UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Ingeniería Mecatrónica

"Mecánica Vibratoria"

Prof. O. Curadelli 2023

Fuentes de Vibración

- La mayoría de las actividades humanas implican vibración.
- -Todos los sistemas mecánicos tienen "problemas" de vibración.

¿Porqué estudiar las Vibraciones?

- Las investigaciones son motivadas por problemas de ing.

- La comprensión del fenómeno de la vibración ayuda a:
 - . Buen diseño.
 - . Bajo mantenimiento.
 - . Prevención de fallas.

- Un análisis cuidadoso de las vibraciones mecánicas mejora el comportamiento, la eficiencia de sistemas y procesos.

Efectos de la Vibración Puente Tacoma, inauguración 1940.

Efectos de la Vibración Terremoto Chile 2010. Mag 8,8Mw

Efectos de la Vibración Terremoto Chile 2010. Mag 8,8Mw

Control de la Vibración. Aislación.

Control de la Vibración. Aislación.

Control de la Vibración. Aislación.

Control de la Vibración. TMD.

Control de la Vibración. TMD Activo.

Control pasivo de la Vibración. Disipación de energía.

Control pasivo de la Vibración. Disipación de energía.

¿Qué es la vibración?

Movim. oscilatorio de un cuerpo alrededor de una posición de equilibrio.

Objetivo: estudiar, analizar, medir y controlar la vibración **INTENTAREMOS RESPONDER A LAS SIGUIENTES PREGUNTAS**

- Cómo responderá el sistema a lo largo del tiempo ante un tipo determinado de perturbación (excitación)?.
- En cuánto tiempo la respuesta dinámica se extinguirá si la perturbación se aplica brevemente y luego se retira?.
 - Cuándo el sistema es estable o cuando sus oscilaciones aumentarán en magnitud con el tiempo (inestable).
- Qué tipo de modificaciones se pueden hacer al sistema para mejorar su comportamiento (propiedades dinámicas)?

CLASIFICACIÓN DE LA VIBRACIÓN

Libres (fzas intrínsecas, frec. naturales)

- Forzadas (fzas carga ext. + intr., frec. carga externa, resonancia)

CLASIFICACIÓN DE LA CARGA DINÁMICA

- Determinística (prescripta)
 - Periódicas: armónica,no armónica
 - No periódicas: impulsivas, corta duración
- Aleatoria (sismo, viento)

SISTEMAS DINÁMICOS

- Coordenadas Generalizadas (definir config./movim. Sist. Dinám.)
- Número de grados de libertad: cant, mín coords, generaliz.

	Problema	
	Estático	Dinámico
Fuerzas	Fext, Felas	Fext, Felas, Fdisip, Finercia
Principios	Eq. Estático, Acción y Reacción	Eq. Dinámico (D'alamb,TV, PHamilton) Acción y Reacción
Respuesta	Es única f(Fext) Ec. Algebraica	Sucesión de soluciones f (Fext, Felas, Fdisip, Finer) Ec. Diferenciales

CLASIFICACIÓN DE SISTEMAS DINÁMICOS

- Lineales:

Son deterministas y se mantiene el principio de superposición. Por lo general se consideran movimientos de pequeña amplitud.

- No lineales:
- El comportamiento depende mucho de su estado inicial (historia).
- Discretos (masas, resortes, amortig):

Representado por un número finito de grados de libertad y son descriptos por EDO. $\frac{m\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = u(t)}{dt}$

- Continuos (masa y rigidez distribuida):

Representados por un número infinito de grados de libertad y son descriptos por EDDP. $EI \frac{\partial^4 v(x,t)}{\partial x^4} + \overline{m} \frac{\partial^2 v(x,t)}{\partial t^2} = 0$

Modelos Matemáticos discretos : Sistemas de N grados de libertad

Modelos Matemáticos discretos : Sistemas de N grados de libertad

Modelos Matemáticos discretos: Sistemas de N grados de libertad

Modelos Matemáticos contimuos:

$$D\left(\frac{\partial^4 Z}{\partial x^4} + 2\frac{\partial^4 Z}{\partial x^2 \partial y^2} + \frac{\partial^4 Z}{\partial y^4}\right) + \rho_p h \frac{\partial^2 Z}{\partial t^2} = \mathbf{0}$$

- Elementos de inercia (masa, momento de inercia rotacional)
- Elementos de rigidez (resorte, barra)
- Elementos de disipación (disipador, rozamiento, def. plástica)

• Elementos de inercia

$$J_G = \frac{1}{12} mL^2$$

$$J_G = \frac{1}{2} mR^2$$

$$J_G = \frac{2}{5} \ mR^2$$

$$J_{x} = J_{y} = \frac{1}{12} m (3R^{2} + h^{2})$$

$$J_z = \frac{1}{2} mR^2$$

Teorema Steiner

$$J_o = J_G + m d^2$$

• Elementos de inercia

• Elementos de rigidez

• Elementos de rigidez

• Elementos de rigidez. Rigidez equivalente

• Elementos de disipación

Amortig. Viscoso $F = -c\dot{x}$

Amortig. Histerético F = -hkxi

Amortig. Coulomb (Fricción seca) $F = -\mu N \operatorname{sig}(\dot{x})$

Modelos Experimentales Mesa Vibratoria

Modelos Experimentales

Frecuencias Naturales (Esc.)

Modelos Experimentales Ensayo Experimental Pileta. (Esc.)

Modelos Experimentales Ensayo Experimental Pileta. (No Esc.)

Ejemplos de Práctico Integrador

- 1) Estudiar y resolver un caso práctico de vibraciones
- 2) Redactar un artículo "Científico" sobre el caso estudiado
- 3) Exponer oralmente los resultados del caso estudiado

Ejemplos de Práctico Integrador

