Machine Learning - Solution/Exercises

Jan-Philipp Kolb

23 Mai, 2019

EXERCISE - RPART KYPHOSIS

Consider the Kyphosis data frame

- 1. Which variables are in the kyphosis dataset
- 2. Build a tree to classify Kyphosis from Age, Number and Start.

CONSIDER THE TREE BUILD ABOVE.

- 3. Which variables are used to explain Kyphosis presence?
- 4. How many observations contain the terminal nodes.

Consider the Kyphosis data frame.

- 5. Build a tree using the first 60 observations of kyphosis.
- 6. Predict the kyphosis presence for the other 21 observations.
- 7. Which is the misclassification rate (prediction error)

THE DATASET KYPHOSIS

THE DATASET CONTAINS (1):

- ► Kyphosis: a factor with levels absent present indicating if a kyphosis (a type of deformation) was present after the operation.
- ► Age: in months.
- Number: the number of vertebrae involved.
- ▶ Start: the number of the first (topmost) vertebra operated on.

Build the tree (2)

```
library('rpart')
TREE <- rpart(Kyphosis ~ Age + Number + Start,
              data=kyphosis,method="class")
TREE
## n= 81
##
  node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
##
    1) root 81 17 absent (0.79012346 0.20987654)
##
      2) Start>=8.5 62 6 absent (0.90322581 0.09677419)
##
        4) Start>=14.5 29 0 absent (1.00000000 0.00000000) *
        5) Start< 14.5 33 6 absent (0.81818182 0.18181818)
##
         10) Age< 55 12 0 absent (1.00000000 0.00000000) *
##
         11) Age>=55 21 6 absent (0.71428571 0.28571429)
##
           22) Age>=111 14 2 absent (0.85714286 0.14285714) *
##
##
           23) Age< 111 7 3 present (0.42857143 0.57142857) *
```

PLOT THE RESULT

```
plot(TREE)
text(TREE,use.n=T)
```


Answers

- 3. Which variables are used to explain Kyphosis presence?
- ▶ The variables are Start and Age
- 4. How many observations contain the terminal nodes.
- *denotes terminal nodes. The nodes have 29, 12, 14, 7 and 19 observations

Consider the Kyphosis data frame.

5. Build a tree using the first 60 observations of kyphosis.

6. Predict the kyphosis presence for the other 21 observations.

```
PR <- predict(TREE,kyphosis[61:81,],type='class')
```

7. Which is the misclassification rate (prediction error)

```
test=kyphosis$Kyphosis[61:81]
table(PR,test)
```

```
## test
## PR absent present
## absent 14 2
## present 3 2
```

```
rate <- 100*length(which(PR!=test))/length(PR)</pre>
```

EXERCISE RPART - IRIS

CONSIDER THE IRIS DATA FRAME

- 1. Build a tree to classify Species from the other variables.
- 2. Plot the trees, add nodes information.

Consider the tree build before

- 3. Prune the the using median complexity parameter (cp) associated to the tree.
- 4. Plot in the same window, the pruned and the original tree.
- 5. In which terminal nodes is clasified each oobservations of iris?
- 6. Which Specie has a flower of Petal.Length greater than 2.45 and Petal.Width less than 1.75.

SOLUTION - RPART - IRIS (I)

1. Build a tree to classify Species from the other variables.

TREE2=rpart(Species ~ ., data=iris,method="class")

```
TREE2
## n = 150
##
## node), split, n, loss, yval, (yprob)
       * denotes terminal node
##
##
  1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
    ##
##
    3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.5000
##
      6) Petal.Width< 1.75 54 5 versicolor (0.00000000 0.9074
##
      7) Petal.Width>=1.75 46
                            1 virginica (0.00000000 0.02173
```

SOLUTION - RPART - IRIS (II)

2. Plot the trees, add nodes information.

```
plot(TREE2)
text(TREE2,use.n=T)
```


SOLUTION - RPART - IRIS (III)

3. Prune the the using median complexity parameter (cp) associated to the tree.

```
TP <- prune(TREE2,cp=median(TREE2$cptable[,'CP']))</pre>
```

4. Plot in the same window, the pruned and the original tree.

```
par(mfrow=c(1,2))
plot(TREE2);text(TREE2,use.n=T)
plot(TP);text(TP,use.n=T)
```


Solution - rpart - iris (IV)

5. In which terminal nodes is clasified each oobservations of iris?

TREE2\$where

##	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
##	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
##	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
##	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
##	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	
##	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	
##	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	
##	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
##	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	
##	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
##	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	1
##	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	
##	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	1
##	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	

Jan-Philipp Kolb