FINAL EXAMINATION

January 2016

Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Deputy Head of Dept. of Mathematics:	Lecturer:
Assoc. Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (25 marks) Let (X, \mathcal{M}) be a measurable space and $f: X \to \mathbb{R}$ a measurable function. Let $a, b \in \mathbb{R}$, a < b. Show that the following sets are measurable:

$$E = \{x \in X : a < f(x) \le b\},\$$

$$F = \{x \in X : f(x) = +\infty\}.$$

Question 2

(a) (15 marks) Let

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0. \end{cases}$$

Determine the following Lebesgue integrals

$$\int_{\frac{1}{n}}^{1} f(x)dx \quad \text{and} \quad \int_{0}^{1} f(x)dx, \quad n = 1, 2, \dots$$

(b) (10 marks) Let $f:[a,b]\to\mathbb{R}$ be decreasing. Show that

$$V_a^b(f) = f(a) - f(b).$$

----continued on next page-----

Question 3

- (a) (10 marks) Show that if $\mu_1 \ll \mu_2$ and $\mu_2 \ll \mu$, then $\mu_1 \ll \mu$.
- (b) (15 marks) Let $\int_X f d\mu$ be defined and let

$$\nu(E) = \int_E f d\mu$$
 if E is measurable.

Show that if S is a negative set for ν , then $\mu(S \cap \{x \in X : f(x) > 0\}) = 0$.

Question 4

(a) (15 marks) Let f be integrable on X with respect to the measure μ . Let $E_n = \{x \in X : |f(x)| \le n\}, n = 1, 2, \ldots$ Show that $\chi_{E_n} f \to f$ a.e. Apply the Dominated Convergence Theorem to the sequence $\{\chi_{E_n} f\}$ to show that

$$\lim_{n \to \infty} \int_{E_n} f d\mu = \int_X f d\mu.$$

(*Hint*: Show that $\lim_{n\to\infty} (\chi_{E_n} f)(x) = f(x)$ if f(x) is finite.)

(b) (10 marks) Show that if f is Lebesgue integrable on \mathbb{R} , then for any $a, b \in \mathbb{R}$, a < b, the function $F(x) = \int_{-\infty}^{x} f(t)dt$ is absolutely continuous on [a, b] and F'(x) = f(x) a.e. on [a, b].

SOLUTIONS

Question 1 Since f is measurable on X, the sets $\{x: f(x) \leq a\}$ and $\{x: f(x) \leq b\}$ are measurable. It follows that

$$E = \{x \in X : a < f(x) \le b\} = \{x : f(x) \le a\} \cap \{x : f(x) \le b\}$$

is measurable.

For each n, the set $\{x \in X : f(x) > n\}$ is measurable. Thus

$$F = \{x \in X : f(x) = +\infty\} = \bigcap_{n=1}^{\infty} \{x \in X : f(x) > n\}$$

is measurable.

Question 2

(a) Since f is continuous on (0,1], it is Riemann integrable on each subinterval [1/n,1], hence the Riemann integral and Lebesgue integral of f on this subinterval are both equal to

$$\int_{1/n}^{1} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{1/n}^{1} = 2\left(1 - \frac{1}{\sqrt{n}}\right), \quad n = 1, 2, \dots$$

Moreover, f is Lebesgue measurable on (0,1] so that

$$\nu(E) = \int_{E} f(x)dx$$

is a measure. Thus

$$\int_0^1 f(x)dx = \int_{(0,1]} f(x)dx = \lim_{n \to \infty} \int_{1/n}^1 f(x)dx = \lim_{n \to \infty} 2\left(1 - \frac{1}{\sqrt{n}}\right) = 2.$$

The first equality holds because the set $\{0\}$ has Lebesgue measure zero.

(b) Since f is decreasing, $|f(\beta) - f(\alpha)| = f(\alpha) - f(\beta)$ whenever $\alpha, \beta \in [a, b]$, $\alpha < \beta$. If $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ is a partition of [a, b], then

$$V_a^b(f, P) = \sum_{i=1}^n |f(x_n) - f(x_{n-1})| = \sum_{i=1}^n [f(x_{n-1}) - f(x_n)]$$

= $f(x_0) - f(x_n) = f(a) - f(b)$.

Thus
$$V_a^b(f) = \sup_P V(f; P) = f(a) - f(b)$$
.

Question 3

- (a) Assume that $\mu(A) = 0$. Since $\mu_2 \ll \mu$, $\mu_2(A) = 0$. Furthermore, $\mu_1 \ll \mu_2$ implies that $\mu_1(A) = 0$. Consequently, $\mu_1 \ll \mu$.
- (b) Let $A = S \cap \{x \in X : f(x) > 0\}$. For each n, set $A_n = \{x \in S : f(x) > \frac{1}{n}\}$. We have $A_n \subset A_{n+1}$ and $A_n \subset A$ for all n. Hence $\bigcup_{n=1}^{\infty} A_n \subset A$. Conversely, if $x \in A$, f(x) > 0, so there is an n satisfying $f(x) > \frac{1}{n}$, that is $x \in A_n$. Thus $A \subset \bigcup_{n=1}^{\infty} A_n$ and therefore, $A = \bigcup_{n=1}^{\infty} A_n$. Since S is a negative set for ν and $A_n \subset S$, we obtain

$$0 = \nu(A_n) = \int_{A_n} f d\mu \ge \int_{A_n} \frac{1}{n} d\mu = \frac{1}{n} \mu(A_n),$$

implying $\mu(A_n) = 0$. Thus $\mu(A) \leq \sum_{i=1}^n \mu(A_n) = 0$, that is $\mu(A) = 0$.

Alternative solution: Let $A = S \cap \{x \in X : f(x) > 0\}$. Since S is a negative set for ν ,

$$\nu(A) = \int_{A} f d\mu \le 0. \tag{0.0.1}$$

On the other hand, $f \geq 0$ on A so

$$\int_{A} f d\mu \ge 0. \tag{0.0.2}$$

(0.0.1) and (0.0.2) yield $\int_A f d\mu = 0$. Again, since $f \ge 0$ on A, f = 0 a.e., on A, that is $\mu(\{x \in A : f(x) \ne 0\}) = 0$. However, as f(x) > 0 for all $x \in A$, $\{x \in A : f(x) \ne 0\} = A$. Consequently, $\mu(A) = 0$.

Question 4

(a) Since f is integrable on X, it is finite a.e., that is the set $A := \{x \in X : |f(x)| = \infty\}$ has μ -measure zero. Fix $x_0 \notin A$. Since $f(x_0)$ is finite, there exists n_0 satisfying $n_0 > |f(x_0)|$. This implies that $x_0 \in E_n$ for all $n \ge n_0$. Thus $(\chi_{E_n} f)(x_0) = \chi_{E_n}(x_0) f(x_0) = f(x_0)$ for $n \ge n_0$ and therefore $\lim_{n\to\infty} (\chi_{E_n} f)(x_0) = \lim_{n\to\infty} f(x_0) = f(x_0)$. This holds for all $x_0 \in A^c$, and so $\chi_{E_n} f \to f$ a.e. Moreover, $|\chi_{E_n} f| \le |f|$ for all n and f is integrable on X, by the Dominated Convergence Theorem,

$$\lim_{n \to \infty} \int_{E_n} f d\mu = \lim_{n \to \infty} \int_X \chi_{E_n} f d\mu = \int_X f d\mu.$$

(b) Since f is Lebesgue integrable on \mathbb{R} , it is integrable on $(\infty, a]$ and [a, x] for $a \leq x \leq b$. Let $C = \int_{-\infty}^{a} f(t)dt$ and $G(x) = \int_{a}^{x} f(t)dt$. By additivity, we have F(x) = G(x) + C for $a \leq x \leq b$. Since G is absolutely continuous on [a, b] and G'(x) = f(x) a.e. on [a, b], it follows that F is absolutely continuous on [a, b] and F'(x) = G'(x) = f(x) a.e.