Guía 3: Procedimientos efectivos

Procedimientos efectivos

- Un procedimiento *P* es *procedimiento efectivo* si posee las siguientes características:
 - El ejecutante de P es una persona que trabajará con papel y lápiz (ambos recursos disponibles en forma ilimitada)
 - Cada paso o tarea que P encomiende a realizar debe ser simple y fácil de hacer en forma efectiva por cualquier persona
 - El procedimiento P comienza a funcionar siempre a partir de cierto dato de entrada y una vez que haya comenzado:
 - O bien se detiene y da cierto dato de salida (estos forman su conjunto de salida)
 - O bien nunca se detiene
 - $\exists n,m\in\omega$ y un alfabeto Σ tales que el conjunto de datos de entrada de P es $\omega^n\times\Sigma^{*m}.$

Función Σ -efectivamente computable

- Una función Σ -mixta $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ (para $O \in \{\omega, \Sigma^*\}$) es Σ -efectivamente computable si hay un procedimiento P tal que:
 - El conjunto de datos de entrada de P es $\omega^n \times \Sigma^{*m}$
 - El conjunto de datos de salida está contenido en O
 - Si $(\vec{x}, \vec{a}) \in D_f$, entonces P se detiene partiendo de (\vec{x}, \vec{a}) y da como salida $f(\vec{x}, \vec{a})$
 - Si $(\vec{x}, \vec{a}) \not\in D_f$, entonces P no se detiene partiendo de (\vec{x}, \vec{a}) En estos casos diremos que P computa a f
- Propiedades:
 - \emptyset es Σ -efectivamente computable $\forall \Sigma$

Conjunto Σ -efectivamente computable

- Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -efectivamente computable.
 - Es decir, S es Σ -efectivamente computable si existe un procedimiento P tal que:
 - El conjunto de datos de entrada de P es $\omega^n \times \Sigma^{*m}$, siempre termina y da como dato de salida un elemento de $\{0,1\}$

- Dado $(\vec{x}, \vec{a}) \in \omega^n \times \Sigma^{*m}$, P se detiene partiendo de (\vec{x}, \vec{a}) y da como salida 1 si $(\vec{x}, \vec{a}) \in S$ y 0 en caso contrario.
- Propiedades:
 - \emptyset es Σ -efectivamente computable $\forall \Sigma$
 - Sean $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ conjuntos Σ -efectivamente computables, entonces $S_1 \cup S_2$, $S_1 \cap S_2$ y $(\omega^n \times \Sigma^{*m}) S_1$ son Σ -efectivamente computables.

Conjunto Σ -efectivamente enumerable

- Consideraciones: Sean $k,l,m,n\in\omega$ con $n+m\geq 1$ y $F:D_F\subseteq\omega^k\times\Sigma^{*l}\to\omega^n\times\Sigma^{*m}$, entonces denotaremos con $F_{(i)}$ a la función $p_i^{n,m}\circ F$.
 - Notar que:
 - $Im_{F_{(i)}}\subseteq \omega orall i\in\{1,\ldots,n\}$ e $Im_{F_{(i)}}\subseteq \Sigma^*orall i\in\{n+1,\ldots,n+m\}$
 - $F_{(i)}$ es Σ -mixta $orall i \in \{1,\ldots,n+m\}$
 - $F = [F_{(1)}, \dots, F_{(n+m)}]$
- Definiciones y resultados:
 - Un conjunto $S\subseteq\omega^n imes\Sigma^{*m}$ es Σ -efectivamente enumerable si es vacío o $\exists F:\omega\to\omega^n imes\Sigma^{*m}$ tal que $Im_F=S$ y $F_{(i)}$ es Σ -efectivamente computable $\forall i\in\{1,\ldots,n+m\}$
 - $S \neq \emptyset \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente enumerable \Leftrightarrow hay un procedimiento efectivo P tal que:
 - El conjunto de datos de entrada de P es ω
 - P se detiene para cada $x \in \omega$
 - El conjunto de datos de salida de P es igual a S
 En este caso, P enumera a S
 - S es Σ -efectivamente enumerable \Leftrightarrow es vacío o hay un procedimiento efectivo que lo enumera.
- *Notar* que \emptyset y $\{\lozenge\}$ son Σ -efectivamente enumerables $\forall \Sigma$.
- Propiedades:
 - Sean $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ conjuntos Σ -efectivamente enumerables, entonces $S_1 \cup S_2$, $S_1 \cap S_2$ son Σ -efectivamente enumerables.
 - Si $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable, entonces S es Σ -efectivamente enumerable.