

Cognitive Neuroscience for Al Developers

Week 4— Structure and Function of the Nervous System: Plasticity + Neurodevo

The brain

How does it emerge?

Back in the days...

© Pauline Breijer

What is happening there?

Principles of Neural Sciences 4

What is happening there?

Signaling pathways define neural development

Hox genes determines motor neurons

Positional development is highly conserved

Mammals have very similar development

Human Pig

Brain cells have a common ancestor

Neuron maturation

Pruning over lifetime

From Huttenlocher and Dabholkar, 1997. Reprinted with permission of John Wiley & Sons Inc.

Pruning in deep neural networks

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733

ABSTRACT

We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use second-derivative information to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application.

Pruning synapses: making network sparse Pruning neurons: Making network dense

Le Cun et al., 1990

■Remaining Parameters ■Pruned Parameters

Shi Shi Shi Shi Shi Shi Ki Ki Ki Ki Ki

45M 30M

15M

Layer	Weights	FLOP	Act%	Weights%	FLOP%
conv1	35K	211M	88%	84%	84%
conv2	307K	448M	52%	38%	33%
conv3	885K	299M	37%	35%	18%
conv4	663K	224M	40%	37%	14%
conv5	442K	150M	34%	37%	14%
fc1	38M	75M	36%	9%	3%
fc2	17M	34M	40%	9%	3%
fc3	4M	8M	100%	25%	10%
Total	61M	1.5B	54%	11%	30%

Layer	Weights	FLOP	Act%	Weights%	FLOP%
conv1_1	2K	0.2B	53%	58%	58%
conv1_2	37K	3.7B	89%	22%	12%
conv2_1	74K	1.8B	80%	34%	30%
conv2_2	148K	3.7B	81%	36%	29%
conv3_1	295K	1.8B	68%	53%	43%
conv3_2	590K	3.7B	70%	24%	16%
conv3_3	590K	3.7B	64%	42%	29%
conv4_1	1M	1.8B	51%	32%	21%
conv4_2	2M	3.7B	45%	27%	14%
conv4_3	2M	3.7B	34%	34%	15%
conv5_1	2M	925M	32%	35%	12%
conv5_2	2M	925M	29%	29%	9%
conv5_3	2M	925M	19%	36%	11%
fc6	103M	206M	38%	4%	1%
fc7	17M	34M	42%	4%	2%
fc8	4M	8 M	100%	23%	9%
total	138M	30.9B	64%	7.5%	21%

Han et al., NeurIPS 2015

Pruning in deep neural networks

Han et al., Deep Compression ICLR 2016

Bruteforce NVIDIA study

2.1 Oracle pruning

Minimizing the difference in accuracy between the full and pruned models depends on the criterion for identifying the "least important" parameters, called *saliency*, at each step. The best criterion would be an exact empirical evaluation of each parameter, which we denote the *oracle* criterion, accomplished by ablating each non-zero parameter $w \in \mathcal{W}'$ in turn and recording the cost's difference.

To compute the oracle, we evaluate the change in loss caused by removing each individual feature map from the fine-tuned VGG-16 network. (See Appendix A.3 for additional analysis.) We rank

Figure 4: Pruning of feature maps in VGG-16 fine-tuned on the Birds-200 dataset.

Molchanov et al., ICLR 2017

State of NN pruning

MLSys 2020

WHAT IS THE STATE OF NEURAL NETWORK PRUNING?

Davis Blalock *1 Jose Javier Gonzalez Ortiz *1 Jonathan Frankle 1 John Guttag 1

Figure 1: Size and speed vs accuracy tradeoffs for different pruning methods and families of architectures. Pruned models sometimes outperform the original architecture, but rarely outperform a better architecture.

4.5 Confounding Variables

Even when comparisons include the same datasets, models, d operating points, other confounding variables meaningful comparisons difficult. Some variances or particular interest include:

- · Accuracy and efficiency of the initial model
- · Data augmentation and preprocessing
- Random variations in initialization, training, and finetuning. This includes choice of optimizer, hyperparameters, and learning rate schedule.
- · Pruning and fine-tuning schedule
- · Deep learning library. Different libraries are known to

Vadeera and Ameen, IEEE Access 2022

The brain is dynamic

Neural plasticity

Changing the synapse strength

Loosen connection:

Long-term depression (LTD)

Changing the synapse strength

Weight w↑

Perceptrons

Frank Rosenblatt

How do we change...

Weights: Hebbian learning, Delta Rule

Synaptic anatomy

Threshold: Learnable w/ SGD

Learnable Extended Activation Function for Deep Neural Networks

YEVGENIY BODYANSKIY¹, SERHII KOSTIUK² nch Laboratov, National University of Radio Electronics, Nauky av. 14. Kharkiv, 61166, Kharkiv, Ukraine, (e-mai

²Dept. of Artificial Intelligence, National University of Radio Electronics, Nauly av. 14, Kharkir, 61166, Kharkir, Ukraine, (e-mail: serbii.kostiuk@nure.na)

Corresponding author: Serbii Kostiuk (e-mail: serbii.kostiuk@nure.na)

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Activation function:

Parametric ReLU (Earlier layers more linear, Later more variable)

Multilayer perceptrons

→ Typical learning paradigms work with synaptic plasticity

NEAT

Evolving neural networks through augmenting topologies

KO Stanley, R Milkkulainen - Evolutionary computation, 2002 - MIT Press

An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies,(2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure ...

\$\square\$ \mathbb{90} \quad \text{Zitiert von: 3254 \text{ \text{\Ahnliche Artikel Alle 23 Versionen}}\$

Crossovers: [A,B,A] [C,B,C] (both are missing information)

NEAT vs. the human brain

No topology enforced

Minimal set to tackle task

Hard to extrapolate to Similar, yet slightly different tasks

Overall topology enforced

One-fits-all solution

Very good in abstraction

Applied NEAT

"Marl/O is a program made of neural networks and genetic algorithms that kicks butt at Super Mario World."

© Seth Bling, YouTube

https://www.youtube.com/watch?v=qv6UVOQ0F44

How to change weights?

Hebb's rule:

"Neurons that fire together, wire together."

$$w_{ij} = x_i x_j$$

X_i	$\mathbf{x}_{\mathbf{j}}$	$\mathbf{W_{ij}}$
0	O [*]	0
1	0	0
0	1	0
1	1	1

Hebb's rule

Spike timing dependent plasticity (STDP)

Structural plasticity

Synaptic plasticity

Hebb's rule – cntd.

Synaptic
$$\mathbf{w} \downarrow \rightarrow \mathbf{LTD}$$

Spike timing dependent plasticity

Recent Research

Spike-timing-dependent plasticity rewards synchrony rather than causality

Margarita Anisimova¹, Bas van Bommel¹, Marina Mikhaylova^{1,2}, J. Simon Wiegert, Thomas G.

Oertner1*, Christine E. Gee1,3*

"Our results confirm that neurons wire together if they fire together, but suggest that synaptic depression after anticausal activation (tLTD) is a transient phenomenon."

https://doi.org/10.1101/863365

biorxiv, 2021

Synaptic plasticity rules

$$v = w \cdot u$$

$$v = \mathbf{w} \cdot \mathbf{u}^T$$

The basic Hebb's rule:

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u}$$

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{w} \cdot \mathbf{u} \cdot \mathbf{u}^T$$
 Correlation matrix
$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w}^T$$

Correlation-based plasticity rule

$$\boldsymbol{w} \to \boldsymbol{w} + \epsilon \boldsymbol{Q} \cdot \boldsymbol{w}^T \qquad \epsilon = \frac{1}{\tau_w}$$

Synaptic plasticity rules

Correlation-based plasticity rule

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w}^T$$

→ Basic Hebb only allows LTP

Postsynaptic LTD/LTP switch

$$\tau_w \frac{d\mathbf{w}}{dt} = (\mathbf{v} + \mathbf{\theta}_v) \mathbf{u}$$

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot (\mathbf{u} + \boldsymbol{\theta_u})$$

Presynaptic LTD/LTP switch

Covariance matrix

$$v = \mathbf{w} \cdot \mathbf{u}^T$$

$$v = \mathbf{w} \cdot \mathbf{u}^T \qquad \tau_w \frac{d\mathbf{w}}{dt} = \mathbf{w} \cdot \mathbf{u} \cdot (\mathbf{u} - \boldsymbol{\theta}_u)^T \qquad \tau_w \frac{d\mathbf{w}}{dt} = \mathbf{C} \cdot \mathbf{w}^T$$

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{C} \cdot \mathbf{w}^T$$

Covariance-based plasticity rule

BCM rule

Hebbian learning suffers from instability

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u} \cdot (v - \theta_v) \quad \text{If constant } \rightarrow \text{unstable}$$

→ Threshold of postsynaptic activity that determins if synapse is strengthened or weakened.

Adapt threshold
$$\theta_v$$
: $\tau_\theta \frac{d\theta_v}{dt} = v^2 - \theta_v$

Synaptic Normalization

$$\tau_{\theta} \frac{d\theta_{v}}{dt} = v^{2} - \theta_{v}$$

 $\tau_{\theta} \frac{d\theta_{v}}{dt} = v^{2} - \theta_{v}$ \rightarrow Stabilize weights through postsynaptic activity

Can we use penalty terms directly on the weight vector?

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u} \left(\frac{v(\mathbf{n} \cdot \mathbf{u}^T)\mathbf{n}}{N_u} \right)$$

Normalize by subtracting the same quantity

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot \mathbf{u} \left(-\alpha \cdot v^2 \cdot \mathbf{w} \right) \qquad \alpha > 0$$

$$\tau_w \frac{d\mathbf{w}}{dt} = v \cdot (\mathbf{u} - \alpha \cdot v \cdot \mathbf{w})$$

Unsupervised learning

PRINCIPAL COMPONENT ANALYSIS (PCA)

Simulation

Steps:

- 1. Data generation
- 2. Variable initialization
- 3. Iterate through data
 - 1. Compute pre-synaptic input
 - 2. Compute post-synaptic activation
 - 3. Compute Δw and update
- 4. Plot result

```
1 # That you see the same what I see
2 np.random.seed(42)
3 N = 1000
4
5 # Generate random data
6 x = np.linspace(-.3, .3, N)
7 np.random.shuffle(x)
8 y = -.7 * x
9
10 x += np.random.randn(x.size) / 10
11 y += np.random.randn(y.size) / 10
12
```



```
# Initialize some random weights
w = np.array([0.1, 0.4])
# # Training iterations
N = 1000
eta = 0.1
ws = []
```

```
8  # Training
9  for i in range(N):
10     rPre = np.asarray([x[ix], y[ix]])
11     rPost = w @ rPre
12     w = w + eta * rPost * (rPre - rPost * w)
```


Simulation

Steps:

- 1. Data generation
- 2. Variable initialization
- 3. Iterate through data
 - 1. Compute pre-synaptic input
 - 2. Compute post-synaptic activation
 - 3. Compute Δw and update
- 4. Plot result

Simulation

Supervised Learning

Unsupervised learning → no target emposed Supervised learning → target emposed

Supervised Learning

Delta rule

$$\Delta w_i = \alpha \cdot (y - \hat{y}) \cdot x_i$$

Simulation Delta Rule

Steps:

- 1. Data generation
- 2. Variable initialization
- 3. Iterating
 - 1. Compute prediction
 - 2. Update weights
- 4. Plotting

```
1 w = np.random.randn(2)
2 eta = 0.01
```

```
for i in range(2*N):
    # Determine class/target
    t = -1 if i % 2 == 0 else 1

# Compute prediction
pred = w @ xs[i]

# Update weights
w = w + eta * (t-pred) * xs[i]
```


Simulation over time

Applied in deep neural networks

Binary (0,1) Or bipolar (-1,1) activations

Learning rules should incorporate:

Local and incremental

→ e.g. Hebbian learning

Minimizing the energy in the system

Hopfield networks

Capacity:

0.16 * n (n=units in Network)

$$C \cong rac{n}{2\log_2 n}$$

Large images (1024x1024) → require 8M neurons (!!)

Storing continuous space?

64x64 px

- → Trained on 4096 nodes
- → 7.2% (256) nodes were updated per step

https://towardsdatascience.com/hopfield-networks-neural-memory-machines-4c94be821073

Hopfield networks - now

HOPFIELD NETWORKS IS ALL YOU NEED

Hubert Ramsauer* Bernhard Schäff* Johannes Lehner* Philipp Seidl*
Michael Widrich* Thomas Adler* Lukas Gruber* Markus Holzleitner*
Milena Pavlović[‡], § Geir Kjetil Sandve § Victor Greiff[‡] David Kreil[†]
Michael Kopp[†] Günter Klambauer* Johannes Brandstetter* Sepp Hochreiter*, †

Figure 1: We generalize the energy of binary modern Hopfield networks to continuous states while keeping fast convergence and storage capacity properties. We also propose a new update rule that minimizes the energy. The new update rule is the attention mechanism of the transformer. Formulae are modified to express softmax as row vector. "=""-sign means "keeps the properties".

Figure 2: Left: A standard deep network with layers () propagates either a vector or a set of vectors from the input to the output. Right: A deep network, where layers () are equipped with associative memories via Hopfield layers ().

https://www.youtube.com/watch?v=nv6oFDp6rNQ

Explanation by Yannic Kilcher

Figure 3: The layer Hopfield allows the association of two sets R \blacksquare and Y \blacksquare . It can be integrated into deep networks that propagate sets of vectors. The Hopfield memory is filled with a set from either the input or previous layers. The output is a set of vectors Z \blacksquare .

^{*}ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria

[†] Institute of Advanced Research in Artificial Intelligence (IARAI)

[‡] Department of Immunology, University of Oslo, Norway

[§] Department of Informatics, University of Oslo, Norway

Deep Belief Networks

Everything is connected to everything, Energy-based model (EBM), Similar to Hopfields.

Training: minimizing KL-divergence

Restricted Boltzmann machine (RBM) – no visible-visible and hidden-hidden connections Training w/ contrastive divergence

Deep Belief Networks

First round of training: **unsupervised** w/ CD RBM by RBM

Connected to output, then **supervised** classification