	Practica 2 (Regresión logística) Aprendizaje automático y big data Alberto García Doménech - Pablo Daurell Marina
	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt def carga_csv(file_name):</pre>
	"""carga el fichero csv especificado y lo devuelve en un array de numpy """ valores = pd.read_csv(file_name, header=None).values # suponemos que siempre trabajaremos con float return valores.astype(float) Parte 1 (Regresión logística)
	Visualización: Cargamos los datos que vamos a tratar de clasificar mediante regresión logística: (Notas de candidatos a examenes de admisión a una universidad y si fueron admitidos o no)
In [3]:	<pre>data = carga_csv('ex2data1.csv') X = data[:, :-1] np.shape(X) # (100, 2) Y = data[:, -1] np.shape(Y) # (100,)</pre>
In [4]:	<pre>m = np.shape(X)[0] n = np.shape(X)[1] # añadimos una columna de 1's a la X X = np.hstack([np.ones([m, 1]), X])</pre> plt.figure(figsize=(7,5))
	<pre>pos = np.where(Y == 1) plt.scatter(X[pos, 1], X[pos, 2], marker='v', c='g', label='Admited') pos = np.where(Y == 0) plt.scatter(X[pos, 1], X[pos, 2], marker='o', c='r', label='Not admited') plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score')</pre>
	plt.ylabel('Exam 2 score') plt.legend(loc = 'upper right') plt.show() 100 -
	80 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
	40 - 30 - 30 40 50 60 70 80 90 100 Exam 1 score
In [5]:	Optimización: Vamos a definir la función utilizar el método de descenso del gradiente para minimizar el error de la hipótesis que generemos con la regresión logística. Par ello utilizaremos la función cost para calcular el coste, la función gradient para llevar a cabo el descenso del gradiente y la función sigmoid para calcular la hipótesis de la regresión logística. def sigmoid(x): return 1 / (1 + np.exp(-x))
	<pre>def cost(Theta, X, Y): H = sigmoid(np.matmul(X, Theta)) cost = (-1 / len(X)) * (np.matmul(np.log(H).T, Y) + np.matmul(np.log(1-H).T, (1-Y))) return cost def gradient(Theta, X, Y): H = sigmoid(np.matmul(X, Theta))</pre>
	<pre>return ((1/len(X)) * np.matmul(X.T, H - Y)) Theta = np.zeros(np.shape(X[1])) print(cost(Theta, X, Y)) print(gradient(Theta, X, Y))</pre>
In [8]:	0.6931471805599452 [-0.1
Out[8]:	result = opt.fmin_tnc(func=cost, x0=Theta, fprime=gradient, args=(X, Y)) theta_opt = result[0] theta_opt array([-25.16131863, 0.20623159, 0.20147149])
In [9]:	<pre>Clasificación: Una vez calculados los valores de Theta que minimizan el coste del modelo, pintamos la recta resultante para ver como quedan separados los datos de nuestro conjunto de datos. def pinta_frontera_recta(theta, X, Y): plt.figure(figsize=(7,5))</pre>
	<pre>pos = np.where(Y == 1) plt.scatter(X[pos, 1], X[pos, 2], marker='x', c='g', label='Admited') pos = np.where(Y == 0) plt.scatter(X[pos,1], X[pos,2], marker='v', c='r', label='Not admited') x1_min, x1_max = X[:, 1].min(), X[:, 1].max() x2_min, x2_max = X[:, 2].min(), X[:, 2].max()</pre>
	<pre>xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(np.c_[np.ones((xx1.ravel().shape[0], 1)), xx1.ravel(), xx2.ravel()].dot(theta)) h = h.reshape(xx1.shape)</pre>
	<pre>plt.legend(loc = 'upper right') plt.xlabel("Exam 1 score") plt.ylabel("Exam 2 score") # el cuarto parámetro es el valor de z cuya frontera se quiere pinta plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='blue') plt.savefig("frontera.pdf") plt.show() plt.close()</pre>
	# Pintamos la frontera pinta_frontera_recta(theta_opt, X, Y) 100
	80 -
	40 - 30 40 50 60 70 80 90 100 Exam 1 score
	En efecto vemos como, al obtener los valores óptimos para Theta, tenemos una recta que divide nuestro conjunto de datos bastante bien. Vemos como la mayoría de admitidos están encima de la recta y la mayoría de los no admitidos estánn por debajo. Vamos a evaluar como de buena es la clasificación que hace nuestro modelo calculando algunas métricas como la exactidud, la precisión y la exhaustivida
In [10]:	<pre>def metrics(X, Y, theta_opt): h = sigmoid(np.dot(X, theta_opt)) # Predecimos los valores con la Theta entrenada por nuestro modelo h[h >= 0.5] = 1 # Admitidos h[h < 0.5] = 0 # No admitidos tp = h[(h == Y) & (h == 1)].size # Verdaderos positivos tn = h[(h == Y) & (h == 0)].size # Verdaderos negativos</pre>
	<pre>fp = h[(h != Y) & (h == 1)].size # Falsos positivos fn = h[(h != Y) & (h == 0)].size # Falsos negativos accuracy = (tp + tn) / (tp + tn + fp + fn) # Exactitud (Proporción de predicciones correctas) precission = tp / (tp + fp) # Precision (Proporción de predicciones positivas correctas) recall = tp / (tp + fn) # Exhaustividad (Proporción de casos positivos predichos correctamente) # Mostramos una matriz de confusión</pre>
	<pre>print('Confussion matrix') print('TP:', tp, 'FN:', fn) print('FP:', fp, 'TN:', tn) # Mostramos las métricas print('\nMetrics') print('Accuracy: ', accuracy) print('Precission: ', precission)</pre>
	<pre>print('Recall: ', recall) metrics(X, Y, theta_opt) Confussion matrix TP: 55 FN: 5 FP: 6 TN: 34</pre>
	Metrics Accuracy: 0.89 Precission: 0.9016393442622951 Recall: 0.91666666666666666666666666666666666666
	 55 de las personas que hemos estimado que son admitidas realmente lo son, y 6 de ellas no. 34 de las personas que hemos estimado que no son admitidas realmente sí lo han sido, y 5 de ellas no. Exactitud: 89% -> El 89% de nuestras prediciones han sido correctas. Precisión: 90% -> El 90% de admitidos que hemos clasificado son correctos. Exhaustividad: 92% -> De todos los admitidos, hemos clasificado correctamente al 92%.
	Parte 2 (Regresión logística regularizada) Visualización: Cargamos los datos que vamos a tratar de clasificar mediante regresión logística, esta vez usando regularización ya que este conjunto de datos no se podr
In [11]:	separar linealmente: (Resultados de dos tests a varios microchips y si pasarán el control de calidad o no) data = carga_csv('ex2data2.csv') X = data[:, :-1] np.shape(X) # (118, 2)
In [12]:	<pre>Y = data[:, -1] np.shape(Y) # (118,) m = np.shape(X)[0] n = np.shape(X)[1] plt.figure(figsize=(7,5))</pre>
	<pre>pos = np.where(Y == 1) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='k', label='Passed') pos = np.where(Y == 0) plt.scatter(X[pos, 0], X[pos, 1], marker='o', c='y', label='Failed') plt.xlabel('Microchip test 1') plt.ylabel('Microchip test 2')</pre>
	plt.legend() plt.show()
	0.50 - 1
	-0.500.750.500.25 0.00 0.25 0.50 0.75 1.00 Polinomización:
In [13]:	Para entrenar mejor a nuestro modelo vamos a extender nuestros datos de entrenamiento con términos polinómicos hasta la sexta potencia: from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=6) X_poly = poly.fit_transform(X)
	Optimización: Volvemos a utilizar el descenso del gradiente para encontrar los valores óptimos de Theta que minimicen la función de coste. En este caso hemos polinomizado los datos de entrenamiento y tenemos muchos atributos en cada ejemplo de entrenamiento, debido a esto podría producirse un sobreaprendizaje que vamos a intentar evitar usando un parámetro <i>Lambda</i> para regularizar los resultados.
In [14]:	<pre>def cost(Theta, X, Y, Lambda): H = sigmoid(np.matmul(X, Theta)) aux = (-1 / len(X)) * (np.matmul(np.log(H).T, Y) + np.matmul(np.log(1-H).T, (1-Y))) regul = (Lambda/(2*len(X))) * np.sum(Theta**2) return (aux + regul) def gradient(Theta, X, Y, Lambda): H = sigmoid(np.matmul(X, Theta))</pre>
In [15]:	<pre>aux = np.matmul(X.T, H - Y) / len(X) regul = (Lambda/len(X)) * Theta return (aux + regul) Theta = np.zeros(np.shape(X_poly[1])) Lambda = 1</pre>
	<pre>print(cost(Theta, X_poly, Y, Lambda)) 0.6931471805599453 Calculamos el valor óptimo de Theta con fmin_tnc result = opt.fmin_tnc(func=cost, x0=Theta, fprime=gradient, args=(X_poly, Y, Lambda))</pre>
	<pre>theta_opt = result[0] theta_opt array([1.14201564,</pre>
In [18]:	-0.46912456, -1.03629766, 0.0290438 , -0.29250729, 0.01716376,
	-0.32880516, -0.13795624, -0.93187565]) Clasificación: Representamos la frontera resultante de entrenar nuestro modelo:
	-0.32880516, -0.13795624, -0.93187565]) Clasificación: Representamos la frontera resultante de entrenar nuestro modelo: def plot_decisionboundary(X, Y, theta, poly, Lambda): plt.figure(figsize=(7,5)) plt.title('Lambda = {}'.format(Lambda)) x1_min, x1_max = X[:, 0].min(), X[:, 0].max() x2_min, x2_max = X[:, 1].min(), X[:, 1].max() xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(theta))
	-0.32880516, -0.13795624, -0.93187565]) Clasificación: Representamos la frontera resultante de entrenar nuestro modelo: def plot_decisionboundary(X, Y, theta, poly, Lambda): plt.figure(figsize=(7,5)) plt.title('Lambda = {}'.format(Lambda)) x1_min, x1_max = X[:, 0].min(), X[:, 0].max() x2_min, x2_max = X[:, 1].min(), X[:, 1].max() xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
In [19]:	-0.32880516, -0.13795624, -0.93187565]) Clasificación: Representamos la frontera resultante de entrenar nuestro modelo: def plot_decisionboundary(X, Y, theta, poly, Lambda): plt.figure(figsize=(7,5)) plt.title('Lambda = {}'.format(Lambda)) x1_min, x1_max = X[:, 0].min(), X[:, 0].max() x2_min, x2_max = X[:, 1].min(), X[:, 1].max() xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(theta)) h = h.reshape(xx1.shape) plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='g') pos = np.where(Y == 1) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='k', label='Passed') pos = np.where(Y == 0)
In [19]:	Clasificación: Representamos la frontera resultante de entrenar nuestro modelo: def plot_decisionboundary(X, Y, theta, poly, Lambda): plt.figure(figsize=(7,5)) plt.tile('tambda = {}'.format(Lambda)) x1_min, x1_max = x[:, 0].min(), X[:, 0].max() x2_min, x2_max = X[:, 1].min(), X[:, 1].max() xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(theta)) h = h.reshape(xx1.shape) plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='g') pos = np.where(Y == 1) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='k', label='Passed') pos = np.where(Y == 0) plt.scatter(X[pos, 0], X[pos, 1], marker='o', c='y', label='Failed') plt.xlabel('Microchip test 1') plt.ylabel('Microchip test 2') plt.show() plot_decisionboundary(X, Y, theta_opt, poly, Lambda) Lambda = 1 Passed Failed Passed Failed
In [19]:	Clasificación: Representamos la frontera resultante de entrenar nuestro modelo: def plot decisionboundary(X, Y, theta, poly, Lambda): plt.figure(figsize=(7,5)) plt.title('Lambda = {}'.format(Lambda)) x1_min, x1_max = X[:, 0].min(), X[:, 0].max() x2_min, x2_max = X[:, 1].min(), X[:, 1].max() xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(theta)) h = h.reshape(xx1.shape) plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='g') pos = np.where(Y == 1) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='k', label='Passed') pos = np.where(Y == 0) plt.scatter(X[pos, 0], X[pos, 1], marker='o', c='y', label='Failed') plt.xlabel('Microchip test 1') plt.ylabel('Microchip test 2') plt.legend() plt.show() plot_decisionboundary(X, Y, theta_opt, poly, Lambda) Lambda = 1
In [19]:	Clasificación: Representamos la frontera resultante de entrenar nuestro modelo: def plot decisionboundary(x, Y, theta, poly, Lambda): plt.figure(figsize-(7,5)) plt.title('tambda = ()'.format(Lambda)) x2_min, x2_max = x[:, 0].min(), X[:, 0].max() x2_min, x2_max = x[:, 1].min(), X[:, 1].max() xx1, xx2 = np.meshgrid(np.linspace(x2_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(theta)) h = h.reshape(xx1.shape) plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='g') pos = np.where(Y == 1) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='k', label='Passed') pos = np.where(Y == 0) plt.scatter(X[pos, 0], X[pos, 1], marker='o', c='y', label='Failed') plt.xlabel('Microchip test 1') plt.ylabel('Microchip test 2') plt.show() plot_decisionboundary(X, Y, theta_opt, poly, Lambda) Lambda = 1 Passed Passed Passed Passed Passed
	Clasificación: Representanos la frontera resultante de entrenar nuestro modelo: def plot. decisionboundary(X, Y, theta, poly, Lambda): pll.fligure(Tigalice(7.5)) pll.tlift(Elambda e ()'.format(Lambda)) xl_min, xl_max = X(x, e)_nain(), X(x, e)_nax() xz_min, xl_max = X(x, e)_nain(), X(x, e)_nax() xz_min, xl_max = X(x, e)_nain(), X(x, e)_nax() xx_min, xl_max = X(x, e)_nain() xx_min, xl_max = X(x, e)_nain(), X(x, e)_nain() xx_min, xl_max = X(x
	Clasificación: Representanos la trotera resultante de entrenar nuestro modeco: def plot decisionhoundary(X, Y, theta, poly, Lambda): plot.filiprofi[platzee(z)5] plot.title("lambda = 0".format(lambda)) xl.min, xl.max = x[i : n].min(), x[i : n].max() x2.min, x2.max = x[i : n].min(), x[i : n].max() x2.min, x2.max = x[i : n].min(), x[i : n].max() xxi, xxi = m.em.cethyr (domin.inspace(x1.min, x1.max), np.linspace(x2.min, x2.max)) h = signoid(poly, flu_transform(np.c_[xxi.ravel(), xxz.ravel())]).dot(theta)) h = h.reshape(xxi.shape) plot.center(xxi.xxi.xxi.n), n[n]. nimevidiths=1, colors="g") pos = np.where(Y = 1) plot.scatter(x[nos, n], x[nos, 1], marker="d", c="k", label="Fassed") pos = np.where(Y = 0) plot.scatter(x[nos, n], x[nos, 1], marker="d", c="k", label="Fassed") plot.scatter(x[nos, n], x[nos, 1], marker="d", c="y", label="Fassed") plot.decisionboundary(X, Y, theta_opt, poly, Lambda) Lambda = 1 Vemos como cotenenos una especie de elipse que separa bastante bien el conjunto de datos, con los microchips talinos hiera de la elipse y los aceptados dentro de ella. Vamos a comprobar cómo varia la trortera resultante si vanamos el parámetro de regularización: for Lambda in [0, 0.00s, 1, 2s, 58, 100]; Treta = np.zeros(np.chonpe(X, poly)!]) Treta = np.zeros(np.chonpe(X, poly)); theta opt = result[n].ninericos(x, x, x, theta opt, poly, Lambda) Lambda = 0 Lambda = 0 Lambda = 0 Lambda = 0
	Clasificación: Representantos la trontera resultante de entrenar nuestro modelo: def plot_decis temboundaroy(x, y, theta, poly, Lamoda): plit_four(fusizace(-x)) val in, xi max = x[:, 0] min(), x[:, 0] max() x2 min, x2 max > x[:, 1] min(), x[:, 0] max() x2 min, x2 max > x[:, 1] min(), x[:, 0] max() x2 min, x2 max > x[:, 1] min(), x[:, 0] max() x2 min, x2 max > x[:, 0] min(), x[:, 0] max() x2 min, x2 max > x[:, 0] min() x2 min, x2 max > x[:,
	Clasificacion: Representanto la inordera resultante de entrenar nuestro mocelo: def plot_decision/boundarry(X, Y, theta, poly, Lambda): plit.figure(Tigalzes(7, N), Y, theta, poly, Lambda): plit.max = XI, 0 m.m.(), XI, 0 max()
	Classificacion: Recresentario la fondera resultaria de entreira nuestro model: del filos destriantebandary(x, y, thota, paly, tambda): plit (Zaure (Figuater (1,3)) plit (Zaure (1,3)
	Classification: Classification: Septembranes in former resultante de enview nuesion models. def ploto_geniciontemendary(X, Y, thetia, poly, tabbda): pit.regenicityproceptary(X, Y, thetia, poly, tabbda): pit.central(x, x, x, x, x, x) = poly, poly, tabbda): pit.central(x, x, x
	Classificación: Serpreservanto in introdus estabativida controra mucitica modele: de Diot destinence accessiva del controla controla mucitica modele: publicación (classica est. (s.) del (cl.), xf.; el mandol; publicación (classica est. (s.) del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cr.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., ma. el xf.; ol del (cl.), xf.; el mandol; xf., min. xf., min. xf., min. xf.; min. xf.; xf., min. xf., min. xf., min. xf.; xf., min. xf., min. xf.; min. xf.; xf., min. xf., min. xf.; min. xf.; xf., min. xf., min. xf.; min. xf.; xf., min. xf.; min. xf.; min. xf.; xf., min. xf.; min. xf.; min. xf.; xf.; min. xf.; xf., min. xf.; min. xf.; xf.; min. xf.; xf.; min. xf.; xf., min. xf.; min. xf.; min. xf.; xf.; min. xf.; xf.; min. xf.; xf., xf.; xf.; xf.; xf.; xf.; xf.; xf.; xf.;
	Classificación: Classificación: Autoritativo la fore caracidade de entre or mestio rockeo der alor destalancementally, v., france, pely, tantally; (intropreti protection), permet (antes); (introductivo, v.v.), p. (18-3), introduction-1, colores-(v)) gets = permet (v.v.), p. (18-3), introduction-1, colores-(v)) gets = permet (v.v.), permet (v.v.
	The section of the following sections is comed to accommodate. Confidence of the section of the
	### 1.0000000000000000000000000000000000
	Section and the control and th
	Contraction of Contraction (Contraction of Contraction (Contraction)) Page 19 plus (Contraction of Contraction (Contraction)) plus (Contraction of Contraction of Contraction) plus (Contraction of Contraction of Contraction) plus (Contraction of Contraction of Contraction of Contraction) plus (Contraction of Contraction of Co
	Confidence of the control of the con
	Section and Continue to Contin
	### \$12 (1995
	### Committee Co