Цель работы:

Цель настоящей работы - исследование характеристик полупроводникового полоскового лазера.

Схема установки (исходные данные)

Блок-схема эксперементальной установки приведена на рис.1. Основной установки является полупроводниковый полосковый гетеролазер 1. Лазер питается постоянным током от блока питания 2. Величина тока лазера устанавливается регулятором в блоке питания 2 и контролируется по показаниям встроенного стрелочного прибора - миллиамперметра.

Модулированное обтюратором 3 излучение гетеролазера фокусируется с помощью линзы 4 на входную щель решеточного монохроматора 5. При прохождение через монохроматор излучение претерпевает разложение по длинам волн. Свет опередленной волны поступает на фотоприемник 6, представляющий собой германиевый фотодиод.

Ход работы

Проведя юстировку линзы, а также настроив монохроматор на максимальный сигнал фотоответа, найдем соответствующую длину волны: $\lambda=663, 2\pm0, 2nm$.

Закрывая пучок лазера вычислим уровня шума: $U_{\rm I\!II}=0, 3\mu V$.

Теперь исследуем зависимость сигнала фотоответа от тока накачки. Учтем также шум:

$$U_{ extsf{ iny ICT}} = \sqrt{U_{ extsf{ iny ISM}}^2 - U_{ extsf{ iny II}}^2}$$

Table 1: Зависимость сигнала фотоответа от тока накачки

U ист, μV	$U_{ extsf{M3M}}$, μV	J, mA	n
480	480	34	1
420	420	32	2
350	350	30	3
300	300	28	4
230	230	26	5
190	190	24	6
140	140	22	7
105	105	20	8
84	84	18	9
57	57	16	10
45	45	14	11
30	30	12	12
19	19	10	13
13	13	8	14
7	7	6	15
3	3	4	16
0.52	0.6	2	17
0	0.3	0	18

По полученным данным построим график:

Исходя из графика можно сделать вывод, что пороговое значение тока лазерной генерации составляет $J_/textit=0,17mV$

Исследуем амплитуды сигнала фотоответа от длины волны для случаев спонтанного и стимулированного излучения:

Спонтанное излучение

Спонтанное излучение исследуем в промежутке до порогового значения тока лазерной генерации $J < J_{\it \Pi OP}$. В нашем случае, это J = 10 mA

Table 2: Спонтанное излучение

n	λ , nm	U,nV
1	629	0.3
2	640	0.9
3	643	1.3
4	646	2.1
5	649	3.3
6	652	4.5
7	655	7.2
8	658	11
9	661	21
10	663	25
11	664	23
12	667	16
13	670	9
14	673	6.5
15	676	3.5
16	679	2.7
17	685	0.9
18	700	0.3

Стимулированное излучение

Спонтанное излучение исследуем в промежутке до порогового значения тока лазерной генерации $J>J_{\it \Pi OP}.$ В нашем случае, это J=34mA

Table 3: Стимулированное излучение

n	λ , nm	U,nV
1	620	3
2	630	1
3	640	4.2
4	645	9
5	650	22
6	653	45
7	656	105
8	659	234
9	661	400
10	663	480
11	665	350
12	667	225
13	670	98
14	675	32
15	680	3
16	690	1

n	λ , nm	U,nV
17	700	1
18	720	0.3

Теперь сравним нормированные интенсивности лазера.

Длина волны:

Вывод: