What is a basis for a vector space?

Sarang S. Sane

Linear dependence and independence (recall)

Let v_1, v_2, \ldots, v_n be a set of vectors in the vector space V.

Linear dependence and independence (recall)

Let v_1, v_2, \ldots, v_n be a set of vectors in the vector space V.

The set v_1, v_2, \ldots, v_n is said to be linearly dependent, if there exist scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1v_1+a_2v_2+\ldots+a_nv_n=0$$

Linear dependence and independence (recall)

Let v_1, v_2, \ldots, v_n be a set of vectors in the vector space V.

The set $v_1, v_2, ..., v_n$ is said to be linearly dependent, if there exist scalars $a_1, a_2, ..., a_n$, not all zero, such that

$$a_1v_1+a_2v_2+\ldots+a_nv_n=0$$

The set v_1, v_2, \ldots, v_n is said to be linearly independent, if the only choice of scalars a_1, a_2, \ldots, a_n such that $a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$ is with $a_i = 0$ for all i.

The span of a set S (of vectors) is defined as the set of all finite linear combinations of elements(vectors) of S, and denoted by Span(S).

The span of a set S (of vectors) is defined as the set of all finite linear combinations of elements(vectors) of S, and denoted by Span(S).

i.e.
$$Span(S) = \{\sum_{i=1}^n a_i v_i \in V | a_1, a_2, \dots, a_n \in \mathbb{R} \}$$

The span of a set S (of vectors) is defined as the set of all finite linear combinations of elements(vectors) of S, and denoted by Span(S).

i.e.
$$Span(S) = \{\sum_{i=1}^n a_i v_i \in V | a_1, a_2, \dots, a_n \in \mathbb{R} \}$$

Example

Let
$$S = \{(1,0)\} \subset \mathbb{R}^2$$
. Then

$$Span(S) = \{a(1,0)|a \in \mathbb{R}\} = \{(a,0)|a \in \mathbb{R}.\}$$

The span of a set S (of vectors) is defined as the set of all finite linear combinations of elements(vectors) of S, and denoted by Span(S).

i.e.
$$Span(S) = \{\sum_{i=1}^n a_i v_i \in V | a_1, a_2, \dots, a_n \in \mathbb{R} \}$$

Example

Let $S = \{(1,0)\} \subset \mathbb{R}^2$. Then

$$Span(S) = \{a(1,0)|a \in \mathbb{R}\} = \{(a,0)|a \in \mathbb{R}.\}$$

Thus, Span(S) is the X-axis in \mathbb{R}^2 .

More examples : in \mathbb{R}^2 Let $S = \{(1,1)\} \subset \mathbb{R}^2$.

More examples : in \mathbb{R}^2

Let $S = \{(1,1)\} \subset \mathbb{R}^2$. Then $Span(S) = \{a(1,1)|a \in \mathbb{R}\} = \{(a,a)|a \in \mathbb{R}\}$.

More examples : in \mathbb{R}^2

Let $S = \{(1,1)\} \subset \mathbb{R}^2$.

Then $Span(S) = \{a(1,1)|a \in \mathbb{R}\} = \{(a,a)|a \in \mathbb{R}\}.$

More examples : in $\mathbb{R}^{3}\,$

More examples : in \mathbb{R}^3 Let $S = \{(1,0,0),(0,1,0)\} \subset \mathbb{R}^3$. More examples : in \mathbb{R}^3 Let $S = \{(1,0,0),(0,1,0)\} \subset \mathbb{R}^3$. Then $Span(S) = \{a(1,0,0) + b(0,1,0) | a, b \in \mathbb{R}\} = \{(a,b,0) | a, b \in \mathbb{R}\}.$

More examples : in \mathbb{R}^3

Let $S = \{(1,0,0),(0,1,0)\} \subset \mathbb{R}^3$. Then $Span(S) = \{a(1,0,0) + b(0,1,0) | a, b \in \mathbb{R}\} = \{(a,b,0) | a, b \in \mathbb{R}\}.$

Figure: Span(S) is the XY-plane

Let V be a vector space. A set $S \subseteq V$ is a spanning set for V if Span(S) = V.

Let V be a vector space. A set $S \subseteq V$ is a spanning set for V if Span(S) = V.

Example

▶ If $S = \{(1,0), (0,1)\}$ then $Span(S) = \mathbb{R}^2$

Let V be a vector space. A set $S \subseteq V$ is a spanning set for V if Span(S) = V.

Example

- ▶ If $S = \{(1,0), (0,1)\}$ then $Span(S) = \mathbb{R}^2$
- ▶ If $S = \{(1,0), (0,1), (1,2)\}$ then $Span(S) = \mathbb{R}^2$

Let V be a vector space. A set $S \subseteq V$ is a spanning set for V if Span(S) = V.

Example

- ▶ If $S = \{(1,0), (0,1)\}$ then $Span(S) = \mathbb{R}^2$
- ▶ If $S = \{(1,0), (0,1), (1,2)\}$ then $Span(S) = \mathbb{R}^2$
- ▶ If $S = \{(1,1), (0,1)\}$ then $Span(S) = \mathbb{R}^2$

Let V be a vector space. A set $S \subseteq V$ is a spanning set for V if Span(S) = V.

```
Example
   ▶ If S = \{(1,0), (0,1)\} then Span(S) = \mathbb{R}^2
   ▶ If S = \{(1,0), (0,1), (1,2)\} then Span(S) = \mathbb{R}^2
   ▶ If S = \{(1,1), (0,1)\} then Span(S) = \mathbb{R}^2
   ▶ If S = \{(1,0,0), (0,1,0), (0,0,1)\} then Span(S) = \mathbb{R}^3
) (x,y) ETR2 (x,y) = x(1,0) + y(0,1).

(x,y,2) = x(1,0,0) + y(0,1,0) + 2(0,0,1).
 = (1,0) = (1,1) - (0,1) \cdot (1,0) \in \operatorname{Span} \left( \left\{ \begin{pmatrix} (1,1), (0,1) \right\} \right) = \left\{ \begin{pmatrix} (1,0), (0,1) \right\} \right\}
```

We will try to "build" a spanning set for the vector space \mathbb{R}^3 .

We will try to "build" a spanning set for the vector space \mathbb{R}^3 .

Start with S_0 to be the empty set \emptyset . Then $Span(S_0) = Span(\emptyset) = \{(0,0,0)\}.$

We will try to "build" a spanning set for the vector space \mathbb{R}^3 .

Start with S_0 to be the empty set \emptyset . Then $Span(S_0) = Span(\emptyset) = \{(0,0,0)\}.$

Since this is not the full vector space, append a vector outside $Span(S_0)$ in \mathbb{R}^3 e.g. (0,2,1) to S_0 and call the new set S_1 .

We will try to "build" a spanning set for the vector space \mathbb{R}^3 .

Start with S_0 to be the empty set \emptyset . Then $Span(S_0) = Span(\emptyset) = \{(0,0,0)\}.$

Since this is not the full vector space, append a vector outside $Span(S_0)$ in \mathbb{R}^3 e.g. (0,2,1) to S_0 and call the new set S_1 .

So
$$S_1 = S_0 \cup \{(0,2,1)\}.$$

Example (Contd.)

Example (Contd.)

 $Span(S_1)$ is the line shown in the picture below.

So
$$S_2 = S_1 \cup \{(2,2,0)\}.$$

So
$$S_2 = S_1 \cup \{(2,2,0)\}.$$

 $Span(S_2)$ is the plane shown in the picture.

So
$$S_2 = S_1 \cup \{(2,2,0)\}.$$

 $Span(S_2)$ is the plane shown in the picture.

So
$$S_3 = S_2 \cup \{(0,0,5)\}.$$

So
$$S_3 = S_2 \cup \{(0,0,5)\}.$$

Any arbitrary vector $(x, y, z) \in \mathbb{R}^3$ can be written as follows:

So
$$S_3 = S_2 \cup \{(0,0,5)\}.$$

Any arbitrary vector $(x, y, z) \in \mathbb{R}^3$ can be written as follows:

$$(x,y,z) = \frac{y-x}{2}(0,2,1) + \frac{x}{2}(2,2,0) + \frac{x-y+2z}{10}(0,0,5)$$

So
$$S_3 = S_2 \cup \{(0,0,5)\}.$$

Any arbitrary vector $(x, y, z) \in \mathbb{R}^3$ can be written as follows:

$$(x,y,z) = \frac{y-x}{2}(0,2,1) + \frac{x}{2}(2,2,0) + \frac{x-y+2z}{10}(0,0,5)$$

Hence

$$Span(S_3) = \mathbb{R}^3$$

Start with S_0 to be the empty set \emptyset as before.

Start with S_0 to be the empty set \emptyset as before.

Thus $S_0 = \emptyset$ and hence $Span(S_0) = Span(\emptyset) = \{(0,0,0)\}.$

Start with S_0 to be the empty set \emptyset as before.

Thus $S_0 = \emptyset$ and hence $Span(S_0) = Span(\emptyset) = \{(0,0,0)\}.$

Append any vector not in $Span(S_0)$ e.g. (3,0,0) to S_0 and call the new set S_1 .

Start with S_0 to be the empty set \emptyset as before.

Thus $S_0 = \emptyset$ and hence $Span(S_0) = Span(\emptyset) = \{(0,0,0)\}.$

Append any vector not in $Span(S_0)$ e.g. (3,0,0) to S_0 and call the new set S_1 .

Hence $S_1 = S_0 \cup \{(3,0,0)\}.$

 $Span(S_1)$ is the X-axis, as shown below.

Choose a vector outside $Span(S_1)$ e.g. (2,2,1) and append it to S_1 and call the new set S_2 .

Choose a vector outside $Span(S_1)$ e.g. (2,2,1) and append it to S_1 and call the new set S_2 .

Then $S_2 = S_1 \cup \{(2,2,1)\}$ and $Span(S_2)$ is the plane shown below.

Choose a vector outside $Span(S_1)$ e.g. (2,2,1) and append it to S_1 and call the new set S_2 .

Then $S_2 = S_1 \cup \{(2,2,1)\}$ and $Span(S_2)$ is the plane shown below.

Then $S_3 = S_2 \cup \{(1,3,3)\}.$

Then
$$S_3 = S_2 \cup \{(1,3,3)\}.$$

Any arbitrary vector $(x, y, z) \in \mathbb{R}^3$ can be written as follows:

$$(x,y,z) = \frac{3x - 5y + 4z}{9}(3,0,0) + (y-z)(2,2,1) + \frac{2z - y}{3}(1,3,3)$$

Then $S_3 = S_2 \cup \{(1,3,3)\}.$

Any arbitrary vector $(x, y, z) \in \mathbb{R}^3$ can be written as follows:

$$(x,y,z) = \frac{3x - 5y + 4z}{9}(3,0,0) + (y-z)(2,2,1) + \frac{2z - y}{3}(1,3,3)$$

Hence

$$Span(S_3) = \mathbb{R}^3$$

A basis B of a vector space V is a linearly independent subset of V that spans V.

A basis B of a vector space V is a linearly independent subset of V that spans V.

Example

Let $e_i \in \mathbb{R}^n$ be the vector with i^{th} coordinate 1 and all other coordinates 0

A basis B of a vector space V is a linearly independent subset of V that spans V.

Example

Let $e_i \in \mathbb{R}^n$ be the vector with i^{th} coordinate 1 and all other coordinates 0 e.g. $e_1 = (1, 0, 0, \dots, 0)$.

A basis B of a vector space V is a linearly independent subset of V that spans V.

Example

Let $e_i \in \mathbb{R}^n$ be the vector with i^{th} coordinate 1 and all other coordinates 0 e.g. $e_1 = (1, 0, 0, \dots, 0)$.

The set $\varepsilon = \{e_1, e_2, \dots, e_n\} \subseteq \mathbb{R}^n$ is a basis for \mathbb{R}^n . consisting of

$$(\pi_1, \pi_2, \dots, \pi_n)$$

$$= \pi_1(1 + \pi_2) + \dots + \pi_n = \pi_1(1 + \pi_2) + \dots + \pi_n = \pi_n$$

$$\therefore \text{ Span}(\mathcal{E}) = \mathbb{R}^n.$$

$$\therefore \text{ Span}(\mathcal{E}) = \mathbb{R}^n.$$

$$\Rightarrow \text{ if wondinate of LHS is a}$$

$$\Rightarrow \text{ a}_1 = 0 + \text{ if } \pi_n = 0$$

$$\Rightarrow \text{ a}_1 = 0 + \text{ if } \pi_n = 0$$

$$\therefore \mathcal{E} \text{ is line in dept.}$$

The following conditions are equivalent to a subset $B \subseteq V$ being a basis :

The following conditions are equivalent to a subset $B \subseteq V$ being a basis :

i) B is linearly independent and Span(B) = V.

The following conditions are equivalent to a subset $B \subseteq V$ being a basis :

- i) B is linearly independent and Span(B) = V.
- ii) B is a maximal linearly independent set.

The following conditions are equivalent to a subset $B \subseteq V$ being a basis :

- i) B is linearly independent and Span(B) = V.
- ii) B is a maximal linearly independent set.
- iii) B is a minimal spanning set.

Suppose B is a basis.

B is line indept.

Suppose B'= B U dvy.

Suppose A where Vi,..., v. EB.

V = Zaivi where Vi,..., v. EB.

B' is a line dep. set.

minimal spanning means

We can find a basis by any one of the methods described below :

We can find a basis by any one of the methods described below :

i) Start with the \emptyset and keep appending vectors which are not in the span of the set thus far obtained, until we obtain a spanning set.

We can find a basis by any one of the methods described below :

i) Start with the \emptyset and keep appending vectors which are not in the span of the set thus far obtained, until we obtain a spanning set.

ii) Take a spanning set and keep deleting vectors which are linear combinations of the other vectors, until the remaining vectors satisfy that they are not a linear combination of the other remaining ones.

Let us start with the empty set and append a non-zero vector e.g. (1,2).

Let us start with the empty set and append a non-zero vector e.g. (1,2).

Now choose another vector which is not in the span of the earlier vector e.g. (2,3) .

Let us start with the empty set and append a non-zero vector e.g. (1,2).

Now choose another vector which is not in the span of the earlier vector e.g. (2,3) .

$$Span(\{(1,2),(2,3)\}) = \mathbb{R}^2.$$

Let us start with the empty set and append a non-zero vector e.g. (1,2).

Now choose another vector which is not in the span of the earlier vector e.g. (2,3).

$$Span(\{(1,2),(2,3)\}) = \mathbb{R}^2.$$

Hence this set forms a basis for \mathbb{R}^2 .

Example : Method 2 :
$$V = \mathbb{R}^3$$

Let us start with the set

$$S = \{(1,0,0), (1,2,0), (1,0,3), (0,2,3), (0,4,2)\}$$

Let us start with the set

$$S = \{(1,0,0), (1,2,0), (1,0,3), (0,2,3), (0,4,2)\}$$

Check that $Span(S) = \mathbb{R}^3$.

Let us start with the set

$$S = \{(1,0,0), (1,2,0), (1,0,3), (0,2,3), (0,4,2)\}$$

Check that $Span(S) = \mathbb{R}^3$.

Now observe that, $(0,4,2) = 2(1,2,0) + \frac{2}{3}(1,0,3) - \frac{8}{3}(1,0,0)$.

Let us start with the set

$$S = \{(1,0,0), (1,2,0), (1,0,3), (0,2,3), (0,4,2)\}$$

Check that $Span(S) = \mathbb{R}^3$.

Now observe that, $(0,4,2) = 2(1,2,0) + \frac{2}{3}(1,0,3) - \frac{8}{3}(1,0,0)$.

So delete (0,4,2).

Let us start with the set

$$S = \{(1,0,0), (1,2,0), (1,0,3), (0,2,3), (0,4,2)\}$$

Check that $Span(S) = \mathbb{R}^3$.

Now observe that, $(0,4,2) = 2(1,2,0) + \frac{2}{3}(1,0,3) - \frac{8}{3}(1,0,0)$.

So delete (0,4,2).

Hence our new set of vectors is

$$S_1 = \{(1,0,0), (1,2,0), (1,0,3), (0,2,3)\}$$

Observe that (0,2,3) = (1,2,0) + (1,0,3) - 2(1,0,0).

Observe that (0,2,3) = (1,2,0) + (1,0,3) - 2(1,0,0).

Hence delete (0, 2, 3).

Observe that (0,2,3) = (1,2,0) + (1,0,3) - 2(1,0,0).

Hence delete (0, 2, 3).

Hence our new set of vectors is

$$S_2 = \{(1,0,0), (1,1,0), (1,0,1)\}$$

Observe that (0,2,3) = (1,2,0) + (1,0,3) - 2(1,0,0).

Hence delete (0, 2, 3).

Hence our new set of vectors is

$$S_2 = \{(1,0,0), (1,1,0), (1,0,1)\}$$

None of these vectors is a linear combination of the other two vectors.

Observe that (0,2,3) = (1,2,0) + (1,0,3) - 2(1,0,0).

Hence delete (0, 2, 3).

Hence our new set of vectors is

$$S_2 = \{(1,0,0), (1,1,0), (1,0,1)\}$$

None of these vectors is a linear combination of the other two vectors.

Hence S_2 forms a basis of R^3 .

Thank you