Machine Learning Project:

Ames, Iowa Housing Prices

Ariani Herrera, Erin Dugan, John Nie, Won Kang NYC Data Science Academy - August 27, 2018

Agenda

- 1. Project Motivation
- 2. Background of Data Set
- 3. Data Transformation
- 4. Model Selection
- 5. Parameter Optimization
- 6. Model Validation & Results

Motivation

- 1. What are the key features that influence housing prices in lowa?
- 2. What are the best models to predict housing prices?
- 3. Are there any ways to improve the models?

Process

Background

Kaggle Competition to predict home sale prices

2930 sales in Ames, Iowa between 2006 - 2010

79 features describing the homes and sale conditions

38 numerical features

43 categorical features

10 = Very Excellent Ex= Excellent

9 = Excellent Gd = Good

8 = Very Good TA = Typical

7 = Good Fa = Fair 6 = Above Average Po = Poor

5 = Average NA = No

4 = Below Average

3 = Fair

2 = Poor

1 = Very Poor

GLQ = Good Living Quarters

ALQ = Average Living Quarters

BLQ = Below Average Living Quarters

Rec = Average Rec Room

LwQ = Low Quality

Unf = Unfinished

NA = No Basement

Above Ground Living Area SF

Remodel Date

Relative Importance

Data Transformation

To improve the accuracy of machine learning models, the training dataset needs to be changed and transformed, such as:

- 1. Check for multicollinearity
- 2. Remove outliers
- 3. Inspect missing values and impute missing values
- 4. Transform categorical columns with ordinal features
- 5. Transform numeric columns with categorical features
- 6. Transform skewed data

Check for multicollinearity

--Remove unnecessary

columns

For example, GarageYrBlt (remove) & YearBuilt (keep)

Exploratory Data Analysis - remove outliers

1. Features with "none": Impute with "0"

2.Features with lost data: Impute with "average"

Imputation

Data Transformation

Handling Skewness

Lot Area with Skewness

Lot Area after transformation

Numeric Variables with Categorical Feature

Categorical Variables with Label Encoding

Ex: Excellent - 4

Gd: Good - 3

TA: Typical/Avg - 2

Fa: Fair - 1

Machine Learning Model Development

Set aside 20% for final validation of unobserved data & test for overfitting

Evaluated models with and without Principal Component Analysis

Algorithms optimized with parameter grid search and K-Fold cross validation

Methods of Testing for Accuracy

- To evaluate overfitting, we created a test set from 20 % of the training data.
- Once we fit a model we then scored it based on the unobserved test set.
- We concluded we were not overfitting from the increased R^2 score.

Using Principal Component Analysis

How many Principal Components should we use?

Machine Learning Models - Training Data Set

With PCA

Without PCA

Machine Learning Models - Validation Data Set

With PCA

Algorithm Comparison

Without PCA

Algorithm Comparison

Comparing Results with the Validation Test Data

		Linear Regression	Linear Regression with PCA	Ridge	Ridge with PCA	Kernel Ridge	Kernel Ridge with PCA
Training Data	RSME	.018	.027	0.024	0.028	0.025	0.027
	R ²	.84	.81	0.86	0.84	0.84	0.84
Validation Data	RSME	.017	.026	0.030	0.026	0.015	0.026
	R ²	.85	.84	0.84	0.84	0.89	0.84

Optimize Model Parameters with Grid Search

Algorithm Comparison

Machine Learning Models:

- Linear
- Lasso
- Ridge
- Kernel Ridge
- Elastic Net
- Random Forest Regression

Feature Importance Variations by Model

Conclusions & Key Insights

- Kernel Ridge Model provided best results
- Grid Search to tune model parameters was beneficial
- Stacking with PCA didn't show significant improvement

Future Research

- Further parameter optimization with expanded grid search cross validation
- Additional machine learning models
- Ensembling or Stacking various models
- Examine how models work for later dates
- Consider additional data that would influence prices

