Mie Scattering Calculations: Advances in Technique and Fast, Vector-speed Computer Codes

Article ·	January 1979					
CITATIONS	S	READS				
330		2,241				
1 autho	r:					
6	Warren Wiscombe					
	National Aeronautics and Space Administration					
	170 PUBLICATIONS 13,654 CITATIONS					
	SEE PROFILE					

June 1979

Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes

Warren J. Wiscombe

ATMOSPHERIC ANALYSIS AND PREDICTION DIVISION

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER, COLORADO

ABSTRACT

Dave published the first widely-used Mie scattering codes in 1968. Even on the fastest computers, these codes and their descendants often took a great deal of computer time for problems of practical interest. In the intervening years, there have been a number of improvements in technique (some developed by this author and reported herein for the first time). At the same time, vector processing has increasingly become the wave of the future in scientific computing machines, and Mie computations can be effectively reorganized to take advantage of it.

The present document gathers these improvements in technique, together with the necessary reorganization to attain vector speed, to produce new Mie scattering codes suitable for modern computation.

Actually, two codes are presented. The first, MIEVO, attains as much vector speed as possible within the constraint of using the minimum possible memory. MIEVO is suitable for almost any computer, whether or not it has vector capabilities, and is generally faster and better designed than existing Mie codes.

The second code, MIEV1, attains maximum vector speed, at the expense of using more memory than MIEV0. It is most suitable for vector-processing computers. MIEV1 is anywhere from 10% to 300% faster on the CRAY-1 than MIEV0.

Detailed timing results are presented for both codes. The codes are thoroughly tested and documented and are exceptionally reliable and well-conditioned. Mie results up to size parameters of 20,000 have been generated without difficulty.

My own investigations in radiative transfer in the atmosphere have always depended on Mie scattering calculations, and such calculations have invariably devoured the lion's share of my computing resources. Therefore, I continually sought ways to speed-up Mie scattering calculations (or circumvent them). No major breakthroughs along these lines appeared in the literature. In the meantime, I made several minor advances in the Mie algorithms, none of which I published.

Then came the new vector-processing computers (like NCAK's CRAY-1), with their promise of speed increases of tenfold or more if one "vectorized" one's calculations. With this incentive, I completely scrapped my old set of Mie codes and proceeded to write, from scratch, Mie codes that would work at vector speed, yet be compatible with scalar machines. They incorporate everything I have learned about Mie calculations, both by myself and from others, during the past seven years. Several colleagues who tested these codes found them significantly better than what they had been using before; in particular, they reported speed increases by factors of 6 to 100. Hopefully other investigators will find the routines as useful as they did.

Many thanks to Holly Howard for her excellent job in typing my rather unruly manuscript and to Dr. James Coakley for reviewing it.

Warren Wiscombe June 1979

TABLE OF CONTENTS

		Page
1.	Introduction	1
2.	Specific Goals of the Algorithms	6
3.	Mie Scattering FormulaeGeneral Case	7
4.	Mie Scattering FormulaeSmall Particle Limit	24
5.	A _n Up-Recurrence Criterion	31
6.	Number of Terms in Mie Series	36
7.	Mie Scattering Subroutines	39
	7.1 Vectorization	40
	7.2 MIEVO	42
	7.3 MIEV1	44
	7.4 Testing	46
	7.5 Timing	49
8.	Summary	59
Ref	erences	60
App	endix I. MIEVO Code Listing and Flow Chart	A1
App	endix II. MIEV1 Code Listing and Flow Chart	A11
App	endix III. Sample Code Results	A21

1. INTRODUCTION

Calculations of light scattering from particles are needed in the widest variety of research endeavors, ranging from astronomy (interstellar dust scattering) to zoology (bacterial scattering).

The prototypical such calculation assumes that the particle is a homogeneous sphere, and the incident light a monochromatic plane wave. Clebsch worked out the mathematical machinery for this problem in 1861; in 1890 Lorenz gave a full solution for transparent spheres; in 1908 Mie, and in 1909 Debye, published completely general solutions. These references, and many others up through 1945, may be found in the excellent historical survey by Logan (1965). By an odd twist of fate, Mie's name has come to be exclusively associated with the problem; we shall adhere to this convention, but with full awareness that a misnomer is involved. Excellent accounts of Mie theory may be found in the books by Shifrin (1951), Van de Hulst (1957), Kerker (1969) and Born and Wolf (1975).

While the vast majority of scattering particles are not spherical, so that the Mie solution does not strictly apply to them, both intuition and experimental evidence (e.g., Zerull, 1976) indicate that, with averaging over orientation and/or size, mildly nonspherical particles scatter very much like 'equivalent' spheres. This, of course, vastly enhances the utility of the Mie solution. Van de Hulst (1957) and Kerker (1969) indicate some of the wide-ranging applications which are then possible.

The computational history of Mie scattering is quite different and much more recent than the theoretical history; Van de Hulst's

and Kerker's books both contain accounts of it. Van de Hulst notes that, while there have been some ambitious tabulations of various Mie quantities, these are useful mostly for checking computer codes. The reason is simply the <u>rapid oscillation</u> of most Mie quantities; these oscillations would be impossible to resolve in a comprehensive table, and they make tabular interpolation risky. Furthermore, there are resonances (sharp spikes) within Mie quantities whose scale is much finer even than the oscillations (Rosasco and Bennett, 1978; Chýlek <u>et al.</u>, 1978). Hence Mie scattering is a field which, unlike some, absolutely demands computer calculations. (Analytic approximations to Mie's solution are usually very limited in their range of application and, even when available, have an unfortunate tendency to be at least as complicated as the Mie solution itself.)

The number of Mie scattering calculations performed prior to the mid-1950s was expectably small. Things picked up rapidly thereafter, but until the late 1960s Mie calculations were done without much understanding of computational error, particularly ill-conditioning from subtraction of nearly equal numbers, and instability in recursion relations. Defining the <u>size parameter</u>

 $x = \frac{\text{circumference of sphere}}{\text{wavelength}}$

we may easily find cases where a straightforward programming of Mie's solution would incur serious computational error for x as small as 20-30. Thus, while many of the pre-1970 Mie results are undoubtedly correct, it would be foolish to place blind faith in them.

Because the Mie solution is a series with approximately x terms, because early computers were slow, and because x > 1 was virtual terra incognita, early computer calculations were generally restricted to 1 < x < 100. Irvine's 1965 paper is an excellent and frequently cited example from this period. But the explosive growth of computer technology soon permitted calculations for much larger size parameters; Dave's 1968b paper, which considers up to x = 785, is a good example.

A further development was Kattawar and Plass' (1967) paper pointing out the potential instability in the upward-recursive calculation of a Bessel function ratio in Mie theory (cf. Eq. 20). (Rayleigh actually discovered this around the turn of the century (Logan, 1965), but his observations had long been forgotten.) Their resolution of the difficulty, which has become standard, was to use downward recursion.

Deirmendjian's (1969) book describes the same instability problem but offers no solution to it.

Dave's (1968a, 1969a) IBM reports were important landmarks. They set forth an algorithm and a brace of computer codes for performing Mie calculations. While the number of different Mie codes in use today is undoubtedly large, most of them can trace their lineage back to Dave's subroutines.

With powerful subroutines like Dave's in hand, the 1970s saw an explosive growth in applications. My own experience may be illustrative. In 1971 I began investigating solar and longwave radiation transfer in an atmosphere containing clouds. The presence of clouds required Mie scattering calculations for a size distribution of water droplets for 100 or more wavelengths from 0.3 μm to 500 μm . Consider a wavelength of 0.5 μm and a cloud with drop sizes ranging from 0.1 μm to 50 μm .

The Mie calculation for this case proceeds from x = 1 to x = 628, in steps $\Delta x = 0.1$ (Dave, 1969b); for each value of x there are roughly x terms to be summed, at each of say 100 angles, so the total number of terms to be summed is about 200 million. And each term by itself requires considerable computation to generate! Now imagine this calculation repeated for 100 wavelengths (it is less onerous for longer wavelengths) and it will become clear why 'staggering' is not an exaggerated description of the task. Yet, as the decade wore on, applications—oriented Mie calculations of this magnitude became increasingly commonplace.

In spite of this pressure of applications, the decade has so far brought forward no great changes in the algorithmic structure of Mie computations, save for Palmer's (1977) work suggesting that replacing series by continued fractions may be faster and more accurate. There have, however, been a few minor improvements. One is a new way to initialize the downward Bessel function ratio recursion (Lentz, 1976). Others are in the nature of more efficient ways to organize the computation, devised by the present author in response to the problem outlined in the previous paragraph and published here for the first time.

The present document has, as its overall purpose, the incorporation of these advances in technique, made in the decade since Dave (1968a, 1969a), into a new set of Mie scattering codes. The specific goals of this effort are laid out in the following section, and the analytical and computational details are worked out in the remainder of the document.

To the uninitiated reader, the codes may appear as if they could have been written straightaway, without all the apparent niggling over small points. But their simplicity is deceptive; it conceals a multitude of blind alleys, pitfalls, instabilities, inefficiencies and inelegancies to which the "straightaway" approach would fall victim. A variety of decisions has to be made, often requiring considerable background study and some sophistication in numerical analysis.

Further advances will undoubtedly be forthcoming; but these algorithms already represent quite an advanced stage.

2. SPECIFIC GOALS OF ALGORITHMS

The specific goals that guided the formulation of the algorithms and codes herein were:

- maximum speed (including vector processing wherever possible)
- generality (furnishing all Mie quantities necessary for full polarization-dependent studies)
- reliability over broad ranges of refractive index and size parameter
- avoidance of all numerical instability
- portability (immediate executability on computers having single precision of at least 14 significant digits, like CDC and CRAY; executability with minor alterations on computers having significantly lower single precision)
- accuracy: at least 5-6 significant digits
- as simple and straightforward as possible within the constraints imposed by the previous goals.

Another goal, the use of minimum computer memory, proved incompatible in part with the main goal of maximum speed. This is because vector processing requires quantities, which could otherwise be scalars, to be stored in arrays. Therefore two separate codes were devised which have much in common but which either (a) have maximum speed, using as much memory as needed to achieve it (MIEV1); or (b) use minimum memory, attaining as much speed as possible within that constraint (MIEV0).

3. MIE SCATTERING FORMULAE--GENERAL CASE

The Mie scattering formulae are given in several books (Van de Hulst, 1957; Kerker, 1969; Deirmendjian, 1969) and by Dave (1968a, 1969a), although not always in the forms most suited to computation. We merely transcribe most of the relevant formulae below and give a reference; for those which are new, short derivations are provided. The five formulae (6-9) give the quantities actually calculated and returned by the codes MIEVO and MIEV1.

The two important independent variables in Mie theory are the size parameter

$$x = \frac{2\pi r}{\lambda}$$
 (1)

and

$$z = mx (2)$$

where

r = radius of scattering sphere

 λ = wavelength of incident plane wave

m = complex refractive index of sphere relative

to surrounding medium

$$m = m_{re} - im_{im}$$
 (3)

$$|m| > 1 \tag{4}$$

$$m_{i_m} > 0$$
 (5)

Restriction (4), which would, for example, exclude scattering from air bubbles in water, may not be necessary, but we have not tested the codes for such situations.

Extinction Efficiency Factor (Van de Hulst, Sec. 9.32)

$$Q_{\text{ext}} = \frac{2}{x^2} \sum_{n=1}^{N} (2n+1) \operatorname{Re} (a_n + b_n)$$
 (6)

Scattering Efficiency Factor (Van de Hulst, Sec. 9.32)

$$Q_{\text{sca}} = \frac{2}{x^2} \sum_{n=1}^{N} (2n+1) \{|a_n|^2 + |b_n|^2\}$$
 (7)

Asymmetry Factor (Kerker, Eq. 3.11.6)

$$g = \frac{4}{x^{2}Q_{sca}} \sum_{n=1}^{N} \left\{ \frac{n(n+2)}{n+1} \operatorname{Re} \left(a_{n}^{*} a_{n+1}^{*} + b_{n}^{*} b_{n+1}^{*} \right) + \frac{2n+1}{n(n+1)} \operatorname{Re} \left(a_{n}^{*} b_{n}^{*} \right) \right\}$$
(8)

Scattering Amplitudes (Van de Hulst, Sec. 9.31)

$$S_1(\mu) = \sum_{n=1}^{N} \frac{2n+1}{n(n+1)} \{a_n^{\pi} \pi_n(\mu) + b_n^{\pi} \tau_n(\mu)\}$$
 (9a)

$$S_2(\mu) = \sum_{n=1}^{N} \frac{2n+1}{n(n+1)} \{a_n \tau_n(\mu) + b_n \pi_n(\mu)\}$$
 (9b)

where $\mu = \cos\theta$ and θ is the angle of scattering.

The most efficient way to calculate the scattering amplitudes is in a loop over n, for summing, within which is a loop over θ . (This will be explained when we discuss vectorization, Sec. 7.1.) Every extra operation in the θ -loop can add significantly to the computation time. Each term of the sums (9a) and (9b) requires two multiplies and one add, if the factor (2n+1)/n(n+1) is incorporated into a_n and b_n outside the θ -loop. We discovered that we could

eliminate one of the multiplies by calculating, not \mathbf{S}_1 and \mathbf{S}_2 but rather,

$$S^{+}(\mu) = S_{1} + S_{2} = \sum_{n=1}^{N} \frac{2n+1}{n(n+1)} (a_{n} + b_{n}) \{ \pi_{n}(\mu) + \tau_{n}(\mu) \}$$

$$S^{-}(\mu) = S_{1} - S_{2} = \sum_{n=1}^{N} \frac{2n+1}{n(n+1)} (a_{n} - b_{n}) \{ \pi_{n}(\mu) - \tau_{n}(\mu) \}$$
(10a)

The factors multiplying $(\pi_n \pm \tau_n)$ are formed outside the θ -loop. Then, when the n-loop is finished, S₁ and S₂ are easily recaptured:

$$S_1(\mu) = \frac{1}{2}[S^+(\mu) + S^-(\mu)]$$
 (11a)

$$s_2^{(\mu)} = \frac{1}{2} [s^+(\mu) - s^-(\mu)]$$
 (11b)

If $\theta \in [0, \pi/2]$, then its supplement $\pi - \theta$ has cosine $-\mu$. The angular functions of $\pi - \theta$ are then simply related to the angular functions of θ (Dave, 1969a):

$$\pi_n^{(-\mu)} = (-1)^{n+1} \tau_n^{(\mu)}$$

$$\tau_n^{(-\mu)} = (-1)^n \tau_n^{(\mu)},$$

which leads to

$$S^{+}(-\mu) = \sum_{n=1}^{N} (-1)^{n+1} \frac{2n+1}{n(n+1)} (a_n + b_n) \{\pi_n(\mu) - \tau_n(\mu)\}$$

$$S^{-}(-\mu) = \sum_{n=1}^{N} (-1)^{n+1} \frac{2n+1}{n(n+1)} (a_n - b_n) \{\pi_n(\mu) + \tau_n(\mu)\}$$
(12a)

Thus it requires only two extra multiplies in the θ -loop to get $S^+(-\mu)$ and $S^-(-\mu)$, since the necessary quantities have already been formed in Eq. (10). For this reason, the codes are set up (as were Dave's, 1969a) to calculate the scattering amplitudes at an arbitrary set of

angles in $[0, \pi/2]$, but only at the supplements of those angles in $[\pi/2, \pi]$.

This is not as restrictive as it might seem. For example, in order to calculate the phase function moments, or other angular integrals over $[0,\pi]$, this is frequently the required structure of the angular quadrature point set. Also, when taking a dense mesh of angles near $\theta=0$ to resolve the forward diffraction peak, one automatically obtains good resolution of the structure in the glory region. Last, but not least, taking an arbitrary set of angles in $[\pi/2,\pi]$ may significantly increase computation time, through the necessity of calculating $\pi_n(\mu)$ and $\tau_n(\mu)$ at those angles.

Note finally that, if one is only interested in the unpolarized approximation, as in many radiative transfer problems, the final step, Eq. (11), is unnecessary, for

$$|s_1|^2 + |s_2|^2 = |s^+|^2 + |s^-|^2$$
.

However, the side-stepping of Eq. (11) is not explicitly provided for in the codes, since the savings in computer time would be relatively trivial.

Mie Coefficients (Dave, 1969a, Eqs. 2-3)

$$a_{n} = \frac{\left\{\frac{A_{n}(z)}{m} + \frac{n}{x}\right\} \psi_{n}(x) - \psi_{n-1}(x)}{\left\{\frac{A_{n}(z)}{m} + \frac{n}{x}\right\} \zeta_{n}(x) - \zeta_{n-1}(x)}$$
(16a)

$$b_{n} = \frac{\left| \left(mA_{n}(z) + \frac{n}{x} \right) \psi_{n}(x) - \psi_{n-1}(x) \right|}{\left| \left(mA_{n}(z) + \frac{n}{x} \right) \zeta_{n}(x) - \zeta_{n-1}(x) \right|}$$
(16b)

Here we have used the Debye and Van de Hulst (1957, Sec. 9.22) notation for the Riccati-Bessel functions ψ_n and ζ_n , which are defined below along with the function A_n .

Ricatti-Bessel Functions (Abramowitz/Stegun, Sec. 10.3)

$$\psi_{n}(x) = xj_{n}(x)$$

$$\chi_{n}(x) = -xy_{n}(x)$$

$$\zeta_{n}(x) = \psi_{n}(x) + i\chi_{n}(x)$$

where j_n, y_n are the familiar spherical Bessel functions. The Riccati-Bessel functions satisfy the same recurrence relations as j_n, y_n (Abramowitz/Stegun, Eq. 10.1.19), namely

$$\zeta_{n+1}(x) = \frac{2n+1}{x} \zeta_n(x) - \zeta_{n-1}(x)$$
 (17)

Furthermore, by a simple modification of the cross-product relation for spherical Bessel functions (Abramowitz/Stegun, Eq. 10.1.31), we find

$$\psi_{n+1}(x) = \frac{\psi_n(x) \chi_{n+1}(x) - 1}{\chi_n(x)}$$
 (18)

The initial values are (Abramowitz/Stegun, Eq. 10.3.2-3)

$$\psi_{o}(x) = \sin x \tag{19a}$$

$$\chi_{O}(x) = \cos x \tag{19b}$$

$$\psi_1(x) = \frac{1}{x} \psi_0(x) - \chi_0(x)$$
 (19c)

$$\chi_1(x) = \frac{1}{x} \chi_0(x) + \psi_0(x)$$
 (19d)

Careful attention to the accuracy of the ψ_n , χ_n calculation is necessary because: first, the ψ_n up-recurrence is numerically unstable (Abramowitz/Stegun, Introduction .7); second, the convergence of the Mie series hinges on the rapid decay of ψ_n to zero when $n \gtrsim x$, with a concomitant blow-up of χ_n , which forces a_n and b_n (Eq. 16) to zero; third, phenomena like the glory, surface waves, and resonances depend on Mie series terms with $n \gtrsim x$, and hence are particularly sensitive to errors in ψ_n or χ_n .

Dave (1968a, 1969a) used <u>upward recurrence</u> (Eq. 17) for ζ_n , i.e., for both ψ_n and χ_n . He needed IBM double precision (equivalent to CDC or CRAY single precision) to minimize numerical instability, i.e., to minimize error growth relative to the magnitude of ψ_n as the recurrence proceeded. In our own early experiments on a UNIVAC 1108, we also found that up-recurrence on ψ_n deteriorated much too catastrophically for n > x when single precision (8 digits) was used, and it was necessary to go over to UNIVAC double precision (18 digits) to achieve satisfactory accuracy.

We tested three possible schemes for computing ψ_n . (χ_n is always computed by upward recurrence, which is stable.) These were:

- (a) upward recurrence (Eq. 17)
- (b) cross product (Eq. 18)
- (c) downward recurrence (Abramowitz/Stegun, Sec. 10.5) .

All computations were carried out in CDC single precision (14 digits). Scheme (c), which is stable, was used for determining errors in the other two schemes. It was initialized, in the manner of Miller, by

$$\psi_{N*+1} = 0$$

$$\Psi_{N\star} = 1$$

where N* exceeds the largest index N for which ψ_n is needed. We tried both N* = 1.9 N and N* = 1.5 N and obtained identical values of ψ_n (n = 1 to N) in either case, which satisfied us that the down-recurrence was an accurate and reliable benchmark.

Schemes (a) and (b) prove to be almost as accurate as down-recurrence for n < x (except as noted below). Only when n > x do they begin to deteriorate, and their errors grow monotonically as n continues to increase beyond x. Both schemes invariably have their largest error at n = N; these errors are shown in Table 1 for a wide range of x's. Up-recurrence is always more accurate than the cross-product relation; typically, its error is two to four times smaller. This situation holds for n < N as well.

Furthermore, up-recurrence has an <u>acceptable</u> error, as Table 1 witnesses (remember Table 1 shows <u>worst</u> errors; errors are much smaller for n < N). And since down-recurrence requires considerably more computation, more storage, and is also subject to overflow failure (because ψ_n grows when recursed downward), up-recurrence on ψ_n was the obvious choice for our algorithms. Thus, in the end, we made the same choice as Dave, but our confidence in that choice was considerably raised.

Table 1. Percent error in $\psi_N(x)$, as computed by two different methods, where N is the largest index required in the Mie series. Exact values of ψ_N were from downward recurrence. All computations done in CRAY-1 single precision.

x	N	$\%$ error in $\psi_{ ext{N}}$ from up-recurrence	% error in $\psi_{ m N}$ from cross-product
1	5	1.7×10^{-5}	2.5×10^{-5}
5	12	8.2×10^{-5}	17×10^{-5}
10	19	2.0×10^{-4}	-13×10^{-4}
20	31	2.7×10^{-4}	5.6×10^{-4}
. 40	54	7.2×10^{-4}	15×10^{-4}
80	98	1.9×10^{-3}	6.0×10^{-3}
200	224	1.4×10^{-3}	4.5×10^{-3}
400	430	2.4×10^{-3}	5.5×10^{-3}
600	634	5.6×10^{-4}	266×10^{-4}
800	837	2.6×10^{-3}	3.5×10^{-3}
1,000	1,040	3.6×10^{-3}	10×10^{-3}
2,000	2,050	5.5×10^{-3}	15×10^{-3}
4,000	4,063	0.010	0.047
8,000	8,080	0.026	0.090
12,000	12,091	0.060	0.095
16,000	16,100	0.041	-0.17

There are also occasional values of n < x at which the accuracy of both schemes (a) and (b) is reduced. These are invariably where ψ_n falls several orders of magnitude below its neighboring values ψ_{n-1} and $\psi_{n+1}.$ In all such cases, up-recurrence is still preferable to the cross-product relation and still has acceptable error.

Since the zero-subscript feature is not widely available in FORTRAN, the quantities actually calculated in the codes are $\hat{\psi}_n = \psi_{n-1}$ and $\hat{\zeta}_n = \zeta_{n-1}$ (χ_n is never used explicitly).

A_n (Logarithmic Derivative of ψ_n)

$$A_{n}(z) \equiv \frac{\psi_{n}'(z)}{\psi_{n}(z)} .$$

This can be calculated by up-recurrence (Dave, 1969a)

$$A_n(z) = -\frac{n}{z} + \frac{1}{\frac{n}{z} - A_{n-1}(z)}$$
 (n = 2,...,N) (20)

with initial value

$$A_1(z) = -\frac{1}{z} + \frac{\tan z}{\frac{1}{z} \tan z - 1}$$
 (21)

Dave worried about two problem cases. First, $z = k\pi$ for any integer $k \neq 0$ leads to $A_0 = \cot z = \infty$; but we never actually need A_0 , and A_1 , written as in Eq. (21), is perfectly well-conditioned at $z = k\pi$. Second, if tan z is written simplistically as $\sin z/\cos z$, $\exp(\text{Im}(z))$ will occur in both numerator and denominator, causing overflow if Im(z) is large; but we circumvent this problem by writing tan z as

$$\tan(x + iy) = \frac{2e^{2y} \sin 2x + i(e^{4y} - 1)}{2e^{2y} \cos 2x + 1 + e^{4y}}$$

which is calculated by the function CTAN listed in Appendix I. There remains the problem that tan z blows up when z is an odd multiple of $\pi/2$, but because of round-off in computing the denominator this never actually occurs.

Kattawar and Plass (1967) pointed out the instability in up-recurrence of A when Im(z) is appreciable. They suggested down-recurrence

$$A_{n-1}(z) = \frac{n}{z} - \frac{1}{\frac{n}{z} + A_n(z)}$$
 (n = N',...,N,...,2) (22)

as an alternative, and showed that it was stable. However, neither they nor subsequent investigators offered a clear-cut criterion as to when down-recurrence should be used. We have developed such a criterion, which is described in Sec. 5.

Kattawar and Plass, Dave (1969a), and many subsequent investigators initialized the down-recurrence by

$$A_{N^{\dagger}}(z) = 0$$

where, in principle, one must have N' >> |z|. Dave found that

$$N' = 1.1 |z| + 1$$

was sufficient. Of course, this causes more values of A_n to be calculated than are actually needed in the Mie series, since $N^*>N$ and possibly $N^*>>N$.

We found it preferable to initialize the down-recurrence by calculating $\mathbf{A}_{N}(z)$ correctly to 5 or 6 significant digits, using the newly-developed method of Lentz (1976) discussed below. Besides being more aesthetic, this results in less computation and greater

code reliability, especially in difficult cases (e.g., $|\mathbf{m}|$ >> 1 or $|\mathbf{m}-1|$ << 1).

We note in passing that our early experiments on a UNIVAC 1108 showed that neither up- $\underline{\text{nor}}$ down-recurrence of A_n was sufficiently accurate in its 8-digit single precision. The down-recurrence sometimes deteriorated badly as $n \to 1$. UNIVAC double precision of 18 digits had to be employed.

A_N from Lentz Method

The standard continued fraction representation of ${\rm A}_{\rm N}$, which follows directly from the down-recurrence (22), is

$$A_{N}(z) = \lim_{i \to \infty} [a_{1}, a_{2}, \dots, a_{i}]$$
(23)

where

$$[a_1, a_2, \dots, a_i] = a_1 + \frac{1}{a_2} + \dots + \frac{1}{a_i}$$
 (24)

$$a_1 = (N+1)/z$$
 (25a)

$$a_k = (-1)^{k+1} (2N + 2k - 1)/z (k = 2,3,...)$$
 (25b)

But this is really no different from Dave's procedure; setting $A_{N'} = 0$ amounts to setting $A_{N} = [a_1, a_2, \dots, a_{N'-N}]$. Thus many terms are frequently required for convergence of the continued fraction (24), and recursive computation is impossible because $[a_1, \dots, a_{i+1}]$ is not simply related to a few prior values of $[a_1, \dots, a_i]$ but must be computed completely anew.

Lentz has discovered a product representation of Eq. (24) which can be computed recursively, and which requires, in just those cases

where down-recurrence of ${\displaystyle \mathop{A}_{n}}$ is necessary, far fewer steps than Dave's method:

$$[a_1, \dots, a_i] = \prod_{k=1}^{i} T_k$$
 (26)

where

$$T_{k} = \begin{cases} a_{1} & k = 1 \\ N_{k}/D_{k} & k > 1 \end{cases}$$
 (27)

$$N_{k} = [a_{k}, \dots, a_{1}]$$
 (28a)

$$D_{k} = [a_{k}, \dots, a_{2}]$$
 (28b)

and where, by definition,

Unlike Eq. (24), Eq. (26) is well-suited to recursive computation in that

$$[a_1, \dots, a_i] = [a_1, \dots, a_{i-1}] T_i$$
 (29)

and both the numerator and denominator of $T_{\underline{i}}$ follow immediately from the numerator and denominator, respectively, of $T_{\underline{i-1}}$:

$$N_{i} = a_{i} + \frac{1}{N_{i-1}}$$
 (30a)

$$D_{i} = a_{i} + \frac{1}{D_{i-1}}$$
 (30b)

We deem the iteration to have converged when $T_i = 1$ to a certain degree of accuracy, i.e., when

$$|\operatorname{Re}(T_i) - 1| < \varepsilon_2 \quad \underline{\text{and}} \quad |I_m(T_i)| < \varepsilon_2$$
 (31)

where we generally take $\epsilon_2 = 10^{-8}$ and, as a result, obtain at least 5 to 6 significant figures in A_N .

It may occur that

$$\left|\frac{N_{i}}{a_{i}}\right| < \varepsilon_{1} \quad \text{or} \quad \left|\frac{D_{i}}{a_{i}}\right| < \varepsilon_{1} \tag{32}$$

where $\varepsilon_1^{} << 1$ (we generally take $\varepsilon_1^{} = 10^{-2}$); this means that Eq. (30) has resulted in loss of significant digits in N_i and/or D_i, which would be magnified in N_{i+1} and/or D_{i+1}. In this case, we can sidestep the ill-conditioning by skipping the convergence test (31) and striding two iterations instead of one; i.e., we go immediately to

$$[a_1, \dots, a_{i+1}] = [a_1, \dots, a_{i-1}] T_i T_{i+1}$$
 (33)

where

$$T_{i} T_{i+1} = \frac{\xi_{1}}{\xi_{2}}$$
 (34a)

$$\xi_1 = 1 + a_{i+1} N_i \tag{34b}$$

$$\xi_2 = 1 + a_{i+1} D_i \qquad (34c)$$

Unlike the ratios T_i or T_{i+1} individually, their product (34a) is well-conditioned. In order to re-start the iteration (30) without requiring the ill-conditioned results N_{i+1} or D_{i+1} we can use Eq. (30) twice to obtain

$$N_{i+2} = a_{i+2} + \frac{1}{a_{i+1} + \frac{1}{N_i}} = a_{i+2} + \frac{N_i}{\xi_1}$$
 (35a)

$$D_{i+2} = a_{i+2} + \frac{D_i}{\xi_2}$$
 (35b)

In Table 2 is shown, for selected values of m and x, the number of iterations of Lentz's method necessary to achieve convergence, i.e., the value of i such that condition (31) is satisfied for either $\varepsilon_2 = 10^{-6}$ or $\varepsilon_2 = 10^{-8}$. Note that, for $x \ge 100$ and Im(m) small enough, the number of iterations is roughly |m-1|x. This is about the same number of iterations required by Dave's method [(1.1|m|-1)x]. But these cases of small Im(m) can be handled by up-recurrence (see Sec. 5). And for larger values of Im(m), Lentz's method requires far fewer iterations than Dave's.

Angular Functions

$$\pi_{n}(\mu) \equiv P_{n}'(\mu)$$

$$\tau_{n}(\mu) \equiv \mu \pi_{n}(\mu) - (1 - \mu^{2}) \pi_{n}'(\mu)$$
(36)

(Dave, 1969a) where P_n is a Legendre polynomial. These functions can most simply be calculated by upward recurrence, which is numerically stable (Abramowitz/Stegun, Introduction.7). Since these recurrences are buried in the θ -loop where S^{\pm} (Eq. 10) are calculated, formulating them more efficiently can lead to a substantial saving of computer time. Dave (1969a) gives particular forms for these recurrences; but we have discovered better ones which we derive below.

The usual 3-term recurrence relation for Legendre polynomials is

$$(n + 1) P_{n+1}(\mu) = (2n + 1) \mu P_n(\mu) - n P_{n-1}(\mu)$$
.

Differentiating this, and using the relation

$$\pi_{n+1}(\mu) - \pi_{n-1}(\mu) = (2n+1) P_n(\mu)$$

Table 2. Number of Lentz method iterations (Eq. 29) necessary to converge to $A_N(mx)$ for a range of size parameters x and refractive indices m. First figure refers to ε_2 = 10^{-6} , second (in parentheses) to ε_2 = 10^{-8} .

x	N	m	number of Lentz method iterations to get $A_N(mx)$
1	. 5	1.05 - $\{10^{-6} - 1\}i$ 1.95 - $\{10^{-6} - 1\}i$	4 (5) 5 (6)
10	19	$1.05 - \{10^{-6} - 1\}i$ $1.95 - \{10^{-6} - 1\}i$	7-8 (8-10) 11-12 (14)
100	119	$1.05 - \{10^{-6} - 1\}i$ $1.50 - \{10^{-6} - 10^{-2}\}i$ $1.50 - 0.1 i$ $1.50 - i$ $1.95 - \{10^{-6} - 10^{-2}\}i$ $1.95 - 0.1 i$ $1.95 - i$	13 (16) 51-52 (55-57) 40 (46) 18 (22) 97-99 (102-103) 79 (87) 25 (31)
1,000	1,040	$1.05 - \{10^{-6} - 10^{-3}\}i$ $1.05 - 10^{-2}i$ $1.05 - 0.1 i$ $1.05 - i$ $1.50 - \{10^{-6} - 10^{-3}\}i$ $1.50 - 10^{-2} i$ $1.50 - 0.1 i$ $1.50 - i$ $1.95 - \{10^{-6} - 10^{-3}\}i$ $1.95 - 10^{-1} i$ $1.95 - 10^{-1} i$ $1.95 - 0.1 i$ $1.95 - i$	59-50 (58) 44 (53) 25 (32) 15 (20) 500-502 (509-512) 459 (479) 104 (135) 22 (28) 953-956 (964-967) 880 (919) 203 (254) 33 (42)
10,000	10,086	1.05 - $\{10^{-6} - 10^{-4}\}i$ 1.05 - 10 i 1.05 - 0.1 i 1.05 - i 1.50 - $\{10^{-6} - 10^{-4}\}i$ 1.50 - 10 i 1.50 - 0.1 i 1.50 - i 1.95 - $\{10^{-6} - 10^{-4}\}i$ 1.95 - 10 i 1.95 - 0.1 i 1.95 - 0.1 i	492-495 (510-513) 183 (232) 31 (40) 16 (20) 4496-5001 (5017-5021) 1092 (1384) 124 (161) 23 (30) 9501-9510 (9525-9533) 2055 (2599) 236 (309) 34 (44)

from Whittaker and Watson (1965, chapter 15) leads to

$$n\pi_{n+1}(\mu) = (2n + 1) \mu\pi_n(\mu) - (n + 1) \pi_{n-1}(\mu)$$

which for our own purposes we write in the strung-out form

$$s \equiv \mu \pi_{n}(\mu) \tag{37a}$$

$$t \equiv s - \pi_{n-1}(\mu) \tag{37b}$$

$$\pi_{n+1}(\mu) = s + \left(\frac{n+1}{n}\right) t . \tag{37c}$$

Written thus, only two multiplies and two adds are required, since the purely numerical factor (n+1/n) may be precalculated.

For $\boldsymbol{\tau}_n,$ differentiate the relation

$$(1 - \mu^2) \pi_n(\mu) = n[P_{n-1}(\mu) - \mu P_n(\mu)]$$

and use the relation

$$nP_n(\mu) = \mu \pi_n(\mu) - \pi_{n-1}(\mu)$$

(both from Whittaker/Watson, chapter 15) to obtain

$$(1 - \mu^2) \pi_n'(\mu) = 2\mu \pi_n(\mu) - (n + 1) [\mu \pi_n(\mu) - \pi_{n-1}(\mu)]$$
.

Putting this into the definition (36) of τ_n leads to

$$\tau_{n}(\mu) = (n+1) t - s$$
 (38a)

$$= nt - \pi_{n-1}(\mu)$$
 (38b)

where t and s were defined in Eq. (37). This requires only one multiply and one add, for a total of three multiplies and three adds to calculate π_{n+1} and τ_n . This compares with six multiplies and four adds in Dave's (1969a) recurrences.

The recurrences are initialized by

$$\pi_{o} = 0$$
(39a)

$$\pi_1 = 1 . (39b)$$

Note that we actually require, not π and τ separately, but their sum and difference, to obtain S^{\pm} (Eq. 10). Using the definition (36) of τ_n ,

$$\pi \underset{n}{ \pm \tau} = (1 \pm \mu) [(\mu \mp 1) \pi_{n}]'$$

Yet, in spite of this simple form, we were unable to come up with a recurrence directly for $\pi_n \pm \tau_n$, which avoided calculating π_n and τ_n individually, and was at the same time more efficient than Eqs. (37-38). This must remain a challenge for future investigators.

By using a fixed set of angles μ_m , one could precalculate the angular functions once for all, as matrices $A_{nm} \equiv \pi_n(\mu_m)$ and $B_{nm} \equiv \tau_n(\mu_m)$. This might offer advantages if one were to restrict oneself to Mie series no longer than ~ 1000 terms and to no more than 50-100 angles. But outside these limits the computer storage requirements would be prohibitive; and even with only 100 terms and 50 angles, A_{nm} and B_{nm} would take up a total of 10,000 words of storage, which might well strain a smaller computer. Furthermore, a fixed set of angles would be too inflexible for many applications. Thus, in the interests of a general purpose code, we have rejected this approach.

4. MIE SCATTERING FORMULAE-SMALL PARTICLE LIMIT

It is necessary to compute the small-particle (Rayleigh) case, $x \to 0$, separately, not only because 1/x occurs in several places in the Mie formulae, but because:

(a) the calculation of A is numerically ill-conditioned as $x \to 0$; e.g.,

$$A_1(z) = -\frac{1}{z} + \frac{1}{\frac{1}{z} - \frac{1}{\tan z}} = \frac{2}{z} + O(z)$$

and the subtraction of $1/\tan z$ from 1/z causes significant digits to be lost; similarly,

$$A_2(z) = -\frac{2}{z} + \frac{1}{\frac{2}{z} - A_1(z)}$$

and the subtraction of $A_1(z)$ from 2/z further compounds the ill-conditioning.

(b) The subtraction in the upward recurrence for ψ_n loses significant digits, and the ill-conditioning rapidly compounds; e.g.,

$$\psi_1(x) = \frac{1}{x} \sin x - \cos x = (1 - \frac{x^2}{6} + \dots) - (1 + \frac{x^2}{2} + \dots)$$

$$= \frac{x^2}{3} + \dots$$

$$\psi_{2}(x) = \frac{3}{x} \psi_{1}(x) - \psi_{0}(x) = \frac{3}{x} (\frac{x^{2}}{3} + \dots) - \sin x$$

$$= (x + \dots) - (x + \dots)$$

(c) The subtraction in the numerator of b becomes ill-conditioned. The $x \to 0$ formulae are also computationally faster, which would

make them desirable even were they unnecessary. We should bear in mind Van de Hulst's (1957, Sec. 10.3) warning, however:

"Aside from their simplicity, they (the small-x formulae) have little advantage. They describe the very first deviations from Rayleigh scattering, but further deviations appear very soon after the first have become prominent, so that the full Mie formulae have to be used."

In view of this warning, we set ourselves the modest goal of applying the $x \to 0$ formulae only over a range of x sufficient to avoid serious ill-conditioning and to give six significant digits in all Mie quantities. The $x \to 0$ formulae which we found most suitable, and the range over which they are to be applied, are given below.

The obvious approach is to expand the Mie coefficients (Eq. 16) in powers of the size parameter x. It is necessary to expand the dominant coefficient a_1 at least out to $O(x^6)$, or else the extinction efficiency (Eq. 6) for Im(m) << 1 will be vanishingly small; for the first nonnegligible contribution to Q_{ext} is $O(x^6)$ in such cases. But by carrying a_1 out to $O(x^6)$, one must for consistency keep a_2 and b_1 also, for they are both $O(x^5)$. The remaining values of a_1 and a_2 and a_3 are $O(x^7)$ or higher. a_4

Some authors insert the expansions for a_1 , a_2 and b_1 into Eqs. (6-9) and continue expanding and truncating those series. This is useful for

$$a_n \sim i \frac{n+1}{(2n-1)!!(2n+1)!!} \frac{m^2-1}{nm^2+n+1} x^{2n+1}$$
 $b_n \sim i \frac{m^2-1}{(2n+3)[(2n+1)!!]^2} x^{2n+3}$.

[†]The asymptotic forms as $x \rightarrow 0$ are:

seeing the leading terms, but every additional step of expansion/ truncation must cause additional error, so we have chosen instead to use Eqs. (6-9) as is, namely:

$$Q_{\text{ext}} = 6x \{ \text{Re}(\hat{a}_1 + \hat{b}_1) + \frac{5}{3} \text{Re}(\hat{a}_2) \}$$
 (40a)

$$Q_{sca} = 6x^{4}T \tag{40b}$$

$$g = Re[\hat{a}_1(\hat{a}_2 + \hat{b}_1)^*]/T$$
 (40c)

$$S_1(\mu) = \frac{3}{2} x^3 [\hat{a}_1 + (\hat{b}_1 + \frac{5}{3} \hat{a}_2)\mu]$$
 (40d)

$$S_2(\mu) = \frac{3}{2} x^3 [\hat{b}_1 + \hat{a}_1 \mu + \frac{5}{3} \hat{a}_2 (2\mu^2 - 1)]$$
 (40e)

where

$$T = |\hat{a}_1|^2 + |\hat{b}_1|^2 + \frac{5}{3}|\hat{a}_2|^2$$
 (40f)

and where a factor of x^3 has been taken out of each coefficient,

$$\hat{a}_1 = \frac{a_1}{x^3}$$
, etc.

in order to avoid $\frac{0}{0}$ singularities as $x \to 0$.

An additional advantage of Eqs. (40) is that, unlike many of the expansions one finds in the literature, they are internally consistent, being simply special cases of the Mie formulae with $a_3 = a_4 = \cdots = b_2 = b_3 = \cdots = 0$. For example, Eqs. (40a-c) can be derived directly from Eqs. (40d,e).

Comparisons were made between the exact Mie results and Eqs. (40), using two different approximations for \hat{a}_1 , \hat{a}_2 and \hat{b}_1 , for a wide range of values of x and m. First, we tried the 3-term expansion of a_1 and the 1-term expansions of a_2 and b_1 , as given by Van de Hulst (1957, Sec. 10.3), to wit,

$$\hat{a}_{1} = i \frac{2}{3} \frac{m^{2} - 1}{m^{2} + 2} \left[1 + \frac{3}{5} \frac{m^{2} - 2}{m^{2} + 2} x^{2} - i \frac{2}{3} \frac{m^{2} - 1}{m^{2} + 2} x^{3} + o(x^{4}) \right]$$
(41a)

$$\hat{b}_1 = i \frac{m^2 - 1}{45} x^2 + 0(x^4)$$
 (41b)

$$\hat{a}_2 = \frac{i}{15} \frac{m^2 - 1}{2m^2 + 3} x^2 + 0(x^4) . \tag{41c}$$

(Errors may still be found in such results; e.g., Kerker (1969, Sec. 3.9) has the wrong sign for b_1 .) These were found to give our desired 6-digit accuracy for all Mie quantities, provided Im(m) was large enough. But when Im(m) << 1, the accuracy of $Q_{\rm ext}$, Re(S₁) and Re(S₂) deteriorated to as little as 3 digits even for very small values of x. Examples of such errors are shown, for $Q_{\rm ext}$, in Table 3. The remaining quantities, like $Q_{\rm sca}$ or Im(S₁), retained 6-digit accuracy out to $x \sim 0.08$.

We diagnosed the problem to be that $Q_{\rm ext}$, ${\rm Re}(S_1)$ and ${\rm Re}(S_2)$ all depend only on the real parts of \hat{a}_1 , \hat{a}_2 and \hat{b}_1 . For Eqs. (41), with ${\rm Im}(m) << 1$, only the smallest-order term in \hat{a}_1 contributes to ${\rm Re}(\hat{a}_1)$, and both ${\rm Re}(\hat{a}_2)$ and ${\rm Re}(\hat{b}_1)$ are nearly zero. Clearly a correction term would be desirable in ${\rm Re}(\hat{a}_1)$, and presumably in \hat{a}_2 and \hat{b}_1 as well. Such a correction term can only be obtained by continuing the expansion of \hat{a}_1 out to $O(x^5)$. We also realized that it would be preferable to leave \hat{a}_1 in quotient form, that is, to just expand its numerator and denominator in Eq. (16). The further expansion of the quotient as a polynomial is just an extra and unnecessary step of approximation. Hence we used the following formulation:

Table 3. Values of $\mathbf{Q}_{\mathbf{ext}}$ in the small-particle limit, as given by Mie theory and by Eq. (40) with two approximations for \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{b}_1 . The digits in error are underscored for each approximation.

<u>x</u>	m	Eqs. (40,41)	Eqs. (40,42)	Exact
0.02	$1.5 - 10^{-6}i$	$7.677\underline{94} \times 10^{-8}$	7.67805×10^{-8}	7.67805×10^{-8}
	$1.95 - 10^{-6}$ i	1.27341×10^{-7}	1.27355×10^{-7}	1.27355×10^{-7}
	$1.95 - 10^{-5}i$	$3.776\underline{44} \times 10^{-7}$	3.77659×10^{-7}	3.77659×10^{-7}
	$1.05 - 10^{-6}$ i	1.12183×10^{-7}	1.12179×10^{-7}	1.12179×10^{-7}
	$1.5 - 10^{-6}i$	6.70337×10^{-7}	6.70403×10^{-7}	6.70403×10^{-7}
	$1.5 - 10^{-4}i$	8.57001×10^{-6}	8.57007×10^{-6}	8.57008×10^{-6}
	$1.95 - 10^{-4}i$	$7.16\underline{164} \times 10^{-6}$	7.16259×10^{-6}	7.16259×10^{-6}
0.08	$1.05 - 10^{-6}$ i	3.28743×10^{-7}	3.28478×10^{-7}	3.28478×10^{-7}
	$1.5 - 10^{-6}i$	9.60869×10^{-6}	9.61291×10^{-6}	9.61292×10^{-6}
	$1.5 - 10^{-4}i$	$2.54\underline{505} \times 10^{-5}$	2.54547×10^{-5}	2.54547×10^{-5}
	$1.95 - 10^{-4}$ i	3.66727×10^{-5}	$3.6733\underline{5} \times 10^{-5}$	3.67336×10^{-5}
0.20	1.05 - 0.01i	5.25292×10^{-3}	$5.2525\underline{6} \times 10^{-3}$	5.25263×10^{-3}
	1.05 - i	$5.79\underline{042} \times 10^{-1}$	5.78532×10^{-1}	5.78539×10^{-1}
	1.95 - 0.01i	3.88981×10^{-3}	$3.905\underline{26} \times 10^{-3}$	3.90548×10^{-3}
	1.95 - i	2.58547×10^{-1}	$2.586\underline{26} \times 10^{-1}$	2.58637×10^{-1}

$$\hat{a}_{1} = 2i \frac{m^{2} - 1}{3} \frac{N_{1}}{D_{1}}$$

$$N_{1} = 1 - \frac{1}{10} x^{2} + \frac{4m^{2} + 5}{1400} x^{4} + 0(x^{6})$$

$$D_{1} = m^{2} + 2 + (1 - \frac{7m^{2}}{10}) x^{2} - \frac{8m^{4} - 385m^{2} + 350}{1400} x^{4} + 2i \frac{m^{2} - 1}{3} x^{3} (1 - \frac{1}{10} x^{2}) + 0(x^{6})$$

$$(42a)$$

$$\hat{b}_1 = i \frac{m^2 - 1}{45} x^2 \frac{1 + \frac{2m^2 - 5}{70} x^2 + o(x^4)}{1 - \frac{2m^2 - 5}{30} x^2 + o(x^4)}$$
(42b)

$$\hat{a}_2 = i \frac{m^2 - 1}{15} x^2 \frac{1 - \frac{1}{14} x^2 + o(x^4)}{2m^2 + 3 - \frac{2m^2 - 7}{14} x^2 + o(x^4)}$$
 (42c)

To be consistent, and because the amount of extra computation is trivial, we have expanded \hat{b}_1 and \hat{a}_2 to the same order as \hat{a}_1 , even though neither one acquires thereby a significant real part when $\operatorname{Im}(m) << 1$, and therefore neither one significantly improves the approximation to Q_{ext} in such cases. But we have ignored \hat{b}_2 and \hat{a}_3 , the leading terms of whose expansions contribute at the $O(x^4)$ level; these leading terms are purely imaginary when $\operatorname{Im}(m) = 0$, and therefore do not improve the approximation to Q_{ext} . Carrying \hat{b}_2 and \hat{a}_3 only extends the range of the approximation slightly (cf. the Van de Hulst quote earlier in this section) and simply would not be worthwhile.

Even though the neglect of \hat{b}_2 and \hat{a}_3 is a technical inconsistency, the practical effect is nil. As Table 3 indicates, Eqs. (42) lead to a dramatic improvement in accuracy over Eqs. (41) in both problem (Im(m) << 1) and normal cases. The more accurate formulation retains

4-5 significant digits at x=0.2, and 2-3 significant digits even at x=0.5. In order to retain 6 significant digits, we selected the rather conservative criterion that the small-particle formulae (Eqs. 40 and 42) are to be used whenever

$$|\mathbf{m}| \quad \mathbf{x} \leq 0.1 \tag{43}$$

where the factor |m| was included based on the well-known fact (cf. Kerker et al., 1978), which is also apparent in Eqs. (42), that the approximation breaks down as |m| increases.

5. A UP-RECURRENCE CRITERION

Kattawar and Plass (1967), Dave (1969a) and subsequent investigators were aware that up-recurrence for A_n may fail, but were unclear as to exactly when this would occur, except that Im(m) had to be significant and x >> 1 (the latter condition ensures sufficiently many iterations for the instability to develop).

To determine the precise regions of size parameter x and refractive index m wherein up-recurrence is satisfactory, an extensive comparison was made between exact Mie results and results obtained using up-recurrence for A_n . Exact Mie results were generated using down-recurrence for A_n , which is always stable, and a stringent convergence criterion of $\epsilon_2 = 10^{-10}$ for the Lentz method calculation of A_N . Up-recurrence was regarded as failing whenever its concomitant values of $Q_{\rm ext}$, $Q_{\rm sca}$ or g (Eqs. 6-8) had relative errors exceeding 10^{-6} , or its scattered intensity or degree of polarization

$$i_1 + i_2 = |s_1|^2 + |s_2|^2$$
 (44)

$$d_{pol} = \frac{|s_2|^2 - |s_1|^2}{|s_2|^2 + |s_1|^2}$$
(45)

had relative errors exceeding 10^{-5} at any of 61 Lobatto quadrature angles. (These angles are such that they cluster in the forward peak $(\theta \gtrsim 0^{\circ})$ and glory $(\theta \lesssim 180^{\circ})$ regions and are relatively more sparse around $\theta = 90^{\circ}$.)

In practice, it was always these angular functions which first heralded failure; the relative errors in $Q_{\rm ext}$, $Q_{\rm sca}$ and g were always between 10^{-12} and 10^{-8} when some angular function error reached 10^{-5} .

This is because there is no cancellation in the $Q_{\rm ext}$, $Q_{\rm sca}$, g series, whereas at some angles the n < x terms in the S_1 , S_2 series almost cancel, leaving only the n > x terms, which are most affected by A_n up-recurrence instability.

The calculation was structured in the form of an upward search on m_{im} , for fixed m_{re} and x, to determine the <u>smallest</u> value, m_{im}^{crit} , such that up-recurrence on A failed. (Preliminary study showed that, when failure occurs for $m_{im} = m_{im}^{crit}$, it continues to occur for all $m_{im} > m_{im}^{crit}$.) The search for m_{im}^{crit} was successively refined to pinpoint it to 3 significant digits. Size parameter was varied in the range $1 \le x \le 10,000$ and m_{re} was varied from 1.05 to 2.50 in steps of 0.05.

It very quickly became evident that, for fixed m_{re} , as x increased the product xm_{im}^{crit} rapidly approached, from above, an asymptote. Thus there was a function $f(m_{re})$ such that

$$xm_{im}^{crit} \ge \min_{x} (xm_{im}^{crit}) = f(m_{re})$$
 (46)

and such that the inequality was, in fact, roughly an equality over almost the entire range of x. The data for $\min_{x}(xm_{im}^{crit})$ as a function of m_{re} are given in Table 4 and plotted in Fig. 1.

It is plain from Fig. 1 that $f(m_{re})$ has an upward curvature. A straight line would not give a very good fit. Therefore, we fitted a quadratic to the data and then subtracted 1.0 from the constant term of the quadratic in order that the fit might lie slightly <u>under</u> all the data points (except for two which are obviously out-of-line). The function so obtained is:

Figure 1

Table 4. The smallest value of the product $\underset{im}{\text{me}}$ at each value of $\underset{re}{\text{me}}$, where $\underset{im}{\text{me}}$ is the value of $\underset{im}{\text{me}}$ above which up-recurrence on $\underset{n}{\text{A}}$ fails (x \le 10,000 for this study).

m re	min(xmcrit)	m _re	min(xm ^{crit})
1.05	12.2	1.80	53.0
1.10	14.9	1.85	57.8
1.15	16.9	1.90	60.7
1.20	19.6	1.95	65.2
1.25	22.2	2.00	67.5
1.30	24.7	2.05	72.1
1.35	27.0	2.10	75.5
1.40	30.3	2.15	80.0
1.45	33.2	2.20	81.9
1.50	36.0	2.25	88.6
1.55	39.5	2.30	91.2
1.60	40.7	2.35	97.2
1.65	44.5	2.40	99.0
1.70	47.4	2.45	104.8
1.75	50.6	2.50	110.4

$$f(m_{re}) = 16.35 m_{re}^2 + 8.42 m_{re} - 15.04$$
 (47)

and it is plotted in Fig. 1 as a solid line.

From Eq. (46) we deduce that up-recurrence may be used for ${\bf A}_{\bf n}$ if

$$m_{im} < \frac{f(m_{re})}{x}$$
 (48)

but that, otherwise, down-recurrence should be used. This criterion, since it concerns the onset of numerical instability, is obviously precision-dependent, although probably not sensitively so. Also, being only empirical, it may break down for values of m which are much larger than 2.50, as may occur for water in the microwave region for example.

6. NUMBER OF TERMS IN MIE SERIES

Dave (1969a) stopped summing the Mie series at the first value of n for which

$$|a_n|^2 + |b_n|^2 < 10^{-14}$$
 (49)

(cf. Eq. 16). He was confident that this led to 6 significant digits in the results. We used this criterion for several years, but were forced to abandon it in order to attain vector speed in our Mie codes.

The reason is simply that vector processing is not possible for a loop containing a test like (49). Calculation of the entire vectors $\{a_1,\ldots\}$ and $\{b_1,\ldots\}$ at one stroke cannot occur if the value of each a_n,b_n decides whether or not to calculate a_{n+1},b_{n+1} .

We were just as glad to abandon Dave's criterion for two other reasons as well. First, the figure 10^{-14} may not be applicable to computers of differing precision. Related to this is the fact that the upward recurrence on ψ_n , whose fall to zero for $n \ge x$ is the primary cause of Mie series convergence, rapidly becomes unstable near the very point where (49) must be satisfied. Eq. (49), in effect, is asked to "head off" the mushrooming instability in the ψ_n calculation, and this seems too heavy a burden to lay upon it.

Second, even though our codes always carried the same precision (14 digits) as Dave's, the test (49) would sporadically fail in the middle of lengthy calculations, typically for x > 800 or so. Examination of every such case revealed that failure was caused by $\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}$ falling to, but not below, some low level (e.g., 5×10^{-14}). Further examination showed that convergence was nevertheless

satisfactory in such cases, and the test (49) merely failed to recognize it.

For these reasons, the test (49) was replaced by an <u>a priori</u> estimate of N, the number of terms in the various Mie series (6-10). We first determined N for a wide range of size parameters (0.1 \leq x \leq 20,000) and refractive indices (1.05 \leq m \leq 2.50; 0 \leq m \leq 1) using criterion (49) with 5 x 10⁻¹⁴ replacing 10⁻¹⁴. Table 5 shows selected results for the range [N_{min}, N_{max}] of values of N at each size parameter.

It is immediately apparent that N exhibits only a slight dependence on refractive index. This bears out what we said earlier about ψ_n and χ_n , which are functions of x alone, being the prime controllers of convergence. And since ψ_n decreases rapidly for $n \gtrsim x$, it is clear why N \sim x is a good first approximation.

Several authors (e.g., Khare, 1976) have suggested, on theoretical grounds, the following functional form for N:

$$N = x + cx^{1/3}$$

We have found that the following modification of this formula fits our data for N $_{\hbox{\scriptsize max}}$ exceptionally well:

$$N_{\text{max}} = \begin{cases} x + 4x^{1/3} + 1 & 0.02 \le x \le 8 \\ x + 4.05x^{1/3} + 2 & 8 \le x \le 4200 \\ x + 4x^{1/3} + 2 & 4200 \le x \le 20,000 \end{cases}$$
 (50)

This gives an almost perfect fit to 135 N_{max} values which we generated. It is low by 1 at 8 of these data points, and high by 1 or (rarely) 2 at 35 of them; at the remainder, it is exact. We set $N = N_{max}$.

Table 5. The range $[N_{\min}, N_{\max}]$ of the number of terms in the Mie series, as a function of size parameter x. The range was determined by varying Re(m) from 1.05 to 2.50 and Im(m) from 0 to 1 in small steps.

<u> </u>	N - N max	x	N - N max
0.1	2-3	3,000	3,052-3,058
0.3	3–3	6,000	6,068-6,074
1	5-5	8,000	8,076-8,080
3	8–9	10,000	10,081-10,087
10	18-20	12,000	12,086-12,092
33	44-47	14,000	14,090-14,097
100	117-120	16,000	16,087-16,101
333	357-362	18,000	18,094-18,105
1,000	1,038-1,041	20,000	20,102-20,108

7. MIE SCATTERING SUBROUTINES

The present section describes the two Mie scattering subroutines MIEVO (Sec. 7.2) and MIEVI (Sec. 7.3), which are based on the techniques and equations given in Secs. 3-6. Why two subroutines are necessary was explained in Sec. 2. These subroutines are listed and flowcharted in Appendices I and II. Detailed timing studies are presented in Sec. 7.5 and a description of testing procedures in Sec. 7.4. Sample results from the subroutines are given in Appendix III.

An important a priori decision was whether or not to take advantage of FORTRAN complex arithmetic. In my earlier Mie routines, I avoided complex arithmetic entirely because it tended to be considerably slower than real arithmetic (for example, multiplying a real by a complex variable would compile as four floating point multiplies, instead of two). But the loss of code readability and simplicity from separating every expression into real and imaginary parts was drastic. In recent years, the dramatic rise in use of complex arithmetic, primarily because of the invention of the Fast Fourier Transform, has forced compiler-writers to do a much better job with it. It is, therefore, increasingly possible to write dramatically simpler Mie codes without loss of speed, using complex arithmetic; that is the path chosen here.

Double precision arithmetic is not used anywhere in the subroutines, but users whose machines carry less than roughly 11 digits in single precision should carry out the ζ_n and Λ_n recurrences in double precision and truncate the results back to single precision.

The two subroutines share a substantial amount of coding, in particular: the small-x limit; the N formula; the A computation; and the θ -loops where S^{\pm}, S₁ and S₂ are calculated. They both rely on compiler recognition of repeated subexpressions (an increasingly common capability).

The input and output variables used by MIEVO and MIEV1 are in a common block (an argument list would be computationally slower) and are thoroughly described in comment cards. The only question which might arise is: How would one go about picking a value of the input variable N2CUT? (The code assumes Im(m) = 0, and takes faster branches, when $|\text{Im}(m)| \leq \text{N2CUT.}$) There is no easy answer. It depends on the largest size of particle being considered; the largest optical depth being considered (individual sphere absorptions may be very small and yet add up to a substantial value in an optically thick medium); and how small absorption must be before one is willing to neglect it. The user must either experiment a little with N2CUT—or set it to zero and forget about it.

7.1 VECTORIZATION

A few preliminary comments on vector processing are in order (Johnson, 1978, gives a good introduction to the subject in relation to the CRAY-1 computer). It should be emphasized at the outset that the Mie codes are designed to execute perfectly well, albeit more slowly, on ordinary "scalar" computers; but they have been written specifically to take advantage of vector processing when it is available.

Vector processing is applicable to loops of a very special form, in which entire arrays can be operated on as if they were scalars. Any so-called "vector dependencies" (e.g., in the recurrences for $\{\zeta_0,\ldots,\zeta_N\}$ or $\{A_1,\ldots,A_N\}$), where one array element depends on one or two previous array elements, prevents "vectorization" of the associated loop. Such recurrences are unvectorizable in principle.

Other constructs, such as scalar temporary variables, user-defined function or subroutine references, and certain IF statements, may superficially prevent vectorization of a loop in which they occur; but a redesign of the loop coding often allows vectorization. Loops in which only some parts are unvectorizable can often be split into two loops, the first of which isolates the unvectorizable parts and the second of which is tully vectorizable. Some operations, like summing the elements of an array, which at first glance seem unvectorizable, can be "partially vectorized"; this is exactly what is done in MIEV1 to sum the series for ext, ext, and g. These tricks, and others, are discussed at more length by Higbie (1978). All this, of course, leads to code which seems, in some sense, "unnatural," but one is quickly reconciled to such unnatural code when one sees the dramatic speed increases it produces.

In Mie calculations there are two types of loops: over number N of terms in the Mie series and over number $N_{\rm ang}$ of angles. A third type of loop, over size parameter x, is often used, for example, when integrating Mie quantities over a size distribution. This loop is normally outside the Mie subroutine. Some advantage could be reaped by having this loop <u>inside</u> the Mie subroutine. In particular,

unvectorizable elements in MIEVO and MIEV1, like the A_n and ζ_n recurrences, could be vectorized by making the x-loop the innermost one and adding an extra x-dimension to A_n , ζ_n , etc. However, two disadvantages also accrue: the Mie subroutine would be much less general-purpose, and the memory requirements could become prohibitive. Users who wish to try this route should be warned that: (a) if N_{ang} is, say, 30 or more, little speed-up will be realized, because the N_{ang} -loop dominates the execution time; (b) N_{ang} depends on N_{ang} and N_{ang} is innermost and N_{ang} outside, this dependence cannot be accounted for (taking N_{ang} sufficient for the largest N_{ang} could cause the N_{ang} and N_{ang} up-recurrences for smaller N_{ang} to go wildly unstable).

Calculating S_1 and S_2 involves one N-loop and one $N_{\rm ang}$ -loop, nested. But only inner loops are vectorizable. In the N-loop, S_1 and S_2 are computed by summing, which is only a partially vectorizable operation; hence, the natural choice was to make the $N_{\rm ang}$ -loop the inner one (it is completely vectorizable, provided several arrays are furnished to contain temporary variables). The $N_{\rm ang}$ -loop-innermost structure is found in both MIEVO and MIEV1.

7.2 MIEVO

MIEVO aims at minimum storage. The only significant dimensioned array is for A. (Arrays dimensioned only by the number of angles are usually short and rarely contribute significantly to the storage burden.) It requires a storage allocation because it may have to be precomputed by down-recurrence. The rest of the computation unfolds naturally as an up-recurrence requiring no storage of intermediate

results. Because of this, MIEVO appears simple and straightforward, especially by comparison to MIEV1.

The only significant vectorization in MIEVO is of the N $_{\rm ang}$ -loops necessary in the S $_{1}$,S $_{2}$ computation, as described in Sec. 7.1. But, as the timing studies will show (Sec. 7.5), these are by far the most important loops to vectorize if S $_{1}$ and S $_{2}$ are computed at any reasonable number of angles.

By setting N = 0 in MIEVO, one can calculate $Q_{\rm ext}$, $Q_{\rm sca}$ and g only, which is all one needs for simple radiative transfer approximations like delta-Eddington (Wiscombe, 1977). But MIEVO is two to three times slower than MIEV1 in this mode, so MIEV1 should be used for such applications whenever possible.

The numerical coefficients needed in the various Mie series are formed in MIEVO by the following efficient procedure:

$$2n + 1 = n + (n + 1)$$
 (51a)

$$\frac{(n+1)(n-1)}{n} = n - \frac{1}{n}$$
 (51b)

$$\frac{n+1}{n} = 1 + \frac{1}{n} \tag{51c}$$

$$\frac{2n+1}{n(n+1)} = \frac{1}{n} + \frac{1}{n+1} . ag{51d}$$

Only one division is actually done (1/n+1) because the value of 1/n is saved from the previous pass through the n-loop. The coefficient $(-1)^{n+1}$ is contained in an integer variable which is initialized to 1 and then has its sign flipped each time through the n-loop.

7.3 MIEV1

MIEV1 aims for the maximum amount of vectorization. It vectorizes all those N _-loops which are vectorized in MIEV0 and, in addition, it vectorizes several N-loops. To do so it divides computations into separate loops which were combined into a single loop in MIEV0. Also, MIEV1 requires 11 arrays of length N, rather than 2 as in MIEV0 (a complex array counting as 2), even though every effort has been made to minimize storage.

Four of the 11 N-arrays in MIEV1 contain the numerical coefficients

n,
$$2n + 1$$
, $\frac{2n + 1}{n(n + 1)}$, and $\frac{n(n + 2)}{n + 1}$ (52)

It is necessary to store these in arrays in order for certain N-loops to vectorize. Vectorization is inhibited unless all operands in an arithmetic expression are either constants or vectors; functions of the loop index like (52) are, as they stand, neither.

Summing of the series for Q and g (Eqs. 6-8) is done in ext, Sca and g (Eqs. 6-8) is done in MIEVI using a partially-vectorized subroutine. It is based on the following conceptual rearrangement into matrix form of the linear array being summed:

Each successive group of 64 elements in the array is regarded as a column of the matrix. Matrix row sums are then formed in a loop which vectorizes:

$$S_i = x_i + y_i + \dots$$
 (i = 1 to 64) . (53)

Then these row sums are added in an unvectorizable loop to give the desired sum:

$$S = S_1 + \dots + S_{64}$$
 (54)

It is because this last loop is unvectorizable that we call the procedure only "partially vectorized."

The above procedure has been coded into the FORTRAN subroutine TOTAL, listed along with MIEV1 in Appendix II. Obviously, TOTAL offers no speed advantage when less than 65 elements are to be summed; in that case TOTAL branches to a simple scalar loop

TOTAL =
$$A(1)$$

DO 1 I = 2,N (55)
1 TOTAL = TOTAL + $A(1)$

According to Johnson (1978), summing may be speeded up even more on the CRAY-1 by doing a vector add between steps (53) and (54). This extra step is vectorizable and results in having to sum only 8 elements, instead of 64, in the final unvectorizable step (54). Unfortunately, it is necessary to use assembly language coding to reap this extra speed and this would make MIEV1 nonportable. But those who use MIEV1 on the CRAY-1 may want to avail themselves of this fast sum routine.

Timing comparisons for sums of various lengths are presented in Table 6 for the three summing methods: standard (Eq. 55), TOTAL, and assembly language. For sums of more than 40 terms, assembly language summing takes only one-third to one-sixth the time of TOTAL. Note also that TOTAL is actually slower than the standard method for sums of less than about 100 terms; the overhead associated with calling a subroutine outweighs the benefits of vectorization up to this point. But beyond 100 terms, TOTAL quickly shows its advantage on just those sums which take the most computer time. For sums of 1000 terms and more, it takes only one-fourth to one-fifth the computer time of the standard method, albeit a factor of 3 to 4 more time than the assembly language method.

7.4 TESTING

The following parts of the basic routine MIEVO were tested extensively by themselves:

- the recurrences for $\psi_n,~\chi_n$ and ${\bf A}_n,$ particularly their possible instability (Sec. 3)
- the Lentz method (Sec. 3)
- the recurrences for π_n , τ_n (Sec. 3)
- the small-x limit (Sec. 4)
- the empirical function N(x) (Sec. 6)
- \bullet the ${\begin{subarray}{l} \bullet \end{subarray}}$ up-recurrence criterion (Sec. 5) .

MIEVO was then tested as a whole for internal consistency, for stability and for well-conditioning; its results were compared to a considerable variety of published Mie scattering data, and to the author's previous Mie code.

Table 6. Timing comparisons between various summing methods: standard (Eq. 55), partially-vectorized FORTRAN (TOTAL), and assembly language (Johnson, 1978).

Number of terms summed	Standard method time (millisec)	Ratio of TOTAL to standard method time	Ratio of assembly language to standard method time
5	2.1×10^{-3}	1.8	1.3
10	3.7×10^{-3}	1.5	0.77
20	7.0×10^{-3}	1.3	0.45
40	1.3×10^{-2}	1.2	0.27
60	2.0×10^{-2}	1.2	0.21
100	3.3×10^{-2}	0.93	0.15
150	4.9×10^{-2}	0.68	0.12
200	6.6×10^{-2}	0.56	0,10
300	9.8×10^{-2}	0.43	0.084
500	0.16	0.32	0.071
1,000	0.33	0.25	0.061
2,000	0.65	0.21	0.057
20,000	6.5	0.18	0.052

The internal consistency checks consisted in ascertaining, in numerous test cases, that the code results were the same to at least 6 significant digits when (a) various formulas were restructured, (b) varying levels of precision were used, and (c) convergence flags were varied within reasonable limits.

The stability and well-conditioning tests consisted in exercising the code over broad ranges of x (up to 20,000) and m (real part from 1.05 to 2.50; imaginary part from 10^{-7} to 1) and seeing if any overflows or unreasonble results turned up. No published data exist over most of these ranges, but there are a number of checks which one can make; e.g., that $Q_{\text{ext}} \rightarrow 2$ and Q_{sca} and g approach well-known asymptotes as $x \rightarrow \infty$; that these approaches should be more rapid—the larger Im(m) is; that increasing Im(m) damps out the ripple structure—the more so the larger x is; that rainbows and glories should occur; and so on. Numerous graphs were made of the results and, after considerable experience with Mie scattering data, I have found that calculational errors are relatively easy to spot on such graphs since they cause deviations from what is usually a fairly regular pattern. The final form of MIEVO in Appendix I has passed all such tests.

The published data against which MIEVO was tested included both graphs and tables in Van de Hulst (1957), Irvine (1965), Kerker (1969), Dave (1968b), and Deirmendjian (1969); and tables in Deirmendjian (1963), Denman et al. (1966), and Dave (1968a). Such data are restricted to $x \le 1000$ and, while being able to reproduce them gave considerable confidence in the codes, the sorts of tests described in the last paragraph are equally as important; for extrapolating the code to $x \le 20,000$ might overwhelm numerical techniques which are perfectly adequate for $x \le 1000$.

Of course the Mie codes were modified and improved several times after their initial testing. Rather than rerun the tests, comparisons were made for wide ranges of x and m between all output quantities of the new and old versions. This enabled errors to be quickly detected and ensured that the final versions presented here passed all the tests that their predecessors did. It also was the method used to test MIEV1 (against MIEV0).

Sample results from MIEV1, rounded to 6 significant digits, are presented in Appendix III. Users should reproduce these results before attempting to apply MIEV0 or MIEV1. There are 8 cases: x = 10, 100, 1000, and 5000; for each x, m = 1.5 and m = 1.5 - 0.1 i. $Q_{\rm ext}$, $Q_{\rm sca}$, $Q_{\rm abs} = Q_{\rm ext} - Q_{\rm sca}$, $Q_{\rm sca}$, and the time to execute each case are shown, as well as S_1 and S_2 for $\theta = 0^{\circ}$ (5°) 180°. The intensity and degree of polarization (Eqs. 44-45) are also shown; these were tabulated by Dave (1968a) for our-two x = 1000 cases, and the Appendix III results agree with his to all digits which he tabulates, except that the sign of our degree of polarization is opposite to his (we believe his is wrong in this respect).

Note that Dave gives execution times of 50.36 sec. (m = 1.5) and 52.32 sec. (m = 1.5-0.1 i) for his test cases. The MIEV1 times are 3300 and 2900 times faster, respectively.

7.5 TIMING

Claims of computer code timing superiority turn up frequently, although rarely are they backed up by the sort of thorough, quantitative study presented below for MIEVO and MIEV1. Therefore, I would like to begin with a few general comments on the meaning and utility (or lack thereof) of timing comparisons.

My main observation—and this has been seasoned by years of experience with a variety of codes and computing systems—is that many claims of timing superiority are meaningless. They are simply down in the noise level. I base this incredulity on several elements of experience.

First, the comparisons are almost never thorough or comprehensive, but rather are based on a tiny sample of cases which may not be representative or even important.

Second, timing on a computer is inherently a noisy operation, and the results may not be exactly reproducible. It depends on the work-load, the I/O burden, and many other unreckonable factors. It may vary even among computers of the same kind, depending on the sophistication of their operating systems and compilers (which are often a local product or an extensively modified company product). The 'perfect' timing study would be a pure CPU job, involving no I/O other than printing the times at the end, and executing with no other jobs present. These conditions are rarely met.

Third, the putatively slower code is not usually optimized. I have seen professional 'code speeder-uppers' reorganize a code, put the slowest or most frequently executed parts in assembly language, etc., and improve the timing by several factors. Indeed, after such optimization, the slower code might become the faster one.

As a result, I have come to regard, as a rough rule-of-thumb, that only a timing factor of 4 or more between two entirely different codes is significant. (Of course, timing improvements from modifying similar codes on the same computer are significant at a much lower level, possibly as low as 5-10%.)

Another point to bear in mind is what <u>benefit</u> will accrue from a timing improvement. A code executing in 1 microsecond will not benefit from a speed-up unless it is called many millions of times. At the other end of the scale, a code requiring 100,000 hours will not become any more feasible with a factor of 10 speed-up. It is usually only calculations requiring times in the mid-range (seconds to hours) which will benefit from a speed-up. Mie calculations are of such a type.

By way of an example of a useful timing comparison, Table 7 shows times for Dave's (1969a) Mie code, for 182 angles and x = 1, 10, 100, 1000 and 5000; and corresponding times for vectorized MIEV1. MIEV1 is 3000-4000 times faster, which divides up as follows. Our scalar-mode CRAY-1 is roughly 100 times faster than Dave's IBM 360/50. Another factor of roughly 5 is due to our improvements in numerical technique and a final factor of about 7 can be ascribed to our partially-vectorized code design.

Palmer (1977), using the same kind of computer as Dave, reported a new numerical technique (continued fractions instead of series) which gave factors of 9-15 improvement over Dave's times in Table 7 for x = 1, 10 and 100. The fact that both Palmer and I obtained such large improvements from entirely different directions suggests that, from the timing standpoint, Dave's codes were far from ideal.

We now examine the times required by three versions of our codes: unvectorized MIEVO, vectorized MIEVO, and vectorized MIEVI. These times, in CRAY-1 milliseconds, are presented in Tables 8-10, respectively, for size parameters from 1 to 5000, for numbers of angles from 0 to 255, and for two imaginary refractive indices--0 and 0.1. Each

Table 7. Execution times for Dave (1969a) Mie code compared to vectorized MIEV1 time. 182 angles were used for both codes. Dave used an IBM 360/50, which is roughly 100 times slower than the CRAY-1 in its normal scalar mode.

<u>x</u>	Dave (1969a) <pre>code time (sec)</pre>	vectorized MIEV1 code time (sec)	ratio of times
0.1	0.7	1.8×10^{-4}	3900
1	1.1	3.6×10^{-4}	3100
10	3.7	9.8×10^{-4}	3800
100	22	5.4×10^{-3}	4100
1000	194	4.56×10^{-2}	4300
5000	945	0.222	4300

Table 8. CRAY times in milliseconds to execute the <u>unvectorized</u> MIEVO code for various combinations of size parameter and number of angles. Each time represents an average over Re(m) = 1.1 (0.2) 2.5.

Im(m) = 0

No. of			<u> </u>	lie Size I	arameter			
Angles	_1_	3.3	10	_33	100	333	1000	5000
0	0.081	0.11	0.19	0.41	1.0	3.0	8.4	41
3	0.13	0.18	0.33	0.72	1.8	5.3	15	74
7	0.16	0.24	0.44	0.98	2.4	7.3	21	101
15	0.23	0.35	0.66	1.5	3.7	11	32	155
31	0.38	0.58	1.1	2.5	6.3	19	54	262
63	0.66	1.0	2.0	4.5	11	34	98	476
127	1.2	2.0	3.7	8.6	22	65	186	905
255	2.4	3.8	7.3	17	42	127	363	1760
			<u>]</u>	$[\mathbf{m}(\mathbf{m}) = 0]$.1			
0	0.099	0.14	0.24	0.50	1.2	3.7	12	53
3	0.14	0.21	0.37	0.82	2.0	6.1	19	86
7	0.18	0.27	0.48	1.1	2.7	8.0	25	113
15	0.25	0.38	0.70	1.6	3.9	12	36	167
31	0.39	0.61	1.1	2.6	6.5	20	58	274
63	0.68	1.1	2.0	4.6	12	35 ·	102	488
127	1.3	2.0	3.8	8.7	22	66	190	918
255	2.4	3.8	7.3	17	42	127	367	1780

Table 9. CRAY times in milliseconds to execute the vectorized MIEVO code for various combinations of size parameter and number of angles. Each time represents an average over Re(m) = 1.1 (0.2) 2.5.

Im(m) = 0

No. of		. Mie Size Parameter							
Angles	_1_	3.3	_10_	_33	100	333	1000	5000	
0	0.081	0.11	0.19	0.41	1.0	3.0	8.4	41	
3	0.12	0.18	0.32	0.70	1.7	5.1	15	71	
7	0.13	0.18	0.32	0.71	1.7	5.2	15	72	
15	0.14	0.20	0.35	0.78	1.9	5.7	16	79	
. 31	0.16	0.23	0.41	0.92	2.3	6.8	19	i94	
63	0.20	0.30	0.54	1.2	3.0	8.9	25	123	
127	0.28	0.43	0.80	1.8	4.4	13	38	182	
255	0.46	0.72	1.4	3.0	7.6	23	66	315	
			<u>Im(</u>	m) = 0.1					
0	0,099	0.14	0.24	0.50	1.2	3.8	12	53	
3	0.14	0.20	0.36	0.78	1.9	5.9	18	83	
7	0.14	0.21	0.37	0,80	2.0	6.0	19	84	
15	0.15	0.22	0.40	0.87	2.1	6.5	20	91	
31	0.17	0.25	0.46	1.0	2.5	7.5	23	106	
63	0.21	0.32	0.58	1.3	3.2	9.6	29	135	
127	0.30	0.45	0.82	1.8	4.6	14	41	194	
255	0.48	0.74	1.4	3.1	7.8	23	69	327	

Table 10. CRAY times in milliseconds to execute the vectorized MIEV1 code (the fastest one) for various combinations of size parameter and number of angles. Each time represents an average over Re(m) = 1.1 (0.2) 2.5.

Im(m) = 0

No. of				Mie Size Parameter				
Angles	_1_	3.3	10	_33	100	333	1000	5000
0	0.062	0.074	0.11	0.19	0.38	0.99	2.7	13
3	0.11	0.15	0.24	0.50	1.2	3.3	9.4	45
7	0.11	0.15	0.25	0.51	1.2	3.5	9.7	47
15	0.12	0.17	0.28	0.58	1.4	4.0	11	54
31	0.14	0.20	0.34	0.72	1.7	5.0	14	69
63	0.18	0.26	0.46	1.0	2.4	7.1	20	99
127	0.27	0.39	0.71	1.6	3.8	11	32	157
255	0.45	- 0.68	1.3	2.8	7.0	21	60	290
			<u>1</u>	<u>m(m) = 0</u>	<u>.1</u>			
0	0.083	0.10	0.14	0.25	0.53	1.5	5.6	21
3	0.13	0.18	0.28	0.57	1.3	3.8	12	53
7	0.13	0.18	0.29	0.59	1.4	4.0	13	55
15	0.14	0.20	0.32	0.66	1.5	4.5	14	62
31	0.16	0.23	0.39	0.80	1.9	5.5	17	77
63	0.20	0.29	0.51	1.1	2.6	7.7 .	23	106
127	0.29	0.42	0.75	1.6	4.0	12	35	165
255	0.47	0.73	1.3	2.9	7.2	22	63	298

time represents an average over eight real refractive indices from 1.1 to 2.5 in steps of 0.2.

For $\operatorname{Im}(m)=0$, up-recurrence is always used for A_n , as well as faster code branches for calculating a_n , b_n , so these times are invariably less (typically by 5-30%) than the corresponding ones for $\operatorname{Im}(m)=0.1$. For $\operatorname{Im}(m)=0.1$, up-recurrence for A_n may or may not be used, depending on Eq. (48); for $\operatorname{Re}(m)=1.1$, for example, it is used only for the $\operatorname{x} \leq 100$ cases, while for $\operatorname{Re}(m)=2.5$ it is used for all except the $\operatorname{x}=5000$ case. The sudden switch to down-recurrence on A_n thus occurs somewhere between the $\operatorname{x}=100$ and $\operatorname{x}=5000$ columns of the tables, but the elevating effect of this on the quoted times is diminished somewhat by averaging over the eight values of $\operatorname{Re}(m)$.

The patterns in Table 8 are typical of what one may expect on computers without vector capabilities. For fixed x, the N_{ang}-loop embedded in the N-loop increasingly dominates the computation time, until, for N_{ang} \geq 31, the time is almost linear in N_{ang}. For fixed N_{ang}, the time rises a bit less than linearly with N or, equivalently, with x + $4x^{1/3}$ (cf. Eq. 50).

For vectorized MIEVO, Table 9, the times for 0 and 3 angles are almost identical to those for unvectorized MIEVO, Table 8; this is to be expected, since only N ang -loops have been vectorized. But for N ang > 3, the times in Table 9 increase much more slowly with rising N ang than they did in Table 8. For 15 angles, there is an advantage of 1.8-1.9 over unvectorized MIEVO for all x; for 31 angles, 2.4-2.8; for 63 angles, 3.5-3.9; up to 5.2-5.7 for 255 angles. This advantage factor rises roughly logarithmically in N ang, increasing by about unity

every time $N_{\rm ang}$ doubles. As x increases for fixed $N_{\rm ang}$, the times in Table 9 rise in almost the exact same way they did in Table 8 (linearly in N); again, this is not surprising since no N-loops are vectorized.

The fastest code times are those for vectorized MIEV1, in Table 10. Compared to Table 9, improvement over MIEV0 is greatest for 0 angles—as large as a factor of 3 and at least a factor of 2 whenever x 2 33. This shows the advantage from vectorizing N-loops in its best light. For N $_{\rm ang}$ 2 3, on the other hand, vectorized MIEV0 never takes over 60% more time than vectorized MIEV1; vectorized MIEV1 offers the most advantage for 3 $^{\leq}$ N $_{\rm ang}$ $^{\leq}$ 63 and x $^{\leq}$ 100, in which regime vectorized MIEV0 takes 25-60% more time. (Of course, it is just this large-x regime which requires the most computer time.) But for 255 angles, Table 9 times are never more than 10% above those in Table 10, reflecting the almost total dominance of the N $_{\rm ang}$ -loops at that point.

There is a big rise, by a factor of 2-3, between the times for $N_{ang} = 0$ and those for $N_{ang} = 3$ in Table 10. But after this initial jump, the further rise as N_{ang} increases is slow; it is necessary to go all the way to 63 angles to double the $N_{ang} = 3$ time. Beyond 63 angles, the rise in execution time is more rapid, approaching linearity in N_{ang} ; this reflects the vector length of 64 on the CRAY-1.

For $x \le 33$, the Table 10 times rise considerably more slowly than linearly in N, reflecting the vectorization of N-loops. For $x \ge 100$, the times go up more nearly linearly in N, again due to the CRAY-1 vector length.

Using the assembly language sum routine (Sec. 7.3) can speed-up vectorized MIEV1 by anywhere from 1% to 20%. Unfortunately, the larger

speed gains are associated with the smaller values of x and $N_{\rm ang}$, which take less computer time anyway. For example, for x = 33, the gain ranges from 15-18% for 0 angles to 0-2% for 255 angles; while for x = 333 it never exceeds 7%. For maximum speed the fast sum routine can certainly be recommended, especially for $N_{\rm ang}$ = 0 cases, but no dramatic improvements in timing result therefrom.

These timing studies furnish a more solid basis than has heretofore existed for (a) estimating how much time a particular Mie computation will require and (b) establishing by how much, and in what cases, future Mie codes improve on these times.

8. SUMMARY

This document describes a number of improvements in numerical technique for Mie scattering calculations, and incorporates them into two well-documented and tested computer codes. These improvements are as follows:

- 1. Design for vector processing (Sec. 7.1)
- 2. Lentz method for starting the downward recurrence of A_n (Eqs. 23-35)
- 3. New criterion for down-recurrence of A_n (Sec. 5)
- 4. Better treatment of small-particle limit (Sec. 4)
- 5. A priori formulas for number of series terms (Sec. 6)
- 6. Simpler $\pi_n(\mu)$, $\tau_n(\mu)$ recurrences (Eqs. 37, 38)
- 7. Faster branches for no-absorption cases (Sec. 7.5)
- 8. S[±], rather than S₁,S₂, calculated internally, for greater speed (Eqs. 9-12)
- 9. Complex arithmetic, no double precision (Secs. 3, 7).

The codes execute some 30 to 40 times faster than those of Dave (1968a, 1969a) even after differences in machine speed are factored out. While this may seem a bit like flogging a dead horse, considering that Dave's codes may have been very inefficient to begin with (see Sec. 7.5), the statistic is important because many people are still using Dave's codes or slight variations thereof.

With codes such as those presented herein, Mie calculations which were literally unthinkable only 5 to 10 years ago may now be done routinely.

REFERENCES

- Abramowitz, M., and I. Stegun, Eds., 1965: <u>Handbook of Mathematical</u>

 <u>Functions</u>. Dover Press, New York, 1046 pp.
- Born, M., and E. Wolf, 1975: <u>Principles of Optics</u>. Pergamon Press, New York (5th edition).
- Chýlek, P., J. T. Kiehl and M. K. W. Ko, 1978: Narrow resonance structure in the Mie scattering characteristics. Appl. Opt., 17, 3019-3021.
- Dave, J. V., 1968a: Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere. Report No. 320-3237, IBM Scientific Center, Palo Alto, CA, 65 pp.
- Dave, J. V., 1968b: Scattering of visible light by large water spheres.

 Appl. Opt., 8, 155-164.
- Dave, J. V., 1969a: Scattering of electromagnetic radiation by a large, absorbing sphere. <u>IBM J. Res. Dev.</u>, 13, no. 3, 302-313.
- Dave, J. V., 1969b: Effect of coarseness of the integration increment on the calculation of radiation scattered by polydispersed aerosols.

 Appl. Opt., 8, 1161-1167.
- Deirmendjian, D., 1963: <u>Tables of Mie Scattering Cross Sections and Amplitudes</u>. RAND Report R-407-PR, Rand Corporation, Santa Monica, CA.
- Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical

 Polydispersions. American Elsevier, New York, NY.
- Denman, H., W. Heller and W. Pangonis, 1966: Angular Scattering

 Functions for Spheres. Wayne State University Press,

 Detroit, MI.

- Higbie, Lee, 1978: Speeding Up FORTRAN (CFT) Programs on the CRAY-1.

 CRAY Research Technical Note 2240207 (available from CRAY Research,
 1440 Northland Drive, Mendota Heights, MN 55120).
- Irvine, W. M., 1965: Light scattering by spherical particles:

 Radiation pressure, asymmetry factor, and extinction crosssection. J. Opt. Soc. Amer., 55, 16-21.
- Johnson, P. M., 1978: An introduction to vector processing.

 <u>Computer Design</u>, February.
- Kattawar, G. W., and G. N. Plass, 1967: Electromagnetic scattering from absorbing spheres. Appl. Opt., 6, 1377-1382.
- Kerker, M., 1969: The Scattering of Light and Other Electromagnetic

 Radiation. Academic Press, New York, NY.
- Kerker, M., P. Scheiner and D. D. Cooke, 1978: The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering.

 J. Opt. Soc. Amer., 68, 135-137.
- Khare, V., 1976: Short-Wavelength Scattering of Electromagnetic Waves by a Homogeneous Dielectric Sphere. Ph.D. Thesis, University of Rochester, NY (available from University Microfilms, Ann Arbor, MI).
- Lentz, W. J., 1976: Generating Bessel functions in Mie scattering calculations using continued fractions. Appl. Opt., 15, 668-671.
- Logan, N. A., 1965: Survey of some early studies of the scattering of plane waves by a sphere. Proc. IEEE, 53, 773-785.

- Palmer, T. Y., 1977: Mie scatter from continued fractions. In

 Advances in Laser Technology for the Atmospheric Sciences.

 J. Trolinger and W. Moore, Eds., Soc. Photo-Optical Inst. Eng.,
 Bellingham, WA, pp. 121-124.
- Rosasco, G. J., and H. S. Bennett, 1978: Internal field resonance structure: Implications for optical absorption and scattering by microscopic particles. <u>J. Opt. Soc. Am.</u>, 68, 1242.
- Shifrin, K. S., 1951: Scattering of Light in a Turbid Medium.

 English translation, NASA TTF-477, Washington, D.C., 1968.
- Van de Hulst, H. C., 1957: <u>Light Scattering by Small Particles</u>. Wiley & Sons, New York, NY.
- Whittaker, E. T., and G. N. Watson, 1965: A Course of Modern Analysis.

 Cambridge University Press, Cambridge, England, 608 pp. (4th ed., reprinted).
- Wiscombe, W. J.; 1977: The Delta-Eddington Approximation for a

 Vertically Inhomogeneous Atmosphere. NCAR Tech. Note TN-121+STR.
- Zerull, R. H., 1976: Scattering measurements of dielectric and absorbing nonspherical particles. <u>Beitr. Phys. Atmos.</u>, 49, 166-188.

APPENDIX I. MIEVO FLOW CHART AND LISTING


```
CRAY FORTRAN COMPILER VERSION 1.04 12/27/75
COMPILATION DATE AND TIME 02/69/79 - 22:14:30
1. SUBROUTINE MIEVO
C C COMPUTES HIE SCATTERING AND EXTINCTION EFFICIENCIES, ASYMMETRY C FACTOR, AND ANGULAR SCATTERING FUNCTIONS
C C VERSION 0-- STRUCTURED IN ORDER TO USE THE ABSOLUTE MINIMUM AMOUNT C OF COMPUTER MEMORY, WHILE STILL VECTORIZING LOOPS
```

THIS CODE IS DOCUMENTED IN-- *MIE SCATTERING CALCULATIONS-- IMPROVEMENTS IN TECHNIQUE AND FAST, VECTOR-SPEED COMPUTER CODES*, BY MARREN J. MISCOMBE, MCAR TECH NOTE (1979)

OVER SCATTERING ANGLE (WHICH, WHEN UNVECTORIZED, CAN

ACCOUNT FOR THE LIONES SHARE OF COMPUTING TIME)

INPUT VARIABLES

C

C

C

C

C

CCCCCCCC

CCC

CCC

C

C

C

C

C

CCC

C

C

C

C

C

C

C

C

C

C

C

C

C

Ç

C

C

C

C

C

MIE SIZE PARAMETER (2ºPIºRADIUS/WAYELENGTH) XX COMPLEX REFRACTIVE INDEX (IMAG PART MUST BE MEGATIVE) 108 THE MAGNITUDE OF THE IMAGINARY REFRACTIVE INDEX, BELOW NZCUT WHICH IT IS REGARDED AS ZERO (THE COMPUTATION PROCEEDS FASTER FOR ZERO IMAGINARY INDEX) HUHANG NUMBER OF ANGLES AT WHICH SCATTERING FUNCTIONS ARE TO BE EVALUATED. NUMANGED SIGNALS THAT ONLY GEXT, QSCA, AND GFAC (SEE DUTPUT QUANTITIES BELOW) ARE TO BE EVALUATED. ALL POSITIVE INTEGRAL VALUES OF FUMANG ARE PERMITTED, BUT IF IT IS ODD, 90 DEGREES MUST BE ONE OF THE ANGLES (IF NUMANG=1, 90 DEGREES MUST BE DNLY ANGLE) XHU(N), N=1 TO NUMANG COSINES OF ANGLES AT WHICH SCATTERING FUNCTIONS ARE TO BE EVALUATED -- THE ANGLES MUST BE MONOTONE INCREASING AND MUST BE MIRROR SYMMETRIC ABOUT PI/2, SO THAT IF PI/2-A IS AN ANGLE THEN SO IS PI/2+A, WHERE A LIES BETHEEN ZERO AND PI/2

OUTPUT VARIABLES

EXTINCTION EFFICIENCY FACTOR, DEFINED AS OFXT (2/XX**2) *SUM((2M+1) *RE(A(M)+B(M))) SCATTERING EFFICIENCY FACTOR, DEFINED AS (2/XX**2)*SUM((2H+1)*(CA3S(A(H))**2+CABS(B(H))**2)) HHERE A(H) AND B(H) ARE THE USUAL HIE COEFFICIENTS LITTLE-A-SUB-N AND LITTLE-B-SUB-N GFAC ASYMMETRY FACTOR, DEFINED AS (6/XX**2) *SUH((N-1/N) *RE(A(N-1) *CONJG(A(N))+3(N-1) *CONJG(B(N))) +(ZN+1)/(N(N+1)) *RE(A(N) *CONJG(B(N)))) / QSCA S1(N),S2(N),N=1 TO HUMANG AT EACH ANGLE SPECIFIED BY XMU ARRAY, THESE ARE THE USUAL MIE ANGULAR SCATTERING FUNCTIONS SIG-S-SUB-ONE AND BIG-S-SUB-TWO, DEFINED AS \$1 = \$UH((2H+1) / (H(H+1)) + (A(H) +PI(H) +B(H) + TAU(H))) S2=SUH((2N+1)/(h(n+1))+(A(h +TAU(h)+0(h)+PI(h))) AND WHERE PI(M) AND TAU(M) ARE THE USUAL MIE QUANTITIES LITTLE-PI-SUB-N AND LITTLE-TAU-SUB-N

--MOTE--THE PHASE FUNCTION, OR ANGULAR GAIN, FOR A PARTICULAR MIE SIZE PARAMETER IS OBTAINED BY MULTIPLYING

II+IZ = CABS(S1)**2+CABS(S2)**2

BY 2/XX**Z. HOMEVER, IT IS II+IZ, NOT THIS PHASE FCH,
MHICH MUST BE INTEGRATED OVER SIZES WHEN A SIZE DISTRIBUTION IS INVOLVED. THIS INTEGRAL MUST THEM BE NORMALIZED
TO GIVE THE CORRECT PHASE FUNCTION. SIMILARLY, IT IS THE

```
C
               CROSS-SECTIONS, PROPORTIONAL TO (XX*+2/2) TIRES DEXT AND
C
                QSCA, WHICH SHOULD BE INTEGRATED OVER SIZES, NOT QEXT AND
C
                QSCA THEMSELVES.
C
    INTERNAL
                       VARIABLE
C
   NT1
                    PARAMETER. MAX. POSSIBLE NO. OF TERMS IN HIE SERIES.
C
   MANGLZ
                    PARAMETER. MAX. POSSIBLE NO. OF ANGLES FROM 0 TO
C
                    90 DEGREES.
C
   NNZ
                    NUMANG+1
C
   NN
                    NN2/2--NO. OF ANGLES FROM'D TO 90 DEGREES
C
   NOANGS
                    TRUE, SKIP CALCULATION OF S1, S2
C
                    TRUE, ASSUME IMAGINARY REFRACTIVE INDEX IS ZERO AND
   NOIHAG
C
                    TAKE COMPUTATIONALLY FASTER BRANCHES IN CODE
C
   AINIOR
                    MAGNITUDE OF IMAGINARY REFRACTIVE INDEX
C
                    REAL PART OF REFRACTIVE INDEX
   REIDR
C
                    MIE COEFFICIENTS LITTLE-A-SUB-1, LITTLE-A-SUB-2,
   A1, A2, B1
                    LITTLE-B-SUB-1, WITH NUMERATOR AND DENOMINATOR
                    EXPANDED IN POWERS OF XX, AND A FACTOR OF XX++3 DIYI-
C
C
                    DED OUT (USED IN SMALL-XX LINIT)
                    TEMPORARY VARIABLES USED IN SHALL-XX LIMIT
C
   IORSQ, RAT, TEN
   NT
                    NO. OF TERMS IN HIE SERIES
   NTP1
                    NT+1
C
   XINV
                    1/XX
C
   ZINV
                   1/(IOR*XX)
C
                   ARITHMETIC STATEMENT FUNCTION USED IN DETERMINING
C
                    WHETHER TO USE UP- OR DOWN-RECURRENCE FOR BIGA
C
   FF
                   CONTAINS INTERHEDIATE AND FINAL VALUES OF LENTZ
C
                   CONTINUED FRACTION FOR BIGA(NT). ALSO USED AS TEMPO-
                   RARY VARIABLE IN INITIALIZING UP-RECURRENCE FOR BIGA.
C
   AK, KK, DEN, DTD,
                   TEMPORARY WARIABLES USED IN COMPUTING FF
C
   MUM_MTN, IT
C
   HH
                   +1 AND -1 ALTERNATELY. USED IN COMPUTING FF, SPS, SMS
   KOUNT
                   ITERATION COUNTER FOR FF COMPUTATION
C
                   MAXIMUM ALLOWED NO. OF ITERATIONS IN FF COMPUTATION
   TIXAM
C
   EPS1
                   ILL-CONDITIONING CRITERION FOR LENTZ CONTINUED FRACH.
                   CONVERGENCE CRITERION FOR LENTZ CONTINUED FRACTION
C
   EPS2
                   -N/Z + J-SU8-(N-1) OF Z/J-SUB-N OF Z, MHERE Z=IOR*XX
C
   BIGA (N)
C
                   AND J-SUB-N IS THE NTH-ORDER SPHERICAL BESSEL FUNCTN.
C
   CTAN
                   EXTERNAL FUNCTION FOR COMPLEX TANGENT (USED TO INI-
C
                   TIALIZE UP-RECURRENCE FOR BIGA;
C
   REZ
                   REAL(IOR) *XX
C
   REZINV
                   1/REZ
C
   EQBIGA
                   REAL ARRAY EQUIVALENCED TO BIGA. USED TO CONTAIN
C
                   BIGA WHEN MOIMAJ=TRUE, WHEN BIGA IS PURELY REAL.
Č
   IDRINV
                   1/IDR (USED IN AN CALCULATION)
C
   RIORIV
                   1/REAL(IOR) (USED IN AN CALCH. WHEN NOIMAGETRUE)
C
   FN
                   FLOATING POINT VERSION OF LOOP INDEX N IN 500-LOOP
C
   FNP1
                   N+1
C
   RN
                   1/H
C
   RNP1
                   1/(N+1)
C
   TWOMP1
                   2N+1
   COEFF
                   (ZN+1)/(H(N+1))
  NP1DN
                   (N+1)/N
C
  PSIN
                   RICATTI-BESSEL FUNCTION PSI-SUB-(N-1) OF XX
   PSINP1
                   RICATTI-BESSEL FUNCTION PSI-SUB-N OF XX
   CHIN, CHINP1
                   LIKE PSIN, PSINPL BUT FOR FUNCTION CHI
                   LIKE PSIN, PSINPL BUT FOR FUNCTION ZETA=PSI+I*CHI
C
   ZETH, ZETHP1
C
                   MIE COEFFICIENTS LITTLE-A-SUB-N, LITTLE-B-SUB-N
   AN, BN
                   AN.BN BUT FOR (N-1) INSTEAD OF N
   ANH1 . BNM1
                   (2N+1)/(N(N+1)) * (AN+BN)
   ANP
C
  BNP
                   (2M+1)/(N(M+1)) * (AH-BH)
                   (-1) ** (N+1) * ANP
C
  ANPH
   BHPM
                   (-1) ** (H+1) + BHP
C
   (L) MUAT, (L) HIP
                   ANGULAR FUNCTIONS LITTLE-PI-SUB-N AND LITTLE-TAU-SUB-
                   N AT JTH ANGLE
```

```
TITTLE-PI-SUB-(N-1) AT UTH ANGLE
C PINH1(J)
                   TEMPORARY ARRAY USED IN COMPUTING PIN, TAUN
  THP(J)
                   S+ = S1+S2 FOR JTH ANGLE
C
   SP(J)
                   S- . S1-S2 FOR JTH ANGLE
C
   (L)HZ
                 S+ - S1+S2 FOR (NH2-J) TH ANGLE
   SPS(J)
C
                   S- = S1-S2 FOR (NNZ-J) TH ANGLE
C
  SHS(J)
CUSE COMIO
         ANGULAR DIMENSIONS
      PARAMETER (NANGL=255)
      COMPLEX IOR, S1, S2
      REAL HZCUT
      COMMON/INDUT/XX, IOR, NZCUT, NUMANG, XMU(MANGL), QEXT, QSCA, GFAC,
         S1 (MANGL), S2 (MANGL)
CEND
      PARAMETER (NANGL2=(NANGL+1)/2)
      PARAMETER (NT1=28150)
      REAL MPIDM
      LOGICAL MOINAS, MOANGS
      COMPLEX CTAN
      COMPLEX A1, A2, B1, I ORSQ, RAT
      COMPLEX ZINY, FF, AK, DEN, NUN, NTN, DTD, TT, BIGA, IORINY, AN, BH, ANM1, BMM1,
         ANP, BNP, ANPN, BNPN, ZET, ZETN, ZETNP1, SP, SN, SPS, SNS
      DIMENSION SP(MANGL 2), SM(MANGL 2), SPS(MANGL 2), SMS(MANGL 2),
         PIN(MANGL2), PINH1 (MANGL2), TAUM (MANGL2), TMP (MANGL2), BIGA (MT1),
         EQBIGA(NT1)
      EQUIVALENCE (BIGA(1), EQBIGA(1))
      EQUIVALENCE (S1(1), PIN(1)), (S1(NANGLE), PINH1(1)),
                  (S2(1), TAUN(1)), (S2(NANGLZ), TMP(1))
      F(REN) = -15.84 + REN*(8.42+16.35*REN)
      DATA EPS1/1.E-2/, EPS2/1.E-6/
      DATA MAXIT/10008/
C
C
      IF(NUMANG.GT.NANGL .OR. NUMANG.LT.0) STOP 1000
      NN2 = NUMANG+1
      NN = NN2/2
      MOANGS = NUMANG.EQ.8
      AINIOR = ARS(AIMAG(IOR))
      REIOR = REAL(JOR)
      HOIMAG = AIMIOR.LE.MZCUT
      [F(CABS(IOR)*XX.GT.8.1) GO TO 7
C
C
          SMALL-PARTICLE LIMIT
      IORSQ = IOR**2
      RAT = (0.,0.6666666666667) *(IORSQ-1.0)
                   RAT*(1.0-0.1*XK**2+(4.*IORSQ+5.)/1408.*(XX**4))
      A1 -
            /(IORSQ+2.8+(1.0-8.7*IORSQ)*(XX**2)-(8.*IORSQ**2-385.*IOPSQ
            +350.)/1400. * (XX**4) + (XX**3) *RAT* (1.8-0.1*XX*42))
      B1 = (XX - 2/38.) - RXT - (1.8 + (2. - 10RSQ - 5.) / 70. - (XX - 2))
            /(1.8-(2.*10KSQ-5.)/38.*(XX**2))
      AZ = (0.1 \times x \times * * 2) \cdot RAT*(1.8 - x \times * * 2/14.)
            /(2.*IORSQ+3.-(2.*IORSQ-7.)/14.*(XX**2))
      TEH - CABS(A1) **2+CABS(B1) **2+(5,/3.) *CABS(A2) **2
       QSCA = 6.*(XX**4)*TEH
      SFAC =
                 REAL (A1 CONJG (AZ+B1))/TEM
       QEXT = QSCA
      Ç
       TEH = 1.5*XX**3
       A2 = (5./3.) *A2
     **** VECTORIZABLE LOOP *****
C
       DO 5 J = 1.NN
       S1(J) = TEH*(A1+(B1+A2)*XHU(J))
```

```
> $2.J) = TEM+(B1+A1*ANU(J) +A2*127*XNU(J)**2-1;)) ---
           **** VECTORIZABLE LOOP ****
   42.
             DO 6 J = 1.NN
   43.
             TEN-(A1-(B1+A2) * XHU(J) *
   44.
           6 SZ(HHZ-J) = TEM+(B1-14-14) +HZ-(Z.*HU(J) +-Z-1.))
   45.
       C
                CALCULATE NUMBER OF TERMS IN MIE SERIES (A LEAST UPPER BOUND)
                USING EMPIRICAL FORMULAS WHICH WERE FITTED FOR SIZE PARAMETERS
       C
                UP TO 20,000
           7 IF(XX.LE.4.0) Hf = XX+4.*XX+6(1./7.)+1.
   46.
   47.
             IF(XX.GT.8.C .AND. XX.LT.6203.) HT = XX+6.05*XX**(1./3.)+2.
   48.
             IF(XX.SE.4268.) HT = XX+4.+XX++(1./3.)+2.
  *9.
             NTPL = NT+1
                MAKE SURE ARRAY BIGA HILL BE LARGE ENOUGH
 . 54.
             IF(NTP1.LE.NT1) GO TO 18
 _ 51.
             MRITE(6,800C) NT, XX
       8990 FORMATI///* ESTIMATED LENGTH OF MIE SERIES MT=*16,
   52.
            . . FOR SIZE PARAMETELZ.Z/ ENCEEDS BIGA DIMENSIONS")
  53.
            STOP 1801
       C
                COMPUTE BIGA
  54.
         10 XINV = 1.0/XX
  55.
            ZÍNV = XINV/IOR
                DECIDE WHETHER BIGA-N CAN BE CALCULATED BY UP-RECURRENCE
 . 56.
            IFCAIMIOR .LT. F(REIOR)/XX1 30 TO 100
               PREPARE FOR DOWN-RECURSENDE---
               COMPUTE INITIAL HIGH-ORDER BIGAN USING LENTZ HETHOD
  57.
            FF = NTP1+ZINV
  58.
            MM = -1
..59.
            KK = 2*HT+3
_ 60.
            AF = (HK+KK)+ZINV
. 61.
            DEN = AX
  62.
            NUM = DEN + 1.8/FF
.. 63.
            KOUNT = 1
  64.
         ZE KOUNT = KOUNT+1
  65.
            IF(KCUNT.GT.MAXIT) 70 TO 40
            IFICABS(HUM/AK) .ST.EPS1 .AND. CABS(DEN/AK) .GT.EPS1) 60 TO 38
  66.
                ILL-COMDITIONE'S CASE--STRIDE THO TERMS INSTEAD OF ONE
  67.
            MH . -MM
.. 68.
            KK . KK+2
... 69.
            AK = (MM*KK) *ZINY
  78.
            NTH = AKTHUM + 1.0
            DTD = AK+DEH + 1.0
  71.
  72.
            FF = (NTN/DTD) * FF
  73.
            HH = -MM
_ 74.
            KK = KK+2
 75.
            AK = {MM+KK} #7.INV
.. 76.
            HUM - AK + NUA/HTH
. 77.
            DEN . AK + OF.H/DTO
  78.
           -KOUNT = KOUNT+1
  79.
            60 TO 28
 80.
         30 TT = NUM/DEN
_ 41.
            FF = TT+FF
               CHECK FOR CONVERSENCE
 82.
            TF(ABS(REAL(TT)-1.8).LT.EPS2 .AND. ABS(AIMAG(TT)).LT.EPS2) GOTO 50
  83.
            MM = -MM
  84.
            KK = KK+2
```

```
85.
             AK = (MM+KK)+ZINV
   86.
             NUM = AK + 1.8/NUM
   87.
             DEN = AK + 1.0/DEN
   88.
             50 TO 20
  89.
          AN WRITE(6, 8001) NT, XX, IOR,
                                          AK, HUH, DEN, TT, FF
        6001 FORMATI///* CONTINUED FRACTION FOR A-SUS-NT FAILED TO CONVERGE*/
                * NT=*16/* X=*E2].8/* REFR INDEX=*2E20.8/* AK=*2E20.8/
                * NUM=+2E20.8/* DEN=+2E20.8/* TT=+2E20.8/* FF=+2E20.8)
            STOP 1882
  92.
        58 BIGA(NT) = FF
      C
      C
                DOWNAARD RECURRENCE FOR BIGA-N
  93.
            DO 78 N = NT. 2. -1
         78 BIGA(H-1) = (NºZINY) - 1.8/(CNºZINY)+BIGA(N))
  94.
  95.
            60 TO 200
                  UPWARD RECURRENCE FOR BIGA-N
      C
  96.
        180 IF(NOIMAG) GO TO 148
      C
               SENERAL CASE
      C
  97.
            FF = CTAN(IOR*XX)
  98.
            SIGA(1) = -ZINV + FF/(ZINV+FF-1.8)
  99.
            00 120 N = 2,KT
 100.
        120 BIGA(N) = -(N°ZINY)+1.0/((N°ZINY)-BIGA(N-1))
.101.
            60 TO 280
      C
               NO-ABSORPTION CASE
      C
102.
        148 REZ - REIOR*XX
103.
            REZINV = 1.0/REZ
104.
            TEH = TAN(REZ)
105.
            EQGIGA(1) = -REZINY + TEM/(REZINY*TEM-1.8)
166.
            00 160 M = 2,MT
       160 [Q6] GA(N) = - (N*REZINV) + 1.8/((N*REZINV) -EQ3] GA(N-1))
107.
     C
108.
       288 CONTINUE
119.
           IORINY = 1.0/IOR
119.
            RIORIY = 1.0/REIOR
               INITIALIZE QUANTITIES USED FOR EFFICIENT CALCULATION OF
               MUMERICAL COEFFICIENTS IN MIE SERIES
111.
           FH = 1.0
112.
           RN - 1.8
           MM = 1
              INITIALIZE RICATTI-BESSEL FUNCTION ZETA FOR UPWARD RECURRENCE
114.
           PSIN = SIN(XX)
115.
           CHIM = COS(XX)
116.
           PSINP1 = XINV*PSIN-CHIM
117.
           CHIMPL = XIM4+CHIM+PSIM
118.
           ZETH = CMPLX(PSIN, CHIN)
119.
           ZETHP1 - CMPLX(PSINP1; CHIMP1)
              INITIALIZE PREVIOUS COEFFICIENTS (A-SUB-N-1, B-SUB-N-1)
              FOR USE IN ASYMMETRY FACTOR SERIES
120.
           A HH1
                 = (0.0,0.0)
121.
                  = (0.8,0.0)
              INITIALIZE SUMS FOR EFFICIENCIES AND ASYMMETRY FACTOR
122.
           QEXT = 0.0
123.
           QSCA . ..
124.
           GFAC = 0.0
             INITIALIZE ANGULAR FOM PIN AND SUNS FOR SOLS- AT ALL ANGLES
         **** VECTORIZABLE LOGP *****
```

```
125.
            DO 250 J = 1,FN
            SP(J) = (0.0,8.0)
 126.
            SM(J) = (0.3,8.0)
 127.
 128.
            SPS(J) = (0.0,0.0)
            SMS(J) = (0.0, 0.0)
.. 129.
 130.
            PINM1(J) = C.0
        250 PIN(J) = 1.0
 131.
 132.
            DO 500 N = 1, NT
               COMPUTE THE VARIOUS NUMERICAL COEFFICIENTS NEEDED
. 133.
            FNP1 = FN+1.0
. 134.
            TWONP1 = FN+FHP1
 135.
            RNP1 = 1.8/FNP1
            COEFF = RN+RNP1
 136.
 137.
            NP10N = 1.0+RN
      C
               CALCULATE THE MIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-B
      C
      C
138.
            IF(NOIMAG) GO TO 308
               GENERAL CASE
 139.
            AN # ((IORINY*BIGA(N) +(FN*XINY))*PSINP1-PSIN)/
                  ((IORINY*BIGA(N)+(FN*XINY))*ZETNP1-ZETN)
                      IOR+BIGA(N)+(FN+XINV))*PSINP1-PSIN)/
            BN # -((
                 "
                       IOR*BIGA(4) + (FM*XIHV)) *ZETHP1-ZETH)
               INCREMENT SERIES FOR SCATTERING EFFICIENCY
 141.
            Q SC A
                  = QSCA
                            + THOMP1 ( (REAL (AN)) -- 2+ (AIHAG (AN)) -- 2
                                       +(REAL(BN)) ++2+(AIMAG(BN)) ++2)
            60 TO 350
 142.
 143.
        388 CONTINUE
               NO-ABSORPTION CASE
 144.
            AN = ((RIORIV*EQ3IGA(N)+(Fm*xINV))*PSINP1-PSIN)/
                 ((RIORIV*EQSIGA(N)+(FN*XINV))*ZETNP1-ZETN)
145.
            BN = (( REIOR+EQ3IGA(M)+(FM+XINV))+PSIMP1-PSIM)/
                 (( REIOR PERBIGA(N) + (FN + XINV)) + ZETHP1 - ZETH)
146.
        358 CONTINUE
               INCREMENT SERIES FOR ASYMMETRY FACTOR AND EXTINCTION EFFICIENCY
147.
            SFAC = SFAC +(FN-RN) *REAL(ANM1*CONJG(AN) BNML*CONJG(BN))
                       + COEFF*REAL (AN*CONJG(BN))
            GEXT = GEXT + THOMPL*REAL(AN+BH)
148.
149.
            IF(NOANGS) GO TO 450
               PUT MIE SERIES COEFFICIENTS IN FORM MEEDED FOR COMPUTING S+, S-
150.
            ANP =
                      COEFF*(AN+BN)
151.
            BNP =
                      COEFF (AN-BN)
152.
            ANPH . HHTANP
153.
            SMPH = MH+BMP
     C
          **** VECTORIZABLE LOOP ****
154.
            00 400 J = 1,NH
     C
              ADD UP SUMS HHILE UPWARD RECURSING ANGULAR FUNCTIONS LITTLE PI
              AND LITTLE TAU
155.
            (L) LMM] = \{(L) MIPP(L) UMX\} = (L) PMT(J)
156.
                       FR*TMP(J) - PINH1(J)
            = (L)KUAT
157.
            SP(J) = SP(J) + AMP*(PIH(J)+TAUN(J))
.158.
            ((L) HUAT+ (L) HIP) *HPHB + (L) 2H2 = (L) 2H2
159.
                               ((L)NUAT-(L)HI9) *9HE
            (L)%2 = (L)#2
160.
            SPS(J) = SPS(J) + ANPH+(PIN(J)-TAUN(J))
161.
            PIMM1(J) = PIM(J)
162.
            PIN(J) = (XNU(J) \cdot PIN(J)) + MP1DN \cdot TMP(J)
163.
       480 CONTINUE
     C
     C
               UPDATE RELEVANT QUANTITIES FOR NEXT PASS THROUGH LOOP
164.
            HH = - HH
```

```
450 FN = FNP1
  165.
  166.
             RN = RNP1
  167.
             ANKI - AN
  168.
             BHM1 = BN
                CALCULATE RICATTI-BESSEL FUNCTIONS BY UPWARD RECURRENCE
  169.
             ZET = (THONP1 * XINV) *ZETNP1 - ZETN
  170.
             ZETH = ZETHP1
. 171.
             ZETNP1 = ZET
  172.
             PSIN = PSINP1
  173.
             PSINP1 = REAL(ZETNP1)
  174.
         500 CONTINUE
       C
       C
       C
                 HULTIPLY SUMS BY APPROPRIATE FACTORS TO GET GEXT, QSCA, GFAC
       C
  175.
             QEXT = 2. + (XIH++2) +QEXT
  176.
             QSCA = 2.*(XINV**2)*QSCA
  177.
             IF(NOIMAG) QSCA - QEXT
             SFAC = 4.*(XINV**2)*SFAC/QSCA
  178.
  179.
             IF(NOANGS) RETURN
       C
       C
                RECOVER SI AND SE FROM S+, S-
       C
       C
           ***** VECTORIZABLE LOOP *****
 188.
            -BO 806 J = 1, NH
 181.
             S1(J) = 0.5^{(SP(J)+SH(J))}
         ((L)M2-(L)92)^{\circ}2.8 = (L)52 008
  182.
           ***** VECTORIZABLE LOOP *****
 183.
            - 00 900 J = 1,NN
  184.
             $1(HH2-J) = (.5*(SPS(J)+SHS(J))
         (L)2RZ-(L)2QZ)^{-2.8} = (L-SRR)SZ 88P
  185.
.. 186.
             RETURN
_. 187.
             END
                                             37, P=
HIEVO
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                                       121213C
        VECTOR BLOCK BEGINS AT SEQ. NO.
MIEVO
                                                       1217548
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                              105, P=
MIEVO
                                                        121 '610
MIEVO
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                              146, P=
                                                        122150A
MIEVO
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                              180, P=
                                                       122312C
HIEVO'
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                              183, P=
                                                       122335C
```

APPENDIX II: MIEV1 FLOW CHART AND CODE LISTING


```
CRAY FORTRAN COMPILER VERSION 1.04
                                       12/27/78
. COMPILATION DATE AND TIME
                                       02/09/79
                                                        22114131
           SUGROUTINE HIEVE
... 1.
        COMPUTES MIE SCATTERING AND EXTINCTION EFFICIENCIES, ASYMMETRY
        FACTOR, AND ANGULAR SCATTERING FUNCTIONS
            VERSION 1-- STRUCTURED TO MAKIMALLY VECTORIZE LOOPS OVER THE
                        NUMBER OF MIE SERIES TERMS AND OVER SCATTERING ANGLE
     C
     C
                         (LARGER HEHORY REQUIREMENTS THAN VERSION VO)
           THIS CODE IS DOCUMENTED IN-- #MIE SCATTERING CALCULATIONS--
            IMPROVEMENTS IN TECHNIQUE AND FAST, VECTOR-SPEED COMPUTER CORESE,
     C
     C
           BY WARREN J. WISCOMBE, NCAR TECH NOTE (1979)
     C
     C
         INPUT
                      VARIABLES
     C
     C
                       MIE SIZE PARAMETER (2*PI*RADIUS/HAVELENGTH)
     C
            TOR
                       COMPLEX REFRACTIVE INDEX (IMAG PART MUST BE NEGATIVE)
                       THE MAGNITUDE OF THE IMAGINARY REFRACTIVE INDEX, BELOW
     C
             N2CUT
     C
                       WHICH IT IS REGARDED AS ZERO (THE COMPUTATION PROCEEDS
     C
                       FASTER FOR ZERO INAGINARY INDEX)
     C
                       NUMBER OF ANGLES AT WHICH SCATTERING FUNCTIONS
            NUMANG
     C
                       ARE TO BE EVALUATED. NUMANGE SIGNALS THAT ONLY GEXT,
                       QSCA, AND GFAC (SEE OUTPUT QUANTITIES BELOW) ARE TO BE
     C
     C
                       EVALUATED. ALL POSITIVE INTEGRAL VALUES OF NUMANG ARE
                       PERMITTED, BUT IF IT IS ODD, 90 DEGREES MUST BE ONE OF THE ANGLES (IF NUMANG=1, 90 DEGREES MUST BE ONLY ANGLE)
     C
     C
            XHU(N), N=1 TO NUMANG COSINES OF ANGLES AT WHICH SCATTERING
     C
                       FUNCTIONS ARE TO BE EVALUATED -- THE ANGLES MUST BE
     C
                       MONOTONE INCREASING AND MUST BE MIRROR
     C
                       SYMMETRIC ABOUT PI/2, SO THAT IF PI/2-A IS AN ANGLE
     C
                       THEN SO IS PI/2+A, WHERE A LIES BETWEEN ZERO AND PI/2
     C
                      VARIABLES
        OUTPUT
    C
            QEXT ....
    C
                      EXTINCTION EFFICIENCY FACTOR, DEFINED AS
    Ç
              (2/XX*+2) +SUN( (2N+1) +RE(A(N)+B(N)) )
                      SCATTERING EFFICIENCY FACTOR, DEFINED AS
    C
            (2/XX**2)*SUH( (2N+1)*(CA3S(A(N))**2+CA8S(B(N))**2) )
    C
                      WHERE A(N) AND B(N) ARE THE USUAL MIE COEFFICIENTS
    C
                      LITTLE-A-SUB-N AND LITTLE-B-SUB-N
    C
                      ASYMMETRY FACTOR, DEFINED AS
          (4/XX++2)+SUH( (N-1/N)+RE(A(N-1)+CONJG(A(N))+B(N-1)+CONJG(B(N)))
    C
    C
                        +(2N+1)/(N(N+1)) *RE(A(N) *CONJG(B(N))) / QSCA
    C
            $1 (N), $2(N), N=1 TO NUMANG
                                        AT EACH ANGLE SPECIFIED BY XHU ARRAY,
    C
                      THESE ARE THE USUAL MIE ANGULAR SCATTERING FUNCTIONS BIG-S-SUB-ONE AND BIG-S-SUB-TWO, DEFINED AS
    C
    ¢
                        $1=$UM( (2N+1)/(N(N+1))*(A(N)*PI(N)+B(N)*TAU(N)) )
    C
                        S2=SUM( (2M+1)/(M(M+1)) +(A(M) +TAU(M)+B(M)+PI(M)) )
    C
                      AND WHERE PI(N) AND TAU(N) ARE THE USUAL HIE QUANTITIES
          LITTLE-PI-SUB-N AND LITTLE-TAU-SUB-N
    C
         -- NOTE--THE PHASE FUNCTION, OR ANGULAR GAIN, FOR A PARTICULAR
    C
                    MIE SIZE PARAMETER IS OBTAINED BY MULTIPLYING
    C
                           I1+I2 = CABS(S1) **2+CABS(S2) **2
    C
                    BY 2/XX++2. HOWEVER, IT IS I1+12, NOT THIS PHASE FCN,
```

WHICH MUST BE INTEGRATED OVER SIZES WHEN A SIZE DISTRIBU-TION IS INVOLVED. THIS INTEGRAL MUST THEN BE HORHALIZED TO GIVE THE CORRECT PHASE FUNCTION. SIMILARLY, IT IS THE CROSS-SECTIONS, PROPORTIONAL TO (XXP+2/2) TIMES GEXT AND

C

```
C QSCA, WHICH SHOULD BE INTEGRATED OVER SIZES, NOT GEXT AND
                            QSCA THEMSELVES.
        INTERNAL VARIABLES
      NT1
                                   PARAMETER. MAX. POSSIBLE NO. OF TERMS IN MIE SERIES.
 C
      NT12
                                   PARAMETER = 2*NT1
      NANG L2
 C
                                   PARAMETER. HAX. POSSIBLE NO. OF ANGLES FROM 0 TO
 C
                                   90 DEGREES.
 C
      NNZ
                                   NUMANG+1
                                   NN2/2--NO. OF ANGLES FROM 0 TO 90 DEGREES
 C
      NN
                                   TRUE, SKIP CALCULATION OF S1, S2
 C
      HOANGS
 C
                                   TRUE, ASSUME IMAGINARY REFRACTIVE INDEX IS ZERO AND
      NOIHAG
                                   TAKE COMPUTATIONALLY FASTER BRANCHES IN CODE
                                   MAGNITUDE OF IMAGINARY REFRACTIVE INDEX REAL PART OF REFRACTIVE INDEX
 C
      AINIOR
 C
      REIOR
 C
      A1, A2, 81
                                   MIE COEFFICIENTS LITTLE-A-SUB-1, LITTLE-A-SUB-2,
                                   LITTLE-B-SUB-1, WITH NUMERATOR AND DENOMINATOR
 C
                                   EXPANDED IN POWERS OF XX, AND A FACTOR OF XX++3 DIVI-
                                   DED OUT (USED IN SHALL-XX LIHIT)
                                   TEMPORARY VARIABLES USED IN SHALL-XX LIHIT
 C
     IORSQ, RAT, TEN
     NT
                                   NO. OF TERMS IN MIE SERIES
C
      NTH1
                                   NT-1
                                             Control of the Contro
 C
      NTP1
                                   NT+1
                   C
     XINV
                                  1/XX
C
      ZINV
                                   1/(IOR*XX)
                                   ARITHHETIC STATEMENT FUNCTION USED IN DETERMINING
C
                                   WHETHER TO USE UP- OR DOWN-RECURRENCE FOR BIGA
                       -....
                                   CONTAINS INTERHEDIATE AND FINAL VALUES OF LENTZ
                     . ....
                                   CONTINUED FRACTION FOR BIGA(NT). ALSO USED AS TEMPO-
                                   RARY VARIABLE IN INITIALIZING UP-RECURRENCE FOR BIGA.
     AK, KK, DEN, DTD,
                                  TEMPORARY VARIABLES USED IN COMPUTING FF
C
     NUM, NTN, TT
     MH
                                  +1 AND -1 ALTERNATELY. USED IN COMPUTING FF, SFS, SMS
C
      KOUNT
                                  ITERATION COUNTER FOR FF COMPUTATION
C
     HAXIT
                                  MAXIMUM ALLOWED NO. OF ITERATIONS IN FF COMPUTATION
                                   ILL-CONDITIONING CRITERION FOR LENTZ CONTINUED FRACH.
     EPS1
C
     EPS2
                                  CONVERGENCE CRITERION FOR LENTZ CONTINUED FRACTION
C
     BIGA(N)
                                  -N/Z + J-SUB-(N-1) OF Z/J-SUB-N OF Z, WHERE Z=IOR+XX 1
C
                                  AND J-SUB-N IS THE NTH-ORDER SPHERICAL BESSEL FUNCTN.
                                  EXTERNAL FUNCTION FOR COMPLEX TANGENT (USED TO INI-
     CTAN
C
                                  TIALIZE UP-RECURRENCE FOR BIGA)
     REZ
                                  REAL(IOR) +XX
C
     REZINV
                                  1/REZ
                                  REAL ARRAY EQUIVALENCED TO BIGA. USED TO CONTAIN
     EQBIGA
                                  BIGA WHEN NOIMAGETRUE, WHEN BIGA IS PURELY REAL.
C
                                  1/IOR (USED IN AN CALCULATION)
     IORINV
C
                                  1/REAL(IOR) (USED IN AN CALCH. WHEN HOIMAG=TRUE)
     RIORIV
     FN(N)
                                  N (FLOATED)
     THONP1 (N)
                                  2N+1 (FLOATED)
                                                                         .. - .
C
     COEFF(N)
                                  (2N+1)/(N(N+1))
     GCOEF(N)
C
                                  N(N+2)/(N+1)
C
     NP1DN
                                  (N+1)/N
C
                                  RICATTI-BESSEL FUNCTION PSI-SUB-(N-1) OF XX
     PSI(N)
C
     AN(N)
                                  MIE COEFFICIENT LITTLE-A-SUB-N, LATER USED TO STORE
                                  (2H+1)/(H(H+1))*(AH+BH)
C
     BN(N)
                                  FIRST USED FOR RICCATI-BESSEL FUNCTION ZETA-SUB-(N-1)
                                  OF XX, THEN FOR HIE COEFFICIENT LITTLE-B-SUB-N,
C
                           FINALLY FOR (2N+1)/(N(N+1)) + (AH-BH)
                                  (-1) ** (N+1) * AN(N), WHERE AN(N) IS IN FINAL FORM (-1) ** (N+1) * BN(N), WHERE BN(N) IS IN FINAL FORM
C
     ANPH
C
     BNPH
     PIN(J), TAUN(J) ANGULAR FUNCTIONS LITTLE-PI-SUB-N AND LITTLE-TAU-SUB-
                                  N AT JTH ANGLE
C
     PINH1(J)
                                  LITTLE-PI-SUB-(N-1) AT JTH ANGLE
     TMP(J)
                                 TEMPORARY ARRAY USED IN COMPUTING PIN, TAUN
C
     SP(J)
                                  S+ = S1+S2 FOR JTH ANGLE
```

```
S- = S1-S2 FOR JTH ANGLE
                  S+ * S1+S2 FOR (NN2-4) TH ANGLE
      C SPS(J)
C SMS(J)
                         S- = S1-S2 FOR (NN2-J) TH ANGLE
      CUSE CONIO
               ANGULAR DIMENSIONS
      C
   2.
            PARAMETER (NANGL=255)
   3.
            COMPLEX IOR, S1, S2
            REAL NZCUT
   4.
   5.
            COMMON/INOUT/XX, IOR, NZCUT, NUMANG, XHU(NANGL), QEXT, QSCA, GFAC,
           * S1 (NANGL), S2 (NANGL)
      CEND
            PARAMETER (NANGL2=(NANGL+1)/2)
   6.
   7.
            PARAMETER (NT1=5100)
                                    The Matter Color of the State of the Color
   8.
            PARAMETER (NT12=2=NT1)
            COMMON/MUNEYEN (NT1), THOMP1(NT1), COEFF(NT1), GCOEF(NT1)
   9.
 10.
            REAL NPIDN
  11.
            LOGICAL NOTHAG
 12.
            COMPLEX CTAN
  13.
            COMPLEX A1, A2, 81, IORSQ, RAT
  14.
            COMPLEX SP, SH, SPS, SMS, ANPH, BNPH, AN, BN, BIGA, ZETA,
           * IORINV, AK, NUM, DEN, FF, ZINV, NTN, DTD, TT
            DIMENSION SP(NANGL2), SH(NANGL2), SPS(NANGL2), SHS(NANGL2),
  15.
           PIN(NANGL2), PINH1 (NANGL2), TAUN(NANGL2), THP (NANGL2), AN (NT1),
BN(NT1), SIGA(NT1), EQBIGA(NT12), PSI(NT1)
            EQUIVALENCE (BIGA, EQBIGA)
 16.
            EQUIVALENCE (S1(1),PIN(1)),(S1(NANGL2),PINH1(1)),
                        (S2(1), TAUN(1)), (S2(NANGL2), TMP(1))
            F(REH) = -15.84 + REH+(8.42+16.35*REH)
 18.
 19.
            DATA EPS1/1.E-2/, EPS2/1.E-8/
 20.
            DATA MAXIT/10800/
 21.
            DATA IPASS/0/
 22.
            IF(IPASS.NE.8) GO TO 2
. .23.
            IPASS # 1
               CALCULATE NECESSARY NUMERICAL COEFFICIENTS FOR MIE SERIES
     C
 24.
            DO 1 N = 1, NT1
 25.
            FN(N) = N
 26.
            TWONP1(N) = N+(N+1)
 27.
            COEFF(N) = THONP1(N) / (N+(N+1))
 .28.
            SCOEF(N) = (N+1)-1.8/(N+1)
. 29.
         1 CONTINUE
 30.
          2 IF(NUMANG.GT.NANGL .OR. NUMANG.LT.0) STOP 1880
 31.
            NN2 = NUMANG+1
            HH = NN2/2
32.
_.33.
            AIHIOR = ABS(AIMAG(IDR))
34.
            REIOR = REAL(IOR)
 35.
            NOIHAG = AIHIOR.LE.NZCUT
 36.
            IF(CABS(IOR) *XX.GT.B.1) GO TO 7
     C
     C
                SMALL-PARTICLE LIMIT
 37.
            IORSQ = IOR++2
            RAT = (0., 0.6666666666667) + (IORSQ-1.8)
 38.
 39.
                        RAT=(1.8-8.1=XX==2+(4.=IORSQ+5.)/1400.=(XX==4))
               /(IORSQ+2.0+(1.0-0.7*IORSQ)*(XX**2)-(8.*IORSQ**2-385.*IORSQ
+350.)/1400.*(XX**4)+(XX**3)*RAT*(1.8-0.1*XX**2))
           B1 = (XX^{++}2/30.) *RAT*(1.0+(2.*IORSQ-5.)/70.*(XX**2))
                /(1.0-(2.*IORSQ-5.)/30.*(XX**2))
           A2 = (8.1*XX**2)*RAT*(1.0-XX**2/14.)
 41.
               /(2.=10RSQ+3.-(2.=10RSQ-7.)/14.=(XX==2))
            TEH = CABS(A1) **2+CABS(B1) **2+(5./3.) *CABS(A2) **2
```

```
143. " QSCA + 6.* (XX**4) +TEM
   44.
           GFAC = REAL(AL+CONJG(A2+B1))/TEM
   45.
             QEXT = QSCA
             IF(AIHIOR.GT.1.E-12) QEXT = 6.*XX*REAL(A1+81+(5./3.)*A2)
   46.
   47.
             TEH = 1.5+XX++3
   48.
             A2 = (5./3.) +A2
           **** VECTORIZABLE LOOP *****
   49.
             DO 5 J = 1,NN
   50.
             S1(J) = TEH+(A1+(B1+A2)+XHU(J))
           5 S2(J) = TEH+(B1+A1+XHU(J)+A2+(2.*XHU(J)++2+1.))
  51.
           **** VECTORIZABLE LOOP *****
  52.
             DO 6 J = 1,NN
  53.
            S1(NN2-J) = TEH+(A1-(B1+A2)+KHU(J))
  54.
           6 S2(NN2-J) = TEH+(B1-A1+XHU(J)+A2+(2.+XHU(J)++2-1.))
  55.
            RETURN
      C
               CALCULATE NUMBER OF TERMS IN HIE SERIES (A LEAST UPPER BOUND)
      C.
                USING EMPIRICAL FORMULAS WHICH WERE FITTED FOR SIZE PARAMETERS
      C
                UP TO 20,080
  56.
          7 IF(XX.LE.8.0) NT = XX+4.*XX**(1./3.)+1.
            IF(XX.GT.8.0 .AND. XX.LT.4200.) NT = XX+4.05*XX**(1./3.)+2.
  57.
  58.
            IF(XX.GE.4200.) NT = XX+4.*XX**(1./3.)+2.
  59.
            NTP1 = NT+1
  60.
            NTM1 = NT-1
               MAKE SURE ARRAYS AN, BN, ETC. HILL BE LARGE ENOUGH
. . .
. 61.
            IF(NTP1.LE.NT1) GO TO 10
  62.
            WRITE(6,800C) NT, XX
       3000 FORMAT(///* ESTIMATED LENGTH OF MIE SERIES MT=*16,
  63.
           * * FOR SIZE PARAM=*F12.2/* EXCEEDS ARRAY DIMENSIONS*)
-.. .
            STOP 1881
...64.
      C
               CALCULATE RICATTI-BESSEL FUNCTIONS BY UPHARD RECURRENCE
      C
 65.
         18 XINV = 1./XX
  66.
            SY = SIN(XX)
 67.
            CH = COS(XX)
            BM(2) = CMPLX(SX,GX)
BM(2) = CMPLX(XIM4*SX-CX,XIM4*CX+SX)
 68.
 69.
            DO 15 N = 1,NTH1
 70.
        15 BN(N+2) = (THONP1(N) + XINV) + BN(N+1) - BN(N)
 71.
     C ***** VECTORIZABLE LOOP *******
           00 16 N = 1,NTP1
 72.
.73.
        16 PSI(N) = REAL(BN(N))
     C
     C
              COMPUTE BIGA
     Ç
     C
 74.
           ZINV = XINV/IOR
              DECIDE WHETHER BIGA-N CAN BE CALCULATED BY UP-RECURRENCE
 75.
           IF(AINIOR .LT. F(REIOR)/XX) 50 TO 180
     C
              PREPARE FOR DOWN-RECURRENCE---
              COMPUTE INITIAL HIGH-ORDER BIGAN USING LENTZ HETHOD
     C
 76.
           FF = NTP1+ZINV
 77.
           HH = -1
 78.
           KK = 2*NT+3
 79.
           AK = (HM+KK)+ZINV
 80.
           DEN = AK
           NUM = DEN + 1.0/FF
 81.
 82.
           KOUNT = 1
 83.
        29 KOUNT = KOUNT+1
```

```
IF(KOUNT.GT. HAXIT) 50 TO 40
  84.
  85.
            IF(CABS(NUM/AK).GT.EPS1 .AND. CABS(DEM/AK).GT.EPS1) GO TO 30
                ILL-CONDITIONED CASE--STRIDE THO TERMS INSTEAD OF ONE
            HH = -HH
  86.
            KK = KK+2
  87.
  88.
            AK = (HM*KK) *ZINV
            NTN = AK*NUH + 1.0
  89.
  90.
            DTD = AK+DEN + 1.0
            FF = (NTN/DTJ) + FF
  91.
  92.
            HH = -HH
  93.
            KK = KK+2
            AK = (MM+KK) *ZINV
  94.
            NUH = AK + NUH/NTN
  95.
            DEN = AK + DEN/OTO
  96.
            KOUNT = KOUNT+1
  97.
  98.
            60 TO 20
  99.
         30 TT = NUM/DEN
            FF = TT*FF
 100.
               CHECK FOR CONVERSENCE
            IF(ABS(REAL(TT)-1.0).LT.EPS2 .AND. ABS(AIMAG(TT)).LT.EPS2) GOTO 50
_ 101.
.. 102.
            HH = -HH
 103.
            KK = KK+2
            AK = (MH+KK) FZINV
 104.
 105.
            NUM = AK + 1.0/NUM
 106.
            DEN = AK + 1.0/DEN
 107.
            60 TO 20
         40 WRITE(6,8001) NT, XX, IOR,
                                         AK, NUM, DEN, TT, FF
 108.
       8001 FORMAT(///* CONTINUED FRACTION FOR A-SU3-NT FAILED TO CONVERGE*/
 109.
           + + NT=+16/+ X=+E20.8/+ REFR INDEX=+2E20.8/+ AK=+2E20.8/
               + NUM=+2E28.8/+ DEN=+2E20.8/+ TT=+2E20.8/+ FF=+2E20.8)
            STOP 1002
      C
         58 BIGA(NT) = FF
 111.
      C
               DOWNWARD RECURRENCE FOR BIGA-N
      C
 112.
            00.70 N = NT, 2, -1
 113.
         70 BIGA(N-1) = (FN(N)+2INV) - 1.0/((FN(N)+2INV)+BIGA(N))
            50 TO 180
 114.
                 UPHARD RECURRENCE FOR BIGA-N
       188 IF(NOIMAG) 50 TO 148
      C
               GENERAL CASE
      C
_116.
            FF = CTAN(IOR*XX)
            BIGA(1) = -ZINV + FF/(ZINV*FF-1.0)
117.
. 118.
            DO 120 N = 2, NT
       120 BIGA(N) = -(N+ZINV)+1.9/((N+ZINV)+BIGA(N-1))
. 119.
 120.
            50 TO 188
      C
      C
               NO-ABSORPTION CASE
 121.
        140 REZ = REIOR*XX
 122.
            REZINV = 1.0/REZ
 123.
            TEM = TAN(REZ)
            EQBIGA(1) = -REZINV + TEM/(REZINV*TEM-1.8)
 124.
            00 160 N = 2, NT
 125.
        168 EQBIGA(N) = - (FN(N) *REZINV) + 1.0/((FN(N) *REZINV) - EQBIGA(N-1))
 126.
      C
               CALCULATE THE MIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-B
      C
               FOR THE NO-ABSORPTION CASE
      C
```

```
127.
              RIORIV = 1.0/REIOR
            ***** VECTORIZABLE LOOP *****
.. 128.
              DO 170 N = 1,NT
              AN(N)=((RIDRIV*EQBIGA(N)+(XINV*FN(N)))*PSI(N+1) - PSI(N))
 .. 129.
                  /((RIORIV*EQBIGA(N)+(XINV*FN(N))) * BN(N+1) * BN(N))
             BN(N) = ({ REIOR + EQBIGA(N) + (XINV + FN(N))) + PSI(N+1) - PSI(N))
  130.
                   /(( REIDR*EQBIGA(N)+(XINV*FN(N)))* BN(N+1) - BN(N))
  131.
          178 CONTINUE
  132.
              GO TO 200
                 CALCULATE THE MIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-B
       C
       C
                 FOR THE SENERAL CASE
       C
  133.
         180 CONTINUE
             IORINV = 1.0/IOR
            ***** VECTORIZABLE LOOP *****
  135.
             DO 190 N = 1,NT
             AN(N)=((IORINV*BIGA(N)+(XINV*FN(N)))*PSI(N+1)-PSI(N))
 .136.
                  /((IORINY*BIGA(N)+(XINY*FN(N)))* BN(N+1)- BN(N))
                         IOR*BIGA(H) +(XINV*FN(N)))*PSI(H+1) +PSI(H))
  137.
             BN(N)=((
                         IOR+BIGA(N)+(XINY+FN(N)))+ BN(N+1)- BN(N))
                  /((
  138.
         190 CONTINUE
       C
               CALCULATE TERMS OF SERIES FOR SCATTERING EFFICIENCY AND SUM
          **** VECTORIZABLE LOOP *****
  139.
             DO 195 N = 1,NT
         195 EQBIGA(N) = THOMP1(N) + (REAL(AN(N)) ++2+AIMAG(AN(N)) ++2
  140.
                                    +REAL(BN(N)) = +2+AIHAG(BN(H)) ++2)
             QSCA = 2.*(XINV**2)*TOTAL(NT, EQDIGA)
  141.
       C
                CALCULATE TERMS OF SERIES FOR EXTINCTION EFFICIENCY AND SUM
       C
         200 CONTINUE
  142.
          **** VECTORIZABLE LOOP *****
... 143.
             00 360 N = 1,NT
         300 EQBIGA(N) = THONP1(N) TREAL (AN(N)+BN(N))
...144.
  145.
             QEXT = 2. F(XINV**2) *TOTAL(NT, EQBIGA)
             IF(NOIMAG) QSCA = QEXT
  146.
       C
                CALCULATE TERMS OF SERIES FOR ASYMMETRY FACTOR AND SUM THEM
       C
                    (SET FOLLOWING COEFFICIENTS TO ZERO BECAUSE THEY OCCUR IN
       C
                    LAST TERM OF SERIES FOR ASYMMETRY FACTOR)
       C
             AN(NTP1) = (0.0,0.0)
  147.
             3N(NTP1) = (0.0,0.0)
           ***** VECTORIZABLE LOOP *****
 149.
             DO 480 N = 1,NT
         400 EQBIGA(N) = COEFF(N) * REAL(AN(N) *CONJS(BN(N)))
 150.
                    + GCOEF(N) *REAL (AN(N) *CONJG(AN(N+1)) +BN(N) *CONJG(BN(N+1)))
       C
             GFAC = 4.* (XINV**2)*TOTAL(NT, EQCIGA)/QSCA
 151.
             IF(NUMANG.EQ.8) RETURN
 152.
               COMPUTE S+, S- OVER ANGULAR MESH
       C
                PUT MIE COEFFICIENTS IN FORM NEEDED
       C
          **** VECTORIZABLE LOOP ****
 153.
             DO 450 N = 1,NT
 154.
             BIGA(N) = AN(N)
 155.
             AN(N) = COEFF(N)*(AN(N)+BN(N))
 156.
         450 BN(N) = COEFF(N) + (BIGA(N) -BN(N))
```

```
C
               INITIALIZE SUMS (S+,S-) AND ANGULAR FUNCTIONS (LITTLE PI)
           ***** VECTORIZABLE LOOP *****
  157.
             DO 500 J = 1,NN
             SP(J) = (0.0, 0.0)
  158.
             SM(J) = (0.0,0.0)
  159.
             SPS(J) = (0.0,0.0)
  160.
             SMS(J) = (0.0,0.0)
  161.
  162.
             PINM1(J) = C.0
         500 PIN(J) = 1.0
  163.
               ADD UP SUMS WHILE UPWARD RECURSING ANGULAR FUNCTIONS LITTLE PI
               AND LITTLE TAU
__164.
             MM = 1
             DO 700 N = 1.HT
  165.
  166.
             MP10N = (N+1)/FLOAT(N)
             ANPH = MHFAN(N)
  167.
             BNPH = HM+BN(N)
  168.
             MH = -MH
  169.
           ***** VECTORIZABLE LOOP *****
             .170.
 .171.
...172.
             TAUN(J) = FN(N) + TMP(J) - PINN1(J)
             SP(J) = SP(J) + AN(N) + (PIN(J) + TAUN(J))
  173.
. 174.
             SHS(J) = SHS(J) + BHPH+(PIH(J) + TAUH(J))
             SM(J) = SM(J) + BN(H) + (PIN(J) - TAUN(J))
  175.
             ((L) MUAT- (L) MITH + (L) 242 = (L) 242
  176.
             PINH1(J) = PIN(J)
  177.
  178.
             PIN(J) = (XNU(J) + PIN(J)) + NP1DN+TNP(J)
  179.
         680 CONTINUE
 180.
         700 CONTINUE
       C
       C
                RECOVER S1 AND S2 FROM S+, S-
       C
       C
           ***** VECTORIZABLE LOOP ****
       C
 181.
             00 888 J = 1, NN
  182.
             S1(J) = 0.5*(SP(J)+SM(J))
         ((L)M2-(L)92)*2.0 = (L)52 008
  183.
      C
           ***** VECTORIZABLE LOOP *****
...184.
             DO 900 J = 1, NN
 185.
             S1(NN2-J) = 8.5*(SPS(J)+SNS(J))
  186.
        980 S2(NN2-J) = 0.5*(SPS(J)-SNS(J))
 .187.
             RETURN
...158.
             END
        VECTOR BLOCK BEGINS AT SEQ. NO.
MIEV1
                                             47, P= 1102360
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             52, P= 110277C
MIEV1
MI EV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             72, P=
                                                     110427A
MIEV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             127, P=
                                                      111047B
        VECTOR BLOCK BEGINS AT SEQ. NO.
MIEV1
                                             133, P=
                                                     1111178
        VECTOR BLOCK BEGINS AT SEQ. NO.
HIEV1
                                             139, P=
                                                     1112030
HI EV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             142, P=
                                                      111232A
        VECTOR BLOCK BEGINS AT SEQ. NO.
HIEV1
                                             147, P=
                                                      1112568
MIEV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             153, P=
                                                     1113250
HIEV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             157, P=
                                                     111351C
                                            165, P# · 1114070
HIEV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                             181, P= 1114750
MIEV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
MIEV1
        VECTOR BLOCK BEGINS AT SEQ. NO.
                                            184, P=
                                                     1115200
```

```
CRAY FORTRAN COMPILER VERSION 1.64 12/27/78
  COMPILATION DATE AND TIME
                                       02/09/79
                                                        22114132
            FUNCTION TOTAL (LENGTH, ARRAY)
      C
                PARTIALLY-VECTORIZED SUM ROUTINE
      C
          INPUT
      C
      C
               ARRAY
                          VECTOR OF TERMS TO BE SUMMED
               LENGTH
      C
                         NUMBER OF TERMS IN PARRAY* TO BE SUMMED
      C
          OUTPUT
      C
               TOTAL = SUM(ARRAY(I)), I = 1 TO LENGTH
      C
      C
               NOTE--RELIES ON THE ZERO TRIP COUNT FEATURE, WHEREBY IF A
                      DO-LOOP IS ALREADY SATISFIED AB INITIO, IT IS SKIPPED
      C
      C
                      RATHER THAN BEING EXECUTED ONCE
.... , 2 .
           DIMENSION ARRAY(1), HELPER(64)
      C
   3.
            IF(LENGTH.GT.64) GO TO 5
   4.
            TOTAL = ARRAY(1)
   5.
            DO 1 N * 2, LENGTH
   6.
          1 TOTAL = TOTAL + ARRAY(N)
   7.
            RETURN
      C
   8.
          5 CONTINUE
      C
          ***** VECTORIZABLE LOOP ****
   9.
            DO 10 N = 1,54
  10.
         10 HELPER(N) = ARRAY(N)
      C
  11.
            KOUNT = (LENGTH-64)/64
  12.
            JS = 63
  13.
            DO 30 J = 1, KOUNT
          ***** VECTORIZABLE LOOP ****
           DO 20 N = 1,64
 .14.
         20 HELPER(N) = HELPER(N) + ARRAY(N+JS+1)
  15.
  16.
         30 JS = JS + 64
  17.
            LAST = (LENGTH-64) -64*KOUNT
          **** VECTORIZABLE LOOP *****
      C
           00 40 N = 1, LAST
  18.
         40 HELPER(N) = HELPER(N) + ARRAY(LENGTH+1-N)
  19.
  20.
            TOTAL = HELPER(1)
  21.
            DO 50 N = 2,64
  22.
         50 TOTAL = TOTAL + HELPER(N)
  23.
            RETURN
_ 24.
            END
       VECTOR BLOCK BEGINS AT SEQ. NO.
DTAL
                                              8, P=
                                                        143C
       VECTOR BLOCK BEGINS AT SEQ. NO.
                                             13, P=
DTAL
                                                        166A
       VECTOR BLOCK BEGINS AT SEQ. NO.
DTAL
                                             17, P=
                                                        207D
```

APPENDIX III: SAMPLE CODE RESULTS

```
PROGRAH HAIN
             RUN TEST CASES
    CUSE
          COMIO
              ANGULAR DIMENSIONS
          PARAMETER (NANGL=255)
 2.
 3.
          COMPLEX IOR, S1, S2
          REAL NZCUT
          COMMON/INDUT/XX, IOR, N2CUT, MUMANG, XMU (NANGL), QEXT, QSCA, GFAC,
 5.
             S1 (NANGL) , S2 (NANGL)
    CEND
          REAL II. IZ, INTEN
 6.
    C
 7.
          N2CUT = 1.E-7
 8.
          PI = 2. + ASIN(1.0)
          NUMANG = 37
 9.
           DO 1 I = 1, NUMANG
10.
        1 XMU(I) = COS((I-1)*PI/36.)
11.
          DO 100 NIOR = 1,2
IF(NIOR.EQ.1) IOR = (1.5,0.8)
12.
13.
          IF(NIOR.EQ.2) IOR = (1.5,-0.1)
14.
15.
           DO 188 NXX = 1,4
          IF(NXX.EQ.1) XX = 10.
16.
       IF(NXX.EQ.2) XX = 100.
17.
       IF(NXX.EQ.3) XX = 1000.
18.
          IF(NXX.EQ.4) XX = 5000.
19.
          T1 = SECOND(DUM)
20.
        CALL HIEV1
21.
          T2 = SECOND(DUN)
22.
23.
           DT = T2-T1
          QASS = QEXT-QSCA
24.
25.
           HRITE(6, 1000) XX, IOR
          DO 10 I = 1, NUMANG
26.
           ANGLE = 180./PIFACOS(XMU(I))
27.
           I1 = (REAL(S1(I))) ++2+(AINAG(S1(I))) ++2
28.
           I2 = (REAL(S2(I))) ++ 2+(AIHAG(S2(I))) ++ 2
29.
           INTEN = 8.5*(I1+I2)
30.
           DEGPOL = (I2-I1)/(I2+I1)
31.
       10 WRITE(6,1001) ANGLE,S1(I),S2(I),INTEN,DEGPOL
32.
           HRITE(6, 1002) QEXT, QSCA, QABS, GFAC, DT
33.
      180 CONTINUE
34.
35.
           CALL EXIT
     1000 FORMAT(1H1, 5X, THIE SIZE PARAMETER = F8.2, 15X, TREFRACTIVE INDEX = F
36.
              F7.3, E12.3//* ANGLE+, 11K, *S-SUB-1+, 21X, *S-SUB-2+, 15X,
              *INTENSITY*, 2X, *DEG OF POLZN*)
     1001 FORMAT(F7.2,5E14.6,F10.4)
37.
                                                       ABSORPTION*/
     1002 FORMATE /29X, *EXTINCTION
                                         SCATTERING
38.
              7x, *EFFICIENCY FACTORS*, 3F14.6/ 7x, *ASYMMETRY FACTOR **F9.6/
              7x, TIME FOR THIS CASE IN SECONDS = E12.3)
39.
```

```
ANGLE
                  S-SUB-1
                                             S-SU8-2
                                                                   INTENSITY
                                                                              DEG OF POLZN
         0.720500E+02 0.416662E+01 0.720500E+02 0.416662E+01
   0.00
                                                                0.520856E+04
                                                                               -0.0000
   5.00
         0.660087E+02 0.515473E+01 0.644549E+02 0.494811E+01
                                                                0.428132E+04
                                                                               -0.0239
         0.502427E+02 0.704128E+J1 0.455224E+02 0.633977E+01
  10.00
                                                                0.234775E+04
                                                                               -0.0963
  15.00
        0.305549E+02 0.739457E+01
                                    0.246826E+02 0.622358E+01
                                                                0.818121E+D3
                                                                               -0.2080
  20.00 0.131942E+02 0.431603E+01 0.985638E+01 0.303822E+01
                                                                0.149547E+03
                                                                               -0.2887
  25.00 0.198641E+01 -0.185793E+01 0.360781E+01 -0.272489E+01
                                                                0.139195E+92
                                                                                0.4685
  30.00 -0.277991E+01 -0.830916E+01 0.247116E+01 -0.841057E+01
                                                               0.768071E+02
  35.00 -0.336987E+01 -0.113351E+02 0.117432E+01 -0.107502E+02
                                                                                0.0005
                                                               0.128393E+03
                                                                               -0.0892
  40.00 -0.253896E+01 -0.886339E+01 -0.262818E+01 -0.812307E+01
                                                                0.789487E+02
  45.00 -0.189492E+01 -0.211735E+01 -0.686388E+01 -0.189570E+01
                                                                               -8.0767
                                                               0.293697E+02
 50.00 -0.158387E+01 0.492734E+01 -0.765188E+01 0.428609E+01 0.518546E+02
                                                                               0.7251
                                                                                0.4834
 55.00 -0.109008E+01 0.810836E+01 -0.345083E+01 0.689490E+01
                                                               0.631908E+02
                                                                               -0.0592
 60.00 -0.206048E+00 0.588826E+01 0.309342E+01 0.490206E+01
                                                                0.341567E+02
                                                                               -0.0163
 65.00 0.654093E+00 0.322004E+00 0.711954E+01 0.351235E+00
                                                                0.256714F+02
                                                                                0.9793
 70.00 0.899374E+00 -0.456377E+31 0.561094E+01 -0.330362E+01
                                                               0.320167E+02
                                                                               0.3242
 75.00 0.401284E+00 -0.572290E+01 -0.426107E-01 -0.377749E+01
                                                               0.235919E+02
                                                                              -0.3951
 80.00 -0.319419E+00 -0.309491E+01 -0.520331E+01 -0.144173E+01
                                                               0.194168E+02
                                                                               0.5014
 85.00 -0.526668E+00 0.788416E+00 -0.585633E+01 0.134234E+01
                                                               0.184988E+02
                                                                               0.9514
 90.00 0.785066E-01 0.306855E+01 -0.187329E+01 0.232789E+01
                                                               0.917521E+01
                                                                              -0.0269
 95.80 8.106543E+01 8.272211E+81 8.307975E+81 8.110941E+81
                                                               0.963035E+01
                                                                               0.1127
100.08 0.159302E+01 0.923048E+00 0.482125E+01 -0.873492E+00
                                                               0.136986E+02
105.00 0.107665E+01 -0.416668E+00 0.223259E+01 -0.18439DE+01
                                                                               0.7525
                                                               0.485859E+01
110.00 -0.333227E+00 -0.413821E+00 -0.194258E+61 -0.124615E+01 0.280440E+01
                                                                               0.7257
                                                                               0.8993
115.00 -0.182747E+01 0.291170E+00 -0.369331E+01 -0.553773E-02
                                                               0.853248E+01
120.00 -0.249662E+01 0.543603E+00 -0.138829E+01 0.583572E+00
                                                                               0.5987
                                                               0.439826E+01
                                                                              -0.4844
125.00 -0.194660E+01 -0.505382E-02 0.275657E+01 0.178699E+00
                                                               8.570995E+01
130.00 -8.536968E+00 -0.631817E+00 0.468748E+01 -0.338446E+00
                                                                               0.3364
                                                               0.113872E+02
                                                                               0.9396
.135.00 0.89269CE+00 -0.528956E+00 0.223152E+01 0.162656E+00
                                                               0.304142E+91
                                                                               0.6460
140.00 0.158304E+01 0.772064E-01 -0.277081E+01 0.182343E+01
                                                               0.675713E+01
                                                                               0.6282
145.08 0.131408E+01 -0.482396E-01 -0.586876E+01 0.349851E+01
                                                               D.242055E+02
150.00 0.488377E+00 -0.186814E+81 -0.381684E+01 0.369067E+01
                                                                               0.9286
                                                               0.159589E+02
                                                                               0.7664
155.08 -0.166476E+00 -0.477123E+01 8.246683E+01 8.185331E+01
                                                               0.161562E+D2
                                                                              -0.4108
160.88 -0.539898E-01 -8.665788E+01 8.841562E+01 -8.113156E+01
                                                               0.582167E+02
165.80 0.954050E+08 -0.558337E+01 8.948679E+01 -8.370982E+01
                                                                               0.2385
                                                               0.679231E+02
                                                                               0.5276
170.80 0.246609E+01 -0.168106E+01 0.495289E+01 -0.491906E+01
                                                               0.286866E+02
                                                                               0.6986
175.00 0.379589E+01 0.290427E+01 -0.140003E+01 -0.500206E+01 0.249122E+02
180.00 0.432164E+01 0.486827E+01 -0.432164E+01 -0.486827E+01 0.423766E+02
                                                                               0.0830
                                                                               0.0000
```

EFFICIENCY FACTORS 2.881999 2.881999 0.000000 ASYMMETRY FACTOR = 0.742913

```
ANGLE
                S-SUB-1
                                        S-SUB-2
                                                           INTENSITY DEG OF POLZN
       4.523597E+04 -0.367988E+03 0.523597E+04 -0.367988E+03 0.275508E+08
  0.00
                                                                      -0.0000
  5.00 0.307726E+03 -0.113495E+03 0.290021E+03 -0.145571E+03 0.106440E+06
                                                                      -0.0107
..13.00 -0.239264E+03 0.294757E+02 -0.2379__Z+03 0.512771E+02 0.586911E+05
                                                                       0.0098
0.0712
 20.00 -0.105469E+03 0.979283E+02 -0.117159E+03 0.773710E+02 0.202131E+05
                                                                      -0.0248
 25.00 -0.550427E+02 -0.132065E+03 -0.457175E+02 -0.125611E+03 0.192755E+05
                                                                      -0.0730
 30.00 0.969291E+02 -0.860123E+02 0.831928E+02 -0.902830E+02 0.159327E+05
                                                                      -0.0540
 0.2001
 40.00 0.250573E+02 -0.851053E+02 0.448460E+02 -0.863264E+02 0.866710E+04
                                                                       4.0919
 45.00 0.139075E+02 -0.768894E+02 -0.385530E+01 -0.684476E+02 0.540267E+04
                                                                      -0.1301
..50.00 -0.406514E+02 0.356781E+01 -0.601957E+02 -0.285779E+02
                                                         0.305275E+04
                                                                       0.4545
 55.00 -0.437978E+02 0.516446E+02 -0.305744E+02 0.685491E+02 0.510959E+04
                                                                       0.1026
 60.00 8.291750E+02 -0.613059E+01 0.493840E+02 8.358946E+01 0.167021E+04
                                                                       0.4679
 65.00 4.137713E+02 -0.476328E+02 -0.967580E+00 -0.399266E+02
                                                         0.202680E+84
                                                                      -0.2130
 70.00 -0.453812E+01 0.152746E+02 -0.355741E+02 0.200557E+02 0.960828E+03 75.00 0.342630E+02 0.750377E+01 0.346817E+02 0.375986E+81 0.122361E+04
                                                                       0.7357
                                                                      -0.0054
 00.00 -0.654632E+01 0.465091E+01 -0.166931E+02 -0.211137E+02 0.394465E+03
                                                                       0.8365
 85.00 -1.106215E+02 8.143400E+32 -0.515120E+01 0.127718E+02
                                                         0.254063E+03
                                                                      -0.2535
..90.00 0.224945E+02 0.396468E+00 0.162341E+02 -0.155243E+02 ...95.00 -0.154492E+01 0.268082E+02 -0.171102E+02 -0.860385E+00
                                                         0.505356E+03
                                                                      -0.0016
                                                        0.507283E+03
                                                                      -8.4214
180.00 0.699708E+01 0.125301E+02 0.658326E+01 -0.373196E+01 0.131614E+03
                                                                      -0.5649
105.00 0.164632E+02 -0.525655E+31 -0.113127E+02 -0.504378E+01
                                                         0.222694E+03
                                                                      -0.3412
0.3830
115.00 -0.710367E+01 -0.499755E+01 0.717697E+01 -0.374958E+01 0.705029E+02
                                                                      -0.0700
120.00 -0.392786E+G1 0.77245BE+D1 0.1646C3E+D1 0.154967E+D1
                                                         0.401041E+02
                                                                      -0.8726
125.00 0.005024E+01 -0.192910E+01 -0.651340E+01 -0.874026E+01
                                                         0.100503E+83
                                                                       0.1822
0.167811E+D3
                                                                       0.5235
0.232785E+03
                                                                       8.4015
140.00 -0.632058E+01 -0.111092E+02 0.343645E+01 0.176605E+02 0.243533E+03
                                                                       0.3292
145.00 0.127481E+02 Q.769973E+01 -0.741848E+01 -0.139270E+82 0.235398E+03
                                                                       0.0578
150.00 -0.894133E+01 -0.298597E+01 0.142708E+02 0.892487E+01 0.186086E+03
                                                                       0.5225
155.00 -0.267976E+01 -0.474332E+02 0.727449E+01 0.112091E+02 0.121783E+04
                                                                      -0.8534
160.00 -0.419956E+02 -0.694978E+02 0.204157E+02 -0.743537E+01
                                                         0.353283E+04
                                                                      -0.8664
165.00 -0.216431E+02 0.209498E+02 -0.548409E+02 0.295673E+02 0.239888E+04
                                                                       0.6181
0.8582
175.00 0.173343E+02 -0.259438E+01 0.160315E+02 -0.256006E+02 0.622951E+03
                                                                       0.5069
180.00 0.407669E+02 0.517546E+02 -0.407669E+02 -0.517546E+02 0.434048E+04
                                                                      -0.0000
```

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.094388 2.094388 0.000000
ASYMMETRY FACTOR = 0.018246
TIME FOR THIS CASE IN SECONDS = 0.185E-02

```
S-SUB-1
                                         S-SUB-2
                                                            INTENSITY DEG OF POLZN
  0.00 8.583486E+06 -0.836182E+04 8.503486E+06 -0.836182E+04 0.253568E+12
                                                                        -0.0000
  5.00 -0.160461E+04 -0.157255E+04 -0.154369E+04 -0.149165E+04
                                                           0.482785E+07
                                                                        -0.0455
 10.10 0.825976E+03 0.562371E+03 0.843623E+03 0.238977E+03
                                                           0.883654E+06
                                                                        -0.1300
 15.30 -0.115541E+04 -0.590780E+33 -0.135209E+04 -0.597893E+03
                                                           0.163897E+07
                                                                        -0.0275
 29.00 -0.650822E+02 -0.111071E+04 -0.154134E+03 -0.120901E+04
                                                           0.136169E+07
                                                                         0.0909
 25.00 -0.936293E+03 0.452570E+03 -0.907281E+03 0.603965E+03
                                                           0.1134702+07
                                                                         0.0469
 30.00 0.762978E+03 -0.619575E+03 0.71026LE+03 -0.779209E+03
                                                          0.103882E+07
                                                                         0.0701
 35.00 -0.286335E+03 0.899976E+03 -0.13651EE+03 0.974024E+03
                                                          0.929666E+06
                                                                         0.0406
 40.00 -0.309237E+01 -0.938773E+03 0.178768E+03 -0.902471E+03
                                                           0.863859E+D6
                                                                        -0.0202
 45.00 -0.767837E+03 -0.479382E+03 -0.695481E+03 -0.478920E+33
                                                           0.766220E+06
                                                                        -0.0694
 50.00 0.471775E+02 -0.360256E+03 0.105831E+03 -0.624752E+03
                                                           0.266763E+06
                                                                         0.5051
 55.00 -0.517710E+03 -0.116119E+03 -0.599773E+03 0.049132E+02 0.324223E+06
                                                                         0.1317
 60.00 0.167631E+03 -0.505082E+03 -0.263°79E+02 -0.531009E+03
                                                           0.282935E+06
                                                                        -0.0010
 65.00 -0.122084E+03 -0.496715E+03 -0.205678E+03 -0.413478E+03
                                                           0.237449E+06
                                                                        -0.1018
 70.00 -0.232624E+03 0.338938E+03 -0.269648E+03 0.281929E+03
                                                           0.160593E+05
                                                                        -0.0523
 75.00 -0.369643E+02 -0.181683E+03 0.188469E+03 -0.187421E+03
                                                          0.525112E+05
                                                                         0.3454
 80.00 -0.730761E+02 0.274177E+03 0.135932E+03 0.242898E+03
                                                          0.789951E+05
                                                                        -0.0192
 85.80 8.132453E+03 -0.158605E+03 -0.483195E+02 8.127806E+03
                                                          0.306843E+05
                                                                        -0.3916
 90.00 0.4258176+01 -0.1565546+03 -0.1576466+03 -0.1749146+02
                                                          0.248427F+05
                                                                         0.0127
 95.00 -0.195876E+03 0.208590E+02 0.147814E+02 -0.623308E+02 0.214530E+05
                                                                        -0.8087
100.80 -0.119744E+03 -0.735988E+82 0.360609E+02 0.141665E+02 0.106283E+05
                                                                        -0.8588
105.00 -0.323489E+02 0.154797E+03 0.859902E+00 -0.739534E+02
                                                          0.152392E+05
                                                                        -0.6411
110.00 -0.157275E+03 -0.899481E+02 0.786996E+02 -0.216997E+02
                                                          0.197453E+05
                                                                        -0.6625
115.00 0.539420E+02 0.104371E+03
                                0.126442E+02 -0.654336E+02 0.912219E+04
                                                                        -0.5131
120.00 -0.504571E+02 0.460275E+02 0.957405E+02 -0.215432E+02
                                                          0.714740E+04
                                                                         0.3474
125.00 0.979823E+02 0.462180E+02 -0.556428E+02 -0.317100E+02 0.791914E+04
                                                                        -0.4821
130.00 -0.545537E+00 0.110604E+03 -0.214498E+01 -0.824758E+02 0.952024E+04
                                                                        -0.2850
135.00 0.571101E+02 -0.104578E+03 -0.512866E+02 0.718836E+02 0.109979E+05
                                                                       -0.2910
140.00 0.472214E+02 -0.451077E+02 -0.798499E+02 0.519025E+02 0.666722E+04
                                                                         0.3604
145.00 -9.874613E+02 0.120082E+03 0.112581E+02 -0.107353E+03
                                                          0.168603E+05
                                                                       -0.3089
-0.4512
155.00 -0.563705E+02 0.761334E+01 0.862957E+02 0.226274E+02 0.559288E+04
                                                                         0.4230
160.00 0.435050E+03 0.182903E+J3 0.928021E+02 -0.431617E+03 0.208814E+06
                                                                       -0.0666
165.00 -0.648554E+02 0.505608E+33
                                0.0290
170.00 0.483158E+03 -0.696745E+03 0.193765E+03 0.171170E+03 0.392870E+06
                                                                       -0.8299
-0.0267
180.00 0.565233E+03 0.150209E+04 -0.565233E+03 -0.150209E+04 0.257577E+07 -0.0000
```

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.313945 2.013945 0.000000
ASYMMETRY FACTOR = 0.627882
TIME FOR THIS CASE IN SECONDS = 0.153E-01

ANGLE 1-802-2 S-SU9-2 INTENSITY DEG OF POLZN 0.00 0.125541E+08 -0.672294E+05 0.125541E+68 -0.672294E+05 0.157609E+15 0.0000 5.00 -0.469634F+04 0.427656E+04 -0.464324E+04 0.412631F+04 0.394653F+0A -0.0223 10.00 0.433384E+04 -0.122501E+04 0.503467E+04 0.596146E+03 0.229931E+08 0.1179 15.00 0.244022E+04 0.487061E+04 0.334939E+04 0.518764E+04 0.339037E+08 0.1247 20.00 -0.4353546+04 0.2563366+14 -0.4857146+04 0.1843726+04 0.2625776+08 0.0279 25.00 0.392553E+04 -0.234029E+04 0.397800E+04 -0.325349E+04 0.236482E+08 0.1168 30.00 0.836964E+03 0.329160E+04 0.146476E+04 0.418116E+04 0.155814E+08 0.2597 35.00 -0.196465E+04 0.555056E+04 -0.163820E+04 0.523246E+04 0.323654E+08 -0.0712 40.00 8.487725E+04 0.212349E+03 0.478911E+04 -0.277019E+03 0.234225E+08 -0.0175 45.00 0.399477E+04 -0.166766E+34 0.400900E+04 -0.917758E+03 0.178268E+08 -0.0512 50.00 0.150721E+04 -0.833769E+03 0.263199E+04 -0.189052E+04 0.673414E+07 0.5594 55.00 -0.169726E+04 0.844180E+03 -0.147159E+04 0.244346E+04 0.586469E+07 0.3873 60.00 -0.150513E+04 -0.217288E+04 -0.804638E+03 -0.255927E+04 0.709207E+07 0.0148 65.0g -0.664496E+03 0.766870E+02 -0.202667E+04 0.829233E+03 0.262123E+07 0.8293 70.00 0.309361E+03 -0.170167E+04 0.131150E+04 -0.122475E+04 0.310573E+07 0.0368 75.00 -0.121856E+04 0.928778E+02 -0.486298E+03 0.120033E+04 0.158540E+07 0.0580 88.00 0.109954E+04 -0.118332E+04 0.133103E+04 0.323004E+02 0.219096E+07 -0.1909 85.00 0.116411E+04 -0.210688E+03 0.730589E+03 0.314751E+03 0.101618E+07 -0.3772 90.00 0.762792E+03 0.466846E+03 0.384561E+03 -8.433204E+03 0.567675E+06 -0.4089 95.00 0.383870E+03 0.645984E+03 -0.253019E+03 -0.141539E+03 0.323205E+06 -0.7399 100.00 0.597623E+03 -0.265265E+03 -0.232019E+03 0.347359E+02 0.241279E+06 -0.7719 105.00 -0.498984E+03 0.399672E+03 0.262569E+03 -0.142848E+03 0.249034E+06 -0.6412 110.00 -0.309067E+02 -0.100399E+03 0.501029E+03 -0.154863E+03 0.143024E+06 0.9228 115.00 0.868559E+03 0.481C20E+02 -0.232C51E+C3 -0.153804E+03 0.417106E+06 -0.8142 120.00 0.526004E+03 0.898112E+02 -0.422_.3E+03 -0.210007E+03 0.253470E+06 -0.1234 125.00 -0.432366E+03 0.621078E+02 0.453352E+03 -0.710078E+02 0.199198E+06 0.0435 130.00 0.350757E+03 0.504302E+03 -0.20307UE+03 -0.357369E+03 0.273150E+06 -0.3815 135.00 0.25861CE+03 0.467868E+03 -0.246671E+03 -0.401813E+03 0.254040E+06 -0.1249 140.00 -0.553203E+02 0.460415E+03 0.205843E+03 -0.336589E+03 0.185353E+06 -0.1602 145.00 -0.445549E+03 -0.646823E+03 0.301453E+03 0.137225E+03 0.363299E+06 -0.6980 150.00 0.640398E+03 0.234848E+03 -0.279947E+03 -0.308924E+02 0.272294E+06 -0.7087 155.00 -0.463005E+03 -0.251697E+03 0.431963E+03 0.218637E+03 0.256060E+06 -0.0846 -0.8202 160.00 -0.238426E+04 0.425324E+04 -0.683389E+03 -0.137187E+04 0.130619E+08 165.00 -0.191547E+04 -0.842329E+03 0.224151E+03 -0.173647E+04 0.372204E+07 -0.1764 170.00 0.29781JE+03 0.177086E+94 -0.227679E+04 0.888356E+03 0.453092E+07 0.2883 0.6997 175.08 -0.574395E+03 8.535172E+03 -0.159828E+04 -0.966428E+03 0.205242E+07 180.00 -0.145625E+05 -0.507155E+04 0.145625E+05 0.507155E+04 0.237786E+09 -0.0000

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.008650 0.000000
ASYMMETRY FACTOR = 0.829592
TIME FOR THIS CASE IN SECONDS = 0.741E-01

```
ANGLE
                 S-SU8-1
                                            S-SUB-2
                                                                 INTENSITY DEG OF POLZN
  0.00
        0.614948E+02 -0.317799E+01
                                   0.614948E+02 -0.317799E+01 0.379171E+04
                                                                              0.0000
  5.00 0.548052E+02 -0.194587E+01
                                   0.546864E+02 -0.289914E+01
                                                              0.300320E+04
                                                                             -0.0014
        0.377490E+02 0.936674E+00
                                   0.374475E+02 -0.207314E+01
                                                              0.141624E+84
                                                                            -0.0068
  15.00
        0.176021E+02 0.354839E+01
                                   4.174032E+02 -0.856896E+00
                                                              0.313014E+03
                                                                            -0.0301
 20.00 0.181377E+01 0.410068E+01 0.215939E+01 0.280384E+00
                                                              0.124235E+02
                                                                            -0.6183
 25.00 -0.571781E+01 0.211751E+01 -0.465013E+01 0.709651E+00
                                                              0.296988E+02
                                                                             -0.2518
 30.00 -0.579008E+01 -0.121935E+01 -0.442757E+01 0.132155E+03
                                                              0.273164F+02
                                                                            -0.2817
 35.00 -0.220285E+01 -0.382223E+01 -0.137449E+01 -0.103514E+01
                                                              0.112113E+02
                                                                            -0.7359
 40.00 0.115404E+01 -0.407492E+01 0.740364E+00 -0.184894E+01 0.109517E+02
                                                                            -0.6378
 45.00 8.236137E+01 -0.190307E+01 0.722782E+00 -0.156099E+01 0.607843E+01
                                                                            -0.5132
 50.00 0.166733E+01 0.121208E+01 -0.309906E+00 -0.269918E+00
                                                              0.220902E+01
                                                                            -0.9235
 55.00 0.320851E+00 0.328101E+01 -0.733757E+00 8.111136E+01 0.632075E+01
                                                                            -0.7194
 60.00 -0.693755E+00 0.314952E+01 -0.281778E-01 0.159291E+01 0.646946E+01
                                                                            -0.6077
 65.00 -0.112325E+01 0.117704E+01 0.100600E+01 0.921251E+00
                                                              0.225394E+01
                                                                            -0.1744
 70.00 -0.113609E+01 -0.117949E+01 0.125557E+01 -0.241202E+00
                                                              0.215826E+01
                                                                            -0.2426
 75.00 -0.859872E+00 -0.247330E+01 0.406622E+00 -0.913799E+00
                                                             0.392848E+01
                                                                            -0.7454
 80.00 -0.273185E+08 -0.219728E+01 -0.830355E+00 -0.629697E+00
                                                              0.299433E+01
                                                                            -0.6373
 85.00 0.568725E+00 -0.904841E+00 -0.144283E+01 0.220249E+00
                                                              0.163623E+01
                                                                             0.3019
        0.183556E+01
                                                                            -0.0893
 95.00 0.162959E+01 0.111577E+01 -0.424428E-01 0.537189E+00
                                                              0.209544E+01
                                                                            -0.8614
100.00 0.117126E+01 0.118164E+01 0.658108E+00 +0.351174E+00
                                                              0.166228E+01
                                                                            -0.6653
105.00 d.172604E+00 0.988C18E+00 0.638281E+00 -0.115970E+01
                                                              0.137914E+01
                                                                             0.2706
110.00 -0.857020E+00 0.821659E+00 0.178123E+00 -0.127272E+01
                                                             0.153058E+01
                                                                             0.0790
115.00 -0.144661E+01 0.658103E+00 -0.732856E-01 -0.646108E+00
                                                              0.147431E+01
                                                                            -0.7132
120.00 -0.145257E+01 0.316204E+00 0.255067E+00 0.235420E+00
                                                             0.116521E+01
125.00 -0.107357E+01 -0.246242E+00 0.914165E+00 0.810620E+00
                                                                            -0.8966
                                                              0.135300E+01
                                                                             0.1033
130.00 -0.630302E+00 -0.824923E+00 0.128067E+01 0.877085E+00
                                                             0.174359E+D1
                                                                             0.3819
135.00 -0.324057E+00 -0.114622E+01 0.937182E+00
                                                0.662859E+00
                                                             0.136826E+01
                                                                            -0.0370
140.00 -0.154838E+08 -0.112897E+01 8.566968E-01 0.542568E+00
                                                            0.798073E+D0
                                                                            -0.6271
145.00 -0.903410E-02 -0.956978E+00 -0.740810E+00 0.695546E+00
                                                             0.974236E+00
                                                                             0.0599
150.00 0.205857E+00 -0.889334E+00 -0.919354E+00 0.994698E+00
                                                             0.133396E+01
                                                                             0.3753
155.00 0.497121E+00 -0.999144E+00 -0.476633E+00 0.116778E+01 0.141816E+01
                                                                             0.1218
160.00 0.812356F+00 -0.110065E+01 0.709831E-01 0.104108E+01
                                                            0.148012E+0 1
                                                                            -0.2643
165.00 0.109483E+01 -0.940082E+00 0.144218E+00 0.653092E+00
                                                             0.126487E+01
                                                                            -0.6463
170.00 0.131138E+01 -0.469165E+00 -0.399742E+00 0.187150E+00 0.106733E+01
                                                                            -0.8175
175.00 0.144706E+01 0.629393E-01 -0.114891E+01 -0.167099E+00 0.172292E+01
                                                                            -0.2177
180.00 0.149343E+01 0.296366E+00 -0.149 .3E+01 -0.296366E+0C 0.231818E+01
                                                                            -0.0000
```

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.459791 1.235144 1.224646
ASYMMETRY FACTOR = 0.922350
TIME FOR THIS CASE IN SECONDS = 0.400E-03

```
ANGLE
             S-SUB-1
                                   S-SU3-2
                                                     INTENSITY DEG OF POLZN
 0.00 0.522455E+04 -0.261694E+03 0.522455E+04 -0.261694E+03 0.273645E+08
                                                              -0.0000
 5.00 0.305086E+03 J.181883E+02 0.298131E+63 0.491197E+01 0.911574E+05
                                                              -0-0247
-0.0848
15.00 0.447729E+02 -0.434139E+02 0.392926E+02 -0.292025E+02 0.314304E+04
                                                              -0.2375
20.00 0.228785 8 + 01 0 - 42396 4 8 + 02 - 0.1309 4 5 8 + 01 0.251 4 0 9 8 + 02 0.121 8 2 4 8 + 0 4
                                                              -0-4798
25.00 -0.310537E+02 -0.211364E+02 -0.173987E+02 -0.104328E+02 0.911319E+03
                                                              -0.5484
30.00 0.336796 E+02 -0.105491 E+02 0.177529 E+02 -0.652844 E+01 0.801673 E+03
                                                             -0.5537
35.00 -0.909879E+01 0.3J6759E+02 -0.510582E+01 0.144508E+02 0.629347E+03
                                                              -0.6268
40.00 -0.213287E+02 -0.189674E+02 -0.713673E+01 -0.812180E+01 0.465786E+03
                                                              -0.7490
45.00 0.220539E+02 -0.140293E+02 Q.681356E+01 -0.350485E+01 0.370932E+03
                                                              -0.8418
50.00 0.101882E+02 0.222762E+12 0.196302E+01 0.555878E+01 0.317391E+03
                                                              -0.8905
55.00 -0.206372E+02 0.987344E+01 -0.392682E+01 0.947194E+00 0.269848E+03
                                                              -0.9395
60.00 -0.129074E+02 -0.170185E+02 -0.61276CE+00 -0.207280E+01 0.230451E+03
                                                              -0.9797
65.00 0.101149E+02 -0.173895E+02 0.874630E+00 -0.208839E+00 0.202758E+03
                                                              -0.9960
70.00 0.169202E+02 -0.134659E+01 -0.669262E+00 0.749534E+00 0.160401E+03
                                                             -0.9944
75.00 0.139393E+02 0.112806E+02 -0.187769E+01 -0.736574E+00 0.162813E+03
                                                              -0.9750
-0.9395
85.00 0.153726E+01 0.160982E+02 -0.893979E+00 -0.382594E+01 0.138475E+03
                                                              -0.8885
90.00 0.1192246+01 0.1537326+02 -0.8508546+00 -0.4663326+01 0.1301136+03
                                                              -0.8273
95.00 0.476301E+01 0.139482E+02 -0.217232E+01 -0.502404E+01 0.123599E+03
                                                              -0.7576
100.00 0.107168E+02 0.920299E+01 -0.489459E+01 -0.368998E+01 0.118559E+03
                                                              -0.6831
105.00 0.134863E+02 -0.154765E+01 -0.661969E+01 0.110542E+01 0.114659E+03
                                                             -0.6072
-0.5316
-0.4586
-0.3897
125.00 0.1154026+02 -0.2831586+01 -0.8183866+01 0.2199276+01 0.1065036+03
                                                              -0.3257
130.00 -0.1028526+02 -0.5295856+01 0.7889216+01 0.3889616+01 0.1056006+03
                                                              -0.2673
135.00 0.748036E+01 0.845910E+01 -0.610605E+01 -0.671763E+01 0.104961E+03
                                                              -0.2148
140.00 -0.715616E+01 -0.842059E+01 0.611190E+01 0.704053E+01 0.104521E+03
                                                              -0.1684
145.00 0.936308F+01 0.546682F+01 -0.827119E+01 -0.474265E+81 0.104229E+03
                                                              -0.1278
150.00 -8.105369E+02 0.182926E+01 0.955976E+01 -0.172014E+01 0.104044E+03
                                                              -0.0932
155.00 0.340806E+01 -0.994987E+01 -0.315956E+01 0.934199E+01 0.103935E+03
                                                              -0.0643
-0.0409
-0.0229
170.00 -0.941598E+01 0.402882E+01 0.931863E+01 -0.399378E+01 0.103840E+03
                                                              -0.0101
-0.0025
180.00 -0.954952E+01 -0.355581E+01 0.954952E+01 0.355581E+01 0.103837E+03
                                                             -0.0000
```

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.089822 1.132134 0.957688
ASYMMETRY FACTOR = 0.950392
TIME FOR THIS CASE IN SECONDS = 0.200E-02

```
ANGLE
                 S-SUB-1
                                          S-SUB-2
                                                               INTENSITY DEG OF POLZN
  0.00 0.504926E+06 -0.721499E+04 0.504926E+06 -0.721499E+04 0.255002E+12 -0.0000
  5.00 -0.102968E+04 -0.212757E+03 -0.967028E+03 -0.170704E+03 0.103489E+07
                                                                           -0.0682
 10.00 -0.532535E+03 0.179789E+03 -0.450678E+03 0.147884E+03 0.270449E+06 -0.1681
 15.00 -0.653330E+02 0.426746E+03 -0.613507E+02 0.316835E+03 0.145265E+06
                                                                           -0.2830
 20.00 0.376523E+03 0.162180E+02 0.247725E+03 0.225961E+02 0.101955E+06
                                                                           -0.3931
 25.00 -0.235384E+03 -0.253108E+03 -0.129869E+03 -0.156365E+03 0.803929E+05
                                                                           -0.4861
 30.00 0.229901E+03 0.221920E+03 0.109775E+03 0.123213E+03 0.646676E+05
                                                                           -0.5789
 35.00 -0.285229E+03 0.822162E+02 -0.130083E+03 0.245997E+02 0.528211E+05
                                                                           -0.6682
 40.00 -0.217675E+03 -0.170529E+03 -0.738262E+02 -0.734196E+02 0.436516E+05
                                                                           -0.7517
 45.00 -0.246206E+03 -0.777271E+02 -0.71379CE+02 -0.350413E+02 0.364909E+05
                                                                           -0.8267
 50.00 -0.144982E+02 0.241139E+03 -0.148239E+02 0.560879E+02 0.308618E+05 -0.8909
 55.00 -0.503654E+02 -0.220845E+03 0.216431E+01 -0.391996E+02 0.264252E+05
                                                                           -0.9417
 60.00 0.163394E+03 -0.136432E+03 0.225084E+02 -0.556820E+01 0.229245E+05
                                                                           -0.9765
 65.00 0.142056E+02 -0.199990E+03 0.983168E+01 -0.522104E+01 0.201609E+05
                                                                           -0.9939
 70.00 -0.672031E+02 0.176957E+03 -0.553029E+01 -0.995057E+01 0.179799E+05
                                                                           -0.9928
 75.00 -0.178982E+03 -0.758155E+81 8.194174E+02 -0.715082E+01 0.162601E+05
                                                                           -0.9737
 80.00 -0.882483E+02 0.145254E+03 0.915704E+01 -0.290160E+02 0.149061E+05 -0.9379
 85.00 0.279J19E+02 -0.159229E+03 -0.271564E+00 0.394049E+02 0.138426E+05 -0.8878
 90.00 0.558595E+02 -0.143671E+03 -0.116307E+02 0.460706E+02 0.130097E+05 -0.8265
 95.00 -0.125419E+03 0.773792E+02 0.436895E+02 -0.330736E+02 0.123601E+05 -0.7571
100.00 -0.128432E+03 -0.588009E+02 0.575057E+02 0.212738E+02 0.118559E+05 -0.6829
105.00 -0.897252E+01 0.135447E+03 0.417347E+00 -0.671401E+02 0.114671E+05 -0.6069
110.00 -0.128778E+03 0.228475E+02 0.70538CE+02 -0.160555E+02 0.111696E+05 -0.5315
115.00 0.485125E+02 0.116660E+03 -0.322957E+02 -0.698729E+02 0.109441E+05
                                                                           -0.4586
120.00 -0.950241E+02 0.771016E+02 0.613435E+02 -0.530387E+02 0.107752E+05
                                                                           -0.3897
125.00 0.107185E+03 0.512959E+02 -0.773297E+02 -0.346577E+02 0.106505E+05
130.00 0.26551CE+02 0.112600E+03 -0.218797E+02 -0.851931E+02 0.105601E+05, -0.2674
                                                                           -0.3258
135.00 0.393056E+02 +0.105972E+03 -0.300337E+02 0.856658E+02 0.104961E+05 -0.2149
140.00 0.588332E+02 -0.935446E+02 -0.486957E+02 0.795029E+02 0.104520E+05
                                                                           -0.1684
145.00 -0.355876E+02 0.102416E+03 0.304963E+02 -0.983323E+02 0.104227E+05
                                                                           -0.1279
150.00 0.397255E+02 0.989745E+02 -0.367520E+02 -0.899089E+02 0.104042E+05
                                                                           -0.0932
155.00 -0.104967E+03 0.658197E+01 0.983951E+02 -0.659809E+01
                                                             0.103933E+05
                                                                           -0.0643
160.00 0.325766E+02 0.987468E+02 -0.315295E+02 -0.947021E+02 0.103874E+05
165.00 -0.390503E+02 0.953805E+02 0.380246E+02 -0.932794E+02 0.103846E+05
                                                                           -0.0409
                                                                           -0.0229
170.00 0.457488E+02 -0.916294E+02 -0.452265E+02 0.907355E+02 0.103836E+05
                                                                          -0.0101
175.00 -0.115368E+02 -0.101373E+03 0.115246E+02 0.101115E+03 0.103834E+05 -0.0025
180.00 0.994571E+02 0.221736E+02 -0.994571E+02 -0.221736E+02 0.103834E+05 -0.0000
```

EXTINCTION SCATTERING ABSORPTION 2.019703 1.106932 0.912770 TIME FOR THIS CASE IN SECONDS = 0.179E-01

```
ANGLE
             S-SUB-1
                                   S-SUB-2
                                                   INTENSITY DEG OF POLZN
      0.125423E+08 -0.666472E+J5 0.125423E+08 -0.666472E+05 0.157315E+15 -0.0000
 0.00
     0.222714E+04 0.190241E+04 0.200270F+04 0.169246F+04 0.772728F+07
                                                             -0.1103
10.00 +0.208972E+04 0.798514E+03 -0.172296E+04 0.620806E+03 0.417917E+07 -0.1975
15.00 -0.198699E+04 0.275570E+03 -0.14759EE+04 0.152643E+03 0.311291E+07 -0.2927
20.00
     0.1416058+04 0.1186708+04 0.8990338+03 0.9301708+03 0.2455458+07
                                                              -0.3902
      -0.4856
30.00 -0.818828E+03 +0.136541E+04 -0.365770E+03 -0.736552E+03 0.160555E+07
                                                              -0.5788
35.00 +0.696859E+03 0.130789E+J4 +0.366383E+03 0.549989E+J3 0.131668E+07
                                                             -0.6680
40.00 0.120790E+04 0.670896E+03 0.420519E+03 0.306897E+03 0.109011E+07
                                                              -0.7513
45.00 0.377639E+03 -0.123406E+04 0.174189E+03 -0.357729E+03 0.911909E+06
                                                              -0.8264
-0.8906
55.00 -0.768225E+03 -0.832129E+03 -0.871019E+02 -0.176458E+03 0.660667E+06
                                                             -0.9414
60.00 -0.106248E+04 -0.625555E+02 -0.101042E+03 -0.581135E+02 0.573177E+06
                                                              -0.9763
65.00 0.698164E+03 -0.719402E+03 0.552444E+02 0.124093E+02 0.504089E+06
                                                              -0.9936
70.00 -0.736341E+03 -0.594638E+03 0.564372E+02 -0.115428E+02 0.449555E+06
                                                              -0.9926
75.00 -0.704422E+03 -0.553289E+03 0.10015CE+03 0.270281E+02 0.406550E+06
                                                              -0.9735
80.00 0.510198E+02 +0.848290E+03 0.279151E+02 0.149684E+03 0.372691E+06
                                                              -0.9378
85.00 0.789722E+03 -0.172281E+03 -0.182738E+03 0.738612E+02 0.346095E+06
                                                              -0.8878
90.00 0.543816E+03 0.546205E+03 -0.187405E+03 -0.146093E+03 0.325266E+06
                                                              -0.8264
95.00 0.469068E+03 0.575586E+03 -0.190918E+03 -0.196543E+03 0.309020E+06
                                                              -0.7570
-0.6829
105.00 -0.521195E+03 0.434773E+03 0.244271E+03 -0.230296E+03 0.286689E+06
                                                             -0.6069
-0.5315
115.00 0.622942E+03 0.105012E+03 -0.381748E+03 -0.490048E+02 0.273608E+06 -0.4586
120.00 0.582781E+03 0.186360E+03 -0.389915E+03 -0.111223E+03 0.269384E+06
                                                             -0.3897
125.00 -0.563023E+03 0.189764E+03 0.397962E+03 -0.145440E+03 0.266266E+06
                                                             -0.3258
130.00 0.309926E+03 0.488408E+03 -0.243028E+03 -0.366541E+03 0.264005E+06 -0.2674
-0.2149
140.00 -0.147810E+03 0.532403E+23 0.119311E+03 -0.450626E+03 0.261300E+06
                                                             -0.1684
145.00 -0.410444E+03 -0.354151E+03 0.363689E+03 0.308185E+03 0.260568E+06
                                                             -0.1279
-0.0932
155.00 -0.501483E+03 -0.158270E+03 0.470863E+03 0.146344E+03 0.259832E+06
                                                              -0.0643
160.00 0.429276E+03 0.293303E+33 -0.412840E+03 -0.280406E+03 0.259684E+06
                                                              -0.0409
165.00 -0.279973E+03 -0.432636E+03 0.274284E+03 0.422422E+03 0.259616E+06
                                                             -0.0229
170.00 0.101886E+03 0.5J1838E+03 -0.101195E+03 -0.496708E+03 0.259591E+06
                                                              -0.0101
175.00 0.307655E+02 -0.509210E+03 -0.306023E+02 0.507929E+03 0.259585E+06 -0.0025
```

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.006775 1.099193 0.937582
ASYMMETRY FACTOR = 3.953650
TIME FOR THIS CASE IN SECONDS = 0.866E-01