Il semblerait que le fuseau horaire de votre ordinateur ne corresponde pas à celui de votre compte Coursera, paramétré sur America/Los Angeles.

Modifiez votre fuseau horaire Coursera

Practice quiz on Exponents and Logarithms

TOTAL DES POINTS 12

1. Re write the number $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ using exponents.

1 / 1 point

- \bigcirc $(16^4)(49^2)$
- \bigcirc $(2 \times 7)^6$
- $(2^4)(7^2)$
- \bigcirc (2⁶)(7⁶)

✓ Correct

For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.

America/Los Angeles.

Modifiez votre fuseau horaire Coursera

- 2. What is $(x^2 5)^0$?
 - \bigcirc -4
 - \bigcirc (x^2)
 - 1
 - $(x^2) 5$

✓ Correct

Any real number (except zero) raised to the "zeroith" power =1.

3. Simplify $((x-5)^2)^{-3}$

- $(x-5)^{-1}$
- $\bigcirc (x-5)$
- $(x-5)^{-6}$

1/1 point

America/Los_Angeles. Modifiez votre fuseau horaire Coursera

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)} = (x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\frac{1}{(x-5)^6}$

America/Los_Angeles. Modifiez votre fuseau horaire Coursera

- $^{4.} \quad \text{Simplify } (\frac{8^2}{8^7})^2$
 - $O 8^{-5}$
 - $O_{8^{-4}}$
 - $O_{8^{-1}}$

✓ Correct

We can first simplify what is inside the parenthesis to $8^{-5} \text{using the Division}$ and Negative Powers Rule.

5. $\log 35 = \log 7 + \log x$

1/1 point

Solve for \boldsymbol{x}

- O 28
- 5
- 07
- O 4

✓ Correct

$$\log(x) = \log 35 - \log 7$$

$$\log(x) = \log \left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

America/Los_Angeles.

Modifiez votre fuseau horaire Coursera

6. $\log_2(x^2 + 5x + 7) = 0$

1/1 point

Solve for x

- x = 2
- $\bigcirc \ \ x=2 \ {\rm or} \ \ x=3$
- x = 3
 - ✓ Correct

We use the property that $b^{\log_b a} = a$

Use both sides as exponent for 2.

$$2^{\log_2 x^2 + 5x + 7} = 2^0$$

$$x^2 + 5x + 7 = 1$$

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2) = 0$$

$$x=-3$$
 OR

$$x = -2$$

America/Los_Angeles.

Modifiez votre fuseau horaire Coursera

 $America/Los_Angeles.$

1 / 1 point

Modifiez votre fuseau horaire Coursera

- 7. Simplify $\log_2 72 \log_2 9$
 - $\bigcirc \ \log_2 4$
 - $\bigcirc \ \log_2 63$
 - O 4
 - 3

. / Correct

By the quotient rule, this is $\log_2 \frac{72}{9} = \log_2 2^3 = 3$

America/Los Angeles.

8. Simplify $\log_3 9 - \log_3 3 + \log_3 5$	8.	$\log_3 9 - \log_3 3 + \log_3 9$	$g_{3} 5$
--	----	----------------------------------	-----------

- \bigcirc $\log_3 15$
- $\bigcirc \log_3 8$
- 0 8
- O 15

✓ Correct

By the Quotient and Product Rules, this is $\log_3 \frac{9 \times 5}{3} = \log_3 15$

9. Simplify $\log_2(3^8 \times 5^7)$

- \bigcirc 15 $\times \log_2 56$
- $\bigcirc \ (5 \times \log_2 3) + (8 \times \log_2 5)$
- $\bigcirc 56 \times \log_2 15$

✓ Correct

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

10. If $\log_{10}y=100$, what is $\log_2y=?$

- 20
- O 500
- 332.19
- 301.03

Incorrect

Use the change of base formula, $\log_a b = \frac{\log_{{\scriptscriptstyle X}} b}{\log_{{\scriptscriptstyle X}} a}$

Where the "old" base is \boldsymbol{x} and the "new" base is \boldsymbol{a} .

So
$$\frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. 1/1 point What is its rate of growth per year?

- O 12.41%
- 13.41%
- \circ 10.41%
- 0 11.41%

$$\sqrt{\frac{\ln \frac{15}{3}}{12}} = 0.1341$$

12. Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25×10^{-10} grams weights 1000 Kilograms?

1 / 1 point

O 87.5 days

O 0.875 days

8.75 days

1/1 point

0 / 1 point

America/Los_Angeles.

Modifiez votre fuseau horaire Coursera

America/Los Angeles.

Modifiez votre fuseau horaire Coursera

Modifiez votre fuseau horaire Coursera

America/Los_Angeles.

Modifiez votre fuseau horaire Coursera

America/Los_Angeles.

Modifiez votre fuseau horaire Coursera
America/Los_Angeles.

Modifiez votre fuseau horaire Coursera

O 875 days

Correct
$$6.25 \times 10^{-10} \times e^{4t} = 10^{6}$$

$$4t = \ln\left(\frac{10^{6}}{(6.25 \times 10^{-10})}\right) = 35.00878$$

$$t = \ln\frac{10^{6}}{6.25 \times 10^{-10}} = 8.752195$$