Concurrent Parameterized Games

Nathalie Bertrand, Patricia Bouyer and Anirban Majumdar

LSV, ENS Paris-Saclay, France Inria Rennes, France

FSTTCS 2019

Mini-map

Turn based 2-player Games

- $P_1(\bigcirc)$ vs $P_2(\square)$
- Positional (memoryless) strategies for Reachability, Safety...

Concurrent 2-player Games

- Actions : $\Sigma = \{a, b\}$
- P_1, P_2 choose action simultaneously
- Unique successor

Concurrent 2-player Games

- Actions : $\Sigma = \{a, b\}$
- P_1, P_2 choose action simultaneously
- Unique successor

Concurrent 2-player Games

- Actions : $\Sigma = \{a, b\}$
- P_1, P_2 choose action simultaneously
- Unique successor

Concurrent k-player Reachability games

- Actions : $\Sigma = \{a, b\}$
- $P_1, ..., P_k$ choose action simultaneously

Concurrent k-player Reachability games

- Actions : $\Sigma = \{a, b\}$
- $P_1, ..., P_k$ choose action simultaneously
- Eg: P₁ chooses 'a'; P₂,...,P_k all choose 'b'
 The game goes from v₀ to v₂

Concurrent parameterized Games

- Actions : $\Sigma = \{a, b\}$
- <u>Fixed</u> but unknown (parameter) number of players
- *P*₁vs Rest of world (Env.)

Concurrent parameterized Games

- Actions : $\Sigma = \{a, b\}$
- <u>Fixed</u> but unknown (parameter) number of players
- P₁vs Rest of world (Env.)

- L_1, L_2, L_3 Regular
- P₁ needs to win against all choices of others

1. Env chooses k: #players (unknown to P_1)

- 1. Env chooses k: #players (unknown to P_1)
- 2. P_1 chooses an action ' a_1 '
 Others choose actions ' a_2 , ..., a_k '

- 1. Env chooses k: #players (unknown to P_1)
- 2. P_1 chooses an action ' a_1 '
 Others choose actions ' a_2 , ..., a_k '
- 3. This forms a word $w = a_1 a_2 ... a_k$ Env chooses v_i s.t. $w \in L_i$

- 1. Env chooses k: #players (unknown to P_1)
- 2. P_1 chooses an action ' a_1 '
 Others choose actions ' a_2 , ..., a_k '
- 3. This forms a word $w = a_1 a_2 ... a_k$ Env chooses v_i s.t. $w \in L_i$

- 1. Env chooses k: #players (unknown to P_1)
- 2. P_1 chooses an action ' a_1 '
 Others choose actions ' a_2 , ..., a_k '
- 3. This forms a word $w = a_1 a_2 ... a_k$ Env chooses v_i s.t. $w \in L_i$
- 4. Game proceeds to v_i and goto step 2

- 1. Env chooses k: #players (unknown to P_1)
- 2. P_1 chooses an action ' a_1 '
 Others choose actions ' a_2 , ..., a_k '
- 3. This forms a word $w = a_1 a_2 ... a_k$ Env chooses v_i s.t. $w \in L_i$
- 4. Game proceeds to v_i and goto step 2

- 1. Env chooses k: #players (unknown to P_1)
- 2. P_1 chooses an action ' a_1 '
 Others choose actions ' a_2 , ..., a_k '
- 3. This forms a word $w = a_1 a_2 ... a_k$ Env chooses v_i s.t. $w \in L_i$
- 4. Game proceeds to v_i and goto step 2

 P_1 has to win against all choices of others, for all k

Illustrative example

 Question: Do positional strategies suffice?

Illustrative example

 Question: Do positional strategies suffice?

- Objective of P₁: Reach O
- P_1 has winning strategy

Illustrative example

 Question: Do positional strategies suffice?

- Objective of P_1 : Reach \bigcirc
- P_1 has winning strategy
- No positional winning strategy

Goal: Solve Parameterized game for P₁

• Observation: Only number of opponents matter (not their choices)

Goal: Solve Parameterized game for P₁

• Observation: Only number of opponents matter (not their choices)

• Goal: Solve Parameterized game for P_1

• Observation: Only number of opponents matter for general case also

• Goal: Solve Parameterized game for P_1

• Observation: Only number of opponents matter for general case also

Goal: Solve Parameterized game for P₁

- Observation: Only number of opponents matter for general case also
- L regular \Rightarrow set of lengths of words(|L|) is <u>semilinear</u>

Goal: Solve Parameterized game for P₁

- Observation: Only number of opponents matter for general case also
- L regular \Rightarrow set of lengths of words(|L|) is <u>semilinear</u>
- Different cases on the representation of |L|
 - Intervals
 - Unions of intervals
 - Semilinear sets

1. Env chooses k: #opponents (unknown to P_1)

- 1. Env chooses k: #opponents (unknown to P_1)
- 2. P_1 chooses an action 'a' (or 'b')

- 1. Env chooses k: #opponents (unknown to P_1)
- 2. P_1 chooses an action 'a' (or 'b')
- 3. Env chooses v_i s.t. $k \in S_i$ (resp. $k \in S_i'$)

- 1. Env chooses k: #opponents (unknown to P_1)
- 2. P_1 chooses an action 'a' (or 'b')
- 3. Env chooses v_i s.t. $k \in S_i$ (resp. $k \in S_i'$)
- 4. Game proceeds to v_i and goto step 2

- 1. Env chooses k: #opponents (unknown to P_1)
- 2. P_1 chooses an action 'a' (or 'b')
- 3. Env chooses v_i s.t. $k \in S_i$ (resp. $k \in S_i'$)
- 4. Game proceeds to v_i and goto step 2

 P_1 has to win against for all k

Resolution of the game

• Construct **Knowledge game** (\mathcal{K})

Resolution of the game

• Construct **Knowledge game** (\mathcal{K})

Resolution of the game

• Construct **Knowledge game** (\mathcal{K})

Illustrative example

Resolution of the game

• Construct **Knowledge game** (\mathcal{K})

 P_1 has winning strategy \bigcirc has winning strategy

Resolution of the game

• Construct **Knowledge game** (%)

- ${\mathscr K}$ is finite: only intersections
- Solving Parameterized game is <u>decidable</u>

Resolution of the game

• Construct **Knowledge game** (*X*)

- ${\mathscr K}$ is finite: only intersections
- Solving Parameterized game is <u>decidable</u>
- Complexity of solving parameterized game?

Games (turn-based, concurrent)

Parameterized concurrent games

- strategies need memory
- restrict to number of opponents
- finite knowledge game

Mini-map: next

• Complexity results:

	Deterministic	Non-deterministic
Intervals	PTIME-complete ¹	
Unions of intervals	NP-complete ¹	PSPACE-complete ¹
Semilinear sets	PSPACE-complete ²	

- 1. in #endpoints
- 2. in #semilinear sets

Intervals

- Size of \mathcal{K} : quadratic in $\underline{\text{#endpoints}}$
- Turn-based game solvable in Polynomial time

Intervals

- Size of \mathcal{K} : quadratic in $\underline{\text{#endpoints}}$
- Turn-based game solvable in Polynomial time
- Solving Parameterized game in P

Semilinear sets

• Size of \mathcal{K} : exponential in #semilinear predicates

Semilinear sets

- Size of \mathcal{K} : exponential in #semilinear predicates
- Polynomial-space algorithm (next...)

Step 1. Construct $\mathcal{K}[v, K]$ - <u>restriction</u> of \mathcal{K}

Step 1. Construct $\mathcal{K}[v, K]$ - <u>restriction</u> of \mathcal{K}

Step 1. Construct $\mathcal{K}[v, K]$ - <u>restriction</u> of \mathcal{K}

• Stop at any $K' \subsetneq K$

Step 1. Construct $\mathcal{K}[v, K]$ - <u>restriction</u> of \mathcal{K}

- Stop at any $K' \subsetneq K$
- Polynomial size game : solvable in Polynomial time

Step 2. Apply DFS - reuse "space"

$$v_0, K_0, ?$$

Step 2. Apply DFS - reuse "space"

Step 2. Apply DFS - reuse "space"

Step 2. Apply DFS - <u>reuse</u> "space"

Step 2. Apply DFS - reuse "space" $v_0, K_0, ?$ $\mathcal{K}[v_0, K_0]$ $v_3, K_3, ?$ v_2, K_2, Win $v_1, K_1, Lose$ $v_4, K_4, ?$ $\mathcal{K}[v_3, K_3]$ poly $v_6, K_6, ?$ v_5, K_5, Win $v_7, K_7, ?$ $\mathcal{K}[v_6, K_6]$ $v_{10}, K_{10}, ?$ $v_{11}, K_{11}, ?$ t, K_8, Win $v_9, K_9, Lose$

Step 2. Apply DFS - reuse "space"

•
$$tag(v,K) = Win$$
; if $\begin{cases} either, v \text{ is target} \\ or, some 'win' is reachable in } \mathcal{K}[v,K] \end{cases}$

Step 2. Apply DFS - reuse "space"

•
$$tag(v,K) = Win$$
; if $\begin{cases} either, v \text{ is target} \\ or, some 'win' is reachable in } \mathcal{K}[v,K] \end{cases}$

tag once computed, the subtree is "forgotten"

Step 2. Apply DFS - reuse "space"

•
$$tag(v,K) = Win$$
; if $\begin{cases} either, v \text{ is target} \\ or, some 'win' is reachable in } \mathscr{K}[v,K] \end{cases}$

tag once computed, the subtree is "forgotten"

Step 2. Apply DFS - reuse "space"

•
$$tag(v,K) = Win$$
; if $\begin{cases} either, v \text{ is target} \\ or, some 'win' is reachable in } \mathcal{K}[v,K] \end{cases}$

tag once computed, the subtree is "forgotten"

Unions of intervals, Deterministic - NP upper bound

Unions of intervals, Deterministic - NP upper bound

Non-deterministically guess a strategy

Unions of intervals, Deterministic - NP upper bound

- Non-deterministically guess a strategy
- Size polynomial (in #endpoints)

Unions of intervals, Deterministic - NP-hardness

- Reduce from SAT

- Eg: $\varphi = (x_1 \lor x_2) \land (x_1 \lor \neg x_2)$
- Similar proof for NP-hardness for deterministic arenas

Conclusion

Parameterized Concurrent Games

- Generalisation of 2-player concurrent games
- P₁ against the world
- Strategies need memory
- Knowledge game construction
- PSPACE-completeness in general case
- Better bounds for simpler cases

Conclusion

Parameterized Concurrent Games

- Generalisation of 2-player concurrent games
- P₁ against the world
- Strategies need memory
- Knowledge game construction
- PSPACE-completeness in general case
- Better bounds for simpler cases

Thank You