Modelagem e Controle de Processos 2024-1 Professor: Joel Sanchez Dominguez

Projeto de Modelagem e Controle de Sistemas

Uso do Scilab como ferramenta na Modelagem e Controle de sistemas

Instruções Gerais:

O relatório deve incluir os dados do aluno e a expressão matemática exata de cada função de transferência ou sistema usado nas atividades. As figuras e os diagramas em blocos devem ser claros e legíveis. Em todos os gráficos apresentados deve ser sinalização ao menos um ponto usando a ferramenta DataTip da janela gráfica do Scilab. Todos os comandos usados no desenvolvimento das atividades devem ser colocados no relatório. Não economize palavras explique e comente todas suas ações.

Em caso de verificar cola ou resultados incompatíveis com os comandos colocados em algum relatório ele será fortemente penalizado.

Orientações das atividades

Um sistema massa-mola-amortecedor como o mostrado na figura é modelado pela equação 1. Os parâmetros massa (m), coeficiente de fricção (C) e constante elástica da mola (K) são fornecidos na tabela 1 para cada estudante.

$$f(t) = m\frac{d^2x(t)}{dt^2} + C\frac{dx(t)}{dt} + Kx(t)$$
 (1)

Tabela 1: Tabela de parâmetros do sistema para cada aluno.

Nome	m	C	K
GABRIEL LUIZ BEZERRA	8	2	0,5
GABRIEL MORAES MANHAES	5	3	1
GUILHERME CAGIDE FIALHO	10	7	5
GUSTAVO DIAS DE OLIVEIRA	100	40	10
IBRAHIM AYMAN KARSOU	24	6	1,5
JULIANO JOSE DE SOUZA RAMOS	20	14	10
LAERTE LUIZ FERNANDES JUNIOR	5	3,5	2,5
LUCAS SA DE LIMA	16	4	2
LUÍSA DE ANDRADE LACAVE	32	5	1
MANOEL RODRIGUES DA SILVA	50	20	5
MARIA NINA KRAEMER	25	8	2,5
MATEUS LIMA PINHO	7	3	1
MATHEUS ALVES MATOS	90	30	8
MATHEUS DA SILVA SILVEIRA	42	19	12
MOISES RANGEL ALVES FILHO	28	6	1
PEDRO LONGUE CORREA	16	3	0,5
RAFAEL DE JESUS VIVIANI	21	7	2
SAMUEL BERNABE FARIAS	64	20	6
THIAGO BARBOSA DE MORAES	48	23	15
THIAGO BASTOS DA SILVA	36	16	5
TIAGO MATTOS DE OLIVEIRA	18	8	4

Atividade 1

Crie um script do Scilab que modele o sistema para uma força de entrada nula. Execute a simulação para cada uma das condições iniciais indicadas na tabela 2, apresente os gráficos das simulações e comente os resultados.

Tabela 2: Condições iniciais para a simulação.

Caso	Velocidade (V ₀)	Posição (X ₀)
1	m/2	0
2	0	m/4
3	m/3	m/5

Atividade 2

Crie no Xcos um diagrama de blocos que possibilite simular o sistema anterior para uma entrada f(t)=m/5. Execute a simulação para cada uma das condições iniciais indicadas na tabela 2, e para a condição inicial $V_0=0$ e $X_0=0$. Apresente os gráficos das simulações e comente os resultados. No gráfico da resposta transitória para a condição inicial $V_0=0$ e $X_0=0$ identifique os pontos correspondentes ao tempo de subida, tempo de pico, tempo de estabelecimento e um ponto em que a resposta do sistema esteja em estado estacionário (usar a ferramenta Datatip Manager da janela de gráficos).

Atividade 3

Construa a função de transferência que representa seu modelo. Encontre os polos da função de transferência e os parâmetros típicos do sistema de segunda ordem (kp, wn e ζ).

Atividade 4

O diagrama de blocos da figura representa um sistema de controle típico sendo:

R(s): referência ou entrada do sistema

Gc(s): função de transferência do controlador

Gp(s): função de transferência da planta ou processo

H(s): função de transferência do sensor

C(s): variável controlada ou saída do sistema

O controlador usado é um controlador proporcional com ganho K=m/3, a FT da planta corresponde com a FT da atividade 3, o sensor é modelado por um sistema de primeira ordem com ganho Ks=1 e constante de tempo Ts=m/6.

- a-) Construir o diagrama de blocos substituindo as expressões para todas as FTs.
- b-) Encontre a FT em malha fechada C(s)/R(s) do sistema de controle.
- c-) Analise com o critierio de Routh-Hurwitz (RH) a estabilidade do sistema de controle. Use o Scilab para construir a matriz de RH. Coloque no relatório os comandos usados, a matriz de RH e seus comentários respeito a estabilidade.
- d-) Se substituirmos o ganho do controlador pelo parâmetro K, obtenha a matriz de RH e especifique para quais valores de K o sistema é estável.

Atividade 5

Use o Xcos do Scilab para simular o sistema de controle do inciso (a) da atividade 4.

- a-) Inserir no relatório uma figura que mostre o diagrama construído no Xcos.
- b-) Simule o comportamento do sistema usando como entrada um sinal degrau de amplitude A= m/4. Aumente o tempo da simulação até a saída do sistema ficar estável. Nos casos que o sistema não se estabilize use como tempo limite 10 vezes a constante de tempo da planta. Mostre um gráfico com a saída do processo, marque no gráfico usando a ferramenta DataTip o primeiro ponto de pico e um ponto em estado estacionário. Inclua no relatorio todos os parâmetros da simulação.
- c-) Repita o inciso anterior duplicando o valor do ganho do controlador.
- d-) Compare e comente as respostas do sistema dos incisos b e c.

Atividade 6

Ajuste de controladores PID. No diagrama de controle da atividade 4 vamos substituir o controlador proporcional por um controlador PID.

- a-) Use o Scilab e as regras de Ziegler e Nichols para ajustar o controlador PID. Apresente no relatório todos os passos do processo, coloque todos os diagramas usados.
- b-) Repita a simulação do inciso (b) da atividade 4 usando o controlador PID ajustado.
- c-) Ajuste manualmente o controlador até melhorar os índices de desempenho do sistema da simulação anterior. Coloquei no relatório os valores dos parâmetros ajustados e a resposta do sistema.
- c-) Compare as simulações usando o controlador proporcional (Atividae 4a) e os controladores PID dos incisos b e c.

Atividade 7

Lugar geométrico das raízes (LGR).

Use o Scilab para desenhar o LGR da planta representada pela FT da atividade 3. Quais informações podem ser extraídas do gráfico mostrado.

Atividade 8

Gráficos logarítmicos ou diagramas de Bode.

Use o Scilab para desenhar o diagrama de Bode da planta representada pela FT da atividade 3. Quais informações podem ser extraídas do gráfico mostrado. Determine as margens de ganho e fase do sistema.

Atividade 9

Diagrama de Nyquist.

Use o Scilab para desenhar o diagrama de Nyquist da planta representada pela FT da atividade 3. Quais informações podem ser extraídas do gráfico mostrado.

Atividade 10

Identificação de Sistemas

Encontre a resposta ao degrau unitário da FT da atividade 3. Use o gráfico anterior e execute os métodos de Harriot e Smith para identificação de sistemas de 2da ordem. Explique qual dos dois métodos usados identifica melhor o sistema representado pela FT.