

MODULE MA322 CORRIGÉ DE TRAVAUX DIRIGÉS N° 2

Semestre: 2 **A.U.**: 2022-2023

Aéro. 3

Prof. H. El-Otmany

Intégration numérique - Formules de quadrature

Considérons la formule de quadrature suivante $I(f) = \int_{-1}^{1} f(x)dx \approx \omega_1 f(-\alpha) + \omega_2 f(\alpha)$ où $\alpha \in]0;1].$

1. Déterminer les poids pour que cette formule de quadrature soit exacte pour les polynômes de $\mathbb{R}_1[X]$. Posons $p_i(x) = x^i (i = 0, 1)$ les polynômes de la base canonique de $\mathbb{R}_1[X]$, on écrit ainsi

$$I(p_0) = \int_{-1}^{1} dx = 2 = \omega_1 + \omega_2; \quad I(p_1) = \int_{-1}^{1} x dx = 0 = -\omega_1 \alpha + \alpha \omega_2.$$

Comme $\alpha \in]0;1]$, on obtient ainsi $\omega_1 = \omega_2 = 1$. Par conséquent $\int_{-1}^{1} f(x) dx \approx f(-\alpha) + f(\alpha)$ où $\alpha \in]0;1].$

2. On adopte désormais les poids déterminés à la question précédente. Quelle est la formule obtenue lorsque $\alpha = 1$? Est-elle exacte pour les polynômes de $\mathbb{R}_2[X]$?

Pour $\alpha = 1$, on a $\int_{-1}^{1} f(x)dx \approx f(-1) + f(1) = J(f)$. Pour vérifier s'il est exacte les polynômes d'ordre ≤ 2 , il suffit de calculer

$$I(p_2) = J(p_2).$$

Or, $I(p_2)=\int_{-1}^1 x^2 dx=\frac{2}{3}$ et $J(p_2)=1+1=2$, soit $I(p_2)\neq J(p_2)$, donc la formule J(f) n'est pas exacte pour les polynômes d'ordre $\leqslant 2$ avec $\alpha=1$.

3. Montrer que cette formule de quadrature est exacte sur $\mathbb{R}_2[X]$ pour une et une seule valeur de α à déterminer. Pour que cette formule de quadrature soit exacte sur $\mathbb{R}_2[X]$, il faut qu'il vérifie

$$I(p_0) = \int_{-1}^{1} dx = 2 = \omega_1 + \omega_2; \quad I(p_1) = \int_{-1}^{1} x dx = 0 = -\omega_1 \alpha + \alpha \omega_2;$$
$$I(p_2) = \int_{-1}^{1} x^2 dx = \frac{2}{3} = \alpha^2 \omega_1 + \alpha^2 \omega_2 = \alpha^2 (\omega_1 + \omega_2)$$

On obtient donc $\alpha^2 = \frac{1}{3}$, or $\alpha \in]0;1]$. Par conséquent $\alpha = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$.

4. On adopte la valeur de α déterminée à la question précédente. La formule est-elle exacte sur $\mathbb{R}_3[X]$?

$$I(p_3) = \int_{-1}^{1} x^3 dx = 0; \quad J(p_3) = \left(-\frac{\sqrt{3}}{3}\right)^3 + \left(\frac{\sqrt{3}}{3}\right)^3$$

si bien que $I(p_3) = J(p_3)$, donc la formule est exacte sur $\mathbb{R}_3[X]$.

 $\operatorname{sur} \mathbb{R}_4[X]$?

$$I(p_4) = \int_{-1}^{1} x^4 dx = \frac{2}{5}; \quad J(p_4) = \left(-\frac{\sqrt{3}}{3}\right)^4 + \left(\frac{\sqrt{3}}{3}\right)^4 = \frac{2}{9}$$

donc $I(p_4 - \neq J(p_4))$. Par conséquent, la formule n'est pas exacte sur $\mathbb{R}_4[X]$

5. Adapter la formule obtenue à une intégrale $\int_0^1 f(x)dx$,

On utilise le changement de variables $x=\frac{1}{2}t+\frac{1}{2}$ pour passer de l'intervalle [0;1] à [-1;1]. En effet, on pose $x=\alpha t+\beta$. On a pour $x=0=\alpha\times(-1)+\beta$, pour $x=1=\alpha\times1+\beta$, donc $\beta=\frac{1}{2}$ et $\alpha=\frac{1}{2}$. On en déduit directement la méthode d'approximation

$$\int_0^1 f(x)dx = \frac{1}{2} \int_{-1}^1 f\left(\frac{1}{2}t + \frac{1}{2}\right)dt \approx \frac{1}{2} f\left(-\frac{\sqrt{3}}{6} + \frac{1}{2}\right) + \frac{1}{2} f\left(\frac{\sqrt{3}}{6} + \frac{1}{2}\right)$$

puis à une intégrale $\int_a^b f(x)dx$.

On utilise le changement de variables $x = \frac{b-a}{2}t + \frac{a+b}{2}$ pour passer de l'intervalle de [a;b] à [-1;1]. on obtient la méthode suivante

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{a+b}{2}\right) dt$$

$$\approx \frac{b-a}{2} \left[f\left(-\frac{(b-a)\sqrt{3}}{6} + \frac{a+b}{2}\right) + f\left(\frac{(b-a)\sqrt{3}}{6} + \frac{a+b}{2}\right) \right]$$

6. Exprimer la formule composite obtenue lorsque l'on subdivise l'intervalle [a;b] en n sous-intervalles.

Soient a et b deux réels tels que a < b et une subdivision uniforme $(x_i)_{1 \leqslant i \leqslant n}$ de [a;b] de pas $h = \frac{b-a}{n}$, c'est-à-dire $x_i = a+ih$. En utilisant le changement de variable $x = x_i + \frac{h}{2}(1+s)$, on peut approcher facilement $\int_{x_i}^{x_i+1} f(x) dx$, i étant fixé, $0 \leqslant i \leqslant n-1$. On a donc

$$\int_{x_i}^{x_i+1} f(x)dx = \frac{h}{2} \int_{-1}^{1} f(x_i + \frac{h}{2}(1+s))ds = \frac{h}{2} \left[f\left(x_i + \frac{h}{2}(1-\frac{\sqrt{3}}{3})\right) + f\left(x_i + \frac{h}{2}(1+\frac{\sqrt{3}}{3})\right) \right]$$

On obtient la formule composite en utilisant la relation de Chasles pour découper l'intégrale sur chaque intervalle

$$J_{comp}(f) \approx \frac{h}{2} \sum_{i=0}^{n-1} \left[f\left(x_i + \frac{h}{2}(1 - \frac{\sqrt{3}}{3})\right) + f\left(x_i + \frac{h}{2}(1 + \frac{\sqrt{3}}{3})\right) \right]$$

Exercice n°2

- 1. Soit la formule de quadrature $I(f) = \int_0^1 f(x)dx \approx \omega_1 f(0) + \omega_2 f(\alpha) = J(f)$ où $\alpha \in]0;1]$.
 - (a) Déterminer les poids pour que la formule soit exacte sur $\mathbb{R}_1[X]$. Posons $p_i(x) = x^i$ (i = 0, 1)les polynômes de la base canonique de $\mathbb{R}_1[X]$, on écrit ainsi

$$I(p_0) = \int_0^1 dx = 1 \approx \omega_1 + \omega_2; \quad I(p_1) = \int_0^1 x dx = \frac{1}{2} \approx \omega_2 \alpha$$

Donc $\omega_2=\frac{1}{2\alpha}$ et $\omega_1=1-\omega_2=1-\frac{1}{2\alpha}=\frac{2\alpha-1}{2\alpha}$ avec $\alpha\in]0;1].$ Par conséquent $J(f)=\frac{2\alpha-1}{2\alpha}f(0)+\frac{1}{2\alpha}f(\alpha)$ avec $\alpha\in]0;1].$ (b) Déterminer α pour que la méthode soit exacte pour les polynômes de degré $\leqslant 2$. Pour

- déterminer α , on utilise $I(p_2) = J(p_2)$, si bien que $\int_0^1 x^2 dx = \frac{1}{3} = \omega_1 \times 0^2 + \omega_2 \times \alpha^2$. Or $\omega_2=\frac{1}{2\alpha}$ d'après la question (a), on en déduit que $\alpha=\frac{2}{3}$. Par conséquent $J(f)=\frac{2\alpha-1}{2\alpha}f(0)+\frac{1}{2\alpha}f(\alpha)=\frac{1}{4}f(0)+\frac{3}{4}f\left(\frac{2}{3}\right)$. Cette formule est dite formule de Radau. (c) Adapter la formule obtenue à un intervalle [0;h]. On utilise le changement de variables x=hs
- pour passer de [0; h] à [0; 1] et on a

$$\int_{0}^{h} f(x)dx = h \int_{0}^{1} f(hs)ds = h \left[\frac{1}{4} f(0) + \frac{3}{4} f\left(\frac{2}{3}h\right) \right]$$

- 2. On va dans le cas de cette formule pour une intégrale $\int_{-\infty}^{\infty} f(x)dx$ prouver une estimation de l'erreur commise par la formule de quadrature pour une fonction f supposée de classe C^3 sur [0;h]. On notera $I(f) = \int_{0}^{\infty} f(x)dx$, Q(f) l'approximation donnée par la formule de quadrature, et enfin $E(f) = I(f) - \dot{Q}(f).$
 - (a) Soit $M_3 = \sup_{0 \le x \le h} |f^{(3)}(x)|$. Montrer que l'on peut écrire f(x) = P(x) + R(x) avec P un polynôme de degré 2, que l'on précisera et R une fonction vérifiant

$$\forall x \in [0; h], |R(x)| \leqslant \frac{M_3}{6} x^3.$$

Comme f est de classe $C^3([0;h])$, pour tout $x \in [0;h]$, il existe un $\xi_x \in [0;x]$ tel que (développement de Taylor-Lagrange de f à l'ordre 2) :

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f^{(2)}(0) + \frac{x^3}{3!}f^{(3)}(\xi_x)$$
$$= f(0) + xf'(0) + \frac{x^2}{2}f^{(2)}(0) + \frac{x^3}{6}f^{(3)}(\xi_x) = P(x) + R(x)$$

où
$$P(x) = f(0) + xf'(0) + \frac{x^2}{2}f^{(2)}(0)$$
 et $R(x) = \frac{x^3}{6}f^{(3)}(\xi_x)$

où $P(x) = f(0) + xf'(0) + \frac{x^2}{2}f^{(2)}(0)$ et $R(x) = \frac{x^3}{6}f^{(3)}(\xi_x)$ (b) Majorer en fonction de M_3 et de h les valeurs de |I(R)|, de |Q(R)|, de |E(R)|. On a

$$|I(R)| = \left| \int_0^h R(x)dx \right| \le \frac{M_3}{6} \int_0^h x^3 dx = \frac{M_3}{24} h^4.$$

On a $Q(R)=h\left[\frac{1}{4}R(0)+\frac{3}{4}R\left(\frac{2}{3}h\right)\right]$ avec $R(x)=\frac{x^3}{6}f^{(3)}(\xi_x).$ On en déduit que

$$|Q(R)| \le h \left[\frac{3}{4} \frac{\left(\frac{2}{3}h\right)^3}{6} |f^{(3)}(\xi_x)| \right] \le \frac{M_3}{54} h^4$$

Comme E(R) = I(R) - Q(R), on obtient

$$|E(R)| \le |I(R)| + |Q(R)| = \frac{M_3}{24}h^4 + \frac{M_3}{54}h^4 = \frac{13M_3}{216}h^4$$

(c) En déduire une majoration de |E(f)|. On a par linéarité E(f) = E(P) + E(R) et même E(f) = E(R) puisque E(P) = I(P) - Q(P) = 0 car la méthode d'intégration d'intégration numérique Q est d'ordre Q, voir la question Q. On obtient

$$|E(f)| = |E(R)| \le \frac{13M_3}{216}h^4.$$

3. — Donner la formule composite pour le calcul d'une intégrale $\int_a^b f(x)dx$ associée à la formule de quadrature élémentaire étudiée.

Soient a et b deux réels tels que a < b et une subdivision uniforme $(x_i)_{1 \leqslant i \leqslant n}$ de [a;b] de pas $h = \frac{b-a}{n}$, c'est-à-dire $x_i = a+ih$. En utilisant le changement de variable $x = hs + x_i$, on peut approcher facilement $\int_{x_i}^{x_i+1} f(x) dx$, i étant fixé, $0 \leqslant i \leqslant n-1$. On a donc

$$\int_{x_{i}}^{x_{i}+1} f(x)dx = h \int_{0}^{1} f(hs + x_{i})ds = h \left[\frac{1}{4} f(x_{i}) + \frac{3}{4} f\left(\frac{2}{3} h + x_{i}\right) \right]$$

On obtient la formule composite en utilisant la relation de Chasles pour découper l'intégrale sur chaque intervalle

$$Q_{comp}(f) \approx \frac{h}{4} \sum_{i=0}^{n-1} \left[f(x_i) + 3f(\frac{2}{3}h + x_i) \right], \quad h = \frac{b-a}{n}.$$

— Donner une majoration de l'erreur lorsqu'on utilise cette formule composite. La méthode étant d'ordre n=2, on obtient pour toute fonction f de classe $C^3([a;b])$:

$$|E(f)| \le \frac{13M_3}{216} \frac{(b-a)^5}{n^4}$$

La méthode converge donc comme $\left(\frac{1}{n^4}\right)$, on a une convergence d'ordre 4. Autrement dit, quand on multiplie par 10 le nombre d'intervalle, on divise par 10000 l'erreur commise.

Exercice n°3 Soit une formule de quadrature élémentaire à p points. Montrer que cette formule ne peut pas être exacte pour tous les polynômes de $R_{2p}[X]$. (Indication : considérer le polynôme Q(x) =

$$\prod_{i=1}^{p} (x - \alpha_i)^2$$
).

Si on interpole la fonction f de classe C^{p+1} par le polynôme de degré p, grâce aux points d'interpolation $a_0 \leqslant a_1 \leqslant \cdots \leqslant a_p$. Pour tout $x \in [a;b]$, il existe un $\eta \in [a_0;a_p]$ tel que

$$f(x) - P(x) = \frac{1}{(p+1)!} f^{(p+1)}(\eta) \Phi(x)$$

où $\Phi(x) = \prod_{i=0}^{p} (x - a_i)$.

Idée de la preuve : on étudie la fonction $g(z)=f(z)-P(z)-(f(x)-P(x))\frac{\Phi(z)}{\Phi(x)}$. g s'annule p+2 fois $\Longrightarrow g'$ s'annule (p+1) fois.

... $g^{(p+1)}$ s'annule une fois en η .

Or $\Phi^{(p+1)}(x) = (p+1)!h(x)$ où $d^{\circ}h = p-1$ et $P^{(p+1)}(x) = 0$. Par conséquent, la formule n'est pas exacte pour tous les polynômes de degré $\leq 2p$.

Exercice n°4 Soit p un entier avec p > 1. La formule à p points définie par

$$I(f) = \int_0^1 f(x)dx \approx \frac{1}{p} \sum_{i=1}^p f\left(\frac{i-1}{p-1}\right) = J(f)$$

est-elle exacte sur $\mathbb{R}_1[X]$? sur $\mathbb{R}_2[X]$?

Remarque: La réponse à cet exercice utilise les sommes usuelles:

$$\sum_{i=1}^{n} 1 = n; \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}; \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}; \quad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Posons $p_i(x) = x^i$ (i = 0, 1) les polynômes de la base canonique de $\mathbb{R}_1[X]$.

1. Pour montrer que J est exacte pour les polynômes $\mathbb{R}_1[X]$, il faut vérifier les conditions suivantes :

i
$$I(p_0) = J(p_0)$$
. On $aI(p_0) = \int_0^1 dx = 1$ et $J(p_0) = \frac{1}{p} \sum_{i=1}^p p_0 \left(\frac{i-1}{p-1}\right) = \frac{p}{p} = 1$. D'où $I(p_0) = J(p_0)$.

ii
$$I(p_1) = J(p_1)$$
. On $aI(p_1) = \int_0^1 x dx = \frac{1}{2}$ et $J(p_1) = \frac{1}{p} \sum_{i=1}^p p_1 \left(\frac{i-1}{p-1} \right) = \frac{1}{p} \sum_{i=1}^p \left(\frac{i-1}{p-1} \right) = \frac{1}{p} \sum_{i=1}^p \left(\frac{i-1}{p-1} \right) = \frac{1}{p(p-1)} \left(\sum_{i=1}^p i - \sum_{i=1}^p 1 \right) = \frac{1}{p(p-1)} \left(\frac{p(p+1)}{2} - p \right) = \frac{p(p+1) - 2p}{2p(p-1)} = \frac{1}{2}$. D'où $I(p_1) = J(p_1)$.

Par conséquent la formule J est exacte pour les polynômes $\mathbb{R}_1[X]$.

2. Pour montrer que J est exacte pour les polynômes $\mathbb{R}_2[X]$, il faut vérifier la condition suivante (en plus des conditions i. et ii.) :

iii
$$I(p_2) = J(p_2)$$
. On $I(p_2) = \int_0^1 x^2 dx = \frac{1}{3}$ et $J(p_2) = \frac{1}{p} \sum_{i=1}^p p_2 \left(\frac{i-1}{p-1}\right) = \frac{1}{p} \sum_{i=1}^p \left(\frac{i-1}{p-1}\right)^2 = \frac{1}{p(p-1)^2} \sum_{i=1}^p (i-1)^2 = \frac{1}{p(p-1)^2} \sum_{j=0}^{p-1} j^2 = \frac{1}{p(p-1)^2} \sum_{j=1}^{p-1} j^2 = \frac{1}$

Par conséquent, la formule J n'est pas exacte pour les polynômes de $\mathbb{R}_2[X]$.