CS754 ASSIGNMENT 2

Hitesh Kumar Punna, Sudhansh Peddabomma

190050093, 190050118

Question 1.

Claim: If 8_{25} of $\phi = 1$, then 2_5 columns of ϕ may be
linearly dependent.
Proof:
$\delta_{2s} = 1 \Rightarrow (1-1) \ x\ _{2}^{2} \leq \ \phi x\ _{2}^{2} (1+1)$
> 0 ≤ \pr _2 where n is a 25-sparse vector
If there exists a 25 sparse vector x, such that
$\ \phi x_1\ _{2}^{2} = 0$
Then, $\ \sum \phi_i x_i\ = 0$ where S is the support set of x_i
ε ₁ S = 2s
Jhis means that a linear combination of dome 2s
columns of \$ 0 [dies x 1; \$0].
Hence, if Sz=1, then 25 columns of \$\phi\$ may be linearly dependent

b)
$$\| \phi(x^*-x) \|_{q_2} = \| \phi(x^*) - y + y - \phi(x) \|_{22}$$

As "12" nomm is similar to distance between two points

=) We can apply triangle inequality here.

: 11 (\$(x*) -y) + (y-\$(x))11,2 = 11 \$x*-y11 + 11y-\$x11

=> | | \phi(x*-x) || \land = | | \phi \n^* - y || \land + || y - \phi \n || \land 2 \land =

=) and as we know. If $y - \phi \times 11_{R_2} \leq \epsilon$ for both 'x', x*' as' x' is the true image and x* is estimated output by above prestriction.

.: 114-0x112 & and 114-0x112 & &

=> 11 y-0x112+ 11 y-0*x112 £ 2E

· . | | φ (x*-x) | | 2 = | | φ x*-y | | 2+ | | φ x-y | | 2 = 2 ε

3) We need to show

Case - 1):

here each a: vie foit ... S-13 are non zero coefficient.

Let land = maximum lail . i.e & iEdo,...,si ladeland

:
$$\lim_{t\to\infty} \left(\frac{S-1}{\sum_{k=0,k\neq m} |a_{m}|} \left(\frac{1}{\sum_{k=0,k\neq m} |(\frac{a_{k}}{a_{m}})|^{4}} \right) \right)$$

let
$$y = \lim_{k \to \infty} \left(1 + \sum_{k=0, k \neq m} \left(\frac{\alpha_k}{\alpha_m}\right)^{\frac{1}{2}}\right)$$

here
$$\lim_{t\to\infty} \left| \left(\frac{a_k}{a_m} \right)^t \right| = 0$$
 $\forall k \in \{0,1,\dots,S-1\} - d,m\}$ $a_s \left| \frac{a_k}{a_m} \right| < 1$

and as
$$t \rightarrow \infty \Rightarrow t \rightarrow \infty$$

=)
$$log(y) = \lim_{t \to \infty} \frac{1}{t} \cdot log(1 + \sum_{k \in O, k \neq m} \left| \left(\frac{a_k}{a_m}\right)^{t} \right|)$$

and
$$\log \left(1 + \frac{5!}{\sum_{k=0,k\neq m} \left| \left(\frac{\alpha_k}{\alpha_m}\right)^t \right|} \right) \rightarrow 0$$

or logy = 0 (as both
$$\frac{1}{t} \Rightarrow 0$$
 and $\log (1 + \frac{51}{5}) \times (\frac{a_{1}}{a_{2}})$)

tend to 0"

Let, d bo, bo, -. buil be set of nonzero elements

we know from defination that

+ m,m | bm > an me da,1,-,sf, nedo,1,-,s-1}

(as we choose "s" laggest elements in his, and then from his)

=) \(\tilde{\chi} \in \dot{\aml} \) \(\tilde{\chi} \in \dot{\ampli} \) \(\tilde{\chi} \ampli \ampli \) \(\tilde{\chi} \ampli \ampli \) \(\tilde{\chi} \ampli \ampli \ampli \) \(\tilde{\chi} \ampli \ampli \ampli \ampli \ampli \ampli \) \(\tilde{\chi} \ampli \ampli \ampli \ampli \ampli \ampli \ampli \ampli \ampli \) \(\tilde{\chi} \ampli \ampli

: 11 pli

> \(\sigma \) \(\lambda \) \

=) | 11 hTj-11 la > S. 11 hTj 11 lo

=> | 51/2 || hJj-1 || l1 > 51/2 || hJj || 100

$$=) \begin{cases} \sum_{j\geq 2} \|h_{1j}\|_{\ell_{2}} \leq s^{1/2} \sum_{j\geq 2} \|h_{1j-1}\|_{\ell_{1}} \\ \leq s^{1/2} \left(\|h_{1j}\|_{\ell_{2}} + \|h_{1j}\|_{\ell_{2}} + \dots\right) \end{cases} = \text{Equation-(3)}$$

as h= hTo + hT1 + hT2 + --- form defination.

Hours broken

(as we choose "s" different locations for each Ti)

=)
$$\sum_{j \geq 1} \|h_{T_j}\| = \|h\|_{\ell_1} - \|h_{T_0}\|_{\ell_2}$$

```
5)
       h(ToUT,) e = ∑ h7;
       11 h (TOUTI) C | 12 = 11 3= 2 hT3 | 12
         11 \( \frac{1}{3} \ge 2 \quad \text{hts|| } \lambda_2 \quad \frac{1}{3} \ge 2 \quad \text{ll hts|| } \lambda_2.
  ( from extended trainingle inequality ine lather. | [althorization]
      and from equation 3 i.e & lhijlling & silv lihiocilling
= Not = ||\sum_{i} h_{ij}||_{l_{2}} \le \sum_{j \ge 2} ||h_{ij}||_{l_{2}} \le s^{|l_{2}||} ||h_{ij}||_{l_{2}} = equation (a)

h. c||E||_{j \ge 2} = c
 6) As we know 11x*11 = 11x111 (x= torue image x*- computed lestimated
                      I X+ hll ez & ll x lley (xx-x=h)
             => [ 1x+n/+ [ | x+hil & 1x11/1
               I Incitabil 2 1 poil - Ihil
               I (xi+hil > E (hil - |xi)
    (by taiongle inequality i.e lath > late and lath > 161-191)
```

- $\frac{\sum_{i \in T_0} (|x_i| + -|h_i|)}{|f|} + \frac{\sum_{i \in T_0} (|h_i| + -|x_i|)}{|f|} \leq |f| \times |f|_1$
- 11 X Tolles 11 houlles + 11 houlles 11x 18 11 92 & 11x1189
- 11x11e1 > 11x1011e1 11hio11e1 + 11 hio(11e1 11x 28 11e1 equation 5)
- as $\|x\|\|_{L_1} = \sum_i \|x_i\| = \sum_i \|x_i\| + \sum_{i \in I_0} \|x_i\| + \sum_{i \in I_0} \|x_i\| = \|x_{I_0}\|\|_{L_1}$
 - => faom equation 3

11 24011 21 + 11 2701121 > 11 x701121 - 11 h701121 + 11 h781121 - 11 x181121

Throlles 4 211 Mrolles - Equation -6 =)

From Cauchy-Schwart's inequality 11 hTolles & sta 11 hTolles.

Parcof: take as 's spanse vector "A" such that the position's where 'hto has non-zero values, vector A' has 1 (i.e if hto= (01,2,0,3) => A= (0,1,1,0,1))

=> from Cauchy-Schwalte => 1 < hro A>1 = 11 hirolle, 11 Allen here IC hio, A>I = 11 hiolily and 11A112= 91/2.

11 molles & 11 molles - 51/2

```
11 hrolles + 2 11 mrolle, & s'12 11 hrolles + 211 mrolles
but from equation- @ i.e. 11 hto 112 + 211 nto 1112 > 11 hto 162
           11 hostles & 51/2 11 houlest 211 x78 11 12
  =>
           5/12 11 hTOC 11 21 4 11 hTO 11 22 + 2 51/2 11 MTOC 11 21
 =)
      from equation-4 . i.e " horour, ellez & 51/2 11 horolly
             11 h (TOUTIF 11 12 = 11hTolle2 + 25 1/2 11 xtg 11 21
 =>
  Let eo = 5 1/2 11 x Toc 11 21
             11 to croutile 1/2 / 11 htolls + 2 eo = equation -
  ラ
         12 PHOOTED, Ohal & 11 Photoutille 11 Oh 11ez
9)
    (from Cauchy-Schwartz inequality)
            11 $ (x-x*) 11 12 ≤ 2 € from equation-@
             => . 11 d h 11 12 € 2 €
   from RIP: here h= x-x* => h'is atmost 25'sposse
                                           => h(tous) is almost 25 spass
                   11 $ h(TOUT) 11 12 < (14 825) 11 h(TOUT) 11/2
                    11 therandly & Jusse 11 heroundly
```

From above two equations we can say, 11 Oh (10071) 11 2 11 O'h 11 2 2 2 5 TI+ Ses 11 h(10071) 11 \$12 - (equation . 8) form 1< \$x, \$x'>1 \ 8515' || x1|| 22 || x'|| 12 10) where x, x', are disjoint set's : S, s' are sparisity of x, x', => Now, X= h (To)and and x'= h(Tj); both thro, hTj ase 's'-span from defination of ht, and hto they are disjoint sols => 1 < \$ hto, \$ htg> 1 < 825 || htolle || htj! -(equation-9) as thro and hr, are disjoint 11 httouti) 11 2 = 11 h Toll 12+ 11 hT2 11 12 11 hrolles + 11 hr, 112 = 11 has 11 hr, 11 12 (from AM-GM)

=> (11h tolles - 11h tilles) => 0

11 h tolles + 11 h tilles = 2 11 h tolles + 11 h tilles

>> 2 11h tolles + 2 11h filles > 11h tolles + 11h tolles

now from equation - @ . i.e < \$mo, bnij> = Ses 11 htollog1 htilly

· (Φh-τουτι, Σφ hτί) < ν2800 Πητουτι 11 ε2 (Σ Πητο 11 ε2)

S equation-1

and from equation - 8 12 phrout, ph>1 = 2 EVI+825 Throut, III

as 1 throut, 112/2 = 1 < throwing th> - 2 throut, 15 throis > 1

and from the above equation (8) and equation - (1)

=) and from RIP => (1-82) [hτουτι || 2 | 11 | 4 | 12 | 825 | 11 | 4 | 12 | 825 | 11 | 4 | 12 | 825 | 11 | 4 | 12 | 825 | 11 | 4 | 12 | 825 | 11 | 4 | 12 | 825 | 11 | 4 | 12 | 825

From above two we can say

equation - (2)

13) from this equation -10.

where $d = 2 \sqrt{1+8es}$, $p = \sqrt{2} \frac{8es}{1-8es}$

forom equation. 6. i.e 11 hostles & 11holles + 21hostles 14) and equation-(3) we can say

11 h TOUT, 1/2 < de + 95 1/2 11h Toll 12+ 295 1/2 11 m To. 1121

Now, we know 11 hours 1/2 2 11 hours 1/2 (as To, T1 are disjont and it's L1 noam) Nh τουτι 11 e2 ≤ αξ + β 1 hτουτι 112 + 2β €0 4 equation-(4) where eo = 5 1/2 11 x Talles . 11 htoutill 2 < (1-P) (a E+ 28e0) -> equation-(5) 2 11/1/2 < 11/1007, 1/2 + 11/1007, 1/2. 15) from equation . The 11 httout, I ll 1/2 = 11 htoll 12 + 2 Po and . 11h Toll 12 & 11h TouTillez => 11h112 < 2 11h TOUT, 11 2 + 2 eo and from equation - (5) i.e Ilhtoutille & (1-P) (x E+28 Pd) 11 hillez & 2 (1-P) (a E+28e0) + 2e0 う 11 hillez & e (1-p) (a E+29eo + (1-9)eo.) 11 h 11 2 = 2(1-9) (x &+ (1+8) eo) - (equation (6)) 2)

Question 2.

Code for a, b, d parts is present in q2_d.m and c part is in q3.m

Noised Image a)

RMSE = 5.3617e-04 using alpha = 2* max eigenvalue = 2, Lambda = 1, epsilon = 1

b)

Original Image Reconstructed Image

RMSE = 0.4064; using epsilon = 0.05 and lambda = 1 The alpha value we choose was, alpha = 3* Maximum EigenValue of [$A*A_t$ (transpose)]. We got an RMSE of 0.4064 but it could have been reduced by running the code for a longer time with better parameters.

c) Original Image

Reconstructed Image

RMSE = 0.5054

-1.5 L

The code was taking a long time to run. We reduced the number of iterations in the ISTA algorithm to reduce the computation time. Our computers were not able to run the codes for so long. Hence, we decided to get an output with low computation costs albeit with a higher error.

c) Using alpha = max eigenvalue of A, epsilon = 10^-7, lambda = 0.1

100

60

- a) Original vector
- b) Noisy vector
- c) Reconstructed vector

Question 3.

For this problem we shall consider, the dimensions of $y = m \times 1$, $\phi = m \times n$, $x = n \times 1$

(a) We know,

$$y = \Phi x + \eta = \Phi_S x_S + \eta$$

where, Φ_S represents the columns corresponding to the indices in S and x_S represents a $|S| \times 1$ vector with only the non-zero values of x. Therefore,

$$y = \Phi_S x_S + \eta \implies y = \Phi_S \tilde{x}_S \implies \Phi_S^T y = \Phi_S^T \Phi_S \tilde{x}_S \implies (\Phi_S^T \Phi_S)^{-1} \Phi_S^T y = \tilde{x}_S$$
$$\tilde{x} = 0_{n \times 1}; \ \tilde{x}_S = \Phi_S^{\dagger} y$$

(b) Substituting $y = \Phi_S x_S + \eta$ and using $\Phi_S^{\dagger} \Phi_S = (\Phi_S^T \Phi_S)^{-1} (\Phi_S^T \Phi_S) = I$ in the above equation, we get

$$\left\|\tilde{\mathbf{x}} - \mathbf{x}\right\|_{2} = \left\|\tilde{\mathbf{x}}_{\mathbf{S}} - \mathbf{x}_{\mathbf{S}}\right\|_{2} = \left\|\phi_{\mathbf{S}}^{\dagger}(\phi_{\mathbf{S}}\mathbf{x}_{\mathbf{S}} + \eta) - \mathbf{x}\right\|_{2} = \left\|\phi_{\mathbf{S}}^{\dagger}\phi_{\mathbf{S}}\mathbf{x} + \phi_{\mathbf{S}}^{\dagger}\eta - \mathbf{x}\right\|_{2} = \left\|\phi_{\mathbf{S}}^{\dagger}\eta\right\|$$

Let $\|\phi_{\mathbf{S}}^{\dagger}\|_{2}$ be the largest Singular value of $\Phi_{\mathbf{S}}^{\dagger}$. By definition of singular values, for any vector x,

$$\left\|\phi_{\mathbf{S}}^{\dagger}\mathbf{x}\right\|_{2} \leq \left\|\mathbf{x}\right\|_{2} \left\|\phi_{\mathbf{S}}^{\dagger}\right\|_{2}$$

Hence,

$$\left\|\mathbf{\tilde{x}}-\mathbf{x}\right\|_{2}=\left\|\phi_{\mathbf{S}}^{\dagger}\boldsymbol{\eta}\right\|_{2}\leq\left\|\phi_{\mathbf{S}}^{\dagger}\right\|_{2}\left\|\boldsymbol{\eta}\right\|_{2}$$

(c) δ_{2k} is defined as the minimum δ such that

$$(1 - \delta) \|\theta\|^2 \le \|\phi\theta\|^2 < (1 + \delta) \|\theta\|^2$$

(c)	To find an upper bound on the maximum singular value of ϕ_s^{\dagger} $\phi_s \rightarrow m \times s$
	ϕ_s $\phi_s \rightarrow m \times s$
	Firstly, if $\phi_s = USV^T$ where, U is a mxm orthonormal matrix
	V is a nxn orthonormal matrix
	S is a diagonal matrix with diagonal elements = singular values of ϕ_s then, $\phi_s^{\dagger} = V s_0^{-1} U^{\dagger}$ $s_0^{\dagger} : s_0^{\dagger} : s_0^{$
	then, $\phi_s^T = V s_0^T U^T$ so a sem making
	where so (i,i) = /S(i,i) if i-j & S(i,j) +0
	= 0 otherwise
	Hence, we can day if singular values of a are bounded by
	Hence, we can day if singular values of ϕ are bounded by (a, b) then singular values of ϕ^{\dagger} are bounded by (1/b, 1/a)
	Now, the product $\phi_s y$ for any $y \neq 0 \Rightarrow sx1$ vector can be written as,
	$\phi_s y = \phi x$ where $n_s = y$ and $n_{sc} = 0$
	x is a 5-sparse vector.

	Now, we know that $\sqrt{1-8} < \ \phi x\ < \sqrt{1+8} < \ \phi x\ $
	x
	Oloo, for any set, Ss & St (Proved in 94)
	Hence, SK S2K and
	1-82K < 11-8K < 110n11 < 11+8K < 1+8K
	> VI-SUK < \$\Phi_{SY} \le \sum_{1+8K} - 0
	[$ x = y $ because $x_s = y$ and $x_s = 0$]
	· -
	:. For any SXI vector y, equation 1 holds true
	:. For any sx1 vector y, equation ① holds true Therefore, originar values of φ, are bounded by (√1-S2k, √1+S2k)
	This implies,
	aingular values of ϕ_s^{\dagger} are bounded by $\left(\frac{1}{\sqrt{1+S_{2K}}}, \frac{1}{\sqrt{1-S_{2K}}}\right)$
	(3 _K (1)
	Therefore, $ - + + + + + + + + + $
	11+82K
(q)	ds lyl (t, we have from (b) & (c)
	$\frac{\epsilon}{\epsilon} \leq x - \tilde{x} _{2} \leq \frac{\epsilon}{\epsilon}$
	$\sqrt{1+\delta_{2k}}$ $\sqrt{1-\delta_{2k}}$
	Theorem 3 states that,
	Let the polition to the problem P, be x*
	i.e., min, a , s-t. y-φx ε ε Y RIC 82K of φ < 12-1 dhen,
	x+-x ₂ ≤ C ₀ x-x _s + G €
	x is ∞ -sparse, Hence $Co\ x-x_S\ =0$
	Hence, $0 \le x^* - x _2 \le C_1 \in C_1 = 4\sqrt{1+\delta_{2k}}$
	We have $\varepsilon \leq \sqrt{1+8} x-\overline{x} _2$ from () $1-8 \omega (\overline{\Sigma}+1)$
	do, x*-n < 4 /1+6m x-x" 2
	$\ x^* - x\ _{2} \le 4(1+\delta_{2k}) \ x - x\ _{2}$
	Hence, the oracular solution and the solution given by Theorem 3

Question 4.

Consider the set of s-sparse vectors, Θ_s and the set of t-sparse vectors, Θ_t in the domain \mathbb{R}^n , n > t, s. Now, as s < t, $\Theta_s \subseteq \Theta_t$. This is because, Θ_t has vectors which have at most t non-zero values. This also includes the vectors which have at most s non-zero values, which is nothing but Θ_s .

 δ_t is defined as the minimum δ such that

$$(1 - \delta) \|\theta\|^2 \le \|\mathbf{A}\theta\|^2 < (1 + \delta) \|\theta\|^2$$

where $\theta \in \Theta_t$. Suppose, $\delta_t < \delta_s$. This means that

$$(1 - \delta_t) \|\theta\|^2 \le \|\mathbf{A}\theta\|^2 < (1 + \delta_t) \|\theta\|^2$$

for $\theta \in \Theta_s \subseteq \Theta_t$. Since, δ_s is defined as the smallest number that satisfies the equation of the above form, $\delta_s \leq \delta_t$.

This is a contradiction. Hence, $\delta_s \leq \delta_t$.

Q5) Link: http://science.fau.edu/docs/data-sci/dsaai-3-paper-35.pdf

Advanced Image Processing

190050093, 190050118

Question 5.

(1) The title of the paper is Group Testingand Compressed Sensing for COVID-19 Using ddPCR

Link: http://science.fau.edu/docs/data-sci/dsaai-3-paper-35.pdf

(2) The key objective function being minimised is

$$F(x) = \|\phi \mathbf{x} - \mathbf{y}\|_{2}^{2} + \tau \|\mathbf{x}\|_{1}$$

Here, $\phi \in \mathbb{R}^{M \times N}$ is the pooling/sensing matrix given by

$$\Phi_{ij} = \frac{1}{G} \ j \in \text{Pool } i \text{ and } 0 \text{ otherwise}$$

 $x \in (\mathbb{R}_{\geq 0})^N$ is the signal being measured and $y \in (\mathbb{Z}_{\geq 0})^M$ is the measured vector. y is estimated as a poisson random variable as $y \sim \text{Poisson}(\phi x)$. $\tau > 0$ is a regularization parameter.

The pooling matrices have an l_1 RIP

$$(1-\varepsilon) \|\mathbf{x}\|_{1} \leq \|\phi\mathbf{x}\|_{1} \leq \|\mathbf{x}\|_{1}$$

for some small ε .

When y is with Poisson noise, the function being minimised is

$$G(x) = \sum_{i=1}^{M} y_i - y_i \log [\phi x]_i + \tau a(x)$$

where, $x \in [\phi x]_i$ represents the *i*th entry of the concentrations of pools calculated assuming sample concentrations x and a(x) is a penalty function. The penalty function is chosen to penalize sets of viral concentrations with higher prevalence.

$$a(x) = \|\mathbf{x}\|_{\frac{1}{2}} := \sum_{i=1}^{N} \sqrt{x}$$

(3) The tapestry pooling paper mainly focuses on tailoring the LASSO problem to obtain the signal vector. This paper optimises a slightly different function (G(x)) with Poisson noise.

This paper considers various penalty functions a(x) such as $\|\mathbf{x}\|_1$ which basically minimises the sparsity of x. It also explores $a(x^*) = \frac{G}{L} \sum_{i=1}^{M} y_i$ for group sparsity. Although, with this penalty function, this paper considers equally sized groups where as the Tapestry pooling paper did not have any restrictions on group sizes.

This paper considers the ddPCR testing for Covid -19 and Tapestry pooling paper considers RT-PCR testing.

The pooling matrices are derived from Kirkman Triples, Reed-Solomon and random Bernoulli matrices are used. The tapestry pooling paper explored various other pooling matrices such as Expander matrices that obey RIP-1. There are many algorithms used in the Tapestry pooling paper such as COMP, NN-OMP and Sparse Bayesian Learning(EM).

Question 6.

The problem P1 is given by the following expression

$$min_x ||\mathbf{x}||_1$$
 s.t. $||\mathbf{y} - \phi \mathbf{x}||_2 \le \varepsilon$

The LASSO problem is given by

$$J(x) = \|\mathbf{y} - \phi \mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

Now, \mathbf{x} is a minimizer of J(.) for some $\lambda > 0$. Consider $\varepsilon = \|\mathbf{y} - \phi \mathbf{x}\|_2$. For the sake of contradiction, let us say there exists $\mathbf{x}' \neq \mathbf{x}$ such that \mathbf{x}' is the minimizer of P1. $\|\mathbf{y} - \phi \mathbf{x}'\|_2 \leq \varepsilon = \|\mathbf{y} - \phi \mathbf{x}\|_2$ because \mathbf{x} is minimizer of P1. Now,

$$\begin{aligned} \left\| \mathbf{x}' \right\|_1 < \left\| \mathbf{x} \right\|_1 \text{ and } \left\| \mathbf{y} - \phi \mathbf{x}' \right\|_2^2 \leq \left\| \mathbf{y} - \phi \mathbf{x} \right\|_2^2 \implies \left\| \mathbf{y} - \phi \mathbf{x}' \right\|_2^2 + \lambda \left\| \mathbf{x}' \right\|_1 \leq \left\| \mathbf{y} - \phi \mathbf{x} \right\|_2^2 + \lambda \left\| \mathbf{x}' \right\|_1 \\ \left\| \mathbf{y} - \phi \mathbf{x}' \right\|_2^2 + \lambda \left\| \mathbf{x}' \right\|_1 < \left\| \mathbf{y} - \phi \mathbf{x} \right\|_2^2 + \lambda \left\| \mathbf{x} \right\|_1 \implies J(\mathbf{x}') < J(\mathbf{x}) \end{aligned}$$

This is a contradiction. Hence, minimizer \mathbf{x} of J(.) is also a minimizer of P1 problem.