Instituto Tecnológico de Morelia

práctica 5: Curvas de Beizer

Graficación

Profesor:

Martinez Guzman Bryan Eduardo

Santiago Gonzalez Lara 22121360 Mayavi Sarael Gonzalez Ornelas 22120661

11 de febrero del 2025

Las **curvas de Bézier** son una herramienta matemática usada para dibujar formas suaves y curvas en gráficos por computadora, diseño, animación, y más. Fueron desarrolladas por Pierre Bézier, un ingeniero de Renault, para diseñar formas de carros. Estas curvas son populares porque son fáciles de calcular y manipular.

¿Cómo funcionan?

Las curvas de Bézier se construyen usando **puntos de control**, que son como "anclas" que definen la forma de la curva. Dependiendo de cuántos puntos de control tengas, obtendrás curvas más o menos complejas:

- 1. Curva lineal (grado 1): Es solo una línea recta entre dos puntos.
- 2. Curva cuadrática (grado 2): Tiene tres puntos de control. La curva se dobla suavemente hacia el punto medio, creando una curva más flexible.
- 3. Curva cúbica (grado 3): Usa cuatro puntos de control y permite crear formas aún más complejas.

El movimiento de la curva entre los puntos se calcula con un proceso llamado interpolación, usando una fórmula basada en el teorema del binomio.

Aplicaciones prácticas

1. Gráficos y diseño digital:

- Se usan en programas como Adobe Illustrator o Inkscape para dibujar formas vectoriales.
- Permiten diseñar logos, tipografía y gráficos escalables sin pérdida de calidad.

2. Animación:

- En animación 2D/3D, las curvas de Bézier ayudan a mover personajes o cámaras de forma suave.
- Son esenciales en herramientas como After Effects para crear trayectorias de movimiento.

3. Diseño de interfaces (UI/UX):

 Usadas para definir transiciones y animaciones, como deslizamientos o desvanecimientos suaves en aplicaciones y sitios web.

4. Edición de video y audio:

- En edición de video, controlan cómo cambian las velocidades o efectos visuales a lo largo del tiempo.
- o En audio, permiten ajustar volúmenes o mezclas de manera precisa.

5. Videojuegos:

Crean trayectorias para personajes o cámaras en mundos 2D/3D.

6. Modelado 3D:

 Sirven para modelar superficies suaves, como carrocerías de autos o diseños industriales.

```
import matplotlib.pyplot as plt
import numpy as np
def bezier curve(points, num points=100):
  t = np.linspace(0, 1, num points)
  curve = np.zeros((num points, 2))
  for i in range (n + 1):
       curve += np.outer(bernstein poly(n, i, t), points[i])
   return curve
def bernstein poly(n, i, t):
def comb(n, k):
Usar math.factorial
def plot bezier curve(points):
  curve = bezier curve(points)
  plt.figure()
  plt.plot(curve[:, 0], curve[:, 1], 'b-', label='Curva de Bézier')
  plt.plot([p[0] for p in points], [p[1] for p in points], 'ro-',
  plt.legend()
  plt.show()
```

