Computer Animation and Simulation

Plants

Context

- Natural Phenomena
 - Plants
 - Gaseous phenomena
 - Fire
 - Smoke
 - Clouds
 - Water
 - 0

Plants

- Particle systems
- Fractals
- 3D Modelling
- L-systems
 - Lindenmayer Systems
 - "The Algorithmic Beauty of Plants" (Prusinkiewicz + Lindenmayer)

Topology

- growth from a single source point
- branching structure over time
 - · individual structural elements elongate
 - self-similarity under scale (cf. fractals)

Basic branching schemes

Structural Components

Simplifications for graphics modelling vs botany

- roots
 - not visual, so not important
- stems and branches
 - above ground, grow upward and bear leaves
- buds
 - embryonic state of stems, leaves and flowers
 - terminal vs lateral bud
 - vegetative, flower or dormant buds
- leaves
 - alternate, opposite, whorled pattern
- flowers

Growth of a Cell Influenced by...

lineage

- growth controlled by age
- older cells always larger than younger cells

cellular descent

- growth by passing of nutrients and hormones from adjacent cells
- ends of plants growing more than interior sections

tropisms

- external influences changing the direction of growth
- phototropism (bending toward light), geotropism (responding to gravity)

physical obstacles

affect shape and growth

Modelling

L-systems

- mathematical model (< Astrid <u>Lindenmayer</u>)
 - set of production rules of the form $\alpha_i \longrightarrow \beta_i$
 - α_i predecessor, single symbol
 - β_i successor, sequence of symbols
- parallel rewriting system
 - sequence of symbols given as initial string (i.e. axiom)
 - apply production rules to string, in parallel
 - rewrite each occurrence of α_i as β_i
 - identity rule for symbols without production rule
 - result of productions is a new string
 - repeat iteratively until no production rules can be applied

Parallel Rewriting System

- assume following production rules
 - \circ S \rightarrow ABA
 - \circ A \rightarrow XX
 - \circ B \rightarrow TT
- generated string sequence
 - 1. S (= axiom)
 - 2. ABA
 - 3. XXTTXX
- interpret strings to generate images

Geometric replacement

- symbol --> geometric element
- Example

- 1. S
- 2. ABA
- 3. XXTTXX

Turtle graphics

> symbols are interpreted as drawing commands

The turtle obeys to the following commands:

- **F** draw a line of length d, the state changes to $(x+d \cos \alpha, y+d \sin \alpha, \alpha)$
- f move forward a step of length d without drawing
- + turn left by angle δ , the state changes to $(x,y,\alpha+\delta)$
- turn right by angle δ , the state changes to $(x,y,\alpha-\delta)$

Starting conditions for the turtle:

Initial state, d and δ

Example: FFFF-FFFF-F-FFFF+FF-F-FFFFd=1, δ =90°

start

Turtle graphics

 $S \rightarrow ABA$

 $A \rightarrow FF$

 $B \rightarrow TT$

 $T \rightarrow F + F - F$

S axiom

ABA

FFTTFF

FF-F++F--F++F-FF

Production rules

Sequence of strings produced from the axiom

$$d =$$

$$\delta = 45^{\circ}$$

reference direction: —

initial state: (10, 10, 0)

Initial conditions

Turtle graphics

- using the turtle commands as alphabet
- construction of Koch's island

 δ = 60°, d depends on derivation length

$$\omega = F - - F - F$$
 //Initiator
 $F \rightarrow F + F - - F + F$ //Generator

D0L-systems

- simplest class of L-system
 - see previous examples
- deterministic
 - predecessor α_i appears only once on the left-hand side of a production rule
- context free
 - no context-sensitive production rules

$$S \rightarrow ABA$$
 $S \leftarrow axiom$ $A \rightarrow XX$ ABA $S \rightarrow TT$ $XXTTXX$ Production rules String sequence

- L-systems up till now only linear
- brackets [and] used to mark the beginning and end of additional offshoots from the main lineage
- stack of turtle graphics is used, brackets push and pop states onto the stack
 - [= push state
 -] = pop state

FAF

$$S \longrightarrow FAF$$

$$A \longrightarrow [+FBF]$$

$$A \rightarrow F$$

$$B \rightarrow [-FBF]$$

$$B \longrightarrow F$$

F[+FBF]F

(non-deterministic in this case: so, random choice of production rule)

$$F[+F][-F[-F]F]F[+F[+F][-F]][-F]$$

Node replacement

n=7,
$$\delta$$
=20°

$$\omega$$
:X

$$X \rightarrow F[+X]F[-X]+X$$

$$\mathbf{F} \rightarrow \mathbf{F}\mathbf{F}$$

n=5,
$$\delta$$
=22.5°

$$\omega$$
:X

$$X \rightarrow F-[[X]+X]+F[+FX]-X$$

$$F \rightarrow FF$$

Stochastic L-systems

- assign probabilities to nondeterministic L-systems
 - probabilities of production rules with same predecessor sum up to 1
 - id: pred → succ : probability
- example

```
S_{1.0} --> FAF 

A_{0.8} --> [+FBF] // A_{0.8} [+FBF]: 0.8 

A_{0.2} --> F 

B_{0.4} --> [-FBF] 

B_{0.6} --> F
```

Stochastic L-systems

Context Sensitive L-systems

specify a context, in which the predecessor must appear in order for the production rule to be applicable

```
id: left-side_context < pred > right-side_context → succ : prob
```

- n left-side and m right-side context symbols
 - (n, m) L-systems

Context Sensitive L-systems

production rules

- string sequence
 - 1. S
 - 2. FAT
 - 3. F[+FBF]F
 - 4. F[+F[-FAF]F]F
 - 5. F[+F[-FFF]F]F

Context Sensitive L-systems

used to simulate the propagation of signals like hormones and nutrients

ω: baaaaaaa

 $p_1: b < a \rightarrow b$

 $p_2: b \rightarrow a$

baaaaaaa

abaaaaaa

aabaaaaa

aaabaaaa

aaaabaaa

aaaaabaa

aaaaaba

Animation

Types of Animation

- flexible movement of static structure
 - e.g., plant being subjected to wind
 - see chapter "physically-based animation"
- changes in topology during growth
 - modeled by L-system as the application of a production that encapsulates a branching of the form A --> F[+F]B
- elongation of existing structures
 - modeled by productions of the form F --> FF
 - uniform growth
 - no criteria to stop
 - ==> solution: introduce parameters into L-systems

Parametric L-systems

- symbols can have one or more parameters
 - parameters can be set and modified by productions
 - conditional terms can be associated with productions
 - production is valid ⇔ condition is "true"
- example

S
$$--> A(0)$$

A(t) $--> A(t+0.01)$
A(t): $t>=1.0$ $--> F$

- context-sensitive example
 - passing nutrients along stem
 - \circ A(t0) < A(t1) > A(t2): t2>t1 & t1>t0 --> A(t1+0.01)

Parametric L-systems

```
\omega: B(2)A(4,4)
p_1: A(x,y): y \le 3 \rightarrow A(x*2,x+y)
p_2: A(x,y): y>3 \rightarrow B(x)A(x/y,0)
p_3: B(x) : x<1 \rightarrow C
p_4: B(x) : x>=1 \rightarrow B(x-1)
Result:
       B(2)A(4,4)
           B(1)B(4)A(1,0)
           B(0)B(3)A(2,1)
           C B(2)A(4,3)
           C B(1)A(8,7)
           C B(0)B(8)A(1.142,0)
```

Timed L-systems

- 2 new concepts
 - global time variable, accessible to all productions
 - local age value τ_i associated with each letter μ_i
- a timed L-system production rule
 - \circ (μ_0, β_0) --> $((\mu_1, \alpha_1), (\mu_2, \alpha_2), ..., (\mu_n, \alpha_n))$
 - β_0 = terminal age of μ_0
 - α_i = initial age of μ_i
 - applied when symbol's terminal age is reached
- geometric interpretation of each symbol is potentially based on local age of symbol

Timed L-systems

```
► Axiom (A,0)

(A,3) \longrightarrow (S,0)[+(B,0)](S,0)

(B,2) \longrightarrow (S,0)
```

```
Sequence global time (A,0) 0 (A,1) 1 (A,2) (A,3) 3 (S,0)[+(B,0)](S,0) 4 (S,1)[+(B,1)](S,1) 5 (S,2)[+(B,2)](S,2) 6 A = plant s (S,3)[+(S,0)](S,3)
```

A = plant seed S = internode stem segment B = bud turning into stem of a branch (length ~ age)

Environment-sensitive L-systems

- interaction with objects, other plants, parts of the plant itself, light, gravity, wind...
 - competition for space between individual plants
 - competition for light between branches of a tree
 - competition between roots for water in the soil

open L-systems

 introduction of communication symbols which can exchange parameter values with the environment

pruning

 "%": remove all symbols that are still present between the current []-pair

```
• example: T(p):p==0 -->\% F[+F[+FF]FT(?)F[-F]F]F[-FF] F[+F[+FF]F\%F[-F]F]F[-FF] F[+F[+FF]F]F[-FF]
```

Pruning

Growth under a table

References

- http://algorithmicbotany.org
- http://xfrog.com/