LINEAR ALGEBRA II

Ch. VII SYMMETRIC, HERMITIAN, AND UNITARY OPERATORS

- Throughout this section we let V be a finite dimensional vector space over a field K. We suppose that V has a fixed non-degenerate scalar product denoted by $\langle v, w \rangle$, for $v, w \in V$.
- "The reader may take $V = K^n$ and may fix the scalar product to be the ordinary dot product

$$\langle X, Y \rangle = {}^{\mathsf{t}} X Y,$$

where X, Y are column vectors in K^n . However, in applications, it is not a good idea to fix such bases right away."

A linear map

$$A:V\to V$$

of *V* into itself will also be called an (linear) operator.

• **Lemma 1.1.** Let $A: V \to V$ be an operator. Then there exists a unique operator $B: V \to V$ such that $\langle Av, w \rangle = \langle v, Bw \rangle$ for all $v, w \in V$.

- The operator $B: V \to V$ such that $\langle Av, w \rangle = \langle v, Bw \rangle$ for all $v, w \in V$ is called the transpose of A and denoted by ${}^{t}A$.
- $B = {}^{t}A \text{ iff } \langle Av, w \rangle = \langle v, Bw \rangle \text{ for all } v, w \in V.$
- The operator A is said to be symmetric (with respect to the fixed non-degenerate scalar product \langle , \rangle) if ${}^{t}A = A$.
- The operator A is symmetric iff $\langle Av, w \rangle = \langle v, Aw \rangle$ for all $v, w \in V$.

• Let $A: V \to W$ be a linear map. Then there exists a unique linear map (called the transpose of A and denoted by ${}^tA) B: W \to V$ such that $\langle Av, w \rangle = \langle v, Bw \rangle$ for all $v \in W$, $w \in W$.

• $M_{\mathcal{B}'}^{\mathcal{B}}({}^{\mathsf{t}}A) = ?.$

• Let $V = K^n$ and let the scalar product be the ordinary dot product. We have

$$\langle AX, Y \rangle = {}^{t}(AX)Y = {}^{t}X{}^{t}AY = \langle X, {}^{t}AY \rangle,$$

where ${}^{t}A$ now means the transpose of the matrix A. Thus when we deal with the ordinary dot product of n-tuples, the transpose of the operator is represented by the transpose of the associated matrix. This is the reason why we have used the same notation in both cases.

• Theorem 1.2. Let V be a finite dimensional vector space over the field K, with a fixed non-degenerate scalar product $\langle v, w \rangle$. Let A, B be operators of V, and $c \in K$. Then

$${}^{t}(A+B) = {}^{t}A + {}^{t}B,$$
 ${}^{t}(AB) = {}^{t}B{}^{t}A,$ ${}^{t}(cA) = c{}^{t}A,$ ${}^{t}A = A.$

• id: $V \rightarrow V$ is symmetric.

• If $A: V \to V$ is invertible, then ${}^{t}(A^{-1}) = ({}^{t}A)^{-1} = {}^{t}A^{-1} (= A^{-T})$. If $A: V \to V$ is invertible and symmetric, then A^{-1} is symmetric.

- If A and B are symmetric, then
 - $A \pm B$ is symmetric;
 - AB is symmetric iff AB = BA.

• A $n \times n$ real symmetric matrix is said to be

if

if
$${}^{t}XAX > 0$$
 for all $O \neq X \in \mathbb{R}^{n}$.
 ${}^{t}XAX \ge 0$ for all $X \in \mathbb{R}^{n}$.

 Let V be a finite dimensional vector space over R, with a positive definite scalar product (,). An symmetric operator A of V is said to be

$$\langle Av, v \rangle > 0$$
 for all $O \neq v \in V$.
 $\langle Av, v \rangle \ge 0$ for all $v \in V$.

• Let V be a finite dimensional vector space over R, with a positive definite scalar product \langle , \rangle . Suppose that $V = W + W^{\perp}$ is the direct sum of a subspace W and its orthogonal complement. Let P be the projection on W, and assume $W \neq \{O\}$. Show that P is symmetric and semipositive.

• Transpose of the infinite dimensional operator $D: f \mapsto f'$ of $C_0^{\infty}[0,1]$ w.r.t. the scalar product $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$.

• Homework: Ch. VII, §1, 5, 7, 12.

- Throughout this section we let V be a finite dimensional vector space over C. We suppose that V has a fixed positive definite hermitian product (Hermitian form) denoted by $\langle v, w \rangle$, for $v, w \in V$.
- The reader may take $V = C^n$ and may fix the hermitian product to be the standard product

$$\langle X,Y\rangle={}^{\mathrm{t}}\!X\bar{Y},$$

where X, Y are column vectors in \mathbb{C}^n .

- Let $A: V \to V$ be an operator.
- $L_w : v \mapsto \langle Av, w \rangle$ is a (complex) functional on V.

- Theorem 2.1. Let V be a finite dimensional vector space over C with a positive definite Hermitian form \langle , \rangle . Given a functional L on V, there exists a unique $w' \in V$ such that $L(v) = \langle v, w' \rangle$ for all $v \in V$.
- The association $w \mapsto L_w$ is not an isomorphism.
- Lemma 2.2. Given an operator $A: V \to V$, there exists a unique operator $A^*: V \to V$ such that for all $v, w \in V$ we have

$$\langle Av, w \rangle = \langle v, A^*w \rangle.$$

- A^* is called the adjoint of A.
- Let $V = C^n$ and let the form be the standard form given by

$$(X,Y) \mapsto {}^{\mathsf{t}}\!X\bar{Y} = \langle X,Y \rangle,$$

for X, Y column vectors in \mathbb{C}^n . Then for any matrix A representing a linear map of V into itself, we have

$${}^{\mathsf{t}}X\overline{(A^*Y)} = \langle X, A^*Y \rangle = \langle AX, Y \rangle = {}^{\mathsf{t}}(AX)\bar{Y} = {}^{\mathsf{t}}X{}^{\mathsf{t}}A\bar{Y} = {}^{\mathsf{t}}X\overline{(\bar{\mathsf{t}}\bar{A}Y)}.$$

This means that

$$A^* = {}^t \bar{A}.$$

• An operator A is called hermitian (or self-adjoint) if $A^* = A$. This means that for all $v, w \in V$ we have

$$\langle Av, w \rangle = \langle v, Aw \rangle.$$

- A complex matrix A is called hermitian if $A = A^* \triangleq {}^t \bar{A}$, or equivalently, ${}^t A = \bar{A}$.
- If A is a hermitian matrix, then we can define on C^n a hermitian product by the rule

$$(X,Y)\mapsto {}^{\mathrm{t}}(AX)\bar{Y}.$$

• **Theorem 2.3.** Let V be a finite dimensional vector space over the field C, with a fixed positive definite hermitian form $\langle v, w \rangle$. Let A, B be operators of V, and $\alpha \in C$. Then

$$(A + B)^* = A^* + B^*,$$
 $(AB)^* = B^*A^*,$ $(\alpha A)^* = \bar{\alpha}A^*,$ $A^{**} = A.$

Polarization identity:

$$\left\langle A(v+w),v+w\right\rangle -\left\langle A(v-w),v-w\right\rangle =2\big[\left\langle Aw,v\right\rangle +\left\langle Av,w\right\rangle \big]$$

or

$$\langle A(v+w),v+w\rangle - \langle Av,v\rangle - \langle Aw,w\rangle = \langle Aw,v\rangle + \langle Av,w\rangle$$

 $4\langle Av, w \rangle =$ $\langle A(v+w), v+w \rangle - \langle A(v-w), v-w \rangle + i\langle A(v+iw), v+iw \rangle - i\langle A(v-iw), v-iw \rangle$

• **Theorem 2.4.** Let V be a finite dimensional vector space over C, with a fixed positive definite hermitian form $\langle v, w \rangle$. Let A be an operator such that $\langle Av, v \rangle = 0$ for all $v \in V$. Then A = O.

• **Theorem 2.5.** Let *V* be a finite dimensional vector space over *C*, with a fixed positive definite hermitian form $\langle v, w \rangle$. Let *A* be an operator. Then *A* is hermitian if and only if $\langle Av, v \rangle$ is real for all $v \in V$.

• If $A: V \to V$ is invertible, then $(A^{-1})^* = (A^*)^{-1} = A^{-*}$. If $A: V \to V$ is invertible and hermitian, then A^{-1} is hermitian.

- If A and B are hermitian matrices, then
 - ${}^{t}A$ and \bar{A} are hermitian;
 - $A \pm B$ is hermitian;
 - AB is hermitian iff AB = BA.

• Skew-symmetric matrix and operator.

• Skew-hermitian matrix and operator.

• A $n \times n$ hermitian matrix is said to be

 Let V be a finite dimensional vector space over C, with a positive definite hermitian product (,). An hermitian operator A of V is said to be

```
positive definite semi-positive if \langle Av, v \rangle > 0 for all O \neq v \in V. \langle Av, v \rangle \geq 0 for all v \in V.
```

• Homework: Ch. VII, §2, 2, 3, 8

• Let *V* be a finite dimensional vector space over *R*, with a positive definite scalar product \langle , \rangle . An operator *A* of *V* is said to be real unitary (orthogonal) if

$$\langle Av, Aw \rangle = \langle v, w \rangle$$

for all $v, w \in V$.

- **Theorem 3.1.** Let *V* be a finite dimensional vector space over *R* with a positive definite scalar product, and *A* be an operator of *V*. The following conditions on *A* are equivalent:
 - (1) A is unitary.
 - (2) A preserves the norm of vectors, i.e. for every $v \in V$, we have

$$||Av|| = ||v||.$$

(3) For every unit vector $v \in V$, the vector Av is also a unit vector.

• **Theorem 3.2.** Let *V* be a finite dimensional vector space over *R* with a positive definite scalar product. An operator *A* of *V* is unitary iff

$${}^{\mathrm{t}}AA = I.$$

• A unitary map is invertible.

• A real matrix A is said to be unitary (or orthogonal) if ${}^{t}AA = I$ or equivalently, ${}^{t}A = A^{-1}$.

• The only unitary maps of the plane R^2 into itself are the maps whose matrices are of the type

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \ \text{or} \ \left(\begin{array}{cc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array} \right).$$

- Let *A* be a real unitary operator.
 - (a) Show that ${}^{t}A$ is unitary.
 - (b) Show that A^{-1} exists and is unitary.
 - (c) If B is real unitary, show that AB is unitary, and that $B^{-1}AB$ is unitary.

The complex case.

• Let *V* be a finite dimensional vector space over *C*, with a positive definite hermitian product \langle , \rangle . An operator *A* of *V* is said to be real unitary (orthogonal) if

$$\langle Av, Aw \rangle = \langle v, w \rangle$$

for all $v, w \in V$.

- **Theorem 3.1'.** Let *V* be a finite dimensional vector space over *C* with a positive definite hermitian product, and *A* be an operator of *V*. The following conditions on *A* are equivalent:
 - (1) A is unitary.
 - (2) A preserves the norm of vectors, i.e. for every $v \in V$, we have

$$||Av|| = ||v||.$$

(3) For every unit vector $v \in V$, the vector Av is also a unit vector.

• **Theorem 3.3.** Let *V* be a finite dimensional vector space over *R* with a positive definite hermitian product. An operator *A* of *V* is unitary iff

$$A^*A = I$$
.

• A unitary map is invertible.

• A complex matrix A is said to be unitary (or orthogonal) if $A^*A = {}^t \bar{A}A = I$ or equivalently, $A^* = {}^t \bar{A} = A^{-1}$.

- **Theorem 3.4.** Let V be a finite dimensional vector space over R with a positive definite scalar product, or over C with a positive definite hermitian product. Let A be an operator of V and $\{v_1, \ldots, v_n\}$ be an orthonormal basis of V.
 - (a) If A is unitary then $\{Av_1, \ldots, Av_n\}$ is an orthonormal basis.
 - (b) Let $\{w_1, \ldots, w_n\}$ be another orthonormal basis. Suppose that $Av_i = w_i$ for $i = 1, \ldots, n$. Then A is unitary.

- Let A and B be $n \times n$ matrices satisfying AB = I. Show that A, B are nonsingular and $B = A^{-1}$, $A = B^{-1}$.
- Let V, W be vector spaces over K and dim $V = \dim W$. Let $F : V \to W$ and $G : W \to V$ be linear maps satisfying $F \circ G = \operatorname{id}$. Show that F, G are invertible and $G = F^{-1}$, $F = G^{-1}$.

• Let V, W be finite dimensional vector spaces over K with bases \mathcal{B} and \mathcal{B}' respectively. Show that a linear map $F: V \to W$ is invertible iff $M_{\mathcal{B}'}^{\mathcal{B}}(F)$ is nonsingular.

- Let V be a finite dimensional vector space over C with a non-degenerate hermitian product $\langle \ , \ \rangle$. Let A be an operator of V and $\mathcal B$ be a basis of V.
 - Show that $M_{\mathcal{B}}^{\mathcal{B}}(A^*) = (M_{\mathcal{B}}^{\mathcal{B}}(A))^*$.
 - Is the statement "A is hermitian iff $M_A = M_B^B(A)$ is hermitian" right? Is it right when B is an orthogonal (orthonormal) basis?
 - Is the statement "A is unitary iff $M_A = M_B^B(A)$ is unitary" right? Is it right when B is an orthogonal (orthonormal) basis?

• Homework: Ch. VII, §3, 5, 13, 14.