OMAR CHEHAIMI

NOTES ON DATA STRUCTURES AND ALGORITHMS IN PYTHON

March 20, 2021

This book is released into the public domain using the GNU Free Documentation License.

To view a copy of the GNU Free Documentation License visit: http://www.gnu.org/licenses/fdl-1.3.txt

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst's seminal book on typography "The Elements of Typographic Style".

– Publius Vergilius Maro

PREFACE

The following notes are based on the Udacity online course Intro to Data Structures and Algorithms in Python. These notes are not intended to be a book, nor a formal introduction to data structures and algorithms, they are just my personal attempt to have a small, yet comprehensive notes about the huge world on this topic.

Omar Chehaimi

CONTENTS

Pre	eface	iv
1	PREI	LIMINARIES CONCEPTS 1
	1.1	Computational Complexity 1
	1.2	Big O Notation 1
		1.2.1 Properties 1
	1.3	Time complexity evaluation example 2
	1.4	Recursion 3
		1.4.1 Python Implementation Examples 4
2	DAT	A STRUCTURES 6
	2.1	Collection 6
	2.2	List 6
	2.3	Array 6
	2.4	Linked List 8
		2.4.1 Linked List Implementation 11
	2.5	Stack 12
		2.5.1 Stack Implementation 12
	2.6	Queue 13
		2.6.1 Queue Implementation 15
	2.7	
		Map 16
	2.9	Hash Table 16
		2.9.1 Hashing 16
	2.10	String Keys 18
		2.10.1 String Keys Implementation 19
3	SEA	RCHING AND SORTING 20
	3.1	Binary Search 20
		3.1.1 Efficiency of the Binary Search Algorithm 21
		3.1.2 Binary Search Implementation 22
	3.2	Bubble Sort 23
		3.2.1 Efficiency of the Bubble Sort Algorithm 25
		3.2.2 Bubble Sort Implementation 26
	3.3	Merge Sort 26
		3.3.1 Efficiency of the Merge Sort Algorithm 27
		3.3.2 Merge Sort Implementation 28
	3.4	Quicksort 29
		3.4.1 Efficiency of the Quicksort Algorithm 31
		3.4.2 Quicksort Implementation 32
4	TRE	31
	4.1	General Definitions 34
	4.2	Tree Traversal 36
	4.2	4.2.1 Depth-first search 37
	4.3	Binary Trees 39 4.3.1 Search 39
		4.3.1 Search 39

```
Delete
        4.3.2
                        40
              Insert
        4.3.3
                        41
              Perfect binary tree
        4.3.4
                                   42
              Binary Tree Implementation
        4.3.5
                                            43
       Binary Search Trees (BST)
              Binary Search Tree Implementation
        4.4.1
                                                   46
   4.5 Heaps
        4.5.1
              Heapify
                          48
              Heap Implementation
       Self-balancing Binary Search Trees
                                           49
   4.7 Red-Black Trees
  GRAPHS
               53
   5.1 General Definitions
                              53
              Connectivity
        5.1.1
   5.2 Graph Representations
                                 55
              Edge List
        5.2.1
              Adjacency List
        5.2.2
              Adjacency Matrix
        5.2.3
   5.3 Graph Traversal
                           57
              Depth-first Search (DFS)
        5.3.1
                                         57
              Breadth-first Search (BFS)
                                          58
        5.3.2
        5.3.3
              Eulerian Path and Circuit
                                          59
              Hamiltonian Path and Circuit
                                              60
        5.3.4
              Shortest Path Problem
                                       61
        5.3.5
              Dijkstra's Algorithm
        5.3.6
                                     62
  DYNAMIC PROGRAMMING
                                66
       General Definitions
                              66
       Knapsack Problem
                             67
       Travelling Salesman Problem
                                      67
Appendix
             68
A BINARY SEARCH COMPLETE IMPLEMENTATION
                                                     69
   A.1 Pre-order Traversal
                             69
   A.2 In-order Traversal
   A.3 Post-order Traversal
   A.4 Breadth-first search Implementation
                                             78
   A.5 Complexity Summary
  IMPLEMENTATION OF GRAPH REPRESENTATION
                                                      80
  IMPLEMENTATION OF GRAPH TRAVERSAL
                                                82
   c.1 Depth-first search
   c.2 Breadth-first search
                              83
D COMPLEXITY OF DATA STRUCTURES FOR GRAPHS
                                                       85
  DIJKSTRA'S ALGORITHM IMPLEMENTATION
BIBLIOGRAPHY
                   89
```

LIST OF FIGURES

Figure 1	Plots of the main functions and their evaluation for computational complexity. 2
Figure 2	Pseudocode of a recursive function and its internal
rigule 2	execution. 3
Figure 3	Factorial recursive execution. 5
Figure 4	Factorial recursive execution. 5
Figure 5	An example of an array with elements and indexes.
Figure 6	An example of an array with elements and indexes.
Figure 7	Removing or adding an element from an array and
	the indexes update. 7
Figure 8	Adding 8a or removing 8b an element from an array
_	and the indexes update. 8
Figure 9	An example of a linked list with the data and the ref-
	erence to the next element. 8
Figure 10	An example of a linked list with the data and the ref-
O	erence to the next element. 8
Figure 11	Adding a new element to a linked list. 9
Figure 12	Adding a new element to a linked list.
Figure 13	Removing an element to a linked list. 10
Figure 14	Removing an element to a linked list. 10
Figure 15	Doubly linked list. 10
Figure 16	Doubly linked list. 10
Figure 17	In a stack only the element at the top is modified.
Figure 18	In a stack only the element at the top is modified.
Figure 19	Allowed operations on queue elements. 14
Figure 20	Allowed operations on queue elements. 14
Figure 21	In a deque the operations can be done on both head
_	and tail. 14
Figure 22	In a deque the operations can be done on both head
	and tail. 15
Figure 23	A priority queue. 15
Figure 24	A priority queue. 15
Figure 25	An example of a map. 16
Figure 26	An example of a map. 16
Figure 27	An example of collision and a possible way to solve
_	this issue by using the bucket method. 17
Figure 28	An example of collision and a possible way to solve
	this issue by using the bucket method. 18
Figure 29	An array with numeric values ordered in an ascend-
	ing order. 20
Figure 30	An array with numeric values ordered in an ascend-
-	ing order. 20
Figure 31	Binary search algorithms steps. 21

Figure 32	Binary search algorithms steps. 21
Figure 33	Array splitting in the implementation of the binary
	search algorithm. 22
Figure 34	Array splitting in the implementation of the binary
	search algorithm. 23
Figure 35	Bubble sort algorithm. 23
Figure 36	The swapping process is repeated until the array is
	completely ordered. 24
Figure 37	The swapping process is repeated until the array is
0 3,	completely ordered. 25
Figure 38	Merge sort algorithm. 26
Figure 39	Merge sort algorithm. 27
Figure 40	Merge sort algorithm implementation. 29
Figure 41	Quicksort algorithm part one. 30
Figure 42	Quicksort algorithm steps part two. 30
Figure 43	Quicksort algorithm worst case. 31
Figure 44	Quicksort algorithm best and average case. 31
Figure 45	Quicksort algorithm implementation. 33
Figure 46	Elements of a tree and linked list. 34
Figure 47	Elements of a tree and linked list. 34
Figure 48	Possible structures of a tree. 35
Figure 49	Possible structures of a tree. 35
Figure 50	A tree and its fundamentals elements. 35
Figure 51	A tree and its fundamentals elements. 36
Figure 52	The depth-first search and the breadth-first search. 36
Figure 53	The depth-first search (53a) and the breadth-first search
0 00	(53b). 37
Figure 54	Pre-order search. 37
Figure 55	Pre-order search. 38
Figure 56	In-order search. 38
Figure 57	In-order search. 38
Figure 58	Post-order search. 39
Figure 59	Post-order search. 39
Figure 60	Example of tree search and traversal. 40
Figure 61	Example of tree search and traversal. 40
Figure 62	Delete an element of a tree. 41
Figure 63	Delete an element of a tree. 41
Figure 64	Add an element of a tree. 42
Figure 65	Add an element of a tree. 42
Figure 66	Perfect binary tree results. 42
Figure 67	Perfect binary tree. 43
Figure 68	Search on an ordered binary tree. 44
Figure 69	Search on an ordered binary tree. 44
Figure 70	Addition on an ordered binary tree. 45
Figure 71	Addition on an ordered binary tree. 45
Figure 72	An unbalanced binary tree. 45
Figure 73	An unbalanced binary tree. 46
Figure 74	Max heap (a) and min heap (b) example. 47
Figure 75	Max heap (75a) and min heap (75b) example. 47

Figure 76	Add a new node to a heap. 48
Figure 77	Add a new node to a heap. 48
Figure 78	Implementation example of a heap using an array. 49
Figure 79	Implementation example of a heap using an array. 49
Figure 80	Example of balanced (b) and unbalanced (a) tree. 50
Figure 81	Example of unbalanced (81a) and balanced (81b) tree. 50
Figure 82	A red-black tree. 51
Figure 83	A red-black tree. 51
Figure 84	Insertion of a new node and the following updating
	of the color nodes. 51
Figure 85	Insertion of a new node and the following updating
	of the color nodes. 52
Figure 86	Left and right rotation for balancing the tree after an
	insertion. 52
Figure 87	An example of right rotation. 52
Figure 88	Undirected (a) and directed (b) graphs and its ele-
	ments. 53
Figure 89	Undirected and directed graphs and its elements. 53
Figure 90	A weakly connected graph. 54
Figure 91	A weakly connected graph. 54
Figure 92	Edge list. 55
Figure 93	Edge list. 55
Figure 94	Adjacency list. 56
Figure 95	Adjacency list. 56
Figure 96	Adjacency matrix. 56
Figure 97	Adjacency matrix. 56
Figure 98	Depth-first search example. 57
Figure 99	Depth-first search example. 57
Figure 100	Breadth-first search example. 58
Figure 101	Breadth-first search example. 58
Figure 102	Eulerian path (a) and not Eulerian path (b). 59
Figure 103	Eulerian path (103a) and not Eulerian path (103b). 59
Figure 104	Eulerian circuit. 60
Figure 105	Eulerian circuit. 60
Figure 106	Hamiltonian path (a) and Hamiltonian circuit (b). 61
Figure 107	Hamiltonian path (107a) and Hamiltonian circuit (107b).
Figure 108	Shortest path. 61
Figure 109	Shortest path. 62
Figure 110	Relaxation condition. 62
Figure 111	Relaxation condition. 63
Figure 112	Dijkstra's algorithms example. 63
Figure 113	Dijkstra's algorithms example. 63
Figure 114	Calculation of the fifth number of the Fibonacci se-
	quence. 66
Figure 115	Pre-order iterative example. 71
Figure 116	In-order iterative example. 74
Figure 117	Post-order iterative example. 77
Figure 118	Breadth-first search example. 79
Figure 119	Depth-first search example. 83

Figure 120	Breadth-first search example.	84
Figure 121	Dijkstra's algorithms example.	86
Figure 122	Dijkstra's algorithms example.	86

LIST OF TABLES

Table 1	Binary Search Efficiency. 22
Table 2	Merge Sort Efficiency. 28
Table 3	Traversal paths for the tree in Figure 61. 40
Table 4	Eulerian path and circuit existence rules. 60
Table 5	Number of computation for each value of the Fibonacci
	sequence. 67
Table 6	Dijkstra's algorithms example for the graph in figure
	122. The shortest path from a to b is also shown. 87

LISTINGS

Listing 1.1	Sum of all elements of a matrix.
Listing 1.2	Pseudocode of a recursive function and its internal
	execution. 3
Listing 1.3	Implementation of the Fibonacci series with both iter-
	ative and recursive way. 4
Listing 1.4	Implementation of calculating the factorial of a num-
	ber using the recursive way. 4
Listing 2.1	Linked List implementation. 11
Listing 2.2	Stack implementation. 12
Listing 2.3	Queue implementation. 15
Listing 2.4	String key implementation. 19
Listing 3.1	Binary search python implementation. 22
Listing 3.2	Bubble Sort python implementation. 26
Listing 3.3	Merge Sort python implementation. 28
Listing 3.4	Quicksort python implementation. 32
Listing 4.1	Class definition for a node and a tree. 43
Listing 4.2	Recursive pre-order traversal and search implementa-
	tion. 43
Listing 4.3	implementation of insert and search operation for a
	binary search tree. 46
Listing 5.1	Recursive implementation of a depth-first search. 57
Listing 5.2	Recursive implementation of a depth-first search. 58
Listing A.1	Class definition for a node and a tree. 69

Listing A.2	Recursive and iterative implementation of pre-order
	traversal. 70
Listing A.3	Recursive and iterative implementation of in-order traver-
	sal. 72
Listing A.4	Recursive and iterative implementation of post-order
	traversal. 75
Listing A.5	Breadth-first search implementation. 78
Listing B.1	Graph representation and fundamental operations. 80
Listing C.1	Recursive and iterative implementation of depth-first
G	search on graphs. 82
Listing C.2	Breadth-first search implementation on graphs. 83
Listing E.1	Dijkstra's algorithm. 88

ACRONYMS

ADT Abstract data type
LIFO Last In, First Out
FIFO First In, First Out
DFS Depth-first search
BFS Breadth-first search
BST Binary Search Trees

PRELIMINARIES CONCEPTS

1

1.1 COMPUTATIONAL COMPLEXITY

The **computational complexity**, or **complexity**, of an algorithm is the amount of resources (time and memory) needed for solving it, and it is the minimum complexity of all possible implementations for solving that given algorithm, included also the unknown ones [1] (Computational complexity, Wikipedia).

The amount of needed resources for solving an algorithm varies with the size of the input n. The computational complexity in general is a function $n \to f(n)$, and it represents the worst case complexity or the average complexity over all the inputs of size n.

When the kind of the complexity is not explicitly indicated, generally is meant to be the **time complexity**, which is different from computer to computer, and it is generally expressed as the number of elementary operations required to solve a given algorithm. It is assumed that these elementary operations take the same time for being solved. The computational complexity can be related also to the memory consumption.

1.2 BIG O NOTATION

The **big O notation** [2] (Big O Notation, Wikipedia) describe the behavior of a function when its argument tents to infinity or to a particular value.

Definition 1.1

Let f be a real or complex value function and let g be a real function. Let both functions be defined on the same positive and real unbounded interval, and let g(x) be strictly positive for all large enough x values: g(x) > 0, $\forall x$ large enough. Thus: f(x) = O(g(x)) as $x \to \infty$ if $\exists M \in \mathbb{R}$, M > 0 and $x_0 \in \mathbb{R}$ such that $|f(x)| \leq Mg(x) \ \forall x \geq x_0$.

Usually f(x) = O(g(x)) is used as $x \to \infty$, but it can be also defined for the case $x \to a$, where a is a real number.

O notation is asymptotic for big x, so the important terms are the ones which grow faster than the others, which become irrelevant.

Example 1.1

In $f(x) = 6x^4 - 2x^3 + 5$ as $x \to \infty$, $6x^4$ it the fastest growing term. 6 is a constant and can be omitted, thus $f(x) = O(x^4)$.

1.2.1 Properties

Here are listed some simple properties about Big O notation.

Definition 1.2 Product-Sum-Multiplication by a constant

Product

$$f_1 = O(g_1)$$
 and $f_2 = O(g_2) \Rightarrow f_1 f_2 = O(g_1 g_2)$

Sum

$$f_1 = O(g_1)$$
 and $f_2 = O(g_2) \Rightarrow f_1 f_2 = O(\max(f_1, f_2))$

Multiplication by a constant

Let k be a nonzero constant, then: O(k|g) = O(g), $f = O(g) \Rightarrow kf = O(g)$

Definition 1.3 Logarithm and Exponential

Let c be a nonzero constant, then: $O(\log n^c) = O(\log n)$, because: $(\log n^c = c \log n)$.

 $O(n^c)$ and $O(c^n)$ are very different, if c>1 the latter grows much faster. Let c be a nonzero constant. $(cn)^2=c^2n^2=O(n^2)$, but 2^n and 3^n are not of the same order. In general $2^{cn}=(2^c)^n$ is not of the same order of 2^n .

Example 1.2

$$f = 9\log n + 5(\log n)^4 + 3n^2 + 2n^2 = O(n^3) \text{ as } n \to \infty$$

Figure 1: Plots of the main functions and their evaluation for computational complexity. Credits: bigocheatsheet.com.

1.3 TIME COMPLEXITY EVALUATION EXAMPLE

Let us suppose we want to calculate the sum of all elements of a $n \times n$ matrix. For evaluating the time complexity of this function we have to identify all the elementary operations, and evaluating their complexity based on

how many times they are repeated. Here is the pseudocode for the function that calculate the sum of a matrix.

Listing 1.1: Sum of all elements of a matrix.

```
def find_sum_2d(array_2d):
    totoal = 0 # -> 0(1)
    for each row in array_2d: # -> repeated n times
        for each column in array_2d: # -> repeated n times
        total += array_2d[column][row] # -> 0(1)
    return total # -> 0(1)
```

The total time complexity is:

$$T = O(1) + n^2 O(1) + O(1) = O(n^2)$$

Where O(1) is a constant value.

1.4 RECURSION

In recursion a function calls itself again on a smaller size input, until the exit condition stops this self calling (recursive calling) [3] (Recursion, Wikipedia). There are three fundamentals elements in a recursive function:

- 1 A function that calls itself.
- 2 Exit condition. Without this condition a recursive function would call itself forever without an end.
- 3 Input alteration. When the function is called again the input is changed to a smaller dimension than the previous call.

```
function recursive(input):

[if exit condition:
    return input
    else:
    output = recursive(input -1)
    return output 3
```

Figure 2: Pseudocode of a recursive function and its internal execution.

Listing 1.2: Pseudocode of a recursive function and its internal execution.

```
function recursive(input):
    if exit condition: # Element 2
        return input
    else:
        output = recursive(input-1) # Element 1
        return output # Element 3
```

In recursion the exit condition is fundamental, because if it contains some errors the recursion will never end, resulting in an infinite process.

1.4.1 Python Implementation Examples

Listing 1.3: Implementation of the Fibonacci series with both iterative and recursive way.

```
def fibonacci_iterative(position):
          if position == 0:
2
3
                return 0
          elif position == 1:
4
                return 1
5
          else:
6
                first = 0
8
                second = 1
                next_value = first + second
9
10
                for i in range(2, position):
                      first = second
11
                      second = next
12
                      next_value = first + second
13
                return next_value
14
15
   def fibonacci_recursive(position):
16
          if position <= 1: # Exit condition</pre>
17
18
                return position
          return fibonacci(position - 1) + fibonacci(position - 2) # Calling
19
               the function on a smaller size input
```

Listing 1.4: Implementation of calculating the factorial of a number using the recursive way.

```
def factorial(n):
    if n <= 1: # Exit condition
        return n
else:
        return n*factorial(n - 1) # Calling the function on a
        smaller input</pre>
```


Figure 3: Factorial recursive execution.

Figure 4: Factorial recursive execution.

DATA STRUCTURES

A data structure is a data organization, management, and storage format that enables efficient access and modification of the collected data. The relationship among collected data, their properties, the operations that can be done on them, are all properties of the data structure [4] (Data Structure, Wikipedia). Data structure is the basis for an abstract data type (ADT), a mathematical model for a data type [5] (Data Type, Wikipedia), which is defined by its behavior from the point of view of a user, its type of data, specifically in terms of possible values, by possible operations on these data, and by the behavior of these operations. This mathematical model contrasts with data structures, which are concrete representations of data, and are the point of view of an implementer, not of a user [6] (Abstract Data Type, Wikipedia).

In this chapter the most important data structures like **collections**, **lists**, **arrays**, **linked lists**, **stacks**, and **queues** are introduced. For each data structure are shown all the most important properties, operations, and implementations.

2.1 COLLECTION

A **collection** is an object that groups several different elements in only single unit. Collections are used to save, to find, to manipulate, and to communicate grouped data [7] (Collection (abstract data type), Wikipedia). Usually the elements belonging to a collection are of the same type, such as a poker hand (a collection of playing cards), a folder containing emails (a collection of emails), or a phone book (a map $name \rightarrow phone number$).

2.2 LIST

A **list** is a collection which represents a set of **ordered** elements, which can be also of different type. Same value elements can be repeated several times. Lists do not have a fixed size, and it is possible to add, to remove, and to modify all the elements in the list. The complexity of adding or removing an element is constant (O(1)).

2.3 ARRAY

An **array** is a collection of elements of the same or also different type, in which each of them is identified with at least one **array index** or **key** [8] (Array data structure, Wikipedia). In some programming languages arrays have a fixed size, in others instead is fixed.

Figure 5: An example of an array with elements and indexes.

0	1	2	3	4	Indices
8	2	4	1	7	Elements

Figure 6: An example of an array with elements and indexes.

For doing any allowed operation to an element of an array it is enough to know its index.

Adding or removing an element of an array could be a very expensive operation. This is because when a change take place to an element all the following indexes must be updated (Figure 8). The worst case complexity is O(n), where n is the size of the array.

Figure 7: Removing or adding an element from an array and the indexes update.

(b) Removing an element to an array.

Figure 8: Adding 8a or removing 8b an element from an array and the indexes update.

2.4 LINKED LIST

A **linked list** is a linear collection in which each element has the data and a reference to the next element (a link) [9] (Linked List, Wikipedia).

Figure 9: An example of a linked list with the data and the reference to the next element.

Figure 10: An example of a linked list with the data and the reference to the next element.

In a linked list the order of the elements is not assured.

Operations like adding or removing an element in a linked list are very efficient, because it is enough to change the references of the elements involved in the operation. For example for adding a new element is enough to change the previous element reference to the just added element, and change the reference of the new element to the next element (Figure 12). In

case of removing an element it is enough to update the previous element's reference to the next element of the removed one (Figure 14).

Figure 11: Adding a new element to the linked list. As explained before this operation is very efficient because it is enough to change the references of the new element and the previous element to the one just added.

Figure 12: Adding a new element to the linked list. As explained before this operation is very efficient because it is enough to change the references of the new element and the previous element to the one just added.

Figure 13: Removing an element to a linked list.

Figure 14: Removing an element to a linked list.

The complexity for adding or removing an element is constant O(1). Linked lists can be also **doubly linked list** (Figure 16), which evry element has the reference to the previous and next element of the collection [10] (Doubly linked list, Wikipedia).

Figure 15: Doubly linked list.

Figure 16: Doubly linked list.

Linked list are used for implementing other data structures such as lists, stacks, queues, and associative array.

2.4.1 Linked List Implementation

The following code is the implementation of a linked list in Python.

Listing 2.1: Linked List implementation.

```
class Element():
          def __init__(self, value):
3
                self.value = value
4
                self.next = None
5
6
   class LinkedList():
7
8
          def __init__(self, head=None):
9
                self.head = head
10
11
          def append(self, new_element):
12
                current = self.head
13
                if self.head:
14
                       while current.next:
15
                             current = current.next
16
                       current.next = new_element
17
                else:
18
                       self.head = new_element
19
20
          def get_position(self, position):
21
                counter = 0
22
                current = self.head
23
                if position < 1:</pre>
24
                       return None
25
                while current and counter <= position:
26
                       if counter == position:
27
                             return current
28
                       current = current.next
29
                       counter += 1
30
                return None
31
32
          def insert(self, new_element, position):
33
                counter = 1
34
                current = self.head
35
36
                if position > 1:
                      while current and counter < position:
37
                             if counter == position - 1:
38
                                   new_element.next = current.next
39
                                   current.next = new_element
40
                             current = current.next
41
                             counter +=1
42
                elif position == 1:
43
                       new_element.next = self.head
44
                       self.head = new_element
45
```

2.5 STACK

A **stack** is abstract data type belonging to collections, in which only two operations are allowed [11] (Stack, Wikipedia):

- Push: add an element at the top of the stack
- **Pop**: remove the newest element of the stack

In the stacks only the element at the top of the stack can be modified. The complexity remains constant for adding and removing operations. The stacks are also called **Last In, First Out** (**LIFO**).

Figure 17: In a stack only the element at the top is modified.

Figure 18: In a stack only the element at the top is modified.

2.5.1 Stack Implementation

The following is the implementation in Python of a stack using the linked list.

Listing 2.2: Stack implementation.

```
10
          def delete_first(self):
11
                if self.head:
12
                       delete_element = self.head
13
                       temp = deleted_element.next
14
                       self.head = temp
15
                       return deleted_element
16
                else:
17
                       return None
18
19
   class Stack():
20
21
          def __init__(self, top=None):
22
                self.ll = LinkedList(top)
23
24
          def push(self, new_element):
25
26
                self.ll.insert_first(new_element)
27
28
          def pop(self):
                self.ll.delete_first()
29
```

2.6 QUEUE

A **queue** is abstract data type belonging to collections very similar to the stacks. For a queue the admitted operations are only on the oldest element, thus the first element to be added [12] (Queue, Wikipedia). The allowed operations on a queue are:

- **Enque**: adding an element at the bottom of the queue
- Deque: removing the element at the head of the queue
- Pick: observing the element at the head of the queue

For adding and removing operations the complexity remain constant. Queues are also called **First In, First Out (FIFO)**.

The most efficient way to implement a queue is using linked lists.

Figure 19: In a queue only the first element to be added can be removed or where a new element can be added.

Figure 20: In a queue only the first element to be added can be removed or where a new element can be added.

A generalization of queues and linked lists are **deques**, in which is possible to perform deque and enque operations on both the **head** and **tail**.

Figure 21: In a deque the operations can be done on both head and tail.

Figure 22: In a deque the operations can be done on both head and tail.

Another modification of queue are **priority queue**, in which each element has a priority (a numeric value that indicates its importance). When an element of the queue is removed (deque), the element to be removed is the one which has the highest priority. In case two or more elements have the same priority the oldest element is removed.

Figure 23: A priority queue.

Figure 24: A priority queue.

2.6.1 Queue Implementation

The following is the implementation of a queue using the list of Python.

Listing 2.3: Queue implementation.

```
class Queue():
    def __init__(self, head=None):
        self.storage = [head]

def enqueue(self, new_element):
        self.storage.append(new_element)
```

```
7
8     def peek(self):
9     return self.storage[0]
10
11     def dequeue(self):
12     return self.storage.pop(0)
```

2.7 SET

A **set** is an abstract data type in which the unique values are stored without a particular order [13] (Set, Wikipedia).

2.8 MAP

A map, associative array, symbol table, or dictionary is an abstract data type composed of a collection of (key, value) pairs [14] (Hash Map, Wikipedia). The group of the key is a set, in which each element has a unique value. Map is a very useful data type, used in a lot of situations.

Figure 25: An example of a map.

Figure 26: An example of a map.

2.9 HASH TABLE

A hash table or hash map is a data structure that implements the map abstract data type [15] (Hash Table, Wikipedia). Hash table uses the hash function for working [16] (Hash Function, Wikipedia). Using the hash function is called hashing.

2.9.1 Hashing

Hashing is an operation that allows to transform the value of a variable to another one which is much easier to find within a collection. If we want to

find a value inside a collection (list, stack, queue, etc) the time requested for the search is linear with the size of the collection. In fact we have to check all the elements until the searched one is found (in case of stack and queue this is not true is only the last or the first element respectively is checked). For solving this problem and thus to find an element in a constant time hash function are used.

Let us consider the follow example, where we have an array in which we would like to store big random numbers. A simple way for hashing these numbers is to consider only the last numbers (56 and 17) and divide them for a fixed number. The reminder of the division is used as the new index of the array associated to the number (Figure).

What happen when the hash function transforms two different number in the same? In this case we have a **collision**. In case of a collision there are several strategies for solving this issue: one way could be to change the the hash function, another one could be to use an array for storing different values associated to the same key (**bucket**). For the last occurrence the worst case complexity for a search is O(n) (Figure 28).

Figure 27: An example of collision and a possible way to solve this issue by using the bucket method.

Figure 28: An example of collision and a possible way to solve this issue by using the bucket method.

It does not exist a perfect hash function and a trade off must always be reached. A way to analyse a hash function is by using the **load factor** defined as follow: Load Factor = # of entries/# of buckets. For example, if we want to save 10 values using 1000 buckets the Load Factor is equal to 0.01, and most of the buckets is empty. In this case is convenient to change the hash function by using less buckets. More the Load Factor is closed to 0 more the hash table will be empty (**sparse**), and more the Load Factor is closed to 1 more the has table will be full and efficient. In case the Load Factor is bigger than 1 there is the certainty there will happen some collisions. Another example: let us consider a hash function that divide the numbers by 100. If we consider 100 values all multiple of 5, the Load Factor will be: Load Factor = # of entries/# of buckets = 100/100 = 1. But this way is very slow and a different configuration should be used to make this more efficient. For example if we use more bucket, for example 107, we still avoid collisions and we do not have the hash map too much sparse.

2.10 STRING KEYS

Let us consider a hash function that associates a word to a numerical value. For example we can use the ASCII character encoding of the first two letters of the string as numerical value. Thus, in case of *UDACIY* we have *U*=85 and *D*=68. For hash function we can use the following: $S[0]*31^{(n-1)} + S[1]*31^{(n-2)} + ... + S[n-1]$, where n is the length of the string. In this way for the word in the previous example, in which only the first two letters are encoded in a numerical value for simplicity, we have $85*31^1 + 68 = 2703$.

This hash function works very well because it assures a very low probability of collision. 31 is a number empirically obtained by several researches and showed good results in hashing strings.

2.10.1 String Keys Implementation

The following is the implementation of the string key map in Python.

The hash function of this implementation is: Hash Function = (ASCII[0] * 100) + ASCII[1]. In this code ord() and char() functions are used. ord() takes a char as an argument and return the respective ASCII code (ord('U') = 85), and char() takes a numeric value as ASCII code and return the respective char (char(85) = 'U').

Listing 2.4: String key implementation.

```
class HashTable():
          def __init__(self):
2
                self.table = [None]*10000
3
4
          def store(self, string):
5
6
                hv = self.calculate_hash_value(string)
                if hv != -1:
7
8
                      if self.table[hv] != None:
                             self.table[hv].append(string)
9
                       else:
10
                             self.table[hv] = [string]
11
12
          def lookup(self, string):
13
                hv = self.calculate_hash_value(string)
14
                if hv != -1:
15
                      if self.table[hv] != None:
16
                             if string in self.table[hv]:
17
18
                                   return hv
                return -1
19
20
          def calculate_hash_value(self, string):
21
                value = ord(string[0]*100) + ord(string[1])
22
                return value
23
```

SEARCHING AND SORTING

In this chapter are introduced the most important and used algorithms about **searching**, which retrieve some data stored in a particular data structure [17] (Search algorithm, Wikipedia), and **sorting**, which put in a certain order some data stored in a list [18] (Sorting algorithm, Wikipedia).

3.1 BINARY SEARCH

Let us consider the problem of finding a number stored in an array with an **ascending** order (Figure 30).

Figure 29: An array with numeric values ordered in an ascending order.

Figure 30: An array with numeric values ordered in an ascending order.

A first way to tackle the problem could be to check all the numbers of the array, in others words this method consists in performing a loop all over the elements of the array and check one by one if the number where is the element we are looking for. The complexity of this method is O(n) because in the worst case we have to look at all the elements of the array.

There is a more efficient way to search an element in an ascending ordered array then the method showed previously. This method is called **binary search** [19] (Binary Search Algorithm, Wikipedia). Let us start to check as the first element the central value of the array (in case the array has an even number of elements there are two central values, and one can choose the bigger or the lower). If the central element is the one we are looking for the search ends, otherwise, because the array is ascending ordered, we can ignore one half of the array. If the central number is bigger than the number we are looking for thus we will ignore the right half of the array, if the central number is lower than the number we are looking for thus we will ignore the left half of the array. This procedure is repeated: we consider the central value of the new array, which has half of the size of the previous step,

and we check is that value is the one we are looking for, and we repeat the procedure until or we find or we do not find the number we are looking for (Figure 32).

Figure 31: Binary search algorithms steps.

Figure 32: Binary search algorithms steps.

3.1.1 Efficiency of the Binary Search Algorithm

For evaluating the efficiency of this algorithm we have to evaluate the number of steps required for solving the problem. We already know that the efficiency of this algorithm will not be O(n), because in this algorithm not all the elements of the array are checked. The way for evaluating the complexity of an algorithm is to execute the algorithms varying the size of the input, and evaluating how many operations are done in the worst case. In the binary search algorithm the worst case is when the size of the array becomes one, so we find or we do not find the searched element at the end of the array splitting process.

Table 1: The number of iterations grows of one every power of two, in others words it grows as log(n).

		2°	2^1		2^2				2^3
Array Size	О	1	2	3	4	5	6	7	8
Iterations (worst case)	0	1	2	2	3	3	3	3	4

We observe that the exponent of the power of two is the number of iteration minus one, or at the contrary the number of iteration is the exponent of a power plus one.

$$log(power of exponent 2 + 1) = log_2(n) + 1$$

In general it is used log and is said that the binary search algorithm has a complexity of log(n).

3.1.2 Binary Search Implementation

The following code is the python implementation of the binary search algorithm.

Listing 3.1: Binary search python implementation.

```
def binary_search(array_input, value):
1
          low = 0
2
          high = len(array_input) - 1
3
          while low <= high:</pre>
4
                mid = (low + high) // 2
5
                if array_input[mid] == value:
6
                       return mid
7
                elif value > array_input[mid]:
8
                       new_low = mid + 1
9
                else:
10
                       new_high = mid - 1
11
          return -1
12
```


Figure 33: Array splitting in the implementation of the binary search algorithm.

Figure 34: Array splitting in the implementation of the binary search algorithm.

3.2 BUBBLE SORT

bubble sort is the easiest sorting algorithm working on arrays. Bubble sort works by swapping two element at each step if they are in the wrong order, repeating this process until all the array is not completely ordered [20] (Bubble Sort, Wikipedia). In this algorithm the bigger elements tend to move at the bottom of the array, like bubbles that move at the top of a water bottle.

Figure 35: In bubble sort the biggest element goes at the and of the array.

Figure 36: The swapping process is repeated until the array is completely ordered.

Figure 37: The swapping process is repeated until the array is completely ordered.

3.2.1 Efficiency of the Bubble Sort Algorithm

For ordering an array using the bubble sort n-1 iterations are required, every step. The number of total steps are n-1, thus the total number of operations to be executed for ordering an array is $(n-1)*(n-1) = n^2 - 2n + 1 = O(n^2)$. In summary:

- Worst Case: O(n²)
- Average Case: $O(n^2)$
- **Best Case**: O(n). The array is already completely ordered and it is enough to cycle all the elements.

3.2.2 Bubble Sort Implementation

The following code is the python implementation of the bubble sort algorithm.

Listing 3.2: Bubble Sort python implementation.

```
def bubble_sort(array_input):
1
         index = len(array_input) - 1
         sorted = False
3
4
         while not sorted:
5
6
                sorted = True
                for i in range(0, index):
7
8
                      if array_input[i] > array_input[i + 1]:
                            sorted = False
9
                            array_input[i], array_input[i + 1] = array_input
10
                                 [i + 1], array_input[i]
         return array\_input
```

3.3 MERGE SORT

The **merge sort** algorithm works by dividing the array in single elements at first, grouping and ordering all the elements two by two. After the first step we will have a lot of subarrays of two elements. The next step is to merge all these subarrays and to order the elements. The merging and ordering process is repeated until the array is unified again [21] (Merge Sort, Wikipedia). This way of reducing a big problem in several smaller is called **Divide et impera** (Divide and conquer).

Figure 38: In merge sort merging and sorting process is repeated until the array is again unified with all the elements sorted.

Figure 39: In merge sort merging and sorting process is repeated until the array is again unified with all the elements sorted.

The steps are (Figure 39):

- 1 Divide the array in subarryas of one element. Merge two by two and order the elements. The number of the subarrays is odd, so one array at this step is not merged. **The number of comparison for this step is** 3.
- 2 Merge and order again the new subarrays. For ordering in this case we start from the first element of the array on the left, and we compare this value with all the elements of the array on the right. If the first element is bigger than the picked one from the array on the right is moved, otherwise is not moved and we go to the next element. The number of comparison for this step is 5.
- 3 Merge and order again as at the previous step. The number of comparison for this step is 6.

3.3.1 Efficiency of the Merge Sort Algorithm

For evaluating the efficiency of this algorithms we have to count the number of iterations and comparisons are being done. By using the example showed in Figure 39 we will try to extrapolate a general pattern for an array of dimension n.

The number of comparisons depends by the array size. For an array of two elements the number of comparisons is one, for one of three elements are two, for one of four are three, and for one of seven are six. It is impossible to calculate in general the number of comparisons, but it is possible to calculate the worst case given the array dimension. From the previous example we see that for each step the maximum number of comparisons is seven, the size of the array. The reason is that the sum of all subarrays is seven. In general the sum of all subarrays is always the size of the array. Thus the total efficiency is O(# of comparison * # of iterations).

How many iterations are required? In our example for an array of seven elements, the iterations required are three. From the subprocess of our example we observe that for an array of size four the number of iterations are two, for one of size three are two, and for one of size two is one. Thus we can create the following table:

Table 2: The number of iterations grows of one every power of two, in others words it grows as log(n).

	2°	2^1		2^2				2^3		
Array Size	1	2	3	4	5	6	7	8	9	
Iterations (worst case)	О	1	2	2	3	3	3	3	4	

In conclusion the efficiency if O(n log(n)), which is better than $O(n^2)$ of the bubble sort.

The memory efficiency in this case is bigger than the bubble sort algorithm. For the merge sort some subarrays (in the worst case are n) are used and they need to be stored in the memory.

3.3.2 Merge Sort Implementation

The following code is the python implementation of the merge sort algorithm.

Listing 3.3: Merge Sort python implementation.

```
def merge_sort(array_input):
2
          if len(array_input) > 1:
3
                mid = len(array_input)//2
4
                 left_side = array_input[:mid]
5
                 right_side = array_input[mid:]
6
8
                 merge_sort(left_side)
                 merge_sort(right_side)
9
10
                 i = 0 # Left side index
11
                 j = 0 # Right side index
12
                 k = 0 # Sorted array index
13
14
                 while i < len(left_side) and j < len(right_side):
15
                       if left_side[i] < right_side[j]:</pre>
16
                             array_input[k] = left_side[i]
17
18
                              i += 1
                       else:
19
                              array_input[k] = right_side[j]
                              j += 1
21
                       k+=1
22
23
                 # Adding all elements if some of
24
          # them have been left behind
25
          while i < len(left_side):</pre>
26
                 array_input[k] = left_side[i]
27
             i+=1
28
             k+=1
29
30
          while j < len(right_side):</pre>
31
                array_input[k] = right_side[j]
32
             j += 1
33
             k+=1
34
```

```
35
36 return array_input
```


Figure 40: Merge sort algorithm implementation.

3.4 QUICKSORT

The **quicksort** is a sorting algorithm of the divide et impera type. It works by randomly choosing an element of the array, called pivot, and putting all the bigger and lower values on its left or on its right respectively. This procedure is repeated recursively on the two new subarrays until all the elements have been a pivot [22] (Qicksort, Wikipedia).

Figure 41: Quicksort algorithm part one.

Figure 42: Quicksort algorithm steps part two.

Here are the steps of quicksort algorithm based on the example of Figure 41 and Figure 42:

- 1 Let us consider the last element as pivot, two in this case, and let us compare it with all the elements to its left. Let us start from the first element of the array, and let us compare their values. In this case 8 > 2, so 8 is moved on the position of the pivot (2) which is moved of one position to the left. The number to be removed, 10 in this case, is moved in the first position.
- 2 Let us repeat the process. Now we have to compare the pivot (2) in the new position with the first element (10), and because 10 > 2 we repeat the previous step of moving the elements.

- 3 In this case 0 < 2 so we do not have to do anything, but going to the next element, 3 in this case.
- 4 For the pivot 2 all the elements to the left are less than it, and all the element to the right are bigger than it. 2 is not moved anymore. We can change the pivot and repeat all the steps for the new pivots until all the elements have been a pivot.

3.4.1 Efficiency of the Quicksort Algorithm

Evaluating the efficiency of quicksort is very hard. In the following there are some justifications for the worst case, and for the best and average complexity.

Let us consider first the worst case. In this situation the last elements of the array are the bigger ones, so it is necessary to check all the previous elements, by doing n^2 comparisons Figure 43.

Figure 43: Quicksort algorithm worst case.

In the best and in the average case the complexity is O(nlog(n)). The reason is because the first pivot tends to move at the center of the array, having in this way two subarrays. The pivots of these two subarrays will tend to move at their center and the process is repeated until all the elements have been a pivot, having in this way an ordered array.

Figure 44: Quicksort algorithm best and average case.

The space complexity of quicksort is constant, O(1).

This algorithm can be optimized in several ways. For example it is possible to order at the same time two half of the array, or considering as pivot always the last elements.

Quicksort and MERGE SORT COMPARISON Quicksort is often a better solution than merge sort, because even if its worst case performance is $O(n^2)$, this problem can be solved by using the randomized quicksort. If the right pivot is chosen the problem related to having a worst case performance is solved. Moreover the quicksort algorithm dose not require an auxiliary memory, which is a big advance in a lot of situations.

On the other hand merge sort is a better solution than quicksort and heapsort [23] (Heapsort, Wikipedia) when the sorting is done on linked lists that do not require big auxiliary space and on very large data sets stored on slowto-access media, such as disk storage or network-attached storage [22].

In summary:

```
Worst Case: O(n²)
Average Case: O(n log(n))
Best Case: O(n log(n))
Space: O(1)
```

3.4.2 Quicksort Implementation

The following code is the python implementation of the quicksort algorithm [24] (Quicksort Python Implementation).

Listing 3.4: Quicksort python implementation.

```
def merge_sort(array_input):
          elements = len(array_input)
3
4
       # Base case
5
      if elements < 2:</pre>
6
          return array_input
7
8
       # Position of the partitioning element
9
       current_position = 0
10
11
          # Partitioning loop
12
          for i in range(1, elements):
13
          if array_input[i] <= array_input[0]:</pre>
14
                current_position += 1
15
             temp = array_input[i]
16
             array_input[i] = array_input[current_position]
17
             array_input[current_position] = temp
18
19
       # Brings pivot to its appropriate position
20
       temp = array_input[0]
21
       array_input[0] = array_input[current_position]
22
       array_input[current_position] = temp
23
24
       # Sorts the elements to the left of pivot
25
       left = SortingAlgorithms.quicksort(array_input[0:current_position])
26
       # Sorts the elements to the right of pivot
27
       right = SortingAlgorithms.quicksort(array_input[current_position+1:
28
           elements])
29
       # Merging everything together
30
       array_input = left + [array_input[current_position]] + right
31
32
          return array_input
33
```

```
for i in range(0, elements):

0, pivot current position i elements .......]

if array_input[i] <= array_input[0]

SWAP(array_input[i], array_input[current_position])
```

```
At the and of the for loop move the pivot

O, pivot current position elements

array_input = [ .......]

SWAP(array_input[0], array_input[current_position])
```

Figure 45: Quicksort algorithm implementation.

TREES

In this chapter are introduced the fundamentals concepts of tree as abstract data type, and the most used algorithms related to **trees**.

4.1 GENERAL DEFINITIONS

A **tree** is an abstract datatype that simulate a hierarchical structure [25] (Trees, Wikipedia). A tree is a particular kind of a linked list where there are more next elements. The base element of a tree is called **node** while the first element is called **root**.

Figure 46: Elements of a tree and linked list.

Figure 47: Elements of a tree and linked list.

Trees must be completed connected structures, this means that there are not any nodes which are not connected to anything (Figure 49 case (a)), and there must not be present any cycles (Figure 49 case (c)).

Figure 48: Completed connected structure (a), a non completed connected structure (b), and a cycle (c).

Figure 49: Completed connected structure (49a), a non completed connected structure (49b), and a cycle (49c).

Trees are a hierarchical structures divided into layers: the first layer is the one belonging to the root node, the first node of a tree. The next element of the root are called children, which became parents in case they have next node connected as well. The last nodes of a trees are the nodes which do not have any children and they are called **leaf**. The numbers of connections is called **height**. A set of connections creates a **path**. The numbers of edges starting from the root to a node is called **depth**. All this definitions are defined in following figure (Figure 51).

Figure 50: A tree and its fundamentals elements.

Figure 51: A tree and its fundamentals elements.

4.2 TREE TRAVERSAL

Which way is the most efficient for visiting all the nodes of a tree? Is it more efficient looking layer by layer or looking at subtrees? There are two different approach to traverse a tree: the **depth-first search** (**DFS**) and the **breadth-first search** (**BFS**). In the first one the priority is to look at the children of a node, instead in the second one the priority is to look at the node of the same layer 53.

Figure 52: The depth-first search and the breadth-first search.

Figure 53: The depth-first search (53a) and the breadth-first search (53b)

AGGIUNGERE LA COMPLESSITÀ COMPUTAZIONALE DEI DUE APPROCCI.

4.2.1 Depth-first search

In the depth-first search there are several different ways to perform a search on a tree.

PRE-ORDER SEARCH In the **pre-order search** the first node to be checked as visited is the root. The following node is the left child by convention. Once checked the left child the process is repeated until the first node without any children is reached. At that point the same process is applied to the right side: all the nodes on the right are checked until all the nodes are checked as visited 55.

Figure 54: Pre-order search.

Figure 55: Pre-order search.

IN-ORDER SEARCH In the **in-order search** the first node to be checked is the first node without children on the left side (or right side). Once checked off this node the next one to be checked off is its parent, and the process is repeated again on the right side of the nodes, until all the nodes are checked off.

Figure 56: In-order search.

Figure 57: In-order search.

POST-ORDER SEARCH In the **post-order search** the first node to be checked off is the first node without children on the left side (or right side). Once checked off this node the next one to be checked off is the one which does not have any children. Once all the nodes of the current left subtree without

any children are checked off, the parents can be checked off, and the whole process is repeated until all the nodes are checked off.

Figure 58: Post-order search.

Figure 59: Post-order search.

4.3 BINARY TREES

Binary trees are trees in which the parent has at most two children (0, 1, 2 are the only number of admitted children). On binary trees some operations like searching, deleting, and inserting can be easily and efficiently done.

4.3.1 Search

To search an element in the tree one of the previous methods can be used. Because in a general tree there is no ordering this means that potentially all the elements of the tree can be visited, then the complexity results in O(n).

Pre-order traversal: [27, 19, 11, 3, 14, 24, 21, 25, 60, 41, 31, 49, 71, 61, 99] In-order traversal: [3, 11, 14, 19, 21, 24, 25, 27, 31, 41, 49, 60, 61, 71, 99] Post-order traversal: [3, 14, 11, 21, 25, 24, 19, 31, 49, 41, 61, 99, 71, 60, 27]

BFS: [27, 19, 60, 11, 24, 41, 71, 3, 14, 21, 25, 31, 49, 61, 99]

Figure 60: Example of tree search and traversal.

Figure 61: Example of tree search and traversal.

DFS	
Pre-order traversal	[27, 19, 11, 3, 14, 24, 21, 25, 60, 41, 31, 49, 71, 61, 99]
In-order traversal	[3, 11, 14, 19, 21, 24, 25, 27, 31, 41, 49, 60, 61, 71, 99]
Post-order	[3, 14, 11, 21, 25, 24, 19, 31, 49, 41, 61, 99, 71, 60, 27]
BRF	[27, 19, 60, 11, 24, 41, 71, 3, 14, 21, 25, 31, 49, 61, 99]

Table 3: Traversal paths for the tree in Figure 61.

4.3.2 Delete

Before the delete process there is always a search one for finding the element to be deleted. If the element to be deleted is a leaf, deleting it is not a problem because there are not any children to be moved. Instead if the node to be removed has some children there are several opportunities to reorganize the nodes, because the condition for a binary tree must remain valid (a node can have at most two nodes). So there are several strategies. Let us consider the following tree 63.

- If the node to be removed has only one child it can be replaced by the child node (case 1 Figure 63).
- If the node to be removed has two children it can be replaced with the child node which has no children node (case 2 Figure 63).
- If the node to be removed has two children which have again children as well, in this case there are several options which can be done. For example on child node can be moved to the position of the one to be removed (case 3 Figure 63).

Figure 62: Delete an element of a tree.

Figure 63: Delete an element of a tree.

AGGIUNGERE IL LIBRO DI ALGORITMI CITANDO CHE SIA UNA LET-TURA APPROFONDITA PER MAGGIORI DETTAGLI.

4.3.3 Insert

Insert a new element to a binary tree is not a hard operation, because it is enough to find a node which can take a new children node. In the worst case to find the proper node in which a child can be add the farthest leaf must be reached (case 1 65).

Figure 64: Add an element of a tree.

Figure 65: Add an element of a tree.

AGGIUNGERE IL LIBRO DI ALGORITMI CITANDO CHE SIA UNA LET-TURA APPROFONDITA PER MAGGIORI DETTAGLI.

4.3.4 Perfect binary tree

A perfect binary tree is a binary tree in which all the nodes have two children except the leaf which do not have any children. In this case the following results are valid

Figure 66: Perfect binary tree results.

Figure 67: Perfect binary tree.

When a new row is added, the number of nodes double. Given a level n the total number of nodes is 2n + 1.

4.3.5 Binary Tree Implementation

The following code is the recursive Python implementation of the preorder search and traversal (Figure 55). The recursive and iterative implementations of the other ways of search and traverse a tree are in appendix A.

Listing 4.1: Class definition for a node and a tree.

```
class Node():

def __init__(self, value):
    self.value = value
    self.left = None
    self.right = None

class BinaryTree():

def __init__(self, root):
    self.root = Node(root)
```

Listing 4.2: Recursive pre-order traversal and search implementation.

```
class Node():
1
2
          . . .
3
   class BinaryTree():
4
5
          . . .
6
          def print_tree(self):
7
                return self.preorder_print(tree.root, "")[:-1]
8
          def preorder_search_recursive(self, start, find_val):
10
                if start:
11
                      if start.value == find_val:
12
                             return True
13
                      self.preorder_search_recursive(start.left, find_val)
14
                      self.preorder_search_recursive(start.right, find_val)
15
16
          def preorder_print(self, start, traversal):
17
                if start:
18
                      traversal += (str(start.value) + "-")
19
                      traversal = self.preorder_print(start.left, traversal)
20
```

```
traversal = self.preorder_print(start.right,traversal)
return traversal
```

4.4 BINARY SEARCH TREES (BST)

Performing operations such as search, addition, or removal of an element it is a very efficient process if the binary tree is ordered. A binary tree is ordered if for all nodes the left child has a minor value, and the right child has a greater value than the considered node [26](Binary search tree, Wikipedia).

Figure 68: Search on an ordered binary tree.

Figure 69: Search on an ordered binary tree.

For example in Figure 69 is an ordered tree. Let us consider we would like to find the node which value is 7. Because the tree is ordered for efficiently finding 7 is enough to compare 7 with the value of the node and choose every time if to search on the right or on the left. In this way for finding a value is not mandatory to look at all the nodes, and the complexity for this operation is log(n).

Let us consider instead we would like to add a new node of value 4 to the tree of Figure 69. Because the tree is ordered, there is only one place in which the node can be added. In the case of the tree in Figure 69 the node can be easily added because there is an empty space that can correctly take it (Figure 71). In this case the complexity for this operation is again log(n).

Figure 70: Addition on an ordered binary tree.

Figure 71: Addition on an ordered binary tree.

In case the position of the node is already occupied, adding the node could be a very difficult task. For a more complete and formal description of this topic refer to [27] in the chapter about trees.

When all the possible nodes are present in each level the tree is said **bal-anced**. In Figure 71 there is an example of a balanced tree. When instead a tree has all its children nodes which have always a bigger value, all the tree is on the right, and it is said to be **unbalanced**. In this case the search of an element has a O(n) complexity in the worst case.

Figure 72: An unbalanced binary tree.

Figure 73: An unbalanced binary tree.

4.4.1 Binary Search Tree Implementation

The following code is the python implementation of the search and addition operations performed on a ordered binary tree.

Listing 4.3: implementation of insert and search operation for a binary search tree.

```
class BST():
          def __init__(self, root):
3
                self.root = Node(root)
4
5
          def insert(self, new_val):
6
                self.insert_helper(self.root, new_val)
7
8
          def insert_helper(self, current, new_val):
                if current.value < new_val:</pre>
10
                       if current.right:
11
                             self.insert_helper(current.right, new_val)
12
                       else:
13
                             self.current.right = Node(new_val)
14
                else:
15
                       if current.left:
16
                             self.insert_helper(current.left, new_val)
17
                       else:
18
                             current.left = Node(new_val)
19
20
          def search(self, find_val):
21
                return self.search_helper(self.root, find_val)
22
23
          def search_helper(self, current, find_val):
24
                if current:
25
                       if current.value == find_val:
26
                             return True
27
28
                       elif current.value < find_val:</pre>
                             return self.search_helper(current.right,
29
                                 find_val)
                       else:
30
                             return self.search_helper(current.left, find_val
31
```

4.5 HEAPS

Heaps are particular tree-based data structure in which the elements are ordered in increasing or decreasing order [28] (Heap, Wikipedia). Heaps are a very efficient implementation of the abstract data type (Chapter 2) priority queue (Section 2.6). The value with the highest (or lowest) priority is always stored at the root. Heaps are very useful when an element with a high (or low) priority must be repeatedly removed from the heap. Moreover, heaps are not sorted structure, but are regarded as partially ordered.

We say the *max heap* (Figure 75a) if for every node its children have the values less or equal than the one of the parent (the root has always the highest value). We say instead *min heap* (Figure 75b) if for every node its children have the values higher or equal than the on of the parent (the root has the lowest value).

Figure 74: Max heap (a) and min heap (b) example.

Figure 75: Max heap (75a) and min heap (75b) example.

In general heaps are not binary trees so they can have more than two nodes.

In a max heap tree the search of the biggest value is called **peek** and it has a constant complexity (O(1)). For searching other values instead we have to check node by node as the ordering of the left and right side is not guarantee. The average case is $O(\frac{n}{2}) = O(n)$.

4.5.1 Heapify

Let us consider we would like to add a new node to a heap. In this case the node to be add must respect the heap condition. For doing so the node is added in the first available position, and later the node of the heap are swapped in order to keep true the heap condition.

Figure 76: Add a new node to a heap.

Figure 77: Add a new node to a heap.

In the example of Figure 77 only one swap is necessary. The complexity of adding a new element and swap all the node, in order to keep valid the heap condition, is log(n), and in the worst case the highest number of operations correspond to the height of the tree.

4.5.2 Heap Implementation

To implement a heap we can use an array. An example of this application is shown in the following figure (Figure 79).

Figure 78: Implementation example of a heap using an array.

Figure 79: Implementation example of a heap using an array.

4.6 SELF-BALANCING BINARY SEARCH TREES

Self-balancing binary trees are binary tree-based structure that automatically maintain the lowest height (number of levels below the root) when an insertion or deletion is done [29] (Self-balancing binary search tree, Wikipedia). This structure is an efficient way to implement abstract data type like lists, priority queue, and sets.

Figure 80: Example of balanced (b) and unbalanced (a) tree. Credits: Self-balancing binary search tree, Wikipedia

Figure 81: Example of unbalanced (81a) and balanced tree (81b). Credits: Self-balancing binary search tree, Wikipedia

In Figure 81 is show an unbalanced tree (81a) in which the average path to reach the leaf is 3.27 nodes. If the same tree is balanced (81b) the average path to reach any leaf from the root decreased to 3.

4.7 RED-BLACK TREES

The **red-black trees** are particular kind of self balancing trees. An extra bit is used to store the color of the node, which can be only **red** or **black**. Using a color for each node assures that the tree remains balanced during insertion and deletion operations [30] (Red-black tree, Wikipedia).

The rules that a red-black tree must respect are:

- 1 Nodes can be only of two types: **red** or **black**.
- 2 There must exist the **null leaf nodes**. Every node which does not have two leaf must have the children **null**.
- 3 If a node is **red** all its children must be **black**.
- 4 Usually the root is **black**, but this is not mandatory.
- 5 Every path from a the upper nodes to the lower ones must contain the same number of **black** nodes. This property is very important when inserting new nodes.

Figure 82: A red-black tree.

Figure 83: A red-black tree.

Usual only red nodes are added and the color of the other nodes are changed accordingly in order to respect the rule for the red-black tree.

Figure 84: Insertion of a new node and the following updating of the color nodes.

Figure 85: Insertion of a new node and the following updating of the color nodes.

In case the insertion or the removal does nor respect the rules of the redblack tree and BST some more complex operations must be done as in the following figure.

Figure 86: Left and right rotation for balancing the tree after an insertion.

Figure 87: An example of right rotation.

GRAPHS

5

In this chapter are introduced the fundamentals concepts of **graphs** as mathematical objects, and as an abstract data type, its applications in computer science, and the most important and notable algorithms with their implementation.

5.1 GENERAL DEFINITIONS

A graph is a discrete mathematical structure in which the connections between its elements, and their relationship are highlighted. A graph is made up by two different elements: **nodes** or **vertices**, and **links** or **edges**. In case the links do not have any direction the graph is called **undirected graph** (Figure), in case instead the links have a direction the graph is called **directed graph**.

Figure 88: Undirected (a) and directed (b) graphs and its elements.

Figure 89: Undirected and directed graphs and its elements.

Formally a graph is the pair G = (V, E), where V is the set of all vertices, and E is the set of paired vertices, whose elements are called edges [31] (Graph, Wikipedia).

A tree (Chapter 4) is a special kind of graph.

Graphs are very useful to describe a lot of real situations like: connections between people, computers (internet), web pages (world wide web), airports, cities, and gene inside the DNA.

In graphs, differently to trees, closed loops can exist. These kind of closed loops can be dangerous for the algorithms because they could lead to infinite executions.

5.1.1 Connectivity

Connectivity is a measure that describe how much the nodes of a graph are connected. It is defined as the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into isolated subgraphs [32] (Connectivity, Wikipedia).

A graph is said to be **connected** if every pairs of nodes are connected. Thus it always exists at least one path that connects every pairs of nodes. If an undirected graphs is not connected then it is **disconnected**: in this case there is one or more nodes that can not be reached by any paths.

STRONGLY CONNECTED A directed graph is said to be **strongly connected** if every pairs of nodes can be reached by one or more path.

WEAKLY CONNECTED A directed graph is said to be **weakly connected** if by replacing all the direct edges with undirectd ones, the new graph is connected. in a directed graph some nodes can not be reached if all the edges exit or enter from them. The graph in Figure 91 is weakly connected because the node g has only entering edges.

Figure 90: A weakly connected graph.

Figure 91: A weakly connected graph.

5.2 GRAPH REPRESENTATIONS

There are several ways to represent graphs using data structures. For example in an object oriented programming language a way could be to define a type for the vertex, and a type for the edges.

The most common data structures used for representing a graph are: **edge list**, **adjacency list**, and **adjacency matrix** [27].

In appendix D there is a summary of the complexities for the most common operations performed on graphs for the different data structures.

5.2.1 Edge List

The **edge list** is an unordered list of all pairs of nodes that form an edge. This representation is minimal but it does not allow to locate a specific edge, or the set of edges incident to a particular node [27].

Figure 92: Edge list.

Figure 93: Edge list.

5.2.2 Adjacency List

The adjacency list is a list containing a separate list for each node containing all the incident edges of that node. In this representation identify all the edges incident to a node is easy [27]. In case of directed graphs for each node there are two different lists: one for entering edges, and another one for the edges that go out.

Figure 94: Adjacency list.

Figure 95: Adjacency list.

5.2.3 Adjacency Matrix

The **adjacency matrix** is a matrix A in which each element A[i,j] represent the relationship between the edge i with the edge j. If between i and j there is an edge A[i,j] = 1, otherwise 0. In case the an ed go out and enter in the same edge A[i,i] = 1. For undirected graphs this matrix is symmetric, and in case there are not edges going in and out the same node the principal diagonal is all of 0.

Figure 96: Adjacency matrix.

Figure 97: Adjacency matrix.

In the appendix B there is the full python implementation of the graph representation. There are defined the classes for nodes, edges, and graphs

objects. Moreover, all the main operations on graphs like: insert a new node, a new edge, get the edge list, the adjacency list, the adjacency matrix, and find the max index are also implemented.

5.3 GRAPH TRAVERSAL

Like in the case of trees (Chapter 4), also for graphs there are two different ways of traverse: **depth-first search**, and **breadth-first search**. But for graphs, differently from trees, there is not a privileged way of traverse, and it is arbitrarily chosen a node where to start the traverse.

5.3.1 Depth-first Search (DFS)

In the **depth-fist search** the search starts from an arbitrary node and traverse one of the connected node. This process is repeated until there are not any new nodes on that path and start again with new nodes, until the searched node is found, or all the nodes have been traversed [33] (Depth-first search, Wikipedia). This traversal can be implemented both recursively, and iteratively by using a stack.

Figure 98: Depth-first search example.

Figure 99: Depth-first search example.

Listing 5.1: Recursive implementation of a depth-first search.

```
class Graph():
def depth_first_search_recursive(self, start_node):
    ret_list = [start_node.value]
```

The complexity in this case is O(|E| + |V|), where E is the number of edges and V the number of vertexes. For more details on complexities evaluation on graphs refer here [27].

In appendix C there is a detailed recursive and iterative implementation, with also an additional example.

5.3.2 Breadth-first Search (BFS)

In **breadth-first search** the traversal is done starting from a node, and the firsy visited nodes are all its neighbors. Once visited all the neighbors the traversal keeps going in the same previous way [34] (Breadth-first search, Wikipedia).

Figure 100: Breadth-first search example.

Figure 101: Breadth-first search example.

The only possible implementation is the iterative one, and it is implemented by using a queue.

Listing 5.2: Recursive implementation of a depth-first search.

```
class Graph():
    ...
```

```
3
4     def breadth_first_search(self, start_node):
5
6     return ret_list
```

The complexity in this case is O(|E| + |V|), where E is the number of edges and V the number of vertexes. For more details on complexities evaluation on graphs refer here [27].

In appendix C there is the detailed implementation, with also an additional example. AGGIUNGERE LO SPANNING TREE DELLA RICERCA.

5.3.3 Eulerian Path and Circuit

An Eulerian path (or Eulerian trail) is a path of edges that visits all the edges in a graph exactly once [35] (Eulerian path, Wikipedia). Not every graph has an Eulerian path, and even if a graph has an Eulerian path it could be found only at specific starting nodes (Figure 103).

Figure 102: Eulerian path (a) and not Eulerian path (b).

Figure 103: Eulerian path (103a) and not Eulerian path (103b).

An Eulerian circuit (or Eulerian cycle) is an Eulerian path which starts and ends on the same node. As before not every graph has an Eulerian circuit.

Figure 104: Eulerian circuit.

Figure 105: Eulerian circuit.

In the following table are summarized some rules for finding if a graph has Eulerian path and/or circuit [36].

	Eulerian Path	Eulerian Circuit
Undirected Graph	Either every vertex has	Every vertex has an even
	even degree or exactly	degree.
	two vertices have odd de-	
	gree.	
Directed Graph	At most one vertex has	Every vertex has equal
	(outdegree)-(indegree)=1	indegree and outdegree.
	and at most one vertex	
	has	
	(indegree)-(outdegree)=1	
	and all other vertices	
	have equal in and out	
	degrees.	

Table 4: Eulerian path and circuit existence rules.

5.3.4 Hamiltonian Path and Circuit

A Hamiltonian path (or traceable path) is a path in which all nodes are visited exactly once. A Hamiltonian circuit (or Hamiltonian Cycle) is a Hamiltonian path that starts and ends in the same node [37] (Hamiltonian path, Wikipedia).

Figure 106: Hamiltonian path (a) and Hamiltonian circuit (b).

Figure 107: Hamiltonian path (107a) and Hamiltonian circuit (107b).

5.3.5 Shortest Path Problem

The **shorted path problem** is the problem of finding a path between two nodes such that the sum of the weights is minimized. In case of an undirected graph the shortest path is the path that pass through the minimum number of nodes [38] (Shortest path problem, Wikipedia). The breadth-first search can be used for finding the shortest path from a node to all the others, but it expects that all the edges are of the same nature, and in several situation this approach is not useful. Let us image we would like to find the best path connecting two cities. In this case the links between the nodes are not the same, as some strees are faster or slower than others. Another interesting application of finding the shortest path in graphs is about routing packages from a computer to another in internet in order to be as fast as possible.

Figure 108: Shortest path.

Figure 109: Shortest path.

5.3.6 Dijkstra's Algorithm

The Dijkstra's algorithm single source shortest path for a non-negative weighted graphs, in which all the shortest paths from a given node to all the other nodes are found. The distance between two nodes is the sum of the weights of the edges of the path [39].

This algorithm is part of a broader class of algorithms which is called **greedy algorithms** [40] (Greedy algorithms, Wikipedia). In greedy algorithms the optimal solution is found by finding the optimal solution at every step without considering the previous ones. This approach does not always find the optimal solution of a problem. A more advanced technique to greedy algorithm is **dynamic programming**, which will be the topic of the next chapter.

RELAXATION Before introducing the Dijkstra's algorithm it is important to introduce the **relaxation condition**. Let us consider the following weighted directed graph Figure 111. The cost for going from node 1 to node 2 is 2, and ∞ from 1 to 3, as there is not any direct link. The relaxation condition is then:

Definition 5.1 Relaxation condition

if (d[u] + w(u, v) < d[v])

d[v] = d[u] + w(u, v)

Where d[u] is the distance of node u from the starting node (1 in this case), and w(u, v) is the weight from the node u to node v.

Figure 110: Relaxation condition.

Figure 111: Relaxation condition.

In other words the relaxation condition says that if there is a shorter path connecting two nodes, this distance should be used as the new distance.

In the Dijkstra's algorithm at each step the new node is chosen based on the lowest value of the distance at that given step, and eventually the distances for all the adjacent nodes are updated accordingly the relaxation condition.

Let us consider the following graph Figure 113, and let us start from the node a [41].

Figure 112: Dijkstra's algorithm example.

Figure 113: Dijkstra's algorithm example.

For describing how the algorithm works we use the following table, in which for each column there is a node, and at every step a new row is added for the node for which the shortest path has just been found. At the first step the table it looks like:

explored vertex	a	b	C	d	e	f
a	0_a	50α	45 _α	10α	∞	∞

All the nodes are listed as columns, and all the distances from the node $\mathfrak a$ to all the others are reported in the table. The nodes $\mathfrak e$ and $\mathfrak f$ do not have any directed link to the node $\mathfrak a$, then their distance is infinity. Once listed all the distances the node with the lowest one is selected: at the first step it is the node $\mathfrak a$.

At the second step the lowest distance is chosen: in this case it is for the node d, then it is added in the visited node as the shortest path from a to d is fund. The node e is now reachable and it has a distance of 15 from d, then 25 from a $(10_a + 15_{b,e})$.

visited node	a	b	c	d	e	f
a	0_a	50 _α	45_a	10 _α	∞	∞
d	Ī	50_a	45a	(10_a)	$25_{\rm d}$	∞

The process is repeated again: the lowest distance is chosen, in this case is the distance to reach the node e. As for the previous step we check for all nodes if it is shorter to pass through the new shortest path found, and in case true the weight are updated (relaxation condition). At this step the weight to be updated is the one for the node b because for reaching it from a the weight is $50~(50_a)$, while for reaching it passing through e (which in turn for be reached with its shortest path we have to go through e, which in turn again is reached with its shortest path from a) is $45~(25_d + 20_{e,b} = 45_e < 50_a)$.

visited node	a	b	С	d	e	f
a	0_{a}	50α	45a	10α	∞	∞
d	Ī	50_{a}	$45_{\mathfrak{a}}$	(10_a)	$25_{\rm d}$	∞
e		45_e	45_{a}		$(25_{\rm d})$	∞

The same process is repeated again, the new shortest path found is tor the node b passing through e with a weight of 45. In this case there are two shortest path and for this example is the same choosing one of them.

visited node	a	b	С	d	e	f
a	0_a	50α		10 _a	∞	∞
d	Ī	50_{a}	45_a	(10_{a})	$25_{\rm d}$	∞
e	I	45_e	45_a	T	$(25_{\rm d})$	∞
b	I	45_e	45_a			∞

In the last step all the shortest paths are found. Only the node f has been left out as it can not be reached in any ways from a.

visited node	a	b	c	d	e	f
a	0_a	50α	45_a	10 _α	∞	∞
d	Ī	50_{a}	45_a	(10_a)	$25_{\rm d}$	∞
e	- 1	45_e	45_a	T	$(25_{\rm d})$	∞
b	I	$\overline{(45_e)}$	45_a		Ī	∞
d	1	$\overline{}$	$\overline{45_e}$	1	1	∞

All the shortest paths from a are:

- b: $a \rightarrow d \rightarrow e \rightarrow b$, W=45;
- c: a \rightarrow c, W=45;
- d: a \rightarrow d, W=10;
- e: a \rightarrow d \rightarrow e, W=25;
- $f: \infty$.

For example for finding the shortest path for reaching the node b the steps to follow are:

visited node	a	b	С	d	e	f
a	Oax	_50 _α	45_a	10 _α	∞	∞
d	Ī	50_{α}	45a	10_a	$25_{\rm d}$	∞
e	1	45_e	45_{a}	T	$(25_{\rm d})$	∞
b	ı	(45_e)	-45_{α}		Τ	∞
d			45_e	- 1	1	∞

In the appendix E the full implementation of the Dijkstra's algorithm is reported.

The complexity of this algorithm is $O(|V^2|)$ where V is the number of nodes. This is because all the nodes are relaxed with respect all the others, and in the worst case all nodes must be checked. If the implementation of the algorithm is optimized the complexity in this case is O(|E| + |V| log(|V|)), where E is the number of edges.

DYNAMIC PROGRAMMING

6

In this chapter are introduced the fundamentals concepts of **dynamic programming**.

6.1 GENERAL DEFINITIONS

Dynamic programming is a mathematical optimization method and a computer programming method [42] (Dynamic Programming, Wikipedia).

In computer science a problem can be solved with a dynamic programming method must have an optimal substructure (the problem can be broken down in smaller parts) and an overlapping sub-problems (the broken down problems share some results). If a problem can be solved with an optimal substructure but with non-overlapping sub-problems then the strategy is called **divide and conquer**.

When a problem is solved with dynamic programming, the starting point is to find the base case, which is the sub-problem with the lowest computational cost. Once solved this problem its result is saved in a table called **lookup table**, and the same general formula is called recursively. At each step the result is saved in the lookup table, as in the following steps it might be used. Instead of calculating the same value again, we look at the lookup table and retrieve it. This aspect of dynamic programming makes this technique extremely powerful, as a lot of calculations must not be repeated several times.

For example, in the calculation of the Fibonacci number we have to use the same function several time in different sub-problems. Let us suppose we want to calculate the fifth number of the Fibonacci sequence:

Figure 114: Calculation of the fifth number of the Fibonacci sequence.

Some values are used several times in different sub-problem as shown in the following table:

 Table 5: Number of computation for each value of the Fibonacci sequence.

If the values of the functions which are repeated are stored in a lookup table, instead of calculating them again are retrieved from the table and used.

6.2 KNAPSACK PROBLEM

6.3 TRAVELLING SALESMAN PROBLEM

APPENDIX

BINARY SEARCH COMPLETE IMPLEMENTATION

The best way to implement the tree data structure is to create a class for the nodes (**Node**) and a class for the binary tree (**BinaryTree**). As all the nodes of a binary trees has at most two children, in the class **Node** is enough to have three attributes: the value of the node, the left, and the right child, in turn of **Node** type as well. This way of implement tree is very similar to the one used for the linked list (2.4).

Listing A.1: Class definition for a node and a tree.

In this appendix there is a detailed implementation, both recursive and iterative, of all possible ways to perform a tree traversal in the case of **depth-first search**: pre-order traversal A.1, in-order traversal A.2, and post-order traversal A.3. The convention followed here is to look up first at the left child always, and later look up the right one. The opposite approach is equivalent.

The pseudocode of the iterative implementations is taken from [43](Tree traversal, Wikipedia).

A.1 PRE-ORDER TRAVERSAL

In the pre-order traversal every new node is first checked as visited, and the left subtree is traversed first, and later the right one. This process is repeated until all the nodes of the tree are visited (4.2.1).

For implementing the pre-order traversal iteratively a stack (2.5) is used. The steps are [43]:

Algorithm 1: Pre-order pseudocode.

```
1 Function Recursive-Preorder(node):
      if (node == null) then
         return
3
      visit(node)
4
      Recursive-Preorder(node.left)
6
      Recursive-Preorder(node.right)
7
  Function Iterative-Preorder(node):
8
      s \leftarrow empty stack
9
      s.push(node)
10
      while (not s.isEmpty()) do
11
         node \leftarrow s.pop()
12
         visit(node)
13
         /* Right child is pushed first so that left is
14
          processed first (LIF0) */
         if (node.right \neq null) then
15
          s.push(node.right)
16
         if (node.left \neq null) then
17
             s.push(node.left)
18
```

Listing A.2: Recursive and iterative implementation of pre-order traversal.

```
class BinaryTree():
          . . .
2
3
          def recursive_print_tree(self):
4
                return self.preorder_recursive_print(tree.root, "")[:-1]
5
6
          def iterative_print_tree(self):
7
                return self.preorder_search_iterative(self, tree.root, "")
8
          def preorder_search_recursive(self, start, find_val):
10
                if start:
11
                      if start.value == find_val:
12
                             return True
13
                      self.preorder_search_recursive(start.left, find_val)
14
                      self.preorder_search_recursive(start.right, find_val)
15
16
          def preorder_search_iterative(self, start, find_val):
17
                if start == None:
18
                      return None
19
20
                visited = []
                stack = []
21
                stack.push(start)
                while stack: # Keep cycle until the stack is empty
23
                      node = stack.pop()
24
                      visited.append(node)
25
```

```
if node.value == find_val:
26
                             return True
27
                      # Right child is pushed first so that the left one is
28
                           processed first
                      if node.right:
29
                             stack.append(node.right)
30
                      if node.left:
31
                             stack.append(node.right)
32
                return visited
33
34
          def preorder_recursive_print(self, start, traversal):
35
                if start:
36
                      traversal += (str(start.value) + "-")
37
                      traversal = self.preorder_recursive_print(start.left,
38
                           traversal)
                      traversal = self.preorder_recursive_print(start.right,
39
                           traversal)
                return traversal
40
```


Figure 115: Pre-order iterative example.

A.2 IN-ORDER TRAVERSAL

In the in-order traversal the first node to be checked is the first leaf of the left subtree. The second one is the parent of the first checked node, and then

the right subtree is checked repeating the previous process. All this process is repeated until all the nodes are visited or the value is found 4.2.1.

For implementing the in-order traversal iteratively a stack is used. The steps are [43]:

Algorithm 2: In-order pseudocode.

```
1 Function Recursive-Inorder(node):
      if (node == null) then
          return
 3
      Recursive-Inorder(node.left)
4
      visit(node)
      Recursive-Inorder(node.right)
6
7
  Function Iterative-Inorder(node):
      s \leftarrow empty stack
9
      while (not s.isEmpty() or node \neq null) do
10
          if (node \neq null) then
11
              s.push(node)
12
              node \leftarrow node.left
13
          else
14
              node \leftarrow s.pop()
15
              visit(node)
16
              node \leftarrow node.right
17
```

Listing A.3: Recursive and iterative implementation of in-order traversal.

```
class BinaryTree():
          . . .
2
3
          def recursive_print_tree(self):
4
                return self.inorder_recursive_print(tree.root, "")[:-1]
5
6
          def iterative_print_tree(self):
7
                return self.inorder_search_iterative(self, tree.root, "")
8
          def inorder_search_recursive(self, start, find_val):
10
                if start:
11
                      self.inorder_search_recursive(start.left, find_val)
12
                      if start.value == find_val:
13
                             return True
14
                      self.inorder_search_recursive(start.right, find_val)
15
16
          def inorder_search_iterative(self, start, find_val):
                if start == None:
18
                      return None
19
20
                stack = []
                stack.append(start)
21
                current = start
                visited = []
23
                while stack or current != None:
24
                      if current != None:
25
```

```
stack.append(current)
26
                            current = current.left
27
                      else:
28
                            current = stack.pop()
29
                            if current.value == find_val:
30
31
                                  return True
                            visited.append(current)
32
                            current = current.right
33
                return visited
34
35
          def inorder_recursive_print(self, start, traversal):
36
                if start:
37
                      traversal = self.inorder_recursive_print(start.left,
38
                          traversal)
                      traversal += (str(start.value) + "-")
39
                      traversal = self.inorder_recursive_print(start.right,
40
               return traversal
41
```


Figure 116: In-order iterative example.

A.3 POST-ORDER TRAVERSAL

In the post-order traversal the first node to be checked is the first leaf of the left subtree. The second node is the right node of the parent of the first checked node. Once checked the right side of the subtree also the parent is checked and the process is repeated until all the node are visited or the value is found 4.2.1.

Also in this case for implementing the post-order traversal iteratively a stack is used. The steps are [43]:

Algorithm 3: Post-order pseudocode.

```
1 Function Recursive-Postorder(node):
      if (node == null) then
         return
3
      Recursive-Postorder(node.left)
4
      Recursive-Postorder(node.right)
6
      visit(node)
7
  Function Iterative-Postorder(node):
8
      s \leftarrow empty stack
9
      lastNodeVisited \leftarrow null
10
      while (not s.isEmpty() or node \neq null) do
11
          if (node \neq null) then
12
             s.push(node)
13
             node \leftarrow node.left
14
          else
15
             peekNode \leftarrow s.peek()
16
             /* If right child exists and traversing node from
17
               left child, then move right /*
             if (peekNode.right \neq null and lastNodeVisited \neq
18
               peekNode.right) then
                 node \leftarrow peekNode.right
19
             else
20
                 visit(peekNode)
21
                 lastVisitedNode \leftarrow s.pop()
22
```

Listing A.4: Recursive and iterative implementation of post-order traversal.

```
class BinaryTree():
3
         def recursive_print_tree(self):
4
                return self.postorder_recursive_print(tree.root, "")[:-1]
5
6
          def iterative_print_tree(self):
                return self.postorder_search_iterative(tree.root, "")
8
         def postorder_search_recursive(self, start, find_val):
10
                if start:
11
                      self.postorder_search_recursive(start.left, find_val)
                      self.postorder_search_recursive(start.right, find_val)
13
                      if start.value == find_val:
14
                            return True
15
16
          def postorder_search_iterative(self, start, find_val):
17
                if start == None:
18
19
                      return None
```

```
stack = []
20
                stack.push(start)
21
                last_visited_node = None
22
                visited = []
23
                current = start
24
                while stack or current != None:
25
                      if current != None:
26
                            s.push(current)
27
                            current = current.left
28
                      else:
29
                            # Take the last element of the stack
30
                            peeked_node = stack[-1]
31
                            # If right child exists and traversing node from
32
                                  left child, then move right
                            if (peeked_node.right != null and
33
                                last_visited_node != peeked_node.right):
                                   current = peeked_node.right
34
                            else:
35
                                  if peeked_node.value == find_val:
36
                                         return True
37
                                  visited.append(peeked_node)
38
                                  last_visited_node = stack.pop()
39
                return visited
40
41
          def postorder_recursive_print(self, start, traversal):
42
                if start:
43
                      traversal = self.postorder_recursive_print(start.left,
44
                           traversal)
                      traversal = self.postorder_recursive_print(start.right
45
                          ,traversal)
                      traversal += (str(start.value) + "-")
46
                return traversal
47
```


Figure 117: Post-order iterative example.

A.4 BREADTH-FIRST SEARCH IMPLEMENTATION

In the case of the **breadth-first search** (Chapter 4) the implementation uses a queue (Section 2.6) instead of a stack. Also here the convention is to check the left node first and later the right ones. The pesudocode is adapted from the general case of the breadth-first search taken from here [34] (Breadth-first search, Wikipedia).

Algorithm 4: Breadth-first search pseudocode.

```
1 Function Breadth-first-search(node):
      q \leftarrow empty queue
      visit(node)
3
      q.enqueue(node)
4
      while (not q.isEmpty()) do
         node \leftarrow q.dequeue()
6
         visit(node)
7
8
         /* Left child is enqueue first so that left is
           processed first (FIFO) */
         if node.left \neq null then
9
          q.enqueue(node.left)
10
         if node.right \neq null then
11
             q.enqueue(node.right)
12
```

Listing A.5: Breadth-first search implementation.

```
class BinaryTree():
3
          def breadth_first_search(self, start, find_val):
4
                if start == None:
5
6
                       return None
                visited = []
                queue = []
8
                queue.append(start)
9
                while queue:
10
                      node = queue.pop(0)
11
                       visited.append(node)
12
                       if node.value == find_val:
13
                             return True
14
                       # Left node is added first so that the left side nodes
15
                            are visited first
                       if node.left:
16
                             queue.append(node.left)
17
                       if node.right:
18
                             queue.append(node.right)
19
                 return visited
20
```


Figure 118: Breadth-first search example.

A.5 COMPLEXITY SUMMARY

B

IMPLEMENTATION OF GRAPH REPRESENTATION

In the following python code there is the implementation for the all the different graph representation, and the operation of insertion of nodes and edges.

Listing B.1: Graph representation and fundamental operations.

```
class Node():
          def __init__(self, value):
 3
                self.value = value
 4
                self.edges = []
 5
 6
   class Edge():
7
8
          def __init__(self, value, node_from, node_to):
9
                self.value = value
10
                self.node_from = node_from
11
                self.node_to = node_to
12
13
   class Graph():
14
15
          def __init__(self, nodes=[], edges=[]):
16
                self.nodes = nodes
17
                self.edges = edges
18
19
          def insert_node(self, new_node_value):
20
                new_node = Node(new_node_value)
21
                self.nodes.append(new_node)
22
23
          def insert_edge(self, new_edge_val, node_from, val, node_to_val):
24
                from_found = None
25
                for node in self.nodes:
26
                      if node_from_val == node.value:
27
                             from_found = node
28
                      if node_to_val == node.value:
29
                             to_found = node
30
                      if from_found == None:
31
                             from_found = node(node_from_val=
32
                             self.nodes.append(from_found)
33
                       if to_found == None:
34
                             to_found = Node(node_to_val)
35
36
                             self.nodes.append(to_found)
                new_edge = Edge(new_edge_val, from_found, to_found)
37
                from_found.edges.append(new_edge)
38
                to_found.edges.append(new_edge)
39
                self.edges.append(new_edge)
40
41
          def get_edge_list(self):
```

```
get_list = []
43
                for edge_object in self.edges:
44
                      edge = (edge_object.value, edge_object.node_from_value.
45
                          value, edge_object.node_to.value)
                      edge_list.append(edge)
46
                return edge_list
47
48
         def get_adjacency_list(self):
49
                max_index = self.find_max_index()
50
                dajacency_list = [None]*(max_index + 1)
51
                for edge_object in self.edges:
52
                      if adjacency_list[edge_object.node_from.value]:
53
                            adjacency_list[edge_object.node_from.value].
54
                                append((edge_object.node_to.value,
                                edge_object.value))
                      else:
55
56
                            adjacency_list[edge_object.node_from.value] = [(
                                edge_object.node_to.value, edge_object.value
                return adjacency_list
57
58
         def get_adjacency_matrix(self):
59
                max_index = self.find_max_inde()
                adjacency_matrix = [[0 for i in range(max_index + 1)] for j
61
                    in range(max_index + 1)]
                for edge_object in self.edges:
62
                      adjacency_matrix[edge_object.node_from.value][
63
                          edge_object.node_to.value] = edge_object.value
                return adjacency_matrix
64
65
         def find_max_index(self):
66
                max\_index = 1
67
                if len(self.node):
68
                      for node in self.nodes:
69
                            if node.value > max_index:
70
                                  max_index = node.value
71
                return max_index
72
```

C

IMPLEMENTATION OF GRAPH TRAVERSAL

In the following chapter **depth-first search** and **breadth-first search** are implemented, with both recursive and iterative implementation.

C.1 DEPTH-FIRST SEARCH

In the following there are the pesudocode, the python implementation, and an example of execution of the depth-first search on a graph.

Algorithm 5: Depth-first search pseudocode.

```
Function Recursive-Depth-first-search(graph, vertex):
      visit(vertex)
      for all adjacent nodes adj_vertices to vertex do
3
         Recursive-Depth-first-search(graph, adj_{\nu}ertices)
4
5
6 Function Iterative-Depth-first-search(graph, vertex):
      s \leftarrow empty \ stack
      s.push(vertex)
8
      while not s.isEmpty() do
          vertex \leftarrow s.pop()
10
         if vertex not visited then
11
             visit(vertex)
12
             for all adjacent nodes adj_vertices to vertex do
13
                 s.push(adj_vertices)
14
```

Listing C.1: Recursive and iterative implementation of depth-first search on graphs.

```
class Graph():
          . . .
3
4
         def depth_first_search_recursive(self, start_node):
5
                ret_list = [start_node]
6
                start_node.visited = True
7
8
                edges_out = [e for e in start_node.edges
                                    if e.node_to.value != start_node.value]
9
                for e in edges_out:
10
                      if not edge.node.visited:
11
                             ret_list.extend(
12
13
                                   depth_first_search_recursive(
```


Figure 119: Depth-first search example.

C.2 BREADTH-FIRST SEARCH

In the following there are the pesudocode, the python implementation, and an example of execution of the breadth-first search on a graph.

Algorithm 6: Breadth-first search pseudocode.

```
1 Function Breadth-first-search(graph, vertex):
      q ← empty queue
2
     visit(vertex)
3
     q.enqueue(vertex)
4
     while not q.isEmpty() do
5
         vertex \leftarrow s.dequeue()
6
         for all adjacent nodes adj_vertices to vertex do
7
             if adj_not visited then
8
                visit(adj_vertices)
                q.enqueue(adj_vertices)
10
```

Listing C.2: Breadth-first search implementation on graphs.

Figure 120: Breadth-first search example.

D

COMPLEXITY OF DATA STRUCTURES FOR GRAPHS

In the following table are summarized the complexities of the most common operations on graphs for the different data structures [27].

DIJKSTRA'S ALGORITHM IMPLEMENTATION

E

As described in the section 5.3.6 the Dijkstra's algorithm is a greedy algorithm that find the optimal solution by finding the optimal solution at each step. The implementation of the Dijkstra's algorithm is based on priority queue.

Let us consider the following graph (Figure 122).

Figure 121: Dijkstra's algorithms example.

Figure 122: Dijkstra's algorithms example.

Solving the shortest problem for this graph starting from the node $\mathfrak a$ leads to the following table:

visited node	a	b	С	d	e	f	g	h
a	Oak	8_a	2_{α}	$5_{\mathfrak{a}}$	∞	∞	∞	∞
С	Ī	8 _a	(2a)	$4_{\rm c}$	$7_{\rm c}$	∞	∞	∞
d		$6_{\rm d}$	1	$4_{\rm c}$	$5_{\rm d}$	$10_{\rm d}$	$7_{\rm d}$	∞
e		$6_{\rm d}$		Ī	(5_d)	10_{d}	6_e	∞
b		$(6_{\rm d})$	/		Ī	10_{d}	6_e	∞
g		Ī			- 1	8_g	(6e)	12_g
f				- 1	- 1	(8_g)	Ĭ	$11_{\rm f}$
h			I	1	- 1	1		$11_{\rm f}$

Table 6: Dijkstra's algorithms example for the graph in figure 122. The shortest path from a to b is also shown.

All the shortest paths from a are:

- b: $a \rightarrow c \rightarrow d \rightarrow b$, W=6;
- c: a \rightarrow c, W=2;
- d: a \rightarrow c \rightarrow d, W=4;
- e: $a \rightarrow c \rightarrow d \rightarrow e$, W=5;
- f: $a \rightarrow c \rightarrow d \rightarrow e \rightarrow g \rightarrow f$, W=8;
- g: a \rightarrow c \rightarrow d \rightarrow e \rightarrow g, W=6;
- h: $a \rightarrow c \rightarrow d \rightarrow e \rightarrow g \rightarrow f \rightarrow h$, W=11.

For implementing this algorithm there are several ways. The one presented here uses the priority queues. In fact each line of the table where are reported the updated distances with the shortest path can be see as a priority queue in which at every step the shortest value (then the shortest path for the current visited node) is selected.

In the following the pseudocode [39] and the Python implementation [44] (stackoverflow) are reported.

Algorithm 7: Dijkstra's algorithm pseudocode.

```
1 Function Dijkstra(graph, source):
       dist[source] \leftarrow o // Initialization
2
       create vertex priority queue q
 3
       for all vertex v in graph do
 4
           if v \neq source then
               dist[v] \leftarrow infinity // Unknown distance from source to v
 6
              prev[v] \leftarrow undefined // Predecessor of v
 7
          q.add_with_priority(v, dist[v])
 8
       while not q.isEmpty() do
9
           u \leftarrow q.extract_min() / / Remove and return best vertex
10
           for all neighbor v of u do
11
               // Only v that are still in q
12
               alt \leftarrow dist[u] + length(u, v)
13
               if alt < dist[v] then</pre>
14
                   dist[v] \leftarrow alt
15
                   prev[v] \leftarrow u
16
                   q.decrease_priority(v, alt)
17
       return dist, prev
18
```

Listing E.1: Dijkstra's algorithm.

```
import heapq
 1
   def dijkstra(graph, start):
3
       """Visit all nodes and calculate the shortest paths to each from
4
           start"""
       queue = [(0, start)]
5
       distances = {start: 0}
6
       visited = set()
7
8
       while queue:
9
          _, node = heapq.heappop(queue) # (distance, node), ignore distance
10
          if node in visited:
11
             continue
12
          visited.add(node)
13
          dist = distances[node]
14
15
          for neighbour, neighbour_dist in graph[node].items():
16
             if neighbour in visited:
17
                continue
18
             neighbour_dist += dist
19
             if neighbour_dist < distances.get(neighbour, float('inf')):</pre>
20
                heapq.heappush(queue, (neighbour_dist, neighbour))
                distances[neighbour] = neighbour_dist
22
23
       return distances
24
```

BIBLIOGRAPHY

- [1] Wikipedia. Computational complexity. URL: https://en.wikipedia.org/wiki/Computational_complexity.
- [2] Wikipedia. *Big O notation*. URL: https://en.wikipedia.org/wiki/Big_O_notation.
- [3] Wikipedia. Recursion (computer science). URL: https://en.wikipedia.org/wiki/Recursion_(computer_science).
- [4] Wikipedia. *Data structure*. URL: https://en.wikipedia.org/wiki/Data_structure.
- [5] Wikipedia. Data type. URL: https://en.wikipedia.org/wiki/Data_type.
- [6] Wikipedia. Abstract data type. URL: https://en.wikipedia.org/wiki/Abstract_data_type.
- [7] Wikipedia. Collection (abstract data type). URL: https://en.wikipedia.org/wiki/Collection_(abstract_data_type).
- [8] Wikipedia. *Array data structure*. URL: https://en.wikipedia.org/wiki/Array_data_structure.
- [9] Wikipedia. Linked list. URL: https://en.wikipedia.org/wiki/Linked_ list.
- [10] Wikipedia. Doubly linked list. URL: https://en.wikipedia.org/wiki/ Doubly_linked_list.
- [11] Wikipedia. Stack (abstract data type). URL: https://en.wikipedia.org/wiki/Stack_(abstract_data_type).
- [12] Wikipedia. Queue (abstract data type). URL: https://en.wikipedia.org/wiki/Queue_(abstract_data_type).
- [13] Wikipedia. Set. URL: https://en.wikipedia.org/wiki/Set_(abstract_data_type).
- [14] Wikipedia. *Hash map*. URL: https://en.wikipedia.org/wiki/Associative_array.
- [15] Wikipedia. *Hash talbe*. URL: https://en.wikipedia.org/wiki/Hash_table
- [16] Wikipedia. *Hash function*. URL: https://en.wikipedia.org/wiki/Hash_function.
- [17] Wikipedia. Search algorithm. URL: https://en.wikipedia.org/wiki/ Search_algorithm.
- [18] Wikipedia. Sorting algorithm. URL: https://en.wikipedia.org/wiki/Sorting_algorithm.
- [19] Wikipedia. *Binary search algorithm*. URL: https://en.wikipedia.org/wiki/Binary_search_algorithm.

- [20] Wikipedia. *Bubble sort*. URL: https://en.wikipedia.org/wiki/Bubble_sort.
- [21] Wikipedia. *Merge sort*. URL: https://en.wikipedia.org/wiki/Merge_sort.
- [22] Wikipedia. Quicksort. URL: https://en.wikipedia.org/wiki/Quicksort.
- [23] Wikipedia. *Heapsort*. URL: https://en.wikipedia.org/wiki/Heapsort.
- [24] Wikipedia. *Quicksort python implementation*. URL: https://www.educative.io/edpresso/how-to-implement-quicksort-in-python.
- [25] Wikipedia. *Trees*. URL: https://en.wikipedia.org/wiki/Tree_(data_structure).
- [26] Wikipedia. *Binary search tree*. URL: https://en.wikipedia.org/wiki/Binary_search_tree.
- [27] M.T. Goodrich, R. Tamassia, and M.H. Goldwasser. *Data Structures and Algorithms in Python*. John Wiley & Sons, Incorporated, 2013. ISBN: 9781118476734. URL: https://books.google.it/books?id=2UccAAAAQBAJ.
- [28] Wikipedia. *Heap*. URL: https://en.wikipedia.org/wiki/Heap_(data_structure).
- [29] Wikipedia. Self-balancing binary search tree. URL: https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree.
- [30] Wikipedia. *Red-Black tree*. URL: https://en.wikipedia.org/wiki/Red% E2%80%93black_tree.
- [31] Wikipedia. *Graph*. URL: https://en.wikipedia.org/wiki/Graph_ (discrete_mathematics).
- [32] Wikipedia. Connectivity. URL: https://en.wikipedia.org/wiki/ Connectivity_(graph_theory).
- [33] Wikipedia. *Depth-first search*. URL: https://en.wikipedia.org/wiki/ Depth-first_search.
- [34] Wikipedia. *Breadth-first search*. URL: https://en.wikipedia.org/wiki/Breadth-first_search.
- [35] Wikipedia. Eulerian path. URL: https://en.wikipedia.org/wiki/ Eulerian_path.
- [36] William Fiset. Existence of Eulerian Paths and Circuits | Graph Theory. URL: https://www.youtube.com/watch?v=xR4sGgwtR2I.
- [37] Wikipedia. *Hamiltonian path*. URL: https://en.wikipedia.org/wiki/Hamiltonian_path.
- [38] Wikipedia. Shortest path problem. URL: https://en.wikipedia.org/wiki/Shortest_path_problem.
- [39] Wikipedia. *Dijkstra's algorithm*. URL: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.
- [40] Wikipedia. *Greedy algorithms*. URL: https://en.wikipedia.org/wiki/Greedy_algorithm.
- [41] Abdul Bari. 3.6 Dijkstra Algorithm Single Source Shortest Path Greedy Method. URL: https://www.youtube.com/watch?v=XB4MIexjvY0.

- [42] Wikipedia. *Dynamic programming*. URL: https://en.wikipedia.org/wiki/Dynamic_programming.
- [43] Wikipedia. *Trees traversal*. URL: https://en.wikipedia.org/wiki/ Tree_traversal.
- [44] Martijn Pieters. *StackOverflow answer*. URL: https://stackoverflow.com/a/57234618.