Table 1: Fibonacci

Metodo	Tempo	Memoria	Equazione	Descrizione
Fib2	$O(\varphi^n)$	O(n)	T(n) = T(n-1) + T(n-2)	Ricorsione semplice
Fib3	O(n)	O(n)	T(n) = T(n-1) + O(1)	Memoization
Fib4	O(n)	O(1)	T(n) = O(n)	Iterativo con due variabili
Fib5	O(n)	O(1)	T(n) = O(n)	Iterativo ottimizzato
Fib6	$O(\log_2 n)$	$O(\log_2 n)$	$T(n) = O(\log n)$	Moltiplicazione di matrici

Table 2: Ricerca

Algoritmo	Caso Migliore	Caso Medio	Caso Peggiore	Descrizione
Ricerca Lineare	O(1)	O(n)	O(n)	Scansione sequenziale dell'array
Ricerca Binaria	O(1)	$O(\log n)$	$O(\log n)$	Divide et impera su array ordinato

Table 3: Costruzione e Fusione per D-Heap, AVL e Heap Binomiale

Struttura Dati	Costruzione	Fusione (Heapify $+$ Inserimenti)
D-Heap	Heapify $O(n)$	$O(\max)$ - Creazione da zero / $O(\min\log\max)$ - Inserimenti
Dizionario (AVL)	Insert (AVL) $O(n \log n)$	$O(\min(\log n))$ - Merge degli AVL
Heap Binomiale	Insert $O(n \log n)$	$O(\log \max)$ - Merge + Ristrutturazione

Table 4: Ordinamento

Algoritmo	Costo	Spazio Extra	Approccio
Merge Sort	$O(n \log n)$	O(n)	Divide et Impera
Quick Sort	$O(n \log n)$	$O(\log n)$ (ricorsione)	Divide et Impera
Selection Sort	$O(n^2)$	O(1)	Selezione iterativa
Insertion Sort	$O(n^2)$	O(1)	Inserzione iterativa
Integer Sort	O(n)	O(n)	Ordinamento numerico diretto
Bucket Sort	O(n+k)	O(n+k)	Distribuzione in bucket
Radix Sort	O(n)	O(n+k)	Ordinamento per cifre

Table 5: **Heap**

Struttura Dati	FindMin	Insert	Delete	DelMin	IncKey	DecKey	Merge
d-Heap	O(1)	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Heap Binomiale	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Heap di Fibonacci	O(1)	O(1)	$O(\log n)^*$	$O(\log n)^*$	$O(\log n)^*$	$O(1)^{*}$	O(1)

Table 6: **Implementazioni Dijkstra**

Struttura Dati	Insert	DelMin	DecKey	Costo Totale
Heap Binario	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Heap Binomiale	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Heap di Fibonacci	O(1)	$O(\log n)^*$ (ammortizzata)	$O(1)^*$ (ammortizzata)	$O(m + n \log n)$