Introduction to OpenFlow

MEULLE Michael, DAAR Waqas CORE-TPN-RIV 23 July 2010

Outline

- Background
 - Motivation
- OpenFlow overview
 - □ OpenFlow Concept
 - □ OpenFlow protocol
 - □ OpenFlow Messages
- ☐ How OpenFlow works?
- Conclusion

Background

- Internet is closed for Innovations
- We like to do new experiments
 - Mobility management
 - New naming/address schemes
 - Network access control

.....

What is OpenFlow?

- Put an open platform in hands of researchers/students to test new ideas at scale through production networks.
- An open development environment for all researchers
- Give access to flow tables in switches
 - lookup tables, access control list, etc..
 - Control packet forwarding in routers and switches.

OpenFlow Architecture

Figure 1: OpenFlow Architecute [1]

OpenFlow Protocol

- Support three message types
 - Controller-to-switch messages
 - Configuring the switch
 - Exchanging switch capabilities
 - Managing the Flow table
 - Symmetric messages
 - Send in either direction
 - Diagnose problems in switch controller connection
 - Asynchronous messages
 - From switch to the controller
 - Announce change in network state, swtich state etc.

OpenFlow Controller

- Openflow controller is a centralized entity for the entire OpenFlow network.
- NOX [4] is an open source OpenFlow controller.
 - simplified platform for writing network control software in C++/ Python.
- Researchers can write a software and plugin to NOX for testing their idea.

Packet processing in OpenFlow Network

Figure 2: Processing of a packet in Openflow network [1]

OpenFlow Table Entry

- 10-tuple with mask
 - Wild cards, prefixes, etc.

Figure 3: OpenFlow Table Entry [2]

OpenFlow switching mechanism

Figure 4: Switching of packets in OpenFlow network [3]

Conclusion

- Test environment for future Internet technologies
 - Setup experiments at the flow level
 - Setup experiments at the packet level

Reading Material

- OpenFlow switch specification; URL: <u>www.openflowswitch.org/documents/openflow-spec-v0.8.9.pdf</u>
- N McKeown; 'OpenFlow: Enabling Innovation in Campus Networks'; URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.2269
- Labsetup of Openflow network; URL: <u>http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/Deployment/HOWTO/LabSetup#4 Controller Setup</u>
- NOX controller; URL: http://noxrepo.org/noxwiki/index.php/Main-Page

References

- Nick McKeown; "Clean state design for Internet"; URL: <u>www.openflowswitch.org/documents/FOpenFlow.ppt&ei=K3xITN3cHlqOjAfo7Li0Dg&usg=AFQjCNGBQJM8</u> FlhrVJAF7iy BcehOKkqqw&siq2=WFzjw1dzcG Hwy3lxSMAZq
- 2. Peter Sjodin, Markus Heidell, Georgia Kontesidou, Kyriakos Zarifis, "Network virtualization based on flows"
- 3. HIDEyuki Shimonishi; 'Virtualized Network Infrastructure using Openflow';
- 4. NOX; URL: http://noxrepo.org/wp/

