ELEKTROTEHNIČKI FAKULTET UNIVERZITETA SARAJEVO

Diskretna Matematika Zadaća 3

 $\begin{array}{c} Student \\ \text{Vedad Fejzagić} \end{array}$

Broj indeksa 17336

Grupa RI2-2 **Demonstrator** Šeila Bečirović

December 22, 2017

Postavka:

Neki eksperiment može dovesti do tri moguća događaja A1, A2 ili A3 iz skupa događaja X. Ova tri događaja imaju respektivno vjerovatnoće $0.25,\,0.5$ i 0.25. Rezultati tog eksperimenta nisu dostupni direktno, ali se može izvesti testni eksperiment koji daje događaje B1, B2, B3, B4 ili B5 iz skupa događaja Y, koji su u određenoj vezi sa događajima A1, A2 i A3. Vjerovatnoće da testni eksperiment rezultira događajem Bj, $j=1,\,2,\,3,\,4,\,5$ ukoliko je izvorni eksperiment rezultirao događajem Ai, $i=1,\,2,\,3$ date su u sljedećoj tabeli:

$p(B_j / A_i)$	B_1	B_2	B_3	B_4	B_5
A_1	0.05	0.25	0.1	0.5	0.1
A_2	0.15	0.35	0.05	0.35	0.1
A_3	0.5	0.05	0.15	0.1	0.2

Odredite entropije skupa izvornih i testnih događaja H(X) i H(Y), uvjetne entropije H(X/Y) i H(Y/X), zajedničku entropiju H(X,Y) te srednju količinu informacije I(X,Y) koju testni događaji nose o izvornim događajima.

Rješenje:

$$H(X) = -\frac{1}{\ln 2} \cdot (0.25 \ln 0.25 + 0.5 \ln 0.5 + 0.25 \ln 0.25) = 1.5$$

Računamo vrijednosti $p(B_j)$ za j = 1, 2, 3, 4, 5:

$$p(B_j) = \sum_{i=1}^{3} p(A_i) \cdot p(B_j/A_i)$$

Dobijamo:

$$p(B_1) = p(A_1)p(B_1/A_1) + p(A_2)p(B_1/A_2) + p(A_3)p(B_1/A_3) = 0.2125$$

$$p(B_2) = 0.25$$

$$p(B_3) = 0.0875$$

$$p(B_4) = 0.325$$

$$p(B_5) = 0.125$$

$$H(Y) = -\frac{1}{\ln 2} \cdot (0.2125 \ln 0.2125 + 0.25 \ln 0.25 +$$

$$+0.0875 \ln 0.0875 + 0.325 \ln 0.325 + 0.125 \ln 0.125) = 2.178432$$

Sada računamo $p(A_iB_j)$, za i=1.2.3; j=1,2,3,4,5 Rezultati prikazani u vidu tabele:

$p(A_i B_j)$	B_1	B_2	B_3	B_4	B_5
A_1	0.0125	0.0625	0.025	0.125	0.025
A_2	0.075	0.175	0.025	0.175	0.05
A_3	0.125	0.0125	0.0375	0.025	0.05

$$H(X,Y) = -\sum_{i=1}^{3} \sum_{j=1}^{5} p(A_i B_j) \cdot \log_2 p(A_i B_j)$$

$$H(X,Y) = -\frac{1}{\ln 2} \sum_{i=1}^{3} \sum_{j=1}^{5} p(A_i B_j) \cdot \ln p(A_i B_j)$$

$$H(X,Y) = 3.4604$$

$$H(X/Y) = H(X,Y) - H(Y) = 1.27608$$

$$H(Y/X) = H(X,Y) - H(X) = 1.9604$$

$$I(X,Y) = H(X) + H(Y) - H(X,Y) = 0.218$$

Postavka:

Na nekom fakultetu, troškove studija za 22% studenata plaća država, dok su ostali studenti samofinansirajući. Među studentima koji se školuju o trošku države, 47% studenata stanuje u studentskom domu, dok među samofinansirajućim studentima 32% studenata stanuje u studentskom domu. Svi studenti koji stanuju u studentskom domu ujedno posjeduju i iskaznicu za subvencionirani javni prevoz, dok među studentima koji ne stanuju u studentskom domu istu iskaznicu posjeduje i 32% studenata čiji studij plaća država te 40% samofinansirajućih studenata.

Odredite koliku prosječnu količinu informacije saznanje o tome posjeduje li student iskaznicu za subvencionirani javni prenos ili ne nosi o načinu finansiranja njegovog studija (tj. da li ga finansira država ili troškove snosi sam).

Rješenje:

Postavka:

Markovljev izvor informacija prvog reda emitira četiri različite poruke a, b, c i d. Ovisno od toga koja je poruka posljednja emitirana, izvor se nalazi u jednom od 4 moguća stanja Sa, Sb, Sc i Sd koja redom odgovaraju emitiranim porukama a, b, c odnosno d. Vjerovatnoće da će izvor emitirati neku od ove 4 poruke ovisno od stanja u kojem se nalazi date su u sljedećoj tablici:

$p(x_j / S_i)$	a	b	c	d
S_a	0.4	0.15	0.3	0.15
S_b	0.4	0.4	0.1	0.1
S_c	0.05	0.35	0.1	0.5
S_d	0.3	0.1	0.45	0.15

Odredite entropiju i redudansu ovog izvora, zatim entropiju sekvenci dužine 6 te vjerovatnoću pojave sekvence aaabdb.

Rješenje:

Red izvora je r = 1, izvor modeliramo pomoću 4 stanja:

Računamo vjerovatnoće za svako od stanja rješavanjem sljedećeg sistema jednačina:

$$p(S_a) = p(S_a)p(a/S_a) + p(S_b)p(a/S_b) + p(S_c)p(a/S_c) + p(S_d)p(a/S_d)$$

$$p(S_b) = p(S_a)p(b/S_a) + p(S_b)p(b/S_b) + p(S_c)p(b/S_c) + p(S_d)p(b/S_d)$$

$$p(S_c) = p(S_a)p(c/S_a) + p(S_b)p(c/S_b) + p(S_c)p(c/S_c) + p(S_d)p(c/S_d)$$

$$p(S_a) + p(S_b) + p(S_c) + p(S_d) = 1$$

Nakon uvrštavanja vrijednosti i prebacivanja $p(S_a), p(S_b), p(S_c)$ na desnu stranu jednakosti, dobijamo sljedeću matricu:

$$M = \begin{bmatrix} -0.6 & 0.4 & 0.05 & 0.3 & |0| \\ 0.15 & -0.6 & 0.35 & 0.1 & |0| \\ 0.3 & 0.1 & -0.9 & 0.45 & |0| \\ 1 & 1 & 1 & 1 & |1| \end{bmatrix}$$

Koristimo Gausov metod eliminacije da riješimo zadani sistem, svođenjem matrice na desnu trougaonu matricu, dobijamo:

$$M = \begin{bmatrix} -0.6 & 0.4 & 0.05 & 0.3 & |0| \\ 0 & -0.5 & 0.36 & 0.17 & |0| \\ 0 & 0 & -0.65 & 0.70 & |0| \\ 0 & 0 & 0 & 4.54 & |1 \end{bmatrix}$$
$$-0.6p(S_a) + 0.4p(S_b) + 0.05p(S_c) + 0.3p(S_d) = 0$$
$$-0.5p(S_b) + 0.36p(S_c) + 0.17p(S_d) = 0$$
$$-0.65p(S_c) + 0.70p(S_d) = 0$$
$$4.54p(S_d) = 1$$

Dakle, rješenja sistema su:

$$p(S_a) = 0.29$$

 $p(S_b) = 0.25$
 $p(S_c) = 0.23$
 $p(S_d) = 0.22$

$$H(S_a) = -\frac{1}{\ln 2} (p(a/S_a) \ln p(a/S_a) + p(b/S_a) \ln p(b/S_a) + p(c/S_a) \ln p(c/S_a) + p(d/S_a) \ln p(d/S_a))$$

Analogno za ostale, dobijamo:

$$H(S_a) \approx 1.871$$

$$H(S_b) \approx 1.722$$

$$H(S_c) \approx 1.578$$

$$H(S_d) \approx 1.782$$

$$H(X/X^{\infty}) = \sum_{i=1}^{4} p(S_i)H(S_i) = 1.73$$

$$H_{max} = \log_2 4 = \frac{\ln 4}{\ln 2} = 2$$

$$R = \frac{H_{max} - H(X/X^{\infty})}{H_{max}} \approx 0.135 = 13.5\%$$

$$H(X) = -\frac{1}{\ln 2}(p(a) \ln p(a) + p(b) \ln p(b) + p(c) \ln p(c) + p(d) \ln p(d)) \approx 1.98614$$

$$H(X^6) = H(X) + (6-1)H(X/X^{\infty}) \approx 10.636$$

$$p(aaabdb) = p(a)p(a/a)p(a/a)p(b/a)p(d/b)p(b/d) = 0.0000696 = 0.00696\%$$

Postavka:

Markovljev izvor informacija drugog reda emitira dvije različite poruke 0 i 1. Ovisno od toga koje su dvije poruke posljednje emitirane, izvor se može naći u jednom od 4 moguća stanja S00, S01, S10 odnosno S11 (recimo, ukoliko su posljednje dvije emitirane poruke 0 i 1 tim redom, izvor će se nalaziti u stanju S01). Vjerovatnoće emitiranja poruke 0 u svakom od tih stanja iznose:

$$p(0/S_{00}) = 0.9$$
$$p(0/S_{01}) = 0.7$$
$$p(0/S_{10}) = 0.1$$
$$p(0/S_{11}) = 0.2$$

Odredite entropiju i redudansu ovog izvora, zatim entropiju sekvenci dužine 6 te vjerovatnoću pojave sekvence 00101100.

Rješenje:

$$p(0/S_{00}) = 0.9, p(1/S_{00}) = 0.1$$
$$p(0/S_{01}) = 0.7, p(1/S_{01}) = 0.3$$
$$p(0/S_{10}) = 0.1, p(1/S_{10}) = 0.9$$
$$p(0/S_{11}) = 0.2, p(1/S_{11}) = 0.8$$

Neka su
$$S_{00}=S_1,\,S_{01}=S_2,\,S_{10}=S_3,\,S_{11}=S_4.$$

Potrebne su nam vrijednosti $p(S_1), p(S_2), p(S_3), p(S_4)$

$$p(S_1) = p(S_1)p(0/S_1) + p(S_3)p(0/S_3)$$
$$0.1p(S_1) = 0.1p(S_3)$$
$$p(S_1) = p(S_3)$$

Analogno za ostale, dobije se:

$$p(S_2) = p(S_3)$$
$$0.3p(S_3) = 0.2p(S_4)$$

Potrebno je riješiti sljedeći sistem:

$$p(S_1) = p(S_3)$$

$$p(S_2) = p(S_3)$$

$$0.3p(S_3) = 0.2p(S_4)$$

$$p(S_1) + p(S_2) + p(S_3) + p(S_4) = 1$$

Rješavanjem sistema, dobiju se sljedeće vrijednosti:

$$p(S_1) = 0.2222$$
$$p(S_2) = 0.2222$$

$$p(S_3) = 0.2222$$

 $p(S_4) = 0.3333$

$$H(S_1) = -\frac{1}{\ln 2} (p(0/S_1) \ln p(0/S_1) + p(1/S_1) \ln p(1/S_1)) \approx 0.47$$

$$H(S_2) \approx 0.881291$$

$$H(S_3) \approx 0.468996$$

$$H(S_4) \approx 0.721928$$

$$H(X/X^{\infty}) = \sum_{i=1}^{4} p(S_i)H(S_i) = 0.638$$

Redudansa:

$$H_{max} = \log_2 4 = 2$$

$$R = \frac{H_{max} - H(X/X^{\infty})}{H_{max}} \approx 0.681 \approx 68.1\%$$

Entropija sekvenci dužine 6:

$$H(X^2) = -\frac{1}{\ln 2} (p(00) \ln p(00) + p(01) \ln p(01) + p(10) \ln p(10) + p(11) \ln p(11)) = 1.96954$$

$$H(X^6) = H(X^2) + 4H(X/X^{\infty}) \approx 4.52154$$

Vjerovatnoća pojave sekvence 00101100:

$$p(00101100) = p(00)p(1/00)p(0/01)p(1/10)p(1/01)p(0/11)p(0/10) = 0.00008316 = 0.008316\%$$

Postavka:

Ergodični izvor informacija bez memorije emitira 10 poruka A, B, C, D, E, F, G, H, I i J. Proučavanjem sekvence dužine 645 koju je emitirao ovaj izvor, uočena je sljedeća učestalost pojavljivanja pojedinih poruka:

	Poruka:	Α	В	С	D	Е	F	G	Н	I	J
ĺ	Učestalost:	18	73	87	49	73	99	98	44	80	24

Za ovaj izvor informacija formirajte:

- a) Binarni Shannon-Fano kod sa simbolima 0 i 1;
- b) Binarni Huffmanov kod sa simbolima 0 i 1;
- c) Ternarni Huffmanov kod sa simbolima 0, 1 i 2.

Za sva tri načina kodiranja, izračunajte protok informacija kroz komunikacioni kanal, procenat iskorištenja kanala veze, te kodirajte sekvencu poruka BAIBBBJIDJCE.

Rješenje:

a)

Sortiramo:

F	99
G	98
С	87
I	80
В	73
E	73
D	49
Н	44
J	24
Α	18

Kodiramo pomoću binarnog stabla:

Kodirane poruke su sljedeće:

F	00
G	010
С	011
I	100
В	1010
Е	1011
D	110
Н	1110
J	11110
Α	11111

Kodirana sekvenca poruka: BAIBBBJIDJCE glasi:

Prosječna dužina kodne riječi:

$$n_{sr} = \sum_{i=1}^{10} p_i n_i \approx \sum_{i=1}^{10} \frac{N_i}{N} n_i = \frac{1}{N} \sum_{i=1}^{10} N_i n_i$$
$$n_{sr} = 3.271$$

Entropija izvora:

$$H(X/X^{\infty}) = H(X) = -\sum_{i=1}^{10} p_i \log_2 p_i = \dots = \frac{1}{\ln 2} (\ln N - \frac{1}{N} \sum_{i=1}^{10} N_i \ln N_i)$$
$$H(X/X^{\infty}) = 3.1671$$

Protok informacija:

$$\overline{I(H)} = \frac{H(X/X^{\infty})}{n_{sr}\tau} \approx \frac{0.968}{\tau}$$

Iskorištenost kanala veze 96.8% b)

Iz postavke: $n=10, m=2 \to m^*=2+mod(n-4,m-1)=2$ Prelazimo na formiranje binarnog Huffmanovog koda:

Po	četak	Itera	cija 1	Iteraci	ja 2	Iteraci	ja 3	Iteraci	ija 4	Iteracij	a 5	Iteracija	a 6	Iteracija	a 7
F	99	F	99	F	99	E/0	122	I/0	153	C/0		F/0	197	I/00	
G	98	G	98	G	98	D/1	122	B/1	100	H/10	173	$\mathrm{G}/1$	191	$\mathrm{B}/01$	$\begin{vmatrix} 275 \end{vmatrix}$
С	87	С	87	С	87	F	99	E/0	122	J/110	110	C/0		$\mathrm{E}/10$	210
I	80	I	80	H/0		G	98	D/1	122	A/111		H/10	173	D/11	
В	73	В	73	m J/10	86	С	87	F	99	I/0	153	$\mathrm{J}/110$	110	$\mathrm{F}/\mathrm{0}$	197
Е	73	E	73	A/11		H/0		G	98	B/1	100	A/111		G/1	131
D	49	D	49	I	80	J/10	86	С	87	E/0	122	I/0	153	C/0	
Н	44	H	44	В	73	A/11		H/0		D/1	122	$\mathrm{B}/1$	100	H/10	173
J	24	J/0	42	Е	73	I	80] J/10	86	F	99	$\mathrm{E}/0$	122	$\mathrm{J}/110$	119
A	18	A/1	42	D	49	В	73	A/11		G	98	D/1	122	A/111	

Iteracija	8	Iteracija 9				
F/00		I/000				
G/01		$\mathrm{G}/001$				
C/10	270	C/010				
H/110	370	H/0110				
J/1110		J/01110	645			
A/1111		A/01111	040			
I/00		I/100				
B/01	075	B/101				
E/10	275	$\mathrm{E}/110$				
D/11		D/111				

 $U\ sljedecim\ zadacima\ koji\ zahtjevaju\ veci\ broj\ iteracija,\ nece\ citav\ postupak\ biti\ prikazan$

$$n_{sr} = \frac{1}{645} \left(\sum_{i=1}^{10} N_i n_i \right) = 3.271$$

$$\overline{I(X)} = \frac{H(X/X^{\infty})}{n_{sr}\tau} \approx \frac{0.968}{\tau}$$

Iskorištenost kanala veze 96.8%.

Kodirana sekvenca poruka: BAIBBBJIDJCE glasi:

13

c)

Ternarni Huffmanov kod: $m = 0, m^* = 2 + mod(6, 2) = 2$

Po	četak	Iterae	cija 1	Iteraci	ja 2	Iteraci	ja 3	Iteracija 4		Iteracija 5	
F	99	F	99	D/0		I/0		F/0		F/00	
G	98	G	98	H/1	135	B/1	226	G/1	284	G/01	
С	87	С	87	J/20	100	$\mathrm{E}/2$		C/2		C/02	
I	80	I	80	A/21		D/0		I/0		I/10	
В	73	В	73	F	99	H/1	135	$\mathrm{B}/1$	226	B/11	645
Ε	73	Е	73	G	98	J/20	133	$\mathrm{E}/2$		E/12	040
D	49	D	49	С	87	A/21		D/0		D/20	
Н	44	Н	44	Ι	80	F	99	H/1	135	H/21	
J	24	J/0	42	В	73	G	98	J/20	199	J/220	
A	18	A/1	42	Е	73	С	87	A/21		A/221	

$$n_{sr} = \frac{1}{645} \left(\sum_{i=1}^{10} N_i n_i \right) = 2.061$$

$$\overline{I(X)} = \frac{H(X/X^{\infty})}{n_{sr}\tau} \approx \frac{1.5367}{\tau}$$

Pošto je kapacitet ternarnog kanala veze $C_c=\frac{\log_2 3}{\tau}\approx\frac{1.5850}{\tau}$, iskorištenost je oko $\frac{1.5367}{1.5850}=0.9695=96.95\%$ Kodirana sekvenca poruka: BAIBBBJIDJCE glasi:

1122110111111122010202200212

Postavka:

Izvor informacija bez memorije emitira 4 poruke A, B, C i D. Vjerovatnoće pojavljivanja ovih poruka iznose:

$$p(A) = 0.05$$

$$p(B) = 0.35$$

$$p(C) = 0.35$$

$$p(D) = 0.25$$

Za ovaj izvor informacija formirajte

- a)Binarni Shannon-Fano kod sa simbolima 0 i 1;
- b)Binarni Huffmanov kod sa simbolima 0 i 1;
- c)Binarni Shannon-Fano kod sa simbolima 0 i 1, ali kodirajući parove poruka umjesto individualnih poruka;
- d)Binarni Huffmanov kod sa simbolima 0 i 1, ali kodirajući parove poruka umjesto individualnih poruka.

Za sva četiri načina kodiranja, izračunajte protok informacija kroz komunikacioni kanal, procenat iskorištenja kanala veze, te kodirajte sekvencu poruka ADBBAAADDC.

Rješenje:

a)

Sortiramo:

В	0.35
С	0.35
D	0.25
Α	0.05

Kodiramo pomoću binarnog stabla:

A - 111, B - 0, C - 10, D - 110

$$n_{sr} = \sum_{i=1}^{4} n_i p_i = 1.95$$

$$H(X/X^{\infty}) \approx 1.7763$$

$$\overline{I(X)} \approx \frac{0.9109}{\tau}$$

Pa je iskorištenost kanala veze 91.09%

Poruka: ADBBAAADDC

b)

Po	četak	Iteracija 1		Iteracija 2		Iteracija 3	
В	0.35	В	0.35	C/0		C/00	
С	0.35	С	0.35	D/10	0.65	D/010	1
D	0.25	D/0	0.3	A/11		A/011	1
A	0.05	$\mid \mathrm{A}/1 \mid$	0.5	В	0.35	$\mathrm{B}/1$	

Iskorištenost kanala veze, entropija i prosječna dužina riječi su iste kao i u pod a)

Poruka: ADBBAAADDC

0110101101101101101001000

c)

Sortirane vjerovatnoće parova poruka $p(x_1x_2)=p(x_1)p(x_2)$ su date u sljedećoj tabeli:

ВВ	0.1225
ВС	0.1225
СВ	0.1225
CC	0.1225
BD	0.0875
CD	0.0875
DB	0.0875
DC	0.0875
DD	0.0625
AB	0.0175
AC	0.0175
BA	0.0175
CA	0.0175
AD	0.0125
DA	0.0125
AA	0.0025

Kodiramo pomoću binarnog stabla:

Kodiranja su sljedeća:

BB - 000, BC - 001, CB - 010, CC - 011, BD - 100, DC - 110

CD - 1010, DB - 1011, DD - 11100, AB - 11101, AC - 111100, BA - 111101

CA - 1111100, AD - 1111101, DA - 1111110, AA - 1111111

$$H(X/X^{\infty}) = -\frac{1}{\ln 2} \sum_{i=1}^{16} p_i \ln p_i \approx 3.5526$$
$$n_{sr} = \sum_{i=1}^{16} p_i n_i = 3.62$$

Protok:

$$\overline{I(X)} = \frac{0.9814}{\tau}$$

Tj. 98.14% Poruka: ADBBAAADDC

111110100011111111111111111101110

d)

 $m=2, m^*=2$

Zadatak je urađen u 14 iteracija, ovdje ćemo prikazati njih 5
(ostale ćemo preskočiti):

Početak		Iteracija 1		Iteracija 2		Iteracija 3		Iteracija 4		Iteracija 5	
BB	0.1225	BB	0.1225	CD/0	0.175	CB/0	0.245	BB/00		$\mathrm{CD}/0000$	
BC	0.1225	ВС	0.1225	$\mathrm{DB}/1$	0.175	CC/1	0.240	BC/01		$\mathrm{DB}/0001$	
СВ	0.1225	СВ	0.1225	$\mathrm{DC}/0$	0.15	BB/0	0.245	m AB/10000		$\mathrm{DC}/0010$	
CC	0.1225	CC	0.1225	$\mathrm{DD}/1$	0.15	BC/1	0.245	m AC/10001	0.43	$\mathrm{DD}/0011$	
BD	0.0875	BD	0.0875	BB	0.1225	AB/0000		$\mathrm{DA}/100100$		$\mathrm{CB}/010$	
CD	0.0875	CD	0.0875	BC	0.1225	m AC/0001		AA/100101		$\mathrm{CC}/011$	
DB	0.0875	DB	0.0875	CB	0.1225	$\mathrm{DA}/00100$		$\mathrm{AD}/10011$		$\mathrm{BB}/100$	
DC	0.0875	DC	0.0875	CC	0.1225	m AA/00101	0.185	BA/1010		$\mathrm{BC}/101$	1
DD	0.0625	DD	0.0625	AB/000		$\mathrm{AD}/0011$	0.100	CA/1011		$\mathrm{AB}/110000$	1
AB	0.0175	BA/0	0.035	$\mathrm{AC}/001$		$\mathrm{BA}/010$		BD/11		$\mathrm{AC}/110001$	
AC	0.0175	CA/1		$\mathrm{DA}/0100$		CA/011		CD/00		$\mathrm{DA}/1100100$	
BA	0.0175	AB/0	0.035	AA/0101	0.0975	BD/1		DB/01	0.325	$\mathrm{AA}/1100101$	
CA	0.0175	AC/1	0.055	$\mathrm{AD}/011$		$\mathrm{CD}/0$	0.175	DC/10	0.5∠5 	$\mathrm{AD}/110011$	
AD	0.0125	DA/00		$\mathrm{BA}/10$		$\mathrm{DB}/1$	0.175	DD/11		$\mathrm{BA}/11010$	
DA	0.0125	AA/01	0.0275	CA/11		$\mathrm{DC}/0$	0.15	CB/0	0.245	$\mathrm{CA}/11011$	
AA	0.0025	AD/1		BD	0.0875	$\mathrm{DD}/1$	0.10	CC/1	0.240	$\mathrm{BD}/111$	

$$H(X/X^{\infty}) = -\frac{1}{\ln 2} \sum_{i=1}^{16} p_i \ln p_i \approx 3.5526$$

$$n_{sr} = 3.5975$$

$$\overline{I(X)} = \frac{0.9875}{\tau}$$

Iskoristivost kanala veze 98.75%

Poruka: ADBBAAADDC

11001110011001011100110010

Postavka:

Markovljev izvor informacija prvog reda emitira tri različite poruke a, b i c. Ovisno od toga koja je poruka posljednja emitirana, izvor se nalazi u jednom od 3 moguća stanja Sa, Sb i Sc koja redom odgovaraju emitiranim porukama a, b odnosno c. Vjerovatnoće da će izvor emitirati neku od ove 3 poruke ovisno od stanja u kojem se nalazi date su u sljedećoj tablici:

$p(x_j / S_i)$	a	b	С
S_a	0.3	0.3	0.4
S_b	0.2	0.3	0.5
S_c	0.1	0.1	0.8

Za ovaj izvor informacija formirajte binarni Shannon-Fano kod sa simbolima 0 i 1

- a) posmatrajući izvor kao izvor bez memorije;
- b) posmatrajući izvor kao izvor bez memorije, ali kodirajući parove poruka umjesto individualnih poruka;
 - c) koristeći posebno kodiranje za svako stanje;
- d) koristeći posebno kodiranje za svako stanje, ali kodirajući parove poruka umjesto individualnih poruka.

Za sva četiri načina kodiranja, izračunajte protok informacija kroz komunikacioni kanal, procenat iskorištenja kanala veze, te kodirajte sekvencu poruka baacbebbbaaab. U posljednja dva slučaja, pretpostavite da izvor započinje rad u stanju Sa.

Rješenje: