

SEQUENCE LISTING

<110> BEBBINGTON, CHRIS
 KINGSMAN, SUSAN
 UDEN, MARK
 KINGSMAN, ALAN
 MITROPHANOS, KYRIACOS

<120> RETROVIRAL VECTORS COMPRISING A FUNCTIONAL SPLICE DONOR SITE AND A FUNCTIONAL SPLICE ACCEPTOR SITE

<130> 078883/0119

<140> 09/508,516
<141> 2000-06-08

<150> 9720465.5
<151> 1997-09-25

<150> PCT/GB98/02867
<151> 1998-09-23

<160> 36

<170> PatentIn Ver. 2.1

<210> 1
<211> 5689
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: MLV pICUT

<400> 1
gctagcttaa gtaacgccac tttgcaaggc atggaaaaat acataactga gaatagaaaa 60
gttcagatca aggtcaggaa caaagaaaaca gctgaatacc aaacaggata tctgtggtaa 120
gcgggttcctg ccccgctca gggccaagaa cagatgagac agctgagtga tgggccaaac 180
aggatatctg tggtaagcag ttccctgcccc ggctcggggc caagaacaga tggtccccag 240
atgcggtcga gccctcagca gtttctatgt aatcatcaga tgtttccagg gtgccccaaag 300
gacctgaaaa tgaccctgtc ccttatttga actaaccaat cagttcgctt ctgcgttctg 360
ttcgcgcgtc tccgccttcg gagctcaata aaagagccca caaccctca ctgcggcgcgc 420
cagtcttcg atagactgcg tcgccccgggt acccgatttc ccaataaaagc ctcttgctgt 480
ttgcattccg atcgtggtct cgctgttctt tgggagggtc tccctgtgat gattgactac 540
ccacgacggg ggttttcat ttgggggtc gtccgggatt tggagacccc tgcccaggga 600
ccaccgaccc accacccggga ggcaagctgg ccagcaactt atctgtgtct gtccgattgt 660
ctagtgtcta tgttttagt tatgcgcctg cgctgtact agtttagctaa ctagctctgt 720
atctggcggg cccgtggtgg aactgacgag ttctgaacac ccggccgcaa ccctgggaga 780
cgtcccaggg actttggggg ccgttttgt ggcggaccc gaggaaggga gtcgatgtgg 840
aatccgaccc cgtcaggata tgtggttctg gttaggagacg agaacctaaa acagttcccg 900
cctccgtctg aattttgtt ttccggtttgg aaccgaagcc gcgcgtcttgc tctgctgcag 960
cgctgcagca tcgttctgtt ttgtctctgt ctgactgtgt ttctgtatgt gtctgaaaaat 1020
tagggccaga ctgttaccac tcccttaagt ttgaccttag gtcactggaa agatgtcgag 1080
cggatcgctc acaaccagtc ggttagatgtc aagaagagac gttgggttac ctctgctct 1140
gcagaatggc caacccttaa cgtcgatgg ccgcgagacg gcacccctaa ccgagaccc 1200
atcaccacagg ttaagatcaa ggtctttca cctggcccgcc atggacaccc agaccaggc 1260
ccctacatcg tgacctggga agccttggtt tttgacccccc ctccctgggt caagccctt 1320
gtacaccctta agcctccgccc tccctttccctt ccacccggccc cgtctctccc ccttgaaccc 1380

cctcgttcga cccgcctcg atcctccctt tatccagccc tcactccttc tctaggcgcc 1440
 gaaattcgtt aactcgagga tctaaccctag gtctcgagtgt ttaaacact ggcttgcg 1500
 agacagagaaa gactcttgcg tttctgatag gcacctattt gtcttactga catccacttt 1560
 gccttctct ccacaggtga ggccttagct tttcaaaaaa gcttggctg caggtcgagg 1620
 cggatctgtat caagagacag gatgaggatc gtttcgcattt attgaacaag atggattgca 1680
 cgcagggtctt ccggccgtt ggggtggagag gctattcggc tatgactggg cacaacagac 1740
 aatcggtctc tctgtatgcg ccgtgttccg gctgtcagcg cagggcgcc cggttcttt 1800
 tgtcaagacc gacctgtccg gtgcctgtt gtaactgcg gacgaggcag cgcggctatc 1860
 gtggctggcc acgacggggcg ttccctgcgc agctgtgtc gacgttgtca ctgaagcggg 1920
 aagggaactgg ctgttattgg gccaagtgcg gggcaggat ctcctgtcat ctcaccttgc 1980
 tcctgcccgg aaagtatcca tcatggctga tgcaatgcgg cggctgcata cggttgcattt 2040
 ggctacacgtc ccattcgacc accaagcgaa acatcgcatc gagcggacac gtactcgat 2100
 ggaagccgtt cttgtcgatc aggatgtatc ggacgaagag catcaggggc tcgcgcagc 2160
 cgaactgttc gccaggctca aggccgcgcattt gcccgcacggc gaggatctg tcgtgaccca 2220
 tggcgatgcc tgcttgcgaa atatcatgtt ggaaaatggc cgctttctg gattcatcg 2280
 ctgtggccgg ctgggtgtgg cggaccgttca tcaggacata gcgttgctt cccgtgatat 2340
 tgctgaagag cttggcggcg aatgggtgttccgcgtt gttttttttt gttttttttt 2400
 tcccgattcg cagcgcatcg ctttctatcg ctttcttgcg gttttttttt gttttttttt 2460
 ctgggggttcg ataaaaataaa agattttatt tagtctccag aaaaaggggg gaatgaaaga 2520
 cccccacctgtt aggtttggca agcttagcttta agtaacgcgc ttttgcagg catggaaaaaa 2580
 tacataaactg agaatagaga agttcagatc aaggtcaggaa acagatggaa cagctgaata 2640
 tggggcaaaac aggatatctg tggttaagcg tttttttttt gttttttttt gttttttttt 2700
 tggaaacagttt gaatatgggc caaacaggat atctgtgtt gttttttttt gttttttttt 2760
 agggccaaga acagatggtc cccagatgcg gtccagccct cagcagtttca tagagaacca 2820
 tcagatgtt ccagggtgccc ccaaggaccc gaaatgaccc tttttttttt gttttttttt 2880
 caatcgttc gttttctcgct tctgttgcgc cgcttctgtt ccccgagctc aataaaaagaa 2940
 cccacaaccc ctcactcggg gcgcgcgttta cactagtaag cttgtcttaa ggtttttttt 3000
 tcgacaggccc tgegccagtc cttccgttta ctgttgcgc cgggttcccg tttttttttt 3060
 aaacccttttgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3120
 gagtgatttttgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3180
 accccctgccc agggaccacc gaccaccac cggggaggtaa gttttttttt gttttttttt 3240
 cggtgatgttccgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3300
 gtaaggcgat gccggggagca gacaaggcccg tcaggggcgccg tttttttttt gttttttttt 3360
 tcggggcgca gccatgaccc agtcacgttccgcgtt ccgttgcgtt gttttttttt 3420
 gccggcatcg agcagattgt actgagatgttccgcgtt ccgttgcgtt gttttttttt 3480
 tgcgttaagggccgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3540
 cgctcggtcg ttcggctgcg gcgagcggttccgcgtt ccgttgcgtt gttttttttt 3600
 tccacagaat caggggataa cgcaggaaag aacatgttagtccgcgtt ccgttgcgtt gttttttttt 3660
 aggaaccgttccgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3720
 catcacaaaaaa atcgacgcgttccgcgtt ccgttgcgtt gttttttttt gttttttttt 3780
 caggcggtttccgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3840
 ggataccctgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 3900
 aggtatctca gtttgcgttccgcgtt ccgttgcgtt gttttttttt gttttttttt 3960
 gtttgcgttccgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4020
 cacgacttat ccgttgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4080
 ggcgggtcttccgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4140
 tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 4200
 tccggcaaaac aaaccaccgc tggtagcggttccgcgtt ccgttgcgtt gttttttttt 4260
 cgcagaaaaaa aaggatctca agaagatccctt ccgttgcgtt ccgttgcgtt gttttttttt 4320
 tggaaacgaaa actcacgttccgcgtt ccgttgcgtt gttttttttt gttttttttt 4380
 tagatcctttt taaattaaaaaa atgaagttttt ccgttgcgtt ccgttgcgtt gttttttttt 4440
 tggtctgaca gtttgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4500
 cgttcatccatccgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4560
 ccatctggcc ccagtgcgttccgcgtt ccgttgcgtt gttttttttt gttttttttt 4620
 tcagcaataaa accagccagc cggaaaggccc gaggcgccatccgtt ccgttgcgtt gttttttttt 4680
 gcctccatccatccgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4740
 agtttgcgttccgcgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4800
 atggcttcatccgtt ccgttgcgtt gttttttttt gttttttttt gttttttttt 4860

tgcaaaaaaag cggttagctc cttcggtcct ccgatcgtt tcagaagtaa gttggccgca 4920
 gtgttatcac tcatgttat ggcagactg cataattctc ttactgtcat gccatccgt 4980
 agatgcttt ctgtgactgg tgagtaactca accaagtcat tctgagaata gtgtatgcgg 5040
 cgaccgagg t gcttgc ccc ggcgtcaaca cggataata ccgcgcac aactctcaag gatcttaccg 5100
 taaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg 5160
 ctgttgagat ccagttcgat gtaaccact cgtgcaccca actgatctc agcatcttt 5220
 acttcacca gcgttctgg gtgagaaaa acaggaaggc aaaatgccgc aaaaaaggga 5280
 ataaggcgca cacgaaatg ttgaatactc atactcttcc ttttcaata ttattgaagc 5340
 atttatcagg gttattgtct catgagcgga tacatattt aatgtattt aaaaaataaa 5400
 caaatagggg ttccgcac atttccccga aaagtgcac ctgacgtcta agaaaccatt 5460
 attatcatga cattaaccta taaaaatagg cgtatcacga ggcccttcg tcttcaagaa 5520
 ttcataccag atcaccgaaa actgtcctcc aaatgtgtcc ccctcacact cccaaattcg 5580
 cgggcttctg ccttttagac cactctaccc tattccccac actcacgga gccaaagccg 5640
 cggcccttcc gtttcttgc ttttgaaga ccccacccgt aggtggcaa 5689

<210> 2
 <211> 9756
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: pEICUT-LacZ

<400> 2
 tgaataataa aatgtgtt t gtcggaaat acgcgtttt agatttctgt cgccgactaa 60
 attcatgtcg cgcgatagt gtttatcg ccgatagaga tggcgatatt gaaaaattt 120
 atatttggaa atatggcata ttgaaaatgt cgccgatgtg agtttctgtg taactgatat 180
 cgccatttt ccaaaggta ttttggca tacggatcgat ctggcgatag cgcttatatc 240
 gtttacgggg gatggcgata gacgactttt gtgacttggg cgattctgtg ttcgcaaat 300
 atcgcagttt cgatatacgat gacagacat ataggcgat atcgcgcata gaggcgacat 360
 caagctggca catggccaaat gcatatcgat ctatacattt aatcaatatt ggccattagc 420
 catattatc attgttata tagcataat caatattggc tattggccat tgcatatcg 480
 gtatccatcgatcgatattt tggctcatgtt ccaacattac cgccatgtt 540
 acattgatta ttgacttagt attaatacgat atcaatttacg gggtcattag ttcatagccc 600
 atatatggag ttccgcgtt cataacttac ggttaatggc cgcctggct gaccgccc 660
 cgaccccccgc ccattgacgt caataatgac gtatgttccc atagtaacgc caataggac 720
 tttccattga cgtcaatggg tggagtattt acgtaatact gcccacttgg cagtcata 780
 agtgtatcat atgccaagtc cgccccctat tgacgtcaat gacggtaat ggccgcctg 840
 gcattatgcc cagtcatacgat ctttacgggat cttccctact tggcagtcata tctacgtatt 900
 agtcatcgctt attaccatgg tgatgcgggtt ttggcagtcac accaatggc gtggatagcg 960
 gtttgcgtca cggggatttc caagtctcca cccattgac gtcaatgggat tttgtttt 1020
 gcacccaaat caacgggact ttccaaaatg tgcgtacaac tgcgtatcgcc cgcccccgtt 1080
 acgcaatgg gcggtaggcg tgcgtgggg gaggtctata taagcagacg tgcgtttagt 1140
 aaccgggcac tcagattctg cggctcgat cccctctctg ctgggtcgaa aaggccctt 1200
 taataaaat aattctctac tcagtcctcg tctctagttt gtctgttgc gatcctacag 1260
 ttggcgcctt aacaggggacc tgagaggggc gcagaccata cctgttgcac ctggctgtac 1320
 gttaggatccc cgggacagca gaggagaact tacagaagtc ttctggaggt gtcgttgc 1380
 agaacacagg aggacaggta agatgggaga ccccttgaca tggagcaagg cgctcaagaa 1440
 gttagagaag gtgacggatc aagggtctca gaaattaact actggtaact gtaattggc 1500
 gctaaatgtca gtagacttat ttcatgatac caactttgtt aaaaaaaaaaagg actcttagat 1560
 cgaccccccgc gacgtttaaa cactgggtt gtcgagacat agaagactct tgcgttctg 1620
 ataggcacctt attggtctt ctgacatcca cttgcctt ctctccacag gtcacgtgaa 1680
 gctagcctcg aggtatctcg gatccggggat tttccctact ctcaggatcc accatgggg 1740
 atcccgctgt tttacaacgt cgtgacttggg aaaaccctgg cgttacccaa ctaatcgcc 1800
 ttgcagcaca tcccccttc gccagctggc gtaatagcgaa agaggcccgc accgatcgcc 1860
 cttcccaaca gttgcgcagc ctgaatggcg aatggcgctt tgcgttgc 1920
 aagcggtgcc ggaaagctgg ctggagtgcg atcttcctga ggccgataact gtcgtcgtcc 1980

RECEIVED

SEP - 6 2000

4

cctcaaacgt gcatatcgac ggatccgtat cggccatcta caccacgtt acctatccc 2740
ttacggtaa tccgcgttt gttccccacgg agaatccgac ggggtgttac tcgctcacat 2100
ttaatgttg a gaaagctgg ctacaggaa gccagacgcg aattattttt gatggcgta 2160
actcggcggtt tcatctgtgg tgcaacgggc gctgggtcg gttacggccag gacagtctt 2220
tgccgtctga atttgacctg agcgcatttt tacgcgcgg agaaaaccgc ctcgcggta 2280
tgggtctgcg ttggagtgtac ggcagttatc tggaaagatca ggatatgtgg cggatgagcg 2340
gcattttccg tgacgtctcg ttgctgcata aaccgactac acaaatacgc gatttccatg 2400
ttgccactcg cttaatgtat gattcagcc ggcgtgtact ggaggctgaa gttcagatgt 2460
gcggcgagtt gcgtgactac ctacgggtaa cagtttctt atggcagggt gaaacgcagg 2520
tcgcccggcgg caccgcgcct ttcggcgggt aaatttatcga tgagcgtgg gttatgccg 2580
atcgctcac actacgtctg aacgtcggaa acccgaaact gtggagcgcc gaaatcccga 2640
atctctatcg tgcgggtggg gaactgcaca ccggcgcagg cacgtgtt gaaacgcagg 2700
cctgcgttgt cggttccgc gaggtgcggg ttgaaaatgg tctgtgtctg ctgaacggca 2760
agccgttgct gattcggggc gttAACCGTC acgagcatca tcctctgtcat ggtcaggta 2820
tggatgagca gacgtgggtt caggatatcc tgctgtatgaa gcagaacaac tttaacgccc 2880
tgcgctgttc gattatcgc aaccatccgc tgggttacac gctgtgcgc gctacggcc 2940
tgtatgtggt ggatgaaggc aatattggaa cccacggcat ggtgccaatg aatcgctcga 3000
ccgatgtcc ggcgtggcta ccggcgcgt aacgcgaatg gtgcaggcg 3060
atcgtaatca cccgagtgtg atcatctgtt cgctggggaa tgaatcaggc cacggcgcta 3120
atcacgacgc gctgtatcgc tggatcaaattt ctgtcgatcc ttccggcccg gtgcagatgt 3180
aaggccggcg agccgacacc acggccaccg atattatttgc cccatgtac ggcgcgtgg 3240
atgaagacca gcccttcccg gctgtgcggg aatggtccat caaaaaatgg ctttcgttac 3300
ctggagagac ggcggccgtg atcccttgcg aatacgcaca cgcgtgggt aacagtctt 3360
gcgggttgcg taaataactgg caggcggtt gtcagtatcc ccgtttacag ggccggcttcg 3420
tctgggactg ggtggatcag tcgctgatta aatatgtatgaa acgcggcaac ccgtggctgg 3480
cttacggcg tggatgttggc gatacgcggg acgatcgccg tttctgtatg aacggcttgg 3540
tcttgcgg ccccacgcgg catccagcgc tgacggaaagc aaaacaccag cagcagttt 3600
tccagtccg ttatccggg caaaccatcg aagtgcaccag cgaataacctg ttccgtcata 3660
gcgataacga gtcctgcac tggatgggtt cgcgtggatgg taagccgtg gcaagcggtg 3720
aagtgcctt ggtgtcgct ccacaaggta aacagtgtatg tgaactgcct gaaactaccgc 3780
agccggagag cggccggcaaa ctctggctca cagtacgcgt agtgcacccg aacgcgaccg 3840
catggtcaga agccgggcac atcagcgccg ggcagcagt ggcgttgcg gaaaacctca 3900
gtgtgacgct ccccgccgcg tcccaacgc tcccgcatct gaccaccagg gaaatggatt 3960
tttgcatcgat gctgggttaat aagcgttggc aatttaaccg ccagtccaggc tttcttcac 4020
agatgtggat tggcgataaa aaacaactgc tgacggcgt ggcgtatcgt ttcacccgtg 4080
caccgttgcgta taacgacatt ggcgttaagt aagcggcccg cattgaccct aacgccttggg 4140
tcgaacgtcg gaaggccggg ggccattacc aggccgaaac agcgttggc cagtcacgg 4200
cagataact tgcgtatgcg gtgctgatta cgcggctca cgcgtggcag catcagggg 4260
aaaccttatt tatcagccgg aaaacctacc ggattgtatgg tagtggtaaa atggcgatc 4320
ccgttgcgt tgaagtgccg agcgatcac cgcacccgc ggcgttgcg gaaaactatc 4380
agctggcgca ggtacgacgg cggtaaaact ggctcgatgg agggccgcaaa gaaaactatc 4440
ccgaccgcct tactggccgc tggatgttggc gctgggatct gccattgtca gacatgtata 4500
ccccgtacgt ctcccggcgc gaaaacggc tgcgttgcgg gacgcgcgaa ttgaattatg 4560
gcccacacca gtggcgccgc gacttccagt tcaacatcg cgcgttgcg gaaaactatc 4620
tgcgtggaaatc cagccatcgatc catctgtgc acgcggaaagg aggacatgg ctgaatatcg 4680
acggtttcca tatggggatt ggtggcgacg actccctggg cccgtcgtatc tcggcggat 4740
tccagcttagt cggccggcgc taccattacc agttggatgc tgcgttgcg gaaaactatc 4800
cgggcagggg ggtacgacgg atccggctgt ggaatgttg tcagttggg tggaaatgt 4860
ccccaggttc cccagcaggc agaagatgtc aagacatgc tgcacccgg gggatccact 4920
agtgtatgtt tagaaaaacca agggggaaac tggatgggtt ttatgggggg tttataat 4980
gattataaga gtaaaaaagaa agtgcgtatc gctctcataa ccttgcgtatc cccaaaggac 5040
tagctcatgt tgcgtggca ctaaacccgcataa acgcgttgcg gaaaactatc 5100
tgggtacgcg ttttgcgttgcg actaaattca tgcgttgcg gaaaactatc 5160
tatcgccat agagatggcg atattggaaa aattgtatc tgcgttgcg gaaaactatc 5220
aatgtcgccg atgtgatgtt ctgtgtact gatatgc ttttccaa agtgcgttgcg 5280
gggcataacgc gatatctggc gatagcgctt atatcgatc cggggatgg cgcgtacgc 5340
cttgggtgac ttggcgatt ctgtgtgcg caaatatcgc agtttcgtatc taggtgcacag 5400
acgatatgcg gctatatcgc cgcataaggc gacatcaac gttccatgcg gcaatgcata 5460

tcgatctata cattgaatca atattggcca ttagccatat tattcattgg ttatatacgca 5520
 taaatcaata ttggctattg gccattgcat acgttgcatt catatcgtaa tatgtacatt 5580
 tatattggct catgtccaaat attaccgcca tggatgcatt gattattgc tagttattaa 5640
 tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 5700
 cttacggtaa atggcccgc tggctgaccc cccaaacgacc cccgcccatt gacgtcaata 5760
 atgacgtatg ttcccatagt aacgccaata gggacttcc attgacgtca atgggtggag 5820
 tatttacggt aaactgccc cttggcagta catcaagtgt atcatatgcc aagtccgccc 5880
 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctt 5940
 cgggactttc ctacttggca gtacatctac gtattagtca tcgcttattac catggtgatg 6000
 cgggtttggc agtacaccaa tggggcgttga tagcggtttg actcacgggg atttccaagt 6060
 ctccacccca ttgacgtcaa tggggagtttgc ttttggcacc aaaatcaacg ggactttcca 6120
 aaatgtcgta acaactgcga tggcccgccc cggtgacgca aatgggcgtt aggctgtac 6180
 ggtggggaggt ctatataagc agagctcggt tagtgaaccg acttaagtct tcctgcagg 6240
 gctctaaggt aaatagggca ctcagattct gcggctctgag tcccttctct getgggctga 6300
 aaaggcctt gtaataaaaata taattctcta ctcagtcctt gtctctagtt tgcctgttcg 6360
 agatcctaca gttggcgccc gaacaggagc ctgagagggg cgcagaccct acctgttgaa 6420
 cctggctgtat cgttaggatcc cggggccagggt gtggaaagtc cccaggttcc ccaggcagg 6480
 gaagtatgca aagcatgcat ctcaattagt cagcaaccat agtccccccc ctaactccgc 6540
 ccatcccgcc ccttaactccg cccagttccg cccattctcc gccccatggc tgactaattt 6600
 tttttattta tgcagaggcc gaggccgcct cgccctctga gctattccag aagttagtgag 6660
 gaggctttt tggggccta ggcttttgc aaaagcttga ttettctgac aacacagtct 6720
 cgaacttaag gctagagcca ccatgattga acaagatggaa ttgcacgcag gttctccggc 6780
 cgcttgggtg gagaggctat tggctatga ctgggcacaa cagacaatcg gtcgtctga 6840
 tgccggcgtg ttccggctgt cagcgcaggg gcccgggtt cttttgtca agaccgaccc 6900
 gtccgggtggc ctgaatgaaac tgcaggacga ggcagcgcgg ctatcggtgc tggccacgac 6960
 gggcgttcct tgcgcagctg tgctcgacgt tgcactgaa gggggaaaggg actggctgt 7020
 attgggcgaa gtgcggggc aggatctctt gtcatctcac cttgctctg ccgagaaaagt 7080
 atccatcatg gtcgtatgca tgcggcggt gcatacgctt gatccggcta cctgcccatt 7140
 cgaccaccaa gcaaaacatc gcatacgacg agacactgtact cggatgaaag ccggctttgt 7200
 cgatcaggat gatctggacg aagagcatca ggggctcgcg ccagccgaac ttttcggccag 7260
 gctcaaggcg cgcatgccc acggcgaggaa tctcgctgtg acccatggcg atgcctgtt 7320
 gccaatatac atgggtggaaa atggccgcctt ttctggattt atcgactgtg gccggctggg 7380
 tgtggcgac cgctatcagg acatagcggtt ggctacccgt gatattgtcg aagagcttg 7440
 cggcgaatgg gctgaccgct tcctcggtgtt acgggtatc gcccgtcccg attcgacgcg 7500
 catcgccctc tatcgccctc ttgacgagtt cttctgagcg ggaactctggg gttcgaaatg 7560
 accgaccaag cgaccccaa cctgccatca cgatggccgc aataaaatattttt 7620
 attacatctg tgtgttggtt ttttgtgtga atcgatagcg ataaggatcg atccgcgtat 7680
 ggtgcactt cagataatc tgctctgtat cccatagttt aagccagccc cgacacccgc 7740
 caacacccgc tgacgcggcc tgacgggctt gtctgctccc ggcatccgt tacagacaag 7800
 ctgtgaccgt ctccgggagc tgcattgtgtc agaggtttc accgtcatca ccgaaacgcg 7860
 cgagacgaaa gggccctcgta atacgcctat tttataggt taatgtcatg ataataatgg 7920
 tttcttagac gtcaggtggc acctttcggg gaaatgtgcg cggaaacccctt atttgtttat 7980
 ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 8040
 aataatattt aaaaaggaag agtatgagta ttcaacattt cctgtcgcc ctattccct 8100
 tttttcgccc attttgcctt cctgttttttgc tccacccaga aacgctgtg aagtaaaag 8160
 atgctgaaga tcagttgggt gcacgagtggtt gttacatcgacttgcactt aacagcggta 8220
 agatccttgcgat gatggacttgcg cccgaagaac gttttccaaat gatggacttgcgtt ttaaagtttc 8280
 tgctatgtgg cgccgttattt tcccgatattt acggccggca agagcaactc ggtcgccgc 8340
 tacactattt tcagaatgac ttgggttgagt actaccaggta cccatggcaac aacggtgcgc 8400
 atggcatgac agtaagagaa ttatgcagtg ctggccataac catgagtgat aacactgcgg 8460
 ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgccttt ttgcacaaca 8520
 tgggggatca tgtaactcgcc tttgatcgat tggaaacccgaa gctgaatgaa gcataccaa 8580
 acgacgagcg tgacaccacg atgcctgttagt caatggcaac aacggtgcgc 8640
 ctggcgaact acttactcta gttcccgcc aacaattaat agactggatg gaggcggata 8700
 aagttgcagg accacttctg cgctggccc ttccggctgg ctggttattt gctgataaat 8760
 ctggagccgg tgagcgtggg ttcgcggta tcattgcaggc actggggcca gatggtaagc 8820
 cctcccgat cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata 8880
 gacagatcgctgat gtagataggt gcctcactga ttaagcattt gtaactgtca gaccaagttt 8940

actcatatat acttagatt gatttaaaac ttcatttta atttaaaagg atctaggtga 9000
 agatccttt tgataatctc atgacaaaaa tcccttaacg tgagtttcg ttccactgag 9060
 cgtcagaccc cgtaaaaag atcaaaggat cttcttgaga tcctttttt ctgcgcgtaa 9120
 tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggttgtttg ccggatcaag 9180
 agctaccaac tcttttccg aaggtaactg gctcagcag agcgcagata ccaaatactg 9240
 tccttctagt gttagccgt taggcccacc acttcaagaa ctctgttagca ccgcctacat 9300
 acctcgctt gctaattctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctt 9360
 ccgggttggc ctcaagacga tagttacccg ataaggcgca gcggcgggc tgaacggggg 9420
 ttctgtcac acagcccgac ttggagcgaa cgacctacac cgaactgaga tacctacagc 9480
 gtgagctatg agaaaagcgcc acgctcccg aaggggagaaa ggcggacagg tatccggtaa 9540
 gcggcagggt cgaaacagga gagcgcacga gggagcttcc agggggaaac gcctggatc 9600
 tttatagttc tgtcggtt cggccacccct gacttgagcg tcgattttt tgatgctcgt 9660
 cagggggggc gagctatgg aaaaacggca gcaacgcggc cttttacgg ttctggcct 9720
 tttgctggcc tttgctcac atggctcgac agatct 9756

<210> 3
 <211> 1964
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: m4070A

<400> 3
 atggccagaa gcacccttag caagccaccc caggacaaaa tcaatccctg gaaacctctg 60
 atcgtcatgg gagtcctgtt aggagtaggg atggcagaga gccccatca ggtcttaat 120
 gtaacctgga gagtccacca cctgtatgact gggcgtagcc ccaatgccac ctccctcctg 180
 ggaactgtac aagatgcctt cccaaaatta tattttgatc tatgtatct ggtcgagag 240
 gagtgggacc cttcagacca ggaaccgtat gtcgggtatg gtcgaagta ccccgccagg 300
 agacagcggc cccgacttt tgacttttac gtgtgccctg ggcataccgt aaagtccggg 360
 tgtggggac caggagaggg ctactgtggt aaatgggggt gtgaaaccac cggacaggct 420
 tactggaaac ccacatcatc gtgggaccta attccttta agcgcgtaa caccctctgg 480
 gacacgggat gctctaaagt tgcctgtggc ccctgtacg acctctccaa agtatccaat 540
 tccttccaag gggctactcg agggggcaga tgcacccctc tagtcctaga attcactgat 600
 gcaggaaaaa aggctaactg ggacggggcc aaatcgtggg gactgagact gtacccgaca 660
 ggaacagatc ctattaccat gttctccctg accccggcagg tccttaatgt gggacccgaa 720
 gtccccatag ggcccaaccc agtattaccc gaccaaagac tccttccctc accaatagag 780
 attgtacccg ctccacagcc acctagcccc ctaataccca gttacccccc ttccactacc 840
 agtacaccct caacccccc tacaagtcca agtgtccac agccacccccc aggaactgga 900
 gataactac tagctctagt caaaggagcc tttccggcgtc ttaacccatc caatcccgac 960
 aagacccaaag aatgtggct gtgccttagt tcgggaccc cttattacga aggtagcg 1020
 gtcgtgggca cttataccat tcattccacc gctccggcca actgtacccgc cacttccca 1080
 cataagctt ccctatctga agtgacagga caggccctat gcatggggc agtacctaaa 1140
 actcaccagg ccttatgtaa caccacccaa agccggctc caggatccca ctacccgtca 1200
 gcacccggccg gaacaatgtg ggcttgccgc actggattga ctccctgtt gtcaccacac 1260
 gtgctcaatc taaccacaga ttattgtta ttagttgaac tctggcccg agtaatttac 1320
 cactccccc attatatgtt tggtcagctt gaacagcgta ccaaataaa aagagagcca 1380
 gtatcattga ccctggccct tctacttagga ggattaacca tgggaggat tgtagctgga 1440
 atagggacgg ggaccactgc cttaaattaaa acccagcagt ttgagcagct tcattccgc 1500
 atccagacac acctcaacga agtcggaaag tcaattacca acctagaaaa gtcactgacc 1560
 tcgttgtctg aagttagtcc acagaaccgc agaggccctag atttgctatt cctaaaggag 1620
 ggaggtctct ggcggccct aaaagaagaa tgggtttt atgcagacca cacggggcta 1680
 gtgagagaca gcatggccaa attaagagaa aggcttaatc agagacaaaa actattttag 1740
 acaggccaaag gatggttcga agggctgttt aatagatccc cctggttac caccttaatc 1800
 tccaccatca tgggacccct aatagtactc ttactgtatc tactcttgg accttgcatt 1860
 ctcaatcgat tggtccaaatt tggtaaagac aggtctcag tggtccaggc tctggtttg 1920
 actcagcaat atcccgatca aaacccatag agtacgagcc atga 1964

<210> 4
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: wild type MMLV

<400> 4
atgcgttcaa cgctctcaaa accccttaaa aataaggta acccgcgagg ccccctaatc 60
ccc 63

<210> 5
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: mutant env
(m4070A)

<400> 5
atggccagaa gcaccctgag caagccaccc caggacaaaa atccctggaa acctctgatc 60
gtc 63

<210> 6
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 6
tattaataac tagt 14

<210> 7
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 7
gctacgcaga gctcgtttag tgaaccgggc actcagattc tg 42

<210> 8
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 8
gctgagctct agagtccctt tcttttacaa agttgg 36

<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 9
gcattaaaggc tttgtctc 18

<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 10
gcctcgagca aaaattcaga cgga 24

<210> 11
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 11
caaccaccgg gaggcaagct ggccagcaac tta 33

<210> 12
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 12
atcggcttagc agatcttcaa tattggccat tagccatat 39

<210> 13
<211> 44

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 13
atcgagatct gcggccgctt acctgcccag tgcctcacga ccaa 44

<210> 14
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 14
atcggcggcc gcccaccatg gaactcagcg tcctcctttt ctttgcaccc tagg 54

<210> 15
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 15
atcggcggcc gcacttacct gtgtccccca ggaaagtatt tcaagaagcc ag 52

<210> 16
<211> 92
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 16
actgtgatca taggcacctta ttggtcttac tgacatccac tttctctcca caggcaagtt 60
tacaaaacct gcagggaaatc aatgcttaca tt 92

<210> 17
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 17
actgatcgat ttccctcagc cccttcagcg gggcaggaag c 41

<210> 18
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 18
gactacgact agtgtatgtt tagaaaaaca agg 33

<210> 19
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 19
ctaggctact agtactgttag gatctcgaac ag 32

<210> 20
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 20
gggctatatg agatcttgaa taataaaaatg tgt 33

<210> 21
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 21
ttcgatgttc accaccatgg aactcagcgt cctcctttc cttgcac 47

<210> 22
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 22

ttcgagccgg ctcatcagcg gggcaggaag cgatatggg atgttg	46
<210> 23	
<211> 82	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: pLTR	
<400> 23	
cgttaacact agtaagcttg ctctaaggta aatagtcgac aggctgcgc cagtcctccg 60	82
attgactgag tcgcccgggt ac	
<210> 24	
<211> 83	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: pLTR	
<400> 24	
cccgccgcac tcagtcaatc ggaggactgg cgcaggcctg tcgactatcc accttagagc 60	83
aagcttacta gtgttaacgg cgc	
<210> 25	
<211> 124	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: pL-SA-N	
<400> 25	
gatctaacct aggtctcgag tggtaaaca ctgggcttgt cgagacagag aagactcttg 60	120
cgtttctgtat aggcacctat tggtcttact gacatccact ttgccttct ctccacaggt	124
gagg	
<210> 26	
<211> 120	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: pL-SA-N	
<400> 26	
cctcacctgt ggagagaaag gcaaagtgg a tgcgttac accaatgg gcctatcaga 60	120
aacgcaagag tcttctgtgt ctcgacaagc ccagtgttta aacactcgag accttagtta	
<210> 27	
<211> 99	

<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pL-SA-N with a
splice donor deletion

<400> 27

ttagctaact agtacagacg caggcgata acatcaaaca tagacactag acaatcgac 60
agacacagat aagttgctgg ccagcttgcc tcccggtgg 99

<210> 28

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pL-SA-N with a
splice donor deletion

<400> 28

ccctcactcg gcgcgccagt cttccga

27

<210> 29

<211> 79

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CMV/R junction of
EIAV LTR plasmid

<400> 29

agcagagctc gtttagtgaa ccgacttaag tcttcctgca ggggctctaa ggtaaatagg 60
gcactcagat tctgcggtc 79

<210> 30

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CMV/R junction of
EIAV LTR plasmid

<400> 30

cacacacctggc cggggatcct acgatcagcc agg

33

<210> 31

<211> 129

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pEGASUS-1

<400> 31
 tcgacgtta aacactggc ttgtcgagac agagaagact cttgcgttc tgataggcac 60
 ctattggct tactgacatc cacttgcct ttctctccac aggtcacgtg aagcttagcct 120
 cgagttggc 129

<210> 32
 <211> 128
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: pEGASUS-1

<400> 32
 tcagccaact cgaggctagc ttcacgtgac ctgtggagag aaaggcaaag tggatgtcag 60
 taagaccaat aggtgcctat cagaaacgca agagtcttct ctgtctcgac aagcccagtg 120
 tttaaacg 128

<210> 33
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: EIAV vector

<400> 33
 aggaggacag gcaagatggg agacccttg ac 32

<210> 34
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: EIAV vector

<400> 34
 ggggtcgact ctagagtctt ttcc 24

<210> 35
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: EIAV vector

<400> 35
 gtcaaagggt ctcccatctt gcctgtcctc ct 32

<210> 36

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: EIAV vector

<400> 36

ctatataagg agagctcggt tagtg

25