# 9.A.1 BIG O NOTATION - EXAMPLES

### Example 1

Let  $f(n)=3n^3$  for an algorithm. Prove that f(n) of the algorithm is in  $\mathcal{O}(n^3)$  .

#### Solution

The definition of the Big -Oh notation is that  $f(n) \le c \times g(n)$ .

In order to prove that we know:

$$f(n) \in O(g(n))$$

or, 
$$f(n) = O(g(n))$$

Where g(n) is in  $n^3$ .

Hence, we can show that:

 $3n^3 \leq c \times n^3$  , holds good for a positive number c and sufficiently large values of n.

 $f(n) = 3n^3$  can also be written as:

$$f(n)=3n^3+0$$

We can write it as:

$$3n^3 + 0 \le 3n^3 + n^3$$

$$\approx 3n^3 + 0 \le 4n^3$$
 [Note  $3n^3 = 3n^3$  but  $3n^3$  is always  $\le 4n^3$ ]

[As highest degree of polynomial n is 3]

$$\approx 0 \leq 4n^3 - 3n^3$$

$$\approx 0 \leq n^3$$

Or, Divide  $n^2$  in both side:

$$\approx \frac{0}{n^2} \le \frac{n^3}{n^2}$$

$$\approx 0 \leq n$$

or, 
$$n \geq 0$$

Therefore  $n_0 = 0$ .

We can again write it as:

$$3n^3+0\leq 4\times n^3$$

Hence  $c \geq 4$  .

Therefore, f = O(g)

or in other words, the algorithm is  $O(n^3)$ .

Hence proved.

### Example 2

Let f(n)=3n+8 for an algorithm. Prove that f(n) of the algorithm is in  ${\it O}(n)$  .

#### Solution

The definition of the Big -Oh notation is that  $f(n) \le c \times g(n)$ .

In order to prove that we know:

$$f(n) \in O(g(n))$$

or, 
$$f(n) = O(g(n))$$

Where g(n) is in n.

Hence, we can show that:

 $3n + 8 \le c \times n$  , holds good for a positive number c and sufficiently large values of n.

 $3n+8\leq 3n+n$ 

 $\approx 3n + 8 \le 4n [3n is always \le 4n]$ 

[As highest degree of polynomial n is 1]

$$\therefore 3n + 8 \leq 4n$$

$$\approx 8 \leq 4n - 3n$$

$$\approx 8 \leq n$$

$$or, n \geq 8$$

$$\therefore n_0 = 8$$

$$3n+8 \leq 4n$$

Can be written as:

$$3n+8 \leq 4 \times n$$

Hence,  $c \ge 4$ .

Therefore, f is O(g)

or in other words O(n).

Hence proved.

### Example 3

Let  $f(n) = n^2 + 1$  for an algorithm. Prove that f(n) of the algorithm is in  $\mathcal{O}(n^2)$  .

#### Solution

The definition of the Big -Oh notation is that  $f(n) \le c \times g(n)$ .

In order to prove that we know:

$$f(n) \in O(g(n))$$

or, 
$$f(n) = O(g(n))$$

Where g(n) is in  $n^2$ .

Hence, we can show that:

 $n^2+1 \leq c \times n^2$  , holds good for a positive number c and sufficiently large values of n.

$$n^2 + 1 < n^2 + n^2$$

$$\approx n^2 + 1 \le 2n^2 [n^2 \text{ is always } \le 2n^2]$$

[As highest degree of polynomial *n* is 2]

$$\therefore n^2 + 1 \le 2n^2$$

$$\approx 1 \leq 2n^2 - n^2$$

$$\approx 1 \leq n^2$$

$$\approx -n^2 + 1 \leq 0$$

$$\approx -(n^2+1) \leq 0$$

$$\approx -(n^2-(-1)^2) \leq 0$$

As we know:  $x^2 - y^2 = (x + y)(x - y)$ 

$$\approx -1 \times ((n + (-1)) (n - (-1))) \leq 0$$

$$\approx -1 \times ((n-1)(n+1)) \leq 0$$
  
 $\approx (n-1)(n+1) \leq \frac{0}{-1}$ 

$$\approx (n-1)(n+1) \leq 0$$

# [From Quadratic Inequalities]

$$Say n = 1$$

$$\approx (1-1) \times (1+1) \le 0$$

$$\approx 0 \times 2 \leq 0$$

$$\approx 0 \leq 0[True]$$

Also,

$$\approx 0 \geq 0[True]$$

$$Say n = 2$$

$$\approx (2-1) \times (2+1) \le 0$$

$$\approx 1 \times 3 \leq 0$$

$$\approx 3 \leq 0[False]$$

But,

$$\approx 3 \geq 0[True]$$

Hence, we can say  $n \ge 1$ 

$$Say n = 0$$

$$\approx (0-1) \times (0+1) \le 0$$

$$\approx -1 \times 1 \leq 0$$

$$\approx -1 \leq 0[True]$$

$$Say n = -1$$

$$\approx (-1-1) \times (-1+1) \le 0$$

$$\approx -2 \times 0 \le 0$$

$$\approx 0 \leq 0[True]$$

That implies  $n \leq -1$ 

$$\therefore -1 \geq n \geq 1$$



 $(-\infty, -1] \cup [1, \infty)$  and they are in Sem – open and semi closed intervals.

Hence now we get:

$$n^4 + 1 \le 2n^2$$
 for all  $n \ge 1$ 

As from the definition of Big – O notation, all should be positive numbers but not negative numbers.

Therefore , we get  $n_0 = 1$  .

And,

$$n^4 + 1 \le 2 \times n^2$$
 in terms of  $f(n) \le c \times g(n)$ 

Hence:

 $c \geq 2$ .

Therefore, f is O(g)

or in other words  $O(n^2)$ .

Hence proved.

## Example 4

Let  $f(n)=n^4+100n^2+50\,$  for an algorithm. Prove that f(n) of the algorithm is in  $O(n^4)$  .

#### **Solution**

The definition of the Big -Oh notation is that  $f(n) \le c \times g(n)$ .

In order to prove that we know:

$$f(n) \in O(g(n))$$

or, 
$$f(n) = O(g(n))$$

Where g(n) is in  $n^4$ .

Hence, we can show that:

$$n^4 + 100n^2 + 50 \le c \times n^4$$

$$\approx n^4 + 100n^2 + 50 \le n^4 + n^4$$

$$\approx n^4 + 100n^2 + 50 \le 2n^4 [n^4 \text{ is always} \le 2n^4]$$

[As highest degree of polynomial *n* is 4]

Now,

$$\approx -2n^4 + n^4 + 100n^2 + 50 \le 0$$

$$\approx -n^4 + 100n^2 + 50 \leq 0$$

We can write the above equation as:

$$\approx -n^4 + 100n^2 + 50 = 0$$
 and  $-n^4 + 100n^2 + 50 < 0$ 

Taking the equation:

$$\approx -n^4 + 100n^2 + 50 = 0$$

Rewriting the equation,  $u = n^2$  and  $u^2 = n^4$ :

$$\approx -u^2 + 100u + 50 = 0$$

Solving with quadratic equation formula:

Quadratic Equation of the form  $ax^2 + bx + c = 0$ :

$$x_{1,2} = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2a}$$

For 
$$a = -1$$
,  $b = 100$ ,  $c = 50$ 

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{100^2 - 4(-1)(50)}\right)}{2(-1)}$$

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{100^2 - 4(-1)(50)}\right)}{-2}$$

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{100^2 + 200}\right)}{-2}$$

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{10000 + 200}\right)}{-2}$$

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{10200}\right)}{-2}$$

Using prime factorization of  $10200 = 2^3 \times 3 \times 5^2 \times 17$ 

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{2^3 \times 3 \times 5^2 \times 17}\right)}{-2}$$

Applying exponent rule:  $a^{b+c} = a^b \times a^c$ 

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{2^2 \times 2 \times 3 \times 5^2 \times 17}\right)}{-2}$$

Applying radical rule:  $\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}$ 

$$u_{1,2} = \frac{\left(-100 \pm \sqrt{2^2} \times \sqrt{5^2} \times \sqrt{2 \times 3 \times 17}\right)}{-2}$$

Applying radical rule:  $\sqrt[n]{a^n} = a$ 

$$u_{1,2} = \frac{\left(-100 \pm 2 \times 5 \times \sqrt{2 \times 3 \times 17}\right)}{-2}$$

$$u_{1,2} = \frac{\left(-100 \pm 10 \times \sqrt{2 \times 3 \times 17}\right)}{-2}$$

$$u_{1,2} = \frac{\left(-100 \pm 10 \sqrt{102}\right)}{-2}$$

$$u = \frac{\left(-100 + 10\sqrt{102}\right)}{-2}$$

$$= \frac{10\left(-10 + \sqrt{102}\right)}{-2}$$

$$= -5\left(-10 + \sqrt{102}\right) - -i$$

$$u = \frac{(-100 - 10\sqrt{102})}{-2}$$

$$= \frac{-10(10 + \sqrt{102})}{-2}$$

$$= 5(10 + \sqrt{102}) - -ii$$

Substituting back  $u = n^2$  and solving for n,

$$n^2 = -5(-10 + \sqrt{102})$$

 $(g(x))^2$  cannot be negative for  $x \in R$ , hence no solution.

$$n^2 = 5(10 + \sqrt{102})$$

We know  $(g(x))^2 = f(a)$  the solutions are  $\sqrt{f(a)}$ ,  $-\sqrt{f(a)}$ 

$$n = \sqrt{5(10 + \sqrt{102})}$$
 and  $n = -\sqrt{5(10 + \sqrt{102})}$ 

Now we can easily understand,

$$\approx -n^4 + 100n^2 + 50 = 0$$

putting n=  $-\sqrt{5(10+\sqrt{102})}$  in the above equation we will get a negative value while putting n=  $\sqrt{5(10+\sqrt{102})}$  in the above equation we will get a positive value,

Hence:

$$n \leq -\sqrt{5\big(10+\sqrt{102}\big)}$$

or

$$n \geq \sqrt{5\big(10 + \sqrt{102}\big)}$$

Now what does 
$$\sqrt{5(10 + \sqrt{102})}$$
 stand for : 10.028484537

As by definition: the function f and g should be set of natural numbers and it should grow by time (growth rate) we take  $n \ge 11$ .

Or by analysis:

$$\approx -n^4 + 100n^2 + 50 \le 0$$

$$\approx 100n^2 + 50 \le n^4$$

$$or, n^4 \ge 100n^2 + 50$$

if we take n = 10

$$\approx~10^4 \geq 100 \times 10^2 + 50$$

$$\approx 10000 \ge 10000 + 50$$

$$\approx 10000 \ge 10050[Not \ True]$$

if we take n = 11

$$\approx 11^4 > 100 \times 11^2 + 50$$

$$\approx 14641 \ge 1210 + 50$$

$$\approx 14641 \ge 1260[True]$$

Hence, we confirm in both the ways that:

$$n^4 + 100n^2 + 50 \le 2n^4$$
 for all  $n \ge 11$ 

Therefore, we get  $n_0 = 11$ .

And,

$$n^4 + 100n^2 + 50 \le 2 \times n^4$$
 in terms of  $f(n) \le c \times g(n)$ 

Hence:

$$c \geq 2$$
.

Therefore, f is O(g)

or in other words  $O(n^4)$ .

Hence proved.

## Example 5

Let f(n) = n for an algorithm. Let g(n) = n. Prove that f(n) of this algorithm is in O(n).

#### Solution

$$f(n) \le c \times g(n)$$

$$\Rightarrow n \leq 1 \times n$$
, for all  $n \geq 1$ 

$$\Rightarrow n = O(n), c \ge 1 \text{ and } n_0 = 1$$

## Example 6

Let f(n) = 410 for an algorithm. Let g(n) = 410. Prove that f(n) of this algorithm is in O(1).

#### Solution

$$f(n) \le c \times g(n)$$
  
 $\Rightarrow 410 \le 1 \times 410, for all \ n \ge 1$   
 $\Rightarrow 410 = O(1), c \ge 1 \ and \ n_0 = 1$ 

## Example 7

Find upper bound for  $f(n) = 2n^3 - 2n^2$ . Prove that f(n) of this algorithm is in  $O(n^3)$ .

#### **Solution**

The definition of Big-Oh notation is that  $f(n) \le c \times g(n)$ .

$$\Rightarrow$$
  $f(n) \leq \, (2n^3 + 2n^3) - 2n^3 \, [\mbox{\it As growth rate is doubled also}$   $4n^3 \geq 2n^3]$ 

$$\Rightarrow f(n) \leq (4n^3) - 2n^3$$

$$\Rightarrow f(n) \leq 2n^3$$

And we can say:

$$2n^3 - 2n^2 \le 2n^3$$

Deducing it to  $f(n) \le c \times g(n)$ , we get:

$$\Rightarrow 2n^3 - 2n^2 \leq 2 \times n^3$$

Hence 
$$c = 2$$
 and  $g(n) = n^3$ 

## By Inequality deduction:

$$\Rightarrow -2n^2 \leq 2n^3 - 2n^3$$

$$\Rightarrow -2n^2 \leq 0$$

$$\implies n^2 \leq 0$$

$$\Rightarrow n \leq 0$$

## More specifically:

| N | $2n^3 - 2n^2$ | $2n^3$ |
|---|---------------|--------|
| 0 | 0             | 0      |
| 1 | 0             | 1      |
| 2 | 8             | 16     |

Hence it starts from 1, hence  $n \ge 1$ 

Therefore  $n_0 = 1$ .

Hence 
$$f = \mathbf{0}(g)$$

or 
$$f(n) = \mathbf{0}(n^3)$$

# NO UNIQUENESS in Above Method

There is no unique set of values for  $n_0$  and c in proving the asymptotic bounds.

Let us consider, 100n + 5 = O(n). For this function there are multiple  $n_0$  and c values possible.

#### Solution1:

$$100n+5 \le 100n+n$$

$$\approx$$
100n+5  $\leq$ 101n, for all  $n \geq$  5,  $n_0 = 5$  and  $c \geq$  101 is a solution.

#### **Solution2:**

$$100n+5 \le 100n+5n$$

 $\approx$ 100n+5  $\leq$ 105n, for all  $n \geq$  1,  $n_0 = 1$  and  $c \geq$  105 is also a solution.

## Example 8

Let  $f(n) = 3n^3 + 2n^2 + 3$  for an algorithm. Let  $g(n) = n^3$ . Prove that f(n) of this algorithm is in  $O(n^3)$ .

#### Solution

The definition of Big-Oh notation is that  $f(n) \le c \times g(n)$ . Therefore, one must show that  $3n^3 + 2n^2 + 3 \le cn^3$  holds good for a positive number c and for sufficiently large values of n.

$$f(n) = 3n^3 + 2n^2 + 3$$

$$f(n) \leq 3n^3 + 2n^3 + 3$$
 (as growth of functions  $n^2$  to  $n^3$ )

$$f(n) \le 3n^3 + 2n^3 + 3n^3 (3 \text{ is less than } n^3)$$

$$f(n) \le 8n^3$$

It can be observed that c=3+2+3=8 (one can approximate  $2n^2$  and 3 to  $2n^3$  and  $3n^3$  respectively). This condition holds good for any values of  $c \ge 8$ .

Let the polynomial be

$$f(n) = \sum_{i=0}^{m} a_i n^i$$

whose degree is m. Then one can show that  $f(n) = O(n^m)$ .

$$|f(n)| \le |a_m|n^m + |a_{m-1}|n^{m-1} + \dots + |a_1|n + |a_0|$$

$$pprox |f(n)| \le |a_m|n^m + |a_{m-1}|n^m + \dots + |a_1|n^m + |a_0|n^m \text{ for all } n \ge 1$$

$$\approx \left(\sum_{i=0}^m |a_i|\right) n^m$$

$$\approx c \times n^m$$

$$\approx O(n^m)$$

Hence the above algorithm has  $O(n^3)$ .

This is another way we can prove the algorithm has  $\it the\ complexity$  .

## Example 9

Let  $f(n) = \frac{(2x^3+13\log_2 x)}{7n^2}$  for an algorithm A. Prove that f(n) of algorithm A is O(n).

#### **Solution**

It can be observed that log x < x is always true. Therefore, one can argue that  $13 \log_2 x \le 13x$  and as  $13x \le 13x^3$  always, one can rewrite f(n) as follows:

$$f(n) \leq \frac{2x^3 + 13x^3}{7n^2}$$

$$f(n) \leq \frac{15x^3}{7n^2}$$

$$\cong 2n^{3-2}$$

$$\approx 2n$$
 for all  $n > 1$ 

$$\therefore f(n) = O(n)$$