LINAG UT 8.6.4 JELLV, V) dim (V) =: n a) 22: I hat in verschiedene EW => Mg(X)=(-1) xg(X) $\chi_{g}(x) = (\lambda_{n} - x)(\lambda_{2} - x) \cdot \dots \cdot (\lambda_{n} - x)$, da grad $(\chi_{g}(x)) \leq n$ YP(X) EKEXJ mit P(g) = 0 : 3keN: P(X) = mgk(X) $X_{\beta}(\xi) = 0 \Rightarrow \exists k \in \mathbb{N}: X_{\beta}(X) = \mu \xi^{k}(X)$ $(\lambda_1 - x)(\lambda_2 - x) - \dots - (\lambda_n - x) = \mu_{\xi}^{k}(x)$ => k=1 => $\mu_{\xi}(x) = (-1)^{n} \chi_{\xi}(x)$ [(-1) entsthit durch Normierung] b) ges: Gegenbsp zu py(X)=(-1)" Xy(X) => f hat u verschiedene En $A = \begin{pmatrix} 1 & 1 \end{pmatrix}$ $X_A(X) = del \begin{pmatrix} 1 - X & 1 \\ 0 & 1 - X \end{pmatrix} = (1 - X)^2 = 1 - 2X + X^2$ $M_A(X) = X^2 - 2 \times + 1$ => \(\(\(\times \) = \(\times \) aber A hat nur einen verschiedenen Eigenwert (nämlich 1).