E.M.B

Chapter 4: CONGRUENCES AND THE INTEGERS MODULO *n*

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- define a multiplicative inverse in Z_n
- \clubsuit state whether or not \overline{a} in \mathbb{Z}_n has an inverse using gcd(a,n)
- \clubsuit find the inverse of \overline{a} in \mathbb{Z}_n if it has one
- *
- ď

DEFINITION For a modulus $n \ge 2$ and an integer a, a residue class \overline{b} in \mathbb{Z}_n is called a multiplicative inverse of \overline{a} if $\overline{b}.\overline{a} = \overline{1} = \overline{a}.\overline{b}$ in \mathbb{Z}_n .

REMARK: If \overline{a} has an inverse, it is unique.

Note: Not all elements in \mathbb{Z}_n have a multiplicative inverse.

Summary of inverses in \mathbb{Z}_n :

The additive inverse of \overline{a} is $-\overline{a} = \overline{n-a}$ (See Thm 4.2.4 part iv in slide 10)

The multiplicative inverse of a is defined above...

Theorem (4.2.6) (the condition to check if an element has an inverse)

Let a, $n \in \mathbb{Z}$, and n > 2. Then \overline{a} has inverse in \mathbb{Z}_n iff gcd(a, n) = 1.

PROOF:

$$\Rightarrow$$

say $\overline{b} \in \mathbb{Z}_n$ such that $\overline{a}\overline{b} = \overline{1}$. (say the inverse exists, then there is a b that satisfies the condition)

$$\overline{ab} = \overline{1} \quad \stackrel{1}{\Rightarrow} \quad \overline{ab} = \overline{1} \stackrel{2}{\Rightarrow} ab \equiv 1 \pmod{n} \quad \text{(what are the reasons to } \\ \stackrel{3}{\Rightarrow} \quad ab - 1 = kn, \qquad k \in \mathbb{Z} \quad \text{justify each} \\ \stackrel{4}{\Rightarrow} \quad ab - kn = 1, \qquad k, a, b, n \in \mathbb{Z} \quad \text{implication ?)} \\ \stackrel{5}{\Rightarrow} \quad \gcd(a, n) = 1. \text{ by Theorem 2.4.2}$$

E.M.B

say gcd(a, n) = 1. Then $\exists p, q \in \mathbb{Z}$ such that ap + nq = 1 by Theorem 2.4.2.

Thus
$$ap - 1 = (-q)n$$
, $-q \in \mathbb{Z}$

- $\therefore ap \equiv 1 \pmod{\frac{n}{n}}$
- $\overline{ap} = \overline{1}$ and $\overline{a}.\overline{p} = \overline{1}$.
- \therefore \overline{p} is the inverse of \overline{a} .

Example (4.2.7 (1))

Find the inverse of $\overline{16}$ in \mathbb{Z}_{35} and use to solve $\overline{16}x = \overline{9}$ in \mathbb{Z}_{35} .

$$35 = 2.16 + 3$$
 $16 = 5.3 + 1$
 $3 = 3.1$

Last nonzero remainder is 1.

- \therefore gcd(16,35) = 1 i.e. coprime
- \therefore 16 is invertible in \mathbb{Z}_{35} by Theorem 4.2.6.

Now to find the inverse:

E.M.E

(Finding the inverse using techniques from chapter 2)

(Using the inverse to solve the equation with coefficients in $\mathbb{Z}_{\mathbb{D}}$)

Use to solve $\overline{16}x = \overline{9}$ in \mathbb{Z}_{35} . Substituting back in

$$1 = 16 - 5.3 = 16 - 5(35 - 2.16) = 16 + 10.16 - 5.35$$

= $11.16 - 5.35$.

Therefore $1\underline{1}.16 \equiv 1 \pmod{35}$ so $\overline{11}$ is inverse of $\overline{16}$ in \mathbb{Z}_{35} .

$$\therefore \quad \overline{16}x = \overline{9} \quad \Rightarrow \quad x = \overline{11}.\overline{9} = \overline{99} = \overline{29}.$$

Example (4.2.7 (2))

Find the elements of \mathbb{Z}_9 that have inverses.

9 is not prime. 1,2,4,5,7,8 are coprime with 9 but 3 and 6 have common factors with 9.

So $\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}$ are invertible in \mathbb{Z}_9 . And

 $\overline{2}.\overline{5} = \overline{10} = \overline{1}$ so $\overline{2}$ and $\overline{5}$ are inverses.

 $\overline{4}.\overline{7} = \overline{28} = \overline{1}$ so $\overline{4}$ and $\overline{7}$ are inverses.

 $\overline{8}.\overline{8}=\overline{64}=\overline{1}$ so $\overline{8}$ is self inverting.