Theorem: Galois Subextensions

Let K/F be a finite Galois extension. Then:

- 1. If $H \leq G$, K^H/F is Galois if and only if $H \leq G$. In this case, $\operatorname{Gal}(K^H/F) \cong \frac{G}{H}$;
- 2. If $F \subseteq E \subseteq K$, E/F is Galois if and only if $\operatorname{Gal}(K/E) \subseteq G$. In this case $\operatorname{Gal}(E/F) \cong \frac{\operatorname{Gal}(K/F)}{\operatorname{Gal}(K/E)}$

Example: Galois Correspondence

Let $\zeta_3 = e^{\frac{2\pi i}{3}}$. Then the splitting field of $f(X) = X^3 - 2 \in \mathbb{Q}[X]$ is $K = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$, where $\mathrm{Gal}(K/\mathbb{Q}) \cong S_3$. Now consider generators of $\mathrm{Gal}(K/\mathbb{Q})$, $\sigma_1 : K \to K$ and $\sigma_2 : K \to K$, defined by

$$\sigma_1(\zeta_3)=\zeta_3,\quad \sigma_1\left(\sqrt[3]{2}\right)=\sqrt[3]{2}\zeta_3,\quad \sigma_2(\zeta_3)=\zeta_3^2,\quad \sigma_2\left(\sqrt[3]{2}\right)=\sqrt[3]{2}.$$

Thus, the subgroups of $Gal(K/\mathbb{Q})$ are given by $\langle \sigma_1 \rangle$, $\langle \sigma_2 \rangle$, $\langle \sigma_1 \sigma_2 \rangle$, $\langle \sigma_1^2 \sigma_2 \rangle$, implying the following correspondence (which comes from comparing the generators of $Gal(K/\mathbb{Q})$ with basis elements):

