SCANPLOT-multiple

June 16, 2020

1 SCANPLOT - Um sistema de plotagem simples para o SCANTEC

O SCANPLOT é um módulo escrito em linguagem Python preparado para ler e plotar as tabelas com as estatísticas do Sistema Comunitário de Avaliação de modelos Numéricos de Tempo e Clima (SCANTEC*). O seu uso pode ser feito por meio da linha de comando ou através do Jupyter. O SCANPLOT transforma as tabelas do SCANTEC em dataframes do Pandas e pode ser facilmente extendido a partir da introdução de funções para a plotagem destes dataframes na forma como o usuário precisar.

O módulo scanplot possui as seguintes funções:

- read_namelists: esta função lê os arquivos de namelist e definições dos modelos do SCANTEC:
- 2. get_dataframe: esta função transforma uma ou mais tabelas em dataframes do Pandas, acessíveis por meio de um dicionário;
- 3. plot_lines: esta função plota gráficos de linhas a partir dos dataframes.

As funções possuem formas específicas de utilização. Para saber como utilizá-las, carregue primeiro a função a partir do módulo principal (por exemplo, a função read_namelists):

```
from scanplot import read_namelists

E em seguida, digite uma das suas formas a seguir:

help(read_namelists)

ou

print(red_namelists.__doc__)
```

*de MATTOS, J. G. Z.; SAPUCCI, L. F.. SCANTEC - SISTEMA COMUNITÁRIO DE AVALIAÇÃO DE MODELOS NUMÉRICOS DE TEMPO E CLIMA. 2017. Patente: Programa de Computador. Número do registro: BR512017000576-1, data de registro: 30/01/2017, Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial.

1.1 Leitura dos namelists do SCANTEC

O SCANTEC é um software de linha de comando escrito em linguagem Fortran preparado para ler, interpolar e calcular as estatísticas básicas (Viés, Raiz do Erro Quadrático Médio e Correlação de Anomalias) a partir de modelos de previsão numérica de tempo, como os modelos BAM, BRAMS e

Eta. O SCANPLOT faz o trabalho de plotar os resultados a partir das tabelas com o resumo destas estatísticas. Para utilizar o SCANPLOT, o usuário deve ler os arquivos de namelist e definições dos modelos utilizados nas avaliações de forma que o software saiba quais foram as definições utilizadas pelo usuário e em que local estão armazenadas as tabelas com os resultados.

Para isso, basta carregar a função read_namelists a partir do módulo principal scanplot, com o seguinte comando:

```
[1]: from scanplot import read_namelists
```

Para conhecer como deve ser utilizada a função read_namelists, o usuário pode utilizar um dos comandos a seguir:

```
[2]: print(read_namelists.__doc__)
#help(read_namelists)
```

Esta função lê os namelists e arquivos de definições dos modelos do SCANTEC e

retorna para o usuário dois dicionários, VarsLevs e Confs, com as informações lidas.

```
Parâmetros de entrada
```

basepath : diretório raiz da instalação do SCANTEC.

Resultados

VarsLevs : dicionário com as variáveis, níveis e nomes definidos no arquivo scantec.vars

Confs : dicionário com as definições contidas no arquivo scantec.conf

Uso ---

from scanplot import read_namelists
data_vars, data_conf = read_namelists("~/SCANTEC")

A função read_namelists recebe um caminho (raiz da instalação do SCANTEC) como parâmetro de entrada e retorna para o usuário dois dicionários, os quais contém as informações dos arquivos scantec.conf e scantec.vars do SCANTEC. Estes arquivos possuem as definições dos modelos (intervalo de tempo da avalação, nome do modelo, resolução, caminhos etc). Os nomes data_vars e data_conf são os nomes dos objetos que serão criados e que conterão os dicionários com as definições dos arquivos scantec.vars e scantec.conf, respectivamente. A escolha destes nomes fica a critério do usuário.

[3]: data_vars, data_conf = read_namelists("/Volumes/RAIDO/carlos/Documents/INPE2020/

SCANTEC/ilopolis/SCANTEC.2.0.0b1")

Para inspecionar o conteúdo e a estrutura dos dados contidos nos objetos data_conf e data_vars, basta digitar os nomes no prompt:

```
[4]: data_conf
[4]: {'Starting Time': datetime.datetime(2014, 8, 5, 0, 0),
      'Ending Time': datetime.datetime(2014, 8, 6, 0, 0),
      'Analisys Time Step': '12',
      'Forecast Time Step': '24',
      'History Time': '48',
      'scantec tables': '/home/carlos.bastarz/SCANTEC.2.0.0b1/tables',
      'run domain number': '1',
      'run domain lower left lat': '-49.875',
      'run domain lower left lon': '-82.625',
      'run domain upper right lat': '11.375',
      'run domain upper right lon': '-35.375',
      'run domain resolution dx': '0.4',
      'run domain resolution dy': '0.4',
      'Reference Model Name': 'BAM_TQ0299L064_1',
      'Reference file': '/dados/das/public/SCANTEC/TestCase/AGCM/TQ0299L064/%y4%m2%d2
     h2/GPOSNMC%y4m2%d2%h2%y4m2%d2%h2P.icn.TQ0299L064.ctl'
      'Experiments': {'EXP01': ['BAM_TQ0299L064_1',
        '/dados/das/public/SCANTEC/TestCase/AGCM/TQ0299L064/%y4%m2%d2%h2/GP0SNMC%iy4%
     im2%id2%ih2%fy4%fm2%fd2%fh2P.fct.TQ0299L064.ctl'],
       'EXP02': ['BAM_TQ0299L064_1',
        '/dados/das/public/SCANTEC/TestCase/AGCM/TQ0299L064/%y4%m2%d2%h2/GP0SNMC%iy4%
     im2%id2%ih2%fy4%fm2%fd2%fh2P.fct.TQ0299L064.ctl']},
      'Climatology Model Name': '3',
      'Climatology file':
     '/dados/das/public/SCANTEC/climatologia/climatologia50yr.%mc.bin',
      'Output directory': '/Volumes/RAIDO/carlos/Documents/INPE2020/SCANTEC/ilopolis/
     SCANTEC.2.0.0b1/dataout'}
[5]: data_vars
[5]: {0: ('VTMP:925', 'Virtual Temperature @ 925 hPa [K]'),
      1: ('VTMP:850', 'Virtual Temperature @ 850 hPa [K]'),
      2: ('VTMP:500', 'Virtual Temperature @ 500 hPa [K]'),
      3: ('TEMP:850', 'Absolute Temperature @ 850 hPa [K]'),
      4: ('TEMP:500', 'Absolute Temperature @ 500 hPa [K]'),
      5: ('TEMP:250', 'Absolute Temperature @ 250 hPa [K]'),
      6: ('PSNM:000', 'Pressure reduced to MSL [hPa]'),
      7: ('UMES:925', 'Specific Humidity @ 925 hPa [g/Kg]'),
      8: ('UMES:850', 'Specific Humidity @ 850 hPa [g/Kg]'),
```

```
9: ('UMES:500', 'Specific Humidity @ 500 hPa [g/Kg]'),
10: ('AGPL:925', 'Inst. Precipitable Water @ 925 hPa [Kg/m2]'),
11: ('ZGEO:850', 'Geopotential height @ 850 hPa [gpm]'),
12: ('ZGEO:500', 'Geopotential height @ 500 hPa [gpm]'),
13: ('ZGEO:250', 'Geopotential height @ 250 hPa [gpm]'),
14: ('UVEL:850', 'Zonal Wind @ 850 hPa [m/s]'),
15: ('UVEL:500', 'Zonal Wind @ 500 hPa [m/s]'),
16: ('UVEL:250', 'Zonal Wind @ 250 hPa [m/s]'),
17: ('VVEL:850', 'Meridional Wind @ 850 hPa [m/s]'),
18: ('VVEL:500', 'Meridional Wind @ 500 hPa [m/s]'),
19: ('VVEL:250', 'Meridional Wind @ 250 hPa [m/s]')}
```

Com as informações dos arquivos de namelist do SCANTEC carregados, o próximo passo é ler as tabelas geradas na avaliação com o SCANTEC e transformá-las em dataframes do Pandas. Para isso, o usuário deverá utilizar a função get dataframe do módulo scanplot:

```
[6]: from scanplot import get_dataframe
```

Da mesma forma como foi feito com a função read_namelists, pode-se digitar o comando print(funcao.__doc__) ou simplesmente, help(funcao) para descobrir como a função deve ser utilizada:

```
[7]: #print(get_dataframe.__doc__)
help(get_dataframe)
```

Help on function get_dataframe in module scanplot:

```
get_dataframe(dataInicial, dataFinal, Stats, Exps, outDir)
   get_dataframe
   =========
```

Esta função transforma a(s) tabela(s) do SCANTEC em dataframe(s).

Parâmetros de entrada

dataInicial : objeto datetime com a data inicial do experimento dataFinal : objeto datetime com a data final do experimento

Stats : lista com os nomes das estatísticas a serem processadas

Exps : lista com os nomes dos experimentos

outDir : string com o diretório com as tabelas do SCANTEC

Resultado

Dicionário com o(s) dataframe(s) com a(s) tabela(s) do SCANTEC.

Uso

from scanplot import get_dataframe

```
dataInicial = data_conf["Starting Time"]
dataFinal = data_conf["Ending Time"]
Stats = ["ACOR", "RMSE", "VIES"]
Exps = list(data_conf["Experiments"].keys())
outDir = data_conf["Output directory"]
dTable = get_dataframe(dataInicial,dataFinal,Stats,Exps,outDir)
```

A função get_dataframe recebe uma série de parâmetros de entrada e retorna um dicionário com uma ou mais tabelas que já estarão no formado de dataframe do Pandas. Na célula a seguir, serão definidos os valores de entrada da função get_dataframe a partir dos dicionários data_conf e data_vars, criados anteriormente.

Observe que os parâmetros Vars e Stats são atribuídos de formas diferentes dos demais. O parâmetro Stats é uma lista que deve possuir pelo menos um elemento e ele sempre deve possuir a forma Stat = [...]. Na versão atual do SCANPLOT, o usuário pode escolher as estatísticas ACOR (correlação de anomalias), RMSE (raiz do erro quadrático médio) e VIES (viés), em qualquer ordem ou combinação entre elas. O parâmetro Vars também é uma lista, mas é definido de forma diferente. O usuário deve observar que no dicionário data_vars, para cada índice está associado uma tupla do tipo ('VAR:LEV', 'Nome da Variável @ Nível hPa [unidade]'). Isto foi feito para facilitar ao usuário a escolha da variável, pois ao invés de se digitar o nome da variável, basta escolher pelo menos um dos índices do dicionário data_vars que deseja, da seguinte forma Vars = list(map(data_vars.get,[1,2,3,...].

```
[8]: dataInicial = data_conf["Starting Time"]
  dataFinal = data_conf["Ending Time"]
  Vars = list(map(data_vars.get,[12,14]))
  Stats = ["ACOR", "RMSE", "VIES"]
  Exps = list(data_conf["Experiments"].keys())
  outDir = data_conf["Output directory"]
```

Com a definição dos parâmetros de entrada da função get_dataframe, a sua utilização é feita da seguinte forma:

```
[9]: dTable = get_dataframe(dataInicial,dataFinal,Stats,Exps,outDir)
```

Na chamada da função get_dataframe, o objeto dTable é um dicionário que deverá conter as tabelas escolhidas pelo usuário a partir do ajuste dos parâmetros de entrada da função. Para inspecionar o conteúdo do dicionário dTable, basta digitar no prompt:

```
[10]: dTable

[10]: {'ACOREXPO1_20140805002014080600T.scan': %Previsao vtmp:925 vtmp:850
```

vtmp:500	temp:850	temp:500	temp:250	\			
0	0	0.0	0.0	0.0	1.000	1.000	1.000
1	24	0.0	0.0	0.0	0.993	0.997	0.992
2	48	0.0	0.0	0.0	0.986	0.984	0.981

3	72	0.0	0.0		0.0	0.975	0.961	0.972			
	psnm:000	umes:925	umes:850		agpl:925	zgeo:85	50 zgeo:500	zgeo:250	\		
0	1.000	1.000	1.000		1.000	1.00	1.000	1.000			
1	0.982	0.975	0.966		0.984	0.99	0.999	0.999			
2	0.970	0.942	0.931		0.963	0.98	0.993	0.993			
3	0.951	0.943	0.908	•••	0.943	0.97	76 0.984	0.984			
	uvel:850	uvel:500	uvel:250	7777	el:850 v	vel:500	vvel:250				
0	1.000	1.000	1.000	V V	1.000	1.000	1.000				
1	0.972	0.986	0.987		0.939	0.965	0.969				
2	0.972	0.988	0.968		0.892	0.869	0.853				
3	0.939				0.892						
3	0.941	0.965	0.930		0.021	0.824	0.766				
[4 rows x 21 columns],											
	COREXPO2_2					%Previsao	vtmp:925	vtmp:850			
	p:500 tem	•	-	-							
0	0	1.0	1.0		1.0	1.000	1.000	1.000			
1	24	0.9	0.9		0.9	0.993	0.997	0.992			
2	48	0.8	0.8		0.8	0.986	0.984	0.981			
3	72	0.7	0.7		0.7	0.975	0.961	0.972			
	nanm • 000	umes:925	umes:850		2001.02E	zgeo:85	50 5500.500	zgeo:250	\		
0	psnm:000 1.000	1.000	1.000	•••	agpl:925	•	_	_	`		
0				•••							
1	0.982	0.975	0.966	•••	0.984						
2	0.970	0.942	0.931	•••	0.963						
3	0.951	0.943	0.908	•••	0.943	0.97	76 0.984	0.984			
	uvel:850	uvel:500	uvel:250	vv	el:850 v	vel:500	vvel:250				
0	1.000	1.000	1.000		1.000	1.000	1.000				
1	0.972	0.986	0.987		0.939	0.965	0.969				
2	0.959	0.978	0.968		0.892	0.869	0.853				
3	0.941	0.965	0.930		0.821	0.824	0.766				
[4 rows x 21 columns],											
'R	MSEEXP01_2	0140805002	014080600T	.sc	an': %	′Previsao	vtmp:925	vtmp:850			
	_	p:850 tem					•	•			
0	0	0.0	-	_	0.0	0.000	0.000	0.000			
1	24	0.0			0.0	1.216	0.738	0.623			
2	48	0.0			0.0	1.830	1.576	1.207			
3	72	0.0			0.0	2.392	2.487	1.746			
3	12	0.0	0.0		0.0	2.392	2.401	1.740			
	psnm:000	umes:925	umes:850		agpl:925	zgeo:85	50 zgeo:500	zgeo:250	\		
0	0.000	0.000	0.000		0.000	0.00	0.000	0.000			
1	1.425	0.001	0.001		3.164	9.86	31 13.228	13.228			
2	2.264	0.002	0.002		4.816						
3	2.630	0.002	0.002	•••	6.028						
-											

```
uvel:850 uvel:500 uvel:250 vvel:850 vvel:500 vvel:250
0
       0.000
                 0.000
                           0.000
                                      0.000
                                                0.000
                                                          0.000
 1
       2.300
                           3.744
                                      2.353
                                                2.481
                                                          4.219
                 2.586
 2
       2.794
                 3.291
                           5.608
                                      2.841
                                                3.713
                                                          7.185
 3
       3.392
                 4.179
                           8.191
                                      3.149
                                                4.558
                                                          9.087
 [4 rows x 21 columns],
 'RMSEEXP02 20140805002014080600T.scan':
                                            %Previsao vtmp:925 vtmp:850
vtmp:500 temp:850 temp:500
                              temp:250
            0
                    0.1
                                         0.1
                                                 0.000
 0
                              0.1
                                                           0.000
                                                                     0.000
 1
           24
                    0.2
                              0.2
                                         0.2
                                                 1.216
                                                           0.738
                                                                     0.623
2
           48
                    0.3
                              0.3
                                         0.3
                                                 1.830
                                                           1.576
                                                                     1.207
                    0.4
3
           72
                              0.4
                                         0.4
                                                 2.392
                                                           2.487
                                                                     1.746
    psnm:000
              umes:925
                        umes:850
                                     agpl:925
                                               zgeo:850 zgeo:500
                                                                    zgeo:250 \
 0
       0.000
                 0.000
                           0.000
                                                   0.000
                                                                       0.000
                                         0.000
                                                             0.000
                                  •••
 1
       1.425
                 0.001
                           0.001
                                         3.164
                                                   9.861
                                                            13.228
                                                                      13.228
 2
       2.264
                           0.002 ...
                                                                      25.499
                 0.002
                                        4.816
                                                  15.122
                                                            25.499
3
       2.630
                 0.002
                           0.002 ...
                                         6.028
                                                  17.548
                                                            39.672
                                                                      39.672
    uvel:850 uvel:500
                        uvel:250 vvel:850 vvel:500 vvel:250
0
       0.000
                 0.000
                           0.000
                                      0.000
                                                0.000
                                                          0.000
 1
       2.300
                 2.586
                           3.744
                                      2.353
                                                2.481
                                                          4.219
                                                          7.185
 2
       2.794
                 3.291
                           5.608
                                      2.841
                                                3.713
 3
       3.392
                 4.179
                           8.191
                                      3.149
                                                4.558
                                                          9.087
 [4 rows x 21 columns],
 'VIESEXP01_20140805002014080600T.scan':
                                            %Previsao
                                                        vtmp:925
                                                                  vtmp:850
vtmp:500 temp:850 temp:500
                                        \
                              temp:250
0
            0
                    0.0
                              0.0
                                         0.0
                                                 0.000
                                                           0.000
                                                                     0.000
 1
           24
                                         0.0
                    0.0
                              0.0
                                                -0.670
                                                          -0.279
                                                                     0.118
 2
                    0.0
                              0.0
                                         0.0
           48
                                                -1.113
                                                          -0.687
                                                                    -0.239
3
           72
                    0.0
                              0.0
                                         0.0
                                                -1.503
                                                          -1.331
                                                                    -0.926
    psnm:000 umes:925 umes:850
                                     agp1:925
                                                zgeo:850 zgeo:500
                                                                    zgeo:250 \
      0.000
0
                   0.0
                           0.000 ...
                                        0.000
                                                   0.000
                                                             0.000
                                                                       0.000
 1
       0.411
                  -0.0
                          -0.000 ...
                                       -1.228
                                                   0.643
                                                            -6.138
                                                                      -6.138
 2
       1.248
                  -0.0
                          -0.000 ...
                                       -2.063
                                                   5.772
                                                            -7.402
                                                                      -7.402
 3
       1.216
                  -0.0
                          -0.001 ...
                                       -2.606
                                                   3.845
                                                           -16.953
                                                                     -16.953
    uvel:850 uvel:500 uvel:250 vvel:850 vvel:500 vvel:250
 0
       0.000
                 0.000
                           0.000
                                      0.000
                                                0.000
                                                          0.000
 1
      -0.208
                 0.406
                          -0.528
                                     -0.382
                                                0.076
                                                         -0.157
 2
      0.062
                 0.910
                           0.006
                                    -0.439
                                               -0.004
                                                         -0.050
 3
      0.456
                           1.223
                                               -0.153
                 1.522
                                    -0.464
                                                         -0.660
```

[4 rows x 21 columns], 'VIESEXP02 20140805002014080600T.scan': %Previsao vtmp:925 vtmp:850 vtmp:500 temp:850 temp:500 temp:250 0.000 0 0.1 0.1 0.000 0.1 0.000 1 24 0.2 0.2 0.2 -0.670 -0.2790.118 0.3 0.3 0.3 2 48 -1.113 -0.687 -0.239 3 72 0.4 0.4 0.4 -1.503 -1.331 -0.926 psnm:000 umes:925 umes:850 agp1:925 zgeo:850 zgeo:500 zgeo:250 0 0.000 0.0 0.000 0.000 0.000 0.000 0.000 0.411 -0.0 -0.000 -1.2280.643 -6.1381 ... -6.1382 1.248 -0.0 -0.000 -2.063 5.772 -7.402 -7.402 3 1.216 -0.0 -0.001 -2.606 3.845 -16.953 -16.953uvel:500 uvel:250 vvel:250 uvel:850 vvel:850 vvel:500 0 0.000 0.000 0.000 0.000 0.000 0.000 -0.208 -0.528 1 0.406 -0.382 0.076 -0.1572 0.062 0.006 -0.439-0.004 -0.050 0.910 3 0.456 1.522 1.223 -0.464 -0.153 -0.660

No dicionário dTable, observe que foram carregadas as tabelas referente às estatísticas escolhidas (VIES, RMS e ACOR). Para visualizar o dataframe da tabela, basta passar o nome da tabela como key do dicionário dTable, como em dTable['NOME_TABELA']. Veja o exemplo a seguir:

dTable['ACOREXP01_20140805002014080600T.scan'] [11]: [11]: %Previsao vtmp:925 vtmp:850 vtmp:500 temp:850 temp:500 temp:250 0 0 0.0 0.0 0.0 1.000 1.000 1.000 0.0 0.0 0.0 1 24 0.993 0.997 0.992 2 48 0.0 0.0 0.0 0.986 0.984 0.981 3 72 0.0 0.0 0.0 0.975 0.961 0.972 psnm:000 umes:925 umes:850 agp1:925 zgeo:850 zgeo:500 zgeo:250 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.975 0.966 0.984 0.991 0.999 0.999 1 2 0.931 0.970 0.942 0.963 0.981 0.993 0.993 3 0.951 0.943 0.908 0.943 0.976 0.984 0.984 uvel:850 uvel:500 uvel:250 vvel:850 vvel:500 vvel:250 0 1.000 1.000 1.000 1.000 1.000 1.000 1 0.972 0.986 0.987 0.939 0.965 0.969 2 0.959 0.978 0.968 0.892 0.869 0.853 3 0.941 0.965 0.930 0.821 0.824 0.766

[4 rows x 21 columns]

[4 rows x 21 columns]}

[12]: dTable['ACOREXP02_20140805002014080600T.scan'] [12]: %Previsao vtmp:925 vtmp:850 vtmp:500 temp:850 temp:500 temp:250 0 1.000 1.000 0 1.0 1.0 1.0 1.000 1 24 0.9 0.9 0.9 0.993 0.997 0.992 2 0.8 0.8 48 0.8 0.986 0.984 0.981 3 72 0.7 0.7 0.7 0.975 0.961 0.972 psnm:000 umes:925 umes:850 agpl:925 zgeo:850 zgeo:500 zgeo:250 1.000 0 1.000 1.000 1.000 1.000 1.000 1.000 1 0.982 0.975 0.984 0.991 0.999 0.999 0.966 2 0.970 0.942 0.931 0.963 0.981 0.993 0.993 3 0.951 0.943 0.908 0.943 0.976 0.984 0.984 uvel:850 uvel:500 uvel:250 vvel:850 vvel:500 vvel:250 1.000 1.000 1.000 1.000 1.000 1.000 0 1 0.972 0.986 0.987 0.939 0.965 0.969 2 0.959 0.978 0.968 0.892 0.869 0.853 3 0.941 0.965 0.930 0.821 0.824 0.766

[4 rows x 21 columns]

1.2 Explorando os dataframes

Dataframes do Pandas são dados tabulados que possuem uma série de funções e métodos que podem ser aplicados também com as tabelas do SCANTEC. Veja nos exemplos a seguir forma de selecionar as colunas e plotar os dados de forma individual ou agrupada.

No exemplo a seguir, é feita a seleção da coluna referente à correleção de anomalias da temperatura absoluta em 850 hPa. Para isso, utiliza-se o método loc para fazer a subseleção do dataframe. O método loc em um dataframe indexa os valores da tabela a partir dos índices da linha e da coluna, respectivamente (loc[linha,coluna]):

O dataframe do Pandas permite também realizar a plotagem da subseleção realizada utilizando a função plot(). Veja no exemplo a seguir:

```
[14]: dTable['ACOREXP01_20140805002014080600T.scan'].loc[:,["temp:850"]].plot()
```

[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9061c410d0>

Com o método loc, é possível também escolher mais do que uma coluna. Veja o exemplo a seguir e compare-o com o exemplo anterior:

```
[15]: dTable['ACOREXP01_20140805002014080600T.scan'].loc[:,["temp:850", "temp:500", "temp:250"]].plot()
```

[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7f90301ce490>

O método loc realiza a indexação a partir dos rótulos das colunas. Utilize o método iloc para realizar a subseleção a partir dos índices das linhas e colunas:

Quando múltiplas colunas são selecionadas, pode-se optar pela plotagem em grupo. Para isso, basta passar o argumento subplots=True para dentro da função plot():

```
[17]: dTable['ACOREXP01_20140805002014080600T.scan'].loc[:,["temp:850", "temp:500", "temp:250"]].plot(subplots=True)
```


Veja a seguir o mesmo exemplo anterior, mas utilizando o método iloc:

Outras opções de plotagem com o Matplotlib podem ser passadas também para a função plot(), veja a seguir:

Com mais do que um experimento, é possível também plotá-los no mesmo gráfico. Veja a seguir como plotar duas colunas de dois dataframes diferentes (ie., duas tabelas do SCANTEC), no mesmo gráfico:

```
[20]: df_exp1 = dTable['ACOREXP01_20140805002014080600T.scan'].loc[:,["vtmp:925"]]
df_exp2 = dTable['ACOREXP02_20140805002014080600T.scan'].loc[:,["vtmp:925"]]
ax = df_exp1.plot()
df_exp2.plot(ax=ax)
```

[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7f90503f0b50>

1.3 Funções de plotagem do SCANPLOT

As tabelas do SCANTEC como dataframes do Pandas, permitem o acesso às facilidades associados ao módulo. O SCANPLOT possui também algumas funções de plotagem que permitem a manipulação das tabelas em lotes. A função plot_lines realiza a plotagem das tabelas selecionadas a partir da utilização da função get_dataframe.

Para chamar a função plot_lines, utilize o comando a seguir:

```
[21]: from scanplot import plot_lines
```

Assim como foi feito anteriormente para as outras funções do SCANPLOT, a ajuda da função pode ser acessada com um dos comandos a seguir:

```
[22]: #help(plot_lines)
print(plot_lines.__doc__)
```

```
plot_lines
```

Esta função plota um gráfico de linha a partir de um dicionário de tabelas do SCANTEC.

Parâmetros de entrada

dTable : objeto dicionário com uma ou mais tabelas do SCANTEC

Vars : lista com os nomes e níveis das variáveis

Stats : lista com os nomes das estatísticas a serem processadas

outDir : string com o diretório com as tabelas do SCANTEC

Resultado

Figuras salvas no diretório definido na variável outDir (SCANTEC/dataout).

Uso

from scanplot import plot_lines

plot_lines(dTable, Vars, Stats, outDir)

Veja que a função plot_lines recebe como parâmetros de entrada o dicionário dTable, as listas Vars e Stats e o diretório de saída outDir que será utilizado para salvar as figuras produzidas. Veja a seguir como utilizar a função plot_lines:

[23]: plot_lines(dTable, Vars, Stats, outDir)

