Composition of Injective and Surjective Functions

Reniender

A function $f: x \rightarrow y$ between sets x and y is injective if for any $a,b \in x$ $f(a) = f(b) \Rightarrow a = b$

f is surjective if im (f) = X

Proposition 8.23

Let X, Y, Z be sets and $f: X \rightarrow Y$ be functions $g: Y \rightarrow Z$

(i) et f, g, are injective then g of is injective

(ei) " " " surjective then gof is surjective

Price

suppose (gof)(a) = (gof)(b)

=>
$$g(f(a)) = g(f(b))$$

yenjective => $f(a) = f(b)$
funjective => $a = b$

=) gof is injective.

```
(ii) suppose fig are surjective
```

if z e ? Want to show there is z e X such that (g.f)(x)=?

sina g is surjective. There is $y \in Y$ such that g(y) = 2since f is surjective. There is $x \in X$ such that f(x) = ynow $(g \circ f)(x) = g(f(x))$

= g(y) = Z so got is surjective Proposition Let U, W be the voctor spaces and suppose T: V is linear. T is surjective > ker (T) = {0}

Pricel

"=> " Suppose T is injective and let ue ker(T)