In Section 4.1, we will show that $n < 2^n$ whenever n is a positive integer. Show that this **EXAMPLE 7** inequality implies that n is $O(2^n)$, and use this inequality to show that $\log n$ is O(n).

> Solution: Using the inequality $n < 2^n$, we quickly can conclude that n is $O(2^n)$ by taking k =C=1 as witnesses. Note that because the logarithm function is increasing, taking logarithms (base 2) of both sides of this inequality shows that

$$\log n < n$$
.

It follows that

 $\log n$ is O(n).

(Again we take C = k = 1 as witnesses.)

If we have logarithms to a base b, where b is different from 2, we still have $\log_b n$ is O(n)because

$$\log_b n = \frac{\log n}{\log b} < \frac{n}{\log b}$$

whenever n is a positive integer. We take $C = 1/\log b$ and k = 1 as witnesses. (We have used Theorem 3 in Appendix 2 to see that $\log_b n = \log n / \log b$.)

As mentioned before, big-O notation is used to estimate the number of operations needed to solve a problem using a specified procedure or algorithm. The functions used in these estimates often include the following:

1,
$$\log n$$
, n , $n \log n$, n^2 , 2^n , $n!$

Using calculus it can be shown that each function in the list is smaller than the succeeding function, in the sense that the ratio of a function and the succeeding function tends to zero as n grows without bound. Figure 3 displays the graphs of these functions, using a scale for the values of the functions that doubles for each successive marking on the graph. That is, the vertical scale in this graph is logarithmic.

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.