

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) N° de publication :

2.126.586

(A utiliser que pour
le classement et les
commandes de reproduction)

(21) N° d'enregistrement national:

71.04725

(A utiliser pour les paiements d'annuités
les demandes de copies officielles et toutes
autres correspondances avec l'INPI)

(15) BREVET D'INVENTION

PREMIÈRE ET UNIQUE
PUBLICATION

(22) Date de dépôt 12 février 1971, à 13 h 40 mn.

Date de la décision de délivrance..... 11 septembre 1972.

Publication de la délivrance B.O.P.I. — «Listes» n. 40 du 6-10-1972.

(51) Classification internationale (Int. Cl.) C 02 b 1/00.

(71) Déposant : Société dite : DEGREMONT SOCIÉTÉ GÉNÉRALE D'ÉPURATION ET
D'ASSAINISSEMENT, résidant en France.

(73) Titulaire : *Idem* (71)

(74) Mandataire : Armengaud Ainé, 21, boulevard Poissonnière, Paris (2).

(54) Procédé pour la déminéralisation de liquides, notamment pour le dessalement d'eaux salines.

(72) Invention de : Pierre Treille.

(33) (32) (31) Priorité conventionnelle :

La présente invention est relative à un procédé pour la déminéralisation de liquides , en particulier pour le dessalement d'eaux salines , qui permet d'atteindre d'une part un fort degré de déminéralisation du liquide traité , notamment 5 un fort degré de dessalement d'une eau saline et d'autre part de réaliser , par rapport aux procédés connus , une réduction sensible des investissements et du coût d'exploitation .

Le procédé de l'invention est du type connu sous le nom de procédé par osmose inverse (ou osmose inversée) appliquée notamment au traitement d'eaux salines pour l'obtention 10 d'eau douce . On sait que , dans un tel procédé , l'eau à dessaler est amenée à passer à travers des membranes semi-perméables agencées de façon à réaliser l'osmose inverse . Ces membranes sont disposées suivant un ou deux étages successifs , chaque étage 15 comportant une série d'éléments à membrane semi-perméable dont l'effluent traité par osmose inversée est directement recueilli et évacué par un collecteur commun à tous les éléments de l'étage considéré .

En pratique , le procédé comporte habituellement 20 un ou deux étages successifs suivant la sélectivité des membranes utilisées .

En effet , les membranes semi-perméables réalisant l'osmose inversée n'ont pas une efficacité totale , c'est à dire que selon la conception desdites membranes , la concentration en 25 sels résiduels dans l'eau traitée est plus ou moins élevée et , en particulier plus les membranes ont un débit important , toutes conditions étant égales par ailleurs , plus l'eau produite contient un résidu salin important .

On est conduit à utiliser , soit des membranes à forte sélectivité-supérieure à 99 % - dont le débit par unité de 30 surface est peu élevé , dans un traitement à un seul étage , soit des membranes à faible sélectivité - par exemple 90 % - et à fort débit dans un traitement à deux étages .

Chacun de ces procédés présente des inconvénients . 35 L'utilisation de membranes à forte sélectivité en un seul étage donne des résultats techniquement satisfaisants car elle permet d'obtenir de l'eau dessalée d'une qualité très proche des recommandations habituelles , que ce soit pour l'eau potable ou l'eau à usage industriel . Par contre , elle nécessite généralement une 40 dépense d'énergie et un investissement plus importants que le

traitement en deux étages .

L'utilisation de membranes à faible sélectivité en deux étages permet d'obtenir de meilleurs résultats - avec des membranes à 90% de sélectivité pour chaque étage , la salinité est chaque fois réduite dans un rapport 10/1 ; le rendement final est donc de 99 % - mais lesdites membranes à faible sélectivité présentent l'inconvénient , dans l'état actuel de la technique , de ne pas offrir une résistance mécanique suffisante , en particulier pour les pressions de service imposées par l'eau de mer, par exemple , ou par une eau de salinité équivalente , et d'avoir donc une durée de service fort limitée .

Pour remédier à ces inconvénients , il apparaît donc opportun d'utiliser des membranes de sélectivité intermédiaire , soit moyennement forte , possédant une résistance suffisante mais qui, dans les conditions classiques de mise en oeuvre du procédé , conduisent à un traitement onéreux et trop poussé .

La présente invention concerne précisément un procédé de déminéralisation de liquides , applicable notamment au dessalement d'eau saline en vue de l'obtention d'eau douce,par osmose inverse en deux étages successifs sur membranes à sélectivité moyennement forte , donc suffisamment résistantes, permettant un dessalement suffisant pour les besoins habituels , avec une réduction sensible de l'investissement et du coût d'exploitation . Le procédé , objet de la présente invention , est essentiellement caractérisé par le fait que seule la fraction d'eau à salinité la plus élevée provenant du premier étage subit un traitement sur le second étage .

Il est connu que , dans un premier étage de traitement sur membranes à sélectivité moyennement forte , par exemple 97 % - 98 % , la salinité de l'eau traitée sortant des divers éléments disposés en série croît régulièrement des éléments amont vers les éléments aval . Les derniers éléments de ce premier étage produisent donc de l'eau dont la salinité est plus élevée que celle produite par les premiers éléments: dans la présente invention , seule cette fraction à salinité plus élevée est traitée dans un second étage de membranes également à sélectivité moyennement forte (97% - 98%); l'autre fraction , produite par les premiers éléments du premier étage , étant avantageusement mé-

langée à l'eau épurée produite par le second étage , pour amener cette eau aux caractéristiques voulues .

Ainsi , le procédé suivant l'invention permet-il :

- de traiter en un seul étage une partie relativement importante du débit , ce qui réduit l'importance du second étage et entraîne une économie substantielle d'investissement et d'énergie de fonctionnement ;

- de ne traiter sur le second étage que l'eau produite par les derniers éléments du premier ; la salinité résiduelle élevée de cette eau est ainsi ramenée à un niveau inférieur à celui de l'eau produite par les éléments de tête du premier étage , et le mélange final de ces eaux a une salinité résultante répondant aux recommandations habituelles .

A titre d'exemple , le procédé objet de l'invention permet d'obtenir avec des membranes à 98% de sélectivité à partir d'eau de mer (contenant environ 20 g d'ions Cl^- par litre) à la sortie des éléments amont du premier étage , une eau à 400 mg/l de salinité en ions Cl^- , et à la sortie des éléments du second étage une eau contenant moins de 50 mg/l de salinité en ion Cl^- ; un mélange en parties égales de ces eaux produites donne une eau contenant moins de 250 mg/l d'ions Cl^- , donc répondant aux normes usuelles préconisées pour les teneurs admissibles en ions Cl^- dans les eaux de boisson .

A titre de second exemple , le procédé objet de l'invention permet d'obtenir , à partir d'une eau saline de forage caractérisée par une résistivité de 1500 ohms par cm/cm^2 (conductivité de 700 microsiemens/ cm/cm^2) , par mélange des eaux obtenues à la sortie de chaque étage , une eau de résistivité de 100.000 ohms/ cm/cm^2 (conductivité de 10 microsiemens/ cm/cm^2) pouvant être destinée à un usage industriel .

Le procédé , objet de l'invention peut être mis en oeuvre à l'aide d'une installation , telle que celle représentée , à titre d'exemple non limitatif , à la Figure unique du dessin annexé .

L'eau saline est amenée par une canalisation a sous l'effet d'une pompe b à un premier étage constitué par une pluralité de modules 1 comprenant chacun une membrane à sélectivité moyennement forte (98% par exemple) disposés en série ou en plusieurs séries montées en parallèle .

L'eau dessalée à la suite de son passage dans les premiers modules est recueillie par un collecteur 2 qui l'amène à une citerne d'eau épurée 5 . Conformément à l'invention , les derniers modules 1a de l'étage débitent dans un 5 collecteur 3 qui, grâce à une pompe 6 amène la fraction d'eau plus chargée en sel, par l'intermédiaire d'un bac à tampon 7 , à un second étage constitué par une pluralité de modules 10 de formation analogue à celle des modules du 1er étage . Un collecteur 4 amène l'eau épurée dans le second étage à la citerne 5 .

10 Il est très facile en service de faire varier les proportions relatives d'eaux provenant des deux étages en branchant sur les collecteurs 2 et 3 plus ou moins de modules pour ainsi adapter la qualité d'eau aux besoins réels, ou pour mieux tenir compte des circonstances locales - de salinité , 15 de température - de façon à obtenir la qualité d'eau imposée .

Le procédé suivant l'invention présente donc sur les procédés connus l'avantage appréciable de permettre une économie réelle d'investissement et de coût d'exploitation tout en obtenant une eau de la qualité désirée .

20 Bien entendu , l'invention n'est pas limitée à la forme de réalisation représentée ; c'est ainsi que le nombre de modules peut être quelconque ; la collecte différentielle en eaux plus ou moins épurées du premier étage intéressant un nombre plus ou moins grand de modules , de rang divers etc..

25 Le procédé suivant l'invention peut-être avantageusement appliqué au dessalement de l'eau de mer, ainsi qu'à la production , pour les besoins industriels , d'eau de forte résistivité à partir d'eau saline .

Il peut d'une façon générale , être appliqué à 30 la déminéralisation de tout liquide .

REVENDICATIONS

- 1 . Procédé pour la déminéralisation de liquides , notamment pour le dessalement d'eaux salines , par osmose inverse sur membranes semi-perméables disposées en deux étages successifs , procédé qui consiste à envoyer dans le second étage la fraction de liquide à salinité la plus élevée provenant du 1er étage , et à mélanger le liquide épuré ainsi produit à la fraction non traitée dans le second étage , les proportions relatives des fractions traitées dans le second étage étant réglables en fonction de la qualité de liquide que l'on désire obtenir .
5
- 10 2 . Procédé suivant 1) dans lequel la fraction de liquide , spécialement d'eau , à salinité la plus élevée envoyée dans le second étage , provient des éléments terminaux du premier étage .
- 15 3 . Procédé suivant l'une quelconque des revendications précédentes dans lequel les membranes utilisées pour constituer au moins l'un des étages sont des membranes à sélectivité moyennement forte , par exemple comprise entre 95 et 98 % .
- 20 4 . Application du procédé suivant l'une quelconque des revendications précédentes au dessalement de l'eau de mer .
- 5 . Application du procédé suivant l'une quelconque des revendications précédentes à la production , pour les besoins industriels , d'eau de forte résistivité à partir d'eau saline .

71 04725

2126586

PLANCHE UNIQUE

