Disaster Impact Prediction using Aerial Satellite Imagery

Group 30

Gogula Krishnan Saravanan (A0191385X) Meenakshi Sundaram Viswanathan (A0191324L) Mahendren Sundararajan (A0191348Y) Preetha Udhayakumar (A0191395W)

Introduction

- Predict the impact of a disaster using aerial satellite imagery
 - Identify hardest hit disaster affected regions
 - Prioritize and dispatch rescue units

• What we have?

Pre and Post-disaster Satellite Images

• What we need?

Disaster mapping from satellite images

Related Work

- Directly compare raw RGB values
 - Pixel values can be quite different even in areas with no disaster impact
 - Different season, lighting and other noise
- Using CNNs as a classifier
 - Detect damaged buildings
 - Rely on building relatively large training datasets for damaged areas
 - Not scalable

Related Work

From Satellite Imagery to Disaster Insights. Jigar Doshi, Saikat Basu, Guan Pang. 2018. https://arxiv.org/abs/1812.07033.

- Use only roads and building features while comparing
- CNN is used for segmenting the features
- CNN is not used directly to detect the damaged features

How we plan to extend?

More features

Related Work

For Segmentation

Residual Inception Skip Network for Binary Segmentation. Jigar Doshi. 2018. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. https://arxiv.org/abs/1812.07033.

Models and their results (in mIoU)

Models	Single Model	Exp Avg	CLR
U-Net	58.1	59.0	59.2
DeepLab	58.3	59.3	59.4
ResInceptionSkip	60.1	61.2	61.3

Dataset

- Low resolution M-band images are used
- M band(400-1040 nm), 1.24m/pixel, color depth 11 bit.
- The following features are more relevant for the disaster impact prediction task:
 - Buildings
 - Roads
 - Trees
 - Water
 - Crops

Image Pre-processing

- Image augmentation
 - converted 24 images to 4000 images
- Random transformations are applied across patches extracted from images
 - reversing first dimension
 - mirroring along both dimension

Project Pipeline

Training

- Unet Architecture
 - Encoder 5 Convolutional blocks
 - Decoder 5 Transpose Convolution blocks
- Optimiser
 - Adam
- Loss
 - Weighted Binary Loss Cross Entropy

Training

Training Environment	Google Cloud Platform	
Cloud Configuration	 52 GB RAM 8 vCPUs 	
Training Hours	~40 hrs	
No of Epochs	150 epochs	

Training

- Train loss and Validation loss plotted per epoch.
- Save the best model weights.

Disaster Prediction

Disaster Prediction

Evaluation

Metric: Disaster Impact Index (DII)

$$\text{Disaster Impact Index}(DII) = \Delta Pred = \frac{\left|\eta_{Pred_{before} = 1\&Pred_{after} = 0}\right|_{grid}}{\frac{1}{N_{grid}}\sum_{i=1}^{N_{grid}}\left|\eta_{Pred_{before} = 1}\right|_{grid_i}}$$

Metric F1 = 71 %

Conclusion

- In this project, we perform CNN-based semantic segmentation on satellite imagery obtained before and after disaster to identify areas of maximal damage.
- Our work incorporates high-level features including roads, buildings, trees, crops and water. This renders increased flexibility to proposed model over existing approaches.
- Our experiments show a high correlation between predicted impact areas and human -annotated ground truth labels.