Databases 제 1장. 데이터베이스와 데이터베이스 사용자

한국공학대학교 게임공학과 장 지 웅

Contents

- I 데이터베이스 란?
 - 응용분야
 - 특징 및 예
 - 의 화일 시스템
 - _ 스키마와 상태
 - II 데이터베이스 관리 시스템
 - III 데이터베이스 사용자

데이터 : 의미를 가지면서 기록될 수 있는 알려진 사실

● 데이타베이스 : 관련있는 데이터의 모임

용어

- 데이타베이스 관리시스템: 데이터베이스의 생성과 관리를 담당하는 소프트웨어 패키지
- 데이타베이스 시스템 : Database와 그를 관리하는 소프트웨어 (DBMS, 응용 프로그램) 모두를 칭하는 용어
- 작은 세계(mini-world) : 데이타베이스 구축의 대상이되는 실세계의 일부분

전통 분야

문서 DB

최신 분야

Multimedia DB

GI

S

Data Warehouse

실시간 DB 빅데이터

Figure 1.1
A simplified database system environment.

데이타베이스 사용사례

대학에서는 데이터베이스에 학생들에 관하여 신상 정보, 수강 과목, 성적 등을 기록하고, 각 학과에 개설되어 있는 과목들에 관한 정보를 유지하고, 교수에 관해서 신상 정보, 담당 과목, 급여 정보를 유지한다.

항공기 예약 시스템에서는 여행사를 통해 항공기 좌석을 예약하면 모든 예약 정보가 데이터베이스에 기록된다.

데이터베이스 시스템의 구성 요소

화일과 화일시스템

- 1 화일이란?
 - 물리적인 비트의 연속
 - 순차적인 레코드들로 구성
 - 레코드는 연관된 필드들의 모임

2 화일 시스템이란?

화일을 이용하여 자료를 관리하는 방법

화일(file)

	/ \		<u> র</u> ১০)		
	이재영			ΑI	
			031-8041-0554	DB	
	윤정현	2013083029	031-8041-0552	C++	
চৌ					
到					

화일시스템의 특징

데이터에 대한 프로그램의 의존도가 높다

생각해 봅시다.

?

- 1. 데이터에 대한 프로그램의 의존도가 높은 것이 장점인가?
- 2. 그 이유는 무엇인가?

데이터에 대한 프로그램의 의존도

```
Program 1
                                                          Data File
struct {
                                               윤정현
                                                       2010180033 A0
 char name[10];
                                               이재영
                                                       2009180040 A+
 char number[10];
                                               장지웅
                                                       2011180045 F
 char grade[2];
        Program 2
struct {
 char name[10];
 char
      number[10];
 char grade[2];
 char tel[11];
```

그밖의 문제점들

데이터의 중복성

각종 기능 부족

데이터의 중복성

학생화일(학생관리프로그램)

引州

학과이름 전화번호

학과화일(학교조직관리프로그램)

학과이름

위치

전화번호 개설년도

생각해 봅시다.

울일치

1. 데이터가 중복되면 어떤

낭비

부족한 기능들

1

데이터 모델링 개념

2

질의어

동시성제어

파손, 회복

보안

DBMS를 사용한 데이타베이스 관리

- 여러 사용자와 응용 프로그램들이 데이터베이스를 공유
- 사용자의 질의를 빠르게 수행할 수 방법을 자동적으로 선택하여 수행
- 여러 사용자에 적합한 다양한 인터페이스를 제공
- 제이터 간의 복잡한 관계를 표현
- 무결성 제약조건을 DBMS가 자동적으로 유지
- 시스템이 고장 나면 데이터베이스를 고장 전의 일관된 상태로 회복시킴
- 프로그램에 영향을 주지 않으면서 데이터베이스 구조를 변경할 수 있음

[그림 1.8] DBMS를 사용한 데이터베이스 관리

⟨표 1.1⟩ 화일 시스템 방식과 DBMS 방식의 비교

화일 시스템 방식	DBMS 방식		
데이터에 대한 물리적 접근만 조정한다.	데이터에 대한 물리적 접근과 논리적인 접근을 모 두 조정한다.		
동일한 화일을 두 개 이상의 프로그램이 동시 에 접근할 수 없다.	동일한 데이터를 다수 사용자가 동시에 접근할 수 있다.		
데이터가 비구조적이며, 중복성과 유지보수 비용이 높다.	데이터가 구조화되어 있으며, 중복성과 유지보수 비용이 낮다.		
어떤 프로그램이 기록한 데이터는 다른 프로 그램에서 읽을 수 없는 경우가 많다.	접근 권한이 있는 모든 프로그램이 데이터를 공유 한다.		
데이터에 대한 접근은 미리 작성된 프로그램을 통해서만 가능하다.	질의어를 사용하여 데이터에 대한 융통성 있는 접 근이 가능하다.		
각 응용 프로그램마다 화일이 따로 있으므로 데이터가 통합되어 있지 않다.	데이터가 중복을 배제하면서 통합되어 있다.		

컴퓨터 시스템에서 DBMS의 위치

데이타베이스 시스템의 자기기술성

데이터베이스에 대한 데이터 (메타 데이터)를 통하여 데이터의 구조를 직접 알고 있지 않아도 데이터를 액세스 할 수 있음

프로그램과 데이터의 분리

데이타베이스 내의 데이타 저장 구조가 변경되어도 Database 응용 프로그램은 영향을 받지 않음 (변경될 필요가 없음)

데이터 추상화

데이타 모델(data model)을 사용함으로써 저장구조와는 별도로 데이터의 의미를 표현하는 방법을 제공함 데이터에 대한 다양한 뷰

사용자는 전체 데이타베이스 보다는 관심이 있는 데이타베이스의 일부를 뷰로 정의할 수 있음

데이터베이스 스키마와 상태

데이타베이스 상태

특정 시점의 데이터베이스의 내용을 의미 시간이 지남에 따라 계속해서 바뀜

- 전체적인 데이터베이스 구조를 뜻함
- 자주 변경되지는 않음

데이타베이스스키마

데이터베이스 스키마

DEPARTMENT(DEPTNO, DEPTNAME, FLOOR) EMPLOYEE(EMPNO, EMPNAME, TITLE, DNO, SALARY)

데이터베이스 상태 DEPARTMENT

DEPTNO	DEPTNAME	FLOOR	
1	영업	8	
2	기획	10	
3	개발	9	

EMPLOYEE

EMPNO	EMPNAME	TITLE	DNO	SALARY
2106	김창섭	대리	2	2000000
3426	박영권	과장	3	2500000
3011	이수민	부장	1	3000000
1003	조민희	대리	1	2000000
3427	최종철	사원	3	1500000

DBMS의 기능

- 1 에이터 중복의 최소화 2 동시성 제어
 - 3 >보안기능
 - 4 >다양한 사용자 인터페이스
 - 5 데이타 사이에 존재하는 복잡한 관련성을 표현
 - 6 데이타베이스의 무결성을 보장
 - 7 >백업과 복구 기능

데이타 구조 변경에 융통성 부여

데이타베이스 내의 자료 구조가 변경되어도 사용자에 대한 영향은 거의 없음

표준화된 데이타 관리

조직 내 모든 부서에서 표준화된 문서 관리로 업무 효율성 증대

규모의 경제성

부서마다 다른 방식으로 자료를 관리하는 것보다 통합 DB로 관리하는 것이 전체적인 관점에서 저

비용임

DBMS의 사용효과

В

응용 프로그램의 개발 시간 단축

응용 프로그램의 상당한 부분을 DBMS가 처리함

항상 최신의 정보 제공

사용자 중에서 한 사람의 갱신으로 나머지 사람은 즉시 변경된 값을 접근가능

E

생각해 봅시다.

?

항상 DBMS를 사용해야 하는가?

DBMS의 단점

1

비용 증가

2

성능 감소

고장의 영향 확대

데이타베이스 사용자

데이타베이스 응용의 역사

