Architekturen und Entwurf von Rechnersystemen Besprechung Theorieblatt 3

Wintersemester 2022/2023

Yannick Lavan

Fachgebiet Eingebettete Systeme und ihre Anwendungen

Theorieübungsblatt 3

Theorieübungsblatt 3 - Überblick

- Fragen zum Zyng 7000 rSoC
- Spezifika der verschiedenen Komponenten auf dem SoC
- Fragen zu Bauteilen des FPGA
- Grundsätzliche Fragen zum Verständnis der Funktionsweise von SoC und FPGA

Generic Interrupt Controller

- Generic Interrupt Controller
- Organisiert Interrupt Signale zwischen PS und PL und Interrupts zw. ARM Cores

- Generic Interrupt Controller
- Organisiert Interrupt Signale zwischen PS und PL und Interrupts zw. ARM Cores
- Private Interrupts pro CPU

- Generic Interrupt Controller
- Organisiert Interrupt Signale zwischen PS und PL und Interrupts zw. ARM Cores
- Private Interrupts pro CPU
- Software-generated Interrupts zwischen CPUs

- Generic Interrupt Controller
- Organisiert Interrupt Signale zwischen PS und PL und Interrupts zw. ARM Cores
- Private Interrupts pro CPU
- Software-generated Interrupts zwischen CPUs
- Geteilte Interrupts an eine oder beide CPUs

Direct Memory Access Controller

- Direct Memory Access Controller
- Speichertransfers zwischen PL und Systemspeicher

- Direct Memory Access Controller
- Speichertransfers zwischen PL und Systemspeicher
- Mehrere parallele Kanäle

- Direct Memory Access Controller
- Speichertransfers zwischen PL und Systemspeicher
- Mehrere parallele Kanäle
- Transfers unabhängig von CPUs ⇒ CPUs können unabhängig weiterrechnen

On-Chip Memory

- On-Chip Memory
- 256 kB RAM und 128 kB ROM

- On-Chip Memory
- 256 kB RAM und 128 kB ROM
- Zwei 64-Bit AXI Slave Interfaces

- On-Chip Memory
- 256 kB RAM und 128 kB ROM
- Zwei 64-Bit AXI Slave Interfaces
 - Einer für CPU Zugriffe

- On-Chip Memory
- 256 kB RAM und 128 kB ROM
- Zwei 64-Bit AXI Slave Interfaces
 - Einer für CPU Zugriffe
 - Der andere von allen Mastern geteilt

- On-Chip Memory
- 256 kB RAM und 128 kB ROM
- Zwei 64-Bit AXI Slave Interfaces
 - Einer für CPU Zugriffe
 - Der andere von allen Mastern geteilt
- Niedrige eher konstante Latenz

Snoop Control Unit

- Snoop Control Unit
- Cache Kohärenz zwischen Prozessor Caches und L2-Cache

Für welche Zwecke können DSPs genutzt werden?

 Arithmetische Operationen wie Add, Mul, MAC

Für welche Zwecke können DSPs genutzt werden?

- Arithmetische Operationen wie Add, Mul, MAC
- Begrenzt auf FPGA vorhanden

Für welche Zwecke können DSPs genutzt werden?

- Arithmetische Operationen wie Add, Mul, MAC
- Begrenzt auf FPGA vorhanden
- Verwendung von DSPs spart CLBs

Unterscheiden Sie zwischen Soft-Core und Hard-Core Prozessoren.

Unterscheiden Sie zwischen Soft-Core und Hard-Core Prozessoren.

Unterscheiden Sie zwischen Soft-Core und Hard-Core Prozessoren.

Beschleunigungssystem für Negativ-Bilder-Berechnung

- Beschleunigungssystem für Negativ-Bilder-Berechnung
- Aufteilung auf Komponenten von Zynq7000

- Beschleunigungssystem für Negativ-Bilder-Berechnung
- Aufteilung auf Komponenten von Zynq7000
- Ablauf:
 - 1. Benutzereingabe über CLI
 - 2. Bild von Speicher lesen
 - 3. Negativberechnung
 - 4. Bild in Speicher schreiben

- Beschleunigungssystem für Negativ-Bilder-Berechnung
- Aufteilung auf Komponenten von Zynq7000
- Ablauf:
 - 1. Benutzereingabe über CLI
 - 2. Bild von Speicher lesen
 - 3. Negativberechnung
 - 4. Bild in Speicher schreiben
- Erste Frage: Hardware-Beschleunigung sinnvoll?

- Beschleunigungssystem für Negativ-Bilder-Berechnung
- Aufteilung auf Komponenten von Zynq7000
- Ablauf:
 - 1. Benutzereingabe über CLI
 - 2. Bild von Speicher lesen
 - 3. Negativberechnung
 - 4. Bild in Speicher schreiben
- Erste Frage: Hardware-Beschleunigung sinnvoll?
- Vielleicht reicht NEON aus → Vorhandene Libraries testen

Nutzereingaben in PS

- Nutzereingaben in PS
- Bilder in Speicher laden in PS
- Wesentlich einfacher in Software zu realisieren
- Normalerweise nicht Performanz-Problemstelle

- Nutzereingaben in PS
- Bilder in Speicher laden in PS
- Wesentlich einfacher in Software zu realisieren
- Normalerweise nicht Performanz-Problemstelle
- $lue{}$ Bilder für Beschleuniger in DDR ightarrow HP-Ports

- Nutzereingaben in PS
- Bilder in Speicher laden in PS
- Wesentlich einfacher in Software zu realisieren
- Normalerweise nicht Performanz-Problemstelle
- $lue{}$ Bilder für Beschleuniger in DDR ightarrow HP-Ports
- Konfiguration über GP-Ports

- Nutzereingaben in PS
- Bilder in Speicher laden in PS
- Wesentlich einfacher in Software zu realisieren
- Normalerweise nicht Performanz-Problemstelle
- $lue{}$ Bilder für Beschleuniger in DDR ightarrow HP-Ports
- Konfiguration über GP-Ports
- lacksquare Bearbeitung beendet ightarrow Interrupt

- Nutzereingaben in PS
- Bilder in Speicher laden in PS
- Wesentlich einfacher in Software zu realisieren
- Normalerweise nicht Performanz-Problemstelle
- Bilder für Beschleuniger in DDR \rightarrow HP-Ports
- Konfiguration über GP-Ports
- lacksquare Bearbeitung beendet ightarrow Interrupt
- Im Detail noch viele Probleme...
- z.B. Zugriff auf Process Virtual Memory?

Fragen zur Vorlesung oder zur Übung?

