

סקירה כללית .1

מסמך זה מהווה את המדריך ההנדסי המלא לבנייה, תפעול ותחזוקה של מערכת "גלגל המזל". המערכת היא LED חכמה ובקרה מבוזרת.

מטרות המערכת:

- יצירת גלגל מסתובב בהיקף 10 מטרים עם תאורה דינמית.
- סנכרון מלא בין התנועה הפיזית, תאורת הטבעת ההיקפית והמטריצה המרכזית.
- מתן אפשרות שליטה, ניטור וכיול דרך ממשק ווב ייעודי.

ארכיטקטורת המערכת .2

המערכת מבוססת על שלושה בקרים הפועלים יחד לדבונים יתירות ועמידות לתקלות:

- **Arduino Uno (בקר טבעת):** אחראי בלעדית על שליטה בפס ה-LED מקבל (WS2814). מקבל (UART פקודות על שליטה בפס ה).
- בקר חיישנים): המוח הלוגי של התנועה. קורא את שני חיישני ה) ESP32 (כדי לקבוע Hall Effect בקר חיישנים): המוח הלוגי של התנועה. שולח עדכונים לבקר הטבעת (UART) ולבקר המטריצה (UART)
- **ESP32 בקר מטריצה וממשק):** מנהל את תצוגת מטריצת ה LED ב**קר מטריצה וממשק):** מנהל את תצוגת מטריצת ה (WS2812B) ומארח המאפשר שליטה וניטור של המערכת כולה

תרשים תקשורת:

```
[ESP32 - חיישנים | -- (UART) --> [Arduino Uno] --> LED]
| (SP-NOW אלחוטי)
| ע
| ע
| (ESP32 מטריצה] <-- [מטריצת-LED]
| (WiFi)
| (WiFi)
| (WiFi) ממשק משתמש
```

3. רשימת רכיבים מלאה (Bill of Materials - BOM)

קטגוריה	רכיב	כמות	הערות
בקרים	Arduino Uno	1	
	ESP32 Development	2	

קטגוריה	רכיב	כמות	הערות
·	Board		
תאורה	os LED WS2814 (24V)	מטר 10	FCOB לקבלת אור אחיד
	מטריצת LED WS2812B	1	
	32x32 (5V)		
חיישנים	חיישן Hall Effect A3144	2	
	מגנט ניאודימיום	32	+ מגנט כפול לנקודת אינדקס
ספקי כוח	24 ספק כוח DC	1	מינימום (Aכ-15) 300W
	5 ספק כוח VDC	1	מינימום 60A
הגנות	20mmבית פיוז 5	4	
	פיוז Slow-Blow 15A (עבור 24)	1	
	פיוז Slow-Blow 30A (עבור 5)	1	
	7.5 אפיוז Ae'ולל ענף) הזרקה)	5	
	קבל אלקטרוליטי 1000µF,	6	ליד כל ספק + 1 בכל 1
	35V		נקודת הזרקה
	חקבל קרמי 100F	2	אחד ליד כל חיישן Hall
	1 אנגדβΩ	1	של DATA-בטור לקו ה הטבעת
חיווט	2.5 חחוט חשמל 2.5 AWG)	~20 מטר	אדום/שחור, קווי כוח ראשיים
	1.5 חחוט חשמל (1.5 AWG)	~30 מטר	אדום/שחור, להזרקות מתח
	22-24 כבל מסוכך 3 גידים AWG	~5 מטר	לחיישני Hall Effect
	חוטי גישור (Jumper Wires)	υο	לחיבורים על מטריצה
קונקטורים	קונקטור GX16-3 (Aviator)	זוגות 2	יציאה מהקופסה לטבעת ולמטריצה
	Terminal Blocks (ספ חיבורים)	1 טס	לפיצול מתחים בקופסת הבקרה
מכניקה	פרופיל אלומיניום ללדים	מטר 10	עם כיסוי חלבי עם אבי
	ברגים, אומים וזוויות	לפי צורך	למבנה ולקיבוע הרכיבים
בטיחות	מפסק חירום (E-Stop)	1	·
	קופסת בקרה אטומה (IP65)	1	

4. מדריך חיווט מפורט

4.1. 230 מערך מתח V AC:

- 230 מתחברת **תמיד** דרך מפסק החירום Vכניסת חשמל (E-Stop) והפיוז הראשי.

4.2. פיצול מתחים):

- הארקה (GND): כל נקודות ה-GND 24-ספק ה-V, 5-ספק ה-V, ספק ה-V, ספק ה-OND פות מחוברות יחד (GND): והבקרים חייבות להיות מחוברות יחד (Star Ground).
- **24+ עוברת דרך פיוז 15 V: ומתחברת לפס חיבורים ייעודי** Aעוברת דרך פיוז 15.
- **5+ עוברת דרך פיוז V: 30 אוברת דרך פיוז A**ומתחברת לפס חיבורים ייעודי.

1.3. חיווט רכיבים:

- טבעת LED (WS2814):
 - טמתח: חבר את קו ה-24 השל הטבעת IN של הטבעת.
 - 24+) אורך הטבעת באמצעות (GND-I-GND) אורך הטבעת באמצעות (GND-I-GND) משלו Acd קו הזרקה צריך פיוז 7.5.
 משלו Acd קו הזרקה צריך פיוז 1.5.
 - ס היה -DATA מה -arduino Uno 1-קו ה Ω אעובר דרך נגד DATA ומתחבר לפין ה Ω -של ומתחבר לפין ה Ω -של.

● מטריצת LED (WS2812B):

- 5-ו אתח: חבר את קו ה-GND 1000 ישירות מפס החיבורים. יש למקם קבל 1000 GND: חבר את קו ה-4 המטריצה המתח של המטריצה.
- ∘ DATA: חבר את פין ה-DATA מטריצה) לפין ה) לפין ה-DATA מטריצה. DATA ווא המטריצה המטריצה.

• חיישני Hall Effect:

- **VCC:** 5-מה Vאו 3.3 Vחבר ל-ESP32 (חיישנים).
- ∘ **GND:** של ה-GND של ה-ESP32.
- Signal (SIG): אבין Fיוש למקם קבל 100 -ESP32. חבר לפינים דיגיטליים ב VCC -GND קרוב VCC לכל חיישן.

בטיחות .5

הבטיחות היא מעל הכל!

- מפסק חירום (E-Stop): חייב להיות נגיש ובולט. הוא מנתק פיזית את המתח לשני ספקי הכוח.
- הארקה: ודא שכל חלקי המתכת של המבנה והקופסאות מחוברים להארקה הראשית.
- בידוד מתכווצים (Heat Shrink) על כל הלחמה. ודא שאין חוטים חשופים.
- עומס: הפעל את המערכת בהדרגה והשתמש במולטימטר כדי לוודא שהזרמים תואמים לחישובים ושאין רכיב שמתחמם יתר על המידה.

6. נוהל כיול - "Spin & Learn"

לאחר ההרכבה, יש לבצע כיול מדויק דרך ממשק ה-WEB:

- ... "Calibration" ונווט למסך ESP32-של ה WiFi אישה למסך. ונווט למסך לרשת ה
- 2. **איפוס:** לחץ על כפתור "איפוס פרמטרים".
- 3. סיבוב ידני: סובב את הגלגל באיטיות ובעקביות לפחות 2 סיבובים מלאים. המערכת תלמד את תזמוני הכפול הפולסים מהחיישנים ותזהה את נקודת האינדקס (המגנט הכפול).
- מדד יציבות "Confidence" מדד יציבות "המערכת תחשב את ההיסטים והספים הנדרשים ותציג "מדד יציבות" ("בות")
- שמירה: אם מדד היציבות גבוה (מעל 0.8), לחץ על "שמור לזיכרון" כדי לצרוב את הכיול.

יש לבצע כיול מחדש בכל פעם שהמערכת מועברת ממקום למקום או אם יש שינוי מכני כלשהו.