Minutes meeting 3

Chair	Secretary	Board writer
Dolf	Vito	Mats

1 Announcements and general information

Mihai was late by ten minutes or so

2 Decisions

- Order all minutes by subject
- We do <u>not</u> continue investigating the sensor drift any further until we have clarity from the course coordinators
- File sharing happens through GitHub, the use of GitKraken is allowed but not mandatory
- Consult each other earlier
- "GenSet" is not a suitable word for the report
- The RPC list should be included in the appendix, if included at all

3 Presentation (Vito)

3.1 Content

- The exhaust temperature comes from an instruction manual, the error margin is 10 K. This temperature should be verified experimentally.
- Double work has been done by Vito, Thomas and Dolf
- No heat loss at the boundaries of the system have been taken into account. This
 could be added using formulas in the handbook

3.2 Presenting

- Good use of visual aids
- 31 slides is too many
- Keep the presenting brief; the details are in the SSA
- No contents-of-presentation slide

4 Discussion

4.1 Model

- No CO₂ after the combustion arrow in Dolf's SSA
- c_p and c_v values have been computed for each element seperately and then multiplied by the mass ratios of each component.
- fuel composition can be changed easily
- Efficiency has not yet been computed
- Work has been computed (theoretically)
- No inlet and outlet states implemented
- Fuels are modeled in mass ratios, though they are formulated in volume ratios in most literature
- The double tooth mechanism can be used to determine where you are in the thermodynamic cycle\

4.2 Pressure sensors

- Pressure sensor does not drift significantly during one cycle according to the handbook
- On the other hand they say it does later on in the handbook
- The engine cannot simply spin one cycle and then stop; it needs time to get up to speed and therefore drift will occur
- The handbook contradicts itself on this issue

4.3 Statistical analysis

- The data has yet to be loaded into the MATLAB file with matrices
- The graphing code has proven to work on other data sets
- Mihai should be able to fix this

4.4 Other comments on SSA's

- Mats'
- Contains several formulas that *could* be used but do not *have to* be used
- Lars'
 - Prevent the use of first and second person pronouns (I, you, we, our, us, etc.) and abbreviations (it's, we're, hasn't, etc.)
- Alexdandra's
 - o Only one type of ethanol has been used.

5 SSAs

X7'4 - / T		
Vito / Lars	• Compute the theoretical efficiency of the thermodynamic	
/	model	
Alexandra	• Compute the theoretical work done using the heat equations (W	
	= Qout - Qin) and the laws of thermodynamics	
	• Compute the state variables (pressure, volume, temperature,	
	etc.) at the inlet and outlet states and plot these into the p-V	
	diagram	
	• Convert the volume ratios presented in the literature into mass	
	ratios usable for the program and make them easily adjustable	
	for testing different fuel mixtures	
Dolf	Hand in the planning before 15FEB	
Dolf and	• Write an experimental test plan on how we should test the	
Thomas	engine and what variables we wish to collect (and how to collect	
	the variabels)	
Mihai and	• Transform the measurement data into workable matrices in	
Joey	MATLAB	
	 Plot a p-V diagram using the measurement data 	
Mats	• Look into the three types of ethanol used and perform	
	Alexandra's analysis on these again and put it into the report	