Project/Assignment 5

Due Friday Dec 3rd, 11:59 PM to <u>elec402project@gmail.com</u> – <u>No Exceptions (no late submissions)</u>

This assignment has more than 50% bonus point (75/115 is considered full mark, if you receive more than 70 it will be added to your previous assignments)

1. Cell Library Layout (45 points) – Bonus

Introduction:

For this project, you will take your Verilog code from project 1 and 2, then synthesize it with 45nm standard cell library, and finally lay it out using Cadence Innovus tool.

Project Goals:

Auto-route and layout FSM using Innovus Test the final layout.

Project Description/Requirements:

Assume a 10fF of load capacitance when simulating for all your outputs.

Report Layout

- 1. Name, student number and project title on the first page of your project report.
- 2. Your report must include, but not limited to, the following:
 - a. Description regarding the function of your FSM design
 - b. Description in detail for all the inputs and outputs
 - c. Testing procedure
- 3. Complete layout with rulers (from Cadence) showing the dimensions of the full layout.
- 4. Output waveforms of the original Verilog code along with the waveforms from simulations of the FSM layout.
- 5. Test files to show that you tested your schematic properly.

2. Domino Logic (12 points)

- 1. (a) Determine the logic function OUT (3 points)
- 2. (b) Determine the reduction in voltage at the input of the inverter under the worst case charge sharing condition. $C_{eff} = 1 fF/um$ and $C_g = 2 fF/um$ technology. (9 points)

3. In the circuit of Figure 4, determine the capacitance of each node and calculate the minimum and maximum delay. (All transistors are minimum size, $L=2\lambda$ and $W=2\lambda$, unless otherwise specified.)

(14 points)

4) (**Power consumption**) Analytically estimate the static (only for left circuit) and dynamic power consumption of the two inverters below (**8 points**) and compare your analytical results with that of simulation (**8 points**). Sketch VTC and show on the graph in which region we have power due to DC current, subthreshold current and short circuit current (**4 points**). Use 15 nm simulations and use an input frequency of 100 MHz for calculation/simulation. 10 fF is an explicit capacitor at the output of inverters.

2 Determine the activity factor for the signal shown The clock rate is 1GHz.

(4 points)

6. (15 points) Interconnects

Consider an 18 mm Metal 7 wire in a 40 nm technology. Assume the wire is 0.4 μ m wide and 0.8 μ m thick with a spacing to adjacent wires of 2 μ m. The height above and below to Metal 8 and Metal 6 is 0.5 μ m. Assume Cu for interconnect ($\rho = 0.017 \ \Omega$ - μ m) and a low-k dielectric material ($\epsilon_r = 3.0$). Assume a worst-case coverage of Metal 6 below, Metal 8 above, and Metal 7 for adjacent lines that are shielding the wire of interest.

- (a) Compute the resistance per unit length and capacitance per unit length for this wire.
- (b) Estimate the delay of the distributed *RC* wire, assuming that the driver is a perfect voltage source and that the load capacitance is 50 fF.
- (c) Assume that the wire is being driven by a 25X inverter. What is the new delay?