Recitation 6

Recitation Instructor: Shivam Verma

Email: shivamverma@nyu.edu

Ph: 718-362-7836

Office hours: WWH 605 (2.50 - 4.50 pm, Tuesdays)

Brief Overview

- Solving overdetermined linear systems
 - Least squares method
 - QR algorithm
- Eigenvalues and eigenvectors
 - Jacobi's method for finding eigenvalues

Systems of linear equations

$$A \in R^{m \times n}, x \in R^{n \times 1}, b \in R^{m \times 1}$$

Overdetermined: When m > n (skinny)

This is a system with more equations than unknowns. Can have multiple solutions.

Underdetermined: When m < n (fat)

This is a system with fewer equations than unknowns.

Example.

Can you find the solutions for these?

1.
$$x + y + z = 1$$
, $x + y + z = 0$

2.
$$x + y + z = 1$$
, $x + y + 2z = 3$

Two kinds of underdetermined solutions:

- No solution (constraints not satisfied)
- Infinite solutions

Least Squares

Taking the case where $m \ge n$,

- To solve Ax = b, minimize the 'residual sum of squares' or 'mean square error' or 'squared euclidean norm'
- Optimization problem:
 - $\circ \quad \min_{x} \ \left\| Ax b \right\|_{2}^{2}$
 - o Has a closed-form solution, known as the **normal equation**:
 - Multiple ways of solving

Solve Normal Equation using LU, Cholesky etc.

- If A has full rank, A^TA is invertible. In general, A^TA is a symmetric positive definite. How?
 - $x^T A^T A x = (Ax)^T (Ax) = ||Ax||_2^2 \ge 0$
 - o This property is very useful in general (see Cholesky decomposition).
- Can use the usual methods (LU, Cholesky etc.) to solve this linear system in $O(mn^2)$.
- Disadvantage:
 - Computing
 - May be ill-conditioned, as $k(A^T A) = k(A)^2$

QR decomposition

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_{11} \\ 0 \end{bmatrix} = Q_1 R_{11},$$

$$||Ax - b||^2 = ||Q^T (Ax - b)||^2$$

$$= \left\| \begin{bmatrix} R_{11} \\ 0 \end{bmatrix} x - \begin{bmatrix} Q_1^T b \\ Q_2^T b \end{bmatrix} \right\|^2$$

$$= ||R_{11}x - Q_1^T b||^2 + ||Q_2^T b||^2.$$

- Since second term is independent of x, the minimum can be achieved when:
 - $\circ \quad R_{11}x = Q_1^T b$
 - \circ This is a triangular linear system. Can be solved in $O(n^2)$
- This decomposition exists for any matrix rectangular, non-symmetric etc.
- How can we calculate a QR decomposition?

Givens rotations

Use sequence of rotations in 2D subspaces:

For $m \approx n$: $\sim n^2/2$ square roots, and $4/3n^3$ multiplications

For $m \gg n$: $\sim nm$ square roots, and $2mn^2$ multiplications

Householder reflections

Use sequence of reflections in 2D subspaces

For $m \approx n$: $2/3n^3$ multiplications For $m \gg n$: $2mn^2$ multiplications

- See textbook or Deuflhard/Hohmann [2] for proof and discussion.
- Advantage: Better conditioned than least-squares, as $k(R_1) = k(A)$. How?
- $k(A^T A) = k(R_1^T Q_1^T Q_1 R_1) = k(R_1^T R_1)$

Geometric interpretation of least squares

- $A^{T}(Ax b) = 0 \Rightarrow A^{T}r = 0$ where r is the residual
- This means residual vector is orthogonal to any vector in the range of A
- $||Ax||^2 + ||r||^2 = ||b||^2$
- Thus, least squares solves for the projection of 'b' on the range space of 'Ax', or, it solves $Ax = b_{projected}$, where $b_{projected} = b \cdot cos(\theta)$
- If $\theta \approx \pi/2$, then $b \cdot cos(\theta) \approx 0$, and corresponding solution will be bad (model doesn't fit data!)
- In general, it may be that columns of A are nearly linearly dependent, in which case problem becomes ill-conditioned, as $A^{T}A$ is not invertible.
 - One approach is called **regularization**. It involves adding a strictly positive constant to the diagonal elements to make eigenvalues non-zero.
 - $\circ (A^T A + \lambda I) x = A^T b$
 - This is the solution of the minimization problem:

- $min_x ||Ax b||_2^2 + \lambda ||x||_2^2$
- This is known as L2-regularization, since the "regularization" term involves an L2-norm
- (Home Exercise) Can you say whether we can use an L1-norm instead of the L2-norm for regularization? Is there a closed-form solution for this? why/why not?
- See [1] for an excellent discussion on this topic. Regularization is a very popular concept in applied math, statistics & machine learning, where the objective is also to solve a "system" of nonlinear equations.

Eigenvalue Problems

Theorem 5.1 Suppose that $A \in \mathbb{R}_{sym}^{n \times n}$; then, the following statements are valid.

- (i) There exist n linearly independent eigenvectors $\mathbf{x}^{(i)} \in \mathbb{R}^n$ and corresponding eigenvalues $\lambda_i \in \mathbb{R}$ such that $A\mathbf{x}^{(i)} = \lambda_i \mathbf{x}^{(i)}$ for all i = 1, 2, ..., n.
- (ii) The function

$$\lambda \mapsto \det(A - \lambda I) \tag{5.2}$$

is a polynomial of degree n with leading term $(-1)^n \lambda^n$, called the **characteristic polynomial of** A. The eigenvalues of A are the zeros of the characteristic polynomial.

(iii) If the eigenvalues λ_i and λ_j of A are distinct, then the corresponding eigenvectors $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ are orthogonal in \mathbb{R}^n , i.e.,

$$oldsymbol{x}^{(i) ext{T}}oldsymbol{x}^{(j)}=0 \qquad if \; \lambda_i
eq \lambda_j \,, \qquad i,j \in \left\{1,2,\ldots,n
ight\}.$$

- (iv) If λ_i is a root of multiplicity m of (5.2), then there is a linear subspace in \mathbb{R}^n of dimension m, spanned by m mutually orthogonal eigenvectors associated with the eigenvalue λ_i .
- (v) Suppose that each of the eigenvectors $\mathbf{x}^{(i)}$ of A is normalised, in other words, $\mathbf{x}^{(i)\mathrm{T}}\mathbf{x}^{(i)}=1$ for $i=1,2,\ldots,n$, and let X denote the square matrix whose columns are the normalised (orthogonal) eigenvectors; then, the matrix $\Lambda=X^{\mathrm{T}}AX$ is diagonal, and the diagonal elements of Λ are the eigenvalues of A.
- (vi) Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix and define $B \in \mathbb{R}^{n \times n}_{sym}$ by $B = Q^{T}AQ$; then, $\det(B \lambda I) = \det(A \lambda I)$ for each $\lambda \in \mathbb{R}$. The eigenvalues of B are the same as the eigenvalues of A, and the eigenvectors of B are the vectors $Q^{T}\mathbf{x}^{(i)}$, i = 1, 2, ..., n.
- (vii) Any vector $\mathbf{v} \in \mathbb{R}^n$ can be expressed as a linear combination of the (ortho)normalised eigenvectors $\mathbf{x}^{(i)}$, i = 1, 2, ..., n, of A, i.e.,

$$oldsymbol{v} = \sum_{i=1}^n lpha_i oldsymbol{x}^{(i)}, ~~ lpha_i = oldsymbol{x}^{(i)\mathrm{T}} oldsymbol{v} \,.$$

(viii) The trace of A, $Trace(A) = \sum_{i=1}^{n} a_{ii}$, is equal to the sum of the eigenvalues of A.

[Image source: Chap. 5, Introduction to Numerical Analysis, E. Suli & D. Mayers]

Recap of some important properties (see image from book)

- If $A \in R_{symm}^{n \times n}$ (A is a real, symmetric matrix):
 - There exist 'n' linearly independent eigenvectors
 - o $det(\lambda I A) = 0$ gives the characteristic polynomial (in general)
 - If two eigenvalues are distinct, corresponding eigenvectors are orthogonal
 - Other properties in textbook.
- Why are Eigenvalue problems important? Ubiquitous in numerical linear algebra, especially solving ODEs, modelling symmetric physical systems or laws etc.
- How can we calculate Eigenvalues of large matrices?
 - Method 1: Write down characteristic polynomial, and find its roots numerically. This is not very practical for three reasons:
 - A 100x100 matrix will have 100 eigenvalues. Newton's method works well when starting very close to the optimal value, but may diverge otherwise.
 - ii. May divide the characteristic polynomial once a root has been found, but polynomial division can be numerically dangerous/unstable.
 - iii. To find eigenvectors, still have to solve 'n' linear equations, which will take $O(n^3)$ time!
 - iv. Note: In general, **polynomial root-finding is an ill-conditioned problem**. See eg. 5.12 (p. 92, Numerical Linear Algebra, Trefethen & Bau) on Wilkinson's polynomial.
 - Method 2: Use an iterative method which may diagonalize the matrix, or lead to an eigenvector. Some popular methods are:
 - i. Jacobi
 - ii. QR
 - iii. Sturm sequence
 - iv. Power method
 - v. Inverse Power or Inverse Iteration

• A bad example. Consider the matrix:

$$A = egin{pmatrix} 0 & & & & & arepsilon \ 1 & 0 & & & & \ & 1 & 0 & & & \ & & 1 & 0 & & \ & & \ddots & \ddots & \ & & & 1 & 0 \end{pmatrix}$$

- Charac. polynomial: $\lambda^n \varepsilon = 0$
 - i. Case 1: $\varepsilon = 0, \lambda_i = 0$
 - ii. Case 2: Let n = 40, and $\varepsilon=10^{-40}$, relative error (to other elements) = $10^{-40}/1=10^{-40}$. One eigenvalue, $\lambda_k=1/10=0.1$. Thus, adding an epsilon term changes one eigenvalue by $10^{39}\times\varepsilon$ times! This is an ill-conditioned problem, and numerically unstable.
- See [1] for more info. on this problem.
- Another bad example: Wilkinson's polynomial.

o
$$p(x) = (x-1)(x-2)(x-3)...(x-19)(x-20)$$

Jacobi's method

Idea: Use orthogonal transformations (pre- and post- multiply) to convert matrix to diagonal form.

• Use a plane rotation matrix of the form:

$$R(\varphi) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$

- Can check that this is an orthogonal matrix.

$$\varphi = \frac{1}{2} \tan^{-1} \frac{2a_{pq}}{a_{qq} - a_{pp}}$$

• See [4] for example. Also see sec. 5.2 in [3] for good discussion.

Helpful links

- 1. Comparison of Least Squares and QR
- 2. Chapter 3 of *Numerical Methods in Scientific Computing*, Deuflhard & Hohmann is excellent for least squares, QR.
- 3. See p. 1 & 2 on bad eigen value problems
- 4. See sec. 2 on Jacobi method
- 5. More about Jacobi's method
- 6. Found this nice MATLAB tutorial
- 7. Quick overview of linear algebra and relevant numerical algorithms
- 8. Jacobi convergence and eigenvalue problem examples
- 9. See topics 'markov chain 1 / 2' for applications of eigenvalue problem in probability
- 10. <u>Underdetermined systems</u>