Naive Baye's Algorithm (classification)

→ Used ir

1) Probability

Binary Classification

2 Baye's Theorem

Multiclass Classification

Independent Events

$$P_{r}(1) = \frac{1}{6}$$
 $P_{r}(2) = \frac{1}{6}$ $P_{r}(3) = \frac{1}{6}$

Dependent Events

1) What is the probability of removing

a orange marble and then a yellow harble

000

L) P(o) = 3/5 → 1st Event → Orange marble has been Removed

$$P(0 \text{ and } y) = P(0) * P(y/0) \rightarrow \text{ Conditional Probability}$$

$$\frac{P(A/B)}{P(B)} = \frac{P(A) * P(B/A)}{P(B)}$$

=) Bayis Theorem.

$$P(y/(x_1,x_2,x_3)) = \frac{P(y) * P(x_1,x_2,x_3)/y}{P(x_1,x_2,x_3)}$$

$$P(Y/(x_1,x_2,x_3)) = \frac{P(Y) + P(X_1,X_2,X_3)}{P(X_1,X_2,X_3)}$$

Expanding it:-

New tot data

$$PY(No((n_1, N_2, N_3)) = \frac{PV(No) + PY(n_1/No) + PY(n_2/No) + PY(x_3/No) = 0.40}{P(x_1) + PY(x_2) + PY(x_3) = 0.40}$$

$$P(x_1) + PY(x_2) + PY(x_3) = 0.40$$
Reject it

Bcoz it does not affect the outcome of classification

Lets Solve this Problem

Based on Outlook Feature:
Outlook

Day	Outlook	Temperature	Humidity	Wind	Play Tennis	
1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	No	$V \cup N_0 = P(E(V_0)) P_1(E(k))$
3	Overcast	Hot	High	Weak	Yes	((((((((((((((((((((
4	Rain	Mild	High	Weak	Yes	June 2 2 15/
5	Rain	Cool	Normal	Weak	Yes	2 3 12/9 1 3/5
6	Rain	Cool	Normal	Strong	No	
7	Overcast	Cool	Normal	Strong	Yes	
8	Sunny	Mild	High	Weak	No	
9	Sunny	Cool	Normal	Weak	Yes	Ovirast 4 0 419 616
10	Rain	Mild	Normal	Weak	Yes	ana ana ana ana ana ana ana ana ana daraha ana ana ana ana ana ana ana ana ana
11	Sunny	 Mild 	Normal	Strong	Yes	
12	Overcast	Mild	High	Strong	Yes	
13	Overcast	Hot	Normal	Weak	Yes	P
14	Rain	Mild	High	Strong	No	Nyn

Temperature Test (Sunny, Mot)
$$\rightarrow 0/P$$
 PLAY (Y/N)

Yes No P(E/ya) P(E/No) P(Yos) P(Yos) P(No)

Hot 2 2 2/9 2/5 Yes 9 9/14 5/14

Mild 4 2 4/9 4/5 No 5

Cool 3 1 3/9 3/5

$$P(Yu|Sunny, Mot) = P(Yu) + Pr(Sunny|Yu) + Pr(Mot|Yu)$$

$$= Pr(Sunny) + Pr(Mot)$$

$$= A/u_{3} + \frac{2}{3} + \frac{2}{9}$$

$$= \frac{2}{63} = 0.031$$

$$P(No | (Sunny, Hot)) = R(No) + Pr(Sunny/No) + Pr(Hot/No)$$

$$= 8/147 + 3/5 + 7/5$$

$$= \frac{3}{35} = 0.085$$

$$Pr(Yes/Csunny, ln+)) = \frac{0.031}{(0.031+0.085)} = 0.27 = 27%$$

W