

■ Menu

Model Representation II

To re-iterate, the following is an example of a neural network:

$$\begin{split} a_1^{(2)} &= g(\Theta_{10}^{(1)} \, x_0 + \Theta_{11}^{(1)} \, x_1 + \Theta_{12}^{(1)} \, x_2 + \Theta_{13}^{(1)} \, x_3) \\ a_2^{(2)} &= g(\Theta_{20}^{(1)} \, x_0 + \Theta_{21}^{(1)} \, x_1 + \Theta_{22}^{(1)} \, x_2 + \Theta_{23}^{(1)} \, x_3) \\ a_3^{(2)} &= g(\Theta_{30}^{(1)} \, x_0 + \Theta_{31}^{(1)} \, x_1 + \Theta_{32}^{(1)} \, x_2 + \Theta_{33}^{(1)} \, x_3) \\ h_{\Theta}(x) &= a_1^{(3)} &= g(\Theta_{10}^{(2)} \, a_0^{(2)} + \Theta_{11}^{(2)} \, a_1^{(2)} + \Theta_{12}^{(2)} \, a_2^{(2)} + \Theta_{13}^{(2)} \, a_3^{(2)}) \end{split}$$

In this section we'll do a vectorized implementation of the above functions. We're going to define a new variable $z_k^{(j)}$ that encompasses the parameters inside our g function. In our previous example if we replaced by the variable z for all the parameters we would get:

$$a_1^{(2)} = g(z_1^{(2)})$$

 $a_2^{(2)} = g(z_2^{(2)})$
 $a_3^{(2)} = g(z_3^{(2)})$

In other words, for layer j=2 and node k, the variable z will be:

$$z_k^{(2)} = \Theta_{k,0}^{(1)} x_0 + \Theta_{k,1}^{(1)} x_1 + \dots + \Theta_{k,n}^{(1)} x_n$$

The vector representation of x and z^j is:

$$x = \begin{cases} x_0 & z_1^{(j)} \\ x = \frac{x_1}{\dots} z^{(j)} = \frac{z_2^{(j)}}{\dots} \\ x_n & z_n^{(j)} \end{cases}$$

Setting $x=a^{(1)}$, we can rewrite the equation as:

$$z^{(j)}=\Theta^{(j-1)}a^{(j-1)}$$

We are multiplying our matrix $\Theta^{(j-1)}$ with dimensions $s_j \times (n+1)$ (where s_j is the number of our activation nodes) by our vector $a^{(j-1)}$ with height (n+1). This gives us our vector $z^{(j)}$ with height s_j . Now we can get a vector of our activation nodes for layer j as follows:

$$a^{(j)} = g(z^{(j)})$$

Where our function g can be applied element-wise to our vector $z^{(j)}$.

We can then add a bias unit (equal to 1) to layer j after we have computed $a^{(j)}$. This will be element $a_0^{(j)}$ and will be equal to 1. To compute our final hypothesis, let's first compute another z vector:

$$z^{(j+1)} = \Theta^{(j)} a^{(j)}$$

We get this final z vector by multiplying the next theta matrix after $\Theta^{(j-1)}$ with the values of all the activation nodes we just got. This last theta matrix $\Theta^{(j)}$ will have only **one row** which is multiplied by one column $a^{(j)}$ so that our result is a single number. We then get our final result with:

$$h_{\Theta}(x) = a^{(j+1)} = g(z^{(j+1)})$$

Notice that in this **last step**, between layer j and layer j+1, we are doing **exactly the same thing** as we did in logistic regression. Adding all these intermediate layers in neural networks allows us to more elegantly produce interesting and more complex non-linear hypotheses.