схемотехника

Лекция № 5.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ.

ПРИНЦИПЫ ПОСТРОЕНИЯ УСИЛИТЕЛЬНЫХ КАСКАДОВ НА ТРАНЗИСТОРАХ

частотные свойства эквивалентной схемы биполярного транзистора с общим эмиттером

Суммарная ёмкость входной цепи: $C = C_{\text{БЭ}} + C_{\text{Б'K}} \cdot (1 + S \cdot R_{\text{H}})$.

Входное сопротивление: $Z_{\rm BX} = r_{6/6} \frac{r_{5/9}}{1 + j\omega C_0 r_{5/9}}$.

Сквозной коэффициент усиления:

$$\mathbf{K}_{\text{CKB}} = k_1 \cdot \mathbf{K}_U = \frac{r_{\text{B'}3}}{1 + j\omega C_0 r_{\text{B'}3}} \cdot SR_H$$

Граничная частота рабочего диапазона:

$$f_{\sqrt{2}} = \frac{1}{2\pi \cdot C \cdot r_{\mathrm{B}/9}}$$

График, отражающий частотную зависимость модуля входного сопротивления транзистора

Классификация биполярных транзисторов

- **1.** По структуре различают n-p-n и p-n-p транзисторы.
- 2. По диапазону используемых рабочих частот различают:
- низкочастотные транзисторы $f_{\rm rp} \le 3~{
 m M}\Gamma$ ц;
- среднечастотные транзисторы 3 МГц $\leq f_{\rm rp} \leq$ 30 МГц;
- высокочастотные транзисторы 30 МГц $\leq f_{\rm rp} \leq$ 300 МГц;
- СВЧ-транзисторы $f_{\rm rp} \ge 300$ МГц.
- 3. По мощности выделяют:
- транзисторы малой мощности $P_{\max} \le 0.3 \; \mathrm{Bt};$
- транзисторы средней мощности $0.3~{\rm Br} \le P_{\rm max} \le 1.5~{\rm Br};$
- транзисторы большой мощности $P_{\max} \ge 1.5 \ \mathrm{Bt}.$
- **4.** По технологии изготовления классификация аналогична классификации полупроводниковых диодов.

маркировка биполярных транзисторов

включает в себя 5 позиций:

- *1)* материал:
 - Γ , 1 германий; K, 2 кремний; A, 3 арсенид галлия;
- 2) букву Т, означающую, что это биполярный транзистор;
- 3) диапазон основных параметров (мощность, частота) число от 1 до 9:
 - 1 транзисторы низкочастотные малой мощности;
 - 2 транзисторы среднечастотные малой мощности;
 - 3 транзисторы высокочастотные малой мощности;
 - 4 транзисторы низкочастотные средней мощности;
 - 5 транзисторы среднечастотные средней мощности;
 - 6 транзисторы высокочастотные средней мощности;
 - 7 транзисторы низкочастотные большой мощности;
 - 8 транзисторы среднечастотные большой мощности;
 - 9 транзисторы высокочастотные большой мощности;
- 4) порядковый номер разработки (1-99);
- 5) букву, определяющую классификацию по основным параметрам (β , fгр).

Пример: ГТ313А – германиевый транзистор, маломощный, высокочастотный, номер разработки 13, группа А.

Способы включения биполярных транзисторов

Выбор схемы включения зависит от конкретных требований к данной схеме.

Один из электродов транзистора является общей точкой входа и выхода каскада. Различают три схемы включения транзистора.

Схема БТ с ОК

требования к цепям питания усилительных элементов

Для обеспечения режима используют две схемы питания:

последовательного

параллельного

К цепям смещения предъявляются особые требования:

- 1) задать выбранное значение и полярность напряжения для положения рабочий точки;
- 2) обеспечить положение точки покоя в заданном положении при воздействии дестабилизирующих факторов.

Если выполняется только первое требование, то это – нестабилизированные цепи питания. Если оба требования выполняются одновременно, то это – стабилизированные цепи питания.

Нестабилизированные цепи питания

Цепь смещения с фиксацией тока базы и напряжения база-эмиттер

Из закона Кирхгофа для напряжений (ЗКН):

$$I_{\rm B0} = (E_0 - U_{\rm B3}) / R_{\rm B},$$

или $E_0 >> U_{\mathrm{B}9}$, то $I_{\mathrm{B}0} \approx E_0 / R_{\mathrm{B}}$.

Среднее значение коэффициента усиления:

$$h_{219} = \sqrt{h_{219\,\mathrm{min}} \cdot h_{219\,\mathrm{max}}}$$

Для выходной цепи ЗКН: $E_K = U_K + R_K \cdot I_K$.

Ток коллектора : $I_{\text{K0}} = h_{21} \cdot I_{\text{B0}}$

Причины нестабильности статических характеристик:

- технологический разброс параметров от транзистора к транзистору;
- сильная их зависимость от температуры.

 $\mathit{Bывод}$: ток смещения I_{E0} не зависит от параметров транзистора и от температуры перехода.

Но коэффициент усиления тока базы $h_{21} = f(t^0)$, нет обратной связи между токами I_{K0} и I_{E0} .

Цепь смещения фиксированным напряжением база— эмиттер $U_{\rm F3}$ (автоматического смещения)

Из закона Кирхгофа для напряжений (ЗКН):

$$E = I_{\mathcal{I}} \cdot R_2 + I_{\sigma o} \cdot R_1 + I_{\mathcal{I}} \cdot R_1$$

Т.к. ток делителя: $I_{\text{Д}} \approx (8...12) \cdot I_{\text{Б}}$, то $I_{\text{Д}} = E_0 / (R_{\text{B1}} + R_{\text{B2}})$.

Закон Ома для входной цепи:

$$U_{\rm B} = I_{\rm A} \cdot R_{\rm B2} = {\rm const.}$$

Для выходной цепи ЗКН:

$$E_K = U_K + R_K \cdot I_{K^*}$$

Ток коллектора : $I_{\text{K0}} = h_{21} \cdot I_{\text{B0}}$

Среднее значение коэффициента усиления: $h_{219} = \sqrt{h_{219\,\mathrm{min}} \cdot h_{219\,\mathrm{max}}}$

Bывод: Термостабилизации такой схемы недостаточно, поэтому необходимо ввести обратную связь между токами $I_{\rm K0}$ и $I_{\rm E0}$.

Стабилизация режима транзистора. Схема с эмиттерной стабилизацией рабочей точки

ООС последовательная по току.

Закон Кирхгофа: $U_{\rm B9} = U_{\rm B} - U_{\rm 9}$.

Закон Ома: $U_{\ni} = I_{\ni 0} \cdot R_{\ni}$.

 $U_{\mathfrak{Z}} \approx (0.1...0.2) \cdot E_0$.

3KH: $E = I_{\mathcal{I}} \cdot R_2 + I_{\sigma o} \cdot R_1 + I_{\mathcal{I}} \cdot R_1$

Ток делителя: $I_{\rm Д} \approx (8...12) \cdot I_{\rm B}$

Закон Ома для входной цепи: $U_{\rm F} = I_{\rm J} \cdot R_{\rm F2}$.

Входное сопротивление:

 $R_{BX} = r_6 + r_9 (1 + h_{219})$

Для выходной цепи ЗКН: $E_K = U_K + R_K \cdot I_K$.

Ток коллектора : $I_{\rm K0} = h_{21} \cdot I_{\rm E0}$

Механизм стабилизации: $t^0 \uparrow \to I_{K0} \uparrow \to U_{E3} \downarrow \to I_{E0} \downarrow \to I_{K0} \downarrow$.

Для того, чтобы коэффициент усиления не упал, Rэ по переменному току закорачивают параллельно подключенным к нему блокировочным конденсатором C_{\ni} .

Схема с коллекторной стабилизацией рабочей точки

ООС параллельная по напряжению.

Закон Кирхгофа: $E_0 = I_{\ni 0} \cdot R_{\rm K} + I_{{\sf B}0} \cdot R_{\sf B} + U_{{\sf B}\ni}$.

Для выходной цепи ЗКН: $E_K = U_K + R_K \cdot I_K$.

Ток коллектора : $I_{\text{K0}} = h_{21} \cdot I_{\text{B0}}$

Принимая $I_{\ni 0} \approx I_{\rm K0}$, получим $U_{\rm K\ni} = E_0 - I_{\ni 0} \cdot R_{\rm K}$.

$$I_{\rm B0} = (U_{\rm K3} - U_{\rm B3}) / R_{\rm B}.$$

Входное сопротивление: $R_{\rm BX} = R_{\rm B}$.

Механизм стабилизации: $t^0 \uparrow \to I_{K0} \uparrow \to U_{K\ni} \downarrow \to I_{E0} \downarrow \to I_{K0} \downarrow$.

Для того, чтобы коэффициент усиления не упал, Rэ по переменному току закорачивают параллельно подключенным к нему блокировочным конденсатором C_{\ni} .

Эквивалентные схемы каскадов по постоянному току Цепь смещения с фиксацией тока базы и напряжения база-эмиттер

Схема с эмиттерной стабилизацией рабочей точки

Глубина обратной связи (возвратная разность):

$$F = 1 + K \cdot \beta = \frac{\Delta}{\Delta^{(0)}} = 1 + \frac{R_{9} \cdot h_{21} \cdot (R_{B1} + R_{B2})}{(h_{11} + R_{9}) \cdot (R_{B1} + R_{B2}) + R_{B1} \cdot R_{B2}} = 1 + \frac{R_{9} \cdot h_{21}}{h_{11} + R_{9} + R_{B}} \approx 1 + \frac{R_{9} \cdot h_{21}}{h_{11}}$$

Здесь
$$R_{E} = \frac{R_{E1} \cdot R_{E2}}{R_{E1} + R_{E2}}$$
 , $h_{11} >> R_{9}$, R_{E} .

$$R_{BXOC} = \frac{U_{B9}}{I_{B}} = \frac{R_{B2} \cdot (R_{9} \cdot h_{21} + h_{11} + R_{9})}{R_{B2}} \approx h_{11} + R_{9} \cdot h_{21} = h_{11} \cdot \left(1 + \frac{R_{9} \cdot h_{21}}{h_{11}}\right)$$

То есть входное сопротивление \uparrow в $(1 + K \cdot \beta)$ раз.

Схема с коллекторной стабилизацией рабочей точки

$$R_{
m BX\,OC} = U_{
m BX} / I_{
m E}$$
.

Эквивалентная схема по постоянному току:

$$R_{\mathrm{BX\;OC}} = H_{11} + R_{9} \cdot h_{21} = H_{11} \cdot \ (1 + R_{9} \cdot h_{21} \ / \ H_{11}).$$

Возвратная разность:

$$F = 1 + \frac{h_{21} \cdot (R_K + R_3)}{H_{11} + R_B + R_K + R_3}$$

схемотехника

ПОЛЕВЫЕ ТРАНЗИСТОРЫ.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Классификация основных типов транзисторов и обозначение в схеме

Принцип действия полевых транзисторов основан на использовании носителей заряда только одного знака (электронов или дырок), т.е. это униполярные приборы.

Полевой транзистор управляется напряжением на входе, $i_{\rm BX} \approx 0$.

Полевые транзисторы с управляющим *p-n*-переходом (JFET)

Канал протекания тока представляет собой слой проводника, заключенный между двумя *p-n*-переходами.

И – исток – source (S) – электрод, от которого движутся носители заряда.

С – **сток** – **drain** (**D**) – электрод, к которому движутся носители заряда.

3 – затвор – gate (G) – электрод, управляющий сечением канала, а => сопротивлением канала.

УГО полевого транзистора с управляющим р-п-переходом: а) п-канал; б) р-канал.

Стрелкой показано положительное направление тока через переход.

Если на затвор подать напряжение $U_{3и}$ с полярностью, противоположной указанной на рисунке, то оба перехода получат прямое смещение и входное сопртивление транзистора будет мало. Такой режим для данного транзистора — **НЕРАБОЧИЙ** !!!

На затвор необходимо подавать обратное напряжение для переходов. Это напряжение – управляющее для транзистора.

статические характеристики полевых транзисторов

□ Выходные (стоковые) характеристики

$$i_c = f(U_{\scriptscriptstyle extsf{CM}}) = U_{\scriptscriptstyle extsf{3M}} = const.$$

С ростом напряжения $U_{\text{СИ}}$ ток $I_{\text{С}}$ сначала увеличивается согласно закону Ома, а затем достигает насыщения. Это объясняется равновесием двух противоположных процессов: с одной стороны ток растет по закону Ома, с другой уменьшается за счет уменьшения толщины канала.

При увеличении модуля напряжения $U_{3\mathrm{U}}$ ток стока падает (уменьшается толщина канала). При большом напряжении $U_{\mathrm{C}\mathrm{U}}$ возникает пробой перехода.

Параметры ВАХ:

 $U_{\mathrm{CИ, \, Hac}}$ – напряжение насыщения; $I_{\mathrm{C_{\, , \, Haq}}}$ – начальный ток стока.

статические характеристики полевых транзисторов

Управляющие (стокзатворные) характеристики (сквозная ВАХ)

$$i_c = f(U_{\scriptscriptstyle \mathrm{SM}})|U_{\scriptscriptstyle \mathrm{CM}} = const.$$

Они иллюстрируют управляющее действие затвора

Стокзатворные ВАХ иллюстрируют управляющее $-I_{c0} = I_{c max}$ действие затвора.

Параметры ВАХ:
$$U_{\rm 3И,\,0\,(otc)} - {\rm напряжением\,\,otceчки:} \quad U_{\rm 3И} = U_{\rm 3И0} \bigg(1 - \sqrt{\frac{I_{\rm c}}{I_{\rm c0}}} \bigg).$$

$$I_{\rm C\,,\, нач\,(max)}$$
 — начальный ток стока: $I_{\rm c} = I_{\rm c0} \left(1 - \frac{U_{\rm зи}}{U_{\rm зи0}}\right)^2$

S – крутизна стокзатворной BAX – отражает влияние $U_{3\text{M}}$ на выходной ток I_{C} транзистора:

$$S = \frac{dI_{c}}{dU_{_{\mathrm{SM}}}}\Bigg|_{U_{_{\mathrm{CM}}} = \mathrm{const}} = \frac{2I_{_{\mathrm{C0}}}}{U_{_{\mathrm{3M0}}}} \cdot \left(1 - \frac{U_{_{\mathrm{3M}}}}{U_{_{\mathrm{3M0}}}}\right)$$
 - уравнение линейной функции

Максимальная крутизна $S_{\max} = S_0 = S_{\max}$ будет при $U_{\text{зи}} = 0$.

Основные параметры полевого транзистора

Входное сопротивление определяется сопротивлением обратносмещенных p-nпереходов и составляет $r_{\rm BX} = 10^8 \dots 10^9$ Ом: $r_{\rm BX} = \frac{dU_{_{\rm 3M}}}{dl_{_{\rm 3}}}$ сопротивлением обратносмещенных p-n-

Межэлектродные ёмкости транзистора обусловлены наличием p-n-переходов, примыкающих к истоку и к стоку. $C_{3N} = C_{CN} = 6 \dots 20 \text{ п}\Phi; \qquad C_{3C} = 2 \dots 8 \text{ п}\Phi$

Полевые транзисторы с управляющим p-n-переходом выпускаются на токи до 50 мА и напряжения до 50 В.

Полевые транзисторы с изолированным затвором

Эти транзисторы называют МДП- (металл—диэлектрик—полупроводник) или МОП- (металл—оксид—полупроводник) транзисторами.

Разновидности МДП-транзисторов:

- *а*) с индуцированным каналом (канал возникает под действием напряжения, приложенного к управляющим электродам);
- *б*) со встроенным каналом (канал создается при изготовлении).

У МДП-транзистора, в отличие от ПТ с управляющим p–n-переходом, металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод П от кристалла, называемый подложкой.

статические характеристики полевых транзисторов с изолированным затвором

Передаточные характеристики

Условные графические обозначения различных типов полевых транзисторов на принципиальных схемах

	<i>n</i> -типа	p-типа
Транзистор с управляющим $p-n$ переходом		
МДП-транзистор с встроенным каналом		
МДП-транзистор с индуцированным каналом		

Маркировка полевых транзисторов

включает в себя 5 позиций:

- *1)* материал:
 - Γ , 1 германий; K, 2 кремний; A, 3 арсенид галлия;
- 2) букву П, означающую, что это полевой транзистор;
- 3) диапазон основных параметров (мощность, частота) число от 1 до 9:
 - 1 транзисторы низкочастотные малой мощности;
 - 2 транзисторы среднечастотные малой мощности;
 - 3 транзисторы высокочастотные малой мощности;
 - 4 транзисторы низкочастотные средней мощности;
 - 5 транзисторы среднечастотные средней мощности;
 - 6 транзисторы высокочастотные средней мощности;
 - 7 транзисторы низкочастотные большой мощности;
 - 8 транзисторы среднечастотные большой мощности;
 - 9 транзисторы высокочастотные большой мощности;
- 4) порядковый номер разработки (1-99);
- 5) букву, определяющую классификацию по основным параметрам (β , fгр).

Пример: КП103А – кремниевый транзистор, маломощный, высокочастотный, номер разработки 03, группа А.

преимущества полевых транзисторов по сравнению с биполярными транзисторами

Основа цифровых и аналоговых интегральных схем;
 Ждущие и следящие устройства;
 Основа flash-памяти;
 ССD – матрицы (приборы с зарядовой связью);
 Электронные ключи;
 Логические элементы;

СХЕМЫ ВКЛЮЧЕНИЯ ПОЛЕВОГО ТРАНЗИСТОРА

Параметр	Схема		
	ОИ	О3	OC
$R_{\scriptscriptstyle \mathrm{BX}}$	Единицы МОм	Единицы,	Единицы МОм
		десятки Ом	
$R_{\scriptscriptstyle m BMX}$	Единицы кОм	Единицы кОм	Единицы, десятки Ом
K_U	>>1	>>1	<1
K_I	_	≅1	_

Полевой транзистор как четырёхполюсник

При малых сигналах наиболее удобна система *g-параметров*.

Система уравнений четырехполюсника имеет вид:

$$I_{1\sim} = g_{11} U_{1\sim} + g_{12} U_{2\sim}; \quad I_2 = g_{21} U_{1\sim} + g_{22} U_{2\sim}.$$

Коэффициенты данной системы имеют размерности проводимостей и являются универсальными параметрами, которые для каждой из схем включения ПТ имеют свои значения.

Для схемы ОИ:

- g11 входная проводимость при $U2 \sim = 0$;
- g12 проводимость обратной передачи при $U1 \sim = 0$;
- g21 проводимость прямой передачи при $U2\sim =0$;
- g22 выходная проводимость при $U1 \sim 0$.

Режимы U_{BX} = 0, U_{BMX} = 0 включением емкостей (достаточно больших), представляющих малое сопротивление для переменных составляющих.

Малосигнальная схема замещения полевого транзистора

Схема замещения справедлива для всех типов полевого транзистора.

 $C_{_{\mathrm{3U}}},\ C_{_{\mathrm{3C}}},\ C_{_{\mathrm{CU}}}$ – межэлектродные емкости - оказывают влияние на в области верхних частот.

 $SU_{\scriptscriptstyle
m 3M}$ – источник тока, отражающий влияние Uзи на ток Ic.

 r_{i} – внутренне сопротивление - учитывает влияние напряжения Ucи на ток Ic.

 $r_{\rm BX}$ — входное сопротивление транзистора (пренебрегаем).

Граничная частота единичного усиления: $f_T = 1/(2\pi\tau)$, где $\tau = C_{3H}/S_0$.

B отличие от биполярного транзистора, в схемах на ΠT зависимость крутизны S от частоты можно не учитывать до сотен $M\Gamma$ μ .