P530/2	Name of School:
CHEMISTRY	
Paper 1	Name of Student:
Jul./Aug. 2019 2¾ Hours	Signature: Personal No.

UTEB JOINT MOCK EXAMINATIONS, 2019 Uganda Advanced Certificate of Education CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all questions in Section A and any six questions from Section B.
- All questions must be answered in the spaces provided.
- Molar gas constant R = 8.31JK⁻¹ mol⁻¹.
- Molar gas volume at s.t.p = 22.4 dm³.

SECTION A

Answer all questions from this section.

1.	Pota	assium manganate (VII) is often used in volumetric analysis.	
	(a)	Write equation for the reaction between potassium manganate (VII)	and
		hydrogen peroxide in solution.	(01 ½ marks)
	(b)	Explain why potassium manganate (VII) is not used as a primary st volume in analysis.	andard in (02 marks)
	 (c)	Name one compound that is used to standardize potassium manga	
	(0)	Name one compound that is used to standardize potassium mange	(½ mark)
2.	Com	nplete the following equations and in each case name the main organi	c product
	(a)	$\frac{\text{CONH}_2\text{Br}_2/\text{KOH (aq)}}{\text{Warm}}$	
	Nam	ne of product	
	(b)	$N_2Cl^- \xrightarrow{ConcHCl/Cucl}$	
	Nam	ne of product	
	(c)	$(CH_3)_2C = CH_2 \xrightarrow{Br_2(aq)}$	
	Nam	ne of product	

© UTEB 2019 Joint Mock Examinations

(a) 	Explain what is meant by the term solvent extraction.	(01 m
(b)	A crude sample of lead contained 2% of Silver by mass. Ca	
	silver left in 1 kg of lead if it was thoroughly agitates with 1 kg.	
	The solubility of silver in a given mass of zinc is 300 times its equal mass of lead at 800°C.	s solubility in a (03 mai
	equal mass of lead at 000°C.	(00 mai
State	e what would be observed and write equation for the reaction t	hat takes
place	e when the following compounds are reacted.	
(a)	Acidified potassium dichromate solution with tin (II) chloride	solution.
		(02 marks
Obse	ervation	
	ntion	
⊏ uua	ation	

Equation		
(c) Red lead oxide wi	th dilute nitric acid.	
Observation		
Equation		
(a) What is meant by		(01 ½
	the term rate constant:	(01/2
		(01 /2
		•
(b) The following resu		
(b) The following resu		
(b) The following resultsgive product C.A + B → C	ults were obtained for two compo	ounds A and B reacting
 (b) The following results: give product C. A + B → C Initial concentration	ults were obtained for two compo	ounds A and B reacting
 (b) The following results: give product C. A + B → C Initial concentration (moldm - 3) 	Initial concentration [B]	Initial rate [moldm-3S-]
(b) The following results give product C. A + B → C Initial concentration (moldm – 3) 0.2	Initial concentration [B] (moldm – 3) 0.24	Initial rate [moldm-3S-] 2.0 x 10-4

		(01 ½ mai
In the	e extraction of aluminium from its ores, the ores	is first roasted in air
	hed into a powder and mixed with concentrated	
	finally filtered.	
(a)	(i) Explain what is meant by the term ore.	(01 m
(ii)	Write the name and formula of one ore from w	
		(01 ma
(iii)	State why the powdered ore is reacted with so	odium hydroxide solution and
	filtered.	(01 m
(b)	Write equation for the reaction between the po	owdered ore and sodium
` '	hydroxide solution.	(02 ma
 4.1 g	g of bromo alkane B was reacted with excess so	dium hydroxide solution.
_	g of bromo alkane B was reacted with excess so resulting solution was acidified with excess nitric	•
The		c acid and dilute to exactly 250
The cm ³ i	resulting solution was acidified with excess nitric	c acid and dilute to exactly 250

© UTEB 2019 Joint Mock Examinations

Turn Over

Write the structural formulae and r	names of the possible isomers of B.
	(02 mark
diagrams to show the approximate	change in pH for each of the following and
in why the resulting solution is not r	neutral in both cases.
0.1 M sodium hydroxide solution is	s added in portions to 25 cm³ of
0.1 M ethanoic acid.	(03 marks
	(00000000000000000000000000000000000000
1 M hydrochloric acid is added in po	ortions to 20 cm ³ of 0.1 M ammonia solutio
	(03 marks
	Write the structural formulae and rediagrams to show the approximate in why the resulting solution is not red. 0.1 M sodium hydroxide solution is 0.1 M ethanoic acid.

9.	Nam	e a reagent that can be used to distinguish the following pair	s of
	com	bounds. State what is observed when each member of the p	air is separately
	treat	ed with the reagent.	
	(a)	Sodium ethanedioate solution and sodium ethanoate.	(02 marks)
	Rea	gent	
	Obse	ervation	
	(b)	Tin (II) solution and zinc chloride solution.	(02 marks)
	Reag		,
		,	
	Obse	ervation	
		SECTION B	
		Answer any six questions from this section.	
10.	(a)	State three reasons as to why fluorine differs in properties	from other
		elements in group VII of the periodic table.	(01 ½ marks)
			Turn Over
		© UTEB 2019 Joint Mock Examinations	i di ii Ovei

(b)	Write equations for the rea	ctions b	etween			
(i)	Fluorine and cold dilute pot	tassium	hydroxi	de.		(01 ½ marks)
(ii)	Bromine and hot concentra	ated pota	assium l	hydroxid	de.	(01 ½ marks)
(iii)	Fluorine and water.					(01 ½ marks)
(c)	The values of the lattice en	nergies o	of potass	sium ha	lides are gi	ven in the
(c)	The values of the lattice en	nergies o	of potass	sium ha	lides are gi	ven in the
(c)		nergies o	of potass	sium ha	lides are gi	ven in the
(c)	table below.				lides are gi	ven in the
	table below.	KF -813	KCl -710	KI -643	lides are gi	ven in the (03 marks)
	table below. Compound Lattice energy KJmol-1	KF -813	KCl -710	KI -643	lides are gi	
	table below. Compound Lattice energy KJmol-1	KF -813	KCl -710	KI -643	lides are gi	
	table below. Compound Lattice energy KJmol-1	KF -813	KCl -710	KI -643	lides are gi	
	table below. Compound Lattice energy KJmol-1	KF -813	KCl -710	KI -643	lides are gi	
	table below. Compound Lattice energy KJmol-1	KF -813	KCl -710	KI -643	lides are gi	

	mixture of boiling point 73°C.	
(i)	What is meant by azeotropic mixture?	(01 mark
(ii)	Draw a boiling point – composition diagram for the P – Q mixture.	(04 mark
(b)	A solution containing 60 g of RCOOH and 50 g of water was boiled	d.
(i)	Calculate the boiling point of the solution. (03 marks)
(R =	43, H = 1, C = 12, O = 16, Kb of water = 0.54 Kmol ⁻¹ kg ⁻¹)	

Liquid P (bp 92.5°C) and liquid Q (bp 90.8°C) from an azeotropic

11.

(a)

9

		ade in the calculation.	(01 m
	plete the following equations a	nd in each case write the a	accepted mechanisr
the r	reaction.		
(a)	CHO Conc. Na	aOH (aq)	(03 marks
(b)	BrCH2CH2CH2CH2Br <u>C</u>	onc. KOH/EtoH	
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>	onc. KOH/EtoH Heat	
(b)	BrCH2CH2CH2CH2Br <u>C</u>		
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>		
(b)	BrCH2CH2CH2CH2Br <u>C</u>		
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>		
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>		
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>		
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>		
(b)	BrCH ₂ CH ₂ CH ₂ CH ₂ Br <u>C</u>		

(b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 mag)			$+ (CH3)2C = CH2$ H^+	
Ethyl bromide reacts with aqueous sodium hydroxide as in the equation. CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max)				
Ethyl bromide reacts with aqueous sodium hydroxide as in the equation. CH ₃ CH ₂ Br + NaOH→ CH ₃ CH ₂ OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max)				
Ethyl bromide reacts with aqueous sodium hydroxide as in the equation. CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max)				
Ethyl bromide reacts with aqueous sodium hydroxide as in the equation. CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max)				
Ethyl bromide reacts with aqueous sodium hydroxide as in the equation. CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max)				
 CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max) 				
 CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max) 				
 CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max) 				
 CH₃CH₂Br + NaOH→ CH₃CH₂OH + NaBr (a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max) 	Ethy I	l bromi	do roacte with aguacus acdium hydrovide as in the assect	on
(a) Name the reaction. (01 max) (b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 max)				On.
(b) (i) Write the rate equation for the reaction between the hydroxide and ethyl bromide. (01 mag)	0.100			
ethyl bromide. (01 m	(a)	Name	e the reaction.	(01 ma
ethyl bromide. (01 m				
(ii) Outline a mechanism for reaction involved. (02 ma	(b)	(i)	Write the rate equation for the reaction between the hyd	droxide and
(ii) Outline a mechanism for reaction involved. (02 ma	(b)	(i)		droxide and
(ii) Outline a mechanism for reaction involved. (02 ma	(b)	(i)		
(ii) Outline a mechanism for reaction involved. (02 ma	(b)	(i)		
	(b)	(i)		
			ethyl bromide.	
			ethyl bromide.	(01 ma
			ethyl bromide.	(01 ma
			ethyl bromide.	(01 ma

(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.	(iii)	Sketch a labelled diagram to show an energy	profile for the reaction. (03 m
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ a mmHg and 273k.	ompound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 nHg and 273k.	(a) A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm³ at 76 mmHg and 273k.	(c)	Write equation to show how CH₃CH₂Br can be	converted to HOCH ₂ CH ₂ Br.
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			(02 marks
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ ammHg and 273k.	t being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 nHg and 273k.	rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 76 mmHg and 273k.			
mmHg and 273k.	nHg and 273k.	mmHg and 273k.	(a)	A compound K contains 63.7% lead, 14.8% ca	arbon, 1.8% of hydrogen and
				rest being oxygen. When vapourised, 0.225g	of K occupies 15.5 cm ³ at 76
(1) (2) (1) (1) (1) (1) (1) (1)	culate the empirical formula of K. (02 mark	(i) Calculate the empirical formula of K. (02 mark		mmHg and 273k.	
(i) Calculate the empirical formula of K. (U2)			(i)	Calculate the empirical formula of K.	(02 mark

(ii)	Deduce the molecular formula of K.	(03 marks)
(b)	Compound K decomposed on heating forming yellow residue on co	ooling and a
	colourless vapour that turned limewater milky and formed yellow pr	recinitate
		Colpitate
	with 2, 4 – dinitrophenyl hydrazine in presence of sulphuric acid.	
(i)	Write the name and structural formula of compound K.	(01 mark)
		• • • • • • • • • • • • • • • • • • • •
(ii)	Write equation leading to the formation of the yellow precipitate. (0)1 ½ marks)

15.	Wate	r boiled at 100 ^o at a pressure of 760 mmHg.	
	(a)	When atmospheric pressure is reduced to 660 mmHg, water boiled	at
		96°C. explain why the boiling point is reduced.	(03 marks)
	(b)	When 0.746g of potassium chloride is dissolved in 100 g of water, t	he solution
	bo	piled at 100.11 ^o C at a pressure of 760 mmHg.	
	(i)	Explain why the boiling point changes on adding potassium chloride	€.
			(03 marks)
	(ii)	From the information given, calculate the boiling point constant, Kb	. (03 marks)

16. The table below shows the decomposition temperature of carbonates of elements of group (II) in the periodic table.

Carbonate	BeC ₃	MgCO ₃	CaCO ₃	BaCO ₃
Decomposition temperature (0°)	100	350	900	1350

(a)	(i)	State how the thermal stability of carbonates of the element group.	vary in the (01 mark)
		ain your answer in (a) (i) above.	(03 marks
(b)		three properties in which magnesium resembles lithium in gro	oup (I).
(c)	Name	e a reagent(s) can be used to distinguish between Ca ²⁺ and B	a ²⁺ and
	state	what would be observed if each of the ions is treated with the	reagents
	you h	nave named.	
Reag	gent(s)		

Observation	
Write equations to show how the following compounds ca	n be synthesized. In each
case indicate the conditions and reagents for the reaction	
(a) NH ₂ from cyclohexene	(02 ½ mark
(b) CH ₃ CH ₂ OCH ₂ CH ₃ from ethane.	(02 marks)
(c) $N = N$ from benzene.	(04 ½ marks

End