2013/10/08 18:30 1/10 WizFi250 Datasheet

WizFi250 Datasheet Introduction

The WizFi250 is a small size wireless module.

The WizFi250 provides for the highest-level integration, featuring 802.11b/g and 802.11n.

It includes a 2.4 GHz WLAN CMOS power amplifier (PA) that meets the output power requirements of most handheld systems.

Along with the integrated power amplifier, the WizFi250 also includes integrated transmit and receive baluns, further reducing the overall solution cost.

The small size & low profile physical design make it easier for system design to enable high performance wireless connectivity without space constrain.

Hardware WAPI acceleration engine, AES, TKIP, WPA and WPA2 are supported to provide the latest security requirement on your network.

For the software and driver development, WIZnet provides extensive technical document and reference software code for the system integration.

2013/08/28 09:43 · ssekim

Features

- Single band 2.4GHz IEEE 802.11b/g/n
- Integrated RF power amplifier
- Supports wireless data rates up to 65Mbit/s
- 1MB Flash Memory, 128KB SRAM, 1MB Serial Flash
- Supports per packet Rx Antenna diversity
- Low power consumption & excellent power management performance extend battery life.
- Small size suitable for low volume system integration.
- Easy for integration into mobile and handheld device with flexible system configuration.
- 2.412-2.484 GHz two SKUs for worldwide market.
- Lead Free design which supporting Green design requirement, RoHS Compliance.
- Device Package: 28×20 mm (17×20 mm)
- Serial Interface : UART, SPI
- Powerful Web server provides
- Soft AP
 - Enough memory retention
 - Wi-Fi Security (WEP, WPA/WPA2PSK)
 - L2 Switching
- OTA(Over The Air F/W Upgrading)

2013/08/28 09:42 · ssekim

Block diagram

The WizFi250 module is designed based on WiFi block and MCU block . It supports generic SPI, UART interface to connect the WLAN to the host processor. A simplified block diagram of the WizFi250 module is depicted in the Fig. below.

2013/08/28 09:47 · ssekim Pin description Pin map

Pin description

Pin description Pin Number		Type	Description		
1	GND	-	Groud		
2	VBAT WL	ı	Battery supply input		
3	VBAT_WL	ı	Battery supply input		
4	GND _	-	Ground		
5	VDDIO_3V3_WL	ı	Digital I/O supply.		
6	GND	-	Ground		
7	NC	-	_		
8	NC	-	_		
9	NC	-	-		
10	NC	-	-		
11	NC	-	-		
12	NC	-	-		
13	GND	-	Ground		
14	NC	-	-		
15	GND	-	Ground		
16	NC	-	-		
17	NC	-	-		
18	NC	-	-		
19	NC	-	-		
20	NC	-	-		
21	SPI_MISO	I/O	SPI_MISO		
22	SPI_SCK	I/O	SPI CLOCK		
23	SPI_MOSI	I/O	SPI_MOSI		
24	SPI_SS	I/O	SPI_SS		
25	GND	-	Ground		
26	VDD_3V3	I	Power supply for I/O and the internal regulator		
27	VDD_3V3	I	Power supply for I/O and the internal regulator		
28	GND	-	Ground		
29	UART2_RTS	I/O	Active-low request-to-send signal for UART2 interface		
30	UART2_CTS	I/O	Active-low clear-to-send signal for UART2 interface		
31	UART2_RXD	I/O	Serial data input for UART2 interface		
32	UART2_TXD	I/O	Serial data output for UART2 interface		
33	NC	-	-		
34	RESET	I	RESET pin (Active Low)		
35	NC	-			
36	NC	-	_		
37	GND	-	Ground		
38	VBAT_MICRO	I	Power supply when VDD_3V3 is not present.		
39	GND	-	Ground		
40	GPIO1	I/O	·		
41	BOOT_MODE	<u> </u>	BOOT MODE pin (Active low)		
42	FUNCTION		' ' '		
43	GPIO5	1/0	<u>'</u>		
44	GPIO6	I/O	GPIO6 pin		

Last update: 2013/10/04 15:54			products:wizfi250:wizfi250ds:start http://wizwiki.net/wiki/doku.php?id=products:wizfi250:wizfi250ds:start
	45	GPIO7	I/O GPIO7 nin

45	GPIO7	I/O	GPIO7 pin
46	GPIO8	I/O	GPIO8 pin
47	GPIO9	I/O	GPIO9 pin
48	Wi-Fi_LED	I/O	Wi-Fi_LED pin
49	MODE_LED	I/O	MODE_LED pin
50	GPIO14	I/O	GPIO14 pin
51	JTAG_TRST	ı	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
52	JTAG_TDO	I/O	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
53	JTAG_TDI	I/O	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
54	JTAG_TMS	ı	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
55	JTAG_TCK	ı	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
56	GND	-	Ground
57	GND	-	Ground
58	GND	-	Ground
59	GND	-	Ground
60	SLEEP_CLK	ı	Input pin for optional high- precision 32.768kHz Clock(Sleep Clock).
61	UART1_RTS	I/O	Active-low request-to-send signal for UART1 interface
62	UART1_CTS	I/O	Active-low clear-to-send signal for UART1 interface
63	UART1_RXD	I/O	Serial data input for UART1 interface
64	UART1_TXD	I/O	Serial data output for UART1 interface
65~73	GND	-	Ground

2013/08/28 10:41 · ssekim

Technical specification

Absolute maximum rating

Supply Power	Max +3.6 Volt	
NonOperating Temperature	- 40° to 85° Celsius	
Voltage ripple	+/- 2% Max	Values not exceeding Operating voltage

Recommendable operation condition

Temperature, humidity

The WizFi250 has to withstand the operational requirements as listed in the table below.

Operating Temperature	-20° to 85° Celsius
Humidity range	Max 95%, Non condensing, relative humidity

^{*} The maximum operating ambient temperature range can up to 85°, but exposure to absolute-maximum-rated conditions may cause performance degradation and affect device reliability. So we recommend -20° to 75° for the best performance.

Voltage

Power supply for the WizFi250 module will be provided by the host via the power pins.

2013/10/08 18:30 5/10 WizFi250 Datasheet

Symbol	Parameter	Min	Тур.	Max	Unit
VBAT_WL	power supply for WizFi250	3.0	3.3	3.6	٧
VDDIO_3V3_WL	host Interface power supply	3.0	3.3	3.6	V
VBAT_MICRO	backup operating voltage	3.0	3.3	3.6	V
VDD_3V3	power supply for MCU	3.0	3.3	3.6	V

Current consumption

The WizFi250 on operation output current consumption :

MCU mode	WiFi mode (802.11n)	Typ. (RMS)	Max.
Normal mode	Not Associated	14 mA	18 mA
Normal mode	Associated	67 mA	69 mA
Normal mode	Associated (IEEE Power Save mode)	32 mA	65 mA
Stop mode	Associated (IEEE Power Save mode)	14 mA	17 mA
Stop mode	Not Associated	3 mA	23 mA

The WizFi250 on TX mode output current consumption : (Typical spec is defined @3.3V 25° C; MAX. spec is defined @3.0V 70° C)

Current Consumption	Тур.	Max.
Tx output power @16.5 dBm on 11b 1M	385 mA	430 mA
Tx output power @ 16.5 dBm on 11b 11M	370 mA	410 mA
Tx output power @ 15 dBm on 11g 6M	345 mA	380 mA
Tx output power @ 13 dBm on 11g 54M	290 mA	320 mA
Tx output power @ 14.5 dBm on 11n MCS0	315 mA	350 mA
Tx output power @ 12 dBm on 11n MCS7	265 mA	295 mA

The WizFi250 on RX mode current consumption : (Typical spec is defined @3.3V 25°C; MAX. spec is defined @3.0V 70°C)

Current Consumption	Тур.	Max.
Rx @ 11b 1M	120 mA	150 mA
Rx @ 11b 11M	120 mA	150 mA
Rx @ 11g 6M	120 mA	150 mA
Rx @ 11g 54M	120 mA	150 mA
Rx @ 11n MCS0	120 mA	150 mA
Rx @ 11n MCS7	120 mA	150 mA

Wireless specifications

The WizFi250 complies with the following features and standards;

Features	Description
WLAN Standards	IEEE 802 11 b/g/n
Antenna Connecter Port	One printed antenna, one U.FL connector for external antenna
Frequency Band	2.400 GHz ~ 2.484 GHz
Number of Sub Channels	CH1 to CH14

Last undate:	2012/1	$\cap I \cap I$	15.51
rasi ubuate.	7013/1	U/U4	10.04

Modulation	DSSS, CCK, OFDM, BPSK, QPSK,16QAM, 64QAM		
	11b	1, 2, 5.5, 11 (Mbps)	
Supported data rates	11g	6, 9, 12, 18, 24, 36, 48, 54 (Mbps)	
	11n	HT20 MCS0(6.5Mbps) to HT20 MCS7(65Mbps)	

Specifications of WiFi's output power, evm, sensitivity

The WizFi250 WiFi output power as list in the table below:

Characteristics	Тур.	Criteria	Unit	
RF Average Output Power, 802.11b CCK Mode	1M	16.5	+/- 1.5	dBm
Average Output Fower, 802.11b CCK Mode	11M	16.5	+/- 1.5	dBm
RF Average Output Power, 802.11g OFDM Mode	6M	15	+/- 1.5	dBm
	54M	13	+/- 1.5	dBm
DE Average Output Dower 902 11s OEDM Mede	MCS0	14.5	+/- 1.5	dBm
RF Average Output Power, 802.11n OFDM Mode	MCS7	12	+/- 1.5	dBm

WiFi TX EVM follow the IEEE spec that as list in the table below:

Characteristics	IEEE Spec	Unit	
	@1 Mbps	-10	dB
	@11 Mbps	-10	dB
RF Average Output EVM (11g)		-5	dB
	@54 Mbps	-25	dB
RF Average Output EVM (11n)	@ MCS0	-5	dB
	@ MCS7	-28	dB

The WizFi250 Wi-Fi sensitivity as list in the table below:

Receiver Characteristics	Тур.	Max.	Unit
PER <8%, Rx Sensitivity @ 1 Mbps	-96	-89	dBm
PER <8%, Rx Sensitivity @ 11 Mbps	-88	-84	dBm
PER <10%, Rx Sensitivity @ 6 Mbps	-90	-83	dBm
PER <10%, Rx Sensitivity @ 54 Mbps	-74	-70	dBm
PER <10%, Rx Sensitivity @ MCS0	-89	-83	dBm
PER <10%, Rx Sensitivity @ MCS7	-71	-67	dBm

2013/08/28 10:44 · ssekim

I/O port characteristics

Unless otherwise specified, the parameters given as below Table. The WizFi250 is a small size wireless module.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Standard IO input low level voltage		-0.3		0.28*(V _{DD} -2V)+0.8V	V
	IO FT ⁽¹⁾ input low level voltage		-0.3		0.32*(V _{DD} -2V)+0.75V	V

2013/10/08 18:30 7/10 WizFi250 Datasheet

V _{IH}	Standard IO input high level voltage		0.41*(V _{DD} -2V)+1.3V		V _{DD} +0.3	V
	io Fitti input nigh level voltage	$V_{DD} > 2V$	0.42*(V _{DD} -2V)+1V		5.5	V
		V _{DD} ≤ 2V			5.2	
V _{hys}	Standard IO Schmitt trigger voltage hysteresis ⁽²⁾		200			mV
	IOFT Schmitt trigger voltage hysteresis ⁽²⁾		5%V _{DD} (3)			mV
l _{lkg}	Input leakage current(4)	V _{ss} ≤V _{IN} ≤V _{DD} Standard I/Os			±1	μΑ
		V _{IN} =5V,I/O FT			3	
R _{PU}	Weak pull-up equivalent resistor(5)	V _{IN} =V _{SS}	30	40	50	kΩ
R _{PD}	Weak pull-down equivalent resistor(5)	V _{IN} =V _{DD}	30	40	50	kΩ
C _{io}	I/O pin capacitance			5		pF

- 1. FT = Five-volt tolerant. In order to sustain a voltage higher than $V_{DD}+0.3$ the internal pull-up/pull-down resistors must be disabled.
- 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, nottested in production.
- 3. With a minimum of 100 mV.
- 4. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with aswitchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum(\sim 10% order).

2013/08/28 13:30 · ssekim

Dimensions, weight and mounting

The following paragraphs provide the requirements for the size, weight and mounting of the WizFi250.

Dimensions

28 mm (W) x 20 mm (L) x 1.9 mm (H) (+/- 0.1mm) (PCB Antenna, Including metal shielding) 17 mm (W) x 20 mm (L) x 1.9 mm (H) (+/- 0.1mm)

Pin out and pin description

Recommend footprint

2013/08/28 13:45 · ssekim Recommend reflow profile

The following paragraphs provide the requirements for the size, weight and mounting of the WizFi250.

A-B. Temp.: 150~200°C; soak time:60~120sec.

C. Peak temp: 235~245°C.

D. Time above 220 °C: 40~90sec.

Suggestion: Optimal cooling rate is <1°C/sec. from peak to 220 °C.

2013/08/28 14:32 · ssekim WizFi250 Ref. Schematic

×

Ref Schematic(PDF): wizfi250_ref_schematic.pdf

2013/10/04 15:54 · jeongsk

From:

http://wizwiki.net/wiki/ - Wiki site

Permanent link:

http://wizwiki.net/wiki/doku.php?id=products:wizfi250:wizfi250ds:start

Last update: 2013/10/04 15:54