CISC6000 Deep Learning Neural Networks

Dr. Yijun Zhao Fordham University

Review of Gradient Descent

Formal Problem Setup

Given N observations

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}\$$

a regression problem tries to uncover the function

$$y_i = f(\mathbf{x_i}) \quad \forall i = 1, 2, \dots, n$$

such that for a new input value \mathbf{x}_* , we can accurately predict the corresponding value

$$y_* = f(\mathbf{x}_*).$$

Error Measure

Mean Squared Error (MSE):

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - \mathbf{y}_{n})^{2}$$

$$=rac{1}{N}\parallel \mathbf{Xw}-\mathbf{y}\parallel^2$$

where

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ & \ddots \\ -\mathbf{x}_N^T - \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ & \ddots \\ y_N \end{bmatrix}$$

Gradient Descent

• Minimize our target function (E(w)) by moving down in the steepest direction

Gradient Descent

Gradient Descent Algorithm

- Initialize the $\mathbf{w}(0)$ for time t=0
- for t = 0, 1, 2, ... do
- Compute the gradient $\mathbf{g}_t = \nabla E(\mathbf{w}(t))$
- Set the direction to move, $\mathbf{v}_t = -\mathbf{g}_t$
- Update $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{v}_t$
- Stop if converged
- Return the final weights w

Regression vs. Classification

Recall once again regression vs. classification:

				Regression	Classification
Age	Education	Marital Status	Major	Income	Income
35	MS	М	Art	70K	High (1)
40	BS	М	Engineer	65K	High (1)
25	BS	S	Art	40K	Low (0)
50	PhD	D	Engineer	100K	High (1)
30	MS	S	Science	80K	High (1)
28	BS	S	Art	50K	Low (0)
45	PhD	М	Science	90K	High (1)
60	BS	М	Management	120K	High (1)
20	HS	S	Engineer	30K	Low (0)

Pagraccian Classification

Logistic Regression

Task: find w that minimizes E(w)

$$-\sum_{i=1}^{N} y_i \log(\sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i)) - \sum_{i=1}^{N} (1 - y_i) \log(1 - \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i))$$

- No closed-form solution
- Common iterative solutions
 - Gradient Descent: $E(\mathbf{w})$ is convex, so there is one global minimum
 - Newton-Raphson Method (Bishop 4.3.3)
 - Matlab glmfit function

Gradient Descent Method

Let
$$\mathbf{w} = (\omega_0, \omega_1, \omega_2, \dots, \omega_d)^T$$

 $\mathbf{x} = (1, x_1, x_2, \dots, x_d)^T$

Repeat until convergence

```
\{ \omega_j \leftarrow \omega_j - \eta \frac{1}{N} \sum_{i=1}^N x_j^i (P(y^i = 1 | \mathbf{x}^i) - y^i)  where j = 0, 1, 2, \dots, d and \eta is the learning rate (e.g. 0.01)
```

Stochastic Gradient Descent Method

Batch Gradient Descent:

$$\omega_j \leftarrow \omega_j - \eta \frac{1}{N} \sum_{i=1}^N x_j^i (P(y^i = 1 | \mathbf{x}^i) - y^i)$$

- Stochastic Gradient Descent:
 - Repeat until convergence
 - Get a sample point X_i

$$\omega_j \leftarrow \omega_j - \eta x_j^i (P(y^i=1|\mathbf{x}^i) - y^i)$$

Mini Batch Gradient Descent: choose a number between 1 and N

Benefits of SGD

- 1. cheaper computation
- 2. randomization

Biological inspiration

biological function — biological structure

Biological inspiration

biological function — biological structure

Neural Network Architecture

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \quad \begin{cases} 1 \leq l \leq L & \text{layers} \\ i & \text{inputs} \\ j & \text{outputs} \end{cases}$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ j & \text{outputs} \end{cases}$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)}$$

$$\begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ 1 \le j \le d^{(l)} & \text{outputs} \end{cases}$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ 1 \le j \le d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = x_i^{(l-1)}$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \begin{cases} 1 \leq l \leq L & \text{layers} \\ 0 \leq i \leq d^{(l-1)} & \text{inputs} \\ 1 \leq j \leq d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = \sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \ x_i^{(l-1)}$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \begin{cases} 1 \leq l \leq L & \text{layers} \\ 0 \leq i \leq d^{(l-1)} & \text{inputs} \\ 1 \leq j \leq d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = hinspace \left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \; x_i^{(l-1)}
ight)$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \begin{cases} 1 \leq l \leq L & \text{layers} \\ 0 \leq i \leq d^{(l-1)} & \text{inputs} \\ 1 \leq j \leq d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = heta(s_j^{(l)}) = heta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \; x_i^{(l-1)}
ight)$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

$$w_{ij}^{(l)} \begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ 1 \le j \le d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = heta(s_j^{(l)}) = heta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \; x_i^{(l-1)}
ight)$$

Apply
$$\mathbf{x}$$
 to $x_1^{(0)} \cdots x_{d^{(0)}}^{(0)} \rightarrow \rightarrow x_1^{(L)} = h(\mathbf{x})$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

All the weights $\mathbf{w} = \{w_{ij}^{(l)}\}$ determine $h(\mathbf{x})$

·

All the weights $\mathbf{w} = \{w_{ij}^{(l)}\}$ determine $h(\mathbf{x})$

Error on example (\mathbf{x}_n, y_n) is

$$e(h(\mathbf{x}_n), y_n) = e(\mathbf{w})$$

v

All the weights $\mathbf{w} = \{w_{ij}^{(l)}\}$ determine $h(\mathbf{x})$

Error on example (\mathbf{x}_n, y_n) is

$$e(h(\mathbf{x}_n), y_n) = e(\mathbf{w})$$

To implement SGD, we need the gradient

$$\nabla \mathbf{e}(\mathbf{w})$$
: $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ for all i, j, l

Backpropagation Algorithm

Computing
$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$\frac{\partial f}{\partial y}$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

Computing
$$\frac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

Computing
$$\frac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

We can evaluate $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ one by one: analytically or numerically

Computing
$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

We can evaluate $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ one by one: analytically or numerically

A trick for efficient computation:

$$rac{\partial \; \mathrm{e}(\mathbf{w})}{\partial \; w_{ij}^{(l)}} = rac{\partial \; \mathrm{e}(\mathbf{w})}{\partial \; s_{j}^{(l)}} imes rac{\partial \; s_{j}^{(l)}}{\partial \; w_{ij}^{(l)}}$$

Computing
$$\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}}$$

We can evaluate $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ one by one: analytically or numerically

A trick for efficient computation:

$$rac{\partial \; \mathrm{e}(\mathbf{w})}{\partial \; w_{ij}^{(l)}} = rac{\partial \; \mathrm{e}(\mathbf{w})}{\partial \; s_{j}^{(l)}} imes rac{\partial \; s_{j}^{(l)}}{\partial \; w_{ij}^{(l)}}$$

We have
$$\frac{\partial \ s_j^{(l)}}{\partial \ w_{ij}^{(l)}} = x_i^{(l-1)}$$
 We only need: $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} = \ \pmb{\delta}_j^{(l)}$

δ for the final layer

$$oldsymbol{\delta_j^{(l)}} \, = \, rac{\partial \; \mathrm{e}(\mathbf{w})}{\partial \; s_j^{(l)}}$$

$\delta_{j}^{(l)} = \frac{\partial e(\mathbf{w})}{\partial e^{(l)}}$

for the final layer

$$\theta \longrightarrow h(\mathbf{x})$$

$$\theta(s)$$

δ for the final layer

$$rac{oldsymbol{\delta_j^{(l)}}}{\partial \ s_j^{(l)}} = rac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}}$$

$$e(\mathbf{w}) = (x_1^{(L)} - y_n)^2$$

δ for the final layer

$$rac{oldsymbol{\delta_j^{(l)}}}{\partial \ s_j^{(l)}} = \ rac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ s_j^{(l)}}$$

$$\theta(s)$$

$$e(\mathbf{w}) = (x_1^{(L)} - y_n)^2$$

$$x_1^{(L)} = \theta(s_1^{(L)})$$

δ for the final layer

$$oldsymbol{\delta_j^{(l)}} = rac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ s_j^{(l)}}$$

$$\theta(s)$$

$$e(\mathbf{w}) = (x_1^{(L)} - y_n)^2$$

$$x_1^{(L)} = \theta(s_1^{(L)})$$

$$\theta'(s) = 1 - \theta^2(s)$$
 for the tanh

Back propagation of δ

$$oldsymbol{\delta_i^{(l-1)}} = rac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_i^{(l-1)}}$$

Back propagation of δ

$$\begin{split} \boldsymbol{\delta_i^{(l-1)}} &= \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} \times \frac{\partial \ s_j^{(l)}}{\partial \ x_i^{(l-1)}} \times \frac{\partial \ x_i^{(l-1)}}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \ \boldsymbol{\delta_j^{(l)}} \times \ \boldsymbol{w}_{ij}^{(l)} \times \boldsymbol{\theta'}(\boldsymbol{s}_i^{(l-1)}) \\ \boldsymbol{\delta_i^{(l-1)}} &= (1 - (x_i^{(l-1)})^2) \sum_{i=1}^{d^{(l)}} \boldsymbol{w}_{ij}^{(l)} \ \boldsymbol{\delta_j^{(l)}} \end{split}$$


```
Initialize all weights w_{ij}^{(l)} at random
2: for t = 0, 1, 2, \dots do
Pick n \in \{1, 2, \cdots, N\}
Forward: Compute all x_j^{(l)}
Backward: Compute all \delta_i^{(l)}
Update the weights: w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \eta \ x_i^{(l-1)} \delta_i^{(l)}
   Iterate to the next step until it is time to stop
8: Return the final weights w_{ij}^{(l)}
```


More Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Softmax Function

Recognizing cats, dogs, and baby chicks

Softmax Function

Recognizing cats, dogs, and baby chicks

Softmax Function

$$Z^{[L]} = W^{[L]}X^{[L-1]} + b^{[L]}$$

$$z^{[L]} = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 3 \end{bmatrix} \qquad t = \begin{bmatrix} e^5 \\ e^2 \\ e^{-1} \\ e^3 \end{bmatrix} \qquad \hat{y} = \begin{bmatrix} e^5/(e^5 + e^2 + e^{-1} + e^3) \\ e^2/(e^5 + e^2 + e^{-1} + e^3) \\ e^{-1}/(e^5 + e^2 + e^{-1} + e^3) \\ e^3/(e^5 + e^2 + e^{-1} + e^3) \end{bmatrix} = \begin{bmatrix} 0.842 \\ 0.042 \\ 0.002 \\ 0.114 \end{bmatrix}$$

Dog Cat Dog Cat Dog Cat

NN1

Row	Dog^	Cat^	Dog	Cat
#1	0.9	0.1	1	0
#2	0.1	0.9	0	1
#3	0.4	0.6	1	0

NN2

Row	Dog^	Cat^	Dog	Cat
#1	0.6	0.4	1	0
#2	0.3	0.7	0	1
#3	0.1	0.9	1	0

Classification Error

1/3 = 0.33 1/3 = 0.33

Mean Squared Error

0.25 0.71

Cross-Entropy

0.38

- Q: what happens when W=0 init is used?

