Bayesian Contextual Multi-armed Bandits

Xiaoting Zhao Joint Work with Peter I. Frazier School of Operations Research and Information Engineering Cornell University

October 22, 2012

Optimal Solution and Upper Bound

Outline

- Motivating Examples
- 2 Modeling
- Optimal Solution and Upper Bound
- 4 Conclusion

Optimal Solution and Upper Bound

- Motivating Examples
- 2 Modeling
- 3 Optimal Solution and Upper Bound
- 4 Conclusion

Motivation: Recommender System

Learning through Exploration in arXiv

- Operate at a large scale:
 - -750,000 eprints of scientific articles
 - -1.5 billions user accesses
- Learn quickly and react fast
- Exploration vs. Exploitation

Goal: Interactively combine content and use the observed feedback to improve future content choices.

Motivation: Optimal Experimental Design

Oil-drilling

• Drill test wells to learn about the potential for oil or natural gas

Optimal Solution and Upper Bound

- Each drilling test can cost millions of dollars
- Computational challenge: size of the search space
- **Goal**: Choose the best price, temperature, pressure, and other parameters to produce the best results for a business simulator.

Outline

- Motivating Examples
- 2 Modeling
- 3 Optimal Solution and Upper Bound
- 4 Conclusion

Modeling: Contextual Multi-armed Bandits

- At each time step n = 1, 2, ...
 - ullet Given context $Z_n \in \mathbb{R}^d$, iid from known P_Z
 - query keywords, user features, social media, medical records, etc.
 - Choose an action $X_n \in \{1, ..., K\}$ • arms/items: articles, advertisement, movies, treatments, etc.
 - Latent item features θ_{X_n} :
 item features, item relevance, etc
 - Receive partial rewards, Y_n , with some noise $\epsilon_n \in \mathbb{R}$:
 CTRs, generated revenue, ratings, relevance score, user engagement
 Linear model: powerful and analytically tractable

$$Y_n = \theta_{X_n} \cdot Z_n + \epsilon_n \in \mathbb{R}$$

$$\sup_{\pi \in \Pi} E^{\pi} \left[\sum_{n=0}^{\infty} \gamma^n Y_n \right]$$

Modeling: Contextual Multi-armed Bandits

- At each time step n = 1, 2, ...
 - Given context $Z_n \in \mathbb{R}^d$, *iid* from known P_Z • query keywords, user features, social media, medical records, etc.
 - Choose an action X_n ∈ {1,..., K}
 arms/items: articles, advertisement, movies, treatments, etc.
 - Latent item features θ_{X_n} :
 item features, item relevance, etc.
 - Receive partial rewards, Y_n, with some noise ∈_n ∈ IC:
 CTRs, generated revenue, ratings, relevance score, user engagement
 Linear model: powerful and analytically tractable

$$Y_n = \theta_{X_n} \cdot Z_n + \epsilon_n \in \mathbb{R}$$

$$\sup_{\pi \in \Pi} E^{\pi} \left[\sum_{n=0}^{\infty} \gamma^n Y_n \right]$$

- At each time step n=1,2,...
 - Given context $Z_n \in \mathbb{R}^d$, iid from known P_Z • query keywords, user features, social media, medical records, etc.

Optimal Solution and Upper Bound

- Choose an action $X_n \in \{1, ..., K\}$
- Latent item features θ_{X_n} : • item features, item relevance, etc.

$$Y_n = \theta_{X_n} \cdot Z_n + \epsilon_n \in \mathbb{R}$$

$$\sup_{\pi \in \Pi} E^{\pi} \left[\sum_{n=0}^{\infty} \gamma^n Y_n \right]$$

Modeling: Contextual Multi-armed Bandits

- At each time step n = 1, 2, ...
 - Given context $Z_n \in \mathbb{R}^d$, *iid* from known P_Z • query keywords, user features, social media, medical records, etc.
 - Choose an action $X_n \in \{1, ..., K\}$
 - Latent item features θ_{X_n} : • item features, item relevance, etc.
 - Receive partial rewards, Y_n , with some noise $\epsilon_n \in \mathbb{R}$:
 - CTRs, generated revenue, ratings, relevance score, user engagement
 - Linear model: powerful and analytically tractable

$$Y_n = \theta_{X_n} \cdot Z_n + \epsilon_n \in \mathbb{R}$$

$$\sup_{\pi \in \Pi} E^{\pi} \left[\sum_{n=0}^{\infty} \gamma^n Y_n \right]$$

Modeling: Contextual Multi-armed Bandits

- At each time step n = 1, 2, ...
 - ullet Given context $Z_n \in \mathbb{R}^d$, iid from known P_Z
 - Choose an action $X_n \in \{1, ..., K\}$
 - Latent item features θ_{X_n} :
 item features, item relevance, etc.
 - Receive partial rewards, Y_n , with some noise $\epsilon_n \in \mathbb{R}$:
 - CTRs, generated revenue, ratings, relevance score, user engagement
 - Linear model: powerful and analytically tractable

$$Y_n = \theta_{X_n} \cdot Z_n + \epsilon_n \in \mathbb{R}$$

$$\sup_{\pi \in \Pi} E^{\pi} \left[\sum_{n=0}^{\infty} \gamma^n Y_n \right]$$

Intuitive Example

Optimal Solution and Upper Bound

Literature Review

- Non-Bayesian Methods
 - The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits (Langford and Zhang 2007)
 - A Contextual-Bandit Approach to Personalized New Article Recommendation (Langford, et al., 2010)
 - An optimal high probability algorithm for the contextual bandit problem (Beygelzimer et al., 2010)
 - Efficient Optimal Learning for Contextual Bandits (Dudik et al., 2010)
 - PAC-Bayesian Analysis of Contextual Bandits (Seldin et al., 2011)
- Bayesian Approach
 - Explore/Exploit Schemes for Web Content Optimization (Agarwal, Chen, and Elango 2009)
 - Collaborative Topic Modeling for Recommending Scientific Articles (Wang and Blei 2011)

Modeling: Contextual Multi-armed Bandits

• Prior distribution on θ_x :

$$\theta_x \sim N(\mu_{x_0}, \Sigma_{x_0})$$

Observation

$$Y_n = \theta_{X_n} \cdot Z_n + \epsilon_n \in \mathbb{R}$$
 with noise $\epsilon_n \sim N(0,\sigma^2)$

- Decision X_n at time n is a function of
 - Historical observation: $H_{n-1} = (X_m, Y_m, Z_m : 1 \le m \le n-1)$
 - New context: Z_n

Optimality Equation

Goal: find the optimal policy π^* s.t.

$$V^* = \sup_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^n Z_n \cdot \theta_{X_n} \right],$$

where a policy π is a sequence of $\pi = (\pi_n : n = 1, 2, ...)$ with

$$\pi_n: \left(\{1,...,K\} \times \mathbb{R} \times \mathbb{R}^d\right)^{n-1} \times \mathbb{R}^d \to \{1,...,K\},$$

$$X_n = \pi_n(H_{n-1}, Z_n)$$

Optimal Solution and Upper Bound

Outline

- Modeling
- Optimal Solution and Upper Bound

Simple Case: $Z_n = ones(d), d = 1$

Classical Multi-armed Bandits

- A row of slot machines to play
- Unknown expected payoff

$$V^* = \sup_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^n R_n \right]$$

Optimal Solution and Upper Bound

Gittins Index Policy (Gittins 1974)

$$\nu_i(x_i) = \sup_{\tau > 0} \frac{\langle \sum_{n=0}^{\infty} \gamma^n K[X(n)] \rangle_{X(0) = i}}{\langle \sum_{n=0}^{\tau-1} \gamma^n \rangle}$$

Simple Case: $Z_n = ones(d), d = 1$

Classical Multi-armed Bandits

- A row of slot machines to play
- Unknown expected payoff

$$V^* = \sup_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^n R_n \right]$$

Gittins Index Policy (Gittins 1974)

• Assign index, $\nu_i(x_i)$, for each state of each item i

$$\nu_i(x_i) = \sup_{\tau > 0} \frac{\langle \sum_{n=0}^{\tau-1} \gamma^n R[X(n)] \rangle_{X(0)=i}}{\langle \sum_{n=0}^{\tau-1} \gamma^n \rangle}$$

Index Policy: simple and provide the best tradeoff

$$i^* = \arg\max_{i} \nu_i(x_i)$$

General Case: Contextual Multi-armed Bandits

$$V^* = \sup_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^n Z_n \cdot \theta_{X_n} \right]$$

Optimal Solution and Upper Bound

Challenges

- Random context, Z_n
 - Gittins index policy fails to generalize
- Curses of dimensionality
 - State space
 - Action space
- Partial feedback revealed

Figure: Graph inserted from Yoshua Bengio's homepage

Optimal Solution and Upper Bound

Main Ideas of the Heuristic Policy

ullet Decomposition of the space into independent d sub-space

- Inspiration from Whittle's work on Restless Multi-armed Bandits
 - Relax the constraint on non-operating arms and average activity
 - Apply Lagrangian Relaxation

 $^{^{1}}$ Dimensionality Reduction Techniques for Face Recognition, Sharath et al., 2011

Upper Bound: Heuristic Policy

- Decompose to d sub-problems
 - $\phi_1,...\phi_d$ be an orthonormal basis in \mathbb{R}^d , i.e., $\phi_j \in \mathbb{R}^d$

$$\phi_j \cdot \phi_{j'} = \begin{cases} 1 & \text{if } j = j', \\ 0 & \text{if } j \neq j'. \end{cases}$$

Optimal Solution and Upper Bound

• Arriving context Z_n as

$$Z_n = \sum_{i=1}^d Z_{ni} \phi_i$$
 with $Z_{ni} = \phi_i \cdot Z_n$

• Find the optimal policy for each subproblem: a 2-dim state-space DP

$$\sup_{\pi' \in \Pi'} \mathbb{E}^{\pi'} \left[\sum_{n=1}^{\infty} \gamma^n Z_{ni} \phi_{in} \cdot \theta_{X_{ni}} \mid \phi_{i'} \cdot \theta_j \quad \forall i' \neq i, \forall X_{ni} \in \{1, ..., K\} \right]$$

Proof of the Upper Bound

$$\sup_{\pi \in \Pi} \mathbb{E}_P^\pi \left[\sum_{n=1}^\infty \gamma^n Y_n \right] \leq \sup_{\pi \in \Pi'} \sum_{i=1}^d \mathbb{E}_Q^\pi \left[\sum_{n=1}^\infty \gamma^n Z_{ni} \phi_i \cdot \theta_{X_{ni}} \right]$$

$$\leq \sum_{i=1}^{d} \sup_{\pi \in \Pi'} \mathbb{E}_{Q}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^{n} Z_{ni} \phi_{i} \cdot \theta_{X_{ni}} \right]$$

$$\leq \sum_{i=1}^{d} \mathbb{E} \left[\sup_{\pi \in \Pi'} \mathbb{E}_{Q}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^{n} Z_{ni} \phi_{in} \cdot \theta_{x} \mid \phi_{i'} \cdot \theta_{j} \quad \forall i' \neq i, \forall x \right] \right].$$

Solving each sub-problem

$$V_i(\cdot) = \sup_{\pi' \in \Pi'} \mathbb{E}^{\pi'} \left[\sum_{n=1}^{\infty} \gamma^n Z_{ni} \phi_{in} \cdot \theta_{X_{ni}} \mid \phi_{i'} \cdot \theta_j \quad \forall i' \neq i, \forall j \right]$$

Optimal Solution and Upper Bound

Gittins construction

- Non-operating arms stay static
- But Z_n could evolve even for passive arms

Restless Multi-arm Bandits (Whittle 1988)

- Both active and passive arms could evolve
- Whittle index policy: optimal under a relaxed constraint for average activity

Whittle Index Policy Relaxation

Modeling

$$W_{ij}^* = \sup_{\pi''' \in \Pi'''} \left[\sum_{n=1}^{\infty} \sum_{\forall x} \gamma^n Z_{ni} \theta_x U_{nix} \mid \phi_{i'} \cdot \theta_j \quad \forall i' \neq i, x = 1, ..., K \right]$$

subject to:

$$U_{nix} \in \{0, 1\},$$

$$\mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \gamma^n \left(\sum_{x} U_{nix} \right) \frac{Z_{ni}}{\mathbb{E}[Z_i]} \right] \le \sum_{n=1}^{\infty} \gamma^n = \frac{1}{1 - \gamma}$$

Lagrangian Relaxation

Relax the constraint with a Lagrange multiplier ν :

$$L\left(\nu, (\mu_0, \sigma_0^2, Z_{ni})\right) = \sum_x \sup_\pi \mathbb{E}^\pi \left[\sum_{n=1}^\infty \gamma^n Z_{ni} \left[\theta_x - \frac{\nu}{\mathbb{E}[Z_i]}\right] U_{nix}\right] + \frac{\nu}{1 - \gamma}$$

subject to:

$$U_{nix} \in \{0, 1\}$$

Note: ν is a subsidy for resting an arm.

Conclusion

Weak Duality

ullet Dynamics of the state space $(\mu_{n+1,i,j},\sigma_{n+1,i,j}^2,Z_{n+1,i})$

$$\begin{cases} (\mu_{nij},\sigma_{nij}^2,Z_{n+1,i}) & \text{if } U_{nij}=0,\\ \left(\mu_{nij}+\tilde{\sigma}(\sigma_{nij}^2)S_n,\ \left(\sigma_{nij}^{-2}+Z_{n,i}^2/\lambda^2\right)^{-1},\ Z_{n+1,i}\right) & \text{if } U_{nij}=1, \end{cases}$$
 where $S_n\sim\mathcal{N}(0,1)$ and $\tilde{\sigma}(s^2)=\sqrt{s^2-(s^{-2}+(\lambda/Z_{ni})^{-2})^{-1}}.$

ullet Use Bisection algorithm to find u^*

$$L(\mu_0, \sigma_0^2, Z_{ni})^* = \inf_{\nu \ge 0} L(\nu, (\mu_0, \sigma_0^2, Z_{ni}))$$

- Lagrangian relaxation optimality
 - Upper bound for the restless multi-armed bandit

$$W^* \leq L^*$$

Conclusion

Weak Duality

 \bullet Dynamics of the state space $(\mu_{n+1,i,j},\sigma^2_{n+1,i,j},Z_{n+1,i})$

$$\begin{cases} (\mu_{nij},\sigma_{nij}^2,Z_{n+1,i}) & \text{if } U_{nij}=0,\\ \left(\mu_{nij}+\tilde{\sigma}(\sigma_{nij}^2)S_n,\ \left(\sigma_{nij}^{-2}+Z_{n,i}^2/\lambda^2\right)^{-1},\ Z_{n+1,i}\right) & \text{if } U_{nij}=1, \end{cases}$$
 where $S_n\sim\mathcal{N}(0,1)$ and $\tilde{\sigma}(s^2)=\sqrt{s^2-(s^{-2}+(\lambda/Z_{ni})^{-2})^{-1}}.$

• Use Bisection algorithm to find ν^*

$$L(\mu_0, \sigma_0^2, Z_{ni})^* = \inf_{\nu \ge 0} L(\nu, (\mu_0, \sigma_0^2, Z_{ni}))$$

- Lagrangian relaxation optimality
 - Upper bound for the restless multi-armed bandit

$$W^* \leq L^*$$

Conclusion

Weak Duality

• Dynamics of the state space $(\mu_{n+1,i,j},\sigma_{n+1,i,j}^2,Z_{n+1,i})$

$$\begin{cases} (\mu_{nij},\sigma_{nij}^2,Z_{n+1,i}) & \text{if } U_{nij}=0,\\ \left(\mu_{nij}+\tilde{\sigma}(\sigma_{nij}^2)S_n,\ \left(\sigma_{nij}^{-2}+Z_{n,i}^2/\lambda^2\right)^{-1},\ Z_{n+1,i}\right) & \text{if } U_{nij}=1, \end{cases}$$
 where $S_n\sim\mathcal{N}(0,1)$ and $\tilde{\sigma}(s^2)=\sqrt{s^2-(s^{-2}+(\lambda/Z_{ni})^{-2})^{-1}}.$

• Use Bisection algorithm to find ν^*

$$L(\mu_0, \sigma_0^2, Z_{ni})^* = \inf_{\nu \ge 0} L(\nu, (\mu_0, \sigma_0^2, Z_{ni}))$$

- Lagrangian relaxation optimality
 - Upper bound for the restless multi-armed bandit

$$W^* \leq L^*$$
.

Numerical Results: Bayesian exploration vs. exploitation on arXiv data

• Exploration: topic model w/ a Bayesian multi-armed bandit analysis

$$j_{\mathsf{explore}}^* = \arg\max_{j} \, \mathbb{E}[\hat{Z}_i^T \theta_j] + \nu(\mathrm{Var}[\hat{Z}_i^T \theta_j], \gamma_i, \sigma)$$

Optimal Solution and Upper Bound

Exploitation: recommend documents with the largest posterior mean

$$j_{\text{exploit}}^* = \arg\max_{j} \ \mathbb{E}[\hat{Z}_i^T \theta_j]$$

Items Presented

Optimal Solution and Upper Bound

Outline

- Modeling
- Optimal Solution and Upper Bound
- 4 Conclusion

Conclusion: Contextual Multi-armed Bandits

- Many real life applications
 - A dynamic system with incomplete, large and noisy data
 - Optimal learning toward personalized matching
- Solving generalized context multi-arm Bandit
 - Exploration/learning vs. Exploitation/performance
 - Relax the problem to ease computation
 - Whittle index policy to derive an upper bound
- Future Direction
 - Implement the exploration algorithm in arXiv
 - Compare with Heuristic Policy for its closeness to optimality

 Agarwal, D. and Chen, B. (2009). Regression-based latent factor models.

Optimal Solution and Upper Bound

- Dayanik, S., Powell, W., Yamazaki, K. (2008). Index policies for discounted bandit problems with availability constraints.
- Gittins, J.C. and Jones, D.M. (1974). A dynamic allocation index for the sequential design of experiments.
- Salakhutdinov, R. and Mnih, A. (2008). Probabilistic matrix factorization.
- Wang, C. and Blei, D. (2011). Collaborative topic modeling for recommending scientific articles.
- Whittle, P. (1980). Multi-armed bandits and the Gittins index.
- Whittle, P. (1988). Restless bandits: Activity allocation in a changing world.

Thank You!