Midterm Exam B CS/MATH 113 Discrete Mathematics

Habib University — Spring 2023

11 March, 2023. 1300-1415h.

This exam consists of $\underline{4}$ questions for a total of $\underline{40}$ points on $\underline{3}$ pages. Attempt all problems and submit this sheet with your answer sheet by the end of the exam.

Sti	udent Name:)
1.	Tautologies Prove or disprove that the (a) $(a \implies b) \iff (\neg b)$		ies.	(10 points)
	Solution: This c logical equivalence $Proof$. LHS $\equiv \neg a \lor b$ $\equiv b \lor \neg a$ $\equiv \neg b \Longrightarrow$	implicatio commutat	n ivity	rovide a proof using
	(b) $(a \wedge b \wedge c \wedge d) \implies$	$(c \lor b)$		
	Proof.	e a sequence of inference simplification on LHS addition on (1)	s to prove the claim. (1)	

2. Logical Equivalence

Student ID: _

(10 points)

Show that $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$.

Solution: We prove that LHS \implies RHS, and vice versa, through a sequence of inferences.

CS/MATH 113 Midterm Exam Spring 2023

```
Proof. Case: LHS \Longrightarrow RHS
                             EI on LHS, c is an specific element
 P(c) \vee Q(c)
                                                                                    (1)
For (1) to be True, P(c) is True or Q(c) is True. We look at each case.
Sub-case: P(c) is True
 P(c)
                                    premise
                                                                   (2)
 \exists x P(x)
                                    EG on (2)
                                                                    (3)
 \exists x P(x) \vee \exists x Q(x)
                                    addition on (3)
                                                                   (4)
Sub-case: Q(c) is True
                                    premise
                                                                           (5)
 Q(c)
 \exists x Q(x)
                                    EG on (5)
                                                                           (6)
 \exists x Q(x) \lor \exists x P(x)
                                    addition on (6)
                                                                           (7)
 \exists x P(x) \lor \exists x Q(x)
                                    commutativity on (7)
                                                                           (8)
\underline{\text{Case}}: RHS \Longrightarrow LHS
                                                                           P(c_1) \vee Q(c_2)
                               EI on RHS, c_1, c_2 are specific elements.
For (9) to be True, P(c_1) is True or Q(c_2) is True. We look at each case.
Sub-case: P(c_1) is True
                                                                    (10)
 P(c_1)
                                   premise
 P(c_1) \vee Q(c_1)
                                   addition on (10)
                                                                    (11)
 \exists x (P(x) \lor Q(x))
                                   EG on (11)
                                                                    (12)
<u>Sub-case</u>: Q(c_2) is True
 Q(c_2)
                                   premise
                                                                            (13)
 Q(c_2) \vee P(c_2)
                                   addition on (13)
                                                                            (14)
                                                                                                     P(c_2) \vee Q(c_2)
                                   commutativity on (14)
                                                                            (15)
 \exists x (P(x) \lor Q(x))
                                   EG on (15)
```

3. Subsets (10 points)

Prove that $\{30n \mid n \in \mathbb{Z}\}$ is a subset of $\{3n \mid n \in \mathbb{Z}\} \cap \{5n \mid n \in \mathbb{Z}\}$.

```
Solution: Let A = \{30n \mid n \in \mathbb{Z}\}, B = \{3n \mid n \in \mathbb{Z}\}, C = \{5n \mid n \in \mathbb{Z}\}. Then we have to show that A \subseteq (B \cap C). We do so by showing that A \subseteq B and A \subseteq C.

Proof. \ \underline{Case}: A \subseteq B.
Consider \ a \in A.
Then \ a = 30k \ for \ some \ k \in \mathbb{Z}.
Then \ a = 3 \cdot 10k.
\therefore a \in B.
\underline{Case}: A \subseteq C.
Consider \ a \in A.
Then \ a = 30k \ for \ some \ k \in \mathbb{Z}.
Then \ a = 5 \cdot 6k.
\therefore a \in C.
```

4. Function Properties

(10 points)

Given $g: A \to B$ and $f: B \to C$, prove that: if $(f \circ g)$ is one-to-one, then so is g.

Solution: We prove the above by contradiction.

Proof. Assume that $(f\circ g)$ is one-to-one and g is not.

Then, $\exists a_1, a_2 \in A \ni (a_1 \neq a_2 \land g(a_1) = g(a_2)).$

Now, $f \circ g : A \to C$.

 $(f \circ g)(a_1) = f(g(a_1)) = f(g(a_2)) = (f \circ g)(a_2).$

 $\therefore f \circ g$ is not one-to-one.

Good luck!