1

EE25BTECH11012-BEERAM MADHURI

Question:

The linear operation $L(\mathbf{x})$ is defined by the cross product $L(\mathbf{x}) = \mathbf{b} \times \mathbf{x}$, where $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ are three dimensional vectors. The 3×3 matrix \mathbf{M} of this operation satisfies $L(\mathbf{x}) = \mathbf{M}\mathbf{x}$. Then the eigenvalues of \mathbf{M} are

(a)
$$0, +1, -1$$

(c)
$$i, -i, 1$$

(b)
$$1, -1, 1$$

(d)
$$i, -i, 0$$

Solution:

Point	Vector
b	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
X	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

TABLE 4: Variables used

Given,

$$L(x) = MX (4.1)$$

$$L(x) = b \times X \tag{4.2}$$

Cross product can be written as skew symmetric matrix.

$$b \times X = \begin{pmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{pmatrix} X$$

$$= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} X$$
(4.3)

$$= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} X \tag{4.4}$$

$$\therefore M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \tag{4.5}$$

(4.6)

finding eigenvalues :-

$$|M - \lambda I| = 0 \tag{4.7}$$

$$\begin{pmatrix} -\lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & -\lambda \end{pmatrix} = 0 \tag{4.8}$$

$$-\lambda^3 - \lambda = 0 \tag{4.9}$$

$$-\lambda(\lambda^2 + 1) = 0 \tag{4.10}$$

$$\lambda_1 = 0 \tag{4.11}$$

$$\lambda_2 = i \tag{4.12}$$

$$\lambda_3 = -i \tag{4.13}$$

Hence Option d is correct.

Fig. 4.1: 12.130