Semestrální zkouška ISS, 2. opravný termín, 1.2.2017, skupina A
Login: Příjmení a jméno: Podpis: Podpis: (čitelně!)
Příklad 1 Určete kruhovou frekvenci a hodnoty všech nenulových koeficientů Fourierovy řady pro signál na obrázku. $C_1 = 0.02s$ $C_2 = 0.01s$ $C_3 = 0.02s$ $C_4 = 0.02s$ $C_5 = 0.01s$ $C_6 = 0.01s$ $C_7 = 0.02s$
Příklad 2 Provádíme konvoluci dvou signálů se spojitým časem: $x_1(t)$ je nenulový od -3 s do 3 s. $x_2(t)$ je nenulový od 0 s do 2 s. Napište, v jakém intervalu bude nenulová jejich konvoluce $y(t) = x_1(t) \star x_2(t)$.
All yet) bude nemborg od -3 s do 55
Příklad 3 Nakreslete průběh modulu i argumentu spektrální funkce $X(j\omega)$ stejnosměrného signálu $x(t) = 4$. $X(j\omega) = 2 \overline{\alpha} A \cdot \delta(\omega) = 3 \overline{\alpha} \delta(\omega)$ $X(j\omega) = 3 \overline{\alpha} \delta(\omega)$ $X(j$
Příklad 4 Je dán obdélníkový signál se spojitým časem: $x(t) = \begin{cases} 5 & \text{pro } -4 \le t \le 42u \\ 0 & \text{jinde} \end{cases}$
Na které kruhové frekvenci ω_a (v rad/s) bude jeho spektrální funkce poprvé nulová, postupujeme-li od $\omega=0$ doprava? $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Příklad 5 Vysvětlete vztah mezi Fourierovou transformací a Laplaceovou transformací téhož signálu se
spojitým časem $x(t)$ 0 = $\int x(t)e^{-st}dt$ $f(s) = \int x(t)e^{-st}dt$ $f(s) = \int x(t)e^{-st}dt$ hodroty $\chi(s)$ uad imagina mu rad romplex. Re $\int x(t)e^{-st}dt$
complex. Re Re Re Re Re Re Re Re Re R

Příklad 8 Kvantizér má k disposici 6 bitů, do něj vstupuje harmonický signál (cosinusovka), který plně využívá jeho dynamického rozsahu. Určete poměr signálu ke kvantizačnímu šumu (SNR) v deciBellech (dB) takového kvantizéru.

Příklad 9 Vypočtěte a do tabulky zapište běžnou lineární (ne kruhovou!) konvoluci dvou signálů s diskrétním časem.

n	0	1	2	3	4	5	6	7	8	9
$x_1[n]$	4	3	1	2	0	0	0	0	0	0
$x_2[n]$	1	-1	0	1	0	0	0	0	0	0
$x_1[n] \star x_2[n]$	4	-7	-2	5	1	1	2	0	0	0

Příklad 10 V tabulce je dán signál s diskrétním časem o délce N=4. Napište jeho předepsané kruhové posunutí.

n	0	1	2	3
x[n]	4	3	1	2
$R_4[n]x[\bmod_4(n-3)]$	3	1	1	4

Příklad 16 Dva číslicové filtry s impulsními odezvami (obě dány pro $n \in 03$):
$h_1[n] = \begin{bmatrix} 1 & 0.5 & -0.5 & 0.25 \end{bmatrix}$ $h_2[n] = \begin{bmatrix} 1 & -0.5 & 0.5 & 0.25 \end{bmatrix}$ $h[n] = h_1[n] + h_2[n]$
jsou spojeny paralelně. Napište impulsní odezvu vzniklého systému.
± 2 2 7
$h[n] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 \end{bmatrix}$
Příklad 17 V tabulce jsou hodnoty vzorku $n=7$ náhodného signálu pro $\Omega=10$ realizací:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Provedte souborový odhad funkce hustoty rozdělení pravděpodobnosti $p(x,7)$ a nakreslete ji.
interal count pland hus
0,06 - 7 4 0,4 0,08
0,04
15,207 2 0,2 0,04
5 10 15 20 8
Příklad 18 Náhodný signál s diskrétním časem má konstatní spektrální hustotu výkonu, je to tedy bílý šum. Nakreslete jeho korelační koeficienty $R[k]$ pro $k \in -55$.
TRUE J
Poul mily -
Evet ne unlory.
-5-4-3-2-1 123 45 6
$ extbf{Příklad 19}$ Určete střední výkon P náhodného signálu $x[n]$, jehož funkce hustoty rozdělení pravděpodobnos
Triklad 15 Orecte stream vykon 1 manodneno signatu $x[n]$, jenez ramec masses, ezactez, pravacpedosta
$p(g)$ má tvar obdélníka: $p(g) = \begin{cases} \frac{1}{12} & \text{pro } g \in -6 \dots 6 \\ 0 & \text{jinde} \end{cases}$
Pomůcka: pro náhodné signály se střední hodnotou nula platí, že střední výkon rovná se rozptylu: $P=D$.
Pomůcka: pro náhodné signály se střední hodnotou nula platí, že střední výkon rovná se rozptylu: $P = D$.
12 10
$P = \frac{12^2}{12^2} = \frac{12}{12^2}$
Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci
$\omega = 0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi}) = 5$. Signál prochází číslicovým filtrem, který má na této frekvenci
hodnotu frekvenční charakteristiky $H(e^{j0.2\pi}) = \sqrt{5}e^{j\frac{3\pi}{8}}$.

 $G_{y}(e^{j\omega}) = G_{x}(e^{j\omega}) \cdot \left[H(e^{j\omega})\right]$ $G_{y}(e^{j0.2\pi}) = \dots \cdot \left(I_{x}\right)^{2} = 2I_{x}$

Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.