Submission Date	9/18/2017
Project Name	Sunlight Sensor
Student Name	Raphael Carlo Najera
Project website	https://github.com/RaphaelNajera/Sunlight_Sensor
	use the sunlight sensor to monitor sunlight intensity, IR intensity and UV intensity. This
My project will	will give data for UV-Light, visible light and infrared light.
	the data of UV-light, visible light and infrared light when it get the data from detect
	sunlight. It will also record the time when it received the data. It will also store
The database will store	message and output the message on a screen.
	displaying the total data of uv index, visible light (in Lumens) and infrared light (in
The mobile device	Lumens). It will also show record on the past day and also display helpful message
functionality will	when it good to go outside and reporting helpful information like it is required to put
include	sunscreen.
I will be collaborating	
with the following	Humber College Institute of Technology & Advanced Learning North Campus
company/department	Prototype Lab, Weather network, Raspberry Pi.
My group in the winter	
semester will include	Johnson Liang and Adrian Caprini.
	The sunlight sensor will dectect UV-light, visible light and infrared light. With the data
	we can measure the total visible light (in Lumens), infared light (in Lumens) and UV
50 word problem	(UV index). Without it, the people will not know how long they can stay outside till
statement	they get sun burn which damage your skin and can also cause skin cancer.
	The sensor I'm going to use is Sunlight sensor. The sunlight sensor will monitor sunlight
	intensity, IR (Infrared light) intensity and UV (Ultraviolet light) intensity. I can use this
	sensor to detect and gathear data of UV-light (in uv index), visible light (in lumens) and
	infrared light (in Lemens). For example, if the uv light is 2, it means the uv light is low
	and if the uv light is 6, it mean the uv light is high. For data in lumens if you get the
100 words of	number 50, it means "cloudy day outdoor". With this I can output a helpful message to
background	the user.
	Simple IOT Sunlight Sensing Raspberry Pi Project - SunIOT Part 1. (2016, October 18).
Current product APA	Retrieved September 17, 2017, from http://www.switchdoc.com/2016/10/simple-iot-
citation	sunlight-sensing-raspberry-pi-project-part-1/
	Mazzillo, M., Shukla, P., & Mallik, R. (2010, September 27). 4H-SiC Schottky
Existing research IEEE	Photodiode Based Demonstrator Board for UV-Index Monitoring. Retrieved September
paper APA citation	17, 2017, from http://ieeexplore.ieee.org/document/5585671/

	Raspberry Pie 3: Use to connect the sunlight sensor to the main component. It will store the code to run the hardware and save data.
	Pi2Grover - Grove Connector Interface for the Raspberry Pi: Provides the connection between Raspberry Pi pins and external Grove module.
Brief description of planned purchases	Grove Sunlight / IR / UV I2C sensor: Detect UV-light, visible light and infrared light.
Solution description	With the information from the sunlight sensor we can get data like UV index. This will help people to know the information of the sunlight each day. When it detect the uv light it will output a helpful message to the user. For example, if the uv is low it the message would be "When doing outdoor activity minimal sun protection is required". If the uv is high the message would be "Sun protection required for outdoor activity".