EECS151: Introduction to Digital Design and ICs

Lecture 13 – CMOS Logic

Bora Nikolić

Qualcomm Takes on Nvidia for MLPerf Inference Title

October 1, 2021, EETimes, Sally Ward-Foxton - The latest round of MLPerf Al inference benchmark scores are in. Nvidia has dominated both MLPerf training and inference results since the beginning, but in this round Qualcomm appears to be close on Nvidia's tail when it comes to data center/edge server inference.

Qualcomm Cloud Al100 PCle and M.2 cards (Source: Qualcomm)

EETimes

Review

- CMOS process is used for producing chips
 - Planar bulk process used up to 28nm node
 - finFET, FDSOI used below the 22nm node
- Switch-level abstraction for MOS transistors

MOS Switch

3 Berkeley By NC SA

Nikolić Fall 2021 3 Berkeley

MOS Switch

CMOS Inverter

5 Berkeley By NC SA

EECS151 L12 CMOS2

Nikolić Fall 2021

CMOS Inverter

- Simple DC behavior
 - Schematic

• Switch model

Voltage Transfer Characteristic (VTC)

$$\begin{aligned} \mathbf{V}_{\mathbf{A}} &= \mathbf{V}_{\mathbf{GS,n}} = \mathbf{V}_{\mathbf{DD}} - \mathbf{V}_{\mathbf{SG,p}} \\ \mathbf{I}_{\mathbf{DS,n}} &= \mathbf{I}_{\mathbf{SD,p}} \\ \mathbf{V}_{\mathbf{Out}} &= \mathbf{V}_{\mathbf{DS,n}} = \mathbf{V}_{\mathbf{DD}} - \mathbf{V}_{\mathbf{SD,p}} \end{aligned}$$

Voltage Transfer Characteristic (VTC)

• Can we change switching point $(V_A \text{ for which } V_{out} = V_{DD}/2)$?

Digital Circuits

One logic representation

Out =
$$\overline{A}$$

Truth table

Α	Out
0	1
1	0

- Multiple libraries
- Layouts
 - Number of metal 'tracks'
 - More tracks, faster, but larger
 - Less tracks more compact, but slower
- Transistor thresholds (V_{Th})
 (for each track height):
 - Regular (RVT)
 - Low (LVT)
 - Faster, higher power
 - Slower, lower power
 - High (HVT)
- Transistor lengths

Multiple gate sizes within a library

Symbol

• Schematic

INVX3,

INVX4,...

Layout

Administrivia

- Homework 5 due this week
- Lab 6 (last) this week
- Projects start next week

CMOS Logic

Building logic from switches

Series

AND

Y = X if A AND B

Parallel

(output undefined if condition not true)

OR

Y = X if A OR B

Logic using inverting switches

Series

NOR

$$Y = X \text{ if } \overline{A} \text{ AND } \overline{B}$$
$$= A + B$$

Parallel

(output undefined if condition not true)

NAND

$$Y = X \text{ if } A \text{ OR } B$$

$$= AB$$

Static Complementary CMOS

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Complementary CMOS Logic Style

□ PUN is the **dual** to PDN (can be shown using DeMorgan's Theorems)

$$\overline{A + B} = \overline{A}B$$

$$\overline{AB} = \overline{A} + \overline{B}$$

☐ Static CMOS gates are always inverting

AND = NAND + INV

Example Gate: NAND

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table of a 2 input NAND gate

- PDN: $G = AB \Rightarrow$ Conduction to GND
- PUN: $F = \overline{A} + \overline{B} = \overline{AB} \Rightarrow \text{Conduction to } V_{DD}$
- $G(\ln_1, \ln_2, \ln_3, ...) \equiv F(\ln_1, \ln_2, \ln_3, ...)$

Example Gate: NOR

	_			I
	A	В	Out	
	0	0	1	
	0	1	0	
	1	0	0	
	1	1	0	
Truth Table of a 2 input NOR gate				

Nikolić Fall 2021

Complex CMOS Gate

$$OUT = D + A \cdot (B + C)$$

- Note: In scaled processes max #inputs is 3-4
 - Max stack height is 2 or 3

Stick Diagrams

Contains no dimensions Represents relative positions of transistors

Inverter

Stick Diagrams

Berkeley © \$0

Two Versions of C • (A + B)

Consistent Euler Path

Berkeley © © © O SA DIVINIVERSITY OF CALIFORNIA

OAI22 Logic Graph

Berkeley © \$0

Example: x = ab+cd

(a) Logic graphs for $\overline{(ab+cd)}$

(b) Euler Paths $\{a \ b \ c \ d\}$

(c) stick diagram for ordering $\{a\ b\ c\ d\}$

24

Nikolić Fall 2021

Switch Limitations

Transmission Gate

- Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
 - nFET to pass zeros.
 - pfet to pass ones.
- The transmission gate is 'non-isolating'.

Berkeley [

Nikolić Fall 2021 26 Ber

Transmission-Gate Multiplexer

Implementation

Sel	Y
0	A
1	В


```
module comb(input a, b, sel,
    output reg y);
  always @(*) begin
    case (sel)
       1b'0: y \le a;
       1b'1: y \le b;
    eendcase
  end
endmodule
```


CMOS Multiplexer

Sel	Y
0	A
1	В

Nikolić Fall 2021

EECS151 L12 CMOS2

CMOS Sizing

29 Berkeley © © © O SA BY NC SA Nikolić Fall 2021

Transistor Sizing

Optimal Wp/Wn

- In the past, Wp > Wn (see Rabaey, 2^{nd} ed)
- In modern processes (finFET), Wp = Wn

Gate Sizing

• Doubling the gate size (by doubling Ws):

- Doubles C_{in}
- Halves equivalent gate resistance

• Doubles C_p

CMOS Delay

32 Berkeley © © © O SA BY NC SA

Nikolić Fall 2021 32 Berkeley

Inverter Delay

• How to time this?

• Each gate has an R_{eq} and drives C_{in} of the next gate

Inverter Delay

High-to-low

$$t_{p,HL} = (ln2)\tau = 0.7 Req_{,n}(C_p + C_L)$$

$$\tau = Req_{,n}(C_p + C_L)$$

Inverter Delay

$$t_{p,LH} = (ln2)\tau = 0.7 Req_{,p}(C_p + C_L)$$

Capacitances

 V_{DD}

- C_{in} is largely set by the gate cap
 - ~WL
 - $2xW = 2xC_{in}$
 - It is non-linear, but we will ignore that

Nikolić Fall 2021

- C_p is largely set by the drain cap
 - ~W (drain area/perimeter)
 - $2xW = 2xC_p$

$$\mathsf{C}_\mathsf{p} = \gamma \mathsf{C}_\mathsf{in}$$

Equivalent Resistances

- Transistor I_{DS}-V_{DS} trajectory
- Averaging produces R_{ea}

 \cap

Equivalent Resistances

Transistor I_{DS}-V_{DS} trajectory

 \cap

Averaging produces R_{eq}

 I_{DS}

$$R_{eq} = (R_{eq,start} + R_{eq,mid})/2$$

Impact of Rise/Fall times

 \bullet Impacts the I_{DS} - V_{DS} trajectory

Impact of Rise/Fall times

ullet Impacts the I_{DS} - V_{DS} trajectory

Impact of Supply Voltage

• Lowering VDD, slows down the circuit

Quiz: Inverter Delay

• If we double the load capacitance, assuming the default Vout shown in blue, which of the following waveforms shows the new Vout?

Summary

- CMOS allows for convenient switch level abstraction
- CMOS pull-up and pull-down networks are complementary
 - Graph models for CMOS gates
- Transistor sizing affects gate performance
- Delay is a linear function of R and C