NATURAL LOG

NAI CHAL LOG
$e^{\ln(x)} = x$
$ \ln(e^x) = x $
$\ln(x \cdot y) = \ln(x) + \ln(y)$
$\ln(x^y) = y \cdot \ln(x)$
$\ln(\frac{x}{y}) = \ln(x) - \ln(y)$
$\ln(\frac{1}{x}) = -\ln(x)$
$\ln(1) = 0$
ln(0) = undefined

TRIGONOMETRY

 $\tan x = \sin x / \cos x$ $\cot x = 1/\tan x$ $\sec x = 1/\cos x$ $\csc x = 1/\sin x$ $\sin^2 x + \cos^2 x = 1$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\sin(A - B) = \sin A \cos B - \cos A \sin B$ $\cos(A - B) = \cos A \cos B + \sin A \sin B$ $\sin 2x = 2\sin x \cos x$

DERIVATIVES

Product: (fg)' = fg' + f'gQuotient: $(f/g)' = (f'g - g'f)/g^2$ Reciprocal: $(1/f) = -f'/f^2$ Chain: $f(g)' = f'(g) \cdot g'$

INTEGRALS

$$\int u \, dv = uv - \int v \, du$$

$$\int \frac{1}{x} = \ln|x|$$

$$\int \ln ax = x \ln ax - x$$

$$\int \tan ax = -\ln|\cos ax|/a$$

$$\int \cot ax = \ln|\sin ax|/a$$

$$\int \sec x = \ln|\sec x + \tan x|$$

$$\int \sec^2 x = \tan x$$

$$\int \csc^2 x = -\ln|\csc x + \cot x|$$

$$\int \frac{1}{1+x^2} = \arctan x$$

$$\int \frac{1}{\sqrt{1-x^2}} = \arcsin x$$

 $\begin{array}{l} \textbf{LINEAR EQUATION}: \frac{dy}{dx} + P(x)y = Q(x) \\ \text{Step1}:: \ \mu = e^{(\int P \, dx)} \\ \text{Step2}:: \ y = \frac{1}{\mu}(\int \mu Q \, dx + C) \end{array}$

EXACT EQUATIONS : M dx + N dy = 0

Exact? :: $\partial_{u}M = \partial_{x}N$ MyTrick:: $F = \int M dx + C(y) = \int N dy + C(x)$ Solution :: F(x,y) = C

Step1 :: $\begin{cases} A(x) = \left(\frac{\partial_y M - \partial_x N}{N}\right) \\ B(y) = \left(\frac{\partial_x N - \partial_y M}{M}\right) \end{cases}$

Step2 :: $Q = \begin{cases} A(x) \text{ if it only depends on } x \\ B(y) \text{ if it only depends on } y \end{cases}$ Step3 :: $\mu = \exp(\int Q)$ $\texttt{ExactEq}:: \, \mu \, M \, dx + \mu \, N \, dy = 0$

HOMOGENEOUS EQUATIONS $\frac{dy}{dx} = G\left(\frac{y}{x}\right)$

test :: f(tx, ty) = f(x, y)step1 :: Let v = y/x, $\begin{array}{l} \text{step2} :: \frac{dy}{dx} = v + x \frac{dv}{dx} \\ \text{step3} :: \text{Solve separable.} \end{array}$

SUBSTITUTION $\frac{dy}{dx} = G(ax + by)$ Step1 :: Let z = ax + byStep2 :: $\frac{dz}{dx} = a + b\frac{dy}{dx}$ Step3 :: $\frac{dy}{dx} = (\frac{dz}{dx} - a)/b$ Step4 :: Substitute $\frac{dy}{dx}$ into original. Step5:: Solve separable.

BERNOULLI EQUATIONS

 $\frac{dy}{dx} = P(x)y = Q(x)y^n$ Req :: $n \neq 0, 1$ Step1 :: Let $v = y^{(1-n)}$ Step2 :: $\frac{dv}{dx} = (1-n)y^{-n}\frac{dy}{dx}$, Step3 :: Solve Linear Eq with v and x.

LINEAR COEFFICIENTS

 $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$ Req :: $a_1b_2 \neq a_2b_1$ Step1 :: Let x = u + hStep2 :: Let y = v + kStep3 :: Solve $\begin{cases} a_1 \boldsymbol{h} + b_1 \boldsymbol{k} + c_1 = 0 \\ a_2 \boldsymbol{h} + b_2 \boldsymbol{k} + c_2 = 0 \end{cases}$ Step4 :: Solve homogeneous eq with u and v.

EULERS METHOD

 $x_{n+1} = x_n + h$ $y_{n+1} = y_n + hf(x_n, y_n)$

IMPROVED_EULER (x_0, y_0, c, N) :

$$\begin{split} x &= x_0 \\ y &= y_0 \\ h &= (c - x_0)/N \\ \text{FOR } i \text{ FROM } 0 \text{ TO } N : \\ F &= f(x,y) \\ G &= f((x+h), \ (y+h*F)) \\ x &= x+h \\ y &= y+h(F+G)/2 \end{split}$$

NEWTONS MOTION

$$x(t) = \frac{mg}{b}t + \frac{m}{b}(v_0 - \frac{mg}{b})(1 - e^{-bt/m})$$

NEWTONS LAW OF COOLING

 $\frac{dT}{dt} = K[M(t) - T(t)] + H(t) + U(t)$ M(t): outside temp, T(t): inside temp H(t): additional heating, U(t): furnace rate

SPRING-MASS OSCILLATOR

$$my'' + by' + ky = F_{\text{ext}}(t)$$

 $y(t) = A\cos(\Omega t) + B\sin(\Omega t)$

TWO REAL ROOTS:

$$y_h = c_1 \cdot e^{r_1 t} + c_2 \cdot e^{r_2 t}$$

$$y'_h = c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t}$$

REPEATED ROOTS

$$y_h = c_1 \cdot e^{rt} + c_2 \cdot t \cdot e^{rt}$$

 $y'_h = (c_1 r + c_2)e^{rt} + (c_2 r)te^{rt}$

COMPLEX ROOTS:

$$y_h = c_1 \cdot e^{\alpha t} \cdot \sin(\beta t) + c_2 \cdot e^{\alpha t} \cdot \cos(\beta t)$$

$$y_h' = (c_1 \alpha - c_2 \beta) ES + (c_1 \beta + c_2 \alpha) EC$$

UNDETERMINED COEFFICIENTS

CASE:
$$f == Ct^m e^{rt}$$

SOLU: $y_n = t^s P^m e^{rt}$

$$s = 0$$
 if r is not a root of the equation.

$$s = 1$$
 if r is a simple root.

$$s = 2$$
 if r is a double root.

CASE:
$$f = Ct^m e^{\alpha t} \begin{cases} \sin \beta t \\ \cos \beta t \end{cases}$$

SOLU:
$$y_p = t^s P_1^m e^{\alpha t} \cos(\beta t) + t^s P_2^m e^{\alpha t} \sin(\beta t)$$

$$s = 0$$
 if $\alpha + i\beta$ is not a root.

$$s = 1$$
 if $\alpha + i\beta$ is a root.

SUPERPOSITION

LET:
$$F = ay'' + by' + cy$$

IF:
$$y_1$$
 is a solution to $F = f_1$

AND:
$$y_2$$
 is a solution to $F = f_2$

THEN: $k_1y_1 + k_2y_2$ is a solution to $F = k_1f_1 + k_2f_2$

VARIATION OF PARAMETERS

Step 1 :: Find
$$y_h$$
, Let $\{y_1, y_2\} = y_h$

Step 2 ::
$$W[y_1, y_2] = y_1 y_2' - y_1' y_2$$

Step 2 ::
$$W[y_1, y_2] = y_1 y_2' - y_1' y_2$$

Step 3 ::
$$\begin{bmatrix} v_1 = \int \frac{-fy_2}{aW[y_1, y_2]} \\ v_2 = \int \frac{+fy_1}{aW[y_1, y_2]} \end{bmatrix}$$

Step 4 ::
$$y_p = v_1 y_1 + v_2 y_2$$

Step 5 ::
$$y = y_h + y_p$$

CAUCHY-EULER (Oily Couch)

$$at^2y'' + bty' + cy = f$$

CHAR ::
$$ar^2 + (b-a)r + c = 0$$

REAL ::
$$y_h = t^{r_1} + t^{r_2}$$

DOUB ::
$$y_h = t^r + t^r \ln(t)$$

PLEX ::
$$y_h = t^{\alpha} \sin(\beta \ln t) + t^{\alpha} \cos(\beta \ln t)$$

NOTE :: If solving for
$$t < 0$$
, Set $t \leftarrow (-t)$

REDUCTION OF ORDER

$$y'' + Py' + Qy = 0$$
; given y_1

$$y_h = y_1 + y_2$$

LINEAR INDEPENDENCE TEST

For whole interval: $W[y_1, y_2] = 0$

PHASE PLANE

$$\frac{dx}{dt} = f(x,y), \quad \frac{dy}{dt} = g(x,y)$$
 Trajectory:

x(t), y(t) that solve the system.

Related Phase Plane Eq:

$$rac{dy}{dx} = rac{g(x,y)}{f(x,y)} = rac{dy/dt}{dx/dt}$$
 Critical Points:

$$\{(x_0, y_0) : f(x_0, y_0) = g(x_0, y_0) = 0\}$$

Critical Endpoints:

$$(x^*, y^*)$$
 if limits exist and finite:

$$x^* = \lim_{t \to +\infty} x(t)$$

$$y^* = \lim_{t \to +\infty} y(t)$$

ANNIHILATION

$$(D-r)[e^{rx}] = 0$$
$$(D-r)^{k+1} [x^k e^{rx}] = 0$$

$$(D^2 + \beta^2) \left[\left\{ \frac{\sin \beta t}{\cos \beta t} \right\} \right] = 0$$

$$(D-r)^{k} = \begin{bmatrix} 1 & 0 \\ (D-r)^{k+1} \begin{bmatrix} x^k e^{rx} \end{bmatrix} = 0 \\ (D^2 + \beta^2) \begin{bmatrix} \left\{ \frac{\sin \beta t}{\cos \beta t} \right\} \right] = 0 \\ ((D-\alpha)^2 + \beta^2)^{k+1} \begin{bmatrix} x^k e^{\alpha x} \left\{ \frac{\sin \beta t}{\cos \beta t} \right\} \right] = 0$$

$$(D)^{k+1} \left[x^k + x^{k-1} + \dots \right] = 0$$

$$\begin{aligned} \mathbf{LAPLACE} \ \mathbf{TRANSFORM} \\ F(s) &= \int_0^\infty e^{-st} f(t) \ dt \end{aligned}$$

$$\lim_{N \to \infty} N e^{-sN} = 0, \quad s > 0$$

CONVOLUTION

$$(f * g) = \int_0^t f(t - v) \cdot g(v) \cdot dv$$

Properties

$$f * q = q * f$$

$$f * (g + h) = (f * g) + (f * h)$$

$$(f * g) * h = f * (g * h)$$

$$f * 0 = 0$$

IMPULSE RESPONSE

Given ::
$$ay'' + by' + cy = g$$
, $y(0) = y_0$, $y'(0) = y'_0$
Step 1 :: $H(s) = \frac{1}{as^2 + bs + c}$ \longleftarrow Transfer Func

Step 3::
$$y_k \leftarrow$$
 [homogenous solution when $g = 0$]

Solution ::
$$\begin{bmatrix} y = (y_k + (h * g)) \\ = y_k + \int_0^t h(t - v) \cdot g(v) \cdot dv \end{bmatrix}$$

POWER SERIES

$$y = \sum_{i} a_n x^i$$

$$y' = \sum na_n x^{n-1}$$

$$y = \sum_{n=0}^{\infty} a_n x^n$$

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$$

$$y_0 = a_0, \quad y_0' = a_1$$