Katedra Energoelektryki Zespół Urządzeń Elektroenergetycznych		Laboratorium Urządzeń i Instalacji Elektrycznych		
Rok akad.: 2019/20	Nr grupy lab. :	Skład grupy:		
Studia : S1I/ ETK	2	Kacper Borucki (protokół, sprawozdanie) Robert Leśniak		
Rok/semestr: III/5	3	Artur Walaszczyk		
Ćwiczenie nr : 13		Data wykonania ćwiczenia	Data oddania sprawozdania	Ocena
Sterowanie silników indukcyjnych stycznikami		2019-11-26	2019-12-03	

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z budową i działaniem styczników oraz prostych układów sterowania silników, a także poznanie zasad rysowania i odczytywania schematów elektrycznych w postaci skupionej i rozwiniętej.

2. Przebieg ćwiczenia

- Przygotowanie schematów rozwinietych badanych obwodów:
 - o Obwodu załącz-wyłącz z bezpiecznikiem
 - Obwodu załącz-wyłącz z wyłącznikiem silnikowym
 - o Obwodu załącz-wyłącz dla kaskadowego układu silników
- Podłączenie i przetestowanie prawidłowości działania zamodelowanych obwodów.

3. Spis przyrządów

W ćwiczeniu został wykorzystany stół badawczy wraz z zamontowanymi na nim urządzeniami elektrycznymi przy stanowisku do wykonywania ćwiczenia 13, a także dwa silniki indukcyjne o mocy 1,5 kW.

4. Układy pomiarowe

Schemat 1: Silnik indukcyjny z bezpiecznikiem:

Schemat 2: Silnik indukcyjny z wyłącznikiem silnikowym:

Schemat 3: Układ sterowania kaskadowego układu silników:

Za1: $M2 \rightarrow M1$ Wy1: $M1 \rightarrow M2$

5. Uwagi i wnioski

- W trakcie wykonywania ćwiczenia istotną jego częścią było zrozumienie zasady działania badanego obwodu, a także sposobu przedstawienia go na schemacie. Po zapoznaniu się z podstawowymi schematami załącz-wyłącz, dużo łatwiej było przejść do zaprojektowania schematu dla układu kaskadowego silników.
- Zaletami zastosowania trzech bezpieczników jako zabezpieczenia silnika jest niższy koszt, a
 także mniejsza awaryjność zabezpieczeń. Zaletą zastosowania wyłącznika silnikowego jest
 wyłączanie obwodu silnika przy awarii jednej fazy czyli zmniejszenie ryzyka uszkodzenia
 silnika a także krótsza przerwa techniczna spowodowana zakłóceniem, ponieważ w
 przeciwieństwie do bezpiecznika istnieje tu możliwość szybkiego ponownego uruchomienia
 maszyny.
- Zastosowany układ kaskadowy spełnił swoje zadanie, aczkolwiek istnieje możliwość
 uproszczenia go na kilka sposobów: np. wyzwalacze wyłączników termicznych można
 przesunąć na sam początek obwodu. Dałoby to lepsze zabezpieczenie w przypadku
 nadmiernego prądu, ponieważ niezależnie od tego, w którym silniku powstałby problem cały
 obwód zostałby odłączony od zasilania.
- Jednym z możliwych usprawnień dla badanego obwodu kaskadowego byłoby zastosowanie przekaźników czasowych, które pozwoliłyby uniknąć ręcznego uruchamiania i wyłączania silników w odpowiedniej kolejności. Odbywałoby się to za pomocą jednego przycisku załącz i jednego przycisku wyłącz, co również stanowiłoby uproszczenie obwodu sterowania.