Směrovače a směrovací protokoly

Směrovač (Router)

- Aktivní síťové zařízení pracující na síťové vrstvě
- Procesem zvaným směrování přeposílá datagramy směrem k cíli

Druhy směrování:

Přímé a nepřímé

- Přímé bez účasti routeru, uvnitř sítí
- Nepřímé s účastí routeru, mezi sítěmi

Symetrické a nesymetrické

- Symetrické cesta tam a zpět je stejná
- Asymetrické cesta tam je jiná než cesta zpět

Statické a dynamické

- Statické ručně vytvořeno administrátorem
- Dynamické vytvořeno automaticky směrovacím protokolem

Směrovací tabulka

- Adresa sítě (síť + maska)
- Gateway
- Ohodnocení cesty
- Vytvoření směrovací tabulky
 - Staticky (zápis administrátora)
 - Dynamicky (směrovací protokol)

Administrativní vzdálenost

- Způsob získání routy
- Čím menší tím lepší
- Statické routy mají vzdálenost (1)

Metriky

- Ohodnocení routy
 - o Počet přeskoků
 - Šířka pásma

Implicitní routa

- Směrování s neúplnou informací
- Pokud router nemá konkrétní informaci o cíli, pošle packet na router hierarchicky výše (ISP), který může mít cíl ve směrovací tabulce
- Je v tabulce routeru jako poslední
- Smyslem je snížení položek ve směrovací tabulce

Floating route

- Záložní routa
 - o Při výpadku primární routy

Vznik

O Vyšší administrativní vzdálenost než primární routa

Třídy algoritmů vnitřního dynamického směrování

- DVA Distance Vector Algorithms
 - Směrovače neznají topologii sítě, pouze rozhraní, přes která se budou posílat pakety do jednotlivých sítí a vzdálenosti k těmto sítím (tzv. Distanční vektory)
 - o Periodické zasílání směrovací tabulky sousedům
 - o Na začátku směrovací tabulka obsahuje pouze přímo připojené sítě
 - Z došlých směrovacích tabulek sousedů (vzdáleností sousedů od jednotlivých sítí) a výběrem nejlepší cesty si směrovač postupně upravuje svou směrovací tabulku
 - Pokud cesta nebyla delší dobu sousedem inzerována, ze směrovací tabulky se odstraní
 - Metrikou je počet "přeskoků" (hop count) na cestě mezi zdrojem a cílem, nezohledňuje parametry jednotlivých linek (přenosovou rychlost, zpoždění, ...)
 - Pomalá konvergence při změnách topologie, zátěž od broadcastu směrovacích tabulek
 - Jednoduchá implementace, historicky starší
- LSA Link State Algorithms
 - o Směrování na základě znalosti "stavu" jednotlivých linek sítě (funkčnost, cena)
 - Směrovače (uzly grafu) znají topologii celé sítě (graf) a ceny jednotlivých linek (ohodnocení hran). Tyto informace udržují v topologické databázi
 - Všechny směrovače mají stejnou topologickou databázi
 - Každý směrovač počítá strom nejkratších cest ke všem ostatním směrovačům (a k nim připojeným sítím) pomocí Dijkstrova algoritmu
 - Každý směrovač sleduje stav a funkčnost linek připojených k němu, při změně okamžitě šíří informaci (o aktuálním stavu svého okolí) všem ostatním směrovačům
 - Okamžitá reakce na změnu stavu linky (výpadek, náběh) → rychlá konvergence
 - Šíří se pouze změny (ale do celé sítě) žádné periodické rozesílání směrovacích tabulek

RIPv1

- DVA
- Nedostupná síť = 16 přeskoků
- Pro malé sítě
- Periodická aktualizace (30 sec)
 - o Pro zneplatněné trasy až 180 sec

Výhody

- Snadná implementace
- Velká podpora zařízení

Nevýhody

- o Pomalá reakce na změnu
- Vysoká režie
- Vysoký objem přenášených dat
- Nepodporuje VLSM
- Aktualizace se šíří broadcastem
- Nepodporuje autentizaci

RIPv2

- Podpora VLSM
- Aktualizace se šíří multicastem
- Podpora autentizace

RIPng (RIP next generation)

Podpora Ipv6

OSPF

- LSA
- Metrika = šířka pásma
- Hierarchický síťový design díky dělení do oblastí (proto vhodné pro větší sítě)
- Aktualizace se šíří multicastem
- Podporuje VLSM
- Rychlá konvergence
 - o Nemá periodickou dobu aktualizace
- Umí rozložit zátěž
- Uchovává více tras do cílové sítě
- Používá WILDMASK (bitově převrácená maska)

Databáze OSPF

- Tabulka sousedů
- Tabulka topologie
- Směrovací tabulka

Typy oblastí OSPF

- Standardní oblast
- Páteřní oblast nejdůležitější oblast která propojuje ty ostatní, Area 0
- Stub area (patní oblast) nepřijímá routy z jiných autonomních systémů, pro routování do jiných AS se použije implicitní routa
- NSSA (Not So Stubby Area) jako SA, ale importuje routy typu 7

Typy routerů

- DR Pověřený router
- BDR Záložní pověřený router
- ABR (Area Border Router) Hraniční router oblasti
- ASBR (Autonomus System Border Router) Hraniční router autonomního systému

Typy oznámení

- typ 1 router, informace o routeru a jeho přímo připojených interfacech, pouze v rámci oblasti, generuje každý router
- typ 2 network, informace o LAN a routerech v ní, v multi-access network pochází z DR, pouze v oblasti
- typ 3 summary, pochází z ABR (Area Border Router), sítě dostupné mimo oblast, pro ABR
- typ 4 ASBR summary, pochází z ABR, pro ASBR
- typ 5 external AS, oznamuje externí routy (default route), pochází z ASBR, v rámci AS
- typ 6 multicast info
- typ 7 ostatní rozšíření NSSA

Typy packetů OSPF

- Hello packet
 - Hledá sousedy
- Database description
- Link state request
 - o Info o lince
- Link state update
 - Aktualizace linky
- Link state advertisement (LSA)
 - o Potvrzení stavu linky

FIGRP

- Hybridní protokol
 - o DVA i LSA
- Rychlá konvergence
- Algoritmu dual
 - Nejkratší cesta
- Rozloží zátěž
- CISCO
- Podpora VLSM
- Aktualizace multicastem a unicastem
- Nevýhody
 - Malá podpora zařízení

Databáze EIGRP

- Tabulka sousedů
- Topologie sítě
- Směrovací tabulka