

香港考試及評核局香港中學文憑考試

物理 試卷一 (樣本試卷) 乙部:試題答題簿 B

本試卷必須用中文作答

考生須知

- (一) 在第1頁之適當位置填寫考生編號。
- (二) 在第1、3、5、7及9頁之適當位置貼上電腦條碼。
- (三) 本部佔84分。全部試題均須作答。
- (四)本部答案須寫在本試題答題簿所預留的空位內。不可在各頁邊界以外位置書寫。寫於邊界以外的答案,將不予評閱。
- (五) 考生可要求派發補充答題紙。每張補充答題 紙均須填寫考生編號、填畫試題編號方格, 並貼上電腦條碼。用繩將補充答題紙穩縛於 本試題答題簿內。
- (六) 本試卷的附圖未必依比例繪成。

請在	441	日上	\vdash	毬	巛	你研	=
丽月 1十	ILL	という	Ι.	田.	MIXI	11末 115	1

考生編號				

	由閲卷員填寫	由試卷主席 填寫
	閱卷員編號	試卷主席編號
試題編號	積分	積分
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
總分		

全部試題均須作答。標有「*」的分題涉及延展部分的知識。把答案寫在預留的空位內。
1. 容器 → 接真空泵
□ 1.1
將一個氣球置於某容器內,該氣球盛着 0.01 m³的氣體,壓強為100 kPa。用真空泵緩慢地抽出容器內的空氣,並保持溫度不變。
*(a) 試從分子運動的觀點,解釋氣球內的氣體怎樣對氣球內壁施加壓強。 (2分)
*(b) 當氣球的體積倍增時,求氣球內最終的壓強。 (2 分)
*(c) 草繪圖線以顯示氣球內壓強 p 和氣球體積 V 的關係。 (2 分)
p / kPa
150
100
50
$0 0.01 0.02 0.03 V/m^3$

寫
於
邊
界
以
外
的
答
案
,
將
不
予
評
閱
0

	2. → □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	志明駕着他的汽車,沿平直的路上進行一項測試(見圖 2.1)。汽車從靜止加速至 $100~\rm km~h^{-1}$ 需時 $9.3~\rm s$ 。志明和汽車的總質量為 $1400~\rm kg$ 。(註: $100~\rm km~h^{-1}$ = $27.8~\rm m~s^{-1}$)
	(a) 當汽車以 $100 \text{ km } \text{h}^{-1}$ 行駛時,志明和汽車的總動能為多少?由此估算汽車加速期間的平均輸出功率。 (3分)
哥今、慶早	
覂 早以小	
- 勺 答 絮	
,各下予	
平園。	(b) 當汽車在斜路上進行同樣的測試時,它需要超過 9.3 s 從靜止加速至 100 km h ⁻¹ (見圖 2.2)。 設汽車的輸出功率不變,解釋為何汽車沿斜路向上加速較沿平路加速需要較長的時間。 (2 分)
	圖 2.2

		m的欄障,到達最高點 D 並在 E 點着地,如圖 3.1 所示。(空氣阻力和球的大人 天不計。) D F TABLE
圖 3.1		$\begin{array}{c} & & & & \\ & & &$
	(a)	用箭矢標出皮球在 C 點加速度的方向。 (1)
	*(b)	證明初速度為 u 與水平成 θ 角的抛體,其水平射程為 $\frac{u^2\sin 2\theta}{g}$ 。據此或以其代法求另一投射角,使皮球同樣以 $10~\mathrm{m~s^{-1}}$ 的初速率運動時,亦可在 E 點着地(已知: $2\sin\theta\cos\theta=\sin 2\theta$)
	(c)	試計算皮球在 C 點時的速率。 (2

4. 一條繩子的一端固定在牆壁上。一脈衝在繩上以 $0.5~{\rm m~s^{-1}}$ 的速率向固定端運動。圖 $4.1~{\rm f}$ 示為繩子在時間 $t=0~{\rm s}$ 和 $t=2~{\rm s}$ 時的情況。

圖 4.1

(a) 在圖 4.1 繪出脈衝於 t = 1 s 時的形狀。

(1分)

於邊

界以

外的

答

案

將

不予評閱

(b) P 為繩上的一點,距離牆壁 $0.1 \,\mathrm{m}$ 。試略繪 P 點在 $t=0 \,\mathrm{s}$ 至 $t=1 \,\mathrm{s}$ 時段內的位移 圖線。 (2分)

寫

於邊界

以

外的答案

將不予評

閱

7. 美儀將一把玩具風扇的電動機用作一簡單發電機。她將一個燈泡連接電動機的兩個端 鈕,如圖 7.1 所示。

解釋為什麼當風扇葉片被急速轉動時燈泡會發亮,並指出過程中的能量轉換。 (4	·分)

寫於邊界以外的答案,將不予評閱。

寫於邊界以外的答案

於邊

界以

外

的

答案

將

不予

評

閱

(3分)

(a)

倘這家居電路發生對地漏電,而流過中線和活線的電流有 0.5~A 或以上之差,繼電開關 S 會斷開,從而截斷市電電源。如要恢復供電,必須以機械方式將繼電開關 S 重設。

解釋當負荷對地泄漏 0.5 A 電流時,為什麼 S 會斷開。

寫
於
邊
界
以
外
的
答
案
,
將
不
予
評
閱
0

(b)	當負荷對地泄漏電流為 0.5 A 時,試計算通過線圈 C 的磁場 B 。已知載流導體所產生的磁場 B 在軟鐵中會增強 1500 倍。 (2 分)
 (c)	電器通常裝設有保險絲。當電器內的活線和中線之間發生短路,這時只保險絲會 運作而漏電斷路器則不會有反應。試解釋這些觀察。 (2分)

圖 9.1

圖 9.1 顯示一台微波爐。曼麗嘗試估算這微波爐的有效輸出功率。所提供的儀器和物料 如圖 9.2 所示。

描述曼麗應如何進行這實驗。列出她必須進行的量度,並指出這實驗的<u>一個</u>注意事項或假定。寫出一條方程以計算有效輸出功率。 (5分) (a)

寫於邊界以外的答案,將不予評閱。

於邊界

以

外的答

案

(1分)	釋這差異。
(1分)	解釋增加實驗中水的質量可否提高實驗的準確度。

海	
子)	
	Ġ
	寫於
	邊界
	以外
	的答
宁)	案,將不
	不予
	評閱
	0
解 })	

10.		法線
圖 10.1		中船 2 事納 50° 40° 海 潛艇
	面成 5	顯示一艘配備聲納的輪船。聲納向海中發出頻率為 $25\mathrm{kHz}$ 的超聲波,超聲波跟海 0° 角,並於 $0.15\mathrm{s}$ 後從一艘潛艇反射回輪船。 空氣中聲音的速率= $340\mathrm{ms^{-1}}$ 海水中聲音的速率= $1500\mathrm{ms^{-1}}$
	(a)	計算潛艇距海面的豎直距離。 (2分)
	(b)	部分反射波沿虛線傳播,並在 X 點透進空氣中。試計算在空氣中的折射角。 (2 分)
	(c)	倘超聲波以某些入射角從海水射向空氣,是否可能發生全內反射現象? 試加解釋。 (2 分)

寫
於
邊
界
以
外
的
答
案
,
將
不
予
評
閱

11.	(a)	一艘載人太空船利用火箭升空。火箭連太空船於發射時的初始質量是 4.80×10 ⁵ kg。火箭引擎以相對火箭 2600 m s ⁻¹ 的匀速率向下噴出熱氣體。設在最初 0.5 秒內噴出 1.15×10 ³ kg 的氣體。(空氣阻力可略去不計。)
		(i) 計算在最初 0.5 秒內所噴的熱氣體作用於火箭的平均 上推力。 (2分)
		圖 11.1
		(ii) 在圖 11.1 繪畫並標示作用在火箭上的各個力。設在最初 0.5 秒內火箭的量變化可以略去不計。試估算火箭的加速度。 (3 名

寫於邊界以外的答案,

(b)	質量為	$7.80 \times 10^3 \mathrm{kg}$ 的太空船現進入半徑為 r 的圓形軌道繞地球運行。	
		太空船	
	*(i)	證明太空船在軌道上的速率為 $\sqrt{\frac{g}{r}}R_{\rm E}$,其中 $R_{\rm E}$ 為地球半徑。	(2分)
 	*(ii)	太空船繞地球 14 週需時多久 ? (己知:軌道半徑 $r=6.71\times10^6$ m 地球半徑 $R_{\rm E}=6.37\times10^6$ m)	(3 分)

(c)

寫出<u>一點</u>理由以說明為什麼飛機不能像火箭一般在太空飛行。

(1分)

寫於

、邊界以

外

的

答

案

將

不

子

· 評 閱

愛麗用圖 12.1 所示的儀器燃亮某燈泡以研究 AA 型電池的壽命。她將燈泡和電池及開關相連,並用電壓傳感器量度燈泡兩端的電壓。

(a) 繪畫電路圖以說明如何連接儀器。用符號(v)表示電壓傳感器。 (2 分)

(b) 愛麗分別用碳鋅電池、鹼性電池和鋰電池進行以上實驗。圖 12.2 顯示用不同電池時,燈泡兩端的電壓隨時間的變化。燈泡兩端的電壓須高於 0.6 V 方能燃亮燈泡。

	(b)	(i)		2推銷員聲稱,若用來燃 試分析這說法是否正確。	亮該燈泡,鋰電池的壽命是	是鹼性電池的 (2分)
		(ii)	表 12.3	列出三種電池的售價。		
				電池種類	每一粒電池的售價	
				碳鋅	\$ 1.5	
3				鹼性	\$ 3.8	
/ 、 真宝 日/				鋰	\$25.0	
ζ.				表	12.3	
J			芳慮到每点 テ驟。	《亮該燈泡一小時的成本,	你認為應選用哪一種電池	?請列出計算 (3分)
ŕ						
2						
L						

寫於邊界以外的答案,

13. 卓琳進行一項有關變壓器的探究活動。變壓器由兩個 C-型軟鐵心組成,並分別繞有原線圈和副線圖。圖 13.1 所示為她設置的電路。

*(a) 卓琳改變變壓器的輸入電壓 V_1 ,記下相應的輸出電壓 V_2 。 表 13.2 顯示她所得的結果。圖 13.3 為 V_2 對 V_1 的關係圖線。寫出這探究所得的結論。

V_1 / V	V_2 / V
1.5	2.5
3.0	5.1
4.5	7.6
6.0	10.0

表 13.2

*(b)	當 V_1 為 $8.0\mathrm{V}$ 時,試推斷 V_2 的值。	(1分)

寫於邊界以外的答案,將不予評閱。

於邊界

以

外

的答

案

將

不

予

評閱

*(c)	卓琳想研究變壓器的輸出電壓和副線圈匝數的關係。描述她如何進行實驗。 (2
*(d)	卓琳在電路中再加一個燈泡,如圖 13.4 所示。試建議一種方法,可使卓琳估出變壓器的效率。指出卓琳須作的量度。如有需要,可附加其他儀器。 (3
	伏特計 變壓器
	交流電源
	燈泡 副線圈 原線圈
	圖 13.4

寫於邊界以外的答案,

寫
於
邊
界
以
外
的
答
案
,
將
不
予
評
閱
0

放摘至附近國家。在這些國家發得的輻射水平、遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>一</u> 個來源。 (1分) (b) 意外中釋出的一種放射性同位素是第-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。 235 U+ 10 n → 137 Cs + 257 Rb + x 10 n 已知: 一個 257 Kb 核素的質量 = 235.0439 u 一個 257 Rb 核素的質量 = 136.9071 u 一個 257 Rb 核素的質量 = 94.9399 u 一個 10 n 核素的質量 = 10.087 u 1 u 相當於 931 MeV (i) x 的值是多少? (1分) *(ii) x—個 U-235 核素裂變時所釋放的能量,以 MeV 表達。 (2分) *(iii) x—個 U-235 核素裂變時所釋放的能量,以 MeV 表達。 (2分) *(iii) x— 個 U-235 核素裂變時所釋放的能量,以 MeV 表達。 (2分) *(iii) x— 個 U-235 核素裂變時所釋放的能量,以 MeV 表達。 (2分) *(iii) x— 個 U-236 核素裂變時所釋放的能量,以 MeV 表達。 (2分)			試 卷 完	
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>個</u> 來源。 (1分) (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。 235 U + 0n → 357 Cs + 35 Rb + x 0n 已知: 一個 235 K 核素的質量 = 235.0439 u				
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>個</u> 來源。 (1分) (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。 235 U + 0n → 357 Cs + 35 Rb + x 0n 已知: 一個 235 K 核素的質量 = 235.0439 u				
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>個</u> 來源。 (1分) (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。 235 U + 0n → 357 Cs + 35 Rb + x 0n 已知: 一個 235 K 核素的質量 = 235.0439 u				
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>個</u> 來源。 (1分) (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。			1.2×10 ⁶ Bq (每秒蛻變數)。一位物理學家指出這污染樣本可影逾 350 年。通過計算,驗證該物理學家的論斷。已知一個未受污染	響 環 境 的 土 壌
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>個</u> 來源。 (1分) (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。				
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>個</u> 來源。 (1分)				
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。			*(ii) 求一個 U-235 核素裂變時所釋放的能量,以 MeV 表達。	(2分
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>一個</u> 來源。 (1分)			(i) <i>x</i> 的值是多少?	(1分
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>一個</u> 來源。 (1分) (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。 $\frac{235}{92}$ U+ $\frac{1}{0}$ n $\rightarrow \frac{137}{55}$ Cs+ $\frac{95}{37}$ Rb+ $x\frac{1}{0}$ n 已知:一個 $\frac{235}{92}$ U 核素的質量 = 235.0439 u —個 $\frac{137}{55}$ Cs 核素的質量 = 136.9071 u —個 $\frac{95}{37}$ Rb 核素的質量 = 94.9399 u			·	
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>一個</u> 來源。			一個 137 Cs 核素的質量 = 136.9071 u	
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。 (a) 寫出本底輻射的 <u>一個</u> 來源。 (b) 意外中釋出的一種放射性同位素是銫-137 (Cs-137)。以下的方程顯示 Cs-137 如何產生。			72 0 33 3, 0	
散播至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。		(b)	產生。	7 如何
1 /1 /11/20 = 20 = 1 / 20 = 10 / 11 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		(a)	寫出本底輻射的 <u>一個</u> 來源。	(1分
- 14 1986 年 4 月,切爾諾貝爾核雷站發生了災難性意外,釋出大量的各種放射性物質,並 E	14.		年 4 月,切爾諾貝爾核電站發生了災難性意外,釋出大量的各種放射性物質 至隣近國家。在這些國家錄得的輻射水平,遠高於正常的本底計數率。	,並且

寫於邊界以外的答案,