Edinson Tolentino

MSc Economics

email: edinsontolentinor@pacifico.com.pe

Twitter: @edutoleraymondi

Proimpacto

Contenido

Politica de Empleo Decente

Introducción

Preguntas

Pregunta 1

Pregunta 2

- Las condiciones de empleo, vinculadas con el bajo nivel de desarrollo en los ambitos economico, social e institucional se encuentran estrechamente vinculadas con altos grados de informalidad laboral y empresarial
- La necesidad de crear y promover empleos con salario digno, futuro estable, protección social y acceso a derechos fundamentales en el marco de una transición justa.

- El primer indicador es propuesto por Gamero (2012) y se utiliza para medir el trabajo decente de la PEA ocupada por las siguientes razones:
 - Captura distintas dimensiones especificas que la OIT incluye para un trabajo decente
 - No incluye arbitrariedad en las valoraciones de las variables que la construyen
 - Alta correlacion con indicadores de la formalidad laboral
- ► El Indice de Trabajo Decente (ITD) muestra 5 niveles

Politica de Empleo Decente

Los niveles del ITD , donde el nivel 1 es aquel que cumple todos los criterios, mientras que el ultimo nivel 5 es aquel que no cumple ninguno

Indicadores	Variables	Cumple	No cumple	
Básicos	Modalidad de contratación	Asalariado: tiene algún tipo de contrato (indefinido, modal, recibo por honorarios, etcétera). No asalariado: su negocio o actividad está registrado en la SUNAT (persona jurídica o natural).	actividad no está registrado.	
	Ingresos	El ingreso es mayor o igual que la RMV.	Ingreso menor que la RMV.	
	Jornada laboral (6 días)	Trabaja hasta 48 horas semanales.	Trabaja más de 48 horas semanales.	
Complementarios	Seguro de salud	Tiene algún tipo de seguro de salud.	No tiene ningún seguro de salud.	
	Afiliación a un sistema de pensiones	Afiliados en algún sistema de pensiones.	No está afiliado a un sistema de pensiones.	

Introducción

 Ha habido un interés creciente en el bienestar subjetivo (Subjective well-being, SWB) dentro de los círculos políticos y académicos durante la última década.

- Ha habido un interés creciente en el bienestar subjetivo (Subjective well-being, SWB) dentro de los círculos políticos y académicos durante la última década.
- SWB es una aproximación empirica para la utilidad individual y permite nuevas maneras de responder antiguas preguntas pero tambien direcciona algunas nuevas.

- Ha habido un interés creciente en el bienestar subjetivo (Subjective well-being, SWB) dentro de los círculos políticos y académicos durante la última década.
- SWB es una aproximación empirica para la utilidad individual y permite nuevas maneras de responder antiguas preguntas pero tambien direcciona algunas nuevas.
- Existen otros campos enfocados en el bienestar hedonicos y bienestar,

- Ha habido un interés creciente en el bienestar subjetivo (Subjective well-being, SWB) dentro de los círculos políticos y académicos durante la última década.
- SWB es una aproximación empirica para la utilidad individual y permite nuevas maneras de responder antiguas preguntas pero tambien direcciona algunas nuevas.
- Existen otros campos enfocados en el bienestar hedonicos y bienestar,
- Los economistas normalmente se concentran sobre medidas evaluadoras de bienestar o medir las decisiones, en la presente sesión evaluaremos las decisioens de los niveles del Indice de Trabajo Decente (ITD)

Introducción: data

Dada la información de la Encuesta Nacional de Hogares ENAHO, la cual contiene información de trabajadores en Perú. La información que permite construir el ITD durante el 2019.

Cuadro: Descripción de variables

Variables	Descripción
ritd _i	== 1 , Nivel 1 == 2 , Nivel 2 == 3 , Nivel 3 == 4 , Nivel 4 == 5 , Nivel 5
rsexo redad redadsq Inr6	== 1, mujer edad persona edad persona cuadrado Logaritmo ingreso mensual (Soles)

Se desea estimar la siguiente ecuación para observar las diferencias de niveles del ITD. Entonces usando el modelo probit ordenado, se estima la siguiente ecuación:

$$ritd_i = \alpha_1 rsexo_i + \alpha_2 redad_i + \alpha_3 redadsq_i + \alpha_4 lnr6_i + \mu_i$$
 (1)

Introducción

Cuadro: Descripción de variables

Variables	Descripción
ritd _i	== 1 , Nivel 1 == 2 , Nivel 2 == 3 , Nivel 3 == 4 , Nivel 4 == 5 . Nivel 5
rsexo redad redadsq Inr6	== 1, mujer edad persona edad persona cuadrado Logaritmo ingreso mensual (Soles)

Introducción

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
ritd	27710	3.26	3.00	1.00	5.00	1
mujer	27710	0.25	0.00	0.00	1.00	0
Edad	27710	50.69	50.00	17.00	98.00	14
Edad al cuadrado	27710	2,765.21	2,500.00	289.00	9,604.00	1,477
Ingreso	27710	6.82	6.90	4.43	10.36	1

Fuente: ENAHO - 2019. Elaboracion: Autor

Introducción

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
ritd	27710	3.26	3.00	1.00	5.00	1
mujer	27710	0.25	0.00	0.00	1.00	0
Edad	27710	50.69	50.00	17.00	98.00	14
Edad al cuadrado	27710	2,765.21	2,500.00	289.00	9,604.00	1,477
Ingreso	27710	6.82	6.90	4.43	10.36	1

Fuente: ENAHO - 2019. Elaboracion: Autor

ritd es la variable dependiente (ordinal discreta) de rango en valor 1 nivel ITD alto, hacia 5 nivel de ITD bajo.

Introducción

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
ritd	27710	3.26	3.00	1.00	5.00	1
mujer	27710	0.25	0.00	0.00	1.00	0
Edad	27710	50.69	50.00	17.00	98.00	14
Edad al cuadrado	27710	2,765.21	2,500.00	289.00	9,604.00	1,477
Ingreso	27710	6.82	6.90	4.43	10.36	1

Fuente: ENAHO - 2019. Elaboracion: Autor

- ritd es la variable dependiente (ordinal discreta) de rango en valor 1 nivel ITD alto, hacia 5 nivel de ITD bajo.
- ▶ El promedio de años de edad es de 10

Introducción

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
ritd	27710	3.26	3.00	1.00	5.00	1
mujer	27710	0.25	0.00	0.00	1.00	0
Edad	27710	50.69	50.00	17.00	98.00	14
Edad al cuadrado	27710	2,765.21	2,500.00	289.00	9,604.00	1,477
Ingreso	27710	6.82	6.90	4.43	10.36	1

Fuente: ENAHO - 2019. Elaboracion: Autor

- ritd es la variable dependiente (ordinal discreta) de rango en valor 1 nivel ITD alto, hacia 5 nivel de ITD bajo.
- ▶ El promedio de años de edad es de 10
- ► El 24 % de los jefes de hogar son mujeres.

A Ecuación (1)

$$ritd_i = \alpha_1 rsexo_i + \alpha_2 redad_i + \alpha_3 redadsq_i + \alpha_4 Inr6_i + \mu_i$$

1 Estime el modelo probir ordenado sin incluir ninguna variable explicativa en la ecuación (1) y proveea una precisa interpretación para los cuatro estimadores de threshold (umbrales) (


```
name: <unnamed>
          D:/Dropbox/Docencia/Impacto/L2/Tablas/resultados_2.log
 log type: text
opened on: 12 Aug 2022, 22:45:59
. oprobit ritd
Iteration 0: log likelihood = -41777.015
Iteration 1: log likelihood = -41777.015
Ordered probit regression
                                      Number of obs =
                                                         27,710
Log likelihood = -41777.015
                                      Pseudo R2
                                                         0.0000
      ritd | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     /cut1 | -1.202341 .0098826
                                            -1.221711 -1.182972
     /cut2 | -.6583938 .0081532
                                           -.6743739 -.6424138
                                           -.0032685 .0262457
     /cut3 | .0114886 .0075293
     /cut4 | 1.107202 .0094716
                                             1.088638 1.125766
. log close
    name: <unnamed>
```


Cuadro: Ecuación (1) - ritd

/ cut1	-1.20*** (0.01)
cut2	-0.66*** (0.01)
cut3	0.01 (0.01)
cut4	1.11*** (0.01)
Observaciones	27710
Pseudo. R ²	0
Log-L	-41777.0
Grados de Libertad (k)	4

Fuente: ENAHO - 2019.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Ecuación (1) - ritd

/ cut1	-1.20*** (0.01)
cut2	-0.66*** (0.01)
cut3	0.01 (0.01)
cut4	1.11*** (0.01)
Observaciones Pseudo. R ² Log-L	27710 0 -41777.0
Grados de Libertad (k)	4

Fuente: ENAHO - 2019.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Se obtiene los estimadores pro máxima verosimilitud para la relación siguiente usando el modelo de probit ordenado:

$$y_i^* = \mu_i$$

Cuadro: Ecuación (1) - ritd

/ cut1	-1.20*** (0.01)
cut2	-0.66*** (0.01)
cut3	0.01 (0.01)
cut4	1.11*** (0.01)
Observaciones	27710
Pseudo. R ²	0
Log-L	-41777.0
Grados de Libertad (k)	4

Fuente: ENAHO - 2019.

Elaboracion: Autor ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Se obtiene los estimadores pro máxima verosimilitud para la relación siguiente usando el modelo de probit ordenado:

$$y_i^* = \mu_i$$

 La regresión excluye todas las covariables (o variables explicativas)

Cuadro: Ecuación (1) - ritd

/ cut1	-1.20*** (0.01)
cut2	-0.66*** (0.01)
cut3	0.01 (0.01)
cut4	1.11*** (0.01)
Observaciones	27710
Pseudo. R ²	0
Log-L	-41777.0
Grados de Libertad (k)	4

Fuente: ENAHO - 2019.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero. Se obtiene los estimadores pro máxima verosimilitud para la relación siguiente usando el modelo de probit ordenado:

$$y_i^* = \mu_i$$

- La regresión excluye todas las covariables (o variables explicativas)
- Por tanto, los unicos estimadores son obtenidos de los parametros de los threshold(umbrales)

Cuadro: Ecuación (1) - ritd

/ cut1	-1.20*** (0.01)
cut2	-0.66*** (0.01)
cut3	0.01 (0.01)
cut4	1.11*** (0.01)
Observaciones	27710
Pseudo. R ²	0
Log-L	-41777.0
Grados de Libertad (k)	4

Fuente: ENAHO - 2019.

Elaboracion: Autor
***, **, * denote statistical significance at the 1 %, 5 % and
10 % levels respectively for zero.

Se obtiene los estimadores pro máxima verosimilitud para la relación siguiente usando el modelo de probit ordenado:

$$y_i^* = \mu_i$$

- La regresión excluye todas las covariables (o variables explicativas)
- Por tanto, los unicos estimadores son obtenidos de los parametros de los threshold(umbrales)
- ► El estimador obtenido por máxima verosimilitud son:

$$\widehat{\theta}_0=-1.20;\ \widehat{\theta}_1=-0.66;\ \widehat{\theta}_2=0.01; \widehat{\theta}_3=1.11$$

└─ Preguntas

∟ Pregunta 1

Areas under the standard normal curv

		Second decimal place in z									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0,5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279			
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675			
0.2	0.5793			0.5910	0.5948	0.5987	0.6026	0.6064			
0.3	0.6179			0.6293	0.6331	0.6368	0.6406	0.6443			
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157			
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486		0.7549	
0.7	0.7580		0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340		0.8389	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577		0.8621	
1.1	0.8643	0,8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	
3.7	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993	
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997	
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998	
1.5	0.9998	0.9998	0.9998	0.9998	0.9998		0.9998	0.9998	0.9998	0.9998	
1.6	0.9998	0.9998	0.9999		0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	
8.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	

[†] Por z ≥ 3.90, the areas are 1.0000 to four decimal places.

					Second de	imal place	in z			
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120					0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517					0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910		0.5987			0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293		0.6368			0.6480	0.651
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736		0.6808	0.6844	0.687
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088		0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422		0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734		0.7794	0.7823	0.785
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8		0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.0	1 0000t									

Dado:

$$\Phi(-1.20)$$

$$\Phi(-1.20) = 1 - \Phi(1.20)$$

$$= 1 - 0.8849 = 0.1151$$

Usando la tablas de CDF (función de distribución acumulada) de una normal estandar, nosotros podemos calcular la probabilidad acumulada para estos valores de threshold como:

- Usando la tablas de CDF (función de distribución acumulada) de una normal estandar, nosotros podemos calcular la probabilidad acumulada para estos valores de threshold como:
- Primer corte

$$\Phi(-1.20) = 1 - \Phi(1.20) = 1 - 0.8849 = 0.1151$$

Pregunta 1

- Usando la tablas de CDF (función de distribución acumulada) de una normal estandar, nosotros podemos calcular la probabilidad acumulada para estos valores de threshold como:
- Primer corte

$$\Phi(-1.20) = 1 - \Phi(1.20) = 1 - 0.8849 = 0.1151$$

Segundo corte

$$\Phi(-0.66) = 1 - \Phi(0.66) = 1 - 0.7454 = 0.2546$$

- Usando la tablas de CDF (función de distribución acumulada) de una normal estandar, nosotros podemos calcular la probabilidad acumulada para estos valores de threshold como:
- Primer corte

$$\Phi(-1.20) = 1 - \Phi(1.20) = 1 - 0.8849 = 0.1151$$

Segundo corte

$$\Phi(-0.66) = 1 - \Phi(0.66) = 1 - 0.7454 = 0.2546$$

Tercer corte

$$\Phi(0.01) = 0.5040$$

- Usando la tablas de CDF (función de distribución acumulada) de una normal estandar, nosotros podemos calcular la probabilidad acumulada para estos valores de threshold como:
- Primer corte

$$\Phi(-1.20) = 1 - \Phi(1.20) = 1 - 0.8849 = 0.1151$$

Segundo corte

$$\Phi(-0.66) = 1 - \Phi(0.66) = 1 - 0.7454 = 0.2546$$

Tercer corte

$$\Phi(0.01) = 0.5040$$

Cuarto corte

$$\Phi(1.11) = 0.8665$$

Proimpacto

Los primeros estimados sugieren que el 11.51 % de las observaciones se encuentra por debajo del primer **threshold**, $\widehat{\theta}_0$ y comprende aquella categoria **Nivel** 1

- Los primeros estimados sugieren que el 11.51 % de las observaciones se encuentra por debajo del primer threshold, $\hat{\theta}_0$ y comprende aquella categoria Nivel 1
- ▶ El segundo de estos estimados sugiere que **25.46** % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_1$.

- Los primeros estimados sugieren que el 11.51 % de las observaciones se encuentra por debajo del primer threshold, $\widehat{\theta}_0$ y comprende aquella categoria Nivel 1
- El segundo de estos estimados sugiere que 25.46 % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_1$.
- \blacktriangleright Por tanto, 25.46 %- 11.51 % = 13.95 % de la muestra se encuentra en la categoría Nivel 2.

- ▶ Los primeros estimados sugieren que el 11.51% de las observaciones se encuentra por debajo del primer **threshold**, $\widehat{\theta}_0$ y comprende aquella categoria **Nivel** 1
- El segundo de estos estimados sugiere que 25.46 % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_1$.
- ▶ Por tanto, 25.46%- 11.51% = 13.95% de la muestra se encuentra en la categoría **Nivel 2**.
- ▶ El tercer de estos estimados sugiere que **50.40** % de las observaciones son localizados por debajo de las oservaciones de threshold $\hat{\theta}_2$.

- ▶ Los primeros estimados sugieren que el 11.51% de las observaciones se encuentra por debajo del primer **threshold**, $\widehat{\theta}_0$ y comprende aquella categoria **Nivel** 1
- El segundo de estos estimados sugiere que 25.46 % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_1$.
- ▶ Por tanto, 25.46%- 11.51% = 13.95% de la muestra se encuentra en la categoría **Nivel 2**.
- ▶ El tercer de estos estimados sugiere que **50.40** % de las observaciones son localizados por debajo de las oservaciones de threshold $\hat{\theta}_2$.
- ▶ Luego, 50.40% 24.46% = 25.46% de la muestra se encuentra en la categoría **Nivel 3**.

∟_{Pregunta 1}

- Los primeros estimados sugieren que el 11.51 % de las observaciones se encuentra por debajo del primer threshold, $\widehat{\theta}_0$ y comprende aquella categoria Nivel 1
- El segundo de estos estimados sugiere que 25.46 % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_1$.
- \blacktriangleright Por tanto, 25.46 %- 11.51 % = 13.95 % de la muestra se encuentra en la categoría Nivel 2.
- ▶ El tercer de estos estimados sugiere que **50.40** % de las observaciones son localizados por debajo de las oservaciones de threshold $\hat{\theta}_2$.
- ▶ Luego, 50.40% 24.46% = 25.46% de la muestra se encuentra en la categoría **Nivel 3**.
- ▶ El cuarto de estos estimados sugiere que **86.65** % de las observaciones son localizados por debajo de las oservaciones de threshold $\hat{\theta}_3$.
- \blacktriangleright Por tanto, 86.65 %- 50.40 % = 36.25 % de la muestra se encuentra en la categoría Nivel 4.

- ▶ Los primeros estimados sugieren que el 11.51% de las observaciones se encuentra por debajo del primer **threshold**, $\widehat{\theta}_0$ y comprende aquella categoria **Nivel** 1
- El segundo de estos estimados sugiere que 25.46 % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_1$.
- \blacktriangleright Por tanto, 25.46 %- 11.51 % = 13.95 % de la muestra se encuentra en la categoría Nivel 2.
- ▶ El tercer de estos estimados sugiere que 50.40 % de las observaciones son localizados por debajo de las oservaciones de threshold $\widehat{\theta}_2$.
- ▶ Luego, 50.40% 24.46% = 25.46% de la muestra se encuentra en la categoría **Nivel 3**.
- ▶ El cuarto de estos estimados sugiere que **86.65** % de las observaciones son localizados por debajo de las oservaciones de threshold $\hat{\theta}_3$.
- \blacktriangleright Por tanto, 86.65 %- 50.40 % = 36.25 % de la muestra se encuentra en la categoría Nivel 4.
- ▶ Por último, del 100% 86.65% = 13.5% de la muestra esta en el ranking mas alto, categoría **Nivel 5**.

$$0.1151 \equiv 11.51\,\%$$

Categoria Dos (y = 2**)**:

$$0.2546 - 0.1151 = 0.1395 \equiv 13.95 \%$$

• Categoria Tres (y = 3):

$$0.5040 - 0.2446 = 25.46\%$$

Categoria Cuatro (y = 4**)**:

$$0.8665 - 0.5040 = 0.3625 \equiv 36.25 \,\%$$

Categoria Quinta (y = 5**)**:

$$1-0.8665=0.135\equiv13.5\,\%$$

opened on: 12 Aug 2022, 22:46:00

. tab ritd

Indice de | trabajo | decente | total |

total -Original	•	Percent	Cum.
Nivel 1	3,894	11.46	11.46
Nivel 2		14.05	25.51
Nivel 3	10,012	24.94	50.46
Nivel 4		36.13	86.59
Nivel 5		13.41	100.00
Total	+ 27,710	100.00	

. log close

name: <unnamed>

log: D:/Dropbox/Docencia/Impacto/L2/Tablas/resultado: log type: text

closed on: 12 Aug 2022, 22:46:00

3 Los dos coeficientes de la *redad* y *redadsq* , son razonables. Seran estadisticamente significativos , sugiere unq relación de forma de **U** entre experiencia (redad) y satisfación de la calidad de empleo.

Cuadro: Ecuación (1) - ritd

	Indice de trabajo decente total -Original	
Indice de trabajo decente total -Original		
==1, Mujer	-0.20***	(0.02)
edad de la persona	0.01***	(0.00)
redadsq	-0.00***	(0.00)
Inr6	-1.03***	(0.01)
/		
cut1	-8.73***	(0.10)
cut2	-7.98***	(0.09)
cut3	-6.89***	(0.09)
cut4	-5.39***	(0.09)
Observaciones	27710	
Pseudo. R ²	0.194	
Log-L	-33668.3	
Grados de Libertad (k)	8	

Errores estandar en parentesis.

Fuente: ENAHO - 2019.

Elaboracion: Autor

***, **, * denote statistical significance at the $1\,\%,\,5\,\%$ and $10\,\%$ levels respectively for zero.

Dado:

$$z_i = \cdots + \alpha_2 redad_i + \alpha_3 redad_i^2 + \cdots$$

Esto podria ser mas sensible si se deriva el gradiente de la siguiente expresión:

$$\frac{\partial z}{\partial exper} = \widehat{\alpha}_2 + 2\widehat{\alpha}_3 redad$$

- El conjunto de estos son cero para las C.P.O y resolver la edad del cual se satisface los niveles minimizados en este caso.
- Dado el estado estacionario, el punto de inflexión sera:

$$age^* = -\frac{\widehat{\alpha}_2}{2\widehat{\alpha}_3} = \frac{.0109213}{2x - .000152} = 35.91$$


```
name: <unnamed>
       log: D:/Dropbox/Docencia/Impacto/L2/Tablas/resultados_5.log
 log type: text
 opened on: 12 Aug 2022, 22:46:01
. /*
> display - _b[redad]/(2*_b[redadsq])
> nlcom - _b[redad]/(2*_b[redadsq]) -40
> gen pred_y=_b[redad]*redad + _b[redadsq]*redadsq
> scatter pred_y redad
> */
. log close
     name: <unnamed>
       log: D:/Dropbox/Docencia/Impacto/L2/Tablas/resultados_5.log
 log type: text
 closed on: 12 Aug 2022, 22:46:01
```

- La C.P.O determina y resuelve para la variable edad un nivel de satisfacción mínima
- ► El punto de inflexión implica que el nivel de ocupación de un individuo promedio con las circunstancias de su es de 35.9 años, en promedio y ceteris paribus.

$$exper^* = 35.9$$

 $3\,$ Interprete el efecto marginal para $\it Inr6$ dada la categoria 1 para un incremento de $5\,\%$ en el ingreso laboral del jefe de hogar

La probabilidad al inicio en la categoria condicion de vida muy mala en este modelo probit ordenado esta dado por:

Proimpacto

Pregunta 3

La probabilidad al inicio en la categoria condicion de vida muy mala en este modelo probit ordenado esta dado por:

$$prob\left[y_i=1\right]=\Phi(\theta_0-z_i)$$

La probabilidad al inicio en la categoria condicion de vida muy mala en este modelo probit ordenado esta dado por:

$$prob\left[y_i=1\right]=\Phi(\theta_0-z_i)$$

► Dado:

La probabilidad al inicio en la categoria condicion de vida muy mala en este modelo probit ordenado esta dado por:

$$prob[y_i = 1] = \Phi(\theta_0 - z_i)$$

Dado:

$$z_i = \alpha_1 r s e x o_i + \alpha_2 r e dad_i + \alpha_3 r e dad_i^2 + \alpha_4 ln(r6)_i + \varepsilon$$

La probabilidad al inicio en la categoria condicion de vida muy mala en este modelo probit ordenado esta dado por:

$$prob\left[y_i=1\right]=\Phi(\theta_0-z_i)$$

Dado:

$$z_i = \alpha_1 r sexo_i + \alpha_2 redad_i + \alpha_3 redad_i^2 + \alpha_4 ln(r6)_i + \varepsilon$$

▶ Por tanto, el **efecto marginal** para la variable **In(r6)** es calculado como:

La probabilidad al inicio en la categoria condicion de vida muy mala en este modelo probit ordenado esta dado por:

$$prob[y_i = 1] = \Phi(\theta_0 - z_i)$$

Dado:

$$z_i = \alpha_1 r s e x o_i + \alpha_2 r e dad_i + \alpha_3 r e dad_i^2 + \alpha_4 ln(r6)_i + \varepsilon$$

▶ Por tanto, el **efecto marginal** para la variable **In(r6)** es calculado como:

$$\frac{\partial prob\left[y=1\right]}{\partial ln(r6)} = -\phi\left(\widehat{\theta}_0 - \bar{z}\right) x \widehat{\alpha}_4$$


```
name: <unnamed>
      log: D:/Dropbox/Docencia/Impacto/L2/Tablas/resultados_4.log
  log type: text
 opened on: 12 Aug 2022, 22:46:00
. oprobit ritd $Xs
              log\ likelihood = -41777.015
Iteration 0:
Iteration 1: log likelihood = -33789.62
Iteration 2: log likelihood = -33668.64
Iteration 3: log likelihood = -33668.255
              log likelihood = -33668.255
Iteration 4:
Ordered probit regression
                                              Number of obs
                                                                     27,710
                                              LR chi2(4)
                                                                   16217.52
                                              Prob > chi2
                                                                     0.0000
Log likelihood = -33668.255
                                              Pseudo R2
                                                                     0.1941
                   Coef.
                           Std. Err.
                                              P>|z|
                                                        [95% Conf. Interval]
       ritd |
              -.1971621
                         .0153379 -12.85
                                                       -.2272238
                                                                  -.1671005
                                              0.000
       redad |
               .0109213 .0029085
                                       3.75
                                              0.000
                                                     .0052208
                                                                   .0166218
     redadso |
              -.000152
                         .0000278
                                      -5.46
                                              0.000
                                                     -.0002066 -.0000975
       lnr6 | -1.033688
                          .0088308 -117.05
                                              0.000
                                                       -1.050996
                                                                   -1.01638
       /cut1 | -8.731129 .0954845
                                                       -8.918275 -8.543982
       /cut2 |
              -7.98002
                          .093927
                                                      -8.164114 -7.795927
       /cut3 | -6.893249 .0910266
                                                       -7.071657
                                                                 -6.71484
       /cut4 | -5.389845
                           .0886556
                                                       -5.563606
                                                                 -5.216083
```

Proimpacto

Pregunta 3

Cuadro: Efectos Marginales

	Categoria 1	
==1, Mujer	0.026***	(0.00)
edad de la persona	-0.001***	(0.00)
redadsq	0.000***	(0.00)
Inr6	0.135***	(0.00)
Observations	27710	

Errores estandar en parentesis. Fuente: ENAHO 2019.

Elaboracion: Autor ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

► La medida del ingreso laboral registrado se incluye para capturar los efectos de una métrica de bienestar de persona similar al ingreso permanente.

- ► La medida del ingreso laboral registrado se incluye para capturar los efectos de una métrica de bienestar de persona similar al ingreso permanente.
- ► El efecto marginal estimado es 0.135

- ► La medida del ingreso laboral registrado se incluye para capturar los efectos de una métrica de bienestar de persona similar al ingreso permanente.
- ▶ El efecto marginal estimado es 0.135
- Esto podría ser expresado:

AProimpacto

- La medida del ingreso laboral registrado se incluye para capturar los efectos de una métrica de bienestar de persona similar al ingreso permanente.
- ▶ El efecto marginal estimado es 0.135
- Esto podría ser expresado:

$$\frac{\partial prob(y=1)}{\partial lngpm} = 0.135$$

- La medida del ingreso laboral registrado se incluye para capturar los efectos de una métrica de bienestar de persona similar al ingreso permanente.
- ▶ El efecto marginal estimado es 0.135
- Esto podría ser expresado:

$$\frac{\partial prob(y=1)}{\partial lngpm} = 0.135$$

$$0.135 \times 0.05 = 0.00675$$

- ► La medida del ingreso laboral registrado se incluye para capturar los efectos de una métrica de bienestar de persona similar al ingreso permanente.
- ▶ El efecto marginal estimado es 0.135
- Esto podría ser expresado:

$$\frac{\partial prob(y=1)}{\partial lngpm} = 0.135$$

$$0.135 \times 0.05 = 0.00675$$

▶ Por tanto, un incremento de 5 % en el nivel de ingresos laborales del jefe de hogar podria aumentar la probabilidad que la persona responda pertenecer a la categoria del ITD mas alta, (nivel 1) en 0.675 puntos porcentuales, en promedio y manteniendo constante.