Primer of Ecology using R

Hank Stevens

2020-11-24

Contents

Pr	eface		5
1	The 1.1 1.2 1.3	Examples of theories	7 7 7 7
2	Opt 2.1 2.2 2.3	A prey model	9 9 9
3	Sim 3.1 3.2 3.3 3.4	Discrete growth rates of fruit flies in my kitchen	1 2 2 2
4	Den 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	A two stage matrix model	$3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$
5	Den 5.1 5.2 5.3	Dynamics around the equilibria — stability	5 5 5 5

4 CONTENTS

	5.4		15	
	5.5	Maximum Sustained Yield	15	
6	Populations in Space			
	6.1	V	17	
	6.2	Metapopulations	17	
	6.3	Hanski's incidence function	17	
7	Con	npetition	19	
	7.1	Lotka-Volterra Interspecific Competition	20	
	7.2	Equilbria	20	
	7.3	Dynamics at the Equilibria	20	
	7.4	Return Time and the Effect of r	20	
	7.5	Indirect competition for resources	20	
	7.6	Summary	20	
8	Mu	tualisms	21	
	8.1	Background	21	
	8.2	Lotka-Volterra mutualism	21	
	8.3	Consumer-resource mutualism	21	
	8.4	Plant-soil feedbacks	21	
	8.5	Simulations for learning	21	
9	Con	sumer-resource Interactions	23	
	9.1	Ratio dependence	23	
	9.2	Prey dependence	23	
	9.3	Interlude: Functional response - what an individual predator does	23	
	9.4	Stability analysis for the prey-dependent Lotka–Volterra model .	23	
	9.5	Prey carrying capacity and type II functional response	23	
10	Hos	t-parasitoid relations	25	
		Independent and random attacks	$^{-5}$	
		Aggregation leads to coexistence	$\frac{-5}{25}$	
		Stability of host–parasitoid dynamics	$\frac{-5}{25}$	
		In Fine	$\frac{25}{25}$	
11	Dise	Pase	27	
			- · 27	
		Open epidemics	$\frac{27}{27}$	
		Modeling data from Bombay	$\frac{27}{27}$	
12			2 9	
		Food Web Characteristics	30	
		Does omnivory destablize food chains?	30	
		Perhaps mutualism stabilizes bipartite networks	30	
	12.4	Exploring Pandora, right here at home	30	

CONTENTS	F
CONTERNITS	.5
CONTENTS	0

13 Diversity		
13.1 Background	32	
13.2 Species Composition	32	
13.3 Diversity	32	
13.4 Species diversity	32	
13.5 Rarefaction and total species richness	32	
13.6 Distributions	32	
13.7 Neutral Theory of Biodiversity and Biogeography	32	
13.8 Species—area relations	32	
13.9 Diversity Partitioning	32	
13.10Summary	32	
14 Appendix		
14.1 Very introductory materials	34	
14.2 Writing your own functions	34	
14.3 Iterated Actions: the apply Family and Loops	34	
14.4 Probability Distributions and Randomization	34	
14.5 Numerical integration of ordinary differential equations	34	
14.6 Eigenanalysis	34	
14.7 Derivation of the right eigenvalues	34	
14.8 Symbols used in this book	34	

6 CONTENTS

Preface

Placeholder

0.1 Acknowledgements

8 CONTENTS

Theory in Ecology

- 1.1 Examples of theories
- 1.1.1 Hierarchy theory
- 1.1.2 A general theory of ecology
- 1.1.3 Efficient theory
- 1.2 An example: Metabolic Theory of Ecology
- 1.2.1 Body-size dependence
- 1.2.2 Temperature dependence
- 1.3 Power law scaling implies constant relative differences

Optimal Foraging

- 2.1 A prey model
- 2.1.1 Our intuition
- ${\bf 2.1.2}\quad {\bf Mathematical\ support}$
- 2.2 The patch model
- 2.3 A simulation of a prey model
- 2.3.1 Lab exercise

Simple density-independent growth

- 3.1 Discrete growth rates of fruit flies in my kitchen
- 3.2 Fruit flies with continuous overlapping generations
- 3.3 Properties of geometric and exponential growth
- 3.3.1 Average growth rate
- 3.4 Modeling with Data: Simulated Dynamics
- 3.4.1 Data-based approaches
- 3.4.2 Creating and visualizing the data
- 3.4.3 One simulation
- 3.4.4 Multiple simulations
- 3.4.5 A distribution of possible futures
- 3.4.6 Analyzing results
- 3.4.7 Inferring processes underlying growth rate
- $3.4.8 \quad 1/f$ environmental noise

Density-independent Demography

- 4.1 A two stage matrix model
- 4.2 A brief primer on matrices
- 4.3 Decomposing A
- 4.4 A three stage model
- 4.5 Projection
- 4.6 Analyzing the transition matrix
- 4.6.1 Eigenanalysis
- 4.6.2 Finite rate of increase
- 4.6.3 Stable stage distribution
- 4.6.4 Calculating the stable stage distribution
- 4.6.5 Reproductive value
- 4.6.6 Sensitivity and elasticity
- 4.7 Integral projection
- 4.7.1 A size-based IPM of smooth coneflower
- 4.7.2 Population summaries
- 4.8 R packges for demography
- 4.9 Exploring a real population

5.4.2.1 Ricker and more

5.5

Density-dependent growth

Placeholder

5.1	Continuous logistic growth
5.2	Dynamics around the equilibria — stability
5.2.1	Analytical linear stability analysis
5.2.2	Projection with numerical integration
5.3	Other forms of density-dependent growth
5.3.1	Effects of N on birth and death rates
5.3.2	Theta-logistic growth
5.3.3	Allee effect
5.3.4	The integral of logistic growth
5.4	Discrete Density-dependent Growth
5.4.1	Effects of r_d
5.4.2	Bifurcations

Maximum Sustained Yield

Populations in Space

Placeholder

6.3

6.1	Source-sink Dynamics
6.1.1	Complications and cases
6.2	Metapopulations
6.2.1	The classic Levins model
6.2.2	Propagule rain
6.2.3	The rescue effect and the core-satellite model
6.2.4	Parallels with Logistic Growth
6.2.5	Levins $vs.$ Hanski
6.2.6	Habitat Destruction
6.2.7	Illustrating the effects of habitat destruction
6.2.8	Different assumptions lead to different predictions about rates of extinction

Hanski's incidence function

Competition

7.1 Lotka-Volterra Interspecific Competition

- 7.2 Equilbria
- 7.2.1 Isoclines
- 7.2.2 Finding equilibria
- 7.2.3 Coexistence the invasion criterion
- 7.2.4 Other equilibria
- 7.3 Dynamics at the Equilibria
- 7.3.1 Determine the equilibria
- 7.3.2 Create the Jacobian matrix
- 7.3.3 Solve the Jacobian at an equilibrium
- 7.3.4 Use the Jacobian matrix
- 7.3.5 Three interesting equilbria
- 7.4 Return Time and the Effect of r
- 7.5 Indirect competition for resources
- 7.5.1 Linear and nonlinear responses
- 7.5.2 Relative nonlinearity
- 7.5.3 Competition for two resources: the resource ratio model
- 7.6 Summary

Mutualisms

Placeholder

8.5.6

In Fine

8.1	Background
8.2	Lotka-Volterra mutualism
8.3	Consumer-resource mutualism
8.3.1	A model of uni-directional mutualism
8.4	Plant-soil feedbacks
8.5	Simulations for learning
	Simulations for learning lvg()
8.5.1	<u> </u>
8.5.1 8.5.2	lvg()
8.5.1 8.5.2 8.5.3	lvg() Systematic simulations

Consumer-resource Interactions

- 9.1 Ratio dependence
- 9.1.1 Dynamics of ratio dependent predation
- 9.2 Prey dependence
- 9.2.1 Dyanmics of prey-dependent predation
- 9.3 Interlude: Functional response what an individual predator does
- 9.4 Stability analysis for the prey-dependent Lotka–Volterra model
- 9.5 Prey carrying capacity and type II functional response
- 9.5.1 Paradox of enrichment

Host-parasitoid relations

10.1	Independent and random attacks
10.1.1	Simulating simple host-parasitoid dynamics
10.1.1.1	Simulating Random Attacks
10.2	Aggregation leads to coexistence
10.2.1	Equilibria for a discrete-time model
10.3	Stability of host-parasitoid dynamics
10.3.0.1	Dynamics of the May host–parasitoid model
10.4	In Fine

Disease

- 11.1 Closed epidemics
- 11.1.1 Density-dependent transmission
- ${\bf 11.1.2} \quad {\bf Frequency-dependent \ transmission}$
- 11.2 Open epidemics
- 11.3 Modeling data from Bombay
- 11.3.1 Optimization

Food webs and other networks

- 12.1 Food Web Characteristics
- 12.2 Does omnivory destablize food chains?
- 12.2.1 Multi-species Lotka-Volterra notation
- 12.2.2 Background
- 12.2.3 Implementing Pimm and Lawton's Methods
- 12.2.4 Shortening the Chain
- 12.2.5 Adding Omnivory
- 12.2.6 Comparing Chain A versus B
- 12.2.7 Re-evaluating Take-Home Messages
- 12.3 Perhaps mutualism stabilizes bipartite networks
- 12.3.1 Creating bipartite webs
- 12.3.2 Testing effects of nestedness and modularity on network resilience.
- 12.3.3 Path Analysis
- 12.4 Exploring Pandora, right here at home
- 12.4.1 Properties assessed

Diversity

13.1	Backgroun	d
------	-----------	--------------

- 13.2 Species Composition
- 13.2.1 Measures of abundance
- 13.2.2 Dissimilarities and Distances
- 13.2.3 Displaying multidimensional distances
- 13.3 Diversity
- 13.4 Species diversity
- 13.5 Rarefaction and total species richness
- 13.5.1 An example of rarefaction and total species richness
- 13.6 Distributions
- 13.6.1 Log-normal distribution
- 13.6.2 Other distributions
- 13.6.3 Pattern vs. process
- 13.7 Neutral Theory of Biodiversity and Biogeography
- 13.7.1 Different flavors of neutral communities
- 13.7.2 Investigating neutral communities
- 13.8 Species—area relations
- 13.8.1 Island biogeography
- 13.9 Diversity Partitioning
- 13.9.1 Partitioning species—area relations
- 13.10 Summary

Appendix

- 14.1 Very introductory materials
- 14.2 Writing your own functions
- 14.3 Iterated Actions: the apply Family and Loops
- 14.3.1 Iterations of independent actions
- 14.3.2 Dependent iterations
- 14.4 Probability Distributions and Randomization
- 14.5 Numerical integration of ordinary differential equations
- 14.6 Eigenanalysis
- 14.6.1 Eigenanalysis of demographic versus Jacobian matrices
- 14.7 Derivation of the right eigenvalues
- 14.8 Symbols used in this book

References