Министерство образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования
"Московский физико-технический институт (национальный исследовательский университет)"

Физтех-школа фундаментальной и прикладной физики

Факультет проблем физики и энергетики

Кафедра электродинамики сложных систем и нанофотоники

Исследование свойств оптических волокон с брэгговскими решётками для сенсорных применений

Выпускная квалификационная работа (бакалаврская работа)

Направление подготовки: 03.03.01 Прикладные математика и физика

Работу выполнил:	
студент 685 группы	 Барсегян Сергей Симонович
Научный руководитель:	
л.фм.н., член-корр, РАН	Лорофеенко Александр Викторович

Содержание

Введение		2
1	Эффекти Кречмана	3
2	Моды волновода	5
\mathbf{C}_{1}	писок литературы	6

Введение

1 Эффекти Кречмана

Рассмотрим падение света на слоистую среду под углом θ_1 с коэффицентами диэлектрическими проницаемостями $\varepsilon_1, \varepsilon_2, \varepsilon_3$ соответственно. На границе каждой среды можно записать закон Снеллиуса.

$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{n_2}{n_1} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$$
$$\frac{\sin \theta_3}{\sin \theta_2} = \frac{n_3}{n_2} = \sqrt{\frac{\varepsilon_3}{\varepsilon_2}}$$

Наша цель посчитать коэффиценты отражения и прохождения для такой слоистой системы. В это задаче очень полезен метод T-матриц. Обозначим коэффицент отражения через t, и коэффицент прохождения через t.

Тогда на матричном языке можно задать взаимосвязь между этими величинами. А именно распишем ампплитуды волн слева и справа.

$$\vec{E} = \vec{E}(x)e^{i(\omega t - \beta z)}$$

$$E(x) = \begin{cases} E_1 e^{ik_1 x} + E_1' e^{-ik_1 x}, x < 0 \\ E_2 e^{ik_2 x} + E_2' e^{-ik_2 x_2 x}, 0 < x < d \\ E_3 e^{ik_3 (x - d)} + E_3' e^{-ik_3 (x - d)}, x > d \end{cases}$$

$$P_2 = \begin{pmatrix} e^{ik_2 x} d & 0 \\ 0 & e^{-ik_2 x} d \end{pmatrix}$$

$$S_{21} = \frac{1}{2Z_2} \begin{pmatrix} Z_2 + Z_1 & Z_2 - Z_1 \\ Z_2 - Z_1 & Z_2 + Z_1 \end{pmatrix}$$

$$S_{32} = \frac{1}{2Z_3} \begin{pmatrix} Z_3 + Z_2 & Z_3 - Z_2 \\ Z_3 - Z_2 & Z_3 + Z_2 \end{pmatrix}$$

Где $Z_i=rac{k_{zi}}{k_0}$ для s - поляризации и $Z_i=rac{k_{zi}}{arepsilon_i k_0}$ для p - поляризации

$$k_{zi} = \sqrt{k_0^2 \epsilon_i - k_x^2}$$

$$k_x = k_0 \sin \theta$$

$$S_{32}P_2S_{21}\begin{pmatrix}1\\r\end{pmatrix}=\begin{pmatrix}t\\0\end{pmatrix}$$

Решая эту систему уравнений относительно r получаем зависимость коэффицента отражения от угла падающей волны. Для p поляризации при определённой каллибровке толщины металлического слоя (условие на Кречманна???) можно наблюдать, что при некотором угле амплитуда отражённой волны полностью зануляется, что часто называют нарушенным полным отражением или эффектом Кречманна. Данный имеет коллосальный потенциал для приложений.

Рис. 1:

2 Моды волновода

Klir

$$\operatorname{rot} \mathbf{H} = \frac{\partial D}{\partial t}, \quad \operatorname{rot} \mathbf{E} = -\frac{\partial B}{\partial t}$$
 (1)

$$\frac{1}{r}\frac{\partial H_z}{\partial \varphi} - \frac{\partial H_{\varphi}}{\partial z} = -i\omega \varepsilon E_r \tag{2}$$

$$\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} = -i\omega \varepsilon E_{\varphi} \tag{3}$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(rH_{\varphi}\right) - \frac{1}{r}\frac{\partial H_r}{\partial \varphi} = -i\omega\varepsilon E_z \tag{4}$$

$$\frac{1}{r}\frac{\partial E_z}{\partial \varphi} - \frac{\partial E_{\varphi}}{\partial z} = i\omega \mu H_r, \quad \frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} = i\omega \mu H_{\varphi}$$
 (5)

$$\frac{1}{r}\frac{\partial}{\partial r}\left(rE_{\varphi}\right) - \frac{1}{r}\frac{\partial E_r}{\partial \varphi} = i\omega\mu H_z \tag{6}$$

$$E_r = \frac{1}{k^2 - h^2} \left(\text{ ih } \frac{\partial E_z}{\partial r} + \frac{i\omega\mu}{r} \frac{\partial H_3}{\partial \varphi} \right)$$
 (7)

$$E_{\varphi} = \frac{1}{k^2 - h^2} \left(\frac{ih}{r} \frac{\partial E_z}{\partial \varphi} - i\omega \mu \frac{\partial H_z}{\partial r} \right) \tag{8}$$

$$H_r = \frac{1}{k^2 - h^2} \left(\text{ ih } \frac{\partial H_z}{\partial r} - \frac{i\omega e}{r} \frac{\partial E_z}{\partial \varphi} \right)$$
 (9)

$$H_{\varphi} = \frac{1}{k^2 - h^2} \left(\frac{ih}{r} \frac{\partial H_z}{\partial \varphi} + i\omega e \frac{\partial E_z}{\partial r} \right)$$
 (10)

$$\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial^2 U}{\partial \varphi^2} + \left(k^2 - h^2\right) U = 0 \tag{11}$$

$$U = F(r)e^{im\varphi} \tag{12}$$

$$\frac{\partial^2 F}{\partial r^2} + \frac{1}{r} \frac{\partial F}{\partial r} + \left(u^2 - \frac{m^2}{r^2}\right) F = 0 \tag{13}$$

$$E_z^{(1)} = \sum_{m = -\infty}^{\infty} A_m J_m(ur) \cos m\varphi \exp(ihz - i\omega t)$$

$$H_z^{(1)} = \sum_{m = -\infty}^{\infty} B_m J_m(ur) \cos (m\varphi + \beta_m) \exp(ihz - i\omega t)$$
(14)

$$E_z^{(2)} = \sum_{m=-\infty}^{\infty} C_m K_m(vr) \cos m\varphi \exp(thz - i\omega t)$$
 (15)

$$H_z^{(2)} = \sum_{m=0}^{\infty} D_m K_m(vr) \cos(m\varphi + \beta_m) \exp(ihz - i\omega t)$$
 (16)

$$v = \sqrt{h^2 - k_2^2}, k_3 \leqslant h \leqslant k_1 \tag{17}$$

$$E_{\varphi}^{(1)} = -\sum_{m=-\infty}^{\infty} \left[A_m \frac{imh}{u^2 r} J_m(ur) \sin m\varphi - B_m \frac{i\omega\mu}{u} J'_m(ur) \cos (m\varphi + \beta_m) \right]$$
(18)

$$H_{\varphi}^{(1)} = -\sum_{m=-\infty}^{\infty} \left[B_m \frac{imh}{u^2 r} J_m(ur) \sin(m\varphi + \beta_m) + A_m \frac{i\omega e_1}{u} J_m(ur) \cos m\varphi \right]$$

$$(19)$$

$$E_{\varphi}^{(2)} = \sum_{m=-\infty}^{\infty} \left[C_m \frac{imh}{v^2 r} K_m(vr) \sin(m\varphi + \beta_m) - D_m \frac{i\omega\varepsilon_2}{v} K_m'(vr) \cos m\varphi \right]$$
(20)

$$H_{\varphi}^{(2)} = \sum_{m=-\infty}^{\infty} \left[D_m \frac{imh}{v^2 r} K_m \left(v^2 r \right) \sin \left(m\varphi + \beta_m \right) - C_m \frac{i\omega\varepsilon_2}{v} K_m'(vr) \cos m\varphi \right]$$
(21)

$$-A_m \frac{mh}{p^2} J_m(p) \sin m\varphi - B_m \frac{\omega \mu}{p} J'_m(p) \cos (m\varphi + \beta_m) =$$
 (22)

$$= C_m \frac{mh}{q^2} K_m(q) \sin m\varphi + D_m \frac{\omega\mu}{q} K'_m(q) \cos (m\varphi + \beta_m)$$

$$A_m J_m(p) = C_m K_m(q)$$
(23)

$$-B_{m} \frac{mh}{p^{2}} J_{m}(p) \sin \left(m\varphi + \beta_{m}\right) + A_{m} \frac{\omega e_{1}}{p} J'_{m}(p) \cos m\varphi$$

$$= D_{m} \frac{mh}{q^{2}} K_{m}(q_{1}) \sin \left(m\varphi + \beta_{m}\right) - C_{m} \frac{\omega e_{9}}{q} K'_{m}(q) \cos m\varphi$$

$$B_{m} J_{m}(p) = D_{m} K_{m}(q)$$

$$(24)$$

$$[f_m(p) + g_m(q)] \left[\frac{\varepsilon_1}{e_s} f_m(p) + g_m(q) \right]$$

$$= \frac{m^2 b^2}{k_2^2} \left(\frac{1}{p^2} + \frac{1}{q^2} \right)$$

$$= \frac{\sin m\varphi \sin(m\varphi + \beta_m)}{\cos m\varphi \cos(m\varphi + \beta_m)}$$
(25)

$$f_m = \frac{J'_m(p)}{pJ_m(p)}, \quad g_m(q) = \frac{K'_m(q)}{qR_m(q)}$$
 (26)

$$p^2 + q^2 = a^2 \left(k_1^2 - k_2^2 \right) \tag{27}$$

$$[f_m(p) + g_m(q)] \left[\frac{\varepsilon_1}{\varepsilon_2} f_m(p) + g_m(q) \right] = \frac{m^2 h^2}{k_2^2} \left(\frac{1}{p^2} + \frac{1}{q^2} \right)^2$$
 (28)

Список литературы