

Devoir surveillé de Mathématiques n°4 le 09/12/2024

durée: 2h30

Exercice 1 (30 points).

On considère l'équation fonctionnelle :

(P)
$$\forall (x, y) \in \mathbb{R}^2$$
, $[1 - f(x)f(y)]f(x + y) = f(x) + f(y)$

Le but est de trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$, continues sur \mathbb{R} , qui vérifient (P).

Dans les questions 1) à 5), on suppose que f est une fonction qui vérifie toutes les conditions ci-dessus.

- 1. Premières propriétés de f
 - (a) Montrer que f(0) = 0.

(b) Montrer que f est impaire.

- 2. Limite de f en $+\infty$
 - (a) Justifier que: $\forall x \in \mathbb{R} : (1 f(x)^2) f(2x) = 2f(x)$.
 - Montrer qu'il est impossible que f ait une limite infinie lorsque x tend vers $+\infty$.

Montrer que, si f possède une limite lorsque x tend vers $+\infty$, alors cette limite est nécessairement 0.

3. Ensemble des zéros de f On note désormais $S = \{x \in \mathbb{R} \mid f(x) = 0\}.$

(a) Justifier que $S \neq \emptyset$.

- (b) Montrer que, si $x \in S$, alors, pour tout $m \in \mathbb{N}$, $mx \in S$.
- (c) Montrer que, si $x \in S$, alors $\frac{x}{2} \in S$.
 - 4. Raisonnement par l'absurde :

Supposons, par l'absurde, que $S = \{0\}$.

f(y)-f(x) (a) Montrer que f a un signe constant strict sur $]0, +\infty[$. f(y) - f(x) (b) Soit $(x, y) \in]0, +\infty[^2$. Montrer que f(x) - f(y) est du signe de f(y - x) (au sens strict).

O Dans le cas où f > 0 sur \mathbb{R}_+^* , en déduire que f est strictement croissante sur \mathbb{R}_+ . Que dire dans l'autre cas?

(d) Conclure.

5. Détermination de l'ensemble S

Montrer qu'il existe un réel a strictement positif dans S.

On fixe donc un réel $a \in S \cap]0, +\infty[$. Montrer que : $\forall n \in \mathbb{N}, \frac{a}{2^n} \in S$, puis que $\forall (n, m) \in \mathbb{N}^2, \frac{ma}{2^n} \in S$.

Soit x un réel fixé positif. On définit la suite (u_n) par :

$$u_n = \frac{a}{2^n} E(\frac{2^n x}{a})$$
 pour tout $n \in \mathbb{N}$.

Montrer que $u_n \to x$. En déduire que $x \in S$.

Quelles sont les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues qui vérfient (P)?

Exercice 2 (11 points).

On considère la suite définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_{n+1} = \sin(u_n) \end{cases}$$

. Montrer que $\forall n \in \mathbb{N}^{\bullet}, u_n \in [-1, 1]$.

Etudier la fonction g définie sur [-1,1] par $g(x) = \sin(x) - x$ et en déduire son signe sur cet intervalle.

3. Que dire de la suite (u_n) si u_0 est tel que $u_1 = 0$?

Montrer que $\forall n \in \mathbb{N}^{\bullet}, \ u_n \in]0,1]$. En déduire que u est décroissante et donner sa limite.

3. Que se passe-t-il si u_1 ∈ [-1,0]? (on pourra justifier plus rapidement)

Exercice 3 (9 points).

Soit (u_n) une suite réelle.

On pose, pour tout $n \in \mathbb{N}^{\bullet}$, $v_n = \frac{u_1 + u_2 + u_3 + ... + u_n}{n}$

On suppose que la suite u est croissante et converge vers un réel ℓ

X. Montrer que la suite v ainsi définie est également croissante et que , pour tout $n \in \mathbb{N}^*, v_n \leqslant \ell$. Que peut-on en déduire pour la suite v?

2. Établir que , pour tout $n \in \mathbb{N}^{\bullet}, v_{2n} \geqslant \frac{u_n + v_n}{2}$.

3. En déduire la limite de la suite v.