Recommendation System

Department of Information and Communication Technology

Unit 10: Recommendation Systems

Artificial Intelligence (01CT0703)

Prof. Nishith Kotak

	M 1	M 2	M 3	M 4	M 5
	3	3	3	3	3
	3	3	3	3	3
	3	3	3	3	3
0	3	3	3	3	3

	M 1	M 2	M 3	M 4	M 5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
(1)	4	3	5	4	4

	M 1	M 2	M 3	M 4	M 5
	1	3	2	5	4
	2	1	1	1	5
	3	2	3	1	5
0	2	4	1	5	2

	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
1	4	3	5	4	4

How does Recommender System Behaves

M1	M2	МЗ	M4	M5
3	1	1	3	1
1	2	4	1	3
3	1	1	3	
4	3	5	4	4

Figuring out the dependencies?

---Using Matrix
Factorization

Depends on different Features Figuring out the dependencies?

Using Matrix Factorization

Action

4

0

Figuring out the dependencies?

Using Matrix Factorization

Figuring out the dependencies?

Using Matrix Factorization

Action

3-5

0.5

Figuring out the dependencies?

Using Matrix Factorization

3.0

1.0

Figuring out the dependencies?

Using Matrix Factorization

0

0.5

Prof. Nishith Kotak, ICT Department, MU

	Comedy	Action
M1	3	1
M2	1	2
МЗ	1	4
M4	3	1
M5	1	3

	Comedy	Action
		(
		8
0	V	

	Comedy	Action
M1	3	1
M2	1	2
МЗ	1	4
M4	3	1
M5	1	3

	M1	M2	M3	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
0	4	3	5	4	4

Matrix Factorization

	M1	M2	МЗ	M4	M5
Cornedy	3	1	1	3	1
Action	1	2	4	1	3

	M1	M2	МЗ	M4	M5
4	3	1	1.	3	1
1	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Matrix Factorization

	M1	M2	МЗ	M4	M5
Comedy	3	1	1	3	1
Action	1	2	4	1	3

		Action
	Comedy	Action
(A)	1	0
B	0	1
C	1	0
D D	1	1

	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
(1)	4	3	5	4	4

1000 Movies

2000 Users

2000 x 100 200K entries 100 Features

1000 Movies

2000 Users

	M1	M2	МЗ	M4	M5
F1	1.2	3.1	0.3	2.5	0.2
F2	2.4	1.5	4.4	0.4	1.1

	F1	F2
	0.2	0.5
B	0.3	0.4
O	0.7	0.8
0	0.4	0.5

	M1	M2	МЗ	M4	M5
4	1.44	1.37	2.26	0.7	0.59
1	1.32	1.53	1.85	0.91	0.5
	2.76	3.37	3.73	2.07	1.02
1	1.68	1.99	2.32	1.2	0.63

	M1	M2	МЗ	M4	M5
F1	3	1	1	3	1
F2	1	2	4	1	3

	F1	F2
	1	0
B	0	1
C	1	0
O D	1	1

	M1	M2	МЗ	M4	M5
	3		1		1
B	1		4	1	
C	3	1		3	1
D		3		4	4

Linear Transformation

Department of Information and Communication Technology

Unit 10: Recommendation Systems

Artificial Intelligence (01CT0703)

Prof. Nishith Kotak

Prof. Nishith Kotak, ICT Department, MU

what makes a transformation linear is the following geometric rule: The *origin must remain fixed*, and *all lines must remain lines*.

$f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$

$$f(c\mathbf{v}) = cf(\mathbf{v})$$

Linearity Property

Non-Linear Transformation

https://youtu.be/XUw95PFP1RE

2-D Linear Transformation

$$\mathbf{A} = \left[egin{array}{cc} a & b \ c & d \end{array}
ight]$$

In this matrix, the first *column* tells us where $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ lands, and the second *column* tells us where $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ lands. Now we can describe where any vector $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ lands very compactly as the matrix-vector product

$$\mathbf{Av} = \left[\begin{array}{c} ax + by \\ cx + dy \end{array} \right].$$

Singular Value Decomposition

Department of Information and Communication Technology

Unit 10: Recommendation Systems

Artificial Intelligence (01CT0703)

Prof. Nishith Kotak

Projecting a on v1 and v2

$$a^T \cdot \mathbf{v_1} = \begin{pmatrix} a_x & a_y \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v_{1x}} \\ \mathbf{v_{1y}} \end{pmatrix} = \mathbf{s_{a1}}$$
 $a^T \cdot \mathbf{v_2} = \begin{pmatrix} a_x & a_y \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v_{2x}} \\ \mathbf{v_{2y}} \end{pmatrix} = \mathbf{s_{a2}}$

Combining both the axis projections, v1 and v2:

$$a^T \cdot V = \begin{pmatrix} a_x & a_y \end{pmatrix} \cdot \begin{pmatrix} v_{1x} & v_{2x} \\ v_{1y} & v_{2y} \end{pmatrix} = \begin{pmatrix} s_{a1} & s_{a2} \end{pmatrix}$$

$$a^T \cdot v_1 = \begin{pmatrix} a_x & a_y \end{pmatrix} \begin{pmatrix} v_{1x} \\ v_{1y} \end{pmatrix} = \begin{pmatrix} s_{a1} \end{pmatrix}$$

$$A \cdot V = \begin{pmatrix} a_x & a_y \\ b_x & b_y \end{pmatrix} \cdot \begin{pmatrix} v_{1x} & v_{2x} \\ v_{1y} & v_{2y} \end{pmatrix} = \begin{pmatrix} s_{a1} & s_{a2} \\ s_{b1} & s_{b2} \end{pmatrix} = S$$

Because **V** contains orthonormal columns, its inverse = its transpose (property of orthogonal matrices).

$$A = S V^{-1} = S V^{T}$$

Any set of vectors (A) can be expressed in terms of their lengths of projections (S) on some set of orthogonal axes (V).

$$S = \begin{pmatrix} s_{a1} & s_{a2} \\ s_{b1} & s_{b2} \end{pmatrix}$$

Magnitude of 1st column = $\sigma_1 = \sqrt{(s_{a1})^2 + (s_{b1})^2}$

Magnitude of 2nd column = $\sigma_2 = \sqrt{(s_{a2})^2 + (s_{b2})^2}$

$$A = U \sum V^{T}$$

SVD in Recommendation System

The factorisation of this matrix is done by the singular value decomposition. It finds factors of matrices from the factorisation of a high-level (user-item-rating) matrix.

The singular value decomposition is a method of decomposing a matrix into three other matrices.

$$A = USV^T$$

Where A is a m x n utility matrix,

U is a m x r orthogonal left singular matrix, which represents the relationship between users and latent factors,

S is a r x r diagonal matrix, which describes the strength of each latent factor and

V is a r x n diagonal right singular matrix, which indicates the similarity between items and latent factors.

Refer Apply Recommendation.ipynb

Recommendation System

	Harry Potter	Star Wars	Tomb Raider
User 1	3	1	
User 2	3		4
User 3	1	4	
User 4		2	1