

Neuroengineering

Prof. Laura ASTOLFI, <u>laura.astolfi@uniroma1.it</u>

Prof. Febo CINCOTTI, febo.cincotti@uniroma1.it

Dept. of Computer, Control and Management Engineering (DIAG, Via Ariosto)

What are we going to talk about today

- Meet each other
- Why neuroengineering
- Course topics
- Class schedule
- Course resources

(short break)

- Exams
- Questions

What is Neuroengineering

Definition that comes from the Institute of Electrical and Electronics Engineering.

- Neuroengineering is a relatively recent field which is concerned with the quantitative understanding of neural systems (from single neurons to large-scale neural networks) in order to advance medical technology in applications related to the nervous system.
- It also relates to using models of neural systems in order to solve problems in other disciplines (e.g., pattern recognition, robotics).
- Neuroengineering involves a convergence of knowledge and methodology from diverse disciplines, such as neuroscience, mathematics, engineering, biophysics, computer science, and psychology

Source: https://tc-neuro.embs.org/resources/

Talks / Demonstrations

Making the Paralyzed Move | Gernot Müller-Putz | TEDxTUWien

The Bionic Man - Explore the potential to interface the human nervous system with robotic limbs

Brain-Machine Interface @ EPFL: Wheelchair

The bionic hand: how a crazy idea has become a medical breakthrough

BCI-controlled functional electrical stimulation – Graz University of Technology (more)

BCI control of a robotic hand

Playing the Game "Pong" with EEG

Robot Navigation Using a Brain-Computer Interface "Joystick"

TED Talk | How to control someone else's arm with your brain | Greg Gage

Course topics

- Electroencephalography
 - i.e. electrical signals from the brain
- Electromyography
 - i.e. electrical signals from muscles
- (Bio-)signal processing
 - Frequency domain analysis
 - Time-domain analysis
- Brain-Computer Interfaces
 - Non-invasive, direct interaction between brain and machines
- Functional Electrical Stimulation
 - Non-invasive, artificial drive of muscular contraction
- Seminars
 - BCIs in neurorehabilitation
 - Peripheral neuroprostheses

- Anatomy and physiology of the neural cell
- Generation of neural electrical and metabolic correlates
- Neural encoding and decoding
- Principles of the brain organization, natural neural networks, different levels of organization
- Network neuroscience basic definitions (synchronicity, causality, influence)
- Model-free (data driven) vs model-based (biologically inspired) models of the brain as a complex system
- Analysis of brain networks at different scales (cellular and synaptic, cognitive neuroscience, behavioral neuroscience, multi-subject systems)
- Examples of application to clinical and physiological problems
- Seminars

• ..

break

Cincotti (mostly)

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
8:00-9:00	Robotics II De Luca Room B2 DIAG	Interactive Graphics Schaerf Room B2 DIAG	Neuro(15/neering Ciricotti-Astoni Room A2		Medical Robotics Vendittelli Room A2 DIAG
9:00-10:00	Robotics II De Luca Room B2 DIAG	Interactive Graphics Schaerf Room B2 DIAG	Neuroengineering Cinc 15 Astolfi Room A2		Medical Robotics Vendittelli Room A2 DIAG
10:00-11:00	Vision and Perception Pirri Room B2 DIAG	Interactive Graphics Schaerf Room B2 DIAG	Neuroengineering Cincotti-Astolfi	Elective in Artificial Intelligence De Giacomo-locchi Room A4 DIAG	Medical Robotics Vendittelli Room A2 DIAG
11:00-12:00	Vision and Perception Pirri Room B2 DIAG	Elective in Artificial Intelligence De Giacomo-locchi Room A2 DIAG	Vision and Perception Pirri Room B2 DIAG	Elective in Artificial Intelligence De Giacomo-locchi Room A4 DIAG	Interactive Graphics Schaerf Room B2 DIAG
12:00-13:00	Vision and Perception Pirri Room B2 DIAG	Elective in Artificial Intelligence De Giacomo-locchi Room A2 DIAG	Vision and Perception Pirri Room B2 DIAG	Elective in Artificial Intelligence De Giacomo-locchi Room A4 DIAG	Interactive Graphics Schaerf Room B2 DIAG
13:00-14:00					Astolfi
14:00-15:00		Elective in Robotics Vendittelli Room A2 DIAG	Robotics II De Luca Room B2 DIAG	Elective in Robotics Vendittelli Room A2 DIAG	Neuroengineering Cincotti-Astolfi Room A2
15:00-16:00	Medical Robotics Vendittelli Room A2 DIAG	Elective in Robotics Vendittelli Room A2 DIAG	Robotics II De Luca Room B2 DIAG	Elective in Robotics Vendittelli Room A2 DIAG	Neuroengineering
16:00-17:00	Medical Robotics Vendittelli Room A2 DIAG	Seminars in Artificial Intelligence and Robotics Capobianco Room A5-A6 DIAG	Robotics II De Luca Room B2 DIAG	Elective in Robotics Vendittelli Room A2 DIAG	
17:00-18:00	Elective in Artificial Intelligence De Giacomo-locchi Room A2 DIAG	Seminars in Artificial Intelligence and Robotics Capobianco Room A5-A6 DIAG		Elective in Robotics Vendittelli Room A2 DIAG	
18:00-19:00	Elective in Artificial Intelligence De Giacomo-locchi Room A2 DIAG	Seminars in Artificial Intelligence and Robotics Capobianco Room A5-A6 DIAG			

Classrooms? Will depend on the number of students

Course resources

A. Bulletin board + forum

• piazza.com

B. Cloud-based file sharing

- Google Drive
- Slides, exams, code ...

C. Textbooks

- Wolpaw J and Wolpaw E (eds.), Brain-Computer Interfaces, Oxford University Press, 2012. ISBN 9780195388855 / 9780199921485
- Hari R, Puce A, MEG-EEG primer, Oxford Press, 2017, ISBN: 9780190497774

Course Material

- Slides of the lessons
 - New slides posted shortly after the lesson

• Example code

Piazza posts

Past exams (after June 2020)

How to access the course resources (3 steps)

- 1. Request to enroll in the course BB/forum (Piazza)
 - Self sign-up with uniroma1 email:
 - http://bit.ly/neng-1920-piazza
- 2. Request to access shared material
 - Instructions (and link) also available at the Piazza course home
 - Request sent through Google Form: http://bit.ly/neng-1920-req
 - Allows registering additional google profile (e.g. private email)

... wait for approval (usually within the day) ...

- 3. Access shared Google Drive Folder
 - Access granted when the previous form is reviewed (not automatic, be patient)
 - Links available in the Resources section of the Piazza course (and in the confirmation email when access is granted)
 - http://bit.ly/neng-1920-gd

(no) Access material on Google Drive

Please, please, do not «request access» this way!

Double check which Google account you are signed in with

Access material on Google Drive

Confirmation email

Shared folder (eventually;) APIENZA Drive **(** ? Q Search Drive My Drive > ⋅⋅⋅ > #ClassShares# > Neuroengineering 2019-20 ▼ Name Neuroengineering Priority 2019-20 Papers △ My Drive Slides **Details** Activity Shared drives ▶ □□ Computers Shared with me Recent

Google Account

- BREAK -

start accessing the course resources

1. Request to enroll in the Piazza class

- Self sign-up with uniroma1 email:
- http://bit.ly/neng-1920-pz
 - i.e. https://piazza.com/uniroma1.it/spring2020/10592834

Piazza class

2. Request to access shared material

- Request sent through Google Form: http://bit.ly/neng-1920-req
- Allows registering additional google profile (e.g. private email)

... wait for approval (usually within the day) ...

Google form

Exams

- Modality
 - Written test
 - Closed-ended questions
 - Short problems
 - Oral exam?
 - Oral test gives a marginal contribution to the mark
 - Dispensed if student delivers a project
- Mid-term exams
 - No, but it could be part of the selection to assign projects during the semester

Written test

- Assessment of learned concepts, and ability to apply them:
 - Examples of past tests with solutions will be posted to the Gdrive shared folder
- Oral test
 - Assessment of critical learning and ability to build on acquired knowledge
- Projects
 - On voluntary basis more time consuming than preparing an oral exam
 - Opportunity given to the most motivated students
 - Small teams (2-3 students)
 - Some projects with predefined goals, others may be contributed by the team and discussed with the teacher
 - Multiple delivery dates at the end of each semester, two weeks prior to final exam.

Exam dates

- All exam (opening) dates are published on Infostud
- Applications open about 1 month before, and close 1 week before the exam opening date
- The written test is scheduled on the opening day of the exam
- The oral exam will be scheduled in the following days, expectedly within one week
- Project delivery dates will be agreed with the teacher at the time of assignment
 - 1. Tue 09/06/2020
 - 2. Tue 07/07/2020
 - 3. Thu 17/09/2020
 - 4. xxx XX/01/2021 (*)
 - 5. xxx XX/02/2021 (*)

Sat XX/10/2020 (*) Sat XX/03/2021 (*)

(*) Will be defined in September 2020

lacktriangle

Meet me

- During the breaks of each lesson, for quick questions
- By appointment:
 - Ask me in class
 - Post a private message on Piazza
 - Send mail to febo.cincotti@uniroma1.it or laura.astolfi@uniroma1.it