PLSC 502 – Autumn 2016 Measures of Association Interval/Ratio Data

November 8, 2016

Linearity

$$\frac{\partial Y}{\partial X}=m;$$

$$Y = mX + b$$

Other alternatives:

• Logarithmic:

$$\frac{\partial^2 Y}{\partial X \partial X} < 0$$

• Exponential:

$$\frac{\partial^2 Y}{\partial X \partial X} > 0$$

Linear, Logarithmic, Exponential

Other Possibilities

Linear Association: Pearson's r

$$r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

$$= \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{N} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}}$$

$$= \frac{\sum_{i=1}^{N} \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)}{N - 1}$$

Pearson's r: Intuition

Pearson's r: Characteristics

- $r \in [-1, 1]$
- $r = 0 \leftrightarrow$ no association between Y and X.
- Sign $(r) \rightarrow$ "direction" of the *linear* association
- $|r| \rightarrow$ "strength" of the *linear* association
- In general:
 - $|r| < 0.3 \rightarrow$ "weak" association
 - $\cdot 0.3 < |r| < 0.7 \rightarrow$ "moderate" association
 - $|r| > 0.7 \rightarrow$ "strong" association

Examples

$r = \pm 1.0 \rightarrow ?$

Nonlinearity, etc.

Inference on *r*

The sampling distribution of r is:

- complex, and
- skewed as $|r| \rightarrow 1.0$.

Fisher:

$$\hat{w} \equiv rac{1}{2} \ln \left(rac{1+\hat{r}}{1-\hat{r}}
ight) \ \sim \ \mathcal{N} \left[rac{1}{2} \ln \left(rac{1+\hat{r}}{1-\hat{r}}
ight), rac{1}{\sqrt{N-3}}
ight]$$

implying:

$$z_r = rac{rac{1}{2} \ln \left(rac{1+\hat{r}}{1-\hat{r}}
ight) - rac{1}{2} \ln \left(rac{1+r}{1-r}
ight)}{\sqrt{rac{1}{N-3}}} \sim \mathcal{N}(0,1)$$

Fisher's z Transformation of r

Alternative Formula (t)

$$rac{\hat{r}\sqrt{N-2}}{\sqrt{1-\hat{r}^2}}\sim t_{N-2}.$$

Note that this converges to z as $N \to \infty$.

Alternative Measure: Spearman's ρ

For sorted data on X and Y, where R_{Y_i} and R_{X_i} are the respective ranks,

$$\rho = 1 - \frac{6\sum_{i=1}^{N}(R_{Y_i} - R_{X_i})^2}{N(N^2 - 1)}$$

Characteristics:

- $\rho \in [-1, 1]$
- Same interpretation as r.
- Also appropriate for use with ordinal data; but
- When many "ties" occur, calculate Pearson's r on the ranks R_{Y_i} and R_{X_i} , and assign "partial" (or "half") ranks to tied individuals.

r vs. ρ Comparison

Africa Example: POLITY and Healthcare \$

[1] 0.2809225

Africa Example: Literacy and HIV \$

Africa Example: Muslim Percent and HIV \$

[1] -0.6313474

Summary: Measures of Association

		X			
		Nominal	Binary	Ordinal	Interval/Ratio
Y	Nominal	χ^2	χ^2	χ^2	t -test (and η)
	Binary	χ^2	ϕ , Q	γ, au_c	t-test
	Ordinal	χ^2	γ, τ_c	γ, au_{a}, au_{b}	Spearman's $ ho$
	Interval / Ratio	t -test (and η)	t-test	Spearman's $ ho$	r