10 Schedule

Mon, Jul 28	Session
08:00-17:30	Registration Desk Open
08:45-09:00	Conference Opening
09:00-10:00	Plenary Talk by TBD
10:00-10:30	Coffee Break
10:30-12:30	Track A: Stochastic Computation and Complexity, Part I
10:30-12:30	Track B: Domain Uncertainty Quantification
10:30-12:30	Track C: Nested expectations: models and estimators, Part I
10:30-12:30	Track D: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I
10:30-12:30	Track E: Technical Session 1 - Markov Chain Monte Carlo
12:30-14:00	Lunch Break
14:00-15:00	Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences
15:00-15:30	Coffee Break
15:30-17:30	Track F: Stochastic Computation and Complexity, Part II
15:30-17:30	Track G: Recent advances in optimization under uncertainty
15:30-17:30	Track H: Computational Methods for Low-discrepancy Sampling and Applications
15:30-17:30	Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1
15:30-17:30	Track J: Technical Session 12 - PDEs
17:30-19:30	Welcome Reception

Tue, Jul 29	Session
08:30-17:30	Registration Desk Open
09:00-10:00	Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:
	COSIMLA
10:00-10:30	Coffee Break
10:30-12:30	Track A: Stochastic Computation and Complexity, Part III
10:30-12:30	Track B: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part I
10:30-12:30	Track C: Heavy-tailed Sampling
10:30-12:30	Track D: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part I
10:30-12:30	Track E: Technical Session 2 - Bayesian Methods
12:30-14:00	Lunch Break
14:00-15:00	Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and
	Screening: From Monte Carlo to Experimental Design
15:00-15:30	Coffee Break
15:30-17:30	Track F: Stochastic Computation and Complexity, Part IV
15:30-17:30	Track G: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part II
15:30-17:30	Track H: Advances in Rare Events Simulation
15:30-17:30	Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part II
15:30-17:30	Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2

Schedule 11

$\mathbf{Wed},\mathbf{Jul}30$	Session
08:30-16:30	Registration Desk Open
09:00-10:00	Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach
	to quantifying model uncertainty of SDEs
10:00-10:30	Coffee Break
10:30-12:30	Track A: Stochastic Computation and Complexity, Part V
10:30-12:30	Track B: Statistical Design of Experiments
10:30-12:30	Track C: Advances in Adaptive Hamiltonian Monte Carlo
10:30-12:30	Track D: Technical Session 15 - Simulation
10:30-12:30	Track E: Technical Session 6 - Sampling
12:30-14:00	Lunch Break
14:00-16:00	Track F: Stochastic Optimization
14:00-16:00	Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications
14:00-16:00	Track H: Monte Carlo Applications in High-performance Computing, Computer
	Graphics, and Computational Science
14:00-16:00	Track I: Technical Session 16 - Statistics
14:00-16:00	Track J: Technical Session 10 - Langevin
16:00-16:30	Coffee Break
18:00-20:30	Conference Dinner

Thu, Jul 31	Session
08:30-17:30	Registration Desk Open
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-
	ods and Optimization Strategies
10:00-10:30	Coffee Break
10:30-12:30	Track A: QMC and Applications Part I
10:30-12:30	Track B: Analysis of Langevin and Related Sampling Algorithms, Part I
10:30-12:30	Track C: Nested expectations: models and estimators, Part II
10:30-12:30	Track D: Technical Session 8 - Finance
10:30-12:30	Track E: Technical Session 13 - ML & Optimization
12:30-14:00	Lunch Break
14:00-15:00	Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte
	Carlo and its application to exact ecological inference
15:00-15:30	Coffee Break
15:30-17:30	Track F: QMC and Applications Part II
15:30-17:30	Track G: Analysis of Langevin and Related Sampling Algorithms, Part II
15:30-17:30	Track H: Recent Advances in Stochastic Gradient Descent
15:30-17:30	Track I: Technical Session 7 - Sampling
15:30-17:30	Track J: Technical Session 11 - SDEs
18:00-20:30	Steering Committee Meeting (by invitation)

Fri, Aug 1	Session
08:30-12:15	Registration Desk Open
09:00-10:30	Track A: Forward and Inverse Problems for Stochastic Reaction Networks
09:00-10:30	Track B: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II
09:00-10:30	Track C: Technical Session 3 - Simulation
09:00-10:30	Track D: Technical Session 9 - Sampling
09:00-10:30	Track E: Technical Session 14 - Markov Chain Monte Carlo
10:30-11	Coffee Break
11:00-12:00	Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference
12:00-12:15	Closing Remarks

$\rm Jul~28,~2025-Morning$

					TBD	Track E: Technical Session	1 - Markov Chain Monte	Carlo	Chair: TBD	Zhihao Wang,	Stereographic Multi-Try	Metropolis Algorithms for	Heavy-tailed Sampling,	p. 136	Ruben Seyer, Creating	rejection-free samplers by	rebalancing skew-balanced	jump processes, p. 137			DI :::	Fluidipe Gagnon,	I neoretical guarantees for lifted sommand in 138	med samplers, p. 199									
					Special Session, TBD	Track D: Hardware or	Software for	(Quasi-)Monte Carlo	Algorithms, Part I, p. 35 Chair. TBD	Pieterjan Robbe,	Multilevel quasi-Monte	Carlo without replications,	p. 81		Irina-Beatrice Haas, A	nested Multilevel Monte	Carlo framework for	efficient simulations on	FPGAs, p. 81		ACIT- CITE A	wike dues, CODA	implementation of MLMC	on iversity of Os, p. 92					Chung Ming Loi, Scalable and User-friendly OMC	Sampling with UMBridge,	p. 83		
					Special Session, TBD	Track C: Nested	expectations: models and	estimators, Part I, p. 34	Chair: TBD	Abdul Lateef Haji Ali, An	Adaptive Sampling	Algorithm for Level-set	Approximation, p. 78		Sebastian Krumscheid,	Double-loop randomized	quasi-Monte Carlo	estimator for nested	integration, p. 78		II 1:ZI	Venn Houng,	Fosterior-Free A-Optimal	Dayesian Design of	Experiments via	Conditional Expectation,	بر. ت	IV	<i>Vesa Kaarnioja</i> , QMC for Bayesian ontimal	experimental design with	application to inverse	problems governed by	
9111119			chair:		Special Session, TBD	Track B: Domain	Uncertainty Quantification		Chair: TBD	André-Alexander	Zepernick, Domain UQ	for stationary and	time-dependent PDEs	using QMC, p. 75	Carlos Jerez-Hanckes,	Domain Uncertainty	Quantification for	Electromagnetic Wave	Scattering via First-Order	Sparse Boundary Element	Approximation, p. 70	Jaryen Dotz, Quantinying	uncertainty in spectral	clusterings, expectations	ior perturbed and	incomplete data, p. 11			<i>Harrı Hakula</i> , Model Problems for PDFs on	Uncertain Domains, p. 77	4		
	Registration Desk Open	Conference Opening	Flenary Talk: 1BD, p. C.	Coffee Break	Special Session, TBD	Track A: Stochastic	Computation and	Complexity, Part I, p. 32	Chair: TBD	Andreas Neuenkirch, A	strong order 1.5 boundary	preserving discretization	scheme for scalar SDEs	defined in a domain, p. 72	Chengcheng Ling,	Quantitative	approximation of	stochastic kinetic	equations: from discrete to	continuum, p. 72		Curtstopher naunogger,	An adaptive Millstein-type	incurrent for surong	appioximation of systems	of SDEs with a	discontinuous dint		Verena Schwarz, Stong order 1 adaptive	approximation of	jump-diffusion SDEs with	discontinuous drift, p. 74	
00.00	08:00-17:30	08:45-09:00	9:00 - 10:00	10:00-10:30						10:30–12:30					10:30–12:30						10.90 10.90	10:30–17:30						10.90 19.90	10:30–12:30				

Jul 28, 2025 - Afternoon

ı.i.		on Track J. Technical Session 12 - PDEs Chair: TBD	and Adrien Richou, A and probabilistic Numerical method for semi-linear 6 elliptic Partial Differential Equations, p. 170	Abdujabar Rasulov, Monte n Carlo method for the Spatially Homogenous Boltzmann equation, ling p. 170	Miguel Alvarez, A New Approach for Unbiased Estimation of Parameters of Partially Observed Diffusions, p. 171	 iw, Håkon Hoel, High-order vs adaptive methods for exit times of diffusion processes ng and reflected diffusions, p. 172
Sequences o 29 Chair		TBD Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 Chair: TBD	Christian Weiss, Halton Sequences, Scrambling and the Inverse Star-Discrepancy, p. 146	Xiaoda Xu, Star discrepancy and uniform approximation under weighted simple and stratified random sampling , p. 147	Sifan Liu, Transport Quasi-Monte Carlo, p. 148	Ambrose Emmett-Iwaniw, Using Normalizing Flows for Efficient Quasi-Random Sampling for Copulas, p. 149
of Waterloo. Golden ratio nets and semences n 22		Special Session, TBD Track H: Computational Methods for Low-discrepancy Sampling and Applications, p. 39 Chair: TBD	François Clément, Searching Permutations for Constructing Low-Discrepancy Point Sets and Inverstigating the Kritzinger Sequence, p. 89	Nathan Kirk, Minimizing the Stein Discrepancy, p. 90	Makram Chahine, Improving Efficiency of Sampling-based Motion Planning via Message-Passing Monte Carlo, p. 90	Gregory Seljak, An Empirical Evaluation of Robust Estimators for RQMC, p. 91
Christiane Lemieux. II of Waterloo		Special Session, TBD Track G: Recent advances in optimization under uncertainty, p. 38 Chair: TBD	Tapio Helin, Stability of Expected Utility in Bayesian Optimal Experimental Design, p. 86	Karina Koval, Subspace accelerated measure transport methods for fast and scalable sequential experimental design, p. 87	Johannes Milz, Randomized quasi-Monte Carlo methods for risk-averse stochastic optimization, p. 88	Arved Bartuska, Efficient expected information gain estimators based on the randomized quasi-Monte Carlo method, p. 88
Lunch Break Plenary Talk: Christiane		Special Session, TBD Track F: Stochastic Computation and Complexity, Part II, p. 37 Chair: TBD	Michael Gnewuch, Optimality of deterministic and randomized QMC-cubatures on several scales of function spaces, p. 83	Kateryna Pozharska, Optimal designs for function discretization and construction of tight frames, p. 85	Leszek Plaskota, Complexity of approximating piecewise smooth functions in the presence of deterministic or random noise, p. 86	
$12:30-14:00$ $14\cdot00-15\cdot00$	15:00-15:30		15:30–17:30	15:30–17:30	15:30–17:30	15:30–17:30

Jul~29,~2025-Morning

	COSIMLA. p. 23 Chair:		Special Session, TBD TBD Track D: Frontiers in Track E: Technical Session	pu	Carlo Methods, Part 1, p. 46 Chair: <i>TBD</i>	Hwanwoo Kim, EnhancingLorenzo Nagar,Gaussian ProcessOptimizing GeneralizedSurrogates forHamiltonian Monte CarloOptimization andfor Bayesian Inference	Posterior Approximation applications, p. 139 via Random Exploration, p. 99	Hamza Ruzaygat, Bayesian Anomaly	Variable-Order and Variable Differentiev	Variable-Dimesvity Fractional Mediums, p. 140	Arghya Datta, Theoretical Guarantees of Mean Field Variational Inference for	Bayesian Principal	Component Analysis, p. 141	Jimmy Lederman, Bayesian Analysis of Latent Underdispersion
	Open Peter Glunn. Stanford U. Combining Simulation and Linear Algebra: COSIMLA. D. 23		Special Session, TBD Special S Track C: Heavy-tailed Track D: 1		Carlo Methoc p. 46 Chair: TBD	Sebastiano Grazzi, Hwanwoo Kim, E Parallel computations for Gaussian Process Metropolis Markov chains Surrogates for Based on Picard maps, Optimization and		Federica Milinanni, A large deviation principle	sampling, p. 97		$Xingyu\ Wang,\ Sharp$ Characterization and Control of Global	Dynamics of SGDs with Heavy, Toils in 08	neavy rans, p. 90	
Quin Divi	Glunn. Stanford U. Combini		Special Session, TBD Track B: Next-generation		and real world impact: Part I, p. 42 Chair: TBD	ng Sampling for Multi-fidelity of Monte Carlo Methods, p. 94		Adrien Corenflos, A recursive Monte Carlo			Ayoub Belhadji, Weighted e quantization using MMD:			
08.90 17.90 Doministration Deal	Plenary Talk:	Coffee Break	Special Session, TBD Track A: Stochastic	Computation and Complexity, Part III, p. 41	Chair: 1BD	10:30–12:30 Jean-François Chassagneux, Computing the stationary measure of McKean-Vlasov SDEs,	p. 92	10:30–12:30 Noufel Frikha, On the convergence of the	for McKean-Vlasov SDEs,		10:30–12:30 Sotirios Sabanis, Wasserstein Convergence of Score-based Generative	Models under Semiconvexity and	Discontinuous Gradients, p. 93	10:30–12:30

Afternoon
2025 -
Jul 29,

	ite Carlo to Experimental		TBD	Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2	Chair: TBD	Peter Kritzer,	Approximation using median lattice algorithms,	p. 150	Yang Liu, Convergence Rates of Randomized	Quasi-Monte Carlo	Methods under various Regularity Conditions, p. 150	Jakob Dilen, Use of rank-1	natuces in the Fourier neural operator, p. 151				Aadit Jain, Investigating	the Optimum RQMC Batch Size for Betting and	Empirical Bernstein	Confidence Intervals,	p. 151
	and Screening: From Mon		Special Session, TBD	Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte	Carlo Methods, Part II, p. 51 Chair: <i>TBD</i>	Takashi Goda,	Quasi-uniform quasi-Monte Carlo digital	nets, p. 106	Ziang Niu, Boosting the inference for generative	models by (Quasi-)Monte	Carlo resamping, p. 100	Chenyang Zhong, A hit	and run approach for sampling and analyzing	ranking models, p. 107							
	Institute of 1echnology, Sensitivity and Screening: From Monte Carlo to Experimental		Special Session, TBD	Track H: Advances in Rare Events Simulation, p. 50 Chair: TBD		Victor Elvira, Multiple	Importance Sampling for Rare Event Simulation in	Communication Systems, p. 103	Bruno Tuffin, Asymptotic robustness of smooth	functions of rare-event	estimators, p. 103	Eya Ben Amar,	Importance Sampung Methods with Stochastic	Differential Equations for	the Estimation of the Right Tail of the CCDF of	the Fade Duration, p. 104	Shyam Mohan Subbiah	Pillai, Estimating rare	associated with	McKean-Vlasov SDEs,	p. 105
	Rosnan Josepn, Georgia Institute o Chair:		Special Session, TBD	Track G: Next-generation optimal experimental design: theory, scalability,	and real world impact: Part II, p. 48 Chair: TBD	Alen Alexanderian, Goal	Oriented Sensor Placement for Infinite-Dimensional	Bayesian Inverse Problems, p. 101	jacopo iollo, Diffusion-Based Bayesian	Experimental Design:	Advancing BED for Practical Applications, p. 101	Tommie Catanach,	kobust bayesian Optimal Experimental Design	under Model	Misspecification, p. 102						
	Plenary Talk: Roshan Jo Design, p. 24 Chair:	Coffee Break	Special Session, TBD	Track F: Stochastic Computation and Complexity, Part IV, p. 47	Chair: TBD	Larisa Yaroslavtseva,	Optimal strong approximation of SDEs	with Hölder continuous drift coefficient, p. 99	Gunther Leobacher, Tractability of	L_2 -approximation and	integration in weighted Hermite spaces of finite smoothness, p. 100	4									
12:30–14:00	14:00–13:00	15:00-15:30				15:30–17:30			15:30–17:30			15:30–17:30					15:30–17:30				

$\rm Jul~30,~2025-Morning$

odel uncertainty of		TBD Track E: Technical Session 6 - Sampling Chair: TBD	Akash Sharma, Sampling with constraints, p. 152	Joonha Park, Sampling from high-dimensional, multimodal distributions using automatically tuned, tempered Hamiltonian Monte Carlo, p. 153	Arne Bouillon, Localized consensus-based sampling for non-Gaussian distributions, p. 154	Alex Shkolnik, Importance Sampling for Hawkes Processes, p. 154
approach to quantifying m		TBD Track D: Technical Session 15 - Simulation Chair: TBD	Philippe Blondeel, Combining quasi-Monte Carlo with Stochastic Optimal Control for Trajectory Optimization of Autonomous Vehicles in Mine Counter Measure Simulations, p. 179	Rino Persiani, A Monte Carlo Approach to Designing a Novel Sample Holder for Enhanced UV-Vis Spectroscopy, p. 180	Prasanth Shyamsundar, ARCANE Reweighting: A technique to tackle the sign problem in the simulation of collider events in high energy physics, p. 181	Nicole Aretz, Multifidelity and Surrogate Modeling Approaches for Uncertainty Quantification in Ice Sheet Simulations, p. 182
of Klagenfurt, An optimal transport approach to quantifying model uncertainty of		Special Session, TBD Track C: Advances in Adaptive Hamiltonian Monte Carlo, p. 56 Chair: TBD	Bob Carpenter, GIST: Gibbs self-tuning for locally adapting Hamiltonian Monte Carlo, p. 112	Nawaf Bou-Rabee, Acceleration of the No-U-Turn Sampler, p. 112	Chirag Modi, ATLAS: Adapting Trajectory Lengths and Step-Size for Hamiltonian Monte Carlo, p. 113	Trevor Campbell, AutoStep: Locally adaptive involutive MCMC, p. 114
k Open Michaela Szölgyenyi, U of Klagenfr Chair:		Special Session, TBD Track B: Statistical Design of Experiments, p. 54 Chair: TBD	Simon Mak, Respecting the boundaries: Space-filling designs for surrogate modeling with boundary information, p. 109	Chih-Li Sung, Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy, p. 110	Qian Xiao, Optimal design of experiments with quantitative-sequence factors, p. 111	Chaofan Huang, Factor Importance Ranking and Selection using Total Indices, p. 111
Registration Desk Open Plenary Talk: Michaela SDEs, p. 25 Chair:	Coffee Break	Special Session, TBD Track A: Stochastic Computation and Complexity, Part V, p. 53 Chair: TBD	Stefan Heinrich, On the quantum complexity of parametric integration in Sobolev spaces, p. 108	Bernd Käßemodel, Quantum Integration in Tensor Product Besov Spaces, p. 108		
08:30–16:30 09:00–10:00	10:00-10:30		10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

Jul~30,~2025-Afternoon

12:30-14:00	Lunch Break				
	Special Session, TBD	Special Session, TBD	Special Session, TBD	TBD	TBD
	Track F: Stochastic	Track G: Recent Progress	Track H: Monte Carlo	Track I: Technical Session	Track J: Technical Session
	Optimization, p. 58 Chair: <i>TBD</i>	on Algorithmic Discrepancy Theory and	Applications in High-performance	10 - Statistics Chair: TBD	10 - Langevin Chair: <i>TBD</i>
		Applications, p. 59	Computing, Computer		
		Chair: TBD	Graphics, and		
			Computational Science,		
			p. 61 $Chair TRD$		
14:00-16:00	Raahu Bollapraaada.	Haotian Jiana.	Arash Fahim. Gaining	Kazeem Adeleke.	Attila Lovas. Stochastic
	Monte Carlo Based	Algorithmic Discrepancy	efficiency in Monte Carlo	Empirical Statistical	gradient Langevin
	Adaptive Sampling	Theory: An Overview,	policy gradient methods	Comparative Analysis of	dynamics with
	Approaches for Stochastic	p. 116	for stochastic optimal	SNP Heritability	non-stationary data, p. 163
	Optimization, p. 114		control, p. 117	Estimators and Gradient	
				Boosting Machines (GBM)	
				Using Genetic Data from	
			7	the UK Biobank, p. 182	
14:00-16:00	Shane Henderson, A New	Peng Zhang, Improving	Silei Song, Wos-NN:	Carles Domingo-Enrich,	losif Lytras, Sampling
	Convergence Analysis of	the Design of Randomized	Collaborating	Cheap permutation testing	with Langevin Dynamics
	Two Stochastic	Experiments via	Walk-on-Spheres with	, p. 183	from non-smooth and
	Frank-Wolfe Algorithms,	Discrepancy Theory,	Machine Learning to Solve		non-logconcave potentials.,
	p. 115	p. 116	Ellip- tic PDEs, p. 118		p. 164
14:00-16:00		$Aleks and ar\ Nikolov,$		$Christopher\ Draper,$	Sara Pérez-Vieites,
		Online Factorization for		Moving PCG beyond	Langevin-based strategies
				LCGs, p. 184	for nested particle filters,
		Minimization, p. 117			p. 165
14:00-16:00				Yiming Xu, Hybrid least	Nikolaos Makras, Taming
				squares for learning	the Interacting Particle
				functions from highly	Langevin Algorithm – The
				noisy data, p. 184	Superlinear Case, p. 166
16:00–16:30	Coffee Break				
18:00-20:30	Conference Dinner				

Jul 31, 2025 - Morning

	on Strategies, p. 26			TBD Track E: Technical Session 13 - ML & Optimization Chair: TBD	Frédéric Blondeel, Learning cooling strategies in simulated annealing through binary interactions, p. 173	Du Ouyang, Accuracy of Discretely Sampled Stochastic Policies in Continuous-Time Reinforcement Learning, p. 174	Wei Cai, Martingale deep neural networks for quasi-linear PDEs and stochastic optimal controls in 10,000 dimensions, p. 175	Yiqing Zhou, Minimizing Functions with Sparse Samples: A Fast Interpolation Approach, p. 175
	Methods and Optimization			TBD Track D: Technical Session 8 - Finance Chair: TBD	Matyokub Bakoev, The Stochastic Differential Equations of the Heston Model for Option Pricing, p. 158	Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion Expectation-based Simulations on Low-Volatility American Common Stocks, p. 159	Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 161	
	Plenary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization Strategies, p. 26			Special Session, TBD Track C: Nested expectations: models and estimators, Part II, p. 64 Chair: TBD	RAUL TEMPONE, Multilevel randomized quasi-Monte Carlo estimator for nested expectations, p. 123	Matteo Raviola, Stochastic gradient with least-squares control variates, p. 124	Philipp Guth, A one-shot method for Bayesian optimal experimental design, p. 125	
	ak, UC Berkeley, Gradien			Special Session, TBD Track B: Analysis of Langevin and Related Sampling Algorithms, Part I, p. 63 Chair: TBD	Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 121	Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 122	Xiaoou Cheng, Delocalization of Bias in Unadjusted Hamiltonian Monte Carlo, p. 123	
Registration Desk Open	Plenary Talk: Uros Selj	Chair:	Coffee Break	Special Session, TBD Track A: QMC and Applications Part I, p. 62 Chair: TBD	Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 119	Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 120	Zhijian He, High-dimensional density estimation on unbounded domain, p. 120	Frances Y. Kuo, Application of QMC to Oncology, p. 121
08:30-17:30	09:00-10:00		10:00-10:30		10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

 ${
m Jul~31,~2025-Afternoon} = 12:30-14:00 {
m Lunch~Break}$

	ication to exact		TBD	Track J. Technical Session	$11 - \mathrm{SDEs}$	Chair: TBD		Fabio Zoccolan, Dynamical	Low-Rank Approximation	for SDEs: an interacting	particle-system ROM,	p. 166	Riccardo Saporiti,	Comparing Probabilistic	Load Forecasters:	Stochastic Differential	Equations and Deep	Learning, p. 168	Leon Wilkosz, Forward	Propagation of Low	Discrepancy Through	McKean-Vlasov	Dynamics: From QMC to	MLQMC, p. 169							
	Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact ence, p. 28 Chair:		TBD	Track I: Technical Session	7 - Sampling	Chair: TBD		Kun-Lin Kuo, Revisiting	the Gibbs Sampler: A	Conditional Modeling	Perspective, p. 155	1	Sascha Holl,	Concatenation of Markov	processes for Monte Carlo	Integration, p. 155			$Josephine\ Westermann,$	Polynomial approximation	for efficient	transport-based sampling.	p. 157	1	Soumyadip Ghosh, Fast	Approximate Matrix	Inversion via MCMC for	Linear System Solvers,	p. 157		
	que de Paris, Saddlepoint		Special Session, TBD	Track H: Recent Advances	in Stochastic Gradient	Descent, p. 67	Chair: TBD	Jose Blanchet, Inference	for Stochastic Gradient	Descent with Infinite	Variance, p. 130	•	Jing Dong, Stochastic	Gradient Descent with	Adaptive Data, p. 131																
	hopin, Institut Polytechni Chair:		Special Session, TBD	Track G: Analysis of	Langevin and Related	Sampling Algorithms, Part	II, p. 66 Chair: <i>TBD</i>	Molei Tao,	Langevin-Based Sampling	under Nonconvex	Constraints, p. 128	4	Yifan Chen, Convergence	of Unadjusted Langevin in	High Dimensions:	Delocalization of Bias,	p. 128		Fuzhong Zhou, Entropy	methods for the	delocalization of bias in	Langevin Monte Carlo.	p. 129	•	Siddharth Mitra,	Convergence of	Φ -Divergence and	Φ-Mutual Information	Along Langevin Markov	Chains, p. 129	(by invitation)
	Plenary Talk: Nicolas Cleological inference, p. 28	Coffee Break	Special Session, TBD	Track F: QMC and	Applications Part II, p. 65	Chair: TBD		Dirk Nuyens,	Approximation of	multivariate periodic	functions, p. 125	•	Art Owen, Randomized	QMC with one categorical	variable, p. 126				Zexin Pan, QMC	confidence intervals using	quantiles of randomized	nets, p. 127	4		Kosuke Suzuki,	Quasi-uniform	quasi-Monte Carlo lattice	point sets, p. 127		i	Steering Committee Meeting (by invitation)
12:30–14:00	14:00–15:00	15:00-15:30						15:30-17:30					15:30-17:30						15:30-17:30						15:30–17:30						18:00-20:30

2025	
,	
Ang	0

08:30_19:15	Bowistration Dock Onen				
01:71	Special Session TBD	Special Session TBD	TBN	ТВП	TBD
	Trook A. Hommond and	Treek B. Hendmen on	Track C. Toohnical Section	Treat D. Tochnical Cossion	Track F. Tochnical Socion
	I ack A. Folward and	Ilack D. Ilaluwale 01	11 ack C. recillical Dession	11 ack D. recillical pession	14 M 1 Climea Session
	Inverse Problems for	Soltware for	3 - Simulation	9 - Sampling	14 - Markov Chain Monte
	Stochastic Reaction	(Quasi-)Monte Carlo	Chair: TBD	Chair: TBD	
	Networks, p. 68	Algorithms, Part II, p. 69			Chair: TBD
	Chair: 15D	Chair: 1BD			
09:00-10:30	Zhou Fang, Fixed-budget	$Niklas\ Baumgarten,\ A$	Yashveer Kumar, Monte	$Nicola\ Branchini,$	Kevin Bitterlich, Delayed
	simulation method for	High-performance	Carlo simulation approach	Revisiting self-normalized	Acceptance Slice
	growing cell populations,	Multi-level Monte Carlo	to solve distributed order	importance sampling: new	Sampling: A Two-Level
	p. 131	Software for Full Field	fractional mathematical	methods and diagnostics.	method for Improved
	1)		model n 1/3	r 161	Efficiency in
		A :	model, p. 149	p. 101	Tillerency III
		Applications in Optimal			High-Dimensional Settings
		Control, p. ??			, p. 176
09:00-10:30	$Sophia\ M\"{u}nker,$	$Aleksei\ Sorokin,$	$Serena\ Fattori,$	$Daniel\ Yukimura,$	$Reuben\ Cohn$ -Gordon,
	Dimensionality Reduction	Quasi-Monte Carlo	Benchmarking the	Quantitative results on	Gradient-based MCMC in
	for Efficient Bare Event	Generators	Geant 4-DNA 'IIHDB'	sampling from	high dimensions n 177
	Detimotion 199	Dendemination Denting	From the Monte Coult		men amountains) L. T.
	Estimation, p. 132	Kandomization Koutines,	Example for Monte Carlo	quasi-stationary	
		and Fast Kernel Methods,	Simulation of pH Effects	distributions, p. 162	
		p. 134	on Radiolytic Species		
			Yields Using a Mesoscopic		
			Approach, p. 143		
09:00-10:30	Maksim Chupin, Filtered	Johannes Krotz, Hybrid	Toon Ingelaere, Multilevel	Amit Subrahmanya, Serial	Philip Schaer, Parallel
	Markovian Projection:	Monte Carlo methods for	simulation of ensemble	ensemble filtering with	Affine Transformation
	Dimensionality Reduction	kinetic transport, p. 135	Kalman methods:	marginal coupling, p. 163	Tuning: Drastically
	in Filtering for Stochastic	3 2 - J (2 - 2 J	interactions across lexible		Improving the
	Desertion Networks 199		interactions across tevers,		The Aircraft Cline
	reaction inclworks, p. 155		p. 149		Compling n 178
					Sampung, p. 116
09:00-10:30	Muruhan Kathınam, State		Muhammad Noor ul Amın,		$Annabelle\ Carrell,$
	and parameter inference in		Adaptive Max-EWMA		Low-Kank Innning,
	stochastic reaction		Control Chart with SVR:		p. 179
	networks, p. 134		Monte Carlo Simulation		
			for Run Length Analysis,		
			p. 145		
	Coffee Break				
11:00-12:00	Plenary Talk: Veronika	Ročková, U of Chicago,	Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference, p. 30	rence, p. 30 Chair:	
19,00 19,18			,		