Kapitel 11

Externalitäten und Marktversagen

Externe Effekte und Marktversagen

- Unter Vollkommenheitsannahmen sorgt marktmäßiges Verhalten im Gleichgewicht dafür, dass der soziale Überschuss maximiert wird.
 (→ Adam Smiths Metapher von der "unsichtbaren Hand".)
- ► Sind die Vollkommenheitsannahmen nicht erfüllt, droht Ineffizienz. Man spricht dann von Marktversagen.

Externe Effekte und Marktversagen

- ► Ein **externer Effekt** = eine **Externalität** ist die unkompensierte Auswirkung ökonomischen Handelns auf die Wohlfahrt eines unbeteiligten Dritten.
- "extern"meint unkompensiert bzw. "unbepreist".
- Externalitäten verhindern, dass ein Marktgleichgewicht die Effizienz maximiert. Der Markt "versagt".

Typen von Externalitäten

Unterscheide:

- a) Negative Externalitäten:
 Ein unbeteiligter Dritter erleidet durch eine
 Markttransaktion (z.B. durch Abgase) einen
- Markttransaktion (z.B. durch Abgase) einen Schaden
- b) **Positive** Externalitäten:
 Ein unbeteiligter Dritter zieht aus einer
 Markttransaktion (z.B. Hausverschönerung) einen
 Vorteil

Beispiele für negative Externalitäten

- Autoabgase
- ► CO2-Emissionen
- Zigarettenrauch
- Bellender Hund
- Dröhnendes Radio

Beispiele für positive Externalitäten

- Hausverschönerung
- Schutzimpfung
- ▶ Patentunfähige Innovationen

Der Markt für Aluminium als Beispiel

- Kapitel 1-9:
 Das Marktgleichgewicht ist grundsätzlich effizient.
- Volkswirtschaftliche Rente auf dem Aluminiummarkt wird maximiert.
- Kosten für die letzte produzierte Tonne = Zahlungsbereitschaft für die letzte gekaufte Tonne Aluminium

Der Markt für Aluminium

Soziale Kosten

 Wenn Aluminiumfabriken die Umwelt verschmutzen (z.B. über den Energieverbauch), entstehen zusätzliche volkswirtschaftliche Kosten

Soziale Kosten

- = Produktionskosten + Verschmutzungskosten
- Marktgleichgewicht
 - Reservationspreis der letzten Einheit
 - = Produktionskosten der letzten Einheit
 - < soziale Kosten der letzten Einheit.
- ► → Effizienzeinbuße

Soziales Optimum

Soziales Optimum

Das soziale Optimum verlangt

- Maximierung der Konsumenten- und Produzentenrente einschließlich der sozialen Kosten
- Soziale Kosten der letzten Tonne = Zahlungsbereitschaft für die letzte Tonne Aluminium
- ightharpoonup ightharpoonup Sozial optimale Menge q^{**} $< q^*$ Marktgleichgewichtsmenge

Der Wohlfahrtsverlust bei unregulierter Umweltverschmutzung

Internalisierungspolitik

Die Internalisierung einer negativen Externalität verlangt die Veränderung der Anreizstruktur derart, dass Käufer und Verkäufer die sozialen Kosten berücksichtigen (vgl. Regel 10)

A. C. Pigou (1912): Besteuerung von Umweltverschmutzung

Positive Externalitäten

- bewirken zusätzliche Vorteile bei unbeteiligten Dritten (z.B. Bildung, Schutzimpfung)
- Der soziale Wert ist dann h\u00f6her als die private Zahlungsbereitschaft
- Im Marktgleichgewicht ist der soziale Wert der nächsten Einheit größer als die Produktionskosten der nächste Einheit
- → die nächste Einheit sollte produziert & konsumiert werden!

Ausbildung und das soziale Optimum

Soziales Optimum

Das soziale Optimum verlangt

- Maximierung der Produzenten- und Konsumentenrente einschließlich des zusätzlichen sozialen Nutzens
- Sozialer Gesamtnutzen der letzten Gütereinheit
 Produktionskosten der letzten Einheit
- Sozial optimale Menge $=q^{**}>$ $q^*=$ Marktgleichgewichtsmenge

Internalisierungspolitik

Die Internalisierung einer positiven Externalität verlangt die Veränderung der Anreizstruktur derart, dass Käufer und Verkäufer den zusätzlichen sozialen Nutzen berücksichtigen.

- \rightarrow z.B. Subventionierung der Vermeidung von Umweltverschmutzung
- → z.B. Besteuerung des Konsums von Tabak

Pigou-Subvention bzw. Pigou-Steuer

Fallstudie Technologiepolitik

- ➤ Von der Erfindung nicht patentierter Technik profitieren auch fremde Unternehmen (positive Externalität)
- Im Marktgleichgewicht wird (gemessen am sozialen Optimum) zu wenig innoviert
- ▶ Patentschutz stellt sicher, dass lediglich diejenigen, die die Kosten von F&E tragen, den Nutzen haben
- ► In Einzelfällen wird F&E zusätzlich subventioniert: (Luftfahrt, Militärtechnik, Elektromobilität...)

Private Lösungen für externe Effekte

Staatliche Intervention ist nicht immer erforderlich

Bsp.: Obstbauer - Imker

- wechselseitige positive Externalität
- Internalisierung:
 - Obstbauer übernimmt Imkerei
 - Imker übernimmt Obstanbau
 - Obstbauer und Imker gründen ein Obst&Honig Unternehmen

Private Lösungen für externe Effekte

Beispiele:

- Gesellschaftliche Verhaltensregeln
- Gemeinnützige Organisationen
- ▶ Kooperation bei F&E
- Private Verträge zwischen Verursachern und Betroffenen von externen Effekten

Private Lösungen für externe Effekte

Coase-Theorem

- ► Effizienz wird ohne Staatseingriff erreicht, wenn die betroffenen Parteien über die Externalität verhandeln können
- Zwei Voraussetzungen müssen erfüllt sein:
 - 1. Eigentumsrechte müssen definiert sein (z.B. Recht auf Ackerdüngung vs. Recht auf unbelastete Trinkwasserentnahme)
 - 2. keine Transaktionskosten

Interventionen bei externen Effekten

Wenn private Lösungen versagen, sind vorrangig marktangepasste Instrumente zu prüfen:

- ▶ Pigou-Steuern(→ Steuern auf Kraftstoff)
- ▶ Pigou-Subventionen (→ E-Prämie)
- ► Handelbare Umweltzertifikate (→ European Emissions Trading Scheme)

Pigou-Subventionen

- erlauben positive externe Effekte zu internalisieren, wenn die Subventionsbasis und der Subventionssatz geeignet festgesetzt werden
- verbessern die Allokationseffizienz
- verursachen Ausgaben des Staates, die i.d.R. durch Steuern finanziert werden müssen, die eine Zusatzbelastung verursachen

Pigou-Steuern

- erlauben negative externe Effekte zu internalisieren, wenn die Steuerbasis und der Steuersatz geeignet festgesetzt werden
- verbessern die Allokationseffizienz
- Sichern dem Staat Einnahmen ohne steuerliche Zusatzbelastung ("doppelte Dividende")

Fallstudie EU Emissions Trading Scheme

CO2 Emmissionen Welt¹

¹Quelle: World Bank (link)

Fallstudie EU Emissions Trading Scheme

Ausstoß von Kohlendioxid pro Kopf²

Tonnen pro Kopf		Tonnen Gesamt Population (in Millionen)	
Deutschland	8,93	726 (2%)	81 (1%)
Europa	6,26	2.504 (8%)	417 (6%)
USA	16,22	4 801 (15%)	319 (4%)
OECD	9,36	11 185 (35%)	1 267 (17%)
Afrika	0,96	1 109 (3%)	1 156 (16%)
Welt	4,47	32 403	7.249

²Jahr 2014, Quelle: International Energy Agency

Fallstudie EU Emissions Trading Scheme "Cap and Trade"-Prinzip:

- ► Cap: Europaweite Grenze für CO2 Emissionen
- ► Trade: Zertifikate können gehandelt werden

Phase I 2005-2007: Pilotperiode

Messung von tatsächlichen Verschmutzungsmengen

- \rightarrow Grundlage für die Verteilung von Zertifikaten ("grandfathering")
- → Übertreibung der Verschmutzung um mehr Zertifikate zu erhalten

Fallstudie EU Emissions Trading Scheme

Phase II 2008-2012:

- Emissionsberechtigungen für 2 Mrd t CO2 / Jahr
- ► Etwa 90% Verteilung durch grandfathering
- Etwa 10% Verteilung durch Versteigerung

Phase III 2013-2020:

- jährliche Reduzierung der Emissionsberechtigungen um etwa 38 Mio t CO2 / Jahr
- ▶ jährliche Anhebung des Anteils der versteigerten Zertifikate um 10% (bis 70% in 2020)

Positive Eigenschaften des EU ETS

Effizienz

Alle Firmen bezahlen den gleichen Preis für Umweltverschmutzung.

Jene Firmen, die ...

- Emissionen zu den geringsten Kosten vermeiden können, investieren in die Vermeidung und erzielen Einnahmen durch den Verkauf von Verschmutzungsrechten
- Emissionen nur zu höheren Kosten vermeiden können, erwerben Rechte, um verschmutzen zu dürfen

Positive Eigenschaften des EU ETS

Sichere Verschmutzungsmenge

- ▶ Die maximale Emissionsmenge wird direkt festgelegt und kann nicht nur indirekt gesteuert werden.
- Hierdurch kann die Einhaltung internationaler
 Vereinbarungen (Kyoto / Paris) besser
 kontrolliert werden

Positive Eigenschaften des EU ETS

Erlös

- Durch die Versteigerung von Verschmutzungsrechten werden Einnahmen erzielt.
- ► (50%) der Erlöse müssen der Finanzierung von klimarelevanten Maßnahmen dienen.

Funktionsweise des EU ETS

Der Marktpreis von Emissionsrechten³

³Quelle: Börse Leipzig (<u>link</u>)

Äquivalenz von Pigou-Steuern und Umweltzertifikaten

Äquivalenz von Pigou-Steuern und Umweltzertifikaten

Stichwörter

- Externalität, externer Effekt
- negativer externer Effekt
- positiver externer Effekt
- volkswirtschaftliche Kosten
- Coase-Theorem
- Pigou-Steuer
- ▶ EU Emissions Trade Scheme