

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

ELECTRÓNICA RÁPIDA

Projecto e Simulação de Amplificadores Lineares para Altas Frequências

Guilherme Branco Teixeira n.º 70214 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Grupo n.º 2 de quarta-feira das 11h00 - 12h30

Índice

1	Inti	roduçã	o.	1	
2	Plano de Trabalhos				
	2.1	Proje	cto de um amplificador uniandar	1	
		2.1.1	a) Projecto do amplificador com linhas ideais	1	
		2.1.2	b) Projecto do amplificador utilizando tecnologia microfita	7	
	2.2	2 Concretização do amplificador em tecnologia de microfita			
		2.2.1	a) Introdução de elementos que simulam descontinuidades nas linhas	7	
		2.2.2	b) Substituição do transístor e condensadores	7	
3	Cor	nclusõe	es.	7	

1 Introdução

O objectivo deste laboratório é estudar técnicas de projecto de amplificadores lineares de alta frequência, análise das suas características (estabilidade, ganho, adaptação e factor de ruído) e comportamentos. A caracterização dos dispositivos do amplificador será realizada através dos pârametros distribuídos - parâmetros S.

Utiliza-se um transístor da Hewlett-Packard (HP) ATF-35176, um transístor que utiliza tecnologia PHEMT (*Pseudomorphic High Mobility Transistor*), preparado para trabalhar em altas frequências.

2 Plano de Trabalhos

As especificações do amplificador a construir podem ser consultadas na tabela seguinte, tal como as características do substrato plástico para alta-frequência da Taconic (TLY -3-0310-CH/CH), sobre qual o transístor irá ser implantado.

Especificação	Símbolo	Valor	
Ganho de Transdução	Gт	GTmax	
Tensão drain-source	Vds	1.5 V	
Corrente drain -source	los	20 mA	
Resistência da fonte e da carga	Rg e Rc	50 Ω	
Constante dieléctrica	٤r	2.3	
Espessura do substrato	h	0.35 mm	
Espessura da metalização	t	0.018 mm	
Tangente de perdas	σ	0.001	
Frequência central	fo1	22 GHz	

Tabela 1: Características do amplificador a projectar.

De notar que o valor da espessura do substrato foi modificado de 0.78 mm para 0.35 mm com o objectivo de garantir propagação transversal nas linhas de microfita, ou seja, garantir que estas têm um comprimento maior que a largura.

Numa primeira fase do trabalho laboratorial é projectado e simulado o amplificador uniandar com linhas simétricas. Na segunda fase o amplificador é projectado com tecnologia de microfita.

2.1 Projecto de um amplificador uniandar

2.1.1 a) Projecto do amplificador com linhas ideais

Nesta primeira fase, o amplificador é constituído pelo transístor descrito anteriormente, no entanto, todos os dispositivos utilizados no seu projecto e simulação são dispositivos ideais.

PFR Pretendido

Em primeiro lugar, é feita uma análise DC ao transístor que tem em vista obter o ponto de funcionamento em repouso (PFR) especificado. O circuito que nos permitiu alcançar essa análise é o que se vê na Figura 1.

Figura 1: Circuito utilizado para obter o PFR desejado.

A análise DC serve para descobrir o valor de V_{GS} correspondente ao PFR desejado. No circuito da Figura 1 existe um componente denominado de I_Probe que tem como objectivo controlar o valor de I_D à medida que o valor de V_{GS} varia. Um excerto dos resultados desta análise pode ser consultado na Figura 2, onde se pode concluir que o valor da tensão V_{GS} que melhor corresponde a uma corrente I_D de 20 mA (20.03 mA) é de -0.277 V.

Vgs	I_Probe1.i		
-0.290 -0.289 -0.288 -0.287 -0.285 -0.285 -0.284 -0.283 -0.282 -0.281 -0.280 -0.279 -0.279 -0.277	19.06 mA 19.13 mA 19.21 mA 19.28 mA 19.35 mA 19.50 mA 19.58 mA 19.65 mA 19.73 mA 19.80 mA 19.88 mA 19.95 mA 20.03 mA		

Figura 2: Valores de V_{GS} correspondentes à corrente de I_Probe.

Análise em Alta-Frequência

Com o transístor a funcionar no PFR desejado, é preciso construir um novo circuito que contenha condensadores e bobines ideais, DC_Block e DC_Feed, respectivamente, para que seja possível realizar a simulação dos parâmetros S. Este circuito apresenta-se de seguida.

Figura 3: Circuito utilizado para obter o valores dos parâmetros S.

Simulando o circuito anteriormente projectado foram obtidos os seguintes valores para os parâmetros S, K (parâmetro de estabilidade), MAG (maximum available gain) e para as cargas de adaptação para o transístor à frequência central.

Tabela 2: Parâmetros que definem o transístor.

S ₁₁	S ₁₂	S ₂₁	S ₂₂	K	MAG	ρs(acs)	ρ _{L(ACS)}
0.621∠57.623°	0.108∠-135.301°	1.958∠-117.117°	0.311∠31.533°	1.236	9.664	0.784∠-59.529°	0.628∠-39.020°

De notar que os valores obtidos experimentalmente para os parâmetros S não podem ser verificados na datasheet do transístor, uma vez que esta apenas especifica o comportamento do ATF-35176 para frequências entre 2 GHz e 18 GHz.

Com os valores da Tabela 2 determinados pode-se calcular o valor de Δ , ou seja, o determinante da matriz de dispersão:

$$\Delta = S_{11}S_{22} - S_{21}S_{12} = 0.067\angle -7.24^{\circ}. \tag{2.1}$$

Como se pode ver, K = 1.236 > 1, $|\Delta| = 0.067 < 1$ e $|S_{ii}| < 1$, pelo que o transístor é incondicionalmente estável.s

Projecção da Malha de Entrada e de Saída

Optou-se por projectar a malha de entrada e de saída com a Carta de Smith, recorrendo ao ADS. Como K > 1 é possível efectuar adaptação conjugada simultânea (ACS) e, como se pretende adicionar elementos às malhas sabe-se que:

$$\rho_{\rm in} = \rho_{\rm S}^* \quad \text{e} \quad \rho_{\rm out} = \rho_{\rm L}^*. \tag{2.2}$$

O circuito com malhas de adaptação é apresentado de seguida.

Figura 4: Circuito que inclui as malhas de adaptação à entrada e à saída.

Começando pela malha de entrada, ou seja, pelo gerador e sabendo que a malha de adaptação é do tipo linha-stub, o circuito que se pretende projectar é da seguinte forma.

Figura 5: Malha de adaptação de entrada.

Esta malha é construída com a adição de elementos, ou seja, towards generator. O valor de $Z_{\rm S}^*$ é de $0.784 \angle 59.529^\circ$.

No ADS, com recurso à Carta de Smith, determinou-se o comprimento eléctrico da linha de entrada, $\theta_{\rm L_{in}}$, e o comprimento eléctrico do stub, $\theta_{\rm S_{in}}$.

Figura 6: Determinação do comprimento eléctrico da linha de entrada - situação de CC.

Figura 7: Determinação do comprimento eléctrico do stub de entrada - situação de CC.

$$\theta_{\rm L_{in}} = 100.494^{\circ} \ {\rm e} \ \theta_{\rm S_{in}} = 21.751^{\circ}.$$
 (2.3)

É de notar que os valores determinados anteriormente são para o stub terminado em curto-circuito (CC), pois é nessa situação que o stub é menor, tal como pretendido. Para verificar, optou-se por projectar a malha de entrada para o stub terminado em circuito-aberto (CA).

Figura 8: Determinação do comprimento eléctrico da linha de entrada - situação de CA.

Figura 9: Determinação do comprimento eléctrico do stub de entrada - situação de CA.

Como se pode ver, para este caso o stub é maior e, como tal, não é a solução preferível.

Olhando agora para a malha de saída, ou seja, para a carga e sabendo que a malha de adaptação é do tipo linha-stub, o circuito que se pretende projectar é da seguinte forma.

Figura 10: Malha de adaptação de saída.

Esta malha é construída com a adição de elementos, ou seja, towards generator. O valor de $Z_{\rm L}^*$ é de $0.628\angle39.020^\circ.$

No ADS, com recurso à Carta de Smith, determinou-se o comprimento eléctrico da linha, θ_{Lout} , e o comprimento eléctrico do stub, θ_{Sout} .

Figura 11: Determinação do comprimento eléctrico da linha de saída - situação de CC.

Figura 12: Determinação do comprimento eléctrico do stub de saída - situação de CC.

$$\theta_{\rm L_{out}} = 83.620^{\circ} \ {\rm e} \ \theta_{\rm S_{out}} = 32.199^{\circ}.$$
 (2.4)

Simulação do Amplificador Ideal

Após obtermos os valores dos comprimentos eléctricos dos dispositivos que compõem as malhas de adaptação de entrada e saída através do ADS, poderemos então projectar um amplificador com malhas ideais compostas por dispositivos sem perdas. O circuito projectado pode ser observado na Figura 13.

Figura 13: Determinação do comprimento eléctrico do stub de saída - situação de CC.

- 2.1.2 b) Projecto do amplificador utilizando tecnologia microfita
- 2.2 Concretização do amplificador em tecnologia de microfita
- 2.2.1 a) Introdução de elementos que simulam descontinuidades nas linhas
- 2.2.2 b) Substituição do transístor e condensadores
- 3 Conclusões