Support Vector Machines

Northwestern CS 352 Spring 2019
Bryan Pardo

Support Vector Machines: High Level

- Classifiers that are good for linear and nonlinear classification
- Effective in high dimensional spaces (even infinite dimensional)
- Versatile: If you specify a Kernel (more on that later) you can apply them to lots of different kinds of data.
- The decision function uses a subset of the training data (called support vectors) to classify, so they are more memory efficient than K-nearest neighbor classifiers.

Some notes

• The formulation in these slides comes from "A Tutorial on Support Vector Machines for Pattern Recognition"

 Chapter 9 of An Introduction to Statistical Learning presents the same material using a slightly different formulation (e.g. different variable names)

Three big advances over Perceptrons

MAXIMUM MARGIN

They find the BEST linear separator (where best = maximum margin)

SLACK VARIABLES

 They can find a linear separator even when a little noise in the data means the data is not technically "linearly separable"

THE KERNEL TRICK

• They make it easy for the end user (software developer) to transform the data (like in polynomial regression) so that an inherently linear separator can learn non-linear decision surfaces.

Any separator is good to a Perceptron

The loss function is 0-1:

lose 0 points if you're right....even if just barely.

Lose 1 if you're wrong.....no matter how wrong.

$$g(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$
 Decision surface

$$g(\mathbf{x}) > 0$$
 $h(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) > 0 \\ -1 & \text{otherwise} \end{cases}$ Hypothesis function

$$SSE = \sum_{i}^{n} (y_i - h(\mathbf{x}_i))^2$$
 0-1 loss function

What if there is noise in the data?

A decision boundary with little margin to the nearest example may fail when new data is presented to it.

$$g(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$
 Decision surface

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) > 0 \\ -1 & \text{otherwise} \end{cases}$$
 Hypothesis function

$$SSE = \sum_{i}^{n} (y_i - h(\mathbf{x}_i))^2$$
 0-1 loss function

What if there is noise in the data?

A large-margin classifier tends to be more "robust" (resistant to noise in the data, able to generalize)

$$g(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$
 Decision surface

$$g(\mathbf{x}) > 0$$
 $h(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) > 0 \\ -1 & \text{otherwise} \end{cases}$ Hypothesis function

$$SSE = \sum_{i}^{n} (y_i - h(\mathbf{x}_i))^2$$
 0-1 loss function

Maximizing the Margin

- d+ is the distance to the closest positive example.
- d- as the distance to the closest negative example
- Define the "margin", m as...

$$m = d^+ + d^-$$

Look for the largest margin

The Support Vectors

- The points that are within distance d of the classifier are the support vectors.
- Those are the ones on the dotted lines.
- These support vectors will become important later.

Scaling the data to simplify the math.

 There is some scaling of the data where...

$$d^+ = d^- = \frac{1}{\|w\|}$$

 Now, the decision boundary function will output a value with magnitude 1 or greater..

$$g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

Learned offset weights from origin

Optimizing to maximize the margin

• Maximize the margin $\frac{2}{\|\mathbf{w}\|}$

• ...such that, for every data point, the following equation holds.

Making this an optimization problem

- Maximizing the margin means minimizing w.
- Introducing 1 Lagrangian multiplier α_i per data point lets us add the constraint that every data point be on the right side of the line into the formula to optimize.

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i y_i (\mathbf{w} \cdot \mathbf{x}_i + b) + \sum_{i=1}^n \alpha_i$$

• Now solve for where the gradient of w vanishes, with respect to $\alpha_1, \ldots, \alpha_n$ (For this to work we require every $\alpha_i \geq 0$)

A dual formulation

- It turns out there is a *dual* formulation of the problem that will result in the same values for $\mathbf{w}, b, \alpha_1, \dots, \alpha_n$
- ullet This time, maximize and require the gradient vanish with respect to old w, b
- That translates to putting these conditions on the maximization:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \qquad 0 = \sum_{i=1}^{n} \alpha_i y_i$$

A dual formulation, continued

- Substituting those formulae into the previous formula gives the following *dual* formulation, L_d .
- Training a linear SVM is done by maximizing L_d with respect to $lpha_1... lpha_n$
- The numbers that are learned here are the $\alpha_1...$ α_n
- Once you've trained, points where $\alpha_i>0$ are the support vectors
- The support vectors are the data points that lie on the margin.

$$L_d = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

Getting the boundary from the support vectors

- Let s be the index of a support vector in the set of support vectors S.
- Get the decision boundary w from the support vectors like this:

$$\mathbf{w} = \sum_{S}^{S} \alpha_{S} y_{S} \mathbf{x}_{S}$$

- Use the line to classify a new point z, just like a perceptron.
- Equivalently, we could directly use the support vectors to classify z.

$$h(\mathbf{z}) = sign(g(\mathbf{z})) \qquad g(\mathbf{z}) = \mathbf{w} \cdot \mathbf{z} + b = \sum_{S}^{S} \alpha_{S} y_{S}(\mathbf{x}_{S} \cdot \mathbf{z}) + b$$
Returns +1 or -1

Three big advances over Perceptrons

MAXIMUM MARGIN

They find the BEST linear separator (where best = maximum margin)

SLACK VARIABLES

 They can find a linear separator even when a little noise in the data means the data is not technically "linearly separable"

THE KERNEL TRICK

• They make it easy for the end user (software developer) to transform the data (like in polynomial regression) so that an inherently linear separator can learn non-linear decision surfaces.

Non-Linearly Separable Data

Allow some instances to fall within the margin, but penalize them

Introduce slack variables ξ (one per data point)

The constraints then become.

$$y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1 - \xi \quad \forall \{\mathbf{x}, y\}$$

Our "Prime" Optimization, with slack

- Now we're trying to minimize ${\bf w}$ and also minimize the total "slack", which is embodied by the slack variables ξ_1 ... ξ_n
- Recall that each ξ_i captures how far over on the wrong side of the line data point \mathbf{x}_i is.
- As I change C, I can increase or decrease the importance of the overall misclassification

minimize this:
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

Our "Prime" Optimization, with slack

- Let's put our constraints into the optimization formula, like we did before.
- Add a Lagrangian parameter μ_i for each slack variable ξ_i
- Require every $\alpha_i \geq 0$, every $\mu_i \geq 0$, and every $\xi_i \geq 0$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i - \left(\sum_{i=1}^n \alpha_i y_i (\mathbf{w} \cdot \mathbf{x}_i + b) + \sum_{i=1}^n \mu_i \xi_i\right)$$

Three big advances over Perceptrons

MAXIMUM MARGIN

They find the BEST linear separator (where best = maximum margin)

SLACK VARIABLES

 They can find a linear separator even when a little noise in the data means the data is not technically "linearly separable"

THE KERNEL TRICK

• They make it easy for the end user (software developer) to transform the data (like in polynomial regression) so that an inherently linear separator can learn non-linear decision surfaces.

Reminder of where we are

You train an SVM by optimizing on this (Yes, this is the dual formulation.
 Yes I'm leaving out slack. This is for simplicity of presentation.)

$$L_d = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

• Once you have your non-zero α values for the support vectors s, you use it to classify a new point \mathbf{z} like this:

$$g(\mathbf{z}) = \sum_{s}^{S} \alpha_{s} y_{s}(\mathbf{x}_{s} \cdot \mathbf{z}) + b$$

Non-linear separation

• Map the original feature space to a higher-dimensional feature space where the training set is separable by a hyperplane. Call this mapping function $\phi(\cdot)$

Note: I can't remember which person's slides I adapted this image from, but it is one of these 3: Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law

With our non-linear mapping $\phi(\cdot)$

You train an SVM by optimizing on this

$$L_d = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j (\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j))$$

• Once you have your non-zero α values for the support vectors s, you use it to classify a new point \mathbf{z} like this:

$$\mathbf{g}(\mathbf{z}) = \sum_{s}^{S} \alpha_{s} y_{s}(\phi(\mathbf{x}_{s}) \cdot \phi(\mathbf{z})) + b$$

The kernel function

• If we combine the transformation function $\phi(\cdot)$ and the inner product, we call this a Kernel:

$$K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i)$$

Putting this into the optimization function gives...

$$L_d = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j K(\mathbf{x_i, x_j})$$

And using it to classify is done like this ...

$$g(\mathbf{z}) = \sum_{s}^{s} \alpha_{s} y_{s} K(\mathbf{x}_{s}, \mathbf{z}) + b$$

The kernel trick

- If I know what the inner product of two transformed items is, then I can directly calculate the inner product without doing the transformation first.
- The simplest example: making a polynomial separator, where the polynomial exponent is 2 and the input x, z are each a scalar.
- Given the kernel below, we can directly calculate the inner product, without having to first apply $\phi(\cdot)$.

$$\phi(x) = [x, x^2]$$

$$\phi(z) = [z, z^2]$$

$$K(x,z) = xz + x^2z^2 = \phi(x) \cdot \phi(z)$$

Just use this directly.

Why care about the kernel trick

- If you have a formula for $\phi(x) \cdot \phi(z)$, you can skip doing $\phi(\cdot)$
- This fact is used in one of the most popular kernels, the Gaussian Kernel, aka the Radial Basis Function Kernel (RBF)

$$K(\mathbf{x}, \mathbf{z}) = e^{-\|\mathbf{x} - \mathbf{z}\|^2 / 2\sigma^2}$$

- The RBF kernel, implicitly uses a $\phi(\cdot)$ which, if calculated as an explicit step, would expand the basis of the natural $\log e$ using the infinite Taylor series. This would result in an infinite dimensional vector.
- By using the Kernel trick you never explicitly use $\phi(\cdot)$ and never try to represent something infinite.

The kernel trick may force use of support vectors

- For a kernel like an RBF kernel, we can't ever calculate $\phi(x)$, since it would require an infinite series (the Taylor series) and that would mean an infinite dimensional vector.
- This means we can't directly represent the decision boundary **w**, since it would also have to be infinite dimensional.
- ullet This means we optimize using the dual formulation, L_d
- This also forces us to classify a new point, z, by using the points on the margin (the support vectors) to classify the point.

$$h(\mathbf{z}) = sign(g(\mathbf{z})) \qquad g(\mathbf{z}) = \sum_{S}^{S} \alpha_{S} y_{S} K(\mathbf{x_{i}}, \mathbf{z}) + b$$
Returns +1 or -1

You can build your own kernels

- If you create a kernel for a data type, you can apply a SVM to it.
- For example, let's make a $\phi_t(\cdot)$ for text documents:
 - 1. Pick a dictionary (e.g. the Oxford English Dictionary, or OED)
 - 2. For any text document, create an n-dimensional binary vector where the nth dimension is 1 if the nth OED word is in the document and 0 otherwise
- Now we can turn any text document into a vector
- Define K(x,z) as the inner product of these two vectors

$$K(x,z) = \phi_t(\mathbf{x}) \cdot \phi_t(\mathbf{z})$$

- We're done! We can run a SVM on text documents!
- Making a spam filter is now easy.

You can build kernels out of other kernels

- Once you have a set of kernels, you can compose new kernels from them.
- Let's see how...

Definitions for the following slide

```
k_1(x,x') and k_2(x,x') are valid kernels on \{x,x'\} \in S
S is some set (of anything: emails, images, integers)
c > 0 is a constant
f(\cdot) is any function
q(\cdot) is a polynomial with non-negative coefficients
\phi(\mathbf{x}) is a function from the \rightarrow \mathbb{R}^m
k_3(\cdot,\cdot)is a valid kernel in \mathbb{R}^m
A is a symmetric positive semidefinite matrix
x = (x_a, x_b) ....essentially, x can be decomposed into subparts
               ...like scalars in a vector
k_a(\cdot,\cdot), k_b(\cdot,\cdot) are valid kernels over their respective spaces
```

Techniques for Kernel Construction

Given valid kernels $k_1(x,x')$ and $k_2(x,x')$,

the following are also valid kernels

 $k(x,x') = k_a(x_a,x'_a)k_b(x_b,x'_b)$

$$k(x,x') = ck_1(x,x')$$

$$k(x,x') = f(x)k_1(x,x')f(x')$$

$$k(x,x') = q(k_1(x,x'))$$

$$k(x,x') = \exp(k_1(x,x'))$$

$$k(x,x') = k_1(x,x') + k_2(x,x')$$

$$k(x,x') = k_3(\phi(x),\phi(x'))$$

$$k(x,x') = x^T A x' \quad \text{This one assumes } x,x' \text{ are vectors }$$

$$k(x,x') = k_a(x_a,x'_a) + k_b(x_b,x'_b)$$