#### MHPC 2019

Asynchronous CUDA Techniques

for

Overlapping Computing and Data Transfer

Piotr Luszczek

January 8, 2019 1/25

#### Virtual Memory: Page-locked / Pinned Pages

- C library's malloc() is used to allocate memory in the host
  - But malloc() only allocates pageable host memory pages
- Call to cudaHostAlloc() allocates pages from page-locked pool:

- Page-locked memory pages stay fixed in the physical memory
  - OS does not evict them onto disk as is the case for regular virtual memory pages
  - They are locked to their physical location

#### Paged Memory Properties

- Copying content of pageable memory to GPU
  - CPU copies data from pageable memory to a page-locked memory
  - GPU uses direct memory access (DMA) to move the data to/from the host's page-locked memory (copy operation is done twice when using C's malloc allocator)
- When using page-locked memory (from cudaHostAlloc), the first copy is skipped
- Page-locked memory allows faster copies but uses physical memory pages and cannot be swapped to disk
  - Total number of pinned pages is limited
    - OS may run out of pinned memory much quicker than regular memory
  - MPI uses pinned pages for communicating
    - Network card uses DMA to push data onto the interconnect

#### Introduction to CUDA Streams

- Streams introduce task-based parallelism to CUDA codes
  - Kernel launches and CPU-GPU communication are the tasks
- Streams play an important role in adding overlap to CUDA-accelerated the applications
- CUDA stream represents a queue-like functionality for GPU operations that will be executed in the order of insertions (FIFO):
  - The order in which the operations are added to a stream specifies the order in which they will be executed
- GPU hardware helps in scheduling operations enqueued in streams
  - Fermi required clever ordering to achieve overlap
  - Kepler introduced HyperQ
    - 4 hardware queues to execute stream operations and ease the programming effort

#### Using One CUDA Streams

- First, check if the device supports the 'device overlap' property
- Call cudaGetDeviceProperties() to check for device overlap:

```
cudaDeviceProp prop;
int whichDevice;
cudaGetDevice( &devID );
cudaGetDeviceProperties( &prop, dev_id );
if (0 == prop.deviceOverlap) {
  fprintf(stderr, "No handle overlap support");
}
```

GPU with overlap capability (Fermi and above) may execute a kernel while performing a memory copy between to/from host

#### Using One CUDA Stream – contd.

cudaStreamCreate() creates a new stream:
 // initialize the stream and create the stream cudaStream\_t stream;
 cudaStreamCreate(&stream);

 CudaMemcpyAsync() copies data to/from CPU to GPU. The copy continues after the call returns – completion happens later.

## Using One CUDA Stream – prolog

Sample kernel launch

```
kernel<<<N/256,256,0,stream>>>(dev_a,dev_b,dev_c);
```

copy back data from device to locked memory

- Stream synchronization waits for the stream finish all operations cudaStreamSynchronize(stream);
  - Free the memory allocated and destroy the stream after synchronization:

```
cudaFreeHost(host_a);
cudaFree(dev_a);
cudaStreamDestroy(stream);
```

#### Using More than one Streams

- Kernel execution and memory copies can be performed concurrently as long as:
  - they are in multiple streams and,
  - hardware supports it
- Some GPU architectures support concurrent memory copies if they are in opposite directions
- The concurrency when multiple streams are helps with:
  - Improving performance
  - Using PClexpress bus more efficiently
  - Will also help with NVLink

#### **Execution Time Line for 2 Streams**

| Memcpy A to GPU   |
|-------------------|
| Memcpy B to GPU   |
| kernel            |
|                   |
| Memcpy C from GPU |
|                   |
| Memcpy A to GPU   |
| Memcpy B to GPU   |
| kernel            |
|                   |
| Memcpy C from GPU |

#### Stream 1





#### **GPU Work Scheduling**

- GPU hardware has no notion of streams
- GPU hardware has separate queues (engines) to perform memory copies and to execute kernels
- The commands in the queue are like dynamically scheduled tasks
  - It is possible to create dependent tasks in different streams
- Hyper-Q introduced in Kepler makes streams much useful in practice
- The default (NULL) stream is always blocking, even for other streams
  - Operations in the default stream prevent other streams from proceeding with kernel launches
  - But the kernel launches on any stream are asynchronous
    - Use cudaDeviceSynchronize() to wait for launched kernels to finish on the current device

#### Enumerating, Querying, and Using Multiple GPUs

- Management with multiple GPUs is done with global state
  - To obtain the total count call: cudaGetDeviceCount(int \*num\_gpus)
    - GPUs are number from 0 to num\_gpus-1
  - Call cudaGetDeviceProperties() to select the best device if you need the best one
    - for example with the largest memory
  - Use cudaSetDevice(gpu\_id) to select the GPU for the subsequent CUDA calls
- More information may be obtained via command line "nvidia-smi -L"
  - The command deviceQuery may not be installed
  - nvidia-smi allows selection of what to display with -d switch
    - ACCOUNTING, CLOCK, MEMORY, ECC, TEMPERATURE, POWER, COMPUTE, PIDS, PERFORMANCE, SUPPORTED CLOCKS, PAGE RETIREMENT, UTILIZATION
  - System administrator may restrict the use of nvidia-smi
- CUDA access to GPUs may be restricted with an environment variable
  - CUDA\_VISIBLE\_DEVICES=3,5,7

#### Memory Management with Multiple GPUs

- CUDA memory allocation works on the current device
  - Switch to a different device to switch target device for allocations
- GPUs may be able to copy data between themselves without CPU
  - This may be disabled programmatically or by the system administrator
  - Use cudaDeviceCanAccessPeer() to if peer access is enabled
  - Use cudaDeviceEnablePeerAccess() to enable it
  - Use cudaDeviceDisablePeerAccess() to disable it
  - Use cudaMemcpyPeerAsync() to copy between GPUs
    - Requires a stream parameter
    - May leverage NVLink speed
- Synchronization between multiple GPUs may be achieved through streams with synchronizing events

#### MHPC 2019

Programming CUDA Streams with Synchronization

Piotr Luszczek

January 8, 2019 13/2

## Main Goal of Streams and Asynchronous Interface

- Work around inefficiency of CPU-GPU data transfers
  - For PClexpress, this means working around the low bandwidth
  - For NVLink, this means utilizing multiple links at the same time
  - For DMA, it means using transfer and compute hardware simultaneously
    - CUDA does not detect dependences between tasks automatically
    - The user must specify dependences manually between different streams
- Proper code organization is required to avoid many pitfalls and bugs arising in complex asynchronous transfers
- Keep in mind that switching between tasks in streams is much more expensive than switching threads, blocks, and grids on the GPU

#### Representing Multiple Streams as Task Graph

Stream/queue view:

cudaMemcpyAsync(->)
cudaMemcpyAsync(->)
Launch<<< >>>()
cudaMemcpyAsync(<-)
Stream

Direct Acyclic Graph (DAG):



#### Dependences Between Tasks are Based on Data



## In Practice, DAGs May Get Quite Compicated



## Representing Complex Dependences with Streams



# **Execution Traces for Parallel Streams**



#### CUDA Calls to Create the Stream and Dependence

- CreateStream(S1)
- MemcpyAsync(A1, S1)
- MemcpyAsync(A2, S1)
- Kernel1<<< S1 >>>
- RecordEvent(E1, S1)
- MemcpyAsync(A3, S1)











#### Details on cudaStreamWaitEvent()

- There is no need for target event in cudaStreamWaitEvent()
- Syntax:
  - cudaStreamWaitEvent( stream that will block & wait, event to wait on )
- The event should be lightweight, so bypass time-stamping:
  - cudaEventCreateWithFlags( &event, cudaEventDisableTiming )
  - It is still possible to use <a href="cudaEventSynchronize">cudaEventSynchronize</a>() on events without time stamps
  - Conclusion:
    - Recording time inside GPU is expensive
    - Do not use time stamps unless you necessarily need them
    - Use other tools for performance analysis

## **Controlling Stream Behavior**

- Starting with Kepler, there are many (32) hardware queues that can accept tasks from streams
- In some circumstances, there is no need for such a large number of concurrent connections to the GPU
- Use CUDA\_DEVICE\_MAX\_CONNECTIONS to affect that setting
  - Default is 8
  - Max supported by Kepler is 32

#### Stream Callbacks

- Events may be used to synchronize tasks across streams
- Sometimes GPU-CPU synchronization is needed
  - Did my kernel finish?
  - Did my transfer finish?
- With cudaStreamAddCallback(), an event is enqueued that will call a user function at the time the event is reached in the stream
  - There are restrictions on the callback function
    - No CUDA calls can be made in the callback
    - The stream will not continue until the callback returns

# Synchronization across Multiple Devices

- For each device (or a subset you need)
  - Switch to the device with cudaSetDevice()
    - Create streams and events on the device
      - cudaCreateStream(), cudaCreateStreamWithPriority()
      - cudaCreateEvent(), cudaCreateEventWithFlags()
  - Allocate memory on the device as needed
    - There is no non-blocking allocation yet so do this step separately
  - Insert transfer and compute tasks into streams
     Avoid synchronous calls and the default stream
  - Insert events into streams to maintain dependence of tasks
  - Deallocate resources when done
- Keep in mind that...
  - Kernel launches and event recording can only occur to the stream associated with the current device
  - Memory transfers, event queries, and event synchronization may be issued to any stream regardless of the current device and the device associated with that stream

#### **CUDA** Development for Existing Applications

- Repeat the following steps until finished
  - Assessment
    - Find data-parallel structures in your code
  - Parallelization
    - Use existing libraries
      - cuSPARSE, cuBLAS, cuFFT, cuRAND, cuDNN, ...
    - Use tools for parallelization and vectorization
      - OpenACC, OpenMP
    - Develop missing CUDA code
  - Optimize
    - Maximize bandwidth and use of compute units
    - Minimize overhead and hide latency
    - Use existing profiling tools: nvprof, nvvp
  - Deploy
    - Consider machines with different resources than your development machine
      - Different count of different GPUs