Quantum Cryptography in the Wild

Brief introduction on quantum information and some preliminary consequences for cybersecurity. A simple quantum key distribution algorithm.

Gate42 (http://www.gate42.org/)

We are physicists and programmers trying to gather people who are interested in quantum computing. Very big area: from academic science to engineering (hardware, software). Contemporary computer science + quantum physics.

42 is the "Answer to the Ultimate Question of Life, the Universe, and Everything"

© Deepmind

Simple Random Number Generator With Photons

Polarizations:

$$|\psi\rangle = \alpha'|\uparrow\rangle + \beta'|\downarrow\rangle \qquad |\psi\rangle = \alpha|\circlearrowleft\rangle + \beta|\circlearrowleft\rangle |\circlearrowleft\rangle = |\uparrow\rangle - \downarrow\rangle \qquad |\circlearrowright\rangle = |\uparrow\rangle + \downarrow\rangle$$

Quantum vs Classical, physics point of view

State is point in a manifold, evolution is a line.

Principle of least action.

State is vector in Hilbert space, evolution is a Unitary Transform.

Action - one trajectory, light chooses quickest path. sum of many trajectories, light == many photons and we see this probabilities as waves. Joining two subsystems: N + M vs NxM.

Probability - we don't know something. (not exact initial state, external noise, ...). In quantum mechanics Probability is inherent.

Quantum vs Classical, probabilities

Indicator (characteristic) function:

$$\chi_A(x) = \begin{cases} 1 & if & x \in A \\ 0 & if & x \notin A \end{cases}$$

Orthogonal projectors set:

$$\sum \Pi_i = I$$

And Probability is calculated as:
$$P(i) = Tr(
ho\Pi_i)$$

Sample space, σ-algebra, measure on it. events are represented by the lattice of projectors on a Hilbert space. The elementary outcomes are the one-dimensional projectors. C*-algebra.

Questions and answers in quantum depend on how we are asking them. In classic answer is an integral of indicator function.

Sequential logic (state Machine)

Reversibles Gates. CNOT

	X
X –	HVOD VOV
у –	XOR — y ® X

ını	out	Ol	itpu
X	у	X	/+x
0}	0}	0}	0}
0}	1>	0}	1>
1>	0}	1)	1>
1>	1>	1>	0}

Qubit - Any 2-state object. $|\psi\rangle=\alpha|0
angle+\beta|1
angle$

Classical Bit

Qubit

$$|\psi\rangle = \alpha_0|00\rangle + \alpha_1|01\rangle + \alpha_2|10\rangle + \alpha_3|11\rangle$$

N bits encode one integer.

N qubits encode 2^N complex numbers. (superposition, entanglement)

But after computation we can ask only N questions (measurements)

A Quantum Algorithm

Current Quantum Computers

DWave (quantum annealing), photonic, continuous variable. IBM - superconducting qubits. (5 - 20 qubits are OnLine)

Qubits are unstable. 0.01~0.001 error rates.

Too much errors == classical behaviour.

Error correction - need of millions of qubits.

Controversy (2¹⁰⁰ ~ thermodynamics, or some other physics)

Programming

Languages are like a DSL (setup a qubit, rotate it, mix this, measure it.)

Algorithms usually give a square root speedup (compared to classic).

Integer factorization (Shor) - sub exponential => polynomial.

Telecommunications & Cryptography

Threats: more computational power.

RSA - factorization of an integer is exponential. Shor's algorithm for n bit integer needs O(2*n) logical (clean) qubits and O(n*n*n) gates. Groover - effectively divides the size of symmetric key length. Errors

No near term threat!

Telecommunications & Cryptography

Ideal random number generator. digital signatures, fingerprinting, authentication.

Exploiting superposition and/or entanglement.

Quantum key distribution: BB84 (main idea)

No cloning theorem: Eve can not intercept a qubit

Alice bits	0	1	0	1	1	1	0	1	1
Alice Base	L	С	С	L	С	L	L	L	С
Q Channel A=>B	0>	->	+>	1>	->	1>	0>	1>	->
Bob	С	L	С	L	L	L	С	С	L
Cl Channel A => B	LCCLC	CLLLC							
Cl Channel B => A	CLCCLLCCL								
Basis Sifting			С	L		L			
Secret Key			0	1		1			

Classical communications to check if Eve intercepted a qubit.

But the world is not ideal. Can not distinguish Eve from channel errors. Single photon source can give 2 photons, error correction (Information reconciliation) and privacy amplification.

Telecommunications & Cryptography

ECHELON - 2001. First commercial try possibly 2004.

www.idquantique.com (Secret key rate ~3 kb/s) and www.infosecglobal.com VPN!

quantumxc.com announced QKD network in USA

Last scientific report: 1.26 Megabit/s over 50 kilometres (km) of standard optical fibre

in 2016 China launched the \$100 million satellite mission named Quantum Experiments at Space Scale (QUESS) aka Micius

Chinese satellite channels: sifted key rates of ~3 kbps at ~1000 km physical separation

Idquantique: network encryption systems, quantum cryptographic systems especially designed for industry and government, a quantum random number generator, a state-of-art photon counting device, single photon source.

There are higher rates, but extremely low temperatures and in extremely well controlled lab conditions.

https://en.wikipedia.org/wiki/List of companies involved in quantum computing or communication

Quantum is not a magic bullet.

Hardware attacks. Use of physical setup impurity. (attacking photodiode). No formal proof of security.

Classic probabilistic methods dealing with classical channel.

We all have seen this.