5 TGR homeworks — October 31st, 2018

5.1 Prove or disprove: Given a connected simple undirected graph G without loops with n > 3 vertices. Assume that G does not contain $K_{1,3}$ Then there are vertices x and y in G joined by an edge and such that $G \setminus \{x, y\}$ is also connected. $(G \setminus \{x, y\})$ is the subgraph of G where both vertices x and y are removed., not only the edge $\{x, y\}$.)

 $(K_{1,3})$ is the complete bipartite graph with sides with 1 and 3 vertices).

5.2 Given a connected simple undirected graph G = (V, E) without loops with $n \ge 3$ vertices. Let x and y be two vertices of G for which $\{x,y\} \notin E$ and $d(x) + d(y) \ge n$.

Prove or disprove: G contains a Hamiltonian circuit if and only if so does $G + \{x, y\}$. $(G + \{x, y\})$ has the same set of vertices, and the sef of edges is $E \cup \{\{x, y\}\}$.

5.3 Prove or disprove: Given a simple undirected graph G without loops and with n > 2 vertices. Assume that G satisfies the following condition:

for every
$$\{u,v\} \notin E(G)$$
 we have $d(u) + d(v) \ge n$,

then the sequence of degrees satisfies

for every
$$1 \le k < \frac{n}{2}$$
 it is $d_k > k$.

(We assume that the sequence of degrees is non-decreasing, i.e. that $d_1 \leq d_2 \leq \ldots \leq d_n$.)