Lógica Digital

Organización del Computador I

David Alejandro González Márquez

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

01.02.2018

Agenda

- Introducción
- Fórmulas booleanas
- Circuitos básicos
- Circuitos aritméticos

Repaso...

- Operadores lógicos:
 - NOT, OR, AND, NAND, NOR, XOR
 - Son descriptos por su tabla de verdad
- Expresiones booleanas:
 - Combinación de operadores lógicos y variables boleanas Ej. $F(X, Y, Z) = X + Y \cdot Z$
 - Una tabla de verdad describe todas las combinaciones de valores de verdad para una función lógica determinada
 - $lue{}$ Dos expresiones son iguales \leftrightarrow tienen la misma tabla de verdad

Compuertas AND y OR

Α	В	AND	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR(A+B)

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

Compuertas NOT y XOR

Α	NOT	
0	1	
1	0	

XOR $(A \oplus B)$

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Compuertas NAND y NOR

A	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NOR $(A \downarrow B)$

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Propiedades

Propiedades para las operaciones (\cdot) y (+):

Identidad	$1 \cdot A = A$	0 + A = A
Nulo	$0 \cdot A = 0$	1 + A = 1
Idempotencia	$A \cdot A = A$	A + A = A
Inverso	$A \cdot \overline{A} = 0$	$A+\overline{A}=1$
Conmutatividad	$A \cdot B = B \cdot A$	A+B=B+A
Asociatividad	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A + B) + C = A + (B + C)
Distributividad	$A + B \cdot C = (A + B) \cdot (A + C)$	$A \cdot (B + C) = A \cdot B + A \cdot C$
Absorción	$A \cdot (A + B) = A$	$A + A \cdot B = A$
De Morgan	$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \cdot \overline{B}$

Ejercicio 1: Equivalencias

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

Ejercicio 1: Equivalencias

Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa:

$$(X + \overline{Y}) = \overline{(\overline{X} \cdot Y)} \cdot Z + X \cdot \overline{Z} + \overline{(Y + Z)}$$

Solución:

Suma de Productos o Producto de Sumas

Formas canónicas de expresiones booleanas

Suma de Productos

Α	В	F(A,B)
0	0	1
0	1	0
1	0	1
1	1	0

$$F(A, B) = (\overline{A} \cdot \overline{B}) + (A \cdot \overline{B})$$

Producto de Sumas

Α	В	F(A, B)
0	0	1
0	1	0
1	0	1
1	1	0

$$F(A,B) = (A + \overline{B}) \cdot (\overline{A} + \overline{B})$$

Ejercicio 2: Fórmula o circuito equivalente

- Dada la siguiente tabla de verdad:
 - Escribir la función booleana que representa.
 - Implementar la función usando a lo sumo una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Como productos de sumas:

Como productos de sumas:

$$(A+B+C)\cdot (A+\overline{B}+C)\cdot (\overline{A}+B+C)\cdot (\overline{A}+B+\overline{C})\cdot (\overline{A}+\overline{B}+C)$$

■ Como suma de productos:

Como productos de sumas:

$$(A+B+C)\cdot (A+\overline{B}+C)\cdot (\overline{A}+B+C)\cdot (\overline{A}+B+\overline{C})\cdot (\overline{A}+\overline{B}+C)$$

Como suma de productos:

$$(\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot C)$$

Como productos de sumas:

$$(A+B+C)\cdot (A+\overline{B}+C)\cdot (\overline{A}+B+C)\cdot (\overline{A}+B+\overline{C})\cdot (\overline{A}+\overline{B}+C)$$

Como suma de productos:

$$(\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot C)$$

$$\longrightarrow ((\overline{A} \cdot \overline{B}) + (\overline{A} \cdot B) + (A \cdot B)) \cdot C$$

$$\longrightarrow ((\overline{A} \cdot \overline{B}) + (\overline{A} + A) \cdot B) \cdot C$$

$$\longrightarrow ((\overline{A} \cdot \overline{B}) + 1 \cdot B) \cdot C$$

$$\longrightarrow ((\overline{A} \cdot \overline{B}) + B) \cdot C$$

$$\longrightarrow ((\overline{A} + B) \cdot (\overline{B} + B)) \cdot C$$

$$\longrightarrow ((\overline{A} + B) \cdot 1) \cdot C$$

$$\longrightarrow (\overline{A} + B) \cdot C$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

La fórmula buscada es igual que ${\cal C}$, excepto para cuando ${\cal A}$ y ${\cal B}$ valen 1 y 0 respectivamente.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

La fórmula buscada es igual que C, excepto para cuando A y B valen 1 y 0 respectivamente.

Debería ser de la forma: $C \cdot (?)$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

La fórmula buscada es igual que C, excepto para cuando A y B valen 1 y 0 respectivamente.

Debería ser de la forma: $C \cdot (?)$

Entonces necesito una expresión (?) sobre A y B, que de 1 para cualquier valor, menos para cuando A vale 1 y B vale 0.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

La fórmula buscada es igual que C, excepto para cuando A y B valen 1 y 0 respectivamente.

Debería ser de la forma: $C \cdot (?)$

Entonces necesito una expresión (?) sobre A y B, que de 1 para cualquier valor, menos para cuando A vale 1 y B vale 0.

Luego tengo que (?) puede ser $\overline{A} + B$. Luego la expresión es $C \cdot (\overline{A} + B)$.

Ejercicio 2: Implementación

- 1 ...
- Implementar la función usando a lo sumo una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT

Ejercicio 2: Implementación

- 1 ..
- Implementar la función usando a lo sumo una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT

Por último, la implementación correspondería a:

Multiplexor y Demultiplexor

Las líneas de control c permiten seleccionar una de las entradas e, la que corresponderá a la salida s.

Las líneas de control *c* permiten seleccionar cual de las salidas *s* tendrá el valor de *e*.

Multiplexor y Demultiplexor

■ Ejemplo,

Codificador y Decodificador

Cada combinación de las líneas *e* corresponderá a una sola línea en alto de la salida *s*.

Una y sólo una línea en alto de *e* corresponderá a una combinación en la salida *s*.

Codificador y Decodificador

■ Ejemplo,

Ejercicio 3: Armando un circuito

 Armar un inversor de 3 bits. Este circuito invierte o no las tres entradas de acuerdo al valor de una de ellas que actúa como control.

En otras palabras, un inversor de k-bits es un circuito de k entradas (e_k, \dots, e_0) y k-1 salidas (s_k-1, \dots, s_0) que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = not(e_i)$ para todo i < k
- Si $e_k = 0$, entonces $s_i = e_i$ para todo i < k

Ejemplo:

```
inversor(1,011)=100
inversor(0,011)=011
inversor(1,100)=011
inversor(1,101)=010
```

Primero pensar como invertir un bit,

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Primero pensar como invertir un bit,

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Como suma de productos, $(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$

iOh! casualidad, es una XOR (\oplus)

$$(\overline{A} \cdot B) + (A \cdot \overline{B}) = A \oplus B$$

Primero pensar como invertir un bit,

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Como suma de productos, $(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$

¡Oh! casualidad, es una XOR (\oplus) ($\overline{A} \cdot B$) + ($A \cdot \overline{B}$) = $A \oplus B$

Implementado con XOR:

Ejercicio 4: Multiplexor

Construir un multiplexor de 4 entradas de datos, 2 entradas de control y 1 salida.

Α	В	С	D	X	Y	S
Α	В	С	D	0	0	Α
A	В	C	D	0	1	В
A	В	C	D	1	0	C
Α	В	C	D	1	1	D

Sumadores

Sumador Simple:

Es un circuito de dos entradas y dos salidas, que responde a la siguiente tabla de verdad.

X	Y	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Sumadores

Sumador Completo:

Es un circuito de tres entradas y dos salidas, que responde a la siguiente tabla de verdad.

X	Y	C_{in}	C_{out}	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ejercicio 5: Armando un sumador completo

1 Construir el circuito de un sumador simple

Ejercicio 5: Armando un sumador completo

1 Construir el circuito de un sumador simple

Teniendo dos sumadores simples y solo una compuerta a elección, arme un sumador completo

Ejercicio 5: Armando un sumador completo

Construir el circuito de un sumador simple

Teniendo dos sumadores simples y solo una compuerta a elección, arme un sumador completo

Ejercicio 6: Más circuitos aritméticos

Usando sumadores completos, armar un circuito que convierta un entero en su inverso aditivo (el inverso aditivo de un número n es el número x tal que x + n = 0).

Los enteros se representan con notación complemento a 2 de 4 bits, no contemplar los casos en que no exista inverso aditivo en la notación utilizada.

Ejemplo:

```
inversoAd(0001)=1111
inversoAd(1001)=0111
inversoAd(0110)=1010
```

Ejercicio 6: Más circuitos aritméticos

¿Preguntas?

