UNISONIC TECHNOLOGIES CO., LTD

LM339

LINEAR INTEGRATED CIRCUIT

OUAD DIFFERENTIAL COMPARATOR

DESCRIPTION

The UTC LM339 consists of four independent voltage comparators, designed specifically to operate from a single power supply over a wide voltage range.

FEATURES

- *Signal or Dual Supply Operation.
- *Wide Operating Supply Range (V_{CC}=2V~36V).
- *Input Common-Mode Voltage Includes Ground.
- *Low Supply Current Drain I_F=0.8mA (Typical).
- *Open Collector Outputs for Wired and Connection.
- *Low Input Bias Current IBIAS=25nA (Typical).
- *Low Output Saturation Voltage.

ORDERING INFORMATION

Ordering	Dookogo	Doolsing	
Lead Free	Halogen-Free	Package	Packing
LM339L-D14-T	LM339G-D14-T	DIP-14	Tube
-	LM339G-S14-R	SOP-14	Tape Reel
-	LM339G-P14-R	TSSOP-14	Tape Reel

MARKING

www.unisonic.com.tw 1 of 5 QW-R104-001.K

^{*}Output Compatible with TTL, DTL, and CMOS Logic System.

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	±18 or 36	V
Differential input Voltage		$V_{I(DIFF)}$	36	V
Input Voltage		V _{IN}	-0.3~36	V
Power Dissipation	DIP-14	P _D	760	mW
	SOP-14		560	mW
	TSSOP-14		440	mW
Junction Temperature		T_J	125	°C
Operating Temperature		T_{OPR}	-20 ~ +85	°C
Storage Temperature		T _{STG}	-40 ~ 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

(V_{CC}=5.0V, T_A=25°C, All voltage referenced to GND unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	V _{I(OFF)}	$V_{CM}=0 \sim V_{CC}-1.5$, $V_{OUT(P)}=1.4V$, $R_S=0$		±1.5	±3.0	mV
Input Offset Current	I _{I(OFF)}			±2.3	±50	nA
Input Bias Current	I _{BIAS}			57	250	nΑ
Input Common-Mode Voltage Range	$V_{IN(R)}$		0		V _{CC} -1.5	V
Supply Current	Icc	R _L =∞		1.1	2.0	mΑ
Large Signal Voltage Gain	Gv	V_{CC} =15V, R_L >15k Ω	50	200		V/mV
Large Signal Response Time	t _{RES}	V_{IN} =TTL logic wing V_{REF} =1.4V, V_{RL} =5V, R_L =5.1k Ω		350		ns
Response Time	t _{RES}	V_{RL} =5 V , R_L =5.1 $k\Omega$		1400		ns
Output Sink Current	I _{SINK}	V _{IN(-)} >1V, V _{IN(+)} =0V, V _{OUT(P)} <1.5V	6	18		mΑ
Output Saturation Voltage	V_{SAT}	V _{IN(-)} >1V, V _{IN(+)} =0V, I _{SINK} =4mA		140	400	mV
Output Leakage Current	I _{LEAK}	$V_{IN(+)}=1V$, $V_{IN(-)}=0V$ $\frac{V_{OUT(P)}=5V}{V_{OUT(P)}=30V}$		0.1		nA
		$V_{IN(+)}=1V, V_{IN(-)}=UV$ $V_{OUT(P)}=30V$			1.0	μА
Differential Input Voltage	V _{IN(DIFF)}				36	V

Fig.2 Input Current

■ TYPICAL CHARACTERISTICS

Fig.5 Reponse Time For Various Input Overdrive Positive Transition

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

