logistic regression model $P(y=1|x,w) = \psi(w^t x) = \frac{1}{1 + \exp(w^t x)} = \frac{\exp(w^t x)}{1 + \exp(w^t x)}$ Fit the model by the maximum log-likelihood criterion Ju(w) = E log P(ykl XK, W) = \sum_{k=1}^{n} \left[y_k \log P(y_k=1 \colon \chi_k, w) + (1-y_k) \log \left(1-P(y_k=1 \chi_k, w) \right) \right] $= \sum_{k=1}^{n} \left| y_k \left(w^t x_k - \log \left(1 + \exp(w^t x_k) \right) \right) \right|$ + (1- yx) log 1+ exp(wtx)] $= \sum_{k=1}^{n} y_k w^t x_k - \log(1 + \exp(w^t x_k))$ Thus, we set the derivatives of Ju(w) w.r.t. the parameters to zero. $\frac{\partial J_{L}(w)}{\partial w_{0}} = \sum_{k=1}^{n} y_{k} - \frac{\exp(w^{t}x_{k})}{1 + \exp(w^{t}x_{k})} = \sum_{k=1}^{n} y_{k} - P(y_{k}=1|X_{k},w) = 0$ $\frac{\partial J_{L}(w)}{\partial w_{j}} = \sum_{k=1}^{n} y_{k} x_{kj} - \frac{\exp(w^{t}x) x_{kj}}{1 + \exp(w^{t}x_{k})} = \sum_{k=1}^{n} (y_{k} - P(y_{k=1} | x_{k}, w)) x_{kj} = 0$ $e_k = (y_k - P(y_k=1 | x_k, w)), k=1, ..., n$

Stochastic gradient ascent ($J_{L}(w)$ is concave) $w \leftarrow w + \eta \cdot \frac{\partial}{\partial w} J_{L}(w)$ $= w + \eta \cdot (y_{K} - P(y_{K}=1 \mid X_{K}, w)) X_{K}$ $\eta \text{ is the learning rate.}$