

Jed Quiz - 30 IIIIII					
	Grade received 100%	Latest Submission Grade 100%	To pass 80% or higher	Go to next item	
	1. Which of these best desc	cribes unsupervised learning?	1/1 point		
	 A form of machine le 	earning that finds patterns using un	labeled data (x).		
	A form of machine learning that finds patterns in data using only labels (y) but without any inputs (x). A form of machine learning that finds patterns without using a cost function.			uts (x) .	
	A form of machine le	earning that finds patterns using lab			
		ning uses unlabeled data. The train e. The data was height and weight b	ing examples do not have targets or lab out no target size.	els "y". Recall	
	2.			1/1 point	
		nts are true about K-means? Check a	II that apply.		
				and a second for	
	If each example x is numbers.	a vector of 5 numbers, then each cli	uster centroid μ_k is also going to be a ve	ectol 01 2	
		μ_k matches the dimension of the ex	amples.		
	✓ The number of clust	ter assignment variables $c^{\left(i ight)}$ is equa	al to the number of training examples.		
		ch centroid example $\left(i ight)$ is assigned	to.		
	☐ The number of clust	ter centroids μ_k is equal to the num	ber of examples.		
		-means with $K=3$ clusters, then			
	⊘ Correct				
	$c^{(i)}$ describes whi		o. If $K=3$, then $c^{\left(i\right)}$ would be one of	1,2 or 3	
	assuming counting	g starts at 1.			
	3.			1/1 point	
	You run K-means 100 tin	nes with different initializations. Hov	v should you pick from the 100 resulting	g solutions?	
		at was the point of random initializa	tion.		
	Pick the one with th	e lowest cost J			
	O Average all 100 solu	tions together.			
	O Pick the last one (i.e	., the 100th random initialization) b	ecause K-means always improves over	time	
	Correct K-means can arriv the solution with t		n initialization. After running repeated t	trials, choose	
		mpute the value of the cost function statements should be true?	o $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$ afte	er each 1/1 point	
	O The cost can be grea	ater or smaller than the cost in the p	revious iteration, but it decreases in the	e long run.	
	The cost will either of	decrease or stay the same after each	iteration		
	O There is no cost fund	ction for the K-means algorithm.			
	O Because K-means tr	ies to maximize cost, the cost is alw	ays greater than or equal to the cost in t	the previous	
	iteration.	-			

Correct The cost never increases. K	means always converges.
In K-means, the elbow method is	a method to
Choose the number of cluster	rs K
O Choose the maximum number	er of examples for each cluster

1/1 point

O Choose the best random initialization
O Choose the best number of samples in the dataset

⊘ Correct

The elbow method plots a graph between the number of clusters K and the cost function. The 'bend' in the cost curve can suggest a natural value for K. Note that this feature may not exist or be significant in some data sets.