

INTELIGENCIA ARTIFICIAL (INF371)

RESOLUCIÓN DE PROBLEMAS CON BÚSQUEDA: ESTRATEGIAS DE BÚSQUEDA CON INFORMACIÓN

Dr. Edwin Villanueva Talavera

Contenido

- □ Estrategias de Búsqueda con Información
 - Búsqueda codiciosa
 - Búsqueda A*
 - Heurísticas

Bibliografía:

Capitulo 3.5 y 3.6 del libro:

Stuart Russell & Peter Norvig "Artificial Intelligence: A modern Approach", Prentice Hall, Third Edition, 2010

Búsqueda con Información

- Utiliza conocimiento específico sobre el problema para encontrar soluciones de forma mas eficiente que la búsqueda ciega.
 - Conocimiento específico adicional a la definición del problema.
- Enfoque general: búsqueda por la mejor opción.
 - Utiliza una función de evaluación para cada nodo.
 - Expande el nodo que tiene la función de evaluación más baja.

Búsqueda por la mejor opción

- □ Idea: usar una función de evaluación f(n) para cada nodo.
 - f(n) es una estimación de cuan deseable es el nodo n
 - Se expande el nodo mas deseable que aún no fue expandido
 - f(n) es normalmente una combinación del costo de camino g(n) y de una función de heurística h(n) que mide el costo estimado para llegar al objetivo desde n

Búsqueda por la mejor opción

Implementación:

- Similar que Búsqueda de Costo Uniforme. La diferencia es que los nodos de la frontera son ordenados por la función de evaluación f(n), en vez del costo de camino.
- \square La forma de f(n) determina la estrategia de búsqueda:
 - Busca codiciosa por la mejor opción
 - Busca A*

Búsqueda por la mejor opción

Implementación

```
function BEST-FIRST-GRAPH-SEARCH(problem, f) returns a solution, or failure
node \leftarrow a node with STATE = problem.INITIAL-STATE
frontier \leftarrow a priority queue ordered by f, with node as the only element
explored \leftarrow an empty set
loop do
    if EMPTY?( frontier) then return failure
    node \leftarrow Pop(frontier) /* chooses the lowest-cost node in frontier */
    if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
    add node.STATE to explored
    for each action in problem.ACTIONS(node.STATE) do
        child \leftarrow \text{CHILD-NODE}(problem, node, action)
        if child.STATE is not in explored And child.STATE is not in frontier then
           frontier \leftarrow INSERT(child, frontier)
        else if child. STATE is in some frontier node n with f(n) > f(child) then
           replace frontier node n with child
```


- Es un tipo de búsqueda por la mejor opción donde la función de evaluación: f(n) = h(n) (heurística)
 - = estimado del costo del camino mas barato para llegar al objetivo desde *n*.

 - Ejemplo: $h(n) = h_{DLR}(n) = distancia en línea recta desde n hasta el objetivo.$
- La búsqueda codiciosa o voraz expande el nodo en la frontera con menor h(n), osea, el que parece que está mas próximo al objetivo de acuerdo a la función heurística.

□ Ejemplo de búsqueda voraz en el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DIR}(n)$:

Distancia en linea recta hasta Bucareste

\rad	366
Bucharest	0
Craiova	160
)obreta	242
Eforie	161
agaras	176
Siurgiu	77
lirsova	151
asi	226
ugoj	244
lehadia 💮	241
Veamt	234
Oradea	380
itesti	10
Rimnicu V ilcea	193
iibiu	253
limisoara	329
Jrziceni	80
/ashui	199
Zerind	374

□ Ejemplo de búsqueda voraz en el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DIR}(n)$:

□ Ejemplo de búsqueda voraz en el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DIR}(n)$:

□ Ejemplo de búsqueda voraz en el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DLR}(n)$:

□ Ejemplo de búsqueda voraz en el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DIR}(n)$:

El camino via Rimnicu Vilcea y Pitesti es 32 km mas corto!

Propiedades de búsqueda voraz

- Completa? Si, si chequea estados repetidos.
- □ Complejidad de tiempo: O(b^m) en el peor caso, pero una buena función heurística puede llevar a una reducción substancial
- Complejidad de espacio:
 - \square O(b^m), mantiene todos los nodos en memoria.
- Optima? NO. Puede haber un camino mejor siguiendo algunas opciones peores en algunos nodos del árbol de búsqueda

- Es la forma mas común de búsqueda por la mejor opción
- □ Função de avaliação f(n) = g(n) + h(n)
 - g(n) = costo del camino para alcanzar n
 - h(n) = costo estimado del camino mas barato de n hasta el objetivo
 - f(n) = costo total estimado del camino mas barato hasta el objetivo pasando por n

□ Ejemplo de búsqueda A^* el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DIR}(n)$:

□ Ejemplo de búsqueda A^* el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DLR}(n)$:

□ Ejemplo de búsqueda A^* el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DLR}(n)$:

Ejemplo de búsqueda A* el mapa de Romania siendo el objetivo Bucharest y heurística h_{DLR}(n):

□ Ejemplo de búsqueda A^* el mapa de Romania siendo el objetivo Bucharest y heurística $h_{DLR}(n)$:

Ejemplo de búsqueda A* el mapa de Romania siendo el objetivo Bucharest y heurística h_{DLR}(n):

Condiciones de Optimalidad: Admisibilidad

- Una heurística h(n) es admisible si para cada nodo n se verifica h(n) ≤ h*(n), donde h*(n) es el costo verdadero de alcanzar el estado objetivo a partir de n
- Una heurística admisible nunca sobreestima el costo de alcanzar el objetivo, es decir, la heurística siempre es optimista.
 - Ejemplo: $h_{DLR}(n)$ (distancia en línea recta nunca es mayor que distancia por las calles).
- □ Teorema: Si h(n) es admisible, A^* es optimo con búsqueda en árbol (sin memoria de estados visitados).
- Cuando se usa BEST-FIRST-GRAPH-SEARCH se necesita una condición mas estricta para garantizar optimilidad: Consistencia

Condiciones de Optimalidad: Consistencia

Una heurística h(n) es consistente (o monotónica) si para cada nodo n y sucesor n' generado por acción a se verifica que:

$$h(n) \le c(n,a,n') + h(n')$$

Es una forma de la desigualdad triangular (cada lado del triangulo no puede ser mayor que la suma de los otros lados.

Toda heurística consistente es también admisible

Prueba de que heurísticas consistentes garantizan optimalidad

- 1. Probar que si h(n) es consistente entonces los valores f(n) no decrecen a lo largo de cualquier camino:
- 2. Probar que siempre que A* selecciona un nodo n para expansión, el camino optimo hasta ese nodo ha sido encontrado.
 - Si no fuese el caso entonces existiria otro n' en la frontera que esta en el camino optimo, el cual A^* lo habria escojido antes, ya que f(n') < f(n)

Contornos de valores f en el espacio de estados que A^* traza

- ullet A * expande nodos en orden creciente de valores de f
- Gradualmente adiciona contornos de nodos
- ullet Los estados fuera del contorno i tienen $f > f_i$, donde $f_i < f_{i+1}$
- \square No expande nodos con $f(n) > C^*$ (costo de la solución optima)

Si h(n)=0 tenemos una búsqueda de costo uniforme ⇒ círculos concéntricos.

Cuanto mejor la heurística mas direccionados son las elipses hacia el objetivo

Propiedades de A*

- □ Completa? Si, a menos que exista una cantidad infinita de nodos con $f(n) < C^*$)
- Complejidad de tiempo: Exponencial en el peor de los casos (heurística no apropiada)
- Complejidad de espacio: También exponencial en el peor caso ya que mantiene todos los nodos en memoria.
- Optima? SI, si heurística es admisible y consistente (Graph-search)
- Óptimamente Eficiente: Ningún otro algoritmo de búsqueda garantiza expandir un numero menor de nodos que A* y encontrar la solución optima. Esto porque cualquier algoritmo que no expande todos los nodos con f(n) < C* corre el riesgo de omitir una solución optima.

Ejemplo de heurísticas admisibles

- Para el rompecabezas de 8 piezas:
 - $\square h_1(n) = \text{número de piezas fuera de posición}$
 - $\square h_2(n) =$ distancia "Manhattan" total (para cada pieza calcular la distancia en movidas verticales y horizontales hasta su posición objetivo)

Ejercicio

•
$$h_1(S) = ?$$

•
$$h_2(S) = ?$$

Factor de ramificación efectiva de las heurísticas

- □ Factor de ramificación efectiva (b^*) :
 - Si el numero total de nodos generados por A* es N y la profundidad de la solución d, entonces b* es el factor de ramificación que un árbol uniforme de profundidad d tendría para contener N+1 nodos:

$$N + 1 = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$$

- Por ejemplo, si A^* encuentra la solución a un profundidad d=5 expandiendo 52 nodos entonces $b^* = 1.92$
- Mejores heurísticas tienen valores mas próximos a 1

Factor de ramificación efectiva de las heurísticas h_1 y h_2 para el rompecabezas de 8 piezas

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	_	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Dominancia:

□ Una heurística h_2 domina a otra heurística h_1 si para todo nodo n:

$$h_2(n) \ge h_1(n)$$

- \Box h_2 es mejor que h_1 cuando h_2 domina h_1
 - La heurística dominante h_2 , al tener mayores valores de h en cada nodo, expande nodos mas próximos del objetivo de que h_1 , significando menos nodos expandidos.

Como crear heurísticas admisibles: problema relajado

 El costo de la solución optima de una simplificación del problema (problema relajado) puede ser una heurística para el original.

Por ejemplo, en el problema del rompecabezas de 8 piezas, la formulación original es:

Una pieza puede moverse del cuadrado A al cuadrado B si

A es horizontalmente o verticalmente adyacente a B y B es blanco

Podríamos generar los siguientes problemas relajados:

- Una pieza puede moverse del cuadrado A al cuadrado B
- II. Una pieza puede moverse del cuadrado A al cuadrado B si A es adyacente a B

El costo de la solución óptima del problema (I) seria $h_{1,}$ (# piezas fuera de lugar), mientras que el costo de la solución optima del problema (II) seria h_{2} (distancia Manhatan)

Como crear heurísticas admisibles: problema relajado

- Las heurísticas generadas con problemas relajados son admisibles, ya que el costo de la solución del problema relajado nunca va ser mayor que el del problema original
- También son consistentes para el problema original si lo son para el problema relajado
- Si se tiene una colección de heurísticas admisibles $h_1 \dots h_m$ y ninguna domina a las demás, se puede generar una nueva heurística h que domina a todas:

$$h(n) = \max\{h_1(n), \dots, h_m(n)\}\$$

Como crear heurísticas admisibles: Sub-problemas

 Usar el costo de la solución optima de un sub-problema del problema original.

Ejemplo: Costo de colocar los 4 primeros números en sus lugares, sin importarse como queden los otros números * (aunque sus movidas si cuentan en el costo)

Preguntas?