전공별 AI활용(SW)

지하철 유동인구 분석을 통한 최적의 광고 위치 선정

32203928 장현정

START

INDEX

- 1. 주제 소개
 - 배경 및 목표
- 2. 분석 과정
 - 데이터 수집
 - 코드 설명
 - 결과 실행
 - 3. 결론

주제 소개

광고 노출 빈도 1회

90% 이상 자신이 본 광고 기억조차 못함

광고 노출 빈도 2회 이상

2회 시청 시 약 15% 이상의 광고 인지율을, 그 이상 시청 할 경우 약 70%이상 광고에 대한 관심과 인지 생김.

주제 소개

지하철 광고 또한 유동인구가 많을수록 사람들에게 광고 노출 기회가 많아지고 광고의 효율성을 높일 수 있음.

지하철 노선, 역, 시간대 별로 이용객 수를 분석해 가장 효과적인 광고 효과를 얻을 수 있는 시간대와 장소는 어디인지 알아보고자 한다.

☑ 가장 이용객이 많은 노선

	사용일자	노선명	역명	승차총승객수	하차총승객수	등록일자
0	20211101	1호선	동대문	10855	10327	20211104
1	20211101	1호선	신설동	13933	13614	20211104
2	20211101	1호선	제기동	17584	17948	20211104
3	20211101	1호선	청량리(서울시립대입구)	19604	19787	20211104
4	20211101	2호선	시청	23006	22704	20211104
600	20211101	2호선	신림	60916	58969	20211104
601	20211101	2호선	신대방	26338	25427	20211104
602	20211101	6호선	역촌	3832	4456	20211104
603	20211101	1호선	종로3가	24261	22213	20211104
604	20211101	1호선	종로5가	21309	21179	20211104

605 rows x 6 columns

서울시 지하철 호선별 역별 승하차 인원 정보

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
 4 df = pd.read_csv('지하철.csv',encoding = 'euc-kr')
6 from matplotlib import font_manager, rc
 7 font_path = './malgun-1.ttf'
8 | font_name = font_manager.FontProperties(fname = font_path).get_name()
9 rc('font', family=font_name)
11 # 승차인원과 하차인원 대한 총 이용수를 나타내는 열 추가
12 df['총 이용수'] = df['승차총승객수'] + df['하차총승객수']
14 df = df.drop('등록일자', axis = 1) # 불필요한 열 삭제
15 subway = df.groupby('노선명').sum()[['총 이용수']].sort_values(by = '총 이용수', ascending = False)
17 plt.style.use('gaplot')
18 plt.figure(figsize = (14, 5))
20 plt.plot(subway.index, subway.values // 10)
21 plt.title('노선별 이용수')
| 22 | plt.xlabel('노선')
23 plt.ylabel('총 이용수')
24 plt.xticks(rotation = 'vertical')
25 plt.legend(labels=['지하철 노선 이용수'], loc = 'best')
27 plt.show()
```


☑ 2호선 중 가장 이용객이 많은 역

```
1 import pandas as pd
 2 import matplotlib.pyplot as plt
   df = pd.read_csv('지하철.csv',encoding = 'euc-kr')
 6 from matplotlib import font_manager, re
 7 | font_path = './malgun-1.ttf'
 8 | font_name = font_manager.FontProperties(fname = font_path).get_name()
 9 rc('font', family=font_name)
11 # 승차인원과 하차인원 대한 총 이용수를 나타내는 열 추가
12 df['총 이용수'] = df['승차총승객수'] + df['하차총승객수']
14 df = df.drop('등록일자', axis = 1) # 불필요한 열 삭제
15
16 station = (df['사용일자'] == 20211101) & (df['노선명'] == '2호선')
17 df_station = df[station]
18 station_num = df_station.groupby('역명').sum()[['총 이용수']].sort_values(by = '총 이용수')
   plt.style.use('ggplot')
   station_num.plot(kind = 'barh', color = 'cornflowerblue', width = 0.5, figsize = (10, 11))
24 plt.title('2호선 내 지하철 이용수')
25 plt.xlabel('총 이용수')
26 plt.ylabel('역명')
27
28 plt.show()
```


M

강남역 시간대별 지하철 이용수

```
호 지 시-05 시-00
의 한 시승 시하 ^
            시-06 시하
                     시-07 시-07 시-08
            차인 차인 차인 차인 차인 차인 차인 차인
원 원 원 원 원 원 원 원 원 원
```

48377 rows x 52 columns

시간대별 승차, 하차 인원 데이터

```
import pandas as pd
   import matplotlib.pyplot as plt
   from matplotlib import font_manager, rc
   font_name = font_manager.FontProperties(fname = font_path).get_name()
   rc('font', family=font_name)
   # 승차인원 열만 가져오기
 1 for i in range(1,25):
      colup.append(2*i+1)
13 | colup = list(map(int, colup))
|5|# 하차인원 열만 가져오기
|6 | coldown = []
17 for i in range(1,26):
   coldown.append(2*i)
19 | coldown = list(map(int, coldown))
21 # 강남역 11월 승차 인원 평균
   |df_up = pd.read_csv('서울시 지하철 인원 정보.csv',encoding = 'euc-kr',
   df_{up}.columns = ['04\lambda|-05\lambda|','05\lambda|-06\lambda|','06\lambda|-07\lambda|','07\lambda|-08\lambda|','08\lambda|-09\lambda|'
                 ''09A|-10A|'', '10A|-11A|'', '11A|-12A|'', '12A|-13A|'', '13A|-14A|'',
                 194-204, 204-214, 214-224, 224-234, 234-244,
                 '00Al-01Al', '01Al-02Al', '02Al-03Al', '03Al-04Al'
   df_{down.columns} = ['04A|-05A|', '05A|-06A|', '06A|-07A|', '07A|-08A|', '08A|-09A|']
                 '09A|-10A|', '10A|-11A|', '11A|-12A|', '12A|-13A|', '13A|-14A|'
                 *14A[-15A]*, *15A[-16A]*, *16A[-17A]*, *17A[-18A]*, *18A[-19A]*
                 194-204, 204-214, 214-224, 224-234, 234-244,
                 '00Al-01Al', '01Al-02Al', '02Al-03Al', '03Al-04Al',
   df_total = df_up.iloc[0] + df_down.iloc[0] # 강남역 승하차 인원 합계
41 # 강남역 승하차,총 인원의 값만 가진 데이터프레임 생성
   new_df = pd.DataFrame([df_up.iloc[0].values, df_down.iloc[0].values, df_total.values],
                         index=['승차인원', '하차인원', '총인원'], columns = df_up.columns)
```

```
새로운 데이터프레임 ->
```

3 rows x 24 columns

```
41 # 강남역 승하차,총 인원의 값만 가진 데이터프레임 생성
42 new_df = pd.DataFrame([df_up.iloc[0].values, df_down.iloc[0].values, df_total.values],
                      index=['승차인원', '하차인원', '총인원'], columns = df_up.columns)
45 | plt.style.use('ggplot')
47 # 각 시간대별로 승차인원과 하차인원을 비교해 보여주기 위해 승차인원과 하차인원 행만 가져옴.
48 new_df_updown = new_df.loc[['승차인원', '하차인원']]
49 | new_df_updown = new_df_updown.transpose()
50 ax1 = new df updown.plot(kind='bar', figsize=(25.15), width=0.7, color=['orange', 'green'])
52 # 총 인원수를 같은 막대 그래프에 보여주어 비교하기 위해 2축 그래프 생성
53 \mid ax2 = ax1.twinx()
  ax2.plot(new_df.columns, new_df.iloc[2].values, ls='--', marker='o', markersize=10,
         color='red', label = '총 인원 수') # 총 인원수 그래프 그리기
57 plt.title('강남역 시간대별 지하철 이용 인원수', fontsize=25)
59 ax1.set_xlabel('시간', size = 20)
  ax1.set_ylabel('(含하차)인원수', size = 20)
  ax2.set_ylabel('총 인원수', size = 20)
  ax1.legend(loc='best', fontsize=20)
63 plt.yticks(size=20)
64 plt.legend(loc='upper left', fontsize=20)
66 | plt.show()
```

☑ 강남역 시간대별 지하철 이용수

결론

2021년 11월 평균 기준)

다른 광고 매체에 비해 지하철은 유동인구가 많고 적은 비용으로 최대 효과를 낼 수 있어 최적의 광고 장소 중 하나로 손꼽힌다. 특히 스크린 도어는 넓은 지면을 활용해 다량의 정보를 전달하면서 지하철 내 광고 중에서도 승객의 움직임 이 적어 최소 3분간은 강제 노출이 가능해 광고 효과가 높다.

앞서 분석 결과에서도 보았듯이 2호선 강남역 18-19시에 가장 많은 인원이 지하철을 이용하여 강남역에 있는 지하철 광고가 가장 많은 사람들에게 노출됨을 알 수 있다. 유동 인구가 많아 광고 노출도가 높지만, 그만큼 광고 비용이 다른 노선, 역에 비해 높다. 하지만 광고 비용에 비해 광고로 얻어 들일 수 있는 수익, 마케팅 효과가 다른 노선, 역에서 노 출된 광고로 얻는 것보다 더 크기 때문에 기업들은 유동인구가 많은 자리를 선점하기 위해 경쟁이 치열하다.

구 감사합니다.