

Mark Scheme (Results)

January 2022

Pearson International Advanced
Subsidiary Level
In Chemistry (WCH13)
Paper 01: Practical Skills in Chemistry I

Question Number	Answer	Additional guidance	Mark
1(a)(i)	An answer that makes reference to the following point:		(1)
	white precipitate	Allow solid / ppt(e) / crystals for solid	
		Ignore just white Ignore any references to colourless solutions	
		Do not award any mention of cream, eg creamy-white Do not award colourless precipitate Do not award any reference to bubbles / effervescence Do not award any reference to fumes / smoke	

Question Number	Answer	Additional guidance	Mark
1(a)(ii)	An answer that makes reference to the following points:		(2)
	• (add aqueous) sodium hydroxide / NaOH and warm (1)	Allow heat	
	• (gas evolved) turns (damp red) litmus (paper) blue	M2 dependent on hydroxide as test reagent Allow turns universal indicator (paper) blue Do not award if indicator (paper) added to solution	
	or (gives) white smoke with hydrogen chloride / HCl (1)	Allow white smoke with concentrated hydrochloric acid Ignore white / steamy fumes for white smoke	
		Allow pungent / choking smell (as description of ammonia)	
		Ignore just forms ammonia / NH ₃	
		Ignore any reference to effervescence / fizzing	
		Do not award any reference to formation of a precipitate	

Question Number	Answer	Additional guidance	Mark
1(b)(i)	An answer which that makes reference to the following points:		(2)
	• so that the ammonium chloride / solid dissolves (1)	Allow any reference to helping the solid dissolve	
		Ignore any reference to mixing Ignore any reference to reaction / reactants	
	• to ensure a uniform temperature (1)	Allow to ensure a constant temperature Allow to give an accurate temperature reading Allow (so solution is) evenly cooled / heated	

Question Number	Answer	Additional guidance	Mark
1(b)(ii)	An answer that makes reference to the following points:	Example of extrapolation and calculation: 20 19 18 20 17 20 18 18 20 17 20 18 20 17 20 18 20 21 21 21 21 21 21 21 21 21 21 21 21 21	(2)
	• (data ≥ 90 s extrapolated back and) minimum temperature at t = 0 (1)	Accept minimum temperature in range of 10.7 ± 0.2 (°C)	
	• calculation showing maximum temperature change, ΔT (1)	$\Delta T = 19.7$ – minimum temperature = $19.7 - 10.7 = 9(.0 ^{\circ}\text{C})$ TE on 19.7 – minimum temperature, provided $\leq 11.5 ^{\circ}\text{C}$ Allow negative ΔT values from minimum minus initial temperature	es

Question Number	Answer	Additional guidance	Mark
1(b)(iii)	An explanation that makes reference to the following points:	All marks are standalone	(3)
	• minimum temperature would be lower (1)	Ignore any reference to endothermic / exothermic / ΔH Allow temperature (values) would be lower Allow temperature change would be greater	
		Ignore minimum temperature reached sooner	
		Do not award temperature values would be higher Do not award less heat loss	
	• temperature would increase at a slower rate (> 90 s) (1)	Allow temperature would remain constant / rise more slowly (> 90 s) Allow slope of graph would be less steep (> 90 s)	
	• less heat (from the surroundings) would enter the solution (1)	Allow heat would not enter Allow polystyrene cup is (better) insulated Allow glass beaker (better) conducts heat Ignore polystyrene cup absorbs more heat	

Question Number	Answer	Additional guidance	Mark
1(c)(i)	An answer that refers to any two of the following points:	Ignore reference to purity of NH ₄ Cl Ignore any reference to heat transfer Ignore any reference to endothermic / exothermic Ignore any reference to instantaneous reaction Ignore any reference to standard / nonstandard conditions Ignore any attempt at justification, including calculation	(2)
	• solution has a density of 1 g cm ⁻³ (1)	Allow mass of solution is same as its volume Allow the density of the solution is the same as water	
	• mass of ammonium chloride / solid is ignored (1)	Allow mass of solution is 50 g Allow mass of ammonium chloride / solid is negligible	
	• (specific) heat capacity of the solution is the same as water (1)	Allow heat capacity of the solution is 4.18 / 4.2 (J g ⁻¹ °C ⁻¹) Allow heat capacity of beaker / apparatus can be ignored / is negligible	

Question Number	Answer	Additional guidance	Mark
1(c)(ii)	An answer that makes reference to the following points:	Example of calculation:	(2)
	Method 1	Ignore SF except 1SF Ignore truncation of values in intermediate working, eg 0.37 for 0.377	
	• calculation of uncertainty in experimental value (1)	uncertainty = $2.6 \div 100 \times 14.5$ (= $0.377 \text{ kJ mol}^{-1}$) Do not award the use of 14.8 instead of 14.5	
	• indication that experimental value is consistent with data book value (1)	$14.5 + 0.377 = 14.877 \text{ (kJ mol}^{-1}\text{)}$ Accept $14.8 - 0.377 = 14.423 \text{ (kJ mol}^{-1}\text{)}$ Accept $0.3 < 0.377$	
		$14.5 \times 1.026 = 14.877 / 14.88 / 14.9 \text{ (kJ mol}^{-1}\text{) scores (2)}$	
	Mathad 2	Award 1 mark for TE on use of 14.8 in M1: $14.5 + 0.3848 = 14.8848 \text{ (kJ mol}^{-1}\text{)}$ Allow $14.8 - 0.3848 = 14.4152 \text{ (kJ mol}^{-1}\text{)}$ $0.3 < 0.3848$	
	Method 2		
	• calculation of percentage change from experimental to data book value (1)	percentage change = $(14.8 - 14.5) \div 14.5 \times 100$ (= 2.06897 %)	
		Allow 14.8 ÷ 14.5 × 100 (= 102.6897 %) Do not award division by 14.8 instead of 14.5	
	• indication that percentage change is less than experimental uncertainty (1)	2.06897 < 2.6 Award 1 mark for TE on division by 14.8 in M1: 2.02703 < 2.6	

(Total for Question 1 = 14 marks)

Question Number	Answer	Additional guidance	Mark
2(a)(i)	An answer that makes reference to the following points:	Ignore any reference to amount / volume Ignore any reference to temperature / time	(2)
	• mass / weight of each U-tube and their contents (1)	Allow mass / weight of silica (gel) and soda lime Ignore reference to mass of X remaining Ignore mass of O ₂	
	• mass / weight before and after combustion / reaction (1)	M2 dependent on mention of U-tube / silica / soda lime Allow initial mass / weight and final mass / weight Allow change in mass / weight	
		If no other mark awarded, mass / weight of H ₂ O and CO ₂ absorbed / produced scores (1)	

Question Number	Answer	Additional guidance	Mark
2(a)(ii)	An answer that refers to any two of the following points:	Ignore any reference to unwanted side reactions Ignore any reference to air being a mixture Ignore air contains O ₂ / N ₂ / noble gases Ignore so mass of H ₂ O and CO ₂ can be measured more accurately Ignore any reference to rate / efficiency / yield of combustion	(2)
	• to exclude water from the air (1)	Allow because it is dry Allow air might be damp / contains H ₂ O Do not award air contains hydrogen / H ₂	
	• to exclude carbon dioxide from the air (1)	Allow air contains CO ₂	
	• for complete combustion (1)	Allow (to ensure X is) fully combusted Allow (to ensure) complete reaction Allow to prevent incomplete combustion in air	

Answer	Additional guidance	Mark
An answer that makes reference to the following points:	Example of calculation: Allow truncation of mass and mols in intermediate	(3)
• mass of oxygen (1)	working, eg 0.05 for 0.0525 mass $O = 1.33 - 0.14 - 0.63$ = 0.56 (g)	
• mols C, H and O (1)	C: H: O 0.63: 0.14: 0.56 12: 1: 16 0.0525: 0.14: 0.035 TE on M1	
• mole ratio and empirical formula (1)	M3 dependent on use of mols C: H: O 1.5: 4: 1 3: 8: 2 empirical formula is C ₃ H ₈ O ₂ TE on M2 Correct answer with some working scores (3)	
	An answer that makes reference to the following points: • mass of oxygen (1) • mols C, H and O (1) • mole ratio and	An answer that makes reference to the following points: Example of calculation: Allow truncation of mass and mols in intermediate working, eg 0.05 for 0.0525 • mass of oxygen (1) C: H: O 0.63: 0.14 - 0.63 = 0.56 (g) • mols C, H and O (1) C: H: O 0.63: 0.14: 0.56 12: 1: 16 0.0525: 0.14: 0.035 TE on M1 • mole ratio and empirical formula (1) M3 dependent on use of mols C: H: O 1.5: 4: 1 3: 8: 2 empirical formula is C ₃ H ₈ O ₂ TE on M2

Question Number	Answer	Additional guidance	Mark
2(b)	An answer that makes reference to the following point:		(1)
	• (X contains) O–H / hydroxyl (group)	Allow OH / –OH / hydroxy Allow "(X is) either alcohol or carboxylic acid" Ignore just alcohol / diol Ignore just carboxylic acid	
		Do not award hydroxide / OH ⁻	

Question Number	Answer		Additional guidance	Mark
2(c)	An answer that makes reference to the following points:		Example of diagram:	(3)
	 round-bottom / pear shaped flask and still head 		thermometer	
	and thermometer	(1)		
	(downward-sloping) Liebig condenser with inner tube and labelled water flow	(1)		
	 heat and unsealed collection vessel 		heat water in	
	and left hand side of apparatus sealed	(1)	Allow any form of heating Allow fractionating column (in place of still head) Allow omission of flask contents	
			Do not award M1 for a one-piece apparatus Do not award M1 if thermometer bulb is in the liquid	

Question Number	Answer	Additional guidance	Mark
2(d)	An explanation that makes reference to the following points:	Allow identification of peaks and bonds on annotated spectrum	(2)
	• (broad) peak at 3220 cm ⁻¹ and	Allow any wavenumber or range of values within 3300–2500	
(indicates an) O–H (in a carboxylic acid) (1) A		Allow OH / –OH for O–H Do not award O–H in alcohol Ignore C–H	
	• peak at 1720 cm ⁻¹ and (indicates) C=O (1)	Allow any wavenumber or range of values within 1740–1680 Ignore aldehyde / ketone Do not award C=C	
		If no other mark awarded, award 1 mark if both peaks / ranges given but bonds missing	
		Comment Allow transmittance for absorbance Ignore any reference to the fingerprint region	

Question Number	Answer	Additional guidance				
2(e)(i)	An answer that makes reference to the following points:		(1)			
	• molecular (ion) / $M^{(+)}$ peak at $m / z = 88$	Allow peak to the far right / with the highest m / z is 88 Allow any indication of $M^{(+)}$ peak being 88				
	and	Ignore just peak at m / z is 88				
	(relative molecular mass of) C ₃ H ₄ O ₃ is 88					

Question Number	Answer	Additional guidance	Mark
2(e)(ii)	An answer that makes reference to the following point:	Accept displayed/skeletal formula with charge	(1)
	• CH ₃ CO ⁺	Allow any position of charge, eg ⁺ CH ₃ CO	
		Allow CH ₂ CHO ⁺ / CH ₂ COH ⁺ / HC=CH(OH) ⁺ / CH ₂ =C(OH) ⁺	
		Ignore just C ₂ H ₃ O ⁺	
		Do not award C ₃ H ₇ ⁺	

Question Number	Answer	Additional guidance	Mark
2(f)	An answer that makes reference to the following points:	Accept structural, displayed or skeletal formula or any correct combination of these	(2)
		If more than one type of formula given, all must be correct	
		Ignore connectivity of vertical OH	
		Penalise horizontal C–HO connectivity once only	
		Ignore names even if incorrect	
		Example of structure:	
	• structure of \mathbf{X} (1)	CH ₃ CH(OH)CH ₂ OH	
	• structure of Y (1)	Example of structure: CH ₃ COCOOH Allow CH ₂ =C(OH)COOH	

(Total for Question 2 = 17 marks)

Question Number	Answer	Additional guidance	Mark
3(a)(i)	An answer that makes reference to the following points:	Example of equation:	(1)
	• correct species and balancing and state symbols	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	
		Ignore full equation as working	
		Do not award uncancelled spectator ions	

Question Number	Answer	Additional guidance	Mark
3(a)(ii)	An answer that makes reference to the following point:		(1)
	• (to remove) barium ions / Ba ²⁺ (that would otherwise) form a precipitate with chromate((VI)) ions / CrO ₄ ²⁻	Allow to stop formation of barium chromate((VI)) / BaCrO ₄ Allow to stop Ba ²⁺ + CrO ₄ ²⁻ → BaCrO ₄ Allow to stop barium ions reacting with the indicator / chromate((VI)) ions / CrO ₄ ²⁻ Allow would otherwise make the end-point hard to determine	

Question Number	Answer	Additional guidance		
3(b)	An answer that makes reference to the following point:		(1)	
	• silver chloride is (much) less soluble (than silver chromate((VI)))	Accept solubility product / $K_{\rm sp}$ of silver chloride is (much) smaller than that of silver chromate((VI)) Allow reverse arguments		
		Ignore chloride ions are more reactive than chromate ions Ignore reaction with chloride ions is faster		

Question Number	Answer		Additional guidance					Mark
3(c)(i)	An answer that makes reference to the following points:	Example of completed	table ar	nd calcul	ation:		(2)	
			Titration number	1	2	3	4	
			Burette reading (final) / cm ³	16.15	32.05	48.30	47.40	
			Burette reading (initial) / cm ³	0.00	16.15	32.50	31.55	
	three values correctly recorded in table	(1)	Titre / cm³	16.15	<u>15.9(0)</u>	15.8(0)	<u>15.85</u>	
	• calculation of mean titre to 2DP from concordant results	(1)	mean titre = $(15.9(0) +$	15.8(0) 3) + 15.85)		
			$= 15.85 \text{ (cm}^3)$)				
			TE on averaging of con subtraction in table	cordan	t results	from inc	orrect	
			Do not award 15.85 from	m (15.9	90 + 15.8	80) ÷ 2		

Question Number	Answer An answer that makes reference to the following points: Method 1		Additional guidance	Mark (5)
3(c)(ii)			Example of calculation: Ignore SF except 1 SF throughout Allow truncation of mass and mols in intermediate working, eg 0.000513 for 0.0005135	
	First three marks:			
	• mols Ag ⁺ in mean titre	(1)	mols $Ag^+ = 0.0324 \times 15.85 \div 1000$ = 0.00051354 / 5.1354 × 10 ⁻⁴ TE on mean titre from (c)(i)	
	• mols Ba ²⁺ in 10.0 cm ³ or		mols Ba ²⁺ in 10.0 cm ³ = $0.00051354 \div 2$ = $0.00025677 / 2.5677 \times 10^{-4}$ or	
	mols Cl ⁻ in 250 cm ³	(1)	mols Cl ⁻ in 250.0 cm ³ = $0.00051354 \times 250 \div 10.0$ = $0.0128385 / 1.28385 \times 10^{-2}$ TE on mols Ag ⁺	
	• mols Ba ²⁺ in 250 cm ³	(1)	mols Ba ²⁺ in 250 cm ³ = $0.00025677 \times 250 \div 10.0$ = $0.0064193 / 6.4193 \times 10^{-3}$ or	
			(from mols Cl ⁻) = $0.0128385 \div 2$ = $0.0064193 / 6.4193 \times 10^{-3}$ TE on mols Ba ²⁺ in 10.0 cm ³ / mols Cl ⁻ in 250.0 cm ³	

Final two marks:	
• molar mass BaCl ₂ .xH ₂ O	(1) molar mass BaCl ₂ . x H ₂ O = 1.57 ÷ 0.0064193 = 244.58 (g mol ⁻¹) TE on mols Ba ²⁺ in 250 cm ³
molar mass of xH2O and value of x or	molar mass of $xH_2O = 244.58 - 208.3$ = 36.277 (g mol ⁻¹) (1) and value of $x = 36.277 \div 18.0$ = 2(.0154) (so formula is BaCl ₂ .2H ₂ O) TE on molar mass BaCl ₂ .xH ₂ O
• mass H ₂ O in hydrated salt	(1) mass $H_2O = 1.57 - (0.0064193 \times 208.3)$ = 0.23287 (g) TE on mols Ba^{2+} in 250 cm ³
• mols H ₂ O in hydrated salt and value of x	mols $H_2O = 0.23287 \div 18.0$ = 0.012937 (mol) and value of $\mathbf{x} = 0.012937 \div 0.0064193$ = 2(.0154) (so formula is BaCl ₂ .2H ₂ O) Accept 1 SF TE on mass H ₂ O in hydrated salt

Method 2

First three marks:

- mass BaCl₂.**x**H₂O in 10.0 cm³
- (1) mass BaCl₂.**x**H₂O in 10.0 cm³ = 1.57 × (10.0 ÷ 250.0) = 0.0628 (g)

• mols Ag⁺ in mean titre

(1) mols $Ag^+ = 0.0324 \times 15.85 \div 1000$ = 0.00051354 / 5.1354 × 10⁻⁴ TE on mean titre from (c)(i)

• mols Ba²⁺ in 10.0 cm³

(1) mols Ba²⁺ in 10.0 cm³ = 0.00051354 ÷ 2 = 0.00025677 / 2.5677 × 10⁻⁴ TE on mols Ag⁺

Final two marks:

• molar mass BaCl₂.**x**H₂O

(1) molar mass BaCl₂.**x**H₂O = $0.0628 \div 0.00025677$ = 244.58 (g mol⁻¹) TE on mass BaCl₂.**x**H₂O in 10.0 cm³ TE on mols Ba²⁺ in 10.0 cm³

 molar mass of xH₂O and value of x

- molar mass of $xH_2O = 244.58 208.3$ = 36.277 (g mol⁻¹)
- and value of

value of $\mathbf{x} = 36.277 \div 18.0$ = 2(.0154) (so formula is BaCl₂.2H₂O) Accept 1 SF TE on molar mass BaCl₂. \mathbf{x} H₂O

or	
• mass H ₂ O in 10.0 cm ³ hydrated salt (1)	$\begin{aligned} \text{mass H}_2\text{O} &= 0.0628 - (0.00025677 \times 208.3) \\ &= 0.0093148 \text{ (g)} \\ \text{TE on mols Ba}^{2+} \text{ in } 10.0 \text{ cm}^3 \end{aligned}$
mols H ₂ O in hydrated salt and value of x (1)	mols $H_2O = 0.0093148 \div 18.0$ = 0.00051749 (mol) and value of $\mathbf{x} = 0.00051749 \div 0.00025677$ = $2(.0154)$ (so formula is BaCl _{2.2} H ₂ O) Accept 1 SF TE on mass H ₂ O in 10.0 cm ³ hydrated salt
	Just $\mathbf{x} = 2$ with no working scores (0)

(Total for Question 3 = 10 marks)

Question Number	Answer	Additional guidance	
4(a)(i)	An explanation that makes reference to the following points:		(2)
	• to absorb / remove water (1)	Allow to absorb / remove moisture Allow drying agent / to dry the gas Ignore absorption of any other chemical, eg HCl Do not award dehydrating agent	
	• (as water) would otherwise react with aluminium chloride / the product (1)	M2 dependent on some mention of water / steam / drying Allow (water) reacts with aluminium Allow (reaction with water) would decrease the yield Do not award any reference to rusting / corrosion	

Question Number	Answer	Additional guidance	Mark
4(a)(ii)	An answer that makes reference to the following point:		(1)
	• to enable gases / chlorine / Cl ₂ to pass through (easily)	Accept reverse argument Allow to prevent build-up of pressure / blocking tube	
		Ignore granules stay in position / powder moves	
		Do not award references to surface area / rate	

Question Number	Answer	Additional guidance	Mark
4(b)(i)	An answer that makes reference to the following points:	Mark M1 and M2 separately	(2)
	• toxic / poisonous (1)	Ignore irritant / harmful / dangerous / corrosive / health hazard	
		Do not award flammable	
	• (perform experiment in a) fume cupboard (1)	Allow fume box / fume hood	
		Ignore wear a gas mask	
		Ignore use smaller amounts	
		Ignore wear safety goggles / gloves	

Question Number	Answer	Additional guidance	Mark
4(b)(ii)	An answer that makes reference to the following point:	Accept reverse arguments	(1)
	to provide a steady stream of chlorine / gas	Accept reverse arguments	
	to prevent chlorine / gas being produced too quickly	Allow to control the rate of reaction / production of chlorine Allow so that the reaction is slow / not too fast Allow to prevent vigorous reaction Ignore to prevent violent reaction / explosion / breaking flask Ignore build-up of pressure Ignore to prevent (acid) spray / boiling over Ignore exothermic reaction Ignore to ensure complete reaction	
		Do not award any gas other than chlorine	

Question Number	Answer	Additional guidance	Mark
4(c)	An answer that makes reference to one of the following:		(1)
	to allow chlorine to displace air from the apparatus	Allow to fill the apparatus with chlorine (gas) Allow to remove all air from the apparatus Ignore so that the chlorine reaches the aluminium first	
	to prevent oxygen reacting with the aluminium	Allow to prevent air from reacting with the aluminium Allow so only chlorine reacts with the aluminium	
	or		
	to prevent the formation of aluminium oxide		

Question Number	Answer	Additional guidance	Mark
4(d)	An answer that makes reference to the following point:		(1)
	• (when the aluminium) stops glowing	Allow when all the aluminium / solid has turned white Allow when no more aluminium foil remains	
		Ignore when aluminium foil is not as bright / starts to dim Ignore just when no further change is seen Ignore when no more product collects in the receiver bottle Ignore just when all reactants are used up	
		Ignore any reference to mass of reactants / products	

Question Number	Answer	Additional guidance	Mark
4(e)	An answer that makes reference to the following point: • to absorb (unreacted) chlorine / hydrogen chloride (gas)	Allow react with / remove / neutralise for absorb Allow to absorb acidic gases	(1)
		Allow to exclude water (from the air) Ignore to absorb hydrochloric acid Ignore just to absorb acid Ignore just to absorb excess gas Ignore to limit escape of toxic / harmful / dangerous gas Do not award to absorb carbon dioxide	

(Total for Question 4 = 9 marks) TOTAL FOR PAPER = 50 MARKS