Machine Learning Project Presentation

Title: Gender Classification by Voice

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Group Members:

Arjun Mehra Aryman Srivastava Dheeraj Khushdev Pandit

Motivation

- Voice: used for human communication
- Why care about Gender Recognition using voice?
 - Audio categorization
 - Speech emotion recognition
 - Human to machine interaction
 - Security purposes
- Speech and voice recognition system can be used for gender identification.
- Example: Human Ear, models for Gender recognition system

Literature Review (1/2)

- Gender Recognition from Human Voice using Multi-Layer Architecture [1]
 - In this paper, author extracted features from the datasets in two layers and classified the gender with SVM and KNN
 - Researchers tried to find out the exact feature from the vocal cords and extract it from the voices using many methods and models.
 - The recognition rate of the machine depends on extracting the effective features from voice.

Literature Review (2/2)

- Voice based Age, Accent and Gender Recognition [2]
 - In this reference paper that is solely based on the self labeled algorithm.
 - The main objective of gender recognition by speech is performed upon the usage of a new ensemble semi-supervised self-labeled algorithm.
 - The algorithm combines the individual predictions of three of the most known and consistent self-labeled methods i.e, Co-training, Self-training, and Tri-training making good use of the ensemble as base learner for the algorithm

Dataset description

- We used voice dataset with voice of 3169 different people.
- Output labels were classified as male and female.
- Dataset have different voice attributes like:
 - mean frequency
 - standard deviation in frequency
 - median frequency, etc.
- We extracted 13 different voice features out of 20 using various visualizations techniques and manual testing.

Visualizations

Class Distribution for Output label

Visualizations

Feature Importance Graph

Methodology

- We classified the gender of the speaker, using the selected voice attributes.
- Classified the voice of speaker as 'male' and 'female'
- For the classification purpose, three different model/methodologies were used.
 - Logistic Regression
 - Naive Bayes
 - Decision Tree
 - Random Forest
 - Artificial Neural network
 - Support Vector Machine

Results

Model Performances- Accuracy

Conclusions

- Logistic Regression provided good results for each of the metrics chosen to judge the model.
- Decision Tree that gave results comparable to Logistic Regression model, had
 - Depth = 10
 - Criterion = Gini
- Gaussian naive bayes also reported good accuracy and other performance metrics, indicating that:
 - gaussian naive model is able to fit well into data
 - voice dataset has gaussian distribution for male and female

Conclusions

- Random Forest also give us a good accuracy (~98%) with max_tree_depth = 10, no. of estimators = 200 and 'Gini' criteria.
 Also we performed Adaboost classification, which almost gives the similar result to RF.
- MLP with two hidden layer of sizes (256, 32) and relu activation function gave good accuracy of 98%.
- In SVM model, RBF/Gaussian kernel was observed to be the best one.

Training and Performance metrics

Loss-Curve for MLP

Performance/Confusion Matrix for MLP

Timeline

Timeline that we roughly followed is:

- Week 1-2: Data Collection
- Week 3-4: Pre-processing and Data Visualization
- Week 5: EDA, Feature Analysis, Heatmaps, PCA, TSNE
- Week 6: Feature Selection, Logistic Regression
- Week 7: Naive Bayes, Decision Tree
- Mid-sem Break: Report and PPT

- Week 8: Random Forest
- Week 9: MLP
- Week 10: SVM
- Week 11: Analysis & Performance of model,
 Hyperparameter Tuning, Check for model
 Overfitting and Underfitting
- Week 12: Report Writing

Team member contributions

Arjun Mehra

- Data Collection and Analysis
- Naive Bayes Model, Random Forest, Decision Tree
- PPT

Dheeraj

- Data collection & Pre-processing
- Decision Tree model, Random Forest
- Report, PPT

Aryman Srivastava

- Exploratory Data Analysis
- Feature Selection
- MLP, SVM
- Report

Khushdev Pandit

- Pre-processing and Data Visualization
- EDA
- Logistic Regression model, MLP, SVM
- PPT

Thank You!