Implementing MPC Using Deep Learning

Rebecka Winqvist

Review

- Approaches
 - Constrained Neural Networks¹
 - Primal Active Sets²
 - Long Short Term Memory (LSTM) supported NN³
- Optimization layers
 - OptNet⁴
 - Cvxpy-layers⁵

¹Approximating Explicit Model Predictive Control Using Constrained Neural Networks

²Large Scale Model Predictive Control with Neural Networks and Primal Active Sets

³A Deep Learning Architecture for Predictive Control

⁴OptNet: Differentiable Optimization as a Layer in Neural Networks

⁵Differentiable Convex Optimization Layers

Current implementation

Data generation

Gridding

- Hit and Run (HAR) algorithm
 - ① Pick starting point, x_0 , in the feasible region, S;
 - Randomize a direction, d;
 - ③ Randomize a distance, λ , to walk in d, s.t. $x_0 + \lambda d \in S$;
 - ① Set $x_1 = x_0 + \lambda d$
- OSQP as solver

Data generation

- Gridding
- Hit and Run (HAR) algorithm
 - **1** Pick starting point, x_0 , in the feasible region, S;
 - Randomize a direction, d;
 - **3** Randomize a distance, λ , to walk in d, s.t. $x_0 + \lambda d \in S$;
- OSQP as solver

Data generation

- Gridding
- Hit and Run (HAR) algorithm
 - ① Pick starting point, x_0 , in the feasible region, S;
 - Randomize a direction, d;
 - **3** Randomize a distance, λ , to walk in d, s.t. $x_0 + \lambda d \in S$;
 - ① Set $x_1 = x_0 + \lambda d$
- OSQP as solver

$$x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad \begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad |u| \le 1$$

$$x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad \begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad |u| \le 1$$

$$x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad \begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad |u| \le 1$$

Double integrator

$$x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad \begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad |u| \le 1$$

Example A

$$x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad \begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad |u| \le 1$$

(g) HAR 10 000 samples.

(h) GRID.