

TOPICS

Markov Chain

Hidden Markov Chains

Likelihood Computation

HMM Training

- Markovian Assumption states that the past doesn't give a piece of valuable information. Given the present, history is irrelevant to know what will happen in the future.
- Markov Chain is a stochastic process that follows the Markovian Assumption.

- Sentence I:I am a Boy.
- Sentence 2: I am a Girl.
- Sentence 3: I am a Star.

- Sentence I:I am a Boy.
- Sentence 2: I am a Girl.
- Sentence 3: I am a Star.

I	Uni-Gram			
I	am	Bi-Grar	n	
I	am	а	Tri-Grai	m
I	am	а	Boy	Four-Gram

N-Gram Concept

MARKOV MODEL

Markov Model (= Markov Chain)

- A sequence of random variables visiting a set of states
- Transition probability specifies the probability of transiting from one state to the other.
- Language Model!
- Markov Assumption: next state depends only on the current state and independent of previous history.

$$\Pr(X_{n+1} = x | X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x | X_n = x_n).$$

MARKOV MODEL

Sample Markov Model for POS

MARKOV MODEL

Sample Markov Model for POS

HIDDEN MARKOV MODEL

- Probabilistic generative model for sequences.
- HMM Definition with respect to POS tagging:
 - States = POS tags
 - Observation = a sequence of words
 - Transition probability = bigram model for POS tags
 - Observation probability = probability of generating each token (word) from a given POS tag
- "Hidden" means the exact sequence of states (a sequence of POS tags) that generated the observation (a sequence of words) are hidden.

HIDDEN MARKOV MODEL

Parameters of the model are $\theta = (\pi, A, B)$, with:

- the initial state vector π of elements p(h₁)
- the state transition matrix A of probabilities p(h_t | h_{t-1})
- the emission or observation matrix B of elements p(o_t | h_t)

HIDDEN MARKOV MODEL

PARAMETERS OF HIDDEN MARKOV MODEL

 q_0, q_F

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods, also

called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state i

a special **start state** and **end** (**final**) **state** that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state

PARAMETERS OF HIDDEN MARKOV MODEL

Three important problems in HMM

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

PARAMETERS OF HIDDEN MARKOV MODEL

Three important problems in HMM

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

- Problem 1 (Likelihood) Forward Algorithm
- Problem 2 (Decoding) → Viterbi Algorithm
- Problem 3 (Learning) -> Forward-backward Algorithm

- Decoding finds the most likely sequence of states that produced the observed sequence.
 - A sequence of states = pos-tags
 - A sequence of observation = words
- Naïve solution: brute force search by enumerating all possible sequences of states.
 - problem?
- Dynamic Programming!
- Standard procedure is called the Viterbi algorithm (Viterbi, 1967) and has O(N²T) time complexity.

 Given a sequence of observations, O, and a model with a set of parameters, λ, what is the probability that this observation was generated by this model: P(O| λ)?

- Due to the Markov assumption, the probability of being in any state at any given time t only relies on the probability of being in each of the possible states at time t-1.
- Forward Algorithm: Uses dynamic programming to exploit this fact to efficiently compute observation likelihood in O(TN²) time.
 - Compute a forward trellis that compactly and implicitly encodes information about all possible state paths.

Forward Probabilities

 Let α_t(j) be the probability of being in state j after seeing the first t observations (by summing over all initial paths leading to j).

$$\alpha_t(j) = P(o_1, o_2, ...o_t, q_t = s_j | \lambda)$$

Forward Step

- Consider all possible ways of getting to s_j at time t by coming from all possible states s_j and determine probability of each.
- Sum these to get the total probability of being in state s_j at time t while accounting for the first t −1 observations.
- Then multiply by the probability of actually observing o_t in $s_{j.}$

 $a_{t-1}(i)$ the **previous forward path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

Forward Trellis

 Continue forward in time until reaching final time point and sum probability of ending in final state.

Forward Computational Complexity

- Requires only O(TN²) time to compute the probability of an observed sequence given a model.
- Exploits the fact that all state sequences must merge into one of the N possible states at any point in time and the Markov assumption that only the last state effects the next one.

Supervised Learning:
☐ All training sequences are completely labeled (tagged).
☐ That is, nothing is really "hidden" strictly speaking.
☐ Learning is very simple → by MLE estimate
Unsupervised Learning:
☐ All training sequences are unlabeled (tags are unknown)
\square We do assume the number of tags, i.e. states
☐ True HMM case.
☐ Forward-Backward Algorithm

HMM LIKELIHOOD - FORWARD - BACKWARD ALGORITHM

- I. Start with initial probability estimates [A,B]. Initially set equal probabilities or define them randomly.
- 2. Compute expectation of how often each transition/emission has been used. We will estimate latent variables [ξ,γ] (This is common approach for EM Algorithm)
- 3. Re-estimate the probabilities [A,B] based on those estimates (latent variable).
- 4. Repeat until convergence

HMM LIKELIHOOD - FORWARD - BACKWARD ALGORITHM

- I) Assume an HMM with N states.
- 2) Randomly set its parameters $\lambda = (A,B)$ (making sure they represent legal distributions)
- 3) Until converge (i.e. λ no longer changes) do:
 - **E Step**: Use the forward/backward procedure to determine the probability of various possible state sequences for generating the training data
 - **M Step**: Use these probability estimates to re-estimate values for all of the parameters λ

Detection of DNA regions

- Observation: DNA sequence
- Hidden state: gene, transcription factor, protein-coding region...
- Learning: EM
- Validation often against known regions, and then through biological experiment

Music composition

- Observations: notes played
- States: chords
- Learning: music by one composer, labelled with correct chords, used for maximum likelihood learning
- Model "composes" by sampling chords and notes from the model
- If successful, new music is generated "in the style" of the composer

Speech recognition

- Observations: sound wave readings
- States: phonemes
- Learning: use labelled data to initialize the model, then EM with a much larger set of speakers to further adapt the parameters
- Transcription system: use inference to determine the most likely state sequence, which provides the transcription of the word
- HMMs are the state-of-art speech recognition technology
- Can be coupled with classification, if desired, to improve recognition performance

Classification of time series

- Use one HMM for each class, and learn its parameters from data
- When given a new observation sequence, compute its likelihood under each HMM
- The example is assigned the label of the class that yields the highest likelihood