

RESEARCH ARTICLE

Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads

Ryan R. Wick*, Louise M. Judd, Claire L. Gorrie, Kathryn E. Holt

Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia

> Vladimir Nikolic^{1,2}, Diana Lin^{1,2} September 12, 2019

¹ Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada

² Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada

What is genome assembly?

Genome

de Bruijn Graph

Introduction

Why perform a hybrid genome assembly?

SHORT READS		LONG READS	
Pros	Cons	Pros	Cons
Low cost per base< 1% per-baseerror rate	<= 500 bp, shorter than most repetitive regions	 >= 10 kbp, longer than most repetitive regions 	High cost per case5-15% per-baseerror rate
Fragmented assembly for more genomes		Complete assembly for fewer genomes	

- Solution: UNICYCLER
 - Short reads to produce accurate contigs
 - Long reads used to scaffold and simplify the graph

Short Read Bridging

- Find contig path
 (from SPAdes) that
 are between
 single-copy contigs
- Bridge the graph (directly, and by elimination)

Fig 1. Key steps in the Unicycler pipeline.

Long Read Bridging - Unbridged Path

Fig 1. Key steps in the Unicycler pipeline.

Long Read Bridging: Long Read Alignment

Fig 1. Key steps in the Unicycler pipeline.

Long Read Bridging - Long Read Consensus

Fig 1. Key steps in the Unicycler pipeline.

Long Read Bridging: Finding the Path

Fig 1. Key steps in the Unicycler pipeline.

Long Read Bridging: Finding the Path

Fig 1. Key steps in the Unicycler pipeline.

Methods - Bridge Application

Fig 1. Key steps in the Unicycler pipeline.

Fig 1. Key steps in the Unicycler pipeline.

Conclusion

Unicycler is a hybrid assembler that allows researchers to assemble a *large* number of **complete**, **yet accurate** bacterial genomes in a <u>cost-effective</u> manner, better than the assemblies achieved using short reads or long reads alone.