Micah Chen

minghao.c@columbia.edu | (734) 510-0059 | 636A, 500 W 120 St, New York, NY, 10025

SUMMARY

Awarded and results-driven Ph.D. candidate specializing in AI, data analytics, statistical modeling, and optimization with hands-on experience developing scalable solutions in drone routing, path planning, and sensing. Seeking a 2025 summer internship to apply expertise in data-driven decision-making and optimization.

SKILLS

- Method: Stochastic Optimization, Uncertainty Quantification, Reinforcement Learning, Machine Learning
- **Programming:** Python (sklearn, pytorch, pandas, tensorflow, openAI gym), MATLAB, R, Git, MS Azure, ROS

EDUCATION

Columbia University

New York, NY

Ph.D. in Smart Cities, GPA: 3.9/4.0, Calatrava Family Fellow

Sep 2022 - May 2026 (Expected)

- Thesis: Data-driven Sensing, Planning, and Routing for Risk-Aware Urban Air Mobility
- Selected Courses: Reinforcement Learning, Robot Learning, Continuous Optimization, High Dim Probability

University of Michigan (UM)

Ann Arbor, MI

Dual M.S.E. in Industrial & Operations Engineering and Intelligent Systems Engineering Shanghai Jiao Tong University (SJTU) – UM Joint Institute

Sep 2020 - May 2022 Shanghai, CN

Dual M.S.E. in Electric and Computer Engineering

Sep 2020 - June 2021

RESEARCH EXPERIENCE

Bayesian Wind Estimation Using Motion Data from Uncrewed Aerial Vehicles (UAVs) Graduate Research Assistant, <u>NSF Center for Smart Streetscapes</u>

New York, NY

Mar 2024 - Present

- Developed a novel on-board UAV motion data-assisted Bayesian framework for fast urban wind estimation
- Collected, cleaned, and preprocessed 2.4 million+ raw IMU and GPS data points from DJI Mavic 4 flight tests
- Implemented the entire pipeline in Python, accelerating computations via engineering optimizations (batch size tuning, initialization) and mathematical techniques (linearization, cutting-plane methods)
- Achieved simulation and experimental results matching high-precision wind sensors
- Trained a deep neural policy with PPO to adaptively plan informative paths for efficient wind field sensing

Learning Optimal Drone Dispatching in Unknown Urban Wind Field

Ann Arbor, MI

Graduate Research Assistant, NSF Center for Autonomous Air Mobility and Sensing

Oct 2023 - Oct 2024

- Built a Bayesian bandit framework to optimize dispatching for efficient wind sensing with minimal delays
- Designed an efficient sampling algorithm with provable convergence to find optimal policies balanced cost
- Analyzed action-reward distribution to assist UM collaborators improve wind-informed reward models
- Validated with the real Boston wind data, outperforming conventional methods in convergence and regret

Energy-constrained, Risk-averse Drone Delivery under Dynamic Urban Winds

New York, NY

Graduate Research Assistant, Columbia University

Mar 2023 – Jan 2025

- Constructed a Markov model using historical meteorological data to predict wind patterns for drone routing
- Quantified flight risks considering wind impact on drone flights through probabilistic physical models
- Developed mixed-integer programs for stochastic time-dependent routing with nonlinear constraints
- Proposed a novel parallel heuristic to realize a 100x speedup over advanced solvers for large-scale practices
- Awarded **Honorable Mention** (2nd/6 finalists) in 2024 INFORMS Best Student Presentation Competition

PROFESSIONAL EXPERIENCE

Northeastern Securities

Shanghai, CN

Quantitative Analyst Intern, Real Estate and Property Group

May 2020 - July 2020

- Coded real estate data collection and preprocessing pipeline from Wind (Chinese Bloomberg) for analysis
- Evaluated futures of 16 real estate stocks with data-driven predictive statistical models with visualizations

SELECTED PUBLICATIONS

- **Chen, M.**, et al. Bayesian Low-altitude Urban Wind Estimation for UAVs. To appear in the *International Conference on Robotics and Automation (ICRA) 2025*.
- **Chen, M.,** et al. (2024). Wind-informed Cost Distributions for Uncrewed Aerial System Dispatch Strategies. *In AIAA SCITECH 2024 Forum* (p. 1079).
- **Chen, M.**, et al. (2023). Drone Delivery Routing with Stochastic Urban Wind. In *2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)* (pp. 2260-2267). IEEE.