MSDS 596 Regression & Time Series Lecture 01 Distributions of OLS parameter estimates

Department of Statistics Rutgers University

Sept 26, 2022

Do not reproduce or distribute lecture slides without permission

Announcements

- Instructor: Koulik Khamaru (kk1241@rutgers.edu)
 Office hour: Monday 4-5pm, 403 Hill center
- HW1 due next Monday (Oct 3) in class.

Normal density function

- Let $Z \sim \mathcal{N}(\mu, \sigma^2)$ for some $-\infty < \mu < \infty$ and $\sigma^2 > 0$.
- •

$$f_{\mu,\sigma^2}(z) = rac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left\{-rac{1}{2\sigma^2}(z-\mu)^2
ight\} \quad -\infty < z < \infty.$$

- If Z_1, Z_2, \ldots, Z_n are independent with density function f_1, \ldots, f_n . Then density of (Z_1, Z_2, \ldots, Z_n) is product of the densities, i.e. $\prod_{i=1}^n f_i$
- For $Z_i \sim \mathcal{N}(\mu, \sigma^2)$ and independent. Then we write

$$(Z_1,\ldots,Z_n)\sim \mathcal{N}((\mu,\mu,\ldots,\mu)^\top,\sigma^2\cdot\mathsf{I})$$

Multivariate normal density

• Identity covariance case

$$f(z_1, z_2, ..., z_n) = \frac{1}{\sigma^n (2\pi)^{n/2}} \cdot \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (z_i - \mu)^2 \right\}$$

Multivariate normal density

• If $Z \sim N(\mu, \Sigma)$, then the density function is

$$f(z) = \frac{1}{\sqrt{|\Sigma|} \cdot (2\pi)^{n/2}} \cdot e^{-(z-\mu)^{\top} \Sigma^{-1} (z-\mu)}$$

- Density of ϵ ?
- What is the density of y, \hat{e} , and $\hat{\beta}_{OLS}$?

Properties of Multivariate normal density

ullet $Z \sim \mathcal{N}(\mu, \Sigma)$, then

$$AZ + c \sim \mathcal{N}(A\mu + c, A\Sigma A^{\top})$$

- Density of $\hat{\beta}_{OLS}$?
- Density of $\hat{\beta}_1$?
- Density of $\hat{\beta}_1 \hat{\beta}_2$?
- Density of $\hat{\beta}_1 \hat{\beta}_2 + 1$?
- Variance of $\hat{\beta}_1$?

Sampling distribution of $\hat{oldsymbol{eta}}$ and $\hat{\epsilon}$ under normality

Assume X is deterministic, and $\operatorname{rank}(X) = p + 1$. $H = X(X'X)^{-1}X'$. Further, assume normality: i.e. $\epsilon_1, \ldots, \epsilon_n$ are iid $N(0, \sigma^2)$. In particular, the least squares estimate and the residual vectors

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}), \text{ and } \hat{\boldsymbol{\epsilon}} \sim N(\mathbf{0}, \sigma^2(\mathbf{I} - \mathbf{H})).$$

Sampling distribution of $\hat{oldsymbol{eta}}$ and $\hat{\epsilon}$ under normality

Under the normality assumption, the least squares estimate

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}).$$

- $\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma^2 \cdot [(X^\top X)^{-1}]_{22})$
- Suppose σ^2 is known, then what is the distribution of

$$\frac{\hat{\beta}_1 - \beta_1}{\sigma \cdot \sqrt{[(X^\top X)^{-1}]_{22}}} \sim ?$$

- Why is this useful?
- What happens if we do not know σ^2 ?

Quadratic forms

Recall

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n \hat{e}_i^2 = \frac{1}{n-p-1} \hat{e}^{\top} \hat{e}$$

Here \hat{e} is the vector of residuals.

• From HW1
$$\hat{e} = (I - H)(Y - X\beta^*) = (I - H)\epsilon$$

$$\hat{e}^{\top}\hat{e} = \epsilon^{\top}(I - H)\epsilon$$

• Define quadratic forms.

Fisher Cochran's Theorem

Suppose $\mathbf{y} \sim N(0, \sigma^2 \mathbf{I})$, and P is an idempotent matrix, then we have

$$\frac{1}{\sigma^2} \mathbf{y}' P \mathbf{y} \sim \chi_r^2,$$

with $r = \operatorname{tr}(P)$.

• Density of χ_r^2

$$f(z) = \frac{1}{2^r \Gamma(r/2)} \cdot z^{r/2-1} e^{-z/2}$$
 for $z > 0$.

• Define the Gamma function. Examples of χ^2 -random variables.

Student's t distribution

Density of student-t random variable with degrees of freedom.

$$f_r(z) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{r\pi} \cdot \Gamma(\frac{r}{2})} \cdot \left(1 + \frac{z^2}{r}\right)^{-\frac{r+1}{2}}$$

Always remeber

$$rac{\mathcal{N}(0,1)}{\sqrt{\chi^2(r)/r}} \sim t_r.$$

Here $\mathcal{N}(0, 1)$ and $\chi^2(r)$ are independnt.

Back to unknown σ^2 case

Recall

$$\frac{\hat{\beta}_1 - \beta_1}{\sigma \cdot \sqrt{[(X^\top X)^{-1}]_{22}}} \sim \mathcal{N}(0, 1)$$

Recall

$$\frac{(n-p-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-p-1}^2$$

Conclude that

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma} \cdot \sqrt{[(X^\top X)^{-1}]_{22}}} = \frac{\mathcal{N}(0, 1)}{\sqrt{\chi^2 (n - p - 1)/(n - p - 1)}} \sim t_{n - p - 1}$$