- Half-space: $H = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}^T \boldsymbol{x} \leq b \}.$
- Polyhedral set: finite union of half-spaces.
- Convert to standard form:
 - 1. $\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \leq b_{i} \longrightarrow \boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} + s_{i} = b_{i} \text{ for } s_{i} \geq 0.$
 - 2. $x_i \leq 0 \longrightarrow -x_i^- = x_i \text{ s.t. } -x_i^- \geq 0.$
 - 3. Free variable $x_i = x_i^+ x_i^-$ for $x_i^+, x_i^- \ge 0$.
- $\max f_i(x)$ is convex if f_i 's are convex.
- Extreme Point: A point $x^* \in P$ is said to be an extreme point if whenever there are $y, z \in P$ with $x^* = \lambda y + (1 \lambda)z = x^*$ for some $\lambda \in (0, 1)$, we have $y = z = x^*$.
- Vertex: A point $x^* \in P$ is said to be a vertex if there exists some c such that $c^Tx^* > c^Ty$ for all $y \in P \{x^*\}$.
- BFS: $x^* \in P$ is said to be a BFS if there are n linearly independent constraints which are active at x^* . The number of linearly independent active constraints at x^* is called the rank of x^* .
- Basic solution: $x^* \in \mathbb{R}^n$ is a basic solution iff
 - $-Ax^*=b$, and
 - There exists an index set $B \subseteq \{1, 2, \dots, n\}$ such that the set $\{A_i : i \in B\}$ is linearly independent and $x_j^* = 0$ for all $j \notin B$.
- For non-empty polyhedron P, the followings are equivalent:
 - 1. P does not contain any straight line.
 - 2. P has a basic feasible solution.
 - 3. P has n linearly independent constraints.
- For every BFS, $x_N = 0$. If x_B contains zero entries, then x is degenerate.
- Feasible direction to adjacent BFS: $d^j = (d_B^j, d_N^j)$ for some $j \in N$, such that $d_N^j = e_j$ and $d_B^j = -A_B^{-1}A_j$.
- Every feasible direction can be expressed as a linear combination of \boldsymbol{d}^j 's.
- Reduced cost: $\bar{c}_j = c_j c_B^T A_B^{-1} A_j$.
- Step size to adjacent BFS: $\bar{\theta}_j = \min\left\{-\frac{x_i}{d_i^j} : i \in B, d_i^j < 0\right\}$

• If $\bar{c} \geq 0$, then x^* is optimal; if x^* is optimal and non-degenerate, then $\bar{c} \geq 0$.

• Simplex method:

- 1. x_0 : any basic feasible solution.
- 2. At the k-th iteration, choose a basis B_k .
- 3. Let $N_k := \{1, 2, \dots, n\} B_k$. For each $j \in N_k$, compute the reduced cost

$$\bar{c}_j = c_j - \boldsymbol{c}_{B_k}^{\mathrm{T}} \boldsymbol{A}_{B_k}^{-1} \boldsymbol{A}_j.$$

- 4. If $\bar{c}_i \geq 0$ for all $j \in N_k$, \boldsymbol{x}_k is an optimal solution.
- 5. Otherwise:
 - (a) Take some $j \in N_k$ such that $\bar{c}_j < 0$. $(\boldsymbol{x}_k)_j$ is called an **entering variable**.
 - (b) Compute $d_{B_k}^j = -A_{B_k}^{-1} A_j$.
 - (c) If $d_{B_k}^j \geq 0$, the problem is **unbounded**.
 - (d) Otherwise:
 - i. Take $\bar{\theta_j} = \min \left\{ -\frac{x_i}{d_i^j} : i \in B, d_i^j < 0 \right\} = \frac{x_\ell}{d_\ell^j}$. $(\boldsymbol{x}_k)_\ell$ is called a **leaving variable**.
 - ii. Update $B_{k+1} := (B \{\ell\}) \cup \{j\}$.
 - iii. Update x_{k+1} by

$$\left(\boldsymbol{x}_{k+1}\right)_{i} = egin{cases} \left(\boldsymbol{x}_{k}\right)_{i} + ar{ heta_{j}} \boldsymbol{d}_{i}^{j} & \text{if } i \in B - \{\ell\} \\ ar{ heta_{j}} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

• Tableau implementation:

	Basic	\boldsymbol{x}	Solution
ſ	$ar{oldsymbol{c}}$	$oxed{c^T - c_B^{\mathrm{T}} A_B^{-1} A}$	$-oldsymbol{c}_B^{ m T}oldsymbol{A}_B^{-1}oldsymbol{b}$
	$oldsymbol{x}_B$	$oldsymbol{A}_B^{-1}oldsymbol{A}$	$oldsymbol{A}_B^{-1}oldsymbol{b}$

	_	D				D	
Basic	5	$\overline{v_1}$		x_n		Solution	
$ar{oldsymbol{c}}$	($\bar{c_1}$	• • • •	\bar{c}_n		$-oldsymbol{c}^{ ext{T}}oldsymbol{x}_{B}$	
$x_{B(1)}$							
:	A_B^-	$^{1}\boldsymbol{A}_{1}$		$\boldsymbol{A}_{B}^{-1}\boldsymbol{A}_{n}$	ı	$oldsymbol{A}_B^{-1}oldsymbol{b}$	
$x_{B(m)}$							
Basic	$oldsymbol{x}_B$		x_N	r	Š	Solution	
$ar{oldsymbol{c}}$	0	$oldsymbol{o} oldsymbol{c}_N^T - oldsymbol{c}_B^T oldsymbol{A}_B^{-1} oldsymbol{A}_N$			$-oldsymbol{c}_B^{ m T}oldsymbol{A}_B^{-1}oldsymbol{b}$		
$oldsymbol{x}_B$	I		A_B^{-1}	4_N		$\boldsymbol{A}_B^{-1}\boldsymbol{b}$	

At every iteration, swap entering with leaving variables, normalise the pivot row, and do EROs to restore I.

• Two-Phase method:

- 1. Manipulate constraint s.t. $b \ge 0$.
- 2. Construct the auxiliary linear program

$$\min_{\boldsymbol{y} \in \mathbb{R}^m} \sum_{i=1}^m y_i \quad \text{s.t. } \boldsymbol{A}\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b}, \boldsymbol{x}, \boldsymbol{y} \geq \boldsymbol{0}.$$

- 3. Run simplex method with (0, b) to obtain its optimal solution (y^*, x^*) and optimal value v^* .
- 4. If $v^* > 0$, the original feasible region is \varnothing .
- 5. Otherwise, $v^* = 0$, \boldsymbol{x}^* is an initial BFS.

• \mathbf{Big} -M method:

- 1. Manipulate constraint s.t. $b \ge 0$.
- 2. Augment the problem:

$$\min c^{\mathrm{T}}x + M \sum_{i=1}^{m} y_i$$
 s.t. $Ax + y = b, x, y \ge 0$.

- 3. Run simplex method with $(\mathbf{0}, \mathbf{b})$.
- 4. If an optimal solution (y^*, x^*) exists with $y^* = 0$, x^* is an optimal solution.
- 5. Otherwise, the original problem has empty feasible set or is unbounded.

• Special cases:

- 1. Multiple leaving variables: degenerate BFS.
- 2. Multiple optimal solutions iff $\bar{c}_i = 0$ at an optimum.
 - (a) If $\bar{c}_j = 0$ but $\mathbf{d}^j \geq \mathbf{0}$, the optimal set is $\{ \mathbf{x}^* + \theta \mathbf{d}^j : \theta \geq 0 \}$.
 - (b) If multiple optimal BFSs exist, the optimal set is conv $\{x^1, x^2, \cdots, x^k\}$.
- 3. $\bar{c}_j < 0$ but $\mathbf{d}^j \geq \mathbf{0}$: unbounded.
- 4. Empty feasible set: detect with two-phase method or $\operatorname{Big-}M$ method.
- 5. Dual problem: $\max_{p \in \mathbb{R}^n} p^T b$ s.t. $p^T A \leq c^T$.
- 6. Dual of the dual is the primal.
- 7. Weak duality: $\sup p^{T}b \leq \inf c^{T}x$.
- 8. If $(p^*)^T b = c^T x^*$, then both are optimal solutions.
- 9. (P) is unbounded iff (D) is infeasible. (P) is infeasible iff (D) is unbounded.
- 10. Strong duality: If primal and dual are feasible, then $(p^*)^T b = \inf c^T x^*$. The dual optimal solution $p^* = c_B^T A_B$.

11. Complementary slackness: Let (P) be a primal linear program with constraints $\boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} \leq b_i$, $\boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} \geq b_i$ or $\boldsymbol{a}_i^{\mathrm{T}}\boldsymbol{x} = b_i$. Let \boldsymbol{x} and \boldsymbol{p} be feasible solutions to (P) and the dual problem (D) respectively, then \boldsymbol{x} and \boldsymbol{p} are optimal iff

$$p_i \left(\boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x} - b_i \right) = 0, \qquad \left(c_j - \boldsymbol{p}^{\mathrm{T}} \boldsymbol{A}_j \right) x_j = 0$$

for all i, j. A feasible x is optimal iff there is a feasible dual solution p satisfying complementary slackness conditions.

• Dual simplex method:

- 1. Manipulate the constraints and add slack variables so that the right-most portion of *A* becomes an identity matrix.
- 2. Run simplex method on the transformed problem, while maintaining $\bar{c} > 0$.
 - (a) At the k-th iteration, if there is no negative basic variable, then an optimal primal solution has been found.
 - (b) Otherwise, select some $x_{\ell} < 0$ as the leaving variable.
 - i. If $d_{\ell}^{j} \geq 0$ for all $j \in N_{k}$, then the primal problem is infeasible.
 - ii. Otherwise, take

$$i = \operatorname{argmin}_{j \in N_k} \left\{ \frac{\bar{c}_j}{\left| d_\ell^j \right|} \colon d_\ell^j < 0 \right\}$$

as the index of the entering variable.

3. Terminate when we have obtained $x_B \geq 0$.

• Sensitivity analysis:

- 1. Optimality condition: $\bar{c} = c^{T} c_{B}^{T} A_{B}^{-1} A \geq 0$; Feasibility condition: $A_{B}^{-1} b \geq 0$.
- 2. $\boldsymbol{b} + \delta \boldsymbol{e}_i$: $\boldsymbol{x}_B^* + \delta \left(\boldsymbol{A}_B^{-1} \boldsymbol{e}_i \right) \geq \boldsymbol{0}$. New optimal value: $\boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{A}_B^{-1} \left(\boldsymbol{b} + \delta \boldsymbol{e}_i \right) = \boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{A}_B^{-1} \boldsymbol{b} + \delta p_i^*$. p_i^* is the marginal cost.
- 3. $c + \delta e_i$: If i is non-basic, optimal iff $\delta \geq -\bar{c}_j$. If i is basic, for each $j \in N$ we need $c_i - (c_B + \delta e_j)^T A_B^{-1} A_i = \bar{c}_j - \delta e_j^T A_B^{-1} A_i \geq 0$. Define $\bar{a}_{i,j} = e_i^T A_B^{-1} A_i$, then x^* is still optimal iff

$$\max_{\bar{a}_{i,j}<0}\frac{\bar{c}_j}{\bar{a}_{i,j}}\leq \delta \leq \min_{\bar{a}_{i,j}>0}\frac{\bar{c}_j}{\bar{a}_{i,j}}.$$

- 4. $a_{ij} + \delta$ for some $j \in N$. \boldsymbol{x}^* is still feasible iff $\vec{c}'_i = \bar{c}_i \delta p_i \geq 0$.
- 5. New variable x_{n+1} : $(\boldsymbol{x}^*,0)$ is a BFS, so it is optimal iff $\bar{c}_{n+1} = c_{n+1} \boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{A}_B^{-1} \boldsymbol{A}_{n+1} \geq 0$. Otherwise, x_{n-1} is entering variable so we run simplex again.
- 6. New constraint $\boldsymbol{a}_{m+1}^{\mathrm{T}}\boldsymbol{x} \leq b_{m+1}$ with induced new slack variable x_{n+1} : nothing to do if \boldsymbol{x}^* satisfies the constraint. Otherwise add x_{n+1} as new basic variable, and $x_{n+1} < 0$ (x_{n+1} $\boldsymbol{a}_B^{\mathrm{T}}$ $\boldsymbol{a}_N^{\mathrm{T}}$ 1 b_{m+1} in optimal tableau). Run dual simplex method to obtain new solution.
- Flow balance constraint:

$$\sum_{j \in O(i)} x_{ij} - \sum_{k \in I(i)} x_{ki} = b_i \quad \forall i \in V.$$

- Row sums of node-arc incidence matrix and supply vector are zero.
- If Ax = b where A is a 0-1 matrix such that the 1's in each column appear consecutively, then

$$\mathbf{A'} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \\ 0 & 0 & \cdots & 0 & -1 \end{bmatrix} \mathbf{A}$$

is a node-arc incidence matrix.

- SSSP: $\min \mathbf{c}^{\mathrm{T}} \mathbf{x}$ s.t. $\mathbf{A} \mathbf{x} = \mathbf{e}_s \mathbf{e}_t, \mathbf{x} \geq \mathbf{0}$. Dual: $\max p_s p_t$ s.t. $p_i p_j \leq c_{(i,j)} \ \forall (i,j) \in E(G)$. We can set $p_t = 0$ when solving the dual.
- Three Jug Puzzle:

$$-(i,j) \to (b,j): 1 \to 2;$$

$$-(i,j) \to (0,j): 2 \to 1;$$

$$-(i,j) \to (i,c): 1 \to 3;$$

$$-(i,j) \to (i,0): 3 \to 1;$$

$$-(i,j) \to (\min\{0,i+j-c\}, \max\{i+j,c\}): 2 \to 3;$$

$$-(i,j) \to (\max\{i+j,b\}, \min\{0,i+j-b\}): 3 \to 2.$$

• Dynamic Lot Sizing: $c_{(i,j)} = K_i + c_i x_i + \sum_{k=i}^{j-1} h_k I_k$ where $I_k = x_i - \sum_{r=i}^k d_r = \sum_{r=k+1}^{j-1} d_r$, so

$$c_{(i,j)} = K_i + c_i \sum_{k=i}^{j-1} d_k + \sum_{k=i}^{j-2} \left(h_k \sum_{r=k+1}^{j-1} d_r \right).$$

- Max flow: $\min v$ s.t. $Ax = (e_s e_t)v, 0 \le x \le u$. If there are multiple sources/destinations, add artificial single source and destination with uncapacitated arcs.
- Min cut: $\min u^{\mathrm{T}}z$ s.t. $d^{\mathrm{T}}y = 1, z A^{\mathrm{T}}y \leq 0, z \geq 0$. Here u is the capacities, y, z are boolean vectors. y indicates the section a vertex is in, z indicates if an edge is taken. It is dual to max flow.
- Truncated node-arc incidence matrix \widetilde{A} : delete last row from \boldsymbol{A} . An edge set B is a basis of \widetilde{A} iff it induces a spanning tree. Dual vector $\boldsymbol{p}^{\mathrm{T}} = \boldsymbol{c}_B^{\mathrm{T}} \widetilde{A}_B^{-1}$.

• Network simplex method:

- 1. Take a spanning tree $T_0 \subseteq G$ and find a basis B from $E(T_0)$ and a feasible tree solution x_0 .
- 2. At the k-th iteration, compute $\boldsymbol{p}^{\mathrm{T}} = \boldsymbol{c}_{B}^{\mathrm{T}} \widetilde{\boldsymbol{A}}_{B}^{-1}$.
- 3. Solve $p_n = 0, p_i p_j = c_{(i,j)}$ for all $(i,j) \in B$.
- 4. Reduced cost $\bar{c}_{(i,j)} = c_{(i,j)} (p_{i_k} p_{j_k})$.
- 5. If $\bar{c}_{(i,j)} \geq 0$ for all $(i,j) \in E(G)$, then x_k is optimal.
- 6. Otherwise, choose $(i,j) \notin B$ with $\bar{c}_{(i,j)} < 0$.
- 7. Add (i, j) to produce a cycle, $i \rightarrow j$ is forward.
 - (a) Unbounded if no backward arc.
 - (b) Otherwise, $\theta^* := x_{pq} = \min_{(k,\ell) \in C_b} x_{k\ell}$.
- 8. Update x_k to x_{k+1} by

$$\widehat{x_{k\ell}} = \begin{cases} x_{k\ell} + \theta^* & \text{if } (k,\ell) \in C_f \\ x_{k\ell} - \theta^* & \text{if } (k,\ell) \in C_b \\ x_{k\ell} & \text{otherwise} \end{cases}.$$

9. Update $T_{k+1} = (T - (p,q)) \cup (i,j)$.

• Two-phase network simplex method:

- 1. Connect all $i \to n$, set $c_{(i,j)} = 0$ and $c_{(i,n)} = 1$.
- 2. Use star rooted at n as initial basis to remove all extra arcs. Take the resultant basis to run network simplex method.
- If G is a weakly connected network, then \widetilde{A}_B^{-1} is integer for all B.
- Let G be an n-vertex weakly connected network. Consider a network flow problem (P) such that an optimal solution exists. If the supply vector **b** consists of purely integer entries, then there is an integer optimal solution; if the cost vector **c** consists of purely integer entries, then there is an integer dual optimal solution.