# Probabilistic Graphical Models

Tianyu Du

June 5, 2020

# 1 Graphical Representations

#### 1.1 Factors

**Definition 1.1.** Let  $X_1, X_2, \dots, X_k$  be a set of random variables, then a **factor**  $\phi$  is a mapping from values of these random variables to  $\mathbb{R}$ .

$$\phi: Val(X_1, X_2, \cdots, X_k) \to \mathbb{R}$$
 (1)

The set of random variables  $\{X_1, X_2, \cdots, X_k\}$  is defined as the **scope** of  $\phi$ .

**Remark 1.1.** In principle, a factor can take any value in  $\mathbb{R}$ . However, in practice, we restrict our considerations to factors with positive ranges only.

**Definition 1.2.** Let  $\phi_1$  and  $\phi_2$  be two factors with scopes  $\{A, B\}$  and  $\{B, C\}$ . Then the **factor product**  $\phi_1 \times \phi_2$  is a factor with scope  $\{A, B, C\}$  defined as

$$\phi_1 \cdot \phi_2(a, b, c) = \phi_1(a, b) \cdot \phi_2(b, c) \tag{2}$$

**Definition 1.3.** Let  $\phi$  be a factor with scope  $\{A, B, C\}$ , then marginalizing C from  $\phi$  results in a factor  $\phi'$  with scope  $\{A, B\}$  defined as the following:

$$\phi'(a,b) = \sum_{c \in Val(C)} \phi(a,b,c)$$
(3)

**Definition 1.4.** The factor reduction operation restricts  $\phi(A, B, C)$  to take only a specific value

of C = c, and results in a factor  $\phi'$  with scope  $\{A, B\}$ .

$$\phi'(a,b) = \phi(a,b,c) \tag{4}$$

# 1.2 Semantics and Factorization

**Definition 1.5.** A **Bayesian network** consists of (i) a directed acyclic graph (DAG) G whose nodes correspond to random variables  $X_1, \dots, X_n$  (ii) and a conditional probability distribution  $P(X_i|Par_G(X_i))$  for each node  $X_i$ . The joint distribution is defined as the factorization

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \operatorname{Par}_G(X_i))$$
(5)

**Definition 1.6.** Let G be a graph over  $X_1, \dots, X_n$ , then the joint probability P factorizes over G if and only if

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \operatorname{Par}_G(X_i))$$
(6)

#### 1.3 Pass of Influences in Bayesian Networks

**Definition 1.7.** A path  $X_1 - \cdots - X_k$  in Bayesian network G is **active** if there is no explaining-away structure  $X_{i-1} \to X_i \leftarrow X_{i+1}$  in it.

**Definition 1.8.** Let  $Z \subseteq V_G$  be a set of random variables in the Bayesian network, then a path  $X_1 - \cdots - X_k$  in G is active conditioned on Z if

- 1. for all explaining-away structure  $X_{i-1} \to X_i \leftarrow X_{i+1}$  in the path,  $X_i$  or some decedents of  $X_i$  are in Z,
- 2. and no other node in the path is in Z.

**Definition 1.9.** Let  $X, Y, Z \subseteq V_G$ , if there is no path from X to Y is active conditioned on Z, then X and Y are **d-separated** by Z in graph G denoted as  $\operatorname{d-sep}_G(X, Y|Z)$ .

#### 1.4 Independencies and Factorizations

**Definition 1.10.** Let X, Y, Z be random variables with distribution P, then  $X \perp \!\!\! \perp Y$  if and only if  $P(X,Y) = P(X)P(Y), X \perp \!\!\! \perp Y|Z$  if and only if P(X,Y|Z) = P(X|Z)P(Y|Z).

**Proposition 1.1.** Let X, Y, Z be random variables with distribution P, then  $X \perp \!\!\!\perp Y$  if and only if P(X,Y) factorizes as the following

$$P(X,Y) \propto \phi_1(X)\phi_1(Y) \tag{7}$$

and  $X \perp \!\!\!\perp Y|Z$  if and only if P(X,Y,Z) factorizes as

$$P(X,Y,Z) \propto \phi_1(X,Z)\phi_1(Y,Z) \tag{8}$$

*Proof.* Relation (7) follows the definition immediately. Suppose  $X \perp \!\!\! \perp Y|Z$ , then

$$P(X,Y|Z) = P(X|Z)P(Y|Z)$$
(9)

$$\iff P(X,Y,Z) = P(X|Z)P(Y|Z)P(Z) \tag{10}$$

$$P(X,Y,Z) \propto P(X|Z)P(Z)P(Y|Z)P(Z) \tag{11}$$

$$= P(X, Z)P(Y, Z) \tag{12}$$

$$= \phi_1(X, Z)\phi_1(Y, Z) \tag{13}$$

**Theorem 1.1** (Factorization  $\Longrightarrow$  Independence). If P factorizes over G, and d-sep<sub>G</sub>(X,Y|Z) then P satisfies  $(X \perp\!\!\!\perp Y|Z)$ .

**Theorem 1.2** (Causal Markov Condition). For any random variable  $X_i$  in the Bayesian network,  $X_i$  is d-separated from all its non-descendants by  $Par_G(X_i)$ .

Corollary 1.1. If P factorizes over G, then in P, any variable is independent of its non-descendants given its parents.

**Definition 1.11.** Let  $\mathcal{I}(G)$  denote the collection of independencies implicitly encoded by d-separations in graph G,

$$\mathcal{I}(G) := \{ (X \perp \!\!\! \perp Y | Z) : X, Y, Z \in V \text{ s.t. d-sep}_G(X, Y | Z) \}$$

$$\tag{14}$$

If a distribution P over V satisfies all independencies in  $\mathcal{I}(G)$ , then we say that G is an **I-map** (independency map) of P.

That is, the I-map of distribution P is a graphical representation of all (and probably more) independencies of P.

**Example 1.1.** Let P be a probability distribution and let G be an I-map for P. Let  $\mathcal{I}(P)$  and  $\mathcal{I}(G)$  denote sets of independencies in P and G. Suppose G is a I-map of P, then all independencies encoded in G are satisfied by P, therefore,

$$\mathcal{I}(G) \subseteq \mathcal{I}(P) \tag{15}$$

**Example 1.2.** The I-map can be used for two graphs as well.  $G_1$  is a I-map of  $G_1$  if  $\mathcal{I}(G_1) \subseteq \mathcal{I}(G_2)$ . That is,  $G_1$  is an I-map of  $G_2$  if it does not make independence assumptions that are not true in  $G_2$ .

**Theorem 1.3** (Independence  $\Longrightarrow$  Factorization). If G is an I-map for P, that is, P adheres all independencies encoded in G, then P factorizes over G.

### 1.5 Template Models

**Definition 1.12.** A template variable  $X(U_1, \dots, U_k)$  is instantiated (duplicated) multiple times in a graph. **Template models** are languages that specify how ground variables (i.e., instantiations of template variables) inherit dependency model from template.

**Notation 1.1.** Let  $X^{(t)}$  denote the variable at time  $t\Delta$ , where  $\Delta$  is the time granularity in the discrete timeline. Let  $X^{(t:t')} = \{X^{(t)},^{(t+1)},\cdots,X^{(t')}\}$  denote the set of variables over a period of time.

**Definition 1.13.** A Bayesian network is said to satisfy the **Markov assumption** if

$$X^{(t+1)} \perp \!\!\!\perp X^{(0:t-1)} | X^{(t)}$$
 (16)

When Markov assumption holds, we may express the joint distribution of all X as

$$P(X^{(0:T)}) = P(X^{(0)}) \prod_{t=0}^{T-1} P(X^{(t+1)}|X^{(t)})$$
(17)

**Definition 1.14.** A series of random variables  $X^{(0)}, X^{(1)}, \cdots, X^{(T)}$  satisfies the **time invariance** 

assumption if there exists a template probability model P(X'|X) such that for all t,

$$P(X^{(t+1)}|X^{(t)}) = P(X'|X)$$
(18)

**Definition 1.15.** A **2-time-slice Bayesian network** (2TNB) over  $X_1, \dots, X_n$  (that is, n random variables for each time step) is specified as a Bayesian network fragment such that

- The nodes include  $X_1', \dots, X_n'$  and a subset of  $X_1, \dots, X_n$ ,
- and only the nodes  $X'_n, \dots, X'_n$  have parents and a conditional probability distribution.

Further, the 2TBN defines a conditional distribution

$$P(X'|X) = \prod_{i=1}^{n} P(X_i'|\text{Par}(X_i'))$$
(19)

**Definition 1.16.** A dynamic Bayesian network (DNB) over  $X_1, \dots, X_n$  is defined by

- a 2TNB, BN $\rightarrow$ , over  $X_1, \dots, X_n$ ,
- and a Bayesian network, BN<sup>(0)</sup>, over  $X_1^{(0)}, \dots, X_n^{(0)}$ .

**Definition 1.17.** For a trajectory over  $0, \dots, T$ , the **ground (unrolled) network** of a DNB is a model such that

- the dependency model for  $X_1^{(0)}, \dots, X_n^{(0)}$  is copied from  $BN^{(0)}$ ,
- and the dependency model for  $X_1^{(t)}, \cdots, X_n^{(t)}$  is copied from  $\mathrm{BN}_{\to}$ .

# 1.6 Plate Models

We can use plate models to represent repetitions.

**Example 1.3.** Let  $O_t \stackrel{i.i.d.}{\sim}$  Bernoulli $(\theta)$ , and  $\{O_t\}_t$  is simply a set of coin tosses outcomes. Such scenario can be modelled as in Figure 1. Figure 2 illustrates an equivalent representation of this plate model.

Figure 1: A plate model for Bernoulli trails



Figure 2: A plate model for Bernoulli trails



Remark 1.2. Parameters outside the plate are often omitted.

Example 1.4 (Nested Plate).

Example 1.5 (Overlapping Plate).

Example 1.6 (Collective Inference).

**Definition 1.18.** A plate dependency model consists of a template variable  $A(U_1, \dots, U_k)$  and template parents  $B_1(\mathbf{U}_1), \dots, B_m(\mathbf{U}_m)$ , where  $\mathbf{U}_k \subseteq \{U_1, \dots, U_k\}$ . The conditional probability distribution in this model is  $P(A|B_1, \dots, B_m)$ .

Figure 3: Plate dependency model



**Definition 1.19.** The concrete instantiation (**ground network**) of a plate dependency model consists of instantiations  $u_1, \dots, u_k$  of  $U_1, \dots, U_k$ .

# 1.7 Local Structures

**Definition 1.20.** A general conditional probability distribution  $P(X|Y_1, \dots, Y_k)$  specifies distribution over X for each realization of  $Y_1, \dots, Y_k$ . Any factor  $\phi$  with scope  $\{X, Y_1, \dots, Y_K\}$ 

satisfying

$$\sum_{x} \phi(x, y_1, \cdots, y_k) = 1 \quad \forall y_1, \cdots, y_k$$
 (20)

defines a valid general CPD.

**Definition 1.21** (Context-Specific Independence). Let  $P \in \Delta(\mathcal{X})$ , let  $X, Y \in \mathcal{X}$  and  $\mathbf{Z}, \mathbf{C} \subseteq \mathcal{X}$ . Let  $\mathbf{c}$  be a realization of random variables  $\mathbf{C}$ . Then X is said to be independent from Y given Y in the context c, denoted as  $(X \perp \!\!\!\perp_c Y | \mathbf{Z}, \mathbf{c})$ , if

$$P(X, Y|\mathbf{Z}, \mathbf{c}) = P(X|\mathbf{Z}, \mathbf{c})P(Y|\mathbf{Z}, \mathbf{c})$$
(21)

#### 1.8 Pairwise Markov Networks

**Definition 1.22.** A pairwise Markov network is a undirected graph whose nodes are random variables  $X_1, \dots, X_n$  and each edge  $(X_i, X_j)$  is associated with a factor  $\phi_{ij}(X_i, X_j)$ .

Figure 4: A simple pairwise Markov network



# 1.9 General Gibbs Distributions

**Definition 1.23.** A Gibbs distribution over random variables  $X_1, \dots, X_n$  is specified by a set of general factors,  $\Phi = {\{\phi_i(D_i)\}_{i=1}^k}$ , where each  $D_i \subseteq {\{X_1, \dots, X_n\}}$ . The corresponding unnormalized probability and partition function are

$$\tilde{P}_{\Phi}(X_1, \cdots, X_n) = \prod_{i=1}^k \phi_i(D_i)$$
(22)

$$Z_{\Phi} = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$
 (23)

The probability distribution is

$$P_{\Phi}(X_1, \cdots, X_n) = \frac{\tilde{P}_{\Phi}(X_1, \cdots, X_n)}{Z_{\Phi}}$$
(24)

**Definition 1.24.** The **induced Markov network** of a set of factors  $\Phi = \{\phi_i(D_i)\}_{i=1}^k$ , where  $D_i \subseteq \{X_1, \dots, X_n\}$ , denoted as  $H_{\Phi}$ , is a network in which there is an edge between  $X_i$  and  $X_j$  whenever  $\exists m \in [k] \ s.t. \ X_i, X_j \in D_m$ .

**Definition 1.25.** A probability distribution P factorizes over a Markov network H if there exists  $\Phi = {\phi_1(D_1), \dots, \phi_k(D_k)}$  such that  $P = P_{\Phi}$  and  $H = H_{\Phi}$ .

**Remark 1.3.** There can be multiple factorizations of a given Markov network.

**Definition 1.26.** A trail (path)  $X_1 - \cdots - X_n$  in a Markov network is **active** given a set of nodes  $\mathbb{Z}$  if no  $X_i$  is in  $\mathbb{Z}$ .

#### 1.10 Conditional Random Fields

**Definition 1.27** (CRF). A **CRF representation** over random variables  $X \cup Y$  consists of a set of factors  $\Phi = \{\phi_1(D_1), \dots, \phi_k(D_k)\}$ , where  $D_i \subseteq X \cup Y$ .

The unnormalized probability and partition function are defined as

$$\tilde{P}(X,Y) = \prod_{i=1}^{k} \phi_i(D_i)$$
(25)

$$Z(X) = \sum_{Y} \tilde{P}(X, Y) \tag{26}$$

The conditional probability is therefore

$$P(Y|X) = \frac{1}{Z(X)}\tilde{P}(X,Y) \tag{27}$$

**Remark 1.4.** A CRF is parameterized the same as a Gibbs distribution, both of them are defined using factors. However, they are normalized differently, the partition function in CRF, Z(X), depends on the particular realization of X, but  $Z_{\Phi}$  depends on factors only.

**Example 1.7** (Logistic model as a CRF). Let  $X_1, \dots, X_k$  denote the k random variables serve as features to generate the target variable Y. Figure 5 illustrates the logistic model as a Bayesian

network. For simplicity, assume  $X_i$  and Y are all binary. Define factors

$$\phi_i(X_i, Y) := \exp(w_i \mathbb{1}\{X_i = 1 \land Y = 1\}) = \exp(w_i X_i Y)$$
(28)

Therefore, the unnormalized probabilities are

$$\tilde{P}(Y=0,X_i) = \prod_{i=1}^k \exp(w_i X_i 0) = 1$$
(29)

$$\tilde{P}(Y = 1, X_i) = \prod_{i=1}^k \exp(w_i X_i) = \exp\left(\sum_{i=1}^k w_i X_i\right)$$
 (30)

Then, the CPD can be expressed as

$$P(Y = 1|X_1, \cdots, X_k) = \frac{\tilde{P}(Y = 1, X_i)}{\tilde{P}(Y = 0, X_i) + \tilde{P}(Y = 1, X_i)}$$
(31)

$$= \frac{\exp\left(\sum_{i=1}^{k} w_i X_i\right)}{1 + \exp\left(\sum_{i=1}^{k} w_i X_i\right)}$$
(32)

$$= \frac{1}{1 + \exp\left(-\sum_{i=1}^{k} w_i X_i\right)} = \sigma\left(\sum_{i=1}^{k} w_i X_i\right)$$
(33)

Figure 5: Logistic model as a Bayesian network



#### 1.11 Independencies in Markov Networks

**Definition 1.28.** Two nodes X and Y in a Markov network H are **separated** given set of nodes Z if there is no active trail (path) in H between X and Y given Z. Denoted as  $\operatorname{sep}_H(X,Y|Z)$ 

**Theorem 1.4.** If distribution P factorizes over Markov network H, then P satisfies

$$sep_H(X, Y|Z) \implies X \perp \!\!\!\perp Y|Z \tag{34}$$

**Definition 1.29.** Let I(H) denote the collection of independencies induced by H:

$$\mathcal{I}(H) := \{ (X \perp\!\!\!\perp Y | Z : \operatorname{sep}_H(X, Y | Z) \}$$
(35)

If P satisfies  $\mathcal{I}(H)$ , then H is an **independency map** (I-map) of P.

**Theorem 1.5.** If P factorizes over H, then H is an I-map of P.

**Theorem 1.6** (Hammersley Clifford). For a <u>positive</u> distribution P (i.e., P(x) > 0 for all x), if H is an I-map for P, then P factorizes over H.

**Remark 1.5.** Let P be a distribution and let

$$\mathcal{I}(P) = \{ (X \perp \!\!\!\perp Y|Z) : P \text{ satisfies } (X \perp \!\!\!\perp Y|Z) \}$$
 (36)

denote the collection of independencies satisfied by P. As mentioned before, P factorizes over G implies G is an I-map for P, that is,

$$\mathcal{I}(G) \subseteq \mathcal{I}(P) \tag{37}$$

Note that the converse is not always true.

**Remark 1.6.** A graph is said to be **sparser** if it encodes more independencies, and therefore fewer connections and parameters. Note that sparser graphs are more informative since they encode more independency assumptions.

**Definition 1.30.** Let P be a probability distribution, then a Bayesian network (or a Markov network) G is a **perfect map** if  $\mathcal{I}(G) = \mathcal{I}(P)$ . That is, G perfectly captures independencies in P.

**Proposition 1.2.** Perfect maps are not unique.

Proof. Let  $G_1$  be the graph  $X \to Y$  and  $G_2$  be the graph  $X \leftarrow Y$ . Both  $\mathcal{I}(G_1) = \mathcal{I}(G_2) = \emptyset$ . Therefore, both  $G_1$  and  $G_2$  are I-maps for any distribution P.

**Definition 1.31.** Two graphs  $G_1$  and  $G_2$  over random variables  $X_1, \dots, X_n$  are **I-equivalent** if  $\mathcal{I}(G_1) = \mathcal{I}(G_2)$ . Many features of graphs are preserved within the same I-equivalence class.

# 1.12 Log-Linear Models

**Definition 1.32.** A log-linear representation of distribution consists of a set of features  $\{f_j\}$  and corresponding scopes  $\{D_j\}$ . The unnormalized distribution is defined as

$$\tilde{P} = \exp\left(-\sum_{j} w_{j} f_{j}(D_{j})\right) \tag{38}$$

$$= \sum_{j} \exp(-w_j f_j(D_j)) \tag{39}$$

The exact distribution can be computed using partition function as usual.

**Example 1.8** (Metric MRFs). For simplicity, suppose all random variables  $X_i$  take values from space V. Let  $\mu: V \times V \to \mathbb{R}_+$  be a distance function satisfying

- 1. Reflexivity:  $\mu(v,v) = 0$  for all  $v \in V$ ,
- 2. Symmetry:  $\mu(v_1, v_2) = \mu(v_2, v_1)$  for all  $v_1, v_2 \in V$ ,
- 3. Triangle inequality:  $\mu(v_1, v_2) \le \mu(v_1, v_3) + \mu(v_3, v_2)$  for all  $v_1, v_2, v_3 \in V$ .

Define the feature function  $f_{ij}(X_i, X_j) = \mu(X_i, X_j)$  and  $w_{ij} > 0$ . Using such metric, when more pairs  $(X_i, X_j)$  in the network are far away from each other, the probability assigned to this network is lower.

**Example 1.9** (Shared Features). We may specify a set of scopes  $S(f_k)$  for each feature  $f_k$ . For example, if we want to apply feature  $f_k$  to all adjacent nodes, then

$$S(f_k) = \{\{X_i, X_j\} : X_i \text{ and } X_j \text{ are adjacent}\}$$
(40)

Applying the same weight  $w_k$  and feature constructor  $f_k$  on all scopes in  $S(f_k)$ , then summing them up gives the potential of feature k.

$$w_k \sum_{D \in S(f_k)} f_k(D) \tag{41}$$

The product of potentials from all features gives the unnormalized probability.

# 2 Inference

# 3 Learning

# 3.1 Learning Network Structure

**Motivation** We have discussed methods to estimate parameters given a network structure and dataset, however, ways to choose the structure remains uncovered. Specifically, given a dataset D, we have to choose one graph G as the skeleton of our model.

Compared with the graph representing the true data generating process, if the specified graph G contains less edges, G imposes more independence assumptions than necessary. In contrast, if the specified graph G has extra edges, then the redundant dependencies would require more parameters to be fitted using the limited dataset and leads to bad generalization.

To select the best structure G given dataset D, we can define a **scoring function** taking both G and D as arguments. Then the model selection problem turns into an optimization problem:

Optimal 
$$G^* := \underset{G \in \text{all models}}{\operatorname{argmax}} \operatorname{score}(G, D)$$
 (42)

#### 3.1.1 Likelihood Structure Scores

**Definition 3.1. Likelihood structure score** defines the compatibleness between a graph G and dataset D as

$$score_L(G; D) := \ell(G_{\hat{\theta}}; D) \tag{43}$$

Where  $\hat{\theta}$  is the maximum likelihood estimations from of parameters in graph G from dataset D, and  $\ell$  is the log-likelihood function.