

Research Interests

Foundations of large-scale social systems, dynamical systems, optimization, machine learning, game theory, computational social science, pandemic science

Publications

Efficient PAC Learnability of Dynamical Systems Over Multilayer Networks [pdf]

In Submission

- <u>Authors</u>: **Zirou Qiu**, Abhijin Adiga, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti.
- <u>Summary</u>: We propose efficient PAC algorithms with provable guarantees for learning dynamical systems over *multilayer* networks.

Learning the Topology and Behavior of Discrete Dynamical Systems [pdf]

AAAI Conference on Artificial Intelligence (AAAI) - 2024

- <u>Authors</u>: **Zirou Qiu**, Abhijin Adiga, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti.
- <u>Summary</u>: We propose rigorous methods for learning both the *topology* and *behavior* of a black-box dynamical system.

Assigning Agents to Increase Network-Based Neighborhood Diversity [pdf]

Intl. Conf. on Autonomous Agents and Multiagent Systems (AAMAS) – 2023

• <u>Authors</u>: **Zirou Qiu**, Andrew Yuan, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard

(Acc rate: 23.3%, Oral)

(Acc rate: 19.6%, Oral)

(Acc rate: 23.8%)

• <u>Summary</u>: We present rigorous methods to allocate public goods on networks while maintaining a high social *diversity*.

Networked Anti-Coordination Games Meet Graphical Dynamical Systems: Equilibria and Convergence [pdf]

AAAI Conference on Artificial Intelligence (AAAI) – 2023

Stearns, and Anil Vullikanti.

- <u>Authors</u>: **Zirou Qiu**, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti.
- <u>Summary</u>: We provide tight analyses on the *equilibria* and *convergence* of the anti-coordinations games, which model strategic situations such as social competition.

Airborne disease transmission during *indoor gatherings* over multiple time scales: Modeling framework and policy implications [pdf]

Proceedings of the National Academy of Sciences (PNAS) – 2023

- Authors: Avinash Dixit, Baltazar Espinoza, **Zirou Qiu**, Anil Vullikanti, and Madhav Marathe.
- <u>Summary</u>: We propose a modeling framework that couples the fast dynamics of the viral load in enclosed spaces and the slow dynamics of disease progression at the population level. We derive *policy guidelines* to lessen the negative impact of epidemics.

Understanding the *Co-evolution* of Mask-wearing and Epidemics: A Network Perspective [pdf]

Proceedings of the National Academy of Sciences (**PNAS**) – 2022

• <u>Authors</u>: **Zirou Qiu**, Baltazar Espinoza, Vitor V. Vasconcelos, Chen Chen, Sara M. Constantino, Stefani A. Crabtree, Luojun Yang, Anil Vullikanti, Jiangzhuo Chen, Jörgen Weibull, Kaushik Basu, Avinash Dixit, Simon Levin, Madhav Marathe.

• Summary: We present a framework that models the dueling dynamics of non-pharmaceutical interventions and disease on multilayer graphs. We then derive policy guidelines to suppress the ongoing epidemic and prevent its future revival.

Finding Nontrivial Minimum Fixed Points in Networked Dynamical Systems [pdf]

AAAI Conference on Artificial Intelligence (**AAAI**) – 2022

(Acc rate: 15%, Oral: 4.8%)

- Authors: Zirou Qiu, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti.
- Summary: We propose theoretically sound methods to find a nontrivial equilibrium in a dynamical system with the minimum number of infected vertices.

Efficiently Learning the Topology and Behavior of a Networked Dynamical System Via Active Queries [pdf] International Conference on Machine Learning (ICML) — 2022 (Acc rate: 22%)

- Authors: Daniel Rosenkrantz, $(\alpha \beta)$ Abhijin Adiga, Madhav Marathe, **Zirou Qiu**, S.S. Ravi, Richard Stearns, and Anil Vullikanti.
- Summary: We introduce active learning methods with provable guarantees to infer the network topology and the behavior of a dynamical system.

ELRUNA: Elimination Rule-based Network Alignment [pdf]

ACM Journal of Experimental Algorithmics (ACM-JEA) – 2021.

- Authors: Zirou Qiu, Ruslan Shaydulin, Xiaoyuan Liu, Yuri Alexeev, Christopher S. Henry, Ilya Safro.
- Summary: We propose algorithms for the topology-based network alignment problem that outperforms the state-of-the-art methods.

Research Experience

University of Virginia

Graduate Research Assistant

Advisor: Prof. Madhav Marathe Fall 2020 – Present

• Topic: Graph problems in dynamical systems, machine learning, pandemic science, and computational social science.

Clemson University

Graduate Research Assistant

Advisor: Prof. Ilya Safro Jan 2019 - May 2020

• Topic: Combinatorial optimization and computational biology.

Argonne National Laboratory

Graduate Research Aide

Host: Chris Henry Summer 2019

Topic: Combinatorial optimization and computational biology.

Education

University of Virginia Charlottesville, VA Ph.D. in Computer Science Aug 2020 - Present

Overall GPA: 4.0/4.0

Clemson University Clemson, SC M.S. in Computer Science Aug 2018 - May 2020

Overall GPA: 3.75/4.0

Southeast Missouri State University

Cape Girardeau, MO B.S. in Computer Science – Dean's List, Cum Laude Aug 2013 - May 2018

Major GPA: 3.878/4.0; Overall GPA: 3.708/4.0

Skills

Mathematical skills: Design and analysis of algorithms; network science; combinatorics; game theory; foundations of machine learning; mathematical modeling of large socio-technical systems

Programming skills: Data science; C++; PyTorch; foundation models; Matlab; R