Домашнее задание

По курсу: Математический Анализ

Студент: Ростислав Лохов

Содержание

1	Опр	еделение и	1	н	е	ζO	T	op	Ъ	ı(9 (СЕ	во	й	СТ	В	\mathbf{a}	н	ec	o	бс	T	В	Н	н	ΟI	O	И	H	гε	: []	pa	ал	ıa			2
	1.1	Задача 1.																																			2
	1.2	Задача 2.																																			2
	1.3	Задача 3.																																			2
	1.4	Задача 4.																																			2
	1.5	Задача 5.																																			3
	1.6	Задача 6.																																			3
	1.7	Задача 7.																																			3
	1.8	Задача 8.																																			3
	1.9	Задача 10																																			4
	1.10	Задача 11																																			4
	1.11	Задача 12																																			4
	1.12	Задача 13																																			4
	1.13	Задача 14																																			5
	1.14	Задача 15																																			5
	1.15	Задача 16																																			5
	1.16	Задача 17																																			5
	1.17	Задача 18																																			6
	1.18	Задача 19																																			6
	1.19	Задача 20																																			6
	1.20	Задача 22																																			6
	1.21	Задача 24																																			7
	1.22	Залача 25																										_									7

1 Определение и некоторые свойства несобственного интеграла

1.1 Задача 1

1.
$$\int_{-\infty}^{0.25\pi} e^x \sin(x) dx = 0.5e^x (\sin(x) - \cos(x)) \Big|_{-\infty}^{0.25\pi} =$$

2.
$$0 - (0.5e^{0.25\pi}(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2})) = 0$$

1.2 Задача 2

1.
$$y(x_0) = 1$$

2.
$$y-1=-0.5(x-1)\Rightarrow y=-0.5x+1.5$$
 - ур-е нормали в точке 1

3.
$$x^2 = -0.5x + 1.5 \Rightarrow x = -1.5, x = 1$$

4.
$$S = \int_{-1.5}^{1} -0.5x + 1.5 - \int_{-1.5}^{1} x^2$$

5.
$$S = (-0.25x^2 + 1.5x)|_{-1.5}^1 - (x^3/3)_{-1.5}^1 = \frac{125}{48}$$

1.3 Задача 3

1.
$$\frac{dx}{dt} = 12t^2$$

2.
$$\frac{dy}{dt} = 12t^3$$

3.
$$L = \int_0^1 \sqrt{144t^4 + 144t^6} dt = 12 \int_0^1 t^2 \sqrt{1 + t^2} dt$$

4.
$$t = \tan(\theta)$$

5.
$$L = \int_0^{0.25\pi} \tan^2(\theta) \sec^3(\theta) d\theta$$

6.
$$\int_0^{0.25\pi} \sec^5(\theta) - \int_0^{0.25\pi} \sec^3(\theta)$$

7.
$$\int (\sec^5(\theta) - \sec^3(\theta)) d\theta = \left(\frac{1}{4} \sec^3(\theta) \tan(\theta) + \frac{3}{8} \sec(\theta) \tan(\theta) + \frac{3}{8} \ln|\sec(\theta) + \tan(\theta)|\right) - \left(\frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln|\sec(\theta) + \tan(\theta)|\right) = \frac{1}{4} \sec^3(\theta) \tan(\theta) + \left(\frac{3}{8} - \frac{4}{8}\right) \sec(\theta) \tan(\theta) + \left(\frac{3}{8} - \frac{4}{8}\right) \ln|\sec(\theta) + \tan(\theta)| = \frac{1}{4} \sec^3(\theta) \tan(\theta) - \frac{1}{8} \sec(\theta) \tan(\theta) - \frac{1}{8} \ln|\sec(\theta) + \tan(\theta)|$$

8.
$$L = 12\left(\frac{3\sqrt{2}}{8} - \frac{1}{8}\ln(1+\sqrt{2})\right) = \frac{36\sqrt{2}}{8} - \frac{12}{8}\ln(1+\sqrt{2}) = \frac{9\sqrt{2}}{2} - \frac{3}{2}\ln(1+\sqrt{2})$$

1.4 Задача 4

1.
$$L = \int_2^5 \sqrt{1 + \frac{4x^2}{(x^2 - 1)^2}}$$

2.
$$L = \int_2^5 \sqrt{\frac{x^4 + 2x^2 + 1}{x^4 - 2x^2 + 1}}$$

3.
$$L = \int_2^5 \left| \frac{x^2+1}{x^2-1} \right|$$

4.
$$L = \int_2^5 \frac{x^2 - 1 + 2}{x^2 - 1} = \int_2^5 1 + \frac{2}{x^2 - 1} = 3 - 2 \int_2^5 \frac{1}{1 - x^2} = 3 + \ln(2)$$

1.5 Задача 5

1.
$$S = \pi \int_0^{\sqrt{2}} x^3 \sqrt{x^2 + 1}$$

$$2. \ u = x^2 + 1 \Rightarrow du = 2xdx$$

3.
$$S = \pi \int_{1}^{3} 0.5(u-1)u^{0.5}du = 0.5\pi \int_{1}^{3} u^{1.5} - u^{0.5}du = 0.5\pi (\frac{u^{2.5}}{2.5} - \frac{u^{1.5}}{1.5})_{1}^{3} = \pi \frac{12\sqrt{3}+2}{15}$$

1.6 Задача 6

1.
$$\pi \int_{-R}^{R} \sqrt{R^2 - x^2}^2 dx$$

2.
$$\pi \int_{-R}^{R} R^2 - x^2 dx$$

3.
$$\pi (R^2 x - \frac{x^3}{3})|_{-R}^R$$

4.
$$\frac{4}{3}\pi R^3$$

1.7 Задача 7

1. yp-e mapa
$$r^2 = x^2 + y^2$$

2.
$$S = 2\pi \int_{-r}^{r} \sqrt{r^2 - x^2} \sqrt{1 + \frac{x^2}{r^2 - x^2}} dx$$

3.
$$S = 2\pi \int_{-r}^{r} \sqrt{r^2} dx$$

4.
$$S = 2\pi \int_{-r}^{r} r dx$$

5.
$$S = 2\pi 2r^2 = 4\pi r^2$$

1.8 Задача 8

1.
$$y = \frac{\sqrt{1-2x^2}}{2} \Rightarrow y' = \frac{-x}{\sqrt{1-2x^2}}$$

2.
$$S = 2\pi \int_0^{\frac{\sqrt{2}}{2}} \frac{\sqrt{1-2x^2}}{2} \sqrt{1 + \frac{x^2}{1-2x^2}} dx$$

3.
$$S = 2\pi \int_0^{\frac{\sqrt{2}}{2}} \sqrt{\frac{1-2x^2}{4} + \frac{x^2}{4}} dx$$

4.
$$S = 2\pi \int_0^{\frac{\sqrt{2}}{2}} \sqrt{\frac{1-x^2}{4}} dx$$

5.
$$S = \pi \int_0^{\frac{\pi}{4}} \cos^2(y) dy$$

6.
$$S = \frac{\pi^2}{8} + \frac{\pi}{4}$$

1.9 Задача 10

1. Функция распределения веростности - отношение площадей функции, т.е $F = \frac{x^2}{R^2} =$

2. Плотность распределения - $f' = \frac{2x}{R^2}$

3.
$$E = \int_0^R \frac{2x^2}{R^2} dx = \frac{2}{3}R$$

4.
$$E_2 = \int_0^R x^2 \frac{2x}{R^2} dx = \frac{R^2}{2}$$

5.
$$Var = E_2 - E^2 = \frac{R^2}{18}$$

1.10 Задача 11

1.
$$f(x) = (1 + \frac{a}{x}I_{2,\infty}(x))$$

2. $\int_2^\infty 1 + \frac{a}{x} = (x + a \ln(x))|_2^\infty$ - расходится, не может быть плотностью распределения

1.11 Задача 12

1.
$$f(x) = \frac{2}{r^3}I_{1,+\infty}$$

$$2. \int_{-\infty}^{\infty} f(x) = 1$$

3.
$$E = \int_{-\infty}^{\infty} x f(x) = 2$$

4.
$$E_2 = \int_{-\infty}^{\infty} x^2 f(x) = \int_1^{+\infty} \frac{1}{x} dx = -\ln(1) + \ln(+\infty)$$
 - расходится

1.12 Задача 13

1. Вся вероятность лежит на $(-\infty; 8]$

2. Тогда для максимизации дисперсии, необходимо максимизировать разброс значений случайной величины относительно ее математического ожидания.

4

3. Пусть вся масса лежит в некой точке $c \le 2$, а оставшаяся 0.8 в точке 8.

4.
$$E = 0.2c + 0.64$$

5.
$$Var(\xi) = 0.2(c - (0.2c + 0.64))^2 + 0.8(8 - (0.2c + 0.64))^2$$

6.
$$\frac{4(8-c)^2}{25} = Var(\xi)$$

7. при с стремящемся к ∞ получаем максимальную дисперсию.

1.13 Задача 14

1. S = 0.5ah

2. h - высота, величина постоянная. E

3. $h = 5\sqrt{3}$

4. $S(x) = 2.5\sqrt{3}x$

5. $E(x) = \int_0^{10} 2.5 \sqrt{3} dx$ - т.к равномерное распределение

6. $E(x) = 12.5\sqrt{3}$

7. $Var(x) = \frac{75}{4} Var(x)$ т.к равномерно распределенное, то

8. $Var(x) = \frac{75}{4} \cdot \frac{100}{12} = 156.25$

1.14 Задача 15

1. $P(k \le \xi \le k+1) = \int_k^{k+1} \lambda e^{-\lambda x} dx = e^{-\lambda k} (1-e^{-\lambda})$ - видно, что геом прогрессия.

2. $t=e^{-\lambda} \Rightarrow P(1<\xi<2)=t-t^2$ достигает максимума в точке (0.5, 0.25) таким образом невозможно

3. $t(1-t)=\frac{4}{27} \Rightarrow t=0.5\pm0.5\sqrt{\frac{11}{27}}$ т.е существуют такие корни, значит возможно

1.15 Задача 16

1.
$$\int_0^\infty x^n \lambda e^{-\lambda x} dx = 0 + \int_0^\infty \frac{n}{\lambda} x^{n-1} \lambda e^{-\lambda x} = \frac{n!}{\lambda^n}$$

1.16 Задача 17

1. $P(\xi > x + y \mid \xi > x) = \frac{P(\xi > x + y \mid \xi > x)}{P(\xi > x)}$ Заметим, что событие $\{\xi > x + y\}$ является подмножеством события $\{\xi > x\}$, поэтому $P(\xi > x + y \mid \xi > x) = P(\xi > x + y)$

2.
$$P(\xi > x + y \mid \xi > x) = \frac{P(\xi > x + y)}{P(\xi > x)}$$

3. $P(\xi > t) = \int_{t}^{\infty} \lambda e^{-\lambda s} ds = e^{-\lambda t}$

4. $P(\xi > x) = e^{-\lambda x}$, $P(\xi > x + y) = e^{-\lambda(x+y)}$

5. $P(\xi > x + y \mid \xi > x) = \frac{e^{-\lambda(x+y)}}{e^{-\lambda x}} = e^{-\lambda y}$ Но $e^{-\lambda y}$ — это и есть $P(\xi > y)$. Таким образом, получаем:

5

6. $P(\xi > x + y \mid \xi > x) = P(\xi > y)$

1.17 Задача 18

1. $E|\xi| \wedge Var|\xi| \wedge \xi \approx N(0, \sigma^2)$

2.
$$E|\xi| = \int_{-\infty}^{+\infty} |x| \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} = -\int_{-\infty}^{0} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} + \int_{0}^{+\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} = 2 \int_{0}^{+\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

3.
$$2\frac{1}{\sqrt{2\pi\sigma^2}} \int_0^{+\infty} xe^{-\frac{x^2}{2\sigma^2}}$$

4.
$$u = \frac{x^2}{2\sigma^2} \Rightarrow du = \frac{x}{\sigma^2} dx$$

5.
$$\frac{2\sigma}{\sqrt{2\pi}} \int_0^\infty e^{-u} du = \frac{2\sigma}{\sqrt{2\pi}} (-e^{-u})|_0^\infty$$

1.18 Задача 19

1.
$$P(\xi - 8| < 4), P(|\xi - 2| < 4), P(|\xi - 3| < 4)$$

1.19 Задача 20

1.
$$\int_a^b \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x+2)^2}{2\cdot 3^2}} dx = 0, 5$$

$$2. \ t = \frac{x+2}{3} \Rightarrow 3dt = dx$$

3.
$$\int_{\frac{a+2}{3}}^{\frac{b+2}{3}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = 0.5$$

4.
$$\Phi(\frac{b+2}{3}) - \Phi(\frac{a+2}{3}) = 0.5$$

5.
$$\frac{a+2}{3} = -\frac{b+2}{3}$$
 по св-ву симметричности:

6.
$$2\Phi(\frac{b+2}{3}) - 1 = 0.5$$

7.
$$\Phi(\frac{b+2}{3}) = 0.75 \Rightarrow a = -4.0245 \land b = 0.0235$$

1.20 Задача 22

1.
$$f_{\xi}(x) = \frac{1}{x\sqrt{2\pi}}e^{-\frac{\ln(x)^2}{2}}$$

2.
$$E\xi = \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{\ln(x)^2}{2}} dx$$

3.
$$\ln(x) = t \Rightarrow dx = xdt$$

4.
$$E\xi = \int_{-\infty}^{\infty} \frac{e^t}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

5.
$$E\xi = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2+1}{2}} dt$$

6.
$$E\xi = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(t-1)^2}{2} + \frac{1}{2}\right) dt$$

7.
$$E\xi = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(t-1)^2}{2}\right) \exp\left(\frac{1}{2}\right) dt e^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(t-1)^2}{2}\right) dt$$

8.
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(t-1)^2}{2}\right) dt = 1$$

9.
$$E\xi = \sqrt{e}$$

- 10. Var $\xi = (\exp(\sigma^2) 1) \exp(2\mu + \sigma^2)$ просто формула логнормального распределения
- 11. Var $\xi = (\exp(1) 1) \exp(0 + 1) = \exp(1) (\exp(1) 1)$

1.21 Задача 24

1.
$$\Phi\left(\frac{19-\mu}{\sigma}\right) - \Phi\left(\frac{1-\mu}{\sigma}\right) = \Phi\left(\frac{22-\mu}{\sigma}\right) - \Phi\left(\frac{4-\mu}{\sigma}\right)$$

2.
$$m_1 = 10, m_2 = 13, \Rightarrow |10 - \mu| = |13 - \mu| \Rightarrow \mu = 11.5$$

3.
$$P(5 < \xi < 10) = \Phi\left(\frac{10 - 11.5}{\sigma}\right) - \Phi\left(\frac{5 - 11.5}{\sigma}\right) = \Phi\left(-\frac{1.5}{\sigma}\right) - \Phi\left(-\frac{6.5}{\sigma}\right)$$

4.
$$P(5 < \xi < 10) = \left[1 - \Phi\left(\frac{1.5}{\sigma}\right)\right] - \left[1 - \Phi\left(\frac{6.5}{\sigma}\right)\right] = \Phi\left(\frac{6.5}{\sigma}\right) - \Phi\left(\frac{1.5}{\sigma}\right)$$

5.
$$g(t) = \Phi(6.5t) - \Phi(1.5t) \Rightarrow g'(t) = 6.5\varphi(6.5t) - 1.5\varphi(1.5t)$$

6.
$$6.5\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(6.5t)^2}{2}\right) = 1.5\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(1.5t)^2}{2}\right)$$

7.
$$t^2 = \frac{1}{20} \ln \frac{6.5}{1.5}$$

8.
$$\ln \frac{6.5}{1.5} = \ln \left(\frac{13}{3}\right) \approx \ln(4.3333) \approx 1.464$$

9.
$$t^2 \approx \frac{1.464}{20} \approx 0.0732$$
, $t \approx \sqrt{0.0732} \approx 0.2707$

10.
$$P(5 < \xi < 10) \approx 0.9608 - 0.6591 \approx 0.3017$$

1.22 Задача 25

1.
$$\eta = -\cot(\pi \xi), \quad \xi \sim U[0, 1]$$

$$2. \ \theta = \pi \xi - \frac{\pi}{2}$$

$$3. \ \pi \xi = \theta + \frac{\pi}{2}$$

4.
$$\cot\left(\theta + \frac{\pi}{2}\right) = -\tan\theta$$

5.
$$\eta = -\cot(\pi \xi) = -\cot(\theta + \frac{\pi}{2}) = \tan\theta$$

6.
$$\theta = \pi \xi - \frac{\pi}{2}$$
 равномерно на $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

7.
$$f_{\theta}(\theta) = \frac{1}{\pi}, \quad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

8.
$$\theta = \arctan \eta$$

9.
$$\frac{d\theta}{d\eta} = \frac{1}{1+\eta^2}$$

10.
$$f_{\eta}(\eta) = f_{\theta}(\theta) \left| \frac{d\theta}{d\eta} \right| = \frac{1}{\pi} \cdot \frac{1}{1+\eta^2}, \quad \eta \in \mathbb{R}$$

11.
$$f_{\eta}(\eta) = \frac{1}{\pi(1+\eta^2)}, \quad \eta \in \mathbb{R}$$