Submission 7

The respondent's email (deepanshu21249@iiitd.ac.in) was recorded on submission of this form.

Question *

Let A be a 3×3 matrix such that the linear transformation ${\bf x}\mapsto A{\bf x}$ reflects every vector in \mathbb{R}^3 across the plane

$$2x + 3y + 5z = 0.$$

Choose a correct statement from the following:

0	The eigenvalues of A are 2 and 3
\bigcirc	A is not diagonalizable
\bigcirc	1 is the only real eigenvalue of A
\bigcirc	The eigenvalues of A are 1 and -1
•	A is diagonalizable
\bigcirc	Other:

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which sends $\mathbf{x} \mapsto A\mathbf{x}$, where

$$A = \left[\begin{array}{cc} 4 & -6 \\ 2 & -2 \end{array} \right].$$

Let $\mathcal B$ be a basis of $\mathbb R^2$ such that T is the composite of a 2D rotation and a scaling transformation with respect to $\mathcal B$ -coordinates.

Identify a correct change-of-coordinates matrix $P_{\mathcal{B}}$ from the following options:

$$\left[\begin{array}{cc} 15 & -5\sqrt{3} \\ 10 & 0 \end{array}\right]$$

Screenshot from 2022-03-31 16-55-21.png

$$\begin{bmatrix} 15 & 5\sqrt{3} \\ 10 & 0 \end{bmatrix}$$

Screenshot from 2022-03-31 16-58-30.png

$$\left[\begin{array}{cc} 3/2 & 1\\ \sqrt{3}/2 & 0 \end{array}\right]$$

Screenshot from 2022-03-31 16-59-30.png

$$\begin{bmatrix} 3/2 & 1 \\ -\sqrt{3}/2 & 0 \end{bmatrix}$$

Screenshot from 2022-03-31 16-57-08.png

Question *

Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which sends $\mathbf{x} \mapsto A\mathbf{x}$, where

$$A = \left[\begin{array}{cc} 2 & -3 \\ 1 & -1 \end{array} \right].$$

Let $\mathcal B$ be a basis of $\mathbb R^2$ such that $[T]_{\mathcal B}$ is a counter-clockwise rotation by an angle of θ .

Identify a correct choice of θ from the following options.

- -30 degrees
- -15 degrees
- 15 degrees
- 30 degrees
- -60 degrees
- 60 degrees
- -45 degrees
- 45 degrees
- Other:

Question *

$$A = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix}$$

Let $W=\mathsf{Span}\{A^4,A^3,A^2,A,I\}\subset M_{4\times 4}(\mathbb{R}).$

What is the dimension of W?

- 0 2
- O 5
- \bigcirc 3
- O 12
- 4
- O 16
- Other:

This form was created inside of IIIT Delhi.

Google Forms