

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Automi, Calcolabilità e Complessità

Appunti integrati con il libro "Introduzione alla teoria della computazione", Michael Sipser

Author Simone Bianco

Indice

In	form	azioni e Contatti	1
1	Linguaggi regolari		2
	1.1	Linguaggi	2
	1.2	Determinismo	
	1.3	Non determinismo	
		1.3.1 Equivalenza tra NFA e DFA	
	1.4	Chiusure dei linguaggi regolari	
	1.5	Espressioni regolari	
		1.5.1 NFA generalizzati	
			29
	1.6	Pumping lemma per i linguaggi regolari	30
	1.7	Esercizi svolti	
2	Linguaggi acontestuali		
	2.1	Grammatiche acontestuali	38
	2.2	Linguaggi acontestuali ad estensione dei regolari	42
	2.3	Forma normale di Chomsky	
	2.4	Automi a pila	
		2.4.1 Equivalenza tra CFG e PDA	50
	2.5	Pumping lemma per i linguaggi acontestuali	
	2.6	Chiusure dei linguaggi acontestuali	

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Automi, Calcolabilità e Complessità* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore:

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Progettazione di Algoritmi.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

1

Linguaggi regolari

1.1 Linguaggi

Definizione 1: Alfabeto

Definiamo come alfabeto un insieme finito di elementi detti simboli

Esempio:

- L'insieme $\Sigma = \{0, 1, x, y, z\}$ è un alfabeto
- L'insieme $\Sigma = \{0, 1\}$ è un alfabeto. In particolare, tale alfabeto viene detto **alfabeto** binario

Definizione 2: Stringa

Data una sequenza di simboli $w_1, \ldots, w_n \in \Sigma$, definiamo:

$$w := w_1 \dots w_n$$

come stringa (o parola) di Σ

Esempio:

- Dato l'alfabeto $\Sigma = \{0,1,x,y,z\},$ una stringa di Σ è 0x1yyy0

Definizione 3: Linguaggio

Dato un alfabeto Σ , definiamo come **linguaggio di** Σ , indicato come Σ^* , l'insieme delle stringhe di Σ

Definizione 4: Lunghezza di una stringa

Data una stringa $w \in \Sigma^*$, definiamo la **lunghezza di** w, indicata come |w|, come il numero di simboli presenti in w

Definizione 5: Concatenazione

Data la stringa $x := x_1 \dots x_n \in \Sigma^*$ e la stringa $y := y_1 \dots y_m \in \Sigma^*$, definiamo come **concatenazione di** x **con** y la seguente operazione:

$$xy = x_1 \dots x_n y_1 \dots y_n$$

Proposizione 1: Stringa vuota

Indichiamo con ε la **stringa vuota**, ossia l'unica stringa tale che:

- \bullet $|\varepsilon|=0$
- $\bullet \ \forall w \in \Sigma^* \ w \cdot \varepsilon = \varepsilon \cdot w = w$
- $\bullet \ \Sigma^* \neq \varnothing \implies \varepsilon \in \Sigma^*$

Definizione 6: Conteggio

Data una stringa $w \in \Sigma^*$ e un simbolo $a \in \Sigma^*$ definiamo il **conteggio di** a **in** w, indicato come $|w|_a$, il numero di simboli uguali ad a presenti in w

Esempio:

 \bullet Data la stringa w:=010101000 $\in \{0,1\}^*,$ si ha che $|w|_0=6$ e $|w|_1=3$

Definizione 7: Stringa rovesciata

Data una stringa $w = a_1 \dots a_n \in \Sigma^*$, dove $a_1 \dots a_n \in \Sigma$, definiamo la sua **stringa rovesciata**, indicata con w^R , come $w^R = a_n \dots a_1$.

Esempio:

ullet Data la stringa $w:=\mathtt{abcdefg}\in\Sigma^*,$ si ha che $w^R=\mathtt{gfedcba}$

Definizione 8: Potenza

Data la stringa $w \in \Sigma^*$ e dato $n \in \mathbb{N}$, definiamo come **potenza** la seguente operazione:

$$w^n = \begin{cases} \varepsilon & \text{se } n = 0\\ ww^{n-1} & \text{se } n > 0 \end{cases}$$

Proposizione 2: Operazioni sui linguaggi

Dati i linguaggi $L, L_1, L_2 \subseteq \Sigma^*$, definiamo le seguenti operazioni:

• Operatore unione:

$$L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \lor w \in L_2 \}$$

• Operatore intersezione:

$$L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \land w \in L_2 \}$$

• Operatore complemento:

$$\neg L = \{ w \in \Sigma^* \mid w \notin L \}$$

• Operatore concatenazione:

$$L_1 \circ L_2 = \{ xy \in \Sigma^* \mid x \in L_1, x \in L_2 \}$$

• Operatore potenza:

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{se } n = 0\\ L \circ L^{n-1} & \text{se } n > 0 \end{cases}$$

• Operatore star di Kleene:

$$L^* = \{w_1 \dots w_k \in \Sigma^* \mid k \ge 0, \forall i \in [1, k] \ w_i \in L\} = \bigcup_{n \ge 0} L^n$$

• Operatore plus di Kleene:

$$L^{+} = \{w_{1} \dots w_{k} \in \Sigma^{*} \mid k \geq 1, \forall i \in [1, k] \ w_{i} \in L\} = \bigcup_{n \geq 1} L^{n} = L \circ L^{*}$$

Esempi:

• Dati i seguenti due linguaggi

$$L_1 = \{ w \mid w := x1, \exists x \in \{0, 1\}^* \}$$

$$L_2 = \{ w \mid w := 1y, \exists y \in \{0,1\}^* \}$$

si ha che:

$$-L_1 \cup L_2 = \{ w \mid w := x1 \lor w := 1y, \exists x, y \in \{0, 1\}^* \}$$

$$-L_1 \cap L_2 = \{w \mid w := 1z1, \exists z \in \{0, 1\}^*\}$$

$$- L_1 \circ L_2 = \{ w \mid w := x11y, \exists x, y \in \{0, 1\}^* \}$$

1.2 Determinismo

Definizione 9: Automa

Un **automa** è un meccanismo di controllo (o macchina) progettato per seguire automaticamente una sequenza di operazioni o rispondere a istruzioni predeterminate, mantenendo informazioni relative allo **stato** attuale dell'automa stesso ed agendo di conseguenza, **passando da uno stato all'altro**.

Esempio:

- Un sensore che apre e chiude una porta può essere descritto tramite il seguente automa, dove Chiuso e Aperto sono gli stati dell'automa e N, F, R e E sono le operazioni di transizione tra i due stati indicanti rispettivamente:
 - N: il sensore non rileva alcuna persona da entrambi i lati della porta
 - F: il sensore rileva qualcuno nel lato frontale della porta
 - R: il sensore rileva qualcuno nel lato retrostante della porta
 - E: il sensore rileva qualcuno da entrambi i lati della porta

• L'automa appena descritto è in grado di interpretare una **stringa in input** che ne descriva la sequenza di operazioni da svolgere (es: la stringa NFNNNFRR terminerà l'esecuzione dell'automa sullo stato Aperto)

Definizione 10: Deterministic Finite Automaton (DFA)

Un **Deterministic Finite Automaton (DFA)** (o Automa Deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \to Q$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa, ossia l'insieme degli stati su cui, a seguito della lettura di una stringa in input, l'automa accetta la corretta terminazione

Esempio:

• Consideriamo il seguente DFA

dove:

- $-Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{0,1\}$ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \rightarrow Q$ definita come

$$\begin{array}{c|ccccc}
\delta & q_1 & q_2 & q_3 \\
\hline
0 & q_1 & q_3 & q_2 \\
1 & q_2 & q_2 & q_2
\end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $-F = \{q_2\}$ è l'insieme degli stati accettanti

Definizione 11: Funzione di transizione estesa

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo $\delta^* : Q \times \Sigma^* \to Q$ come **funzione di transizione estesa di** D la funzione definita ricorsivamente come:

$$\left\{ \begin{array}{l} \delta^*(q,\varepsilon) = \delta(q,\varepsilon) = q \\ \delta^*(q,aw) = \delta^*(\delta(q,a),w), \ \text{dove} \ a \in \Sigma, w \in \Sigma^* \end{array} \right.$$

Proposizione 3: Stringa accettata in un DFA

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Data una stringa $w \in \Sigma^*$, diciamo che w è accettata da D se $\delta^*(q_0, w) \in F$, ossia l'interpretazione di tale stringa termina su uno stato accettante

Esempio:

- Consideriamo ancora il DFA dell'esempio precedente.
- La stringa 0101 è accettata da tale DFA, poiché:

$$\delta^*(q_1, 0101) = \delta^*(\delta(q_1, 0), 101) = \delta^*(q_2, 101) = \delta^*(\delta(q_2, 1), 01) = \delta^*(q_2, 01) =$$
$$= \delta^*(\delta(q_2, 0), 1) = \delta^*(q_3, 1) = \delta^*(\delta(q_3, 1), \varepsilon) = \delta^*(q_2, \varepsilon) = q_2 \in F$$

• La stringa 1010, invece, non è accettata dal DFA, poiché:

$$\delta^*(q_1, 1010) = \delta^*(q_2, 010) = \delta^*(q_3, 10) = \delta^*(q_2, 0) = \delta^*(q_3, \varepsilon) = q_3 \notin F$$

Definizione 12: Linguaggio di un DFA

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo come **linguaggio di** D, indicato come L(D), l'insieme di stringhe accettate da D

$$L(D) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

Inoltre, diciamo che D riconosce L(D)

Esempi:

1. • Consideriamo il seguente DFA D

• Il linguaggio riconosciuto da tale DFA corrisponde a

$$L(D) = \{x \in \{0, 1\}^* \mid x := y1, \exists y \in \{0, 1\}^*\}$$

ossia al linguaggio composto da tutte le stringhe terminanti con 1

2. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 1y, \exists y \in \{0, 1\}^*\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

3. • Consideriamo il seguente linguaggio

$$L = \{w \in \{0,1\}^* \mid |w|_1 \ge 3\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

4. • Consideriamo il seguente linguaggio

$$L = \{ w \in \{0, 1\}^* \mid w := 0^n 1, n \in \mathbb{N} - \{0\} \}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

Definizione 13: Configurazione di un DFA

Sia $D:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Definiamo la coppia $(q,w)\in Q\times \Sigma^*$ come configurazione di D

Definizione 14: Passo di computazione

Definiamo come passo di computazione la relazione binaria definita come

$$(p, aw) \vdash_D (q, w) \iff \delta(p, a) = q$$

Definizione 15: Computazione deterministica

Definiamo una computazione come **deterministica** se ad ogni passo di computazione segue un'unica configurazione:

$$\forall (q, aw) \exists !(p, w) \mid (q, aw) \vdash_D (p, w)$$

Proposizione 4: Chiusura del passo di computazione

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. La **chiusura riflessiva e transitiva** di \vdash_D , indicata come \vdash_D^* , gode delle seguenti proprietà:

- $(p, aw) \vdash_D (q, w) \implies (p, aw) \vdash_D^* (q, w)$
- $\forall q \in Q, w \in \Sigma^* \ (q, w) \vdash_D^* (q, w)$
- $(p, abw) \vdash_D (q, bw) \land (q, bw) \vdash_D (r, w) \implies (p, abw) \vdash_D^* (r, w)$

Osservazione 1

Sia $D:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Dati $q_i,q_f\in Q,w\in\Sigma^*,$ si ha che

$$\delta^*(q_i, w) = q_f \iff (q_i, w) \vdash_D^* (q_f, \varepsilon)$$

1.3 Non determinismo

Definizione 16: Alfabeto epsilon

Dato un alfabeto Σ , definiamo $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ come alfabeto epsilon di Σ

Definizione 17: Non-deterministic Finite Automaton (NFA)

Un Non-deterministic Finite Automaton (NFA) (o Automa Non-deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta:Q\times\Sigma_{\varepsilon}\to\mathcal{P}(Q)$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa

Nota: $\mathcal{P}(Q)$ è l'insieme delle parti di Q, ossia l'insieme contenente tutti i suoi sottoinsiemi possibili

Esempio:

• Consideriamo il seguente NFA

dove:

- $Q=\{q_1,q_2,q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{a,b\}$ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \rightarrow Q$ definita come

$$egin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline arepsilon & \{q_3\} & arnothing & arnothing \\ \mathbf{a} & arnothing & \{q_2,q_3\} & \{q_1\} \\ \mathbf{b} & \{q_2\} & \{q_3\} & arnothing \end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $F=\{q_1\}$ è l'insieme degli stati accettanti

Osservazione 2: Computazione in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $w \in \Sigma_{\varepsilon}$ in ingresso, la **computazione** viene eseguita nel seguente modo:

- Tutte le volte che uno stato potrebbe avere più transizioni per diversi simboli dell'alfabeto, l'automa N si duplica in **più copie**, ognuna delle quali segue il suo corso. Si vengono così a creare più **rami di computazione** indipendenti che sono eseguiti in **parallelo**.
- Se il prossimo simbolo della stringa da computare non si trova su nessuna delle transizioni uscenti dello stato attuale di un ramo di computazione, l'intero ramo termina la sua computazione (terminazione incorretta).
- Se almeno una delle copie di *N* termina correttamente su uno stato di accettazione, l'automa accetta la stringa di partenza.
- Quando a seguito di una computazione ci si ritrova in uno stato che possiede un ε -arco in uscita, la macchina si duplica in più copie: quelle che seguono gli ε -archi e quella che rimane nello stato raggiunto.

Esempio:

• Consideriamo il seguente NFA

• Supponiamo che venga computata la stringa w = 1010:

 \bullet Poiché esiste un ramo che termina correttamente, l'NFA descritto accetta la stringa w = 1010

Proposizione 5: Stringa accettata in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $w := w_0 \dots w_k \in \Sigma^*$, dove w_0, \dots , $w_k \in \Sigma_{\varepsilon}$, diciamo che w è **accettata da** N se esiste una sequenza di stati r_0, r_1, \dots , $r_{k+1} \in Q$ tali che:

- $\bullet \ r_0 = q_0$
- $\forall i \in [0, k] \ r_{i+1} \in \delta(r_i, w_i)$
- $r_{k+1} \in F$

1.3.1 Equivalenza tra NFA e DFA

Definizione 18: Classe dei linguaggi riconosciuti da un DFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un **DFA** il seguente insieme:

$$\mathcal{L}(DFA) = \{ L \subseteq \Sigma^* \mid \exists DFA \ D \text{ t.c } L = L(D) \}$$

Definizione 19: Classe dei linguaggi riconosciuti da un NFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un NFA il seguente insieme:

$$\mathcal{L}(NFA) = \{ L \subseteq \Sigma^* \mid \exists NFA \ N \text{ t.c } L = L(N) \}$$

Teorema 1: Equivalenza tra NFA e DFA

Date le due classi di linguaggi $\mathcal{L}(DFA)$ e $\mathcal{L}(NFA)$, si ha che:

$$\mathcal{L}(DFA) = \mathcal{L}(NFA)$$

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathcal{L}(DFA)$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Poiché il concetto di NFA è una generalizzazione del concetto di DFA, ne segue automaticamente che D sia anche un NFA, implicando che $L \in \mathcal{L}(NFA)$ e di conseguenza che:

$$\mathcal{L}(DFA) \subset \mathcal{L}(NFA)$$

Seconda implicazione.

- Dato $L \in \mathcal{L}(NFA)$, sia $N := (Q_N, \Sigma, \delta_N, q_{0_N}, F_N)$ il NFA tale che L = L(N)
- Consideriamo quindi il DFA $D := (Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ costruito tramite N stesso:
 - $-Q_D = \mathcal{P}(Q_N)$
 - Dato $R \in Q_D$, definiamo l'estensione di R come:

$$E(R) = \{ q \in Q_N \mid q \text{ è raggiungibile in } N \text{ da } q' \in R \text{ tramite } k \geq 0 \text{ } \varepsilon\text{-archi} \}$$

$$-q_{0_{D}}=E(\{q_{0_{N}}\})$$

$$-F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$$

– Dati $R \in Q_D$ e $a \in \Sigma$, definiamo δ_D come:

$$\delta_D = (R, a) = \bigcup_{r \in R} E(\delta_N(r, a))$$

 \bullet A questo punto, per costruzione stessa di D si ha che:

$$w \in L = L(N) \iff w \in L(D)$$

implicando dunque che $L \in \mathcal{L}(DFA)$ e di conseguenza che:

$$\mathcal{L}(NFA) \subseteq \mathcal{L}(DFA)$$

Osservazione 3

Dato un NFA N, seguendo i passaggi della dimostrazione precedente è possibile definire un DFA D equivalente ad N

Esempio:

• Consideriamo ancora il seguente NFA

• Definiamo quindi l'insieme degli stati del DFA equivalente a tale NFA:

$$Q_D = \{\emptyset, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\} =$$

• Per facilitare la lettura, riscriviamo i vari stati con la seguente notazione

$$Q_D = \{\emptyset, q_1, q_2, q_3, q_{1,2}, q_{2,3}, q_{1,3}, q_{1,2,3}\}$$

• A questo punto, poniamo:

$$- q_{0_D} = E(\{q_{0_N}\}) = E(\{q_1\}) = \{q_1, q_3\} = q_{1,3}$$

$$- F_D = \{q_1, q_{1,2}, q_{1,3}, q_{1,2,3}\}$$

• Le transizioni del DFA corrisponderanno invece a:

$$- \delta_{D}(\{q_{1}\}, a) = E(\delta_{N}(q_{1}), a) = \varnothing$$

$$- \delta_{D}(\{q_{1}\}, b) = E(\delta_{N}(q_{1}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{2}\}, a) = E(\delta_{N}(q_{2}), a) = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{2}\}, b) = E(\delta_{N}(q_{2}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, a) = E(\delta_{N}(q_{1}, a)) \cup E(\delta_{N}(q_{2}, a)) = \varnothing \cup \{q_{2}, q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, b) = E(\delta_{N}(q_{1}, b)) \cup E(\delta_{N}(q_{2}, b)) = \{q_{2}\} \cup \{q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

• Il DFA equivalente corrisponde dunque a:

Definizione 20: Linguaggi regolari

Dato un alfabeto Σ , definiamo come **insieme dei linguaggi regolari di** Σ , indicato con REG, l'insieme delle classi dei linguaggi riconosciuti da un DFA:

$$REG := \mathcal{L}(DFA)$$

Osservazione 4

Tramite il teorema dell'Equivalenza tra NFA e DFA, si ha che:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA)$$

1.4 Chiusure dei linguaggi regolari

Teorema 2: Chiusura dell'unione in REG

L'operatore unione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \text{REG} \ L_1 \cup L_2 \in \text{REG}$$

Dimostrazione I.

- Dati $L_1, L_2 \in \text{REG}$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che $L_1 = L(D_1)$ e $L_2 = L(D_2)$
- Definiamo quindi il DFA $D = (Q, \Sigma, \delta, q_0, F)$ tale che:

$$-q_0=(q_1,q_2)$$

$$- Q = Q_1 \times Q_2$$

$$- F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$$

 $- \forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

• A questo punto, per costruzione stessa di *D* ne segue che:

$$w \in L_1 \cup L_2 \iff w \in L(D)$$

dunque che $L_1 \cup L_2 = L(D) \in REG$

Dimostrazione II.

- Dati $L_1, L_2 \in REG$, siano $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due NFA tali che $L_1 = L(N_1)$ e $L_2 = L(M_2)$
- Definiamo quindi il NFA $N = (Q, \Sigma, \delta, q_0, F)$ tale che:
 - $-q_0$ è un nuovo stato iniziale aggiunto

$$-Q = Q_1 \cup Q_2 \cup \{q_0\}$$

$$-F = F_1 \cup F_2$$

 $- \forall q \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{se } q \in Q_1 \\ \delta_2(q, a) & \text{se } q \in Q_2 \\ \{q_1, q_2\} & \text{se } q = q_0 \land a = \varepsilon \\ \varnothing & \text{se } q = q_0 \land a \neq \varepsilon \end{cases}$$

• A questo punto, per costruzione stessa di N ne segue che:

$$w \in L_1 \cup L_2 \iff w \in L(N)$$

dunque che $L_1 \cup L_2 = L(N) \in REG$

Rappresentazione grafica della dimostrazione

Teorema 3: Chiusura dell'intersezione in REG

L'operatore intersezione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \text{REG} \ L_1 \cap L_2 \in \text{REG}$$

Dimostrazione.

- Dati $L_1, L_2 \in REG$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che $L_1 = L(D_1)$ e $L_2 = L(D_2)$
- Definiamo quindi il DFA $D=(Q,\Sigma,\delta,q_0,F)$ tale che:

$$-q_0=(q_1,q_2)$$

$$-Q = Q_1 \times Q_2$$

$$- F = F_1 \times F_2 = \{ (r_1, r_2) \mid r_1 \in F_1 \land r_2 \in F_2 \}$$

 $- \forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

• A questo punto, per costruzione stessa di D ne segue che:

$$w \in L_1 \cap L_2 \iff w \in L(D)$$

dunque che $L_1 \cap L_2 = L(D) \in REG$

Teorema 4: Chiusura del complemento in REG

L'operatore complemento è chiuso in REG, ossia:

$$\forall L \in \text{REG} \ \neg L \in \text{REG}$$

Dimostrazione.

- Dato $L \in REG$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Definiamo quindi il DFA $D' = (Q, \Sigma, \delta, q_0, Q F)$, dunque il DFA uguale a D ma i cui stati accettanti sono invertiti. Per costruzione stessa di D' ne segue che:

$$w \in L \iff w \notin L(D)$$

dunque che $\neg L = L(D') \in REG$

Teorema 5: Chiusura della concatenazione in REG

L'operatore concatenazione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \text{REG} \ L_1 \circ L_2 \in \text{REG}$$

Dimostrazione.

- Dati $L_1, L_2 \in \text{REG}$, siano $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due NFA tali che $L_1 = L(N_1)$ e $L_2 = L(N_2)$
- Definiamo quindi il NFA $N = (Q, \Sigma, \delta, q_0, F)$ tale che:

$$- q_0 = q_1$$

$$-Q = Q_1 \cup Q_2$$

$$- F = F_2$$

 $- \forall q \in Q, a \in \Sigma$ si ha che:

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{se } q \in Q_1 - F_1 \\ \delta_1(q, a) & \text{se } q \in F_1 \land a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & \text{se } q \in F_1 \land a = \varepsilon \\ \delta_2(q, a) & \text{se } q \in Q_2 \end{cases}$$

• A questo punto, per costruzione stessa di N ne segue che:

$$w \in L_1 \circ L_2 \iff w \in L(N)$$

dunque che $L_1 \circ L_2 = L(N) \in REG$

Rappresentazione grafica della dimostrazione

Corollario 1: Chiusura della potenza in REG

L'operatore potenza è chiuso in REG, ossia:

$$\forall L \in \text{REG}, n \in \mathbb{N} \ L^n \in \text{REG}$$

Teorema 6: Chiusura di star in REG

L'operatore star è chiuso in REG, ossia:

$$\forall L \in \text{REG } L^* \in \text{REG}$$

Dimostrazione.

- Dato $L \in \text{REG}$, sia $N = (Q, \Sigma, \delta, q_0, F)$ il NFA tale che L = L(N)
- Definiamo quindi il DFA $N' = (Q', \Sigma, \delta', q_{0*}, F')$ tale che:
 - $-q_{0*}$ è un nuovo stato iniziale aggiunto
 - $Q' = Q \cup \{q_{0*}\}\$
 - $F' = F \cup \{q_{0*}\}\$
 - $\forall q \in Q', a \in \Sigma \text{ si ha che:}$

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{se } q \in Q - F \\ \delta(q, a) & \text{se } q \in F \land a \neq \varepsilon \\ \delta(q, a) \cup \{q_0\} & \text{se } q \in F \land a = \varepsilon \\ \{q_0\} & \text{se } q = q_{0*} \land a = \varepsilon \\ \emptyset & \text{se } q = q_{0*} \land a \neq \varepsilon \end{cases}$$

• A questo punto, per costruzione stessa di N' ne segue che:

$$w \in L^* \iff w \in L(N')$$

dunque che $L^* = L(N') \in REG$

Rappresentazione grafica della dimostrazione

Corollario 2: Chiusura di plus in REG

L'operatore plus è **chiuso in** REG, ossia:

$$\forall L \in \text{REG } L^+ \in \text{REG}$$

Dimostrazione.

• Analoga a quella dell'operatore star, rimuovendo tuttavia lo stato iniziale dall'insieme degli stati accettanti

1.5 Espressioni regolari

Definizione 21: Espressione regolare

Dato un alfabeto Σ , definiamo come **espressione regolare di** Σ una stringa R rappresentante un linguaggio $L(R) \subseteq \Sigma^*$. In altre parole, ogni espressione regolare R rappresenta in realtà il linguaggio L(R) ad essa associata.

In particolare, definiamo l'insieme delle espressioni regolari di Σ , indicato con re(Σ), come:

- $\varnothing \in \operatorname{re}(\Sigma)$
- $\varepsilon \in \operatorname{re}(\Sigma)$
- $a \in \operatorname{re}(\Sigma)$, dove $a \in \Sigma$
- $R_1, R_2 \in \operatorname{re}(\Sigma) \implies R_1 \cup R_2 \in \operatorname{re}(\Sigma)$
- $R_1, R_2 \in \operatorname{re}(\Sigma) \implies R_1 \circ R_2 \in \operatorname{re}(\Sigma)$
- $R \in \operatorname{re}(\Sigma) \implies R^* \in \operatorname{re}(\Sigma)$
- $R \in \operatorname{re}(\Sigma) \implies R^+ \in \operatorname{re}(\Sigma)$

Osservazione 5

Data un'espressione regolare $R \in re(R)$, si ha che:

- $R = \emptyset \in \operatorname{re}(\Sigma) \implies L(R) = \emptyset$
- $R = \varepsilon \in \operatorname{re}(\Sigma) \implies L(R) = \{\varepsilon\}$
- $R = a \in re(\Sigma), a \in \Sigma \implies L(R) = \{a\}$
- $R = R_1 \cup R_2 \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1) \cup L(R_2)$
- $R = R_1 \circ R_2 \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1) \circ L(R_2)$
- $R = R_1^* \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1)^*$
- $R = R_1^+ \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1)^+$

Esempi:

- 1. $0 \cup 1$ rappresenta il linguaggio $\{0\} \cup \{1\} = \{0, 1\}$
- 2. 0*10* rappresenta il linguaggio $\{0\}^* \circ \{1\} \circ \{0\}^* = \{x1y \mid x, y \in \{0\}^*\}$
- 3. $\Sigma^*1\Sigma^*$ rappresenta il linguaggio $\Sigma^* \circ \{1\} \circ \Sigma^* = \{x1y \mid x, y \in \Sigma^*\}$
- 4. $(0 \cup 1000)^*$ rappresenta il linguaggio $(\{0\} \cup \{1000\})^* = \{0, 1000\}^*$
- 5. \emptyset^* rappresenta il linguaggio $\emptyset^* = \{\varepsilon\}$ (ricordiamo che per definizione stessa si ha che $\forall L \subseteq \Sigma^*$ $L^0 = \{\varepsilon\}$)

- 6. $0^*\emptyset$ rappresenta il linguaggio $\{0\}^* \circ \emptyset = \emptyset$
- 7. $(0 \cup \varepsilon)(1 \cup \varepsilon)$ rappresenta il linguaggio $\{\emptyset, 0, 1, 01\}$
- 8. Σ^+ equivale all'espressione $\Sigma\Sigma^*$

Definizione 22: Classe dei linguaggi descritti da esp. reg.

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ descritti da un'espressione regolare il seguente insieme:

$$\mathcal{L}(re) = \{ L \subseteq \Sigma^* \mid \exists R \in re(\Sigma) \text{ t.c. } L = L(R) \}$$

Lemma 1: Conversione da espressione regolare a NFA

Date le due classi di linguaggi $\mathcal{L}(re)$ e $\mathcal{L}(NFA)$, si ha che:

$$\mathcal{L}(re) \subset \mathcal{L}(NFA)$$

Dimostrazione.

Procediamo per induzione strutturale, ossia dimostrando che se per ogni sottocomponente vale una determinata proprietà allora essa varrà anche per ogni componente formato da tali sotto-componenti

Caso base.

• Se $R = \emptyset \in \operatorname{re}(\Sigma)$, definiamo il NFA $N_{\emptyset} = (\{q_0\}, \Sigma, \delta, q_0, \emptyset)$, ossia:

$$\operatorname{start} \longrightarrow q_0$$

per cui si ha che $w \in L(R) \iff w \in L(N_{\varnothing})$ dunque $L(R) = L(N_{\varnothing}) \in \mathcal{L}(NFA)$

• Se $R=\varepsilon\in {\rm re}(\Sigma),$ definiamo il NFA $N_\varepsilon=(\{q_0\},\Sigma,\delta,q_0,\{q_0\}),$ ossia:

$$\operatorname{start} \longrightarrow q_0$$

per cui si ha che $w \in L(R) \iff w \in L(N_{\varepsilon})$ dunque $L(R) = L(N_{\varepsilon}) \in \mathcal{L}(NFA)$

• Se $R = a \in re(\Sigma)$ con $a \in \Sigma$, definiamo il NFA $N_a = (\{q_0, q_1\}, \Sigma, \delta, q_0, \{q_1\})$ dove per δ è definita solo la coppia $\delta(q_0, a) = q_1$, ossia:

$$\operatorname{start} \longrightarrow \overbrace{q_0} \longrightarrow \overbrace{q_1}$$

per cui si ha che $w \in L(R) \iff w \in L(N_a)$ dunque $L(R) = L(N_a) \in \mathcal{L}(NFA)$

 $Ipotesi\ induttiva.$

• Date $R_1, R_2 \in \text{re}(\Sigma)$, assumiamo che \exists NFA $N_1, N_2 \mid L(R_1) = L(N_1), L(R_2) = L(N_2)$, dunque che $L(R_1), L(R_2) \in \mathcal{L}(\text{NFA})$

Passo induttivo.

- Se $R = R_1 \cup R_2$, tramite la Chiusura dell'unione in REG, otteniamo che: $L(R) = L(R_1) \cup L(R_2) = L(N_1) \cup L(N_2) \in \text{REG} = \mathcal{L}(\text{NFA})$
- Se $R = R_1 \circ R_2$, tramite la Chiusura della concatenazione in REG, otteniamo che:

$$L(R) = L(R_1) \circ L(R_2) = L(N_1) \circ L(N_2) \in REG = \mathcal{L}(NFA)$$

• Se $R = R_1^*$, tramite la Chiusura di plus in REG, otteniamo che:

$$L(R) = L(R_1)^* = L(N_1)^* \in REG = \mathcal{L}(NFA)$$

Esempio:

- Consideriamo l'espressione regolare $(a \cup ab)^*$
- Costruiamo il NFA corrispondente a tale espressione partendo dai suoi sotto-componenti

$$a \qquad \Rightarrow \qquad \text{start} \longrightarrow \bigoplus_{b} \bigoplus_{c}$$

$$ab \qquad \Rightarrow \qquad \text{start} \longrightarrow \bigoplus_{c} \bigoplus_{b} \bigoplus_{c}$$

$$(a \cup ab) \qquad \Rightarrow \qquad \text{start} \longrightarrow \bigoplus_{c} \bigoplus_{c} \bigoplus_{a} \bigoplus_{c} \bigoplus_{b} \bigoplus_{c}$$

$$(a \cup ab)^* \qquad \Rightarrow \qquad \bigoplus_{c} \bigoplus_{c} \bigoplus_{a} \bigoplus_{c} \bigoplus_{b} \bigoplus_{c} \bigoplus_{c}$$

1.5.1 NFA generalizzati

Definizione 23: Generalized NFA (GNFA)

Un Generalized NFA (GNFA) è una quintupla $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ dove:

- Q è l'insieme finito degli stati dell'automa dove $|Q| \geq 2$
- Σ è l'alfabeto dell'automa
- $q_{\text{start}} \in Q$ è lo stato iniziale dell'automa
- $q_{\text{accept}} \in Q$ è l'unico stato accettante dell'automa
- $\delta: (Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \rightarrow \text{re}(\Sigma)$ è la funzione di transizione degli stati dell'automa, implicando che:
 - Lo stato q_{start} abbia solo transizioni **uscenti**
 - Lo stato q_{accept} abbia solo transizioni **entranti**
 - Tra tutte le possibili coppie di stati $q, q' \in Q$ (incluso il caso in cui q = q') vi sia una transizione $q \to q'$ ed una transizione $q' \to q$
 - Le "etichette" delle transizioni sono delle **espressioni regolari**

Esempio:

Osservazione 6

In un GNFA, il risultato $\delta(q, q') = R$ può essere interpretato come "l'espressione regolare che effettua la transizione da q a q' è R". Di conseguenza, possiamo immaginare un GNFA come un NFA che legga la stringa in input **blocco per blocco**

Proposizione 6: Stringa accettata in un GNFA

Sia $G := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ un GNFA. Data una stringa $w := w_0 \dots w_k \in \Sigma^*$, dove $w_0, \dots, w_k \in \Sigma^*$ (ossia sono delle sottostringhe), diciamo che w è **accettata da** G se esiste una sequenza di stati $r_0, r_1, \dots, r_{k+1} \in Q$ tali che:

- $r_0 = q_{\text{start}}$
- $\forall i \in [0, k] \ w_i \in L(\delta(r_i, r_{i+1}))$
- $r_{k+1} = q_{\text{accept}}$

Esempio:

- Il GNFA dell'esempio precedente accetta la stringa ababaaaba, poiché:
 - $-\delta(q_{\text{start}},q_1) = ab^*$, dunque viene letta in blocco la sottostringa abab
 - $-\delta(q_1,q_1)=aa^*$, dunque viene letta in blocco la sottostringa aa
 - $-\delta(q_1,q_{\text{accept}}) = \mathtt{ab} \cup \mathtt{ba}$, dunque viene letta in blocco la sottostringa ba

Corollario 3

Una transizione con "etichetta" pari a \varnothing è una transizione inutilizzabile in quanto $L(\varnothing)=\varnothing$

Definizione 24: Classe dei linguaggi riconosciuti da un GNFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un GNFA il seguente insieme:

$$\mathcal{L}(GNFA) = \{ L \subseteq \Sigma^* \mid \exists GNFA \ G \text{ t.c } L = L(G) \}$$

Lemma 2: Conversione da DFA a GNFA

Date le due classi di linguaggi $\mathcal{L}(DFA)$ e $\mathcal{L}(GNFA)$, si ha che:

$$\mathcal{L}(\mathrm{DFA})\subseteq\mathcal{L}(\mathrm{GNFA})$$

Dimostrazione.

- Dato $L \in \mathcal{L}(DFA)$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L(D) = L
- Consideriamo quindi il GNFA $G := (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$ costruito tramite D stesso:
 - $-Q' = Q \cup \{q_{\text{start}}, q_{\text{accept}}\}$
 - $-\delta'(q_{\text{start}}, q_0) = \varepsilon$

- $\forall q \in F \ \delta'(q, q_{\text{accept}}) = \varepsilon$
- Per ogni transizione con etichetta multipla in D, in G esiste una transizione equivalente con etichetta corrispondente all'unione di tali etichette multiple
- Per ogni coppia di stati per cui non esiste una transizione entrante o uscente in D, viene aggiunta una transizione con etichetta \varnothing
- \bullet A questo punto, per costruzione stessa di G si ha che:

$$w \in L = L(D) \implies L(G)$$

implicando dunque che $L(D) \in \mathcal{L}(DFA)$ e di conseguenza che:

$$\mathcal{L}(DFA) \subseteq \mathcal{L}(GNFA)$$

Esempio:

• Consideriamo il seguente DFA:

• Il suo GNFA equivalente corrisponde a:

Algoritmo 1: Riduzione minimale di un GNFA

```
Dato un GNFA G = (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}}), il seguente algoritmo restituisce un GNFA
G' avente solo due stati e tale che L(G) = L(G'):
   function REDUCEGNFA(G)
       if |Q| == 2 then
            return G
       else if |Q| > 2 then
            q := q \in Q - \{q_{\text{start}}, q_{\text{accept}}\}
            Q' := Q - \{q\}
            for q_i \in Q' - \{q_{\text{accept}}\}\ \mathbf{do}
                 for q_i \in Q' - \{q_{\text{start}}\}\ do
                      \delta'(q_i, q_i) := \delta(q_i, q)\delta(q, q)^*\delta(q, q_i) \cup \delta(q_i, q_i)
                 end for
            end for
            G' := (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})
            return reduceGNFA(G')
        end if
   end function
```

Dimostrazione.

Siano G_0, \ldots, G_n i vari GNFA prodotti dalla ricorsione dell'algoritmo, implicando che $G_0 = G$ e che G_n sia l'output. Procediamo per induzione sul numero $k \in \mathbb{N}$ di riduzioni effettuate, mostrando che $L(G) = L(G_0) = \ldots = L(G_n)$

Caso base.

• Se k=0, allora $G_0=G$, dunque $L(G)=L(G_0)$

Ipotesi induttiva.

• Dato $k \in \mathbb{N}$, assumiamo che per il GNFA $G_k := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ si abbia che $L(G) = L(G_k)$

Passo induttivo.

• Consideriamo quindi il GNFA $G_{k+1} := (Q', \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ ottenuto rimuovendo uno stato $q \in Q$ (dunque $Q' = Q - \{q\}$) e ponendo

$$\delta'(q_i,q_j) := \delta(q_i,q)\delta(q,q)^*\delta(q,q_j) \cup \delta(q_i,q_j)$$

per ogni $q_i \in Q' - \{q_{\text{accept}}\}, q_j \in Q' - \{q_{\text{start}}\}$

• Data una stringa $w := w_0 \dots w_m \in L(G_k)$, dove $w_0, \dots, w_m \in \Sigma^*$, esiste una sequenza di stati $q_0, \dots, q_m \in Q$ tali che:

```
- q_0 = q_{\text{start}} \in q_m = q_{\text{accept}}

- \forall i \in [0, m-1] \ w_i \in L(\delta(q_i, q_{i+1}))
```

• A questo punto, consideriamo la costruzione della funzione δ' :

$$\delta'(q_i, q_j) = \delta(q_i, q)\delta(q, q)^*\delta(q, q_j) \cup \delta(q_i, q_j)$$

- Se $q \notin \{q_0, \ldots, q_m\}$, allora tramite l'unione si ha che $w_i \in L(\delta(q_i, q_j)) \implies w \in L(\delta'(q_i, q_j))$, dunque tutte le possibili sottostringhe passanti per le transizioni dirette da q_i a q_j vengono riconosciute
- Se $q \in \{q_0, \ldots, q_m\}$, allora la concatenazione $\delta(q_i, q)\delta(q, q)^*\delta(q, q_j)$ permette il riconoscimento di tutti i cammini da q_i a q_j passanti per q, implicando che $w \in L(\delta'(q_i, q_j))$
- Viceversa, poiché ogni $\delta'(q_i, q_j)$ è definito come la combinazione di tutti i cammini possibili da q_i a q_j (dunque passando per q o non), ne segue automaticamente che $w \in L(G_{k+1}) \implies w \in L(G_k)$
- Esprimendo il tutto graficamente, risulta evidente che le seguenti transizioni siano del tutto equivalenti:

• Di conseguenza, otteniamo che $w \in L(G_k) \iff w \in L(G_{k+1})$, concludendo quindi, per ipotesi induttiva, che $L(G) = L(G_k) = L(G_{k+1})$

Esempio:

• Consideriamo nuovamente il seguente GNFA, applicando su esso l'algoritmo reduceGNFA:

• Rimuoviamo quindi lo stato q_0 calcolando le nuove transizioni:

$$\delta'(q_{\text{start}}, q_1) = \delta(q_{\text{start}}, q_0)\delta(q_0, q_0)^*\delta(q_0, q_1) \cup \delta(q_{\text{start}}, q_1) = \varepsilon(0 \cup 1)^*2 \cup \varnothing = (0 \cup 1)^*2$$

$$\delta'(q_{\text{start}}, q_{\text{accept}}) = \delta(q_{\text{start}}, q_0)\delta(q_0, q_0)^*\delta(q_0, q_{\text{accept}}) \cup \delta(q_{\text{start}}, q_{\text{accept}}) = \varepsilon(0 \cup 1)^*\varnothing \cup \varnothing = \varnothing$$

$$\delta'(q_1, q_1) = \delta(q_1, q_0)\delta(q_0, q_0)^*\delta(q_0, q_1) \cup \delta(q_1, q_1) = \varnothing(0 \cup 1)^*2 \cup (0 \cup 1) = 0 \cup 1$$

$$\delta'(q_1, q_{\text{accept}}) = \delta(q_1, q_0)\delta(q_0, q_0)^*\delta(q_0, q_{\text{accept}}) \cup \delta(q_1, q_{\text{accept}}) = \varnothing(0 \cup 1)^*\varnothing \cup \varepsilon = \varepsilon$$

• Infine, rimuoviamo lo stato q_1 calcolando le nuove transizioni:

$$\delta''(q_{\text{start}}, q_{\text{accept}}) = \delta'(q_{\text{start}}, q_1)\delta'(q_1, q_1)^*\delta'(q_1, q_{\text{accept}}) \cup \delta'(q_{\text{start}}, q_{\text{accept}}) =$$

$$= (0 \cup 1)^*2(0 \cup 1)^*\varepsilon \cup \varnothing = (0 \cup 1)^*2(0 \cup 1)^*$$

• Il GNFA minimale, dunque, corrisponde a:

start
$$\longrightarrow$$
 q_{start} $(0 \cup 1)^* 2(0 \cup 1)^*$ q_{accept}

Corollario 4: Conversione da GNFA ad espressione regolare

Date le due classi di linguaggi $\mathcal{L}(GNFA)$ e $\mathcal{L}(re)$, si ha che:

$$\mathcal{L}(GNFA) \subseteq \mathcal{L}(re)$$

Dimostrazione.

- Dato $L \in \mathcal{L}(GNFA)$, sia $G := (Q, \Sigma, \delta, q_{start}, q_{accept})$ il GNFA tale che L(G) = L
- Dato il GNFA G' ottenuto applicando reduceGNFA, sia $R \in \text{re}(\Sigma)$ l'espressione regolare tale che $R = \delta'(q_{\text{start}}, q_{\text{accept}})$. Essendo l'unica transizione di G' ed essendo G' equivalente a G, ne segue automaticamente che:

$$L = L(G) = L(G') = L(R) \in re(\Sigma)$$

da cui traiamo che:

$$\mathcal{L}(GNFA) \subseteq \mathcal{L}(re)$$

1.5.2 Equivalenza tra espressioni e linguaggi regolari

Teorema 7: Equivalenza tra espressioni e linguaggi regolari

Date le due classi di linguaggi $\mathcal{L}(re)$ e REG, si ha che:

$$\mathcal{L}(re) = REG$$

Dimostrazione.

Prima implicazione.

• Tramite la Conversione da espressione regolare a NFA, otteniamo che:

$$\mathcal{L}(re) \subseteq \mathcal{L}(NFA) = REG$$

• Inoltre, in quando un NFA è anche un GNFA, ne segue automaticamente che:

$$\mathcal{L}(NFA) \subseteq \mathcal{L}(GNFA)$$

Seconda implicazione.

• Tramite la Conversione da DFA a GNFA e Conversione da GNFA ad espressione regolare, otteniamo che:

$$REG = \mathcal{L}(DFA) \subseteq \mathcal{L}(GNFA) \subseteq \mathcal{L}(re)$$

Proposizione 7: Classi dei linguaggi regolari

Dato un alfabeto Σ , si ha che:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA) = \mathcal{L}(GNFA) = \mathcal{L}(re)$$

In altre parole, per ogni linguaggio regolare L esistono un DFA, un NFA e un GNFA che lo riconoscono e un'espressione regolare che lo descrive

1.6 Pumping lemma per i linguaggi regolari

Consideriamo il seguente linguaggio composto dalle stringhe aventi un numero uguale di simboli 0 ed 1:

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Nel provare a costruire un automa che riconosca tale linguaggio, notiamo che sarebbe necessario che l'automa avesse **infiniti stati**, in quanto esso dovrebbe memorizzare la quantità di simboli 0 ed 1 letti. Di conseguenza, non è possibile costruire un **automa a stati finiti** (dunque un DFA, NFA o GNFA) che riconosca tale linguaggio.

Lemma 3: Pumping lemma per i linguaggi regolari

Dato un linguaggio L, se $L \in \text{REG}$ allora $\exists p \in \mathbb{N}$, detto **lunghezza del pumping**, tale che $\forall w := xyz \in L$, con $|w| \geq p$ e $x, y, z \in \Sigma^*$ (ossia sono sue sottostringhe), si ha che:

- $\forall i \in \mathbb{N} \ xy^iz \in L$, ossia è possibile concatenare y per i volte rimanendo in L
- |y| > 0, dunque $y \neq \varepsilon$
- $|xy| \le p$, ossia y deve trovarsi nei primi p simboli di w

Dimostrazione.

- Dato $L \in REG$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Consideriamo quindi p := |Q|. Data la stringa $w := w_1 \dots w_n \in L$ dove $w_1, \dots, w_n \in \Sigma$ e dove $n \geq p$, consideriamo la sequenza di stati r_1, \dots, r_{n+1} tramite cui w viene accettata da D:

$$\forall k \in [1, n] \ \delta(r_k, w_k) = r_{k+1}$$

- Notiamo quindi che $|r_1, \ldots, r_{n+1}| = n+1$, ossia che il numero di stati attraversati sia n+1. Inoltre, in quanto $n \geq p$, ne segue automaticamente che $n+1 \geq p+1$. Tuttavia, poiché p := |Q| e $n+1 \geq p+1$, ne segue necessariamente che $\exists i, j \mid 1 \leq i < j \leq p+1 \land r_i = r_j$, ossia che tra i primi p+1 stati della sequenza vi sia almeno uno stato ripetuto
- A questo punto, consideriamo le seguenti sottostringhe di w:
 - $-x=w_1\ldots w_{i-1}$, tramite cui si ha che $\delta^*(r_1,x)=r_i$
 - $-y=w_i\ldots w_{i-1}$, tramite cui si ha che $\delta^*(r_i,y)=r_i=r_i$
 - $-z=w_i\ldots w_n$, tramite cui si ha che $\delta^*(r_i,z)=r_n$
- Poiché $\delta^*(r_i, y) = r_i$, ossia y porta sempre r_i in se stesso, ne segue automaticamente che

$$\forall k \in \mathbb{N} \ \delta^*(r_i, y^k) = r_i \implies \delta(r_1, xy^k z) \in F \implies xy^k z \in L(D) = L$$

• Inoltre, ne segue direttamente che |y| > 0 in quanto i < j e che $|xy| \le p$ in quanto $j \le p+1$

Rappresentazione grafica della dimostrazione

Esempio:

- Consideriamo il linguaggio $L = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$
- Tale linguaggio risulta essere regolare in quanto il seguente DFA è in grado di riconoscerlo:

- Essendo un linguaggio regolare, per esso vale il Pumping lemma per i linguaggi regolari. Ad esempio, preso p=5 e la stringa $w:=0100010101\in L$, è possibile separare w in tre sottostringhe $x:=010,\ y=00$ e z=10101 tali che:
 - $-xy^0z = 01010101 \in L$
 - $-xy^1z = 0100010101 \in L$
 - $-xy^2z = 010000010101 \in L$
 - $-xy^3z = 01000000010101 \in L$

- ..

Capitolo 1. Linguaggi regolari

Osservazione 7: Dimostrazione di non regolarità

Il Pumping lemma per i linguaggi regolari può essere utilizzato per dimostrare che un linguaggio **non è regolare**

Esempi:

- Consideriamo il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$
- Supponiamo per assurdo che L sia regolare. In tal caso, ne segue che per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $w := 0^p 1^p \in L$. Poiché $|w| \ge p$, possiamo suddividerla in tre sottostringhe $x, y, z \in \Sigma^*$ tali che w = xyz, per poi procedere con uno dei due seguenti approcci:

1. Approccio enumerativo:

- Se y è composta da soli 0, allora ogni stringa generata dal pumping non sarà in L in quanto il numero di 0 sarà superiore al numero di 1
- Se y è composta da soli 1, allora ogni stringa generata dal pumping non sarà in L in quanto il numero di 1 sarà superiore al numero di 0
- Se y è composta sia da 0 che da 1, allora ogni stringa generata dal pumping non sarà in L in quanto esse assumeranno la forma 0000...101010...1111
- Di conseguenza, poiché in ogni caso viene contraddetto il pumping lemma, ne segue necessariamente che L non sia regolare

2. Approccio condizionale:

- Poiché la terza condizione del pumping lemma impone che $|xy| \le p$ e poiché $w := 0^p 1^p$, ne segue che $xy = 0^m$ e $z = 0^{p-m} 1^p$, dove $m \in [1, p]$
- Inoltre, per la seconda condizione, si ha che |y|>0, dunque necessariamente si ha che $x=0^{m-k}$ e $y=0^k$, dove $k\in[1,m]$
- A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^0z = 0^{m-k}(0^k)^00^{p-m}1^p = 0^{m-k}0^{p-m}1^p = 0^{p-k}1^p$$

implicando dunque che $xy^0z \notin L$, contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$

- Dunque, ne segue necessariamente che L non sia regolare

1.7 Esercizi svolti

Problema 1: Linguaggio rovesciato

Dato un linguaggio L e il suo linguaggio rovesciato $L^R = \{w^R \mid w \in L\}$, dimostrare che

$$L \in \text{REG} \implies L^R \in \text{REG}$$

Dimostrazione.

- Dato $L \in REG$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Definiamo quindi un primo NFA $N = (Q', \Sigma, \delta', q_0, \{q_f\})$ tale che:
 - $-q_f$ è il nuovo unico stato accettante aggiunto
 - $Q' = Q \cup \{q_f\}$
 - $\forall q \in Q, a \in \Sigma \ \delta'(q, a) = \delta(q, a)$, ossia tutti gli archi rimangono invariati
 - $\ \forall q \in F \ \delta'(q,\varepsilon) = q_f,$ ossia tutti gli stati finali precedenti hanno un $\varepsilon\text{-arco}$ verso q_f
- A questo punto, per costruzione stessa di N ne segue che:

$$w \in L = L(D) \iff w \in L(N)$$

dunque che L = L(D) = L(N)

• Definiamo quindi un secondo NFA $N^R = (Q', \Sigma, \delta'', q_f, \{q_0\})$ tale che:

$$\forall p, q \in Q', a \in \Sigma_{\varepsilon} \ \delta'(p, a) = q \implies \delta''(q, a) = p$$

ossia avente tutti gli archi invertiti rispetto ad N

• A questo punto, per costruzione stessa di N' ne segue che:

$$w \in L = L(N) \iff w^R \in L(N^R)$$

dunque che $L^R = L(N)^R = L(N^R) \in REG$

Problema 2: Complemento di un'espressione regolare

Data l'espressione regolare $R=(01^+)^*$, costruire il DFA D tale che:

$$L(D) = \{ w \in \{0, 1\}^* \mid w \notin L(R) \}$$

Soluzione:

• Prima di tutto, costruiamo un DFA D_R tale che $L(D_R) = L(R)$:

• A questo punto, ci basta costruire il DFA D tale che $L(D) = \neg L(D_R)$ utilizzando la Chiusura del complemento in REG:

Problema 3

Dato il linguaggio $L=\{w\in\{0,1\}^*\mid |w|_0=|w|_1\},$ dimostrare che $L\notin\mathrm{REG}$

Dimostrazione.

- ullet Supponiamo per assurdo che L sia regolare, implicando ch
 per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $w:=0^p1^p\in L$. Poiché $|w|\geq p$, possiamo suddividerla in tre sottostringhe $x,y,z\in \Sigma^*$ tali che w=xyz

- Poiché la terza condizione del pumping lemma impone che $|xy| \le p$ e poiché $w := 0^p 1^p$, ne segue che $xy = 0^m$ e $z = 0^{p-m} 1^p$, dove $m \in [1, p]$
- Inoltre, per la seconda condizione, si ha che |y| > 0, dunque necessariamente si ha che $x = 0^{m-k}$ e $y = 0^k$, dove $k \in [1, m]$
- A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^{0}z = 0^{m-k}(0^{k})^{0}0^{p-m}1^{p} = 0^{m-k}0^{p-m}1^{p} = 0^{p-k}1^{p}$$

$$\implies |xy^{0}z|_{0} \neq |xy^{0}z|_{1} \implies xy^{0}z \notin L$$

contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$

 \bullet Dunque, ne segue necessariamente che L non sia regolare

Problema 4

Dato il linguaggio $L = \{1^{n^2} \mid n \in \mathbb{N}\}$, dimostrare che $L \notin REG$

Dimostrazione.

- ullet Supponiamo per assurdo che L sia regolare, implicando ch
 per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $w:=1^{p^2}\in L$. Poiché $|w|\geq p$, possiamo suddividerla in tre sottostringhe $x,y,z\in \Sigma^*$ tali che w=xyz
- Poiché la terza condizione del lemma impone che $|xy| \le p$ e poiché $w:=1^{p^2}$, ne segue che $xy=1^m$ e $z=1^{p^2-m}$, dove $m\in[1,p]$
- Inoltre, per la seconda condizione del lemma, si ha che |y| > 0, dunque necessariamente si ha che $x = 1^{m-k}$ e $y = 1^k$, dove $k \in [1, m]$
- \bullet A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^0z = 1^{m-k}(1^k)^01^{p^2-m} = 1^{p^2-k}$$

- Tuttavia, poiché $k \in [1, p]$, ne segue che $\nexists n \in \mathbb{N} \mid n^2 = p^2 k$, implicando dunque che $xy^0z \notin L$, contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$
- $\bullet\,$ Dunque, ne segue necessariamente che L non sia regolare

Problema 5

Sia $\Sigma = \{a, b, c\}$. Determinare un'espressione regolare $R \in \text{re}(\Sigma)$ descrivente il linguaggio di Σ composto dalle stringhe contenenti almeno una a ed almeno una b. Determinare inoltre un DFA D che riconosca lo stesso linguaggio.

Soluzione:

- Nonostante il problema inviti alla determinazione dell'espressione regolare e poi del DFA ad essa equivalente, trovare quest'ultimo risulta molto più rapido
- Difatti, il DFA D in grado di riconoscere il linguaggio richiesto corrisponde a:

• A questo punto, osservando il DFA possiamo già notare che l'espressione regolare ad esso equivalente corrisponde a:

$$c^*(a(a \cup c)^*b \cup b(a \cup c)^*a)\Sigma^*$$

- Volendo procedere più rigorosamente, possiamo ricavare tale espressione regolare convertendo il DFA costruito nel suo GNFA equivalente, per poi ridurre al minimo tale GNFA, ottenendo l'espressione regolare
- Definiamo quindi il GNFA equivalente (del quale vengono omesse le sue transizioni etichettate con \varnothing):

• Procediamo quindi con la riduzione:

• Come anticipato, l'espressione regolare ottenuta corrisponde a:

$$c^*(a(a \cup c)^*b \cup b(b \cup c)^*a)\Sigma^*$$

Linguaggi acontestuali

2.1 Grammatiche acontestuali

Definizione 25: Context-freee Grammar (CFG)

Una Context-free Grammar (CFG) (o Grammatica acontestuale) è una quadrupla (V, Σ, R, S) dove:

- V è l'insieme delle variabili della grammatica
- $\bullet~\Sigma$ è l'insieme dei terminali della grammatica e
- \bullet R è l'insieme delle regole o produzioni della grammatica
- $S \in V$ è la variabile iniziale della grammatica
- $V \cap \Sigma = \emptyset$, ossia variabili e terminali sono tutti distinti tra loro

Le **regole in** R assumono la forma $A \to X$, dove $A \in V$, ossia è una variabile, e $X \in (V \cup \Sigma_{\varepsilon})^*$, ossia è una stringa composta da una o più variabili e/o terminali.

Esempio:

• La seguente quadrupla $G=(\{A,B\},\{0,1,\#\},R,A)$ è una CFG dove in R sono definite le seguenti regole:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \to \#$$

Osservazione 8: Acontestualità

Con acontestualità intendiamo la condizione secondo cui il lato sinistro delle regole della grammatica è composto sempre e solo da una singola variabile.

Esempio:

- La regola $A \to B$ può appartenere ad una CFG
- La regola $AB \to B$ non può appartenere ad una CFG

Osservazione 9: Notazione contratta per le regole

Data una CFG $G = (V, \Sigma, R, S)$, se in R esistono più regole $A \to X_1, X_2, \ldots, A \to X_n$ definite sulla stessa variabile A, è possibile indicare tali regole con la seguente notazione contratta:

$$A \to X_1 \mid X_2 \mid \dots \mid X_n$$

Esempio:

• Le regole della CFG dell'esempio precedente possono essere contratte in:

$$A \rightarrow 0A1 \mid B$$
 $B \rightarrow \#$

Definizione 26: Produzione

Sia $G = (V, \Sigma, R, S)$ una CFG. Se u, v, w sono stringhe di variabili o terminali ed esiste la regola $A \to w$, allora la stringa uAv **produce** la stringa uwv, denotato come $uAv \Rightarrow uwv$.

$$u, v, w \in (V \cup \Sigma)^*, A \to w \in R \implies uAv \Rightarrow uwv$$

Esempio:

• Consideriamo la grammatica $G = (\{A, B\}, \{0, 1, \#\}, R, A)$ dove:

$$A \rightarrow 0A1 \mid B$$

$$B \rightarrow \#$$

• Tramite le regole di G è possibile ottenere la stringa 000#111 attraverso la seguente catena di produzioni:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000#111$$

• Tale catena può anche essere descritta graficamente dal seguente **albero di pro- duzione**:

Definizione 27: Derivazione

Sia $G = (V, \Sigma, R, S)$ un CFG. Date $u, v \in (V \cup \Sigma)^*$, diciamo che u deriva v, denotato come $u \stackrel{*}{\Rightarrow} v$, se u = v oppure se $\exists u_1, \ldots, u_k \in (V \cup \Sigma)^*$ tali che:

$$u \Rightarrow u_1 \Rightarrow \ldots \Rightarrow u_k \Rightarrow v$$

Definizione 28: Context-free Language (CFL)

Sia $G = (V, \Sigma, R, S)$ una CFG. Definiamo come **Context-free Language (CFL)** (o Linguaggio acontestuale) **generato da** G, indicato come L(G), l'insieme di stringhe derivate dalle regole di G tramite la variabile S:

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

Esempi:

1. Data la CFG $G = (\{S\}, \{a, b\}, R, S), dove:$

$$S \to \varepsilon \mid aSb \mid SS$$

si ha che:

- $S \Rightarrow aSb \Rightarrow a\varepsilon b = ab$, dunque $ab \in L(G)$
- $S \Rightarrow aSb \Rightarrow aaSbb = \Rightarrow aa\varepsilon bb = aabb$, dunque $aabb \in L(G)$
- $S \Rightarrow SS \stackrel{*}{\Rightarrow} aSbaSb \stackrel{*}{\Rightarrow} a\varepsilon ba\varepsilon b = abab$, dunque $abab \in L(G)$
- 2. Data la CFG $G = (\{S, T\}, \{0, 1\}, R, S),$ dove:

$$S \rightarrow T1T1T1T$$

$$T \rightarrow \varepsilon \mid 0T \mid 1T$$

si ha che:

$$L(G) = \{ w \in \{0, 1\}^* \mid |w|_1 \ge 3 \}$$

3. Data la CFG $G = (\{S\}, \{0, 1\}, R, S)$, dove:

$$S \rightarrow \varepsilon \mid 0S0 \mid 1S1$$

si ha che:

$$L(G) = \{w \in \{0, 1\}^* \mid w = w^R \land |w| \equiv 0 \pmod{2}\}$$

4. Data la CFG $G = (\{S, T\}, \{a, b, c\}, R, S),$ dove:

$$S \rightarrow aSc \mid T$$

$$T \rightarrow bTc \mid \varepsilon$$

si ha che:

$$L(G) = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^{i+j} \in \Sigma^* \mid i, j \in \mathbb{N} \}$$

Osservazione 10

Sia G una CFG. Data la stringa $w \in L(G)$, possono esistere più derivazioni di w

Esempio:

• Data la CFG

$$E \rightarrow E + E \mid E \cdot E \mid (E) \mid a$$

la stringa a + a + a può essere derivata in due modi:

Definizione 29: Derivazione a sinistra

Data una CFG $G = (V, \Sigma, R, S)$, definiamo la derivazione $S \stackrel{*}{\Rightarrow} w$ come **derivazione sinistra** se ad ogni produzione interna alla derivazione viene valutata la variabile più a sinistra

Esempio:

• Riprendiamo la CFG dell'esempio precedente:

$$E \rightarrow E + E \mid E \cdot E \mid (E) \mid a$$

• Per maggior chiarezza, riscriviamo tali regole come:

$$E \to E + F \mid E \cdot E \mid (E) \mid a$$
$$F \to E$$

ottenendo una CFG del tutto equivalente alla precedente

• Una derivazione sinistra della stringa a + a + a corrisponde a:

$$E\Rightarrow E+F\Rightarrow E+F+F\Rightarrow a+F+F\Rightarrow a+E+F\Rightarrow a+a+F\Rightarrow a+a+E\Rightarrow a+a+a$$

Osservazione 11

L'uso delle derivazioni a sinistra permette di fissare un "ordine", rimuovendo la maggior parte delle derivazioni multiple per una stessa stringa.

Tuttavia, in alcune grammatiche possono esistere più di una derivazione a sinistra per la stessa stringa.

Definizione 30: Grammatica ambigua

Definiamo una grammatica G come **ambigua** se $\exists w \in L(G)$ tale che esistono almeno due derivazioni a sinistra per w

2.2 Linguaggi acontestuali ad estensione dei regolari

Definizione 31: Classe dei linguaggi acontestuali

Dato un alfabeto Σ , definiamo come classe dei linguaggi acontestuali di Σ il seguente insieme:

$$CFL = \{ L \subseteq \Sigma^* \mid \exists \ CFG \ G \ \text{t.c} \ L = L(G) \}$$

Lemma 4: Conversione da DFA a CFG

Date le due classi di linguaggi REG e CFL, si ha che:

$$REG \subseteq CFL$$

Dimostrazione.

- Dato $L \in \text{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - Esiste una funzione biettiva $\varphi: Q \to V: q_i \mapsto V_i$

$$-S = \varphi(q_0) = V_0$$

– Dati $q_i, q_j \in Q$ e $a \in \Sigma$, si ha che:

$$\delta(q_i, a) = q_i \implies \varphi(q_i) \to a\varphi(q_i) \implies V_i \to aV_i$$

$$-q_f \in F \implies \varphi(q_f) \to \varepsilon \implies V_f \to \varepsilon$$

ullet A questo punto, per costruzione stessa di G si ha che:

$$w \in L(D) \implies w \in L(G)$$

implicando dunque che $L(D) \in CFL$ e di conseguenza che:

$$REG \subseteq CFL$$

Esempio:

• Consideriamo il seguente DFA

• Una CFG $G = (V, \Sigma, R, S)$ equivalente è costituita da:

$$-V = \{V_1, V_2, V_3, V_4\}$$

$$-S = V_1$$

-R definito come:

$$V_1 \to 0V_1 \mid 1V_2$$

 $V_2 \to 0V_2 \mid 1V_3$
 $V_3 \to 0V_3 \mid 1V_4$
 $V_4 \to 0V_4 \mid 1V_4 \mid \varepsilon$

• Difatti, sia il DFA sia la CFG descrivono il seguente linguaggio:

$$L = \{ w \in \Sigma^* \mid |w|_1 \ge 3 \}$$

Teorema 8: Ling. acontestuali estensione dei ling. regolari

Date le due classi di linguaggi REG e CFL, si ha che:

$$\mathrm{REG} \subsetneqq \mathrm{CFL}$$

Dimostrazione.

- Tramite la Conversione da DFA a CFG, sappiamo che REG \subseteq CFL
- Consideriamo quindi il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$
- Tale linguaggio è generabile dalla grammatica $G = (\{S\}, \{0, 1\}, R, S),$ dove:

$$S \rightarrow 0S1 \mid \varepsilon$$

dunque abbiamo che $L = L(G) \in \mathcal{L}(CFG)$

- \bullet Tuttavia, abbiamo già dimostrato nella sezione 1.6 che Lnon sia regolare, dunque abbiamo che $L \not\in \text{REG}$
- Di conseguenza, concludiamo che:

$$REG \subsetneq CFL$$

2.3 Forma normale di Chomsky

Definizione 32: Chomsky's Normal Form (CNF)

Una CFG $G=(V,\Sigma,R,S)$ viene detta in **Chomsky's Normal Form (CNF)** (o Forma Normale di Chomsky) se tutte le regole in R assumono una delle seguenti tre forme:

$$A \to BC$$
 $A \to a$ $S \to \epsilon$

dove $A \in V$, $a \in \Sigma$ e $B, C \in V - \{S\}$

Teorema 9: Conversione in Forma Normale di Chomsky

Per ogni CFG G, si ha che:

$$\exists$$
 CFG G' in CNF $\mid L(G) = L(G')$

Dimostrazione.

- Data una CFG $G = (V, \Sigma, R, S)$, costruiamo una CFG G' in CNF equivalente a G:
 - 1. Vengono aggiunte una variabile S_0 e una regola $S_0 \to S$, dove S_0 è la **nuova** variabile iniziale
 - 2. Finché in R esiste una ε -regola $A \to \varepsilon$ dove $A \in V \{S_0\}$, tale regola viene eliminata e per ogni regola in R contenente delle occorrenze di A vengono aggiunte delle regole in cui vengono eliminate tutte le possibili combinazioni di occorrenze di A

(es: se viene rimossa $A \to \varepsilon$ e in R esiste $B \to uAvAw \mid u, v, w \in (V \cup \Sigma)^*$, vengono aggiunte le regole $B \to uvAw \mid uAvw \mid uvw$)

- 3. Ogni regola nella forma $A \to B$ (dette **regole unitarie**) per cui esiste una regola nella forma $B \to u \mid u \in (V \cup \Sigma)^*$ viene **sostituita** con la regola $A \to u$
- 4. Per ogni regola $A \to u_1 \dots u_k$ dove $k \ge 3$ e $u \in (V \cup \Sigma)$, vengono **aggiunte** le variabili A_1, \dots, A_k e le seguenti regole:

$$A \to u_1 A_1 \qquad \dots \qquad A_{k-3} \to u_{k-2} A_{k-2} \qquad A_{k-2} \to u_{k-1} u_k$$

per poi eliminare la regola iniziale $A \to u_1 u_2 \dots u_k$

- 5. Per ogni regola rimanente nella forma $A \to u_1u_2 \mid u_1, u_2 \in (V \cup \Sigma)$, se $u_1 \in \Sigma$ allora viene aggiunta una variabile U_1 ed una regola $U_1 \to u_1$, sostituendo la regola $A \to u_1u_2$ con la regola $A \to U_1u_2$. Analogamente, lo stesso viene svolto se $u_2 \in \Sigma$.
- Poiché le operazioni svolte dall'algoritmo non modificano le stringhe generabili dalla CFG, ne segue automaticamente che L(G) = L(G')

Esempio:

ullet Consideriamo la seguente grammatica G non in CNF, dove S è la variabile iniziale:

$$G: S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

• Aggiungiamo la nuova variabile iniziale S_0 e la regola $S_0 \to S$:

$$G: S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

• Eliminiamo la ε -regola $B \to \varepsilon$:

$$G: S_0 \to S$$

$$S \to ASA \mid aB \mid \mathbf{a}$$

$$A \to B \mid S \mid \mathbf{\varepsilon}$$

$$B \to b \mid \mathbf{\varepsilon}$$

• Eliminiamo la ε -regola $A \to \varepsilon$:

$$G: S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \rightarrow B \mid S \mid \varepsilon$$

$$B \rightarrow b$$

• Eliminiamo la regola unitaria $S \to S$:

• Eliminiamo la regola unitaria $S_0 \to S$:

$$G: S_0 \rightarrow S \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

• Eliminiamo le regole unitarie $A \to B$ e $A \to S$:

$$G: S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

• Separiamo ogni regola con tre o più elementi a destra in regole con massimo due elementi a destra:

$$G: S_0 \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$B \rightarrow b$$

• Infine, convertiamo tutte le regole aventi due elementi a destra di cui almeno uno è un terminale:

$$G: S_0 \rightarrow AA_1 \mid aB \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid aB \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid aB \mid UB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow a$$

$$B \rightarrow b$$

• La grammatica finale ottenuta risulta sia equivalente a quella iniziale sia in forma normale di Chomsky:

$$G: S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow a$$

$$B \rightarrow b$$

2.4 Automi a pila

Definizione 33: Pushdown Automaton (PDA)

Un **Pushdown Automaton (PDA)** (o *Automa a pila*) è una sestupla $(Q, \Sigma, \Gamma, \delta, q_0, F)$ dove:

- Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- Γ è l'alfabeto dello stack (o pila) dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ è la funzione di transizione dell'automa, dove se $(q, c) \in \delta(p, a, b)$ si ha che:
 - Viene letto il simbolo a dalla stringa in input e se il simbolo b è in cima allo stack allora l'automa passa dallo stato p allo stato q e il simbolo b viene sostituito dal simbolo c
 - L'etichetta della transizione da p a q viene indicata come $a; b \rightarrow c$

Osservazione 12

Dato $(q, c) \in \delta(p, a, b)$ dove δ è la funzione di transizione di un PDA, si ha che:

- Se $b, c = \varepsilon$ (dunque $a; \varepsilon \to \varepsilon$) allora l'automa leggerà a dalla stringa e passerà direttamente dallo stato p allo stato q, senza modificare lo stack
- Se $b = \varepsilon$ e $c \neq \varepsilon$ (dunque $a; \varepsilon \to c$) allora l'automa leggerà a dalla stringa, passerà direttamente dallo stato p allo stato q e in cima allo stack viene aggiunto il simbolo c (**push**)
- Se $b \neq \varepsilon$ e $c = \varepsilon$ (dunque $a; b \to \varepsilon$) allora l'automa leggerà a e se in cima allo stack vi è b, l'automa passerà dallo stato p allo stato q e rimuoverà b dalla cima dello stack (**pop**)

Esempio:

• Consideriamo il seguente PDA:

- Data la stringa aab, uno dei possibili rami di computazione del PDA procede nel seguente ordine:
 - 1. Viene letta la prima ${\tt a}$ e viene inserita la prima ${\tt c}$ in cima allo stack, rimanendo nello stato $q_1.$
 - 2. Viene letta la seconda ${\tt a}$ e viene inserita la seconda ${\tt c}$ in cima allo stack, rimanendo nello stato q_1 .
 - 3. Viene letta la b, passando da q_1 a q_2 e lasciando lo stack inalterato
 - 4. Viene "letta" la prima ε , rimuovendo la seconda c dallo stack (poiché essa è in cima), rimanendo nello stato q_2 .
 - 5. Viene "letta" la seconda ε , rimuovendo la prima c dallo stack (poiché essa è in cima), rimanendo nello stato q_2 .
 - 6. Sia la stringa che lo stack sono vuoti, dunque la computazione termina necessariamente poiché non vi sono transizioni percorribili
- Notiamo in particolare che, in tal caso, la stringa verrebbe accettata anche se la computazione si fermasse al terzo passo
- Difatti, lo stack non deve necessariamente esser vuoto affinché la stringa possa essere accettata

Proposizione 8: Stringa accettata in un PDA

Sia $P := (Q, \Sigma, \Gamma, \delta, q_0, F)$ un PDA. Data una stringa $w := w_0 \dots w_k \in \Sigma^*$, dove $w_0, \dots, w_k \in \Sigma_{\varepsilon}$, diciamo che w è **accettata da** G se esiste una sequenza di stati $r_0, r_1, \dots, r_{k+1} \in Q$ ed una sequenza di stringhe $s_1, \dots, s_n \in \Gamma^*$ tali che:

- $r_0 = q_0$
- $\bullet \ r_{k+1} \in F$
- $s_0 = \varepsilon$, dunque lo stack è inizialmente vuoto
- $\forall i \in [0, k]$ si abbia che:

$$-(r_{i+1},b) \in \delta(r_i,w_i,a)$$

$$-s_i = at$$

$$- s_{i+1} = bt$$

dove $a,b\in\Gamma_\varepsilon$ e dove $t\in\Gamma^*$ è la stringa composta dai caratteri nello stack

Esempi:

• Il seguente automa riconosce il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$

• Il seguente automa riconosce il linguaggio $L = \{ww^R \mid w \in \{0, 1\}^*\}$

2.4.1 Equivalenza tra CFG e PDA

Definizione 34: Classe dei linguaggi riconosciuti da un PDA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un PDA il seguente insieme:

$$\mathcal{L}(PDA) = \{ L \subseteq \Sigma^* \mid \exists PDA \ P \text{ t.c } L = L(P) \}$$

Proposizione 9: Scrittura di una stringa sullo stack

Sia $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ un PDA. Dati $u_1, \ldots, u_k \in \Gamma$, introduciamo una notazione per cui δ possa ammettere la scrittura diretta sullo stack della stringa $u := u_1 \ldots u_k$.

Formalmente, diciamo che:

$$(q, u_1 \dots u_k) \in \delta(p, a, b) \iff \exists r_1, \dots, r_{k-1} \in Q \text{ tali che:}$$

- $\delta(p, a, b) \ni (r_1, u_k)$
- $\delta(r_1, \varepsilon, \varepsilon) = \{(r_2, u_{k-1})\}$
- •
- $\delta(r_{k-1}, \varepsilon, \varepsilon) = \{(q, u_1)\}$

Esempio:

• Dato $(q, xyz) \in \delta(p, a, b)$ si ha che:

Lemma 5: Conversione da CFG a PDA

Date le due classi di linguaggi CFL e $\mathcal{L}(PDA)$, si ha che:

$$CFL \subseteq \mathcal{L}(PDA)$$

Dimostrazione.

- Dato $L \in CFL$, sia $G = (V, \Sigma, R, S)$ la CFG tale che L = L(G)
- Consideriamo quindi il PDA $P = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, F)$ tale che:
 - $-Q = \{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\} \cup Q_{\delta}$, dove Q_{δ} sono i minimi stati aggiunti affinché la sua funzione δ sia ben definita (vedi i punti successivi)
 - $-\Gamma = V \cup \Sigma$

- $-F = \{q_{\text{accept}}\}$
- Dato $q_{\text{start}} \in Q$ si ha che

$$\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S\$)\}$$

 $- \forall A \in V \text{ si ha che}$

$$\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, u) \mid (A \to u) \in R, \ u \in \Gamma^*\}$$

 $- \forall a \in \Sigma \text{ si ha che}$

$$\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \varepsilon)\}$$

— Dato $q_{\text{accept}} \in Q$ si ha che

$$\delta(q_{\text{loop}}, \varepsilon, \$) = \{(q_{\text{accept}}, \varepsilon)\}$$

ullet A questo punto, per costruzione stessa di P si ha che:

$$w \in L = L(G) \iff w \in L(P)$$

dunque che $L = L(P) \in \mathcal{L}(PDA)$

Esempio:

• Consideriamo la seguente grammatica:

$$G: S \to aTb \mid b$$
$$T \to Ta \mid \varepsilon$$

• Il PDA in grado di riconoscere L(G) corrisponde a:

Capitolo 2. Linguaggi acontestuali

Lemma 6: Conversione da PDA a CFG

Date le due classi di linguaggi $\mathcal{L}(PDA)$ e CFL, si ha che:

$$\mathcal{L}(PDA) \subseteq CFL$$

Dimostrazione.

- Dato $L \in \mathcal{L}(PDA)$, sia $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ il PDA tale che L = L(P)
- Consideriamo il PDA $P' = (Q', \Sigma, \Gamma, \delta', q_0, \{q_{\text{accept}}\})$ tale che:
 - Ogni transizione effettua solo un'operazione di push o di pop, ma mai una sostituzione diretta:

$$(q,c) \in \delta(p,a,b) \implies \exists r \in Q' \mid (r,\varepsilon) \in \delta'(p,a,b) \land \delta'(r,\varepsilon,\varepsilon) = \{(q,c)\}$$

- $-Q'=Q\cup Q_{\delta'}\cup \{q_{\mathrm{accept}}\},$ dove $Q_{\delta'}$ sono gli stati aggiunti per il punto precedente
- $-q_{\text{accept}} \in Q'$ è il nuovo unico stato accettante:

$$\forall q \in F \ (q_{\text{accept}}, \varepsilon) \in \delta'(q, \varepsilon, \varepsilon)$$

- Lo stack deve essere svuotato prima di poter accettare una stringa:

$$\forall q \in F, a \in \Sigma \ (q, \varepsilon) \in \delta'(q, \varepsilon, a)$$

• A questo punto, per costruzione stessa di P' si ha che:

$$w \in L(P) \iff w \in L(P')$$

dunque che L = L(P) = L(P')

- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - $-V = \{A_{p,q} \mid p, q \in Q'\}$
 - $-S = A_{q_0,q_{\text{accent}}}$
 - Ogni variabile $A_{p,q}$ è grado di derivare tutte le stringhe generabili passando dallo stato p allo stato q:
 - * $\forall p \in Q'$ si ha che:

$$(A_{p,p} \to \varepsilon) \in R$$

* $\forall p, q, r, s \in Q', u \in \Gamma \in a, b \in \Sigma_{\varepsilon}$ si ha che:

$$(r,u) \in \delta'(p,a,\varepsilon) \land (q,\varepsilon) \in \delta(s,b,u) \iff (A_{p,q} \to aA_{r,s}b) \in R$$

* $\forall p, q, r \in Q'$ si ha che:

$$(A_{p,q} \to A_{p,r} A_{r,q}) \in R$$

• Affermazione: dati $p, q \in Q'$ e $x \in \Sigma^*$, se $A_{p,q} \stackrel{*}{\Rightarrow} x$ allora x porta il PDA P' dallo stato p allo stato q con uno stack vuoto:

Dimostrazione.

Procediamo per induzione sul numero n di produzioni che compongono la derivazione $A_{p,q} \stackrel{*}{\Rightarrow} x$

Caso base.

– Per n=1, la derivazione è composta da una sola produzione. Di conseguenza, l'unica regola possibile affinché $A_{p,q} \Rightarrow x$ è la regola $A_{p,q} \to \varepsilon$, implicando che p=q e che $x=\varepsilon$, dunque la stringa x porta correttamente il PDA P' dallo stato p allo stato q con uno stack vuoto

Ipotesi induttiva forte.

– Assumiamo che per ogni stringa $x \in \Sigma$ derivabile da $A_{p,q}$ (dunque tale che $A_{p,q} \stackrel{*}{\Rightarrow} x$) tramite $k \leq n$ produzioni, tale stringa x porti il PDA P' da p a q con uno stack vuoto

Passo induttivo.

- Consideriamo la derivazione $A_{p,q} \stackrel{*}{\Rightarrow} x$ composta da n+1 produzioni. Poiché tale derivazione è composta da almeno due produzioni, la prima produzione deve essere necessariamente data dalla regola $A_{p,q} \to aA_{r,s}b$ o dalla regola $A_{p,q} \to A_{p,r}A_{r,q}$
 - (a) Consideriamo il caso in cui $A_{p,q} \Rightarrow aA_{r,s}b \stackrel{*}{\Rightarrow} \dots \stackrel{*}{\Rightarrow} x$.

Sia x = ayb, dove $A_{r,s} \stackrel{*}{\Rightarrow} y$. Poiché $A_{r,s} \stackrel{*}{\Rightarrow} y$ è composta da n produzioni, per ipotesi induttiva la stringa y porta il PDA P' da r ad s con uno stack vuoto.

Inoltre, per costruzione stessa di G, tale regola di derivazione si ha che:

$$(r,u) \in \delta'(p,a,\varepsilon) \land (q,\varepsilon) \in \delta(s,b,u) \iff (A_{p,q} \to aA_{r,s}b) \in R$$

dunque concludiamo che:

$$\left. \begin{array}{l} a \text{ porta } P' \text{ da } p \text{ in } r \\ y \text{ porta } P' \text{ da } r \text{ in } s \\ b \text{ porta } P' \text{ da } s \text{ in } q \end{array} \right\} \implies x = ayb \text{ porta } P' \text{ da } p \text{ in } q$$

(b) Consideriamo il caso in cui $A_{p,q} \Rightarrow A_{p,r} A_{r,q} \stackrel{*}{\Rightarrow} \dots \stackrel{*}{\Rightarrow} x$.

Sia x = yz, dove $A_{p,r} \stackrel{*}{\Rightarrow} y$ e $A_{r,q} \stackrel{*}{\Rightarrow} z$. Poiché $A_{p,r} \stackrel{*}{\Rightarrow} y$ è composta da $m \le n$ produzioni e $A_{r,q} \stackrel{*}{\Rightarrow} z$ da $n - m \le n$ produzioni, per ipotesi induttiva le stringhe y e z portano il PDA P' rispettivamente da p ad r e da r a q con uno stack vuoto, dunque concludiamo che:

$$\left. \begin{array}{l} y \text{ porta } P' \text{ da } p \text{ in } r \\ z \text{ porta } P' \text{ da } r \text{ in } q \end{array} \right\} \implies x = yz \text{ porta } P' \text{ da } p \text{ in } q$$

• Affermazione: dati $p, q \in Q'$ e $x \in \Sigma^*$, se la stringa x porta il PDA P' dallo stato p allo stato q con uno stack vuoto allora $A_{p,q} \stackrel{*}{\Rightarrow} x$

Dimostrazione.

Procediamo per induzione sul numero n di transizioni percorse da P' durante la lettura di x

Caso base.

– Per n=0, il PDA percorre zero transizioni, dunque $x=\varepsilon$ e x porta il PDA da p a p. Pertanto, la regola $A_{p,p} \to \varepsilon$ soddisfa la derivazione $A_{p,p} \Rightarrow x$

Ipotesi induttiva forte.

– Assumiamo che per ogni stringa $x \in \Sigma$ che porta il PDA P' da p a q con uno stack vuoto percorrendo $k \leq n$ transizioni, si abbia che $A_{p,q} \stackrel{*}{\Rightarrow} x$

Passo induttivo.

- Consideriamo la stringa $x \in Sigma^*$ che porta il PDA P' da p a q con uno stack vuoto percorrendo n+1 transizioni. A seconda dell'evolvere dello stack durante la computazione, abbiamo due casi:
 - (a) Se lo stack risulta vuoto solo all'inizio e alla fine della computazione, ciò implica che $\exists u \in \Gamma$ inserito nella prima transizione e rimosso solo nell'ultima.

Sia quindi $a \in \Sigma_{\varepsilon}$ il simbolo letto durante tale prima transizione. In tal caso, $\exists r, s \in Q'$ tali che:

$$(r, u) \in \delta(p, a, \varepsilon) \land (q, \varepsilon) \in \delta(s, b, u)$$

Sia quindi x = ayb, dove y è una stringa che porta P' da r a s. Affinché la computazione di x termini con lo stack vuoto, è necessario che ciò valga anche per la computazione di y.

Poiché la computazione di y percorre n-1 transizioni, per ipotesi induttiva abbiamo che $A_{r,s} \stackrel{*}{\Rightarrow} y$, dunque data la regola $A_{p,q} \to aA_{r,s}b$ concludiamo che:

$$A_{p,q} \Rightarrow aA_{r,s}b \stackrel{*}{\Rightarrow} ayb = x$$

(b) Se lo stack si svuota durante la computazione, ciò implica che $\exists r \in Q'$ percorso durante la computazione di x in cui ciò accade.

Sia quindi x = yz, dove y e z sono due stringhe che portano P' rispettivamente da p a r e da r a q.

Poiché le computazioni di y e z percorrono rispettivamente $m \leq n$ e $n-m \leq n$ transizioni, per ipotesi induttiva abbiamo che $A_{p,r} \stackrel{*}{\Rightarrow} y$ e $A_{r,q} \stackrel{*}{\Rightarrow} z$, dunque data la regola $A_{p,q} \to A_{p,r} A_{r,q}$ concludiamo che:

$$A_{p,q} \Rightarrow A_{p,r} A_{r,q} \stackrel{*}{\Rightarrow} yz = x$$

• Tramite le due affermazioni, abbiamo che:

 $A_{q_0,q_{\mathrm{accept}}} \stackrel{*}{\Rightarrow} x \iff x$ porta P' da q_0 in q_{accept} con uno stack vuoto

da cui concludiamo che:

$$x \in L(G) \iff A_{q_0,q_{\text{accept}}} \iff x \in L(P')$$

dunque che $L = L(P) = L(P') = L(G) \in CFL$

Teorema 10: Equivalenza tra CFG e PDA

Date le due classi di linguaggi $\mathcal{L}(PDA)$ e CFL, si ha che:

$$\mathcal{L}(PDA) = CFL$$

(seque dai due lemmi precedenti)

2.5 Pumping lemma per i linguaggi acontestuali

Proposizione 10: Altezza delle derivazioni in una CFG in CNF

Sia $G=(V,\Sigma,R,S)$ una CFG in CNF. Data $x\in L(G)$ e data l'altezza h dell'albero di derivazione di x, si ha che $|x|<2^{h-1}$

Dimostrazione. Procediamo per induzione sul'altezza h dell'albero della derivazione $S \stackrel{*}{\Rightarrow} x$

Caso base.

• Per h=1, la derivazione è composta da una sola produzione. Essendo G in CNF, l'unica regola applicabile è nella forma $S\to a$, dove $x=a\in \Sigma$, implicando che $|x|=1\leq 2^{1-1}=1$

Ipotesi induttiva forte.

• Assumiamo che data $x \in L(G)$ tale che il suo albero di derivazione abbia altezza $k \le h$ si abbia che $|x| \le 2^{h-1}$

Passo induttivo.

• Consideriamo la stringa x il cui albero di derivazione ha altezza h+1. Poiché G è in CNF, la prima produzione di tale derivazione deve essere ottenuta tramite una regola nella forma $S \to AB$.

- Sia quindi x=yz, dove $A \stackrel{*}{\Rightarrow} y$ e $B \stackrel{*}{\Rightarrow} z$. Poiché la derivazione $S \Rightarrow AB \stackrel{*}{\Rightarrow} yz = x$ ha altezza h+1, ne segue che l'altezza dei due sottoalberi delle derivazioni $A \stackrel{*}{\Rightarrow} y$ e $B \stackrel{*}{\Rightarrow} z$ sia h
- Di conseguenza, per ipotesi induttiva si ha che $|y| \leq 2^{h-1}$ e $|z| \leq 2^{h-1}$, implicando che:

$$|x| = |y| + |z| \le 2^{h-1} + 2^{h-1} = 2^h = 2^{(h+1)-1}$$

Lemma 7: Pumping lemma per i linguaggi acontestuali

Dato un linguaggio L, se $L \in \text{CFL}$ allora $\exists p \in \mathbb{N}$, detto **lunghezza del pumping**, tale che $\forall w := uvxyz \in L$, con $|w| \geq p$ e $u, v, x, y, z \in \Sigma^*$ (ossia sono sue sottostringhe), si ha che:

- $\forall i \in \mathbb{N} \ uv^i x y^i z \in L$
- |vy| > 0, dunque $v \neq \varepsilon$ o $y \neq \varepsilon$
- $|vxy| \le p$

Dimostrazione.

- Dato $L \in CFL$, sia $G = (V, \Sigma, R, S)$ la CFG in CNF tale che L = L(G)
- Sia $p = 2^{|V|}$. Data una stringa $w \in L$ tale che $|w| \ge p$, per la proposizione precedente l'albero di derivazione di w deve avere un'altezza $h \ge |V| + 1$, poiché altrimenti w non sarebbe generabile da esso
- Consideriamo quindi un cammino di lunghezza h di tale albero, dunque passante per almeno $k \geq |V| + 2$ nodi. Trattandosi di un cammino all'interno di un albero di derivazione, solo l'ultimo nodo del cammino corrisponderà ad un terminale, implicando che in tale cammino vi siano $k-1 \geq |V| + 1$ variabili.
- Sia quindi A_1, \ldots, A_{k-1} la sequenza di variabili del cammino (dove $S = A_1$). Poiché $k-1 \geq |V|+1 \geq |V|$, ne segue necessariamente che $\exists i,j \mid k-|V|-2 \leq i < j \leq k-1 \wedge A_i = A_j$, ossia che tra le ultime |V|+1 variabili del cammino vi sia almeno una variabile ripetuta
- Consideriamo quindi le cinque sottostringhe $u, v, x, y, z \in \Sigma^*$ tali che:
 - -w = uvxyz
 - $-S \stackrel{*}{\Rightarrow} uA_iz$
 - $-A_i \stackrel{*}{\Rightarrow} vA_i y$
 - $-A_i \stackrel{*}{\Rightarrow} x$

• Poiché $A_i = A_j$, all'interno di ogni derivazione $A_i \stackrel{*}{\Rightarrow} vA_jy$ possiamo sostituire A_j con A_i stesso. Ripetendo tale procedimento $i \in \mathbb{N}$ volte ricorsivamente, otteniamo che:

$$A_i \stackrel{*}{\Rightarrow} vA_jy \stackrel{*}{\Rightarrow} v^2A_jy^2 \stackrel{*}{\Rightarrow} v^iA_jy^i \Rightarrow v^ixy^i$$

implicando dunque che $\forall i \in \mathbb{N} \ S \stackrel{*}{\Rightarrow} uv^ixy^iz$ e dunque che $uv^ixy^iz \in L(G) = L$

- Poiché G è in CNF, dunque al suo interno non possono esserci ε -regole o regole unitarie, la derivazione $A_i \stackrel{*}{\Rightarrow} vA_jy$ deve necessariamente aver utilizzato una regola del tipo $A_i \to BC$ dove $B \stackrel{*}{\Rightarrow} vA_j$ e $C \stackrel{*}{\Rightarrow} y$ oppure $B \stackrel{*}{\Rightarrow} v$ e $C \stackrel{*}{\Rightarrow} A_jy$. Poiché non vi sono ε -regole, in entrambi i casi si ha che $v \neq \varepsilon$ o $y \neq \varepsilon$, implicando che |vy| > 0
- Poiché A_i si trova tra le ultime |V| + 1 variabili del cammino, ne segue che il suo sottoalbero abbia altezza $h' \leq |V| + 1$ (contando anche il terminale finale). Per la proposizione precedente, dunque, ne segue che:

$$|vxy| \le 2^{h'-1} \le 2^{|V|} = p$$

Rappresentazione grafica della dimostrazione

Esempio:

- 1. Consideriamo il linguaggio $L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$
 - Supponiamo per assurdo che $L \in CFL$. In tal caso, ne segue che per esso debbia valere il pumping lemma, dove p è la lunghezza del pumping
 - Consideriamo quindi la stringa $w := 0^p 1^p 2^p$. Poiché $|w| \ge p$, possiamo suddividerla in cinque sottostringhe $u, v, x, y, z \in \Sigma^*$ tali che w = uvxyz.
 - Poiché la terza condizione del pumping lemma impone che $|vxy| \le p$, le uniche possibilità sono:
 - (a) Se $vxy = 0^m$ con $1 \le m \le p$, si ha che $u = 0^h$ e $z = 0^{p-m-h}1^p2^p$, dove $1 \le m+h \le p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che $v \in 0$ y contengono almeno uno 0
 - (b) Se $vxy = 1^m$ con $1 \le m \le p$, si ha che $u = 0^p 1^h$ e $z = 1^{p-m-h} 2^p$, dove $1 \le m+h \le p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che v e/o y contengono almeno un 1
 - (c) Se $vxy = 2^m$ con $1 \le m \le p$, si ha che $u = 0^p 1^p$ e $z = 2^{p-m-h}$, dove $leq m + h \le p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che $v \in o$ y contengono almeno un 2
 - (d) Se $vxy = 0^m 1^h$ con $1 \le m + h \le p$, si ha che $u = 0^{p-m}$ e $z = 1^{p-h} 2^p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 0 e/o y contiene almeno un 1
 - (e) Se $vxy = 1^m 2^h$ con $1 \le m + h \le p$, si ha che $u = 0^p 1^{p-m}$ e $z = 2^{p-h}$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 1 e/o y contiene almeno un 2
 - In tutti i casi possibili descritti, risulta automatico che

$$\nexists n \in \mathbb{N} \mid n = \left| uv^0xy^0z \right|_0 = \left| uv^0xy^0z \right|_1 = \left| uv^0xy^0z \right|_2 \implies uv^0xy^0z \notin L$$

contraddicendo quindi la prima condizione del pumping lemma

• Di conseguenza, ne segue necessariamente che $L \notin CFL$

- 2. Consideriamo il linguaggio $L = \{ww \mid w \in \{0, 1\}\}$
 - Supponiamo per assurdo che $L \in CFL$. In tal caso, ne segue che per esso debbia valere il pumping lemma, dove p è la lunghezza del pumping
 - Consideriamo quindi la stringa $w := 0^p 1^p 0^p 1^p$. Poiché $|w| \ge p$, possiamo suddividerla in cinque sottostringhe $u, v, x, y, z \in \Sigma^*$ tali che w = uvxyz.
 - Poiché la terza condizione del pumping lemma impone che $|vxy| \le p$, le uniche possibilità sono:
 - (a) Se $u = 0^h$, $vxy = 0^m$ e $z = 0^{p-m-h}1^p0^p1^p$, dove $1 \le m+h \le p$, poiché la seconda condizione impone che |vy| > 0, si ha che v e/o y contengono almeno uno 0, dunque si ha che:

$$\exists k < m \mid v^0 x y^0 = 0^k \implies u v^0 x y^0 z = 0^h 0^k 0^{p-m-h} 1^p 0^p 1^p = 0^{p-m+k} 1^p 0^p 1^p$$

dove $k < m \implies p - m - k < p$ e dunque che $uv^0xy^0z \notin L$

(b) Se $u=0^p1^p0^h$, $vxy=0^m$ e $z=0^{p-m-h}1^p$, dove $1\leq m+h\leq p$, poiché la seconda condizione impone che |vy|>0, si ha che v e/o y contengono almeno uno 0, dunque si ha che:

$$\exists k < m \mid v^0 x y^0 = 0^k \implies u v^0 x y^0 z = 0^p 1^p 0^h 0^k 0^{p-m-h} 1^p = 0^p 1^p 0^{p-m+k} 1^p$$

dove $k < m \implies p - m + k < p$ e dunque che $uv^0xy^0z \notin L$

(c) Se $u=0^p1^h$, $vxy=1^m$ e $z=1^{p-m-h}0^p1^p$, dove $1\leq m+h\leq p$, poiché la seconda condizione impone che |vy|>0, si ha che v e/o y contengono almeno un 1, dunque si ha che:

$$\exists k < m \mid v^0 x y^0 = 1^k \implies u v^0 x y^0 z = 0^p 1^h 1^k 1^{p-m-h} 0^p 1^p = 0^p 1^{p-m+k} 0^p 1^p$$

dove $k < m \implies p - m + k < p$ e dunque che $uv^0xy^0z \notin L$

(d) Se $u=0^p1^p0^p1^h$, $vxy=1^m$ e $z=1^{p-m-h}$, dove $1\leq m+h\leq p$, poiché la seconda condizione impone che |vy|>0, si ha che v e/o y contengono almeno un 1, dunque si ha che:

$$\exists k < m \mid v^0 x y^0 = 1^k \implies u v^0 x y^0 z = 0^p 1^p 0^p 1^h 1^k 1^{p-m-h} = 0^p 1^p 0^p 1^{p-m+k}$$

dove $k < m \implies p - m + k < p$ e dunque che $uv^0xy^0z \notin L$

(e) Se $u = 0^{p-h}$, $vxy = 0^h 1^m$ e $z = 1^{p-m} 0^p 1^p$, dove $1 \le m+h \le p$, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 0 e/o y contiene almeno un 1, dunque si ha che:

$$\exists j < h, j < m \mid v^0 x y^0 = 0^j 1^k \implies$$

$$uv^0xy^0z = 0^{p-h}0^j1^k1^{p-m}0^p1^p = 0^{p-h+j}1^{p-m+k}0^p1^p$$

dove $j < h, k < m \implies p - h + j, p - m + k < p$ e dunque che $uv^0xy^0z \not\in L$

(f) Se $u = 0^p 1^p 0^{p-h}$, $vxy = 0^h 1^m$ e $z = 1^{p-m}$, dove $1 \le m+h \le p$, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 0 e/o y contiene almeno un 1, dunque si ha che:

$$\exists j < h, j < m \mid v^0 x y^0 = 0^j 1^k \implies$$
$$uv^0 x y^0 z = 0^p 1^p 0^{p-h} 0^j 1^k 1^{p-m} = 0^p 1^p 0^{p-h+j} 1^{p-m+k}$$

dove $j < h, k < m \implies p - h + j, p - m + k < p$ e dunque che $uv^0xy^0z \notin L$

(g) Se $u = 0^p 1^{p-h}$, $vxy = 1^h 0^m$ e $z = 0^{p-m} 1^p$, dove $1 \le m+h \le p$, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 1 e/o y contiene almeno un 0, dunque si ha che:

$$\exists j < h, j < m \mid v^0 x y^0 = 1^j 0^k \implies$$

$$uv^0 x y^0 z = 0^p 1^{p-h} 1^j 0^k 0^{p-m} 1^p = 0^p 1^{p-h+j} 0^{p-m+k} 1^p$$
 dove $j < h, k < m \implies p-h+j, p-m+k < p$ e dunque che $uv^0 x y^0 z \notin L$

- Di conseguenza, poiché il pump down non può essere effettuato nè in un blocco di soli 0 o soli 1 (casi a, b, c, d), nè a cavallo tra degli 0 ed 1 (casi e, f), nè al centro della stringa (caso g), ne segue che la prima condizione del pumping lemma venga contraddetta
- Di conseguenza, ne segue necessariamente che $L \notin CFL$

2.6 Chiusure dei linguaggi acontestuali

Teorema 11: Chiusura dell'unione in CFL

L'operatore unione è chiuso in CFL, ossia:

$$\forall L_1, \dots, L_n \in CFL \ L_1 \cup \dots \cup L_n \in CFL$$

Dimostrazione.

- Dati $L_1, \ldots, L_n \in CFL$, siano G_1, \ldots, G_n le tali che $\forall i \in [1, n]$ $G_i = (V_i, \Sigma_i, R_i, S_i) \land L_i = L(G_i)$.
- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - -S è una nuova variabile iniziale

$$- V = \left(\bigcup_{i=0}^{n} V_i\right) \cup \{S\}$$

$$- \Sigma = \bigcup_{i=0}^{n} \Sigma_i$$

$$- R = \left(\bigcup_{i=0}^{n} R_i\right) \cup \{S \to S_j \mid j \in [1, n]\}$$

• Data $w \in \bigcup_{i=0}^{n} L(G_i)$, si ha che $\exists j \in [1, n] \mid w \in L(G_j)$

Di conseguenza, poiché $(S \to S_i) \in R$, ne segue che

$$w \in L(G_j) \iff S_j \stackrel{*}{\Rightarrow} w \implies S \Rightarrow S_j \stackrel{*}{\Rightarrow} w \implies w \in L(G)$$

• Data $w \in L(G)$, invece, dove $w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$, poiché le uniche regole applicabili su S sono $\{S \to S_j \mid j \in [1, n]\}$, ne segue necessariamente che:

$$w \in L(G) \implies \exists j \in [0, n] \mid S \Rightarrow S_j \stackrel{*}{\Rightarrow} w \implies w \in L(G_j) \subseteq \bigcup_{i=0}^n L(G_i)$$

• Di conseguenza, concludiamo che:

$$L_1 \cup \ldots \cup L_n = L(G_1) \cup \ldots \cup L(G_n) = L(G) \in CFL$$

Teorema 12: Chiusura della concatenazione in CFL

L'operatore concatenazione è chiuso in CFL, ossia:

$$\forall L_1, \ldots, L_n \in CFL \ L_1 \circ \ldots \circ L_n \in CFL$$

Dimostrazione.

- Dati $L_1, \ldots, L_n \in CFL$, siano G_1, \ldots, G_n le tali che $\forall i \in [1, n]$ $G_i = (V_i, \Sigma_i, R_i, S_i) \land L_i = L(G_i)$.
- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - -S è una nuova variabile iniziale

$$- V = \left(\bigcup_{i=0}^{n} V_i\right) \cup \{S\}$$

$$- \Sigma = \bigcup_{i=0}^{n} \Sigma_i$$

$$- R = \left(\bigcup_{i=0}^{n} R_i\right) \cup \{S \to S_1 \dots S_n\}$$

• Sia $w := w_1 \dots w_n \in L(G_1) \circ \dots \circ L(G_n)$, dove $\forall j \in [1, n] \ w_j \in L(G_j)$ Poiché $(S \to S_1 \dots S_n) \in R$, ne segue che

$$\forall j \in [1, n] \ w_i \in L(G_j) \iff S_j \stackrel{*}{\Rightarrow} w_j$$

dunque abbiamo che:

$$S \Rightarrow S_1 \dots S_n \stackrel{*}{\Rightarrow} w_1 \dots w_n = w \implies w \in L(G)$$

• Data $w \in L(G)$, invece, dove $w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$, poiché l'unica regola applicabile su $S \ni S \to S_1 \dots S_n$, ne segue necessariamente che:

$$w \in L(G) \implies S \Rightarrow S_1 \dots S_n \stackrel{*}{\Rightarrow} w$$

dunque $\exists w_1 \in L(G_1), \dots, w_n \in L(G_n)$ tali che:

$$S \Rightarrow S_1 \dots S_n \stackrel{*}{\Rightarrow} w_1 S_2 \dots S_n \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_n = w$$

implicando che:

$$w = w_1 w_2 \dots w_n \in L(G_1) \circ \dots \circ L(G_n)$$

• Di conseguenza, concludiamo che:

$$L_1 \circ \ldots \circ L_n = L(G_1) \circ \ldots \circ L(G_n) = L(G) \in CFL$$

Esempio:

• Consideriamo i seguenti linguaggi:

$$L_1 = \{0^n 1^n \mid n \in \mathbb{N}\} \qquad L_2 = \{1^m 0^m \mid m \in \mathbb{N}\}$$

• Consideriamo quindi le due grammatiche:

$$G_1: A \to 0A1 \mid \varepsilon$$

$$G_2: B \to 1A0 \mid \varepsilon$$

tali che $L_1 = L(G_1)$ e $L_2 = L(G_2)$

• La grammatica G tale che $L(G) = L_1 \cup L_2$, corrisponderà a:

$$G: S \to A \mid B$$

$$A \to 0A1 \mid \varepsilon$$

$$B \to 0B1 \mid \varepsilon$$

• La grammatica G' tale che $L(G') = L_1 \circ L_2$, corrisponderà a:

$$G: S \to AB$$

$$A \to 0A1 \mid \varepsilon$$

$$B \to 0B1 \mid \varepsilon$$

Teorema 13: Chiusura di star in CFL

L'operatore star è chiuso in CFL, ossia:

$$\forall L \in \text{CFL } L^* \in \text{CFL}$$

Dimostrazione.

- Dato $L \in CFL$, sia $G = (V, \Sigma, R, S)$ la CFG tale che L = L(G).
- Consideriamo quindi la CFG $G' = (V, \Sigma, R', S_0)$ tale che:
 - $-S_0$ è una nuova variabile iniziale

$$-R' = R \cup \{S_0 \to \varepsilon, S_0 \to S, S_0 \to S_0 S_0\}$$

- Data $w := w_1 \dots w_n \in L^*$, abbiamo che:
 - Se $w = \varepsilon$, poiché $(S_0 \to \varepsilon) \in R$, ne segue che

$$S_0 \Rightarrow \varepsilon = w \implies w = \varepsilon \in L(G')$$

- Se $w \neq \varepsilon$, invece, si ha che $\forall j \in [1, n] \ w_j \in L = L(G) \iff S \stackrel{*}{\Rightarrow} w_j$. Dunque si ha che:
 - * Se n=1, dunque $w=w_1$, tramite la regola $(S_0 \to S) \in R$ ne segue che:

$$S_0 \Rightarrow S \stackrel{*}{\Rightarrow} w_1 = w \implies w \in L(G')$$

* Se invece n > 1, tramite $(S_0 \Rightarrow S_0 S_0) \in R$ ne segue che:

$$S_0 \Rightarrow S_0 S_0 \stackrel{*}{\Rightarrow} S_0^n \stackrel{*}{\Rightarrow} S^n \stackrel{*}{\Rightarrow} w_1 \dots w_n = w \implies w \in L(G')$$

- Data $w \in L(G')$, dove $w \in L(G') \iff S_0 \stackrel{*}{\Rightarrow} w$, poiché le uniche regole applicabili su S_0 sono $\{S_0 \to \varepsilon, S_0 \to S, S_0 \to SS\}$, ne segue necessariamente che:
 - Se $S_0 \Rightarrow \varepsilon = w$, ne segue direttamente che $w = \varepsilon \in L^0$
 - Se $S_0 \Rightarrow S \stackrel{*}{\Rightarrow} w$, ne segue direttamente che $w \in L(G) = L^1$
 - Se $S_0 \Rightarrow S_0 S_0 \stackrel{*}{\Rightarrow} w$, dato $n \geq 2$ si ha che:

$$S_0 \Rightarrow S_0 S_0 \stackrel{*}{\Rightarrow} S_0^n \stackrel{*}{\Rightarrow} S^n$$

Siano quindi $w_1, \ldots, w_n \in L(G) = L$. Poiché $\forall j \in [1, n] \ w_j \in L(G) = L \iff S \stackrel{*}{\Rightarrow} w_j$, ne segue automaticamente che:

$$S_0 \stackrel{*}{\Rightarrow} S^n \stackrel{*}{\Rightarrow} w_1 \dots w_n = w \implies w \in L^n$$

Dunque, dato $n \geq 2$, abbiamo che:

$$w \in L^0 \cup L^1 \cup L^n = L^*$$

• Di conseguenza, concludiamo che:

$$L^* = L(G') \in CFL$$

Esempio:

• Consideriamo il seguente linguaggio:

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

• Consideriamo quindi la grammatica:

$$G: A \to 0A1 \mid \varepsilon$$

tale che L = L(G)

• La grammatica G' tale che $L(G) = L(G)^*$, corrisponderà a:

$$G': S \to \varepsilon \mid A \mid SS$$
$$A \to 0A1 \mid \varepsilon$$

Teorema 14: Non chiusura dell'intersezione in CFL

L'operatore intersezione non è chiuso in CFL, ossia:

$$\exists L_1, L_2 \in \text{CFL} \mid L_1 \cap L_2 \notin \text{CFL}$$

Dimostrazione.

• Consideriamo i seguenti due linguaggi:

$$L_1 = \{a^i b^i c^j \mid i, j \in \mathbb{N}\}$$
 $L_2 = \{a^i b^j c^j \mid i, j \in \mathbb{N}\}$

• Tali linguaggi sono descritti dalle seguenti due grammatiche:

dove $L_1 = L(G_1)$ e $L_2 = L_2(G_2)$

• L'intersezione di tali linguaggi, risulta essere:

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}\$$

il quale abbiamo già dimostrato non essere un linguaggio acontestuale (sezione 2.5)

Teorema 15: Non chiusura del complemento in CFL

L'operatore complemento <u>non</u> è chiuso in CFL, ossia:

$$\exists L \in \text{CFL} \mid \neg L \notin \text{CFL}$$

Dimostrazione.

• TODO