```
#importing the libraries
In [131...
          import pandas as pd
          import numpy as np
          from sklearn import preprocessing
          from sklearn.preprocessing import LabelEncoder
          import seaborn as sn
          import matplotlib.pyplot as plt
          #add headers to the dataset
          headers=[]
          for i in range(1,35):
               column="column_"+str(i)
               headers.append(column)
          headers.append("output")
          #print(headers)
          ionospher_df=pd.read_csv('./ionosphere.data', names=headers)
In [131... #see top 5 data rows
          ionospher_df.head()
Out[1317]:
               column_1 column_2 column_3 column_4 column_5 column_6 column_7 column_8 column_9 colum
            0
                      1
                                0
                                     0.99539
                                              -0.05889
                                                        0.85243
                                                                  0.02306
                                                                            0.83398
                                                                                     -0.37708
                                                                                                1.00000
                                                                                                          0.0
                                                                  -0.36156
                      1
                                     1.00000
                                              -0.18829
                                                        0.93035
                                                                            -0.10868
                                                                                     -0.93597
                                                                                                1.00000
                                                                                                          -0.0
            1
                                0
            2
                      1
                                0
                                     1.00000
                                              -0.03365
                                                        1.00000
                                                                  0.00485
                                                                            1.00000
                                                                                     -0.12062
                                                                                                0.88965
                                                                                                          0.0
            3
                      1
                                0
                                     1.00000
                                              -0.45161
                                                        1.00000
                                                                  1.00000
                                                                            0.71216
                                                                                     -1.00000
                                                                                                0.00000
                                                                                                          0.0
                      1
                                0
                                                                                                0.77152
            4
                                     1.00000
                                              -0.02401
                                                        0.94140
                                                                  0.06531
                                                                            0.92106
                                                                                     -0.23255
                                                                                                          -0.1
           5 rows × 35 columns
In [131...
          #to see the size of the data
          ionospher_df.shape[0],ionospher_df.shape[1]
            (351, 35)
Out[1318]:
In [131...
          ionospher_df.index[ionospher_df.duplicated()]
            Int64Index([248], dtype='int64')
Out[1319]:
          ionospher_df= ionospher_df.drop_duplicates()
In [132...
          plt.figure(figsize=(8,7))
In [132...
          sn.countplot(y=ionospher_df["output"], hue = ionospher_df["output"])
          plt.title('Count plot of output value')
```

plt.show()

In [132... ionospher_df.shape[0],ionospher_df.shape[1]

Out[1322]: (350, 35)

In [132... ionospher_df.dtypes

```
column_1
                            int64
Out[1323]:
            column_2
                            int64
            column_3
                          float64
            column_4
                          float64
            column_5
                          float64
                          float64
            column_6
            column_7
                          float64
            column_8
                          float64
            column_9
                          float64
            column_10
                          float64
            column 11
                          float64
            column_12
                          float64
            column_13
                          float64
            column_14
                          float64
                          float64
            column_15
                          float64
            column_16
            column_17
                          float64
            column_18
                          float64
            column_19
                          float64
                          float64
            column_20
            column_21
                          float64
                          float64
            column_22
            column_23
                          float64
                          float64
            column_24
            column_25
                          float64
            column_26
                          float64
                          float64
            column_27
                          float64
            column_28
            column_29
                          float64
            column_30
                          float64
            column_31
                          float64
            column_32
                          float64
                          float64
            column_33
            column_34
                          float64
            output
                           object
            dtype: object
In [132...
          ionospher_df.isna().sum()
```

```
column_1
                         0
Out[1324]:
            column_2
                         0
            column_3
                         0
            column_4
                         0
            column_5
                         0
            column_6
                         0
            column_7
                         0
            column_8
            column_9
                         0
            column_10
                         0
            column 11
                         0
            column_12
                         0
            column_13
                         0
            column_14
                         0
            column_15
                         0
            column 16
                         0
            column_17
                         0
            column_18
                         0
            column_19
                         0
            column_20
                         0
            column 21
                         0
            column_22
                         0
            column_23
                         0
            column_24
                         0
            column_25
                         0
            column_26
                         0
            column_27
                         0
            column_28
                         0
            column_29
                         0
            column_30
                         0
            column_31
                         0
            column_32
                         0
            column_33
                         0
            column_34
                         0
            output
            dtype: int64
In [132... #find and replace
          ionospher_df["output"].value_counts()
          set_nums = {"output": {"g": 1, "b": 0}}
          ionospher_df = ionospher_df.replace(set_nums)
In [132... ionospher_df["output"].value_counts()
                 225
Out[1326]:
                 125
            Name: output, dtype: int64
In [132... # sort based on the data output column so that to choose training data and testing data
          ionospher_df.sort_values('output')
```

Out[1327]:		column_1	column_2	column_3	column_4	column_5	column_6	column_7	column_8	column_9	col
	174	1	0	0.62121	-0.63636	0.00000	0.00000	0.00000	0.00000	0.34470	
	128	1	0	0.00000	0.00000	-0.33672	0.85388	0.00000	0.00000	0.68869	-
	130	1	0	0.00000	0.00000	0.98919	-0.22703	0.18919	-0.05405	0.00000	
	132	1	0	1.00000	1.00000	1.00000	-1.00000	0.00000	0.00000	0.00000	
	134	1	0	0.00000	0.00000	1.00000	-1.00000	0.00000	0.00000	0.00000	
	165	1	0	1.00000	0.54902	0.62745	1.00000	0.01961	1.00000	-0.49020	
	167	1	0	0.44444	0.44444	0.53695	0.90763	-0.22222	1.00000	-0.33333	
	169	1	0	1.00000	0.00000	1.00000	0.00000	0.50000	0.50000	0.75000	
	145	1	0	0.25000	0.16667	0.46667	0.26667	0.19036	0.23966	0.07766	
	350	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-

350 rows × 35 columns

```
In [132... ionospher_df["column_2"].value_counts()
```

Out[1328]: 0 350

Name: column_2, dtype: int64

In [132... ionospher_df.corr()

_		column_1	column_2	column_3	column_4	column_5	column_6	column_7	column_8	column_
	column_1	1.000000	NaN	0.295648	-0.007442	0.148700	0.127056	0.215631	0.025500	0.18338
	column_2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nε
	column_3	0.295648	NaN	1.000000	0.143337	0.474355	0.024901	0.437956	0.007890	0.46969
	column_4	-0.007442	NaN	0.143337	1.000000	0.000820	-0.190400	-0.054449	0.254960	-0.3030
	column_5	0.148700	NaN	0.474355	0.000820	1.000000	0.037565	0.595580	-0.030614	0.44862
	column_6	0.127056	NaN	0.024901	-0.190400	0.037565	1.000000	-0.011052	0.274628	-0.12162
	column_7	0.215631	NaN	0.437956	-0.054449	0.595580	-0.011052	1.000000	-0.151439	0.4601
	column_8	0.025500	NaN	0.007890	0.254960	-0.030614	0.274628	-0.151439	1.000000	-0.33719
	column_9	0.183388	NaN	0.469690	-0.303055	0.448624	-0.121628	0.460153	-0.337194	1.00000
	column_10	-0.055630	NaN	0.046653	0.207634	-0.035553	0.199868	-0.091650	0.373424	-0.2534
	column_11	0.027553	NaN	0.322995	-0.190531	0.448347	-0.292382	0.411328	-0.364959	0.67000
	column_12	0.070487	NaN	0.169251	0.315836	0.041944	0.163745	-0.021439	0.429032	-0.16888
	column_13	0.098492	NaN	0.215860	-0.149493	0.481192	-0.307872	0.630501	-0.356537	0.56136
	column_14	0.200058	NaN	0.164253	0.236566	0.126841	0.135089	0.083206	0.253648	-0.08966
	column_15	0.110646	NaN	0.196907	-0.253406	0.398053	-0.359898	0.615064	-0.352729	0.61808
	column_16	0.100392	NaN	0.093955	0.185837	0.087649	0.157648	-0.022029	0.419617	-0.03318
	column_17	0.053368	NaN	0.219807	-0.251462	0.276566	-0.317353	0.378643	-0.492575	0.6330!
	column_18	0.076990	NaN	0.172439	-0.147451	0.027665	0.188095	0.116158	0.068727	0.20110
	column_19	0.197961	NaN	0.283971	-0.332540	0.220157	-0.209102	0.371575	-0.401119	0.67313
	column_20	0.019845	NaN	0.151332	0.167260	0.042193	-0.061234	0.159350	0.077660	0.06754
	column_21	0.171397	NaN	0.147752	-0.281370	0.325159	-0.115425	0.586165	-0.371026	0.49174
	column_22	-0.155879	NaN	0.138335	-0.035406	0.163924	-0.132446	0.191095	-0.212034	0.23762
	column_23	0.006928	NaN	0.249338	-0.143968	0.502111	-0.216341	0.372123	-0.271179	0.3511
	column_24	-0.082672	NaN	-0.012197	0.164233	0.098826	-0.286494	0.113270	0.007117	0.16182
	column_25	0.011234	NaN	0.303295	-0.104901	0.241419	-0.178205	0.285260	-0.180512	0.35534
	column_26	0.152751	NaN	-0.072861	-0.236957	-0.031853	0.041893	0.088342	-0.132945	0.10804
	column_27	-0.198378	NaN	0.081475	-0.046707	0.144280	-0.175007	0.100700	-0.253853	0.17523
	column_28	-0.025014	NaN	0.117863	0.000257	0.179995	-0.070289	0.104595	0.071562	0.1427
	column_29	0.129852	NaN	0.343061	-0.041306	0.256118	-0.029887	0.299249	-0.140254	0.32859
	column_30	-0.122413	NaN	0.058232	0.342323	0.051348	-0.158065	-0.015009	0.078627	-0.03187
	column_31	0.163996	NaN	0.245092	-0.172550	0.398778	-0.100748	0.414209	-0.167191	0.31486
	column_32	-0.102062	NaN	-0.009327	-0.122788	0.025754	0.316836	-0.008314	0.152397	-0.0675
	column_33	0.159461	NaN	0.261666	-0.154258	0.382230	0.016429	0.545065	-0.201443	0.34360
	column_34	0.010661	NaN	0.000471	0.034600	-0.099772	0.185210	-0.076696	0.360617	-0.09582
	output	0.461280	NaN	0.516765	0.125823	0.514353	0.148530	0.448103	0.207213	0.29216

```
ionospher_df.drop("column_2", axis=1, inplace=True)
In [133...
 In [ ]:
In [133...
          #plotting heatmap to see the correlation
           sn.set(rc = {'figure.figsize':(35,18)})
           hm = sn.heatmap(data=ionospher_df.corr(),linewidths=.75,annot=True)
           plt.show()
                                                            0.061 -0.12 -0.13 -0.22 -0.29 -0.18
                                                    -0.49
                   -0.3
                                                                   -0.21
                                                                              -0.31
                                                                                 0.29 -0.12
                                                                   -0.2
                                                                        -0.18
                                                                              -0.2
                                       -0.36
                                            -0.21
                                                 -0.27
                                                       -0.18
                                            -0.31
                                                 -0.31
           np.corrcoef(ionospher_df['output'],ionospher_df['column_3'])
In [133...
                                 , 0.51676545],
            array([[1.
Out[1332]:
                    [0.51676545, 1.
                                               ]])
In [133...
          np.corrcoef(ionospher_df['output'],ionospher_df['column_5'])
                                 , 0.51435326],
            array([[1.
Out[1333]:
                     [0.51435326, 1.
                                               11)
In [133...
          %matplotlib inline
           plt.figure(figsize=(20,5))
           plt.xlabel("column_3")
           plt.ylabel("output ")
           plt.scatter(ionospher_df["column_3"],ionospher_df["output"],color='red',marker='+')
            <matplotlib.collections.PathCollection at 0x20305286970>
```

Out[1334]:

In [133... ionospher_df

Out[1336]	:	column_1	column_3	column_4	column_5	column_6	column_7	column_8	column_9	column_10	СО
	0	1	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	
	1	1	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	
	2	1	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	
	3	1	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	
	4	1	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	

3	1	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000
4	1	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399
346	1	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622
347	1	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606
348	1	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446
349	1	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110
350	1	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139

350 rows × 34 columns

Univariate Logistic regression using built in function

```
logisticRegr.fit(np.array(train_set["column_3"].values).reshape(-1,1), train_set.output.
         logisticRegr.predict(np.array(train_set["column_3"].values).reshape(-1,1))
Out[1339]: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
                  0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
                  0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0,
                  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                  1, 0, 1, 0, 1, 1, 1, 1, 1,
                                             1, 1, 1, 1, 1, 1, 1,
                                                                 1, 1, 1,
                  0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                  1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
                  1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
                  1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                  0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
                  1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
                  1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0,
                  1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, dtype=int64)
In [134... | score = logisticRegr.score(np.array(test_set["column_3"].values).reshape(-1,1), test_set
         print("Univariate Logistic Regression; Accuracy on test set by sklearn model :", score*10
         Univariate Logistic Regression; Accuracy on test set by sklearn model: 88.5714285714285
         7 %
```

Multivariate Logistic regression using built in function

In $[134... X = ionospher_df.iloc[:,:-1]$

```
Y = ionospher_df.iloc[:,-1]
            X_sample = X.sample(frac=1, random_state=13)
            Y_sample = Y.sample(frac=1, random_state=13)
            # Define a size for your train set
            train_size = int(0.8 * len(X))
            # Split your dataset
            X_train = X_sample[:train_size]
            Y_train = Y_sample[:train_size]
            X_test = X_sample[train_size:]
            Y_test = Y_sample[train_size:]
            model1 = LogisticRegression()
            model1.fit( X_train, Y_train)
            Y_pred1 =model1.predict( X_test )
  In [134... | #finding accuracy
            count = 0
            correctly_classified = 0
            for count in range( np.size( Y_pred1 ) ) :
                 if Y_test.values[count] == Y_pred1[count] :
                     correctly_classified = correctly_classified + 1
                 count = count + 1
              rint/ "Multivariate Logistic Regression -Accuracy on test set by sklearn model
Loading [MathJax]/extensions/Safe.js
```

Logistic regression using gradient descent Model

```
In [134... | a=0.004
         iterations=8000
         cost=0
         error_cost=[]
         class LR_Model :
             # gradient function
             def gradient_fun( self, X, Y ) :
                 # no_of_training_examples, no_of_features
                 self.m, self.n = X.shape
                 # parameter initialization
                 self.W = np.zeros( self.n )
                 self.b = 0
                 self.X = X
                 self.Y = Y
                 error_cost.clear()
                 # gradient descent updating
                 for i in range(iterations ) :
                     self.update()
                 return self
             def update( self ) :
                 \#h=p(x)=1/1+e^{-(WT.X+b)}
                 P = 1 / (1 + np.exp( - (self.X.dot(self.W) + self.b)))
                 cost = -(1/m)*np.sum(self.Y*np.log(P) + (1-self.Y)*np.log(1-P))
                 error_cost.append(cost)
                 # calculate gradients
                 tmp = (P-self.Y.T)
                 #tmp = np.reshape( tmp, self.m )
                 #dW = (1/m)*(XT(P-Y))
                 #dB = (1/m)*sum(P - Y)
                 dW = np.dot( self.X.T, tmp ) / self.m
                 db = np.sum(tmp) / self.m
                 # parameters
                 self.W = self.W - a * dW
                 self.b = self.b - a * db
                 return self
             def predict( self, X ) :
                 \#h=p(x)=1/1+e^{-(WT.X+b)}
                 Z = 1 / (1 + np.exp( - (X.dot(self.W) + self.b)))
                 Y = np.where(Z >= 0.5, 1, 0)
                 return Y
```

Multivariate Logistic regression with all features

```
X = ionospher_df.iloc[:,:-1]
         Y = ionospher_df.iloc[:,-1]
         # Shuffle the dataset
         X_sample = X.sample(frac=1, random_state=13)
         Y_sample = Y.sample(frac=1, random_state=13)
         # Define a size for your train set
         train_size = int(0.8 * len(X))
         # Split the dataset
         X_train = X_sample[:train_size]
         Y_train = Y_sample[:train_size]
         X_test = X_sample[train_size:]
         Y_test = Y_sample[train_size:]
         # Model class
         lr = LR_Model()
         lr.gradient_fun( X_train, Y_train )
         # Prediction on test set for both models
         Y_pred = lr.predict( X_test )
         # measure performance
         correctly_classified = 0
         count = 0
         for count in range( np.size( Y_pred ) ) :
             if Y_test.values[count] == Y_pred[count] :
                 correctly_classified = correctly_classified + 1
             count = count + 1
         print( "Accuracy on test set by Multivariate logistic regression model with all feature
         Accuracy on test set by Multivariate logistic regression model with all features :
         81.42857142857143 %
In [134... plt.figure(figsize=(10,5))
         plt.title("Cost convergence")
         plt.xlabel("Iterations")
         plt.ylabel("Error or Cost")
         plt.plot(error_cost)
```


Multivariate Logistic regression with some features

```
In [135...
            # considering only some of the features
            X = ionospher_df.drop(['column_17','column_20','column_22','column_24','column_26','colu
            Y = ionospher_df['output']
            # Shuffle the dataset
            X_sample = X.sample(frac=1, random_state=13)
            Y_sample = Y.sample(frac=1, random_state=13)
            # Define a size for your train set
            train_size = int(0.8 * len(X))
            # Split your dataset
            X_train = X_sample[:train_size]
            Y_train = Y_sample[:train_size]
            X_test = X_sample[train_size:]
            Y_test = Y_sample[train_size:]
            # Model training
            lr = LR_Model()
            lr.gradient_fun( X_train, Y_train )
            # Prediction on test set for both models
            Y_pred = lr.predict( X_test )
            # measure performance
            correctly_classified = 0
            count = 0
            for count in range( np.size( Y_pred ) ) :
                 if Y_test.values[count] == Y_pred[count] :
Loading [MathJax]/extensions/Safe.js | ctly_classified = correctly_classified + 1
```

```
print( "Accuracy on test set by Multivariate logistic regression model with some featur
Accuracy on test set by Multivariate logistic regression model with some features
: 82.85714285714286 %
```

```
In [134... plt.figure(figsize=(10,5))
    plt.title("Cost convergence")
    plt.xlabel("Iterations")
    plt.ylabel("Error or Cost")
    plt.plot(error_cost)
```

Out[1347]: [<matplotlib.lines.Line2D at 0x20305ec2d30>]

count = count + 1

Univariate Logistic regresssion

```
In [135... #considering one of the features with more correlation
    X = ionospher_df[['column_3']]
    Y = ionospher_df['output']

# Shuffle the dataset
    X_sample = X.sample(frac=1, random_state=13)
    Y_sample = Y.sample(frac=1, random_state=13)

# Define a size for your train set size
    train_size = int(0.8 * len(X))

# Split your dataset
    X_train = X_sample[:train_size]
    Y_train = Y_sample[:train_size]

    X_test = X_sample[train_size:]
    Y_test = Y_sample[train_size:]
Loading [MathJax]/extensions/Safe.js
```

```
lr = LR_Model()
lr.gradient_fun( X_train, Y_train )

# Prediction on test set for both models
Y_pred = lr.predict( X_test )

# measure performance
correctly_classified = 0
count = 0
for count in range( np.size( Y_pred ) ) :
    if Y_test.values[count] == Y_pred[count] :
        correctly_classified = correctly_classified + 1
    count = count + 1

print( "Accuracy on test set by the univariate logistic regression model : ", (co
Accuracy on test set by the univariate logistic regression model : 81.4285714285
```

Accuracy on test set by the univariate logistic regression model : 81.4285714285 7143 %

```
In [134... plt.figure(figsize=(10,5))
    plt.title("Cost convergence")
    plt.xlabel("Iterations")
    plt.ylabel("Error or Cost")
    plt.plot(error_cost)
```

Out[1349]: [<matplotlib.lines.Line2D at 0x20305f83fa0>]

In []: