Machine Learning for COVID-19 Detection Based on Routine Blood Tests

Cabitza, F., Campagner, A., Ferrari, D., Di Resta, C., Ceriotti, D., Sabetta, E., ... & Carobene, A. (2021). Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests. Clinical Chemistry and Laboratory Medicine (CCLM), 59(2), 421-431.

Known Shortcomings of rRT-PCR

Long turnaround time

Potential shortage of reagents

False-negative rates around 15–20%

Expensive equipment

OSR dataset

- Routine blood-test results performed on 1,737 patients
- 34 features columns
- 52% COVID-19 positive
- 48% COVID-19 Negative

OSR dataset

Hematological

Coagulation

Biochemical

Rapidpoint 500

Additional information

Exploratory Data Analysis

Exploratory Data Analysis (EDA)

Drop Column

Missing Rate

CK	58.00
UREA	36.75
ALP	24.70
GGT	22.43
EOT	18.02
MO	18.02
EO	18.02
BA	18.02
NET	18.02
LYT	18.02
MOT	18.02
BAT	18.02
LY	18.02
NE	18.02
LDH	14.50

Drop Row

| 1530 | PSMAY0116_2020-05-04 | 0 | 41.5 | NaN |
NaN | NaN | NaN | NaN | NaN | NaN | NaN | Nail | 0.0 | 0 |
|------|----------------------|---|------|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|------|-----|---|
| 1544 | PSMAY0061_2020-05-03 | 1 | 54.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1547 | PSMAY0015_2020-05-05 | 0 | 61.0 | NaN |
NaN | NaN | 0.0 | 1 |
| 1549 | PSMAY0027_2020-05-04 | 1 | 46.0 | NaN |
NaN | NaN | 0.0 | 1 |
| 1554 | PSMAY0092_2020-05-18 | 0 | 93.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1560 | PSMAY0209_2020-05-30 | 0 | 66.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1565 | PSMAY0164_2020-05-11 | 0 | 35.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1569 | PSMAY0005_2020-05-05 | 0 | 46.0 | NaN |
NaN | NaN | 0.0 | 1 |
| 1575 | PSMAY0159_2020-05-22 | 1 | 60.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1598 | PSMAY0202_2020-05-01 | 1 | 76.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1600 | PSMAY0017_2020-05-04 | 1 | 51.0 | NaN |
NaN | NaN | 0.0 | 1 |
| 1620 | PSMAY0036_2020-05-19 | 1 | 47.0 | NaN |
NaN | NaN | 0.0 | 0 |
| 1688 | 6 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
NaN | NaN | 0.0 | 0 |
| 1711 | 29 | 0 | Na.I | NaN |
NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaM | 0.0 | 0 |

```
Name: target, dtype: float64

train percentage:

0 51.716418
1 48.283582
Name: target, dtype: float64

test percentage:
```

raw data percentage :

51.73031

48,26969

51.785714

48.214286

Name: target, dtype: float64

KNN Imputation

K=5

$$X^* = rac{X - X_{min}}{X_{max} - X_{min}}$$

Min-Max Normalization

	count	mean	std	min	25%	50%	75%	max
Sex	1340.0	0.57	0.50	0.0	0.00	1.00	1.00	1.0
Age	1340.0	0.61	0.19	0.0	0.48	0.62	0.77	1.0
CA	1340.0	0.05	0.03	0.0	0.04	0.04	0.05	1.0
CREA	1340.0	0.06	0.06	0.0	0.04	0.05	0.06	1.0
ALP	1340.0	0.11	0.08	0.0	0.07	0.09	0.12	1.0
GGT	1340.0	0.05	0.08	6.0	0.02	0.03	0.06	1.0
GLU	1340.0	0.13	0.07	0.0	0.09	0.11	0.13	10
AST	1340.0	0.04	0.05	0.0	0.01	0.02	0.04	1.0
ALT	1340.0	0.06	0.08	0.0	0.02	0.04	0.07	9.0
LDH	1340.0	0.14	0.09	0.0	0.08	0.11	0.18	1.0
PCR	1340.0	0.15	0.18	0.0	0.01	0.09	0.23	1,0
KAL	1340.0	0.40	0.12	0.0	0.32	0.39	0.46	1.0
NAT	1340.0	0.34	0.07	6.0	0.30	0.35	0.38	1.0
WBC	1340.0	0.10	0.06	0.0	0.06	0.09	0.13	1.0
RBC	1340.0	0.54	0.13	0.0	0.46	0.55	0.62	1.0
HGB	1340.0	0.57	0.18	0.0	0.46	0.59	0.70	1.0
НСТ	1340.0	0.56	0.16	0.0	0.47	0.58	0.67	1.0
MCV	1340.0	0.41	0.09	0.0	0.37	0.41	0.46	1.0

Model

KNN

Naive bayes

Logistic regression

SVM

Random forest

Boosting

- AdaBoost
- GradientBoost
- XGBoost

Pros:

• Continuous Error Correction

Cons:

 Tree algorithms can over-fit the data model type: XGBoost

time costing: 1.3852753639221191

Accuracy: 0.8 Auc: 0.84 Detail:

		precision	recall	f1-score	support
e	0.0	0.80	0.83	0.81	174
1	.0	0.81	0.78	0.79	162
accura	асу			0.80	336
macro a	avg	0.80	0.80	0.80	336
weighted a	avg	0.80	0.80	0.80	336

Neural Network

Multi-layer Perceptron (MLP)

Pros:

High Accuracy

Cons:

- Difficult to explain
- High Computation

Accuracy: 0.8 Auc: 0.84 Detail:

		precision	recall	f1-score	support
	0.0	0.79	0.82	0.81	174
	1.0	0.80	0.77	0.79	162
accur	acy			0.80	336
macro	avg	0.80	0.80	0.80	336
weighted	avg	0.80	0.80	0.80	336

Model Comparison

	model_type	Accuracy	AUC
0	XGBoost	0.803571	0.835604
0	Random Forest	0.797619	0.849936
0	GradientBoost	0.797619	0.841812
0	MLP	0.797619	0.84426
0	SVM	0.782738	0.840925
0	AdaBoost	0.764881	0.834007
0	Logistic Regression	0.741071	0.812012

(RFE) Recursive Feature-Elimination

n_features_to_select=20

```
model type: XGBoost
             importances
   Features
                 0.455840
29
        EOT
                 0.310221
        LDH
13
        WBC
                 0.169918
          CA
                 0.024573
                 0.020856
        HGB
15
                 0.018592
        Al T
```

(PCA) Principal Component Analysis

n_components=20

Pros:

High versatility

Cons:

Difficult to explain

Grid Search

```
{'max_depth': 25, 'n_estimators': 39}
0.8358208955223881
```

<AxesSubplot:xlabel='param_n_estimators', ylabel='mean_test_score'>

Reference

- https://www.degruyter.com/document/doi/10.1515/cclm-2020-1294/html
- https://zenodo.org/record/4081318#.YkwDQS1BxPa
- https://scikit-learn.org/stable/index.html