******* 作业电子版发送到指定邮箱 *******

题目1: 假设 L_1, L_2, \ldots, L_k 是定义在字符集 Σ 上的语言集合,并且

- (1) 对于任意 $i \neq j$, 我们有 $L_i \cap L_j = \emptyset$; (2) $L_1 \cup L_2 \cup ... \cup L_k = \Sigma^*$;
- (3) 每个 L_i 都是递归可枚举的。证明: 每个 L_i 都是递归的。

由海个Li 都是RE的,则分别存在对应的Mi, Mi识别Li,即LCMi)=Li

现对每个Li 构造对应的TM: Ti

Ti 获取输入ω,我发至每个内机器Moi 有个Moi Ri这行一步,若该步Moi未接受,则把控制权交给 Moi+1)**A+1 即 Moi→Moi→····→Moi→Moi→Moi→····

当某个My 接受好, 若 i=j, Ti 新出Yes,否则Ti 新出Mo

下证 Ti 判定 Li:

对 Yw ∈ L(Ti), 即 Ti(w)=Yes, 知 Mi(w)=Yes, Um w∈ Li

对 YweLi=Mi, 知Mi在有限与内接复ω,且由 比约(i+j→Li∩y=Φ),知有Mi才会接ω 从而Ti将在有限与内运行至Mi接ω的那一步,ωeL(Ti)

故 L(Ti)=Li

而由于 $L_1 U L_2 U \cdots U L_k = \sum^{*}$,对 $t \omega \in \mathbb{Z}^{*}$, 沒有一个 M 会接後 ω , 使得 T_i 接负或拒绝 ω , 从而 T_i 总停机 故 T_i 判定 L_i , 从而 L_i 递归

题目2:证明 $L = \{\langle M \rangle | M$ 是图灵机, $L(M) = \{ww^R | w$ 是 0、1字符串}} 是不可判定的, w^R 是 w 的逆序字符串。

该性质显然是关于图义机设备的性质

且该性质非平凡,由于:

存在因灵机 M_1 : Start > O > O , $L(M_1) = O(O+1)^{\frac{1}{2}}$ 不满足该性质 $O \in L(M_1)$ 有在因灵机 M_2 : Start > O > O , $L(M_2) = \{E\}$ 满足滋性质

由某斯定理,诚语是上不可判定

题目 3: 证明 $L = \{\langle M \rangle | M$ 是图灵机, $L(M) = (L(M))^R$,即若 $w \in L(M)$ 有 $w^R \in L(M)$ } 不可判定,进一步证明是非递归可枚举的。

该性质显然是关于图义机语言的程质

且该性质非平凡,由于:

存在因灵机 M_i : 如此 $O^{(0,7)}$ O , $L(M_i)=O(0.1)^{*}$ 不竭足该性质 $O(EL(M_i)$, $O(EL(M_i))$ 存在因灵机 M_i : 如此 $O(M_i)=\Sigma^{*}$ 满足该性质

由某斯定理,诚语是一不可判定

Til: Lacc 新L, 即证 Lacc 新L

杨皓旧约于:

著义初4cc后法输入,全fcx) = <MAIL>,基中 M_{HI} 接受所有输入 著义形如<M, ω >,全fcx) = <M'> , 其中M"有:

记M的输入为Y,M模拟W在M上的运行:

①若M接受W,模拟y在Mol上的运行,Mol接受y则似接受y

△ 子则,即M不接爱ω或Moj不接爱y,MJ不停机

(Moj R接发串 01, 即L(Moj)= \$013

サイXELACC, 有X=<M、W>, M接受W, Mm f(x)=<M'>中,

M 模拟其输入在Mor LOM LOM

サヤ文◆LACC, ① 文不为LACC 合法输入,有f(x)=<Mac>∈L

结上fxx≠L

LLAD XELACI SHXEL

to Lace ≤m L, 又由 Lace 不可识别, 从而 L不可识别

题目 4: 证明 $L = \{\langle M \rangle | M$ 是图灵机, $L(M) = \Sigma^* \}$ 不可判定。

该性质显然是关于图义机语号的性质 且该性质非平凡,由于:

存在因灵机 $M_1: \stackrel{\text{stort}}{\longrightarrow} \bigcirc$, $L(M_1)= \emptyset$ 不满足该性质 存在国灵机 M_0 : $Start_{00}$, $L(M_0) = \sum^{X}$ 满从海性质

由基斯定理, 诚语多上不可判定

题目5: 证明 $L = \{\langle M \rangle | M$ 是图灵机,L(M) 是无穷的} 不可判定。

该性质显然是关于图灵机设务的程质

且该性质非平凡,由于:

存在因灵机 M_i : $Stort \bigcirc O(0,7)$ O(B/B/7) $O(M_i)=\{0\}$ 不满足该性质

存在国灵机 M2: Start 000 , L(M2)= 5* 满风流性质

豆类斯定理,诚语多L不了判定

题目 6: 令问题集合 $L = \{\langle M \rangle | M$ 在所有输入上均停机}。(1) 利用 Rice 定理证明 L 不可判定; (2) 证明 L 非递归可枚举 (提示: 利用 归约技术); (3) 证明 \overline{L} 非递归可枚举(提示:利用归约技术)。

(l)该性质等价于:"L(M)是国是可判定的,且可由从判定" , 是关于国民机设备的胜质,以∑=?0,19分别

且该性质非平凡,由于:

存在图灵机 Mi: 5世(○) 0/0,→ , L(Mi)= Ø, Mi 转发形机, 不满足该性质

存在国灵机 M_2 : $Start_2$ 0 , $L(M_2) = \sum^{*}$, M_1 % 从 为 为 说 上 质 由某斯定理,诚语是一不可判定

(2) 证明 L 非 R.E.

维证: Zacc ≤m L , 都证 Lacc ≤m L 构造旧约户:

者 χ 不为 ζ_{ACC} 合适输入,全 $f(x) = \langle M_{\downarrow} \rangle$, M_{\downarrow} 为上述的: \$\frac{\f

M 计算其输入y的长度n,在内部模拟M在W上前n当的运行 若M在n号内接发W,加4Ml进入死循环,不停机 若M在n号内没有接发W,那4Ml接餐y

科 $Vac L_{ACC}$, 即 x 刑 $vc N_{N}$ ω , 且 M 接近 ω 从而 M 在有限号 N 内接货 ω , 那 , 总存在 M 的新 λ y 使得 |y| > N , 从而 M 在 |y| 号内接货 ω , 对于 $f(x) = \langle M \rangle$, 知 M 对 新 λ y 不 f(x) $\in L$

27 YX&LACL

- ① 化初入M,W)的合话转入,显然 $f(x) = \langle M_2 \rangle \notin \overline{L}$
- ② 化形如<M,w>,且M不转发W 那么,对性型Mi的输入y,M在lyl的内部不接发W,从而 Mi 接发Y 从而对于fc11=<M'>2,知Mi 接发任何输入 y ,fcx)←□

故 Lacc ≤m L, 即 Lacc ≤m L, 又由 Lacc 非R.E. 从而 L非R.E.

(3) 证明 [非 R.E.

在证: Zacc ≤m Z , 即证 Lacc ≤m L 构造归约 f:

> 基义不为∠M, ω>合连输入, 变fω=〈M>, M, 为上述的如此, 3 表义形如〈M, ω>, 全fω=〈M>, 其中:

M1包略其输入y,在内部模拟 M在心上的运行

- D 当M接近时,M'接受y
- ②当M不接受W时,M'进入死循环,不停地或M在W上不停机,是处M'不停机

对 bxeluc,知识的如《Miw》且M接爱心,从而M'接爱的有转入y,fon=<M>EL
对 bxeluc,

- ①x不为<M,w>含磷酸入,fox)=<M>+L
- ②双形如<1/1/10/20 且 M不接爱似,由州杨俊知州不得和, 于(的=<1/10/2) 本上

题目7: 如果波斯特对应问题的字母表只包含一个字符,如 $\Sigma = \{1\}$,该问题是否可判定,如不可判定给出证明,否则给出算法。

这样的PCP的题是可判质的

问题等价于: 给它非负数组 $A[J \to B[J]$, A.length = B.length = k 是否存在有限非空下标列表 $I \in \{i, i_2, ..., i_t\}$, $\emptyset \subseteq A[i] = \sum_{i \in I} B[i]$

- ①若存在O≤i<k,使A[i]=B[i],那么{ig为一解
- ②考存在O≤i<j<k
 - ① 使A[i] > B[i], A[j] < B[j]
 iz m=A[i] B[i], n=B[j] A[j],有 {i,i,...,i,j,j,...,j}为一刻
 - ②使 Aci] < Bci], Acj] > Bcj],同理有新
- ③到对Hi∈[O,k]有A[i]>B[i]或A[i]<B[i],显然无解