02445 Statistical evaluation of artificial intelligence systems

Nikolaj S. Povlsen Rasmus J. Pedersen

Technical University of Denmark (DTU)

January 24, 2020

Project 2

Choosing between Olsen P and DGT measurements

- Evaluating models
- Testing for significance
- Analyzing residuals

Does the amount of bio-available phosphorous influence the harvest yield?

Choosing between Olsen P and DGT measurements

Choosing between Olsen P and DGT measurements

Model	Linear DGT	Linear Olsen-P	Non-linear DGT	Non-linear Olsen-P
Std squared error	15.37	16.55	10.58	16.33
p-values	DGT = 0.000685	Olsen-P = 0.0103	Alpha = 2e-16 Beta = 0.0014	$\begin{array}{l} Alpha = 1e\text{-}9 \\ Beta = 0.0432 \end{array}$

Choosing between Olsen P and DGT measurements

Paired t-test between:	t-statistic	df	p-values
Non-Linear DGT - Non-linear Olsen-P	-2.694	35	0.011
Non-Linear DGT - Linear Olsen-P	-2.481	35	0.018
Non-Linear DGT - Linear DGT	-2.381	35	0.023
Linear DGT - Linear Olsen-P	-1.874	35	0.069
Linear DGT - Non-linear Olsen-P	-1.590	35	0.12
Linear Olsen-P - Non-linear Olsen-P	0.3065	35	0.76

Residuals from linear and non-linear DGT measurements

Project 1

Classifying 3D motions

Comparing models

Does the experiment influence the motion

- Test statistics
- ▶ PCA
- → T²

Resuts

Model accuracy

Model	CI of Generalization Accuracy
ANN	0.708 ± 0.0078
KNN	0.644 ± 0.0066

Paired t-test

Test	Test Statistic	p-value
Paired t-test	10.934	8 <i>e</i> – 12

Testing for normally distributed variables

Figure: Two univariate variables forming a multivariate distribution. Left pane shows approximately a multivariate normally distribution, the right does not.

Central Limit Theorem

Equals a 90% reduction in sample size.

PCA

But 9 principal components explain 82% of the variance

Cumulative Variance Explained

5 out of 120 pairs of tests were not significant

Experiment pair	p-value	
1, 4	0.137	
4, 7	0.177	
7, 10	0.278	
5, 8	0.0855	
6, 9	0.162	

The experiments

	S	M	Τ
15.0 cm	1	2	3
22.5 cm	4	5	6
30.0 cm	7	8	9
37.5 cm	10	11	12
45.0 cm	13	14	15