

CONSTRUCTING CO-OCCURRENCE NETWORK EMBEDDINGS TO ASSIST ASSOCIATION EXTRACTION FOR COVID-19 AND OTHER CORONAVIRUS INFECTIOUS DISEASES

Feichen Shen, Ph.D.
Assistant Professor of Biomedical Informatics
Division of Digital Health Sciences

David Oniani R&D Intern Kern Center for the Science of Health Care Delivery

BACKGROUND -COVID-19

- An infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
- As of today, more than 8 million cases across 188 countries and territories, resulting in more than 435,000 deaths.

BACKGROUND -CORD-19

- The White House and leading research groups have prepared the COVID-19 Open Research Dataset (CORD-19).
- Over 138,000 scholarly articles, including over 69,000 with full text, about COVID-19, SARS-CoV-2, and related coronaviruses.

BACKGROUND -CORD-19-on-FHIR

- A linked data version of CORD-19.
- Incorporate annotations from different sources, such as PubTator and LitCovid.
- Easy to retrieve co-occurrences among entities by using SPARQL.

OBJECTIVE

- Co-occurrence network
- Network embeddings
- Accelerate knowledge discovery for COVID-19

-OVERVIEW

-CO-OCCURRENCE NETWORK

```
pmc:annotations [
     pmc:id "1";
                                                                                                   Disease
                pmc:infons [pmc:identifier "MESH:D003371": pmc:type "Disease"
                                                                                                     Gene
                 pmc:locations [pmc:length "5"^xsd:int; pmc:offset "20312"^xsd:int];
                                                                                                   Mutation
                                                                                                  Chemical
                 pmc:text "cough" ],
     pmc:id "2"
                pmc:infons [pmc:identifier "MESH:C000657245"; pmc:type "Disease"];
                 pmc:locations [pmc:length "19"^xsd:int; pmc:offset "14766"^xsd:int];
                pmc:text "2019-nCoV infection" ],].
pmc:annotations [
     pmc:id "5";
                pmc:infons [pmc:identifier "59272"; pmc:ncbi homologene "41448"; pmc:type "Gene"];
                pmc:locations [pmc:length "31"^xsd:int; pmc:offset "1986"^xsd:int];
                pmc:text "angiotensin-converting enzyme 2"],
     pmc:id "7";
                pmc:infons [pmc:identifier "MESH:C000657245"; pmc:type "Disease"];
                pmc:locations [pmc:length "19"^xsd:int; pmc:offset "14766"^xsd:int];
                pmc:text "2019-nCoV infection" ],],
```

-CO-OCCURRENCE NETWORK

```
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
PREFIX fhir: <a href="http://hl7.org/fhir/">http://hl7.org/fhir/</a>
PREFIX pmc: <https://www.ncbi.nlm.nih.gov/pmc/articles#>
SELECT distinct ?pmc id0 ?text0 ?pmc id1 ?text1 (count(?text1) as ?count) WHERE {
?pmc pmc:annotations
[ pmc:id ?id0 ; pmc:text ?text0 ; pmc:infons
[ pmc:type ?type0 ; pmc:identifier ?pmc_id0 ] ] .
                                                                                                                                                                                                                                                                                                                                      Disease
                 FILTER ((?type0 = 'Biomedical Entity'))
                                                                                                                                                                                                                                                                                                                                                 Gene
                 {select * where{
                                                                                                                                                                                                                                                                                                                                    Mutation
                                   ?pmc pmc:annotations
                                                                                                                                                                                                                                                                                                                                    Chemical
                                  [ pmc:id ?id1 ; pmc:text ?text1 ; pmc:infons
                                   [ pmc:type ?type1 : pmc:identifier ?pmc id1 ] ] .
                                                    FILTER ((?type1='Disease') && (contains (lcase(str(?text1)), "coronavirus") || contains (lcase(str(?text1)), "sars") ||
text1)), "covid-19") || contains (lcase(str(?text1)), "pneumonia") || contains (lcase(str(?text1)), "fever") || contains (lcase(str(?text1)), "fibrosis") ||
     contains (lcase(str(?text1)), "diarrhea") || contains (lcase(str(?text1)), "bronchitis") || contains (lcase(str(?text1)), "ebola") || contains (lcase(str(?text1)), "bronchitis") || contains (lcase(str(?text1)), "b
text1)), "influenze") || contains (lcase(str(?text1)), "zika"))).
}Group by ?pmc id0 ?text0 ?pmc id1 ?text1 Order by DESC(?count)
```


-CO-OCCURRENCE NETWORK

	text0 \$	text1 \$
1	Hu B	pneumonia
2	albumin	fever
3	alanine aminotransferase	fever
4	aspartate aminotransferase	fever
5	SARS	pneumonia
6	SARS	2019-nCoV pneumonia
7	Nam	2019-nCoV pneumonia
8	Sri	2019-nCoV pneumonia
9	bat	coronavirus infection
10	bat	SARS
11	bat	pneumonia
12	ACE2	SARS
13	angiotensin-converting enzyme 2	SARS

-NETWORK EMBEDDINGS

- Similar to word embeddings
- Node→Word, Neighborhood→Context
- However, sliding window for text is not suitable for non-linear graph
- One solution is to use random walk to select "context" in graph

-NETWORK EMBEDDINGS

Node2vec

- Scalable feature learning for networks.
- Grover A, Leskovec J.
- In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining 2016 Aug 13 (pp. 855-864). ACM.

Node2vec

2 steps

Sampling strategy

Apply random walk on graph to prepare input data

Node embeddings

Apply word2vec on prepared input data to generate embeddings for node

1. SAMPLING STRATEGY

- 1. **Homophily equivalence**: embed nodes from the same network community closely together
- 2. Structural equivalence: nodes share similar roles have similar embeddings

Homophily equivalence

Structural equivalence

- Breadth-first search (BFS): structural analysis,
 microscopic view of neighborhood of every node
- Depth-first search (DFS): homophily analysis, macroscopic view of the neighborhood among different communities
- Real-world network has a lot of such mixture of BFS and DFS

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$
 Bias Term

$$\pi_{vx} = \alpha_{pq}(t, x) \cdot w_{vx}$$
 Transition Probability

- p and q are controller to balance between BFS and DFS
- p controls the return step, and q controls the step of walk to outside world

2. WORD2VEC

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. InAdvances in neural information processing systems 2013 (pp. 3111-3119).

\$\ \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{

Graph space

Embeddings space

-Node clustering

- t-distributed stochastic neighbor embedding (t-SNE)
- Density-based spatial clustering of applications with noise (DBSCAN)

- 3,626 diseases
- 5,741 genes
- 524 mutations
- 6,878 chemicals
- 16,769 nodes and 49,696 edges

Link prediction

- Generate edge embedding based on node embedding
- Given nodes u and v, f(u) and f(v) denotes their feature representations

Operator	Definition
Average	$\frac{f(u)+f(v)}{2}$
Hadamard	f(u) * f(v)
Weighted-L1	f(u)-f(v)
Weighted-L2	$ f(u)-f(v) ^2$

Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naive Bayes (NB), and Multi-layer Perceptron (MLP)

Algorithms	Precision	Recall	F1 score
DT	0.85	0.84	0.84
LR	0.87	0.85	0.85
SVM	0.87	0.86	0.85
RF	0.91	0.91	0.90
NB	0.91	0.91	0.91
MLP	0.84	0.84	0.84

COVID-19 (cluster #6)

Top 10 most relevant entities

VP35 (Gene)

HD11 (Gene)

Coronavirus infection process (Disease)

Fibroblast growth factor (FGF)-2 (Gene)

Acute respiratory infection illness (Disease)

PIGS (Gene)

TGF alpha (Gene)

SFPQ (Gene)

Tumour necrosis factor (TNF) (Gene)

Praziquantel (Chemical)

Pulmonary coronavirus infection (Cluster #1)

Top 10 most relevant entities

PTP (Gene)

SARS-CoV-infected human airway epithelia cell cultures (Disease)

"5'-tgg gat tca aca" (Chemical)

Tracheanasal respiratory epithelial cells nd llamas (lama glama) in (Disease)

Suppressor of cytokine signaling 3 (Gene)

KAT (Gene)

CD32 (Gene)

Maternal SARS infection (Disease)

Respiratory syndrome coronavirus (MERS-CoV) infections (Disease)

Sars-cov infection damages lung (Cluster #2)

Top 10 most relevant entities

IL-1-alpha (Gene)

Sucralfate prn (Chemical)

Acute respiratory syndrome-cov infection (Disease)

IL-5- and IL-13-producing ilc-iis (Gene)

HAP1 (Gene)

FSK (Chemical)

Low fever (Disease)

HIV and Ebola virus infection (Disease)

YKL-40 (Gene)

ETF (Gene)

Coronavirus upper respiratory infection (Cluster #23)

Top 10 most relevant entities

Viruses actinobacillus pleuropneumoniae (Disease)

Plasmin (Gene)

JAM-1 (Gene)

TNF receptor-associated factor 6 (Gene)

GPC3 (Gene)

Renin (Gene)

ZO-1 (Gene)

Cathepsin G (Gene)

rs5743313 (Mutation)

Alpha1 antitrypsin (Gene)

Coronavirus-infected pneumonia (Cluster #10)

Top 10 most relevant entities

Respiratory syncytial viral infection (Disease)

Pegylated interferon-alpha (Chemical)

IFITM6 (Gene)

Feline b (Chemical)

E119V (Mutation)

Epac2 (Gene)

GFTP2 (Gene)

Hepatitis coronavirus infection (Disease)

Ouabain (Chemical)

LY6G (Gene)

CONCLUSION

- The construction of co-occurrence network embeddings for COVID-19 and related coronavirus infectious diseases.
- Published in the Journal of the American Medical Informatics Association. 2020 May 27.
- https://academic.oup.com/jamia/advance-article/doi/10.1093/jamia/ocaa117/5847598
- https://github.com/shenfc/COVID-19-network-embeddings
- https://www.davidoniani.com/covid-19-network

FUTURE WORK

- Adding more keywords to SPARQL query
- Including weights over edge for training purpose
- Manual evaluation by clinical investigators

ACKNOWLEDGEMENT

- CORD-19, CORD-19-on-FHIR
- David Oniani, Guoqian Jiang, Hongfang Liu
- National Institute of Health (NIH) U01TR0062-1.

