Theorem 0.1. Нека L е контекстносвободен език. Тогава има $N \in \mathbb{N}$, за което за всяка дума $w \in L$ $c |w| \ge N$ има думи u, v, x, y, z, за които:

- 1. w = uvxyz,
- $2. |vxy| \leq N,$
- 3. $|vy| \ge 1$,
- 4. за всяко $i \in \mathbb{N}$, $uv^i x y^i z \in L$.

Доказателство. Нека $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ е контекстносвободна граматика с език $\mathcal{L}(G) = L$. Тъй като L е контекстносвободен, такава граматика има.

Нека $n=|\mathcal{N}|,\ d=\max\{|\alpha|\,|\,\exists A(A\to\alpha\in P)\}$ е дължината на най-дълга дясна страна на правило. Определяме $N=(d+1)^{n+1}+1.$ Ще покажем, че N има желаното свойство.

Нека $w \in L$ е произволна с дължина $|w| \geq N$. Тогава има извод $S \Rightarrow_G^* w$ и следователно има дърво на извод $T : \tau \to \Sigma \cup \mathcal{N} \cup \{e\} \ (e \notin \Sigma \cup \mathcal{N}))$ в G с $T(\varepsilon) = S$ и w(T) = w.

Рекурсивно дефинираме път $(\alpha_0, \alpha_1, \dots, \alpha_{h+1})$ в τ така:

- 1. $\alpha_0 = \varepsilon$,
- 2. ако α_i не е листо, то $\alpha_{i+1}=\alpha_i j_i$ е такъв син на α_i , за който:

$$|w(T_{\alpha_{i+1}})| = \max\{|w(T_{\alpha_i j})| \alpha_i j$$
 син на α_i в $\tau\}$.

Тоест измежду всички синове на α_i , α_{i+1} определя най-дълга изведена дума.

Да забележим, че тъй като синовете на α_i са измежду $\alpha_i 0, \alpha_i 1 \dots \alpha_i d$, то:

$$|w(T_{\alpha_i})| \le (d+1)|w(T_{\alpha_{i+1}})|.$$

Нека $w_i = w_{\alpha_i}$ за $0 \le i \le h+1$. От горното $|w_i| \le |w_{i+1}|(d+1)$ и очевидно тъй като w_{i+1} е поддума на w_i , $|w_{i+1}| \le |w_i|$. В частност, тъй като $|w_0| = |w| \ge N \ge 1$, то $|w_i| \ge 1$ за всяко $i \le h+1$. Следователно $w_{h+1} \in \Sigma$ и $1 \le |w_h| \le (d+1)|w_{h+1}| \le d+1$.

Нека $j_0 = 0 < j_1 < \dots < j_k$ е максимална подредица на $(0, 1, \dots, h)$, за която:

$$|w_{j_{i+1}}| = |w_{j_i+1}| < |w_{j_i}|$$
 за всяко $i < k$.

Тогава от максималността $|w_{j_k}| = |w_h| \le d + 1$ и тъй като:

$$(d+1)|w_{i_{i+1}}| = (d+1)|w_{i_{i+1}}| \ge |w_{i_{i}}|,$$

имаме, че $|w_{j_{i+1}}| \leq \frac{|w_{j_i}|}{(d+1)}$. Оттук с индукция по i, получаваме, че:

$$|w_{j_i}| \ge \frac{|w_{j_0}|}{(d+1)^i} = \frac{|w_0|}{(d+1)^i} \ge N/(d+1)^i > (d+1)^{n+1-i}.$$

Приложено за i = k, това дава:

$$d+1 \ge |w_h| = |w_{i_k}| > (d+1)^{n+1-k}$$
.

Следователно k > n. Следователно ако $\beta_i = \alpha_{j_{k-i}}$, то $\beta_0, \beta_1, \dots \beta_n$ са добре дефинирани и $T(\beta_i) \in \mathcal{N}$. Тъй като броят на нетерминалите в G е n, то от принципа на Дирихле има k' < k'', за които $T(\beta_{k'}) = T(\beta_{k''}) =: A \in \mathcal{N}$.

Нека $T'=T-T_{\beta_{k''}},\,T''=T_{\beta_{k''}}-T_{\beta_{k'}}$ и $T'''=T_{\beta_{k'}}$. Тогава в T' и T'' има единствено листо с етикет нетереминал и този нетерминал е $A=T''(\varepsilon)=T'''(\varepsilon)$. Нека:

$$w(T') = uAz$$
, $w(T'') = vAy$, $w(T''') = x$.

Тогава $T = (T' +_{\beta'_k} T'') +_{\beta_{k''}} T'''$ и следователно от една страна w(T) = w, а от друга:

$$w(T' +_{\beta'} T'') = uvAyz$$
 и следователно $w((T' +_{\beta'} T'') +_{\beta_{k''}} T''') = uvxyz$.

C това свойство 1, че uvxyz = w е налице.

Сега да отбележим, че:

$$w_{j_{b-b'}} = w(T_{\beta_{b'}}) = w(T'' + T''') = vxy \text{ if } w_{j_{b-b''}} = w(T_{\beta_{i'}}) = x.$$

Но $n \ge k' > k''$, следователно $|w_{j_{k-k'}}| \le (d+1)^{k'} |w_{j_k}| = (d+1)^{k'} |w_h| \le (d+1)^{k'} (d+1) = (d+1)^{k'+1} \le (d+1)^{n+1} \le N$. Оттук $|vxy| \le N$, което доказва, че и 2 е изпълнено.

Нататък, $|vy|=|vxy|-|x|=|w_{j_{k-k'}}|-|w_{j_{k-k''}}|>0$, защото k'>k'', а дължините на думите w_{j_i} по дефиниция образуват строго намаляваща редица. Следователно $|vy| \ge 1$.

Накрая да забележим, че тъй като $T'(\varepsilon) = T(\varepsilon) = S$ и w(T') = uAz, то:

$$S \Rightarrow_G^* uAz$$
.

Аналогично от $T''(\varepsilon) = A = T'''(\varepsilon)$ и w(T'') = vAy и w(T''') = x, получаваме, че:

$$A \Rightarrow_G^* vAy$$
 и $A \Rightarrow_G^* x$.

Сега от първия извод с индукция по i получаваме, че $A \Rightarrow_G^* v^i A y^i$ за всяко естествено число i. (при $i = 0, A \Rightarrow^{(0)} A$, а преходът от i към (i+1) следва като $A \Rightarrow_G^* vAy \overset{\text{u.x.}}{\Rightarrow}_G^* v(v^iAy^i)y = v^{i+1}Ay^{i+1})$ Сега комбинарайки трите извода: $S \Rightarrow_G^* uAz, A \Rightarrow_G^* v^iAy^i$ и $A \Rightarrow_G^* x$, получаваме извода:

$$S \Rightarrow_G^* uAz \Rightarrow_G^* uv^i Ay^i z \Rightarrow_G^* uv^i xy^i z,$$

което установява и последното свойство.