SUBGROUPS OF BOUNDED RANK IN HYPERBOLIC 3-MANIFOLD GROUPS

IAN BIRINGER

ABSTRACT. We prove a finiteness theorem for subgroups of bounded rank in hyperbolic 3-manifold groups. As a consequence, we show that every bounded rank covering tower of closed hyperbolic 3-manifolds is a tower of finite covers associated to a fibration over a 1-orbifold.

1. Introduction

Suppose that M is an orientable 3-manifold and O is a 1-dimensional orbifold, both without boundary, so that O is homeomorphic to one of

(\$\dapprox\$)
$$\mathbb{R}, \ \mathbb{R}/(x\mapsto -x), \ S^1, \ \text{or} \ S^1/(z\mapsto -z).$$

A fibration of M over O is a fiber orbibundle $f: M \longrightarrow O$, e.g. as defined in §3 of [4]. If $p \in O$, the preimage $S = f^{-1}(p) \subset M$ is called a regular fiber or a singular fiber depending on whether p is a regular or singular point of O. Any singular fiber is a one-sided non-orientable surface embedded in M, while a regular fiber is a two-sided orientable surface. The preimage of any closed interval contained in the regular part of O is an embedded trivial interval bundle $S \times [0,1] \hookrightarrow M$, while the preimage of any closed interval containing a single singular point is a twisted interval bundle over the corresponding singular fiber. So, depending on the homeomorphism type of O as in (\diamond) , the manifold M is homeomorphic to either: a trivial interval bundle $S \times \mathbb{R}$ over an orientable surface S, a twisted open interval bundle over a nonorientable surface, a mapping torus over an orientable surface, or a manifold obtained by gluing two copies of a twisted interval bundle over a non-orientable surface together along their boundaries.

A fibration of M over O gives a short exact sequence

$$(\heartsuit) 1 \longrightarrow \pi_1 S \longrightarrow \pi_1 M \longrightarrow Q \longrightarrow 1,$$

where S is a regular fiber, and the quotient Q is either trivial, $\mathbb{Z}/2\mathbb{Z}$, infinite cyclic or infinite dihedral, depending on O as in (\diamond) . We call the normal subgroup $\pi_1 S \leq \pi_1 M$ the fiber subgroup; note that normality means that this subgroup is well-defined by the fibration, independent of basepoints.

Our main theorem is as follows.

Theorem 1.1 (Finiteness for Bounded Rank Subgroups). Let M be an orientable, hyperbolizable 3-manifold with finitely generated fundamental group and no \mathbb{Z}^2 subgroups in $\pi_1 M$. Given $k \in \mathbb{N}$, there is a finite set S of subgroups of $\pi_1 M$, such that for any subgroup $H \leq \pi_1 M$ with rank at most k, we have either

(1) $H = H_1 \star \cdots \star H_n \star F$, where each H_i is conjugate in $\pi_1 M$ to an element of our finite set of subgroups S, and $F \leq G$ is free,

(2) the cover N corresponding to H is compact and fibers over a 1-orbifold, with fiber subgroup an element of S.

The proof uses technology developed by the author and Souto in [5]. Briefly, equip M with a convex-cocompact hyperbolic metric and let N be a cover of M such that $\pi_1 N$ is freely indecomposable and has bounded rank. The main theorem of [5] says that the convex core of N decomposes as a union of product regions and building blocks. The product regions are homeomorphic to $S \times I$, in such a way that the level surfaces $S \times t$ have bounded geometry, although the region itself can be very wide. The building blocks all have bounded diameter, and hence only finitely many topological types. We show that if N has a sufficiently wide product region, then it fibers as in (2), while otherwise, the convex core of N has bounded diameter, which implies $\pi_1 N$ is one of finitely many subgroups H_i .

The case of Theorem 1.1 (1) where H has infinite index (or equivalently, the fact that there are only finitely many conjugacy classes of one-ended infinite index subgroups $H \leq \pi_1 M$ of bounded rank) can be deduced from earlier arguments in Kapovich-Weidmann [13], specifically their Theorem 7.5. Very recently, Weidmann-Weller [20] have extended Kapovich-Weidmann's work to apply to M that have rank 2 cusps. At heart, all these arguments are similar, in that Kapovich-Weidmann and Weidmann-Weller use an algebraic version of the 'carrier graphs' that are the essential tool in part of Biringer-Souto [5]. However, we do not know how to prove Theorem 1.1 in full without relying on the rest of [5]. Also, the proof of Theorem 1.1 via the machinery of [5] is quick and geometrically transparent.

As an application, we can characterize infinite chains of bounded rank subgroups of closed hyperbolic 3-manifold groups. If M is a closed 3-manifold that fibers over a 1-orbifold, then we have the short exact sequence (\heartsuit) , with $Q = \mathbb{Z}$ or D_{∞} , and any chain of finite index subgroups in Q pulls back to a chain of finite index subgroups of G with uniformly bounded rank. We show that this is the only way to produce infinite chains of bounded rank.

Corollary 1.2. Suppose that M is a closed, orientable hyperbolic 3-manifold, and

$$\pi_1 M \geq H_1 > H_2 > \cdots$$

is a chain of finite index subgroups such that $\sup_i \operatorname{rank} H_i < \infty$. Then after passing to a subsequence, H_1 is fibered over S^1 or $S^1/(z \mapsto -z)$ with associated SES

$$1 \longrightarrow \pi_1 S \longrightarrow H_1 \longrightarrow Q \longrightarrow 1$$
,

and (H_i) is a chain of finite index subgroups of H_1 that is the preimage of a chain of finite index subgroups of Q.

Proof. Say M, H_i are as above. Since the subgroups H_i are finite index in M, are 1-ended, and hence do not split nontrivially as free products. As the index of H_i increases with i, none of these groups are conjugate to each other, so Theorem 1.1 says that there are only finitely many H_i that do not fiber over a 1-orbifold with fiber subgroup an element of S. Remove these finitely many H_i , and pass to a subsequence so that for each i, the fiber subgroup is some fixed $K \leq \pi_1 M$.

For context, let M be a closed 3-manifold. Lackenby [15] defined the rank gradient of a chain $\pi_1 M \geq H_1 \geq H_2 \geq \cdots$ of finite index subgroups to be the limit

$$RG(H_i) := \lim_{i \to \infty} \frac{\operatorname{rank}(H_i) - 1}{[\pi_1 M : H_i]}.$$

Multiple authors have studied chains where $RG(H_i) = 0$, i.e. where the rank grows sublinearly in the index. For instance, DeBlois–Frield–Vidussi [9] have shown that if $\phi: \pi_1 M \longrightarrow \mathbb{Z}$ is a homomorphism, the chain $H_i = \phi^{-1}(i\mathbb{Z})$ has zero rank gradient if and only if ϕ is the surjection in the short exact sequence (\heartsuit) associated to a fibration of M over the circle. In general, if M is hyperbolic then every known example of a chain of subgroups of $\pi_1 M$ with zero rank gradient is constructed by modifying a chain coming from a fibration over a 1-orbifold. It is unknown whether there are qualitatively different examples. For instance, let (H_i) be a chain of subgroups of $\pi_1 M$, let N_i be the associated tower of covers of M, and let $h(N_i)$ be their Cheeger constants. Is it true that $RG(H_i) = 0$ implies $h(N_i) \to 0$? It is easy to see that the Cheeger constant goes to zero in a chain coming from a fibration. A positive answer to this question would also disprove Gaboriau's Fixed Price Conjecture in measurable dynamics, via work of Abert-Nikolov [1].

- 1.1. **Organization.** $\S 2$ contains background necessary for the proof. In particular, in $\S 2.1$ we review some hyperbolic geometry and prove a lemma that allows us to recognize when an embedded incompressible surface represents a fiber in a fibration of M over a 1-orbifold, while in $\S 2.2$ we review the main theorem of Biringer-Souto [5]. The proof of Theorem 1.1 is presented in $\S 3$.
- 1.2. **Acknowledgements.** The author was partially supported by NSF CAREER award 1654114. This paper began as part of a joint project with Edgar A. Bering IV and Nir Lazarovich. Thanks to them for the inspiration!

2. Background

2.1. Hyperbolic geometry. A (complete) hyperbolic 3-manifold is a quotient $M = \Gamma \backslash \mathbb{H}^3$, where Γ acts freely and properly discontinuously by isometries. A topological 3-manifold is called hyperbolizable if it is homeomorphic to a hyperbolic 3-manifold as above. If M is hyperbolic, the convex core of M is the quotient

$$CC(M) := \Gamma \backslash CH(\Lambda(\Gamma)),$$

where $\Lambda(\Gamma) \subset \partial \mathbb{H}^3$ is the *limit set* of Γ , and $CH(\cdot)$ denotes the hyperbolic convex hull. See e.g. [16, 3] for details. Since CC(M) may be less than 3-dimensional, it is sometimes more convenient to work with its closed 1-neighborhood $CC_1(M)$.

If M is an orientable hyperbolic 3-manifold with finitely generated fundamental group, the Tameness Theorem of Agol [2] and Calegari-Gabai [7] says that M is homeomorphic to the interior of a compact 3-manifold with boundary. Equivalently, the ends of M are all 'tame', i.e. they all have neighborhoods homeomorphic to $S \times (0, \infty)$, where S is a closed orientable surface. Assuming for simplicity that M has no cusps, work of Thurston, Bonahon and Canary [6, 8] implies that each end \mathcal{E} of M is either convex cocompact, meaning that it has a neighborhood that lies outside CC(M), or degenerate, meaning that it has a neighborhood $U \cong S \times (0, \infty)$ that contains a sequence of bounded area surfaces $f_i: S \longrightarrow U$ in the homotopy class of a level surface, where f_i exits the end as $i \to \infty$. See e.g. [16] for more details and precise definitions. As an example, if M fibers over the circle with fibers homeomorphic to a surface S, then the obvious infinite cyclic cover N of M is homeomorphic to $S \times \mathbb{R}$ and both ends of N are degenerate: one can take the required bounded area surfaces to be all the lifts of a fixed surface $S \longrightarrow M$ in the homotopy class of the fiber.

Suppose that M is an orientable hyperbolic 3-manifold and $S \hookrightarrow M$ is an immersed π_1 -injective closed surface. The cover M_S of M corresponding to $\pi_1 S$ is homeomorphic to $S \times \mathbb{R}$; this follows from the Tameness Theorem and some standard 3-manifold topology arguments, c.f. [12]. We call M_S doubly degenerate if M_S has two degenerate ends; in this case we also call S 'doubly degenerate'.

Lemma 2.1. Suppose that M is an orientable hyperbolic 3-manifold and $S \hookrightarrow M$ is a doubly degenerate, <u>embedded</u> π_1 -injective closed orientable surface. Then S is a regular fiber in a fibration of M over a 1-orbifold.

Proof. Let M_S be the cover of M corresponding to S, so M_S is a doubly degenerate hyperbolic 3-manifold homeomorphic to $S \times \mathbb{R}$. Thurston's covering theorem [18, Theorem 9.2.2] says that either $\pi: M_S \longrightarrow M$ is finite-to-one, or π factors as

$$(1) M_S \longrightarrow N \stackrel{\rho}{\longrightarrow} M,$$

where the first map is a cyclic covering map onto a closed hyperbolic 3-manifold fibering over the circle and the second map is a finite cover.

Suppose first that $\pi: M_S \longrightarrow M$ is finite-to-one. Then $\pi_1 M$ has a finite index surface subgroup, so it is finitely generated and does not split as a free product. Hence M is tame and any standard compact core $C \subset M$ has incompressible boundary. Here, a 'standard compact core' C is a compact submanifold such that $M \setminus int(C)$ is homeomorphic to $\partial C \times [0, \infty)$. Each component $T \subset \pi^{-1}(\partial C)$ is then an incompressible, embedded closed surface in $M_S \cong S \times \mathbb{R}$, and therefore is a 'level surface', isotopic to $S \times \{t\}$. The restriction $\pi|_T$ is an embedding: if not, it would nontrivially cover a component of ∂C , but since $\pi|_T$ is homotopic in M to the embedded surface S, work of Freedman-Hass-Scott (c.f. Lemma 3.1 in [5]) implies that $\pi|_T$ is homotopic to an embedding within an arbitrarily small neighborhood of its image, which is impossible since components of ∂C are two-sided, and hence their regular neighborhoods are products. Since $\pi^{-1}(C)$ is connected and is bounded by level surfaces, it must be a trivial interval bundle bounded by $\pi^{-1}(\partial C)$, which has two components. Since each of these components embeds under π , the covering map $\pi:\pi^{-1}(C)\longrightarrow C$ is either a homeomorphism or is 2-1, depending on whether the two components of $\pi^{-1}(\partial C)$ have distinct π -images or not. In the first case, C is a trivial interval bundle, and hence M is an open trivial interval bundle with Sa fiber, while in the second case Proposition 4.1 in [19] implies that M is an open twisted interval bundle with S a regular fiber. So, we're done.

Now suppose that π factors as in (1). Every component of $\rho^{-1}(S) \subset N$ is an incompressible embedded surface that is homotopic to a finite cover of the fiber of N, so every component is actually in the homotopy class of the fiber. Hence $\rho^{-1}(S)$ cuts N into a collection of trivial interval bundles $S \times [0,1]$, and each component of $\rho^{-1}(S)$ projects homeomorphically into M. As in the previous paragraph, this implies that S cuts M into pieces that are either trivial interval bundles $S \times [0,1]$ or twisted interval bundles with S a regular fiber. So, M fibers.

2.2. Thick manifolds with bounded rank. In this subsection we review some material from [5]. Let M be an orientable hyperbolic 3-manifold. A product region in M is the image $U \subset M$ of a proper embedding

$$\Sigma_q \times I \longrightarrow M, \quad I = [0, 1], [0, \infty), \text{ or } (-\infty, \infty),$$

such that for some regular neighborhood $\mathcal{N}(U) \supset U$, we have:

- (1) every point $p \in U$ is in the image of a NAT simplicial ruled surface $\Sigma_g \longrightarrow \mathcal{N}(U)$ that is a homotopy equivalence,
- (2) each component $S \subset \partial U$ lies in the 1-neighborhood of another such NAT simplicial ruled surface.

Here, a simplicial ruled surface (SRS) is a map from a triangulated surface Σ , where edges map to geodesics and where the image of each triangle is foliated by geodesics. Equipping Σ_g with the pullback metric, we say that the SRS is NAT (or 'not accidentally thin') if there is no simple closed curves on Σ_g with length less than ϵ that is nullhomotopic in M. The reader can see [5, §5] for precise definitions, but the main point is that NAT SRSs $\Sigma_g \longrightarrow M$ in ϵ -thick¹ hyperbolic 3-manifolds M satisfy a 'bounded diameter lemma', i.e. the diameter of Σ_g in the pullback metric is bounded above by a constant depending only on g, ϵ . See §5.5 of [5]. For the purposes of this paper, it's sufficient to think of a product region as just a submanifold homeomorphic to a surface cross an interval, where the geometry is bounded in the surface direction. The phrasing with SRSs is just a useful way to formulate this without specifying a priori what 'bounded' means.

In [5, Theorem 13.1], the authors prove the following geometric decomposition theorem for convex cores of ϵ -thick hyperbolic 3-manifolds with bounded rank.

Theorem 2.2. Fix $k \in \mathbb{N}$ and some sufficiently small $\epsilon > 0$. Then there are constants n = n(k), g = g(k), $B = B(k, \epsilon)$ as follows.

Suppose M is a complete, orientable hyperbolic 3-manifold with

$$\operatorname{rank}(\pi_1(M)) \le k, \quad \operatorname{inj}(M) \ge \epsilon,$$

and assume that $\pi_1 M$ is freely indecomposable. Then CC(M) contains a collection \mathcal{U} of at most n product regions, each with genus at most g, such that every component of $CC_1(M) \setminus (\bigcup_{u \in \mathcal{U}} int(U))$ has diameter at most B.

The statement above is slightly different from that given in [5, Theorem 13.1]. First, the 'freely indecomposable' assumption in the statement above implies that there are no essential simple closed curves on $\partial CC(M)$ that are compressible in M; this is a stronger version of a related hypothesis in the statement in [5]. Also, in [5] the authors work with the convex core and its interior rather than the 1-neighborhood and the convex core itself, under a standing assumption that the convex core is 3-dimensional, but the version above follows formally from theirs.

3. The proof of Theorem 1.1

Fix an orientable hyperbolic 3-manifold M with finitely generated fundamental group and no rank two cusps. Here's what we will actually prove.

Theorem 3.1. Given $k \in \mathbb{N}$, there is some g = g(k) such that there are only finitely many isomorphism types of subgroups $H \leq \pi_1 M$ such that

- (a) H is freely indecomposable and rank(H) < k,
- (b) it's not the case that M is compact, $H \leq \pi_1 M$ has finite index, and the associated cover N of M fibers over a compact 1-orbifold with regular fiber of genus at most g.

Let's show how to derive Theorem 1.1 from Theorem 3.1.

¹The *injectivity radius* of a hyperbolic 3-manifold M, written $\operatorname{inj}(M)$, is the half the length of the shortest homotopically essential loop in M, and M is called ϵ -thick if $\operatorname{inj}(M) \geq \epsilon$.

Proof of Theorem 1.1. Let S^1 be a minimal set of subgroups of G representing all the conjugacy classes of one-ended subgroups $H \leq G$ with rank at most k that satisfy (b) above. When M is noncompact, we set $S = S^1$. Otherwise, we set S to be the union of S^1 with all doubly degenerate closed surface subgroups of G that have genus at most g.

Since G is a hyperbolic group, for any fixed finitely presented one-ended hyperbolic group H, there are a finite number of conjugacy classes of subgroups of G isomorphic to H, see Delzant [10]. Any one-ended group is freely indecomposable, so by this and Theorem 3.1, the set \mathcal{S}^1 is finite. Delzant's theorem also implies that up to conjugacy, there are only finitely many doubly degenerate closed surface subgroups $K \leq G$ with genus at most g. However, if M is compact, Thurston's covering theorem [18, Theorem 9.2.2] implies that any such $K \leq G$ is a normal subgroup of a finite index subgroup $H_K \leq G$. Since there only finitely many conjugacy classes of such K, we can take the indices $[G:H_K]$ to be bounded, and hence finitely many H_K suffice, implying that there are only finitely many $K \leq G$, even without identifying conjugates. So, \mathcal{S} is always finite.

Now suppose $H \leq G$ has rank at most k. Since G is torsion free, it follows from Grushko's Theorem and Stallings' Theorem, c.f. [17], that H can be written as

$$H = H_1 \star \cdots \star H_n \star F$$
,

where the H_i are one-ended, F is a free group, and all these free factors have rank at most k. If all the H_i satisfy (b) above, they are conjugate into \mathcal{S} and we're done. Otherwise, some H_i has finite index, so the free product decomposition must be trivial, i.e. $H = H_i$, and the cover $N \longrightarrow M$ corresponding to H fibers over a compact 1-orbifold with regular fiber a surface of genus at most g, and the fiber subgroup of H lies in \mathcal{S} by construction.

The rest of the section is devoted to the proof of Theorem 3.1. Since the conclusion of the theorem is topological, we may assume that M is convex co-compact, say by Thurston's Haken hyperbolization theorem [14] in the noncompact case.

Claim 3.2. There is some L = L(g, M) as follows. Suppose that $N \longrightarrow M$ is a locally isometric covering map and $U \subset N$ is a product region with genus at most g. Then either width $(U) \leq L$, or there is a fibration of N over a 1-dimensional orbifold where U is a collar neighborhood of a regular fiber.

In the statement of the claim, if U is a compact product region, width (U) is defined to be the infimal length of a path in U between the two boundary components of U. If U is noncompact, we set width $(U) := \infty$.

Proof. It suffices to prove the claim for product regions of fixed genus g. Hoping for a contradiction, let $\rho_i: N_i \longrightarrow M$ be a sequence of locally isometric covers containing product regions $U_i \subset N_i$ with genus g, where width $(U_i) \to \infty$, and where no U_i is a collar neighborhood of a regular fiber in a fibration of N_i .

Pick base points $p_i \in U_i$ such that $d(p_i, \partial U_i) \to \infty$. By Lemma 6.20² in [5], we can assume after passing to a subsequence that the sequence (N_i, p_i) converges geometrically to a pointed doubly degenerate hyperbolic 3-manifold (N_{∞}, p_{∞}) , where

²In [5], results are often stated using 'width relative to the ϵ -thin part' instead of width as defined here. However, in the current setting we are only looking at covers of a fixed convex cocompact M, so if ϵ is chosen smaller than the injectivity radius of M then width and relative width coincide.

 $N_{\infty} \cong \Sigma_g \times \mathbb{R}$. Moreover, if we choose level surfaces $S_i \subset U_i$ at bounded distance from p_i (see Lemma 6.5 of [5]), then if (ϕ_i) is a sequence of almost isometric maps witnessing the geometric convergence (see Definition 9.1 of [5]), for large i we have that the image of ϕ_i contains S_i and $\phi_i^{-1}(S_i)$ is a level surface in N_{∞} .

By Arzela-Ascoli, after passing to a subsequence we can assume that the maps $\rho_i \circ \phi_i$ converge to a locally isometric covering map $\rho_\infty : N_\infty \longrightarrow M$. It follows that for large i, the groups $(\rho_i)_*(\pi_1 S_i)$ and $(\rho_\infty)_*(\pi_1 N_\infty)$ are conjugate in $\pi_1 M$. So, S_i is a doubly degenerate incompressible embedded surface in N_i , and hence is a regular fiber in some fibration over a 1-orbifold by Lemma 2.1, a contradiction. \square

So, let $\epsilon > 0$ be smaller than the injectivity radius of M, and small enough so that Theorem 2.2 holds. Let g = g(k) be as in Theorem 2.2. Let N be a cover of M with rank $(N) \leq k$, with $\pi_1 N$ freely indecomposable, and assume that it's not the case that N is compact and fibers over a 1-orbifold with regular fiber a genus at most g surface. We will show that N is homotopy equivalent to a simplicial complex with at most V = V(k, M) simplices; it will follow that $\pi_1 N$ has one of finitely many isomorphism types.

First, it could be that N is noncompact, but fibers over a 1-orbifold with a regular fiber of genus at most g. In this case, N is homotopy equivalent to a (possibly non-orientable) surface with bounded complexity, so we're done. We may then assume that N does not fiber over a 1-orbifold with regular fiber of genus at most g, in which case Claim 3.2 says that all genus at most g product regions in N have width at most some L = L(k, M). Since the width of a thick product region bounds its diameter [5, Fact 6.4], by Theorem 2.2 we have that $CC_1(N)$ has diameter at most some constant D = D(k, M). Pick a maximal $\epsilon/2$ -separated set $S \subset CC_1(N)$. The number of such points is at most linear is vol $CC_1(N)$, which is bounded above by a function of D. Let $\mathcal N$ be the nerve complex of the set of ϵ -balls around points in S. Then $\mathcal N$ has bounded degree, so the number of simplices in $\mathcal N$ is bounded by some V = V(k, M). By the nerve lemma (c.f. Corollary 4G.3 in [11]), $\mathcal N$ is homotopy equivalent to the union of all the associated ϵ -balls. This union deformation retracts onto $CC_1(N)$, via the closest point retraction, and N does as well, so N and $\mathcal N$ are homotopy equivalent as desired.

References

- Miklós Abért and Nikolay Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1657–1677. MR 2966663
- 2. Ian Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568.
- 3. Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310 (94e:57015)
- Ian Biringer, Nir Lazarovich, and Arielle Leitner, On the Chabauty space of PSL(2,R), i: lattices and grafting, arXiv preprint arXiv:2110.14401 (2021).
- 5. Ian Biringer and Juan Souto, *Thick hyperbolic 3-manifolds with bounded rank*, arXiv preprint arXiv:1708.01774 (2017).
- Francis Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no. 1, 71–158. MR MR847953 (88c:57013)
- Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds,
 J. Amer. Math. Soc. 19 (2006), no. 2, 385–446 (electronic). MR MR2188131 (2006g:57030)
- 8. Richard D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1–35. MR MR1166330 (93e:57019)
- Jason DeBlois, Stefan Friedl, and Stefano Vidussi, Rank gradients of infinite cyclic covers of 3-manifolds, Michigan Mathematical Journal 63 (2014), no. 1, 65–81.

- Thomas Delzant, L'image d'un groupe dans un groupe hyperbolique, Commentarii Mathematici Helvetici 70 (1995), 267–284.
- 11. Allen Hatcher, *Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR MR1867354 (2002k:55001)
- 12. John Hempel, 3-manifolds as viewed from the curve complex, Topology **40** (2001), no. 3, 631–657. MR MR1838999 (2002f:57044)
- 13. Ilya Kapovich and Richard Weidmann, *Kleinian groups and the rank problem*, Geometry & Topology 9 (2005), no. 1, 375–402.
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston Inc., Boston, MA, 2001. MR 1792613 (2002m:57018)
- Marc Lackenby, Expanders, rank and graphs of groups, Israel J. Math. 146 (2005), 357–370.
 MR 2151608 (2006c:20068)
- Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998, Oxford Science Publications. MR MR1638795 (99g:30055)
- 17. Peter Scott and Terry Wall, *Topological methods in group theory*, Homological group theory (Proc. Sympos., Durham, 1977), vol. 36, 1979, pp. 137–203.
- 18. William Thurston, *The geometry and topology of 3-manifolds*, Lecture notes at Princeton University, 1980.
- 19. Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR MR0224099 (36 #7146)
- 20. Richard Weidmann and Thomas Weller, Foldings in relatively hyperbolic groups, arXiv preprint arXiv:2403.17686 (2024).