

Melbourne Veterinary School

The role of the liver in fatty acid, amino acid and carbohydrate metabolism

Dr Nick Bamford

Senior Lecturer, Veterinary Biosciences

n.bamford@unimelb.edu.au

Role of the liver in metabolism & energy production

- Lecture 3 Health
 - Key pathways of metabolism

- Lecture 8 Disease
 - Metabolism of negative energy balance
 - Ruminant metabolism
 - Syndrome of ruminant ketosis

Chapter 2 & 14

Intended learning outcomes

- Outline how energy is derived from:
 - 1. Carbohydrates (glucose)
 - 2. Fats (fatty acids)
 - 3. Protein (amino acids)
- Key biochemical processes that occur in the liver
- Major metabolic effects of insulin and glucagon
- Metabolic fates of acetyl-CoA

Purpose of metabolism

- Chemical processes in the body that sustain life
 - Oxidation of food to provide energy (ATP)
 - Food molecules converted into new cellular material
 - Processing of waste products to facilitate excretion
 - Generation of heat
- Liver is central to these processes!

Constituents of food

- 1. Carbohydrates
- 2. Fats
- 3. Proteins
- 4. Vitamins
- 5. Minerals
- 6. Fibre
- 7. Water

Constituents of food

- Carbohydrates
 - Sugars mostly as disaccharides (e.g. sucrose, lactose) or polysaccharides (e.g. starch)

Triacylglycerols (TAGs)

Proteins

• Polypeptides of amino acids

TRIACYLGLYCEROLS

Highly regulated system

Postprandial state

- High levels of nutrients in the blood
- Glucose
 - Replenish glycogen stores in liver & skeletal muscle
 - Excess converted to TAGs
- Fats
 - TAGs stored in adipocytes
- Amino acids
 - Utilised by tissues for de novo protein synthesis
 - Excess converted to fat or glycogen

Hormonal control

- Insulin
 - Main signal to 'store'
 - Pancreatic β cells in response to high glucose
- Glucagon
 - Main signal to 'release'
 - Pancreatic α cells in response to low glucose
- Reciprocal control

• Energy is derived from glucose, fat and amino acids in the form of adenosine triphosphate (ATP)

Hydrolysis of ATP to ADP & inorganic phosphate

Energy release from glucose

- Glucose or other sugars as 'glucose-like' substrates
- Stored as glycogen in liver & skeletal mm.

Periodic Acid Schiff (PAS) stain of muscle

Stage 1: Glycolysis

- Cytoplasmic
- Splitting of glucose (6C)
 - \rightarrow 2x pyruvate (3C)
 - Net 2ATP & 2NADH
- Does not require O₂

Stage 2: TCA cycle

Mitochondrial matrix

First step

- Oxidative decarboxylation of pyruvate
 - Irreversible release of CO₂
- Acetyl group (2C) transferred to carrier
 Coenzyme A → acetyl-CoA

Acetyl-CoA

- Coenzyme A (CoA) is an acyl group carrier
- Incorporates pantothenic acid (Vit. B5)
- Acetyl-CoA is at the cross-roads of metabolism!
- Fate of acetyl-CoA:
 - 1. Feed into TCA cycle
 - 2. Lipogenesis
 - 3. Ketogenesis

Stage 2: TCA cycle

AKA Krebs cycle/Citric acid cycle

NET RESULT: ONE TURN OF THE CYCLE PRODUCES THREE NADH, ONE GTP, AND ONE FADH₂ MOLECULE, AND RELEASES TWO MOLECULES OF CO₂

Stage 3: Oxidative phosphorylation

- AKA Electron transport chain
- Electrons from NADH/FADH2 "bump down a staircase"
 - Each fall releases energy
 - O₂ is final electron acceptor

Mitochondria Structural Features Inner Membrane Outer Membrane Cristae Matrix

fats and carbohydrate molecules H+ gradient H+ pump H+ pump Citric acid cycle CO₂ H₂O products

MITOCHONDRION

Stage 3: Oxidative phosphorylation

Aerobic cellular respiration

- Oxygen required as final electron acceptor in ETC
- Although oxygen not utilised directly in TCA cycle, the availability of NAD+ becomes limiting when oxygen is not present

Anaerobic cellular respiration

- Anaerobic glycolysis: pyruvate → lactate
- Lactate sustains glycolysis:
 - Yields only 2 ATP (net) per glucose (c.f. 38 ATP)
 - But 100x speed ox. phos.

Lactic acid cycle

- Lactate released from tissues and transported to liver
- Lactate converted to glucose (requires energy)

Lactic acid (Cori) cycle

Energy release from fats

Fatty acid (β) oxidation

C atoms detached 2 at a time as acyl group

→ acetyl-CoA → TCA cycle

Energy release from fats

 Fatty acid oxidation differs from glucose oxidation in the preliminary formation of acetyl-CoA

Role of the liver in fatty acid metabolism

- Can utilise fatty acids as energy (β oxidation)
- Lipogenesis/TG synthesis
- Package TAGs with apoproteins as VLDL

Fate of glycerol

 Directed to liver or kidneys to be converted to glycolytic intermediates → feeds into glycolysis

Fate of amino acids

Energy release from amino acids

- Deamination via transaminase
- C-H skeletons used as fuel:
 - Pyruvate
 - Acetyl-CoA
 - TCA cycle intermediates

Energy release from amino acids

Amino acids can be glucogenic, ketogenic or both

Gluconeogenesis

- Most reactions opposite of glycolysis
- Glucose production from non-carbohydrate substrates
 - Glycerol
 - Lactate, pyruvate
 - Gluconeogenic amino acids (esp. alanine, glutamine)
 - (Propionate ruminants)
- Acetyl-CoA is not gluconeogenic!
- Mainly in liver (also in kidney)

Intended learning outcomes

- Outline how energy is derived from:
 - 1. Carbohydrates (glucose)
 - 2. Fats (fatty acids)
 - 3. Protein (amino acids)
- Key biochemical processes that occur in the liver
- Major metabolic effects of insulin and glucagon
- Metabolic fates of acetyl-CoA

Intended learning outcomes

- Outline how energy is derived from:
 - 1. Carbohydrates (glucose)
 - 2. Fats (fatty acids)
 - 3. Protein (amino acids)
- Key biochemical processes that occur in the liver
- Major metabolic effects of insulin and glucagon
- Metabolic fates of acetyl-CoA

Key role of the liver

- Glycogenesis/glycogen storage (also skeletal mm.)
- Gluconeogenesis
- Ketogenesis
- Fatty acid metabolism TAG/VLDL synthesis
- Lactic acid metabolism
- (Generation of energy through glycolysis & β oxidation just as in other tissues)

Intended learning outcomes

- Outline how energy is derived from:
 - 1. Carbohydrates (glucose)
 - 2. Fats (fatty acids)
 - 3. Protein (amino acids)
- Key biochemical processes that occur in the liver
- Major metabolic effects of insulin and glucagon
- Metabolic fates of acetyl-CoA

Hormonal control

- Insulin
 - Main signal to 'store'
 - Pancreatic β cells in response to high glucose
- Glucagon
 - Main signal to 'release'
 - Pancreatic α cells in response to low glucose
- Reciprocal control

Intended learning outcomes

- Outline how energy is derived from:
 - 1. Carbohydrates (glucose)
 - 2. Fats (fatty acids)
 - 3. Protein (amino acids)
- Key biochemical processes that occur in the liver
- Major metabolic effects of insulin and glucagon
- Metabolic fates of acetyl-CoA

Acetyl-CoA

- Coenzyme A (CoA) is an acyl group carrier
- Incorporates pantothenic acid (Vit. B5)
- Acetyl-CoA is at the cross-roads of metabolism!
- Fate of acetyl-CoA:
 - 1. Feed into TCA cycle
 - 2. Lipogenesis
 - 3. Ketogenesis

