TELNET, SSH

Ing. Petr Orvoš

SOŠ a SOU NERATOVICE

VZDÁLENÉ PŘÍSTUPY K ZAŘÍZENÍ

Základní vzdálené přístupy k síťovým zařízením umožňují správu, konfiguraci a monitoring zařízení (např. routerů, switchů, serverů) bez fyzické přítomnosti u nich. Tyto přístupy se liší dle úrovně zabezpečení, použité technologie i účelu. Zde jsou nejčastější metody:

SSH (Secure Shell)	HTTPS / Webové rozhraní	
Telnet	SNMP (Simple Network Management Protocol)	
RDP (Remote Desktop Protocol)		
VNC (Virtual Network Computing)	VPN (Virtual Private Network)	

CO JE TELNET?

TELNET = TELecommunication NETwork

- síťový protokol z roku 1969
- umožňuje připojení k jinému zařízení přes síť (např. k routeru, serveru)
- funguje na principu klient-server připojení přes TERMINÁL

Telnet umožňuje ovládat vzdálený počítač

"jako bychom seděli u něj".

JAK TELNET FUNGUJE?

- pracuje na transportní vrstvě TCP/IP modelu
- používá port 23 (TCP spojení) přenáší data "bez chyb"!

Klient odešle příkaz → server provede → výsledek se zobrazí zpět

Vhodné pro:

- konfiguraci síťových zařízení
- přístup ke vzdálenému shellu

- Klient (např. náš počítač)
- TCP spojení (port 23)
- Server (např. router, switch, server)
- Přes Telnet se posílají čisté textové příkazy

PŘÍKLAD POUŽITÍ?

Používá se například pro:

- konfiguraci Cisco zařízení v laboratořích
- připojení k Linux serverům
- testování otevřených portů (např. telnet google.com 80)

```
telnet 192.168.1.1
```

Username: admin

Password: ****

Router>

VÝHODY a NEVÝHODY?

- ✓ Jednoduchá implementace
- ✓ Nízká režie přenosu
- Rychlé spojení

- X Bez šifrování
- X Možnost odposlechu
- X Nahrazen SSH

Všechna komunikace probíhá jako prostý text (údaje jako jméno a heslo jsou přenášeny v čitelné podobě, což je velké riziko).

To znamená, že útočník může vše snadno odposlechnout, pokud má přístup do stejné sítě!

CO JE SSH?

SSH = Secure Shell – moderní nástupce TELNETU

- vznikl v roce 1995
- je to bezpečný síťový protokol pro vzdálený přístup k jinému zařízení přes internet nebo místní síť
- komunikuje přes port: 22 (TCP)
- přenos dat: šifrovaný zajišťuje důvěrnost a integritu

PŘÍKLAD POUŽITÍ a VÝHODY

Používá se například pro:

- bezpečné přihlášení na vzdálený počítač přes síť
- konfigurace a správa serverů, síťových zařízení, Linux systémů
- přenos souborů (např. pomocí SCP nebo SFTP)

Výhody:

- ✓ <mark>šifrování celé komunikace ochrana proti odposlechu a útokům</mark>
- ✓ ověření identity (heslem, klíčem)
- ✓ dnešní standard pro administrátory, vývojáře i správce sítí

JAK FUNGUJÍ SSH KLÍČE

SSH klíče jsou dvojice souborů, které spolu "pasují" jako zámek a klíč. Rozeznáváme:

privátní klíč (private key) – je super tajný, uložený u vás na počítači (NIKDY NESDÍLET!)

veřejný klíč (public key) – ten můžete rozesílat, např. na servery, ke kterým se chcete přihlašovat (MŮŽETE SDÍLET!) Lze ho vygenererovat ze soukromého klíče.

Dohromady tvoří tzv. asymetrickou kryptografii – šifrování, které funguje na principu dvou různých klíčů.

... více o klíčích ve VIDEU (klikni na ikonu)

JAK FUNGUJÍ SSH KLÍČE

SROVNÁNÍ SSH a TELNET

vlastnost	TELNET	SSH
Port	23	22
Šifrování	X Ne	Ano
Bezpečnost	X Nízká	✓ Vysoká
Autentizace	Heslo (v textu)	Heslo / Klíč
použití dnes	Výuka, testy	Běžná praxe

KONFIGURACE SSH NA SWITCHI CISCO

Krok	Příkaz	Popis / Poznámka
1	enable	přepnutí do privilegovaného režimu
2	configure terminal	vstup do globální konfigurace
3	hostname SW1	nastavení názvu zařízení
4	ip domain-name sosasou.cz	nastavení doménového jména
5	username admin secret cisco123	vytvoření uživatele pro SSH přihlášení
6	crypto key generate rsa	generování RSA klíče (zadej 1024 bitů)
7	line vty 0 15	vstup do konfigurace VTY linek
8	transport input ssh	povolení pouze SSH <mark>(zakáže Telnet)</mark>

KONFIGURACE SSH NA SWITCHI CISCO

Krok	Příkaz	Popis / Poznámka
9	login local	přihlášení pomocí lokálních účtů
10	ip ssh version 2	aktivace bezpečnější verze SSH
11	ip ssh time-out 60	(volitelné) Timeout přihlášení
12	ip ssh authentication-retries 2	(volitelné) počet pokusů o přihlášení
13	end	ukončení konfigurace
14	write memory	uložení konfigurace do NVRAM

IoX IDE

Netflow Collector

KONFIGURACE SSH NA SWITCHI CISCO - OVĚŘENÍ

PUTTY – terminálový program

ale o tom podrobněji jindy …

POZOR NA FALEŠNÉ PUTTY ve Windows (odkud stahujete)!

PUTTY – generování SSH klíčů

Program PUTTY umí generovat SSH klíče. Děje se tak pomocí utility puttygen.

- 1. stiskni WIN+R a otevři dialogové okno "Spustit"
- 2. zadej příkaz "puttygen"
- 3. otevře se Putty Key Generator a následně stiskneme "Generate" a pohybujeme myší při tvorbě klíčů (v parametrech vidíme typy klíčů, např. RSA)

- 4. uložíme oba klíče do adresářů, u privátního klíče (standardně přípona .ppk), ale ještě si uděláme konverzi do OpenSSH (pro jistotu a kompatibilitě) Chraňte si soukromý klíč!
- 5. veřejný klíč (public key, ukládáme s příponou .pub) můžete dát majiteli serveru na který chcete pomocí SSH přistupovat (majitel si ho nainstaluje).

PUTTY – použití SSH klíčů

- 1. z přechozího: majitel si nainstaloval na serveru veřejný SSH klíč, který jsi mu zaslal
- 2. spustíme program Putty a zadáme ke komu se připojujeme (např. mujserver)
- jdeme do Connection-SSH-Auth-Credentials, nahraji si veřejný SSH klíč z adresáře a kliknu na "Open".

PUTTY – použití SSH klíčů

- 1. otevře se první připojení k serveru, který poskytne klíč (podpis), klikni na "Accept"
- 2. otevře se okno a zadáte login a svoje heslo k privátnímu klíči (pokud jste zadali)

KONFIGURACE SSH NA POČÍTAČI ve WINDOWS

Máme k dispozici:

- svůj počítač (např. s Linuxem nebo Windows s WSL) tomu budeme říkat klient.
- vzdálený počítač / server / Raspberry Pi tomu budeme říkat server.
- Chceš, aby ses mohl z klienta přihlásit na server bez zadávání hesla, ale bezpečně pomocí SSH klíčů.

KONFIGURACE SSH NA POČÍTAČI - PŘÍKLAD

1. X Vygeneruj SSH klíč u sebe na počítači (klientovi)
V terminálu (PowerShell) Windows zadej příkaz: ssh-keygen

```
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\petro> ssh-keygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (C:\Users\petro/.ssh/id_ed25519):
```

Když se zeptá: Kde uložit klíč? – potvrď enter (uloží se do ~/.ssh/id_rsa)

KONFIGURACE SSH NA POČÍTAČI - PŘÍKLAD

```
PS C:\Users\petro> ssh-keygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (C:\Users\petro/.ssh/id_ed25519):
Created directory 'C:\\Users\\petro/.ssh'.
Enter passphrase (empty for no passphrase):
```

dále se zeptá: Enter passphrase (volitelné heslo)? – můžeš ho zadat nebo nemusíš, ale pro extra bezpečnost doporučuji zadat

- Výsledkem budou dva soubory:
- ~/.ssh/id_rsa privátní klíč (zůstává u tebe, nikomu ho nedávej)
- ~/.ssh/id_rsa.pub veřejný klíč (ten se nahrává na server)

KONFIGURACE SSH NA POČÍTAČI - PŘÍKLAD

```
PS C:\Users\petro> ssh-keygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (C:\Users\petro/.ssh/id_ed25519):
Created directory 'C:\\Users\\petro/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in C:\Users\petro/.ssh/id_ed25519
Your public key has been saved in C:\Users\petro/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:LaBsQ2GQtdiNBqHG/7nSPZR7gMgldqrcAnCNWP3goqM petro@GEO-SHADOW
+--[ED25519 256]--+
                               algoritmus pro šifrování
  . 0=0=
                               Edwardsův, mohl by
  =.+*00
                               např. být i rsa (ale
 .ooo@ . S .
                               údajně není tak
                               bezpečný)
 +.0 .00 0
+----[SHA256]----+
```

PS C:\Users\petro>

Adresář, kde jsou uložené klíče

POUŽITÁ LITERATURA a ZDROJE

PowerCert Animated Videos: SSH and TELNET. YouTube kanál [online video]. YouTube. [cit. 2025-04-24]. Dostupné z: https://www.youtube.com/watch?v=tZop-zjYkrU&t=1s

ASK Leo: How Do I Create and Use Public Keys with SSH?. YouTube kanál [online video]. YouTube. [cit. 2025-04-24]. Dostupné z: https://www.youtube.com/watch?v=5K7Xco3-RQc