Closer to the Cloud - A Case for Emulating Cloud Dynamics by Controlling the Environment

Ashiwan Sivakumar Shankaranarayanan P N Sanjay Rao

School of Electrical and Computer Engineering
Purdue University

Latency-Sensitive Applications on the Cloud

Performance Fluctuations in Microsoft Azure

- Short-term and long-term variation in DB latency
- > DB performs 100% worse on Day 1 than on Day 2
- > Variation in RTT of TCP streams observed in Amazon EC2
- Our study confirms hotcloud10 (CloudCmp), SoCC10 (YCSB)

Control over the Environment: A Technique

- Commercial clouds ?
 - > No control over the environment and shared infrastructure
- Cloud test beds like Open Cirrus, Eucalyptus?
 - Can emulate cloud dynamics and federated, but no control over the environment

Sample Enterprise Application Day Trader

Single Data Center Deployment on GENI

- > Test bed
 - > User workload generator (grinder) running in Purdue
 - Workload from DaCapo benchmark for Enterprise apps
 - > Application instances running on nodes from Utah
 - ➤ Delay node between BS1 and BE

Predicting Performance of Applications by Replaying Trace

- DB latency trace from Azure (slide 3) replayed between BS and BE
- > Total application response time for each user request plotted
- More or less follows network delay between BS and BE
- ➤ Also measured error percentage always within 1 %

Multi Data Center Deployment on GENI

- > Test bed
 - ➤ User workload generator in Purdue
 - > Two instances of the application components
 - > One deployment in Utah and another in Kentucky
 - > Delay node between FE1 and BS1 in Utah

What –if Analyses on Application

- ➤ No delay : DC2 slower than DC1
- Delay 250 ms : DC1 slower than DC2

DC1 – DC1 : FE1 – BS1 in Utah & DC2 – DC2 : FE2 – BS2 in Kentucky

An Adaptive System - Dealer

- Cloud environment is highly dynamic
 - Problem isolated to one component in a DC
- Current redirection mechanisms
 - > Abandon entire deployment
- > **Dealer**: Adapts to cloud dynamics
 - Components deployed on multiple DCs
 - > Fine-grained component level redirection
 - Optimally suggests path based on latencies

Evaluation of the Adaptive System

Control Input : Step

> Output : Dealer path change

DC1 - DC1 : FE1 - BS1 & DC1 - DC2 : FE1 - BS2

Conclusions

- > To open up new avenues in cloud research
 - Control over test bed environment critical
- Can be used as a technique by developers and researchers for
 - emulating real cloud dynamics to
 - > predict application performance
 - compare cloud providers
 - what-if analyses on application
 - develop solutions for performance problems

Q & A

Back up slides

Future Directions

- Dynamically change the delay
 - ➤ Multi data-center deployment like Emulab
- > Emulating cloud data stores
 - ➤ Blobs, Queues, Big-Table provided as service
- ► Installing and running Cassandra on GENI

Accuracy and Repeatability Requirements

- Error percentage :
 - (observed latency expected latency)/expected latency in %
 - observed ping , expected delay applied
 - always within +- 1% error bound
- Require such high degree of accuracy and repeatability

SQL Azure Performance Issue Snapshot (6 Days)

Performance Fluctuations in Amazon EC2

- > Simple Experiment
 - > RTT measured for a TCP stream
 - > Both inter and intra DC show variation

Day Trader Communication Pattern

- Response time = component latency + communication latency
- ➤ Multiple calls between components for a given user request