ITCS 531: NT4 homework solutions

Rob Egrot

NT4 Q1

Let p=11 and q=13. Choose suitable e and d for use in RSA encryption.

- ▶ Choose e.g. e = 7.
- ightharpoonup d is inverse of $e \mod 120$ (turns out to be 103).
- ► Can find *d* with brute force as 120 is a small number (best use a computer).
- Or can implement extended Euclidean algorithm.
- Can also find with a little trick see the solutions.

NT4 Q2

Prove that if $a \equiv_n b$ then $a^k \equiv_n b^k$ for all $k \in \mathbb{N}$.

- Induct on k. If k = 0 then its obviously true as 1 = 1.
- ▶ Suppose it's true for k-1.
- ▶ Then $a^k = a.a^{k-1}$ and $b^k = b.b^{k-1}$.
- ▶ By assumption we have $a \equiv_n b$.
- ▶ By the inductive hypothesis we have $a^{k-1} \equiv_n b^{k-1}$.
- Proposition 2.8(2) applies and tells us that $a^k \equiv_n b^k$ too.

NT4 Q3

Let a and b be coprime. Prove that if a|c and b|c then ab|c.

- ▶ By Bézout's identity there are x and y with xa + yb = 1.
- So cxa + cyb = c.
- Also, as a|c there is k with ak = c, and as b|c there is l with bl = c.
- ► So, we have (bl)xa + (ak)yb = c.
- ▶ Rearranging this gives (ab)(xl + yb) = c.
- ▶ This means ab|c as claimed.

NT4 Q4(a)

Let $n_1, \ldots, n_k \in \mathbb{N}$ all be greater than 1 and such that n_i and n_j are coprime for all $i \neq j$. Define $N = \prod_{i=1}^k n_i$. For each $i \in \{1, \ldots, k\}$ let $a_i \in \{0, \ldots, n_i - 1\}$.

- a) Let x and y be integers with $x \equiv_{n_i} a_i$ and $y \equiv_{n_i} a_i$ for all i. Prove that $x \equiv_N y$.
- ▶ As \equiv_n is transitive, we have $x \equiv_{n_i} y$ for all i.
- ▶ So $n_i|(x-y)$ for all i.
- ▶ By coprimality and Q3 we have N|(x-y), so $x \equiv_N y$.

NT4 Q4(b)

b) Find $z \in \mathbb{Z}$ with $z \equiv_{n_1} a_1$ and $z \equiv_{n_2} a_2$.

- ▶ By Bézout take x, y with $1 = xn_1 + yn_2$.
- So $xn_1 = 1 yn_2$ and $yn_2 = 1 xn_1$.
- ► Then $z = a_2(1 yn_2) + yn_2a_1 \equiv_{n_2} a_2$.
- ▶ Similarly $z \equiv_{n_1} a_1$.

NT4 Q4(c)

- c) Extend part b) to prove that there is z with $z \equiv_{n_i} a_i$ for all $i \in \{1, ..., k\}$.
- ▶ Induct on k. Trivial when k = 1. Let k > 1 and suppose true for k 1.
- ▶ Define $N' = \prod_{i=1}^{k-1} n_i$.
- ▶ By inductive hypothesis, there is $0 \le z' < N'$ with $z' \equiv_{n_i} a_i$ for all $1 \le i < k$.
- ► Then n_k and N' are coprime, because if p is prime and p|N' then $p|n_i$ for some i < k, and thus $p \nmid n_k$.
- ▶ So by b) there is z with $z \equiv_{N'} z'$ and $z \equiv_{n_k} a_k$.
- ▶ Since $z \equiv_{n_i} z' \equiv_{n_i} a_i$, we can use this z.