

Value of Information

Example

- n blocks
- Each block costs \$C/n
- Exactly one block containing oil
 - profit: \$C

Survey of block number 3:

Case 1:

Oil in #3 with probability 1/n

Case 2:

No oil in #3 with probability (n-1)/n

Q: How much should the oil company be willing to pay for the information?

Oil in #3, buy #3:

Profit: C - C/n = (n-1)C/n

Oil not in #3, buy one of others:

Profit: C/(n-1) - C/n = C/(n(n-1))

Expected profit:

$$rac{1}{n} imesrac{(n-1)C}{n}+rac{n-1}{n} imesrac{C}{n(n-1)}=C/n.$$

(The information is worth C/n)

We don't know what the evidence will be ahead of time.

Value of Information

the expected utility of taking action a

• The value of the current best action α is

Reversed best
$$EU(\alpha) = \max_{a} \sum_{s'} P(\text{Result}(a) = s') \ U(s')$$
 Expected ()+) Lity

• The value of the new best action (given the new evidence $E_i = e_i$)

$$EU(lpha_{e_j}| oldsymbol{e_j}) = \max_a \sum_{s'} P(ext{Result}(a) = s' \mid oldsymbol{e_j}) \ U(s')$$

Value of Information

- Idea
 - Compute value of acquiring evidence by using the decision network
- Value of perfect information (VPI)

$$VPI(E_j) = \left(\sum_{e_j}^{\text{voldence}} P(E_j = e_j) \right) EU(lpha_{e_j} | E_j = e_j) - EU(lpha)$$

where best action α ,

random variable E_j , evidence $E_j = e_j$, and new best action α_{ej}

Example: VPI

No evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

If forecast is bad

MEU(F=bad) =
$$\max_{a} EU(a|bad)$$
= 53

If forecast is good

MEU(F=good) =
$$\max_{a} EU(a|good)$$
= 95

$$\star$$
 VPI(F) = MEU(F) - MEU(\varnothing)

=
$$(\Sigma_f P(F=f) MEU(F=f)) - MEU(\emptyset)$$

$$= (0.59 \cdot 95 + 0.41 \cdot 53) - 70 = 7.8$$

Deasion Notwork

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Devision

Bayes

Umbrella

F	P(F)
good	0.59
bad	0.41

67

Decision Networks

- Expected Utility
 - $\circ \quad EU(+v) = \sum_{c} P(c)U(+v, c)$
 - $\circ \quad EU(+v|+b) = \sum_{c} P(c|+b)U(+v, c)$
- Maximum Expected Utility
 - MEU(\varnothing) = max_v EU(v)
 - \circ MEU(+b) = max EU(v|+b)
 - \circ MEU(B) = $\sum_{b} P(b)$ MEU(b)
 - o Generally:
 - $\circ \quad MEU(e_1...e_n) = \max_{v} EU(v|e_1...e_n)$
 - \circ MEU(e₁...e_n, E) = \sum_{e} P(e|e₁...e_n)MEU(e, e₁...e_n)
- Value of Perfect Information
 - VPI(E'|e) = MEU(e, E') MEU(e)

VPI Properties

Note. Evidence: E_i, E_j

Non-negative

$$orall \ j \qquad VPI(E_j) \geq 0$$

Not additive (in general)

$$VPI(E_j,E_k)
eq VPI(E_j) + VPI(E_k)$$

Order-independent

$$VPI(E_j, E_k) = VPI(E_k, E_j)$$

Claim: $\forall j \qquad VPI(E_j) \geq 0$

$$VPI(E_j) = \left(\sum_{e_j} P(E_j = e_j) \;\;\; EU(lpha_{e_j} | E_j = e_j)
ight) - EU(lpha)$$

Because

$$EU(\alpha) = \sum_{e_i} P(E_j = e_j) EU(\alpha \mid E_j = e_j)$$

and

$$EU(\alpha_{e_i} | E_j = e_j) \ge EU(\alpha | E_j = e_j)$$

