LFC - 2019, sessione tipo

1

Cognome &	Matricola	

NON CONSEGNO _____

La prova è

- CLOSED BOOKS: libri, appunti e quant'altro non sono ammessi;
- NO ELECTRONICS: cellulari, palmari e quant'altro non sono ammessi;
- NO PENCILS & NO MULTICOLOR: sono valutate solo le risposte scritte a penna e in monocolore.

La prova è composta da 13 esercizi.

I primi 12 esercizi sono gli esercizi di base e valgono un massimo di 27 punti. Questi esercizi richiedono risposte sintetiche, da inserire negli spazi appositamente riservati.

L'esercizio 13 è l'esercizio evoluto e vale un massimo di 4 punti nell'intervallo 27–31. Lo svolgimento dell'esercizio 13 va scritto in calce al testo dell'esercizio.

L'unico oggetto da riconsegnare è il presente plico. La brutta copia, se consegnata, sarà cestinata.

Chi non vuole consegnare deve apporre una firma sulla riga "NON CONSEGNO".

Gli esercizi fanno riferimento alle definizioni riportate nel seguito.

Definizioni

 \mathcal{N}_1 : Sia \mathcal{N}_1 lo NFA con stato iniziale A, stato finale E e con la seguente funzione di transizione

	ϵ	a	b
\overline{A}	$\{B,E\}$	Ø	Ø
\overline{B}	$\{C\}$	Ø	$\{E\}$
C	Ø	$\{D\}$	Ø
\overline{D}	$\{E\}$	Ø	$\{B\}$
E	Ø	$\{E\}$	$\{A\}$

 \mathcal{D}_1 : Sia \mathcal{D}_1 il DFA con stato iniziale A, stato finale D e con la seguente funzione di transizione

	a	$\mid b \mid$
A	B	
B	D	C
C	D	
\overline{D}		B

 \mathcal{G}_1 : Sia \mathcal{G}_1 la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & AaB \mid b \\ A & \rightarrow & BcBaA \mid \epsilon \\ B & \rightarrow & \epsilon \end{array}$$

 S_{1a} : Sia S_{1a} il seguente SDD:

 S_{1b} : Sia S_{1b} il seguente SDD:

$$\begin{array}{cccc} S & \to & A & & \{S.v = A.v; \, A.n = 1; \, \} \\ A & \to & a \, A_1 & & \{A_1.n = A.n + 1; \, A.v = A_1.v; \} \\ A & \to & a & \{A.v = A.n + 1; \, \} \end{array}$$

Esercizi
1
Se $\{ww \mid w \in \mathcal{L}((a \mid b)^*)\}$ è un linguaggio regolare rispondere "SI", altrimenti rispondere "NO".
2
Se la seguente affermazione è vera rispondere "VERO", altrimenti rispondere "FALSO": "Se i linguaggi \mathcal{L}_1 e \mathcal{L}_2 sono entrambi regolari allora $\mathcal{L}_1 \cup \mathcal{L}_2$ è regolare."
3
Sia $r = b^* \mid b^*a(\epsilon \mid a \mid b)^*$ e sia \mathcal{D} il DFA minimo per il riconoscimento di $\mathcal{L}(r)$. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali .
4
Chiamiamo \mathcal{D} il DFA ottenuto da \mathcal{N}_1 per subset construction, Q lo stato iniziale di \mathcal{D} , Q_{ab} lo stato di \mathcal{D} che si raggiunge da Q tramite il cammino ab . Dire a quale sottoinsieme degli stati di \mathcal{N}_1 corrisponde Q_{ab} .

Chiamiamo \mathcal{D}_m il DFA ottenuto per minimizzazione di \mathcal{D}_1 , P lo stato iniziale di \mathcal{D}_m , P_{abab} lo stato di \mathcal{D}_m che si raggiunge da P tramite il cammino abab. Dire a quale sottoinsieme degli stati di \mathcal{D}_1 corrsiponde P_{abab} .

6
Scrivere l'intera riga della tabella di parsing $\mathrm{LL}(1)$ per \mathcal{G}_1 relativa al non-terminale B .
7
Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) di \mathcal{G}_1 , I lo stato iniziale di \mathcal{A} , I_{BcBa} lo stato di \mathcal{A} che si raggiunge da I tramite il cammino $BcBa$, T la tabella di parsing LR(1) per \mathcal{G}_1 . Se T non contiene alcun conflitto nello stato I_{BcBa} , rispondere "NO CONFLICT". Altrimenti, per ciascuna x tale che la entry $T[I_{BcBa}, x]$ contiene un conflitto, dire: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.
8
Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) per \mathcal{G}_1 , J lo stato iniziale di \mathcal{A} , J_{Aa} lo stato di \mathcal{A} che si raggiunge da J tramite il cammino Aa . Elencare gli item LR(1) che appartengono a J_{Aa} .
9
Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LALR(1) di \mathcal{G}_1 , H lo stato iniziale di \mathcal{A} , H_{BcBaBc} lo stato di \mathcal{A} che si raggiunge da H tramite il cammino $BcBaBc$, T la tabella di parsing LALR(1) per \mathcal{G}_1 . Se non ci sono riduzioni nello stato H_{BcBaBc} di T , rispondere "NO CONFLICT". Altrimenti, per ciascuna x tale che la entry $T[H_{BcBaBc}, x]$ contiene un conflitto, dire: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

10
Sia $\mathcal G$ la grammatica con produzioni nell'insieme $\{S \to SS+ \mid SS* \mid a\}$ e sia $w = aaa*+$. Se $w \notin \mathcal L(\mathcal G)$ rispondere "NON APPARTIENE". Altrimenti fornire una derivazione rightmost di w .
11
Dato un parser LALR(1) con stato iniziale P , chiamiamo P_{α} lo stato del parser che, nel sottostante automa caratteristico, si raggiunge da P con il cammino etichettato α . Il parser LALR(1) per la grammatica dello SDD S_{1a} ha 4 conflitti shift/reduce: uno in $[P_{EaE}, a]$, uno in $[P_{EaE}, b]$, uno in $[P_{EbE}, a]$ e uno in $[P_{EbE}, b]$. Supponiamo che tutti e 4 i conflitti siano risolti a favore dello shift. Supponiamo inoltre che l'attributo $n.lexval$ del terminale n sia il numero intero rappresentato da n . Dire quale valore viene valutato per $S.v$ su input $2a3b4$.
12
Se non esiste alcun ordine di valutazione per lo SDD S_{1b} su input $aaaa$, rispondere "NO EVAL". Altrimenti dire quale valore viene valutato per $S.v$ su tale input.

13

Sia \mathcal{G} la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & Aa \mid Bb \\ A & \rightarrow & aAb \mid ab \\ B & \rightarrow & aBbb \mid abb \end{array}$$

Evitando di ricorrere alla computazione della tabella di parsing, spiegare perché $\mathcal G$ certamente non è LR(1).