LA FONCTION CARRÉ E06

EXERCICE N°2 (Le corrigé)

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$x(2x+1)+x(3x-4) \ge 0$$

2)
$$(2x+1)(x-3)+(2x+1)(3x+4) < 0$$

3)
$$4x^2 - (x+1)^2 \le 0$$

4)
$$(2x+3)^2-(4x-5)^2>0$$

1)

Pour tout réel x,

$$x(2x+1)+x(3x-4) = x[(2x+1)+(3x-4)] = x(5x-3)$$

On en déduit que
$$x(2x+1)+x(3x-4) \ge 0 \Leftrightarrow x(5x-3) \ge 0$$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes).

•
$$x > 0 \Leftrightarrow x > 0$$
 (élémentaire mon cher Watson...)

■
$$5x-3 > 0 \Leftrightarrow 5x > 3 \Leftrightarrow x > \frac{3}{5} = 0.6$$

X	$-\infty$		0		0,6		+∞
x		_	0	+		+	
5x-3		_		_	0	+	
x(5x-3)		+	0	_	0	+	

On en déduit que $x(2x+1)+x(3x-4) \ge 0$ admet comme ensemble des solutions : $]-\infty$; $0] \cup [0,6]$; $+\infty[$

2)

Pour tout réel x,

$$(2x+1)(x-3)+(2x+1)(3x+4) = (2x+1)[(x-3)+(3x+4)] = (2x+1)(4x+1)$$

On en déduit que
$$x(2x+1)+x(3x-4) < 0 \Leftrightarrow (2x+1)(4x+1) < 0$$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes).

$$2x+1 > 0 \Leftrightarrow 2x > -1 \Leftrightarrow x > -\frac{1}{2}$$

$$4x+1 > 0 \Leftrightarrow 4x > -1 \Leftrightarrow x > -\frac{1}{4}$$

x	$-\infty$		$-\frac{1}{2}$		$-\frac{1}{4}$		+∞
2x+1		_	0	+		+	
4 <i>x</i> +1		_		_	0	+	
(2x+1)(4x+1)		+	0	_	0	+	

On en déduit que (2x+1)(x-3)+(2x+1)(3x+4) < 0 admet comme ensemble des solutions :

$$\left| -\frac{1}{2} ; -\frac{1}{4} \right|$$

Pour tout réel
$$x$$
,

Pour tout réel
$$x$$
,

$$\underbrace{4x^2 - (x+1)^2}_{a^2} = \underbrace{(2x)^2 - (x+1)^2}_{b^2} = [(2x) + (x+1)][(2x) - (x+1)] = (3x+1)(x-1)$$

On en déduit que $4x^2 - (x+1)^2 \le 0 \Leftrightarrow (3x+1)(x-1) \le 0$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes)... On commence à le savoir!

$$3x+1 > 0 \Leftrightarrow 3x > -1 \Leftrightarrow x > -\frac{1}{3}$$

$$x-1 > 0 \Leftrightarrow x > 1$$

x	$-\infty$		$-\frac{1}{3}$		1		+∞
3x+1		_	0	+		+	
x-1		_		_	0	+	
(3x+1)(x-1)		+	0	_	0	+	

On en déduit que a $4x^2 - (x+1)^2 \le 0$ admet comme ensemble des solutions :

$$\left[-\frac{1}{3};1\right]$$

4)

Pour tout réel
$$x$$
,

$$\underbrace{(2x+3)^2}_{g^2} - \underbrace{(4x-5)^2}_{h^2} = [(2x+3)+(4x-5)][(2x+3)-(4x-5)] = (6x-2)(-2x+8)$$

On pourrait factoriser un peu plus : (6x-2)(-2x+8) = -4(3x-1)(x-4)Mais cela ne sera pas utile ici.

•
$$6x-2 > 0 \Leftrightarrow 6x > 2 \Leftrightarrow x > \frac{2}{6} = \frac{1}{3}$$

$$-2x+8 > 0 \Leftrightarrow -2x > -8 \Leftrightarrow x < \frac{-8}{-2} = 4$$

x	$-\infty$		$\frac{1}{3}$		4		+∞
6x-2		_	0	+		+	
-2x+8		+		+	0	_	
(6x-2)(-2x+8)		_	0	+	0	_	

On en déduit que $(2x+3)^2 - (4x-5)^2 > 0$ admet comme ensemble des solutions :

$$\frac{1}{3}$$
; 4