Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

PATIENT	
Identifier: 黃健豪	Patient ID: 27071074
Date of Birth: Nov 14, 1979	Gender: Male
Diagnosis: Malignant glomus tumor	
ORDERING PHYSICIAN	
Name: 顏厥全醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11200776B Collection site: Lung	Type: FFPE tissue
Date received: Feb 09, 2023 Lab ID: AA-23-00831	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	atient's Cancer Type	Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
ATRX K869*	Olaparib, Talazoparib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 32

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
ATRX	K869*	85.6%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr1	ARID1A, CDKN2C	Heterozygous deletion	1
Chr10	PTEN	Heterozygous deletion	1
Chr17	FLCN	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr22	CHEK2, NF2	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
N	o fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 73% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 2 of 32

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3B		
ATRX K869*	Olaparib	sensitive
Level 4		
ATRX K869*	Talazoparib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 3 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(07) page 4 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831 ONC

Date Reported: Feb 21, 2023

VARIANT INTERPRETATION

ATRX K869*

Biological Impact

The alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene encodes a tumor suppressor and member of the SWI1/SNF2 family of helicase/adenosine triphosphatase (ATPase) involved in chromatin remodeling [1][2]. ATRX mutations are associated with chromosomal instability and are hence implicated in oncogenesis^[3]. Mutations in the ATRX gene cause alpha thalassemia/ mental retardation X-linked syndrome^[4].

K869* mutation results in a premature truncation of the ATRX protein at amino acid 869 (UniProtKB). This mutation is predicted to lead to a loss of ATRX function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

ATRX has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic/advanced urothelial carcinoma (NCT03375307) and ovarian cancer^[5], niraparib efficacy in melanoma (NCT03925350), and rucaparib efficacy in ovarian cancer^[6]. In a preclinical study, immortalized astrocytes with loss of ATRX were sensitive to olaparib and talazoparib treatment in vitro[7].

A retrospective study of patients with glioma showed that those with loss of ATRX expression showed increased overall survival compared to those with retained ATRX expression (p < 0.0001)^[8]. However, loss of ATRX or DAXX expression in uterine leiomyosarcoma and mutations in the DAXX/ATRX genes in Chinese patients with pancreatic neuroendocrine tumors are correlated with poor overall survival^{[9][10]}, and progression-free survival^[10].

ARID1A Heterozygous deletion

Biological Impact

The AT-rich interactive domain 1A (ARID1A) gene encodes the BAF250A protein, a component of the SWI/SNF chromatin remodeling complex that plays a role in various cellular functions, including DNA repair, DNA synthesis, and transcription[11][12]. Haploinsufficiency of ARID1A is associated with tumor formation in some cancers[13]. Inactivation of ARID1A is commonly observed in ovarian, endometrial, uterine, and, gastric cancers[14][15][16][17][18].

Therapeutic and prognostic relevance

ARID1A is the most frequently mutated genes in ovarian clear cell carcinoma and several synthetic lethality hypothesisbased therapeutic targets in ARID1A mutated cancer are in development. For examples, 1) EZH2 inhibitor^{[19][20]}; 2) AKT-inhibitors MK-2206 and perifosine, as well as PI3K-inhibitor buparlisib^[21]; 3) multiple kinase inhibitor, dasatinib^[22].

Some preclinical evidences suggested that reduced ARID1A expression confers resistance to several HER2/PI3K/mTOR signaling cascade inhibitors such as AZD8055 and trastuzumab, through activation of annexin A1 expression[23]. Loss or decreased expression of ARID1A has been reported to associate with resistance to platinumbased chemotherapies, shorter overall survival and lower complete response rate in ovarian cancer patients[24][25].

Low expression of ARID1A is a significant and independent prognostic factor for poor disease-free and overall survival in breast cancer patients^{[26][27]}. Besides, loss of ARID1A expression was more frequently seen in mismatch repair (MMR)-deficient colorectal cancers, predominantly in tumor with MLH1 promoter hypermethylation[28]. Positive ARID1A expression could independently predict worse overall survival in stage IV CRC patients compared with negative ARID1A expression[29].

ARID1A mutation has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831), and niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), or any malignancy, except prostate cancer (NCT03207347).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831 ONC

Date Reported: Feb 21, 2023

The preclinical study discovered that ARID1A deficiency sensitized some tumors to PARP inhibitor drugs, such as olaparib, rucaparib, talazoparib, and veliparib, which block DNA damage repair pathways[30].

CDKN2C Heterozygous deletion

Biological Impact

CDKN2C gene encodes for cyclin-dependent kinase inhibitor 2C (CDKN2C) or p18 or INK4C, a member of the INK4 family of cyclin-dependent kinase inhibitors. CDKN2C binds to CDK4 or CDK6 and inhibits the activation of cyclindependent kinases (CDK) to prevent cell cycle progression at the G1 phase[31]. CDKN2C has been implicated as a haploinsufficient tumor suppressor gene[32] with one copy loss may promote cell cycle progression and induce proliferation in a variety of cancers[33][34][35]. Loss of CDKN2C by gene deletion or inactivating mutation has been reported in multiple cancer types, including myeloma, lymphoma, glioblastoma, meningioma, testicular cancers, melanoma, hepatocellular carcinomas, thyroid, and parathyroid cancer^{[36][37][38][39][40][41][42][43][44]}.

Therapeutic and prognostic relevance

CDKN2C loss has been determined as an inclusion criterion for the trial evaluating abemaciclib and ribociclib efficacies in patients with glioblastoma and myeloma (NCT02981940, NCT04118036, NCT03834740, NCT02933736).

An in vitro study demonstrated that cells expressing CDKN2A/B/C triple deletions activates cyclin-dependent kinases (CDK) and improves the sensitivity to palbociclib in glioblastoma multiforme (GBM) tumor cells[45]. Deletion of CDKN2C was associated with poorer prognosis in myeloma, acute lymphoblastic leukemia, hepatocellular carcinomas, and diffuse large B cell lymphoma (DLBCL)[46][47][43][48].

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[49]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry[50][51]. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers[52][53][54][55][56].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate (NCT02987543)[57].

In a phase II trial (TBCRC 048; NCT03344965), 7 metastatic breast cancer patients harboring only germline mutations in CHEK2 were not responded to olaparib treatment (SD: n=3, PD: n=4)[58]. Furthermore, in another phase II trial (TRITON2; NCT02952534), 12 mCRPC patients harboring CHEK2 alteration had limited response to rucaparib treatment. One patient with co-occurring ATM alteration had a radiographic partial response (n=1/9 evaluable patients). The prostate-specific antigen response rate was 16.7% (n=2/12), and the 6-month clinical benefit rate was 37.5% (n=3/8)[59].

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in advanced solid tumors (NCT03297606; CAPTUR trial), rucaparib efficacy in ovarian cancer (NCT01968213)[6], and prostate cancer (NCT02952534, NCT03533946)[59], niraparib efficacy in metastatic esophageal/gastroesophageal junction (GEJ)/proximal gastric adenocarcinoma (NCT03840967), melanoma (NCT03925350), pancreatic cancer (NCT03553004, NCT03601923), prostate cancer (NCT02854436), and any malignancy, except prostate

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

(NCT03207347), and talazoparib efficacy in HER2-negative solid tumors (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

FLCN Heterozygous deletion

Biological Impact

The FLCN gene encodes the tumor suppressor, Folliculin, a GTPase activating protein (GAP) for RagC/D GTPase proteins involved in amino acid sensing and signaling to mTORC1^[60]. FLCN has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[61][62]}. Inactivation of the FLCN gene by mutation or deletion results in the activation of the mTOR pathway and AKT signaling^{[63][64]}. Germline mutation of the FLCN gene causes the Birt-Hogg-Dubé syndrome, a rare disorder that is characterized by benign hamartomatous skin lesions and an increased risk of pneumothorax and renal tumors^[65].

Therapeutic and prognostic relevance

In a prospective Phase 2 study, four anaplastic thyroid cancer (ATC)/ poorly differentiated thyroid cancer (PDTC) patients who had PI3K/mTOR/AKT alterations, including TSC2, FLCN or NF1, showed impressive progression-free survival (PFS) of 15.2 months after receiving everolimus^[66]. mTOR inhibition via rapamycin also demonstrated potential in inhibiting the growth of renal cells deficient in FLCN in the preclinical setting^[67].

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[68][69][70]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[71]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[68][72]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[73], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[74].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[75][76][77][78]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer and urothelial carcinoma^{[79][80]}, both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[81].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[82].

PTEN Heterozygous deletion

Biological Impact

The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a lipid/protein phosphatase that is important for the regulation of cell proliferation, survival, homologous recombination and maintenance of genomic integrity^{[83][84]}. PTEN acts as an essential tumor suppressor by antagonizing the PI3K/AKT/mTOR signaling pathway^[85]. PTEN is a haploinsufficient tumor suppressor gene, in which having only one copy of the wild-type allele does not produce enough protein product to execute wild-type functions^{[86][87][88]}. Germline loss-of-function PTEN mutations are found in approximately 80% of patients with Cowden syndrome, a disorder that is associated with high-penetrance breast and thyroid cancer^{[89][90][91]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **7** of **32**

Project ID: C23-M001-00388 Report No.: AA-23-00831 ONC

Date Reported: Feb 21, 2023

Somatic mutations or monoallelic loss of PTEN is regularly observed in a significant fraction of human cancers, including sporadic breast cancer, colon cancer, endometrial cancer, prostate cancer, and glioblastoma[92][93][94][95][96].

Therapeutic and prognostic relevance

Somatic loss of PTEN results in aberrant activation of PI3K/AKT/mTOR signaling pathway and provides a mechanistic rationale for PI3K pathway inhibitors treatment[97][98]. Preclinical studies demonstrated that PTEN deficiency was associated with increased sensitivity to PI3K pathway inhibitors in selected cancer subtypes [99][100][101][102][103][104]. Although early clinical data indicated that PTEN loss was associated with improved response and survival in solid tumor patients treated with mTORC1 inhibitor, everolimus[75][106], several phase II trials showed no clinical benefit of everolimus or temsirolimus treatment in patients with advanced solid tumors harboring PTEN loss[107][108][109].

Several groups found that PTEN loss was generally associated with poor response to trastuzumab therapy, whether this agent was administered in the neoadjuvant, adjuvant, or metastatic settings[110][111][112][113][114]. Also, loss of PTEN expression in advanced colorectal cancer (CRC) has been linked with resistance to anti-EGFR mAbs like cetuximab and panitumumab[115][116][117][118][119][120].Preclinical studies showed that loss of PTEN expression in EGFR mutant cells was associated with decreased sensitivity to EGFR TKIs, erlotinib and gefitinib[121][122]. Inhibition of the PI3K/AKT/mTOR signal pathway has been shown to be an effective strategy to radiosensitize NSCLC cells harboring the EGFR activating mutation that acquires resistance to both TKIs due to PTEN loss or inactivation mutations[123].Loss or biallelic inactivation of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapies, including pembrolizumab and nivolumab in melanoma and leiomyosarcoma patients^{[124][125][126]}.

PTEN loss of function mutation has been determined as an inclusion criterion for the trial evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831); talazoparib efficacy in HER2-negative solid tumors (NCT02401347); rucaparib efficacy in prostate cancer (NCT02952534, NCT03533946), and niraparib efficacy in breast cancer (NCT04508803) or any malignancy (except prostate) cancer (NCT03207347). Clinical data also suggested that PTEN deficient cancers may be sensitive to olaparib[127]. However, in a phase II trial (NCT02286687), 13 patients with advanced solid tumors harboring PTEN mutation or loss (by IHC) had limited response to talazoparib treatment; only one patient with PTEN mutation had prolonged SD (Mol Cancer Ther 2018;17(1 Suppl):Abstract nr A096; NCT02286687). Besides, in a phase I trial (NCT00749502), no association between loss of PTEN expression and the efficacy of niraparib was identified in patients with castration-resistant prostate cancer^[128].

In a preclinical study, PTEN null cancer cells were sensitive to rucaparib treatment in vitro [129].

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF-β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF-β-targeted genes[130]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function[131]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)[132][133][134][135]. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[136], colorectal cancer (CRC)^{[134][137][138]}, and less frequently seen in other cancers such as lung adenocarcinoma[139], head and neck cancer[140][141], and cutaneous squamous cell carcinoma[142].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy[143]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells[144].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[145][146]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[147].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[148][149][150][151][152][153][154][155]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[156].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 9 of 32

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

- FDA Approval Summary of Dasatinib (SPRYCEL)

DASISION ^[157]	Chronic myeloid leukemia (Approved on 2010/10/28)
NCT00481247	
NG100461247	Dasatinib vs. Imatinib [ORR(%): 76.8 vs. 66.2]
[158]	Chronic myeloid leukemia (Approved on 2007/11/08)
NCT00123474	
NC100123474	Dasatinib [ORR(%): 63.0]
[159]	Acute lymphocytic leukemia (Approved on 2006/06/28)
NCT00123487	
	Dasatinib [ORR(%): 38.0]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
RADIANT-4 ^[160] NCT01524783	-
	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
DOL EDO 0[161]	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[161]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
EXIST-2	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on 2012/04/26)
NCT00790400	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
DADIANT 0[105]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[105]	
NCT00510068	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[162]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
NCT00789828	Everolimus vs. Placebo [ORR(%): 35.0]
DECORD 4[163]	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[163]	
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **10** of **32**

ACTOnco® + Report

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NOVA ^[164]	
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

Olympus i A	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA NCT02032823	HER2-/gBRCA mutation					
NC102032023	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
DDO 5 (57)	Prostate cancer (Approved on 2020/05/19)					
PROfound ^[57]	HRR genes mutation					
NCT02987543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
DAGLA 4[165]	Ovarian cancer (Approved on 2020/05/08)					
PAOLA-1 ^[165]	HRD+					
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
POLO ^[166]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
NCT02184195	gBRCA mutation					
NC102184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
SOLO-1 ^[167]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
NCT01844986	gBRCA mutation or sBRCA mutation					
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
Ola mara: A D[168]	Breast cancer (Approved on 2018/02/06)					
OlympiAD ^[168] NCT02000622	HER2-/gBRCA mutation					
NC102000022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
SOLO-2/ENGOT-Ov21 ^[169]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
NCT01874353	gBRCA mutation					
NC1010/4333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
O4d40[170]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
Study19 ^[170]	-					
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 32

ACTOnco® + Report

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONO	Prostate cancer (Approved on 2020/05/15)
TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation
NC102952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 ^[6]	
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[171]	Breast cancer (Approved on 2018/10/16)
	HER2-/gBRCA mutation
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[172]	Renal cell carcinoma (Approved on 2007/05/30)
NCT00065468	-
NC100065466	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 32

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ATRX	K869*	9	c.2605A>T	NM_000489	-	85.6%	97

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Email: service@actgenomics.com 1: +886-2-2/95-3660 F: +886-2-2/95-5016

AG4-QP4001-02(07) page **14** of **32**

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Accession COSMIC ID Change Number		Allele Frequency	Coverage	
ADAMTS9	H179Q	3	c.537T>G	NM_182920	-	52.8%	653
ADAMTSL1	E566K	14	c.1696G>A	NM_001040272	-	52.1%	803
BCL9	F769L	8	c.2307T>G	NM_004326	-	54.9%	133
CCND2	V240M	4	c.718G>A	NM_001759	-	56.5%	1585
CDK12	V605A	2	c.1814T>C	NM_016507	COSM9248152	19.9%	1399
ETV4	A255V	8	c.764C>T	NM_001079675	-	50.9%	934
FAT1	E1292K	5	c.3874G>A	NM_005245	-	48.9%	401
FLT4	R1354H	30	c.4061G>A	NM_182925	COSM9359782	36.1%	1328
HIST1H1E	T146I	1	c.437C>T	NM_005321	-	49.1%	788
KMT2A	S215P	3	c.643T>C	NM_001197104	-	48.4%	797
MUC16	W3347C	3	c.10041G>T	NM_024690	-	45.9%	1127
PTCH1	D898N	16	c.2692G>A	NM_000264	COSM1111473	50.7%	497

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

AG4-QP4001-02(07)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jan 06, 2023 - Facility retrieved: 臺北榮總

H&E-stained section No.: S11200776B

Collection site: Lung

- Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 25%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 80%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 725x

Target Base Coverage at 100x: 93%

RNA test

Average unique RNA Start Sites per control GSP2: 213

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 16 of 32

苗健豪

Project ID: C23-M001-00388 Report No.: AA-23-00831 ONC

Date Reported: Feb 21, 2023

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **18** of **32**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTSS
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	мис6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **19** of **32**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
ARID1A	Dasatinib, Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
FLCN	Everolimus, Temsirolimus	sensitive
NF2	Everolimus, Temsirolimus	sensitive
CHEK2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
PTEN	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
SMAD4	Cetuximab	resistant
PTEN	Cetuximab, Erlotinib, Gefitinib, Panitumumab, Trastuzumab	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Everolimus, Temsirolimus

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **20** of **32**

ACTOnco® + Report

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 21 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 22 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

REFERENCE

- PMID: 20110566; 2010, Genome Res;20(3):351-60
 ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells.
- PMID: 17609377; 2007, Proc Natl Acad Sci U S A;104(29):11939-44
 Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX
- PMID: 24148618; 2014, Gastroenterology;146(2):453-60.e5
 Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors.
- 4. PMID: 8968741; 1996, Hum Mol Genet;5(12):1899-907
 ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome.
- PMID: 30353044; 2018, Br J Cancer;119(11):1401-1409
 Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes.
- PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- PMID: 34118569; 2021, Transl Oncol;14(9):101147
 Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity.
- PMID: 29667086; 2018, J Neurooncol;139(2):373-381
 Contrast enhancement predicting survival in integrated molecular subtypes of diffuse glioma: an observational cohort study.
- PMID: 25210493; 2014, Int J Biol Sci;10(9):957-65
 KRAS and DAXX/ATRX gene mutations are correlated with the clinicopathological features, advanced diseases, and poor prognosis in Chinese patients with pancreatic neuroendocrine tumors.
- PMID: 27499896; 2015, J Pathol Clin Res;1(2):95-105
 Loss of ATRX and DAXX expression identifies poor prognosis for smooth muscle tumours of uncertain malignant potential and early stage uterine leiomyosarcoma.
- PMID: 10757798; 2000, Mol Cell Biol;20(9):3137-46
 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
- 12. PMID: 25387058; 2015, Annu Rev Pathol;10():145-71 SWI/SNF chromatin remodeling and human malignancies.
- PMID: 23208470; 2013, Cancer Discov;3(1):35-43
 ARID1A mutations in cancer: another epigenetic tumor suppressor?
- PMID: 20826764; 2010, Science; 330(6001):228-31
 Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.
- PMID: 20942669; 2010, N Engl J Med;363(16):1532-43
 ARID1A mutations in endometriosis-associated ovarian carcinomas.
- PMID: 21590771; 2011, J Pathol;224(3):328-33
 Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas.
- PMID: 21412130; 2011, Am J Surg Pathol; 35(5):625-32
 Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma.
- PMID: 22037554; 2011, Nat Genet;43(12):1219-23
 Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

- PMID: 26125128; 2015, Expert Opin Ther Targets;19(11):1419-22
 Potential therapeutic targets in ARID1A-mutated cancers.
- PMID: 29093822; 2017, Gynecol Oncol Res Pract;4():17
 EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers.
- PMID: 24979463; 2014, Oncotarget;5(14):5295-303
 Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition.
- PMID: 27364904; 2016, Mol Cancer Ther;15(7):1472-84
 Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
- PMID: 27172896; 2016, Clin Cancer Res;22(21):5238-5248
 Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance.
- 24. PMID: 22101352; 2012, Mod Pathol;25(2):282-8 Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma.
- PMID: 24459582; 2014, J Gynecol Oncol;25(1):58-63
 Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer.
- PMID: 26770240; 2015, J Breast Cancer;18(4):339-46
 Loss of Tumor Suppressor ARID1A Protein Expression Correlates with Poor Prognosis in Patients with Primary Breast Cancer.
- PMID: 21889920; 2012, Cancer Epidemiol;36(3):288-93
 Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance.
- 28. PMID: 25311944; 2014, Hum Pathol;45(12):2430-6 Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
- PMID: 25561809; 2014, World J Gastroenterol;20(48):18404-12
 Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.
- PMID: 26069190; 2015, Cancer Discov;5(7):752-67
 ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.
- PMID: 11124804; 2000, Genes Dev;14(24):3115-25
 Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors.
- PMID: 12556487; 2003, Mol Cell Biol;23(4):1269-77
 Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis.
- PMID: 22997239; 2012, J Natl Cancer Inst;104(21):1673-9
 Dual suppression of the cyclin-dependent kinase inhibitors CDKN2C and CDKN1A in human melanoma.
- 34. PMID: 19411068; 2009, Cancer Cell;15(5):389-401
 CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis.
- PMID: 17409423; 2007, Cancer Res;67(7):3162-70
 p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers.
- PMID: 25576899; 2015, Hum Mol Genet;24(8):2318-29
 Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing.
- 37. PMID: 16960149; 2007, Blood;109(1):271-80
 Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.
- 38. PMID: 23616356; 2013, J Pathol;230(3):249-60

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 24 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

Complete genomic landscape of a recurring sporadic parathyroid carcinoma.

- PMID: 22133722; 2011, Sci Transl Med;3(111):111ra121
 Personalized oncology through integrative high-throughput sequencing: a pilot study.
- PMID: 18829482; 2008, Clin Cancer Res;14(19):6033-41
 Deletions of CDKN2C in multiple myeloma: biological and clinical implications.
- PMID: 18381405; 2008, Cancer Res;68(8):2564-9
 Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme.
- 42. PMID: 11485924; 2001, Am J Pathol;159(2):661-9
 Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas.
- PMID: 15349907; 2004, Hepatology;40(3):677-86
 Reduced expression of cell cycle regulator p18(INK4C) in human hepatocellular carcinoma.
- 44. PMID: 10652429; 2000, Int J Cancer;85(3):370-5
 Cell cycle regulators in testicular cancer: loss of p18INK4C marks progression from carcinoma in situ to invasive germ cell tumours.
- 45. PMID: 22711607; 2012, Neuro Oncol;14(7):870-81 p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells.
- 46. PMID: 21994415; 2011, Clin Cancer Res;17(24):7776-84

 Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival.
- 47. PMID: 20303590; 2010, Leuk Res;34(11):1476-82
 Prognostic classification of patients with acute lymphoblastic leukemia by using gene copy number profiles identified from array-based comparative genomic hybridization data.
- 48. PMID: 19455257; 2007, Cancer Inform;3():399-420
 Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival.
- PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5
 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- PMID: 15261141; 2004, Cancer Cell;6(1):45-59
 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- 51. PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint
- 52. PMID: 23296741; 2013, Fam Cancer;12(3):473-8
 The risk of gastric cancer in carriers of CHEK2 mutations.
- 53. PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10
 A risk of breast cancer in women carriers of constitutional CHEK2 gene mutations, originating from the North Central Poland.
- PMID: 25583358; 2015, Int J Cancer;137(3):548-52
 CHEK2 mutations and the risk of papillary thyroid cancer.
- PMID: 12052256; 2002, Breast Cancer Res;4(3):R4
 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- PMID: 15125777; 2004, Mol Cancer;3():14
 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 58. PMID: 33119476; 2020, J Clin Oncol;38(36):4274-4282
 TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.
- 59. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 60. PMID: 24095279; 2013, Mol Cell;52(4):495-505
 The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
- 61. PMID: 26342594; 2016, Fam Cancer;15(1):127-32
 Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.
- PMID: 23223565; 2013, J Clin Pathol;66(3):178-86
 Birt-Hogg-Dube syndrome: clinicopathological features of the lung.
- PMID: 19850877; 2009, Proc Natl Acad Sci U S A;106(44):18722-7
 Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2.
- PMID: 24908670; 2014, Hum Mol Genet;23(21):5706-19
 Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation.
- PMID: 15956655; 2005, J Natl Cancer Inst;97(12):931-5
 High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors.
- 66. PMID: 29301825; 2018, Clin Cancer Res;24(7):1546-1553
 Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study.
- PMID: 26418749; 2015, Oncotarget;6(32):32761-73
 Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression.
- PMID: 25893302; 2016, Oncogene;35(5):537-48
 Role of Merlin/NF2 inactivation in tumor biology.
- 69. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 70. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- PMID: 17655741; 2007, Brain Pathol;17(4):371-6
 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- PMID: 19545378; 2009, Orphanet J Rare Dis;4():16
 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 73. PMID: 21642991; 2011, Nat Genet;43(7):668-72
 The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.
- PMID: 24393766; 2014, Oncotarget;5(1):67-77
 NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.
- 75. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24

 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers:

 Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

76. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26

Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.

77. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57

Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.

78. PMID: 26859683; 2016, Oncotarget;7(9):10547-56

Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.

79. PMID: 22923433; 2012, Science;338(6104):221

Genome sequencing identifies a basis for everolimus sensitivity.

80. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196

Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.

81. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93

NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.

82. PMID: 24813888; 2014, Cell Rep;7(4):999-1008

Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.

83. PMID: 17218262; 2007, Cell;128(1):157-70

Essential role for nuclear PTEN in maintaining chromosomal integrity.

84. PMID: 18794879; 2008, Oncogene;27(41):5443-53

PTEN: a new guardian of the genome.

85. PMID: 18767981; 2009, Annu Rev Pathol;4():127-50

PTEN and the PI3-kinase pathway in cancer.

86. PMID: 21125671; 2011, J Pathol;223(2):137-46

Haplo-insufficiency: a driving force in cancer.

87. PMID: 11553783; 2001, Proc Natl Acad Sci U S A;98(20):11563-8

Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression.

88. PMID: 20400965; 2010, Nat Genet;42(5):454-8

Subtle variations in Pten dose determine cancer susceptibility.

89. PMID: 9467011; 1998, Hum Mol Genet;7(3):507-15

Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation.

90. PMID: 24136893; 2013, J Natl Cancer Inst;105(21):1607-16

Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria

91. PMID: 21430697; 2011, Nat Rev Cancer;11(4):289-301

PTEN loss in the continuum of common cancers, rare syndromes and mouse models.

92. PMID: 18455982; 2008, Cell;133(3):403-14

Tenets of PTEN tumor suppression.

93. PMID: 9393738; 1997, Cancer Res;57(23):5221-5

MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines.

94. PMID: 9829719; 1998, Clin Cancer Res;4(11):2577-83

Loss of heterozygosity and mutational analysis of the PTEN/MMAC1 gene in synchronous endometrial and ovarian carcinomas.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 27 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

- PMID: 9582022; 1998, Oncogene;16(13):1743-8
 Analysis of PTEN and the 10q23 region in primary prostate carcinomas.
- 96. PMID: 9671321; 1998, Oncogene;17(1):123-7
 Allelic loss of chromosome 10q23 is associated with tumor progression in breast carcinomas.
- PMID: 11504908; 2001, Proc Natl Acad Sci U S A;98(18):10314-9
 Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR.
- PMID: 23714559; 2013, Am Soc Clin Oncol Educ Book;():
 Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation.
- 99. PMID: 20231295; 2010, J Biol Chem;285(20):14980-9 Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits.
- 100. PMID: 23287563; 2013, Clin Cancer Res;19(7):1760-72
 Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.
- 101. PMID: 17047067; 2006, Cancer Res;66(20):10040-7
 Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells.
- 102. PMID: 22422409; 2012, Clin Cancer Res;18(6):1777-89
 PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors.
- 103. PMID: 22662154; 2012, PLoS One;7(5):e37431
 Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas.
- 104. PMID: 23136191; 2012, Clin Cancer Res;18(24):6771-83 Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models.
- PMID: 21306238; 2011, N Engl J Med;364(6):514-23
 Everolimus for advanced pancreatic neuroendocrine tumors.
- 106. PMID: 23582881; 2013, Eur Urol;64(1):150-8
 Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08).
- 107. PMID: 28330462; 2017, BMC Cancer;17(1):211 Prospective phase II trial of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy.
- 108. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8
 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- 109. PMID: 26951309; 2016, J Clin Oncol;34(14):1660-8 Randomized Open-Label Phase II Trial of Apitolisib (GDC-0980), a Novel Inhibitor of the PI3K/Mammalian Target of Rapamycin Pathway, Versus Everolimus in Patients With Metastatic Renal Cell Carcinoma.
- 110. PMID: 15324695; 2004, Cancer Cell;6(2):117-27
 PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients.
- 111. PMID: 20813970; 2010, Am J Pathol;177(4):1647-56 PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer.
- 112. PMID: 21135276; 2011, J Clin Oncol;29(2):166-73 Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers.

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

- 113. PMID: 21594665; 2011, Breast Cancer Res Treat;128(2):447-56
 Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer.
- 114. PMID: 17936563; 2007, Cancer Cell;12(4):395-402
 A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer.
- PMID: 18700047; 2008, BMC Cancer;8():234
 Potential value of PTEN in predicting cetuximab response in colorectal cancer: an exploratory study.
- PMID: 17940504; 2007, Br J Cancer;97(8):1139-45
 PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients.
- 117. PMID: 19398573; 2009, J Clin Oncol;27(16):2622-9 PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer.
- PMID: 19953097; 2010, Br J Cancer;102(1):162-4
 PTEN status in advanced colorectal cancer treated with cetuximab.
- PMID: 27605871; 2016, World J Gastroenterol;22(28):6345-61
 Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer.
- 120. PMID: 24666267; 2014, Acta Oncol;53(7):852-64
 The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.
- 121. PMID: 19351834; 2009, Cancer Res;69(8):3256-61 PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR.
- PMID: 23133538; 2012, PLoS One;7(10):e48004
 Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression.
- 123. PMID: 23592446; 2013, J Cell Biochem;114(6):1248-56 mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy.
- 124. PMID: 26645196; 2016, Cancer Discov;6(2):202-16 Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
- 125. PMID: 28228279; 2017, Immunity;46(2):197-204 Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma.
- 126. PMID: 30150660; 2018, Nat Genet;50(9):1271-1281 Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors
- PMID: 21468130; 2011, Nat Rev Clin Oncol;8(5):302-6
 Treatment with olaparib in a patient with PTEN-deficient endometrioid endometrial cancer.
- 128. PMID: 23810788; 2013, Lancet Oncol;14(9):882-92
 The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial.
- 129. PMID: 23565244; 2013, PLoS One;8(4):e60408
 PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- 131. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.

AG4-QP4001-02(07) page 29 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

- 132. PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- PMID: 8673134; 1996, Nat Genet; 13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
- 135. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- PMID: 9135016; 1997, Cancer Res;57(9):1731-4
 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 141. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7
 Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.
- PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 143. PMID: 29703253; 2018, BMC Cancer;18(1):479 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.
- 144. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- 146. PMID: 24384683; 2014, Br J Cancer;110(4):946-57 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- 147. PMID: 12237773; 2002, Br J Cancer;87(6):630-4
 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- 148. PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 149. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- PMID: 25681512; 2015, J Clin Pathol;68(5):341-5
 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 30 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

- PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- PMID: 26947875; 2016, Transl Oncol;9(1):1-7
 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- 153. PMID: 25760429; 2015, Pancreas;44(4):660-4 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- 154. PMID: 22504380; 2012, Pancreas;41(4):541-6 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- 155. PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 156. PMID: 18425078; 2008, Mod Pathol;21(7):866-75 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- 157. PMID: 20525995; 2010, N Engl J Med;362(24):2260-70
 Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
- 158. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12
 Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.
- 159. PMID: 17496201; 2007, Blood;110(7):2309-15
 Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.
- 160. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 162. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 163. PMID: 18653228; 2008, Lancet;372(9637):449-56 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 164. PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 165. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- 167. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 168. PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 169. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 31 of 32

Project ID: C23-M001-00388 Report No.: AA-23-00831_ONC Date Reported: Feb 21, 2023

ACTOnco® + Report

(SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.

- 170. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 171. PMID: 30110579; 2018, N Engl J Med;379(8):753-763 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- 172. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 32 of 32