

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

What Is Pattern Discovery?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- □ Motivation examples: ชาทรภ ระลาณ แล้วเทอเลช
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- □ Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports Transaction 17

สาราชั่งร่อมกาน (ชุด)

Itemset: A set of one or more items

k-itemset: $X = \{x_1, ..., x_k\}$

Ex. {Beer, Nuts, Diaper} is a 3-itemset (absolute) support (count) of X, sup{X}:

Frequency or the number of occurrences of an itemset X

- Ex. sup{Beer} = 3 3 transaction of beer on
- Ex. sup{Diaper} = 4
- Ex. sup{Beer, Diaper} = 3
- Ex. sup{Beer, Eggs} = 1

V	9116226909	transactions	ก็สหับ สนุนค. คิดเกา
---	------------	--------------	----------------------

	Tid	Items bought
1	10	Beer, Nuts, Diaper
2	20	Beer, Coffee, Diaper
3	30	Beer, Diaper, Eggs
4	40	Nuts, Eggs, Milk
5	50	Nuts, Coffee, Diaper, Eggs, Milk
Lazora La nosy		

(relative) support, $s\{X\}$: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

- Ex. $s\{Beer\} = 3/5 = 60\%$
- Ex. $s\{Diaper\} = 4/5 = 80\%$
- Ex. $s\{Beer, Eggs\} = 1/5 = 20\%$

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ μης threshold σ
- Let $\sigma = 50\%$ (σ : *minsup* threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

Coffee: 9/5 (AO%) Tais threshold

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - Ex. Diaper → Beer 30 Diaper 957780 beer 804
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets

- - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
- Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \Box Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{34}{4} = 0.75$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: $X \cup Y$: the union of two itemsets

The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- Association rule mining minsup, minconf

 Given two thresholds: minsup, minconf
- Find all of the rules, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- Let minsup 1 Am 30%.

 item 12 7 7 2 Words

 item Len; 22 mosson
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - Freq. 2-itemsets: {Beer, Diaper}: 3
- Let minconf = 50% Sub (beer, Diaper) / Sub (beer)
 - Beer → Diaper (60%, 100%)
 - Diaper \rightarrow Beer (60%, 75%)

(Q: Are these all rules?)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

A too huge set for any

one to compute or store!

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain?
 - \Box TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: {a<sub>1</sub>}: 2, {a<sub>2</sub>}: 2, ..., {a<sub>50</sub>}: 2, {a<sub>51</sub>}: 1, ..., {a<sub>100</sub>}: 1, 2-itemsets: {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>50</sub>}: 2, {a<sub>1</sub>, a<sub>51</sub>}: 1 ..., ..., {a<sub>99</sub>, a<sub>100</sub>}: 1, ..., ..., ...
```

99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1

100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

The total number of frequent itemsets:

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y ⊃ X, with the same support as X
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - \square You will still be able to say: "{a₂, ..., a₄₀}: 2", "{a₅, a₅₁}: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: **Max-patterns**: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

Apriori Pruning and Scalable Mining Methods

เล้าหว่า งิฆ่ ฟาน กิจะ

on on any have

- ทัดน_ีดง
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- □ Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat

Lo Data base
No 19/07 & No 7 ald ? Generate length-(k+1) candidate itemsets from length-k frequent

- Test the candidates against DB to find frequent (k+1)-itemsets
- Set k := k + 1

itemsets

- Until no frequent or candidate set can be generated
- Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} 
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k
                       // return F_k generated at each level
```

The Apriori Algorithm—An Example

Database TDB

Tid

10

20

30

40

minsup = 2

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

F_{I}	Itemset	sup
1 1	{A}	2
	{B}	3
ทัดสา ๆ	{C}	3
7 9 9 9 7	{E}	3

 F_2 **Itemset** sup {A, C} {B, C} {B, E} {C, E} 2

Items

A, C, D

B, C, E

A, B, C, E

B, E

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

Itemset 2nd scan

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset {B, C, E}

9, 3 itemset

3rd scan

Itemset	sup
{B, C, E}	2

auga! mood litem=4 2:tem=4 3item = 1