Tarea 2. Descomposición QR y mínimos cuadrados

Ricardo Chávez Cáliz

September 13, 2017

Problema 1. Implementar el algoritmo de Gram-Schmidt modificado 8.1 del Trefethen (p. 58) para generar la descomposición QR.

Se implementó dicho algoritmo a una matriz A de entradas aleatorias ~ U(0,1) para la obtención de matrices Q y R correspondientes a la descomposición QR de A. Es decir:

- 1. A = QR
- 2. R es triangular superior
- 3. $Q^t \cdot Q = I$

Para verificar que 1) se satisface se calcula QR y se compara con A usando el método allelose de numpy. Para 2) se usa el método VerificaTS. El punto 3) se verifica calculando $Q^t \cdot Q$ y se compara con la matriz identidad con el método allelose. Se realiza esta

Problema 2. Implementar el algoritmo que calcula el estimador de mínimos cuadrados en una regresión usando la descomposición QR.

Se implementó el algoritmo en la función estimadorMC, el cual halla b tal que $||Y - Xb||_2$ sea mínimo, donde X es matriz de diseño obtenida de un vector de observaciones y Y es el vector aleatorio a estimar. El residuo $r = Y - X\beta$ es mínimo cuando $r \in Null(P)$ donde P es un proyector ortogonal con rango(P) = rango(X) esto implica que $P \cdot r = 0$, por lo tanto $X\beta = Py$. La proyección ortogonal es obtenida con $P = Q \cdot Q^t$, donde Q viene de la descomposición QR de X.

$$\begin{array}{rcl} X \cdot \beta & = & P \cdot Y \\ Q \dot{R} \cdot \beta & = & Q \cdot Q^t \cdot Y \\ R \cdot \beta & = & Q^t \cdot Y \end{array}$$

Para hacer esto se llama al método que construye la matriz de diseño con un parámetro p, y a algún método que calcula descomposición QR de esta (el descrito en el punto 1 ó el propio de Numpy). En la última ecuación R es triangular superior entonces es posible resolver β usando el método BackwardSubst, de esta manera encontramos β y $X \cdot \beta$ será la mejor aproximación de Y.

Problema 3. Generar **Y** compuesto de $y_i = sen(x_i) + \epsilon_i$ donde $\epsilon_i \sim N(0, \sigma)$ con $\sigma = 0.1$, para $x_i = \frac{4\pi i}{n}$ para i = 1, ..., n.

Hacer un ajuste de mínimos cuadrados a \mathbf{Y} , con descomposición QR, ajustando un polinomio de grado p-1.

- Considerar los 12 casos: p = 3, 4, 5, 100 y n = 100, 1000, 10000.
- Graficar el ajuste en cada caso.
- Medir tiempo de ejecución de su algoritmo, comparar con descomposición QR de scipy y graficar los resultados.

Se consideran los casos pedidos y se obtienen los estimadores de Y como se muestra en Figuras 1,2 y 3. Se observa que la elección del parámetro p es delicada, dado que para p muy pequeños no se obtiene una buena aproximación (estamos aproximando por un polinomio de grado pequeño) pero si p es demasiado grande, entonces la aproximación tampoco es buena.

En Figura 4, se observan las distintas aproximaciones de Y cuando p = 10 y n varía. En este caso se puede ver que 10 es un parámetro apropiado para aproximar Y.

Se midieron los tiempos para la estimación de mínimos cuadrados y para el algoritmo desarrollado en el punto 1 y el dado por scipy. Se presentan aquí en la Figura 5, graficando el tiempo de ejecución a medida que el n crece. Dejando p fijo en 2 para reducir el tiempo de ejecución de cada estimación y tomando n hasta 100.

Como el tiempo de ejecución depende del Y que tiene un ruido aleatorio, la gráfica presenta un sesgo. Para evitar esto se ejecuta 10 veces para cada tamaño y se toma la mediana (representa de mejor manera a los datos en este caso) y se grafica tomando este en cuenta. Vease Fig. 6 para esto.

Problema 4. Hacer p = 0.1n, o sea, diez veces más observaciones que coeficientes en la regresión, ¿Cuál es la n máxima que puede manejar su computadora?

Fue capaz de ejecutar para n=10128 con un tiempo de 610.720312569. Generando los siguientes Runtimewarnings

- RuntimeWarning: overflow encountered in double-scalars
- RuntimeWarning: overflow encountered in subtract
- RuntimeWarning: invalid value encountered in divide

Figure 1: Estimación de mínimos cuadrados con 100 puntos y distinta p

Figure 2: Estimación de mínimos cuadrados con 1000 puntos y distinta p

Figure 3: Estimación de mínimos cuadrados con 10000 puntos y distinta p

Figure 4: Estimación de mínimos cuadrados con p = 10 y distinta n

Figure 5: Tiempos de ejecucción para el algoritmo propio y el de scipy

Figure 6: Tiempos medios de ejecucción para el algoritmo propio y el de scipy