Properties of continuous functions

Textbook Reading: [JL] Sections 3.1, 3.2, 3.3, 3.4, 3.5 (Lebl)

Challenging (exercicse 1):

Let $f: \mathbb{R} \to \mathbb{R}$. Recall that if $U \subset \mathbb{R}$, the inverse image of U is the set

$$f^{-1}(U) := \{x \in \mathbb{R} : f(x) \in U\}.$$

Prove that f is continuous if and only if for every open set $U \subset \mathbb{R}$, $f^{-1}(U)$ is open.

Exercise **3.3.1**: *Find an example of a discontinuous function* $f:[0,1] \to \mathbb{R}$ *where the conclusion of the intermediate value theorem fails.*

Exercise **3.3.2**: *Find an example of a* bounded *discontinuous function* $f: [0,1] \to \mathbb{R}$ *that has neither an absolute minimum nor an absolute maximum.*

Exercise 3.3.3: Let $f:(0,1) \to \mathbb{R}$ be a continuous function such that $\lim_{x\to 0} f(x) = \lim_{x\to 1} f(x) = 0$. Show that f achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps not both).

Exercise 3.3.4: Let

$$f(x) := \begin{cases} \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Show that f has the intermediate value property. That is, whenever a < b, if there exists a y such that f(a) < y < f(b) or f(a) > y > f(b), then there exists a $c \in (a,b)$ such that f(c) = y.

Exercise 3.3.14: Suppose $f: [0,1] \rightarrow (0,1)$ is a bijection. Prove that f is not continuous.

Exercise 3.3.15: *Suppose* $f: \mathbb{R} \to \mathbb{R}$ *is continuous.*

- a) Prove that if there is a c such that f(c)f(-c) < 0, then there is a $d \in \mathbb{R}$ such that f(d) = 0.
- b) Find a continuous function f such that $f(\mathbb{R}) = \mathbb{R}$, but $f(x)f(-x) \ge 0$ for all $x \in \mathbb{R}$.

Exercise 3.4.11: Prove:

- a) If $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ are uniformly continuous, then $h: S \to \mathbb{R}$ given by $h(x) \coloneqq f(x) + g(x)$ is uniformly continuous.
- b) If $f: S \to \mathbb{R}$ is uniformly continuous and $a \in \mathbb{R}$, then $h: S \to \mathbb{R}$ given by h(x) := af(x) is uniformly continuous.

Challenging (exercicse 2):

Let $S \subset \mathbb{R}$. We say that $f: S \to \mathbb{R}$ is Lipschitz continuous on S if there exists $L \geq 0$ such that for all $x, y \in S$,

$$|f(x) - f(y)| < L|x - y|.$$

Prove that if $f: S \to \mathbb{R}$ is Lipschitz continuous on S then f is uniformly continuous on S.

- (a) Prove that $f(x) = \cos x$ is Lipschitz continuous on \mathbb{R} .
- (b) Prove that $f(x) = x^{1/3}$ is uniformly continuous on [0,1] and is not Lipschitz continuous on [0,1].