## Pooled model



$$\mu_{i} = \gamma x^{\beta}$$

$$\alpha = \log(\gamma)$$

$$\log(\mu_{i}) = \alpha + \beta \log(x_{i})$$

$$g(\alpha, \beta, x_{i}) = \alpha + \beta \log(x_{i})$$

$$[\alpha, \beta, \sigma \mid y_{i}] \propto [\log(y_{i}) \mid g(\alpha, \beta, x_{i}), \sigma^{2}][\alpha][\beta][\sigma]$$

## Intercepts for each site



$$g(\alpha_{j}, \beta, x_{ij}) = \alpha_{j} + \beta \log (x_{ij})$$

$$[\alpha_{j}, \beta, \mu_{\alpha}, \sigma, \varsigma_{\alpha} \mid y_{ij}] \propto [\log(y_{ij}) \mid g(\alpha_{j}, \beta, x_{ij}), \sigma^{2}] [\alpha_{j} \mid \mu_{\alpha}, \varsigma_{\alpha}^{2}] [\beta] [\sigma] [\mu_{\alpha}] [\varsigma_{\alpha}]$$

Intercepts vary with carbon level in site soils and slopes vary with fertilizer type



$$g_{1}(\alpha_{j}, \beta_{k}, x_{ijk}) = \alpha_{j} + \beta_{k} \log(x_{ijk})$$

$$g_{2}(\kappa, \eta, w_{j}) = \kappa + \eta \operatorname{logit}(w_{j})$$

$$[\alpha, \beta, \sigma, \varsigma_{\alpha}, \kappa, \eta, \mu_{\beta}, \varsigma_{\beta} \mid \mathbf{y}] \propto \prod_{j=1}^{J} \prod_{k=1}^{K_{j}} \inf_{i=1} \operatorname{normal}(\log(y_{ijk}) \mid g_{1}(\alpha_{j}, \beta_{k}, x_{ijk}), \sigma^{2})$$

$$\times \operatorname{normal}(\alpha_{j} \mid g_{2}(\kappa, \eta, w_{j}), \varsigma_{\alpha}^{2})$$

$$\times \operatorname{normal}(\beta_{k} \mid \mu_{\beta}, \varsigma_{\beta}^{2})$$

$$\times \operatorname{normal}(\eta \mid 0, 1000)$$

$$\times \operatorname{normal}(\kappa \mid 0, 1000)$$

$$\times \operatorname{uniform}(\sigma \mid 0, 100)$$

$$\times \operatorname{uniform}(\varsigma_{\alpha} \mid 0, 200)$$

$$\times \operatorname{uniform}(\varsigma_{\beta} \mid 0, 1000)$$

$$\times \operatorname{uniform}(\varsigma_{\beta} \mid 0, 1000)$$

$$\times \operatorname{uniform}(\varsigma_{\beta} \mid 0, 200)$$

## Slope and intercepts vary by site



$$g(\alpha_{j}, \beta_{j}, x_{ij}) = \alpha_{j} + \beta_{j} \log (x_{ij})$$

$$[\alpha, \beta, \mu_{\alpha}, \mu_{\beta}, \sigma, \varsigma_{\alpha}, \varsigma_{\beta}, \rho \mid \mathbf{y}] \propto \prod_{j=1}^{J} \prod_{i=1}^{n_{j}} \operatorname{normal}(\log(y_{ij}) \mid g(\alpha_{j}, \beta_{j}, x_{ij}), \sigma^{2})$$

$$\times \operatorname{multivariate normal}\left(\begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} \mid \begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix}, \begin{pmatrix} \varsigma_{\alpha}^{2} & \rho \varsigma_{\alpha} \varsigma_{\beta} \\ \rho \varsigma_{\alpha} \varsigma_{\beta} & \varsigma_{\beta}^{2} \end{pmatrix}\right)$$

$$\times \operatorname{normal}(\mu_{\alpha} \mid 0, 1000)$$

$$\times \operatorname{normal}(\mu_{\beta} \mid 0, 1000)$$

$$\times \operatorname{uniform}(\sigma \mid 0, 100)$$

$$\times \operatorname{uniform}(\varsigma_{\alpha} \mid 0, 200)$$

$$\times \operatorname{uniform}(\varsigma_{\beta} \mid 0, 200)$$

$$\times \operatorname{uniform}(\rho \mid 0, 1)$$