Variance Reduction for Multi-physics Analysis of Moving Systems

Chelsea D'Angelo

Preliminary Exam

Feb. 2, 2018

- 1 Motivation
- 2 Literature Review

SDR Analysis

MC VR Techniques

GT-CADIS Demonstration

Moving Geometries and Sources

3 Proposal

TGT-CADIS: VR for SDR Analysis of Moving Systems

4 Implementation Plan

Software

TGT-CADIS Workflow

- 6 Experiment
- **6** Progress

Stepwise geometry tool

DAGMCNP update

Final Thoughts

Motivation

Shutdown Dose Rate (SDR) Analysis

- Fusion Energy Systems (FES)
 - Burning plasma, D-T fusion
 - ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
- Neutrons penetrate deeply into system components, causing activation
- Radioisotopes persist long after shutdown
- Important to quantify the dose caused by decay photons

Figure 1 : Cutaway view of ITER drawing.

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

- FES are designed with modular components
 - Can move during maintenance procedure
- Interested in SDR at a particular location
- SDR will change as a function of the activated component's position over time

Goal

Optimize the calculation of the **shutdown dose rate** when activated components are **moving** around the facility.

Literature Review

SDR Solution Methods

Direct 1-Step Method (D1S) [1]

Rigorous 2-Step Method (R2S) [2]

Monte Carlo Radiation Transport

- Monte Carlo (MC) method [3]:
 - Stochastic method
 - Simulate random particle walks through phase space
 - Score quantities of interest in discrete regions of phase space
 - Accurate for large, complex models
 - Challenged in highly attenuated regions
 - Results scored in regions that have low particle flux, have higher statistical uncertainty

Figure 2: Photon source in ITER tokamak building.

Error in MC Calculations

Uncertainty in MC calculations:

$$\Re = rac{\sigma_{\overline{x}}}{\overline{x}}$$

$$\sigma_{\overline{x}} \propto rac{1}{\sqrt{N}}$$

Efficiency in MC calculations:

$$FOM = \frac{1}{\Re^2 t_{proc}}$$

- To decrease uncertainty:
 - Increase number of histories, N
 - Use variance reduction (VR) techniques

MC Variance Reduction Techniques

- Techniques to modify particle behavior
 - Goal: preferentially sample events that will contribute to results of interest
- Adjust statistical weight of particles to keep playing a fair game
- Types
 - Modified Sampling: source biasing
 - Population Control: splitting/rouletting

Figure 3: a) analog b) source biasing c) splitting/rouletting [4]

Hybrid Deterministic/MC VR Methods

- Use **deterministic** estimate of the adjoint flux, Ψ^+ , to generate **Monte Carlo** VR parameters
- Adjoint flux can define the importance of regions of phase space to the detector response
- Define adjoint source to be detector response function

Forward:

$$H\Psi(\overrightarrow{r}, E, \widehat{\Omega}) = q(\overrightarrow{r}, E, \widehat{\Omega})$$

$$H = \widehat{\Omega} \cdot \nabla + \sigma_t(\overrightarrow{r}, E) - \int_0^\infty dE' \int_{4\pi} d\Omega' \sigma_s(\overrightarrow{r}, E' \to E, \widehat{\Omega}' \to \widehat{\Omega})$$
(3)

Adjoint:

$$\langle \Psi^+, H\Psi \rangle = \langle \Psi, H^+ \Psi^+ \rangle \tag{4}$$

$$H^{+}\Psi^{+}(\overrightarrow{r},E,\widehat{\Omega}) = q^{+}(\overrightarrow{r},E,\widehat{\Omega})$$
 (5)

$$H^{+} = -\widehat{\Omega} \cdot \nabla + \sigma_{t}(\overrightarrow{r}, E) - \int_{0}^{\infty} dE' \int_{4\pi} d\Omega' \sigma_{s}(\overrightarrow{r}, E \to E', \widehat{\Omega} \to \widehat{\Omega}')$$

Consistent Adjoint Driven Importance Sampling (CADIS)

- Use the adjoint flux, Ψ^+ , to generate MC source and transport biasing parameters
- Biased source:

$$\widehat{q}(\overrightarrow{r}, E, \widehat{\Omega}) = \frac{\Psi^{+}(\overrightarrow{r}, E, \widehat{\Omega})q(\overrightarrow{r}, E, \widehat{\Omega})}{R}$$
(6)

Weight window lower bounds:

$$w_{I}(\overrightarrow{r}, E, \widehat{\Omega}) = \frac{R}{\Psi^{+}(\overrightarrow{r}, E, \widehat{\Omega})(\frac{\alpha+1}{2})}$$
(7)

Variance Reduction for SDR Analysis

VR for **photon** transport

- Straightforward
- Can use CADIS method to direct photons towards detector
 - Flux-to-dose-rate conversion factors define adjoint source

VR for **neutron** transport

- More complicated
- Biasing function needs to capture
 - 1 Potential of regions to become activated
 - Potential to produce photons that will contribute to the SDR
- Can use CADIS if we can construct adjoint source that will fulfill these criteria

Variance Reduction for SDR Analysis: MS-CADIS

Multi-Step (MS)-CADIS [6]

- VR method to optimize the initial radiation transport step of a coupled, multi-step process
- When applied to SDR analysis, MS-CADIS will optimize the neutron transport step of R2S

(9)

• System of coupled, multi-physics:

Primary:
$$H\phi(u) = q(u)$$
 (8)

Secondary :
$$L\psi(v) = b(v)$$

$$b(v) = f(\phi(u))$$

(8)

(9)

System of coupled, multi-physics:

Primary :
$$H\phi(u) = q(u)$$

Secondary : $L\psi(v) = b(v)$

$$b(v)=f(\phi(u))$$

Adjoint identities:

$$\langle \phi^+, q \rangle = \langle \phi, q^+ \rangle$$

$$\langle \psi^+, \mathbf{q} \rangle = \langle \psi, \mathbf{p}^+ \rangle$$

(10)

• Response to secondary physics:

$$R_{final} = \langle \omega_R(v), \psi(v) \rangle$$
 (12)

• Response to secondary physics:

$$R_{final} = \langle \omega_R(\mathbf{v}), \psi(\mathbf{v}) \rangle \tag{12}$$

• Define $b^+ \equiv \omega_R$ and apply adjoint identity:

$$R_{final} = \langle \omega_R, \psi \rangle = \langle b^+, \psi \rangle = \langle b, \psi_R^+ \rangle$$
 (13)

ullet ψ_R^+ represents importance function for $R_{\it final}$

• Response to secondary physics:

$$R_{final} = \langle \omega_R(v), \psi(v) \rangle \tag{12}$$

• Define $b^+ \equiv \omega_R$ and apply adjoint identity:

$$R_{final} = \langle \omega_R, \psi \rangle = \langle b^+, \psi \rangle = \langle b, \psi_R^+ \rangle \tag{13}$$

- ullet ψ_R^+ represents importance function for $R_{\it final}$
- Set primary response to final response and apply adjoint identity:

$$R_{final} = \langle q^+, \phi \rangle = \langle q, \phi_R^+ \rangle$$
 (14)

ullet ϕ_R^+ represents importance function for $R_{\it final}$

Response to secondary physics:

$$R_{final} = \langle \omega_R(v), \psi(v) \rangle \tag{12}$$

• Define $b^+ \equiv \omega_R$ and apply adjoint identity:

$$R_{final} = \langle \omega_R, \psi \rangle = \langle b^+, \psi \rangle = \langle b, \psi_R^+ \rangle \tag{13}$$

- ψ_R^+ represents importance function for R_{final}
- Set primary response to final response and apply adjoint identity:

$$R_{final} = \langle q^+, \phi \rangle = \langle q, \phi_R^+ \rangle$$
 (14)

- ϕ_R^+ represents importance function for $R_{\it final}$
- Solving for q^+ requires this unique relationship:

$$b(v) = \langle \sigma_b(u, v), \phi(u) \rangle \tag{15}$$

• Substitute Eq. 15 and set primary response equal to secondary :

$$R_{final} = \langle q^{+}(u), \phi(u) \rangle = \langle \langle \sigma_{b}(u, v), \phi(u) \rangle, \ \psi_{R}^{+}(v) \rangle$$
 (16)

• Substitute Eq. 15 and set primary response equal to secondary :

$$R_{final} = \langle q^{+}(u), \phi(u) \rangle = \langle \langle \sigma_{b}(u, v), \phi(u) \rangle, \ \psi_{R}^{+}(v) \rangle$$
 (16)

Switch the order of integration

$$R_{final} = \langle q^{+}(u), \phi(u) \rangle = \langle \langle \sigma_{b}(u, v), \psi_{R}^{+}(v) \rangle, \phi(u) \rangle$$
 (17)

• Substitute Eq. 15 and set primary response equal to secondary :

$$R_{final} = \langle q^{+}(u), \phi(u) \rangle = \langle \langle \sigma_{b}(u, v), \phi(u) \rangle, \psi_{R}^{+}(v) \rangle$$
 (16)

Switch the order of integration

$$R_{final} = \langle q^{+}(u), \phi(u) \rangle = \langle \langle \sigma_{b}(u, v), \psi_{R}^{+}(v) \rangle, \phi(u) \rangle$$
 (17)

MS-CADIS adjoint primary source:

$$q^{+}(u) \equiv \langle \sigma_b(u, v), \psi_R^{+}(v) \rangle \tag{18}$$

• MS-CADIS adjoint primary source:

$$q^{+}(u) \equiv \langle \sigma_b(u, v), \psi_R^{+}(v) \rangle \tag{19}$$

- Apply MS-CADIS to coupled neutron-photon physics:
 - $q^+(u) \equiv q_n^+(E_n)$
 - $\psi^+(v) \equiv \phi_{\gamma}^+(E_{\gamma})$
 - Prompt photon production: $\sigma_b(u, v) \equiv \sigma_{n,\gamma}(E_n, E_{\gamma})$
 - Delayed photon production: $\sigma_b(u,v) \equiv T_{n,\gamma}(E_n,E_\gamma)$

Variance Reduction for SDR Analysis: GT-CADIS

Groupwise Transmutation (GT)-CADIS [7]

- Implementation of MS-CADIS specifically for SDR analysis
- Provides method to calculate optimal adjoint neutron source, q_n^+ :

$$q_n^+(E_n) = \langle T(E_n, E_\gamma), \phi_\gamma^+(E_\gamma) \rangle \tag{20}$$

- $T(E_n, E_{\gamma})$
 - Approximation of the transmutation process
 - Solution exits when SNILB criteria are met
 - Defined by this relationship:

$$q_{\gamma}(E_{\gamma}) = \langle T(E_{n}, E_{\gamma}), \phi_{n}(E_{n}) \rangle \tag{21}$$

Variance Reduction for SDR Analysis: GT-CADIS

Groupwise **T**ransmutation (GT)-CADIS [7]

- Calculate T:
 - 1 Irradiate each material with neutrons from a single energy group, g
 - 2 Record resulting photon emission in each energy group, h

$$T_{g,h} = \frac{q_{\gamma,h}(\phi_{n,g})}{\phi_{n,g}} \tag{22}$$

GT-CADIS Demonstration: Problem Description

- Geometry
 - Steel chamber
 - 2m x 2m x 2m central cavity
- Source
 - Uniform volume source in central cavity
 - 13.8-14.2 MeV neutrons
- Detector
 - Calculate SDR
 - 2m away from chamber

GT-CADIS Demonstration: Adjoint Photon Transport

GT-CADIS workflow

Figure 4: Adjoint photon flux

GT-CADIS Demonstration: Adjoint Neutron Transport

GT-CADIS workflow

Figure 5 : GT-CADIS adjoint neutron flux. Functions as importance map.

GT-CADIS Demonstration: VR Parameters

Figure 6: Biased neutron source generated with GT-CADIS method.

Figure 7: Weight window mesh generated with GT-CADIS method.

GT-CADIS Efficiency

 VR parameters produced by GT-CADIS method result in much faster convergence of the neutron transport flux in comparison to analog and FW-CADIS methods

Figure 8: FOM as function of neutron transport processor time. [?]

Figure 9: Demo model.

Figure 10: GT-CADIS adjoint neutron flux. Functions as importance map.

Figure 9: Demo model.

Figure 10 : GT-CADIS adjoint neutron flux. Functions as importance map.

Figure 9: Demo model.

Figure 10: GT-CADIS adjoint neutron flux. Functions as importance map.

Figure 9: Demo model.

Figure 10: GT-CADIS adjoint neutron flux. Functions as importance map.

Figure 9: Demo model.

Figure 10: GT-CADIS adjoint neutron flux. Functions as importance map.

Figure 9: Demo model.

Figure 10 : GT-CADIS adjoint neutron flux. Functions as importance map.

Figure 9: Demo model.

Figure 10: GT-CADIS adjoint neutron flux. Functions as importance map.

Moving Geometries and Sources

MCNP6 Moving Objects [8], [9]

- Update in future version of MCNP6
- Allows movement of objects, sources, delayed particles during single simulation
- Available for native MCNP geometry descriptions (not mesh)

Moving Geometries and Sources

Mesh Coupled R2S (MCR2S)[10]

- Capability that allows components to move before photon transport step
- Transformations are applied to copies of moving components
- Original component still in original location, set to void material

Review

- MC method is most accurate way to obtain detailed particle flux distributions
 - Use MC codes for both neutron and photon transport steps of R2S
 - Need to use VR methods to optimize the transport calculations
- GT-CADIS has proven to optimize the neutron transport step of R2S
- MCNP6 and MCR2S have developed some capabilities for performing transport on moving geometries
- No automated VR for optimizing neutron transport in systems that move after shutdown

Proposal

VR for SDR Analysis of Moving Systems

• GT-CADIS optimizes neutron transport step in static systems $q_n^+(E_n) = \langle T(E_n, E_\gamma), \phi_\gamma^+(E_\gamma) \rangle$

• Movement after shutdown, during photon transport:

Need time-integrated adjoint neutron source

Time-integrated Adjoint Neutron Source

- Score adjoint photon flux in discrete volume elements at each time step
 - Adjoint flux in volume element v at time t: $\phi_{\gamma}^+(\overrightarrow{r}_{\nu}(t),t)$ Position of volume element v at time t: $\overrightarrow{r}_{\nu}(t)$
- Combine with T and integrate over time

$$q_n^+ = \frac{\int_t \phi_\gamma^+(\overrightarrow{r}_\nu(t), t) T_\nu(t) dt}{\int_t dt}$$
 (23)

TGT-CADIS: Adjoint Neutron Source

- Discrete form:
 - t_{mov} is the time step
 - Δt_{mov} is the duration of the time step
 - t_{tot} is the total number of time steps

$$q_{n,v,g}^{+} = \frac{\sum_{t_{mov}} \left(\sum_{h} T_{v,g,h} \phi_{\gamma,v,h,t_{mov}}^{+}\right) \Delta t_{mov}}{t_{tot}}$$

$$\vec{r}_{v,(t=0)}$$
Detector
$$\vec{r}_{v,(t=3)}$$
Detector
$$\vec{r}_{v,(t=3)}$$

Time-integrated (T)GT-CADIS

- Perform deterministic adjoint neutron transport using the time-integrated source
- Resultant adjoint neutron flux should look something like this:

Time-integrated (T)GT-CADIS: Workflow

Implementation Plan

Software

- PARTISN: PARallel, TIme-Dependent SN [11]
 - Deterministic adjoint transport
- DAGMC: Direct Accelerated Geometry [12], Monte Carlo, MCNP: Monte Carlo N Particle [3]
 - Forward MC transport on CAD geometry
- ALARA: Analytic and Laplacian Adaptive Radioactivity Analysis [13]
 - Activation analysis
- PyNE: Python for Nuclear Engineering [14]
 - Tools to support transport
- MOAB: Mesh-Oriented datABase [15]
 - Moving geometries

Time-integrated (T)GT-CADIS: Workflow

Time-integrated (T)GT-CADIS: Workflow

Time-integrated (T)GT-CADIS: Workflow

TGT-CADIS: Calculate Adjoint Neutron Source

- Map the structured (voxel) mesh to a tetrahedral mesh
- Combine $\phi_{\gamma,t_{mov}}^+$ and $T_{t_{mov}}$ and average over time

Time-integrated (T)GT-CADIS: Workflow

TGT-CADIS: Generate VR Parameters

- Perform adjoint neutron transport
- Generate biased source and weight window mesh via CADIS methodology

- Toy problem to assess TGT-CADIS
 - Steel chamber with moving component
 - Incrementally add optimization
 - Calculate figure of merit (FOM)
- Full-scale FES demonstration

- Toy problem to assess TGT-CADIS
 - Steel chamber with moving component
 - Incrementally add optimization
 - Calculate figure of merit (FOM)
- Full-scale FES demonstration

- Toy problem to assess TGT-CADIS
 - Steel chamber with moving component
 - Incrementally add optimization
 - Calculate figure of merit (FOM)
- Full-scale FES demonstration

- Toy problem to assess TGT-CADIS
 - Steel chamber with moving component
 - Incrementally add optimization
 - Calculate figure of merit (FOM)
- Full-scale FES demonstration

- Toy problem to assess TGT-CADIS
 - Steel chamber with moving component
 - Incrementally add optimization
 - Calculate figure of merit (FOM)
- Full-scale FES demonstration

- Toy problem to assess TGT-CADIS
 - Steel chamber with moving component
 - Incrementally add optimization
 - Calculate figure of merit (FOM)
- Full-scale FES demonstration

Experiment: Toy Problem

Experimental Steps:

No VR

Experiment: Toy Problem

Experimental Steps:

- No VR
- Photon VR: CADIS

Experiment: Toy Problem

Experimental Steps:

- No VR
- 2 Photon VR: CADIS
- Neutron and Photon VR: TGT-CADIS, CADIS

Progress

MC Moving Geometry Simulations

- Capabilities to update position of geometry based on user-defined motion data
 - 1 Production of step-wise geometry files
 - ② DAGMCNP update
- Common functionality:
 - Read tag data that specifies type of transformation
 - Identify starting position of each component
 - Update position according to transformation

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - · Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - · Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - · Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - · Translation or rotation distance

- Tool to generate new geometry file at each time step
- Motion data:
 - Time-dependent:
 - Translation or rotation vector
 - Duration of time
 - Number of time steps
 - Relocation:
 - · Translation or rotation distance

Moving Geometries: DAGMCNP Update

- Functionality to apply MCNP TR(n) card data to DAGMC geometry
- Motion data:
 - Translation distance
- Separate input file containing transformations for each time step of geometry movement

Final Thoughts

Assumptions

- Photon transport occurs much faster than geometry movement : reasonable to do quasi-static simulation
- Period of geometry movement is short enough that the photon source will not change appreciably : can use same photon source for all time steps of geometry movement

Limitations

- Geometry movement tools do not treat object kinetics
 - User must be careful to not cause overlap in components
- Can only move components that do not share a surface with any other components

Challenges

- Depending on complexity of model and fidelity of time resolution, can amass large number of CAD geometry files, volume mesh tally files
- Need to optimize this workflow in order to keep file storage at minimum

Summary

- Accurate quantification of the SDR during maintenance procedures is crucial to the design and operation of FES
- GT-CADIS has proven to accurately quantify the SDR in static FES
- TGT-CADIS aims to provide the capabilities necessary to optimize
 the calculation of the SDR during operations that involve activated
 components moving around the facility

Questions?

Davide Valenza, Hiromasa Iida, Romano Plenteda, and Robert T. Santoro.

Proposal of shutdown dose estimation method by Monte Carlo code. Fusion Engineering and Design, 55(4):411-418, 2001.

Y Chen and U Fischer.

Rigorous mcnp based shutdown dose rate calculations: computational scheme, verification calculations and application to ITER. Fusion Engineering and Design, 63:107 - 114, 2002.

X5 Monte Carlo Team.

MCNP- A General Monte Carlo N-Particle Transport Code, Version 5.

Apr 2003.

J.K. Shultis and R.E. Faw.

An mcnp primer.

2004-2011.

Alireza Haghighat and John C. Wagner.

Monte Carlo Variance Reduction with Deterministic Importance
Functions.

Progress in Nuclear Energy, 42(1):25–53, 2003.

Ahmad M. Ibrahim, Douglas E. Peplow, Robert E. Grove, Joshua L. Peterson, and Seth R. Johnson.

The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation.

Nuclear Technology, 192:286 - 298, 2015.

Elliott D. Biondo and Paul P. H. Wilson.

Transmutation approximations for the application of hybrid Monte Carlo/deterministic neutron transport to shutdown dose rate analysis. *Nuclear Science and Engineering*, 187(1):27–48, 2017.

Joe W. Durkee, Russell C. Johns, and Laurie S. Waters. MCNP6 moving objects part I: Theory. Progress in Nuclear Energy, 87(Supplement C):104 – 121, 2016.

Joe W. Durkee, Russell C. Johns, and Laurie S. Waters. MCNP6 moving objects. part ii: Simulations.

Progress in Nuclear Energy, 87(Supplement C):122 – 143, 2016.

A. Davis and R. Pampin.

Benchmarking the MCR2S system for high-resolution activation dose analysis in ITER.

Fusion Engineering and Design, 85(1):87 – 92, 2010.

R. Alcouffe, R. Baker, J. Dahl, S. Turner, and R. Ward. PARTISN: A time-dependent, parallel neutral particle transport code system.

(LA-UR-05-3925), May 2005.

Timothy Tautges, Paul Wilson, Jason Kraftcheck, Brandon F Smith, and Douglass Henderson.

Acceleration techniques for direct use of CAD-based geometries in Monte Carlo radiation transport.

may 2009.

Paul Wilson, H Tsige-Tamirat, Hesham Khater, and Douglass Henderson.

Validation of the ALARA activation code.

34:784, 01 1998.

Cameron Bates, Elliott Biondo, and Kathryn Huff. PyNE progress report.

11 2014.

Timothy J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst.

MOAB: A Mesh-Oriented Database, 2004.