(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-252464

(43) 公開日 平成8年(1996)10月1日

(51) Int. Cl. 6	識別記号		FI					
B01J 37/02	301	BO	1J 37/02		301	R		
23/34			23/34		001	Z		
23/88			23/88			Z		
27/192			27/19			7.		
C07C 27/00	330	CO.	7C 27/00	_	330			
2.7.2						OL	(全12頁)	最終頁に続く
(21) 出願番号	特願平7-309121		(71) 出	願人	590001212	2		· · · · · · · · · · · · · · · · · · ·
					ピーエー	エスエ	フ アクチョ	こンゲゼルシャ
(22) 出願日	平成7年(1995)11月28日				フト			
					ドイツ連	邦共和	国 ルートウ	ヴィッヒスハー
(31) 優先權主張番号	P4442346. 2				フェン	カール	ーボッシュ・	-ストラーセ
(32) 優先日	1994 年11月29日				38			
(33) 優先権主張国	ドイツ (DE)	(72) 発明者			アンドレアス テンテン ドイツ連邦共和国 マイカムマー シラー			
		ドイツ連邦共 シュトラーセ						
				ーセ・	4			
			(72) 発	明者	ペーター	ヴァ・	イドリッヒ	
		ドイツ連邦共和国 マンハイ			イム ヨット			
	,				7. 2			
			(74)代	理人	弁理士	矢野 領	政雄 (外 2	2名)
		最終頁			最終頁に続く			

(54) 【発明の名称】触媒の製造方法、外殻触媒、アクリル酸、アクロレイン及びメタクロレインの製造方法、並びに接触気相酸化する方法

(57) 【要約】

【解決手段】 液状結合剤として、水20~90重量%及び、常圧(1 a t m)での沸点又は昇華温度が>100℃である有機化合物10~80重量%からなる溶液を使用する担体成形体の表面上に塗布された触媒活性の酸化物材料とからなる触媒を製造する方法

【効果】 本発明による方法により、多様に調節可能な外殻の厚さ、酸化物の活性材料高い付着性と同時に、その完全に十分な比表面積、表面並びに多様な担体成形体にわたって観察される得られた外殻の厚さの高められた均一性、この製造方法の十分な生産効率が達成される

【特許請求の範囲】

【請求項1】 担体成形体をまず液状結合剤で湿らせ、 その後、乾燥した微細粒の活性の酸化物材料を、湿らさ れた担体成形体の表面と接触させることにより活性の酸 化物材料の層を付着させ、引き続き、活性の酸化物材料 で被覆された湿った担体成形体から液状結合剤を除去す ることにより、担体成形体と、担体成形体の表面上に設 置された触媒活性の酸化物材料とからなる触媒を製造す る方法において、液状結合剤として、水20~90重量 %及び、常圧 (1 a t m) での沸点又は昇華温度が>1 10 c 3~10 00℃である有機化合物10~80重量%からなる溶液 を使用することを特徴とする触媒の製造方法。

【請求項2】 長さ2~10mm、外径4~10mm及 び壁厚1~4mmの中空シリンダー状の担体成形体、並 びにその担体成形体の外面に設置された、一般式Ⅰ: 【化1】

NO12VAX} XZXZXXXXXXX (II)

[式中、変数は次のものを表す:

- X¹ W, Nb, Ta, Cr及び/又はCe
- X² Cu, Ni, Co, Fe, Mn及び/又はZn
- X³ Sb及び/又はBi
- X¹ 少なくとも1種又はそれ以上のアルカリ金属
- X* 少なくとも1種又はそれ以上のアルカリ土類金属
- X⁶ Si, Al, Ti及び/又はZr
- a 1~6
- b $0.2 \sim 4$
- c 0.5~18
- $0 \sim 40$
- $0\sim2$
- f 0~4
- g 0~40及び
- n I中の酸素と異なる元素の原子価及び頻度により決 定される数] で示される触媒活性の酸化物材料からな り、その際、設置された触媒活性の酸化物材料が、
- $10 \sim 1000 \mu m$ の層厚で設置されており、
- 20~30m²/gの触媒活性比表面積を有し、かつ回 転皿-作業試験において<10重量%の摩耗を有する外 殼触媒。

【請求項3】 アクロレインの気相接触酸化によるアク 40 リル酸の製造方法において、触媒として請求項2記載の 外殻触媒を一緒に使用することを特徴とするアクリル酸 の製造方法。

【請求項4】 長さ2~10mm、外径4~10mm及 び壁厚1~4mmの中空シリンダー状の担体成形体、並 びにその担体成形体の外面に塗布された、一般式II: 【化2】

MolzBiaFebXt XXXXXX C (II)

[式中、変数は次のものを表す:

X¹ ニッケル及び/又はコバルト

X² タリウム、アルカリ金属及び/又はアルカリ土類 金属、

X³ リン、ヒ素、ホウ素、アンチモン、スズ、セリウ ム、鉛、ニオブ及び/又はタングステン、

X・ ケイ素、アルミニウム、チタン及び/又はジルコ ニウム

- a 0.5~5
- b 0.01~3
- $0.02 \sim 2$
- $0 \sim 5$ e
- f 0~10及び

n II中の酸素と異なる元素の原子価及び頻度により 決定される数] で示される触媒活性の酸化物材料からな り、その際、途布された触媒活性の酸化物材料が、

10~1000 μ mの層厚で設置されており、

20~30m²/gの触媒活性比表面積を有し、かつ回 転皿-作業試験において<10重量%の摩耗を有する外 20 殼触媒。

【請求項5】 プロペン又は tーブタノール又はイソブ タン又はイソプテン又は tープチルメチルエーテルの気 相接触酸化によりアクロレイン又はメタクロレインを製 造する方法において、触媒として請求項4記載の外殻触 媒を一緒に使用することを特徴とするアクロレイン又は メタクロレインの製造方法。

【請求項6】 触媒として請求項1に記載された方法に よる生成物を使用することを特徴とする接触気相酸化す る方法。

30 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、担体成形体をまず 付着液(液状結合剤)で湿らせ、その後、乾燥した微細 粒の活性の酸化物材料を湿った担体成形体の表面と接触 させることにより活性の酸化物材料の層(外殻)を付着 させ(設置し)、引き続き活性の酸化物材料で被覆され た湿った担体成形体から付着液を除去することによる、 担体成形体とその担体成形体の表面に塗布された触媒活 性酸化物材料とからなる触媒の製造方法に関する。

【0002】更に、本発明は、担体成形体と、担体成形 体の表面に塗布された触媒活性の酸化物材料とからな り、外殻触媒として表される触媒、並びにこのような外 殻触媒の使用に関する。

[0003]

【従来の技術】一般に、酸化化学反応は、頻繁に、有利 には、触媒活性酸化物を用いて気相中で実施できること が公知である。ドイツ連邦共和国特許出願公開(DE-A) 第2351151号明細書は、気相で触媒活性酸化 物材料を用いた3~5個のC原子を有するオレフィンの 50 接触酸化、アンモ酸化並びに酸化的脱水素に関する。例

えばこの実施態様は、ブタンジエンの無水マレイン酸へ の反応、プロペンのアクロレインへの反応、アクロレイ ンのアクリル酸への反応、プロペンのアクリルニトリル への反応並びに2ープテンのプタジエンへの反応を開示 している。ドイツ連邦共和国特許出願公開(DE-A) 第1642921号明細書及びドイツ連邦共和国特許出 願公開(DE-A)第2106796号明細書は、芳香 族及び不飽和の炭化水素、ナフタレン、oーキシレン、 ベンゼン又はnープテンのカルボン酸又はその無水物へ の接触気相酸化を教示している。例えばこの実施態様は 10 o ーキシレンの無水フタル酸への反応並びにブタンジエ ンの無水マレイン酸への反応を開示している。ドイツ連 邦共和国特許出願公開 (DE-A) 第2526238号 明細書からは、触媒活性酸化物材料を用いたアクロレイ ン又はメタクロレインの接触気相酸化によるアクリル酸 又はメタクリル酸の製造が公知である。ドイツ連邦共和 国特許出願公開(DE-A)第2025430号明細書 は、インダンの例えばアントラキノンへの接触気相酸化 に関している。触媒活性酸化物材料は、酸素の他に単に 1種の他の元素又は1種以上の他の元素(多元素酸化物 20 材料)が含まれる。

【0004】1種以上の金属元素、特に遷移金属元素を 有する触媒活性酸化物材料が特に頻繁に用いられる。こ の場合、複合金属酸化物材料について述べられる。通 常、多元素酸化物材料は、元素状の構成要素の酸化物の 簡単な物理的混合物ではなく、これらの元素の複合的ポ リ化合物(komplexen Polyverbindungen)の不均一系の 混合物である。

【0005】原則として、このような接触気相酸化の大 規模工業的な実現化は固定床反応器中で行われる。つま 30 り、反応ガス混合物を静止する触媒堆積物に貫流させ、 その中での滞留時間の間に酸化化学反応が行われる。

【0006】たいていの接触気相酸化は、著しく発熱性 で進行するため、この酸化は応用技術的に有利に、多接 触管一固定床反応器中で実施される。接触管装置は通常 の場合、数メートルに達し、接触管の内径は均一で数セ ンチメートルである。接触管の周囲を流れる熱交換剤は プロセス熱を運び去る(例えばドイツ連邦共和国特許出 願公開第4431975号及びドイツ連邦共和国特許出 願公開第4431949号明細書参照)。

【0007】微細粒の粉末状の触媒活性酸化物材料から なる固定床堆積物は、接触気相酸化の実施にはあまり適 していない、それというのも、この気相酸化は、出発反 応ガス混合物による経済的負荷を液圧輸送なしでは持ち こたえられないためである。

【0008】つまり、通常、触媒活性酸化物材料から、 縦方向の長さは接触管の内径の寸法に合わせて原則とし て数ミリメートルである成形体が成形される。

【0009】このような成形体の有利な形状として、米

な中空シリンダー (リング) を推奨している。 高さ及び 外径は3~6mmで、壁厚は1~1.5mmである。付 形方法として、米国特許 (US-A) 第4366093 号明細書は完全触媒 (Vollkatalysator) のタブレット 成形又は押出成形(全体の中空シリンダーは触媒活性材 料からなり、この材料は場合により微細粒の不活性材料 で希釈されている)又は担体触媒のリング状担体の含浸 を挙げている。≦1.5mmの壁厚のリング状の完全触 媒の欠点は、それを接触管中へ充填する際に完全に十分 な機械的安定性を有していないことにある。担体触媒に 関する欠点は、この担体触媒が溶液から形成することが できるような酸化性活性材料に制限されることである。 更に、1回の含浸では活性材料がわずかに吸収されるだ けである。

【0010】米国特許(US-A)第4438217号 及び米国特許(US-A)第4522671号明細書 は、アクロレインもしくはメタクロレインの気相接触酸 化による製造のために、主成分としてモリブデンを含ん だ複合金属酸化物をベースとする、3~10mmの外 径、外径の0.1~0.7倍の内径及び外径の0.5~2 倍の高さの完全触媒ーリングを推奨している。壁厚の下 限として、必要な機械的安定性の点でちょうど1mmが 可能であると判断される。しかし、大きな壁厚の欠点 は、それに伴い反応区域からの拡散経路の延長が生じ、 このことは不所望の副反応を促進し、それにより目的生 成物の選択性が減少する。

【0011】米国特許(US-A)第4537874号 明細書は、 α , β -モノエチレン性不飽和アルデヒドの 気相接触酸化による製造のために、同様に、主成分とし てモリブデンを含有する複合金属酸化物をベースとする 完全触媒ーリングからなる堆積物を推奨している。この 中空シリンダーの壁厚は全ての実施例において2mmで あった。

【0012】完全触媒ーリングの場合に生じる、必要な 機械的安定性(増大する壁厚)と反応帯域からの拡散経 路の制限(減少する壁厚)との間の矛盾を、その他特に 有利なリング形状を維持しながら解消するために、リン グ状の外殻触媒が見出された。この機械的安定性は、リ・ ング状の担体により保証され、リング表面上に所望の層 40 厚で触媒活性酸化物材料を設置することができる。

【0013】しかし、外殻触媒の場合の問題は、全く一 般的に、工業的規模でのその製造であり、つまりこの外 殻触媒は、工業的規模で次のように製造される: 触媒活 性の観点で必要な層厚を有し、この触媒活性外殻は必要 な厚さで十分に担体成形体の表面に付着し、1つの担体 成形体の表面にわたり観察される外殼の厚さはできる限 りわずかな変動を有し、異なる担体成形体の表面にわた り観察される外殻の厚さはできる限りわずかな変動を有 し、活性材料の質量単位に対して、触媒活性の比表面積 国特許(US-A)第4366093号明細書は一般的 50 の大きさが十分であり、かつ製造方法の生産効率が十分

である。

【0014】このことは、特に、中空シリンダー状の担 体成形体の場合に、球形の支持体と異なり、その回転挙 動が優先方向を有しており、先行技術において触媒活性 の酸化剤量を有する外殼触媒の製造方法が、主に球形の 外殻触媒に限定されていることの原因となっている。

【0015】ドイツ連邦共和国特許出願公開(DE-A) 第2025430号明細書から、触媒活性酸化物材 料をベースとする外殻触媒が、プラズマ溶射法又はフレ ーム溶射法を用いて触媒活性材料を担体成形体上に塗布 10 することにより製造できることは公知である。この方法 の適用性に関する欠点は、少なくとも1種の主成分の融 点がフレーム溶射パーナー又はプラズマ溶射パーナーの 作業温度になければならないことである。この方法のも う一つの欠点は、原則として触媒活性比表面積の大きさ が十分でないことにある。ドイツ連邦共和国特許出願公 開(DE-A)第2025430号明細書の全ての例示 された実施態様は球形の外殻触媒である。比較例とし て、このドイツ連邦共和国特許出願公開 (DE-A) 第 2025430号明細書は、シュウ酸及び触媒活性酸化 20 物材料を溶解して含有する水溶液を、熱した球形の担体 上に吹き付けて、球形の外殻触媒を製造する方法を包含 している。この方法の欠点は、水に溶解可能な触媒活性 酸化物材料の場合にのみ適用することができることであ る。更に、不規則な外殼の厚さが生じ、並びに熱い球形 担体の表面で溶剤を急激に蒸発させるために不十分な外 殻の付着が生じる。同様に、この方法は少なからぬ活性 材料の損失を引き起こす。

【0016】ドイツ連邦共和国特許出願公開(DE-A) 第1642921号明細書は、熱い球形の担体成形 30 体上に、酸化物の活性材料を溶解した又は懸濁した形で 含有する液体を吹き付けることにより球形の酸化物の外 殻触媒の製造方法に関する。溶剤もしくは懸濁媒体とし て、ドイツ連邦共和国特許出願公開(DE-A)第16 42921号明細書は水又は有機溶剤、例えばアルコー ルもしくはホルムアミドを推奨している。ここでも、吹 き付けられた材料が熱い担体と接触した途端、水もしく は溶剤は急激に蒸発し、これが外殻の付着強度を低下さ せるという欠点がある。

【0017】ドイツ連邦共和国特許出願公開(DE-A) 第2510994号明細書の教示は、リング状の担 体を包含するという差異があるが、根本的に、ドイツ連 邦共和国特許出願公開(DE-A)第1642921号 明細書の教示と一致する。この明細書は、更に、主にバ ナジウムーチタンー混合酸化物からなるような触媒活性 酸化物材料に限定している。

【0018】ドイツ連邦共和国特許出願公開(DE-A) 第2106796号明細書から、触媒的に有効な酸 化物の材料の水性懸濁液を、運動させた担体成形体上に

の方法は酸化物の活性材料を溶解して含有する水溶液の 吹き付けに対して記載したと同様の欠点を有している。 このことは、特に加熱された担体成形体上に吹き付ける 際に該当する。この欠点は、結合剤として水性のポリマ 一分散液の併用を推奨することによっても排除できず、 むしろ、ポリマー分散液の存在が制御するのが難しい強 膜形成プロセスにより被覆行程を更に困難にしている。 ドイツ連邦共和国特許出願公開 (DE-AS) 第210 6796号明細書は使用可能な担体成形体としてシリン ダーを挙げているが、例えばその実施態様には相応する 実施例が含まれていない。

【0019】ドイツ連邦共和国特許出願公開(DE-A) 第2626887号明細書は、水性懸濁液を単に2 5~80℃の温度を有する球形担体上に吹き付けること により、ドイツ連邦共和国特許出願公開(DE-A)第 2106796号明細書の欠点を回避することを試みて いる。ドイツ連邦共和国特許出願公開 (DE-A) 第2 909671号明細書の第5頁10行によると、この方 法の場合に、吹き付けられた球形担体の接着が生じるこ とがあるとしている。酸化物の触媒活性外殼の担体成形 体の表面上での接着性の向上のために、ドイツ連邦共和 国特許出願公開 (DE-A) 第2626887号明細書 は、無機ヒドロキシ塩を吹き付ける水性懸濁液中へ混入 し、これを水溶液中でヒドロキシドに加水分解し、外殻 触媒が仕上がった後に、触媒活性酸化物材料の触媒的に 中立の成分を形成させることを推奨している。しかし、 この方法の欠点は、この方法が酸化物の活性材料の希釈 を必要とすることである。可能な担体成形体として、ド イツ連邦共和国特許出願公開(DE-A)第26268 87号明細書には、リング及びシリンダーも挙げられて いるが、実施例の全体は球形の外殻触媒に限定してい

【0020】ドイツ連邦共和国特許出願公開(DE-A) 第2909670号明細書の教示は、本質的にドイ ツ連邦共和国特許出願公開 (DE-A) 第262688 7号明細書の教示に一致する。ドイツ連邦共和国特許出 願公開(DE-A)第2909670号明細書の記載に よると、懸濁媒体として、水とアルコールとの混合物も 使用することができるとされている。触媒活性酸化物材 料の懸濁液の吹き付けが完了した後、熱空気を導入する ことにより湿分を除去している。ドイツ連邦共和国特許 出願公開 (DE-A) 第2909670号明細書の例示 された実施態様は、リング状の外殻触媒も包含してい る。しかし、全ての例示された実施態様において、懸濁 媒体として単に水を使用しているだけである。ドイツ連 邦共和国特許出願公開 (DE-A) 第2909670号 明細書の方法の欠点は、ドイツ連邦共和国特許出願公開 (DE-A) 第2626887号明細書との関連で既に 記載したように、噴霧された成形体が凝集する傾向にあ 吹き付けることによる外殼触媒の製造は公知である。こ 50 ることである。さらに、リング状の外殻触媒の場合に

は、結果的に生じる酸化物材料の外殻の触媒活性の比衷 面積が原則として不十分である。

【0021】英国特許(GB)第1331423号明細 書は、触媒前駆体及び、常圧で少なくとも150℃の沸点を有し、かつ水溶性である有機補助物質から水性懸濁液又は水溶液を形成させ、これに担体成形体を添加し、折に触れて撹拌しながら液体成分を蒸発により除去することを特徴とする、球形の酸化物の外設触媒の製造方法に関する。引き続き、こうして得られた被覆された担体成形体をか焼し、触媒前駆体層を活性の酸化物に変換さ 10せる。この方法の欠点は、結果として得られた外殼触媒が比較的不均一な外殼厚さを有することである。更に、担体成形体表面上での外殼の付着は不十分である、それというのも、触媒前駆体材料のか焼は、原則として無制御でガス状の化合物を放出し、この化合物がこの構造を弛めているためである。

【0022】欧州特許出願公開(EP-A)第2864 48号明細書及び欧州特許出願公開(EP-A)第37 492号明細書は、既に記載された吹き付け方法及び英 国特許(GB)第1331423号明細書の方法による20 外殻触媒の製造を推奨しているが、これは既に前記した 欠点を有している。

【0023】欧州特許(EP-B)第293859号明細書は、遠心流一被覆装置の適用による球形の外殻触媒の製造方法を開示している。この方法は、1つの球表面にわたり及び異なる球表面にわたり観察される特に均質に加工された外殻厚さを生じる。この欧州特許(EP-B)第293859号明細書の方法の欠点は、欧州特許(EP-B)第293859号明細書が、球形担体に触媒活性酸化物材料を直接でなく、その触媒活性酸化物材 30料の前駆材料で被覆させることを推奨していることである。後者の前駆材料は高温(数百℃)で引き続き燃焼

(か焼)させて前者の触媒活性酸化物材料に変換する。 原則として、このか焼を用いて自発的に、つまり程度に差があるが制御不能に進行する前駆材料中に含まれる成分の熱的分解と平行してガス状生成物が生じ、このガス状生成物は一方で特別な孔分布ならびに(15㎡/gまで)高められた触媒活性の比表面積を生じさせるが、他方では担体成形体表面上での触媒活性外殻の付着を減少させる。被覆後のか焼は、か焼の際に欠陥チャージを40生じることがある点でも欠点である(例えば不完全なか焼雰囲気の場合)。この処理は既に実施された被覆の場合に著しく複雑である。結合剤として、欧州特許(EP-B)第293859号明細書は、硝酸アンモニウム、黒鉛およデンプンの他に、水、アルコール及びアセトンを挙げている。

【0024】ドイツ連邦共和国特許出願公開(DE-A)第2526238号明細書、米国特許(US)第3956377号明細書及びドイツ連邦共和国特許出願公開(DE-A)第235151号明細書からは、球形担50

体をまず結合剤として水又は他の液体、例えば石油エー テルで湿らせる球形の酸化物ー外殻触媒の製造方法が公 知である。引き続き、この触媒活性酸化物材料を、結合 剤で湿らせた担体材料上へ、湿った担体材料を粉末状の 触媒活性酸化物材料中で転がすことにより設置する。こ の方法の欠点は、達成可能な外殻の厚さが、担体の側か ら吸収された結合剤の量が全体の収容されるべき粉末状 の酸化物の結合を決定するため、担体の結合剤吸収能力 により制限されることである。この方法のもう一つの欠 点は、被覆行程の間のそれぞれの表面層の湿潤程度が常 に変化することにある。つまり、基層は未被覆の担体の 湿分に当たる。引き続き、更なる活性材料を次々と付着 できるためには、湿分はようやくその基層を通ってその 表面に移動しなければならない。結果として、タマネギ 状の外殻構造が得られ、その際、特に重なり合う層の相 互の付着は十分ではない。従って、圧力の影響が、原則 として個々の層の連続する剥離を引き起こす。全ての実 施例において、水が唯一の結合剤として使用されてい

【0025】ドイツ連邦共和国特許出願公開(DE-A) 第2909671号明細魯は、ここに記載された方 法の欠点を、球形の担体成形体を、傾斜して回転する回 転皿中に充填することにより減少させることを試みてい る。この回転する回転皿は、球形の担体成形体を、一定 の間隔で連続して配置されている2つの供給装置のもと で周期的に案内する。2つの供給装置の第1のものは、 球形担体に水を吹き付け、制御して湿らせるノズルに相 当する。第2の供給装置は、吹き付けられた水の噴霧錐 の外側にあり、微細粒の酸化物の活性材料を(例えばシ ェーキングコンベヤにより) 供給するために用いられ る。制御して調湿された球形担体は供給された触媒粉末 を収容し、この粉末は回転運動により球形担体の外側表 面上にまとまった外殼に圧縮される。このように下地が 被覆された球形担体は、いわゆる新しい担体成形体とし て継続する回転の経過において再びスプレーノズルを通 過し、その際同様の方法で制御して調湿され、継続運動 の経過で微細粒の酸化物材料のもう一つの層を次々と収 容する。記載された方法では外殻の厚さが根本的に意図 して調節することができる。更に、外殻の構造の均一性 が改善される。熱空気の導入により、結合剤として使用 された水は最終的に除去することができる。前記した方 法のもう一つの利点は、供給された微細粒の酸化物の活 性材料を、被覆の間に完全に収容されるように設定する ことができ、その結果、活性材料の損失がなくなる。し かし、前記の方法の欠点は、結合剤である水の単独使用 が球形担体の表面での外殻の全面的に十分な付着を生じ ないことである。更に、原則として、生じた酸化物の活 性材料外殻の活性の比表面積は完全に十分ではない。

[0026]

【発明が解決しようとする課題】従って、本発明の課題

は、先行技術の方法の欠点を示さない、特にリング状の酸化物の外殻触媒の製造のために適した、担体成形体と担体成形体の表面に設けられた触媒活性酸化物とからなる触媒の製造方法である。これは、球形の外殻触媒と比較して、同等の活性材料、層厚及び体積比活性 volume nspezifischer Aktivitaet)の場合、特に固定床堆積物に沿ってわずかな圧力低下を示す点で有利である。つまり、一定の反応器負荷(時間単位あたり反応器に供給される反応混合物の量)の場合、ガス状の反応体のわずかな部分圧が構成される。これは、発熱性の触媒固定床 10気相酸化において個々の接触管に沿って流動方法へ通常移動する温度最大(ホットスポット)が減少する振幅

(reduzierte Amplitude)を有する結果を伴う。これは、使用した酸化物の活性材料の寿命(耐用時間)にとって有利に作用する。球形を有する外殻触媒に対してリング状の外殻触媒のもう一つの利点は、管束反応器の温度挙動が、接触管を取り巻く温度調節媒体の進入温度の変動に関してあまり感度よく反応しないことである。この進入温度が例えば偶然1℃上昇した場合、接触管内のホットスポット温度は通常1℃よりも大きく上昇する。 20しかし、このようなより高い上昇は、リング状の外殻触媒の場合(同様の活性材料、外殻厚さ及び体積比活性であると仮定して)あまり際立たない。

[0027]

【課題を解決するための手段】本発明の根底をなす課題は、担体成形体をまず液状結合剤で湿らせ、その後、乾燥した微細粒の活性酸化物材料を湿った担体成形体の表面と接触させることにより付着させ、引き続き、液状結合剤を活性の酸化物材料で被覆された湿った担体成形体から除去することで、担体成形体と、担体成形体の表面30上に設置された触媒活性酸化物材料からなる触媒の製造方法において、液状結合剤として、水20~90重量%及び常圧(1 a t m)で>100℃、有利に>150℃の沸点又は昇華温度の有機化合物10~80重量%からなる溶液を使用することを特徴とする触媒の製造方法により解決される。有利に本発明により使用すべき液体結合剤の有機成分は10~50重量%及び特に有利に20~30重量%である。

[0028]

【発明の実施の形態】本発明による液体結合剤の有機成 40分として、特に1価又は多価の有機アルコール、例えばエチレングリコール、1,4ープタンジオール、1,6ーへキサンジオール又はグリセリン、1価又は多価の有機カルボン酸、例えばプロピオン酸、シュウ酸、マロン酸、グルタル酸又はマレイン酸、アミノアルコール、例えばエタノールアミン又はジエタノールアミン、1価又は多価の有機アミド、例えばホルムアミド又は単糖及びオリゴ糖、例えばグルコース、フルクトース、サッカロース又はラクトースが適している。特に、常圧で沸点又は昇華温度が触媒活性酸化物の製造のために適用される 50

か焼温度を下回るか、又は酸素の存在で触媒活性酸化物材料に接してか焼温度より下でガス状成分へ分解するような有機成分が有利である。通常、か焼温度は≦500℃、頻繁に≦400℃及び特に≦300℃である。本発明により、常圧で沸点が100℃を上回る、特に150℃を上回るような液状結合剤が特に有利である。

10

【0029】本発明による方法の利点は、結合剤として 純粋な水の使用と異なり、妥当性の要求なしで、特に本 発明による液状の結合剤が微細粒の酸化物の活性材料並 びに担体成形体をより良好に湿らせることができること に起因する。

【0030】担体成形体の材料は、有利に化学的に不活 性であり、つまり、この材料は、本発明により製造され た外殼触媒により触媒される気相酸化の進行において本 質的に干渉しない。担体成形体の材料として、本発明に より、特に酸化アルミニウム、二酸化ケイ素、ケイ酸 塩、例えば粘土、カオリン、ステアタイト、軽石、ケイ 酸アルミニウム及びケイ酸マグネシウム、炭化ケイ素、 二酸化ジルコニウム及び二酸化トリウムが挙げられる。 【0031】担体成形体の表面は粗面であるのが有利で ある。それというのも、高められた表面粗さは原則とし て酸化物の活性材料の設置された外殻の付着性を高める ためである。担体成形体の表面粗さ尺が40~200 μm、有利に40~100μmの範囲内にあるのが有利 である (Fa. Hommelwerke 社のホンメルテスター"Hommel Tester fuer DIN-ISO Oberflaechenmessgroesen" いてDIN4768第1頁により測定)。この担体材料 は多孔性又は無孔性であることができる。この担体材料 は無孔性であるのが有利である(担体成形体の体積に対 する孔の総容量が≤1体積%である)。

【0032】原則として、本発明による方法のために担体成形体の任意の形状が挙げられる。その最大寸法は原則として1~10mmである。しかし、有利に球形又はシリンダー形、特に中空シリンダー形が担体成形体として適用される。

【0033】担体成形体としてシリンダー形を使用する場合、その長さは有利に $2\sim10\,\mathrm{mm}$ で、その外径は $4\sim10\,\mathrm{mm}$ である。リング状の場合には、壁厚はさらに通常 $1\sim4\,\mathrm{mm}$ である。リング状の担体成形体が $3\sim6\,\mathrm{mm}$ の長さ、 $4\sim8\,\mathrm{mm}$ の外径及び $1\sim2\,\mathrm{mm}$ の壁厚を有するのが特に有利である。 $7\,\mathrm{mm}\times3\,\mathrm{mm}\times4\,\mathrm{mm}$ (外径×長さ×内径)の形状のリングが特に有利である。

【0034】本発明により担体成形体上に設けられた触媒活性の酸化物材料の厚さは、有利に、原則として10~1000 μ mである。特に、リング状の担体成形体の場合には10~500 μ m、特に100~500 μ m、特に有利に200~300 μ mが有利である。

【0035】担体成形体の表面に設けられた触媒活性の 酸化物材料の微粉度はもちろん所望の外殻の厚さに適合

させられる。 $100\sim500\mu$ mの層厚の有利な範囲に対して、特に50%の粉末粒子が $1\sim10\mu$ mのメッシュ幅の篩を通過し、 50μ mを上回る最大寸法を有する粒子の割合が1%より少ないような活性材料粉末が適している。原則として、粉末粒子の最大寸法の分布は製造によってガウス分布に一致する。

【0036】所望の外殻厚さの遠成のために、本発明による方法は、有利に周期的に繰り返される。つまり、下地が被覆された担体成形体が形成され、次いで後続するその次の期に本発明によりまず湿らされ、次いで、被覆 10 すべき「担体成形体」と乾燥した微細粒の酸化物活性材料とを次々と接触させる。

【0037】従って、工業的規模で本発明による方法を 実施するために、ドイツ連邦共和国特許出願公開(DE -A)第2909671号明細書に開示された方法原則 を適用することが推奨されるが、水の代わりに本発明に よる液状結合剤を適用する。

【0038】つまり、被覆すべき担体成形体は、有利に 傾斜して(傾斜角は原則として30~90°である)回 転する回転容器 (例えば回転皿又は被覆釜) が適してい 20 る。回転する回転容器は特に球形又はシリンダー状、特 に中空シリンダー状の担体成形体を、一定の間隔で連続 して配置された2つの供給装置の下方を横切って通過す る。2つの供給装置の第1のものは、回転する回転皿中 で転動する担体成形体に本発明により使用すべき液状結 合剤を吹き付けかつ制御して湿らせるノズルに相当す る。第2の供給装置は吹き付けられる液状結合剤の噴霧 錐の外側にあり、微細粒の酸化物の活性材料を(例えば シェーキングコンベアを介して)供給するために用いら れる。制御して湿らされた球形担体は、供給された触媒 30 粉末を収容し、この粉末は転動運動によりシリンダー又 は球形の担体成形体の外側の表面上でまとまった外殻に 圧縮される(中空シリンダーの担体成形体の内側の円内 では、このような圧縮運動が行われず、従って本質的に 未被覆のままである)。

【0039】必要な場合に、こうして下地が被覆された 担体成形体は後続する回転の経過において再びスプレー ノズルに通され、その際、制御されて湿らされ、継続運動の経過においてもう1層の微細粒の酸化物の活性材料 を収容することができる(中間乾燥は原則として必要で 40 ない)。本発明により使用された液状結合剤の除去は、 例えば最終的な熟供給により、例えばN又は空気のような加熱ガスの作用により行うことができる。本発明に よる方法の前配の実施態様の特別な利点は、1つの作業 工程において、2つ又はそれ以上の異なる活性酸化物材料からなる層状の外殻を製造することができる点にある。この場合、重要なのは、本発明による方法は、相互に重なった層同士並びに担体成形体の表面上の下地層と の完全に十分な付着が生じることである。このことは、 リング状の担体成形体の場合にも通用する。50 【0040】本発明による方法の前記した実施態様にとって、担体成形体の被覆すべき表面の調湿が制御して行うことができるのが重要である。簡単に表現すると、担体表面は、有利にこれが被状結合剤を吸着して有しているが、担体表面上に液相自体は視覚的に出現しない程度に湿らせるのが有利である。担体成形体表面が湿りすぎの場合には、微細粒の触媒活性酸化物材料は表面上に付着する代わりに、凝集して凝集体を形成する。これについての詳細な記載はドイツ連邦共和国特許出願公開(DE-A)第2909671号明細費に見出される。

【0041】本発明による方法の利点は、使用した液状結合剤の最終的な除去を、制御して、例えば蒸発及び/又は昇華により行うことができることにある。最も簡単な場合には、熱ガスの作用により相応する温度(頻繁に50~150℃)で行うことができる。しかし、熱ガスの作用により、前乾燥を惹起するだけである。最終的な乾燥は、例えば任意の種類の乾燥炉(ベルト乾燥器)中で行うことができる。作用する温度は、酸化物の活性材料の製造のために適用されるか焼温度を上回らないのが好ましい。

【0042】意想外に、多数の極性有機結合剤成分は酸化物材料に接して高めた温度で(この温度は前記したか焼温度を下回る)及び空気酸素の存在で、ガス状の成分、例えばギ酸、H,O、CO,又はCOに分解することが見出された。意想外に、この分解は、原則として担体成形体の表面上の酸化物の外殼の付着性を減少させずに行われる。しかし、他方で、この場合、酸化物の活性材料の比表面積の向上が達成される。それにより、多様な酸化物の活性材料に対して最初に、酸化物の活性材料の触媒活性比表面積に関して全面的に十分であるリング状の外殼触媒を提供することが可能である。

【0043】比表面積O(m/g)に関する記載は、 本明細書において、DIN66131による測定に関し ている (ブルナウアーーエメットーテラー (BET) に よるガス吸着(N₂)により固体の比表面積を測定す る)。通常、まず未被覆の担体成形体についての表面積 を、引き続き外殻触媒についての表面積を測定するよう に実施される。次いで、減算により外殻の酸化物活性材 料についての所望の値が生じる。外殻の酸化物の活性材 料は微細粒の触媒的に不活性の酸化物(気相反応に応じ て頻繁にSi、Al、Zr及び/又はTiの酸化物)で 数倍に希釈されている。本明細書中で酸化物の活性材料 の比表面積とは、この不活性の希釈材料の寄与を除いた 〇の値を意味する。この不活性の希釈剤は原則としてそ れ自体触媒の製造の際に添加されるため、表面積並びに 質量に対するその寄与がまず測定される。Oは次の式に より得られる:

[0044]

50 【数1】

外継中に含まれた年 0-外級の全支回接 -括性単釈剤の表面質 外面の主要是一針线中に含まれた不

【0045】つまり〇は触媒活性比表面積を意味してい る。

【0046】本発明により使用すべき液状結合剤の適当 な選択により、触媒活性酸化物材料の種類に依存して、 本発明による方法により球形-及びリング状の外殻触媒 を(前記した外殻の厚さの範囲内で)製造することがで き、Oについての値は20~30㎡/gである。この 10 値は、リング状の酸化物の外殻触媒に対して著しく高 く、この値は先行技術による製造方法によって多くとも 高めたリン成分を有するヘテロポリ酸のタイプ (ケギン 構造タイプ)の酸化物の活性材料に対することが明らか である。

【0047】酸化物の外殼の付着強度についての尺度 は、次の回転皿ー作業試験であり、この試験については 本明細書における全ての付着強度に関している。

【0048】室温で、研磨されたV2A鋼からなる適当 な回転皿(傾斜角45°、直径300mm、縁部の高さ 20 100mm、組み込み部材なし)に、その容量の30% まで外殻触媒を充填し、5分間で1分あたり35回転の 回転速度で回転させた。この場合に生じる活性材料に関 する摩耗量が計量された。充填された外殼触媒上に合計 で存在する酸化物の活性材料の量により除算し、100 を掛けると摩耗率Aが%で得られる。

【0049】触媒活性の酸化物材料の種類に無関係に、 本発明による方法により、原則として〇についての前記 した高められた値でも、球形-又はリング状の外殻触媒 が得られ、Aについてのこの値は<10重量%、たいて 30 いは<5重量%で、本明細書中で特に有利に挙げられる 液状結合剤の使用の場合に、さらにく0.5重量%であ

【0050】この立場では、全ての方法行程は酸化物の 活性材料を備えた担体成形体の本発明による被覆の範囲 内において液状結合剤の除去をさしあたり、原則として 室温(つまり約25℃)で行っていることが言及され る。

【0051】本発明による本質的な特徴は、担体成形体 上に前駆体材料ではなく、触媒活性材料自体を設置する 40 ことである。同様のものを製造するために、通常公知の ように触媒活性酸化物の材料の適当な原料から出発し、 これはできる限り完全混和の、有利に微細粒の乾燥混合 物であり、これは次いでか焼にかけられ、場合により粉 砕により微細粒の形に変換される。一般に公知のよう に、原料がすでに酸化物であるか又は加熱により少なく とも酸素の存在で酸化物に変換することができる化合物 であることが重要である。従って、酸化物の他に、出発 化合物として、特にハロゲン化物、硝酸塩、ギ酸塩、シ ュウ酸塩、酢酸塩、炭酸塩又は水酸化物が挙げられる。 50 X² Cu, Ni, Co及び/又はFe

【0052】出発化合物の完全混和は、乾燥した形又は 湿った形で行うことができる。乾燥した形で行う場合、 出発化合物は有利に微細粒粉末として使用され、混合及 び場合による圧縮成形の後にか焼にかけられる。しか し、湿った形で完全混和を行うのが有利である。この場 合、通常、出発化合物は水溶液又は懸濁液の形で相互に 混合される。引き続き、水性の材料を乾燥させ、乾燥の 後にか焼させる。乾燥工程を噴霧乾燥により行うのが有 利である。この場合生じる粉末は、直接の継続加工のた めに頻繁に微細粒すぎることが示されている。この場合 に、水を添加しながら混練することができる。生じた混 練材料は、引き続きか焼にかけられ微細粒の酸化物の活 性材料に粉砕される。

14

【0053】か焼条件は多様な可能な酸化物の活性材料 に対して当業者に公知である。

【0054】本発明による方法は、Mo及びVもしくは Mo、Fe及びBiを含有する複合金属酸化物材料の場 合に有利である。

【0055】本発明による方法は、一般式Ⅰ:

[0056]

【化3】

(I)

【0057】 [式中、変数は次のものを表す:

X¹ W, Nb, Ta, Cr及び/又はCe

X² Cu, Ni, Co, Fe, Mn及び/又はZn

X'Sb及び/又はBi

X¹ 少なくとも1種又はそれ以上のアルカリ金属

X⁵ 少なくとも1種又はそれ以上のアルカリ土類金属

Xº Si, Al, Ti及び/又はZr

a 1~6

b 0.2~4

c 0.5~18

d 0~40

 $0 \sim 2$

 $0 \sim 4$

g 0~40及び

I中の酸素と異なる元素の原子価及び頻度により決 定される数〕で示される外殼として設置すべき活性の複 合金属酸化物の場合に特に有利であることが示される。

【0058】活性の複合金属酸化物 I の製造は、か焼条 件を含めてドイツ連邦共和国特許出願公開(DE-A) 第4335973号明細書に記載されている。ドイツ連 邦共和国特許出願公開(DE-A)第4335973号 明細書は活性の複合金属酸化物Iの範囲内で有利な実施 態様も開示している。これについては、例えば、一般式 I の変数が次のものを包含するような複合金属酸化物 I が挙げられる:

X¹ W, Nb及び/又はCr

x' Sb

X' Na及び/又はK

X⁵ Ca, Sr及び/又はBa

X° Si, Al及び/又はTi

a 2.5~5

 $0.5 \sim 2$

 $c = 0.5 \sim 3$

d 0~2

e 0~0.2

f 0~1

g 0~15及び

I 中の酸素と異なる元素の原子価及び頻度により決 定される数。

【0059】しかし、特に有利な複合金属酸化物Ⅰは、 一般式 1 ':

[0060]

【化4】

ᄣᇪᄰᄬᄙᅑᅑᇃᅆ (21)

【0061】[式中、

X' W及び/又はNb

X' Cu及び/又はNi

X⁵ Ca及び/又はSr

X° Si及び/又はAl

a $3 \sim 4.5$

b $1 \sim 1.5$

c $0.75 \sim 2.5$

f 0~0.5

g 0~8及び

n I'中の酸素と異なる元素の原子価及び頻度により 決定される数]で示されるものである。

【0062】活性の複合金属酸化物 I を有する本発明に より製造された外殻触媒は、特にアクロレインからアク リル酸の接触気相酸化製造のために適している。これは 特に球形-又はリング状の外殻触媒に通用する。本明細 書中に有利であると記載された特徴(形態、外殻の厚さ など)を有する場合、特に有利である。アクロレインか らアクリル酸への接触気相酸化のための一般的な反応条 件は、同様にドイツ連邦共和国特許出願公開(DE-A) 第4335973号明細書に記載されている。

【0063】本発明による方法は、メタクロレインのメ 40 タクリル酸への接触気相酸化のために使用されるような 活性の複合金属酸化物及びドイツ連邦共和国特許出願公 開(DE-A)第4022212号明細書に記載された ような活性の複合金属酸化物の場合でも適している。

【0064】さらに、本発明による方法は、一般式 I I :

[0065]

【化5】

moragi serificial (III)

【0066】 [式中、変数は次のものを表す:

X' ニッケル及び/又はコバルト

X² タリウム、アルカリ金属及び/又はアルカリ土類 金属

X³ リン、ヒ素、ホウ素、アンチモン、スズ、セリウ ム、鉛、ニオブ及び/又はタングステン、

X¹ ケイ素、アルミニウム、チタン及び/又はジルコ ニウム

a 0.5~5

b 0.01~3

10 c 3~10

d $0.02 \sim 2$

e 0~5

f 0~10及び

記載されている。

n II中の酸素と異なる元素の原子価及び頻度により 決定される数〕で示される、外殻として設置すべき活性 の複合金属酸化物の場合にさらに適していることが示さ

【0067】活性の複合金属酸化物 I I の製造はか焼条 件を含めてドイツ連邦共和国特許出願公開 (DE-A) 20 第4023239号明細書に記載されている。

【0068】活性の複合金属酸化物IIを有する本発明 による外殻触媒は、特に、プロペンからアクロレインを 接触気相酸化により製造するために適している。これ は、特に球形ー又はリング状の外殻触媒に通用する。本 明細書中で有利であると記載された特徴(形状、外殻の 厚さなど)を有する場合に有利である。プロペンのアク ロレインへの接触気相酸化のための一般的な反応条件 は、同様に、ドイツ連邦共和国特許出願公開(DE-A) 第4023239号明細書並びにドイツ連邦共和国 30 特許出願公開(DE-A)第4431957号明細書に

【0069】活性の複合金属酸化物IIの前記の外殻触 媒は、同様にtープタノール、イソプタン、イソプテン 又はtープチルメチルエーテルからメタクロレインを接 触気相酸化により製造するためにも適している。この接 触気相酸化のための一般的な反応条件はドイツ連邦共和 . 国特許出願公開 (DE-A) 第4023239号明細書 並びにドイツ連邦共和国特許出願公開(DE-A)第4 335172号明細書に記載されている。

【0070】さらに、本発明による方法は、ドイツ連邦 共和国特許出願公開 (DE-A) 第4405514号明 細書の活性の酸化物材料の場合にも適している。

【0071】もちろん、本発明による方法は、全く一般 的に活性の酸化物材料をベースとする外殼触媒の製造の ために、特に先行技術の評価の範囲内で本明細書中に記 載された接触気相酸化のために適している。これは、酸 化物の活性材料が酸素の他に単に1このほかの元素を有 する場合に該当する。

[0072]

50 【発明の効果】本発明による方法の利点は、特に次の点

にある:多様に調節可能な外殻の厚さ、酸化物の活性材 料の高い付着性と同時に、その完全に十分な比表面積、 1 つの並びに異なる担体成形体の表面にわたって観察さ れる得られた外殻の厚さの高められた均一性 この製造方法の十分な生産効率。

【0073】このことは特にリング状の担体成形体の場 合に該当する。

[0074]

【実施例】

a) 触媒活性の酸化物材料の製造

A: 触媒活性の酸化物材料Mo, 2V, W, ..., Cu, ..., O。 酢酸銅(II)1水和物190gを水2700gに溶か して溶液 I にする。水5500g中で95℃で順番に、 七モリブデン酸アンモニウム4水和物860g、メタバ ナジウム酸アンモニウム143g及びパラタングステン 酸アンモニウム7水和物126gを溶かして溶液 IIに する。引き続き溶液 I を1回で溶液 I I に撹拌混合し、 この水性混合物を110℃の噴射温度で噴霧乾燥した。 その後、噴霧粉末を粉末1kgあたり水0.15kgを 用いて混練した。

【0075】こうして得られた触媒前駆体を酸素/窒素 混合物が供給される循環空気炉中でか焼した。酸素含有 量はこの場合、循環空気炉の出口で1.5体積%のO2含 有量であるように調節される。か焼の範囲内で、混練材 料はまず10K/minの速度で300℃に加熱され、 引き続きこの温度で6時間保持される。その後、10K /minの速度で400℃に加熱され、この温度でなお 1時間保持される。か焼雰囲気の一定のアンモニア含有 量を実現化するために、炉の負荷B(循環空気炉1内部 容量あたりの触媒前駆体量g)、酸素/窒素混合物の導 30 入体積流ES (N1/h) 及び酸素/窒素供給の滞留時 間VZ(sec)(循環空気炉の内部容量と供給された 酸素/窒素混合物の体積流との割合)を次のように選択 した:

B : 250g/1;

ES: 80N1/h;

VZ: 135 sec.

【0076】使用した循環空気炉は31の内部容量を有 する。か焼された触媒活性材料を微細粉末に粉砕し、そ の際、この粉末粒子の50%が1~10μmのメッシュ 40 幅の篩を通過し、50μmを上回る最長寸法を有する粒 子の割合は1より少なかった。

【0077】B: 触媒活性酸化物材料Mo, 2V, W1, 2C u . . N i . . O.

酢酸銅(II)1水和物128g及び酢酸ニッケル(I I) 4水和物81gを水2700gに溶かして溶液Iに した。水5500gに95℃で順番に七モリブデン酸ア ンモニウム4水和物860g、メタバナジウム酸アンモ ニウム143g及びパラタングステン酸アンモニウム7 水和物126gを溶かして溶液IIにした。引き続き溶 50

液 I を 1 回で溶液 I I に撹拌混合し、この水性混合物を 110℃の噴霧温度で噴霧乾燥した。その後、この噴霧 粉末を粉末1kgあたり水0.15kgで混練した。こ の混練材料を空気が導入された回転管炉中で3時間の間 に400℃に加熱し、引き続き400℃で5時間か焼し た。その後、か焼した触媒活性材料を微細粒の粉末に粉 砕し、その際、この粉末粒子の50%が1~10μmの メッシュ幅を有する篩を通過し、50μmを上回る最長 寸法を有する粒子の割合は1%よりも少なかった。 【0078】b) 外殻触媒の製造

18

VS1: リング状の担体成形体(外径7mm、長さ3

mm、内径4mm、ステアタイト、45μmの表面粗さ R. 及び担体成形体の体積に対する孔容量≤1容量%を 有する、製造元: Hoechst Ceramtec 、DE) 28kgを、 2001の内部容量の被覆釜 Oragierkessel) (傾斜 角90°; Fa. Loedige 社, DEのハイコーター) に充填 した。引き続きこの被覆釜を16U/minで回転させ た。ノズルを介して25分の間に水2000gを担体成 形体に吹き付けた。同時に、同じ時空で、触媒活性酸化 20 物粉末 a A) 10.35 k g をシェーキングコンベアを 介して、噴霧ノズルの噴霧錐の外側に連続的に供給し た。被覆の間に、供給された粉末は完全に担体成形体の 表面に収容され、微細粒の酸化物の活性材料の凝集は観 察されなかった。粉末及び水の添加を完了した後、20 /分の回転速度で110℃で20分間、加熱空気を被覆 釜に供給した。引き続き、250℃でなお2時間、振盪 を止めて(シェルフオーブン(Hordenofen))空気中で乾 燥させた。総質量に対して酸化物の活性材料の割合が2 7重量%であるリング状の外殻触媒が得られた。この外 殻の厚さは、1つの担体成形体の表面並びに異なる担体 成形体の表面にわたり230±50µmであった。

【0079】S1: VS1と同様であるが、水200 0gの代わりに、H,075重量%及びグリセリン25 重量%からなる水溶液2000gを使用した。生じたリ ング状の外殻触媒はVS1の場合と同様の酸化物活性材 料割合を示し、外殻の厚さの変動幅は230±25μm であった。

【0080】S2: VS1と同様であるが、水200 0gの代わりに、H₂075重量%及びプロピオン酸2 5重量%からなる水溶液2000gを使用した。生じた リング状の外殻触媒はVS1の場合と同様の酸化物活性 材料割合を示し、外殼の厚さの変動幅は230±30μ mであった。

【0081】S3: VS1と同様であるが、水200 0gの代わりに、H2O75重量%及びホルムアミド2 5重量%からなる水溶液2000gを使用した。生じた リング状の外殻触媒はVS1の場合と同様の酸化物活性 材料割合を示し、外殻の厚さの変動幅は230±30μ mであった。

【0082】S4: VS1と同様であるが、水200

0gの代わりに、H, 075重量%及びエチレングリコール25重量%からなる水溶液2000gを使用した。生じたリング状の外殻触媒はVS1の場合と同様の酸化物活性材料割合を示し、外殻の厚さの変動幅は230±25 μ mであった。

【0083】S5: VS1と同様であるが、水200 【008 0gの代わりに、H₂O75重量%及び1,4-ブタン 0gの代 ジオール25重量%からなる水溶液2000gを使用し した。液 た。生じたリング状の外殻触媒はVS1の場合と同様の なかった 酸化物活性材料割合を示し、外殻の厚さの変動幅は23 10 われた。 0±30μmであった。 【008

【0084】S6: VS1と同様であるが、水2000gの代わりに、H,O75重量%及び1,6-ヘキサンジオール25重量%からなる水溶液2000gを使用した。生じたリング状の外殻触媒はVS1の場合と同様の酸化物活性材料割合を示し、外殻の厚さの変動幅は230±25 μ mであった。

【0085】S7: S1と同様であるが、触媒活性酸

化物粉末 a A) 10.35 k g の代わりに、相応する量の触媒活性酸化物粉末 a B) を使用した。生じたリング状の外殻触媒はS 1 の場合と同様の酸化物活性材料割合を示し、外殻の厚さの変動幅は $230\pm25\,\mu$ mであった。

【0086】VS2: S1と同様であるが、水2000gの代わりに、エチレングリコール2000gを使用した。活性材料で被覆された分離た担体成形体は得られなかった。むしろ多数の成形体の相互に著しい結合が行われた。

【0087】VS3: ドイツ連邦共和国特許出願公開 (DE-A) 第2909670号明細書の例1b) を繰り返した。

【0088】c) 触媒活性比表面積O(㎡/g)並びにb)からなる外殻触媒の摩耗率A(%)の測定 次の表1にO及びAの測定された値が示される。

[0089]

【表1】

N SERVINE	0 (00-/41)	A (%)
ART	17,5	> 10
21	13.2	0,1
52	17,5	0.3
5 0	37.4	0,2
84	23,7	0,1
95	24,9	0.3
96	2B, S	0, 2
B	28,0	G, 3
723	17.4	9,1

【0090】d) アクロレインからアクリル酸の接触 気相酸化による製造方法

外殻触媒VS1及びS1を次のように塩浴が周囲を流れ 30 るモデル接触管中で試験した。

【0091】モデル接触管:V2A-鋼、壁厚2mm、内径25mm;モデル接触管1.51にそれぞれの外殻 触媒を充填した。反応混合物は次の出発組成を有していた。

【0092】アクロレイン5体積%

酸素7体積%

水蒸気10体積%

窒素78体積%

モデル接触管は反応ガス出発混合物3600N1/hで 負荷される。塩浴の温度は、簡単な通過の際に99モル %のアクロレイン反応が実現するように調節される。

【0093】これについて必要な塩浴温度T並びにアクリル酸形成の選択性Sを次の表2に示した。

[0094]

【表2】

使用した特殊等	T [*C]	8 (mo1-4)
V62	267	95,2
81	263	95.3

フロントページの続き

(51) Int. Cl. 6	識別記号	庁内	整理番号	FI	ŧ	支術表示箇所
C 0 7 C 27/14		9155	-4H	CO7C 27/14	Z	
		9155	-4H		Α	
45/35				45/35		
47/22		9049	-4H	47/22	Α	

9049 -4 H

B Z

57/055 // C O 7 B 61/00 3 O O

9450 -4H 57/055 C O 7 B 61/00

300

(72) 発明者 ゲルト リンデン

57/055

ドイツ連邦共和国 ハイデルベルク ケッ

テンガッセ 4