CS252 Graduate Computer Architecture

Lecture 5: I/O Introduction: Storage Devices & RAID

January 31, 2001
Prof. David A. Patterson
Computer Science 252
Spring 2001

Motivation: Who Cares About I/O?

- CPU Performance: 60% per year
- I/O system performance limited by mechanical delays (disk I/O)
 - < 10% per year (IO per sec)
- Amdahl's Law: system speed-up limited by the slowest part!

```
10% IO & 10x CPU => 5x Performance (lose 50%)
10% IO & 100x CPU => 10x Performance (lose 90%)
```

I/O bottleneck:

Diminishing fraction of time in CPU Diminishing value of faster CPUs

Big Picture: Who cares about CPUs?

- Why still important to keep CPUs busy vs. IO devices ("CPU time"), as CPUs not costly?
 - Moore's Law leads to both large, fast CPUs but also to very small, cheap CPUs
 - 2001 Hypothesis: 600 MHz PC is fast enough for Office Tools?
 - PC slowdown since fast enough unless games, new apps?
- People care more about about storing information and communicating information than calculating
 - "Information Technology" vs. "Computer Science"
 - 1960s and 1980s: Computing Revolution
 - 1990s and 2000s: Information Age
- Next 3 weeks on storage and communication

I/O Systems

Storage Technology Drivers

- Driven by the prevailing computing paradigm
 - 1950s: migration from batch to on-line processing
 - 1990s: migration to ubiquitous computing
 - » computers in phones, books, cars, video cameras, ...
 - » nationwide fiber optical network with wireless tails
- Effects on storage industry:
 - Embedded storage
 - » smaller, cheaper, more reliable, lower power
 - Data utilities
 - » high capacity, hierarchically managed storage

Outline

- Disk Basics
- Disk History
- Disk options in 2000
- Disk fallacies and performance
- Tapes
- · RAID

Disk Device Terminology

- Several <u>platters</u>, with information recorded magnetically on both <u>surfaces</u> (usually)
- Bits recorded in <u>tracks</u>, which in turn divided into <u>sectors</u> (e.g., 512 Bytes)
- <u>Actuator</u> moves <u>head</u> (end of <u>arm</u>, 1/surface) over track (<u>"seek"</u>), select <u>surface</u>, wait for <u>sector</u> rotate under <u>head</u>, then read or write
 - "Cylinder": all tracks under heads

Photo of Disk Head, Arm, Actuator

CS252/Patterson Lec 5.8

Disk Device Performance

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
- Seek Time? depends no. tracks move arm, seek speed of disk
- Rotation Time? depends on speed disk rotates, how far sector is from head
- Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request

Disk Device Performance

- Average distance sector from head?
- 1/2 time of a rotation
 - 10000 Revolutions Per Minute \Rightarrow 166.67 Rev/sec
 - 1 revolution = 1/166.67 sec $\Rightarrow 6.00$ milliseconds
 - 1/2 rotation (revolution) \Rightarrow 3.00 ms
- Average no. tracks move arm?
 - Sum all possible seek distances
 from all possible tracks / # possible
 - » Assumes average seek distance is random
 - Disk industry standard benchmark

Data Rate: Inner vs. Outer Tracks

- To keep things simple, orginally kept same number of sectors per track
 - Since outer track longer, lower bits per inch
- Competition ⇒ decided to keep BPI the same for all tracks ("constant bit density")
 - ⇒ More capacity per disk
 - ⇒ More of sectors per track towards edge
 - ⇒ Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7X inner track!
 - Inner track highest density, outer track lowest, so not really constant
 - 2.1X length of track outer / inner, 1.7X bits outer / inner

Devices: Magnetic Disks

• Purpose:

- Long-term, nonvolatile storage
- Large, inexpensive, slow level in the storage hierarchy

Characteristics:

- Seek Time (~8 ms avg)
 - » positional latency
 - » rotational latency

Transfer rate

- 10-40 MByte/sec
- Blocks

Capacity

- Gigabytes
- Quadruples every 2 years (aerodynamics)

7200 RPM = 120 RPS => 8 ms per rev ave rot. latency = 4 ms 128 sectors per track => 0.25 ms per sector 1 KB per sector => 16 MB / s

Disk Performance Model /Trends

- Capacity
 - + 100%/year (2X / 1.0 yrs)
- Transfer rate (BW)
 - + 40%/year (2X / 2.0 yrs)
- Rotation + Seek time
 - 8%/ year (1/2 in 10 yrs)
- MB/\$
 - > 100%/year (2X / 1.0 yrs)
 Fewer chips + areal density

State of the Art: Barracuda 180

- 181.6 GB, 3.5 inch disk
- 12 platters, 24 surfaces
- 24,247 cylinders
- -7,200 RPM; (4.2 ms avg. latency)
- -7.4/8.2 ms avg. seek (r/w)
- -64 to 35 MB/s (internal)
- -0.1 ms controller time

source: www.seagate.com

Disk Performance Example (will fix later)

 Calculate time to read 64 KB (128 sectors) for Barracuda 180 X using advertised performance; sector is on outer track

```
Disk latency = average seek time + average rotational delay + transfer time + controller overhead
```

```
= 7.4 ms + 0.5 * 1/(7200 RPM)
+ 64 KB / (65 MB/s) + 0.1 ms
= 7.4 ms + 0.5 /(7200 RPM/(60000ms/M))
+ 64 KB / (65 KB/ms) + 0.1 ms
= 7.4 + 4.2 + 1.0 + 0.1 ms = 12.7 ms
```

CS 252 Administrivia

- We have a TA! Yu-jia Jin: yujia@ic.eecs
- Please send 1-2 paragraph summary of papers to him BEFORE CLASS Friday
 - J.GRAY, Turing Award Lecture: "What Next? A dozen remaining IT problems"; We will discuss Friday
 - Should have already turned in
 - » G. MOORE, "Cramming More Components onto Integrated Circuits"
 - » J. S. LIPTAY, "Structural Aspects of the System/360 Model 85, Part II: The Cache"
- Please fill out Third Edition chapter surveys for 1,
 5, 6; 1,5 before Friday, 6 by next Wednesday
 - Link from 252 Web page (click on survey)
- Project suggestions are on web site; start looking
 - http://www.cs.berkeley.edu/~pattrsn/252501/suggestions.html
- Office hours Wednesdays 11-12

Areal Density

- Bits recorded along a track
 - Metric is <u>Bits Per Inch</u> (<u>BPI</u>)
- Number of tracks per surface
 - Metric is Tracks Per Inch (TPI)
- Disk Designs Brag about bit density per unit area
 - Metric is <u>Bits Per Square Inch</u>
 - Called <u>Areal Density</u>
 - Areal Density = BPI x TPI

Areal Density

- Areal Density =_BPI x TPI
- Change slope 30%/yr to 60%/yr about 1991

MBits per square inch: DRAM as % of Disk over time

1974 1980 1986 1992 1998 2000

source: New York Times, 2/23/98, page C3, "Makers of disk drives crowd even mroe data into even smaller spaces"

Historical Perspective

- 1956 IBM Ramac early 1970s Winchester
 - Developed for mainframe computers, proprietary interfaces
 - Steady shrink in form factor: 27 in. to 14 in
- Form factor and capacity drives market, more than performance
- 1970s: Mainframes ⇒ 14 inch diameter disks
- 1980s: Minicomputers, Servers ⇒ 8",5 1/4" diameter
- PCs, workstations Late 1980s/Early 1990s:
 - Mass market disk drives become a reality
 - » industry standards: SCSI, IPI, IDE
 - Pizzabox PCs \Rightarrow 3.5 inch diameter disks
 - Laptops, notebooks \Rightarrow 2.5 inch disks
 - Palmtops didn't use disks,
 so 1.8 inch diameter disks didn't make it
- 2000s:

 $\frac{1}{31/01}$ - 1 inch for cameras, cell phones?

Disk History

Data density Mbit/sq. in.

Capacity of Unit Shown Megabytes

1973:

1. 7 Mbit/sq. in

140 MBytes

1979:

7. 7 Mbit/sq. in 2,300 MBytes

source: New York Times, 2/23/98, page C3,

"Makers of disk drives crowd even more data into even smaller spaces"

Disk History

1989: 63 Mbit/sq. in 60,000 MBytes

1997: 1450 Mbit/sq. in 2300 MBytes 1997: 3090 Mbit/sq. in 8100 MBytes

source: New York Times, 2/23/98, page C3,
"Makers of disk drives crowd even mroe data into even smaller spaces"

1 inch disk drive!

- 2000 IBM MicroDrive:
 - $-1.7" \times 1.4" \times 0.2"$
 - 1 GB, 3600 RPM,5 MB/s, 15 ms seek
 - Digital camera, PalmPC?
- 2006 MicroDrive?
- 9 GB, 50 MB/s!
 - Assuming it finds a niche in a successful product
 - Assuming past trends continue

	Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdrive DSCM-11000	
Disk diameter (inches)	3.5	2.5	1.0	
Formatted data capacity (GB)	73.4	32.0	1.0	
Cylinders	14,100	21,664	7,167	
Disks	12	4	1	
Recording Surfaces (Heads)	24	8	2	
Bytes per sector	512 to 4096	512	512	
Avg Sectors per track (512 byte)	~ 424	~ 360	~ 140	
Max. areal density(Gbit/sq.in.) 1/31/01	6.0 \$828	14.0 \$447	15.2 \$435 CS252/Pat Lec 5.	

	Seagate Cheetah ST173404LC	IBM Travelstar 32GH DJSA -	IBM 1GB Microdrive DSCM-11000
	Ultra160 SCSI	232 ATA-4	
Rotation speed (RPM)	10033	5411	3600
Avg. seek ms (read/write) Minimum seek ms (read/write) Max. seek ms	5.6/6.2	12.0	12.0
	0.6/0.9	2.5	1.0
	14.0/15.0	23.0	19.0
Data transfer rate MB/second Link speed to buffer MB/s Power idle/operating Watts	27 to 40	11 to 21	2.6 to 4.2
	160	67	13
	16.4 / 23.5	2.0 / 2.6	0.5 / 0.8

CS252/Patterson

Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	
4.0	2.0	0.125
1.6 x 4.0 x 5.8 2.00	0.5 x 2.7 x 3.9 0.34	0.2 x 1.4 x 1.7 0.035
1,200,000	(300,000?)	(20K/5 yr life?)
100%	45%	20%
90%	20%	20%
	Cheetah ST173404LC Ultra160 SCSI 4.0 1.6 x 4.0 x 5.8 2.00 1,200,000	Cheetah ST173404LC Ultra160 SCSI 4.0 Travelstar 32GH DJSA - 232 ATA-4 2.0 1.6 x 4.0 x 5.8 0.5 x 2.7 x 3.9 2.00 0.34 1,200,000 (300,000?) 100% 45%

CS252/Patterson Lec 5.26

	Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdri DSCM-11000
Load/Unload cycles (disk powered on/off)	250 per year	300,000	300,000
Nonrecoverable read errors per bits read	<1 per 10 ¹⁵	$< 1 \text{ per } 10^{13}$	$< 1 \text{ per } 10^{13}$
Seek errors	$<1 \text{ per } 10^7$	not available	not available
Shock tolerance: Operating, Not operating	10 G, 175 G	150 G, 700 G	175 G, 1500 G
Vibration	5-400 Hz @	5-500 Hz @	5-500 Hz @ 1G,
tolerance: Operating, Not	0.5G, 22-400	1.0G, 2.5-500	500 Hz @ 5G
operating (sine 1/31/9 wept, 0 to peak)	Hz @ 2.0G	Hz @ 5.0G	CS252/Patterson Lec 5.27

Fallacy: Use Data Sheet "Average Seek" Time

- Manufacturers needed standard for fair comparison ("benchmark")
 - Calculate all seeks from all tracks, divide by number of seeks => "average"
- Real average would be based on how data laid out on disk, where seek in real applications, then measure performance
 - Usually, tend to seek to tracks nearby, not to random track
- Rule of Thumb: observed average seek time is typically about 1/4 to 1/3 of quoted seek time (i.e., 3X-4X faster)
 - Barracuda 180 X avg. seek: 7.4 ms \Rightarrow 2.5 ms

Fallacy: Use Data Sheet Transfer Rate

- Manufacturers quote the speed off the data rate off the surface of the disk
- Sectors contain an error detection and correction field (can be 20% of sector size) plus sector number as well as data
- There are gaps between sectors on track
- Rule of Thumb: disks deliver about 3/4 of internal media rate (1.3X slower) for data
- For example, Barracuda 180X quotes 64 to 35 MB/sec internal media rate
 - \Rightarrow 47 to 26 MB/sec external data rate (74%)

Disk Performance Example

Calculate time to read 64 KB for UltraStar 72
again, this time using 1/3 quoted seek time, 3/4 of
internal outer track bandwidth; (12.7 ms before)

```
Disk latency = average seek time + average rotational delay + transfer time + controller overhead
```

```
= (0.33 * 7.4 ms) + 0.5 * 1/(7200 RPM)
+ 64 KB / (0.75 * 65 MB/s) + 0.1 ms
= 2.5 ms + 0.5 /(7200 RPM/(60000ms/M))
+ 64 KB / (47 KB/ms) + 0.1 ms
= 2.5 + 4.2 + 1.4 + 0.1 ms = 8.2 ms (64% of 12.7)
```

Future Disk Size and Performance

- Continued advance in capacity (60%/yr) and bandwidth (40%/yr)
- Slow improvement in seek, rotation (8%/yr)
- Time to read whole disk

Year	Sequentially	Randomly (1 sector/seek)
1990	4 minutes	6 hours
2000	12 minutes	1 week(!)

- 3.5" form factor make sense in 5 yrs?
 - What is capacity, bandwidth, seek time, RPM?
 - Assume today 80 GB, 30 MB/sec, 6 ms, 10000 RPM

Tape vs. Disk

- Longitudinal tape uses same technology as hard disk; tracks its density improvements
- Disk head flies above surface, tape head lies on surface
- Disk fixed, tape removable
- Inherent cost-performance based on geometries: fixed rotating platters with gaps

(random access, limited area, 1 media / reader)

VS.

removable long strips wound on spool (sequential access, "unlimited" length, multiple / reader)

Helical Scan (VCR, Camcoder, DAT)
 Spins head at angle to tape to improve density

Current Drawbacks to Tape

- Tape wear out:
 - Helical 100s of passes to 1000s for longitudinal
- Head wear out:
 - 2000 hours for helical
- Both must be accounted for in economic / reliability model
- Bits stretch
- Readers must be compatible with multiple generations of media
- Long rewind, eject, load, spin-up times;
 not inherent, just no need in marketplace
- Designed for archival

Automated Cartridge System: StorageTek Powderhorn 9310

- 6000 x 50 GB 9830 tapes = 300 TBytes in 2000 (uncompressed)
 - Library of Congress: all information in the world; in 1992,
 ASCII of all books = 30 TB
 - Exchange up to 450 tapes per hour (8 secs/tape)
- 1.7 to 7.7 Mbyte/sec per reader, up to 10 readers

Library vs. Storage

- Getting books today as quaint as the way I learned to program
 - punch cards, batch processing
 - wander thru shelves, anticipatory purchasing
- Cost \$1 per book to check out
- \$30 for a catalogue entry
- 30% of all books never checked out
- Write only journals?
- Digital library can transform campuses

Whither tape?

- Investment in research:
 - 90% of disks shipped in PCs; 100% of PCs have disks
 - ~0% of tape readers shipped in PCs; ~0% of PCs have disks
- Before, N disks / tape; today, N tapes / disk
 - 40 GB/DLT tape (uncompressed)
 - 80 to 192 GB/3.5" disk (uncompressed)
- Cost per GB:
 - In past, 10X to 100X tape cartridge vs. disk
 - Jan 2001: 40 GB for \$53 (DLT cartridge), \$2800 for reader
 - \$1.33/GB cartridge, \$2.03/GB 100 cartridges + 1 reader
 - (\$10995 for 1 reader + 15 tape autoloader, \$10.50/GB)
 - Jan 2001: 80 GB for \$244 (IDE,5400 RPM), \$3.05/GB
 - Will \$/GB tape v. disk cross in 2001? 2002? 2003?
- Storage field is based on tape backup; what should we do? Discussion if time permits?

 CS252/Patters

Use Arrays of Small Disks?

- Katz and Patterson asked in 1987:
 - •Can smaller disks be used to close

Advantages of Small Formfactor Disk Drives

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

	IBM 3390KE	<u>3M 3.5" 006</u>	<u>1 x70 </u>
Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.9x
Power	3 KW	11 W	1 KW 3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/ \$ X
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Disk Arrays have potential for large data and I/O rates, high MB per cu. ft., high MB per KW, but what about reliability?

CS252/Patterson

Array Reliability

Reliability of N disks = Reliability of 1 Disk ÷ N

 $50,000 \text{ Hours} \div 70 \text{ disks} = 700 \text{ hours}$

Disk system MTTF: Drops from 6 years to 1 month!

Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with access: very high media availability can be achieved

Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks RAID 1: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "mirror"
 Very high availability can be achieved
- Bandwidth sacrifice on write:
 Logical write = two physical writes
 - Reads may be optimized
- Most expensive solution: 100% capacity overhe
- (RAID 2 not interesting, so skip)

Redundant Array of Inexpensive Disks RAID 3: Parity Disk

RAID 3

- Sum computed across recovery group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk: good for large transfers
- Wider arrays reduce capacity costs, but decreases availability
- 33% capacity cost for parity in this configuration

Inspiration for RAID 4

- RAID 3 relies on parity disk to discover errors on Read
- But every sector has an error detection field
- Rely on error detection field to catch errors on read, not on the parity disk
- Allows independent reads to different disks simultaneously

Redundant Arrays of Inexpensive Disks RAID 4: High I/O Rate Parity Increasing

Inspiration for RAID 5

- RAID 4 works well for small reads
- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk
 - Option 2: since P has old sum, compare old data to new data, add the difference to P
- Small writes are limited by Parity Disk: Write to DO,
 D5 both also write to P disk

Redundant Arrays of Inexpensive Disks RAID 5: High I/O Rate Interleaved

Lec 5 48

Problems of Disk Arrays: Small Writes

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

System Availability: Orthogonal RAIDs

Redundant Support Components: fans, power supplies, controller, cables

End to End Data Integrity: internal parity protected data paths

Berkeley History: RAID-I

- RAID-I (1989)
 - Consisted of a Sun 4/280
 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software
- Today RAID is \$19 billion dollar industry, 80% nonPC disks sold in RAIDs

Summary: RAID Techniques: Goal was performance, popularity due to reliability of storage
• Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"

Logical write = two physical writes

100% capacity overhead

- Parity Data Bandwidth Array (RAID 3) Parity computed horizontally Logically a single high data bw disk
- High I/O Rate Parity Array (RAID 5) Interleaved parity blocks Independent reads and writes Logical write = 2 reads + 2 writes

Summary Storage

• Disks:

- Extraodinary advance in capacity/drive, \$/GB
- Currently 17 Gbit/sq. in.; can continue past 100 Gbit/sq. in.?
- Bandwidth, seek time not keeping up: 3.5 inch form factor makes sense? 2.5 inch form factor in near future? 1.0 inch form factor in long term?

Tapes

- No investment, must be backwards compatible
- Are they already dead?
- What is a tapeless backup system?