Definitely niche, but also a great example

#### Let's consider a data mining problem for web analytics



- A company wants to analyze user behavior on their web site
- ...With the goal of optimizing its structure
- For privacy reason, the company does not want to resort to tracking
- ...And plan to relies on simple page/link-click counts

#### Our input consists of page and link counts for multiple time steps

| t | 0  | 1  | ••• | 0,1 | 0,3 | 1,2 | ••• |
|---|----|----|-----|-----|-----|-----|-----|
| 0 | 35 | 12 | ••• | 21  | 7   | 9   | ••• |
| 1 | 42 | 14 | ••• | 22  | 11  | 10  | ••• |
| 2 | 38 | 9  | ••• | 17  | 10  | 8   | ••• |

- Each simple number refers to a page, each pair to a link
- Cells contain presence/link-click counts for different value of the time t

#### Our output consists of navigation paths on the web site

A path specifies which page is visited at every point of time, e.g.:

$$\{(2,0),(3,0),(4,1),(5,3)\}$$

- ullet In this case the path starts at time 2, stays at page 0 for two time units
- ...Then moves to 1 and then 3

How would you tackle this problem?

# The main issue is representing and handling paths

- A path is combinatorial object ( $\Rightarrow$  not differentiable)
- Nodes in a path must be connected

In other words, the main issue is dealing with constraints

#### The main issue is representing and handling paths

- A path is combinatorial object (⇒ not differentiable)
- Nodes in a path must be connected

In other words, the main issue is dealing with constraints

#### We will see how to tackle the problem directly via Constrained Optimization

- The approach will work decently well
- ...But make no mistake: this won't be SotA

Our main purpose is seeing many CO methods in action!

#### This is a very challenging problem!



- There are many viable paths!
- ...And we start with quite poor information

# Web Site as Graph

#### Our web site can be represented as a directed graph

We will generate one at random, with a realistic structure

```
In [23]: g = util.build_website_graph(nnodes=4, rate=3, extra_arc_fraction=0.25, seed=42)
ig.plot(g, **util.get_visual_style(g), bbox=ig_bbox, margin=50)

Out[23]:
```

- The method generates nnodes vertexes in a tree structure as a base
- The #children per vertex follows a Poisson distribution with specified rate
- ...Then a fraction of the missing arcs is added at random

# Web Site as Graph

#### Our web site can be represented as a directed graph

We will generate one at random, with a realistic structure

```
In [24]: g = util.build_website_graph(nnodes=4, rate=3, extra_arc_fraction=0.25, seed=42)
ig.plot(g, **util.get_visual_style(g), bbox=ig_bbox, margin=50)

Out[24]:
```

- The graph is handled via the <u>python-igraph</u> library
- ...Which provides a fast C++ implementation of many graph primitives
- The library also include a good selection of graph algorithms

#### **Ground Truth Generation**

#### We obtain realistic counts by routing "flow" along random paths

For one path, this can be done via a function from the utility module:

```
In [25]: home = g.vs[0] # Home page
eoh = 4 # End of Horizon

flow, path = util.route_random_flow(home, min_units=1, max_units=10, eoh=eoh, seed=10)
print(f'{flow:.2f}: {">".join(str(v) for v in path)}')

3.69: (1, 0)>(2, 3)>(3, 3)
```

- The first vertex represents the home page
- The "flow" represents the amount of users that traverse the path
- eoh is the number of time units over which we assume to have counts

#### **Ground Truth Generation**

#### A second function performs random routing for multiple paths

We will start from a simple example with a very small number of paths:

- Paths may start from any page
- Paths may start at any time step within the horizon

#### The generated paths represent our ground truth

## Time-Unfolded Graph

#### Our paths may be see as traversal of a time-unfolded version of the graph



- We create **eoh** replicas of the vertexes, each referring to a specific time step
- We create **eoh** replicas of the edges, linking vertexes in adjacent time step

#### This representation is referred to as Time Unfolded Graph

#### **Computing Counts**

#### We can now compute counts for all vertexes and edges in the TUG

```
In [28]: node_counts, arc_counts = util.get_counts(tug, flows, paths)
        print('NODE COUNTS')
        print('\t'.join(f'{k}:{v:.2f}' for k, v in node counts.items()))
        print('ARC COUNTS')
        print('\t'.join(f'{k}:{v:.2f}' for k, v in arc counts.items()))
        NODE COUNTS
        (0, 0):0.00
                    (0, 1):4.89 (0, 2):5.47 (0, 3):0.00 (1, 0):3.32 (1, 1):4.8
                (1, 2):5.47 (1, 3):0.00 (2, 0):8.22 (2, 1):0.00 (2, 2):5.47
                   (3, 0):4.89 (3, 1):0.00 (3, 2):8.79 (3, 3):11.91
        (2, 3):8.17
        ARC COUNTS
        (1, 0, 0):0.00 (1, 0, 1):0.00 (1, 1, 1):4.89 (1, 0, 2):0.00 (1, 2, 2):5.47 (1, 0, 3):
        0.00 (1, 3, 3):0.00 (1, 1, 0):0.00 (1, 1, 2):0.00 (2, 0, 0):3.32 (2, 0, 1):0.00
        (2, 1, 1):0.00 (2, 0, 2):0.00 (2, 2, 2):5.47 (2, 0, 3):0.00 (2, 3, 3):0.00 (2, 1, 0):
        4.89 (2, 1, 2):0.00 (3, 0, 0):4.89 (3, 0, 1):0.00 (3, 1, 1):0.00 (3, 0, 2):3.32
        (3, 2, 2):5.47 (3, 0, 3):0.00 (3, 3, 3):8.17 (3, 1, 0):0.00 (3, 1, 2):0.00
```

- TUG nodes/vertexes are labeled with (time, node) pairs
- TUG ares are labeled with (time, source, destination) triplets

## **Computing Counts**

#### We can inspect the arc counts visually on the TUG

```
In [29]: visual_style = util.get_visual_style(tug, vertex_weights=node_counts, edge_weights=arc_countig.plot(tug, **visual_style, bbox=(700, 250), margin=50)
Out[29]:

Out[29]
```

- A grey shade corresponds to lower counts
- A red shade corresponds to higher counts

#### These counts are our available information

By far the most important step of any solution process

#### Every good approach starts with a problem formulation

- If you don't have a formulation
- Odds are that you will come up with a patched-up solution

Let's try to come up with a formulation for our problem!

#### Every good approach starts with a problem formulation

- If you don't have a formulation
- Odds are that you will come up with a patched-up solution

#### Let's try to come up with a formulation for our problem!

# We can introduce a variable $x_i$ for each path

- lacktriangle The value of  $x_i$  represents the flow associated to the path
- Then we can compute the estimated count per TUG node/arc
- lacktriangleright ...By simply summing the  $x_i$  values of paths that pass through the node/arc

#### Every good approach starts with a problem formulation

- If you don't have a formulation
- Odds are that you will come up with a patched-up solution

Let's try to come up with a formulation for our problem!

#### This approach is remarkably simple

- Computing counts is easy
- Connectivity constraints are safisfied by construction

#### Basically, we handle some constraints in the problem formulation itself

This is a first, powerful, and underestimated method to deal with constraints

#### **Path Formulation**

#### We will call this approch the path formulation

Formally, our problem can be stated as:

$$\underset{x}{\operatorname{argmin}} \left\{ \|Vx - v\|_{2}^{2} + \|Ex - e\|_{2}^{2} \mid x \ge 0 \right\}$$

- For simplicity, here we use linear indexes for TUG nodes and arcs
- $lackbox{ }V$  is a matrix such that  $V_{ij}=1$  iff path j passes through node i
- lacksquare E is a matrix such that  $E_{kj}=1$  iff path j passes through arc k

#### Path variables cannot be negative (it would make no sense)

- Hence the path formulation is itself a constrained optimization problem
- ...Though the constraints are in this case very simple

#### **Problem Reduction**

For an squared L2 norm in the form  $||Ax - b||_2^2$  we have that:

$$||Ax - b||_{2}^{2} = (Ax - b)^{T} (Ax - b)$$

$$= x^{T} A^{T} Ax - x^{T} A^{T} b - b^{T} Ax + b^{T} b$$

$$\propto \frac{1}{2} x^{T} (A^{T} A) x - \frac{1}{2} x^{T} A^{T} b - \frac{1}{2} b^{T} Ax$$

$$= \frac{1}{2} x^{T} (A^{T} A) x + (-A^{T} b)^{T} x$$

- lacktriangle This is true since  $x^TA^Tb$  and  $b^TAx$  are scalar
- ...And  $y^T x = x^T y$  if the quantity is a scalar
- The scaling factor 1/2 will become convenient later

This reduction is valid for any least squares problem

#### **Problem Reduction**

We can use the relation to reduce our problem to a more compact form

In particular, we have that:

$$||Vx - v||_{2}^{2} + ||Ex - e||_{2}^{2}$$

$$\propto \frac{1}{2} ||Vx - v||_{2}^{2} + \frac{1}{2} ||Ex - e||_{2}^{2}$$

$$= \frac{1}{2} x^{T} (V^{T} V) x + (-V^{T} v)^{T} x + \frac{1}{2} x^{T} (E^{T} E) x + (-E^{T} e)^{T} x$$

$$= \frac{1}{2} x^{T} P x + q^{T} x$$

- Where  $P = V^T V + E^T E$
- $\blacksquare \dots \text{And } q = -V^T v E^T e$

# Path Formulation as Convex Quadratic Programming

#### Therefore, the path formulation can be reduced to:

$$\arg\min_{x} \left\{ \frac{1}{2} x^T P x + q^T x \mid x \ge 0 \right\}$$

...Which is a quadratic program

- I.e. a problem where we want to minimize a quadratic form
- ...Subject to linear constraints

#### Our problem is also convex

- This is true since  $P = V^T V + E^T E$
- ...And it is therefore guaranteed semi-definite positive

Convex quadratic programs can be solved in polynomial time