AAAAA

Jian-Jia Chen, Wen-Hung Huang, and Geoffrey Nelissen
TU Dortmund University, Germany
Email: jian-jia.chen@tu-dortmund.de, wen-hung.huang@tu-dortmund.de
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal
Email: grrpn@isep.ipp.pt

1 Introduction

2 Task Model

This paper presents a proof to support the correctness of the schedulability test for self-suspending real-time task systems proposed by Jane W. S. Liu in her book titled "Real-Time Systems" [3, Pages 164-165]. The same concept was also implicitly used by Rajkumar, Sha, and Lehoczky [6, Page 267] for analyzing self-suspending behaviour due to synchronization protocols in multiprocessor systems.

The system model and terminologies are defined as follows: We assume a system composed of n sporadic selfsuspending tasks. A sporadic task τ_i is released repeatedly, with each such invocation called a job. The j^{th} job of τ_i , denoted $\tau_{i,j}$, is released at time $r_{i,j}$ and has an absolute deadline at time $d_{i,j}$. Each job of any task τ_i is assumed to have a worst-case execution time C_i . Each job of task τ_i suspends for at most S_i time units (across all of its suspension phases). When a job suspends itself, the processor can execute another job. The response time of a job is defined as its finishing time minus its release time. Successive jobs of the same task are required to execute in sequence. Associated with each task τ_i are a period (or minimum inter-arrival time) T_i , which specifies the minimum time between two consecutive job releases of τ_i , and a relative deadline D_i , which specifies the maximum amount of time a job can take to complete its execution after its release, i.e., $d_{i,j} = r_{i,j} + D_i$. The worst-case response time R_i of a task τ_i is the maximum response time among all its jobs. The utilization of a task τ_i is defined as $U_i = C_i/T_i$.

In this paper, we focus on constrained-deadline task systems, in which $D_i \leq T_i$ for every task τ_i . We only consider preemptive fixed-priority scheduling on a single processor, in which each task is assigned with a unique priority level. We assume that the priority assignment is given.

We assume that the tasks are numbered in a decreasing priority order. That is, a task with a smaller index has higher priority than any task with a higher index, i.e., task τ_i has a higher-priority level than task τ_{i+1} . When performing the schedulability analysis of a specific task τ_k , we assume that $\tau_1, \tau_2, \ldots, \tau_{k-1}$ are already verified to meet their deadlines, i.e., that $R_i \leq D_i, \forall \tau_i \mid 1 \leq i \leq k-1$.

3 Existing Analyses

To analyze the worst-case response time (or the schedulability) of task τ_k , we usually need to quantify the worst-case interference caused by the higher-priority tasks on the execution of any job of task τ_k . In the ordinary sequential

sporadic real-time task model, i.e., when $S_i = 0$ for every task τ_i , the so-called critical instant theorem by Liu and Layland [2] is commonly adopted. That is, the worst-case response time of task τ_k (if it is less than or equal to its period) happens for the first job of task τ_k when τ_k and all the higher-priority tasks release a job synchronously and the subsequent jobs are released as early as possible (i.e., with a rate equal to their period). However, as proven in [4], this definition of the critical instant does not hold for self-suspending sporadic tasks.

3.1 Model the Back-to-Back Hit as Jitter

A constrained-deadline task τ_k can be feasibly scheduled by the fixed-priority scheduling if

$$\exists t \mid 0 < t \le D_k, \qquad C_k + S_k + \sum_{i=1}^{k-1} \left\lceil \frac{t + D_i - C_i}{T_i} \right\rceil C_i \le t.$$
(1)

3.2 Model Suspension Time as Blocking Time

In [3, Pages 164-165], Jane W. S. Liu proposed a solution to study the schedulability of self-suspending tasks by modeling the *extra delay* suffered by a task τ_k due to the self-suspending behavior of the tasks as a blocking time denoted as B_k and defined as follows:

- The blocking time contributed from task τ_k is S_k .
- A higher-priority task τ_i can only block the execution of task τ_k by at most $b_i = min(C_i, S_i)$ time units.

Therefore,

$$B_k = S_k + \sum_{i=1}^{k-1} b_i. {2}$$

In [3], the blocking time is then used to derive a utilization-based schedulability test for rate-monotonic scheduling. Namely, it is stated that if $\frac{C_k+B_k}{T_k}+\sum_{i=1}^{k-1}U_i\leq k(2^{\frac{1}{k}}-1)$, then task τ_k can be feasibly scheduled by using rate-monotonic scheduling if $T_i=D_i$ for every task τ_i in the given task set. If the above argument is correct, we can further prove that a constrained-deadline task τ_k can be feasibly scheduled by the fixed-priority scheduling if

$$\exists t \mid 0 < t \le D_k, \qquad C_k + B_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \le t.$$
 (3)

The same concept was also implicitly used by Rajkumar, Sha, and Lehoczky [6, Page 267] for analyzing self-suspending

behaviour due to synchronization protocols in multiprocessor systems. To account for the self-suspending behaviour, it reads as follows:1

For each higher priority job J_i on the processor that suspends on global semaphores or for other reasons, add the term $min(C_i, S_i)$ to B_k , where S_i is the maximum duration that J_i can suspend itself. The sum ... yields B_k , which in turn can be used in $\frac{C_k+B_k}{T_k}+\sum_{i=1}^{k-1}U_i\leq k(2^{\frac{1}{k}}-1)$ to determine whether the current task allocation to the processor is schedulable.

However, there is no proof in [3], [6] to support the correctness of the above tests. We will support the correctness of the above analysis by proving a more powerful analysis framework.

Our General Analysis Framework

We can greedily convert the suspension time of task τ_k to its computation time. For the sake of notational brevity, let C_k' be $C_k + S_k$. We call this converted version of task τ_k as task τ_k' . Suppose that R_k' is the worst-case response time in the task system $\{\tau_1, \tau_2, \dots, \tau_{k-1}, \tau_k'\}$. It was already shown in the previous works, e.g., Lemma 3 in [1] and Theorem 2 in [4], that R'_k is a safe upper bound on the worst-case response time of task τ_k in the original task system.

Our key result in this paper is the following theorem:

Theorem 1. Suppose that $R'_k \leq T_k$. For any arbitrary vector assignment $\vec{x} = (x_1, x_2, \dots, x_{k-1})$, in which x_i is either 0 or 1, the worst-case response time R'_k is upper bounded by the minimum t (with t > 0) that satisfies

$$C'_{k} + \sum_{i=1}^{k-1} \left\lceil \frac{t + Q_{i}^{\vec{x}} + (1 - x_{i})(D_{i} - C_{i})}{T_{i}} \right\rceil C_{i} \le t,$$
 (4)

where $Q_i^{\vec{x}}$ is $\sum_{j=i}^{k-1} S_j \cdot x_j$.

With Theorem 1, we can directly have the following

Corollary 1. If there exists a vector assignment $\vec{x} =$ $(x_1, x_2, \ldots, x_{k-1})$, in which x_i is either 0 or 1, such that

$$\exists t | 0 < t \le D_k, C_k' + \sum_{i=1}^{k-1} \left\lceil \frac{t + Q_i^{\vec{x}} + (1 - x_i)(D_i - C_i)}{T_i} \right\rceil C_i \le t,$$
(5)

where $Q_i^{\vec{x}}$ is $\sum_{j=i}^{k-1} S_j \cdot x_j$, then a constrained-deadline task τ_k can be feasibly scheduled by the fixed-priority scheduling.

4.1 An Illustrative Example and Dominance

We use an example to demonstrate how Corollary 1 can be applied. Suppose that we have three tasks

- $\begin{array}{l} \bullet \ \, C_1=4, S_1=5, T_1=D_1=10, \\ \bullet \ \, C_2=6, S_2=1, T_2=D_2=19, \text{ and} \\ \bullet \ \, C_3=4, S_3=0, T_3=D_3=35. \end{array}$

Tasks τ_1 and τ_2 can be verified to be schedulable under the fixed-priority scheduling by using Eq. (1).

We focus on task τ_3 . For task τ_3 , the blocking term B_3 is 4+1=5 by Eq. (2). The minimum t to satisfy C_k+B_k+ $\sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \le t$ happens when t = 37, i.e., $4+5+\left\lceil \frac{37}{10} \right\rceil \cdot 4+$ $\left[\frac{37}{19}\right] \cdot 6 = 37$. Therefore, task τ_3 cannot pass the schedulability test in Eq. (3). There are four possible vector assignments \vec{x} when we consider the schedulability of task τ_3 :

• Case 1 $\vec{x} = (0,0)$: In this case, Theorem 1 states that R'_k is upper bounded by the minimum t under $0 < t \le T_3$ that satisfies

$$4 + \left\lceil \frac{t+6}{10} \right\rceil \cdot 4 + \left\lceil \frac{t+13}{19} \right\rceil \cdot 6 \le t. \tag{6}$$

Such a value t does not exist for this case.

Case 2 $\vec{x} = (0, 1)$: In this case, Theorem 1 states that R'_{i} is upper bounded by the minimum t under $0 < t \le T_3^n$ that satisfies

$$4 + \left\lceil \frac{t+7}{10} \right\rceil \cdot 4 + \left\lceil \frac{t+1}{19} \right\rceil \cdot 6 \le t. \tag{7}$$

Therefore, $R_k' \leq 32$ due to $4+\left\lceil \frac{32+7}{10}\right\rceil \cdot 4+\left\lceil \frac{32+1}{19}\right\rceil \cdot 6=32$. Case 3 $\vec{x}=(1,0)$: In this case, Theorem 1 states that R_k'

is upper bounded by the minimum t under $0 < t \le T_3^{\prime\prime}$ that satisfies

$$4 + \left\lceil \frac{t+5}{10} \right\rceil \cdot 4 + \left\lceil \frac{t+13}{19} \right\rceil \cdot 6 \le t. \tag{8}$$

Such a value t does not exist for this case.

Case 4 $\vec{x} = (1, 1)$: In this case, Theorem 1 states that R'_k is upper bounded by the minimum t under $0 < t \le T_3$ that satisfies

$$4 + \left\lceil \frac{t+6}{10} \right\rceil \cdot 4 + \left\lceil \frac{t+1}{19} \right\rceil \cdot 6 \le t. \tag{9}$$

Therefore, $R'_k \leq 32$ due to $4 + \left\lceil \frac{32+6}{10} \right\rceil \cdot 4 + \left\lceil \frac{32+1}{10} \right\rceil \cdot 6 = 32$.

Among the above four cases, the test in Case 4, i.e., Eq. (9), is the tightest. By Corollary 1, task τ_3 is schedulable by the fixed-priority scheduling policy.

In fact, the following theorem shows that the test in Corollary 1 analytically dominates the existing tests in Eq. (1) and Eq. (3).

Theorem 2. The schedulability test in Corollary 1 dominates the schedulability tests in Eq. (1) and Eq. (3).

Proof: The dominance of Eq. (1) can be easily seen by considering the vector assignment $x_1 = x_2 = \cdots = x_{k-1} = 0$. The resulting test in Eq. (5) is identical to Eq. (3) for this vector assignment.

We now prove the dominance of Eq. (3) by considering the vector assignment \vec{x} in which

$$x_i = \begin{cases} 1 & \text{if } S_i \le C_i \\ 0 & \text{otherwise,} \end{cases}$$

for $i=1,2,\ldots,k-1$. By the fact that $Q_i^{\vec{x}} \leq Q_1^{\vec{x}}$ for $i=1,2,\ldots,k-1$, we know that it is more pessimistic if we test $C_k' + \sum_{i=1}^{k-1} \left\lceil \frac{t+Q_1^{\vec{x}}+(1-x_i)(D_i-C_i)}{T_i} \right\rceil C_i \leq t$ instead of testing Eq. (5). Let θ be $t+Q_1^{\vec{x}}$. Therefore, we know that R_k' is upper

¹We rephrased the wordings and notations to be consistent with this paper.

bounded by the minimum $\theta - Q_1^{\vec{x}} > 0$ such that

$$C'_k + \sum_{i=1}^{k-1} \left\lceil \frac{\theta + (1 - x_i)(D_i - C_i)}{T_i} \right\rceil C_i \le \theta - Q_1^{\vec{x}}$$
 (10)

$$\Rightarrow C'_k + Q_1^{\vec{x}} + \sum_{i=1}^{k-1} \left[\frac{\theta + (1 - x_i)(D_i - C_i)}{T_i} \right] C_i \le \theta. \tag{11}$$

Moreover, by the fact that $D_i \leq T_i$ for $i=1,2,\ldots,k-1$, we also have $\left\lceil \frac{\theta+(1-x_i)(D_i-C_i)}{T_i} \right\rceil C_i \leq \left\lceil \frac{\theta+(1-x_i)T_i}{T_i} \right\rceil C_i = (1-x_i)C_i + \left\lceil \frac{\theta}{T_i} \right\rceil C_i$. Therefore, we know that R_k' is upper bounded by the minimum $\theta-Q_1^{\vec{x}}>0$ such that

$$C_k + S_k + \sum_{i=1}^{k-1} (x_i S_i + (1 - x_i) C_i) + \sum_{i=1}^{k-1} \left\lceil \frac{\theta}{T_i} \right\rceil C_i \le \theta.$$
 (12)

By the fact that B_k is defined as $S_k + \sum_{i=1}^{k-1} (x_i S_i + (1-x_i) C_i)$, and $Q_1^{\vec{x}} \ge 0$, the above test in Eq. (12) is analytically tighter than that in Eq. (3), which concludes the proof.

4.2 Proof of Theorem 1

We now provide the proof to support the correctness of the test in Theorem 1. Our proof strategy is to show that the worst-case response time of task τ_k can be safely upper-bounded by any assignment of \vec{x} of the k-1 higher-priority tasks when adopting Eq. (4) as the response time analysis.

Throughout the proof, we consider any arbitrary assignment \vec{x} . For the sake of notational brevity, we classify the k-1 higher-priority tasks into two sets: \mathbf{T}_0 and \mathbf{T}_1 . A task τ_i is in \mathbf{T}_0 if x_i is 0; otherwise, it is in \mathbf{T}_1 .

Our analysis is also based on very simple properties and lemmas enunciated as follows:

Property 1. In a preemptive fixed-priority schedule, the lower-priority jobs do not impact the schedule of the higher-priority jobs.

Lemma 1. In a preemptive fixed-priority schedule, if the worst-case response time of task τ_i is no more than its period T_i , preventing the release of a job of task τ_i does not affect the schedule of any other job of task τ_i .

Proof: Since the worst-case response time of task τ_i is no more than its period, any job $\tau_{i,j}$ of task τ_i completes its execution before the release of the next job $\tau_{i,j+1}$. Hence, the execution of $\tau_{i,j}$ does not directly interfere with the execution of any other job of τ_i , which then depends only on the schedule of the higher priority jobs. Furthermore, as stated in Property 1, the removal of $\tau_{i,j}$ has no impact on the schedule of the higher-priority jobs, thereby implying that the other jobs of task τ_i are not affected by the removal of $\tau_{i,j}$.

With the above properties, we now present the proof of Theorem 1 as follows:

Proof of Theorem 1. Let us consider the task set τ' composed of $\{\tau_1,\tau_2,\ldots,\tau_{k-1},\tau_k',\tau_{k+1},\ldots\}$ and let Ψ be a schedule of τ' that generates the worst-case response time of τ_k' , in which $R_k' \leq T_k$ by our assumption. The proof is built upon the two following steps:

- 1) We discard all the jobs that do not contribute to the worst-case response time of τ_k' in the schedule Ψ . We follow an inductive strategy by iteratively inspecting the schedule of the higher priority tasks in Ψ , starting with τ_{k-1} until the highest priority task τ_1 . At each iteration, a time instant t_j is identified such that $t_j \leq t_{j+1}$ $(1 \leq j < k)$. Then, all the jobs of task τ_j released before t_j are removed from the schedule and, if needed, replaced by an artificial job mimicking the interference caused by the residual workload of task τ_j at time t_j on the worst-case response time of τ_k' .
- 2) The final reduced schedule is analyzed so as to characterize the worst-case response time of τ'_k in Ψ . We then prove that the response time analysis in Eq. (4) is indeed an upper bound on the worst-case response time R'_k of τ'_k .

Step 1: Reducing the schedule Ψ

During this step, we iteratively build an artificial schedule Ψ^j from Ψ^{j+1} (with $1 \leq j < k$) so that the response time of τ'_k remains identical. At each iteration, we define t_j for task τ_j in the schedule Ψ^{j+1} (with $j=k-1,k-2,\ldots,1$) and build Ψ^j by removing all the jobs released by τ_j before t_j .

Basic step (definition of Ψ^k and t_k):

Suppose that the job J_k of task τ'_k with the largest response time in Ψ arrives at time r_k and finishes at time f_k . We know by Property 1 that the lower priority tasks $\tau_{k+1}, \tau_{k+2}, \ldots, \tau_n$ do not impact the response time of J_k . Moreover, since we assume that the worst-case response time of task τ'_k is no more than T_k , Lemma 1 proves that removing all the jobs of task τ'_k but J_k has no impact on the schedule of J_k . Therefore, let Ψ^k be a schedule identical to Ψ but removing all the jobs released by the lower priority tasks $\tau_{k+1}, \ldots, \tau_n$ as well as all the jobs released by τ'_k at the exception of J_k . The response time of J_k in Ψ^k is thus identical to the response time of J_k in Ψ .

We define t_k as the release time of J_k (i.e., $t_k = r_k$).

Induction step (definition of Ψ^j and t_j with $1 \leq j < k$):

Let r_j be the arrival time of the last job released by τ_j before t_{j+1} in Ψ^{j+1} and let J_j denote that job. Removing all the jobs of task τ_j arrived before r_j has no impact on the schedule of any other job released by τ_j (Lemma 1) or any higher priority job released by τ_1,\ldots,τ_{j-1} (Property 1). Moreover, because by the construction of Ψ^{j+1} , no task with a priority lower than τ_j executes jobs before t_{j+1} in Ψ^{j+1} , removing the jobs released by τ_j before t_{j+1} does not impact the schedule of the jobs of t_{j+1},\ldots,τ_k . Therefore, we can safely remove all the jobs of task t_j arrived before t_j without impacting the response time of t_j . Two cases must then be considered:

- (a) $\tau_j \in \mathbf{T}_1$. In this case, we analyze two different subcases:
 - J_j completed its execution before or at t_{j+1} . By Lemma 1 and Property 1, removing all the jobs of task τ_j arrived before t_{j+1} has no impact on the schedule of the higher-priority jobs (jobs released by $\tau_1, \ldots, \tau_{j-1}$) and the jobs of τ_j released after or at t_{j+1} . Moreover,

because no task with lower priority than τ_j executes jobs before t_{j+1} in Ψ^{j+1} , removing the jobs released by τ_j before t_{j+1} does not impact the schedule of the jobs of τ_{j+1},\ldots,τ_k . Therefore, t_j is set to t_{j+1} and Ψ^j is generated by removing all the jobs of task τ_j arrived before t_{j+1} . The response time of J_k in Ψ^j thus remains unchanged in comparison to its response time in Ψ^{j+1} .

• J_j did not complete its execution by t_{j+1} . For such a case, t_j is set to r_j and hence Ψ^j is built from Ψ^{j+1} by removing all the jobs released by τ_j before r_j .

Note that because by the construction of Ψ^{j+1} and hence Ψ^j there is no job with priority lower than τ_j available to be executed before t_{j+1} , the maximum amount of time during which the processor remains idle within $[t_j,t_{j+1})$ is at most S_j time units.

(b) $\tau_j \in \mathbf{T}_0$. For such a case, we set t_j to t_{j+1} . Let c_j^* be the remaining execution time for the job of task τ_j at time t_j . We know that c_j^* is at most C_j . Since by the construction of Ψ^j , all the jobs of τ_j released before t_j are removed, the job of task τ_j arrived at time r_j ($< t_j$) is replaced by a new job released at time t_j with execution time c_j^* and the same priority than τ_j . Clearly, this has no impact on the execution of any job executed after t_j and thus on the response time of J_k . The remaining execution time c_j^* of τ_j at time t_j is called the *residual workload* of task τ_j for the rest of the proof.

The above construction of $\Psi^{k-1}, \Psi^{k-2}, \dots, \Psi^1$ is repeated until producing Ψ^1 . The procedures are well-defined. Therefore, it is guaranteed that Ψ^1 can be constructed. Note that after each iteration, the number of jobs considered in the schedule have been reduced, yet without affecting the response time of J_k .

Step 2: Analyzing the final reduced schedule Ψ^1

We now analyze the properties of the final schedule Ψ^1 in which all the unnecessary jobs have been removed. The proof is based on the fact that for any interval $[t_1, t)$, there is

$$idle(t_1, t) + exec(t_1, t) = (t - t_1)$$
 (13)

where $\operatorname{exec}(t_1,t)$ is the amount of time during which the processor executed tasks within $[t_1,t)$, and $\operatorname{idle}(t_1,t)$ is the amount of time during which the processor remained idle within the interval $[t_1,t)$.

If $t_i < t_{i+1}$, the processor may idle in the time interval $[t_i, t_{i+1})$ in Ψ^1 . Suppose that σ_i is the sum of the idle time in this interval $[t_i, t_{i+1})$ in Ψ^1 . Therefore, we have

$$idle(t_1, t) \le \sum_{i:t_i < t} \sigma_i.$$
 (14)

From case (a) of Step 1, we know that $\sigma_i \leq S_i$.

Because there is no job released by lower priority tasks than τ_k' in Ψ^1 , we only focus on the execution patterns of the tasks $(\tau_1, \tau_2, \ldots, \tau_{k-1}, \tau_k')$. According to Step 1, we should consider two cases:

• If task τ_j is in \mathbf{T}_1 , there is no job arrived before t_j in Ψ^1 . This corresponds to both subcases in case (a) in Step 1. In this case, for any $\Delta \geq 0$, the workload contributed

from task τ_j from t_j to $t_j + \Delta$ that is executed on the processor is at most

$$W_j^1(\Delta) = \left\lfloor \frac{\Delta}{T_j} \right\rfloor C_j + \min \left\{ \Delta - \left\lfloor \frac{\Delta}{T_j} \right\rfloor T_j, C_j \right\}. \tag{15}$$

- If task τ_j is in \mathbf{T}_0 , there may be a job arrived before t_j with residual workload c_j^* at time t_j . This corresponds to case (b) in Step 1. There are two subcases.
 - o If the residual workload c_j^* of task τ_j is 0, the earliest arrival time of task τ_j can be any time point at or after t_j . In this case, for any $\Delta \geq 0$, the workload contributed from task τ_j from t_j to $t_j + \Delta$ that is executed on the processor is at most

$$\widehat{W}_{j}^{0}(\Delta, 0) = W_{j}^{1}(\Delta). \tag{16}$$

o If the residual workload c_j^* of task τ_j is positive, the absolute deadline of the job corresponding to the residual workload must be at least $t_j + c_j^*$; otherwise, the job corresponding to the residual workload would miss its deadline. Therefore, the earliest arrival time of task τ_j arriving strictly after t_j is at least $t_j + (T_j - D_j + c_j^*)$ in Ψ^1 . For notational brevity, let ρ_j be $(T_j - D_j + c_j^*)$. In this case, for any $\Delta \geq 0$ and $c_j^* > 0$, the workload contributed from task τ_j from t_j to $t_j + \Delta$ that is executed on the processor is at most

$$\widehat{W}_{j}^{0}(\Delta, c_{j}^{*}) = \begin{cases} \Delta & \text{if } \Delta \leq c_{j}^{*} \\ c_{j}^{*} & \text{if } c_{j}^{*} < \Delta \leq \rho_{j} \\ c_{j}^{*} + W_{j}^{1}(\Delta - \rho_{j}) & \text{otherwise.} \end{cases}$$

$$(17)$$

It is proved in Lemma 2 that the worst case residual workload in $\widehat{W}_{j}^{0}(\Delta, c_{j}^{*})$ by considering both Eq. (16) and Eq. (17) is to have $c_{j}^{*} = C_{j}$, i.e., for all $\Delta \geq 0$, we have $\widehat{W}_{j}^{0}(\Delta, C_{j}) \geq \widehat{W}_{j}^{0}(\Delta, c_{j}^{*})$. For the sake of notational brevity, let

$$W_j^0(\Delta) = \stackrel{\text{def}}{\text{def}} \widehat{W}_j^0(\Delta, C_j)$$
 (18)

Putting the execution time from the tasks in \mathbf{T}_0 and \mathbf{T}_1 together, we have for $i=2,3,\ldots,k-1, \ \forall t \mid t_{i-1} \leq t < t_i$

$$\operatorname{exec}(t_1, t) \le \sum_{j=1}^{i-1} x_j \cdot W_j^1(t - t_j) + (1 - x_j) \cdot W_j^0(t - t_j).$$
(19)

Putting Eqs. (13), (14), (19) together, we have for $i=2,3,\ldots,k-1, \ \forall t \mid t_{i-1} \leq t < t_i$

$$\sum_{j=1}^{i-1} x_j \cdot (W_j^1(t-t_j) + \sigma_j) + (1-x_j) \cdot W_j^0(t-t_j) \ge t - t_1.$$
 (20)

Moreover, $\forall t \mid t_k \leq t < f_k$, we have

$$C'_{k} + \sum_{j=1}^{k-1} x_{j} \cdot (W_{j}^{1}(t - t_{j}) + \sigma_{j}) + (1 - x_{j}) \cdot W_{j}^{0}(t - t_{j}) > t - t_{1}.$$
(21)

Step 3: Creating Safe Response-Time Analysis

This step constructs a safe response-time analysis based on the conditions in Eqs. (20) and (21). We will construct another release pattern which moves t_i to t_i^* for i = 2, 3, ..., k such that $t_i^* < t_i$ and the corresponding conditions in Eqs. (20) and (21) will become worse when we use t_i^* . We start the procedure as follows:

- Initial Step: Let t_1^* be t_1 .
- Iterative steps $(i=2,3,\ldots,k)$: Let t_i^* be $t_{i-1}^*+x_{i-1}$.

This results in $t_i^* \leq t_i$ for $i=2,3,\ldots,k$. Moreover, by definition, t_j^* is $t_1^* + \sum_{i=1}^{j-1} x_i \cdot \sigma_i$ for $j=2,3,\ldots,k$. For any task τ_j in \mathbf{T}_1 , $\forall \Delta \geq 0$, since $t_j \geq t_j^*$, we have

$$W_i^1(\Delta) \le W_i^1(\Delta + (t_i - t_i^*)).$$
 (22)

For any task τ_i in \mathbf{T}_0 , $\forall \Delta \geq 0$, since $t_i \geq t_i^*$, we have

$$W_i^0(\Delta) \le W_i^0(\Delta + (t_j - t_i^*)).$$
 (23)

Therefore, for any $j=1,2,\ldots,k-1$, the contribution $W_j^1(t-t_j) \leq W_j^1(t-t_j^*)$ and $W_j^0(t-t_j) \leq W_j^0(t-t_j^*)$ for any $t \geq t_j$. Putting these into Eqs. (20) $\forall t \mid t_k^* \leq t < t_k$ leads

$$\sum_{j=1}^{k-1} x_j \cdot (W_j^1(t - t_j^*) + \sigma_j) + (1 - x_j) \cdot W_j^0(t - t_j^*) \ge t - t_1,$$

$$\Rightarrow \sum_{j=1}^{k-1} x_j \cdot W_j^1(t - t_j^*) + (1 - x_j) \cdot W_j^0(t - t_j^*) \ge t - t_k^*. \tag{24}$$

Similarly, putting these into Eqs. (21) leads to

$$C'_k + \sum_{j=1}^{k-1} x_j \cdot W_j^1(t - t_j^*) + (1 - x_j) \cdot W_j^0(t - t_j^*) > t - t_k^*. \tag{25}$$

By the assumption that $C'_k \ge C_k > 0$, we can unify the above inequalities in Eq. (24) and Eq. (25) as follows: $\forall t \mid t_k^* \leq t < t$ f_k

$$C'_k + \sum_{j=1}^{k-1} x_j \cdot W_j^1(t - t_j^*) + (1 - x_j) \cdot W_j^0(t - t_j^*) > t - t_k^*.$$
 (26)

By definition, $\forall t \mid t_k^* \leq t < f_k$, we have $t - t_i^* =$ $t - t_k^* + \sum_{\ell=j}^{k-1} x_\ell \sigma_\ell \text{ for every } j = 1, 2, \dots, k-1. \text{ Therefore, we know that } W_j^1(t - t_j^*) \leq \left\lceil \frac{t - t_k^* + \sum_{\ell=j}^{k-1} x_\ell \sigma_\ell}{T_j} \right\rceil C_j \text{ for }$ task τ_j in \mathbf{T}_1 . Moreover, $\forall t \mid t_k^{\dagger} \leq t < f_k$, we have $W_j^0(t-t_j^*) \leq \left\lceil \frac{t-t_k^* + \sum_{\ell=j}^{k-1} x_\ell \sigma_\ell + (1-x_j)(D_j-C_j)}{T_j} \right\rceil C_j$ for task τ_j in \mathbf{T}_0 . Therefore, we can conclude that $\forall t \mid t_k^* \leq t < f_k$

$$C'_{k} + \sum_{j=1}^{k-1} \left\lceil \frac{t - t_{k}^{*} + X_{j} + (1 - x_{j})(D_{j} - C_{j})}{T_{j}} \right\rceil C_{j} > t - t_{k}^{*},$$
(27)

where X_j is $\sum_{\ell=j}^{k-1} x_\ell \sigma_\ell$. We replace $t-t_k^*$ with θ . The above inequation implies that the minimum θ with $\theta > 0$ such that $C_k' + \sum_{j=1}^{k-1} \left\lceil \frac{\theta + X_j + (1-x_j)(D_j - C_j)}{T_j} \right\rceil C_j = \theta$ is larger than or equal to $f_k - t_k^* \geq f_k - t_k$.

However, the above condition requires knowledge of σ_i . It is straightforward to see $\sum_{j=1}^{k-1} \left\lceil \frac{\theta + X_j + (1-x_j)(D_j - C_j)}{T_j} \right\rceil C_j$ reaches the worst if X_i is the largest. Since X_i is upper bounded by $Q_i^{\vec{x}}$ defined in Theorem 1, we reach the conclusion. \square

To illustrate Step 1 in the above proof, we also provide one concrete example. Consider a task system with the following

- $T_1 = 6, C_1 = 1, S_1 = 1,$
- $T_2 = 10, C_2 = 1, S_2 = 6,$ $T_3 = 18, C_3 = 4, S_3 = 1,$ $T_4 = 20, C_4 = 5, S_4 = 0.$

Figure 1 demonstrates a schedule for the jobs of the above 4 tasks. We assume that the first job of task τ_1 arrives at time $4+\epsilon$ with a very small $\epsilon>0$. The first job of task τ_2 suspends itself from time 0 to time $5+\epsilon$, and is blocked by task τ_1 from time $5 + \epsilon$ to time $6 + \epsilon$. After some very short computation with ϵ amount of time, the first job of task τ_2 suspends itself again from time $6+2\epsilon$ to 7. In this schedule, f_k is set to $20-\epsilon$.

We define t_4 as 7. Then, we set t_3 to 6. When considering task τ_2 , since it belongs to \mathbf{T}_1 , we greedily set t_2 to $t_3=6$ and the residual workload C_2' is 1. Then, t_1 is set to $4+\epsilon$. In the above schedule, the idle time from $4 + \epsilon$ to $20 - \epsilon$ is at most $2 = S_1 + S_3$. We have to further consider one job of task τ_2 arrived before time t_1 with execution time C_2 .

Lemma 2. $\forall \Delta \geq 0 \text{ and } \forall c_i^* \geq 0,$

$$\widehat{W}_{j}^{0}(\Delta, C_{j}) \ge \widehat{W}_{j}^{0}(\Delta, c_{j}^{*}),$$

where $\widehat{W}^0_j(\Delta,0)$ is defined in Eq. (16) and $\widehat{W}^0_j(\Delta,c_j^*)$ is defined in Eq. (17) if $c_j^*>0$.

Proof:

Testing Different Vector Assignments

To test the schedulability of task τ_k , Corollary 1 implies to test all the possible vector assignments $\vec{x} = (x_1, x_2, \dots, x_{k-1})$, in which there are 2^{k-1} different combinations. Therefore, the time complexity becomes exponential if we consider all the vector assignments. This section provides a few tricks to reduce the time complexity while adopting Corollary 1.

Linear Approximation

Here, we explain how to use the linear approximation of the test in Eq. (5) to help derive a good vector assignment. By the definition of [x], we have the following inequality:

$$C'_{k} + \sum_{i=1}^{k-1} \left[\frac{t + \sum_{\ell=i}^{k-1} x_{\ell} S_{\ell} + (1 - x_{i})(D_{i} - C_{i})}{T_{i}} \right] C_{i}$$

$$\leq C'_{k} + \sum_{i=1}^{k-1} \left(\frac{t + \sum_{\ell=i}^{k-1} x_{\ell} S_{\ell} + (1 - x_{i})(D_{i} - C_{i})}{T_{i}} + 1 \right) C_{i}$$

$$= C'_{k} + \sum_{i=1}^{k-1} \left(U_{i} \cdot t + C_{i} + U_{i}(1 - x_{i})(D_{i} - C_{i}) + U_{i} \sum_{\ell=i}^{k-1} x_{\ell} S_{\ell} \right)$$

$$= C'_{k} + \sum_{i=1}^{k-1} \left(U_{i} \cdot t + C_{i} + U_{i}(1 - x_{i})(D_{i} - C_{i}) + x_{i} S_{i} \left(\sum_{\ell=1}^{i} U_{\ell} \right) \right)$$

$$(28)$$

Fig. 1: An illustrative example of Step 1 in the proof of Theorem 1.

By observing Eq. (28), the contribution of x_i can be individually determined as $U_i(D_i-C_i)$ when x_i is 0 or $S_i(\sum_{\ell=1}^i U_\ell)$ when x_i is 1. Therefore, whether x_i should be set to 0 or 1 can be easily decided by individually comparing the two constants $U_i(D_i-C_i)$ and $S_i(\sum_{\ell=1}^i U_\ell)$. We denote the vector assignment obtained above by \vec{x}^{linear} . That is, for each higher-priority task τ_i ,

- if $U_i(D_i C_i) > S_i(\sum_{\ell=1}^i U_\ell)$, we greedily set x_i^{linear}
- otherwise, we greedily set x_i^{linear} to 0.

For notational brevity, we denote the right-hand side of Eq. (28) as $rbf_k(t, \vec{x})$ for any t > 0 and given \vec{x} .

Theorem 3. For any t > 0, the vector assignment \vec{x}^{linear} minimizes $rbf_k(t, \vec{x})$ among all 2^{k-1} possible vector assignments for the k-1 higher-priority tasks. Task τ_k is schedulable under the fixed-priority scheduling if

$$rbf_k(D_k, \vec{x}^{linear}) \le D_k.$$
 (29)

Deriving \vec{x}^{linear} requires O(k) time complexity and testing Eq. (28) also requires only O(k) time complexity.

Proof:

Corollary 2. Considering task τ_k from $\tau_1, \tau_2, \ldots, \tau_n$, the time complexity to test the schedulability of all these n tasks is O(n) by using the test in Theorem 3. Therefore, the amortized time complexity to test task τ_k by using the test in Theorem 3 is constant.

Proof:

5.2 Iterative Steps

6 Utilization Bounds and Speedup Factors

Suppose that $S_i \leq \gamma C_i$ for every task $\tau_i \in hp(\tau_k)$. We will present the utilization bounds in this subsection.

We start from the analysis by Liu, which considers the self-suspension time as blocking time for such cases. By using the k2U framework, task τ_k in an implicit deadline system is schedulable by using RM scheduling if

$$\left(\frac{C_k + S_k}{T_k} + 1 + \gamma\right) \prod_{i=1}^{k-1} (1 + U_i) \le 2 + \gamma.$$

That is, $0 < \alpha_i \le 1 + \gamma$ and $0 < \beta_i \le 1$ for $i = 1, 2, \dots, k - 1$. This gives the immediate utilization bound to find the infimum $\sum_{i=1}^k U_k$ such that

$$(1+\gamma)*(1+U_k)\prod_{i=1}^{k-1}(1+U_i)$$

$$\geq (\frac{C_k+S_k}{T_k}+1+\gamma)\prod_{i=1}^{k-1}(1+U_i) > 2+\gamma.$$

$$\Rightarrow \prod_{i=1}^{k}(1+U_i) > \frac{2+\gamma}{1+\gamma}.$$

Therefore, the utilization bound for a given $0 \le \gamma \le 1$ is $\ln(\frac{2+\gamma}{1+\gamma})$.

7 Conclusion

Acknowledgement: This paper is supported by DFG, as part of the Collaborative Research Center SFB876 (http://sfb876.tu-dortmund.de/).

References

- C. Liu and J.-J. Chen. Bursty-Interference Analysis Techniques for Analyzing Complex Real-Time Task Models. In 2014 IEEE Real-Time Systems Symposium. Institute of Electrical & Electronics Engineers (IEEE), dec 2014.
- [2] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. *Journal of the ACM*, 20(1):46–61, jan 1973.
- [3] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.
- [4] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Timing Analysis of Fixed Priority Self-Suspending Sporadic Tasks. In *Euromicro Conference* on Real-Time Systems (ECRTS), 2015.
- [5] R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In *Proceedings.*, 10th International Conference on Distributed Computing Systems. Institute of Electrical & Electronics Engineers (IEEE), 1990.
- [6] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In *Proceedings of the 9th IEEE Real-Time* Systems Symposium (RTSS '88), pages 259–269, 1988.