1. Теоретический минимум

- 1. Дайте определение ошибки первого и второго рода, критической области.
- 2. Укажите формулу доверительного интервала с уровнем доверия $(1-\alpha)$ для вероятности успеха, построенного по случайной выборке большого размера из распределения Бернулли Bin(1,p).

Для следующего блока вопросов предполагается, что величины $X_1, X_2, ..., X_n$ независимы и нормальны $\mathcal{N}(\mu; \sigma^2)$. Укажите формулу для статистики:

- 3. Статистика, проверяющая гипотезу о математическом ожидании при известной дисперсии σ^2 , и её распределение при справедливости основной гипотезы H_0 : $\mu=\mu_0$.
- 4. Статистика, проверяющая гипотезу о математическом ожидании при неизвестной дисперсии σ^2 , и её распределение при справедливости основной гипотезы H_0 : $\mu=\mu_0$.

Для следующего блока вопросов предполагается, что есть две независимые случайные выборки: выборка $X_1, X_2, ...$ размера n_x из нормального распределения $\mathcal{N}(\mu_x; \sigma_x^2)$ и выборка $Y_1, Y_2, ...$ размера n_y из нормального распределения $\mathcal{N}(\mu_y; \sigma_y^2)$.

Укажите формулу для статистики или границ доверительного интервала:

- 5. Доверительный интервал для разницы математических ожиданий, когда дисперсии известны;
- 6. Доверительный интервал для разницы математических ожиданий, когда дисперсии не известны, но равны;
- 7. Статистика, проверяющая гипотезу о разнице математических ожиданий при известных дисперсиях, и её распределение при справедливости основной гипотезы H_0 : $\mu_x \mu_y = \Delta_0$;
- 8. Статистика, проверяющая гипотезу о разнице математических ожиданий при неизвестных, но равных дисперсиях, и её распределение при справедливости основной гипотезы H_0 : $\mu_x \mu_y = \Delta_0$;
- 9. Статистика, проверяющая гипотезу о равенстве дисперсий, и её распределение при справедливости основной гипотезы H_0 : $\sigma_x^2 = \sigma_y^2$.

2. Задачный минимум

- 1. Пусть $X=(X_1,...,X_n)$ случайная выборка из нормального распределения с параметрами μ и $\sigma^2=4$. Используя реализацию случайной выборки, $x_1=-1.11,\,x_2=-6.10,\,x_3=2.42,$ постройте 90%-ый доверительный интервал для неизвестного параметра μ .
- 2. Пусть $X=(X_1,...,X_n)$ случайная выборка из нормального распределения с неизвестными параметрами μ и σ^2 . Используя реализацию случайной выборки, $x_1=-1.11, x_2=-6.10, x_3=2.42,$ постройте 90%-ый доверительный интервал для неизвестного параметра μ .
- 3. Пусть $X=(X_1,...,X_n)$ случайная выборка из нормального распределения с неизвестными параметрами μ и σ^2 . Используя реализацию случайной выборки, $x_1=1.07,\,x_2=3.66,\,x_3=-4.51,\,$ постройте 80%-ый доверительный интервал для неизвестного параметра σ^2 .

4. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ — независимые случайные выборки из нормального распределения с параметрами (μ_X,σ_X^2) и (μ_Y,σ_Y^2) соответственно, причем $\sigma_X^2=2$ и $\sigma_Y^2=1$. Используя реализации случайных выборок

$$x_1 = -1.11, x_2 = -6.10, x_3 = 2.42, y_1 = -2.29, y_2 = -2.91,$$

постройте 95%-ый доверительный интервал для разности математических ожиданий $\mu_X - \mu_Y$.

5. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ — независимые случайные выборки из нормального распределения с параметрами (μ_X,σ_X^2) и (μ_Y,σ_Y^2) соответственно. Известно, что $\sigma_X^2=\sigma_Y^2$. Используя реализации случайных выборок

$$x_1 = 1.53, x_2 = 2.83, x_3 = -1.25, y_1 = -0.8, y_2 = 0.06,$$

постройте 95%-ый доверительный интервал для разности математических ожиданий $\mu_X - \mu_Y$.

- 6. Пусть $X = (X_1, ..., X_n)$ случайная выборка из распределения Бернулли с параметром p. Используя реализацию случайной выборки $x = (x_1, ..., x_n)$, в которой 55 нулей и 45 единиц, постройте приближенный 95%-ый доверительный интервал для неизвестного параметра p.
- 7. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ независимые случайные выборки из распределения Бернулли с параметрами $p_X\in(0;1)$ и $p_Y\in(0;1)$ соответственно. Известно, что $n=100,\,\bar{x}_n=0.6,\,m=200,\,\bar{y}_m=0.4.$ Постройте приближенный 95%-ый доверительный интервал для отношения разности вероятностей успеха p_X-p_Y .
- 8. Дядя Вова (Владимир Николаевич) и Скрипач (Гедеван) зарабатывают на Плюке чатлы, чтобы купить гравицапу. Число заработанных за i-ый день чатлов имеет распределение Пуассона с неизвестным параметром λ . Заработки в различные дни независимы. За прошедшие 100 дней они заработали 250 чатлов.

С помощью метода максимального правдоподобия постройте приближенный 95%-ый доверительный интервал для неизвестного параметра λ .

9. Пусть $X=(X_1,...,X_n)$ — случайная выборка из показательного (экспоненциального) распределения с плотностью распределения

$$f(x,\lambda) = \begin{cases} \lambda e^{-\lambda x} \text{ при } x \ge 0 \\ 0 \text{ при } x < 0 \end{cases}$$

где $\lambda > 0$ — неизвестный параметр распределения. Известно, что n=100 и $\bar{x}_n=0.52$.

С помощью метода максимального правдоподобия постройте приближенный 95%-ый доверительный интервал для параметра λ .

- 10. Пусть $X=(X_1,...,X_n)$ случайная выборка из нормального распределения с неизвестным математическим ожиданием μ и известной дисперсией $\sigma^2=4$. Объем выборки n=16. Для тестирования основной гипотезы $H_0:\mu=0$ против альтернативной гипотезы $H_1:\mu=2$ вы используете критерий: если $\bar{X}\leq 1$, то вы принимаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_1 . Найдите
 - а) вероятность ошибки 1-го рода;
 - б) вероятность ошибки 2-го рода;
 - в) мощность критерия;

- 11. На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[-0.7;0.3]$ против альтернативной гипотезы $H_1: X_1 \sim U[-0.3;0.7]$. Рассматривается критерий вида: если $X_1 > c$, то гипотеза H_0 отвергается в пользу гипотезы H_1 . Выберите константу c так, чтобы уровень значимости этого критерия составлял 0.1.
- 12. Пусть $X=(X_1,...,X_n)$ случайная выборка из нормального распределения с параметрами μ и $\sigma^2=4$. Уровень значимости $\alpha=0.1$. Используя реализацию случайной выборки $x_1=-1.11, x_2=-6.10, x_3=2.42$, проверьте следующую гипотезу: $\begin{cases} H_0: \mu=0,\\ H_1: \mu>0 \end{cases}$
- 13. Пусть $X=(X_1,...,X_n)$ случайная выборка из нормального распределения с параметрами μ и σ^2 . Уровень значимости $\alpha=0.1$. Используя реализацию случайной выборки $x_1=-1.11,x_2=-6.10,x_3=2.42$, проверьте следующую гипотезу: $\begin{cases} H_0:\mu=0,\\ H_1:\mu>0 \end{cases}$
- 14. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ независимые случайные выборки из нормального распределения с параметрами (μ_X,σ_X^2) и (μ_Y,σ_Y^2) соответственно, причем $\sigma_X^2=2$ и $\sigma_Y^2=1$. Уровень значимости $\alpha=0.05$. Используя реализации случайных выборок

$$x_1 = -1.11, x_2 = -6.10, x_3 = 2.42, y_1 = -2.29, y_2 = -2.91,$$

проверьте следующую гипотезу: $\begin{cases} H_0: \mu_X = \mu_Y, \\ H_1: \mu_X < \mu_Y \end{cases}$

15. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ — независимые случайные выборки из нормального распределения с параметрами (μ_X,σ_X^2) и (μ_Y,σ_Y^2) соответственно. Известно, что $\sigma_X^2=\sigma_Y^2$. Уровень значимости $\alpha=0.05$. Используя реализации случайных выборок

$$x_1 = 1.53, x_2 = 2.83, x_3 = -1.25, y_1 = -0.8, y_2 = 0.06,$$

проверьте следующую гипотезу: $\begin{cases} H_0: \mu_X = \mu_Y, \\ H_1: \mu_X < \mu_Y \end{cases}$

16. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ — независимые случайные выборки из нормального распределения с параметрами (μ_X,σ_X^2) и (μ_Y,σ_Y^2) соответственно. Уровень значимости $\alpha=0.05$. Используя реализации случайных выборок

$$x_1 = -1.11, x_2 = -6.10, x_3 = 2.42, y_1 = -2.29, y_2 = -2.91,$$

$$\int H_0: \sigma_X^2 = \sigma_Y^2,$$

проверьте следующую гипотезу: $\begin{cases} H_0: \sigma_X^2 = \sigma_Y^2, \\ H_1: \sigma_X^2 > \sigma_Y^2 \end{cases}$

- 17. Пусть $X=(X_1,...,X_n)$ случайная выборка из распределения Бернулли с неизвестным параметром $p\in(0;1)$.Имеется следующая информация о реализации случайной выборки, содержащей n=100 наблюдений: $\sum_{i=0}^n x_i=60$. На уровне значимости $\alpha=0.05$ требуется протестировать следующую гипотезу: $\begin{cases} H_0: p=0.5, \\ H_1: p>0.5 \end{cases}$
- 18. Пусть $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ -две независимые случайные выборки из распределения Бернулли с неизвестными параметрами $p_X\in(0;1)$ и $p_Y\in(0;1)$. Имеется следующая информация

о реализациях этих случайных выборок: $n=100, \sum_{i=1}^n x_i=60, m=150, \sum_{j=1}^m y_j=50.$ На уровне значимости $\alpha=0.05$ требуется протестировать следующую гипотезу: $\begin{cases} H_0: p_X=p_Y, \\ H_1: p_X \neq p_Y \end{cases}$

- 19. Вася Сидоров утверждает, что ходит в кино в два раза чаще, чем в спортзал, а в спортзал в два раза чаще, чем в театр. За последние полгода он 10 раз был в театре, 17 раз в спортзале и 39 раз в кино. На уровне значимости 5% проверьте утверждение Васи.
- 20. Вася очень любит тестировать статистические гипотезы. В этот раз Вася собирается проверить утверждение о том, что его друг Пётр звонит Васе исключительно в то время, когда Вася ест. Для этого Вася трудился целый год и провел серию из 365 испытаний. Результаты приведены в таблице ниже.

	Пётр звонит	Пётр не звонит
Вася ест	200	40
Вася не ест	25	100

На уровне значимости 5% протестируйте гипотезу о том, что Пётр звонит Васе независимо от момента приема пищи Васей.

21. Пусть $X=(X_1,...,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием $\mu\in\mathbb{R}$ и дисперсией v>0, где μ и v — неизвестные параметры. Известно, что выборка состоит из n=100 наблюдений, $\sum_{i=1}^n x_i=30$, $\sum_{i=1}^n x_i^2=146$. При помощи теста отношения правдоподобия протестируйте гипотезу $H_0: v=1$ на уровне значимости 5%.

3. Ответы

1.
$$\left[-1.6 - 1.65 \cdot \frac{2}{\sqrt{3}}; -1.6 + 1.65 \cdot \frac{2}{\sqrt{3}} \right]$$

2.
$$\left[-1.6 - 2.92 \cdot \sqrt{\frac{18.33}{3}}; -1.6 + 2.92 \cdot \sqrt{\frac{18.33}{3}}\right]$$

3.
$$\left[\frac{18.09\cdot2}{4.61}; \frac{18.09\cdot2}{0.21}\right]$$

4.
$$\left[-1.6 - (-2.6) - 1.96 \cdot \sqrt{\frac{2}{3} + \frac{1}{2}}; -1.6 - (-2.6) + 1.96 \cdot \sqrt{\frac{2}{3} + \frac{1}{2}} \right]$$

5.
$$\left[1.04 - (-0.37) - 3.18 \cdot \sqrt{3.02} \sqrt{\frac{1}{3} + \frac{1}{2}}; 1.04 - (-0.37) + 3.18 \cdot \sqrt{3.02} \sqrt{\frac{1}{3} + \frac{1}{2}}\right]$$

6.
$$\left[0.45 - 1.96 \cdot \sqrt{\frac{0.45 \cdot 0.55}{100}}; 0.45 + 1.96 \cdot \sqrt{\frac{0.45 \cdot 0.55}{100}}\right]$$

7.
$$\left[0.6 - 0.4 - 1.96 \cdot \sqrt{\frac{0.6 \cdot 0.4}{100} + \frac{0.4 \cdot 0.6}{200}}; 0.6 - 0.4 + 1.96 \cdot \sqrt{\frac{0.6 \cdot 0.4}{100} + \frac{0.4 \cdot 0.6}{200}}\right]$$

8.
$$\left[2.5 - 1.96 \cdot \sqrt{\frac{1}{40}}; 2.5 + 1.96 \cdot \sqrt{\frac{1}{40}}\right]$$

9.
$$\left[\frac{1}{0.52} - 1.96 \cdot \sqrt{\frac{1}{100 \cdot 0.52^2}}; \frac{1}{0.52} + 1.96 \cdot \sqrt{\frac{1}{100 \cdot 0.52^2}}\right]$$

- 10. a) ≈ 0.02
 - б) ≈ 0.02
 - $B) \approx 0.98$
- 11. 0.2
- 12. Нет оснований отвергать H_0 .
- 13. Нет оснований отвергать H_0 .
- 14. Нет оснований отвергать H_0 .
- 15. Нет оснований отвергать H_0 .
- 16. Нет оснований отвергать H_0 .
- 17. Основная гипотеза отвергается.
- 18. Основная гипотеза отвергается.
- 19. Нет оснований отвергать H_0 .
- 20. Основная гипотеза отвергается.
- 21.