Semiconductor Fundamentals

Presented to EE2187 class in Semester 1 2019/20

Shív Govind Singh sgsingh@iith.ac.in Professor, Electrical Engineering IIT Hyderabad, India

Lecture 12

Course information

- Semiconductors Materials Types of Solids, Space lattice, Atomic Bonding,
- ❖ Introduction to quantum theory, Schrodinger wave equation, Electron in free space, Infinite well, and step potentials, Allowed and forbidden bands
- ❖ Electrical conduction in solids, Density of states functions, Fermi-Dirac distribution in Equilibrium,
- ❖ Valence band and Energy band models of intrinsic and extrinsic Semiconductors. Degenerate and non degenerate doping
- *Thermal equilibrium carrier concentration, charge neutrality
- Carrier transport Mobility, drift, diffusion.

Reference

Text Book:

- 1. Physics of Semiconductor Devices, S. M. Sze, John Wiley & Sons (1981).
- 2. Solid State Electronics by *Ben G. Streetman and Sanjay Banerjee*, Prentice Hall International, Inc.
- 3. Semiconductor Physics and Devices, Donald A. Neamen, Tata Mcgraw-Hill Publishing company Limited.
- 4. Advanced Semiconductor Fundamentals by Pirret

Reference Book:

- 1. Fundamentals of Solid-State Electronic Devices, *C. T. Sah*, Allied Publisher and World Scientific, 1991.
- 2. Complete Guide to Semiconductor Devices, K. K. Ng, McGraw Hill, 1995.
- 3. Solid state physics, Ashcroft & Mermins.
- 4. Introduction to Solid State Electronics, E. F. Y. Waug, North Holland, 1980.

Recap

$$n_o = \int\limits_0^{E_{top}} f(E)g(E)dE$$
 $DOS\ in\ 3DCrystal,\ \ g(E) = rac{m*}{2\pi^2\hbar^3}\sqrt{2m*(E-E_c)}$
 $\frac{m_n^{*3/2}}{\hbar^3}\sqrt{(E-E_c}dE$
 $\frac{E_c-E_f}{2\pi^2\hbar^3}$

$$n_o = \int_{E}^{\infty} \frac{m_n^{*3/2}}{\exp(E - E_E)/kT} \sqrt{(E - E_c dE)} = N_c e^{-(\frac{E_c - E_f}{kT})}$$

$$E_F = \frac{E_C + E_V}{2} + kT \ln \frac{m_{p_{dos}}^*}{m_{n_{dos}}^*}$$

$$p_{o} = \int_{E}^{\infty} \frac{m_{p}^{*3/2}}{\hbar^{3}} \sqrt{(E_{v} - E dE)} = N_{v} e^{-\frac{(E_{F} - E_{v})}{kT}}$$

Intrinsic carrier concentration

Product of n₀ and p₀

$$p_0 = NV e^{-\frac{(E_F - EV)}{KT}}$$

$$n_0 = NC e^{-\frac{(E_c - EF)}{KT}}$$

$$n_o p_o = N_v e^{\frac{(E_F - E_v)}{kT}} N_c e^{\frac{(E_c - E_F)}{kT}}$$

$$n_{o}p_{o} = N_{v}N_{c}e^{\frac{E_{c}-E_{v}}{kT}} = N_{v}N_{c}e^{\frac{E_{g}}{kT}}$$

$$n_{i}^{2} = N_{v}N_{c}e^{\frac{E_{g}}{kT}} = n_{o}p_{o}$$

Where E_g is band gap, At equilibrium $n_o=p_o=n_i$ n_i depends upon temperature and band gap

	N _c (/cm ³) (10 ¹⁸)	N _v (/cm ³) (10 ¹⁸)	$\frac{m_n^*}{m_o}$	$\frac{m_p^*}{m_o}$
Si	28	10.4	1.08	.56
Ge	10.9	6	.55	.37
GaAs	.47	7	.067	.48

	E _g (eV)	Concentrat ion (/cm³) 300K	Concentrati on (/cm³) 400K
Si	1.12	1.510 ¹⁰	~10 ¹³
Ge	.72	2.4X10 ¹³	~10 ¹⁶
GaAs	1.42	1.8X10 ⁶	-
SiC	3.5	10	100

Intrinsic carrier density with temperature

Temperature (K)

$$n_{i} = N(\frac{1}{p})^{-E/kT}$$

$$Log n_{i} \propto -E/kT Log(\frac{1}{p})$$

$$n^2_i = N_V N_C e^{-\frac{(E_g)}{KT}}$$

Source: from web link

1000/T (1000/K)

Doping

(Impurity Incorporation)

Donors: Introduce electrons to the semiconductor (but not holes)

	IIIA	IVA	VA	VIA
	В	C	N	0 *
IIB	Αl	Si 14	P ¹⁵	S 16
Zn	Ga	Ge	As	Se
Cd	In	Sn⁵	Sb	Te

immobile ionized donor

- 4 electrons of donor atom participate in bonding
- 5th electron easy to release
- at room temperature, each donor releases 1 electron that is available for conduction
- donor site become positively charged (fixed charge)

Question to ask

Can we have holes?

Can we get electron by some other mechnasim

More Insight (Bond Model)

It look like hydrogen atom

i.e. the electron (excess, which come because of As atoms) circulating the "As".

Binding force between As⁺ nucleus to circulating e⁻

$$F = \frac{-q^2}{4\pi \in 0 \in {}_r r^2} \qquad F \propto \frac{1}{\in {}_r}$$

Dielectric constant of Si which is ~ 12 .

Binding Energy of Electron of ground state

$$E = \frac{-mq^4}{8\pi \in 20 \in 2_r h^2} = \frac{-13.6eV}{\in {}^2_r} \qquad E \propto \frac{m *}{\in {}^2_r}$$
$$m *\sim 0.4m_n \qquad \in {}_r \sim 12$$

At T=0K

This is very small also known as ionization energy, so effectively this electron level lying just below $E_{\rm c}$

This is called Donor state

Electrons Concentration and Band Diagram

