

02460 - Advanced Machine Learning

Tensor Factorized Density Estimators

Density Estimation

- Unsupervised task in Machine Learning
- Using probabilistic models, e.g. the Gaussian Mixture Model
- Strengths: few parameters, probabilistic interpretation
- Weaknesses: initialization, convergence, overfitting issues

Figure: Illustration of the Gaussian Mixture Model [Conteras 2019]

Tensor Decompositions

- Tensors are multidimensional arrays
- Underlying hidden-low dimensional structures
- Efficient representation

Figure: Illustration of the Canonical Polyadic decomposition [Diniz 2019]

Purpose of the project

The purpose of our project has been to *explore the use of tensor* factorization methods to estimate probability densities of data, and make comparisons of these to the state-of-the-art methods.

Factorization of Mixture Models

Canonical Polyadic (CP)

$$p(x_1, ..., x_M) = \sum_{k=1}^K p(k) \prod_{m=1}^M p(x_m | k)$$
 (1)

Tensor Train (TT)

$$p(x_1,...,x_M) = \sum_{k_0,...,k_M}^{K_0,...,K_M} p(k_0) \prod_{m=1}^M p(x_m,k_m|k_{m-1})$$
 (2)

- Decomposition of probability densities
- Enables heterogeneous modelling

Results (I)

Figure: Density plots for the standard GMM model, and CP- and TT- decompositions models, after being fit to three different toy data distributions.

Results (II)

Figure: Learning rate for Tensor train, Canonical Polyadic and Gaussian mixture model with full covariance trained on different subsets of the Hepmass dataset (23 dimensions, and $\approx 700,000$ samples) with the same number of free parameters. The error is measured on the full test set from the Hepmass dataset.

Results (III)

Dataset	TFDE (TT)	TFDE (CP)	FFJORD
POWER	-0.02	0.01	-0.46
GAS	-3.95	-5.44	-8.59
HEPMASS	22.38	23.60	14.92
MINIBOONE	33.29	41.43	10.43
BSDS300	-130.31	-127.47	-157.40
MNIST	0.06	2.57	1.05
CIFAR10	N/A	N/A	3.40

Table: Negative log-likehood on test data for density estimation models; **lower is better**. In nats for tabular data and bits/dim. FFJORD results are from Grathwohl et al. 2018.

Discussion

- Singularity issues for single point clusters
 - Relative point probabilities skyrocket
- Explore initialization
 - Parameters drawn randomly from a specified interval
- High dimensional problems
 - Log-domain calculations
 - TensorFlow loop unrolling
- Ordering of Tensor Train

Conclusion

- TFDE models shows versatility for high dimensional data
- Good results compared to state-of-the-art
 - Generally TT performed better than CP.
- Heterogeneous modelling
 - Enables a single models to work both in a mix of continuous and non-continuous spaces

References

- C. O. Conteras. Gaussian mixture models explained, 2019.
- F. B. Diniz. A fast implementation for the canonical polyadic decomposition, 2019.
- W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. FFJORD: free-form continuous dynamics for scalable reversible generative models. CoRR, abs/1810.01367, 2018. URL http://arxiv.org/abs/1810.01367.

Heterogeneous 2D -> 3D

Figure: A 3D plot of the checkerboard 2D toy data split intothree categories, with each row representing a different cate-gory.

Sampling from Heterogenous Model

Figure: Sampling of CP and TT heterogeneous TFDE models trained on the Adult dataset, which contains 14 features and a label.

Results of Bayesian Classifier

Training heterogeneous models as a Bayesian Classifier

	TT	CP	CART
True Positive Rate	54.27 %	37.69 %	59.57 %
True Negative Rate	91.46 %	94.56 %	87.36 %
Accuracy	82.51 %	80.87 %	80.67 %

Table: Results from classification task on test set from Adult data for the heterogeneous TT and CP model and a simple classification tree. The prevalence of negative is 75.2 %.