Data driven simulation with applications to system identification

Jan C. Willems¹ Ivan Markovsky¹ Paolo Rapisarda² Bart De Moor¹

1 — K.U.Leuven, ESAT-SISTA 2 — Univ. of Maastricht, Dept. Mathematics

16th IFAC World Congress Prague, Czech Republic, July 4-8, 2005

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005

Notation

discrete-time LTI system Σ

$$\sigma x = Ax + Bu, \quad y = Cx + Du,$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$, and $(\sigma f)(t) = f(t+1)$

• \mathscr{B}_T — set of all T samples long trajectories w := (u, y) of Σ ,

$$\mathscr{B}_{T} := \left\{ w := (u, y) \in (\mathbb{R}^{m})^{T} \times (\mathbb{R}^{p})^{T} \mid \exists x \in (\mathbb{R}^{n})^{T} \text{ s.t. } \sigma x = Ax + Bu, \ y = Cx + Du \right\}$$

• lag 1 of Σ — observability index of (A, C)

n, m, p, 1, \mathcal{B} have the same meaning throughout

Outline

- Introduction
- Data driven simulation
- Application for system identification

IFAC World Congress 2005

Problem formulation

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Problem (Data driven simulation)

aiven:

- trajectory $(\tilde{u}, \tilde{y}) \in \mathcal{B}_T$ of an LTI system Σ
- upper bound n_{max} of the order n
- **3** upper bound 1_{max} of the lag 1

J. C. Willems (K.U.Leuven, ESAT-SISTA)

1 time series $u_f \in (\mathbb{R}^m)^L$, where $L \in \mathbb{N}$

find: the response y_f of Σ under zero initial conditions and input u_f

Data driven simulation

Data driven simulation

Initial conditions

Setting zero initial conditions

Let

$$\left(\begin{bmatrix} u_{\mathbf{p}} \\ u_{\mathbf{f}} \end{bmatrix}, \begin{bmatrix} y_{\mathbf{p}} \\ y_{\mathbf{f}} \end{bmatrix}\right) \in \mathscr{B}_{\mathcal{T}}$$

where $(u_p, y_p) = 0$ is at least 1 samples long zero sequence.

Then y_f is a zero initial conditions response due to u_f .

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005

5 / 15

Fundamental Lemma

Every linear combination of the columns of $\mathscr{H}_{\Delta}(\tilde{w})$ is a response.

Under what conditions is every response generated that way?

Fundamental lemma

Let

$$\mathscr{H}_{\Delta}(\tilde{u}) = egin{bmatrix} \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T-\Delta+1) \\ \tilde{u}(2) & \tilde{u}(3) & \cdots & \tilde{u}(T-\Delta+2) \\ \vdots & \vdots & & \vdots \\ \tilde{u}(\Delta) & \tilde{u}(\Delta+1) & \cdots & \tilde{u}(T). \end{bmatrix}$$

 \tilde{u} is persistently exciting of order Δ if $\mathcal{H}_{\Lambda}(\tilde{u})$ is of full row rank.

Fundamental Lemma

Assume that

- 1 the LTI system Σ is controllable,
- ② \tilde{u} is persistently exciting of order $\Delta + n$, and
- **3** (\tilde{u}, \tilde{y}) is a trajectory of Σ , *i.e.*, $(\tilde{u}, \tilde{y}) \in \mathcal{B}_T$.

Then

$$\operatorname{image}\left(\begin{bmatrix}\mathscr{H}_{\!\Delta}(\tilde{\boldsymbol{u}})\\\mathscr{H}_{\!\Delta}(\tilde{\boldsymbol{y}})\end{bmatrix}\right)=\mathscr{B}_{\!\Delta}.$$

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005

6 / 15

Algorithms for data driven simulation

Define: $\begin{bmatrix} \mathscr{H}_{n+t}(u) \\ \mathscr{H}_{n+t}(y) \end{bmatrix} =: \begin{bmatrix} U_p \\ U_f \\ Y_p \\ Y_c \end{bmatrix} \quad \begin{array}{ll} \operatorname{rowdim}(U_p) & = & \operatorname{rowdim}(Y_p) & = & n \\ \operatorname{rowdim}(U_f) & = & \operatorname{rowdim}(Y_f) & = & t \\ \end{bmatrix}$

Theorem

Let Σ be controllable, $(\tilde{u}, \tilde{y}) \in \Sigma$, and \tilde{u} be persistently exciting of order $\Delta + 1_{\text{max}} + n_{\text{max}}$. Then the system of equations

$$\begin{bmatrix} U_{\mathbf{p}} \\ U_{\mathbf{f}} \\ Y_{\mathbf{p}} \end{bmatrix} g = \begin{bmatrix} 0 \\ u_{\mathbf{f}} \\ 0 \end{bmatrix}, \tag{1}$$

is solvable for any u_f and

$$y_{\rm f} = Y_{\rm f} \bar{g}$$

generates any zero initial conditions response.

Block algorithm

Algorithm

Input: \tilde{u} , \tilde{y} , n_{max} , 1_{max} , and u_f .

1: Solve the system of equations (1) and let \bar{q} be a solution.

2: Compute $v_f = Y_f \bar{q}$.

Output: the response v_f of Σ to zero initial conditions and input u_f .

Limitation

$$t \leq \frac{T+1}{m+1} - 1_{\mathsf{max}} - n_{\mathsf{max}}.$$

This can be avoided by "weaving" responses.

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005

Iterative algorithm

Algorithm

Input: \tilde{u} , \tilde{y} , n_{max} , 1_{max} , u_f , and Δ satisfying the conditions of

1: Set k := 0, $f_{\mathsf{u}}^{(0)} := \begin{bmatrix} 0_{1_{\mathsf{max}^{\mathsf{m} \times 1}}} \\ u_{\mathsf{f}}(1 : \Delta) \end{bmatrix}$ and $f_{\mathsf{y}, \mathsf{p}}^{(0)} := 0_{1_{\mathsf{max}} \mathsf{p} \times 1}$.

Solve $\begin{bmatrix} U_p \\ U_f \\ Y_p \end{bmatrix} g^{(k)} = \begin{bmatrix} f_u^{(k)} \\ f_{v,p}^{(k)} \end{bmatrix}$ and let $\bar{g}^{(k)}$ be the solution found.

Compute the response $y_f^{(k)} := Y_f \bar{g}^{(k)}$.

 $f_{\mathsf{u}}^{(k+1)} := \left[\begin{smallmatrix} \sigma^{\Delta} f_{\mathsf{u}}^{(k)} \\ u(k\Delta + 1:(k+1)\Delta) \end{smallmatrix} \right], \, f_{\mathsf{y},\mathsf{p}}^{(k+1)} := \sigma^{\Delta} \left[\begin{smallmatrix} f_{\mathsf{y},\mathsf{p}}^{(k)} \\ v_{\mathsf{c}}^{(k)} \end{smallmatrix} \right].$

k := k + 1

7: until $t < k\Delta$

Output: $y_f := \text{col}(y_f^{(0)}, \dots, y_f^{(k-1)}).$

Weaving responses

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005

Simulation example $\tilde{w} \mapsto$ impulse response H

Simulation setup

- \mathcal{B} is of order n = 4, lag 1 = 2, with m = 2 inputs, and p = 2 outputs
- \tilde{w} is a trajectory of \mathscr{B} with length T = 500

Compared algorithms

- the block algorithm
- an iterative refinement of the block algorithm
- the function impulse from the Identification Toolbox of MATLAB

Approximation error $\bullet = ||H - \hat{H}||_{\mathbb{P}}$ and execution time

method	error, e	time, sec.
block algorithm	10^{-14}	0.293
iterative algorithm	10^{-14}	0.066
impulse	0.059	0.584

Computation of free responses

The orthogonal projection, used in the MOESP algorithms,

$$Y_0 := \mathscr{H}_{n_{\text{max}}}(\tilde{y})\Pi_{\tilde{\mu}}^{\perp},\tag{2}$$

where

$$\Pi_{\tilde{u}}^{\perp} := I - \mathscr{H}_{n_{\mathsf{max}}}^{\top}(\tilde{u}) \big(\mathscr{H}_{n_{\mathsf{max}}}(\tilde{u}) \mathscr{H}_{n_{\mathsf{max}}}^{\top}(\tilde{u}) \big)^{-1} \mathscr{H}_{n_{\mathsf{max}}}(\tilde{u}),$$

is a way to compute free responses from data. Observe that

$$\begin{bmatrix} \mathscr{H}_{n_{\mathsf{max}}}(\tilde{u}) \\ \mathscr{H}_{n_{\mathsf{max}}}(\tilde{y}) \end{bmatrix} \Pi_{\tilde{u}}^{\perp} = \begin{bmatrix} 0 \\ \mathsf{Y}_0 \end{bmatrix}.$$

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005

Conclusions

- system responses can be computed directly from (exact) data
- the algorithms require solving a linear system of equations
- the iterative algorithm weaves consecutive pieces of the response
- data driven simulation is relevant for system identification
- the orthogonal projection is a tool for computing free responses
- the oblique projection is a tool for computing sequential free responses

Computation of sequential free responses

The oblique projection, used in the N4SID algorithms,

$$Y_0 := Y_f /_{U_f} W_p := Y_f \Pi_{obl},$$
 (3)

where

$$\Pi_{\mathsf{obl}} := egin{bmatrix} \pmb{W}_{\!p}^{ op} & \pmb{U}_{\!f}^{ op} \end{bmatrix} egin{bmatrix} \pmb{W}_{\!p} \pmb{W}_{\!p}^{ op} & \pmb{W}_{\!p} \pmb{U}_{\!f}^{ op} \ \pmb{U}_{\!f} \pmb{U}_{\!f}^{ op} \end{bmatrix}^{+} egin{bmatrix} \pmb{W}_{\!p} \ \pmb{0} \end{bmatrix},$$

is a way to compute free responses, which initial conditions form a state sequence. Observe that

$$\begin{bmatrix} W_{\rm p} \\ U_{\rm f} \\ Y_{\rm f} \end{bmatrix} \Pi_{\rm obl} = \begin{bmatrix} W_{\rm p} \\ 0 \\ Y_{\rm 0} \end{bmatrix}.$$

J. C. Willems (K.U.Leuven, ESAT-SISTA)

Data driven simulation

IFAC World Congress 2005