	Teste de Matemática A
	2023 / 2024
Teste N.º 4	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma: _
Utilize apenas caneta ou esferográfica de tinta Não é permitido o uso de corretor. Risque aquil	
Nao e permitido o uso de corretor. Alsque aquil É permitido o uso de calculadora.	o que preteride que não seja ciassilicado.
Apresente apenas uma resposta para cada iter	n.
As cotações dos itens encontram-se no final do	

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

1. Considere as funções $f \in g$, ambas de domínio $[-\pi, \pi]$, representadas graficamente na figura e definidas por:

$$f(x) = \cos^2(x)$$
 e $g(x) = -\frac{1}{2}\cos(x)$

Recorrendo a processos exclusivamente analíticos, determine as abcissas dos pontos de interseção dos gráficos das funções f e g, no respetivo domínio.

2. Um aerogerador do parque eólico de Vila Lobos, em Lamego, tem uma torre com 91 metros de altura.

Durante o movimento do rotor, a distância, h, em metros, da extremidade de uma pá ao solo, em função da amplitude, θ , em radianos, do ângulo orientado que essa pá faz com a horizontal, durante uma volta, é dado por:

$$h(\theta) = 91 + 57 \operatorname{sen}(\theta)$$
, com $\theta \in [0, 2\pi]$

Considere, para um certo valor $\theta_1 \in [0, \pi]$, a distância, h, em metros, da extremidade dessa pá ao solo.

Sabe-se que, quando θ_1 aumenta 2 radianos, a distância da extremidade dessa pá ao solo reduz-se para metade.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de θ_1 , sabendo que, no intervalo considerado, esse valor existe e é único.

Apresente o resultado com aproximação às centésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permita(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

3. Na figura estão representadas, num referencial o.n. 0xy, a reta t e a circunferência de equação:

$$(x-2)^2 + (y+1)^2 = 25$$

Sabe-se que:

- A e B são dois pontos da circunferência;
- o ponto A tem coordenadas (-2, -4);
- a reta t é tangente à circunferência no ponto A;
- o arco de circunferência AB tem comprimento $\frac{25\pi}{6}$.

Resolva os itens 3.2 e 3.3, recorrendo a métodos exclusivamente analíticos.

3.1 Indique em qual das seguintes opções se encontra o valor do produto escalar $\overrightarrow{CA} \cdot \overrightarrow{CB}$.

(A)
$$\frac{25\sqrt{3}}{2}$$

(B)
$$-\frac{25\sqrt{3}}{2}$$

(C)
$$\frac{25}{2}$$

(D)
$$-\frac{25}{2}$$

3.2 Determine a equação reduzida da reta t.

3.3 Determine, com aproximação às décimas do grau, a amplitude do ângulo OCA.

4. Na figura está representado, num referencial o.n. Oxyz, um paralelepípedo retângulo [ABCDEFGH].

Sabe-se que:

• o plano
$$ABC$$
 é definido pela equação $3x + 4y - 12 = 0$;

o vértice H pertence à reta definida pela equação:

$$(x,y,z) \, = \, (-10,9,-1) \, + \, k(8,1,2), k \in \mathbb{R}$$

4.1 Qual das equações seguintes define um plano perpendicular ao plano ABC e que passa no ponto de coordenadas (-1, 2, 1)?

(A)
$$4x - 3y + 11 = 0$$

(B)
$$4x - 3y + 5z + 5 = 0$$

(C)
$$3x + 4y - 5 = 0$$

(D)
$$3x + 4y + 5z + 5 = 0$$

4.2 Determine, sem recorrer à calculadora, a equação reduzida da superfície esférica de centro no ponto H e que passa no ponto A.

5. Considere a sucessão (u_n) definida por $u_n = \frac{2n+5}{n+1}$.

Qual das seguintes afirmações é verdadeira?

- (A) (u_n) é crescente e $2 < u_n \le \frac{7}{2}$, $\forall n \in \mathbb{N}$.
- **(B)** (u_n) é crescente e não limitada.
- **(C)** (u_n) é decrescente e $2 < u_n \le \frac{7}{2}$, $\forall n \in \mathbb{N}$.
- **(D)** (u_n) é decrescente e não limitada.
- 6. No ginásio de uma escola, foi desenhada uma linha poligonal, com segmentos de reta posicionados, alternadamente, na horizontal e na vertical.

No esquema da figura, que não está à escala, representam-se cinco dos segmentos de reta que constituem essa linha:

- o primeiro segmento de reta, posicionado na horizontal, tem 3 cm de comprimento;
- o segundo segmento de reta, posicionado na vertical, tem 5 cm de comprimento;
- o terceiro segmento de reta, posicionado na horizontal, tem 7 cm de comprimento;

• cada um dos segmentos de reta seguintes tem sempre mais 2 cm de comprimento que o segmento de reta imediatamente anterior.

Determine, recorrendo a métodos exclusivamente analíticos, o comprimento do 15.º segmento de reta posicionado na vertical.

Apresente o resultado em centímetros.

7. Considere uma progressão geométrica (u_n) de termos positivos.

Sabe-se que:

•
$$2u_n - 3u_{n+1} = 0, \forall n \in \mathbb{N}$$

$$\bullet \quad u_2 \times u_4 = \frac{16}{9}$$

Determine uma expressão do termo geral de (u_n) .

Apresente essa expressão na forma $a \times b^n$, em que a e b são números reais.

8. Na figura está representada, num referencial o.n. 0xy, parte do gráfico de uma função f, de domínio]-2,6[.

Sabe-se que:

a reta de equação x = 2 é assíntota ao gráfico de f.

Seja (u_n) a sucessão de termo geral $u_n = \frac{2-6n}{3n}$.

Qual é o valor de $\lim f(u_n)$?

(C)
$$-5$$

(D)
$$-7$$

9. Sejam (u_n) e (v_n) duas sucessões definidas por:

$$u_n = \frac{\pi^n + 2^{n+\pi}}{\pi^{2n} + 3}$$
 e $v_n = 2n - \sqrt{4n^2 + 3n}$

Determine, recorrendo a processos exclusivamente analíticos, o valor de $\lim(u_n) - \lim(v_n)$.

10. Na figura está representada, num referencial o.n. 0xy, parte da hipérbole que é o gráfico de uma função f.

Sabe-se que:

as retas de equação x = -4 e y = -3 são as assíntotas do gráfico da função f.

Qual das seguintes expressões poderá definir analiticamente a função f?

(A)
$$f(x) = -3 - \frac{5}{x-4}$$

(B)
$$f(x) = -3 + \frac{5}{x-4}$$

(C)
$$f(x) = -3 - \frac{5}{x+4}$$

(D)
$$f(x) = -3 + \frac{5}{x+4}$$

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.1	3.2	3.3	4.1	4.2	5.	6.	7.	8.	9.	10.	Total
20	18	10	18	18	10	20	10	18	18	10	20	10	200