Authors: #JackEdmonds Link

/ Introduction >

Consider a graph G(V, E)

- A matching in G is a subset of its edges such that no two are adjacent.
- · A maximum matching is a matching with maximum cardinality.

This paper describes an efficient algorithm to find a maximum matching.

□ Definitions and Notations >

- $A \oplus B = (A B) \cup (B A)$ (XOR operation on sets)
- Alternating Path: For matchings M and M', an alternating path is a path that has alternate edges from M and M'.
- Augmenting Path: For a matching M on a graph G, an M-augmenting path is a path (e1, e2, . . . , ek) of odd length from v1 to v2 such that v1 and v2 are not covered by M, $e_1, e_k \notin M$, and the edges alternate membership in M.

\nearrow M is maximum \iff There is no augmenting path \gt

- $\bullet \hspace{0.1in}$ M is maximum \to There is no augmenting path
 - Suppose P is an augmenting path
 - Invert P (swap matched and unmatched edges) to form M'.
 - |M'| > |M|, hence contradiction
- There is no augmenting path \rightarrow M is maximum
 - M is not maximum → There is an augmenting (Converse)
 - Suppose M' is a maximum matching
 - Consider the graph $G'(V, M \oplus M')$
 - Its components are alternating paths as each vertex can lie only on edges from M or M' (which are each at most one), hence maximum degree = 2
 - There exists an alternating path P in G' such that there are more edges from M'
 - Suppose there is no such P
 - Then for every component C, $C \cap M \geq C \cap M'$
 - Hence $|M| \ge |M'|$, contradiction
 - . P is an Augmenting path for M

Rough Outline of the Algorithm >

```
M = {};
while ( There is an Augmenting Path P ) {
    // M is not maximum
    M = M ^ P; // xor
```

```
}
return M;
```

Correctness

while loop

· initialisation: M is not maximum

maintenance: M is not maximum

· termination: M is maximum

· follows from the theorem above

Challenge: How to efficiently find augmenting paths?

□ Definitions and Notations >

At any step in the algorithm, let M be the current matching and let X be the set of exposed vertices (vertices not covered by M).

- M-Alternating trees: An M-alternating tree is a tree in G with a root vertex $r \in X$ such that along every path $P = e_1 e_2 \dots e_j$ from r to a leaf v the edges alternate between being in M and not being in M (ei \in M \Leftrightarrow i is even).
- For an M-alternating tree T with root r ∈ X, Odd is the set of vertices in T at an odd distance from r and Even is the set of vertices in T at an even distance from r (including r).
- A maximal M-alternating tree is an M-alternating tree such that no Even vertex in the tree has an edge to a
 vertex not in the tree (i.e. no additional vertices can be added to the M-alternating tree).

If an M-alternating tree contains a vertex $v \in X$ (set of exposed vertices) distinct from the root, then \rightarrow there exists an M-augmenting path.

- There is a unique path P from r to v
- · The edges alternate as per definition
- The edge incident on v is not in M
- Hence, P is an augmenting path

Blossom Algorithm

```
for( r in V ){
        if( match[r] != NULL) continue;
       bfs_queue.push(r);
       parent[n];
        level[n];
        parent[r] = r;
        level[r] = 0;
        while(bfs_queue.empty() == false){
                v = bfs_queue.pop();
                if(v != r) level[v] = level[parent[v]]+1;
                for(all neighbours w of v){
                        if( parent[w] == NULL && match[w]!=null ){
                                parent[w] = v;
                                level[w] = level[parent[w]] + 1;
                                parent[match[w]] = w;
                                level[match[w]] = level[parent[match[w]]] + 1;
```

(i) Time Complexity

- The for loop iterates n times
- The bfs takes O(n+m) time but due to cycle detection and contraction, it takes O(n * m) time
- Hence overall time complexity of $O(m*n^2)$