Extrapolating prediction error for 'extreme' multi-class classification

Charles Zheng

Stanford University

February 19, 2017

(Joint work with Rakesh Achanta and Yuval Benjamini.)

Multi-class classification

MNIST digit recognition: 10 categories

Human motion database: 51 categories

• ImageNet: 22,000 categories

• Wikipedia: 325,000 categories

from Krizhevsky et al. 2012

Facial recognition

• Used to tag images in software, security

Facial recognition

- Used to tag images in software, security
- Preprocessing

Facial recognition

- Used to tag images in software, security
- Preprocessing

Feature extraction

Accuracy vs. number of classes

Accuracy vs. number of classes

Accuracy vs. number of classes

How does the accuracy scale with the number of classes (faces)?

1. Population of categories $\pi(y)$

2. Subsample k labels, y_1, \ldots, y_k

1. Population of categories $\pi(y)$

2. Subsample k labels, y_1, \ldots, y_k

3. Collect training and test data $x_i^{(j)}$ (faces) for labels (people) $\{y_1, \ldots, y_k\}$.

1. Population of categories $\pi(y)$

2. Subsample k labels, y_1, \ldots, y_k

- 3. Collect training and test data $x_i^{(j)}$ (faces) for labels (people) $\{y_1, \ldots, y_k\}$.
- 4. Train a classifier and compute test error.

1. Population of categories $\pi(y)$

2. Subsample k labels, y_1, \ldots, y_k

- 3. Collect training and test data $x_i^{(j)}$ (faces) for labels (people) $\{y_1, \ldots, y_k\}$.
- 4. Train a classifier and compute test error.

Can we analyze how error depends on k?

Key assumption: marginal classifier

• The classifier is *marginal* if it learns a model *independently* for each class.

Key assumption: marginal classifier

• The classifier is *marginal* if it learns a model *independently* for each class.

Examples: LDA/QDA

Key assumption: marginal classifier

• The classifier is marginal if it learns a model independently for each class.

Examples: LDA/QDA

- Non-marginal classifiers: Multinomial logistic, multilayer neural networks, k-nearest neighbors

Definitions

 $\hat{F}_{\nu(i)}$ is the empirical distribution obtained from the training data for label $v^{(i)}$

Classification Rule

Consideration rate
$$M_{y^{(1)}}(x) = \mathcal{M}(\hat{F}_{y^{(1)}})(x) \qquad \qquad M \boxed{\qquad \qquad } \\ M_{y^{(2)}}(x) = \mathcal{M}(\hat{F}_{y^{(2)}})(x) \qquad \qquad M \boxed{\qquad \qquad } \\ M_{y^{(3)}}(x) = \mathcal{M}(\hat{F}_{y^{(3)}})(x) \qquad \qquad M \boxed{\qquad \qquad } \\ \hat{Y}(x) = \operatorname{argmax} \qquad \mathcal{M}(x) \qquad \qquad \mathcal{M}^{(1)} \qquad \mathcal{M}^{(2)} \qquad$$

$$Risk = \mathbb{E}[L]$$

Theoretical Result

Theorem. (**Z.**, Achanta, Benjamini.) Suppose π , $\{F_y\}_{y\in\mathcal{Y}}$ and marginal classifier \mathcal{F} satisfy (some regularity condition). Then, there exists some function $\bar{D}(u)$ on $[0,1]\to[0,1]$ such that the k-class average risk is given by

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du. \tag{1}$$

Theoretical Result

Theorem. (**Z.**, Achanta, Benjamini.) Suppose π , $\{F_y\}_{y\in\mathcal{Y}}$ and marginal classifier \mathcal{F} satisfy (some regularity condition). Then, there exists some function $\bar{D}(u)$ on $[0,1]\to[0,1]$ such that the k-class average risk is given by

$$AvRisk_k = (k-1) \int \bar{D}(u)u^{k-2}du. \tag{1}$$

What is this $\bar{D}(u)$ function? We will explain in the following toy example...

$$Y_1,\ldots,Y_k\stackrel{iid}{\sim} N(0,1);$$

$$Y_1, \dots, Y_k \stackrel{iid}{\sim} N(0, 1);$$
 $X|Y \sim N(\rho Y, 1 - \rho^2) \text{ i.e. } (Y, X) \sim N(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}).$

- Suppose k = 3, and we draw Y_1, Y_2, Y_3 .
- The Bayes rule is the optimal classifier and depends on knowing the true densities:

$$\hat{y}(x) = \operatorname{argmax}_{y_i} p(x|y_i)$$

 The Bayes Risk, which is the misclassification rate of the optimal classifier.

• The Bayes Risk is the expected test error of the Bayes rule,

$$\frac{1}{k} \sum_{i=1}^{k} \Pr[\hat{y}(x) \neq Y | Y = y_i]$$

Defining the *U*-function

Define $U_x(y)$ as follows:

- Suppose we have test instance (face) x whose true label (person) is y.
- Let Y' be a random incorrect label (person).
- Use the classifier to guess whether x belongs to y or Y'.
- Define $U_x(y)$ as the probabilility of success (randomizing over training data).

$$U_y(x) = \Pr[d(x, \rho Y') > d(x, \rho y)], \text{ for } Y' \sim N(0, 1).$$

Defining the $\bar{D}(u)$

• Define random variable as $U_Y(X)$ for (Y, X) drawn from the joint distribution.

Defining the $\bar{D}(u)$

- Define random variable as $U_Y(X)$ for (Y, X) drawn from the joint distribution.
- $\bar{D}(u)$ is the cumulative distribution function of U,

$$\bar{D}(u) = \Pr[U_Y(X) \leq u].$$

Defining the $\bar{D}(u)$

- Define random variable as $U_Y(X)$ for (Y, X) drawn from the joint distribution.
- $\bar{D}(u)$ is the cumulative distribution function of U,

$$\bar{D}(u) = \Pr[U_Y(X) \le u].$$

