

Estudante:

PROPOSTA | Atividade de Aplicação

Responda as questões apresentadas a seguir, buscando elementos conceituais no Módulo de Aprendizagem para desenvolver sua resposta.

- 1) Construa AFDs (Autômatos Finitos Determinísticos) que reconheçam as linguagens abaixo, com Σ = {0, 1}:
 - a) $L = \{00\}$
 - b) $L = \{00,11\}$
 - c) $L = \{001,011\}$
 - d) $L = \{00,11,001,011\}$
 - e) L = $\{1w0 \mid w \in \{0,1\}^*\}$, ou seja, todos números binários que começam por 1 e terminam por 0.
 - f) L = $\{w \mid w \in \{0,1\}^* \{\epsilon\}\}\$, ou seja, todos números binários exceto a palavra vazia.
 - g) $L = \{w \mid w \in \{0,1\}^* \ e \mid w \mid \le 3\}$, ou seja, todos números binários com no máximo 3 bits, inclusive a palavra vazia.
 - h) $L = \{10^{n}10^{m} \mid n,m > 0\}$
- 2) Descreva com suas palavras a linguagem reconhecida pelo seguinte autômato:

- 3) Construa Autômatos Finitos Determinísticos que reconheçam as seguintes linguagens:
 - a) L = $\{w \in \{0,1\}^* \mid cada\ 0 \ em\ w\ \'e\ imediatamente\ seguido\ por\ 1\}$
 - b) L = $\{w \in \{0,1\}^* \mid \text{cada 0 em } w \text{ \'e imediatamente precedido e imediatamente seguido por 1}\}$
 - c) $L = \{w \in \{0,1\}^* \mid w \text{ tem } 0101 \text{ como subpalavra}\}$
 - d) $L = \{0w001 / w \in \{0,1\}^*\}$

▼ Registre neste espaço sua resposta!

- 1. Construa AFDs (Autômatos Finitos Determinísticos) que reconheçam as linguagens abaixo, com Σ = {0, 1}:
 - a) $L = \{00\}$
 - b) $L = \{00,11\}$
 - c) $L = \{001,011\}$
 - d) L = {00,11,001,011}
 - e) $L = \{1w0 \mid w \in \{0,1\}^*\}$, ou seja, todos números binários que começam por 1 e terminam por 0.
 - f) L = $\{w \mid w \in \{0,1\}^*-\{\epsilon\}\}$, ou seja, todos números binários exceto a palavra vazia.
 - g) L = $\{w \mid w \in \{0,1\}^* \text{ e } |w| \leq 3\}$, ou seja, todos números binários com no máximo 3 bits, inclusive a palavra vazia.
 - h) $L = \{10^{n}10^{m} \mid n,m > 0\}$

a)

g)

h)

2. Descreva com suas palavras a linguagem reconhecida pelo seguinte autômato:

Pode começar com 0 ou com 1, a segunda "letra" tem que ser igual a primeira, e ela pode se repetir quantas vezes, e não pode terminar com o mesmo símbolo que começou. Ou seja, se começar em 0, tem que ser seguido de ao menos um 0, e então quantos 1's se quiser, sabendo que, caso um zero seja adicionado, é necessário que outro 1 seja inserido para encerrar a palavra, podendo ser repetido indefinidamente. A mesma explicação é válida caso o primeiro símbolo seja o 1, mas ao contrário.

Exemplo de palavras inválidas: { 01, 10, 0011100, 1100011 }

- a) $L = \{w \in \{0,1\}^* \mid \text{cada 0 em w \'e imediatamente seguido por 1}\}$
- b) L = $\{w \in \{0,1\}^* \mid \text{cada 0 em w \'e imediatamente precedido e imediatamente seguido por 1}\}$
- c) $L = \{w \in \{0,1\}^* \mid w \text{ tem 0101 como subpalavra}\}$
- d) $L = \{0w001 \mid w \in \{0,1\}^*\}$

b)

