সৃজনশীল বহুনিবাচনি অংশ

বোর্ড পরীক্ষার প্রশ্নের উত্তরমালা (ব্যাখ্যাসহ) সূজনশীল বহুনিবাচনি

পদার্থবিজ্ঞান দ্বিতীয় পত্র

৭৪. ঢাকা বোর্ড-২০১৭

\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	١	গ	ર	ক	9	*	8	গ	ď	খ	৬	ক	٩	ঘ	Ъ	গ	৯	গ	20	খ	77	ঘ	১২	ক	১৩	খ
ΛŠ	84	গ	ኔ ৫	ঘ	১৬	ক	১৭	ঘ	ንራ	ঘ	አ ৯	গ	২০	ক	২১	খ	২২	খ	২৩	ক	২8	গ	২৫	খ		

্বিব্যাখ্যা:

3.
$$(R \parallel R \parallel R) + (R \parallel R) = \frac{R}{3} + \frac{R}{2} = \frac{5R}{6}$$

৩.
$$\overrightarrow{qv} \times \overrightarrow{B} + \overrightarrow{qE} = 0$$
 [ধ্রুববেগ এর ক্ষেত্রে]
$$\Rightarrow | \ qv \ B | = | \ qE \ | \Rightarrow v = \frac{E}{B} = \frac{10}{5} \ ms^{-2} \ \therefore \ v = 2ms^{-2}$$
 >৩. $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6630 \times 10^{-10}} \ J = 3 \times 10^{-19} J$ ৭৫. ঢাকা বোর্ড-২০১৬

50.
$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6630 \times 10^{-10}} J = 3 \times 10^{-19} J$$

$$\begin{split} & \underbrace{} \underbrace{\sum_{i=1}^4 \frac{q_i}{4\pi \in {}_0 r_i}} = 0 : r_i = \frac{a\sqrt{2}}{2} = \frac{a}{\sqrt{2}} \\ & \Rightarrow \frac{1}{4\pi \in {}_0} \left[\frac{10}{a/\sqrt{2}} + \frac{12}{a/\sqrt{2}} - \frac{15}{a/\sqrt{2}} + \frac{q}{a/\sqrt{2}} \right] = 0 \\ & \Rightarrow q + 10 + 12 - 15 = 0 \Rightarrow q = -7C \end{split}$$

K	۵	খ	২	ঘ	৩	ঘ	8	ঘ	¢	খ	৬	ঘ	٩	*	ъ	ক	৯	গ	20	ঘ	77	খ	১২	ক	১৩	গ	84	ক	\$&	ক	১৬	গ	ኔ٩	ক	ን৮	খ
鹵	১৯	ক	২০	খ	২১	ঘ	২২	খ	২৩	ক	২৪	*	২৫	গ	২৬	গ	২৭	ক	২৮	ঘ	২৯	খ	೨೦	খ	৩১	ক	৩২	গ	೨೨	খ	৩ 8	খ	৩৫	গ		

্ব্যাখ্যা:

৬.
$$|v| = \left| -N \frac{d\phi}{dt} \right| = \left| -300 \times \frac{50 \times 10^{-4}}{0.05} \right| = 30 \text{ volts (Ans.)}$$
 ৭. উত্তর নেই। দৃশ্যমান আলোর ক্ষেত্রে হবে (গ)।

২১.
$$k = 2-5$$
; $\frac{Q_{in}}{W} = k$; $\overline{}$ $W = \frac{Q_{in}}{K} = \frac{500}{2.5}$

∴
$$w = 200J$$

૨૭. $C = C_17(C_2 + C_3) = 47(2 + 2) = 474$

 \therefore C = 2 μ F (Ans.)

38. W =
$$\frac{1}{2}$$
 (C₁ + C₂)V² = $\frac{1}{2}$ × (2 + 2) × 10⁻⁶ × 10² = 200µJ

২৫. এক কিলোওয়াট — ঘণ্টা = $1kW \times 1hr = 1 \times 10^3W \times 3600s$ $= 3.6 \times 10^6 \text{ J (Ans.)}$

92. $T_{\frac{1}{2}} = 3.5 \text{ days } \therefore \lambda = \frac{\ln 2}{T_{\frac{1}{2}}} = \frac{\ln 2}{3.5}$

:.
$$\lambda = 0.198 \text{ day}^{-1} (\text{Ans.})$$

99. N = (100 - 60)% $N_0 = 40\%$ $N_0 = \frac{40}{100}$ $N_0 = \frac{2}{5}$ N_0

বা,
$$N_0 e^{-\lambda t} = \frac{2}{5} \, N_0 \; ; \;$$
 বা, $e^{-\lambda t} = \frac{2}{5}$

$\lambda t = \ln\left(\frac{5}{2}\right)$ $\overline{\triangleleft}$, $t = \frac{\ln\left(\frac{5}{2}\right)}{\lambda} = 4.628$ (Ans	
$\lambda t = \ln \left(\frac{3}{2}\right)$ $\forall t$, $t = \frac{\sqrt{3}}{\lambda} = 4.628$ (Ans	;.)

$$\lambda = \ln(2) \text{ ft, } t = \lambda$$

$$\lambda = \frac{\lambda}{8.86} \text{ A}^{222} \rightarrow {}_{82}\text{A}^{206} + 8 \text{ on}^{1} + (\alpha)$$

$$N(\alpha) = \frac{222 - (206 + 8 \times 1)}{4} = 2$$

\&.
$$_{N}(\beta) = ?$$

বিক্রিয়কে নিউট্রন সংখ্যা = 222 – 86 = 136

$$N(\beta) = 136 - 136 = 0$$

36. $_{13}Al^{27}$; n(p) = 13, N(n) = 27-13 = 14

$$_{3}\text{Li}^{7}$$
; N(P) = 3, N(n) = 7 - 3 = 4

$$_{2}\text{He}^{4}$$
; $N(p) = 2$, $N(n) = 4 - 2 = 2$

$$_{2}$$
He , $N(p) = 2$, $N(1) = 4 - 2 = 2$

$$_{1}H^{1}$$
; N(p) = 1, N(n) = 1 - 1 = 0
 $\therefore _{2}He^{4}$ (Ans.)

৭৬. ঢাকা বোর্ড-২০১৫

I	ξ.	۷	ক	২	ক	৩	ঘ	8	ক	œ	গ	৬	খ	٩	গ	b	খ	৯	খ	20	গ	77	ঘ	১২	খ	১৩	*	84	ক	ን৫	ঘ	১৬	খ	١٩	খ	۶b. ۱	ঘ
d	5	১৯	ক	২০	ক	২১	খ	২২	গ	২৩	খ	২8	ঘ	২৫	ঘ	২৬	ঘ	২৭	ঘ	২৮	গ	২৯	ক	೨೦	ক	৩১	খ	৩২	*	೨೨	ঘ	৩8	খ	৩৫	খ		

্ব্যাখ্যা:

৬. গাউসের সূত্রানুসারে,
$$==$$
 $\oint \vec{E} \cdot \vec{S} = \frac{q}{c_s}$

বা,
$$E \times S = \frac{q}{\epsilon_0} = \frac{0}{\epsilon_0} = 0$$
; $\therefore E = 0$
9. $\sigma = \frac{\lambda}{2\pi} \delta = \frac{\lambda}{2\pi} \times \frac{\pi}{2} = \frac{\lambda}{4}$

9.
$$\sigma = \frac{\lambda}{2\pi} \delta = \frac{\lambda}{2\pi} \times \frac{\pi}{2} = \frac{\lambda}{4}$$

b.
$$T_{\frac{1}{2}}=3.8d;\,\lambda=\frac{ln_2}{T_{\frac{1}{2}}}=0.182\;d^{-2}$$

8. rate
$$(t_0 - t_1) = \frac{1}{t_1 - t_0} \times 15\% = \frac{15}{100} \times \frac{1}{t_1 - t_0} = \frac{0.15}{t_1 - t_0}$$

rate $(t_1 - t_2) = \frac{1.15}{t_2 - t_1}$; rate $(t_2 - t_3) = \frac{0.15}{t_3 - t_2}$

rate
$$(t_3 - t_4) = \frac{0.15}{t_4 - t_3}$$

$$\therefore t_1 - t_0 < t_2 - t_1 < t_3 - t_2 < t_4 - t_3$$

: rate
$$(t_0 - t_1) > \text{rate } (t_1 - t_2) > \text{rate } (t_2 - t_3) > \text{rate } (t_3 + 4)$$

=(110	$JU)_2$	
2	12	
2	6	0
2	3	0
2	1	1
	0	1

50.
$$\mu_w = 1.33$$
; $\mu_g = 1.52$ $C_w = 2.28 \times 10^8$ m/s

$$\begin{split} &\frac{C_g}{C_w} = {}_g \mu_w = \frac{\mu_w}{\mu_g} \;\; \text{ ft, } \; C_g = \frac{\mu_w}{\mu_g} \; C_w; \\ &\text{ ft, } \; C_g = \frac{1.33}{1.52} \times 2.28 \times 10^8 \; m/s \;\; \therefore \; C_g = 1.995 \times 10^8 \; m/s \end{split}$$

\$8.
$$i_{rms} = \frac{i_0}{\sqrt{2}}$$
; \vec{q} , $i_0 = i_{r,m,s} \sqrt{2} = 220\sqrt{2} \text{ V}$

$$\therefore$$
 $i_0=311V$ **১৬.** $\frac{k}{f-f_0}=h$; বা, $f-f_0=\frac{k}{h}$; বা, $f_0=f-\frac{k}{h}$

$$\begin{split} & \overline{\P}, \ f_0 = \left(5 \times 10^{15} - \frac{1.2 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}\right) \ Hz = 4.7 \times 10^{15} \ Hz \\ & \text{Ro.} \ \frac{1}{u} + \frac{1}{v} = \frac{1}{f} \ ; \ u \rightarrow x, \ v \rightarrow y \ ; \frac{1}{x} + \frac{1}{y} = \frac{1}{f} \ ; \end{split}$$

$$\{0, \frac{1}{u} + \frac{1}{v} = \frac{1}{f}; u \to x, v \to y; \frac{1}{x} + \frac{1}{v} = \frac{1}{f}; u \to x, v \to x; \frac{1}{x} + \frac{1}{v} = \frac{1}{f}; u \to x, v \to x; \frac{1}{x} + \frac{1}{v} = \frac{1}{f}; u \to x, v \to x; \frac{1}{x} + \frac{1}{v} = \frac{1}{f}; u \to x, v \to x; \frac{1}{x} + \frac{1}{v} = \frac{1}{f}; u \to x, v \to x; \frac{1}{x} + \frac{1}{v} = \frac{1}{f}; u \to x; \frac{1}{x} +$$

বা,
$$\frac{x+y}{xy} = \frac{1}{f}$$
; বা, $f(x+y) = xy$ যা একটি অধিবৃত্ত এবং অক্ষ $x=y$;

\\$\.
$$R_T = R_1 7 R_2 + R_3 = (10 || 10 + 10) \Omega = \frac{10 \times 10}{20} \Omega + 10 \Omega$$

$$\therefore R_T = 15\Omega ; I = \frac{E_1 + E_2}{R_T} = \frac{5}{15} = 0.33A$$

২৩. $\varphi = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos\theta \ [\ \varphi_{max} = BA \ ; \ \theta = 90^{\circ};$

\&8. W = Q - U =
$$\eta$$
Q = $\left(1 - \frac{T_2}{T_1}\right)$ Q = $\left(1 - \frac{27 + 273}{327 + 273}\right) \times 500 \text{ J}$

:
$$W = \left(1 - \frac{300}{600}\right) \times 500J = 250J$$

Ref.
$$\eta_1 = \left(1 - \frac{300}{600}\right) = \frac{1}{2}$$
; $\eta_2 = \left(1 - \frac{300}{450}\right)$

$$\therefore \eta_2 = \frac{1}{3}; \therefore n_1 : n_2 = 3 : 2$$

৩১.
$$LI=N\phi=\phi$$
 [$N=1$, প্রত্যেক কুণ্ডলীর ক্ষেত্রে] বা, $L=\frac{\phi}{I}=\frac{BA}{I}=\frac{\pi r^2B}{I}=\frac{\pi\times(0.01)^2\times3.19\times10^3}{2}\,H$

ightharpoonup L=0.5~H ৩২. সঠিক উত্তর A দক্ষিণ মেরু, B উত্তর মেরু, C দক্ষিণ মেরু, D উত্তর

99.
$$C_T = C_1 \ 7 \ (C_2 + C_3) = 2 \mu F 74 u F = \frac{2 \times 4}{2 + 4} = \frac{8}{6} \ \mu F$$

$$\therefore$$
 C_T = 1.33 μ F

৭৭. রাজশাহী বোর্ড-২০১৭

8	١	খ	২	গ	೨	খ	8	গ	ď	ক	৬	গ	٩	ক	ъ	ক	৯	খ	30	খ	77	*	১২	ক	১৩	ক
煪	84	খ	\$&	ঘ	১৬	গ	১৭	ক	ኔ ৮	ঘ	১৯	ঘ	২০	খ	২১	খ	২২	গ	২৩	ঘ	২8	ক	২৫	ক		

্ব্যাখ্যা:

2. AQ:
$$PV^{\gamma} = \text{constant}; \Rightarrow V^{\gamma} \frac{dP}{dV} + rPV^{\gamma - 1} = 0$$

$$\therefore \left(\frac{dp}{dy}\right)_{AQ} = -\gamma \frac{P}{V}$$

AI :
$$PV = constant$$
; $\Rightarrow VdP + PdV = 0$

$$\therefore \left(\frac{dP}{dV}\right)_{AI} = -\frac{P}{V}$$

8.
$$\frac{1}{4\pi\epsilon_0}\frac{qd}{r^3} = E_{\perp} \Rightarrow q = 4\pi\epsilon_0 \frac{r^3 E_{\perp}}{d}$$

$$\begin{array}{l} \therefore \ \, \left(\frac{dp}{dv}\right)_{AQ} = -\gamma \frac{P}{V} \\ \\ AI: PV = constant; \Rightarrow VdP + PdV = 0 \\ \\ \therefore \ \, \left(\frac{dP}{dV}\right)_{AI} = -\frac{P}{V} \\ \\ \therefore \ \, \omega$$

$$\therefore \ \, \frac{d}{d} \frac{P}{d} = 1.4; \left(H_2 \ \text{ছিপরমাণুক গ্যাস}\right) \\ \\ \textbf{8.} \ \, \frac{1}{4\pi\epsilon_0} \frac{qd}{r^3} = E_\perp \Rightarrow q = 4\pi\epsilon_0 \frac{r^3 E_\perp}{d} \\ \\ \Rightarrow q = \frac{1}{q \times 10^4} \times \frac{(3 \times 10^{-2})^3 \times 3 \times 10^{-6}}{3 \times 10^{-12}} = 3 \times 10^{-9} \text{C} \\ \\ \textbf{9b. রাজশাহী বোর্ড-২০১৬} \end{array}$$

$$\epsilon$$
. $E_{11} = \frac{1}{2\pi\epsilon_0} \frac{qd}{r^3} = 2E_{\perp}$

b.
$$\eta = \frac{c}{c'} = \frac{100}{100 - 15} = 1.18$$

33.
$$\frac{1}{\alpha} - \frac{1}{\beta} = 1 \Rightarrow \frac{1}{\alpha} = 1 + \frac{1}{\beta} \Rightarrow \alpha = \frac{\beta}{1+\beta} = \frac{200}{1+200} = 0.995$$

36. $\Delta E = 0.0377 \times 931 \text{ MeV} = 35.1 \text{ MeV}$

\$6.
$$\Delta E = 0.0377 \times 931 \text{ MeV} = 35.1 \text{ MeV}$$

3b.
$$E = \frac{nc}{\lambda} \Rightarrow E \propto \frac{1}{\lambda}$$

৭৮. রাজশাহী বোর্ড-২০১৬

\ <u>\</u>	۲	গ	২	ক	৩	গ	8	ক	ď	ক	৬	ঘ	٩	গ	ъ	গ	৯	গ	১০	ক	۲۲	গ	১২	ক	১৩	গ	84	ঘ	36	খ	১৬	খ	١٩	গ	১৮	গ
À	১৯	ঘ	২০	খ	২১	গ	২২	গ	২৩	ঘ	২8	গ	২৫	ঘ	২৬	গ	২৭	গ	২৮	ঘ	২৯	ক	೨೦	খ	৩১	ক	৩২	ঘ	೨೨	*	৩8	খ	৩৫	খ		

্বি ব্যাখ্যা:

$$\mathbf{9.} \quad \mathbf{s} = \int \frac{d\mathbf{Q}}{\mathbf{T}} = \int_{T_1}^{T_2} \frac{\mathbf{ms} \ d\mathbf{T}}{\mathbf{T}} = \mathbf{ms} [\mathbf{l}_n \mathbf{T}]_{T_1}^{T_2}$$

$$= \mathbf{ms} \ln \left(\frac{T_2}{T_1}\right) = 5 \times 4200 \times \ln \left(\frac{100 + 273}{10 + 273}\right) = 5798.76 \ \mathrm{Jk}^{-1}$$

9.
$$B = \frac{N\mu_0 I}{2r}$$
; $\phi = BA = \frac{N\mu_0 I}{2r}$. $\pi r^2 = \frac{\pi N\mu_0 Ir}{2}$

$$LI = N\phi$$
; $\overline{\Phi}$, $L = \frac{N\phi}{I} = \frac{\frac{\pi N^2 \mu_0 Ir}{2}}{I} = \frac{\pi N^2 \mu_0 r}{2} = 3.94 \ \mu H$

১৬.
$$I_{av} = \frac{2}{\pi} I_p$$
; বা, $I_p = \frac{\pi}{2} I_{av} = \frac{\pi}{2} \times 1.6 A = 2.512 A$

$$3b. \Delta x = \frac{D\lambda}{2d} = \frac{0.8 \times 5890 \times 10^{-10}}{2 \times 4 \times 10^{-3}} = 5.89 \times 10^{-5} \text{m} = 0.0589 \text{ mm}$$

$$3b. x = \frac{D\lambda}{2} = 0.047 \times 10^{-2} \cdot \text{s}t. s = 0.047 \times 10^{-2} \cdot \text{d}t.$$

১৯.
$$x_n = \frac{D\delta}{d} = 0.047 \times 10^{-2}$$
; বা, $\delta = \frac{0.047 \times 10^{-2}}{D}$ d

বা,
$$\delta = \frac{0.047 \times 10^{-2}}{0.8} \times 4 \times 10^{-3}$$

বা,
$$\frac{\delta}{\lambda}=4$$
 \therefore $n=4$, অতএব, চতুর্থ ক্রমের উজ্জ্বল ডোর Y পাওয়া যাবে।

\(\lambda \) E = h\(\text{0} = \lambda \frac{c}{\lambda} = 6.63 \times 10^{-34} \times \frac{3 \times 10^8}{6630 \times 10^{-10}} \)
$$\therefore E = 3 \times 10^{-19} J$$

3b.
$$E = \frac{hc}{\lambda} \Rightarrow E \propto \frac{1}{\lambda}$$

২৭.
$$\gamma = \frac{5}{3} = \frac{C_p}{C_V}$$
; $C_p - C_v = R$ বা, $\frac{C_v + R}{C_v} = \frac{5}{3}$

বা,
$$5C_v - 3C_v = 3R$$
 বা, $C_v = \frac{3}{2}R$

%
$$C_{xY} = \left(\frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C}\right)^{-1} = \frac{C}{5}$$

$$\mathbf{QQ} \cdot \frac{C_{w}}{C_{g}} = {}_{w}\mu_{g} = \frac{\mu_{g}}{\mu_{w}} = \frac{\frac{3}{2}}{\frac{4}{2}} = \frac{3}{2} \times \frac{3}{4} = \frac{9}{8}$$

$$\therefore C_w : C_g = 9 : 8$$

98.
$$F = \frac{Cq_1q_2}{r^2} = \frac{9 \times 10^9 \times 4 \times 4}{(0.01)^2} = 1.44 \times 10^{15} N$$

৭৯. রাজশাহী বোর্ড-২০১৫

Q.
$$m = 1 + \frac{D}{f} = 1 + \frac{0.25}{0.125} = 1 + 2 = 3$$

৩.
$$m = 1 + \frac{D-a}{f}$$
; বা, $\frac{D-a}{f} = m-1$;

বা,
$$D - a = f(m-1)$$

8.
$$I = (2 + 0.2)A = 2.2 A$$

8.
$$I = (2 + 0.2)A = 2.2 A$$

\$\text{Pq} = \frac{1}{2} \frac{1}{1.8 \text{ days}} \frac{1}{2} \frac{\text{Pq}}{1.8 \text{ days}} \frac{1}{2} \frac{1}{1.8 \text{ days}} \frac{1}{4} \frac{\text{Pq}}{1.8 \text{ days}} \frac{1}{8} \frac{1}{1.8 \text{ days}} \frac{1}{1.8 \text{ days}}

মোট ক্ষয়প্রাপ্ত অংশ =
$$\left(1-\frac{1}{8}\right)$$
 অংশ = $\frac{7}{8}$ অংশ

33.
$$\frac{t}{t_0} > \frac{60}{48}$$
; \overline{q} , $\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} > \frac{5}{4}$; \overline{q} , $1 - \frac{v^2}{c^2} < \frac{16}{25}$;

বা,
$$\frac{v^2}{c^2} > 1 - \frac{15}{25}$$
; বা, $\frac{v^2}{c^2} > \frac{9}{25}$; বা, $v > \sqrt{\frac{9}{25}}$ c

বা,
$$v > \frac{3}{5}c$$
 : $v > 0.6c$

32.
$$\eta = \left(1 - \frac{Q_2}{Q_1}\right) \times 100\% = \left(1 - \frac{0}{Q_1}\right) \times 100\%$$

$$= 100\%$$

$$=100\%$$
১৫. বর্গের ধার = a;
$$\therefore V = \frac{2C}{\left(\frac{a\sqrt{2}}{2}\right)^2} + \frac{6C}{\left(\frac{a\sqrt{2}}{2}\right)^2} - \frac{4C}{\left(\frac{a\sqrt{2}}{2}\right)^2} - \frac{Ca_4}{\left(\frac{a\sqrt{2}}{2}\right)^2} = 0;$$

$$\frac{4C}{\left(\frac{a\sqrt{2}}{2}\right)^2} \frac{Ca_4}{\left(\frac{a\sqrt{2}}{2}\right)^2} = 0;$$

$$\overline{4}, \frac{2c}{a^2}(2+6-4+q_4)=0;$$

$$\therefore q_4 = 4 - 6 - 2 = -4c$$

$$\begin{array}{c} \therefore \ q_4=4-6-2=-4c \\ \mbox{$\ λ}. \ E=\frac{v}{d}=\frac{4\times 10^{-3}\ VoH}{2\times 10^{-3}\ m}=2VoHm^{-1}=2NC^{-1} \end{array}$$

Ro.
$$C_T = \left(\frac{1}{C'} + \frac{1}{C'}\right)^{-1} = \frac{C'}{2} = \frac{1}{2} \frac{\epsilon_0 A'}{d'} = \frac{1}{2} \frac{\epsilon_0 \left(\frac{A}{2}\right)}{\left(\frac{d}{4}\right)}$$

$$\overline{A}$$
, $C_T = \frac{\epsilon_0 A}{d} = 0$

20. I =
$$\frac{E_2}{R_1 7 R_2 + R_2 + r} = \frac{3}{5.02} = 0.577 \text{ A}$$

বা,
$$C_T = \frac{\epsilon_0 A}{d} = C$$

২৩. $I = \frac{E_2}{R_1 7 R_2 + R_3 + r} = \frac{3}{5.02} = 0.577 \text{ A}$
২৪. $I' = \frac{E_2}{R_1 \parallel R_2 + V} = \frac{3}{20C} = 1.3636 \text{ A}$

$$\frac{V'}{V} = \frac{I'R'}{IR} = \frac{E_2 - I'r}{E_2 - I_r} = \frac{3 - 1.3636 \times 0.2}{3 - 0.577 \times 0.2} = 0.945$$

$$\mathbf{R} \cdot \mathbf{v} = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m/s}}{0.03 \times 10^{-2} \text{m}} = 10^{12} \text{ Hz}$$

$$\Re c. v = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m/s}}{0.03 \times 10^{-2} \text{m}} = 10^{12} \text{ Hz}$$

$$\text{Re. } \mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} = \frac{\sin\left(\frac{60^\circ + 30^\circ}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)}$$

$$=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} = \sqrt{2} = 1.414$$

২b.
$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6650 \times 10^{-10}} = 2.99 \times 10^{-19} J$$

\&a.
$$(10111)_2 = (1 \times 2^4 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^\circ)_{10}$$

= $(16 + 4 + 2 + 1)_{10} = (23)_{10}$

90.
$$i = \frac{\{12 - (0.7 + 0.3)\}V}{5.6 \text{ k}\Omega} = 1.96 \text{ mA}$$

৩২.
$$1 \text{ amu} = \frac{1}{12} \times \text{C} - 12$$
 পরমাণুর ভর $= \frac{1}{12} \times \frac{M}{N_A}$
$$= \frac{12}{12 \times 6.02 \times 10^{23}} = 1.67 \times 10^{-24} \text{g}$$

$$= \frac{12}{12 \times 6.02 \times 10^{23}} = 1.67 \times 10^{-24} g$$

$$= 1.67 \times 10^{-27} \text{kg}$$

E(1.amu) =
$$1.67 \times 10^{-27} \times (3 \times 10^8)^2$$

$$= 1.5 \times 10^{-7} J = 934 \text{ MeV}$$

$$=1.5 \times 10^{-7} J = 934 \text{ MeV}$$

$$=1.5 \times 10^{-7} J = 934 \text{ MeV}$$

$$\text{99. } \frac{I}{H} = \frac{1}{\cos \delta}; \text{ All } I = \frac{I}{\cos \delta} = \frac{27.87 \ \mu\text{T}}{\cos 30^{\circ}} = 32.18 \mu\text{T}$$

৮০. দিনাজপুর বোর্ড-২০১৭

\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	٥	খ	২	ক	9	খ	8	খ	ď	গ	৬	খ	٩	গ	ъ	গ	৯	খ	٥٥	ক	77	খ	১২	ঘ	20	খ
र्ह्म	ک 8	খ	36	গ	১৬	খ	১৭	গ	3 b	খ	ኔ৯	ঘ	২০	খ	২১	ক	২২	খ	২৩	ঘ	২8	*	২৫	ক		

্ব্যাখ্যা:

$$\label{eq:energy_energy} \textbf{9.} \quad E = \frac{\sigma_s}{k\epsilon_0} = \frac{8.854 \times 10^{-12} \times 10^4}{5 \times 8.854 \times 10^{-12}} = 2000 \ NC^{-1}$$

9.
$$\frac{E_{LOST}}{E_{GAINED}} = \frac{\frac{1}{1+4}E}{\frac{4}{1+4}E} = \frac{1}{4}$$

9.
$$B = \frac{\mu_0 Ni}{2r} = \frac{\mu_0 \times 1 \times 2}{2 \times 2} = \frac{\mu_0}{2}$$

v.
$$B \propto \frac{1}{r}$$
, $\frac{\beta_2}{\beta_1} = \frac{r}{r/2} = 2 \Rightarrow B_2 = 2B_1$

33.
$$A = 2r \Rightarrow r = \frac{A}{2}$$

$$\Rightarrow$$
 r = $\frac{50^{\circ}}{2}$ = 25°
১২. $r_1 = r_2$; [ন্যুনতম বিচ্যুতির ক্ষেত্রে]
২০. $\phi = \cos^{-1}\left(\frac{H}{B}\right) = \cos^{-1}\left(\frac{16}{36}\right) = 60^{\circ}$ ২৪. সঠিক উত্তর $\frac{5\pi}{2}$.

২৪. সঠিক উত্তর
$$\frac{5\pi}{2}$$

৮১. দিনাজপুর বোর্ড-২০১৬

N.	١	ক	ર	ঘ	೨	খ	8	খ	ď	ঘ	৬	ক	٩	গ	ъ	ঘ	৯	খ	20	খ	77	খ	১২	গ	১৩	গ	84	ঘ	36	গ	১৬	গ	১৭	খ	76	ঘ
<u>ه</u>	১৯	ক	২০	ঘ	২১	খ	২২	গ	২৩	ঘ	২৪	গ	২৫	গ	২৬	ঘ	২৭	ক	২৮	ক	২৯	গ	೨೦	ঘ	৩১	ঘ	৩২	খ	೨೨	ক	৩৪	ক	৩৫	ঘ		

্বি ব্যাখ্যা:

৩.
$$\sigma = \frac{2\pi}{\lambda} \delta$$
; বা, $\delta = \frac{\lambda}{2\pi} \sigma = \frac{\lambda}{2\pi} \times \frac{\pi}{2} = \frac{\lambda}{4}$

9.
$$R_T = R + (R7R7R) + R = 2R + \frac{R}{3} = \frac{7R}{3}$$

b.
$$I = \frac{E}{R_T} = \frac{E}{\frac{7R}{R}} = \frac{3E}{7R}$$

b.
$$I = \frac{E}{R_T} = \frac{E}{\frac{7R}{3}} = \frac{3E}{7R}$$

52. $P = \frac{1}{f} = \frac{1}{+2.0} = +0.5m$

$\overline{4}, \frac{A + \delta_m}{2} = \sin^{-1}\mu \sin \frac{A}{2}$
$\therefore \ \delta_{\rm m} = 2 {\rm sin}^{-1} \left(\sqrt{2} \ {\rm sin} \ \frac{60}{2} \right) - 60^{\circ} = 30^{\circ}$
২৭. $k = \frac{1}{2} mv^2 = \frac{p^2}{2m} = eV;$ বা, $p = \sqrt{2emV}$
$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2emV}}$
$-$ 6.63 \times 10 ⁻³⁴
$-\sqrt{2 \times 1.6 \times 10^{-19} \times 9.11 \times 10^{-29} \times 500}$
$\therefore \ \lambda = 5.5 \times 10^{-11} \ m = 0.55 \ \mathring{A}$
Rep. $T_{\frac{1}{2}} = 3.82 \text{ d}; \ \lambda = \frac{\ln 2}{T_{\frac{1}{2}}} = \frac{\ln 2}{3.82} \ 20.18 \text{ d}^{-1}$
98. $v = 3 \times 10^{17}$ Hz, $E = hv = 6.63 \times 10^{-34} \times 3 \times 10^{17}$
$\therefore E = 1.989 \times 10^{-16} J$
V (i) $c = 3 \times 10^8$ m/s, (ii) $\lambda = \frac{c}{\upsilon} = \frac{3 \times 10^8}{3 \times 10^{17}} = 10^{-9}$ m
(iii) $P = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{10^{-9}} = 6.63 \times 10^{-25} \text{ kg ms}^{-1}$

৮২. দিনাজপুর বোর্ড-২০১৫

t	<u>7</u> 5	۷	М	২	L	৩	Ν	8	Κ	œ	Κ	৬	Ν	٩	Ν	ъ	*	৯	Ν	20	Ν	77	L	১২	Κ	১৩	*	78	L	36	L	১৬	М	১৭	Κ	১ ৮ №	1
Ŋ	9	১৯	Κ	২০	Κ	২১	L	২২	Κ	২৩	Ν	২৪	L	২৫	Κ	২৬	M	২৭	Ν	২৮	М	২৯	Ν	೨೦	Κ	৩১	Ν	৩২	Κ	೨೨	Ν	৩8	М	৩৫	Κ		

্বি ব্যাখ্যা:

$$\begin{aligned} \bullet & |\vec{F}| = |\vec{qv} \times \vec{B}| = |qvB \sin 90^{\circ}| = |qvB| \\ & = \left| qv \frac{\mu_0 I}{2\pi a} \right| \\ & = \left| -1.6 \times 10^{-19} \times 3 \times 10^5 \times \frac{4\pi \times 10^{-7} \times 4}{2\pi \times 3 \times 10^{-2}} \right| = 1.28 \times 10^{-18} \, \text{N} \\ \textbf{8.} & 2\pi r = L \; ; \; \overrightarrow{\neg} \ , \; 2r = \frac{L}{\pi} \; ; \\ & B = \frac{\mu_0 I}{2r} = \frac{\mu_0 I}{L} = \frac{\pi \mu_0 I}{L} = \frac{\pi \times 4\pi \times 10^{-7} \times 4}{3.14} \, \text{T} \\ & \therefore \; B = 5.02 \times 10^{-6} \, \text{Wb/m}^2 \\ \textbf{9.} & i_0 = \frac{\epsilon_0}{R} = \frac{220 \, \text{V}}{220\Omega} \\ & \therefore \; i_0 = 1 \, \text{A}, \; i = i_0 \sin 2\pi \; \text{ft} = 1 \sin 100 \; \pi \text{t} \end{aligned}$$

9.
$$i_0 = \frac{\epsilon_0}{R} = \frac{220V}{220\Omega}$$
 $\therefore i_0 = 1A, \ i = i_0 \sin 2\pi \ \text{ft} = 1 \sin 100 \ \pi \text{t}$
 $\therefore i = \sin 314\text{t}$
 $\overline{i} = \frac{2}{T} \times i_0 \int_0^{\frac{\pi}{2}} \sin wt \ \text{dt} = \frac{2i_0}{wT} [\cos wt]_0^{\frac{\pi}{2}}$
 $\overline{i} = \frac{2i_0}{2\pi} \times 2 = \frac{2}{\pi} i_0 = \frac{2}{\pi} A = 0.637A$
 $i_{r.m.s} = \frac{i_0}{\sqrt{2}} = 0.707A$
 π . সঠিক উত্তর গ ও ঘ উত্তরই

$$\mathbf{i}_{r.m.s} = \frac{\mathbf{i}_0}{\sqrt{2}} = 0.707 \mathrm{A}$$
 $\mathbf{i}_{r.m.s} = \frac{\mathbf{i}_0}{\sqrt{2}} = 0.707 \mathrm{A}$
 \mathbf{b} . সঠিক উত্তর গ ও ঘ উভয়ই
$$\mathbf{bo.} \ \mathbf{m} = 1 + \frac{\mathbf{D}}{\mathbf{f}} = 1 + \frac{0.25}{0.1} = 1 + 2.5 = 3.5$$

$$\mathbf{bo.} \ \Delta \mathbf{x} = \frac{\mathbf{D}\lambda}{2\mathbf{a}} = \frac{1.2 \times 5800 \times 10^{-10} \times 10^3}{2 \times 0.2 \times 10^{-3}} \ \mathbf{mm}$$

$$= 1.74 \ \mathbf{mm}$$

$$\mathbf{bb.} \ \lambda' = \lambda + \frac{\mathbf{h}}{m_0 \mathbf{c}} (1 - \cos \theta) = \frac{\mathbf{c}}{\mathbf{v}} + \frac{\lambda}{m_0 \mathbf{c}} (1 - \cos \theta)$$

$$\mathbf{d}, \ \lambda' = \frac{3 \times 10^8}{10^{19}} + \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3 \times 10^8} (1 - \cos 30^\circ)$$

$$\therefore \ \lambda' = 3.03 \times 10^{-11} \ \mathbf{m}$$

১৯.
$$E = \Delta m \times E(1a.mu)$$
বা, $E = \{2(m_p + m_n) - m(2^4He)\} \times E(1 a.m.u)$
বা, $E = [2(1.00728 + 1.00876) - 4.00276] \times 931 \text{ MeV}$
 $\therefore E = 27.287 \text{ MeV}$

$$\begin{array}{l} & \begin{array}{l} {\bf +}(110111)_2 \\ & +(110111)_2 \\ \hline & (1100100)_2 \end{array} \\ & \begin{array}{l} (ii) \ 101 \ | 101101 \ | 1001 \\ \hline & 101 \end{array} \\ & \begin{array}{l} 101 \\ \hline & 101 \end{array} \\ & \begin{array}{l} (iii) \ 110111 \\ & +101101 \\ \hline & 001010 \end{array} \\ \begin{array}{l} {\bf +}01101 \\ \hline & 101101 \\ \hline & \times 110111 \\ \hline & 101101 \\ \hline & 101101 \times \\ \hline & 1010101 \times \\ \hline & (1001101010111)_2 \end{array} \\ \begin{array}{l} {\bf +} & {\bf +} \\ \hline & & & & {\bf +} \\ \hline & & & & {\bf +} \\ \hline & & & & & {\bf +} \\ \hline & & & & & {\bf +} \\ \hline & & & & & {\bf +} \\ \hline & & & & & {\bf +} \\ \hline & & & & & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +} & {\bf +} \\ \hline & & & & & {\bf +$$

৮৩. কুমিল্লা বোর্ড-২০১৭

(ওব	۵	М	২	М	•	L	8	Κ	Œ	Κ	৬	М	٩	K	ъ	L	৯	L	٥٥	L	77	Κ	১২	М	১৩	L
唇	78	L	ን৫	Ν	১৬	Κ	١٩	М	3 b	L	ኔ ৯	L	২০	Ν	২১	Ν	২২	Ν	২৩	М	২8	Κ	২৫	L		

২.
$$\Delta Q = \Delta U + \Delta W \Rightarrow \Delta U = \Delta Q - \Delta W$$

 $\Rightarrow \Delta U = [-300 - (-500)] J = 200J$

$$\Rightarrow \Delta U = [-300 - (-500)] J = 200J$$
c.
$$\frac{5}{R} = \frac{7}{21} = \frac{1}{3} \Rightarrow R = 15\Omega = (10 + 5) \Omega$$

∴ 5Ω রোধ শ্রেণিতে সংযুক্ত করতে হবে।

b.
$$L = -\frac{\epsilon}{\frac{dI}{dt}} = -\frac{(15V)}{-\frac{2}{0.2}\,AS^{-1}} = 1.5\;H$$

38.
$$^{222}_{86}$$
X → $^{214}_{82}$ Y + $^{4}_{2}$ He; ⇒ 2n + 82 = 86
⇒ 2n = : n = 2

23. $\frac{1}{1.5f} + \frac{1}{v} = \frac{1}{f} \Rightarrow \frac{1}{v} = \frac{1}{f} - \frac{1}{1.5f} = \frac{1}{f} \left(1 - \frac{2}{3}\right)$ $\Rightarrow \frac{1}{v} = \frac{1}{3f}$; v = 3f;

২৩. 'গ' নং চিত্রে AB তারের প্রত্যেক বিন্দু থেকে C এর দূরত্ব সমান, তাই **র** সর্বোচ্চ ।

৮৪. কুমিল্লা বোর্ড-২০১৬

k	7 5	۲	М	ા ર	L	৩	Ν	8	Ν	Œ	L	৬	Ν	٩	Ν	b	L	৯	Ν	20	Ν	77	L	১২	Κ	১৩	М	78	М	ን৫	*	১৬	Κ	ኔዓ ∟	3 6 K
Λ	ó	১৯	Ν	২৫	κ	২১	Ν	২২	K	২৩	М	২8	Κ	২৫	М	২৬	М	২৭	Κ	২৮	М	২৯	Κ	೨೦	Ν	৩১	М	৩২	L	೨೨	Ν	৩ 8	L	৩৫ ∟	

্ব্যাখ্যা:

\(\) Ne = q;
$$\forall$$
, N = $\frac{q}{e} = \frac{1 \text{ C}}{1.6 \times 10^{-19} \text{ C}} = 6.25 \times 10^{18}$

$$\begin{array}{ll} \textbf{ } & \frac{c_w}{c_g} = _w \mu_g \ ; \ \vec{ \ \ } \ , \ \frac{c_w}{c_g} = \frac{\mu_g}{\mu_w} = \frac{1.5}{1.33} \\ & \ \vec{ \ \ } \ , \ c_w = \frac{1.5}{1.33} \ c_g = \frac{1.5}{1.33} \times 2.02 \times 10^8 \ m/s \ = 2.27 \times 10^8 \ m/s \end{array}$$

$$33. |\overrightarrow{B} \cos \theta| = 2 \cos 60^{\circ} = 1T$$

\$৩.
$$\phi = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta$$

$$\therefore \phi(\theta = 45^\circ) = 2 \times 2 \cos 45^\circ = 2.828 \text{ wb} \neq 0$$

$$\phi(\theta = 90^\circ) = 2 \times 2 \cos 90^\circ = 0 \neq \phi_{max}$$

$$\phi(\theta = 0^\circ) = 4 \times 1 = 4 = \phi_{max}$$

$$\phi(\theta = 180^\circ) = 4 \times (-1) = -4 \neq 0$$
\$৫. সঠিক উত্তর A ধন্দ্রক, B ও C ঋণ্ডাক

Qo.
$$C = \frac{q}{V} = \frac{10C}{2 \text{ volt}} = 5F$$

২১. $V = \frac{q}{C}$; $V \propto q$, অর্থাৎ qহাস করলে V আরও কমবে।

আবার, V
$$\alpha \frac{1}{C}$$
, C = $\frac{\varepsilon A}{d}$ \therefore V $\alpha \frac{d}{\varepsilon A}$

∴ dহাস করলে Vহাস পাবে।

Aহ্রাস করলে V বাড়বে

 ϵ বৃদ্ধি পেলে V কমবে

$$\textbf{39.} \ \delta = \frac{2\pi}{\lambda} \ \sigma = \frac{2\pi}{\lambda} \times \frac{5\lambda}{4} = \frac{5}{2} \ \pi$$

90.
$$T_{\frac{1}{2}}(X) = \frac{\ln 2}{\lambda_x} = \frac{\ln 2}{10^{-3}} = 693 \text{ d}$$

$$\label{eq:tau_X} \begin{array}{l} \mbox{\bf 95.} \; \lambda_X = 10^{-3} \\ \\ \tau_Y = T_{\frac{1}{2}}(X) \end{array}$$

বা,
$$\tau_Y = 693 \text{ d}$$
; বা, $\frac{1}{\lambda_Y} = 693 \text{ d}$

বা,
$$\lambda_{\rm Y} = 1.44 \times 10^{-3} \, {\rm d}^{-1}$$

$$\lambda_Y > \lambda_X$$

৮৫. কুমিল্লা বোর্ড-২০১৫

		`	-			`																														
(S)	۵	Μ	ા ર	Ν	9	Ν	8	М	œ	М	৬	L	٩	Ν	ъ	L	৯	L	20	М	77	Ν	১২	L	১৩	М	78	М	26	М	১৬	L	১৭	*	ንራ	Ν
É	১৯	Κ	২০	L	২১	K	২২	M	২৩	L	২8	Ν	২৫	М	২৬	L	২৭	Ν	২৮	Κ	২৯	*	೨೦	М	৩১	Κ	৩২	Ν	೨೨	L	৩8	Ν	৩৫	М		

্ব্যাখ্যা:

Q.
$$N = \frac{q_1}{e} = \frac{+2C}{1.6 \times 10^{-19}C} = 1.25 \times 10^{19}$$

$$\mathbf{br.}$$
 $PV^{r} =$ ধুচবক ; $PV = RT$ $\therefore P = \frac{RT}{V}$;

ৰা,
$$\frac{RT}{V}V^r =$$
 ধ্রুবক ; বা, $TV^{r\text{-}1} =$ ধ্রুবক [\square R ধ্রুব]

আবার,
$$V = \frac{RT}{P}$$
;

$$\therefore$$
 $P\left(\frac{RT}{P}\right)^r =$ ধ্রুবক ; $T^{\gamma}P^{1-\gamma} =$ ধ্রুবক

বা,
$$\left(\operatorname{TP}\frac{1-\gamma}{1-\gamma}\right)^{\gamma} =$$
ধ্রুবক $: \operatorname{TP}\frac{1-\gamma}{1-\gamma} =$ ধ্রুবক

বা,
$$\left(TP\frac{1-\gamma}{\gamma}\right)^{\gamma}$$
 = ধ্রুন্বক $\therefore TP\frac{1-\gamma}{\gamma}$ = ধ্রুন্বক
১০. $B = \frac{N\mu_0 I}{2r} = \frac{240 \times 4\pi \times 10^{-7} \times 5}{2 \times 6.28 \times 10^{-4}} T = 1.2T$

33.
$$I = \frac{E}{R + r_1 + r_2} = \frac{8+6}{10+2+2} = \frac{14}{14} A = 1A$$

১৭. সঠিক উত্তর শুধু i.

\$\.
$$r = 0.15m$$
; $x = 0.05$ cm; $x < r$

$$\begin{split} & \therefore \ v_x - v_r = E(x-r) = 0 \ ; \ \overrightarrow{\text{al}}, \ v_x = v_R \\ & \overrightarrow{\text{al}}, \ v_x = \frac{cq}{r} = \frac{9 \times 10^9 \times 20 \times 10}{0.15} = 1.2 \times 10^{13} \ votls \\ & \textbf{ 28.LI} = N\phi; \ \overrightarrow{\text{al}}, \ I = \frac{N}{L} \phi \ ; \phi \rightarrow x; \ I - y \end{split}$$

\8. LI = N
$$\varphi$$
; $\overline{\P}$, $I = \frac{N}{I} \varphi$; $\varphi \to x$; $I - y$

$$\frac{N}{L} \rightarrow m; \ y = mx$$
 যা একটি সরলরেখা

২৯.
$$\Delta x = \frac{D\lambda}{2d}$$
; বা, $\lambda = \frac{2d\Delta x}{D} = \frac{2 \times 2 \times 10^{-3} \times 0.3 \times 10^{-3}}{10^4 \times 10^{-3}}$
বা, $\lambda = 1.2 \times 10^{-7}$ m

৮৬. সিলেট বোর্ড-২০১৭

N.	۵	Ν	২	М	•	K	8	Κ	Œ	Ν	৬	L	٩	L	ъ	Ν	৯	Ν	٥٥	L	77	М	১২	*	১৩	М
উত্তর	78	Ν	36	Ν	১৬	М	১৭	Ν	ን ৮	Ν	১৯	L	২০	L	২১	Κ	২২	Ν	২৩	М	২8	L	২৫	L		

্দ্র ব্যাখ্যা<u>:</u>

3.
$$\lambda' = \lambda = \frac{\lambda}{mc} (1 - \cos\theta) = \lambda + \frac{2h}{mc} \sin^2(\theta/2)$$

$$\therefore \lambda'_{\text{max}} = \lambda + \frac{2h}{mc}; \sin^2(\theta/2) = 1; \sin(\theta/2) = 1$$

$$\Rightarrow \theta/2 = 90^{\circ}; \theta = 180^{\circ}$$

9.
$$(m-m_0) c^2 = 3m_0c^2$$

$$\Rightarrow m-m_0=3m_0 \Rightarrow m=4m_0$$

8.
$$B = \alpha + C = D + \gamma + \alpha$$

$$\Rightarrow B = D + \gamma + \alpha = {}^{210}_{82}D + {}^0_0\gamma + {}^4_2He$$

$$\therefore B = {}^{214}_{84}B$$

C.
$$A = B + \beta$$

 $\Rightarrow A = {}^{214}_{84}B + {}^{0}_{-1}e = {}^{214}_{83}A$

$$\Rightarrow$$
 A = $^{214}_{84}$ B + $^{0}_{-1}$ e = $^{214}_{83}$ A
১২. সঠিক উত্তর শুধু i.
১৭. B = $\frac{\mu_0 Ni}{2r}$ = $\frac{4\pi \times 10^{-7} \times 1000 \times 2}{2 \times 1.57 \times 10^{-2}}$ T = 8×10^{-2} T

৮৭. সিলেট বোর্ড-২০১৬

	••	• •	• •		- ''	-	,	_																													
8	۵	١	M	ર	L	9	Κ	8	L	œ	Ν	૭	Κ	٩	Κ	b	Κ	৯	М	১০	Κ	77	М	১২	L	১৩	Ν	۶٤	L	ን ৫	*	১৬	Κ	১৭	L	ን৮	L
À	38	1 6	M :	২০	L	২১	Ν	২২	L	২৩	Κ	২8	L	২৫	Ν	২৬	Κ	২৭	L	২৮	L	২৯	Κ	೨೦	М	৩১	М	৩২	М	೨೨	М	৩8	*	৩৫	М		

3b. $R = \frac{V^2}{P} = \frac{220^2}{60} \Omega = 806.67\Omega$

૨૭. W = nRT $ln\left(\frac{V_2}{V_1}\right) = 1 \times 8.314 \times 6 (40 + 273) ln2$

্ব্যাখ্যা:

ে
$$E = \frac{q}{4\pi \in \sigma r^2}$$
; $E \propto \frac{1}{r^2}$; \therefore (ঘ) সঠিক।

ক.
$$E = \frac{q}{4\pi\epsilon_0 r^2}$$
; $E \propto \frac{1}{r^2}$; \therefore (ঘ) সঠিক।
৬. $\sigma = \frac{q}{4\pi r^2}$; $\frac{+1C}{4\pi \times (10 \times 10^{-2})m^2} = 7.96 \text{ C/m}^2$
δ. (i) $R_{AB} = (474)\Omega = \frac{4 \times 4}{4 + 4} = \frac{16}{8} = 2\Omega$

b. (i)
$$R_{AB} = (474)\Omega = \frac{4 \times 4}{4 + 4} = \frac{16}{8} = 2\Omega$$

(ii)
$$R_{AB} = (17171)\Omega = \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1}\right)^{-1} = \frac{1}{3}\Omega$$

(iii)
$$R_{AB} = (2+2)\Omega 7(2+2)\Omega = 4\Omega 74\Omega = \frac{4\times 4}{4+4}\Omega = 2\Omega$$

>>.
$$I_e = I_b + I_c = 100 \mu A + 5 m A = 5 m A + 100 \times 10^{-3} m A$$

 $\therefore I_e = (5 + 0.1) m A = 5.1 m A$

32.
$$\alpha = \frac{I_c}{I_e} = \frac{5}{5.1} = 0.98$$

$$\mathbf{38.} \ I_{av} = \frac{\int_{0}^{\frac{T}{2}} i \, dt}{\frac{T}{2}} = \frac{i_0 \int_{0}^{\frac{T}{2}} \sin \omega t \, t}{\frac{T}{2}}$$

$$= \frac{2}{T} i_0 \frac{1}{\omega} [-\cos \omega t]_{0}^{\frac{T}{2}}$$

$$= \frac{2i_0}{\omega T} \left(\cos 0 - \cos \frac{\omega T}{2}\right)$$

$$= \frac{2i_0}{2\pi} (\cos 0 - \cos \pi) = \frac{2}{\pi} i_0$$

১৫. LI = N
$$\phi$$
 ; বা, $\phi = \frac{LI}{N} = \frac{20 \times 10^{-3} \times 20}{2000}$
= 2×10^{-4} Wb

$$= 2 \times 10^{-4} \text{ Wb}$$

\$\int v = \pm 34; \frac{1}{u} + \frac{1}{v} = \frac{1}{f}\$

$$\frac{1}{u} \pm \frac{1}{3u} = \frac{1}{f}$$
; \vec{A} , $\frac{3 \pm 1}{3u} = \frac{1}{f}$

$$u = \frac{3 \pm 1}{3} f$$
; বা, $u = \frac{4}{3} f$ [বাস্তব বিম্ব]

$$\therefore u = \frac{4}{3} \times 12 = 16 \text{ cm} ; u = \frac{2}{3} \text{ f} [অবাস্তব বিম্ব]}$$

$$\therefore u = \frac{2}{3} \times 12 = 8 \text{ cm}$$

$ \mathbf{R} \mathbf{R}_{\text{max}} = \mathbf{h} \mathbf{v} - \mathbf{W}_0 = \frac{\mathbf{h} \mathbf{c}}{\lambda} - \mathbf{h} \mathbf{f}_0 = \mathbf{h} \left(\frac{\mathbf{c}}{\lambda} - \mathbf{f}_0 \right) $
বা, $k_{\text{max}} = 6.63 \times 10^{-34} \left[\frac{3 \times 10^8}{2400 \times 10^{-10}} - 8 \times 10^{14} \right]$
$\therefore k_{\text{max}} = 2.98 \times 10^{-19} \text{J}$
$\Re \mathbf{r} \cdot \lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{\ln 2}{12.5} = 0.055 \text{ y}^{-1}$
$N = N_0 \; e^{-\lambda t} \; \overline{\mbox{\bf d}}, \; \frac{N}{N_0} = e^{-0.055 \times 25} \; \therefore \; \frac{N}{N_0} = \frac{1}{4} \label{eq:N0}$
\&a. (i) $\tau = \frac{1}{\lambda} = \frac{1}{0.055} = 18.03 \text{ y}$
(ii) $t_{\frac{1}{2}} = 12.5y$
(iii) $\lambda = 0.055 \text{ y}^{-1}$
© \mathbf{q} . $\mathbf{t}_{\frac{1}{2}} = 10 \text{ d}$; $\mathbf{N} = (100 - 75)\% \times \mathbf{N}_0 = 25\% \text{ N}_0$
বা, $N = \frac{1}{4} N_0$; বা, $N_0 e^{-\lambda t} = \frac{1}{4} N_0$; বা, $\lambda t = \ln 4$
বা, $t = \frac{1}{\lambda} \ln 4 = \frac{1}{\frac{\ln 2}{T_{\frac{1}{2}}}} \ln 4 = \frac{\ln 4}{\ln 2} \times T_{\frac{1}{2}}$
বা, $t = \frac{\ln 4}{\ln 2} \times 10d = 20 d$
99. $\mu_{\rm w} = \frac{4}{3}$; $\mu_{\rm g} = \frac{3}{2}$; $\mu_{\rm g} = \frac{\mu_{\rm w}}{\mu_{\rm g}} = \frac{\frac{4}{3}}{\frac{3}{2}}$
$\therefore \ _{\rm g}\mu_{\rm w} = \frac{8}{9}$
98. E = mc ² = $\frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{9 \times 10^{-31} \times (3 \times 10^8)^2}{\sqrt{1 - (0.98)^2}} J$
$\therefore E = 4 \times 10^{-13} J = \frac{4 \times 10^{-13}}{1.6 \times 10^{-19}} eV$
$= 2.5 \times 10^{-6} \text{eV}$

৮৮. সিলেট বোর্ড-২০১৫

8	۲	Κ	২	L	೨	L	8	Ν	¢	М	৬	L	٩	М	ъl	L	৯	Κ	১০	L	77	L	১২	Κ	১৩	М	84	Ν	26	L	১৬	М	১৭	L	3 b N
鹵	১৯	Ν	২০	L	২১	L	২২	М	২৩	Κ	২৪	Κ	২৫	L	২৬ ৷	М	২৭	Ν	২৮	Ν	২৯	М	೨೦	Ν	৩১	L	৩২	L	೨೨	М	৩8	Ν	৩৫	L	

্ব্যাখ্যা:

৩. প্রথম লেন্সের ক্ষেত্রে,
$$\frac{1}{f}=\frac{1}{u}+\frac{1}{v_1}$$
;(i) দ্বিতীয় লেন্সের ক্ষেত্রে, $u_1=-v_1$; $\frac{1}{f}=-\frac{1}{v_1}+\frac{1}{v}$(ii)

দ্বিতীয় লেন্সের ক্ষেত্রে,
$$u_1=-v_1$$
 ; $\frac{1}{f}=-\frac{1}{v_1}+\frac{1}{v}$ (ii

(i) + (ii)
$$\overline{\triangleleft}$$
, $\frac{1}{f} + \frac{1}{f} = \frac{1}{u} + \frac{1}{v} = \frac{2}{f} = \frac{1}{\frac{f}{2}} = \frac{1}{F}$

$$\therefore F = \frac{f}{2}$$

$$\begin{array}{ll} \textbf{8.} & \mu_a = \frac{c_0}{c_a} = \frac{c_0}{\left(1 - \frac{15}{100}\right)c_0} = \frac{100}{85} = 1.176 \, \text{\sim} 1.18 \\ \\ \textbf{b.} & k = eV; \, \text{eV}; \, \text{eV}; \, \text{eV}; \, \text{eV}; \, \text{eV}; \, \text{eV}; \, \text{eV} \\ \\ & \therefore \, v = \sqrt{\frac{2eV}{m}} \end{array}$$

b.
$$k = eV$$
; \overline{d} , $\frac{1}{2}mv^2 = eV$; \overline{d} , $v^2 = \frac{2eV}{m}$

$$\therefore v = \sqrt{\frac{2eV}{m}}$$

∴ E = 2.54 MeV

$$\therefore 4 T_{\frac{1}{2}} = 2$$
 ঘটা বা, $T_{\frac{1}{2}} = \frac{2}{4} \times 60$ মিনিট = 30 মিনিট

>8.
$$\Delta s = mS \ln \left(\frac{T_2}{T_1}\right)$$

= 0.01 × 4200 × ln $\left(\frac{10 + 273}{273}\right)$

$$\therefore \Delta s = 1.5 \text{ Jk}^{-1}$$

$$H = i^2 Rt = 1^2 \times 90 \times 20 \times 60J = 1.08 \times 10^5 J$$

৩০.
$$H=i^2Rt=mS~\Delta\theta$$
 ; বা, $\Delta\theta=\frac{i^2~Rt}{mS}i$

বা,
$$\theta - 12 = \frac{i^2 Rt}{ms}$$

বা, $\theta = 12 + \frac{i^2 Rt}{ms} = 12 + \frac{1.08 \times 10^5}{2 \times 4200}$

৩১.
$$\oint_{\hat{\mathbf{C}}} \vec{\mathbf{B}} \cdot d\vec{l} = \mu_0 \mathbf{I}$$
; বা, $\mathbf{B} \times 2\pi \mathbf{a} = \mu_0 \mathbf{I}$; $\mathbf{B} = \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{a}}$

৩৪. $t = \frac{AO}{v} + \frac{OB}{v} = \frac{\sqrt{OC^2 + AC^2}}{v} + \frac{\sqrt{OD^2 + BD^2}}{v}$ বা, $t = \frac{\sqrt{x^2 + h_1^2}}{v} + \frac{\sqrt{(l-x)^2 + h_1^2}}{v}$

ত ক. ফার্মাটের নীতি অনুযায়ী, ∠AON = ∠BON

বা,
$$\angle AOC = \angle BOD$$
; $\cos \angle AOC = \cos \angle BOD$

$$\overline{A}, \frac{x}{\sqrt{x^2 + h_1^2}} = \frac{1 - x}{\sqrt{(l - x)^2 + h_1^2}} \dots (i)$$

আবার,
$$t = \frac{\sqrt{x^2 + h_1^2}}{v} + \frac{\sqrt{(l-x)^2 + h_2^2}}{v}$$

ৰা,
$$\frac{x}{\sqrt{x^2 + h_1^2}} = \frac{l - x}{\sqrt{(l - x)^2 + h_1^2}}$$
.....(i)

আবার, $t = \frac{\sqrt{x^2 + h_1^2}}{v} + \frac{\sqrt{(l - x)^2 + h_2^2}}{v}$

বা, $\frac{dt}{dx} = \frac{1}{v} \left[\frac{x}{\sqrt{2^2 + h_1^2}} + \frac{(l - x)\left(\frac{dl}{dx} - 1\right)}{\sqrt{l - x^2 + h_2^2}} \right] = 0$

ৰা,
$$\frac{x}{\sqrt{x^2 + h_1^2}} = \frac{l - x}{\sqrt{(l - x)^2 + h_1^2}} \left(1 - \frac{dl}{dx}\right)$$

$$1 = 1 - \frac{\mathrm{d}l}{\mathrm{d}x} \quad \therefore \frac{\mathrm{d}l}{\mathrm{d}x} = 0$$

৮৯. চট্টগ্রাম বোর্ড-২০১৭

জু	۵	М	২	М	೨	Κ	8	L	ď	Ν	৬	L	٩	М	Ъ	Κ	৯	L	٥٥	Κ	77	L	১২	М	১৩	М
唇	78	Ν	ኔ ৫	L	১৬	Ν	১৭	М	ንራ	Κ	১৯	Ν	২০	L	২১	Κ	২২	М	২৩	L	২8	Κ	২৫	Ν		

্বি ব্যাখ্যা:

$$\mathbf{C}$$
. $\overrightarrow{A.B.B} = \overrightarrow{A.B} = \overrightarrow{A} + B$

>\.\.\[(2+1) \| 3] \mu F = (3 \| 3) \mu F =
$$\frac{3}{2} \, \mu F$$

= 1.5 \mu F

59.
$$R = R_0 (1 + \alpha \theta) = R_0 + \alpha R_0 \theta$$

39. m =
$$\frac{f_0}{f_e} = \frac{40}{5} = 8$$

$$\begin{array}{c} \textbf{3.5} \\ \textbf{3.5} \\ \textbf{3.5} \\ \textbf{3.5} \\ \textbf{4.5} \\ \textbf{5.0} \\ \textbf{5.$$

$$\Rightarrow$$
 10x = 600; \Rightarrow x = 60cm

২৩.
$$\frac{4}{50} = \frac{R}{50}$$
; $R = 4$; $\frac{1}{6} + \frac{1}{S} = \frac{1}{4}$;

$$\Rightarrow \frac{1}{S} = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}; S = 12S$$

৯০. চট্টগ্রাম বোর্ড-২০১৬

8	:	ا د	K	২	L	೨	Ν	8	Κ	¢	М	৬	L	٩	Ν	Ъ	М	৯	*	٥٥	Κ	77	L	১২	L	১৩	М	84	L	\$&	L	১৬	L	১৭	М	3 b	K
唇	۵	৯	K	২০	М	২১	Κ	২২	Κ	২৩	Ν	২৪	Κ	২৫	L	২৬	Κ	২৭	Ν	২৮	Ν	২৯	М	೨೦	Κ	৩১	М	৩২	М	೨೨	Ν	৩8	Κ	৩৫	Κ		

্ব্যাখ্যা:

C. W = Vit = vq =
$$12 \times 8 \times 10^{-3} = 0.096 \text{ J}$$

9.
$$F = qE = 1.6 \times 10^{-19} \times 4.0 \times 10^4 \text{ N} = 6.4 \times 10^{-15} \text{ N}$$

$$\begin{array}{ll} \textbf{9.} & W_0 = \frac{hc}{\lambda_{max}} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6800 \times 10^{-10}} \, J = 2.925 \times 10^{-9} J = 1.83 \, eV \\ \\ \textbf{br.} & I = \frac{E}{R+r} \ ; \ V_R = E - I_r = E - \frac{r}{R+r} \, E = \frac{R}{R+r} \, E \end{array}$$

b.
$$I = \frac{E}{R+r}$$
; $V_R = E - I_r = E - \frac{r}{R+r} E = \frac{R}{R+r} E$

$$\therefore V_R = \frac{10}{10+5} \times 6V = 4 \text{ volts}$$

৯. সঠিক উত্তর চাপ, আয়তন ও ভর তিনটিই।

$$\therefore R = 11.8 \times 10^3 \text{m}$$

22. E = Wt =
$$\frac{1200}{1000}$$
 kW $\times \frac{30}{60}$ h = 0.6 kWh

২৩.
$$A_0L_0 = A_1L_1$$
 \overline{A} , $A_1 = \frac{L_0}{L_1}A_0 = \frac{A_0}{3}$

২৩.
$$A_0L_0 = A_1L_1$$
 বা, $A_1 = \frac{L_0}{L_1}A_0 = \frac{A_0}{3}$
$$R = \rho \frac{L_1}{A_1} = \rho \frac{3L_0}{\frac{A_0}{3}} = 9 \rho \frac{L_0}{A_0} = 9 R_0$$

বা,
$$R = 9 \times 6\Omega = 54\Omega$$

২৬.
$$F = ilB \sin \theta = 3 \times 50 \times 10^{-3} \times 0.4 \times \sin 30^{\circ}$$

$$\therefore$$
 F = 0.03 N

২9.
$$t = 25 \text{ Hz}$$
; **1.** $T = \frac{1}{f} = \frac{1}{25} \text{ s} = 0.04 \text{ s}$

$$t = \frac{T}{1} = \frac{0.04}{1.00} \text{ s} = 0.01$$

$$\therefore t = \frac{T}{4} = \frac{0.04}{4} \text{ s} = 0.01 \text{s}$$
৩০. $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ বা, $v = \frac{uf}{u - f} = \frac{12 \times 16}{4} = 48 \text{ cm}$
 $v = +ve$, তাই বিশ্বটি বস্তুর বিপরীত পাশে থাকবে

$$\frac{v}{u} = \frac{f}{u-f} = \frac{16}{4} = 4 = \frac{li}{l_0}$$
; বা, $l_i = 4l_0 = 4 \times 6$
∴ $l_i = 24$ cm, ∴ (ii) সঠিক।

$$m = -\frac{v}{u} = -4$$
 : (iii) সঠিক।

৩৩.
$$m=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}$$
 ; $v=c$ হলে, $m=\frac{m_0}{\sqrt{1-\frac{c^2}{c^2}}}=\frac{m_0}{0}$

$$\mathbf{96.}\,\mathrm{E_n} = -\frac{\mathrm{me^4}}{8\mathrm{n^2h^2\epsilon_0}^2}$$

취,
$$E_1 = \frac{-9.1 \times 10^{-31} \times (1.6 \times 10^{-19})^4}{8 \times 1^2 \times (6.63 \times 10^{-34})^2 \times (8.85 \times 10^{-12})^2}$$

$$\therefore E_1 = -2.7 \times 10^{-18} \text{ J}$$

∴
$$E_1 = -2.7 \times 10$$

∴ $E_1 = -13.6 \text{ eV}$

৯১, চট্টগ্রাম বোর্ড-২০১৫

b.
$$\phi = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta$$

 $= 5 \times 10^{-5} \times 45 \times 10^{-4} \cos (90^{\circ} - 60^{\circ})$
 $\overrightarrow{\Phi}, \ \phi = 5 \times 45 \times 10^{-9} \times \cos 30^{\circ}$
 $= 1.95 \times 10^{-7} \text{ Tm}^2$
 $= 1.95 \times 10^{-7} \text{ Wb}$

১৬.
$$a\sin\theta=n\lambda\ [n=1]$$
 ; বা, $\lambda=\frac{a\sin\theta}{n}=a\sin\theta$
বা, $\lambda=10^{-3}\times10^{-2}\times\sin30^\circ=5\times10^{-6}m$

ৰা,
$$k = 10^{-2} \times 10^{-2} \times \sin 30^{0} = 5 \times 10^{-4} \text{ cm}$$

$$= 5 \times 10^{-4} \text{ cm}$$
১৮. ক. I (ameter) = $\frac{V}{1 + 2 + 2} = \frac{V}{5} \text{ A}$;

*I. (ameter) = $\frac{V}{2 + \frac{1 \times 2}{1 + 2}}$

$$= \frac{V}{1 + 2} = \frac{V}{2 + \frac{2}{3}} = \frac{3}{8} \text{ V}$$

গ. I (ameter) =
$$\frac{V}{2+1} = \frac{V}{3}$$

		V
ঘ.	I (ameter) =	= -

35.
$$x' = \frac{D}{2a'} \lambda = \frac{2D}{2(2a)} \lambda = \frac{D}{2a} \lambda = x$$

৩৩.
$$\frac{hc}{\lambda} = E_2 - E_1$$
; বা, $\lambda = \frac{hc}{E_2 - E}$

৩৫.
$$\lambda = \frac{h}{p}$$
 ; বা, $\rho = \frac{h}{\lambda}$; Let, $\lambda \to x$, $p-y$
 $\therefore y = \frac{h}{x}$ বা, $xy = h$ যা একটি অধিবৃত্ত।

98. L = fo + fe =
$$(25 + 5)$$
 cm = 30 cm

৯২. যশোর বোর্ড-২০১৭

S	۵	L	ર	Ν	•	Ν	8	L	ď	М	৬	L	٩	Ν	Ъ	L	৯	L	20	Κ	77	L	১২	М	70	L
ট ভ	84	М	১ ৫	L	১৬	М	১৭	L	ንራ	Κ	አአ	М	২০	L	২১	L	২২	L	২৩	L	২8	*	২৫	Κ		

্বি ব্যাখ্যা:

3.
$$P = 2D + 3D = 5D_1 F = \frac{1}{P} = \frac{1}{5} = 0.2m$$

 $m = 1 + \frac{D}{f_2} = 1 + \frac{.25}{1/3} = 1.75$

8.
$$C = \frac{\varepsilon_0 A}{d} = \frac{8.854 \times 10^{-12} \times 1.5}{1 \times 10^{-3}} F = 1.328 \times 10^{-8} F$$

$$m = 1 + \frac{D}{f_2} = 1 + \frac{.25}{^{1}/_3} = 1.75$$
8. $C = \frac{\varepsilon_0 A}{d} = \frac{8.854 \times 10^{-12} \times 1.5}{1 \times 10^{-3}} F = 1.328 \times 10^{-8} F$
3. $\frac{7}{7 + 1 + R} \times 8 = 2.94 \Rightarrow 8 + R = \frac{7 \times 8}{2.94}$
 $\Rightarrow R = 11.04\Omega; S = R - 8 = (11.04 - 8)\Omega = 3.04\Omega$
3. $E_{TOTAL} = 10V; \frac{1}{r_p} = \frac{1}{r} + \frac{1}{r} \Rightarrow r_p = \frac{0.5}{2}\Omega$

$$\Rightarrow R = 11.0462; S = R - 8 = (11.04)$$
20. E_{TOTAL} = 10V; $\frac{1}{r_p} = \frac{1}{r} + \frac{1}{r} \Rightarrow r_p = \frac{0.5}{2}$

$$\begin{split} & \therefore \ r_p = 0.25\Omega; \ R_p = (20 \parallel 20)\Omega = 10\Omega \\ & \therefore \ V_p = \frac{R_p}{R_p + r_p} \ E = \frac{10}{10 + .25} \times 10V \\ & \Rightarrow V_p = 9.76V \Rightarrow H = \frac{V_p^2}{R_p} = \frac{(9.76)^2}{10} \ J \\ & \Rightarrow H = 9.518W \\ \textbf{$\bf 8.$} \frac{1}{\alpha} - \frac{1}{\beta} = 1 \Rightarrow = \alpha = \frac{\beta}{1 + \beta} = \frac{200}{201} \\ & \therefore \ \alpha = 0.995 \end{split}$$

$$\mathbf{88.} \frac{1}{\infty} - \frac{1}{\beta} = 1 \Rightarrow = \infty = \frac{\beta}{1+\beta} = \frac{200}{201}$$

৯৩. যশোর বোর্ড-২০১৬

la	; :	ŀ	K	২	Ν	೦	Ν	8	М	œ	L	৬	М	٩	Κ	Ъ	Κ	৯	Ν	১০	L	77	Ν	১২	K	১৩	Ν	78	М	36	Κ	১৬	Κ	ኔዓ	Κ	১ ৮ ∟	
현	۱ ک	n l	K	২০	Ν	২১	М	২২	М	২৩	Ν	২8	М	২৫	*	২৬	Ν	২৭	М	২৮	L	২৯	М	೨೦	L	৩১	Κ	৩২	Κ	೨೨	М	৩8	Ν	৩৫	Ν		

্ব্যাখ্যা:

9.
$$t_{\frac{1}{2}} = 3.82 \text{ d}; \ \lambda = \frac{\ln_2}{t_{\frac{1}{2}}} = 0.181 \text{ d}^{-1}$$

$$\begin{aligned} \textbf{8.} \quad & R_{\theta} = R_0 \left(1 + \alpha \theta \right) = R_0 + \alpha R_0 \; \theta; \, R_0 \rightarrow c, \\ & \alpha \; R_o \rightarrow m, \, R_{\theta} \rightarrow y; \, y = mx + c \end{aligned}$$

b.
$$h\nu = \Delta E$$
; \overrightarrow{a} , $\frac{hc}{\lambda} \stackrel{\theta}{=} \Delta E$; \overrightarrow{a} , $\lambda = \frac{hc}{\Delta E}$

$$\overrightarrow{a}$$
, $\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{(-0.54 + 1.51) \times 1.6 \times 10^{-19}} \text{m} = 1.3 \times 10^{-6} \text{m}$
30. $i_{\text{r.m.s}} = \frac{i_0}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = 1$

**\\ i_{r.m.s} =
$$\frac{i_0}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = 1$$**

\$8.
$$\oint_{c} \overrightarrow{B} \cdot d\overrightarrow{I} = \mu_{0}\overrightarrow{i} = \mu_{0}I$$
; বা, $B.2\pi a = \mu_{0}I$

$$\therefore B = \frac{\mu_{0}I}{c}$$

$$m=-rac{v}{u}=-rac{f}{u-f}=-rac{4.5}{6-4.5}=-3;$$
সুতরাং গঠিত বিশ্ব বাস্তব, উল্টা, বিবর্ধিত এবং বিবর্ধন অপরিবর্তিত।

১৭. $\vec{F} = i\vec{l} \times \vec{B} = \hat{\eta} ilB \sin \theta = \hat{\eta} ilB \sin 90^\circ = \hat{\eta} ilB$; l এর দিক ব্যাটারীর (+ ve) হতে (- ve) বরাবর, \overrightarrow{B} এর দিক B বরাবর, তাই \overrightarrow{F} এর

ኔኤ.
$$x_n = \frac{D}{a} n\lambda$$
; $\Delta x = x_n - x_{n-1} = \frac{D}{a} n\lambda - \frac{D}{a} (n-1)\lambda$
 $\therefore \Delta x = \frac{D\lambda}{a}$

29. $M_v = \frac{M}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{M}{\sqrt{1 - \frac{c^2}{c^2}}} = \frac{M}{0} = \infty$

২৫.
$$\overline{(A+B)}$$
 . $\overline{(A+B)} = \overline{A+B} = \overline{A}$. \overline{B}
২৭. $\overline{H} = i^2Rt$ বা, $\overline{H} \propto R$; বা, $\overline{H}_2 = \frac{R_2}{R_1} = 2$

\&\lambda.
$$dQ = dU + dW$$
; $\overline{\triangleleft}$, $dU = dQ - dW = (5 - 2)J$
 $\therefore dU = 3J$

90.
$$U_B - U_A = C_v \Delta T = C_v (80 - 20) = 60 C_v$$

∴ $U_B > U_A$; $u_C - u_B = C_v \Delta T = C_v (80 - 80) = 0$

ৰা,
$$v_R = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_1 - \frac{a}{2}} - \frac{1}{r_1 + \frac{q}{2}} \right) = \frac{q}{4\pi\epsilon_0} \times \frac{a}{(r_1 - \frac{a}{2})(r_1 + \frac{a}{2})}$$

$$\therefore \frac{qa}{4\pi\epsilon_0 r_1^2} ; [a <<< r_1] = \frac{R}{4\pi\epsilon_0 r_1^2}$$

$$\textbf{98.}\,E_R = \left| -\frac{dv_R}{dr_1} \right| = \left| -\frac{d}{dr_1} \left(\frac{R}{4\pi\epsilon_0 r_1^2} \right) \right| = \frac{2R}{4\pi\epsilon_0 r_1^{\ 3}}$$

$$E_{s} = \frac{2q}{4\pi\epsilon_{0}r_{2}^{2}} \times \frac{\frac{a}{2}}{\sqrt{\left(\frac{a}{2}\right)^{2} + r_{2}^{2}}} - \frac{qa}{4\pi\epsilon_{0}r_{2}}$$

$$[\square\; r_2>>\;\frac{a}{2}\;]$$

$$\overline{\P}$$
, $\frac{2}{r_1^3} = \frac{1}{r_2^3}$ \therefore $r_1^3 = 2r_2^3$

Ve.
$$v_C = \frac{q}{4\pi\epsilon_0 r \ (r + x_C)} \ ; v_B = \frac{q}{4\pi\epsilon_0 (r + x_B)}$$

$$\begin{split} \mathbf{\Phi G.} \, v_C &= \frac{q}{4\pi\epsilon_0 r \, (r + x_C)} \, ; \, v_B = \frac{q}{4\pi\epsilon_0 (r + x_B)} \\ v_A &= \frac{q}{4\pi\epsilon_0 r} \, ; \, v_{OA} = 0 \ \, \therefore \, v_O = \frac{q}{4\pi\epsilon_0 r} \end{split}$$

৯৪. যশোর বোর্ড-২০১৫

1	7.	۵	М	২	L	•	L	8	М	œ	М	৬	М	٩	Ν	ъ	L	৯	L	20	*	77 V	1 3:	įΚ	১৩	L	1 84	1	16 N	76	ιK	১৭	М	76	Κ
	9	১৯	K	აი	 			-	ļ	 		 		ļ	-	ļ				-	ļ	২৯ ১					ļ			-		-			
		ມດ	1	20	1.4	42	-	22	101	20	1	20	1.4	20	-	20	101	٧ ,	-	20	1	₹ ₩ 10	1 0	ノ ∟	02	1 / 1	04 1	` '	OO; 1∨	1 00	114	00	- 1		

্ব্যাখ্যা:

•. অবশিষ্ট নমুনা = (10 – 7.5) gm = 2.5 gm

10 gm
$$\xrightarrow{\frac{t_{\frac{1}{2}}}{2}}$$
 = 5gm $\xrightarrow{\frac{t_{\frac{1}{2}}}{2}}$ 2.5 gm
∴ t = 2 t_{\frac{1}{2}} = 2 × 5 = 10 days

8.
$$t = \tau = \frac{1}{\lambda}$$
; ... $\Delta N = No [1 - e^{-\lambda t}] = No [1 - e^{-1}]$

বা,
$$\Delta N=10 \times \left(1-\frac{1}{l}\right)=6.32~{
m gm}$$
 যা অর্ধেক (5 gm) এর তুলনায় বেশি।

So. W =
$$\frac{1}{2}$$
CV² = $\frac{1}{2}$ (C₁ + C₂) v²
= $\frac{1}{2}$ × (1 + 2) × 10⁻⁶ × (10)²

:.
$$W = 150 \times 10^{-6} J = 150 \mu J$$

33.
$$\phi = \overrightarrow{B} \cdot \overrightarrow{A} = BA \sin 90^{\circ} = BA = \frac{\mu_0 I}{2r} \cdot \pi r^2 = \frac{\pi}{2} \mu_0 r I$$

$$\therefore \ \phi = \frac{\pi}{2} \ \mu_0 r \ I \ ; \ I \to x, \ \phi \to y, \ \frac{\pi}{2} \ \mu_0 r = m$$

y = mx যা মূলবিন্দুগামী সরল রেখা।

২৩. প্রত্যাগামী চক্রের ক্ষেত্রে, $\eta = \left(1 - \frac{T_2}{T_1}\right) = \left(1 - \frac{Q_2}{Q_1}\right)$

বা,
$$\frac{T_2}{T_1} = \frac{Q_2}{Q_1}$$
; বা, $T_2 = \frac{Q_2}{Q_1}T_1 = \frac{300}{1200} \times 600$
∴ $T_2 = 150 \text{ K}$

$$T_2 = 150 \text{ K}$$

38.
$$\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\% = \left(1 - \frac{150}{600}\right) \times 100\%$$

বা,
$$\eta = \left(1 - \frac{1}{4}\right) \times 100\% = 75\%$$

$$\begin{split} & \vec{ \text{TI}}, \; \eta = \left(1 - \frac{1}{4}\right) \times 100\% = 75\% \\ \textbf{C.} \quad & \alpha = \frac{I_c}{I_c} = \frac{I_c - I_b}{I_c} = \frac{0.05 \; mA - 0.005 \; mA}{0.05 \; mA} \\ & \therefore \; \alpha = 0.9 \end{split}$$

4.
$$R_T = (1\Omega + 1\Omega)72\Omega = 2\Omega72\Omega = \frac{2 \times 2}{2 + 2} = 1\Omega$$

99.
$$I = \frac{E}{R_T + r} = \frac{1.5}{1 + 0.5} = 1.5$$

96. B =
$$\frac{\mu_0 I}{2r}$$
 = $\frac{4\pi \times 10^{-7} \times 2}{2 \times 1}$ = $\frac{\mu_0 \times 2}{2 \times 1}$ = μ

৯৫. বরিশাল বোর্ড-২০১৭

S	۵	Ν	২	М	৩	Κ	8	Κ	ď	L	৬	Κ	٩	М	ъ	М	৯	Ν	70	L	77	*	১২	М	১৩	Κ
هٔار	3 8	*	ንራ	L	১৬	Ν	١٩	Ν	ን৮	Ν	አ ৯	L	২০	L	২১	М	২২	Κ	২৩	Ν	২৪	М	২৫	Ν		

্ব্যাখ্যা:

১১. সঠিক উত্তর ক ও গ

১৪. সঠিক উত্তর নেই

ኔ৬. Y =
$$\overline{A.B}$$
 . $\overline{A.B}$ = $\overline{\overline{A.B}}$ = A.B = A AND B

۵৮.

$$\therefore R = \frac{2}{3}\Omega$$

Qo.
$$T_{\frac{1}{2}} = 12.5y$$
; $\left(1 - \frac{3}{4}\right)$

$$= 1e^{-\lambda t} = \frac{1}{4}$$

$$\Rightarrow e^{\lambda t} = 4$$

$$\Rightarrow \lambda t = \ln 4$$

$$\Rightarrow t = \frac{\ln 4}{\lambda}$$

$$\Rightarrow t = \frac{\ln 4}{\ln 2} T_{\frac{1}{2}} = \frac{\ln 4}{\ln 2} \times 12.5y$$

$$\Rightarrow t = 25y$$

$$\Rightarrow t = 25y$$
3. $F = qvB \sin\theta = 2evB \sin\theta$

$$= 2 \times 1.6 \times 10^{-19} \times 10^4 \times 2 \times \sin 30^\circ$$

$$= 3.2 \times 10^{-15}N$$

৯৬, বরিশাল বোর্ড-২০১৬

D ,	_ ' ૭ L 8 K & L ૭ N 9 M & K		
[M 2 ⊢ ≺	. ७ L	9 M 30 K 33 F 35 M 30 F 38 k	\ \36 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

c`v^ Eweævb

২. শক্তি ঘনতু,
$$W' = \frac{1}{V} \times \frac{1}{2} qv = \frac{1}{2V} \epsilon_0 \int \vec{E} \cdot d\vec{s} \int \vec{E} \cdot d\vec{l}$$

$$\overrightarrow{\text{at}}, \ W' = \frac{\epsilon_0}{2V} (\overrightarrow{E}.\overrightarrow{E}) \cancel{\int}_{d} \overrightarrow{s}.d\overrightarrow{\textit{l}} = \frac{\epsilon_0}{2V} E^2 \times V \quad \ \therefore \ W' = \frac{1}{2} \, \epsilon_0 E^2$$

$$\textbf{9.} \quad SI_s = (G+S) \; I \; ; \; \overrightarrow{\textbf{A}} , \; I_s = \frac{G+S}{S} \, I$$

8.
$$\oint_{\mathbf{C}} \overrightarrow{\mathbf{B}} \cdot d\overrightarrow{l} = \mu_0 \mathbf{I}_1 \qquad \therefore \mathbf{B} = \frac{\mu_0 \mathbf{I}_1}{2\pi a}$$

$$\mathrm{F}=\mathrm{I}_{2}l_{\mathrm{B}}$$
 বা, $\dfrac{\mathrm{F}}{l}=\mathrm{i}_{2}\mathrm{B}=\dfrac{\mu_{0}\mathrm{I}_{1}\mathrm{I}_{2}}{2\pi\mathrm{a}}$

$$\frac{F}{l} = \frac{\mu_0 \times 1A \times 1A}{2\pi \times l} = \frac{4\pi \times 10^{-7}}{2\pi} = 2 \times 10^{-7} \text{ Nm}^{-1}$$

\\ 0.
$$F = Ni \overrightarrow{l} \times \overrightarrow{B} = Ni \ l \ B \sin \theta = Ni \ l \ B$$

$$|\overrightarrow{\tau}| = |\overrightarrow{b} \times \overrightarrow{F}| = Ni/B \ b = Ni/b \ B = NiAB$$

= mB .: [m = NiA]
m = Ni/b

$$m = Nilb$$

30.
$$c = \frac{q}{V} = \frac{\varepsilon_0 \oint \vec{E} \cdot \vec{ds}}{\oint \vec{E} \cdot \vec{dr}} = \varepsilon_0 \frac{4\pi r^2 \cdot E}{r E}$$

$$\therefore$$
 C = $4\pi\epsilon_0 r$; বা, $\frac{dC}{dr} = 4\pi\epsilon_0$

Ro.
$$T_{\frac{1}{2}} = 18.3 \times 10^8 \, y$$
. $\lambda = \frac{ln_2}{T_{\frac{1}{2}}} = 3.78 \times 10^{-10} y^{-1}$

A), $\lambda = 3.78 \times 10^{-10} \times \frac{1}{365 \times 24 \times 3600}$

বা,
$$\lambda = 3.78 \times 10^{-10} \times \frac{1}{365 \times 24 \times 3600}$$

$$\therefore \ \lambda = 1.2 \times 10^{-17} \ s^{-1}$$

২৪. mgh =
$$\frac{1}{2}$$
 mv² = ms $\Delta\theta$; বা, $\Delta\theta = \frac{gh}{s}$

বা,
$$\Delta\theta = \frac{10 \times 500}{4200} = 1.19$$
°C

$$R_T = R_1 + R_2 7 R_3 7 R_4 = R + R 7 R 7 R$$

$$R_T = R + \frac{R}{3} = \frac{4}{3} R$$

২৬.
$$V_1 = \frac{R_1}{R_T} E = \frac{R}{\frac{4}{3}R} E = \frac{3}{4} \times 4 \ V_0 H = 3 \ volt$$

$$v_2=v_3=v_4=E-v_1=4-3=1 \ volt$$

 \$\psi_*\tan\theta=\frac{1}{H}=\chi\$

$$\lambda \mathbf{b}. \tan \theta = \frac{\mathbf{I}}{\mathbf{H}} = \chi$$

$$\mathbf{Ra}.\frac{\mathbf{C}_{p}}{\mathbf{C}_{s}} = \frac{\mathbf{C}_{1} + \mathbf{C}_{2}}{\left(\frac{1}{\mathbf{C}_{1}} + \frac{1}{\mathbf{C}_{2}}\right)^{-1}} = \frac{10\mu F}{\left(\frac{1}{2} + \frac{1}{5}\right)^{-1}\mu F} = \frac{10}{\frac{10}{7}R} = \frac{7}{1}$$

$$\therefore$$
 Cp : Cs = 7 : 1

90. $I = 50 \sin 400 \pi t$

$$\frac{i_{\text{r.m.s}}}{i_{\text{av}}} = \frac{i_0 / \sqrt{2}}{\frac{2}{\pi} i_0} = \frac{\pi}{2\sqrt{2}} = 1.11$$

৩১.
$$m = 1 + \frac{D}{f}$$
; বা, $1 + \frac{D}{f} = 2.6$; বা, $\frac{D}{f} = 1.6$

99.
$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1 \times 10^{-10}} = 2 \times 10^{-15} J$$

96.
$$R = \frac{2GM}{c^2} = 13340 \text{ m} = 13.34 \text{ km}$$

⊾৯৭. বরিশাল বোর্ড-২০১৫

) [5	۷	Κ	২	Κ	೨	М	8	L	Œ	М	৬	Ν	٩	L	Ъ	М	৯	*	20	Ν	77	Ν	১২	Ν	১৩	Ν	8ډ	М	36	М	১৬	Ν	১৭	L	3 6 N
عِ[ر	5	১৯	Κ	২০	L	২১	М	২২	М	২৩	М	২8	Κ	২৫	М	২৬	М	২৭	L	২৮	Ν	২৯	Κ	೨೦	Κ	৩১	Ν	৩২	L	೨೨	L	৩8	М	৩৫	Ν	

্ব্যাখ্যা:

\$\lambda. \frac{1}{u} + \frac{1}{v} = \frac{1}{f}; \text{Let}, \ u \to x, \ V \to y\$
$$\therefore\frac{1}{x} + \frac{1}{y} = \frac{1}{f}; \ \frac{x}{t}, \ \frac{x+y}{xy} = \frac{1}{f} \times x + y = \frac{1}{f} \ xy \ \text{যা এবটি অধিবৃত্ত এবং} \\
\text{অক্ষ } x = y \ \frac{1}{t}, \ u = v$$$

২.
$$I_{av}$$
 (full cycle) = $\frac{i_0}{T} \int_0^T \sin \omega t \, dt$

$$= \frac{\mathbf{i}_0}{\omega \mathbf{T}} \times [-\cos \omega \mathbf{t}]_0^{\mathrm{T}} = 0$$

$$m{\ell}_{m{\cdot}}$$
 তুল্য ধারকত্ব : $C_T = \frac{C_2C_3}{C_2 + C_3} + C_1 + C_4$

বা,
$$C_T = \frac{2 \times 2}{2+2} + 2 + 2 = 1 + 4$$

$$\therefore$$
 C_T = 5 μ F

$$\therefore C_T = 5\mu F$$

$$\forall . I = \frac{V}{R} = \frac{[12 - (0.7 + 0.3)]V}{5.6 \text{ k}\Omega} = \frac{11}{5.6} = 1.96 \text{ mA}$$

৯. সঠিক উত্তর শুধু ii.

$$\mathbf{A}\mathbf{A}$$
, $\mathbf{\varphi} = \overrightarrow{\mathbf{B}}$. $\overrightarrow{\mathbf{A}} = \mathbf{B}\mathbf{A}\cos\theta$

বা,
$$\varphi = \pi r^2 B \cos\theta$$

$$= \pi \times (.02)^2 \times 0.5 \times \cos(90^\circ - 60^\circ)$$

$$\therefore \ \phi = 5.44 \times 10^{-4} \ \text{Wb}$$

$$\begin{array}{c} = \pi \times (.02)^2 \times 0.5 \times \cos(90^\circ - 60^\circ) \\ \therefore \ \phi = 5.44 \times 10^{-4} \ Wb \\ \text{34. E} = \frac{V}{d} = \frac{4 \times 10^{-3}}{2 \times 10^{-3}} = 2 \ NC^{-1} \end{array}$$

39.
$$C_T = \frac{C' \times C'}{C' + C'} = \frac{C'}{2} = \frac{1}{2} = \frac{\frac{A}{2}}{\frac{d}{4}}$$

$$\therefore C_{T} = \frac{\epsilon_{0}A}{d} = C$$

২0.
$$T_1 = 10d$$
, $\lambda_2 = 0.03465 \ d^{-1}$

$$\tau_1 = \frac{1}{\lambda_1} = \frac{T_1}{\ln 2} = \frac{10}{\ln 2} d = 14.43 d$$

$$\tau_{1} = \frac{1}{\lambda_{1}} = \frac{T_{1}}{l_{1}n^{2}} = \frac{10}{l_{1}n^{2}} d = 14.43 d$$

$$\mathbf{\$} \mathbf{\lambda} \cdot \frac{N_{2}}{N_{1}} = \frac{e^{-\lambda_{2}t}}{e^{-\lambda_{1}t}} = \frac{e^{-\lambda_{2}t}}{\frac{t}{\tau_{1}}} = \exp\left(-\lambda_{2} + \frac{1}{\tau_{1}}\right)t$$

$$= \exp\left[\left(-0.03465 + \frac{1}{14.43}\right) \times 40\right] = 4$$

২২.
$$\frac{E_0}{B_0} = c$$
; \overrightarrow{a} , $B_0 = \frac{E_0}{c} = \frac{10^{-4}}{3 \times 10^8} = 3.33 \times 10^{-13} \text{T}$

২৬.
$$\frac{H}{I} = \cos \delta$$
; $\overline{\phi}$, $I = \frac{H}{\cos \delta} = \frac{27.87 \ \mu T}{\cos 30^{\circ}}$

∴
$$I = 32.18 \mu T$$

93.
$$m = 1 + \frac{D}{f} = 1 + \frac{25}{12.5} = 1 + 2 = 3$$

$$\mathfrak{D} = 1 + \frac{D-a}{f}; \frac{D-a}{f} = m-1; D-a = (m-1)f;$$

বা,
$$a = D - (m - 1)$$

$$\therefore$$
 a = 25 - (2.5-1) × 12.5 = 6.25 cm

99.
$$(10111)_2 = (1 \times 2^4 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^\circ)_{10}$$

= $(16 + 4 + 2 \times 1)_{10} = (23)_{10}$