\frac{1}{3}$$
, E(Y)= $\frac{-1}{6}$

(12)
$$(a)^{\frac{1}{6}}$$
 (b)

X	2	3	4	5
機率	8 120	$\frac{14}{120}$	18 120	20 120
X	6	7	8	9
機率	20 120	18 120	14 120	8 120

(c)略

(13) (a)E(X)=
$$\frac{21}{2}$$
, Var(X)= $\frac{133}{4}$ (b)E(X)=0.3, Var(X)=0.21

(14) 期望值
$$\frac{9}{7}$$
、變異數 $\frac{24}{49}$

(15)
$$E(X) = \frac{58}{15}$$
, $Var(X) = \frac{1046}{225}$

(16)
$$E(X) = \frac{11}{3}, \ \sigma_X = \frac{\sqrt{14}}{3}$$

(17)
$$E(Y)=14 \cdot Var(Y)=0.6$$

(18)
$$\frac{X}{\cancel{\cancel{R}}} = \frac{2}{10} = \frac{3}{10} + \frac{4}{10} + E(X) = \frac{16}{5} + \sigma_X = \frac{3}{5}$$

(19) (a)
$$\frac{X \quad 0 \quad 1}{\cancel{\cancel{\cancel{0}}}} \frac{1}{36} \frac{2}{36} \frac{3}{36} \frac{10}{36} \frac{8}{36} \frac{6}{36} \frac{4}{36} \frac{2}{36}$$
(b)
$$P(X=0) = \frac{6}{36}, P(3 \le X \le 5) = \frac{12}{36}$$
(c)
$$E(X) = \frac{35}{18}, Var(X) = \frac{665}{324}$$

(20)
$$E(X) = \frac{5}{4}$$
 個, $\sigma_X = \frac{\sqrt{35}}{12}$ 個