Techniques: Substitution

Guess a solution & check it.

More detail:

- 1. Guess the form of the solution, using unknown constants.
- 2. Use induction to find the constants & verify the solution.

Completely dependent on making reasonable guesses.

Substitution Example 1

 $T(n) = 4T(n/2) + n \qquad \qquad n > 1 \qquad \qquad Simplified version of previous example.$

Guess: $T(n) = O(n^3)$.

 $\label{eq:total_def} More specifically: $T(n) \leq cn^3$, for all large enough n. }$

10

Substitution Example 1

Substitution Example 1

Substitution Example 1

Substitution Example 1

Substitution Example 1

Substitution Example 1

Substitution Example 2

Substitution Example 2

Substitution Example 2

Substitution Example 2

Substitution Example 2

Substitution Example 2

Techniques: Recursion Tree

Guessing correct answer can be difficult!
Need a way to obtain appropriate guess.

1. Unroll recurrence to obtain a summation.

Math sometimes tricky.

3. Use solution as a guess in substitution.

Recursion Tree Example 1

Recursion Tree Example 1

Recursion Tree Example 2

Recursion Tree Example 2

Recursion Tree Example 2

Techniques: Master Method

Cookbook solution for many recurrences of the form $T(n) = a \times T(n/b) + f(n)$ where $a \ge 1, b > 1, f(n) asymptotically positive$ First describe its cases, then outline proof.

Master Method Case 1

$$T(n) = a \times T(n/b) + f(n)$$

$$f(n) = O(n^{log_b \, a \, \cdot \, \epsilon}) \text{ for some } \epsilon \!\! \to 0 \ \, \to \ \, T(n) = \Theta(n^{log_b \, a})$$

$$T(n) = 7T(n/2) + cn^2 \qquad a = 7, \, b = 2$$

$$E.g., \, \text{Strassen matrix multiplication}.$$

$$cn^2 = {}^7O(n^{log_b \, a \, \cdot \, \epsilon}) = O(n^{log_2 \, 7 \, \cdot \, \epsilon}) \approx O(n^{2.8 \, \cdot \, \epsilon})$$

$$\text{Yes, for any } \epsilon \leq 0.8.$$

$$T(n) = \Theta(n^{lg \, 7})$$

Master Method Case 2

$$T(n) = a \times T(n/b) + f(n)$$

$$f(n) = \Theta(n^{\log_b a}) \rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$$

$$T(n) = 2T(n/2) + cn \qquad a=2, b=2$$

cn =
$$^{?}$$
 $\Theta(n^{log_b a}) = \Theta(n^{log_2 2}) = \Theta(n)$
Yes.

$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n} \mathsf{\,lg\,} \mathsf{n})$$

Master Method Case 3

$$T(n) = a \times T(n/b) + f(n)$$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ for some } \epsilon > 0 \qquad \text{and}$$

$$a \times f(n/b) \le C \times f(n) \text{ for some } c < 1 \text{ and all large enough } n$$

$$\rightarrow T(n) = \Theta(f(n))$$
 Le., is the constant factor shrinking?
$$T(n) = 4T(n/2) + n^3 \qquad a = 4, \ b = 2$$

$$n^3 = \frac{?}{2} \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{\log_2 4 + \epsilon}) = \Omega(n^2 + \epsilon)$$
 Yes, for any $\epsilon \le 1$.
$$4(n/2)^3 = \frac{1}{2} \times n^3 \le \frac{?}{2} \text{ cn}^3$$
 Yes, for any $\epsilon \ge \frac{1}{2}$.
$$T(n) = \Theta(n^3)$$

Master Method Case 4

$$T(n) = a \times T(n/b) + f(n)$$
 None of previous apply. Master method doesn't help.

$$T(n) = 4T(n/2) + n^2/lg n$$
 a=4, b=2

Case 1? $n^2/lg \ n = {}^{?} O(n^{log_b \ a \ - \epsilon}) = O(n^{log_2 \ 4 \ - \epsilon}) = O(n^2 - \epsilon) = O(n^2/n^\epsilon)$

No, since Ig n is asymptotically < n^ϵ . Thus, n^2/Ig n is asymptotically > n^2/n^ϵ .

Master Method Case 4

$$T(n) = a \times T(n/b) + f(n)$$
 None of previous apply. Master method doesn't help.

$$T(n) = 4T(n/2) + n^2/lg n$$
 a=4, b=2

Case 2?

$$n^2/\lg n = {}^{?} \Theta(n^{\log_b a}) = \Theta(n^{\log_2 4}) = \Theta(n^2)$$

No.

Master Method Case 4

$$T(n) = a \times T(n/b) + f(n)$$
 None of previous apply. Master method doesn't help.

$$T(n) = 4T(n/2) + n^2/lg n$$
 a=4, b=2

Case 3?
$$n^2/lg \ n = ^? \Omega(n^{log_b \, a \, + \, \epsilon}) = \Omega(n^{log_2 \, 4 \, + \, \epsilon}) = \Omega(n^2 \, + \, \epsilon)$$

No, since $1/\lg n$ is asymptotically $< n^\epsilon$.

Master Method Proof Outline

