McNemar Test

尹子維 統計所 R26124089

李承祐 統計所 R26121031

李家銘 數據所 RE6124043

劉光威

環醫所 S78097027

TABLE OF CONTENT

- Assumption
- Purpose/Type of data
- Null Hypothesis/ Alternative Hypothesis
- Real Data

ASSUMPTION

- Paired data
- Categorical data
- 2x2 contingency table
- Dependent samples
- Test whether a population remains the same before and after testing

INTRODUCTION

Purposes

 The McNemar test is utilized to find statistical significance of a change in proportion for the paired nominal (categorical) data.

Requirements

- Data type: Binary or Categorical Data
- Pair data: Each subject or case is classified into two categories, and their data is collected twice. This results in a 2x2 contingency table.
- Sample size: the expected effect size, significance level, and power of the test.

McNemar's test

Hypothesis

 H0 - Null Hypothesis: there is no significant difference between the control is exposed.

$$H_0: B = C$$

- H1 - Alternative Hypothesis: There is a significant difference between the control is exposed. $H_1:B
eq C$

Test Statistic

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

If the null hypothesis is true, the McNemar Chi-square statistic = 0.

• McNemar 檢定

試驗後試驗前	成功	失敗	和
成功	A (P ₁₁)	B (P ₁₂)	A+B (P _{1.})
失敗	C (P ₂₁)	D (P ₂₂)	C+D (P _{2.})
和	A+C (P _{.1})	B+D (P _{.2})	n (1)

- The sampling distribution of the McNemar statistic is a Chi-square distribution.
- Since the McNemar test is always done on data in a 2 X 2 table, the degrees of freedom for this statistic = 1
- For a test with $\alpha=0.05$, the critical value for the McNemar statistic = 3.84.
 - The null hypothesis is not rejected if the McNemar statistic < 3.84.
 - The null hypothesis is rejected if the McNemar statistic > 3.84.

Hypothesis

 H0 - Null Hypothesis: there is no significant difference between the control is exposed.

$$H_0: B = C$$

- H1 - Alternative Hypothesis: There is a significant difference between the control is exposed. $H_1:B
eq C$

Test Statistic

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

If the null hypothesis is true, the McNemar Chi-square statistic = 0.

• McNemar 檢定

試驗後試驗前	成功	失敗	和
成功	A (P ₁₁)	B (P ₁₂)	A+B (P ₁)
失敗	C (P ₂₁)	D (P ₂₂)	C+D (P _{2.})
和	A+C (P _{.1})	B+D (P _{.2})	n (1)

- The sampling distribution of the McNemar statistic is a Chi-square distribution.
- Since the McNemar test is always done on data in a 2 X 2 table, the degrees of freedom for this statistic = 1
- For a test with $\alpha=0.05$, the critical value for the McNemar statistic = 3.84.
 - The null hypothesis is not rejected if the McNemar statistic < 3.84.
 - The null hypothesis is rejected if the McNemar statistic > 3.84.

Hypothesis

 H0 - Null Hypothesis: there is no significant difference between the control is exposed.

$$H_0: B = C$$

- H1 - Alternative Hypothesis: There is a significant difference between the control is exposed. $H_1:B
eq C$

Test Statistic

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

If the null hypothesis is true, the McNemar Chi-square statistic = 0.

• McNemar 檢定

試驗能試驗能	成功	失敗	和
成功	A (P ₁₁)	B (P ₁₂)	A+B (P _{1.})
失敗	C (P ₂₁)	D (P ₂₂)	C+D (P ₂)
和	A+C (P _{.1})	B+D (P _{.2})	n (1)

- The sampling distribution of the McNemar statistic is a Chi-square distribution.
- Since the McNemar test is always done on data in a 2 X 2 table, the degrees of freedom for this statistic = 1
- For a test with $\alpha = 0.05$, the critical value for the McNemar statistic = 3.84.
 - The null hypothesis is not rejected if the McNemar statistic < 3.84.
 - The null hypothesis is rejected if the McNemar statistic > 3.84.

Hypothesis

 H0 - Null Hypothesis: there is no significant difference between the control is exposed.

$$H_0: B = C$$

- H1 - Alternative Hypothesis: There is a significant difference between the control is exposed. $H_1:B
eq C$

Test Statistic

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

If the null hypothesis is true, the McNemar Chi-square statistic = 0.

• McNemar 檢定

試驗後試驗前	成功	失敗	和
成功	A (P ₁₁)	B (P ₁₂)	A+B (P ₁)
失敗	C (P ₂₁)	D (P ₂₂)	C+D (P _{2.})
和	A+C (P _{.1})	B+D (P _{.2})	n (1)

- The sampling distribution of the McNemar statistic is a Chi-square distribution.
- Since the McNemar test is always done on data in a 2 X 2 table, the degrees of freedom for this statistic = 1
- For a test with $\alpha = 0.05$, the critical value for the McNemar statistic = 3.84.
 - The null hypothesis is not rejected if the McNemar statistic < 3.84.
 - The null hypothesis is rejected if the McNemar statistic > 3.84.

REAL DATA

Data Introduction

- Air Quality Monitoring Data(PM2.5)
- 77 monitoring station in Taiwan
- Records per hour

Monitoring Station	Date	Quality Index	00:00	01:00	
三義	2/1	PM2.5	15	18	
三重	2/2	PM10	10	12	

Goal

To test whether is air quality worse after Moon Festival

REAL DATA

Process

- 1. Decided which air quality pollutant to use. $(PM_{2.5})$
- 2. Defined the threshold of the air quality. (15)
- 3. Transfered the table into a 2x2 contigency table.
- 4. Conducted McNemar Test.

Consequeces

		After Moon Festival		
		Polluted	Not Polluted	
Before Moon Festival	Polluted	2	0	
	Not Polluted	44	31	

REAL DATA

Results

		After Moon Festival		
		Polluted	Not Polluted	
Before Moon Festival	Polluted	2	0	
	Not Polluted	44	31	

- P-value = 9.022e-11
- → The air quality detected after Moon Festival is worse than its before.

Codes in R

mcnemar.test(dataframe)