```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv('/content/insurance.csv')
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1338 entries, 0 to 1337
    Data columns (total 7 columns):
         Column
                   Non-Null Count Dtype
     0
        age
                   1338 non-null
                                   int64
     1
                  1338 non-null
                                  object
         sex
                  1338 non-null float64
     2
        bmi
     3 children 1338 non-null int64
        smoker
                  1338 non-null
                                  object
     5
         region
                  1338 non-null
                                   object
                                   float64
         charges 1338 non-null
     dtypes: float64(2), int64(2), object(3)
    memory usage: 73.3+ KB
df['sex'].value_counts()
    male
              676
    female
              662
```

Name: sex, dtype: int64

df.head()

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

df.isnull().sum()

age	0
sex	0
bmi	0
children	0
smoker	0
region	0

```
charges 0 dtype: int64
```

```
df.columns.unique()
```

```
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'],
dtype='object')
```

df['sex'].unique()

array(['female', 'male'], dtype=object)

df['region'].unique()

array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)

df.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

df.corr()

<ipython-input-23-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only i
 df.corr()

	age	bmi	children	charges
age	1.000000	0.109272	0.042469	0.299008
bmi	0.109272	1.000000	0.012759	0.198341
children	0.042469	0.012759	1.000000	0.067998
charges	0.299008	0.198341	0.067998	1.000000

sns.heatmap(df.corr(),annot=True)

<ipython-input-25-8df7bcac526d>:1: FutureWarning: The default value of numeric_only i
sns.heatmap(df.corr(),annot=True)

<Axes: >

df.shape

(1338, 7)

plt.figure(figsize=(10,6))
sns.displot(df['age'],kde=True)
plt.title('Age Distribution')
plt.show()

<Figure size 1000x600 with 0 Axes>

plt.figure(figsize=(7,6))
sns.countplot(x='sex',data=df)
plt.title('Sex Count')
plt.show()


```
plt.figure(figsize=(10,6))
sns.displot(df['bmi'],kde=True)
plt.title('BMI Distribution')
plt.show()
```

<Figure size 1000x600 with 0 Axes>


```
df['smoker'].value_counts()

    no    1064
    yes    274
    Name: smoker, dtype: int64

plt.figure(figsize=(10,6))
sns.displot(df['charges'],kde=True)
plt.title('Charges Distribution')
```

plt.show()

<Figure size 1000x600 with 0 Axes>

plt.figure(figsize=(7,6))
sns.countplot(x='children',data=df)
plt.title('Children Count')
plt.show()

sns.relplot(kind='line',data=df,x='children',y='charges',col='sex',row='region')

sns.relplot(kind='line',data=df,x='children',y='charges',col='sex',row='smoker')

df.replace({'sex':{'male':0,'female':1}},inplace=True)

```
df.replace({'smoker':{'no':0,'yes':1}},inplace=True)
df['region'].str.strip(' ')
    0
            southwest
    1
            southeast
    2
            southeast
    3
            northwest
            northwest
    1333
          northwest
          northeast
    1334
    1335 southeast
    1336
            southwest
    1337
            northwest
    Name: region, Length: 1338, dtype: object
df.replace({'region':{'southwest':0,'southeast':1,'northwest':2,'northeast':3}},inplace=T
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1338 entries, 0 to 1337
    Data columns (total 7 columns):
        Column
                   Non-Null Count Dtype
                   -----
                                   int64
     0
                  1338 non-null
        age
     1 sex
                   1338 non-null
                                   int64
      2
        bmi
                   1338 non-null
                                   float64
        children 1338 non-null
                                   int64
                  1338 non-null
                                   int64
        smoker
                   1338 non-null
                                   int64
      5
         region
                   1338 non-null
                                   float64
         charges
     dtypes: float64(2), int64(5)
    memory usage: 73.3 KB
df['region'].value_counts()
     1
         364
     0
         325
     2
         325
     3
         324
    Name: region, dtype: int64
X=df.drop('charges',axis=1)
y=df['charges']
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=42)
(X_train.shape,y_train.shape),(X_test.shape,y_test.shape)
```

```
(((1003, 6), (1003,)), ((335, 6), (335,)))
```

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
X_train_scaled=scaler.fit_transform(X_train)
X_test_scaled=scaler.transform(X_test)
```

```
plt.subplots(figsize=(15, 5))
plt.subplot(1, 2, 1)
sns.boxplot(data=X_train)
plt.title('X_train Before Scaling')
plt.subplot(1, 2, 2)
sns.boxplot(data=X_train_scaled)
plt.title('X_train After Scaling')
```

<ipython-input-34-41fb1d7ced73>:2: MatplotlibDeprecationWarning: Auto-removal of over
plt.subplot(1, 2, 1)

Text(0.5, 1.0, 'X_train After Scaling')

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
linreg=LinearRegression()
linreg.fit(X_train_scaled,y_train)
y_pred=linreg.predict(X_test_scaled)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)