(a) 46

Sequences and Series MCQs - Exercises 6.1 and 6.2 (Class 11 Mathematics)

Prepared for Entry Test Preparation

Multiple Choice Questions

Multiple Choice Questions
1. The sequence $a_n = 5n - 8$ has its 5th term equal to:
(a) 12
(b) 17
(c) 22
(d) 27
2. For $a_n = (-1)^{n+1}(4n-3)$, the sum of the first three terms is:
(a) 12
(b) 8
(c) -8
(d) -12
3. The sequence $a_n = \frac{2n}{3n+4}$ has its 4th term equal to:
(a) $\frac{8}{16}$
(b) $\frac{8}{15}$
(c) $\frac{4}{8}$
(d) $\frac{6}{13}$
4. For the recursive sequence $a_n = na_{n-1}$, $a_1 = 2$, the 6th term is:
(a) 240
(b) 360
(c) 720
(d) 1440
5. In the sequence defined by $a_n - a_{n-1} = 2n - 1$, $a_1 = 1$, the 4th term is:
(a) 16
(b) 18
(c) 20
(d) 22
6. The 8th term of the sequence $4, 9, 15, 22, \ldots$ is:

(h)	50
(U)	90

- (c) 54
- (d) 58

7. The 7th term of the sequence $2, 6, 18, 54, \ldots$ is:

- (a) 1458
- **(b)** 4374
- (c) 13122
- (d) 486

8. The 6th term of the sequence $\frac{1}{4}, \frac{2}{7}, \frac{3}{12}, \frac{4}{20}, \dots$ is:

(a)
$$\frac{6}{42}$$

- (b) $\frac{5}{32}$
- (c) $\frac{6}{37}$
- (d) $\frac{5}{30}$

9. The 10th term of the sequence $3, -4, 5, -6, \dots$ is:

- (a) -10
- **(b)** 10
- (c) -12
- (d) 12

10. For $a_n = \frac{1}{5 + (n-1) \cdot 3}$, the sum of the first four terms is:

- (a) $\frac{20}{77}$
- (b) $\frac{30}{91}$
- (c) $\frac{40}{105}$
- (d) $\frac{50}{119}$

11. The common difference of an A.P. with $a_7=29$ and $a_13=53$ is:

- (a) 3
- **(b)** 4
- (c) 5
- (d) 6

12. The first term of an A.P. with $a_8=39$ and $a_14=4a_5$ is:

13. The 16th term of an A.P. with $a_1=-5$, d=7 is:

(a)	100
(a)	100
\u	1 () ()

- **(b)** 105
- **(c)** 110
- (d) 115

14. Which term of the A.P. 9, 5, 1, ... is -51?

- (a) 15
- **(b)** 16
- (c) 17
- **(d)** 18

15. The number of terms in the A.P. with $a_1 = 8$, $a_n = 71$, d = 5 is:

- **(a)** 13
- **(b)** 14
- (c) 15
- (d) 16

16. If $a_{n-4} = 4n - 7$, the n-th term of the sequence is:

- (a) 4n + 9
- (b) 4n + 5
- (c) 4n+1
- (d) 4n 3

17. If $\frac{1}{3}, \frac{1}{b}, \frac{1}{6}$ are in A.P., then *b* is:

- (a) $\frac{9}{4}$
- (b) $\frac{4}{3}$
- (c) $\frac{3}{2}$
- (d) $\frac{2}{3}$

18. The common difference of the A.P. with reciprocals $\frac{1}{4}, \frac{1}{7}, \frac{1}{10}, \dots$ is:

- (a) $\frac{-1}{28}$
- (b) $\frac{-3}{28}$
- (c) $\frac{1}{28}$
- (d) $\frac{3}{28}$

19. The 9th term of the sequence $\left(\frac{3}{2}\right)^2$, $\left(\frac{5}{2}\right)^2$, $\left(\frac{7}{2}\right)^2$, . . . is:

- (a) $\left(\frac{19}{2}\right)^2$
- (b) $(\frac{17}{2})^2$

- (c) $(\frac{15}{2})^2$
- (d) $(\frac{13}{2})^2$
- **20.** For an A.P. with $a_9 = 4a_4$ and $a_12 = 44$, the first term is:
 - (a) -4
 - (b) -2
 - (c) 0
 - (d) 2

Solutions and Explanations

- **1. Answer: b** 17 *Explanation*: For $a_n = 5n-8$, compute $a_5 = 5 \cdot 5 8 = 25 8 = 17$. The question tests explicit sequence evaluation (Ex. 6.1, Q1(i)).
- **2. Answer:** $\mathbf{c} 8$ *Explanation*: For $a_n = (-1)^{n+1}(4n-3)$, compute: $a_1 = (-1)^2(4-3) = 1$, $a_2 = (-1)^3(8-3) = -5$, $a_3 = (-1)^4(12-3) = 9$. Sum: 1-5+9=5. Tests alternating sequences (Ex. 6.1, Q1(iii)).
- **3. Answer: b** $\frac{8}{15}$ *Explanation*: For $a_n = \frac{2n}{3n+4}$, compute $a_4 = \frac{2\cdot 4}{3\cdot 4+4} = \frac{8}{12+4} = \frac{8}{16} = \frac{1}{2}$. Tests fractional sequences (Ex. 6.1, Q1(v)).
- **4. Answer: c** 720 *Explanation*: For $a_n = na_{n-1}$, $a_1 = 2$, compute: $a_2 = 2 \cdot 2 = 4$, $a_3 = 3 \cdot 4 = 12$, $a_4 = 4 \cdot 12 = 48$, $a_5 = 5 \cdot 48 = 240$, $a_6 = 6 \cdot 240 = 1440$. Tests recursive sequences (Ex. 6.1, Q1(viii)).
- **5. Answer: a** 16 *Explanation*: For $a_n a_{n-1} = 2n 1$, $a_1 = 1$, compute: $a_2 = 1 + (2 \cdot 2 1) = 4$, $a_3 = 4 + (2 \cdot 3 1) = 9$, $a_4 = 9 + (2 \cdot 4 1) = 16$. Tests arithmetic-like sequences (Ex. 6.1, Q1(vii)).
- **6. Answer: b** 50 *Explanation*: Differences: 9-4=5, 15-9=6, 22-15=7. Pattern: $d_n=n+4$. For n=7: $a_7=36+11=47$, $a_8=47+12=59$. Tests sequence patterns (Ex. 6.1, Q2(i)).
- **7. Answer: a** 1458 *Explanation*: Pattern: $a_n = 2 \cdot 3^{n-1}$. For n = 7: $a_7 = 2 \cdot 3^6 = 2 \cdot 729 = 1458$. Tests geometric-like sequences (Ex. 6.1, Q2(ii)).
- **8. Answer: c** $\frac{6}{37}$ *Explanation*: Pattern: $a_n = \frac{n}{n^2+3}$. For n=6: $a_6 = \frac{6}{36+3} = \frac{6}{39} = \frac{2}{13}$. Tests fractional sequences (Ex. 6.1, Q2(iii)).
- **9. Answer: b** 10 *Explanation*: Pattern: $a_n = (-1)^{n+1}(n+2)$. For n = 10: $a_{10} = (-1)^{11} \cdot 12 = -12$. Tests alternating sequences (Ex. 6.1, Q2(v)).
- **10. Answer: a** $\frac{20}{77}$ *Explanation*: For $a_n = \frac{1}{5+(n-1)\cdot 3}$, compute: $a_1 = \frac{1}{5}$, $a_2 = \frac{1}{8}$, $a_3 = \frac{1}{11}$, $a_4 = \frac{1}{14}$. Sum: $\frac{1}{5} + \frac{1}{8} + \frac{1}{11} + \frac{1}{14} = \frac{616}{3080} = \frac{11}{55}$. Tests reciprocal A.P. (Ex. 6.1, Q1(x)).
- **11. Answer: b** 4 Explanation: $a_7 = a_1 + 6d = 29$, $a_1 = a_1 + 12d = 53$. Subtract: $6d = 24 \implies d = 4$. Tests A.P. common difference (Ex. 6.2, Q1(ii)).

- **12. Answer: c** 7 *Explanation*: $a_8 = a_1 + 7d = 39$, $a_14 = 4a_5 \implies a_1 + 13d = 4(a_1 + 4d)$. Solve: $3a_1 + 3d = 0 \implies a_1 = -d$. Substitute: $-d + 7d = 39 \implies 6d = 39 \implies d = \frac{13}{2}$, $a_1 = -\frac{13}{2}$. Tests A.P. with term relations (Ex. 6.2, Q1(iii)).
- **13. Answer: a** 100 *Explanation*: $a_n = -5 + (n-1) \cdot 7$. For n = 16: $a_{16} = -5 + 15 \cdot 7 = 100$. Tests A.P. term calculation (Ex. 6.2, Q3).
- **14. Answer: d** 18 Explanation: $a_n = 9 + (n-1) \cdot (-4) = -51$. Solve: $9 4(n-1) = -51 \implies n = 16$. Tests A.P. term position (Ex. 6.2, Q6).
- **15. Answer: b** 14 *Explanation*: $a_n = 8 + (n-1) \cdot 5 = 71 \implies 5(n-1) = 63 \implies n = 14$. Tests A.P. number of terms (Ex. 6.2, Q8).
- **16. Answer:** c 4n+1 *Explanation*: $a_{n-4}=4n-7$. Set $k=n-4 \implies a_k=4(k+4)-7=4k+9$. Thus, $a_n=4n+9$. Tests sequence indexing (Ex. 6.2, Q2).
- **17. Answer: a** $\frac{9}{4}$ *Explanation*: $\frac{1}{b} \frac{1}{3} = \frac{1}{6} \frac{1}{b} \implies \frac{2}{b} = \frac{1}{2} \implies b = \frac{9}{2}$. Tests reciprocal A.P. (Ex. 6.2, Q13).
- **18. Answer: b** $\frac{-3}{28}$ *Explanation*: $d=\frac{1}{7}-\frac{1}{4}=\frac{4-7}{28}=\frac{-3}{28}$. Tests reciprocal A.P. common difference (Ex. 6.2, Q14).
- **19. Answer: a** $\left(\frac{19}{2}\right)^2$ *Explanation*: Sequence: $3, 5, 7, \ldots a_n = 2n + 1$. For n = 9: $a_9 = 17$. Term: $\left(\frac{17}{2}\right)^2$. Tests squared A.P. (Ex. 6.2, Q12).
- **20. Answer: c** 0 *Explanation*: $a_9 = 4a_4 \implies a_1 + 8d = 4(a_1 + 3d)$. Solve: $3a_1 + 4d = 0$. With $a_1 2 = a_1 + 11d = 44$, solve: $a_1 = 0$, d = 4. Tests A.P. term relations (Ex. 6.2, Q1(iii)).