Image Watermarking Using DWT and SVD

NLA project

Grashchenkov Kirill
Alenicheva Alisa

Digital watermarking

Applications

- Owner identification
- Source tracking
- Broadcast monitoring

Problem

Proving uniqueness and identifying content even after distortions

Task

Creating a method for marking a content (image, sound, video) which is robust for deformations and visually transparent

DWT and SVD watermarking

SVD transform

 $LL_{LENA} = U_{LENA} \Sigma_{LENA} V_{LENA}^{T}$

Original Image

1-DWT transform

Watermarking embedding

Watermarked Image

1-DWT inverse transform

DWT and SVD watermarking

SVD transform

$$= U_{LENA} \Sigma_{LENA} V_{LENA}^T$$

Original Image 1-DWT transform

SVD transform

$$\begin{array}{c} LL^{W}_{LENA} = \\ U_{LENA} \Sigma^{W}_{LENA} V^{T}_{LENA} \end{array}$$

Watermarking extracting

Watermark Image

1-DWT inverse transform

Haar Wavelet transform $(O(N^2))$

$$H = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix}$$

LL2	HL1	1111		
LH2	HH2	HL1		
Lŀ	11	HH1		

Haar Image Compression: Experiments

Haar Image Compression: Experiments

Initial Ivan weights 289 Kb

108 Kb

Watermark extraction: $MSE = \frac{1}{N^2} \sum \sum (USSR_{i,j} - USSR_{i,j}^W)^2$ Experiments

$$MSE = \frac{1}{N^2} \sum \sum (USSR_{i,j} - USSR_{i,j}^W)^2$$

$$PSNR = 10 \log_{10} \frac{MAX_{USSR}^2}{MSE}$$

$$PSNR = 10 \log_{10} \frac{MAX_{USSR}^2}{MSE} \qquad NCC = \frac{\Sigma_{USSR}^T \Sigma_{USSR}^W}{\|\Sigma_{USSR}^T\| \|\Sigma_{USSR}^W\|}$$

Watermarked Lena with distortions

Not distorted image	Gaussian blur	Contrast	Crop	Gamma correction	Histogram equalization	Noise	Pixelate	Rotate
	MSE=65.078 PSNR=29.996 NCC=0.997	MSE=113.554 PSNR=27.196 NCC=0.991	MSE=75.596 PSNR=26.223 NCC=0.711	MSE=73.086 PSNR=28.050 NCC=0.778	MSE=72.200 PSNR=29.545 NCC=0.969	MSE=40.996 PSNR=32.003 NCC=0.998	MSE=2.150 PSNR=43.756 NCC=0.999	MSE=74.145 PSNR=29.429 NCC=0.944

Extracted watermark

Conclusions

- Obtained method is robust to several types of attacks (blur, pixelization, noising, contrasting)
- Adding DWT provides transparency of obtained watermark in comparison with simple SVD watermarking

Future work

- Watermark embedding to higher order DWT transformations
- Apply DWT transformation not only to LL section of image, but also to other parts

References

- Malik, Vinita and Sukhdip Sangwan. "Digital Watermarking using DWT-SVD Algorithm." (2017).
- Øyvind Ryan. "Linear Algebra, Signal Processing, and Wavelets A Unified Approach." (2018).
- Emir Ganic and Ahmet M. Eskicioglu. "Robust embedding of visual watermarks using DWT-SVD." (2004).
- Bambang Harjito and Esti Suryani. "Robust Image Watermarking Using DWT and SVD for Copyright Protection." (2016)