Recitation Class 2

Zexi Li

lzx12138@sjtu.edu.cn

2021.05.25

Outline

Chapter 3-II Introduction to the Quantum Theory of Solids

Chapter 4-I The Semiconductor in Equilibrium

Table of Contents

Chapter 3-II Introduction to the Quantum Theory of Solids

Chapter 4-I The Semiconductor in Equilibrium

Effective Mass: experimentally

Cyclotron resonance

Density of States Function

$$g(E) = \frac{4\pi (2m)^{\frac{3}{2}}}{h^3} \sqrt{E}$$

$$g_c(E) = \frac{4\pi (2m_n^*)^{\frac{3}{2}}}{h^3} \sqrt{E - E_c}$$

$$g_v(E) = \frac{4\pi (2m_p^*)^{\frac{3}{2}}}{h^3} \sqrt{E_v - E}$$

Related Materials

Proof (if interested):

- https://eng.libretexts.org/Bookshelves/Materials_ Science/Supplemental_Modules_(Materials_Science) /Electronic_Properties/Density_of_States
- ► Textbook 3.4 Density of States Function

Example

Determine the number ($\#/\text{cm}^3$) of quantum states in silicon between E_c and $E_c + kT$ at T = 300K.

$$N = \int_{E_c}^{E_c + kT} \frac{4\pi (2m^*)^{3/2}}{h^3} \sqrt{E - E_c} dE$$

$$= \frac{4\pi (2m^*)^{3/2}}{h^3} \frac{2}{3} (E - E_c)^{3/2} \Big|_{E_c}^{E_c + kT}$$

$$= 2.22 \times 10^{25} m^{-3} \text{ or } 2.12 \times 10^{19} cm^{-3}$$

Distribution Function

► Fermi-Dirac probability function:

Distribution Function

▶ Boltzmann distribution When $\exp\left(\frac{E-E_F}{kT}\right) >> 1 \Rightarrow E-E_F > 2kT$

$$f_F(E) \approx exp\left(-\frac{E-E_F}{kT}\right)$$

Table of Contents

Chapter 3-II Introduction to the Quantum Theory of Solids

Chapter 4-I The Semiconductor in Equilibrium

n_0 and p_0 Equations

$$n_{0} = \int_{E_{c}}^{\infty} g_{c}(E) f_{F}(E) dE$$

$$\Rightarrow n_{0} = N_{c} \exp\left[\frac{-(E_{c} - E_{F})}{kT}\right], \quad N_{c} = 2\left(\frac{2\pi m_{n}^{*} kT}{h^{2}}\right)^{3/2}$$

$$p_{0} = \int_{-\infty}^{E_{v}} g_{v}(E) (1 - f_{F}(E)) dE$$

$$\Rightarrow p_{0} = N_{v} \exp\left[\frac{-(E_{F} - E_{v})}{kT}\right], \quad N_{v} = 2\left(\frac{2\pi m_{p}^{*} kT}{h^{2}}\right)^{3/2}$$

Example

Calculate the thermal-equilibrium hole concentration in silicon at T=400K. Assume that the Fermi energy is 0.27eV above the valence-band energy. The value of N_{ν} for silicon at T=300K is $N_{\nu}=1.04\times10^{19}cm^{-3}$.

$$kT = 0.0259 \text{ only for } T = 300K$$

$$kT = (0.0259) \left(\frac{400}{300}\right) = 0.03453eV$$

$$N_v = (1.04 \times 10^{19}) \left(\frac{400}{300}\right)^{3/2} = 1.60 \times 10^{19} cm^{-3}$$

The hole concentration is then

$$p_0 = N_v \exp\left[\frac{-(E_F - E_v)}{kT}\right] = (2.60 \times 10^{19}) \exp\left(\frac{-0.27}{0.03453}\right)$$
$$= 6.43 \times 10^{15} cm^{-3}$$

Intrinsic Semiconductor

For intrinsic semiconductor, the Fermi energy level is called the intrinsic Fermi energy, or $E_F = E_{Fi}$. We have

$$n_0 = n_i = N_c \exp\left[\frac{-(E_c - E_{Fi})}{kT}\right]$$

$$p_0 = n_i = N_v \exp\left[\frac{-(E_{Fi} - E_v)}{kT}\right]$$

Take the product:

$$n_0 p_0 = n_i^2 = N_c N_v \exp\left[\frac{-(E_c - E_v)}{kT}\right] = N_c N_v \exp\left[\frac{-E_g}{kT}\right]$$

Self-consistency

$$n_i^2 = N_c N_v \exp \left[\frac{-(E_c - E_v)}{kT} \right] = N_c N_v \exp \left[\frac{-E_g}{kT} \right]$$

For
$$Si$$
 at $300K$:
$$n_i = 1.5 \times 10^{10} cm^{-3},$$

$$E_g = 1.12 eV,$$

$$N_c = 2.8 \times 10^{19} cm^{-3},$$

$$N_v = 1.04 \times 10^{19} cm^{-3},$$

$$kT = 0.0259 eV$$

$$LHS = 2.25 \times 10^{20} \neq 4.82936 \times 10^{19} = RHS$$

Self-consistency Example

For n-doped Silicon semiconductor at 300K, the Fermi level is

 $E_F = E_c - 0.3 eV$. Calculate p_0 .

Approach I:

Approach II:

$$E_F - E_v = E_g - (E_c - E_F) = 0.82eV$$

 $p_0 = N_v \exp\left[\frac{-(E_F - E_v)}{kT}\right] = 1.85 \times 10^5 cm^{-3}$

End