1.

- a) Randy Goldberg is enrolled in the class CS 252.
- b) There is a class in which Carol Sitea is enrolled.
- c) There is a student who is enrolled in both Math 222 and CS 252.
- d) There is a student that is not Mary Black that is enrolled in all the classes which Mary Black is enrolled in.

2. a)

Domain for x: all students in this class

Domain for y: all countries in the world

Predicate: V(x,y): "x has visited y"

Statement A: $\exists x \forall y V(x,y)$

Negation:

$$\neg(\exists x \forall y V(x,y))$$

$$\equiv \neg \exists x \forall y V(x,y)$$

$$\equiv \forall x \neg \forall y V(x,y)$$

$$\equiv \forall x \exists y \neg V(x,y)$$

In English: Everyone in this class has not visited some country in the world.

b)

Domain for x: all people

Domain for y: all mountains in the Himalayas

Predicate: C(x,y): "x climbed y"

Statement B: $\forall x \exists y \neg C(x,y)$

Negation:

$$\neg(\forall x\exists y\neg C(x,y))$$

$$\equiv \neg \forall x \exists y \neg C(x,y)$$

$$\equiv \exists x \neg \exists y \neg C(x,y)$$

$$\equiv \exists x \forall y \neg (\neg C(x,y))$$

$$\equiv \exists x \forall y C(x,y)$$

In English: There is someone that has climbed every mountain in the Himalayas.

c)

Domain for x: all faculty members at my school

Domain for y: all children from Berekuso Basic School

Predicate: M(x,y): "x mentored y"

Statement C: $\forall x \exists y M(x,y)$ Negation: $\neg(\forall x\exists yM(x,y))$ $\equiv \neg \forall x \exists y M(x,y)$ $\equiv \exists x \neg \exists y M(x,y)$ $\equiv \exists x \forall y \neg (M(x,y))$ $\equiv \exists x \forall y \neg M(x,y)$ In English: There is a faculty member who has not mentored all children from Berekuso Basic School. 3. Let P: "Maria is cooking." Q: "Maria is hungry." R: "Maria will go jogging." $\neg P \lor Q$ $Q \rightarrow \neg R$

 $P \vee \neg R$

∴¬R

	Step	Reason
1.	$\neg P \lor Q$	Premise
2	$Q \rightarrow \neg R$	Premise
3.	P∨¬R	Premise
4.	¬Q∨¬R	Conditional disjunction equivalence on 2
5.	$(P \lor \neg R) \land (\neg P \lor Q)$	Conjunction on 3 and 1
6.	(¬R ∨ Q)	Resolution on 5
7.	(Q ∨¬R)	1st Commutativity Law on 6
8.	$(Q \lor \neg R) \land (\neg Q \lor \neg R)$	Conjunction on 7 and 4
9.	$(Q \lor \neg Q) \land \neg R$	2 nd distributive law on 8
10.	T∧¬R	1 st Negation Law on 9
11	¬R	1st Identity Law on 10

. The premises imply the conclusion "Maria will not go jogging."