MATLAB mette a disposizione, per la ricerca degli zeri di una funzione non lineare la routine *fzero*.

# Algorithms

The fzero command is a function file. The algorithm, created by T. Dekker, uses a combination of bisection, secant, and inverse quadratic interpolation methods. An Algol 60 version, with some improvements, is given in [1]. A Fortran version, upon which fzero is based, is in [2].



Dal prompt dei comandi è possibile richiamare a funzione con le relative opzioni:

- >> x=fzero(fun,x0)
- >>x=fzero(fun,x0,options)
- >>[x,fval]=fzero(...)
- >>[x,fval,exitflag]=fzero(...)
- >>[x,fval,exitflag,output]=fzero(...)

#### Input Arguments

- Fun Function to solve function handle
- > x0 Initial value scalar | 2-element vector
- options Options for solution process
   structure, typically created using optimset

#### **Output Arguments**

- x Location of root or sign change real scalar
- > fval Function value at x real scalar
- > exitflag Integer encoding the exit condition integer
- > output Information about root-finding process structure

# Calcolo dello zero di una funzione continua in [a,b]

```
f∈ [a,b], continua e tale che
    f(a)f(b)<0
esiste almeno un punto z :
    f(z)=0</pre>
```



#### options - Options for solution process

structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using optimset. fzero uses these options structure fields.

>> X=fzero(@sin,3,optimset('disp','iter')) Search for an interval around 3 containing a sign change: Func-count f(a) f(b) Procedure а 3 0.14112 0.14112 initial interval 1 2.91515 0.224515 3.08485 0.0567094 search 2.88 0.258619 3.12 0.021591 search 2.83029 0.306295 3.16971 -0.0281093 search

Fase1: ricerca dell'intervallo

#### options - Options for solution process

structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using optimset. fzero uses these options structure fields

>> X=fzero(@sin,3,optimset('disp','iter')) Search for an interval around 3 containing a sign change: Func-count f(a) f(b) Procedure а 3 0.14112 0.14112 initial interval 2.91515 0.224515 3.08485 0.0567094 search 2.88 0.258619 3.12 0.021591 search 2.83029 0.306295 3.16971 -0.0281093 search

Fase1: ricerca dell'intervallo

intervallo

Search for a zero in the interval [2.83029, 3.16971]:

#### 'options — Options for solution process

structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using optimset. fzero uses these options structure fields.

| >> X=fzero(@sin,3,optimset('disp','iter')) |            |                  |              |            |                  |  |
|--------------------------------------------|------------|------------------|--------------|------------|------------------|--|
| Search for a                               | n interval | around 3 contain | ing a sign c | hange:     |                  |  |
| Func-count                                 | a          | f(a)             | b            | f(b)       | Procedure        |  |
| 1                                          | 3          | 0.14112          | 3            | 0.14112    | initial interval |  |
| 3                                          | 2.91515    | 0.224515         | 3.08485      | 0.0567094  | search           |  |
| 5                                          | 2.88       | 0.258619         | 3.12         | 0.021591   | search           |  |
| 7                                          | 2.83029    | 0.306295         | 3.16971      | -0.0281093 | search           |  |

Fase1: ricerca dell'intervallo

intervallo

| Search for a zero in the interval [2.83029, 3.16971]: |         |              |               |  |  |
|-------------------------------------------------------|---------|--------------|---------------|--|--|
| Func-count                                            | x       | f(x)         | Procedure     |  |  |
| 7                                                     | 3.16971 | -0.0281093   | initial       |  |  |
| 8                                                     | 3.14118 | 0.000417192  | interpolation |  |  |
| 9                                                     | 3.14159 | -5.41432e-08 | interpolation |  |  |
| 10                                                    | 3.14159 | 1.45473e-15  | interpolation |  |  |
| 11                                                    | 3.14159 | 1.22465e-16  | interpolation |  |  |
| 12                                                    | 3.14159 | 1.22465e-16  | interpolation |  |  |
|                                                       |         |              |               |  |  |
|                                                       |         |              |               |  |  |

Fase2: ricerca zero nell'intervallo individuato

#### options - Options for solution process

structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using optimset. fzero uses these options structure fields.

| >> X=fzero(@sin,3,optimset('disp','iter')) |            |                  |               |            |                  |  |
|--------------------------------------------|------------|------------------|---------------|------------|------------------|--|
| Search for a                               | n interval | around 3 contain | ning a sign o | change:    |                  |  |
| Func-count                                 | a          | f(a)             | b             | f(b)       | Procedure        |  |
| 1                                          | 3          | 0.14112          | 3             | 0.14112    | initial interval |  |
| 3                                          | 2.91515    | 0.224515         | 3.08485       | 0.0567094  | search           |  |
| 5                                          | 2.88       | 0.258619         | 3.12          | 0.021591   | search           |  |
| 7                                          | 2.83029    | 0.306295         | 3.16971       | -0.0281093 | search           |  |

Fase1: ricerca dell'intervallo

intervallo

Search for a zero in the interval [2.83029, 3.16971]: f(x) Func-count x Procedure 3.16971 -0.0281093 initial 3.14118 0.000417192 interpolation 3.14159 -5.41432e-08 interpolation 10 3.14159 1.45473e-15 interpolation 11 3.14159 1.22465e-16 interpolation 12 3.14159 1.22465e-16 interpolation

Fase2: ricerca zero nell'intervallo individuato

Esempio 1: una approssimazione di pi si può realizzare attraverso la ricerca dello zero della funzione seno in prossimità di 3





Esempio 1: una approssimazione di pi si può realizzare attraverso la ricerca dello zero della funzione seno in prossimità di 3



#### options — Options for solution process

structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using optimset. fzero uses these options structure fields.

```
>> X=fzero(@sin,-3,optimset('disp','iter'));
```

| Search for a | an interval | around -3 conta | ining a sign | change:    |                  |
|--------------|-------------|-----------------|--------------|------------|------------------|
| Func-count   | a           | f(a)            | b            | f(b)       | Procedure        |
| 1            | -3          | -0.14112        | -3           | -0.14112   | initial interval |
| 3            | -2.91515    | -0.224515       | -3.08485     | -0.0567094 | search           |
| 5            | -2.88       | -0.258619       | -3.12        | -0.021591  | search           |
| 7            | -2.83029    | -0.306295       | -3.16971     | 0.0281093  | search           |

| Search for a | zero in t  | he interval [-2 | 2.83029, -3.16971]: |
|--------------|------------|-----------------|---------------------|
| Func-count   | x          | f(x)            | Procedure           |
| 7            | -3.16971   | 0.0281093       | initial             |
| 8            | -3.14118   | -0.000417192    | interpolation       |
| 9            | -3.14159   | 5.41432e-08     | interpolation       |
| 10           | -3.14159   | -1.45473e-15    | interpolation       |
| 11           | -3.14159   | -1.22465e-16    | interpolation       |
| 12           | -3.14159   | -1.22465e-16    | interpolation       |
|              |            |                 |                     |
| Zero found i | n the inte | rval [-2.83029. | -3.169711           |

ero found in the interval [-2.83029, -3.16971]

Fase1: ricerca dell'intervallo

intervallo

Fase2: ricerca zero nell'intervallo individuato

Esempio 1: una approssimazione di pi si può realizzare attraverso la ricerca dello zero della funzione seno in prossimità di 3





Esempio: funzione y=f(x) con x0=2

```
function y = f(x)
%function per test
y=x.^2-0.25;
end
```

```
>> [x,fval,exitflag,output]=fzero(@f,2)
x =
   5.0000000000000e-01
fval =
exitflag =
output =
 struct with fields:
  intervaliterations: 11
       iterations: 8
       funcCount: 30
       algorithm: 'bisection, interpolation'
        message: 'Zero found in the interval [0.189807, 3.28]'
```

Esempio: funzione y=f(x) con x0=-2

```
function y = f(x)
%function per test
y=x.^2-0.25;
end
```

```
>> [x,fval,exitflag,output]=fzero(@f,-2)
x =
  -5.00000000000000e-01
fval =
exitflag =
output =
 struct with fields:
  intervaliterations: 11
      iterations: 8
       funcCount: 30
       algorithm: 'bisection, interpolation'
        message: 'Zero found in the interval [-0.189807, -3.28]'
```



# Esempio consideriamo la seguente funzione

function y = f(x) %function per test y=x.^2-0.25; end

Possibilità di dare in input un intervallo

>> [x,fval,exitflag,output]=fzero(@f,[1 2])

#### Esempio consideriamo la seguente funzione

```
function y = f(x)
%function per test
y=x.^2-0.25;
end
```

>> [x,fval,exitflag,output]=fzero(@f,[1 2])
??? Error using ==> fzero at 290
The function values at the interval endpoints
must differ in sign.



Esempio 2:trovare lo zero della funzione coseno compreso tra 1 e 2:

>> x=fzero(@cos,2)

**x** =

1.570796326794897



# >> [x,fval,exitflag,output]=fzero(@cos,2)

### \*exitflag — Integer encoding the exit condition

Integer

Integer encoding the exit condition, meaning the reason fsolve stopped its iterations.

| 1  | Function converged to a solution x.                                                                |
|----|----------------------------------------------------------------------------------------------------|
| -1 | Algorithm was terminated by the output function or plot function.                                  |
| -3 | NaN or Inf function value was encountered while searching for an interval containing a sign change |
| -4 | Complex function value was encountered while searching for an interval containing a sign change.   |
| -5 | Algorithm might have converged to a singular point.                                                |
| -6 | fzero did not detect a sign change.                                                                |

>> [x,fval,exitflag,output]=fzero(@cos,2)

# \*output — Information about root-finding process

#### Structure

Information about root-finding process, returned as a structure. The fields of the structure are:

| intervaliterations | Number of iterations taken to find an interval containing a root |
|--------------------|------------------------------------------------------------------|
| iterations         | Number of zero-finding iterations                                |
| funcCount          | Number of function evaluations                                   |
| algorithm          | 'bisection, interpolation'                                       |
| message            | Exit message                                                     |

```
>> [x,fval,exitflag,output]=fzero(@cos,2)
X =
1.570796326794897
fval =
                                                    *exitflag — Integer encoding the exit condition
   6.123233995736766e-17
                                                     Integer
exitflag =
                                                                      Function converged to a solution x.
                                  converge
output =
 struct with fields:
  intervaliterations: 7
                                                      Iterazioni per la ricerca dell'intervallo
       iterations: 5
                                                       Iterazioni per la ricerca dello zero
        funcCount: 19
        algorithm: 'bisection, interpolation'
         message: 'Zero found in the interval [1.54745, 2.32]'
```

# options — Options for solution process structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using optimset. fzero uses these options structure fields.

To1X Termination tolerance on x, a positive scalar. The default is eps, 2.2204e–16.

```
[x,fval]=fzero(@cos,2)
x =
  1.570796326794897e+000
fval =
  6.123233995736766e-017
options = optimset('TolX',1e-4);
[x,fval]=fzero(@cos,2,options)
x =
  1.570664378820111e+000
fval =
  1.319479744028485e-004
```

Un'altra opzione: l'utente può scegliere la Tolleranza.

### Limitazioni fzero matlab (funzione con punti di discontinuità)

### Esempio: funzione tan considerando un punto iniziale x0

>> x=fzero(@tan,0.5,optimset('disp','iter'));

Search for an interval around 0.5 containing a sign change:

| Func-count | a         | f(a)      | b        | f(b)     | Procedure        |
|------------|-----------|-----------|----------|----------|------------------|
| 1          | 0.5       | 0.546302  | 0.5      | 0.546302 | initial interval |
| 3          | 0.485858  | 0.528079  | 0.514142 | 0.56481  | search           |
| 5          | 0.48      | 0.520611  | 0.52     | 0.572562 | search           |
| 7          | 0.471716  | 0.510126  | 0.528284 | 0.583615 | search           |
| 9          | 0.46      | 0.495449  | 0.54     | 0.59943  | search           |
| 11         | 0.443431  | 0.474979  | 0.556569 | 0.62218  | search           |
| 13         | 0.42      | 0.446573  | 0.58     | 0.655168 | search           |
| 15         | 0.386863  | 0.407392  | 0.613137 | 0.703599 | search           |
| 17         | 0.34      | 0.353737  | 0.66     | 0.776105 | search           |
| 19         | 0.273726  | 0.280774  | 0.726274 | 0.88823  | search           |
| 21         | 0.18      | 0.18197   | 0.82     | 1.07171  | search           |
| 23         | 0.0474517 | 0.0474873 | 0.952548 | 1.40594  | search           |
| 24         | -0.14     | -0.140922 | 0.952548 | 1.40594  | search           |

Zero found in the interval [-0.14, 0.952548]

>> x

x =

-1.633179678712147e-23

### Limitazioni fzero matlab (funzione con punti di discontinuità)

# Esempio: funzione tan considerando un punto iniziale x0

>> x=fzero(@tan, 0.5, optimset('disp', 'iter'));

| Func-count | a         | f(a)      | b        | f(b)     | Procedure        |
|------------|-----------|-----------|----------|----------|------------------|
| 1          | 0.5       | 0.546302  | 0.5      | 0.546302 | initial interval |
| 3          | 0.485858  | 0.528079  | 0.514142 | 0.56481  | search           |
| 5          | 0.48      | 0.520611  | 0.52     | 0.572562 | search           |
| 7          | 0.471716  | 0.510126  | 0.528284 | 0.583615 | search           |
| 9          | 0.46      | 0.495449  | 0.54     | 0.59943  | search           |
| 11         | 0.443431  | 0.474979  | 0.556569 | 0.62218  | search           |
| 13         | 0.42      | 0.446573  | 0.58     | 0.655168 | search           |
| 15         | 0.386863  | 0.407392  | 0.613137 | 0.703599 | search           |
| 17         | 0.34      | 0.353737  | 0.66     | 0.776105 | search           |
| 19         | 0.273726  | 0.280774  | 0.726274 | 0.88823  | search           |
| 21         | 0.18      | 0.18197   | 0.82     | 1.07171  | search           |
| 23         | 0.0474517 | 0.0474873 | 0.952548 | 1.40594  | search           |
| 24         | -0.14     | -0.140922 | 0.952548 | 1.40594  | search           |

Zero found in the interval [-0.14, 0.952548]

>> x

Intervallo in cui la funzione è continua

x =

-1.633179678712147e-23

# Limitazioni fzero matlab

Esempio: funzione tan considerando un punto iniziale x0 e un intervallo



Esempio: consideriamo la funzione tan e come punto iniziale 1 «vicino» ad un punto di discontinuità

>> x=fzero(@tan,1,optimset('disp','iter')); Search for an interval around 1 containing a sign change: Func-count f(a) f(b) Procedure b а 1 1.55741 1.55741 initial interval 0.971716 1.46458 1.02828 1.65879 search 3 0.96 1.42836 1.04 1.70361 search 0.943431 1.37915 1.05657 1.77015 search 9 0.92 1.31326 1.08 1.87122 search 1.22671 1.11314 11 0.886863 2.03031 search 13 0.84 1.11563 1.16 2.2958 search 15 0.773726 0.976924 1.22627 2.78681 search 17 0.68 0.808661 1.32 3.90335 search 0.547452 0.609604 1.45255 8.41735 19 search 0.376403 1.64 21 0.36 -14.427 search

| Se  | earch for | a zero in | the interval | [0.36, 1.64]: | Intervallo individuato |            |
|-----|-----------|-----------|--------------|---------------|------------------------|------------|
| Fur | nc-count  | x         | f(x)         | Procedure     |                        |            |
|     | 62        | 1.5708    | -3.16043e+09 | interpolation |                        |            |
|     | 63        | 1.5708    | -7.03991e+09 | bisection     |                        |            |
|     | 64        | 1.5708    | -1.82267e+10 | bisection     |                        |            |
|     | 65        | 1.5708    | 3.09423e+10  | bisection     |                        |            |
|     | 66        | 1.5708    | 4.75172e+10  | interpolation |                        |            |
|     | 67        | 1.5708    | -8.87064e+10 | bisection     |                        |            |
|     | 68        | 1.5708    | -1.5656le+11 | interpolation |                        |            |
|     | 69        | 1.5708    | 2.04669e+11  | bisection     |                        |            |
|     | 70        | 1.5708    | 2.41826e+11  | interpolation |                        |            |
|     | 71        | 1.5708    | 5.90925e+11  | bisection     |                        |            |
|     | 72        | 1.5708    | -1.33214e+12 | bisection     |                        |            |
|     | 73        | 1.5708    | 2.12406e+12  | interpolation |                        |            |
|     | 74        | 1.5708    | -3.57223e+12 | interpolation |                        |            |
|     | 75        | 1.5708    | 5.24116e+12  | interpolation |                        |            |
|     | 76        | 1.5708    | 9.84876e+12  | interpolation |                        |            |
|     | 77        | 1.5708    | -1.12107e+13 | bisection     |                        |            |
|     | 78        | 1.5708    | -1.20506e+13 | interpolation |                        |            |
|     | 79        | 1.5708    | -2.60739e+13 | bisection     |                        | Circa pi/2 |
|     | 80        | 1.5708    | -6.27905e+13 | bisection     |                        |            |
|     | 81        | 1.5708    | 1.59274e+14  | bisection     |                        |            |
|     | 82        | 1.5708    | -2.07308e+14 | interpolation |                        |            |
|     | 83        | 1.5708    | -2.86411e+14 | interpolation |                        |            |
| ×   | 84        | 1.5708    | 7.17618e+14  | bisection     |                        |            |

# Search for a zero in the interval [0.36, 1.64]:

| Func-count    | x      | f(x)         | Procedure     |
|---------------|--------|--------------|---------------|
| 62            | 1.5708 | -3.16043e+09 | interpolation |
| 63            | 1.5708 | -7.03991e+09 | bisection     |
| 64            | 1.5708 | -1.82267e+10 | bisection     |
| 65            | 1.5708 | 3.09423e+10  | bisection     |
| 66            | 1.5708 | 4.75172e+10  | interpolation |
| 67            | 1.5708 | -8.87064e+10 | bisection     |
| 68            | 1.5708 | -1.56561e+11 | interpolation |
| 69            | 1.5708 | 2.04669e+11  | bisection     |
| 70            | 1.5708 | 2.41826e+11  | interpolation |
| 71            | 1.5708 | 5.90925e+11  | bisection     |
| 72            | 1.5708 | -1.33214e+12 | bisection     |
| 73            | 1.5708 | 2.12406e+12  | interpolation |
| 74            | 1.5708 | -3.57223e+12 | interpolation |
| 75            | 1.5708 | 5.24116e+12  | interpolation |
| 76            | 1.5708 | 9.84876e+12  | interpolation |
| 77            | 1.5708 | -1.12107e+13 | bisection     |
| 78            | 1.5708 | -1.20506e+13 | interpolation |
| 79            | 1.5708 | -2.60739e+13 | bisection     |
| 80            | 1.5708 | -6.27905e+13 | bisection     |
| 81            | 1.5708 | 1.59274e+14  | bisection     |
| 82            | 1.5708 | -2.07308e+14 | interpolation |
| 83            | 1.5708 | -2.86411e+14 | interpolation |
| \$ <u></u> 84 | 1.5708 | 7.17618e+14  | bisection     |

### Intervallo individuato

Ad ogni iterazione effettua valutazioni della funzione

| Search for | a zero in | the interval | [0.36, 1.64]:       | Intervallo individuato                                    |
|------------|-----------|--------------|---------------------|-----------------------------------------------------------|
| Func-count | x         | f(x)         | Procedure           |                                                           |
| 62         | 1.5708    | -3.16043e+09 | interpolation       |                                                           |
| 63         | 1.5708    | -7.03991e+09 | bisection           |                                                           |
| 64         | 1.5708    | -1.82267e+10 | bisection           | Ad ogni iterazione effettua valutazioni                   |
| 65         | 1.5708    | 3.09423e+10  | bisection           | 3                                                         |
| 66         | 1.5708    | 4.75172e+10  | interpolation       | della funzione e si accorge della presenza di un punto di |
| 67         | 1.5708    | -8.87064e+10 | bisection           | Discontinuità                                             |
| 68         | 1.5708    | -1.56561e+11 | interpolation       |                                                           |
| 69         | 1.5708    | 2.04669e+11  | bisection           |                                                           |
| 70         | 1.5708    | 2.41826e+11  | interpolation       |                                                           |
| 71         | 1.5708    | 5.90925e+11  | bisection           |                                                           |
| 72         |           |              |                     |                                                           |
| 73         | Current   | point x may  | be near a singular  | point. The interval [0.36, 1.64]                          |
| 74<br>75   |           | _            | _                   | the function changes sign in the interval,                |
| 76         | but f(x)  | increased    | in magnitude as the | interval reduced.                                         |
| 77         | 1.5708    | -1.12107e+13 | bisection           |                                                           |
| 78         | 1.5708    | -1.20506e+13 | interpolation       |                                                           |
| 79         | 1.5708    | -2.60739e+13 | bisection           |                                                           |
| 80         | 1.5708    | -6.27905e+13 | bisection           |                                                           |
| 81         | 1.5708    | 1.59274e+14  | bisection           | Oppure                                                    |
| 82         | 1.5708    | -2.07308e+14 | interpolation       |                                                           |
| 83         | 1.5708    | -2.86411e+14 | interpolation       |                                                           |
| ¥ 84       | 1.5708    | 7.17618e+14  | bisection           |                                                           |

#### Limitazioni fzero matlab

Esempio: funzione tan considerando un punto iniziale x0 e un intervallo



#### Limitazioni fzero matlab

Esempio: funzione tan considerando un punto iniziale x0 e un intervallo



# Esempio: funzione tan considerando un intervallo

>> [x,~,exitflag]=fzero(@tan,[0,1])

**x** =

0

exitflag =

1



### Esempio: funzione f(x)=1/x

```
>> x=fzero(@(x) 1/x,5,optimset('disp','iter'));
Search for an interval around 5 containing a sign change:
Func-count
                       f(a)
                                      b
                                                f(b)
                                                          Procedure
                  5
                            0.2
                                                     0.2 initial interval
   1
                                           5
            4.85858
                       0.205822
                                     5.14142
                                                 0.194499 search
               4.8
                       0.208333
                                        5.2
                                                 0.192308 search
   5
   7
            4.71716
                       0.211992
                                     5.28284
                                                 0.189292 search
   9
                4.6
                       0.217391
                                         5.4
                                                 0.185185 search
  11
            4.43431
                       0.225514
                                     5.56569
                                                0.179672 search
  13
               4.2
                       0.238095
                                         5.8
                                                0.172414 search
  15
                       0.258489
                                                 0.163096 search
            3.86863
                                     6.13137
                       0.294118
                                         6.6
                                                 0.151515 search
  17
                3.4
  19
            2.73726
                       0.365329
                                     7.26274
                                                 0.137689 search
  21
               1.8
                    0.555556
                                         8.2
                                                 0.121951 search
  23
           0.474517
                    2.10741
                                     9.52548
                                                 0.104982 search
                    -0.714286
                                                0.104982 search
  24
               -1.4
                                     9.52548
Search for a zero in the interval [-1.4, 9.52548]:
```

Esempio: funzione f(x)=1/x

| Func-count x f(x) Procedure  72    5.14563e-11   1.9434e+10   interpolation 73    -5.13592e-11   -1.94707e+10   interpolation 74    -5.12621e-11   -1.95076e+10   interpolation 75    -2.55825e-11   -3.90892e+10   bisection 76    -1.27427e-11   -7.84763e+10   bisection 77    -6.3228e-12   -1.58158e+11   bisection 78    -3.11285e-12   -3.21249e+11   bisection 79    -1.50788e-12   -6.63183e+11   bisection 80    -7.05392e-13   -1.41765e+12   bisection 81    -3.04149e-13   -3.28787e+12   bisection 82    -1.03527e-13   -9.65934e+12   bisection 83    9.7095e-14   1.02992e+13   bisection 84    9.38791e-14   1.0652e+13   interpolation 85    4.53316e-14   2.20597e+13   bisection 86    2.10579e-14   4.74882e+13   bisection 87    8.92099e-15   1.12095e+14   bisection 88    -3.21588e-15   -3.10957e+14   bisection 90    2.40847e-15   4.15202e+14   interpolation 91    1.02257e-15   9.7793e+14   bisection 92    -3.63329e-16   -2.75233e+15   bisection |       |              |              | L 1.1, 0.00010j. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|--------------|------------------|
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Func- | -count x     | f(x)         | Procedure        |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |              |              |                  |
| 74 -5.12621e-11 -1.95076e+10 interpolation 75 -2.55825e-11 -3.90892e+10 bisection 76 -1.27427e-11 -7.84763e+10 bisection 77 -6.3228e-12 -1.58158e+11 bisection 78 -3.11285e-12 -3.21249e+11 bisection 79 -1.50788e-12 -6.63183e+11 bisection 80 -7.05392e-13 -1.41765e+12 bisection 81 -3.04149e-13 -3.28787e+12 bisection 82 -1.03527e-13 -9.65934e+12 bisection 83 9.7095e-14 1.02992e+13 bisection 84 9.38791e-14 1.0652e+13 interpolation 85 4.53316e-14 2.20597e+13 bisection 86 2.10579e-14 4.74882e+13 bisection 87 8.92099e-15 1.12095e+14 bisection 88 -3.21588e-15 -3.10957e+14 bisection 90 2.40847e-15 4.15202e+14 interpolation 91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                    | 72    | 5.14563e-11  | 1.9434e+10   | interpolation    |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73    | -5.13592e-11 | -1.94707e+10 | interpolation    |
| 76   -1.27427e-11   -7.84763e+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74    | -5.12621e-11 | -1.95076e+10 | interpolation    |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75    | -2.55825e-11 | -3.90892e+10 | bisection        |
| 78   -3.11285e-12   -3.21249e+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76    | -1.27427e-11 | -7.84763e+10 | bisection        |
| 79 -1.50788e-12 -6.63183e+11 bisection 80 -7.05392e-13 -1.41765e+12 bisection 81 -3.04149e-13 -3.28787e+12 bisection 82 -1.03527e-13 -9.65934e+12 bisection 83 9.7095e-14 1.02992e+13 bisection 84 9.38791e-14 1.0652e+13 interpolation 85 4.53316e-14 2.20597e+13 bisection 86 2.10579e-14 4.74882e+13 bisection 87 8.92099e-15 1.12095e+14 bisection 88 -3.21588e-15 -3.10957e+14 bisection 89 2.85255e-15 3.50563e+14 interpolation 90 2.40847e-15 4.15202e+14 bisection 91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77    | -6.3228e-12  | -1.58158e+11 | bisection        |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78    | -3.11285e-12 | -3.21249e+11 | bisection        |
| 81 -3.04149e-13 -3.28787e+12 bisection 82 -1.03527e-13 -9.65934e+12 bisection 83 9.7095e-14 1.02992e+13 bisection 84 9.38791e-14 1.0652e+13 interpolation 85 4.53316e-14 2.20597e+13 bisection 86 2.10579e-14 4.74882e+13 bisection 87 8.92099e-15 1.12095e+14 bisection 88 -3.21588e-15 -3.10957e+14 bisection 89 2.85255e-15 3.50563e+14 interpolation 90 2.40847e-15 4.15202e+14 interpolation 91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79    | -1.50788e-12 | -6.63183e+11 | bisection        |
| 82 -1.03527e-13 -9.65934e+12 bisection 83 9.7095e-14 1.02992e+13 bisection 84 9.38791e-14 1.0652e+13 interpolation 85 4.53316e-14 2.20597e+13 bisection 86 2.10579e-14 4.74882e+13 bisection 87 8.92099e-15 1.12095e+14 bisection 88 -3.21588e-15 -3.10957e+14 bisection 89 2.85255e-15 3.50563e+14 interpolation 90 2.40847e-15 4.15202e+14 interpolation 91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80    | -7.05392e-13 | -1.41765e+12 | bisection        |
| 9.7095e-14 1.02992e+13 bisection  84 9.38791e-14 1.0652e+13 interpolation  85 4.53316e-14 2.20597e+13 bisection  86 2.10579e-14 4.74882e+13 bisection  87 8.92099e-15 1.12095e+14 bisection  88 -3.21588e-15 -3.10957e+14 bisection  89 2.85255e-15 3.50563e+14 interpolation  90 2.40847e-15 4.15202e+14 interpolation  91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81    | -3.04149e-13 | -3.28787e+12 | bisection        |
| 84       9.38791e-14       1.0652e+13       interpolation         85       4.53316e-14       2.20597e+13       bisection         86       2.10579e-14       4.74882e+13       bisection         87       8.92099e-15       1.12095e+14       bisection         88       -3.21588e-15       -3.10957e+14       bisection         89       2.85255e-15       3.50563e+14       interpolation         90       2.40847e-15       4.15202e+14       interpolation         91       1.02257e-15       9.7793e+14       bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82    | -1.03527e-13 | -9.65934e+12 | bisection        |
| 85 4.53316e-14 2.20597e+13 bisection<br>86 2.10579e-14 4.74882e+13 bisection<br>87 8.92099e-15 1.12095e+14 bisection<br>88 -3.21588e-15 -3.10957e+14 bisection<br>89 2.85255e-15 3.50563e+14 interpolation<br>90 2.40847e-15 4.15202e+14 interpolation<br>91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83    | 9.7095e-14   | 1.02992e+13  | bisection        |
| 86 2.10579e-14 4.74882e+13 bisection<br>87 8.92099e-15 1.12095e+14 bisection<br>88 -3.21588e-15 -3.10957e+14 bisection<br>89 2.85255e-15 3.50563e+14 interpolation<br>90 2.40847e-15 4.15202e+14 interpolation<br>91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84    | 9.38791e-14  | 1.0652e+13   | interpolation    |
| 87 8.92099e-15 1.12095e+14 bisection<br>88 -3.21588e-15 -3.10957e+14 bisection<br>89 2.85255e-15 3.50563e+14 interpolation<br>90 2.40847e-15 4.15202e+14 interpolation<br>91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85    | 4.53316e-14  | 2.20597e+13  | bisection        |
| 88 -3.21588e-15 -3.10957e+14 bisection<br>89 2.85255e-15 3.50563e+14 interpolation<br>90 2.40847e-15 4.15202e+14 interpolation<br>91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86    | 2.10579e-14  | 4.74882e+13  | bisection        |
| 89 2.85255e-15 3.50563e+14 interpolation<br>90 2.40847e-15 4.15202e+14 interpolation<br>91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87    | 8.92099e-15  | 1.12095e+14  | bisection        |
| 90 2.40847e-15 4.15202e+14 interpolation<br>91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88    | -3.21588e-15 | -3.10957e+14 | bisection        |
| 91 1.02257e-15 9.7793e+14 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89    | 2.85255e-15  | 3.50563e+14  | interpolation    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90    | 2.40847e-15  | 4.15202e+14  | interpolation    |
| 92 -3.63329e-16 -2.75233e+15 bisection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91    | 1.02257e-15  | 9.7793e+14   | bisection        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92    | -3.63329e-16 | -2.75233e+15 | bisection        |

Ad ogni iterazione effettua valutazioni della funzione



# Esempio: funzione f(x)=1/x

| Func-c   | ount    | x      | f(x)                  | Procedure          |                                                          |
|----------|---------|--------|-----------------------|--------------------|----------------------------------------------------------|
| 72       | 5.1456  | 3e-11  | 1.9434e+10            | interpolation      |                                                          |
| 73       | -5.1359 | 2e-11  | -1.94707e+10          | interpolation      |                                                          |
| 74       | -5.1262 | le-11  | -1.95076e+10          | interpolation      | Ad ogni iterazione effettua valutazioni                  |
| 75       | -2.5582 | 5e-11  | -3.90892e+10          | bisection          | della funzione e si accorge della presenza di un punto d |
| 76       | -1.2742 | 7e-11  | -7.84763e+10          | bisection          | Discontinuità                                            |
| 77       | -6.322  | 8e-12  | -1.58158e+11          | bisection          | Discontinuita                                            |
| 78       | -3.1128 | 5e-12  | -3.21249e+11          | bisection          |                                                          |
| 79       | -1.5078 | 8e-12  | -6.63183e+11          | bisection          |                                                          |
| 80       | -7.0539 | 2e-13  | -1.41765e+12          | bisection          |                                                          |
| 81       | -3.0414 | 012    | _3 30707 <u>a</u> ±13 | historian          |                                                          |
| 82<br>83 | -       |        |                       |                    | ooint. The interval [0.36, 1.64]                         |
| 84       | 9.3E T  | educed | to the request        | ed tolerance and t | the function changes sign in the interval,               |
| 85       |         | Ī      |                       | magnitude as the i | interval reduced.                                        |
| 86       | 2.1057  |        | 4.74882e+13           | bisection          |                                                          |
| 87       | 8.9209  | 9e-15  | 1.12095e+14           | bisection          |                                                          |
| 88       | -3.2158 | 8e-15  | -3.10957e+14          | bisection          |                                                          |
| 89       | 2.8525  | 5e-15  | 3.50563e+14           | interpolation      |                                                          |
| 90       | 2.4084  | 7e-15  | 4.15202e+14           | interpolation      |                                                          |
| 91       | 1.0225  | 7e-15  | 9.7793e+14            | bisection          |                                                          |
| 92       | -3.6332 | 9e-16  | -2.75233e+15          | bisection          |                                                          |



### Esempio: consideriamo la seguente funzione

```
f(x)=x^8-10^-8
```

```
Ricerca degli zeri utilizzando fzero:
```

#### struct with fields:

intervaliterations: 11
iterations: 8
funcCount: 30
algorithm: 'bisection, interpolation'
message: 'Zero found in the interval [0.0949033, 1.64]'

Iterazioni per individuare l'intervallo
Iterazioni per individuare lo zero della fun

Intervallo

### Esempio: consideriamo la seguente funzione

$$f(x)=x^8-10^-8$$

Ricerca degli zeri utilizzando fzero:

output =

struct with fields:

intervaliterations: 11

Iterazioni per individuare l'intervallo
Iterazioni per individuare lo zero della fun

iterations: 8

funcCount: 30

algorithm: 'bisection, interpolation'

message: 'Zero found in the interval [0.0949033, 1.64]'

Intervallo

Ricerca degli zeri utilizzando fzero:



$$f(x)=x^8-10^-8$$

Ricerca degli zeri utilizzando fzero:



In particolare

 $\sigma$ <=μ $\delta$  dove

 $\mu = 1/|f'(x^*)|$ 

Nel nostro caso μ=1.2500000000000000e+06

Infatti perturbando di «poco»
I dati iniziali

$$f(x)=x^8-10^-8$$
  $f_t(x)=x^8-7*10^-8$ 

Ricerca degli zeri utilizzando fzero:

$$>> [x_t,^{\sim},exitflag]=fzero(@(x) x.^8-7*10^-8,1)$$

exitflag =

1

ans =

2.753731068584539e-02

In particolare

 $\sigma$ <=μ $\delta$  dove

$$\mu = 1/|f'(x^*)|$$

Nel nostro caso μ=1.2500000000000000e+06

$$f(x)=x^8-10^-8$$
  $f_t(x)=x^8-7*10^-8$ 

Ricerca degli zeri utilizzando fzero:

$$>> [x_t,^{\sim},exitflag]=fzero(@(x) x.^8-7*10^-8,1)$$

3731006364346-01

In particolare

 $\sigma$ <=μ $\delta$  dove

exitflag =  $\mu=1/|f'(x^*)|$ 

Nel nostro caso

un errore sui dati dell'ordine di 10^-8
2.753731068584539e-02
ha portato ad un errore sui dati dell'ordine di 10^-2

#### PlotFcns

Plot various measures of progress while the algorithm executes. Select from predefined plots or write your own. Pass a function handle or a cell array of function handles. The default is none ([]).

- @optimplotx plots the current point.
- · @optimplotfval plots the function value.

For information on writing a custom plot function, see Plot Functions.

```
>>options=optimset('PlotFcns',{@optimplotfval});
>> X=fzero(@sin,3,options)
X =
3.141592653589793
```

#### PlotFcns

Plot various measures of progress while the algorithm executes. Select from predefined plots or write your own. Pass a function handle or a cell array of function handles. The default is none ([]).

- @optimplotx plots the current point.
- @optimplotfval plots the function value.

For information on writing a custom plot function, see Plot Functions.

```
>>options=optimset('PlotFcns',{@optimplotfval});
>> X=fzero(@sin,3,options)
```

X =

3.141592653589793

Valori della funzione ad ogni iterazione



# Esempio: individuare uno zero della funzione

```
f(x)=x^3-2x-5

>> f=@(x) x.^3-2*x-5

f =
    function_handle with value:
    @(x)x.^3-2*x-5

>> z=fzero(f,2)

z =
    2.0946
```

# Esempio: individuare uno zero della funzione

```
f(x)=x^3-2x-5

>> f=@(x) x.^3-2*x-5

f =

function_handle with value:

@(x)x.^3-2*x-5

>> z=fzero(f,2)

z =

2.0946
```

Poiché la funzione f è un polinomio, si può, utilizzare, in alternativa, la funzione

```
>> roots([ 1 0 -2 -5])

ans =

2.0946 + 0.0000i
-1.0473 + 1.1359i
-1.0473 - 1.1359i
```

Nota: la funzione roots implementa un algoritmo basato sul Calcolo degli autovalori di una matrice associata la polinomio (companion matrix), costruita a partire dal vettore dei suoi coefficienti.

#### Limitazioni fzero matlab

Consideriamo la seguente funzione:

$$f(x)=x^2$$

```
>> x=fzero(@(x) x^2, 1)
Exiting fzero: aborting search for an interval containing a sign change
    because NaN or Inf function value encountered during search.
(Function value at -1.7162e+154 is Inf.)
Check function or try again with a different starting value.
x =
    NaN
```

Perché la funzione non «attraversa» l'asse delle x

Limitazioni fzero matlab

Consideriamo la seguente funzione:

$$f(x)=x^2$$

Alternativa utilizzare 'roots'

ans =

0



Esempio: Trovare lo zero della funzione |x|+1 vicino ad 1

```
>> f=@(x) abs(x)+1
f =
                                                              fzero restituisce NAN se, la funzione
                                                              non ammette alcuno zero appartenente all'asse reale
  function handle with value:
    \theta(x) abs(x)+1
>> X=fzero(f,1)
Exiting fzero: aborting search for an interval containing a sign change
    because NaN or Inf function value encountered during search.
(Function value at -Inf is Inf.)
Check function or try again with a different starting value.
\mathbf{x} =
  NaN
```

```
function [alfa,k]=bisezione(f,a,b,tol)
     - % La funzione approssima la radice con il metodo di bis
       ş
       % Parametri di input
       % f = funzione della quale calcolare la radice
       % a = estremo sinistro dell'intervallo
       % b = estremo destro dell'intervallo
       % tol = precisione fissata
10
       % Parametri di output
11
      % alfa = approssimazione della radice
      -% k = numero di iterazioni
13 -
       kmax=100;
14 -
       if nargin==3
15 -
       tol = 1e-8; % Tolleranza di default
16 -
       end
17 -
       fa = f(a);
18 -
       fb = f(b);
19 -
       if fa*fb>0
20 -
       error('Il metodo non è applicabile')
21 -
       end
22 -
       c = a + (b-a)/2;
23 -
       fc =f(c);
24 -
       k = 0;
25 -
     = while (((b-a)>tol || abs(fc)>tol) && k<kmax)
26 -
       if fa*fc<0
27 -
       b = c;
```

```
fb = fc;
29 -
        else
30 -
        a = c:
31 -
        fa = fc:
32 -
        end
33 -
        c = a + (b-a)/2;
34 -
        fc = f(c):
35 -
        k = k+1:
36 -
       ⊢ end
37 -
        alfa = c:
38 -
       ∟ end
```

Esempio: consideriamo la seguente funzione:

$$f(x)=2-e^{-x}-x^{1/2}$$
, [a,b]=[0 4]  
TOL=10<sup>-10</sup>

# Bisezione

34

```
>> [alfa, k] = bisezione (@fun, 0, 4, 10^-10)
alfa =
    3.9211
k =
```

Iterazioni

Esempio: consideriamo la seguente funzione:

 $f(x)=2-e^{-x}-x^{1/2}$ ,[a,b]=[0 4]

TOL=10<sup>-10</sup>

algorithm: 'bisection, interpolation'

message: 'Zero found in the interval [0, 4]'

```
fzero
                                                        >> options = optimset('TolX',le-10);
              Bisezione
                                                       >> [x,fval,~,output]=fzero(@fun,[0 4],options)
>> [alfa, k] = bisezione (@fun, 0, 4, 10^-10)
                                                       x =
alfa =
                                                           3.9211
    3.9211
                                                       fval =
                                                          2.6237e-11
k =
    34
                                                       output =
                                                         struct with fields:
                                                            intervaliterations: 0
                                                                                                     Iterazioni
                                                                    iterations: 4
                             Iterazioni
                                                                     funcCount: 6
```

Esempio: consideriamo la seguente funzione:

$$f(x)=2-e^{-x}-x^{1/2}$$
, [a,b]=[0 4]  
TOL=10<sup>-10</sup>



```
function [alfa,k]=newton(f,fl,x0,tol,Nmax)
     % La funzione approssima la radice con il metodo di Newton
        S.
        % Parametri di input
        % f = funzione della quale calcolare la radice
        % fl = derivata prima della funzione f
        % x0 = approssimazione iniziale della radice
        % tol = precisione fissata
10
        % Nmax = numero massimo di iterazioni fissate
11
        ş
12
        % Parametri di output
13
        % alfa = approssimazione della radice
       % k = numero di iterazioni
14
                                                                     27 -
                                                                            x0 = x1;
15
       - %
                                                                     28 -
                                                                            if (fl(x0)<eps)</pre>
16 -
        if nargin==3
                                                                     29 -
                                                                                error(' errore: derivata nulla')
17 -
        tol=le-8;
                                                                     30 -
                                                                            end
18 -
        Nmax=1000;
                                                                            x1 = x0-f(x0)/f1(x0);
                                                                     31 -
19 -
        end
                                                                     32 -
                                                                            fxl = f(xl);
20 -
        k=0:
                                                                            k=k+1;
                                                                     33 -
21 -
                                                                     34 -
                                                                            if k>Nmax
        if (fl(x0)<eps)</pre>
                                                                     35 -
                                                                            disp('Il metodo non converge');
22 -
            error(' errore: derivata nulla')
                                                                            alfa = inf;
                                                                     36 -
23 -
        end
                                                                     37 -
                                                                            break
        x1=x0-f(x0)/f1(x0);
24 -
                                                                     38 -
                                                                            end
25 -
        fxl = f(xl);
                                                                     39 -
                                                                            end
26 -
      while abs(x1-x0)>tol || abs(fx1)>tol
                                                                     40 -
                                                                            alfa=x1;
        x0 = x1;
27 -
                                                                     41 -
                                                                            end
```

```
>> [x,fval,~,output]=fzero(@sin,3,options)
x =
    3.1416
fval =
  1.4547e-15
output =
  struct with fields:
    intervaliterations: 3
            iterations: 4
            funcCount: 11
             algorithm: 'bisection, interpolation'
               message: 'Zero found in the interval [2.83029, 3.16971]'
```

# In input 2 funzioni, f e f'

```
>> [x,fval,~,output]=fzero(@sin,3,options)
x =
    3.1416
                                                                            >> [alfa,k]=newton(@sin,@cos,3,10^-10,100)
fval =
                                                                            alfa =
  1.4547e-15
                                                                                3.1416
output =
                                                                            k =
  struct with fields:
                                                                                  2
    intervaliterations: 3
           iterations: 4
             funcCount: 11
             algorithm: 'bisection, interpolation'
              message: 'Zero found in the interval [2.83029, 3.16971]'
                                                                                               meno iterazioni
```

```
>> f
f =
```

function\_handle with value:

$$@(x)-x^2+3*x+1$$

$$x =$$

-3.027756377319947e-01

3.302775637731995e+00



```
>> [x,~,exitflag,output]=fzero(f(7))
x =
     3.302775637731995e+00
exitflag =
output =
  struct with fields:
    intervaliterations: 10
            iterations: 7
             funcCount: 27
             algorithm: 'bisection, interpolation'
               message: 'Zero found in the interval [2.52, 10.1678]'
```

```
>> [alfa,k]=newton(f,@(x) -2*x+3,(7),eps,1000)
Error using newton (line 22)
errore: derivata nulla
```

```
>> [x,fval,exitflag,output]=fzero(f,(1)
x =
    -3.027756377319947e-01
fval =
     0
exitflag =
     1
output =
  struct with fields:
    intervaliterations: 13
           iterations: 7
            funcCount: 33
            algorithm: 'bisection, interpolation'
              message: 'Zero found in the interval [-0.810193, 2.28]'
33
```

```
>> [x,fval,exitflag,output]=fzero(f,(1)
                                                                >> [alfa,k]=newton(f,@(x) -2*x+3,1,eps,1000)
x =
   -3.027756377319947e-01
                                                                alfa =
fval =
                                                                     -3.027756377319947e-01
    0
exitflag =
                                                                k =
    1
output =
 struct with fields:
   intervaliterations: 13
           iterations: 7
           funcCount: 33
           algorithm: 'bisection, interpolation'
             message: 'Zero found in the interval [-0.810193, 2.28]'
55
```

#### Confronto metodo secanti

```
function [x,i]=secanti(x0,x1,f,tol,nmax)
      — %
           Input
               x0 -> il punto iniziale e prima approssimazione di x
               xl -> la seconda approssimazione della soluzione x
               f -> funzione di cui valutare uno zero
               tol -> tolleranza
               nmax -> limite superiore al numero di iterazioni
            Output
               x -> la soluzione trovata
               i -> il numero di iterazioni impiegate per ottenere la soluzione
10
11 -
         i=0;
12 -
         fx0=f(x0);
13 -
          err=abs(x1-x0);
         while (i<nmax && err>tol)
14 -
15 -
             fxl=f(xl);
              dfxl=(fxl-fx0)/(xl-x0);
16 -
17 -
              if abs(fx1)<=tol
18 -
                 break
19 -
              end
              x2=x1-(fx1/dfx1);
20 -
21 -
              err=abs(x2-x1);
22 -
             x0=x1;
23 -
             x1=x2;
24 -
              fx0=fx1;
25 -
              i=i+1;
26 -
         end
27 -
         x=x1:
28 -
```

## Confronto metodo Secanti

```
>> [x,fval,~,output]=fzero(@sin,3,options)
x =
    3.1416
fval =
  1.4547e-15
output =
  struct with fields:
    intervaliterations: 3
            iterations: 4
             funcCount: 11
             algorithm: 'bisection, interpolation'
               message: 'Zero found in the interval [2.83029, 3.16971]'
```

## Confronto metodo Secanti

```
>> [x,fval,~,output]=fzero(@sin,3,options)
x =
    3.1416
fval =
   1.4547e-15
output =
  struct with fields:
    intervaliterations: 3
            iterations: 4
             funcCount: 11
             algorithm: 'bisection, interpolation'
               message: 'Zero found in the interval [2.83029, 3.16971]'
```

```
>> [x,i]=secanti(3,1,@sin,10^-10,1000)
\mathbf{x} =
    3.1416
i =
```

Iterazioni