Факультет компьютерных технологий и прикладной математики Кафедра информационных технологий 02.03.03

Приложение нейросетевых алгоритмов Лабораторная работа № 5. Рекуррентные нейронные сети.

Задание. Требуется реализовать алгоритмы на языке программирования Python без использования специализированных библиотек.

Задача 1. Рекуррентные сети Хопфилда. Сеть Хопфилда состоит из единственного слоя нейронов, число которых является одновременно числом входов и выходов сети. Каждый нейрон связан синапсами со всеми остальными нейронами, а также имеет один входной синапс, через который осуществляется ввод сигнала. В качестве функции активации нейронов сети Хопфилда будем использовать функцию sgn со значениями +1 или -1.

Рисунок 1 – Схема сети Хопфилда с тремя нейронами

В отличие от других нейронных сетей, работающих до получения ответа через определённое количество тактов, сети Хопфилда работают до достижения равновесия, когда следующее состояние сети в точности равно предыдущему: начальное состояние является входным образом, а при равновесии получают выходной образ.

Алгоритм обучения по правилу Хебба заключается в следующем:

Весовые коэффициенты W_{ij} рассчитываются один раз перед началом функционирования сети на основе информации о запоминаемых данных, и все обучение фактически сводится к этому расчету. Из компонент идеальных

образцов вычисляется по несложным правилам значение всех коэффициентов сети:

$$w_{ij} = \frac{1}{N} \sum_{t=1}^{p} x_i^{(t)} x_j^{(t)}$$
 , для $i \neq j$; $w_{ii} = 0$.

Здесь t = 1, 2, ..., p, p – количество входных векторов, N – количество нейронов (равное размеру входных векторов). После вычисления всех весов, они фиксируются и можно переходить к тестированию нейронной сети – распознавание образов. Таким образом, обучение сети проводится за одну эпоху.

Алгоритм тестирования состоит из следующих шагов:

- 1. На входы сети подается неизвестный сигнал, который вводится непосредственно установкой выходов следующим образом: $y_i(0) = x_i$, i = 1, 2, ..., N.
- 2. Рассчитывается новое состояние нейронов и значение активационной функции: $y_i(t) = \operatorname{sgn}\left(\sum_{j=1,\,j\neq i}^N w_{ij} y_j(t-1)\right)$.
- 3. Выполняется проверка, изменились ли выходные значения y_i за последнюю итерацию (y(t) = y(t-1)). Если да (неустановившееся состояние), то переход на п. 2. Если сеть попала в устойчивое состояние, то она выдает выходной вектор, ближайший (но имеющий сходство не меньше определенного порога) из запомненных к эталонному сигналу. Если среди хранимых эталонов нет похожих образцов, то выдается соответствующее сообщение.

Условие задачи:

Постройте нейронную сеть Хопфилда, размера $N\!=\!100$, для распознавания чёрно-белых картинок (-1 — чёрный цвет, +1 — белый). Проведите обучение сети Хопфилда на заданный тип образов. Для запоминания задано 2 образа (бинарные изображения размером $10\!\times\!10$). Подайте на вход сети ряд тестовых образов, в которые внесено зашумление. Проанализируйте результаты, при каком проценте зашумления тестовые образы распознаются верно.

Таблица 1 – Пример задания тестируемых и искаженных образцов

Тестируемый образец	Зашумление 10%	20%	30%	40%

Продолжение таблицы 1

Задача 5.2. Рекуррентные сети Хэмминга. Структурно нейронная сеть Хэмминга включает три слоя, количество нейронов в каждом слое равно количеству классов p. Число входов N соответствует числу бинарных признаков, по которым различаются образы. Значения входных переменных принадлежат множеству $\{-1, 1\}$. Обобщенная структура сети Хемминга представлена на рисунке 2.

Рисунок 2 – Обобщенная структура сети Хемминга

На стадии обучения сети Хэмминга выполняется следующая последовательность действий:

1. Формируется матрица эталонных образов размера $p \times N$:

		1	2		N
	1	x_{11}	x_{12}		x_{1N}
Ī	2	x_{21}	x_{22}		x_{2N}
	p	x_{p1}	x_{p2}	•••	x_{pN}

2. Рассчитывается матрица весовых коэффициентов первого слоя на основе матрицы эталонных образов:

$$w_{ij}^{(1)} = x_j^{(1)}, t = 1, 2, ..., p; j = 1, 2, ..., N.$$

3. Задаются значения синапсов обратных связей нейронов второго слоя в виде матрицы размера $p \times p$:

$$w_{ij}^{(m)} = egin{cases} 1, \ \text{если} \ i = j \ - rac{1}{p-1} + \xi, \ \text{если} \ i
eq j \end{cases}$$
, где ξ — случайная малая величина.

4. Определяются настройки функции активации (линейная пороговая функция):

$$f(y) = \begin{cases} y, & y \ge 0 \\ 0, & y < 0 \end{cases}.$$

5. Устанавливается максимально допустимое значение нормы разности выходных векторов на двух последовательных итерациях $E_{\rm max}$, требующееся для оценки стабилизации решения. Обычно достаточно принимать $E_{\rm max}=0,1$.

На стадии практического использования выполняются следующие действия:

- 1. На входы сети подается неизвестный, в общем случае, зашумленный вектор сигналов x.
- 2. Рассчитываются состояния и выходные значения нейронов первого слоя. Для расчета состояний нейронов используется соотношение:

$$\vec{y}_i = 1 - \frac{r_H(x^{(t)}, x)}{N}, r_H(x^{(t)}, x) = \frac{1}{2} \left[N - \sum_{i=1}^{N} x_i^{(t)} x_i \right].$$

Для расчета выходов нейронов первого слоя к полученным значениям состояний применяется активационная функция $f(y) = \begin{cases} y, & y \ge 0 \\ 0, & y < 0 \end{cases}$.

3. Выходам нейронов второго слоя в качестве начальных величин присваиваются значения выходов нейронов первого слоя, полученные на предыдущем шаге:

$$y_i(0) = \overrightarrow{y_i}$$
.

Далее первый слой нейронов на стадии практического использования больше не задействуется.

4. Для каждой итерации *s* рассчитываются новые значения состояний и выходов нейронов второго слоя. Состояния нейронов определяются по соотношению:

$$y_i(s) = f\left(\sum_j w_{ij}^{(m)} y_j(s-1)\right) = f\left(y_i(s-1) + \sum_{j \neq i} w_{ij}^{(m)} y_j(s-1)\right).$$

- 5. Новые выходные значения $y^{(t)}$ определяются в результате применения линейной пороговой активационной функции к соответствующим состояниям нейронов.
- 6. Цикл в п. 4 повторяется до стабилизации выходного вектора в соответствии с условием: $\|\vec{y}(s) \vec{y}(s-1)\| \le E_{\text{max}}$.

В идеальном случае после стабилизации должен получиться выходной вектор с одним положительным и всеми остальными нулевыми элементами. Индекс единственного положительного элемента непосредственно указывает на класс неизвестного входного образа.

Если данные входного образа сильно зашумлены или в обучающей выборке отсутствовал подходящий эталон, в результате остановки цикла в п. 4 могут быть получены несколько положительных выходов, причем значение любого из них окажется меньше, чем $E_{\rm max}$. В этом случае делается заключение о невозможности отнесения входного образа к определенному классу, однако индексы положительных выходов указывают на наиболее схожие с ним эталоны.

Условие задачи:

Постройте нейронную сеть Хэмминга для распознавания чёрно-белых картинок — образцов цифр размерностью 7×7 .

Подайте на вход сети ряд тестовых образов, в которые внесено зашумление. Необходимо определить к какому из 10 (p=10) эталонных образцов-цифр относится входной образец. Входные и эталонные образцы – бинарные векторы размерностью N=49 (-1 — чёрный цвет, +1 – белый). Проанализируйте результаты, какие тестовые образы распознаются верно.

Постройте для решения данной задачи нейронную сеть Хопфилда. Сравните результаты работы сети Хопфилда и сети Хэмминга.

Примеры зашумленных (сверху) и соответствующих эталонных образов (снизу) представлены на рисунке 3.

Рисунок 3 — Тестовые (сверху) и распознанные (снизу) эталонные образцы цифр