УДК 519.637

СТАТИСТИЧЕСКАЯ ОБРАБОТКА ДАННЫХ В СРЕДЕ МАТНСАО

С.В. Шушкевич, Г.Ч. Шушкевич

В статье излагаются основные методы статистической обработки данных с использованием встроенных функций системы MathCad. Рассмотрены встроенные функции для вычисления числовых характеристик выборки, коэффициента корреляции по Пирсону, построения регрессий, описываемых функциями разного вида, выполнения сглаживания эмпирических данных.

Введение

В настоящее время информация становится частью действительности, требуя адекватных технологий ее восприятия и анализа. Существует множество отраслей знаний, в которых возникает необходимость проведения анализа данных — медицина, психология, биология, социология, экономика и др. Статистический анализ позволяет компактно описать данные, понять их структуру, провести классификацию, увидеть закономерности в случайных процессах.

Описательная статистика

Описательная статистика отражает числовые характеристики данных, полученных при наблюдении или в эксперименте. В системе Mathcad в разделе Statistics представлены встроенные функции для вычисления числовых характеристик выборочных данных, размещенных в матрице A размерности $n \times m$:

- \bullet mode(A) возвращает моду выборки наиболее часто встречающееся значение выборочных данных;
- median(A) возвращает значение, стоящее в середине выборки. Если число элементов выборки четное n=2k, то медиана определяется по формуле $(x_k+x_{k+1})/2$. При нечетном объеме выборки n=2k+1 значение медианы равно x_{k+1} ;
- mean(A) возвращает среднее значение выборки, вычисленное по формуле

$$\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}$$
,

• hmean(A) – возвращает среднее гармоническое значение выборки,

вычисленное по формуле
$$\left(\frac{1}{nm}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{1}{a_{ij}}\right)^{-1},a_{ij}>0$$
 ,

• gmean(A) – возвращает среднее геометрическое значение выборки,

вычисленное по формуле
$$\left(\prod_{i=1}^{n}\prod_{j=1}^{m}a_{ij}\right)^{1/mn}$$
, $a_{ij}>0$,

- var(A) возвращает значение выборочной дисперсии, вычисляемой по формуле $\frac{1}{nm}\sum_{i=1}^n\sum_{j=1}^m(a_{ij}-mean(A))^2$;
- Var(A) возвращает значение исправленной выборочной дисперсии, вычисляемой по формуле $\frac{nm}{nm-1}var(A)$;
- stdev(A) возвращает значение среднеквадратичного отклонения, которое вычисляется по формуле $\sqrt{var(A)}$;
- Stdev(A) возвращает значение исправленного среднеквадратичного отклонения, которое вычисляется по формуле $\sqrt{Var(A)}$;
- kurt(A) возвращает значение эксцесса выборки. Он характеризует высоковершинность или низковершинность экспериментального распределения по отношению к нормальному распределению. Если эксцесс больше нуля, то распределение имеет более острую вершину, чем распределение Гаусса, если меньше нуля то более плоскую. Эксцесс вычисляют по формуле

$$\frac{nm(nm+1)}{(nm-1)(nm-2)(nm-3)} \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{ij} - mean(A))^4 \, Var(A)^{-2} - \frac{3(nm-1)^2}{(nm-2)(nm-3)} \, ;$$

• skew(A) — возвращает значение асимметрии выборки. Асимметрия характеризует скошенность эмпирического распределения по отношению к нормальному. Если асимметрия больше нуля, то имеем левостороннюю асимметрию, если меньше нуля — то правостороннюю. Асимметрию вычисляют по формуле

$$\frac{nm}{(nm-1)(nm-2)} \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{a_{ij} - mean(A)}{Stdev(A)} \right)^{3} .$$

Для приведенных встроенных функций аргументами могут быть любое количество векторов, матриц и чисел.

Гистограмма аппроксимирует плотность эмпирического распределения по выборочным данным. При построении гистограммы область наблюдаемых значений случайной величины разбивается на n равных интервалов и подсчитывается количество попаданий данных в каждый интервал. Для построения гистограммы используют функцию histogram (n, A), которая возвращает матрицу размера $n \times 2$, состоящую из столбца интервалов разбиения и столбца количества данных в каждом их них.

Пример 1. Найти числовые характеристики выборки. Построить гистограмму относительных частот с 7 интервалами и график плотности нормального распределения c математическим ожиданием, равным выборочному среднему, среднеквадратичным отклонением, равным выборочному среднеквадратичному отклонению.

Math – Документ

1. Ввод данных:

	D:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4,622	1.259	0.053	1.903	0,272	1,087	0.759	2.113	3,384	2.617
<u>dt</u> :=		2.971	2.724	2.831	2.346	1.089	1.138	0.511	2.393	0.636	1.289
		0.446	2.033	2.116	1.151	1.179	3.824	0.411	1.604	3.215	3.785
		1.802	1.37	3.912	1.923	1.395	4.198	2.542	1.612	1.023	0.529
		1.982	0.348	0.736	3.036	1.37	2.027	2.48	0.967	1.558	1.324

2. Вычисление числовых характеристик:

$$\begin{aligned} & mode(dt) = 1.37 & median(dt) = 1.608 \\ & mean(dt) = 1.838 & hmean(dt) = 0.829 & gmean(dt) = 1.434 \\ & var(dt) = 1.225 & Var(dt) = 1.25 \\ & stdev(dt) = 1.107 & Stdev(dt) = 1.118 & kurt(dt) = -0.275 & skew(dt) = 0.613 \end{aligned}$$

3. Построение гистограммы и графика плотности нормального распределения:

Корреляционный и регрессионный анализ

Пусть наблюдаются два признака X, У, значения которых являются случайными величинами и замерены на одной выборке. Между ними существует связь особого рода, при которой изменение значений одной случайной величины ведет к изменению распределения значений другой. Такая связь называется стохастической [1]. Для оценки силы стохастической связи используют коэффициент корреляции. Прямолинейная зависимость, как правило, наблюдается между величинами, имеющими нормальное

распределение. В этом случае для вычисления коэффициента корреляции Пирсона r по формуле

$$\frac{cv \operatorname{ar}(X,Y)}{\operatorname{stdev}(X)\operatorname{stdev}(Y)}$$

используют встроенную функцию corr(X,Y), здесь встроенная функция cvar(X,Y) вычисляет ковариацию элементов массивов X,Y по формуле

$$\frac{1}{n}\sum_{i=1}^{n}(x_i - \text{mean}(X))(y_i - \text{mean}(Y)).$$

Уравнение регрессии представляет собой функцию, аппроксимирующую зависимость между случайными величинами X и Y. По форме зависимости различают:

- 1) линейную регрессию, которая выражается линейной функцией y = ax + b,
- 2) нелинейную регрессию, которая выражается полиномиальной, степенной, логарифмической, тригонометрическими и другими функциями.

Все встроенные функции, относящие к построению различных уравнений регрессии, находятся в разделе Curve Fitting and Smoothing.

Для нахождения коэффициентов линейной функции можно воспользоваться встроенными функциями:

- line (vx,vy) возвращает вектор из двух элементов (b,a),
- slope (vx, vy) возвращает значение коэффициента а,
- intercept (vx, vy) возвращает значение коэффициента b, где vx, vy вектора наблюдаемых данных одинакового размера.

Встроенная функция medfit(vx,vy) предназначена для нахождения коэффициентов уравнения прямой вида y = ax + b, наилучшим образом аппроксимирующей данные векторов vx и vy c использованием медианмедианной регрессии — возвращает вектор из двух элементов (b, a).

Встроенная функция stderr(vx,vy) возвращает среднеквадратичную ошибку, связанную с линейной регрессией для точек, описанных векторами vx и vy, – измеряет разброс данных относительно линии регрессии:

$$\sqrt{\frac{1}{n-2}} \sum_{i=1}^{n} (vy_i - (int \, erpt(vx, vy) + slope(vx, vy)vx_i))^2$$

Построение полиномиальной регрессии $P_n(t) = a_0 + a_1 t + \ldots + a_n t^n$ осуществляется с помощью комбинации двух встроенных функций:

- regress(vx,vy,n) возвращает вектор-столбец значений коэффициентов $a_i,\ i=0,1,\ldots,n,$ для построения полинома $P_n(t)=a_0+a_1t+\ldots+a_nt^n,$
- interp(regress(vx,vy,к),vx,vy,t) возвращает значение полинома $P_n(t)$ в точке t.

Для построения полинома n-ой степени необходима, по крайней мере, (n+1) точка исходных данных. На практике не рекомендуется использовать

полином выше четвертой – шестой степени, поскольку погрешности реализации регрессии сильно возрастают.

Полиномиальную регрессию можно вычислить также путем сшивания нескольких полиномов второго порядка $P_2(t)$:

- loess (vx,vy,s) вектор коэффициентов для построения регрессии сшивкой полиномов $P_2(t)$;
- interp(loess (vx,vy,s),vx,vy,t) результат полиномиальной регрессии. Параметр s определяет размер окрестности данных, по умолчанию s=0.75.

Если Вы хорошо представляете, какой зависимостью описываются данные в массиве исходных данных, то для построения уравнений таких регрессии имеются специальные встроенные функции. Для использовании этих встроенных функций необходимо задать вектор начальных значений vn для коэффициентов a,b,c размерности 3×1. Каждая из нижеприведенных функций возвращает вектор уточненных значений параметров a,b,c для конкретной кривой:

- $expfit(vx,vy,vn) для функции вида <math>f(t) = ae^{bt} + c$,
- lgsfit(vx,vy,vn) для функции вида $f(t) = a/(1+be^{-ct})$,
- sinfit(vx,vy,vn) для функции вида f(t) = a sin(x+b) + c,
- $pwfit(vx,vy,vn) для функции вида <math>f(t) = ax^b + c$,
- logfit (vx,vy,vn) для функции вида $f(t) = a \ln(x+b) + c$,
- lnfit(x,y) для функции вида <math>f(t) = a ln(x) + b.

Затем по уточным значениям а, b, с строится линия регрессии.

В системе представлена встроенная функция для нахождения регрессии в виде линейной комбинации $a_0f_0(t)+a_1f_1(t)+\ldots+a_nf_n(t)$, где $f_i(t)$ — известные функции пользователя, коэффициенты a_i подлежат определению с помощью встроенной функции linfit(vx,vy,F), где F(t) — вектор-столбец, содержащий функции $f_i(t)$.

Можно также найти регрессии в виде $a_0f_0(a_1,t)+a_2f_1(a_3,t)+\dots$, где $f_i(a_{2i+1},t)$ — известные функции пользователя с неизвестными коэффициентами, коэффициенты a_i подлежат определению с помощью встроенной функции genfit(vx,vy,a,G), здесь а — вектор начальных значений для коэффициентов a_i , G(t,a) — вектор—столбец, составленный из функции пользователя и ее производных по a_i .

По аналогии с одномерной полиномиальной регрессией можно выполнить построение двумерной полиномиальной регрессии. Для этого используют те же встроенные функции, что и для одномерной регрессии:

• regress(vxy,vz,n) — возвращает вектор коэффициентов для построения полиномиальной регрессии данных,

- loess(vxy,vz,s) возвращает вектор коэффициентов для построения полиномиальной регрессии данных кусочными полиномами,
- interp(vr,vxy,vz, $\begin{pmatrix} x \\ y \end{pmatrix}$) возвращает значение полинома $P_n(x,y)$ в точке (x,y),

где vxy — матрица размерности $m \times 2$, определяющая координаты m точек (x_i, y_i) на плоскости Oxy,

vz – вектор значений z_i размерности m, соответствующий двумерному массиву vxy на плоскости,

n – степень полинома (целое положительное число),

s – параметр, определяющий размер окрестности данных, по умолчанию s=0.75. vr – вектор, созданный одной из встроенных функций regress или loess.

Пример 2. По выборочным данным построить двумерную полиномиальную регрессию.

Math – Документ

1. Исходные данные:

$$vxy := \begin{pmatrix} 2 & 2 & 3 & 1 & 4 & 0 & 3 & 0 & 5 & 4 \\ 2 & 3 & 3 & 4 & 1 & 0 & 1.9 & 5 & 0.5 & 4 \end{pmatrix} \quad vxy := vxy^{T}$$

$$vz := \begin{pmatrix} 1 & 2 & 2 & 3.5 & 2.3 & 2.6 & 5 & 3 & 2 & 1 \end{pmatrix} \quad vz := vz^{T}$$

2. Построение полинома третьей степени с помощью функции regress:

vr := regress(vxy,vz,3) vr ^T =		0	1	2	3	4	5	6	7
11. Tegress (vay , (2,5) 11	0	3	3	3	-10.991	8.278	11.35	263.603	
$Zr(x,y) := interp \left[vr, vxy, vz, \left(\right) \right]$	x y								

3. Построение полинома с помощью функции loess:

Т		_			_		_			
$vr1 := loess(vxy, vz, 1.1) vr1^{1} =$		0	1	2	3	4	5	6	7	8
(, , , , , , , , , , , , , , , , , , ,	0	1	110	2.326	4.244	5.843	3.52	3.087	2.542	
$ZI(x,y) := interp \left[vr1, vxy, vz, \begin{pmatrix} x \\ y \end{pmatrix} \right]$										

Сглаживание эмпирических данных

Вид эмпирической линии регрессии может показать, какая форма связи имеет место в конкретном случае — прямолинейная, параболическая или какаялибо другая [2]. Для получения возможности более точно судить о том, как меняется одна величина, например, Y, при изменении другой, например, X, выполняют элиминирование случайных колебаний эмпирической линии регрессии путем процедуры статистического сглаживания (выравнивания) данных. В системе Mathcad представлены несколько встроенных функций, реализующих различные алгоритмы сглаживания данных — раздел Curve Fitting and Smoothing:

- medsmooth(vy,nn) возвращает вектор такой размерности, как исходный вектор vy, созданный сглаживанием данных по методу скользящей медианы,
- ksmooth(vx,vy,b) возвращает вектор такой размерности, как исходный вектор vy, созданный сглаживанием данных на основе функции Гаусса,
- supsmooth(vx,vy) возвращает вектор сглаженных vy, вычисленных на основе использования процедуры линейного сглаживания методом наименьших квадратов,

где vx — вектор действительных данных аргумента (для supsmooth его элементы должны быть расположены в порядке возрастания);

vy – вектор действительных значений того же размера, что и vx;

nn – нечетное число, меньшее размерности вектора vy,

b – целое число, в несколько раз превышающее интервал между точками x_i .

Результаты использования встроенных функций medsmooth, ksmooth, supsmooth для сглаживания экспериментальных данных представлены, соответственно, на рис.1 – рис.3:

Рис. 1 – Сглаживание данных с помощью medsmooth

Рис. 2 – Сглаживание данных с помощью ksmooth

Рис. 3 – Сглаживание данных с помощью supsmooth

Заключение

Использование систем компьютерной математики позволяет выполнять начальные этапы анализа данных специалистам их конкретных областей. В системе Mathcad можно вычислять простые описательные статистики, строить графики, выполнять группировку данных и строить более сложные статистические модели, например, регрессионные, позволяющие оценивать и прогнозировать поведение и зависимость исследуемых величин.

Список литературы

- 1. Мацкевич, И.П. Высшая математика: Теория вероятностей и математическая статистика / И.П. Мацкевич, Г.П. Свирид. Минск: Выш. шк., 1993. 269 с.
- 2. Поллард, Дж. Справочник по вычислительным методам статистики / Дж. Поллард. М.: Финансы и статистика, 1982. 343 с.

Шушкевич Светлана Владимировна, старший преподаватель кафедры экспериментальной и прикладной психологии факультета психологии Гродненского государственного университета имени Янки Купалы, spusha@list.ru

Шушкевич Геннадий Чеславович, заведующий кафедрой информатики и компьютерного моделирования факультета математики и информатики Гродненского государственного университета имени Янки Купалы, доктор физико-математических наук, доцент, g shu@rambler.ru