

Universidade Estadual de Santa Cruz – UESC

Relatórios de Implementações de Autômato de Pilha para GLC

Docente César Alberto Bravo Pariente

Discente Matheus Miranda Brandão

Matrícula 201820065

Disciplina Compiladores.

Curso Ciência da Computação

Semestre 2022.2

Índice

GLC LL	3
Produções:	3
Compilando e Executando	4
Testes	5
$m()\{ r(1); \}$	5
m(){ h=(x+y); r(0); }	6
m(){ (1-1); r(1); }	7
$m() \{ w(1) \{ (1/x); \}; r(1); \}$	8
$f() \ \{ \ (0/y); r(y); \ \} \ g() \ \{ \ i=y; r(x); \ \} \ m() \ \{ \ (1-x); r(0); \ \}$	10
Dificuldades enfrentadas	13
Link para download	14
Referências	15

GLC LL

O projeto consiste na implementação em C de um algoritmo que busca simular um autômato pilha que reconhece a linguagem gerada por uma gramática livre de contexto. A execução do código recebe como entrada a palavra e retorna a Tabela de Parsing, suas Produções e o vetor referente a Árvore de Análise.

O autômato implementado ignora o token ' '.

Produções:

```
\begin{split} p_1 &: S -> M \mid GM \mid NGM \\ p_4 &: N -> n() \{ \ C; \ r(E); \ \} \\ p_5 &: G -> g() \{ \ C; \ r(E); \ \} \\ p_6 &: M -> m() \ \{ \ C; \ r(E); \ \} \\ p_7 &: E -> 0 \mid 1 \mid x \mid y \mid (EXE) \\ p_{12} &: X -> + \mid - \mid * \mid / \\ p_{16} &: C -> h = E \mid i = E \mid j = E \mid k = E \mid z = E \mid (EXE) \mid w(E) \{ \ C; \ \} \mid f(E) \{ \ C; \ \} \mid o(E; E; E) \{ \ C; \ \} \end{split}
```

Compilando e Executando

Para a execução não é necessário o uso de nenhuma dependência, basta compila-lo normalmente.

```
$ gcc proj2_a.c -o proj2_a
```

Ao executar é necessário digitar o nome do arquivo destino contendo as palavras, caso contrário resultará em erro.

Exemplo:

\$./proj2_a examples/inputs.txt

Neste projeto pode-se adicionar num .txt todas as palavras separadas por uma quebra de linha.

Exemplo:

```
m(){ r(1); }
m(){ h=(x+y); r(0); }
m(){ (1-1); r(1); }
m(){ w(1) { (1/x); }; r(1); }
n() { (0/y); r(y); } g() { i=y; r(x); } m() { (1-x); r(0); }
```

Testes

Caso a entrada dada seja incorreta o programa irá imprimir sua tabela até o momento de erro, então pulará a linha para ler a próxima palavra. Como outputs temos a tabela de parsing, as produções a árvore sintática (no formato 'palavra, posicao_no_vetor'), foi considerado o pior caso da produção 24, onde temos uma árvore n-ária de 4.

Para criação de palavras compatíveis com a linguagem gerada pela GLC foi utilizado o website "CFG Developer".

m(){ r(1); }

D 1	1	-1
Pal	avra	- 1
ı aı	avia	

Erro.

i	Qi	Token	Stack	Pi
0	Q0	m		-
1	Q1	m	M	P1
2	Q1	((P6
2	Q1	()	-
2	Q1)	{	-
2	Q1	{	C	-

m(){ h=(x+y); r(0); }

Palavra 2:

i Qi	Token	Stack	Pi
------	-------	-------	----

$$3 Q1 = P16$$

$$3 Q1 = E -$$

Producoes: P1 P6 P16 P11 P9 P12 P10 P7

Arvore: 0, S 1, M 5, C 6, E 21, E 25, 0 85, E 86, X 87, E 341, x 345, + 349, y

m(){ (1-1); r(1); }

Palavra 3:

•	\sim .	OD 1	O 1	ъ.
1	Qi	Token	Stack	P1
1	Q1	IOKCII	Stack	1 1

$$1 \qquad Q1 \quad m \quad M \quad P1$$

Producoes: P1 P6 P21 P8 P13 P8 P8

Arvore: 0, S 1, M 5, C 6, E 21, E 22, X 23, E 25, 1 85, 1 89, - 93, 1

$m() \{ w(1) \{ (1/x); \}; r(1); \}$

Palavra 4:

:	\circ :	To1-04	C40.01-	D:
1	Qi	Token	Stack	ΡI

9 Q1 } -

Producoes: P1 P6 P22 P8 P21 P8 P15 P9 P8

Arvore: 0, S $\,$ 1, M $\,$ 5, C $\,$ 6, E $\,$ 21, E $\,$ 22, C $\,$ 25, 1 $\,$ 85, 1 $\,$ 89, E $\,$ 90, X $\,$ 91, E $\,$ 357, 1 $\,$ 361, / 365, x

$f() \{ (0/y);r(y); \} g() \{ i=y;r(x); \} m() \{ (1-x);r(0); \}$

Palavra 5:

i	Qi	Token	Stack	Pi
	X -		~	

$$9 Q1 = P16$$

$$9 Q1 = E -$$

```
10
      Q1
                         P10
                  ,
10
      Q1
                   r
10
      Q1
                   (
            r
10
            (
      Q1
                   Е
11
      Q1
            )
                   )
                         P9
      Q1
11
            )
11
      Q1
                   }
11
            }
                   M
      Q1
      Q1
                   (
12
                         P6
12
      Q1
            (
                   )
12
      Q1
                   {
            )
12
            {
      Q1
                   C
      Q1
13
            1
                   E
                         P21
14
      Q1
                   X
                         P8
15
                         P13
      Q1
                   E
            \mathbf{X}
16
      Q1
                         P9
            )
                   )
      Q1
16
            )
16
      Q1
                   r
16
      Q1
                   (
            r
16
                   E
      Q1
            (
17
                         P7
      Q1
            )
                   )
17
            )
      Q1
                   }
17
      Q1
17
      Q1
          }
```

Producoes: P3 P4 P21 P7 P15 P10 P10 P5 P17 P10 P9 P6 P21 P8 P13 P9 P7

Arvore: 0, S = 1, N = 2, G = 3, M = 5, C = 6, E = 9, C = 10, E = 13, C = 14, E = 21, E = 22, X = 23, E = 25, y = 37, E = 41, x = 53, E = 54, X = 55, E = 57, 0 = 85, 0 = 89, / = 93, y = 149, y = 213, 1 = 217, - 221, x

Dificuldades enfrentadas

O relatório e código fonte sofreram atrasos por dificuldade ao implementar a árvore sintática, como este consiste num produto indispensável para conclusão do projeto, foi adiada a entrega até a conclusão deste item.

Link para download

Código fonte e exemplos encontram-se para download no seguinte link:

https://github.com/MatBrands/Compiladores/tree/master/Proj2/Proj2a

Referências

https://web.stanford.edu/class/archive/cs/cs103/cs103.1156/tools/cfg/