Thevenin's Theorem

Example 2.7.1. Determine the Thevenin equivalent circuit (R_0 , U_0), viewed by the 6Ω s resistance (terminals a and b) for the circuit below. Find the current I through the 6Ω s resistance.

Solution:

The open-circuit voltage, U_0 , is the voltage between the terminals a and b by detaching the 6Ω 's resistance. For the circuit below, using KL, we have $I_1 + I_2 = 5$, $(4+5) \cdot I_1 - 16 \cdot I_2 = -30$, from where solving for I_1 and I_2 , we get $I_1=2A$ and $I_2=3A$. Thus, $U_0=5 \cdot I_1+30=40$ (V). Another way to calculate the current I_1 is by using the source transformation theorem. The equivalent circuit is obtained in figure b), for which $(16+4+5) \cdot I_1=80-30$, and $I_1=2A$.

To calculate the equivalent resistance R_0 of the remaining circuit, regarding the terminals a and b, we have to suppress the two sources. The passive circuit is drawn below, for which $R_0 = \frac{(16+4)\cdot 5}{16+4+5} = 4(\Omega)$.

The remaining deactivated circuit used for the calculus of the R₀

According to the Thevenin's theorem, from the equivalent circuit, the desired current is:

$$I = \frac{U_0}{R + R_0} = \frac{40}{6 + 4} = 4 (A).$$

Example 2.7.2. Determine the Thevenin equivalent circuit (R_0, U_0) , viewed by the $10\Omega s$ resistance (terminals a and b) for the circuit below. Find the current I through the 10Ω s resistance.

Example 2.7.2.

Solution:

The open-circuit voltage, U_0 , is the voltage between the terminals a and b by detaching the 10Ω 's resistance. For the circuit below, using KL, we have $I_1 + I_2 = 2$, $(4+6) \cdot I_1 - 8 \cdot I_2 = 20$, from where solving for I_1 and I_2 , we get I_1 =2A and I_2 =0A. Thus, $U_0 = 6 \cdot I_1 + 2 \cdot 2 = 16$ (V).

> 6Ω 2Ω

The remaining circuit used for the calculus of the $U_{\rm 0}$

To calculate the equivalent resistance R_0 of the remaining circuit, regarding the terminals a and b, we have to suppress the two sources. Figure a) shows the passive circuit which can be redrawn in an easier form in figure b). The equivalent resistance is: $R_0 = \frac{12.5}{12+6} + 2 = 6(\Omega)$.

According to the Thevenin's theorem, from the equivalent circuit, the desired current is:

$$I = \frac{U_0}{R + R_0} = \frac{16}{10 + 6} = 1 (A).$$