Svar til øvelser i Algoritmer og Datastrukturer

Skrevet af Kim

Studieåret 2022-2023

Indhold

1	Uge	1: Bevisteknikker og Løkke-invarianter	1
	1.1	Opgave 1 formulering	1
		1.1.1 Svar til opgave 1	1
	1.2	Opgave 2 formulering	2
		1.2.1 Svar til opgave 2	2
	1.3	Opgave 3	3
		1.3.1 Svar til opgave 3	3
	1.4	Opgave 10	3
		1.4.1 Svar til opgave 10	3
	1.5	1 MergeSort Opgaveformulering	3
		1.5.1 Svar til 1 MergeSort	4
	1.6	Rekursionsligninger opgaveformulering (aflevering 1)	4
		1.6.1 Svar til Rekursionsligninger (aflevering 1)	5
2	Uge	2: Asymptotisk køretid og Recurrenceligninger	6
	2.1	Opgave 1 fra AU formulering Assymptotisk Køretid	6
		2.1.1 svar til opgave 1 AU	7
	2.2	Opgave 2 fra AU formulering Løkke-invarianter	7
		2.2.1 svar til opgave 2 AU	8
	2.3	Opgave 3-1 CLRS Asymptotic behavior of polynomials .	8
		2.3.1 Svar til opgave 3-1 CLRS	8
	2.4	Opgave 3-2 CLRS Relative Asymptotic Growth (4th. ed.)	8
		2.4.1 Svar til opgave CLRS 3-2	9
	2.5	Opgave 3-4 CLRS Asymptotic Notation Properties	10
		2.5.1 Svar til opgave 3-4 CLRS (3rd. ed.)	10
	2.6	Opgave 4.3-1 CLRS The substition method for solving	
		reccurences	11
		2.6.1 Svar til opgave 4.3-1 CLRS	12

	2.7	Opgave 4.4-4 CLRS The substition method for solving
		reccurences
		2.7.1 Svar til opgave 4.4-4 CLRS
	2.8	Opgave 4.5-1 CLRS The master method for solving rec-
		curences
		2.8.1 Svar 4.5-1 CLRS
	2.9	Opgave 16 formulering AU
		2.9.1 Svar til opgave 16 AU
	2.10	Opgaveopsamling task 1-6 ("gamle" aflevering 1) 17
		2.10.1 Task 1
		2.10.2 Task 2
		2.10.3 Task 3
		2.10.4 Task 4
		2.10.5 Task 5
		2.10.6 Task 6
3	\mathbf{Uge}	3: Træer, fibonnacihobe og dynamisk programmering 19
	3.1	Opgave 16.1-1 CLRS
		3.1.1 Svar til 16.1-1
	3.2	Opgave 16.1-3 CLRS
		3.2.1 Svar til opgave 16.1-3 CLRS
	3.3	Opgave 16.2-2 CLRS
		3.3.1 Svar til opgave 16.2-2 CLRS
	3.4	Opgave 16.3-2 CLRS
		3.4.1 Svar til opgave 16.3-2 CLRS
	3.5	Opgave 16.3-3 CLRS
		3.5.1 Svar til opgave 16.3-3 CLRS
	3.6	Opgave 16.3-4 CLRS
		3.6.1 Svar til opgave 16.3-4 CLRS
	3.7	Opgave 16.4-4 CLRS
	3.8	Opgave 19-1 CLRS
	3.9	Opgave 19.2-1 CLRS
	3.10	Opgave 19-3(a) CLRS
		OPgave 19.4-1 CLRS
	3.12	Opgave 2 spørgsmål 1 og 2. fra opgavesamling (gamle afleve-
		ringer)
		- /
4	_	4: Dynamisk Programmering 27
		Opgave 21 og 22 fra AU
	4.2	Opgave 14.1-2 CLRS

	4.3	Opgave 14.1-3 CLRS
	4.4	Opgave 14.3-5 CLRS
	4.5	Opgave 14.4-1 CLRS
	4.6	Opgave 14-2 CLRS
	4.7	Opgave 14.4-5 CLRS
	4.8	Opgave 14.4-6 CLRS
5	Uge	5: Greedy Algoritmer, Binær søge træ'er og Rød-sorte
	${ m tr}{ m e}'$	
	5.1	Opgave 15.2-1 CLRS
	5.2	Opgave 15.2-5 CLRS
	5.3	Opgave 15-1(a) CLRS (penny = 1 , nickel = 5 , dime = 10 ,
		$quarter = 25) \dots \dots$
	5.4	Opgave 15-1(c) CLRS
	5.5	Opgave 15-1(b) CLRS
	5.6	Opgave 15.3-3 CLRS
	5.7	Opgave 15.1-4 CLRS
	5.8	Opgave 7, 8 og 9 fra AU
	5.9	Opgave 12.1-5 CLRS
	5.10	Opgave 12.2-3 CLRS
	5.11	Opgave 12.3-5 CLRS
		Opgave 13.1-2 CLRS
		Opgave 13.2-3 CLRS
	5.14	Opgave 13.3-1 CLRS
		Opgave 13.3-2 CLRS
		Opgave 13.4-4 CLRS
	5.17	Opgave 13.4-8 CLRS
		Opgave 13-3 CLRS
	5.19	Proof of Lemma 13.1
6	$\mathbf{U}\mathbf{g}\mathbf{e}$	6: Disjunkte mængder og Minimum Spanning Tree 30
	6.1	Opgave 11 fra AU
	6.2	Opgave CLRS 19.2-2 CLRS
	6.3	Opgave 19.2-4 CLRS
	6.4	Opgave 19.3-1 CLRS
	6.5	Opgave 19.3-3 CLRS
	6.6	Opgave 19-1 CLRS
	6.7	Opgave 33.1-3 CLRS (digital chap.)
	6.8	Opgave 33.1-4 CLRS (digital chap.)
	6.9	Opgave 33.2-3 CLRS (digital chap.)

	6.10	Opgave 33.2-4 CLRS (digital chap.)	31
	6.11	Opgave 33.2-5 CLRS (digital chap.)	31
	6.12	Opgave 15 fra 15 AU	31
	6.13	Opgave 21.1-1 CLRS	31
	6.14	Opgave 21.1-3 CLRS	31
	6.15	Opgave 21.1-5 CLRS	31
			31
	6.17	Opgave 21.2-4 CLRS	31
	6.18	Opgave 21.2-6 CLRS	31
	6.19	Opgave 21-3 CLRS	31
7	Uge	6: Convex Hulls and Closets pair	32
	7.1	Opgave 33.3-4 CLRS	32
	7.2	Opgave 33.3-5 CLRS	32
	7.3	Opgave 33.4-1 CLRS	32
	7.4	Opgave 33-1 CLRS	32

Uge 1: Bevisteknikker og Løkke-invarianter

1.1 Opgave 1 formulering

Bevis at $x^2 - y^2 = 1$ ikke har nogen løsninger for positive heltal x, y (de positive heltal er tallene $\{1, ...\}$).

1.1.1 Svar til opgave 1

Fremgangsmåde: Vi vil benytte modstridsbevis ved at antage at $x^2-y^2=1$ har løsninger for positive heltal og derfra yderligere deducere os frem til et udtryk vi ved ikke er sandt, for så at slutte at $x^2-y^2=1$ ikke kan have løsnigner for positive heltal.

Bevis: Antag for modstrid at $x^2 - y^2 = 1$ har løsninger af positive heltal for $x, y \in \mathbb{Z}$, da vi bemærker at de positive heltal blot er de naturlige tal.

Vi bemærker de positive heltalsløsninger skal være sandt for alle af de 3 tilfælde, x < y, x > y og x = y, hvilket evalueres:

x < y: Vi bemærker at hvis x < y da medfører det at $x^2 < y^2$, for alle $x, y \in \mathbb{N}$, derfor er $x^2 - y^2 = 1 \Leftrightarrow x^2 = y^2 + 1 \Leftrightarrow x = y + r$, hvor $0 < r \in \mathbb{R}$ hvilket medfører x > y, som er en modstrid for vores grundantagelse $x < y \not$

x > y: Dette gøres symmetrisk som tilfældet [x < y].

Vi bemærker at hvis x > y da medfører det at $x^2 > y^2$, for alle

 $x,y \in \mathbb{N}$, derfor er $x^2-y^2=1 \Leftrightarrow -y^2=-x^2+1 \Leftrightarrow y^2=x^2-1$ og siden at $x^2-1 \geq 0$, da har vi at $y^2=x^2-1 \Leftrightarrow y=x-r$, hvor $0 < r \in \mathbb{R}$ hvilket medfører x < y, hvilket er en modstrid for vores grundantagelse at $x > y \not$

x=y: Dette er trivielt, da $x^2-y^2=1$ for x=yhvilket giver $x^2-y^2=x^2-(x)^2=x^2-x^2=0\neq 1$ 4

1.2 Opgave 2 formularing

Bevis at $x^2 - y^2 = 10$ ikke har nogen løsninger for positive heltal x, y.

1.2.1 Svar til opgave 2

Vi vil benytte modstridsbevis ved at antage at $x^2 - y^2 = 10$ har løsninger for positive heltal og derfra yderligere deducere os frem til et udtryk vi ved ikke er sandt, for så at slutte at $x^2 - y^2 = 10$ ikke kan have løsnigner for positive heltal.

Bevis: Antag for modstrid at $x^2 - y^2 = 10$ har løsninger af positive heltal for $x, y \in \mathbb{Z}$.

Vi bemærker de positive heltalsløsninger skal være sandt for alle af de 3 tilfælde, x < y, x > y og x = y, hvilket evalueres:

- x < y: Vi bemærker at hvis x < y da medfører det at $x^2 < y^2$, for alle $x, y \in F$, derfor er $x^2 y^2 = 10 \Leftrightarrow x^2 = y^2 + 10 \Leftrightarrow x = y + r$, hvor $0 < r \in \mathbb{R}$ hvilket medfører x > y, som er en modstrid for vores grundantagelse $x < y \not$
- x>y Vi vil starte med at faktorisere udtrykket, sådan at $x^2-y^2=10\Leftrightarrow (x+y)(x-y)=10$, vi ser da at for x>y kan dette kun lade sig gøre på 5 måder, nemlig:
 - 1) (x + y) = 1 og (x y) = 10. For x > y ser vi at (x + y) = 1 ikke kan lade sig gøre, da $\min\{y\} = \min\{x\} = 1$, så hvis $(x + \min\{y\})$ for x > 1, da er $1 < (x + \min\{y\}) \neq 1$ 4
 - 2) (x+y)=10 og (x-y)=1. Vi ser for x>y at (x-y)=1 kun kan være rigtigt for x=y+1, men da ville $(x+y)\neq 10$ fordi $y_1=4ogy_2=5$, ville hhv. give $x_1=4+1=5$ og $x_2=5+1=6$ 4

- 3) (x+y)=2 og (x-y)=5. Vi ser at for x>y da vil (x+y)=2 ikke kunne lade sig gøre, da $\min\{y\}=\min\{x\}=1$, men vores grundantagelse x>y, så $y\neq x\neq 0$
- 4) (x+y)=5 og (x-y)=2. Vi ser for x>y at (x-y)=2 kun kan være rigtigt for x=y+2, men da ville $(x+y)\neq 5$ fordi $y_1=1ogy_2=2$, ville hhv. give $x_1=1+2=3$ og $x_2=2+2=4$ 4
- 5) $(x+y)=(x-y)=\sqrt{10}$. Trivielt for $(x+y)=(x-y)=\sqrt{10}$, da $x\neq y$, hvilket er i modstrid med vores grundantagelsen x>y 4
- x=y: Dette er trivielt, da $x^2-y^2=10$ for x=yhvilket giver $x^2-y^2=x^2-(x)^2=x^2-x^2=0\neq 10$ 4

1.3 Opgave 3

Bevis at hvis a er et rationelt tal og b er et irrationelt tal, så er a+b et irrationelt tal. (Et rationelt tal er et tal der kan skrives på formen $\frac{x}{y}$, hvor x og y er heltal og $y \neq 0$.)

1.3.1 Svar til opgave 3

Antag for modstrid at a+b er rationel, da ville $a+b=c\in\mathbb{Q}$, derfor er

$$a+b=c \Leftrightarrow b=c-a \Leftrightarrow b=\frac{x_1}{y_1}+\frac{x_2}{y_2}=\frac{x_1y_2+x_2y_1}{y_1y_2}=\frac{x}{y} \quad \forall$$

1.4 Opgave 10

1.4.1 Svar til opgave 10

1.5 1 MergeSort Opgaveformulering

Antag at MergeSort(A, p, r), implementeret som i CLRS sektion 2.3, bliver kaldt på 21 elementer (dvs. r-p+1=21). Hvor mange kald bliver der totalt lavet til Merge-Sort? Hvad er antallet af kald generelt, når input har n elementer? Argumentér for dine svar.

1.5.1 Svar til 1 MergeSort

Vi ser fra CLRS figure 2.4, side 74(pdf).

Først deler vi array'et 1 gang, så deles array'et 2 gange, derefter 4 gange. Summen af disse delinger ville da være 1+2+4=7, altså er formlen 2n-1. Vi kan nu benytte denne formel til at finde hvor mange gange MergeSort bliver kaldt, for 21 elementer, hvilket så er $2 \cdot 21 - 1 = 42 - 1 = 41$.

1.6 Rekursionsligninger opgaveformulering (aflevering 1)

Hvilke af disse rekursionsligninger har løsningen $T(n) = \Theta(n2)$? Antag at T(n) = 1 for $n \ge 1$. Vælg ét eller flere korrekte svar og beskriv hvordan du kom frem til dem.

1.
$$T(n) = 4T(\lfloor n/2 \rfloor) + n \lg n$$

2.
$$T(n) = 4T(|n/2|) + n^2$$

3.
$$T(n) = 2T(|n/4|) + n^2$$

4.
$$T(n) = 9T(|n/3|) + n^3$$

5.
$$T(n) = T(n-1) + n^2$$

6.
$$T(n) = T(n-1) + n$$

1.6.1 Svar til Rekursionsligninger (aflevering 1)

CLRS Theorem 4.1(Master Theorem) som løser rekurrencerelationer af formen: $T(n) = aT(n/b) + f(n^k \lg^p n)$, for $a \ge 1$, b > 1, $k \ge 0$ og p er et reel. Det deles op i 3 tilfælde.

- 1. Hvis $a > b^k$ så er $T(n) = f(n^{\lg_b a})$
- 2. Hvis $a = b^k$ og
 - Hvis p < -1 så er $T(n) = f(n^{\lg_b a})$
 - Hvis p = -1 så er $T(n) = f(n^{\lg_b a \cdot \lg^2 n})$
 - Hvis p > -1 så er $T(n) = f(n^{\lg_b a \cdot \lg^{p-1} n})$
- 3. Hvis $a < b^k$ og
 - Hvis p < 0 så er $T(n) = \mathcal{O}(n^k)$
 - Hvis $p \ge 0$ så er $T(n) = f(n^k \lg^p n)$

Uge 2: Asymptotisk køretid og Recurrenceligninger

2.1 Opgave 1 fra AU formulering Assymptotisk Køretid

I det følgende angiver l
gn2-tals-logaritmen af n. (Multiple-choice: Ja/Nej)

- 1) (lg n)² er $\mathcal{O}(n^2)$
- 2) $n \lg n \operatorname{er} \mathcal{O}(n^2)$
- 3) \sqrt{n} er $\mathcal{O}\left((\lg n)^3\right)$
- 4) $1 + \lg n^2$ er $mathcalO\left((\lg n)^2\right)$
- 5) $\lg(n) + \lg(n!)$ er $\mathcal{O}(n^2)$
- 6) n^3 er $\mathcal{O}(n)$
- 7) $\sqrt{n} \cdot \lg(n)$ er $\mathcal{O}(n)$
- 8) n^3 er $\mathcal{O}(\lg(n!))$
- 9) n^2 er $\mathcal{O}(n^{2/3})$
- 10) $7\lg(n) + \lg(n!)$ er $\Theta(n \cdot \lg(n))$
- 11) $2^{\lg(n)} \text{ er } \Omega(n^{0.01})$
- 12) $(\lg n)^3 + 3^n \text{ er } \Omega(2^n)$

2.1.1 svar til opgave 1 AU

2.2 Opgave 2 fra AU formulering Løkke-invarianter

Algoritme loop1(n) Algoritme loop2(n)
$$s=1$$
 $i=n$ while $i \le n*n$ for $j=1$ to n $s=s+1$

Algoritme loop3(n) Algoritme loop4(n) $i=1$ $i=1$ $j=n*n$ while $i \le j$ while $i \le n$ while $i \le j$ $j=i$ while $j>0$ $j=j-1$ $j=\lfloor j/2 \rfloor$ $i=i+i$

Angiv for hver af ovenstående algoritmer udførselstiden som funktion af n i $\Theta.$

2.2.1 svar til opgave 2 AU

2.3 Opgave 3-1 CLRS Asymptotic behavior of polynomials

Let

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties.

- a) If $k \geq d$, then $p(n) = \mathcal{O}(n^k)$
- **b)** If $k \leq d$, then $p(n) = \Omega(n^k)$.
- c) If k = d, then $p(n) = \Theta(n^k)$.
- **d)** If k > d, then $p(n) = o(n^k)$.
- e) If k < d, then $p(n) = \omega(n^k)$.

2.3.1 Svar til opgave 3-1 CLRS

2.4 Opgave 3-2 CLRS Relative Asymptotic Growth (4th. ed.)

Indicate, for each pair of expressions (A, B) in the table below, whether A is \mathcal{O} , \mathbf{o} , Ω , ω , or Θ of B. Assume that $k \geq 1$, $\varepsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	\boldsymbol{A}	\boldsymbol{B}	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b .	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2 ⁿ	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	$\lg(n!)$	$\lg(n^n)$					

Reasons:

- a) Any polylogarithmic function is little-oh of any polynomial function with a positive exponent.
- **b)** Any polynomial function is little-oh of any exponential function with a positive base.
- c) The function $\sin(n)$ oscillates between 1 and 1. There is no value n_0 such that $\sin(n)$ is less than, greater than, or equal to 1/2 for all $n \ge n_0$, and so there is no value n_0 such that $n^{\sin(n)}$ is less than, greater than, or equal to $cn^{1/2}$ for all $n \ge n_0$.
- d) Take the limit of the quotient: $\lim_{n\to\infty} 2^n/2^{n/2} = \lim_{n\to\infty} 2^{n/2} = \infty$.
- e) By equation (3.21), these quantities are equal.

Equation (3.21) for Logarithms states: For any constant b > 1, the function $\lg_b(n)$ is undefined if $n \le 0$, strictly increasing if n > 0, negative if 0 < n < 1, positive if n > 1, and 0 if n = 1. For all real a > 0, b > 0, c > 0, and n, we have

$$a^{\lg_b(c)} = c^{\lg_b(a)}$$

where, in the equation above, logarithm bases is not 1 (CLRS 4th. ed. Chapter. 3.3).

f) By equation (3.28), $\lg(n!) = \Theta(n \lg(n))$. Since $\lg(n^n) = n \lg(n)$, these functions are Θ , of each other.

Equation (2.28) for Factorials states: $\lg(n!) = \Theta(n \lg(n))$ (CLRS 4th. ed. Chapter. 3.3).

2.4.1 Svar til opgave CLRS 3-2

	\boldsymbol{A}	\boldsymbol{B}	0	0	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}	yes	yes	no	no	no
b .	n^k	c^n	yes	yes	no	no	no
<i>c</i> .	\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
d.	2 ⁿ	$2^{n/2}$	no	no	yes	yes	no
e.	$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes
f.	lg(n!)	$\lg(n^n)$	yes	no	yes	no	yes

2.5 Opgave 3-4 CLRS Asymptotic Notation Properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures:

- a) $f(n) = \mathcal{O}(g(n))$ implies $g(n) = \mathcal{O}(f(n))$.
- b) $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- c) $f(n) = \mathcal{O}(g(n))$ implies $\lg(f(n)) = \mathcal{O}(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficient large n.
- d) $f(n) = \mathcal{O}(g(n))$ implies $2^{f(n)} = \mathcal{O}(2^{g(n)})$.
- e) $f(n) = \mathcal{O}((f(n))^2)$.
- f) $f(n) = \mathcal{O}(g(n))$ implies $g(n) = \Omega(f(n))$.
- **g)** $f(n) = \Theta(f(n/2)).$
- **h)** $f(n) + o(f(n)) = \Theta(f(n))$

2.5.1 Svar til opgave 3-4 CLRS (3rd. ed.)

- (a) The conjecture is false. For example, let f(n) = n and $g(n) = n^2$. Then $f(n) = \mathcal{O}(g(n))$, but g(n) is not $\mathcal{O}(f(n))$
- (b) The conjecture is false. Again, let f(n) = n and $g(n) = n^2$. Then the conjecture would be saying that $n + n^2 = \Theta(n)$, which is false.
- (c) The conjecture is true. Since $f(n) = \mathcal{O}(g(n))$ and $f(n) \geq 1$ for sufficiently large n, there are some positive constants c and n_0 such that $1 \leq f(n) \leq cg(n)$ for all n for all $n \geq n_0$, which implies $0 \leq \lg(f(n)) \leq \lg(c) = \lg(g(n))$. Without loss of generality, assume that c > 1/2, so that $\lg(c) > -1$. Define the constant $d = 1 + \lg(c) > 0$. Then, we have

$$\begin{split} \lg(f(n)) &\leq \lg(c) + \lg(g(n)) \\ &= \left(1 + \frac{\lg(c)}{\lg(g(n))}\right) \lg(g(n)) \\ &\leq (1 + \lg(c)) \lg(g(n)) \qquad \text{(because } \lg(g(n)) \geq 1) \\ &= d \lg(g(n)) \end{split}$$

and so there exist positive constants d and n_0 such that $0 \le \lg(f(n)) \le d \lg(g(n))$ for all $n \ge n_0$. Thus, $\lg(f(n)) = \mathcal{O}(\lg(g(n)))$

- (d) The conjecture is false. For example, let f(n) = 2n and g(n) = n. Then $f(n) = \mathcal{O}(g(n))$, but $2^{f(n)} = 2^{2n}$ and $2^{g(n)} = 2^n$, so that $2^{f(n)}$ is not $\mathcal{O}(2^{g(n)})$.
- (e) The conjecture is false. For example, let f(n) = 1/n, so that $f(n)^2 = 1/n^2$. It is not the case that $1/n = \mathcal{O}(1/n^2)$.
- (f) The conjecture is true, by transpose symmetry on page 62. That is, since \mathcal{O} , by definition, is an assymptotic upper-bound and Ω , by definition, is an assymptotic lower-bound, then it is trivial that .
- (g) The conjecture is false. Let $f(n) = 2^n$. It is not the case that 2^n is $\Theta(2^{n/2})$.
- (h) The conjecture is true. Let g(n) be any function in o(f(n)). Then there exists a constant $n_0 > 0$ such that for any positive constant c > 0 and all $n \ge n_0$, we have $0 \le g(n) < cf(n)$. Since $f(n) + g(n) \ge f(n)$, we have $f(n) + g(n) = \Omega(f(n))$. For the upper bound, choose the n_0 used for g(n) and choose any constant c > 0. Then, we have

$$0 \le f(n) + g(n)$$

$$< f(n) + cf(n)$$

$$= (1 + c)f(n)$$

$$\le c'f(n)$$

for cosntant c' = 1 + c. Therefore, $f(n) + g(n) = \mathcal{O}(f(n))$, so that $f(n) + g(n) = \Theta(f(n))$

2.6 Opgave 4.3-1 CLRS The substition method for solving reccurences

Use the substitution method to show that each of the following recurrences defined on the reals has the asymptotic solution specified:

- a) T(n) = T(n-1) + n has solution $T(n) = \mathcal{O}(n^2)$.
- **b)** $T(n) = T(n/2) + \Theta(1)$ has solution $T(n) = \mathcal{O}(\lg(n))$.
- c) T(n) = 2T(n/2) + n has solution $T(n) = \Theta(n \lg(n))$.
- d) T(n) = 2T(n/2 + 17) + n has solution $T(n) = \mathcal{O}(n \lg(n))$.
- e) $T(n) = 2T(n/3) + \Theta(n)$ has solution $T(n) = \Theta(n)$.
- f) $T(n) = 4T(n/2) + \Theta(n)$ has solution $T(n) = \Theta(n^2)$

2.6.1 Svar til opgave 4.3-1 CLRS

(a) We guess that $T(n) \leq cn^2$ for some constant c > 0. We have

$$T(n) = T(n-1) + n$$

$$\leq c(n-1)^{2} + n$$

$$= cn^{2} - 2cn + c + n$$

$$= cn^{2} + c(1-2n) + n$$

This last quantity is less than or equal to cn^2 if $c(1-2n)+n \leq 0$ or, equivalently, $c \geq n/(2n-1)$. This last condition holds for all $n \geq 1$ and $c \geq 1$.

For the boundary condition, we set T(1) = 1, and so $T(1) = 1 \le c \cdot 1^2$. Thus, we can choose $n_0 = 1$ and c = 1.

(b) We guess that $T(n) = c \lg(n)$, where c is the constant in the $\Theta(1)$ term. We have

$$T(n) = T(n/2) + c$$

$$= c \lg(n/2) + c$$

$$= c \lg(n) - c + c$$

$$= c \lg(n)$$

For the boundary condition, choose T(2) = c.

(c) We guess that $T(n) = n \lg(n)$. We have

$$T(n) = 2T(n/2) + n$$

$$= 2((n/2)\lg(n/2)) + n$$

$$= n \lg(n/2) + n$$

$$= n \lg(n) - n + n$$

$$= n \lg(n)$$

For the boundary condition, choose T(2) = 2.

(d) We will show that $T(n) \le cn \lg(n)$ for c = 20 and $n \ge 917$. (Different combinations of c and n_0 work. We just happen to choose this combination.) First, observe that $n/2 + 17 \le 3n/4 < n$ for all $n \ge 68$. We

have

$$\begin{split} T(n) &= 2T(n/2+17) + n \\ &= 2(c(n/2+17)\lg(n/2+17)) + n \qquad \text{(substitute)} \\ &= cn \; \lg(n/2+17) + 34c\lg(n/2+17) + n \\ &\qquad \qquad \text{(reducing paranthesis)} \\ &< cn \; \lg(3n/4) + 34c\lg(n) + n \qquad \text{(because } n \geq 68) \\ &= cn \; \lg(n) - cn \; \lg(4/3) + 34c \; \lg(n) + n \\ &= cn \; \lg(n) + (34c\lg(n) - n(c \; \lg(4/3) - 1)) \\ &cn \; \lg(n) \end{split}$$

if $34c \lg(n) \le n(c \lg(4/3)-1)$. If we choose c=20, then this inequality holds for all $n \ge 917$. (Notice that for there to be an n_0 such that the inequality holds for all $n \ge n_0$, we must choose c such that $c \lg(4/3) - 1 > 0$, or $c > 1/\lg(4/3) \approx 3.476$.)

(e) Let c be the constant in the $\Theta(n)$ term. We need to show only the upper bound of $\mathcal{O}(n)$, since the lower bound of $\Omega(n)$ follows immediately from the $\Theta(n)$ term in the recurrence. We guess that $T(n) \leq dn$, where d is a constant that we will choose. We have

$$T(n) = 2T(n/3) + cn$$

$$\leq 2dn/3 + cn$$

$$= n(2d/3 + c)$$

$$\leq dn$$

if $2d/3 + c \le d$ or, equivalently, $d \ge 3c$.

(f) Let c be the constant in the $\Omega(n)$ term. We guess that $T(n) = dn^2 - d'n$ for constants d and d' that we will choose. We will show the upper (\mathcal{O}) and lower (Ω) bounds separately.

For the upper bound, we have

$$T(n) \le 4T(n/2) + cn$$

$$= 4(d(n/2)^2 - d'n/2) + cn$$

$$= dn^2 - 2d'n + cn$$

$$= dn^2 - d'n$$

if $-2d'n + cn \le -d'n$ or, equivalently, $d'n \ge c$. For the lower bound, we just need $d' \le c$. Thus, setting d' = c works for both the upper and lower bounds.

2.7 Opgave 4.4-4 CLRS The substition method for solving reccurences

Use a recursion tree to justify a good guess for the solution to the recurrence $T(n) = T(\alpha n) + T((\alpha - 1)n) + \Theta(n)$, where α is a constant in the range $0 < \alpha < 1$.

2.7.1 Svar til opgave 4.4-4 CLRS

$$T(n) = T(\alpha n) + T((\alpha - 1)n) + cn$$

We saw the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn in the text. This recurrence can be similarly solved. Without loss of generality, let $\alpha \ge 1 - \alpha$, so that $0 < 1 \le 1/2$ and $1/2 \le \alpha < 1$.

The recursion tree is full for $\lg_{1/(1-\alpha)}(n)$ levels, each contributing cn, so we guess $\Omega(n \lg_{1/(1-\alpha)}(n)) = \Omega(n \lg(n))$. It has $\lg_{1/\alpha}(n)$ levels, each contributing $\leq cn$, so we guess $\mathcal{O}(n \lg_{1/\alpha}(n)) = \mathcal{O}(n \lg(n))$.

Now we show that $T(n) = \Theta(n \lg(n))$ by substitution. To prove the upper

bound, we need to show that $T(n) \leq dn \lg(n)$ for suitable constant d > 0:

$$T(n) = T(\alpha n) + T((\alpha - 1)n) + cn$$

$$\leq d\alpha n \lg(\alpha n) + d\alpha n \lg(n) + d(1 - \alpha)n \lg(1 - \alpha) + d(1 - \alpha)n \lg(n) + cn$$

$$= dn \lg(n) + dn(\alpha \lg(\alpha) + (1 - \alpha) \lg(1 - \alpha)) + cn$$

$$\leq dn \lg(n),$$

if $dn(\alpha \lg(\alpha) + (1 - \alpha) \lg(1 - \alpha)) + cn \le 0$. This condition is equivalent to $dn(\alpha \lg(\alpha) + (1 - \alpha) \lg(1 - \alpha)) \le -c$.

Since $1/2 \le \alpha < 1$ and $0 < 1 - \alpha \le 1/2$, we have that $\lg(\alpha) < 0$ and $\lg(1-\alpha) < 0$. Thus, $\alpha \lg(\alpha) + (1-\alpha)\lg(1-\alpha) < 0$, so that when we multiply both sides of the inequality by this factor, we need to reserve the inequality:

$$d \geq \frac{-c}{\alpha \lg(\alpha) + (1-\alpha) \lg(1-\alpha)} \qquad \text{or} \qquad d \geq \frac{c}{-\alpha \lg(\alpha) - (1-\alpha) \lg(1-\alpha)}$$

The fraction on the right-hand side is a positive constant, and so it suffices to pick any value of d that is greater than or equal to this fraction.

To prove the lower bound, we need to show that $T(n) \ge dn \lg(n)$ for a suitable constant d > 0. We can use the same proof as for the upper bound, substituting \ge for \le , and we get the requirement that

$$0 < d \ge \frac{c}{-\alpha \lg(\alpha) - (1 - \alpha)\lg(1 - \alpha)}.$$

Therefore, $T(n) = \Theta(n \lg(n))$.

2.8 Opgave 4.5-1 CLRS The master method for solving reccurences

Use the master method to give tight asymptotic bounds for the following recurrences.

a)
$$T(n) = 2T(n/4) + 1$$
.

b)
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

c)
$$T(n) = 2T(n/4) + \sqrt{n} \lg^2(n)$$
.

d)
$$T(n) = 2T(n/4) + n$$
.

e)
$$T(n) = 2T(n/4) + n^2$$
.

2.8.1 Svar 4.5-1 CLRS

In all parts of this problem, we have a=2 and b=4, and thus $n^{\lg_b(a)}=n^{\lg_4(2)}=n^{1/2}=\sqrt{n}$

- (a) $T(n) = \Theta(\sqrt{n})$. Here, $f(n) = \mathcal{O}(n^{1/2-\varepsilon})$ for $\varepsilon = 1/2$. Case 1 applies, and $T(n) = \Theta(n^{1/2}) = \Theta(\sqrt{n})$.
- (b) $T(n) = \Theta(\sqrt{n} \lg(n))$. Now $f(n) = \sqrt{n} = \Theta(n^{\lg_b(a)})$. Case 2 applies, with k = 0
- (c) $T(n) = \Theta(\sqrt{n} \lg^2(n))$. Now $f(n) = \sqrt{n} \lg^2(n) = \Theta(n^{\lg_b(a)} \lg^2(n))$. Case 2 applies, with k = 2
- (d) $T(n) = \Theta(n)$. This time, $f(n) = n^1$, and so $f(n) = \Omega(n^{\lg_b(a)+\varepsilon})$ for $\varepsilon = 1/2$. In order for case 3 to apply, we have to check the regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1. Here af(n/b) = n/2, and so the regularity condition holds for c = 1/2. Therefore, case 3 applies.
- (e) $T(n) = \Theta(n^2)$. Now, $f(n) = n^2$, and so $f(n) = \Omega(n^{\lg_b(a) + \varepsilon})$ for $\varepsilon = 3/2$. In order for case 3 to apply, we again have to check the regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1. Here, $af(n/b) = n^2/8$, and so the regularity condition holds for c = 1/8. Therefore, case 3 applies.

2.9 Opgave 16 formulering AU

	$\Theta(\log n)$	$\Theta(\sqrt{n})$	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(n^2 \log n)$	$\Theta(n^3)$
$T(n) = 4 \cdot T(n/2) + n^2$							
$T(n) = 2 \cdot T(n/5) + n$							
$T(n) = T(n-1) + \log n$							
T(n) = T(n/4) + 5							
$T(n) = 4 \cdot T(n/2) + 1$							

2.9.1 Svar til opgave 16 AU

2.10 Opgaveopsamling task 1-6 ("gamle" aflevering 1)

2.10.1 Task 1

For the following pricing schemes, use the master method

1)
$$p(n) = 8p(n/2) + n^2$$
.

2)
$$p(n) = 8p(n/4) + n^3$$

3)
$$p(n) = 10p(n/9) + n \lg_2(n)$$

Svar til task 1

- **(1)**
- *(*2*)*
- *(3)*

2.10.2 Task 2

For the following pricing schemes, use the substitution method. You may ignore the induction start and only show the induction step. When showing the induction step, you may assume that n/2 and n/3 are integers 1 in the first part and that \sqrt{n} is an integer in the second part. Be careful to avoid the pitfalls of the substitution method (see CLRS section 4.3).

Additionally, you have to draw a recursion tree down to at least four levels for both of the recurrences. Your guess for the substitution method needs to be derived from the recursion tree.

- 1) p(n) = p(n/2) + p(n/3) + n
- 2) $p(n) = \sqrt{n}p(\sqrt{n} + \sqrt{n})$ Hint: This one might be tricky. Take a close look at the section on subtracting lower order terms in CLRS.

Svar til task 2

- (1)
- (2)

2.10.3 Task 3

Write pseudo-code for introsort. You may use functions from the book such as HeapSort, InsertionSort, and Randomized-Partition. You may find inspiration in the pseudocode for quicksort from CLRS.

2.10.4 Task 4

Show that the running time of introsort is worst-case $\mathcal{O}(n \lg(n))$. You may use results from the course book without proving them.

2.10.5 Task 5

Discuss why we use heap sort rather than another $\mathcal{O}(n \lg(n))$ sorting algorithm such as merge sort. (Hint: What are the properties of the different sorting functions?)

2.10.6 Task 6

In the description above, we use insertion sort to sort the small arrays of size j-i < c. An alternative is to simply return the recursive call without sorting this small array and instead call insertion sort with the entire (nearly sorted) array as input. Why is it a good idea to run insertion sort on the nearly sorted data, when we know from CLRS that its worst-case running time is $\Theta(n^2)$?

Uge 3: Træer, fibonnacihobe og dynamisk programmering

******Mulighed for Teori*****

3.1 Opgave 16.1-1 CLRS

If the set of stack operations includes a MULTIPUSH operation, which pushes k items onto the stack, does the $\mathcal{O}(1)$ bound on the amortized cost of stack operations continue to hold?

3.1.1 Svar til 16.1-1

With a MULTIPUSH operation, the amortized cost of stack operations would no longer be $\mathcal{O}(1)$ The cost of a single MULTIPUSH that pushes k items onto the stack is $\Theta(k)$

3.2 Opgave 16.1-3 CLRS

Use aggregate analysis to determine the amortized cost per operation for a sequence of n operations on a data structure in which the *i*th operation costs i if i is an exact power of 2, and 1 otherwise.

3.2.1 Svar til opgave 16.1-3 CLRS

Let $c_i = \cos i$ of ith operation.

$$c_i = \begin{cases} i & \text{if } i \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$

Cos
1
2
1
4
1
1
1
8
1
1
÷

n operations cost

$$\sum_{i=1}^{n} c_i \le n + \sum_{i=1}^{\lg(n)} 2^j = n + (2n-1) < 3n.$$

(Note: Ignoring floor in upper bound of $\sum 2^j.)$

Average cost of operation
$$=\frac{\text{Total cost}}{\# \text{ operations}} < 3.$$

By aggregate analysis, the amortized cost per operation $= \mathcal{O}(1)$.

3.3 Opgave 16.2-2 CLRS

Redo Exercise 16.1-3 using an accounting method of analysis.

3.3.1 Svar til opgave 16.2-2 CLRS

Let $c_i = \cos i$ of ith operation.

$$c_i = \begin{cases} i & \text{if } i \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$

Charge each operation \$3 (amortized cost \hat{c}_i)

- If i is not an exact power of 2, pay \$1, and store \$2 as credit.
- If i is an exact power of 2, pay \$i, using stored credit.

Operation	Amortized cost	Actual cost	Credit remaining
1	3	1	2
2	3	2	3
3	3	1	5
4	3	4	4
5	3	1	6
6	3	1	8
7	3	1	10
8	3	8	5
9	3	1	7
10	3	1	9
:	÷	:	÷

Since the amortized cost is \$3 per operation, $\sum_{i=1}^{n} \hat{c}_i < 3n$.

We know from Exercise 16.1-3 that $\sum_{i=1}^{n} c_i < 3n$.

Then we have $\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i \Rightarrow \text{ credit } = \text{ amortized cost } - \text{ actual cost } \ge 0.$

Since the amortized cost of each operation is $\mathcal{O}(1)$ and the amount of credit never goes negative, the total cost of n operations is $\mathcal{O}(n)$.

3.4 Opgave 16.3-2 CLRS

Redo Exercise 16.1-3 using a potential method of analysis

3.4.1 Svar til opgave 16.3-2 CLRS

Define the potential of D_i by

$$\Phi(D_i) = \begin{cases} 0 & \text{if } i = 0, \\ 2i - 2^{\lfloor \lg i \rfloor + 1} & \text{if } i \ge 1. \end{cases}$$

Since $2^{\lfloor \lg i \rfloor} \leq i$ for $i \geq 1$, the value of $\Phi(D_i)$ is nonnegative for all i.

If i is not a power of 2, then the amortized cost of the ith operation is

$$\widehat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})
= 1 + (2i - 2^{\lfloor \lg i \rfloor + 1}) - (2(i-1) - 2^{\lfloor \lg(i-1)\rfloor + 1})
= 1 + (2i - 2^{\lfloor \lg i \rfloor + 1}) - (2(i-1) - 2^{\lfloor \lg i \rfloor + 1})
= 3.$$

If $i = 2^k$ for some nonnegative integer k, then the amortized cost of the ith operation is

$$\widehat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})
= i + (2i - 2^{\lfloor \lg i \rfloor + 1}) - (2(i-1) - 2^{\lfloor \lg(i-1)\rfloor + 1})
= 2^{k} + (2 \cdot 2^{k} - 2^{\lfloor \lg 2^{k} \rfloor + 1}) - (2(2^{k} - 1) - 2^{\lfloor \lg(2^{k} - 1) \rfloor + 1})
= 2^{k} + (2^{k+1} - 2^{k+1}) - (2^{k+1} - 2 - 2^{(k-1)+1})
= 2^{k} - (2^{k} - 2)
= 2.$$

3.5 Opgave 16.3-3 CLRS

Consider an ordinary binary min-heap data structure supporting the instructions INSERT and EXTRACT-MIN that, when there are n items in the heap, implements each operation in $\mathcal{O}(\lg(n))$ worst-case time. Give a potential function Φ such that the amortized cost of INSERT is $\mathcal{O}(\lg(n))$ and the amortized cost of EXTRACT-MIN is $\mathcal{O}(1)$, and show that your potential function yields these amortized time bounds. Note that in the analysis, n is the number of items currently in the heap, and you do not know a bound on the maximum number of items that can ever be stored in the heap.

3.5.1 Svar til opgave 16.3-3 CLRS

Let D_i be the heap after the *i*th operation, and let D_i consist of n_i elements. Also, let k be a constant such that each INSERT or EXTRACT-MIN operation takes at most $k \ln(n)$ time, where $n = \max(n_{i-1}, n_i)$. (We don't want to worry about taking the log of 0, and at least one of n_{i-1} and n_i is at least 1. We'll see later why we use the natural log.)

Define

$$\Phi(D_i) = \begin{cases} 0 & \text{if } n_i = 0\\ kn_i \ln(n_i) & \text{if } n_i > 0 \end{cases}$$

This function exhibits the characteristics we like in a potential function: if we start with an empty heap, then $\Phi(D_0) = 0$, and we always maintain that $\Phi(D_i) \geq 0$. Before proving that we achieve the desired amortized times, we show that if $n \geq 2$, then $n \ln \left(\frac{n}{n-1}\right) \leq 2$. We have

$$n \ln \left(\frac{n}{n-1}\right) = n \ln (1 + fracnn - 1)$$

$$= \ln (1 + fracnn - 1)^{2}$$

$$\leq \ln \left(e^{\frac{1}{n-1}}\right) \qquad \text{(since } 1 + x \leq e^{x} \text{ for all real } x\text{)}$$

$$= \ln \left(e^{\frac{n}{n-1}}\right)$$

$$= \frac{n}{n-1}$$

$$< 2,$$

assuming that $n \ge 2$. (The equation $\ln\left(e^{\frac{n}{n-1}}\right) = \frac{n}{n-1}$ is why we use the natural log.)

If the *i*th operation is an INSERT, then $n_i = n_{i-1} + 1$. If the *i*th operation inserts into an empty heap, then n_{i-1} , $n_{i1D}0$, and the amortized cost is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

 $\leq k \lg(1) + k \cdot 1 \lg(1) - 1$
 $= 0$

If the *i*th operation inserts into a nonempty heap, then $n_i = n_{i-1} \ge 2$, and the amortized cost is

If the *i*th operation is an EXTRACT-MIN, then $n_i = n_{i-1} - 1$. If the *i*th operation extracts the one and only heap item, then $n_i = 0$, $n_{i-1} = 1$, and the amortized cost is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\leq k \lg(1) + 0 - k \cdot 1 \lg(1)$$
= 0.

If the *i*th operation extracts from a heap with more than one item, then $n_i = n_{i-1} - 1$ and $n_{i-1} \ge 2$, and the amortized cost is

A slightly different potential function—which may be easier to work with—is as follows. For each node x in the heap, let $d_i(x)$ be the depth of x in D_i .

Define

$$\Phi(D_i) = \sum_{x \in D_i} k(d_i(x) + 1)$$
$$= k \left(n_i + \sum_{x \in D_i} d_i(x) \right),$$

where k is defined as before.

Initially, the heap has no items, which means that the sum is over an empty set, and so $\Phi(D_0) = 0$. We always have $\Phi(D_i) \geq 0$, as required.

Observe that after an INSERT, the sum changes only by an amount equal to the depth of the new last node of the heap, which is $\lfloor \lg(n_i) \rfloor$. Thus, the change in potential due to an INSERT is $k(1+\lfloor \lg(n_i) \rfloor)$, and so the amortized cost is $\mathcal{O}(\lg(n_i) + \mathcal{O}(\lg(n_i))) = \mathcal{O}(\lg(n_i)) = \lg(\backslash)$.

After an EXTRACT-MIN, the sum changes by the negative of the depth of the old last node in the heap, and so the potential decreases by $k(1 + \lfloor \lg(n_i) \rfloor)$. The amortized cost is at most $k \lg(n_{i-1}) - k(1 + \lfloor \lg(n_{i-1}) \rfloor) = \mathcal{O}(1)$.

3.6 Opgave 16.3-4 CLRS

What is the total cost of executing n of the stack operations PUSH, POP, and MULTIPOP, assuming that the stack begins with s_0 objects and finishes with s_n objects?

3.6.1 Svar til opgave 16.3-4 CLRS

Starting with

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}),$$

subtracting $\Phi(D_i) - \Phi(D_{i-1})$ from both sides gives

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (\hat{c}_i + \Phi(D_{i-1}) - \Phi(D_i))$$

$$= \sum_{i=0}^{n} \hat{c}_i + \Phi(0) - \Phi(D_n) \qquad \text{(telescoping sum)}$$

$$= \sum_{i=0}^{n} \hat{c}_i + s_0 - s_n \qquad (\Phi(D_i) \text{ equals number of objects in the stack)}$$

$$\leq 2n + s_0 - s_n \qquad (\hat{c}_i \leq 2)$$

3.7 Opgave 16.4-4 CLRS

Suppose that instead of contracting a table by halving its size when its load factor drops below 1/4, you contract the table by multiplying its size by 2/3 when its load factor drops below 1/3. Using the potential function

$$\Phi(T) = |2(T.num - T.size/2)|$$

show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded above by a constant.

- 3.8 Opgave 19-1 CLRS
- 3.9 Opgave 19.2-1 CLRS
- 3.10 Opgave 19-3(a) CLRS
- 3.11 OPgave 19.4-1 CLRS
- 3.12 Opgave 2 spørgsmål 1 og 2. fra opgavesamling (gamle afleveringer)

Uge 4: Dynamisk Programmering

- 4.1 Opgave 21 og 22 fra AU
- 4.2 Opgave 14.1-2 CLRS
- 4.3 Opgave 14.1-3 CLRS
- 4.4 Opgave 14.3-5 CLRS
- 4.5 Opgave 14.4-1 CLRS
- 4.6 Opgave 14-2 CLRS
- 4.7 Opgave 14.4-5 CLRS
- 4.8 Opgave 14.4-6 CLRS

Uge 5: Greedy Algoritmer, Binær søge træ'er og Rød-sorte træ'er

- 5.1 Opgave 15.2-1 CLRS
- 5.2 Opgave 15.2-5 CLRS
- 5.3 Opgave 15-1(a) CLRS (penny = 1, nickel = 5, dime = 10, quarter = 25)
- 5.4 Opgave 15-1(c) CLRS
- 5.5 Opgave 15-1(b) CLRS
- 5.6 Opgave 15.3-3 CLRS
- 5.7 Opgave 15.1-4 CLRS
- 5.8 Opgave 7, 8 og 9 fra AU
- 5.9 Opgave 12.1-5 CLRS
- 5.10 Opgave 12.2-3 CLRS
- 5.11 Opgave 12.3-5 CLRS

Side 29 af 32

- 5.12 Opgave 13.1-2 CLRS
- 5.13 Opgave 13.2-3 CLRS
- 5.14 Opgave 13.3-1 CLRS

Uge 6: Disjunkte mængder og Minimum Spanning Tree

- 6.1 Opgave 11 fra AU
- 6.2 Opgave CLRS 19.2-2 CLRS
- 6.3 Opgave 19.2-4 CLRS
- 6.4 Opgave 19.3-1 CLRS
- 6.5 Opgave 19.3-3 CLRS
- 6.6 Opgave 19-1 CLRS
- 6.7 Opgave 33.1-3 CLRS (digital chap.)
- 6.8 Opgave 33.1-4 CLRS (digital chap.)
- 6.9 Opgave 33.2-3 CLRS (digital chap.)
- 6.10 Opgave 33.2-4 CLRS (digital chap.)
- 6.11 Opgave 33.2-5 CLRS (digital chap.)
- 6.12 Opgave 15 fra 15 AU
- 6.13 Opgave 21.1-1 CLRS

Side 31 af 32

- 6.14 Opgave 21.1-3 CLRS
- 6.15 Opgave 21.1-5 CLRS
- 6.16 Opgave 21.2-1 CLRS

Uge 6: Convex Hulls and Closets pair

- 7.1 Opgave 33.3-4 CLRS
- 7.2 Opgave 33.3-5 CLRS
- 7.3 Opgave 33.4-1 CLRS
- 7.4 Opgave 33-1 CLRS