

ZT={ab} valid R.E. on Zcontains {a,b,l), U,*/p}

X is an RE a f (alb) \$\frac{1}{2}\$ also RE \quad \qua

RE and Larguage -> established by a function h $\alpha - RE$, Las is a longuage represented by \propto

danguage can have the symbols in the RE, and some from Outside.

() -> not an RE, as at least-opshould be there

We define the L function as follows. — G is a Symbol of

- 1. $L(\Phi) = \Phi$ and $L(a) = \{a\}$ for each a of Σ .
- 2. If α and β are REs then then $L((\alpha \beta)) = L(\alpha) \cdot L(\beta)$ Concatenation
- 3. If α and β are REs then then $L\left(\left(\alpha \cup \beta\right)\right) = L\left(\alpha\right) \cup L\left(\beta\right)$
- 4. If α is a REs then then $L(\alpha^*) = L(\alpha)^*$ $L(\alpha) is RE \supset L(\alpha^*) is almost end$

RE-

 $\sum = \{a,b,c,d\} \quad L(x) = \{c,d\}$ danguage : L((xy)) = L(x)L(y) $\{a,b\},\{c,d\} = \{a,b\},bc,ad\}$