

Causal Strategic Learning under Competitive Selection

Kiet Q. H. Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet CISPA Helmholtz Center for Information Security.

1. Causal Strategic Learning (CSL)

Example of causal strategic learning (CSL):

College GPA :=
$$\begin{bmatrix} \mathsf{HS}\ \mathsf{GPA} \\ \mathsf{SAT} \end{bmatrix}^\top \begin{bmatrix} 0.9 \\ 0 \end{bmatrix} + \mathsf{Noise}$$

• **Gaming**: Changing SAT affects the prediction but not the true outcome,

Predicted GPA :=
$$\begin{bmatrix} \mathsf{HS} \ \mathsf{GPA} \\ \mathsf{SAT} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0.7 \\ 0.001 \end{bmatrix}$$

• **Genuine Improvement**: Changing HS GPA also affects the true outcome.

ightarrow Learning the true causal mechanism for better decision making,

(and there are complex interactions between decision makers and strategic agents).

2. CSL under Competitive Selection (An Example)

- · 2 departments select from the same pool of students,
- · They deploy their own selection rules δ_S and δ_C , parameterised by θ_S and θ_C ,
- · Each wants to maximise the future GPA of their own students,
- Students modify X to \tilde{X} to maximise admission chance.

5. Inferring Causal Parameters

$$Y_{it} = \mathbf{X}_t^{\top} \boldsymbol{\theta}_i^* + \psi_i(\mathbf{X}_t) \Rightarrow \frac{dY_{it}}{d\mathbf{X}_t} = \boldsymbol{\theta}_i^* + \frac{d(\psi_i(\mathbf{X}_t))}{d\mathbf{X}_t}$$
 (1)

$$\exists \mathcal{X}_S : \Delta Y_{it} = (\Delta \mathbf{X}_t)^\top \boldsymbol{\theta}_i^* + \underbrace{\Delta \psi_i(\mathbf{X}_t)}_{=0} \Rightarrow \frac{d(\Delta Y_{it})}{d(\Delta \mathbf{X}_t)} = \boldsymbol{\theta}_i^* \quad \checkmark$$
 (2)

A cooperative protocol for all decision makers to partition $\mathbf{X}_t \mid Z_t$ correctly!

All variables here are conditioned on Z_t , but not shown here for the sake of simplicity.

3. Impact of Competitive Selection

Figure 1: Prior work

Figure 2: Ours with Selection

Figure 3: Ours with Competitive Selection

- In Fig. (2), cond. dependencies, $\theta_t \not\perp \!\!\! \perp \{\mathbf{b}_t, O_t\} \mid W_t \rightarrow \mathsf{harder} \ \mathsf{to} \ \mathsf{solve} \ \max_{\theta_t} \mathbb{E}\left[Y_t \mid W_t = 1; \theta_t\right];$
 - biased data, $\{\theta_t, \mathbf{x}_t, \{y_t | w_t = 1\}\}_{t=1}^T \rightarrow \text{harder to infer causation.}$
- In Fig. (3), $p(Y_{jt} \mid Z_t = j)$ depends on $p(Z_t = j \mid \mathbf{X}_t)$ which depends on $\{p(W_{it} \mid \mathbf{X}_t)\}_{i=1}^n$ \rightarrow interference from rival decision makers.

4. An Optimal Solution

Table 1: Our assumptions on agents' behaviour.

	base covariates	strategic response	preference factors	compliance model
is included	✓	✓	✓	√
is heterogeneous	✓	X	X	×

We provide:

- the optimal solution for the case where interactions result in a linear function of θ_{it} ,
- conditions that can be imposed by the government to safeguard social welfare.

$$\arg \max_{\boldsymbol{\theta}_{it}} \mathbb{E}\left[Y_{it} \mid Z_{t} = i; \; \boldsymbol{\theta}^{\mathsf{all}}\right] = \arg \max_{\boldsymbol{\theta}_{it}} \left\{ \mathbb{E}\left[\mathsf{Base} \mid Z_{t} = i; \; \boldsymbol{\theta}^{\mathsf{all}}\right] + \mathbb{E}\left[\mathsf{Improvement} \mid Z_{t} = i; \boldsymbol{\theta}^{\mathsf{all}}\right] \right\}$$

$$= \arg \max_{\boldsymbol{\theta}_{it}} \left\{ \left(A_{i}^{\mathsf{T}} \boldsymbol{\theta}_{it} + B_{i} + h_{i} \left(\boldsymbol{\theta}_{t}^{\mathsf{all} \setminus i}\right)\right) + \left(\boldsymbol{\theta}_{it}^{\mathsf{T}} \gamma_{it} \mathcal{E} \mathcal{E}^{\mathsf{T}} \boldsymbol{\theta}_{i}^{*} + C_{i}\right) \right\}$$

$$= \frac{A_{i} + \gamma_{it} \mathcal{E} \mathcal{E}^{\mathsf{T}} \boldsymbol{\theta}_{i}^{*}}{\|A_{i} + \gamma_{it} \mathcal{E} \mathcal{E}^{\mathsf{T}} \boldsymbol{\theta}_{i}^{*}\|}$$

Ideally, $\bullet A_i = k \times \mathcal{E}\mathcal{E}^{\top} \theta_i^*$ for some k > 0,

and more...

6. Simulation

