Даны s полиномов с n переменными степени 2 над полем \mathbb{F}_q . Задача определить существует ли у этой системы решение называется MQS (Multivariable Quadratic Systems) и является NP-трудной. Мы будем решать задачу #MQS, то есть считать количество (на самом деле долю) решений. Эта задача очевидно не проще, поэтому мы будем пытаться решать ее приближенно, то есть мы разрешаем себе ошибаться не более, чем на ε . Мы хотим построить алгоритм, который будет детерминированным (то есть рандома нет, это важно!), и будет работать за время $poly(n, s, \log q)/\varepsilon^2$.

Теорема 1. При s=1 задача решается точно за полиномиальное время.

Эта теорема без доказательства, мы ей только пользовались.

Определение 1. Множество $S \subset \mathbb{F}_q$ называется ε -biased (ε -скошенным, наверное), если выполняется следующее условие

$$\forall u \in \mathbb{F}_q^n, r \in \mathbb{F}_q | Pr_{v \in S} \{ \langle u, v \rangle = r \} - Pr_{v \in \mathbb{F}_q^n} \{ \langle u, v \rangle = r \} | \le \varepsilon$$

Теорема 2. Можно построить ε -biased множество размера $O(\frac{n^2}{\varepsilon^2})$ за время $poly(n, \log p)/\varepsilon^2$

Эта теорема тоже без доказательства.

Теорема 3. Можно получить ε -приближение для задачи #MQS за время $poly(n, s, \log q)/\varepsilon^2$

Для доказательства нужно построить ε -biased подмножество множества \mathbb{F}_q^s (внимание, здесь s!) и рассмотреть формулы $P_i(y):=\sum v_i p_i(y)$, где v_i - элементы построенного множества, а p_i - полиномы из задачи. Тогда если y - решение, то $P_i(y)=0$, а иначе $P_i(y)$ принимает значения 0 и 1 с вероятностью примерно (с точностью до ε) $\frac{1}{q}$. Тогда приближением количества решений $\# \mathrm{MQS}$ будет разность количеств решений уравнений $P_i(y)=0$ и $P_i(y)=1$. Эти количества мы считать умеем по теореме 1.

Следствие 1. Если $\varepsilon > \frac{1}{p^n}$ и система имеет хотя бы εp^n решений, то за время $poly(n,s,\log p)/\varepsilon^2$ можно найти решение явно.

Значение переменных выбираем, подставив все возможные значения и выбрав то, которое дает большее число решений, а когда мы уже больше не сможем сделать следующий шаг так, чтобы гарантировать, что решения остались, просто переберем значения всех оставшихся переменных.

Теорема 4. Можно свести #k-SAT с n переменными κ вычислению количества решений полинома степени $q(k/\varepsilon)^{O(k)}$ с n переменными за время $O(q^{\varepsilon n})$.

Нам хочется попросить, чтобы в формуле было не более $(k/\varepsilon)^{O(k)}n$ клозов. Это сделает sparsification lemma (на самом деле нет, она сделает нечто другое, но нам сейчас это не важно). Теперь КНФ достаточно просто сводится к системе полиномов: ог можно симулировать через умножение, а and - через and (нам же нужно, чтобы все полиномы выполнились). Также, надо дополнительно добавить n полиномов вида x(1-x), которые запишут условие, что наши переменные булевы. Получили систему уравнений G. Разобъем ее на εn систем уравнений размера не более $(k/\varepsilon)^{O(k)}$. Теперь из каждой G_i построим полином P_i .

$$P_j(x) := 1 - \prod_{i=1}^{(k/\varepsilon)^{O(k)}} (1 - (p_i(x))^{q-1})$$

 P_j имеет нужную степень, но полинимов много, а нам нужен один. Но мы уже учились с этим бороться в теореме 3. Разница в том, что там мы только приближали, а нам нужно посчитать точно. Но мы знаем одно 0-biased множество (все линейные комбинации), его и возьмем.