VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman

presented by: Pradeep Karuturi

Recap - Krizhevsky's work(2012)

- 1.2 million ImageNet LSVRC-2010 dataset with 1000 classes
- ReLU based non-linearity
- 5 convolutional, 3 fully connected layers
- 60 million parameters
- GPU based training
- established once for all that deep models do work for computer vision!

What next from here?

- 1. Apply deep models to different domains
- 2. Come up with more efficient training(which is what krizhevsky did next)
- 3. Come up with ad-hoc tricks to prevent overfitting(like Dropout)
- 4. Different convolution strategies(Ziegler & Fergus 2013)
- 5. Try "deeper" architectures

Simoyan & Zisserman's work

- Deals with the problem of deeper architectures, building upon the work of Krizhevsky(2012) and Ziegler(2013).
- Very "experimental" paper.

How deep are we talking about?

- 11 to 19 layers!
- 3 fully connected and the rest are convolutional

Convolution & pooling

- 3x3 convolutional filters with stride 1
- five 2x2 max-pooling layers with stride 2

Network Architecture

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 × 2	24 RGB image	e)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
	•	max	pool	•	
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
	•	max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
	2	max	pool	90 111 20	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
	•	max	pool		
		FC-	4096		
		FC-	4096		
			1000		
		soft	-max		

Parameters(millions)

A,A-LRN	В	C	D	E
133	133	134	138	144

Parameter size - network D

	Total parameters	138,357,544
fc-3	4096*1000+1000	4097000
fc-2	4096*4096 + 4096	16781312
fc-1	512*7*7 * 4096 + 4096	102764544
conv3-512,conv3-512,conv3-512	3*3*512*512*3 + 512*3	7079424
conv3-512,conv3-512,conv3-512	3*3*256*512+3*3*512*512*2+512*3	5899776
conv3-256,conv3-256,conv3-256	3*3*128*256+3*3*256*256*2+256*3	1475328
conv3-128,conv3-128	3*3*64*128+3*3*128*128+128*2	221440
conv3-64, conv3-64	3*3*3*64+3*3*64*64+64*2	38720

Problems with very deep networks

Vanishing gradient problem

Problems with very deep networks

- Vanishing gradient problem
- Overfitting
- Enormous training time

Problems - solutions

- Vanishing gradient problem partly handled by ReLUs
- Overfitting augmentation, dropout
- Enormous training time smart initialization of the network, GPU & ReLUs

Dataset & Metrics

ILSVRC 2012 - 1000 classes

Training	1.3 million
Validation	50,000
Test	100,000

Top-1 & Top-5 as error metrics

Training details

- rescale the given image to a training scale(S for the smallest side)
- 224x224 RGB input(one random crop per image per SGD iteration)
- multinomial logistic regression objective
- back-prop with momentum
- mini-batch(size 256) gradient descent
- use the weights from trained shallow networks as the initialization weights for deeper networks

Experiments

- Single scale evaluation single scale of a test image
- Multi scale evaluation several rescaled versions of a test image and averaging the resulting class posteriors
- Multi crop evaluation
- ConvNet Fusion ensemble

Results - single test scale

config	top-1 error	top-5 error
Α	29.6	10.4
A-LRN	29.7	10.5
В	28.7	9.9
С	27.3	8.8
D	25.6	8.1
Е	25.5	8.0

Results - multiple test scale

config	top-1 error	top-5 error
В	28.2	9.6
С	26.3	8.2
D	24.8	7.5
E	24.8	7.5

Multi-crop & Fusion

- Multi-crop gives slightly better results, but at the expense of computation time.
- Ensembling two best models(D&E) gave top-5 error of 7%

Does this work for other datasets?

Method	VOC-2007 (mean AP)	VOC-2012 (mean AP)	Caltech-101 (mean CR)	Caltech-256 (mean CR)
Zeiler & Fergus (Zeiler & Fergus, 2013)	-	79.0	86.5 ± 0.5	74.2 ± 0.3
Chatfield et al., 2014)	82.4	83.2	88.4 ± 0.6	77.6 ± 0.1
He et al. (He et al., 2014)	82.4	-	93.4 ± 0.5	-
Wei et al. (Wei et al., 2014)	81.5	81.7	-	-
VGG Net-D (16 layers)	89.3	89.0	91.8 ± 1.0	85.0 ± 0.2
VGG Net-E (19 layers)	89.3	89.0	92.3 ± 0.5	85.1 ± 0.3
VGG Net-D & Net-E	89.7	89.3	92.7 ± 0.5	86.2 ± 0.3

Representations learnt over ImageNet generalize well to other smaller datasets.

Kaggle CIFAR-10 challenge

Leaderboard

- 1. DeepCNet
- 2. jiki
- 3. Anil Thomas
- 4. Frank Sharp
- 5. nagadomi
- Phil & Triskelion & Kazanova
- 7. Daniel Nouri
- 8. Terry
- 9. Luca Massaron
- 10. Gil Levi

CIFAR-10 dataset

From publicly available information, it's clear that 7 out of the top 10 teams used deep models borrowed from this paper.

The other three might also have used it!

Discussion

- "Representational" depth benefits classification accuracy?
- Alternate deep architectures?

Alternate architectures

Going deeper with convolutions - Szegedy et.al

- Deeper than Zisserman et.al's work. 22 layers!
- Focus is on "efficient" architecture in terms of computation
- Compact model (about 5 million parameters)
- Computational budget of 1.5 billion multiply-adds

Szegedy's work - GoogLeNet

- ReLU units
- max-pool, avg-pool
- Compact model(about 5 million parameters)
- Problems of gradient, overfitting, efficient training apply here as well!

GoogleLeNet

Inception module - Basic building block

Inception module - Naive

This explodes the number of parameters! what do we do?

Inception module - Dimensionality reduction

Summary & Results

- Multi-scale architecture to mirror correlation structure in images.
- Dimensional reduction to constrain representation along each spatial scale.

Performs better than VGG(Zisserman) model - 6.67 vs 7%

Questions?