

Oficina de Python e Programação Competitiva

Prof. Marcelo de Souza

Programa de Extensão "Estudos em Engenharia de Software" Universidade do Estado de Santa Catarina – UDESC Alto Vale

Informações

Cronograma

- 22/11: Python e programação competitiva
- 29/11: Python e programação competitiva
- 06/12: Desafios de programação

Metodologia

- Para cada conceito de programação (condicionais, laços de repetição, ...):
 - Problemas práticos de programação competitiva: 1 resolvido + 1 a resolver.

Ferramentas

Thonny (e Python!)

Programação competitiva

Um esporte mental onde os participantes devem criar programas de acordo com uma especificação, ou seja, programas que resolvam problemas computacionais.

Exponenciação

Seu programa deve fazer a leitura de dois números inteiros A e B e apresentar o resultado de A^B.

Exponenciação

Seu programa deve fazer a leitura de dois números inteiros A e B e apresentar o resultado de A^B. Na entrada, são fornecidos 3 pares de valores A e B (cada valor em uma linha). Como saída, deve ser apresentado o resultado de cada uma das 3 operações, um por linha.

Exemplo de entrada:

3

٥

_

_

_

Saída esperada:

64

32

36

Trapézios

A área de um trapézio é calculada por $A = (B + b) \times h / 2$, onde B é a base maior, b é a base menor e h é a altura. A entrada consiste nos valores de B, b e h de 2 trapézios, todos números naturais e um valor por linha, nessa ordem (total de 6 valores). Seu programa deve calcular a área dos 2 trapézios e apresentar o somatório das áreas, ou seja, um único valor como resultado.

Exemplo de entrada:

5

6

7

12

2

Saída esperada:

46.5

Par ou ímpar

Joey e Monica estão em uma disputa de par ou ímpar. Joey aposta no par e Monica aposta no ímpar. Eles desejam jogar N vezes, e aquele que vencer mais confrontos será o vencedor da disputa. Escreva um programa que auxilie a computar o número de vitórias de cada um e informe quem é o vencedor (ou se eles empataram). Para isso, leia a quantidade N de disputas, seguida de N linhas contendo os números apostados por Joey e Monica (na mesma linha). Ao final, informe o vencedor (JOEY ou MONICA) ou então EMPATE.

Exemplo de entrada:

4

5 3

_ _

1 2 3 0

Saída esperada:

MONICA

Andando no tempo

- Maratona de Programação, SBC/ACM, 2016

Imagine que você tenha uma máquina do tempo que pode ser usada no máximo três vezes, e a cada uso da máquina você pode escolher voltar para o passado ou ir para o futuro. A máquina possui três créditos fixos; cada crédito representa uma certa quantidade de anos, e pode ser usado para ir essa quantidade de anos para o passado ou para o futuro. Você pode fazer uma, duas ou três viagens, e cada um desses três créditos pode ser usado uma vez apenas. Por exemplo, se os créditos forem 5, 12 e 9, você poderia decidir fazer duas viagens: ir 5 anos para o futuro e, depois, voltar 9 anos para o passado. Dessa forma, você terminaria 4 anos no passado, em 2017 (considerando o ano atual como 2023). Também poderia fazer três viagens, todas indo para o futuro, usando os créditos em qualquer ordem, terminando em 2049 (considerando o ano atual como 2023).

Neste problema, dados os valores dos três créditos da máquina, seu programa deve dizer se é ou não possível viajar no tempo e voltar para o presente, fazendo pelo menos uma viagem e, no máximo, três viagens; sempre usando cada um dos três créditos no máximo uma vez.

A entrada consiste de uma linha contendo os valores dos três créditos A, B e C. Seu programa deve imprimir uma linha contendo o caractere "S" se é possível viajar e voltar para o presente, ou "N" caso contrário.

Exemplo de entrada:

3 4 5

Saída esperada:

N

Diversão com sequências

- SPOJ (DIVSUM)

Dado um número natural n (entre 1 e 500 000), exiba o somatório de todos os seus divisores. Por exemplo, o número 20 tem cinco divisores: 1, 2, 4, 5, 10 e o somatório deles é 1 + 2 + 4 + 5 + 10 = 22. A entrada inicia com o número de casos de teste, seguido de uma linha para cada caso de teste contendo o valor de n. A saída deve conter uma linha para cada caso de teste, contendo seu resultado.

Exemplo de entrada:

10

20

Saída esperada:

22

Soma no intervalo

Primeiro, é fornecido o número de casos de teste n. Depois, são fornecidos n pares de valores x e y, um par por linha, tal que x < y. Seu programa deverá apresentar a soma de todos os números inteiros entre x e y (inclusive). Por exemplo, dado o par 4 e 7, seu programa deve exibir o resultado 22 (que corresponde a 4 + 5 + 6 + 7).

Exemplo de entrada:

4

2 8

-3 5

42 68

-20 12

Saída esperada:

35

9

1485

-132

