REC'D 23 JAN 2004

PCT

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

26. 11. 03

Bescheinigung

Certificate

WIPO Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet nº

02406055.0

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets D.O.

R C van Dijk

Office européen des brevets

Anmeldung Nr:

Application no.: 02406055.0

Demande no:

Anmeldetag:

Date of filing: 04.12.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Ciba Specialty Chemicals Holding Inc. Klybeckstrasse 141 4057 Basel SUISSE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Verfahren zur Synthese von Cycloorganylphosphanen und von Di(alkali/erdalkalimetall)oligophosphandiiden

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C07F9/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt;

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK

Verfahren zur Synthese von Cycloorganylphosphanen und von Di(alkaji/erdalkalimetali)oligophosphandiiden

Die Erfindung betrifft ein Verfahren zur Synthese von Cycloorganyiphosphanen und von Di(alkali/erdalkalimetali)-oligophosphandiiden aus Dihalogen(organyi)phosphanen sowie neue Di(alkali/erdalkalimetali)-oligophosphandiide und deren Verwendung zur Herstellung von Organophosphorverbindungen.

Cycloorganylphosphane $(RP)_n$ und Metallphosphanide $M_x(P_nR_n)$ sind wertvolle Ausgangsverbindungen zur Herstellung von vielen verschiedenen Klassen von Organophosphorverbindungen.

Cycloorganylphosphane įkönnen durch Enthalogenierung von Dihalogen(organyl)phosphanen RPHal₂ mit lunedlen Metallen wie Li, Na, K und Mg in einem etherischen
Lösungsmittel wie Tetrahydrofuran (THF) hergestellt werden (A. Hinke, W. Kuchen, *Chem. Ber.* 1983, 116, 3003 – 3010)

Die Reaktion von Dichlor(organyl)phosphanen mit dem besonders attraktiven Enthalogenierungsmittel Zink ist nicht detailliert untersucht worden und verläuft nach Berichten in der Literatur nur in Gegenwart von Trimethylphosphan, PMe₃, mit befriedigenden Ausbeuten und Reaktionsraten (S. Shah, J.D. Protesiewicz, *Coord. Chem. Rev.* 2000, 210, Seiten, 181-201). Dabei werden Verbindungen des Typs RP=PMe₃ |sollert.

In guten Ausbeuten werden Cycloorganylphosphane in einer Kondensationsreaktion aus einem primären Phosphan, RPH₂, und einem Dichlor(organyl)phosphan in Gegenwart einer Base wie einem Amin erhalten (WM.A. Henderson, Jr., M. Epstein, F.S. Seichter, *J. Am. Chem. Soc.* 1963, 85, 2462).

Die angeführten Methoden zur Herstellung von Cycloorganylphosphanen haben einige entschiedene Nachteile. In Enthalogenierungsreaktionen werden häufig nur mässige Ausbeuten erzielt. Weiterhin sind viele der beschriebenen Reaktionen nur schlecht reproduzierbar. Diese Nachteile treffen besonders für phenylsubstituierte Polyphosphane zu, die jedoch wegen der leichten Verfügbarkeit von PhPCI₂ besonders interessant sind. Der Nachteil der

Kondensationsmethode besteht im wesentlichen in der Verwendung von häufig pyrophoren und toxischen primären-Phesphanen,-RPH₂.

Es ist bekannt, das Metaliphosphanide aus einem Dihalogen(organyl)phosphan, RPHal₂ und einem Metali M (M = Alkalimetali oder Erdalkalimetali), vorzugsweise Lithium, in einem etherischen Lösungsmittel, vorzugsweise Tetrahydrofuran (THF) oder Dimethoxyethan (DME) hergestellt werden können (K. Issleib, *Z. Chem.* 1962, 2, 163 – 173).

Es ist ferner bekannt, dass Polyphosphane [RP]_n (R organischer Rest, n = 3 - ∞) mit reduzierenden Metallen M in einem etherischen Lösungsmittel zu Metallphosphaniden M_x(P_nR_n) reagieren. Dies ist beispielsweise beschrieben in: ((a) J.W.B. Reesor, G.F. Wright, J. Org. Chem. 1957, 22, 385 – 387; (b) W. Kuchen, H. Buchwald, Chem. Ber. 1958, 91, 2296; (c) K. Issleib, K. Krech, Chem. Ber. 1966, 99, 1310 – 1314; (d) P.R. Hoffman, K.G. Caulton, J. Am. Chem. Soc. 1975, 97, 6370 – 6374).

Darüber hinaus ist bekarint, dass Polyphosphane [RP]_n mit Metallphosphaniden $M_2(PR^1)$ oder mit $M(PR^1_2)$ in etherischen Lösungsmitteln zu Metall(oligophosphaniden) $M_m[PR^1_k(RP)_{n-1}PR]$ (m = 1, k =2; m = 2, k =1) reagieren (K. Issleib, F. Krech, *J. prakt. Chem.* 1969, 311, 464).

Der entschledene Nachteil dieser Synthesemethoden besteht in der Verwendung eines sehr aggressiven Reaktionsmediums bestehend aus einem Ether und einem stark reduzierend wirkenden Alkalimetall. Diese Mischungen haben ein hohes Gefahrenpotential. Insbesondere zersetzen die stark basischen Metaliphosphanide die als Lösungsmittel verwendeten Ether zu Alkoholaten und leichtflüchtigen Kohlenwasserstoffen wie Ethylen. Bei Kontakt mit Sauerstoff ist die Entstehung von hochexplosiven Peroxiden generell zu befürchten.

Aufgabe der Erfindung war es eine minder gefährliche, einfache, selektive und effiziente Synthese von Cycloorganylphosphanen und von Di(alkali/erdalkalimetall)oligophosphandiiden zur Verfügung zu stellen.

Die Erfindung betrifft som it ein Verfahren zur Herstellung von Cycloorganylphosphanen der Formel R¹PHal₂, mit

- a) aktiviertem Zink in einem organischen Lösungsmittel, oder mit
- b) einem Alkali-oder Erdalkalimetall in einem apolaren organischen Lösungsmittel in Gegenwart eines Aktivators,worln
- R¹ C₁-C₁₂-Aikyl; C₃-C₁₂-Cycloalkyl, Aryl oder Heteroaryl und
- Hal F, Cl, Br oder J bedeutet,
- n eine Zahl von 3-20 ist.

Geeignete Arylreste sind solche, die ein carbocyclisches Gerüst mit 6 bls 24 Gerüstatomen aufweisen wie vorzugswelse Phenyl, Naphtyl, Biphenyl, Blnaphthyl, Phenanthryl und Anthryl.

Geeignete Heteroaryireste sind solche, die ein heterocarbocyclisches Gerüst mit 5 bis 24 Gerüstatomen aufweisen, in denen keines, ein, zwei oder drei Gerüstatome pro Cyclus, im gesamten Molekül mindestens jedoch ein Gerüstatom ein Heteroatom ist. Das Heteroatom stammt aus der Gruppe Stickstoff, Schwefel oder Sauerstoff wie vorzugsweise Pyrldyl, Oxazolyl, Thienyl, Benzofuranyl, Benzothlophenyl, Dibenzofuranyl, Dibenzothlophenyl, Furyl, Indolyl, Pyridazinyl, Pyrazinyl, Imidazolyl, Pyrimidinyl und Chinolinyl.

Die Arylreste oder Heterbarylreste können auch mit bis zu fünf gleichen oder verschiedenen Substituenten pro Cyclus substitulert sein. Die Substituenten stammen aus der Gruppe Fluor, Chlor, Nitro, Cyano, freies oder geschütztes Formyl, Hydroxy, C₁-C₁₂-Alkyl, C₁-C₁₂-Alkoxy, C₁-C₁₂-Halogenalkoxy, C₃-C₁₂-Cycloalkyl, C₃-C₁₀-Aryl wie zum Beispiel Phenyl, C₄-C₁₁-Arylalkyl wie zum Beispiel Benzyl, Di(C₁-C₁₂-Alkyl)-amino, (C₁-C₁₂-Alkyl)-amino, CO(C₁-C₁₂-Alkyl), OCO(C₁-C₁₂-Alkyl), N(C₁-C₆-Alkyl)CO(C₁-C₁₂-Alkyl), CO(C₃-C₁₂-Aryl), OCO(C₃-C₁₂-Aryl), N(C₁-C₆-Alkyl)CO(C₃-C₁₂-Aryl), COO-(C₁-C₁₂-Alkyl)₂,

Geeignete C₁-C₁₂-Alkylgtuppen sind beispleisweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, sec- and tert-Butyl, Pentyl und Hexyl.

Geeignete C₃-C₁₂Cycloalkylgruppen sind beispielsweise Cyclopropyl, Cyclobutyl, Cyclopropyl, Cyclobutyl, Cycloctyl und dergleichen.

Die für die Verfahrensstufe (a) geelgneten Lösungsmittel und Lösungsmittelgemische sind unter A) bis F) aufgeführt.

A) Etherische Lösungsmittel wie zum Belspiel solche der Zusammensetzung R²-O-R³ oder R²-O-[(CH₂-CH₂)-O]_n-R³ Die Reste R² und R³ können gleich oder unterschiedlich sein. Sie stammen aus der Gruppe C₁-C₁₂-Alkyl, C₁-C₁₂-Alkoxy, C₃-C₁₂-Cycloalkyl, C₃-C₁₀-Aryl wie zum Belspiel Phenyl, C₄-C₁₁-Arylalkyl wie zum Belspiel Benzyl, CO(C₁-C₁₂-Alkyl), CO(C₃-C₁₂-Aryl), CON(C₁-C₁₂-Alkyl)₂, CON(C₁-C₁₂-Alkyl)₂, CON(C₃-C₁₂-Aryl)₂, GON(C₁-C₁₂-Alkyl)(C₃-C₁₂-Aryl). Die Substituenten R² und R³ können auch ein Heteroarylrest mit einem heterocarbocyclisches Gerüst aus 5 bis 24 Gerüstatomen sein, in denen keines, ein, zwei oder drei Gerüstatome pro Cyclus, im gesamten Molekül mindestens jedoch ein Gerüstatom ein Heteroatom ist. Das Heteroatom stammt aus der Gruppe Stickstoff, Schwefel oder Sauerstoff wie vorzugsweise Pyrldyl, Oxezolyl, Thienyl, Benzofuranyl, Benzothiophenyl, Dibenzofuranyl, Dibenzothiophenyl, Furyl, Indolyl, Pyridazinyl, Pyrazinyl, Imidazolyl, Pyrimidinyl und Chinolinyl. Die Reste R² und R³ können auch eine Alkylenbrücke –[CR₂]_n-- mit n = 1 – 12 und R einem Rest mit der oben angeführten Bedeutung darstellen wodurch cyclische Ether entstehen. Ferner sind alle Gemische dieser Lösungsmittel geeignete Reaktlonsmedien.

Bevorzugte etherische Lösungsmittel sind Tetrahydrofuran, Dioxan, Dimethylether, Diethylether, Di(isopropyl)ether, Methyl(tert.butyl)ether, 1,2-Dimethoxyethan (DME), Bevorzugte glycolische Lösungsmittel R²-O-[(CH₂-CH₂)-O]_n-R³ sind Diethylenglycol-dimethylether, Triethylenglycol-dimethylether.

B) Amine, wie zum Beispiel solche der Zusammensetzung R⁴R⁵R⁶N und R⁴R⁶N-[(CH₂-CH₂)-NR⁴]_n-R⁵ wobei die Reste R⁴, R⁵ und R⁶ jewells gleich oder unterschiedlich sein können. Sie stammen aus der Gruppe H, C₁-C₁₂-Alkyl, C₁-C₁₂-Alkoxy, C₃-C₁₂-Cycloalkyl, C₃-C₁₄-Aryl wie zum Beispiel Phenyl, C₄-C₁₁-Arylalkyl wie zum Beispiel Benzyl, CO(C₁-C₁₂-Alkyl), CO(C₃-C₁₂-Aryl), CON(C₁-C₁₂-Alkyl)₂, CON(C₃-C₁₂-Aryl)₂, CON(C₁-C₁₂-Alkyl)(C₃-C₁₂-Aryl). Die Substituenten R⁴ – R⁶ können auch ein Heteroarylrest mit einem heterocarbocyclisches Gerüst aus 5 bis 24 Gerüstatomen sein, in denen keines, ein, zwei oder drei Gerüstatome pro Cyclus, im gesamten Molekül mindestens jedoch ein Gerüstatom ein Heteroatom ist. Das Heteroatom stammt aus der Gruppe Stickstoff, Schwefel oder Sauerstoff wie vorzugsweise Pyridyl, Oxazolyl, Thienyl, Benzofuranyl, Benzothiophenyl, Dibenzofuranyl, Dibenzothiophenyl, Furyl, Indolyl, Pyridazinyl, Pyrazinyl, Imidazolyl,

Pyrimidinyl und Chinolinyl, Die Reste R⁴, R⁵ und R⁶ können auch eine Alkylenbrücke Alkylenbrücke —[CR₂]_n— mit n = 1 — 12 und R einem Rest mit der oben angeführten Bedeutung darstellen wedurch cyclische Amine entstehen. Ferner sind alle Gemische dieser Lösungsmittel geeignete Reaktionsmedien.

Bevorzugte aminische Lösungsmittel sind Triethylamin, Butylamin, Dibutylamin, Tributylamin, Morpholin, Piperidin, N-Methyl-Morpholin, N-Methyl-Piperidin, N,N,N',N'-Tetramethyl-ethylendiamin (TMEDA), Pentamethyldiethylentriamin (PMDETA), Hexamethyltriethylentetramin, Diethylentriamin, Triethylentetramin.

- C) Lösungsmittel, die sowohl Ethergruppen als auch Aminogruppen tragen sind beispiels-weise Monoethanolamin, Diethanolamin, Triethanolamin, Propanolamine und ihre O-C₁-C₁₂-Alkylderivate und bzw. oder N-C₁-C₁₂-Alkylderivate wie insbesondere Dimethylaminoethanol und N,N,O-Trimethyl-ethanolamin.
- D) Geeignete Lösungsmittel sind auch aromatische Stickstoff-Heterocyclen wie beispielsweise Pyridin und Chinolin.
- E) Geeignete Lösungsmittel sind însbesondere auch Carbonsäureester und –amide und Kohlensäureester und -amide der allgemeinen Formulierungen RCO(OR²), RCO(NR³R⁴), O=C(OR²)₂, O=C(OR²)(NR³R⁴) und O=C(NR³R⁴)₂ wobel R² R⁴ jeweils und unabhängig voneinander für einen Rest mit der oben unter A) und B) angeführten Bedeutung besitzt. Insbesondere sind Dimethylformamid (DMF) und Tetramethylharnstoff (TMU) geeignete Lösungsmittel.
- F) Geeignete Lösungsmittel sind insbesondere auch cyclische Kohlensäurederivate der allgemeinen Formel II,

wobei R² für einen Rest mit der oben unter A) und B) angeführten Bedeutung, X für eine C=O oder C=NR³ Gruppe, Y für eine NR⁴ Gruppe oder ein O-Atom und A für eine Alkylen-brücke –{CR₂]_n – mit n = 1 – 12 steht. Die Reste R, R², R³, R⁴ stehen jeweils und unabhängig vonelnander für einen Rest mit der oben unter A) und B) angeführten Bedeutung. Insbesondere sind Ethylencarbonat, Propylencarbonat und 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinon (=Dimethylpropylenhamstoff, DMPU) geeignete Lösungsmittel.

Die Umsetzung mit aktiviertem Zink erfolgt vorzugsweise in Gegenwart eines etherischen Lösungsmittels, Insbesondere Tetrahydrofuran, Dioxan, Dimethylether, Diethylether, Di(Isopropyl)sther, Methyl(tert butyl)ether, 1,2-Dimethoxyethan (DME).

Geeignete apolare organische Lösungsmittel der Verfahrensstufe (b) sind beispielsweise Arene wie Benzol, Toludi, o., m. und p-Xylol, 1,3,5-Trimethylbenzol (Mesitylen), Ethylbenzol, Diphenylethan, 1,2,9,4-Tietrahydronaphtalin (Tetralin), Isopropylbenzol (Cumol), 1-Methylnaphtalin oder Gemische dieser Lösungsmittel.

Aktiviertes Zink ist beispielsweise Zink-Pulver, Zink-Staub, und Zink Granulat welches chemisch, thermisch, elektrochemisch oder mit Hilfe von Ultraschall aktiviert wurde.

Die Aktivierung des Zinks kann chemisch durch Zusatz einer geringen Menge I2, einer halogenierten Kohlenstoffverbindung oder HgCl2 erfolgen. Elektrochemisch kann die Aktivierung des Zinks durch Anlegen einer Kathodenspannung erfolgen. Eine thermische Aktivierung kann durch Erhitzen von Zinkgranulat oder Pulver im Vakuum erreicht werden. Die Aktivierung kann auch durch Ultraschall vorgenommen werden.

Geelgnete Aktivatoren sind beisplelsweise Ether oder Polyether, Amine oder Polyamine, aromatische N-Heterocyclen oder Kohlensäurederivate.

Bevorzugte Ether sind THF, Dioxan, Methyl(tert.butyl)ether (MTBE), insbesondere 1,2-Dimethoxyethan DME,

bevorzugte Polyether sind Diethylenglycol-dimethylether, Triethylenglycol-dimethylether und Tetraethylenglycol-dimethylether.

Amine sind Triethylamin, Tributylamin, Piperidin, Morpholin, N-Methylpiperidin und N-Methylmorpholin.

Polyamine sind inspessondere Tetramethylethylendjamin (TMEDA), Pentamethylethylendjamin (PMDETA). Aromatische Stickstoff-Heterocyclen sind Pyridin und Chinolin. Kohlensäurederivate sind Dimethylformamid DMF, Tetramethylhamstoff (TMU) und 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinon (=Dimethylpropylenhamstoff, DMPU)

Verfahrenstufe (a) wird vorzugsweise bei Raumtemperatur durchgeführt und kann durch das folgende Schema dargestellt werden:

Dabei wird zweckmässigerweise Zink mit dem Lösungsmittel, vorzugsweise Tetrahydrofuran überschichtet. Nach Zugabe des Dihalogen(organyl)phosphans erfolgt die Aktivierung des Zinks, vorzugweise durch Ultraschall. Die Aufarbeitung des Reaktionsproduktes erfolgt nach bekannten, in der organischen Synthese üblichen Methoden.

Verfahrensstufe (b) wird bei Temperaturen im Bereich von -78°C bis 200°C durchgeführt und kann durch das folgende Schema dargestellt werden:

Dazu wird zweckmässigerweise das reduzierend wirkende Metall M (M = Ll, Na, K, Cs, Mg) in einem apolaren organischen Lösungsmittel in Gegenwart des Aktivators vorgelegt und anschliessend das Dihalogen(organyl)phosphan zugegeben. Die Reaktionszeit beträgt 10 Minuten bis 8 Stunden. Die Aufarbeitung des Reaktionsproduktes erfolgt nach bekannten, in der organischen Synthese üblichen Methoden.

Das Volumenverhältnis von apolarem Lösungsmittel: Aktivator beträgt 10: 0.1 bis 10: 5, insbesondere 10: 0.5 bis 10: 2,

Das apolare organische Lösungsmittel ist besonders bevorzugt Toluol und der Aktivator ist besonders bevorzugt Teiramethylethylendiamin oder 1,2-Dimethoxymethan.

Wird in Verfahrensstufe (b) das Metall im überstöchiometrischen Verhältnis eingesetzt, können neue Di(alkali/erdalkalimetall)oligophosphandlide hergestellt werden.

Die Synthese der Di(alkali/erdalkalimetall)oligophosphandlide gelingt gemäss den Schemata (3), (4) und (5)

Die Erfindung betrifft ebenfalls Di(alkali/erdalkalimetall)oligophosphandiide der Formein (2), (3) und (4)

R C1-C6alkyl; C6-C6cycloalkyl, Aryl oder Heteroaryl;

"M LI, Na, K, Cs oder Mg,

Hal F, Cl, Br oder J;

L ein Aktivator;

n und m die Zahl der koordinierten Moleküle L bedeutet, die 1 – 8 betragen kann,

Der Aktivator ist vorzugsweise ein Ether oder Polyether, insbesondere 1,2-Dimethoxyethan (DME). Amine oder Polyemine, insbesondere Tetramethylethylendiamin (TMEDA).

Die Herstellung der DI(alkali/erdalkalimetall)oligophosphandiide der Formeln (2) – (4) erfolgt durch Umsetzung von Dihalogen(organyl)phosphanen der Formel RPHal₂, worin

R C₁-C₁₂-Alkyl; C₂-C₂-Cycloalkyl, Aryl oder Heteroaryl und

Hal F. Ci. Br oder J bedeutet,

n eine Zahl von 3-20 ist.

mit einem Alkali-oder Erdalkallmetall in einem apolaren organischen Lösungsmittel in Gegenwart eines Aktivators, wobei das Molverhältnis von Alkali-oder Erdalkalimetall : RPHal₂ > 1 ist.

Die Di(alkali/erdalkalimetall)oligophosphandiide der Formeln (2), (3) und (4) eignen sich zur Herstellung von Organophosphorverbindungen.

Insbesondere das [Na(trieda)₃][Na₅(P_2Ph_2)₄(L)₃] (2A: L = TMEDA; 2B: L = DME) eignet sich zur Herstellung von Organophosphorverbindungen gemäss den im folgenden Reaktions-schema aufgeführten Reaktionsgleichungen (6) – (10):

So entsteht mit Alkylhalbgeniden wie nPropyliodid quantitativ das Diphosphan 5 (als Gemisch der R,S- und R,R- bzw. S,S-Isomeren).

Mlt Trimethylsilylchlorid Me₃SiCl, lässt sich in hoher Ausbeute das Bisphenylbis(trimethylsilyl)diphosphan 6 herstellen, das bislang nur auf aufwendige Weise zugänglich war.

Mit Schwefel wird quantitativ das neue Dinatriumsalz der Tetrathlohypodiphosphonsäure 7 erhalten. Bisher waren nur das Dilithlum und das Dikallum Salz sowie ein Nickelkomplex der nur wenig untersuchten Tetrathiohypodiphosphonsäure beschrieben worden. Die maximal erzielte Ausbeute betrug ca. 60%.

Die Umsetzung von 2 mit Arylcarbonsäurechloriden, wie dem Mesitoylchlorid, führt unter Disproportionierung zu Bis(mesitoyl)phenylphosphan 8 und Cyclophenylphosphan, vornehmlich dem Cyclophentaphosphan 1. (PhP)₅

Bis(acyl)diphosphane wie das Bis(benzoyl)diphosphan 9, sind schliesslich aus dem Bissilyldiphosphan 6 und äquivalenten Mengen des entsprechenden Carbonsäurechlorids zugänglich. Diese Verbindungen sind auch in einem Eintopfverfahren durch Reaktion der Dinatriumdiphosphandlige 2 mit Me₃SiCl und anschliessender Zugabe von RCOCI erhältlich.

Die folgenden Beispiele erklären die Erfindung näher

Beispiel 1 Herstellung von Pentaphenylcyclopentaphosphan (PhP)_s

Verfahrensvariante a)

In einem 50ml Schlenkrohr wurden 4g Zink-Pulver mit 30 mL wasser- und Sauerstoff-freiem THF überschichtet. Nach Zugabe von 8.5 mL PhPCl₂ wurde die Reaktionsmischung während 5.5 h bei RT im Ultraschällbad belassen. Die Lösung wurde vom überschüssigen Zn und

vom ausgefallenen ZnC 2 abgetrennt, das THF im Hochvakuum (HV) abdestilllert. Der ölige Rückstand wurde in 20 mL CH₂Cl₂ aufgenommen, einmal mit 20 mL einer wässrigen gesättigten NH₄Cl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das CH₂Cl₂ wurde im HV bis auf wenige mL abdestilliert und anschliessend wurden 20 mL Et₂O zugegeben. Die Lösung wurde 30 min ins Elsbad gestellt wobei nahezu farbloses Pentaphenylcyclopentaphosphan 1 auskristallisiert.

Ausbeute: 5.56g (82%); ³¹P-NMR (C₆D₆): -3.7ppm (m); (PhP)₄ und (PhP)₆ jewells <1%

Beispiel 2 Herstellung von Pentaphenylcyclopentaphosphan (PhP)₅ Verfahrensvariante b)

In einem 500 ml Schlenkgefäss werden 160 ml (138g) Toluol und 6.5 g TMEDA (0.056 mol) unter Stickstoffatmosphäre vorlegt. Es werden 2.53 g (0.110 mol) Natrium zugegeben, welches durch Erwärmen geschmolzen und durch Rühren suspendiert wird. Nach Abkühlen auf etwa 50 °C werden dazu 10 g PhPCl₂ (0.055 mol) gegeben. Anschliessend wird die Mischung ca. 90 Minuten bei einer Badtemperatur von 140°C erhitzt. Zu Beginn der Reaktion trübt sich die Suspension und nimmt eine leicht braun-rote Farbe an, während der Umsetzung scheidet sich NaCl ab. Die kein Metall mehr enthaltende Reaktionsmischung wird im HV zur Trockene eingeengt, zum Rückstand werden unter Sauerstoffausschluss 50 ml gesättigte wässrige NH₄Cl-Lsg. gegeben und mit 100 ml CH₂Cl₂ extrahiert. Nach Einengen der CH₂Cl₂-Phase und Trocknen im HV verbleibt leicht bräunliches Pentaphenylcyclopentaphosphan Ausbeute: 5.28 g (89%), Gehalt an (PhP)₆ und (PhP)₄ < 5%

Beispiel 3 Herste liung eines Dinatrium(diphenyldiphosphandilds) der Formel [Na(tmeda).][Na₅(P₂Ph₂)₃(tmeda).] (2*) und [Na(dme).][Na₅(P₂Ph₂)₃(dme).] (2b)

In einem 500 ml Schlenkgefäss werden 100 ml Toluol und 15 ml TMEDA unter Stickstoffatmosphäre vorlegt. Es werden 3.86 g (0.168 mol) Natrium zugegeben, welches durch Erwärmen geschmolzen und durch Rühren suspendiert wird, und anschliessend dazu nach
Abkühlen auf ca. 50 °C langsam 10.00 g PhPCl₂ (0.055 mol). Anschliessend wird die
Mischung ca. 6h bei einer Badtemperatur von 140°C erhitzt (Rückfluss). Zu Beginn der
Reaktion trübt sich die Suspension und nimmt eine grüne dann braun-rote Farbe an. Das
Ende der Reaktion wird durch die Ausfällung eines hellgelben feinkristallinen Rückstands 2a

angezeigt und die überstehende Lösung ist leuchtend gelb-orange. Der ausgefallene Feststoff 2a wird mit einer Filternutsche unter Stickstoffatmosphäre filtriert. Er kann in Dimethoxyethan oder THF gelöst, durch Filtration vom NaCl getrennt und anschliessend durch Konzentrieren der Lösung in Form von leuchtend orangefarbenen hexagonalen Säulen 2b kristallisiert werden. Die Zusammensetzung und Konstitution der Verbindungen 2a als [Na(tmeda)₃][Na₅(P₂Ph₂)₃(tmeda)₃] bzw. 2b als [Na(dme)₃][Na₅(P₂Ph₂)₃(dme)₃] gemäss Struktur 2 im Formelschema ist durch ^{s1}P, ¹H-NMR Spektroskople, ²⁹Na-MAS-NMR Spektroskople und durch eine Einkristallröntgenstrukturanalyse von 2b gesichert.
2a, 2b; ³¹P NMR (121.49 MHz, [D₈]THF); δ = -106.4 (s);

2b: ¹H NMR (300.13 MHz, [D₈]THF): $\delta = 3.30$ (s, 6H; dme, CH₃), 3.46 (s, 4H; dme, CH₂), 6.42 (app. t, 1H; p-Ph-H), 6.71 (app. t, 2H; m-Ph-H), 7.24 (app. d, 2H; o-Ph-H); ¹³C NMR (62.90 MHz, [D₈]THF): $\delta = 59.8$ (s; dme, CH₈), 73.6 (s; dme, CH₂), 119.0 (s; p-Ph-C), 127.8 (s; m-Ph-C), 131.1 (m; o-Ph-C), 160.7 (m; ipso-Ph-C); ²⁸Na NMR (66.16 MHz, [D₈]THF); $\delta = 32$ (br. s, b_{1/2} = 1300 Hz).

Kristalidaten von [Na(drie)₃][Na₅(P₂Ph₂)₃(dme)₃] **2b**: hexagonal, a = 15.04(2), b = 15.04(2), c = 20.93(4); $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 120^{\circ}$.

Beispiel 4 Herstellung eines Dinatrium(triphenyltriphosphandilds) der Formel Na₂(P₃Ph₃)(tmeda)₃ (3).

4.38 g (24,5 mmol) PhPCl₂ werden mlt 1.50 g (65.3 mmol, 2.67 Äquivalente) Natrium in 70 mL Toluol und 10 mL TNEDA 6 – 7 h unter Rückfluss erhitzt und anschliessend von un-löslichen Produkten flitriert. Aus der roten Lösung wird Dinatriumtriphosphandiid [Na₂(P₃Ph₃)(tmeda)₃] als oranger Feststoff durch fraktionierende Kristallisation gewonnen. Alternativ kann das Triphosphandiid 3 durch eine Synproportionierungsreaktion in 60 bis 70% Ausbeute aus 2 und 4 hergestellt werden.

⁹¹P NMR (101.25 MHz, [D_B]THF): 8 Linien – AB₂-Spinsystem, $\delta_A = -54.0$ (Ph-P), $\delta_B = -56.7$, $\delta_{AB} = 242.4$ Hz.

¹H NMR (250.13 MHz, [$\dot{D}_{\rm B}$]THF): δ = 2.15 (s, 36H; tmeda, CH₂), 2.30 (s, 12H; tmeda, CH₂), 6.35 (app. t, 2H; p-Ph-H, terminal), 6.67 (app. t, 4H; m-Ph-H, terminal)*, 6.76 (m, 1H; p-Ph-H, zentral), 6.88 (app. t, 2H; m-Ph-H, zentral)**, 7.46 (app. d, 4H; o-Ph-H, terminal)*, 7.72 (app. d, 2H; o-Ph-H, zentral)** (62.90 MHz, [D_B]THF): δ = 47.1 (s; tmeda, CH₃), 59.8 (s; tmeda, CH₂), 118.3 (s; p-Ph-C, terminal), 124.6 (s; p-Ph-C, zentral)*, 127.7 (m; m-Ph-C,

terminal, zentral), 130.5 (m; o-Ph-C, terminal)*, 132.7 (m;o-Ph-C, zentral)*; 161.4 (m; ipso-Ph-C, zentral)**, 162.9 (m; lpso-Ph-C, terminal)**.

Kristalidaten von [Na₂(P₃Ph₃)(tmeda)₃]: monoklin, a = 10.500(1), b = 14.914(1), c = 27.046(1), B = 91.890(4).

Belspiel 6 Herstellung eines Dinatrium(tetraphenyitetraphosphandiids) der Formel Na₂(P₄Ph₄)(tmeda)₂ (4a) und Na₂(P₂Ph₄)(dme)₃ (4b)

10.00 g (56 mmol) PhPCl₂ werden mlt 3.21 g (140 mmol, 2.5 Äquivalente) Natrium in 100 ml. Toluol und 15 ml. TMEDA 6 – 7 h unter Rückfluss erhitzt und anschliessend heise filtriert. Aus der roten Lösung kristallisiert das Dinatriumtetraphosphandiid [Na₂(P₄Ph₄)(tmeda)₂] 4a als gelber Feststoff in 60 bis 70% Ausbeute. Rekristallisation von (4a) mit Dimethoxyethan ergibt (4b)

³¹P NMR (101.25 MHz, [D₈]THF, 298 K): δ = -24.2 (m, 2 P, TPPh-PPh-PPh-PPh, -70.0 (br, s, 1 P, -PPhT) -85.0 (br, s, 1 P, -PPhT); ¹H NMR (250.13 MHz, [D₈]THF): δ = 2.15 (s, 24H; tmeda, CH₃), 2.30 (s, 8H; tmeda, CH₂), 6.43 (app. t, 2H; p-Ph-H, terminal), 6.68 (app. t, 4H; m-Ph-H, terminal), 6.91 (app. t, 2H; p-Ph-H, zentral), 7.04 (app. t, 4H; m-Ph-H, zentral), 7.31 (app. d, 4H; o-Ph-H, terminal), 7.87 (br, s, 4H; o-Ph-H, zentral); ¹³C NMR (62.90 MHz, [D₈]THF): δ = 47.1 (s; tmeda, CH₃), 59.8 (s; tmeda, CH₂), 119.8 (s; p-Ph-C, terminal), 125.9 (s; p-Ph-C, zentral), 127.8 (s; m-Ph-C, terminal), 128.4 (s; m-Ph-C, zentral), 131.0 (m; o-Ph-C, terminal), 133.5 (m; o-Ph-C, zentral), 151.5 (br.; ipso-Ph-C, zentral), 159.4 (br.; ipso-Ph-C).

Kristalidaten von [Na₂(P₂Ph₄)(trneda)₂]: triklin, a = 10.17(1), b = 10.27(1), c = 11.94(1); $\alpha = 76.403(18)^{\circ}$, $\beta = 71.328(16)^{\circ}$, $\gamma = 62.138(17)^{\circ}$.

Belaplel 6 Herstellung eines Dinstrium(diphenyldiphosphandilds) der Formel [Na₂P₂Ph₂(tinu)_n]_m (n = 0 – 10 und m = 1 $^{\circ}$ $^{\circ}$ 0)

In einem 500 ml Schlenkgefäss werden 100 ml Toluol und 15 ml N,N,N',N'-Tetramethylharnstoff (TMU) unter Stickstoffatmosphäre vorlegt. Es werden 3.86 g (0.168 mol) Natrium zugegeben, welches durch Erwärmen geschmolzen und durch Rühren suspendiert wird, und anschliessend dazu nach Abkühlen auf ca. 50 °C langsam 10.00 g PhPCl₂ (0.055 mol). Anschliessend wird die Mischung ca. 3-4h bei einer Badtemperatur von 140°C erhitzt (Rückfluss). Das Ende der Reaktion wird durch die Ausfällung eines gelben voluminösen

Feststoffs angezeigt, weicher mit einer Filternutsche unter Stickstoffatmosphäre abgetrennt wird. Er besteht aus Naci-und reinem Na₂P₂Ph₂ mit nicht näher bestimmtem Gehalt an TMU, Die Substanz ist im Gegensatz zu 2a,b in THF schwerer löslich und ist durch ³¹P NMR sowie durch Derivatisierung mit Trimethylsilytchlorid identifiziert.

³¹P NMR (121.49 MHz, D_a)THF); $\delta = -106.0$ (s);

Nach Zugabe von überschüssigem Trimethylsilylchlorid bei Raumtemperatur bildet sich unter sofortiger Entfärbung als ausschliessliches Produkt Ph₂P₂(Si[CH₃]₃)₂; ^{s1}P NMR (121,49 MH₂, C₀D₀): -107,4 (s).

Ansprüche:

- -1. Verfahren zur Herstellung von Cycloorganylphosphanen der Formel I (R¹P), durch Umsetzung von Dihalogen(organyl)phosphanen der Formel R¹PHal₂, mit
- a) aktiviertem Zink in einem organischen Lösungsmittel, oder mit
- b) einem Alkali-oder Erdalkalimetall in einem apolaren organischen Lösungsmittel in Gegenwart eines Aktivators, worin
- R¹ C₁-C₁₂-Alkyl; C₃-C₁₂-Cycloalkyl, Aryl oder Heteroaryl und

Hal F, Cl, Br oder J bedeutet, und

- n eine Zahl von 3-20 ist.
- 2. Verfahren zur Herstellung von Cycloorganylphosphanen der Formel I (R¹P)_n gemäss Anspruch 1, durch Umsetzung von Dihalogen(organyl)phosphanen der Formel R¹PHal₂, mit aktiviertem Zink in einem etherischen Lösungsmittel.
- 3. Verfahren zur Herstellung von Cycloorganylphosphanen der Formel I (R¹P)_n gemäss Anspruch 1 durch Umsetzung von Dihalogen(organyl)phosphanen der Formel R¹PHal₂ mit einem Alkali-oder Erdalkalimetall in einem apolaren organischen Lösungsmittel in Gegenwart eines Aktivators.
- 4. Verfahren gemäss Anspruch 3, wobei der Aktivator ein Ether oder Polyether, ein Amin oder Polyamin, ein aromatischer N-Heterocyclus oder ein Kohlensäurederivat ist und das Volumenverhältnis von apolarem Lösungsmittel; Aktivator 10: 0.1 bis 10: 5, insbesondere 10: 0.5 bis 10: 2 beträgt.
- 5. Verfahren gemäss Anspruch 3 oder 4, worin das apolare organische Lösungsmittel Toluol ist und der Aktivator Tetramethyleithyldiamin oder Dimethoxymethan ist.
- 6, Verfahren gemäss einem der Ansprüche 1-5 worin R1 Phenyl bedeutet.
- 7. Di(alkali/erdalkalimetali)oligophosphandiide der Strukturformein 2, 3 und 4,

worin

R C₁-C₆alkyl; C₃-C₆cycloalkyl, Aryl oder Heteroaryl;

M Li, Na, K, Cs oder Mg,

Hal F, Cl, Broder J;

L sin Akt|vator;

n und m die Zahl der koordinierten Moleküle L bedeutet, die 1 - 8 betragen kann.

8. Di(alkali/erdalkalimetall)oligophosphandijde gemäss Anspruch 7, wobel R Phenyl und L Tetramethylethylendiamin oder 1,2-Dimethoxyethan bedeutet.

9. Herstellung von Di(alkali/erdalkalimetall)ollgophosphandliden der Formein (2) – (4) gemäss Anspruch 7 durch Umsetzung von Dihalogen(organyl)phosphanen der Formel RPHal₂, worin

R C₁-C₁₂-Alkyl; C₅-C₁₂-Cycloalkyl, Aryl oder Heteroaryl und

Hal F. Cl. Br oder J begeutet,

n eine Zahl von 3-20 ist,

mit einem Alkali-oder Erdalkalimetall in einem apolaren organischen Lösungsmittel in Gegenwart eines Aktivators, wobei das Molverhältnis von Alkali-oder Erdalkalimetall: RPHal₂ > 1 ist,

10. Verwendung von Di(alkali/erdalkalimetall)oligophosphandiide der Formeln (2) – (4) gemäss Anspruch 7 zur Herstellung von Organophosphorverbindungen.

Zusammenfassung:

Die Erfindung betrifft ein Verlahren zur Herstellung von Cycloorganylphosphanen der Formet

- I (R¹P)n, durch Umsetzung von Dihalogen(organyl)phosphanen der Formel R¹PHal2, mit
- a) aktiviertem Zink in einem organischen Lösungsmittel, oder mit
- b) einem Alkali-oder Erdalkalimetall in einem apolaren organischen Lösungsmittel in Gegenwart eines Aktivators, worin
- R¹ C₁-C₁₂-Alkyl; C₃-C₁₂-Cycloalkyl, Aryl oder Heteroaryl und
- Hal F, Cl, Br oder J bedeutet, und
- n eine Zahl von 3-2d ist.

Die Erfindung betrifft ebenfalls neue Di(alkali/erdalkalimetali)-oligophosphandilde und deren Verwendung zur Herstellung von Organophosphorverbindungen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.