# Elektronik Aygıtlar

#### BÖLÜM 3 BİPOLAR JONKSİYON TRANSİSTÖRLERİ (BJT)

BMB2012 – Elektronik Devreler ve Aygıtlar Ders Notları Bursa Uludağ Üniversitesi Bilgisayar Mühendisliği Bölümü 2023-2024 Bahar Yarıyılı

Çeviren ve Düzenleyen: Prof. Dr. Kemal FİDANBOYLU

#### **Transistörler**

- Transistörler, diğer iki katmandan çok daha ince bir baz veya orta katmana sahip üç yarı iletken katmandan oluşan üç terminalli cihazlardır. Dıştaki iki katman, ya n- veya p-tipi malzemelerden olup, orta katman zıt tiptedir.
- DC polarlama, ac amplifikasyonu için uygun çalışma bölgesini oluşturmak için gereklidir. Emitör katmanı yoğun şekilde katkılıdır, baz ve kolektör katmanları ise hafif şekilde katkılıdır. Dış katmanlar, p- veya n-tipi malzemeden üretilir ve çok daha büyük genişliklere sahiptir.
- 23 Aralık 1947'de Dr. S. William Shockley, Walter H. Brattain ve John Bardeen, Bell Telefon Laboratuarlarında ilk transistörün güçlendirici özelliğini ispat ettiler.

#### Transistörün Yapısı



Baz kısmı hep incedir.

 İki tür bipolar jonksiyon transistör vardır:

- Transistör terminalleri aşağıdaki şekilde etiklenmiştir:
  - E Emitör (Emitter)
  - B Baz (Base)
  - C Kolektör (Collector)



#### Transistörün Çalışması

• Harici kaynaklar,  $V_{EE}$  ve  $V_{CC}$  aşağıdaki şekilde bağlanır:

- Emitör-baz bağlantısı ileri yönde polarlamalıdır.
- Baz-kolektör
   bağlantısı ters yönde
   polarlamalıdır.
   E ve C miliAmper seviyesinde ve yakla ık olarak e it.

B mikroAmper seviyesindedir



#### Transistördeki Akımlar

- Her türlü bu formül geçerlidir ister pnp ister npn olsun
- Emitör akımı, kollektör ve baz akımlarının toplamıdır:

$$I_E = I_C + I_B$$

Kolektör akımı iki akımdan oluşur:

$$I_{C} = I_{C}$$
 (majority) +  $I_{CO}$  (minority)



#### Ortak Baz (CB) Konfigürasyonu

VEE ve VCC benim hangi bölgede oldu umu belirliyor. 3 slayt sonrası.



\_\_\_ kisini de ters polarlamalı

ba larsak cutoff

kisi de düz ba lanırsa aktif bölge.

Biri ters biri düz olursa yüklenme bölgesi.

 Baz terminali, transistörün hem giriş (emitör-baz) bağlantısı hem de çıkış (kolektör-baz) bağlantısı için ortaktır.

## Ortak Baz (CB) Amplifikatör (1)

#### Giriş Özellikleri:

 Bu eğri, üç farklı çıkış voltajı (V<sub>CB</sub>) seviyesi için giriş akımı (I<sub>E</sub>) ile giriş voltajı (V<sub>BE</sub>) arasındaki ilişkiyi gösterir.

CE, CB, CC vardır. Toprak nereye ba lıysa

CE -> Ortak Emitör

CB -> Ortak Baz

CC -> Ortak Kolektör

Grafik Diyot grafi ine epey benzer.



## Ortak Baz (CB) Amplifikatör (2)

#### Çıkış Özellikleri:

 Bu grafik, çeşitli giriş akımı (I<sub>E</sub>) seviyeleri için çıkış akımının (I<sub>C</sub>) bir çıkış voltajına (V<sub>CB</sub>) olan ilişkisini gösterir.



#### Çalışma Bölgeleri

- Aktif (Active) Yukarıdaki grafikteki beyaz kısım
  - Amplifikatörün çalışma aralığı.
- Kesim (Cutoff) Diyotun offu gibi çalı ır
  - Amplifikatör temelde kapalıdır. Gerilim vardır, ancak akım azdır.
- Doyma (Saturation)
  - Amplifikatör tamamen çalışır durumdadır. Akım vardır, ancak gerilim azdır.

Transistör (amplifier) de eri yükseltmek için kullanılır.

#### Yaklaşık Değerler

Emitör ve kolektör akımları:

$$I_C \cong I_E$$

Baz emitör voltajı:

$$V_{BE} = 0.7 \ V$$
 (Silisyumiçin)

Germanyumdan transistör yapılmaz çünkü sıca a kar ı çok duyarlıdır.

## Alfa ( $\alpha$ )

• Alfa ( $\alpha$ ),  $I_C$ 'nin  $I_E$ 'ye oranıdır:

$$\alpha_{dc} = \frac{I_C}{I_E}$$

- İdeal olarak:  $\alpha = 1$
- Gerçekte,  $\alpha$ , 0.9 ile 0.998 arasında bir değere sahiptir.
- AC modunda alfa ( $\alpha$ ):

$$\alpha_{ac} = \frac{\Delta I_C}{\Delta I_E}$$

#### Transistör Amplifikatör



• Akımlar ve Gerilimler:

$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \text{ mV}}{20\Omega} = 10 \text{ mA}$$

$$I_C \cong I_E \qquad I_C = \alpha I_E + I_{CBO}$$

$$I_L \cong I_i = 10 \text{ mA}$$

$$V_L = I_L R = (10 \text{ mA})(5 \text{ k}\Omega) = 50 \text{ V}$$

Gerilim Kazancı:

$$A_V = \frac{V_L}{V_i} = \frac{50 \text{ V}}{200 \text{ mV}} = 250$$

## Ortak Emitör (CE) Amplifikatör

- Emitör, hem giriş (bazemitör) hem de çıkış (kolektör-emitör) devrelerinde ortaktır.
- Giriş baza uygulanır ve çıkış kollektörden alınır.

kisideters ise CutOff ikisi de normal ise Saturation



## Ortak Emitör (CE) Özellikleri

Cutoff tam sıfırdan ba lamaz ona dikkat et

#### Kollektör Özellikleri



#### Baz Özellikleri



CE 'ün grafi indee riler biraz rampalı.

## Ortak Emitör (CE) Amplifikatör Akımları

İdeal Akımlar:

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

Gerçek Akımlar:

$$I_C = \alpha I_E + I_{CBO}$$

Burada, *I<sub>CBO</sub>* azınlık toplayıcı akımıdır.

- I<sub>CBO</sub> genellikle o kadar küçüktür ki, yüksek güçlü transistörler ve yüksek sıcaklık ortamları dışında göz ardı edilebilir.
- $I_B = 0 \mu A$  olduğunda, transistör kesimdedir, ancak  $I_{CEO}$  adı verilen bir azınlık akımı akar.

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \, \mu A}$$

## Beta $(\beta)$ (1)

- β bir transistörün amplifikasyon faktörünü temsil eder.
  - DC modunda:

$$eta_{dc} = rac{I_C}{I_B}$$

50 ile 400 arasında olur bu yüzden grafik polinomik

AC modunda:

$$\beta_{\rm ac} = \frac{\Delta I_C}{\Delta I_B}\Big|_{V_{CE}={\rm constant}}$$

•  $\beta_{ac}$  bazen transistör modelleme hesaplamalarında kullanılan bir terim olan  $h_{fe}$  olarak adlandırılır.

## Beta $(\beta)$ (2)

#### • Bir Grafikten $\beta$ 'yı Belirleme:

$$\beta_{AC} = \frac{(3.2 \text{ mA} - 2.2 \text{ mA})}{(30 \text{ µA} - 20 \text{ µA})}$$
$$= \frac{1 \text{ mA}}{10 \text{ µA}} \Big|_{V_{CE} = 7.5 \text{ V}}$$
$$= 100$$

$$\beta_{DC} = \frac{2.7 \ mA}{25 \ \mu A} \Big|_{V_{CE} = 7.5 \ V}$$
$$= 108$$





## Beta $(\beta)$ (3)

• Amplifikasyon faktörleri  $\beta$  ve  $\alpha$  arasındaki ilişki:

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{\alpha - 1}$$

Akımlar arasındaki ilişki:

$$I_C = \beta I_B$$

$$I_E = (\beta + 1)I_B$$

## Ortak Kolektör (CC) Konfigürasyonu (1)

 Giriş baz terminalinde ve çıkış emitör terminalindedir.



## Ortak Kolektör (CC) Konfigürasyonu (2)

Dikey eksenin I<sub>E</sub>
 olması dışında,
 karakteristikler
 ortak emitör
 amplifikatörünkilere
 benzer.



## Çalışma Limitleri

Mavi yerlere gidince transistör yanar.

 Kesim bölgesinde V<sub>CE</sub> maksimum ve I<sub>C</sub> minimumdur.

$$\textit{I}_{C(\max)} = \textit{I}_{CEO}$$

 Doyma bölgesinde I<sub>C</sub> maksimum ve V<sub>CE</sub> minimumdur.

$$\textit{V}_{\textit{CE}(max)} = \textit{V}_{\textit{CE}(\textit{sat})} = \textit{V}_{\textit{CEO}}$$

$$I_{CEO} \leq I_{C} \leq I_{C_{\max}}$$
 $V_{CE_{\text{sat}}} \leq V_{CE} \leq V_{CE_{\max}}$ 
 $V_{CE}I_{C} \leq P_{C_{\max}}$ 



· Transistör, doyma ve kesim arasındaki aktif bölgede çalışır.

#### Güç Kaybı

Ortak baz (CB):

$$P_{Cmax} = V_{CB}I_{C}$$

Ortak emitör (CE):

$$P_{Cmax} = V_{CE}I_{C}$$

Ortak kolektör (CC):

$$P_{Cmax} = V_{CE}I_{E}$$

## Transistör Teknik Özellikler Belgesi (1)

#### **MAXIMUM RATINGS**

| Rating                                                                | Symbol           | 2N4123      | Unit       |
|-----------------------------------------------------------------------|------------------|-------------|------------|
| Collector-Emitter Voltage                                             | V <sub>CEO</sub> | 30          | Vdc        |
| Collector-Base Voltage                                                | V <sub>CBO</sub> | 40          | Vdc        |
| Emitter-Base Voltage                                                  | V <sub>EBO</sub> | 5.0         | Vdc        |
| Collector Current – Continuous                                        | I <sub>C</sub>   | 200         | mAdc       |
| Total Device Dissipation @ T <sub>A</sub> = 25°C<br>Derate above 25°C | P <sub>D</sub>   | 625<br>5.0  | mW<br>mW°C |
| Operating and Storage Junction<br>Temperature Range                   | $T_j, T_{stg}$   | -55 to +150 | °C         |

#### THERMAL CHARACTERISTICS

| Characteristic                          | Symbol         | Max  | Unit |
|-----------------------------------------|----------------|------|------|
| Thermal Resistance, Junction to Case    | $R_{	heta JC}$ | 83.3 | °C W |
| Thermal Resistance, Junction to Ambient | $R_{	heta JA}$ | 200  | °C W |



## Transistör Teknik Özellikler Belgesi (2)

| Characteristic                                                                                                                    | Symbol               | Min      | Max  | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------|------|
| OFF CHARACTERISTICS                                                                                                               |                      |          |      |      |
| Collector-Emitter Breakdown Voltage (1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$                                                       | V <sub>(BR)CEO</sub> | 30       |      | Vdc  |
| Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$                                                                    | V <sub>(BR)CBO</sub> | 40       |      | Vdc  |
| Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$                                                                      | V <sub>(BR)EBO</sub> | 5.0      | a=a  | Vdc  |
| Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$                                                                     | $I_{CBO}$            | _        | 50   | nAdc |
| Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$                                                                      | $I_{EBO}$            | -        | 50   | nAdc |
| ON CHARACTERISTICS                                                                                                                |                      |          |      |      |
| DC Current Gain(1)<br>$(I_C = 2.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$<br>$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ | h <sub>FE</sub>      | 50<br>25 | 150  | 7-1  |
| Collector-Emitter Saturation Voltage(1)<br>$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$                                      | V <sub>CE(sat)</sub> | -        | 0.3  | Vdc  |
| Base-Emitter Saturation Voltage(1)<br>(I <sub>C</sub> = 50 mAdc, I <sub>B</sub> = 5.0 mAdc)                                       | V <sub>BE(sat)</sub> | -        | 0.95 | Vdc  |

## Transistör Teknik Özellikler Belgesi (3)

| Current-Gain – Bandwidth Product<br>(I <sub>C</sub> = 10 mAdc, V <sub>CE</sub> = 20 Vdc, f = 100 MHz) | $f_T$            | 250 |     | MHz |
|-------------------------------------------------------------------------------------------------------|------------------|-----|-----|-----|
| Output Capacitance<br>$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ MHz})$                      | C <sub>obo</sub> | -   | 4.0 | pF  |
| Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$                          | $C_{ibo}$        | -   | 8.0 | pF  |
| Collector-Base Capacitance $(I_E = 0, V_{CB} = 5.0 \text{ V}, f = 100 \text{ kHz})$                   | C <sub>cb</sub>  | 1-1 | 4.0 | pF  |
| Small-Signal Current Gain                                                                             | h <sub>fe</sub>  | 50  | 200 | -   |

 $(I_C = 100 \,\mu\text{Adc}, V_{CE} = 5.0 \,\text{Vdc}, R_S = 1.0 \,\text{k ohm}, f = 1.0 \,\text{kHz})$ 

 $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$ 

 $(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$ 

 $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz})$ 

Current Gain - High Frequency

Noise Figure

SMALL-SIGNAL CHARACTERISTICS

2.5

50

200

6.0

dB

 $h_{fe}$ 

NF

<sup>(1)</sup> Pulse Test: Pulse Width = 300 μs. Duty Cycle = 2.0%

#### **Transistör Testi**

- Eğri İzleyici: Karakteristik eğrilerin bir grafiğini sağlar.
- DMM: Bazı DMM'ler  $\beta_{DC}$  veya  $h_{FE}$ 'yi ölçer.
- Ohmmetre:





#### Transistör Terminal Tanımlaması

