III. El algaitmo de Dijestra:
Def: Un gapo divigido con pesos es un grafo
dirigido q junto con ma función
$\ell: E(4) \xrightarrow{V} \mathbb{R}$
que a cada aista (MV) E E(G) le arigna
un costo l (u,v).
Obs: Los costos luvos tipicamente se interpretan
como "longitudes" o "tiempos" y tipicamenti
(aunque no siempre) son núneros positivos.
Ejemplo: En googlemaps cada localización
es un vértice de un gaso
l(u,v)= "Tiempo pondio de desplazamiento"
lugar o lugar
la novedod de Waze que "aprender"
la estruction de ese gajo.
Ambos resuellen el mismo poblema;
PROBLEMA: Dados dos vérticos s y t de un grafo con
pesos (q, l) encuntre:
(i) La mínima distancia con pesos d (s.t) desde s hasta t y
(ii) Una ruta óptima (de peso mínimo) Matemático y
1 fixico .
El exhao-dirario algoritmo de Dijkstra de Holanda
El extraodinario algoritmo de Dijkstra de Molanda (Edsger Dijkstra 1956 (9?)) - Ganó el premio Tueiny en 1972
(Edsger Dijkstra 1956 (9?)) - Gané el Premio Tueing - Muere en 2002
- Tu , t - 1.
Ver biografia en Pagina recursión medistre un stack

Más concretament, ALGORITMO DE DIJKSTRA:

INPUT: Grapo G con pesos 1>0, vértie de inicio 5. Output: diccionio q' con q[V] = d (S,V)

INICIALIZACIÓN:

(2) X.append (w*)

$$\psi(w^*) := \psi(u^*) + \ell(u^*,w^*)$$

Teorema [Dijksta, 1956] Si l > 0 En todo paso del algoritmo y esta definida en los vértous v e X y para ellos tenemos qu φ(v) = d (s, v)

Dem: Demostrucno, la signiente apirmación por

con peos l≥o "Pou todo gapo (todo verhu micial s ∧(j) = y toda ejecución del algo de Dijkster con |X| & tenemos $\varphi(v) = \int_{a}^{b} (s, v)$

Como P es un camino cualquien de 5 a W° concluimos $d(s, w^*) \ge l(u, w) + \varphi(u)$ I Por inducción como n'e X sabres que Ylu") = de (s, u") luego hay un comino Q de sa u* con pero Y(u*) y concatenándolo con (u°, w°) al final hemos construido un camino con peso ((u", w") + p(u") y por eso l(u, w)+ y(u") ≥ do(s, w) (II) Combinado D y I concluinos Y(w) = do (5, w). Obs: Sea Tel grafo con vértices V(4) y E(T) = "Anistro verdes (u, w) descrienter, en cada paso del algoritmo entonus T no tiene ciclos y todo ventra v admite < 1 camino de s av en T ex camino es de pero minimo por q asi que Dijkstru no solo encuentra la distaca mínima som tambier la ruta óptima. Es natural preguntere si la restricción de que l>0 que vsamos prentemente en la demostración de validaz es realmente necesaria Una primera idia es preguntos si podíamos reducir el problema al caso positivo sumándole una constitu K alos pesos paa volver los postivos. LSTA IDEA NO FUNCIONA, COMO MUESTRA EL SIGUIENTE...

... EJEMPLO:

Si le suramos 5 a todos pur que sea > 0 que la:

El problema con nuestra "Reducción" es que el camino de longital mínima no nempe tiene el mínimo núneo de aristro luego nuestro truco de suma K distonsiona el problema

· Si vomos el algoritmo de Dijestra en este ejemplo que suedo?

Buscamo en los cristos mondas la que minimitar
$$0+1=1 \implies \begin{array}{c} = \{s\} \\ 0+(-z)=-z \end{array}$$

$$\begin{array}{c} (\gamma(t)=-z) \end{array}$$

Así que si HAY ARISTAS CON PESO NEGATIVO el algoritmo prede podrue resultato, ERRÓNEOS.