EDA Capstone Project 2

```
In [62]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
%matplotlib inline
pd.pandas.set_option('display.max_columns', None)
```

In [63]:

pwd

Out[63]:

'C:\\Users\\Admin\\Desktop\\SPRINGBOARDFILES\\Unit 11\\Unit 11.5'

Data Collection

Load the data from CSV File

```
In [64]:
```

In [65]:

df.head()

Out[65]:

	Unnamed	d: 0	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	LandSk
0		0	1	60	RL	65.0	8450	Pave	Reg	Lvi	AllPub	Inside	
1		1	2	20	RL	80.0	9600	Pave	Reg	Lvl	AllPub	FR2	
2		2	3	60	RL	68.0	11250	Pave	IR1	Lvi	AllPub	Inside	
3		3	4	70	RL	60.0	9550	Pave	IR1	Lvi	AllPub	Corner	
4		4	5	60	RL	84.0	14260	Pave	IR1	Lvi	AllPub	FR2	
4)

```
In [66]:
```

```
df.shape
```

Out[66]:

(1460, 77)

In [67]:

df.columns

Out[67]:

```
'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual', 'GarageCond',
'PavedDrive', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
'SaleCondition', 'SalePrice'],
dtype='object')
```

Calculating the percentage of null values in each feture

Numerical Variables

'Fireplaces',
'GarageCars',
'3SsnPorch',

```
In [68]:
numeric features=df.select dtypes(include=[np.number])
numeric features.columns
Out[68]:
'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal',
      'MoSold', 'YrSold', 'SalePrice'],
     dtype='object')
Discrete numeric variables
In [69]:
## Numerical variables are usually of 2 type
## 1. Continous variable and Discrete Variables
discrete feature=[feature for feature in numeric features if len(df[feature].unique())<2
5 and feature not in year feature+['Id']]
print("Discrete Variables Count: {}".format(len(discrete feature)))
Discrete Variables Count: 17
In [70]:
discrete feature
Out[70]:
['MSSubClass',
 'OverallQual',
 'OverallCond',
 'LowQualFinSF',
 'BsmtFullBath',
 'BsmtHalfBath',
 'FullBath',
 'HalfBath',
 'BedroomAbvGr',
 'KitchenAbvGr'
 'TotRmsAbvGrd',
```

```
'PoolArea',
'MiscVal',
'MoSold']
```

In [71]:

```
df[discrete_feature].head()
```

Out[71]:

	MSSubClass	OverallQual	OverallCond	LowQualFinSF	BsmtFullBath	BsmtHalfBath	FullBath	HalfBath	BedroomAbvGr	Ki
0	60	7	5	0	1	0	2	1	3	
1	20	6	8	0	0	1	2	0	3	
2	60	7	5	0	1	0	2	1	3	
3	70	7	5	0	1	0	1	0	3	
4	60	8	5	0	1	0	2	1	4	
4										Þ

In [72]:

```
## Lets Find the realtionship between them and Sale PRice

for feature in discrete_feature:
    data=df.copy()
    data.groupby(feature)['SalePrice'].median().plot.bar()
    plt.xlabel(feature)
    plt.ylabel('SalePrice')
    plt.title(feature)
    plt.show()
```


OverallCond

175000


```
In [ ]:
```

```
In [ ]:
```

Correlation of all the numerical variables with respect to the target variable 'SaleProce'

In [73]:

```
correlation=numeric_features.corr()
print(correlation['SalePrice'].sort_values(ascending=False))
SalePrice 1.000000
```

```
OverallQual
                  0.790982
GrLivArea
                  0.708624
                  0.640409
GarageCars
GarageArea
                  0.623431
TotalBsmtSF
                  0.613581
1stFlrSF
                  0.605852
                  0.560664
FullBath
{\tt TotRmsAbvGrd}
                  0.533723
YearBuilt
                  0.522897
YearRemodAdd
                  0.507101
MasVnrArea
                  0.475241
Fireplaces
                  0.466929
```

```
- -- -<sub>F</sub> - - - - -
                  0.386420
BsmtFinSF1
LotFrontage
                  0.334901
WoodDeckSF
                  0.324413
2ndFlrSF
                  0.319334
OpenPorchSF
                  0.315856
HalfBath
                  0.284108
LotArea
                  0.263843
BsmtFullBath
                 0.227122
                 0.214479
BsmtUnfSF
BedroomAbvGr
                 0.168213
ScreenPorch
                 0.111447
                 0.092404
PoolArea
MoSold
                 0.046432
3SsnPorch
                 0.044584
BsmtFinSF2
                -0.011378
BsmtHalfBath
                -0.016844
                 -0.021190
MiscVal
                 -0.021917
Ιd
Unnamed: 0
                 -0.021917
                 -0.025606
LowQualFinSF
YrSold
                 -0.028923
OverallCond
                 -0.077856
MSSubClass
                 -0.084284
EnclosedPorch
                 -0.128578
KitchenAbvGr
                -0.135907
Name: SalePrice, dtype: float64
```

In [74]:

```
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' i
n feature]
```

Continuous numerical variables

In [75]:

```
continuous_feature=[feature for feature in numeric_features if feature not in discrete_f
eature+year_feature+['Id','Unnamed: 0']]
print("Continuous feature Count {}".format(len(continuous_feature)))
```

Continuous feature Count 16

In [76]:

```
## Lets analyse the continuous values by creating histograms to understand the distributi
on

for feature in continuous_feature:
    data=df.copy()
    data[feature].hist(bins=25)
    plt.xlabel(feature)
    plt.ylabel("Count")
    plt.title(feature)
    plt.show()
```


In []:

In [77]:

```
for feature in continuous_feature:
    data=df.copy()
    if 0 in data[feature].unique():
        pass
    else:
        data[feature]=np.log(data[feature])
        data['SalePrice']=np.log(data['SalePrice'])
        plt.scatter(data[feature],data['SalePrice'])
        plt.xlabel(feature)
        plt.ylabel('SalesPrice')
        plt.title(feature)
        plt.show()
```


Outliers:

In [78]:

```
for feature in continuous_feature:
    data=df.copy()
    if 0 in data[feature].unique():
        pass
    else:
        data[feature]=np.log(data[feature])
        data.boxplot(column=feature)
        plt.ylabel(feature)
        plt.title(feature)
        plt.show()
```


SalePrice

Categorical Variables

In [79]:

11.0

10.5

```
categorical_features=[feature for feature in df.columns if data[feature].dtypes=='0']
categorical_features
```

Out[79]:

```
['MSZoning',
'Street',
'LotShape',
'LandContour',
'Utilities',
'LotConfig',
'LandSlope',
'Neighborhood',
'Condition1',
'Condition2',
'BldgType',
'HouseStyle',
'RoofStyle',
'RoofMatl',
'Exterior1st',
'Exterior2nd',
'MasVnrType',
'ExterQual',
'ExterCond',
'Foundation',
'BsmtQual',
'BsmtCond',
 | Bemt Functing!
```

```
nomenyhopare '
'BsmtFinType1',
'BsmtFinType2',
'Heating',
'HeatingQC',
'CentralAir',
'Electrical',
'KitchenQual',
'Functional',
'FireplaceQu',
'GarageType',
'GarageFinish',
'GarageQual',
'GarageCond',
'PavedDrive',
'SaleType',
'SaleCondition']
```

In [80]:

```
df[categorical_features].head()
```

Out[80]:

	MSZoning	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1	Condition2	BldgTyp
0	RL	Pave	Reg	Lvl	AllPub	Inside	Gtl	CollgCr	Norm	Norm	1Faı
1	RL	Pave	Reg	Lvl	AllPub	FR2	Gtl	Veenker	Feedr	Norm	1Faı
2	RL	Pave	IR1	Lvl	AllPub	Inside	Gtl	CollgCr	Norm	Norm	1Faı
3	RL	Pave	IR1	Lvl	AllPub	Corner	Gtl	Crawfor	Norm	Norm	1Faı
4	RL	Pave	IR1	Lvl	AllPub	FR2	GtI	NoRidge	Norm	Norm	1Faı
4											Þ

Find out the relationship between categorical variable and dependent feature SalesPrice

In [81]:

```
for feature in categorical_features:
    data=df.copy()
    data.groupby(feature)['SalePrice'].median().plot.bar()
    plt.xlabel(feature)
    plt.ylabel('SalePrice')
    plt.title(feature)
    plt.show()
```


In []:

Scatter plot between variables which are most correlated with the target variable 'SalePrice'

In [82]:

```
fig, ((ax1,ax2), (ax3,ax4), (ax5,ax6))=plt.subplots(nrows=3,ncols=2,figsize=(14,10))
sns.regplot(x='OverallQual',y='SalePrice', data=df, scatter=True,ax=ax1)
sns.regplot(x='GrLivArea',y='SalePrice', data=df, scatter=True,ax=ax2)
sns.regplot(x='GarageCars',y='SalePrice', data=df, scatter=True,ax=ax3)
sns.regplot(x='GarageArea',y='SalePrice', data=df, scatter=True,ax=ax4)
sns.regplot(x='TotalBsmtSF',y='SalePrice', data=df, scatter=True,ax=ax5)
sns.regplot(x='1stFlrSF',y='SalePrice', data=df, scatter=True,ax=ax6)
```

Out[82]:

```
<matplotlib.axes. subplots.AxesSubplot at 0x23d449f5be0>
```


In []:

In []:

Temporal Variables(Eg: Datetime Variables)

```
In [83]:
```

```
# list of variables that contain year information
year_feature = [feature for feature in numerical_features if 'Yr' in feature or 'Year' i
n feature]
year_feature
```

Out[83]:

['YearBuilt', 'YearRemodAdd', 'YrSold']

In [84]:

```
## We will check whether there is a relation between year the house is sold and the sales
price

df.groupby('YrSold')['SalePrice'].median().plot()
plt.xlabel('Year Sold')
plt.ylabel('Median House Price')
plt.title("House Price vs YearSold")
```

Out[84]:

Text(0.5, 1.0, 'House Price vs YearSold')

This shows the saleprice decreases with respet to time.

```
In []:
In []:
```

Plotting the 'SalePrice' in a histogram to check any outliers are present or not.

```
In [85]:
```

```
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] =16.0
fig_size[1] = 4.0

x =df['SalePrice']
plt.hist(x,bins=400)
plt.ylabel('SalePrice')
```

Out[85]:

Text(0, 0.5, 'SalePrice')

Plotting the 'SalePrice' in a Boxplot to check any outliers are present or not

```
In [86]:
```

```
sns.boxplot(x=df['SalePrice'])
```

Out[86]:

<matplotlib.axes._subplots.AxesSubplot at 0x23d431784f0>


```
0 10000 20000 30000 40000 50000 60000 700000
SalePrice
```

The above histogram and boxplot shows many outlies ar present.

Plotting histogram using seaborn

```
In [87]:
```

```
sns.set(rc={'figure.figsize':(12,8)})
sns.distplot(df['SalePrice'], color='b', bins=20, hist_kws={'alpha': 0.5});
C:\Users\Admin\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning:
`distplot` is a deprecated function and will be removed in a future version. Please adapt
your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
```


The above histogram shows the distribution is right skewed.

The box plot below will show the outliers in more clear.

```
In [88]:
```

```
print(df['SalePrice'].describe())
           1460.000000
count
         180921.195890
mean
          79442.502883
std
          34900.000000
min
25%
         129975.000000
50%
         163000.000000
75%
         214000.000000
m - 17
         755000 000000
```

Name: SalePrice, dtype: float64

In []: