

LOCATING IMMINENT THREATS

By: Dominic Adams, Mehul Sen, Dan Lynch, Aslan Cronister

The Challenge

On-site security personnel at U.S. Government overseas offices need a way to quickly identify the location of imminent danger when the emergency notification system is triggered in order to create an escape plan or diffuse the threat before it causes harm to human lives and property.

買

The Problem Statement Original

Triangulating the location of an imminent danger accurate to 20 feet when an emergency notification system is triggered within 15 seconds or less.

The Problem Statement

Identify the best solution for triangulating the location of an imminent danger, accurate to 20 feet, when an emergency notification system is triggered within 15 seconds or less.

Interviewee Breakdown

闡

Where We Are in the DoS

Where We Are in the DoS

Our Journey

We investigate The Challenge and developed a list of knowns and unknowns. A draft of our Problem Statement was made.

Beneficiary discovery was started, our MVP was drafted, and our problem statement was refined. Beneficiary discovery continued, multiple MVPs were developed, and a timeline was devolved. Beneficiary discovery continued, a single MVP was decided upon, and our group met with our Sponsor, Mario May, in DC.

Suggestions and future improvements on our MVP were recommended.

Mission Model Canvas

Original MMC

Week 1 (01/31/2023)

Mission Model Canvas

Final MMC

Week 13 (04/18/2023)

"The more you complicate it, the riskier is the solution"

Daniel Krebs

Deputy Director of Cybersecurity/Information Systems, Monroe County

Initial MVP

Week 2 (02/07/2023)

"Redundancy is key"

Frederick J. Rion

Emergency Manager, SUNY Brockport

Intermediate MVPs

Week 7 (02/28/2023)

Intermediate MVPs

Week 7 (02/28/2023)

Intermediate MVPs

Week 7 (02/28/2023)

Final MVP

Our MVP

What Informed Our MVP?

- 67 interviews
 - > 50 unique touchpoints
- Rigorous academic research
- Beneficiary & product discovery
- On-site lab visit
- Validated by Inovonics

Potential Testing Site

Funding from State Department

11 - 15 Months

Funding from Potential Customers

"We will investigate it"

Mario May

Security Engineering Officer Office of Security Technology, Technology Development Branch, DoS

With A Special Thanks To

Mario May

Security Engineering Officer

Our project sponsor

Michelle Saks

Our project mentor

Dr. James Santa

Adjunct professor at RIT

Our professor

THANK YOU

Trilateration Calculations

Trilateration Calculations

$$(x-x_1)^2+(y-y_1)^2=r_1^2 \ (x-x_2)^2+(y-y_2)^2=r_2^2 \ (x-x_3)^2+(y-y_3)^2=r_3^2$$
 $x^2-2x_1x+x_1^2+y^2-2y_1y+y_1^2=r_1^2 \ x^2-2x_2x+x_2^2+y^2-2y_2y+y_2^2=r_2^2 \ x^2-2x_3x+x_3^2+y^2-2y_3y+y_3^2=r_3^2$

Euclidean Distance for all points

$$(-2x_1 + 2x_2)x + (-2y_1 + 2y_2)y = r_1^2 - r_2^2 - x_1^2 + x_2^2 - y_1^2 + y_2^2$$
$$(-2x_2 + 2x_3)x + (-2y_2 + 2y_3)y = r_2^2 - r_3^2 - x_2^2 + x_3^2 - y_2^2 + y_3^2$$

Ax + By = CDx + Ey = F

Subtract 2nd eq. from 1st

Subtract 3rd eq from 2nd

Rewritten two equations

$$x = \frac{CE - FB}{EA - BD}$$

$$y = \frac{CD - AF}{BD - AE}$$