Homework 2

Instruction: Submit your solutions to this assignment as a PDF file via the online submission system in the class website by 9:00 AM of October 7, 2022. Show your work in full details.

1. Implement the von Karman method to simulate a steady-state flow past an ellipsoidal cylinder. If the number of line segments is *n*, the *n*-1 points on the surface of the cylinder can be computed as follows.

$$\theta_i = (n-i)\pi/n, \quad i = 1, 2, ..., n-1$$
 $r_i = a \sin \theta_i$
 $z_i = \cos \theta_i$

The linear system obtained from the von Karman method can be written as $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is the coefficient matrix, \mathbf{x} is the unknown vector, and \mathbf{b} is the right-hand-side vector. After forming \mathbf{A} and \mathbf{b} , you may solve the linear system using the MATLAB command $\mathbf{x} = \mathbb{A} \setminus \mathbb{b}$. If \mathbf{A} is close to singular, you may use a regularization such that matrix \mathbf{A} is added by a diagonal matrix $\mathbf{\epsilon}\mathbf{I}$, that is, $\mathbf{A} + \mathbf{\epsilon}\mathbf{I}$, where $\mathbf{\epsilon}$ is a small positive constant.

- 1.1 Write a program to simulate the flow when a = 0.5. Use $n \ge 35$. Show streamlines in the region $-2 \le z \le 2$ and $0 \le r \le 2$. Also show your code.
- 1.2 Modify your program to simulate the flow when a = 1.5. Use $n \ge 35$. In this case you may need to use regularization to get a good result. Show streamlines in the same domain as in Problem 1.1. What is the value of ε that you use?
- 1.3 Modify your program to simulate the flow when a = 0.3. Use $n \ge 90$. In this case you may need to use regularization to get a good result. Show streamlines in the same domain as in Problem 1.1. What is the value of ε that you use?
- 2. Simulate a steady flow in a channel of height 4 m and length 6 m past a square cylinder of side length 1 m. The cylinder is at the center of the channel as shown in the figure. Solve the Laplace's equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

with the given boundary conditions. Use one of the following methods to solve the resulting linear system: Jacobi method, Gauss-Seidel method, or SOR method. You can choose your own value of the grid spacing h.