

Pengenalan Pengolahan Citra

Pengertian Citra

- Citra (Image) adalah istilah lain untuk gambar komponen multimedia yang memegang peranan sangat penting sebagai sebagai salah satu bentuk informasi visual
- Secara harfiah, citra (image) adalah gambar pada bidang dwimatra (dua dimensi).

Pembentukan Citra

Citra ada 2 macam :

Citra Kontinu

Dihasilkan dari sistem optik yang menerima sinyal analog. Contoh: Mata manusia, kamera analog

Citra Diskrit

Dihasilkan melalui proses digitalisasi terhadap citra continue. Contoh: Kamera digital, scanner

Pengertian Citra

- Citra adalah gambar dua dimensi yang dihasilkan dari gambar analog dua dimensi yang kontinus menjadi gambar diskrit melalui proses sampling (Wikepedia, 2006).
- Gambar analog dibagi menjadi N baris dan M kolom sehingga menjadi gambar diskrit.

- Citra merupakan fungsi malar (kontinyu) dari intensitas cahaya.
 Secara matematis, fungsi intensitas cahaya pada bidang 2D disimbolkan dengan f(x,y), dimana:
 - (x,y): koordinat pada bidang dwi warna
 - \neg F(x,y): intensitas cahaya pada titik (x,y)
- Nilai f(x,y) adalah hasil kali dari :
 - $|(x_r)| = ||i(x_r)|| = ||i(x_$
 - r(x,y) = derajat kemampuan objek memantulkan cahaya , nilainya antara 0 dan 1.
 - □ Jadi f(x,y) =i(x,y).r(x,y)

Tujuan Pengolahan Citra

- · Memperbaiki kualitas gambar dilihat dari:
 - Aspek Radiometrik :
 - Peningkatan kontras, transformasi warna, restorasi citra
 - Aspek Geometrik
 - Rotasi, translasi, skala, transformasi geometrik
- Melakukan proses penarikan informasi atau deskripsi objek atau pengenalan objek yang terdapat pada citra
- Melakukan kompresi atau reduksi data untuk tujuan penyimpanan data, transmisi data dan waktu proses data

Aplikasi

- Ada 2 area aplikasi dari digital image processing:
 - Perbaikan kualitas image untuk interpretasi manusia
 - Pemrosesan image untuk persepsi mesin secara otomatis

Digital vs Analog

- Data digital direpresentasikan dalam komputer berbentuk kode seperti binner, decimal. Contoh data digital: WAV, MP3, RMI, BMP, JPG, GIF, TIF
- Data analog tidak direpresentasikan dalam komputer, semua merupakan fakta, contoh: gelombang suara, gambar. Data analog tersimpan dalam pita kaset.

Citra Digital

- Citra digital merupakan suatu array 2 dimensi yang elemennya menyatakan tingkat keabuan keabuan dari elemen gambar.
- Citra yang dihasilkan direkam datanya bersifat kontinue harus dirubah dahulu menjadi citra digital dengan konversi agar dikenali komputer.
- Proses tersebut disebut digitalisasi, yaitu membuat kisi-kisi arah horizontal dan vertical sehingga terbentuk array2 dimensi.

Model Citra

Citra Hitam-Putih

 Citra monokrom (monocrome image) atau citra satu fungsi intensitas

Citra Berwarna

- Citra spektral, karena warna pada citra disusun oleh tiga komponen warna RGB (Red-Green-Blue)
- Intensitas suatu titik pada citra berwarna merupakan kombinasi dai intensitas merah ,hijau dan biru terletak antara hitam dan putih.

Derajat Keabuan

- Derajat keabuan adalah intensitas citra hitam-putih pada titik (x,y)
- Derajat keabuan bergerak dari hitam ke putih
- Skala keabuan :[0,1],dimana intensitas 0 menyatakan hitam dan 1meyatakan putih
- Contoh : Citra Hitam Putih dengan 256 level, artinya :
 - Derajat keabuan :0 –255 atau [0,255]
 - 0 menyatakan hitam, dan 255 menyatakan putih
 - Nilai antara 0-255: menyatakan warna keabuan yang terletak antara hitam dan putih.

Jenis Citra

- Citra Diam (Stil Images) adalah
 - citra tunggal yang tidak bergerak
- Citra bergerak(Moving Images), adalah
 - rangkaian citra diam yang ditampilkan secara
 beruntun (sequential), sehingga memberikesan
 pada mata kita sebagai gambar bergerak.
 - Setiap citra dalam rangkaian disebut frame.
 - Gambar-gambar pada film atau TV terdiri dari ratusan sampai ribuan frame.

Elemen Dasar Citra Digital

Kecerahan (Brightness)

 Intensitas cahaya rata-rata dari suatu area yang melingkupinya

Kontras (contrast)

- Sebaran terang (lightness) dan gelap (darkness) di dalam sebuah citra
- Citra dengan kontras rendah, komposisi citranya sebagian besar terang atau sebagian besar gelap
- Citra dengan kontras baik, komposisi gelap dan terangnya tersebar merata

Elemen Dasar Citra Digital

Kontur (Contour)

 Keadaan yang ditimbulkan oleh perubahan intensitas pada pixel-pixe I tetangga, sehingga kita dapat mendeteksi tepi objek didalam citra

Warna (colour)

- Persepsi yang dirasakan oleh sistem visual manusia terhadap panjang gelombang cahaya yang dipantulkan oleh objek
- Warna merupakan kombinasi cahaya dengan panjang berbeda, yaitu Red, Green, Blue

Bentuk (Shape)

- □ Umumnya citra yang dibentuk oleh manusia → 2D
- Objek yang dilihat → 3D

- Supaya bisa diolah dengan komputer, citra harus direpsentasikan secara numerik dengan nilai diskrit.
- Citra digital dinyatakan dengan suatu matrik ukuran NxM.
 Masing-masing elemen disebut pixel (picture element)
- Umumnya citra dibentuk dari kotak-kotak persegi empat yang teratur sehingga jarak horizontal dan vertikal antara piksel adalah sama pada seluruh bagian citra

Contoh

 Suat Citra berukuran 256 x 256 pixel dengan intensitas beragam u pada tiap pixelnya, direpresentasikan secara numerik dengan matrik terdiri dari 256 baris dan 256 kolom

```
      0
      134
      145
      ...
      ...
      231

      0
      167
      201
      ...
      197

      220
      187
      189
      ...
      120

      :
      :
      :
      :
      :

      :
      :
      :
      :
      :

      :
      :
      :
      :
      :

      221
      219
      210
      ...
      ...
      156
```


Aturan Koordinat

Aturan koordinat representasi citra digital (sumber : Gonzalez dan Woods, 2008)

$$f(x,y) = \begin{cases} f(0,0) & f(0,1) & \dots & f(0,M-1) \\ f(1,0) & f(1,1) & \dots & f(1,M-1) \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ f(N-1,0) & f(N-1,1) & \dots & f(N-1,M-1) \end{cases}$$

 Indeks baris (i) dan indeks kolom (j) menyatakan koordinat titik pada citra, sedang f(i,j) merupakan intensitas (derajat keabuan) pada titik (i,j)

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- Skala/Derajat Keabuan (G)
 - $G = 2^{n}$
 - G =derajat keabuan
 - n =bilangan bulat positif

Skala Keabuan	Nilai Keabuan	Pixel Depth (jumlah bit perpixel)
2¹ (2 nilai)	0 dan 1	1 bit
2² (4 nilai)	0 sampai 3	2 bit
24(16 nilai)	0 sampai 15	4 bit
28 (256 nilai)	0 sampai 255	8 bit

Penyimpanan citra digital NxM pixel dan dikuantisasi menjadi G = 2º memerlukan memori sebanyak : N x M x n = 512 x 512 x 8 = 2.048.000 bit

SAMPLING DAN KUANTISASI

 Citra harus mengalami sampling dan kuantisasi agar dapat diproses dengan komputer yang bersifat diskrit

Sampling

- adalah proses mapping fungsi kontinyu ke diskrit
- Menunjukkan banyaknya pixel (blok) untuk mendefinisikan suatu gambar

SAMPLING DAN KUANTISASI

Kuantisasi

- adalah proses mapping variabel kontinyu ke diskrit
- Menunjukkan banyaknya derajat nilai pada setiap pixel (menunjukkan jumlah bit pada gambar digital → b/w dengan 2 bit, grayscale dengan 8 bit, true color dengan 24 bit)

Sampling (1/2)

- Sampling: digitalisasi spasial (x,y)
- Citra kontinu disampling pada grid-grid yang berbentuk bujursangkar (kisi-kisi arah horizontal dan vertikal)

Sampling (2/2)

- Pembagian gambar menjadi ukuran tertentu menentukan RESOLUSI (derajat rincian yang dapat dilihat) spasial yang diperoleh
- Semakin tinggi resolusinya semakin kecil ukuran pixel atau semakin halus gambar yang diperoleh karena informasi yang hilang semakin kecil

Kuantisasi (1/2)

- Kuantisasi :pembagian skala keabuan (0,L) menjadi G Level;
- $G = 2^{m}$;
- Hitam dinyatakan dengannilai derajat keabuan terendah
- Putih dinyatatakan dengan nilai derajat keabuan tertinggi, misal 15 untuk 16 level

Kuantisasi (2/2)

- Besamya derajat keabuan digunakan: untuk menentukan resolusi kecerahan dari citra yang diperoleh
- Semakin banyak jumlah derajat keabuan (jumlah bit kuantisasinya makin banyak), semakin bagus gambar yang diperoleh karena kuantitasi derajat keabuan akan semakin tinggi sehingga mendekati citra aslinya

Hasil Sampling dan Kuantisasi

$$f(x,y) = \begin{pmatrix} f(0,0) & f(0,1) & \dots & f(0,M-1) \\ f(1,0) & f(1,1) & \dots & f(1,M-1) \\ \dots & \dots & \dots & \dots \\ f(N-1,0) & f(N-1,1) & \dots & f(N-1,M-1) \end{pmatrix}$$

Ukuran spatial (=resolusi) adalah hasil sampling Color depth (=max warna) adalah hasil quantization

Contoh Perbedaan Spatial Resolution

256 x 256

128 x 128

64x64

16x16

Contoh Perbedaan Color Depth

4 warna

grayscale

16 warna

bitmap

Bidang studi yang terkait

Bidang studi terkait

- Grafika Komputer (computer graphics),
 - menghasilkan citra dengan primitif-primitif geometri spt: garis, lingkaran, elips dll. Hal ini penting dalam visualisasi
- Pengolahan Citra (image processing),
 - memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia ataukomputer
- Pengenalan Pola (pattern recognition),
 - mengelompokkan data numerik dan simbolik untuk mengenali suatu objek di dalam citra

Bidang tambahan

- Artificial intel egence (Kecerdasan Buatan),
 - menganalisis pemandangan dalam citra dengan perhitungan simbol-simbol yang mewakili isi pemandangan tsb setelah citra diolah untuk memperoleh ciri khas
- Artificial neural network
 - mengolah berbagai data yang dihasilkan oleh sistem visual dalam upaya pengambilan keputusan yang tepat berdasarkan data-data
- Psycophysics
 - sistem visual manusia dalam bidang kedokteran dan fisika

Aplikasi Image Processing

- Biometric
- Medical Image
- Image Databases
- Robot Vision
- Motion Capture
- Document Analysis

BIOMETRIC

Medical Image

Image Database

Robot Vision

Motion Capture

Document Analysis

