Exercices d'Électrocinétique

■ Intensité et densité de courant

$(\mathsf{Ex}\text{-}\mathsf{E}1.1)$ Vitesse des porteurs de charges :

On dissout une masse $m=20\,g$ de chlorure de sodium NaCl dans un bac électrolytique de longueur $l=20\,cm$ et de section $S=10\,cm\times 10\,cm$ rempli d'eau. La dissolution est totale.

On fait passer un courant d'intensité $I=100\,mA$ entre deux électrodes situées aux extrémités de la cuve.

Données: masses molaires:

$$M(Cl) = 35, 5 g.mol^{-1} \text{ et } M(Na) = 23 g.mol^{-1}.$$

Nombre d'Avogadro est $\mathcal{N}_A = 6,02.10^{-23} \, mol^{-1}$; charge élémentaire est $e = 1,6.10^{-19} \, C$.

 \blacklozenge Q : Sachant que les vecteurs vitesse des ions chlorure et des ions sodium sont de sens opposés et dans le rapport 1, 5, déterminer la vitesse et le sens de déplacement de ces ions.

$${\rm \bf R\acute{e}p:} \ \, v_{\bigoplus} = 2,4.10^{-7} \, \, m.s^{-1} \, ; \, v_{\bigcirc} = 3,6.10^{-7} \, \, m.s^{-1}. \label{eq:rescaled}$$

Ex-E1.2 Semi-conducteur : Les semi-conducteurs sont des matériaux utilisés en électronique et dont la conduction varie fortement avec la température ou avec la présence d'impureté. Dans un semi-conducteur, il existe deux types de porteurs de charge :

- \circ les électrons, de charge $q_e = -e$, de densité n_e ;
- \circ et les trous, de charge $q_p = +e$, de densité n_p .

À une température donnée, du fait des propriétés dues aux liaisons internes au semi-conducteur, le produit $n_e n_p = n_i^2$ est constant.

La présence d'impuretés (= atomes 'étrangers' au réseau) permet de modifier n_e et n_p tout en maintenant le produit $n_e n_p$ constant.

En l'absence d'impuretés, ces deux valeurs sont égales : $n_e = n_p = n_i$.

Pour le silicium, nous avons : $n_i = 1, 5.10^{16} \, m^{-3}$.

Dans les conditions d'étude, la vitesse des électrons est $v_e = 12 \, cm.s^{-1}$ et celle des trous $v_p = 5 \, cm.s^{-1}$.

- 1) Déterminer la densité de courant du silicium dans les conditions d'étude.
- 2) Comment varie la densité de courant j avec n_e ? Tracer l'allure de la courbe correspondante $j = j(n_e)$ et expliquer l'intérêt de la présence d'impuretés dans le silicium utilisé en électronique.

Rép: 1)
$$j = 4, 1.10^{-4} A.m^{-2}$$
;

2)
$$j_{\min} = j_0 = 3,7.10^4 \ A.m^{-2} \text{ pour } n_{e,0} = n_i \sqrt{\frac{v_P}{v_e}} = 9,7.10^{15} \ m^{-3}.$$

■ Calculs de tensions et de courants

$ig(\mathsf{Ex} extsf{-}\mathsf{E2.1} ig)$ Réseau à deux mailles

Déterminer, pour le circuit ci-contre, l'intensité i qui traverse la résistance R_2 et la tension u aux bornes de la résistance R_3 :

- 1) en faisant des associations de résistances et en appliquant le diviseur de tension.
- 2) en faisant une transformation Thévenin \to Norton et en appliquant le diviseur de courant.

Rép: 1/2)
$$i = \frac{R_3 E}{R_1 R_3 + (R_1 + R_3)(R_2 + R_4)}$$
; $u = \frac{R_3 (R_2 + R_4) E}{R_1 R_3 + (R_1 + R_3)(R_2 + R_4)}$;

3) $i = 15 \ mA \ \text{et} \ u = 1, 5 \ V.$

 R_4

E2

Ex-E2.2 Circuit linéaire

Dans le circuit ci-contre :

- 1) Calculer U_{EF} ,
- 2) Calculer l'intensité I_0 circulant dans la branche principale;
- 3) Calculer l'intensité I' circulant dans la branche contenant le générateur E'(préciser son sens);
- **4)** Calculer les intensités i_1 , i_2 et i_3 .

Données:

$$R = 1 \Omega$$
, $E = 5 V$ et $E' = 3 V$.

Rép: $U_{EF} \simeq 1,67 \ V$; $I_0 \simeq 0,83 \ A$; $I' \simeq 0,17 \ A$; $i_1 = i_3 \simeq 0,33 \ A$; $i_2 \simeq 0,17 \ A$.

Ex-E2.3 Distribution de courant sur les arêtes d'un cube

Le courant d'intensité I arrive sur le sommet A d'un cube dont les arêtes sont constituées par un fil métallique; chaque arête a une résistance r. Le courant ressort par le sommet H opposé à A.

- 1) Calculer les intensités dans chaque branche.
- 2) Soit $V_A = V$ et $V_H = 0$ V les potentiels des points A et H. Calculer les potentiels des différents sommets.
- 3) Quelle est la chaleur dissipée dans le cube par unité de temps?

A.N.: $I = 500 \ mA \ \text{et} \ r = 0, 2 \ \Omega.$

Rép: **2)**
$$V_E = V_F = V_G = r\frac{I}{3} = \frac{2}{5}V$$
; $V_B = V_D = V_C = V_A - r\frac{I}{3} = \frac{3}{5}V$;

3)
$$\mathcal{P}_J = \frac{\delta Q}{\mathrm{d}t} = \frac{5}{6}rI^2 \simeq 42 \ mW.$$

■ Association de générateurs

Ex-E2.4 Modélisation de Thévenin (1)

Donner le générateur de Thévenin équivalent au circuit ci-contre entre A et B.

Rép:
$$R_{\text{éq}} = \frac{R}{2}$$
 et $E_{\text{Th}} = e + R\eta$.

Ex-E2.5 Modélisation de Thévenin (2)

générateur Déterminer le de Thévenin équivalent au réseau dipolaire entre bornes A et B ci-contre.

Données : $\eta = 1 A, R = 6 \Omega$ et E = 24 V.

Rép:
$$R_{eq} = \frac{R}{2} = 3 \Omega \text{ et } E_{Th} = 2R\eta + \frac{E}{4} = 18 V$$

■ Calculs de résistances équivalentes

Ex-E2.6 Résistance équivalente d'un réseau dipolaire (1)

Calculer la résistance équivalente à un réseau à mailles carrées, chaque côtés ayant la résistance r.

Rép:
$$R_{\text{éq}} = \frac{13}{7}R$$

Ex-E2.7 Résistance équivalente d'un réseau dipolaire (2)

Chaque trait représente un résistor de résistance R.

Déterminer la résistance équivalente de ce réseau vu des points :

1) A et C (5R/4)

7) B et F (7R/12)

- **2)** A et E (3R/2)
- 3) A et F (7R/8)

- **4)** B et D (5R/6)
- **5)** H et D (R)
- **6)** A et B (17R/24)

Ex-E2.8 Théorème de Kennelly (À comprendre!)

On considère les deux circuits ci-dessous : celui de gauche est appelé le circuit « étoile » et celui de droite circuit « triangle ». Exprimer les résistances r_1, r_2 et r_3 du circuit étoile en fonction des résistances R_1 , R_2 et R_3 du circuit triangle pour que les deux circuits soient équivalents. La relation obtenue constitue le théorème de Kennelly.

Rép: $r_1 = \frac{R_2 R_3}{R_1 + R_2 + R_3}$, r_2 et r_3 se déduisent par permutation circulaire des indices.

Ex-E2.9 Résistance équivalente d'un réseau dipolaire (3)

- 1) Calculer la résistance équivalente du réseau suivant :
 - a. en utilisant les lois de KIRCHOFF.
- **b.** en utilisant les regroupements de résistances (série, parallèle, triangle-étoile).

Calculer l'intensité du courant dans la branche CD avec :
$$R_1=2R, R_2=4R$$
 , et $R=1$ Ω .
Rép : 1) $R_{\text{éq}}=\frac{2R_1R_2+RR_1+RR_2}{2R+R_1+R_2}$; **2)** $I=I_{C\to D}=\frac{U}{11R}=1$ A .

■ Équation différentielle et Conditions initiales d'un circuit

Ex-E2.10 Deux bobines réelles en parallèle

Déterminer, dans le cas particulier où $R_1L_2=R_2L_1$, l'équation différentielle liant la tension u et le courant i dans le montage ci-contre, constitué de deux bobines réelles en parallèle.

Rép:
$$(L_1 + L_2)u = L_1L_2\frac{\mathrm{d}i}{\mathrm{d}t} + R_2L_1i$$

Déterminer l'équation différentielle liant la tension u et le courant i dans le montage ci-contre, constitué de deux condensateurs avec fuite en série. On notera u_1 et u_2 les tensions aux bornes de chaque condensateur.

Rép: Cas où
$$R_2C_2 = R_1C_1 : (C_1 + C_2)i = C_1C_2\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{C_1}{R_2}u.$$

(Ex-E2.12) Filtre de Wien (Exercice important!)

Le montage ci-contre comporte deux résistances identiques R et deux condensateurs de capacités identiques C.

2) A l'instant initial, les deux condensateurs sont déchargés et la tension u = E est constante. Déterminer les conditions initiales portant sur v et $\frac{\mathrm{d}v}{\mathrm{d}t}$ juste après le branchement du circuit :

$$v(0^+)$$
 et $\frac{\mathrm{d}v}{\mathrm{d}t}(0^+)$.

Rép: 1)
$$\frac{du}{dt} = RC\frac{d^2v}{dt^2} + 3\frac{dv}{dt} + \frac{v}{RC}$$
; 2) $v(0^+) = 0$ et $\frac{dv}{dt}(0^+) = \frac{E}{RC}$.

[Ex-E2.13] Bobine réelle en série avec un condensateur avec fuites

Une bobine réelle d'inductance L possède une résistance r. Elle est placée avec un condensateur de capacité C et de résistance de fuite R.

- 1) Déterminer l'équation différentielle liant l'intensité i et la tension u.
- 2) À t=0, la tension aux bornes du condensateur vaut v_0 et pour $t\geq 0$, on impose u=0 grâce à un court-circuit.

Juste après l'installation du court-circuit, que valent $i(0^+)$? $v(0^+)$? $\frac{\mathrm{d}i}{\mathrm{d}t}(0^+)$? et $\frac{\mathrm{d}v}{\mathrm{d}t}(0^+)$?

Rép: **1)**
$$LC \frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \left(rC + \frac{L}{R}\right) \frac{\mathrm{d}i}{\mathrm{d}t} + \left(1 + \frac{r}{R}\right) i = \frac{u}{R} + C \frac{\mathrm{d}u}{\mathrm{d}t}$$

2) $i(0^+) = 0$; $v(0^+) = v_0$; $\frac{\mathrm{d}i}{\mathrm{d}t}(0^+) = -\frac{v_0}{L}$; $\frac{\mathrm{d}v}{\mathrm{d}t}(0^+) = -\frac{v_0}{RC}$

Solution Ex-E2.1

- 1) Après avoir introduit et nommé les nœuds, on peut introduire la résistance équivalente à R_2 et R_4 qui sont en série : $R_5 = R_2 + R_4$
- Il apparaı̂t que R_3 est en parallèle avec R_5 .

En simplifiant :
$$R_6 = R_3//R_5 = \frac{R_3R_5}{R_3 + R_5}$$
.

• On reconnaît un diviseur de tension, R_1 et R_6 étant en série, sou-

mises à la tension $E:U_{AB}=\frac{R_6}{R_1+R_6}E=\frac{R_3R_5}{R_3+R_5}\frac{E}{R_1+\frac{R_3R_5}{4R_3+R_5}}$

Soit:
$$i = \frac{R_3 E}{R_1 R_3 + (R_1 + R_3)(R_2 + R_4)}$$

- Rque : Attention! i n'apparaît plus sur le second schéma équivalent. Il fallait revenir au premier schéma équivalent pour l'exprimer.
- 2) On introduit et on nomme les nœuds. On reconnaît un générateur de Thévenin de f.é.m. E et de résistance interne R_1 entre A et B. On peut faire une transformation $Th\'{e}venin \rightarrow Norton$.

Il apparaı̂t le
$$c.é.m.: \boxed{\eta = \frac{E}{R_1}}$$
.

de résistance équivalente :
$$R_0 = \frac{R_1 R_3}{R_1 + R_3}$$

- R_0 est en parallèle avec $\overline{R_5}$, mais on ne simplifie pas! car :
- on cherche i
- on reconnaît un diviseur de courant au nœud A alimenté par η :

$$i = \frac{R_0}{R_0 + R_5} \eta = \frac{R_1 R_3}{R_1 + R_3} \cdot \frac{1}{\frac{R_1 R_3}{R_1 + R_3} + R_2 + R_4} \cdot \frac{E}{R_1}. \text{ Soit : } \left[i = \frac{R_3 E}{R_1 R_3 + (R_1 + R_3)(R_2 + R_4)} \right]$$

 R_5

• Puisque
$$U_{AB} = R_5 i$$
, on retrouve : $u = U_{AB} = \frac{R_3(R_2 + R_4)}{R_1 R_3 + (R_1 + R_3)(R_2 + R_4)} E$

3)
$$i = 15 \ mA$$
 et $u = U_{AB} = 1, 5 \ V$

$_{-}$ Solution Ex-E2.2 $_{-}$

1) On reconnaît un montage « Diviseur de tension » entre D et F,

donc:
$$U_{EF} = \frac{R}{R + 2R}E' = 1 V$$

2) • Il faut d'abord exprimer la résistance équivalente R_{eq} entre B et C.

$$R_{eq} = (R//R)//2R = \frac{R}{2}//2R = \frac{2}{5}R$$

ullet Du point de vue de la branche principale, la branche $\{D,2R,R,F\}$ est inutile puisqu'une force éloctromotrice E' en parallèle impose la tension à ses bornes.

On peut donc l'enlever sur un schéma équivalent.

Il apparaît deux forces électromotrices en série qui s'oppose : on peut donc les remplacer par une seule et unique $f.\acute{e}.m.$ de valeur $E_0 = E - E' = 2 V$ et de même sens que E.

- Le circuit est maintenant équivalent à un circuit formé d'une seule maille
 - parcourue par I_0 ,
 - constitué d'une $f.\acute{e}.m.$ E_0 de même sens que I_0
 - et d'une résistance équivalente $R_0 = R + R_{eq} + R = \frac{12}{5}R$
- \rightarrow la loi des mailles donne $I_0 = \frac{E_0}{R_0} = \frac{5}{12R}(E E') = \frac{5}{6} A \approx 0,83 A$
- 3) Pour connaître l'intensité I' circulant dans la branche contenant E' on calcule d'abord l'intensité I'' qui circule de D vers F dans la branche contenant les résistances 2R + R = 3Rsoumises à la tension E'.

- La loi d'Ohm donne, en convention récepteur : $I''=\frac{E'}{3R}=1$ A On en déduit donc, d'après la loi des nœuds et en définissant I' par rapport à E' en convention $I' = I'' - I_0 = \frac{1}{6} A \approx 0,17 A \ (I' \text{ dirigée de } F \text{ vers } D).$ générateur, que
- **4)** Tout d'abord, les symétries imposent que $i_1 = i_3$

On reconnaît ensuite entre B et C un diviseur de courant :

- On a donc : $i_1 = \frac{G_1}{G_{eq}} I_0 = \frac{R_{eq}}{R} I_0 \Longrightarrow \boxed{i_1 = i_3 = \frac{2}{5} I_0 = \frac{1}{3} \ A \approx 0,33 \ A}$ De même : $i_2 = \frac{G_2}{G_{eq}} I_0 = \frac{R_{eq}}{2R} I_0 \Longrightarrow \boxed{i_2 = \frac{1}{5} I_0 = \frac{1}{6} \ A \approx 0,17 \ A}$
- On vérifie bien entendu la loi des nœuds en $B: \overline{I_0 = i_1 + i_2 + i_3}$

Ex-E2.14 Groupement diode idéale-résistances

Représenter la caractéristique Intensité-Tension I(U) du dipôle équivalent au groupement entre les points A et B.

(Ex-E2.15) Diviseur de Tension (Généralisation)

Montrer que la loi à laquelle obéit ce diviseur de tension est :

$$U_{AB} = \frac{R_2}{R_1 + R_2} e_0 - \frac{R_1 R_2}{R_1 + R_2} i$$

Ex-E2.16 Alimentation d'une diode (*)

Le montage de la figure ci-contre montre un ensemble de générateurs associés avec une résistance R_3 et une diode à jonction. Celle-ci est idéale, sans résistance dynamique, et possède une tension de seuil U_S .

En supposant que la diode est polarisée dans le sens direct, et est parcourue par un courant i non nul, exprimer i en fonction de e_1 , e_2 , U_S , R_1 , R_2 , R_3 , r_1 et r_2 .

À quelle condition portant sur ces grandeurs l'hypothèse $i \neq 0$ est-elle justifiée ?

Rép:
$$i > 0$$
 pour $\frac{R_3(r_2 + R_2)e_1 + R_3(r_1 + R_1)e_2}{R_3(r_2 + R_2 + r_1 + R_1) + (r_1 + R_1)(r_2 + R_2)} > U_S$

(Ex-E2.17) Protection d'une diode Zener (**)

Déterminer la valeur maximale E_{max} de la tension continue E pour que la diode ZENER ne claque pas.

Les caractéristiques de la diode Zener sont :

- \circ la tension ZENER U_Z ;
- $\circ \rho$ la résistance dynamique en régime ZENER;
- $\circ \mathcal{P}_{\text{max}}$ la puissance maximale que la diode peut recevoir;
- $\circ i_{max}$ et V_{max} l'intensité et la tension maximales que la diode supporte en régime ZENER.

$$\mathsf{R\acute{e}p}:\ E_{\max} = \frac{1}{2}(U_Z + \sqrt{U_Z^2 + 4\rho\mathcal{P}_{\max}})\left(1 + \frac{R}{R'} + \frac{R}{\rho}\right) - \frac{RU_Z}{\rho}$$

Ex-E2.18 Équivalence entre générateur de tension et générateur de courant (*)

Soit le circuit ci-contre avec : E = 4 V, $r = 2 \Omega$.

E' est un électrolyseur de force contre-électromotrice égale à $E'=1,5\ V.$

Entre A et B, la résistance totale est de 12 Ω .

On pourra poser : $R_2 = x$ et $R_1 = 12 - x$.

 \rightarrow Déterminer la valeur de l'intensité i dans la branche de l'électrolyseur en fonction de la position du curseur du potentiomètre, donc de la valeur de x.

$$\mathsf{R\acute{e}p}:\ i = \frac{8x - 66}{12x - x^2 + 24} \ \mathrm{pour}\ i > 0, \ \mathrm{ce}\ \mathrm{qui}\ \mathrm{revient}\ \grave{\mathrm{a}}\ \mathrm{dire}\ \mathrm{que}\ 8, 25\ \Omega < x < 12\ \Omega.$$

■ Réseaux linéaires en régime continu

[Ex-E3.1] Pont de Weahtsone

Un pont de Weahtsone est un montage électrique permettant de déterminer une résistance inconnue.

1) Équilibrage du pont

La résistance à déterminer est R_1 .

Les résistances R_3 et R_4 sont fixes et connues. R_2 est une résistance variable dont on connaît la valeur.

Le pont est dit **équilibré** lorsque la tension umesurée entre C et D est nulle.

- **b)** À quelle condition le pont est-il équilibré? Déterminer alors R_1 . **Données**: $R_3 = 100 \Omega$; $R_4 = 5 k\Omega$; $R_2 = 1827 \Omega$; E = 6 V.
- c) Le voltmètre indique la tension «u = 0» si, en réalité, on a : $|u| < 1 \, mV$. → Dans le cadre de l'application numérique de la question b), donner la précision sur la mesure de R_1 .

2) Présence d'une f.é.m parasite

Le pont précédent est supposé équilibré, c'est-àdire qu'on a rigoureusement u=0.

Nous allons maintenant étudier l'influence d'une force électromotrice e sur l'équilibre du pont (e est placé en série avec la résistance; cela peut modéliser une tension apparue lors du contact de deux matériaux de nature chimique différente.)

b) On veut que l'influence de *e* soit négligeable au cours de la mesure.

On estime que cette influence est négligeable si $|u| < 1 \, mV$.

 \rightarrow Quelle est alors la condition portant sur e?

On rappelle qu'on a $R_3=100\,\Omega\,;\,R_4=5\,k\Omega\,;\,R_2=1\,827\,\Omega$ et $E=6\,V.$

$$\begin{split} \text{R\'ep: 1.a)} & \ u = \left(\frac{R_3}{R_3 + R_4} - \frac{R_1}{R_1 + R_2}\right) E \, ; \, \text{1.b)} \ \ R_1 = 36, 5 \, \Omega \, ; \, \text{1.c)} \ \ R_1 = 36, 5 \pm 0, 3 \, \Omega \, ; \\ \text{2.a)} & \ \text{Appliquer le principe de superposition} \, ; \, u = \frac{R_2 e}{R_1 + R_2} \, ; \, \text{2.b)} \ \ | \, e \, | < 1,02 \, \, mV \, . \end{split}$$

[Ex-E3.2] Théorème de Millman

- 1) Énoncer la loi des nœuds en termes de potentiels pour le nœud N dans le montage ci-contre. En déduire le courant i dans la résistance R.
- 2) Trouver cette même intensité i en utilisant les transformations thévenin \leftrightarrow Norton.

$$\mathsf{R\acute{e}p}:\ i = \frac{E_1R_2R_3 + E_2R_3R_1 + E_3R_1R_2}{R_1R_2R_3 + R(R_2R_3 + R_1R_2 + R_1R_3)}$$

Ex-E3.3 Calculs de courants

Déterminer les courants I_1 , I_2 et I_3 du montage ci-contre.

Rép :
$$I_1 = \frac{E_2 - E_1}{2R} \, ; \, I_2 = \frac{E_3 - E_2}{R} \, ; \, I_3 = \frac{E_1 - E_3}{2R}$$

Ex-E3.4 Loi des nœuds en termes de potentiels

Le nœud B est connecté à la masse du circuit de la figure ci-contre.

On donne : $\eta = 15\,A$; $R = 1\,\Omega$ et $E = 1\,V$.

- 1) Déterminer les relations entre V_A , V_C et V_D en appliquant la loi des nœuds en termes de potentiels aux nœuds A, C et D.
- 2) Un voltmètre numérique, branché entre B et D, mesure $u_{DB} = 10 \, V$.
- \rightarrow En déduire les valeurs de V_A et V_C .

Rép : $V_A = 24 \ V \text{ et } V_C = 18 \ V$.

(Ex-E3.5) Théorème de superposition et théorème de Millman

Déterminer l'intensité i du courant qui circule dans la branche B_2MA_2 en considérant deux états successifs du circuit et en appliquant le théorème de MILLMAN.

$$\mathsf{R\acute{e}p}:\ i=\frac{1}{6R}\left(\frac{E_1}{2}+E_2\right)$$

Ex-E3.6 Pont double

Soit le circuit ci-contre tel que ab' = a'b. La résistance variable, entre C (curseur du potentiomètre ED) et D, est notée R.

 \rightarrow Exprimer x, la résistance à mesurer, en fonction de R, lorsque le pont double est équilibré (= courant nul dans le galvanomètre G qui se comporte comme une faible résistance).

Rép :
$$x = \frac{a}{b}R$$

