Занятие 8. Дифракция и поляризация света.

Для подготовки к семинару надо проработать

Лекция 14-15. Дифракция света. ОЛ-2 (§5.1- 5.6), ОЛ-5 (§5.1- 5.7), ОЛ-6 (§5.1- 5.8), ДЛ-11, 12.

ОЛ-2. Литвинов О.С., Горелик В.С. Электромагнитные волны и оптика. Учебное пособие. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. – 448 с.

ОЛ-5. Савельев И. В. Курс общей физики: Учебное пособие для втузов. В 5 кн (кн.4). – М.: Наука, 1998.

ОЛ-6. Иродов И.Е. Волновые процессы. Основные законы. – М.: Лаборатория базовых знаний, 1999. – 256 с.

ДЛ-11. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Издательский центр «Академия», 2005. – 720 с.

ДЛ-12. Сивухин Д.В. Общий курс физики. Учебное пособие для вузов.

В 5 томах. – М.: Физматлит, 2002. – 4506 с.

Краткие теоретические сведения

Интерференция волн от двух источников:

$$A^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \delta.$$

Дифракция есть интерференция волн от многих когерентных источников

Дифракционная картина от непрозрачного лиска

Пятно Пуассона

От одной щели:

$$\Delta = b \sin \vartheta$$

Дифракция от многих щелей:

Распределение интенсивности света от дифракционной решетки $I = I_0 \frac{\sin^2(\delta/2)}{(\delta/2)^2} \cdot \frac{\sin^2(N\gamma/2)}{\sin^2(\gamma/2)}$ $\delta = 2\pi \frac{\Delta}{\lambda}$ $\delta = 2\pi$

Главные максимумы

$$d\sin\theta_m = \pm m\lambda, \quad m=0, 1, 2,...,$$

$$A=A_1N,\quad I=I_1N^2.$$

Интерференционные

минимумы:

$$d\sin \theta = \pm \frac{m'}{N} \lambda.$$

$$m' = 0, N, 2N, ...$$

$$b\sin\theta_m = \pm m\lambda$$
, $m=1, 2, ...$

Метод зон Френеля

$$r_m = \sqrt{m\lambda \frac{ab}{a+b}}.$$

Для плоской волны

$$r_m = \sqrt{m\lambda b}$$
.

Закон Малюса

$$I = \frac{1}{2}I_0 \cos^2 \varphi$$

Круговая поляризация

Рисунки взяты из открытых интернетисточников

Задача 4.114. Плоская монохроматическая волна с интенсивностью I₀ падает нормально на непрозрачный экран с круглым отверстием.

Какова интенсивность света I за экраном в точке, для которой отверстие:

- а) равно первой зоне Френеля; внутренней половине первой зоны;
- б) сделали равным первой зоне Френеля и затем закрыли его половину (по диаметру)?

a)

Решение: а) Рассмотрим спираль Френеля для точки наблюдения (рис. 7 а). Вектор A_0 соответствует амплитуде свободной волны в точке наблюдения, вектор A_{11} - амплитуде волны в точке наблюдения от внутренней половины первой зоны Френеля, вектор A_{12} - амплитуде волны в точке наблюдения от первой зоны Френеля, поэтому

$$A_{12} = 2A_0$$
 , $A_{11} = \sqrt{2}A_0$.

Т.к. интенсивность волны пропорциональна квадрату амплитуды $I_0 \sim A_0^2$, то: - интенсивность света I_{12} за экраном в точке наблюдения от первой зоны Френеля равна

$$I_{12} = 4I_0$$
.

- интенсивность света I_{11} за экраном в точке наблюдения от внутренней половины первой зоны Френеля

$$I_{11} = 2I_0$$
.

Вариант б) Амплитуда волны в точке наблюдения пропорциональна площади волновой поверхности. Поэтому, если закрыть половину первой зоны Френеля по диаметру, то площадь каждой элементарной зоны кольцевого типа уменьшится в 2 раза и амплитуда каждого маленького векторочка на диаграмме Френеля уменьшится в 2 раза при неизменном фазовом сдвиге. Следовательно, суммарная амплитуда на векторной диаграмме уменьшится в 2 раза, что изображено на рис. 7 б. В формульном выражении:

$$A \approx \frac{A_{12}}{2} = A_0 \ .$$

Интенсивность света в этом случае $I \approx I_0$.

Задача 4.118. Плоская световая волна длины λ и интенсивности I₀ падает нормально на большую стеклянную пластинку, противоположная сторона которой представляет собой непрозрачный экран с круглым отверстием, равным первой зоне Френеля для точки наблюдения Р.

В середине отверстия сделана круглая выемка, равная половине зоны Френеля. При какой глубине h этой выемки интенсивность света в точке P будет максимальной? Чему она равна?

Решение: Рассмотрим два луча (рис.8): (1) — проходящий через выемку и (2) — проходящий через вторую половину первой зоны Френеля. Оптическая разность хода этих лучей равна

$$\Delta L = h(n-1) \tag{1}$$

где n — показатель преломления стекла.

Рис. 8

Введение круговой выемки во внутренней части первой зоны Френеля увеличит скорость прохождения лучей через эту зону. Это можно представить как поворот вектора A_1 по часовой стрелке. Как следует из рис.9 а, чтобы вектор A_1 совпал по направлению с вектором A_2 и суммарная амплитуда двух векторов получилась максимальной, угол поворота вектора A_1 должен быть

$$\alpha = \frac{3\pi}{2} + 2\pi m,\tag{2}$$

где m - целое число.

При этом оптическая разность хода лучей 1 и 2 (ΔL) на длине пути h должна быть связана с углом поворота α выражением

$$\alpha = \frac{2\pi}{\lambda} \Delta L. \tag{3}$$

С учётом (1), (2) и (3) составим уравнение

$$\frac{3\pi}{2} + 2\pi m = \frac{2\pi}{\lambda} h(n-1).$$
 (4)

Откуда определим глубину выемки

$$h = \frac{3+4m}{4(n-1)}\lambda. \tag{5}$$

Тогда результирующая амплитуда в точке наблюдения будет равна сумме двух равновеликих амплитуд

$$A = 2A_1 = 2\sqrt{2}A_0 \tag{6}$$

и интенсивность света в точке Р

$$I = 8I_0$$
.

В рассмотренном примере по рис. 9 а), при учете сделанной выемки во внутренней половине первой зоны Френеля, принято неизменным фазовое состояние луча 2.

При расчетах за нулевую фазу в диаграмме Френеля можно принять начало вхождения луча 1 в сделанную выемку (рис.9 б). Тогда на основании (3) мы должны ввести поворот вектора A_2 на тот же угол α в обратную сторону, так как скорость луча 2 меньше скорости луча 1.

Результат расчета в этом случае будет точно таким же. При этом, картина увеличения (вдвое) результирующего вектора становится более наглядной.

Рис. 9 б

Оценить:

- а) период этой решетки;
- б) при какой ширине решетки с таким периодом можно разрешить в третьем порядке дублет спектральной линии с λ = 460 нм, компоненты которого различаются на 0,13 нм.

оказываются разрешёнными, начиная с пятого порядка спектра.

Решение: Разрешающая сила оптического прибора

$$R = \frac{\lambda}{\delta \lambda}.$$
 (1)

Разрешающая сила дифракционной решётки

$$R = Nm , \qquad (2)$$

где N — число штрихов дифракционной решётки, m — порядок максимума, в котором линии оказываются разрешёнными.

Ширина L и d — период решётки связаны соотношением

$$L = Nd. (3)$$

Вариант а). С учетом заданных параметров: L, m , λ_1 и λ_2 производим поиск неизвестных параметров и делаем вычисления:

Вначале определяем $\delta\lambda=\lambda_2-\lambda_1=0.6$ нм и находим разрешающую силу дифракционной решетки.

Из (1), (2) и (3) находим

$$R = \frac{\lambda}{\delta\lambda} = m\frac{L}{d}.$$
 (4)

Отсюда определяем период дифракционной решетки

$$d = mL/R = mL\frac{\delta\lambda}{\lambda} \approx 5.1 \cdot 10^{-5} \text{ m}.$$

Вариант б). С учетом новых заданных параметров: m=3 , $\lambda=460\,$ нм, $\delta\lambda=0.13\,$ нм и ранее вычисленного значения $d=5.1\cdot10^{-5}\,$ м, из формулы (4) определяем ширину дифракционной решетки L'

$$L' = \frac{d}{m} \frac{\lambda}{\delta \lambda} \approx 0.06 \text{ M}.$$

Решение: Пусть β - коэффициент пропускания поляризатора. Тогда при падении естественного света интенсивности I_0 интенсивность прошедшего света после первого поляризатора

$$I_1 = \beta \frac{I_0}{2}.\tag{1}$$

Интенсивность прошедшего света после второго поляризатора

Найти угол ϕ между плоскостями пропускания этих поляризаторов.

$$I_2 = \beta I_1 \cos^2 \varphi, \tag{2}$$

где φ - угол между плоскостями пропускания этих поляризаторов. Т.к. по условию

$$I_1 = \eta_1 I_0 \tag{3}$$

$$I_2 = \eta_2 I_0 \tag{4}$$

то из (1) - (4) получается

$$\eta_1 = \frac{\beta}{2} \tag{5}$$

$$\eta_2 = \frac{\beta^2}{2} \cos^2 \varphi \tag{6}$$

Из (5) и (6) следует

$$cos \varphi = \sqrt{rac{\eta_2}{2{\eta_1}^2}} pprox 0,866$$
, откуда $arphi = 30^0$.

Для закрепления знаний по теме данного семинара дома следует самостоятельно решить следующие задачи, которые рекомендуются учебным планом

Домашнее задание к семинару 8

Иродов И.Е. Задачи по общей физике.- М.: Бином, 1998 - 2001,

Дома: ОЛ-7 задачи 4.154, 4.183 или ОЛ-8 задачи 5.145, 5.174...

ОЛ-7. Иродов И.Е. Задачи по общей физике.- М.: Бином, 1998÷2001.

ОЛ-8. Иродов И.Е. Задачи по общей физике.- М.: Наука, 1988.

- 4.154. Свет, содержащий две спектральные линии с длинами волн 600,000 и 600,050 нм, падает нормально на дифракционную решетку ширины 10,0 мм. Под некоторым углом дифракции в эти линии оказались на пределе разрешения (по критерию Рэлея). Найти в.
- **4.183.** Степень поляризации частично поляризованного света P = 0.25. Найти отношение интенсивности поляризованной составляющей этого света к интенсивности естественной составляющей.

Спасибо за внимание