

Dipartimento di Ingegneria Dell'Informazione

CDMA RECEIVER

Progetto di Electronics and Comminications Systems

Amedeo Pochiero

Indice

1	Intr	roduzione 1
	1.1	Descrizione del Problema
	1.2	CDMA
	1.3	Applicazioni
	1.4	Esempio utilizzato
2	Arc	hitettura 3
	2.1	Diagramma a Blocchi
	2.2	Implementazione
	2.3	Test-plan
3	Sint	tesi 3
	3.1	Utilizzo
	3.2	Massima frequenza di utilizzo
	3.3	Cammino Critico
	3.4	Consumo di Potenza
	3.5	Warnings
4	Cor	nclusioni 3

1 Introduzione

1.1 Descrizione del Problema

Il collegamento broadcast può avere più nodi trasmittenti e riceventi connessi allo stesso canale broadcast condiviso. In uno scenario del genere si pone il problema di come coordinare l'accesso di più nodi trasmittenti e riceventi in un canale broadcast condiviso, ossia il problema dell'accesso multiplo. Dato che tutti i nodi sono in grado di trasmettere frame, è possibile che due o più lo facciano nello stesso istante, per cui tutti i nodi riceveranno contemporaneamente più frame. Tra questi si genera una collisione a causa della quale nessuno dei nodi riceventi riuscirà a interpretare i frame.

1.2 CDMA

Il protocollo **CDMA** (code division multiple access) è un protocollo a suddivisione del canale in cui i vari utenti possono trasmettere contemporaneamente, causando quindi collisioni e interferenze tra loro, tuttavia il ricevente è in grado comunque di ricostruire il segnale trasmesso. A tale scopo, ogni utente modula il proprio segnale di periodo T_b (symbol period) con un codice, unico per ogni utente, di periodo T_c (chip period) dove $T_c \ll T_b$ come si può vedere in Figura 1.

Figura 1: Generazione del segnale CDMA trasmesso

Il rapporto tra i due periodi è definito come *Spreading Factor* e come requisito è stato posto a 16:

 $\frac{T_b}{T_c} = 16$

I codici devono essere scelti in modo tale che la correlazione tra i vari segnali dei diversi utenti sia il più vicino possibile a zero. Nel synchronous CDMA si può sfruttare la proprietà matematica di ortogonalità tra vettori che rappresentano stringhe di dati. Due vettori a e b si dicono ortogonali se vale la seguente relazione:

$$a \cdot b = 0$$

Ogni utente deve usare un codice ortogonale a quello di tutti gli altri. Nella tabella di seguito viene riportato un esempio di vettori $cw_1, cw_2 \in \mathbb{Z}^{16}$ ortogonali tra di loro, i bit 0,1 vengono rappresentati rispettivamente dai simboli -1,1:

vector		bit															Prodotto Scalare
cw_1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1	-
cw_2	1	-1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1	-1	-
$cw_{1,i} * cw_{2,i}$	1	-1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1	-1	0

Tabella 1: Vettori Ortogonali

1.3 Applicazioni

Il **CDMA** è il protocollo di accesso a canale condiviso più diffuso nelle reti wireless e nelle tecnologie cellulari. Deriva da una tecnologia usata per implementare il **GPS** (*Global Position System*) ed è stato usato in :

- Globastar network, con il nome di CDMA2000, ed altre compagnie telefoniche
- UMTS 3G come protocollo di accesso multiplo standard
- OmniTRACS satellite system, per trasporti logistici.

1.4 Esempio utilizzato

Al fine di verificare il corretto funzionamento del ricevitore, è stato seguito un caso reale di ricezione di due bit in un ricevitore CDMA. Facendo riferimento ai codici (code words) della tabella 1, si è considerato uno scenario in cui il primo utente trasmette il simbolo 1, mentre un secondo utente trasmette il simbolo -1. Per le proprietà fisiche dell'interferenza, se 2 segnali interferenti sono in fase, essi si sommano e si crea un segnale di ampiezza doppia, altrimenti si sottraggono e creano un segnale con un'ampiezza pari alla differenza delle ampiezze. Nel mondo digitale, questo comportamento può essere rappresentato dalla somma componente per componente dei vettori trasmessi.

Nella seguente tabella 2 il simbolo trasmesso è modulato con la rispettiva *code word*, ottenendo un *chip stream* per ogni utente. Ogni chip stream trasmesso interferisce con gli altri trasmessi nello stesso istante, formando l'*interference pattern*, cioè il segnale realemente ricevuto dai ricevitori.

data	value															
d_1	1															
d_2		-1														
$cw_{1,i} * d_1$	1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
$cw_{2,i} * d_2$	-1	1	-1	1	-1	1	1	1	-1	-1	1	1	1	-1	1	1
interference pattern	0	2	-2	2	-2	0	0	2	0	-2	0	0	2	0	0	2

Tabella 2: Interferenza tra trasmettitori

Per ricostruire il segnale, moltiplica ogni componente dell' interference pattern con la propria code word. Il vettore r ottenuto è dato in input ad un Decisore Hard A Soglia il quale decide il bit da porre in uscita. La decisione è presa nel seguente modo:

• se
$$\sum_{i=1}^{16} r_i \ge 0$$
 allora $bitstream = 1$

• se
$$\sum_{i=1}^{16} r_i < 0$$
 allora bitstream = 0

Nell'esempio considerato i ricevitori effetturanno le seguenti operazioni:

data		value															Somma	Bit deciso
$r_i * cw_{1,i}$	0	2	2	2	2	0	0	2	0	2	0	0	2	0	0	2	16	1
$r_i * cw_{2,i}$	0	-2	-2	-2	-2	0	0	-2	0	-2	0	0	-2	0	0	-2	-16	0

Come si nota dalla tabella, i ricevitori sono in grado di ricostruire il bit trasmesso originariamente (primo utente 1, secondo utente 0) come specificato in 1.4.

2 Architettura

- 2.1 Diagramma a Blocchi
- 2.2 Implementazione
- 2.3 Test-plan
- 3 Sintesi
- 3.1 Utilizzo
- 3.2 Massima frequenza di utilizzo
- 3.3 Cammino Critico
- 3.4 Consumo di Potenza
- 3.5 Warnings
- 4 Conclusioni