This exam consists of 5 questions. Answer the questions in the spaces provided.

Name and discussion section:GSI's name:			
1. Determine if the following se	equences converge or diverge.	Carefully justify your ans	wer.
(a) (10 points)	$\left\{\frac{(-1)^n \arctan(n)}{n}\right\}_{n=1}^{\infty}$		
Solution:			
Observe $\frac{-T}{2}$ < an	rtauln1 < T	For all n>	1
$= \frac{1}{2\mu} < \frac{1}{2\mu}$	1) "arctailu)	To for all .	· —> /
But $\frac{-1}{2n}$, $\frac{1}{2n} \rightarrow 0$	as n -> as. Hence	converged by	squeeze
(b) (10 points)			
Solution:	$\left\{\frac{n}{\ln(n+1)}\right\}_{n=1}^{\infty}$		
Let $\mathcal{H}(x) = \frac{1}{2}$	/u (2G-1)		
lent $\left\{\frac{h}{\ln(nH)}\right\} = \frac{1}{2}$	Cut +(x) = Cu	x - 1 =	lit (x+1)
= 03	L'Hyptes	7.41)	2
Hence segnenu d	livergent		

2. (20 points) Determine whether the following series is absolutely convergent, conditionally convergent or divergent. If convergent you do not need to determine the sum.

$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n)}{n}$$

Solution:

Let
$$f(z) = \frac{\ln(z)}{z}$$
 for $x \ge 1$. Observe the $f'(z) = -\ln(z)$ $\frac{1}{x^2}$ for $x \ge 1$. Observe the $f'(z) = -\ln(z)$ $\frac{1}{x^2}$ for $\frac{1}{x^2}$ $\frac{$

tena conditionly converget

3. (20 points) Determine if the following series is convergent or divergent. If convergent you do not need to determine the sum.

$$\sum_{n=1}^{\infty} \frac{(\cos(n)+2)\sqrt{n^2-1}}{n^2+n+1}$$

Solution:

Observe that
$$\cos(n) + 2 \pi 1$$
 for all $n \pi 1$.

Hence let us do a comparison with $\sum_{n=1}^{\infty} \sqrt{n^2 - 1}$

To determine convergence / divergence of this sents

do limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.

 $\sqrt{n^2 - 1}$
 $\sqrt{n^2 - 1}$
 $\sqrt{n^2 - 1}$
 $\sqrt{n^2 + n + 1}$

05 n -> 00

Henn by Cint companison Est, becaus $\frac{\infty}{2}$ in divergent,

 $\sum_{n=1}^{\infty} \frac{\sqrt{n^2-1}}{n^2+n+1}$ divergent.

By the usual companism test we deduce that

\[\left[\left(\text{cos}(n) +2) \forall n^2 -1 \]

\[\left(\text{are} \forall \forall n^2 \cdots \forall \forall n^2 \cdots \forall n^2 \

- 4. Determine whether the following series are convergent or divergent. If convergent determine the sum.
 - (a) (10 points)

$$\sum_{n=1}^{\infty} \cos(\frac{1}{n^2})$$

Solution:

$$\frac{1}{n^2} \rightarrow 0$$
 on $n \rightarrow \infty$ \Rightarrow $cos(\frac{1}{n^2}) \rightarrow cos(0) \Rightarrow | \neq 0$
on $n \rightarrow \infty$. Hence diverget by divergence test.

$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n}$$

Solution:

$$0 < \frac{2}{6}, \frac{3}{6} < 1 \implies \sum_{n=1}^{\infty} (\frac{2}{6})^n \text{ and } \sum_{n=1}^{\infty} (\frac{2}{6})^n \text{ converget}$$

$$\implies \sum_{n=1}^{\infty} (\frac{2}{6})^n + \sum_{n=1}^{\infty} (\frac{3}{6})^n = \sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n} \text{ converget}$$

$$\sum_{n=1}^{\infty} (\frac{2}{6})^n = \frac{2}{6} \left(\frac{1}{1-\frac{2}{6}}\right) = \left(\frac{1}{2}\right)^n = \frac{3}{2} \left(\frac{3}{1-\frac{3}{6}}\right)^n = \frac{3}{2} \left(\frac{1}{1-\frac{3}{6}}\right)^n = \frac{3}{2}$$

$$\sum_{n=1}^{\infty} (\frac{3}{6})^n = \frac{3}{6} \left(\frac{1}{1-\frac{3}{6}}\right)^n = \frac{3}{2}$$

5. (20 points) Determine if the following series is convergent or divergent. If convergent you do not need to determine the sum.

$$\sum_{n=1}^{\infty} \frac{n!}{\sqrt{n^n}}$$

Solution:

Do ratio test Let
$$a_n = \frac{n!}{\sqrt{n^n}} = \frac{n!$$

Hem
$$\left|\frac{q_{n+1}}{q_n}\right| \rightarrow \infty$$
 as $n \rightarrow \infty$

by vatio test.

The could also observe the
$$\sqrt{n^n} \leq n^n$$
 for $n \geq 1$
 $\frac{n!}{\sqrt{n^n}} \geq \frac{n!}{n^n}$ for $n \geq 1$. Then do notes test

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

\$ \$ \$ \$