Lecture 19

First Order Logic

Lusi Li
Department of Computer Science
ODU

Reading for This Class: Chapter 8, Russell and Norvig

Review

- Last Class
 - Inference
 - Resolution Algorithm
- This Class
 - First Order Logic
 - Start Homework 3
- Next Class
 - Learning

Outline

- Why first order logic?
- Syntax and semantics of first order logic
- Fun with sentences

Outline

- Why first order logic?
- Syntax and semantics of first order logic
- Fun with sentences

Pros and Cons in Propositional Logic

- Pro: Propositional logic is declarative:
 - pieces of syntax correspond to facts
- Pro: Propositional logic allows partial/disjunctive/negated information
 - (unlike most data structures and databases)
- Pro: Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and that of $P_{1,2}$
- Pro: Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)
- Con: limited expressive power (unlike natural language)
 - Relationships among individuals: "Pits cause breezes in adjacent squares", "Alice is a friend of Bob"
 - Generalizing patterns: "Every bear likes honey", "All animals are living beings"

First-Order Logic

- Propositional logic: assume that world contains facts
 - A logical system for reasoning about facts
- First-order logic (FOL): assume that the world contains objects, relations, and functions
 - A logical system for reasoning about relations among objects
 - Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, ... (nouns and noun phrases)
 - Relations: unary relations or properties such as red, round, bogus, prime, multistoried ..., or n-ary relations such as brother of, inside, part of, has color, occurred after, owns, comes between, ... (verbs, verb phrases, adjective, and adverb)
 - Functions: father of, best friend, third inning of, one more than, end of ... (a mapping from objects to objects)
 - E.g., "Squares neighboring the wumpus are smelly."

 Objects: squares, wumpus; Relations: smelly (unary), neighboring (binary).

More Logics

Language	Ontological	Epistemological
	Commitment	Commitment
	(what exists	(what an agent
	in the world)	believes about
	,	facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Higher-order logic:

relations and functions operate not only on objects, but also on relations and functions

Outline

- Why first order logic?
- Syntax and semantics of first order logic
- Fun with sentences

Symbols

Constants KingJohn, 2, C,...

Stand for objects

Predicates *Brother*, >, =, ...

Stand for relations

Functions Sqrt, LeftLegOf, ...

Stand for functions

Variables x, y, a, b, \dots

Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$

Quantifiers ∀ ∃

Atomic sentences predicate ($term_1, ..., term_n$) or $term_1 = term_2$ Term (object) constant //refers to a specified object or variable //refers to an object without specifying a particular object; must have a quantifier in front of predicate(x) or function ($term_1$, ..., $term_n$) //take objects as input and produce objects as output.

- Atomic sentence examples
- KingJohn is a brother of RichardTheLionheart:

 The length of the left leg of Richard is longer than the length of the left leg of KingJohn

- Complex sentences
 - Built from atomic sentences using connectives as in propositional logic

$$\neg S$$
 $S_1 \land S_2$ $S_1 \lor S_2$ $S_1 \Rightarrow S_2$ $S_1 \Leftrightarrow S_2$

Example:

If KingJohn is the sibling of Richard, then Richard is the sibling of KingJohn

The language of First Order Logic

Terms

- A variable is a term
- A constant symbol is a term
- If f is an n-ary function symbol and t1,..., tn are n terms, then f(t1, ..., tn) is a term
- Nothing else is a term

Sentences

- True (False) is a sentence
- If t1, t2 are terms, t1=t2 is a sentence
- If p is an n-ary relation symbol and t1, ..., tn are n terms, p(t1, ..., tn) is a sentence
- If φ is a sentence, $\neg \varphi$, $\forall x \varphi$, $\exists x \varphi$ are sentences
- If ϕ 1, ϕ 2 are sentences, ϕ 1 \Leftrightarrow ϕ 2, ϕ 1 \Rightarrow ϕ 2, ϕ 1 \wedge ϕ 2, ϕ 1 \vee ϕ 2 are sentences
- Nothing else is a sentence

Models of First-Order Logic

Models of first-order logic

Sentences are true or false with respect to models, which consist of

- a domain (also called universe) and an interpretation
- Domain: is a non-empty set of objects (domain elements); a world that our statement is situated within
 - Examples: natural numbers, people, animals, etc
 - Why is it important to specify a domain?
 - A statement can have different truth values in different domains.

Interpretation

maps

- constant symbols to objects in the domain
- predicate symbols to relations on those objects
- function symbols to functions on those objects

Semantics of First-Order Logic

Interprets

- constant symbols and variables as objects;
 Variables are placeholders for objects without specifying a particular object
- functional symbols as functions from objects to objects;
- relational symbols as relations over objects;
- \bullet = as equality (ie the *identity* relation);
- the universal quantifier (essentially) as an infinite conjunction; $(\forall x \; Red(x) \equiv Red(Obj_1) \land Red(Obj_2) \land Red(Obj_3) \land Red(Obj_4) \land \cdots)$
- the existential quantifier (essentially) as an *infinite disjunction*; $(\exists x \ Red(x) \equiv Red(Obj_1) \lor Red(Obj_2) \lor Red(Obj_3) \lor Red(Obj_4) \lor \cdots)$
- True, False, \land , \lor , \neg , \Rightarrow , \Leftrightarrow as in propositional logic.

Models of First-Order Logic: Example

Models for PL are just set of truth values for the propositional symbols. Models for FOL contain a set of objects (domain elements) and relations among them.

A model contains 5 objects, 2 binary relations, 3 unary relations, and 1 unary function.

- 5 objects: Richard the Lionheart; his younger brother, the evil King John; the left leg of Richard; the left leg of John; and a crown.
- 2 binary relations: Richard and John are brothers; the crown is on King John's head.
- 3 unary relations: the "person" property is true of both Richard and John; the "king" property is true only of John; the "crown" property is true only of the crown.
- 1 unary function: each person has one left leg.

Models of First-Order Logic: Example

Domain = {Richard the Lionheart, evil King John, the left leg of Richard, the left leg of John, crown}

One possible interpretation is defined:

Constants: *Richard* refers to Richard the Lionheart

John refers to evil King John

Predicates: Person(x) refers to that x is a person

King(x) refers to that x is a king

Crown(x) refers to that x is a crown

Brother(x,y) refers to that x is a brother of y

OnHead(x,y) refers to that x is on head of y

Functions:

LeftLegOf(x) refers to the left leg of x

crown

Semantics of First-Order Logic

An atomic sentence

predicate ($term_1, ..., term_n$)

is true in a certain model (that consists of a domain and an interpretation) if and only if the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

An atomic sentence $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ have the same interpretation

The truth value of a complex sentence in a model is computed from the truth-values of its atomic sub-sentences in the same way as in propositional logic

Universal Quantification

Universal quantification makes statements about every object without naming them.

- Syntax: ∀ (variables) (sentence)
 - If x is a variable, then $\forall x$ is read as
 - "For all x" or "For each x" or "For every x"
- Example: "All kings are persons"
- Model:
 Let the domain be the set of 5 objects.
 King(x) means that x is a king
 Person(x) means that x is a person

Domain = {Richard the Lionheart, evil King John, the left leg of Richard, the left leg of John, crown}

Universal Quantification

Semantics

 $\forall x \ P(x)$ says that P(x) is true for every object x in a model m, or $\forall x \ P(x)$ is true in a model m iff P(x) is true with x being each possible object in m.

Let D =
$$\{d_1, d_2, ..., d_n\}$$
 be the domain
 $\forall x P(x)$ is equivalent to $(P(d_1) \land P(d_2) \land ... \land P(d_n))$

Example: "All kings are persons"

$$\forall x \ King(x) \Rightarrow Person(x)$$

Domain = {Richard the Lionheart, evil King John, the left leg of Richard, the left leg of John, crown}

is equivalent to:

```
(King(Richard the Lionheart)) \Rightarrow Person(Richard the Lionheart))
```

- \land (King(evil King John) \Rightarrow Person(evil King John))
- \land (King(the left leg of Richard) \Rightarrow Person(the left leg of Richard))
- \land (King(the left leg of John) \Rightarrow Person(the left leg of John))
- \land (King(crown) \Rightarrow Person(crown))

Universal Quantification

Note: \Rightarrow is the main connective with \forall not \land

Common mistake: Using ∧ as the main connective with ∀ will lead to an overly strong statement

```
Correct: \forall x \ King(x) \Rightarrow Person(x)
```

"Everyone who is a king is a person"

Wrong: $\forall x (King(x) \land Person(x))$: "Everyone is a king and everyone is a person"

(King(Richard the Lionheart) \(\Lambda \) Person(Richard the Lionheart))

- \land (King(evil King John) \land Person(evil King John))
- \land (King(the left leg of Richard) \land Person(the left leg of Richard))
- \land (King(the left leg of John) \land Person(the left leg of John))
- \land (King(crown) \land Person(crown))

Existential Quantification

Existential quantification makes statements about some object without naming it.

- Syntax: ∃ (variables) (sentence)
 - If x is a variable, then $\exists x$ is read as
 - "There exists an x such that ..." or "For some x ..."
- Example: "The evil King John has a crown on his head"
- Model:
 Let the domain be the set of 5 objects.
 KingJohn means evil King John
 Crown(x) means that x is a crown
 OnHead(x,y) means that x is on head of y

Domain = {Richard the Lionheart, evil King John, the left leg of Richard, the left leg of John, crown}

$$\exists x Crown(x) \land OnHead(x, KingJohn)$$
variables sentence

Existential Quantification

Semantics

- $\exists x \ P(x)$ says that P(x) is true for at least one object x, or
- $\exists x \ P(x)$ is true in a model m iff P(x) is true with x being some possible object in m

```
Let D = \{d_1, d_2, ..., d_n\} be the domain

\exists x P(x) is equivalent to (P(d_1) \lor P(d_2) \lor ... \lor P(d_n))
```

• Example: $\exists x \ Crown(x) \land OnHead(x, KingJohn)$

Domain = {Richard the Lionheart, evil King John, the left leg of Richard, the left leg of John, crown}

is equivalent to:

```
(Crown(Richard the Lionheart) \( \lambda \) OnHead(Richard the Lionheart, KingJohn))
```

- V (Crown(evil King John) ∧ OnHead(evil King John, KingJohn))
- \lor (Crown(the left leg of Richard) \land OnHead(the left leg of Richard, KingJohn))
- \lor (Crown(the left leg of John) \land OnHead(the left leg of John, KingJohn))
- \lor (Crown(crown) \land OnHead(crown, KingJohn))

Existential Quantification

Note: \land is the main connective with \exists not \Rightarrow

Common mistake: Using ⇒ as the main connective with ∃ will lead to a very week statement!

Correct: $\exists x \ Crown(x) \land OnHead(x, KingJohn)$

"There is something which is a crown and it is on head of KingJohn"

Wrong: $\exists x \ (Crown(x) \Rightarrow OnHead(x, KingJohn))$

"There is something which, if it is a crown, is on the head of KingJohn"

This is true if there is anything that is not a crown

This is true if there is anything that is on head of KingJohn

Properties of Quantifiers

Quantifiers of same type commute

 $\forall x \, \forall y$ is the same as $\forall y \, \forall x$

 $\exists x \; \exists y$ is the same as $\exists y \; \exists x$

Quantifiers of different type do NOT commute

 $\exists x \ \forall y$ is not the same as $\forall y \ \exists x$

A quantifier holds over everything to the right of it. They have different scopes.

Example:

Let the domain be the set of persons in the world and Loves(x,y) means x loves y

 $\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \; \exists x \; Loves(x,y)$

"Everyone in the world is loved by at least one person"

Properties of Quantifiers

Quantifier duality:

 $\forall x \ Likes(x,IceCream)$ is the same as $\neg \exists x \ \neg Likes(x,IceCream)$

 $\exists x \ Likes(x, Broccoli)$ is the same as $\neg \forall x \ \neg Likes(x, Broccoli)$

∀ is really a conjunction over the universe of objects and **∃** is a disjunction

Obey De Morgan rules

Equality

Semantics

 $term_1 = term_2$ is true under a given interpretation if and only if

 $term_1$ and $term_2$ have the same interpretation

Equality can only be applied to objects;

to state that two propositions are equal, use ⇔

Example: Father (John) = Henry

 \exists x, y Brother (x,Richard) \land Brother (y,Richard) \land \neg (x=y)

Richard has at least two brothers

A Summary of Translation Idioms

- Every/All/Each/Any
 - $\forall x$
- Some/At least one/There exists a/There is a
 - $-\exists x$
- None/No x
 - $\neg (\exists x \dots)$
- Not every/Not all
 - $\neg (\forall x \dots)$

Outline

- Why first order logic?
- Syntax and semantics of first order logic
- Fun with sentences

Fun with Sentences

Let the domain be the set of animals.

Honey(x) means that x likes honey.

Translate the following sentences into predicate logic.

- 1. All animals like honey. ∀x Honey(x)
- 2. At least one animal likes honey. 3x Honey(x)
- 3. Not every animal likes honey. $\neg (\forall x \text{ Honey}(x))$
- 4. No animal likes honey. ¬(∃x Honey(x))
- 5. No animal dislikes honey. $\neg (\exists x (\neg Honey(x)))$
- 6. Not every animal dislikes honey. ¬(∀x (¬Honey(x)))
- 7. Some animal dislikes honey. $\exists x (\neg Honey(x))$
- 8. Every animal dislikes honey. $\forall x (\neg Honey(x))$

Note: Each pair of sentences (1 & 5, 2 & 6, 3 & 7, 4 & 8) is logically equivalent. However, when doing translations, always give the direct translation to avoid losing marks

Summary

- First Order Logic
 - Syntax
 - Semantics
- Expressions in First Order Logic

What I want you to do

- Review Chapter 8
- Work on your Homework 3

