课程编号: 07000130

北京理工大学 2008-2009 学年第一学期

数学分析 B 期末试题(A 卷)

班级		学号						姓名				
(本试卷共5页, 九个大题)												
题号	_		[1]	四	五	六	七	八	九	总分		
得分												
评阅人												
一. 填空题(每小题 4 分,共 28 分) 1. $\frac{d(\arcsin x)}{d\sqrt{1-x^2}} =$ 2. 设 $y = f(x)$ 满足 $y'' = x + \sin x$,且曲线 $y = f(x)$ 与直线 $y = x$ 在原点处相切,则 $f(x) =$ 3. 函数 $f(x) = \sin^3 x + \cos^3 x$ 在 $[0, \frac{\pi}{2}]$ 上的最大值 $M =$, 最小值 $m =$ 4. 微分方程 $\frac{dy}{dx} - \frac{1}{x}y = x^2$ 的通解为 5. 函数 $f(x) = x \ln(1+x) - e^{x^2}$ 的 5 阶麦克劳林公式(带佩亚诺余项)为												
$f(x) = \underline{\hspace{1cm}}$												
6. 已知 <i>f</i> ($x) = \begin{cases} \frac{1}{\sqrt{1 - 1}} \\ \frac{\sqrt{1 - 1}}{\sqrt{1 - 1}} \end{cases}$	$\frac{-\cos ax}{x^2}$ $\frac{2}{1-x-1}$ bx	x > 0 $x = 0$ $x < 0$	是连续	函数,贝	IJ <i>a</i> =		_, b=_		·		
7. 极限 lin	$\int_{0}^{\sin x} \frac{1}{\int_{0}^{\tan x} \frac{1}{1}}$	$\frac{1}{\sin t} \frac{1}{dt}$	=									

二. (9 分) 求微分方程 $y'' + y' - 2y = e^x$ 的通解.

三. (9 分) 求不定积分 $\int x^2 \arctan x dx$.

四. (9 分) 设 $\lim_{x\to 0} \frac{\ln(1+x)-(ax+bx^2)}{x^2} = 1$, 求 a 和 b 的值.

五. (9 分) 已知油罐车上的油罐是半径为R的圆柱体,两边的封头是半径为R米的圆板 (如图),若油的密度 $\mu = 800 \, \mathrm{kg/m^3}$,并假定油罐 接满了油,求油罐的每个封头所受的侧压力.

六. (9 分) 求反常积分 $\int_{1}^{+\infty} \frac{dx}{x\sqrt{x+1}}$.

七. (9 分) 已知函数 f(x) 在[1,+∞)上单调增加,且对任意 t>1,曲线 y=f(x) 在[1,t]上的 弧长等于此曲线与直线 x=1, x=t 及 x 轴所围图形面积的 2 倍,又曲线过点 $(1,\frac{1}{2})$,求 f(x).

八. (9 分) (1)设 $I_1 = \int_0^{\pi} e^{\sin x} \sin x dx$, $I_2 = \int_{\pi}^{2\pi} e^{\sin x} \sin x dx$, 比较 I_1, I_2 的大小(要说明理由); (2) 设 $F(x) = \int_x^{x+2\pi} e^{\sin t} \sin t dt$, 证明 F(x) 恒为正的常数.

九. (9 分) 设 f(x) 在 [0,2] 上二阶可导,且 $|f''(x)| \le 1$,又 $\lim_{x \to 1} \frac{f(x)}{x-1} = 0$. (1) 证明 f(x) 在 (0,2) 内存在驻点; (2) 证明 $|f'(0)| + |f'(2)| \le 2$.