

02/01/00
JCG74 U.S. PTO

02-02-00

A

TAROLLI, SUNDHEIM, COVELL, TUMMINO & SZABO L.L.P.
1111 Leader Building
Cleveland, Ohio 44114

(216) 621-2234

PATENT

Attorney Docket No. TRW(TE)4170

Assistant Commissioner for Patents
Washington, D.C. 20231

JCG76 U.S. PTO
09/49154
02/01/00

NEW APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of Inventor(s): Roger A. McCurdy

For (title): **METHOD AND APPARATUS FOR CONTROLLING AN ACTUATABLE
OCCUPANT PROTECTION DEVICE USING AN ULTRASONIC SENSOR**

Enclosed are:

1. **Papers Required for Filing Date Under 37 CFR 1.53(b):**

29 Pages of specification
1 Pages Abstract
11 Pages of claims
4 Sheets of drawing

formal (Figs. 1-4)
 informal

In addition to the above papers there is also attached:
(1 pg.); and ELEVEN (11) References.

An executed Information Disclosure Statement (2 pgs.); PTO-Form 1449

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that this New Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service on this date February 1, 2000 in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number EJ-704501307US addressed to the: Assistant Commissioner for Patents, Washington D.C.

Anita J. Galo
(Type or print name of person mailing paper)

(Signature of person mailing paper)

2. **Declaration or oath:**

Enclosed (Executed)
 Not Enclosed.

3. **Language:**

English
 Non-English
 A verified English translation of the
 specification and claims
 declaration

is attached.

4. **Assignment:**

An assignment of the invention to TRW Inc.

is attached.
 will follow

5. **Certified Copy:**

Certified copy (ies) of application (s)

(Country) (Appln. No.) (Filed)

(Country) (Appln. No.) (Filed)

(Country) (Appln. No.) (Filed)

from which priority is claimed

is attached
 will follow

6. **Fee Calculation:**
(Small entity filing fee is 50% normal fee)

Number Filed		CLAIMS AS FILED		Rate	Basic Fee
		Number Extra			
Total Claims	22	-20 =	2	X	\$ 18.00
Independent Claims	5	- 3 =	2	X	\$ 78.00
Multiple dependent claim(s), if any			0	+	\$260.00
					0.00

- Amendment canceling extra claims enclosed
- Amendment deleting multiple dependences enclosed
- Fee for extra claims is not being paid at this time

Filing Fee Calculation \$882.00

7. **Small Entity Statement**

- Verified statement that this is a filing by a **small entity** under 37 CFR 1.9 and 1.27
(Must be enclosed to get small entity filing fee reduction)

8. **Fee Payment Being Made At This Time:**

Enclosed:

- basic filing fee \$882.00
- assignment recordal fee \$.40.00
- for processing an application with a specification in a non-English language \$ _____

Total fees enclosed \$922.00

9. **Method of Payment Fees:**

- check in the amount of \$ 922.00 enclosed.

The Commissioner is hereby authorized to charge any DEFICIENCY in the filing fees for this application to our Deposit Account No. 20-0090.

10. **Instructions As to Overpayment:**

- refund

TAROLLI, SUNDHEIM, COVELL,
TUMMINIO & SZABO L.L.P.
1111 LEADER BUILDING
526 SUPERIOR AVENUE
CLEVELAND, OHIO 44114-1400
Tel. No. (216) 621-2234
Fax No. (216) 621-4072

Barry L. Tummino
SIGNATURE OF ATTORNEY, REG. NO. 29,709

Barry L. Tummino
Type or print name of attorney

85-704501307US

PATENT

I hereby certify that this paper or fee is being deposited with the U.S. Postal Service "Express Mail" or similar service under 37 CFR 1.12 or by the indicated below and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20591.

Feb 1, 2000 Date of Deposit

Anita J. Grable
Signature of Person Making Paper or Fee

Anita J. Grable
Name of Person Signing

02/01/2000
Date of Deposit

METHOD AND APPARATUS FOR CONTROLLING AN ACTUATABLE OCCUPANT PROTECTION DEVICE USING AN ULTRASONIC SENSOR

Technical Field

The present invention relates to an apparatus and 5 method for controlling an actuatable occupant protection device. More particularly, the present invention relates to a method and apparatus for controlling an actuatable occupant protection device using an ultrasonic sensor in combination with at least 10 one other crash sensor.

Background of the Invention

Actuatable occupant restraint systems, such as air bags and seat belt pretensioners, are well known in the art. Such restraint systems include one or more 15 collision sensing devices, such as for sensing vehicle crash acceleration (e.g., vehicle deceleration). An air bag restraint system further includes an electrically actuatable igniter, referred to as a squib. When the collision sensing device senses a

deployment crash event, an electrical current of sufficient magnitude and duration is passed through the squib to ignite the squib. When ignited, the squib initiates the flow of inflation fluid into an air bag 5 from a source of inflation fluid, as is known in the art.

Occupant protection systems utilize a variety of crash sensing devices, which may be either mechanical or electrical in nature. For example, some occupant 10 protection systems include one or more accelerometers that sense vehicle crash acceleration and provides a signal indicative thereof. Systems having an accelerometer further include additional circuitry (e.g., a controller) for monitoring the output of the 15 accelerometer. The accelerometer is operatively connected to the controller, which may be a microcomputer, that discriminates between a deployment and a non-deployment crash event by applying a predetermined crash algorithm to the acceleration 20 signal. When a deployment crash event is determined to be occurring, the controller actuates the restraint.

Air bag restraint systems also are known to require more than one sensor for detection of a deployment crash event. Often, the plural sensors are

arranged in a voting scheme in which all the sensors must "agree" that a deployment crash event is occurring before restraint actuation is initiated. In certain known arrangements having plural sensors, the second
5 sensor is referred to as a "safing sensor." Air bag actuation occurs only if the first sensor and the safing sensor both indicate that a deployment crash event is occurring. Typically, a safing sensor is a directional inertia responsive switch or accelerometer.
10 Consequently, separate safing sensors are required for each crash sensor, which increases the cost of a restraint system proportional to the number of safing sensors being used.

Summary of the Invention

15 One aspect of the present invention provides a system for helping protect a vehicle occupant. The system includes a crash sensor operative to sense a vehicle crash event and to provide a crash signal having a characteristic indicative of the sensed crash
20 event. An acoustic safing sensor is operative to sense acoustic waves within the vehicle during a vehicle crash event and provide a safing signal having a characteristic indicative of the sensed acoustic waves. The system also includes an actuatable occupant

protection device for, when actuated, helping protect the vehicle occupant during a vehicle crash event. A controller controls actuation the occupant protection device in response to both the crash signal and the 5 safing signal indicating a vehicle crash event.

Another aspect of the present invention provides a system for helping to protect a vehicle occupant. The system includes a plurality of crash event sensors, each being operative to sense a different condition of 10 the vehicle and to provide a corresponding sensor signal having a characteristic indicative of the vehicle condition sensed thereby. An acoustic safing sensor is operative to detect acoustic waves within the vehicle during a vehicle crash event and to provide a 15 safing signal having a characteristic indicative of the sensed acoustic waves. The system also includes an occupant protection device which, when actuated, helps protect the vehicle occupant during a vehicle crash event. A controller is connected with each of the 20 crash event sensors, the acoustic sensor, and the occupant protection device. The controller controls actuation of the occupant protection device in response to the sensor signal from any one of the crash event

sensors and the safing signal from said acoustic sensor.

Still another aspect of the present invention provides a system for helping to protect a vehicle occupant. The system includes a sensor module mountable in a vehicle. The sensor module includes an accelerometer operative to sense vehicle acceleration and to provide an acceleration signal having a characteristic indicative of the sensed vehicle acceleration. The sensor module further includes an acoustic sensor operative to sense acoustic waves of the vehicle during a vehicle crash event and to provide a safing signal having a characteristic indicative of the sensed acoustic waves. The system includes an occupant protection device which, when actuated, helps protect the vehicle occupant during a vehicle crash event. A controller controls actuation of the occupant protection device in response to both the acceleration signal and the safing signal.

Yet another aspect of the present invention provides a method for controlling actuation of an actuatable occupant protection device of a vehicle. The method includes the steps of sensing a vehicle crash condition and providing an crash event signal

having a characteristic indicative of the sensed vehicle crash condition. Acoustic waves traveling through the vehicle are sensed and a safing signal is provided based on the sensed acoustic waves. The 5 occurrence of a vehicle crash event is determined in response to the crash event signal and the safing signal and actuation of an occupant protection device is controlled in response to such determination.

Brief Description of the Drawings

10 The foregoing and other features and advantages of the invention will become more apparent to one skilled in the art upon consideration of the following description of the invention and the accompanying drawings in which:

15 Fig. 1 is a schematic block diagram of a vehicle equipped with a system in accordance with the present invention;

Fig. 2 is a functional diagram illustrating the operation of the system shown in Fig. 1 in accordance 20 with the present invention.

Fig. 3 is a schematic block diagram of a vehicle equipped with a system in accordance with another exemplary embodiment of the present invention; and

Fig. 4 is a schematic block diagram of a vehicle equipped with a system in accordance with yet another exemplary embodiment of the present invention.

Description of an Exemplary Embodiment

5 Fig. 1 illustrates an actuatable occupant restraint system 10 for use in a vehicle 12. The vehicle 12 includes driver side and passenger side seats 14 and 16, respectively. The restraint system 10 includes at least one and preferably a plurality of 10 actuatable restraint devices 18, 20, and 22 associated with the driver side seat 14. One or more actuatable restraint devices 24, 26, and 28 also are associated with the passenger seat 16.

15 By way of example, as shown in Fig. 1, a frontal inflatable restraint device 18, a side inflatable restraint device 20 as well as a seat belt pretensioner device 22 are associated with the drivers side seat 14. Similarly, a frontal inflatable restraint device 24, a side inflatable restraint device 26 and a seat belt 20 pretensioner device 28 are associated with the passenger seat 16. Other types of actuatable occupant protection devices also may be associated with each seat 14, 16, such as an inflatable seat belt, an inflatable knee bolster, and an actuatable head

restraint. The frontal air bags 18 and 24 also may be single stage or multi-stage inflatable restraint devices.

5 The restraint system 10 further includes a controller 30 electrically coupled to each of the actuated occupant protection devices 18, 20, 22, 24, 26, 28 for controlling actuation of each of the actuated occupant protection devices. The controller 30 preferably is a microcomputer programmed 10 to control actuation of the occupant protection devices. The functionality of the controller 30 alternatively could be performed by one or more digital and/or analog circuits. The controller 30 also may be embodied in an application specific integrated circuit.

15 The controller 30 controls actuation of the occupant protection devices 18, 20, 22, 24, 26, and 28 upon determining the occurrence of a vehicle crash event. The controller 30 makes this determination in response to input signals received from a plurality of 20 crash event sensors 32, 34, 36, 38, and 40 located in the vehicle 12.

Each of the crash sensors 32, 34, 36, 38, 40 monitors a particular vehicle condition and is responsive to the occurrence of a vehicle crash event.

Each crash sensor 32, 34, 36, 38, 40 provides a crash signal having an electrical characteristic indicative of the vehicle condition sensed thereby. The system 10 preferably includes a crash sensor module 42 in which
5 at least two different types of crash sensors are located, namely sensors 32 and 34. The crash sensor module 42 has a housing, which may be located at a central location in the vehicle 12 (Fig. 1).

For example, the crash sensor 32 is an
10 accelerometer (or a plurality of accelerometers) that senses vehicle acceleration along one or more axes extending through the vehicle 12. The crash sensor 32 provides an acceleration signal to the controller 30 having an electrical characteristic that is indicative
15 of the sensed vehicle acceleration, or deceleration, along its axis (or axes) of sensitivity.

The crash sensing device 34 is an acoustic transducer, such as an ultrasonic sensor, mounted to the vehicle 12. The crash sensing device senses high
20 frequency acoustic waves that propagate through the vehicle structure during the occurrence of a vehicle crash event. For simplicity of explanation, and not by way of limitation, the "crash sensor 34" is hereinafter referred to as the "ultrasonic sensor 34." The

ultrasonic sensor 34 converts the sensed acoustic waves into a signal having an electrical characteristic indicative of the acoustic waves or vibrations transmitted through the vehicle during a vehicle crash
5 event.

The ultrasonic sensor 34, for example, is a microphone, mounted within the housing of sensor module 42. The ultrasonic sensor 34 preferably is mounted to a printed circuit board (not shown) to which
10 the crash sensor 32 also is mounted. In particular, the ultrasonic sensor 34 is connected with the vehicle frame, either directly or indirectly through intervening components, such as the printed circuit board and/or housing of the sensor module 42.

15 The sensors 36, 38, and 40 are crush zone sensors mounted respectively at the radiator location of the vehicle 12 and along the doors or B-pillars of the vehicle. The crush zone sensors 36, 38, and 40 enable the controller 30 to better discriminate between
20 certain types of vehicle crash event conditions. Each of the crush zone sensors 36, 38, 40, for example, provides a signal to the controller 30 having an electrical characteristic functionally related to the crash acceleration experienced by the portion of the

vehicle to which the sensor is mounted. Alternatively, the sensors 36, 38, and 40 may provide a signal indicating that an associated part of the vehicle has been deformed by at least a predetermined amount. In 5 this way, the controller 30 can better determine the location of impact and/or the severity thereof.

The operation of the system 10 of Fig. 1 will be better appreciated with respect to Fig. 2, in which identical reference numbers refer to corresponding 10 parts of the system 10 previously identified with respect to Fig. 1. The blocks located with the controller 30 indicate functions performed by the controller. Additionally, while, for purposes of simplicity of explanation, Fig. 2 shows the 15 controller 30 connected to control actuation of three occupant protection devices 18, 20, and 22 associated with the driver seat 14 (Fig. 1), the controller functions are equally applicable to the occupant protection devices 24, 26, and 28 associated with the 20 passenger seat 16 (Fig. 1) or other locations in the vehicle. Such controller functions are also applicable to control actuation of other types of restraint devices that may be used in the system 10.

The crash sensor module 42 houses the ultrasonic sensor 34 and the crash sensor 32. The crash sensor 32 includes an X-accelerometer 50 and a Y-accelerometer 52. The X-accelerometer 50 and the Y-accelerometer 52 5 are oriented so as to have substantially transverse axes of sensitivity. The X-accelerometer 50, for example, is operative to sense vehicle acceleration along an X-axis oriented parallel to the direction of travel of the vehicle. The Y-accelerometer 52 has an 10 axis of sensitivity oriented transverse to the direction of travel of the vehicle, e.g., a Y-axis. The Y-accelerometer 52, for example, may sense vehicle acceleration along a lateral (e.g., side to side) or vertical direction of the vehicle.

15 Each of the accelerometers 50, 52 provides a respective acceleration signal having an electrical characteristic indicative of the vehicle acceleration sensed thereby. The acceleration signals can take any of several forms known in the art. The crash 20 acceleration signals, for example, can have amplitude, frequency, pulse duration, and/or other characteristics that vary as a function of the sensed acceleration.

The X-accelerometer 50 provides its acceleration signal to an analog amplifier 54 which amplifies the

acceleration signal to a useable level. The amplifier 54, in turn, provides an amplified acceleration signal to an analog filter network 56, which also may be connected to the same PC board and be 5 located in the sensor module 42. The filter network 56 removes undesired frequency components and noise that are not helpful in determining the occurrence of a vehicle crash event. The filter network 56 provides an amplified, filtered signal to an input of the 10 controller 30 via connection 57.

The acceleration signal from the Y-accelerometer 52 also is amplified and filtered through a corresponding amplifier 58 and filter network 60. The filter network 60 provides an amplified, filtered 15 signal to another input of the controller 30 via connection 61.

The signal from the ultrasonic sensor 34 is amplified to a useable level by an appropriate analog amplifier 62. The amplified signal is provided to an 20 envelope detector 64 formed of an analog filter network. The envelope detector, for example, includes a bandpass filter ("BP") 66 and a high-pass ("HP") filter 68 to respectively provide envelope detection and help remove drift. Other circuitry could be used

for providing the desired envelope detection of the ultrasonic waves that propagate through the vehicle structure. The amplifier 62 and the filter network 64 are schematically illustrated as being connected to a 5 common circuit board located within the housing of the sensor module 42. The filter network alternatively could be located external to the module.

The ultrasonic sensor 34 and analog filter network 64 are designed or tuned to be responsive to 10 ultrasonic acoustic waves traveling through the vehicle within a selected frequency range. In particular, the ultrasonic sensor 34 is responsive to acoustic waves traveling through the vehicle structure at about 200 to about 300 kHz, which is the resonant frequency of a 15 vehicle body during a vehicle crash event. The frequency range could be broader or narrower, as desired. The high-pass filter 68 provides a filtered signal to a corresponding input of the controller 30 via connection 70.

20 The analog crash sensor signals provided at lines 57, 61 and 70 from the respective crash sensors 50, 52, and 34 are converted to corresponding digital signals through respective analog-to-digital (A/D) converters 72, 74, and 76. The A/D

converters 72, 74, and 76 may be part of the controller 30, as shown, or may be part of other circuitry located external to the controller. Each A/D converter 72, 74, 76 provides a digitized

5 representation of the respective input signals, as is known in the art. The digitized crash sensor signals, indicated at 78, 80, and 82, are, in turn, filtered through appropriate digital filter functions 84, 86, and 88, respectively, performed by the controller 30.

10 The digital filter functions 84 and 86, for example, may include high pass and/or low pass digital filtering for removing unwanted frequency components. The filter functions 84 and 86 also may integrate the crash sensor signals. The filter functions 84 and 86
15 provide digitized filtered signals 90 and 92, respectively, to a crash discrimination function 94.

The crash discrimination function 94, for example, is a software module stored in the controller 30 that discriminates between deployment and non-deployment
20 crash events. The crash discrimination function 94 also may determine the severity of the detected crash event based on the crash sensor signals from each of the accelerometers 50 and 52, the signals from the crush zone sensors 36, 38, and 40, and signals provided

from other sensors 96. For example, crash severity may be determined to help control actuation of a multi-stage actuatable occupant protection device, such as one or more of the inflatable restraint devices 18, 20, 24, and 26 (Fig. 1).

Referring back to Fig. 2, the crash discrimination function 94 further may determine crash severity based on a digitized ultrasonic sensor signal 82 from the A/D converter 76. In particular, crash severity may be determined as a function of the amplitude of the digitized ultrasonic sensor signal 82 over time or, alternatively, as a function of the energy of the digitized ultrasonic signal. Using the ultrasonic sensor signal 82 advantageously permits a rapid determination of crash severity, as it does not rely on moving parts to be actuated.

The other sensors 96, which may form part of the restraint system 10 in accordance with the present invention, may detect a condition of a vehicle occupant located in the vehicle seats 14 and 16 (Fig. 1). The occupant conditions may include occupant weight, occupant position within the vehicle, whether the occupant is belted, etc. Each of such other sensors 96 provides a sensor signal 98 to an A/D converter 100 of

the controller 30. The A/D converter 100, in turn, provides a digitized indication of the sensed condition, indicated at 102, to the crash discrimination function 94. Appropriate filtering also 5 may be provided, but has been omitted for simplicity of explanation. The signal 102 further may be used by the crash discrimination function 94 to help control actuation of the actuatable occupant protection devices 18, 20, 22, 24, 26, and 28 (Fig. 1).

10 An example of one type of crash severity algorithm that can be used in the crash discrimination function 94 is of the type disclosed in U.S. patent application serial number 09/197,143 to Foo et al., filed November 20, 1998, entitled "Method and Apparatus 15 for Controlling an Actuatable Restraint Device Using Crash Severity Indexing and Crash Zone Sensor." Briefly stated, the crash discrimination is performed by a crash severity algorithm. The crash severity algorithm provides a signal having several features for 20 controlling actuation of the associated occupant protection devices 18, 20, and 22. One feature, for example, indicates that a deployment crash condition is occurring and is used to actuate the first stage of a multi-stage actuatable occupant protection device, such

as the frontal air bag 18. Other features of the crash severity signal are used, for example, to control actuation of other stages of the multi-stage restraint device 18 as well as control actuation of other 5 occupant protection devices of the system, such as devices 20 and 22. Other types of crash algorithms and methods of crash discrimination also may be used with the present invention.

Referring back to Fig. 2, the crash discrimination 10 function 94 provides signals 104, 106, and 108 for controlling actuation of the respective occupant protection devices 18, 20, and 22. Specifically, each of the crash discrimination signals 104, 106, 108 is provided to a corresponding input of an associated AND 15 gate 110, 112, 114. Each of the AND gates has at least another input that receives a safing signal 116 from a common safing function 118.

The safing function 118 provides the safing 20 signal 116 as a function of the digitized ultrasonic sensor signal 82. The safing function 118 includes the digital filter function 88. The digital filter function 88 provides a filtered, digitized signal 122 to an input of a comparator function 124. The safing function 118 also includes a threshold circuit 126 that

provides a predetermined reference signal 128 to another input of the comparator function 124.

The comparator function 124 compares the filtered, digitized sampling of the ultrasonic signal 122 against 5 the reference signal 128 to provide the safing signal 116 indicative of the occurrence or non-occurrence of a vehicle crash event. In particular, the comparator provides the safing signal 116 at a first logic level (e.g., HIGH) when the 10 signal 122 has a value that is greater than the reference signal 128. On the other hand, if the signal 122 has a value that is less than or equal to the reference signal 128, the safing signal 116 is provided at another logic level (e.g., LOW).

15 The filter function 88 performs signal processing on the signal 88 to provide the signal 122 having characteristics commensurate with the reference signal 128 being provided by the threshold circuit 126. The filter function 88, for example, may be a digital 20 filter having a transfer function with a low time constant so as to provide a time-averaged representation of the ultrasonic sensor signal. Alternatively or additionally, the filter function 88 may integrate the sampled sensor signal 82 with respect

to time to provide a signal having a characteristic indicative of the measured energy of the sensed acoustic waves over time. For example, the signal 122 is in the form of a window that includes a plurality of 5 digitized samples indicative of the sensed acoustic waves traveling through the vehicle over time. The filtered signal 122 also may be provided to the crash discrimination function 94 to help discriminate between different types of crash events.

10 Similarly, the threshold circuit 126 is configured to provide the reference signal 128 according to the particular signal parameters contained in the filtered signal 122. The reference signal 128, for example, may be a reference voltage level of a predetermined 15 amplitude to provide a fixed threshold. The particular amplitude of the reference signal preferably is normalized to a level suitable for comparison with the reference signal 128. The normalization will vary depending on the part of the vehicle to which the 20 ultrasonic sensor 34 is mounted and the particular medium (e.g., the sensor module housing and other vehicle structure) through which the ultrasonic signals must propagate to reach the ultrasonic sensor. Furthermore, rather than a fixed threshold reference

signal 128, the threshold circuit 126 may be configured to provide a variable reference signal that varies with respect to time, such as based on empirical data obtained for a particular vehicle platform.

5 The comparator function 124 compares the threshold signal 128 and the filtered ultrasonic signal 122 to provide the safing signal 116 (e.g., logic LOW or HIGH). The safing signal 116 is logically ANDed with each of the crash discrimination signals 104, 106, 108
10 from the crash discrimination function 94. Provided that the safing signal 116 indicates that a vehicle crash event is occurring (e.g., logic HIGH), appropriate crash signals 130, 132, and 134 are provided to the respective occupant protection devices,
15 such as the front air bag 18, the seat belt pretensioner device 22, and the side air bag 20. In accordance with the present invention, the safing signal 116 also is used to provide safing for the other occupant protection devices 24, 26, and 28 associated
20 with the passenger seat 16 (Fig. 1).

While the safing function 118 has been described as processing the ultrasonic sensor signal based on the amplitude thereof, other aspects of the ultrasonic sensor signal may be used and processed to provide the

safing signal 116. For example, the frequency, energy, and/or an integration of the ultrasonic sensor signal may be algorithmically processed to provide an indication of the occurrence and/or of the severity of a vehicle crash event. The crash discrimination function 94 also might use the digitized ultrasonic signal 82 to help discriminate the occurrence of a vehicle crash event and/or determine the severity thereof.

Fig. 3 illustrates an alternative exemplary embodiment of an actuatable occupant protection system 210 mounted in a vehicle 212. The system 210 includes a central crash sensing module 214 mounted in a substantially central vehicle location. The central module 214 includes a controller, such as a microcomputer, for determining the occurrence of a deployment vehicle crash event and controlling actuation of appropriate occupant protection equipment.

In order to detect the occurrence of a vehicle crash event, the crash sensing module 214 includes an acceleration sensor 216 for sensing vehicle crash acceleration. By way of example, the acceleration sensor 216 is an accelerometer that senses vehicle acceleration along an X-axis of the vehicle 212.

extending between the front and rear ends of the vehicle. The central module 214 also includes an ultrasonic sensor 218. The ultrasonic sensor 218 is an omni-directional ultrasonic sensing device

5 substantially identical to that described above with respect to Figs. 1 and 2.

The system 210 includes actuatable vehicle occupant protection equipment for helping protect vehicle occupants during determined deployment crash events. For example, the system 210 includes front air bags 220 and 222 and side air bags 224 and 226. Seat belt pretensioner devices (not shown for purposes of brevity) also could be part of the system 210 associated with respective vehicle seats 219 and 221.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
10115
10120
10125
10130
10135
10140
10145
10150
10155
10160
10165
10170
10175
10180
10185
10190
10195
10

the vehicle along a Y-axis, which extends laterally through the vehicle perpendicular to the X-axis.

In this exemplary embodiment, no Y-axis accelerometer is required within the central module 214 for safing side impact vehicle crash events. Instead, 5 the ultrasonic sensor 218 provides omni-directional safing for both frontal vehicle crash events (e.g., sensed by acceleration sensor 216) and side impact crash events (e.g., sensed by side impact sensors 228, 10 230). Accordingly, the controller of the central module 214 controls actuation of the associated occupant protection equipment in response to the acoustic waves detected by the ultrasonic sensor 218 and the vehicle acceleration detected by the 15 acceleration sensor 216 and/or the remote crush zone sensors 228, 230.

The omni-directional ultrasonic sensor 218 helps improve the time-to-fire during the frontal impact crash events without the need for a front crush zone sensor (e.g., 36 of Fig. 1). The responsiveness and, 20 thus, time-to-fire characteristics for side impact crash events also are improved through the use of the ultrasonic safing sensor 218 in combination with the side impact sensors 228 and 230.

Fig. 4 illustrates yet another exemplary embodiment of an actuatable occupant protection system 310 mounted in a vehicle 312. This system 310 includes a central module 314 mounted at a central location 5 within the vehicle 312. In this exemplary embodiment, the central module 314 includes a controller, such as a microcomputer programmed for determining the occurrence of a vehicle crash event and for controlling actuation of associated occupant protection equipment.

10 The central module 314 includes an ultrasonic sensor 316, such as described with respect to the embodiment of Figs. 1 and 2. The system 310 includes a front vehicle crash event sensor 318 connected with the central module 314. The front crash event sensor 318 15 is located in forward part of the vehicle 312 remote from the central module 314. The system 310 also includes side impact crash event sensors 320 and 322 connected with the central module 314. The side impact crash sensors are located at the respective sides of 20 the vehicle 312 remote from the central module 314.

By way of example, the front crash sensor 318 preferably is a crush zone sensor, such as an accelerometer having an axis of sensitivity along an X-axis that extends between the front and rear ends of

the vehicle 312. The side impact crash sensors 320 and 322 also are crush zone sensors, but have axes of sensitivity oriented along a Y-axis of the vehicle 312, which extends laterally through the vehicle

5 substantially perpendicular to the X-axis. Each of the crash sensors 318, 320, 322 provides a signal to the central module 314 having an electrical characteristic indicative of the acceleration sensed thereby.

The ultrasonic sensor 316, as mentioned above, 10 operates as an omni-directional crash event sensor. That is, the ultrasonic sensor 316 detects acoustic waves or vibrations transmitted through the vehicle during a vehicle crash event originating from any direction.

15 The central module 314 controls actuatable occupant protection devices associated with vehicle seats 323, 325. The system 310 includes, for example, front air bags 324 and 326 and side air bags 328 and 330. Seat belt pretensioners as well as other occupant 20 protection equipment also may, in accordance with the present invention, be used in the system 310 and be controlled by the central module 314.

The central module 314 is programmed to discriminate between deployment and non-deployment

front impact crash events and deployment and non-deployment side impact crash events. The central module 314 controls actuation of the associated occupant protection equipment (e.g., 324, 326, 328, 5 330) in response to the acoustic waves detected by the ultrasonic sensor 316 and vehicle acceleration detected by the remote crash sensors 318, 320, 322. The ultrasonic sensor 316 provides omni-directional safing for each of the crash event sensors 318, 320, 322. The 10 ultrasonic sensor 316 also provides an additional mechanism for helping to discriminate between deployment and non-deployment vehicle crash events. This, in turn, helps to improve system responsiveness and time-to-fire characteristics for deployment crash 15 events.

In view of the foregoing, the system (e.g., 10, 210, 310), in accordance with present invention, provides a method and apparatus for controlling actuation of one or more occupant protection devices 20 with a common ultrasonic sensor (e.g., 34, 218, 316) that verifies the occurrence of a vehicle crash event. Advantageously, the ultrasonic sensor has a virtually instantaneous response time, substantially only limited

by the speed of sound and the attenuation of the signal in the vehicle body.

In addition, the ultrasonic sensor (e.g., 34, 218, 316) is able to sense acoustic waves or vibrations 5 traveling through the vehicle due to the occurrence of a vehicle crash event, regardless of the direction of impact and the cause of the impact, except perhaps an impending vehicle rollover condition. Therefore, a single ultrasonic sensor, in accordance with the 10 present invention, provides an omni-directional safing sensor for use in combination with a plurality of occupant protection devices that may be actuated in response to sensing different vehicle conditions indicative of a vehicle crash event. Accordingly, the 15 use of an omni-directional ultrasonic sensor further reduces manufacturing costs typically associated with having more than one safing sensor.

Furthermore, using the ultrasonic sensor as a crash severity indicator may permit an earlier time-to-20 fire determination than typically available with a conventional mechanical safing mechanism. This is particularly desirable in an occupant protection system having multi-stage occupant protection devices.

From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended
5 to be covered by the appended claims.

Having described the invention, the following is claimed:

1. A system for helping to protect a vehicle occupant, said system comprising:

a crash sensor operative to sense a vehicle crash event and provide a crash signal having a characteristic indicative of the sensed crash event;

an acoustic safing sensor operative to sense acoustic waves of the vehicle during a vehicle crash event and provide a safing signal having a characteristic indicative of the sensed acoustic waves;

an actuatable occupant protection device for, when actuated, helping to protect the vehicle occupant during a vehicle crash event; and

a controller which controls actuation of said occupant protection device in response to both said crash signal and said safing signal.

2. A system as set forth in claim 1 wherein said crash sensor is an accelerometer.

3. A system as set forth in claim 2 further including a sensor module mountable within a vehicle, said sensor module including said acoustic sensor and said accelerometer.

4. A system as set forth in claim 2 wherein said acoustic sensor is an omni-directional ultrasonic sensor for sensing ultrasonic acoustic waves of the vehicle during vehicle crash events originating in any of a plurality of directions and providing said safety signal indicative thereof.

5. A system as set forth in claim 4 further including a sensor module mountable within a vehicle, said ultrasonic sensor being part of said sensor module, said accelerometer being a crush zone sensor remote from said sensor module for sensing vehicle acceleration of part of the vehicle indicative of a vehicle crash event and providing said crash signal having an electrical characteristic indicative thereof.

6. A system as set forth in claim 5 wherein said crush zone sensor is a front crush zone sensor located at a forward part of the vehicle and electrically

connected with said controller, said front crush zone sensor sensing a front impact vehicle crash event in response to movement of the forward part of the vehicle and providing a front crash signal indicative thereof, said controller controlling actuation of said occupant protection device in response to both said safing signal and said front crash signal.

7. A system as set forth in claim 5 wherein said crush zone sensor is a side crush zone sensor located at a side part of the vehicle and electrically connected with said controller, said side crush zone sensor sensing a side impact vehicle crash event in response to movement of the side part of the vehicle and providing a side crash signal indicative thereof, said controller controlling actuation of said occupant protection device in response to both said safing signal and said side crash signal.

8. A system as set forth in claim 1 wherein said crash sensor further includes a plurality of accelerometers, each of said plurality of accelerometers being operative to sense vehicle acceleration and provide a respective acceleration

signal, said controller controlling actuation of said occupant protection device in response to an acceleration signal from at least one of said plurality of accelerometers and said safing signal, whereby the acoustic safing sensor provides an omni-directional safing sensor for each of the plurality of accelerometers.

9. A system as set forth in claim 8 further including a sensor module mountable within a vehicle, said acoustic sensor and at least one of said plurality of accelerometers being part of said sensor module.

10. A system for helping to protect a vehicle occupant, said system comprising:

a plurality of crash event sensors, each of said plurality of crash event sensors being operative to sense a different condition of the vehicle and to provide a corresponding sensor signal having a characteristic indicative of the vehicle condition sensed thereby;

an acoustic sensor operative to sense acoustic waves of the vehicle during a vehicle crash

event and to provide a safing signal having a characteristic indicative of the sensed acoustic waves;

an occupant protection device for, when actuated, helping to protect the vehicle occupant during a vehicle crash event; and

a controller connected with each of said plurality of crash event sensors, said acoustic safing sensor, and said occupant protection device, said controller determining the occurrence of a vehicle crash event and controlling actuation of said occupant protection device in response to the sensor signal from any one of said plurality of crash event sensors and the safing signal from said acoustic sensor, whereby the acoustic sensor provides omni-directional safing for the plurality of crash event sensors.

11. A system as set forth in claim 10 wherein each of plurality of said crash event sensors is selected from a group consisting of an accelerometer and a crush zone sensor.

12. A system as set forth in claim 10 further including a sensor module mountable within a vehicle, said acoustic sensor being part of said sensor module.

13. A system as set forth in claim 12 wherein said at least one of said plurality of crash event sensors is part of said sensor module.

14. A system for helping to protect a vehicle occupant, said system comprising:

a sensor module for mounting in a vehicle, said sensor module including:

an accelerometer operative to sense vehicle acceleration and provide an acceleration signal having a characteristic indicative of the sensed vehicle acceleration; and

an acoustic sensor operative to detect acoustic waves of the vehicle during a vehicle crash event and to provide a safing signal having a characteristic indicative of the sensed acoustic waves;

an occupant protection device for, when actuated, helping to protect the vehicle occupant during a vehicle crash event; and

a controller which controls actuation of said occupant protection device in response to both said acceleration signal and said safing signal.

15. A system as set forth in claim 14 wherein said sensor module further includes a plurality of accelerometers, each of said plurality of accelerometers being operative to sense vehicle acceleration and provide a respective acceleration signal indicative of the vehicle acceleration sensed thereby, said controller controlling actuation of said occupant protection device in response to the acceleration signal from at least one of said plurality of accelerometers and said safing signal from said acoustic sensor, whereby the acoustic sensor provides omni-directional safing for the plurality of accelerometers.

16. A system as set forth in claim 14 further including a side crush zone sensor located at a side part of the vehicle and electrically connected with said controller, said side crush zone sensor sensing a side impact vehicle crash event in response to acceleration of the side part of the vehicle and providing a side crash signal indicative thereof, said controller controlling actuation of said occupant protection device in response to both said safing signal and said side crash signal.

17. A method for controlling actuation of an actuatable occupant protection device of a vehicle, said method comprising the steps of:

sensing a vehicle crash condition;

providing an crash event signal having a characteristic indicative of the sensed vehicle crash condition;

sensing acoustic waves that travel through the vehicle in response to the occurrence of the vehicle crash condition;

providing a safing signal having a characteristic indicative of the sensed acoustic waves during the vehicle crash condition;

determining the occurrence of a vehicle crash event in response to the crash event signal and the safing signal indicating a vehicle crash condition; and

controlling actuation of an occupant protection device in response to said determination.

18. A method as set forth in claim 17 further including providing a plurality of crash event sensors, each of the crash event sensors sensing a vehicle crash condition and providing a crash event signal indicative

of the vehicle crash condition sensed thereby, said step of determining a vehicle crash event further including determining the occurrence of a vehicle crash event in response to the crash signal from at least one of the plurality of crash event sensors and the safing signal from the acoustic sensor, whereby the safing signal provides omni-directional safing for the plurality of crash event sensors.

19. A method as set forth in claim 18 wherein each crash sensor is an accelerometer that provides an acceleration signal indicative of vehicle acceleration.

20. A method as set forth in claim 17 further including mounting a front crush zone sensor at a forward part of the vehicle, said step of sensing a vehicle crash condition including sensing a front impact vehicle crash event with the front crush zone sensor, the crash event signal being a front crash signal indicative of the sensed front impact vehicle crash event sensed by the front crush zone sensor, actuation of the occupant protection device being controlled in response to both the safing signal and the front crash signal.

21. A method as set forth in claim 17 further including mounting a side crush zone sensor at a side part of the vehicle, said step of sensing a vehicle crash condition including sensing a side impact vehicle crash event with the side crush zone sensor, the crash event signal being a side crash signal indicative of the sensed side impact vehicle crash event sensed by the side crush zone sensor, actuation of the occupant protection device being controlled in response to both the safing signal and said the crash signal.

22. A system for helping to protect a vehicle occupant, said system comprising:

means for sensing a vehicle crash condition and providing an crash event signal having a characteristic indicative thereof;

means for sensing acoustic waves that travel through the vehicle in response to the occurrence of the vehicle crash condition and providing a safing signal having a characteristic indicative thereof; and

control means for determining the occurrence of a vehicle crash event in response to the crash event signal and the safing signal and controlling actuation

of an occupant protection device in response to the determination.

Abstract

A system (10) for helping to protect a vehicle occupant includes a crash sensor (32) operative to sense a vehicle crash event and provide a crash signal 5 having a characteristic indicative of the sensed crash event. An acoustic safing sensor (34) is operative to sense acoustic waves of the vehicle during a vehicle crash event and provide a safing signal having a characteristic indicative of the sensed acoustic waves.

10 The system (10) also includes an occupant protection device (18, 20, 22, 24, 26, 28) for, when actuated, helping to protect the vehicle occupant during a vehicle crash event. A controller (30) controls actuation of the occupant protection device (18, 20, 15 22, 24, 26, 28) in response to the crash signal and the safing signal.

三

Fig.2

Fig.3

Fig 4

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

Atty. Docket No. TRW(TE)4170

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **METHOD AND APPARATUS FOR CONTROLLING AN ACTUATABLE OCCUPANT PROTECTION DEVICE USING AN ULTRASONIC SENSOR**, the specification of which:

(check one) is attached hereto.
 was filed on _____ as Application Serial No. _____
 and was amended on _____ (if applicable).
 was filed on _____ as International Application No. _____
 and was amended on _____
 by Preliminary Amendment Article 19; Article 34 (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, §119 or §365 of any foreign application(s) for patent or inventor's certificate or §365 of any PCT international application(s) designating at least one country other than the United States of America, listed below and have also identified below any foreign application(s) for patent or inventor's certificate, or §365 any PCT international application(s) having a filing date before that of the application(s) of which priority is claimed:

Prior Foreign Application(s)

Priority Claimed
 Yes No

_____	_____	_____
(Number)	(Country)	(Day/Month/Year Filed)
_____	_____	_____
(Number)	(Country)	(Day/Month/Year Filed)

Yes No

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

_____	_____	_____
(Application Serial No.)	(Filing Date)	(Status-patented, pending, abandoned)
_____	_____	_____
(Application Serial No.)	(Filing Date)	(Status-patented, pending, abandoned)

Power of Attorney: As a named inventor, I hereby appoint the following attorneys: Thomas L. Tarolli, Reg. No. 20,177; Robert B. Sundheim, Reg. No. 20,127; Calvin G. Covell, Reg. No. 24,042; Barry L. Tummino, Reg. No. 29,709; Paul E. Szabo, Reg. No. 30,429; James L. Tarolli, Reg. No. 36,029; Ronald M. Kachmarik, Reg. No. 34,512; Richard S. Wesorick, Reg. No. 40,871; Maurice R. Salada, Reg. No. 26,502; Allan W. Vogele, Reg. No. 28,127; and Gary L. Hermanson, Reg. No. 34,349; each with full powers of substitution and revocation to prosecute this application and transact all business in the United States Patent and Trademark Office connected therewith.

SEND CORRESPONDENCE TO: **TAROLLI, SUNDHEIM, COVELL, TUMMINIO & SZABO L.L.P.**
1111 LEADER BLDG., 526 SUPERIOR AVENUE
CLEVELAND, OHIO 44114-1400
 DIRECT TELEPHONE CALLS TO: **BARRY L. TUMMINIO, (216) 621-2234**

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1) Full name of sole or first inventor ROGER A. McCURDY

Inventor's signature Roger A. McCurdy Date 3/1/99
 Residence TROY, MICHIGAN Citizenship U.S.A.
 Post Office Address 2193 NORMANDY, TROY, MICHIGAN 48098 County OAKLAND

2) Full name of second inventor _____

Inventor's signature _____ Date _____
 Residence _____ Citizenship _____
 Post Office Address _____ County _____