

PROTON: PRObes for Termination Or Not

Ravindra Metta^{1,2} r.metta@tcs.com

joint work with:-

Hrishikesh Karmarkar¹, Kumar Madhukar⁴, R. Venkatesh¹, Supratik Chakraborty³.

1. TCS Research. 2. TUM. 3. IIT-B, 4. IIT-D

PROTON: **PRO**bes for **T**ermination **O**r **N**ot

- Recurrent sets. Ashutosh Gupta et al. Proving non-termination. POPL'08
- A recurrent set R is a set of program states at the loop head such that
 - \forall s \in R, s satisfies the loop guard
 - \exists a reachable state $s \in \mathbb{R}$
 - $\forall s \in \mathbb{R}$, some successor(s), after executing the loop body, $\in \mathbb{R}$
 - loop forever by taking such successors

PROTON: NT Checking Example

```
i = __VERIFIER_nondet_int();
while (i < 10) {
   if (i != 3) {
      i = i+1;
   }
}</pre>
```

```
i = __VERIFIER_nondet_int();
bool pStored0 = false;
while (i < 10) {</pre>
  bool flag =
       __VERIFIER_nondet_bool();
  static int oi;
  if(pStored0)
       __CPROVER_assert(!(oi==i), "RSF");}
  if(flag){oi=i;pStored0=true;}
  if (i != 3) {
   i = i+1;
```

PROTON: tool flow

https://github.com/kumarmadhukar/term

PROTON: SVCOMP'24 NT Subset

SVCOMP'24 (818 tasks)	PROTON	U Automizer	2LS
Confirmed	501 in 540s	537 in 18000s	484 in 310s
Unconfirmed	126 in 2200s	11 in 1400 s	201 in 26000s
	18 unique		

Far from the unknown unwindings' unscalable end, The straying states may sober to stay, Via sequenced inputs that force a bend, To assume their repetitious tenor without sway.

Thank you