Inequalities Witnessing Quantum Incompatibility in The Triangle Scenario

Thomas C. Fraser*

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
University of Waterloo, Waterloo, Ontario, Canada
(Dated: August 18, 2016)

This document is my current working draft of a paper to do with causal inference, inflation, incompatibility inequalities, hypergraph transversals and quantum correlations.

^{*} tcfraser@tcfraser.com

I. INTRODUCTION

II. DEFINITIONS & NOTATION

Definition 1. Borrowing the notation from [1], each random variable v has a set of all possible outcomes called the **outcome space** or **valuation space** and is denoted O_v . When referencing a *specific* element of O_v or *valuation* of v, the notation o[v] is used. This notation generalizes to set of random variables $V = \{v_1, \ldots, v_{|V|}\}$; a specific outcome of $o[V] \in O_V$ is used to reference a particular tuple or vector of outcomes,

$$o[V] \equiv \left(o[v_1], o[v_2], \dots, o[v_{|V|}]\right) = \left(o[v]\right)_{v \in V} \tag{1}$$

It is important to note that the ordering of events in eq. (1) is irrelevant. Similarly, the outcome space O_V for a set of random variables V is the **valuation product** of the individual outcome spaces,

$$O_V \equiv O_{v_1} \times \cdots \times O_{v_{|V|}}$$

Where 'x' denotes is defined such that,

$$o[A] \times o[B] \equiv (o[a_1], \dots, o[a_{|A|}], o[b_1], \dots, o[b_{|B|}])$$

When referencing the probability that and set of variables V has outcome o[V] (say $v_1 = 0, v_2 = 3$), we intend for the following class of notations to be used interchangeably.

$$P_V(o[V]) = P(o[V]) = P(o[v_1] | o[v_2]) = P(v_1 = 0, v_2 = 3) = P(v_2 = 3, v_1 = 0) = P_{v_1, v_2}(03)$$

Definition 2. An outcome o[V] is said to be **extendable** to an outcome o[W] (where $V \subseteq W$) if there exists an outcome $o[W \setminus V]$ such that:

$$o[W] = o[W \setminus V] \times o[V]$$

The idea being that a less specific outcome o[V] can be made more specific by assigning outcomes to the remaining random variables in $W \setminus V$. If such an outcome $o[W \setminus V]$ exists, it is unique.

Definition 3. The set of all extendable outcomes of o[V] in O_W is called the **extendable set** and can be written as,

$$o[V] \times O_{W \setminus V} \equiv \{o[W] \in O_W \mid \exists o[W \setminus V] : o[W \setminus V] \times o[V] = o[W]\}$$

The extendable set of o[V] in W is the set of all outcomes of O_W that agree with o[V] about valuations for variables in V. In this language, two outcomes o[V] and o[W] are **compatible** if they are both extendable to some outcome $o[V \cup W]$. Equivalently, o[V] and o[W] agree on their valuations of $V \cap W$.

Example 4. Consider two sets of random variables $V = \{a, b\}$ and $W = \{a, b, c\}$. Clearly $V \subseteq W$; a prerequisite for extendability. Also take all individual outcome spaces to be finite and of order 3: $O_a = O_b = O_c = \{1, 2, 3\}$. Then $o[V] = o[\{a, b\}] = (a = 1, b = 2)$ is extendable to the outcome o[W] = (a = 1, b = 2, c = 1), and the extendable set of o[V] in O_W is,

$$o[\{a,b\}] \times O_c = \{(a=1,b=2,c=1), (a=1,b=2,c=2), (a=1,b=2,c=3)\}$$

Definition 5. A graph is an ordered tuple $(\mathcal{N}, \mathcal{E})$ of nodes and edges respectively where the nodes can represent any object and the edges are pairs of nodes. For convenience of notation, one defines an index set over the nodes denoted $\mathcal{I}_{\mathcal{N}}$.

$$\mathcal{N} = \{ n_i \mid i \in \mathcal{I}_{\mathcal{N}} \} \quad \mathcal{E} = \{ \{ n_i, n_k \} \mid j, k \in \mathcal{I}_{\mathcal{N}} \}$$

Definition 6. A directed graph \mathcal{G} is an ordered tuple $(\mathcal{N}, \mathcal{E})$ of nodes and edges respectively where the nodes can represent any object and the edges are ordered pairs of nodes. For convenience of notation, one defines an index set over the nodes denoted $\mathcal{I}_{\mathcal{N}}$.

$$\mathcal{N} = \{n_i \mid i \in \mathcal{I}_{\mathcal{N}}\} \quad \mathcal{E} = \{n_i \to n_k \mid j, k \in \mathcal{I}_{\mathcal{N}}\}$$

Definition 7. The following definitions are common language in directed graph theory. Let $n, m \in \mathcal{N}$ be example nodes of the graph \mathcal{G} .

- The parents of a node: $Pa_{\mathcal{C}}(n) \equiv \{m \mid m \to n\}$
- The children of a node: $Ch_{\mathcal{C}}(n) \equiv \{m \mid n \to m\}$
- The ancestry of a node: $\operatorname{An}_{\mathcal{G}}(n) \equiv \bigcup_{i \in \mathbb{W}} \operatorname{Pa}_{\mathcal{G}}^{i}(n)$ where $\operatorname{Pa}_{\mathcal{G}}^{i}(n) \equiv \operatorname{Pa}_{\mathcal{G}}(\operatorname{Pa}_{\mathcal{G}}^{i-1}(n))$ and $\operatorname{Pa}_{\mathcal{G}}^{0}(n) = n$

All of these terms can be generalized to sets of nodes $N \subseteq \mathcal{N}$ through union over the elements,

- The parents of a node set: $Pa_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} Pa_{\mathcal{G}}(n)$
- The children of a node set: $Ch_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} Ch_{\mathcal{G}}(n)$
- The ancestry of a node set: $\operatorname{An}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \operatorname{An}_{\mathcal{G}}(n)$

Moreover, an **induced subgraph** of \mathcal{G} due to a set of nodes $N \subseteq \mathcal{N}$ is the graph composed of N and all edges $e \in \mathcal{E}$ of the original graph that are contained in N.

$$\operatorname{Sub}_{\mathcal{G}}(N) \equiv (N, \{e_i \mid i \in \mathcal{I}_{\mathcal{E}}, e_i \subseteq N\})$$

An ancestral subgraph of \mathcal{G} due to $N \subseteq \mathcal{N}$ is the induced subgraph due to the ancestry of N.

$$\operatorname{AnSub}_{\mathcal{G}}(N) \equiv \operatorname{Sub}_{\mathcal{G}}(\operatorname{An}_{\mathcal{G}}(N))$$

Definition 8. A directed acyclic graph or DAG \mathcal{G} is an directed graph definition 6 with the additional property that no node n is in its set of ancestors.

$$\forall n \in \mathcal{N} : n \notin \bigcup_{i \in \mathbb{N}} \operatorname{Pa}_{\mathcal{G}}^{i}(n)$$

Notice the difference between using the natural numbers \mathbb{N} to distinguish ancestors from ancestry.

Definition 9. A hypergraph denoted \mathcal{H} is an ordered tuple $(\mathcal{N}, \mathcal{E})$ of nodes and edges respectively where the nodes can represent any object and the edges are *subsets* of nodes. For convenience of notation, one defines an index set over the nodes and edges of a hypergraph \mathcal{H} denoted $\mathcal{I}_{\mathcal{N}}$ and $\mathcal{I}_{\mathcal{E}}$ respectively.

$$\mathcal{H} = (\mathcal{N}, \mathcal{E}) \quad \mathcal{N} = \{ n_i \mid i \in \mathcal{I}_{\mathcal{N}} \} \quad \mathcal{E} = \{ e_i \mid i \in \mathcal{I}_{\mathcal{E}}, e_i \subseteq \mathcal{N} \}$$

Note that whenever the index for an edge or node is arbitrary, it will be omitted. There is a dual correspondence between edges $e \in \mathcal{E}$ and nodes $n \in \mathcal{N}$ in a Hypergraph. An edge e is viewed as a set of nodes $\{n_i\}$, and a node n can be viewed as the set of edges $\{e_i\}$ that contain it.

Definition 10. A hypergraph transversal (or edge hitting set) \mathcal{T} of a hypergraph \mathcal{H} is a set of nodes $\mathcal{T} \subseteq \mathcal{N}$ that have non-empty intersections with every edge in \mathcal{E} .

$$\mathcal{T} = \{ n_i \in \mathcal{N} \mid i \in \mathcal{I}_{\mathcal{T}} \} \quad \forall e \in \mathcal{E} : \mathcal{T} \cap e \neq \emptyset$$

Definition 11. A minimal hypergraph transversal \mathcal{T} is any valid transversal (definition 10) of \mathcal{H} where every node n is necessary to retain validity. For each node n in \mathcal{T} , $\mathcal{T} \setminus n$ is no longer a transversal.

$$\mathcal{T} = \{ n_i \in \mathcal{N} \mid i \in \mathcal{I}_{\mathcal{T}} \} \quad \forall i \in \mathcal{I}_{\mathcal{T}}, \exists e \in \mathcal{E} : (\mathcal{T} \setminus n_i) \cap e = \emptyset$$

Definition 12. A weighted hypergraph $\mathcal{H}_{\mathcal{W}}$ is a regular hypergraph satisfying definition 9 equipped with a set of weights \mathcal{W} ascribed to each node such that a weighted hypergraph is written as a triplet $(\mathcal{W}, \mathcal{N}, \mathcal{E})$.

$$\mathcal{W} = \{ w_i \mid i \in \mathcal{I}_{\mathcal{N}}, w_i \in \mathbb{R} \}$$

One would say that a particular node n_i carries weight w_i for each $i \in \mathcal{I}_N$.

Definition 13. A bounded transversal of a weighted hypergraph $\mathcal{H}_{\mathcal{W}}$ is a transversal \mathcal{T} of the unweighted hypergraph \mathcal{H} and a real number t (denoted $\mathcal{T}_{\leq t}$) such that the sum of the node weights of the transversal is bounded by t.

$$\mathcal{T}_{\leq t} = \{ n_i \mid i \in \mathcal{I}_{\mathcal{T}} \} \quad \text{s.t.} \sum_{j \in \mathcal{I}_{\mathcal{T}}} w_j \leq t$$

One can definte analogous (strictly) upper/lower bounded transversals by considering modifications of the notation: $\mathcal{T}_{< t}, \mathcal{T}_{\geq t}, \mathcal{T}_{> t}$.

Definition 14. A causal structure is simply a DAG with the extra classification of each node into one of two categories; the latent nodes and observed nodes denoted \mathcal{N}_L and \mathcal{N}_O . The latent nodes correspond to random variables that are either hidden through some fundamental process or cannot/will not be measured. The observed nodes are random variables that are measurable. Every node is either latent or observed and no node is both:

$$\mathcal{N}_L \cap \mathcal{N}_O = \emptyset$$
 $\mathcal{N}_L \cup \mathcal{N}_O = \mathcal{N}$

Definition 15. The **product distribution** two distributions is denoted as usual with \times and is defined as,

$$(P_v \times P_w) (o[v], o[w]) \equiv P_v(o[v]) P_w(o[w])$$

A product distribution of k distributions is defined recursively,

$$\prod_{i=1}^{k} P_{v_i} \equiv (P_{v_1} \times \dots \times P_{v_k})$$

Definition 16. The marginalization of a distribution $P_{v \cup w}$ to the distribution P_v is denoted $\sum_w P_{v \cup w} = P_v$ and is defined such that,

$$\forall o[v] \in O_v : \left(\sum_{w} P_{v,w}\right)(o[v]) \equiv \sum_{o[w] \in O_w} P_{v,w}(o[v], o[w])$$

Todo (TC Fraser): How many definitions do I need to write??

III. TRIANGLE SCENARIO

Todo (TC Fraser): Discuss the triangle scenario, previous work done on it, etc. Focusing on the inflation depicted in fig. 2, we obtained the maximally pre-injectable sets through the procedure outlined in [2].

Maximal Pre-injectable Sets Π **Ancestral Independences** ${A_1, B_1, C_1, A_4, B_4, C_4}$ $\{A_1, B_1, C_1\} \perp \{A_4, B_4, C_4\}$ $\{A_1, B_2, C_3, A_4, B_3, C_2\}$ $\{A_1, B_2, C_3\} \perp \{A_4, B_3, C_2\}$ $\{A_2, B_3, C_1, A_3, B_2, C_4\}$ $\{A_2, B_3, C_1\} \perp \{A_3, B_2, C_4\}$ $\{A_2, B_4, C_3, A_3, B_1, C_2\}$ $\{A_2, B_4, C_3\} \perp \{A_3, B_1, C_2\}$ $\{A_1, B_3, C_4\}$ $\{A_1\} \perp \{B_3\} \perp \{C_4\}$ $\{A_1, B_4, C_2\}$ $\{A_1\} \perp \{B_4\} \perp \{C_2\}$ (2) $\{A_2, B_1, C_4\}$ $\{A_2\} \perp \{B_1\} \perp \{C_4\}$ $\{A_2, B_2, C_2\}$ $\{A_2\} \perp \{B_2\} \perp \{C_2\}$ $\{A_3, B_3, C_3\}$ $\{A_3\} \perp \{B_3\} \perp \{C_3\}$ $\{A_3, B_4, C_1\}$ $\{A_3\} \perp \{B_4\} \perp \{C_1\}$ $\{A_4, B_1, C_3\}$ $\{A_4\} \perp \{B_1\} \perp \{C_3\}$ $\{A_4, B_2, C_1\}$ $\{A_4\} \perp \{B_2\} \perp \{C_1\}$

As can be counted, there are 12 maximally pre-injectable sets which will be indexed 1 through 12 in the order seen above $(\Pi = \{\Pi_1, \dots, \Pi_{12}\})$

IV. SUMMARY OF THE INFLATION TECHNIQUE

The causal inflation technique, first pioneered by Wolfe, Spekkens, and Fritz [2] and inspired by the do calculus and twin networks of Ref. [3], is a family of causal inference techniques that can be used to determine if a probability distribution is compatible or incompatible with a given causal structure. As a preliminary summary, the inflation technique begins by augmenting a causal structure with additional nodes, producing the inflated causal structure, and then exposes how causal inference tasks on the inflated causal structure can be used to make inferences on the original causal structure. Equipped with the common graph-theoretic terminology and notation of definition 7, an inflation can be formally defined as follows:

FIG. 1. The casual structure of the triangle scenario. Three variables A, B, C are observable and illustrated as triangles, while X, Y, Z are latent variables illustrated as circles.

FIG. 2. An inflated causal structure of the triangle scenario fig. 1.

Definition 17. An inflation of a causal structure \mathcal{G} is another causal structure \mathcal{G}' such that:

$$\forall n' \in \mathcal{N}' : \operatorname{AnSub}_{\mathcal{G}'}(n') \sim \operatorname{AnSub}_{\mathcal{G}}(n)$$

Where ' \sim ' is notation for equivalence up to removal of the copy-index. To clarify, each node in an inflated causal structure $n' \in \mathcal{N}'$ shares a *label* assigned to a node $n \in \mathcal{N}$ in the original causal structure together with an additional index called the **copy-index**.

Definition 18. A set of **causal parameters** for a particular causal structure \mathcal{G} is the specification of a conditional distribution for every node $n \in \mathcal{N}$ given it's parents in \mathcal{G} .

$$\left\{ P_{n|\operatorname{Pa}_{\mathcal{G}}(n)} \mid n \in \mathcal{N} \right\}$$

Todo (TC Fraser): Clean up what is meant by copy index, example maybe? Todo (TC Fraser): Define injectable sets Todo (TC Fraser): Define pre-injectable sets and then it's connection to probabilities Todo (TC Fraser): Define pre-injectable sets Todo (TC Fraser): State the main Compatibility lemma of inflation

V. COMPATIBILITY, CONTEXTUALITY AND THE MARGINAL PROBLEM

In order to determine if a given marginal distribution P_V or set of marginal distributions $\{P_{V_1}, \ldots, P_{V_k}\}$ is compatible with a causal structure \mathcal{G} , one should first formalize what is meant by *compatible*.

Definition 19. A marginal distribution P_V is **compatible** with a causal structure \mathcal{G} (where it is assumed that $V \subseteq \mathcal{N}_O$) if there exists a *choice* of causal parameters $\left\{P_{n|\text{Pa}_{\mathcal{G}}(n)} \mid n \in \mathcal{N}\right\}$ such that P_V can be *recovered* from the following series of operations:

Todo (TC Fraser): Define this notation here

1. First obtain a joint distribution over all nodes of of the causal structure,

$$P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n|\operatorname{Pa}_{\mathcal{G}}(n)}$$

2. Then marginalize over the latent nodes of \mathcal{G} ,

$$P_{\mathcal{N}_O} = \sum_{\mathcal{N}_{\tau}} P_{\mathcal{N}}$$

3. Finally marginalize over the observed nodes not in V to obtain P_V ,

$$P_V = \sum_{\mathcal{N}_O \setminus V} P_{\mathcal{N}_O}$$

A set of marginal distributions $\{P_{V_1}, \ldots, P_{V_k}\}$ is compatible with \mathcal{G} if each of the distributions can be made compatible by the *same* choice of causal parameters. A distribution P_V or set of distributions $\{P_{V_1}, \ldots, P_{V_k}\}$ is said to be **incompatible** with a causal structure if there *does not exist* a set of causal parameters with the above mentioned property.

Todo (TC Fraser): Source this?

Operations 2 and 3 of definition 19 are related to the marginal problem.

Definition 20. The Marginal Problem: Given a set of distributions $\{P_{V_1}, \ldots, P_{V_k}\}$ where $V_i \subseteq \mathcal{V}$ for some set of random variables \mathcal{V} and $k \geq 2$, does there exist a joint distribution $P_{\mathcal{V}}$ such that each given distribution P_{V_i} can be obtained from marginalizing $P_{\mathcal{V}}$?

$$\forall i \in \{1, \dots, k\} : P_{V_i} = \sum_{\mathcal{V} \setminus V_i} P_{\mathcal{V}}$$

Typically (although not strictly necessary), \mathcal{V} is taken to mean the union of all V_i 's.

$$\mathcal{V} = V_1 \cup \dots \cup V_k = \bigcup_{i=1}^k V_i \tag{3}$$

Definition 21. A reoccurring motif of these discussions will be the set of distributions $\{P_{V_1}, \ldots, P_{V_k}\}$ mentioned in definition 21. In agreement with [4] we will call this set of distributions a **marginal model** and denote it $P^{\mathcal{M}}$ provided that they are *compatible*:

$$\forall i \neq j \text{ if } V_i \cap V_j \neq \emptyset \text{ then } \sum_{V_i \setminus V_j} P_{V_i} = \sum_{V_j \setminus V_i} P_{V_j}$$

We call the set of subsets $\{V_1, \ldots, V_k\}$ the marginal contexts or the **maximal marginal scenario** and an individual V_i a **marginal context**. Finally we will denote the union of all contexts \mathcal{V} and define it exactly as in eq. (3)

Todo (TC Fraser): Discuss Compatibility, connection to cooperative games/resources, bell incompatibility? Todo (TC Fraser): Connection between contextuality and Compatibility via the marginal problem for causal parameters Todo (TC Fraser): Discuss what is meant by a 'complete' solution to the marginal problem Todo (TC Fraser): Maybe define the possibilistic marginal problem for later

VI. THE FRITZ DISTRIBUTION

The **Fritz distribution** P_F is a quantum-accessible distribution known to be incompatible with the triangle scenario. Explicitly, P_F is a three-party (A, B, C), four-outcome (1, 2, 3, 4) distribution that has form as follows:

$$P_F(111) = P_F(221) = P_F(412) = P_F(322) = P_F(233) = P_F(143) = P_F(344) = P_F(434) = \frac{1}{32} \left(2 + \sqrt{2}\right)$$
$$P_F(121) = P_F(211) = P_F(422) = P_F(312) = P_F(243) = P_F(133) = P_F(334) = P_F(444) = \frac{1}{32} \left(2 - \sqrt{2}\right)$$

Here the notation $P_F(abc) = P_{ABC}(abc) = P(A = a, B = b, C = c)$ is used. The Fritz distribution P_F can be realized with the following quantum configuration:

$$\begin{split} \rho_{AB} &= \left| \Psi^{+} \right\rangle \left\langle \Psi^{+} \right| \quad \rho_{BC} = \rho_{CA} = \left| \Phi^{+} \right\rangle \left\langle \Phi^{+} \right| \\ M_{A} &= \left\{ \left| 0\psi_{0} \right\rangle \left\langle 0\psi_{0} \right|, \left| 0\psi_{\pi} \right\rangle \left\langle 0\psi_{\pi} \right|, \left| 1\psi_{-\pi/2} \right\rangle \left\langle 1\psi_{-\pi/2} \right|, \left| 1\psi_{\pi/2} \right\rangle \left\langle 1\psi_{\pi/2} \right| \right\} \\ M_{B} &= \left\{ \left| \psi_{\pi/4} 0 \right\rangle \left\langle \psi_{\pi/4} 0 \right|, \left| \psi_{5\pi/4} 0 \right\rangle \left\langle \psi_{5\pi/4} 0 \right|, \left| \psi_{3\pi/4} 1 \right\rangle \left\langle \psi_{3\pi/4} 1 \right|, \left| \psi_{-\pi/4} 1 \right\rangle \left\langle \psi_{-\pi/4} 1 \right| \right\} \\ M_{C} &= \left\{ \left| 00 \right\rangle \left\langle 00 \right|, \left| 01 \right\rangle \left\langle 01 \right|, \left| 10 \right\rangle \left\langle 10 \right|, \left| 11 \right\rangle \left\langle 11 \right| \right\} \end{split}$$

Where for convenience of notation ψ_x is used to denote the superposition,

$$|\psi_x\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{ix} |1\rangle \right)$$

Additionally $|\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$ and $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ are two maximally entangled Bell states. Fritz first proved it's incompatibility [5] by showing C acts a moderator to ensure measurement pseudo-settings for A and B are independent, satisfying non-broadcasting requirements for the standard Bell scenario. In fact, by coarse-graining outcomes for A and B and treating C as a measurement-setting moderator, P_F maximally violates the CHSH inequality. To illustrate this, begin with the CHSH inequality [6],

$$\langle AB|S_A = 1, S_B = 1 \rangle + \langle AB|S_A = 1, S_B = 2 \rangle + \langle AB|S_A = 2, S_B = 1 \rangle - \langle AB|S_A = 2, S_B = 2 \rangle \le 2 \tag{4}$$

Where $\langle AB|S_A=i, S_B=j\rangle$ is the correlation between A and B given the measurement settings for A (B) is i (j) respectively. Next, each of C's outcomes become the condition settings in eq. (4),

$$\langle AB|C=2\rangle + \langle AB|C=3\rangle + \langle AB|C=4\rangle - \langle AB|C=1\rangle < 2$$

Finally, specifying the correlation between A and B to be defined in terms of a $\{1, 2, 3, 4\} \rightarrow \{(1, 4), (2, 3)\}$ coarse-graining,

$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \frac{-\sqrt{2}}{2} \le 2$$

$$2\sqrt{2} \le 2$$

Which corresponds to the maximum quantum violation of the CHSH inequality eq. (4)

Todo (TC Fraser): Discuss non-uniqueness and relabeling Todo (TC Fraser): Summarize Problem 2.17 in fritz BBT, make it more formal

VII. CERTIFICATE INEQUALITIES

A. Casting the Inflated Marginal Problem as a Linear Program

After obtaining the maximal pre-injectable sets associated with a particular inflation, one can write the marginal problem of definition 20 as a linear program. The key observation is that marginalization is a *linear* operator that can be performed via a matrix multiplication. To do this, we will define the *marginalization matrix*.

Definition 22. The marginalization matrix M for a marginal scenario $\{V_1, \ldots, V_k\}$ is a bit-wise matrix where the columns are indexed by *joint* outcomes $o[\mathcal{V}] \in O_{\mathcal{V}}$ and the rows are indexed by marginal outcomes corresponding to all outcomes $o[V_i] \in O_{V_i}$ of the marginal contexts V_i . The entries of M are populated whenever a row index is extendable to a column index.

$$M_{(o[V_i],o[\mathcal{V}])} = \begin{cases} 1 & \exists o[\mathcal{V} \setminus V_i] \text{ such that } o[V_i] \times o[\mathcal{V} \setminus V_i] = o[\mathcal{V}] \\ 0 & \text{otherwise} \end{cases}$$

The marginalization matrix has $|O_{\mathcal{V}}|$ columns and $\sum_{i=1}^{k} |O_{V_i}|$ rows. The number of non-zero entries of M is a simple expression,

$$\sum_{i=1}^{k} |O_{V_i}| \left| O_{\mathcal{V} \setminus V_i} \right| = \sum_{i=1}^{k} |O_{\mathcal{V}}| = k |O_{\mathcal{V}}|$$

Each of the k elements of $\{V_1, \ldots, V_k\}$ contributes a single non-zero entry to each column of M, resulting in $k |O_{\mathcal{V}}|$ total non-zero entries.

Note that the row and column indices of the marginalization matrix will be referred to very frequently. We will refer to the

Todo (TC Fraser): Computationally Efficient generation?

To illustrate this concretely, consider the following example:

Example 23. Suppose one has 4 binary random variables $\mathcal{V} = \{a, b, c\}$ in mind and 2 subsets $\{\{a, c\}, \{b\}\}$. Then the marginalization matrix is:

$$M = \begin{pmatrix} (a,b,c) = & (0,0,0) & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ (a=0,c=0) & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ (a=0,c=1) & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ (a=1,c=0) & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ (a=1,c=1) & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ (b=0) & (b=1) & 0 & 0 & 1 & 1 & 0 & 0 \\ \end{pmatrix}$$

In order to describe how marginalization can be written as matrix multiplication $M \cdot x = b$, we need to describe how to define two more quantities:

Definition 24. The **joint distribution vector** $\mathcal{P}_{\mathcal{V}}$ for a probability distribution $P_{\mathcal{V}}$ is the vector whose entries are the positive, real-valued probabilities that $P_{\mathcal{V}}$ assigns to each outcome of $o[\mathcal{V}]$ of $O_{\mathcal{V}}$. $\mathcal{P}_{\mathcal{V}}$ shares the same indices as the *column* indices of M.

$$\mathcal{P}_{\mathcal{V}}^{\mathsf{T}} = [P_{\mathcal{V}}(o[\mathcal{V}])]_{o[\mathcal{V}] \in O_{\mathcal{V}}}$$

Definition 25. The marginal distribution vector $\mathcal{P}_{\{V_1,\dots,V_k\}}$ for a marginal model $\{P_{V_1},\dots,P_{V_k}\}$ is the vector whose entries are probabilities over the set of marginal outcomes $\bigcup_{j=1}^k O_{V_j}$. $\mathcal{P}_{\{V_1,\dots,V_k\}}$ shares the same indices as the *row* indices of M.

$$\mathcal{P}_{\{V_1,...,V_k\}}^{\mathsf{T}} = \left[P_{V_i}(o[V_i])\right]_{o[V_i] \in \bigcup_{j=1}^k O_{V_j}}$$

The marginal and joint distribution vectors are related via the marginalization matrix M. Given a joint distribution vector $\mathcal{P}_{\mathcal{V}}$ one can obtain the marginal distribution vector $\mathcal{P}_{\{V_1,\ldots,V_k\}}$ by multiplying M by $\mathcal{P}_{\mathcal{V}}$.

$$\mathcal{P}_{\{V_1,\dots,V_k\}} = M \cdot \mathcal{P}_{\mathcal{V}} \tag{5}$$

Todo (TC Fraser): Discuss non-unique but consistent ordering of M, $\mathcal{P}_{\mathcal{V}}$ and $\mathcal{P}_{\{V_1,\ldots,V_k\}}$

The marginal problem can now be rephrased in the language of the marginalization matrix. Suppose one obtains a marginal distribution vector $\mathcal{P}_{\{V_1,\ldots,V_k\}}$. The marginal problem becomes equivalent to the question: Does there exist a joint distribution vector $\mathcal{P}_{\mathcal{V}}$ such that eq. (5) holds?

Definition 26. The Marginal Linear Program is the following linear program:

minimize:
$$\emptyset \cdot x$$

subject to: $x \succeq 0$
 $M \cdot x = \mathcal{P}_{\{V_1,...,V_k\}}$

If this "optimization" is feasible, then there exists a vector x than can satisfy eq. (5) and is a valid joint distribution vector. Therefore feasibility implies that $P_{\mathcal{V}} = x$, solving the marginal problem with positive result. Moreover if the marginal linear program is infeasible, then there does not exist a joint distribution $P_{\mathcal{V}}$ over all random variables.

B. Infeasibility Certificates

The dual marginal linear program also provides an answer to the marginal problem. To prove this, first notice that the dual problem is *never infeasible*; by choosing y to be trivially the null vector \emptyset of appropriate size, all constraints are satisfied. Secondly if $y \cdot M \succeq 0$ and $x \succeq 0$, then the following must hold if the primal is feasible:

$$y \cdot \mathcal{P}_{\{V_1, \dots, V_k\}} = y \cdot M \cdot x \ge 0 \tag{6}$$

¹ "Optimization" is presented in quotes here because the minimization objective is trivially always zero (∅ denotes the null vector of all zero entries). The primal value of the linear program is of no interest, all that matters is its *feasibility*.

Therefore the sign of the dual value $d \equiv \min \left(y \cdot \mathcal{P}_{\{V_1,\dots,V_k\}} \right)$ solves the marginal problem. If d < 0 then eq. (6) is violated and therefore the marginal problem has negative result. Likewise if d satisfies eq. (6), then a joint distribution $P_{\mathcal{V}}$ exists. Before continuing, an important observation needs to be made. If $d \geq 0$, then it is exactly d = 0, due to the existence of the trivial $y = \emptyset$. This observation is an instance of the Complementary Slackness Property of [7]. Comment (TC Fraser): Is this really the CSP? Moreover, if d < 0, then it is unbounded $d = -\infty$. This latter point becomes clear upon recognizing that for any y such that d < 0, another y' can be constructed by multiplying y by a real constant α greater than one such that,

$$y' = \alpha y \mid \alpha > 1 \implies d' = \alpha d < d$$

Since a more negative d' can always be found, it must be that d is unbounded. This is a demonstration of the fundamental $Unboundedness\ Property$ of [7]; if the dual is unbounded, then the primal is infeasible.

^[1] Tobias Fritz, "Beyond bell's theorem ii: Scenarios with arbitrary causal structure," (2014), 10.1007/s00220-015-2495-5, arXiv:1404.4812.

^[2] Elie Wolfe, Robert W. Spekkens, and Tobias Fritz, "The inflation technique for causal inference with latent variables," (2016).

^[3] Judea Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, 2009).

^[4] Tobias Fritz and Rafael Chaves, "Entropic inequalities and marginal problems," (2011), 10.1109/TIT.2012.2222863, arXiv:1112.4788.

^[5] Tobias Fritz, "Beyond bell's theorem: Correlation scenarios," (2012), 10.1088/1367-2630/14/10/103001, arXiv:1206.5115.

^[6] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880–884 (1969).

^[7] Judea Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, 2009).