Assignment-03: Structural Modelling

- Design 4:1 using 2:1 multiplexer
- Design 8:1 using 2:1 multiplexer
- Design 1:2 demultiplexer,
- Design 1:8 demux using 1:2 demux
- Design 5:1 Mux using 2:1 multiplexer using structural design
- Design Adder cum Subtractor using structural design (4-bit)

• Design Carry Save Adder (CSA) (Three input carry save addition)

• Design Carry Save Adder(CSA) (Four input carry save addition)

• Design 4-bit Multiplier circuits as below

(a) Multiplication by hand

(b) Using multiple adders

(c) Hardware implementation

Hardware implementation of four-bit multiplier

• Write Verilog description for following BCD adder circuit and verify the results

Explanation for the above circuit

When $X + Y \le 9$:

• The addition is the same as adding two 4-bit unsigned binary numbers.

When X + Y > 9:

- The result exceeds the valid range of BCD (which can only represent values 0-9).
- The sum will require two BCD digits.
- The initial 4-bit sum from the adder may be **incorrect** and needs correction.

Correction Needed: If the sum exceeds 9, an adjustment is required to ensure the result is a valid BCD representation.

$$Adjust = Carry-out + z_3(z_2 + z_1)$$

S = 7

• Design Four-bit ALU

Z, C and V are status flags

Z = 1 if F=0

C = Carry or Borrow

V = Overflow

S ₂	S ₁	So	Function (F)
0	0	0	A+B
0	0	1	A-B
0	1	0	A-1
0	Ť	1	A+1
1	0	0	A B
1	0	1	A • B
1	1	0	NOT A
1	1	1	A ⊕ B