What is Biochemistry?

- Simplest definition: "Chemistry of the living cell"
- Uses basic laws of chemistry, biology and physics to explain processes of living cells
- GOAL: Describe life processes at the molecular level and answer the question:
- The study of life at the molecular level

Why study biochemistry?

- Lead us to fundamental understanding of life
- Understand important issues in medicine, health, and

nutrition

- O Has led to greater molecular understanding of diseases such as diabetes, sickle cell anemia, and cystic fibrosis.
 - o Next frontier: AIDS, cancer, Alzheimer's Disease
 - Advance biotechnology industries
- o Biotechnology is the application of biological cells, cell components, and biological properties to technically and industrially useful operations

Three areas to study:

- 1. **Structural and Functional Biochemistry:** Chemical structures and 3D arrangements of molecules.
- 2. **Informational Biochemistry:** Language for storing biological data and for transmitting that data in cells and organisms.
- 3. **Bioenergetics:** The flow of energy in living organisms and how it is transferred from one process to another.

Tools to study biochemistry:

- Know chemical structures and reactivities of molecules that participate in cellular reactions
- Know biological function of cellular molecules
- Know how all of the pieces and different pathways fit together
 - *Use knowledge from general chemistry, organic chemistry, and biology and apply it to biological systems. Concepts and mechanisms are the same.

LIVING SYSTEMS APPEAR COMPLEX BUT THERE IS AN UNDERLYING SIMPLICITY AND ELEGANCE:

- Most biological compounds are made of only **SIX** elements: C, H, O, N, P, S
- Only 31 chemical elements occur naturally in plants and animals
- All organisms have similar biochemical pathways.
 - All organisms use the

same genetic code.

- Limited number of molecular building blocks make up larger macromolecules

© John Wiley & Sons, Inc. All rights reserved.

4 MAJOR CLASSES OF BIOMOLECULES SERVE AS BUILDING BLOCKS FOR LARGER MACROMOLECULES:

- 1. **Carbohydrates**: e.g. glucose, fructose, sucrose
 - mainly used as sources of cellular energy
- 2. **Lipids:** commonly known as fats
 - organic compounds that are not very water soluble
 - used as sources of cellular energy
 - components of cell membranes

3. Amino Acids:

- 20 natural amino acids in total
- Used as building blocks for proteins

4. **Nucleotides:**

- 5 in total
- Used as building blocks for DNA and RNA precursors

5. **OTHER:**

- Vitamins: organic compounds necessary for proper growth and development
- **Heme:** Organometallic compound containing iron; important for transporting oxygen in your blood stream.

Building blocks are used to create macromolecules: polymer of several, hundreds, to sometimes millions of building blocks

Examples:

Figure 1-6 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

- **Starch and Cellulose:** polymers of glucose molecules that differ only by how the glucose

monomers are linked.

- **Proteins/polypeptides:** amino acid monomers linked together
- DNA:deoxyribonucleic acid
- Heteropolymer of monomeric nucleotides
- Storage of genetic information
- RNA: ribonucleic acid
- Heteropolymer of monomeric nucleotides
- Involved in the TRANSFER of the genetic information encoded by DNA

Biomacromolecules:

- self-assemble into **cellular structures** and **complexes**.
- recognize and interact with one another in specific ways to perform essential cellular functions (e.g. membranes are complexes of lipids and proteins)
- Interactions are weak and reversible
- Molecules have three dimensions and shapes! Much of biochemistry relies on this fact.

Figure 1

Relative Sizes and Detection Devices

1 Å 0.1 Å 1 dm 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 1 m 10⁻¹m 10⁻²m 10⁻³m 10⁻⁴m 10⁻⁵m 10⁻⁶m 10⁻⁷m 10⁻⁸m 10⁻⁹m 10⁻¹⁰m 10⁻¹¹m 1 m Electron Microscope Human Eye Light Microscope Small Molecule Virus Electron Cell Apple **Orbital** Atom Human Hair Bacteria DNA

ORGANISMS:

- 2 basic classes of organisms
- -Prokaryotes (e.g. *E.coli*) -Eukaryotes
- We will focus on eukaryotic cells and the biochemistry that occurs in these cells.

Similar processes

occur in <u>ALL</u> cells, including prokaryotes. In fact, much of the biochemistry that we understand was first uncovered in prokaryotic systems.

Figure 1-11a part 1 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

EUKARYOTES: Typical Eukaryotic Cell – Animal

- a. Class includes plants, animals, fungi, protozoans, yeasts and some algaes.
- b. Large cells (10-100 µm in diameter). 10X bigger than prokaryotes.
- c. Surrounded by a membrane called plasma membrane
 - i. Composed of lipids and proteins
 - ii. Serves as chemical barrier to the outside environment
- d. Contain INTERNAL membranes and compartments. (Unique feature)
 - i. Compartments = organelles
 - ii. Organelles contain organized complexes of macromolecules that perform a certain biological function.
 - iii. Most enzymes are compartmentalized
 - iv. Compartmentalization results in **separation of biological function!!**

We'll see a lot of this phenomenon throughout the course.

- e. No cell wall in animal cells.
- f. Plants, fungi, algae generally have a cell wall.

EUKARYOTIC CELL PARTS:

Structure		Description	Function
structure		Description	Tunction
Structural Elements			
Cell wall		Outer layer of cellulose or chitin; or absent	Protection; support
Cytoskeleton		Network of protein filaments	Structural support; cell movement
Flagella and cilia		Cellular extensions with 9 + 2 arrangement of pairs of microtubules	Motility or moving fluids over surfaces
Plasma Membrane and Endor	nembrane System		
Plasma membrane	\$15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Lipid bilayer in which proteins are embedded	Regulates what passes into and out of cell; cell-to-cell recognition
Endoplasmic reticulum		Network of internal membranes	Forms compartments and vesicles; participates in protein and lipid synthesis
Nucleus		Structure (usually spherical) surrounded by double membrane that contains chromosomes	Control center of cell; directs protein synthesis and cell reproduction
Golgi complex		Stacks of flattened vesicles	Packages proteins for export from the cell; forms secretory vesicles
ysosomes		Vesicles derived from Golgi complex that contain hydrolytic digestive enzymes	Digest worn-out organelles and cell debris; play role in cell death
Peroxisomes		Vesicles formed from the ER containing oxidative and other enzymes	Isolate particular chemical activities from rest of cell
Energy-Producing Organelles			
Mitochondria		Bacteria-like elements with double membrane	Sites of oxidative metabolism; provides ATP for cellular energy
Chloroplasts		Bacteria-like organelles found in plants and algae; complex inner membrane consists of stacked vesicles	Sites of photosynthesis
lements of Gene Expression			
Chromosomes	20	Long threads of DNA that form a complex with protein	Contain hereditary information
Nucleolus		Site of genes for rRNA synthesis	Assembles ribosomes
Ribosomes	4	Small, complex assemblies of protein and RNA, often bound to endoplasmic reticulum	Sites of protein synthesis

1. Cytoplasm/cytosol

- Viscous aqueous environment (NOT free flowing)
- Contains small molecules, nutrients, salts, soluble proteins
- 20-30% of cytosol is protein Very concentrated
- Highly organized environment **
- A major site of cellular metabolism (e.g. glycolysis)
- Contains cytoskeleton

2. Cytoskeleton

- 3-dimensional matrix made of protein fibers
- Functions to give cells shape, allows cells to move, guides internal organelle movement.

3. Nucleus

- Site of most DNA and RNA synthesis
- Storage of genetic information
- Bound by a double membrane
- Largest organelle in eukaryotic cells

(c)
Figure 1-10 Concepts in Biochemistry, 3/e

4. Endoplasmic Reticulum (ER)

- Network of interconnected, closed, membrane-bounded vesicles
- Attached to cell and nuclear membrane
- Used for manufacturing, modification and transport of cellular materials
- Two types:
 - * Smooth ER = site of lipid synthesis
 - * Rough ER = site of protein synthesis via ribosomes
- Ribosomes are made up of RNA and proteins not bound by a membrane

5. Lysosomes

- Internal sacs bound by a single membrane
- Responsible for degrading cell components that have become obsolete for the cell or organism.
- Internal pH ~5 (very acidic)
- Compartmentalization ESSENTIAL! Sequesters this biological activity from the rest of the cell.
- Enzymes in lysosomes degrade polymers into their individual building blocks.

6. Golgi Apparatus

- Flattened vesicles of lipid/protein/sugar
- Usually found near smooth ER and nucleus
- Involved in protein and fat processing and trafficking to other organelles (e.g. lysosomes, plasma membranes) Distribution and shipping department for cell materials.

7. Mitochondria

- Have double membrane (inner and outer)
- Place where most oxidative energy production occurs = "powerhouse" of the cell
- Form ATP Convert oxygen and nutrients to energy
- Small, typically the size of a bacterium
- Contain a circular DNA molecule like that of bacteria (own genome)
- Because of the double membrane, size and presence of own genome, mitochondria are believed to be descendents of a bacteria that was engulfed by a larger cell billions of years ago = endosymbiotic hypothesis.
- A cell can have over 1000 mitochondria! Depends on need for energy---muscle cells have a lot of mitochondria.

Compound Name Structure^a **Functional Group** Amine^b RNH₂ or RNH₃⁺ R₂NH or R₂NH₂⁺ R_3N or R₃NH⁺ Alcohol **ROH** OH (hydroxyl group) Thiol **RSH** SH (sulfhydryl group) **Ether** ROR −O — (ether linkage) Aldehyde -C-(carbonyl group), R-Ketone Carboxylic acidb OH (carboxyl group) or (Carboxylate)

O (carboxylate group)

(ester linkage)

© John Wiley & Sons, Inc. All rights reserved.

Ester

Compound Name	Structure	Functional Group	
Amide	$\begin{cases} & \mathbf{O} \\ & \ \\ & \mathbf{R} - \mathbf{C} - \mathbf{N} \mathbf{H_2} \\ & \mathbf{O} \\ & \ \\ & \mathbf{R} - \mathbf{C} - \mathbf{N} \mathbf{H} \mathbf{R} \\ & \mathbf{O} \\ & \ \\ & \mathbf{R} - \mathbf{C} - \mathbf{N} \mathbf{R_2} \end{cases}$	O CN< (amido group)	
Imine ^b	R=NH or R=NH ₂ ⁺ R=NR or R=NHR ⁺	C=N- or $C=N+$ (imino group)	
Phosphoric acid ester ^b	O	O	
Diphosphoric acid ester ^b	O O O	O O	

^aR represents any carbon-containing group. In a molecule with more than one R group, the groups may be the same or different. ^bUnder physiological conditions, these groups are ionized and hence bear a positive or negative charge.

^aR represents any carbon-containing group. In a molecule with more than one R group, the groups may be the same or different. ^bUnder physiological conditions, these groups are ionized and hence bear a positive or negative charge.