Analiza funkcjonalna

by a weles

21.03.2137

Contents

1	Wstep	4
	1.1 Przestrzenie normalne	4
	1.2 Operatory	4

1 Wstep

1.1 Przestrzenie normalne

Norma na X to funkcja x $\mapsto \|\mathbf{x}\| \in [0, \infty)$ taka, ze

$$\hookrightarrow$$
 $\|\mathbf{x}\| = \emptyset \iff \mathbf{x} = \emptyset$

 $\hookrightarrow (\forall \ \lambda \in \mathbb{C})(\forall \ \mathbf{x} \in \mathbf{X})\|\lambda\mathbf{x}\| = \|\lambda\|\|\mathbf{x}\| - jed-norodnosc$

$$\hookrightarrow$$
 $(\forall x, y \in X) ||x + y|| \le ||x|| + ||y||$

Przestrzen metryczna jest <u>zupelna</u>, jesli kazdy ciag Cauchy'ego jest zbiezny.

Przestrzen Banacha – unormowana przestrzen zupelna w metryce d(x, y) = ||x - y||.

Szereg
$$\sum_{n=1}^{\infty} x_n$$
 jest `zbiezny`, jesli szereg sum `czesciowych` jest `zbiezny`.

Szereg jest bezwzglednie zbiezny, jesli zbiezny jest $\sum\limits_{n=1}^{\infty}\|x_n\|$

Przestrzen jest unormowana kazdy szereg bezwzglednie zbiezny jest zbiezny.

Normy $\|\ \|_1$ i $\|\ \|_2$ sa rownowazne, jesli istnieja $c_1\,,\,c_2>0$ takie, ze

$$(\forall x) c_2 ||x||_2 \le ||x||_1 \le c_1 ||x||_2.$$

 \hookrightarrow Jesli zbieznosc ciagow w dwoch normach jest rownowazna, to sa one rownowazne.

- $\,\hookrightarrow\,$ Przestrzenie \mathbb{C}^n oraz \mathbb{R}^n sa zupelne w dowolnej normie.
- \hookrightarrow Przestrzen unormowana skonczona jest zawsze zupelna.

Twierdzenie o najlepszej aproksymacji - dla skonczonej podprzestrzeni liniowej E przestrzeni unormowanej X zachodzi:

$$(\,\forall\;x\in X\,)(\,\exists\;x_0\in E\,)\,\,\|x-x_0\|=\inf_{y\in E}\|x-y\|\,.$$

Podzbior A \subseteq X jest zbiorem gestym, jezeli $(\forall x \in X)(\forall \varepsilon > \emptyset)(\exists a \in A) d(x, a) < \varepsilon$

ada przeliczalny zbior gesty.

Kazda przestrzen unormowana mozna uzupelnic do przestrzeni Banacha.

Niech $Y \subseteq X$ bedzie domkniety, wtedy

$$(\forall \emptyset \land \theta \land 1)(\exists x \in X) \inf\{\|x - y\| : y \in Y\} \ge \theta$$

Niech X - unormowana, skonczona przestrzen liniowa, wtedy

$$(\exists \ (x_n) \subseteq X) (\forall \ n \neq m) \ \|x_n\| = 1 \ \land \ \|x_n - x_m\| \geq \frac{1}{2}$$

Baza nieskonczonej przestrzeni Banacha jest nieprzeliczalna.

1.2 Operatory

Operator liniowy $T : X \rightarrow Y$ to odw-zorowanie

$$T(x+y) = Tx + Ty$$

$$T(\lambda x) = \lambda Tx$$

Dodatkowo, jesli

$$(\exists C > \emptyset) \|Tx\|_{Y} \leq C\|x\|_{X}$$
,

to wtedy T jest ograniczone.

- \hookrightarrow T jest ciagle w kazdym punkcie
- \hookrightarrow T jest ograniczone

Norma operatora ograniczonego T to

$$||T|| = \sup_{\mathbf{x} = \emptyset} \frac{||T\mathbf{x}||}{||\mathbf{x}||}$$

$$||t|| = \sup_{\|u\| \le 1} ||Tu||$$

Dla operatora liniowego pomiedzy X i Y, ktore sa przestrzeniami unormowanymi rownowazne sa:

 \hookrightarrow T jest ciale w jednym punkcie

Niech X_0 bedzie gesta podprzestrzenia normalnej przestrzeni X, T_0 : X_0 \to Y, gdzie Y jest

przes. Banacha, bedzie operatorem ogranic-zonym. Wtedy istnieje jednoznaczne rozszerzenie T_0 do $T:\,X\to Y\,.$

Rownosc Plancherela????

Ograniczony operator T"X \rightarrow Y, gdzie X,Y sa unormowane, jest odwracalny, jesli istnieje ograniczony operator S:Y \rightarrow X taki, ze

$$STx = x = TSx$$

Unormowane przestrzenie X,Y sa izomorficzne, jesli istnieje ograniczony i odwracalny operator liniowy X \to Y.

Jesli Y jest przestrzenia Banacha, a X jest unormowany, to B(X,Y) (macierze deg(Y) \times deg(X)) jest przestrzenia Banacha.