Selecting the number of clusters in Mixture Multigroup Structural Equation Modeling

Andres F. Perez Alonso^{1, 2}, Jeroen K. Vermunt¹, Yves Rosseel³, and Kim De Roover^{2, 1}

¹Tilburg University, The Netherlands

²KU Leuven, Belgium

³Ghent University, Belgium

Author Note

Andres F. Perez Alonso (b) https://orcid.org/0000-0002-2480-8771 Jeroen K. Vermunt (b) https://orcid.org/0000-0001-9053-9330 Yves Rosseel (b) https://orcid.org/0000-0002-4129-4477 Kim De Roover (b) https://orcid.org/0000-0002-0299-0648

This document is a pre-print and has not been peer reviewed yet. This research was funded by a Vidi grant [VI.Vidi.201.133] awarded to Kim De Roover by the Netherlands Organization for Scientific Research (NWO). The code behind the simulations has been made publicly available on GitHub. Correspondence concerning this article should be addressed to Andres F. Perez Alonso, Department of Methodology and Statistics, Tilburg University, PO Box 90153 5000 LE, Tilburg. E-mail:

A.F.PerezAlonso@tilburguniversity.edu

Abstract

Behavioral scientists often use Multigroup Structural Equation Modeling (MG-SEM) to compare groups in terms of their relations among latent variables (LV) — also called 'structural relations'. Since LVs are indirectly measured via questionnaire items, one should evaluate to what extent their measurement is invariant before comparing their structural relations. To efficiently compare many groups, the recently proposed Mixture Multigroup SEM (MMG-SEM) clusters groups based on their structural relations while accounting for measurement (non-)invariance. MMG-SEM requires the user to select the optimal number of clusters for the empirical data at hand. Various approaches have been developed to address this problem for related methods, but no definitive answer exists on which is best. This paper aims to find the best-performing model selection approach for MMG-SEM through an extensive simulation study. Specifically, we compared five information criteria and the convex hull procedure and included empirically realistic conditions that affect the clusters' separability.

Keywords: model selection, mixture modeling, structural relations, structural equation modeling

1

Selecting the number of clusters in Mixture Multigroup Structural Equation Modeling

1 Introduction

Comparing relations between unobservable or 'latent' variables (e.g., attitudes, 2 emotions) across many groups is common in behavioral sciences. For instance, Mayerl and Best (2019) studied how environmental attitudes related to environmental behavior in 30 countries. Structural Equation Modeling (SEM; Bollen, 1989) allows estimating regression coefficients for relations among latent variables (LV) based on the covariances of their observed indicators, such as questionnaire items. In SEM, the regression coefficients are also called 'structural relations' and LVs are called 'factors'. Multigroup SEM (MG-SEM) and Multilevel SEM (ML-SEM), are commonly used to compare structural relations across groups (e.g., Mayerl & Best, 2019). To pinpoint 10 differences and similarities, these approaches require pairwise comparisons of the 11 group-specific values for the structural relations, which is a complex and daunting task 12 when many groups are involved. For instance, for 30 groups, this would entail 435 pairwise 13 comparisons per parameter. In ML-SEM, the group-specific parameter values are derived 14 from random effects (Hox et al., 2017). 15 An intuitive solution is to find subsets of groups that share the same relations 16 between factors using mixture modeling (McLachlan et al., 2019). However, before 17 identifying such 'latent classes' or 'clusters', we must remember that the factors are 18 indirectly measured via questionnaire items. Before comparing structural relations between 19 groups, we must ensure that the measurement of the factors is the same across groups or, in other words, that 'measurement invariance' (MI; Meredith, 1993) holds. This implies 21 evaluating whether the measurement model (MM) — indicating which items measure 22 which factors and to what extent — is invariant across groups. The MI assumption can be evaluated at several levels, focusing on different MM parameters (Vandenberg & Lance, 2000). In case of many groups, invariance often does not hold for all the MM parameters.

To compare structural relations across groups, the equality of the so-called 'factor loadings' (i.e., the item-factor relations) must hold, which is called metric invariance¹. Other 27 higher-level MM differences are inconsequential for comparing structural relations if they 28 are included in the model (Chen, 2008; Guenole & Brown, 2014). 29 When looking for clusters of groups with equal structural relations, capturing the 30 MM differences — or 'measurement non-invariances' — with group-specific parameters is 31 important. Many existing mixture SEM methods (e.g., Kim et al., 2016; Vermunt & 32 Magidson, 2005) force all parameters to be equal within a cluster. This implies that MM parameters can either be specified as invariant across all groups (i.e., ignoring measurement non-invariances) or as cluster-specific (i.e., enforcing MI within each cluster but not across 35 clusters). Such mixture SEM methods capture clusters of groups with the same structural relations as well as the same MM parameters, and fail to disentangle the differences of interest (i.e., in the structural relations) from those not of interest (i.e., in the MM). To effectively capture clusters of groups with equivalent structural relations while 39 simultaneously accounting for measurement non-invariances, Perez Alonso et al. (in press) proposed Mixture Multigroup SEM (MMG-SEM), which combines MG-SEM with mixture 41 clustering. Specifically, it combines cluster-specific structural relations with measurement parameters that are partially group-specific, so that the clustering of the groups focuses 43 only on the structural relations, which are of interest to the research question. Note that, essentially, MMG-SEM comprises two different types of LVs: (1) the continuous LVs 45 measured by items at the individual-level, and (2) a categorical LV for the clusters at the group-level. 47 By gathering groups with equal structural relations in a cluster, MMG-SEM reduces 48 the number of pairwise comparisons needed to pinpoint which relations differ among groups. However, it also introduces a problem inherent to mixture models; that is, for each

¹ When full metric invariance does not hold (i.e., all loadings equal), partial metric invariance (Byrne et al., 1989) can be pursued, where some of the loadings are allowed to be different across groups.

data set, the appropriate number of clusters must be determined. In empirical research, the 'true' number of clusters is unknown, and the selection of the number of clusters is an important challenge. When too few clusters are selected, one fails to detect potentially 53 interesting differences in the structural relations and, when too many clusters are retained, one ends up with an overly complex model. Perez Alonso et al. (in press) showed that MMG-SEM performs well when the correct number of clusters is specified, but did not address the model selection problem. In their empirical application, they applied a model 57 selection approach recommended for related mixture methods (e.g., De Roover et al., 2022; Lukočienė & Vermunt, 2009; Lukočienė et al., 2010), but they did not evaluate how commonly used model selection approaches perform for MMG-SEM in different conditions or which approach is best for MMG-SEM. 61 Several approaches to address the model selection problem are available (see Akogul 62 & Erisoglu, 2016). For instance, the Bayesian Information Criterion (BIC; Schwarz, 1978) and Akaike Information Criterion (AIC; Akaike, 1974) integrate model fit and a penalty based on model complexity. Hence, a model that minimizes the criteria is assumed to have a good balance between model fit and parsimony. Another way of finding this balance is using the Convex Hull method (Ceulemans & Kiers, 2006), which is a generalized scree test. Alternatively, the Integrated Completed Likelihood (ICL; Biernacki et al., 2000) also considers the cluster separation; that is, it penalizes models that offer poorly-defined 69 clusters (i.e., clusters that are too similar). This aligns with the fact that substantive 70 researchers likely regard minor differences in structural relations to be trivial. 71 Numerous simulation studies have compared different model selection methods (e.g., 72 Akogul & Erisoglu, 2016; De Roover et al., 2022; Lukočienė & Vermunt, 2009; Lukočienė 73 et al., 2010; Nylund et al., 2007), showing different results depending on the conditions and 74 mixture models evaluated. For instance, for mixture models combined with factor analysis, Bulteel et al. (2013) and De Roover (2021) found that BIC and Convex Hull outperformed AIC. In the context of latent class analysis, Lukočienė and Vermunt (2009) found that

AIC₃ (i.e., a modified AIC with a larger penalty) performed better than other model selection methods.

These contradictory results emphasize the importance of evaluating and comparing model selection approaches for MMG-SEM specifically, which is the aim of this paper. By means of a simulation study, we will compare different approaches in conditions that mimic the ones found in social sciences. For instance, in empirical data, it is likely that certain groups have very similar — but not identical —- regression parameters. Gathering these groups in the same cluster may still be desirable, for the sake of parsimony, and because researchers are often not interested in such trivial differences. Therefore, the simulated conditions will include different levels of small differences in structural relations within a cluster, to evaluate how this affects the model selection.

The remainder of this paper is organized as follows: MMG-SEM and relevant model selection methods are described in the Method section. A Simulation Study then evaluates the performance of the model selection methods in the context of MMG-SEM. The paper concludes with a Discussion section highlighting the most relevant results and limitations of the study.

2 Method

94

95 2.1 Mixture Multigroup Structural Equation Modeling

Mixture Multigroup Structural Equation Modeling (MMG-SEM; Perez Alonso et al., in press) combines mixture modeling with MG-SEM. In general, the mixture multigroup approach (De Roover, 2021; De Roover et al., 2022), aims to find a clustering that focuses on specific parameters of interest. In MMG-SEM, the clustering focuses on the structural relations, while MM differences are accounted for by group-specific parameters, so they do not affect the clustering.

For its estimation, Perez Alonso et al. (in press) used the 'Structural-After-Measurement' (SAM; Rosseel & Loh, 2022) approach, which estimates a

SEM model in two steps. In the first step, the MM is estimated, whereas the structural

model (SM; including the structural relations) is estimated in the second step. The
estimation of MMG-SEM is briefly described below (for more details, see Perez Alonso
et al., in press).

108 2.1.1 Step 1: Measurement Model

The MM defines how the LVs are measured; that is, which items measure which factor and to what extent. When studying multiple groups (e.g., countries), the MM is often estimated using Multigroup Confirmatory Factor Analysis (MG-CFA). If we consider individuals $n_g = 1, \ldots, N_g$ within groups $g = 1, \ldots, G$, items $j = 1, \ldots, J$, and factors $q = 1, \ldots, Q$, MG-CFA defines the vector of observed scores \mathbf{x}_{n_g} of individual n_g as follows

$$\mathbf{x}_{n_g} = \mathbf{\tau}_g + \mathbf{\Lambda}_g \mathbf{\eta}_{n_g} + \mathbf{\epsilon}_{n_g},\tag{1}$$

where τ_g is a J-dimensional vector of group-specific intercepts, Λ_g denotes a $J \times Q$ matrix 114 of group-specific factor loadings, η_{n_q} is a Q-dimensional random vector of factor scores, 115 and $\boldsymbol{\epsilon}_{n_q}$ is a J-dimensional random vector of residuals. Note that MG-CFA imposes a 116 pattern of zero and non-zero loadings on Λ_g , and that, in this paper, we center the 117 observed variables per group to remove the mean structure, which is equivalent to 118 estimating the group-specific τ_q , but computationally more efficient. We assume that, (1) 119 $\mathbf{\eta}_{n_g}$ is distributed according to a multivariate normal distribution $MVN(\boldsymbol{\alpha}_g, \boldsymbol{\Phi}_g)$, where $\boldsymbol{\alpha}_g$ 120 and Φ_g are the mean vector and covariance matrix of the factors, respectively, and (2) $\boldsymbol{\epsilon}_{n_g}$ 121 is distributed according to $MVN(0, \mathbf{\Theta}_g)$, where $\mathbf{\Theta}_g$ is the covariance matrix of the 122 residuals in group q. To scale the LVs, we use the marker variable approach (i.e., fixing one 123 loading to one per factor). If we assume that $Cov(\eta_{n_g}, \boldsymbol{\epsilon}_{n_g}) = \mathbf{0}$, the model-implied 124 covariance matrix of group g is given by 125

$$\Sigma_g = \Lambda_g \Phi_g \Lambda_g' + \Theta_g. \tag{2}$$

In the context of MMG-SEM, one must evaluate measurement invariance (MI)
before clustering groups on structural relations. As mentioned in the introduction, MI can

be evaluated at different levels by focusing on different parameters. First, one must 128 evaluate configural invariance by testing if the model in Equation 1 holds across groups. If 129 the model's fit is satisfactory (Chen, 2007), one can assume that the same items measure 130 the same factors across groups. Second, one must test for metric invariance by constraining 131 the non-zero loadings in Λ_g to be the same across groups. If imposing $\Lambda_g = \Lambda$ does not 132 significantly worsen the model fit (Rutkowski & Svetina, 2014), full metric invariance holds. 133 Metric invariance must hold, at least partially, for valid comparisons of the structural 134 relations². Therefore, the remaining MM parameters (i.e., τ_g , Θ_g , and potentially some 135 loadings) are allowed to be group-specific in MMG-SEM. If full metric invariance holds, the 136 model-implied covariance matrix of group g in MMG-SEM's first step is

$$\Sigma_q = \Lambda \Phi_q \Lambda' + \Theta_q. \tag{3}$$

The MM is fitted by minimizing the difference between the model-implied covariance matrix Σ_g and the observed covariance matrix S. The group-specific factor covariance matrices Φ_g from Equation 3 are the input for MMG-SEM's second step. To avoid confusion in the notation of the remaining text, the covariance matrices Φ_g from step 142 1 will have a superscript s1 (i.e., Φ_g^{s1}).

2.1.2 Step 2: Structural Model

143

In the second step, MMG-SEM estimates the SM and performs the mixture clustering based on the structural relations. Note that MMG-SEM operates at the group-level; that is, it finds clusters of groups instead of clusters of observations. The SM, which defines how the LVs are related, is conditional on the membership of group g to cluster k, denoted as z_{gk} , which takes on a value of 1 or 0. Note that the true cluster memberships z_{gk} are unknown and that the estimated \hat{z}_{gk} is a probability ranging from 0 to 1. Formally, the model-implied factor covariance matrix Φ_{gk} is defined as:

$$[\mathbf{\Phi}_{gk}|z_{gk}=1] = (\mathbf{I} - \mathbf{B}_k)^{-1} \mathbf{\Psi}_{gk} (\mathbf{I} - \mathbf{B}_k)^{-1'},$$
 (4)

² For more information about the remaining MI levels, please see Vandenberg and Lance (2000).

where \mathbf{B}_k is a non-symmetric $Q \times Q$ matrix containing the unstandardized cluster-specific regression coefficients between LVs, and Ψ_{gk} is the residual factor covariance matrix. The group-and-cluster-specific nature of Ψ_{gk} ensures that the clustering is driven only by the regression coefficients \mathbf{B}_k , and not (also) by the residual factor covariances³. The SM for each group-cluster combination gk is fitted by minimizing the differences between the model-implied factor covariance matrices Φ_{gk} in step 2 and the group-specific covariance matrices Φ_g^{s1} from step 1.

For the mixture clustering, MMG-SEM assumes that the vector of factor scores $\mathbf{\eta}_{n_g}$ is sampled from a mixture of K multivariate normal distributions and that all factor scores of group g — gathered in a matrix \mathbf{H}_g of factor scores — are sampled from the same distribution. Specifically, the formal definition for group g is the following

$$f(\mathbf{H}_g; \vartheta) = \sum_{k=1}^K \pi_k f_{gk}(\mathbf{H}_g; \vartheta_{gk}) = \sum_{k=1}^K \pi_k \prod_{n_g=1}^{N_g} MVN(\mathbf{\eta}_{n_g}; \mathbf{\alpha}_g, \mathbf{\Phi}_{gk}),$$
 (5)

where f is the population density function, ϑ is the set of population parameters, π_k is the prior probability of a group g belonging to cluster k (where $\sum_{k=1}^{K} \pi_k = 1$), f_{gk} is the density function of the group g in the kth cluster, and ϑ_{gk} is its corresponding set of parameters. Specifically, f_{gk} is a multivariate normal distribution where Φ_{gk} and α_g are the factors' covariance matrix and mean vector, respectively. The covariance matrix is decomposed as indicated in Equation 4, and the factor means α_g are equal to zero due to the centering.

2.1.3 Model estimation

168

The unknown parameters ϑ of step 2 (Equation 5) are estimated by means of maximum likelihood estimation using an EM algorithm (for details, see Perez Alonso et al., in press). Specifically, the following log-likelihood function is maximized:

$$\log L_{\eta} = \sum_{g=1}^{G} log \left(\sum_{k=1}^{K} \pi_k \left(\frac{1}{(2\pi)^{Q/2} |\mathbf{\Phi}_{gk}|^{1/2}} exp \left(-\frac{1}{2} tr(\mathbf{\Phi}_g^{s1} \mathbf{\Phi}_{gk}^{-1}) \right) \right)^{N_g} \right), \tag{6}$$

³ To this aim, the residual (co)variances of the endogenous factors are group-and-cluster-specific, whereas the (co)variances of the exogenous factors are group-specific. For more details, please see the original paper by Perez Alonso et al. (in press).

where Φ_g^{s1} is Step 1's factor covariance (Equation 3), and Φ_{gk} is Step 2's factor covariance (Equation 4).

Note that the log-likelihood function in Equation 6 considers only the parameters in the SM. The log-likelihood function for the full MMG-SEM model (i.e., combining Step 1 and Step 2) is defined as

$$\log L = \sum_{g=1}^{G} log \left(\sum_{k=1}^{K} \pi_k \prod_{n_g=1}^{N_g} \frac{1}{(2\pi)^{J/2} |\mathbf{\Sigma}_{gk}|^{1/2}} exp \left(-\frac{1}{2} (\mathbf{x}_{n_g} - \boldsymbol{\mu}_g)' \mathbf{\Sigma}_{gk}^{-1} (\mathbf{x}_{n_g} - \boldsymbol{\mu}_g) \right) \right), \quad (7)$$

where μ_g and Σ_{gk} are the mean vector and model-implied covariance matrix of the observed items, respectively. The μ_g is zero due to the centering, and the Σ_{gk} can be reconstructed by inserting Equation 4 into Equation 3 as

$$\Sigma_{gk} = \Lambda (\mathbf{I} - \mathbf{B}_k)^{-1} \Psi_{gk} (\mathbf{I} - \mathbf{B}_k)^{-1'} \Lambda' + \Theta_g.$$
 (8)

180 2.2 Model Selection

189

A common challenge for clustering methods is selecting an appropriate number of 181 clusters. Researchers have tried to solve this problem based on different approaches, such 182 as balancing model fit and complexity (Akaike, 1974; Akogul & Erisoglu, 2016; Schwarz, 183 1978), considering relative fit improvement (Ceulemans & Kiers, 2006), cluster separation 184 (Biernacki et al., 2000), and/or substantive interpretation (van den Bergh et al., 2017). 185 Given the popularity of clustering, new methods for model selection keep emerging. 186 However, we focus on commonly used approaches for model selection in the context of 187 mixture SEM methods, which are detailed below. 188

2.2.1 Akaike Information Criterion

The Akaike Information Criterion (AIC; Akaike, 1974) combines the model fit (i.e., the log-likelihood) with a penalty for model complexity (i.e., number of parameters). It is defined as:

$$AIC = -2\log L + 2P \tag{9}$$

where P is the number of parameters. For MMG-SEM, P is the sum of the number of mixing proportions (minus one restriction), the number of cluster-specific regressions

coefficients, the number of group-specific exogenous factor covariances, the number of group-and-cluster-specific endogenous factor covariances⁴, the number of loadings (minus Q fixed loadings due to factor scaling and accounting for (non-)invariant loadings), and the number of group-specific unique variances.

A number of modifications of the AIC have been presented. In this paper, we consider only one such modification: the AIC₃ (Bozdogan, 1994), which was developed specifically for determining the number of clusters in mixture models. It is defined as:

$$AIC_3 = -2\log L + 3P. \tag{10}$$

202 2.2.2 Bayesian Information Criterion

The Bayesian Information Criterion (BIC; Schwarz, 1978) balances model fit and model complexity as follows:

$$BIC = -2\log L + P\log(SS), \tag{11}$$

where the penalty of the model complexity is now weighted by the logarithm of the sample size SS. Usually, the total number of observations N is used as the SS (BIC_N), but it has been suggested to use the number of groups G instead of N (BIC_G) when selecting the number of group-level clusters (Lukočienė & Vermunt, 2009; Lukočienė et al., 2010). De Roover (2021) and De Roover et al. (2022) found a superior performance of BIC_G in the context of a related mixture multigroup approach.

211 2.2.3 Convex Hull

The convex hull procedure (CHull; Ceulemans & Kiers, 2006) has been shown to be a valid alternative to BIC and AIC in the context of mixtures of factor analyzers (Bulteel et al., 2013). CHull is a generalized scree test that balances model fit and model

⁴ We only count one set of endogenous covariances for each group, given we assume each group belongs to only one cluster. The endogenous covariances (from the clusters the groups do not belong to) are nuisance parameters.

complexity by plotting the logL of the different models in function of their number of
parameters P. Then, for each model on convex hull of the scree plot, a scree ratio is
computed and the solution with the maximal scree ratio is selected. Specifically, the scree
ratio sr_d for model d is defined as:

$$sr_d = \frac{\log L_d - \log L_{d-1}}{P_d - P_{d-1}} / \frac{\log L_{d+1} - \log L_d}{P_{d+1} - P_d} , \qquad (12)$$

where d-1 refers to the previous (less complex) model on the hull and d+1 refers to the next (more complex) model on the hull. It is worth noting that a scree ratio cannot be computed for the least complex model, so it will always select a model with at least two clusters. However, if no clear elbow in the scree plot, one may still conclude that an underlying cluster is unlikely.

2.2.4 Integrated Completed Likelihood

224

The Integrated Completed Likelihood (ICL; Biernacki et al., 2000) is a model selection criterion developed for mixture clustering as an alternative to the BIC. The BIC does not consider an essential aspect of the mixture models; that is, the estimated cluster memberships \hat{z}_{gk} . Therefore, Biernacki et al. (2000) proposed using the Entropy, which is a measure of the uncertainty of group g belonging to cluster k. Remember that \hat{z}_{gk} is a probability ranging from 0 to 1. Formally, for MMG-SEM, the Entropy can be defined as:

$$Entropy = \sum_{q=1}^{G} \sum_{k=1}^{K} (-\hat{z}_{gk}) (\log \hat{z}_{gk})$$
 (13)

The complete derivation of the ICL can be found in Biernacki et al. (2000), but its approximation, based on the BIC, is rather simple. Formally, the ICL is approximated as⁵:

$$ICL = BIC + 2Entropy (14)$$

For brevity, we focus on the ICL based on BIC_G in the Simulation Study, since this has been shown to perform better than BIC_N in the context of group-level clustering.

⁵ Biernacki et al. (2000) defined the ICL slightly differently as BIC – Entropy, but they defined BIC = $\log L - \frac{P}{2} \log(SS)$ instead of BIC = $-2 \log L + P \log(SS)$. Therefore, both ICL definitions will lead to the same results in terms of model selection.

3 Simulation Study

236 3.1 Design

235

The aim of the simulation study was to compare the performance of six model selection measures in selecting the number of clusters for MMG-SEM: AIC, AIC₃, BIC_G, BIC_N, CHull, and ICL. To this end, we used a Monte-Carlo simulation with six manipulated factors that are expected to affect the model selection performance. The factors and their corresponding levels are described below:

- 1. Size of regression parameters β : 0.3, 0.4;
- 2. Number of groups G: 24, 48;
- 3. Within-group sample size N_q : 50, 100, 200;
- 4. Number of clusters K: 2, 4;
- 5. Cluster size: balanced, unbalanced;
- 6. Within-cluster differences σ_{β} : no difference (0), small (0.05), large (0.1).

In total, the design included 2 (size of regression parameters) \times 2 (number of 248 groups) \times 3 (within-group sample size) \times 2 (number of clusters) \times 2 (cluster size) \times 3 249 (within-cluster differences) = 144 data generation conditions. For all conditions, 50 different data sets were generated, for a total of 7200 data sets. To evaluate the model 251 selection measures, each data set was analyzed six times with MMG-SEM from one to six 252 clusters, for a total of $7200 \times 6 = 43200$ analyses. Note that we added non-invariances to 253 the loadings (see Data Generation for more information) and that such non-invariances are 254 correctly modeled in MMG-SEM. All the data generation and analyses were done using R 255 version 4.3.3 (R Core Team, 2024). The data generation procedure is described below. 256

257 3.2 Data Generation

Each data set was generated according to the SEM model in Figure 1, with four
LVs, each one measured by five indicators, for a total of 20 observed variables. The
structural relations, which are the parameters of interest for the clustering, are represented
by four regression parameters. F1 and F2 served as exogenous variables, while F3 and F4
were endogenous variables. Note that F3 acts as a 'mediator' and is, thus, an exogenous
and endogenous variable at the same time.

Figure 1

The model used for the data generation. F1 and F2 are exogenous variables, F3 is dependent and independent at the same time ('mediator'), and F4 is a dependent only variable.

The sample size per group N_g , the number of groups G, and the number of clusters K were defined according to the manipulated factors 'within-group sample size', 'number

of groups', and 'number of clusters', respectively. The number of groups per cluster was

manipulated according to the 'cluster size'. In the balanced condition, the groups were 267 equally divided per cluster. For instance, for G = 48 and K = 4, each cluster contained 12 268 groups. In contrast, in the unbalanced condition, there was one larger cluster with 75% of 269 the groups, and the remaining clusters were equally sized. For example, for G=48 and 270 K=4, the first cluster would contain 36 groups and the remaining three clusters would 271 contain four groups each. 272 The 20 observed variables were generated from a $MVN(\mu_q, \Sigma_{gk})$, where the mean 273 vector μ_q was a vector of zeros and the covariance matrices Σ_{gk} were generated according 274 to Equation 8. Thus, to generate the data, the parameters in Equation 8 (i.e., $\Lambda, \Theta_q, \mathbf{B}_k$) 275

to Equation 8. Thus, to generate the data, the parameters in Equation 8 (i.e., Λ , Θ_g , \mathbf{B}_k , and Ψ_{gk}) must be defined. The Λ and Θ_g matrices were generated aiming to obtain a total variance per item around 1 and a reliability (R^2) of 0.6 for each observed indicator. To do this, the non-zero values in Λ were set to $\sqrt{0.6}$ while the residual variances in Θ_g were drawn from a uniform distribution U(0.3, 0.5). Note that the residual variances in Θ_g were sampled for each group, allowing group-specific differences as specified in Equation 8.

To evaluate the effect of loading non-invariances on the model selection, we also 281 added between-group differences to the Λ matrices. In particular, 50% of the groups 282 presented non-invariances. For each non-invariant group, we applied the non-invariance to 283 the second and third loading of each factor (the first loading is fixed to 1). The 284 non-invariances were randomly sampled from a uniform distribution around 0.4 (i.e., 285 U(0.3,0.5)), and it was randomly decided whether the non-invariance was added or 286 subtracted to the original loading (i.e., $\sqrt{0.6}$). As a result, each non-invariant loading was 287 different for each non-invariant group. 288

The setup of the regression parameters in \mathbf{B}_k can be seen in Figure 2. The manipulated factor 'size of the regression parameters' (β) indicated the size of the coefficients β_1 , β_2 , β_3 , and β_4 . The difference between the clusters was created by setting one of those coefficients to zero in each cluster. Thus, the size of the regression parameters also defined the size of the difference between the clusters. Note that, when K=2, models

three and four in Figure 2 were not applicable. The parameters in \mathbf{B}_k were also affected by 294 the manipulated factor 'within-cluster differences' (σ_{β}). To simulate empirically realistic 295 conditions, we added small differences in the coefficients β to each group g within a cluster 296 k. To do this, within each cluster, the regression parameter of each group was drawn from a 297 normal distribution $N(\beta, \sigma_{\beta})$, where the β and the σ_{β} acted as the mean and the standard 298 deviation of the distribution, respectively. The values of σ_{β} implied no within-cluster 299 differences ($\sigma_{\beta} = 0$), small differences ($\sigma_{\beta} = 0.05$), or large differences ($\sigma_{\beta} = 0.1$). Note 300 that we expect 99% of the sampled values to be within three standard deviations of the 301 mean when drawing from a normal distribution. For instance, if we consider $\beta = 0.3$ and 302 $\sigma_{\beta} = 0.05$ and we focus on β_1 (see Figure 2), the values of β_1 in Cluster 1 will be sampled 303 from N(0,0.05), whereas they will be sampled from N(0.3,0.05) in Cluster 2. We expect 304 99% of the values to lie between -0.15 and 0.15 in Cluster 1 and between 0.15 and 0.45 in Cluster 2. Thus, the small differences level ($\sigma_{\beta} = 0.05$) led to almost no overlap between clusters, whereas the large level ($\sigma_{\beta} = 0.1$) ensured overlap between the clusters.

Figure 2

Zero and non-zero regression parameters between the LVs depending on the cluster.

Finally, the elements in Ψ_{gk} were defined by sampling the variance of the exogenous variables F1 and F2 from a uniform distribution U(0.75, 1.25), and their covariance from U(-0.3, 0.3) for all groups. Similarly, the total variance of the endogenous factors F3 and F4 was sampled from U(0.75, 1.25) for each group, and their residual variance depended on the cluster-specific regression parameters. For example, if the total variance of F3 for group g was Var_{tot} , the residual variance Var_{res} for group g and cluster g was $Var_{tot} = Var_{tot} - (\beta_2^2 \text{Var}(F1) + \beta_3^2 \text{Var}(F2) + 2\beta_2\beta_3 \text{Cov}(F1, F2))$.

3.3 R^2 Entropy

315

To determine the cluster separation in the simulated datasets, we applied the R^2 Entropy, an *Entropy*-based measure. Specifically, the R^2 Entropy indicates how well the observed responses predict the cluster memberships \hat{z}_{gk} (for details on its calculation, see Vermunt & Magidson, 2016). It takes on a value of 1 when the clusters are perfectly separated (i.e., no classification uncertainty) and a value of 0 when there is no separation at all.

To get an overview of how the cluster separation was affected by the simulation conditions, we evaluated the R^2 Entropy at (an approximated) population level. For this, we generated data for each simulation condition with a large sample size. Given that MMG-SEM's clustering is at the group-level, the relevant sample size for the clustering and R^2 Entropy is the number of groups G, which was set to 192 groups. Subsequently, we computed the cluster memberships \hat{z}_{gk} based on the true parameters values for Λ , Θ_g , \mathbf{B}_k , and Ψ_{gk} (i.e., they were used as starting values in an MMG-SEM analysis where no parameter updates were performed). Per condition, 300 replications were generated.

Table 1

Average R^2 Entropy per level of the most influential factors.

	N_g			σ_{eta}			β	
50	100	200	0	0.05	0.1	0.3	0.4	
0.923	0.982	0.993	0.983	0.976	0.938	0.942	0.990	

The R^2 Entropy ranged from 0.76 to 1 with an average of 0.93 across all data sets, 330 which indicated well-separated clusters overall. The R^2 Entropy was mostly influenced by 331 the within-cluster differences σ_{β} , the regression coefficients β , and the within-group sample 332 size N_g . Their main effects can be seen in Table 1, and the interaction between σ_{β} and β is shown in Figure 3. Lower R^2 Entropy values were found in difficult conditions involving 334 large within-cluster differences ($\sigma_{\beta} = 0.1$), lower regression coefficients ($\beta = 0.3$) and/or 335 low within-group sample size $(N_g = 50)$. It is expected that the model selection measures 336 will struggle to choose the correct number of clusters in conditions where the clusters are 337 not well separated. 338

Figure 3 Approximated population R^2 Entropy in function of the within-cluster differences σ_{β} and the size of the regression parameters β .

Results 4 339

Before discussing the findings, it is worth noting that the evaluated model selection methods all use the log-likelihood as the measure of model fit. For MMG-SEM, we could use the log-likelihood based on the factors (Equation 6) or the observed data log-likelihood (Equation 7). We evaluated the measures' performance using both log-likelihoods in our simulation and found only minor differences in the results. Thus, for brevity, we present only the results using the log-likelihood in Equation 7, since this considers how the full model (i.e., measurement + structural model) fits the data. The results using Equation 6 can be found in the Supplemental Material.

Model Selection 4.1

340

341

342

343

344

345

346

348

351

For each model selection measure, we assessed how often it correctly selected the 349 true number of clusters. To gain a deeper understanding of each measure, we also inspected 350 how often it over- and under-selected the number of clusters. The main effects of the manipulated factors of the simulation can be seen in Table 2. In total, the best-performing 352

method was the CHull, followed by the AIC, AIC₃, BIC_G, ICL, and BIC_N, with a proportion of correctly selected models of 0.77, 0.66, 0.64, 0.62, 0.61, and 0.54, respectively.

The within-group sample size N_g was most influential on the model selection 355 performance. Specifically, on average, the model selection measures were correct 47% and 356 74% of the times when $N_g = 50$ and $N_g = 100$, respectively. Such dramatic improvement 357 did not hold when N_q increased to 200, for which the measures were correct 71% of the 358 time. The improvement from $N_g=50$ to $N_g=100$ aligns with common sample size 359 requirements in SEM, since 100 is considered the minimum for consistent estimates 360 (Gorsuch, 1983). The slight decrease in performance when $N_g = 200$ can be explained by 361 the trends of under- and over-selection of the number of clusters. Generally, when choosing 362 the incorrect model, the measures tended to under-select. However, over-selection was 363 more prominent in case of a large within-group sample size $(N_g = 200)$. Such results are unsurprising, considering that larger sample sizes give more power to identify smaller differences (leading to more clusters). This is more likely in case of larger within-cluster 366 differences ($\sigma_{\beta} = 0.1$), which can be identified as additional clusters. 367

The model selection performance was also greatly affected by the number of clusters 368 K. On average, all model selection measures found it more difficult to identify the correct 369 model when more clusters were underlying the data. The proportion of correctly selected 370 models was better when K=2 (0.82) than when K=4 (0.46). This is due to a lower 371 sample size within each cluster in case of more clusters, reducing the power to detect the 372 appropriate model. The model selection was also, to a lesser extent, affected by the 373 regression coefficients β and the cluster size. Specifically, a lower regression coefficient and 374 unbalanced cluster sizes lowered the proportion of correctly selected models. 375

The interaction between the most important factors can be seen in Figure 4. The plot clearly shows that more clusters and large within-cluster differences led to a dramatic decrease in the performance of all model selection measures. Specifically, the AIC, AIC₃, BIC_G , and ICL presented a substantial decrease of the correctly selected number of

Proportion of under-, over-, and correct selection of the number of clusters for all model selection measures per level of each manipulated factor. Best results are in bold.

Table 2

Measure	Result	F	K		N_g			> <u></u>	$ \mathcal{Y} $		Cluster	r size		σ_{eta}		Total
		2	4	20	100	200	24	48	0.3	0.4	Bal	Unb	0	0.02	0.1	; ; ;
	Under	0.02	0.34	0.44	0.10	0.00	0.22	0.14	0.26	0.11	0.12	0.24	0.18	0.19	0.17	0.18
AIC	Correct	0.82	0.50	0.56	0.76	0.06	0.64	0.68	0.61	0.71	0.73	0.58	0.80	0.81	0.37	0.06
	Over	0.16	0.16	0.00	0.14	0.34	0.14	0.18	0.14	0.18	0.15	0.17	0.01	0.01	0.46	0.16
	Under	0.05	0.42	0.52	0.17	0.01	0.30	0.17	0.32	0.15	0.17	0.30	0.24	0.24	0.22	0.23
AIC_3	Correct	0.82	0.46	0.48	0.77	89.0	0.59	0.69	0.57	0.71	0.71	0.57	0.75	0.75	0.42	0.64
	Over	0.13	0.12	0.00	90.0	0.32	0.11	0.14	0.11	0.14	0.12	0.13	0.01	0.00	0.36	0.12
	Under	0.07	0.46	0.57	0.20	0.01	0.31	0.21	0.35	0.18	0.19	0.33	0.28	0.27	0.24	0.26
BIC_G	Correct	0.81	0.43	0.43	0.76	89.0	0.59	0.06	0.55	0.69	0.69	0.55	0.72	0.73	0.42	0.62
	Over	0.12	0.11	0.00	0.04	0.30	0.10	0.13	0.10	0.13	0.11	0.12	0.01	0.00	0.34	0.11
	Under	0.17	0.70	0.74	0.41	0.15	0.49	0.38	0.57	0.30	0.36	0.51	0.43	0.44	0.43	0.43
BIC_N	Correct	0.81	0.28	0.26	0.58	0.78	0.50	0.59	0.42	0.06	0.62	0.47	0.56	0.56	0.51	0.54
	Over	0.03	0.02	0.00	0.00	90.0	0.01	0.03	0.01	0.03	0.03	0.02	0.00	0.00	90.0	0.02
	Under	0.00	0.16	0.12	0.02	0.07	0.09	0.07	0.11	0.00	0.02	0.12	0.03	0.04	0.17	0.08
Chull	Correct	0.89	0.65	0.73	0.81	0.78	0.76	0.78	0.74	0.80	0.86	0.68	0.79	0.87	0.66	0.77
	Over	0.11	0.18	0.15	0.14	0.15	0.15	0.14	0.15	0.14	0.00	0.20	0.18	0.09	0.17	0.15
	Under	0.10	0.47	0.62	0.21	0.03	0.33	0.24	0.39	0.18	0.21	0.35	0.30	0.29	0.27	0.28
ICL	Correct	0.79	0.43	0.37	0.76	0.70	0.58	0.65	0.53	0.70	89.0	0.55	0.70	0.71	0.42	0.61
	Over	0.11	0.10	0.00	0.03	0.28	0.10	0.11	0.08	0.12	0.11	0.10	0.00	0.00	0.31	0.10
	Under	0.07	0.44	0.51	0.20	0.05	0.29	0.21	0.34	0.17	0.19	0.32	0.26	0.25	0.25	0.25
Total	Correct	0.82	0.46	0.47	0.74	0.71	0.61	0.67	0.57	0.71	0.71	0.57	0.72	0.74	0.47	0.64
	Over	0.11	0.10	0.02	0.06	0.24	0.10	0.11	0.09	0.12	0.10	0.11	0.02	0.01	0.29	0.11

Note. K is the number of clusters, N_g is the within-group sample size, G is the number of groups, β is the size of the regression coefficients, Bal is balanced, Unb is unbalanced, and σ_{β} .

clusters. In contrast, the CHull and BIC_N presented a lower decrease in performance when K = 4 and/or $\sigma_{\beta} = 0.1$. BIC_N's performance was generally worse than all other model selection measures, however.

Figure 4

Proportion of correctly selected models in function of the number of clusters K and the within-cluster differences σ_{β} .

From Figure 4, we also learn that the performance sometimes improved when going 383 from $\sigma_{\beta} = 0$ to $\sigma_{\beta} = 0.05$, especially for the CHull. For the CHull, this can be explained by 384 the saturation effect, which happens when adding more clusters results in a negligible 385 increase in the log-likelihood. This can lead to an artificially large scree ratio (because the 386 denominator approaches zero, see Equation 12), whereas, when looking at the scree plot, a 387 virtually horizontal line, rather than an elbow, is visible at this point. In empirical 388 practice, one can remedy this problem by looking for a clear elbow in the scree plot instead 389 of just relying on the scree ratios. 390

The comparison between CHull and the other measures can be considered unfair, 391 since CHull selects a model with at least two clusters. Thus, when K=2, the other model 392 selection measures may select a one-cluster model when the cluster separation is low, while 393 CHull will select at least two clusters ⁶. For a fairer comparison, we also checked the results 394 for the other model selection measures when considering only the models from two to six 395 clusters. In this case, AIC, AIC₃, BIC₆, ICL, and BIC₈ selected the right number of 396 clusters for 66.8%, 66.7%, 65.7%, 66.2%, and 62.6% of the datasets, respectively. Thus, 397 their performance was closer to (but still lower than) that of the CHull (77%). 398

Finally, for a more comprehensive understanding of the outcomes, we examined how often the model selection measures correctly identified the number of clusters when considering the two best models (e.g., how often is the correct model among the two models with the lowest AIC values). The correct model was among the two best models 82.4%, 72.4%, 73%, 72.8%, 73.5%, and 69.2% of the times for CHull, AIC, AIC₃, BIC_G, ICL, and BIC_N, respectively. The BIC_G, BIC_N, and ICL showed the largest improvements in performance compared to when we focus only on the best model.

4.2 Cluster Recovery

406

The previous results must be interpreted in light of the cluster recovery (i.e., to 407 what extent MMG-SEM assigns groups to the correct clusters). To this end, we computed 408 the Adjusted Rand Index (ARI; Hubert & Arabie, 1985) to the model with the true 409 number of clusters. The ARI compares two partitions (i.e., modal assignments of the 410 groups to a cluster), taking on a value of 1 for complete agreement and 0 when agreement 411 does not exceed that between two random partitions. Note that it can take on negative 412 values if the agreement is less than what is expected at random. The average ARI across 413 all conditions was good (0.93), but it ranged from -0.08 to 1. Per model selection measure, 414 we also inspected the average ARI across data sets depending on whether the number of 415 clusters was under-, over-, or correctly selected (Table 3). Clearly, selecting the incorrect 416

⁶ As can be seen in Table 2, CHull never under-selects the number of clusters when K=2

model (i.e., under- or over-selection) was related to the ARI being lower. Specifically, the average ARI was below 0.89 for all measures when the selected model was incorrect, while it was above 0.97 when the selected model was correct.

Table 3

Average ARI depending on the model selection results for all model selection measures.

The standard deviation is in parentheses.

Result	AIC	AIC_3	BIC_G	BIC_N	CHull	ICL
Under	0.83 (0.19)	0.85 (0.19)	0.86 (0.18)	0.89 (0.18)	0.72 (0.24)	0.87 (0.18)
Correct	0.98 (0.06)	0.98 (0.07)	0.98 (0.07)	0.98 (0.07)	0.97 (0.09)	0.98 (0.07)
Over	0.86 (0.20)	0.85 (0.20)	0.85 (0.20)	0.87 (0.20)	0.87 (0.18)	0.85 (0.21)

20 4.3 Conclusion

Before drawing conclusions, it is important to note that, strictly speaking, there are 421 as many clusters as there are groups when $\sigma_{\beta} > 0$ (i.e., in case of within-cluster 422 differences). As MMG-SEM does not capture within-cluster differences, the model selection 423 could suggest extracting more clusters or even capturing each group as a separate cluster, 424 especially when there is enough power to find small differences. However, in this study, we 425 still assumed the true number of clusters to be K, since it is desirable to assign groups with 426 very similar regression parameters to the same cluster (see Introduction). Considering 427 every group as a separate cluster would boil back down to an MG-SEM with group-specific 428 relations and the pesky pairwise comparisons thereof. As this is what we wanted to avoid, 429 we did not include the MG-SEM model in this study. 430 In an extensive simulation study, we assessed six different model selection measures 431 for MMG-SEM. As expected, lower within-group sample sizes $(N_g = 50)$, large 432 within-cluster differences ($\sigma_{\beta} = 0.1$), more clusters (K = 4), and unbalanced cluster sizes 433 decreased the performance of all measures. Overall, the best-performing measure was the 434 CHull and the worst was the BIC_N . AIC, AIC₃, BIC_G , and ICL presented similar

449

performances with minor differences depending on specific conditions.

Considering our results, we suggest using the CHull when performing model 437 selection for MMG-SEM. Since it cannot select the minimum or maximum number of 438 clusters, we suggest also inspecting CHull's scree plot and looking for an elbow to confirm 439 the number of clusters. If no elbow is visible, the most appropriate number of clusters is 440 likely one or the maximum number evaluated. Furthermore, we recommend combining the 441 Chull with at least one of the other measures (e.g., AIC, AIC₃ or BIC_G) to validate a 442 decision (e.g., K=1 when no elbow is found for CHull and AIC suggests a one-cluster 443 model). If multiple measures contradict each other, it may help to consider the two best 444 solutions for the different measures and see which number(s) of clusters is (are) most often 445 selected. Finally, it is advisable to compare different selected solutions in terms of which 446 differences in structural relations are found (and which clustering) and how this relates to prior theories and previous research about the matter. 448

5 Discussion

When using MMG-SEM, the user must specify the appropriate number of clusters 450 for a given data set, as is the case for all clustering techniques. However, the 'true' number 451 of clusters is typically unknown when dealing with real-world data. Therefore, researchers 452 often rely on model selection measures to decide on the number of clusters. Several model 453 selection measures have been evaluated for other clustering methods, but there is no 454 clear-cut answer to which measure is the best one. Different results were found depending 455 on the clustering method, the conditions assessed, and the level at which the clustering is 456 performed (i.e., observation or group level) (Akogul & Erisoglu, 2016; De Roover et al., 457 2022; Lukočienė et al., 2010; Nylund et al., 2007). Considering the conflicting results and 458 the unique properties of MMG-SEM, such as the combination of group- and cluster-specific 459 parameters, and a clustering focused on regression parameters, prior conclusions on their 460 model selection performance cannot be generalized to MMG-SEM. Therefore, this paper aimed to find the best-performing model selection measure for MMG-SEM through an 462

extensive simulation study. In particular, we compared six model selection measures (i.e., 463 CHull, AIC, AIC₃, BIC_G, ICL, and BIC_N), and included conditions that affect the cluster's 464 separability and mimic empirically realistic conditions. In particular, the small 465 within-cluster differences resembled the small (and trivial) differences between groups that 466 will often be found in empirical research but that are ineffectual to the substantive 467 conclusions on how structural relations differ. 468 Overall, the best-performing measure was the CHull, followed by the AIC, AIC₃, 469 BIC_G , ICL, and BIC_N . While, in general, this is in line with some previous studies (e.g., 470 Bulteel et al., 2013; De Roover, 2021; De Roover et al., 2022), the clear difference in 471 performance between CHull and the other measures was a remarkable find. This difference 472 could not be explained by the fact that CHull can only select at least two clusters. CHull's 473 advantage may result from its flexibility and lack of assumptions compared to the other measures. For instance, some argue that the true model must be among the candidates for BIC to have consistent results (Vrieze, 2012), which was, strictly speaking, not always the case in the simulation study since the 'true' model was one with group-specific (instead of 477 cluster-specific) regression parameters in case of within-cluster differences. 478 The vastly inferior performance of BIC_N coincides with previous results for mixture 479 models at the group level that showed that using the number of observations N instead of 480 G as the sample size in the BIC leads to overpenalization and, thus, under-selection 481 (De Roover, 2021; De Roover et al., 2022; Lukočienė & Vermunt, 2009; Lukočienė et al., 482 2010). More surprising was the superior performance of the AIC over the BIC_G , given that 483 previous simulations have shown a slight advantage of BIC_G in latent class and mixture 484 models (De Roover, 2021; Lukočienė & Vermunt, 2009; Lukočienė et al., 2010). In other 485 studies, AIC slightly outperformed the BIC_G , however (De Roover et al., 2022). 486 It is worth mentioning that simulation-based research always comes with 487 limitations. Specifically, the results cannot be straightforwardly generalized to conditions 488

that were not assessed in the simulation. For instance, we only included data and models

489

with continuous and normally distributed items, whereas earlier simulations showed 490 different results depending on the type of indicator (Lukočienė et al., 2010). Since data in 491 social sciences commonly uses ordinal indicators and often presents non-normality (e.g., 492 skewness), it is important to extend the model selection evaluations to MMG-SEM with 493 ordinal indicators and robust estimators for non-normality. Note that the CHull could be 494 computed with measures of model fit other than log-likelihood (e.g., the distance between 495 the model-implied and observed covariance matrices) and avoid the distributional 496 assumptions that come with it. Moreover, in the Simulation Study, we focused on model 497 selection measures that are most commonly used for mixture models in social sciences, 498 overlooking other measures. For instance, the Kullback Information Criterion (Cavanaugh, 499 1999) is a promising alternative for large sample conditions (Akogul & Erisoglu, 2016); and 500 the normalized information criteria (Cohen & Berchenko, 2021) was developed for the 501 presence of missing data.

Finally, for MMG-SEM —which compares structural relations between groups using 503 clusters—selecting an appropriate number of clusters is essential for the research 504 questions. Indeed, under- or over-selecting clusters may impair the conclusions on 505 differences and similarities in the relations of interest. When selecting too few clusters, 506 important differences may be overlooked. When selecting too many clusters, one ends up 507 with an overly complex model that implies more comparisons of cluster-specific regression 508 coefficients and, thus, a higher risk of false positives. Therefore, we are happy to conclude 509 that the model selection measures assessed in this paper offer promising solutions to the 510 model selection problem for MMG-SEM, especially when combined (e.g., CHull and AIC). 511

References

```
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
513
           on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
514
   Akogul, S., & Erisoglu, M. (2016). A Comparison of Information Criteria in Clustering
515
           Based on Mixture of Multivariate Normal Distributions. Mathematical and
516
           Computational Applications, 21(3), 34. https://doi.org/10.3390/mca21030034
517
   Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering
518
           with the integrated completed likelihood. IEEE Transactions on Pattern Analysis
519
           and Machine Intelligence, 22(7), 719–725. https://doi.org/10.1109/34.865189
520
   Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons.
521
   Bozdogan, H. (1994). Mixture-Model Cluster Analysis Using Model Selection Criteria and
          a New Informational Measure of Complexity. In H. Bozdogan, S. L. Sclove,
523
           A. K. Gupta, D. Haughton, G. Kitagawa, T. Ozaki, & K. Tanabe (Eds.),
524
           Proceedings of the First US/Japan Conference on the Frontiers of Statistical
525
           Modeling: An Informational Approach (pp. 69–113). Springer Netherlands.
526
          https://doi.org/10.1007/978-94-011-0800-3_3
527
   Bulteel, K., Wilderjans, T. F., Tuerlinckx, F., & Ceulemans, E. (2013). CHull as an
528
           alternative to AIC and BIC in the context of mixtures of factor analyzers. Behavior
529
           Research Methods, 45(3), 782–791. https://doi.org/10.3758/s13428-012-0293-y
530
   Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor
531
           covariance and mean structures: The issue of partial measurement invariance.
532
           Psychological Bulletin, 105(3), 456–466.
533
          https://doi.org/10.1037/0033-2909.105.3.456
534
   Cavanaugh, J. E. (1999). A large-sample model selection criterion based on Kullback's
535
          symmetric divergence. Statistics & Probability Letters, 42(4), 333–343.
536
          https://doi.org/10.1016/S0167-7152(98)00200-4
537
```

```
Ceulemans, E., & Kiers, H. A. L. (2006). Selecting among three-mode principal component
538
          models of different types and complexities: A numerical convex hull based method.
539
           British Journal of Mathematical and Statistical Psychology, 59(1), 133–150.
540
          https://doi.org/10.1348/000711005X64817
541
   Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement
542
          Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3),
543
          464–504. https://doi.org/10.1080/10705510701301834
544
   Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of
545
          making inappropriate comparisons in cross-cultural research. Journal of Personality
546
           and Social Psychology, 95(5), 1005–1018. https://doi.org/10.1037/a0013193
547
   Cohen, N., & Berchenko, Y. (2021). Normalized Information Criteria and Model Selection
548
          in the Presence of Missing Data. Mathematics, 9(19), 2474.
          https://doi.org/10.3390/math9192474
550
   De Roover, K. (2021). Finding Clusters of Groups with Measurement Invariance:
551
           Unraveling Intercept Non-Invariance with Mixture Multigroup Factor Analysis.
552
           Structural Equation Modeling: A Multidisciplinary Journal, 28(5), 663–683.
553
          https://doi.org/10.1080/10705511.2020.1866577
554
   De Roover, K., Vermunt, J. K., & Ceulemans, E. (2022). Mixture multigroup factor
555
          analysis for unraveling factor loading noninvariance across many groups.
556
           Psychological Methods, 27(3), 281–306. https://doi.org/10.1037/met0000355
557
   Gorsuch, R. (1983). Factor Analysis (2nd). Lawrence Erlbaum.
558
   Guenole, N., & Brown, A. (2014). The consequences of ignoring measurement invariance
559
          for path coefficients in structural equation models. Frontiers in Psychology, 5.
560
          https://doi.org/10.3389/fpsyg.2014.00980
561
   Hox, J. J., Moerbeek, M., & Van De Schoot, R. (2017). Multilevel Analysis: Techniques and
562
           Applications (3rd Edition). Routledge.
563
```

```
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1),
564
           193–218. https://doi.org/10.1007/BF01908075
565
   Kim, E. S., Joo, S.-H., Lee, P., Wang, Y., & Stark, S. (2016). Measurement Invariance
566
          Testing Across Between-Level Latent Classes Using Multilevel Factor Mixture
567
           Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(6),
568
          870–887. https://doi.org/10.1080/10705511.2016.1196108
569
   Lukočienė, O., Varriale, R., & Vermunt, J. K. (2010). The Simultaneous Decision(s) about
570
           the Number of Lower- and Higher-Level Classes in Multilevel Latent Class Analysis.
571
           Sociological Methodology, 40(1), 247-283.
572
          https://doi.org/10.1111/j.1467-9531.2010.01231.x
573
   Lukočienė, O., & Vermunt, J. K. (2009). Determining the Number of Components in
574
           Mixture Models for Hierarchical Data. In A. Fink, B. Lausen, W. Seidel, &
575
           A. Ultsch (Eds.), Advances in Data Analysis, Data Handling and Business
576
           Intelligence (pp. 241–249). Springer Berlin Heidelberg.
577
          https://doi.org/10.1007/978-3-642-01044-6 22
578
   Mayerl, J., & Best, H. (2019). Attitudes and behavioral intentions to protect the
579
          environment: How consistent is the structure of environmental concern in
580
          cross-national comparison? International Journal of Sociology, 49(1), 27–52.
581
          https://doi.org/10.1080/00207659.2018.1560980
582
   McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite Mixture Models. Annual
583
           Review of Statistics and Its Application, 6(1), 355–378.
584
          https://doi.org/10.1146/annurev-statistics-031017-100325
585
   Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance.
586
           Psychometrika, 58(4), 525–543. https://doi.org/10.1007/BF02294825
587
   Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the Number of
588
           Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo
580
```

```
Simulation Study. Structural Equation Modeling: A Multidisciplinary Journal,
590
          14(4), 535–569. https://doi.org/10.1080/10705510701575396
591
   Perez Alonso, A. F., Rosseel, Y., Vermunt, J., & De Roover, K. (in press). Mixture
592
          Multigroup Structural Equation Modeling: A Novel Method for Comparing
593
          Structural Relations Across Many Groups. Psychological Methods.
594
   R Core Team. (2024). R: A Language and Environment for Statistical Computing.
595
          https://www.R-project.org/
596
   Rosseel, Y., & Loh, W. W. (2022). A structural after measurement approach to structural
597
          equation modeling. Psychological Methods. https://doi.org/10.1037/met0000503
598
   Rutkowski, L., & Svetina, D. (2014). Assessing the Hypothesis of Measurement Invariance
599
          in the Context of Large-Scale International Surveys. Educational and Psychological
600
          Measurement, 74(1), 31–57. https://doi.org/10.1177/0013164413498257
601
   Schwarz, G. (1978). Estimating the Dimension of a Model [Publisher: Institute of
602
          Mathematical Statistics. The Annals of Statistics, 6(2), 461–464.
603
          https://doi.org/10.1214/aos/1176344136
604
   van den Bergh, M., Schmittmann, V. D., & Vermunt, J. K. (2017). Building Latent Class
605
          Trees, With an Application to a Study of Social Capital. Methodology,
606
          13(Supplement 1), 13–22. https://doi.org/10.1027/1614-2241/a000128
607
   Vandenberg, R. J., & Lance, C. E. (2000). A Review and Synthesis of the Measurement
608
          Invariance Literature: Suggestions, Practices, and Recommendations for
609
          Organizational Research. Organizational Research Methods, 3(1), 4-70.
610
          https://doi.org/10.1177/109442810031002
611
   Vermunt, J. K., & Magidson, J. (2005, October). Structural Equation Modeling: Mixture
612
          Models. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of Statistics in
613
          Behavioral Science. John Wiley & Sons, Ltd.
614
          https://doi.org/10.1002/0470013192.bsa600
615
```

- Vermunt, J. K., & Magidson, J. (2016). Technical Guide for Latent GOLD 5.1: Basic,

 Advanced, and Syntax. Statistical Innovations Inc.
- Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the
 differences between the Akaike information criterion (AIC) and the Bayesian
 information criterion (BIC). Psychological Methods, 17(2), 228–243.
- https://doi.org/10.1037/a0027127