

1^{ère} année Master MAS Méthode de Monte-Carlo et Simulation Année : 2019/2020

TP N°2

EXERCICE N° 1:

- 1. Si X est une variable aléatoire suivant une loi normale $\mathcal{N}(0,1)$, trouver la densité $f_{|X|}(t)$ de la loi suivie par |X|.
- 2. En prenant la densité $g(t) = e^{-t}$ de la loi exponentielle $\mathcal{E}(1)$, trouver la plus petite constante c telle que $f_{|X|}(t) \leq cg(t)$ sur $[0, +\infty[$.
- 3. Donner une représentation graphique des courbes de $f_{|X|}$ et cg.
- 4. Simuler un échantillon de taille 100 de la loi de |X| par la méthode d'acceptation-rejet. On précisera combien il aura fallu d'itérations.

EXERCICE N° 2:

- 1. Donner la densité de la loi $\mathcal{B}eta(3,5)$ sur l'intervalle [0,1].
- 2. Trouver l'abscisse du point où f est maximale. Quelle est la signification de ce point? Quelle est la valeur à l'optimum c correspondante.
- 3. Définir un algorithme d'acceptation-rejet utilisant la distribution uniforme sur [0,1].
- 4. Quel est le taux moyen d'acceptation?
- 5. Générer avec R un échantillon de taille 150. Représenter, sur un même graphique, l'histogramme de l'échantillon et la densité.
- 6. Que fait le programme qui suit :

```
M <- 2.305
curve(dbeta(x,3,5),from=0,to=1,ylim=c(0,M))
r <- runif(300,min=0,max=1)
u <- runif(300,min=0,max=1)
below <- which(M*u*dunif(r,min=0,max=1) <= dbeta(r,3,5))
points(r[below],M*u[below],pch="+",col='red')
points(r[-below],M*u[-below],pch="-")</pre>
```

EXERCICE N° 3: On veut simuler une loi normale $\mathcal{N}(0,1)$ en utilisant comme proposition une loi de Laplace de paramètre $\lambda>0$, c'est-à-dire de densité

$$g(x) = \frac{\lambda}{2} e^{-\lambda|x|}.$$

Déterminer la valeur de λ qui permet de minimiser la probabilité de rejet. Écrire en R un code qui permet de simuler en utilisant cette méthode.

EXERCICE N° 4: On veut générer une variable X suivant une loi Gamma $\Gamma(3/2,1)$ de densité notée f. On utilise une technique de rejet avec comme loi de proposition une exponentielle $\mathcal{E}(2/3)$ de densité notée g.

- 1. Déterminer $m = \sup_{x>0} \frac{f(x)}{g(x)}$. Quelle est le nombre moyen de simulations de la loi exponentielle pour aboutir à une réalisation de la loi Gamma?
- 2. Représenter sur un même graphique un histogramme de réalisations de X et la densité f.
- 3. Intuitivement, qu'est-ce qui a guidé le choix du paramètre 2/3 comme paramètre de l'exponentielle?