

George Boole

- nasceu em Lincoln Inglaterra em 2 de Novembro de 1815, filho de um sapateiro pobre.
- formação base na escola primária da National Society foi muito rudimentar.
- autodidata, fundou aos 20 anos de idade a sua própria escola e dedicou-se ao estudo da Matemática.

- ¥+-\$-→ #+ ® + ©
- Em 1840 publicou o seu primeiro trabalho original e em 1844 foi condecorado com a medalha de ouro da Royal Society pelo seu trabalho sobre cálculo de operadores.
- Em 1847 publica um volume sob o título The Mathematical Analysis of Logic em que introduz os conceitos de lógica simbólica demonstrando que a lógica podia ser representada por equações algébricas.

 Este trabalho é fundamental para a construção e programação dos computadores eletrônicos iniciada cerca de 100 anos mais tarde.

Aplicação

. Atualmente todos os computadores usam a Álgebra de Boole materializada em microchips que contêm milhares de interruptores miniaturizados combinados em portas (gates) lógicos que produzem os resultados das operações utilizando uma linguagem binária.

Sinais binários

- . A lógica digital esconde a realidade analógica ao mapear uma gama infinita de valores reais em apenas 2 valores: 0 e 1.
- . A um valor lógico, 0 ou 1, é comum chamar-se um dígito binário (bit).
- . Com n bits, pode representar-se 2n entidades distintas.
- . quando um projetista lida com circuitos electrônicos, é comum usar os termos "BAIXO" e "ALTO", em vez de "0" e "1".

- . Considerar que 0 é BAIXO e 1 é ALTO, corresponde a usar lógica positiva.
- . Considerar que O é ALTO e 1 é BAIXO é designada de lógica negativa.

Sistemas Combinacionais X Sequenciais

- . Um sistema lógico combinacional é aquele em que as saídas dependem apenas do valor atual das entradas.
- . pode ser descrito por uma tabela de verdade.

- . Além do valor atual das entradas, as saídas de um circuito lógico sequencial dependem também da sequência de valores por que passaram as entradas ⇒ memória.
- . Um sistema sequencial pode ser descrito através duma tabela de estados.
- . Um sistema combinacional pode conter qualquer número de portas lógicas mas não ciclos de realimentação (feedback loops).

- ★→甘→ #→ ®→ ◎
- . Um ciclo de realimentação é um caminho do circuito, que permite a um sinal de saída de uma porta ser propagado de volta, para a entrada dessa porta.
- . Regra geral, os ciclos de realimentação introduzem um comportamento sequencial nos circuitos.

Portas lógicas Com 3 tipos de porta elementares (AND, OR, NOT)

. consegue construir-se qualquer sistema digital combinacional, formam um conjunto completo.

Os símbolos e as tabelas de verdade do AND e do OR podem ser generalizados para portas com qualquer número de entradas. A <u>bolha</u> na saída do inversor representa um comportamento "invertido". Combinando numa única porta, um NOT com uma função AND ou OR, obtêm-se 2 novas funções lógicas: NAND e NOR.

FUNCIONALIDADE - Álgebra Booleana

- . Para descrever os circuitos que podem ser construídos pela combinação de portas lógicas, um novo tipo de álgebra é necessário, uma em que as variáveis e funções podem ter apenas valores 0 e 1.
- . Álgebra booleana possui uma ou mais variáveis de entrada e fornece somente um resultado que depende apenas dos valores destas variáveis.

- uma função de n variáveis possui apenas 2n conjuntos possíveis de valores de entrada,
- . a função pode ser descrita completamente através de uma tabela de 2n linhas,
- . cada linha mostrando o valor da função para uma combinação diferente dos valores de entrada.
- . Tabela é denominada tabela verdade.

ABC000010100111

. tabela verdade de uma função básica a função AND

- conjunto de funções da álgebra booleana
- têm implementação eletrônica através de transistores
- são conhecidas como portas lógicas
- . um circuito digital é regido pela álgebra de Boole
- . com as portas lógicas existentes é possível implementar qualquer função da álgebra booleana.

As principais portas lógica, simbologia e tabela verdade.

-NOT

A função NOT é implementada na conhecida porta inversora.

A B 0 1 1 0 (a) (b) (a) tabela verdade, (b) símbolo

-AND

A função AND pode ser definida em linguagem natural como 1 se todas as entradas forem 1 e 0 se apenas uma das entradas for 0.

ABS000010100111

-OR

A função OR também pode ser definida em linguagem natural ela é 0 se todas as entradas forem 0 e 1 se existir uma entrada em 1.

ABC000011101111

-XOR

A função XOR conhecida como exclusive OR é muito parecido com a OR.

ABC000011101111

Considerações parciais ...

- . temos acima algumas das principais portas lógicas existentes
- . não são as únicas mas as outras portas existentes são combinações destas portas básicas
- . todos os circuitos digitais podem ser montados

somente com estas portas

5 UNIFG

Aprofundando os Fundamentos ...

- . Os termos variável, complemento e literal são usados em álgebra Booleana.
- variável: é um símbolo (geralmente uma letra maiúscula em itálico) usado para representar uma grandeza lógica.
- . qualquer variável simples pode ter um valor 1 ou 0.
- complemento: é o inverso de uma variável e é indicado por uma barra sobre a variável.
- Ex. o complemento da variável A é A –

- . O complemento de uma variável A é lido como "A negado" ou "A barrado".
- . Ou ... outro símbolo, em vez de uma barra, para indicar o complemento de uma variável; por exemplo, B' indica o complemento de B.
- literal: é a variável ou o complemento de uma variável.
- Adição Booleana equivalente à operação OR e as regras básicas são ilustradas com suas relações com a porta OR da seguinte forma:

Na álgebra Booleana, um **termo-soma** é uma soma de literais. Em circuitos lógicos, um termo-soma é produzido por uma operação OR sem o envolvimento de operações AND. Alguns exemplos de termos-soma são A + B, $A + \overline{B}$, $A + B + \overline{C}$ e $\overline{A} + B + C + \overline{D}$.

Um termo-soma será igual a 1 quando uma ou mais das literais no termo for 1. Um termo-soma será igual a 0 somente se cada uma das literais for 0.

Determine os valores de A, B, C e D que tornam o termo-soma A + B + C + D igual a O.

Solução Para o termo-soma ser 0, cada uma das literais tem que ser 0. Portanto, A = 0 e B = 1, de forma que, $\overline{B} = 0$, C = 0 e D = 1, de forma que $\overline{D} = 0$.

$$A + \overline{B} + C + \overline{D} = 0 + \overline{1} + 0 + \overline{1} = 0 + 0 + 0 + 0 = 0$$

Problema relacionado* Determine os valores de \overline{A} e B que tornam o termo-soma igual a 0.

Multiplicação Booleana

- . Equivalente à operação AND
- . A porta AND é um multiplicador booleano
- . são relações com a porta AND

Na álgebra Booleana, um termo-produto é o produto de literais. Em circuitos lógicos, um termo-produto é produzido por uma operação AND sem o envolvimento de operações OR. Alguns exemplos de termos-produto são AB, AB, ABC e ABCD.

Um termo-produto é igual a 1 apenas se cada uma das literais no termo for 1. Um termo-produto é igual a 0 quando uma ou mais das literais for 0.

Determine os valores e A, B, C e D que torna o termo-produto $A\overline{B}C\overline{D}$ igual a 1.

Solução Para o termo-produto ser 1, cada uma das literais no termo tem que ser 1. Portanto, A = 1,

$$B = 0$$
 de forma que $\overline{B} = 1$, $C = 1$ e $D = 0$ de forma que $\overline{D} = 1$.

$$\overrightarrow{ABCD} = 1 \cdot \overrightarrow{0} \cdot 1 \cdot \overrightarrow{0} = 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

Problema relacionado Determine os valores de A e B que tornam o termo-produto \overline{A} \overline{B} igual a 1.

Leis da Álgebra Booleana

As leis básicas da álgebra Booleana:

- . leis comutativas: para a adição e multiplicação
- . leis associativas: para a adição e multiplicação
- . lei distributiva: são as mesmas que para a álgebra comum.

Cada uma das leis está ilustrada com duas ou três variáveis, porém o número de variáveis não é limitado para essas leis.

Lei Comutativa A lei comutativa da adição para duas variáveis é escrita da seguinte forma:

$$A+B=B+A$$

Essa lei diz que a ordem das variáveis na qual a função OR é aplicada não faz diferença. Lembre-se que, na álgebra Booleana aplicada a circuitos lógicos, a adição e a operação OR são as mesmas. A Figura 4–1 ilustra a lei comutativa aplicada a uma porta OR e mostra que não importa em qual entrada cada variável é aplicada. (O símbolo ≡ significa "equivalente a").

▶ FIGURA 4-I

Aplicação da lei comutativa da adição.

A lei comutativa da multiplicação para duas variáveis é a seguinte:

$$AB = BA$$

Essa lei diz que a ordem das variáveis na qual a operação AND é aplicada não faz diferença. A Figura 4–2 ilustra essa lei aplicada a uma porta AND.

► FIGURA 4-2

Aplicação da lei comutativa da multiplicação.

$$\begin{bmatrix} A & & & \\ B & & & \\ & & & \end{bmatrix} = \begin{bmatrix} B & & & \\ A & & & \end{bmatrix} = BA$$

$$A + (B + C) = (A + B) + C$$

Essa lei diz que quando é aplicada uma operação OR em mais de duas variáveis, o resultado é o mesmo independente da forma de agrupar as variáveis. A Figura 4–3 ilustra essa lei aplicada em portas OR de 2 entradas.

A lei associativa da multiplicação escrita para três variáveis é mostrada a seguir:

$$A(BC) = (AB)C$$

Essa lei diz que a ordem em que as variáveis são agrupadas não faz diferença quando é aplicada uma operação AND em mais de duas variáveis. A Figura 4–4 ilustra essa lei aplicada a portas AND de 2 entradas.

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$BC$$

$$C$$

$$A(BC)$$

$$B$$

$$C$$

$$C$$

$$AB$$

$$C$$

Lei Distributiva A lei distributiva escrita para três variáveis é mostrada a seguir:

$$A(B+C) = AB + AC$$

Essa lei diz que a operação AND de uma única variável com o resultado de uma operação OR aplicada em duas ou mais variáveis é equivalente a uma operação OR entre os resultados das operações AND entre uma única variável e cada uma das duas ou mais variáveis. A lei distributiva também expressa o processo de *fatoração* no qual a variável comum A é fatorada em termos-produto, por exemplo, AB + AC = A(B + C). A Figura 4–5 ilustra a lei distributiva em termos de implementação com portas.

Regras da Álgebra Booleana

A tabela a seguir apresenta uma lista de 12 regras básicas úteis na manipulação e simplificação de expressões Booleanas.

As regras de 1 a 9 serão analisadas em termos de suas aplicações em portas lógicas.

$$1.A + 0 = A$$

$$2.A + 1 = 1$$

$$3. A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

$$8. A \cdot \overline{A} = 0$$

9.
$$\overline{A} = A$$

As regras de 10 a 12 serão obtidas em termos de regras mais simples e das leis discutidas anteriormente.

10.
$$A + AB = A$$

11.
$$A + AB = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

			W × ° ° m → ©		
Propriedade	Complemento	Adição	Multiplicação		
Identidade		A + 0 = A	A . 0 = 0		
	Ā = A	A + 1 = 1	A . 1 = A		
		A + A = A	A . A = A		
		A + Ā = 1	A . Ā = 0		
Comutativa		A + B = B + A	A . B = B . A		
Associativa		A+(B+C) = (A+B)+C = A+B+C	A.(B.C) = (A.B).C = A.B.C		
Distributiva		A+(B.C) = (A+B) . (A+C)	A.(B+C) = A.B + A.C		
			7 LAMENT TOTAL CONTROLLED LAMENTED		

REGRAS DA ÁLGEBRA DE BOOLE

Regra I. A + 0 = A A operação OR de uma variável com 0 é sempre igual a variável. Se a variável de entrada A for 1, a variável X de saída será 1, que é igual a A. Se A for 0, a saída será 0, que também é igual a A. Essa regra é ilustrada na Figura 4–6, na qual a entrada inferior da porta está fixa em 0.

Regra 2. A + I = I A operação OR da variável com 1 é igual a 1. Um 1 numa entrada de uma porta OR produz um 1 na saída, independente do valor da variável na outra entrada. Essa regra é ilustrada na Figura 4–7, na qual a entrada inferior da porta está fixa em 1.

$$A = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

Regra 3. $\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$ A operação AND da variável com 0 sempre é igual a 0. Todas as vezes que uma entrada de uma porta AND for 0, a saída será 0, independente do valor da variável na outra entrada. Essa regra está ilustrada na Figura 4–8, na qual a entrada inferior está fixa em 0.

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = A \cdot 0 = 0$$

Regra 4. $A \cdot I = A$ A operação AND da variável com 1 é sempre igual a variável. Se A for 0 a saída da porta AND será 0. Se A for 1, a saída da porta AND será 1 porque ambas as entradas agora são 1s. Essa regra é mostrada na Figura 4–9, onde a entrada inferior está fixa em 1.

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = A \cdot 1 = A$$

Regra 5. A + A = A A operação OR da variável com ela mesma é sempre igual a variável. Se A for 0, então 0 + 0 = 0; e se A for 1, então 1 + 1 = 1. Isso é mostrado na Figura 4–10, onde as duas entradas são a mesma variável.

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$X = 1$$

$$X = A + A = A$$

Regra 6. $A + \overline{A} = I$ A operação OR da variável com o seu complemento é sempre igual a 1. Se A for 0, então $0 + \overline{0} = 0 + 1 = 1$. Se A for 1, então $1 + \overline{1} = 1 + 0 = 1$. Veja a Figura 4–11, onde uma entrada é o complemento da outra.

$$A = 0$$
 $\overline{A} = 1$
 $X = 1$
 $X = 1$
 $X = 1$

$$X = A + \overline{A} = 1$$

Regra 7. $A \cdot A = A$ A operação AND de uma variável com ela mesma é sempre igual a variável. Se A = 0, então $0 \cdot 0 = 0$; e se A = 1, então $1 \cdot 1 = 1$. A Figura 4–12 ilustra essa regra.

$$A=0$$
 $X=0$ $X=1$ $X=1$

$$X = A \cdot A = A$$

\$ → (Ö)

Regra 8. $\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{0}$ A operação AND de uma variável e o seu complemento é sempre igual a 0. Nesse caso, ou \overline{A} ou sempre será 0; e quando um 0 é aplicado na entrada de uma porta AND, a saída também será 0. A Figura 4–13 ilustra essa regra.

Regra 9. $\overline{A} = A$ O complemento duplo de uma variável é sempre igual a variável. Se complementarmos (invertermos) a variável A uma vez, obtemos \overline{A} . Então se complementarmos (invertermos) \overline{A} , obtemos A, que é a variável original. Essa regra é mostrada na Figura 4–14 usando inversores.

$$A=0$$
 $A=1$ $A=1$ $A=1$

$$\bar{A} = A$$

egra 10. A + AB = A Essa regra pode ser provada aplicando a lei distributiva, Regra 2, e a Rea 4 como a seguir:

$$A + B = A(1 + B)$$
 Fatorando (lei distribuitiva)
= $A \cdot 1$ Regra 2: $(1 + B) = 1$
= A Regra 4: $A \cdot 1 = A$

A prova é mostrada na Tabela 4–2, onde temos a tabela-verdade e a consequente simplificao do circuito lógico.

A	В	AB	A + AB	A -
0 0 1 1	0 1 0	0 0 0	0 0 1 1	A conexão direta
-	igu	ıal ———		

Regra II. $A + \overline{AB} = A + B$ Essa regra pode ser provada da seguinte forma:

$$A + \overline{AB} = (A + AB) + \overline{AB}$$
 Regra 10: $A = A + AB$
 $= (AA + AB) + \overline{AB}$ Regra 7: $A = AA$
 $= AA + AB + A\overline{A} + \overline{AB}$ Regra 8: adicionando $A\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Fatorando
 $= 1 \cdot (A + B)$ Regra 6: $A + \overline{A} = 1$
 $= A + B$ Regra 4: simplifica o 1

X/. 2 0 0 00

A prova é mostrada na Tabela 4–3, onde temos a tabela-verdade e a conseqüente simplificação do circuito lógico.

А	В	ĀB	A + AB	A + B	$A \longrightarrow$		
0	0	0	0	0			
0	0	0	1 1	1	A —		
1	1	0	1 1	1			
igual —							

Regra 12. (A + B)(A + C) = A + BC Essa regra pode ser provada da seguinte forma:

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Lei distribuitiva
 $= A + AC + AB + BC$ Regra 7: $AA = A$
 $= A(1 + C) + AB + BC$ Fatorando (lei distribuitiva)
 $= A \cdot 1 + AB + BC$ Regra 2: $1 + C = 1$
 $= A(1 + B) + BC$ Fatorando (lei distribuitiva)
 $= A \cdot 1 + BC$ Regra 2: $1 + B = 1$
 $= A + BC$ Regra 4: $A \cdot 1 = A$

A prova é mostrada na Tabela 4-4, onde temos a tabela-verdade e a consequente simplificação do circuito lógico.

Α	В	С	A + B	A + C	(A+B)(A+C)	ВС	A + BC	A +
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	c
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	, ,
1	0	1	1	1	1	0	1	$A \longrightarrow A$
1	1	0	1	1	1	0	1	$c \longrightarrow c$
1	1	1	1	1	1	1	1	_
					<u> </u>	igual —		

RESUMO

- Na Álgebra de Boole existem apenas três operadores
 E, OU e NÃO (AND, OR, NOT).
- . Estas três funções são as únicas operações necessárias para efetuar comparações ou as quatro operações aritméticas base.

- Em 1937: 75 anos após a morte de Boole, Claude Shannon, estudante no MIT Boston, USA estabeleceu a relação entre a Álgebra de Boole e os circuitos eletrônicos transferindo os dois estados lógicos (SIM e NÃO) para várias diferenças de potencial no circuito.
- . Todos os computadores usam a Álgebra de Boole materializada em microchips que contêm milhares de interruptores miniaturizados combinados em portas (gates) lógicas que produzem os resultados das operações utilizando uma linguagem binária.

SOMOS MAIS UNIFG