Association Testing Draft: pheno_qt1, pheno_qt2

H3Agwas Association Testing Pipeline

Tue Jul 12 09:15:27 SAST 2022

1 Introduction

This report gives a brief overview of the run of the association testing pipeline.

- You were testing for the following phenotypes pheno_qt1, pheno_qt2
- You were using the following covariates []

2 Principal Component Analysis of Participants

Figure 1 shows a PCA of the participants. This should be examined for possible structure.

Figure 1 PCA of participants

A summary of the data for pheno_qt1 can be found in the Table 1, transformed using different transforms. A histogram is found in Figure 2.

Table 1 Overview of phenotype pheno_qt1 distribution

Data	Count	Min	Max	Ave	StdDev
no transform	550	-5.0158	E490615	-1.07201	E-1 01 98
log transform	292	-2.6090	E+30002	2.25	1.10
square root transform	279	9.7775	E -702 4	3.44	1.49
cube root transform	550	-3.6879	E-3067	1.33921	E- 02 35

Figure 2 Histogram of pheno_qt1 values under different transforms [File is B050-pheno-qt1.pdf]

A summary of the data for pheno_qt2 can be found in the Table 2, transformed using different transforms. A histogram is found in Figure 3.

Table 2 Overview of phenotype pheno_qt2 distribution

Data	Count	Min	Max	Ave	StdDev
no transform	550	-4.8290	E50011	-2.1362	E-4 Ø 172
log transform	297	-3.7771	E+30003	2.21	1.13
square root transform	286	0.16	7.09	3.35	1.48
cube root transform	550	-3.6416	E-B0609	3.3940	E- 02 34

Figure 3 Histogram of pheno_qt2 values under different transforms [File is B050-pheno-qt2.pdf]

3 PLINK Results for phenotype pheno-qt1, test assoc

The raw results can be found in the **assoc** directory. The QQ plot can be found in Figure 4, and the Manhatten plot in Figure 5.

Figure 4 QQ plot for PLINK testing - pheno-qt1, test assoc - pheno_qt1.qassoc

Figure 5 PLINK testing: Manhatten plot for - pheno-qt1, test assoc - pheno_qt1.qassoc

4 PLINK Results for phenotype pheno-qt1, test linear

The raw results can be found in the **linear** directory. The QQ plot can be found in Figure 6, and the Manhatten plot in Figure 7.

Figure 6 QQ plot for PLINK testing - pheno-qt1, test linear - pheno_qt1.assoc.linear

Figure 7 PLINK testing: Manhatten plot for - pheno-qt1, test linear - pheno_qt1.assoc.linear

5 PLINK Results for phenotype pheno-qt2, test assoc

The raw results can be found in the **assoc** directory. The QQ plot can be found in Figure 8, and the Manhatten plot in Figure 9.

Figure 8 QQ plot for PLINK testing - pheno-qt2, test assoc - pheno_qt2.qassoc

Figure 9 PLINK testing: Manhatten plot for - pheno-qt2, test assoc - pheno_qt2.qassoc

6 PLINK Results for phenotype pheno-qt2, test linear

The raw results can be found in the **linear** directory. The QQ plot can be found in Figure 10, and the Manhatten plot in Figure 11.

Figure 10 QQ plot for PLINK testing - pheno-qt2, test linear - pheno_qt2.assoc.linear

Figure 11 PLINK testing: Manhatten plot for - pheno-qt2, test linear - pheno_qt2.assoc.linear

Table 3 The top 10 SNPs found by GEMMA analysis of phenotype pheno-qt1

Chr	SNP	Pos	Beta	Р
10	10:112678657:G:T	112678657	-15.7000	1.974E-48
1	1:117532790:C:T	117532790	-14.9724	1.776E-45
17	17:78757626:A:G	78757626	12.3403	3.100E-21
12	12:31367856:A:C	31367856	9.4800	7.856E-17
2	2:45832137:A:G	45832137	13.3723	6.954E-15
17	17:78727734:T:C	78727734	10.8048	4.522E-14
17	17:78728813:G:A	78728813	10.6729	8.474E-14
17	17:78716122:G:A	78716122	10.3920	2.107E-13
17	17:78716417:A:G	78716417	10.3920	2.107E-13
17	17:78714793:C:T	78714793	10.3920	2.107E-13

7 Result of Gemma analysis: phenotype pheno-qt1

All the results from the GEMMA analysis can be found in the **gemma** directory. The result of the GEMMA analysis is shown for phentoytype pheno-qt1. The file with association statistics is found in imput_data-pheno-qt1.assoc.txt. The top 10 results are shown in Table 3: The Manhatten plot can be found in Figure 12. The corresponding QQ-plot can be found in Figure 13.

Figure 12 Gemma testing: Manhatten plot for phenotype pheno-qt1

Figure 13 Gemma testing: QQ-plot for phenotype pheno-qt1

Table 4 The top 10 SNPs found by GEMMA analysis of phenotype pheno-qt2

Chr	SNP	Pos	Beta	Р
1	1:117532790:C:T	117532790	-14.9551	3.122E-46
10	10:112678657:G:T	112678657	-15.1765	1.732E-45
17	17:78757626:A:G	78757626	12.2282	3.115E-21
12	12:31367856:A:C	31367856	9.5014	3.502E-17
2	2:45832137:A:G	45832137	13.5996	1.276E-15
17	17:78727734:T:C	78727734	10.8065	2.504E-14
17	17:78728813:G:A	78728813	10.6795	4.655E-14
17	17:78716122:G:A	78716122	10.3850	1.273E-13
17	17:78716417:A:G	78716417	10.3850	1.273E-13
17	17:78714793:C:T	78714793	10.3850	1.273E-13

8 Result of Gemma analysis: phenotype pheno-qt2

All the results from the GEMMA analysis can be found in the **gemma** directory. The result of the GEMMA analysis is shown for phentoytype **pheno-qt2**. The file with association statistics is found in **imput_data-pheno-qt2.assoc.txt**. The top 10 results are shown in Table 4: The Manhatten plot can be found in Figure 14. The corresponding QQ-plot can be found in Figure 15.

Figure 14 Gemma testing: Manhatten plot for phenotype pheno-qt2

Figure 15 Gemma testing: QQ-plot for phenotype pheno-qt2

Table 5 Docker Images Used			
Nextflow process	Docker Image		
default	quay.io/h3abionet_org/py3plink		

9 Technical details

The analysis and report was produced by the h3aGWAS pipeline (http://github.com/h3abionet/h3agwas) produced by the Pan-African Bioinformatics Network for H3Africa (http://www.h3abionet.org).

The following tools were used:

- 22.04.3 [Di Tommaso et al, 2017]
- A local copy of the workflow was used
- The command line below was called [NB: if the command line is long, the linebreak may break oddly after a hyphen or dash so take care.]

```
nextflow run /home/jeantristan/Travail/git/h3agwas/assoc --input_dir data/imputed/ --
input_pat imput_data --data data/pheno/pheno_test.all --pheno pheno_qt1,pheno_qt2
--output_dir assoc --output assoc --gemma 1 --assoc 1 --sample_snps_rel 1 --linear
1 -profile slurmSingularity --bgen data/imputed/bgen/out.bgen --bgen_sample data/
imputed/bgen/out.sample
```

- The profile slurmSingularity was used: the docker images used are found in Table 5
- The full configuration can be found in the appendix.

A Configuration

The Nextflow configuration files are shown below.

```
A.1
       config
singularity.cacheDir = "/home/jeantristan/.singularity/"
A.2
       nextflow
plugins {
 id 'nf-azure'
py3Image = "quay.io/h3abionet_org/py3plink"
gemmaImage="quay.io/h3abionet_org/py3plink"
boltImage="quay.io/h3abionet_org/py3fastlmm"
latexImage="quay.io/h3abionet_org/h3agwas-texlive"
//py3saige="quay.io/h3abionet_org/py3saige"
py3saige="wzhou88/saige:1.1.2"
gctaImage="quay.io/h3abionet_org/gcta"
MetaAnImage="quay.io/h3abionet_org/py3metagwas"
fastlmmImage="quay.io/h3abionet_org/py3fastlmm"
rImage="quay.io/h3abionet_org/py3rproject"
py3utils="quay.io/h3abionet_org/py3utils"
swarmPort = '2376'
queue = 'batch'
manifest {
    homePage = 'http://github.com/h3abionet/h3agwas'
    description = 'GWAS Pipeline for H3Africa'
    mainScript = 'main.nf'
}
aws {
accessKey='******
secretKey='******
    region
             ='eu-west-1'
}
cloud {
    imageId = "ami-710b9108"
                                  // specify your AMI id here
    instanceType = "m4.xlarge"
    subnetId = "null"
    sharedStorageId = "null"
    sharedStorageMount = "/mnt/shared"
   bootStorageSize = "20GB"
                               // Size of disk for images spawned
        instanceStorageMount = "" // Set a common mount point for images
        instanceStorageDevice = "" // Set a common block device for images
    autoscale {
        enabled = true
        maxInstances = 1
        terminateWhenIdle = true
params {
    // Directories
                            = "/$PWD"
    work_dir
    input_dir
```

```
output_dir
                         = "${params.work_dir}/output"
                         = "${params.work_dir}/scripts"
   scripts
                         = "out"
   output
                      = 95
   max_forks
   // Data
                      = ""
   input_pat
   high_ld_regions_fname = ""
   sexinfo_available = true
   cut_het_high = 0.343
                    = 0.15
= "0.05"
   cut_het_low
   cut_diff_miss
   cut_maf
                       = "0.01"
                       = "0.02"
   cut_mind
   cut_geno
                       = 0.01
   phenotype = 0
   pheno_col = "all"
   batch = 0
   batch_col = 0
                      = 0 // How many individuals in each genotype report O=ALL
   samplesize
                      =""
   strandreport
                      = ""
   manifest
                      = 0 // or (\w+)-DNA_(\w+)_.* or .*_(.*)
   idpat
   // Needed for topbottom.nf -- uncomment and put in details
   // reference = ""
                     = ""
   // output_align
   // samplesheet
                     = ""
   // chipdescription = ""
accessKey='******
secretKey='******
   region
                      = "eu-west-1"
                      = "ami-710b9108"
   AMI
                      = "m4.xlarge"
   instanceType
                      = "20GB"
   bootStorageSize
                      = "5"
   maxInstances
                     = "750MB"
   plink_mem_req
   other_mem_req
                      = "750MB"
                      = '1000h'
   big_time
   sharedStorageMount = "/mnt/shared"
                      = 4
   max_plink_cores
profiles {
   // For execution on a local machine, no containerization. -- Default
   standard {
       process.executor = 'local'
   }
      process.executor = 'slurm'
      process.queue = queue
```

}

```
}
awsbatch {
    process.executor = "awsbatch"
     aws.region ='us-east-1'
     aws.uploadStorageClass = 'ONEZONE_IA'
    process.queue = 'h3a'
}
// Execute pipeline with Docker locally
docker {
    process.executor = 'local'
                     = true
    docker.remove
    docker.runOptions = '--rm'
    docker.registry = 'quay.io'
    docker.enabled
                      = true
    docker.temp
                      = 'auto'
    docker.fixOwnership= true
    docker.process.executor = 'local'
}
// Execute pipeline with Docker Swarm setup
dockerSwarm {
    docker.remove
                     = true
    docker.runOptions = '--rm'
                      = 'quay.io'
    docker.registry
    docker.enabled
                       = true
    docker.temp
                      = 'auto'
    docker.fixOwnership= true
    docker.process.executor = 'local'
    docker.engineOptions = "-H :$swarmPort"
}
// For execution on a PBS scheduler, no containerization.
pbs {
    process.executor = 'pbs'
    process.queue = queue
}
// For execution on a PBS scheduler with containerization.
pbsDocker {
    process.executor = 'pbs'
                     = true
    docker.remove
    docker.runOptions = '--rm'
                    = 'quay.io'
    docker.registry
    docker.enabled
                     = true
    docker.temp
                      = 'auto'
    docker.fixOwnership= true
}
// For execution on a SLURM scheduler, no containerization.
slurm {
    process.executor = 'slurm'
    process.queue = queue
}
// For execution on a PBS scheduler with containerisation.
slurmDocker {
```

```
process.executor = 'slurm'
     docker.remove
                        = true
     docker.runOptions = '--rm'
     docker.registry = 'quay.io'
     docker.enabled = true
docker.temp = 'auto'
     docker.fixOwnership= true
  }
  singularity {
     singularity.cacheDir = "${HOME}/.singularity"
      singularity.autoMounts = true
     singularity.enabled = true
     process.executor = 'local'
  }
  // For execution on a SLURM scheduler with singularity
  slurmSingularity {
     singularity.cacheDir = "${HOME}/.singularity"
     process.executor = 'slurm'
     singularity.autoMounts = true
     singularity.enabled = true
     singularity.runOption = "--cleanenv"
     process.queue = queue
 }
  slurmDocker {
     process.executor = 'slurm'
     process.queue = queue
     docker.remove
                    = true
     docker.runOptions = '--rm'
     docker.registry = 'quay.io'
     docker.enabled = true
                       = 'auto'
     docker.temp
     docker.fixOwnership= true
  // For execution on a PBS scheduler, no containerization.
 pbs {
     process.executor = 'pbs'
     process.queue = queue
  }
  // For execution on a PBS scheduler with containerization.
 pbsDocker {
     process.executor = 'pbs'
     docker.remove
                      = true
     docker.runOptions = '--rm'
     docker.registry = 'quay.io'
     docker.enabled
                        = true
                        = 'auto'
     docker.temp
     docker.fixOwnership= true
}
// For execution on Azure Batch
azurebatch {
     process.executor = 'azurebatch'
}
```

}

A.2 nextflow A CONFIGURATION

```
process {
    container = py3Image
    withLabel:bigMem {
     memory = '8GB'
    withLabel: gemma {
          container = gemmaImage
    withLabel: latex {
         container = latexImage
    }
    withLabel: gcta{
         container = gctaImage
    withLabel: metaanalyse {
          container = MetaAnImage
//
     withLabel: py2fast {
//
            container = py2fastImage
//
     }
    withLabel: bolt {
         container = boltImage
    withLabel: R{
         container = rImage
    }
    withLabel : fastlmm{
         container = fastlmmImage
    }
    withLabel : saige{
         container = py3saige
    }
    withLabel : utils{
         container = py3utils
    }
}
//timeline {
     enabled=true
      file = "nextflow_reports/timeline.html"
//
//}
//report {
// enabled = true
//
      file = "nextflow_reports/report.html"
//}
```