北京大学数学科学学院期末试题

2019 - 2020 学年 第一学期

考试科目:	数学分析 III	考试时间:	2020 年	01 月	08日
姓 名:		学 号:			
本试题共	十 道大题满分 100 分				

- 1. (10') 请叙述一个一元函数的定理, 但它在二元函数的情形不成立和一个二元函数的定理, 但它在一元函数的情形不成立.
- 2. (10') 试构造一个定义在 $D = [0,1] \times [0,1]$ 上的函数 f(x,y) 使得它同时满足以下条件: f(x,y) 在 D 可积并且存在一个在 D 内稠密的集合 E, 当 $(x_0,y_0) \in E$ 时 $\lim_{x\to x_0} f(x,y_0)$ 与 $\lim_{y\to y_0} f(x_0,y)$ 都不存在. (此题只要写出符合条件的函数即可)
- 3. (10') 设 f(x,y) 是 R^2 中的连续函数, 改变 $\int_0^2 dz \int_{-\sqrt{2z}}^{\sqrt{2z}} dy \int_{-\sqrt{2z-y^2}}^{\sqrt{2z-y^2}} f(x,y,z) dx$ 的积分顺序为 $\int_*^* dx \int_*^* dy \int_*^* f(x,y,z) dz$.
- 4. (10') 讨论 $\int \int_{R^2} \frac{e^{\sin\sqrt{x^2+y^2}}\cos\sqrt{x^2+y^2}}{x^2+y^2+1} dxdy$ 的敛散性.
- 5. (10') 求 $\int \int_S x^3 dy dz + y^3 dz dx + z^3 dx dy$ 其中 S 是上半球面 $x^2 + y^2 + z^2 = a^2, z \ge 0$ 的上侧。
- 6. (10') 计算曲线积分 $\int_{\Gamma} \frac{xdy-ydx}{x^2+y^2}$ 其中 Γ 是一条光滑曲线,它在极坐标下具有形式 $r=r(\theta)>0, 0\leq \theta\leq \frac{\pi}{2}$,取参数增加的方向.
- 7. (10') 设 $D=(0,+\infty)\times(0,+\infty)$. 求证 $u(x,y)=\arctan\frac{y}{x}$ 是 D 内的调和函数并求它在 D 内的共轭调和函数. (设 u(x,y) 是 D 内的调和函数,若调和函数 v(x,y) 在区域 D 内处处满足 $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ 和 $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$,则称 v(x,y) 是 D 内 u(x,y) 的共轭调和函数)
- 8. (10') 设 $r = \sqrt{x^2 + y^2 + z^2}$. 试求满足 grad(rf(r)) = 0 的 C^1 函数 f(r).
- 9. (10') 已知 $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$, 计算积分 $\int_0^{+\infty} e^{-x^2} \cos x dx$.
- 10. (10') 求极限 $\lim_{x\to +\infty} \int_0^{+\infty} (1+\frac{y^2}{x})^{-x} dy$.