

## Dados e Aprendizagem

## Automática

Eduardo Cunha

Jorge Rodrigues

João Magalhães

Rodrigo Gomes

## Metodologia



## Data Exploration

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 305 entries, 0 to 304
Columns: 2181 entries, ID to Transition
dtypes: float64(2014), int64(147), object(20)
memory usage: 5.1+ MB

Não há entradas duplicadas

Não há valores em falta

A grande maioria das colunas são numéricas



# Visualização dos Dados



# Visualização dos Dados



## Preparações dos dados

#### Prep 1

- Drop de colunas identificadoras
- Drop a colunas não numéricas
- Normalização MinMax

#### Prep 2

- Drop de colunas identificadoras
- Drop a colunas não numéricas
- Drop a colunas constantes
- Outlier Removal Z-score
- Normalização Standard

#### Prep 3

- Drop de colunas identificadoras
- Drop a colunas não numéricas
- Drop a colunas constantes
- Normalização MinMax

#### Prep 4

- Drop de colunas identificadoras
- Drop a colunas não numéricas
- Normalização MinMax
- Feature Selection com PCA

## Preparações dos dados

#### Prep 5

- Remoção de colunas não numéricas
- Remoção de colunas constantes
- Normalização MinMax
- Eliminação de Features com Cross-Validation

#### Prep 6

- Remoção de colunas não numéricas
- Remoção de colunas constantes
- Normalização MinMax
- Eliminação de Features com Cross-Validation
- SMOTE

#### Prep 7

- Remoção de colunas não numéricas
- Remoção de colunas constantes
- Feature Selection com ANOVA
- Normalização MinMax

### Ciclo de Treino dos Modelos



## Modelos

## Essemblers

Bagging

| Preparação | n_estimators | F1-macro    | Kaggle | Diff     |
|------------|--------------|-------------|--------|----------|
| 1          | 100          | 0.335723023 | /      | /        |
| 2          | 100          | 0.327265027 | /      | /        |
| 3          | 100          | 0.325427311 | /      | /        |
| 4          | 100          | 0.260252105 | /      | /        |
| 5          | 50           | 0.373371477 | 0.3251 | 0.048271 |
| 6          | 300          | 0.708276411 | /      | /        |
| 7          | 300          | 0.335320281 | /      | /        |

### Random Forest

| Prep | n_estimators | max_depth | criterion | max_features | F1-macro     | Kaggle  | Diff        |
|------|--------------|-----------|-----------|--------------|--------------|---------|-------------|
| 1    | 100          | 5         | entropy   | log2         | 0.352970724  | 0.39298 | 0.040009276 |
| 2    | 300          | 5         | entropy   | None         | 0.3365891168 | /       | /           |
| 3    | 100          | 20        | entropy   | log2         | 0.336931552  | 0.31972 | 0.017211552 |
| 4    | 500          | 10        | entropy   | sqrt         | 0.277658465  | /       | /           |
| 5    | 50           | 20        | gini      | None         | 0.358217787  | 0.3504  | 0.007817787 |
| 6    | 500          | 20        | entropy   | sqrt         | 0.726276622  | 0.29079 | 0.435486622 |
| 7    | 300          | 20        | entropy   | sqrt         | 0.364177667  | 0.38099 | 0.024372333 |

## Essemblers

## Gradient Boosting

| Prep | n_estimators | max_depth | learning_r | max_features | F1-macro    | Kaggle     | Diff        |
|------|--------------|-----------|------------|--------------|-------------|------------|-------------|
| 1    | 100          | 5         | 0.1        | sqrt         | 0,36091994  | 0.2730     | 0,087909946 |
| 2    | 50           | 5         | 0.1        | sqrt         | 0,337514053 | /          | /           |
| 3    | 50           | 5         | 0.3        | none         | 0,34531770  | 0.40015    | 0,05483229  |
| 4    | 100          | 5         | 0.1        | none         | 0,30322347  | /          | /           |
| 5    | 100          | 10        | 0.3        | sqrt         | 0,3417128   | 0,09364276 | /           |
| 6    | 100          | 10        | 0.3        | sqrt         | 0,7353971   | /          | /           |
| 7    | 100          | 20        | 0.3        | sqrt         | 0,3343648   | /          | /           |

### XGBoosting

| Preparação | n_estimators | max_depth | learning_rate | F1-macro   | Kaggle  | Diff       |
|------------|--------------|-----------|---------------|------------|---------|------------|
| 1          | 50           | 5         | 0.1           | 0.34849889 | 0.30851 | 0.03998800 |
| 2          | 300          | 5         | 0.1           | 0.32311066 | /       | /          |
| 3          | 50           | 5         | 0.1           | 0.34849809 | 0.31212 | 0.03637800 |
| 4          | 50           | 5         | 0.1           | 0.28788948 | /       | /          |
| 5          | 50           | 5         | 0.3           | 0.32751658 | /       | /          |
| 6          | 300          | 5         | 0.3           | 0.70815849 | /       | /          |
| 7          | 100          | 0         | 0.3           | 0.33275179 | /       | /          |

## Essemblers

## Stacking

| Preparação | Meta model   | Modelos     | F1-macro    | Kaggle  | Diff        |
|------------|--------------|-------------|-------------|---------|-------------|
| 1          | RandomForest | Rf, GB, SVM | 0.324699587 | 0.34652 | 0.021820413 |
| 3          | RandomForest | Rf, GB, SVM | 0.305552525 | /       | /           |
| 4          | RandomForest | Rf, GB, SVM | 0.333704187 | 0.25241 | 0.081294187 |
| 5          | RandomForest | Rf, GB, SVM | 0.293556556 | 0.31103 | 0.017473444 |
| 6          | RandomForest | Rf, GB, SVM | 0.756487516 | /       | /           |
| 7          | RandomForest | Rf, GB, SVM | 0,332924057 | 0.3323  | 0.000624057 |

## Maxvoting

| Preparação | Modelos     | Pesos   | F1-macro    | Kaggle  | Diff     |
|------------|-------------|---------|-------------|---------|----------|
| 1          | GB, SVM, RF | [2,1,3] | 0.338322464 | /       | /        |
| 3          | GB, SVM, RF | [3,1,2] | 0.345316348 | 0.27619 | 0.069126 |
| 4          | GB, SVM, RF | [5,3,1] | 0.303223475 | /       | /        |
| 5          | GB, SVM, RF | [5,3,1] | 0.357627429 | 0.25334 | 0.104287 |
| 6          | GB, SVM, RF | [3,1,2] | 0.7490927   | 0.3492  | 0.399893 |
| 7          | GB, SVM, RF | [3,3,1] | 0.342865921 | /       | /        |

## SVM

| Preparação | С   | kernel  | gamma | F1-macro    | Kaggle  | Diff     |
|------------|-----|---------|-------|-------------|---------|----------|
| 1          | 1   | linear  | scale | 0.314632233 | /       | /        |
| 3          | 1   | rbf     | scale | 0.297462045 | /       | /        |
| 4          | 1   | rbf     | scale | 0.320738023 | /       | /        |
| 5          | 100 | sigmoid | scale | 0.340245549 | 0.27993 | 0.060316 |
| 6          | 100 | rbf     | scale | 0.744010658 | /       | /        |
| 7          | 1   | rbf     | scale | 0.313844853 | /       | /        |

## Neural Networks

| Layer (type:depth-idx) | Output Shape | Param # |
|------------------------|--------------|---------|
| MLP_1                  | [213, 5]     |         |
| -Linear: 1-1           | [213, 400]   | 805,600 |
| ReLU: 1-2              | [213, 400]   |         |
| -Linear: 1-3           | [213, 200]   | 80,200  |
| ReLU: 1-4              | [213, 200]   |         |
| -Linear: 1-5           | [213, 5]     | 1,005   |
| Softmax: 1-6           | [213, 5]     |         |





## Clustering







## Exploitation

- Exprimentar com novos hiperparâmetros: Testámos ajustes mais variados
- Novas Técnicas: Explorámos AdaBoost e ExtraTreesClassifier
- **Técnicas para dados desbalanceados:** Métodos como EasyEnsemble e BalancedRandomForest
- Stacking e Voting: Resultados inconsistentes
- Over sampling e Under sampling: SMOTE e outros métodos geraram ruído ou perda de informação, afetando a performance.

## Comparação de modelos e Preparações de dados

Os modelos de ensemble destacaram-se claramente, com o Random Forest (preparação 5) a obter o melhor F1-score macro, e o Gradient Boost (preparação 3) a ter maior robustez nas submissões públicas do Kaggle.

As preparações 3 e 5 foram as mais eficazes globalmente.

## Dificuldades Identificadas:

- Classes desbalanceadas afetaram negativamente as classes minoritárias.
- Overfitting prejudicou a generalização de alguns modelos.
- Dados limitados com muitos atributos reduziram o desempenho geral.



## Desempenho no Kaggle:

- Testes Públicos: 29<sup>a</sup> posição.
- **Testes Privados:** 26ª posição, com o Random Forest a demonstrar boa generalização.

| Prep | n_estimators | max_depth | criterion | max_features | F1-macro    | Kaggle | Diff        |
|------|--------------|-----------|-----------|--------------|-------------|--------|-------------|
| 5    | 50           | 20        | gini      | None         | 0.358217787 | 0.3504 | 0.007817787 |

• A melhor submissão alcançou um F1 de 0,41 (6ª posição), mas foi

| Prep | n_estimators | max_depth | learning_r | max_features | F1-macro   | Kaggle  | Diff       |
|------|--------------|-----------|------------|--------------|------------|---------|------------|
| 3    | 50           | 5         | 0.3        | none         | 0,34531770 | 0.40015 | 0,05483229 |

### Conclusão

Os objetivos foram atingidos, mas a principal limitação foi o reduzido dataset (100 entradas), que dificultou a criação de modelos robustos e generalizáveis, especialmente em redes neuronais.

Diversas técnicas de preparação e modelação foram aplicadas, como normalização e seleção de variáveis, resultando em progressos promissores. Contudo, a ampliação do dataset é crucial para melhorar a eficácia dos modelos, especialmente os mais complexos.

Este trabalho oferece uma base sólida para futuras investigações com dados mais abrangentes.



# Dados e Aprendizagem

## Automática

Eduardo Cunha

Jorge Rodrigues

João Magalhães

Rodrigo Gomes