

Research project "Empirical Study of Transformers for Symbolic Mathematics"

Гельван Кирилл Павлович, гр. БПМИ171 Научный руководитель: Чиркова Надежда Александровна

Problem statement

Passing structure to Transformers

Equation:
$$\int x(\sin x + x^2) dx$$

 $\frac{x^4}{4} + \sin x - x \cos x$

Tree:

<u>Sequence</u>: ['mul', 'x', 'add', 'sin', 'x', 'pow', 'x', '2']

['add', 'mul', 'div', '1', '4', 'pow', 'x', '4', 'add', 'mul', '-1', 'mul', 'x', 'cos', 'x', 'sin', 'x']

Goal:

Investigate whether utilizing tree-based data structure in Transformer improves its performance on symbolic math tasks

Goal:

Investigate whether utilizing tree-based data structure in Transformer improves its performance on symbolic math tasks

Tasks:

- Understand the specifics of the datasets
- Adapt different approaches to the task specifics
- Compare approaches empirically
- Analyze predictions of different approaches

2 sym. math tasks: integration and ODEs. Solved with 4 different approaches

Positional embeddings

Input:
$$x = (x_1, \dots, x_n)$$
 $x_i \in \mathbb{R}^{d_k}$

Positional embedding: $p_i = \text{nn.Embedding(i)}$

Embedded input: $\hat{x}_i = x_i + p_i$

Tree positional encodings

Input:	x = 0	$(x_1, \ldots,$	(x_n)	x_i	$\in \mathbb{R}^{d_k}$
•	,	(32 1 7 7 7 7	· · · · · · · · · · · · · · · · · · ·	ω_{I}	\sim π

Positional embedding: $p_i = \text{nn.Embedding}("012")$

Embedded input: $\hat{x}_i = x_i + p_i$

(b) Tree positional encodings. The node "x" is encoded as "012" (stack-like).

Self-attention

Input:	$x=(x_1,\ldots,x_n)$, $x_i\in\mathbb{R}^{d_k}$
Embedding size:	d_k
Learnable matrices:	W^Q,W^K,W^V

$$a_{ij} = rac{x_i W^Q ig(x_j W^Kig)^T}{\sqrt{d_k}}$$

$$z_i = \sum_{j=1}^n \operatorname{softmax}(a_{ij})(x_j W^V)$$

Relative position representations

$$egin{aligned} a_{ij} &= rac{x_i W^Q \Big(x_j W^K igoplus e^K_{ij} \Big)^T}{\sqrt{d_k}} \ z_i &= \sum_{j=1}^n \operatorname{softmax}(a_{ij}) \Big(x_j W^V igoplus e^V_{ij}, e^K_{ij} \in \mathbb{R}^{d_k} \end{aligned}$$

Tree relative attention

(a) Tree relative attention.

The relation between "x" and

The relation between "x" and "sin" is encoded as "UUD".

Kim et al. 2020

Tree relative attention

$$a_{ij} = rac{x_i W^Q ig(x_j W^Kig)^T}{\sqrt{d_k}}$$

$$ilde{a}_{ij} = rac{\exp(a_{ij}\cdot oldsymbol{r}_{ij})}{\sum_{j}\exp(a_{ij}\cdot oldsymbol{r}_{ij})}$$

$$z_i = \sum_{j=1}^n ilde{a}_{ij}(x_j W^V)$$

(a) Tree relative attention.

The relation between "x" and "sin" is encoded as "UUD".

Deduplication effect

Equation-wise accuracy (%)

	Initial test set	Deduplicated test set	Difference
Integration	87.70	80.17	-7.53
First order diff. eq.	90.59	89.18	-1.41

• Positional embeddings:

Baseline

Positional embeddings:

Baseline

• Tree positional encodings:

Hyperparameter search + utilized structure in self-attention in decoder

Positional embeddings:

Tree positional encodings:
 Hyperparameter search + utilized structure in self-attention in decoder

Relative position representations: Hyperparameter search + utilized structure in encoder-decoder attention

Positional embeddings:
Baseline

• Tree positional encodings: Hyperparameter search + utilized structure in self-attention in decoder

Relative position representations: Hyperparameter search + utilized structure in encoder-decoder attention

Tree relative attention:
 Utilized structure in self-attention in decoder

Models comparison

Equation-wise accuracy (%). Mean and standard deviation over 3 runs.

	Integration	First order diff. eq.
Positional Embeddings	80.17 ± 0.40	89.18 ± 0.35
Tree Positional Encodings	79.88 ± 0.45	$77.79 \pm 0.40^*$
Relative Position Representations	80.10 ± 0.15	89.53 ± 0.27
Tree Relative Position Representations	79.76 ± 0.12	$82.75 \pm 0.25^*$

^{*}Runs were clipped by 5 days of training time.

Simple example

Equation:	$\int x(\sin x + x^2)dx$
<u>Lquation</u> .	$\int x(\sin x + x^{-})dx$

$$\frac{x^4}{4} - x \cos x + \sin x$$

$$\frac{x^4}{4} - x\cos x + \sin x$$

3. Relative position representations:

$$\frac{x^4}{4} - x\cos x + \sin x$$

4. Tree relative attention:

$$\frac{x^4}{4} - x\cos x + \sin x$$

beam width 1

$$\frac{x^4}{4} - x \cos x + \sin x$$

Simple example

One sample finding

$$\int x(\sin x + x^2)dx$$

$$\int x(\sin x + x^2) dx \qquad \int -48x^5 + \frac{x \cos x}{20} + \frac{\sin x}{20} + 1 dx$$

$$\frac{x^4}{4} - x \cos x + \sin x$$

$$\frac{x^4}{4} - x\cos x + \sin x$$
 $-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$

$$\frac{x^4}{4} - x\cos x + \sin x$$

$$x^3(x+1)^{\frac{2}{3}} + \frac{x^3}{3}$$

3. Relative position representations:

$$\frac{x^4}{4} - x \cos x + \sin x$$
 $-8x^6 + \frac{x \sin(x)}{20} + x$

$$-8x^6 + \frac{x\sin(x)}{20} + x$$

4. Tree relative attention:

$$\frac{x^4}{4} - x \cos x + \sin x$$

$$\frac{x^4}{4} - x\cos x + \sin x$$
 $-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$

beam width 1

beam width 1

Gold:

$$\frac{x^4}{4} - x \cos x + \sin x$$

$$\frac{x^4}{4} - x \cos x + \sin x$$
 $-8x^6 + \frac{x \sin(x)}{20} + x$

	Simple example	One sample finding	Different number of hypotheses required
Equation:	$\int x(\sin x + x^2)dx$	$\int -48x^5 + \frac{x \cos x}{20} + \frac{\sin x}{20} + 1 \ dx$	$\int -\sin^2 x + \cos^2 x \ dx$
1. Positional embedding:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$	$\sin x \cos x$ (hyp=86)
2. Tree positional encoding:	$\frac{x^4}{4} - x\cos x + \sin x$	$x^3(x+1)^{\frac{2}{3}} + \frac{x^3}{3}$	$\sin x \cos x$ (hyp=89)
3. Relative position representations:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x$	$\sin x \cos x$ (hyp=1)
4. Tree relative attention:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$	$\sin x \cos x$ (hyp=9)
	beam width 1	beam width 1	beam width 100
Gold:	$\frac{x^4}{4} - x \cos x + \sin x$	$-8x^6 + \frac{x \sin(x)}{20} + x$	$\sin x \cos x$

	Simple example	One sample finding	Different number of hypotheses required	Most cases with lony numbers differ significantly
Equation:	$\int x(\sin x + x^2)dx$	$\int -48x^5 + \frac{x \cos x}{20} + \frac{\sin x}{20} + 1 \ dx$	$\int -\sin^2 x + \cos^2 x \ dx$	$\int 24690x + \frac{6789}{x} dx$
1. Positional embedding:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$	$\sin x \cos x$ (hyp=86)	$12\overline{43}5x^2 + 6789\log x$
2. Tree positional encoding:	$\frac{x^4}{4} - x\cos x + \sin x$	$x^3(x+1)^{\frac{2}{3}} + \frac{x^3}{3}$	$\sin x \cos x$ (hyp=89)	$\frac{243x^2}{2} + 12\log x$
3. Relative position representations:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x$	$\sin x \cos x$ (hyp=1)	$12345x^2 + 6789\log x$
4. Tree relative attention:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$	$\sin x \cos x$ (hyp=9)	$12345x^2 + 6789\log x$
	beam width 1	beam width 1	beam width 100	beam width 10-100
Gold:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x \sin(x)}{20} + x$	$\sin x \cos x$	$12345x^2 + 6789\log x$

Sample: 24690x

Sequence:

['2', '4', '6', '9', '0', 'x']

numbers differ significantly

$$\int 24690x + \frac{6789}{x}dx$$

$$12435x^2 + 6789 \log x$$

$$\frac{243x^2}{2} + 12\log x$$

$$12345x^2 + 6789 \log x$$

$$12345x^2 + 6789 \log x$$

beam width 10-100

$$12345x^2 + 6789 \log x$$

	Simple example	One sample finding	Different number of hypotheses required	Most cases with lony numbers differ significantly
Equation:	$\int x(\sin x + x^2)dx$	$\int -48x^5 + \frac{x \cos x}{20} + \frac{\sin x}{20} + 1 \ dx$	$\int -\sin^2 x + \cos^2 x \ dx$	$\int 24690x + \frac{6789}{x}dx$
1. Positional embedding:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$	$\sin x \cos x$ (hyp=86)	$12\frac{43}{5}x^2 + 6789\log x$
2. Tree positional encoding:	$\frac{x^4}{4} - x\cos x + \sin x$	$x^3(x+1)^{\frac{2}{3}} + \frac{x^3}{3}$	$\sin x \cos x$ (hyp=89)	$\frac{243x^2}{2} + 12\log x$
3. Relative position representations:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x$	$\sin x \cos x$ (hyp=1)	$12345x^2 + 6789\log x$
4. Tree relative attention:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x - \frac{\cos(x)}{20}$	$\sin x \cos x$ (hyp=9)	$12345x^2 + 6789\log x$
	beam width 1	beam width 1	beam width 100	beam width 10-100
Gold:	$\frac{x^4}{4} - x\cos x + \sin x$	$-8x^6 + \frac{x\sin(x)}{20} + x$	$\sin x \cos x$	$12345x^2 + 6789 \log x$

Summary

- Investigated the deduplication effect and prepared the deduplicated dataset
- Adapted the modifications according to the task specifics
- Conducted extensive experiments on two symbolic mathematics tasks and empirically observed the absence of a statistically significant difference between the base Transformer architecture and advanced versions
- Performed a qualitative analysis of the trained models and found out that tree-structure-based approaches process long numbers better