

SRM Institute of Science and Technology College of Engineering and Technology

SET-A

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

Test: CLAT-3 Date: 19/11/22

Course Code & Title: 18ECC204J-Digital Signal Processing Duration: 08:00-09:40 AM

Year & Sem: III /V Max. Marks: 50

Course Articulation Matrix: (to be placed)

Course Articulation Matrix: (to be placed)																
	18ECC204J – Digital	Program Outcomes (POs)														
	Signal Processing	Gr	Graduate Attributes						PSO							
S.	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
No.	(COs)															
1	Summarize the	3	-	-	1	-	-	-	-	-	-	-	-	-	-	2
	concepts of A//D and															
	D/A converters.															
2	Explain the concepts	-	2	-	-	-	-	-	-	-	-	-	-	-	1	
	of DFT with its															
	efficient computation															
	by using FFT															
	algorithm.															
3	Develop FIR filters	<u> </u>	2	3	<u> </u>	-	<u> </u>	-	_	_	_	_	_	<u> </u>	-	3
3	•	_	_	3	-	_	-	_	_	-	-	-	_	-	_	5
	using several methods			_												
4	Construct IIR filters	-		3	-	-	-	-	-	-	-	-	-	-	-	3
	using several methods															
5	Discuss the basics of	-	2	-	-	-	-	-	-	-	-	-	-	-	1	
	multirate DSP and its															-
	applications.															
6	Design digital filter	-	2	-	-	-	-	-	-	-	-	l -	-	2	-	-
"	and multi rate signal		-											-		
	O O															
	processing for real															
	time signals															

	Part-A (5 x 10 = 50 Marks) Answer any 5								
Q. No	Question	Marks	BL	co	PO				
1	i) Design an analog Chebyshev filter that satisfies the following constraints. $1/\sqrt{2} \leq H(j\Omega) \leq 1; 0 \leq \Omega \leq 2 \\ H(j\Omega) < 0.1; \qquad \Omega \geq 4$	9	3	4	3				
	 ii) A digital signal processing system is described by the expression: y[n] = 2x[n] + x[n - 1] + 2y[n - 1]. The system is: a) Unstable FIR filter 	1	1	4	1				

	h) Unstable IID filter				
	b) Unstable IIR filter				
	c) Stable FIR filter				
	d) Stable IIR filter				
2	i) Determine H(Z) using impulse invariant	9	3	4	3
	technique for the analog transfer function				
	$H(s) = \frac{1}{(s+1)(s^2+s+1)}.$				
	Assume T=1 sec.		_		_
	::\ I., L:1:	1	1	4	1
	ii) In bilinear transformation, the left-half of S- plane is mappedin the z-domain				
	a) Entirely outside the unit circle				
	b) Partially outside the unit circle				
	c) Partially inside the unit circle d) Entirely inside the unit circle				
2	, <u> </u>	9	2	4	2
3	i) Determine the normalized transfer function of the 4th order filter whose magnitude	9	3	4	3
	=				
	response decreases monotonically with increase in frequency.				
	increase in frequency.				
	ii) The method that introduces the aliasing				
	effect in filters is	1	1	4	1
	a) Approximation of derivatives				
	b) Impulse invariant method				
	c) Bilinear transformation method				
	d) Matched z-transformation technique				
4	i) Derive the spectrum of down sampled signal	9	3	5	2
7	and also obtain the spectrum after employing		3	3	_
	suitable filtering operation.				
	surable intering operation.				
	ii) If $x[n] = [1, 2, 3, 4, 5, 6, 7, 8]$ then		_	_	_
	y[n]=x[2n] will be	1	1	5	1
	a) [2, 4, 6, 8, 10, 12, 14, 16]				
	b) [1, 0, 3, 0, 5, 0, 7, 0]				
	c) [1, 3, 5, 7]				
	d) [1, 2, 3, 4, 0, 0, 0, 0]				
5	i) Realize M-branch Interpolator using	9	3	6	2
	polyphase structure.		_	_	
	ii) In sampling rate conversion ,first is	1	1	6	1
	to be performed and thenis to be	1	1	"	1
	performed.				
	a) Decimation ,Interpolation				
	b) Interpolation, Decimation				
	c) Up sampling, Down sampling				
	d) Down sampling, Up sampling				

	•				
6	i) Design two channel subband coding filter and also derive sufficient condition for alias cancellation	9	3	6	2
	ii) Anti-imaging filter is to be kepta) before down samplerb) after down sampler	1	1	5	1
	c) after up sampler d) before up sampler				
7	i) Design highpass filter for the given specifications α_p =3 dB, α_s =15 dB, Ω_p =1000 rad/sec and Ω_s =500 rad/sec using frequency transformation.	5	3	4	3
	ii) Develop an expression for $y(n)$ as a function of $x(n)$ for the given multirate system	4	3	5	2
	$x(n)$ $\uparrow 5$ $\downarrow 10$ $\downarrow 10$ $\downarrow y(n)$	1	1		1
	iii) Cascading a factor of 2 interpolator and a factor of 3 decimator results in a sampling Rate conversion by a factor of a) 3/2	1	1	6	1
	b) 2/3				
	c) 6 d) 5				

Evaluation Sheet

Name of the Student: Register No.:

	Part- A (5 x 10 = 50 Marks)							
Q. No	СО	PO	Maximum mark	Marks obtained	Total			
1 i)	4	3	9					
1 ii)	4	1	1					
2 i)	4	3	9					
2 ii)	4	1	1					
3 i)	4	3	9					
3 ii)	4	1	1					
4 i)	5	2	9					
4 ii)	5	1	1					
5 i)	6	2	9					
5 ii)	6	1	1					
6 i)	6	2	9					
6 ii)	5	1	1					
7 i)	4	3	5					
7 ii)	5	2	4					
7 iii)	6	1	1					

Consolidated Marks:

CO	Max.Marks	Marks Scored	PO	Max.Marks	Marks Scored
CO4	25		PO1	7	
CO5	10		PO2	31	
CO6	15		PO3	32	
Total	50		Total	70	

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Signature of the Course Teacher