Synthèse d'un circuit séquentiel

L'additionneur 1 bit

Les activités des additionneurs 1 bit en fonction du temps.

Actif inactif inactif

Inactif actif inactif

Inactif inactif inactif

Inactif inactif inactif actif

A chaque intervalle de temps un seul additionneur est actif!

Comment réaliser un circuit avec un seul additionneur?

fonctionnement en fonction du temps.

L'utilisation ici d'un registre permet de mémoriser la retenue t-1.

Réalisation d'un additionneur à partir d'un circuit séquentiel.

Les circuits séquentiels

- ➤ Un circuit séquentiel est un circuit dont les sorties dépendant des entrées et de l'état du système.
- Etat : ce qu'il faut mémoriser de l'histoire du passé, c-a-d jusqu'à l'instant t+1, pour pouvoir déterminer les sorties présentes S(t).

Les automates d'états finis

Les automates d'états finis

Les automates d'états finis

- Un automate est un être mathématique dont la réponse à un stimulus extérieur dépend de ce stimulus et de l'état interne de l'automate.
- Un automate fini a un nombre fini d'états internes. Les stimulus sont susceptibles de faire passer l'automate d'un état à un autre état.
- L'automate est entièrement déterminé par la donnée de ses fonctions de transition qui fournissent le nouvel état et la réponse en fonction de l'ancien état et du stimuli.

Synthèse d'un circuit séquentiel

- Pour réaliser la synthèse d'un circuit séquentiel il faut :
 - ►1 déterminer le graphe des états (diagramme de transitions);
 - ► 2 déterminer le nombre de bascules ;
 - ► 3 construire la table d'états ;
 - ► 4 réaliser les circuits combinatoires associés aux entrées des bascules et aux sorties

Nous allons tenter de réaliser la synthèse d'un additionneur à l'aide d'un circuit séquentiel.

Vue externe

Diagramme de transition : graphe d'état

État : ce qu'il faut mémoriser de l'histoire du passé, c-a-d jusqu'à l'instant t+1, pour pouvoir déterminer les sorties présentes S(t)

Dans notre exemple , il y a deux états internes Etat1 = Retenue ;

Etat2 = Pasretenue.

Synthèse d'un additionneur (graphe d'état)

Après avoir défini les états, il faut compléter le graphe par les **transitions** du systèmes.

Une fonction de transition définit l'évolution d'un automate sous l'effet d'un stimulus externe.

Synthèse d'un additionneur (graphe d'état)

Voici le graphe de transition complet de l'additionneur.

Nous allons vérifier son comportement à partir d'un certains nombres de stimulus d'entrées.

Synthèse d'un additionneur 1001+ 10011 = 11100

Synthèse d'un additionneur (graphe d'état)

01/1

J'ai vérifié sur un jeu d'entrées non exhaustif que le graphe semble bien correspondre au comportement attendu de mon système.

La construction du graphe est l'étape la plus délicate.

Représentation sous forme de table

Codage des états

Codage des états = Nombre de bascules

Il y a deux états : Etat *aucune retenue* est codé 0 Etat *une retenue* est codé 1

Le nombre de bascules est donnée par :

 $2^{nbB} > = nb$ Etats

nb B=1

La table des états

01/1 00/0 10/1 00/1 11/0 11/1

10/0

01/0

On remplace le nom de l'état par son code.

Fonctions logiques pour la sortie et l'état

Synthèse d'un additionneur (schéma)

Synthèse d'un additionneur (schéma)

Système de contrôle de feux de circulation

Les feux alternent de A à B à chaque coup d'horloge quand x = 0.

- Dans l'état A, la circulation se fait dans la direction NS,
- Dans l'état B, dans la direction EO.
 Un piéton peut traverser après avoir appuyé sur le bouton (x = 1)
- Quand x = 1, on passe à l'état C dans lequel les feux sont sous deux rouges pour la durée d'une horloge ou tant que le bouton est enfoncé.

feux de circulation pas top!

- Cette réalisation un peu naïve présente quelques problèmes :
 - Si un malin appuie sans cesse sur le bouton, la circulation automobile est complètement paralysée.
 - Pautre part, comme le système une fois dans l'état C retourne toujours dans l'état A, il se pourrait qu'on n'arrive presque jamais dans l'état B s'il y a trop de piétons.
 - ▶ Bien définir son automate!!!!!

Une variante

- **→** Une meilleure réalisation serait la suivante :
- >Z1 et Z2 commandes des deux feux

État	En	trée	Sort	tie		
prése	nþr	ésent	е х	р	résente	
	0	1	Z ₁ Z	2		
Α	В	С	01			
В	Α	D	10			
		В				
D	A	A	0 0			
État						

État suivant

Codage feux de circulation

Codage des états : on attribue arbitrairement

 $Q_1Q_2 = 00$ représente A

 $Q_1Q_2 = 01$ représente B

 Q_1Q_2 = 10 représente C

 Q_1Q_2 = 11 représente D

	rptro	ésent		e présente
	0		$\mathbf{Z}_1\mathbf{Z}_2$	
00	10	10	0 1	
01	00	11	10	
10	01	01	00	
11	00	00	00	

État suivant

Table de transition

Ent	rée	Éta	t	Éta	ıt	Sorties Bi	stables
X	pré	sent		suivant		présentes	D_1D_2
	Q_1) ₂	Q_1^+	Q_2^+	Z_1Z_2		
0	00	01	01	01			
0-	01	00	10	00			
0	10	01	00	01			
0	11	00	00	00			
1	00	10	01	10			
1	01	11	10	11			
1	10	01	00	01			
1	11	00	00	00			

Simplification

Tables de Karnaugh pour les entrées des bistables :

Simplification

Tables de Karnaugh pour les sorties :

Circuit contrôle de feux

>Circuit:

