Minimizacija logičkih funkcija

a) algebarska metoda

$$f = A + ABC + AB + \overline{ABC}$$

$$= A(1+B) + BC(A + \overline{A})$$

$$= A + BC$$

Karnaugh-ove tablice (mape) Funkcija od 2 varijable

A	B	f	P_{i}
0	0	v_0	$\overline{A}\overline{B} = P_0$
0	1	v_1	$\overline{A}B = P_1$
1	0	v_2	$A\overline{B} = P_2$
1	1	v_3	$AB = P_3$

$A \stackrel{B}{\setminus}$	0	1
0	00	01
1	10	11

Primjeri

$$f = AB$$

$$f = B$$

$$f = \overline{AB} + AB = B(\overline{A} + A) = B$$

$$f = A\overline{B} + \overline{A}B = A \oplus B$$

= B + A

Karnaugh-ova mapa za funkciju od 3 varijable

A	00	01	11	10
0	\overline{ABC}	\overline{ABC}	$\overline{A}BC$	$\overline{A}B\overline{C}$
1	$A\overline{B}\overline{C}$	\overline{ABC}	ABC	$AB\overline{C}$

A	00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

$$BC$$

$$0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$f_{\min} = \overline{A}C + A\overline{C} = A \oplus C$$

$$f_{\min} = \overline{A}C + A\overline{C}$$

Karnaugh-ova mapa za funkciju od 4 varijable

CD				
AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	m_{11}	m_{10}

CD				
AB	00	01	11	10
00	1	1	1	1
01	1	1		1
11	1	1	1	1
10	1	1	1	1
	y I			

$$f_{\min} = A + \overline{B} + \overline{C} + \overline{D}$$

Primjer

$$f_{\min} = \overline{{}^{B}C} + \overline{{}^{B}D} + \overline{ABD} + B\overline{C}D$$

Karnaugh-ova mapa za funkciju od 5 varijabli

 $f = \sum (2,3,4,7,10,11,13,16,18,19,23,24,26,27,29,31) = f(A,B,C,D,E)$

$\ \ DE$					$\setminus DE$				
BC	00	01	11	10	BC	00	01	11	10
00	m_0	m_1	m_3	m_2	00	m_{16}	m_{17}	m_{19}	m_{18}
01	m_4	m_5	m_7	m_6	01	m_{20}	m_{21}	m_{23}	m_{22}
11	m_{12}	m_{13}	m_{15}	m_{14}	11	m_{28}	m_{29}	m_{31}	m_{30}
10	m_8	m_9	m_{11}	m_{10}	10	m_{24}	m_{25}	m_{27}	m_{26}
'			•	•			1		

$$A = 0$$

$$A = 1$$

Karnaugh-ova mapa za funkciju od 5 varijabli - primjer

 $f = \sum (2,3,4,7,10,11,13,16,18,19,23,24,26,27,29,31) = f(A,B,C,D,E)$

$$f_{\min} = \overline{CD} + ADE + A\overline{CE} + \overline{BDE} + BC\overline{DE} + \overline{ABCDE}$$

Nepotpuno specificirane funkcije

$$f_{\min} = BD + \overline{C}D$$

$$f = \sum () + X()$$
$$f = \prod () + X()$$

Minimizacija proizvoda makstermi

$$f = \prod (4,5,6,7,12,14)$$

$$f_{\min} = (A + B)(B + D)$$

Kombinacijski moduli

Dekoder

E	Α	В	D_0	D_1	D_2	D_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	D ₀ 0 1 0 0	0	1	0
1	1	1	0	0	0	1

$$D_0 = E(\overline{A}\overline{B})$$

$$D_2 = E(A\overline{B})$$

$$D_1 = E(\overline{A}B)$$

$$D_3 = E(AB)$$

Dekoder 2/4 - realizacija

BCD-dekadski dekoder

EABCD	D_0 D_1	D_2 D_3	D_4	D_5	D_6	D_7	D_8	D_9
0 X X X X	0 0	0 0	0	0	0	0	0	0
10000	1							
10001	1							
1 0 0 1 0 1 0 0 1 1		1 1				(/	
10100		\	1					/
1 0 1 0 1				1			\nearrow	
1 0 1 1 0					1	,		
1 0 1 1 1						1		
1 1 0 0 0	X						1	
1 1 0 0 1	´ 							1
1 1 0 1 0 1 1 0 1 1								
1 1 1 0 0								
1 1 1 0 1				><				
1 1 1 1 0								
1 1 1 1 1								

BCD-dekadski dekoder

\CD	1			
AB	00	01	11	10
00	1			
01				
11	Х	Х	Х	Х
10			Х	Х

 D_0

$$D_0 = E(\overline{A}\overline{B}\overline{C}\overline{D})$$

$$D_1 = E(\overline{A}\overline{B}\overline{C}D)$$

$$D_2 = E(\overline{BCD})$$

$$D_3 = E(\overline{BCD})$$

$$D_4 = E(B\overline{C}\overline{D})$$

$$D_5 = E(B\overline{C}D)$$

$$D_6 = E(BC\overline{D})$$

$$D_7 = E(BC\overline{D})$$

$$D_8 = E(AD)$$

$$D_9 = E(AD)$$

BCD-dekadski dekoder - realizacija

Ostvarivanje logičkih funkcija pomoću dekodera

$$f_1 = A\overline{B} + \overline{A}B$$

 $f_2 = A\overline{B} + AB$
 $f_3 = B = B(A + \overline{A}) = AB + \overline{A}B$

Koder

$$A = I_2 + I_3$$

$$\mathsf{B} = \mathsf{I}_1 + \mathsf{I}_3$$

Multiplekser

E	Α	В	Z
0	Χ	Χ	0
1	0	0	D_0
1	0	1	D_1
1	1	0	D_2
1	1	1	D_3

$$Z = (D_0 \overline{AB} + D_1 \overline{AB} + D_2 A \overline{B} + D_3 AB)E$$

Multiplekser - realizacija

Ostvarivanje logičkih funkcija pomoću multipleksera

$$f = \overline{A}B + A\overline{B}$$

$$f = D_0 \overline{A}\overline{B} + D_1 \overline{A}B + D_2 A\overline{B} + D_3 AB$$

$$0 \qquad 1 \qquad 1 \qquad 0$$

Demultiplekser - DEMUX

Prijenos podataka pomoću MUX-a

Sklop za sabiranje dvije binarne cifre - polusabirač

a	b	S	
0	0	0	0
0	1	1	\cap
1	0	$\begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}$	0
1	1	0	1

$$\begin{bmatrix} a & - & & S \\ b & - & P \end{bmatrix}$$

$$S = \overline{ab} + a\overline{b}$$
$$P = ab$$

Sklop za sabiranje 3 binarne cifre

Sklop za sabiranje tri binarne cifre – potpuni sabirač

$$S_1 = ab + ab$$

$$P_1 = ab$$

$$S_{2} = S = \overline{S}_{1}c + S_{1}\overline{c} =$$

$$= (\overline{ab} + a\overline{b})c + \overline{abc} + a\overline{bc}$$

$$= a\overline{bc} + \overline{abc} + a\overline{bc} + a\overline{bc}$$

$$P_2 = S_1 c = (ab + ab)c$$
$$= \overline{abc} + \overline{abc}$$

$$P = P_1 + P_2 = ab + abc + abc$$
$$= ac + ab + bc$$

Sklop za oduzimanje - poluodbijalo

M	S	D	Z
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$D = \overline{M}S + M\overline{S}$$
$$Z = \overline{M}S$$

Potpuno odbijalo

M	S	Z_{k-1}	D	Z_{k+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D = \overline{M} \overline{S} Z_{k-1} + M \overline{S} \overline{Z}_{k-1} + M S Z_{k-1} + \overline{M} S \overline{Z}_{k-1}$$

$$Z_{k+1} = \overline{M} Z_{k-1} + \overline{M} S + S Z_{k-1}$$

Potpuno odbijalo realizovano sa dva poluodbijala

