import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/Churn_Modelling.csv')

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
4									>

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0
4						>

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtvn	es: float64(2) i	nt64(9) object(3)

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.head(2)

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Е
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	8:
4										•

sns.distplot(df.CreditScore)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb4b6b1d0>

sns.distplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f4bb49df710>

df.Gender.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb4461490>

df.Geography.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb44d2e90>

df.Tenure.value_counts().plot(kind='barh')

<matplotlib.axes. subplots.AxesSubplot at 0x7f4bb4332050>

sns.distplot(df.EstimatedSalary)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb42dd050>

sns.barplot(df.Geography, df.Exited)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb41faf50>

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Е
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8;
4									•

sns.barplot(x='Geography',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb41709d0>

sns.barplot(x='Gender',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb40f1c90>

sns.barplot(x='NumOfProducts',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb40d60d0>

sns.barplot(x='HasCrCard',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb403db10>

sns.barplot(x='IsActiveMember',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bb4011e10>

sns.pairplot(df)

plt.figure(figsize=(8,5))
sns.heatmap(df.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bc6252a50>

df.Exited.value counts()

0 79631 2037

Name: Exited, dtype: int64

df.isnull().sum()

RowNumber 0

CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0

dtype: int64

#No missing values

df.head(2)

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Е
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	8;
4										•

sns.boxplot(df.CreditScore)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bacb745d0>

sns.boxplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bacb5a590>

sns.boxplot(df.NumOfProducts)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bacac4750>

sns.boxplot(df.HasCrCard)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4baca430d0>

sns.boxplot(df.IsActiveMember)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bae48e690>

sns.boxplot(df.EstimatedSalary)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the sns.boxplot(df.Tenure)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bac907c90>

sns.boxplot(df.Balance)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bac868910>

#Outlier Removal

```
def outlier_credit_score(df):
```

IQR = df['CreditScore'].quantile(0.75) - df['CreditScore'].quantile(0.25)

lower_range = df['CreditScore'].quantile(0.25) - (1.5 * IQR)

```
upper_range = df['CreditScore'].quantile(0.75) + (1.5 * IQR)

df.loc[df['CreditScore'] <= lower_range, 'CreditScore'] = lower_range
    df.loc[df['CreditScore'] >= upper_range, 'CreditScore'] = upper_range

outlier_credit_score(df)

sns.boxplot(df.CreditScore)
```



```
def outlier_NOP(df):
    IQR = df['NumOfProducts'].quantile(0.75) - df['NumOfProducts'].quantile(0.25)

lower_range = df['NumOfProducts'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['NumOfProducts'].quantile(0.75) + (1.5 * IQR)

df.loc[df['NumOfProducts'] <= lower_range, 'NumOfProducts'] = lower_range
    df.loc[df['NumOfProducts'] >= upper_range, 'NumOfProducts'] = upper_range

outlier_NOP(df)

sns.boxplot(df.NumOfProducts)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f4bac7aa350>

def outlier_age(df):

```
IQR = df['Age'].quantile(0.75) - df['Age'].quantile(0.25)
```

```
lower_range = df['Age'].quantile(0.25) - (1.5 * IQR)
upper_range = df['Age'].quantile(0.75) + (1.5 * IQR)
```

outlier_age(df)

sns.boxplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f4bac724410>

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999

Data columns (total 14 columns):

```
# Column Non-Null Count Dtype
--- ----
0 RowNumber 10000 non-null int64
1 CustomerId 10000 non-null int64
```

```
Surname
                      10000 non-null object
 2
 3
     CreditScore
                      10000 non-null
                                      int64
 4
     Geography
                      10000 non-null
                                      object
 5
     Gender
                      10000 non-null
                                      object
 6
     Age
                      10000 non-null
                                      int64
 7
                      10000 non-null
                                      int64
     Tenure
 8
     Balance
                      10000 non-null
                                     float64
 9
     NumOfProducts
                      10000 non-null
                                      float64
 10 HasCrCard
                      10000 non-null
                                      int64
 11
    IsActiveMember
                      10000 non-null
                                      int64
                      10000 non-null
                                     float64
 12 EstimatedSalary
                      10000 non-null
 13 Exited
                                     int64
dtypes: float64(3), int64(8), object(3)
```

memory usage: 1.1+ MB

df.head(2)

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Е
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	8;
4										•

df.drop(['CustomerId','RowNumber','Surname'],axis=1,inplace=True)

df.head(2)

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619	France	Female	42	2	0.00	1.0	1
1	608	Spain	Female	41	1	83807.86	1.0	0
4								>

```
from sklearn.preprocessing import LabelEncoder
le_geo = LabelEncoder()
le gen = LabelEncoder()
df['Sex']=le_gen.fit_transform(df.Gender)
df['Country']=le_geo.fit_transform(df.Geography)
df.drop(['Geography','Gender'],axis=1,inplace=True)
df.head(2)
```

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Ε
0	619	42	2	0.00	1.0	1	1	
1	608	41	1	83807.86	1.0	0	1	
4								•

X=df.drop('Exited',axis=1)
y=df.Exited

Χ

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Es1
0	619	42	2	0.00	1.0	1	1	
1	608	41	1	83807.86	1.0	0	1	
2	502	42	8	159660.80	3.0	1	0	
3	699	39	1	0.00	2.0	0	0	
4	850	43	2	125510.82	1.0	1	1	
9995	771	39	5	0.00	2.0	1	0	
9996	516	35	10	57369.61	1.0	1	1	
9997	709	36	7	0.00	1.0	0	1	
9998	772	42	3	75075.31	2.0	1	0	
9999	792	28	4	130142.79	1.0	1	0	
10000 r	rows × 10 colum	ns						
4								•

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()

X = sc.fit_transform(X)

Colab paid products - Cancel contracts here

