Cofree compositions of coalgebras: Trees, polytopes and indelible grafting.

Stefan Forcey, U. Akron Aaron Lauve, Loyola U. Chicago Frank Sottile, Texas A&M U.

Our slogan.

"Composing coalgebraic species preserves their niceness."

Our slogan.

"Composing coalgebraic species preserves their niceness."

For this talk, nice properties of coalgebras will be:

- 1. Cofree-ness,
- 2. Hopf-ness,
- 3. Polytopal-ness.

But first, our cast of characters:

Leveled trees S.

Leveled trees S.

Leveled trees are permutations S_n .

Binary trees \mathcal{B} .

Combed binary trees C.

Our characters as Polytopes.

Permutohedron.

Our characters as graded Hopf algebras.

A Hopf algebra of binary trees.

Two operations on trees: splitting

and grafting:

The n^{th} component of $\mathcal{Y}Sym$ has basis the collection of binary trees with n interior nodes, and thus n+1 leaves, denoted \mathcal{Y}_n .

The n^{th} component of $\mathcal{Y}Sym$ has basis the collection of binary trees with n interior nodes, and thus n+1 leaves, denoted \mathcal{Y}_n .

Here is the coproduct:

$$\Delta$$
 = $| \otimes \rangle + \rangle \otimes | + \rangle \otimes |$

The n^{th} component of $\mathcal{Y}Sym$ has basis the collection of binary trees with n interior nodes, and thus n+1 leaves, denoted \mathcal{Y}_n .

Here is the coproduct:

$$\Delta$$
 = $| \otimes \rangle + \langle \otimes \rangle + \langle \otimes \rangle |$

Here is how to multiply two trees:

The n^{th} component of $\mathcal{Y}Sym$ has basis the collection of binary trees with n interior nodes, and thus n+1 leaves, denoted \mathcal{Y}_n .

Here is the coproduct:

$$\Delta$$
 $+$ \otimes $+$ \otimes $+$

Here is how to multiply two trees:

The n^{th} component of $\mathcal{Y}Sym$ has basis the collection of binary trees with n interior nodes, and thus n+1 leaves, denoted \mathcal{Y}_n .

Here is the coproduct:

$$\Delta$$
 = $| \otimes \rangle + \langle \otimes \rangle + \langle \otimes \rangle |$

Here is how to multiply two trees:

The way to comultiply in $\mathfrak{C}Sym$.

We draw basis elements of $\mathfrak{C}Sym$ as right combs. $x^{(4)} = 1$

The way to comultiply in $\mathfrak{C}Sym$.

We draw basis elements of $\mathfrak{C}Sym$ as right combs. $x^{(4)} =$

Here is the coproduct:

$$\Delta$$
 = $| \otimes \rangle + \rangle \otimes | + \rangle \otimes |$

The way to multiply in $\mathfrak{C}Sym$.

We draw basis elements of $\mathfrak{C}Sym$ as right combs. $x^{(4)} =$

Here is the coproduct:

$$\Delta$$
 $+$ \otimes $+$ \otimes $+$

Here is how to multiply two combs:

The way to multiply in $\mathfrak{C}Sym$.

We draw basis elements of $\mathfrak{C}Sym$ as right combs. $x^{(4)} =$

Here is the coproduct:

$$\Delta$$
 = $| \otimes \rangle + \langle \otimes \rangle + \langle \otimes \rangle |$

Here is how to multiply two combs:

Species.

A species is an endofunctor of Finite Sets with bijections.

• Example: The species $\mathcal L$ of lists takes a set to linear orders of that set.

$$\mathcal{L}(\{a,d,h\}) = \{ \text{ }_{a < d < h, \text{ } a < h < d, \text{ } h < a < d, \text{ } h < d < a, \text{ } d < a < h, \text{ } d < h < a} \}$$

• Example: The species \mathcal{B} of binary trees takes a set to trees with labeled leaves.

$$\mathcal{B}(\{a,\,d,\,h\}) = \{ \stackrel{a\,d\,h}{\bigvee}, \stackrel{a\,h\,d}{\bigvee}, \dots, \stackrel{a\,d\,h}{\bigvee}, \stackrel{a\,h\,d}{\bigvee}, \dots \}$$

Species composition.

We define the composition of two species:

$$(\mathcal{G}\circ\mathcal{H})(U)=igsqcup_\pi\mathcal{G}(\pi) imes\prod_{U_i\in\pi}\mathcal{H}(U_i)$$

where the union is over partitions of \boldsymbol{U} into any number of nonempty disjoint parts.

$$\pi = \{U_1, U_2, \dots, U_n\}$$
 such that $U_1 \sqcup \dots \sqcup U_n = U$.

Familiar(?): also known as the cumulant formula, and the moment sequence of a random variable, and the domain for operad composition:

$$\gamma: \mathcal{F} \circ \mathcal{F} \to \mathcal{F}$$

Leveled tree of trees: indelible grafting.

Example:

$$(S \circ B)(\{a, b, c, d, e, f, g, h, i, j, k\}) =$$

$$\{ \dots, \} = \left\{ \frac{\text{trees}}{\text{leveled tree}} \right\}$$

Example $S \circ B$

Composing species of trees.

Composing species of trees.

More polytopes.

Composition of coalgebras

Given two graded coalgebras we combine them in a way reminiscent of species composition.

Let $\mathcal C$ and $\mathcal D$ be two graded coalgebras. We will form a new coalgebra $\mathcal E=\mathcal D\circ\mathcal C$ on the vector space

$$\mathcal{D} \circ \mathcal{C} := \bigoplus_{n \geq 0} \mathcal{D}_n \otimes \mathcal{C}^{\otimes (n+1)}. \tag{1}$$

Examples

The motivating example is when \mathcal{C} and \mathcal{D} are spaces of rooted trees. Then \circ may be interpreted as some rule for grafting n+1 trees from \mathcal{C} onto the leaves of a tree in \mathcal{D}_n .

Example

Suppose $C = \mathcal{D} = \mathcal{Y}Sym$ and consider some $(c_0, \ldots, c_n) \times d \in (\mathcal{Y}^{n+1}) \times \mathcal{Y}_n$. Then defining \circ by grafting with color coding:

$$(\forall, |, \forall, \forall, |) \times$$

One sided Hopf algebras from compositions.

If our composition contains one of the Hopf operads, we get lots of free extra structure: a one-sided Hopf algebra, a Hopf module and a comodule algebra.

Examples from trees.

Here is an example of the coproduct in $\mathcal{Y}Sym \circ \mathcal{Y}Sym$:

Here is an example of the product in $\mathcal{Y}Sym \circ \mathcal{Y}Sym$:

Combs of combs

The coproduct is the usual splitting of trees:

Here is the product:

More polytopes.

 $\mathcal{S} \circ \mathcal{C}$

 $\mathcal{S} \circ \mathcal{C}$

This polytope has been seen before! Stellohedron = Complete-graph-cubeahedron Number of vertices =

$$\sum_{k=0}^{n} \frac{n!}{k!}$$

Thanks!

Thanks!

Questions and comments?