ELEC 341 – Graded Assignments

Assignment A3 Mechanical Circuits

100 Marks

Required Files

Available on Canvas

e341-a3.pdf

a3Submit.p

e341-APE.pdf

Assignment description (this document)

Grading script (LATEST version)

Instructions for submitting graded work (for reference)

Topics

Electro-Mechanical Equivalents

· mechanical circuit analysis

Motor Model

• mixed mode systems

Power & Energy

· conservation of energy

Elec 341 - Assignments

Figure 1 Parameters			Figure 2 Parameters		
Parameter	Value	Physical Units	Parameter	Value	Physical Units
M ₀	#A / 5	Kg	R _w	#A / 3	Ω
M ₁	#B / 10	Kg	L _w	#B	mH
M ₂	#C / 10	Kg			
M ₃	#D / 5	Kg	J _r	#C / 10	m-Nms ²
			B _r	#D + #E	m-Nms
B ₂₀	#E / 2	Ns/m			
B ₂₁	#F / 3	Ns/m	K _e	#G x 50	m-Vs
B ₃₁	#G / 4	Ns/m	K _m	#G x 50	m-Nm/A
K ₀	#A	N/m			
K ₁	#B	N/m			
K ₂₀	#C	N/m			
K ₃₂	#D/3	N/m			

Transform the mechanical circuit in Figure 1 into its electrical equivalent.

Use nodal analysis to solve the circuit.

Find the transfer function: $G_{d1} = d_1/F_0$ Find the transfer function: $G_{d3} = d_3/F_0$

20 mark(s) Distance Gains
 Q1.Gd1 (m/N) LTI
 Q1.Gd3 (m/N) LTI

Find the transfer function: $G_{f1} = f_{k1}/F_0$ f_{k1} is **separating** force in spring K_1 Find the transfer function: $G_{f32} = f_{k32}/F_0$ f_{k32} is **separating** force in spring K_{32}

2. 20 mark(s) Force Gains

• Q2.Gf1 (N/N) LTI • Q2.Gf32 (N/N) LTI

COW: Plot the Step Response of each transfer function.

When the step is first applied, does the mass move in the right direction ???

After a long time, does the FV make sense ???

Do not confuse Distance with Velocity.

A model of an electric motor is shown in Figure 2.

The motor model integrates electrical and mechanical systems with dependent sources.

Rotor torque τ depends on winding current i_w , and winding back-EMF (voltage) v_b depends on rotor speed ω .

Convert the mechanical system into its electrical equivalent, and combine the two systems.

Use nodal analysis to solve the circuit.

Find the transfer function: $G_i = i_w/V_{in}$

- 3. 20 mark(s) Current Gain
 - Q3.Gi (A/V) LTI

Find the transfer function: $G_w = \omega/V_{in}$

- 4. 20 mark(s) Speed Gain
 - Q4.Gw (rad/Vs) LTI

COW: Plot a 1V Step Response.

Do the Peak & Final values seem reasonable ??? Are they the same ??? Should they be ???

Use $\mathbf{G_i}$ and $\mathbf{G_w}$ to find current and speed for a $\mathbf{1V}$ unit step input.

Find the power dissipated by the resistor $\mathbf{R}_{\mathbf{w}}$ and the bearings (damper $\mathbf{B}_{\mathbf{r}}$).

Use the electrical analogy to determine mechanical power dissipation.

Estimate the total energy dissipated after 50 ms. Use 1 ms time increments.

The area under a curve can be approximated by summing the parts (as shown).

Find the total energy dissipated E_d after 50 ms.

Find the energy stored in the inductor L_w and inertia J_r after 50 ms.

Find the total energy stored E_s after 50 ms.

Find the total energy provided $\mathbf{E}_{\mathbf{p}}$ by the source \mathbf{V}_{in} after 50 ms.

- 5. 20 mark(s) Energy
 - Q5.Ed (J) ScalarQ5.Es (J) Scalar
 - Q5.Es (J) Scalar • Q5.Ep (J) Scalar

COW: Does $E_p = E_d + E_s$???

"Conservation of Energy" must always hold.

