

Día Mes Año 2 Determine la dotancia entre 100 RICHUS Bey AD Ecuación de la Recta BE r= (-1, -2, -3) + {(-2, 3, 4) X = -4 -2 t 1= -2+3+ 7=-3++ Ecucion de 19 Recto AD To: (-1, 2, -3) V=(3,-2,1)-(-4,2,-3) V= (4, -4, -4) v = (-1, 2, -3) + + (4, -4, 4) x=-1+4t y=2-4t 2=-3+4t Design <u>x+1</u> - <u>y+2</u> = <u>7+3</u>

Mes Año Día DL = | Ar As - (41 x v5) 1 UF X US / A- = (-1 - 2 - 3) As= (-1,2,-3 A-AS= (0,4,0) Ur= (-2,3,0) 45= (4, -4, 4) 4×5= (12,8,-4) 10-461= V11271+(817+(-41) Ur x US 1 = V144+64+16 1 Ur x v 51 = V 224 = 4 V14 A-A5 . (U-XU5) = (0,4,6) . (12,8,-4) A-A5. (U+XU5)= 32 196: -

Día Mes Año 3 obting a one revacion biparametros
Para el plano qui pasa por los Puntus C, E, F C= (-3, 1, -2) E= (2, 3, -1) F= (-1,-3,21 CE = (-3,1,-2) - (2,3,2) CE = (-5, -2, -1) CF = (-3, 1, -2) - (-1, -3, 2) CF = 1 -2, 4, -4) (1, M): F3,11-21+ 11-5,-2,-21+ 4 (-2,4,-4) X, MER

	71		1	200	,	/	41	1	1//	201	()				101	010	1		<i>(</i> 1.1	0		1		4	15	C_{i}		1	1,1			4		
4																																		lo
	1.	0	De ad	lu	1	61	va	10. Fil	ne. Lie	, . \	1	udi	us	n	ú		adi	la	de	,	u	1,9.	ne	/	la	(0.	rrc	p	no	he	rte	1	201	y
				<u></u>				7					,							do							,							
				7				2 7												•	5	e	le	,0	si	gno F	/	1	a_			-		
(H	i po	03	lo ho	de jus) .	15 4	X	2 4	_	15	2 2	+	-1-	=	y	2						g	ru.	1,0	U	7	#	1			2	<i>y</i>		M
	E	C	2	<u>-</u>)	>	4	x ²		yz	+	9.	22	=	0			ð II	1 -	4	•	50		e	u.	ıyı	20		lu						
· · ·	(Coi	10			4	x ²	+	9	2 2			y ²								91	U	kil	U	#	F	5	lia -						
	(E C	3	<u>;</u>	>			2	-									(•	30	ú f	le ico	U	119	no +	6	lo						
	0				*			2									-				7	1/							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
(Po H.	pe	bol b	oi o oli	co.)		2	-	4		-	x'					-3	E				4			1000	-							
	E	C	4	->			x ²	+	~ 3	1 ²	+	2	2	-	1	=	0	4	(, k	•	5.	16	le	us	1911 #	u	1	111					
				de			2			12		1	2 2		-1-		-					714				71							,	3.5
		EC	5	 ->			4 x	2	- <i>y</i>	,2	+ 4	2	2 _	4_	= (D			(P	5		Je	-	119	ne		lu					
					-		J	2 =	4	1 x	2:	+ 4	12	2 _	4					1		91	UF	100		#	- 2							
	(H	ρο	bo	lei	de	-	J 4	2	- 11	x.	2	+ 2	2	_	1																			
		hoj	-		>		4,	x2	_	49	+	2	2	=	0						•	5) c	, l	e (4	ш	191 #	4	1	4				
_								× 2															-			-								-
	11			tic	1 -		-,	× 2	+	2	2	=	ر						15															

2. Puchou en pulabreus y con preus dudus. EC1-GRI. Miperboloide de dos hojus cicular y' y con vertices en los pundos eje de sincéria es perpendicular el pundo C(0, 1, 0) y jue korma 3 cuando 'y' es igual a 2 y es EC1-GR3	
EC1-GRI. Hip crkoloide de dos hojus vicului 'y' y con vertices en los pundos ese de simetiou es perpendicului el pundo ((0, 4, 0) y sue korma 3 vundo 'y' es igual a 2 y es	
ECI-GRI. - Hip cikoloide de dos hojus viculais 'y' y con vertices en los pundos ese de simetica es perpendiculais el pundo C(0, a, 0) y sue korma 3 vando 'y' es igual a 2 y es	
· Hip cikoloide de des hojus vicului 'y' y con vertices en los puntos ese de simetrou es perpendicului el punto ((0, a, 0) y sue korma 3 vando 'y' es igual a 2 y es	(on eje de simetriu en el eje V. (0,1,0) y V2(0;-1,0) Su ul pluno Pxz yu puru por
· Hip cikoloide de des hojus vicului 'y' y con vertices en los puntos ese de simetrou es perpendicului el punto ((0, a, 0) y sue korma 3 vando 'y' es igual a 2 y es	(n) eje de simeticu en el eje V. (0,1,0) y V2(0;-1,0) Su ul pluno Pxz yu puru por
	V, (0,1,0) y V2(0;-1,0) Su al pluno Pxz que pura por
	al pluno Pxz gr pura por
	as pluno 1x2 god para por
	Lake the characterist of Mario
	til continda en el evito C.
FIA CR3	75 (274) 450, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51
Y 4-1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
Pxy es unu construcció de rudio puntos P, (3,0,0), P2 (-3,0,0), P3 (cuyu intersección con el plune
Pay es una construcció de rudio	0 3 gve pusa por 101
$P_{1}(3,0,0), P_{2}(-3,0,0), P_{3}(-3,0,0)$	(0,0,3), PA(0,0,-3). 20 /MC1380011
Con el plano Pyz el una elipse Pa(0,4,0), Ps(0,-4,0), P, y Pz.	que pusa por res
EC6-GRA	
Pur uboloide eliptico con eje de sin perpendicular al plano Px2 que y corta la superficie tornando 8 un dubes + radio menos de 9 esta en las puntos P, (2,6,0),	octrio en cl c/c 9, el coul es
perpendicular de plano (x2 due	pera por a prino cio, 6,0)
3 va dudes 1 and a marger de 4	unidades es decil ave la cliese
estu en las auntas P, (2,6,0)	P2(-2,6,0), P3(0,6,4), [4(0,6,-4)