超车(overtaking)

从布达佩斯机场到 Forrás 酒店有一条单向单车道的公路,公路的长度为 L 公里。

IOI 2023 活动期间,有 N+1 辆巴士在这条公路上行驶。巴士从 0 到 N 依次编号。 巴士 i ($0 \le i < N$) 计划在活动的第 T[i] 秒从机场出发,行驶一公里用时 W[i] 秒。 巴士 N 是备用巴士,行驶一公里用时 X 秒。 它从机场出发的时间 Y 尚未确定。

巴士在这条公路上行驶时一般不允许超车,但允许在一些被称为**调度站**的地方进行超车。 公路上一共有M 个调度站(M>1),从 0 到 M-1 依次编号,位于公路的不同位置。 调度站 j($0\leq j < M$)的位置在机场出发后沿公路的 S[j] 公里处。 调度站按照从机场开始的距离递增排列,也就是对于每个 $0\leq j \leq M-2$,有 S[j] < S[j+1]。 首个调度站设在机场,最后一个设在酒店。也就是说,S[0]=0,S[M-1]=L。

每辆巴士都以指定的最快速度行驶,除非它遇到前面有比它慢的巴士。在这种情况下,后面的快车会被前面的慢车压着,被迫以慢车的速度行驶。这种情况会持续到两车到达下一个调度站。 在那里,快车会完成对慢车的超越。

形式化地说,对于满足 $0 \le i \le N$ 且 $0 \le j < M$ 的每组 i 和 j,巴士 i **到达**调度站 j 的时间 $t_{i,j}$ (以秒为单位)定义如下: 对于每个 $0 \le i < N$,有 $t_{i,0} = T[i]$ 。另有 $t_{N,0} = Y$ 。 对于满足 0 < j < M 的每个 j:

- 定义巴士i 到达调度站j 的**期望到达时间** $e_{i,j}$ (以秒为单位)为巴士i 到达调度站j-1 之后以全速行驶到达调度站j 的时间。也就是说,
 - 。 对于每个 $0 \leq i < N$,有 $e_{i,j} = t_{i,j-1} + W[i] \cdot (S[j] S[j-1])$;
 - 。 另有 $e_{N,j} = t_{N,j-1} + X \cdot (S[j] S[j-1])$ 。
- 巴士 i 到达调度站 j 的时间,是巴士 i 到达调度站 j 的期望到达时间,以及其他比巴士 i 早到调度 站 j-1 的巴士到达调度站 j 的期望到达时间中的**最大值**。形式化地说, $t_{i,j}$ 是 $e_{i,j}$ 和所有满足 $0 \le k \le N$ 且 $t_{k,j-1} < t_{i,j-1}$ 的 $e_{k,j}$ 中的最大值。

IOI 组委会想要调度备用巴士(巴士 N)。 你的任务是回答组委会的 Q 个问题,问题的形式如下:给定备用巴士从机场出发的时间 Y(以秒为单位),它将于何时到达酒店?

实现细节

你的任务是实现以下函数:

void init(int L, int N, int64[] T, int[] W, int X, int M, int[] S)

- *L*: 公路的长度
- N: 常规(非备用)巴士的数量
- T: 长度为 N 的数组,描述常规巴士计划从机场出发的时间。
- W: 长度为 N 的数组,描述常规巴士的最大速度。
- X: 备用巴士行驶一公里所需的时间
- M: 调度站的数量
- S: 长度为 M 的数组,描述从机场到调度站的距离。
- 对于每个测试用例,这个函数都恰好调用一次,发生在对任何 arrival_time 的调用之前。

int64 arrival_time(int64 Y)

- Y: 备用巴士(巴士 N) 计划从机场出发的时间
- 这个函数应该返回备用巴士到达酒店的时间。
- 这个函数恰好调用 Q 次。

例子

考虑以下调用序列:

忽略巴士 4(它还没有确定出发时间),下表列出了巴士到达每个调度站的期望时间和实际时间:

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180

巴士到达调度站 0 的时间就是它计划从机场出发的时间。也就是说,对于 $0 \le i \le 3$, $t_{i,0} = T[i]$ 。

到达调度站1的期望时间和实际时间计算如下:

- 调度站1的期望到达时间:
 - $\mathbb{E}\pm 0$: $e_{0,1}=t_{0,0}+W[0]\cdot (S[1]-S[0])=20+5\cdot 1=25_{\circ}$
 - $\Box \pm 1$: $e_{1,1} = t_{1,0} + W[1] \cdot (S[1] S[0]) = 10 + 20 \cdot 1 = 30$
 - $\mathbb{E}\pm 2$: $e_{2,1}=t_{2,0}+W[2]\cdot (S[1]-S[0])=40+20\cdot 1=60_{\circ}$
 - $\mathbb{E}\pm 3$: $e_{3,1}=t_{3,0}+W[3]\cdot (S[1]-S[0])=0+30\cdot 1=30_{\circ}$
- 调度站1的到达时间:
 - 。 巴士 1 和 3 早于巴士 0 到达调度站 0,所以 $t_{0,1} = \max([e_{0,1},e_{1,1},e_{3,1}]) = 30$ 。
 - 巴士 3 早于巴士 1 到达调度站 0,所以 $t_{1,1} = \max([e_{1,1}, e_{3,1}]) = 30$ 。

- 。 巴士 0 、巴士 1 和巴士 3 早于巴士 2 到达调度站 0 ,所以 $t_{2,1}=\max([e_{0,1},e_{1,1},e_{2,1},e_{3,1}])=60$ 。
- 。 没有比巴士 3 更早到达调度站 0 的巴士,所以 $t_{3,1} = \max([e_{3,1}]) = 30$ 。

arrival_time(0)

巴士 4 行驶一公里需要 10 秒,现在计划在第 0 秒从机场出发。 这种情况下,下表列出每辆巴士的到达时间。 常规巴士期望和实际到达时间的唯一变动用下划线标注。

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	<u>60</u>
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	0	10	10	30	30	60	60

由此可知巴士 4 在第 60 秒到达酒店。 因此,函数应该返回 60。

arrival_time(50)

巴士 4 现在计划在第 50 秒从机场出发。 这种情况下,与初始表格相比,常规巴士的到达时间没有变化。下表列出了到达时间。

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	50	60	60	80	90	120	130

巴士 4 和较慢的巴士 2 同时到达调度站 1 ,然后巴士 4 超过了巴士 2 。接着,巴士 4 在调度站 1 和 2 之间行驶时被巴士 3 压着,导致它到达调度站 2 的时间是第 90 秒,而不是第 80 秒。在过了调度站 2 之后,巴士 4 被巴士 1 压着,直到它们到达酒店。巴士 4 在第 130 秒到达酒店。因此,函数应该返回 130。

将每辆巴士从机场出发到不同距离的时间画成折线图。 图中 x 轴表示从机场出发的距离(以公里为单位),y 轴表示时间(以秒为单位)。 竖的虚线标注了调度站的位置。 不同颜色的实线(标注了巴士的编号)表示四辆常规巴士。 黑色的点线表示备用巴士。

约束条件

- $1 \le L \le 10^9$
- $1 \le N \le 1000$
- $0 \le T[i] \le 10^{18}$ (对于满足 $0 \le i < N$ 的每个 i)
- $1 \le W[i] \le 10^9$ (对于满足 $0 \le i < N$ 的每个 i)
- $1 \le X \le 10^9$
- $2 \le M \le 1000$
- $0 = S[0] < S[1] < \cdots < S[M-1] = L$
- $1 \le Q \le 10^6$
- $0 \le Y \le 10^{18}$

子任务

- 1. (9分) $N=1, Q \leq 1000$
- 2. (10分) $M=2, Q \leq 1000$
- 3. (20分) $N, M, Q \leq 100$
- 4. (26分) $Q \leq 5000$
- 5. (35分) 没有额外的约束条件。

评测程序示例

评测程序示例按以下格式读取输入:

- 第1行: LNXMQ
- 第 2 行: T[0] T[1] ... T[N-1]
- 第3行: W[0] W[1] ... W[N-1]
- 第4行: $S[0] S[1] \dots S[M-1]$
- 第5 + k行($0 \le k < Q$):问题k的Y

评测程序示例按以下格式打印你的答案:

• 第1+k行($0 \le k < Q$):问题 k 中 $arrival_time$ 的返回值