

Computer Electronics

Lecture 23: Memory Organization

Outline

- Organization of memory cells
- Address and data busses
- Memory hierarchy
- DRAM devices revisited
- Bank interleaving
- SIMM and DIMM
- Combining memory chips for width and depth
- Rank, bank, row, column

Memory cell organization

- Matrix organization since ferrite memories
- Optimal 2D organization
- Future
 - 3D organization (layer, row, column)
 - nD organization with quantum memories

Address and data busses

Memory hierarchy

SDRAM chip example architecture

SDRAM chip control

Possible device configurations

Device configuration	64 Meg x 4	32 Meg x 8	16 Meg x 16	
Number of banks	4	4	4	
Number of rows	8192	8192	8192	
Number of columns	2048	1024	512	
Data bus width	4	8	16	

Super cell size

1

2

4

DRAM: different data widths

DRAM page

Bank interleaving

Increase bandwidth by interleaving

Without interleaving – slower

Bank 1 D1 Access D1 available D2 Access D2 available

With interleaving – faster, pipelined

Bank 1 D1 Access D1 available

Bank 2 D2 Access D2 available

Bank 3 D3 Access D3 available

Bank 4 D4 Access D4 available

SIMM and DIMM

- Single Inline Memory Module
 - Same connectors on both sides
 - Obsolete
- Dual Inline Memory Module
 - Different connectors
 on either side

Dual Inline Memory Module (DIMM)

DIMM connections

Combining memory chips to increase data width

create a 8X4 memory)

Combining memory chips to increase memory locations

 Two or more memory chips can be combined to create more locations (two 8X2 chips can create 16X2 memory)

Rank, Bank, Column, Row

128MB module example

Capacity	device density	number of ranks	devices per rank	device width	number of banks	number of rows	number of columns
128 MB	64 Mbit	1	16	x4	4	4096	1024
128 MB	64 Mbit	2	8	x8	4	4096	512
128 MB	128 Mbit	1	8	x8	4	4096	1024
128 MB	256 Mbit	1	4	x16	4	8192	512