Distributions.jl Cheatsheet

Carlos LESMES

October 07, 2025

1 Basics

Install Julia Language ·

Go to https://julialang.org/downloads/ to download and install Julia.

- Install packages -

In the Julia REPL (Read-Eval-Print Loop) type] to enter the package manager mode, then type:

julia>]

Pkg> add Distributions, Statistics, Random, StatsBase julia> using Distributions, Statistics, StatsBase

To go back to the Julia REPL type backspace, using is a command to load the installed packages.

— Create a distribution —

p = [.4, .3, .2, .1] # categorical ditribution

d0 = Categorical(p)

d1 = Binomial(10, 0.5) # Binomial distribution with n=10 and p = 0.5

d2 = Normal(10,4)#Normal distribution with mean 10 and std

d3 = FDist(4,6) # Fdistribution with (4,6) df

d4 = Exponential(2.5) # Exponential distribution scale 2.5

d5 = Gamma(2,3) # Gamma distribution with $\alpha=2$, $\theta=3$

d6 = Chisq(3) # Chi square distribution with 3 df

Parameter retrieval

If method applies to the distribution:

params(d1) # Return a tuple of parameters.

scale(d2) # Get the scale parameter.

location(d2) # Get the location parameter

shape(d5) # Get the shape parameter

scale(d4) # Get the scale parameter

rate(d4) # Get the rate parameter

ncategories(d0) # # Get the number of categories

probs(d0) # Get the probability vector

ntrials(d1) # Get the number of trials.

succprob(d1) # Get the probability of success

failprob(d1) # Get the probability of failure.

minimum(d1) # Return the maximum of the support of d.

maximum(d1) # Return the minimum of the support of d.

extrema(d2) # Return the minimum and maximum of the support of d as a 2-tuple.

mean(d2) # Compute the expectation.

var(d2) # Compute the variance.

std(d2) # Return the standard deviation of distribution d, i.e. sgrt(var(d)).

median(d2) # Return the median value of distribution d. The median is the smallest x in the support of d for which cdf(d, $x) \ge 1/2$. Corresponding to this definition as 1/2-quantile, a fallback is provided calling the quantile function.

mode(d2) # Returns the first mode.

skewness(d2) # Compute the skewness.

kurtosis(d2) # Computes excess kurtosis by default. Proper kurtosis can be returned with correction=false

isplatykurtic(d2) # Return whether d is platykurtic (i.e kurtosis(d) < 0).

isleptokurtic(d2) # Return whether d is leptokurtic (i.e kurtosis(d) > 0).

ismesokurtic(d2) # Return whether d is mesokurtic (i.e kurtosis(d) == 0).

entropy(d2) # Compute the entropy value of distribution d. mgf(d2,.5) # Evaluate the moment-generating function of distribution d at t.

cqf(d2,1) # Evaluate the cumulant-generating function of distribution d at t.

cf(d2.1) # Evaluate the characteristic function of distribution d.

pdfsquaredL2norm(d2) # Return the square of the L2 norm of the probability density function f(x)

3 Probability

— Probability evaluation

insupport(d1,2) # When x is a scalar, it returns whether x is within the support of d. When x is an array, it returns whether every element in x is within the support of d.

pdf(d2,1) # Evaluate the probability density (mass) at x. logpdf(d2,-1) # Evaluate the logarithm of probability density (mass) at x.

cdf(d2,1) # Evaluate the cumulative probability at x.

logcdf(d2,0) # The logarithm of the cumulative function value(s) evaluated at x.

logdiffcdf(d2,0,1) # The natural logarithm of the difference between the cumulative density function at x and y

ccdf(d2,-1) # The complementary cumulative function evaluated at x, i.e. 1 - cdf(d, x)

logccdf(d2,0) # The logarithm of the complementary cumulative function values evaluated at x

quantile(d2, 0.8) # Evaluate the (generalized) inverse cumulative distribution function at q.

cquantile(d2,0.3) # The complementary quantile value, i.e. quantile(d, 1-q)

invlogcdf(d2,-0.2) # The (generalized) inverse function of

invlogccdf(d2,-.5) # The (generalized) inverse function of logccdf

Random number generation

Random.seed!(1234) # set random seed for reproducibility rand(d2,n) # Generate a n-vector sample from d

5 Special functions

Gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t$$

using SpecialFunctions

gamma(5) # Calculates gamma function at 5 gamma(0.5)

Beta function

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

beta(2,3) # B(2,3)

6 Plots

Install packages

Install StatsPlots package. This package is a drop-in replacement for Plots.jl that contains many statistical recipes for concepts and types introduced in the JuliaStats organization.

Pkg> add StatsPlots julia> using StatsPlots julia> plot(Binomial(10,0.5), leg= false)

Continuous distribution

julia> plot(Beta(2,3), leg= false) julia> title!("Beta distribution B(2,3)") julia> savefig("beta.png")

7 Distributions

Discrete

Bernoulli

BernoulliLogit

BetaBinomial

Binomial

Biweight

Categorical

Dirac

DiscreteNonParametric

DiscreteUniform

Geometric

Hypergeometric

NegativeBinomial

Poisson

PoissonBinomial

Skellam

Soliton

Arcsine

Beta

Continuous

```
8 Another plot
```

Normal Moment generating function

Carlos LESMES @ https://carloslesmes.github.io/

```
using Plots
f(x)=mgf(Normal(),x)
plot(f,-3,3, leg=false)
title!("Normal Standard Distribution MGF")
xlabel!("t")
ylabel!("mgf(t)")
savefig("normal-mgf.png")
```

NormalInverseGaussian

SkewedExponentialPower StudentizedRange

SymTriangularDist

TriangularDist

PGeneralizedGaussian

Pareto

Rician

TDist

Triweight

Uniform

Weibull

VonMises

Rayleigh

Semicircle

SkewNormal

- 1. Distributions.jl manual: https://juliastats.org/Distributions.jl/stable/
- 2. HTML Cheat Sheet: https://carloslesmes.github.io

BetaPrime

Cauchy

Chernoff

Chi

Chisq

Cosine

Epanechnikov

Erlang

Exponential

FDist

Frechet

Gamma

GeneralizedExtremeValue

GeneralizedPareto

Gumbel

InverseGamma

InverseGaussian

JohnsonSU

KSDist

KSOneSided

Kolmogorov

Kumaraswamy

Laplace

Levy

Lindley

LogNormal

LogUniform

Logistic

LogitNormal

NoncentralBeta

NoncentralChisq

NoncentralF

NoncentralT

Normal

NormalCanon