

DIGITAL AUDIO MOSFET

IRFS4020PbF IRFSL4020PbF

Features

- Key parameters optimized for Class-D audio amplifier applications
- Low R_{DSON} for improved efficiency
- Low Q_G and Q_{SW} for better THD and improved efficiency
- Low Q_{RR} for better THD and lower EMI
- 175°C operating junction temperature for ruggedness
- Can deliver up to 300W per channel into 8Ω load in half-bridge configuration amplifier

Key Parameters					
V _{DS}	200	V			
R _{DS(ON)} typ. @ 10V	85	mΩ			
Q _g typ.	18	nC			
Q _{sw} typ.	6.7	nC			
R _{G(int)} typ.	3.2	Ω			
T _J max	175	°C			

G	D	S
Gate	Drain	Source

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications.

Absolute Maximum Ratings

· · · · · · · · · · · · · · · · · · ·	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	200	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	18	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	13	
I _{DM}	Pulsed Drain Current ①	52	
P _D @T _C = 25°C	Power Dissipation ®	100	W
P _D @T _C = 100°C	Power Dissipation ④	52	
	Linear Derating Factor	0.70	W/°C
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)	300	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ④		1.43	°C/W
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) ④		40	

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.23		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		85	105	mΩ	V _{GS} = 10V, I _D = 11A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		4.9	٧	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-13		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 200V, V_{GS} = 0V$
				250		$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
g _{fs}	Forward Transconductance	24			S	$V_{DS} = 50V, I_{D} = 11A$
Q_g	Total Gate Charge		18	29		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		4.5			V _{DS} = 100V
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.4		nC	$V_{GS} = 10V$
Q_gd	Gate-to-Drain Charge		5.3			I _D = 11A
Q _{godr}	Gate Charge Overdrive		6.8			See Fig. 6 and 18
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		6.7			
R _{G(int)}	Internal Gate Resistance		3.2		Ω	
t _{d(on)}	Turn-On Delay Time		7.8			V _{DD} = 100V, V _{GS} = 10V ③
t _r	Rise Time		12			I _D = 11A
$t_{d(off)}$	Turn-Off Delay Time		16		ns	$R_G = 2.4\Omega$
t _f	Fall Time		6.3			
C _{iss}	Input Capacitance		1200			$V_{GS} = 0V$
C _{oss}	Output Capacitance		91		pF	$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		20			f = 1.0 MHz, See Fig.5
C _{oss} eff.	Effective Output Capacitance		110			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		94	mJ
I _{AR}	Avalanche Current ⑤	See Fig. 14,	Α	
E _{AR}	Repetitive Avalanche Energy ®			mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S @ T _C = 25°C	Continuous Source Current			18		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			52		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V _{SD}	Diode Forward Voltage		_	1.3	V	$T_J = 25^{\circ}C, I_S = 11A, V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		82	120	ns	$T_J = 25^{\circ}C, I_F = 11A$	
Q _{rr}	Reverse Recovery Charge		280	420	nC	di/dt = 100A/µs ③	

2

- ① Repetitive rating; pulse width limited by max. junction temperature. ④ R_{θ} is measured at T_J of approximately 90°C.
- ② Starting $T_J = 25$ °C, L = 1.62mH, $R_G = 25\Omega$, $I_{AS} = 11$ A.
- ③ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.

- ⑤ Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information.

Fig 1. Typical Output Characteristics

V_{GS}, Gate-to-Source Voltage (V) **Fig 3.** Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Junction Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Typical Avalanche Current Vs. Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \triangle T / \; Z_{thJC} \\ I_{av} &= 2\triangle T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18a. Gate Charge Test Circuit

Fig 18b Gate Charge Waveform

IRFS/SL4020PbF

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

VIEW A-A

					1 7 1
M B O L	MILLIM	ETERS	INC	HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	4,06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1,14	1.78	.045	.070	
b3	1,14	1,73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
e	2.54	BSC	.100	BSC	
Н	14,61	15.88	.575	.625	
L	1,78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	-	1.78	_	.070	
L3	0.25	BSC	.010	.010 BSC	
L4	4.78	5.28	.188	.208	

DIMENSIONS

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, LI, D1 & EI.
- 5. DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

D²Pak (TO-263AB) Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024

ASSEMBLED ON WW 02, 2000
IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead — Free"

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

LEAD ASSIGNMENTS

DIODES

HEXFET

1.- GATE 2, 4.- DRAIN 3,- SOURCE

1.- ANODE (TWO DIE) / OPEN (ONE DIE) 4.- CATHODE 3.- ANODE

IGBTs, CoPACK

1,- GATE
2, 4.- COLLECTOR
3.- EMITTER

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

S	DIMENSIONS				
M B O L	MILLIM	ETERS	INC	HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
Ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245		4
e	2.54	BSC	.100 BSC		
L	13.46	14.10	.530	.555	
L1	_	1.65	_	.065	4
L2	3.56	3.71	.140	.146	

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

5 DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(m/n.) AND D1(min.)
WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS IGBTs, CoPACK

HEXFET

1.- ANODE (THO DE) / OPEN (ONE DE)
2. 4.- CATHODE
3.- ANODE

TO-262 Part Marking Information

SECTION A-A

EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE 'C'

-(b,b2)-

SECTION B-B & C-C SCALE: NONE

Note: "P" in assembly line position indicates "Lead - Free"

OR

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

BASE METAL

D²Pak (TO-263AB) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- COMFORMS TO EIA-418.
- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.