

Indian Institute of Information Technology, Sri City, Chittoor

(An Institute of National Importance under an Act of Parliament)

Computer Communication Networks

Transport Layer

Dr. Raja Vara Prasad Assistant Professor IIIT Sri City

Transport Layer

Transport Layer

how two entities can communicate reliably over a medium that may lose and corrupt data?

controlling the transmission rate of transport-layer entities in order to avoid

Or

recover from, congestion within the network.

Transport Layer Services

- logical communication
- Transport-layer **segments**
- Transport-layer protocol provides logical communication between processes running on different hosts
- a network-layer protocol provides logical communication between hosts
- services that a transport protocol can provide are often constrained by the service model of the underlying network-layer protocol
- a transport protocol can offer reliable data transfer service to an application even when the underlying network protocol is unreliable
- can use encryption

Figure 3.1 • The transport layer provides logical rather than physical communication between application processes

Transport Layer in the Internet

- Internet Protocol. IP provides logical communication between hosts.
- IP service model is a best-effort delivery service
- "best effort" to deliver segments between communicating hosts → makes no guarantees.
- not guarantee segment delivery
- it does not guarantee orderly delivery of segments
- does not guarantee the integrity of the data in the segments

UDP Services:

process-to-process data delivery and error checking

TCP:

- reliable data transfer
- correct and in order → using flow control, sequence numbers, acknowledgments, and timers
- congestion control

Multiplexing and Demultiplexing

- host-to-host delivery service provided by the network layer
- process-to-process delivery service for applications running on the hosts Transport Layer
- a process can have one or more sockets
- transport layer in the receiving host does not deliver data directly to a process → to an intermediary socket
- more than one socket in the receiving host → each socket → unique identifier
- Each transport-layer segment has a set of fields

Demultiplexing:

- receiving end → the transport layer examines these fields to identify the receiving socket
- directs the segment to that socket
- Multiplexing
 - gathering data chunks at the source host from different sockets
- encapsulating each data chunk with header information to create segments
- passing the segments to the network layer is called

Connectionless Multiplexing and Demultiplexing

UDP socket:

- transport layer assigns a port number in the range 1024 to 65535 that is currently not being used by any other UDP port in the host
 - EX: A process in Host A, with UDP port 19157 → to send a chunk of application data to a process with UDP port 46428 in Host B.
- UDP socket: identified by a two-tuple adestination IP address and a destination port number

if two UDP segments have different source IP addresses and/or source port numbers, but have the same *destination* IP address and *destination* port number?

Connection Oriented Multiplexing and Demultiplexing

TCP socket:

- TCP socket is identified by a four-tuple source IP, source port number, destination IP, destination port number
- host uses all four values to direct the segment to the appropriate socket

server host may support many simultaneous TCP connection sockets, with each socket attached to a process, and with each socket identified by its own four tuple.

Web Servers and TCP:

- ---all segments will have destination port 80.
- ---Web servers often use only one process, and create a new thread with a new connection socket for each new client connection.
- ---client and server using persistent HTTP \rightarrow same server socket
- ---non-persistent HTTP → a new TCP connection is created and closed for every request/response
- ---frequent creating and closing of sockets --- severely impact the performance of a busy Web server