INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

ÁLGEBRA ABSTRATA

- Noção familiar: Álgebra Elementar.
 - Exemplo: adição e multiplicação sobre os inteiros.
 - Essência: "operação binária" sobre "um conjunto de elementos".
- Abstração: recurso poderoso.
 - Consiste em isolar a essência do problema.
 - Conexão entre problemas aparentemente não relacionados.
 - Problemas complexos viram simples casos particulares de esquema mais geral.
 - Uma vez identificada a "classe" de um problema, pode-se aproveitar resultados prontos.
- Ponto de vista de modelagem em Ciência da Computação:
 - interessa justamente mais o "esquema geral" do que os detalhes
 - abstração permite focar apenas no que interessa

- Precisamos de uma definição precisa desta idéia familiar.
- Operação Binária sobre um conjunto A:
 - função $f: A \times A \rightarrow A$
 - ullet definida para todo par ordenado de elementos de A
 - apenas um elemento de A é atribuído a cada par de $A \times A$
- Ou seja: regra que atribui um único elemento de A a cada par ordenado de elementos de A.

- Notação:
 - como se trata de uma função, o normal seria denotar o elemento atribuído a (a,b) por *(a,b)
 - \blacksquare mas o usual é a*b
- Importante: lembrar que $a * b \in A$
 - também se diz que A é **fechado** sob a operação *

- **Exemplo 1(/6):** Seja $A = \mathbb{Z}$.
 - ullet Defina a*b como a+b.
 - ullet Então st é uma operação binária sobre $\mathbb Z$

- **Exemplo 2(/6):** Seja $A = \mathbb{R}$.
 - Defina a*b como a/b.
 - Então * não é uma operação binária
 - ullet pois não é definida para todo par ordenado de $A \times A$
 - por exemplo, 3 * 0 não é definida □

- **Exemplo 3(/6):** Seja $A = \mathbb{Z}^+$.
 - ullet Defina a*b como a-b.
 - Então * não é uma operação binária:
 - não atribui um elemento de A para todo par de $A \times A$
 - ullet por exemplo, $2*5 \notin A$

- **Exemplo 4(/6)**: Seja $A = \mathbb{Z}$.
 - Defina a*b como um número menor do que a e do que b.
 - Então * não é uma operação binária:
 - não atribui um elemento único de A para todo par de $A \times A$
 - por exemplo, 8 * 6 poderia ser 5, 4, 3, 2, 1, etc.
 - Neste caso, * seria uma relação de $A \times A$ para A
 - mas não uma função

- **Exemplo 5(/6):** Seja $A = \mathbb{Z}$.
 - Defina a*b como $\max\{a,b\}$.
 - Então * é uma operação binária:
 - 2*4=4
 - -3*(-5) = -3

- **Exemplo 6(/6):** Seja A = P(S), para algum conjunto S.
 - ullet Sejam V e W dois subconjuntos de S.
 - V*W definida como $V\cup W$ é uma operação binária sobre A.
 - Mas: V*W definida como $V \cap W$ também.

- Note que é possível definir muitas operações binárias sobre o mesmo conjunto.
- **Exemplo:** Seja M o conjunto de todas as matrizes Booleanas.
 - São operações binárias:
 - A * B definido como A ∨ B
 - A * B definido como A ∧ B
- **Exemplo:** Seja *L* um reticulado.
 - São operações binárias sobre L:
 - a*b definido como $a \wedge b$ ("GLB" de $a \in b$)
 - \bullet a*b definido como $a \lor b$ ("LUB" de a e b)

OPERAÇÕES BINÁRIAS & TABELAS

Pode-se definir uma operação binária sobre um conjunto $A = \{a_1, a_2, \dots, a_n\}$ por meio de uma tabela:

*	a_1	a_2	 a_{j}	• • •	a_n
a_1					
a_2					
a_i			$a_i * a_j$		
a_n					

Proposition Elemento na posição i, j denota $a_i * a_j$

OPERAÇÕES BINÁRIAS & TABELAS

Exemplo: Operações \vee e \wedge sobre $A = \{0, 1\}$:

V	0	1	\wedge	0	1
0	0	1	0	0	0
1	1	1	1	0	1

Número de Operações Binárias

- Seja $A = \{a, b\}.$
- lacktriangle O número de operações binárias que podem ser definidas sobre A é:
 - toda operação binária sobre A pode ser descrita pela tabela:

- como cada espaço vazio pode ser preenchido com a ou b:
 - há $2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$ modos de completar a tabela
- Logo, existem 16 operações binárias possíveis sobre A. \square

Prop1: Uma operação binária é comutativa se:

$$a * b = b * a \qquad \forall a, b \in A$$

- **Exemplo:** a+b sobre $A=\mathbb{Z}$ é comutativa.
- **Exemplo:** a-b sobre $A=\mathbb{Z}$ não é comutativa, pois:

$$2 - 3 \neq 3 - 2$$

Uma operação binária definida por uma tabela é simétrica se e somente se a tabela é simétrica.

Exemplo: Sejam as operações binárias sobre *A*:

	а				*	а	b	С	d
	а				а	а	С	b	d
b	b	С	b	a			d		
С	С	d	b	С	С	b	b	а	C
d	а	а	b	b			а		

Prop2: Uma operação binária é associativa se:

$$a * (b * c) = (a * b) * c \qquad \forall a, b, c \in A$$

- **Exemplo:** a+b sobre $A=\mathbb{Z}$ é associativa.
- **Exemplo:** a-b sobre $A=\mathbb{Z}$ não é associativa, pois:

$$2 - (3-5) \neq (2-3) - 5$$

- **Exemplo:** Seja L um reticulado. A operação binária definida por $a*b=a \wedge b$ é comutativa e associativa.
 - Também é **idempotente**: $a \wedge a = a$.
 - "Seja (A, \leq) um reticulado e seja uma operação binária definida por $a*b=a \wedge b$. Então a*b é comutativa, associativa e idempotente sobre A."
- Uma parte do converso deste exemplo também é verdadeira. (⇒)

Exemplo:

- Seja uma operação binária * sobre A que satisfaz:
 - $\bullet \quad a = a * a$

(idempotência)

 $\bullet \quad a * b = b * a$

(comutatividade)

(associatividade)

- E seja uma relação \leq sobre A definida por:
 - $a \le b$ se e somente se a = a * b
- Então, pode-se mostrar que:
 - 1) (A, \leq) é um poset
 - 2) GLB(a,b) = a * b, $\forall a,b \in A$

Exemplo (cont.):

- 1) Mostrando que (A, \leq) é um poset:
 - ullet reflexiva: como a=a*a, temos que

$$\cdot \ a \le a, \ \forall a \in A$$

ullet antissimétrica: se $a \leq b$ e $b \leq a$, então:

$$a = a * b = b * a = b$$

• transitiva: se $a \le b$ e $b \le c$, então:

$$a = a * b = a * (b * c) = (a * b) * c = a * c$$

Exemplo (cont.):

- 2) Mostrando que $a * b = a \wedge b$:
 - temos que: a * b = a * (b * b) = (a * b) * b
 - · de modo que: $a * b \le b$
 - · similarmente: $a * b \le a$
 - · conclusão: a*b é uma cota inferior para a e b
 - ullet agora, se $c \leq a$ e $c \leq b$:
 - $\cdot \ c = c * a \ e \ c = c * b$
 - portanto: c = (c * a) * b = c * (a * b)
 - · de modo que: $c \le a * b$
 - · conclusão: a * b é a maior cota superior de a e b.