[千葉大・文]

座標平面上に 5 点 A(0,0), B(0,1), C(1,1), D(1,0), $E\left(0,\frac{2}{3}\right)$ がある。点 E と点 $P_1(s,1)$ (0 < s < 1) を通る直線を l_1 とする。直線 y = 1 に関して l_1 と対称な直線を l_2 とし, l_2 と直線 x = 1 の交点を P_2 とする。さらに,直線 x = 1 に関して l_2 と対称な直線 l_3 は,x 軸と線分 AD 上で交わるとし,その交点を P_3 とする。

- (1) 直線 l_2 が点 D を通るときのsの値を求めよ。
- (2) 線分 DP_3 の長さをsを用いて表せ。
- (3) $EP_1 + P_1P_2 + P_2P_3$ の最大値と最小値を求めよ。

[東京大・文]

座標平面上の 3 点 P(x, y), Q(-x, -y), R(1, 0) が鋭角三角形をなすための (x, y) についての条件を求めよ。また、その条件を満たす点 P(x, y) の範囲を図示せよ。

[名古屋大・文]

曲線 $y=x^2$ 上に2点A(-1,1), $B(b,b^2)$ をとる。ただしb>-1とする。このとき、次の条件を満たすbの範囲を求めよ。

条件: $y = x^2$ 上の点 $T(t, t^2)$ (-1 < t < b) で、 $\angle ATB$ が直角になるものが存在する。

[筑波大・理]

xy 平面の直線 $y=(\tan 2\theta)x$ を l とする。ただし $0<\theta<\frac{\pi}{4}$ とする。図で示すように、円 C_1 、 C_2 を以下の(i)~(iv)で定める。

- (i) 円 C_l は直線 l および x 軸の正の部分と接する。
- (ii) 円 C_1 の中心は第1象限にあり、原点Oから中心までの距離 d_1 は $\sin 2\theta$ である。
- (iii) 円 C_2 は直線 l, x 軸の正の部分, および円 C_1 と接する。

(iv) 円 C_2 の中心は第1象限にあり、原点Oから中心までの距離 d_2 は $d_1 > d_2$ を満たす。

円 C_1 と円 C_2 の共通接線のうち, x 軸, 直線 l と異なる直線を m とし, 直線 m と直線 l, x 軸との交点をそれぞれ P, Q とする。

- (1) 円 C_1 , C_2 の半径を $\sin\theta$, $\cos\theta$ を用いて表せ。
- (2) θ が $0 < \theta < \frac{\pi}{4}$ の範囲を動くとき、線分 PQ の長さの最大値を求めよ。
- (3) (2)の最大値を与える θ について直線mの方程式を求めよ。

[東京工大]

水平な平面 α の上に半径nの球 S_1 と半径nの球 S_2 が乗っており、 S_1 と S_2 は外接している。

- (1) S_1 , S_2 が α と接する点をそれぞれ P_1 , P_2 とする。線分 P_1P_2 の長さを求めよ。
- (2) α の上に乗っており、 S_1 と S_2 の両方に外接している球すべてを考える。それらの球と α の接点は、1 つの円の上または 1 つの直線の上にあることを示せ。

[千葉大・文]

(1) 点 $\mathrm{E}\!\left(0,\,\frac{2}{3}\right)$ と点 $\mathrm{P}_{\mathrm{I}}(s,\,1)$ ($0\!<\!s\!<\!1$) を通る直線 I_{I} を、 $y\!=\!1$ に関して対称移動した直線を I_{L} とする。 すると, I_{L} は P_{L} と E_{L} を $y\!=\!1$ に関して対称移動した点 $\mathrm{Q}_{\mathrm{I}}\!\left(0,\,\frac{4}{3}\right)$ を通ることより,その傾きが $-\frac{1}{3s}$ となり,

$$l_2: y = -\frac{1}{3s}x + \frac{4}{3}$$

 l_2 がD(1, 0)を通るとき、 $0 = -\frac{1}{3s} + \frac{4}{3}$ から、 $s = \frac{1}{4}$

- (2) l_2 とx軸との交点 Q_2 は、 $0=-\frac{1}{3s}x+\frac{4}{3}$ からx=4sとなり、 $Q_2(4s,0)$ から、 $DP_3=DQ_2=4s-1\cdots\cdots$ ①
- (3) P_3 は線分 AD 上にあることから、①より $0 \le 4s 1 \le 1$ となり、 $\frac{1}{4} \le s \le \frac{1}{2}$ ………② このとき、 P_2 は線分 CD 上にある。そこで、 $EP_1 = Q_1P_1$ 、 $P_2P_3 = P_2Q_2$ から、 $F = EP_1 + P_1P_2 + P_2P_3$ とおくと、

$$F=Q_1P_1+P_1P_2+P_2Q_2=Q_1Q_2=\sqrt{(4s)^2+\left(\frac{4}{3}\right)^2}=\frac{4}{3}\sqrt{9s^2+1}$$
 すると、②より $\frac{25}{16}$ \leq $9s^2+1$ \leq $\frac{13}{4}$ となるので、 F の最大値は $\frac{4}{3}\sqrt{\frac{13}{4}}=\frac{2}{3}\sqrt{13}$ 、最小値は $\frac{4}{3}\sqrt{\frac{25}{16}}=\frac{5}{3}$ である。

[解 説]

折れ線の長さの和に関する問題です。線対称移動がポイントですが、その誘導は問題文中に示されています。

「東京大・文〕

 $3 \, \text{点 P}(x, y), \, \text{Q}(-x, -y), \, \text{R}(1, 0) に対し,$

$$\overrightarrow{QP} = 2(x, y), \overrightarrow{RP} = (x-1, y), \overrightarrow{RQ} = -(x+1, y)$$

条件より、 $\triangle PQR$ は鋭角三角形なので、まず $\overrightarrow{QP} \neq \overrightarrow{0}$ かつ $\overrightarrow{RP} \neq \overrightarrow{0}$ かつ $\overrightarrow{RQ} \neq \overrightarrow{0}$ となり、

$$(x, y) \neq (0, 0), (x, y) \neq (1, 0), (x, y) \neq (-1, 0)$$

この条件のもとで、 $\angle RPQ < 90^{\circ}$ から、 $\overrightarrow{PQ} \cdot \overrightarrow{PR} > 0$ すなわち $\overrightarrow{QP} \cdot \overrightarrow{RP} > 0$ となり、

$$\begin{array}{c}
P \\
\hline
O \\
R \\
\hline
1 \\
x
\end{array}$$

$$x(x-1)+y^2>0$$
, $x^2+y^2-x>0$, $\left(x-\frac{1}{2}\right)^2+y^2>\frac{1}{4}$

また、 $\angle PQR < 90^{\circ}$ から、 $\overrightarrow{QP} \cdot \overrightarrow{QR} > 0$ すなわち $\overrightarrow{QP} \cdot \overrightarrow{RQ} < 0$ となり、

$$-x(x+1)-y^2<0$$
, $x^2+y^2+x>0$

$$\left(x+\frac{1}{2}\right)^2+y^2>\frac{1}{4}\cdots\cdots 2$$

さらに、 $\angle PRQ < 90^{\circ}$ から、 $\overrightarrow{RP} \cdot \overrightarrow{RQ} > 0$ となり、 $-(x-1)(x+1) - y^2 > 0$ 、 $x^2 + y^2 - 1 < 0$

$$x^2 + y^2 < 1 \cdots 3$$

①②③より、点P(x, y)の範囲は右図の網点部である。 ただし、境界は含まない。なお、3点(0, 0),(1, 0),(-1, 0)を除く条件は満たされている。

[解 説]

点と座標に関する基本問題です。解答例ではベクトルを利用していますが、余弦定理の適用でも構いません。

「名古屋大・文]

$$A(-1, 1)$$
, $B(b, b^2)$, $T(t, t^2)$ $(-1 < t < b)$ に対し, $\overrightarrow{AT} = (t+1, t^2-1) = (t+1)(1, t-1)$ $\overrightarrow{BT} = (t-b, t^2-b^2) = (t-b)(1, t+b)$

さて、条件から、あるtに対して、 $\overrightarrow{AT} \perp \overrightarrow{BT}$ より、 $\overrightarrow{AT} \cdot \overrightarrow{BT} = 0$,1 + (t-1)(t+b) = 0 $t^2 + (b-1)t - b + 1 = 0 \cdots (*)$

これより、(*)を満たすtが-1 < t < bに少なくとも1つ存在する条件を求める。

ここで、
$$f(t)=t^2+(b-1)t-b+1=\left(t+\frac{b-1}{2}\right)^2-\frac{b^2+2b-3}{4}$$
 とおくと、
$$f(-1)=-2b+3\,,\ \, f(b)=2b^2-2b+1=2\left(b-\frac{1}{2}\right)^2+\frac{1}{2}>0$$

(i) $-2b+3 \ge 0 \left(-1 < b \le \frac{3}{2}\right) \emptyset \ge 3$

(*)を満たす t が -1 < t < b に少なくとも 1 つ存在する条件は, $f(-1) \ge 0$ かつ f(b) > 0 より,

$$-1 < -\frac{b-1}{2} < b \cdots 0, -\frac{b^2+2b-3}{4} \le 0 \cdots 0$$

① より, -2b < b - 1 < 2 となり, $\frac{1}{3} < b < 3$

②より、 $(b+3)(b-1) \ge 0$ となり、 $b \le -3$ 、 $1 \le b$ よって、 $-1 < b \le \frac{3}{2}$ と合わせると、 $1 \le b \le \frac{3}{2}$ となる。

(ii) -2b+3<0 $\left(b>\frac{3}{2}\right)$ \mathcal{O} \succeq $\stackrel{*}{>}$

f(-1) < 0 かつ f(b) > 0 より, (*)を満たす t が -1 < t < b に存在する。

(i)(ii)より、求める条件は、 $b \ge 1$ である。

「解説]

図形的な条件を数式化した後は、2次方程式の解の配置の問題になります。ここでは、f(b)>0を見つけることがポイントとなっています。

「筑波大・理〕

(1) 円 C_1 , C_2 の半径を、それぞれれ、 r_2 とする。 すると、 $d_1 = \sin 2\theta = 2\sin \theta \cos \theta$ から、 $r_1 = d_1 \sin \theta = 2\sin^2 \theta \cos \theta$ また、 $r_2 = d_2 \sin \theta$ 、 $d_1 - d_2 = r_1 + r_2$ から、 $2\sin \theta \cos \theta - d_2 = 2\sin^2 \theta \cos \theta + d_2 \sin \theta$ $(1+\sin \theta)d_2 = 2\sin \theta \cos \theta (1-\sin \theta)$ よって、 $d_2 = \frac{2\sin \theta \cos \theta (1-\sin \theta)}{1+\sin \theta}$ となり、 $r_2 = \frac{2\sin^2 \theta \cos \theta (1-\sin \theta)}{1+\sin \theta}$

(2) 円 C_1 と C_2 の接点をTとおくと、OT \perp PQから、

$$PQ = 2OT \tan \theta = 2(d_1 - r_1) \tan \theta = 2(2\sin \theta \cos \theta - 2\sin^2 \theta \cos \theta) \tan \theta$$
$$= 4\sin \theta \cos \theta (1 - \sin \theta) \tan \theta = 4\sin^2 \theta (1 - \sin \theta)$$

ここで、
$$t=\sin\theta$$
 とおくと、 $0<\theta<\frac{\pi}{4}$ から $0< t<\frac{\sqrt{2}}{2}$ となり、 $PQ=f(t)$ として、

$$f(t) = 4t^{2}(1-t) = 4t^{2} - 4t^{3}$$

$$f'(t) = 8t - 12t^{2} = 4t(2-3t)$$

すると、f(t) の増減は右表のようになり、PQ の最大値は $f\left(\frac{2}{3}\right) = 4 \cdot \frac{4}{9} \cdot \frac{1}{3} = \frac{16}{27}$ である。

t	0		$\frac{2}{3}$		$\frac{\sqrt{2}}{2}$
f'(t)		+	0		
f(t)		7		>	

(3) (2)から、 $\sin\theta = \frac{2}{3}$ より $\cos\theta = \frac{\sqrt{5}}{3}$ となり、このとき直線 m の傾きは、

$$\tan\left(\theta + \frac{\pi}{2}\right) = -\frac{\cos\theta}{\sin\theta} = -\frac{\sqrt{5}}{2}$$

また、 $PQ = \frac{16}{27}$ から $TQ = \frac{8}{27}$ となり、 $OQ = \frac{TQ}{\sin\theta} = \frac{8}{27} \cdot \frac{3}{2} = \frac{4}{9}$ から点 Q の座標は $Q(\frac{4}{9}, 0)$ である。すると,直線 m の方程式は,

$$y = -\frac{\sqrt{5}}{2}(x - \frac{4}{9}) = -\frac{\sqrt{5}}{2}x + \frac{2}{9}\sqrt{5}$$

[解 説]

円と接線の関係をもとに、微分を利用して最大・最小へと繋ぐ問題です。問題文に 参考図が書かれているため、解きやすくなっています。

[東京工大]

(1) 球 S_1 , S_2 と平面 α の接点 P_1 , P_2 を含み, α に垂直な断面を考えると, 三平方の定理から,

$$P_1P_2 = \sqrt{(n_1 + n_2)^2 - |n_1 - n_2|^2} = \sqrt{4n_1n_2} = 2\sqrt{n_1n_2}$$

(2) $S_1 \geq S_2$ の両方に外接している球 S について、半径をr、平面 α との接点を P とする。

ここで、 α 上に座標系を設定して、 P_1 を原点とし、 P_2 をx軸の正の部分にとると、(1)から $P_2(2\sqrt{n_{P2}},0)$ となる。そして、P(x,y)とおく。

すると、(1)の結論から、 $P_1P=2\sqrt{r_1r}$ 、 $P_2P=2\sqrt{r_2r}$ となることから、

$$\sqrt{x^2 + y^2} = 2\sqrt{nr}$$
 ………①、 $\sqrt{(x - 2\sqrt{nr_2})^2 + y^2} = 2\sqrt{nr}$ ……②
すると、 $x^2 + y^2 = 4nr$ 、 $(x - 2\sqrt{nr_2})^2 + y^2 = 4nr$ となり、 r を消去すると、 $n_2(x^2 + y^2) = n(x^2 - 4\sqrt{nr_2}x + 4nr_2 + y^2)$
 $(r_2 - n)x^2 + (r_2 - n)y^2 + 4n\sqrt{nr_2}x - 4n^2r_2 = 0$ ……③

- (i) $r_1 = r_2 \mathcal{O} \geq \tilde{z}$
 - ③から、 $4n^2x 4n^3 = 0$ となり、x = n よって、点 P は線分 PP_0 の垂直二等分線上にある。
- (ii) $r_1 \neq r_2 \mathcal{O}$

③から、
$$x^2 + y^2 + \frac{4\eta\sqrt{\eta n_2}}{n_2 - n_1}x - \frac{4\eta^2 n_2}{n_2 - n_1} = 0$$
 となり、
$$\left(x + \frac{2\eta\sqrt{\eta n_2}}{r_2 - n_1}\right)^2 + y^2 = \frac{4\eta^3 n_2}{(n_2 - n_1)^2} + \frac{4\eta^2 n_2}{n_2 - n_1}, \quad \left(x + \frac{2\eta\sqrt{\eta n_2}}{r_2 - n_1}\right)^2 + y^2 = \frac{4\eta^2 n_2^2}{(n_2 - n_1)^2}$$
 よって、点 P は中心 $\left(-\frac{2\eta\sqrt{\eta n_2}}{n_2 - n_1}, \quad 0\right)$ 、半径 $\frac{2\eta n_2}{|n_2 - n_1|}$ の円上にある。

[解 説]

外接する球面に関する問題で、ときどき見かけるものです。(2)については、(2)については、(2)ので点 (2)については、(2)のの正離の条件から、点 (2)の動跡は垂直二等分線またはアポロニウスの円というのがわかります。ただ、解答例ではそのプロセスも簡単に記しています。