

MSYS

Microcontroller Systems

Lektion 13: Timers i Normal Mode

Version: 30-10-2017, Henning Hargaard

Timer i "normal mode" **Mulighed for interrupt! Tælleregister Clock-signal Overflow** (Otil MAX) flip-flop **MAX MAX** MAX **Overflow Overflow Overflow AARHUS** SCHOOL OF ENGINEERING Slide 2

Mega32: 3 timere

- Timer 0:
 8 bit (MAX = 255).
 Normal, CTC og PWM modes.
- Timer 1:
 16 bit (MAX = 65535).
 Normal, CTC, mange PWM modes.
 (Mulighed for "Input Capture")
- Timer 2:
 8 bit (MAX = 255).
 Normal, CTC og PWM modes.
 Asynkron mode (Real Time Clock).

Mega2560: 6 timere

- Timer 0:
 8 bit (MAX = 255).
 Normal, CTC og PWM modes.
- Timer 1, Timer 3, Timer 4 og Timer 5:
 16 bit (MAX = 65535).
 Normal, CTC, mange PWM modes.
 (Mulighed for "Input Capture")
- Timer 2:
 8 bit (MAX = 255).
 Normal, CTC og PWM modes.
 Asynkron mode (Real Time Clock).

Mega2560: Timer 0 (8 bit)

Mega2560: Timer 1,3,4,5 (16 bit)

Mega2560: Timer 2 (8 bit)

Slide 7

Timer register (8 bit)

- TCNTn er selve tælle-registeret for timeren.
- Optælles automatisk af timer n clock-signalet.
- Bemærk, at registeret både kan læses fra og skrives til (fra programmet).

Timer register (16 bit)

- TCNTn er selve tælle-registeret for timer n.
- Optælles automatisk af timer n clock-signalet.
- Bemærk, at registeret både kan læses fra og skrives til (fra programmet).

Timer register (16 bit)

AVR GCC C: #include <avr/io.h>

// Herefter er 16-bit adgang muligt: TCNT1 = 12345; unsigned int x = TCNT3;

- Rækkefølge ved <u>skrivning</u>: TCNT1H, derefter TCNT1L.
- Rækkefølge ved <u>læsning</u>: TCNT1L, derefter TCNT1H.
- Kun aktuelt, når assembly anvendes.

Valg af Normal Mode

- Normal mode vælges normalt under opstart (initiering).
- Hvilke registre, der skal skrives til, afhænger af, om vi bruger Mega32 eller Mega2560.
 Desuden afhænger det af, hvilken timer, der drejer sig om.
- Normal mode er "default" efter RESET.

Mega2560: Timer 0, Normal mode

	7	6	5	4	3	2	1	0	
	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
•	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
	0	0	0	0	0	0	0	0	

7	6	5	4	3	2	1	0	_
FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
W	W	R	R	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

				Times/Country Made of	
Mode	WGM2 WGM1		WGM0	Timer/Counter Mode of Operation	ТОР
0	0	0	0	Normal	0xFF

Mega2560: Timer 1,3,4,5. Normal mode

	7	6	5	4	3	2	1	0	
	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	TCCRnA
_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	
						1			
	7	6	5	4	3	2	1	. 0	
	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCRnB
	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	

- TCCRnA = TCCR1A, TCCR3A, TCCR4A eller TCCR5A.
- TCCRnB = TCCR1B, TCCR3B, TCCR4B eller TCCR5B.

				-		
Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation	ТОР
0	0	0	0 0		Normal	0xFFFF
	I					

Mega2560: Timer 2, Normal mode

	7	6	5	4	3	2	1	0	
	COM2A1	COM2A0	COM2B1	COM2B0	_	-	WGM21	WGM20	TCCR2A
•	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
	0	0	0	0	0	0	0	0	•

7	6	5 4		3	2	1	0
FOC2A	FOC2B	ı	-	WGM22	CS22	CS21	CS20
W	W	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

Mode	WGM2	WGM1	WGM0	Timer/Counter Mode of Operation	ТОР
0	0	0 0		Normal	0xFF

TCCR2B

Valg af clocksignal (prescaling)

- En timers clocksignal vælges ved at indstille en "prescaler". Hver timer har en clock prescaler.
- Hvilke registre, der skal skrives til, afhænger af, om vi bruger Mega32 eller Mega2560.
 Desuden afhænger det af, hvilken timer, der drejer sig om.
- "No clock" er default efter RESET.

Timer Prescaler (ikke Timer 2)

Prescaler for timer 2

Mega2560: Timer 0. Valg af clock

	7	6	5	4	3	2	1	0]
	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
•	W	W	R	R	R/W	R/W	R/W	R/W	<u> </u>
	0	0	0	0	0	0	0	0	

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk _{I/O} /(No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge
1	1	1	External clock source on T0 pin. Clock on rising edge

Mega2560: Timer 1,3,4,5. Valg af clock

• TCCRnB = TCCR1B, TCCR3B, TCCR4B eller TCCR5B.

CSn2	CSn1	CSn0	Description
0	0	0	No clock source. (Timer/Counter stopped)
0	0	1	clk _{I/O} /1 (No prescaling
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on Tn pin. Clock on falling edge
1	1	1	External clock source on Tn pin. Clock on rising edge

Mega2560: Timer 2, Valg af clock

	7	6	5	4	3	2	1	0	
	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	TCCR2B
•	W	W	R	R	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	

Description	CS20	CS21	CS22	
ource (Timer/Counter stopped)	0	0	0	
lk _{T2S} /(No prescaling)	1	0	0	
T2S/8 (From prescaler)	0	1	0	
_{r2S} /32 (From prescaler)	1	1	0	
_{r2S} /64 (From prescaler)	0	0	1	
_{2S} /128 (From prescaler)	1	0	1	
_{2S} /256 (From prescaler)	0	1	1	
_S /1024 (From prescaler)	1	1	1	

Test ("socrative.com": Room = MSYS)

 Antag, at vi anvender en CPU clockfrekvens på 3,6864 MHz, og at Timer 0 er initieret til Normal Mode.

Timer 0's clock prescaler er sat til 64. Hvor ofte laver Timer 0 overflow?

- A: 225 gange per sekund.
- B: 256 gange per sekund.
- C: 57600 gange per sekund.
- D: 64 gange per sekund.

Test ("socrative.com": Room = MSYS)

 Antag Timer 1 er i Normal Mode og CPU clockfrekvensen er 16 MHz.
 Hvad er den <u>længste tid, der kan opnås</u> mellem hvert Timer 1 overflow?

- A: Ca. 244 sekunder.
- B: 15625 sekunder.
- C: Ca. 240 ms.
- D: Ca. 4,2 sekunder.

Eksterne Clock-ben

- Hvis der for en timer er valgt "External Clock", tæller timeren pulser på et microcontrollerben.
- Hver timer (undtaget Timer 2) har er ben, der kan bruges som eksternt clocksignal.

Se næste slide.

Mega2560: Eksterne Clock-ben

Timer 0 :T0 = Port D, ben 7

På "vores hardware":

T0 er lav (0), når vi trykker på SW0.

T0 er høj, når vi <u>ikke</u> trykker på SW0.

- Timer 1 :T1 = Port D, ben 6
- Timer 3:T3 = Port E, ben 6
- Timer 4 :
 T4 = Port H, ben 7
- Timer 5 :T5 = Port L, ben 2

Timer overflow flag

 Hver gang en timer laver overflow, vil den sætte et "overflow flag" (til 1).
 Flaget er et bit i et bestemt I/O register.

- Bliver kun <u>nulstillet</u> igen, hvis vi <u>skriver et 1-tal</u> til det (medmindre vi bruger interrupts).
 Det svarer til at "sænke flaget".
- Hvilke registre, der skal skrives til, afhænger af, om vi bruger Mega32 eller Mega2560.
 Desuden afhænger det af, hvilken timer, der drejer sig om.

Mega2560: Timer 0 overflow flag

- Bit 0 i registeret TIFR0 bliver sat til 1, hver gang Timer 0 laver overflow.
- Kan kun <u>nulstilles</u> igen, hvis vi <u>skriver et 1-</u> <u>tal</u> til det (medmindre vi bruger interrupts).
- C-kode: TIFR0 = 0b00000001;

Mega2560: Timer 1,3,4,5. Overflow flags

- TIFRn = TIFR1, TIFR3, TIFR4 eller TIFR5.
- Bit 0 i registeret TIFR"n" bliver sat til 1, hver gang Timer "n" laver overflow.
- Kan kun <u>nulstilles</u> igen, hvis vi <u>skriver et 1-</u> <u>tal</u> til det (medmindre vi bruger interrupts).
- C-kode: TIFR4 = 0b00000001;

Mega2560: Timer 2 overflow flag

- Bit 0 i registeret TIFR2 bliver sat til 1, hver gang Timer 2 laver overflow.
- Kan kun <u>nulstilles</u> igen, hvis vi <u>skriver et 1-</u> <u>tal</u> til det (medmindre vi bruger interrupts).
- C-kode: TIFR0 = 0b00000001;

Delay med Timer i Normal mode

Metode:

- 1. Skriv en beregnet værdi x til tælleregisteret (TCNTn).
- 2. Giv timeren clocksignal (skriv til prescaler-bits).
- 3. Vent på, at overflow flaget bliver 1.
- 4. Fjern timerens clocksignal (vælg "no clock").
- 5. Nulstil overflow flaget (ved at skrive 1 til det).

Tidsforsinkelsens størrelse bestemmes af punkt 1 og 2:

Delay = (("Max for timeren + 1" (256 eller 65536) - x) * Prescaler) / "CPU frekvens" [sekunder].

Eksempel fra bogen: Timer 0

xample 9-39

Write C program to toggle all the bits of PORTB continuously with some delay. Use Timer0, Normal mode, and no prescaler options to generate the delay.

Solution:

```
#include "avr/io.
void TODelay ( );
int main ()
      DDRB = 0xFF;
      while (1)
            PORTB =
            TODelay
            PORTB =
            TODelay
void TODelay (
```

TIFR = 0x1;


```
TCNT0 = Jx20;
                       //load TCNT0
                       //TimerO, Normal mode, no pre caler
TCCR0 = 0x01;
                      //wait for TFO to roll over
      ((TIFR&0x1) == 0);
                       //clear TF0
```

Mega2560: Timer 0 overflow 10000 gange i sekundet

```
void T0Delay()
  // 16000000 Hz /8 = 2000000 Hz
  // 2000000 Hz / 200 = 10000 Hz
  TCNT0 = 256-200;
  // Timer 0 i Normal mode og PS = 8
  TCCR0A = 0b000000000;
  TCCR0B = 0b00000010;
  // Vent på Timer 0 overflow flag
  while ((TIFR0 & (1<<0)) == 0)
  {}
  // Stop Timer 0 (ingen clock)
  TCCR0B = 0b000000000;
  // Nulstil Timer 0 overflow flag
  TIFR0 = 0b000000001;
```


Eksempel fra bogen: Timer 1

Example 9-42 (C version of Example 9-32)

Write a C program to toggle only the PORTB.4 bit continuously every second. Use Timer1, Normal mode, and 1:256 prescaler to create the delay. Assume XTAL = 8 MHz.

Solu ion:

```
XTAL = 8 MHz \rightarrow T<sub>machine cycle</sub> = 1/8 MHz = 0.125 μs = T<sub>clock</sub>

Prescaler = 1:23 \rightarrow T<sub>clock</sub> = 256 × 0.125 μs = 32 μs

1 s/32 μs = 31,250 checks = 0x7A12 clocks \rightarrow 1 + 0xFFFF - 0x7A12 = 0x85EE
```

```
#include "avr/io.h
void TlDelay ( );
int main ( )
{
    DDRB = 0xFF;
    while (1)
    {
        PORTB :
        TlDelay
    }
}
void TlDelay ( )
{
```



```
TIDelay ( )

TCNT1H = 0x85;  //TEMP = 0x85

TCNT1L = 0xEE;

TCR1A = 0x00;  //Normal mode

CCR1B = 0x04;  //Normal mode, 1:256 prescaler

while ((TIFR&(0x1<<ToV1))==0);  //wait for TFO to roll over

TCCR1B = 0;

TIFR = 0x1<<ToV1;  //clear ToV1
```


Mega2560: Timer 1 overflow hver 3. sekund

```
void T1Delay()
  // 16000000 Hz /1024 = 15625 Hz
  // Vi har altså 15625 "trin" per sekund
  // - og ønsker 3 sekunder til overflow (= 1/3 Hz)
 TCNT1 = 65536 - (3*15625);
  // Timer 1 i Normal Mode og PS = 1024
 TCCR1A = 0b000000000;
 TCCR1B = 0b00000101;
 // Afvent Timer 1 overflow flag
  while ((TIFR1 & (1<<0)) == 0)
  {}
 // Stop Timer 1 (ingen clock)
 TCCR1B = 0b000000000;
  // Nulstil Timer 1 overflow flag
  TIFR1 = 1 << 0;
```


Test ("socrative.com": Room = MSYS)

```
|void T0Delay()
  TCNT0 = 117;
  TCCR0A = 0b000000000;
  TCCR0B = 0b00000011;
  // Vent på Timer 0 overflow flag
  while ((TIFR0 & (1<<0)) == 0)
  {}
  // Stop Timer 0 (ingen clock)
  TCCR0B = 0b000000000;
  // Nulstil Timer 0 overflow flag
  TIFR0 = 0b000000001;
```

Mega2560 anvendes.
CPU frekvens = 16 MHz.
Hvad er forsinkelsen?

A: 46,8 us

B: 8,7 us

C: 7,48 ms

D: 556 us

E: 7,31 us

Test ("socrative.com": Room = MSYS)

 En Mega2560's clockfrekvens er 3,6864 MHz. Hvordan initieres Timer 2 til normal mode, således at vi får et Timer 2 overflow interrupt præcis 14400 gange hvert sekund?

- A: TCCR2A = 0b000000000;
 TCCR2B = 0b00000001;
- B: TCCR2A = 0b000000000;
 TCCR2B = 0b000000110;
- C: TCCR2A = 0b000000000;
 TCCR2B = 0b000000000;

Slut på lektion 13

