

Intro to Computer Science and Software Engineering

Computer Organization

Dr Yubei Lin
yupilin@scut.edu.cn
School of Software Engineering

Computer Organization

- Three subsystems
 - The CPU
 - The main Memory
 - The input/output

Central Processing Unit (CPU)

- Three parts
 - Arithmetic Logic Unit (ALU)
 - Performs arithmetic and logical operations
 - Registers
 - Data registers
 - Instruction registers
 - Program counter (also a register)
 - Control Unit

Main memory

- A collection of storage locations, each with a unique identifier called address
- Word: the number of bytes can one memory location store.
 - How many bits? Can be 8-bit/1-byte, 16-bit/2byte, 32-bit/4-byte or 64-bits/8-byte?
- Word: number of bits transferred to and from memory per operation.
- Address: the identifier to access a word (value in a memory location)

Address space

- Address space: the total number of uniquely identifiable locations in memory
- Example:
 - How many bytes can the memory stored?
 - The capacity or size, e.g. 64kilobytes
 - The size of word
 - e.g. 1-byte
 - The address space: $0 \sim 65,535$
 - That is 16-bit for each address (unsigned integer)!

Memory types

- Two types: RAM and ROM
- Random Access Memory (RAM)
 - Can be read and write (many times) by users
 - Volatile, data erased if the system is powered down.
 - Two categories:
 - Static RAM: using flip-flop gates; refresh no needed
 - Dynamic RAM: using capacitors; refresh needed;

Memory types

- Read-only memory (ROM)
 - Usually allowed to read but not write, e.g. the BIOS ROM
 - Nonvolatile
 - Variations
 - Programmed read-only memory (PROM)
 - Erasable programmed read-only memory (EPROM)
 - Electronically erasable programmed read-only memory (EEPROM)

Memory hierarchy

Factors: speed, size and cost!

```
Registers
(Fastest, small size)

Cache Memory
(Faster, larger size)

Main Memory
(Fast, more-larger size)
```

- Features
 - Speed: main memory < cache < registers</p>
 - Size: main memory > cache > registers
 - Cost: main memory < cache < registers</p>

Cache memory

- At any time contains a copy of a portion of main memory!!
 - Why? Why duplicate?
- 80-20 rule:
 - 80 percent time accessing only 20 percent of data

Input and Output

- Enable computer to
 - communicate with outside world
 - store programs and data even when the power is off
- Two categories
 - Non-storage: keyboard, monitor, printer
 - storage devices
 - Magnetic storage devices, optical storage devices

Connecting CPU and Memory

 Normally connected by three bus: data, address and control bus

- Bus are made of a set of wires.
 - For data bus, number of wires = the size of word;
 - For address bus, number of wires = number of bits of a address
 - For control bus, number of wires depends on the number of control instructions

Connecting I/O devices

- I/O devices are connected to bus through an intermediary called controller.
- Each kind of I/O device would have it's associated type of controller.

Addressing I/O devices

- The CPU usually uses the same bus to read data from or write data to main memory and the I/O device.
 - The only different must be the instructions
- Two methods:
 - Isolated I/O
 - Memory-mapped I/O

Isolated I/O

- Use different set of instruction to access I/O devices (from main memory)
 - Read 101 (for memory)

Input 101 (for I/O devices)

Memory-mapped I/O

 Use the same set of instructions, and treat each register in the I/O controller as a word in the memory.

– Read 101/500/501

Program execution

- Programs: a sequence of instructions
- Programs: operates on input data, generates output data
- Machine Cycle
 - The CPU use repeating machine cycles to execute instructions in the program, one by one, from the beginning to end.

Machine cycle

- Instruction register
- Program Counter
- General Registers

4-Bit Computer Simulator

冯.诺依曼体系结构

- 4-Bit Computer
 Simulator
- http://appinventor.cs.t rincoll.edu/csp/webap ps/computer/add1.ht ml

4-Bit Computer Simulator

Input and output operations

- Programmed I/O
 - After command issue, CPU constantly checks the status of the device.
 - Waste of CPU cycles
- Interrupt-Driven I/O
 - The device must informs (interrupts) the CPU when it's ready
 - No waste of CPU cycles
- Data flow: I/O → CPU → Memory

Input and output operations

- Direct memory access (DMA)
 - Require a DMA controller
 - Data flow: : I/O \rightarrow DMA \rightarrow Memory

About Instructions

- Two different architectures
 - Complex Instruction Set Computer (CISC)
 - Pentium Series CPU@Intel

缩小机器指令系统与高级语言语义差距,为高级语言提供更多的支持,是有效缓解"软件危机"的方法

Reduced Instruction Set Computer (RISC)

减少指令平均执行的周期数