gate 6

EE24Btech11041 - Mohit

1) Let

$$f(x) = \frac{x^2}{x^2 + (1 - nx)^2}, x \in [0, 1], n = 1, 2, 3, \dots$$
 (1)

Then, which of the following statements is TRUE?

(MA 2022)

- a) $\{f_n\}$ is not equicontinous in [0, 1]
- b) $\{f_n\}$ is uniformly convergent on [0, 1]
- c) $\{f_n\}$ is equicontinous on [0, 1]
- d) $\{f_n\}$ is uniformly bounded and has a subsquence coverging uniformly in [0, 1]
- 2) Let (\mathbb{Q}, d) be the metric space with d(x, y) = |x y|. Let $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$. Then, the set E is (MA 2022)
 - a) closed but not compact
 - b) not closed but not compact
 - c) compact
 - d) neither closed nor compact
- 3) Let $T: L^2[-1,1] \to L^2[-1,1]$ be defined by $Tf = \tilde{f}$, where $\tilde{f}(x) = f(-x)$ almost everywhere. If M is the kernel of I - T, then the distance between the function $\phi(t) = e^t$ and M is (MA 2022)
 - $\frac{1}{2}\sqrt{(e^2-e^{-2}+4)}$ $\frac{1}{2}\sqrt{(e^2-e^{-2}-2)}$

- c) $\frac{1}{2}\sqrt{(e^2-4)}$ d) $\frac{1}{2}\sqrt{(e^2-e^{-2}-4)}$
- 4) X, Y and Z be Banach spaces. Suppose that $T: X \to Y$ is linear and $S: Y \to Z$ is linear, bounded and injective. In addition, if $S \circ T : X \to Z$ is bounded, then, which of the following statements is TRUE? (MA 2022)
 - a) T is surjective
 - b) T is bounded but not continuous
 - c) T is bounded
 - d) T is not bounded
- 5) The first derivative of a function $f \in C^{\infty}(-3,3)$ is approximated by an interpolating polynomial of degree 2, using the data

$$(-1, f(-1)), (0, f(0))$$
 and $(2, f(2))$. (2)

It is found that

$$f'(0) \approx \frac{2}{3}f(-1) + \alpha f(0) + \beta f(2). \tag{3}$$

Then, the value of $\frac{1}{\alpha\beta}$ is

(MA 2022)

a) 3

b) 6

c) 9

- d) 12
- 6) The work done by the force $F = (x + y)\hat{i} (x^2 + y^2)\hat{j}$, where \hat{i} and \hat{j} are unit vectors in **OX** and **OY** directions, respectively, along the upper half of the circle $x^2 + y^2 = 1$ from (1,0) to (-1,0) in the (MA 2022) xy-plane is

d) π

7) Let $u(x, t)$ be the solution of the wave equation			(MA 2022)
	$\frac{\partial^2 u}{\partial^2} - \frac{\partial^2 u}{\partial x^2}$	$= 0, 0 < x < \pi, t > 0,$	(4)
with the initial condi	tions		
$u(x,0) = \sin x + \sin 2x + \sin 3x, \frac{\partial u}{\partial t}(x,0) = 0, 0 < x < \pi$			$< x < \pi \tag{5}$
and the boundary comditions $u(0,t) = u(n,t) = 0, t \ge 0$. Then, the value of $u(\frac{\pi}{2},\pi)$ is			
a) $-\frac{1}{2}$	b) 0	c) $\frac{1}{2}$	d) 1
8) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a	a linear transformation d	lefined by	
T((1,2)) = (1,0) and $T((2,1)) = (1,1)$ (6)			
For $p, q \in \mathbb{R}^2$, let $T^{-1}((p, q)) = (x, y)$. Which of the following statements is TRUE?			(MA 2022)
a) $x = p - q$; $y = 2p - q$ b) $x = p + q$; $y = 2p - q$ c) $x = p + q$; $y = 2p + q$ d) $x = p - q$; $y = 2p + q$	- q - q		
9) Let $y = (\alpha, -1)^T$, $\alpha \in \mathbb{R}$ be a feasible solution for the dual problem of the linear programming problem			
	Ma	eximize: $5x_1 + 12x_2$	(7)
subject to : $x_1 + 2x_2 + x_3 \le 10$			(8)
		$2x_1 - x_2 + 3x_3 = 8$	(9)
		$x_1, x_2, x_3 \ge 0.$	(10)
Which of the following statements is TRUE?			(MA 2022)
a) $\alpha < 3$	b) $3 \le \alpha < 5.5$	c) $5.5 \le \alpha < 7$	d) $\alpha \geq 7$
10) Let K denote the subset of $\mathbb C$ consisting of elements algebraic over $\mathbb Q$. Then, which of the following statements are TRUE? (MA 2022)			
a) No element of $\mathbb{C}\setminus X$	_		
b) K is an algebraically closed field c) For any bijective ring homomorphism $f: \mathbb{C} \to \mathbb{C}$, we have $f(K) = K$			
d) There is no bijecti			
Let L denote the stra	night line passing throug	h the origin with slope -	d $T(\infty) = -\alpha$, where $\alpha = \frac{-1+i}{\sqrt{2}}$ -1, and let <i>C</i> denote the circle ements are TRUE? (MA 2022)
a) T maps L to a strab) T maps L to a circ	ele		
c) T^{-1} maps C to a s d) T^{-1} maps C to a c			
12) Let $a > 0$. Define $D_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $(D_a f)(x) = \frac{1}{\sqrt{a}} f\left(\frac{x}{a}\right)$, a; most everywhere, for $f \in L^2(\mathbb{R})$. Then, which of the following statements are TRUE? (MA 2022)			

c) $\frac{\pi}{2}$

b) $-\frac{\pi}{2}$

a) $-\pi$

a) D_a is a linear isometry

- b) D_a is a bijection
- c) $D_a \circ D_b = D_{a+b}, b > 0$
- d) D_a is bounded from below
- 13) Let $\{\phi_0, \phi_1, \phi_2, ...\}$ be an orthonormal set in $L^2[-1, 1]$ such that $\phi_n = C_n P_n$, where C_n is a constant and P_n is the Legendre polynomial of degree n, for each $n \in \mathbb{N} \cup \{0\}$. Then, which of the following statements are TRUE? (MA 2022)
 - a) $\phi_6(1) = 1$
- b) $\phi_7(-1) = 1$
- c) $\phi_7(1) = \sqrt{\frac{15}{2}}$ d) $\phi_7(-1) = \sqrt{\frac{13}{2}}$