Métodos de Apoio à Decisão Introdução

João Pedro Pedroso

2021/2022

Informação geral

► Na página da disciplina no SIGARRA

Introdução à Investigação Operacional (IO)

Exemplo de um problema de otimização:

- Dado um conjunto de números, dividi-los em dois subconjuntos de tal forma que a diferença entre as somas seja o menor possível
- Exemplo: 7, 10, 13, 17, 20, 22
- A soma destes números é 89
- Pode ser dividido em {7, 10, 13, 17} (soma=47) e {20, 22} (soma é 42)
- ▶ Podemos fazer melhor?
- Para este problema, a maior parte das instâncias pode ser exatamente dividida (a soma das diferenças é 0 ou 1)
- Sem métodos de otimização formais, é muito difícil conseguir obter a solução.

História da IO

- Origem: fim do década de 30 no Reino Unido, durante a segunda guerra mundial
- Primeiras atividades:
 - desenvolvimento do radar
 - organização da manutenção e inspeção de aviões
 - comparação de diversos tipos de aviões
 - dimensionamento da frota naval
 - deteção de submarinos
 - melhoramento da probabilidade de morte em ataques a U-boats. Variáveis:
 - profundidade (tempo) para a explosão
 - raio de ação
 - precisão de tiro
 - orientação da arma em relação ao barco
 - espaçamento entre as cargas
 - resultado: melhoramento da eficácia do ataque em 40%

História da IO (cont.)

- No pós guerra: operações militares → operações de caráter económico
- pestão de recursos materiais (ex: companhias petrolíferas)
- gestão de recursos humanos (ex: gestão de projetos)
- hoje em dia: conjunto de técnicas
 - programação matemática
 - simulação
 - **.**..

Fases de um estudo de investigação operacional

- 1. Definir o problema. Recolher os dados necessários.
- 2. Formular um modelo matemático que represente o problema. Definir:
 - variáveis de decisão
 - restrições
 - função objetivo
 - parâmetros do modelo
 - normalmente em ciclo com análise de sensibilidade e teste
- 3. Desenvolver um procedimento para obter soluções a partir do modelo (normalmente utilizando computadores).
- 4. Testar o modelo. Se necessário, aperfeiçoá-lo.
- 5. Preparar a aplicação do modelo.
- 6. Implementar.

Exemplo introdutório

Uma companhia mineira possui duas minas, X e Y, nas quais se produz minério de 3 qualidades: alta, média, e baixa. A companhia tem contratos de venda para cada uma dessas qualidades, nas seguintes quantidades:

- ▶ alta qualidade 12 ton/semana
- qualidade média 8 ton/semana
- qualidade baixa 24 ton/semana

As características de operação de cada uma das minas são as seguintes:

Mina	custo/dia	produção diária (ton)		
	(milhares de euro)	alta	média	baixa
X	180	6	3	4
Y	160	1	1	6

Em cada dia da semana, a companhia pode enviar equipas de mineiros para uma mina ou para a outra. O problema é o de saber quantos dias por semana se deve trabalhar em cada mina.

Resolução

- ▶ A firma pode utilizar, por exemplo, 1 dia/semana na mina X e 4 dias em Y. Mas será esta solução ótima?
- Forma de resolução sistemática:
 - Definir variáveis. Seja x o número de dias por semana que se opera na mina X e y o mesmo para a mina Y.
 - (Ambas as variáveis são maiores do que, ou iguais a zero.)
 - Definir restrições.
 - Para assegurar as encomendas dos clientes, as produções têm que ser:

$$6x + 1y \ge 12$$
 (alta qualidade)

$$3x + 1y \ge 8$$
 (média)

$$4x + 6y \ge 24$$
 (baixa)

- ▶ Trabalha-se 5 dias/semana: $x + y \le 5$
- Restrições de sinal: $x, y \ge 0$
- Definir o objetivo: pretende-se minimizar o custo:

$$minimizar z = 180x + 160y$$

 Aos valores constantes que aparecem nestes modelos (por exemplo, 180 e 160 no objetivo) dá-se o nome de parâmetros do modelo.

(Neste caso, o problema é linear?)

Um outro exemplo:

Uma firma de exportação de sementes pretende satisfazer a sua carteira de encomendas. Em alguns casos, é conveniente enviar as encomendas por correio. Os CTT exigem que as caixas utilizadas tenham formato de um paralelepípedo retângulo, obedecendo às seguintes regras:

- O comprimento não pode exceder 42[~]cm, e a soma do comprimento com a largura não pode exceder 72[~]cm.
- ► A altura tem de ser inferior ou igual à largura, e esta não pode exceder o comprimento.

Qual será o maior volume de sementes que pode ser enviado numa única encomenda postal que obedeça a estes regulamentos? (Neste caso, o problema é linear?)

Formulação em Programação Matemática

Definir:

- variáveis
- restrições
- objetivo

Mais um exemplo

- A companhia DEG fabrica dois tipos de computadores: portáteis e desktops. Cada computador deverá passar por uma linha de montagem e por um controlo de qualidade.
- Se a linha de montagem fosse completamente dedicada aos portáteis, poder-se-ia montar até 9 computadores por dia, enquanto que com desktops este limite seria de 8 por dia.
- Se o controlo de qualidade fosse completamente dedicado aos portáteis, poder-se-ia verificar 10 unidades por dia; com desktops este limite seria de 15 computadores.
- Por decisão do departamento de marketing, deve-se produzir menos portáteis do que desktops.
- Cada portátil contribui para o lucro em 250 euros, e cada desktop em 150 euros.

Formulação em programação matemática

Resolução de problemas lineares:

- Utilização de GNU MathProg e do software glpsol
- Em alternativa, software comercial ampl

Uma fábrica de aços tem que decidir como utilizar o tempo da semana seguinte num moinho. O moinho utiliza restos de aço, podendo produzir fitas ou bobinas. As fitas podem ser produzidas à razão de 200 toneladas por hora, e as bobinas à razão de 140 toneladas por hora. Os lucros obtidos são de 25 contos por tonelada com as fitas e de 30 contos por tonelada com as bobinas. Atendendo à carteira de encomendas, a produção máxima na semana seguinte é de 6000 toneladas para fitas e de 4000 toneladas para bobinas.

Se nessa semana se dispuser de 40 horas de produção, quantas toneladas de cada um dos produtos deverão ser produzidas de forma a maximizar o lucro?

Formulação

maximizar
$$z=25x_F+30x_B$$

sujeito a $x_F/200+x_B/140 \leq 40$
 $x_F \leq 6000$
 $x_B \leq 4000$
 $x_F, x_B \geq 0$

GNU MathProg

Modelo AMPL/GMLP Ficheiro steel-a.mod:

```
var XF;
var XB;
subject to Tempo: XF/200 + XB/140 <= 40;
subject to LimiteF: 0 <= XF <= 6000;
LimiteB: 0 <= XB <= 4000;  # "subject to" is optional
maximize lucro: 25*XF + 30*XB;</pre>
```

Try it: https://ampl.com/try-ampl/try-ampl-online/

Resolução com GLPK

▶ Para resolver: na *shell* do Linux escrever:

```
glpsol --math steel-a.mod -o steel-a.sol
```

A solução será registada no ficheiro steel-a.sol

Problem: steel-a

Rows: 4 Columns: 2

Non-zeros: 6

Status: OPTIMAL

Objective: lucro = 192000 (MAXimum)

No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
2	Tempo LimiteF LimiteB lucro	NU NU B	40 6000 1400 192000	0	40 6000 4000	4200 4
No.	Column name	St	Activity	Lower bound	Upper bound	Marginal
_	XF XB	B B	6000 1400			

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 3.12e-16 on row 1

max.rel.err. = 7.62e-18 on row 1

High quality

High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0

max.rel.err. = 0.00e+00 on row 0

Noções estudadas

- Investigação operacional.
- Fases de um estudo de investigação operacional.
- ► Formulação em programação matemática.

Próxima aula

- ► Formulação em programação matemática
- ► AMPL/GLPK.
- Resolução gráfica de problemas com duas variáveis

Questões para esta aula

 $\verb|https://codex.dcc.fc.up.pt/cc3003|$