Name:	
J#:	Dr. Clontz
Date:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard E1.	Mark:

Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

	Mark:
Standard E2.	

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Standard E3.

Mark:

Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

Standard E4. Mark:

Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

Standard V1.

Mark:

Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (0, cy_1)$

- (a) Show that scalar multiplication distributes vectors over scalar addition: $(c+d)\odot(x,y)=c\odot(x,y)\oplus d\odot(x,y).$
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V2.

Mark:

Determine if
$$\begin{bmatrix} 1\\4\\3 \end{bmatrix}$$
 is a linear combination of

Determine if
$$\begin{bmatrix} 1\\4\\3 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} 3\\0\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\4 \end{bmatrix}$, and $\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$.

Standard V3.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 12 \\ -9 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \\ -8 \end{bmatrix} = \mathbb{R}^3?$$

Standard V4.

subspace of \mathbb{R}^3 .

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x + y + z = 0 (this forms a plane). Determine if W is a

Standard S1.

Determine if the set of vectors $\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Mark:

Standard S2.

Mark:

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x^2 - 2\}$ is a basis of \mathcal{P}^2 .

Standard S3.

Mark:

Let $W = \operatorname{span} \left\{ \begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\}$. Find a basis for this vector space.

Standard S4.

Mark:

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}2\\0\\-2\\0\end{bmatrix},\begin{bmatrix}3\\1\\3\\6\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\0\\1\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Additional Notes/Marks