Correction proposée par El Amdaoui École Royale de l'Air-Marrakech.Maroc

Problème 1

Partie I

- 1.1. On montre que Σ_A est un sous-espace vectoriel de l'espace des fonctions définies de \mathbb{R}_+ à valeurs dans $M_{n,1}(\mathbb{R})$
 - $-\Sigma_{A}\neq\emptyset$ car l'application nulle $t\in\mathbb{R}_{+}\longmapsto0_{n,1}\in M_{n,1}\left(\mathbb{R}\right)$ appartient à Σ_{A}
 - Soit $F, G \in \Sigma_A$ et $\lambda \in \mathbb{R}$. Par définition F et G sont deux fois-dérivable sur \mathbb{R}_+ , donc $\lambda F + G$ est deux fois-dérivable sur \mathbb{R}_+ et

$$(\lambda F + G)'' = \lambda F'' + G''$$
$$= \lambda AF + AG$$
$$= A(\lambda F + G)$$

Donc $\lambda F + G \in \Sigma_A$.

- 1.2. Détermination de la dimension de Σ_A
 - **1.2.1.** F est supposé deux-fois dérivable, donc $x_F = \begin{pmatrix} F \\ F' \end{pmatrix}$ est dérivable sur \mathbb{R}_+ et

$$x'_{F} = Bx_{F} \iff \begin{pmatrix} F' \\ F'' \end{pmatrix} = \begin{pmatrix} 0 & I_{n} \\ A & 0 \end{pmatrix} \begin{pmatrix} F \\ F' \end{pmatrix}$$

$$\iff \begin{cases} F' &= F' \\ F'' &= AF \end{cases}$$

$$\iff F'' = AF$$

Donc l'équivalence demandée $F \in \Sigma_A$ si, et seulement si, $x_F \in \Sigma_B$

- 1.2.2. L'application Φ est bien définie, d'après la question précédente.
 - Φ est linéaire, car pour $F, G \in \Sigma_A$ et $\lambda \in \mathbb{R}$,

$$\Phi(\lambda F + G) = \begin{pmatrix} \lambda F + G \\ (\lambda F + G)' \end{pmatrix}$$

$$= \begin{pmatrix} \lambda F + G \\ \lambda F' + G' \end{pmatrix}$$

$$= \lambda \begin{pmatrix} F \\ F' \end{pmatrix} + \begin{pmatrix} G \\ G' \end{pmatrix}$$

$$= \lambda \Phi(F) + \Phi(G)$$

- Soit $F \in \Sigma_A$, $x_F = 0$ entraı̂ne $\binom{F}{F'} = 0$, donc F = 0. Ainsi Φ est un morphisme injectif
- Soit $x \in \Sigma_B$, on écrit x par bloc $x = \begin{pmatrix} F \\ G \end{pmatrix}$ avec $F, G : \mathbb{R}^+ \longrightarrow M_{n,1}(\mathbb{R})$ (F et G sont dérivables sur \mathbb{R}^+ .

$$x' = Bx \implies \begin{pmatrix} F' \\ G' \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix} = \begin{pmatrix} G \\ AF \end{pmatrix}$$

$$\implies \begin{cases} F' = G \\ G' = AF \end{cases}$$

L'égalité F'=G montre que F est deux fois dérivable et F''=G'=AF. Ainsi $x=\begin{pmatrix} F\\F' \end{pmatrix}$ avec $F\in \Sigma_A,$ ceci montre la surjection de Φ

- **1.2.3.** Σ_B est l'ensemble de solutions de l'équation linéaire homogène d'ordre 1: x' = Bx avec $B: \mathbb{R}^+ \longrightarrow M_{2n,1}(\mathbb{R})$ continue, d'après Cauchy-Lipschitz linéaire, Σ_B est de dimension 2n et par isomorphisme dim $(\Sigma_A) = 2n$
- **1.3.** Soit $(s, v, w) \in \mathbb{R}^+ \times M_{n,1}(\mathbb{R}) \times M_{n,1}(\mathbb{R})$, on a l'équivalence

$$\begin{cases} F'' = AF \\ F(s) = v \text{ et } F'(s) = w \end{cases} \iff \begin{cases} x_F' = Bx_F \\ x_F(s) = \begin{pmatrix} v \\ w \end{pmatrix} \end{cases}$$

Le second système est un problème de Cauchy qui admet, d'après Cauchy-Lipschitz linéaire, une unique solution, donc le premier système admet lui aussi une unique solution

Partie II

2.1.

- **2.1.1.** On a
 - $-(x,y) \in M_{n,1}(\mathbb{R}) \times M_{n,1}(\mathbb{R}) \longmapsto \langle x,y \rangle \in \mathbb{R}$ est bilinéaire en dimension finie, donc elle est indéfiniment différentiable
 - $-x \in M_{n,1}(\mathbb{R}) \longmapsto (x,x) \in M_{n,1}(\mathbb{R}) \times M_{n,1}(\mathbb{R})$ est linéaire en dim finie, donc elle est indéfiniment différentiable
 - $-t \in \mathbb{R}_{+} \longmapsto F(t) \in M_{n,1}(\mathbb{R})$ est deux fois dérivable sur \mathbb{R}_{+}

Alors, par composition, $f: t \in \mathbb{R}_+ \longmapsto \langle F(t), F(t) \rangle$ est deux fois dérivable sur \mathbb{R}_+ et par la formule de Leibniz : pour tout $t \in \mathbb{R}_+$

$$f''(t) = 2 < F''(t), F(t) > +2 < F'(t), F'(t) >$$

$$= 2 < A(t)F(t), F(t) > +2 ||F'(t)||^{2}$$

- **2.1.2.** Par hypothèse $\forall t \in \mathbb{R}_+$, on a $A(t)F(t), F(t) \gg 0$. Donc, d'après la formule précédente $f''(t) \geqslant 0$, ceci montre que f est convexe
- **2.2.** On suppose qu'il existe un couple $(t_1, t_2) \in \mathbb{R}^2_+$ tel que $t_1 < t_2$ et $F(t_1) = F(t_2) = 0$
 - **2.2.1.** Soit $t \in [t_1, t_2]$, alors il existe $\lambda \in [0, 1]$ tel que $t = \lambda t_1 + (1 \lambda) t_2$. D'après l'inégalité de convexité $0 \le f(t) \le \lambda f(t_1) + (1 \lambda) f(t_2) = 0$, donc f(t) = 0
 - **2.2.2.** On tire de la question précédente que F=0 sur le segment $[t_1,t_2]$ et pour tout $t\in]t_1,t_2[$, on a F'(t)=0. Alors pour $s\in]t_1,t_2[$, l'application nulle et F sont solutions du système

$$\begin{cases} F'' = AF \\ F(s) = 0 \text{ et } F'(s) = 0 \end{cases}$$

Un tel système n'admet qu'une seule solution, donc F=0

2.3. La fonction f est convexe et dérivable sur \mathbb{R}_+ , donc la courbe de f est située au dessus de ces tangentes, en particulier

$$\forall t \in \mathbb{R}_+, \quad f(t) \geqslant f'(0)t + f(0)$$

Avec $f'(0) = 2 < F'_v(0), F_v(0) >= 2 \|v\|^2$, on tire $f(t) \ge 2 \|v\|^2 t + f(0)$, ceci montre que $f(t) \xrightarrow[t \to +\infty]{} +\infty$, puis par composition avec la fonction racine carrée $\|F(t)\| \xrightarrow[t \to +\infty]{} +\infty$

- **2.4.** Des normes sur Σ_A
 - **2.4.1.** Ψ est bien définie et linéaire.

Soit $F \in \text{Ker}(\Psi)$, alors F s'annule en 0 et en b > 0, d'après la question **2.2.2** l'application F = 0, d'où Ψ est injective. Puisque Σ_A et $M_{n,1}(\mathbb{R}) \times M_{n,1}(\mathbb{R})$ ont même dimension 2n, alors Ψ est un isomorphisme d'espaces vectoriels

2.4.2. L'application $\| \, . \, \|_b$ est bien définie de Σ_A à valeurs dans \mathbb{R}_+

- Séparation : Soit $F \in \Sigma_A$.

$$\begin{split} \parallel F \parallel_b &= 0 &\iff \parallel F(0) \parallel + \parallel F(b) \parallel = 0 \\ &\iff F(0) = F(b) = 0 \\ &\iff F = 0 \quad \text{question 2.2} \end{split}$$

- Homogénéité : Soit $\lambda \in \mathbb{R}$ et $F \in \Sigma_A$:

$$\|\lambda F\|_{b} = \|\lambda F(0)\| + \|\lambda F(b)\| = |\lambda| (\|F(0)\| + \|F(b)\|) = |\lambda| \|F\|_{b}$$

– Inégalité triangulaire : Soit $F,G\in\Sigma_A,$ on a

$$||F(0) + G(0)|| \le ||F(0)|| + ||G(0)||$$
 et $||F(b) + G(b)|| \le ||F(b)|| + ||G(b)||$

On en déduit que

$$||F + G||_b \le ||F||_b + ||G||_b$$

Ainsi $\| \cdot \|_b$ est bien une norme sur Σ_A

- **2.4.3.** L'application $t \in \mathbb{R}_+ \longmapsto ||F(t)|| \in \mathbb{R}_+$ est continue, par composition des applications continues F et norme euclidienne, donc elle est bornée sur le segment [0, b] et atteint ses bornes. Donc $||.||_{\infty,b}$ est bien définie de Σ_A à valeurs dans \mathbb{R}_+
 - Séparation : Soit $\vec{F} \in \Sigma_A$.

$$||F||_{\infty,b} = 0 \iff \forall t \in [0,b], F(t) = 0$$

 $\iff F = 0 \text{ question } \mathbf{2.2}$

- Homogénéité : Soit $\lambda \in \mathbb{R}$ et $F \in \Sigma_A : \forall t \in [0, b]$

$$\|\lambda F(t)\| = |\lambda| \|F(t)\|$$

Donc

$$\|\lambda F\|_{\infty,b} = |\lambda| \|F\|_{\infty,b}$$

- Inégalité triangulaire : Soit $F, G \in \Sigma_A$, on a : $\forall t \in [0, b]$

$$||F(t) + G(t)|| \le ||F(t)|| + ||G(t)|| \le ||F||_{\infty,b} + ||G||_{\infty,b}$$

On en déduit que

$$||F + G||_{\infty,b} \le ||F||_{\infty,b} + ||G||_{\infty,b}$$

Ainsi $\|.\|_{\infty, h}$ est bien une norme sur Σ_A

2.4.4. Σ_A est un espace de dimension finie, alors $\|.\|_{\infty,b}$ et $\|.\|_b$ sont équivalentes

Partie III

3.1.

- **3.1.1.** L'application $f_{m,a}: t \in \mathbb{R}_+ \longmapsto \|g_{m,a}(t)\|^2$ est convexe sur \mathbb{R}_+ , donc $f'_{m,a}$ est croissante sur \mathbb{R}_+ . En particulier $\forall t \in [0,m]$, $f'_{m,a}(t) \leq f'_{m,a}(m)$. Or $f'_{m,a}(m) = 2 < g_{m,a}(m), g'_{m,a}(m) >= 0$, donc $f'_{m,a}$ est négative sur [0,m] et par suite la décroissance de $f_{m,a}$. Par la croissance de l'application racine carrée, on tire par composition, que $t \in \mathbb{R}_+ \longmapsto \|g_{m,a}(t)\|$ est décroissante sur [0,m]
- **3.1.2.** Soit $m \in \mathbb{N}^*$. On a $1 \in [0, m]$, par décroissance de l'application $t \in \mathbb{R}_+ \longmapsto \|g_{m,a}(t)\|$ sur [0, m], on a $\|g_{m,a}(1)\| \leq \|g_{m,a}(0)\| = \|a\|$. Par définition de la norme $\|.\|_1$, on a $\|g_{m,a}\|_1 = \|g_{m,a}(0)\| + \|g_{m,a}(1)\| \leq 2 \|a\|$. La suite $(g_{m,a})_{m \in \mathbb{N}^*}$ est une suite bornée de l'espace $(\Sigma_A, \|.\|_1)$
- **3.1.3.** La suite $(g_{m,a})_{m \in \mathbb{N}^*}$ est une suite bornée de l'espace $(\Sigma_A, \|.\|_1)$ qui est de dimension finie. D'après Bolzano Weiestrass il existe une suite extraite $(g_{\sigma(m),a})_{m \in \mathbb{N}^*}$ convergente dans $(\Sigma_A, \|.\|_1)$ et notons g_a sa limite

3.2.

3.2.1. Soit K un compact de \mathbb{R}^+ , alors il existe $b \in \mathbb{R}_+^*$ tel que $K \subset [0, b]$ et

$$\|g_{\sigma(m),a} - g_a\|_{\infty,K} \le \|g_{\sigma(m),a} - g_a\|_b$$

En outre $\|.\|_1$ et $\|.\|_b$ sont équivalentes et puisque $(g_{\sigma(m),a})$ converge vers g_a pour la norme $\|.\|_1$, alors la convergence de la suite $(g_{\sigma(m),a})$ vers g_a pour la norme $\|.\|_b$ est assurée puis sa convergence vers g_a sur tout compact K de \mathbb{R}^+

3.2.2. La convergence uniforme sur tout compact de \mathbb{R}_+ entraı̂ne la convergence simple. Comme pour tout $m \in \mathbb{N}^*$, on a $g_{\sigma(m),a}(0) = a$, alors par passage à la limite lorsque m tend vers $+\infty$, on obtient $g_a(0) = a$.

En outre pour $t, t' \in \mathbb{R}_+$ tels que t < t', il existe $m_0 \in \mathbb{N}^*$ pour lequel $\sigma(m_0) > t'$, alors pour tout $m \ge m_0$, on a $t, t' \in [0, \sigma(m)]$ et comme $g_{\sigma(m),a}$ est décroissante sur $[0, \sigma(m)]$, on obtient

$$\|g_{\sigma(m),a}(t')\| \le \|g_{\sigma(m),a}(t)\|$$

On fait tendre m vers $+\infty$, donc $\|g_a(t')\| \leq \|g_a(t)\|$. Ainsi $t \in \mathbb{R}_+ \mapsto \|g_a(t)\|$ est décroissante sur \mathbb{R}_+

3.2.3. g_a est un élément de Σ_A et pour tout $t \in \mathbb{R}_+$, on a $||g_a(t)|| \leq ||g_a(0)|| = ||a||$, donc g_a est une solution bornée de l'équation (1)

3.3.

- **3.3.1.** D'après la question **3.2.3.** les fonctions g_{e_1}, \dots, g_{e_n} sont solutions bornées de l'équation différentielle (1). Un élément de Σ_1 est combinaison linéaire des fonctions bornées, donc il est borné
- **3.3.2.** La famille $(g_{e_1}, \dots, g_{e_n})$ est génératrice de Σ_1 , donc il suffit de montrer que cette famille est libre. Soit $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tels que $\sum_{i=1}^n \lambda_i g_{e_i}$. Alors pour tout $t \in \mathbb{R}_+$, $\sum_{i=1}^n \lambda_i g_{e_i}(t) = 0$, en particulier pour tout t = 0, on trouve $\sum_{i=1}^n \lambda_i e_i = 0$, et donc les scalaires $\lambda_1 = \dots = \lambda_n = 0$ car (e_1, \dots, e_n) est une base de $M_{n,1}(\mathbb{R})$. Ainsi

3.3.3. On considère l'application

la liberté de la famille $(g_{e_1}, \cdots, g_{e_n})$

$$\zeta: \left\{ \begin{array}{ccc} \Sigma_A & \longrightarrow & M_{n,1}\left(\mathbb{R}\right) \times M_{n,1}\left(\mathbb{R}\right) \\ F & \longmapsto & (F(0), F'(0)) \end{array} \right.$$

 ζ est un morphisme d'espaces vectoriels et d'après **1.3** l'application ζ est un isomorphisme d'espaces vectoriels. Or $\Delta = \{(v,v) \mid v \in M_{n,1}(\mathbb{R})\}$ est un sous-espace vectoriel de $M_{n,1}(\mathbb{R}) \times M_{n,1}(\mathbb{R})$ de dimension n, donc $\Sigma_2 = \zeta^{-1}(\Delta)$ est un sous-espace vectoriel de Σ_A de dimension n

3.3.4. Soit $F \in \Sigma_1 \cap \Sigma_2$, alors il existe $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tel que $F = \sum_{i=1}^n \lambda_i g_{e_i}$ et F(0) = F'(0).

La combinaison $F = \sum_{i=1}^{n} \lambda_i g_{e_i}$ montre que F est bornée, d'après la question **2.3**, le vecteur v = F(0) = F'(0) est forcément nul. Puis par unicité de la solution F = 0. Autrement dit $\Sigma_1 \cap \Sigma_2 = \{0\}$ et puisque dim $\Sigma_1 + \dim \Sigma_2 = 2n = \dim \Sigma_A$, alors

$$\Sigma_A = \Sigma_1 \oplus \Sigma_2$$

- **3.3.5.** Σ_1 est un sous-espace vectoriel de Σ_A de dimension finie, donc Σ_1 est un fermé de Σ_A et par suite $\Sigma_A \setminus \Sigma_1$ est un ouvert de Σ_A
 - Soit $F \in \Sigma_A$. Puisque Σ_1 est un sous-espace vectoriel strict de Σ_A il existe $G \in \Sigma_A \setminus \Sigma_1$. On considère alors la suite (F_n) définie par : $\forall n \in \mathbb{N}$, $F_n = F + \frac{1}{2^n}G$,

une telle suite est d'éléments de $\Sigma_A \setminus \Sigma_1$ et $\|F_n - F\|_1 = \frac{1}{2^n} \|G\|_1 \xrightarrow[n \to +\infty]{} 0$, alors par la caractérisation séquentielle $\overline{\Sigma_A \setminus \Sigma_1} = \Sigma_A$

Soit $F \in \Sigma_A$

- D'après la question **3.3.1**, si $F \in \Sigma_1$, alors elle est bornée sur \mathbb{R}_+ .
- Si $F \in \Sigma_A \setminus \Sigma_1$. On écrit $F = F_2 + F_1$ avec $F_2 \in \Sigma_2$ et $F_1 \in \Sigma_1$. Comme $F \notin \Sigma_1$, alors F_2 est non nulle, donc $F_2(0) = F_2'(0) \neq 0$ et par inégalité triangulaire on a

$$\forall t \in \mathbb{R}_+, \quad || F(t) || \geqslant || F_2(t) || - || F_1(t) ||$$

$$\parallel F_2 \parallel$$
tend vers $+\infty$ en $+\infty$ et F_1 est bornée, donc $\parallel F(t) \parallel \xrightarrow[t \to +\infty]{} +\infty$

Problème 2

Partie I

4.1. On a $I(\mathbb{Z}) = \mathbb{Z}$, pour tout $k \in \mathbb{Z}$, on a $V(k+1) = \{k, k+2\}$, donc $f: \mathbb{Z} \longrightarrow \mathbb{R}$ est harmonique si, et seulement si,

$$f(k+1) = \frac{1}{2} \sum_{i \in V(k+1)} f(i) = \frac{1}{2} (f(k) + f(k+2))$$

si, seulement si

$$f(k+2) - 2f(k+1) + f(k) = 0$$

4.2. L'ensemble des fonctions harmoniques sont exactement l'ensemble des suites récurrentes linéaires d'ordre 2 vérifiant l'équation f(k+2) - 2f(k+1) + f(k) = 0 d'équation caractéristique $r^2 - 2r + 1 = 0$. Cette dernière admet racine double r = 1, donc f est harmonique si, et seulement si, il existe $a, b \in \mathbb{R}$ tels que

$$\forall k \in \mathbb{Z}, \quad f(k) = ak + b$$

Posons $\operatorname{Id}_{\mathbb{Z}}: x \in \mathbb{Z} \longmapsto x \in \mathbb{R}$ et $1_{\mathbb{Z}}: x \in \mathbb{Z} \longmapsto 1 \in \mathbb{R}$, alors l'ensemble des fonctions harmoniques est l'espace $\operatorname{Vect}(\operatorname{Id}_{\mathbb{Z}}, 1_{\mathbb{Z}})$ qui est de dimension 2 et dont une base $(\operatorname{Id}_{\mathbb{Z}}, 1_{\mathbb{Z}})$

4.3. Montrons d'abord que $I(\mathbb{Z}^*) = \{k \in \mathbb{Z}, |k| \ge 2\}.$

Soit $k \in \{k \in \mathbb{Z}, |k| \ge 2\}$, alors $V(k) = \{k-1, k+1\} \subset \mathbb{Z}^*$, donc l'inclusion $\{k \in \mathbb{Z}, |k| \ge 2\} \subset I(\mathbb{Z}^*)$.

Inversement $k \in \mathbb{Z}^* \setminus \{k \in \mathbb{Z} , |k| \geqslant 2\}$, alors k = 1 ou k = -1, or $V(-1) = \{-2, 0\} \not\subset \mathbb{Z}^*$ et $V(1) = \{2, 0\} \not\subset \mathbb{Z}^*$, donc $k \not\in I(\mathbb{Z}^*)$.

f harmonique sur $I(\mathbb{Z}^*)$ si, et seulement si,

$$\forall n \ge 1, \quad f(n+2) - 2f(n+1) + f(n) = 0$$
 (1)

et

$$\forall n \le -1, \quad f(n+2) - 2f(n+1) + f(n) = 0$$
 (2)

Comme auparavant, l'équation (1) montre qu'il existe $a,b \in \mathbb{R}$ tels que $\forall n \geqslant 2$, f(n) = an + b et l'équation (2) montre qu'il existe $c,d \in \mathbb{R}$ tels que $\forall n \leqslant -2$, f(n) = cn + d. Bref l'ensemble des fonctions harmonique est l'espace $\mathbf{Vect}\left(\mathrm{Id}_{\mathbb{Z}}\chi_{\llbracket 2,+\infty \llbracket},\mathrm{Id}_{\mathbb{Z}}\chi_{\llbracket -\infty,-2\rrbracket},\chi_{\llbracket 2,+\infty \llbracket},\chi_{\llbracket -\infty,-2\rrbracket}\right)$ qui est de dimension 4.

4.4.

4.4.1. Soit $\ell \in V(k)$. Par hypothèse f est positive, donc

$$f(\ell) \leqslant \sum_{x \in V(k)} f(x) = 2df(k)$$

- **4.4.2.** Soit $k \in \mathbb{Z}^d$. Montrons par récurrence sur $n \in \mathbb{N}$ que pour tout $\ell \in \mathbb{Z}^d$ tel que $\|\ell k\|_1 = n$, on a $f(\ell) \leq 2d^{\|\ell k\|_1} f(k)$
 - Pour n=0, c'est évident et pour n=1 c'est fait dans la question précédente
 - Soit $n \geqslant 1$ et soit $\ell \in \mathbb{Z}^d$ tel que $\|\ell k\|_1 = n+1$. Comme $\sum_{i=1}^d |\ell_i k_i| = \|\ell k\|_1 > 1$

0, alors il existe $i_0 \in [1, d]$ tel que $\ell_{i_0} \neq k_{i_0}$. On pose alors $\varepsilon_{i_0} = \begin{cases} 1 & \text{si } \ell_{i_0} < k_{i_0} \\ -1 & \text{sinon} \end{cases}$

et ℓ' obtenu de ℓ en remplaçant ℓ_{i_0} par $\ell_{i_0} + \varepsilon_{i_0}$. On a bien

$$\|\ell - \ell'\|_1 = 1$$
 et $\|\ell' - k\|_1 = n$

Par hypothèse de récurrence $f(\ell) \leq 2df(\ell')$ et $f(\ell') \leq (2d)^n f(k)$. On combine les deux inégalités $f(\ell) \leq (2d)^{n+1} f(k)$

4.4.3. S'il existe $k \in \mathbb{Z}^d$ tel que f(k) = 0, alors, par positivité de f, on a pour tout $\ell \in \mathbb{Z}^d$:

$$0 \leqslant f(\ell) \leqslant (2d)^{\|\ell - k\|_1} f(k) = 0$$

Donc f = 0

4.4.4. f étant non nulle, d'après la question précédente, elle ne s'annule jamais. Pour $\ell, k \in \mathbb{Z}^d$, on a

$$f(\ell) \leqslant (2d)^{\|\ell-k\|_1} f(k) \implies \frac{f(\ell)}{f(k)} \leqslant (2d)^{\|\ell-k\|_1}$$

 $\implies \ln(f(\ell)) - \ln(f(k)) \leqslant \|\ell-k\|_1 \ln(2d)$

Par symétrie, on a aussi $\ln(f(k)) - \ln(f(\ell)) \le ||k - \ell||_1 \ln(2d)$. Ainsi

$$|\ln(f(\ell)) - \ln(f(k))| \le ||\ell - k||_1 \ln(2d)$$

Partie II

5.1

5.1.1. Remarquons d'abord que $\forall n \in \mathbb{N}$, $Y_{n+1} - Y_n = \operatorname{sgn}(X_n) e_{[|X_n|]}$, donc $||Y_{n+1} - Y_n||_1 = ||\operatorname{sgn}(X_n) e_{[|X_n|]}||_1 = 1$. Ainsi par télescopage et inégalité triangulaire, pour tout $n \ge 1$

$$\|Y_n\|_1 = \left\|\sum_{k=0}^{n-1} (Y_{k+1} - Y_k)\right\|_1 \le \sum_{k=0}^{n-1} \|Y_{k+1} - Y_k\|_1 = n$$

Une telle égalité est vraie pour n = 0. On tire donc

$$|g(Y_n)| \leqslant \exp\left(a \| Y_n \|_1 + b\right) \leqslant \exp\left(an + b\right)$$

5.1.2. Soit $\omega \in \Omega$, on a

$$|g(Y_U)(\omega)| = |g(Y_{U(\omega)})| \leq \exp(aU(\omega) + b) = \exp(aU + b)(\omega)$$

Donc $|g(Y_U)| \le \exp(aU + b)$. D'autre part $\sum_{n \ge 0} e^{an+b} \mathbb{P}(U = n)$ est une SATP convergente au s

 ${\rm gente}\ {\rm car}$

$$e^{an+b}\mathbb{P}(U=n) = e^{an+b}\frac{\lambda^n}{n!}e^{-\lambda} = \frac{(e^a\lambda)^n}{n!}e^{-\lambda+b}$$

et $\left(\frac{(e^a\lambda)^n}{n!}e^{-\lambda+b}\right)_{n\in\mathbb{N}}$ est sommable. Par comparaison $|g\left(Y_U\right)|$ admet un espérance et

$$\mathbb{E}(|g(Y_U)|) \leqslant \mathbb{E}(\exp(aU+b))$$

Enfin

$$\mathbb{E}\left(\exp\left(aU+b\right)\right) = \sum_{n=0}^{+\infty} e^{an+b} \mathbb{P}\left(U=n\right)$$
$$= \sum_{n=0}^{+\infty} \frac{(e^a \lambda)^n}{n!} e^{-\lambda+b}$$
$$= e^{e^a \lambda} e^{-\lambda+b}$$
$$= e^{(e^a - 1)\lambda+b}$$

D'ou

$$\mathbb{E}\left(|g(Y_U)|\right) \leqslant \exp\left(\left(e^a - 1\right)\lambda + b\right)$$

- **5.1.3.** Par le théorème de transfert $g(Y_U)^2$ admet une espérance si, et seulement si, la famille $(g(k)^2 \mathbb{P}(Y_U = k))_{k \in \mathbb{Z}^d}$ est sommable.
 - Montrons que $\mathbb{E}\left(g\left(Y_{U}\right)^{2}\right)$ existe. L'application g^{2} est à valeurs réelles vérifiant pour tout $k \in \mathbb{Z}^{d}$, $g^{2}(k) \leq \exp\left(2a \|k\|_{1} + 2b\right)$. D'après la question **5.1.2**, $g^{2}(Y_{U})$ admet une espérance.
 - Montrons que la famille $\left(g(k)^2 \mathbb{P}\left(Y_U=k\right)\right)_{k \in \mathbb{Z}^d}$ est sommable.
 - Pour tout $n \in \mathbb{N}$, d'après la question **5.1.1.**, on a $|g(Y_n)| \leq \exp(an+b)$ soit $|g(Y_n)^2| \leq \exp(2an+2b)$ ce qui montre que $g(Y_n)^2$ admet une espérance et $\mathbb{E}\left(g(Y_n)^2\right) \leq \exp(2an+2b)$. D'autre part, par le théorème du transfert, la famille $(g(k)^2\mathbb{P}(Y_n=k))_{k\in\mathbb{Z}^d}$ est sommable de somme $\mathbb{E}\left(g(Y_n)^2\right)$
 - La famille $\left(\mathbb{E}\left(g\left(Y_{n}\right)^{2}\right)\mathbb{P}(U=n)\right)_{n\in\mathbb{N}}$ est sommable car pour tout $n\in\mathbb{N}$

$$\mathbb{E}\left(g(Y_n)^2\right)\mathbb{P}\left(U=n\right)\leqslant e^{2an+2b}\frac{\lambda^n}{n!}e^{-\lambda}=\frac{(e^{2a}\lambda)^n}{n!}e^{-\lambda+2b}$$

et
$$\left(\frac{(e^{2a}\lambda)^n}{n!}e^{-\lambda+b}\right)_{n\in\mathbb{N}}$$
 est sommable

Ainsi, par sommation par paquets, la famille $(g(k)^2 \mathbb{P}(Y_n = k) \mathbb{P}(U = n))_{(k,n) \in \mathbb{Z}^d \times \mathbb{N}}$ est sommable. En conséquence, une autre fois par sommation par paquets, on a

• Pour tout $k \in \mathbb{Z}^d$, la famille $(g(k)^2 \mathbb{P}(Y_n = k) \mathbb{P}(U = n))_{n \in \mathbb{N}}$ est sommable de somme S_k

$$S_k = \sum_{n=0}^{+\infty} g(k)^2 \mathbb{P}(Y_n = k) \mathbb{P}(U = n)$$
$$= g(k)^2 \sum_{n=0}^{+\infty} \mathbb{P}(Y_n = k, U = n)$$
$$= g(k)^2 \mathbb{P}(Y_U = k)$$

• La famille $\left(g(k)^2\mathbb{P}\left(Y_U=k\right)\right)_{k\in\mathbb{Z}^d}$ est sommable. Enfin, par le théorème du transfert,

$$\mathbb{E}\left(g\left(Y_{U}\right)^{2}\right) = \sum_{k \in \mathbb{Z}^{d}} g(k)^{2} \mathbb{P}\left(Y_{U} = k\right)$$

5.2.

5.2.1. Soit $j \in \mathbb{N}$, d'après la question **5.1.1.**, on a $f^2(Y_j) \leqslant \exp(j \ln{(2d)})$, donc $f(Y_j)$ admet un moment d'ordre 2. En outre, d'après la question **5.1.3.**, la variable $f(Y_U)$ admet un moment d'ordre 2. Les deux familles $(f(k)^2 \mathbb{P}(Y_n = k) \mathbb{P}(U = n))_{(k,n) \in \mathbb{Z}^d \times \mathbb{N}}$ et $(f(k)\mathbb{P}(Y_n = k) \mathbb{P}(U = n))_{(k,n) \in \mathbb{Z}^d \times \mathbb{N}}$ sont sommables, en conséquence :

$$\mathbb{E}\left(f\left(Y_{U}\right)^{2}\right) = \sum_{k \in \mathbb{Z}^{d}} f(k)^{2} \mathbb{P}\left(Y_{U} = k\right)$$

$$= \sum_{k \in \mathbb{Z}^{d}} \sum_{n=0}^{+\infty} f(k)^{2} \mathbb{P}\left(Y_{n} = k\right) \mathbb{P}\left(U = n\right)$$

$$= \sum_{n=0}^{+\infty} \sum_{k \in \mathbb{Z}^{d}} f(k)^{2} \mathbb{P}\left(Y_{n} = k\right) \mathbb{P}\left(U = n\right)$$

$$= \sum_{n=0}^{+\infty} \mathbb{E}\left(f(Y_{n})^{2}\right) \mathbb{P}\left(U = n\right)$$

$$= e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{n}}{n!} \mathbb{E}\left(f(Y_{n})^{2}\right)$$

et

$$\mathbb{E}(f(Y_U)) = \sum_{k \in \mathbb{Z}^d} f(k) \mathbb{P}(Y_U = k)$$

$$= \sum_{k \in \mathbb{Z}^d} \sum_{n=0}^{+\infty} f(k) \mathbb{P}(Y_n = k) \mathbb{P}(U = n)$$

$$= \sum_{n=0}^{+\infty} \sum_{k \in \mathbb{Z}^d} f(k) \mathbb{P}(Y_n = k) \mathbb{P}(U = n)$$

$$= \sum_{n=0}^{+\infty} \mathbb{E}(f(Y_n)) \mathbb{P}(U = n)$$

$$= e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} \mathbb{E}(f(Y_n))$$

5.2.2. Montrons que la suite $(\mathbb{E}(f(Y_n)))_{n\in\mathbb{N}}$ est stationnaire. Soit $n\in\mathbb{N}$, on a $Y_{n+1}=Y_n+\operatorname{sgn}(X_n)e_{[|X_n|]}$, donc l'ensemble des valeurs prises par Y_{n+1} est

$$Y_{n+1}(\Omega) = \bigcup_{\alpha \in Y_n(\Omega)} V(\alpha)$$

Par le théorème du transfert

$$\mathbb{E}\left(f\left(Y_{n+1}\right)\right) = \sum_{k \in \bigcup_{\alpha \in Y_{n}(\Omega)} V(\alpha)} f(k) \mathbb{P}\left(Y_{n+1} = k\right)$$

$$= \sum_{\alpha \in Y_{n}(\Omega)} \sum_{k \in V(\alpha)} f(k) \mathbb{P}\left(Y_{n+1} = k\right)$$

$$= \sum_{\alpha \in Y_{n}(\Omega)} \sum_{i \in D_{d}} f\left(\alpha + \mathbf{sgn}(i)e_{[|i|]}\right) \mathbb{P}\left(Y_{n+1} = \alpha + \mathbf{sgn}(i)e_{[|i|]}\right)$$

$$= \sum_{\alpha \in Y_{n}(\Omega)} \sum_{i \in D_{d}} f\left(\alpha + \mathbf{sgn}(i)e_{[|i|]}\right) \mathbb{P}\left(Y_{n} = \alpha, X_{n} = i\right)$$

 Y_n est une variable aléatoire en fonction de X_1, \dots, X_{n-1} , or la suite (X_n) est une suite de variables indépendantes, alors Y_n et X_n sont indépendantes, donc

$$\mathbb{P}(Y_n = \alpha, X_n = i) = \mathbb{P}(Y_n = \alpha) \mathbb{P}(X_n = i) = \frac{1}{2d} \mathbb{P}(Y_n = \alpha)$$

Avec $\mathbb{P}(X_n = i) = \frac{1}{2d}$ puisque X_n suit la loi uniforme sur l'ensemble D_d , donc

$$\mathbb{E}(f(Y_{n+1})) = \sum_{\alpha \in Y_n(\Omega)} \sum_{i \in D_d} \frac{1}{2d} f\left(\alpha + \mathbf{sgn}(i)e_{[|i|]}\right) \mathbb{P}(Y_n = \alpha)$$

$$= \sum_{\alpha \in Y_n(\Omega)} \mathbb{P}(Y_n = \alpha) \frac{1}{2d} \sum_{i \in D_d} f\left(\alpha + \mathbf{sgn}(i)e_{[|i|]}\right)$$

$$= \sum_{\alpha \in Y_n(\Omega)} f(\alpha) \mathbb{P}(Y_n = \alpha)$$

$$= \mathbb{E}(f(Y_n))$$

On conclut que la suite $(\mathbb{E}(f(Y_n)))_{n\in\mathbb{N}}$ est stationnaire, avec $\mathbb{E}(f(Y_0)) = \mathbb{E}(1) = 1$ D'après l'expression de $\mathbb{E}(f(Y_U))$ dans la question précédente, on déduit

$$\mathbb{E}\left(f\left(Y_{U}\right)\right) = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{n}}{n!} \mathbb{E}\left(f(Y_{n})\right) = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{n}}{n!} = 1$$

5.3. • $H \neq \emptyset$ car l'application nulle appartient à H. Soit $f, g \in H$ et $\lambda \in \mathbb{R}$, on a

$$(f+g)^{2}(Y_{U}) = f(Y_{U})^{2} + 2f(Y_{U})g(Y_{U}) + g(Y_{U})^{2} \leq 2(f(Y_{U})^{2} + g(Y_{U})^{2})$$

Par comparaison $(f+g)^2(Y_U)$ admet une espérance . De plus $(\lambda f)^2(Y_U)$ admet une espérance, donc H est un espace vectoriel réel

• S est bien définie car pour tout $f_1, f_2 \in H$, on a

$$|f_1f_2| \leqslant f_1^2 + f_2^2$$

Donc $f_1(Y_U)f_2(Y_U)$ admet une espérance, ainsi S est bien définie

- S est symétrique, bilinéaire et positive
- Soit $f \in H$ tel que S(f, f) = 0.

On montre d'abord par récurrence que $\forall n \in \mathbb{N}, \ \forall k \in Y_n(\Omega), \mathbb{P}(Y_n = k) \neq 0.$

- \triangleright Pour n=0, on a $Y_0\left(\Omega\right)=\left\{0\right\}$ et $\mathbb{P}\left(Y_0=0\right)=1$
- \triangleright Soit $n \in \mathbb{N}$ et soit $k \in Y_{n+1}(\Omega)$. Or $Y_{n+1}(\Omega) = \bigcup_{x \in Y_n(\Omega)} V(x)$, alors on pose

 x_1, \dots, x_p les éléments de $Y_n(\Omega)$ pour lesquels $k \in v(x_i)$, donc

$$\mathbb{P}(Y_{n+1} = k) = \sum_{i=1}^{p} \mathbb{P}(Y_n = x_i) > 0$$

Récurrence achevée.

Soit $k \in \mathbb{Z}^d$ et soit $n = \|k\|_1$, on a $k \in Y_n(\Omega)$ et par la formule des probabilités totales

$$\mathbb{P}(Y_U = k) = \sum_{m=0}^{+\infty} \mathbb{P}(Y_m = k) \mathbb{P}(U = m)$$

$$\geqslant \mathbb{P}(Y_n = k) \mathbb{P}(U = n) > 0$$

Enfin, la formule de la question **5.1.3** donne $\mathbb{E}\left(f\left(Y_{U}\right)^{2}\right) = \sum_{k \in \mathbb{Z}^{d}} f(k)^{2} \mathbb{P}\left(Y_{U} = k\right) = 0$ et

par suite $\forall k \in \mathbb{Z}^d, \ f(k) = 0$

5.4.

5.4.1. Soit $k \in \mathbb{Z}^d$, puisque m est harmonique sur \mathbb{Z}^d , alors

$$f_{i}(k) = \frac{1}{m\left(\mathbf{sgn}(i)e_{[|i|]}\right)} m\left(k + \mathbf{sgn}(i)e_{[|i|]}\right)$$

$$= \frac{1}{m\left(\mathbf{sgn}(i)e_{[|i|]}\right)} \frac{1}{2d} \sum_{x \in V(k)} m\left(x + \mathbf{sgn}(i)e_{[|i|]}\right)$$

$$= \frac{1}{2d} \sum_{x \in V(k)} \frac{m\left(x + \mathbf{sgn}(i)e_{[|i|]}\right)}{m\left(\mathbf{sgn}(i)e_{[|i|]}\right)}$$

$$= \frac{1}{2d} \sum_{x \in V(k)} f_{i}(x)$$

 f_i est positive car m l'est, en outre $f_i(0) = 1$

5.4.2. Soit $x \in \mathbb{Z}^d$, on a $V(x) = \{x + \mathbf{sgn}(i)e_{[|i|]}, i \in D_d\}$, alors

$$\begin{split} m(x) &= \frac{1}{2d} \sum_{k \in V(x)} m(k) \\ &= \frac{1}{2d} \sum_{i \in D_d} m \left(x + \mathbf{sgn}(i) e_{[|i|]} \right) \\ &= \frac{1}{2d} \sum_{i \in D_d} m \left(\mathbf{sgn}(i) e_{[|i|]} \right) f_i(x) \\ &= \sum_{i \in D_d} \frac{m \left(\mathbf{sgn}(i) e_{[|i|]} \right)}{2d} f_i(x) \end{split}$$

Alors $m = \sum_{i \in D_d} \frac{m\left(\mathbf{sgn}(i)e_{[|i|]}\right)}{2d} f_i$; les coefficients d'une telle combinaison sont positifs et de somme $\sum_{i \in D_d} \frac{m\left(\mathbf{sgn}(i)e_{[|i|]}\right)}{2d} = m(0) = 1$

5.4.3. • Par inégalité triangulaire

$$\parallel m \parallel_2 \leqslant \sum_{i \in D} \frac{m \left(\operatorname{sgn}(i) e_{[|i|]} \right)}{2d} \parallel f_i \parallel_2 \leqslant \sum_{i \in D} \frac{m \left(\operatorname{sgn}(i) e_{[|i|]} \right)}{2d} \parallel m \parallel_2 = \parallel m \parallel_2$$

Alors $\forall i \in D_d$, $||m||_2 = ||f_i||_2$. D'autre part l'inégalité triangulaire est une égalité et comme pour tout $i \in D_d$, $m\left(\mathbf{sgn}(i)e_{[|i|]}\right)f_i \neq O$, alors pour tout $j \in D_i$ il existe $\lambda_{j,i} \in \mathbb{R}_+$ tel que $\frac{m\left(\mathbf{sgn}(j)e_{[|j|]}\right)}{2d}f_j = \lambda_{j,i}f_i$ et l'application m s'exprime

$$m = \left(\sum_{j \in D_d} \lambda_j\right) f_i$$
. Enfin comme $m(0) = f_i(0) = 1$, alors on tire $\sum_{j \in D_d} \lambda_{j,i} = 1$, puis $m = f_i$.

• Montrons que $\forall i \in D_d$, $m\left(\mathbf{sgn}(i)e_{[|i|]}\right) = 1$. Soit $i \in D_d$, on pose $\alpha_i = \mathbf{sgn}(i)e_{[|i|]}$. On a $\alpha_{-i} = -\alpha_i$ et pour tout $x \in \mathbb{Z}^d$:

$$m(x) = m(x - \alpha_i + \alpha_i)$$

$$= m(x - \alpha_i)m(\alpha_i)$$

$$= m(x + \alpha_{-i})m(\alpha_i)$$

$$= m(x)m(\alpha_{-i})m(\alpha_i)$$

Donc $m(\alpha_{-i})m(\alpha_i)=1$, ceci donne l'inégalité

$$m(\alpha_{-i}) + m(\alpha_i) = \frac{1}{m(\alpha_i)} + m(\alpha_i) = \frac{1 + m(\alpha_i)^2}{m(\alpha_i)} \geqslant 2$$

D'autre part

$$2d \leqslant \sum_{i=1}^{n} \left[(\alpha_i) + m (\alpha_{-i}) \right] = \sum_{i \in D_d} m (\alpha_i) = 2d.m(0) = 2d$$

Alors $\forall i \in [1, n], m(\alpha_i) + m(\alpha_{-i}) = 2$. Le système $\begin{cases} m(\alpha_i) m(\alpha_{-i}) = 1 \\ m(\alpha_i) + m(\alpha_{-i}) = 2 \end{cases}$ donne $m(\alpha_i) = m(\alpha_{-i}) = 1.$

- Montrons par récurrence sur n que $\forall k \in \mathbb{Z}^d$ tel que $||k||_1 = n, m(k) = 1$
 - Pour n = 0, c'est trivial car m(0) = 1
 - Soit $n \in \mathbb{N}$ et $k = (k_1, \dots, k_d) \in \mathbb{Z}^d$ tels que $||k||_1 = n + 1$. Alors il existe $i_0 \in [\![1, n]\!]$ tel que $k_{i_0} \neq 0$, on pose alors $\varepsilon_{i_0} = \begin{cases} 1 & \text{si } k_{i_0} > 0 \\ -1 & \text{sinon} \end{cases}$ et x obtenu de k en remplaçant k_{i_0} par $k_{i_0} \varepsilon_{i_0}$. On a bien

$$\|x\|_1 = n$$
 et $k = x + \varepsilon_{i_0} e_{[|i_0|]}$

Par hypothèse de récurrence m(x) = 1 et d'après ce qui précède

$$m(k) = m\left(x + \varepsilon_{i_0} e_{\lceil |i_0| \rceil}\right) = m(x) = 1$$

5.5. D'après le théorème de Huygens Kœnig,

$$\mathbb{V}\left(f\left(Y_{U}\right)\right) = \mathbb{E}\left(f\left(Y_{U}\right)^{2}\right) - \mathbb{E}\left(f\left(Y_{U}\right)\right)^{2}$$

Avec $\mathbb{E}\left(f\left(Y_{U}\right)\right)=1$ et $\mathbb{E}\left(f\left(Y_{U}\right)^{2}\right)\leqslant\mathbb{E}\left(m\left(Y_{U}\right)^{2}\right)$, on obtient

$$\mathbb{V}\left(f\left(Y_{U}\right)\right) \leqslant \mathbb{E}\left(m\left(Y_{U}\right)^{2}\right) - 1$$

On montre que f = 1.

On a déjà démontré que m=1, donc $E\left(m\left(Y_U\right)^2\right)=1$, puis par l'inégalité précédente $\mathbb{V}\left(f\left(Y_U\right)\right)=0$. Or $\mathbb{E}\left(f\left(Y_U\right)\right)=1$ et

$$||f - 1||_2^2 = \mathbb{E}((f - 1)(Y_U)^2) = \mathbb{V}(f(Y_U)) = 0$$

Alors f - 1 = 0, puis f = 1

- **5.6.** Soit $f: \mathbb{Z}^d \longrightarrow \mathbb{R}$ une fonction harmonique
 - Si f est minorée, on choisit un minorant α de f qui soit inférieur strictement à f(0) et on considère l'application

$$\varphi = \frac{f - \alpha}{f(0) - \alpha}$$

 $\varphi: \mathbb{Z}^d \longrightarrow \mathbb{R}^+$ une fonction harmonique vérifiant $\varphi(0) = 1$, donc elle est constante et égale 1, c'est-à-dire f = f(0)

– Si f est majorée, on choisit un majorant α de f qui soit supérieur strictement à f(0) et on considère l'application

$$\psi = \frac{f - \alpha}{f(0) - \alpha}$$

 $\psi: \mathbb{Z}^d \longrightarrow \mathbb{R}^+$ une fonction harmonique vérifiant $\psi(0)=1$, donc elle est constante et égale 1, c'est-à-dire f=f(0)