

L1 MI8 Analyse1

Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

1- Nombres réels

- N l'ensemble des nombres entiers naturels {0,1,2, ...}
 - $\mathbb{N}^* = \mathbb{N}$ privé de 0
 - Toute partie finie de N admet un plus grand élément
- \mathbb{Z} l'ensemble des nombres entiers relatif $\{...0, -2, -1, 0, 1, 2, ...\}$
 - $\mathbb{Z}^* = \mathbb{Z}$ privé de 0
- $\frac{D}{D}$ l'ensemble des nombres décimaux $\left\{\frac{p}{10^n}, p \in \mathbb{Z}, \ n \in \mathbb{N}\right\}$
- \mathbb{Q} l'ensemble des nombres rationnels $\left\{\frac{p}{q}$, $p\in\mathbb{Z}$, $q\in\mathbb{N}^*\right\}$
- $\mathbb{R} \setminus \mathbb{Q}$ l'ensemble des nombres irrationnels $\{x \in \mathbb{R}, x \notin \mathbb{Q}\} : \sqrt{2}, \pi, e, Ln2, ...$ où
- R l'ensemble des nombres réels

1- Partie entière d'un nombre réel

Soit $x \in \mathbb{R}$, il existe un unique entier relatif, noté E(x) ou [x] appelée partie entière de x:

$$E(x) \le x < E(x) + 1$$

E(x) peut être notée par [x] dite partie entière de x par défaut ou partie entière tout court.

E(x) + 1 peut être notée [x] dite entière de x par excès.

Pour tout réel x, tout réel y et tout entier m on a

- E(m) = m et $E(x) = m \Leftrightarrow m \le x < m + 1$
- $\bullet E(x+m) = E(x) + m$
- $\bullet \ x 1 < E(x) \le x$
- E(x) est une fonction croissante.
- E(x) est continue en x et n'est pas continue en m c'est-à-dire continue dans $\mathbb{R} \setminus \mathbb{Z}$.

L1 MI8 Analyse1

Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

Exercice

Montrer que les deux prpriétés suivantes.

1)
$$\forall x \in \mathbb{R}, E(x+1) = E(x) + 1$$

2)
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, E(x) + E(y) \leq E(x + y)$$

Corrigé de l'exercice

1) Soit
$$x \in \mathbb{R}$$
. On a, $E(x) \le x < E(x) + 1$ d'où $E(x) + 1 \le x + 1 < E(x) + 2$

Alors par définition de la partie entière on a E(x+1) = E(x) + 1

2) E(x)+E(y) et E(x+y) sont deux entiers relatifs inférieurs à x+y

Alors par définition de la partie entière, E(x + y) est le plus grand entier inférieur à x alors $E(x) + E(y) \le E(x + y)$.

2- Valeur absolue

Pour tout nombre réel x, on définit la valeur absolue de x notée |x| par :

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Pour tout réel x et tout réel y on a

- $\bullet |x| = 0 \Leftrightarrow x = 0$
- $\bullet |x| = |-x|$
- $\bullet |xy| = |x||y|$
- Si a > 0 alors $|x| \le a \Leftrightarrow -a \le x \le a$
- $|x + y| \le |x| + |y|$ (l'inégalité triangulaire)
- $||x| |y|| \le |x y|$ (la deuxième inégalité triangulaire)

3-Densité de $\mathbb Q$ dans $\mathbb R$

- Intervalles de $\mathbb R$

Définition

On appelle intervalle toute partie I de \mathbb{R} , vérifiant la propriété de convexité, c'est à dire $\forall a, b \in I, \forall x \in \mathbb{R}, a < x < b \implies x \in I$

Soit deux réels a et b tels que $a \le b$.

L1 MI8 Analyse1

Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

- Intervalles d'extrémités finies a et b
 - 1- $a, b = \{x \in \mathbb{R}, a < x < b\}$: intervalle ouvert
 - 2- $[a, b] = \{x \in \mathbb{R}, a \le x \le b\}$: intervalle fermé ou segment de \mathbb{R} .
 - 3- $[a, b] = \{x \in \mathbb{R}, a < x \le b\};$
 - 4- $[a, b[= \{x \in \mathbb{R}, a \le x < b\};$
- Intervalles d'une (ou deux) extrémité(s) infinie(s)

1-]
$$a$$
, + ∞ [= { $x \in \mathbb{R}, x > a$ };

2.
$$[a, +\infty[= \{x \in \mathbb{R}, x \ge a\};$$

3.
$$]-\infty$$
, $b[= \{x \in \mathbb{R}, x < b\}:$

4.
$$]-\infty$$
, $b] = \{x \in \mathbb{R}, x \le b\}$:

5.
$$]-\infty, +\infty[=\mathbb{R}]$$

• distance de *a* à *b* :

d(a,b) = |a-b| appelée distance de a à b

• longueur d'un intervalle a, b (a, b) notée est la distance de a à b et notée

$$|a,b| = |a,b| = d(a,b) = |a-b|$$

• Supposons $a \neq b$. Un réel c de a et de b est dit milieu (centre) de [a, b] ([a, b]) si

$$d(a,c) = d(c,b)$$
 c'est-à-dire $c = \frac{a+b}{2}$.

On dit également que [a, b] ([a, b]) est centré en c.

- Soit x_0 est un réel et h > 0. Alors $]x_0 h$, $x_0 + h[$ est un intervalle centré en x_0 .
- Droite réelle et Droite réelle achevée
- \mathbb{R} est représenté par une droite dite droite numérique. $\mathbb{R} =]-\infty, +\infty[$.
- $\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ en prolongeant la relation d'ordre \mathbb{R} à \mathbb{R} en posant pour tout réel

$$-\infty < a < +\infty$$

alors \mathbb{R} est totalement ordonné est appelé droite réelle achevée. On écrit $\mathbb{R} = [-\infty, +\infty]$ On convient que

• Pour tout réel x

L1 MI8 Analyse1

Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

$$x + (-\infty) = (-\infty) + x = -\infty$$

$$x + (+\infty) = (+\infty) + x = -\infty$$

$$x + (-\infty) = (-\infty) + x = -\infty$$

et on a

$$(-\infty) + (-\infty) = -\infty$$

$$(+\infty) + (+\infty) = +\infty$$

• Pour tout réel x > 0

$$\chi(-\infty) = (-\infty)\chi = -\infty$$

$$x(+\infty) = (+\infty)x = +\infty$$

• Pour tout réel x < 0

$$x(-\infty) = (-\infty)x = +\infty$$

$$x(+\infty) = (+\infty)x = -\infty$$

et on a

$$(-\infty)(-\infty) = +\infty$$

$$(-\infty)(+\infty) = (+\infty)(-\infty) = -\infty$$

$$(+\infty)(+\infty) = +\infty$$

- $\mathbb Q$ est dense dans $\mathbb R$ et $\mathbb R\setminus \mathbb Q$ est dense dans $\mathbb R$

• Tout intervalle ouvert non vide de $\mathbb R$ contient une infinité de rationnels.

On dit que \mathbb{Q} est dense dans \mathbb{R} . On écrit $\overline{\mathbb{Q}} = \mathbb{R}$

- $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R}

• Tout intervalle ouvert non vide de $\mathbb R$ contient une infinité d'irrationnels.

On dit que $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} . On écrit $\overline{\mathbb{R}} \setminus \mathbb{Q} = \mathbb{R}$

Dans toute la suite A et B sont des parties non vides de \mathbb{R} .

4- Borne supérieure, borne inférieure

• Une partie A non vide de \mathbb{R} est dite majorée si, $\exists M \in \mathbb{R}$ tels que $\forall x \in A, x \leq M$

U.S.T.H.B. 2021/22

Partie I: Nombres réels

L1 MI8 Analyse1 Chapitre 1 : Nombres réels et nombres complexes.

On dit que M est un majorant de A ou que A est majoré par M.

- Si $M \in A$ alors M est le maximum de A : M = maxA.
- Une partie A non vide de \mathbb{R} est dite minorée si, $\exists m \in \mathbb{R}$ tels que $\forall x \in A, x \geq M$ On dit que m est un minorant de A ou que A est minoré par m.
- Si $m \in A$ alors m est le minimum de A : m = minA.
- Une partie A non vide de \mathbb{R} est dite bornée si elle est à la fois, majorée et minoréece qui équivaut à dire : $\exists a > 0$ tels que $\forall x \in A, |x| \leq a$
- Définition (borne supérieure)

Un nombre réel a est dit borne supérieure de A si a est un majorant de A et b est le plus petit des majorants de A. S'il existe on le note supA, alors $\mathcal{M} = [supA, +\infty[$ est l'ensemble de tous les majorants de A.

- Si A possède un maximum alors supA = maxA
- Supposons que A est majoré. Si $supA \in A$ alors A possède un maximum : maxA = supA
- Supposons que \underline{A} est majoré. Si $\underline{supf} \underline{A} \notin \underline{A}$ alors \underline{A} n'admet pas de maximum
- Définition (borne inférieure)

Un nombre réel b est dit borne inférieure de A si b est un minorant de A et b est le plus grand des minorants de A. S'il existe on le note infA, alors $m =]-\infty, infA]$ est l'ensemble de tous les minorants de A.

- Si A possède un minimum alors infA = minA
- Supposons que A est minoré. Si $infA \in A$ alors A possède un minimum: minA = infA
- Supposons que *A* est minoré. Si *inf A ∉ A* alors *A* n'admet pas de minimum
- Théorème (propriété de la borne supérieure (inférieure)

Toute partie non vide et majorée (minorée) de \mathbb{R} admet une borne supérieure (inférieure)

On dit que **ℝ** possède la propriété de la borne supérieure (inférieure).

• Proposition (Caractérisation de la borne supérieure (inférieure)). Soit A une partie non vide et majorée (minorée) de \mathbb{R} .

L1 MI8 Analyse1

Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

La borne supérieure (inférieure) de \underline{A} est l'unique réel $\underline{a}(\underline{b})$ qui possède les deux propriétés suivantes

- 1- α est un majorant de A.
- 2- $\forall \varepsilon > 0, \exists x \in A \text{ tel que } x > a \varepsilon (x < b + \varepsilon)$
- Proposition (Opérations sur la borne supérieure et la borne inférieure).

Supposons que $A \cap B$ est non vide.

1. Si $A \subset B$ alors

$$supA \leq supB$$
 et $infA \geq infB$

2. $A \cup B$ est bornée et l'on a

$$sup(A \cup B) = max(supA, supB)$$
 et $inf(A \cup B) = min(infA, infB)$

3. $A \cap B$ est bornée et l'on a

$$sup(A \cap B) \le max(supA, supB)$$
 et $inf(A \cap B) \ge min(infA, infB)$

En général on n'a pas égalité.

4. -A est bornée et l'on a

$$\sup(-A) = -\inf A$$
 et $\inf(-A) = -\sup A$

5. A + B est bornée et l'on a

$$sup(A + B) = supA + supB$$
 et $inf(A + B) = infA + infB$

Borne supérieure et borne inférieure des intervalles

Proposition

Soit a et b deux réels tels que < b.

Un intervalle de la forme (a,b) est bornée et on a

- inf]a, b[= a et sup]a, b[= b et ne possède ni maximum ni minimum.
- inf[a,b] = min[a,b] = a et sup[a,b] = max[a,b] = b

L1 MI8 Analyse1 Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

- inf[a, b] = a et sup[a, b] = max[a, b] = b et admet un maximum mais pas un minimum.
- inf[a, b[=min[a, b[=a et sup[a, b[=b et admet un minimum mais pas un maximum.]

Un intervalle de la forme $(a, +\infty, [$ est minoré et non majoré et on a

- inf]a, + ∞ [= a
- $inf[a, +\infty[= min[a, +\infty, [= a$

Un intervalle de la forme $]-\infty,b)$ est majoré et non minoré et on a

- sup] $-\infty$, b[= b
- $sup[-\infty, b] = max[-\infty, b] = b$
- Exemple (bornes inférieure et supérieure)

Pour chacun des enembles suivants, déterminer s'ils existent la borne inférieure, la borne supérieure, l'ensemble m de tous les minorant, l'ensemble $\mathcal M$ de tous les majorants, le minimum, le maximum.

1-
$$A_1 = \left\{ x \in \mathbb{R}, \frac{2}{x^2 + 1} \ge 1 \right\}$$

On résoud dans \mathbb{R} l'inéquation $\frac{2}{x^2+1} \ge 1$, d'où $A_1 = [-1, 1]$

A₁ est un segment donc borné et admet un mimimum et un maximum :

$$inf A_1 = min A_1 = -1; \ m =] - \infty, -1]$$

 $sup A_1 = max A_1 = 1; \mathcal{M} = [1, +\infty[.$

2-
$$A_2 = \left\{ \frac{2}{x^2 + 1}, x \in \mathbb{R} \right\}$$

Pour $x \in \mathbb{R}$, posons $f(x) = \frac{2}{x^2 + 1}$,

Alors A_2 est l'ensemble $\{f(x), x \in \mathbb{R}\}$.

On dresse le tableau de variations de f. (en exercice).

On voit sur le tableau de variations que $\frac{2}{x^2+1}$ est minoré par $\frac{1}{2}$ et majoré par $\frac{1}{2}$.

Donc A_2 admet une borne inférieure $inf A_2$ et une borne supérieure $sup A_2$.

$$2 \in A_2$$
: $2 = \frac{2}{0+1}$ alors A_2 admet un maximum, $\max A_2 = 2$, d'où $\sup A_2 + 2$.

Montrons que $inf A_2 = 0$.

- 1. 0 est un minorant de A_2
- 2. Soit $\varepsilon > 0$, cherchons $y \in A_2$ tel que, $y < \varepsilon$

L1 MI8 Analyse1

Chapitre 1 : Nombres réels et nombres complexes.

Partie I : Nombres réels

c'est-à-dire, cherchons $x \in \mathbb{R}$ tel que, $\frac{2}{x^2+1} < \varepsilon$ $\frac{2}{x^2+1} < \varepsilon \Longleftrightarrow x^2 > \frac{2-\varepsilon}{\varepsilon} > 0 \text{ d'où } x \in \left] -\infty, \sqrt{\frac{2-\varepsilon}{\varepsilon}} \right[\cup \left] \sqrt{\frac{2-\varepsilon}{\varepsilon}}, +\infty \right[\ .$ On prend $x = \sqrt{\frac{2-\varepsilon}{\varepsilon}} + 1$, alors $\inf A_2 = 0$.

0 n'appartient à A_2 car pour tout réel, $\frac{2}{x^2+1} \neq 0$.

donc $inf A_2$ n'appartient à A_2 alors A_2 n'a pas de minimum.

Fianalement, A_2 est borné, admet un maximum et n'admet pas de minimum.

$$inf A_2 = 0; m =] - \infty, 0]$$

 $sup A_2 = max A_2 = 2; \mathcal{M} = [2, +\infty[$

$$3- A_3 = \left\{ \frac{1}{n+1}, n \in \mathbb{N} \right\}$$

 $\forall n \in \mathbb{N}, \frac{1}{n+1} > 0$ donc A_3 est minoré par 0 donc admet une borne inférieure $\inf A_3$ $n \ge 0 \Leftrightarrow n+1 \ge 1$ d'où $\frac{1}{n+1} \le 1$ alors A_3 est majoré par $M=1 \in A_3$ donc 1 est le maximum de A_3 d'où $\sup A_3=1$

0 est un minorant de A_3 . Montrons que $0 = inf A_3$.

Soit $\varepsilon>0$, on cherche $n\in\mathbb{N}$ tel que $\frac{1}{n+1}<\varepsilon$ i.e. $n>\frac{1-\varepsilon}{\varepsilon}>0$ $(\varepsilon\ll1)$ On prend $n=\left\lceil\frac{1-\varepsilon}{\varepsilon}\right\rceil$.

Donc $0 = inf A_3$. $0 \notin A_3$ donc A_3 n'a pas de minimum.

$$inf A_3 = 0; m =] - \infty, 0]$$

 $sup A_3 = max A_3 = 1; \mathcal{M} = [1, +\infty[$