Lecture 8; CH 101: Inorganic Chemistry

Dr. Akshai Kumar A. S

Department of Chemistry

8

Centre For Nanotechnology

Indian Institute of Technology Guwahati Guwahati – 781039, Assam, India

Limitations of Valence Bond Theory

Cannot account for color of complexes

Cannot account for spectrochemical series

Hybridization actually predicted from magnetization (and not vice-versa)!

In neutral free atom, all d-orbitals have same energy (degenerate)

In an octahedral field

Tetrahedral

Greater chances of

High-spin

Common Tetrahedral

complexes

d¹⁰ Zn(II), Pt(0), Cu(I)

Pentagonal bipyramidal

Square pyramidal

Trigonal bipyramidal

WHY THE DIFFERENCE ??

Jahn-Teller distortion

Degenerate orbitals of highly symmetric molecules with asymmetry in orbital occupancy are expected to show Jahn-Teller distortions.

Degeneracy will be removed, molecular

symmetry will be lowered

Jahn-Teller Theorum

"For a nonlinear molecule in an electronically degenerate state distortion must occur to lower the symmetry, remove the degeneracy and lower the energy"

e.g.
$$K_2[CuF_4]$$
 O_h z-in $Na_2[CuF_4]$ O_h z-out Cr_2F_6 O_h z-out $Cr(II)$ = high spin d⁴

Jahn-Teller distortion

Complexes where e_g orbitals are asymmetrically occupied by electrons show stronger distortions than the corresponding complexes with non-symmetrical orbital occupancy in t_{2q} orbitals.

No. of d -	1	2	3	4		5		6		7		8	9	10
electrons														
High/Low Spin				HS	LS	HS	LS	HS	LS	HS	LS			
Configuration	t _{2g} ¹	t _{2g} ²	t _{2g} ³	t _{2g} ³	t _{2g} ⁴	t _{2g} ³	t _{2g} 5	t _{2g} ⁴	t _{2g} 6	t _{2g} 5	t _{2g} 6	t _{2g} 6	t _{2g} 6	t _{2g} 6
	e_g^0	e_{g^0}	e_g^0	e_{g^1}	e_g^0	e_{g^2}	e_{g}^{0}	e_{g^2}	e_g^0	e_g^2	e_{g^1}	e_g^2	e_g^3	e _g ⁴
Strength of Jahn-	W	W	N	S	W	N	W	W	N	W	S	N	S	N
Teller effect														

W = Weak Jahn-Teller Effect, S = Strong Jahn-Teller Effect and N = No Jahn-Teller Effect