

# Baseball II



Produced by Dr. Mario | UNC STOR 390



### Pythagorean Theorem

- Classic Pythagorean Theorem
  - Relationship Between the Sides of a Right Triangle
  - $a^2 = b^2 + c^2$
- What is Known: More Runs = More Wins
- Relationship Between Runs and Wins?
  - Bill James' Pythagorean Method

$$WP \approx \frac{RS^2}{RS^2 + RA^2}$$

- Example: Kansas City in 2014 World Series
  - 651 Runs Scored

• 624 Runs Allowed

WP = Win %
RS = Runs Scored
RA = Runs Allowed

$$89 \, Wins \approx 162 \times \frac{651^2}{651^2 + 624^2} = 84.43$$





### Pythagorean Theorem

- Optimization of Relationship
  - What is the Best Choice of  $\alpha$ ?

$$WP = \frac{RS^{\alpha}}{RS^{\alpha} + RA^{\alpha}} + \epsilon$$
 #Blessed

- Minimization of Sum of Squared Errors
- Optimal:  $\alpha = 1.82$
- Alternative Expression

$$WP = \frac{(RS/RA)^{\alpha}}{(RS/RA)^{\alpha} + 1} + \epsilon$$

- Useful for Forecasting Playoff Series Winners
  - Pythagorean Method: 53.8% Accurate
  - Games Won Approach: 50% Accurate

WP = Win %
RS = Runs Scored
RA = Runs Allowed





### Pythagorean Theorem

- Useful for Valuing Players in Trades
  - Example: Cleveland Indians
  - Currently: RS=870 and RA=800
  - Trade Bing Crosby (100 Runs)
  - For Frank Sinatra (120 Runs)
  - Difference: +20 Runs
  - Before Trade:

$$WP pprox rac{\left(rac{870}{800}
ight)^{1.82}}{\left(rac{870}{800}
ight)^{1.82}+1} = 0.538$$

After Trade:

$$WP pprox rac{\left(rac{890}{800}
ight)^{1.82}}{\left(rac{890}{800}
ight)^{1.82}+1} = 0.548$$

WP = Win %
RS = Runs Scored
RA = Runs Allowed





### Motivation: Nomar Vs. Ichiro

| Statistics for Ichiro Suzuki and Nomar Garciaparra |             |            |  |
|----------------------------------------------------|-------------|------------|--|
| Event                                              | Ichiro 2004 | Nomar 1997 |  |
| AB                                                 | 704         | 684        |  |
| Batting average                                    | .372        | .306       |  |
| SLG                                                | .455        | .534       |  |
| Hits                                               | 262         | 209        |  |
| Singles                                            | 225         | 124        |  |
| 2B                                                 | 24          | 44         |  |
| 3B                                                 | 5           | 11         |  |
| HR                                                 | 8           | 30         |  |
| BB+HBP                                             | 53          | 41         |  |





#### Argument

- Hitting Causes Good and Bad Things
- Hits and Walks Create Scoring Opportunities
- Better Hitter = More Scoring Opportunity
- Relationship of Runs and {S,D,T,HR,BB,HBP}

#### Runs-Created Formula

- Bill James (1979)
- Recall: Total Bases (TB)  $TB \approx S + 2D + 3T + 4HR$
- Formula:

$$RC \approx (H + BB + HBP) \times \frac{IB}{AB + BB + HBP}$$

# of Base Runners

Rate Players are Advancing

H = Hit

S = Single

D = Double

T = Triple

HR = Home Run

AB = At-bat

BB = Walk

HBP = Hit-by-Pitch





- Evaluation of Runs Created Formula
  - Mean Percentage Error (MPE)
  - Formula for MPE:

$$MPE = \frac{100\%}{n} \times \sum_{i=1}^{n} \frac{y_i - \widehat{y_i}}{y_i}$$

Based off Formula for RC, MPE = 4%

Problem: Formula Developed Off Team Statistics

**Model Based On Teams** 



Predict on Players

Results

| Playa and Year | Runs Created |
|----------------|--------------|
| Ichiro 2004    | 133.16       |
| Nomar 1997     | 125.86       |
| Bonds 2004     | 185.74       |

y = Actual

 $\hat{y}$  = Runs Scored

n = Sample Size





- Runs Created Per Game
  - RC Flaw= Biased Toward Plate Appearances
  - Observation 1: 1.8% of AB are E

$$AB - H - (0.018)AB = (0.982)AB - H$$

 Observation 2: Additional Outs Caused by GIDP, SF, SAC, and CS

$$TO = (0.982)AB - H + GIDP + SF + SAC + CS$$

- Observation 3: Sometimes 27 Outs Per Game  $Average\ Outs\ Per\ Game = 26.72$
- Observation 4: Following in Units of Game  $\frac{TO}{26.72}$

RC = Runs Created

AB = At-bat

E = Errors

H = Hits

TO = Total Outs

GIDP = Double-Play

SF = Sacrifice Fly

SAC = Sacrifice Bunt

CS = Caught Stealing





- Runs Created Per Game
  - Final Formula for RC/G

$$\frac{RC}{G} = \frac{RC}{\frac{TO}{26.72}}$$

Interpretation of RC/G

$$\frac{RC}{G} = \frac{Runs Created by Batter}{\# of Games Worth of Outs Used by Batter}$$

Results Updated

| Playa and Year | RC     | RC/G  |
|----------------|--------|-------|
| Ichiro 2004    | 133.16 | 7.88  |
| Nomar 1997     | 125.86 | 6.72  |
| Bonds 2004     | 185.74 | 20.65 |

RC = Runs Created

AB = At-bat

E = Errors

H = Hits

TO = Total Outs

GIDP = Double-Play

SF = Sacrifice Fly

SAC = Sacrifice Bunt

CS = Caught Stealing





### America's Greatest Pastime



What if **Barry Bonds** had played baseball without a bat?





### America's Greatest Pastime





# Final Inspiration

Well, it took me 17 years to get 3,000 hits in baseball, and I did it in one afternoon on the golf course.

- Hank Aaron