

Design a 8x8 Dot Matrix Display

陳韋達

Outline

- Introduction to 8x8 Dot Matrix Display
 - How the dot matrix works
 - Scan controller and frame controller
 - Data mapping and data selected
 - Architecture block diagram
- Homework
 - Developing a simple traffic light for pedestrian
 - Combining 7-segment and dot matrix
 - sharpen your coding skills
 - More familiar with simulation tool

Introduction of Dot-matrix(1

Introduction of Dot-matrix(2)

0	0	0	0	0	0	0	1	c1
0	0	0	0	0	0	1	0	c2
0	0	0	0	0	1	0	0	c3
0	0	0	0	1	0	0	0	c4
0	0	0	1	0 /	0	0	0	c5
0	0	1	0	0	0	0	0	с6
0	1	0	0	0	0	0	0	c7
1	0	0	0	0	0	0	0	c8

Green

Plane

1	1	0	0	0	0	1	1
1	0	1	1	1	1	0	1
1	0	1	1	1	1	1	1
1	0	0	0	0	0	1	1
1	0	1	1	1	1	0	1
1	0	1	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	0	0	0	1	1

Introduction of Dot-matrix(3)

Red Plane

0	0	0	0	0	0	0	1	c1
0	0	0	0	0	0	1	0	c2
0	0	0	0	0	10	0	0	c3
0	0	0	0	1	0	0	0	c4
0	0	0	1	0	0	0	0	c5
0	0	1	0	0	0	0	0	c6
0	1	0	0	0	0	0	0	c7
1	0	0	0	0	0	0	0	c8

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	4	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1 =	1	1	1	1	1	1
0	0	0	0	1	1	1	1

Introduction of Dot-matrix(4)

GreenPlane

Architecture

小綠人(1)

❖ FRAME #1 data

- E7H
- E7H
- 41H
- A6H
- E7H
- D7H
- DBH
- 93H

小綠人(2)

❖ FRAME #2 data

- E7H
- E7H
- E3H
- 85H
- E7H
- C7H
- D7H
- 9BH

小綠人(3)

❖ FRAME #3 data

- E7H
- A7H
- 81H
- E5H
- E7H
- 9BH
- BCH
- 3EH

Top module- Dot matrix

Clk div and SCAN modules

```
∃module clk div(
                 iCLK, iRST n,
                 oCLK
                 );
             iCLK, iRST n;
 input
 output reg oCLK;
 parameter DIV CNT = 500;
req [31:0] div;
 always@(posedge iCLK)
    if(iRST n==1'd0)
       begin
          oCLK <= 1 'd0;
          div<=32'd0;
       end
    else
       begin
          if(div==DIV CNT)
              begin
                 oCLK<=~oCLK;
                 div<=32'd0;
              end
          else
             begin
                 div<=div+32'd1;
              end
       end
 endmodule
```



```
⊟module SCAN(
             input iCLK, iCLEAN N,
             output reg [7:0] oSCAN,
             output
                        [10:0] OFRAME CNT
             );
 parameter FRAME CNT = 1;
 reg [10:0] frame cnt;
 assign oFRAME CNT = frame cnt;
 always@(posedge iCLK)
    if(!iCLEAN N)
       begin
          oSCAN<=8'd1;
          frame cnt<=11'd0;
    else
       begin
          if(oSCAN==8'h80)
             begin
                oSCAN<=8'd1;
                if(frame cnt==FRAME CNT)
                   frame cnt<=11'd0;
                   frame cnt<=frame cnt+11'd1;
             end
          else
             oSCAN<=oSCAN << 1'd1;
       end
 endmodule
```

SW_PIC_CTRL and ROW DATA modules

```
module SW PIC CTRL(
                   input iCLK, iCLEAN N, iSCAN MSB,
                   input [10:0] iFRAME CNT,
                   output reg [3:0] oSW FRAME
                   );
parameter FRAME_CNT = 1;
parameter PIC CNT = 1;
always@(posedge iCLK)
   if(!iCLEAN N)
      begin
         oSW FRAME<=4'd0;
      end
   else
      begin
         if((oSW FRAME==PIC CNT)&&(iFRAME CNT==FRAME CNT))
            oSW FRAME <= 4'd0;
         else if((iFRAME CNT==FRAME CNT) &&(iSCAN MSB))
            osw frame<=osw frame+4'd1;
      end
endmodule
```

```
⊟module ROW DATA(
                input [7:0] oSCAN,
                output reg [7:0] DOT G PA
 always@(*)
    case (oSCAN)
    8'b0000 0001:DOT G PATTERN[0]=8'hE7;
    8'b0000 0010:DOT G PATTERN[0]=8'hE7;
    8'b0000 0100:DOT_G_PATTERN[0]=8'h41;
    8'b0000 1000:DOT G PATTERN[0]=8'hA6;
    8'b0001 0000:DOT G PATTERN[0]=8'hE7;
    8'b0010 0000:DOT G PATTERN[0]=8'hD7;
    8'b0100 0000:DOT G PATTERN[0]=8'hBD;
    8'b1000 0000:DOT G PATTERN[0]=8'h96;
    default:DOT G PATTERN[0]=8'hFF;
    endcase
 always@(*)
    case (oSCAN)
    8'b0000 0001:DOT G PATTERN[1]=8'hE7;
    8'b0000 0010:DOT G PATTERN[1]=8'hE7;
    8'b0000 0100:DOT G PATTERN[1]=8'hE3;
    8'b0000 1000:DOT G PATTERN[1]=8'h85;
    8'b0001 0000:DOT G PATTERN[1]=8'hE7;
    8'b0010 0000:DOT G PATTERN[1]=8'hC7;
    8'b0100 0000:DOT G PATTERN[1]=8'hD7;
    8'b1000 0000:DOT G PATTERN[1]=8'h9B;
    default:DOT G PATTERN[1]=8'hFF;
    endcase
 always@(*)
    case (oSCAN)
    8'b0000 0001:DOT G PATTERN[2]=8'hE7;
    8'b0000 0010:DOT G PATTERN[2]=8'hA7;
    8'b0000 0100:DOT G PATTERN[2]=8'h81;
    8'b0000 1000:DOT G PATTERN[2]=8'hE5;
    8'b0001 0000:DOT G PATTERN[2]=8'hE7;
    8'b0010 0000:DOT G PATTERN[2]=8'h9B;
    8'b0100 0000:DOT G PATTERN[2]=8'hBC;
    8'b1000 0000:DOT G PATTERN[2]=8'h3E;
    default:DOT G PATTERN[2]=8'hFF;
    endcase
 endmodule
```

FRAME_DATA_SEL module and test-bench

```
module FRAME DATA SEL(
                      input [3:0] sw frame w,
                      input [7:0] DOT G PATTERN[2:0],
                      output reg [7:0] oDOT G, oDOT R
always@(*)
  case(sw frame w)
  4'd0:begin
             oDOT G=DOT G PATTERN[0];
             oDOT R=DOT G PATTERN[0];
   4'd1:begin
             oDOT G=DOT G PATTERN[1];
             ODOT R=DOT G PATTERN[1];
        end
   4'd2:begin
             oDOT_G=DOT_G_PATTERN[2];
             oDOT R=DOT G PATTERN[2];
   default:
        begin
            oDOT G=8'hff;
             oDOT R=8'hff;
   endcase
endmodule
```

```
timescale 1ns/100ps
 module testbench;
 reg iREF CLK, iRST N, iCLEAN N;
 wire [7:0] oDOT G, oDOT R, oSCAN;
 dot matrix #(.DIV CNT(2))
⊟dot matrix(
              .iREF CLK(iREF CLK),
              .iRST N(iRST N),
              .iCLEAN N(iCLEAN N),
              .oDOT G(oDOT G),
              .oDOT R (oDOT R),
              .oscan (oscan)
          );
 initial
    begin
       iREF CLK=1'd0;
       iRST N=1'd0;
       iCLEAN N=1'd0;
    end
 initial
 forever
    # 10 iREF CLK = ~iREF CLK;
 initial
    begin
    # 100 iRST N=1'd1;
    # 1000 iCLEAN N=1'd1;
    end
 endmodule
```

waveform

Switch frame

Homework

- ◆矩陣小綠人和小紅人須與七段顯示器結合,條件 如下:
 - 1.七段顯示器初始值為20,小綠人走路為一般速度
 - 2.七段顯示器數到10時,小綠人加速走路
 - 3.七段顯示器值為0時,顯示小紅人並持續三秒
 - 4.反覆1~3步驟

CSEP Development Kit

Pin assignments

CLK_50M	PIN_N2	指撥開關_SW1(最左邊)	PIN_K6	按鈕開關_PB1	PIN_K22	點矩陣_Red[7]	PIN_E22
七段_a	PIN_D2	指撥開關_SW1	PIN_K5	按鈕開關_PB2	PIN_K23	點矩陣_Red[6]	PIN_D26
七段_b	PIN_E1	指撥開關_SW1	PIN_K4	按鈕開關_PB3	PIN_K24	點矩陣_Red[5]	PIN_D25
七段_c	PIN_E2	指撥開關_SW1	PIN_K3	按鈕開關_PB4	PIN_K25	點矩陣_Red[4]	PIN_D23
七段_d	PIN_F1	指撥開關_SW1	PIN_K2	38		點矩陣_Red[3]	PIN_C25
七段_e	PIN_F2	指撥開關_SW1	PIN_K1	100		點矩陣_Red[2]	PIN_C24
七段_f	PIN_F3	指撥開關_SW1	PIN_J6			點矩陣_Red[1]	PIN_B25
七段_g	PIN_F4	指撥開關_SW1(最右邊)	PIN_J5	MAL	10	點矩陣_Red[0]	PIN_B24
七段_dot	PIN_G1	指撥開關_SW2(最左邊)	PIN_M5	- MA 1 -2		點矩陣_Green[7]	PIN_F26
七段掃描_1(最左邊)	PIN_G2	指撥開關_SW2	PIN_M4	1111		點矩陣_Green[6]	PIN_F25
七段掃描_2	PIN_G3	指撥開關_SW2	PIN_M3			點矩陣_Green[5]	PIN_F24
七段掃描_3	PIN_G4	指撥開關_SW2	PIN_M2			點矩陣_Green[4]	PIN_F23
七段掃描_4	PIN_G5	指撥開關_SW2	PIN_L6			點矩陣_Green[3]	PIN_E26
七段掃描_5	PIN_G6	指撥開關_SW2	PIN_L4			點矩陣_Green[2]	PIN_E25
七段掃描_6(最右邊)	PIN_H1	指撥開關_SW2	PIN_L3	AV A W.		點矩陣_Green[1]	PIN_E24
	1.0	指撥開關_SW2(最右邊)	PIN_L2			點矩陣_Green[0]	PIN_E23
LED1	PIN_H2					點矩陣_掃描[0]	PIN_G21
LED2	PIN_H3	語音IC_RDY	PIN_H25			點矩陣_掃描[1]	PIN_G22
LED3	PIN_H4	語音IC_PWM	PIN_J20	CACO A		點矩陣_掃描[2]	PIN_G23
LED4	PIN_H6	語音IC_SDI	PIN_H24			點矩陣_掃描[3]	PIN_G24
LED5	PIN_J1	語音IC_SCLK	PIN_H26			點矩陣_掃描[4]	PIN_G25
LED6	PIN_J2	語音IC_RES	PIN_J21			點矩陣_掃描[5]	PIN_G26
LED7	PIN_J3					點矩陣_掃描[6]	PIN_H21
LED8	PIN_J4					點矩陣_掃描[7]	PIN_H23
	1	II	1	II		II .	1