ECE269: Linear Algebra and Applications Fall 2021

Homework # 2 Solutions

1. Affine Functions. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be *affine* if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and any $\alpha, \beta \in \mathbb{R}$ with $\alpha + \beta = 1$, we have

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

Note that without the restriction $\alpha + \beta = 1$, this would be the definition of linearity.

- (a) Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Show that the function $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ is affine.
- (b) Prove the converse, namely, show that any affine function f can be represented uniquely as $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ for some $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.

Solution:

(a) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha + \beta = 1$

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) + \mathbf{b}$$

$$= \mathbf{A}(\alpha \mathbf{x}) + \mathbf{A}(\beta \mathbf{y}) + (\alpha + \beta)\mathbf{b}$$

$$= \alpha \mathbf{A}\mathbf{x} + \beta \mathbf{A}\mathbf{y} + \alpha \mathbf{b} + \beta \mathbf{b}$$

$$= \alpha(\mathbf{A}\mathbf{x} + \mathbf{b}) + \beta(\mathbf{A}\mathbf{y} + \mathbf{b})$$

$$= \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

(b) Define $g(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{0})$. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$

 $q(\alpha \mathbf{x}) = f(\alpha \mathbf{x}) - f(\mathbf{0})$

$$= f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{0}) - f(\mathbf{0})$$

$$= \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{0}) - f(\mathbf{0})$$

$$= \alpha (f(\mathbf{x}) - f(\mathbf{0}))$$

$$= \alpha g(\mathbf{x})$$

$$g(\mathbf{x} + \mathbf{y}) = g\left(2\frac{\mathbf{x} + \mathbf{y}}{2}\right)$$

$$= 2g\left(\frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y}\right) \quad [\because g(\alpha \mathbf{x}) = \alpha g(\mathbf{x})]$$

$$= 2\left(f\left(\frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y}\right) - f(\mathbf{0})\right)$$

$$= 2\left(\frac{1}{2}f(\mathbf{x}) + \frac{1}{2}f(\mathbf{y}) - f(\mathbf{0})\right)$$

$$= (f(\mathbf{x}) - f(\mathbf{0})) + (f(\mathbf{y}) - f(\mathbf{0}))$$

$$= g(\mathbf{x}) + g(\mathbf{y})$$

Hence $g : \mathbb{R}^n \to \mathbb{R}^m$ is a linear function. Hence $g(\mathbf{x})$ can be uniquely written as $\mathbf{A}\mathbf{x}$ for some $\mathbf{A} \in \mathbb{R}^{m \times n}$. With $\mathbf{b} = f(\mathbf{0})$, $f(\mathbf{x}) = g(\mathbf{x}) + f(\mathbf{0}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ for some unique $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.

- 2. Linear Maps and Differentiation of polynomials. Let \mathcal{P}_n be the vector space consisting of all polynomial of degree $\leq n$ with real coefficients.
 - (a) Consider the transformation $T: \mathcal{P}_n \to \mathcal{P}_n$ defined by

$$T(p(x)) = \frac{dp(x)}{dx}.$$

For example, $T(1+3x+x^2)=3+2x$. Show that T is linear.

(b) Using $\{1, x, ..., x^n\}$ as a basis, represent the transformation in part (a) by a matrix $\mathbf{A} \in \mathbb{R}^{(n+1)\times (n+1)}$. Find the rank of \mathbf{A} .

Solution:

(a) Let $p(x), q(x) \in \mathcal{P}_n$ and $\alpha, \beta \in \mathbb{R}$

$$T(\alpha p(x) + \beta q(x)) = \frac{d}{dx}(\alpha p(x) + \beta q(x))$$
$$= \frac{d}{dx}(\alpha p(x)) + \frac{d}{dx}(\beta q(x))$$
$$= \alpha \frac{dp(x)}{dx} + \beta \frac{dq(x)}{dx}$$
$$= \alpha T(p(x)) + \beta T(q(x))$$

Hence T is a linear function.

(b) Any vector p(x) in \mathcal{P}_n can be represented as $\sum_{i=0}^n \alpha_i x^i$ for $\alpha_i \in \mathbb{R}$ for $0 \le i \le n$. A linear map is completely characterized by its action on the basis vectors and can be represented as a matrix for the basis.

$$T(1) = 0, T(x^i) = ix^{i-1}$$
 for all $1 \le i \le n$. Hence

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}_{(n+1)\times(n+1)}$$

The last n columns of \mathbf{A} denoted $c_1, c_2, \ldots c_n$ are linearly independent as $c_i = i * e_i$ where e_i are the vectors of the standard basis. As column c_0 is the zero vector, the number of linearly independent columns of \mathbf{A} is n. Hence the rank of \mathbf{A} is n.

- 3. Matrix Rank. Show the following identities about rank.
 - (a) If $\mathbf{A} \in \mathbb{F}^{m \times n}$, $\mathbf{B} \in \mathbb{F}^{n \times k}$, then

$$rank(\mathbf{B}) \le rank(\mathbf{AB}) + dim(\mathcal{N}(\mathbf{A}))$$

(b) If $\mathbf{A} \in \mathbb{F}^{m \times n}$, $\mathbf{B} \in \mathbb{F}^{m \times n}$, then

$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$$

(c) Suppose $\mathbf{A}, \mathbf{B} \in \mathbb{F}^{m \times m}$. Then, show that if $\mathbf{AB} = \mathbf{0}$, then

$$rank(\mathbf{A}) + rank(\mathbf{B}) \le m$$

(d) Suppose $\mathbf{A} \in \mathbb{F}^{m \times m}$. Then, show that $\mathbf{A}^2 = \mathbf{A}$ if and only if

$$rank(\mathbf{A}) + rank(\mathbf{A} - \mathbf{I}) = m$$

Solution:

(a) $\mathbf{A} \in \mathbb{F}^{m \times n}, \mathbf{B} \in \mathbb{F}^{n \times k}$

The range space of **B** denoted $\mathcal{R}(\mathbf{B})$ is a subspace of \mathbb{F}^n .

Restrict the linear map \mathbf{A} to $\mathcal{R}(\mathbf{B})$ i.e. consider new linear map $f: \mathcal{R}(\mathbf{B}) \to \mathbb{F}^m$ given by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for all vectors \mathbf{x} in $\mathcal{R}(\mathbf{B})$.

Domain of f is $\mathcal{R}(\mathbf{B})$ and hence dimension of domain is rank(\mathbf{B}).

$$\mathcal{R}(f) = {\mathbf{A}\mathbf{y} : \mathbf{y} \in \mathcal{R}(\mathbf{B})} = {\mathbf{A}\mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{F}^k} = \mathcal{R}(\mathbf{A}\mathbf{B})$$

$$\mathcal{N}(f) = \{ \mathbf{y} \in \mathcal{R}(\mathbf{B}) : \mathbf{A}\mathbf{y} = 0 \} = \mathcal{N}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B})$$

We can apply Rank-Nullity Theorem on this new map f.

$$rank(\mathbf{B}) = \dim(\mathcal{R}(f)) + \dim(\mathcal{N}(f))$$
$$= rank(\mathbf{AB}) + \dim(\mathcal{N}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B}))$$
$$\leq rank(\mathbf{AB}) + \dim(\mathcal{N}(\mathbf{A}))$$

(b) $\mathbf{A} \in \mathbb{F}^{m \times n}, \mathbf{B} \in \mathbb{F}^{m \times n}$

$$\mathcal{R}(\mathbf{A} + \mathbf{B}) = \{(\mathbf{A} + \mathbf{B})\mathbf{x} : \mathbf{x} \in \mathbb{F}^n\}$$

$$= \{\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{F}^n\}$$

$$\subseteq \{\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{F}^n\} + \{\mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{F}^n\}$$

$$= \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})$$

Hence $rank(\mathbf{A} + \mathbf{B}) \le dim(\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B}))$

Let \mathcal{B}_1 , \mathcal{B}_2 be basis for $\mathcal{R}(\mathbf{A})$ and $\mathcal{R}(\mathbf{B})$ respectively. Then $\mathcal{B}_1 \cup \mathcal{B}_2$ spans $\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})$. Hence $\dim(\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})) \leq \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$.

 $\operatorname{Hence\ rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$

(c) Let
$$\mathbf{A}, \mathbf{B} \in \mathbb{F}^{m \times m}$$
. From part (a),

$$\operatorname{rank}(\mathbf{B}) \leq \operatorname{rank}(\mathbf{A}\mathbf{B}) + \dim(\mathcal{N}(\mathbf{A}))$$

= $\dim(\mathcal{N}(\mathbf{A}))$
= $m - \operatorname{rank}(\mathbf{A})$ [: Rank Nullity for A]

Hence $rank(\mathbf{A}) + rank(\mathbf{B}) \le m$

(d) Let
$$\mathbf{A} \in \mathbb{F}^{m \times m}$$

Need to show $\mathbf{A}^2 = \mathbf{A} \iff \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{A} - \mathbf{I}) = m$

$$(\Longrightarrow)$$
 Given $\mathbf{A}^2 = \mathbf{A}$
From part (b),

$$m = \operatorname{rank}(\mathbf{I}) = \operatorname{rank}(\mathbf{A} + (\mathbf{I} - \mathbf{A})) \le \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{I} - \mathbf{A})$$

giving
$$rank(\mathbf{A}) + rank(\mathbf{I} - \mathbf{A}) \ge m$$
.

From part (c),

$$rank(\mathbf{A}) + rank(\mathbf{I} - \mathbf{A}) \le m$$

Hence
$$m = \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{I} - \mathbf{A})$$
.

As
$$rank(\mathbf{I} - \mathbf{A}) = rank(\mathbf{A} - \mathbf{I})$$
, we get $m = rank(\mathbf{A}) + rank(\mathbf{A} - \mathbf{I})$

$$(\Leftarrow)$$
 Given rank $(\mathbf{A}) + \text{rank}(\mathbf{A} - \mathbf{I}) = m$

Let
$$\mathbf{x} \in \mathcal{N}(\mathbf{A})$$
, then $(\mathbf{A} - \mathbf{I})(-\mathbf{x}) = -\mathbf{A}\mathbf{x} + \mathbf{I}\mathbf{x} = \mathbf{x}$.

Hence $\mathcal{N}(\mathbf{A}) \subseteq \mathcal{R}(\mathbf{A} - \mathbf{I})$.

As
$$\dim(\mathcal{N}(\mathbf{A})) = m - \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A} - \mathbf{I})$$
 we get $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A} - \mathbf{I})$.

$$\mathcal{R}(\mathbf{A}(\mathbf{A} - \mathbf{I})) = {\mathbf{A}(\mathbf{A} - \mathbf{I})\mathbf{x} : \mathbf{x} \in \mathbb{F}^m} = {\mathbf{A}\mathbf{y} : \mathbf{y} \in \mathcal{R}(\mathbf{A} - \mathbf{I})} = {\mathbf{0}}$$

Hence
$$\mathbf{A}(\mathbf{A} - \mathbf{I}) = \mathbf{0}$$
 i.e. $\mathbf{A}^2 = \mathbf{A}$.

4. Solution of Linear System of Equations. Consider the system of linear equations

$$y = ABx$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$, $m \leq n$. For each of the following cases, find conditions (in terms of null spaces and range spaces of \mathbf{A} and \mathbf{B}) under which there can be a unique solution, no solution, or infinite number of solutions.

- (a) $rank(\mathbf{A}) = n$, and $rank(\mathbf{B}) = m$.
- (b) $rank(\mathbf{A}) = n$, and $rank(\mathbf{B}) < m$.
- (c) $rank(\mathbf{A}) < n$, and $rank(\mathbf{B}) = m$.

Solution: Note that \mathbf{AB} is a n by m matrix where $m \leq n$. So $R(\mathbf{AB})$ may not span the entire \mathbb{R}^n where \mathbf{y} lives. Hence, there may exist a solution or no solution according to given \mathbf{y} . There exists a solution if $y \in \mathbf{AB}$ and does not exist if $y \notin \mathbf{AB}$. In the case where a solution exists, we need to check $N(\mathbf{AB})$. If $N(\mathbf{AB}) = \{\mathbf{0}\}$, then we have a unique solution. Otherwise we have infinite number solutions. We need to check $N(\mathbf{AB})$ in each case.

(a)

$$ABx = 0 \Rightarrow$$

Since $rank(\mathbf{A}) = n, N(\mathbf{A}) = \{\mathbf{0}\},\$

$$\mathbf{B}\mathbf{x} = \mathbf{0} \Rightarrow$$

Since $rank(\mathbf{B}) = m, N(\mathbf{B}) = \{\mathbf{0}\},\$

$$\mathbf{x} = \mathbf{0} \Rightarrow$$

$$N(\mathbf{AB}) = \{\mathbf{0}\}$$

Hence

if $y \notin R(\mathbf{AB}) \Rightarrow there \ exists \ no \ solution$ if $y \in R(\mathbf{AB}) \Rightarrow there \ exists \ a \ unique \ solution$

(b)

$$ABx = 0 \Rightarrow$$

Since $rank(\mathbf{A}) = n, N(\mathbf{A}) = \{\mathbf{0}\},\$

$$Bx = 0 \Rightarrow$$

Since $rank(\mathbf{B}) < m, dim(N(\mathbf{B})) > m - m = 0,$

 $\exists \mathbf{x} \neq \mathbf{0} \ \mathit{such that} \ \mathbf{ABx} = \mathbf{0} \Rightarrow$

$$N(\mathbf{AB}) \neq \{\mathbf{0}\}$$

Hence

if $y \notin R(\mathbf{AB}) \Rightarrow there \ exists \ no \ solution$ if $y \in R(\mathbf{AB}) \Rightarrow there \ exists \ infinite \ solutions$ (c) If $\mathbf{B}\mathbf{x} = \mathbf{0}$ then $\mathbf{x} = \mathbf{0}$. However, since $dim(N(\mathbf{A})) > n - n = 0$, there exists $\mathbf{z} \neq \mathbf{0}$ such that $\mathbf{A}\mathbf{z} = \mathbf{0}$. This implies $N(\mathbf{A}\mathbf{B}) \neq \{\mathbf{0}\}$ if and only if there exists \mathbf{x} such that $\mathbf{B}\mathbf{x} = \mathbf{z}$ for $\mathbf{z} \in N(\mathbf{A})$. In other words, this means

$$N(\mathbf{AB}) \neq \{\mathbf{0}\} \Leftrightarrow N(\mathbf{A}) \cap R(\mathbf{B}) \neq \{\mathbf{0}\}$$

Note that **0** is always in $N(\mathbf{A}) \cap R(\mathbf{B})$ Hence we have

$$if \ y \notin R(\mathbf{AB}) \Rightarrow no \ solution$$

if
$$y \in R(\mathbf{AB})$$
 and $N(\mathbf{A}) \cap R(\mathbf{B}) = \{\mathbf{0}\} \Rightarrow unique solution$

if
$$y \in R(\mathbf{AB})$$
 and $N(\mathbf{A}) \cap R(\mathbf{B}) \neq \{\mathbf{0}\} \Rightarrow infinite solutions$

- **5. Infinite Dimensional Vector Spaces.** $C^0([0,1])$, the set of all continuous functions $f:[0,1] \to \mathbb{R}$ is a vector space over \mathbb{R} . Let $S = \{1,(x+1),(x+2)^2,(x+3)^3,\ldots,(x+i)^i,\ldots\}$.
 - (a) Is there a vector in S which can be represented as a finite linear combination of other vectors in S?
 - (b) Can every vector in $C^0([0,1])$ be represented as a finite linear combination of vectors in S?

Solution:

(a) Let $(x+i_0)^{i_0} = \sum_{j=1}^k \alpha_j (x+i_j)^{i_j}$ for some non zero α_j and $i_1 < i_2 < \cdots < i_k$ and $i_0 \neq i_j$ for $1 \leq j \leq k$

Suppose $i_0 < i_k$, we can rewrite this as

$$(x+i_k)^{i_k} = \alpha_k^{-1}(x+i_0)^{i_0} + \sum_{j=1}^{k-1} -\alpha_k^{-1}\alpha_j(x+i_j)^{i_j}$$

resulting in the LHS having the highest degree vector.

Hence wlog, $i_0 > i_k$. Then LHS has a term x^{i_0} which does not occur on the RHS as $i_j < i_0$ for all $1 \le j \le k$. As the coefficient of x^{i_0} on LHS is 1 and on the RHS is 0, this leads to a contradiction. Hence no vector in S can be written as a finite linear combination of the other vectors in S.

(b) Finite linear combinations of vectors in S always results in polynomials of finite degree. However, $C^0([0,1])$ contains other functions such as e^x , |x-0.5| which are continuous but are not equal to any finite degree polynomial and hence cannot be represented as finite linear combinations of vectors in S.

Suppose $e^x = \sum_{j=1}^k \alpha_j (x+i_j)^{i_j}$ for some non zero α_j and $i_1 < i_2 < \dots < i_k$. Taking the l^{th} derivative with respect to x where $l = i_k + 1$,

$$\frac{d^{l}}{dx^{l}}e^{x} = e^{x} \neq 0 = \frac{d^{l}}{dx^{l}} \sum_{j=1}^{k} \alpha_{j} (x + i_{j})^{i_{j}}$$

where the last equality follows from taking the fact that the l^{th} derivative of a degree $\leq l-1$ polynomial is 0.

Hence e^x cannot be represented as a finite linear combination of vectors in S.