Lemma: If $(\alpha, \alpha)(\beta, \beta) \neq 0$ and $|\alpha| = |\beta|$, then $\alpha = \beta$. Proof: WOLOG suppose α is a prefix of β . Then $\alpha = \beta\beta'$ for some β . But $|\alpha| = |\beta|$, so $|\beta'| = 0$, meaning $\beta' = s(\beta)$. Thus $\alpha = \beta s(\beta) = \beta$. An immediate consequence of this is that a proper filter contains at most one path of any given length.

Theorem: $\hat{E}_0 = \{ \xi_\alpha : \alpha \in E^* \} \cup \{ \eta_x : x \in E^\infty \}$. Proof:

First we show that ξ_{α} and η_x are filters. Let α be a finite path and let x be an infinite path. Consider (β,β) , $(\gamma,\gamma) \in \xi_{\alpha}$ with $|\beta| = m$, $|\gamma| = n$. Reading edges left to right, β contains the first m edges of α and γ contains the first n edges of α . Without loss of generality, assume $m \leq n$. We can extend β by the next n-m edges of α to produce γ . Thus β is a prefix of γ , so $(\beta,\beta)(\gamma,\gamma) = (\gamma,\gamma) \in \xi_{\alpha}$. A similar argument shows that η_x is closed under multiplication.

Let E be a directed graph, and $\alpha \in E^*$ such that $|r^{-1}\{s(\alpha)\}| = \infty$. Let $X, Y \subseteq_{\text{fin}} E(S(E))$, and Z be a finite cover of $E^{X,Y}$. If $\xi_{\alpha} \in \mathcal{U}(X,Y)$, then $\xi_{\alpha} \cap Z \neq \emptyset$. Proof:

First note:

$$\begin{split} E^{X,Y} &= \{e \in E(S(E)) \colon e \leq x \ \forall x \in x \ \text{and} \ ey = 0 \ \forall y \in Y\} \\ &= \{e \in E(S(E)) \colon e \leq \ \min(X) \ \text{and} \ ey = 0 \ \forall y \in Y\} \\ &= E^{\{\min(X)\},Y} \end{split}$$

Letting min(X) = (x, x),

$$E^{X,Y} = \{(xx', xx'): x' \in E^*, r(x') = s(x) \text{ and } (xx', xx')y = 0 \ \forall y \in Y\}$$

Consider the set $C:=\{(\alpha b, \alpha b)\colon b\in E^1,\ s(\alpha)=r(b)\}$. By the assumption that $s(\alpha)$ is an infinite receiver, C is infinite. Given $y\in Y$, let ν be the path corresponding to y. Since $\xi_\alpha\in\mathcal{U}(X,Y),\ \nu$ is not a prefix of α , and thus not a proper prefix of αb for any b. Thus, if $(\alpha b, \alpha b)y\neq 0$, αb is a prefix of ν . Then for $\beta\neq b,\ \alpha\beta$ cannot be a prefix of ν . So there is at most one element of C such that $(\alpha b, \alpha b)y\neq 0$. By the assumption that Y is finite, all but finitely many elements of C are inside $E^{\{(x,x)\},Y}$. Therefore, if Z is a cover of $E^{X,Y}$, Z is an outer cover of the infinite set $E^{X,Y}\cap C$. Because Z is finite, $\exists z\in Z$ with $(\alpha b, \alpha b)z\neq 0$ for infinitely many $(\alpha b, \alpha b)\in E^{X,Y}\cap C$. If v is the path corresponding to z, then for every b, either v is a prefix of αb , or αb is a prefix of v. All the αb are the same length with a different starting edge, so if one is a prefix of v, no other can be a prefix of v. So v is a prefix of αb for infinitely many v. Thus $|v|\leq |\alpha|+1$. If $|v|=|\alpha|+1$, we have a contradiction: v0 for all v1 v2 v3 v3 v4 v4 v5 v5 v6. Thus v5 v6 v7 is a prefix of v8. Therefore v8 v9 v9 is a prefix of v9. Therefore v9 v9 v9 is a prefix of v9. Therefore v9 v9 is a prefix of v9 for all v9 v9 is a prefix of v9. Therefore