

SÍLABO PLANEAMIENTO Y CONTROL DE LA PRODUCCIÓN II

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERÍA INDUSTRIAL

CICLO: IX SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09015609040

II. CRÉDITOS : 04

III.REQUISITOS : 09014108040 Planeamiento y Control de la Producción I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

La asignatura es teórico-práctica; presenta los fundamentos de la Planificación; la Programación y el Control de las Actividades de Producción y de Distribución. El estudio de la asignatura provee al estudiante de métodos y técnicas necesarios, que le permitan comprender y/o analizar los sistemas de planificación de la producción y de distribución para efectuar mejoras en el área de operaciones, en concordancia con el plan estratégico empresarial, y como resultado, lograr ventajas competitivas para la organización.

La asignatura comprende las unidades de aprendizaje siguientes: I. El Sistema Estratégico de la Producción. II. Sistemas de Distribución. III. Sistemas de Planificación y Programación de la Producción. IV. Sistemas Integrados de la Producción.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Dominguez, José Antonio (2004). Dirección de Operaciones. Aspectos Tácticos. España. Ed. McGraw-Hill,
- · Slack N. Chambers S., Johnston R (2007). *Operations management*. 5th edition Prentice Hall/Financial Times
- Jacobs; Berry. Whybark, Vollmann, Thomas. (2010). *Manufacturing Planning and Control for Supply Chain Management*. USA. McGraw-Hill Education.
- · Cabrera, Edgar(1999) "La Gestión de Operaciones y de la Producción" USA Ed. OPM Systems Inc.
- · Fogarty, Blakstone, Hoffmann. (2001) "Administración de la Producción e Inventarios". Ed. Cecsa, México.
- Vollmann, Berry. Whybark. (200). "Sistemas de Planificación y Control de Fabricación". Ed. McGraw-Hill, Colombia.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: SISTEMA ESTRATEGICO DE LA PRODUCCION

OBJETIVOS DE APRENDIZAJE:

- Clasificar los Sistemas Estratégicos de Producción.
- Seleccionar y calcular los diferentes métodos de pronostico.
- Interpretar y Comparar las estrategias y los algoritmos de producción.

PRIMERA SEMANA

Primera sesión:

Planificación estratégica empresarial.

Segunda sesión:

Definición de la estructura del producto

SEGUNDA SEMANA

Primera sesión:

Planificación de la producción. Pronósticos

Segunda sesión:

Planificación de la producción. Stocks mínimos

TERCERA SEMANA

Primera sesión:

Gestión de operaciones y de la producción. Planes de producción

Segunda sesión:

Estrategias de producción. Algoritmos

UNIDAD II: SISTEMAS DE DISTRIBUCIO

OBJETIVOS DE APRENDIZAJE:

- Escoger frente a un contexto los sistemas de distribución
- Aplicar y resolver los sistemas y modelos de distribución
- Justificar y argumentar la planificación de requerimientos de distribución

CUARTA SEMANA

Primera sesión:

Sistemas de Distribución.

Segunda sesión:

Sistemas y Modelos de Distribución.

QUINTA SEMANA

Primera sesión:

Modelos Multiartículos (1).

Segunda sesión:

Planificación de Requerimientos de Distribución (DRP).

UNIDAD III: SISTEMAS DE PLANIFICACION Y PROGRAMACION DE LA PRODUCCION

OBJETIVOS DE APRENDIZAJE:

- Entender los sistemas de planificación y programación de la producción.
- Reconocer la jerarquía de planificación y el nivel que corresponde al Máster Program Schedule.
- Identificar las principales decisiones para equilibrar la capacidad requerida vs la disponible RCP.
- Reconocer la Lógica del MRP y asegurar un MRP valido.
- Aplicar las técnicas y conceptos básicos que nos permite el control de piso de producción.
- Analizar y Evalúar los modelos y algoritmos para la programación de las operaciones.
- Aplicar los principios básicos de un modelo DBR (Drum Buffer Rope).

SEXTA SEMANA

Primera sesión:

Planificación Agregada (PAP).

Segunda sesión:

Programa Maestro de la Producción MPS

SÉPTIMA SEMANA

Primera sesión:

Planeamiento Preliminar de la Capacidad (Rough Cut Capacity Planning - RCCP)

Segunda sesión:

Planeamiento y Requerimiento de Materiales (Material Requirement Planning - MRP)

OCTAVA SEMANA

Exámenes parciales

NOVENA SEMANA

Primera sesión:

Planeamiento y Requerimiento de Materiales (Material Requirement Planning - MRP)

Segunda sesión:

Planeación de Requerimientos de Materiales (MRPII).

DÉCIMA SEMANA

Primera sesión:

Planeamiento y Requerimiento de Capacidad (Capacity Requirement Planning - CRP)

Segunda sesión:

Control de Planta (Production Activity Control - PAC)

UNDÉCIMA SEMANA

Primera sesión:

Programación de Operaciones. Modelos de Asignación de Maquinas

Segunda sesión:

Programación de Operaciones. Diagramas de Planeamiento

DUODECIMA SEMANA

Primera sesión:

El Sistema de Producción Justo a Tiempo (JIT).

Segunda sesión:

Control de Compras - Purchasing

DECIMOTERCERA SEMANA

Primera sesión:

Teoría de Restricciones (TOC).

Segunda sesión:

Teoría de Restricciones (TOC).

UNIDAD IV: SISTEMAS INTEGRADOS DE LA PRODUCCION

OBJETIVOS DE APRENDIZAJE:

- Entender la diferencias entre los MRPs, ERPs, APSs
- Comparar los Lead times en APSs vs ERPs
- Diseñar Modelos de la planificación de la producción

DECIMOCUARTA SEMANA

Primera sesión:

Sistemas de Manufactura Flexible (FMS).

Segunda sesión:

Fabricación Integrada por Computador (CIM).

DECIMOQUINTA SEMANA

Primera sesión:

Planificación de Recursos de la Empresa (ERP).

Segunda sesión:

Exposición de Trabajos Grupales.

DECIMOSEXTA SEMANA

Exámenes Finales

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

Aspecto Metodológico: Para el logro de los objetivos propuestos y desarrollo de la asignatura, el procedimiento será la exposición de clases teóricas, participación del estudiante y resolución de casos y ejercicios.

Procedimiento: Desarrollo teórico, aplicación de técnicas, desarrollo de un trabajo práctico de aplicación por parte de los estudiantes a empresas productivas y/o de servicios en los sistemas de producción, donde se evaluarán los aportes grupales, los aportes individuales, la creatividad y

criterios para proponer mejoras. Se realizará visitas guiadas a empresas para complementar las exposiciones realizadas en clase, se evaluará con informe individual. Se promoverá la investigación a través del análisis de lecturas para internalizar los conceptos de autores que contribuyen al reforzamiento de la asignatura en forma grupal, como también el uso de Internet y otras fuentes.

Técnicas: Expositiva, participativa, resolución de casos, visitas académicas a empresas, trabajos de investigación, trabajos grupales.

X. MEDIOS Y MATERIALES

Equipos: Para la realización de las clases se hará uso de sistemas multimedia y/o videos temáticos, incluye el uso de power point y otros utilitarios.

Materiales: Se proporcionará material impreso de cada tema, así como la bibliografía básica y complementaria correspondiente a cada sesión.

XI. EVALUACIÓN

PF= (PE+EP+EF)/3

PE = (P1 + P2 + P3)/3

Donde: EF = Examen Final (escrito)
PF = Promedio Fina PE = Promedio de Evaluaciones
EP = Examen Parcial (escrito) P# = Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Industrial se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería				
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos				
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas				
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario				
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería				
(f)	Comprensión de lo que es la responsabilidad ética y profesional				
(g)	Habilidad para comunicarse con efectividad				
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global				
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida				
(j)	Conocimiento de los principales temas contemporáneos				
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería				

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		2	2	2

b) Sesiones por semana: Dos sesiones.

c) Duración: 6 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Daniel Hurtado Espinoza

XV. FECHA

La Molina, marzo de 2017.