MATH621 - Algebraic Number Theory

Taught by Yihang Zhu Notes taken by Haoran Li 2021 Spring

Department of Mathematics University of Maryland

Contents

1	Overview	2
2	Class field theory over $\mathbb Q$	4
3	Ramification in $\mathbb{Q}(\zeta_m)$	6
4	Profinite groups	8
5	Local fields	10
6	Galois theory for local fields	12
Index		14

1 Overview

Class field theory (CFT) is the study of abelian extensions of global and local fields

Definition 1.1. A global field is a finite separable extension of \mathbb{Q} or function field of a geometrically smooth curve over F_q . A local field is a finite extension of \mathbb{Q}_p or function field of $F_q(t)$

we want to understand abelian extensions of K in terms of an invariant of K: the *idele class* $group(some generalization of <math>Cl(O_K))$

$$C_K = \begin{cases} \mathbb{A}_k^{\times}/K^{\times}, K \text{ global} \\ K^{\times}, K \text{ local} \end{cases}$$

Why do we care?

Power reciprocity: The Legendre symbol $(n/p) = \begin{cases} 1 & n \text{ is a square } \mod p \\ -1 & \text{otherwise} \end{cases}$

Quadratic reciprocity: For p,q distinct odd primes (p/q)(q/p)=1 if one of $p,q\equiv 1 \bmod 4$, -1 if $p\equiv q\equiv 3 \bmod 4$, or more succinctly $(p/q)(q/p)=(-1)^{\frac{(p-1)(q-1)}{4}}$. Also $(-1/p)=(-1)^{\frac{p-1}{2}}$, $(2/p)=(-1)^{\frac{p^2-1}{8}}$

Class field theory is a vast and conceptual generalization of this, it put quadratic reciprocity into context. CFT \Rightarrow higher power reciprocity, e.g. cubic reciprocity: 2,7 are not cubic powers mod 61

A classical problem: $p = x^2 + ny^2$, when a prime p can be written as above

If n = 1, this holds iff $p \equiv 1 \mod 4$ or p = 2 iff p splits in $\mathbb{Q}(\sqrt{-1})$. CFT gives a complete solution to this for all n. See D. Cox "Primes of the form $x^2 + ny^2$ "

If n = 14, then this holds iff (-14/p) = 1 and $(x^2 + 1)^2 - 8$ has root mod p

 $K = \mathbb{Q}(\sqrt{-14})$, then this holds iff $p = \bar{P}P$ splits in K and P is principle iff(by CFT) $p = \bar{P}P$ splits in K and P splits in the Hilbert class field of K(H/K) some specific finite abelian extension) iff p splits in H

"Reciprocity": whether a prime is principal is related to whether it splits in certain abelian extensions

"Class field": K is a number field, a modulus of K is a formal symbol $\mathfrak{m}=v_1^{e_1}\cdots v_k^{e_k}$. v_i 's are places of K, and $e_i\in\mathbb{Z}_{\geq 0}$, satisfying: Complex places v don't appear in \mathfrak{m} , for real places v, $e_i=0,1$. e.g. $K=\mathbb{Q}$

Here a place is an equivalence class of absolute values, two absolute values are equivalent if they differ by a positive real power

The ray class group Cl_m is generated by fractional ideals coprime to \mathfrak{m} modulo principal ideals generated by $f \in K^{\times}$, $f \equiv 1 \mod \mathfrak{m}$. In the number field case, Cl_m is finite which is no longer true for global fields with char>0

The usual class group $Cl(O_K)$ is where $\mathfrak{m}=1$

Fact: Cl_m is always finite abelian

The narrow class group, corresponds to \mathfrak{m} is the product of all real places. This is the quotient group of all fractional ideals modulo those principal ideals generated $x \in K^{\times}$ such that v(x) > 0 for all real places v, i.e., the totally positive $x \in K^{\times}$

CFT: there is a finite abelian ext K_m/K called ray class field of \mathfrak{m}

Example: $m = 1, K_m$ is the hilbert class field

 K_m is uniquely characterized among finite abelian (Galois) extension over K such that whether prime p of K splits in K_m iff whether p has trivial image in Cl_m , for all p coprime to m

Theorem 1.2 (Generalized Kronecker-Weber theorem). Every finite abelian extension E/K is contained in K_m/K for sufficiently large \mathfrak{m} , one can choose \mathfrak{m} such that its members are precisely the places of K that ramify in E

Example 1.3. If v_1, \dots, v_k are the achmedian places of K that ramify in E, and p_1, \dots, p_k are unramified places, then $m = v_1, \dots, v_k, p^{e_1}, \dots, p_k^{e_k}$ for suff large $e_1, \dots, e_k, E \subseteq K_m$

Artin isomorphism $\Psi: \operatorname{Cl}_m \to \operatorname{Gal}(K_m/K)$ has a concrete formula, $p \mapsto (p, K_m/K)$ (well-definedness is nontrivial, called the Artin reciprocity). for every p coprime to m, know p is unramifed in K_m ,

Recall: E/K is a finite Galois extension of global fields, suppose p is a prime of K that is unramifed in E, then $\forall P|p$, the arithmetic Frobenius element $\sigma=(P,E/K)(\text{Artin symbol})$ in Gal(E/K) is characterized by σ stablizes P, the action of $\sigma onk(P)$ as $x\mapsto x^q, q=|k(p)|$. $\{(P,E/K)|P\}$ runs through the primes of P|p is a conjugacy class in Gal(E/K) called (p,E/K). If Gal(E/K) is abelian, then (p,E/K) is an element

Fact: For p of K unramified in E, $(p, E/K) = \{1\}$ iff p splits in E

The theory of ray CFT + Artin iso Ψ + K-W theorem gives the ideal theoretic formulation of global CFT

Adelic formulation in terms of $\mathbb{A}_k^{\times}/K^{\times}$ is cleaner. And it's easier to see functoriality in K that way

2 Class field theory over \mathbb{Q}

Application: Chebotarev density theorem

E/K is a finite Galois extension of number fields, G = Gal(E/K), for all p prime in K, unramified in E

Theorem 2.1. \forall conjugacy classes C in G the set of p of K such that (p, E/K) = C has density |C|/|G| among all primes of K. In particular, there are infinitely many such primes p

applications in global Galois representation by density

consequence: p splits iff $(p, E/K) = \{1\}$, such primes constitute 1/|G| of all primes, thus infinitely many

Theorem 2.2 (Dirichlet theorem: primes in arithmetic progression). if $a, b \in \mathbb{Z}$, (a, b) = 1, exists infinitely many primes p in the arithmetic progression $a + b\mathbb{Z}$, e.g. a = 1, b = 4, infinitely primes $\equiv 1 \mod 4$

More application of CFT

Artin L funcitons: Let E/K be a finite Galois extension of number fields, $\rho : \operatorname{Gal}(E/K) \to GL_n(\mathbb{C})$, S finite primes including all ramified primes of K, define $L(\rho, s)$ for $\operatorname{re}(s) >> 0$, CFT \Rightarrow meoromorphic extension to \mathbb{C} Conjecture(Artin):..

Theorem 2.3 (Grumwold-Wang, local-global behavior of number fields, local-global principle for quadratic forms). A non-degenerate quadratic form over a number field K represents 0 over K(it=0 has sol over K) iff it represents 0 over K_v for all places v of K

CFT is the GL_1 case of the Langlands program

CFT for \mathbb{Q} (given by cyclotomic extension of \mathbb{Q})

Review of cyclotomic extesions of \mathbb{Q}

K is a general field, $m \in \mathbb{Z}_{>0}$, the m-th cyclotomic extension of K is $K(\mu_m)$, μ_m is the roots of unity in \bar{K} , all roots would be simple, and is a cyclic group $\cong (\mathbb{Z}/m)^{\times}$ under multiplication, generator is primitive m-th root of 1, denoted ζ_m . $K(\mu_m) = K(\zeta_m)$, by definition also the splitting field of $x^m - 1$ over K, thus Galois. Observation: $\operatorname{Gal}(K(\zeta_m))$ embeds into $(\mathbb{Z}/m\mathbb{Z})^{\times}$, $\sigma \mapsto \alpha, \sigma(\zeta_m)\zeta_m^{\alpha}$, so the extension is abelian. Cyclotomic polynomials are $\Phi_m(x) = \prod_{\zeta} (x - \zeta) \in \mathbb{Z}[x]$, ζ runs primitive m-th roots of unity in \mathbb{C}

 $\mathbb{Z}[x]$, \mathcal{E} runs primitive m-th roots of unity in \mathbb{C} $\Phi_1 = x - 1$, $\Phi_2 = x + 1$, $\Phi_m = \frac{x^m - 1}{\prod_{d \mid m, d < m} \Phi_d(x)}$. $K(\mathcal{E}_m)/K$ is the spliting filed of Φ_m . $\deg(\Phi_m) = \phi(m) = |(\mathbb{Z}/m\mathbb{Z})^{\times}|$

 $\alpha: \operatorname{Gal}(K(\zeta_m)/K) \to (\mathbb{Z}/m)^{\times}$ is an isomorphism iff Φ_m is irreducible

Theorem 2.4 (Gauss). Φ_m is irreducible in $\mathbb{Q}[x]$

Proof. Gauss's lemma, reduce to factorization mod p

Fact 2.5 (L washington sec2). 1. $\mathcal{O}_{\mathbb{Q}(\zeta_m)} = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[x]/\Phi_m(x)$

2. assume $m \equiv 2 \mod 4$ (if $m \equiv 2 \mod 4$, then $\phi(m) = \phi(m/2) \Rightarrow \mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_{m/2})$) prime p of \mathbb{Q} is unramified in $\mathbb{Q}(\zeta_m)$ iff $p \nmid m$

3. formula for disc $\mathbb{Q}(\zeta_m)$

Lemma 2.6. $\forall p \nmid m, p \in (\mathbb{Z}/m)^{\times}$ is $(p, \mathbb{Q}(\zeta_m)/\mathbb{Q})$ the Frobenius element in $Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q})$

Proof. Only need to prove σ fix P for P|p

Recall: Suppose E/K is finite separable extension of number fields, there is a way to explicitly factorize a prime p of K inside E(for almost all p), write $E = K(\alpha)$ such that $\alpha \in \mathcal{O}_E$, $\mathcal{O}_K[\alpha] \subseteq \mathcal{O}_E$ and $\mathcal{O}_k[\alpha] \otimes_{\mathcal{O}_E} E = E(\mathcal{O}_K[\alpha])$ is an order in \mathcal{O}_E). Conductor: $f = \{x \in \mathcal{O}_E | x \mathcal{O}_E \subseteq \mathcal{O}_K[\alpha]\}$, largest ideal of \mathcal{O}_E that lies inside $\mathcal{O}_K[\alpha]$

Fact: for p prime of K, coprime to f, $p\mathcal{O}_E = \prod_{i=1}^g P_i^{e_i}$, f(x) is the minimal polynomial of α in $\mathcal{O}_K[x]$, factorize over $k(p) = \mathcal{O}_K/p$, $\prod_{i=1}^g f_i^{e_i}$, f_i irreducible in k(p)[x], P_i is a lift of $f_i(\alpha)\mathcal{O}_E + p\mathcal{O}_E$ $\mathcal{O}_E = \mathbb{Z}[\zeta_m]$, min($zeta_m/\mathbb{Q}$) = Φ_m , $p\mathcal{O}_E = \prod P_i^{e_i}$, Φ_m in $F_p[x]$ factor as $\prod f_i^{e_i}$, P_i is a lift of $f_i(\zeta_m)$. Suppose p sends P_i to P_j , p but p send P_i to lift of p but p send p but p but p send p but p but p but p send p but p b

Theorem 2.7. For \mathbb{Q} , a modulus is a symbol $\mathfrak{m} = \infty m$ or $\mathfrak{m} = m$ for some $m \in \mathbb{Z}_{>0}$, $Cl_{\mathfrak{m}}$ is the group of fractional ideals of \mathbb{Q} coprime to m/principle ideals generated by $x \in \mathbb{Q}^{\times}$ such that x coprime to $m, x \equiv 1 \mod m, x > 0$ if $\mathfrak{m} = \infty \cdot m$

Exercise 2.8. When $\mathfrak{m}=\infty\cdot m$, then we have an iso $(\mathbb{Z}/m)^{\times}\to Cl_m$, $\forall p\nmid m$, the ray class group, $p\mapsto$ the class of the prime ideal (p) iso $(\mathbb{Z}/m)^{\times}/\{\pm 1\}\to Cl_m$, $\mathfrak{m}=m$, $\forall p\nmid m$, $p\mapsto$ the class of the prime ideal (p)

 $E_m = \mathbb{Q}(\zeta_m)$, think of this as $Cl_{\infty m} \to Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q})$

This means that $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ is the ray class field

Recall: this is also characterized by the following property: for almost all primes p, p splits in the ray class field iff p is trivial in the ray class group

for $p \nmid m$, p splits in m iff $(p, E_m/\mathbb{Q}) = 1$ iff p is trivial in $Cl_{\infty m}$

Note if $E \subseteq E_m$, then E/\mathbb{Q} is again finte abelian extesion, and the composition $Cl_{\infty}m \to Gal(E_m/\mathbb{Q}) \xrightarrow{\text{restriction}} Gal(E/\mathbb{Q})$

Theorem[Kronecker-Weber, proof given by Hilbert, later simplified] Every finite abelian extension E/\mathbb{Q} is over some $\mathbb{Q}(\xi_m)$, can also choose m to be divisible only by those p that ramify in E

there is an elementary proof for the analogous result for \mathbb{Q}_p (local Kronecker-Weber, see Larry's book). Theorem true for all \mathbb{Q}_p imply \mathbb{Q} (any non-trivial E/\mathbb{Q} cannot be unramified everywhere) CFT for \mathbb{Q} is basically: Ψ and Kronecker-Weber theorem

Elegant proof for quadratic reciprocity: $p \neq q$ odd primes, and $q \equiv 1 \mod 4$, then (p/q) = (q/p) there is a unique index 2 subgroup of $(\mathbb{Z}/q)^{\times}$, i.e. there is a unique quadratic extension K of \mathbb{Q} inside E_q , we know that q is the only finite prime that ramifies in E_q , thus q is the only finite prime that ramifies in K, thus $K = \mathbb{Q}(\sqrt{q})(K \neq Q(\sqrt{-q}))$ since $q \equiv 1 \mod 4$, disc = q, not 4q(2 also ramifies))

One can explicitly construct \sqrt{q} inside $Q(\zeta_q)(\text{Gauss}$, see exercise in the notes). (p/q) = 1 iff p represents a square in $(\mathbb{Z}/q)^{\times} \cong \text{Gal}(E_q/\mathbb{Q})$ iff p lies in the kernel of $\text{Gal}(E_q/\mathbb{Q}) \to \text{Gal}(K/\mathbb{Q})$ iff $(p, E_q/\mathbb{Q}) \to 1$ iff $(p, K/\mathbb{Q}) = 1$ iff p splits in K. $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{q}}{2}]$ contain $\mathbb{Z}[\sqrt{q}]$ with conductor $2\mathcal{O}_K$ iff $X^1 - q$ splits mod p iff (q/p) = 1

Exercise 2.9. Try other cases: prove (p/q) = -(q/p) if $p \equiv q \equiv 3 \mod 4$

3 Ramification in $\mathbb{Q}(\zeta_m)$

 $p \nmid m$ imply p unramified in $\mathbb{Q}(\zeta_m)$, $p \mathcal{O}_{\mathbb{Q}(\zeta_m)} = P_1^e \cdots P_g^e$, $f = [k(P_i) : k(p)]$, $efg = [\mathbb{Q}(\zeta_m), \mathbb{Q}] = \varphi(m)$. e = 1, f is the order of p in $(\mathbb{Z}/m\mathbb{Z})^{\times}$

Lemma 3.1. If $m=p^r$, $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ is totally unramified at p, i.e. $p\mathbb{Q}_{\mathbb{Q}(\zeta_m)}=P^{[\mathbb{Q}(\zeta_m):\mathbb{Q}]}$

Proof. Modulo
$$p$$
, $\Phi_m(X) = \frac{X^{p^r}-1}{X^{p^r-1}-1} = \frac{(X-1)^{p^r}}{(X-1)^{p^{r-1}}} = (X-1)^{\varphi(m)}$, thus $p\mathcal{O}_{\mathbb{Q}(\zeta_m)} = P^{\varphi(m)}$

In general, $m = np^r$, $p \nmid n$, $\mathbb{Q}(\zeta_m)$ is the composite $\mathbb{Q}(\zeta_n)\mathbb{Q}(\zeta_{p^r})$, and $\mathbb{Q}(\zeta_n)$, $\mathbb{Q}(\zeta_{p^r})$ are linearly disjoint over \mathbb{Q} since $\varphi(m) = \varphi(n)\varphi(p^r)$

 $p \nmid m$, $\mathbb{Q}(\zeta_m)_P/\mathbb{Q}_p \cong \mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p$, here $\mathbb{Q}(\zeta_m)_P = \mathbb{Q}_p(\zeta_m)$ is the composite $\mathbb{Q}_p\mathbb{Q}(\zeta_m)$ $D_P(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p)$, thus $\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p$ is unramified, and its degree is the order of p in $\mathbb{Z}/m\mathbb{Z}^\times$. Similarly, $m = p^r$, $\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p$ is totally unramified, and its degree is $e = \varphi(p^r)$

Fact 3.2. K local field, E/K, F/K two finite Galois extensions. If E/K is unramified of degree f and F/K is totally ramified of degree e, then E, F are linear disjoint over K, [E:K] = ef, e is ramification index, f is residue extension degree

 $\mathbb{Q}_p(\zeta_m)$ is the composite $\mathbb{Q}_p(\zeta_n)\mathbb{Q}_p(\zeta_{p^r})$, $e = \varphi(p^r)$, f is the order of p in $\mathbb{Z}/m\mathbb{Z}^{\times}$. $[\mathbb{Q}_p(\zeta_m):\mathbb{Q}_p] = ef$. The Galois group is the direct product

$$\begin{array}{ccc}
\operatorname{Gal}(\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p) & \longrightarrow & \operatorname{Gal}(\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p) \times \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^r})/\mathbb{Q}_p) \\
& \alpha_m & \uparrow & \uparrow \\
(\mathbb{Z}/m)^{\times} & \longrightarrow & (\mathbb{Z}/n)^{\times} \times (\mathbb{Z}/p^r)^{\times}
\end{array}$$

 $\alpha_n : \operatorname{Gal}(\mathbb{Q}_p(\zeta_n), \mathbb{Q}_p) \to (\mathbb{Z}/n)^{\times}$ sends Frobenius element to p, and the subgroup generated by Frobenius element to the subgroup generated by p

$$\begin{array}{l} \alpha_{p^r} \text{ is an isomorphism because } [\mathbb{Q}_p(\zeta_{p^r}):\mathbb{Q}_p] = \varphi(p^r) = |\langle \mathbb{Z}/p^r\rangle^\times| \\ \mathbb{Q}_p^\times = p^\mathbb{Z} \times \mathbb{Z}_p^\times, \, \mathbb{Z}_p^\times = \varprojlim_{r} (\mathbb{Z}/p^r)^\times, \, \mathbb{Z}_p^\times/(1+p^r\mathbb{Z}_p) \stackrel{\sim}{=} (\mathbb{Z}/p^r)^\times \end{array}$$

Define a map $j_m: \mathbb{Q}_p^{\times} \stackrel{n}{\to} (\mathbb{Z}/m)^{\times}$

 ψ_m is continuous and surjective

Suppose $m' \in \mathbb{Z}_{\geq 1}$ divisible by m, then $\mathbb{Q}_p(\zeta_m) \subseteq \mathbb{Q}_p(\zeta_{m'})$

$$\mathbb{Q}_{p}^{\times} \longrightarrow (\mathbb{Z}/m)^{\times} \longleftarrow \operatorname{Gal}(\mathbb{Q}_{p}(\zeta_{m})/\mathbb{Q}_{p}) \\
\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\mathbb{Q}_{p}^{\times} \longrightarrow (\mathbb{Z}/m')^{\times} \longleftarrow \operatorname{Gal}(\mathbb{Q}_{p}(\zeta_{m'})/\mathbb{Q}_{p})$$

Take the inverse limit $\phi: \mathbb{Q}_p^{\times} \to \varprojlim_m \operatorname{Gal}(\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p) = \operatorname{Gal}(\cup \mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p) = \operatorname{Gal}(\mathbb{Q}_p^{\operatorname{cyc}}/\mathbb{Q}_p)$. The image is dense

Theorem 3.3 (local Kronecker-Weber theorem for \mathbb{Q}_p). Every finite abelian ext of \mathbb{Q}_p is contained in some $\mathbb{Q}_p(\zeta_m)$. $\mathbb{Q}_p^{cyc} = \mathbb{Q}_p^{ab}$ is the maximal abelian extension(which is the union of all finite abelian extension) of \mathbb{Q}_p in $\overline{\mathbb{Q}_p}$

One of the main goals of local CFT is: for every local field K, to construct a map $K^{\times} \to \operatorname{Gal}(K^{ab}/K)$ (local Artin map) and study its behaviour

e.g. If L/K is a finite abelian extension, if restrict to L/K (finite abelian extension, ψ_L/K), ϕ_L/K is surj and $\ker \psi_L/K = Im(N_L/K : L^{\times} \to K^{\times})$

Can characterize which subgroups of K^{\times} are of the form $\ker \psi_L/K$ for some L

Local-global relationship: We have local Artin map $\psi_p: \mathbb{Q}_p^{\times} \to \operatorname{Gal}(\mathbb{Q}_p^{ab}/\mathbb{Q}_p)$ and the global Artin map $\Psi_m: (\mathbb{Z}/m)^{\times} \to \operatorname{Gal}(\mathbb{Q}\zeta_m/\mathbb{Q})$

$$\begin{array}{ccc} (\mathbb{Z}/m)^{\times} & \xrightarrow{\Psi_m} & \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \\ & \downarrow^{j_{m,p}} & & & & & & & \\ \mathbb{Q}_p^{\times} & \xrightarrow{\psi_{p,m}} & \operatorname{Gal}(\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p) & = D_p(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \end{array}$$

Definition 3.4 (Chevalley(finite ideles)). $\mathbb{A}_f^{\times} = \{(x_p) \in \prod_p \mathbb{Q}_p^{\times} | x_p \in \mathbb{Z}_p^{\times} \text{ for almost all } p\}$, ideles is $\mathbb{A}^{\times} = \mathbb{R}^{\times} \times \mathbb{A}_f^{\times}$

 \mathbb{Q}^{\times} diagonally sits in \mathbb{A}^{\times} , i.e. $x \mapsto (x_{\infty}, x_2, x_3, x_5, \cdots)$. Idelic global Artin map $\Psi_m : \mathbb{A}_f^{\times} \to Gal(\mathbb{Q}(\xi_m)/\mathbb{Q}), (x_p) \mapsto \psi_{\infty,p} \prod \psi_{p,m}(x_p)$ which is a finite product since \mathbb{Z}_p^{\times} elements go to 0 Here $\psi_{\infty,p}(x)$ is identity if x is positive, and σ_{∞} which is $-1 \in Gal(\mathbb{Q}(\xi_m)/\mathbb{Q}) = (\mathbb{Z}/m)^{\times}$ if x is negative. So

$$(x_{\infty}, x_f) \mapsto \begin{cases} \Psi(x_f) & x_{\infty} > 0 \\ \sigma_{\infty} \Psi(x_f) & x_{\infty} < 0 \end{cases}$$

Exercise 3.5. This is actually a map $A^{\times}/\mathbb{Q}^{\times} \to \operatorname{Gal}(\mathbb{Q}^{\operatorname{cyc}}/\mathbb{Q}) = \operatorname{Gal}(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q})$

Global CFT: For any global field K, Artin map $\Psi: A_K^{\times}/K^{\times} \to \text{Gal}(K^{ab}/K)$ Future plan:

review of profinite groups: allows us to talk about infinite Galois theory

State the main theorems in local CFT after reviewing some basics about local fields

Lubin-Tate theory: analogue of the local cyclotomic extensions, gives an explicit construction of K^{ab} for a local field K

Group cohomology

Use Group cohomology to fully prove local CFT

Global CFT

4 Profinite groups

Example of direct system:

- 1. (\mathbb{N}, \geq)
- $2. (\mathbb{N}, |)$
- 3. G is a (topological)group, $I = \{\text{finite index(open) normal subgrps of } G\}, N \geq N' \text{ if } N \subseteq N' \}$
- 4. Fix a field extension E/K, $I = \{L/K \text{ finite Galois}\}$, $L \ge L' \text{ if } L \supseteq L'$. If L, L' are both finite Galois, then so is their composite

Let C be a category (sets, groups, rings, top groups, top spaces, top rings). A profinite group is a topological group isomorphic to a inverse limit of finite groups. A profinite group is Hausdorff and compact

Theorem 4.1 (Tychonoff's theorem). A product of compact spaces is compact

Theorem 4.2. G is a topological group, G is profinite iff it is Hausdorff compact and $1 \in G$ has a neighborhood basis consisting of open subgroups of G

Proof.
$$\Leftarrow$$
: Suppose $G = \varprojlim G_i$, $\forall i \in I$, $N_i = \ker(G \to G_i)$ give such a basis \Rightarrow : □

Remark 4.3. In a topological group, every open subgroup is closed (being the complement of the union of its other cosets). In a compact group, a closed subgroup is open iff it's of finite index(conjugates cover G, then by compactness), and every open subgroup is closed hence compact

Example 4.4. \mathbb{Z}_p with topology given by the p-adic value, $p^n\mathbb{Z}_p$ form a neighborhood basis of 0 in \mathbb{Z}_p consisting of open subgroups. $\mathbb{Z}_p^{\times} = \varprojlim_n (\mathbb{Z}/m\mathbb{Z})^{\times}$ has $1 + p^n\mathbb{Z}_p$ as an open neighborhood basis of 0

Remark 4.5. A topological group is called locally profinte it's locally compact and Hausdorff and 1 has a neighborhood basis consisting of open subgroups. Equivalently, G has an open subgroup which is profinite

Example 4.6. $Q_p \stackrel{\text{open}}{\supseteq} Z_p$ is locally profinite since its not compact

Fact: A topological group is (locally) profinite iff it is Hausdorff, (locally compact) and totally disconnected

G is a topological group, I is the set of open normal finite index subgroups (Note: quotient top on G/N_i is discrete), so $\hat{G} = \varprojlim G/N_i$ defines a profinite group, called the profinite completion, and a natural continuous map $G \to \hat{G}$, it is an isomorphism iff G is profinite. For every continuous $G \to H$, where H is profinite, the it factors through $\hat{G} \to H$

Exercise: $\hat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$

Infinite Galois theory: E/K Galois(separable and normal), I is the subset consists of L/K which are finite Galois

Fact(easy): As abstract groups, $Gal(E/K) = \varprojlim Gal(L/K)$, define Krull topology on Gal(E/K) by profinite topology given by the right hand side

Theorem 4.7 (Galois correspondence). Sub-extensions L/K corresponds to closed subgroups of Gal(E/K), $L \mapsto Gal(E/L)$, $H \mapsto E^H$, $E^H = E^{\bar{H}}$, finite extensions are in bijective correspondence to open subgroups, Galois extensions are in bijective correspondence to normal subgroups. If L/K is Galois, then Gal(E/L) is normal in Gal(E/K), and $Gal(L/K) \cong Gal(E/K)/Gal(E/L)$ as topological groups

Example 4.8. Gal($\overline{\mathbb{F}_q}/\mathbb{F}_q$) $\cong \varprojlim_n \operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \cong \varprojlim_n \mathbb{Z}/n\mathbb{Z}, \mathbb{Z} \to \hat{\mathbb{Z}}, 1 \mapsto 1$ is the Frobenius element

remark: G = profinite, S is dense iff image of S in each G_i is G_i , since G_i is discrete $(\mathbb{Z}/m\mathbb{Z})^{\times} \cong \text{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$, thus $\hat{\mathbb{Z}}^{\times} \cong \text{Gal}(\mathbb{Q}^{cyc}/\mathbb{Q}) = \text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q})$ But $\mathbb{Q}_p^{\times} \to \text{Gal}(\mathbb{Q}_p^{ab}/\mathbb{Q}_p)$ only has dense image

Exercise 4.9. G is locally profinite, and $\phi: G \to G'$ is continuous, G' is profinite, ϕ has dense image, then $\hat{G} \cong G'$

5 Local fields

A discrete valued field (K, v) is a surjective (normalized and exclude trivial valuations) function $v: K \to \mathbb{Z} \cup \{+\infty\}$ satisfying

- 1. $v(x) = +\infty \iff x = 0$
- 2. v(xy) = v(x) + v(y) is a group homomorphism $K^{\times} \to \mathbb{Z}$
- 3. $v(x + y) \ge \min(v(x), v(y))$

Subring $\Theta_K = \{x \in K | v(x) \geq 0\}$ of K with $\operatorname{Frac}(\Theta_K) = K$ and that it is a valuation ring(in fact a DVR, i.e. a PID with unique non-zero prime ideal), with the unique non-zero prime ideal $m_K = \{x \in K | v(x) > 0\}$, generated by the uniformizer π such that $v(\pi) = 1$. $\Theta_K^{\times} = \{x \in K | v(x) = 0\}$. For any $x \in K$, there is a unique n such that $\pi^{-n}x \in \Theta_K^{\times}$, n = v(x), i.e. v can be recovered from Θ_K , in fact, all discrete valuations v on K corresponds to DVR's $\Theta \subseteq K$ whose fraction field is K. $k = \Theta_K/m$ is the residue field, then is a natural topology on K, pick $\alpha \in \mathbb{R}$, $0 < \alpha < 1$, define absolute value on K, $K^{\times} \to \mathbb{R}_{>0}$, $x \mapsto \alpha^{v(x)} = |x|$. Discrete valuations correspond to non-Archimedean absolute values whose image is a discrete subgroup of \mathbb{R}^{\times}/\sim , making K into a metric space, whose topology is independent of α . In fact, Θ_K is open, and m^n , $n \geq 1$ form an open neighborhood basis of 0

Ostrowski's theorem

Theorem 5.1 (Ostrowski's theorem). Every non-trivial absolute value on \mathbb{Q} is equivalent to either the real absolute value $||_{\infty}$ or p-adic absolute values $||_{p}$. A field that is complete with respect to an Archimedean absolute value is(topologically and algebraically) \mathbb{R} or \mathbb{C}

Note. An absolute value is a norm with |xy| = |x||y|. Two absolute values $||,||_*$ are equivalent if $||_* = ||^c$ for some c > 0. The trivial absolute value is $|0| = \infty$ and 0 otherwise

Example 5.2. $K = \mathbb{Q}$, $v = v_p$, $\mathbb{O}_K = \mathbb{Z}_{(p)}$, $m = p\mathbb{Z}_{(p)}$ is locally profinite. $K = \mathbb{Q}_p$, $v = v_p$, $\mathbb{O}_K = \mathbb{Z}_p$ is profinite

Definition 5.3. (R, m) is a local ring, its completion $\hat{R} = \varprojlim_n R/m^n$. \hat{R} is also local with unique max ideal $\hat{m} = \ker(\hat{R} \to R/m)$, $R \to \hat{R}$ is a natural local ring homomorphism, induce $R/m^n \cong \hat{R}/\hat{m}^n$, thus $\hat{R} \cong \hat{R}$

We call (K, v) complete if \mathcal{O}_K is complete as a local ring. and this is true iff K is complete in the metric sense

Definition 5.4. A non-archimedean local field is a discrete valued field (K, v) which is complete and has finite residue field. Archimedean local fields are \mathbb{Q}, \mathbb{C} by Theorem 5.1

We use local fields to mean just non-archimedean local fields. In this case, \mathcal{O}_K/m^n are discrete by exact sequences, so \mathcal{O}_K is profinite, thus compact, K is locally profinite. Conversely, if (K, v) is a discrete valued field such that K is locally profinite(suffices to show that K is locally compact), then (K, v) is a local field

(K, v) is a discretely valued field, we have $\hat{\mathcal{O}}_K$ as a DVR with π again as the uniformizer, let \hat{K} to be the field of fractions with a natural valuation \hat{v} , and K has dense image in \hat{K} . So if (K, v) has finite residue field, the completion is a local field

Example 5.5. $\mathbb{F}_q(t)$, v_t valuation, with residue field \mathbb{F}_q , valuation ring $\mathbb{F}_q[t]$, and max ideal $t\mathbb{F}_q[t]$, the completion is the Laurent series in t, v_t gives the order of zero or pole, with valuation ring $\mathbb{F}[[t]]$

K is a local field

Structure of (K, +) and (K^{\times}, \times)

 $K^{\times} \cong \mathbb{Z} \times \mathcal{O}_{K}^{\times}$ as topological groups, \mathbb{Z} with discrete topology

 $U=\mathcal{O}_K^{\times},\ U_n=1+m_K^n,$ then $U\supseteq U_1\supseteq\cdots$ form an open subgroup neighborhood basis of 1, $U/U_1\cong k^{\times},\ U_n/U_{n+1}\cong m_K^n/m_K^{n+1}\cong k,\ x\mapsto x-1$

 U_1 is the unique pro-p Sylow subgroup of U since $|U_n/U_{n+1}| = p$ and $|U/U_1| = p - 1$ is coprime to p

U is profinite since U is compact(closed in \mathcal{O}_K)

Remark 5.6. If K is a local field of characteristic 0, then for sufficiently large n(so that the series converge), $m_K^n \cong U_n$, $x \mapsto e^x$

Corollary 5.7. In this case, every finite index subgroup of K^{\times} is open

Proof. Suppose H is of finite index j in K^{\times} , then $(K^{\times})^{j} \subseteq H$. Fix uniformizer π , $(K^{\times})^{j} \cong \pi^{j\mathbb{Z}} \times U^{j}$. $U^{j} \supseteq U_{1}^{j} \supseteq \cdots$, only need to show U_{n}^{j} is open for some n, for n large enough, $U_{n} \cong m_{K}^{n} \cong \mathcal{O}_{K}$, so $U_{n}^{j} \cong j\mathcal{O}_{K} \subseteq \mathcal{O}_{K}$

Teichmuller lift:

Fact 5.8. The surjective homomrophism $\mathcal{O}_K^{\times} \to k^{\times}(k)$ is the residue field which is finite) has a unique multiplicative section $[]: k^{\times} \to \mathcal{O}_K^{\times}$. Moreover, $[x] = \varinjlim_n y_n^{p^n}, y_n \in \mathcal{O}_K^{\times}$ is an arbitrary lift of $\sqrt{p^n}x \in k^{\times}$

Example 5.9. $K = \mathbb{Q}_5, [\bar{4}] = -1 \in \mathcal{O}_K^{\times} = \mathbb{Z}_5^{\times}$

Fact 5.10. $\forall x \in K^{\times}$, $\exists_1(a_n)_{n \geq v(x)}$ such that $a_n \in \{0\} \cup [k^{\times}]$, $x = \sum_{n > v(x)} \pi^n a_n$

Warning: $x = sum\pi^n a_n$, $y = sum\pi^n b_n$, $x + y = x = sum\pi^n (a_n + b_n)$ is not the canonical choice

Finite extensions of local fields

Theorem 5.11 (Serre II.2). (K, v) is a complete discretely valued field, E/K is a separable field extension, $\exists_1 w$ on E and $\exists_1 e \in \mathbb{Z}_{\geq 1}$ such that $\forall x \in K(e)$ is the ramification index), w(x) = ev(x). Moreover, (E, w) is complete, k_E/k_K is a finite extension of degree f = [E : K]/e

Remark 5.12. $w(y) = v(N_{E/K}(y))/f$, $\forall y \in E$

 \Rightarrow Every finite extension of a local field has canonical structure of a local field itself. In the future, when we talk about finite extensions of local fields E/K, it's always assumed that the local field structure on E is obtained from K in this way

Fact 5.13. Every local field is either a finite extension of \mathbb{Q}_p or $\mathbb{F}_q([t])$, Laurent series

6 Galois theory for local fields

Definition 6.1. A finite separable extension E/K is called unramified if $\mathbf{e}(E/K)=1$

Fact 6.2. If E/K is unramified, then it's Galois. $Gal(E/K) \to Gal(k_E/k_F)$ is an isomorphism

Fact 6.3. E/K finite unramified, L/K finite extension, $\operatorname{Hom}_K(E,L) \to \operatorname{Hom}_{k_K}(k)(k_E,k_L)$ is a bijection

Thus we have

$$\{K\subseteq E\subseteq L, E/K \text{ unramified}\} \leftrightarrow \{\text{subextension of}\, k_L/k_K\}$$

 K^s/K is the separable closure. $\forall n \in \mathbb{Z}_{\geq 1}, \ \exists_1 K \subseteq K_n \subseteq K^s$ such that K_n/K is unramified and of degree n. $K^{un} = \bigcup_{n \geq 1} K_n, \ K^{un}/K$ is a Galois field extension and contains all possible finite unramified extensions of K inside K^s (all are of the form K_n)

References

\mathbf{Index}

Artin isomorphism, 3

idele class group, $2\,$

ray class field, 2 ray class group, 2