

Annual Water Data Report

Home Mapper Documentation Related Information Contact Water home

Documentation

Downstream order and station number

Numbering system for wells and miscellaneous sites

Explanation of stage- and water-discharge records

Explanation of precipitation records

Explanation of water-quality records

Parameter codes

Medium codes

Surface-water-quality records

Explanation of ground-water level records

Ground-water-quality data

Definition of terms

Downstream order and station number

Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two mainstream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 09004100, which appears just to the left of the station name, includes a 2-digit part number "09" plus the 6-digit (or 8-digit) downstream order number "004100." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8- digit numbers.

Numbering system for wells and miscellaneous sites

The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (see fig. 1). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

Figure 1. Example of system for numbering wells and miscellaneous sites (latitude and longitude).

In addition to the well number that is based on the latitude and longitude for each well, another well number may be provided which in many States is based on the Public Land Survey System, a set of rectangular surveys that is used to identify land parcels. This well number is familiar to the water users in, for example, Utah and shows the location of the well by quadrant, township, range section, and position within the section (see fig. 2).

Figure 2. Example of system for numbering wells and miscellaneous sites (township and range).

Some Water Science Centers also identify each ground-water site by a local number that consists of an abbreviation of the county name as well as the township, range and section, and a four-digit number assigned to the well. Naming conventions specific to an individual Water Science Center can be obtained locally from each USGS Water Science Center.

Explanation of stage- and water-discharge records

Data Collection and Computation

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, <u>USGS Water- Supply Paper 2175</u>, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1

through A19 and Book 8, Chapters A2 and B2, which may be accessed from http://water.usgs.gov/
pubs/twri/. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standardization (ISO).

For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors that are based on individual discharge measurements and notes by engineers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shifting-control method.

The stage-discharge relation at some stream-gaging stations is affected by backwater from reservoirs, tributary streams, or other sources. Such an occurrence necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage at some distance from the base gage. An index velocity is measured using ultrasonic or acoustic instruments at some stream-gaging stations, and this index velocity is used to calculate an average velocity for the flow in the stream. This average velocity along with a stage-area relation is then used to calculate average discharge. At some stations, the stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

Data Presentation

The records published for each continuous record surface-water discharge station (stream-gaging station) consist of five parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; (4) a summary statistics table that includes

statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration; and (5) a hydrograph of discharge.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description.

LOCATION.-Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.-Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.-This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the present station.

REVISED RECORDS.-If a critical error in a published site data sheet is discovered, a revision is included (where?) in the next publishing cycle following discovery of the error.

GAGE.-The type of gage in current use, the datum of the current gage referred to a standard datum, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.-All periods of estimated daily discharge either will be identified by date in this paragraph of the station description for water discharge stations or flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir.

COOPERATION.-Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.-Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.

REVISIONS.-Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based national data system, NWISWeb (http://water.usgs.gov/nwis/nwis). Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the USGS Water Science Center in the state where the station is located to determine if the published records were revised after the station was discontinued.

If, however, the data for a discontinued station were obtained by computer retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given.

Peak Discharge Greater than Base Discharge

Tables of peak discharge above base discharge are included for some stations where secondary instantaneous peak discharge data are used in flood-frequency studies of highway and bridge design, flood-control structures, and other flood related projects. The base discharge value is selected so an average of three peaks a year will be reported. This base discharge value has a recurrence interval of approximately 1.1 years or a 91-percent chance of exceedence in any 1 year.

Data Table of Daily Mean Values

The daily table of discharge records for streamgaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in inches (line headed IN); or in acrefeet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS __-__, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, WATER YEARS __-__, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the

manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin.

The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table.

ANNUAL TOTAL.-The sum of the daily mean values of discharge for the year.

ANNUAL MEAN.-The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period.

HIGHEST ANNUAL MEAN.-The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.-The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.-The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.-The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.-The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic.

MAXIMUM PEAK FLOW.-The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.

MAXIMUM PEAK STAGE.-The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.-The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.-Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.-The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.-The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.-The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first table lists annual maximum stage and discharge at crest-stage stations, and the second table lists discharge measurements at lowflow partial-record stations. The tables of partialrecord stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are often made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for a special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e- Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to the nearest tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to three significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Records Available

Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gage-height records, and rating tables is available from the USGS Water Science Center. Also, most streamgaging station records are available in computer usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the USGS Water Science Center in the state where the station is located.

Explanation of precipitation records

Data Collection and Computation

Rainfall data generally are collected using electronic data loggers that measure the rainfall in 0.01-inch increments every 15 minutes using either a tipping-bucket rain gage or a collection well gage. Twenty-four hour rainfall totals are tabulated and presented. A 24-hour period extends from just past midnight of the previous day to midnight of the current day. Snowfall-affected data can result during cold weather when snow fills the rain-gage funnel and then melts as temperatures rise. Snowfall-affected data are subject to errors. Missing values are indicated by this symbol "---" in the table.

Data Presentation

Precipitation records collected at surface-water gaging stations are identified with the same station number and name as the stream-gaging station. Where a surface-water daily-record station is not available, the precipitation record is published with its own name and latitude-longitude identification number.

Information pertinent to the history of a precipitation station is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, period of record, and general remarks. The following information is provided with each precipitation station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.-See Data Presentation in the EXPLANATION OF STAGE- AND WATERDISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.-See Data Presentation in the EXPLANATION OF STAGE- AND WATERDISCHARGE RECORDS section of this report (same comments apply).

INSTRUMENTATION.-Information on the type of rainfall collection system is given.

REMARKS.-Remarks provide added information pertinent to the collection, analysis, or computation of records.

Explanation of water-quality records

Collection and Examination of Data Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations. The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water Analysis

Most of the methods used for collecting and analyzing water samples are described in the TWRIs, which may be accessed from http://water.usgs.gov/pubs/twri/.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary considerably with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record.

Parameter Codes

See link.

Medium Codes

See link.

Surface-water-quality records

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data are useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuous-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between continuous records as used in this report and continuous recordings that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report may be published as a USGS Annual Scientific Investigations Report by State, and may be accessed from http://pubs.usgs.gov, or the Related Information and Publications page of this Web Site.

Accuracy of the Records

One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded before any shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs

significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. Most of the methods used for collecting and analyzing water samples are described in the TWRIs, which may be accessed from http://water.usgs.gov/pubs/twri/. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS Water Science Center.

Rating the accuracy of continuous water-quality records

[≤, less than or equal to; ±, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured field		Ratings of accuracy (Based on combined fouling and calibration drift corrections applied to the record)										
parameter	Excellent	Good	Fair	Poor								
Water temperature	≤ ± 0.2 °C	> ± 0.2 - 0.5 °C	> ± 0.5 - 0.8 °C	> ± 0.8 °C								
Specific conductance	≤ ± 3%	> ± 3 - 10%	> ± 10 - 15%	> ± 15%								
Dissolved oxygen	± 5%, whichever is		> ± 0.5 - 0.8 mg/L or > ± 10 - 15%, whichever is greater	> ± 0.8 mg/L or > ± 15%, whichever is greater								
рН	≤ ± 0.2 units	> ± 0.2 - 0.5 units	> ± 0.5 - 0.8 units	> ± 0.8 units								
Turbidity	units or $\leq \pm 5\%$,	units or $> \pm 5 - 10\%$,	> ± 1.0 - 1.5 turbidity units or $>$ ± 10 - 15%, whichever is greater	·								

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same

time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water discharge-measurements are on file in the USGS Water Science Center in the State where the station is located.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration are computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. The TWRI publications may be accessed from http://water.usgs.gov/pubs/twri/. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.-See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE

RECORDS section of this report (same comments apply).

DRAINAGE AREA.-See Data Presentation information in the EXPLANATION OF STAGEAND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.-This indicates the time periods for which published water-quality records for the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.-Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.-Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.-Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here. EXTREMES.-Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.-Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based national data system, NWISWeb (http://waterdata.usgs.gov/nwis). Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent updates. Updates to the NWISWeb are made on an annual basis.

The surface-water-quality records for partialrecord stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this section:

Printed Output	Remark
E	Value is estimated.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
М	Presence of material verified, but not quantified.
N	Presumptive evidence of presence of material.
U	Material specifically analyzed for, but not detected.
Α	Value is an average.
V	Analyte was detected in both the environmental sample and the associated blanks.
S	Most probable value.

Water-Quality Control Data

The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LTMDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a nondetection for

a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as less than LRL for samples in which the analyte either was not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code.

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by a USGS Water Science Center are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the USGS Water Science Center in the State where the Station is located.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples potentially collected by USGS Water Science Centers are:

Field blank-A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank-A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank-A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank-A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank-A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank-A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank-A blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent samples-A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers.

Sequential samples-A type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample-A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Explanation of ground-water level records

Generally, only ground-water-level data from selected wells with continuous recorders from a basic network of observation wells are published in this report. This basic network contains observation wells located so that the most significant data are obtained from the fewest wells in the most important aquifers.

Site Identification Numbers

Each well is identified by means of (1) a 15- digit number that is based on latitude and longitude and (2) a local number that is produced for local needs. See NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES in this report for a detailed explanation.

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures; hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Most methods for collecting and analyzing water samples are described in the TWRIs referred to in the Onsite Measurements and Sample Collection and the Laboratory Measurements sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1 through A9. The TWRI publications may be accessed from http://water.usgs.gov/pubs/twri/. The values in this report represent water-quality conditions at the time of sampling, as much as possible, and that are consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. Trained personnel collected all samples. The wells sampled were pumped long enough to ensure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the

elevation of the land-surface datum above sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth of water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Data Presentation

Water-level data are presented in alphabetical order by county. The primary identification number for a given well is the 15-digit site identification number that appears in the upper left corner of the table. The secondary identification number is the local or county well number. Well locations are shown and each well is identified by its local well or county well number on a map in the local Water Science Center's Annual Scientific Investigation Report by State, and may be accessed from. . .

Each well record consists of three parts: the well description, the data table of water levels observed during the water year, and, for most wells, a hydrograph following the data table. Well descriptions are presented in the headings preceding the tabular data. The following comments clarify information presented in these various headings.

LOCATION.-This paragraph follows the well-identification number and reports the hydrologic-unit number and a geographic point of reference. Latitudes and longitudes used in this report are reported as North American Datum of 1927 unless otherwise specified.

AQUIFER-. This entry designates by name and geologic age the aquifer that the well taps.

WELL CHARACTERISTICS-. This entry describes the well in terms of depth, casing diameter and depth or screened interval, method of construction, use, and changes since construction.

INSTRUMENTATION-. This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on continuous, monthly, or some other frequency of measurement.

DATUM-.This entry describes both the measuring point and the land-surface elevation at the well. The altitude of the land-surface datum is described in feet above the altitude datum; it is reported with a precision depending on the method of determination. The measuring point is described physically (such as top of casing, top of instrument shelf, and so forth), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD 29); it is reported with a precision depending on the method of determination.

REMARKS-. This entry describes factors that may affect the water level in a well or the measurement of the water level, when various methods of measurement were begun, and the network (climatic, terra ne, local, or areal effects) or the special project to which the well belongs.

PERIOD OF RECORD.-This entry indicates the time period for which records are published for the well, the month and year at the start of publication of water-level records by the USGS, and the words "to current year" if the records are to be continued into the following year. Time periods for which water-level records are available, but are not published by the USGS, may be noted.

EXTREMES FOR PERIOD OF RECORD.-This entry contains the highest and lowest instantaneously recorded or measured water levels of the period of published record, with respect to land-surface datum or sea level, and the dates of occurrence.

Water-Level Tables

A table of water levels follows the well description for each well. Water-level measurements in this report are given in feet with reference to either sea level or land-surface datum (Isd). Missing records are indicated by dashes in place of the water-level value.

For wells not equipped with recorders, water-level measurements were obtained periodically by steel or electric tape. Tables of periodic water-level measurements in these wells show the date of measurement and the measured water-level value.

Hydrographs

Hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, current water year and, when appropriate, period-of-record hydrographs are shown.

Hydrographs that display periodic water-level measurements show points that may be connected with a dashed line from one measurement to the next. Hydrographs that display recorder data show a solid line representing the mean water level recorded for each day. Missing data are indicated by a blank space or break in a hydrograph. Missing data may occur as a result of recorder malfunctions, battery failures, or mechanical problems related to the response of the recorder's float mechanism to water-level fluctuations in a well.

Ground-water-quality data

Data Collection and Computation

The ground-water-quality data in this report were obtained as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some wells within a county but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Most methods for collecting and analyzing water samples are described in the TWRIs, which may be accessed from http://water.usgs.gov/pubs/twri/. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in TWRI, Book 1, Chapter D2; Book 5, Chapters A1, A3, and A4; and Book 9, Chapters A1-A6. Also, detailed information on collecting, treating, and shipping samples may be obtained from the local USGS Water Science Center.

Laboratory Measurements

Analysis for sulfide and measurement of alkalinity, pH, water temperature, specific conductance, and dissolved oxygen are performed onsite. All other sample analyses are performed at the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used by the USGS laboratory are given in TWRI, Book 1, Chapter D2 and Book 5, Chapters A1, A3, and A4, which may be accessed from http://water.usgs.gov/pubs/twri/.

USGS Home Water Resources Biology Geography Geology Geospatial

U.S. Department of the Interior | U.S. Geological Survey

URL: http://wdr.water.usgs.gov/wy2005/documentation.html

Questions about sites/data should be directed to Water Webserver Team

Page Contact Information: Water Data Report Team

Page Last Modified: 08/31/2012 15:58:44

17 of 17

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°07'33", long 103°54'41" referenced to North American Datum of 1927, in NE ¼ NE ¼ sec.20, T.22 S., R.58 W., Otero County, Hydrologic Unit 11020005, on right bank at Catlin Canal flume gage, 2.2 mi downstream from diversion dam for Catlin Canal, 2.3 mi downstream from Apishapa River, and 6.0 mi east of Fowler.

DRAINAGE AREA.--10,901 mi², of which 54 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1964 to current year. Statistical summary computed for 1975 to current year, subsequent to completion of Pueblo Reservoir.

GAGE.--Water-stage recorder with satellite telemetry on river; water-stage recorder with satellite telemetry and Parshall flume on Catlin Canal. Datum of gage on river is 4,245.92 ft and on canal is 4,257.87 ft above NGVD of 1929. Prior to May 13, 1971, gage on river at site 2.2 mi upstream at datum 24.08 ft higher, and gage on canal at site 1.7 mi upstream at datum 3.26 ft higher.

REMARKS.--Records good except for estimated daily discharges, which are poor. Discharge computed by combining discharge of river downstream from canal with that of Catlin Canal. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions, diversions for irrigation and municipal use, ground-water withdrawals, return flows from irrigated areas, and flows from sewage-treatment plants. Flow partly regulated by Pueblo Reservoir (station 07099350) about 69 mi upstream since Jan. 9, 1974.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO—Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

[e, estimated]

Day	0ct	Nov	D									
		1101	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	205	349	e76	98	28	79	437	995	2,180	1,930	505	234
2	212	350	e75	96	37	77	346	870	1,310	2,150	645	194
3	316	411	e74	93	34	76	369	964	883	2,260	628	173
4	446	455	e73	93	31	76	459	839	742	2,040	588	206
5	474	506	77	e90	30	47	554	742	563	2,060	616	282
6	396	517	72	e55	32	22	960	593	715	2,340	1,030	314
7	383	508	74	e50	35	15	714	523	511	1,990	946	340
8	389	505	76	e45	60	19	561	593	1,100	1,830	776	314
9	287	501	75	e45	53	18	560	743	1,630	1,830	760	220
10	249	481	78	e60	45	17	603	644	1,750	1,620	826	173
11	246	459	81	e70	40	18	780	694	1,780	1,320	995	148
12	254	484	75	e80	33	83	742	816	1,920	1,160	1,160	122
13	247	464	72	e90	36	181	861	864	1,980	1,110	1,000	104
14	231	519	75	e75	38	230	910	839	2,030	1,110	1,350	174
15	217	574	71	e70	36	415	1,020	872	1,790	1,100	1,900	258
16	249	511	67	e75	40	711	995	949	1,310	1,150	971	283
17	279	202	64	e80	39	759	960	763	1,360	1,120	1,150	269
18	310	143	63	e90	44	565	1,030	675	1,470	1,010	1,130	264
19	322	126	67	e100	43	437	997	619	1,540	974	782	258
20	296	119	65	106	114	448	975	915	1,640	989	695	257
21	260	126	58	99	122	436	1,100	1,160	1,970	923	832	256
22	270	118	e55	88	83	437	1,150	1,540	2,440	845	1,440	291
23	308	108	e50	82	102	400	1,120	2,000	2,030	705	894	210
24	324	95	e50	64	103	402	1,080	2,320	1,460	447	650	157
25	316	85	e65	28	97	410	1,110	2,590	2,180	315	500	125
26	322	81	e75	29	89	436	1,310	2,200	1,870	274	394	100
27	314	82	e75	31	84	459	1,140	2,230	1,690	601	350	105
28	300	85	e80	27	81	432	1,110	2,470	1,510	607	342	128
29	307	85	99	23		372	1,150	2,590	1,640	781	322	155
30	334	e75	99	27		375	1,160	2,560	1,880	648	310	194
31	338		110	29		422		2,550		469	271	
Total	9,401	9,124	2,266	2,088	1,609	8,874	26,263	39,722	46,874	37,708	24,758	6,308
Mean	303	304	73.1	67.4	57.5	286	875	1,281	1,562	1,216	799	210
Max	474	574	110	106	122	759	1,310	2,590	2,440	2,340	1,900	340
Min	205	75	50	23	28	15	346	523	511	274	271	100
Ac-ft	18,650	18,100	4,490	4,140	3,190	17,600	52,090	78,790	92,970	74,790	49,110	12,510

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 2005, BY WATER YEAR (WY)

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	388	422	363	385	355	401	607	1,263	1,992	1,298	944	414
Max	1,234	925	804	854	1,249	912	1,526	3,901	4,420	4,108	2,384	1,209
(WY)	(1985)	(1985)	(2000)	(1985)	(1985)	(1998)	(1987)	(1999)	(1995)	(1995)	(1984)	(1982)
Min	90.8	119	30.2	27.2	24.6	161	86.6	212	280	176	25.2	34.7
(WY)	(2003)	(2003)	(2004)	(2004)	(2004)	(2003)	(1978)	(1981)	(2002)	(2002)	(2002)	(2002)

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO-Continued

SUMMARY STATISTICS

	Calendar Y	Year 2004 Water Year 20		r 2005	Water Years 1975 - 200		
Annual total	161,437		214,995				
Annual mean	441		589		^a 737		
Highest annual mean					1,327	1995	
Lowest annual mean					206	2002	
Highest daily mean	3,300	Jul 18	2,590	May 25	^b 16,300	May 1, 1999	
Lowest daily mean	20	Feb 10	15	Mar 7	°0.00	Sep 11, 2002	
Annual seven-day minimum	21	Feb 9	22	Mar 5	1.2	Sep 5, 2002	
Maximum peak flow			^d 3,400	Aug 15	^f 26,000	May 1, 1999	
Maximum peak stage			^g 5.00	Aug 15	g11.30	May 1, 1999	
Annual runoff (ac-ft)	320,200		426,400		534,300		
10 percent exceeds	1,100		1,620		1,600		
50 percent exceeds	315		350		445		
90 percent exceeds	26		52		150		

^a Average discharge for 9 years (water years 1965-73), 636 ft³/s, 460,800 acre-ft/yr, prior to completion of Pueblo Dam.

g Gage height at Arkansas River gage.

^b Estimated. Maximum daily discharge for period of record, 18,300 ft³/s, Jun 18, 1965.

^c Also minimum daily discharge for period of record.

Maximum combined instantaneous discharge.

^f Estimated. Maximum combined instantaneous discharge. Maximum discharge and gage height for period of record, 43,200 ft³/s, Jun 18, 1965, gage height, 7.95 ft, site and datum then in use, from rating curve extended above 13,000 ft³/s on basis of flow-over-dam computation of peak flow.

07121500 TIMPAS CREEK AT MOUTH NEAR SWINK, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°00′11″, long 103°39′20″ referenced to North American Datum of 1927, in NW ¼ SW ¼ sec.35, T.23 S., R.56 W., Otero County, Hydrologic Unit 11020005, on right bank at downstream side of 23rd Road bridge, 1.7 mi southwest of Swink, and 2.9 mi upstream from mouth. DRAINAGE AREA.--496 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1922 to September 1925, March 1968 to current year. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS.--WDR CO 76-1: 1975.

GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 4,120 ft above NGVD of 1929, from topographic map. Jan. 1922 to Sept. 1925 at several sites downstream at different datum. Mar. 1968 to May 29, 1975, at site 140 ft downstream at datum 0.13 ft lower. May 30, 1975 to Nov. 25, 1980, at site on left bank at same datum.

REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by erosion-control and livestock-watering reservoirs, diversions for irrigation, ground-water withdrawals, and return flows from irrigated areas and from Catlin and Rocky Ford Highline Canals.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1922, 21,400 ft³/s, June 17, 1965, gage height unknown.

07121500 TIMPAS CREEK AT MOUTH NEAR SWINK, CO—Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

Day	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	25	74	9.5	9.1	7.6	11	70	98	80	61	40	37
2	25	74	9.4	8.7	7.1	12	47	94	76	63	40	28
3	25	72	9.8	8.9	6.7	9.9	46	96	71	64	44	26
4	27	73	10	9.2	6.6	10	47	91	83	67	45	25
5	77	74	10	8.9	6.5	10	68	77	84	65	45	22
6	39	76	10	8.8	6.5	10	719	69	81	67	53	21
7	34	73	9.9	8.9	6.3	9.8	140	66	74	61	57	24
8	35	73	9.9	8.9	6.3	9.4	112	75	69	60	57	23
9	37	59	9.8	8.9	6.4	9.5	93	71	66	65	57	22
10	33	90	9.5	8.8	6.2	9.6	73	67	63	62	53	22
11	28	107	10	8.8	6.3	8.8	110	66	63	58	57	23
12	27	94	12	9.0	6.4	8.7	117	66	72	59	70	22
13	28	93	12	8.6	6.2	9.5	286	67	66	60	68	19
14	39	112	11	8.5	5.9	12	183	68	63	60	68	18
15	51	98	11	8.4	5.9	14	104	69	63	62	73	26
16	50	23	9.8	8.3	6.0	13	80	66	66	64	80	29
17	45	15	9.4	8.3	6.1	14	74	66	65	62	74	25
18	46	13	9.3	8.6	6.0	22	70	64	65	62	68	29
19	39	12	8.9	8.6	6.5	22	71	64	66	61	65	30
20	42	12	8.9	8.6	6.9	38	73	61	64	58	65	30
21	34	12	8.5	8.3	6.8	41	78	66	64	55	61	32
22	31	12	9.1	8.2	7.1	44	76	61	67	53	65	36
23	40	11	8.7	8.1	20	38	74	63	71	55	66	33
24	47	11	8.9	7.9	9.2	38	79	68	72	52	64	26
25	56	11	9.1	7.8	7.9	39	81	75	64	39	62	22
26	60	10	9.3	7.8	11	50	77	72	78	34	63	23
27	62	10	9.6	8.0	10	59	75	74	78	34	61	25
28	62	10	9.8	8.1	10	59	74	79	62	48	59	26
29	65	9.8	9.7	8.2		57	78	75	61	56	54	25
30	67	9.6	9.6	8.0		46	90	84	59	58	52	24
31	71		9.1	8.1		90		83		55	51	
Total	1,347	1,423.4	301.5	263.3	210.4	824.2	3,365	2,261	2,076	1,780	1,837	773
Mean	43.5	47.4	9.73	8.49	7.51	26.6	112	72.9	69.2	57.4	59.3	25.8
Max	77	112	12	9.2	20	90	719	98	84	67	80	37
Min	25	9.6	8.5	7.8	5.9	8.7	46	61	59	34	40	18
Ac-ft	2,670	2,820	598	522	417	1,630	6,670	4,480	4,120	3,530	3,640	1,530

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2005, BY WATER YEAR (WY)

	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	84.7	73.1	32.8	22.0	28.9	57.0	64.6	75.8	81.0	72.9	82.5	68.7
Max	265	210	109	60.4	84.6	201	170	187	318	200	401	159
(WY)	(1924)	(1924)	(1971)	(1923)	(1924)	(1924)	(1924)	(1995)	(1923)	(1923)	(1923)	(1986)
Min	9.21	12.8	5.22	5.34	6.10	15.9	11.0	14.0	21.9	13.0	10.6	9.60
(WY)	(2003)	(2004)	(2004)	(2004)	(2004)	(2004)	(1978)	(1981)	(2002)	(2002)	(2002)	(2002)

07121500 TIMPAS CREEK AT MOUTH NEAR SWINK, CO—Continued

SUMMARY STATISTICS

	Calendar Ye	ar 2004	Water Year	r 2005	Water Years 1922 - 2005		
Annual total	15,690.8		16,461.8				
Annual mean	42.9		45.1		62.2		
Highest annual mean					130	1923	
Lowest annual mean					23.7	2002	
Highest daily mean	388	Jul 18	719	Apr 6	2,670	Aug 17, 1923	
Lowest daily mean	4.7	Jan 14	5.9	Feb 14	3.3	Aug 7, 1977	
Annual seven-day minimum	4.9	Jan 9	6.1	Feb 12	4.9	Dec 1, 2003	
Maximum peak flow			1,860	Apr 6	^a 12,300	Jul 10, 1978	
Maximum peak stage			12.94	Apr 6	^b 21.11	Jul 10, 1978	
Annual runoff (ac-ft)	31,120		32,650		45,050		
10 percent exceeds	82		77		121		
50 percent exceeds	34		44		47		
90 percent exceeds	5.7		8.4		14		

From contracted-opening measurement of peak flow. From floodmark.

07124000 ARKANSAS RIVER AT LAS ANIMAS, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°04′51″, long 103°13′09″ referenced to North American Datum of 1927, in SE ¼ NE ¼ sec.3, T.23 S., R.52 W., Bent County, Hydrologic Unit 11020009, on right bank at upstream side of bridge on U.S. Highway 50, 1.1 mi north of courthouse in Las Animas, and 4.2 mi upstream from Purgatoire River.

DRAINAGE AREA.—14,417 mi², of which 441 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May to November 1898 (gage heights only), August to November 1909 (gage heights and discharge measurements only), May 1939 to current year. Statistical summary computed for 1975 to current year, subsequent to partial regulation by Pueblo Reservoir.

REVISED RECORDS.--WSP 1341: Drainage area.

- GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 3,883.97 ft above NGVD of 1929. May 13 to Nov. 12, 1898, and Aug. 1 to Nov. 10, 1909, nonrecording gages near present site at different datums. May 23, 1939 to Apr. 27, 1967, water-stage recorder at site 0.4 mi downstream at datum 9.00 ft lower.
- REMARKS.--Records good except for estimated daily discharges and those above 1,000 cfs, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions, diversions for irrigation and municipal use, ground-water withdrawals, return flows from irrigated areas, and flows from sewage-treatment plants. Flow partly regulated by Pueblo Reservoir (station 07099350) about 104 mi upstream since Jan. 9, 1974.

07124000 ARKANSAS RIVER AT LAS ANIMAS, CO-Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

[e, estimated]

The color		[e, estimated]											
2 16 86 168 187 125 128 19 30 356 504 60 34 3 16 83 166 187 123 123 20 23 169 432 41 34 5 17 38 166 186 124 122 21 21 118 431 35 29 5 17 38 166 186 124 122 21 20 111 479 33 25 6 19 33 165 e125 128 124 21 20 99 496 32 24 7 26 30 161 e120 97 37 20 99 437 69 29 9 26 24 158 187 119 92 24 20 19 202 252 36 33 10 26 <t< th=""><th>Day</th><th>0ct</th><th>Nov</th><th>Dec</th><th>Jan</th><th>Feb</th><th>Mar</th><th>Apr</th><th>May</th><th>Jun</th><th>Jul</th><th>Aug</th><th>Sep</th></t<>	Day	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
3 16 83 166 187 123 123 123 20 23 169 432 41 34 5 17 38 166 186 124 122 21 21 118 431 35 29 6 19 33 165 e125 128 124 21 20 99 496 32 24 7 26 30 161 e125 128 124 21 20 99 496 32 24 8 26 25 157 136 120 97 37 20 90 437 69 29 9 26 24 158 187 119 92 24 20 123 350 63 43 10 26 36 155 252 124 87 20 19 202 252 36 33 11 <	1	17	66	170	185	131	132	19	24	500	405	92	30
3 16 83 166 187 123 123 123 20 23 169 432 41 34 5 17 38 166 186 124 122 21 21 118 431 35 29 6 19 33 165 e125 128 124 21 20 99 496 32 24 7 26 30 161 e125 128 124 21 20 99 496 32 24 8 26 25 157 136 120 97 37 20 90 437 69 29 9 26 24 158 187 119 92 24 20 123 350 63 43 10 26 36 155 252 124 87 20 19 202 252 36 33 11 <	2	16	86	168	187	125	128	19	30	356	504	60	34
4 16 64 164 189 124 122 21 21 118 431 35 29 6 19 33 166 186 124 123 18 20 111 479 33 25 6 19 33 161 el20 128 124 21 20 99 496 32 24 7 26 30 161 el20 123 115 129 21 89 514 32 23 8 26 25 157 136 120 97 37 20 90 437 69 29 9 26 24 158 187 119 92 24 20 19 136 299 40 42 11 23 62 155 252 124 87 20 19 202 252 36 33 12 <													
5 17 38 166 186 124 123 18 20 111 479 33 25 6 19 33 165 e125 128 124 21 20 99 496 32 24 7 26 30 161 e120 123 115 129 21 89 514 32 23 8 26 25 157 136 120 97 37 20 90 437 69 29 9 26 24 158 187 119 92 24 20 123 350 63 43 10 26 36 155 220 123 91 21 19 136 299 40 42 11 23 62 155 252 124 87 20 19 202 252 36 33 12 25 <													
8 26 30 161 e120 123 115 129 21 89 514 32 23 8 26 25 157 136 120 97 37 20 90 437 69 29 9 26 24 158 187 119 92 24 20 123 350 63 43 10 26 36 155 220 123 91 21 19 136 299 40 42 11 23 62 155 252 124 87 20 19 202 252 36 33 12 25 68 157 232 122 86 19 25 385 166 70 30 13 25 65 156 217 118 84 18 33 563 131 151 19 15 30	5												
8 26 25 157 136 120 97 37 20 90 437 69 29 9 26 24 158 187 119 92 24 20 123 350 63 43 10 26 36 155 220 123 91 21 19 136 299 40 42 11 23 62 155 252 124 87 20 19 202 252 36 33 12 25 68 157 232 122 86 19 25 385 166 70 30 13 25 65 156 217 118 84 18 33 563 131 151 28 14 28 67 158 e180 115 83 19 45 561 108 96 231 28 15	6	19	33	165	e125	128	124	21	20	99	496	32	24
9 26 24 158 187 119 92 24 20 123 350 63 43 10 26 36 155 220 123 91 21 19 136 299 40 42 11 23 62 155 225 124 87 20 19 202 252 36 33 12 25 68 157 232 122 86 19 25 385 166 70 30 13 25 65 156 217 118 84 18 33 563 131 151 28 14 28 67 158 e180 115 83 19 45 561 108 196 26 15 30 80 160 e150 112 61 19 63 513 95 231 28 16 31		26	30	161	e120	123	115	129	21	89	514	32	23
10 26 36 155 220 123 91 21 19 136 299 40 42 11 23 62 155 252 124 87 20 19 202 252 36 33 12 25 68 157 232 122 86 19 25 385 166 70 30 13 25 65 156 217 118 84 18 33 563 131 151 28 14 28 67 158 el80 115 83 19 45 561 108 196 26 15 30 80 160 el50 112 61 19 63 513 95 231 28 16 31 380 158 el40 108 35 20 81 e400 102 376 30 17 28	8	26	25	157	136	120	97	37	20	90	437	69	29
11 23 62 155 252 124 87 20 19 202 252 36 33 12 25 68 157 232 122 86 19 25 385 166 70 30 13 25 65 156 217 118 84 18 33 563 131 151 28 14 28 67 158 e180 1115 83 19 45 561 108 196 26 15 30 80 160 e150 112 61 19 63 513 95 231 28 16 31 380 158 e140 108 35 20 81 e400 102 376 30 17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 </th <th>9</th> <td>26</td> <td>24</td> <td>158</td> <td>187</td> <td>119</td> <td>92</td> <td>24</td> <td>20</td> <td>123</td> <td>350</td> <td>63</td> <td>43</td>	9	26	24	158	187	119	92	24	20	123	350	63	43
12 25 68 157 232 122 86 19 25 385 166 70 30 13 25 65 156 217 118 84 18 33 563 131 151 28 14 28 67 158 e180 115 83 19 45 561 108 196 26 15 30 80 160 e150 112 61 19 63 513 95 231 28 16 31 380 158 e140 108 35 20 81 e400 102 376 30 17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 406 155 165 108 26 20 73 315 145 303 32 19 26<	10	26	36	155	220	123	91	21	19	136	299	40	42
13 25 65 156 217 118 84 18 33 563 131 151 28 14 28 67 158 e180 115 83 19 45 561 108 196 26 15 30 80 160 e150 112 61 19 63 513 95 231 28 16 31 380 158 e140 108 35 20 81 e400 102 376 30 17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 406 155 165 108 26 20 73 315 145 303 32 19 26 283 155 177 113 24 20 43 354 123 384 30 20 2		23	62	155	252	124	87	20	19	202	252	36	33
14 28 67 158 e180 115 83 19 45 561 108 196 26 15 30 80 160 e150 112 61 19 63 513 95 231 28 16 31 380 158 e140 108 35 20 81 e400 102 376 30 17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 406 155 165 108 26 20 73 315 145 303 32 19 26 283 155 177 113 24 20 43 354 123 384 30 20 27 253 151 199 110 21 19 35 313 117 271 33 21	12	25	68	157	232	122	86	19	25	385	166	70	30
15 30 80 160 e150 112 61 19 63 513 95 231 28 16 31 380 158 e140 108 35 20 81 e400 102 376 30 17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 406 155 165 108 26 20 73 315 145 303 32 19 26 283 155 177 113 24 20 43 354 123 384 30 20 27 253 156 200 114 23 19 36 332 114 309 31 21 31 235 151 199 110 21 19 35 313 117 271 33 22	13	25	65	156	217	118	84	18	33	563	131	151	28
16 31 380 158 e140 108 35 20 81 e400 102 376 30 17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 406 155 165 108 26 20 73 315 145 303 32 19 26 283 155 177 113 24 20 43 354 123 384 30 20 27 253 156 200 114 23 19 36 332 114 309 31 21 31 235 151 199 110 21 19 35 313 117 271 33 22 27 222 150 192 119 18 60 338 110 274 33 23 25 <th< th=""><th>14</th><td>28</td><td>67</td><td>158</td><td>e180</td><td>115</td><td>83</td><td>19</td><td>45</td><td>561</td><td>108</td><td>196</td><td>26</td></th<>	14	28	67	158	e180	115	83	19	45	561	108	196	26
17 28 540 156 e150 107 30 20 96 311 98 201 31 18 27 406 155 165 108 26 20 73 315 145 303 32 19 26 283 155 177 113 24 20 43 354 123 384 30 20 27 253 156 200 114 23 19 36 332 114 309 31 21 31 235 151 199 110 21 19 35 313 117 271 33 22 27 222 150 192 119 19 18 60 338 110 274 43 23 25 212 150 189 128 19 18 180 526 103 384 36 24	15	30	80	160	e150	112	61	19	63	513	95	231	28
18 27 406 155 165 108 26 20 73 315 145 303 32 19 26 283 155 177 113 24 20 43 354 123 384 30 20 27 253 156 200 114 23 19 36 332 114 309 31 21 31 235 151 199 110 21 19 35 313 117 271 33 22 27 222 150 192 119 19 18 60 338 110 274 33 23 25 212 150 189 128 19 18 180 526 103 384 36 24 40 201 114 188 130 18 18 434 324 91 409 38 25	16	31	380	158	e140	108	35	20	81	e400	102	376	30
19 26 283 155 177 113 24 20 43 354 123 384 30 20 27 253 156 200 114 23 19 36 332 114 309 31 21 31 235 151 199 110 21 19 35 313 117 271 33 22 27 222 150 192 119 19 18 60 338 110 274 33 23 25 212 150 189 128 19 18 180 526 103 384 36 24 40 201 114 188 130 18 18 434 324 91 409 38 25 73 195 120 187 136 17 18 537 206 68 256 44 26	17	28	540	156	e150	107	30	20	96	311	98	201	31
20 27 253 156 200 114 23 19 36 332 114 309 31 21 31 235 151 199 110 21 19 35 313 117 271 33 22 27 222 150 192 119 19 18 60 338 110 274 33 23 25 212 150 189 128 19 18 180 526 103 384 36 24 40 201 114 188 130 18 18 434 324 91 409 38 25 73 195 120 187 136 17 18 537 206 68 256 44 26 91 193 140 176 137 17 19 836 406 89 180 51 27	18	27	406	155	165	108	26	20	73	315	145	303	32
21 31 235 151 199 110 21 19 35 313 117 271 33 22 27 222 150 192 119 19 18 60 338 110 274 33 23 25 212 150 189 128 19 18 180 526 103 384 36 24 40 201 114 188 130 18 18 434 324 91 409 38 25 73 195 120 187 136 17 18 537 206 68 256 44 26 91 193 140 176 137 17 19 836 406 89 180 51 27 87 187 152 164 137 18 19 702 321 62 120 53 28	19	26	283	155	177	113	24	20	43	354	123	384	30
22 27 222 150 192 119 19 18 60 338 110 274 33 23 25 212 150 189 128 19 18 180 526 103 384 36 24 40 201 114 188 130 18 18 434 324 91 409 38 25 73 195 120 187 136 17 18 537 206 68 256 44 26 91 193 140 176 137 17 19 836 406 89 180 51 27 87 187 152 164 137 18 19 702 321 62 120 53 28 86 183 165 156 135 18 22 698 258 49 91 50 29 6	20	27	253	156	200	114	23	19	36	332	114	309	31
23 25 212 150 189 128 19 18 180 526 103 384 36 24 40 201 114 188 130 18 18 434 324 91 409 38 25 73 195 120 187 136 17 18 537 206 68 256 44 26 91 193 140 176 137 17 19 836 406 89 180 51 27 87 187 152 164 137 18 19 702 321 62 120 53 28 86 183 165 156 135 18 22 698 258 49 91 50 29 69 176 182 155 18 19 644 235 76 72 51 30 5													
24 40 201 114 188 130 18 18 434 324 91 409 38 25 73 195 120 187 136 17 18 537 206 68 256 44 26 91 193 140 176 137 17 19 836 406 89 180 51 27 87 187 152 164 137 18 19 702 321 62 120 53 28 86 183 165 156 135 18 22 698 258 49 91 50 29 69 176 182 155 18 19 644 235 76 72 51 30 53 174 193 145 17 21 683 274 100 55 50 31 46<		27		150	192			18	60	338	110		
25 73 195 120 187 136 17 18 537 206 68 256 44 26 91 193 140 176 137 17 19 836 406 89 180 51 27 87 187 152 164 137 18 19 702 321 62 120 53 28 86 183 165 156 135 18 22 698 258 49 91 50 29 69 176 182 155 18 19 644 235 76 72 51 30 53 174 193 145 17 21 683 274 100 55 50 31 46 184 138 17 715 114 39 Total <t< th=""><th></th><td>25</td><td></td><td>150</td><td></td><td>128</td><td></td><td></td><td>180</td><td>526</td><td>103</td><td></td><td></td></t<>		25		150		128			180	526	103		
26 91 193 140 176 137 17 19 836 406 89 180 51 27 87 187 152 164 137 18 19 702 321 62 120 53 28 86 183 165 156 135 18 22 698 258 49 91 50 29 69 176 182 155 18 19 644 235 76 72 51 30 53 174 193 145 17 21 683 274 100 55 50 31 46 184 138 17 715 114 39 Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051	24	40	201	114	188	130	18	18	434	324	91	409	38
27 87 187 152 164 137 18 19 702 321 62 120 53 28 86 183 165 156 135 18 22 698 258 49 91 50 29 69 176 182 155 18 19 644 235 76 72 51 30 53 174 193 145 17 21 683 274 100 55 50 31 46 184 138 17 715 114 39 Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051 Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836	25	73	195	120	187	136	17	18	537	206	68	256	44
28 86 183 165 156 135 18 22 698 258 49 91 50 29 69 176 182 155 18 19 644 235 76 72 51 30 53 174 193 145 17 21 683 274 100 55 50 31 46 184 138 17 715 114 39 Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051 Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19													
29 69 176 182 155 18 19 644 235 76 72 51 30 53 174 193 145 17 21 683 274 100 55 50 31 46 184 138 17 715 114 39 Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051 Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43<													
30 53 174 193 145 17 21 683 274 100 55 50 31 46 184 138 17 715 114 39 Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051 Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43 314 117 92 32		86	183		156	135	18		698	258	49	91	
31 46 184 138 17 715 114 39 Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051 Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43 314 117 92 32		69	176	182	155		18	19	644	235	76	72	51
Total 1,103 4,667 4,897 5,474 3,413 1,885 714 6,256 8,928 6,660 4,905 1,051 Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43 314 117 92 32		53	174	193	145		17	21	683	274	100	55	50
Mean 35.6 156 158 177 122 60.8 23.8 202 298 215 158 35.0 Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43 314 117 92 32	31	46		184	138		17		715		114	39	
Max 91 540 193 252 137 132 129 836 563 514 409 53 Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43 314 117 92 32													1,051
Min 16 24 114 120 107 17 18 19 89 49 32 23 Med 27 130 157 185 123 35 19 43 314 117 92 32													
Med 27 130 157 185 123 35 19 43 314 117 92 32	Max	91	540	193	252	137	132	129	836	563	514	409	53
	Min	16	24	114	120	107	17	18	19	89	49	32	23
	Med	27	130	157	185	123	35	19	43	314	117	92	32
	Ac-ft	2,190	9,260	9,710	10,860	6,770	3,740	1,420	12,410	17,710	13,210	9,730	2,080

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 2005, BY WATER YEAR (WY)

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	145	142	141	179	184	115	117	541	823	451	291	103
Max	1,092	810	398	641	761	422	877	4,043	4,263	3,339	1,343	373
(WY)	(1985)	(1998)	(1998)	(1998)	(1985)	(1998)	(1987)	(1999)	(1995)	(1995)	(1999)	(1984)
Min	5.13	6.05	8.40	8.45	18.5	9.44	10.8	14.1	16.8	10.0	14.5	9.12
(WY)	(1978)	(1975)	(1978)	(1978)	(1978)	(1975)	(1978)	(1981)	(2002)	(2002)	(2002)	(1977)

07124000 ARKANSAS RIVER AT LAS ANIMAS, CO—Continued

SUMMARY STATISTICS

	Calendar Y	ear 2004	Water Yea	r 2005	Water Years 1975 - 2005		
Annual total	60,510		49,953				
Annual mean	165		137		^a 270		
Highest annual mean					841	1995	
Lowest annual mean					59.8	2002	
Highest daily mean	1,560	Aug 19	836	May 26	^b 22,600	May 3, 1999	
Lowest daily mean	10	Mar 31	16	Oct 2	°3.0	Nov 30, 1974	
Annual seven-day minimum	11	Mar 26	17	Mar 25	4.1	Sep 26, 1977	
Maximum peak flow			994	May 27	^d 32,900	May 2, 1999	
Maximum peak stage			7.18	May 27	f14.02	May 2, 1999	
Annual runoff (ac-ft)	120,000		99,080	-	195,500	- '	
10 percent exceeds	416		327		531		
50 percent exceeds	87		108		110		
90 percent exceeds	16		20		16		

^a Average discharge for 34 years (water years 1940-73), 203 ft³/s; 147,100 acre-ft/yr, prior to completion of Pueblo Dam.

From floodmark.

^b Maximum daily discharge for period of record, 25,800 ft³/s, May 20, 1955.

^c Minimum daily discharge for period of record, 0.9 ft³/s, Jul 31, Aug 1 and 3, 1964.

^d From rating curve extended above 21,600 ft³/s; maximum discharge and stage for period of record, 44,000 ft³/s, May 20, 1955, gage height, 15.03 ft, from current-meter measurement and slope-area measurement of over-flow channel, site and datum then in use.

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°03′59″, long 102°55′55″ referenced to North American Datum of 1927, NW ¼ NE ¼ sec.8, T.23 S., R.49 W., Bent County, Hydrologic Unit 11020009, on right bank 0.2 mi downstream from John Martin Dam, 2.6 mi upstream from Caddoa Creek, and 3.5 mi southeast of Hasty.

DRAINAGE AREA.--18,915 mi², of which 785 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1938 to current year. Published as "at Caddoa" prior to October 1947. Statistical summary computed for 1949 to current year, subsequent to completion of John Martin Reservoir.

REVISED RECORDS.--WSP 1241: 1942 (M). WSP 1341: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry, concrete control, and crest-stage gage. Datum of gage is 3,737.40 ft above NGVD of 1929. Prior to Feb. 22, 1940, at site 3 mi upstream at datum 22.83 ft higher. Feb. 22, 1940 to Feb. 4, 1943, at site 700 ft upstream at datum 3.64 ft higher. Feb. 5, 1943 to Apr. 8, 1975, at site 1.5 mi downstream at datum approximately 27.5 ft lower.

REMARKS.--Records good except for estimated daily discharges and those below 3 ft³/s, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions, diversions for irrigation and municipal use, ground-water withdrawals, return flows from irrigated areas, and flows from sewage-treatment plants. Flow completely regulated by John Martin Reservoir (station 07130000) 0.2 mi upstream since Oct. 1948.

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO—Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

[e, estimated]

						e, estimat					_	
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	16	2.4	1.7	1.2	1.7	1.4	104	860	426	1,060	51	70
2	10	1.4	1.7	1.2	1.7	1.4	111	884	401	1,060	63	70
3	9.4	1.6	1.7	1.2	1.7	1.4	60	901	558	1,050	81	70
4	16	1.4	1.7	1.2	1.7	1.4	59	896	806	1,040	77	70
5	31	1.3	1.7	1.2	1.6	1.4	45	885	627	1,040	59	70
6	45	1.3	1.7	1.1	1.8	1.4	1.8	879	493	1,040	50	70
7	54	1.3	1.7	1.2	1.5	1.4	1.6	875	500	1,040	50	70
8	58	1.3	1.7	1.2	1.5	1.4	1.7	873	511	1,060	52	58
9	58	1.4	1.7	1.2	1.6	1.4	1.8	831	469	1,050	57	46
10	57	1.6	1.4	1.2	1.6	1.4	1.7	768	444	1,040	59	46
11	58	1.4	1.1	1.2	1.5	1.3	26	766	589	1,030	59	31
12	65	1.5	1.1	1.3	1.6	1.3	135	778	692	1,010	79	18
13	74	1.6	1.1	1.2	1.5	1.4	277	806	691	1,010	94	17
14	74	1.6	1.2	1.1	1.5	1.3	377	825	775	998	111	19
15	68	1.6	1.1	1.1	1.5	1.3	443	812	959	990	198	19
16	63	1.7	1.1	1.2	1.4	1.3	478	798	1,000	979	401	18
17	63	1.8	1.1	1.2	1.5	1.3	481	792	834	968	321	18
18	67	2.0	1.1	1.2	1.5	1.3	533	796	687	982	216	18
19	71	1.8	1.1	1.2	1.4	1.3	679	822	670	615	210	18
20	71	1.8	1.1	1.3	1.5	1.4	799	837	669	108	206	18
21	71	1.8	1.1	1.3	1.5	1.4	843	842	665	167	154	19
22	71	1.8	1.1	1.3	1.4	1.3	825	839	1,030	229	115	19
23	71	1.8	1.1	1.3	1.5	1.3	820	837	1,060	228	115	21
24	71	1.9	1.0	1.3	1.4	1.4	820	895	1,100	159	191	27
25	75	1.9	1.1	1.2	1.5	1.4	805	794	1,090	82	291	27
26	83	1.9	1.1	1.2	1.5	1.5	793	780	1,080	53	276	25
27	93	1.8	1.1	6.8	1.5	1.3	955	866	1,070	53	216	23
28	98	1.9	1.1	11	1.4	1.3	1,020	857	1,060	52	146	23
29	98	1.8	1.1	11		1.4	902	858	1,050	52	83	25
30	98	1.7	1.1	11		1.4	851	826	1,050	52	71	42
31	91		1.2	6.1		8.0		623		51	e70	
Total	1,948.4	50.1	39.9	77.4	43.0	48.9	13,249.6	25,701	23,056	20,348	4,222	1,085
Mean	62.9	1.67	1.29	2.50	1.54	1.58	442	829	769	656	136	36.2
Max	98	2.4	1.7	11	1.8	8.0	1,020	901	1,100	1,060	401	70
Min	9.4	1.3	1.0	1.1	1.4	1.3	1.6	623	401	51	50	17
Ac-ft	3,860	99	79	154	85	97	26,280	50,980	45,730	40,360	8,370	2,150

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2005, BY WATER YEAR (WY)

	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	192	24.7	16.1	18.8	22.2	53.1	420	484	597	688	548	311
Max	565	217	317	725	477	498	1,174	2,576	2,665	2,895	2,127	1,007
(WY)	(1949)	(1966)	(1998)	(1998)	(1966)	(1998)	(1987)	(1987)	(1987)	(1995)	(1965)	(1984)
Min	11.4	0.85	0.64	0.62	0.75	1.06	2.43	34.2	52.0	86.1	22.6	6.69
(WY)	(1975)	(1977)	(1977)	(1977)	(1977)	(1980)	(1973)	(1975)	(1954)	(1963)	(1960)	(1974)

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO-Continued

SUMMARY STATISTICS

	Calendar Year 2004	Water Year 2005	Water Years 1949 - 2005
Annual total	78,143.78	89,869.3	
Annual mean	214	246	^a 283
Highest annual mean			745 1987
Lowest annual mean			82.5 1964
Highest daily mean	978 Apr 6	1,100 Jun 24	3,830 Aug 25, 1965
Lowest daily mean	0.61 Jan 3	1.0 Dec 24	^b 0.36 Dec 25, 1979
Annual seven-day minimum	0.79 Jan 31	1.1 Dec 18	0.36 Dec 25, 1979
Maximum peak flow		1,130 Apr 27	^c 4,100 Aug 25, 1965
Maximum peak stage		3.77 Apr 27	^d 5.75 Aug 25, 1965
Annual runoff (ac-ft)	155,000	178,300	204,700
10 percent exceeds	582	884	861
50 percent exceeds	71	45	56
90 percent exceeds	0.92	1.2	1.8

^a Average discharge for 5 years (water years 1939-43), 628 ft³/s; 455,000 acre-ft/yr, prior to start of storage in John Martin Reservoir.

Maximum gage height for period of record, 10.62 ft, Jun 18, 1965 (backwater from Caddoa Creek), site and datum then in use.

b Also occurred Dec 26, 1979 to Jan 3, 1980; no flow on many days during 1945-47. Minimum daily discharge prior to start of storage in John Martin Reservoir, 5 ft³/s, Jul 16, 1939.

Maximum discharge for period of record, 40,000 ft³/s, Apr 24, 1942, from rating curve extended above 12,000 ft³/s on basis of flow-over-dam and critical-depth measurement of peak flow, gage height, 10.46 ft, site and datum then in use.

07133000 ARKANSAS RIVER AT LAMAR, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°06′21″, long 102°37′05″ referenced to North American Datum of 1927, in NE ¼ SE ¼ sec.30, T.22 S., R.46 W., Prowers County, Hydrologic Unit 11020009, on left bank at left downstream end of downstream bridge on U.S. Highways 50 and 287, and 1.3 mi north of courthouse in Lamar.

DRAINAGE AREA.--19,780 mi², of which 950 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1913 to September 1955, April 1959 to current year. Monthly discharge only for some periods, published in WSP 1311. Statistical summary computed for 1949 to current year, subsequent to completion of John Martin Reservoir.

REVISED RECORDS.--WSP 1341: 1921 (M), 1945-46 (M), drainage area; WDR CO-86-1: 1985.

GAGE.--Water-stage recorder with satellite telemetry and crest stage gage. Datum of gage is 3,597.39 ft above NGVD of 1929. See WSP 1731 for history of changes prior to Apr. 4, 1959. Apr. 4, 1959 to Mar. 26, 1968, at site 525 ft upstream at datum 2.42 ft higher. Mar. 27, 1968 to Nov. 17, 1982, at site 375 ft downstream at datum 4.00 ft lower. March 18, 1987 to March 6, 2002, at site 75 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions, diversions for irrigation and municipal use, ground-water withdrawals, return flows from irrigated areas, and flows from sewage-treatment plants. Flow regulated by John Martin Reservoir (station 07130000) 21 mi upstream since Oct. 1948.

07133000 ARKANSAS RIVER AT LAMAR, CO—Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

[e, estimated]

						le, estimate	eaj					
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	12	12	20	17	19	15	7.0	184	54	667	11	11
2	13	11	19	18	17	15	6.8	190	19	654	11	11
3	12	9.7	19	17	15	13	7.3	243	15	625	12	11
4	12	9.7	19	17	15	8.8	7.0	249	151	619	26	11
5	12	9.8	19	e15	15	8.4	21	243	186	615	28	10
6	12	10	19	e15	18	8.2	35	238	24	612	22	10
7	11	9.8	18	e16	17	8.0	14	233	20	601	16	10
8	11	9.7	18	17	17	8.1	8.2	233	19	586	15	11
9	11	9.9	18	17	18	7.8	7.8	241	18	581	16	9.9
10	11	10	18	17	18	7.6	8.4	230	16	594	18	11
11	11	10	18	17	17	8.1	10	208	75	607	22	9.7
12	11	11	18	17	17	8.2	9.8	220	243	636	31	15
13	11	12	17	e15	16	8.4	10	234	255	621	19	12
14	11	12	18	e15	16	8.7	9.5	270	248	613	13	10
15	11	12	18	e15	16	8.7	9.2	272	263	604	12	11
16	11	10	18	e16	16	8.6	9.1	251	398	591	11	10
17	10	10	18	17	16	8.5	9.2	244	340	577	11	8.6
18	10	11	18	17	16	8.6	9.4	236	225	576	19	8.6
19	11	11	18	17	16	8.7	76	253	223	529	16	8.3
20	11	11	18	16	16	8.6	108	269	217	122	14	9.1
21	11	11	17	15	15	8.3	105	270	215	51	14	11
22	10	12	18	16	16	8.5	103	267	392	20	18	9.6
23	10	12	17	15	17	8.5	100	271	557	17	16	9.5
24	10	12	15	15	16	8.7	103	266	596	15	14	8.7
25	10	12	18	15	16	8.7	105	278	598	20	15	9.6
26	10	12	19	15	16	9.1	82	37	611	14	13	9.4
27	10	12	18	15	16	9.0	108	17	608	13	19	9.8
28	10	12	18	16	15	9.8	371	23	595	12	14	9.7
29	10	16	18	17		8.5	297	110	610	11	14	11
30	10	21	17	15		8.0	174	72	609	11	12	13
31	11		15	18		7.8		369		11	11	
Total	337	343.6	556	500	458	279.9	1,930.7	6,721	8,400	11,825	503	309.5
Mean	10.9	11.5	17.9	16.1	16.4	9.03	64.4	217	280	381	16.2	10.3
Max	13	21	20	18	19	15	371	369	611	667	31	15
Min	10	9.7	15	15	15	7.6	6.8	17	15	11	11	8.3
Ac-ft	668	682	1,100	992	908	555	3,830	13,330	16,660	23,450	998	614

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2005, BY WATER YEAR (WY)

	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	36.9	20.8	28.9	38.6	39.7	41.2	162	195	276	305	210	86.8
Max	233	117	350	796	507	516	1,089	2,143	2,087	2,457	1,547	689
(WY)	(1949)	(1998)	(1998)	(1998)	(1966)	(1998)	(1987)	(1987)	(1987)	(1995)	(1965)	(1965)
Min	0.84	1.81	0.56	0.47	0.72	1.11	5.90	6.41	3.80	10.2	10.9	1.37
(WY)	(1978)	(1978)	(1978)	(1978)	(1965)	(1965)	(1995)	(1963)	(1954)	(1964)	(1974)	(1974)

07133000 ARKANSAS RIVER AT LAMAR, CO-Continued

SUMMARY STATISTICS

	Calendar Ye	ar 2004	Water Yea	r 2005	Water Years	1949 - 2005
Annual total	17,829.0		32,163.7			
Annual mean	48.7		88.1		^a 120	
Highest annual mean					537	1987
Lowest annual mean					17.7	2003
Highest daily mean	921	Apr 5	667	Jul 1	^b 25,000	Jun 18, 1965
Lowest daily mean	5.2	Mar 21	6.8	Apr 2	$^{\circ}0.00$	Dec 5, 1953
Annual seven-day minimum	5.3	Mar 19	7.5	Mar 29	0.21	Jan 10, 1965
Maximum peak flow			872	May 31	^d 73,800	Jun 18, 1965
Maximum peak stage			8.06	May 31	f16.48	Jun 18, 1965
Annual runoff (ac-ft)	35,360		63,800		86,840	
10 percent exceeds	48		270		405	
50 percent exceeds	12		16		23	
90 percent exceeds	6.4		8.9		4.2	

^a Average discharge for 30 years (water years 1914-43), 298 ft³/s, 215,900 acre-ft/yr, prior to and during construction of John Martin Dam.

^f From floodmarks, site and datum then in use.

^b Maximum daily discharge for period of record, 87,300 ft³/s, Jun 5, 1921.

^c Also minimum daily discharge for period of record; also occurred at times in 1913-15.

^d From current-meter and timed-drift measurement of peak flow, maximum discharge and gage height for period of record, 130,000 ft³/s, (determined by Colorado State Engineer) Jun 5, 1921, from rating curve extended above 10,000 ft³/s, gage height, 14.55 ft, site and datum then in use.

07134100 BIG SANDY CREEK NEAR LAMAR, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°06′51″, long 102°29′00″ referenced to North American Datum of 1927, in SW ¼ SW ¼ sec.21, T.22 S., R.45 W., Prowers County, Hydrologic Unit 11020011, on right bank 35 ft upstream from State Highway 196, 950 ft upstream from mouth, and 7.5 mi east of Lamar.

DRAINAGE AREA.--3,248 mi², of which 585 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1968 to September 1982, July 1995 to current year.

REVISED RECORDS.--WDR CO-01-1: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 3,545 ft above NGVD of 1929, from topographic map. Prior to June 30, 1977, at datum 1.00 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by storage, erosion-control, and livestock-watering reservoirs, diversions for irrigation, ground-water withdrawals, and return flows from irrigated areas. Flow affected by backwater from the Arkansas River at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 17, 1965, reached a discharge of 3,600 ft³/s, from slope-area measurement of peak flow 0.5 mi upstream from station. Flood of Aug. 21, 1965, reached a stage of 9.93 ft, from floodmarks, discharge unknown.

07134100 BIG SANDY CREEK NEAR LAMAR, CO—Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

[e, estimated]

[e, estimated]												
Day	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	e5.0	e7.8	e5.6	e6.0	e6.3	e5.0	e5.0	e6.1	e15	16	2.1	2.6
2	e5.1	e7.7	e5.6	e6.0	e6.3	e4.8	e5.0	e6.1	e10	13	2.1	2.9
3	e5.2	e7.5	e5.7	e6.0	e6.0	e5.0	e5.0	e6.1	e9.0	13	2.1	2.7
4	e5.1	e7.4	e5.8	e6.0	e6.0	e5.1	e5.0	e6.1	e8.5	14	2.8	2.4
5	e5.2	e7.3	e5.8	e6.0	e5.8	e5.1	e5.0	e6.1	e8.5	8.6	2.7	2.3
6	e5.4	e7.2	e5.8	e6.0	e6.1	e5.1	e5.0	e6.1	e8.5	7.5	2.6	2.2
7	e5.4	e7.2	e5.8	e6.0	e5.9	e4.9	e5.0	e6.1	e8.5	17	2.5	2.4
8	e5.5	e7.1	e5.8	e6.5	e5.9	e5.3	e5.0	e6.1	e8.5	16	2.4	2.4
9	e5.5	e7.0	e5.9	e6.5	e5.9	e5.2	e5.0	e6.1	e8.5	12	2.4	2.5
10	e5.6	e7.0	e6.0	e6.5	e6.0	e5.1	e5.0	e6.1	e8.5	6.4	2.2	2.5
11	e5.4	e7.1	e6.1	e6.5	e6.0	e5.0	e5.0	e7.4	e17	5.5	2.3	2.5
12	e5.6	e7.0	e6.1	e6.5	e6.0	e5.0	e5.0	e6.5	e15	5.2	3.1	2.6
13	e5.7	e6.9	e6.0	e6.5	e5.6	e5.0	e5.0	e6.1	e10	5.4	2.9	2.5
14	e5.9	e6.9	e6.2	e6.7	e5.6	e5.0	e5.0	e6.1	e10	4.5	2.9	2.4
15	e5.9	e6.9	e6.3	e6.8	e5.4	e5.0	e5.0	e6.1	e10	4.6	2.8	2.1
16	e5.9	e6.8	e6.3	e6.6	e5.5	e5.0	e5.0	e6.1	e10	5.2	2.9	2.0
17	e5.9	e6.8	e6.4	e6.6	e5.4	e5.0	e5.0	e6.1	e10	6.1	2.1	1.9
18	e6.3	e6.7	e6.5	e6.7	e5.4	e5.0	e5.0	e6.1	e10	4.9	2.3	1.9
19	e6.5	e6.6	e6.5	e6.7	e5.4	e5.0	e5.0	e6.5	e10	4.5	2.8	2.0
20	e6.7	e6.6	e6.5	e6.5	e5.3	e5.0	e5.0	e6.2	e10	4.5	1.7	1.8
21	e6.8	e6.5	e6.5	e6.5	e5.2	e5.0	e5.0	e6.3	e12	4.4	2.3	1.7
22	e6.8	e6.5	e6.5	e6.5	e5.2	e5.0	e5.0	e6.1	e14	3.3	3.3	1.6
23	e7.0	e6.3	e6.5	e6.5	e5.2	e5.0	e5.0	e6.1	e14	3.4	3.6	2.0
24	e7.5	e6.3	e6.5	e6.5	e5.2	e5.0	e5.0	e6.1	15	3.8	3.1	1.6
25	e8.0	e6.3	e6.5	e6.6	e5.1	e5.0	e5.8	e6.5	14	4.3	5.3	1.7
26	e9.0	e6.1	e6.5	e6.3	e5.0	e5.0	e6.3	e7.0	21	3.2	4.1	1.7
27	e8.5	e5.9	e6.0	e6.3	e5.1	e5.0	e6.4	e7.0	24	3.3	2.6	1.7
28	e8.5	e5.8	e6.0	e6.3	e5.0	e5.0	e6.3	e7.0	14	2.8	2.8	1.7
29	e8.4	e5.7	e6.0	e6.4		e5.0	e6.1	e7.5	13	2.5	2.8	1.6
30	e8.1	e5.6	e6.0	e6.4		e5.0	e6.1	e8.0	11	3.2	2.7	1.5
31	e8.1		e6.0	e6.4		e5.0		e25		2.5	2.6	
otal	199.5	202.5	189.7	198.3	156.8	155.6	157.0	216.8	357.5	210.6	84.9	63.4
/lean	6.44	6.75	6.12	6.40	5.60	5.02	5.23	6.99	11.9	6.79	2.74	2.11
/lax	9.0	7.8	6.5	6.8	6.3	5.3	6.4	25	24	17	5.3	2.9
/lin	5.0	5.6	5.6	6.0	5.0	4.8	5.0	6.1	8.5	2.5	1.7	1.5
c-ft	396	402	376	393	311	309	311	430	709	418	168	126

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2005, BY WATER YEAR (WY)

•	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	7.90	14.3	19.1	20.5	20.1	20.1	19.3	20.6	11.1	10.0	14.0	9.30
Max	28.4	58.9	63.0	75.5	55.6	59.0	70.6	166	42.9	41.6	85.3	41.8
(WY)	(1997)	(1998)	(1998)	(1998)	(1998)	(1998)	(1999)	(1999)	(1999)	(1998)	(1997)	(1976)
Min	0.09	0.41	0.34	0.50	2.23	2.10	0.81	2.14	1.77	0.21	0.03	0.08
(WY)	(1979)	(1978)	(1978)	(1978)	(1978)	(1977)	(1978)	(1975)	(1976)	(1978)	(1976)	(1978)

07134100 BIG SANDY CREEK NEAR LAMAR, CO—Continued

SUMMARY STATISTICS

	Calendar Yea	r 2004	Water Yea	r 2005	Water Years 1968 - 2005		
Annual total	2,286.80		2,192.6				
Annual mean	6.25		6.01		15.7		
Highest annual mean					45.6	1999	
Lowest annual mean					2.23	1979	
Highest daily mean	118	Jun 10	25	May 31	1,460	May 4, 1999	
Lowest daily mean	0.11	Apr 19	1.5	Sep 30	a0.00	Aug 13, 1976	
Annual seven-day minimum	0.84	Apr 16	1.6	Sep 24	0.00	Sep 1, 1976	
Maximum peak flow		•	33	Jun 27	^b 2,850	May 4, 1999	
Maximum peak stage			°1.91	Jun 27	9.66	May 4, 1999	
Annual runoff (ac-ft)	4,540		4,350		11,380	•	
10 percent exceeds	11		8.5		41		
50 percent exceeds	5.4		5.9		8.1		
90 percent exceeds	2.1		2.5		1.0		

Maximum gage height, 5.55 ft, May 31, backwater from beaver dam.

Also occurred on many days during 1976-79 water years.

From rating curve extended above 1,470 ft³/s on basis of flow through culvert analysis with flow over road measurement at gage height 9.48 ft.

07134990 WILD HORSE CREEK ABOVE HOLLY, CO

ARKANSAS RIVER BASIN

LOCATION.--Lat 38°03′24″, long 102°08′16″ referenced to North American Datum of 1927, in NE ¼ NE ¼ sec.16, T.23 S., R.42 W., Prowers County, Hydrologic Unit 11020009, on left bank 1,000 ft downstream from County Road No. 34, 0.7 mi northwest of Holly, and 0.7 mi upstream from mouth.

DRAINAGE AREA.--270 mi², of which 60 mi² probably is noncontributing (total area is approximate).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1995 to current year (seasonal records only).

REVISED RECORDS.--WDR CO-01-1: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 3,405 ft above NGVD of 1929, from topographic map. Prior to Apr. 29, 1997, at site 1,050 ft upstream at datum 3.00 ft higher.

REMARKS.--Records fair except for estimated daily discharges and those below 1.0 ft³/s, which are poor. Natural flow of stream affected by diversions for irrigation, ground-water withdrawals, and return flows from irrigated areas, the Buffalo Canal, and the Amity Canal.

EXTREMES FOR PERIOD OF RECORD.--(seasonal only) Maximum discharge, 1,270 ft³/s, May 26, 1996, from slope-area measurement of peak flow, gage height, 6.90 ft, from floodmark, site and datum then in use; maximum gage height, 8.63 ft, Aug. 7, 1997, from floodmark; no flow, Aug. 20-21, 2002, Sept. 14, 2004, and Sept. 5-21, 2005.

EXTREMES FOR CURRENT YEAR.--(seasonal only) Maximum discharge, 416 ft³/s, June 10, gage height, 6.64 ft; no flow, Sept. 5-21.

07134990 WILD HORSE CREEK ABOVE HOLLY, CO—Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2004 TO SEPTEMBER 2005 DAILY MEAN VALUES

[e, estimated]

						le, estimate						
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	3.0	0.76					17	0.23	17	1.2	0.72	0.05
2	3.0	1.1					7.8	0.25	14	2.0	0.70	0.01
3	7.3	1.1					11	0.22	11	2.0	0.58	0.04
4	7.6	0.44					11	0.19	9.9	1.7	0.69	0.01
5	7.0	0.10					11	0.20	9.4	2.3	0.86	0.00
6	7.2	0.05					26	0.32	10	3.7	0.75	0.00
7	3.5	0.04					20	0.25	13	1.6	0.52	0.00
8	3.0	0.04					13	0.78	15	1.6	0.36	0.00
9	0.35	0.05					17	0.75	12	1.3	0.45	0.00
10	0.37	0.11					13	0.93	74	2.0	0.53	0.00
11	5.7	0.08					17	0.88	73	3.1	0.61	0.00
12	5.8	0.09					11	1.5	19	1.0	1.9	0.00
13	12	0.12					2.8	0.56	26	0.88	4.9	0.00
14	43	0.11					0.80	0.45	25	8.4	4.2	0.00
15	62	0.10					e0.20	0.46	23	19	1.3	0.00
16	65	0.08					e0.05	0.57	23	7.6	0.84	0.00
17	63	2.0					e0.05	0.35	17	1.5	0.67	0.00
18	68	2.9					e0.15	0.36	14	1.3	0.53	0.00
19	61	3.0					0.05	0.33	14	1.3	0.60	0.00
20	22	0.96					3.0	0.34	12	1.4	0.72	0.00
21	19	0.25					3.5	0.44	23	1.3	0.79	0.00
22	18	0.23					0.85	0.60	17	1.2	1.3	0.10
23	22	0.21					1.5	0.62	13	1.1	1.3	0.30
24	28	0.19					4.4	1.7	7.5	0.91	1.2	2.1
25	8.4	0.17					9.9	22	11	0.93	1.1	4.4
26	4.6	0.18					6.0	3.0	13	0.79	0.92	2.6
27	2.0	0.08					1.1	4.9	12	0.79	0.45	0.58
28	1.1	0.04					0.38	20	8.9	0.86	0.30	0.26
29	0.91	0.05					1.9	15	1.3	0.84	0.19	0.26
30	0.77	e0.03					0.52	17	1.1	0.71	0.12	0.27
31	0.79							97		0.81	0.08	
Total	555.39	14.66					211.95	192.18	539.1	75.12	30.18	10.98
Mean	17.9	0.49					7.07	6.20	18.0	2.42	0.97	0.37
Max	68	3.0					26	97	74	19	4.9	4.4
Min	0.35	0.03					0.05	0.19	1.1	0.71	0.08	0.00
Ac-ft	1,100	29					420	381	1,070	149	60	22

07134990 WILD HORSE CREEK ABOVE HOLLY, CO—Continued

