Specialeforsvar

Johannes Jensen

Aarhus Universitet

23. juni 2022

Vi vil nu til at beskrive site og cirkel begivenheder

Definition (Site begivenhed)

Definition (Site begivenhed)

Når ℓ møder et punkt $p_i \in P$, dvs. når $\ell_y = (p_i)_y$, så siger vi at vi møder en site begivenhed.

Definition (Site begivenhed)

Når ℓ møder et punkt $p_i \in P$, dvs. når $\ell_y = (p_i)_y$, så siger vi at vi møder en site begivenhed.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis. Antag for modstrid at en ny bue optræder på kystlinjen mens $\ell_y \neq (p_i)_y$ for alle i.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis. Antag for modstrid at en ny bue optræder på kystlinjen mens $\ell_y \neq (p_i)_y$ for alle i. Lad β_j være parablen som indeholder den nye bue der optræder på kystlinjen, som tilhører $p_i \in P$.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis. Antag for modstrid at en ny bue optræder på kystlinjen mens $\ell_y \neq (p_i)_y$ for alle i. Lad β_j være parablen som indeholder den nye bue der optræder på kystlinjen, som tilhører $p_j \in P$. Vi ser nu på 2 tilfælde hvorpå β_j kan optræde med en ny bue på kystlinjen.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis. Antag for modstrid at en ny bue optræder på kystlinjen mens $\ell_y \neq (p_i)_y$ for alle i. Lad β_j være parablen som indeholder den nye bue der optræder på kystlinjen, som tilhører $p_j \in P$. Vi ser nu på 2 tilfælde hvorpå β_j kan optræde med en ny bue på kystlinjen.

Det første tilfælde er hvor β_j smadrer igennem i midten af en anden bue, som er en del af en parabel β_i .

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Fra vores teoretiske antagelser har vi at $(p_i)_y \neq (p_j)_y$

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Fra vores teoretiske antagelser har vi at $(p_i)_y \neq (p_j)_y$, hvormed $\beta_i(x) - \beta_j(x)$ er et andengradspolynomium

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Fra vores teoretiske antagelser har vi at $(p_i)_y \neq (p_j)_y$, hvormed $\beta_i(x) - \beta_j(x)$ er et andengradspolynomium med discriminant

$$D = \frac{(p_x - q_x)^2 + (p_y - q_y)^2}{(p_y - \ell_y)(q_y - \ell_y)}$$

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Fra vores teoretiske antagelser har vi at $(p_i)_y \neq (p_j)_y$, hvormed $\beta_i(x) - \beta_j(x)$ er et andengradspolynomium med discriminant

$$D = \frac{(p_x - q_x)^2 + (p_y - q_y)^2}{(p_y - \ell_y)(q_y - \ell_y)} > 0.$$

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Fra vores teoretiske antagelser har vi at $(p_i)_y \neq (p_j)_y$, hvormed $\beta_i(x) - \beta_j(x)$ er et andengradspolynomium med discriminant

$$D = \frac{(p_x - q_x)^2 + (p_y - q_y)^2}{(p_y - \ell_y)(q_y - \ell_y)} > 0.$$

Dvs. at β_i og β_i skærer hinanden i to forskellige punkter

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. For at dette kan ske, så er der et tidspunkt hvorpå at β_i og β_j enten ligger helt oveni hinanden, eller så tangerer de hinanden, hvormed de skærer hinanden i præcis ét punkt. Da $p_i \neq p_j$ så ligger de ikke oveni hinanden, hvormed de må skære hinanden i ét punkt.

Fra vores teoretiske antagelser har vi at $(p_i)_y \neq (p_j)_y$, hvormed $\beta_i(x) - \beta_j(x)$ er et andengradspolynomium med discriminant

$$D = \frac{(p_x - q_x)^2 + (p_y - q_y)^2}{(p_y - \ell_y)(q_y - \ell_y)} > 0.$$

Dvs. at β_i og β_i skærer hinanden i to forskellige punkter, en modstrid.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Det andet tilfælde er hvor β_j optræder i mellem to buer.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Det andet tilfælde er hvor β_j optræder i mellem to buer.

(Bemærk at øverste figur på s. 22 i specialet er forkert, og skal erstattes af ovenstående.)

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Det andet tilfælde er hvor β_j optræder i mellem to buer.

(Bemærk at øverste figur på s. 22 i specialet er forkert, og skal erstattes af ovenstående.) Antag at disse buer tilhører parablerne β_i og β_k .

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k , og antag at buen på kystlinjen fra β_i ligger til venstre for q

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k , og antag at buen på kystlinjen fra β_i ligger til venstre for q, og at buen på kystlinjen fra β_k ligger til højre for q.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k , og antag at buen på kystlinjen fra β_i ligger til venstre for q, og at buen på kystlinjen fra β_k ligger til højre for q.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k , og antag at buen på kystlinjen fra β_i ligger til venstre for q, og at buen på kystlinjen fra β_k ligger til højre for q.

Lad C være $C_P(q)$

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k , og antag at buen på kystlinjen fra β_i ligger til venstre for q, og at buen på kystlinjen fra β_k ligger til højre for q.

Lad C være $C_P(q)$, og bemærk at den har p_i, p_i, p_k på randen

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Lad q være skæringspunktet mellem β_i, β_j og β_k , og antag at buen på kystlinjen fra β_i ligger til venstre for q, og at buen på kystlinjen fra β_k ligger til højre for q.

Lad C være $C_P(q)$, og bemærk at den har p_i, p_j, p_k på randen, og at C tangerer ℓ .

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_i

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C'

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k .

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k . Lad c være centrum for C'.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k . Lad c være centrum for C'. Så er $dist(c, p_j) = dist(c, \ell)$

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k . Lad c være centrum for C'. Så er $\operatorname{dist}(c, p_j) = \operatorname{dist}(c, \ell)$, men $\operatorname{dist}(c, p_k) < \operatorname{dist}(c, p_i)$

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_i , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k . Lad c være centrum for C'. Så er $\operatorname{dist}(c, p_j) = \operatorname{dist}(c, \ell)$, men $\operatorname{dist}(c, p_k) < \operatorname{dist}(c, p_j)$, hvormed β_j ikke kan være på kystlinjen

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k . Lad c være centrum for C'. Så er $\operatorname{dist}(c,p_j)=\operatorname{dist}(c,\ell)$, men $\operatorname{dist}(c,p_k)<\operatorname{dist}(c,p_j)$, hvormed β_j ikke kan være på kystlinjen, en modstrid.

Den eneste måde hvorpå en ny bue kan optræde på kystlinjen er gennem en site begivenhed.

Bevis fortsat. Vi forestiller os nu at vi giver ℓ et meget lille skub nedad, mens vi holder C tangent til ℓ og p_j , vi kalder den nye cirkel for C':

Så vil enten p_i eller p_k være indeholdt i det indre af C', lad os sige det er p_k . Lad c være centrum for C'. Så er $\operatorname{dist}(c,p_j)=\operatorname{dist}(c,\ell)$, men $\operatorname{dist}(c,p_k)<\operatorname{dist}(c,p_j)$, hvormed β_j ikke kan være på kystlinjen, en modstrid. **QED.**