Image Generation using Generative Adversarial Networks (GANs)

Paper Link - https://arxiv.org/abs/1406.2661

Group Number - 39

Shivam Gupta 2014A7PS066P

Rahul Banerji 2014A7PS082P

Mayank Agarwal 2014A7PS111P

Karan Deep Batra 2014A7PS160P

Team Contribution

- GAN Discriminator Model
- GAN Generator Model
- GAN training
- Graph Analysis for GAN
- CGAN Discriminator Model
- CGAN Generator Model
- CGAN training

- Shivam Gupta
- Karan Deep Batra
- Mayank Agarwal, Karan Deep Batra
- Mayank Agarwal
- Rahul Banerji
- Mayank Agarwal
- Shivam Gupta, Rahul Banerji

What are GANs?

First, an intuition

generator

Goal: produce counterfeit money that is as similar as real money.

Goal: distinguish between real and counterfeit money.

Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

We can use Neural Networks to represent this complex transformation

Framework for creating Generative models

Training GANs: Two-player game

Generator Network: Try to fool the discriminator by generating real-looking images

Discriminator Network: Try to distinguish the real and fake images.

Minimax Objective Function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator wants to maximize objective such that D(x) is close to 1 and D(G(z)) is close to 0

Generator wants to minimize objective such that D(G(z)) is close to 1 (i.e. Discriminator is fooled into thinking generated G(z) is real)

Training GANs: Two-player game

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, this generator optimization does not work well!

Instead of minimizing log(1-D(G(z))), we can maximize log(D(G(z))) or equivalently minimize -log(D(G(z))), since this function has high gradient signal where the discriminator network is able to easily able to recognize fake images.

Discriminator Neural Network

784 neurons (28*28)

Generator Neural Network

Output Layer

Data Set

The MNIST dataset was used as the primary dataset for training the model. The MNIST database consists of handwritten digits and has a training set of 60,000 examples, and a test set of 10,000 examples. Our objective being generating numbers from the dataset given. MNIST consists of Grey Level images centered in a 28X28 image by computing the center of mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.

Framework Used

The code was written using the tensor flow library and its python api. The hardware used for the training are a Core i5 Quad core processor coupled with a CUDA capable GTX 1060 along with 8gb of memory. The runtime on this setup for our dataset was roughly 10 hours.

Training Images from MNIST Dataset

GAN Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Important Functions

1. Discriminator Network Initialization

```
# input to the discriminator
# None is used to automatically adjust according to bumber of input images in a batch
X = tf.placeholder(tf.float32, shape=[None, input dim])
# Weights are intitialized between the first hidden layer and the input layer
# Shape --> input dim x neuron dim
Disc W1 = tf.Variable(weight initialize([input dim, neuron dim]))
# Biases are intialized to zeros
Disc b1 = tf.Variable(tf.zeros(shape=[neuron dim]))
# Weights are intialized between hidden layer and output node
# Shape --> neuron dim x 1
Disc W2 = tf.Variable(weight initialize([neuron dim, 1]))
# Biases are intialized to zeros
Disc b2 = tf.Variable(tf.zeros(shape=[1]))
# Discriminator variable
var D = [Disc W1, Disc W2, Disc b1, Disc b2]
```

2. Generator Network Initialization

```
# input noise to the generator
z = tf.placeholder(tf.float32, shape=[None, noise dim])
# Weights are intialized between noise layer and first hidden layer
# Shape --> noise dim x neuron dim
Genr W1 = tf.Variable(weight initialize([noise dim, neuron dim]))
# Biases are intialized to zeros
Genr b1 = tf.Variable(tf.zeros(shape=[neuron dim]))
# Weights are intialized between hidden layer and output layer (generated image)
# Shape --> neuron dim x input dim
Genr W2 = tf.Variable(weight initialize([neuron dim, input dim]))
# Biases are intialized to zeros
Genr b2 = tf.Variable(tf.zeros(shape=[input dim]))
# Generator variable
var G = [Genr W1, Genr W2, Genr b1, Genr b2]
```

3. Discriminator & Generator Functions

```
def generator(z):
    # [None, noise dim] x [noise dim, neuron dim] = None, neuron dim
    Genr h = tf.nn.relu(tf.matmul(z, Genr W1) + Genr b1)
    # [None, neuron dim] x [neuron dim, input dim] = None, input dim
    Genr log prob = tf.matmul(Genr h, Genr W2) + Genr b2
    Genr prob = tf.nn.sigmoid(Genr log prob)
    return Genr prob
def discriminator(x):
    # [None, input dim] x [input dim, neuron dim] = None, neuron dim
    Disc h = tf.nn.relu(tf.matmul(x, Disc W1) + Disc b1)
    # [None, neuron dim] x [neuron dim, 1] = None, 1
    Disc log prob = tf.matmul(Disc h, Disc W2) + Disc b2
    return Disc log prob
```

4. Loss Functions

```
G_sample = generator(z)
D_real = discriminator(X)
D_fake = discriminator(G_sample)

D_loss = tf.reduce_mean(D_real) - tf.reduce_mean(D_fake) # Maximize this
G_loss = -tf.reduce_mean(D_fake) # Minimize this

D_solver = (tf.train.RMSPropOptimizer(learning_rate=0.0001).minimize(-D_loss, var_list=var_D))
G solver = (tf.train.RMSPropOptimizer(learning_rate=0.0001).minimize(G loss, var_list=var_G))
```

Output from Generator (10^6 Iterations)

Results

Comparing Loss functions of Generator and Discriminator during Training

Before Convergence

After Convergence

Generator and Discriminator compete against each to finally settle on a value where discriminator loss is maximised and generator loss is minimised

Class Specific GANs

One hot representation of class labels fed parallely into both Discriminator and Generator for producing class specific images.

Class Specific GANs Output

Input 1

Input 3

Input 7

Future Work

1. Predicting the noise pattern given the generated image i.e. P(z|x)
It has been proved that the input noise is not random but follows certain patterns i.e. For generating images belonging to a particular class, the noise vectors must follow a particular pattern but that relation has not been found yet.

2. <u>Efficiency improvements</u>

Training could be accelerated greatly by devising better methods for coordinating G and D or determining better distributions to sample z from during training.

3. Predicting distribution function for input Dataset

One of the disadvantages of Adversarial training is that it fails to predict the exact distribution functions of the input data. If we a have distribution function, then any point on the function would represent a new generated image which would be very efficient.

References

- 1. https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners
- 2. http://kvfrans.com/generative-adversial-networks-explained/
- 3. https://arxiv.org/abs/1411.1784
- 4. https://arxiv.org/abs/1506.05751
- 5. https://wiseodd.github.io/techblog/2016/09/17/gan-tensorflow/
- 6. https://youtu.be/0VPQHbMvGzg
- 7. https://www.youtube.com/watch?v=QPkb5VcgXAM

Thank You

- From Group 39