

Arquitectura de Computadores

2º Curso – Grado en Ingeniería Informática

Tema 4. Unidad de Control

Contenido

- 1. Técnicas de diseño de la Unidad de Control
- 2. Unidad de Control Microprogramada
- 3. Unidad de Control Cableada
- 4. Comparación de las técnicas de diseño

Bibliografía

- 1. H. Taub "Circuitos Digitales y Microprocesadores"
- 2. M. Morris Mano "Arquitectura de Computadores"

Visión Global

- La Unidad de Control es un bloque de la Arquitectura de Von Neumann.
- Funciones de la Unidad de Control:
 - Asegurar la ejecución de los programas (en M. principal)
 - Generación de las secuencias de microórdenes para la ejecución de todas y cada una de las instrucciones de la computadora.
 - Captar y decodificar cada instrucción.
 - Ejecución de la siguiente Instrucción del programa.
- Técnicas de diseño de la Unidad de Control:
 - Cableada
 - Mediante Registros de Desplazamiento
 - Como Sistema Secuencial Síncrono
 - Mediante Decodificadores de Tiempo e Instrucción
 - Microprogramada
 - Mediante ROM de control
 - Microprogramación horizontal
 - Microprogramación vertical

Diseño de la Unidad de Control Microprogramación

- ROM de Control: Cada palabra está compuesta por todas las señales de microoperación del sistema.
 - En el caso de la Computadora Mejorada, hay 18 microoperaciones
 la anchura de la ROM de Control será de 18 bits.
- Las instrucciones estarán compuestas por varios pasos (ciclos), tanto de búsqueda como de ejecución.
 - Cada paso será una palabra de la Memoria de Control.
- Tras la ejecución de un paso es necesario saber qué paso será el siguiente que se tendrá que ejecutar:
 - Añadir una ROM con el comportamiento del flujo de microoperaciones: Control de la dirección de bifurcación.

- Las microinstrucciones proporcionan las señales de control a los distintos elementos que existen dentro del sistema.
- Las señales de control que gobiernan una misma unidad se suelen agrupar en campos dentro de la codificación de las microinstrucciones.
- El formato de las microinstrucciones:
 - Formato no codificado
 - Formato completamente codificado
 - Formato codificado por trozos
 - Formato con solapamientos
 - Nanoprogramación

- Formato no codificado:
 - Las micropalabras tienen un bit para cada señal de control.
 - ⇒ Ej. La Computadora Mejorada tiene 18 microoperaciones, por lo tanto, las micropalabras de su Unidad de Control tendrían 18 bits.
 - Problema: Espacio (ROM con palabras muy grandes).

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M->	GPR->	Acc->	PC->	GPR+1	GPR+Acc	0->Acc	ROR F	ROL F	NOT(Acc)	Acc+1->	0->F	NOT(F)	GPR->	PC->	GPR->	GPR->	PC+1->
GPR	M	GPR	GPR	->GPR	->Acc		Acc	Acc	->Acc	Acc		->F	OPR	MAR	MAR	PC	PC

- Formato completamente codificado:
 - Se codifica la activación de todos sus señales de control con menos bits (aunque en cada codificación solo se activa 1 única señal de control).
 - Ej. La Computadora Mejorada tiene 18 microoperaciones, por lo tanto, con 5 bits nos bastaría.

- Formato codificado por trozos:
 - Se codifica la activación señales de control con menos bits agrupadas en campos (esto permite que varias señales se activen a la vez).
 - La microinstrucción es un poco más grande, pero los decodificadores son de menor tamaño.

- Los campos deben ser consistentes para que la división sea útil.
- En todos los decodificadores hay que dar la oportunidad de "no hacer nada" (NOP).

- Formato con solapamientos:
 - Si hay señales excluyentes entre sí, se pueden solapar campos, reduciendo el tamaño de las microinstrucciones.
 - Un bit indica si el resto de bits corresponden con el campo 1 o con el campo 2.

Tipos de Microprogramación

- Microprogramación horizontal
 - Formato no codificado.
 - Microinstrucciones muy largas.
 - Alto grado de paralelismo.
 - Alto consumo de memoria de control.
 - Más rápidas.
- Microprogramación vertical
 - Formato codificado.
 - Microinstrucciones cortas
 - Bajo paralelismo.
 - Menor consumo de memoria de control.
 - Menos rápidas.

Tipos de Codificación

- Microprogramación horizontal (formato no codificado):
 - Las micropalabras tienen un bit para cada señal de control.

17		16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M->	>	GPR->	Acc->	PC->	GPR+1	GPR+Acc	0->Acc	ROR F	ROL F	NOT(Acc)	Acc+1->	0->F	NOT(F)	GPR->	PC->	GPR->	GPR->	PC+1->
GPF	2	М	GPR	GPR	->GPR	->Acc		Acc	Acc	->Acc	Acc		->F	OPR	MAR	MAR	PC	PC

• Ej. La activación de la microoperación "GPR+Acc->Acc" se codifica como 00 0001 0000 0000 0000b = 01000h

Tipos de Codificación

Microprogramación horizontal (formato no codificado):

Dir. CROM	Etiqueta	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Codificación
ETCH	PC->MAR															1				80000
1	M->GPR	1																		20000
2	GPR->OPR PC+1->PC														1				1	00011
ADD	GPR->MAR																1			00004
4	M->GPR	1																		20000
5	GPR+Acc->Acc						1													01000
ADDI	GPR->MAR																1			00004
7	M->GPR	1																		20000
3	GPR->MAR																1			00004
9	M->GPR	1																		20000
10	GPR+Acc->Acc						1													01000
STA	GPR->MAR																1			00004
12	Acc->GPR			1																08000
13	GPR->M		1																	10000
JMP	GPR->PC																	1		00002
JMPI	GPR->MAR																1			00004
16	M->GPR	1																		20000
17	GPR->PC																	1		00002

Microprogramación vertical con formato completamente codificado:

Hay 1 valor diferente para cada microinstrucción por cada microoperación

que se active.

 Ej. La activación de la microoperación "GPR+Acc->Acc" se codifica como 12, ya que activa esa posición (01100b = 0Ch)

Tipos de Codificación

Microprogramación vertical (con formato completamente codificado):

Dir. CROM	Etiqueta	Código	Códificación	Hexad.
FETCH	PC->MAR	3	00011	03
1	M->GPR	17	10001	11
2	PC+1->PC	0	00000	00
3	GPR->OPR	4	00100	04
ADD	GPR->MAR	2	00010	02
5	M->GPR	17	10001	11
6	GPR+Acc->Acc	12	01100	0C
ADDI	GPR->MAR	2	00010	02
8	M->GPR	17	10001	11
9	GPR->MAR	2	00010	02
10	M->GPR	17	10001	11
11	GPR+Acc->Acc	12	01100	0C
STA	GPR->MAR	2	00010	02
13	Acc->GPR	15	01111	0F
14	GPR->M	16	10000	10
JMP	GPR->PC	1	00001	01
JMPI	GPR->MAR	2	00010	02
17	M->GPR	17	10001	11
18	GPR->PC	1	00001	01

- Tamaño:
 - N^o de palabras = n = 19 (Real: 32)
 - No bits por palabra = W = 5
 - Tamaño: 95 bits (Real: 160 bits)
- No se pueden ejecutar más de una microoperación en cada microinstrucción.
 - Ver FETCH.

Microprogramación vertical con formato codificado por trozos

• Ej. La activación de la microoperación "GPR+Acc->Acc" se codificaría como 00|00|1000|00|=> 080h

Tipos de Codificación

Microprogramación vertical (con formato codificado por trozos):

Dir. CROM	Etiqueta	11	10	9	8	7	6	5	4	3	2	1	0	Codificación
FETCH	PC-> MAR									1	0			008
1	M->GPR	1	1											C00
2	GPR->OPR									1	1	1	0	00E
	PC+1 -> PC													
ADD	GPR->MAR									0	1			004
4	M->GPR	1	1											C00
5	GPR+Acc->Acc					1	0	0	0					080
ADDI	GPR->MAR									0	1			004
7	M->GPR	1	1											C00
8	GPR->MAR									0	1			004
9	M->GPR	1	1											C00
10	GPR+Acc->Acc					1	0	0	0					080
STA	GPR->MAR									0	1			004
12	Acc->GPR			1	1									300
12 13	GPR->M	1	0											800
JMP	GPR->PC											1	1	003
JMPI	GPR->MAR									0	1			004
16	M->GPR	1	1											C00
17	GPR->PC											1	1	003

Tamaño:

- n = 18 (Real: 32)
- W = 12
- Tamaño: 216 bits (Real: 384 bits)

Microprogramación vertical con formato con solapamientos

Ej. La activación de la microoperación "GPR+Acc->Acc" se codificaría como 00|0 100|0 000 => 040h

Tipos de Codificación

Microprogramación vertical (con formato con solapamientos):

Dir. CROM	Etiqueta	9	8	7	6	5	4	3	2	1	0	Codificación
FETCH	PC->MAR								1	1	0	006
1	M->GPR PC+1->PC	1	1	1					0	1	0	382
2	GPR->OPR								1	1	1	007
ADD	GPR->MAR								1	0	1	005
4	M->GPR	1	1	1								380
5	GPR+Acc->Acc				1	0	0	0				040
ADDI	GPR->MAR								1	0	1	005
7	M->GPR	1	1	1								380
8	GPR->MAR								1	0	1	005
9	M->GPR	1	1	1								380
10	GPR+Acc->Acc				1	0	0	0				040
STA	GPR->MAR								1	0	1	005
12	Acc->GPR	0	1	1								180
13	GPR->M	1	1	0								300
JMP	GPR->PC								0	1	1	003
JMPI	GPR->MAR								1	0	1	005
16	M->GPR	1	1	1								380
17	GPR->PC								0	1	1	003

Tamaño:

• n = 18 (Real: 32)

• W = 10

Tamaño: 180 bits (Real: 320 bits)

Tipos de Microprogramación

- Microprogramación vertical: Nanoprogramación
 - Objetivo: Reducir el tamaño de la memoria de control
 - Implica una memoria a 2 niveles.

- Nanoprogramación
 - Se construye una memoria de m palabras de W bits, que contendrá las m microinstrucciones "únicas".
 - Se construye la memoria de control sustituyendo los W bits por la dirección única de la microinstrucción asociada en cada paso del microprograma.
 - El tamaño total será: n'[log₂ m] + [log₂ m]·W bits.

Tipos de Microprogramación: Microprogramación Horizontal. Ejemplo

Microinstrucción
00008
20000
00011
00004
20000
01000
00004
20000
00004
20000
01000
00004
08000
10000
00002
00004
20000

- Supongamos instrucciones codificadas en 17 palabras de Control.
 - W = 18 bits.
 - \bullet n = 17 palabras.
 - Tamaño: 306 bits.
 - Implementación real:
 - Dirección 5 bits => 32 palabras.
 - Tamaño: 576 bits. (240 bits "vacíos")
 - Microinstrucciones "únicas": 8
 - **00008**
 - 20000
 - **00011**
 - **00004**
 - **01000**
 - **08000**
 - **10000**
 - 00002

Tipos de Microprogramación: Microprogramación Vertical. Ejemplo

Nanoinstrucción
000
001
010
011
001
100
011
001
011
001
100
011
101
110
111
011
001

Nanoinstrucción	Microinstrucción
000	00008
001	20000
010	00011
011	00004
100	01000
101	08000
110	10000
111	00002

- Tamaño ROM de Control
 - n = 17 (Implementación real: 32)
 - \sim W = 3
 - Tamaño: 51 (Implementación real: 96)
- Tamaño ROM de Nanoinstrucciones
 - n = 8
 - W = 18
 - Tamaño: 144 bits
- Tamaño Total: 195 bits (Real: 240 bits)
- Reducción de Tamaño: 36.3% (Real: 58.3%)

- Secuencia dentro de un microprograma:
 - Tras la ejecución de cada microinstrucción se tiene que determinar qué nueva microinstrucción se ha de ejecutar.
 - Hay 3 posibilidades:
 - Pasar a ejecutar la microinstrucción que se encuentra en la dirección CROM consecutiva (Incremento)
 - Pasar a ejecutar la microinstrucción que se encuentre en una dirección CROM especificada explícitamente (Bifurcación)
 - Pasar a ejecutar la primera microinstrucción asociada al ciclo de ejecución de una instrucción determinada (Carga de Rutina)
 - Además, la determinación de la siguiente microinstrucción puede ser:
 - Incondicional.
 - Condicional.

- El secuenciamiento se consigue variando la dirección contenida en el registro de dirección de acceso a la CROM (CMAR: Control Memory Access Register)
- Incremento
 - Pasar a la microinstrucción que se encuentra en la dirección CROM consecutiva => Incrementar el contenido de CMAR.

Bifurcación

de control

Saltar a una microinstrucción que se encuentra en una dirección CROM en particular => Dicha dirección debe ser indicada (codificación de la dirección en la propia micropalabra) => Carga paralela de dicha dirección.

Tabla de Bifurcación del control actual

S 0	I	В	Comentario
0	1	0	Incremento
1	0	1	Bifurcación incondicional

- Bifurcación condicional
 - Dependiendo de los bits de estado del sistema se querrá llevar un rumbo u otro en casos determinados

S1	S0	Z	F	I	В	Comentario
0	0	Х	Х	1	0	Incremento
0	1	Х	Х	0	1	Bifurcación incondicional
1	0	0	X	0	1	Salta si Z=0
1	0	1	Х	1	0	Incrementa si Z=1
1	1	Х	0	1	0	Incrementa si F=0
1	1	Χ	1	0	1	Salta si F=1

Bloque actual de la LCB

- Carga de rutina
 - Saltar a la microinstrucción de una de las rutinas de las instrucciones => La dirección de inicio de cada instrucción debe conocerse => Carga paralela de dicha dirección.

- Selección de tipo de secuenciamiento
 - Cada microinstrucción podrá seleccionar el tipo de secuenciación que deseen realizar.
 - En función del conjunto de señales de secuenciación indicadas en la propia codificación de la micropalabra y de las señales de estado externas, se escogerá Incremento, Bifurcación o Carga de Rutina.
 - Tras la última microinstrucción de cada instrucción se debe saltar al ciclo de búsqueda => Bifurcación incondicional a FETCH.
- Tabla de Bifurcación final para el repertorio básico:

S2	S1	S0	Z	F	I	В	R	Comentario
0	0	0	Χ	Х	1	0	0	Incremento
0	0	1	Χ	X	0	1	0	Bifurcación incondicional
0	1	0	0	Х	0	1	0	Salta si Z=0
0	1	0	1	Х	1	0	0	Incrementa si Z=1
0	1	1	Х	0	1	0	0	Incrementa si F=0
0	1	1	Χ	1	0	1	0	Salta si F=1
1	X	Х	Χ	Х	0	0	1	Carga Rutina incondicional

Codificación de la Bifurcación

- Cada microinstrucción debe incorporar las señales de secuenciación.
 - En caso de bifurcación, también tendrá que incluir la dirección de salto.
 - Esta incorporación se realiza concatenada a la codificación de las microinstrucciones.
- **∞** Εj.
 - Supongamos 3 señales de control de bifurcación (S2, S1, S0) y una CROM de 256 palabras (8 bits de dirección).

10	9	8	7	6	5	4	3	2	1	0
S2	S1	S0	Direccio	ón de :	Salto					

Así, con un formato con solapamientos, las micropalabras serían:

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M/GP			OPR/I	MAR/P	C	S2	S1	S0	Direcci	ión de	Salto									

Codificación de la Bifurcación

S2	S1	S0	Z	F		R	В
0	0	0	Χ	Χ	1	0	0
0	0	1	Χ	Χ	0	0	1
0	1	0	0	Χ	0	0	1
0	1	0	1	Χ	1	0	0
0	1	1	Χ	0	1	0	0
0	1	1	Χ	1	0	0	1
1	Χ	Χ	Χ	Χ	0	1	0

- Ejemplo:
 - Se desea codificar "GPR+Acc->Acc". Si Z=0, se bifurcará a la posición 24h; en caso contrario, pasaremos a la siguiente microinstrucción.
 - "GPR+Acc->Acc" se obtiene introduciendo 1000b en los bits 17-14 de la micropalabra de control.
 - Para Bifurcar (B) si Z=0 o Incrementar (I) si Z=1; utilizamos 010 de las señales de control de bifurcación (bits 10-8 de la micropalabra).
 - También habrá que codificar la posición de salto (24h), para que en el caso que se deba realizar la bifurcación se pueda realizar. La dirección se codifica en los bits 0-7 de la micropalabra de control.

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0

La codificación sería 0010|0000|0010|0010|0100b = 20224h.

Control de Bifurcación

Habilitación de Microinstrucciones

- De manera adicional, se puede inhabilitar la ejecución de la microoperación seleccionada => Útil para ejecuciones condicionales.
- **⊆**Εj.
 - Si Z=0, ponemos a cero el acumulador y bifurcamos a una determinada posición.
 - Si Z=1, no hacemos nada e incrementamos a la siguiente microinstrucción.
- Para habilitar/inhabilitar la ejecución de microoperaciones seleccionadas, se introduce un bloque intermedio entre la CROM y las salidas, que permite el paso si la señal Enable está activa; en caso contrario, todas las salidas son 0.

S2	S1	S0	Z	F	I	В	R	E
0	0	0	Х	X	1	0	0	1
0	0	1	X	X	0	1	0	1
0	1	0	0	X	0	1	0	1
0	1	0	1	X	1	0	0	1
0	1	1	X	0	1	0	0	1
0	1	1	X	1	0	1	0	1
1	0	0	X	X	0	0	1	1
1	0	1	0	X	0	1	0	1
1	0	11	1	X	1	0	0	0

Habilitación de Microinstrucciones

- El microprograma sigue existiendo => Codificación implícita mediante la existencia de cableado específico.
- Para cada microoperación:
 - Se activa exclusivamente en un determinado ciclo de tiempo de una instrucción.
 - La activación puede ser incondicional o estar condicionada a un valor de estado.
- Una microoperación se ejecuta:
 - $M_n = I_i \cdot T_j \cdot C_k$
 - M_n representa a una microoperación en particular de todas las que existen en el sistema.
 - I_i representa la instrucción i-ésima del repertorio.
 - T_j representa el ciclo j-ésimo de búsqueda o ejecución.
 - C_k representa la condición k-ésima de estado.
 - "La microoperación M_n se ejecutará si la condición C_k es cierta durante el instante de ejecución T_i de la instrucción I_i del repertorio".
 - La suma de todas las veces que se puede activar individualmente una microoperación, nos dará la lógica de activación completa.

- Material necesario:
 - Contador de tiempo
 - Señales:
 - Incremento.
 - Carga paralelo.
 - Decodificador de tiempo.
 - Decodificador de instrucciones.
 - Lógica combinacional (puertas AND, OR, NOT).

FFTCH:

- PC->MAR
- PC+1->PC M->GPR
- GPR->OPR
- ADD d: (Opcode 1)
 - GPR->MAR
 - M->GPR
 - GPR+Acc->Acc
- ADDI d: (Opcode 2)
 - GPR->MAR
 - M->GPR
 - GPR->MAR
 - M->GPR
 - GPR+Acc->Acc
- ISZ d: (Opcode 3)
 - GPR->MAR
 - M->GPR
 - GPR+1->GPR
 - GPR->M
 - PC+1->PC (si Z = 1)

FETCH se realiza para TODAS las instrucciones y son siempre los 3 primeros ciclos:

- PC->MAR: t₀
- PC+1->PC: t₁
 M->GPR: t₁
- GPR->OPR: t₂
- ADD:
 - GPR->MAR: I₁·t₃
 - M->GPR: I₁·t₄
 - GPR+Acc->Acc: I₁·t₅
- ADDI:
 - GPR->MAR: I₂·t₃
 - M->GPR: I₂·t₄
 - GPR->MAR: I₂·t₅
 - M->GPR: I₂'t₆
 - GPR+Acc->Acc: I₂·t₇
- ISZ:
 - GPR->MAR: I₃·t₃
 - M->GPR: I₃·t₄
 - GPR+1->GPR: I₃⋅t₅
 - GPR->M: I₃·t₆
 PC+1->PC: I₃·t₆·Z

- Agrupación de microoperaciones:
 - •PC->MAR: t₀
 - •PC+1->PC: $t_1 + I_3 \cdot t_6 \cdot Z$
 - •M->GPR: $t_1 + I_1 \cdot t_4 + I_2 \cdot t_4 + I_2 \cdot t_6 + I_3 \cdot t_4$
 - •GPR->OPR: t₂
 - •GPR->MAR: I_1 : t_3 + I_2 : t_3 + I_2 : t_5 + I_3 : t_3
 - •GPR+Acc->Acc: I_1 ' t_5 + I_2 ' t_7
 - •GPR+1->GPR: I₃'t₅
 - •GPR->M: I₃·t₆
 - •

Secuenciación Cableada

- En el diseño cableado mediante decodificadores de tiempo e instrucciones, la secuenciación se consigue modificando el contador de tiempo (denominado SR, Sequence Register).
- El contador de tiempo tendrá 3 microoperaciones:
 - Cuenta ascendente.
 - Carga paralela.
 - Puesta a 0.
- Para cada ciclo de cada instrucción se ha de indicar tanto las microoperaciones que se activan como la secuenciación.
- Ej. Ciclo 4 (t₄), Instrucción ADDI (I₂)
 - \bullet I₂·t₄ GPR->MAR SR->SR+1
 - De manera análoga a la microoperación "GPR->MAR", se determinará de manera global la activación de "SR->SR+1".
 - La carga paralela implicará la selección del valor que se ha de cargar: Selección codificada mediante el cableado de cada dígito binario.
 - La vuelta al ciclo de búsqueda se realiza mediante la puesta a 0 síncrona.

- Cableado mediante registros de Desplazamiento.
 - También llamada mediante "trenes de biestables".
 - Implementación sencilla.
 - Alta flexibilidad.
 - Facilidad de análisis.
 - Bastante rápida.
 - Minimiza la necesidad de lógica adicional.
 - Alto uso de biestables (muy por encima del óptimo).

- Cableado mediante Circuito Secuencial Síncrono.
 - Tedioso y rígido.
 - Difícil de analizar.
 - Difícil de detectar errores.
 - Garantiza la ejecución más rápida de todos los métodos.
 - Minimiza el número de biestables.

- Microprogramado mediante ROM de Control.
 - Muy fácil de diseñar.
 - Extremadamente flexible.
 - Fácil de analizar.
 - Es el mecanismo más lento.
 - Costosa en circuitería (ROM, Registros, Lógica combina-cional, etc).

- Cableado mediante Decodificadores de Tiempo e Instrucción.
 - Sencillo de diseñar.
 - Bastante flexible.
 - Fácil de analizar.
 - Tiene una ejecución bastante rápida.
 - Bastante lógica combinacional.

