

$$\begin{array}{c} = \frac{1}{282^{2}} \left(\frac{R-2}{R-2} - \frac{R-2i}{1R-2i} + K_{1}z^{-1}R-2i \right) \\ = \frac{1}{282^{2}} \left(2R - \left(\frac{R^{2}-2i}{1R-2i} + \frac{R^{2}-2i}{1R-2i} \right) \right) R^{2} - 2R^{2} + L^{2} \\ = \frac{1}{282^{2}} \left(2R - \left(\frac{2e^{2} - 2e^{2}}{1R-2i} \right) \right) - \frac{1}{2^{2}} \left(1 - \frac{R-2}{1R-2i} \right) \\ = \frac{1}{2^{2}} \left(1 - \frac{R-2}{1R-2i} \right) - \frac{1}{2^{2}} \left(1 - \frac{R-2}{1R-2i} \right) \\ = \frac{1}{2^{2}} \left(1 - \frac{R-2}{1R-2i} \right) - \frac{1}{2^{2}} \left(1 - \frac{R-2}{1R-2i} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) \\ = \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-2}{12} \right) - \frac{1}{2^{2}} \left(\frac{1}{12} - \frac{R-$$

3) model			accuracy re	gian bethr	flor 66
	os (naros(4))				
	os [n arcoi(4)) G · T(4) +				
Je 4	log a log e				
X= m.ze	-> ~=	× , e	= logz (#n)		
		e) = log_(~			
		/- lugg	'		
The chebysher	las smaller	eum, lut on	y 4 9	factional	anunt.
But when w	whire will	loge, the	legrange had	befor em	r than
heby shev by	n 9 fuctor	of los for	ens and	(0° for may	ipsum elver