CS2100 (AY2018/9 Semester 2) Assignment #1

/15

Name: Daniel Alfred Widjaja

Tutorial Grp: 20

You are to do this assignment <u>on your own</u>. (Students found copying will be penalised.) Please fill in your <u>name</u> and <u>tutorial group number</u> in the boxes above, and your answers in the space indicated below. You are not required to show workings.

Please submit this assignment by **15 February 2019**, **Friday**, **23:59** to the submission File on LumiNUS according to your tutorial group. Please submit either a .docx or .pdf file. **Late submission and email submission will not be accepted**.

1. Although C language does not have the **NOR** operator, it can be emulated as follows:

```
int NOR(int x, int y) {
  return !(x || y);
}
```

Consider the truth tables of NOR, AND, and OR below (from Lecture #7, Slide 35):

X	Υ	X NOR Y	X AND Y	X OR Y
0	0	1	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	1

Suppose the **NOR** operator has been implemented as a **NOR** function. We can then create **NOT**, **OR** and **AND** using <u>solely</u> the **NOR** function without using the operators corresponding to each of those (i.e. for logical operation, ! for **NOT**, | for **OR**, and & for **AND**).

Fill in the code below (the code for NOT has been filled in to provide an example). Note that you can only use the **NOR** function above as well as any constants. You are <u>not</u> to use any other functions or operators. Assume the parameters x and y take in values 0 or 1 only.

```
}
int OR(int x, int y) {
  return NOR(NOR(x, y), 0);
  [1 Mark]
}
```

2. How do you represent **-2100** in the IEEE 754 single-precision floating-point representation? Write your answer in the *hexadecimal* form.

Answer: 0xC5034000 [3 Marks]

- 3. Certain numbers cannot be represented in *decimal* number system unless we use repeating decimal. For instance, the number $\frac{1}{3}$ in *decimal* will be $(0.333333...)_{10}$. Using the repeating decimal representation, we can then write it as $(0.\overline{3})_{10}$ since the 3s are repeating. Similarly, you have numbers in *binary* number system that cannot be represented unless repeating decimal is used. For instance, the number $(0.2)_{10}$ in *binary* will be $(0.001100110011...)_2$. In repeating decimal, it will be $(0.\overline{0011})_2$ because 0011s are repeating.
 - (a) What is $(0.7)_{10}$ in *binary*? Write your answer using repeating decimal.

Answer: $(0.1\overline{0110})_2$ [1 Mark])

(b) What is $(0.0\overline{1001})_2$ in *decimal*? Note that only 1001s are repeating. **Hint:** *Perform expansion up to some number and approximate.*

Answer: $(0.3)_{10}$ [2 Marks]

For Questions 4-6, refer to the MIPS code below. The code reads an integer array \mathbf{A} and modifies the array. Consider the variable to register mapping that maps variable \mathbf{A} to register \$50. Assume that the array is initialized with int $\mathbf{A}[] = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$; at the start.

```
addi $t0, $s0, 0
addi $t1, $s0, 40

Top: lw $t2, 0($t0)
lw $t3, 0($t1)
sw $t2, 0($t1)
sw $t3, 0($t0)
addi $t0, $t0, 4
addi $t1, $t1, -4
beq $t0, $t1, Bot
j Top
```

- 4. Assume that the array starts at address **0x2100AB10**.
 - (a) How many elements of array **A** are NOT loaded to either **\$t2** or **\$t3**? **Answer:** 1 [1 Mark]
 - (b) What are the final values in array \boldsymbol{A} after the program finished execution?

Answer: { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 } [1 Mark]

- 5. Assume that the first instruction **addi** \$t0, \$s0, **0** is at address **0x00000070**.
 - (a) What is the *hexadecimal* representation of the **beq** \$t0, \$t1, **Bot** instruction?

Answer: 0x11090001 [2 Marks]

- (b) What is the immediate value, in <u>decimal</u>, in the **j Top** instruction? **Answer:** 30 [2 Marks]
- 6. How many **addi** instructions are performed during the execution of the program?

Answer: 12 [1 Mark]