WQII APP (WATER QUALITY INDEX INDIA) A PROJECT REPORT

Submitted by

PRATYAKSH SHRIVASTAVA (18BCE10195) SUHANI AGRAWAL

(18BCE10272)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING VIT BHOPAL UNIVERSITY KOTHRIKALAN, SEHORE MADHYA PRADESH - 466114

APRIL 2022

VIT BHOPAL UNIVERSITY, KOTHRIKALAN, SEHORE MADHYA PRADESH – 466114

BONAFIDE CERTIFICATE

Certified that this project report titled "WQII (WATER QUALITY INDEX

INDIA)" is the bonafide work of "PRATYAKSH SHRIVASTAVA (18BCE10195)

& SUHANI AGRAWAL (18BCE10272)" who carried out the project work under

my supervision. Certified further that to the best of my knowledge the work reported

at this time does not form part of any other project/research work based on which a

degree or award was conferred on an earlier occasion on this or any other candidate.

PROGRAM CHAIR

Dr. Sandip Mal

PROJECT GUIDE

Dr. Swagat Samantaray

Senior Assistant Professor School of Computer Science & Engineering VIT BHOPAL UNIVERSITY Senior Assistant Professor School of Computer Science & Engineering VIT BHOPAL UNIVERSITY

The Project Exhibition I Examination is held on 28/04/2022

ii

ACKNOWLEDGEMENT

First and foremost, I would like to thank the Lord Almighty for His presence and immense blessings throughout the project work.

I wish to express my heartfelt gratitude to **Dr. Sandip Mal**, Head of the Department, School of Computer Science for much of his valuable support and encouragement in carrying out this work.

I would like to thank my internal guide **Dr. Swagat Samantaray**, for continually guiding and actively participating in my project, and giving valuable suggestions to complete the project work.

I would like to thank all the technical and teaching staff of the School of Computer Science, who extended directly or indirectly all support.

Last, but not least, I am deeply indebted to my parents who have been the greatest support while I worked day and night on the project to make it a success.

LIST OF FIGURES

TABLE	TITLE	PAGE NO.
NO.		
1	Figure 2.2.1.1 Namami Gange	5
2	Figure 2.2.3.1 Delphi Technique	7
3	Figure 4.3.1 System Architecture	16
4	Figure 4.4.1Language selection screen	17
5	Figure 4.4.2 Location selection screen	17
6	Figure 4.4.3 Enter water info screen	18
7	Figure 4.4.4 Location selection screen	18
8	Figure 4.4.5 Graph activity Dark mode	19
9	Figure 4.4.6 Graph activity light mode	19
10	Figure 5.1.1 Build Gradle	25
11	Figure 5.1.2 Enterwaterinfo.java	25
12	Figure 5.1.3 Hindi/English string array	26
13	Figure 5.1.4 FilterMinMax.java	26

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1	Table 3.2.1 Usable water quality table	8
2	Table 3.2.2 Water quality of river ganga	11

ABSTRACT

Water is an extremely important part of our lives. It is used for many purposes and in many ways. And for our environmental monitoring water quality testing holds a vital role.

Clean, safe, and adequate freshwater is of utmost importance to human existence and the survival of all living components in the ecosystem. Water quality issues are complex and diverse, deserving urgent global attention and action. The decline in water quality has become a global issue of concern because of its inherent ability to cause major alterations to the hydrological cycle. The past decade has seen a remarkable impact of man on the environment due to an unprecedented increase in population and rapid rate of urbanization as well as the intensification and expansion of agricultural practices. This has led to progressive and continual degradation of resources especially surface water. Polluted water is an important vehicle for the spread of diseases. In developing countries, about 1.8 million people, mostly children, die every year as a result of water-borne diseases.

The WATER QUALITY INDEX (WQI) provides a single number that expresses the overall water quality, at a certain location and time, based on several water quality parameters. Several indices have been developed to summarize water quality data in an easily expressible and easily understood format.

WQII (WATER QUALITY INDEX INDIA) is an application designed to determine the usability and quality of water in a particular region of India. It will check the water based on different parameters and then determine whether the water in this region is usable or not.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE NO.
NO.			
	List of Figur	es	iv
	List of Table	s	iv
	Abstract		v
4		CHAPTER-1:	
l	PROJ	ECT DESCRIPTION AND OUTLINE	
	1.1	Introduction	1
	1.2	Motivation for the work	2
	1.3	Problem Statement	2
	1.4	Objective of the work	3
2		CHAPTER-2:	
2	RE	LATED WORK INVESTIGATION	
	2.1	Core area of the project	4
	2.2	Existing Approaches	5
		2.2.1. Approach-1	5
		2.2.2. Approach-2	6
		2.2.3. Approach-3	6
	2.3	Issues	7
		CHAPTER-3:	
	3.1	REQUIREMENT ARTIFACTS Hardware and Software requirements	8
	3.2	Specific Project requirements	8
		1 J 1	

4	CHAPTER-4:	
4	DESIGN METHODOLOGY AND ITS NOVELTY	
	4.1 Methodology and goal	13
	4.2 Functional modules design and analysis	14
	4.3 Software Architectural designs	15
	4.4 User Interface designs	17
	CHAPTER-5:	
5	TECHNICAL IMPLEMENTATION & ANALYSIS	
	5.1 Technical coding and code solutions	20
	5.2 Prototype submission	27
	5.3 Test and validation	27
	CHAPTER-6:	
6	PROJECT OUTCOME AND APPLICABILITY	
	6.1 Outline	43
	6.2 Project applicability to Real-world applications	43
7	CHAPTER-7:	
/	CONCLUSIONS AND RECOMMENDATION	
	7.1 Limitations	45
	7.2 Future Enhancements	45
	7.3 Conclusion	46
8	REFERENCES	47

CHAPTER – 1

PROJECT DESCRIPTION AND OUTLINE

1.1 INTRODUCTION

Clean, safe, and adequate freshwater is of utmost importance to human existence and the survival of all living components in the ecosystem. Water quality issues are complex and diverse, deserving urgent global attention and action. The decline in water quality has become a global issue of concern because of its inherent ability to cause major alterations to the hydrological cycle. The past decade has seen a remarkable impact of man on the environment due to an unprecedented increase in population and rapid rate of urbanization as well as the intensification and expansion of agricultural practices. This has led to progressive and continual degradation of resources especially surface water. Polluted water is an important vehicle for the spread of diseases.

In developing countries, about 1.8 million people, mostly children, die every year as a result of water-borne diseases.

Water quality is one of the most important factors in a healthy ecosystem. When water quality is poor, it affects not only aquatic life but also the surrounding ecosystem. Water testing is done based on different factors and parameters, it may be physical, chemical, or biological. It is especially important to understand and measure water quality as it directly impacts human consumption and health, industrial and domestic use, and the natural environment.

This application will check the water of the region on different parameters and will conclude that the water present here can be used for purposes like drinking, agriculture, washing, etc.

1. MOTIVATION FOR THE WORK

Poor water quality has a direct impact on water quantity in several ways. Polluted water that cannot be used for drinking, bathing, industry, or agriculture effectively reduces the amount of usable water within the given area. Maintaining good water quality is essential to human health, the environment, agricultural industries, and the recreational value of waterways, wetlands, and coastal waters. Awareness of the environmental conditions and human activities that influence water quality is important for effective water management. And it is very important to know whether the water in our area is usable or not and the major contents present in it. Our app will determine how and for what purpose we can use the water present in our region. So that it cannot cause any health-related issues. Or if the water present is contaminated, how can we make it usable.

1.3 PROBLEM STATEMENT

Due to the limited drinking water resources, intensive money requirements, growing population, urban change in rural areas, and the excessive use of sea resources for salt extraction have significantly worsened the water quality available to people. The high use of chemicals in manufacturing, construction, and other industries, and fertilizers in farms are also directly leaving the polluted water from industries into nearby water bodies have made a huge contribution to the global water quality reduction, which has become an important problem. Even due to containment water various water born are increasing day by day, due to which many human beings are losing their lives. Local water quality can be used to identify the sources and fates of toxic contaminants and pollutants either from ecology, geology, and anthropogenic activities (industrial processes, runoff from agricultural farms, etc) in the area.

1.4 OBJECTIVE OF THE WORK

The objective of WQI is to turn complex water quality data into information that is understandable and usable by the public. Several indices have been developed to summarize water quality data in an easily expressible and easily understood format. WQII is one of the most effective tools to express water quality and can be used as an important parameter for the assessment and management of the water source, giving a good idea of the evolutionary tendency of water quality to evolve over time.

- The index provides a single number that represents overall water quality at a certain location and time based on some water parameters.
- The water quality classification system used in the WQI denotes how suitable water is for drinking.
- The single-value output of this index, derived from several parameters, provides important information about water quality that is easily interpretable, even by laypeople.

CHAPTER 2

RELATED WORK INVESTIGATION

2.1 CORE AREA OF THE PROJECT

To determine the quality of a water body, the chemical, biological and physical conditions of a water body must be measured. Chemical measurements, biological surveys, and visual observations (physical) provide a "big picture" of what's happening in a water body. The following is a list of indicators (physical, chemical, and biological) that are often measured to assess the quality of water.

1. Physical indicators

Some physical indicators of the quality of a water sample from any source including,

- Temperature Electrical Conductivity Taste Total Suspended Solids (TSS)
 - Turbidity Odour Colour Total Dissolved Solids (TDS)

2. Chemical indicators

Some chemical indicators of the quality of a water sample from any source including,

- pH Biochemical Oxygen Demand (BOD) Chemical Oxygen
 Demand (COD)
- Dissolved Oxygen (DO) Total Hardness Phosphates Pesticides
 - Nitrates
- Surfactants Heavy metals

Biological indicators

Some biological indicators of the quality of a water sample include,

 Bacteria (fecal coliform, Escherichia coli, Cryptosporidium, Giardia lamblia), – Viruses – Fungi protozoa – Parasitic worms)

2.2 EXISTING APPROACHES

2.2.1 APPROACH - 1

- 'Namami Gange Programme', is an Integrated Conservation Mission, approved as a 'Flagship Programme' by the Union Government in June 2014 with a budget outlay of Rs.20,000 Crore to accomplish the twin objectives of effective abatement of pollution, conservation, and rejuvenation of National River Ganga. The aims and objectives of NMCG are to accomplish the mandate of the National Ganga River Basin Authority (NGRBA) of.

 1. To ensure effective abatement of pollution and rejuvenation of the river Ganga by adopting a river basin approach to promote inter-sectoral co-ordination for comprehensive planning and management.
- 2. To maintain minimum ecological flows in the river Ganga to ensure water quality and environmentally sustainable development.

Figure 2.2.1.1 Namami Gange

2.2.3 APPROACH – 2

In Nigeria, the most frequent water sources are surface waters (rivers, streams, ponds, and lakes) and groundwater (borehole and hand-dug wells). The Physico-chemical assessments of water samples showed that while some of the parameters are within permissible limits, many exceeded the stipulated standards. Application of the water quality index (WQI) to determine the suitability of the water for an intended use indicated that most water sources in the western part of the country are good and suitable for human consumption except for incidences of high levels of fecal contamination in some rivers. The WQI for most locations in the northern part of the country is either bad or poor and not suitable for human consumption. In the eastern and southern parts of the country, the WQI index indicated marginal quality that was not suitable for human consumption without treatment. This marginal quality could be a result of the high levels of nitrate and acidic pH of most of the water bodies in the area. In all, it is recommended that prior treatment of the water is very important before consumption to avoid water-borne related diseases and illnesses.

2.2.3 APPROACH – 3

The Delphi technique was used for selecting water quality parameters in several WQI model applications. Here, the important parameters are selected based on gathering expert opinions through interviews or surveys. In general, there are no specific rules or guidelines for selecting the water quality parameter for inclusion in the WQI model. The traditional WQI model does not follow any systematic technique for setting its parameters. It seems that the WQI model parameters were generally chosen based on a few common water quality issues such as oxygen availability, eutrophication, health considerations, physical and chemical phenomena, and dissolved constituents.

Figure 2.2.3.1 Delphi Technique

2.3 ISSUES

- Lack of precision and accuracy in classification technique of importance of evaluation of parameters.
- 2. Inefficiency in dealing with uncertainty and subjectivity in a complex environmental issue such as the incompatibility of observations, uncertainty, and imprecision in criteria.
- 3. Lack of a uniform method for measuring water pollution involving biological parameters.
- 4. Inadequate transfer of complex environmental data into information.
- 5. Manual data entry and calculation required.
- 6. No Live data.

CHAPTER - 3

REQUIREMENT ARTIFACTS

3.1 HARDWARE AND SOFTWARE REQUIREMENTS

HARDWARE:

We are assuming that we already have the hardware that are the devices installed by the government of India on the Ganga River. If we want to rely on actual information and not on data. We need hardware for every water body to see whether the water can be useful or not.

SOFTWARE:

- An Android Phone with Android 6.0 or above.
- The basic dataset & Information and calculation.
- 150 Mb of free space.

3.2 SPECIFIC PROJECT REQUIREMENTS

We have the data available with us saying how the water of different regions differs based on different parameters.

The project "NAMAMI GANGE" has all the data sets of the Ganga River at different places and regions based on different parameters.

Data presented in the Freshwater Quality Index helps indicate whether water quality is good, meeting standards to protect aquatic life, whether it is of moderate concern or is poor, and doesn't meet expectations. The index ranges from 1 to 100; a higher number indicates better water quality.

We took that data and worked on it and use it for our application WQII.

Table 3.2.1 Usable water quality table

PARAMETERS		MIN	MAX
	FOR BATHING	32	40
TEMPERATURE(`C)	FOR DRINKING	6	20
TEIVIPERATORE(C)	FOR AGRICULTURE	-	
	FOR WASHING	32	95
Dissolved Oxygen (mg/L)	FOR DRINKING	6.5	8
Dissolved Oxygen (mg/L)	FOR AGRICULTURE	5	10
	FOR DRINKING	6.5	8.5
рН	FOR BATHING	5.5	6
	FOR WASHING	8	10.5
	FOR AGRICULTURE	5	8
	FOR DRINKING	200	800
	FOR AGRICULTURE	1500	2500
	FOR DRINKING	0	1
Bio- Chemical Oxygen Demand(mg/L)	FOR WASHING	0	5
	FOR AGRICULTURE	0	200
	FOR DRINKING	0	10
Nitrate(mg/L)	FOR BATHING	10	
with a te (mg/ L)	FOR WASHING	10	
	FOR AGRICULTURE		50
	FOR BATHING		500
Faceal Coliform(MPN/100mL)	FOR DRINKING		0

Table 3.2.2 Water quality of river ganga

Statio	LOCATION	STATE	Temps (*		Dissolved Oragen (mg/ L)		,	pH.	Conds (µmh	estivity n/ Cm)	Osy	emical gen f (mg/L)	Fee	e/ti		Culffurm 100 mi.)		alfarm 100 mL)	Street	eeral ptooscoi / 100 mL)
Code	· PD0022817	215395.57	Min	Max	+5.0 Min	mg/L Max	6.5 Min	Max	Min	Mas	< 3.0 Min	mg/i.	Min	Max	< 2500 M	PN/ 100 mL Max	Min	Max	Min	Mex
1491	Bringirathi at gangothi	CHANGHAND	-	-	9.8	9.8	-	-	-	-		-	-	-	7	7	9			-
1485	MANDAKINE ILIC ALAKIMADA AT RUDBAPRAYAGI	UTTAKAKHAND	3.7	18	9.4	9.8	2,8	7.8	-	12.7	HDL.	1.0			1.8	2	1.8	1		15
1484	ALAKNANDA B/I. NAADABINI AT BUDBA PRAYAG	UTTHANHAM	37	19	3.6	30.2	2.6	21	-	9.0	1.0	1.0	-	4	1.0	Σ	NA:	2	-	14
146	ALAKNANDA A/C MANDAKINI AT RUDRAPRAYAG	UTTAKAHAAD	36	28	1.2	30.2	7.7	7.8	-	-	18	1.0	-		18	2	NA.	i.		31
1496	BHAGRATHI BIC WITH ALAKNANCA AT DEVPRAYAG	UTTARAKHAND	17	38	9.4	30.1	7.6	8.0	-	-	1.0	1.0	-	-	1.8	2	NA.	1	-	-
1487	ALAKHANDA S/CTO SHAGIRATHI AT DEVPRAYAG	UTTABAKHAND	17	29	9.2	30.0	7.6	7.8	-		1.0	1.0	-	ä	18	2	NA.	2		4
1489	ALAKHANDA AYE WITH BHAGHATHI AT DEVPRAYAG	UTTAKAHHAND	17	39	9.6	30.0	7,9	8.0		-	1.0	1.0	-	-	18	7	NA.	2		2.0
20048	SWARG ASHROW-1	UTTARAKHAND	19	23	9.2	30.2	7.9	81	305	292	1.0	1.0	-	-	40	60	110	170	-	
1060	GANGA AT RISHRESH U/S	UTTAKAKHAND	16	20	5.8	33.8	2,4	8.2	114	125	1.0	1.0			34	30	40	401.	-	14
20049	LAKKAR GHAT-DIKDATION PONDS	UTTAKAKHAND	19	28	1.1	30.2	7.8	8.4	-	190	1.0	1.0			40	30.	10	170	-	
10147	RIVER GANGA D/S RISHINESH	UTTABARHAND	16	12	9.0	11.2	7.3	8.2	107	154	1.0	1.0	-	-	26	40	50	90		
2725	GANGA RIVER AFTER CONFLUENCE OF RIVER SONG	UTTABAKHAND		25	84	30.4	7.4	8.4	306	400	1.0	12	-	-	58	130	110	280	==	-
10148	DEHRAGUN RIVER GANGA AT HAR EL FALIRI GHAT	LITTARAKHAND	17	33	9.0	10.2	75	8.4	121	155	1.0	1.0		7.2	26	50	40	110	-	14
1061	GANGA AT HARIDWARD/S,	UTTARAKHAND	16	22	86	9.4	7.1	8.0	173	231	1.0	2.0	-	-	70	220	130	350	7	2.7
2727	UPPER GANGA RIVER D/S ROCHKEE	UTTABAKHAND	16	20	8.6	30.0	7,4	83	1	183	1.0	1.2	2	23	40	90	110	170	-2	2
10150	NIVER GANGA AT MACHYA GANGA BARRAGE, HUNOR	UTTAR PRADESH	-	-	75	9.7	7/K	22	62	253	1.3	1.8	~	-	-	-	-	-	-	7.4
1062	GANGA AT GARHMUKTESHWAR	UTTAR PRADESH	16.5	36	7.5	30.5	6.8	3.3	135	266	0.0	2.8	0.33	0.93	320	1700	540	3500	2	2
10146	GHARMUKTESHWAR	UTTAR PKADISH	16	26	7.5	13.5	6.5	7.6	368	250	0.6	2,1	0.25	0.85	110	1300	240	2800	-	1
7.488	GANGA U/S, ANDOPSHAHAR	PRADESH	15	30	7.0	50:4	6.9:	73	210	232	11	2.8	0.32	0.62	110	290	170	350	-	1.0
2489	GANGA D/S, ANOOPSHAHAR	PRADESH	17	30	7.2	10.3	7,0	7.6	218	236	8.8	2,6	0.34	0.53	170	430	240	920		11
1145	GANGA AT NARORA (BULANCSAHAR)	PRADESH	14	29	7.3	20.8	7.1	7.6	220	234	1.0	2.5	0.37	0.66	260	100	630	1600	-	34
2490	GANGA AT KACHHLA GHAT, ALIGARH	UTTAR PRADESH	16	25	9.7	10.5	7.0	8.0	118	769	0.9	2.5	0.55	0.62	170	270	250	460	-	-
10351	RIVER GANGA AT FABURKABAD	PRADESH	16	33	6.4	10.7	7.6	8.4	357	285	1.7	2.6	-		1.8	1700	1700	3700	-	1.2
1063	GANGA AT KANNALII U/S [RAIGHAT]	UTTAR PRADESH	16	32	6.4	10.6	7,7	8.6	205	345	2.4	3,4	-	-	1300	2700	3300	4600	-	
1066	GANGA AT KANNAUI 0/5	UTTAR PRADESH	16	32	6.0	10.2	7.8	8.6	200	366	2.8	4.2	-	-	1700	3300	4000	5800	-	-
1146	GANGA AT BITHOOK (KANPUR)	HEADESH!	26.	32	6.1	30.6	7.0	8.8	203	350	2.3	4.4	-	-	1400	3400	1100	5800		3.5
1067	GANGA AT KANPUR U/S (RANIGHAT)	UTTAR PRADESH	36	12	58	10.3	7.8	8.7	200	261	2.5	4.0	-	-	1700	3400	3100	5800	-	3+
10154	RIVER GANGA AT BATHING GHAT (BHARADGHAT)	PRADESH.	36	32	5.7	30.4	7.8	8.7	206	362	2.4	3.8			2000	3300	3200	4900	7.0	-
reuse	RIVER GANGA AT 3/5 SHURLAGANI	UTTAR	16	12	5.4	30.0	2.8	6.7	311	360	27	4.4	2	=	2000	4300	4600	7000	-	5.40
1068	GÁNGA AT KAAPUR DJÓ (JAMAU PUMPING STATION)	MATTU	16	12	45	9.4	7.6	8.4	223	442	3.2	5.0	_	-	17000	15000	29000	63000	-	-
10157	BIVER GANGA AT BATHING GHAT DIMMAN BRIDGES	UTTAR	16	92	5.6	9.6	7.7	8.5	219	.892	2.6	5,6	_	_	4900	25000	7000	54000	-	
1147	GANGA AT DALMAN (RAL BARELLY)	UTYAR PRADESH	17	27	7.0	30.6	7.9	8.7	201	458	2.8	4.1	0.78	0.80	2500	3000	3100	4100	-	3.51
2496	GANGA AT KALA KANKAR, RAEBARELI	VITTAR PRADESH	17	27	4.9	13.0	7.9	8.5	206	ASIE	2.7	41	0.76	0.84	2400	3400	3300	4000	-	
1086	GANGA AT ALLAHABAD (RASOOLABAD)	UTTAR PRADESH	22.5	32.5	7.8	12.3	7.6	1.4	254	261	2.1	12	1.26	161	4300	14000	9400	34000	-	240
3467	GANGA AT KADAGHAT, ALIAHABAD	UTTAK PRADESH	22.4	32.7	12	11.3	731	83	150	266	2.0	19	1.39	1.77	4600	14000	11000	27000		540
1041	BANGA AT ALLAHABAD D./S (SANGAM)	MTTAR PNADESH	22.6	32,A	4.0	31.5	7.8	8.4	236	383	2.0	3.4	139	1.01	1300	13000	8400	27000	3	Se .
10256	REVER GANGA A/C TAMBA RIVER, SIRSA, SON BARSA	UTTAR PRADESH	32.7	32.8	7.8	11.7	7.7	8.2	346	276	1.0	2.9	1.35	1.09	3100	9400	2000	32000	-	10
2485	GAMGA U/S, VINOHYACHAL, MIRZAPUR	UTTAR PRADESH	19	29.5	72	9.3	62	11.4	352	468	2.1	12	0.48	0.90	800	1300	1100	2700	-	135
2466	GANGA D/L, MRZAPUR	PRADESH	39	29.8	4.7	8.4	9.3	8.6	364	450	1.3	1.0	0.84	1.30	7000	11000	13000	22000	-	.1
ports	RIVER SINAGA TA CHUNAR	PRADESH	19	29.3	69	8.8	2.2	6.5	360	468	2.9	3.8	0.77	1.12	5000	8000	8000	34000	-	7.6

tetio	LOCATION	STATE	Tempe (*)		Dissolved Daygen (mg/ l)		pm		Condu		Owy	agent (gen) (fireg/5)		pote (g/1)		Solitorm SOO mil)		aliform 300 mLj	Straptococci (MPN/ 100 mL)	
Code	GANGA AT WAKAMADI UN	UTTAR			+1.0	mg/L	8.5 - 6.5			1	× 3,0	mg/s			< 3500 MPR/ 100 mL					
170			Mto 20	Max 33.3	Min	20.E	Min II.3	Max	Min 304	312	1.7	Mas 13	0.12	0.24	Min 100	1700	1300	Man 1400	Min	Mee
	(ASSIGNAT) GANGA AT VARIANASI DIS	PRADESH	0.0				110	1.5.2					10.000	100100		100.7				-
rı.	(MACVITA BRIDGE) HIVER GANGA A/C GOM/TI	PRADESH UTTAR	20	31.5	6.5	7.8	2.9	6.7	392	5211	3.4	4.2	0.15	6.40	I1000	21000	17000	43000	-	- 1
tsa	RIVER, BHUSAUKA	PRADESH	211.5	32.3	1.2	9.81	1.2	8.8.	370	324	3.0	3.8	0.15	0.21	5000	11090	8000	15000		1.6
150	GHAT IDDLA GHATI	PRADESH	10	11	5.6	30.1	2.7	8.6	216	384	2.6	4.6	-	-	2900	5400	4600	1,000	-	-
rs.	GANGA AT TRIGHAT (GANZ) PORI	PRADESH	311.5	12	8.5	7.8	11.5	8.7	388	535	3.3	4.3	0.19	6.18	11000	17006	31000	13700	-	-
74	GANGA AT BUXAR	BHAR	17	25	9.8	30.8	2.8	9.0	258	517	1.4	2.8	20.02	637	458	28000	2300	160000	-	-
13	GHAT, BUKAR	Brust	177	37	6.0	8.6	7.1	8.6	253	306	1.5	2.7	0.08	0.46	2100	29000	8400	360000	2	10
51	GANGA AT BUXAR, BANWEKHAGHAT	BHAR	17	36	60	8.1	23	8.7	257	523	1.9	2.0	0.02	0.54	1100	17000	9400	15000		13
13	GANGA AT D/S BUSAN NEAR BOAD BRIDGE	Brook	16	36	6.3	8.3	7.3	0.0	266	629	1.5	2.7	0.02	9.51	170	17000	1600	54000	-	
131	RIVE GANGA AT U/S SABAHPUR BINDTOU	BHAN	19	12	62	9.3	7.5	8.8	296	411	1.1	22	0.16	0.73	1700	17000	11000	92000	-	1.0
162	GANGA AT AAA-CHHAPRA ROAO BRIDGE (KOLWER	BHAR	28	25	5.7	14	7.3	8.3	- 350	905	1.4	2.0	0.02	036	1300	1000	3300	35000		
10.4	GANGRA- CHHAPRA ROAD) GANGRAT THE CONFLUENCE OF SCREENVER CONFGANI.	BHAR	17	33	7.3.	11	7.3	8.1	207	457	1.4	23	0.10	031	1400	4000	2600	78000		
	CHAPFIA RIVER GANGA TA MAA																			
118	SARAN SARAN ISANGA NEAR DARANSIN	THUAN	17	10	7.2	1.7	7.2	8.0	16	462	1.7	12	0.12	0.62	450	22000	14000	43000	. "	
14	(NEAR HPA PUL) JRATNA	MHAR	19	29	4.7	3.4	7.4	8.5	283	563	1.8	2.4	0.01	0.86	.790	14000	1200	28000		
02	GANGA AT KURU, PATNA U/S GANGA AT GANDHIGHAT, NIT	SHAR.	19	33	8.3	8.8	2.2	8.5	267	50.3 46.7	1.8	2.8	0.08	0.58	2100 1400	13000 29000	3600 11000	35000		-
7.7	RIVER GANGA TA GULARE	0.000				-					-	-	-	-					-	
113	GNAT, PATNA GANGA AT PATNA D/S	BRANK.	19	34	5.6	83	7.4	3,4	263	465	3.8	2.8	0.08	882	1400	23000	6800	113000		
79	(HANGA BRIDGE), GAKIHAT GANGA AT MALSALAMI,	TRHAN.	19	34	1.3	8.8	77.	8.6	250	479	1.7	2.6	0.11	1.00	1100	21000	11000	360000	-	1
22	PATRIA RACHCHI-DARGAH-BEDUPUW	BHAR.	18	13	7.0	9.3	7.3	8.5	247	458	1.5	2.6	0.00	0.40	1100	13000	4000	I4000	1.0	
97	ROAD BRIDGE, PATNA BIVER GANGA AT TRIVENS	BHAR.	18	34	8.0	3.8	8.8	8.5	362	416	1.1	11	0.02	0.79	1100	13000	5500	28000	-	-
22	GHAT, PATNA GANGA AT EEWALA	MHAR	13	13	8.1	8.5	3.7	8.4	345	454	1.4	17	0.08	0.64	1400	23000	.1100	28000	-	
53	GHAT, FATUHA, PATNA	THEAST.	17	36	6.2	8.5	2.5	8.2	152	46.7	1.8	2.9	0.02	1.63	1100	22000	3100	92000	2	
01	BRIDGE ON GARGA, ATHANALGOLA, PATNA	BHAR	18	33	5.0	1.4	7.6	9.0.	246	104	1.1	13	0.09	0.61	1700	1708	3100	14000	95	-
15	GANGA RIVER AT BARH	BHAN	19	33	6.1	5.8	2.3-	9.9	218	462	3.3	2.2	0.08	042	1300	22000	7000	54000	-	
130	RIVER GARGA AT D/S NAWACKHAT, BARH, PATRIA	BHAR	18	32	6.0	9.6	7.5	8.9	740	475	1.1	2,3	0.10	0.58	1400	17000	31900	3600000	17.1	7
EP	GANGA AT MIXAMA (1676), MAHADED ASTHAW, PATRIK	BINAR	16	.55	6.1	5.4	7,4	8.8	287	452	1.1	2.6	8.34	0.90	1106	13000	1400	5400E	-	1.7
25	GANGA AT MOHAMA (D/S)	BriAR:	19	33	6.3	8.0	33	8.5	308	425	1.6	2.6	0.06	654	880	17000	14000	35000	-	- 4
23	GANGA BIMERAT BARANTA, MERAUTULA, MANANCIR, LAKSHISARII	BHAR	п	в	65	9.2	7.6	6.7	200	453	3.3	23	8.11	1.17	1100	14000	13000	11000	1,00	
116	DANGA RELUS MUNICIPE (MEAN INFAME WELL ON GANGA)	BHAR	26	12	60	9.7	74	4.6	282	+40	3.5	25	1.01	0.85	DB	1990	11000	310000	25	17
18	SANGA AT MUNICES	BHAR.	п	u	1.6	2.6	28	8.5	254	436	15	2.5	1.01	0.60	1100	20000	14000	310000	100	10
127	GANGA AT LES SULTANGANO. BHAGACPUR	DHAR	18	32	6.1	9.5	7.4	8.7	343	427	1.5	2.3	0.07	030	1700	17000	9300	1)000	-	54
-	GANGA RIVER AT WATER INTRICE POINT, BINGAUPUR	EHAR.	38	34	63	8.7	73	93	.239	312	1.8	2.6	0.05	1.06	1200	21000	4300	92000	-	-
34	GANGA AT SULTANISANG BHAGGIPUR	BHAR	18	12	6.7	5.4	7.3	8,6	.234	401	13	2.6	0.04	0.56	760	19000	3100	300000	-	7.0
138	BINER GANGA AT CHAMPANAGAR, BHAGAIPUR	MINNE.	17.	25	63	127	2.0	8.6	361	519	1.5	2.6	0.00	045	300	24000	2700	360000	-	
99	GANGA AT BIAGGIPUR	BOUAR	18	34	6.1	8.6	7.6	8.3	224	505	1.4	2.5	8.05	0.81	760	1.7990	6400	12000	-	-
II.8	SANGA AT US BHIGASPUR NEAR SARANGHAT	Messe	13	34	60	8.5	7.6	8.6	344	500	1.8	3.7	8.81	0.52	500	91000	13000	340000		-
140	BANGA ST KAHROGACH RNER GANGA DIS NEAR	SHAR.	18	N	5.9	3.3	7.5 7.6	8.5	231	426	1.1	2.8	9.85	0.56	200 1400	17000	13700	310000	7	-
144	WHITE CANDALIS MARKING	PHANNAN	L)	40	ta	8.6	2.8	8.4	304	116	12	2.6		- 045	1400	1400	. 14000	and the	-	1
140	BOUER GAINGA D/S NEAR	zwatewep	18	44	80	8.6	2.6	2.6	312	320	22	2.6								1
146	BYER GANGA AT SANG	puneump	19	39	83	8.6	8.0	8.3	312	318	12	2.8		-				-		1
50	SACAN GANGA AT RAJAANIAL	publicumo	19	40	All	8.6	8.1	4.6	310	102	22	2.8	-	-	-	-	-	-		
MO	GANGA AT SAHARAMPONE, MURSHIDABAD.	WEST BENGAL	17	17	0	11.7	2.4	8.5	296	380	8.8	4.8	0.29	8.79	7900	300000	14000	300000	-	
150	ROCE GANGA AT BEHRAMFORE (IOLNGRA) MURCHIDABAD	WEST MINGHL	1.7	BF.	4.8	11.0	12	85	288	147	10	5.8	8.29	0.82	1306	20000	13000	JORGO .	-	-
tie	ENER GANGA AT BEHRAMFORE (GORA BAZAR) MURSHIDABAD	WEST MINGRE	17	87	4,8	11.0	7.5	8.5	307	383	4.0	**	8.25	5.89	800	340000	21000	30000	-	1.7
141	SABACIF ON GANGA, GHOSHFARA NEAR MICRIFURDHAT NACIA	WEST MINGAL	21	.54	48	9.9	78	8.6	335	579	3.1	5.9	0.00	2.62	2000	17900F	400	220000		1.7

Statio	LOCATION	STATE	Temperature (°C)		Orygan (mg/ L) = 5.0 mg/L		p# 83 - 83		Constactivity (jumina/ On)		Bis-Chamtnal Chrygen Dermand (mg/L) = 5.0 mg/L		fritrate (mg/1)		Faccal Colliform (MPN/ 100 mL) = 2000 MPN/ 100 mL		Total Galiforni (MPN/ 500 ml.)		Tites	phospeci. / 100 mt.)
Code	300000000	.,,,,,,,,,																		
			Min	Mes	Min	Max	Min	Mex	Min	Mes	Min	Mac	Mile	Miss	Min	Mex	ARH.	Mee	Mire	Mee
2500	TRIBEN ON GANGA, NEAR BURNING GAVE, HODGINGT	WEST MINGAL	22	24	4.0	11.7	2.2	5.4	21.7	200	1.2	6.2	0,17	0.27	3300	2200001	Acces	309000		
perior.	RIVER GANGA AT PALTA, SHITALTALA,	WEST BENEVAL	11	22	33	9.0	2.6	5.0	213	318	1.1	6.6	3.15	0.72	31(0000	2308000	Select	3000000	12	
1004	GANGA AF PALTA	WEST BENGIL	31.	33	4.2	9.4	7.4	8.5	206	384	1.4	0.8	0.29	1.05	11000	Z3/000H	10000	900000		1.4
1472	SANSA AT SENAMPORE, HOOGHLY, WEST BENGAL	WEST BENGAL	31	12	4.2	11.5	18	8.8	214	m	11	6.1	0.31	aus	4000	2400001	7900	50000		1.0
1003	GANSA AT DAKSHANNESHAKIR, KOCKATA, WEST BENGAL	WEST BENGAL	20	*	4.7	7.8	2.8	11	153	369	2.2	3.5	0.34	XXS	31000	900000	*1000	316000000	. 4	1 4
1471	GANGA RT WOWEREN SHEVELE WEST BENEGAL	WEST SENSON.	319	n	8.7	11	2.8	ta	262	173	1.7	6.4	0.86	3.03	16000	34000E	H8000	500000		1.1
1479	GARGA AT GARDEN REACH, ROSKATA, WEST BENGAL	WEST BENGAL	38	34.	3.0	7.0	2.3	9,0	193	122	1.2	5.5	0.39	2,48	11000	90000E	70100	3800000		1.0
twi	GANGA AT ULUMENA HOMBAH, WEST SENIJAL	WEST BENGAL	25	18	4.0	75.	2.3	8.0	301	826	1.4	54	o.m	6.32	2100	33,0000	11000	3330000	(a	-
1409	GANGA AT DAAACHE HARBOUA, 24 PARGANAS ESPACET BENGAL	WEST BENGAL	39	16.	43	7,8	4.0	10	329	100	1.7	4.1	0.00	181	400	11000	3100	220000		
1395	GANGA AT PATHACI NEAR DURGA CHAK WEST BENGAL	WEST BENGAL	žá.	18	8.2	8.3	1.8	83	360	1800	85	3.0	687	3.67	23180	33500	13000	90000		

CHAPTER-4:

DESIGN METHODOLOGY AND ITS NOVELTY

4.1 METHODOLOGY AND GOAL

WQI relies on normalization, the data parameter-by-parameter, as per the predicted concentration levels, and the interpretation of "bad" versus "good" levels. After this, the index is calculated as a weighted average for all observed values, with weighted parameters according to their perceived significance to overall water quality. The purposes of the WQI method are, particularly, for the evaluation of the overall status of water quality (parameters of physical, biological, and chemical) and the use of water resources for multiple purposes. We will see the purity, and turbidity of water and can see if it's usable or not, if not how can we make it usable. The selection of significant water quality parameters is vital and key to having a good representation of all indicators of water quality. Water quality parameters

having a good representation of all indicators of water quality. Water quality parameters commonly used by various researchers include dissolved oxygen, total phosphates, temperature, pH, turbidity, chemical oxygen demand, fecal coliform, total solids, biochemical oxygen demand, and nitrates. The weight associated with each parameter is based on its respective standards and the magnitude of the assigned weight indicates the parameter's significance and impact on the index.

In this application we have taken the 2 datasets and saved them in the application then we have given the option for the predefined location or manual entry where we compare the 2 to give the WQI accordingly with an option visual representation of data as well. We can see whether the water can be useful or not, and if it's usable then we will check and give the possible use case as well unusable scenarios.

We can also see where we can use the water according to its quality like if it's suitable for drinking, agriculture purposes, etc. This information would help the people living around the bank of river Ganga to be safe and yield high output.

4.2 FUNCTIONAL MODULES DESIGN AND ANALYSIS

The modules are designed in the following ways:

1. Languageselection.java

This screen is where we select the language of the application, we have 2 Options at the moment that are English & Hindi. It is also the Primary Home screen of our application and its skippable if previous data is available.

2. Locationselection.java

This screen is where we select the predefined 95 locations in the drop-down menu to get the data of water of the application, we have search functionality in the drop-down menu and it works for both the languages. It is the Secondary Home screen of our application and automatically starts if previous data is available.

3. Enterwaterinfo.java

This screen is where we enter the water details manually and it works only when all the available values are filled to give the water, quality details.

4. InputFilterMinMax.java

It is the filter for minimum and maximum value in the Enterwaterinfo.java here in the Edit text if you enter a data which is out of bound of possible value it restricts the user from doing so.

5. GraphActivity.java

This screen is where we have the graphical view of the available 95 entries where we have 8 different graphs for each parameter that are available to us, it also has zoom and scroll functionality.

6. Res Folder

It contains all the resources like images, strings (where Hindi and English data is present), values, etc.

4.3 SOFTWARE ARCHITECTURAL DESIGNS

In this application we have taken the 2 datasets (one having the locations and its parameter and the second has all the parameters to verify WQI based on the available parameters) and saved them in the application then we have given the option for the predefined location or manual entry where we compare the 2 to give the WQI accordingly with an option visual representation of data as well. We will see the purity, and turbidity of water and can see if it is usable or not.

- 1. First, our main goal was to find the correct database to use for the following WQI comparison and the actual data of water bodies.
- 2. Then we created a blank application and started with the home screen which is language selection and added code to check if the application has any previous data or not if yes then skip this screen else wait for user input. We also added support for light and dark modes in the app.
- 3. Then we had to add the drop-down menu for the 95 available locations with search functionality and make it look like a home screen i.e. make it clean and user friendly.
- 4. After this we linked this secondary home screen to 3 options which are for going back to language screen to change the language of the app, the manual entry screen where we have data to be entered by the user manually for WQI results and lastly is the Graph screen which shows the change in parameter value along the 95 predefined location.
- 5. After the flow of control was set, we added the dual language functionality.
- 6. We then added the code to compare the WQI database which defines if the water is usable or not and for which purpose to compare to the data entered by the user in the manual as well as 95 predefined location and to return the result for it.

7. Lastly, we did all the Exception handling, Testing and debugging along with Integrated Unit Testing as well which then made our application fully stable to use.

Figure 4.3.1 System Architecture

4.4 USER INTERFACE DESIGNS

While developing this application our main goal was to make an application that is so user-friendly that any individual can make the application run and work without giving any set of instructions to them. We wanted it to be interactive and smart hence we have added the graphical view along with support for light and dark mode.

Figure 4.4.1 Language selection screen

Figure 4.4.2 Location selection screen

Figure 4.4.3 Enter water info screen

Figure 4.4.4 Location selection screen

Figure 4.4.6 Graph activity light mode

CHAPTER - 5

5.1 TECHNICAL CODING AND CODE SOLUTIONS

We have made the application successfully and the code along with the details are available on GitHub we have given the link for the code below and it's ready to be live but we haven't done that at the moment.

• Languageselection.java

This screen is where we select the language of the application, we have 2 Options at the moment that are English & Hindi. It is also the Primary Home screen of our application and its skippable if previous data is available.

```
import androidx.appcompat.app.AppCompatActivity;
import androidx.cardview.widget.CardView;
import android.content.Intent;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.view.View;
import android.widget.RadioButton;
import android.widget.TextView;

public class Languageselection extends AppCompatActivity {

private RadioButton radioenglishButton;
private RadioButton radiohindiButton;

@Override
```

```
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_languageselection);
    CardView btnDisplay = (CardView) findViewById(R.id.next);
    SharedPreferences pref = getApplicationContext().getSharedPreferences("MyPref",
MODE_PRIVATE);
    SharedPreferences.Editor editor = pref.edit();
    if(pref.getInt("Previousdata",0)!=0)
       Intent intent1 = new Intent(getApplicationContext(), Locationselection.class);
       startActivity(intent1);
       finish();
    }
    radioenglishButton =(RadioButton)findViewById(R.id.en);
    if(pref.getString("Language", "").equals("Hindi"))
       TextView languageask=(TextView) findViewById(R.id.languagequestion);
      languageask.setText("कृपया कोई एक भाषा चुनें:");
       TextView nexttext=(TextView) findViewById(R.id.nexttext);
       nexttext.setText("अगला");
       radiohindiButton=(RadioButton)findViewById(R.id.hin);
       radioenglishButton.setChecked(false);
       radiohindiButton.setChecked(true);
    }
```

```
btnDisplay.setOnClickListener(new View.OnClickListener() {
     @Override
    public void onClick(View v) {
       if(radioenglishButton.isChecked())
         editor.putInt("Previousdata", 1);
         editor.putString("Language", "English");
       else
         editor.putInt("Previousdata", 1);
         editor.putString("Language", "Hindi");
       }
       editor.putInt("Firststart", 1);
       editor.apply();
       Intent intent1 = new Intent(getApplicationContext(), Locationselection.class);
       startActivity(intent1);
       finish();
     }
  });
}
@Override
public void onBackPressed() {
  SharedPreferences pref = getApplicationContext().getSharedPreferences("MyPref",
```

```
MODE_PRIVATE);
    SharedPreferences.Editor editor = pref.edit();
    if(pref.getInt("Firststart",0)==0) {
        finish();
    }
    else {
        editor.putInt("Previousdata", 1);
        editor.apply();
        Intent intent1 = new Intent(getApplicationContext(), Locationselection.class);
        startActivity(intent1);
        finish();
    }
}
```

• InputFilterMinMax.java –

It is the filter for minimum and maximum value in the Enterwaterinfo.java here in the Edit text if you enter a data which is out of bound of possible value it restricts the user from doing so.

```
package io.github.pv.wqii_final;
import android.text.InputFilter;
  import android.text.Spanned;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class InputFilterMinMax implements InputFilter {
```

```
private float min, max;
public InputFilterMinMax(float min, float max) {
          this.min = min;
          this.max = max;
 }
public InputFilterMinMax(String min, String max) {
          this.min = Float.parseFloat(min);
          this.max = Float.parseFloat(max);
 }
 @Override
public CharSequence filter(CharSequence source, int start, int end, Spanned dest, int dstart,
     int dend) {
          try {
                    // Remove the string out of destination that is to be replaced
                    String newVal = dest.toString().substring(0, dstart) + dest.toString().substring(dend,
     dest.toString().length());
                   // Add the new string in
                    newVal = newVal.substring(0, dstart) + source.toString() + newVal.substring(dstart,
     newVal.length());
                    float input = Float.parseFloat(newVal);
                    Pattern mPattern = Pattern.compile("[0-9]\{0,"+(10-1)+"\}+((\backslash .[0-9]\{0,"+(2-1)+"\}+((\backslash .[0-9]\{0,"+(2-1)+"\}+((\backslash .[0-9]\{0,"+(10-1)+"\}+((\backslash .[0-9]\{0,"+(10-1)+")+((\backslash .[0-9](0,"+(10-1)+")+((\backslash .[0-1)+")+((\backslash .[0-1)+")
      "})?)||(\\.)?");
                    Matcher matcher = mPattern.matcher(dest);
                    if (isInRange(min, max, input) && matcher.matches())
                              return null;
           } catch (NumberFormatException nfe) { }
          return "";
```

```
}
private boolean isInRange(float a, float b, float c) {
  return b > a ? c >= a && c <= b : c >= b && c <= a;
}
 }
```


Figure 5.1.2 Enterwaterinfo.java

```
A Teamer part of the bearing from Armal Report Land to 1900 PG Street Part 1900 PG Str
```

Figure 5.1.3 Hindi/English string array

```
The Service Control of the Service Ser
```

Figure 5.1.4 FilterMinMax.java

5.2 PROTOTYPE SUBMISSION

We have made the application successfully and it's ready to be live we haven't done that at the moment but we have given the link to the release version of the app to be downloaded and installed on Android devices.

> Link to the apk – WQII.apk Demo video link – Video link Project link – GitHub link

5.3 TEST AND VALIDATION

We have done exception handling (like the min max function which limits the user from entering wrong values in the manual mode) in the application itself along with that for the android application we have something called Unit & UI Testing.

• **Integrated Unit Testing** – We have done them using the Integrated Unit testing via the inbuilt **Espresso test** that the android studio provides which helps us to know that the application is stable to use.

package io.github.pv.wqii_final;

import static androidx.test.espresso.Espresso.onData;

import static androidx.test.espresso.Espresso.onView;

import static androidx.test.espresso.Espresso.pressBack;

import static androidx.test.espresso.action.ViewActions.click;

import static androidx.test.espresso.action.ViewActions.closeSoftKeyboard;

import static androidx.test.espresso.action.ViewActions.pressImeActionButton;

import static androidx.test.espresso.action.ViewActions.replaceText;

import static androidx.test.espresso.action.ViewActions.scrollTo;

27

```
import static androidx.test.espresso.matcher.ViewMatchers.isDisplayed;
import static androidx.test.espresso.matcher.ViewMatchers.withClassName;
import static androidx.test.espresso.matcher.ViewMatchers.withContentDescription;
import static androidx.test.espresso.matcher.ViewMatchers.withId;
import static androidx.test.espresso.matcher.ViewMatchers.withText;
import static org.hamcrest.Matchers.allOf;
import static org.hamcrest.Matchers.anything;
import static org.hamcrest.Matchers.is;
import android.view.View;
import android.view.ViewGroup;
import android.view.ViewParent;
import androidx.test.espresso.DataInteraction;
import androidx.test.espresso.ViewInteraction;
import androidx.test.filters.LargeTest;
import androidx.test.rule.ActivityTestRule;
import androidx.test.runner.AndroidJUnit4;
import org.hamcrest.Description;
import org.hamcrest.Matcher;
import org.hamcrest.TypeSafeMatcher;
import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;
```

```
@LargeTest
@RunWith(AndroidJUnit4.class)
public class LanguageselectionTest {
  @Rule
  public ActivityTestRule<Languageselection> mActivityTestRule = new
ActivityTestRule<>(Languageselection.class);
  @Test
  public void languageselectionTest() {
    ViewInteraction cardView = onView(
         allOf(withId(R.id.next),
              childAtPosition(
                  childAtPosition(
                       withId(android.R.id.content),
                       0),
                  7),
              isDisplayed()));
    cardView.perform(click());
    ViewInteraction actionMenuItemView = onView(
         allOf(withId(R.id.graphdata), withContentDescription("GraphInput"),
              childAtPosition(
                  childAtPosition(
```

```
withId(androidx.appcompat.R.id.action_bar),
                        1),
                   0),
              isDisplayed()));
    actionMenuItemView.perform(click());
    pressBack();
    ViewInteraction materialAutoCompleteTextView = onView(
         allOf(withId(R.id.selectlocation),
              childAtPosition(
                   childAtPosition(
with Class Name (is ("com.google.android.material.text field. Text Input Layout")),\\
                        0),
                   0)));
    materialAutoCompleteTextView.perform(scrollTo(), click());
    DataInteraction materialTextView = onData(anything())
         .inAdapterView(childAtPosition(
              withClassName(is("android.widget.PopupWindow$PopupBackgroundView")),
              0))
         .atPosition(8);
    materialTextView.perform(click());
```

```
ViewInteraction materialAutoCompleteTextView2 = onView(
         allOf(withId(R.id.selectlocation),
              childAtPosition(
                   childAtPosition(
withClassName(is("com.google.android.material.textfield.TextInputLayout")),
                       0),
                  0)));
    materialAutoCompleteTextView2.perform(scrollTo(), click());
    ViewInteraction materialAutoCompleteTextView3 = onView(
         allOf(withId(R.id.selectlocation),
              childAtPosition(
                   childAtPosition(
withClassName(is("com.google.android.material.textfield.TextInputLayout")),
                       0),
                  0)));
    materialAutoCompleteTextView3.perform(scrollTo(), replaceText("1"),
closeSoftKeyboard());
    DataInteraction materialTextView2 = onData(anything())
         .inAdapterView(childAtPosition(
              withClassName(is("android.widget.PopupWindow$PopupBackgroundView")),
              0))
         .atPosition(5);
```

```
materialTextView2.perform(click());
ViewInteraction actionMenuItemView2 = onView(
     allOf(withId(R.id.addwaterdata), withContentDescription("EditUserInput"),
         childAtPosition(
              childAtPosition(
                   withId(androidx.appcompat.R.id.action_bar),
                   1),
              1),
         isDisplayed()));
actionMenuItemView2.perform(click());
ViewInteraction appCompatEditText = onView(
     allOf(withId(R.id.entertemp),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   0),
              2)));
appCompatEditText.perform(scrollTo(), replaceText("1"), closeSoftKeyboard());
ViewInteraction appCompatEditText2 = onView(
     allOf(withId(R.id.entertemp), withText("1"),
         childAtPosition(
              childAtPosition(
```

```
withClassName(is("android.widget.LinearLayout")),
                  0),
              2)));
appCompatEditText2.perform(pressImeActionButton());
ViewInteraction appCompatEditText3 = onView(
    allOf(withId(R.id.enterdissolvedoxygen),
         childAtPosition(
              childAtPosition(
                  withClassName(is("android.widget.LinearLayout")),
                  1),
              2)));
appCompatEditText3.perform(scrollTo(), replaceText("8"), closeSoftKeyboard());
ViewInteraction appCompatEditText4 = onView(
    allOf(withId(R.id.enterdissolvedoxygen), withText("8"),
         childAtPosition(
              childAtPosition(
                  withClassName(is("android.widget.LinearLayout")),
                   1),
              2)));
appCompatEditText4.perform(pressImeActionButton());
ViewInteraction appCompatEditText5 = onView(
    allOf(withId(R.id.enterpH),
```

```
childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   2),
              2)));
appCompatEditText5.perform(scrollTo(), replaceText("4"), closeSoftKeyboard());
ViewInteraction appCompatEditText6 = onView(
     allOf(withId(R.id.enterpH), withText("4"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   2),
              2)));
appCompatEditText6.perform(pressImeActionButton());
ViewInteraction appCompatEditText7 = onView(
     allOf(withId(R.id.enterConductivity),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   3),
              2)));
appCompatEditText7.perform(scrollTo(), replaceText("5"), closeSoftKeyboard());
```

```
ViewInteraction appCompatEditText8 = onView(
     allOf(withId(R.id.enterConductivity), withText("5"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   3),
              2)));
appCompatEditText8.perform(pressImeActionButton());
ViewInteraction appCompatEditText9 = onView(
     allOf(withId(R.id.enterbiochemoxygen),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   4),
              2)));
appCompatEditText9.perform(scrollTo(), replaceText("4"), closeSoftKeyboard());
ViewInteraction appCompatEditText10 = onView(
     allOf(withId(R.id.enterbiochemoxygen), withText("4"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   4),
              2)));
```

```
appCompatEditText10.perform(pressImeActionButton());
ViewInteraction appCompatEditText11 = onView(
    allOf(withId(R.id.enterNitrate),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                  5),
              2)));
appCompatEditText11.perform(scrollTo(), replaceText("5"), closeSoftKeyboard());
ViewInteraction appCompatEditText12 = onView(
    allOf(withId(R.id.enterNitrate), withText("5"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                  5),
              2)));
appCompatEditText12.perform(pressImeActionButton());
ViewInteraction appCompatEditText13 = onView(
    allOf(withId(R.id.enterFacealColiform),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
```

```
6),
              2)));
appCompatEditText13.perform(scrollTo(), replaceText("5"), closeSoftKeyboard());
ViewInteraction appCompatEditText14 = onView(
     allOf(withId(R.id.enterFacealColiform), withText("5"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   6),
              2)));
appCompatEditText14.perform(pressImeActionButton());
ViewInteraction cardView2 = onView(
     allOf(withId(R.id.next),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.ScrollView")),
                   0),
              3)));
cardView2.perform(scrollTo(), click());
ViewInteraction appCompatEditText15 = onView(
     allOf(withId(R.id.enterFacealColiform), withText("5"),
         childAtPosition(
```

```
childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   6),
              2)));
appCompatEditText15.perform(scrollTo(), click());
ViewInteraction appCompatEditText16 = onView(
    allOf(withId(R.id.enterFacealColiform), withText("5"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   6),
              2)));
appCompatEditText16.perform(scrollTo(), click());
ViewInteraction appCompatEditText17 = onView(
    allOf(withId(R.id.enterFacealColiform), withText("5"),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   6),
              2)));
appCompatEditText17.perform(scrollTo(), replaceText(""));
ViewInteraction appCompatEditText18 = onView(
```

```
allOf(withId(R.id.enterFacealColiform),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   6),
              2),
         isDisplayed()));
appCompatEditText18.perform(closeSoftKeyboard());
ViewInteraction appCompatEditText19 = onView(
     allOf(withId(R.id.enterFacealColiform),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.LinearLayout")),
                   6),
              2)));
appCompatEditText19.perform(pressImeActionButton());
ViewInteraction cardView3 = onView(
     allOf(withId(R.id.next),
         childAtPosition(
              childAtPosition(
                   withClassName(is("android.widget.ScrollView")),
                   0),
              3)));
```

```
cardView3.perform(scrollTo(), click());
pressBack();
ViewInteraction actionMenuItemView3 = onView(
     allOf(withId(R.id.language), withContentDescription("EditUserInput"),
         childAtPosition(
              childAtPosition(
                   withId(androidx.appcompat.R.id.action_bar),
                   1),
              2),
         isDisplayed()));
actionMenuItemView3.perform(click());
ViewInteraction materialRadioButton = onView(
     allOf(withId(R.id.hin), withText("?????"),
         childAtPosition(
              allOf(withId(R.id.radioGrp),
                   childAtPosition(
                        withClassName(is("android.widget.LinearLayout")),
                        0)),
              2),
         isDisplayed()));
materialRadioButton.perform(click());
```

```
ViewInteraction cardView4 = onView(
         allOf(withId(R.id.next),
              childAtPosition(
                  childAtPosition(
                       withId(android.R.id.content),
                       0),
                  7),
              isDisplayed()));
    cardView4.perform(click());
    ViewInteraction materialAutoCompleteTextView4 = onView(
         allOf(withId(R.id.selectlocation),
              childAtPosition(
                  childAtPosition(
withClassName(is("com.google.android.material.textfield.TextInputLayout")),
                       0),
                  0)));
    materialAutoCompleteTextView4.perform(scrollTo(), click());
    DataInteraction materialTextView3 = onData(anything())
         .inAdapterView(childAtPosition(
              withClassName(is("android.widget.PopupWindow$PopupBackgroundView")),
              0))
         .atPosition(21);
```

```
materialTextView3.perform(click());
}
private static Matcher<View> childAtPosition(
    final Matcher<View> parentMatcher, final int position) {
  return new TypeSafeMatcher<View>() {
     @Override
    public void describeTo(Description description) {
       description.appendText("Child at position " + position + " in parent ");
       parentMatcher.describeTo(description);
     }
     @Override
    public boolean matchesSafely(View view) {
       ViewParent parent = view.getParent();
       return parent instanceof ViewGroup && parentMatcher.matches(parent)
            && view.equals(((ViewGroup) parent).getChildAt(position));
     }
  };
}
```

}

CHAPTER-6:

PROJECT OUTCOME AND APPLICABILITY

6.1 OUTLINE

We have successfully created an app that is suitable for English as well as Hindi user along with that we have 95 predefined locations where Ganga flows and has search functionality and have also included the manual option for entering the water quality for any water body, and lastly, we have added a graphical view for more interactive to the user.

6.2 PROJECT APPLICABILITY TO REAL-WORLD APPLICATIONS

- 1. We have the functional app with all the work that we wanted to provide for most of the part we have also added graphical data for the visual representation of data as well. Improvement can be made at any time that's what we believe and would just need optimization and increasing the efficiency (130 Mb release) that would happen along with time to make it good to go live on the play store if we would like to do that or share the application to the users.
- 2. We can see whether the water we are using is pure or not if not, how can we make it pure or how can we use it for other purposes.
- 3. We will take the process to another level and also check many other parameters of water and we have successfully made the app as well supporting two languages and 2 themes with graphical data representation as well.
- 4. Identifying the source (s) of contamination and developing appropriate management strategies to minimize potential public health risks.

5. Data obtained via assessment and monitoring water quality provides empirical evidence to assist health and environmental decision making. In water management practices, water quality values serve as useful and sensitive indicators of changes in the physical, chemical or biological composition of the overall water status.

CHAPTER-7

CONCLUSIONS AND RECOMMENDATION

7.1 LIMITATION

Despite the benefits attributed to the WQI, it is however besieged with some challenges, some of which are stated below,

- 1. WQI is not an absolute measure of the degree of pollution or the actual water quality.
- 2. Lack of precision and accuracy in classification technique of importance of evaluation of parameters and lack of live data.
- 3. Inefficiency in dealing with uncertainty and subjectivity in a complex environmental issue such as the incompatibility of observations, uncertainty, and imprecision in criteria.
- 4. Lack of a uniform method for measuring water pollution involving biological parameters.
- 5. Inadequate the transfer of complex environmental data into information.

7.2 FUTURE ENHANCEMENTS

There's always going to be room for improvements and some which we think can happen or should be done.

- 1. Having it linked to Live Data which would help in making this procedure real-time as well as would increase the correctness and accuracy of the application.
- 2. Adding more available locations and covering more water bodies.
- 3. Decreasing the size of the application and making further optimizations.
- 4. More local language support.
- 5. Regular updates to meet the criteria for newer
- 6. android compatibility.

7.3 CONCLUSION

The water quality index (WQI) is the best tool for giving the details of the overall grade of water, which is a process to reduce large numbers and parameters into a single index number. WQI is very effective for understanding water quality findings and is used to judge the appropriateness of water for drinking purposes in major regions in the world. WQI is defined as a rating that reflects the composite influence of different water quality parameters. Integrating this feature in an application (WQII) with multiple languages, simplistic & user-friendly UI is going to help a lot of people to decide using the water for safe uses only which would give greater yield overall with less medical complications to the people around the water bodies.

REFERENCES

- 1. http://125.19.52.218/realtime/
- 2. https://nmcg.nic.in/NamamiGanga.aspx
- 3. https://developer.android.com/studio
- 4. https://www.sciencedirect.com/science/article/pii/S1470160X203 11572#b9010
- 5. https://drive.google.com/file/d/18z4n39bch_BJig7d3sqxuBfY80KISo8I/view?usp = sharing
- 6. https://drive.google.com/file/d/18f7rNqQ-rXsMICDx2rcdy7TZd-b2BGPR/view