Homework 8

Math 123

Due April 7, 2023 by midnight

Name: George Chemmala

Topics covered: planar graphs, Kuratowski's theorem

Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this somewhere on the assignment.
- If you are stuck, please ask for help (from me, a TA, a classmate). Use Campuswire!
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.
- Please restrict your solution to each problem to a single page. Usually solutions can be even shorter than that. If your solution is very long, you should think more about how to express it concisely.

Problem 1. Prove that the Petersen graph is not planar using Euler's formula (do not use Kuratowski's theorem). ¹

Solution. Let P represent the Petersen graph

By contradiction:

Assume there exists an embedding P in \mathbb{R}^2 then by Euler's Formula

$$|F| = 2 - |V| + |E|$$
$$|F| = 2 - 10 + 15$$
$$|F| = 2 - 5 + 10$$
$$|F| = 7$$

But each edge has at most 2 faces and each face has ≥ 5 sides (the minimum cycle size in P is 5) therefore $2|E| \geq 3|F|$. However, $2 \cdot 15 = 30 \geq 35 = 5 \cdot 7$ is a contradiction; therefore P is not planer.

¹Hint: you will need to use a problem from HW1.

Problem 2. Let G be a connected graph embedded in the plane. Prove that G is bipartite if and only if every region of $\mathbb{R}^2 \setminus G$ has an even number of sides. $^{2-3}$

Solution. A bipartite graph contains no closed cycle of odd length, so it contains no faces with odd sides.

Reverse direction: Suppose every face has an even number of sides.

By induction:

Base Case: (|F| = 1)

If G has only one face then it is a tree, and so bipartite

Inductive Step: Fix edge e on a cycle in G, this edge borders faces F_1, F_2 . By removing e, we remove one side from F_1, F_2 and combine them to have a bigger face F_3 that has the sum of sides of F_1 and F_2 minus 2, so it has even sides.

By inductive hypothesis, we know that $G \setminus e$ is bipartite. Since the vertices e is connected to have an odd walk between them, adding e maintains that G is bipartite.

²Note: the boundary of a region does <u>not</u> necessarily correspond to a cycle in the graph. Make sure you understand why!

³Hint: for one direction, use induction on the number of regions of $\mathbb{R}^2 \setminus G$.

Problem 3. Prove that the complement of a planar graph with at least 11 vertices is nonplanar.⁴ Give an example of a planar graph with 8 vertices whose complement is also planar.⁵

Solution. Let T(n) represent the *n*th triangle number.

$$|F| = 2 - |V| + |E|$$

 $|F| = 2 - 11 + |E|$

Since 2|E| = 3|F|:

$$\begin{aligned} 2|E| &\geq 6 - 3(11) + 3|E| \\ 2|E| &\geq 6 - 33 + 3|E| \\ 2|E| &\geq -27 + 3|E| \\ -|E| &\geq -27 \\ |E| &\leq 27 \end{aligned}$$

G being planar implies that $|E| \le 27$. Therefore, \overline{G} has greater than T(11-1) = 55 - 27 = 28 edges $(K_{11} \text{ has } T(11-1) = 55 \text{ edges})$, which is more than 27, which means it's not planar.

This graph was creating using the algorithm from the bonus problem in HW1

⁴Hint: your solution should be very short.

⁵Hint: in fact you can find one that is self-complementary. This should simplify your search.

Problem 4. Let G_n be the graph with vertices v_1, \ldots, v_n and an edge between v_i and v_j whenever $|i-j| \leq 3$. Prove that G_n is a maximal planar graph.

Solution. From class we know that G is maximal planar $\iff G$ is planer and |E|=3|V|-6. We can see that G is planer by constuction:

We can place the v_{n+1} vertex in the region bounded by v_n, v_{n-1}, v_{n-2} . As repersented in the picture above.

Since the vertices are connected to the 3 vertices to the left $(v_{i-3}, v_{i-2}, v_{i-1})$ and right $(v_{i+1}, v_{i+2}, v_{i+3})$. All vertices, except for the first 3 and last 3, have degree 6. However, $v_{i-3}, v_{i-2}, v_{i-1}$ do not exist for $i=1, v_{i-3}, v_{i-2}$ do not exist for $i=2, v_{i-3}$ does not exist for i=3, and analogously for i=n, n-1, n-2; therefore, these 6 vertices have in total 12 (2(1+2+3)) less connections than if the aforementioned vertices existed. Therefore, the sum of the degrees of the vertices is 6n-12 and by the degree formula $2|E| = \sum_{v \in V} \deg(v)$, there must be |E| = 3n-6, and so G is maximal planar.

Submit a final project proposal. See other document for instructions. This should be submitted separately from the HW assignment: one submission per group.