SIMD-vectorized implementation of high order IRK integrators

IRKGL16-simd

M. Antoñana, J. Makazaga and A. Murua

July 27th-29th

Outline

Who we are

- 2 IRKGL-simd
- Benchmarks

4 Conclusions and future work

Who we are

Research area

We have a long experience of research in **applied and computational mathematics**, with special focus on analysis and implementation of advanced methods for the numerical integration of problems modeled by ODEs.

Institutions

FACULTY OF COMPUTER SCIENCE UNIVERSITY OF THE BASQUE COLINTRY

The central idea: IRKGL16 solver is well suited to take advantage of hardware vectorization

- Goal: show implicit RK methods can be more efficient than explicit recommended methods in Differential Equations. jl suite:
 - Vern9: for general Fist Order ODE
 - DPRKN12: for 2nd Order ODE
- Preliminary: fixed step size implementation (next adaptive)
- Problems: we focus on solving non-stiff ODEs with high accuracy (tolerances < 1e - 10)

What does mean IRKGL16?

 Integration method: giving an initial value problem of systems ODEs of the form.

$$\frac{du}{dt} = f(t, u), \quad u(t_0) = u_0 \in \mathbb{R}^d$$

we apply a integration method to get the numerical approximation of the solution $u_k \approx u(t_k)$,

$$u_{k+1} = IRKGL16(t_k, u_k, h_k)$$
 at $t_{k+1} = t_k + h_k$ for $k = 0, 1, 2, ...$

- Runge-Kutta methods belong to the class of one-step integrators for numerical solution of ODEs
- Implicit: for nonstiff ODEs implicit equations can be solved by fixed-point iteration (easy implementation)
- Gauss-Legendre: based on the Gauss-Legendre quadrature formula (symplectic and time-symmetry)
- **High order method**: s = 8 stages \Rightarrow 16 order

Scientists must know about hardware to write fast code

What does mean IRKGL16-simd?

IRKGL16 solver can take advantage of modern computer technology:

- Multi-threading based parallelism: all s = 8 stages in the RK formulas can be evaluated in parallel (we explored that in a previous work)
- SIMD-based parallelism: computations acting on vectors with s=8 Float64 numbers, can be evaluated simultaneously by modern CPUs with 512-bit specialized registers

$$\begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \\ Z_5 \\ Z_6 \\ Z_7 \\ Z_8 \end{bmatrix} = \sin \begin{pmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \\ X_7 \\ X_8 \end{pmatrix} + 4 * \begin{pmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \\ Y_6 \\ Y_7 \\ Y_8 \end{bmatrix}^{2/3}$$

Single Instruction Multiple Data ← same cost as scalar version!!

SIMD.jl package: allows us to explicitly SIMD-vectorize IRKGL16 code

Example: $f(Y_i, p, t_i + hc)$, i = 1, ... s

One evaluation

Eight vectorized evaluations

```
nbody = 5
s = 8
W = rand(s,3,nbody,2)
Gm = rand(nbody)
ddW = similar(W)

q = W[1,:,:,:]
ddq = ddW[1,:,:,:]
@btime NbodyODE!(ddq, q, Gm, 0.)

> 79.291 ns (0 allocations: 0 bytes)
```

```
Q=VecArray{s,Float64,4}(W)
ddQ=VecArray{s,Float64,4}(ddW)
@btime NbodyODE!(ddQ, Q, Gm, 0.)
>179.826 ns (0 allocations: 0 bytes)
```

- Perfomance improvement: $79.291 * 8/179.826 \approx 3.5$
- Transparent for the user: same ODE implementation

Benchmarks(I): IRKGL16 sequential vs simd

Benchmarks

Benchmark: IRKGL16-simd vs Vern9//DPRKN12

Conclusions and future work

Conclusions

- SIMD.jl package allows us to explicity SIMD-vectorize IRKGL16 code
- IRKGL16-simd outperform high order explicit RK methods of DifferentialEquaitions.jl in double precision floating point for precision like < 1e - 10
- SIMD-vectorization should be explored in other applications

Future work

- Apply symmetric adaptive step size strategy
- Add IRKGL-simd implementation to IRKGaussLegendre.jl package for double precision computations
- Symplecticness and time-symmetry. Useful for Scientific Machine Learning Applications: gradients can be exactly calculated by integrating backward in time the adjoint equations

Useful References

 DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia

```
https://doi.org/10.5334/jors.151
```

Julia implementation of an implicit Runge-Kutta integrator IRKGL16

```
https://github.com/SciML/IRKGaussLegendre.jl
```

- Explicit SIMD vectorization in Julia
 https://github.com/eschnett/SIMD.jl
- Single Instruction, Multiple Data (SIMD) in Julia http://kristofferc.github.io/post/intrinsics/

Thank you!

and we encourage you to use our implementation

Preliminary Code:

```
https://github.com/mikelehu/IRKGL_SIMD.jl
```

- Acknowledgments:
 - To the JuliaCon2022 organizers
 - This work has reveived funding by the Spanish State Research Agency through project PID2019-104927GB-C22 (GN-QUAMC) and also from Department of Education of the Basque Government through MATHMODE Research Group (IT2494-19)
- Contact: mikel.antonana@ehu.eus