Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică

Secția: Informatică engleză

Curs: Dynamical Systems

Primăvara 2024

Seminar 7

1. Let $\lambda \in \mathbb{R}^*$ and $\eta \in \mathbb{R}$ be fixed parameters. Find the unique solution $(x_k)_{k\geq 0}$ of the initial value problem $x_{k+1} = \lambda x_k$, $x_0 = \eta$.

Note that the solution is a geometric progression. What is the long term behavior of this sequence? Discuss with respect to λ and η . \diamond

- **2.** (a) Find solutions of the form $x_k = a \, 3^k$ of the difference equation $x_{k+1} = 2x_k + 3^k$, $k \ge 0$. Here we look for $a \in \mathbb{R}$.
 - (b) Find the general solution of $x_{k+1} = 2x_k + 3^k$.
 - (c) Find the solution of the IVP $x_{k+1} = 2x_k + 3^k$, $x_0 = 0$. \diamond
 - **3.** (a) Find solutions of the form $x_k = ak + b$ of the difference equation $x_{k+1} = -5x_k k$, $k \ge 0$. Here we look for $a, b \in \mathbb{R}$.
 - (b) Find the general solution of $x_{k+1} = -5x_k k$.
 - (c) Find the solution of the IVP $x_{k+1} = -5x_k k$, $x_0 = -1$. \diamond
 - 4. Find the general solution of
 - (a) $x_{k+2} 6x_{k+1} + 9x_k = 0$.
 - (b) $x_{k+2} 2x_{k+1} + x_k = 0$.
 - (c) $x_{k+2} + x_{k+1} + x_k = 0.$ \diamond
 - **5.** Find the expression of the Fibonacci sequence

$$x_{k+2} = x_{k+1} + x_k, \ x_0 = 0, \ x_1 = 1.$$

- **6.** Find the linear homogeneous difference equation of minimal order that has the solution $(x_k)_{k\geq 0}$ such that
 - (a) $x_k = \frac{7}{2^k} \frac{2}{3^k}, k \ge 0.$
 - (b) $x_k = 7Re(i^k) 2Im(i^k), k \ge 0.$