



## Relajo ejes en algún orden mientras puedo

### ¿Caminos de longitud 0?

















# Relajar un eje



# $\frac{3}{z}$











I) Un camino **mínimo** desde A de k>0 nodos es un camino **mínimo** desde A de k-1 nodos más un nodo al final.



# ¿Hasta cuándo?

II) Si un grafo G no tiene ciclos negativos entonces sus caminos mínimos (simples) desde A tienen longitud < n</p>

### $k \ge n$





Peso' <= Peso y k' < k. Abs!

"Take the first step in faith.

You don't have to see the whole staircase, just take the first step."

~ Martin Luther King Jr.





### III) Si ningún camino mínimo desde A tiene longitud k, entonces ninguno tiene longitud k+1



Ford-Optimizado(G = 
$$<$$
V, E $>$ , x):  
 $\pi_x \leftarrow 0$   
 $\pi_i \leftarrow \infty$  (para i  $\neq$  x)  
Mientras  $\pi$  cambie y #iteracion  $\leq$  n:  
Por cada eje (u, v) en E:  
Si  $\pi_u + w(u, v) < \pi_v$ :  
 $\pi_v \leftarrow \pi_u + w(u, v)$ 
- Usando prop I

Si #iteracion = n: hay ciclos negativos! Devolver  $\pi$ 

- Por prop II

```
Bellman(G = \langle V, E \rangle, x):
 \pi_{\mathsf{x}} \leftarrow 0
 \pi_i \leftarrow \infty (para i \neq x)
 Para I ← 1..n-1
  \pi' \leftarrow \pi
  Por cada eje (u, v) en E:
                                                   Relajar el eje (u,v)Usando prop I
    Si \pi'_u + W(u, v) < \pi_v:
     \pi_{V} \leftarrow \pi'_{u} + w(u, V)
```

Por cada eje (u, v) en E: Si  $\pi_u$  + w(u, v) <  $\pi_v$ : hay ciclos negativos! Devolver  $\pi$ 

- Por prop II

Cuántas iteraciones tarda Bellman-Ford optimizado si relaja los ejes en orden:

**a** - e5, e4, e3, e2, e1?

**b** - e1, e2, e3, e4, e5?



El orden de los ejes puede ayudar a encontrar la solución más rápido.

### Encuentra un ciclo negativo si empieza desde A?



## Si G no es dirigido, puede tener aristas con peso negativo?



# Funciona con ejes con peso negativo en digrafos?

### Bellman-Ford es:

### O(n(m+n)) con listas de adyacencia O(n(n²)) con matriz de adyacencia

Recordar que se puede cambiar de representación en O(n²)

#### Cambio oficial

| De | \$  | £    | €    |
|----|-----|------|------|
| \$ | 1   | 0.22 | 0.5  |
| £  | 4.4 | 1    | 2.04 |
| €  | 2   | 0.49 | 1    |

£1 → \$4.4 → €2.2 → 1.078 £





Buscamos  $X_1, X_2, ..., X_k, X_1$  tal que  $w(X_1, X_2) ... w(X_{k-1}, X_k) w(X_k, X_1) > 1$ 



Sé encontrar ciclos negativos...
A transformar el problema!



Sé darme cuenta si 
$$f(w(X_1, X_2)) + ... + f(w(X_k, X_1)) < 0$$

### Buscamos f tal que

$$f(w(X_1, X_2)) + ... + f(w(X_k, X_1)) < 0$$

Sii

$$W(X_1, X_2) * ... * W(X_k, X_1) > 1$$

### Tomo $\mathbf{f} = -\log$

$$\begin{split} -log(w(X_1,\,X_2)) + \ldots + -log(w(X_k,\,X_1)) < 0 \\ & sii \\ log(w(X_1,\,X_2)) + \ldots + log(w(X_k,\,X_1)) > 0 \\ & sii \\ log(w(X_1,\,X_2) \times \ldots \times w(X_k,\,X_1)) > log(1) \\ & sii \\ w(X_1,\,X_2) \times \ldots \times w(X_k,\,X_1) > 1 \end{split}$$



## Bellman-Ford

- Caminos mínimos de uno a muchos
- Funciona con ejes con peso negativo en digrafos.
- Detecta ciclos negativos en la misma c.c. que se inicia.
- Rápido en la práctica (Bennister-Epstein, |V| / 3 iteraciones).
- Se usa en redes (RIP)!

## Modelar problema en grafos



Formular pregunta sobre el grafo que resuelva el problema



Adaptar grafo a una pregunta conocida



Usar mejor algoritmo que la responda

## Relajo ejes en algún orden mientras puedo