- 1. (a) See slide 21 of Introduction slide set.
 - (b) See slide 48 of Amplitude Modulation slide set.
 - (c) See slide 25 of Amplitude Modulation slide set.
- 2. This signal has period of T=2 or the fundamental frequency 0.5 Hz.. The total power is

$$P_T = \frac{1}{T} \int_0^2 (6\sin \pi t)^2 dt = 18$$

Power in the dc component is

$$P_{dc} = \left(\frac{2X_o}{\pi}\right)^2 = 14.59$$

where $X_o = 6$.

Power in the k-th harmonic $(k \ge 1)$ is

$$P_k = \frac{1}{2} \left(\frac{4X_o}{\pi (1 - 4k^2)} \right)^2$$

We find that $P_{dc} + P_1 + P_2 = 17.96$ and $P_{dc} + P_1 + P_2 + P_3 = 17.99$. Therefore 99.9% of the total power P_T is in the dc component and the first 3 harmonics. The bandwidth is thus 1.5 Hz.

3. To obtain the USSB spectrum, first find the DSB-SC spectrum. The DSB-SC signal is

$$u_{DSB-SC}(t) = 50m(t) \left(\frac{-je^{j2\pi f_c t} + je^{-j2\pi f_c t}}{2} \right)$$
$$= 25m(t) \left(e^{j(2\pi f_c t - \frac{\pi}{2})} + e^{-j(2\pi f_c t - \frac{\pi}{2})} \right),$$

where $f_c = 5000$ Hz. The Fourier transform is

$$U_{DSB-SC}(f) = 25e^{-j\frac{\pi}{2}}M(f - f_c) + 25e^{j\frac{\pi}{2}}M(f + f_c)$$

We find that

$$M(f) = \frac{4}{200} \prod \left(\frac{f}{200} \right).$$

 $U_{DSB-SC}(f)$ is shown in Fig. 1.

But we need the USSB spectrum, which only includes the upper sideband (Fig. 2).

4. (a) AM signal is $u(t) = 10[A + m(t)] \cos 2\pi f_c t$ where $f_c = 2500$ Hz and A is to be determined.

The modulation index is

$$a = \frac{|\text{Lowest negative value of } m(t)|}{A} \approx \frac{3.5}{A} = 0.7$$

which gives A = 5.

- (b) The highest frequency in the message is 300 Hz. Hence the AM bandwidth is 600 Hz.
- (c) First, using trigonometry

$$u(t) = 50\cos(5000\pi t) + \underbrace{15\cos(5200\pi t) + 15\cos(4800\pi t) + 5\sin(5600\pi t) - 5\sin(4400\pi t)}_{\text{sidebands}}.$$

The total power is 1500 W. Power in sidebands is 250 W. The fraction of power in sidebands is therefore $\frac{1}{6}$.

- 5. (a) $\frac{-750}{15} \sin 500\pi t + \frac{800}{3} \cos 200\pi t$
 - (b) $\frac{9}{\pi}\cos 500\pi t + \frac{12}{\pi}\sin 200\pi t$
- 6. (a) The instantaneous frequency deviation is $k_f a \cos 2000\pi t$, where k_f is the modulator sensitivity. At $t = 125 \ \mu s$

$$k_f a \cos(2000\pi \times 125 \times 10^{-6}) = 1414 \text{ Hz}$$

From this, we find that the maximum frequency deviation is $\Delta f = k_f a = 1414\sqrt{2}$ Hz. Now the instantaneous phase deviation is

$$\phi(t) = 2\pi \int_{-\infty}^{t} \Delta f \cos(2000\pi u) du = 2\sin 2000\pi t \text{ rad.}$$

Therefore, the maximum phase deviation is 2 rad.

(b) The FM signal is given by

$$u(t) = \cos(2\pi 100 \times 10^{3}t + 2\sin 2000\pi t) = \sum_{n=-\infty}^{\infty} J_n(2)\cos[2\pi 10^{3}(100+n)t]$$

The frequency spectrum is given by the Fourier transform

$$U(f) = \sum_{n=-\infty}^{\infty} \frac{J_n(2)}{2} \left[\delta \left(f - 10^3 (100 + n) \right) + \delta \left(f + 10^3 (100 + n) \right) \right].$$

Using the Bessel function plots, we find that

$$J_0(2) \approx 0.21$$

 $J_1(2) = -J_{-1}(2) \approx 0.58$
 $J_2(2) = J_{-2}(2) \approx 0.35$
 $J_3(2) = -J_{-3}(2) \approx 0.11$
 $J_4(2) = J_{-4}(2) \approx 0.04$

and $J_n(2)$ for |n| > 4 is negligible. The two-sided magnitude spectrum is shown in Fig. 3.

