	Patrick Horlaville (260931235) - Problem Set 5 - PHYS 512 : Computational Physics with Applications Prof: Jon Sievers. TAs: Marcus Merryfield, Rigel Zifkin, Daniel Coelho
In [2]: In [3]:	import matplotlib.pyplot as plt import camb Here I use the script from planck_likelihood.py in the mcmc directory, but it needs a slight adjustment for an arbitrary number of points for our spectrum:
111 [3].	<pre>import camb from matplotlib import pyplot as plt import time def get_spectrum(pars, npts, lmax=3000): #print('pars are ', pars)</pre>
	H0=pars[0] ombh2=pars[1] omch2=pars[2] tau=pars[3] As=pars[4] ns=pars[5] pars=camb.CAMBparams()
	<pre>pars.set_cosmology(H0=H0,ombh2=ombh2,omch2=omch2,mnu=0.06,omk=0,tau=tau) pars.InitPower.set_params(As=As,ns=ns,r=0) pars.set_for_lmax(lmax,lens_potential_accuracy=0) results=camb.get_results(pars) powers=results.get_cmb_power_spectra(pars,CMB_unit='muK') cmb=powers['total'] tt=cmb[:,0] #you could return the full power spectrum here if you wanted to do say EE return tt[2: npts + 2]</pre>
	Problem 1 First, we compute the CMB spectrum with the initial set of parameters from the test script, and we look at the resulting χ^2
In [4]:	<pre>spec = planck[:,1] errs = 0.5*(planck[:,2] + planck[:,3]) npts = len(spec) nparams = 6 Ninv = np.eye(npts)/(errs**2)</pre>
In [5]:	<pre>params_test = np.array([60, 0.02, 0.1, 0.05, 2.00e-9, 1.0]) model_test = get_spectrum(params_test, npts) res_test = spec - model_test chisq_test = np.sum((res_test/errs)**2) print("For the initial guess of parameters, χ2 =", chisq_test) For the initial guess of parameters, χ2 = 15267.937968222595</pre>
In [6]:	<pre>params_better = np.array([69, 0.022, 0.12, 0.06, 2.1e-9, 0.95]) model_better = get_spectrum(params_better, npts) res_better = spec - model_better chisq_better = np.sum((res_better/errs)**2) print("With the more refined parameters, χ2 is now =", chisq_better) With the more refined parameters, χ2 is now = 3272.2033778089576</pre>
In [7]:	<pre>plt.plot(planck[:, 0], planck[:, 1]) plt.plot(planck[:, 0], model_test, 'y', label = 'Model with the initial test parameters') plt.plot(planck[:, 0], model_better, 'r', label = 'Model with more refined parameters') plt.xlabel('angular scale') plt.ylabel('variance of the sky') plt.title('CMB Power Spectrum') plt.legend()</pre>
Out[7]:	CMB Power Spectrum Model with the initial test parameters Model with more refined parameters
	3000 - 10
	0 500 1000 1500 2000 2500 angular scale Problem 2
In [168	Now we will use Levenberg-Marquardt to find the best-fit parameters of the cosmological model, using numerical derivatives. Firt we define the function to compute the numerical derivative. We take a step to be arbitrarily a 100th of each parameter's value, which should be of a reasonable order.
In [9]:	<pre>All throughout, we will be dealing with 6 parameters for modelling the CMB power spectrum. def get_deriv(pars, npts): deriv_mat = np.empty([npts, npars]) for i in range(npars):</pre>
	<pre>h_arr = np.zeros(npars) h_arr[i] = 0.01*pars[i] deriv_mat[:, i] = (get_spectrum(pars + h_arr, npts) - get_spectrum(pars - h_arr, npts))/(2*h_arr[i]) return deriv_mat</pre>
In [10]:	A few other functions are defined prior to defining the LM fit function, which are taken from class notes. update_lamda adjusts the step size, get_matrices yields different matrix elements that are needed to the LM fit process (including the χ^2 between the data and each model) and linv inverts required specified matrix elements. def update_lam(lam, yes): if yes:
	<pre>lam = lam/1.5 if lam < 0.5: lam = 0 else: if lam == 0: lam = 1 else: lam = lam*1.5**2</pre>
In [11]:	<pre>return lam def get_mat(params, npts, N_inv): model = get_spectrum(params, npts) derivs = get_deriv(params, npts)</pre>
	<pre>res = spec - model lhs = derivs.T@N_inv@derivs rhs = derivs.T@N_inv@res chisq = res.T@N_inv@res</pre>
In [12]:	return chisq, lhs, rhs def linv(mat, lam): mat = mat + lam*np.diag(np.diag(mat)) return np.linalg.inv(mat) Now, we write the Levenberg-Marquardt fit. The covariance matrix is computed, which allows to compute the change in parameters. We compute the new χ^2 and matrices elements from the updated parameters. If the χ^2 decrease, from one
In [109	step to another, is smaller than the threshold defined by chi_tol, the fit stops. If the number of steps are ran out, the fit stops. Otherwise, a new step is taken. If the χ^2 increases, reject the step and take a new bigger one. Also, we apply a limit on some parameter values: I noticed there was an overflow if tau reached certain values. Some constraints alleviate this problem, such that if tau's new value reaches some interval, it is rejected. def LM_fit(params, npts, N_inv, chi_tol, max_iter, params_prior = None, params_err = None): lam = 0
	<pre>chisq, lhs, rhs = get_mat(params, npts, N_inv) for i in range(max_iter): while True: lhs_inv = linv(lhs, lam)</pre>
	<pre>dparams = lhs_inv@rhs if (params[3] + dparams[3] > 0.02) and (params[3] + dparams[3] < 0.1): break else: lam = update_lam(lam, False)</pre>
	<pre>chisq_new, lhs_new, rhs_new = get_mat(params + dparams, npts, N_inv) if params_prior is not None: trial_prior = prior_chisq(params + dparams, params_prior, params_err) chisq_new += trial_prior</pre>
	<pre>if chisq_new < chisq: if lam == 0.0: if (np.abs(chisq - chisq_new) < chi_tol): return params + dparams, lhs_new</pre>
	<pre>chisq = chisq_new lhs = lhs_new rhs = rhs_new params = params + dparams lam = update_lam(lam, True)</pre>
	else:
In [175 In [176	<pre>best_fit_params, err_params = np.loadtxt('Results/planck_fit_params.txt') H0, ombh2, omch2, tau, As, ns = best_fit_params err0, err1, err2, err3, err4, err5 = err_params print('Best fit parameters found with the LM fit are:') print('H0 =', round(H0), '(+/-)', round(err0)) print('\OmegaBh^2 =', round(ombh2, 4), '(+/-)', round(err1, 4))</pre>
	<pre>print('\Och2 = ', round(omch2, 3), '(+/-)', round(err2, 3)) print('\tau = ', round(tau, 2), '(+/-)', round(err3, 2)) print('As = ', round(As, 10), '(+/-)', round(err4, 10)) print('ns = ', round(ns, 3), '(+/-)', round(err5, 3)) Best fit parameters found with the LM fit are: H0 = 68 (+/-) 1</pre>
	$\Omega Bh^2 = 0.0223 \ (+/-) \ 0.0002 \ \Omega Ch^2 = 0.118 \ (+/-) \ 0.003 \ T = 0.04 \ (+/-) \ 0.04 \ As = 2e-09 \ (+/-) \ 1e-10 \ ns = 0.972 \ (+/-) \ 0.006$ Problem 3
In [68]:	Now, we will perform a similar task to find more refined cosmological parameters, but using a Monte-Carlo Markov Chain (MCMC). To do so, we first generate a random step from our curvature matrix found before. We find the corresponding parameters' evolution, which yields a new χ^2 . The step is accepted on a stochastic basis. Then, the process repeats itself, with the updated (or not) parameters. Just as for our LM fitter, if tau reaches unphysical values (which overflow the CPU), the step is rejected. def get_chisq(params, noise = errs):
	<pre>model = get_spectrum(params, npts) res = spec - model chisq = np.sum((res/noise)**2) return chisq</pre>
In [75]:	<pre>def MCMC(params, curv, nsteps, noise = errs, params_prior = None, params_err = None): chi_cur = get_chisq(params, noise) chain = np.zeros([nsteps, nparams]) chi_vec = np.zeros(nsteps) counts = 0</pre>
	<pre>cholesky_mat = np.linalg.cholesky(curv) for i in range(nsteps): while True: dparams = cholesky_mat@np.random.randn(nparams)</pre>
	<pre>if (params[3] + dparams[3] > 0.02) and (params[3] + dparams[3] < 0.1): break trial_params = params + dparams trial_chisq = get_chisq(trial_params, noise)</pre>
	<pre>if params_prior is not None: trial_chisq += prior_chisq(trial_params, params_prior, params_err) dchisq = trial_chisq - chi_cur prob_accept = np.exp(-0.5*dchisq) accept = np.random.rand(1) < prob_accept</pre>
	<pre>if accept: counts +=1 params = trial_params chi_cur = trial_chisq chain[i,:] = params chi_vec[i] = chi_cur</pre>
In [80]:	<pre>return chain, chi_vec data = np.loadtxt('Results/planck_chain.txt').T chisq = data[0,:] H0 = data[1, :] omega_bh2 = data[2, :]</pre>
In [179	<pre>plt.plot(chisq)</pre>
	plt.xlabel('Number of Steps') plt.ylabel('\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	14800 -
	≥ 14400 - 14200 - 14000 -
	Here the χ^2 decreases but does not stabilize. It's normal as we only did 10 steps! To see the result with 1000 steps, c.f. the section at the end: 'Lot of steps'
In [95]:	err_params = np.std(data[1::], axis = 1) H0, ombh2, omch2, tau, As, ns = best_fit_params err0, err1, err2, err3, err4, err5 = err_params print('Best fit parameters found with the MCMC are:')
	<pre>print('H0 =', round(H0), '(+/-)', round(err0)) print('ΩBh² =', round(ombh2, 5), '(+/-)', round(err1, 5)) print('ΩCh² =', round(omch2, 3), '(+/-)', round(err2, 3)) print('τ =', round(tau, 2), '(+/-)', round(err3, 2)) print('As =', round(As, 10), '(+/-)', round(err4, 10)) print('ns =', round(ns, 3), '(+/-)', round(err5, 3)) Best fit parameters found with the MCMC are:</pre>
	H0 = 57 (+/-) 1 $\Omega \mathrm{Bh^2} = 0.01997$ (+/-) 4e-05 $\Omega \mathrm{Ch^2} = 0.107$ (+/-) 0.002 $\mathrm{T} = 0.04$ (+/-) 0.02 $\mathrm{As} = 2\mathrm{e}$ -09 (+/-) 1e-10 $\mathrm{ns} = 0.991$ (+/-) 0.003 We also want an estimate on Ω_{λ} , which is, as cued by the problem statement, given by $1 - \left(\frac{100}{H_0}^2\right) \cdot \left(\Omega_b h^2 + \Omega_C h^2\right)$, from which we can also derive its error:
In [98]:	h = H0/100 omega_l = 1 - (ombh2/err1)**-2 + (omch2/err2)**-2 + 8*(err0/H0)**2)**(1/2) print(' $\Omega\lambda$ =', round(omega_l, 2), '(+/-)', round(err_oml, 2))
	$\Omega \lambda = 0.62 \ (+/-) \ 0.02$
In [104 In [99]:	Problem 4 We now rerun the chain with a constraint on the optical depth τ as given by the problem statement. It is the only parameter that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We modify the MCMC function to take that into account, by adding the prior_chisq function inside. Because we want a better estimate for the covariance matrix, we also run the LM fitter with the prior. def prior_chisq(params, params_prior, params_err): params_shifted = params - params_prior return np.sum((params_shifted/params_err)**2) params_priors = np.array([0.0, 0.0, 0.0, 0.0540, 0.0, 0.0]) params_errs = np.zeros(nparams) + 1e20
	Problem 4 We now rerun the chain with a constraint on the optical depth τ as given by the problem statement. It is the only parameter that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We modify the MCMC function to take that into account, by adding the prior_chisq function inside. Because we want a better estimate for the covariance matrix, we also run the LM fitter with the prior. def prior_chisq(params, params_prior, params_prior return np.sum(params_shifted/params_prior return np.sum(params_shifted/params_err)**2) params_priors = np.array([0.0, 0.0, 0.0, 0.040, 0.0, 0.0540, 0.0, 0.0510) params_errs = np.zeros(nparams) + 1e20 params_errs = np.zeros(nparams) + 1e20 params_errs = np.zeros(nparams) + 1e20 params_errs = np.loadtxt('Results/planck_chain_tauprior.txt').T chisq = data[0,:]
In [99]:	Problem 4 We now rerun the chain with a constraint on the optical depth τ as given by the problem statement. It is the only parameter that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We modify the MCMC function to take that into account, by adding the prior_chisq function inside. Because we want a better estimate for the covariance matrix, we also run the LM fitter with the prior. def prior_chisq(params, params_prior, params_err): params_shifted = params - params_prior return np. sum((params_shifted/params_err)**2) params_priors = np.acros(nparams) + 1e20 params_errs = np.zeros(nparams) + 1e20 params_errs[3] = 0.0074 Again, all is executed from 'PS5_code.py'. Here we load the results. data_prior = np.loadtxt('Results/planck_chain_tauprior.txt').T chisq = data[6,:] Ho = data[1,:]
In [99]:	Problem 4 We now rerun the chain with a constraint on the optical depth r as given by the problem statement. It is the only parameter that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We modify the MCMC function to take that into account, by adding the prior_chag (params, params_prior, params_err): params_shifted params - params_prior, params_err): params_shifted params - params_prior return ps.smu((params, shifted) params, err)**2) params_priors = np.array([6.0, 0.0, 0.0, 0.0, 0.0540, 0.0, 0.0]) params_errs = np.array([6.0, 0.0, 0.0, 0.0, 0.0540, 0.0, 0.0]) params_errs = np.array([6.0, 0.0, 0.0, 0.0, 0.0540, 0.0, 0.0]) params_errs = np.array([6.0, 0.0, 0.0, 0.0, 0.0, 0.0]) params_errs = np.array([6.0, 0.0, 0.0, 0.0, 0.0]) params_errs = np.array([6.0, 0.0, 0.0, 0.0]) params_errs = np.array([6.0, 0.0]) params_errs = np.arr
In [99]: In [114	Problem 4 We now rerun the chain with a constraint on the optical depth r as given by the problem statement. It is the only parameter that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We moult you McCMC function to take that into account, by adding the prior, chiesq function inside. Because we want a better estimate for the covariance matrix, we also run the LM filter with the prior. def prior_chissq (params_params_prior_params_p
In [99]: In [114	Problem 4 We now rerun the chain with a constraint on the optical depth τ as given by the problem statement. It is the only parameter that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We modify the MCMC function to take that into account, by adding the prior_chisq function inside. Because we want a better estimate for the covariance matrix, we also run the LM filter with the prior. def prior_chisq(params, params, prior, params, err): params_stifted = params_ prior_params_err): params_stifted = params_ praces_prace_prac
In [99]: In [114	Problem 4 We now own the claim with a constraint on the golded depth it is given by the problem statement. It is the only processer that undergoes this prior, the others are let as they are. We also introduce a corresponding error on this prior. We monthly the MCMC function to take that not account, by adding the prior_chist function inside. Because we want a better estimate for the covariance matrix, we also run the LM that with the prior_chist function inside. Because we want a better estimate for the covariance matrix, we also run the LM that with the prior. def prior_chistopparase, parame_error, parame_er
In [99]: In [114	Problem 4 We now row much activate with a coronary and on the opposal deeth in a given by the problem statement, it is the only parameter that undergoes the prior the cares are let as they are. We also introduce a corresponding error on this prior. We much in that we have a corresponding error on this prior. We much the time of the coordination materials are let as they are. We also introduce a corresponding error on this prior. We much the prior in the other state that in the prior state of the coordination materials. We also run the LM fisher with the prior. In this prior is a prior of the prior of the coordination of the coordination materials. We also run the LM fisher with the prior. Again, all is excelled for the TSS code by. Here we bead the results. In the prior is an indirect of installar, planets, chair in trapprior into 1). The code is a code (2), 1; 1; 10 is a deat (2), 10 is a de
In [99]: In [114	Problem 4 We note cannot be cleared the acceptant or the control depth or as given by the problem statement. He are early parameter that writing possible prof. December 100 central and it acceptant on the control depth or as given by the problem statement. He are early parameter that writing possible prof. December 100 central parameter acceptant prof. December 100 central parameter 200 cen
In [99]: In [114 In [117 Out [117]	Problem 4 When we nature that notice will an eccentage of mone applied agree in a growing in proteins obtained. It is too and you among that proteins the obtained agree on this province of mone and set as they are will asset that notice will be considered from the province of mone and set as they are will asset that the considerate males, one about in the United will make not be growed. Set printed in execute from the growing in growing in growing in growing in the printed from the printed from the printed from the growing in growing in the growing in growing in the growing in growing
In [99]: In [114 In [117 Out [117] In [188 In [190	Problem 4 Problem 4 Problem 5 Problem 5 Problem 5 Problem 6
In [99]: In [114 In [117 Out [117] In [188 In [190	Problem 4 We contain the detailed a contain on the action decide in a contain the first action in the action in the action and a contain on the action decide in action in the action action in the a
In [99]: In [114 In [117 Out [117] In [188 In [190	Problem 4
In [99]: In [114 In [117 Out [117] In [188 In [190	Problem 4 Problem 5 Problem 6 Problem 7 Problem 7 Problem 6 Problem 7 Problem 8 Problem 7 Problem 7 Problem 8
In [99]: In [114 In [186 In [188 In [190	Problem 4 Problem 5 Problem 6 Problem 7 Problem 6 Problem 7 Problem 8
In [99]: In [114 In [186 In [188 In [190	Problem 4 Problem 4 Problem 4 Problem 5 A contain to unit a monor intringuis deptine as contain to antique to deptine as the contain to unity and contain to the contai
In [99]: In [114 In [186 In [188 In [190	Problem 4 Character of the control
In [99]: In [114 In [186 In [188 In [190	The Parliam of the Content of the Co
In [99]: In [117 Out [117]. In [190 In [191 In [183	The Design of Common and Common a
In [99]: In [117 Out [117]. In [190 In [191 In [183	The Problem 1 Problem 2 Problem 3 Problem 4 Problem
In [99]: In [117 Out [117]. In [190 In [191 In [183	The Content of Content
In [99]: In [117 Out [117]. In [190 In [191 In [183	The content of the co
In [99]: In [117 Out [117]. In [190 In [191 In [183	Designation of the property of
In [99]: In [114 In [117 Out [117] In [186 In [190 In [191 In [187 Out [167]	The second secon
In [99]: In [114 In [117 Out [117] In [190 In [191 In [167 Out [167]	The Part of the Control of the Contr
In [99]: In [114 In [117 Out [117] In [186 In [187 In [191 In [191 In [191 In [191	The content of the co
In [99]: In [114 In [117 Out [117]: In [186 In [190 In [191 In [144 In [144.	The content of the co
In [99]: In [114 In [117 Out [117]: In [186 In [190 In [191 In [144 In [144.	The filter of a contract of the filter of th
In [99]: In [114 In [117 Out [117]: In [186 In [190 In [191 In [144 In [144.	The filter of a contract of the contract of th
In [99]: In [114 In [117 Out [117]: In [186 In [190 In [191 In [144 In [144.	The Part of the Control of the Contr