MATH 120 PRACTICE MIDTERM

1. (6 points)

- (a) What is the order of A_4 ?
- (b) How many rotations of the cube have order exactly 2 (i.e. if you do them twice, you get the identity, but they are not the identity)? Possible hint: we have seen that the group of rotations of the cube is isomorphic to S_4 .
- (c) Which of the following is true?
 - (i) For all subsets A of a group G, the centralizer $C_G(A)$ is always contained in the normalizer $N_G(A)$.
 - (ii) For all subsets A of a group G, the centralizer $C_G(A)$ always contains in the normalizer $N_G(A)$.
 - (iii) Neither (i) nor (ii) is true.
- **2.** (6 points) Suppose G acts on a set A, and a and $b \in A$ are in the same orbit of G. Show that G_a , the stabilizer of a, is conjugate to G_b , the stabilizer of b.
- **3.** (6 points) Suppose $H \le K \le G$. Prove that $|G:H| = |G:K| \cdot |K:H|$. (Do not assume the groups are finite!)
- **4.** (6 points) Let G be any group.
 - (a) Prove that the map $G \to G$ defined by $g \mapsto g^2$ is a homomorphism if and only if G is abelian.
 - (b) If G is abelian and finite show that this map is an isomorphism if and only if G has odd order.
- **5.** (6 points) Suppose G is group of order p^2q , where p and q are distinct prime numbers. Show that G is not simple. (This is in the text, so of course do not just quote the text!)
- **6.** (6 points) Suppose that H_1 and H_2 are groups of finite index in G. Show that $H_1 \cap H_2$ is also of finite index in G.

Date: November 2014.