

Riset Perilaku Pelanggan (Unsupervised Learning)

Machine Learning

Unsupervised Learning

Unsupervised Learning merupakan tipe pembelajaran yang mirip seperti proses siswa belajar sendiri dengan melihat kesamaan yang ada. Pada unsupervised learning, mesin tidak diberikan informasi berupa label apa yang akan diprediksi.

Unsupervised Learning

Bentuk	Warna	Tekstur	Buah
Lonjong	Kuning	Lembut	1
Lonjong	Kuning	Lembut	1
Bulat	Kuning	Keras	2

Unsupervised Learning

Unsupervised Learning ini umum digunakan untuk menyelesaikan 2 tipe masalah:

- Clustering: Mengelompokkan data berdasarkan persamaan karakteristik
- Association: Menemukan asosiasi di antara item dalam data transaksi yang besar

Clustering

Menemukan kelompok objek yang tepat sehingga objek di dalamnya akan sama (berhubungan) satu sama lain dan berbeda (tidak berhubungan) dengan objek di kelompok lain.

Aplikasi Clustering

- Segmentasi Pelanggan
- Pengoptimalan Toko Pengiriman
- Klasifikasi Dokumen

Teknik Clustering

- Partitional Clustering
- Hierarchical Clustering
- Density Based Clustering

Teknik Clustering Scikit-Learn

Partitional Clustering

Partitional clustering (or partitioning clustering) are clustering methods used to classify observations, within a data set, into multiple groups based on their similarity.

K-Means Clustering

- Algoritma yang paling sederhana
- Setiap klaster dikaitkan dengan pusat/centroid
- Setiap titik ditempatkan ke klaster dengan titik pusat terdekat
- Jumlah klaster, K, harus ditentukan

K-Means in Spotify

Hierarchical Clustering

Menghasilkan klaster yang diatur sebagai pohon hierarki.

Dapat divisualisasikan dengan dendogram, seperti diagram pohon yang mencatat urutan penggabungan atau pemisahan.

Jenis Hierarchical Clustering

Agglomerative (Bottom-Up):

- Dimulai dengan titik sebagai kelompok individu
- Di setiap tahap, gabungkan klaster terdekat hingga hanya tersisa satu klaster (k klaster)

Divisive (Top-Down):

- Dimulai dengan satu klaster
- Setiap tahap, pisahkan satu per satu klaster hingga setiap klaster hanya memiliki satu titik (hanya ada k klaster)

Jenis Hierarchical Clustering

Sumber: https://towardsdatascience.com/https-towardsdatascience-com-hierarchical-clustering-6f3c98c9d0ca

Kelebihan Hierarchical Clustering

- Tidak perlu mengasumsikan jumlah klaster tertentu. Jumlah klaster dapat diperoleh dengan 'memotong' bagian dendogram pada tingkat yang tepat.
- Memungkinkan bersesuaian dengan taksonomi.

- Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan asosiatif antara suatu kombinasi item.
- Contoh: Mengetahui seberapa berapa besar kemungkinan seorang pelanggan membeli roti bersamaan dengan susu.
- Sering disebut dengan istilah market basket analysis.

Sumber: http://www.saedsayad.com/association_rules.htm

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Contoh Aturan:

Association Rule Metric

- Support: Bagian transaksi yang mengandung X dan Y
- Confidence: Mengukur seberapa sering item di Y muncul dalam transaksi yang mengandung X
- Lift: Rasio kemunculan suatu rules dibandingkan dengan kemunculan masing-masing item

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

Apriori

- Pembuatan rule masih mahal secara komputasi
- Algoritma Apriori mengurangi Jumlah Kandidat rule
- Jika suatu pasangan item sering muncul, maka subsetnya juga harus demikian, dan sebaliknya

Apriori

The combinations of 5items

C BE CD CE DE AD BC BD ABD ABE ACD ACE ADE BCD BCE BDE ABCD ABDE ACDE

The Apriori Algorithm

https://communities.sas.com/t5/SAS-Communities-Library/Association-Discovery-the-Apriori-algorithm/ta-p/569042

Praktek