

Northern Illinois University

Graphs

Dr. Maoyuan Sun - smaoyuan@niu.edu

Definitions (1)

- graph a graph G = (V, E) consists of a set of vertices V and a set of edges E
- vertices a vertex (plural vertices) or node is the fundamental unit of which graphs are formed*
- edges (arcs) each edge is a pair (v, w) where $v, w \in V$

Graph G with 6 vertices (1, 2, 3, 4, 5, 6) and 7 edges ((1, 2), (1,5), (2, 3), (2,5), (3, 4), (4, 5), (4, 6))

Definitions (2)

 directed (digraphs) – if the pair is ordered then the graph is directed

1 2

Vertices: 1, 2 Edge: $(1, 2) \equiv (2, 1)$

Vertices: 1, 2 Edge: $(1, 2) \neq (2, 1)$

- adjacent vertices v and w are adjacent if they are they are endpoints of the same edge, that is vertex w is adjacent to v if and only if $(v, w) \in E$
 - 1 2

1

Vertices: 1, 2 are adjacent

Vertices: 1, 2 are **not** adjacent

Definitions (3)

 weight (cost) – optional third component to an edge, numerical value assigned as a label to the edge

Vertices: 1, 2 Edge: (1, 2) no weight

Vertices: 1, 2 Edge: (1, 2) weight of 5

• path – in a graph is a sequence of vertices $w_1, w_2, w_3, ..., w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i \le N$

Vertices: w_1 , w_2 , w_3 , w_4 Edges: (w_1, w_2) , (w_2, w_3) with a path from w_1 to w_3 , where N=3

Definitions (4)

• length – is the number of edges on a path, it is equal to N-1

Vertices: w_1 , w_2 , w_3 , w_4 Edges: (w_1, w_2) , (w_2, w_3) with a path from w_1 to w_3 , where N=3 and the length is 2 If a path contains no edges, then its path length is 0

- **loop** if there is an edge (v, v) from a vertex to itself then this path is known as a *loop*, we will consider graphs in general will be loopless
- **simple path** is a *path* that all vertices are distinct, except the first and last could be the same

CSCI 340 – Data Structures

Definitions (5)

- **cycle** in a directed graph is a path with a length of at least 1, such that $w_1 = w_N$, the *cycle* is simple if the path is simple; in an undirected graph the edges must be distinct
- acyclic (DAG) is a directed graph with no cycles
- **connected** in an undirected graph, the graph is connected if there is a path from every vertex to every other vertex
- strongly connected a connected directed graph is known as a strongly connected graph
- weakly connected a graph is weakly connected if the directed graph is connected when direction of the edges is ignored
- complete is a graph where there is an edge between every pair of vertices
- Indegree the number of incoming edges in directed graph
- Outdegree the number of outgoing edges in directed graph

CSCI 340 – Data Structures

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological

order

1	0
2	1
3	2
4	3
5	1
6	3
7	2

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

1	0	X
2	1	0
3	2	1
4	3	2
5	1	1
6	3	3
7	2	2

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

1	0	X	
2	1	0	X
3	2	1	1
4	3	2	1
5	1	1	0
6	3	3	3
7	2	2	2

Topological Order: 1, 2

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

1	0	X		
2	1	0	X	
3	2	1	1	1
4	3	2	1	0
5	1	1	0	X
6	3	3	3	3
7	2	2	2	1

Topological Order: 1, 2, 5

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

Topological Order: 1, 2, 5, 4

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

Topological Order: 1, 2, 5, 4, {3, 7}

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological

order

1	0	X					
2	1	0	X				
3	2	1	1	1	0	X	
4	3	2	1	0	X		
5	1	1	0	X			
6	3	3	3	3	2	0	X
7	2	2	2	1	0	X	

Topological Order: 1, 2, 5, 4, {3, 7}, 6

Shortest Path Algorithms

- The input is a weighted graph
- Associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge
- The cost of a path $v_1, v_2, v_3, \dots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$, this is called the **weighted path length**, the **unweighted path length** is the number of edges on the path, N-1

Single-Source Shortest Path Problem

• Given a weighted graph, G = (V, E) and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G

• What is shortest weighted path from v_1 to v_6 ? v_1 to v_4 to v_7 to v_6 with a cost of 6

Single-Source Shortest Path Problem

Updating the weights and arrows

• The path v_5 to v_4 cost 1, but a cheaper path exists by following the loop v_5 to v_4 to v_2 to v_5 to v_4 which costs -5, it could get even cheaper by staying in the loop forever.

Single-Source Shortest Path Problem

Where are other loops?

- The path v_3 to v_4 where we can go v_3 to v_1 to v_4 with cost of 5 or v_3 to v_1 to v_2 to v_5 to v_4 for cost of -3. Similar for v_1 to v_6
- These are negative-cost cycles, and the shortest path is undefined

*NOTE: Negative edges are not bad, they just make shortest path problem harder!

Shortest Path Problem

• Examples:

- Airline travel from city to city
- Transfer file from one computer to other

•

• Given an unweighted graph G, given some vertex s as an input, find the shortest path from s to all other vertices. Given its an unweighted graph we are only interested in the number of edges in the path

Think of this as a special case of the weighted problem where all the weights are 1

- Only think about the length not the path itself
- If s is v_3 , then short path is from v_3 to itself and its length is 0

• Now look for all the vertices that are distance 1 away from s, that is vertices that are adjacent to $s(v_3)$ – What vertices are adjacent to v_3 ?

• What vertices are adjacent to v_3 ? v_1 and v_6 and we can add 1

Continue until all vertices have been reached.

 This should look familiar it is a breadth-first search. It operates by processing all the vertices in layers

• The vertices closest to the start are evaluated first, then the next layer and so on until the most distance vertices are

evaluated last

How would you translate this into code?

• Construct a table, where d_v is the distance from s (initially unknown and set to ∞ , except s itself set to 0)

Q: v ₃	V	known	d_{v}	p_v
V_3	V_1	F	∞	0
	V_2	F	∞	0
	V ₃	F	0	0
	V_4	F	∞	0
	V ₅	F	∞	0
	V ₆	F	∞	0
	V ₇	F	∞	0

known is initially set to F, after being visited it will be set to T, $\mathbf{d_v}$ is distance and $\mathbf{p_v}$ is a bookkeeping variable

• Construct a table, where d_v is the distance from s (initially unknown and set to ∞ , except s itself set to 0)

 v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 dequeued

Initial State	In	itia	l State
----------------------	----	------	---------

Q:	V	known	d_{v}	p_{v}
V_3	V_1	F	∞	0
	V_2	F	∞	0
	V ₃	F	0	0
	V_4	F	∞	0
	V ₅	F	∞	0
	V_6	F	∞	0
	V ₇	F	∞	0

Q:	V	known	d_v	p_{v}
V ₁	V ₁	F	1	V ₃
V ₆	V_2	F	∞	0
	V_3	Т	0	0
	V_4	F	∞	0
	V ₅	F	∞	0
	V ₆	F	1	V_3
	V ₇	F	∞	0

known is initially set to F, after being visited it will be set to T, d_v is distance and p_v is a bookkeeping variable

• Construct a table, where d_v is the distance from s (initially unknown and set to ∞ , except s itself set to 0)

 v_1 v_2 v_3 v_4 v_5 v_6 dequeued

\/	dac	queu	hai
v 1	uct	Jucc	ICU

Q:	V	known	d_{v}	p_{v}
V ₆	V_1	Т	1	V_3
V_2 V_4	V_2	F	2	V ₁
7	V ₃	Т	0	0
	V_4	F	2	V_1
	V ₅	F	∞	0
	V ₆	F	1	V_3
	V ₇	F	∞	0

				•
Q:	V	known	d_v	p_{v}
V ₂	V_1	Т	1	V ₃
V ₄	V_2	F	2	V ₁
	V_3	Т	0	0
	V_4	F	2	V ₁
	V ₅	F	∞	0
	V_6	Т	1	V_3
	V ₇	F	∞	0

known is initially set to F, after being visited it will be set to T, d_v is distance and p_v is a bookkeeping variable

• Construct a table, where d_v is the distance from s (initially unknown and set to ∞ , except s itself set to 0)

v₂ dequeued

 ∞

Q:	V	known	d_v	p_v
V ₄ V ₅	V ₁	Т	1	V ₃
	V_2	Т	2	V_1
	V_3	Т	0	0
	V_4	F	2	V_1
	V ₅	F	3	V_2
	V_6	Т	1	V_3

Q:	V	known	d_v	p_{v}
V ₅	V_1	Т	1	V ₃
V ₇	V_2	Т	2	V_1
	V_3	Т	0	0
	V_4	Т	2	V ₁
	V ₅	F	3	V_2
	V_6	Т	1	V ₃
	V ₇	F	3	V_4

known is initially set to F, after being visited it will be set to T, d_v is distance and p_v is a bookkeeping variable

 V_7

v₅ dequeued

• Construct a table, where d_v is the distance from s (initially unknown and set to ∞ , except s itself set to 0)

Q:	V	known	d_v	p_{v}
V ₇	V ₁	Т	1	V ₃
	V_2	Т	2	V_1
	V_3	Т	0	0
	V_4	Т	2	V_1
	V ₅	Т	3	V_2
	V_6	Т	1	V_3
	V	F	2	V

V	known	d_v	p_{v}
V ₁	Т	1	V ₃
V_2	T	2	V ₁
V_3	Т	0	0
V_4	Т	2	V ₁
V ₅	Т	3	V_2
V_6	Т	1	V_3
V ₇	Т	3	V_4

known is initially set to F, after being visited it will be set to T, d_v is distance and p_v is a bookkeeping variable

Q:

• Construct a table, where d_v is the distance from s (initially unknown and set to ∞ , except s itself set to 0) **Breadth-First Search**

V	known	d_v	p_{v}
V ₁	Т	1	V_3
V_2	Т	2	V_1
V_3	Т	0	0
V_4	Т	2	V_1
V ₅	Т	3	V_2
V ₆	Т	1	V_3
V ₇	Т	3	V_4

known is initially set to F, after being visited it will be set to T, $\mathbf{d_v}$ is distance and $\mathbf{p_v}$ is a bookkeeping variable

```
void
unweighted(Vertex s)
  for each Vertex v
     v.dist = INFINITY;
     v.known = false;
  s.dist = 0;
  for(int currDist = 0;
       currDist < NUM_VERTICES;</pre>
       currDist++)
     for each Vertex v
       if(!v.known && v.dist == currDist)
```

```
v.known = true
          for each Vertex w adjacent to v
            if(w.dist == INFINITY)
               w.dist = curr Dist + 1
               w.path = v;
            }// End of IF
          }// End of FOR
       }// End of IF
    }// End of FOR
  }// End of FOR
}// End of unweighted()
```

```
void
                                                                      v.known = true
unweighted(Vertex s)
                                                                    for each Vertex w adjacent to v
  ior each vertex v
                                                                      if(w.dist == INFINITY)
    v.dist = INFINITY;
                                                                         w.dist = currDist + 1
                                   Initialize table
    v.known = false;
                                                                         w.path = v;
                                                                      }// End of IF
  s.dist = 0:
                                                                    }// End of FOR
  for(int currDist = 0;
                                                                 }// End of IF
       currDist < NUM VERTICES;
                                                               }// End of FOR
       currDist++)
                                                            }// End of FOR
                                                          }// End of unweighted()
    for each Vertex v
       if(!v.known && v.dist == currDist)
                                                                                 O(V<sup>2</sup>) algorithm
```

- Using what we know from unweighted, we can now tackle weighted shorted path p_v is the last vertex to cause a change to d_v, this solution is known as *Dijkstra's Algorithm* and it's an example of a Greedy Algorithm
- Greedy algorithms solve a problem in stages doing what appears to be the best thing at each stage
- Greedy Example: making change at checkout counter first the checkout person gives quarters, then dimes, then nickels and then pennies
 - \$0.79, 3 quarters and 4 pennies
 - \$0.87, 3 quarters, 1 dime and two pennies
 - Minimizing the number of coins given ...

- We choose a v that has the smallest d_v from all unknown vertices and is adjacent to s
- This path is declared the shortest path from s to v and marked known
- The remaining step is updating d_w (we didn't track d_w before, as we just were thinking $d_w = dv + 1$ if $d_w = \infty$) and $d_w = dv + c_{v,w}$ if this new value for d_w would be an improvement
- The algorithm decides if it's a good idea or not to use v on path to w given known cost and new cost

V	known	d_{v}	p_{v}
V_1	F	0	0
V_2	F	∞	0
V_3	F	∞	0
V_4	F	∞	0
V ₅	F	∞	0
V ₆	F	∞	0
V ₇	F	∞	0

Pick s to be v_1 , the path to v_1 is 0

V	known	d_{v}	p_v
V ₁	Т	0	0
V_2	F	2	V_1
V_3	F	∞	0
V_4	F	1	V_1
V ₅	F	∞	0
V ₆	F	∞	0
V ₇	F	∞	0

From v_1 we have path to v_2 and v_4 , we choose v_4 (why?)

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	F	2	V_1
V_3	F	3(1+2)	V_4
V_4	Т	1	V_1
V ₅	F	3(1+2)	V_4
V ₆	F	9 (1 + 8)	V_4
V ₇	F	5 (1 + 4)	V_4

From v_4 we have path to v_3 , v_5 , v_6 , v_7 , we choose v_2 (new cheapest)

V	known	d_v	p_{v}
V_1	Т	0	0
V_2	T	2	V_1
V_3	F	3(1+2)	V_4
V_4	Т	1	V_1
V ₅	F	3(1+2)	V_4
V ₆	F	9 (1 + 8)	V_4
V ₇	F	5 (1 + 4)	V_4

From v_2 we have path to v_4 , v_5 we look at v_5 (since v_4 is already known) none of the paths are better, v_1 to v_2 to v_5 costs 2 + 10 = 12 > 3

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	F	3(1+2)	V_4
V_4	Т	1	V_1
V ₅	Т	3(1+2)	V_4
V_6	F	9 (1 + 8)	V_4
V ₇	F	5 (1 + 4)	V_4

From v_5 we have path to v_7 none of the paths are better v_1 to v_4 to v_5 , 1 + 2 + 6 = 9 > 5 back to selecting the smallest unvisited node which is v_3

V	known	d_v	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	3 (1 + 2)	V_4
V_4	Т	1	V ₁
V_5	Т	3 (1 + 2)	V_4
V_6	F	8(1+2+5)	V_3
V ₇	F	5 (1 + 4)	V_4

From v_3 we have path to v_1 , v_6 with v_1 cost is 1 + 2 + 4 = 7 > 0 but v_6 is 1 + 2 + 5 = 8 < 9, so we update, v_7 is now selected as the smallest

V	known	d_v	p_{v}
V_1	Т	0	0
V_2	T	2	V_1
V_3	Т	3 (1 + 2)	V_4
V_4	Т	1	V_1
V_5	Т	3 (1 + 2)	V_4
V_6	F	6(1+4+1)	V ₇
V ₇	Т	5 (1 + 4)	V_4

From v_7 we have path to v_6 with cost is 1 + 4+ 1 = 6 < 8, so we update and v_6 is the last one for us to visit

V	known	d_v	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	3 (1 + 2)	V_4
V_4	T	1	V_1
V ₅	Т	3 (1 + 2)	V_4
V_6	Т	6(1+4+1)	V ₇
V ₇	Т	5 (1 + 4)	V_4

v₆ no where to visit

V	known	d_v	p_{v}
V ₁	Т	0	0
V_2	Т	2	V ₁
V_3	Т	3	V_4
V_4	Т	1	V ₁
V ₅	Т	3	V_4
V ₆	Т	6	V ₇
V ₇	Т	5	V ₄

What is the shortest path from:

$$\begin{array}{c} \text{V}_1 \text{ to V}_1 \to \text{V}_1 \\ \text{V}_1 \text{ to V}_2 \to \text{V}_1 - \text{V}_2 \\ \text{V}_1 \text{ to V}_3 \to \text{V}_1 - \text{V}_4 - \text{V}_3 \\ \text{V}_1 \text{ to V}_3 \to \text{V}_1 - \text{V}_4 - \text{V}_3 \\ \text{V}_1 \text{ to V}_4 \to \text{V}_1 - \text{V}_4 \\ \text{CSCI 340 - Data Structures} \end{array} \quad \begin{array}{c} \text{V}_1 \text{ to V}_5 \to \text{V}_1 - \text{V}_4 - \text{V}_5 \\ \text{V}_1 \text{ to V}_6 \to \text{V}_1 - \text{V}_4 - \text{V}_7 - \text{V}_6 \\ \text{V}_1 \text{ to V}_7 \to \text{V}_1 - \text{V}_4 - \text{V}_7 \\ \text{CSCI 340 - Data Structures} \end{array}$$

V	known	d_v	p_{v}
V _A	F	0	0
V_{B}	F	∞	0
V_{C}	F	∞	0
V_{D}	F	∞	0
VE	F	∞	0

V_A is our starting point (s)

V	known	d_{v}	p_v
V _A	Т	0	V _A
V_{B}	F	3	V_A
V_{C}	F	4	V _A
V_{D}	F	8	V _A
VE	F	∞	0

 V_A is our starting point (s), move to V_B

V	known	d_{v}	p_{v}
V _A	Т	0	V _A
V_{B}	Т	3	V _A
V _C	F	4	V _A
V_{D}	F	8	V_A
VE	F	15	V_{B}

 V_A is our starting point (s), move to V_B then on to V_C

V	known	d_{v}	p_v
V _A	Т	0	V _A
V_{B}	Т	3	V_A
v_{C}	Т	4	V _A
V_{D}	F	6	V_{C}
V _E	F	14	v_{C}

 V_A is our starting point (s), move to V_B then on to V_C Update V_D since it is a shorter path 6 < 8 Update V_E since it is a shorter path 4 + 10 = 14 < 15, we now move to V_D

V	known	d_v	p_{v}
V _A	Т	0	V _A
V_{B}	Т	3	V _A
V _C	Т	4	V _A
V_{D}	Т	6	V_{C}
VE	F	11	V_{D}

 v_{A} v_{A} v_{B} v_{C} v_{C} v_{D} v_{E} v_{E}

 V_A is our starting point (s), move to V_B then on to V_C Update V_D since it is a shorter path 6 < 8, we now move to V_D Update path to V_E given 4 + 2 + 5 = 11 < 14, we move on to V_E

V	known	d_v	p_v
V _A	Т	0	V _A
V_{B}	Т	3	V_A
V_{C}	Т	4	V _A
V_{D}	Т	6	v_{C}
VE	Т	11	V_D

 V_A is our starting point (s), move to V_B then on to V_C Update V_D since it is a shorter path 6 < 8, we now move to V_D Update path to V_E given 4 + 2 + 5 = 11 < 12, we move on to V_E V_E can't get anywhere so we are done!

V	known	d_v	p_{v}
V _A	Т	0	V _A
V_{B}	Т	3	V _A
V_{C}	Т	4	V _A
V_{D}	Т	6	V_{C}
VE	Т	11	V_{D}

 V_A is our starting point (s), move to V_B then on to V_C Update V_D since it is a shorter path 6 < 8, we now move to V_D Update path to V_F given 4 + 2 + 5 = 11 < 12, we move on to V_E What is the shortest path from: V_F can't get anywhere so we are done!

$$V_A$$
 to $V_A \rightarrow V_A$
 V_A to $V_B \rightarrow V_A - V_B$
 V_A to $V_C \rightarrow V_A - V_C$
 V_A to $V_D \rightarrow V_A - V_C - V_D$
 V_A to $V_F \rightarrow V_A - V_C - V_D - V_F$

Acknowledgement

These slides have been adapted and borrowed from books on the right as well as the CS340 notes of NIU CS department (Professors: Alhoori, Hou, Lehuta, and Winans) and many google searches.

CSCI 340 – Data Structures 77