Variational Inference with Normalizing Flows

ATML Group 12

Department of Computer Science, University of Oxford 1032626, 1034125, 1034129, 1036969

Introduction

- ► Calculating the true posterior distribution of inference tasks is in most cases an intractable problem.
- ► Lots of research on approaches for efficient approximation of the posterior, however the resulting classes prove to be of limited expressiveness.
- ► The authors in [?] introduce the notion of normalizing flows, sequences of invertible transformations applied to a simple initial density, to efficiently create more expressive families of candidate posteriors to be used for variational inference.
- We compare the performance of different types of normalizing flows on the MNIST dataset.

Our Work

- Reproduced experiment on MNIST using Linear Normalizing Flows
- Reproduced experiment on MNIST using NICE
- Extended the ideas of the paper and experimented with Invertible Convolutional Flows
- Created open-source Github repository with code and results: github.com/ATML-Group-12/normalising_flows

Theoretical Background

Normalizing flows are sequences of invertible, smooth mappings f: $\mathbb{R}^d \to \mathbb{R}^d$. We define a flow of length K to be K such transformations as follows:

$$\mathbf{z_K} = f_K \circ ... \circ f_2 \circ f_1(\mathbf{z_0})$$

where z_0 is a random variable that has a simple initial distribution, and z_K is the corresponding random variable after applying the transformations. The properties of normalizing flows allow us to calculate the log-density of z_K efficiently, using the change of variable theorem:

$$\ln q_K(\mathbf{z_K}) = \ln q_0(\mathbf{z_0}) - \sum_{k=1}^K \ln \left| \det \frac{\partial f_k}{\partial \mathbf{z_{k-1}}} \right|$$

The normalizing flow is defined as the path of the successive distributions q_K .

The first class of flows that we use in our experiments is that of linear flows. More specifically, we consider planar and radial flows, which perform series of contractions and expansions in the direction perpendicular to a fixed hyperplane and around a reference point respectively.

Theoretical Background

The authors compare their work with NICE, which introduces coupling layers. A coupling layer f is a neural network layer with easy to compute inverse and a trivial Jacobian. For an input vector $\mathbf{z} \in \mathbb{R}^D$, we have

$$f(\mathbf{z}) = (\mathbf{z}_A, g(\mathbf{z}_B, h(\mathbf{z}_A))) \tag{1}$$

$$f^{-1}(\mathbf{z}) = (\mathbf{z}_A, g^{-1}(\mathbf{z}_B, h(\mathbf{z}_A)))$$
 (2)

where (A, B) is a partition of $\{1, 2, \dots, D\}$, h is a neural network with input size |A|, and g is a coupling law, a function that is invertible for the first argument given the second. When g(a,b) = a + b, the Jacobian is the identity matrix, so f is classified as a volume-preserving flow.

Experiments

We compare expressivity of normalizing flows with NICE coupling layers. We also added in diagonal scaling for NICE layers since this was not accounted for in the original results.

Results

The range of variational bounds is close to those from the paper, but the shapes are visibly inconsistent. We suspect this is due to the "parameter" updates" being iterations or epochs, as well as the model being not well-specified in the paper. We do note that among NICE-based models, those with diagonal scaling do perform better than their counterparts.

Figure: (d) Variational bounds

Our Improvements and Extensions

TODO Pellentesque vitae dui velit. Aenean tincidunt eros facilisis turpis tincidunt, non mollis ipsum venenatis. Praesent consectetur venenatis est, quis rutrum justo faucibus vitae. Nam id orci ex. Aenean id finibus libero. Nam tristique pellentesque eros et mattis. Proin vel nunc accumsan, aliquet leo ut, consectetur sem. Ut ut elit libero. Donec aliquet nulla ac venenatis egestas. Maecenas eu nunc hendrerit turpis dictum laoreet at ut velit. Phasellus tempus tellus id leo bibendum, ac rhoncus turpis molestie. Quisque commodo, quam vitae elementum fermentum, erat dolor hendrerit quam, bibendum malesuada lectus lacus sit amet nisi. In dignissim nisl elit. Aenean vitae enim ut ligula congue vehicula sed non lacus.

References