

Lecture 4

Design Point & Off-Design Performance ~ 2

Objective ~ Lecture 4

To show how the detailed performance of a propulsion system can be analysed.

Design Point & Off-Design Performance

- The Design Point of an Engine
 - Where all of the components are matched at their *Design* Conditions.
 - <u>Design Conditions</u>: where each unit achieves design pressure ratio & peak efficiency at maximum flow.
 - Also sometimes called *Synthesis Matching Point*
- The Altitude & Mach Number conditions are usually those which are critical for the Aircraft/Engine Requirements.

Design Point & Off-Design Performance

Subsonic Passenger Aircraft:

- Typically the Design Point will be at the top of Climb.
- M = 0.8, h = 35,000 ft. T_1 = 240K.

Military Aircraft:

- The Design Point will be at the critical condition for manoeuvring in Combat.
- M = 1.8, h = 40,000 ft. $T_1 = 357K$.

• Helicopter:

- The Design Point will be at <u>hovering at sea level.</u>
- M = 0, h = at Sea level $T_1 = 288 \text{ K}$.
- All other conditions are *Off-Design*, where the pressure ratio, efficiency and flow are different from those at the design point.

Dimensional Relationships

Group

Non-Dimensional

Quasi-dimensionless

$$\frac{N \cdot D}{\sqrt{R \cdot T_O}}$$

$$\frac{N}{\sqrt{T_O}}$$

$$\frac{\dot{m}\sqrt{R\cdot T_o}}{A\cdot P_o}$$

$$\frac{\dot{m}\sqrt{T_O}}{P_O}$$

$$\frac{C}{\sqrt{\gamma RT}}$$
 (M)

$$\frac{C}{\sqrt{T}}$$

Nomenclature: T_o Total Temperature, T Static Temperature

m Mass flow

C Flow velocity

M Mach Number

D a "reference" dimension

N Rotational Speed

Engine Dimensional Groups

Parameter	Dimensionless Group	Quasi-dimensionless Group	Referred Parameter	Scaling parameter
Mass Flow	$\frac{m \times \sqrt{To} \times R}{Di^2 \times P1 \times \sqrt{\gamma}}$	$\frac{m \times \sqrt{To}}{P1}$	$\frac{m \times \sqrt{\theta}}{\delta}$	$\frac{m \times \theta}{Di^2 \times \delta}$
Gross Thrust	$\frac{FG}{\gamma \times Di^2 \times Po}$	$rac{FG}{Po}$	$\frac{FG}{\delta}$	$\frac{FG}{\delta}$
Specific Thrust SFG	$\frac{SFG}{\sqrt{\gamma \times R \times To}}$	$rac{SFG}{\sqrt{To}}$	$rac{SFG}{\sqrt{(heta)}}$	$\frac{SFG}{\sqrt{(\Theta)}}$
Fuel Flow	$\frac{mf \times FHV \times \sqrt{(R)} \times ETA31}{Cp \times Di^2 \times Po \times \sqrt{To} \times \gamma}$	$\frac{mf \times FHV \times ETA31}{Po \times \sqrt{To}}$	$\frac{mf \times FHV \times ETA31}{\delta \times \sqrt{(\theta)}}$	$\frac{mf \times FHV \times ETA31}{\delta \times \sqrt{(\theta)}}$
SFC	$\frac{SFC \times FHV \times \sqrt{(R \times \gamma)} \times ETA31}{Cp \times \sqrt{To}}$	$\frac{SFC \times FHV \times ETA31}{\sqrt{To}}$	$\frac{SFC \times FHV \times ETA31}{\sqrt{(\theta)}}$	$\frac{SFC \times FHV \times ETA31}{\sqrt{(\theta)}}$

FG Gross Thrust m Mass Flow Specific Thrust SFG mf Fuel Flow

FHV Fuel Heating Value ETA31 Efficiency θ Relative Temperature δ Relative Pressure

To Total Temperature Po Total Pressure R gas Constant $\gamma = Cp/Cv$ Di Dimension

Reference: Gas Turbine Performance Walsh & Fletcher

© University of Bristol Department of Aerospace Engineering

Flow Chart for Simple Design Point & Part-load Performance Calculation

Turbojet Design Point ~Pressure ratio 10:1 Design Point M = 0.8, 20000 ft

Cycle parameters:

• Inlet

•	Airflow	100kg/s
---	---------	---------

Total pressure loss

Compressor

•	Pressure Ratio	10:1
•	FIESSUIE NAUU	10.1

• Efficiency (isentropic) 89%

Combustor

1200K

• Pressure loss 8%

Turbine

• Efficiency (isentropic) 86%

No nozzle or transmission losses

Part-load iteration procedure

- Iteration carried out on P_{03}/P_{02} and combustor temperature T_{04} until the turbine "swallowing capacity" i.e. non-dimensional $m_4\sqrt{T_{04}/P_{04}}$ and nozzle throat area are the same as the engine design point values.
- From first guess, the combustor temperature T_{04} is varied at constant compressor delivery pressure ratio until the design value of $\frac{\dot{m}_4\sqrt{T_{04}}}{P_{04}}$ is obtained.
- This is repeated for another value of compression ratio and so on until the final solution is reached.

Note: The first guess would be valid if the engine could be designed with a variable turbine throat area and a variable nozzle throat area and provided that there is sufficient compressor surge margin.

Design Point & Part-load Performance Calculation

Sheet 1

ingle Spool Turbojet $M = 0.8 20,000 \text{ ft}$		Design	First	Final	
, , , , , , , , , , , , , , , , , , ,			Point	Guess	Iteration
Inlet Airflow	ṁ	kg/s	100	70	70
Ambient Temperature	T _a	kg/s	248.5	248.5	248.5
Ambient Pressure	p _a	kPa	46.6	46.6	46.6
Speed of Sound		m/s	316.2	316.2	316.2
Compressor Pressure Ratio			10:01	7:1	5.86:1
Combustion Temperature	T ₀₄	К	1200	1000	855
INLET & AIR INTAKE	T ₀₁	К	280.3	280.3	280.3
	P ₀₁	kPa	71	71	71
	C _o	m/s	252.6	252.6	252.6
	T ₀₂	К	280.3	280.3	280.3
	P ₀₂	kPa	67.4	67.4	67.4
COMPRESSOR	$\frac{\dot{m}_2\sqrt{T_{o2}}}{P_{o2}}$		24.83	17.38	17.38
	P ₀₃	kPa	674.2	472	399.1
	T ₀₃	К	573.4	514.6	487.4
	Power	kW	29457	16479	14565
COMBUSTION	T ₀₄	К	1200	1000	855
	Fuel/Air Ratio		0.0173	0.0128	0.0093
	Fuel Flow	kg/s	1.73	0.896	0.651
	P ₀₄	kPa	620.3	434.2	365.5

University of Bristol Department of Aerospace Engineering

Design Point & Part-load Performance Calculation

Sheet 2

gle Spool Turbojet @ M = 0.	8, 20,000ft		Design	First	Final
TURBINE			Point	Guess	Iteration
Design Value	$\frac{\dot{m}_4\sqrt{T_{o4}}}{P_{o4}}$		5.681	5.163	5.683
	T_{05}	K	947.5	797.5	675.3
	P ₀₅	kPa	202.2	148.2	118.5
CONVERGENT NOZZLE	P_{05}/P^*		4.336	3.184	2.544
	P_{05}/P_{oN^*}		1.853	1.853	1.853
	P_{N^*}	kPa	109	80.1	64
	T_{N^*}	K	812.3	683.6	578.9
	C_N	m/s	557.5	511.5	470.7
Design Value	$A_{JTHROAT}$	m^2	0.39	0.34	0.39
PERFORMANCE	$\dot{m}C_N$	kN	56.7	-	33.2
(Convergent Nozzle)	$A_{J}(P_{N}^{*} - P_{a})$	kN	24.4	-	6.8
	Gross Thrust	kN	81.1	-	40
	Mom. Drag	kN	25.3	-	17.7
	Nett Thrust	kN	55.8	-	22.3
	SFC	kg/hr/N	0.112	-	0.105
CON-DI NOZZLE	P ₀₅ /P*		4.336	-	2.544
Fully Expanded Temperature	T_{NFE}	K	656.6	-	534.7
Fully Expanded Velocity	$C_{ m JFE}$	m/s	817.3	-	568.2
Fully Expanded Area	$A_{ m JFE}$	m ² IG31102 Lecture	0.504	-	0.41
Ideal Gross Thrust	ABI	Kn	83.1	-	40.1

Typical Compressor Operating Line

Turbojet Design Point ~Pressure ratio 20:1

Design Point: Sea level static ISA

Inlet

Airflow 100kg/s

Inlet Pressure recovery MIL-E-5007D

Compressor

Pressure Ratio 20:1

Efficiency (isentropic) 80%

Combustor

Inlet Temperature T_{03} 758K

Outlet Temperature T_{04} 1500K

Pressure loss 8.6%

Turbine

Expansion ratio P_{04}/P_{05} 6.1:1

Efficiency(isentropic) 86%

Cooling bleeds (% of compressor flow) 19%

Nozzle

Thrust coefficient 0.96

Thrust = 71.7 kN Fuel flow = 1.76 kg/sSFC = 0.0245 kg/s/kN

Turbojet Thrust variation with Combustion Temperature

Sea level static, ISA MIL-E-5007D Intake pressure recovery

Sea level static, ISA

Cycle pressure ratio = 20:1

Combustion temperature = 1500K

MIL-E-5007D Intake pressure recovery

Turbojet Thrust variation with Ambient Temperature

Constant combustion temperature = 1500K MIL-E-5007D Intake pressure recovery

Turbojet Thrust variation with Mach Number

Turbojet Climb Thrust Characteristics

Turbojet Fuel Consumption Characteristics

Typical Engine Data

Subsonic Transport Aircraft ~ Take-off

Typical High By-pass Ratio Turbofan Take-off performance

Typical Engine Data Subsonic Transport Aircraft ~ Cruise

Normalised Thrust - SFC Characteristics

 F_N/δ

Propulsion Systems for Transport & Combat Aircraft

High by-pass ratio Turbofan

Thrust ~2000 to 100,000 lb By-pass ratio 4-10OPR ~ 40Fan PR ~ 1.9Specific Thrust ~ 25-35 lb/lb/sec

Low by-pass ratio Reheated Turbofan

Thrust $\sim 10,000$ to 40,000 lb (inc R/H)

By-pass ratio 0.3 - 1

 $OPR \sim 25 - 30$

Fan PR $\sim 3-5$

Specific Thrust ~ 120 lb/lb/sec (inc R/H)

AENG31102 Lecture 4 22

Typical Engine Characteristics

High by-pass ratio Engines

Overall Performance Characteristics

The major points of interest are:

- As combustion temperature and spool speed increase at fixed atmospheric conditions, the thrust increase is non-linear – the thrust increases rapidly at the higher values of combustion temperature & spool speed. The gas turbine has a different characteristic to that of the reciprocating engine.
- At a fixed combustion temperature, thrust falls almost linearly with atmospheric conditions due to falling density and quantity of inlet airflow.
- Initially thrust decreases with forward speed (at fixed atmospheric conditions & combustor temperature). This is due to increasing momentum drag.
 Subsequently thrust rises as inlet pressure rises giving higher values of jet pipe pressure & jet velocity. Finally thrust falls as compressor delivery temperature rises towards the combustor temperature.
- SFC/ $\sqrt{\theta}$ and F_N/δ may be used to normalise engine characteristics. In general SFC increases with Mach Number.

Key Points from Lecture 4

- Design Points for different types of platforms
- Fundamental Dimensionless relationships
- The calculation of Off-design Performance
- How thrust & fuel consumption varies with inlet conditions i.e. Altitude, Mach Number & throttle setting

Lecture 5

Engine – Airframe Integration

Objective ~ Lecture 5
To detail the issues arising from the installation of a propulsion system into a vehicle.

AENG31102 Lecture 3 26