50.021 Artificial Intelligence

Simriti Bundhoo 1006281

Homework 8

1 Logistic Problem I

- (a) Propositional variables:
 - At(x): indicates whether the truck is at location x, where x can be a, b or c.
 - PackageAt(x): indicates whether the package is at location x, where x can be a, b or c.
 - Loaded: indicates whether the truck is loaded with the package (It can be true or false).
- (b) Operators:
 - move(x,y):
 - Pre-conditions: At(x)
 - Post-conditions: At(y)
 - load(x):
 - **Pre-conditions:** At(x), PackageAt(x), not Loaded
 - Post-conditions: not At(x), not PackageA(x), Loaded
 - unload(x):
 - **Pre-conditions:** At(x), not PackageAt(x), Loaded
 - Post-conditions: At(x), PackageAt(x), not Loaded
- (c) Initial State: At(a), PackageAt(c), not Loaded
- (d) Goal State: At(b), PackageAt(b), not Loaded

2 Logistic Problem II

- (a) The optimal solution is:
 - 1. move(a,b): The truck moves from a to b.
 - 2. move(b,c): The truck moves from b to c.
 - 3. load(c): The truck loads the package at c.
 - 4. move(c,b): The truck moves from c to b.
 - 5. unload(b): The truck unloads the package at b.
- (b) The truck can now move directly from a to c without passing through b (remove the requirement for movement only between adjacent locations).
- (c)
 - F_0 : At(a), PackageAt(c), not Loaded
 - A_0 : move(a,c)
 - F_1 : At(c), PackageAt(c), not Loaded

• A_1 : load(c)

• F_2 : At(c), PackageAt(c), Loaded

• A_2 : move(c,b)

• F_3 : At(b), PackageAt(b), Loaded

• A_3 : unload(b)

• F₄: At(b), PackageAt(b), not Loaded (Goal State)

3 Logistic Problem III

(a) The new optimal solution is now:

1. move(a,c): The truck moves from a to c.

2. load(c): The truck loads the package at c.

3. move(c,b): The truck moves from c to b.

4. unload(b): The truck unloads the package at b.

The heuristic used in this problem is called the Delete-Relaxed Heuristic. It relaxes the preconditions of actions, allowing the planner to explore more potential paths that might not be feasible in reality but help in finding a solution faster.

(b) $h_{add} = 4$

In the context of the logistic problem, the goal fact is: At(b), PackageAt(b), not Loaded. h_{max} is the summed cost of all goal facts. As there is only one goal fact, and it requires 4 actions to get there, $h_{add} = 4$.

(c) $h_{max} = 4$

 h_{max} is the maximum number of actions needed to satisfy any one goal condition. In this case, the maximum number of actions needed is 4 (from F_0 to F_4), considering the optimal solution provided. Therefore, $h_{max} = 4$.

4 Generic Planning I

(a) $h_+ = 4$

As h_{+} heuristic is the optimal plan for a delete-relaxed problem, the delete column is removed. The table is now:

Pre	Add
m	n,o
m,o	p
p	m
n,o	p
	m m,o p

The optimal solution is:

Based on the above definition and the optimal plan having 4 actions, the h_{+} is 4.

(b) $h_{add} = 6$

The goal states are $\{m, n, o, p\}$.

 \bullet Goal state m: 0

• Goal state n: 1

• Goal state o: 1

• Goal state p: 2 + 2 = 4

Therefore, $h_{add} = 0 + 1 + 1 + 4 = 6$

(c) $h_{max} = 2$

As h_{max} is the cost of the single most costly goal fact, given the goals $\{m, n, o, p\}$, $h_{max} = 2$ (from F_0 to F_2).

5 Generic Planning II

(a) $h_+ = 3$

The optimal solution is:

Based on the above definition and the optimal plan having 3 actions, the h_+ is 3.

(b) $h_{add} = 5$

The goal states are $\{m, n, o, p\}$.

• Goal state p: 0

• Goal state m: 1

• Goal state n: 2

• Goal state o: 2

Therefore, $h_{add} = 0 + 1 + 2 + 2 = 5$

(c) $h_{max} = 2$

As h_{max} is the cost of the single most costly goal fact, given the goals $\{m, n, o, p\}$, $h_{max} = 2$ (from F_0 to F_2).