计算物理第1题

PB18000039 徐祺云

一 作业题目

用Schrage方法编写随机数子程序,用连续两个随机数作为点的坐标值绘出若干点的平面分布图。再用 $< x^k >$ 测试均匀性(取不同量级的N值,讨论偏差与N的关系),C(l)测试其2维独立性(总点数 $N > 10^7$)。

二 算法及主要公式

(1).采用书上给出的Lehmer线性同余法产生随机数。随机数序列 $\{x_n\}$ 是按线性关系

$$I_{n+1} = (aI_n + b) \mod m,$$
$$x_n = I_n/m,$$

得到。

(2).使用16807随机数产生器,即取a=16807, $m=2^{31}-1=2147483647$,为了保证数据大小不溢出,往往需要设计取模的方法。这里采用Schrage方法计算 $az\ mod\ m$:

$$az \ mod \ m = \begin{cases} a(z \ mod \ q) - r[z/q], & if \geqslant 0, \\ a(z \ mod \ q) - r[z/q] + m, & otherwise \end{cases}$$

其中 $m = aq + r, q = [m/a], r = m \mod a$ 。

(3).采用k阶矩 $\langle x^k \rangle$ 测试均匀性,即代入k阶矩公式得到理论值(期望值为 $\frac{1}{n+1}$)与实际值比较即可,采用自相关函数C(l)测试独立性,两

个随机数列 $\{x_n\}$ 和 $\{x_{n+l}\}$ 不相关时的相关系数为零,据此计算C(l)来判断随机数数列的独立性情况。

$$C(l) = \frac{\langle x_n x_{n+l} \rangle - \langle x_n \rangle^2}{\langle x_n^2 \rangle - \langle x_n \rangle^2}$$

三 计算结果与分析

运行程序Schrage.c,用连续的两个随机数作为点(x,y)的坐标作图,其中分别取 $N=10^2,10^3,10^4$ 个点,绘制平面分布图如下:

由图可见,当N较大时并未有规律可循,即可以认为是比较好的随机数。

下面计算 $\langle x^k \rangle$ 和 C(l):

取 $N = 10^n (n = 2, 3, 4, 5, 6, 7, 8)$,运行Schrage.c得到随机数数列,而后计算k阶矩 $\langle x^k \rangle (k = 1, 2, 3, 4)$,并与理论k阶矩 $(\frac{1}{n+1})$ 相比计算偏差,得到数据如下表:

表 1: $N = 10^2$ 时的k阶矩

k	理论值	计算值	误差
1	0.5	0.478118	0.021882
2	0.333333	0.314526	0.018807
3	0.25	0.235649	0.014351
4	0.2	0.189364	0.010636

表 2: $N = 10^3$ 时的k阶矩

k	理论值	计算值	误差
1	0.5	0.502903	-0.002903
2	0.333333	0.339994	-0.006661
3	0.25	0.258129	-0.008129
4	0.2	0.208626	-0.008626

表 3: $N = 10^4$ 时的k阶矩

k	理论值	计算值	误差
1	0.5	0.504017	-0.004017
2	0.333333	0.337262	-0.003929
3	0.25	0.253513	-0.003513
4	0.2	0.203089	-0.003089

表 4: $N=10^5$ 时的k阶矩

k	理论值	计算值	误差
1	0.5	0.500470	-0.000470
2	0.333333	0.333934	-0.000601
3	0.25	0.250606	-0.00606
4	0.2	0.200571	-0.000571

表 5: $N = 10^6$ 时的k阶矩

	* * • · · · ·	TO 1.1 H 210	/ I / I
k	理论值	计算值	误差
1	0.5	0.499767	0.00233
2	0.333333	0.333092	0.00241
3	0.25	0.249778	0.00222
4	0.2	0.199797	0.00203

表 6: $N = 10^7$ 时的k阶矩

k	理论值	计算值	误差
1	0.5	0.500019	-0.000019
2	0.333333	0.333378	-0.000045
3	0.25	0.250053	-0.000053
4	0.2	0.200055	-0.000055

表 7: $N = 10^8$ 时的k阶矩

,	- 4,,,4	1717 -
理论值	计算值	误差
0.5	0.499987	0.000013
0.333333	0.333321	0.000012
0.25	0.249989	0.000011
0.2	0.199989	0.000011
	0.5 0.333333 0.25	0.5 0.499987 0.333333 0.333321 0.25 0.249989

可见随着N的增大,k阶矩实际值与理论值的误差随之减小,随机数的均匀性也趋于良好。在N较小时误差并不稳定,随着N的增大,可以看出规律:N每增大两个量级,误差就减小一个量级,即正比于 $\frac{1}{\sqrt{N}}$ 。

总点数为 10^8 时,计算C(l)得到下表:

	表 8: C(l)
l=1	C(l) = -0.000052
l=2	C(l) = -0.000163
l=3	C(1)=0.000007
l=4	C(l) = -0.000024
l=5	C(l) = -0.000089
l=6	C(l)=-0.000010
l=7	C(l)=-0.000018
l=8	C(l) = -0.000024

可见随着*l*的改变,自相关系数有所涨落,约等于零,可以认为随 机数数据的线性关系比较弱,独立性比较好。

四 结论

使用Schrage方法取模,编写了16807随机数生成器,得到了不同量级下的几组随机数并绘制平面分布图,直观地表现了随机数的随机性良好与否。然后计算了 $\langle x^k \rangle$,发现N越大随机数的均匀性越好,且误差约正比于 $\frac{1}{\sqrt{N}}$;计算了 $N=10^8$ 时的自相关系数C(l),认为产生的随机数的独立性良好。