

Age of Abalone Prediction

Department of Primary Industry and Fisheries of Tasmania

Amanda Gregory - Claire Xiao - Jason Qi - Yves Esslinger

What is our goal?

Create a model with improved accuracy that predicts the age of abalone

Simplify and shorten the long, tedious process to discover the age of abalone.

Information proves valuable to researchers and consumers

Approach

Data
Initial
Analysis
Evaluating
Previous
Work
Comparison
of Different
Models
Conclusions

Abalone Dataset

Sex	Length	Diameter	Height	WholeWeight	ShuckedWeight	VisceraWeight	ShellWeight	Rings
M	0.455	0.365	0.095	0.514	0.2245	0.101	0.15	5 15
M	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07	7
F	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21	9
M	0.44	0.365	0.125	0.516	0.2155	0.114	0.155	5 10
I	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055	5 7

Male	Female	Intersex	Length	Diameter	Height	WholeWeight	ShuckedWeight	VisceraWeight	ShellWeight	Rings
1	0	C	0.455	0.365	0.095	0.514	0.2245	0.101	0.15	15
1	0	C	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07	7
0	1	C	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21	9
1	0	C	0.44	0.365	0.125	0.516	0.2155	0.114	0.155	10
0	0	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055	7

Data

Sex

- <u>Description</u>: M (Male), F (Female), I (Immature)
- Used binary coding to define Sex (1, 0)
- Data Type: Nominal

Length

- <u>Description</u>: Longest shell measurement in mm
- <u>Data Type</u>: Continuous
- Statistics: Min-0.075, Max- 0.815, Mean- 0.524, SD- 0.120

Diameter

- <u>Description</u>: Longest shell measurement perpendicular to length in mm
- <u>Data Type</u>: Continuous
- Statistics: Min-0.055, Max- 0.650, Mean- 0.408, SD- 0.099

Height

- <u>Description</u>: Measurement of height with meat in shell in mm
- <u>Data Type</u>: Continuous
- Statistics: Min-0.000, Max- 1.130, Mean- 0.140, SD- 0.490

Whole Weight

- <u>Description</u>: Weight of entire abalone in grams
- <u>Data Type</u>: Continuous
- Statistics: Min-0.002, Max- 2.826, Mean- 0.829, SD- 0.490

Measurement Tool for Abalone

Diagram Displaying Length (SL), Diameter (SB) and Height (SH) of an Abalone

Data

Whole Weight

- <u>Description</u>: Weight of abalone meat in grams
- <u>Data Type</u>: Continuous
- Statistics: Min-0.001, Max- 1.488, Mean- 0.359, SD- 0.222

Viscera Weight

- <u>Description</u>: Gut weight of abalone (after bleeding) in grams
- <u>Data Type</u>: Continuous
- Statistics: Min-0.001, Max- 0.760, Mean- 0.181, SD- 0.110

Shell Weight

- <u>Description</u>: Weight of abalone shell after being dried in grams
- <u>Data Type</u>: Continuous
- Statistics: Min-0.002, Max- 1.005, Mean- 0.239, SD- 0.139

Rings

- <u>Description</u>: Number of rings in an abalone shell. The age is determined to be the number of rings+1.5.
- <u>Data Type</u>: Integer
- Statistics: Min-1, Max- 29, Mean- 9.934, SD- 3.224

Figure 1.1. Ventral and dorsal view of the anatomy of the abalone (Fallu, 1994 [online]).

Pair Plot

- Gender omitted
- Diagonal displays histograms of data points in data set
- Other plots display correlation between two variables
 - All interaction between variables display positive correlation
 - Number of rings is positively correlated with each variable, indicative of

Data Classification

Closer Look at Dataset Using PCA

Previous Work on Abalone Data

Approach

Classification

Idea

• Extending and Benchmarking Cascade-Correlation

Author(s)

• Sam Waugh

Test Set Performance

- 3133 training, 1044 testing
- 24.86% Cascade-Correlation (no hidden nodes)
- 26.25% Cascade-Correlation (5 hidden nodes)
- 21.5% C4.5
- 0.0% Linear Discriminate Analysis
- 3.57% k=5 Nearest Neighbor
- Data set samples are highly overlapped.

Visualization not representative of data

Previous Work on Abalone Data

Approach

- Grouped Classification
- •Group 1: ring classes 1-8
- •Group 2: ring classes 9 and 10
- •Group 3: ring classes 11+

Idea

•Comparing Dystal and Backpropagation

Author(s)

•David Clark, Zoltan Schreter, Anthony Adams

Test Set Performance

- •3133 training, 1044 testing
- •64% Backprop
- •55% Dystal
- •61.40% Cascade-Correlation (no hidden nodes)
- •65.61% Cascade-Correlation (5 hidden nodes)
- •59.2% C4.5
- •32.57% Linear Discriminant Analysis
- •62.46% k=5 Nearest Neighbour

Orange = 1-8 rings Green = 9,10 rings Blue = 11+ rings

General Approach

Regression

Treat the number of rings as a continuous variable

- Treat the number of rings as a discrete variable
- Each number is defined as a specific class

- Group the number of rings into three categories
- Predict the group assignments

Models Used

Regression

Lasso Regression

Ridge Regression

Random Forest Regressor

Multi-layer Perceptron regressor

Support Vector Regressor

Classification

Random Forest Classifier

Multi-layer Perceptron
Classifier

Support Vector Classifier

Fine-Tuning

- Random Search over possible parameters
- K-fold Cross Validation, k = 5 | number of iterations = 200

```
from sklearn.model_selection import RandomizedSearchCV
kernel = ['linear', 'poly', 'rbf', 'sigmoid']
gamma = ['auto', 'scale']
C = [1, 4, 7, 10, 20, 30]
degree = [2, 3, 4, 5]
shrinking = [True, False]
probability = [True, False]
decision_function_shape = ['ovo', 'ovr']
max_iter = [int(x) for x in np.linspace(5000, 10000, num = 5)]
# Create the random grid
random_grid = {'kernel': kernel,
               'gamma': gamma,
               'decision_function_shape': decision_function_shape,
               'probability': probability,
               'degree': degree,
               'C': C,
               'shrinking': shrinking,
               'max_iter': max_iter}
pprint(random_grid)
```

Results

	Regression (metrics = R^2)	Classification (metrics = accuracy)	Grouped Classification (metrics = accuracy)
Random Forest	0.567 vs 0.502	0.278 vs 0.244	0.641 vs 0.482
Linear - Lasso	0.519 vs 0.301	-	-
Linear - Ridge	0.518 vs 0.514	-	-
MLP	0.575 vs 0.560	0.282 vs 0.265 (0.662 vs 0.655
SVC	0.551 vs 0.488	0.266 vs 0.256	0.626 vs 0.617
Best Previous	-	0.263	0.656

Conclusion

Exhibited multiple models that performed better than previous attempts

MLP with proper fine-tuning performs better than other models

Fine-tuning improves the models' performance

grid search may improve the result further

Linear regression is not performing as well as other models

 possibly because certain assumptions for linear regression is not satisfied by the data set

