Military 24-Pin PAL Devices

Features

- · Registers with feedback
- · Programmable three-state outputs
- · Security fuse prevents duplication of logic
- · Variety of speed/power options available in same archi-
- · Register preload to aid in device testing
- · Power-up reset to logical high
- Programmable output polarity
- · Product term sharing
- · Programmable register or combinatorial outputs
- · Dual feedback allows buried state registers or input registers (PAL32VX10)
- · Programmable flip-flops allow J-K, S-R, T or D types (PAL32VX10)
- · Asynchronous preset/synchronous reset, synchronous preset/asynchronous reset (PAL32VX10)
- · Through-hole or surface mount device packaging
- Neutron fluence (permanent damage): 1x10¹³ N/cm²
- · Dose rate (transient upset) junction isolated Bipolar processes: 2x1010 RADs (Si) per sec recovered in 50 to 70 μs from a 1μs pulse

24-Pin PAL Device Speed vs. Power

Benefits

- Instant prototyping/zero NRE charge
- Low-cost programmable replacement for TTL logic
- Reduces inventory by reducing chip count
- Programmed on standard PROM/PAL device program-
- · Several software programs available to assist in creating bit pattern designs

Applications

- · High speed graphic controllers
- · High speed computers
- · High frequency state machines
- · High frequency counters
- Microprocessor clock generation and Interface logic
- **DMA** controllers
- Asynchronous bus interface
- **CRT** controllers
- · Peripheral/handshaking interface
- · Interrupt controllers
- Memory mapped I/O (PAL8L14A)
- Microprocessor decoder (PAL8L14A)

Register Preload

Register preload is an aid to functional testing, which is usually performed after the device is programmed but before it is installed on the circuit board. Using register preload, the register of a device can be "preloaded" to any desired state value. This is particularly useful in applications where the output is fed back into the array as an input, since it may take many state transitions to reach a desired state in the output register. Register preload also allows the user to set the device to an "illegal" state which cannot be reached through normal state transitions, in order to test for proper recovery.

Power-Up Reset

Another added testability feature found on these Series is powerup reset. Power-up reset makes system initialization simple; registers are reset to logic 0 at power-up, thus all outputs are set to logic 1.

The table below is a brief summary of our current devices that do have register preload and/or power-up reset.

Devices with Register Preload and Power-Up Reset

DEVICE FAMILY	REGISTER PRELOAD	POWER-UP RESET
Exclusive OR 24XA	YES	YES
Shared Product terms 24RS	YES	YES
Asynchronous 24RA	YES	YES
Varied Product terms 24VX*	YES	YES

The PAL32VX10/10A has power-up preset; registers are set to logical 1 on power up.

24 23

22

-|zo

ю

Military PAL20S10, 20RS10, 20RS8, 20RS4 Series

Figure 1.

Military PAL20RA10 Device

Figure 2.

Military PAL32VX10 Device

Figure 3.

Figure 3. (Cont'd.)

Military 24-Pin PAL Devices

Absolute Maximum Ratings

	Operating
Supply voltage V _{cc}	0.5 V to 7 V
Input voltage	1.5 V to 5.5 V
Off-state output voitage	
Storage temperature	-65°C to +150°C
Maximum junction temperature (T _j)	175°C
Lead temperature (soldering, 10 sec max)	300°C
Maximum current density 5x10-5 A/cm² per Mil-M-38510	< 5x10 ⁻⁵ A/cm ²
Maximum θ _{xc} = 28°C/W for cerdips per Mil-M-38510	
Maximum 9 = 22°C/W for flatpacks per Mil-M-38510	< 22°C/W
Maximum 0 = 20°C/W for leadless chip carriers per Mil-M-38510	< 20°C/W

Military Standard 24-Pin PAL Series

PAL12L10, 14L8, 16L6, 18L4, 20L2, 20C1

Can be purchased to military drawing 5962-86804, latest revision in effect.

Operating Conditions

SYMBOL	PARAMETER	MIN MA	K UNIT
V _{cc}	Supply voltage	4.5 5.5	V
T,	Operating free-air temperature	-55	°C
T _c	Operating case temperature	125	°C
V,,*	Low-level input voltage	≤0.8	v
V,,*	High-level input voltage	≥2.0	٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TE	ST CONDITIONS	MIN	MAX	UNIT
V _{ic}	Input clamp voltage	V _{cc} = MIN	I _i = -18 mA		-1.5	٧
I _{IL}	Low-level input current	V _{cc} = MAX	V _i = 0.4 V		-0.25	mA
I _{IH}	High-level input current	V _{cc} = MAX	V, = 2.4 V		25	μА
I,	Maximum input current	V _{cc} = MAX	V, = 5.5 V		1	mA
Vor	Low-level output voltage	V _{cc} = MIN	I _{oL} = 8 mA		0.5	V
V _{OH}	High-level output voltage	V _{cc} = MIN	I _{он} =2 mA	2.4		٧
l _{os} *	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
Icc	Supply current	V _{cc} = MAX			100	mA

^{*}Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS	MIN MA	X UNIT
t _{PD}	Input or feedback to output	$R_1 = 560 \Omega$ $R_2 = 1.1 K\Omega$	45	ns

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

Military Decoder 24-Pin PAL Device PAL8L14A

Operating Conditions

SYMBOL	PARAMETER	MiN	MAX	UNIT
V _{cc}	Supply voltage	4.5	5.5	٧
T _A	Operating free-air temperature	- 55		•c
T _c	Operating case temperature		125	•c
V _{IL} *	Low-level input voltage		≤0.8	٧
V _{II} *	High-level input voltage	≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST	CONDITIONS	MIN	MAX	UNIT
V _{IC}	Input clamp voltage	V _{cc} = MIN	I, = -18 mA		-1.5	٧
I _{IL}	Low-level input current	V _{cc} = MAX	V _i = 0.4 V		-0.25	mA
I _{e+}	High-level input current	V _{cc} = MAX	V, = 2.4 V		25	μА
l,	Maximum input current	V _{cc} = MAX	V _i = 5.5 V		1	mA
V _{ot}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 8mA		0.5	٧
V _{OH}	High-level output voltage	V _{cc} = MIN	I _{oH} = -2mA	2.4		٧
l _{os} *	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	130	mA
l _{cc}	Supply current	V _{cc} = MAX			100	mA

^{*}Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{PO}	Input to output propagation delay	$R_1 = 560 \Omega$ $R_2 = 1.1 KΩ$	30	ns

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

Military Very High Speed 24-Pin PAL Series

PAL20L8B, 20R8B, 20R6B, 20R4B

Can be purchased to standard military drawing 5962-87671, latest revision in effect.

Military High Speed 24-Pin PAL Series

PAL20L8A, 20R8A, 20R6A, 20R4A

Can be purchased to standard military drawing 84129, latest revision in effect.

Operating Conditions

			24 B		24 A		UNIT
SYMBOL	PARAME	PARAMETER		MAX	MIN	MAX	Olti
V _{cc}	Supply voltage		4.5	5.5	4.5	5.5	٧
T _A	Operating free-air temperature		-55		-55		°C
T _c	Operating case temperature			125		125	۰c
	Width of clock (except 20L8)	Low, t _w	12		20		ns
tu"		High, t _{wh}	12		20		ns
t _e ,†	Set up time from input or feedb	eack to clock (except 20L8)	20		30		ns
ţ,†	Hold time		0		0		ns
V,,*	Low-level input voltage			≤0.8		≤0.8	V
V _{#1} *	High-level input voltage		≥2.0		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	т	EST CONDITIONS	MIN	MAX	UNIT
V _{IC}	Input clamp voltage	V _{cc} = 4.5 V	I, = -18 mA		-1.5	٧
1,,*	Low-level input current	V _{cc} = 5.5 V	V ₁ = 0.4 V		-0.25	mA
I _H *	High-level input current	V _{cc} = 5.5 V	V _i = 2.4 V		25	μА
I,	Maximum input current	V _{cc} = 5.5 V	V _i = 5.5 V		1.0	mA
Vol	Low-level output voltage	V _{cc} = 4.5 V	I _{oL} = 12 mA		0.5	V
V _{OH}	High-level output voltage	V _{cc} = 4.5 V	I _{oH} = -2 mA	2.4		٧
l _{ozt} *			V _o = 0.4 V		-100	μА
I _{OHZ} *	Offstate output current	V _{cc} = 5.5 V	V _o = 2.4 V		100	μΛ
l _{os} **	Output short-circuit current	V _{cc} = 5.5 V	V _o = 0.5 V	-30	-130	mA
l _{cc}	Supply current	V _{cc} = 5.5 V			210	mA

I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military Very High Speed 24-Pin PAL Series PAL20L8B, 20R8B, 20R6B, 20R4B

Military High Speed 24-Pin PAL Series

PAL20L8A, 20R8A, 20R6A, 20R4A

Switching Characteristics Over operating conditions

SYMBOL	PARAMETER	TEST	2	24 B		24 A	
	PANAMEIEN	CONDITIONS	MIN	MAX	MIN	MAX	UNIT
t _{PD}	Input or feedback to output (except 20R8)			20		30	ns
t _{cux}	Clock to output or feedback (except 20L8)			15		20	ns
t _{PZX}	Pin 13 to output enable (except 20L8)	R ₁ = 390 Ω		20		25	ns
t _{exz}	Pin 13 to output disable (except 20L8)	$R_2 = 750 \Omega$		20		25	ns
t _{PZX}	Input to output enable (except 20R8)			25		30	ns
t _{exz}	Input to output disable (except 20R8)			20		30	ns
, .	State machine maximum operating frequency (except 20L8)		28.5		20		
f _{max} *	Data path register maximum operating frequency (except 20L8)		41.6		25		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{clk}]$

fMAX (data path register) = $1/[t_{wL} + t_{wH}]$ or $1/t_{su} + t_h$, whichever is smaller.

Military Half-Power 24A-Pin Series

PAL20L8A-2, 20R8A-2, 20R6A-2, 20R4A-2

Can be purchased to standard military drawing 84129 latest revision in effect.

Operating Conditions

SYMBOL		PARAMETER	MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5.5	V
Т,	Operating free-air temperature		55	125	°C
		Low	25		ns
t " †	Width of clock (except 20L8)	High	25		ns
t _m †	Setup time from input or feedba	ck to clock (except 20L8)	50		ns
t,†	Hold time		0		ns
V,,*	Low-level input voltage			≤0.8	٧
V _{IH} *	High-level input voltage		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TES	T CONDITIONS	MIN	MAX	UNIT
V _{IC}	Input clamp voltage	V _{cc} = MIN	l _i = −18 mA		-1.5	V
1,,*	Low-level input current	V _{cc} = MAX	V, = 0.4 V		-0.25	mA
I _H *	High-level input current	V _{cc} = MAX	V ₁ = 2.4 V		25	μА
i,	Maximum input current	V _{cc} = MAX	V ₁ = 5.5 V		1	mA
V _{oL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 12 mA		0.5	٧
V _{oH}	High-level output voltage	V _{cc} = MIN	I _{он} = -2 mA	2.4		٧
l _{ozL} *		LANCE TO SERVICE TO SE	V _o = 0.4 V		-100	μА
l _{ozh} *	Offstate output current	V _{cc} = MAX	V _o = 2.4 V		100	μА
l _{os} **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply Current	V _{cc} ≈ MAX			105	mA

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.
 Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military Half-Power 24A-Pin Series

PAL20L8A-2, 20R8A-2, 20R6A-2, 20R4A-2

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t _{PD}	Input or feedback to output (except 20R8)			50	ns
t _{c∟k}	Clock to output or feedback (except 20L8)			25	ns
t _{PZX}	Pin 13 to output enable (except 20L8)	R ₁ = 390 Ω		25	ns
t _{exz}	Pin 13 to output disable (except 20L8)	R ₂ = 750 Ω		25	ns
t _{PZX}	Input to output enable (except 20R8)	_		45	ns
t _{exz}	Input to output disable (except 20R8)			45	ns
414V*	State machine maximum operating frequency (except 20L8)	1	13.3		1417-
fMAX*	Data path register maximum operating frequency (except 20L8)	7	20		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

 $f \text{MAX (state machine)} = 1/[t_{\text{su}} + t_{\text{CLK}}] \\ f \text{MAX (data path register)} = 1/[t_{\text{WL}} + t_{\text{WH}}] \text{ or } 1/t_{\text{su}} + t_{\text{p}}, \text{ whichever is smaller.}$

Military High Speed 24XA-Pin Series

PAL20L10A, 20X10A, 20X8A, 20X4A

Can be purchased to standard miltary print 84129, latest revision in effect.

Operating Conditions

SYMBOL	PARAMETER		MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5.5	V
T,	Operating free-air temperature		-55		°C
T _c	Operating case temperature			125	°C
	Width of clock (outport 20140)	Low	35	ns	
t, †	Width of clock (except 20L10)	High	20		ns
t _{su} †	Setup time from input or feedba	ick to clock (except 20L10)	40		ns
ţ,†	Hold time		0		ns
V,,*	Low-level input voltage			≤0.8	٧
V _{1H} *	High-level input voltage		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	T	EST CONDITIONS	MIN	MAX	UNIT
V _{IC}	Input clamp voltage	V _{cc} = MIN	I _i = -18 mA		-1.5	V
i,*	Low-level input current	V _{cc} = MAX	V ₁ = 0.4 V		-0.25	mA
I,,*	High-level input current	V _{cc} = MAX	V ₁ = 2.4 V		25	μА
l _i	Maximum input current	V _{cc} = MAX	V ₁ = 5.5 V		1	mA
V _{oL}	Low-level output voltage	V _{cc} = MIN	l _{oL} = 12 mA		0.5	V
V_{oh}	High-level output voltage	V _{cc} = MIN	$I_{OH} = -2 \text{ mA}$	2.4		٧
l _{ozL} *	Off state suitant surrect	V 1/4V	V _o = 0.4 V		-100	
l _{ozh} *	Off-state output current	V _{cc} = MAX	V _o = 2.4 V		100	μΑ
l _{os} **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
	Surada a marada	V 114V	20X10A, 20X8A, 20X4A		180	
cc	Supply current	V _{cc} = MAX	20L10A		165	mA

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{*} I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.
** Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military High Speed 24XA-Pin Series

PAL20L10A, 20X10A, 20X8A, 20X4A

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	דואט
t _{PD}	20L10A, 20X8A, 20X4A Input or feedback to output (except 20X10)			35	ns
t _{cux}	Clock to output or feedback (except 20L10)			25	ns
t _{PZX}	Pin 13 to output enable (except 20L10)	R, = 390 Ω		25	ns
t _{exz}	Pin 13 to output disable (except 20L10)	R ₂ = 750 Ω		25	ns
t _{PZX}	Input to output enable (except 20X10)			35	ns
t _{exz}	Input to output disable (except 20X10)			35	ns
AMAV*	State machine maximum operating frequency (except 20L10)		15.4		
fMAX*	Data path register maximum operating frequency (except 20L10)		18.2		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{cuk}]$ fMAX (data path register) = $1/[t_{wL} + t_{wH}]$ or $1/t_{su} + t_{h}$, whichever is smaller.

Military 24RS-Pin Series

PAL20S10, 20RS10, 20RS8, 20RS4

Standard military 5962-87530 is in the process of being generated—Contact the factory.

Operating Conditions

SYMBOL		PARAMETER	MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5.5	٧
TA	Operating free-air temperature		-55		•c
T _c	Operating case temperature			125	°C
	Width of clock (except 20S10)	Low	20		
t,,†		High	20		ns
t, t	Setup time from input or feedba	ck to clock (except 20S10)	40		ns
t,†	Hold time		0		ns
٧,٠	Low-level input voltage			≤0.8	٧
V _{II} *	High-level input voltage		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	T	EST CONDITIONS	MIN	MAX	UNIT
V _{ic}	Input clamp voltage	V _{cc} = MIN	I _, = −18 mA		-1.5	٧
I <u>.</u> .*	Low-level input current	V _{cc} = MAX	V ₁ = 0.4 V		-0.25	mA
l _m *	High-level input current	V _{cc} = MAX	V _i = 2.4 V		25	μА
l,	Maximum input current	V _{cc} = MAX	V _i = 5.5 V		1	mA
V _{oL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 12 mA		0.5	٧
V _{oH}	High-level output voltage	V _{cc} = MIN	I _{он} = -2 mA	2.4		٧
l _{oz.} *		1,, ,,,,,	V _o = 0.4 V		-100	
l _{ozh} *	Off-state output current	V _{cc} = MAX	V _o = 2.4 V		100	μΑ
l _{os} **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply current	V _{cc} = MAX			240	mA

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{*} I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

** Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military 24RS-Pin Series PAL20S10, 20RS10, 20RS8, 20RS4

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
	land of feedback out of (over the OCE CAO)	Polarity fuse intact			40	
t _{PO}	Input or feedback to output (except 20RS10)	Polarity fuse Blown			45	ns
t _{clk}	Clock to output or feedback (except 20S10)	ck to output or feedback (except 20S10)			20	ns
t _{PZX}	Pin 13 to output enable (except 20S10)		R ₁ = 390 Ω		25	ns
t _{exz}	Pin 13 to output disable (except 20S10)	- La de La	R ₂ = 750 Ω		25	ns
t _{ezx}	Input to output enable (except 20RS10)				35	ns
t _{exz}	Input to output disable (except 20RS10)				30	ns
flav*	State machine maximum operating frequency (except 20S10)		16.7		
fMAX*	Data path register maximum frequency (except	20\$10)		25		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{clx}]$ fMAX (data path register) = $1/[t_{wl} + t_{wh}]$ or $1/t_{su} + t_{h}$, whichever is smaller.

Military 24RA-Pin Device

PAL20RA10

Standard military 5962-86803 is in the process of being generated—Contact the factory.

Operating Conditions

SYMBOL		PARAMETER	MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5 5.5	٧
T _A	Operating free-air tempe	Operating free-air temperature			•c
T _c	Operating case temperat	ture		125	°C
. +	Matidal of alask	Low	25		
t,,†	Width of clock	High	25		ns
t _w †	Preload pulse width		45		ns
t∎†	Setup time from input or	feedback to clock	25		ns
t _{sup} †	Preload setup time		30		ns
	11-114	Polarity fuse intact	10		
t _h †	Hold time	Polarity fuse blown	0		ns
t _{hp} †	Preload hold time	Preload hold time			ns
V _{IL} *	Low-level input voltage			≤0.8	٧
V _{ii} *	High-level input voltage		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TE	ST CONDITIONS	MIN T	P MAX	UNIT
V _{IC}	Input clamp voltage	V _{cc} = MIN	I, = -18 mA		-1.5	٧
I,.*	Low-level input current	V _{cc} = MAX	V _i = 0.4 V		-0.25	mA
I _{II} *	High-level input current	V _{cc} = MAX	V _i = 2.4 V		25	μА
Ļ	Maximum input current	V _{cc} = MAX	V _i = 5.5 V		1	mA
V _{oL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 8 mA		0.5	٧
V _{oh}	High-level output voltage	V _{cc} = MIN	l _{он} = -2 mA	2.4		٧
l _{ozt} *	0"	1/ 1/4/	V _o = 0.4 V		-100	
l _{ozh} *	Off-state output current	V _∞ = MAX	V _o = 2.4 V		100	μА
l _{os} **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply current	V _{cc} = MAX			200	mA

^{*} I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military 24RA-Pin Device PAL20RA10

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	·	TEST CONDITIONS	MIN MAX	UNIT
•	toput or foodbook to output	Polarity fuse intact		35	
t _{PD}	Input or feedback to output	Polarity fuse Blown		40	ns
t _{cux}	Clock to output or feedback			35	ns
t _s	Input to asynchronous set			40	ns
t _R	Input to asychronous reset		R ₁ = 560 Ω	45	ns
t _{PZX}	Pin 13 to output enable		R ₂ = 1.1 KΩ	25	ns
t _{exz}	Pin 13 to output disable			25	ns
t _{ezx}	Input to output enable			35	ns
t _{PXZ}	Input to output disable			35	ns
ALIAV.	State machine maximum operating frequency			16.7	
fMAX*	Data path register maximum frequency			20	MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{cuk}]$ fMAX (data path register) = $1/[t_{wL} + t_{wH}]$ or $1/t_{su} + t_{h}$, whichever is smaller.

Military 24VX-Pin Device

PAL32VX10/10A

ADVANCE INFORMATION

Operating Conditions

			ST	D	A		111117
SYMBOL	PARAMETER		MIN	MAX	MIN	MAX	UNIT
v _∞	Supply voltage	Supply voltage		5.5	4.5	5.5	V
T _A	Operating free-air temperat	ure	-55	125	-55	125	°C
	t _u [†] Width of clock	Low	25		23		
tu'		High	25		23		ns
	Setup time from input or feedback to clock	Product terms P ₁ -P _n , SR	35		30		
t _{eu} †		Product term XOR	40		35		- ns
ኒ ,†	Hold time		0		0		ns
t_,,†	Asynchronous preset width		35		30		ns
t, †	Asynchronous preset recov	ery time	35		30		ns
t, †	Synchronous reset recovery	y time	35		30		ns
٧,٠	Low-level input voltage			≤0.8		≤0.8	V
۸".	High-level input voltage		≥2.0		≥2.0		V

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

* These voltages apply with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

† These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
V _{ic}	Input clamp voltage	V _{cc} = MIN	l _i = -18 mA		-1.5	٧
ا _{ال} •	Low-level input current	V _{cc} = MAX	V _i = 0.4 V		-0.25	mA
l _{ii} *	High-level input current	V _{cc} = MAX	V ₁ = 2.4 V		25	μА
l,	Maximum input current	V _{cc} = MAX	V ₁ = 5.5 V		200	μА
V _{oL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 12 mA		0.5	٧
V _{OH}	High-level output voltage	V _{cc} = MIN	I _{OH} = -2 mA	2.4		٧
l _{ozL} *	Off-state output current	V 144V	V _o = 0.4 V		-100	μА
l _{ozh} *		V _{cc} = MAX	V _o = 2.4 V		100	μА
l ₀₆ **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply current	V _{cc} = MAX			180	mΑ

* I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military 24VX-Pin Device

PAL32VX10/10A

ADVANCE INFORMATION

Switching Characteristics Over Operating Conditions

SYMBOL			TEST CONDITIONS	STD		A		10.07	
	PARAMETER			MIN	MAX	MIN	MAX	UNIT	
t _{PO}	Input or feedback to output	dhack to outout	Product terms P,-P,			35		30	ns
		Product term XOR			40		35	1113	
t _{cux}	Clock to output or feedback			1		20		20	ns
t _{PZX}	Input to output enable			R, = 390 Ω		35		30	ns
t _{PXZ}	Input to output disable			R ₂ = 750 Ω		35		30	ns
t _{AP}	Asynchronous preset to output				35		30	ns	
t _{ca}	Input or feedback to registered output from combinatorial configuration					95		95	ns
t _{RC}	Input or feedback to combinatorial output from registered configuration					95		95	ns
fMAX*	Maximum frequency	Feedback (1/t _{P1})	Product terms P,P,		18		20		MHz
			Product term XOR		16.7		18		
		No feedback**			20		21.7		

^{*}fMAX is calculated and measured on initial qualifications only. fMAX (NO feedback) = $1/[t_{w_L} + t_{w_R}]$

Military 24-Pin PAL Devices

Switching Waveforms

Notes: 1. t_{pp} is tested with switch S₁ closed. $C_L = 50$ pF and measured at 1.5 V output level.

2. $t_{\text{pgx}}^{\text{ro}}$ is measured at the 1.5 V output level with $C_{\text{L}} = 50 \text{ pF}$. S_{t} is open for high impedance to "1" test and closed for high impedance "0" test.

3. t_{pxz} is tested with C_L = 5 pF. S₁ is open for "1" to high impedance test measured at V_{OH} =0.5 V output level. S₁ is closed for "0" to high impedance test measured at V_{OL} +0.5 V output level.

4. Equivalent test loads may be used on automatic test equipment.

Switching Test Load

S1 TEST POINT OUTPUT • R2 ϯϲͺ

Output Register Preload PAL24XA Series, PAL24RS Series and PAL20RA10 Device

- 1. Raise V_{cc} to 4.5 V.
- 2. Disable output registers by setting pin 13 to V_{III}.
- 3. Apply V_{IL}/V_{IH} to all registered output pins.
- 4. Pulse pin 10 to Vp then back to 0 V.
- 5. Remove V_{IL}/V_{IH} from all output registers.
- Lower pin 13 to V_{IL} to enable the output registers.
- 7. Verify for V_{ol}/V_{on} at all registered output pins.

503 195

Output Register Preload PAL32VX10 Device

The preload function allows the register to be loaded from the output pins. This feature aids the functional testing of sequential designs by allowing direct setting of output states. The procedure is:

- 1. Raise V_{cc} to 4.5 V.
- 2. Disable output registers by setting pin 2 to V_{IHH}(12 V).
- 3. Apply V, N, to all registered output pins. Leave combinatorial outputs floating.
- Pulse pin 10 to V_{IHH}, then back to 0 V.
 Remove V_{IL}N_{IH} from all output registers.
- 6. Remove high voltage from pin 2.
- 7. Enable registered outputs per programmed pattern.
- Verify for V_{OL}/V_{OH} at all registered output pins.

Key to Timing Diagrams

WAVEFORM	INPUTS	OUTPUTS
	DON'T CARE: CHANGE PERMITTED	CHANGING: STATE UNKNOWN
───	NOT APPLICABLE	CENTER LINE IS HIGH IMPEDANCE STATE
	MUST BE STEADY	WILL BE STEADY

Military 24-Pin PAL Devices

Life Test/Burn-In Circuits

Complies with Mil-Std-883, Method 1005/1015, Condition D.

Circuit Configurations

Waveforms

A3 to Ax Follow in order

503 134

- 1. All Burn-In will be accomplished at 125°C +5/-0°C
- 2. V_{cc} = 5.25 volts ± 0.25 V
- 3. All Clocks (A0 to Ax) are square wave signals 50±15% Duty Cycle, with:
 - a. "0" = -0.5 V to +0.7 V

 - b. "1" = +2.4 V to V_{cc} c. Rise Time (+0.7 V to + 2.4 V) < 1 μ sec
- d. Fall Time (+2.4 V to +0.7 V) $< 1 \mu sec$
- 4. Resistor Value
 - 330 Ω or 470 Ω ±5%
- 5. All Board Components to be compatible with 150°C Ambient (Min).

Ę

Military 24-Pin PAL Devices

Life Test/Burn-In Circuits

Complies with Mil-Std-883, Method 1005/1015, Condition D.

Circuit Configurations

PAL20L8A/B

PAL20R4A/B

Military 24-Pin PAL Devices

Life Test/Burn-In Circuits

Complies with Mil-Std-883, Method 1005/1015, Condition D.

Circuit Configurations

PAL20X8A

PAL20X4A

PAL20S10

PAL20RS10

PAL20RS8

PAL20RS4

PAL32VX10/10A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.