Europäisches Patentamt European Patent Office Office européen des brevets

EP 1 241 805 A2

EUROPEAN PATENT APPLICATION

(12)

(43) Date of publication: 18.09.2002 Bulletin 2002/38 (51) Int Cl.7: H04B 10/08

(11)

(21) Application number: 01307570.0

(22) Date of filing: 06.09.2001

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LY MK RO SI

(30) Priority: 16.03.2001 JP 2001076502

(71) Applicant: FUJITSU LIMITED
Kawasaki-shi, Kanagawa 211-8588 (JP)

(72) Inventor: Harasawa, Shin-ichirou Nakahara-ku, Kawasaki-shi, Kanagawa 211 (JP)

(74) Representative: Fenion, Christine Lesley et al Haseltine Lake & Co., Imperial House, 15-19 Kingsway London WC2B 6UD (GB)

(54) Fault locating in an optical transmission system

(67) An optical transmission system (1) with a mechnalism to locate a fault on a transmission line effectively and efficiently to ensure the quality of communication between end stations and repeaters (10) has repeaters (10) which respond to a monitoring control command sent from an end station (20), returning a monitoring report signal that indicates their current operating, status and input/output signal conditions. In the end station (20), a monitoring report processor (22a) identifies faulty link section of the optical transmission line (1), if the monitoring report signal indicates a fiber fault. The end station (20) sends a troubleshooting control command to cause a relevant repeater (10) to transmit a probing light pulse signal and a complementary light pulse signal simultaneously in opposite directions. Some of the probing light pulse is reflected back as a result of Rayleigh scattering. The end station (20) locates the fiber fault by analyzing the backscatter, using the complementary light pulse signal for synchronization.

FIG. 1

Description

[0001] The present invention relates to an optical transmission system.

[0002] In recent years, international telecommunication needs have rapidly grown, the major driving forces being business globalization and Internet proliferation. In order to meet the increasing demands for a more costeffective, bandwidth-nch telecommunication service. submarine optical transmission systems are expected to be as important as satellite communications systems. [0003] In submarine optical transmission systems, inline repeaters are placed at certain intervals along the fiber optic cable laid under the sea, so that the attenuation losses of signals are compensated for by intermediary optical amplification. Such submanne systems are required to offer the highest level of reliability because problems in the undersea equipment would cost a lot of time and money to repair. For this reason, the system must have an integral troubleshooting mechanism that pinpoints the fault in the event of such a failure.

| Previously-proposed fault locating techniques use a probing light signal that is transmitted from an end station on the land, so that light travels through the fiber optic links and repeaters until it is reflected at the point 25 of a fiber break. By measuring the reflected light, the end station identifies the location of the fault. One problem with such techniques is that the probing light signal would be degraded before it reaches the broken point, because the light has to pass through a number of op-30 included the problem with the problem with the problem in the repeaters. The worsened signal-tonose ratio (SINR) would reduce the accuracy of fault location measurement, as well as increasing the time for analysis.

[0005] To solve the above problem, researchers have proposed other fault locating techniques in which the probing light is transmitted by an undersea repeater. For example, the Unexamined Japanese Patent Publication No. 4-326218 (1992) proposes a system with an extra fiber optic cable dedicated for transporting a probing light signal. In this case, the cost of the system would increase because of the need for laying an additional undersea cable in parallel with the main signal cable. The Unexamined Japanese Patent Publication No. 6-268597 (1994) discloses a technique which service the same purpose, but its different from the foregoing system in that the fiber optic cable for main communication channels is used to measure reflected light.

[0006] The above-described previously-proposed troubleshooting techniques, however, can only detect a 50 fiber break, because the object of their measurement is confined to Fresnel reflected light. In other words, they are unable to cover other types of faults that would not cause Fresnel reflection. Apart from being disrupted by a fiber break, optical transmission signals may also be 55 degraded by increased fiber losses due to fibre deterioration caused by diffusion of hydrogen or variations in temperature. Note that such fiber deteriors would

never be observed as a Fresnel-reflected light. Trouble within a repeater is another failure mode that must be taken into consideration. It is therefore necessary to develop an enhanced fault locating system that is capable of detecting various types of faults, including fiber deterioration and repeater failure, in addition to detecting a fiber break.

[0007] Yet another requirement for the system, which none of the previously-proposed techniques have of- fered, is the capability of efficiently and effectively controlling a repeater, from a distant end station, so as to make the repeater transmit a probing light signal. This requirement for the quality of interruption between an station and repeaters has to be fulfilled in future optical transmission systems.

[0008] Accordingly, it is desirable to provide an optical transmission system which has the capability of effectively and efficiently locating a fault on a transmission line to ensure the quality of communication between end stations and repeaters.

[0009] According to an embodiment of the present invention, there is provided an optical transmission system with a mechanism to locate a fault on an optical transmission line. This eystem comprises: repeaters which reley optical signals over the optical transmission line, and an end station which controls optical signal transmission and remotely manages the repeaters.

[0010] Each repeater comprises a monitoring report signal generating unit and a light pulse signals sending or unit. In response to a monitoring control command sent from the end station, the monitoring report signal generating unit monitors the current operating status and input/output signal conditions of the repeater itself, and it generates a monitoring report signal to inform the end station of the monitoring results. In response to a troubleshooting control command sent from the end station, the light pulse signal to the optical transmission line to locate a fault thereon, as well as sending a complementary or light pulse signal that is complementary to the probing light pulse signal that is complementary to the probing light pulse signal.

[0011] The end station, on the other hand, is equipped with a monitoring controller and a troubleshooting unit. The monitoring controller comprises; a monitoring command sending unit which sends a monitoring control command to the repeaters; and a monitoring report processor which monitors the operating status of the repeaters by analyzing the monitoring report signals received therefrom, as well as identifies a faulty link section if any problem with the optical transmission line is detected. The troubleshooting unit comprises: a troubleshooting command sending i...it, a Rayleigh backscattemeasurement unit, and a fault detection unit. The troubleshooting command sending unit sends a troubleshooting control command to one of the repeaters that is located near to the identified faulty link section. The Rayleigh backscatter measurement unit measures Rayleigh backscattered light caused by the probing light

pulse signal, using the complementary light pulse signal as a reference for synchronization. By analyzing the measured Rayleigh backscattered light, the fault detection unit locates the fault on the faulty link section.

[0012] Reference will now be made, by way of example, to the accompanying drawings, in which:

FIG. 1 is a conceptual view of an optical transmission system according to an embodiment of the present invention:

FIG. 2 shows the structure of a repeater;

FIG. 3 is a timing diagram showing light emissions in monitoring mode;

FIG. 4 is a timing diagram showing light emissions from laser diodes in fallure detection mode and the resulting Rayleigh scattered light;

FIG. 5 shows the structure of an end station;

FIG. 6(A) shows a format of monitoring control commands;

FIG. 6(B) shows a format of troubleshooting commands.

FIG. 7 shows a lightwave modulation with which monitoring control commands and troubleshooting commands are transmitted;

FIG. 8 shows a waveform of a Rayleigh scattered 25 light;

FIG. 9 shows another waveform of a Rayleigh scattered light:

FIG. 10 shows yet another waveform of a Rayleigh scattered light;

FIG. 11 shows the operation in monitoring mode; FIG. 12 shows the operation in failure detection

FIG. 13 is a flowchart which shows a process of troubleshooting:

FIG. 14 shows a first variation of the repeater according to an embodiment of the present invention; and

FIGS. 15 and 16 show second and third variations of the same.

[0013] Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

[0014] FiG. 1 is a conceptual view of an optical transmission system according to an embodiment of the present invention. This optical transmission system 1 comprises two end stations, a plurality of repeaters between the end stations, and optical transmission links (fibor optic cables) connecting them in series. For simplicity, FiG. 1 shows only one end station 20 and the first *m* repeaters 10-1 to 10-m connected to it. The system 1 might be deployed as a terrestrial network or submarine network. In undersee applications, the optical transmission lines and repeaters 10-1 to 10-m are laid under the sea, while the end station 20 is located in a building on the land.

[0015] Each repeater 10 (note: this reference numeral

"10" is used to refer collectively to the repeaters 10-1 to 10-m and so on) is equipped with a monitoring report signal generator 11 and a light pulse signal sending unit 12 for diagnostic purposes. More specifically, the monitoring report signal generator 11 produces a monitoring report signal in response to a monitoring control command sent from the end station 20. This signal indicates the operating status of the repeater itself, such as its internal temperature and the levels of electrical signals supplied to semiconductor laser devices. The monitoring report signal also reports the current condition of input/output signals including the main optical signals being transported. These pieces of status information are referred to herein as the "monitoring result information." The monitoring report signal containing such monitoring result information is transmitted back to the requesting end station 20 in the form of an optical signal.

[0016] The light pulse signal sending unit 12, on the other hand, sends a probing light pulse signal to an intended link section of the optical transmission line, in response to a troubleshooting command received from the end station 20, in order to locate a fault or the optical transmission line. Some of this probing light pulse signal transmission line. Some of this probing light pulse signal sendied "Rayleigh scattering" (described later). The light pulse signal sending unit 12 also produces a complementary light pulse signal which is complementary to the above probing light pulse signal and transmits it towards the end station 20.

Ø [0417] The end station 20 employs a monitoring controller 2a and a, troubleshooting unit 2b. The monitoring controller 2a enorphisea a monitoring command sending unit 21a and a monitoring report processor 22a. The monitoring command sending unit 21a transmits a monitoring command sending unit 21a transmits a monitoring control command to request the repeaters 10 to report their status. During examination of the monitoring report signals returned from the repeaters 10, the monitoring report grocessor 22a observes their operating status and identifies which link section is faulty (if any 9 such link problem is reported).

[0018] The troubleshooting unit 2b comprises a troubleshooting command sanding unit 2tb, a Rayleigh ackscatter measurement unit 22b, and a fault detection unit 23b. The troubleshooting command sending unit 21b sends- a troubleshooting command to one of the repeaters 10 that is located near to the Identified faulty link section. The Rayleigh backscatter measurement unit 22b monitors Rayleigh scattered light signals that are caused by the transmitted probing light pulse signal, by measuring the time of their occurrence, using the complementary light pulse signal sent from the repeater 10 for synchronization. The ".ult c'stection unit 22b and alyzes the result of the Rayleigh backscatter measurement, thereby detecting (and locating) a fault on the optical transmission line.

[0019] The system employs fiber-optic cables as information-carrying media. Unlike pure crystals, the glass materials used in those cables exhibit some inho-

mogeneity in the density. Since the radius of such inhomogeneous portions is smaller than the wavelength of light, incident light is partially deflected or scattered in different directions. This phenomenon is what has been referred to as "Rayleigh scattering," When a probing light pulse signal is transmitted in one direction, the resulting Rayleigh scattered light comes back in the opposite direction. According to an embodiment of the present invention, the proposed system monitors the waveform of this Rayleigh backscattered light in order to detect a fault on the optical transmission line. Besides locating breakage of an optical fiber cable, the system even detects a point at which the cable exhibits an increased loss for any reason. The system can also detect a failure within a repeater 10, using the functions of the monitoring controller 2a.

[0020] The structure of the repeaters 10 will now be discussed in greater detail below. FIG. 2 shows the structure of a repeater 10a. This repeater 10a supports two-way communication paths between the two end stations 20-1 and 20-2, through its four opicial ports P1 to P4. To Implement the functions of the monitoring report signal generator 11 and light pulse signal sending until 12 described above, it comprises the following components: a monitoring controller 101, a logic gate 102, laser diodes (LDs) 103a and 103b, an LD controller 104, photodiodes (PDs) 105a and 105b, and optical ampliffers 106a and 108b. In FIG. 2, the both solid lines represent liber optic connections, and the junction points with small arcs represent optical couplers (or optical splitters/combiners).

[0021] The repeater 10a has the following two operation modes: monitoring mode and failure detection mode. In monitoring mode, the repeater 10a receives monitoring control commands from the end station 20-2. More specifically, a command signal that arrives at the photodiode 105b is converted into an electrical signal and supplied to the monitoring controller 101. The monitoring controller 101 accepts the monitoring control command if it is addressed to the repeater 10a and collects information about the condition of the repeater 10a and status of optical input/output signals being repeated. These pieces of monitoring result information are subjected to the frequency shift keying (FSK) modulation, resulting in a monitoring report signal being input at the logic gate 102. At the same time, the monitoring controller 101 sends control signals to the LD controller 104 to drive the laser diodes 103a and 103b.

[0022] The logic gate 102 provides complementary outputs controlled by a single monitoring report signal input. That is, the logic gate 102 supplies one leaser diode 103a with a normal active-high (positive logic) signal, while it provides the other laser diode 103b with an inverted active-low (negative logic) signal, based on the same input signal. With the power source under the control of the LD controller 104, and with the monitoring report signal timings provided by the monitoring controller 101, the two laser diodes 103a and 103b produce a

monitoring light signal and a complementary monitoring light signal, respectively, both of which contain the same monitoring result information. Note here that these two light signals have different wavelengths. The repeater loa sends out the monitoring report signal through the post P1 and P4, and the complementary monitoring report signal through the posts P3 and P2.

[0023] Incoming optical signals observed at the port P1 are the main optical signal from the previous repeater and Rayleigh backscattered light. The optical amplifier 106a amplifies these signals and outputs them to the next repeater through the port P2, together with the complementary monitoring light signal produced within the repeater 10a. Because of its inherent isolation between the input and output, the optical amplifier 106a prevents the outgoing signal at the output port P2 from propagating back to the input port P1.

[0024] As for the other direction, the main optical transmission signal from the upstream repeater arrives at the input port P4, along with Rayleigh backscattered light. The optical amplifier 106b amplifies these signals and outputs them to the next repeater through the output port P3, together with the complementary monitoring light signal produced within the repeater 10a. Because of its inherent isolation between the input and output, the optical emplifier 106b prevents the outgoing signal at the output port P3 from propagating back to the input ont P4.

[0025] In failure detection mode, the repeater 10a receives a troubleshooting control command from the end
astation 20-2. More specifically, the command signal that
arrives at the photodiode 105b is converted into an electrical signal and supplied to the monitoring controller
101. The monitoring controller 101 accepts the troubleshooting control command if it is addressed to the repeater 10a, and supplies the logic gate 102 with a
source signal for generating light pulse signals. At the
same time, the monitoring controller 101 sends appropriate control signals to the LD controller 104 to drive
the laser diodes 103a and 103b.

[00:26] The logic gate 102 supplies one laser diode 103a with a normal eathw-liph (positive logic) signal, while it provides the other laser diode 103b with an inverted active-low (negative logic) signal, based on the same light pulse source signal. With the power source under the control of the LD controller 104, and with the source signal timings provided by the monitoring controller 101, laser diodes 103a and 103b produce a light pulse signal (referred to as the "probing light pulse signal for failure detection purposes. The repeater 10a sends out the probing light pulse that, is p. Judu ed through the port: P1 and P4, and the complementary light pulse signal through the remaining ports P3 and P2.

5 [0027] As the probing light pulse travels through the fiber, some of that light signal is reflected back in the opposite direction as a result of Rayleigh scattering. FIG. 2 shows an example of this Rayleigh backscattered light observed at the port P1. More specifically, the probing light pulse sent out to the link C1 is scattered back
in the direction indicated by the arrow A. The optical ampillier 106a receives this Rayleigh scattered light
through the port P1 and ampillies and sends it out to the 5
next link section C2 through the port P2. The scattered
light travels along the fiber optic cables C2, C3,... Cn,
being ampillied at each repeater along the path, until it
finally reaches the remote end station 20-2. When a failure of the fiber optic cable C1 reported, the end station
20-2 measures the incoming Rayleigh scattered light,
using the complementary light pulse signal with a different wavelength as the reference for synchronization. In
this way, the end station 20-2 locates the fault on the
link section C1.

[0028] As previously stated, the laser diodes 103a and 103b in the repeater 10a emit a monitoring report signal and a complementary monitoring report signal in monitoring mode. FIG. 3 shows their light emitting operation when they are activated in monitoring mode. The monitoring result information is encoded with FSK modulation techniques, where two frequencies f1 and f2 represent binary signal states. For example, one frequency f1 is assigned to one signal state "0," and the other frequency f2 to the other state "1."In failure detection mode, on the other hand, the laser diodes 103a and 103b emit a probing light pulse signal and a complementary light pulse signal, respectively. FIG. 4 is a timing diagram which illustrates such light emissions in failure detection mode, including a probing light pulse signal (A) and a complementary light pulse signal (B), as well as showing Rayleigh backscatter (C) resulting from the .signal (A). The hatched portions of FIG. 4 indicate the presence of active lights.

[0029] The structure of the end stations 20 will be discussed in greater detail below with reference to FIG. 5. FIG. 5 shows an end station 20a, which is largely divided into the following functional blocks: a monitoring controller 2a, a troubleshooting unit 2b, a supervisory unit 220, a main signal transmitter 230, and a main signal receiver 240. In FIG. 5, the bold solid lines represent fiber optic connections, and the junction points with small arcs represent optical couplers (or optical splitters/combiners). [0030] The main signal transmitter 230 comprises a transmitter 231, an amplitude modulator 232, and an optical amplifier 233. The transmitter 231 controls the transmission of a main optical signal. The amplitude modulator 232 modulates the amplitude of the main optical signal with given input signals such as monitoring control commands and troubleshooting control com- 50 mands mentioned earlier. With amplitude modulation. these control commands are superimposed on the main optical signal. The optical amplifier 233 directly amplifies the modulated optical signal for delivery to the nearest repeater 10.

[0031] The main signal receiver 240 comprises an optical amplifier 241 and a receiver 242. The optical amplifier 241 amplifies incoming light signals, and the re-

ceiver 242 receives the main signal contained in the amplified light signals.

[0032] The supervisory unit 220 manages the entire process of status monitoring and troubleshooting activities by controlling the monitoring controller 2a and troubleshooting unit 2b. While it is not shown in FIG. 5, a maintenance console is connected to the supervisory unit 220 to allow the operator to interact with the system. [0033] The monitoring controller 2a comprises a photodiced 211, a band-pass filter 212, an envelope detection

tor 213, a monitoring report signal processor 214, and a control command processor 215. The photodiode 211 receives part of the incoming optical signals amplified by the optical amplifier 241 and converts it into an electrical signal. The band-pass filter 212 allows passage of a particular range of wavelengths, including that of the monitoring report signal. The envelope detector 213 performs envelope detection, extracting the baseband waveform of the monitoring report signal. The monitoring report signal processor 214 decodes the monitoring report signal to provide the supervisory unit 220 with the content of the report. The control command processor 215 performs coding of a monitoring control command or troubleshooting control command according to instructions from the supervisory unit 220. The coded command signal is then supplied to the amplitude modulator 232.

[0034] The troubleshooting unit 2b comprises an optical amplifier 201, two optical filters 202-1 and 202-2, 2 two photodiodes 203-1 and 203-2, an envelope detector 204, a tigger signal extractor 205, and signal processor 206. The optical amplifier 2b incoming optical signals, The optical filter 202-2 extracts a complementary light pulse signal out of the amplified incoming optical signals. The photodiode 203-2 converts the complementary light pulse signal into an electrical signal. The trigger signal extractor 205 detects each edge of the complementary light pulse signal and supplies it to the signal processor 206 for use as a triquer signal.

0 [0035] The other optical filter 202-1 extracts Reyleigh backscattered light out of the amplified incoming optical signals. The photodiode 203-1 converts the received Rayleigh backscattered light into an electrical signal. The envelope detector 204 detects the envelope of this 5 signal, thus extracting its baseband waveform. Based on the trigger signal supplied from the trigger signal extractor 205, the signal processor 206 analyzes the baseband waveform of the Rayleigh backscattered light, thereby locating a fault on the optical transmission line. Here, the envelope detector 204 uses a technique known as the optical transmission included the control of the detect of the supervisory unit 220.

[5] [0036] The frame format of monitoring control commands and troubleshooting control commands are shown in FIGS. 6(A) and 6(B). Referring first to FIG. 6(A), the monitoring control command frame Fa consists

of a repeater identification address field fla and a monitoring command field f2a. Each repeater is previously assigned a unique address. When sending a monitoring control command to a particular repeater of interest, the end station 20 puts the address of that repeater into the repeater identification address field fla, besides setting an intended command codeword in the monitoring command field f2a

q

[0037] Likewise, the troubleshooting control command frame Fb consists of a repeater address field f1b and a fault locating command field f2b. When requesting a particular repeater to emit a probing light pulse signal and its complementary counterpart, the end station 20 puts the address of that repeater into the repeater identification address field f1b, besides setting a necessary command codeword into the fault locating command

[0038] FIG. 7 shows a lightwave modulation with which a monitoring control command or a troubleshooting command is transmitted. In this way, command sig- 20 nals are overlaid on the main optical signal with an amplitude modulation technique.

[0039] Next, a few examples of Rayleigh backscattered light will be given with reference to FIGS. 8 to 10. In all these figures, the vertical axis represents the in- 25 tensity of the backscatter. The horizontal axis represents the distance from the observing end, which is actually measured in the time domain.

[0040] FIG. 8 shows the typical form of Rayleigh backscattered light that is observed when there is no problem 30 in the fiber optic cable. Probing light pulses are transmitted at predetermined intervals that are longer than the light propagation time of the link section under test. As the probing light pulse travels toward the far end of the link, the resulting backscatter comes back in the opposite direction, decreasing its intensity at a constant

[0041] FIG. 9 shows the form of Rayleigh backscattered light that would occur if there was a fiber break at some point in the link section under test. When a trans- 40 mitted probing light pulse signal encounters such a break, a relatively large portion of the light is reflected back to the transmitting end. This strong reflection. termed "Fresnel reflection," is observed as a narrow peak as shown in FIG. 9.

[0042] From the status information that forms part of the monitoring result information, the end station 20 is able to determine which link section is faulty, as well as the length of each link section of the network. By measuring the time at which the Fresnel reflection light arrives, the end station 20 can pinpoint the location of the fiber break. Suppose, for example, that the probing light pulse signal of FIG. 9 has been transmitted from the tenth repeater (counted from one end station) down to the next-hop link section with a length of 100 km before 55 the eleventh repeater, As FIG. 9 shows, a narrow peak is observed at the distance of 50 km from the transmitting end (i.e., the tenth repeater), indicating the presence of a fiber break at that remote point. Note that the end station identifies this distance in time-domain meas-

[0043] FIG. 10 shows the waveform of backscattered light when there is a loss of transmission at some point on the link section under test. Suppose again that the tenth repeater has transmitted the probing light pulse signal of FIG. 10 down to the next-hop link section with a length of 100 km before the eleventh repeater. As FIG. 10 shows, a sudden drop of intensity is observed at the distance of 50 km from the transmitting end (i.e., the

tenth repeater), indicating the presence of an increased loss at that remote point. [0044] Referring next to FIGS. 11 and 12, the process flow of troubleshooting will be discussed. First, the fol-

lowing section will explain the operation in the monitoring mode, with reference to FIG. 11. FIG. 11 shows one end station 20-1 and three repeaters 10-1 to 10-3, as well as four link sections connecting them in series. The individual link sections are referred to by the ordinal numbers starting with "zeroth." In FIG. 11, the zeroth link section is the nearest to the end station 20-1, and the "third" link section the furthest of all.

[0045] Suppose, for example, that the end station 20-1 is attempting to monitor the second repeater 10-2. The end station 20-1 first sends a monitoring control command containing the address of the repeater 10-2 in its header field. Upon receipt of this command, the repeater 10-2 determines whether the received monitoring control command is addressed to itself, and if so. it accepts that command. Then the repeater 10-2 checks its own operating status and input/output signal conditions. The collected information is compiled as a monitoring report signal and sent out in both directions simultaneously, in the form of light pulses.

[0046] FIG. 12 illustrates how the system operates in failure detection mode. Suppose here that the end station 20-1 has collected the current status information from each repeater through the monitoring-mode processing explained in FIG. 11, and that survey indicates a problem with the third link section C3b. This link section C3b falls within the coverage area of the repeater 10-3 in terms of fault locating functions.

[0047] In an attempt to investigate the problem through the third repeater 10-3, the end station 20-1 Issues a troubleshooting control command containing the address of the repeater 10-3 in its header field. Upon receipt of this command, the repeater 10-3 determines whether the received troubleshooting control command is addressed to itself, and if so, it accepts that command. According to the received command, the repeaters 10-3 injects a probing light pulse ... ana! C into the fiber optic cable of the link section C3b, as well as sending a complementary light pulse signal D toward the end station 20-1 over the link section C2b. While there is no fault detected on the other optical transmission line, another set of light pulse signals A and B are transmitted to the link sections C2a and C3a, respectively, because of the

symmetrical structure of the repeater 10 discussed in FIG. 2

[0048]. Using the complementary light pulse signal D as a trigger timing signal, the end station 20-1 captures the waveform of the resulting Rayleigh backscattered light. The end station 20-1 then locates the fault in the third link section C3b by analyzing the waveform of the Rayleigh backscattered light.

[0049] FIG. 13 is a flowchart which shows a process of troubleshooting.

[0050] (S1) The main signal receiver 240 in the end station 20 detects a disruption of the main optical signal. [0051] (S2) The end station 20 issues a monitoring control command to each repeater 10 in a sequential fashion.

[0052] (S3) Each repeater 10 collects status information in response to the monitoring control command and returns a monitoring report signal to inform the end station 20 of the monitoring results.

[0053] (S4) By analyzing the monitoring report signals received from the repeaters 10, the end station 20 identifies which section of the optical transmission line has a problem.

[0054] (S5) Now that the faulty link section is identified, the end station 20 issues a troubleshooting control command addressed to the repeater that is located immediately before the faulty section.

[0055] (S6) The specified repeater 10 sends out a probing light pulse signal, together with a complementary light pulse signal.

[0056] (S7) Using the complementary light pulse signal as a trigger timing signal, the end station 20 observes the waveform of a resulting Rayleigh backscattered light

[0057] (S8) The end station 20 locates the fault in the link section by analyzing the waveform of the Rayleigh backscattered light.

[0058] While one preferred embodiment of the repeater 10 has been described so far, the scope of the present invention is not limited to that specific arrangement. Rather, an embodiment of the proposed repeater design allows several variations in its internal configuration. One example is shown in FIG. 14. This repeater 10a-1, embodying a first variation of the repeaters 10, employs optical switches 107a and 107b at the outputs of the laser diodes 103a and 103b, respectively. Being controlled with the complementary output signals of the logic gate 102, these- optical switches 107a and 107b interrupt the light beams generated by the laser diodes 103a and 103b, thereby producing the desired probing light 50 pulse signal and complementary light pulse signal. The other functional blocks of the repeater 10a-1 are similar to those of the repeater 10a explained earlier in FIG. 2. [0059] FIG. 15 shows a repeater 10a-2 that embodies a second variation of the repeater 10. This repeater 10a-2 employs external modulators 108a and 108b at the outputs of the laser diodes 103a and 103b, respectively. Being controlled with the complementary output signals

of the logic gate 102, these external modulators 108a and 108b vary the intensity of light bearns generated by the laser diodes 103a and 103b, thereby producing the desired probing light pulse signal and complementary

ossired probing light pulse signal and complementary light pulse signal. The other functional blocks of the repeater 10a-2 are similar to those of the repeater 10a explained earlier in FIG. 2.

[0060] The above two variations employ optical switches or external modulators to turn on and off the ¹⁰ light signals, instead of directly driving the laser diodes. The use of those additional components avoids the problem of chirping (variations in wavelength) of laser

problem of chirping (variations in wavelength) of laser diodes, thus making more accurate measurement possible. 15 [0061] FIG. 16 shows an embodiment of a third variation of the repeater 10. Compared to the repeater 10a-

Judy 1 Pics. 16 snows an embourinent of a tiniro vanation of the repeater 10. Compared to the repeater 10a-2 of FIG. 15, this repeater 10a-3 employs wavelength division multiplex (WDM) couplers 109a and 109b and pumping light sources 110a and 110b in place of the optical amplifiers 106a and 106b.

[0062] The pumping light sources 110a and 110b are optical power sources for Faman amplification. Raman amplification is an optical amplification technique that takes advantage of a non-linear phenomenon in an optical source with the source of the resultant scattered light signals will have wavelengths that are different from that of the incident light because of vibrations of the scattering molecules. This physical phenomenon, called the Raman effect, or can be used to amplify a light beam. In Raman amplifit

can be used to ampiny a light beam. In Haman ampiniers, a strong pumping light beam with a shorter wavelength (e.g., 1.45-µm pump beam for 1.55-µm seed beam) is given to the onlire (transmission medium, sothat a given seed beam will be directly amplified. The 5 WDM couplers 109a and 109b serve as Raman amplilifers, roceiving pump beams from the pumping light sources 110a and 110b and transmitting the amplified light signals over the fiber optic cables.

[0053] As described above, the repeater 10a-3 uses of distibuted-constant optical amplifiers based on Raman amplification principles. This arrangement enhances the signal repeating capacitiles, offering a great adventage in long-haul communication applications. Besides improving the stability of main optical signal transport, the proposed configuration enables more stable transmission of probing light pulse signals, thus contributing to more accurate operations of optical reflectmentry. [0064] The above discussion will now be summarized as follows. In the optical transmission system 1 of an

provides a monitoring report signal to inform the end station 20 of its current operating; tatu; a Based on the montoring report signals, the end station 20 identifies a faulty link section if a problem is found in the optical 5 transmission line. The end station 20 then sends a troubleshooting control command to the relevant repeater, and in response to this command, the repeater 10 transmits a probing light pulse signal and a complementary

embodiment of the present invention, each repeater 10

25

light pulse signal in order to locate a fault on the transmission line. Some of the probing light pulse signal would be reflected back toward the end station as a result of Rayleigh scattering. Using the complementary light pulse signal sent from the repeater 10 for synchronization, the end station 20 captures and analyzes the Rayleigh backscatter, thereby locating the fault of the optical transmission line.

[0065] The above mechanism of an embodiment of the present invention allows detection of increased fiber to loss in an effective and efficient manner, in addition to locating breakage of the fiber optic cable and isolating a repeater failure. The proposed troubleshooting mechanism is effective in both undersea and terrestrial appil-cations of fiber optic networks.

10066] The foregoing is considered as illustrative only of the principles of the present invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and applications shown and described, and accordingly, all suitable modifications and equivalents may be regarded as falling within the scope of the invention in the appended claims and their equivalents.

Claims

- An optical transmission system with a mechanism to locate a fault on an optical transmission line, comprising:
 - (a) repeaters which relay optical signals over the optical transmission line, each repeater comprising:
 - monitoring report signal generating means, responsive to a monitoring control command, for monitoring a current operating status and input/output signal conditions of said each repeator, and generating a monitoring report signal that contains results of the monitoring; and said the said said that contains results of the monitoring; and said the said said that contains results of the monitoring; and
 - light pulse signal sending means, responsive to a troubleshooting control command, for sending a probing light pulse signal to the optical transmission line to locate a fault thereon, as well as a complementary light pulse signal that is complementary to the probing light pulse signal; and
 - (b) an end station which controls optical signal transmission and remotely controls said repeaters, said end station comprising:
 - (b1) a monitoring controller, comprising: monitoring control command sending means for sending the monitoring control

command: and

monitoring report processing means for monitoring the operating status of said repeaters by analyzing the monitoring report signals received therefrom, and identifying a faulty link section if any problem with the optical transmission line is detected; and

(b2) a troubleshooting unit, comprising:

troubleshooting command sending means for sending the troubleshooting control command to one of said repeaters that is located near to the identified faulty link section;

titled rauliny link section;
Rayleigh backscatter measurement means for measuring a Rayleigh back-cattered light caused by the probing light pulse signal, using the complementary light pulse signal as a reference for synchronization; and fault detection means for locating the fault on the faulty link section by analyzing the measured Rayleigh back-

 The optical transmission system according to claim 1, wherein said end station superimposes the monitoring control command and troubleshooting control command on- a main optical signal for delivery to said repeaters.

scattered light.

- The optical transmission system according to claim
 1 or 2, wherein said repeaters comprise an optical
 switch or an external modulator that is coupled to a
 light emitting device to modulate an outgoing optical
 signal produced therefrom.
- The optical transmission system according to claim 1 or 2, wherein each of said repeaters comprise an optical amplifier that utilizes a non-linear optical phenomenon in an optical fiber to amplify given optical signals.
- A repeater which relays optical signals over an optical transmission line, comprising:

monitoring report signal generating means, responsive to a monitoring control command sent from an end station, for monitoring a current operating status and input/output signal conditions of the repeater, and generating a monitoring report signal that contains results of the monitoring; and

light pulse signal sending means, responsive to a troubleshooting control command from the end station, for sending a probing light pulse signal to the optical transmission line to locate 10

a fault thereon, as well as a complementary light pulse signal that is complementary to the probing light pulse signal.

- An end station which remotely controls repeaters
 relaying optical signals, said end station comprising:
 - (b1) a monitoring controller, comprising:

monitoring control command sending means for sending a monitoring control command to each of the repeaters, the monitoring control command causing each repeater to send back a monitoring report 15 signal; and

monitoring report processing means for monitoring operating status of each of the repeaters by analyzing the received monitoring report signal, and identifying a faulty link section if any problem with the optical transmission line is reported; and

(b2) a troubleshooting unit, comprising:

troubleshooting command sending means for sending a troubleshooting control command to one of the repeaters that is located near to the identified faulty link section, the troubleshooting control command causing 30 the receiving repeater to generate a probing light pulse signal and a complementary light pulse signal;

Rayleigh backscatter measurement means for measuring a Rayleigh backscattered light caused by the probing light pulse signal, using the complementary light pulse signal as a reference for synchronization; and

fault detection means for locating the fault on the faulty link section by analyzing the measured Rayleigh backscattered light.

FIG. 3

FIG 4

FIG. 5

FIG. 7

FIG 9

FIG. 10

-1G. 1

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG 16