Chapter 1: roadmap

- 1.1 what *is* the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- * 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- * 1969: first ARPAnet node operational

- ***** 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- * 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- * 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- * 1983: deployment of TCP/IP
- * 1982: smtp e-mail protocol defined
- * 1983: DNS defined for name-to-IPaddress translation
- * 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- *early 1990's: ARPAnet
 decommissioned
- *1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- *early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present

- ❖ ~750 million hosts
 - Smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, emai, etc.
- E-commerce, universities, enterprises running their services in "cloud" (eg, Amazon EC2)

2015 SPRING SEMESTER CNCE461: COMMUNICATION NETWORKS 통신네트워크

(2. Application Layer)

Wonjun Lee, Ph.D.
Network Research Lab. (NetLab)
http://netlab.korea.ac.kr
http://mobile.korea.ac.kr
Korea University

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 electronic mail
 - SMTP, POP3, IMAP
- 2.5 DNS

- 2.6 P2P applications
- 2.7 socket programming with UDP and TCP

Chapter 2: application layer

our goals:

- conceptual, implementation aspects of network application protocols
 - transport-layer service models
 - client-server paradigm
 - peer-to-peer paradigm

- learn about protocols by examining popular application-level protocols
 - HTTP
 - FTP
 - SMTP / POP3 / IMAP
 - DNS
- creating network applications
 - socket API

Some network apps

- e-mail
- * web
- text messaging
- remote login
- P2P file sharing
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)

- voice over IP (e.g., Skype)
- real-time video conferencing
- social networking
- * search
- *****
- *****

Application architectures

possible structure of applications:

- client-server
- peer-to-peer (P2P)

Processes communicating

- process: program
 running within a
 host
- within same host, two processes communicate using inter-process communication (defined by OS)
- processes in different hosts communicate by exchanging messages

clients, servers

client process: process that initiates communication

server process:

process that waits to

be contacted

aside: applications
 with P2P architectures
 have client processes
 server processes

Sockets

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out door
 - sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process

What transport service does an app need?

data integrity

- some apps (e.g., file transfer, web transactions) require 100% reliable data transfer
- other apps (e.g., audio) can tolerate some loss timing
- some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

throughput

- some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- other apps ("elastic apps") make use of whatever throughput they get

security

encryption, data integrity, ...

Transport service requirements: common apps

	application	data loss	throughput	time sensitive
	file transfer	no loss	elastic	no
•	e-mail	no loss	elastic	no
	Web documents	no loss	elastic	no
real-t	ime audio/video	loss-tolerant	audio: 5kbps-1Mbps video:10kbps-5Mbps	·
	ored audio/video	loss-tolerant	same as above	yes, few secs
	teractive games	loss-tolerant	few kbps up	yes, 100's msec
	text messaging	no loss	elastic	yes and no