Matrices semblables et classes de similitude

- 4. Quel est le nombre de classes de similitude de matrices nilpotents dans $M_6(\mathbf{k})$? Donner un répresentant de chaque classe et déterminer son polynôme minimal.
- 5. Quel est le nombre de classes de similitude de matrices dans $M_7(\mathbb{C})$ dont le polynôme caractréristique est $-x^7+3x^6-3x^5+x^4$? Déterminer le polynôme minimal de chaque classe.
- 6. A quelle condition sur $P(x) = (\lambda_1 x)^{m_1} \cdots (\lambda_r x)^{m_r} \in \mathbb{C}[x]$, l'ensemble de matrices qui admettent P comme le polynôme caractréristique est-il formé d'une seule classe de similitude?
- 7. Soit $J_n(\lambda)$ un bloc de Jordan. Montrer que $J_n(\lambda)$ est semblable à ${}^tJ_n(\lambda)$. En déduire que tout $A \in M_n(\mathbb{C})$ est semblable à tA .
- 8. Soit J une structure complexe sur \mathbb{R}^{2n} , i.e. une matrice $J \in M_{2n}(\mathbb{R})$ telle que $J^2 = -\operatorname{Id}$. On appelle $S \in M_{2n}(\mathbb{R})$ une matrice symplectique si ${}^tSJS = J$.
 - (i) Montrer que S est inversible.
 - (ii) Montrer que S est semblable à S^{-1} .
 - (iii) Montrer que $\chi_S(\lambda) = \lambda^{2n} \chi_S(\frac{1}{\lambda})$. En déduire que si λ est une valeur propre de S, alors $\frac{1}{\lambda}$, $\bar{\lambda}$, $\frac{1}{\bar{\lambda}}$ sont aussi des valeurs propres de S.
- 9. On rappelle que $GL_n(\mathbf{k})$ désigne le sous-groupe de matrices inversibles dans l'algèbre $M_n(\mathbf{k})$ et $SL_n(\mathbf{k})$ désigne le sous-groupe de matrices inversibles du déterminant 1.
 - (i) Soit $A, B \in M_2(\mathbb{R})$ tels que $A = P^{-1}BP$ avec $P \in GL_2(\mathbb{C})$. Prouver qu'il existe $Q \in GL_2(\mathbb{R})$ tel que $A = Q^{-1}BQ$.
 - (ii) Trouver $A, B \in M_2(\mathbb{R})$ tels que $A = P^{-1}BP$ avec $P \in SL_2(\mathbb{C})$ mais il n'existe pas de $Q \in SL_2(\mathbb{R})$ telle que $A = Q^{-1}BQ$.