Lab 6

Sensor Fusion

This lecture is part of the RACECAR-MN introductory robotics course. You can visit the course webpage at mitll-racecar-mn.readthedocs.io.

Objectives

Main Objective: Perform sensor fusion to produce a more accurate velocity estimation

Learning Objectives

- Identify several ways to calculate velocity from the sensors onboard the RACECAR-MN
- Learn strategies to combine several sources of data into a single, more trustworthy value

Estimating Velocity

- How can we estimate velocity on the RACECAR-MN?
- What are the limitations of each method?

Estimating Velocity

- How can we estimate velocity on the RACECAR-MN?
 - Track throttle input
 - Integrate IMU linear acceleration
 - Change in distance detected by depth camera
 - Change in distance detected by LIDAR
 - Change in object size seen by color camera
- What are the limitations of each method?

Simple Average

- Suppose that v_1, v_2, v_3, v_4 are four velocity estimates from independent sources
- Simplest approach: average all four measurements

$$v = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

Simple Average

- Suppose that v_1, v_2, v_3, v_4 are four velocity estimates from independent sources
- Simplest approach: average all four measurements

$$v = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

$$v = 0.25v_1 + 0.25v_2 + 0.25v_3 + 0.25v_4$$

Weighted Average

- A simple average assumes that each source is equally trustworthy, but what if that is not the case?
 - We can give a higher weight to the measurements we trust more

$$v = 0.1v_1 + 0.5v_2 + 0.25v_3 + 0.15v_4$$

Weighted Average

- A simple average assumes that each source is equally trustworthy, but what if that is not the case?
 - We can give a higher weight to the measurements we trust more

$$v = 0.1v_1 + 0.5v_2 + 0.25v_3 + 0.15v_4$$

How do we choose these weights?

Variance

• The variance σ^2 of a data source is the average squared distance of each sample from the mean

$$\sigma^2 = \frac{\sum (x - mean)^2}{n}$$

 The higher the variance, the noisier the data, so the less that we should trust that data source

Variance

Key idea: weight each source inversely to its variance

$$v = \frac{\sigma_1^{-2}}{\sigma_1^{-2} + \dots + \sigma_n^{-2}} v_1 + \dots + \frac{\sigma_n^{-2}}{\sigma_1^{-2} + \dots + \sigma_n^{-2}} v_n$$

• Example: $\sigma_1^2=1$, $\sigma_2^2=4$, $\sigma_3^2=5$, $\sigma_4^2=2$ - then $\sigma_1^{-2}=1$, $\sigma_2^{-2}=0.25$, $\sigma_3^{-2}=0.2$, $\sigma_4^{-2}=0.5$

$$v = \frac{1}{1.95}v_1 + \frac{0.25}{1.95}v_2 + \frac{0.2}{1.95}v_3 + \frac{0.5}{1.95}v_4$$

Further Considerations

- Ignore an input if the measurement must be a mistake
 - ex: no data, velocity > 5 m/s, etc.
- Adjust weights depending on environment
 - ex: trust depth/LIDAR data less if we are turning
 - ex: trust depth camera less in the dark
- Calculate variance on the fly

Further reading

 Kalman filtering provides a more sophisticated approach which is beyond the scope of this lecture

Lab 6 Objectives

- Lab 6: Sensor fusion of velocity
 - Develop several methods to calculate velocity
 - Fuse these sources into a single velocity estimate
 - Complete a course while limiting the car's velocity below 0.5 m/s

