

Machine-to-Machine Security and Privacy: Challenges and Opportunities

Geoff Brown, CEO

geoff.brown@m2mi.com

@M2MiCorp

M2Mi Overview

M2Mi provides a SaaS M2M and IoT-to-Cloud Platform

Founded: 2006 at NASA Research Park

Products in production on thousands of network and compute assets

Intellectual property and patents

- "Personal portal and secure information exchange" (US7376652, Patent 2003)
- Global Trademark "M2M Intelligence®"

Industry leadership

- Founding OASIS MQTT member; Chair of security sub-committee
- Member, Smart Grid Interoperability Panel

vodafone

- Gartner Cool Vendor 2014, Connected World Top 100
- Available for trial and purchase via the IBM Cloud Marketplace

Enterprises failing to secure M2M transactions

M2M security remains inadequate*

M2M security priority is high

- 96% of IT decision makers define data security of M2M transactions a priority this year
- Being compliant with regulations in the M2M environment is more important that efficiency gains

Security technology is not keeping up

- Does not solve issues of privacy, scale, trust, key management, nor do they provide dynamic policy-driven decisions to move data
- Does not address shift from IT and InfoSec to Operation technology (OT) security

sight, Feb 25, 2014. <u>Enterprise Failing to Secure M2M Transactions</u>

Security is stifling M2M and IoT potential

IDC reports security as #1 hurdle to adoption

Trust – untrusted networks, untrusted devices

Cost – large number of devices requires very low costs

Privacy – who owns the data and how to securely share

Performance – edge devices do not have cycles for security

Dynamic – static policies cannot address changing environment

Interoperability – large number of diverse participants

Advanced Security and Privacy Considerations

- NIST Cyber Security Framework
- Emerging Crypto specifically for M2M and IoT (Simon & Speck)
- The "lockbox" security paradigm for Critical Infrastructure

CHINE-TO—MACHINE INTELLIGENCE (M2MII) CORPORATION

Cybersecurity Compliance Hierarchy

NIST
Cybersecurity
Framework

Governance and Regulations
SOX, HIPPA/MDDS, PCI, FISMA, FIPS

Enterprise Security Requirements

- •IP Management
- DDoS/DoS Mitigation
- •Web Application Firewalls
- •Firewall Zones
- •Fine Grained Roles and privileges
- Proof of device identity and source
- •Encryption of data at rest and in transit

Infrastructure Protection

- Database Server Isolation
- •Two-Factor Authentication Access
- •Firewall Management
- •Fully Managed Antivirus Protection
- •IDS
- Log Monitoring and Management
- Continuous backup

Smart Grid – internal structure

Reference: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt-security

Simon & Speck

		ha	rdware		softwa	re
size	name	area	throughput	flash	SRAM	throughput
		(GE)	(kbps)	(bytes)	(bytes)	(kbps)
48/96	Simon	763	15.0	196	0	589
	Speck	884	12.0	134	0	943
	EPCBC	1008	12.1	[365]	0	[93]
64/80	TWINE	1011	16.2	1304	414	472
	Present	1030	12.4	[487]	0	96
	Ріссого	1043	14.8	_	-	-
	Katan	1054	25.1	272	18	14
	Klein	1478	23.6	766	18	168
64/96	Simon	838	17.8	274	0	540
	Speck	984	14.5	182	0	888
	KLEIN	1528	19.1	[766]	[18]	[134]
64/128	Simon	1000	16.7	282	0	515
	Speck	1127	13.8	186	0	855
	Ріссого	1334	12.1	-	-	-
	Present	1339	12.1	[487]	[0]	[96]
96/96	Simon	984	14.8	454	0	454
	Speck	1134	13.8	276	0	866
	EPCBC	1333	12.1	[730]	0	[93]
128/128	Simon	1317	22.9	732	0	342
	Speck	1396	12.1	396	0	768
	AES	2400	56.6	943	33	445

Table 1.1: Performance comparisons. Size is block size/key size; hardware refers to an ASIC implementation, and software to an implementation on an 8-bit microcontroller; clock speeds are 100 kHz (hardware) and 16 MHz (software). The best performance for a given size is indicated in red, the second best in blue. Numbers in brackets are our estimates; "—" means these values were unavailable at the time of writing.

- Lightweight Block Cypher for M2M and IoT from NSA
- Simon Hardware implementation
- Speck Software implementation
- Ideal for Crypto rotation
- Simon& Speck submitted and accepted by ISO Standards Body 29192-2 (6 month wait)

Simon: http://en.wikipedia.org/wiki/Speck_(cipher)

Block size (bits)	Key size (bits)	Rounds
32	64	22
40	72	22
48	96	23
64	96	26
04	128	27
ne.	96	28
96	144	29
	128	32
128	192	33
	256	34

Speck

Reference code of encryption of Speck variant with 128 bit block size and key

```
#include <stdint.h>

#define ROR(x, r) ((x >> r) | (x << (64 - r)))

#define ROL(x, r) ((x << r) | (x >> (64 - r)))

#define R(x, y, k) (x = ROR(x, 8), x += y, x ^= k, y = ROL(y, 3), y ^= x)

void encrypt(uint64_t *pt, uint64_t *ct, uint64_t *K)

{
    uint64_t i, B = K[1], A = K[0];
    ct[0] = pt[0]; ct[1] = pt[1];

for(i = 0; i < 32; i++)

{
      R(ct[1], ct[0], A);
      R(B, A, i);
    }
}
```

tp://en.wikipedia.org/wiki/Speck_(cipher)

Cryptanalysis Performance

PECK: Differential cryptanalysis can break 17 rounds of Speck128/128 with 2¹¹³ data, bytes memory and time complexity of 2¹¹³. Ectangle attack can break 18 rounds of Speck128/192,256 with 2^{121.9} data, 2^{25.9} bytes memory and time complexity of 2^{182.7}.

MON: Differential cryptanalysis can break 46 rounds of Simon128/128 with 2^{125.6} data, ^{0.6} bytes memory and time complexity of 2^{125.7} with success rate of 0.632

M2Mi Logical Architectu

Data Center Viewpoi

Security Viewpoi

M2Mi Logical Architectu

Data Center Viewpo

Security Viewpo

telliFlows: Data Transformation, Aggregation, Analysis, Alerting, Eventing, Visualization, Privacy Manageme

ata Gathering: Connectivity Services, Message Collection, Data Parsing, Context Creation

M2Mi: Where does all the data go?

: 32111, olume: 64

ld: 893, GPS: -121,54 ld: 38, Level: 157 Id: 7, Diesel: 45

Id: 67, Tank: empty

CHINE-TO-MACHINE INTELLIGENCE (M2MII) CORPORATION

Industry Specific M2M Compliant Network

FIPS140-2

Lockbox technology – use case scenario

Internet of Things

Questions