Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 3 - Linear Regression - Probabilistic
Interpretation and Regularization

Recap: Linear Regression is not Naively Linear

Need to determine \mathbf{w} for the linear function \mathbf{w} ; $\mathbf{s} = \mathbf{f}(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x}_i) = \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$ which minimizes our error own on the own of \mathbf{w} owing to basis function $\mathbf{\phi}$, "Linear Regression" is *linear* in \mathbf{w} but NOT in \mathbf{x} (which could be arbitrarily non-linear)!

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x_1}) & \phi_2(\mathbf{x_1}) & \dots & \phi_p(\mathbf{x_1}) \\ \vdots & & & & \\ \phi_1(\mathbf{x_m}) & \phi_2(\mathbf{x_m}) & \dots & \phi_n(\mathbf{x_m}) \end{bmatrix}$$
(1)

Recap: Linear Regression is not Naively Linear

• Need to determine **w** for the linear function $f(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x}_i) = \mathbf{w}_i \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$

Least Squares error and corresponding estimates:
$$Sumarross \quad Sum \quad with in \quad row \quad of \quad \Phi$$

$$E^* = \min_{\mathbf{w}} E(\mathbf{w}, \mathcal{D}) = \min_{\mathbf{w}} \left\{ \sum_{j=1}^{m} \left(\sum_{i=1}^{m} w_i \phi_i(\mathbf{x}_j) - y_j \right)^2 \right\} \quad (2)$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w}, \mathcal{D}) = \arg\min_{\mathbf{w}} \left(\Phi \mathbf{w} - \mathbf{y} \right)^T \left(\Phi \mathbf{w} - \mathbf{y} \right)$$
on test point \mathbf{x}_i use $f(\mathbf{x}_i \mathbf{w}^i) = \int_{\mathbf{w}} \mathbf{w}_i d\mathbf{w}_i d\mathbf{w}_i d\mathbf{w}_i = \int_{\mathbf{w}} \mathbf{w}_i d\mathbf{w}_i d\mathbf{w}_i d\mathbf{w}_i d\mathbf{w}_i = \int_{\mathbf{w}} \mathbf{w}_i d\mathbf{w}_i d\mathbf{w$

Recap: Linear Regression is not Naively Linear

- Need to determine **w** for the linear function $f(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x}_i) = \Phi \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$
- Least Squares error and corresponding estimates:

$$E^* = \min_{\mathbf{w}} E(\mathbf{w}, \mathcal{D}) = \min_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n w_i \phi_i(\mathbf{x}_j) - y_j \right)^2 \right\}$$
(2)

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} E(\mathbf{w}, \mathcal{D}) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \left(\underbrace{\mathbf{w}^T \Phi^T \Phi \mathbf{w} - 2 \mathbf{y}^T \Phi \mathbf{w} + \mathbf{y}^T \mathbf{y}}_{\mathbf{z}} \right)$$
(3)

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^* , we would have $\forall j, \phi^T(x_j)\mathbf{w}^* = y_j$, or equivalently $\Phi \mathbf{w}^* = \mathbf{y}$, where

$$\Phi = \begin{bmatrix} \phi_1(x_1) & \dots & \phi_p(x_1) \\ \dots & \dots & \dots \\ \phi_1(x_m) & \dots & \phi_p(x_m) \end{bmatrix} = 0$$
and
$$\Phi^{\text{T}}(x_m)$$

What if there is no perfect line fit?
$$y = \begin{bmatrix} y_1 \\ ... \\ y_m \end{bmatrix}$$

• It has a solution if $\underline{\mathbf{y}}$ is in the column space (the subspace of \Re^m formed by the column vectors) of Φ

- The minimum value of the squared loss is zero
- If \mathbf{y} is NOT in the column space of Φ (that is, if zero is NOT attainable at \mathbf{w}^*), what can be done?

Geometric Interpretation of Least Square Solution

- Let \mathbf{y}^* be a solution in the column space of Φ
- The least squares solution is such that the distance between \mathbf{y}^* and \mathbf{v} is minimized
- Therefore.....
- If # of pts increases beyond 2, the number of coordinates in the figure will increase
- If # of features (0,15) increases beyond 1, the dimension -align

This plot depicts ((·) for 1 feature ϕ_i and 2 data points: $x_i & x_2 (m=2)$

Geometric Interpretation of Least Square Solution

- ④ Let **y*** be a solution in the column space of Φ [y = Φωε (Φ)]
 - The least squares solution w* is such that the distance between y* and y is minimized
 Therefore, the line joining y* to y should be orthogonal to the
 - Therefore, the line joining y^* to y should be orthogonal to the column space

(5)

From (4),
$$y = \phi w$$

$$(\phi w)^{T} \phi = y^{T} \phi$$

• Here $\Phi^T \Phi$ is invertible if and only if Φ has full column rank

ie. no feature set for one data point can be obtained using the feature sets of other data points

$$(\Phi \mathbf{w})^T \Phi = \mathbf{y}^T \Phi \tag{7}$$

$$\mathbf{w}^T \Phi^T \Phi = \mathbf{y}^T \Phi \tag{8}$$

$$\Phi^T \Phi \mathbf{w} = \Phi^T \mathbf{y} \tag{9}$$

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \tag{10}$$

• Here $\Phi^T \Phi$ is invertible if and only if Φ has full column rank

PROOF?

Proof:

Claim: $\Phi^T \Phi$ is invertible if and only if Φ is full column rank Proof:

Given that Φ has full column rank and hence columns are linearly independent, we have that $\Phi \mathbf{w} = 0 \Rightarrow \mathbf{w} = 0$ (m) (space is 0) Assume on the contrary that $\Phi^T \Phi$ is non invertible. Then $\exists \mathbf{w} \neq 0$ such that $\Phi^T \Phi \mathbf{w} = 0$

$$\begin{array}{c} \Rightarrow \mathbf{w}^T \Phi^T \Phi \mathbf{w} = 0 & \text{(just pre-multiplying)} \\ \Rightarrow (\Phi \mathbf{w})^T \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplying)} \\ \Rightarrow \Phi \mathbf{w} = 0 & \text{(in the pre-multiplyin$$

rank

Claim: $\Phi^T \Phi$ is invertible if and only if Φ is full column rank Proof:

 \Longrightarrow If $\Phi^T\Phi$ is invertible and $\Phi \mathbf{w} = 0$, then $(\Phi^T\Phi \mathbf{w}) = 0$, which in turn implies $\mathbf{w} = 0$. This implies Φ has full column rank if $\Phi^T\Phi$ is invertible. The converse can also be proved similarly.

Later: More on Optimization

- More generally: How to minimize a function?
 - Level Curves and Surfaces
 - Gradient Vector
 - Directional Derivative
 - Hyperplane
 - Tangential Hyperplane
- Iterative Algorithms such as (Stochastic) Gradient Descent Algorithm

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
 - Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
 - How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(x)$, subject to a random noise variable ε which we believe is 'mostly' bounded by some threshold σ :

by some threshold
$$\sigma$$
:
$$Y = w^T \phi(x) + \varepsilon \qquad \text{Random}$$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2) \qquad \text{High of } \rho(x) \ln \rho(x) dx$$
 • Motivation: $\mathcal{N}(\mu, \sigma^2)$, has maximum entropy among all $\varepsilon = E[-h] \rho(x)$

- real-valued distributions with a specified variance σ^2
- 3 σ rule: About 68% of values drawn from $\mathcal{N}(\mu, \sigma^2)$ are within one standard deviation σ away from the mean μ ; about 95% of the values lie within 2σ ; and about 99.7% are within

Figure 2: $3-\sigma$ rule: About 68% of values drawn from $\mathcal{N}(\mu,\sigma^2)$ are within one standard deviation σ away from the mean μ ; about 95% of the values lie within 2σ ; and about 99.7% are within 3σ . Source:

https://en.wikipedia.org/wiki/Normal_distribution

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(\mathbf{x})$, subject to a random noise variable ε which we believe is 'mostly' around some threshold σ :

$$Y = \mathbf{w}^{T} \phi(\mathbf{x}) + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, \sigma^{2})$ | Shifted mean

This allows for the Probabilistic model

$$P(y_j|\mathbf{w},\mathbf{x}_j,\sigma^2) = \mathcal{N}(\mathbf{w}^T\phi(\mathbf{x}_j),\sigma^2)$$
$$P(y|\mathbf{w},\mathbf{x}_j,\sigma^2) = \prod_{i=1}^{m} P(y_j|\mathbf{w},\mathbf{x}_j,\sigma^2)$$

• Note: $E[Y(\mathbf{w}, \mathbf{x}_i)] = \mathbf{w}^{\tau} \phi(\mathbf{x})^{i=1}$

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(\mathbf{x})$, subject to a random noise variable ε which we believe is 'mostly' around some threshold σ :

$$egin{aligned} Y &= \mathbf{w}^T \phi(\mathbf{x}) + arepsilon \ arepsilon &\sim \mathcal{N}(0, \sigma^2) \end{aligned}$$

• This allows for the Probabilistic model

$$P(y_j|\mathbf{w},\mathbf{x}_j,\sigma^2) = \mathcal{N}(\mathbf{w}^T\phi(\mathbf{x}_j),\sigma^2)$$
$$P(y|\mathbf{w},\mathbf{x}_j,\sigma^2) = \prod_{i=1}^{m} P(y_j|\mathbf{w},\mathbf{x}_j,\sigma^2)$$

• Note: $E[Y(\mathbf{w}, \mathbf{x}_j)] = \mathbf{w}^T \phi(\mathbf{x}_j)$ = $\mathbf{w}_0^T + \mathbf{w}_1^T \phi_1(\mathbf{x}_i) + ... + \mathbf{w}_n^T \phi_n(\mathbf{x}_i)$

