

Optimización Lineal: análisis de sensibilidad y dualidad

Jorge López Lázaro jorloplaz@gmail.com

Índice

- 1. Análisis de sensibilidad
- 2. Dualidad

1. Análisis de sensibilidad

Interpretación económica de LP

- Resolver un problema de optimización lineal no sólo da información de cuáles son los valores óptimos de las variables de decisión y de la función objetivo.
- Asociados a la solución óptima, hablaremos de precios sombra (también llamados variables duales o valores marginales) para las restricciones del problema, y de costes reducidos para el caso particular de las restricciones de no negatividad.
- Indican cuánto varía la función objetivo si se produce un cambio de una unidad en el valor de la parte derecha de la restricción.
- Más en general, el análisis de sensibilidad estudia qué efectos se producen en la solución óptima (z*) cuando se cambian los datos del problema. Estos cambios pueden ser en:
 - La parte derecha de las restricciones (b)
 - Los coeficientes de la función objetivo (c)
 - Los coeficientes de las restricciones (A)

$$\min_{x} \quad z = c^{\top} x$$

s.t.
$$Ax = b$$

s.t.
$$Ax = b$$

$$x \ge 0$$

Ejemplo: asientos de aerolínea (I)

$$\max_{x_1, x_2} 400x_1 + 150x_2$$
s.t.
$$x_1 + x_2 \le 150$$

$$x_1 \le 75$$

$$x_2 \le 125$$

$$x_1 \ge 0$$

$$x_2 > 0$$

¿Qué es más rentable?

- Aumentar el número total de asientos
- Aumentar el número de asientos con descuento
- Aumentar el número de "asientos regulares"

Ejemplo: asientos de aerolínea (II)

Ejemplo: asientos de aerolínea (III)

Ejemplo: asientos de aerolínea (IV)

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} -400 & -150 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -150 \\ -250 \\ 0 \end{pmatrix}$$

<u>Los precios sombra los proporciona el</u> <u>método del símplex</u>

¿Cómo puede ser?

2. Dualidad

Ejemplo: uso de recursos (I)

En una empresa se fabrican 4 productos: 1, 2, 3 y 4. En la producción se utilizan 3 recursos: A,B y C. En la tabla se da la cantidad de recurso necesario por unidad de producto, la disponibilidad de cada recurso y el beneficio unitario.

Recurso	Productos				Disponibilidad
	1	2	3	4	
Α	2	3	1,5	4	300
В	2	4	3	1	500
С	5	1	2	2	250
Beneficio	4	3	6	2	

max
$$z = 4x_1 + 3x_2 + 6x_3 + 2x_4$$
 s.t.

$$2x_1 + 3x_2 + 1.5x_3 + 4x_4 \le 300$$

$$2x_1 + 4x_2 + 3x_3 + x_4 \le 500$$

$$5x_1 + x_2 + 2x_3 + 2x_4 \le 250$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Ejemplo: uso de recursos (II)

Supongamos ahora que una empresa competidora quiere comprar los recursos b1 = 300, b2 = 500 y b3 = 250. El objetivo de la segunda empresa es obtener los recursos a mínimo coste; si el precio unitario que paga por los recursos A, B y C es y_1, y_2, y_3 respectivamente, el objetivo será

$$\min G = 300y_1 + 500y_2 + 250y_3$$

Podemos suponer que la 1ª empresa no venderá los recursos por un precio inferior al que consigue por su uso en la producción (beneficio). Para el producto 1, eso significa:

$$2y_1 + 2y_2 + 5y_3 \ge 4$$

Haciendo lo mismo para los otros, el problema que debe resolver la 2ª empresa para determinar el precio mínimo que puede conseguir, será:

min
$$G = 300y_1 + 500y_2 + 250y_3$$
 s.t.

$$2y_1 + 2y_2 + 5y_3 \ge 4$$

$$3y_1 + 4y_2 + y_3 \ge 3$$

$$1.5y_1 + 3y_2 + 2y_3 \ge 6$$

$$4y_1 + y_2 + 2y_3 \ge 2$$

$$y_1, y_2, y_3 \ge 0$$

Ejemplo: uso de recursos (III)

min
$$G = 300y_1 + 500y_2 + 250y_3$$
 sujeto a

$$2y_1 + 2y_2 + 5y_3 \ge 4$$

$$3y_1 + 4y_2 + y_3 \ge 3$$

$$1.5y_1 + 3y_2 + 2y_3 \ge 6$$

$$4y_1 + y_2 + 2y_3 \ge 2$$

$$y_1, y_2, y_3 \ge 0$$

$$y_1 = 0$$
$$y_2 = 0$$
$$y_3 = 3$$
$$G = 750$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 125$$

$$x_4 = 0$$

$$z = 750$$

max
$$z = 4x_1 + 3x_2 + 6x_3 + 2x_4$$

sujeto a

$$2x_1 + 3x_2 + 1.5x_3 + 4x_4 \le 300$$

$$2x_1 + 4x_2 + 3x_3 + x_4 \le 500$$

$$5x_1 + x_2 + 2x_3 + 2x_4 \le 250$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Problema dual (I)

- El valor óptimo de este 2º problema coincide con el óptimo del problema original.
- Esto es precisamente lo que sucede cuando el original (<u>problema primal</u>) tiene un óptimo; el <u>problema dual</u> también lo tiene y coincide.
- Desde un punto de vista económico:
 - En el primal las variables de decisión están limitadas por las restricciones de recursos.
 - En el dual las variables de decisión son los precios sombra de esas restricciones de recursos.
 - El óptimo se da cuando las variables duales coinciden todas con los precios sombra de las restricciones del primal.
- Desde un punto de vista algebraico:
 - El primal tiene m restricciones y n variables de decisión.
 - El dual tiene n restricciones y m variables de decisión.
 - Los n costes del primal pasan a ser las limitaciones de las n restricciones del dual.
 - Las limitaciones de las m restricciones del primal pasan a ser los m costes del dual.
 - Si en el primal se minimiza en el dual se maximiza, y viceversa.

Problema dual (II)

Primal (maximize)	Dual (minimize)		
i'th constraint ≤	i'th variable ≥ 0		
i'th constraint ≥	i'th variable ≤ 0		
i'th constraint =	i'th variable unrestricted		
j'th variable ≥ 0	j'th constraint ≥		
j'th variable ≤ 0	j'th constraint ≤		
j'th variable unrestricted	j'th constraint =		

Primal $(m \times n)$.	Dual $(n \times m)$.
$\max_{x} z = c^{T} x$	$\min_{y} y_{0} = b^{T} y$
$Ax \leq b$	$A^{T}y \geq c$
$x \ge 0$	$y \geq 0$
$\max_{x_j} z = \sum_{j=1}^n c_j x_j$	$\min_{\boldsymbol{y_i}} \boldsymbol{y_0} = \sum_{i=1}^m b_i \boldsymbol{y_i}$
$\sum_{j=1}^n a_{ij} x_j \leq b_i i = 1, \dots, m$	$\sum_{i=1}^{m} a_{ij} y_i \ge c_j j = 1, \dots, n$
$x_j \geq 0$ $j = 1,,n$	$y_i \ge 0$ $i = 1, \dots, m$

- Por tanto, a partir del primal se puede deducir inmediatamente cuál es el dual.
- Por cómo es el procedimiento, es fácil deducir que el dual del dual es el primal.

Problema dual (III)

Primal (maximize)	Dual (minimize)
i'th constraint ≤	i'th variable ≥ 0
i'th constraint ≥	i'th variable ≤ 0
i'th constraint =	i'th variable unrestricted
j'th variable ≥ 0	j'th constraint ≥
j'th variable ≤ 0	j'th constraint ≤
j'th variable unrestricted	j'th constraint =

s.a

Primal

$$\begin{array}{ll}
 & Min \ x_2 - 3x_3 + 2x_5 \\
 & x_1 + 3x_2 - x_3 + 2x_5 \ge 7 \\
 & -2x_2 + 4x_3 + x_4 \ge 12 \\
 & -4x_2 + 3x_3 + 8x_5 + x_6 \ge 10 \\
 & x_i \ge 0
\end{array}$$

Dual

$$\begin{aligned} \text{M\'ax } 7w_1 + 12 \ w_2 + 10w_3 \\ 3w_1 + 2w_2 - 4w_3 &\leq 1 \\ -w_1 + 4w_2 + 3w_3 &\leq -3 \\ 2w_1 & +8 \ w_3 &\leq 2 \\ w_i &\leq 0 \end{aligned}$$

Ejemplo: asignación de recursos (I)

Una fábrica de cerveza produce varios tipos de cerveza, con distintas tecnologías de producción, utilizando diferente cantidad de una materia prima básica y requiriendo un número diferente de horas del personal (otros elementos como energía o inmovilizados (local...) no se consideran) ¿Cuántos litros semanales debe producir de cada cerveza para maximizar el beneficio?

Datos semana:

	P.V.P. (€/1000I.)	Mat.prima (€/1000l)	Mano de obra (empl./1000l)
Rubia	300 €	20	5
Negra	500 €	50	4
Disponible		90	14

Ejemplo: asignación de recursos (II)

Índices y parámetros:

- i. tipos de cerveza
- j. materias primas

- p_i : precio de venta cerveza tipo $i \in (10001)$
- a ;: cantidad de materia prima j usada en producir cerveza i (€/10001)
- e_i : mano de obra utilizada para producir cerveza i (empleados/1000l)
- u_i : límite disponible de materia prima $j(\mathbf{\epsilon})$

v : número de empleados disponibles (empleados)

Variables

 Q_i : cantidad a producir de cerveza tipo i (10001)

B : beneficio (€)

Modelo

$$B = \sum_{i} p_{i}Q_{i} - \sum_{j} \sum_{i} a_{ji}Q_{i}$$

$$\forall j = 1,..., m$$

$$\max 280Q_{1} + 450Q_{2}$$

$$20Q_{1} + 50Q_{2} \le 90$$

$$5Q_{1} + 4Q_{2} \le 14$$

$$Q_{i} \ge 0$$

$$\min 90 \ y_1 + 14 \ y_2$$

$$20 \ y_1 + 5 \ y_2 \ge 280$$

$$50 \ y_1 + 4 \ y_2 \ge 450$$

$$y_i \ge 0$$

Problema dual (I)

Teorema fundamental de la dualidad

- a) Si uno de los dos problemas tiene solución óptima factible entonces el otro también lo tiene y el valor óptimo coincide en ambos problemas.
- b) Si un problema es no acotado, el otro problema es no factible.
- c) Si un problema es no factible, el otro es no factible o no acotado.

Aplicación directa de Teorema de dualidad

Se puede resolver un problema o su dual. Como el tiempo de resolución es proporcional a m^3 , entonces:

- Si m \ll n resolver el problema primal.
- Si m $\gg n$ resolver el problema dual.

Ejercicio: golosinas (I)

Una compañía fabrica tres tipos de golosinas A, B y C. Cada golosina está hecha a base de azúcar y chocolate. En la siguiente tabla se exponen las composiciones, por unidad, de cada tipo de golosina y el beneficio, por unidad. La compañía dispone de 50 onzas de azúcar y 100 onzas de chocolate. ¿Qué cantidad de cada tipo de golosina debe fabricar la compañía para maximizar el beneficio total?

Tipo de golosina	Cantidad de azúcar	Cantidad de chocolate	Beneficio por unidad
А	1	2	3
В	1	3	7
С	1	1	5

- 1. Formular problema primal
- 2. Derivar el problema dual
- 3. Resolver ambos con PuLP y comprobar soluciones óptimas

Ejercicio: golosinas (II)

Una compañía fabrica tres tipos de golosinas A, B y C. Cada golosina está hecha a base de azúcar y chocolate. En la siguiente tabla se exponen las composiciones, por unidad, de cada tipo de golosina y el beneficio, por unidad. La compañía dispone de 50 onzas de azúcar y 100 onzas de chocolate. ¿Qué cantidad de cada tipo de golosina debe fabricar la compañía para maximizar el beneficio total?

Problema primal

$$\begin{aligned} \text{M\'ax } 3x_1 + 7x_2 + 5x_3 \\ \text{s. } a \ x_1 + x_2 + x_3 &\leq 50 \\ 2x_1 + 3x_2 + x_3 &\leq 100 \\ x_i &\geq 0 \end{aligned}$$

Problema dual

Min
$$50y_1 + 100y_2$$

s. a $y_1 + 2y_2 \ge 3$
 $y_1 + 3y_2 \ge 7$
 $y_1 + y_2 \ge 5$
 $y_i \ge 0$

Primal estándar

$$Min - 3x_1 - 7x_2 - 5x_3$$

$$s. a x_1 + x_2 + x_3 + x_4 = 50$$

$$2x_1 + 3x_2 + x_3 + x_5 = 100$$

$$x_i \ge 0$$

Dual estándar

$$\begin{aligned} & Min \ 50y_1 + 100y_2 \\ s. \ a & y_1 + 2y_2 - y_3 = 3 \\ & y_1 + 3y_2 - y_4 = 7 \\ & y_1 + y_2 - y_5 = 5 \\ & y_i \ge 0 \end{aligned}$$

© 2021 Afi Escuela. Todos los derechos reservados.