Question of the day

- How can we organize data to efficiently locate and update the most important elements?
- How can we efficiently store and update group memberships?

Priority queues and Union-Find

William Hendrix

Outline

- Review
 - AVL trees
 - Hash tables
 - Sets
 - Maps
- Priority queues
- Heaps
- Union-Find

AVL tree review

- Self-balancing binary search tree
- All ops guaranteed $O(\lg n)$
- Nodes keep track of balance
 - height(right) height(left)
 - Always o or ±1
- Performs rotations as nodes are inserted or deleted to maintain balance
 - 4 cases: left-left, left-right, right-left, right-right

Hash table review

- Sparse array-based structure
 - Values inserted based on hash function
- **Separate chaining:** array of linked lists
- Open addressing: insert at "next available" space
 - Quadratic probing and double hashing reduce congestion
- Rehash once load factor exceeds threshold
 - Load factor: size / capacity
 - Double capacity (roughly) and reinsert using hash function
 - Often chosen to be prime
- Hash functions
 - Need to be fast, distribute values evenly, and separate nearby values
 - Often use multiplication, polynomials, or bitwise ops
 - Mod at end to ensure range is 0 to cap 1
 - *Multi-byte inputs*: multiply or rotate before incorporating next values

Set review

- ADT for storing and retrieving values
 - May allow or disallow duplicates
- Main operations:
 - Search(x): returns whether x is in the set
 - Insert(x): adds x to the set (may or may not allow duplicates)
 - Delete(x): removes x from the set
- Two main implementations: balanced BST and hash table
 - Hash table "usually" faster
 - $\Theta(1)$ expected complexity
 - Assumes $\Theta(1)$ collisions
 - BST has better worst-case complexity
 - $O(\lg n)$ vs. O(n)
 - BST can access elements in sorted order
 - min(), max(), predecessor(), successor()

Maps review

- Stores set of associations
- Main operations:
 - Insert(key, value): associates value to key
 - Delete(key): removes any association with key
 - Search(key): returns value associated with key
- Implementations
 - Array map:
 - Store value in arr [key]
 - $\Theta(1)$ worst case (*very fast!*)
 - Keys must be relatively small ints
 - Hash map:
 - Insert (key, value) pairs into hash table
 - Only hash key
 - $\Theta(1)$ expected complexity
 - Tree map:
 - Insert (key, value) pairs into BBST based on key
 - O(lg *n*) worst case

Maps

- Abstraction of a function
- Main operations
 - **Insert(x, y):** declares that f(x) = y
 - **Delete(x):** declares that f(x) does not have a value
 - **Search(x):** returns y such that f(x) = y, or NIL if f(x) does not have a value
- Example: letter frequencies
 - Problem: count how many times a letter appears in a given text
 - Used in cryptography
 - Sample output

E	Т	A	О	I	N	S	R	Н	•••
12	9	8	7	7	6	6	6	6	•••

- Need to associate count with letter
- f(E) = 12, etc.

Map implementation

- Two main implementations
- Array-based map
 - Array of all possible x values
 - Stores f(x) in arr[x] (NIL if not initialized)

8	2	3	4	12	2	2	•••
A	В	C	D	E	F	G	•••

- All main operations are constant time
- Only useful when input domain is small
- Set-based map
 - A.k.a., hash map
 - Set of ordered (x, y) pairs
 - Pairs added/searched according to x value
 - Search returns associated y value
 - Time complexity determined by hash table or BBST

Map complexity

Operation	Array-based map	Set-based (hash table)	Set-based (BBST)
Insert(x, y)	$\Theta(1)$	Θ (1)*	O(lg n)
Delete(x)	$\Theta(1)$	$\Theta(1)^*$	O(lg n)
Search(x)	$\Theta(1)$	Θ (1)*	O(lg n)
Build()	$\Theta(D)$	$\Theta(n)$	O(n lg n)

D: size of domain (*x* values)

^{*} Expected complexity for hash table

The power of maps

- Maps are very useful for storing values that we compute repeatedly
 - Especially when we can use direct maps
- **Example:** Discrete Fourier Transform
 - Given array *x* compute transformed array *c* such that

$$c_k = \sum_{j=1}^n x_j e^{jk(-2\pi i/n)}$$
 Store values in lookup table

- Can also improve best-case performance for <u>any</u> algorithm
- 1. Build a map that contains problem instances and solutions
- 2. Before running another algorithm, test whether input is in map
- 3. If so, return the answer
- Best case typically constant or linear time
- Best case analysis not useful to compare algorithm quality

Priority queues

- Abstract data type
- Similar to a queue, but returns elements in *priority order*
 - Min-first or max-first
 - Very good at finding min/max
- 3 main operations (min)
- Insert(x)
 - Adds another element
- Min()
 - Returns min
- DeleteMin()
 - Returns min and deletes

Heaps

- Main implementation of priority queue
- Complete binary tree that satisfies *heap property*
 - Min heap: every parent is ≤ its children
 - Max heap: every parent is ≥ its children
 - Unlike BST, left and right children not related
 - Also, children fill last level left-to-right

• Min():

Return root

- Insert(x):
- Add x into next position on bottom level
 - Tree size dictates where to go
 - Increment size
 - Convert size to binary
 - Skip to just past first 1
 - Go left on o
 - Go right on 1
- Restore heap property

- Insert(x):
- Add x into next position on bottom level
 - Tree size dictates where to go
 - Increment size
 - Convert size to binary
 - Skip to just past first 1
 - Go left on o
 - Go right on 1
- Restore heap property

$$Size = 6$$

110

- Insert(x):
- Add x into next position on bottom level
 - Tree size dictates where to go
 - Increment size
 - Convert size to binary
 - Skip to just past first 1
 - Go left on o
 - Go right on 1
- Restore heap property

- Insert(x):
- Add x into next position on bottom level
 - Tree size dictates where to go
 - Increment size
 - Convert size to binary
 - Skip to just past first 1
 - Go left on o
 - Go right on 1
- Restore heap property
 - Swap with parent if out-of-order
 - Repeat until satisfied or at root
 - "Percolate up"

Bitwise ops not tested

Heap example

- Add 35 to heap at right
- Then add 6

Heap example

- Add 35 to heap at right
- Then add 6

Heap exercise

• Sketch the result of inserting 6, 5, 4, 3, 2, and 1 into an empty min-heap

Heap exercise

• Sketch the result of inserting 6, 5, 4, 3, 2, and 1 into an empty min-heap

Heap deletion

- DeleteMin():
- Swap root value with last node
- Delete last node

Heap deletion

- DeleteMin():
- Swap root value with last node
- Delete last node
- Fix heap property at root
 - Swap root with min child
 - Max child for max-heap
 - Stop if node greater than both children or at leaf
 - "Percolate down"

Heap deletion

- DeleteMin():
- Swap root value with last node
- Delete last node
- Fix heap property at root
 - Swap root with min child
 - Max child for max-heap
 - Stop if node greater than both children or at leaf
 - "Percolate down"

Heap complexity

- Min():
 - Return root
 - O(1)
- Insert(x):
 - Scan to bottom of tree
 - Percolate up
 - Worst case: go back to root
 - $O(h) = O(\lg n)$
- DeleteMin():
 - Scan to bottom
 - Swap
 - Percolate down
 - Worst case: go down to leaf
 - $O(\lg n)$

Array-based heap

- Preferred implementation for a heap
- Store node values in an array
- Root at index 1
- Children of index i at 2i and 2i+1
 - Parent at floor(i/2)
- Complete tree fills array with no gaps or overlap

Array-based heap

- Store node values in an array
- Root at index 1
- Children of index i at 2i and 2i+1
 - Parent at floor(i/2)
- Complete tree fills array with no gaps or overlap
- Operations mostly the same
- Min(): return arr[1]
- Insert(x):
 - Append to array
 - Percolate up
 - Increment size
 - Double capacity as needed
- DeleteMin():
 - Swap arr[1] and arr[size]
 - Percolate arr[1] down
 - Decrement size and return arr[size+1]

Heapification

- Convert unsorted array into heap
 - Faster than multiple calls to insert

Algorithm:

- Call PercolateDown(i) from end to beginning
- Optimization: don't percolate the leaves down
 - Avoids half of the heap
- Complexity: $\Theta(n)$ time
 - Intuition: half have no children, half of rest have 1 child, etc.
 - Only root has lg *n* levels below it
 - $\Theta(1)$ "on average"

```
1 Algorithm: Heapify(i)
2 for i = \lfloor n/2 \rfloor to 1 step -1 do
3 | PercolateDown(i)
4 end
```

Priority queue implementations

Operation	Heap	Unsorted array	Sorted array	Balanced BST	Fibonacci heap
Insert(x)	$\Theta(\lg n)^*$	Θ (1)*	$\Theta(n)^*$	O(lg n)	$\Theta(1)$
Max()	Θ (1)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
DeleteMax()	$\Theta(lg n)$	$\Theta(n)$	Θ (1)	O(lg n)	$\Theta(\lg n)^*$
Build/Heapify	$\Theta(n)$	$\Theta(1)$	$\Theta(n \lg n)$	$\Theta(n \lg n)$	$\Theta(n)$

^{*} amortized time

- BST has similar complexity, but higher coefficients
- Great at finding max (or min)
- Other operations (min/max, search, predecessor, etc.) are not good
 - Min-max heap can do either, but is more complex
- Fibonacci heap has even better complexity
 - More complex, higher coefficients, less space efficient
 - Fairly slow unless data is quite large

Heap exercise

- 1. Draw the max heap that is built from the array $\{8, 4, 6, 9, 2, 7, 1\}$.
- 2. Draw this heap at the end of every iteration of the **for** loop in HeapSort (below). You may ignore the effect of line 5.

```
Input: data: an array of integers to sort
Input: n: the number of values in data
Output: permutation of data such that
 data[1] \leq \ldots \leq data[n] 
1 Algorithm: HeapSort
2 data = \text{MaxHeap.Build}(data)
3 for i = n to 2 step -1 do
4 | m = data.\text{DeleteMax}()
5 | data[i] = m
6 end
7 return data
```


Heap sample solution

Heap sample solution

Union-Find data structure

- A.k.a., disjoint set data structure
- **Purpose:** represent partition of dataset
 - Identify whether elements belong to the same subset or not

Operations

- Initialize(n): set up each element (1..n) in its own subset
- Find(x): return a partition ID for a given element
- Union(x, y): combine subsets containing x and y together
- **Representation:** array of "pointers" (integers)
 - Find: follow pointers until you find a self-loop
 - Self-loop is partition ID ("root")
 - Union: point Find(a) to b

Union-Find example

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Union-Find example

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Union-Find example

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 4 3 4 5 7 7

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 4 5 4 5 7 7

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 4 5 4 6 7 7

Optimizing Union-Find

- Union complexity depends on Find
- Find complexity depends on height of tree
- Worst case: $\Theta(n)$
- First idea: add Find(a) to Find(b) (or vice versa)
- Second idea: add the smaller tree to the larger
- Third idea: flatten structure when we call Find()

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 2 3 2 5 6 7

Pointers: 6 3

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 2 3 2 5 7 7

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 2 5 2 5 7 7

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 2 5 2 7 7 7

- Show how the data structure changes after each of the following iterations:
 - Initialize(7)
 - Union(1, 2)
 - Union(1, 4)
 - Union(6, 7)
 - Union(3, 5)
 - Union(3, 6)
 - Find(3)

Array: 2 2 7 2 7 7

Union-Find operations

Find(x)

- Recursively point to answer
- $-\Theta(\alpha(n))$, amortized
- Generally less than 4 for conceivable n

Union(a, b)

- Call Find on both sides first
- Always point to larger tree
- $-\Theta(\alpha(n))$
- The Ackermann function
 - Incredibly fast-growing function

 - First few values: $3,7,61,2^{2^{2^{65536}}}-3,...$

```
1 Algorithm: Find(x)
2 if unionfind[x] \neq x then
     id = Find(unionfind[x]);
     unionfind[x] = id;
5 end
6 return unionfind[x];
```

```
1 Algorithm: Union(a, b)
\mathbf{z} ra = \operatorname{Find}(a);
striction rb = Find(b);
4 if size[ra] > size[rb] then
      Swap ra and rb;
6 end
7 unionfind [ra] = rb;
\mathbf{s} \ size[rb] =
    size[ra] + size[rb];
```

Union-Find applications

- Major application: algorithm later in semester...
- Single linkage hierarchical clustering
 - All points start as separate, individual clusters (groups)
 - Repeatedly join "closest" clusters together
 - Single linkage: distance between clusters = min dist b/w points

Input:

- data: array of n points
- c: number of clusters
- **Output:** *c* clusters
- Pseudocode:
 - Initialize union-find
 - 2. Calculate all distances between points
 - 3. Repeat:
 - 4. If points with next smallest distance are not in same group:
 - 5. Union them
 - 6. Until there are *c* groups in union-find

Hierarchical clustering example

- Pseudocode
 - Union next closest points if not unioned
 - Repeat until desired # of clusters
- Example: data are integers, distance is abs. value, c = 1

- Perform single-linkage hierarchical clustering on the array below until everything is in one cluster
 - Distance is abs. value
- Draw the Union-Find data structure after each step

- Rules
 - If given a choice, merge the cluster with the leftmost element
 - Merge elements left-to-right

- Perform single-linkage hierarchical clustering on the array below until everything is in one cluster
 - Distance is abs. value
- Draw the Union-Find data structure after each step

-4	-2	-1	3	4	7	9
_			_		· ·	-

- Rules
 - If given a choice, merge the cluster with the leftmost element
 - Merge elements left-to-right

- Perform single-linkage hierarchical clustering on the array below until everything is in one cluster
 - Distance is abs. value
- Draw the Union-Find data structure after each step

|--|

- Rules
 - If given a choice, merge the cluster with the leftmost element
 - Merge elements left-to-right

- Perform single-linkage hierarchical clustering on the array below until everything is in one cluster
 - Distance is abs. value
- Draw the Union-Find data structure after each step

-4	-2	-1	3	4	7	9
_			_		· ·	-

- Rules
 - If given a choice, merge the cluster with the leftmost element
 - Merge elements left-to-right

Union(3, 4) *or*: Union(-1, 3)

Array representation (final):

3	3	7	7	7	7	7
---	---	---	---	---	---	---

Note that array values represent the *position* (index) of the element, not its value.

For example, element #1 (-4) points to element #3 (-1), which points to element #7 (9).

Coming up

- Union-Find
- Sorting
- Search
- **Recommended reading:** Sections 5.1, 5.3, 5.4 (just "Bottom-Up Heap Construction" to the end), 7.1, and 7.3
 - Practice problems: R-5.8, R-5.9, R-5.10, R-5.12, C-5.5, A-5.1, R-7.7, R-7.8, C-7.8, A-7.1