

APPLIED ELECTONICS

Part C:

Class exercises 2 with solutions on:

□ Transmission lines

Problem 1 - Assignment Lattice diagram

a) Use lattice diagram to plot the voltage at the receiver $V_c(t)$ and at the driver $V_B(t)$ in a $(0 - 4 t_p)$ time range for $L \rightarrow H$ transition with V_A from $0 \ V$ to $5 \ V$ and:

$$R_{G} = 50 \Omega$$
, $R_{T} = \infty$, $Z_{\infty} = 50 \Omega$, $U = 0.8 \text{ c, L} = 20 \text{ cm}$

b) Repeat the calculation with $R_G = 270~\Omega$ and $R_G = 15~\Omega$

Problem 2 – Assignment Incident Wave Switching

a) Calculate the driver output resistance (R₀) for IWS driving for a connection with:

L
$$\rightarrow$$
 H transition with $V_A = 0 \text{ V} \rightarrow 4 \text{ V}$
Receiver threshold $V_T = 2.5 \text{ V}$
 Z_{∞} = 70 Ω and open circuit termination

- b) Explain why this configuration can give multiple transition for a receiver placed at the far-end. Indicate how multiple transitions can be eliminated
- c) Draw qualitatively the voltage $V_C(t)$ in the case a capacitor C_L is connected at the far end.

Problem 3 – Assignment Transmission times and total skew time

Consider a backplane with $L_U=8\,\mathrm{nH/cm},\,Z_\infty=85\,\Omega$ (without capacitive load), length $L=48\,\mathrm{cm}$, open circuit termination, and 24 connectors. Each board that can be inserted in the connectors has an input capacitance of $35\,\mathrm{pF}$. The system can have from 2 to 24 connected boards.

Driver/receiver CMOS: $V_{DD} = 3.3 \text{ V}$; $R_{O} = 95 \Omega$; $V_{IH} = 2 \text{ V}$, $V_{IL} = 1 \text{ V}$.

- a) Calculate t_p in the cases of 2 and 24 connected boards.
- b) Calculate t_{TXmin} and t_{TXmax} for 2 connected boards in the two extremes of the line
- c) Calculate t_{TXmin} and t_{TXmax} with 24 connected boards
- d) Calculate the maximum R_{OH} to drive the line in IWS mode in the case of 24 inserted boards

Problem 4 - Assignment

A track on a PCB backplane has characteristic impedance $Z_0=95\,\Omega$ (with no load), wave propagation speed $U=0.65\,c$. The track length is $L=30\,c$ m, without terminations, and 15 equally spaced devices are connected to the track. The total capacitive load of these devices increases the distributed track capacitance (towards GND) by a factor 20 (loaded unity capacitance = unloaded capacitance x 20). The interface uses CMOS circuits, with power supply 5 V, and the

The interface uses CMOS circuits, with power supply 5 V, and the following parameters: $V_{OH} = 4$ V, $I_{OH} = -16$ mA, $V_{OL} = 0.8$ V, $I_{OL} = 16$ mA, $V_{IH} = 2.7$ V, $V_{IL} = 1.3$ V.

Further assumptions: the PCB tracks can be considered lossless transmission lines, and linear equivalent circuits can be used for drivers and receivers.

Problem 4 - Assignment

- a) Find the characteristic impedance Z_0' and the propagation speed U' of the loaded track, and evaluate the propagation time t_P over the full length of the connection, for a fully loaded track. (propagation speed $U=1/\sqrt{L_U C_U}$)
- b) Find the equivalent output resistance of drivers, for H and L states (respectively R_{OH} and R_{OL}), and find the minimum and maximum transmission times t_{TXmin} and t_{TXmax} from a driver placed at one end and a receiver placed at any position along the connection, for fully loaded track without termination in case of L \rightarrow H transition.
- c) Evaluate the equivalent driver output resistance R'_{OH} required to operate a receiver connected at any intermediate point of the track in IWS (Incident Wave Switching) for the L \rightarrow H transition, with NM = 100 mV, and line driven from one end. Using drivers with equivalent output resistance R'_{OH} , what should be connected at the opposite end to guarantee correct operation?

Problem 4 - Assignment

- d) Draw the Information and Control signals (INF, STB) at Driver and at Receiver, and the destination register clock CK for a synchronous write cycle and evaluate cycle duration with the following parameters.
 - Interconnection: $t_K = 25 \text{ ns}, t_{TXmin} = 20 \text{ ns}$
 - Receiver register: $t_{SU} = 10 \text{ ns}, t_H = 5 \text{ ns}$
- e) Draw the Information and Control signals (INF, STB, ACK) at Driver and at Receiver, and the destination register clock CK for an **asynchronous** transfer cycle and evaluate cycle duration with the following parameters.
 - Interconnection: $t_K = 25 \text{ ns}, t_{TXmin} = 20 \text{ ns}$
 - Receiver register: $t_{SU} = 10 \text{ ns}, t_H = 5 \text{ ns}$