"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

피지컬 컴퓨팅

Lec. 1. 오리엔테이션

Heenam Yoon

Department of Human-Centered Artificial Intelligence

E-mail) <u>h-yoon@smu.ac.kr</u> Room) O112

▮ 강의 설명

실제 환경과 자극을 감시하고 적절히 반응하는 상호작용형 <u>소형 컴퓨터</u>를 개발하는 능력을 배양하고 인간의 행위와 감성을 컴퓨터가 이해하는 <u>시스템을 구축하는 창의적 개발 프로세스 습득하도록</u>한다

시스템 (외부관점): HW + SW

시스템 (내부관점)

- 생체신호를 측정한다
- 생체정보를 추출한다
- 활용한다

센싱 (Sensing) 필터링 (Filtering) 디지털 변환 (ADC)

통신 (USART, ···)

정보분석 & 리포팅

- 컴퓨터 기본 구조의 이해
- 마이크로프로세서의 동작 원리 이해
- 마이크로프로세서 인터페이스 설계
- 하드웨어 제어를 위한 C 프로그래밍
- 인터페이스를 위한 UI 구현
- 마이크로컨트롤러의 활용법 학습 및 실습

• 데이터 시트 읽는법

UM1724 User manual

STM32 Nucleo-64 boards (MB1136)

Introduction

The STM32 Nucleo-64 boards based on the MB1136 reference board (NUCLEO-F030R8, NUCLEO-F070RB, NUCLEO-F070RB, NUCLEO-F070RB, NUCLEO-F030RR, NUCLEO-F303RB, NUCLEO-F303RB, NUCLEO-F303RB, NUCLEO-F303RB, NUCLEO-L678RB, NUCLEO-L678RB, NUCLEO-L678RB, NUCLEO-L605RB, NU

Figure 1. STM32 Nucleo-64 board

Picture is not contractual.

August 2020 UM1724 Rev 14

www.st.com

1. Crystal may be present or not depending on board version, refer to Section 6.7.2.

Figure 19. NUCLEO-F411RE

• 데이터 시트 읽는법

Connector	Pin	Pin name STM32 pin Function						
'			Left connectors					
	1	NC	-	-				
	2	IOREF	-	3.3V Ref				
	3	RESET	NRST	RESET				
CN6 nower	4	+3.3V	-	3.3V input/output				
CN6 power	5	+5V	-	5∨ output				
	6	GND	-	ground				
	7	GND	-	ground				
	8	VIN	-	Power input				
	1	A0	PA0	ADC1_0				
	2	A1	PA1	ADC1_1				
CNIS analog	3	A2	PA4	ADC1_4				
CN8 analog	4	A3	PB0	ADC1_8				
	5	A4	PC1 or PB9 ⁽¹⁾	ADC1_11 (PC1) or I2C1_SDA (PB9)				
	6	A5	PC0 or PB8 ⁽¹⁾	ADC1_10 (PC0) or I2C1_SCL (PB8)				
,			Right connectors					
	10	D15	PB8	I2C1_SCL				
CN5 digital	9	D14	PB9	I2C1_SDA				
Civo digital	8	AREF	-	AVDD				
	7	GND	-	ground				

• 데이터 시트 읽는법

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	MODER15[1:0] MODER14[1:0]		MODER13[1:0] MODER12[1:0]		MODER11[1:0]		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Schedule

주차	내용
1주차	오리엔테이션
2주차	컴퓨터 기본 구조: CPU, Memory, Bus / 툴 설치
3주차	컴퓨터 기본 구조: IO, GPIO / LED 실습
4주차	IO / LED, Switch, FND 실습
5주차	IO / 키패드 실습
6주차	Polling & interrupt / 실습
7주차	Timer / 실습
8주차	중간고사

Schedule

주차	내용
9주차	PWM / 실습
10주차	USART / 실습
11주차	신호의 이해 & UI 구현 / 실습
12주차	ADC / 실습
13주차	프로젝트 구현
14주차	프로젝트 구현
15주차	프로젝트 발표

▮ 필요 역량

- C 프로그래밍
- 논리회로
- 컴퓨터 구조
- 신호와 시스템
- 디지털신호처리

Evaluation

• 과제: 20%

• 출석: 10%

• 중간고사: 30%

• 프로젝트: 40%

Ⅰ 수업 운영

- 실습용 노트북 준비
- 가능한 해당 주차 수업에서 실습까지 모두 다룰 예정

Thank you.

