계량경제학 남 준우 교수

1. 식 (A)의 결과에서 남자의 경우 $\hat{Y}_i = 1.2 + 0.7X_i$, 여자의 경우 $\hat{Y}_i = -0.8 + 0.5X_i$ 가 된다. 식 (B)의 결과에서는 남자의 경우 $\hat{Y}_i = b_1 + b_3X_i$, 여자의 경우 $\hat{Y}_i = (b_1 + b_2) + (b_3 + b_4)X_i$ 따라서 $b_1 = 1.2, b_2 = -2, b_3 = 0.7, b_4 = -0.2$

2. (1)
$$\overline{R^2} = 1 - (1 - R^2) \frac{n-1}{n-k} = 1 - (1 - 0.512) \frac{93-1}{93-6} = 0.483$$

(2) $H_0: R^2 = 0$ 를 검정하기 위한 통계량은

$$F = \frac{R^2/(k-1)}{(1-R^2)/(n-k)} = \frac{0.512/(6-1)}{(1-0.512)/(93-6)} = 18.25$$

를 구한다. 이는 5% 유의수준에서 5와 87의 자유도를 갖는 F-분포의 임계치 2.37보다 크므로 귀무가설을 기각한다.

- (3) H₀: 3₂ = 0의 가설에 대한 통계량은 $t = \frac{b_2}{b_2} = \frac{660.0}{215.66} = 3.06$ 은 5% 유의수준에서 87의 자유도를 갖는 t-분포의 임계치 2.00보다 크므로 기각한다.
- (4) $H_0: \mathcal{S}_6 = 0$ 의 가설에 대한 통계량은 $t = \frac{\mathcal{S}_6}{\mathcal{S}_6} = \frac{3.92}{1.32} = 2.42$ 은 5% 유의수준에서 87의 자유도를 갖는 t 분포의 임계치 2.00보다 크므로 기각한다.
- (5) $H_0: \beta_2 = \beta_6 = 0$ 의 가설을 검정하기 위한 통계량은 식 5.19에 의해 $F = \frac{(R_U^2 R_R^2)/J}{(1 R_U^2)/(n k)} = \frac{(0.512 0.302)/2}{(1 0.512)/(93 6)} = 18.72$ 를 구한다.

이는 5% 유의수준에서 2와 87의 자유도를 갖는 F-분포의 임계 치 3.15보다 크므로 귀무가설을 기각한다.

(6) 남자의 봉급수준 추정식:

$$\widehat{Y}_{t} = (3551 \cdot 39 + 660 \cdot 0) + 89 \cdot 53 \, ED_{t} + 1.29 EXP_{t} + (22 \cdot 21 + 3.92) \, TEN_{t},$$

여자의 봉급수준 추정식:

 $\hat{Y}_t = 3551.39 + 89.53 ED_t + 1.29 EXP_t + 22.21 TEN_t$

(7) $\hat{Y}_{\text{Algo}} = 3551.39 + 89.53 \times 12 + 1.29 \times 52 + 22.21 \times 3 = 4759.46$

3.

(1)

	PRICE	AGE	SIZE
Mean	137.3827	68.01676	17.73743
Median	50.00000	69.00000	10.00000
Maximum	1980.000	90.00000	120.0000
Minimum	2.000000	33.00000	1.000000
Std. Dev.	245.7580	12.81304	23.94852
Skewness	4.496735	-0.409302	2.760329
Kurtosis	28.16710	2.165585	10.29639
Jarque-Bera	5327.229	10.19079	624.3746
Probability	0.000000	0.006125	0.000000
Sum	24591.50	12175.00	3175.000
Sum Sq. Dev.	10750666	29222.95	102088.7
Observations	179	179	179

$$(2) \quad S_{price,age} = 351.27 \qquad \quad corr_{price,age} = 0.112$$

(3)

Descriptive Statistics for PRICE Categorized by values of DIE

Sample: 1 179

Included observations: 179

DIE	Mean	Median	Max	Min.	Std. Dev.	Obs.
0	93.28151	41.00000	1000.000	2.000000	130.5761	119
1	224.8500	68.50000	1980.000	5.000000	369.3392	60
All	137.3827	50.00000	1980.000	2.000000	245.7580	179

 $E(PRICE \mid DIE = 1) > E(PRICE \mid DIE = 0)$

* Actually, if you conduct the test of mean difference, the difference of means according to DIE is rejected at 5% significance level.

(We have learned how to conduct it from Principles of Statistics 1, right???)

(4)

Descriptive Statistics for PRICE Categorized by values of MEDIUM

Sample: 1 179

Included observations: 179

MEDIUM	Mean	Median	Max	Min.	Std. Dev.	Obs.
0	121.4138	50.00000	1600.000	5.000000	292.3376	29
1	130.3000	30.00000	1000.000	2.000000	306.8395	10
2	139.8694	50.00000	1980.000	2.000000	235.0418	134
3	170.8333	125.0000	400.0000	10.00000	171.7095	6
All	137.3827	50.00000	1980.000	2.000000	245.7580	179

From the statistics, it seems that means classified MEDIUM are equal.

* Actually, if you conduct the test of mean difference, the difference of means according to MEDIUM cannot be rejected at 5% significance level.

(We have learned how to conduct it from Principles of Statistics 1, right???)

(5)

Descriptive Statistics for PRICE Categorized by values of SUPPORT

Sample: 1 179

Included observations: 179

SUPPORT	Mean	Median	Max	Min.	Std. Dev.	Obs.
1	149.2949	50.00000	1980.000	2.000000	279.8272	117
2	110.3077	47.00000	1000.000	5.000000	171.6472	52

3	138.8000	107.5000	340.0000	11.00000	110.6273	10
All	137.3827	50.00000	1980.000	2.000000	245.7580	179

From the statistics, it seems that means classified SUPPORT are equal.

* Actually, if you conduct the test of mean difference, the difference of means according to SUPPORT cannot be rejected at 5% significance level.

(6)

Dependent Variable: LOG(PRICE)

Method: Least Squares

Sample: 1 179

Included observations: 179

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AGE AGE^2	-4.226131 0.206465 -0.001334	2.124696 0.066559 0.000506	-1.989052 3.101994 -2.635201	0.0483 0.0022 0.0092
SIZE DIE	0.021222 0.774200	0.003603 0.003603 0.183203	5.890565 4.225919	0.0092 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.304985 0.289007 1.100471 210.7202 -268.5915 1.284359	Mean depend S.D. depende Akaike info co Schwarz crite F-statistic Prob(F-statis	ent var riterion erion	4.064914 1.305106 3.056888 3.145922 19.08854 0.000000

This is a Log-linear regression model. All coefficients are significant at significant level 0.05. Coefficient means % price change as additional one absolute unit of regressor changes. And the coefficient of age square shows concavity about dependent variable.

(7)

Dependent Variable: LOG(PRICE)

Method: Least Squares

Sample: 1 179

Included observations: 179

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-6.393730	2.511608	-2.545672	0.0118
AGE	0.263030	0.074967	3.508624	0.0006
AGE^2	-0.001742	0.000563	-3.092059	0.0023
SIZE	0.021119	0.003649	5.787262	0.0000
DIE	0.868686	0.189171	4.592075	0.0000
CANVAS	-0.027187	0.365937	-0.074293	0.9409
PAPER	-0.328021	0.382984	-0.856486	0.3929

ACRYLIC	0.917399	0.482145	1.902745	0.0588
OIL	0.366491	0.233866	1.567098	0.1190
WATERCOLOR	0.959583	0.498841	1.923625	0.0561
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.334363 0.298915 1.092776 201.8129 -264.7260 1.305649	Mean dependence S.D. dependence Akaike info conscious Schwarz criter F-statistic Prob(F-statistic Statistic Prob(F-statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statis	ent var riterion erion	4.064914 1.305106 3.069564 3.247630 9.432476 0.000000

: Test for Individual coefficient is based on P-value.

F(2,169;0.05)=3.00, So do not reject $H_0: \beta_6=\beta_7=0$.

F(3,169;0.05)=2.60, So do not reject $H_0: \beta_8 = \beta_9 = \beta_{10} = 0$.