

CORSO DI TECNOLOGIE D'ACCESSO

LoRa

- ✓ LoRa (Long Range) è una tecnologia wireless sub-GHz per comunicazioni a basso data rate su lunghe distanze
- ✓ Pensato per comunicazioni Machine to Machine (M2M) e Internet of Things (IoT)
- ✓ La tecnologia LoRa è una soluzione che fornisce servizi WAN tramite protocollo MAC chiamato LoRaWAN

- ✓ 2013 Lancio della prima radio LoRa da parte di Semtech
- ✓ 2014 Primo Trial di una rete interamente LoRA
- √ 2015 Nasce LoRa Alliance che in 6 mesi vede unirsi oltre 130 compagnie
- ✓ 2016 Viene introdotta la geolocalizzazione a bassa potenza e Comcast annuncia l'avvio di un Trial negli Stati Uniti di una rete LoRaWAN
- ✓ 2018 LoRa Alliance vanta oltre 400 membri con oltre 100 regioni con infrastrutture o Trial

- ✓ Molti sistemi wireless utilizzano la modulazione FSK a livello fisico perché è molto efficiente per trasmissioni a bassa potenza
- ✓ LoRa si basa sulla modulazione chirp spread spectrum che mantiene le stesse caratteristiche di bassa potenza della modulazione FSK ma aumenta significativamente il raggio di comunicazione
- ✓ Chirp SS è stato usato nella comunicazione militare e spaziale per decenni proprio per le lunghe distanze di comunicazione che possono essere raggiunte e la robustezza alle interferenze ma LoRa è la prima implementazione a basso costo per uso commerciale

Chirp Spread Spectrum

CHIRP SPREAD SPECTRUM

- ✓ Un singolo gateway o una stazione base possono coprire una città o centinaia di Km²
- ✓ Ovviamente la copertura assoluta dipende dall'ambiente e dalle ostruzioni in una data posizione
- ✓ LoRa e LoRaWAN hanno un budget di collegamento superiore a qualsiasi altro tecnologia di comunicazione standardizzata
- ✓ Con minima infrastruttura interi paesi possono essere facilmente coperti

True location

- · Indoor and outdoor
- Accurate

Bidirectional

- Bidirectional
- · Scalable capacity
- Broadcast

Global mobility

- · True mobility
- Seamless
- Roaming

Security

- Unique ID
- · Application
- Network

Traditional Cellular

Long Range
Higher data rates
Low battery life
High Cost

Long Range
Low data rates
Long battery life
Low Cost

Local Area Network

Short Range High data rates Low battery life Medium Cost

Personal Area Network

Very Short Range Low data rates Good battery life Low Cost

- Coverage map from a single gateway
- □ Cisco Webex building in San Jose
- □ >20 miles (32Km) coverage from a single gateway

LoRa e LoRaWAN

- ✓ LoRaWAN definisce il protocollo di comunicazione e l'architettura di rete
- ✓ LoRa definisce il livello fisico per consentire collegamenti a lungo raggio
- ✓ Il protocollo e l'architettura di rete hanno la maggiore influenza su:
 - > durata della batteria di un nodo
 - > capacità della rete
 - > qualità del servizio
 - > sicurezza
 - > applicazioni servite dalla rete

LoRa e LoRaWAN

Application							
LoRa® MAC							
	MAC options						
Class A (Baseline)		lass B aseline)	Class C (Continuous)				
LoRa® Modulation							
Regional ISM band							
EU 868	EU 433	US 915	AS 430	_			

Classi di dispositivi

- ✓ Classe A:
 - > Sensori alimentati a batteria
 - > Trasmissione bidirezionale limitata
- ✓ Classe B:
 - > Attuatori alimentati a batteria
 - > Trasmissione bidirezionale con finestre di ricezione predefiniti
- ✓ Classe C:
 - > Dispositivi con alimentazione di rete
 - > Trasmissione bidirezionale a capacità massima

Modulazione LoRa

- ✓ Adaptive Data Rate (ADR): LoRaWAN può adattare il data rate e il fattore di spreading (SF) su ciascun dispositivo in modo da:
 - > Aumentare il tempo di vita della batteria
 - ➤ Massimizzare la capacità di rete
 - ➤ Massimizzare il data rate

Modulazione LoRa

Bandwidth	SF	Symbol	Nb bit per symbol	SNR	Sensitivity	BR	TOA
125kHz	SF7	7ms	1	-7.5dBm	-118	5kbps	10ms
123KHZ	SF12	32ms	12	-20dBm	-136	300bps	1.5s

<u>As a conclusion</u>: the higher is the SF, the longer is the TOA, the less bytes are sent <u>BUT</u> the longer is the range(distance) achieved.

Modulazione LoRa

Jammer type	LoRa Co-channel Signal to Interferer ratio	Existing FSK Co-channel Signal to Interferer
CW / FSK / GMSK	-25dB	+8 to 12dB
OFDM / AWGN	-21dB	+10 to 15dB
LoRa at different data rate	-25dB	

Architettura di Rete

- ✓ Molte reti distribuite esistenti utilizzano un'architettura di rete mesh in cui i singoli nodi finali inoltrano le informazioni di altri nodi per aumentare l'intervallo di comunicazione e la dimensione della rete stessa
- ✓ Di contro aumenta la complessità riducendo la capacità della rete e la durata della batteria in quanto i nodi ricevono e inoltrano informazioni da altri nodi che risultano spesso irrilevanti
- ✓ L'architettura stellare a lungo raggio ha più senso per la conservare la batteria quando è possibile raggiungere la connettività a lungo raggio

- ✓ I nodi non sono associati a un gateway specifico e i dati trasmessi da un nodo vengono generalmente ricevuti da più gateway
- ✓ Ogni gateway inoltrerà il pacchetto ricevuto dal nodo finale al cloud server di rete tramite infrastruttura esistente (cellulare, Ethernet, satellite o Wi-Fi)
- ✓ L'intelligenza e la complessità vengono trasferite al server di rete
 che
 - ➤ gestisce la rete
 - filtra i pacchetti ricevuti ridondanti
 - > esegue controlli di sicurezza
 - > pianifica le conferme attraverso il gateway ottimale ed esegue dati adattivi

- ✓ Se un nodo è mobile o in movimento non è necessario alcun handover da gateway a gateway -> altra funzionalità fondamentale per abilitare le applicazioni di tracciamento delle risorse
- ✓I nodi in una rete LoRaWAN sono asincroni e comunicano quando lo fanno quando hanno dati pronti o se l'invio è determinato da eventi che programmati
- ✓ Questo tipo di protocollo è noto come Aloha
- ✓ In una rete mesh o sincrona i nodi devono spesso "svegliarsi" per sincronizzarsi e controllare i messaggi

- ✓ Questa sincronizzazione è significativa in termini energetici e risulta la causa principale della riduzione della durata della batteria
- ✓ In un recente studio è stato illustrato come LoRaWAN ha mostrato un vantaggio da 3 a 5 volte rispetto a tutte le altre tecnologie

Capacità di Rete

- ✓ Per rendere praticabile una rete a stella a lungo raggio il gateway deve avere un'alta capacità o essere in grado di ricevere messaggi da un numero molto elevato di nodi
- ✓ Un'alta capacità di rete in una rete LoRaWAN si ottiene utilizzando dati adattativi e utilizzando un ricetrasmettitore multicanale nel gateway in modo che si possa ricevere messaggi simultanei su più canali
- ✓ I fattori critici sono
 - numero di canali simultanei
 - ➤ velocità dei dati
 - ➤ lunghezza del payload
 - ➤ frequenza di trasmissione dei nodi

Capacità di Rete

- ✓ Dal momento che LoRa è una modulazione spread spectrum i segnali sono ortogonali tra loro quando vengono utilizzati diversi fattori di diffusione
- ✓ Man mano che il fattore di diffusione cambia la velocità dei dati effettiva varia conseguentemente
- ✓II gateway sfrutta questa proprietà potendo ricevere contributi diversi sullo stesso canale contemporaneamente
- ✓ Se un nodo ha un buon collegamento ed è vicino a un gateway non c'è motivo per utilizzare sempre la velocità più bassa ed è possibile utilizzare lo spettro disponibile più a lungo del necessario

Sicurezza

- ✓ LoRaWAN utilizza due livelli di sicurezza: uno per la rete e uno per l'applicazione
- ✓ La sicurezza della rete garantisce l'autenticità del nodo nella rete
- ✓ Il livello applicativo di sicurezza garantisce che l'operatore di rete non abbia accesso a dati dell'applicazione dell'utente finale
- ✓ Viene utilizzata la crittografia AES con scambio di chiavi che utilizzano un identificativo IEEE EUI64

Ricapitolando

- ✓ Modulazione -> DSS-like
- ✓ Throughput -> 300 bps -50 Kbps
- ✓ Payload -> 64 bytes
- ✓ Link Adaptation -> VSF (SF7-SF12)
- ✓ Larghezza di banda-> 125 KHz
- ✓ Duty cycle limitato -> SI
- √ Channel Hopping -> SI
- ✓ Copertura-> 14 km
- ✓ Bi-direzionale -> SI
- ✓ Durata batteria -> fino a 10 anni
- √ Localizzazione -> SI (con precisione di 30 metri)
- ✓ Crittografia -> AES-128

LoRa nel Mondo

	Europe	North America	China	Korea	Japan	India
Frequency band	867-869MHz	902-928MHz	470- 510MHz	920- 925MHz	920- 925MHz	865- 867MHz
Channels	10	64 + 8 +8				In definition by Technical Committee
Channel BW Up	125/250kHz	125/500kHz				
Channel BW Dn	125kHz	500kHz	mittee	mittee	mittee	
TX Power Up	+14dBm	+20dBm typ (+30dBm allowed)	ical Com	In definition by Technical Committee	In definition by Technical Committee	
TX Power Dn	+14dBm	+27dBm	In definition by Technical Committee	Techn		
SF Up	7-12	7-10		n by		
Data rate	250bps- 50kbps	980bps-21.9kpbs		finitio		
Link Budget Up	155dB	154dB	n de	n de	n de	
Link Budget Dn	155dB	157dB				

LoRa vs Altri

Feature	LoRaWAN	Narrow-Band	LTE Cat-1 2016 (Rel12)	LTE Cat-M 2018 (Rel13)	NB-LTE 2019(Rel13+)
Modulation	SS Chirp	UNB / GFSK/BPSK	OFDMA	OFDMA	OFDMA
Rx bandwidth	500 - 125 KHz	100 Hz	20 MHz	20 - 1.4 MHz	200 KHz
Data Rate	290bps - 50Kbps	100 bit/sec 12 / 8 bytes Max	10 Mbit/sec	200kbps – 1Mbps	~20K bit/sec
Max. # Msgs/day	Unlimited	UL: 140 msgs/day	Unlimited	Unlimited	Unlimited
Max Output Power	20 dBm	20 dBm	23 - 46 dBm	23/30 dBm	20 dBm
Link Budget	154 dB	151 dB	130 dB+	146 dB	150 dB
Batery lifetime - 2000mAh	105 months	90 months		18 months	
Power Efficiency	Very High	Very High	Low	Medium	Med high
Interference immunity	Very high	Low	Medium	Medium	Low
Coexistence	Yes	No	Yes	Yes	No
Security	Yes	No	Yes	Yes	Yes
Mobility / localization	Yes	Limited mobility, No loc	Mobility	Mobility	Limited Mobility No Loc

Applicazioni reali

- ✓ Monitoraggio della salute degli animali
- ✓ Resa delle colture
- ✓ Conservazione dell'acqua

- ✓ Utilizzo delle risorse
- ✓ Monitoraggio delle risorse
- ✓ Consumo energetico e sfruttamento del suolo

Applicazioni reali

- ✓ Tutela dell'ambiente
- ✓ Copertura della città o del quartiere
- ✓ Efficienza operativa

- ✓ Edifici intelligenti
- ✓ Profonda penetrazione indoor
- √ Sicurezza e protezione
- ✓ Efficienza operativa