Es gilt für die folgenden Aufgaben:

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y:

Aufgabe 1: Nyquist-Kriterium

Die Übertragungsfunktion der Strecke lautet

$$P(s) = \frac{2(s+1)(s+4)}{(s-1)(s+2)^2},$$

die Ortskurve ihres Frequenzgangs $P(j\omega)$ liegt graphisch vor:

Ermitteln Sie mit Hilfe des Nyquist-Kriteriums den größtmöglichen Wertebereich des reellen Reglerparameters K eines Proportionalreglers R(s) = K, für den der oben dargestellte Regelkreis BIBO-stabil ist.

Aufgabe 2: Nyquist-Kriterium

Die Strecke P(s) ist BIBO-stabil. Die Ortskurve ihres Frequenzgangs ist gegeben:

Ermitteln Sie mit Hilfe des Nyquist-Kriteriums den größtmöglichen Wertebereich des reellen Reglerparameters K eines Proportionalreglers R(s) = K, für den der oben dargestellte Regelkreis BIBO-stabil ist.

Aufgabe 3: Nyquist-Kriterium, I-Regler, Frequenzgang

Die Strecke P(s) ist dieselbe wie in Aufgabe 2. Als Regler wird ein I-Regler $R(s) = \frac{K_{\rm I}}{s}$ mit dem reellen Parameter $K_{\rm I}$ eingesetzt.

- a) Skizzieren Sie die Ortskurve der Übertragungsfunktion $G(s) := \frac{P(s)}{s}$ und bestimmen Sie deren Schnittpunkte mit der reellen Achse.
- b) Ermitteln Sie mit Hilfe des Nyquist-Kriteriums den größtmöglichen Wertebereich des Reglerparameters $K_{\rm I}$, für den der Regelkreis die BIBO-Eigenschaft besitzt.
- c) Als Führungsgröße wird nun $r(t) = 2 + \cos(6t)$ vorgegeben. Ermitteln Sie den Verlauf des Regelfehlers e(t) im sogenannten eingeschwungenen Zustand, d.h. für große Werte des Zeitparameters t, für folgende Werte des Reglerparameters $K_{\rm I}$:

i)
$$K_{\rm I} = \frac{1}{2}$$
, ii) $K_{\rm I} = \frac{3}{8}$.

Hinweis: Benutzen Sie die folgende Tabelle.

\overline{m}	2	3	4	5	6	8	10
$\arctan m$ $ m _{\mathrm{dB}}$	63° 6	72° 9,5	74° 12	• •	81° 15,5		84° 20
<i>Hinweis:</i> $\arctan \frac{1}{m} = 90^{\circ} - \arctan m$							

♠ Nyquist-Kriterium, Frequenzgang

Die Streckenübertragungsfunktion P(s) besitzt eine Polstelle bei Null und keine Polstellen mit positivem Realteil. Die Ortskurve ihres Frequenzgangs ist in graphischer Form gegeben:

Als Regler kommt ein P-Regler R(s) = K mit dem reellen Parameter K zum Einsatz.

- a) Ermitteln Sie mit Hilfe des Nyquist-Kriteriums den größtmöglichen Wertebereich des Reglerparameters K, für den der Regelkreis die BIBO-Eigenschaft besitzt.
- b) Als Führungsgröße wird nun $r(t) = 18 + 3\cos(15t)$ vorgegeben. Ermitteln Sie den Verlauf des Regelfehlers e(t) im sogenannten eingschwungenen Zustand, d.h. für große Werte des Zeitparameters t, für folgende Werte des Reglerparameters K:

i)
$$K = -\frac{51}{10}$$

ii)
$$K = \frac{10}{51}$$
.