

Eletrónica de Potência e Energias

Conversor Unidirecional CA-CC Boost PFC

Constituição do grupo

- Diego Soares Brandão
 - pg53769@alunos.uminho.pt
- Francisco Faria Costa
 - pg53819@alunos.uminho.pt
- João Pedro Machado da Silva
 - pg53942@alunos.uminho.pt
- João Pedro Medeiros Santos
 - a94596@alunos.uminho.pt
- Rui Pedro Fernandes Pedroso
 - pg54212@alunos.uminho.pt

Índice

- **■** Estado da arte;
- Diagrama de blocos;
- Etapas do trabalho desenvolvido;
 - Simulação;
 - Hardware;
 - Testes e Resultados experimentais;
- **■** Conclusão;
- **■** Bibliografia;

Estado da Arte

- O algoritmo *Power Factor Correction* (Correção do Fator de Potência *PFC*) surge como uma ferramenta para otimizar a utilização da energia;
- É cada vez mais necessário reduzir as perdas, devido ao aumento do consumo de energia;
- A otimização da energia é feita não só através da correção do fator de potência, mas também através do consumo de corrente sinusoidal;

https://www.microchip.com/en-us/development-tool/dv330101

Diagrama de blocos

Circuito simulado com valores reais

Resultados da simulação: (trocar a print)

Resultados da simulação (trocar as prints)

Controlo

■ Teoria de controlo utilizada – PI estacionário com modulação PWM (controlo linear)

Hardware

- Microcontrolador utilizado: SMT32G474RET6
 - Clock até 170MHz;
 - 5 x ADCs de 12Bits, 4MSps;
 - 17 timers, 6 deles de 16Bit;
 - Mathematical Hardware Acelerator;
 - FPU;

https://pt.aliexpress.com/i/1005005631876638.html

Hardware

- Gate driver: ADuM 3123
 - Bandwitdh de 1MHz;
 - 3000V rms isolation;
 - 64ns maximum propagation delay;

https://sg.rs-online.com/web/p/digital-isolator-ics/9053567

Hardware

- Sensor de tensão: CYHVS5-25A
 - Tensão máxima de entrada: 2000V;
 - Tensão de isolamento 2.5kV;

https://shorturl.at/5qOlk

- Sensor de tensão: LTSR15-np
 - Corrente máxima de entrada: 15A;
 - Sensibilidade: 41.6mV/A;

https://shorturl.at/ooHLv

PCB

Protótipo final

Circuito de potência

Circuito de controlo

Circuito de alimentações

Microcontrolador e circuito para comunicação por porta série

Bancada de testes

Resultados experimentais - Testes pwm

PWM do circuito de controlo

Resultados experimentais – Testes pwm

PWM no circuito de potência

Duty = 75%

Resultados experimentais - Modo Boost

Vin = 10V

Duty = 65%

Resultados experimentais - testes sem controlo

Sem controlo

Tensão de entrada(V)

Corrente de entrada (A)

Resultados experimentais - testes sem controlo

Sem controlo

Tensão na carga (V)

Corrente da carga (A)

Resultados experimentais - controlo PFC

Corrente e tensão de entrada

Corrente de entrada: CH1

Tensão de entrada: CH2

Conclusão

- Este conversor de potência com controlo por PFC evidencia-se como uma tecnologia inovadora e importante para a melhoria da eficiência e qualidade da energia elétrica.
- Melhora o fator de potência global dos sistemas, conduzindo a uma melhor qualidade de energia da rede.
- Molda ativamente a forma de onda da corrente de entrada, otimizando o fornecimento de energia e diminuindo a distorção harmónica total percentual (THD%).

https://solidstudio.io/blog/smart-grids-what-are-they

Agradecimentos

Obrigado pela atenção!

Bibliografia

- Vítor Monteiro, Andrés A. Nogueiras Meléndez, João L. Afonso, "Novel Single-Phase Five-Level VIENNA-Type Rectifier with Model Predictive Current Control", IEEE IECON Industrial Electronics Conference, pp. 6413-6418, Beijing China, Oct. 2017. DOI: 10.1109/IECON.2017.8217117 ISBN: 978-1-5386-1127-2
- João L. Afonso, João L., Monteiro, Vitor Apresentações da Unidade Curricular de Eletrónica de Potência para Redes Elétricas Inteligentes, atualizado abril 2024