Calculate α

2024-04-13

Bian Kaiming

1. The tensor and the vector space

Let $T^{(o)}$ be the odd layer of T gates, and $T^{(e)}$ be the even layer of T gates. Then we have the following circuits:

Now, alternately apply the odd and even layers of T gates to the $|\gamma_1\gamma_{2n}\rangle$

$$T^{(\mathrm{whole})}(b_1,t) = T^{(o)}{}^{b_2} \Biggl(\prod_{i=0}^{t-b_2} T^{(e)} T^{(o)} \Biggr) T^{(e)}{}^{b_1},$$

where $b_1,b_2\in\{0,1\}$, $t+b_1$ stands for the number of layers. The output states must in the vector space spaned by the following basis

$$|Z_i\rangle\!\rangle, \quad \left|X_i\left(\prod_{k=i+1}^{j-1}Z_k\right)Y_j\right\rangle\!\rangle$$

Let $M_i = \frac{1}{\sqrt{2}}(X_i + Y_i)$, the space

$$V\coloneqq \operatorname{span}\!\left\{|Z_i\rangle\!\!\!\right\rangle,\; \left|M_i\!\left(\prod Z_k\right)\!M_j\!\left.\right\rangle\!\!\!\right\rangle\right\}$$

is the image subspace for all $T^{(\text{whole})}(b_1,t)$ with $b_1+t>0$ if the input state is limit to Γ_2 . Thus, the action of $T^{(\text{whole})}(b_1,t)$ could always be written in the following form

$$T^{(\text{whole})}(b_1,t)|\gamma_1\gamma_{2n}\rangle\!\!\rangle = \sum P(i,i,t)|Z_i\rangle\!\!\rangle + \sum_{i< j} P(i,j,t) \Big|M_i\Big(\prod Z_k\Big)M_j\Big\rangle\!\!\rangle.$$

The action of the tensor could be simplified by studying the coefficients P(i, j, t).

2. Propagator

To simplify the discussion, we start with a special case: $b_1=1,b_2=0$, and the number of wires is an even number 2N. In this case, the whole tensor $T^{(\mathrm{whole})}$ could be written as

$$T^{(\mathrm{whole})}(1,t) = \left(T^{(e)}T^{(o)}\right)^t T^{(e)}.$$

Then, we lift the V into the space of the second order 2N-dimensional polynomials

$$W \coloneqq \operatorname{span} \left\{ \sum_{i,j=1}^{2N} c_{i,j} x_i x_j \right\}$$

We can prove that the space V is isometric to the space W by ϕ ,

$$\begin{split} \phi: V \to W \\ \left| M_i \Big(\prod Z_k \Big) M_j \Big\rangle \!\!\!\! \right\rangle \to x_i x_j \\ \left| Z_i \right\rangle \!\!\!\! \right\rangle \to x_i^2. \end{split}$$

Let $T_p^{(2N)}(t)$ be the map $\phi T^{(\mathrm{whole})}(1,t)\phi^{-1}$, the following diagram commutes.

$$V \xrightarrow{T^{\text{(whole)}}(1,t)} V$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$W \xrightarrow{T_p^{(2N)}(t)} W$$

Now, let's consider the action of the tensor $T_p^{(2N)}(t)$ on the space W. Similarly, we could write down the recursive relation of coefficients $a_{i,j}$.

When t=0, the transforming state $T^{(e)}|\gamma_1\gamma_{4N}\rangle\!\!\!/$ to W, and we got $\frac{1}{4}(x_1x_{2N}+x_1x_{2N-1}+x_2x_{2N}+x_1x_{2N-1})$. Suppose at t, the vector in W is $\sum c_i(t)c_j'(t)x_ix_j$,

$$\begin{split} T_p^{(2N)}(t+1) \bigg(\frac{1}{4} (x_1 x_{2N} + x_1 x_{2N-1} + x_2 x_{2N} + x_1 x_{2N-1}) \bigg) \\ &= T^{(e)} T^{(o)} T_p^{(2N)}(t) \bigg(\frac{1}{4} (x_1 x_{2N} + x_1 x_{2N-1} + x_2 x_{2N} + x_1 x_{2N-1}) \bigg) \\ &= T^{(e)} T^{(o)} \sum c_i(t) c_j'(t) x_i x_j \end{split}$$

Then, the action of $\ \phi \ T^{(e)} T^{(o)} \phi^{-1}$ on this vector is

$c_i c_j' x_i x_j$	$\phi T^{(e)} T^{(o)} \phi^{-1} \big(c_i c_j' x_i x_j \big)$
i = j = 1	$\frac{\frac{1}{6}(c_1x_1+c_1x_2)(c_2'x_1+c_2'x_2)}{(c_1'x_1+c_2'x_2)}$
i=1, j=2,3	$ \frac{1}{8}(c_1x_1+c_1x_2)\big(\tfrac{4}{3}c_2'x_1+\tfrac{4}{3}c_2'x_2+c_2'x_3+c_2'x_4\big) $
i = 1, j > 3	$\begin{bmatrix} \frac{1}{8}(c_1x_1+c_1x_2)\left(c_j'x_{j-2+\eta_j}+c_j'x_{j-1+\eta_j}+c_j'x_{j+1+\eta_j}\right)\\ c_j'x_{j+\eta_j}+c_j'x_{j+1+\eta_j} \end{bmatrix}$
1 < i < 2N, $i = j$	$ \begin{array}{l} \frac{1}{24} \Big(c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \\ \\ \Big(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) \\ \\ -\frac{1}{72} \Big(c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} \Big) \Big(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} \Big) \\ \\ -\frac{1}{72} \Big(c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \Big(c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) \end{array} $
1 < i < 2N, i is even, $j = i + 1$	$ \frac{\frac{1}{12} \Big(c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) }{ \Big(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) } $ $ - \frac{1}{36} \Big(c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} \Big) \Big(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} \Big) $ $ - \frac{1}{36} \Big(c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \Big(c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) $
$1 < i < 2N,$ $i + \eta_i \le j \le i + \eta_i + 2$	$\begin{split} &\frac{1}{16} \Big(c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \\ & \left(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \right) \\ & + \frac{1}{48} \Big(c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \Big(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} \Big) \end{split}$
$1 < i < 2N,$ $j > i + \eta_i + 2$	$\frac{\frac{1}{16} \Big(c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big)}{\Big(c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big)}$
i = j = 2N	$\tfrac{1}{6}(c_{2N}x_{2N-1}+c_{2N}x_{2N})(c_{2N}'x_{2N-1}+c_{2N}'x_{2N})$

Table 1: The action of the tensor ϕ $T^{(e)}T^{(o)}\phi^{-1}$ on the space of second order 2N-dimensional polynomials.

The subsript η_i is defined as $\eta_i \coloneqq 1 - (i \mod 2)$. We can see that, c_{2i-1} and c_{2i} are always the same. So do c'_{2j-1} and c'_{2j} . Let $b_i = 2c_{2i-1} = 2c_{2i}$ and $b'_j = 2c'_{2j-1} = 2c'_{2j}$, we could further simplify the action of the tensor in the space of second order N-dimensional polynomials W_N . For simplemess, we define a "free" recursive relation in W_N

$$P(i,t+1) = \begin{cases} \frac{1}{4}(P(i-1,t) + 2P(i,t) + P(i+1,t)), & i \neq 1 \text{ or } N \\ \frac{1}{4}(P(i-1,t) + 2P(i,t) + P(i+1,t)) \end{cases}$$
 (1)

We call it "free" because $b_i(t)b'_j(t) = P(i,t)P(j,t)$ if i and j are not "collide" with each other (which means |i-j| > 3). And the solution of Eq. (1) is a propagating wave. Refs. [1] provide the solution of this equation,

$$P_{n_0}(n,t) = \frac{1}{N} + \frac{2}{N} \sum_{k=1}^{N-1} \cos \left(\left(n - \frac{1}{2} \right) \frac{\pi k}{N} \right) \cos \left(\left(n_0 - \frac{1}{2} \right) \frac{\pi k}{N} \right) \cos^{2t} \frac{\pi k}{2N}, \ (2)$$

where n_0 is the initial state. The term $P_{n_0}(n,t)$ also called the propagator.

For our case, there are 2 propagators, which are P_1 and P_N . And the initial state is x_1x_N . Let $\phi()$

Now, let's pluge $b_i=2c_{2i-1}=2c_{2i}$ and $b'_j=2c'_{2j-1}=2c'_{2j}$ into Table 1. More concretely, let ϕ' be the map

$$\begin{split} \phi':W_N \to W_{2N} \\ y_i y_j &\to \frac{1}{4} (x_{2i-1} + x_{2i}) \big(x_{2j-1} + x_{2j} \big). \end{split}$$

If we consider the subspace W_{2N}' of W_{2N} , where $W_{2N}' \coloneqq \operatorname{span} \left((x_{2i-1} + x_{2i}) \left(x_{2j-1} + x_{2j} \right) \right)$ (it means $c_{2i-1} = c_{2i}$ and $c_{2j-1}' = c_{2j}'$), the ϕ' will be the isometric between W_N and W_{2N}' . Thus, the following diagram commutes.

For simpliness, let

$$F(y_i) = \begin{cases} \frac{3}{4}y_1 + \frac{1}{4}y_2 \ , \ i = 1 \\ \frac{1}{4}y_{i-1} + \frac{1}{2}y_i + \frac{1}{4}y_{i+1} \ , \ 1 < i < N \\ \frac{3}{4}y_N + \frac{1}{4}y_{N-1} \ , \ i = N \end{cases}$$

Then we get

$y_i y_j$	$T^{(e)}T^{(o)}$
i = j = 1	$\left[F(y_1)F(y_1) - \frac{5}{144}(y_1 + y_2)^2 + \frac{1}{36}y_1y_2\right]$

这个 table 的计算实在是太太太太太折磨人了。详细计算我放在了 Section 3 中。

3. Proofs

 $Proof\ of\ Table\ 2$: 现在我们想要计算 $T_p^{(N)}(t)$ 在 W_N 中的作用。因此我们需要计算

$$\begin{split} &\phi'\phi T^{(e)}T^{(o)}\phi^{-1}\phi'^{-1}\big(y_iy_j\big)\\ &=\phi T^{(e)}T^{(o)}\phi^{-1}\left(\frac{1}{4}(x_{2i-1}+x_{2i})\big(x_{2j-1}+x_{2j}\big)\right)\\ &=\phi T^{(e)}T^{(o)}\phi^{-1}\left(\frac{1}{4}\big(x_{2i-1}x_{2j-1}+x_{2i-1}x_{2j}+x_{2i}x_{2j-1}+x_{2i}x_{2j}\big)\right) \end{split}$$

相当于对于每一个 $x_{2i-1}x_{2j-1}$ 这样的项进行查表。我们现在来分析不同的 y 的映射。为了简化符号,这里记 $S_N=\phi'\phi T^{(e)}T^{(o)}\phi^{-1}\phi'^{-1}$, $S_{2N}=\phi T^{(e)}T^{(o)}\phi^{-1}$.

$$\begin{split} \phi'(y_1y_1) &= \frac{1}{4}(x_1x_1 + 2x_1x_2 + x_2x_2) \\ S_N(y_1y_1) &= \frac{1}{4}(S_{2N}(x_1x_1) + S_{2N}(2x_1x_2) + S_{2N}(x_2x_2)) \end{split}$$

依据 Table 1, 我们有

$$\begin{split} S_N(y_1y_1) &= \frac{1}{4} \bigg(\\ &\frac{1}{6} (x_1 + x_2)(x_1 + x_2) + \\ &\left(\frac{1}{4}\right) \bigg(\left(\frac{4}{3}\right) x_1 + \left(\frac{4}{3}\right) x_2 + x_3 + x_4 \bigg) (x_1 + x_2) + \\ &- \bigg(\frac{1}{72} \bigg) \Big((x_1 + x_2)^2 \Big) + \bigg(\frac{1}{24} \bigg) \Big((x_1 + x_2 + x_3 + x_4)^2 \Big) - \bigg(\frac{1}{72} \bigg) \Big((x_3 + x_4)^2 \Big) \\ \bigg) \\ &\left(\frac{19}{144} \bigg) (x_1^2) + \bigg(\frac{19}{72} \bigg) x_1 x_2 + \bigg(\frac{1}{12} \bigg) x_1 x_3 + \bigg(\frac{1}{12} \bigg) x_1 x_4 \\ &+ \bigg(\frac{19}{144} \bigg) (x_2^2) + \bigg(\frac{1}{12} \bigg) x_2 x_3 + \bigg(\frac{1}{12} \bigg) x_2 x_4 \\ &+ \bigg(\frac{1}{144} \bigg) (x_3^2) + \bigg(\frac{1}{72} \bigg) x_3 x_4 + \bigg(\frac{1}{144} \bigg) (x_4^2) \end{split}$$

我们想要和"自由演化"进行对比。而 y_1y_1 自由演化的结果是

$$F(y_1y_1) = \frac{1}{16}(3y_1 + y_2)(3y_1 + y_2)$$

$$= \frac{1}{16} \left(\frac{3}{2}x_1 + \frac{3}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4\right) \left(\frac{3}{2}x_1 + \frac{3}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4\right)$$

$$= \left(\frac{9}{64}\right)(x_1^2) + \left(\frac{9}{32}\right)x_1x_2 + \left(\frac{3}{32}\right)x_1x_3 + \left(\frac{3}{32}\right)x_1x_4$$

$$+ \left(\frac{9}{64}\right)(x_2^2) + \left(\frac{3}{32}\right)x_2x_3 + \left(\frac{3}{32}\right)x_2x_4 + \left(\frac{1}{64}\right)(x_3^2)$$

$$+ \left(\frac{1}{32}\right)x_3x_4 + \left(\frac{1}{64}\right)(x_4^2)$$

二者之差为

$$\begin{split} S_N(y_1y_1) - F(y_1y_1) &= -\left(\frac{5}{576}\right)(x_1^2) - \left(\frac{5}{288}\right)x_1x_2 - \left(\frac{1}{96}\right)x_1x_3 - \left(\frac{1}{96}\right)x_1x_4 \\ &- \left(\frac{5}{576}\right)(x_2^2) - \left(\frac{1}{96}\right)x_2x_3 - \left(\frac{1}{96}\right)x_2x_4 \\ &- \left(\frac{5}{576}\right)(x_3^2) - \left(\frac{5}{288}\right)x_3x_4 - \left(\frac{5}{576}\right)(x_4^2) \\ &= -\frac{5}{576}(x_1 + x_2 + x_3 + x_4)^2 + \frac{1}{144}(x_1 + x_2)(x_3 + x_4) \\ &= -\frac{5}{144}(y_1 + y_2)^2 + \frac{1}{36}y_1y_2 \end{split}$$

接下来,算 $S_N(y_1y_2)$

$$S_N(y_1y_2) = \frac{1}{4}(S_{2N}(x_1x_3) + S_{2N}(x_1x_4) + S_{2N}(x_2x_3) + S_{2N}(x_2x_4))$$

我崩溃辣 □

Bibliography

[1] L. Giuggioli, "Exact spatiotemporal dynamics of confined lattice random walks in arbitrary dimensions: A century after Smoluchowski and Pólya," *Physical Review X*, vol. 10, no. 2, p. 21045–21046, 2020.