Aprendizagem Automática

Árvores de atributos

Sumário

- Árvores
- Algoritmo
- Função de impureza
- Geração de regras
- Poda da árvore
- Árvores de regressão

Árvores

Árvores

- Um dos modelos mais populares de AA
- Porquê?
 - Árvores são expressivas e fáceis de perceber
 - Atraente para informáticos devido à sua natureza de "divisão-e-conquista"
 - Transformação fácil numa expressão lógica
 - Basta fazer a disjunção de todos os caminhos da raíz até às folhas

Árvore de atributos

- Cada nó interno é etiquetado com um atributo
- Cada arco é etiquetado com um literal (valor do atributo)
 - o ao conjunto de literais chama-se uma divisão (split)

Aprendizagem e previsão

- Construção do modelo
 - o gerar uma árvore com base no conj de treino
- Previsão de um exemplo
 - o percorrer a árvore usando os atributos até chegar a uma folha

Algoritmo

Construção do modelo

- Assume a definição de 3 funções (D: conj de exemplos, A: conj de atributos)
 - Homogeneo(D)
 - True se as instâncias em D são homogéneas o suficiente para atribuir uma única etiqueta
 - Etiqueta(D)
 - devolve a etiqueta mais apropriada para um conj de exemplos D
 - MelhorParticao(D, A)
 - devolve o melhor atributo para colocar na raíz da árvore
- As funções dependem da tarefa
 - classificação vs. regressão

Algoritmo

```
Input: conj dados D; conj atributos A
Output: árvore de atributos T com folhas etiquetadas
CresceArvore(D,F)
      if Homogeneo(D)
             return Etiqueta(D);
      MA \leftarrow MelhorParticao(D, A);
      divide D em subconjuntos D, de acordo com os literais i em MA;
      for each i do
             if D<sub>i</sub> não vazio
                    F_i \leftarrow CresceArvore(D_i, A)
             else
                    F, é uma folha com etiqueta Etiqueta(D);
             end
      end
      return uma árvore de raíz com atributo MA e filhos F<sub>i</sub>
```

Características do algoritmo

- Estratégia de divisão-e-conquista
 - divide os dados em sub-conjuntos
 - o cria uma árvore para cada sub-conjunto e
 - o combina essas sub-árvores numa única árvore
- Algoritmo guloso (greedy)
 - na escolha da melhor divisão, a melhor alternativa é seleccionada com base na informação disponível (e a escolha nunca é reconsiderada)
 - o pode levar a **escolhas sub-ótimas**

Classificação

Árvore de decisão

- É uma árvore de atributos para problemas de classificação
- Funções
 - Homogeneo(D)
 - D é homogéneo se os exemplos forem de uma única classe
 - Etiqueta(D)
 - Etiqueta com a classe maioritária
 - MelhorParticao(D, A)
 - Pesquisa a partição com maior pureza
 - Um nó é "puro" se todos os seus exemplos pertencerem à mesma classe

MelhorParticao: algoritmo

```
Input: conj dados D; conj atributos A
Output: atributo a para partição
                   // valor maximo da impureza
      I_{\min} = 1;
      for each a em A do
              Divide D em subconjuntos D_1, ... D_n, de acordo com os valores v_i de a
              imp = Impureza( {D1, ... Dn} )
             if imp < I<sub>min</sub>
                    I_{\min} = imp;
                     a_{best} = a;
             end
       end
      return a<sub>best</sub>
```

Partição: atributos nominais

- Um ramo para cada valor do atributo
- Em cada caminho, da raíz às folhas, é feito no máximo um teste a cada atributo

Partição: atributos contínuos

- É feita uma discretização binária usando um ponto de corte
 - o partição do intervalo em dois sub-intervalos
 - condição a <=limiar
 - se True: ramo esquerda
 - se False: ramo direita
- São avaliados todos os pontos de corte possíveis
 - os exemplos são ordenados pelo valor do atributo; os pontos de corte estão na fronteira entre classes
- em cada caminho, da raíz às folhas, podem existir vários testes ao mesmo atributo (com outros pontos de corte)

Função de impureza

Características da função de impureza

- Caso mais simples
 - o classificação binária e atributos booleanos
- Função real
 - o mínimo: 0 (partição pura)
 - o máximo: 1

Características

- o depende apenas da magnitude relativa (proporção **p**) do nº de exemplos de cada classe
- o deve ter o mesmo valor trocando a classe positiva e negativa
- deve ser 0 sempre que a proporção é 0 ou 1
- deve ser máxima quando a proporção é 1/2

Funções de impureza: 2 classes

Razão do erro

- o min(p, 1-p)
- o Também conhecida como classe minoritária

• Índice de Gini

- o 2 p (1-p)
- É o erro esperado se etiquetar as folhas aleatoriamente

Entropia

- \circ p log₂ p (1-p) log₂ (1-p)
- o É a informação esperada em bits

amarelo: razão do erro vermelho: índice de Gini púrpura: entropia

Funções para múltiplas classes

• Índice de Gini

$$gini(D) = 1 - \sum_{c=1}^{n} p_c^2$$

Entropia

$$entropy(D) = -\sum_{c=1}^{n} p_c \log_2 p_c$$

Impureza de uma partição

- Impureza do nó D_i
 - o Imp(D_i)
- Impureza de uma partição
 - o Impureza de um conjunto de nós {D₁, ..., D_n} mutuamente exclusivos

$$Imp(D_1, \dots, D_n) = \sum_{j=1}^{n} \frac{|D_j|}{|D|} Imp(D_j)$$

Cálculo da impureza: índice de Gini

- 4 atributos + classe
 - Length={3,4,5}
 - Gills={yes, no}
 - Beak={yes, no}
 - Teeth={many, few}
 - o class={+,-}
- 10 exemplos
 - (3, no, yes, many, +)
 - (4, no, yes, many, +)
 - o (3, no, yes, few, +)
 - (5, no, yes, many, +)
 - (5, no, yes, few, +)
 - (5, yes, yes, many, -)
 - o (4, yes, yes, many, -)
 - o (5, yes, no, many, -)
 - o (4, yes, no, many, -)
 - o (4, no, yes, few, -)

- Possíveis divisões na raíz
 - Length: [2+, 0−] [1+, 3−] [2+, 2−]
 - Gills: [0+, 4–] [5+, 1–]
 - Beak: [5+, 3-] [0+, 2-]
 - Teeth: [3+, 4-] [2+, 1-]
- Índice de Gini
 - Length = 0.35
 - gini(lenght=4)

 2/10 * 2 * (2/2 * 0/2) +

 4/10 * 2 * (1/4 * 3/4) +

 4/10 * 2 * (2/4 * 2/4)

 gini(lenght=5)
 - o Gills=0.17
 - Beak=0.38
 - Teeth=0.48
- Melhor atributo
 - Gills (menor impureza)

gini(lenght=3)

Cálculo da impureza: entropia

4 atributos + classe

- Length={3,4,5}
- Gills={yes, no}
- Beak={yes, no}
- o Teeth={many, few}
- o class={+,-}

• 10 exemplos

- o (3, no, yes, many, +)
- (4, no, yes, many, +)
- o (3, no, yes, few, +)
- (5, no, yes, many, +)
- (5, no, yes, few, +)
- o (5, yes, yes, many, -)
- (4, yes, yes, many, -)
- o (5, yes, no, many, -)
- (4, yes, no, many, -)
- o (4, no, yes, few, -)

Possíveis divisões na raíz

- Length: [2+, 0−] [1+, 3−] [2+, 2−]
- Gills: [0+, 4–] [5+, 1–]
- Beak: [5+, 3-] [0+, 2-]
- Teeth: [3+, 4-] [2+, 1-]

Entropia

- o Length = 0.72
 - 2/10 * $(-2/2 \log_2 2/2 0/2 \log_2 0/0)$ + 0 4/10 * $(-1/4 \log_2 1/4 - 3/4 \log_2 3/4)$ + 0.81 4/10 * $(-2/4 \log_2 2/4 - 2/4 \log_2 2/4)$
- o Gills=0.39
- o Beak=0.76
- o Teeth=0.97

Melhor atributo

• Gills (menor impureza)

Exemplos

Exemplo 1: atributos nominais

- 4 atributos + classe
 - Length={3,4,5}
 - o Gills={yes, no}
 - Beak={yes, no}
 - Teeth={many, few}
 - o class={+,-}
- 10 exemplos
 - o (3, no, yes, many, +)
 - o (4, no, yes, many, +)
 - o (3, no, yes, few, +)
 - o (5, no, yes, many, +)
 - o (5, no, yes, few, +)
 - o (5, yes, yes, many, -)
 - o (4, yes, yes, many, -)
 - o (5, yes, no, many, -)
 - o (4, yes, no, many, -)
 - o (4, no, yes, few, -)

- Raíz = Gills
 - o Gills
 - Yes: [0+, 4–]: folha pura; etiqueta –
 - No: [5+, 1-]
- Próxima divisão
 - Length: [2+, 0−][1+, 1−][2+, 0−]
 - Teeth: [3+, 0−][2+, 1−]
 - Beak: não diminui impureza (todos os exemplos são yes)
 - Divisão *Length* é mais pura que *Teeth*
 - o a escolha é *Length*

n° de exemplos no nó filho mantém-se

- Divisão seguinte
 - Teeth

Exemplo 1: árvore de decisão

- Raíz = Gills
 - Gills
 - Yes: [0+, 4–]: pure leaf labelled negative
 - No: [5+, 1-]
- Próxima divisão (Gills=no, 6 exemplos)
 - Length: [2+, 0-][1+, 1-][2+, 0-]
 - Beak: não diminui impureza (todos os exemplos são yes)
 - o Teeth: [3+, 0−][2+, 1−]
 - o Divisão *Length* é mais pura que *Teeth*
- Próxima divisão (Length=4, 2 exemplos)
 - Teeth

Exemplo 1: generalização

- A árvore representa uma partição do espaço de instâncias
- A árvore generaliza o conj de treino
 - o atribui uma classe aos exemplos que não pertencem ao conj treino

lenght: 3 valores beak: 2 valores

teeth: 2 valores

- Generalização
 - o Folha C
 - 3 atributos não especificados
 - totalizam 3*2*2 = 12 possíveis combinações de valores
 - conj treino: 4 exemplos; 8 exemplos por classificar
 - o Folha D, Folha F
 - 2 atributos não especificados
 - totalizam 2*2=4 combinações de valores possíveis
 - conj treino: 2 exemplos; 2 exemplos por classificar

Exemplo 2: atributos contínuos

Iris: árvore de decisão

Iris: fronteira de decisão

 Partições sucessivas perpendiculares a um dos eixos

Geração de regras

Geração de regras

- Cada caminho da raíz a uma folha corresponde à conjunção de condições indicadas
- A classificação dos exemplos numa determinada classe corresponde a todos os caminhos até folhas etiquetadas com essa classe
 - Disjunção de conjunções

Exemplo 1: regras

- Classe +
 - Gills==no e Length==3 ou
 Gills==no e Length==5 ou
 Gill==no e Length==4 e Teeth==many
- Classe -
 - Gills== yes ou
 Gills==no e Lenght==4 e Teeth==few

Iris

classe Setosa Setosa, Versicolor, Virginica **Atributos** petal lenght<=2.45 X[0]: sepal length Versicolor X[1]: sepal width petal lenght>2.45 e petal width<=1.75 e X[2]: petal length X[3]: petal width petal lenght<=4.95 e petal width<=1.65 OU $X[2] \le 2.45$ qini = 0.667petal lenght>2.45 e petal width<=1.75 e samples = 150value = [50, 50, 50]petal lenght>4.95 e petal width<=1.55 e $X[3] \le 1.75$ gini = 0.0gini = 0.5samples = 50petal lenght<=5.45 samples = 100 value = [50, 0, 0]value = [0, 50, 50]ou $X[2] \le 4.95$ X[2] <= 4.85gini = 0.168aini = 0.043petal lenght>2.45 e petal width>1.75 e samples = 54 samples = 46 value = [0, 49, 5]value = [0, 1, 45]petal lenght<=4.85 e sepal lenght<=5.95 $X[3] \le 1.65$ $X[3] \le 1.55$ $X[0] \le 5.95$ gini = 0.0aini = 0.041aini = 0.444aini = 0.444samples = 43Classe Virginica samples = 48 samples = 6samples = 3value = [0, 0, 43]value = [0, 1, 2]value = [0, 47, 1]value = [0, 2, 4]X[2] <= 5.45 gini = 0.0gini = 0.0gini = 0.0gini = 0.0gini = 0.0gini = 0.444

samples = 1

value = [0, 0, 1]

samples = 47

value = [0, 47, 0]

samples = 3

value = 10.0.

samples = 2

value = [0, 0, 2]

samples = 1

value = [0, 1, 0]

samples = 3

value = [0, 2, 1]

gini = 0.0

samples = 1

value = [0, 0, 1]

gini = 0.0

samples = 2

value = [0, 2, 0]

Regressão

Árvore de regressão

- Utiliza exatamente o mesmo algoritmo que a classificação
- Previsão
 - o percorre a árvore com base nos testes em cada nó até chegar a uma folha
 - o resultado é o valor médio dos exemplos de treino da folha

- Extrapolação não é possível
 - o modelo não consegue prever valores fora do intervalo do conj de treino

Exemplo

- Preço da RAM ao longo do tempo
- Experiência
 - treinar com dados até 2000
 - testar com dados posteriores
 - dados escalados com a função logaritmo
 - importante para o modelo linear

Geração de "novas" respostas

- Modelo linear
 - boa previsão de novos dados
 - variações no tempo são esbatidas
- Árvore
 - faz previsões perfeitas no treino
 - o prevê sempre o mesmo valor no teste

Poda da árvore

Fontes de incerteza nos dados

- Em problemas reais pode existir incerteza nos dados
- Tipos
 - ruído
 - medições erradas: valores do atributo e/ou classe
 - valores em falta
 - variação residual
 - fatores alheios não registados mas que afetam os resultados
- Consequência
 - árvores muito grandes
 - muitos ramos refletem ocorrências casuais e não relações subjacentes
 - improvável ocorrerem noutros exemplos

Sobre-ajustamento!

Sobre-ajustamento

Poda (pruning)

- Objetivo
 - identificar os ramos menos confiáveis e removê-los
- Resultado
 - o modelo mais geral
 - erros no conj treino aumentam; erros no conj teste diminuem
- Tipos de pruning
 - pre-pruning
 - post-pruning

Pre-pruning

- Limita o crescimento da árvore
- Métodos
 - o limitar profundidade
 - o limitar no de folhas
 - o limitar o nº mínimo de exemplos em cada nó

Post-pruning

- O corte da árvore é feito depois da árvore completa ser construída
 - é necessário um conj de dados distinto do conj de teste (conj. de poda) para a escolha da melhor árvore podada

Métodos

- cost-complexity (error-complexity)
- o reduced-error
- critical value
- o minimum-error
- pessimistic error
- O ..

Cost-complexity pruning

- Medida de cost-complexity
 - *R(T)* : erro de classificação nas folhas
 - \circ | T| : n° de folhas

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

- Considera
 - erro de classificação
 - o complexidade da árvore
- Algoritmo
 - o produz uma série de árvores podadas
 - seleciona aquela com o menor erro sobre um conj. dados de poda (diferente do usado para construir a árvore)

Reduced-error pruning

Algoritmo

- Treina a árvore de decisão
- Utilizando o conj de poda, e para cada nó interno, conta o nº de erros quando
 - o nó torna-se folha vs. a sub-árvore é mantida
 - a diferença (se positiva) é uma medida do ganho obtido com a poda
- De todos os nós, escolhe, como sub-árvore para podar, aquele com a maior diferença
- o Continua até que não seja possível diminuir mais o erro

Características

- Utiliza o conj. de poda para gerar as árvores podadas
- o Produz a versão mais pequena da árvore mais correta sobre o conj. de poda

Reduced-error pruning (2)

- Algoritmo 2
 - Treina a árvore de decisão
 - Utilizando o conj de poda, e para cada nó apenas com folhas, conta o nº de erros quando
 - se torna uma folha e a sub-árvore é mantida
 - a diferença (se positiva) é uma medida do ganho obtido com a poda
 - De todos os nós testados, escolhe aquele com a maior diferença tornado-o uma folha
 - Continua até que não seja possível diminuir mais o erro

Exemplo

- Breast cancer
 - 30 atributos, 2 classes
- Avaliação
 - o treino: 75%, teste: 25%
- Medida de desempenho
 - exatidão
- Algoritmo
 - Árvore de decisão (CART)

- Desempenho (sem poda)
 - treino: 1.000teste: 0.937
- Desempenho (prof-max=4)
 - o treino: 0.998
 - teste: 0.951

Parâmetros e características

Parâmetros

- Função de impureza
 - o Gini, entropia, ...
- Pre-pruning
 - o max_profundidade, max_folhas, min_exemplos_folha
- Post-pruning
 - cost_complexity, reduced_error, critical_value, ...

Características, Algoritmos e Variações

Características

Algoritmo

- o rápido para criar modelo
- rápido para prever classe

Pontos fortes

- o modelo facilmente visualizável e inteligível
- o algoritmo **invariante** à escala dos dados

Pontos fracos

- o tendência para sobre-ajustamento
- não garante a criação da melhor árvore (algoritmo guloso)
- o árvore pode ser **tendenciosa** se os dados não forem equilibrados (relativamente à classe)
- o modelo instável: uma **variação** nos dados pode gerar uma árvore completamente diferente

Enviesamento Variância

Algoritmos

• ID3 (Iterative Dichotomiser 3)

- o Ross Quilan, 1986
- Classificação
- o entropia, atributos nominais

• C4.5

- o Ross Quilan, 1993
- Classificação, extensão do ID3
- o atributos nominais e contínuos, valores desconhecidos, atributos com custos diferentes, post-pruning
- o gera um conj de regras if-then-else a partir da árvore

CART (Classification And Regression Trees)

- o Leo Breiman, 1984
- Classificação e regressão
- Árvores binárias
- Gini, atributos nominais e contínuos, valores desconhecidos, pre- e post-pruning

Variações

- Partição de atributos contínuos
 - combinação linear de vários atributos
 - comparação entre valores de 2 ou mais atributos
 - 0 ...
- Pesquisa da melhor partição
 - testar um subconjunto (aleatório) de atributos
 - o utilização de algoritmos evolucionários para evitar decisões ótimas locais

Aprendizagem Automática

Avaliação de modelos

Sumário

- Avaliação de modelos
 - o Divisão treino-teste
 - Validação cruzada
- Afinação de parâmetros
- Medidas de desempenho
 - classificação binária
 - o classificação multi-classe
 - o regressão

Avaliação de modelos

Avaliação de modelos

- Objetivo
 - Verificar quão bem o modelo generaliza
- Procedimento
 - divisão treino-teste
 - não interessa o ajuste ao conj de treino
 - mas sim, quão bem consegue fazer previsões em dados não observados

Validação cruzada

- Forma mais robusta de avaliar a generalização de um modelo
 - procedimento mais estável e completo
- Procedimento
 - Os dados são divididos repetidamente e são treinados múltiplos modelos
- Validação cruzada k-pastas
 - k: parâmetro
 - usualmente 5 ou 10
 - nº de sub-conjuntos em que o conj de dados é partido
 - todos com sensivelmente o mesmo tamanho

Validação cruzada k-pastas

- partir o conj em k "pastas"
- 2. treinar k modelos
 - o no modelo 1 a primeira "pasta" constitui o conj de teste; as restantes "pastas" (2 a k) constituem o conj de treino
 - o treino é feito com exemplos das pastas {2, ..., k} e avaliado com exemplos da pasta 1
 - o depois a 2ª pasta constitui o teste e as restantes o treino
 - 0 ...
- 3. no final existem k medidas de desempenho
 - o normalmente é calculada a média

Exemplo

- Regressão logística sobre conjunto iris
- Exatidão com K=5
 - 0 1.000
 - 0.967
 - 0.933
 - 0.900
 - 0 1.000
- Exatidão média
 - 0.960

- Existe uma variância relativamente grande
 - entre 90% e 100%
- Razões possíveis
 - o modelo é muito dependente das pastas usadas para o treino
 - consequência da dimensão reduzida do conjunto

Benefícios da validação cruzada

- Cada exemplo está numa pasta e cada pasta é o conj de teste uma vez
 - o modelo tem de generalizar bem para todos os exemplos para que todos os valores de desempenho (e a sua média) sejam altos
- Múltiplas divisões
 - Fornece alguma informação sobre quão sensível o modelo é à seleção do conj de treino
 - fornece uma ideia de como o modelo se vai comportar no melhor e pior cenários quando aplicado a novos dados
- Tamanho maior do conjunto de treino
 - o K=10, treino: 90% dos dados
 - Utilização mais efetiva dos dados
 - maior quantidade de dados normalmente resulta em modelos mais exatos

Desvantagens da validação cruzada

- Principal desvantagem
 - Custo computacional acrescido

- A validação cruzada não uma forma de construir um modelo!
- Objetivo
 - avaliar quão bem determinado algoritmo generaliza com um conjunto de dados específico

Validação cruzada k-pastas estratificada

- Mantém a proporção entre classes do conjunto completo em cada pasta
 - o resulta em estimativas mais confiáveis do desempenho de generalização

Validação cruzada leave-one-out

- Funcionamento
 - Validação cruzada k-pastas, com k=num exemplos
- Estratégia muito demorada
 - o principalmente para conj de dados grandes
- Pode fornecer melhores estimativas para conj de dados pequenos

Validação cruzada shuffle-split

Parâmetros

- o nº de exemplos para o treino
- o nº exemplos para o teste
- o nº de iterações

Formação dos conjuntos

- exemplos escolhidos aleatoriamente com reposição
- garante-se que um exemplo está apenas num conjunto

Características

- permite a definição do nº de iterações (independentemente do tamanho do treino e teste)
- o permite utilizar apenas parte dos dados
- o pode ser útil para conj grandes
- pode ser estratificado

Exemplo

- o no total exemplos: 10
- o nº exemplos treino: 5
- o nº exemplos teste: 2
- o iterações: 4

Afinação de parâmetros

Afinação de parâmetros

- O que é?
 - Tarefa de encontrar os valores dos parâmetros (importantes) de um algoritmo que originam o modelo com o melhor desempenho de generalização
- É uma tarefa morosa, mas necessária!

Conjunto de validação

- Avaliação dos modelos obtidos com diferentes valores dos parâmetros
 - o deve ser feita com um novo conjunto (que não o de treino nem o de teste) pelas mesmas razões usadas para dividir o conjunto inicial em treino e teste
- Divisão dos dados.
 - o conj treino: usado para construir o modelo
 - o **conj validação**: usado para escolher os parâmetros
 - o conj teste: usado para avaliar o desempenho dos parâmetros selecionados

Construção do modelo

- 1. Dividir os dados em treino, validação, teste
- Construir modelos usando o conj de treino com diferentes valores de parâmetros
- 3. Avaliá-los usando o conj de validação
- Selecionar os valores de parâmetros que dão origem ao melhor desempenho
- 5. Reconstruir um modelo usando os "melhores" parâmetros com os dados de treino e validação
 - o Desta forma, podemos usar o máximo de dados possível para construir o modelo
- 6. Avaliar o modelo final usando o **conj de teste**

Grid search

- Método de pesquisa
 - tenta todas as combinações possíveis de parâmetros
- Exemplo
 - SVM com núcleo RBF
 - Parâmetros
 - C: 0.001, 0.01, 0.1, 1, 10, 100
 - gamma: 0.001, 0.01, 0.1, 1, 10, 100
 - total de 36 combinações

Grid search e validação cruzada

- Divisão treino/validação/teste
 - método sensível à forma como os dados são divididos.
- Melhor estimativa do desempenho dos modelos
 - o utilizar validação cruzada para avaliar o desempenho de cada combinação de parâmetros
- Exemplo
 - xval 5 pastas
 - calcular a média do desempenho para cada conj de parâmetros
 - escolher os parâmetros que dão origem à melhor média

Processo de pesquisa do melhor modelo

Drenagem de informação

- Drenagem de informação
 - Quaisquer escolhas feitas com base no desempenho do conj de teste drenam informação do conj de teste para o modelo
 - Resulta numa estimativa otimista do desempenho

Boa prática

- fazer todas as análises exploratórias e seleção de modelos usando a combinação dos conjs de treino e de validação
- reservar o conjunto de teste APENAS para a avaliação final

Heatmap do desempenho

- Visualização do desempenho para cada conj de parâmetros
 - o cada ponto corresponde à execução da validação cruzada com parâmetros particulares
 - o as cores codificam o desempenho
 - cores escuras <-> desempenho baixo
 - cores claras <-> desempenho alto
- Exemplo
 - SVM com núcleo RBF
 - **C**, gamma: 0.001, 0.01, 0.1, 1, 10, 100
 - Conclusões
 - Algoritmo muito sensível à escolha dos parâmetros
 - Os parâmetros C e gamma são importantes
 - O intervalo dos parâmetros é grande o suficiente

Grelhas de pesquisa mal especificadas

Não há variação do desempenho

- Razões possíveis
 - intervalo de variação não apropriado
 - os parâmetros não são importantes

Apenas gamma influencia desempenho

- Razões possíveis
 - pesquisa feita sobre intervalos de gamma interessantes mas não de C
 - o parâmetro C não é importante

Grelhas de pesquisa mal especificadas

Ambos os parâmetros influenciam o resultado

Conclusões

- podemos excluir valores pequenos dos parâmetros
- os melhores de parâmetros estão na fronteira. É possível encontrar ainda melhores desempenhos?

0.96

0.88

0.80

0.72

0.64

0.56

0.48

0.40

Medidas de desempenho

Problema específico a resolver

- Exemplos de problemas
 - Evitar acidentes de trânsito
 - Diminuir o número de internamentos hospitalares
 - Atrair mais utilizadores para para um site
 - o Incentivar as compras numa loja
- O objetivo de alto nível influencia quer os algoritmos utilizados, quer a escolha de medidas de desempenho

Métricas para classificação binária

- Classificação binária
 - o aprendizagem de conceito
 - classes: positiva, negativa
- Exatidão
 - Nem sempre é a melhor medida porque existem diferentes tipos de erro
- Exemplo
 - deteção precoce de cancro
 - o tipos de erro
 - paciente são ser diagnosticado como doente (falso positivo)
 - paciente doente ser diagnosticado como são (falso negativo)
 - As consequências de cada tipo de erro são muito distintas

Matriz de confusão (reminder...)

- Desempenho
 - Diagonal descendente indica as previsões corretas
 - Diagonal ascendente indica erros de predição
- Terminologia
 - VN: verdadeiros negativos
 - FP: falsos positivos
 - FN: falsos negativos
 - VP: verdadeiros positivos
 - Marginais
 - Última linha e coluna

	Prevista -	Prevista +	
Actual -	VN	FP	Neg=TN+FP
Actual +	FN	VP	Pos=FN+TP
	Marginais de predição		# instâncias

Exemplo

- 50 instâncias negativas
 - 40 classificadas corretamente
 - o 10 mal classificadas
- 50 instâncias positivas
 - 30 classificadas corretamente
 - o 20 mal classificadas

	Prevista -	Prevista +	
Real -	40	10	50
Real +	20	30	50
	60	40	100

Conjuntos de dados não balanceados

- O que são?
 - conjuntos onde o nº de exemplos de uma classe é muito maior que da outra
 - o na realidade são os mais comuns...

Exemplo

- classe negativa: 99% dos exemplos
- classe positiva: 1% dos exemplos
- Qual a exatidão de um sistema (não inteligente) que indica a classe negativa para todos os exemplos?

Exemplo

- Classes
 - o negativa: 90% dos exemplos
 - o positiva: 10% dos exemplos
- Classificadores "dummy"
 - Prevê a classe mais frequente
 - Prevê a classe aleatoriamente (tendo em conta a distribuição de classes

- Exatidão
 - mais frequente: 0.90
 - o "dummy" aleatório: 0.80
 - o árvore de decisão: 0.92
 - regressão logística: 0.98
- A exatidão não é a medida adequada!

Exemplo: matrizes de confusão

Mais frequente (exatidão: 0.90)

403	0
47	0

Dummy aleatório (exatidão: 0.80)

361	42
43	4

• Árvore de decisão (exatidão: **0.92**)

390	12		
24	23		

Regressão logística (exatidão: 0.98)

401	2	
8	39	

Indicadores de desempenho

- Calculados sobre a matriz de confusão
- Existe uma grande variedade de indicadores
 - Exatidão (accuracy)
 - Taxa de erro (error rate)
 - Taxa de verdadeiros positivos, Taxa de verdadeiros negativos
 - Pode ser visto como uma exatidão por classe
 - Taxa de falsos negativos, Taxa de falsos positivos
 - Pode ser visto como uma taxa de erro por classe
 - Precisão (precision)

Exatidão e taxa de erro

- Exatidão
 - Proporção de instâncias de teste corretamente classificadas

$$Acc = \frac{TP + TN}{Pos + Neq}$$

- Taxa de erro
 - Proporção de instâncias
 incorretamente classificadas

$$Err = \frac{FP + FN}{Pos + Neg}$$

	Prev -	Prev +	
Real -	TN	FP	Neg
Real +	FN	TP	Pos

Taxa de verdadeiros positivos e taxa de verdadeiros negativos

- Taxa de verdadeiros positivos
 - Proporção de instâncias positivas classificadas corretamente
 - Também conhecida como sensibilidade ou cobertura
 - Usada quando é importante evitar falsos negativos

$$rec = \frac{TP}{TP + FN}$$

- Taxa de verdadeiros negativos
 - Proporção de instâncias negativas classificadas corretamente
 - Também conhecida como especificidade ou cobertura negativa

$$tnr = \frac{TN}{TN + FP}$$

Taxa de falsos negativos e taxa de falsos positivos

- Taxa de falsos negativos
 - Proporção de instâncias positivas mal classificadas

$$fnr = \frac{FN}{Pos}$$

- Taxa de falsos positivos
 - Proporção de instâncias negativas mal classificadas
 - Também conhecida como falso alarme

$$fpr = \frac{FP}{Neg}$$

Precisão

- Precisão
 - Proporção de verdadeiros positivos entre os classificados como positivos
 - o Também conhecida como **confiança**
 - Usada quando se quer limitar o nº de falsos positivos

$$prec = \frac{TP}{TP + FP}$$

Exemplos relevantes e selecionados

Compromisso entre precisão e cobertura

- Modelo que prevê todos os exemplos como positivos
 - não tem falsos negativos nem verdadeiros negativos
 - muitos falsos positivos
 - cobertura = 1
 - precisão baixa
- Modelo que apenas prevê como positivo um exemplo (aquele que há mais certeza)
 - o tem no máximo um falso positivo
 - precisão alta
 - cobertura baixa

Medida F_{β}

- Considera a precisão e cobertura
 - β: parâmetro que valoriza mais a precisão ou cobertura quando comparada com a outra

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

Valores comuns

- ο β=1
 - dá o mesmo peso à precisão e cobertura
- o β=2
 - dá mais peso à cobertura
- \circ β =0.5
 - dá mais peso à precisão

Medida F1

 Média harmónica da precisão e cobertura

$$F = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

- melhor medida que a exatidão quando os dados são não balanceados
 - o ... mas mais dificil de interpretar

- Exemplo
 - Exatidão
 - mais frequente: 0.90
 - "dummy" aleatório: 0.80
 - árvore de decisão: 0.92
 - regressão logística: 0.98
 - o F1
 - mais frequente: 0.0
 - "dummy" aleatório: 0.10
 - árvore de decisão: 0.55
 - regressão logística: 0.89

Adequação da medida de desempenho

- Diagnóstico de cancro
 - cobertura
 - é importante encontrar todas as pessoas doentes, possivelmente incluindo algumas saudáveis
- Previsão da eficácia de um medicamento num ensaio clínico
 - precisão
 - o modelo n\u00e3o deve produzir muitos falsos positivos devido ao alto custo dos ensaios

Métricas para classificação multi-classe

- São derivadas das métricas da classificação binária, pesadas pelas classes
- Base
 - Matriz de confusão
 - linhas: classes verdadeiras
 - colunas: classes previstas

c0: 0 falsos positivos

c2: 2 falsos positivos

Matriz de confusão e desempenho

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	37
'	1	0.89	0.91	0.90	43
	2	0.95	0.93	0.94	44
	3	0.90	0.96	0.92	45
	4	0.97	1.00	0.99	38
	5	0.98	0.98	0.98	48
	6	0.96	1.00	0.98	52
	7	1.00	0.94	0.97	48
	8	0.93	0.90	0.91	48
	9	0.96	0.94	0.95	47
avg / tot	al	0.95	0.95	0.95	450

Medida de desempenho para multi-classe

- Calcular a medida para cada classe
 - o sendo essa a classe positiva e as restantes a classe negativa
- Calcular a média
 - macro-média
 - média não pesada de cada classe
 - usar quando todas as classes têm a mesma importância
 - macro-média pesada
 - média pesada pelo nº de exemplos de cada classe
 - micro-média
 - soma-se o nº de falsos positivos, falsos negativos e verdadeiros positivos de todas as classes e depois calcula-se a medida
 - usar quando todos os exemplos têm a mesma importância

Métricas para regressão

- \bullet R²
 - o coeficiente de determinação
 - proporção da variância que é explicada pelas variáveis independentes
 - o intervalo de variação
 - melhor valor: 1
 - pode ser negativo

$$R^{2}(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Erro quadrado médio

$$MSE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Erro absoluto médio

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Pontos a reter

Divisão do conj de dados

- Avaliação de modelo
 - Usar conj teste
- Construção do modelo
 - Usar uma divisão do conj de treino (treino e validação) para seleção do modelo e parâmetros
- Usar divisão simples ou validação cruzada
- Forma mais usada
 - divisão treino/teste para avaliação
 - validação cruzada para seleção do modelo e parâmetros

Escolha da métrica de avaliação

- A métrica usada para avaliar os modelos depende da aplicação
 - o deve ser um bom substituto daquilo que o modelo será usado realmente
- Aplicações reais
 - os problemas de classificação raramente têm classes equilibradas
 - o muitas vezes falsos positivos e falsos negativos têm consequências muito diferentes

Aprendizagem Automática

Comités de peritos

Sumário

- Comités
- Estratégias
- Comités de árvores
 - Random Forest
 - Extra Trees
 - Gradient Boosting Machines

Comités

Comités de peritos

- Motivação
 - o não existe um algoritmo que apresenta o melhor desempenho para qualquer conjunto!
 - (no free lunch theorem)
- Proposta
 - Combinar vários modelos para criar modelos mais poderosos!
- Obtenção de modelos
 - diferentes algoritmos
 - diferentes hiper-parâmetros
 - o diferentes fontes de informação
 - diferentes conjuntos de treino

Combinação de peritos

- Múltiplos peritos (modelos)
 - Os modelos trabalham em paralelo
 - Cada instância é apresentada a todos os peritos que produzem a sua decisão
 - Um módulo reúne todas as respostas e apresenta a decisão final
- Múltiplas etapas
 - Os classificadores trabalham em série
 - Cada perito dá pesos diferentes aos exemplos ou "foca-se" num sub-conjunto dos exemplos

Votação

- Simples
 - o todos os peritos têm o mesmo peso
- Pesada
 - o utiliza probabilidades à posteriori

Estratégias

Estratégias

- Bagging
- Stacking
- Boosting
- Cascading

Bagging*

* Bootstrap aggregating

- Método de múltiplos peritos
- Geração dos peritos
 - Cria L conjuntos de treino através do método *bootstrap*
- Agregação dos peritos
 - Votação simples dos L peritos

- Bootstrap
 - Dado um conj. de dados de tamanho N, retiram-se aleatoriamente com reposição, N exemplos

Desempenho

- É benéfico para algoritmos instáveis
 - o pequenas alterações no conj. treino podem provocar grandes diferenças no modelo
 - o Exemplo: árvores de decisão
- É robusto para dados com ruído

Stacking

- Método de múltiplos peritos
- Geração do peritos
 - Assume a existência de L peritos
- Agregação dos peritos
 - A combinação dos peritos é aprendida
 - o Combinador é treinado com um conj de dados não utilizado na construção dos peritos
- Os peritos devem produzir previsões diferentes
 - o algoritmos distintos e/ou diferentes representações ou projeções dos dados de treino
- Também conhecido como Stacked Generalization

Boosting

- Método de múltiplas etapas
- Geração dos peritos
 - o O classificador seguinte é treinado com base nos erros dos classificadores anteriores
- Agregação dos peritos
 - Votação pesada

Algoritmo

Algoritmo original

- o Divide aleatoriamente o conj. inicial em três: X_1 , X_2 , X_3
- o Utiliza X₁ e treina p₁
- Classifica X₂ com p₁; utiliza todos os exemplos mal classificados de X₂ para construir p₂
- Classifica X_3 com p_1 e p_2 ; os exemplos para os quais p_1 e p_2 discordam formam o conj. para criar p_3
- Cada exemplo de teste é apresentado a p_1 e p_2 . Se concordam, é essa a resposta, senão é a resposta de p_3

AdaBoost (Adaptive Boosting)

- Utiliza sempre o mesmo conjunto
- Permite usar um número arbitrário de classificadores base
- A votação é pesada pelo desempenho de cada classificador base

Desempenho

- Utiliza aprendizes fracos (weak learners)
 - o algoritmos de aprendizagem simples
 - Exemplo: decision stumps (árvores de decisão de profundidade 1)
- É muito suscetível ao ruído e outliers

- Comparação
 - muitas vezes produz melhores classificadores que o bagging...
 - ... mas pode sofrer de sobre-ajustamento

Cascading

- Método de múltiplas etapas
- Os peritos base são ordenados por
 - o complexidade de tempo e/ou espaço, ou
 - custo da representação utilizada
- O perito p_j é utilizado, se os classificadores precedentes (p_i, i<j) não forem confiáveis
- Cada perito p_i tem uma confiança associada w_i
 - o p_i é confiável e pode ser utilizado, se w_i > θ_i , com 1/K $< \theta_i \le \theta_{i+1}$ e K o n° de peritos
 - \circ θ_i é o limiar de confiança de p_i

Base lógica

- Classificadores de complexidade crescente
 - Os classificadores iniciais (mais simples) tratam da maioria dos exemplos
 - Os classificadores mais complexos são utilizados numa pequena percentagem de exemplos

Comité de árvores de decisão

Comité de árvores de decisão

Ideia

- o cada árvore é **diferente** das restantes
- cada árvore pode fazer uma boa predição mas sofrer sobre-ajustamento em parte dos dados
- no conjunto o poder preditivo das árvores mantém-se mas o sobre-ajustamento diminui ao agregar os seus resultados

Algoritmos

- random forest
- extremely randomized trees (extra trees)
- gradient boosting machines

Random Forest

Random forest

- Diversidade das árvores
 - o introdução de processos **aleatórios** na construção
 - na seleção dos exemplos utilizados (conj treino)
 - na seleção dos atributos no teste de partição
- Estratégia bagging

Construção da árvore

- Criar uma amostra bootstrap dos dados
 - os conjs tem o mesmo nº de exemplos que o conj original
 - os exemplos são **escolhidos aleatoriamente com reposição**
 - o alguns exemplos não estão presentes (cerca de 1/3), outros estão repetidos
- Criar a árvore com base na amostra
 - na escolha de um nó é escolhido aleatoriamente um sub-conjunto de atributos e pesquisada a melhor partição envolvendo um entre aqueles atributos
 - cada nó testa um sub-conjunto diferente de atributos

Previsão

- Estratégia de votação "suave"
 - A previsão individual de cada árvore fornece uma probabilidade para cada classe
 - o É calculado valor para cada classe, e aquela com probabilidade mais alta é escolhida
- Há implementações que usam votação simples

Número de atributos a testar

Parâmetro crítico

- se for igual ao total de atributos não há aleatoriedade
- se for 1 não há escolha nos atributos a testar

Valor alto

- as árvores serão bastante semelhantes
- o ajuste (aos dados) será mais fácil porque usa mais atributos

Valor baixo

- as árvores serão mais distintas
- cada árvore poderá ser muito profunda para se ajustar aos dados

Exemplo

Árvores individuais

- As fronteiras de decisão são muito diferentes
- Cada árvore erra alguns exemplos de treino porque não foram usados (no treino)

Comité

- tem menos sobre-ajustamento
- fornece uma fronteira de decisão mais intuitiva

Características, vantagens e desvantagens

Características

- modelo poderoso
- funciona bem sem grande esforço na afinação dos parâmetros
- o não é necessário escalar os dados

Vantagens

- É paralelizavel
- Funciona bem em conjuntos muito grandes

Desvantagens

Não funciona bem em dados com muitas dimensões e esparsos

Parâmetros importantes

- nº de árvores a criar
 - quanto mais árvores, melhor o modelo construído
 - fazendo a média de mais árvores torna o algoritmo mais robusto
 - o com mais árvores é necessária mais memória e tempo para treinar
 - regra do "polegar"
 - tantas quantas a memória e o tempo permitir
- nº atributos a testar
 - regra do "polegar"
 - raiz quadrada do nº de atributos
- estratégia de poda (se necessário)
 - o limitar a profundidade da árvore ou nº de folhas
 - pode reduzir drasticamente o tempo e espaço necessário ao treino e previsão

Mais informação

- É um dos métodos mais utilizados
 - o tem todos os benefícios das árvores de decisão e resolve algumas das suas deficiências
- Normalmente são usadas centenas ou milhares de árvores!

Extremely Randomized Trees

Extremely Randomized Trees

- Diversidade das árvores
 - introdução de processos aleatórios na construção da árvore
 - na seleção dos atributos no teste de partição
 - pontos de corte (para atributos contínuos)
- Menos pesado computacionalmente que Random Forest
 - os pontos de corte são escolhidos aleatoriamente
- também conhecido como Extra Trees

Gradient boosting machines

Gradient boosting machines

- Diversidade das árvores
 - árvores construídas de forma sequencial
 - cada árvore tenta corrigir os erros da árvore anterior
 - forte pré-poda da árvore
 - árvores com profundidade um a cinco
- Estratégia boosting
- também conhecido como Gradient Boosted Regression Trees

Parâmetros

- nº de árvores a gerar
- profundidade da árvore
 - o pré-poda
- taxa de aprendizagem
 - o controla a força com que uma árvore tenta corrigir os erros da árvore anterior
 - valor maior: a árvore faz correções mais fortes, gerando modelos mais complexos

Relação entre parâmetros

- Grande correlação entre o nº de árvores e a taxa de aprendizagem
 - menor taxa implica a necessidade de mais árvores para construir um modelo de complexidade semelhante
- Prática comum
 - Ajustar o nº de estimadores (árvores) dependendo do tempo e memória disponíveis
 - Procurar diferentes taxas de aprendizagem

Exemplo: Breast cancer

- Parâmetros
 - o árvores: 100
 - o prof máxima: 3
 - o taxa apr: 0.1
- Exatidão
 - o treino: 1.000
 - o teste: 0.958
- Possível sobre-ajustamento!

- Alteração da profundidade
 - prof máxima: 1
 - Exatidão
 - treino: 0.991
 - teste: 0.972

- Alteração da taxa de aprendizagem
 - o taxa apr: 0.01
 - Exatidão
 - treino: 0.998
 - teste: 0.965

Comparação com Random Forest

- Menos pesado computacionalmente
 - o a profundidade da árvore é muito menor
- Mais sensível à definição dos parâmetros
 - há menos aleatoriedade
- Nem sempre é melhor aumentar o nº de árvores
 - o pode conduzir ao sobre-ajustamento

Estratégia

- 1. Experimentar random forest
 - o produz modelos muito robustos
- 2. Experimentar gradient boosting
 - se o tempo de previsão for muito importante
 - o se uma pequena diferença de desempenho for muito importante

Características, vantagens e desvantagens

Características

- algoritmo poderoso
- algoritmo muito usado

Vantagens

- Não é necessário escalar os dados
- Funciona bem numa mistura de dados binários e contínuos

Desvantagens

- Necessita de uma afinação de parâmetros cuidadosa
- O tempo de treino pode ser longo
- Muitas vezes não funciona bem em dados esparsos de grande dimensão

Mais informação

- Em competições, são os modelos vencedores com frequência
 - podem gerar melhores desempenhos que random forest se os parâmetros forem bem afinados
- São muito usados na indústria

Aprendizagem Automática

Redes neuronais

Sumário

- Introdução
- Perceptrão
- Redes multi-camada
- Vantagens, desvantagens e parâmetros

Introdução

Redes Neuronais

- Rede Neuronal Feed-Forward
 - Perceptrão
 - Perceptrão multi-camada
 - Rede neuronal convolucional
 - Autoencoder
 - 0 ...
- Rede de Função de Base Radial

- Rede Neuronal Recorrente
 - Recorrente completa
 - LSTM
 - Bi-directional
 - Rede Neuronal de Kohonen (Self Organizing)
 - 0 ...
- Rede Neuronal Modular
- ...

Main Types of Neural Networks

Inspiração

- Forte interligação do cérebro humano
- Neurobiologia
 - A actividade do neurónio é activada/inibida através das ligações a outros neurónios
- Características do cérebro humano
 - Tempo de comutação: ~ 10⁻³ segundo
 - Neurónios: ~ 10¹¹
 - Ligações por neurónio: ~ 10⁴ (em média)
 - Tempo de reconhecimento: ~ 10⁻¹ segundo
- Processamento altamente paralelo

Áreas de Aplicação

- Aprendizagem de informação sensorial complexa
 - Imagem
 - Voz
 - Texto

Características

- dados complexos e com ruído
- exemplos representados por muitos pares atributo-valor
- o função objetivo discreta, real, vetor de valores discretos ou reais
- tempo de treino longo
- a explicabilidade não é importante

Exemplo 1

- ALVINN (Pomerleau, 1989)
 - Autonomous Land Vehicle In a Neural Network
- Objetivo
 - Condução de um veículo autónomo a velocidades normais numa auto-estrada pública

Características

- Entrada
 - imagem 30×32 pixels de intensidade
 - imagem 8×32 pixels de intensidade
- Saída
 - direção de viragem do veículo
- Treino
 - condução por um humano durante aprox. 5 minutos
- Resultado
 - Condução, em auto-estrada, com velocidades até 70 mph numa distância de 90 milhas

ALVINN - sistema original

Road Intensity Feedback Unit 45 Direction **Output Units** Hidden Units 8x32 Range Finder Input Retina

30x32 Video Input Retina

Weights to Direction Output Units

Weight to Output Feedback Unit

Feedback Unit 17

Weight from Bias Unit

Exemplo 2

- Reconhecer 1 entre 10 sons
 - o entrada: 2 valores (F1, F2) obtidos da análise espectral do som
 - saída: 10 unidades, uma para cada som (classe)

Perceptrão

Modelo linear

A saída é a soma pesada dos atributos de entrada x₁, ..., x_n

```
y = W_1 * X_1 + ... + W_n X_n + b
```

- os coeficientes w₁, ..., w_n são parâmetros "aprendidos"
- Função de decisão
 - \circ sgn(y)

Perceptrão

- Modelo linear onde os coeficientes são determinados de forma iterativa
- Algoritmo
 - Atribuir pesos aleatórios a cada entrada x;
 - Aplicar, iterativamente, o perceptrão a cada exemplo, modificando os pesos sempre que o exemplo for mal classificado
 - Repetir o processo até o perceptrão classificar correctamente todos os exemplos
- Treino do modelo
 - determinação dos coeficientes (pesos)

Representação

Representação

Regra do perceptrão

- Atualização dos pesos
 - $\circ W_{i} = W_{i} + \eta \text{ (t-o) } X_{i}$
 - t:valor objetivo
 - o : valor saída perceptrão
 - η : ritmo de aprendizagem
- Convergência
 - o converge quando os exemplos são linearmente separáveis
 - o converge quando o ritmo de aprendizagem for suficientemente pequeno (<=0.1)

Regra do menor erro quadrático

- Atualização dos pesos
 - Utiliza o **gradiente** para pesquisar o espaço de possíveis vetores de peso
- Convergência
 - o converge mesmo quando os exemplos de treino não são linearmente separáveis
- Também conhecida como
 - Regra delta
 - Regra Adaline
 - Regra Widrow-Hoff

Pesquisa

Cálculo do erro

- o w: vetor de pesos
- E: conj exemplos de treino
- o t_a: valor objetivo do exemplo e
- o y_e: saída da unidade linear

$$erro(\vec{w}) = \frac{1}{2} \sum_{e \in E} (t_e - y_e)^2$$

Descida do gradiente

 em cada iteração o vetor de pesos é alterado na direção que produz a descida mais íngreme na superfície de erro

Algoritmo 1: descida do gradiente

```
descida_gradiente( E, \eta ) {
     w<sub>i</sub> = valor aleatório pequeno
     Até a condição de terminação ser verdadeira
            dw_{i} = 0
            Para cada exemplo e=<X,t<sub>e</sub>> em E
                  Calcular a saída y
                  Para cada peso w<sub>i</sub>
                        dw_i = dw_i + \eta (t_e - y_e) x_i
            Para cada peso w<sub>i</sub>
                                                                       os pesos são atualizados após a
                  W_i = W_i + dW_i \leftarrow
                                                                       apresentação de todos os
                                                                       exemplos de treino
```

Algoritmo 2: descida do gradiente incremental

- Os pesos são atualizados após a apresentação de cada exemplo
 - o desaparece a última atualização
 - o a atualização dw_i é substituída por $w_i = w_i + \eta (t_e y_e) x_i$

Características

- o aproxima a descida do gradiente tanto quando se queira (se η for suficientemente pequeno)
- requer menos cálculos por cada atualização de pesos
- pode, por vezes, evitar cair nos mínimos locais, caso existam

Resumo

- Regra do perceptrão
 - atualiza os pesos de acordo com o erro à saída do perceptrão
 - converge após um número finito de iterações se
 - os exemplos de treino forem linearmente separáveis
 - ritmo de aprendizagem for suficientemente pequeno
- Regra do menor erro quadrático
 - o atualiza os pesos de acordo com o erro na **saída da unidade linear**
 - converge assimptoticamente para a hipótese com o menor erro se ritmo de aprendizagem for suficientemente pequeno
 - mesmo quando os dados contêm ruído
 - mesmo quando os dados de treino não são linearmente separáveis

Redes multi-camada

Redes multi-camada

- Unidades básicas organizadas em camadas
- Topografia
 - uma camada de entrada
 - o uma ou mais camadas escondidas
 - o uma camada de saída

Camadas e unidades

- Camada de entrada
 - atributos descritores
- Camada de saída
 - saídas (dependendo do tipo de problema pode ter um ou mais unidades)
- Camadas escondidas
 - número de unidades variável
 - número de camadas variável
- Unidades
 - Também conhecidas como
 - nós
 - neurónios

Componente de limiar

- À saída da componente linear é aplicada uma função não linear (que permite inibir ou ativar unidade)
- Funções
 - sigmoid
 - sigmoid()
 - tangens hyperbolicus
 - tanH()
 - rectifying nonlinearity
 - reLU()

Funções de ativação

Backpropagation

- Processo de atualização de pesos
- Funciona em 2 fases
 - Avanço dos padrões de entrada (feedforward)
 - cada unidade, começando nas de entrada, calcula a sua função de ativação e transmite-a a todas as unidades a que está ligada, propagando o sinal até às unidades de saída
 - Retrocesso da propagação dos erros (backpropagation)
 - cada unidade de saída compara a sua ativação com a saída desejada;
 - o erro é propagado "para trás" aos nós diretamente ligados à saída, ajustando os pesos das ligações com base no erro

Convergência do algoritmo

- Garante a convergência para um mínimo local
 - mas pode não ser o global...
- Variações
 - utilizar gradiente ou gradiente incremental
 - o adicionar momento à regra de atualização dos pesos
- Porque o mínimo global não é garantido
 - treinam-se vários modelos inicializando a rede com pesos diferentes

Momento

- Alteração da função de atualização de pesos
 - o depende do gradiente e da atualização de pesos da iteração anterior
- Efeitos
 - Permite continuar a actualização na presença de
 - mínimos locais da superfície de erro
 - regiões planas
 - Permite acelerar a convergência
 - porque incrementa gradualmente o passo de pesquisa em regiões onde o gradiente não muda

Critérios de terminação

- Número fixo de iterações
 - poucas: pode n\u00e3o reduzir o erro de forma suficiente
 - o muitas: pode provocar sobre-ajustamento
- Erro treino abaixo de certo valor
 - pode provocar sobre-ajustamento
- Aumento do erro no conjunto de validação
 - o para prevenir sobre-ajustamento

Sobre-ajustamento

Unidades e Camadas escondidas

Unidades escondidas

 Unidades situadas nas camadas escondidas (entre a camada de entrada e a de saída)

Permitem

- a aprendizagem de funções não lineares
- representar combinações dos atributos de entrada

Número

- demais: a rede memoriza os padrões de entrada
- de menos: a rede pode não conseguir representar todas as generalizações possíveis

Camadas escondidas

- Os exemplos apenas restringem as entradas e saídas da rede
 - o a representação das unidades escondidas é aquela que minimiza o erro
- Consequência
 - o algoritmo pode originar características na(s) camada(s) escondida(s) não explícitas na representação de entrada mas que capturam propriedades relevantes

Exemplo: função identidade

- Rede
 - camada entrada: 8 unidades
 - o camada saída: 8 unidades
 - camada escondida: 3 unidades
- Resultado após 5000 iterações
 - o codificação das 8 entradas
 - **1**0000000: 100
 - **01000000: 001**
 - **00100000: 010**
 - **00010000: 111**
 - **00001000: 000**
 - **00000100: 011**
 - **00000010: 101**
 - **00000001:110**

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Input	I	Hidden			Output		
Values							
10000000 -	→ .89	.04	.08	\rightarrow	10000000		
01000000 -	→ .01	.11	.88	\rightarrow	01000000		
00100000 -	· .01	.97	.27	\rightarrow	00100000		
00010000 -	→ .99	.97	.71	\rightarrow	00010000		
00001000 -	· .03	.05	.02	\rightarrow	00001000		
00000100 -	\rightarrow .22	.99	.99	\rightarrow	00000100		
00000010 -	→ .80	.01	.98	\rightarrow	00000010		
00000001 -	→ . 60	.94	.01	\rightarrow	00000001		

Superfícies de decisão

Variação com as unidades escondidas

- 10 unidades escondidas
 - o camadas escondidas: 1
 - o função ativação: reLU
 - fronteira composta por 10 segmentos de reta

- 100 unidades escondidas
 - camadas escondidas: 1
 - função ativação: reLU
- fronteira mais suave

Variação com as camadas escondidas

- 1 camada escondida
 - unidades escondidas: 10
 - função ativação: reLU

- 2 camadas escondidas
 - unidades escondidas: 10 (cada camada)
 - função ativação: reLU
- fronteira mais suave

Variação com a função de ativação

- função ativação: reLU
 - camadas escondidas: 2
 - unidades escondidas: 10 (cada camada)

- função ativação: tanh
 - camadas escondidas: 2
 - o unidades escondidas: 10 (cada camada)
 - fronteira mais suave

Variação com a regularização

- parâmetro alfa
 - o menor alfa, menor regularização

Variação com a inicialização dos pesos

- Pesos inicializados aleatoriamente
- Inicialização afeta o modelo aprendido
 - mais importante em redes pequenas

Parâmetros

- o função ativação: relu
- camadas escondidas: 2
- o unidades escondidas: 100 (cada camada)
- o alfa: 0.0001

Exemplo - Breast Cancer

Experiências: desempenho

- Exp1: Parâmetros por omissão
 - alfa: 0.0001, função ativação: relu, camadas escondidas: 1, unidades escondidas: 100
 - Exatidão
 - treino: 0.92
 - teste: 0.90
- Exp2: Atributos normalizados
 - o média=0, desvio=1
 - Exatidão
 - treino: 0.991
 - teste: 0.965
 - (atingido máximo iterações)

- Exp3: Aumento nº iterações
 - Exatidão
 - treino: 0.995
 - teste: 0.965
- Exp4: Aumento da regularização
 - o alfa: 1
 - Exatidão
 - treino: 0.988
 - teste: 0.972

Modelo aprendido

- Difícil análise/compreensão
- Possibilidade
 - visualização dos pesos aprendidos
- Possível inferência
 - o atributos com pesos muito pequenos para todas as unidades são "menos importantes"

Exemplo

- pesos aprendidos à entrada da camada escondida
 - o linhas: atributos (30), colunas: unidades escondidas (100)
 - o cor clara: valor positivo alto, cor escura: valor negativo

Aprendizagem de coeficientes

Algoritmos

sgd

- stochastic gradient descent
- tem muitos parâmetros para serem afinados

adam

- otimizador baseado no gradiente estocástico
- o funciona bem na maioria das situações mas é muito sensível à escala dos dados

I-bfgs

- o algoritmo da família dos métodos quasi-Newton
- o mais robusto mas mais demorado que o "adam" em grandes redes e muitos dados

Vantagens, desvantagens e parâmetros

Vantagens e desvantagens

Vantagens

 capacidade de capturar informação contida em quantidades enormes de dados e construir modelos complexos incríveis

Desvantagens

- grande tempo de computação
- o pre-processamento cuidado dos dados
- afinação dos parâmetros

Camadas e Unidades

- Número de camadas
 - começar por treinar um modelo com uma ou duas camadas e, possivelmente, expandir para mais
- Número de unidades escondidas por camada
 - normalmente semelhante ao número de entradas mas raramente superior a poucos milhares

Ajuste dos parâmetros

- 1. Criar uma rede grande o suficiente para sobre-ajustar
 - o garantindo que a tarefa pode ser aprendida pela rede
- 2. Alterar a rede
 - o reduzir o tamanho da rede
 - o aumentar alfa para aumentar a regularização

Complexidade do modelo

- O número de coeficientes a estimar é uma medida indicadora
- Exemplo (classificador binário)
 - 100 atributos, 100 unidades escondidas, 1 camada escondida
 - cf: 10100 (100*100+100)
 - o mais uma camada escondida
 - cf: 20100 (100*100+100*100+100)
 - o 100 atributos, 1000 unidades escondidas, 1 camada escondida
 - cf: 101000 (100*1000+1000)
 - mais uma camada escondida
 - cf: 1101000 (100*1000+1000*1000+1000)

Poder de representação

- Função booleana
 - o pode ser representada por uma rede com uma camada escondida
- Função contínua limitada
 - pode ser representada com um erro arbitrariamente pequeno por uma rede com uma camada escondida
- Função contínua
 - o pode ser representada com uma correção arbitrária por uma rede com duas camadas escondidas

Mais informação

Mais informação

- Tipos de redes neuronais
 - https://www.mygreatlearning.com/blog/types-of-neural-networks/
 - https://analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/
- Feedforward e Backpropagation
 - https://mlfromscratch.com/neural-networks-explained/
- Funções de ativação
 - https://mlfromscratch.com/activation-functions-explained/
- Otimização (aprendizagem dos coeficientes)
 - o https://mlfromscratch.com/optimizers-explained/