CS&IT ENGINEERING

Computer Network

Error Control

By - Abhishek Sir

Lecture No. - 07

Recap of Previous Lecture

Topic

Hamming Distance

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

Minimum number of bits corrupted in the Block

= Maximum [total number of row wise parity unbalanced, total number of column wise parity unbalanced]

Each sequence of <u>28 bits</u> is arranged in a <u>4 x 7 matrix</u> (rows r_0 through r_3 , and columns d_7 through d_1) and is padded with a column d_0 and row r_4 of parity bits computed using the Even parity scheme. Each bit of column d_0 (respectively, row r_4) gives the parity of the corresponding row (respectively, column). These 40 bits are transmitted over the data link.

The table shows data received by a receiver and has n corrupted bits. What is the minimum possible value of n?

[GATE 2008]

(A) 1

(B) 2

Z) 3

Even Parity

			$\mathbf{d_5}$						
r_0	0	1	0	1	0	0	1	1	
r_1	1	1	0	0	1	1	1	0	\leftarrow
r_3	0	1	1	0	1	0	1	0	
r ₄	1	1	0	0	0	1	1	0	
	V	V		V	V	1	/	1	
7						8		1	

Ans =
$$\max(1,3)$$

= 3

- → Single bit error-correcting code
- → Both transmitter and receiver must agree on same parity [either "Even Parity" or "Odd Parity"]
- \rightarrow Number of data bits = m
- \rightarrow Number of parity bits = r
- \rightarrow Code length (n) = [m+r] bits
- → Hamming (n, m)

→ Parity bit placed at position = 2^{i} [where i = 0, 1, 2, 3 ...]

[where i = 0, 1, 2, 3...]
$$\frac{d_7}{2}$$
 $\frac{d_6}{2}$ $\frac{d_5}{2}$ $\frac{d_4}{2}$ $\frac{R_3}{2}$ $\frac{d_3}{2}$ $\frac{d_2}{2}$ $\frac{d_1}{2}$ $\frac{R_2}{2}$ $\frac{d_0}{2}$ $\frac{R_1}{2}$ $\frac{R_0}{2}$ 12 11 10 9 8 7 6 5 4 3 2 1

→ Minimum number of parity bits required

$$2^{r} > (m + r)$$

→ Minimum code length = 3 [contains only one data bit and two parity bit]

m	r
1	2
2	3
3	3
4	3
5	4
6	4
7	4
11	4
12	5
26	5
27	6

$$\mathbf{R_0} = \mathbf{d_0} \, \mathbf{d_1} \, \mathbf{d_3} \, \mathbf{d_4} \, \mathbf{d_6} \, [1 = 3, 5, 7, 9, 11]$$

$$R_1 = d_0 d_2 d_3 d_5 d_6 [2 = 3, 6, 7, 10, 11]$$

$$R_2 = d_1 d_2 d_3 d_7$$
 [4 = 5, 6, 7, 12]

$$R_3 = d_4 d_5 d_6 d_7$$
 [8 = 9, 10, 11, 12]

Example 1:

83 d2d, do

Consider data bits are "1 1 0 1" and "Even Parity", generate hamming code?

Example 1:

Consider data bits are "1 1 0 1" and "Even Parity", generate hamming code?

Ans: 1100110 V

Example 2: $\frac{1}{2}$

Consider data bits are "0 0 1 1" and "Even Parity", generate hamming code?

Example 2:

Consider data bits are "0 0 1 1" and "Even Parity", generate hamming code?

Ans: 0011110

Example 3: 7bit

Consider data bits are "1110110" and "Even Parity", generate hamming code?

Example 3:

Consider data bits are "1110110" and "Even Parity", generate hamming code?

Ans: 11110110011

Example 4:

Consider data bits are "10101101" and "Even Parity", generate hamming code?

$$R_0 = 0$$
 $R_1 = 0$
 $R_2 = 0$
 $R_3 = 0$

Example 4:

Consider data bits are "10101101" and "Even Parity", hamming code:

Ans: 101001101100

At receiver:

CASE I: No any error

Transmitted Codeword = 101001101100Received Codeword = 101001101100

Even Party

if receiver finds all the parity bits are balanced then receiver concluded "No any error detected" else

receiver concluded "Error detected"

At receiver:

CASE I: No any error

Receiver Concluded: "No any error detected"

[Receiver finds all parity bits are balanced]

At receiver:

Even Parity

CASE II: One-bit error

Transmitted Codeword = 101001101100Received Codeword = 1010001101100

RORAN RARA

At receiver:

CASE II: One-bit error

Receiver Concluded: "Error detected"

[Receiver finds parity bits R₀, R₁, and R₂ are unbalanced]

Error Position = 7 $[R_3 R_2 R_1 R_0 = 0.111] = 7$

Corrected Codeword = 101001101100

[Receiver successfully corrected single-bit error]

At receiver:

CASE III: Two-bit error

Transmitted Codeword = 101001101100Received Codeword = 101000111100

Even Parit.

At receiver :

CASE III: Two-bit error

Receiver Concluded: "Error detected"

[Receiver finds only parity bits R₁ is unbalanced]

Error Position = 2 [R₃ R₂ R₁ R₀ = 0.010]

Corrected Codeword = 101000111110

[Receiver can not correct burst error]

#Q. Assume that a 12-bit Hamming codeword consisting of 8-bit data and 4 check bits is d₈ d₇ d₆ d₅ C₈ d₄ d₃ d₂ C₄ d₁ C₂ C₁, where the data bits and the check bits are given in the following tables:

Data bits							
d_8	d ₇	d ₆	d ₅	d_4	d_3	d ₂	d_1
1	1	0	х	0	1	0	1

Check its					
c ₈	C ₄	C ₂	$c_{\scriptscriptstyle 1}$		
у	0	1	0		

Which one of the following choices gives the correct values of x and y?

- (A) x is 0 and y is 0
- (B) x is 0 and y is 1
- (C) x is 1 and y is 0
- (D) x is 1 and y is 1

[GATE 2021]

Using r parity bit,

Maximum code length =
$$(2^{r} - 1)$$

Maximum data bits =
$$(2^r - r - 1)$$

• Code rate =
$$(2^r - r - 1) / (2^r - 1)$$

Hamming Code (with Even Parity) and 3 data bits:

Data	>	Codeword
000	>	000000
001	>	000111
010	>	011001
011	>	011110
100	>	101010
101	>	101101
110	>	110011
111	>	110100

THANK - YOU