## **QUESTÕES AULA 5 TEORÍA**

Problema 5.1. Quantas entradas irá possuir um decodificador com 16 saídas e



**Problema 5.2.** Montar um decodificador 4/16 com saídas ativas baixas usando um decodificador 2/4 com saídas ativas altas e quatro decodificadores 2/4 com saídas ativas baixas e *enable*.



**Problema 5.3.** Considere a função lógica  $f(A, B, C) = (A \oplus B \oplus C) + (\overline{B} + \overline{C}) \cdot A$ 

- a) Apresente a tabela de verdade correspondente a esta função Booleana.
- b) Utilizando <u>apenas</u> um multiplexador com 2 entradas de seleção, MUX(4:1), e o mínimo de lógica adicional, projete e implemente a função f(A,B,C).

**Problema 5.4.** Faça o projeto de um conversor binário para *Gray* de 3 bits usando um decodificador (3:8) e um codificador (8:3).



| Binario | Gray |  |  |
|---------|------|--|--|
| ABC     | XYZ  |  |  |
| 000     | 000  |  |  |
| 001     | 001  |  |  |
| 010     | 011  |  |  |
| 011     | 010  |  |  |
| 100     | 110  |  |  |
| 101     | 111  |  |  |
| 110     | 101  |  |  |
| 111     | 100  |  |  |

**Problema 5.5.** Faça o projeto do circuito que funciona de acordo com a tabela verdade de um somador completo apresentada usando um decodificador com saídas ativas altas e duas portas OR de 4 entradas.

| _A | В | $C_n$ | $C_{n+1}$ | S |
|----|---|-------|-----------|---|
| 0  | 0 | 0     | 0         | 0 |
| 0  | 0 | 1     | 0         | 1 |
| 0  | 1 | 0     | 0         | 1 |
| 0  | 1 | 1     | 1         | 0 |
| 1  | 0 | 0     | 0         | 1 |
| 1  | 0 | 1     | 1         | 0 |
| 1  | 1 | 0     | 1         | 0 |
| 1  | 1 | 1     | 1         | 1 |



**Problema 5.6.** Implemente a função  $f(A, B, C) = \overline{A}\overline{B} + \overline{A}\overline{C} + BC$  utilizando:

- a) Um multiplexador com 3 entradas de seleção MUX(8:1).
- b) Um multiplexador com 2 entradas de seleção MUX(4:1).
- c) Um multiplexador com 1 entrada de seleção MUX(2:1) e uma porta AND de 2 entradas.



**Problema 5.7.** Faça o projeto do circuito com entrada de 3 bits,  $X = \{x_2, x_1, x_0\}$ , e saída de 2 bits,  $Y = \{y_1, y_0\}$ , que funciona de acordo com a tabela verdade apresentada usando apenas multiplexadores MUX(8:1), MUX(4:1), MUX(2:1) e portas lógicas NAND de duas entradas.

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>1</sub> | x <sub>o</sub> | <b>y</b> <sub>1</sub> | <b>y</b> <sub>o</sub> |
|-----------------------|-----------------------|----------------|-----------------------|-----------------------|
| 0                     | 0                     | 0              | 1                     | 1                     |
| 0                     | 0                     | 1              | 1                     | 1                     |
| 0                     | 1                     | 0              | 1                     | 1                     |
| 0                     | 1                     | 1              | 1                     | 0                     |
| 1                     | 0                     | 0              | 0                     | 0                     |
| 1                     | 0                     | 1              | 1                     | 0                     |
| 1                     | 1                     | 0              | Х                     | Х                     |
| 1                     | 1                     | 1              | Х                     | Х                     |



**Problema 5.8.** Simplifique os seguintes diagramas lógicos utilizando portas lógicas de 2 entradas e portas NOT:



**Problema 5.9.** Considere a função lógica  $f(A, B, C) = \overline{A}(B \oplus C) + A\overline{(B \oplus C)}$ 

- a) Apresente a tabela de verdade correspondente a esta função Booleana.
- b) Implemente função lógica f(A, B, C) utilizando <u>apenas</u> decodificadores com 2 entradas e *Enable*, e portas lógicas NOR e NAND de 2 entradas (não pode usar portas NOT).

## **Problema 5.10 (Prova 2019.1).** A partir da circuito apresentado na Figura:

- a) Obtenha a tabela de verdade da função F(A, B, C, D);.
- b) Projete um circuito que implemente a função F(A, B, C, D) usando um decodificador 4/16 e portas OR de 2 entradas.
- c) Projete um circuito que implemente a função F(A, B, C, D) usando um MUX(4:1), uma porta XOR de 2 entradas e uma porta NOT.
- d) Projete um circuito que implemente a função F(A, B, C, D) usando um MUX(2:1) e uma porta XOR de 3 entradas.

