ULB Université Libre de Bruxelles

Thin strip graphs

Characterization and complexity

Jean Cardinal Abdeselam El-Haman Abdeselam

Thin strip graphs are graphs that lie between the classes of unit disk graphs and unit interval graphs.

Thin strip graphs are graphs that lie between the classes of unit disk graphs and unit interval graphs.

The research in this paper is based on three papers.

 T. Hayashi, A. Kawamura, Y, Otachi, H. Shinohara and K. Yamazaki. Thin Strip Graphs. Discrete Applied Mathematics. 2017.

The research in this paper is based on three papers.

- T. Hayashi, A. Kawamura, Y, Otachi, H. Shinohara and K. Yamazaki. Thin Strip Graphs. Discrete Applied Mathematics. 2017.
- F. Joos. A Characterization of Mixed Unit Interval Graphs. Journal of Graph Theory. 2014.

The research in this paper is based on three papers.

- T. Hayashi, A. Kawamura, Y, Otachi, H. Shinohara and K. Yamazaki. Thin Strip Graphs. Discrete Applied Mathematics. 2017.
- F. Joos. A Characterization of Mixed Unit Interval Graphs. Journal of Graph Theory. 2014.
- H. Breu. Algorithmic aspects of constrained unit disk graphs.
 Thesis, 1996

A *mixed unit interval graph* is an intersection graph of unita intervals in the real line. The interval of mixed unit interval graphs can be open, closed, open-closed or closed-open.

A *mixed unit interval graph* is an intersection graph of unita intervals in the real line. The interval of mixed unit interval graphs can be open, closed, open-closed or closed-open.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of minimal forbidden subgraphs.

Figure: The graph *F*.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family \mathcal{R} .

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family S.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family S''.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family \mathcal{T} .

This class has been completely characterized by its structure.

Theorem (Hayashi)

A graph G is a unfettered unit interval graph if and only if it has a level structure where every level is a clique.

Definition

A level structure of a graph G = (V, E) is a partition $L = \{L_i : i \in \{1, ..., t\}\}$ of V such that

$$v \in L_k \Rightarrow N(v) \subseteq L_{k-1} \cup L_k \cup L_{k+1}$$

where $L_0 = L_{t+1} = \emptyset$.

c-strip graphs

A *c-strip graph* - or SG(c) is a unit disk graph such that the centers of each disk belong to $\{(x,y): -\infty < x < \infty, 0 \le y \le c\}$

c-strip graphs

A *c-strip graph* - or SG(c) is a unit disk graph such that the centers of each disk belong to $\{(x,y): -\infty < x < \infty, 0 \le y \le c\}$

Remark

$$SG(0) = UIG.$$

Remark

$$SG(\infty) = UDG$$
.

Remark

$$SG(k) \subseteq SG(I)$$
 with $k < I$.

Definition

The class of *thin strip graphs* is defined as $TSG = \bigcap_{c>0} SG(c)$.

Hayashi *et al.* introduced the class of *thin strip graphs*. They also found these important results about *c*-strip graphs and thin strip graphs.

Theorem

There is no constant t such that SG(t) = TSG.

Theorem

There is no constant t such that SG(t) = UDG.

Hayashi *et al.* introduced the class of *thin strip graphs*. They also found these important results about *c*-strip graphs and thin strip graphs.

Theorem

There is no constant t such that SG(t) = TSG.

Theorem

There is no constant t such that SG(t) = UDG.

In order to prove these theorems, they proved that a forbidden subgraph of MUIG is also forbidden in TSG.

Hayashi *et al.* introduced the class of *thin strip graphs*. They also found these important results about *c*-strip graphs and thin strip graphs.

Theorem

Mixed unit interval graphs is a subclass of thin strip graphs.

Theorem

Thin strip graphs is a subclass of unfettered unit interval graphs.

The main result of this thesis is the representation of the forbidden subgraphs of MUIG as TSG. However, it has been proven that \mathcal{R} is a forbidden subgraph family of TSG. However, we know that TSG \subset UUIG.

The main result of this thesis is the representation of the forbidden subgraphs of MUIG as TSG. However, it has been proven that \mathcal{R} is a forbidden subgraph family of TSG. However, we know that TSG \subseteq UUIG.

Theorem

 ${\cal R}$ is a family of forbidden subgraphs of UUIG.

Theorem

 ${\cal R}$ is a family of forbidden subgraphs of UUIG.

Proof.

By induction on i.

Figure: The graph R_0 .

Theorem

 ${\cal R}$ is a family of forbidden subgraphs of UUIG.

Proof.

By induction on i.

Figure: The graph R_{i+1} . You can see that the red edges and vertices are what differ from R_i .

On the other hand, every other minimal forbidden subgraph of MUIG is a TSG.

Future work

Some questions are still open in this subject.

• Complete characterization of TSG.

Future work

Some questions are still open in this subject.

- Complete characterization of TSG.
- Recognition of TSG and UUIG.

Future work

Some questions are still open in this subject.

- Complete characterization of TSG.
- Recognition of TSG and UUIG.
- Two-level graph recognition and characterization.

Thanks for listening.