CSE 2321 Foundations I Spring, 2024 Dr. Estill Homework 7 Due: Friday, March 22

Theorem 1 (Master Theorem).

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function $f : \mathbb{N} \to \mathbb{R}^+$, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n).$$

Then T(n) has the following asymptotic bounds:

- 1. if $f(n) \in O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) \in \Theta(n^{\log_b a})$,
- 2. if $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a} \log n)$, and
- 3. if $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$ and if $af(n/b) \le df(n)$ for some constant d < 1 and all sufficiently large n, then $T(n) \in \Theta(f(n))$.

Use the Master Theorem above to solve the following recurrences when possible. If you need to confirm the regularity condition $(af(n/b) \le df(n))$ for d < 1, work should be shown, but otherwise answers are all that is needed. (Note that not every blank needs to be filled in in every problem.):

(20 points each)

2.) $T(n) = T(n/3) + c \log_2 n$

1.)	T(n) = T(n/3) + c
	$f(n) = \underline{\qquad}$ versus $n^{\log_b a} = \underline{\qquad}$
	Which is growing faster: $f(n)$ or $n^{\log_b a}$?
	Which case of the Master Theorem does that potentially put us in?
	If you're potentially in case one or three, is it possible to find an epsilon which makes
	either $f(n) \in O(n^{\log_b a - \varepsilon})$ (if you're in case one) or $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ (if you're in
	case three) true? Choose one or show an inequality.
	If you're potentially in case three and there is an ε , try to find a constant $d < 1$ such
	that $af(n/b) \leq df(n)$ for large enough n's.
	What can you conclude?

 $f(n) = \underline{\hspace{1cm}} \text{ versus } n^{\log_b a} = \underline{\hspace{1cm}}$ Which is growing faster: f(n) or $n^{\log_b a}$? $\underline{\hspace{1cm}}$ Which case of the Master Theorem does that potentially put us in? $\underline{\hspace{1cm}}$ If you're potentially in case one or three, is it possible to find an epsilon which makes either $f(n) \in O(n^{\log_b a - \varepsilon})$ (if you're in case one) or $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ (if you're in case three) true? Choose one or show an inequality. $\underline{\hspace{1cm}}$ If you're potentially in case three and there is an ε , try to find a constant d < 1 such

