Klausur zur Experimentalphysik 4

Prof. Dr. L. Oberauer Sommersemester 2010 3.8.2010

Aufgabe 1: (4 Punkte)

Radium 226 ist ein α -Strahler mit einer Halbwertszeit von 1602 a. Fünf Prozent der von einer bestimmten Menge Radium 226 emittierten α -Teilchen werden für ein Streuexperiment zu einem parallelen Strahl gebündelt. Welche Masse von Radium 226 benötigt man, wenn die elektrische Stromstärke des Strahls 1 nA betragen soll? (Die Molmasse von Radium 226 ist 226.0 g/mol.)

Aufgabe 2: (6 Punkte)

- (a) Welche Bedeutung hat die zeitabhängige Schrödinger-Gleichung in der Quantenmechanik? Welche Bedeutung hat die zeitunabhängige Schrödinger-Gleichung?
- (b) Nennen Sie zwei Gründe, weshalb stationäre Zustände in der Quantenmechanik eine so wichtige Rolle spielen.
- (c) Gegeben sei die Observable A und die Wellenfunktion ψ . Beschreiben Sie in Worten, wie man aus diesen beiden Angaben die möglichen Messwerte von A und deren Wahrscheinlichkeiten erhält. Beschränken Sie sich dabei auf den einfachst möglichen Fall.

Aufgabe 3: (8 Punkte)

Die lineare Schwingung der Atomkerne in einem 2
atomigen Molekül kann durch eine 1
dimensionale Schrödinger-Gleichung für den Abstand r der beiden Kerne beschrieben werden. Die gegenseitige Abstoßung der Kerne und die durch die Elektronen vermittelte Bindungskraft ist näherungsweise gegeben durch ein Potential der Form

$$V(r) = D \left[1 - e^{-a(r-r_0)} \right]^2$$
 , $(D, a, r_0 > 0)$

- (a) Fertigen Sie eine (saubere!) Skizze an, die den Potentialverlauf qualitativ wiedergibt.
- (b) Wenn man das Potential um sein Minimum herum bis zur quadratischen Ordnung entwickelt, dann kann man mit dem Ansatz $\varphi(r) = e^{-b(r-r_0)^2}$ die zeitunabhängige Schrödinger-Gleichung lösen. Bestimmen Sie den Parameter b und die Energie E des Zustandes φ .

Hinweise: In die Schrödinger-Gleichung für r ist die reduzierte Masse $\mu = m_1 m_2/(m_1 + m_2)$ einzusetzen. Es ist $V''(r_0) = 2a^2D$.

(c) Zeichnen Sie D, das in (b) berechnete E sowie die Bindungsenergie B des Moleküls im Zustand φ qualitativ in die Skizze aus (a) ein. Geben Sie B an.

Aufgabe 4: (6 Punkte)

(a) Die Übergänge des Wasserstoffatoms bei großen Quantenzahlen sollten sich klassischem Verhalten annähern. Betrachten Sie die Bahn mit n=1000. Welche Frequenz würde klassisch abgestrahlt? Welche Frequenz ergibt der Übergang von $n=1000 \rightarrow 999$?

Hinweis: Die Radien der Bahnen im Bohrschen Atommodell von Wasserstoff sind

$$r_n = \frac{4\pi\varepsilon_0\hbar^2}{e^2m} n^2$$

(b) Ein Elektron befindet sich im 1s-Zustand im Coulomb-Feld eines nackten $^{35}_{17}$ Cl-Kerns. Schätzen Sie die Aufenthaltswahrscheinlichkeit des Elektrons im Kern ab.

Hinweis: Die 1s-Wellenfunktion des Wasserstoffatoms ist

$$\psi(r,\vartheta,\varphi) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$$

Der Radius des $^{35}_{17}$ Cl-Kerns beträgt 4.58 fm und seine Ladungszahl ist Z=17.

Aufgabe 5: (7 Punkte)

- (a) Wie groß ist der Entartungsgrad des *n*-ten Energieniveaus des Wasserstoffatoms gemäß der Schrödinger-Theorie, wenn man die Spinquantenzahl des Elektrons berücksichtigt?
- (b) Zeichen Sie die Aufspaltung der Entartung der n=1,2,3-Niveaus des Wasserstoffatoms bei Vorhandensein einer Spin-Bahn-Kopplung. Beschriften Sie die aufgespaltenen Niveaus mit den entsprechenden nl_j -Werten und mit ihren verbleibenden Entartungen.
- (c) Zeichnen Sie für die n=1,2-Niveaus die zusätzlichen Aufspaltungen durch ein äußeres homogenes und zeitunabhängiges Magnetfeld in z-Richtung. Wie nennt man diesen Effekt? Beschriften Sie die aufgespaltenen Niveaus mit den entsprechenden m_j -Werten und mit ihren verbleibenden Entartungen.

Hinweis: Die Zeichnungen in (b) und (c) können qualitativ sein, d.h. die relativen Abstände der aufgepaltenen Niveaus müssen nicht korrekt sein, wohl aber ihre Anordnung.

Aufgabe 6: (8 Punkte)

- (a) Betrachten Sie die Konfiguration $1s^2\,2s^2\,2p\,3d$ von Kohlenstoff und bestimmen Sie die spektroskopischen Symbole $^{2S+1}L_J$, in die diese durch Coulomb-Abstoßung der Elektronen und Spin-Bahn-Kopplung zerfällt. Welche Dimension hat die Konfiguration?
- (b) Die Grundzustandskonfiguration von zweifach ionisiertem Europium $\mathrm{Eu^{2+}}$ ist [Xe] $4f^7$. Bestimmen Sie gemäß den Hundschen Regeln das $^{2S+1}L_J$ -Symbol des Grundzustands von $\mathrm{Eu^{2+}}$. In wieviele Zeeman-Komponenten spaltet der Grundzustand auf, wenn man ein schwaches B-Feld anlegt, und durch welche Quantenzahl werden die Zeeman-Komponenten charakterisiert?
- (c) Geben Sie die vollständige Liste der spektroskopischen Symbole $^{2S+1}L_J$ an, von denen aus ein elektrischer Dipolübergang in den Grundzustand von Eu²⁺ möglich ist. (Die Paritätsauswahlregel braucht nicht berücksichtigt zu werden.)

Aufgabe 7: (6 Punkte)

Ein HCl-Molekül ($m_{\rm H}=1\,{\rm u},\ m_{\rm Cl}=35\,{\rm u}$) rotiere um eine Achse größten Trägheitsmoments durch seinen Schwerpunkt.

- (a) Leiten Sie ausgehend von der Quantisierung des Drehimpulsbetrags L die Niveaus E_l der Rotationsenergie des Moleküls her.
- (b) Geben Sie die Frequenzen der emittierten Photonen für den Fall an, dass Übergänge nur zwischen benachbarten Niveaus stattfinden.
- (c) Die Wellenlänge des Übergangs $l=1\to 0$ wird zu $\lambda=0.476\,\mathrm{mm}$ gemessen. Wie groß ist der Abstand zwischen H- und Cl-Kern?

Hinweis: Vernachlässigen Sie die Masse der Elektronen und beschränken Sie sich auf die Bewegungen der Kerne. Verwenden Sie an geeigneter Stelle die reduzierte Masse des Moleküls.

Formeln und Konstanten:

Elementarladung: $e = 1.602 \cdot 10^{-19} \,\mathrm{C}$

Avogadro-Zahl: $N_A = 6.022 \cdot 10^{23}$

Elektronenmasse: $m = 9.11 \cdot 10^{-31} \,\mathrm{kg}$

Plancksche Konstante: $\hbar = 1.055 \cdot 10^{-34} \,\mathrm{Js}$

Elektrische Feldkonstante: $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \mathrm{C/Vm}$

Bohrscher Radius: $a_0 = \frac{4\pi\epsilon_0\hbar^2}{e^2m} = 0.529 \cdot 10^{-10} \,\text{m}$

Atomare Masseneinheit: $1 u = 1.66 \cdot 10^{-27} \text{ kg}$

Energieniveaus des Wasserstoffatoms: $E_n = -R_{\infty}/n^2$ mit $R_{\infty} = 13.6\,\mathrm{eV}$