Bilgisayar Organizasyonu ve Mimarisi

Hafta 3

Hafıza İşlemleri

 Arm Load-Store model: Sadece hafıza komutları erişebilir.

 Hafızadaki veri ile işlem yapabilmek için öncelikle kaydedicilere aktarım yapmak gerekiyor.

Hafıza Komutları

Temel olarak iki komut vardır.

• LDR R1,[R2]: Hafızada R2 adresindeki değer R1 kaydedicisine aktarılır.

• STR R1,[R2]: R1 Kaydedicisindeki değer hafızadaki R2 adresindeki yere aktarılır.

Offset Modlari

 Immediate value offset: Sayısal bir değer kullanılarak ulaşılır.

Register offset: Kaydedicideki değer ile ulaşılır.

Scaled register offset: Kaydedici kaydırılarak erişilir.

Adresleme Modları

- Offset Adresleme: ofsetlenen adresteki değer işleme alınır. Base register değişmez.
- Pre-Indexed : Base register değişir, ardından bu adresteki değer üzerinden işlem yapılır.

 Post-Indexed: Önce ofsetlenen adresteki değer işlenir ardından base register değeri değişir. • ldr r2, [r1, #4];

• ldr r2, [r1, #4]!; pre-indexed r1=r1+4

• ldr r3, [r1], #4; post-indexed r1=r1+4

RØ	R1	R2	R3
0x00010098	0x0001009c	0x00000003	0x00000000

ldr r0, adr_var1
ldr r1, adr_var2
ldr r2, [r0]
str r2, [r1, r2]
str r2, [r1, r2]!
ldr r3, [r1], r2

Memory

Scaled Register

• LDR R1, [R2, R3, <shifter>]

• STR R1, [R2, R3, <shifter>]

• LDR r2, [r1, r3, LSL#2]

LDR PC-RELATIVE ADDRESS

- Arm assembly 8 bit immediate value
- ISA sebebiyle

• LDR R3,=123456

- Pseudo-Instruction
- Literal pool referans eder. (sabit, string, offset literal pool içerisinde)

Data Allocation

Directive	Description	Memory Space
DCB	Define Constant Byte	Reserve 8-bit values
DCW	Define Constant Half-word	Reserve 16-bit values
DCD	Define Constant Word	Reserve 32-bit values
DCQ	Define Constant	Reserve 64-bit values
DCFS	Define single-precision	Reserve 32-bit values
	floating-point numbers	
DCFD	Define double-precision	Reserve 64-bit values
	floating-point numbers	
SPACE	Defined Zeroed Bytes	Reserve a number of zeroed bytes
FILL	Defined Initialized Bytes	Reserve and fill each byte with a value

Data Allocation

```
AREA
        myData, DATA, READWRITE
hello
        DCB
              "Hello World!",0 ; Allocate a string that is null-terminated
dollar
        DCB
              2,10,0,200
                                ; Allocate integers ranging from -128 to 255
scores
        DCD
             2,3.5,-0.8,4.0
                                ; Allocate 4 words containing decimal values
miles
                                ; Allocate integers between -32768 and 65535
        DCW
              100,200,50,0
        DCFS 3.14
                                ; Allocate a single-precision floating number
Ρi
Ρi
                                ; Allocate a double-precision floating number
        DCFD 3.14
                                ; Allocate 255 bytes of zeroed memory space
        SPACE 255
р
f
        FILL 20,0xFF,1
                                ; Allocate 20 bytes and set each byte to 0xFF
binary
       DCB
              2 01010101
                                ; Allocate a byte in binary
octal
        DCB
              8 73
                                ; Allocate a byte in octal
                                ; Allocate a byte initialized to ASCII of 'A'
char
        DCB
              Ϋ́Α'
```

Örnek

- f,g,h sırasıyla R0,R1,R2
- Dizilerin başlangıç adresi R6,R7

• f=g+h+B[4]

• f=g- A[B[4]]

Soru

Address	Data
12	1
8	6
4	4
0	2

Yukarıdaki hafıza yerlerine bakarak, en büyük veriyi en büyük adrese, küçük verileri küçük adrese denk gelecek şekilde yerleştiren ARM assembly kodlarını yazınız. Dizinin başlangıç adresi R6 kaydedicisindedir.