Matemática atuarial

Seguros Aula 8

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

- > O seguro Dotal Puro cobre o risco de sobrevida do segurado.
 - >O segurado receberá um benefício caso chegue vivo após o período de cobertura do seguro.

- A seguradora irá pagar um benefício caso o segurado sobreviva ou não pagará nada caso ele faleça no período de cobertura.
- > Os valores possíveis da variável aleatória são:

0 ou bv^T

$$b = \begin{cases} 1 \text{ , } t > n & v_t = v^t, t \ge 0 \\ 0 \text{ , } t \le n & Z_T = \begin{cases} v^n \text{ , } T > n \\ 0 \text{ , } T \le n \end{cases}$$

- Esse tipo de seguro poderá ser útil em diversos casos.
 - ➤ Para pagamentos de bônus por uma empresa caso o funcionário "sobreviva" nesta empresa por um certo período.
 - > Ou ainda, poderá ser utilizada para pagamento da faculdade do filho, caso este sobreviva até a idade para cursar uma faculdade...
 - > ...

O seguro dotal puro é um produto atuarial onde $_n p_x$ é a probabilidade de sobrevivência do segurado no período de cobertura e $(1 - _n p_x)$ a probabilidade de morte.

Probabilidade
$_{n}p_{x}$
$1{n}p_{x}$

$$A_{x:\overline{n}|^1} = 0(1 - {}_n p_x) + v^n {}_n p_x$$

$$A_{x:\overline{n}|^1} = v^n {}_n p_x = {}_n E_x$$

 $_{n}E_{x}=v^{n}_{n}p_{x}$: Fator de desconto atuarial (o fator de atualização ponderado pela probabilidade do segurado de x anos sobreviver por n anos).

$$A_{x:\overline{n}|^1} = {}_n E_x = v^n {}_n p_x$$

$$var(Z_T) = E(Z_T^2) - E(Z_T)^2$$

$$var(Z_T) = 0^2(1 - {}_{n}p_x) + (v^n)^2 {}_{n}p_x - (v^n {}_{n}p_x)^2$$

$$var(Z_T) = (v^n)^2 {}_n p_x - (v^n)^2 ({}_n p_x)^2$$

$$var(Z_T) = v^{2n} {}_n p_x (1 - {}_n p_x)$$

$$var(Z_T) = v^{2n} {}_n p_x {}_n q_x$$

X	qx	lx	
47	0,00636	89478	
48	0,00695	88909	
49	0,0076	88291	
50	0,00832	87620	
51	0,00911	86891	
52	0,00996	86100	
53	0,01089	85242	
54	0,0119	84314	
55	0,013	83311	
56	0,01421	82228	
57	0,01554	81059	
58	0,017	79799	
59	0,01859	78443	
60	0,02034	76985	

EXEMPLO 1: Seja um segurado com 50 anos de idade que decide fazer um seguro dotal puro que paga \$250 mil se o segurado sobreviver durante o período de **3 anos**. Se a seguradora compromete-se a remunerar o capital do segurado à uma taxa anual de 3% ao ano, qual deverá ser o prêmio puro único pago pelo segurado?

Para resolução deste exercício considere a tábua de mortalidade CSO-58.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

X	qx	lx
47	0,00636	89478
48	0,00695	88909
49	0,0076	88291
50	0,00832	87620
51	0,00911	86891
52	0,00996	86100
53	0,01089	85242
54	0,0119	84314
55	0,013	83311
56	0,01421	82228
57	0,01554	81059
58	0,017	79799
59	0,01859	78443
60	0,02034	76985

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} {}_{3}p_{50}$$

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} \frac{l_{50+3}}{l_{50}}$$

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} \frac{85242}{87620}$$

 $250000A_{50:\overline{3}|^1} \approx $222576,2$

ou

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} p_{50}p_{51}p_{52}$$

$$250000 A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} (1 - 0,00832)(1 - 0,00911)(1 - 0,00996) \approx $222576,2$$

Adicionalmente

$$var(Z_T) = b^2 v^{2n} {}_n p_x {}_n q_x$$

$$var(Z_T) = 250000^2 \left(\frac{1}{1,03}\right)^6 {}_3 p_{50} (1 - {}_3 p_{50})$$

$$var(Z_T) = 250000^2 \left(\frac{1}{1,03}\right)^6 \frac{l_{50+3}}{l_{50}} \left(\frac{l_{50} - l_{50+3}}{l_{50}}\right)$$

$$var(Z_T) \approx 1382024215$$

EXEMPLO 2: Seja um segurado de 47 anos queria receber \$100000,00 caso sobreviva nos próximos 10 anos. Considerando a taxa anual de 3%, qual será o prêmio puro único que deverá ser pago pelo segurado?

$$100000A_{47:\overline{10}|^{1}} = 100000 \left(\frac{1}{1,03}\right)^{10}_{10} p_{47}$$

$$100000A_{47:\overline{10}|^{1}} = 100000 \left(\frac{1}{1,03}\right)^{10} \frac{l_{47+10}}{l_{47}}$$

ou
$$10^5 A_{47:\overline{10}|^1} = 10^5 \left(\frac{1}{1,03}\right)^{10} \frac{81059}{89478} \approx \$67408,2$$

$$10^5 A_{47:\overline{10}|^1} = 10^5 \left(\frac{1}{1,03}\right)^{10} p_{47} p_{48} p_{49} p_{50} p_{51} p_{52} p_{53} p_{54} p_{55} p_{56}$$

EXEMPLO 3: Seja um segurado de 47 anos queria receber \$100000,00 caso sobreviva nos próximos 10 anos. Considerando a taxa anual de 3%, qual será o prêmio que deverá ser pago pelo segurado, utilizando o princípio abaixo?

$$\Pi = E(Z) + \sigma_Z \beta$$
 considerando $\beta = 1,2$

Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Universidade Federal d

Unifal Unifal Unifal Unifal Unifal Unifal Unifal Universidade Federal de Alfenas Universidade

EXEMPLO 3

Х	qx	lx
47	0,00636	89478
48	0,00695	88909
49	0,0076	88291
50	0,00832	87620
51	0,00911	86891
52	0,00996	86100
53	0,01089	85242
54	0,0119	84314
55	0,013	83311
56	0,01421	82228
57	0,01554	81059
58	0,017	79799
59	0,01859	78443
60	0,02034	76985

$$10^{5} A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} {}_{10} p_{47}$$

$$10^{5} A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} \frac{l_{47+10}}{l_{47}}$$

$$10^{5}A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} \frac{81059}{89478} \approx \$67408,2$$

$$var(Z_T) = 100000^2 \left(\frac{1}{1,03}\right)^{20} \frac{l_{47+10}}{l_{47}} \left(\frac{l_{47} - l_{57}}{l_{47}}\right)$$
$$var(Z_T) \approx 471937753$$

$$\Pi = E(Z_T) + \sigma_{Z_T} \beta$$

$$\Pi = 67408,2 + \sqrt{471937753} (1,2) \approx 93477,16$$

$$Z_{T} = v^{T+1}, T \ge 0$$

$$A_{x} = \sum_{t=0}^{\infty} Z_{T} t^{t} p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, ..., n-1\\ 0, c.c.\\ A_{x^{1}:n}| = \sum_{t=0}^{n-1} Z_{T} t^{t} p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{n}, T = n, n+1 ...\\ 0, T = 0, 1, 2, ..., n-1\\ A_{x:n}|_{1} = Z_{T} n p_{x} \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta T}, T \ge 0\\ A_{x} = \int_{0}^{\infty} Z_{T} t^{t} p_{x} \mu(x+t) dt \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta T}, T \ge 0\\ 0, c.c.\\ A_{x^{1}:n}| = \int_{0}^{n} Z_{T} t^{t} p_{x} \mu(x+t) dt \end{cases}$$

$$E(Z_{T})$$

$$Z_{T} = \begin{cases} e^{-\delta T}, T \ge 0\\ 0, c.c.\\ A_{x^{1}:n}| = \int_{0}^{n} Z_{T} t^{t} p_{x} \mu(x+t) dt \end{cases}$$

$$E(Z_{T})$$

SEGURO DOTAL MISTO (DOTAL)-Discreto

O benefício é pago se o segurado morrer durante o período de cobertura (pago ao final do ano de morte) ou é pago (...) caso o segurado sobreviva a este período, o que ocorrer primeiro.

 b_T ; $b_n \rightarrow$ beneficio;

$$v_T = \begin{cases} v^{t+1}, t = 0, 1, \dots, n-1 \\ v^n, t \ge n \end{cases} \rightarrow \text{desconto}$$

$$z_T = \begin{cases} b_T v^{T+1}, & T = 0,1,...,n-1 \\ b_n v^n, & T = n,n+1,... \end{cases}$$
 função valor presente

Quando $b_T = b_n = 1$ e T_x Discreto, temos:

$$A_{x:\overline{n|}} = A_{x^1:\overline{n|}} + A_{x:\overline{n|}^1}$$

EXEMPLO 4: Seja um segurado de 47 anos queria receber \$100000,00 caso sobreviva nos próximos 5 *anos* e caso faleça deixa a mesma quantia a um beneficiário. Considerando a taxa anual de 3%, qual será o prêmio puro único que deverá ser pago pelo segurado?

$$Z_T = \begin{cases} 10^5 \left(\frac{1}{1,03}\right)^{T+1} & \text{se } T = 0, 1, ..., 4\\ 10^5 \left(\frac{1}{1,03}\right)^5 & \text{se } T = 5, 6, 7, ... \end{cases}$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Temos que:

$$A_{47:\overline{5}|^1} = \left(\frac{1}{1,03}\right)^5 {}_5p_{47} \approx 0.8275$$

Já para $A_{47^1:\overline{5}|}$ temos:

$$A_{47^{1}:\overline{5}|} = \left(\frac{1}{1,03}\right)^{1}q_{47} + \left(\frac{1}{1,03}\right)^{2}{}_{1}p_{47}q_{48} + \left(\frac{1}{1,03}\right)^{3}{}_{2}p_{47}q_{49} + \left(\frac{1}{1,03}\right)^{4}{}_{3}p_{47}q_{50} + \left(\frac{1}{1,03}\right)^{5}{}_{4}p_{47}q_{51} \approx 0.0344$$

Assim:

$$A_{47:\overline{5}|} = A_{47^{1}:\overline{5}|} + A_{47:\overline{5}|^{1}} \approx 0.8720099$$

$$VPA = 10^5 A_{47:\overline{5}|} \approx \$87208,57$$

SEGURO DOTAL MISTO (DOTAL)

Quando a proporção entre o benefício pago em caso de morte e o benefício pago devido a sobrevivência são diferentes é usual a designação de modelo dotal misto generalizado, por exemplo:

$$\Pi = 3A_{x^1:\overline{n|}} + A_{x:\overline{n|}^1}$$

O prêmio II acima diz respeito a um seguro misto que em caso de morte o benefício é o triplo do pago no dotal puro.

SEGURO DOTAL MISTO (DOTAL)-Discreto

$$b_T = b_n = 1$$

$$v_T = \begin{cases} v^{T+1}, & t = 0,1,...,n-1 \\ v^n, & t = n,n+1,..., \end{cases} \rightarrow \text{desconto}$$

$$z_T = \begin{cases} v^{T+1}, & T = 0,1, \dots n-1 \\ v^n, & T = n, \quad n+1, \dots \end{cases}$$
 \rightarrow valor presente atuarial(VPA)

$$Z_T = Z_1 + Z_2$$

$$z_1 = \begin{cases} v^{T+1}, & T = 0,1,\dots, n-1 \\ 0, & T = n, & n+1,\dots \end{cases} A_{\chi^1:\overline{n|}}$$

$$z_2 = \begin{cases} 0, & T = 0,1,...,n-1 \\ v^n, & T = n, n+1,... \end{cases}$$

SEGURO DOTAL MISTO (DOTAL)-Discreto

$$Z_T = Z_1 + Z_2$$

$$z_1 = \begin{cases} v^{T+1}, & T = 0,1,...,n-1 \\ 0, & T = n,n+1,..., \end{cases}$$

$$z_2 = \begin{cases} 0, T = 0, 1, \dots, n-1 \\ v^n, T = n, n+1, \dots, \end{cases}$$

$$var(Z_T) = var(Z_1) + var(Z_2) + 2cov(Z_1Z_2)$$

$$cov(Z_1Z_2) = E(Z_1Z_2) - E(Z_1)E(Z_2) = -A_{x^1:\overline{n}|}A_{x:\overline{n}|^1}$$

$$var(Z_T) = \left[\sum_{t=0}^{n-1} v^{2(t+1)} _{t} p_x q_{x+t} - \left(\sum_{t=0}^{n-1} v^{t+1} _{t} p_x q_{x+t}\right)^2\right] + v^{2n} _{n} p_x _{n} q_x - 2\left(\sum_{t=0}^{n-1} v^{t+1} _{t} p_x q_{x+t}\right)\left(v^n _{n} p_x\right)$$

EXEMPLO 5: Pensemos no caso de uma pessoa de 50 anos que deseja fazer um seguro Dotal por 5 anos. Considere o benefício igual a 1, a taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule a variância do prêmio puro único:

178 909
909
291
520
391
L00
242
314
311
228
059
799
143
985

$$Z_{T_{25}} = \begin{cases} \left(\frac{1}{1,04}\right)^{T+1} & \text{se } 0 \le T < 5\\ \left(\frac{1}{1,04}\right)^{5} & \text{se } T \ge 5 \end{cases}$$

$$var(Z_T) = \left[\sum_{t=0}^{4} v^{2(t+1)} \ _t p_{50} q_{50+t} - \left(\sum_{t=0}^{4} v^{t+1} \ _t p_{50} q_{50+t} \right)^2 \right] + v^{10} \ _5 p_{50} \ _5 q_{50} - 2 \left(\sum_{t=0}^{4} v^{t+1} \ _t p_{50} q_{50+t} \right) (v^5 \ _5 p_{50})$$

$$var(Z_T) = \left[\sum_{t=0}^{4} v^{2(t+1)} _{t} p_{50} q_{50+t} - \left(\sum_{t=0}^{4} v^{t+1} _{t} p_{50} q_{50+t}\right)^{2}\right] + v^{10} _{5} p_{50} _{5} q_{50} - 2 \left(\sum_{t=0}^{4} v^{t+1} _{t} p_{50} q_{50+t}\right) (v^{5} _{5} p_{50})$$

X	qx	lx	
47	0,00636	89478	
48	0,00695	88909	
49	0,0076	88291	
50	0,00832	87620	
51	0,00911	86891	
52	0,00996	86100	
53	0,01089	85242	
54	0,0119	84314	
55	0,013	83311	
56	0,01421	82228	
57	0,01554	81059	
58	0,017	79799	
59	0,01859	78443	
60	0,02034	76985	

$$\sum_{t=0}^{4} v^{2(t+1)} t p_{50} q_{50+t} = v^2 q_{50} + v^4 p_{50} q_{51} + v^6 p_{50} q_{52} + v^8 p_{50} q_{53} + v^{10} p_{4} p_{50} q_{54} \approx 0,03862681$$

$$\sum_{t=0}^{4} v^{t+1} {}_{t} p_{50} q_{50+t} = v q_{50} + v^{2} p_{50} q_{51} + v^{3} {}_{2} p_{50} q_{52} + v^{4} {}_{3} p_{50} q_{53} + v^{5} {}_{4} p_{50} q_{54} \approx 0,04352138$$

$$v^{10} {}_{5}p_{50} {}_{5}q_{50} \approx 0.03159438$$

 $v^{5} {}_{5}p_{50} \approx 0.7814992$

$$var(Z_T) = 0.03862681 - 0.04352138^2 + 0.03159438 - 2(0.04352138)(0.7814992) \approx 0.0003032301$$

EXEMPLO 6 (Entregar): Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro Dotal por 5 anos. Considere uma taxa de juros de 3% ao ano, beneficio igual a 1 e as seguintes probabilidade de morte e calcule o prêmio puro único e a variância da função valor presente.

Ida	de q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

SEGURO DOTAL MISTO (DOTAL)

O benefício é pago se o segurado morrer durante um período de cobertura (pago no momento da morte) ou é pago (...) caso o segurado sobreviva a este período, o que ocorrer primeiro.

$\bar{A}_{x:\overline{n|}} = \bar{A}_{x^1:\overline{n|}} + \bar{A}_{x:\overline{n|}^1}$

$$b_T = b_n = 1 \rightarrow \text{benefício}; \qquad z_T = \begin{cases} b_T \ e^{-\delta T}, \ T \leq n \\ b_n v^n, T > n \end{cases}$$

EXEMPLO 7: Uma pessoa de 50 anos deseja fazer um seguro dotal puro com cobertura de 5 anos que pague um benefício unitário. Considerando a taxa de juros instantânea de $\delta=0,06$ ao ano e o tempo de vida adicional modelado por uma distribuição exponencial de parâmetro $\alpha=0,028$, calcule o prêmio puro único pago por este seguro e a variância de $Z_{T_{50}}$.

O prêmio puro único pago por este seguro.

$$Z_{T_{50}} = \begin{cases} 0, & T < 5, \\ e^{-0.06 \times 5}, & T \ge 5, \end{cases}$$

$$\bar{A}_{50:\bar{5}|^1} = e^{-0.06 \times 5} S_{T_{50}}(5),$$

$$\bar{A}_{50:\bar{5}|^1} = e^{-0.06 \times 5} \int_5^\infty 0.028 e^{-0.028t} dt,$$

$$\bar{A}_{50:\bar{5}|^1} = e^{-0.06 \times 5} e^{-0.028 \times 5}$$

$$\bar{A}_{50:\bar{5}|^1} \approx 0,644036.$$

O prêmio puro único pago por este seguro.

$$Z_{T_{50}} = \begin{cases} 0, & T < 5, \\ e^{-0.06 \times 5}, & T \ge 5, \end{cases}$$

$$\bar{A}_{50:\bar{5}|^1} \approx 0,644036.$$

A variância referente ao dotal puro é calculada por:

$$var(Z_{T_{50}}) = e^{-0.6} ({}_{5}p_{50}) ({}_{5}q_{50}) = e^{-0.6}S_{T_{50}}(5)F_{T_{50}}(5),$$

$$var(Z_{T_{50}}) = e^{-0.6} \int_{5}^{\infty} 0.028 e^{-0.028t} dt \int_{0}^{5} 0.028 e^{-0.028t} dt,$$

$$var(Z_{T_{50}}) = e^{-0.6}(e^{-0.028 \times 5})(1 - e^{-0.028 \times 5}) \approx 0.06233.$$

EXEMPLO 8: Uma pessoa de 50 anos deseja fazer um seguro dotal misto com cobertura de 5 anos que pague um benefício unitário. Considerando a taxa de juros instantânea de $\delta=0.06$ ao ano e o tempo de vida adicional modelado por uma distribuição exponencial de parâmetro $\alpha=0.028$, calcule o que se pede:

- a) O prêmio puro único pago por este seguro.
- b) A variância de $Z_{T_{50}}$.

Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

a) O prêmio puro único pago por este seguro.

Sabendo que

$$Z_{T_{50}} = \begin{cases} e^{-0.06T}, & T < 5, \\ e^{-0.06 \times 5}, & T \ge 5, \end{cases}$$

e

o seguro temporário
$$\overline{A}$$
. $1 = \acute{e}$ dado por

 $\bar{A}_{50:\bar{5}|} = \bar{A}_{50^{1}:\bar{5}|} + \bar{A}_{50:\bar{5}|^{1}}$

o seguro temporário $\bar{A}_{50^1:\bar{5}|}$ é dado por:

$$\bar{A}_{50^{1}:\bar{5}|} = \int_{0}^{5} e^{-0.06t} \, 0.028 e^{-0.028t} dt,$$

 $\bar{A}_{50^{1}:\bar{5}|} = \int_{0}^{5} 0.028e^{-t0.088} dt,$

$$\bar{A}_{50^{1}:\bar{5}|} = \frac{0,028}{0,088} \left(-\frac{1}{e^{0,088\times5}} + \frac{1}{e^{0,088\times0}} \right)$$

 $\bar{A}_{50^1:\bar{5}|} \approx 0,11326.$

O seguro dotal puro $\bar{A}_{50:\bar{5}|^1}$ é obtido da seguinte maneira:

$$\begin{split} \bar{A}_{50:\bar{5}|^{1}} &= e^{-0.06 \times 5} \, S_{T_{50}}(5), \\ \bar{A}_{50:\bar{5}|^{1}} &= e^{-0.06 \times 5} \int_{5}^{\infty} 0.028 e^{-0.028t} \, dt, \end{split}$$

$$\bar{A}_{50:\bar{5}|^1} = e^{-0.06 \times 5} e^{-0.028 \times 5}$$
 $\bar{A}_{50:\bar{5}|^1} \approx 0.644036.$

Logo,

$$\bar{A}_{50:\bar{5}|} \approx 0,11326 + 0,644036$$

 $\bar{A}_{50:\bar{5}|} \approx 0,757297.$

b) A variância de $Z_{T_{50}}$.

$$var(Z_{T_{50}}) = \left[\overline{{}^{2}A_{50^{1}:\bar{5}|}} - (0,11326)^{2}\right] + e^{-2\delta 5} {}_{5}p_{50} {}_{5}q_{50} - 2(0,11326)(0,644036),$$

É necessário calcular $\overline{^2A}_{50^1:\overline{5}|}$ e $e^{-2\delta 5}$ ($_5\,p_{50}$)($_5q_{50}$). Portanto:

$$\overline{{}^{2}A}_{50^{1}:\overline{5}|} = \int_{0}^{5} e^{-0.12t} \, 0.028 e^{-0.028t} dt = \int_{0}^{5} 0.028 e^{-t0.148} \, dt,$$

$$\overline{{}^{2}A}_{50^{1}:\overline{5}|} = \frac{0.028}{0.148} \left(-\frac{1}{e^{0.148 \times 5}} + \frac{1}{e^{0.148 \times 0}} \right) \approx 0.0989244.$$

A variância da parte referente ao dotal puro é calculada por:

$$e^{-0.6}({}_{5}p_{50})({}_{5}q_{50}) = e^{-0.6}S_{T_{50}}(5)F_{T_{50}}(5),$$

$$e^{-0.6}\int_{5}^{\infty}0.028e^{-0.028t}\,dt\int_{0}^{5}0.028e^{-0.028t}\,dt,$$

$$e^{-0.6}(e^{-0.028\times5})(1-e^{-0.028\times5})\approx 0.06233.$$

Finalmente,

$$var(Z_{T_{50}}) = [0,0989244 - (0,11326)^{2}] + 0,06233 - 2(0,11326)(0,644036),$$

$$var(Z_{T_{50}}) \approx 0,00253954.$$

Adicionalmente podemos calcular a correlação, pois

$$cov(Z_1Z_2) = -\bar{A}_{50^1:\bar{5}|}\bar{A}_{50:\bar{5}|^1} \approx -0.072944.$$

Então:

$$\rho_{Z_1Z_2} = \frac{cov(Z_1Z_2)}{\sqrt{var(Z_1)}\sqrt{var(Z_2)}} \approx \frac{-0,072944}{\sqrt{0,0860966}\sqrt{0,06233}} \approx -0,995752.$$

Unifala Unifa Unifala Unifala Unifala Unifala Unifala Unifala Unifala Unifala

$$Z_{T} = v^{T+1}, T \ge 0$$

$$A_{x} = \sum_{t=0}^{\infty} Z_{T} t p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0.1, 2, \dots, n-1 \\ 0, T = n, n+1, \dots \\ A_{x^{1} : \overline{n}} | = \sum_{t=0}^{n-1} Z_{T} t p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0.1, 2, \dots, n-1 \\ 0, T = 0.1, 2, \dots, n-1 \\ A_{x^{n} \mid 1} | = Z_{T} n p_{x} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0.1, \dots, n-1 \\ v^{n}, T = n, n+1, \dots \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta T}, T \ge 0 \\ 0, T = 0.1, 2, \dots, n-1 \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta T}, 0 \le T \le n \\ \overline{A_{x^{1} : \overline{n}}} | = \int_{0}^{n} Z_{T} t p_{x} \mu(x+t) dt \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta T}, T < n \\ e^{-\delta n}, T \ge n \end{cases}$$

$$\overline{A_{x^{n} \mid 1}} = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$Z_{T} = \begin{cases} e^{-\delta n}, T \ge n \\ \overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$Z_{T} = \begin{cases} e^{-\delta n}, T \ge n \\ \overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{1} : \overline{n}}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{n} \mid 1}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{n} \mid 1}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{n} \mid 1}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{n} \mid 1}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x^{n} \mid 1}} | = \overline{A_{x^{n} \mid 1}} | + \overline{A_{x^{n} \mid 1}} |$$

$$\overline{A_{x$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.
- GARCIA, J. A.; SIMÕES, O. A. **Matemática actuarial – Vida e pensões**. 2. ed. Coimbra: Almedina, 2010.

