

1.
$$\int_a^b |x-t| \, y(t) \, dt = f(x), \qquad 0 \le a < b < \infty.$$

Solution:

$$y(x) = \frac{1}{2} f_{xx}^{"}(x).$$

The right-hand side f(x) of the integral equation must satisfy certain relations. The general form of f(x) is as follows:

$$f(x) = F(x) + Ax + B,$$

$$A = -\frac{1}{2} \left[F'_x(a) + F'_x(b) \right], \quad B = \frac{1}{2} \left[aF'_x(a) + bF'_x(b) - F(a) - F(b) \right],$$

where F(x) is an arbitrary bounded twice differentiable function (with bounded first derivative).

Reference

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ie/ie0301.pdf