0 1 2 3 4 0 0 2 4 13.0 14.0 1 8 10 12 18.0 19.0

In [58]: df6>5

Out[58]:

	0	1	2	3	4
0	False	False	False	True	True
1	True	True	True	True	True

In [59]: print(s1)

0 0

1 1

2 2

dtype: int32

In [60]:

df6>s1

Out[60]:

	0	1	2	3	4
0	False	True	True	False	False
1	True	True	True	False	False

In [61]: df6>(2,18)

Out[61]:

	0	1	2	3	4
0	False	False	True	True	True
1	False	False	False	False	True

38.7 统计信息

In [62]: import numpy as np

import pandas as pd

df2 = pd.read_csv('bc_data.csv')

df2=df2[["id","diagnosis","area_mean"]]

df2.describe()

Out[62]:

	id	area_mean
count	5.690000e+02	569.000000
mean	3.037183e+07	654.889104
std	1.250206e+08	351.914129
min	8.670000e+03	143.500000
25%	8.692180e+05	420.300000
50%	9.060240e+05	551.100000

75%	8.813129e+06	782.700000
max	9.113205e+08	2501.000000

```
In [63]: dt = df2[df2.diagnosis=='M']
```

In [64]: dt.head()

Out[64]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0

In [65]: dt.tail()

Out[65]:

	id	diagnosis	area_mean
563	926125	М	1347.0
564	926424	М	1479.0
565	926682	М	1261.0
566	926954	М	858.1
567	927241	М	1265.0

In [66]: df2[df2.diagnosis=='M'].count()

Out [66]: id 212 diagnosis 212 area_mean 212 dtype: int64

In [67]: df2[["area_mean","id"]].head()

Out[67]:

	area_mean	id
0	1001.0	842302
1	1326.0	842517
2	1203.0	84300903
3	386.1	84348301
4	1297.0	84358402

38.8 排序

In [68]: df2.head(8)

Out[68]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0
5	843786	М	477.1
6	844359	М	1040.0
7	84458202	М	577.9

In [69]: df2.sort_values(by="area_mean",axis=0,ascending=**True**).head()

Out[69]:

	id	diagnosis	area_mean
101	862722	В	143.5
539	921362	В	170.4
538	921092	В	178.8
568	92751	В	181.0
46	85713702	В	201.9

In [70]: df2.sort_index(axis=1).head(3)

Out[70]:

	area_mean	diagnosis	id
0	1001.0	M	842302
1	1326.0	M	842517
2	1203.0	M	84300903

In [71]: df2.sort_index(axis=0,ascending=False).head(3)

Out[71]:

	id	diagnosis	area_mean
56 8	92751	В	181.0
567	927241	М	1265.0
566	926954	М	858.1

38.9导入导出

In [72]: import os print(os.getcwd())

C:\Users\soloman\clm

```
In [73]: df2.head(3).to_csv("df2.csv")
In [74]: import pandas as pd
           df3 = pd.read_csv('df2.csv')
In [75]:
          df3
Out [75]:
                                  id diagnosis area_mean
              Unnamed: 0
             0
                          842302
                                     Μ
                                                1001.0
             1
                          842517
                                     Μ
                                                1326.0
             2
                           84300903 M
                                               1203.0
```

```
In [76]: df3 = pd.read_csv('df2.csv')
```

In [77]: df3

Out [77]:

	Unnamed: 0	id	diagnosis	area_mean
0	0	842302	М	1001.0
1	1	842517	М	1326.0
2	2	84300903	М	1203.0

```
In [78]: df2.head(3).to_excel("df3.xls")
```

```
In [79]: df3 = pd.read_excel("df3.xls") df3
```

Out [79]:

	id	diagnosis	area_mean
0	842302	M	1001
1	842517	М	1326
2	84300903	М	1203

38.10 缺失数据处理

```
In [80]: df3.empty
Out [80]: False
In [81]: np.nan+1
Out [81]: nan
In [82]: np.nan-np.nan
Out [82]: nan
```

```
In [83]: None+1
           TypeError
                                    Traceback (most recent call last)
           <ipython-input-83-6e170940e108> in <module>()
           ---> 1 None+1
                #【提示】报错信息为TypeError: unsupported operand type(s) for +: 'NoneType' and 'int',
           原因分析: None不能参加算数运算。
              3
              4
                 #【注意】
              5
                   #None是Python基础语法中的特殊数据类型,不属于数值类型,不能参加算数运算
           TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'
In [84]:
           import pandas as pd
           import numpy as np
           A = pd. DataFrame(np.array([10,10,20,20]).reshape(2,2), columns = list("ab"), index = list("SW"))
Out[84]:
                   b
               10
                  10
           S
               20
                  20
In [85]: list("ab")
Out [85]: ['a', 'b']
In [86]:
           B=pd.DataFrame(np.array([1,1,1,2,2,2,3,3,3]).reshape(3,3), columns=list("abc"),index=list("SWT"))
Out[86]:
                 b
               а
                 1
                    1
                 2
                    2
               2
In [87]:
           C=A+B
           C
Out[87]:
                       b
                  а
                             C
               11.0 11.0 NaN
           Т
               NaN
                    NaN NaN
               22.0
                    22.0
                        NaN
In [88]:
           A.add(B,fill_value=0)
Out[88]:
                 a
                       b
                           C
               11.0
                    11.0
                         1.0
```

Т	3.0	3.0	3.0
W	22.0	22.0	2.0

In [89]: A.add(B,fill_value=A.stack().mean())

Out[89]:

	3	а	b	С
	S	11.0	11.0	16.0
	Т	18.0	18.0	18.0
	W	22.0	22.0	17.0

In [90]: A.mean()

Out[90]: a 15.0 b 15.0

dtype: float64

In [91]: A.stack()

Out[91]: S a 10 b 10

> W a 20 b 20 dtype: int32

In [92]: A.stack().mean()

Out[92]: 15.0

In [93]: C

Out[93]:

	а	b	С
s	11.0	11.0	NaN
Т	NaN	NaN	NaN
w	22.0	22.0	NaN

In [94]: C.isnull()

Out[94]:

	а	b	С
s	False	False	True
Т	True	True	True
w	False	False	True

In [95]: C.notnull()

Out[95]:

	а	b	С
S	True	True	False

T	False	False	False
W	True	True	False

In [96]:

C.dropna(axis='index')

Out[96]:

b c

In [97]:

C.fillna(0)

Out [97]:

	а	b	С
S	11.0	11.0	0.0
Т	0.0	0.0	0.0
W	22.0	22.0	0.0

In [98]: C.fillna(method="ffill")

Out[98]:

			7	7
		а	b	С
	S	11.0	11.0	NaN
	Т	11.0	11.0	NaN
	W	22.0	22.0	NaN

In [99]: C.fillna(method="bfill",axis=1)

Out[99]:

	а	b	С
S	11.0	11.0	NaN
Т	NaN	NaN	NaN
W	22.0	22.0	NaN

38.11 分组统计

In [100]: import pandas as pd df2 = pd.read_csv('bc_data.csv') df2=df2[["id","diagnosis","area_mean"]] df2.head()

Out [100]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0

```
In [101]: df2.groupby("diagnosis")["area mean"].mean()
```

Out [101]: diagnosis

B 462.790196 M 978.376415

Name: area_mean, dtype: float64

In [102]: df2.groupby("diagnosis")["area_mean"].aggregate(["mean","sum","max",np.median])

Out [102]:

	mean	sum	max	median
diagnosis				
В	462.790196	165216.1	992.1	458.4
М	978.376415	207415.8	2501.0	932.0

In [103]: df2.groupby("diagnosis")["area_mean"].aggregate(["mean","sum"]).unstack()

Out [103]: diagnosis

462.790196 mean B 978.376415 Μ sum B 165216.100000 207415.800000 Μ

dtype: float64

In [104]: **def** myfunc(x): x["area_mean"]/=x["area_mean"].sum() return x

df2.groupby("diagnosis").apply(myfunc).head()

Out [104]:

	id	diagnosis	area_mean		
0	842302	М	0.004826		
1	842517	M	0.006393		
2	84300903	М	0.005800		
3	84348301	М	0.001861		
4	84358402	М	0.006253		