Retailer Analysis

Problem Statement

Initial Exploration of Dataset

Observations

In-depth Exploration

Observations

Evolution of E-commerce orders in the Brazil region

Observations

<u>Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.</u>

Observations

Analysis on sales, freight and delivery time

Observations

Payment type analysis: Join "payments" dataset with the existing data on order_id Observations

Actionable Insights

Recommendations

Problem Statement

Analyzing 100k orders from 2016 to 2018 made at an American big box department store chain in Brazil by viewing orders from multiple dimensions such as order status, price, payment and freight performance to customer locations, product attributes and reviews written by customers for providing insights and recommendations to help improve the business.

The data is made available in 8 different tables namely customers, sellers, geolocation, products, orders, order items, payments and reviews.

Initial Exploration of Dataset

1. Customers

	customer_id	customer_unique_id	customer_zip_co	custom	customer
	customer_id custor	customer_umque_iu	de_prefix	er_city	_state
1	0735e7e4298a2ebbb466	fcb003b1bdc0df64b4d0	59650	acu	RN
'	49346570476a	65d9bb94f8c4	39030	acu	1414
2	903b3d86e3990db01619	46824822b15da44e983	59650	acu	RN
۷	a4ebe3edef4e	b021d0e945379	39030	acu	rin
2	38c97666e962d4fea7fd6	b6108acc674ae5c99e2	50650		DNI
3	a83e69f20cd	9adc1047d1049	59650	acu	RN

> Number of rows in the data

```
SELECT COUNT(*) FROM `scaler-sql.retailer.customers`
```

- > SELECT COUNT(DISTINCT customer_unique_id) FROM `scaler-sql.retailer.customers`
 - 96096

> Number of null or missing values

```
SELECT
COUNT(*) - COUNT(customer_id) id_null_count,
COUNT(*) - COUNT(customer_unique_id) unique_id_null_count,
COUNT(*) - COUNT(customer_zip_code_prefix) zip_null_count,
COUNT(*) - COUNT(customer_city) city_null_count,
COUNT(*) - COUNT(customer_state) state_null_count
FROM
 `scaler-sql.retailer.customers`
```

id_null_count	unique_id_null_count	zip_null_count	city_null_count	state_null_count
0	0	0	0	0

> Data type of columns

Field name	Туре
customer_id	STRING, Categorical
customer_unique_id	STRING, Categorical
customer_zip_code_prefix	INTEGER, Categorical
customer_city	STRING, Categorical
customer_state	STRING, Categorical

> Number of distinct zip codes/city/state

```
SELECT

COUNT(DISTINCT customer_zip_code_prefix) zip_code_count,

COUNT(DISTINCT customer_city) city_count,

COUNT(DISTINCT customer_state) state_count

FROM
```

`scaler-sql.retailer.customers`

Row	zip_code_count	city_count	state_count
1	14994	4119	27

2. Sellers

	seller_id	seller_zip_code_prefix	seller_city	seller_state
1	4be2e7f96b4fd749d52dff41f80e39dd	69900	rio branco	AC
2	327b89b872c14d1c0be7235ef4871685	69005	manaus	AM
3	4221a7df464f1fe2955934e30ff3a5a1	48602	bahia	ВА

> Number of rows in the data

```
SELECT COUNT(*) FROM `scaler-sql.retailer.sellers`
```

• 3095

> Number of null or missing values

```
SELECT
COUNT(*) - COUNT(seller_id) id_null_count,
COUNT(*) - COUNT(seller_zip_code_prefix) zip_null_count,
COUNT(*) - COUNT(seller_city) city_null_count,
COUNT(*) - COUNT(seller_state) state_null_count
FROM
`scaler-sql.retailer.sellers`
```

Row	id_null_count	zip_null_count	city_null_count	state_null_count
1	0	0	0	0

> Data type of columns

Field name	Туре
seller_id	STRING, Categorical
seller_zip_code_prefix	INTEGER, Categorical
seller_city	STRING, Categorical
seller_state	STRING, Categorical

➤ Number of distinct zip codes/city/state

```
SELECT
COUNT(DISTINCT seller_zip_code_prefix) zip_code_count,
COUNT(DISTINCT seller_city) city_count,
COUNT(DISTINCT seller_state) state_count
FROM
`scaler-sql.retailer.sellers`
```

Row	zip_code_count	city_count	state_count
1	2246	611	23

3. Geolocation

	geolocation_zi	geolocation_lat	geolocation_Ing	geolocati on_city	geolocatio n_state
1	49010	-10.910514518754546	-37.052400776992329	aracaju	SE
2	49047	-10.9268145	-37.071063000000009	aracaju	SE
3	49030	-10.970164794304576	-37.061643830745815	aracaju	SE

> Number of rows in the data

```
SELECT COUNT(*) FROM `scaler-sql.retailer.geolocation`
```

• 1000163

> Number of null or missing values

```
SELECT

COUNT(*) - COUNT(geolocation_zip_code_prefix) zip_null_count,

COUNT(*) - COUNT(geolocation_lat) lat_null_count,

COUNT(*) - COUNT(geolocation_lng) lng_null_count,

COUNT(*) - COUNT(geolocation_city) city_null_count,

COUNT(*) - COUNT(geolocation_state) state_null_count

FROM
```

[`]scaler-sql.retailer.geolocation`

	zip_null_count	lat_null_count	Ing_null_count	city_null_count	state_null_count
1	0	0	0	0	0

> Data type of columns

Field name	Туре
geolocation_zip_code_prefix	INTEGER, Categorical
geolocation_lat	FLOAT, Continuous
geolocation_lng	FLOAT, Continuous
geolocation_city	STRING, Categorical
geolocation_state	STRING, Categorical

> Number of distinct zip codes/city/state

```
SELECT
COUNT(DISTINCT geolocation_zip_code_prefix) zip_code_count,
COUNT(DISTINCT geolocation_city) city_count,
COUNT(DISTINCT geolocation_state) state_count
FROM
`scaler-sql.retailer.geolocation`
```

Row	zip_code_count	city_count	state_count
1	19015	8011	27

4. Products

		produ	product	product_d	produc	produ	produc	produc	produ
	product_id	ct_cat	_name_	escription	t_phot	ct_we	t_lengt	t_heigh	ct_wid
		egory	length	_length	os_qty	ight_g	h_cm	t_cm	th_cm
	5eb564652db								
1	742ff8f28759	null	null	null	null	null	null	null	null
	cd8d2652a								
	09ff539a621	babie							
2	711667c43eb		60	865	3	null	null	null	null
	a6a3bd8466	S							
	2f763ba79d9	ala atu							6
3	cd987b2034a	electr	45	1198	2	595	8	6	6
	ac7ceffe06	onics							

> Number of rows in the data

SELECT COUNT(*) FROM `scaler-sql.retailer.products`

• 32951

> Number of null or missing values

```
SELECT
COUNT(*) - COUNT(product_id) id_null_ct,
COUNT(*) - COUNT(product_category) cat_null_ct,
COUNT(*) - COUNT(product_name_length) name_null_ct,
COUNT(*) - COUNT(product_description_length) desc_null_ct,
COUNT(*) - COUNT(product_photos_qty) photo_null_ct,
COUNT(*) - COUNT(product_weight_g) wgt_null_ct,
COUNT(*) - COUNT(product_length_cm) len_null_ct,
COUNT(*) - COUNT(product_height_cm) hgt_null_ct,
COUNT(*) - COUNT(product_width_cm) wdt_null_ct
FROM
`scaler-sql.retailer.products`
```

	id_null	cat_nul	name_n	desc_n	photo_n	wgt_n	len_nu	hgt_nu	wdt_nu
	_ct	l_ct	ull_ct	ull_ct	ull_ct	ull_ct	II_ct	II_ct	II_ct
1	0	610	610	610	610	2	2	2	2

> Data type of columns

Field name	Туре
product_id	STRING, Categorical
product_category	STRING, Categorical
product_name_length	INTEGER, Discrete
product_description_length	INTEGER, Discrete
product_photos_qty	INTEGER, Discrete
product_weight_g	INTEGER, Continuous
product_length_cm	INTEGER, Continuous
product_height_cm	INTEGER, Continuous
product_width_cm	INTEGER, Continuous

> Number of distinct product categories

```
SELECT
COUNT(DISTINCT product_category) product_category_count
FROM `scaler-sql.retailer.products`
```

• 73

5. Orders

		customer	order	order_pu	order_	order_deli	order_deliv	order_esti
	order_id	_id	_stat	rchase_ti	appro	vered_car	ered_custo	mated_del
		_iu	us	mestamp	ved_at	rier_date	mer_date	ivery_date
	7a4df5d8	725e9c75		2017-11-				2017-12-1
1	cff4090e5	605414b2	creat	25	null	null	u.	2 00:00:00
'	41401a20	1fd8c8d5	ed	11:10:33	Hull	nun	null	
	a22bb80	a1c2f1d6		UTC				UTC
	35de4050	4ee64f4bf		2017-12-				0010.01.0
	331c6c64	c542546f	creat	05	11	null	null	2018-01-0
2	4cddc86f	422da0ae	ed	01:07:58	null			8 00:00:00
	4f2d0d64	b462853		UTC				UTC
	b5359909	438449d4		2017-12-				
	123fa03c	af8980d1	creat	05		_	null	2018-01-1
3	50bdb0cf	07bf0457	ed	01:07:52	null	null		1 00:00:00
	ed07f098	1413a8e7		UTC				UTC

> Number of rows in the data

```
SELECT COUNT(*) FROM `scaler-sql.retailer.orders`
```

• 99441

> Number of null or missing values

```
SELECT
COUNT(*) - COUNT(product_id) id_null_ct,
COUNT(*) - COUNT(product_category) cat_null_ct,
COUNT(*) - COUNT(product_name_length) name_null_ct,
COUNT(*) - COUNT(product_description_length) desc_null_ct,
COUNT(*) - COUNT(product_photos_qty) photo_null_ct,
COUNT(*) - COUNT(product_weight_g) wgt_null_ct,
COUNT(*) - COUNT(product_length_cm) len_null_ct,
COUNT(*) - COUNT(product_height_cm) hgt_null_ct,
COUNT(*) - COUNT(product_width_cm) wdt_null_ct
FROM
`scaler-sql.retailer.products`
```

				pur_time		deli_carrier	deli_cust	est_deli
	id	cust_id	status	stamp	approved_at	_date	_date	_date
1	0	0	0	0	160	1783	2965	0

> Data type of columns

Field name	Туре
order_id	STRING, Categorical
customer_id	STRING, Categorical
order_status	STRING, Categorical
order_purchase_timestamp	TIMESTAMP, Timeseries
order_approved_at	TIMESTAMP, Timeseries
order_delivered_carrier_date	TIMESTAMP, Timeseries
order_delivered_customer_date	TIMESTAMP, TImeseries
order_estimated_delivery_date	TIMESTAMP, Timeseries

> Number of distinct order statuses

- Created
- Shipped
- Approved
- Canceled
- Invoiced
- Delivered
- Processing
- Unavailable

6. Order Items

	order_id	order_i tem_id	product_id	seller_id	shipping_limit _date	price	freight_ value
1	f09e36e2586 56850b9265 7ac5f67b6d5	1	44d53f1240d 6332232e439 3c06500475	b64d51f0435 e884e8de603 b1655155ae	2018-07-09 13:31:36 UTC	3.0	12.79
2	f9ccaff7267f d0cf076e795 b1fae8b69	1	44d53f1240d 6332232e439 3c06500475	b64d51f0435 e884e8de603 b1655155ae	2018-08-14 14:04:44 UTC	3.0	15.23
3	c79bdf061e2 2288609201e c60deb42fb	1	5304ff3fa358 56a156e1170 a6022d34d	cf6f6bc4df39 99b9c6440f1 24fb2f687	2017-05-12 19:05:20 UTC	3.5	8.72

> Number of rows in the data

```
SELECT COUNT(*) FROM `scaler-sql.retailer.order_items`
```

• 112650

> Number of null or missing values

```
SELECT

COUNT(*) - COUNT(order_id) id,

COUNT(*) - COUNT(order_item_id) item_id,

COUNT(*) - COUNT(product_id) prod_id,

COUNT(*) - COUNT(seller_id) seller_id,

COUNT(*) - COUNT(shipping_limit_date) ship_lt_date,

COUNT(*) - COUNT(price) price,

COUNT(*) - COUNT(freight_value) freight_val

FROM

`scaler-sql.retailer.order_items`
```

	id	item_id	prod_id	seller_id	ship_lt_date	price	freight_val
1	0	0	0	0	0	0	0

> Data type of columns

Field name	Туре
order_id	STRING, Categorical
order_item_id	INTEGER, Categorical
product_id	STRING, Categorical
seller_id	STRING, Categorical
shipping_limit_date	TIMESTAMP, Timeseries
price	FLOAT, Continuous
freight_value	FLOAT, Continuous

7. Payments

	order_id	payment_ payment_type		payment_in	paymen
	order_id		payment_type	stallments	t_value
1	1a57108394169c0b47d8f876acc9ba2d	2	credit_card	0	129.94
2	744bade1fcf9ff3f31d860ace076d422	2	credit_card	0	58.69
3	8bcbe01d44d147f901cd3192671144db	4	voucher	1	0.0

> Number of rows in the data

```
SELECT COUNT(*) FROM `scaler-sql.retailer.payments`
```

• 103886

> Number of null or missing values

```
SELECT
COUNT(*) - COUNT(order_id) order_id_null_ct,
COUNT(*) - COUNT(payment_sequential) pay_seq_null_ct,
COUNT(*) - COUNT(payment_type) pay_type_null_ct,
COUNT(*) - COUNT(payment_installments) pay_inst_null_ct,
COUNT(*) - COUNT(payment_value) pay_val_null_ct
FROM `scaler-sql.retailer.payments`
```

Row	order_id_null_ct	pay_seq_null_ct	pay_type_null_ct	pay_inst_null_ct	pay_val_null_ct
1	0	0	0	0	0

> Data type of columns

Field name	Туре
order_id	STRING, Categorical
payment_sequential	INTEGER, Discrete
payment_type	STRING, Categorical
payment_installments	INTEGER, Discrete
payment_value	FLOAT, Continuous

> Number of distinct payment types

```
SELECT
COUNT(DISTINCT payment_type) payment_type_count
FROM `scaler-sql.retailer.payments`
```

> Distinct payment types

```
SELECT
  DISTINCT payment_type payment_type
FROM `scaler-sql.retailer.payments`
```

- Credit_card
- Voucher
- Debit_card
- UPI
- Not_defined

8. Reviews

	review_id	order_id	review	review_com	review_creation	review_answer_t
	Teview_id	order_id	_score ment_title		_date	imestamp
	be7e2989673	777c67eab7			0001-04-17	0001-04-17
1	cb2a147b87b	c0712ccde8f	1	null		
	a73277da9e	fbb22715adb			00:00:00 UTC	07:40:00 UTC
	e12151267e4	4338a4463f7			0001 04 17	0001-04-17
2	594d69eda14	f9193d2a03a	1	null	0001-04-17	09:04:00 UTC
	a871e2a1ab	83a4b68ba0			00:00:00 UTC	

> Number of rows in the data

> Number of null or missing values

```
SELECT
COUNT(*) - COUNT(review_id) id_null_ct,
COUNT(*) - COUNT(order_id) order_id_null_ct,
COUNT(*) - COUNT(review_score) score_null_ct,
COUNT(*) - COUNT(review_comment_title) title_null_ct,
COUNT(*) - COUNT(review_creation_date) date_null_ct,
COUNT(*) - COUNT(review_answer_timestamp) timestamp_null_ct
FROM
`scaler-sql.retailer.reviews`
```

	id_null_ct	order_id_null_ct	score_null_ct	title_null_ct	date_null_ct	timestamp_null_ct
1	0	0	0	87675	0	0

> Data type of columns

Field name	Туре
review_id	STRING
order_id	STRING
review_score	INTEGER
review_comment_title	STRING
review_creation_date	TIMESTAMP
review_answer_timestamp	TIMESTAMP

> Review score count

```
SELECT
  review_score,
  COUNT(review_score) review_score_count
FROM
  `scaler-sql.retailer.reviews`
GROUP BY
  review_score
```

Row	review_score	review_score_count	
1	1	11424	
2	2	3151	
3	3	8179	
4	4	19142	
5	5	57328	

Observations

- There are 96096 unique customers and 3095 sellers in the dataset
- Customers are distributed across 4119 cities divide into 27 states whereas sellers are from 611 different cities in 23 states
- There are 32951 variety of products available, divided in 73 product categories
- A total 99441 order details are available in the dataset
- Every order has an associated status field with either of these 8 values Created,
 Shipped, Approved, Canceled, Invoiced, Delivered, Processing, Unavailable
- Price and freight values of every item in an order is available in the order items table
- Different payment types available in the dataset are Credit card, Voucher, Debit card, UPI or Not defined
- There are review scores available per order ranging from 1 to 5, 5 being the highest.
 Majority of the orders have a rating of 5

II. In-depth Exploration

1. How many orders do we have for each order status?

```
SELECT
  order_status,
  COUNT(*) Number_of_orders
FROM
  `scaler-sql.retailer.orders`
GROUP BY
  Order_status;
```

Row	order_status	Number_of_orders
1	created	5
2	shipped	1107
3	approved	2
4	canceled	625
5	invoiced	314
6	delivered	96478
7	processing	301
8	unavailable	609

2. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario?

```
SELECT
    FORMAT_DATETIME('%Y/%m', order_purchase_timestamp) AS month,
    COUNT(order_id) AS total_orders
FROM `scaler-sql.retailer.orders`
GROUP BY month
ORDER BY month
```


3. On what day of week brazilians customers tend to do online purchasing?

```
SELECT
  FORMAT_DATE('%A', order_purchase_timestamp) AS day_of_week,
  COUNT(order_id) total_orders
FROM `scaler-sql.retailer.orders`
GROUP BY day_of_week
ORDER BY total_orders DESC
```

Row	day_of_week	total_orders	
1	Monday	16196	
2	Tuesday	15963	
3	Wednesday	15552	
4	Thursday	14761	
5	Friday	14122	
6	Sunday	11960	
7	Saturday	10887	

4. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT
CASE
  WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 3 AND 6 THEN 'DAWN'
  WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN 'MORNING'
  WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN 'AFTERNOON'
  ELSE 'NIGHT'
END AS time,
COUNT(*) AS total_orders
FROM `scaler-sql.retailer.orders`
GROUP BY time
```

Row	time	total_orders
1	MORNING	27733
2	NIGHT	32405
3	AFTERNOON	38135
4	DAWN	1168

Feature Extraction: Through order_purchase_timestamp in "orders" dataset extract

- a. Order_purchase_year
- b. Order_purchase_month
- c. Order_purchase_date
- d. Order_purchase_day
- e. Order_purchase_dayofweek
- f. Order_purchase_dayofweek_name
- g. Order_purchase_hour
- h. Order_purchase_time_day

SELECT

```
order_purchase_timestamp,

EXTRACT(DATE FROM order_purchase_timestamp) AS date,

EXTRACT(YEAR FROM order_purchase_timestamp) AS year,

EXTRACT(MONTH FROM order_purchase_timestamp) AS month,

EXTRACT(DAY FROM order_purchase_timestamp) AS day,

EXTRACT(DAYOFWEEK FROM order_purchase_timestamp) AS dayofweek,

FORMAT_DATE('%A', order_purchase_timestamp) AS dow_name,

EXTRACT(TIME FROM order_purchase_timestamp) AS time_day,

EXTRACT(HOUR FROM order_purchase_timestamp) AS hour

FROM `scaler-sql.retailer.orders`
```

Row	order_purchase_timestamp	date	year	month	day	dayofweek	dow_name	time_day	hour
1	2017-12-01 11:09:24 UTC	2017-12-01	2017	12	1	6	Friday	11:09:24	11
2	2017-12-01 14:38:00 UTC	2017-12-01	2017	12	1	6	Friday	14:38:00	14
3	2017-08-01 20:26:19 UTC	2017-08-01	2017	8	1	3	Tuesday	20:26:19	20
4	2018-04-01 11:30:07 UTC	2018-04-01	2018	4	1	1	Sunday	11:30:07	11
5	2017-07-01 16:48:42 UTC	2017-07-01	2017	7	1	7	Saturday	16:48:42	16

Observations

- 97% of the orders are in status delivered and 609, that is 0.6% of the order statuses are unavailable
- Looking at the month on month data on orders, there is clearly a growing trend on
 e-commerce in Brazil but, the data from Jan 2018 onwards shows a flattened curve or a
 slight drop in the orders. Close to zero orders in Nov-Dec 2018 could be because of the
 unavailability of data
- Brazil customers tend to order the most on Mondays and Saturdays the least. However, the overall order distribution looks the same throughout the week
- A vast majority of the orders are placed in the afternoon between 1-6pm and very few orders are made at dawn 3-6am.

III. Evolution of E-commerce orders in the Brazil region

1. Get month on month orders by region

```
SELECT
   FORMAT_DATETIME('%Y/%m', order_purchase_timestamp) AS month,
   COUNT(order_id) AS total_orders
FROM `scaler-sql.retailer.orders`
GROUP BY month
ORDER BY month
```

Row	month	total_orders	
1	2016/09	4	
2	2016/10	324	
3	2016/12	1	
4	2017/01	800	
5	2017/02	1780	

SELECT

```
c.customer_state,
FORMAT_DATETIME('%Y/%m', o.order_purchase_timestamp) AS month,
COUNT(DISTINCT o.order_id) AS total_orders
FROM `scaler-sql.retailer.orders` AS o
```

```
JOIN `scaler-sql.retailer.customers` AS c
ON o.customer_id = c.customer_id
GROUP BY month, c.customer_state
ORDER BY month
```


2. Total of customer orders by state

```
SELECT
  c.customer_state,
  COUNT(o.order_id) total_customer_orders_per_state
FROM `scaler-sql.retailer.orders` AS o
JOIN `scaler-sql.retailer.customers` AS c
  ON o.customer_id = c.customer_id
GROUP BY c.customer_state
```

Row	customer_state	total_customer_orders_per_state
1	RJ	12852
2	RS	5466
3	SP	41746
4	DF	2140
5	PR	5045

3. Top 10 brazilian cities most no. of orders

```
SELECT
  c.customer_state,
  COUNT(o.order_id) total_customer_orders_per_state
FROM `scaler-sql.retailer.orders` AS o
JOIN `scaler-sql.retailer.customers` AS c
  ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY COUNT(o.order_id) DESC
LIMIT 10
```

Row	customer_state	total_customer_orders_per_state
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	ВА	3380
8	DF	2140
9	ES	2033
10	GO	2020

4. How are customers distributed in Brazil

```
SELECT
  customer_state,
  COUNT(customer_unique_id) number_of_customers
FROM `scaler-sql.retailer.customers`
GROUP BY customer_state
```

Row	customer_state	number_of_customers
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746

5. City wise number of unique customers

```
SELECT
  customer_city,
  COUNT(customer_unique_id) number_of_customers
FROM `scaler-sql.retailer.customers`
GROUP BY customer_city
ORDER BY COUNT(customer_unique_id) DESC
```

Row	customer_city	number_of_customers	
1	sao paulo	15540	
2	rio de janeiro	6882	
3	belo horizonte	2773	
4	brasilia	2131	
5	curitiba	1521	

Observations

- The state Sao Paulo accounts for 42% of the total orders made and tops the list as the state with most number of orders
- Rio de Janeiro is a distant second with 13% of the total orders and Minas Gerais is a close third with 12% of the total orders. These 3 states together hold 65% share of all the orders made between 2016 and 2018
- Most of the customers are from city Sao Paulo and the city with second highest number of customers is Rio de Janeiro

IV. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

Step 1: Using CTE

- 1. "order_items" + "order" joined on order id where order_purchase timestamp is already divided into month & year
- Group data by year and month, aggregation count(order_id), sum(price), sum(freight_value)
- 3. Create new columns:

```
a. price per order = sum(price) / count(order id)
```

	order_purch	order_purch	number_	total_price	total_freight	price_p	freight_p
	ase_year	ase_month	of_orders		_value	er_order	er_order
1	2018	7	7092	895507.0	163221.0	126.27	23.01
2	2018	8	7248	854686.0	148622.0	117.92	20.51
3	2017	5	4136	506071.0	80120.0	122.36	19.37

Step 2: Answer the following questions:

1. Total amount sold in 2017 between Jan to August

2. Total amount sold in 2018 between Jan to august

```
SELECT
SUM(total_price) AS total_amount_sold
FROM order_details
WHERE order_purchase_year = 2018
AND order_purchase_month BETWEEN 1 AND 8

• Total_amount_sold = 7385905.0
```

- 3. % increase from 2017 to 2018 = (7385905 3113000) * 100 / (3113000)
 - 137.26 %

Step 3: Join (orders+order_items) table from previous step with "customers" table on Customer_id and find:

	customer_state	total_price	mean_price	total_freight_value	mean_freight_value
1	MT	156454.0	148.3	29715.0	28.17
2	MA	119648.0	145.2	31524.0	38.26
3	AL	80315.0	180.89	15915.0	35.84
4	SP	5202955.0	109.65	718723.0	15.15
5	MG	1585308.0	120.75	270853.0	20.63

1. Mean & Sum of price by customer state

```
SELECT
customer_state,
total_price,
mean_price
FROM order_details
ORDER BY mean_price DESC
```

Row	customer_state	total_price	mean_price
1	РВ	115268.0	191.48
2	AL	80315.0	180.89
3	AC	15983.0	173.73
4	RO	46141.0	165.97
5	PA	178948.0	165.69

2. Mean & Sum of freight value by customer state

```
SELECT
  customer_state,
  total_freight_value,
  mean_freight_value
FROM order_details
ORDER BY mean_freight_value DESC
```

Row	customer_state	total_freight_value	mean_freight_value
1	RR	2235.0	42.98
2	РВ	25720.0	42.72
3	RO	11417.0	41.07
4	AC	3687.0	40.07
5	PI	21218.0	39.15

Observations

- There is a 137% increase in a year in the total amount sold in Jan-Aug 2018 compared Jan-Aug 2017
- States with the highest mean_price are PB, AL and AC
- States with highest mean_freight_value are RR, PB and RO

V. Analysis on sales, freight and delivery time

 Calculating days between purchasing, delivering and estimated delivery

```
SELECT
  order_purchase_timestamp,
  order_delivered_customer_date,
  order_estimated_delivery_date,
  DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)
AS time_to_delivery,
  DATE_DIFF(order_delivered_customer_date, order_estimated_delivery_date,
DAY) AS diff_estimated_delivery
FROM `scaler-sql.retailer.orders`
WHERE order_delivered_customer_date IS NOT NULL
```

	order_purchase_ti	order_delivered_cus	order_estimated_de	time_to_d	diff_estimated
	mestamp	tomer_date	livery_date	elivery	_delivery
1	2016-10-07	2016-10-14 15:07:11	2016-11-29	7	-45
'	14:52:30 UTC	UTC	00:00:00 UTC	,	40
2	2018-02-19	2018-03-21 22:03:51	2018-03-09	30	12
2	19:48:52 UTC	UTC	00:00:00 UTC	30	12
3	2016-10-09	2016-11-09 14:53:50	2016-12-08	30	-28
3	15:39:56 UTC	UTC	00:00:00 UTC	30	20
4	2016-10-09	2016-10-16 14:36:59	2016-11-30	7	-44
4	00:56:52 UTC	UTC	00:00:00 UTC	,	-44
5	2016-10-08	2016-10-19 18:47:43	2016-11-30	10	-41
3	20:17:50 UTC	UTC	00:00:00 UTC	10	71

2. Create columns:

- a. time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- b. diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

SELECT

order_purchase_timestamp,

DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS
time_to_delivery,

DATE_DIFF(order_delivered_customer_date, order_estimated_delivery_date, DAY)
AS diff_estimated_delivery

FROM `scaler-sql.retailer.orders` WHERE order_delivered_customer_date IS NOT NULL

Row	order_purchase_timestamp	time_to_delivery	diff_estimated_delivery
1	2016-10-07 14:52:30 UTC	7	-45
2	2018-02-19 19:48:52 UTC	30	12
3	2016-10-09 15:39:56 UTC	30	-28
4	2016-10-09 00:56:52 UTC	7	-44
5	2016-10-08 20:17:50 UTC	10	-41

3. Grouping data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
WITH state_wise_delivery_details AS

(SELECT

c.customer_state,

ROUND(AVG(oi.freight_value), 2) AS mean_freight_value,

ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,

DAY)), 2) AS mean_time_to_delivery,

ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,

o.order_estimated_delivery_date, DAY)), 2) AS mean_diff_estimated_delivery

FROM `scaler-sql.retailer.orders` AS o

JOIN `scaler-sql.retailer.customers` AS c

ON o.customer_id = c.customer_id

JOIN `scaler-sql.retailer.order_items` AS oi

ON o.order_id = oi.order_id

WHERE order_delivered_customer_date IS NOT NULL

GROUP BY c.customer_state)
```

SELECT * FROM state_wise_delivery_details

	customer_state	mean_freight_value	mean_time_to_delivery	mean_diff_estimated_delivery
1	RJ	20.91	14.69	-11.14
2	MG	20.63	11.52	-12.4
3	SC	21.51	14.52	-10.67
4	SP	15.11	8.26	-10.27
5	GO	22.56	14.95	-11.37

4. Sort the data to get the following:

a. Top 5 states with highest/lowest average freight value

```
SELECT
customer_state,
mean_freight_value
FROM state_wise_delivery_details
ORDER BY mean_freight_value
LIMIT 5
```

Row	customer_state	mean_freight_value
1	SP	15.11
2	PR	20.47
3	MG	20.63
4	RJ	20.91
5	DF	21.07

```
SELECT

customer_state,

mean_freight_value

FROM state_wise_delivery_details

ORDER BY mean_freight_value DESC

LIMIT 5
```

Row	customer_state	mean_freight_value
1	РВ	43.09
2	RR	43.09
3	RO	41.33
4	AC	40.05
5	PI	39.12

b. Top 5 states with highest/lowest average time to delivery

```
SELECT
  customer_state,
  mean_time_to_delivery
FROM state_wise_delivery_details
ORDER BY mean_time_to_delivery
LIMIT 5
```

Row	customer_state	mean_time_to_delivery
1	SP	8.26
2	PR	11.48
3	MG	11.52

```
4 DF 12.5
5 SC 14.52
```

```
SELECT
  customer_state,
  mean_time_to_delivery
FROM state_wise_delivery_details
ORDER BY mean_time_to_delivery DESC
LIMIT 5
```

Row	customer_state	mean_time_to_delivery	
1	RR	27.83	
2	AP	27.75	
3	AM	25.96	
4	AL	23.99	
5	PA	23.3	

c. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
SELECT
  customer_state,
  mean_diff_estimated_delivery
FROM state_wise_delivery_details
ORDER BY mean_diff_estimated_delivery
LIMIT 5
```

Row	customer_state	mean_diff_estimated_delivery
1	AC	-20.01
2	RO	-19.08
3	AM	-18.98
4	AP	-17.44
5	RR	-17.43

```
SELECT
  customer_state,
  mean_diff_estimated_delivery
```

```
FROM state_wise_delivery_details
ORDER BY mean_diff_estimated_delivery DESC
LIMIT 5
```

Row	customer_state	mean_diff_estimated_delivery
1	AL	-7.98
2	MA	-9.11
3	SE	-9.17
4	ES	-9.77
5	ВА	-10.12

Observations

- States with lowest average freight value are SP, PR & MG and states with highest freight value are PB, RR & RO
- States with lowest average time to delivery are SP, PR & MG and states with highest average time to delivery are RR, AP & AM
- States with fastest delivery are AC, RO & AM and states with relatively less fast delivery are AL, MA & SE

VI. Payment type analysis: Join "payments" dataset with the existing data on order_id

1. Count of orders for different payment types

```
SELECT
p.payment_type,
count(*) number_of_orders
FROM `scaler-sql.retailer.orders` AS o
JOIN `scaler-sql.retailer.payments` AS p
ON o.order_id = p.order_id
GROUP BY p.payment_type
ORDER BY number_of_orders DESC
```

Row	payment_type	number_of_orders	
1	credit_card	76795	
2	UPI	19784	
3	voucher	5775	
4	debit_card	1529	
5	not_defined	3	

2. Distribution of payment installments and count of orders

```
p.payment_installments,
count(*) number_of_orders
FROM `scaler-sql.retailer.orders` AS o
JOIN `scaler-sql.retailer.payments` AS p
ON o.order_id = p.order_id
GROUP BY p.payment_installments
```

ORDER BY number_of_orders DESC

Row	payment_installments	number_of_orders
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626
10	9	644
11	12	133
12	15	74

13	18	27
14	11	23
15	24	18
16	20	17
17	13	16
18	14	15
19	17	8
20	16	5
21	21	3
22	0	2
23	22	1
24	23	1

3. Count of orders for different payment types Month over Month

```
SELECT
FORMAT_DATETIME('%Y/%m', o.order_purchase_timestamp) AS month,
p.payment_type,
count(*) number_of_orders
FROM `scaler-sql.retailer.orders` AS o
JOIN `scaler-sql.retailer.payments` AS p
ON o.order_id = p.order_id
GROUP BY month, p.payment_type
ORDER BY month, number_of_orders DESC
```

Row	month	payment_type	number_of_orders	
1	2016/09	credit_card	3	
2	2016/10	credit_card	254	
3	2016/10	UPI	63	
4	2016/10	voucher	23	
5	2016/10	debit_card	2	

6	2016/12	credit_card	1	
7	2017/01	credit_card	583	
8	2017/01	UPI	197	
9	2017/01	voucher	61	
10	2017/01	debit_card	9	

Observations

- Most popular payment type is using a credit card which accounts for over 77% of the total payments and UPI holds the second most share of purchases made
- Most of the payments are one time and less than half of the payments are through multiple installments
- Most popular number of installments are 1, 2, 3, 4, 10, 5 in that order
- Only 343, that is less than 1% of the payments have opted for more than 10 installments
- There is a high growth in number of credit card payments from 2016-2018 and UPI is also growing but, at a slower rate

VII. Actionable Insights

- 1. Looking at the month on month data on orders, there is clearly a growing trend on e-commerce in Brazil although, the data from Jan 2018 onwards shows a flattened curve or a slight drop in the orders.
- 2. There is around 2.5x increase in a year in the total amount sold in Jan-Aug 2018 compared to Jan-Aug 2017.
- 3. Brazil customers tend to order the most on Mondays and Saturdays the least.
- 4. A vast majority of the orders are placed in the afternoon between 1-6pm and very few orders are made at dawn 3-6am.
- 5. The state Sao Paulo accounts for 42% of the total orders made and tops the list as the state with the most number of orders.
- 6. Most of the customers are from city Sao Paulo and the city with second highest number of customers is Rio de Janeiro.
- 7. States with the highest mean_price are PB, AL and AC and highest mean_freight_value are RR, PB and RO.
- 8. States with lowest average time to delivery are SP, PR & MG and states with highest average time to delivery are RR, AP & AM. This may be because of the transportation infrastructure and proximity to sellers in these states.
- 9. States with fastest delivery are AC, RO & AM and states with relatively less fast delivery are AL, MA & SE.
- 10. Most popular payment type is using a credit card which accounts for over 77% of the total payments and UPI holds the second most share of purchases made.
- 11. Most popular choice of number of installments in case of EMI is 2 and only less than 1% of the payments have opted for more than 10 installments

VIII. Recommendations

- 1. Coupons can be given on Saturdays to improve the business as it is the week day with the least number of orders placed.
- 2. Discount offers should be given to the customers from states PB, AL and AC. Even a slightest increase in the orders by customers from these states will have a better reflection in the revenue as they tend to have the highest average price per order.
- 3. Best practices used for the delivery in states AC, RO and AM can be employed in AL, MA and SE if feasible to improve the delivery time.
- 4. UPI payments show a rising trend although the penetration is still very low compared to Credit Card payments could be used as an opportunity to incorporate growing UPI service providers with a revenue sharing model.
- 5. EMI options with less than or equal to 10 installments for more orders will have a positive impact on the business compared to more than 10 installments as they have less than 1% share of total orders.
- 6. Customers from the state of Sao Paulo must be maintained by giving incentives as their contributions account for nearly 50% of the total orders.
- The e-commerce growth rate is stagnant in the year 2018 compared to the rapid growth in 2017. Further analysis with various economic factors may be required to understand this trend.