INICIAÇÃO CIENTÍFICA

RELATÓRIO FINAL

Aprendizado de máquina e geometria hiperbólica complexa

Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

> Aluno: Lucas Giraldi Almeida Coimbra Orientador: Carlos Henrique Grossi Ferreira

Junho de 2023 São Carlos

Conteúdo

1 Introdução		odução
2	Geo	metria hiperbólica
	2.1	Variedades e métricas riemannianas
	2.2	Conexões e derivada covariante
	2.3	Geodésicas e transporte paralelo
	2.4	Mapa exponencial e mapa logarítmico
		Curvatura
	2.6	Conceitos métricos
	2.7	Modelos para a geometria hiperbólica
3	3 Redes neurais	
4	\mathbf{Mis}_{1}	turando tudo

1 Introdução

2 Geometria hiperbólica

2.1 Variedades e métricas riemannianas

Uma variedade topológica de dimensão n é um espaço topológico M Hausdorff com base enumerável que é localmente euclidiano de dimensão n, isso é, para cada $p \in M$ existe um aberto U e um homeomorfismo $\phi \colon U \to V \subset \mathbb{R}^n$. O par (U, ϕ) será comumente chamado de carta sobre p. Se (V, ψ) é uma outra carta em M tal que $U \cap V \neq \emptyset$, chamamos de mapas de transição as funções

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \mathbb{R}^n \quad \text{e} \quad \psi \circ \phi^{-1} : \phi(U \cap V) \to \mathbb{R}^n.$$
 (1)

Se os mapas de transição forem suaves, diremos que (U, ϕ) e (V, ψ) são compatíveis. Uma estrutura diferenciável em M é uma cobertura de M por cartas que são duas a duas compatíveis. Dizemos que M é suave ou diferenciável se possuir uma estrutura diferenciável.

A partir de agora, toda carta estará em uma estrutura diferenciável previamente fixada, e portanto toda variedade será suave. Se $p \in M$ dizemos que $F: M \to N$ é suave em p se existirem (U, ϕ) carta sobre p e (V, ψ) carta sobre F(p) tais que $\psi \circ F \circ \phi^{-1}$ é suave. A função F é suave em $U \subset M$ se for suave em todo ponto de U, e é apenas suave se for suave em todo ponto de M.

Uma curva em M é um mapa suave $c: I \to M$ onde I é um intervalo de \mathbb{R} . Se $p \in M$, definimos por C_p^{∞} como o conjunto dos mapas $f: U \subset M \to \mathbb{R}$ suaves, onde U é uma vizinhança qualquer de p. Esse espaço é uma álgebra com as três operações:

- se $f: U \to \mathbb{R}$ e $g: V \to \mathbb{R}$, definitions $f+g: U \cap V \to \mathbb{R}$ por (f+g)(p) = f(p) + g(p);
- se $f: U \to \mathbb{R}$ e $\lambda \in \mathbb{R}$, definimos $\lambda f: U \to \mathbb{R}$ por $(\lambda f)(p) = \lambda f(p)$;
- se $f: U \to \mathbb{R}$ e $g: V \to \mathbb{R}$, definimos $fg: U \cap V \to \mathbb{R}$ por (fg)(p) = f(p)g(p).

Dada uma curva $c:]-\varepsilon, \varepsilon[\to M,$ definimos c'(0) como sendo um mapa $c'(0): C_p^{\infty} \to \mathbb{R}$ dado por

$$c'(0)f = \frac{d}{dt}\Big|_{t=0} (f \circ c)(t). \tag{2}$$

Esse mapa é linear e satisfaz a regra de Leibniz, isso é,

$$c'(0)(fg) = f(c(0)) \cdot c'(0)g + c'(0)f \cdot g(c(0)). \tag{3}$$

Se $p \in M$, o espaço tangente a M em $p \in M$ como o conjunto

$$T_p M = \{ c'(0) \mid c \colon] - \varepsilon, \varepsilon [\to \mathbb{R} \text{ e } c(0) = p \}.$$

$$\tag{4}$$

Se M tem dimensão n, então T_pM é um espaço vetorial de dimensão n. Seus elementos são chamados de vetores tangentes. Uma métrica riemanniana em M é a associação de um produto interno $\mathfrak{g}_p(-,-)$ em T_pM para cada $p \in M$. Mais do que isso, pedimos que essa associação seja suave. Entenderemos o que isso significa a seguir.

Um campo vetorial em M é uma associação X de um vetor $X_p \in T_p M$ para cada $p \in M$. Se $\phi = (x^1, \ldots, x^n)$ é uma carta sobre $p \in M$ e $r = (r^1, \ldots, r^n)$ são as coordenadas em \mathbb{R}^n , definimos as derivadas parciais de $f \in C_p^{\infty}$ por

$$\left. \frac{\partial f}{\partial x^i} \right|_{p} = \left. \frac{\partial}{\partial r^i} \right|_{\phi(p)} (f \circ \phi^{-1})(r). \tag{5}$$

Cada derivada parcial em p pode ser vista como um elemento de T_pM , afinal, se e^1, \ldots, e^n é a base canônica de \mathbb{R}^n , então dadas as curvas $c^i(t) = te^i$ temos

$$\left. \frac{\partial}{\partial x^i} \right|_p = (\phi^{-1} \circ c^i)'(0). \tag{6}$$

Esses vetores tangentes formam uma base para T_pM .

Se (U, ϕ) é uma em M e X é um campo vetorial em M, então para cada $p \in M$ podemos escrever, de maneira única,

$$X_p = \sum_{k=1}^n a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p. \tag{7}$$

Dizemos que o campo vetorial X é suave se existir uma cobertura de M por cartas tais que os mapas a^i são sempre suaves. Ao dizermos que a métrica riemanniana tem que ser suave, queremos dizer que, para quaisquer X, Y campos suaves em M, o mapa $p \mapsto \mathfrak{g}_p(X_p, Y_p)$ tem que ser suave. Uma variedade riemanniana é uma variedade suave equipada com uma métrica riemanniana.

2.2 Conexões e derivada covariante

Denotamos o conjunto de todos os campos suaves em M por $\mathfrak{X}(M)$. Se $M=\mathbb{R}^n$, vamos entender quem é a derivada direcional. Se $X=(v^1,\ldots,v^n)\in\mathbb{R}^n$ e X_p é o vetor tangente a p na direção X, então dada $f\colon\mathbb{R}^n\to\mathbb{R}$ definimos a derivada direcional de f na direção X_p

$$D_{X_p} f = \lim_{t \to 0} \frac{f(p + tX) - f(p)}{t} = \sum_{k=1}^n v^k \left. \frac{\partial f}{\partial x^i} \right|_p = X_p f. \tag{8}$$

Podemos então trocar f por um campo vetorial suave $Y = \sum b^i \partial/\partial x^i$ e obtermos a derivada direcional de Y na direção X_p

$$D_{X_p}Y = \sum_{k=1}^n D_{X_p} b^i \left. \frac{\partial}{\partial x^i} \right|_p. \tag{9}$$

Note que a derivada $D_{X_p}Y$ é um vetor tangente em p. Dessa forma, se X é um campo vetorial em \mathbb{R}^n podemos definir D_XY como o campo vetorial que, em p, vale $D_{X_p}Y$. Esse mapa é a derivada directional de Y na direcção X

Agora vamos generalizar a derivada direcional em \mathbb{R}^n para uma variedade riemanniana qualquer. Uma conexão afim em M é um mapa

$$\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$
$$(X,Y) \mapsto \nabla_X Y$$

que satisfaz as seguintes propriedades:

- se $C^{\infty}(M)$ é o conjunto dos mapas suaves $M \to \mathbb{R}$, então ∇ é $C^{\infty}(M)$ -linear na primeira coordenada;
- ∇ satisfaz a regra de Leibniz na segunda coordenada, isso é, se $f \in C^{\infty}(M)$, então

$$\nabla_X(fY) = (Xf)Y + f\nabla_XY,\tag{10}$$

onde Xf é o mapa suave dado por $(Xf)(p) = X_pf$.

Conexões e métricas riemannianas não estão sempre conectadas. Porém, se M é uma variedade riemanniana e ∇ uma conexão afim em M, então podemos falar sobre alguns aspectos geométricos de ∇ . Definimos o tensor torção de ∇ como sendo o mapa $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$, onde $[X,Y]_p f = X_p(Yf) - Y_p(Xf)$ é o bracket de Lie. Do mesmo modo, definimos o tensor curvatura de ∇ como sendo o mapa $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$, isso é, para um campo vetorial suave Z, temos

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{11}$$

Dizemos que uma conexão ∇ em uma variedade riemanniana M é compatível com a métrica se $Z\mathfrak{g}(X,Y) = \mathfrak{g}(\nabla_Z X,Y) + \mathfrak{g}(X,\nabla_Z Y)$. Uma conexão de Levi-Civita é uma conexão compatível com a métrica e que satisfaz T(X,Y) = 0 para todos X,Y campos suaves em M.

Proposição 2.1. Toda variedade riemanniana possui uma, e apenas uma, conexão de Levi-Civita.

Um campo vetorial ao longo de uma curva $c: I \to M$ é a associação V de um vetor $V(t) \in T_{c(t)}M$ para cada $t \in I$. Dizemos que V é suave se, para cada $f: M \to \mathbb{R}$, (Vf)(t) = V(t)f é suave.

Se $c: I \to \mathbb{R}^n$ é uma curva e V é um campo ao longo de c, temos

$$V(t) = \sum_{k=1}^{n} v^{i}(t) \left. \frac{\partial}{\partial x^{i}} \right|_{c(t)}, \tag{12}$$

portanto podemos definir a derivada de V com respeito a t como sendo o campo

$$\frac{dV}{dt} = \sum_{k=1}^{n} \frac{dv^{i}}{dt} \frac{\partial}{\partial x^{i}}.$$
 (13)

Essa derivada satisfaz algumas propriedades importantes:

• ela é linear com respeito a V, isso é, se $\lambda \in \mathbb{R}$ e U é outro campo ao longo de c, então

$$\frac{d(\lambda V + U)}{dt} = \lambda \frac{dV}{dt} + \frac{dU}{dt}; \tag{14}$$

• ela satisfaz a regra de Leibniz, isso é, se $f: I \to \mathbb{R}$ (lembrando aqui que I é o domínio de c) é suave, então

$$\frac{d(fV)}{dt} = \frac{df}{dt}V + f\frac{dV}{dt};\tag{15}$$

• ela é compatível com a derivada direcional em \mathbb{R}^n , isso é, se V se estende para um campo \tilde{V} em \mathbb{R}^n , então

$$\frac{dV}{dt} = D_{c'(t)}\tilde{V}.\tag{16}$$

Vamos agora generalizar o conceito da derivada de V para uma variedade M qualquer, utilizando de conexões afins. Se ∇ é uma conexão afim em M e $c\colon I\to\mathbb{R}$ é uma curva, então definimos uma derivada covariante como um operador D/dt que, para cada campo V ao londo de c associa um outro campo DV/dt ao longo de c. Pedimos que essa associação satisfaça as três propriedades que a derivada definida acima satisfaz:

• D/dt é linear, isso é, se V e U são campos ao longo de c e $\lambda \in \mathbb{R}$ então

$$\frac{D(\lambda V + U)}{dt} = \lambda \frac{DV}{dt} + \frac{DU}{dt};\tag{17}$$

• D/dt satisfaz a regra de Leibniz, isso é, se $f: I \to \mathbb{R}$ é suave, então

$$\frac{D(fV)}{dt} = \frac{df}{dt}V + f\frac{DV}{dt};\tag{18}$$

• D/dt é compatível com a conexão afim, isso é: se \tilde{V} é um campo em M que estende V, então

$$\frac{DV}{dt} = \nabla_{c'(t)}V. \tag{19}$$

Definimos acima o que seria **uma** derivada covariante, mas acontece que, fixadas uma conexão e uma curva, sempre existe uma e apenas uma derivada covariante, portanto podemos falar **da** derivada covariante.

2.3 Geodésicas e transporte paralelo

Se $c: I \to M$ é uma curva, então dizemos que c é uma geodésica se a derivada covariante DT/dt do seu campo velocidade T(t) = c'(t) é nula. Note que a existência de uma conexão, e portanto de uma derivada covariante, não depende da existência de uma métrica riemanniana. Porém, caso a variedade M possua uma métrica, vamos sempre assumir que a conexão considerada é a conexão de Levi-Civita em M.

Proposição 2.2. Geodésicas em variedades riemannianas possuem velocidade constante, isso é, se $c: I \to M$ é uma geodésica, então ||c'(t)|| é constante para cada $t \in I$.

Seja M uma variedade suave com uma conexão ∇ . Se (U, x^1, \dots, x^n) é uma carta em M, então temos os campos vetoriais $\partial_i = \partial/\partial x^i$. Sabemos que todo campo vetorial em U se escreve como combinação linear destes, e portanto temos

$$\nabla_{\partial_i}\partial_j = \sum_{k=1}^n \Gamma_{ij}^k \partial_k. \tag{20}$$

Os coeficientes Γ_{ij}^k são chamados de símbolos de Christoffel de ∇ em (U, x^1, \dots, x^n) .

Sejam M uma variedade com uma conexão ∇ , $(U, \phi) = (U, x^1, \dots, x^n)$ uma carta em M e Γ^k_{ij} os seus símbolos de Christoffel. Note que, se $c: I \to M$ é uma curva e $y = \phi \circ c$, então temos

$$T = c'(t) = \sum_{k=1}^{n} \frac{dy^k}{dt} \partial_k.$$
 (21)

Dessa maneira, segue que

$$\frac{DT}{dt} = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{j=1}^{n} \frac{dy^j}{dt} \frac{D\partial_j}{dt} = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{j=1}^{n} \frac{dy^j}{dt} \nabla_{c'(t)} \partial_j$$
(22)

$$= \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{i,j=1}^{n} \frac{dy^j}{dt} \nabla_{\frac{dy^i}{dt} \partial_i} \partial_j = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{i,j=1}^{n} \frac{dy^j}{dt} \frac{dy^i}{dt} \nabla_{\partial_i} \partial_j$$
 (23)

$$= \sum_{k=1}^{n} \frac{d^2 y^k}{dt^2} \partial_k + \sum_{i,j,k=1}^{n} \frac{dy^j}{dt} \frac{dy^i}{dt} \Gamma^k_{ij} \partial_k = \sum_{k=1}^{n} \left(\frac{d^2 y^k}{dt^2} + \sum_{i,j=1}^{n} \frac{dy^i}{dt} \frac{dy^j}{dt} \Gamma^k_{ij} \right) \partial_k. \tag{24}$$

Portanto, temos o seguinte resultado.

Teorema 2.3. Se M é uma variedade suave com uma conexão ∇ e $c: I \to M$ é uma curva, então c é uma geodésica se, com respeito a qualquer carta $(U, \phi) = (U, x^1, \dots, x^n)$, as componentes de $y = \phi \circ c$ satisfazem o sistema de EDOs

$$\frac{d^2y^k}{dt^2} + \sum_{i,j=1}^n \frac{dy^i}{dt} \frac{dy^j}{dt} \Gamma_{ij}^k = 0$$
 (25)

As equações do sistema acima são chamadas de equações geodésicas. Pelo teorema de existência e unicidade de solução para EDOs temos a existência e unicidade de geodésicas.

Teorema 2.4. Seja M uma variedade suave com uma conexão ∇ . Dado $p \in M$ e $X_p \in T_pM$, existe uma geodésica $c: I \to M$ tal que c(0) = p e $c'(0) = X_p$. Mais do que isso, essa geodésica é única no sentido de que qualquer outra geodésica satisfazendo essas propriedades deve coincidir com c na intersecção de seus domínios.

Um difeomorfismo entre variedades suaves M e N é um mapa $F: M \to N$ suave, bijetor e com inversa suave. Se M e N forem riemannianas, dizemos que F é uma isometria se, para todos $p \in M$ e $X_p, Y_p \in T_pM$, temos

$$\mathfrak{g}_p(X_p, Y_p) = \mathfrak{g}_{F(p)}(D_p F(X_p), D_p F(Y_p)). \tag{26}$$

Proposição 2.5. Isometrias preservam conexões de Levi-Civita. Mais ainda, mapas que preservam conexões, preservam geodésicas. Como corolário, isometrias preservam geodésicas.

Se $c: I \to M$ é uma curva e V é um campo ao longo de c, então dizemos que V é paralelo se DV/Dt = 0. Dessa forma, uma geodésica é uma curva cujo campo velocidade é paralelo. Fixado $X_p \in T_{c(t_0)}M$, existe um único campo V ao longo de c, paralelo, tal que $V(t_0) = X_p$. Se $c: [a, b] \to M$ é uma curva e V é um campo paralelo ao longo de c, dizemos que V(b) é obtido a partir de V(a) por translação paralela. Dizemos que V(b) é o transporte transporte

Proposição 2.6. Se V e W são paralelos ao longo de c em uma variedade riemanniana M, então ||V|| e $\mathfrak{g}(V,W)$ são constantes.

2.4 Mapa exponencial e mapa logarítmico

Uma geodésica $c: I \to M$ é maximal se não podemos estender c para um intervalo maior do que I sem que a curva deixe de ser uma geodésica. Do Teorema 2.4 temos que, dado $p \in M$ e $X_p \in T_pM$ existe uma única geodésica maximal c com c(0) = p e $c'(0) = X_p$. Vamos denotar essa geodésica por γ_{X_p} .

O mapa exponencial em um ponto $p \in M$ é a função dada por $\operatorname{Exp}_p(X_p) = \gamma_{X_p}(1)$. Esse mapa não está necessariamente definido para todo $X_p \in T_pM$, visto que nem sempre γ_{X_p} possui 1 no seu domínio. Uma variedade com uma conexão é dita completa se toda geodésica puder ter seu domínio extendido para todo \mathbb{R} . No caso de variedades riemannianas consideradas com a conexão de Levi-Civitta, temos dois resultados que nos ajudam no sentido de definir Exp_p para um conjunto satisfatório de vetores.

Proposição 2.7. Para qualquer $p \in M$, com M variedade riemanniana, existem uma vizinhança U de p e dois números $\epsilon, \delta > 0$ tais que para todos $q \in U$ e $v \in T_qM$ com $||v|| < \delta$, existe uma única geodésica $\gamma \colon]-\varepsilon, \varepsilon[\to M \ com \ \gamma(0) = q \ e \ \gamma'(0) = v.$

Corolário 2.8. Para qualquer $p \in M$, com M variedade riemanniana, existem uma vizinhança U de p e um número $\delta > 0$ tais que para todos $q \in U$ e $v \in T_q M$ com $||v|| < \delta$ existe uma única geodésica $\gamma \colon]-2,2[\to M$ com $\gamma(0) = q$ e $\gamma'(0) = v$.

O Corolário 2.8 nos diz que o mapa exponencial está sempre definido em todas as direções, porém essa existência só está garantida para velocidades pequenas. Se você for muito rápido, pode ficar cansado muito rápido e não dar tempo do seu conjunto de parâmetros englobar o 1.

- 2.5 Curvatura
- 2.6 Conceitos métricos
- 2.7 Modelos para a geometria hiperbólica
- 3 Redes neurais
- 4 Misturando tudo

Referências

- [1] Hugo Cattarucci Botós. «Geometrias Clássicas». 2020.
- [2] Loring W. Tu. Differential Geometry: Connections, Curvature and Characteristic Classes. Springer-Verlag New York Inc, 2017. ISBN: 978-3-319-55082-4.
- [3] Wei Peng e Tuomas Varanka e Abdelrahman Mostafa e Henglin Shi e Guoying Zhao. «Hyperbolic Deep Neural Networks: A Survey». Em: JOURNAL OF LATEX CLASS FILES 14.8 (2015).