ASSIGNMENT - 3

DATE	9 October 2022
TEAM ID	PNT2022TMID38667
PROJECT NAME	Early Detection of Chronic Kidney Disease using Machine Learning
MAXIMUM MARKS	2 Marks

1. Download the dataset

	Α	В	C	D	E	F	G	H	1	J
1	Sex	Length	Diameter	Height	Whole wei	Shucked w	Viscera we	Shell weigh	Rings	
2	M	0.455	0.365	0.095	0.514	0.2245	0.101	0.15	15	
3	M	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07	7	
4	F	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21	9	
5	M	0.44	0.365	0.125	0.516	0.2155	0.114	0.155	10	
6	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055	7	
7	1	0.425	0.3	0.095	0.3515	0.141	0.0775	0.12	8	
8	F	0.53	0.415	0.15	0.7775	0.237	0.1415	0.33	20	
9	F	0.545	0.425	0.125	0.768	0.294	0.1495	0.26	16	
10	M	0.475	0.37	0.125	0.5095	0.2165	0.1125	0.165	9	
11	F	0.55	0.44	0.15	0.8945	0.3145	0.151	0.32	19	
12	F	0.525	0.38	0.14	0.6065	0.194	0.1475	0.21	14	
13	M	0.43	0.35	0.11	0.406	0.1675	0.081	0.135	10	
14	M	0.49	0.38	0.135	0.5415	0.2175	0.095	0.19	11	
15	F	0.535	0.405	0.145	0.6845	0.2725	0.171	0.205	10	
16	F	0.47	0.355	0.1	0.4755	0.1675	0.0805	0.185	10	
17	M	0.5	0.4	0.13	0.6645	0.258	0.133	0.24	12	
18	1	0.355	0.28	0.085	0.2905	0.095	0.0395	0.115	7	
19	F	0.44	0.34	0.1	0.451	0.188	0.087	0.13	10	
20	M	0.365	0.295	0.08	0.2555	0.097	0.043	0.1	7	
21	M	0.45	0.32	0.1	0.381	0.1705	0.075	0.115	9	
22	M	0.355	0.28	0.095	0.2455	0.0955	0.062	0.075	11	
23	1	0.38	0.275	0.1	0.2255	0.08	0.049	0.085	10	
24	F	0.565	0.44	0.155	0.9395	0.4275	0.214	0.27	12	
25	F	0.55	0.415	0.135	0.7635	0.318	0.21	0.2	9	
26	F	0.615	0.48	0.165	1.1615	0.513	0.301	0.305	10	
-	_									

2. Load the dataset

3. Perform Below Visualizations.

i. Univariate Analysis

```
In [5]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams

## 3i.univariate analysis

df=pd.read_csv('abalone.csv')
df.head()
sns.displot(df.Length)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1b9e248e880>

ii.Bi - Variate Analysis

```
In [4]: import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from matplotlib import rcParams

## 3ii.bivariate analysis

df=pd.read_csv('abalone.csv') 
df.head() 
sns.lineplot(df.Height,df.Diameter)

C:\Users\sahan\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword ar 
gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit 
keyword will result in an error or misinterpretation.
warnings.warn(
```

Out[4]: <AxesSubplot:xlabel='Height', ylabel='Diameter'>

iii.Multi - Variate Analysis

4. Perform descriptive statistics on the dataset

```
In [7]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib import rcParams

## 4.descriptive analysis

df=pd.read_csv('abalone.csv') df.head()
 df.describe()

Out[7]:

Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

count 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

```
In [8]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib import rcParams

## 5.no missing values

df=pd.read_csv('abalone.csv')
 df.head()
 df.isnull().any()

Out[8]: Sex False
    Length False
    Diameter False
    Height False
    Whole weight False
    Shucked weight False
    Shucked weight False
    Shell weight False
    Shell weight False
    Rings False
    Rings False
    dtype: bool
```

6. Find the outliers and replace the outliers

```
In [10]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams

## 6.find the outlier

df=pd.read_csv('abalone.csv')
df.head()
Q1=df.length.quantile(0.25)
Q3=df.length.quantile(0.75)
Q1.Q3

Out[10]: (0.45, 0.615)

In [12]: import pandas as pd
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams

## 6.replace the outlier

df=pd.read_csv('abalone.csv')
df.head()
Q1=df.length.quantile(0.25)
Q3=df.length.quantile(0.25)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q3=df.length.quantile(0.75)
Q4=df.length.quantile(0.75)
Q5=df.length.quantile(0.75)
Q6=df.length.quantile(0.75)
Q7=df.length.quantile(0.75)
Q7=df.length.quantile(0.
```

Out[12]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4128 rows × 9 columns

7. Check for Categorical columns and perform encoding.

8. Split the data into dependent and independent variables

Split the data into dependent and independent variables ¶

```
X_train : 437 0.2520
1331
        0.8730
        0.7625
1611
1394 1.5210
396 0.7155
Name: Whole weight, dtype: float64
(3132,)
X_test:
4087 0.9840
        1.4890
0.6965
1699
1868
2984
        0.3515
Name: Whole weight, dtype: float64
(1045,)
y_train :
437    0
1331    0
      0.0915
        0.3820
0.3270
1611
1394
        0.6440
396
        0.3165
Name: Shucked weight, dtype: float64
(3132,)
2984
        0.1410
Name: Shucked weight, dtype: float64
(1045,)
```

9. Scale the independent variables

Scale the independent variables

```
In [27]: #scaling
    df_scaled =data.copy()
    col_names = ['Shucked weight', 'Whole weight']
    features = df_scaled[col_names]
    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler()
    df_scaled[col_names] = scaler.fit_transform(features.values)
    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler(feature_range=(5, 10))
                                 df_scaled[col_names] = scaler.fit_transform(features.values)
df_scaled
```

0+	「つつヿ	
out	4/	

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	5.906676	5.751513	0.1010	0.1500	15
1	2	0.350	0.265	0.090	5.395785	5.331204	0.0485	0.0700	7
2	0	0.530	0.420	0.135	6.195325	5.859112	0.1415	0.2100	9
3	2	0.440	0.365	0.125	5.910218	5.721251	0.1140	0.1550	10
4	1	0.330	0.255	0.080	5.359483	5.297579	0.0395	0.0550	7
					***		***		
4172	0	0.565	0.450	0.165	6.567204	6.240753	0.2390	0.2490	11
4173	2	0.590	0.440	0.135	6.707101	6.472764	0.2145	0.2605	10
4174	2	0.600	0.475	0.205	7.078980	6.763618	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	6.934656	6.782112	0.2610	0.2960	10
4176	2	0.710	0.555	0.195	8.446963	8.175857	0.3765	0.4950	12

4177 rows × 9 columns

10. Split the data into training and testing

Split the data into training and testing

```
In [46]: #testing and training
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
                  # split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)
print(X_train, X_test, y_train, y_test)

        Sex
        Length
        Diameter
        Height
        Whole weight
        Shucked weight
        \ 0.4030

        1
        0.575
        0.450
        0.130
        0.8145
        0.4030

        2
        0.515
        0.425
        0.145
        0.9365
        0.4970

                   1794
                   1466
2275
                                           0.655
                                                                 0.525
                                                                                                            1,2590
                                                                                                                                             0.4870
                                                                                0.185
                                                                0.515
0.510
                                                                                                            1.4980
1.6195
                                                                                                                                             0.5640
0.7815
                   3929
1955
                                  0
                                           0.645
                                                                                0.180
                                                                0.290
                                                                                0.100
                                                                                                            ...
0.2760
                                           0.375
                   ...
2103
                                                                                                                                             0.1175
                                           0.420
0.540
0.635
0.365
                                                                0.325
0.435
0.500
0.285
                                                                                                                                             0.1245
0.4285
0.4405
                   3603
3340
                                                                                0.110
0.145
                                                                                                            0.3250
0.9700
                                                                                0.180
0.085
                    3064
                                                                                                            1.1540
                                                                                                            0.2205
                                                                                                                                             0.0855
                               Viscera weight Shell weight 0.1715 0.2130
                   1794
                   1466
2275
                                               0.1810
0.2215
                                                                            0.2185
0.4450
                                                                            0.4250
0.4675
                   3929
1955
                                               0.3230
                                                0.0565
                    2103
                   3603
3340
                                               0.0755
0.2200
                                                                            0.1025
0.2640
                    3064
                                               0.2315
0.0515
                                                                            0.3870
0.0700
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
1794	1	0.575	0.450	0.130	0.8145	0.4030	0.1715	0.2130
1466	2	0.515	0.425	0.145	0.9365	0.4970	0.1810	0.2185
2275	2	0.655	0.525	0.185	1.2590	0.4870	0.2215	0.4450
3929	0	0.650	0.515	0.215	1.4980	0.5640	0.3230	0.4250
1955	0	0.645	0.510	0.180	1.6195	0.7815	0.3220	0.4675
2103	2	0.375	0.290	0.100	0.2760	0.1175	0.0565	0.0850
3603	1	0.420	0.325	0.110	0.3250	0.1245	0.0755	0.1025
3340	1	0.540	0.435	0.145	0.9700	0.4285	0.2200	0.2640
3064	2	0.635	0.500	0.180	1.1540	0.4405	0.2315	0.3870
3398	2	0.365	0.285	0.085	0.2205	0.0855	0.0515	0.0700
3341 i	OWS 2	< 8 colun	nns					
00111	0110	· o ooluli	11110					
y_tra	in							
1794	10	3						
1466		3						
2275	20	9						
3929	10							
1955	12	2						
2103	9	9						
3603	7	7						
3340	17	7						
3064	9	9						
3398	9	9						

- 11. Build the Model
- 12. Train the Model
- 13. Test the Model

14. Measure the performance using Metrics

In [55]: from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
4	0.00	0.00	0.00	9
5	0.22	0.09	0.12	23
6	0.23	0.20	0.21	46
7	0.27	0.43	0.33	74
8	0.30	0.37	0.33	115
9	0.32	0.49	0.39	143
10	0.23	0.39	0.29	119
11	0.16	0.17	0.16	90
12	0.00	0.00	0.00	62
13	0.00	0.00	0.00	49
14	0.00	0.00	0.00	32
15	0.00	0.00	0.00	14
16	0.00	0.00	0.00	14
17	0.00	0.00	0.00	12
18	0.00	0.00	0.00	9
19	0.00	0.00	0.00	9
20	0.00	0.00	0.00	5
21	0.00	0.00	0.00	4
22	0.00	0.00	0.00	1
23	0.00	0.00	0.00	4
26	0.00	0.00	0.00	1
27	0.00	0.00	0.00	1
accuracy			0.26	836
macro avg	0.08	0.10	0.08	836
weighted avg	0.19	0.26	0.21	836