PROBABILITY THEORY LECTURE 1

LECTORE 1		
Per Sidén		
Division of Statistics and Machine Learning Dept. of Computer and Information Science		
Linköping University		
PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1	1 / 30	
Overview Lecture 1		Notes
► Course outline		
 Introduction and a recap of some background Functions of random variables 		
► Multivariate random variables		
PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1	2 / 30	
Course Outline		Notes
▶ 6 Lectures: theory interleaved with illustrative solved examples.		
▶ 6 Seminars: problem solving sessions + open discussions.		
▶ 1 Recap session: Recap of the course.		
PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1	3 / 30	
Course literature		Notes
► Gut, A. <i>An intermediate course in probability</i> . 2nd ed. Springer-Verlag, New York, 2009, ISBN 978-1-4419-0161-3		
Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3 ► Chapter 1: Multivariate random variables		
Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3		
Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3 ► Chapter 1: Multivariate random variables ► Chapter 2: Conditioning		

Notes

► The examination consists of a written exam with max score 20 points	
and grade limits: A: 19p, B: 17p, C: 14p, D: 12p, E: 10p.	
➤ You are allowed to bring a pocket calculator to the exam, but no	
books or notes.	
► The following will be distributed with the exam:	
 Table with common formulas and moment generating functions (available on the course homepage). 	
► Table of integrals (available on the course homepage).	
► Table with distributions from Appendix B in the course book.	
Active participation in the seminars gives bonus points to the exam.	
A student who earns the bonus points will add 2 points to the exam result in order to reach grade E, D or C, 1 point in order to reach	
grade B, but no points in order to reach grade A. Required exam	
results for a student who earned the bonus points for respective grade:	
A : 19p, B : 16p, C : 12p, D : 10p, E : 8p.	
PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1 5 / 30	
BONUS POINTS	Notes
► To earn the bonus points a student must be present and active in at	
least 5 of the 6 seminars, so maximally one seminar can be missed	
regardless of reasons.	-
Active participation means that the student has made an attempt to	
solve every exercise indicated in the timetable before respective seminar and is able to present his/her solutions on the board during	
the seminar. Active participation also means that the student gives	
help and comments to the classmates' presented solutions.	
► In the seminars, for each exercise a student will be randomly selected to present his/her solution (without replacement).	
Exercises marked with * are a bit harder and it is ok if you are not	
able to solve these.	
Per Sidén (Statistics, Liu) Probability Theory - L1 6 / 30	
TER SIDEN (STATISTICS, ETC) TROBABIETT THEORY - ET	
Course homepage	Notes
	Notes
COURSE HOMEPAGE ► https://www.ida.liu.se/~732A63/ (select english)	Notes
	Notes
► https://www.ida.liu.se/~732A63/ (select english)	Notes
► https://www.ida.liu.se/~732A63/ (select english)	Notes
► https://www.ida.liu.se/~732A63/ (select english) PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1 7/30	
► https://www.ida.liu.se/~732A63/ (select english)	Notes
► https://www.ida.liu.se/~732A63/ (select english) PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1 7/30 RANDOM VARIABLES	
► https://www.ida.liu.se/~732A63/ (select english) PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1 7/30	
▶ https://www.ida.liu.se/~732A63/ (select english) PER SIDEN (STATISTICS, LIU) PROBABILITY THEORY - L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most	
 ► https://www.ida.liu.se/~732A63/ (select english) Persiden (Statistics, LiU) Probability Theory - L1 7/30 RANDOM VARIABLES ► The sample space Ω = {ω₁, ω₂,} of an experiment is the most basic representation of a problem's randomness (uncertainty). ► More convenient to work with real-valued measurements. ► A random variable X is a real-valued function from a sample space: 	
▶ https://www.ida.liu.se/~732A63/ (select english) PER SIDEN (STATISTICS, LIU) PROBABILITY THEORY-L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty). ▶ More convenient to work with real-valued measurements. ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$.	
▶ https://www.ida.liu.se/~732A63/ (select english) PROBABILITY THEORY-L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty). ▶ More convenient to work with real-valued measurements. ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$. ▶ A multivariate random vector: $\mathbf{X} = f(\omega)$ such that $f: \Omega \to \mathbb{R}^n$.	
▶ https://www.ida.liu.se/~732A63/ (select english) PROBABILITY THEORY - L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty). ▶ More convenient to work with real-valued measurements. ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$. ▶ A multivariate random vector: $\mathbf{X} = f(\omega)$ such that $f: \Omega \to \mathbb{R}^n$. ▶ Examples:	
▶ https://www.ida.liu.se/~732A63/ (select english) PROBABILITY THEORY - L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty). ▶ More convenient to work with real-valued measurements. ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$. ▶ A multivariate random vector: $X = f(\omega)$ such that $f: \Omega \to \mathbb{R}^n$. ▶ Examples: ▶ Roll a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$.	
▶ https://www.ida.liu.se/~732A63/ (select english) PROBABILITY THEORY - L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty). ▶ More convenient to work with real-valued measurements. ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$. ▶ A multivariate random vector: $X = f(\omega)$ such that $f: \Omega \to \mathbb{R}^n$. ▶ Examples: ▶ Roll a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$.	
▶ https://www.ida.liu.se/~732A63/ (select english) PROBABILITY THEORY - L1 7/30 RANDOM VARIABLES ▶ The sample space $\Omega = \{\omega_1, \omega_2,\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty). ▶ More convenient to work with real-valued measurements. ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$. ▶ A multivariate random vector: $\mathbf{X} = f(\omega)$ such that $f: \Omega \to \mathbb{R}^n$. ▶ Examples:	

8 / 30

Notes

EXAMINATION

SAMPLE SPACE OF TWO DICE EXAMPLE

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

9 / 30

THE DISTRIBUTION OF A RANDOM VARIABLE

- ► The probabilities of events on the sample space Ω imply a **probability** distribution for a random variable X(ω) on Ω.
- ightharpoonup The probability distribution of X is given by

$$\Pr(X \in C) = \Pr(\{\omega : X(\omega) \in C\}),$$

where $\{\omega: X(\omega) \in C\}$ is the event (in Ω) consisting of all outcomes ω that gives a value of X in C.

- ► A random variable is **discrete** if it can take only a finite or a countable number of different values $x_1, x_2,$
- ► Continuous random variables can take every value in an interval.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

10 / 30

DISCRETE RANDOM VARIABLE

► The probability function (p.f), is the function

$$p(x) = \Pr(X = x)$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

11 / 30

Uniform, Bernoulli and Poisson

▶ Uniform discrete distribution. $X \in \{a, a+1, ..., b\}$.

$$p(x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x = a, a+1..., b\\ 0 & \text{otherwise} \end{cases}$$

- ▶ Bernoulli distribution. $X \in \{0,1\}$. $\Pr(X = 0) = 1 p$ and $\Pr(X = 1) = p$.
- ▶ Poisson distribution: $X \in \{0, 1, 2, ...\}$

$$p(x) = \frac{\exp(-\lambda) \cdot \lambda^x}{x!} \quad \text{ for } x = 0, 1, 2, \dots$$

Votes	
-------	--

Notes			
Notes			
Notes			
		 	

THE BINOMIAL DISTRIBUTION

▶ **Binomial distribution**. Sum of n independent Bernoulli variables $X_1, X_2, ..., X_n$ with the same success probability p.

$$X = X_1 + X_2 + \dots + X_n$$
$$X \sim Bin(n, p)$$

▶ Probability function for a Bin(n, p) variable:

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$
, for $x = 0, 1, ..., n$.

▶ The binomial coefficient $\binom{n}{x}$ is the number of binary sequences of length n that sum exactly to x.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

13 / 30

Notes

PROBABILITY DENSITY FUNCTIONS

- ► Continuous random variables can assume every value in an interval.
- ► Probability density function (pdf) f(x)

•
$$Pr(a \le X \le b) = \int_a^b f(x) dx$$

• $f(x) \ge 0$ for all x

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

- ▶ A pdf is like a histogram with tiny bin widths. Integral replaces sums.
- Continuous distributions assign probability zero to individual values, but

$$\Pr\left(a - \frac{\epsilon}{2} \le X \le a + \frac{\epsilon}{2}\right) \approx \epsilon \cdot f(a).$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

14 / 30

DENSITIES - SOME EXAMPLES

► The uniform distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{ for } a \le x \le b \\ 0 & \text{ otherwise.} \end{cases}$$

► The **triangle** or linear pdf

$$f(x) = \begin{cases} \frac{2}{a^2}x & \text{for } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$$

► The normal, or Gaussian, distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

Per Sidén (Statistics, LiU)

PROBABILITY THEORY - L1

15 / 30

EXPECTED VALUES, MOMENTS

► The expected value of X is

$$E\left(X\right) = \begin{cases} \sum_{k=i}^{\infty} x_k \cdot p(x_k) & \text{, } X \text{ discrete} \\ \int_{-\infty}^{\infty} x \cdot f(x) & \text{, } X \text{ continuous} \end{cases}$$

- ▶ Example: E(X) when $X \sim Uniform(a, b)$
- ▶ The *n*th moment is defined as $E(X^n)$
- ► The variance of X is $Var(X) = E(X EX)^2 = E(X^2) (EX)^2$

Notes			
Notes			
Notes			

THE CUMULATIVE DISTRIBUTION FUNCTION

▶ The (cumulative) distribution function (cdf) $F(\cdot)$ of a random variable X is the function

$$F(x) = \Pr(X \le x) \text{ for } -\infty \le x \le \infty$$

- ► Same definition for discrete and continuous variables.
- ► The cdf is non-decreasing

If
$$x_1 \leq x_2$$
 then $F(x_1) \leq F(x_2)$

- ▶ Limits at $\pm\infty$: $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.
- For continuous variables: relation between pdf and cdf

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

and conversely

$$\frac{dF(x)}{dx} = f(x)$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

17 / 30

Notes

Notes

FUNCTIONS OF RANDOM VARIABLES

- Puite common situation: You know the distribution of X, but need the distribution of Y = g(X), where $g(\cdot)$ is some function.
- ▶ Example 1: $Y = a + b \cdot X$, where a and b are constants.
- ▶ Example 2: Y = 1/X
- ▶ Example 3: Y = ln(X).
- Example 4: $Y = \log \frac{X}{1-X}$
- Y = g(X), where X is discrete.
- $p_X(x)$ is p.f. for X. $p_Y(y)$ is p.f. for Y:

$$p_{Y}(y) = \Pr(Y = y) = \Pr[g(X) = y] = \sum_{x:g(x)=y} p_{X}(x)$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

18 / 30

FUNCTION OF A CONTINUOUS RANDOM VARIABLE

▶ Suppose that X is continuous with support (a, b). Then

$$F_Y(y) = \Pr(Y \le y) = \Pr[g(X) \le y] = \int_{x:g(x) \le y} f_X(x) dx$$

▶ Let g(X) be monotonically *increasing* with inverse X = h(Y). Then

$$F_Y(y) = Pr(Y \le y) = Pr(g(X) \le y) = Pr(X \le h(y)) = F_X(h(y))$$

and

$$f_Y(y) = f_X(h(y)) \cdot \frac{\partial h(y)}{\partial y}$$

lacktriangledown For general monotonic transformation Y=g(X) we have

$$f_Y(y) = f_X[h(y)] \left| \frac{\partial h(y)}{y} \right| \text{ for } \alpha < y < \beta$$

where (α, β) is the mapped interval from (a, b).

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

19 / 30

20 / 30

Notes

EXAMPLES: FUNCTIONS OF A RANDOM VARIABLE

Example 1. $Y = a \cdot X + b$.

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Example 2: **log-normal**. $X \sim N(\mu, \sigma^2)$. $Y = g(X) = \exp(X)$. $X = h(Y) = \ln Y$.

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu\right)^2\right) \cdot \frac{1}{y} \text{ for } y > 0.$$

► Example 3. $X \sim LogN(\mu, \sigma^2)$. $Y = a \cdot X$, where a > 0. X = h(Y) = Y/a.

$$\begin{split} f_Y(y) &= \frac{1}{y/a} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln\frac{y}{a} - \mu\right)^2\right) \frac{1}{a} \\ &= \frac{1}{y} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu - \ln a\right)^2\right) \end{split}$$

which means that $Y \sim LogN(\mu + \ln a, \sigma^2)$.

PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY -

Notes

EXAMPLES: FUNCTIONS OF A RANDOM VARIABLE

► Example 4. $X \sim LogN(\mu, \sigma^2)$. $Y = X^a$, where $a \neq 0$. $X = h(Y) = Y^{1/a}.$

$$\begin{split} f_Y(y) &= \frac{1}{y^{1/a}} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y^{1/a} - \mu\right)^2\right) \frac{1}{a} y^{1/a - 1} \cdot \\ &= \frac{1}{y} \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{1}{2a^2\sigma^2} \left(\ln y - a\mu\right)^2\right) \end{split}$$

which means that $Y \sim LogN(a\mu, a^2\sigma^2)$.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

21 / 30

BIVARIATE DISTRIBUTIONS

► The joint (or bivariate) distribution of the two random variables X and $\, Y \,$ is the collection of all probabilities of the form

$$Pr[(X, Y) \in C]$$

- Example 1:
 - X = # of visits to doctor.
 - ► Y =#visits to emergency.
 - C may be $\{(x, y) : x = 0 \text{ and } y \ge 1\}.$
- ► Example 2:
 - ightharpoonup X =monthly percentual return to SP500 index
 - ightharpoonup Y =monthly return to Stockholm index.
 - C may be $\{(x,y): x < -10 \text{ and } y < -10\}.$
- ▶ Discrete random variables: joint probability function (joint p.f.)

$$f_{X,Y}(x,y) = \Pr(X = x, Y = y)$$

such that $\Pr\left[(X,Y) \in \mathcal{C}\right] = \sum_{(x,y) \in \mathcal{C}} f_{X,Y}(x,y)$ and $\sum_{AII} (x,y) f_{X,Y}(x,y) = 1.$

CONTINUOUS JOINT DISTRIBUTIONS

► Continuous joint distribution (joint p.d.f.)

$$\Pr[(X,Y) \in C] = \iint_C f_{X,Y}(x,y) dxdy,$$

where $f_{X,Y}(x,y) \ge 0$ is the **joint density**.

▶ Univariate distributions: probability is area under density.

▶ Bivariate distributions: probability is volume under density.

 $\,\blacktriangleright\,$ Be careful about the regions of integration. Example:

$$C = \{(x, y) : x^2 \le y \le 1\}$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

23 / 30

EXAMPLE

► Example

$$f_{X,Y}(x,y) = \frac{3}{2}y^2 \text{ for } 0 \le x \le 2 \text{ and } 0 \le y \le 1.$$

Notes

Notes

22 / 30

Notes

Notes

PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L1 24 / 30

BIVARIATE NORMAL DISTRIBUTION

► The most famous of them all: the bivariate normal distribution, with pdf

$$\begin{split} f_{\mathsf{X},\mathsf{Y}}(\mathsf{x},\mathsf{y}) &= \frac{1}{2\pi(1-\rho^2)^{1/2}\sigma_{\mathsf{x}}\sigma_{\mathsf{y}}} \times \\ \exp\left(-\frac{1}{2\left(1-\rho^2\right)}\left[\left(\frac{\mathsf{x}-\mu_{\mathsf{x}}}{\sigma_{\mathsf{x}}}\right)^2 - 2\rho\left(\frac{\mathsf{x}-\mu_{\mathsf{x}}}{\sigma_{\mathsf{x}}}\right)\left(\frac{\mathsf{y}-\mu_{\mathsf{y}}}{\sigma_{\mathsf{y}}}\right) + \left(\frac{\mathsf{y}-\mu_{\mathsf{y}}}{\sigma_{\mathsf{y}}}\right)^2\right]\right) \end{split}$$

▶ Five parameters: μ_x , μ_y , σ_x , σ_y and ρ

PER SIDÉN (STATISTICS, LIU)

25 / 30

Notes

BIVARIATE C.D.F.

▶ Joint cumulative distribution function (joint c.d.f.):

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$

► Calculating probabilities of rectangles $Pr(a < X \leq b \text{ and } c < Y \leq d)$:

$$F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

- ► Properties of the joint c.d.f.
 - $\begin{array}{l} \blacktriangleright \ \, \text{Marginal of } X \colon F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y) \\ \blacktriangleright \ \, F_{X,Y}(x,y) = \int_{-\infty}^y \int_{-\infty}^x f_{X,Y}(r,s) dr ds \\ \blacktriangleright \ \, f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y} \end{array}$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

26 / 30

MARGINAL DISTRIBUTIONS

▶ Marginal p.f. of a bivariate distribution is

$$\begin{split} f_X(x) &= \sum_{All\ y} f_{X,Y}(x,y) \text{ [Discrete case]} \\ f_X(x) &= \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy \text{ [Continuous case]} \end{split}$$

▶ A marginal distribution for X tells you about the probability of different values of X, averaged over all possible values of Y.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

27 / 30

28 / 30

INDEPENDENT VARIABLES

▶ Two random variables are independent if

$$Pr(X \in A \text{ and } Y \in B) = Pr(X \in A) {\cdot} Pr(Y \in B)$$

for all sets of real numbers A and B (such that $\{X \in A\}$ and $\{Y \in B\}$ are events).

▶ Two variables are independent if and only if the joint density can be factorized as

$$f_{X,Y}(x,y) = h_1(x) \cdot h_2(y)$$

- ▶ Note: this factorization must hold for all values of x and y. Watch out for non-rectangular support!
- \blacktriangleright X and Y are independent if learning something about X (e.g. X > 2) has no effect on the probabilities for different values of Y.

Notes				
Notes				
Notes				

MULTIVARIATE DISTRIBUTIONS

- ▶ Obvious extension to more than two random variables, $X_1, X_2, ..., X_n$.
- ► Joint p.d.f.

$$f(x_1, x_2, ..., x_n)$$

► Marginal distribution of x₁

$$f_1(x_1) = \int_{x_2} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_2 \cdots dx_n$$

▶ Marginal distribution of x_1 and x_2

$$f_{12}(x_1, x_2) = \int_{x_3} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_3 \cdots dx_n$$

and so on.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L1

29 / 30

Notes

FUNCTIONS OF RANDOM VECTORS

- ▶ Let **X** be an *n*-dimensional continuous random variable
- ▶ Let **X** have density $f_{\mathbf{X}}(\mathbf{x})$ on support $S \subset \mathbb{R}^n$.
- ▶ Let Y = g(X), where $g : S \to T \subset \mathbb{R}^n$ is a bijection (1:1 and onto).
- lacktriangle Assume g and g^{-1} are continuously differentiable with Jacobian

$$\mathbf{J} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

THEOREM

("The transformation theorem") The density of Y is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}} \left[h_1(\mathbf{y}), h_2(\mathbf{y}), ..., h_n(\mathbf{y}) \right] \cdot |\mathbf{J}|$$

where $h=(h_1,h_2,...,h_n)$ is the unique inverse of $g=(g_1,g_2,...,g_n).$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L

30 / 30

Notes		
Notes		
Notes		
Notes		
		_