Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018

Department of Computer Science, University of Victoria

Sorting by selection Selection-Sort(A)for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jswap A[min] and A[i]

10	2	8	5	7

Sorting by selection Selection-Sort(A)for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jswap A[min] and A[i]10

Sorting by selection Selection-Sort(A)for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jmin swap A[min] and A[i]

10

Sorting by selection Selection-Sort(A)for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jswap A[min] and A[i]

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```


Sorting by selection Selection-Sort(A) for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jswap A[min] and A[i]

Sorting by selection Selection-Sort(*A*)

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```


Sorting by selection Selection-Sort(A) for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jswap A[min] and A[i]

Sorting by selection Selection-Sort(A) for i = 1 to A.length - 1min = ifor j = i + 1 to A.length if A[j] < A[min]min = jmin swap A[min] and A[i]

Selection-Sort(A)

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

The loop terminates

Proof of correctness

Loop invariant:

At the start of each iteration of the **outer** for loop (on i), A[1...i-1] contains the smallest i-1 elements of A in sorted order.

Exercise: Prove initialization and maintenance, and conclude that when the for loop on *i* terminates, the array is sorted.

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

Cost	Number of times
c_1	n

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

Cost	Number of times	
c_1	n	
Co	n-1	

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

Cost	Number of times
c_1	n
c_2	n-1
c_3	$\sum_{i=1}^{n-1} (n-i)$

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

Cost	Number of times
c_1	n
c_2	n-1
c_3	$\sum_{i=1}^{n-1} (n-i)$
<i>C</i> ₄	$\sum_{i=1}^{n-1} (n - i - 1)$

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

Cost	Number of times
c_1	n
C_2	n-1
c_3	$\sum_{i=1}^{n-1} (n-i)$
C_4	$\sum_{i=1}^{n-1} (n - i - 1)$
<i>C</i> ₅	$\sum_{i=1}^{n-1} t_i$

```
for i = 1 to A.length - 1
  min = i
  for j = i + 1 to A.length
     if A[j] < A[min]
        min = j
  swap A[min] and A[i]
```

Cost	Number of times
c_1	n
c_2	n-1
c_3	$\sum_{i=1}^{n-1} (n-i)$
C_4	$\sum_{i=1}^{n-1} (n - i - 1)$
c_5	$\sum_{i=1}^{n-1} t_i$
<i>C</i> ₆	n-1

• So, the running time is **sum of the following**:

c_1 n	$c_1 n$
-----------	---------

• So, the running time is **sum of the following**:

c_1	n	$c_1 n$
c_2	n-1	$\longrightarrow c_2 n + \cdots$

• So, the running time is **sum of the following**:

c_1	n	$c_1 n$
c_2	n-1	$c_2n+\cdots$
c_3	$\sum_{i=1}^{n-1} (n-i)$	$\longrightarrow c'_3 n^2 + \cdots$

• So, the running time is **sum of the following**:

c_1	n	$c_1 n$
c_2	n-1	$c_2n+\cdots$
c_3	$\sum_{i=1}^{n-1} (n-i)$	$c'_3n^2+\cdots$
C_4	$\sum_{i=1}^{n-1} (n-i-1)$	$\longrightarrow c'_4 n^2 + \cdots$

So, the running time is sum of the following:

c_1	n	
c_2	n-1	
c_3	$\sum_{i=1}^{n-1} (n-i)$	
<i>C</i> ₄	$\sum_{i=1}^{n-1} (n-i-1)$	
<i>C</i> ₅	$\sum_{i=1}^{n-1} t_i$	

$$c_1 n$$
 $c_2 n + \cdots$
 $c'_3 n^2 + \cdots$
 $c'_4 n^2 + \cdots$
between 0 and $(c'_5 n^2 + \cdots)$

• So, the running time is **sum of the following**:

c_1	n	$c_1 n$
c_2	n-1	$c_2n+\cdots$
c_3	$\sum_{i=1}^{n-1} (n-i)$	$c'_3n^2+\cdots$
C ₄	$\sum_{i=1}^{n-1} (n-i-1)$	$c'_4n^2+\cdots$
<i>C</i> ₅	$\sum_{i=1}^{n-1} t_i$	between 0 and $(c'_5 n^2 + \cdots)$
<i>c</i> ₆	n-1	$\longrightarrow c_6 n + \cdots$

So, the running time is sum of the following:

c_1	n
c_2	n-1
c_3	$\sum_{i=1}^{n-1} (n-i)$
c_4	$\sum_{i=1}^{n-1} (n-i-1)$
<i>C</i> ₅	$\sum_{i=1}^{n-1} t_i$
<i>c</i> ₆	n-1

$$c_{1}n$$

$$c_{2}n + \cdots$$

$$c'_{3}n^{2} + \cdots$$

$$c'_{4}n^{2} + \cdots$$
between 0 and $(c'_{5}n^{2} + \cdots)$

$$c_{6}n + \cdots$$

By summing the following I get:

$$c'_3n^2$$

 c'_4n^2

between 0 and $c'_5 n^2$

worst-case:

$$(c_3' + c_4' + c_5')n^2 = O(n^2)$$

best-case:

$$(c_3' + c_4')n^2 = \Omega(n^2)$$

• worst-case is $O(n^2)$

• best-case is $\Omega(n^2)$

Selection-sort's time complexity is $\Theta(n^2)$

Other $O(n^2)$ sorting algorithms

- **Bubble-sort** and **shell-sort** are two other sorting algorithms that run in $O(n^2)$ time.
- If interested, you can look it up on wikipedia.

• In practice, insertion-sort is the most efficient $O(n^2)$ sorting algorithm.

• In fact, if $n \sim 20$ it is preferred over merge-sort, quick-sort and other optimal algorithms.