.

- -

-

×

 γ : Hilb

Hilb

Sag01].

$$(x_{i_j} - x_{i_k}).$$

$$j < k \in [l]$$

 Δ_{T_i} .

$$\begin{aligned} \operatorname{sp}_T(x) &= \Delta_{(9,2,5)}(x) \Delta_{(3,1,7)}(x) \Delta_{(6,8)}(x) \Delta_{(4)}(x) \\ &= (x_9 - x_2)(x_9 - x_5)(x_2 - x_5)(x_3 - x_1)(x_3 - x_7)(x_1 - x_7)(x_6 - x_8). \end{aligned}$$

 \boldsymbol{x}

$$\operatorname{sgn}(\sigma)\sigma\circ\tau\cdot x$$

 $\mathbb{C}[x_1, x_2, x_3]/(p_1, p_2, p_3) \cong S^{(3)} \oplus 2S^{(2,1)} \oplus S^{(1,1,1)}$ = $\langle 1 \rangle \oplus \langle x_i - x_j \rangle \oplus \langle (x_i - x_j) x_k \rangle \oplus \langle (x_1 - x_2)(x_1 - x_3)(x_2 - x_3) \rangle.$

$$T_{[Z]}\operatorname{Hilb}_{\rho}^G(W)\cong\operatorname{Hom}_A^G(I,A/I),$$

$$\operatorname{GL}_n^{S_n} = \left\{ a \mathbb{1}_n + b \mathbb{1}_n \in \operatorname{GL}_n : a, b \in \mathbb{C}^* \right\},\,$$

$$(\mathbb{C}^*)^2 \stackrel{\cong}{\longrightarrow} \mathrm{GL}_n^{S_n}, \ (s,t) \mapsto t \mathbb{1}_n + \frac{(s-1)t}{s}$$

$$H_{\rho,h} \longrightarrow Hilb$$

$$\rho \cong M^{\lambda^1} \oplus \cdots \oplus M^{\lambda^N},$$

Proof. Let $I \subseteq P = \mathbb{C}[x_1, \dots, x_n]$ be a radical symmetric ideal such that $P/I \cong \rho$ as S_n -

number N of disjoint S_n -orbits with vanishing ideals I_1, \ldots, I_N . The Chinese remainder theorem provides a canonical algebra isomorphism $P/I \cong \bigoplus_{i=1}^N P/I_i$ which is S_n -equivariant, so it suffices to prove the case of only one orbit. Let $q_1, \ldots, q_k \in \mathbb{C}^n$ be the distinct points of this orbit and let $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 1) \vdash n$ be the corresponding partition, i.e., each q_i has m distinct coordinates which occur with multiplicities $\lambda_1, \ldots, \lambda_m$. Again by the Chinese remainder theorem we obtain a canonical isomorphism $P/I \cong \bigoplus_{i=1}^k P/\mathfrak{m}_{q_i}$ of algebras, in particular of vector spaces. We define an S_n -module structure on the direct

$$\overline{f} \in P/\mathfrak{m}_{q_i} \quad \Rightarrow \quad \sigma(\overline{f}) \coloneqq \overline{\sigma(f)} \in P/\mathfrak{m}_{\sigma(q_i)}.$$

inclusion $\mathbb{C} \subseteq P/\mathfrak{m}_{q_i}$ is an isomorphism, so $\bigoplus_{i=1}^k P/\mathfrak{m}_{q_i} \cong M^{\lambda}$ as S_n -modules. \square

containing only radical ideals, so the same is true for the closed subscheme $\mathrm{Hilb}_{\rho}^{S_n}(\mathbb{C}^n)$.

orem 5.2].

scheme $\mathcal{H}_{M^{\lambda}}$ is connected and has dimension m. Moreover, the Hilbert–Chow morphism $\gamma \colon \mathcal{H}_{M^{\lambda}} \longrightarrow \mathbb{C}^n/S_n$ is finite and all fibers over points in $\overline{O(\lambda)}/S_n$ are singletons. Finally, $\overline{O(\lambda)}/S_n \subseteq \operatorname{im}(\gamma) \subseteq \bigcup O(\mu)/S_n$.

Evidence for a positive answer to Question 3.6 is provided by Theorem 3.4, Corollary 3.5 in the cases m = 1 and m = n where the proof is much simpler. In fact, for m = 1 and m = n intersection (p_1, p_2, \ldots, p_n) .

Lemma 3.7. Let F_T^S be a higher Specht polynomial with T any Young tableau of shape

$$\sum_{\tau \in C(T)} \operatorname{sgn}(\tau)(\alpha \circ \tau) \circ \sigma \bigg) (x)$$

$$\sum_{\tau \in C(T)} \operatorname{sgn}(\alpha \circ \tau)(\alpha \circ \tau) \circ \sigma \bigg) (x)$$

$$\sum_{\tau \in C(T)} \operatorname{sgn}(\tau) \tau \circ \sigma \bigg) (x)$$

so $\operatorname{ev}(F_T^S) = \operatorname{ev}(\alpha(F_T^S)) = -\operatorname{ev}(F_T^S)$, hence $\operatorname{ev}(F_T^S) = 0$.

. Instead, applying

the Young symmetrizer $\sum_{\sigma \in R(T)} \sum_{\tau \in C(T)} \operatorname{sgn}(\tau) \tau \circ \sigma$ to any polynomial results in a multiple

 $d(\lambda) := \sum_{i=1}^{n} (i-1)\lambda_i$. The multiplicity of S^{λ} in $P_{d(\lambda)}$ is 1, and it is generated by the Specht

$$P \times P \longrightarrow P$$
, $\langle f, g \rangle = f(\partial_1, \dots, \partial_n)(g(x_1, \dots, x_n))$.

filled in such a way that the integers $l_1 + \ldots + l_{i-1} + 1, \ldots, l_1 + \ldots + l_i$ all appear exactly once in T_i . We write $F_{\mathbf{T}} := \prod_{i=1}^k F_{T_i}$. Lemma 3.7 generalizes to this setting, i.e., every higher similarly as Lemma 3.7.

words, there is a surjective map $l:[m] \to [k]$ such that $l_i = \sum_{j \in l^{-1}(i)} \lambda_j$. Denote by $\mu^i \vdash l_i$ the partition given by those parts of λ indexed by $l^{-1}(i)$. We now denote by $q = q_1, q_2, \ldots, q_s$ the

$$V\coloneqq \left(S^{\mu^1}\otimes 1\otimes \cdots \otimes 1\right)\oplus \cdots \oplus \left(1\otimes 1\otimes \cdots \otimes S^{\mu^k}\right)\subseteq P,$$

all direct summands embedded in the smallest possible degrees $d(\mu^1), \dots, d(\mu^k)$, i.e., V is

summands into V.) For any $f \in P$ we can write $f = f^1 + \ldots + f^k + g$, where f^i is the sum

and only if $\langle f^i, S^{\mu^i} \rangle = 0$ for all i = 1, ..., k, where S^{μ^i} is understood again as the span of all

$$) \otimes \cdots \otimes (\mathbb{C}[x_{n-l_{k+1}}, \dots, x_{n}]/I)$$

ideals corresponding to the partition $\mu^i \vdash l_i$. In particular, $P/I' \cong M^{\mu^1} \otimes \cdots \otimes M^{\mu^k}$ as G-

be the translate of I' whose only support point is q; this translation is Gequivariant. We claim $I_q \subseteq I'_q$. For this, we first observe that the canonical map $V \to P/I_q$ is
injective, i.e., no direct summand of V is contained in I_q . The reason is that the restriction
of the Chinese remainder isomorphism above to $S^{\lambda} \subseteq P_{d(\lambda)}$ is injective. Now, $S^{\lambda} \subseteq P_{d(\lambda)}$ is

of the corresponding Specht polynomials of the μ^i . In particular, any Specht polynomial for μ^i is non-zero in P/I_{q_i} , hence indeed V injects into P/I_q . To see that $I_q \subseteq I$ first translate both ideals G-equivariantly into the origin. Note that V still injects into P/I_0 because the Specht polynomials generating V are not affected by this translation. Now

without loss of generality that $\langle f^1, S^{\mu^1} \rangle \neq 0$. Multiplying f by some monomial h appearing

of f^1 does not annihilate S^{μ^1} . Hence the G-submodule of I_0 generated by f contains an element f' which spans a G-submodule isomorphic to $S^{\mu^1} \otimes 1 \otimes \cdots \otimes 1$ such that the degree $d(\mu^1)$ part of f' is a Specht polynomial in S^{μ^1} . Moreover, f' does not have any non-zero homogeneous components of smaller degrees because $P_{< d(\mu^1)}$ does not contain any copy of $S^{\mu^1} \otimes 1 \otimes \cdots \otimes 1$. Therefore, we may assume f' = a + b with $a \in S^{\mu^1} \subseteq P_{d(\mu^1)}$ a Specht polynomial and $b \in P_{>d(\mu^1)}$. As f' spans a G-module isomorphic to $S^{\mu^1} \otimes 1 \otimes \cdots \otimes 1$, the polynomial b lies in the corresponding isotypic component of P and is divisible by a by Lemma 3.7. Thus inductively, since $\mathfrak{m}^N \subseteq I_0$ for some N, we obtain $a \in I_0$. Therefore, the canonical map $V \to P/I_0$ has a non-trivial kernel, contradicting what we said above. So indeed, $I_q \subseteq I'_q$.

Theorem 3.11 ([Tan82, GP92]). Let $\lambda \vdash n$ and let λ' be its transpose. For $S \subseteq [n]$ we

$$r_{\lambda}(|S|) \coloneqq |S| - n + 1 + \sum_{i=1}^{n-|S|} \lambda$$

A short computation shows that $|S| \ge r_{\lambda}(|S|)$ is equivalent to $|S| \ge n - \lambda_1 + 1$. Under this $e_r(x_S) - x_i e_{r-1}(x_{S \setminus i})$ for $i \in S$ shows that I_{λ} is in fact generated already by the full elementary

the vector space of all S_n -equivariant P-module homomorphisms $I_{\lambda} \to P/I_{\lambda}$. Since I_{λ} lies

 $r_{\lambda}(n-\lambda_2-1)=\cdots=r_{\lambda}(n-\lambda_1+1)$. We abbreviate $e_r=e_r(x_{[n]})$. We will now repeatedly use the relation $e_r(x_{S\setminus i})=e_r(x_S)-x_ie_{r-1}(x_{S\setminus i})$ for all $i\in S$. First we can observe that

$$e_2(x_{\lceil n-1 \rceil}) = e_2 - x_n e_1(x_{\lceil n-1 \rceil}) = e_2 - x_n e_1 + x_n^2,$$

can see that $e_2(x_{\lceil n-1 \rceil}) \in I$. Similarly, $e_r(x_{\lceil n-1 \rceil}) \in I$ for all $r \ge 2 = r_{\lambda}(n-1)$. Inductively,

$$e_r(x_{[n-l]}) = e_r(x_{[n-l] \cup n}) - x_n e_{r-1}(x_{[n-l]})$$
$$= e_r(x_{[n-l] \cup n}) - x_n e_{r-1}(x_{[n-l] \cup n}) + x_n^2 e_{r-2}(x_{[n-l]}),$$

and for $r \ge r_{\lambda}(n-l) = l+1 = r_{\lambda}(n-l+1)+1$ all three terms lie in I. If $\lambda_1 \le \lambda_2 + 1$, this implies $I_{\lambda} = I$. If $\lambda_1 \ge \lambda_2 + 2$, we continue as follows: For all l in the range $\lambda_1 - 1 \ge l \ge \lambda_2 + 1$, the partial elementary symmetric polynomials $e_{r_{\lambda}(|S|)}(x_S)$, |S| = n - l, all have the same degree $\lambda_2 + 1$,

generators in this range are redundant. In the end we obtain $I_{\lambda} = (p_1, x_i^2, S_n(x_1x_2 \cdots x_{\lambda_2+1}))$. On the other hand, $P/I_{\lambda} \cong M^{\lambda} = \bigoplus_{0 \le k \le \lambda_2} S^{(n-k,k)}$ as follows from the combinatorial formula for the Kostka numbers. These two facts together give even more: If $\lambda_1 \ge \lambda_2 + 2$, what we have proven so far applied to the partition $\mu = (\lambda_1 - 1, \lambda_2 + 1)$ shows further that I_{λ} is

$$\bigoplus_{0 \le k \le \lambda_2 + 1} S^{(n-k,k)} \cong P/I_{\mu} \twoheadrightarrow P/I_{\lambda} \cong \bigoplus_{0 \le k \le \lambda_2} S^{(n-k,k)}$$

has kernel S^{μ} , embedded in degree $d(\mu) = \lambda_2 + 1$. Moreover, each Specht module $S^{(n-k,k)}$ in P/I_{λ} is embedded in degree k, hence in degree $k < \lambda_2 + 1$. Therefore, if I' denotes the

 $P/I' P/I_{\lambda}$ which is an isomorphism in degrees $\leq \lambda_2 + 1$. But I_{λ} is generated in degrees $\leq \lambda_2 + 1$, so $I' = I_{\lambda}$.

Since M^{λ} does not contain any copy of S^{μ} , we deduce that a homomorphism $f \in \operatorname{Hom}_{P}^{S_{n}}(I_{\lambda}, P/I_{\lambda})$ is determined already by its values $f(p_{1}) = \alpha \cdot 1$, $f(p_{2}) = \beta \cdot 1$ and $f(x_{i}^{2} - x_{j}^{2}) = \gamma \cdot (x_{i} - x_{j})$ for some $\alpha, \beta, \gamma \in \mathbb{C}$. Hence it suffices to show that α, β, γ must satisfy some non-trivial linear relation. If $\lambda_{1} > \lambda_{2}$ we will show that necessarily $\beta = 0$ γ , finishing the proof. We start with $\lambda_{1} > \lambda_{2}$. Since $x_{1}x_{2}\cdots x_{\lambda_{2}+1} \in I_{\lambda}$, we can consider its image under f. Write $f(x_{1}x_{2}\cdots x_{\lambda_{2}+1}) = f_{0} + f_{1} + \ldots + f_{\lambda_{2}}$ $x_{1}x_{2}\cdots x_{\lambda_{2}+1}$ and therefore maps to both $\frac{\beta}{\pi}x_{2}\cdots x_{\lambda_{2}+1}$ and $x_{1}f(x_{1}x_{2}\cdots x_{\lambda_{2}+1})$ at the same

, we have the following relation: Define $g = (x_1 - x_2)(x_3 - x_4) \cdots (x_{n-1} - x_n)$.

$$- \frac{1}{x_i - x_{i+1}} (x_i^2 - x_{i+1}^2).$$

3.3. Two ideal inclusions. While exploring Tanisaki ideals we encountered the contain-

Hilbert schemes, we do include them as we have not found them in the literature.

$$\tilde{I}_{\mu} = (p_1, \dots, p_{m-1}, S_n \cdot x_1^m, S_n \cdot (x_1 x_2 \cdots x_{R_k(\mu)})^k : 1 \le k \le m-1).$$

and any subset $I \subset [n]$ of cardinality $R_k(\mu)$ we have $\{a_i | i \in I\} \cap \{a_1, \ldots, a_k\} \neq \emptyset$ by the

Corollary 1].

Lemma 3.13. We have $(p_1, \ldots, p_n, \operatorname{sp}_T : \operatorname{sh}(T) \not \trianglerighteq \mu) \subseteq \tilde{I}_{\mu} \subseteq I_{\mu}$.

$$(\operatorname{sp}_T | \operatorname{sh}(T) \not \trianglerighteq \mu) \subseteq (S_n \cdot x_1^m, S_n \cdot (x_1 x_2 \cdots x_{R_n(\mu)})^k : 1 \le k \le m - 1).$$

$$(x_i - x_j).$$

$$i < j$$

$$i, j \in C_k$$

$$\cdots x_{|C_1|+|C_2|-2}^1 \cdots x_{|C_1|+\ldots+|C_{l-1}|-l+2}^{|C_l|-1} \cdots x_{|C_1|+\ldots+|C_l|-l}^1 \cdot \cdots x_{|C_$$

 $\sum_{}^{l}$

$$\sum_{l=1}^{l}$$

. .

$$(\lambda_{k+r} - \lambda_{k+r+1})r$$

$$= \lambda_{k+1} - \lambda_{k+2} + 2\lambda_{k+2} - 2\lambda_{k+3} + \dots$$

$$= \lambda_{k+1} + \lambda_{k+2} + \lambda_{k+3} + \dots$$

Since $\#\{j: (\lambda')_j \geq k\} = \lambda_k$ and because $\mu \not \triangleq \lambda$, there is an integer s with $\mu_1 + \ldots + \mu_s > \lambda_1 + \ldots + \lambda_s$. However, this is equivalent to $n - (\mu_1 + \ldots + \mu_s) < n - (\lambda_1 + \ldots + \lambda_s)$ which in turn is equivalent to $\mu_m + \ldots + \mu_{s+1} + 1 < \lambda_{\operatorname{len}(\lambda)} + \ldots + \lambda_{s+1} + 1$. The left hand side equals $R_s(\mu)$

$$\bigoplus \langle p_1(x_i - x_j) \rangle \oplus \langle x_i^2 - x_j^2 \rangle
\oplus \langle (x_i - x_j)(x_k - x_l) \rangle
= 2S^{(n)} \oplus 2S^{(n-1,1)} \oplus S^{(n-2,2)},$$

$$\oplus \langle p_1(x_i - x_j) \rangle \oplus \langle x_i^2 - x_j^2 \rangle$$

$$\bigoplus \langle p_1^2(x_i - x_j) \rangle \oplus \langle p_2(x_i - x_j) \rangle \oplus \langle p_1(x_i^2 - x_j^2) \rangle \oplus \langle x_i^3 - x_j^3 \rangle
\oplus \langle p_1(x_i - x_j)(x_k - x_l) \rangle \oplus \langle (x_i + x_j + x_k + x_l)(x_i - x_j)(x_k - x_l) \rangle
\oplus \langle (x_i - x_j)(x_i - x_k)(x_j - x_k) \rangle
\oplus \langle (x_i - x_j)(x_k - x_l)(x_s - x_l) \rangle
= 3S^{(n)} \oplus 4S^{(n-1,1)} \oplus 2S^{(n-2,2)} \oplus S^{(n-2,1,1)} \oplus S^{(n-3,3)},$$

$$\bigoplus \langle p_1^2(x_i - x_j) \rangle \oplus \langle p_2(x_i - x_j) \rangle \oplus \langle p_1(x_i^2 - x_j^2) \rangle \oplus \langle x_i^3 - x_j^3 \rangle
\oplus \langle p_1(x_i - x_j)(x_k - x_l) \rangle \oplus \langle (x_i + x_j + x_k + x_l)(x_i - x_j)(x_k - x_l) \rangle
\oplus \langle (x_i - x_j)(x_i - x_k)(x_j - x_k) \rangle
= 3S^{(5)} \oplus 4S^{(4,1)} \oplus 2S^{(3,2)} \oplus S^{(3,1,1)}.$$

$$\bigoplus \langle p_1^2(x_i - x_j) \rangle \oplus \langle p_2(x_i - x_j) \rangle \oplus \langle p_1(x_i^2 - x_j^2) \rangle \oplus \langle x_i^3 - x_j^3 \rangle \\
\oplus \langle (x_i - x_j)(x_i - x_k)(x_j - x_k) \rangle \\
= 3S^{(4)} \oplus 4S^{(3,1)} \oplus S^{(2,2)} \oplus S^{(2,1,1)},$$

$$\bigoplus \langle p_1^2(x_i - x_j) \rangle \oplus \langle p_2(x_i - x_j) \rangle \oplus \langle p_1(x_i^2 - x_j^2) \rangle \\
\oplus \langle (x_1 - x_2)(x_1 - x_3)(x_2 - x_3) \rangle$$

2	$(r-n+1)S^{(n)} \oplus S^{(n-1,1)}$	$(x_i - x_j)_{\geq 2} + \mathfrak{m}^{r-n+1}$ $(p_1(x_i - x_j), x_i^2 - x_j^2, (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^{r-n}$	
3	$S^{(n)} \oplus S^{(n-1,1)}$		
4	$2S^{(n)} \oplus S^{(n-1,1)}$	$m^2 \ (p_1, x_i^2 - x_j^2, (x_i - x_j)(x_k - x_l)) + m^3$	
5	$3S^{(n)} \oplus S^{(n-1,1)}$	$(ap_1^2 + bp_2, p_1(x_i - x_j), x_i^2 - x_j^2, (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^3$	[-1:n]
6	$S^{(n)} \oplus 2S^{(n-1,1)}$	$(p_1, p_2, (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^3$	smooth
		$(p_1,(x_i-x_j)(x_k-x_l))+\mathfrak{m}^3$	
		$(p_1, p_2, (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^4$	
		$(p_1^2, p_2, ap_1(x_i - x_j) + b(x_i^2 - x_j^2), (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^3$	
8	$S^{(5)} \oplus S^{(4,1)} \oplus S^{(3,2)}$		
9	$S^{(4)} \oplus S^{(3,1)} \oplus S^{(2,2)}$		
10	$2S^{(4)} \oplus S^{(3,1)} \oplus S^{(2,2)}$	$(p_1^2, p_2, p_1(x_i - x_j), x_i^2 - x_j^2) + \mathfrak{m}^3$	
11	$3S^{(4)} \oplus S^{(3,1)} \oplus S^{(2,2)}$	$(ap_1^2 + bp_2, p_1(x_i - x_j), x_i^2 - x_j^2) + \mathfrak{m}^3$	smooth
12	$S^{(3)} \oplus 2S^{(2,1)} \oplus S^{(1,1,1)}$	(p_1, p_2, p_3)	
13	$2S^{(3)} \oplus 2S^{(2,1)}$	$(p_1, p_2, (x_1 - x_2)(x_1 - x_3)(x_2 - x_3))$	smooth

metric ideals $I \subseteq P = \mathbb{C}[x_1, \dots, x_n]$ for $n \ge 3$ and such that $r = \dim(P/I) \le 2n$. Note that all unspecified indices in each appearing generator are meant to be *distinct* and run through

only occurring for $n \ge 4$ but not for n = 3. To avoid redundancy in the table, for row 2 one should take $r \ge n + 3$. For example, for r = n + 2 the first ideal of row 2 is the same as that of

Theorem 4.2. Let $n \ge 3$. Table 1 lists all homogeneous symmetric ideals I with $\dim_{\mathbb{C}} P/I =$

If both of p_2 and $x_i^2 - x_i^2$ do not lie in I, then necessarily $I = (p_1, (x_i - x_i)(x_k - x_l)) + \mathfrak{m}^3$

using Lemma 4.4 and observing that $(x_i - x_j)(x_i - x_k)(x_j - x_k) \in ((x_i - x_j)(x_k - x_l)) \subseteq I$ for

$$(x_1 - x_2)(x_1 - x_3)(x_2 - x_3) = (x_3 - x_1) \cdot (x_1 - x_2)(x_3 - x_4) + (x_1 - x_2) \cdot (x_1 - x_3)(x_2 - x_4).$$

For n=3 there are two more possibilities here, namely rows 12 and 13. If both $p_2 \in I$ and $x_i^2 - x_i^2 \in I$, then $I = (p_1) + \mathfrak{m}^2$, row 3. Otherwise, $x_i^2 - x_i^2 \in I$ but $p_2 \notin I$. Applying the

 $(P/I)_3$ does not contain any trivial representation. Moreover, $\dim(P/I)_{\leq 2} = n+1$. However, $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3) \in (x_i^2 - x_i^2)$ for all $n \geq 3$. Indeed, the formula

$$(x_1 - x_2)(x_1 - x_3)(x_2 - x_3) = x_1(x_3^2 - x_2^2) + x_2(x_1^2 - x_3^2) + x_3(x_2^2 - x_1^2)$$

 $(p_1(x_i-x_j), x_i^2-x_j^2, (x_i-x_j)(x_k-x_l)) \subseteq I$, implying $I_3 = P_3$, so we obtain the second ideal

Otherwise, still assuming $I_1 = \langle p_1 \rangle$, we have $n \in \{4, 5\}$ and $(x_i - x_i)(x_k - x_l) \notin I$. If n = 5,

again the Reynolds operator to $(x_1^2 - x_2^2)x_1$, we get $p_3 \in I$. Hence, if $p_2 \in I$, we get row 9. If

Secondly, we assume $I_1 = 0$, so $\dim(P/I)_{\leq 1} = n+1$. For $n \geq 5$ and n = 3, all irreducible S_n -representations except for the trivial and the alternating one have dimension $\geq n-1$. Moreover, the least degree k such that P_k contains an alternating representation is k = (m) which is > n for all $n \geq 4$. Hence, for all $n \geq 5$, this forces that $(P/I)_{\geq 2}$ is either 0, a direct sum of only trivial representations or $S^{(n-1,1)}$, and in the last case (even for n = 3, 4) this forces $I_3 = P_3$ for dimension reasons, so we obtain the third ideal of row 7 for some $(a,b) \neq (0,0)$. If $(P/I)_2 = 0$, then $I = \mathfrak{m}^2$, so we get the first ideal of row 4 (even for n = 3, 4). Otherwise, assume we have any $n \geq 3$ and that $(P/I)_{\geq 2}$ only consists of trivial

two ideals of row 2 or the ideal of row 5 for some $(a,b) \neq (0,0)$ (the case $(a,b) = \lambda(-1,n)$

generated by all non-trivial representations in all degrees $2 \le k \le n-1$ and by \mathfrak{m}^n . Then,

dimension at most 1 for all $k \geq 3$. For this, observe that $p_1(x_i - x_j) \in I$ and $x_i^k - x_j^k \in I$ for all $k \geq 2$ for dimension reasons. Applying again the Reynolds operator to $p_d(x_1 - x_2)x_1$, $d \in \{1,2\}$, and to $(x_1^k - x_2^k)x_1$ gives scalar multiples of $np_dp_2 - p_dp_1^2$ and $np_{k+1} - p_kp_1$, respectively. The claim $\dim(P/J)_k \leq 1$ for all $k \geq 3$ easily follows from this. For dimension reasons, then, $J_k = (x_i - x_j)_k$ or $I_k = P_k$ for all $k \geq 3$. Hence, the same is true for I_k for all $k \geq 3$. This shows that we indeed get one of the three ideals in rows 2 and 5.

representation which is also different from $S^{(n-1,1)}$. For n=4, then, we must have $S^{(2,2)}$ in $(P/I)_2$, i.e., $(x_i-x_j)(x_k-x_l) \notin I$. Hence, $\dim(P/I)_{\leq 2} \geq 7$. Moreover, both $p_1(x_i-x_j)$

alternating representation $S^{(1,1,1)}$ in degree 3, generated by $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$. Then I contains $(p_1(x_i - x_j), x_i^2 - x_j^2)$ for dimension reasons. But we have already seen that then automatically $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3) \in I$ as well, so this is impossible.

$$x_1^3 - x_2^3 \in (x_n p_1(x_1 - x_2), p_1(x_1^2 - x_2^2), p_2(x_1 - x_2), (x_i - x_j)(x_k - x_l)),$$

$$p_2(x_1 - x_2), x_1^3 - x_2^3 \in (x_n p_1(x_1 - x_2), x_i^2 - x_j^2, (x_i - x_j)(x_k - x_l)).$$

$$f \coloneqq n(n-1)(x_1^3 - x_2^3) - (n^2 - 3n + 3)p_2(x_1 - x_2)$$
$$- (2n - 3)p_1(x_1^2 - x_2^2) + n(n - 2)x_n p_1(x_1 - x_2),$$
$$g \coloneqq (n - 2)p_2(x_1 - x_2) - nx_n p_1(x_1 - x_2) + nx_n(x_1^2 - x_2^2)$$

computations. \Box

Table 1, i.e., how to decide which ideals correspond to smooth points of \mathcal{H}_{ρ} . For all ideals

 $\operatorname{Hom}_P^{S_n}(I, P/I) \cong \ker(\beta^*) \cap \operatorname{Hom}_P^{S_n}(P \otimes N_1, P/I).$

 $\ker(\beta^*) \cap \operatorname{Hom}_{S_n}(N_1, \rho),$

$$N_1 = \langle x_i^2 - x_j^2 \rangle \oplus \langle p_1(x_i - x_j) \rangle \oplus \langle (x_i - x_j)(x_k - x_l) \rangle \oplus \langle p_1^2 - np_2 \rangle \oplus \langle p_1^d \rangle.$$
Moreover, $P/I = dS^{(n)} \oplus S^{(n-1,1)} = \langle 1 \rangle \oplus \langle p_1 \rangle \oplus \cdots \oplus \langle p_1^{d-1} \rangle \oplus \langle x_i - x_j \rangle.$ Hence, any $f \in$

$$f((x_i - x_j)(x_k - x_l)) = 0,$$

$$f(x_i^2 - x_j^2) = \alpha(x_i - x_j),$$

$$f(p_1(x_i - x_j)) = \beta(x_i - x_j),$$

$$i=0$$

$$\gamma_i p_1^i,$$

$$i=0$$

$$\delta_i p_1^i.$$

If this f lies in $\operatorname{Hom}_{\mathcal{P}}^{S_n}(I, P/I)$, then necessarily $\gamma_0 = \gamma_1 = \cdots = \gamma_{d-2} = 0$. Indeed, applying

 $(x_2) \cdot p_1^{d-1} = 0 \pmod{I}$ and to $(x_1 - x_2) \sum_{i=0}^{d-1} \delta_i p_1^i = \delta_0 (x_1 - x_2) \pmod{I}$, hence $\delta_0 = 0$.

are among $\delta_1, \ldots, \delta_{d-1}$. By what we have explained above, such a relation arises from a which is non-zero in P/I. If $\deg(g) \geq 2$, then after rescaling we have $g = p_1^k \pmod{I}$ for some $2 \leq k \leq d-1$. But such a syzygy does not exist since no power p_1^k (including k=0 this gives precisely the relation we have already used above to show $\delta_0 = 0$. This proves $\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathcal{P}}^{S_n}(I, P/I)) = d+2$.

dimension d+1. For this, let $a,b,c_2,c_3,\ldots,c_d\in\mathbb{C}$ such that $a\neq b$ and c_2,c_3,\ldots,c_d are all of (b,a,a,\ldots,a) and the d-1 diagonal points $(c_2,\ldots,c_2),\ldots,(c_d,\ldots,c_d)$. The product

polynomials $(x_i - x_j)(x_i + x_j - (a+b))$, $(x_i - x_j)(p_1 - ((n-1)a+b))$ and $(x_i - x_j)(x_k - x_l)$. Fixing c_2, \ldots, c_d and letting (a,b) tend to (0,0) linearly, i.e., along the family (ta,tb), we obtain the ideal $J_{(c_2,\ldots,c_d)} = ((p_1) + \mathfrak{m}^2) \cap \mathfrak{m}_{(c_2,\ldots,c_2)} \cap \cdots \cap \mathfrak{m}_{(c_d,\ldots,c_d)}$. For all distinct c_2,\ldots,c_d ,

$$f(x_i^2 - x_j^2) = \gamma(x_i - x_j),$$

But necessarily $\alpha = 0$ since f maps $p_1^2(x_i - x_j)$ to both $\alpha(x_i - x_j)$ and $\delta p_1(x_i - x_j) = 0 \pmod{I}$.

the vanishing ideal J of two distinct diagonal points $(c, \ldots, c), (d, \ldots, d)$ and the S_n -orbit of (b, a, a, \ldots, a) for $a \neq b$ where we assume (n-1)a+b=nc. Then, clearly, $(p_1-nc)(p_1-nd) \in J$

$$p \coloneqq x_1 x_2 (x_1 - x_2) p_1 - (x_1^2 - x_2^2) p_2 + (x_1 - x_2) p_3 \in ((x_i - x_j)(x_k - x_l)),$$

$$p := n(n-1)(x_1^3 - x_2^3) - (n^2 - 3n + 3)p_2(x_1 - x_2)$$
$$- (2n-3)p_1(x_1^2 - x_2^2) + n(n-2)x_np_1(x_1 - x_2) \in ((x_i - x_j)(x_k - x_l)).$$

$$+n(n-2)\alpha x_n(x_1-x_2)-(2n-3)(x_1^2-x_2^2)\alpha.$$

$$g = n(n-2)x_n(x_1-x_2) - (2n-3)(x_1^2-x_2^2) \in I.$$

Row 7(b). $I = (p_1, p_2, (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^4$ for $n \geq 4$. Here, \mathfrak{m}^4 is already contained in $(p_1, p_2, (x_i - x_j)(x_k - x_l))$, so these generators form a minimal S_n -stable basis of N_1 . Moreover, $\rho = P/I = \langle 1 \rangle \oplus \langle p_3 \rangle \oplus \langle x_i - x_j \rangle \oplus \langle x_i^2 - x_j^2 \rangle = 2S^{(n)} \oplus 2S^{(n-1,1)}$. Hence, any

Row 7(c). $I = (p_1^2, p_2, ap_1(x_i - x_j) + b(x_i^2 - x_j^2), (x_i - x_j)(x_k - x_l)) + \mathfrak{m}^3$. As for Row 5 above,

$$p_3(x_1-x_2)-p_2(x_1^2-x_2^2)+p_1x_1x_2(x_1-x_2)\in((x_i-x_i)(x_k-x_l)).$$

$$((n-1)a+b)^2 q'(a,a,b,a,\ldots,a) + ((n-1)a^2+b^2)q''(a,a,b,a,\ldots,a) = 0$$

for all $a, b \in \mathbb{C}$, and all analogous equations where b is at the i-th position with $3 \le i \le n$. Hence, in all these n-2 equations all coefficients of a^3, a^2b, ab^2, b^3 , which are linear forms in the coefficients of g' and g'', must vanish. A computation shows that the only way in which this is possible is that $g' = \mu(x_1 - x_2)$ and $g'' = \nu(x_1 - x_2)$ for some $\mu, \nu \in \mathbb{C}$. Coming back to $p_1(x_1 - x_2)g + p_1^2g' + p_2g''$, applying the transposition (1,2) to this polynomial, adding the result to it and evaluating on (b, a, a, \ldots, a) shows that $g = \lambda(x_1 + x_2)$ for some $\lambda \in \mathbb{C}$.

must vanish on (b, a, a, ..., a) for all $a, b \in \mathbb{C}$. It can be checked that this is only possible if $\lambda = \mu = \nu = 0$. In particular, we obtain g = 0, so a g with the desired properties does not exist.

$$N_1 = \langle p_1^2, p_2, -2p_1(x_i - x_j) + n(x_i^2 - x_j^2), (x_i - x_j)(x_k - x_l) \rangle.$$
 Moreover, $\rho = P/I = \langle 1 \rangle \oplus \langle p_1 \rangle \oplus \langle x_i - x_j \rangle \oplus \langle p_1(x_i - x_j) \rangle = 2S^{(n)} \oplus 2S^{(n-1,1)}$. Hence, any

$$f(-2p_1(x_i-x_j)+n(x_i^2-x_j^2))=\gamma_0(x_i-x_j)+\gamma_1p_1(x_i-x_j),$$

$$p := (n-2)p_1^2(x_1 - x_2) - n(n-2)p_2(x_1 - x_2)$$

$$- (n-1)(-2p_1(x_1 - x_2) + n(x_1^2 - x_2^2))(x_1 - x_2)$$

$$+ 2(n-1)(-2p_1(x_1 - x_3) + n(x_1^2 - x_3^2))(x_1 - x_2) \in ((x_i - x_j)(x_k - x_l)).$$

$$0 = f(p) = ((n-2)\alpha_0 - n(n-2)\beta_0)(x_1 - x_2) + ((n-2)\alpha_1 - n(n-2)\beta_1)p_1(x_1 - x_2) - (n-1)\gamma_0(x_1 - x_2)^2 + 2(n-1)\gamma_0(x_1 - x_2)(x_1 - x_3).$$

$$-2p_1(x_1-x_2)+n(x_1^2-x_2^2)-(n-2)(b-a)(x_1-x_2)$$

$$N_1 = \langle x_i^2 - x_j^2 \rangle \oplus \langle p_1(x_i - x_j) \rangle \oplus \langle (x_i - x_j)(x_k - x_l) \rangle \oplus \langle p_1^2 - np_2 \rangle \oplus \langle p_1^d \rangle$$
$$(x_i - x_j)(x_k - x_l),$$

 $c_i p_1^i$,

$$(c_k p_1^k) (x_1 - x_2) - (p_1(x_1 - x_2) + a_1(x_1 - x_2)) \left(\sum_{k=1}^{d-1} c_{k+1} p_1^k \right)$$

$$\sum_{k=1}^{d-1} c_{k+1} p_1^k (x_1 - x_2)$$

 $\equiv -b_1 p_1^2 - (a_1 b_1 + b_2) p_1 - a_1 b_2 \pmod{J}.$

ideal (over \mathbb{Q}). They are $\mathfrak{p}_1 \coloneqq (a_1, b_1, a_2 - b_2)$ and $\mathfrak{p}_2 \coloneqq (b_2 + a_1 + (n-1)a_2, a_1^2 + (n-2)a_1a_2 + a_2b_1)$.

$$N_1 = \langle p_1^2 \rangle \oplus \langle p_2 \rangle \oplus \langle p_1(x_i - x_j) \rangle \oplus \langle (x_i - x_j)(x_k - x_l) \rangle \oplus \langle p_3 \rangle$$

$$(x_i - x_j)(x_k - x_l),$$

 $(Z \cap H)_{\mathrm{red}} \hookrightarrow H \stackrel{\varphi}{\longrightarrow} \mathrm{Hilb}$

$$\gamma: \mathcal{H}_{\rho} \longrightarrow \mathrm{Hilb}_{l}(\mathbb{C}^{n}/S_{n})$$

$$\mathcal{H}ilb_{\mathbb{C}[S_n]^{\oplus l}}^{S_n}(\mathbb{C}^n)(T) \to \mathcal{H}ilb_l(\mathbb{C}^n/S_n)(T)$$

$$\mathcal{J} \otimes_{\mathcal{O}_T[p_1,\ldots,p_n]} \mathcal{O}_T[x_1,\ldots,x_n] \hookrightarrow \mathcal{O}_T[x_1,\ldots,x_n].$$

$$(\mathcal{O}_T[p_1,\ldots,p_n]/\mathcal{J}) \otimes_{\mathcal{O}_T[p_1,\ldots,p_n]} \mathcal{O}_T[x_1,\ldots,x_n]$$

$$\mathcal{I}^{S_n} \otimes_{\mathcal{O}_T[p_1,\ldots,p_n]} \mathcal{O}_T[x_1,\ldots,x_n] \subseteq \mathcal{I}.$$

Question 5.4. Is it true that for every S_n -representation ρ there exists k_0 such that for all

etry. 2