

Causal Inference

Vanessa Didelez, Robin Evans, Karla Diaz-Ordaz BIPS, University of Bremen (Germany), University of Oxford, UCL (UK)

> September 2025 APTS — Southampton

Instrumental Variables (IVs)

Appendix II:

IVs: Motivation Unobserved cofounding present

Often in observational studies: assumption of sufficient covariates (or 'no unmeasured confounders') not realistic.

Alternative: can sometimes use an **instrumental variable (IV)** to identify, at least partially, desired causal effect

IV: similar to 'nature is randomising' (or some other external source of randomness)

IVs still rely on assumptions, but different ones...

Instrumental Variables Notation

G =instrumental variable (e.g. genetic marker)

A =exposure of interest (e.g. alcohol consumption)

U = unobserved confounders (e.g. life-style)

Y = outcome of interest (e.g. cardiovascular disease)

Mostly: target in terms of E(Y|do(A=a))

Sometimes in terms of potential outcomes Y(a)

Assumptions of IV

G is IV for the effect of A on Y if there is a U with

- 1. $G \perp \!\!\! \perp U$
- **2**. *G ⊥ L A*
- 3. $G \perp \!\!\! \perp Y \mid (A, U)$.

Structural assumptions:

$$p(y|u,a) = p(y|u;\operatorname{do}(a)), \quad p(g) = p(g|\operatorname{do}(a)), \quad p(u) = p(u|\operatorname{do}(a))$$

i.e. (cond.) distributions not changed by intervention in ${\cal A}.$

(Greenland, 2000; Hernán & Robins, 2006, Didelez & Sheehan, 2007)

Assumptions of IV – with SWIG

Alternatively write assumptions as

- 1. $Y(a) \perp \!\!\! \perp G$
- 2. $G \! \perp \!\!\! \perp A$

Note: many other versions of IV

→ subtle differences in estimands

Examples:

'exclusion restriction' Y(a, g) = Y(a);

'monotonicity' $A(G=1) \ge A(G=0)$ (where A(g) PO of A under setting of G).

Examples for IVs

- In randomised trials with partial compliance:
 - IV = treatment assignment, A = actual treatment taken, Y = health outcome
- In epidemiology: IV = genetic variant, A = exposure (often phenotype), Y = health outcome
 - ⇒ Mendelian randomisation
- In observational studies / econometrics:
 - physicians drug preference,
 - · accessibility of facilities,
 - birth date for years of education,
 - weather conditions for availability of fish / cereal etc.
 - lottery situations etc.

Use of IVs?

Testing:

check if $Y \perp \!\!\! \perp G$ — this is (roughly) testing whether there is a causal effect at all.

Estimation:

- (1) when all observable variables are discrete, we can obtain bounds on causal effects without further assumptions.
- (2) for point estimates need some (semi-)parametric / structural assumptions, as well as clear definition of target causal parameter.

But first, will discuss IV assumptions.

'Untestable' Assumptions

The assumptions

- 1. $G \perp \!\!\! \perp U$
- 3. $G \perp \!\!\! \perp Y \mid (A, U)$.

do not imply that $G \perp \!\!\! \perp Y | A$ or $G \perp \!\!\! \perp Y$ — check!!.

However, when all variables discrete, they impose inequality restrictions on the joint distribution p(y,a|g) — these can easily be checked and provide a test against $gross\ violations$ of the above assumptions. (Balke & Pearl, 1994)

Structural assumptions cannot be tested and may even depend on the particular intervention you have in mind.

⇒ Justify IV assumptions with expert background knowledge!

Example: Partial Compliance

In randomised trials with partial compliance: G = treatment assignment, A = actual treatment taken, Y = health outcome.

Treatment assignment is randomised $\Rightarrow G \perp \!\!\! \perp U$ seems very plausible.

Most subjects comply with treatment assignment $\Rightarrow G \not\perp\!\!\!\perp A$.

 $Y \perp \!\!\! \perp G | (U, A)$ usually only plausible in a double-blind randomised trial!

Example: Effect of alcohol consumption

Genotype: ALDH2 determines blood acetaldehyde, the principal metabolite for alcohol.

Two alleles/variants: wildetype *1 and "null" variant *2.

*2*2 homozygous individuals suffer facial flushing, nausea, drowsiness and headache after alcohol consumption.

⇒ *2*2 homozygous individuals have low alcohol consumption regardless of other lifestyle behaviours – Mendelian randomisation

IV-idea: check if these individuals have a different risk than others for alcohol related health problems!

Example: Effect of alcohol consumption

Note 1: due to random allocation of genes at conception, can be fairly confident that genotype is not associated with unobserved confounders (subpopulation structure can be a problem).

Further evidence: in extensive studies no evidence for association with *observed* confounders, e.g. age, smoking, BMI, cholesterol. (see e.g. Davey Smith et al., 2007)

Example: Effect of alcohol consumption

Note 2: due to known 'functionality' of ALDH2 gene, we can exclude that it affects the typical diseases considered by *another* route than through alcohol consumption.

⇒ important to use well studied genes as instruments!

Example: Effect of alcohol consumption

Note 3: association of ALDH2 with alcohol consumption well established, strong, and underlying biochemistry well understood.

Example: Effect of alcohol consumption

Note 3: association of ALDH2 with alcohol consumption well established, strong, and underlying biochemistry well understood.

Violation of IV Assumptions

Example: Mendelian randomisation

Population stratification occurs when there exist population subgroups that experience both, different disease rates (or different distributions of phenotypes) and have different frequencies

of alleles of interest.

 \Rightarrow might violate condition $Y \perp \!\!\! \perp G | (A, U)$.

Solution?

Testing for Causal Effect with IV

No causal effect " \Leftrightarrow " G independent of Y.

Here: take causal null-hypothesis as 'no $A \rightarrow Y$ edge'

Note: not the same as ACE = 0.

Example: Alcohol Consumption

Findings: (Meta-analysis by Chen et al., 2008)

Blood pressure on average 7.44mmHg higher and risk of hypertension 2.5 higher for ALDH2*1*1 than for ALDH2*2*2 carriers (only males). ⇒ mimics the effect of *large versus low* alcohol consumption.

Blood pressure on average 4.24mmHg higher and risk of hypertension 1.7 higher for ALDH2*1*2 than for ALDH2*2*2 carriers (only males). ⇒ mimics the effect of *moderate versus low* alcohol consumption.

Testing for Causal Effect with IV

Results of Meta-analysis by Chen et al. (2008) suggest that **even moderate** alcohol consumption is **harmful**.

Note: studies mostly in Japanese populations (where ALDH2*2*2 is common), where women drink only little alcohol in general.

⇒ use women as 'negative control' group.

Example: Alcohol Consumption

Is condition $Y \perp \!\!\! \perp G | (A, U)$ satisfied?

Some indication

Women in Japanese study population did not drink. ALDH2 genotype in women not associated with blood pressure \Rightarrow there does not seem to be another pathway creating a G-Y association here.

19

Bounds on Causal Effect

The all-binary case

Without parametric assumptions we cannot normally identify any *population* causal effect parameters.

But with A, Y, G all binary (or all discrete) we can derive upper and lower **bounds** on the causal effect (e.g. ACE).

(Balke & Pearl, 1994)

The derivation exploits restrictions on joint distribution of A,Y,G due to the conditional independencies involving U.

Interpretation of bounds: for a given observed frequency table on A,Y,G there exist different causal models that agree with these frequencies and can give causal effects anywhere within these bounds.

Bounds on Causal Effect

Y, A and G are all binary;

$$ACE = E(Y|\mathsf{do}(A=1)) - E(Y|\mathsf{do}(A=0)).$$

Let $p_{yx.g} = p(y, a|g)$. Then we have

$$\begin{vmatrix} p_{11.1} + p_{00.0} - 1 \\ p_{11.0} + p_{00.1} - 1 \\ p_{11.0} - p_{11.1} - p_{10.1} - p_{01.0} - p_{10.0} \\ p_{11.1} - p_{11.0} - p_{10.0} - p_{01.1} - p_{10.1} \\ -p_{01.1} - p_{10.0} - p_{01.1} - p_{10.0} \\ p_{00.1} - p_{01.0} - p_{10.0} - p_{00.0} \\ p_{00.0} - p_{01.0} - p_{10.0} - p_{01.1} - p_{00.1} \\ p_{00.0} - p_{01.0} - p_{10.0} - p_{01.1} - p_{00.1} \\ p_{00.0} - p_{01.0} - p_{10.0} - p_{01.1} - p_{00.1} \\ p_{00.0} - p_{01.0} - p_{10.0} - p_{11.0} + p_{01.0} - p_{10.0} \\ p_{00.0} - p_{01.0} + p_{11.0} + p_{00.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.1} + p_{00.1} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.1} + p_{00.1} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.1} + p_{00.1} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.1} + p_{10.1} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.1} + p_{10.1} \\ -p_{10.0} + p_{11.0} + p_{00.0} + p_{11.1} + p_{10.1} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{10.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{11.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{11.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} + p_{10.0} \\ -p_{10.0} + p_{$$

⇒ can easily be estimated by observed relative frequencies.

Note: bounds are *sharp* — for given frequencies on (A,Y,G) there always exists joint distributions on (A,Y,U,G) for which the bounds are attained.

Notes on Bounds

- In most realistic scenarios: bounds are very wide and include 'no-causal-effect,' i.e. include ACE = 0.
- Interpretation: if ACE=0 included, there is always another model, where A has no causal effect on Y, that could generate the same data.
- Width of bounds depends on strength of IV and amount of confounding.
- Still, bounds should always be calculated to assess how informative the data 'alone' are.
- Stata / R package bpbounds (Palmer et al., 2011, 2018);
 various IV methods: R package ivtools (Sjølander, 2018)

IV Estimation ETT

The binary case — Effect of treatment on the treated (ETT)

With a key parametric assumption, we can identify the causal effect within a *subgroup* of the population, the **treated**

Assume structural mean model (SMM)

$$E(Y(1) - Y(0)|A = 1, G = g) = \psi$$

IV Estimation ETT

Assume: no effect modification by the IV G (NEM)

$$E(Y(1) - Y(0)|A = 1, G = g) = \psi$$

It can then be shown that

$$E(Y(1) - Y(0)|A = 1) = \frac{E(Y|G = 1) - E(Y|G = 0)}{E(A|G = 1) - E(A|G = 0)}.$$

⇒ 'ratio estimator' (Wald-estimator)

With E(Y(1) - Y(0)|U) = E(Y(1) - Y(0)), i.e. no effect modification by U (on additive scale), the above equals population ACE.

IV Estimation

All binary: other target parameters, e.g.

'Wald type' IV estimators for RR and OR (Y and G binary)

$$WaldRR = \hat{RR}(Y|G)^{1/\Delta} \qquad WaldOR = \hat{OR}(Y|G)^{1/\Delta}$$

where
$$\Delta = \hat{E}(A|G=1) - \hat{E}(A|G=0)$$
.

WaldRR consistent for CRR if

(Didelez et al, 2010)

- log-linearity of Y in A
- no A-U interaction on Y on log-linear scale
- -A|(G,U) normally distributed.

WaldOR approximation to WaldRR for rare disease.

Advantages: WaldOR can be used in case—control studies.

The linear case: two-stage-least-squares (2SLS)

Some intuition first!

Positive confounding: larger values of U induce larger Y and larger A.

But conditional on (unobservable) U we have that Y and A have negative association.

Different colours = different values of IV.

G=2

Regression of Y on A (ignoring U and G) results in positive slope.

Due to role of (unobservable!) U, biased estimate of causal effect.

With instrument: regress of A on G and Y on G and divide slopes.

This recovers the negative slope without knowing U.

IV Estimation in LSEM

Written as LSEM:

two endogenous variables

$$Y = \beta_0 + \beta A + \xi_Y(U)$$

$$A = \alpha_0 + \alpha G + \xi_A(U)$$

where $\xi_Y(U), \xi_A(U)$ are correlated errors.

G as IV is exogenous variable.

Econometrics: various approaches to estimating such (and more general) systems of equations (Bowden & Turkington, 1984)

IV Estimation in LSEM

$$Y = \beta_0 + \beta A + \xi_Y(U)$$
$$A = \alpha_0 + \alpha G + \xi_A(U)$$

Path-tracing results in:

- total effect of G on A is α
- total effect of G on Y is $\alpha\beta$
- $\Rightarrow \beta = \text{ratio of coefficients from OLS regr. } Y \text{ on } G \text{ and } A \text{ on } G.$

Or: regress Y on \hat{A} , predicted from OLS A|G.

Alternative: weaker model assumption — linear SMM.

A, Y, G arbitrary scale. Assume

$$E(Y|U=u; \operatorname{do}(A=a)) = E(Y|u,a) = \mu_Y + \beta a + h(u)$$

Note, no (A, U)-interaction on linear scale.

Then $ACE = \beta$.

Can show

$$\beta = \frac{Cov(Y,G)}{Cov(A,G)}$$

i.e. β is identified from obs. data on A, Y, G.

The linear case

Hence, consistent estimator for β given by ratio of estimated coefficients from regression of Y on G and from A on G

⇒ called IV–estimator or two–stage–least–squares (2SLS):

$$\hat{\beta}_{IV} = \frac{\hat{\beta}_{Y|G}}{\hat{\beta}_{A|G}}$$

where $\hat{\beta}_{Y|G},\,\hat{\beta}_{A|G}$ least squares regression coefficients.

Note: denominator: weak IV (weak G-A association)

⇒ unstable and also biased IV estimators.

Notes on 2SLS

- popular, very simple to implement (many softwares)
- surprisingly robust towards misspecification (Vansteelandt & Didelez, 2017)
- can be generalised to multiple IVs, multiple exposures, multiple outcomes; but weak IV problem quickly becomes more serious in higher dimensions
- can also be used in 2-samples situation with separate (A, G)-data and (Y, G)-data.

Instrumental Variables Summary

In presence of unobserved confounding: hope to find IV

- 'natural' experiment genes, year of birth etc;
- can be used for testing for causal effect, or bounds;
- estimation requires more assumptions (e.g. NEM, linearity or other);
- recent work: inference with multiple instruments, some of which may be invalid (Bowden et al., 2015; Guo et al, 2018)

Natural Experiments

When suspicious of unobserved confounding: look for 'natural experiments'

- regression discontinuity designs (RDD);
- interrupted time-series (e.g. policy changes) / difference-in-differences / before-after-design;
- negative controls;
- differences in difference;
- twin / sibling studies etc.

Unobserved Confounding

Absence of instruments / natural experiments?

⇒ sensitivity analysis!

See book: Lash et al (2009)

- needs some assumption on plausible confounding
- ad-hoc adjustment formulas or
- MC methods or
- Bayesian approaches

(Gustafson et al, 2010)

Thank You!

www.leibniz-bips.de/en

Contact
Vanessa Didelez
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
didelez@leibniz-bips.de

