PyTAIL: Interactive and Incremental Learning of NLP Models with Human in the Loop for Online Data

Shubhanshu Mishra* (shubhanshu.com), Jana Diesner (University of Illinois at Urbana-Champaign), *Work done while at UIUC. https://github.com/socialmediaie/pytail | https://arxiv.org/abs/2211.13786

Problem formulation

- Given a large unlabeled corpus, can we:
 - label it efficiently using fewer human annotations?
 - o allow efficient human-in-the-loop injection of rules during the annotation process?
 - update models efficiently to work with new data?
- Proposal
 - Use active learning for data labeling
 - Use interface to surface and inject prominent rules for efficient annotation
 - Use incremental learning algorithms for model updates
- Highly applicable to social media data:
 - Streaming data
 - Model should adapt to new data

PyTAIL Benchmark for Social Media Active Learning

- Tasks for Social Media Text Classification: Abusive, Sentiment, Uncertainty
- 10 tasks, 200K social media posts
- To be released at: https://doi.org/10.5281/zenodo.7236430
- Derived from Social Media IE Multi Task Benchmark https://doi.org/10.5281/zenodo.5867160

data

data	split	tokens	tweets	vocab
Airline	dev	20079	981	3273
	test	50777	2452	5630
	train	182040	8825	11697
Clarin	dev	80672	4934	15387
	test	205126	12334	31373
	train	732743	44399	84279
GOP	dev	16339	803	3610
	test	41226	2006	6541
	train	148358	7221	14342
Healthcare	dev	15797	724	3304
	test	16022	717	3471
	train	14923	690	3511
Obama	dev	3472	209	1118
	test	8816	522	2043
	train	31074	1877	4349
SemEval	dev	105108	4583	14468
	test	<mark>5282</mark> 34	<mark>2</mark> 3103	<mark>4</mark> 3812
	train	<mark>2</mark> 81468	12245	29673

Sentiment classification

Founta	nta dev		l I	4663		22529		
	test	256569)	11657		44540		
	train	922028	3	41961		118349		
WaseemSRW dev		25588	3	1464		5907		
	test	64893	3	3659		10646		
	train	234550		13172		23042		
Abusive content identification								
data	enli+	takans	+,	woots		wocah		
	split	tokens	t	weets		vocab		
	split dev	tokens 2126	t	weets 145		1002		
Riloff	-		t					
Riloff t	dev	2126	t	145		1002		
Riloff t	dev	2126 5576	t	145 362		1002 1986		
Riloff t t Swamy	dev est rain	2126 5576 19652	t	145 362 1301		1002 1986 5090		

tokens

tweets

vocab

PyTAIL Workflow

- Build an easy to use interface which allows users to perform human-in-the-loop annotation of data and incremental training of the model
- Enable injection of custom lexicons and rules for NLP application, with ability to suggest rules
- Support simulation mode to assess performance of active learning techniques
- Support human in the loop interface for interactive annotation and rule building
- Track performance of remaining data during simulation model to measure time to full annotation.
- Support different active learning algorithms
- Support different rule suggestion techniques

Evaluation Workflow

- We evaluated PyTAIL simulation workflow on the PyTAIL benchmark
- Using a linear model, a continuously updated lexicon from the data
- The goal was the evaluate the performance of different active learning strategies on social media corpus
- We considered, random, entropy based, and min margin for candidate scoring.
- We used top K and sampling for candidate selection
- Our results show that Top K strategies lead to the fastest annotation of a given unlabeled corpora
- Random leads to the slowest annotation of the corpora.
- In terms of generalization capabilities most approaches

Resources

are similar

- ArXiv: https://arxiv.org/abs/2211.13786
- Dataset: https://doi.org/10.5281/zenodo.723643
- Code: https://github.com/socialmediaie/pytail
- Video: https://youtu.be/AwDu64qN8t4

Evaluation of PyTAIL on benchmark

task	dataset	round	N	N_{left}	$\%_{used}$	Full	Rand	E_{top}	E_{prop}	M_{top}	M_{pro}
			Tes	t Datase	et						
ABUSIVE	Founta	42	41,861	37,661	0.10	0.79	0.77	0.78	0.78	0.79	0.7
	WaseemSRW	14	13,072	11,672	0.11	0.82	0.79	0.78	0.77	0.78	0.7
SENTIMENT	Airline	9	8,725	7,825	0.10	0.82	0.76	0.78	0.79	0.77	0.7
	Clarin	45	44,299	39,799	0.10	0.66	0.63	0.61	0.62	0.63	0.6
	GOP	8	7,121	6,321	0.11	0.67	0.63	0.64	0.63	0.62	0.6
	Healthcare	1	590	490	0.17	0.59	0.64	0.60	0.61	0.60	0.6
	Obama	2	1,777	1,577	0.11	0.63	0.56	0.60	0.58	0.59	0.5
	SemEval	13	12,145	10,845	0.11	0.65	0.59	0.60	0.61	0.58	0.6
UNCERTAINITY	Riloff	2	1,201	1,001	0.17	0.78	0.77	0.76	0.77	0.76	0.7
	Swamy	1	555	455	0.18	0.39	0.39	0.40	0.39	0.34	0.3
			Remai	ning Da	taset						
ABUSIVE	Founta	42	41,861	37,661	0.10	NaN	0.77	0.80	0.78	0.81	0.7
	WaseemSRW	14	13,072	11,672	0.11	NaN	0.78	0.79	0.77	0.80	0.7
SENTIMENT	Airline	9	8,725	7,825	0.10	NaN	0.75	0.79	0.79	0.80	0.7
	Clarin	45	44,299	39,799	0.10	NaN	0.62	0.62	0.62	0.64	0.6
	GOP	8	7,121	6,321	0.11	NaN	0.62	0.64	0.62	0.63	0.6
	Healthcare	1	590	490	0.17	NaN	0.53	0.56	0.53	0.47	0.5
	Obama	2	1,777	1,577	0.11	NaN	0.54	0.56	0.57	0.56	0.5
	SemEval	13	12 145	10 845	0.11	NaN	0.61	0.62	0.62	0.63	0.6

Table 2: Performance of query strategies across datasets using around 10% training dataset.

UNCERTAINITY Riloff

round

Swamy

555 455 0.18 NaN 0.37 0.40 0.40 0.33 0.36

round

Top strategy queries efficiently and can help in labeling full data more quickly.

round

