Linear programming

Paweł Obszarski

Extra

- **Zad. 1.** Zakład produkuje dwa wyroby W_1 i W_2 . Zysk z produkcji jednostki wyrobu W_1 wynosi 30, natomiast zysk z jednostki W_2 wynosi 40. Zakład posiada zasoby trzech surowców S_1 , S_2 i S_3 w ilościach odpowiednio 180, 80 i 100 jednostek. Ich zużycie do produkcji poszczególnych wyrobów podano w tabeli. Pozostałe surowce są nieograniczone.
- 1. Skonstruuj proszę model programowania liniowego i rozwiąż go metodą graficzną. Jaki jest maksymalny zysk? Oraz dla jakich wielkości produkcji ów zysk jest osiągany?
- 2. Proszę założyć że wyroby są niepodzielne i rozwiązać zadanie stosując metodę sympleks oraz algorytm Gomoriego.

	W_1	W_2
S_1	3	2
S_2	1	1
S_3	1	2

- **Zad. 2.** Zakład produkuje dwa wyroby W_1 i W_2 . Zysk z produkcji jednostki wyrobu W_1 wynosi 30, tymczasem zysk z jednostki W_2 wynosi 20. Zakład posiada zasoby trzech surowców S_1 , S_2 i S_3 w ilościach odpowiednio 1000, 2400 i 600 jednostek. Ich zużycie do produkcji poszczególnych wyrobów podano w tabeli poniżej. 1 .Zakładamy, że wyroby są podzielne. Skonstruuj model programowania liniowego i rozwiąż go metodą graficzną.
- 2. Zakładając, że wyroby są niepodzielne rozwiąż metodą simplex oraz algorytmem Gomoriego.

	S_1	S_2	S_3
W_1	2	3	1,5
W_2	1	3	0

- **Zad. 3.** Pewien zakład produkuje dwa wyroby W_1 i W_2 . Zysk z produkcji jednostki wyrobu W_1 jest 3, tymczasem zysk z jednostki W_2 jest 5. Zakład posiada zasoby dwóch surowców S_1 i S_2 w ilościach odpowiednio 12 i 18 jednostek. Ich zużycie do produkcji poszczególnych wyrobów podano w tabeli poniżej. Dodatkowo, długookresowa strategia zakładu wymaga by produkcja W_1 była co najwyżej dwa razy większa niż produkcja W_2 . Zakładamy, że wyroby są podzielne. Pomóż zakładowi zmaksymalizować zyski.
- 1. Skonstruuj model programowanie liniowego i rozwiąż go metodą graficzną.
- 2. Przy założeniu, że produkty są niepodzielne proszę rozwiązać zagadnienie metodą simpleks oraz algorytmem Gomoriego.

	S_1	S_2
W_1	1	3
W_2	2	2

 $\overline{\mathbf{Zad.}}$ 4. Pewien zakład produkuje dwa wyroby W_1 i W_2 . Zysk z produkcji jednostki wyrobu W_1 jest 4, tymczasem zysk z jednostki W_2 jest 2. Zakład posiada zasoby trzech surowców S_1 , S_2 i S_3 w ilościach odpowiednio 63, 12 i 21 jednostek. Ich zużycie do produkcji poszczególnych wyrobów podano w tabeli poniżej. Zakładamy, że wyroby są podzielne. Pomóż zakładowi zmaksymalizować zyski. Skonstruuj model programowanie liniowego i rozwiąż go metodą graficzną. Następnie proszę rozwiązać zadanie algorytmem simpleks i Gomoriego (przy założeniu, że wyroby są niepodzielne).

	S_1	S_2	S_3
W_1	7	1	3
W_2	4	1	0

Zad. 5. Plecak może pomieścić 20 kg. Do dyspozycji są trzy rodzaje przedmiotów w nieograniczonych liczbach P_1 , P_2 i P_3 , których ceny i wagi podano w tabeli. Proszę skonstruować model programowania całkowitoliczbowego dla modelu, który pozwoli zmaksymalizować wartość zawartości plecaka.

COLLO.			
	P_1	P_2	P_3
Cena	9	6	4
Waga	7	5	3

Zad. 6. Tartak dysponuje dwoma grupami kłód drewna. Pierwsza grupa składa się z 99 kłód o długości 6.6 m, druga 60 kłód o długości 4,8 m. Jak należy pociąć te kłody, aby otrzymać maksymalną liczbę kompletów składających się z 2 belek o długości 2.2 m i jednej o długości 1.3.

Zad. 7. Witaminy C i B są bardzo istotne dla dzieci dietetyk zna zawartość tych witamin w dwóch produktach spożywczych P_1 i P_2 , które chce włączyć do diety. Minimalne dawki witamin, zawartość w 100 gramach oraz cena za 100 g produktów podano w tabeli. Jaka jest optymalna ze względu na koszty dieta?

1. Proszę skonstruować model i rozwiązać go metodą graficzną.

2. Proszę rozwiązać zadanie metodą simplex.

	С	В	Cena
P_1	2	3	10
P_2	3	1	7
Minimalne dawki	10	5	

Zad. 8. Pięcioro pracowników biurowych P1, P2, P3, P4 i P5 ma do wykonania zadania Z1, Z2, Z3, Z4 i Z5. Czasy wykonania poszczególnych zadań przez pracowników podano w tabeli. Jakie jest optymalne przypisanie zadań do pracowników? Jaki jest minimalny całkowity czas pracy? Proszę

zastosować algorytm węgierski.

	P1	P2	Р3	P4	P5
Z1	2	3	4	5	4
Z2	5	3	5	3	6
Z3	1	4	4	4	2
Z4	2	4	4	2	1
Z5	11	15	14	12	12

Zad. 9. Pięcioro pracowników biurowych P1, P2, P3, P4 i P5 ma do wykonania cztery zadania Z1, Z2, Z3 i Z4. Czasy wykonania poszczególnych zadań przez pracowników podano w tabeli. Jakie jest optymalne przypisanie zadań do pracowników? Jaki jest minimalny czas pracy? Proszę zastosować algorytm węgierski.

	P1	P2	P3	P4	P5
Z1	1	2	4	5	3
Z2	2	1	3	3	4
Z3	1	1	4	5	8
Z4	2	3	8	6	6

Zad. 10. Pięcioro pracowników biurowych P1, P2, P3, P4 i P5 ma do wykonania cztery zadania Z1, Z2, Z3 i Z4. Czasy wykonania poszczególnych zadań przez poszczególnych pracowników podano w tabeli poniżej. Przypisz pracowników do zadań, po jednym do każdego zadania, tak by suma czasów pracy była minimalna. Jeden pracownik może wykonać najwyżej jedno zadanie. Wykorzystaj algorytm węgierski. Zinterpretuj wynik.

	P1	P2	P3	P4	P5
Z1	5	9	4	3	8
Z2	1	2	3	1	2
Z3	8	3	7	5	2
Z4	6	5	6	7	9