Exercise 2.2.4.

- a) $(-1, 1, -1, 1, -1, \dot{)}$
- b) Impossibru. An infinite number of ones requires a "long-term" behavior where the sequence features 1. If the sequence doesn't converge to 1, it also has to feature other numbers—but then the sequence is oscillating between 1s and these other numbers and hence must be divergent or these other numbers must get so close to 1 that the sequence converges to 1.
- c) $(1,2,2,3,3,3,4,4,4,4,\dots)$

Exercise 2.2.5.

a) $\lim a_n = 0$. Let $\varepsilon > 0$. Choose $n \in \mathbb{N}$ such that $n \geq 5/\varepsilon + 1$. Then,

$$|a_n - 0| = a_n \le \left\lceil \left\lceil \frac{5}{(5/\varepsilon) + 1} \right\rceil \right\rceil \le \frac{5}{(5/\varepsilon) + 1} < \frac{5}{5/\varepsilon} = \varepsilon$$

as required.

b) $\lim a_n = 1$. Choose $N \in \mathbb{N}$ such that $N > 12/(3\varepsilon - 1)$ and let $n \ge \mathbb{N}$. Then,

$$\begin{vmatrix} a_n - \frac{4}{3} \end{vmatrix} < \left| \left[\left[\frac{12 + 4(12/(3\varepsilon - 1))}{3(12/(3\varepsilon - 1))} \right] \right] - 1 \right|$$

$$\leq \frac{12 + 4(12/(3\varepsilon - 1))}{3(12/(3\varepsilon - 1))} - 1$$

$$= \frac{12 + (12/(3\varepsilon - 1))}{3(12/(3\varepsilon - 1))}$$

$$= \frac{3\varepsilon}{3}$$

$$= \varepsilon$$

as required.

Exercise 2.2.6. Suppose $\lim a_n = a$ and also that $\lim a_n = b$ with $a \neq b$. Since $a \neq b$, there exists $\delta > 0$ such that $|a - b| = \delta$. Now, by Definition 2.2.3, for every $\epsilon > 0$, it follows that $|a_n - a| < \epsilon$ and $|a_m - b| < \epsilon$ when $n \geq N$ and $m \geq M$ for some M, N. Choose $\epsilon = \delta/4$ and set M and N appropriately. Now, let $R = \max\{M, N\}$ and set $R \geq N$. Then, $R = \max\{M, N\}$ and set $R \geq N$. Then, $R = \max\{M, N\}$ and set $R \geq N$. Then, $R = \max\{M, N\}$ and set $R \geq N$. Then, $R = \max\{M, N\}$ and set $R \geq N$. Then, $R = \max\{M, N\}$ and set $R \geq N$. Then, $R = \max\{M, N\}$ and set $R \geq N$.

$$|a-b| \le |a_r-a| + |a_r-b| < \delta/2 = \frac{|a-b|}{2}$$

which is nonsense because $a - b \neq 0$. By contradiction, a = b.

Exercise 2.2.7.

- a) Only frequently since $(-1)^n = -1$ for all odd n.
- b) Eventually implies frequently.
- c) A sequence (a_n) converges to a if, given any ε -neighborhood $V_{\varepsilon}(a)$ of a, (a_n) is eventually in $V_{\varepsilon}(a)$.

d) No, the sequence $(-2)^n$ contains an infinite number of 2s but is not eventually in the interval (1.9, 2.1). It is, however, frequently in (1.9, 2.1). Indeed, any sequence containing an infinite number of 2s must be frequently in (1.9, 2.1). If this were not the case, there would be some $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \neq 2$. But then there would be at most N 2s in the sequence.

Exercise 2.3.1.

a) By the Algebraic Limit Theorem,

$$0 = \lim(x_n) = \lim(\sqrt{x_n}\sqrt{x_n}) = \lim(\sqrt{x})\lim(\sqrt{x})$$

so,
$$\lim(\sqrt{x}) = 0$$
.

b) Follows by the same argument in part a).

Exercise 2.3.3. By the Order Limit Theorem, $\lim y_n \le \lim z_n = l$. Also, $l = \lim x_n \le \lim y_n$. So $l \le \lim y_n \le l$ and we conclude $\lim y_n = l$.

Exercise 2.3.5. Suppose (z_n) is convergent, i.e. $\lim z_n = z$. Then, for all $\varepsilon > 0$ there's an $N \in \mathbb{N}$ such that for all $n \geq N$, $|z_n - z| < \varepsilon$. If n is odd, this is the same as $|x_{((n+1)/2)} - z| < \varepsilon$. If n is even, this is the same as $|y_{n/2} - z| < \varepsilon$. Define $n_x = 2n + 1$ and $n_y = 2n$. Clearly, $n_x \geq 2N + 1$ and $n_y \geq 2N$. Additionally, $|x_{n_x} - z| < \varepsilon$ and $|y_{n_y} - z| < \varepsilon$. We conclude that $\lim x_n = \lim y_n = \lim z_n = z$.

Now suppose that $\lim x_n = \lim y_n = z$. Let $\varepsilon > 0$. Then, there exists N_x , $N_y \in \mathbb{N}$ such that for all $n_x \ge N_x$ and $n_y \ge N_y$, $|x_{n_x} - z| < \varepsilon$ and $|y_{n_y} - z| < \varepsilon$. Set $N = \max\{2N_x, 2N_y\}$. Choose $n \ge N$. Clearly, $n \ge 2n_x - 1$ and $n \ge 2n_y$. If n is odd, then $|z_n - z| = |x_{(n+1)/2} - z|$. But $(n+1)/2 \ge n_x$ so $|x_{(n+1)/2} - z| < \varepsilon$. Similarly, if n is even, $|z_n - z| = |y_{n/2} - z|\varepsilon$. Hence, $|z_n - z| < \varepsilon$ for all $n \ge N$.

Exercise 2.3.7.

- a) Let $(x_n) = (n)$ and let $(y_n) = (-n)$. Then, $(x_n + y_n) = (n + (-n)) = (0)$, which obviously converges.
- b) Impossible. By the Algebraic Limit Theorem, $\lim(y_n) = \lim(y_n + x_n x_n) = \lim(y_n + x_n) \lim(x_n)$.
- c) Let $(b_n) = (1/n)$. By Exercise 2.3.6, $\lim(1/n) = 0$.
- d) Suppose $(a_n b_n)$ is bounded. Then, there exists M > 0 such that $|a_n b_n| \le M$ for all $n \in \mathbb{N}$. Similarly, by Theorem 2.3.2, there exists B > 0 such that $|b_n| \le B$ for all $n \in \mathbb{N}$. Since (a_n) is unbounded, for any $K \in \mathbb{R}$, there exists $n_0 \in \mathbb{N}$ such that $|a_{n_0}| > K$. So, choose $n_1 \in \mathbb{N}$ such that $|a_{n_1}| > M + B$. Then, $|a_{n_1} b_{n_1}| > M + B b_{n_1} > M$, which is a contradiction.
- e) Let $(a_n) = (0)$ and $(b_n) = (-1)^n$. Clearly $(a_n b_n) = (0)$ converges, but (b_n) does not.

Exercise 2.3.8.

- a) $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$. By the Algebraic Limit Theorem, $\lim(p(x_n)) = \lim(a_0) + \lim(a_1 x_n) + \lim(a_2 x_n^2) + \dots + \lim(a_n x_n^m)$ $= \lim(a_0) + \lim(a_1) \lim(x_n) + \lim(a_2) \lim(x_n)^2 + \dots + \lim(a_m) \lim(x_n)^m$ $= a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$ = p(x)
- b) Let f(x) = [[x]] and $(x_n) = (1.5)$. Clearly, $\lim f(x_n) = 1$ and $\lim (x_n) = 1.5$.

Exercise 2.3.11.

a) Let $\varepsilon > 0$ and $\lim x_n = x$. We need to find an N > 0 such that for all $n \ge N$,

$$|y_n - x| = \left| \frac{x_1 + x_2 + \dots + x_n}{n} - x \right|$$

$$= \left| \frac{x_1 + x_2 + \dots + x_n - nx}{n} \right|$$

$$= \frac{1}{n} \left| (x_1 - x) + (x_2 - x) + \dots + (x_n - x) \right|$$

$$\leq \frac{1}{n} \left(|x_1 - x| + |x_2 - x| + \dots + |x_n - x| \right) < \varepsilon$$

Since (x_n) converges, there is an M > 0 such that $|x_n - x| < \varepsilon/2$ for all n > M. Hence, the above becomes

$$\frac{1}{n}(|x_1 - x| + |x_2 - x| + \dots + |x_n - x|)$$

$$= \frac{1}{n}(|x_1 - x| + |x_2 - x| + \dots + |x_{M-1} - x|) + \frac{1}{n}(|x_M - x| + \dots + |x_n - n|)$$

$$< \frac{1}{n}(|x_1 - x| + |x_2 - x| + \dots + |x_{M-1} - x|) + \frac{\varepsilon}{2}$$

Now $(|x_1 - x| + \cdots + |x_{M-1} - x|)$ is finite, so we can choose some R > 0 large enough such that—with the 1/n factor—it's less than $\varepsilon/2$ for all $n \ge R$. Namely,

$$R = \left[\left[\frac{2(|x_1 - x| + \dots + |x_{M-1} - x|)}{\varepsilon} \right] \right] + 1$$

We choose $N = \max\{R, M\}$ and then have

$$|y_n - x| < \frac{1}{n} (|x_1 - x| + |x_2 - x| + \dots + |x_{M-1} - x|) + \frac{\varepsilon}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

for all $n \ge N$, as required.

b) Consider $(x_n) = (-1)^n$. Then

$$y_n = \frac{(-1)+1+(-1)+\dots+(-1)^n}{n} = \begin{cases} 0 & n \text{ even} \\ -1/n & n \text{ odd} \end{cases}$$

Clearly, (y_n) converges to 0 even though (x_n) does not converge.

Exercise 2.3.12.

- a) True, follows immediately by part (iii) for the Order Limit Theorem.
- b) True. Suppose $a \in (0,1)$. Then, $|a_n a| > 0$ for all n since $a_n \notin (0,1)$. But then we can choose $\varepsilon = \operatorname{argmin}_n(|a_n a|/2)$ and have $|a_n a| > \varepsilon$ for all n, contradicting the existence of a.
- c) False. The sequence where the *n*th term consists of the best decimal approximation of $\sqrt{2}$ to *n* places clearly converges to $\sqrt{2}$.