P8160 - Project 3 Baysian modeling of hurrican trajectories

Amy Pitts, Jiacheng Wu, Jimmy Kelliher, Ruiqi Yan & Tianchuan Gao

Motivation

Climate researchers are interested in modeling the hurricane trajectories to forcase the windspeed.

Data

▶ **ID**: ID of hurricanes

Year: In which the hurricane occurred
 Month: In which the hurricane occurred

▶ Nature: Nature of the hurricane

► ET: Extra Tropical

▶ DS: Disturbance

▶ NR: Not Rated

SS: Sub Tropical

► TS: Tropical Storm

▶ Time: dates and time of the record

► Latitude and Longitude: The location of a hurricane check point

Wind.kt: Maximum wind speed (in Knot) at each check point

Overview

- Exploration into the Data
- Bayesian modeling of hurricane wind speed
 - Model Equation
 - Posterior Derivation
 - MCMC Algorithm
- How Month, Year, and the Nature of the hurricane affect wind speed
 - Explore seasonal differences
 - Explore if wind speeds is increasing over years
- Exploring wind speeds impact on death and damages
 - As well as the characteristic of a hurricane associated with damages and deaths

Data

Atlantic named Windstorm Trajectories by Month (1950 - 2013)

Data Cleaning

- ▶ We are only concerned about observations that occurred on 6 hour intervals. hour 0, 6, 12, and 18.
- In addition we will exclude all hurricane IDs that have less then 7 observations.

Through this process we remove 460 observations so we are left with 21578 observations and 681 unique hurricanes.

Bayesian Model for Hurricane Trajectories

To model the wind speed of the i^{th} hurricane at time t we will use

$$Y_{i}(t+6) = \beta_{0,i} + \beta_{1,i} Y_{i}(t) + \beta_{2,i} \Delta_{i,1}(t) + \beta_{3,i} \Delta_{i,2}(t) + \beta_{4,i} \Delta_{i,3}(t) + \epsilon_{i}(t)$$

Where

- ▶ $\Delta_{i,1}(t)$, $\Delta_{i,2}(t)$ and $\Delta_{i,3}(t)$ are changes in latitude longitude and wind speed respectively between t-6 and t
- $\epsilon_i(t) \sim N(0, \sigma^2)$ independent across t
- Let $\beta_i = (\beta_{0,i}, \beta_{1,i}, \beta_{2,i}, \beta_{3,i}, \beta_{4,i}) \sim \mathcal{N}(\mu, \Sigma)$ be multivariate normal distribution where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$.

Prior Distributions:

- ▶ For σ^2 we assume $\pi(\sigma^2) \propto \frac{1}{\sigma^2}$
- \blacktriangleright For μ we assume $\pi(\mu) \propto 1$
- lacksquare For Σ we assume $\pi\left(\Sigma^{-1}
 ight) \propto \left|\Sigma\right|^{-(d+1)} \exp\left\{-rac{1}{2}\Sigma^{-1}
 ight\}$

Goal: Estimate $\Theta = (\mu^T, \sigma^2, \Sigma)$

Posterior Calculation

MCMC Algorithm

Initial Starting Values

MCMC Model Convergence

MCMC Model Convergence

Beta Estimates

Understanding Seasonal differnces in Hurricane Wind Speed

Hurricane Deaths

Hurricane Damages

Conclusions