Course 4

1.6 Cyclic groups. Order of an element

Recall that if (G,\cdot) is a group and $x\in G$, then the subgroup generated by x is

$$\langle x \rangle = \{x^k \mid k \in \mathbb{Z}\}.$$

Remark 1.6.1 If (G, +) is an additive group and $x \in G$, then

$$\langle x \rangle = \{kx \mid k \in \mathbb{Z}\}.$$

Throughout this section we will study those groups that are generated by a single element. They are essential tools in Group Theory.

Definition 1.6.2 A group (G, \cdot) is called *cyclic* if there exists $x \in G$ such that $G = \langle x \rangle$, that is, $G = \{x^k \mid k \in \mathbb{Z}\}.$

Remark 1.6.3 Notice that every cyclic group is commutative.

Example 1.6.4 (a) The group $(\mathbb{Z}, +)$ is cyclic, because

$$\mathbb{Z} = <1> = <-1>$$
.

(b) The group $(\mathbb{Z}_n, +)$ $(n \in \mathbb{N}, n \ge 2)$ of residue classes modulo n is cyclic, because

$$\mathbb{Z}_n = <\widehat{1}>$$
.

(c) The group (U_n,\cdot) $(n \in \mathbb{N}^*)$ of n-th roots of unity is cyclic.

Indeed, $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ has n elements, namely

$$\varepsilon_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = \left(\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}\right)^k = \varepsilon_1^k, \quad k = 0, 1, \dots, n-1.$$

Then $U_n = < \varepsilon_1 >$.

(d) The group $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$ is not cyclic.

Definition 1.6.5 Let (G, \cdot) be a group and let $x \in G$.

Then x is said to have finite order if $\exists m \in \mathbb{N}^*$ such that $x^m = 1$ and infinite order otherwise. If x has finite order, then the non-zero natural number

$$\operatorname{ord} x = \min\{m \in \mathbb{N}^* \mid x^m = 1\}$$

is called the order of the element x.

If G is finite, then the cardinal |G| is called the *order* of the group G and is denoted by ord G.

Remark 1.6.6 If (G, +) is an additive group and x has finite order, then

$$\operatorname{ord} x = \min\{m \in \mathbb{N}^* \mid mx = 0\}.$$

Example 1.6.7 (a) Consider the group (\mathbb{R}^*, \cdot) . Then ord 1 = 1, ord (-1) = 2 and every $x \in \mathbb{R}^* \setminus \{-1, 1\}$ has infinite order.

(b) Consider the group $(\mathbb{Z}_6, +)$. Then $\operatorname{ord} \widehat{0} = 1$, $\operatorname{ord} \widehat{1} = 6$, $\operatorname{ord} \widehat{2} = 3$, $\operatorname{ord} \widehat{3} = 2$, $\operatorname{ord} \widehat{4} = 3$, $\operatorname{ord} \widehat{5} = 6$ and $\operatorname{ord} \mathbb{Z}_6 = 6$.

Lemma 1.6.8 Let (G, \cdot) be a group. Then:

- (i) The unique element in G of order 1 is the identity element 1.
- (ii) $\forall x \in G$, ord $x^{-1} = \text{ord } x$.

Proof. (i) Obvious.

(ii) Let $n \in \mathbb{N}^*$. For every $x \in G$, we have $(x^{-1})^n = 1 \iff x^{-n} = 1 \iff x^n = 1$. It follows that $\forall x \in G$, ord $x^{-1} = \operatorname{ord} x$. Notice that one of the orders is finite iff the other one is finite as well.

Remark. It is worth to emphasize the following idea, just used in Lemma 1.6.8: in order to prove that ord x = ord y, it is enough to prove that

$$x^n = 1 \Longleftrightarrow y^n = 1$$
, $\forall n \in \mathbb{N}$.

Theorem 1.6.9 Let (G, \cdot) be a group, let $x \in G$ with ord x = n and let $m \in \mathbb{N}^*$. Then:

$$x^m = 1 \iff n|m$$
.

Proof. \Longrightarrow . Assume that $x^m = 1$. Using the Division Algorithm for m and n, there exist unique $q, r \in \mathbb{N}$ such that

$$m = nq + r$$
, $0 \le r < n$.

Then

$$x^r = x^{m-nq} = x^m \cdot (x^n)^{-q} = 1$$
,

so that r = 0, because the order n is the least non-zero natural number k such that $x^k = 1$. But then m = nq, i.e., n|m.

 \Leftarrow . Assume now that n|m. Then $\exists q \in \mathbb{N}$ such that m = nq. It follows that

$$x^m = x^{nq} = (x^n)^q = 1$$
.

Theorem 1.6.10 Let (G,\cdot) be a group and let $x \in G$.

(i) If ord x = n, then

$$\langle x \rangle = \{1, x, x^2, \dots, x^{n-1}\}$$

and consequently $|\langle x \rangle| = n$.

(ii) If x has infinite order, then

$$i, j \in \mathbb{Z}, i \neq j \Longrightarrow x^i \neq x^j$$

so that $\langle x \rangle$ is infinite.

Proof. (i) Let $m \in \mathbb{Z}$. By the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that m = nq + r, where $0 \le r < n$. Then we may write

$$x^m = (x^n)^q \cdot x^r = x^r$$

for some $r \in \{0, ..., n-1\}$.

Suppose further that $x^i = x^j$ for some $i, j \in \{0, ..., n-1\}$, say $j \le i$. Then $x^{i-j} = 1$ and $0 \le i-j < n$. Since ord x = n, it follows that i - j = 0, hence i = j.

Therefore, $\langle x \rangle = \{x^k \mid k \in \{0, 1, ..., n-1\}\}$ and $|\langle x \rangle| = n$.

(ii) Suppose that $x^i = x^j$ for some $i, j \in \mathbb{Z}$, say $j \leq i$. Then $x^{i-j} = 1$, whence i = j, because otherwise ord x would be finite.

We have seen that the subgroups of the cyclic group $(\mathbb{Z},+)$ are of the form $n\mathbb{Z}=< n > (n \in \mathbb{N})$, hence they are cyclic. We have even a more general result.

Theorem 1.6.11 Every subgroup of a cyclic group is cyclic.

Proof. Let (G, \cdot) be a cyclic group, say $G = \langle x \rangle$, and let $H \leq G$.

If $H = \{1\}$, then H = <1 > is cyclic and we are done.

In the sequel, assume $H \neq \{1\}$. Then H contains positive powers of x, since if $x^k \in H$, then $x^{-k} \in H$ for $k \in \mathbb{Z}$.

Choose

$$n = \min\{k \in \mathbb{N}^* \mid x^k \in H\}.$$

We will prove that $H = \langle x^n \rangle$.

Since $x^n \in H$, it follows that $\langle x^n \rangle \subseteq H$. Conversely, let $x^m \in H$ for some $m \in \mathbb{Z}$. Then by the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that

$$m = nq + r$$
, $0 \le r < n$.

Then

$$x^r = x^{m-nq} = x^m \cdot (x^n)^{-q}.$$

But since x^m , $x^n \in H$, we have $x^r \in H$. By the choice of n, it follows that r = 0, so that

$$x^m = (x^n)^q \in \langle x^n \rangle .$$

Hence $H \subseteq \langle x^n \rangle$ and consequently $H = \langle x^n \rangle$.

Therefore, H is cyclic.

We have seen that a cyclic group may have more than one generator. For instance, $(\mathbb{Z}, +)$ is generated by 1, but also by -1. We might wonder how could we obtain all the generators of a cyclic group. We are able to give the following result for finite cyclic groups.

Theorem 1.6.12 Let (G, \cdot) be a finite cyclic group, say $G = \langle x \rangle$ and |G| = n, and let $k \in \mathbb{N}^*$. Then:

$$G = \langle x^k \rangle \iff (n,k) = 1$$
.

Proof. Notice that ord x = n, hence $x^n = 1$.

 \implies . Assume that $G = \langle x \rangle = \langle x^k \rangle$. Suppose further that $(n,k) = d \neq 1$. Then n = dn' and k = dk' for some $n', k' \in \mathbb{N}$, where n' < n and k' < k. It follows that

$$(x^k)^{n'} = (x^{dk'})^{n'} = (x^{dn'})^{k'} = (x^n)^{k'} = 1$$

hence ord $x^k \le n' < n = \text{ord } x$. Then $| < x^k > | \ne | < x > |$, which is a contradiction. Therefore, (n,k) = 1.

 \Leftarrow Assume that (n,k)=1. Then $\exists u,v\in\mathbb{Z}$ such that un+vk=1. Then

$$x = x^{un+vk} = (x^n)^u \cdot (x^k)^v = (x^k)^v$$
,

hence $x \in \langle x^k \rangle$, so that $G = \langle x \rangle \subseteq \langle x^k \rangle$. Obviously, we have $\langle x^k \rangle \subseteq \langle x \rangle = G$. Therefore, $G = \langle x^k \rangle$.

Example 1.6.13 (a) Consider the group (U_8, \cdot) of the 8-th roots of unity. Then

$$U_8 = \{\varepsilon_0, \varepsilon_1, \dots, \varepsilon_7\},\,$$

where

$$\varepsilon_k = (\varepsilon_1)^k = \left(\cos\frac{2\pi}{8} + i\sin\frac{2\pi}{8}\right)^k, \quad k = 0, 1, \dots, 7.$$

By applying Theorem 1.6.12, we get all the generators of U_8 , namely ε_1 , $\varepsilon_3 = \varepsilon_1^3$, $\varepsilon_5 = \varepsilon_1^5$ and $\varepsilon_7 = \varepsilon_1^7$.

The generators of (U_n, \cdot) are called *primitive roots* of unity. Hence $\varepsilon_1, \varepsilon_3, \varepsilon_5$ and ε_7 are the primitive roots of unity in (U_8, \cdot) .

(b) Consider the group $(\mathbb{Z}_{12}, +)$ of residue classes modulo 12. By applying Theorem 1.6.12, we get all the generators of \mathbb{Z}_{12} , namely $\widehat{1}$, $\widehat{5}$, $\widehat{7}$, $\widehat{11}$.

We end the present section with the following extremely important results, telling us that there exist only two cyclic groups up to an isomorphism.

Theorem 1.6.14 (i) Any two finite cyclic groups having the same order are isomorphic.

(ii) Any two infinite cyclic groups are isomorphic.

Proof. Let (G,\cdot) , (G',\cdot) be cyclic groups, say $G=\langle x\rangle$ and $G'=\langle y\rangle$.

(i) Suppose first that G and G' are finite, say |G| = |G'| = n. Then

$$G = \{1, x, x^2, \dots, x^{n-1}\}$$

and

$$G' = \{1', y, y^2, \dots, y^{n-1}\}.$$

Define

$$f: G \to G'$$
 by $f(x^k) = y^k$, $\forall k \in \{0, \dots, n-1\}$.

Then by Theorem 1.6.10, f is injective, hence bijective. Moreover, $\forall i, j \in \{0, 1, \dots, n-1\}$ we have

$$f(x^{i} \cdot x^{j}) = f(x^{i+j}) = f(x^{(i+j) \bmod n}) = y^{(i+j) \bmod n} = y^{i+j} = y^{i} \cdot y^{j} = f(x^{i}) \cdot f(x^{j}).$$

Hence f is a group homomorphism, and consequently, a group isomorphism.

(ii) Suppose now that G and G' are infinite. Define

$$f: G \to G'$$
 by $f(x^k) = y^k$, $\forall k \in \mathbb{Z}$.

Then f is clearly bijective. Moreover, $\forall i, j \in \mathbb{Z}$ we have

$$f(x^{i} \cdot x^{j}) = f(x^{i+j}) = y^{i+j} = y^{i} \cdot y^{j} = f(x^{i}) \cdot f(x^{j}).$$

Hence f is a group homomorphism, and consequently, a group isomorphism.

Corollary 1.6.15 Let (G, \cdot) be a cyclic group.

(i) If G is finite and |G| = n, then

$$(G,\cdot)\simeq (\mathbb{Z}_n,+)$$
.

(ii) If G is infinite, then

$$(G,\cdot)\simeq(\mathbb{Z},+)$$
.

Remark 1.6.16 Therefore, Corollary 1.6.15 tells us that there exist, up to an isomorphism, only two types of cyclic groups, namely $(\mathbb{Z}_n, +)$ and $(\mathbb{Z}, +)$.