Revised: 2/25/2021

Digital Logic III

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

Lecture Topics

- Combinational Circuits
 - Adders
 - Half Adder
 - Full Adder
 - Subtractors
 - Half Subtractor
 - Full Subtractor
 - Multipliers

Adders

- Adders are combinational logic circuits capable of performing addition
- A half adder has two inputs (the two digits to add) and two outputs (the sum and the carry).

0 1 0
$$1^{X_0}$$

+ 0 + 0 + 1 + 1^{X_1}
00 01 01 10
 $c(Carry)$ $s(Sum)$

• Half adder truth table:

X_1	X_0	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

0 1 0
$$1^{X_0}$$

 $+ 0$ $+ 1$ $+ 1^{X_1}$
00 01 01 10 $c(Carry)$ $s(Sum)$

SOP Expressions:

$$C = X_1 X_0$$

$$S = \overline{X_1}X_0 + X_1\overline{X_0} = X_1 \oplus X_0$$

X_1	X_0	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder Logic Circuit:

Half Adder Logic Circuit:

• A **full adder** has three inputs (the two digits to add, plus a value carried in) and two outputs (the sum and the carry).

$$C_{IN}(Carry In) = X_1 - X_0 - C_{OUT}(Carry Out)$$

$$0 + 0 + 0 = 0 = 0$$

$$0 + 0 + 1 = 0 = 1$$

$$0 + 1 + 0 = 0 = 1$$

$$0 + 1 + 1 = 1 = 0$$

$$1 + 0 + 1 = 1 = 0$$

$$1 + 1 + 0 = 1 = 0$$

$$1 + 1 + 1 = 1 = 1$$

• Full adder truth table:

C_{IN}	X_1	X_0	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

SOP Expressions:

$$C_{OUT} = \overline{C_{IN}} X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0} + C_{IN} X_1 X_0$$

$$S = \overline{C_{IN}} \, \overline{X_1} X_0 + \overline{C_{IN}} X_1 \overline{X_0} + C_{IN} \overline{X_1} \, \overline{X_0} + C_{IN} X_1 X_0$$

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplifying:

$$C_{OUT} = \overline{C_{IN}} X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0} + C_{IN} X_1 X_0$$

$$C_{OUT} = X_1 X_0 (\overline{C_{IN}} + C_{IN}) + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0(1) + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 + C_{IN} (\overline{X_1} X_0 + X_1 \overline{X_0})$$

$$C_{OUT} = X_1 X_0 + C_{IN}(X_0 \oplus X_1)$$

Simplifying:

$$S = \overline{C_{IN}} \, \overline{X_1} X_0 + \overline{C_{IN}} X_1 \overline{X_0} + C_{IN} \overline{X_1} \, \overline{X_0} + C_{IN} X_1 X_0$$

$$S = \overline{C_{IN}} \, (X_0 \oplus X_1) + C_{IN} (X_0 \odot X_1)$$

$$S = \overline{C_{IN}} \, (X_0 \oplus X_1) + C_{IN} (\overline{X_0 \oplus X_1}) \qquad \overline{X_{Y} + X_{Y}} = X \oplus Y$$

$$S = C_{IN} \oplus (X_0 \oplus X_1) = C_{IN} \oplus X_0 \oplus X_1$$

Full Adder Logic Circuit:

Full Adder Logic Circuit:

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Abstracted Full Adder:

Abstracted Full Adder:

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- So far, we've seen only how adders can add single digits together
 - 1+1+1 or 0+1 or 1+0+1 is no problem
 - What if we wanted to add 10+11 or 11101+10101?

- Full adders can work together by providing the carry out of one full adder as the carry in for a second adder
 - The technique shown next is a *ripple-carry adder*

$$\begin{array}{c}
0 & 0 & 1 \\
+ & 0 & 1 & 1 \\
\hline
1 & 0 & 0
\end{array}$$

• For example:

• A 2-bit Adder:

Another example:

• A 3-bit Adder:

Another example:

Another example:

• A 4-bit Adder (with buses):

Another example

Subtractors

- **Subtractors** are combinational logic circuits capable of performing subtraction
- A half subtractor has two inputs (the two digits to subtract) and two outputs (the difference and the borrow).

0 1 0
$$1^{X_0}$$
- 0 - 1 - 1^{X_1}
00 01 11 00

B (Borrow) D (Difference)

Negative 1 in two's complement

Half Subtractor

• Half subtractor truth table:

X_1	X_0	В	D
0	0	0	0
0	1	0	1
1	0	1	1
1	1	0	0

0 1 0
$$1^{X_0}$$
- 0 - 0 - 1 1^{X_1}
00 01 11 00

B (Borrow) D (Difference)

Half Subtractors

SOP Expressions:

$$B = X_1 \overline{X_0}$$

$$D = \overline{X_1}X_0 + X_1\overline{X_0} = X_1 \oplus X_0$$

X_1	X_0	В	D
0	0	0	0
0	1	0	1
1	0	1	1
1	1	0	0

Half Subtractor

Half Subtractor Logic Circuit:

Half Subtractor

Half Subtractor Logic Circuit:

• A **full subtractor** has three inputs (the two digits to subtract, plus a value *borrowed in*) and two outputs (the different and the borrow).

$$B_{IN}(Borrow\ In)$$
 $0 - 0 - 0 = 0\ 0$
 $0 - 0 - 1 = 1\ 1$
 $0 - 1 - 0 = 1\ 1$
 $0 - 1 - 1 = 1\ 0$
 $1 - 0 - 0 = 0\ 1$
 $1 - 0 - 1 = 0\ 0$
 $1 - 1 - 1 = 1\ 1$

SOP Expressions:

$$B_{OUT} = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + \overline{B_{IN}} X_1 X_0 + B_{IN} X_1 X_0$$

$$D = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + B_{IN} \overline{X_1} \, \overline{X_0} + B_{IN} X_1 X_0$$

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Simplifying:

$$B_{OUT} = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + \overline{B_{IN}} X_1 X_0 + B_{IN} X_1 X_0$$

$$B_{OUT} = \overline{B_{IN}} X_1 + \overline{B_{IN}} X_0 + X_1 X_0$$

Simplifying:

$$D = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + B_{IN} \overline{X_1} \, \overline{X_0} + B_{IN} X_1 X_0$$

$$D = \overline{B_{IN}} (X_0 \oplus X_1) + B_{IN} (X_0 \odot X_1)$$

$$D = \overline{B_{IN}} (X_0 \oplus X_1) + B_{IN} (\overline{X_0} \oplus \overline{X_1}) \qquad \overline{X}Y + X\overline{Y} = X \oplus Y$$

$$D = B_{IN} \oplus (X_0 \oplus X_1) = B_{IN} \oplus X_0 \oplus X_1$$

Full Subtractor Logic Circuit:

Full Subtractor Logic Circuit:

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Full Subtractor Logic Circuit:

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Full Subtractor Logic Circuit:

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Abstracted Full Subtractor:

 Like full adders, full subtractors can work together by providing the borrow out of one full subtractor as the borrow in for a second subtractor

• A 3-bit Subtractor:

• A 4-bit Subtractor:

1 1 0 1
- 0 1 1 0
0 0 1 1 1

- Multipliers (not to be confused with multiplexers) are combinational logic circuits capable of performing multiplication
- Note that the multiplication of two 1-bit numbers is a simple and operation

0	1	0	1^{X_0}
<u>x 0</u>	<u>x 0</u>	<u>x 1</u>	$\times 1^{Y_0}$
0	0	0	1

X_0	Y_0	$X_0 \times Y_0$	$X_0 \cdot Y_0$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	0

- However, addition will be required when multiplying numbers that are two or more bits.
- We will see how to construct multipliers using full and half adders.
- The largest product of multiplying two, 2-bit numbers is 9:
 - $11 \times 11 = 1001 (3 \times 3 = 9)$
 - Thus, our circuit must have 4 outputs
 - P_0 through P_3

2-bit Multiplier Logic Circuit:

• (Uses 2 half adders)

2-bit Multiplier Logic Circuit:

2-bit Multiplier Logic Circuit:

3-bit Multiplier Logic Circuit:

- (Uses 2 half adders)
- (Uses 3 full adders)

3-bit Multiplier Logic Circuit:

3-bit Multiplier Logic Circuit:

