Pixel space

classify tumor vs. non-tumor cases, in comparison to the original dataset. Accuracy, specificity and sensitivity are being compared.

Comparing ViT trained on original and generated data

Latent space

Diffusion Process

Generative Modeling of High Fidelity Brain Tumor MRI Images Using Vision Language & Stable Diffusion Models

Jone Steinhoff (s243867), Lukas Rasocha (s233498), Mads Prip (s240577) & Petr Boska Nylander (s240466)

Stable diffusion hyperparameters

Rank 128/248

Resolution 512 Batch Size 2

Tumor

no tumor

MLP

Shape

0.5

0.5

Orient.

0.35

0.8

Intensity

0.8

0.05

0.8

0.64

Positional Encoding Learnable

Vision Transformers

MLP

Norm

+

Multi head

attention

Pituitary

Meningioma

(axial)

Linear Projection of Flattened Patches

(saggital)

Conclusion

Combining automatic data labeling with VLMs with fine-tuning large diffusion models shows potential in domains with limited data availability.

Size

0.65

0.05

0.65

0.66

- The choice of VLM impacts the quality of generated images. The best VLMs in our set-up were Ovis 34B (KID) and Gemma 13B (FID).
- SDXL consistently showed higher generative quality compared to SD-v1-5.

Model

Acc.

Ovis

Llava

Gemini

Gemma

Tumor

Loc.

0.66

0.45

0.82

0.47

Using detailed and structured medical prompts to control the generation of MRI scans shows potential, where Gemini prompts were followed the best.

References

- https://github.com/microsoft/LLaVA-Med
- https://huggingface.co/google/gemma-3-12b-it
- https://huggingface.co/AIDC-AI/Ovis2-34B https://ai.google.dev/gemini-api/docs/models
- https://doi.org/10.48550/arXiv.2106.09685 https://doi.org/10.34740/kaggle/dsv/2645886