

Rechnernetze Kapitel 2: Physical Layer

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Folien basieren auf:

A. Tanenbaum, D. Wetherall: Computer Networks

Inhalt

Nachrichtentechnische Grundlagen

Welche Grenzen setzt die Physik bzgl. der Datenrate?

Übertragungsmedien

Über welche Medien kann man Daten übertragen?

Digitale Modulation

Wie überträgt man Bitsequenzen über Kabel und über die Luft

Multiplexing

Wie überträgt man Datenströme über ein geteiltes Medium?

Fourier-Analyse

- Übertragung von Bitsequenzen durch zeitliche Veränderung von physikalischen Größen (z.B. Spannung)
- Fourier: 2 gleichwertige Beschreibungen für ein Signal
 - Zeitdomäne: Signalverlauf über die Zeit
 - Frequenzdomäne: Frequenzanteile an bn aus denen sich Signal zusammensetzt.

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Demo: http://www.falstad.com/fourier/

Signalübertragung bei begrenzter Bandbreite

Jedes Signal besteht aus vielen verschiedenen Frequenzen.

Dämpfung

Je länger die Leitung, desto mehr Dämpfung (Verringerung der Leistung/Amplituden)

Verzerrung

- Übertragungsmedien dämpfen Frequenzen verschieden stark.
- Meist nur Frequenzen bis zu bestimmtem Maximalwert f_c gut übertragbar.

Bandbreite

- Elektrotechnik: Frequenzbereich, der "gut" übertragen werden kann.
- Informatik: Datenrate, die bei physikalischen Bedingungen möglich ist.
- Beispiel: Übertragung des Signals 01100010

Signale mit begrenzter Bandbreite

- Wegen Verzerrung werden bestimmte Frequenzanteile nicht gut übertragen.
- □ Verlust hoher Frequenzanteile → Signal nicht rekonstruierbar.

Demo: Audacity

- Download: <u>www.audacity.de</u>
- Aufzeichnung und Analyse von Audiodateien
- Demo: Welche "Bandbreite" hat ein Mensch?
 - Aufzeichnung der Stimme mit Laptop-Mikrofon
 - Analyse der enthaltenen Frequenzen (= Bandbreite)

Quelle: www.audacity.de

Nyquist: Datenrate D bei unverrauschtem Kanal

- Datenrate D bei unverrauschtem Kanal abhängig von:
 - B: Bandbreite, Größe des übertragbaren Frequenzbereichs
 - V: Anzahl der verwendeten Signalstufen

Nyquist-Theorem:

$$D = 2B \log_2 V$$

- □ Hohe Bandbreite → hohe Datenrate
- □ Übung:
 - Wert von V für das abgebildete Signal?
 - B=4 kHz, Kanal unverrauscht.
 - Wie hoch ist maximal mögliche Datenrate?

Binäres Signal: *V*=2 (2 Signalstufen)

Baudrate vs. Bitrate

Bitrate = Datenrate

- Anzahl der übertragenen Bits pro Zeiteinheit.
- Einheit: bit/s, kbit/s, KB/s, etc.

Baudrate = Schrittgeschwindigkeit

- Anzahl der Signalschritte pro Sekunde (Symbole)
- Einheit: Baud / Bd
- Bsp.: Jeder Signalschritt / jedes Symbol / jede Stufe repräsentiert 2 Bits!
- Bei sehr vielen möglichen Symbolen steigt der Hardwareaufwand.

Was ist hier der Wert von *V*?

Publikums-Joker: Bit vs. Baudrate

Welche Aussage ist falsch?

- A. In einem rauschfreien Medium ist die erzielbare Bitrate nach oben begrenzt.
- B. Die Bitrate kann gleich groß sein wie die Baudrate.
- Die Baudrate bezeichnet die Anzahl der Signalveränderungen pro Sekunde.
- Verdoppelt man die Baudrate, so verdoppelt sich auch die Bitrate (Rahmenbedingungen bleiben unverändert)

Beispiel: Bitfehler in verrauschtem Kanal

Aus Tanenbaum

Shannon: Maximale Datenrate D bei verrauschtem Kanal

Shannon Theorem:
$$D = B \log_2(1 + S/N)$$
 absolut, nicht in dB

- **Abgrenzung**
 - Gilt zusätzlich (!) zu Nyquist bei *verrauschtem* Kanal.
- S/N: Signal-Rauschabstand (Signal-to-Noise Ratio)
 - Leistung des Nutzsignals S / Leistung des Rauschens N
- S/N meist in *Dezibel (dB)* angegeben
 - dB-Wert: $10 * \log_{10} S/N$
 - Beispiel: S = 100mW, N = 1 mW
 - $S/N = 100 \rightarrow Das entspricht 20 dB!$
- Rauschquellen
 - Intermodulation, Übersprechen, thermisches Rauschen

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
- Multiplexing

Übertragungsmedien

Drahtgebunden / Kabel

- Twisted Pair
- Koaxialkabel
- Lichtwellenleiter
- Stromnetz

Drahtlos / Luft

- Richtfunkstrecken
- Satellit
- Mobilfunk
- WLAN
- □ Verschiedene Übertragungsmedien → verschiedene Eigenschaften und Bandbreiten

Twisted Pair

- Häufig verwendet in
 - Local Area Networks (LANs)
 - Telefonleitungen
- Verdrillung vermindert Dämpfung
 - Kabel strahlt sonst wie eine Antenne ab.
- Verschiedene Spezifikationen (Categories)
 - CAT5: Betriebsfrequenz 100 MHz
 - CAT6: Betriebsfrequenz bis 250 MHz 100m
 - CAT6/7: Bis zu 600 Mbps auf 100m

Aus Tanenbaum

Koaxialkabel

- Bessere Isolierung als Twisted Pair
- Im allgemeinen höhere Bandbreite

Aus Tanenbaum

Glasfaser

- Multi-mode
 - Kern mit "größerem" Durchschnitt (>10 μm)
 - Mehrere gleichzeitige Lichtstrahlen möglich.
- Single-Mode
 - Sehr enger Kern (<10 µm)
 - 1 gleichzeitiger Lichtstrahl, kein Zickzackverlauf
 - Teurer → für weitere Entfernungen!

Terminologie: Duplex vs. Simplex

- Full duplex (dt. vollduplex)
 - Beide Übertragungsrichtungen gleichzeitig möglich
- Half duplex (dt. halbduplex)
 - Beide Übertragungsrichtungen, aber nicht gleichzeitig
- Simplex
 - Nur eine Übertragungsrichtung möglich
 - Unüblich.
- Frage: Full-duplex, half-duplex, oder simplex?
 - Vorlesung?
 - Fußballstadium?
 - Einbahnstraße?

Publikums-Joker: Duplex vs. Simplex

Welche der folgenden Technologien ist so gut wie immer *halbduplex*?

- A. Ethernet
- B. WLAN
- c. USB
- D. Zugang zu Mobilfunknetz

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
 - Übertragung im Basisband
 - Übertragung im Bandpassbereich
- Multiplexing

Basisband vs. Bandpassbereich

- Modulation am Sender: Bitsequenz → übertragbares Signal
- □ Demodulation am Empfänger: Übertragenes Signal → Bitsequenz

2 Grundarten:

- Übertragung im Basisband
 - Signal beinhaltet Frequenzen im Bereich [0; f_{max}] und wird direkt / unverändert in diesem Frequenzbereich [0; f_{max}] übertragen.
 - Normales Vorgehen bei drahtgebundener Kommunikation.

Übertragung im Bandpassbereich

- Nutzsignal wird in höheren Frequenzbereich verschoben.
- Nutzsignal verändert ein sogenanntes Trägersignal.
- Am Empfänger: Rückgewinnung der Bitsequenz (Demodulation)
- Vorgehen bei drahtloser Übertragung.

Übertragung im Basisband

Leitungscodes

- Festlegung: Was repräsentiert ein 0- bzw. 1-Bit?
- Beispiel NRZ-Code: +1V ist "1", -1V = "0"

Welches
Prinzip liegt
den
Leitungscodes
zugrunde?

Warum werden Leitungscodes eingesetzt?

Warum Leitungscodes? (1)

- Zur Rückgewinnung der Symbole: Häufige Symbolwechsel beim Empfänger benötigt.
 - Beispiel: In folgendem Beispiel hätte es der Empfänger schwer zu entscheiden wie viele 0er gesendet wurden.

1 0 0 0 0 0 0 0 0 0 0 0

Mögliche Abhilfe:

- Synchrone Uhren bei Empfänger/Sender
- Manchester-Code: XOR von Takt und Nutzsignal (Taktfrequenz = 2* "Bitfrequenz")
- Codierung: z.B. 4B/5B Code bildet 4 Bits auf 5 Bits mit 0er und 1er ab.

Data	Code	Data	Code	Data	Code	Data	Code
0000	11110	0100	01010	1000	10010	1100	11010
0001	01001	0101	01011	1001	10011	1101	11011
0010	10100	0110	01110	1010	10110	1110	11100
0011	10101	0111	01111	1011	10111	1111	11101

4B/5B Code

Was ist allen Codes Gemeinsam?

Publikums-Joker: 4B/5B Code

Welche der folgenden Aussagen bzgl. des 4B/5B Codes ist *falsch*?

- A. Der 4B/5B Code vereinfacht die Taktrückgewinnung beim Empfänger.
- B. Die Verwendung des 4B/5B Codes senkt die effektive Datenrate.
- Der 4B/5B Code erh
 öht die Baudrate.
- D. Der 4B/5B Code vermeidet lange Sequenzen von 0-Bits oder 1-Bits.

	Data	Code	Data	Code	Data	Code	Data	Code
	0000	11110	0100	01010	1000	10010	1100	11010
	0001	01001	0101	01011	1001	10011	1101	11011
	0010	10100	0110	01110	1010	10110	1110	11100
ľ	0011	10101	0111	01111	1011	10111	1111	11101

Warum Leitungscodes? (2)

Effizientes Ausnutzen der vorhandenen Bandbreite

- Übersetzen der Bitsequenz in eine Sequenz von Symbolen mit vielen verschiedenen Symbolen (hohe Baudrate).
- Siehe auch: Bitrate vs. Baudrate

Unterdrückung eines Gleichspannungsanteils

- Starke Dämpfung von Gleichstromanteilen bei Übertragung!
- Gleichstromanteilen erschweren kapazitive Kopplung.
- Möglich Abhilfe, z.B. AMI-Code:
 - Spannung +1V und 0V;
 - Jedes HIGH ändert den Pegel.

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
 - Übertragung im Basisband
 - Übertragung im Bandpassbereich
- Multiplexing

Übertragung im Bandpassbereich

Verschiebe Nutzsignal vor Übertragung in höheren Frequenzbereich!

- Warum ist das notwendig?
 - Antennen müssten für tiefe Frequenzen (z.B. 500 Hz) riesig sein.
 - Nur 1 gleichzeitiges Signal möglich, falls nur Bereich [0; f_{max}] verwendbar.

- Ansatz: Nutzsignal verändert ein sogenanntes Trägersignal.
 - Amplitude: Das Signal wechselt zwischen > 2 verschiedenen Amplituden.
 - Frequenz: Mehr als 2 Frequenzen werden verwendet, um 1 oder 0 zu repräsentieren.
 - Phase: Zwei oder mehr Phasensprünge kodieren die Information.

Bandpassbereich: Modulationsarten

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying

- Beispiel: Amplitude Shift Keying (ASK)
 - Durch An- und Ausschalten des Signals wird Information übertragen.

Bandpassbereich: Kombination von Modulationsarten

- Amplituden- (ASK) und Phasenmodulation (PSK) werden häufig kombiniert.
 - Ergibt mehr Symbole und damit eine höhere Bitrate bei gleichbleibende Baudrate.
- Darstellung als Konstellationsdiagramm
 - Zeigt durch welche Amplituden und Phasensprünge Symbole repräsentiert werden.

BPSK/QPSK ändert nur die Phase.

QAM ändert Amplitude and Phase

Bandpassbereich: Zuweisen von Bitcodes

Gray-Code

 Zuweisung von Bits zu Symbolen, so dass kleine Fehler bei der Symbolerkennung nur wenige Bitfehler verursachen.

When 1101 is sent:

Point	Decodes as	Bit errors
Α	1101	0
В	110 <u>0</u>	1
С	1 <u>0</u> 01	1
D	11 <u>1</u> 1	1
E	<u>0</u> 101	1

Publikums-Joker: Digitale Modulation

Um welche Modulationsart handelt es sich unten?

- A. ASK
- B. FSK
- c. PSK

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
 - Wie übersetzt man Bits in Signale?
- Multiplexing

• Wie teilen sich mehrere Nutzer ein Übertragungsmedium?

Frequency Division Multiplexing (FDM)

- Frequenzbereiche werden Benutzern zugeteilt.
- Jeder Benutzer verwendet seinen Frequenzbereich.

Time Division Multiplexing (TDM)

- Frequenzbereich (Kanal) wird über die Zeit geteilt.
- Benutzer wechseln sich zeitlich ab.
- Häufig verwendet in Telefon- und Mobilfunknetzen.

Zusammenfassung

- Nachrichtentechnische Grundlagen
 - Die Physik setzt der maximalen Datenrate Grenzen
 - Nyquist, Shannon
- Übertragungsmedien
 - Twisted Pair, Koaxial, Glasfaser
- Digitale Modulation
 - Wie übersetzt man Bits in Signale?
 - Basisband: Leitungscodes
 - Bandpassbereich: Amplitude, Phase, Frequenz
- Multiplexing
 - Wie teilen sich mehrere Nutzer ein Übertragungsmedium?
 - Frequenz- und Zeitmultiplex