CLAIMS

1. The use as a plant fungicide of a compound of the general formula (1):

$$X \longrightarrow Q \longrightarrow R^3 \longrightarrow R^4$$

$$X \longrightarrow Q \longrightarrow R^1 \longrightarrow Q \longrightarrow R^2$$

$$X \longrightarrow Q \longrightarrow R^3 \longrightarrow R^4$$

$$X \longrightarrow Q \longrightarrow R^3 \longrightarrow R^4$$

$$(1)$$

wherein

5

10

15

20

25

X, Y and Z are independently H, halogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{2-4} alkenyl, halo(C_{2-4})alkenyl, C_{2-4} alkynyl, halo(C_{2-4})alkynyl, C_{1-4} alkoxy, halo(C_{1-4})alkoxy, -S(O)_n(C_{1-4})alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro, -OSO₂(C_{1-4})alkyl where the alkyl group is optionally substituted with fluoro, cyano, nitro, C_{1-4} alkoxycarbonyl, -CONR'R", -COR', -NR'COR" or -NR'COOR" where R' and R" are independently H or C_{1-4} alkyl and R" is C_{1-4} alkyl, provided that at least one of X and Z is other than H; C_{1-4} alkyl group;

 R^2 is H, $C_{1.4}$ alkyl, $C_{1.4}$ alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with $C_{1.4}$ alkoxy; R^3 and R^4 are independently H, $C_{1.3}$ alkyl, $C_{2.3}$ alkenyl or $C_{2.3}$ alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or

 R^3 and R^4 join with the carbon atom to which they are attached to form a 3 or 4 membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C_{1-4} alkyl; and

 R^5 is H, $C_{1.4}$ alkyl or $C_{3.6}$ cycloalkyl in which the alkyl or cycloalkyl group is optionally substituted with halo, hydroxy, $C_{1.6}$ alkoxy, cyano, $C_{1.4}$ alkylcarbonyloxy, aminocarbonyloxy, mono- or di($C_{1.4}$)alkylaminocarbonyloxy, -S(O)_n($C_{1.6}$)- alkyl where n is 0, 1 or 2, triazolyl, tri($C_{1.4}$)-alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, or

R⁵ is optionally substituted phenyl, optionally substituted thienyl or optionally

30

substituted benzyl,

in which the optionally substituted phenyl and thienyl rings of the R⁵ values are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₂₋₄ alkenyloxy, C₂₋₄ alkynyloxy, halo(C₁₋₄)alkyl, halo(C₁₋₄)alkoxy, C₁₋₄ alkylthio, halo(C₁₋₄)alkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR^mRⁿ, -NHCOR^m, -NHCONR^mRⁿ, -CONR^mRⁿ, -SO₂R^m, -OSO₂R^m, -COR^m, -CR^m=NRⁿ or -N=CR^mRⁿ, in which R^m and Rⁿ are independently hydrogen, C₁₋₄ alkyl, halo(C₁₋₄)alkyl, C₁₋₄ alkoxy, halo-(C₁₋₄)alkoxy, C₁₋₄ alkylthio, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl(C₁₋₄)alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C₁₋₄ alkyl or C₁₋₄ alkoxy.

- The use as a plant fungicide of a compound of the general formula (1) according to claim 1 wherein X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H.
 - 3. The use as a plant fungicide of a compound of the general formula (1) according to claim 1 or 2 wherein R¹ is methyl, ethyl, n-propyl, or n-butyl.
- 25 4. The use as a plant fungicide of a compound of the general formula (1) according to claim 1 or 2 wherein R¹ is methyl or ethyl.
 - 5. The use as a plant fungicide of a compound of the general formula (1) according to any one of the preceding claims wherein R² is H.
 - 6. The use as a plant fungicide of a compound of the general formula (1) according to any one of the preceding claims wherein both R³ and R⁴ are methyl.

20

25

30

7. The use as a plant fungicide of a compound of the general formula (1) according to any one of the preceding claims wherein R⁵ is H, methyl, hydroxymethyl, methoxymethyl, 1-methoxyethyl, tert-butyldimethylsilyloxymethyl, 3-cyanopropyl, 3-(1,2,4-triazol-1-yl)propyl, 3-methylthiopropyl, 3-methanesulphinylpropyl or 3-methanesulphonylpropyl.

- 51 -

- 8. The use as a plant fungicide of a compound of the general formula (1) according to claim 1 wherein
- X, Y and Z are independently H, halogen, C₁₋₄ alkyl, halo(C₁₋₄)alkyl, C₂₋₄ alkenyl, halo(C₂₋₄)alkenyl, C₂₋₄ alkynyl, halo(C₂₋₄)alkynyl, C₁₋₄ alkoxy, halo(C₁₋₄)alkoxy, -S(O)_n(C₁₋₄)alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro, -OSO₂(C₁₋₄)alkyl where the alkyl group is optionally substituted with fluoro, cyano, nitro, C₁₋₄ alkoxycarbonyl, -CONR'R", -COR' or -NR'COR" where R' and R" are independently H or C₁₋₄ alkyl, provided that at least one of X and Z

R¹ is a straight-chain C₁₋₄ alkyl group;

is other than H;

 R^2 is H, C_{1-4} alkyl, C_{1-4} alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with C_{1-4} alkoxy;

R³ and R⁴ are independently H, C₁₋₃ alkyl, C₂₋₃ alkenyl or C₂₋₃ alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or

 R^3 and R^4 join with the carbon atom to which they are attached to form a 3 or 4 membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C_{1-4} alkyl; and

 R^5 is H, $C_{1.4}$ alkyl or $C_{3.6}$ cycloalkyl in which the alkyl or cycloalkyl group is optionally substituted with halo, hydroxy, $C_{1.6}$ alkoxy, $C_{1.6}$ alkylthio, cyano, $C_{1.4}$ alkylcarbonyloxy, aminocarbonyloxy or mono- or di($C_{1.4}$)alkylaminocarbonyloxy, tri($C_{1.4}$)-alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, or

R⁵ is optionally substituted phenyl, optionally substituted thienyl or optionally

10

25

substituted benzyl,

in which the optionally substituted phenyl and thienyl rings of the R⁵ values are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₂₋₄ alkenyloxy, C₂₋₄ alkynyloxy, halo(C₁₋₄)alkyl, halo(C₁₋₄)alkoxy, C₁₋₄ alkylthio, halo(C_{1-4})alkylthio, hydroxy(C_{1-4})alkyl, C_{1-4} alkoxy(C_{1-4})alkyl, C_{3-6} cycloalkyl, C₃₋₆ cycloalkyl(C₁₋₄)alkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR^mRⁿ, -NHCOR^m, -NHCONR^mRⁿ, -CONR^mRⁿ, -SO₂R^m, -OSO₂R^m, -COR^m, -CR^m=NRⁿ or -N=CR^mRⁿ, in which R^m and Rⁿ are independently hydrogen, C₁₋₄ alkyl, halo(C₁₋₄)alkyl, C₁₋₄ alkoxy, halo-(C₁₋₄)alkoxy, C₁₋₄ alkylthio, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl(C₁₋₄)alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{1-4} alkyl or C_{1-4} alkoxy.

9. The use as a plant fungicide of a compound of the general formula (1) according 15 to claim 1 wherein X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H; R¹ is methyl, ethyl, n-propyl or n-butyl; R² is H; R³ and R⁴ 20 are both methyl; and R⁵ is H, methyl, hydroxymethyl, methoxymethyl, 1methoxyethyl, tert-butyldimethylsilyloxymethyl, 3-cyanopropyl, 3-(1,2,4-triazol-1.-yl)propyl, 3-methylthiopropyl, 3-methanesulphinylpropyl or 3methanesulphonylpropyl.

A compound of the general formula (1): 10.

$$X \longrightarrow Q \longrightarrow Q \longrightarrow Q$$

$$X \longrightarrow Q$$

$$Y \longrightarrow$$

wherein

10

15

20

25

30

X, Y and Z are independently H, halogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{2-4} alkenyl, halo(C_{2-4})alkenyl, C_{2-4} alkynyl, halo(C_{2-4})alkynyl, C_{1-4} alkoxy, halo(C_{1-4})alkoxy, -S(O)_n(C_{1-4})alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro, -OSO₂(C_{1-4})alkyl where the alkyl group is optionally substituted with fluoro, cyano, nitro, C_{1-4} alkoxycarbonyl, -CONR'R", -COR', -NR'COR" or -NR'COOR" where R' and R" are independently H or C_{1-4} alkyl and R" is C_{1-4} alkyl, provided that at least one of X and Z is other than H; C_{1-4} alkyl group;

 R^2 is H, C_{1-4} alkyl, C_{1-4} alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with C_{1-4} alkoxy; R^3 and R^4 are independently H, C_{1-3} alkyl, C_{2-3} alkenyl or C_{2-3} alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or

R³ and R⁴ join with the carbon atom to which they are attached to form a 3 or 4 membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C₁₋₄ alkyl; and

 R^5 is H, C_{1-4} alkyl or C_{3-6} cycloalkyl in which the alkyl or cycloalkyl group is optionally substituted with halo, hydroxy, C_{1-6} alkoxy, cyano, C_{1-4} alkylcarbonyloxy, aminocarbonyloxy, mono- or di(C_{1-4})alkylaminocarbonyloxy, -S(O)_n(C_{1-6})-alkyl where n is 0, 1 or 2, triazolyl, tri(C_{1-4})-alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, or

R⁵ is optionally substituted phenyl, optionally substituted thienyl or optionally substituted benzyl,

in which the optionally substituted phenyl and thienyl rings of the R⁵ values are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₂₋₄ alkenyloxy, C₂₋₄ alkynyloxy, halo(C₁₋₄)alkyl, halo(C₁₋₄)alkoxy, C₁₋₄ alkylthio, halo(C₁₋₄)-alkylthio, hydroxy(C₁₋₄)alkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl(C₁₋₄)alkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR^mRⁿ, -NHCOR^m, -NHCONR^mRⁿ, -CONR^mRⁿ, -SO₂R^m, -OSO₂R^m, -COR^m, -CR^m=NRⁿ or -N=CR^mRⁿ, in which R^m and Rⁿ are

10

25

independently hydrogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy, halo(C_{1-4})alkoxy, C_{1-4} alkylthio, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl(C_{1-4})alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{1-4} alkyl or C_{1-4} alkoxy;

provided that R^5 is not H when (i) X, Z, R^1 , R^3 and R^4 are all methyl and Y, and R^2 are both H, (ii) X, Z, R^3 and R^4 are all methyl, Y is chloro, R^1 is ethyl and R^2 is H, (iii) X and Z are both chloro, R^1 is methyl or ethyl, R^3 and R^4 are both methyl and Y and R^2 are both H, (iv) X, Y and Z are all chloro, R^1 , R^3 and R^4 are all methyl and R^2 is H, and (v) Y is chloro, Z is trifluoromethyl, R^1 , R^3 and R^4 are all methyl and X and R^2 are both H.

11. A compound of the general formula (1):

$$X \longrightarrow O \longrightarrow R^3 \longrightarrow R^4$$

$$Y \longrightarrow Z \longrightarrow (1)$$

$$(1)$$

wherein

X, Y and Z are independently H, fluoro, bromo, iodo, C₂₋₄ alkyl, halo(C₁₋₄)alkyl, C₂₋₄ alkenyl, halo(C₂₋₄)alkenyl, C₂₋₄ alkynyl, halo(C₂₋₄)alkynyl, C₁₋₄ alkoxy, halo-(C₁₋₄)alkoxy, -S(O)_n(C₁₋₄)alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro, -OSO₂(C₁₋₄)alkyl where the alkyl group is optionally substituted with fluoro, cyano, nitro, C₁₋₄ alkoxycarbonyl, -CONR'R", -COR', -NR'COR" or -NR'COOR" where R' and R" are independently H or C₁₋₄ alkyl and R" is C₁₋₄ alkyl, provided that at least one of X and Z is other than H; R¹ is a straight-chain C₁₋₄ alkyl group;

 R^2 is H, C_{1-4} alkyl, C_{1-4} alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with C_{1-4} alkoxy;

R³ and R⁴ are independently H, C₁₋₃ alkyl, C₂₋₃ alkenyl or C₂₋₃ alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or

R³ and R⁴ join with the carbon atom to which they are attached to form a 3 or 4

10

15

20

25

membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C_{1-4} alkyl; and

 R^5 is H, $C_{1.4}$ alkyl or $C_{3.6}$ cycloalkyl in which the alkyl or cycloalkyl group is optionally substituted with halo, hydroxy, $C_{1.6}$ alkoxy, cyano, $C_{1.4}$ alkylcarbonyloxy, aminocarbonyloxy, mono- or di($C_{1.4}$)alkylaminocarbonyloxy, -S(O)_n($C_{1.6}$)-alkyl where n is 0, 1 or 2, triazolyl (e.g. 1,2,4-triazol-1-yl), tri($C_{1.4}$)-alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, or R^5 is optionally substituted phenyl, optionally substituted thienyl or optionally substituted benzyl,

in which the optionally substituted phenyl and thienyl rings of the R^5 values are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{2-4} alkenyl-oxy, C_{2-4} alkynyloxy, halo(C_{1-4})alkyl, halo(C_{1-4})alkoxy, C_{1-4} alkylthio, halo(C_{1-4})-alkylthio, hydroxy(C_{1-4})alkyl, C_{1-4} alkoxy(C_{1-4})alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl, phenoxy, benzyloxy, benzyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR^mRⁿ, -NHCOR^m, -NHCONR^mRⁿ, -CONR^mRⁿ, -SO₂R^m, -OSO₂R^m, -COR^m, -CR^m=NRⁿ or -N=CR^mRⁿ, in which R^m and Rⁿ are independently hydrogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy, halo(C_{1-4})alkoxy, C_{1-4} alkylthio, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl(C_{1-4})alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{1-4} alkyl or C_{1-4} alkoxy.

12. A compound of the general formula (1):

wherein

X, Y and Z are independently H, halogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{2-4} alkenyl, halo(C_{2-4})alkenyl, C_{2-4} alkynyl, halo(C_{2-4})alkynyl, C_{1-4} alkoxy, halo(C_{1-4})alkoxy,

Ţ.

10

15

20

25

30

-S(O)_n(C₁₋₄)alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro, -OSO₂(C₁₋₄)alkyl where the alkyl group is optionally substituted with fluoro, cyano, nitro, C₁₋₄ alkoxycarbonyl, -CONR'R", -COR', -NR'COR" or -NR'COOR" where R' and R" are independently H or C₁₋₄ alkyl and R" is C₁₋₄ alkyl, provided that at least one of X and Z is other than H; R^1 is a straight-chain C₁₋₄ alkyl group; R^2 is H, C₁₋₄ alkyl, C₁₋₄ alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with C₁₋₄ alkoxy;

R³ and R⁴ are independently H, C₁₋₃ alkyl, C₂₋₃ alkenyl or C₂₋₃ alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or

 R^3 and R^4 join with the carbon atom to which they are attached to form a 3 or 4 membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C_{1-4} alkyl; and

 R^5 is $C_{1.4}$ alkyl or $C_{3.6}$ cycloalkyl in which the alkyl or cycloalkyl group is optionally substituted with halo, hydroxy, $C_{1.6}$ alkoxy, cyano, $C_{1.4}$ alkylcarbonyloxy, aminocarbonyloxy, mono- or di($C_{1.4}$)alkylaminocarbonyloxy, -S(O)_n($C_{1.6}$)-alkyl where n is 0, 1 or 2, triazolyl (e.g. 1,2,4-triazol-1-yl), tri($C_{1.4}$)-alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, or R^5 is optionally substituted phenyl, optionally substituted thienyl or optionally substituted benzyl,

in which the optionally substituted phenyl and thienyl rings of the R^5 values are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{2-4} alkenyl-oxy, C_{2-4} alkynyloxy, halo(C_{1-4})alkyl, halo(C_{1-4})alkoxy, C_{1-4} alkylthio, hydroxy(C_{1-4})alkyl, C_{1-4} alkoxy(C_{1-4})alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR^mRⁿ, -NHCOR^m, -NHCONR^mRⁿ, -CONR^mRⁿ, -SO₂R^m, -OSO₂R^m, -COR^m, -CR^m=NRⁿ or -N=CR^mRⁿ, in which R^m and Rⁿ are independently hydrogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy, halo(C_{1-4})alkoxy, C_{1-4} alkylthio, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl, phenyl or benzyl, the

phenyl and benzyl groups being optionally substituted with halogen, C_{1-4} alkyl or C_{1-4} alkoxy.

- 13. A compound according to claim 10 or 12 wherein X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H; R¹ is methyl, ethyl, n-propyl or n-butyl; R² is H; R³ and R⁴ are both methyl; and R⁵ is methyl, hydroxymethyl, methoxymethyl, 1-methoxyethyl, tert-butyldimethylsilyloxymethyl, 3-cyanopropyl, 3-(1,2,4-triazol-1-yl)propyl, 3-methylthiopropyl, 3-methanesulphinylpropyl or 3-methanesulphonylpropyl.
- 14. A process for preparing a compound of the general formula (1) as defined in claim
 15 1 as herein described.
 - 15. A fungicidal composition comprising a fungicidally effective amount of a compound of the general formula (1) as defined in claim 1 and a suitable carrier or diluent therefor.

20

25

16. A method of combating or controlling phytopathogenic fungi which comprises applying a fungicidally effective amount of a compound of the general formula (1) as defined in claim 1 or a composition according to claim 15 to a plant, to a seed of a plant, to the locus of the plant or seed or to soil or any other plant growth medium.