Capítulo 5 - Autovalores y Autovectores (2da. parte) 1

Facultad de Cs. Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

¹ Siguiendo *Linear Algebra and its applications*, G. Strang.

OUTLINE

REPASO

MATRICES COMPLEJAS

TRANSFORMACIONES DE SIMILITUD O DE SEMEJANZA

REPASO

Ecuación matricial protagónica:

$$Ax = \lambda x$$
 (A matriz $n \times n$, λ y x , variables).

Buscamos el conjunto de vectores de \mathbb{R}^n cuya dirección no varía por efecto de A.

- Autovalores de una transformación lineal T de V en V: $\lambda \in \mathbb{K}$ es un *autovalor de T* si existe $v \in V$, $v \neq 0$ tal que $Tv = \lambda v$.
- Dado λ autovalor de T:
 - $v \in V$ autovector de T asociado a λ si $v \neq 0$ y $Tv = \lambda v$.
 - {autovectores asociados a λ } \cup {0} es un subespacio vectorial de V denominado *autoespacio de T asociado a \lambda*
- Caracterización de los autovalores:

 $\lambda \in \mathbb{K}$ es un autovalor de $T \Longleftrightarrow$ existe $v \neq 0$ tal que $Tv - \lambda v = 0 \Longleftrightarrow$ existe $v \neq 0$ tal que $(T - \lambda I)v = 0 \Longleftrightarrow T - \lambda I$ no es un isomorfismo.

REPASO

Transformaciones lineales definidas por matrices \longrightarrow autovectores, autovalores y autoespacios *de la matriz*.

• λ es un autovalor de A si y solo si

$$det(A - \lambda I) = 0$$
 (Ecuación característica de A).

El autoespacio asociado a un autovalor λ es $N(A - \lambda I)$.

- desarrollo de $det(A \lambda I) \longrightarrow \text{polinomio}$ en λ de grado $n \longrightarrow \text{Polinomio}$ característico de A.
 - λ autovalor de $A \Longleftrightarrow \lambda$ raíz del polinomio característico de A.
- **Nuevo convenio**: trabajamos con \mathbb{R}^n como subconjunto de vectores del espacio vectorial \mathbb{C}^n sobre $\mathbb{C} \longrightarrow \mathsf{Toda}$ matriz $n \times n$ tiene n autovalores (en \mathbb{C}).

La *multiplicidad (algebraica) de un autovalor* es la multiplicidad como raíz del polinomio característico.

Observación Si A es una matriz real y z es un autovalor de A entonces \bar{z} también lo es.

Los autovalores de una matriz triangular son sus entradas en la diagonal.

REPASO

Queremos diagonalizar las matrices sin modificar sus autovalores.

- A con autovalores $\lambda_i, i=1,\ldots,n\longrightarrow \Lambda$: matriz diagonal con λ_i su entrada sobre la diagonal en la fila $i, i=1,\ldots,n$.
- A es diagonalizable si existe una matriz inversible S y una matriz diagonal D tal que $S^{-1}AS = D$. Decimos que S diagonaliza a A.
- S diagonaliza a A si y solo si las columnas de S son autovectores de A y $D=\Lambda.$

Prueba:

S diagonaliza a $A \Longleftrightarrow AS = SD \Longleftrightarrow (AS)^i = (SD)^i, \ i=1,\dots,n \Longleftrightarrow AS^i = D^i_iS^i, \ i=1,\dots,n \Longleftrightarrow S^i$ es un autovector de A asociado al autovalor $D^i_i, \ i=1,\dots,n$.

- ullet A matriz $n \times n$, A es diagonalizable si y solo si A tiene n autovectores l.i..
- No todas las matrices son diagonalizables: Ej: $n = 2, A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ no todas las matrices tienen n autovectores l.i..

DIAGONALIZACIÓN DE UNA MATRIZ

- Si A tiene n autovalores diferentes, A tiene n autovectores l.i..
 La recíproca no es cierta. Ejemplo: la matriz identidad.
- *S* diagonaliza a A, λ_i , i = 1, ..., n autovalores de A. Entonces:
 - ▶ Para todo $k \ge 2$, S diagonaliza a A^k y λ_i^k , i = 1, ..., n autovalores de A^k .
 - Si A es inversible, S diagonaliza a A^{-1} y $\lambda_i^{-1}, i=1,\ldots,n$ autovalores de A^{-1} .

Aplicaciones: sistemas de ecuaciones en diferencias.

¿Qué sabemos de los autovalores de un producto de matrices AB?

- A, B matrices $n \times n$, S diagonaliza a A. Entonces: S diagonaliza a $B \Longleftrightarrow A$ y B tienen los mismos autovectores $\Longleftrightarrow AB = BA$.
- Lema: Sean A y B matrices $n \times n$ tales que AB = BA y A diagonalizable. Entonces, λ es un autovalor de AB si y solo si $\lambda = \lambda_A \lambda_B \operatorname{con} \lambda_A, \lambda_B$ autovalores de A y B, respectivamente, correspondientes a un mismo autovector.

APLICACIÓN: ECUACIONES EN DIFERENCIAS.

(continuación)

Prueba: Sea *S* tal que *S* diagonaliza a *A* y a *B*. Entonces,

$$AB = (S^{-1}\Lambda_A S)(S^{-1}\Lambda_B S) = S^{-1}(\Lambda_A \Lambda_B)S.$$

Observar que $\Lambda_A\Lambda_B$ es diagonal y la entrada i-ésima en su diagonal es el producto de las entradas i-ésimas en las diagonales de Λ_A y de Λ_B que son autovalores de A y de B, respectivamente, correspondientes al autovector S^i de A y de B. Por lo tanto, la entrada i-ésima en la diagonal de $\Lambda_A\Lambda_B$ es un autovalor de AB correspondiente al autovector S^i de AB. Así, S diagonaliza a AB con $\Lambda_{AB} = \Lambda_A\Lambda_B$.

Matrices de Markov;
 VER STRANG

MATRICES COMPLEJAS

Vimos que cuando se trata de autovalores, necesitamos trabajar en el campo de los complejos y ver a \mathbb{R}^n como subconjunto de vectores del espacio vectorial \mathbb{C}^n sobre \mathbb{C} .

Si en \mathbb{C}^n consideramos el producto interno $\langle z,w\rangle=\bar{z}^Tw=\sum_{i=1}^n\bar{z}_iw_i$, la norma que obtenemos es $\|z\|^2=\sum_{i=1}^n|z_i|^2$, donde $|z_i|$ es el módulo de $z_i\in\mathbb{C}$.

De esta manera, cuando miramos a \mathbb{R}^n como subespacio de \mathbb{C}^n sobre \mathbb{C} , el producto interno y la norma coinciden con las habituales en \mathbb{R}^n .

Nos interesa saber cómo se extienden las ideas que hemos trabajado con matrices reales al caso de matrices complejas.

Empecemos extendiendo el concepto de transpuesta.

Dada una matriz A compleja $m \times n$, definimos la matriz A^H hermitiana de A como $A^H = \bar{A}^T$. Así,

$$\begin{bmatrix} 2+i & 3i \\ 4-i & 5 \\ 0 & 0 \end{bmatrix}^{H} = \begin{bmatrix} 2-i & 4+i & 0 \\ -3i & 5 & 0 \end{bmatrix}.$$

MATRICES COMPLEJAS

Observaciones:

- Si A es una matriz real, $A^H = A^T$.
- Si $z, w \in \mathbb{C}^n$, $\langle z, w \rangle = \bar{z}^T w = \sum_{i=1}^n \bar{z}_i w_i = z^H w$.
- $(A^H)^H = A$ y $(AB)^H = B^H A^H$. (Ejercicio).

La extensión de matrices simétricas al campo de las matrices complejas resulta entonces:

Definición: Una matriz A es *hermitiana* si $A^H = A$.

Observación:

- Si A es matriz real, A es hermitiana si y solo si A es simétrica.
- Claramente, las matrices hermitianas son cuadradas.
- La diagonal de una matriz hermitiana tiene entradas reales. (Justificar)

Las matrices hermitianas (y por ende las reales simétricas) poseen importantes propiedades: sus *autovalores son reales* y sus *autovectores pueden elegirse ortonormales*.

Veamos antes el siguiente lema:

Lema: Si A es una matriz hermitiana entonces, para todo $x \in \mathbb{C}^n$, $x^H A x \in \mathbb{R}$.

Prueba: Sea $z=x^HA$ $x\in\mathbb{C}$. Como z es una matriz compleja $1\times 1, z^H=\bar{z}$. Además,

$$z^{H} = (x^{H}Ax)^{H} = x^{H}A^{H}(x^{H})^{H} = x^{H}A^{H}x = z.$$

Por lo tanto, $z = \bar{z}$ y $z \in \mathbb{R}$.

Teorema: Si A es una matriz compleja hermitiana, sus autovalores son reales.

Prueba: Sea $\lambda \in \mathbb{C}$ un autovalor de A y $x \in \mathbb{C}^n$ tal que $Ax = \lambda x$. Entonces,

$$x^{H}Ax = x^{H}\lambda x = \lambda \|x\|^{2}.$$

Como $x^H A x$ y $||x||^2$ son valores reales, $\lambda \in \mathbb{R}$.

Teorema: Si A es una matriz hermitiana y $\lambda_1 \neq \lambda_2$ son autovalores de A, entonces el autoespacio de λ_1 es ortogonal al autoespacio de λ_2 .

Prueba: Para i=1,2, sea z^i un autovector asociado a λ_i . Debemos probar que $z^1 \perp z^2$ o, equivalentemente, que $(z^1)^H z^2 = 0$.

Tenemos:

$$(\lambda_1 z^1)^H z^2 = (Az^1)^H z^2 = (z^1)^H A^H z^2 = (z^1)^H Az^2 = (z^1)^H \lambda_2 z^2$$

Como $\lambda_{1,2}$ son reales, tenemos $\lambda_1(z^1)^Hz^2=\lambda_2(z^1)^Hz^2$. Como $\lambda_1\neq\lambda_2$, resulta $(z^1)^Hz^2=0$.

Ejemplo:

$$A = \left[\begin{array}{cc} 2 & 3 - 3i \\ 3 + 3i & 5 \end{array} \right].$$

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 3 - 3i \\ 3 + 3i & 5 - \lambda \end{vmatrix} = (2 - \lambda)(5 - \lambda) - (3 + 3i)(3 - 3i) =$$
$$= (2 - \lambda)(5 - \lambda) - 18 = \lambda^2 - 7\lambda - 8 = (\lambda - 8)(\lambda + 1).$$

Ejemplo:(continuación)

Los autovalores son distintos, los autovectores son ortogonales.

$$x^{1} = \begin{bmatrix} 1 \\ 1+i \end{bmatrix}, \quad x^{2} = \begin{bmatrix} 1-i \\ -1 \end{bmatrix}, \quad (x^{1})^{H}x^{2} = (1,1-i)\begin{bmatrix} 1-i \\ -1 \end{bmatrix} = 0.$$

Corolario:

- Si A es hermitiana y S diagonaliza a A, S puede ser elegida con sus columnas ortonormales.
- Si A es real, simétrica y diagonalizable, $A = Q\Lambda Q^T$ con Q matriz ortogonal.

Prueba:

- Ejercicio.
- Como A es simétrica, sus autovalores son reales y sus autovectores son solución del sistema (real) lineal de ecuaciones $(A - \lambda I)x = 0$. El método de Eliminación de Gauss nos asegura que los vectores solución son reales.

Observaciones:

• Si A es simétrica (real) diagonalizable

$$A = Q\Lambda Q^T = [Q^1, \dots, Q^n] \Lambda \begin{bmatrix} (Q^1)^T \\ \dots \\ (Q^n)^T \end{bmatrix} = \lambda_1 Q^1 (Q^1)^T + \dots + \lambda_n Q^n (Q^n)^T$$

A es una combinación lineal de matrices simétricas de rango 1 \longrightarrow A es una combinación lineal de matrices proyección unidimensionales.

• Veremos que toda matriz simétrica tiene n autovectores l.i. y por lo tanto, toda matriz simétrica se descompone en n matrices de rango 1 \longrightarrow Teorema Espectral.

MATRICES UNITARIAS

Extendiendo el concepto de matrices ortogonales reales, una matriz compleja (cuadrada) con columnas ortonormales se denomina *matriz unitaria*.

Propiedades (*ya vistas para ortogonales*) Sea U una matriz $n \times n$ unitaria. Entonces,

- $U^H U = U U^H = I. \ U^{-1} = U^H.$
- 2 Para todo $x \in \mathbb{C}^n$, ||Ux|| = ||x||.

Prueba: Ejercicio.

Propiedades (nuevas):

Sea U una matriz $n \times n$ unitaria. Entonces todos sus autovalores tienen módulo 1. Además, a autovalores diferentes le corresponden autovectores ortogonales.

Prueba: Sean λ y x, autovalor de U y autovector correspondiente. Entonces, $||x|| = ||Ux|| = ||\lambda x|| = |\lambda| ||x|| \Longrightarrow |\lambda| = 1$.

MATRICES UNITARIAS

Prueba (continuación).

Para i=1,2, sean λ_i y x^i , autovalor de U y autovector correspondiente, con $\lambda_1 \neq \lambda_2$. Entonces:

$$(x^1)^H x^2 = (x^1)^H (U^H U) x^2 = (U x^1)^H (U x^2) = (\lambda_1 x^1)^H (\lambda_2 x^2) = \bar{\lambda_1} \lambda_2 (x^1)^H x^2.$$

Por lo tanto, $\bar{\lambda_1}\lambda_2 = 1$ o $(x^1)^H x^2 = 0$.

Supongamos que $\bar{\lambda_1}\lambda_2=1$. Como $|\lambda_1|^2=\bar{\lambda_1}\lambda_1=1$, tenemos $\bar{\lambda_1}\lambda_2=\bar{\lambda_1}\lambda_1=1$ y entonces, $\bar{\lambda_1}=\lambda_2$, una contradicción. Por lo tanto $(x^1)^Hx^2=0$ y $x^1\bot x^2$.

Finalmente, extendemos el concepto de *simétrica sesgada*. Una matriz K es hermitiana sesgada si $K^H = -K$.

Lema Sea K una matriz sesgada hermitiana. Entonces:

- \bullet $K = iA \operatorname{con} A$ matriz hermitiana.
- Los autovalores de K son imaginarios.
- Los autovectores de K y A coinciden.

MATRICES SEMEJANTES

Vimos que si A tiene n autovectores l.i. y S es la matriz que tiene esos autovectores como columnas, $S^{-1}AS$ transforma a A en una matriz diagonal con sus mismos autovalores.

También vimos que no todas las matrices son diagonalizables. Nos preguntamos ahora sobre *el efecto* que tiene sobre una matriz A una transformación del tipo $M^{-1}AM$ donde M es una matriz inversible cualquiera.

Definición: Dada una matriz inversible M, la transformación que a toda matriz A la lleva a $M^{-1}AM$ es una transformación de similaridad o semenjanza. Decimos que A es semejante a B si existe M inversible tal que $B = M^{-1}AM$.

Observación: La relación de semejanza entre matrices es una relación de equivalencia. (Ejercicio).

Las transformaciones de semejanza aparecen naturalmente en los *cambios de variables* en sistemas lineales. Por ejemplo, en los sistemas de ecuaciones diferenciales o sistemas en diferencias.

MATRICES SEMEJANTES

Sea el sistema de diferencias $u_{k+1}=Au_k, k\in\mathbb{N}$. Hacemos un *cambio de variables u=Mv* (M inversible) y el sistema se transforma en $Mv_{k+1}=AMv_k$ o, equivalentemente, $v_{k+1}=(M^{-1}AM)v_k$.

Los cambios de variables se realizan cuando el nuevo sistema resulta $\emph{más}$ $\emph{fácil}$ de resolver que el inicial. Por ejemplo, si S diagonaliza a A, el cambio de variables con M=S nos lleva a un sistema $\emph{desacoplado}$ que es la foma más sencilla a la que podemos aspirar.

Si A no es diagonalizable, ¿Cuál es el *mejor cambio de variables* que podemos hacer? Dicho de otra manera, ¿cuál es la matriz *más sencilla* semejante a A? De eso se trata esta última parte del capítulo.

MATRICES SEMEJANTES

Nos preguntamos ahora:

¿Qué propiedades comparten las matrices semejantes?

Lema: Sean A, M y $B=M^{-1}AM$ matrices $n\times n$. Entonces A y B tienen los mismos autovalores. Además, si x es un autovector de A correspondiente a λ entonces $M^{-1}x$ es un autovector de B correspondiente a λ .

Prueba: Sea λ un autovalor de A y x un autovector asociado. Entonces $Ax = \lambda x$. Como $A = MBM^{-1}$, tenemos $MBM^{-1}x = \lambda x$ o, equivalentemente, $B(M^{-1}x) = \lambda (M^{-1}x)$. Por lo tanto, λ es un autovalor de B y $M^{-1}x$ autovector asociado.

Ejercicio: Las matrices semejantes tienen el mismo polinomio característico.

Transformaciones similares y cambios de bases

Recordemos que toda transformación lineal T entre espacios vectoriales V y W de dimensión finita tiene una matriz asociada. Esta matriz está determinada por las bases en las que estemos trabajando en dominio y codominio de T.

Cuanto trabajamos con una transformación lineal T de un espacio vectorial de dimensión finita V en sí mismo, si elegimos dos bases distintas \mathscr{B}_1 y \mathscr{B}_2 de V tendremos dos matrices distintas asociadas a T. Sin embargo, no sería lógico que fueran tan tan

Lema: Sea T una transformación lineal de un espacio vectorial de dimensión finita V en si mismo y \mathcal{B}_1 y \mathcal{B}_2 dos bases ordenadas de V. Sean A y B las matrices asociadas a T considerando las bases \mathcal{B}_1 y \mathcal{B}_2 , respectivamente. Entonces A es semejante a B.

Prueba: Ejercicio. (Ayuda: probar que $B = M^{-1}AM$ donde M es la matriz de cambio de base de \mathcal{B}_2 a \mathcal{B}_1).

Transformaciones similares y cambios de bases

Recordemos que si $\mathscr{B} = \{v^1, \dots, v^n\}$ es la base de V en la que estamos trabajando, la matriz asociada a una transformación T tiene en su columna i-esima el vector representacion de Tv^i en \mathscr{B} .

Ejemplo:

Sea $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ la proyección sobre la recta y=-x. Podemos trabajar con $\mathscr{B}_1=\{(1,0),(0,1)\}$, la base canónica de \mathbb{R}^2 o con una base *elegida* especialmente para T.

Para obtener la matriz asocicada a T con la base canónica, deberíamos calcular la proyección de (1,0) y (0,1) sobre la recta . En cambio, si elegimos la base de $\mathscr{B}_2=\{(1,-1),(1,1)\}$, las proyecciones son más sencillas: T(1,-1)=(1,-1) y T(1,1)=(0,0). Y la matriz resulta:

$$B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

Transformaciones similares y cambios de bases

Ejemplo: (continuación)

Para obtener la matriz A asociada a T con la base canónica, sólo necesitamos la matriz M de cambio de base de \mathcal{B}_2 a la base canónica. O sea, la representación de los vectores de \mathcal{B}_2 en la báse canónica. Así, finalmente $A=MBM^{-1}$.

Ejercicio: Sea T la proyección en \mathbb{R}^2 sobre la recta que pasa por el origen formando un ángulo θ con el eje x. Construir la matriz A asociada a T con la base canónica de \mathbb{R}^2 a partir de la matriz B asociada a T con una base que contiene un vector sobre la recta y un vector ortogonal a la recta.

Nos habíamos planteado cuál es la matriz semejante *más sencilla* que puede tener cualquier matriz. Este primer resultado nos dice esa *forma sencilla* puede ser triangular.

TRIANGULARIZACIÓN DE MATRICES

Teorema (Lema de Schur) Sea A una matriz $n \times n$. Entonces, existe una matriz unitaria U tal que $U^{-1}AU = T$, con T una matriz triangular.

Prueba: después.

Observación: T tiene los autovalores de A en su diagonal. Y el lema vale para toda matriz, no necesariamente diagonalizable.

$$\mathbf{a}\; U = \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right].$$

Es fácil verificar que

$$U^{-1}AU = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = T.$$

TEOREMA ESPECTRAL

El Lema de Schur nos permite probar uno de los resultados más importantes del Álgebra Lineal: las matrices hermitianas (y por ende las simétricas) son diagonalizables por una matriz unitaria. Por lo tanto, se descomponen como suma de matrices de rango 1.

Teorema Espectral: Toda matriz hermitiana (resp. simétrica) A puede ser diagonalizable por una matriz unitaria U (resp. ortogonal Q).

Prueba: Sea A una matriz hermitiana. Por el Lema de Schur, existen U matriz unitaria y T matriz triangular tales que $U^{-1}AU=T$. Entonces,

$$T^{H} = (U^{-1}AU)^{H} = U^{H}A^{H}(U^{-1})^{H} = U^{H}AU = T.$$

Así, T es una matriz triangular tal que $T = T^H$. Por lo tanto, T es diagonal.

¿Para qué otras matrices T es diagonal? Próxima clase del jueves.