Projet de statistique appliquée, Ensae

Word-Embedding et sentiments des ménages avec Twitter

KIM ANTUNEZ, ROMAIN LESAUVAGE ET ALAIN QUARTIER-LA-TENTE 11/06/2020 Ensae — 2019-2020

Sommaire

- 1. Introduction
- 2. word2vec
- 3. Évaluation du modèle
- 4. Indice de sentiments

Introduction

Sommaire

- 1. Introduction
- 2. word2vec
- 3. Évaluation du modèle
- 4. Indice de sentiments

Sommaire

- 1. Introduction
- 2. word2ved
- 3. Évaluation du modèle
- 3.1 Évaluation sur un corpus fictif
- 3.2 Choix des meilleurs hyperparamètres pour le modèle
- 3.3 Évaluation sur le corpus de tweets
- 4. Indice de sentiments

Comment évaluer le modèle?

Problème : utilisation généralisée des *word-embeddings* mais peu de travaux théoriques expliquent ce qui est capturé, comment évaluer le modèle ?

• Utiliser un corpus fictif.

Les vecteurs-mots sont de grande dimension : comment juger de leur proximité?

- Distance entre mots mesurée par distance euclidienne ou similarité cosinus.
- ACP : réduire la dimension et analyser les proximités.
- t-SNE : algorithme stochastique qui favorise l'apparition de clusters.
- Jugement humain : corrélations entre mots faites par l'homme, utilisées comme références.

Évaluation sur un corpus fictif

Idée : construire un corpus fictif pour lesquels on connaît le résultat attendu en contrôlant les contextes.

En pratique:

- On génère 10 groupes de mots composés d'un couple de référence et de 10 autres mots contexte.
- On construit 10 000 phrases en tirant au hasard :
 - o 1 des groupes de mots;
 - 1 des 2 mots « références » du groupe;
 - 5 mots contextes;
 - o 3 mots bruits parmi une liste de 100 mots.
- On mélange les 9 mots de chaque phrase.

Résultats de l'évaluation

mot	similarité cosinus	mot	similarité cosinus
	avec « grand »		avec « petit »
longueur	0,982	taille	0,987
petit	0,981	longueur	0,983
s	0,979	grand	0,981
:	:	:	:
susiens	-0,735	alesiez	-0,745
allates	-0,784	allates	-0,810

Note : Paramètres utilisés : ep $= 50 \ / \ lr = 0.01 \ / \ w = 5 \ / \ dim = 10.$

On obtient de très bon résultats conformes à ce qui était attendu : l'implémentation du modèle semble validée.

Choix des meilleurs hyperparamètres pour le modèle

- word2vec se base sur différents choix d'hyperparamètres : taille de la fenêtre (w), nombre d'epochs (ep), taux d'apprentissage (lr), dimension des word-embeddings (dim).
- Meilleurs valeurs des hyperparamètres déterminées de manière empirique.
- Mesure des résultats : utilisation d'un corpus de jugement humain et étude des corrélations de Spearman entre ce corpus et notre modèle.
- Problème de temps de compilation de notre algorithme : il faut relancer le modèle à chaque fois.
- Utilisation complémentaire de Gensim puis résultats validés avec notre implémentation.

Nombre d'epochs, taille de fenêtre et taux d'apprentissage

Note : Paramètre utilisé : dim = 50

Valeurs des hyperparamètres retenus

- Nombre d'epochs : augmentation du nombre d'epochs améliore les résultats
 - \bigcirc ep = 100.
- Taille de fenêtre : capture différentes informations selon valeur
- Taux d'apprentissage : 0,02 donne de meilleurs résultats
 - $rac{1}{2}$ Ir = 0,02.

Pour la dimension des vecteurs-mots, on observe une amélioration des résultats en augmentant la dimension jusqu'à atteindre 300. En réalité, peu de différences ici entre 100 et 300 \bigcirc dim = 100 par soucis de temps de compilation.

Évaluation sur le corpus de tweets (1/2)

« Notre » modèle

Spearman : 0.57 (p-v : 4.1 %)

bons résultats

bonjour	femme	1	samedi
(669)	(264)	(765)	(203)
 (0,59)	quelle (0,49)	5 (0,55)	soir (0,57)
© (0,59)	cette (0,46)	mois (0,51)	vivement (0,51)
merci (0,54)	une (0,44)	10 (0,49)	demain (0,50)
nuit (0,48)	vie (0,44)	2 (0,48)	end (0,48)
bisous (0,47)	grippe (0,44)	top (0,48)	weekend (0,47)
bonne (0,47)	belle (0,43)	depuis (0,47)	matin (0,45)
	ma (0,43)	saison (0,46)	jeudi (0,45)
vous (0,46)	magnifique (0,43)	ans (0,44)	prochain (0,43)
plaisir (0,44)	nouvelle (0,43)	jours (0,43)	week (0,43)
allez (0,43)	vidéo (0,39)	3 (0,43)	× (0,42)

ep = 80 / w = 4 / lr = 0,02 / dim = 100 / base : 100 000 tweets

Évaluation sur le corpus de tweets (1/2)

« Notre » modèle

Spearman: 0,57 (p-v: 4,1 %)

bons résultats

Modèle Gensim

Spearman: 0,50 (p-v: 0,0 %)

très bons résultats

femme	1	samedi
(264)	(765)	(203)
quelle (0,49)	5 (0,55)	soir (0,57)
cette (0,46)	mois (0,51)	vivement (0,51)
une (0,44)	10 (0,49)	demain (0,50)
vie (0,44)	2 (0,48)	end (0,48)
grippe (0,44)	top (0,48)	weekend (0,47)
belle (0,43)	depuis (0,47)	matin (0,45)
ma (0,43)	saison (0,46)	jeudi (0,45)
magnifique (0,43)	ans (0,44)	prochain (0,43)
nouvelle (0,43)	jours (0,43)	week (0,43)
vidéo (0,39)	3 (0,43)	× (0,42)
	(264) quelle (0,49) cette (0,46) une (0,44) vie (0,44) grippe (0,44) belle (0,43) ma (0,43) magnifique (0,43) nouvelle (0,43)	(264) (765) quelle (0,49) 5 (0,55) cette (0,46) mois (0,51) une (0,44) 10 (0,49) vie (0,44) 2 (0,48) grippe (0,44) top (0,48) belle (0,43) depuis (0,47) ma (0,43) saison (0,46) magnifique (0,43) jours (0,43) vidéo (0,39) 3 (0,43)

ep = 80 / w = 4 / Ir = 0.02 / dim = 100 / base : 100 000 tweets

bonjour	femme	1	samedi
(17 043)	(6 177)	(21 055)	(4 917)
bonsoir (0,85)	fille (0,86)	2 (0,65)	vendredi (0,88)
bjr (0,75)	copine (0,74)	3 (0,64)	jeudi (0,86)
hello (0,71)	meuf (0,71)	6 (0,63)	lundi (0,83)
salut (0,66)	demoiselle (0,66)	4 (0,62)	mercredi (0,83)
coucou (0,55)	nana (0,66)	7 (0,60)	dimanche (0,83)
transmets (0,49)	nièce (0,66)	5 (0,58)	mardi (0,76)
désagrément (0,48)	sœur (0,65)	9 (0,58)	demain (0,72)
avezvous (0,48)	barbe (0,65)	8 (0,56)	barathon (0,56)
bettembourg (0,48)	maman (0,64)	1e (0,55)	22h45 (0,55)
hey (0,47)	princesse (0,64)	34 (0,53)	20h (0,54)

 $ep = 100 \ / \ w = 4 \ / \ lr = 0.02 \ / \ dim = 100 \ / \ base : ensemble des tweets$

10 plus proches voisins par similarité cosinus

Évaluation sur le corpus de tweets (2/2)

Réduction de dimension des vecteurs-mots et (parfois) opérations sur les mots convaincants

Sommaire

- 1. Introduction
- 2. word2vec
- 3. Évaluation du modèle
- 4. Indice de sentiments
- 4.1 Prédire le sentiment d'un tweet

Prédire le sentiment d'un tweet

Idée : associer à chaque tweet un sentiment qui vaut 1 s'il est positif et 0 s'il est négatif.

Pour cela, nous avons à notre disposition une base de tweets annotés sur les transports urbains, contenant 23 000 tweets, séparée en une base de *train* (16 000 tweets) et de *test* (7 000 tweets).

2 approches ici:

- Modèle lexical : utiliser l'information des tweets labelisés pour construire un sentiment moyen par mot.
- Modèle logit : utiliser nos word-embeddings comme prédicteurs d'une régression logistique.

Modèle lexical : sentiment moyen des mots

Le sentiment prédit d'un tweet t composé de n mots sera :

$$S_{1,\gamma}(t) = 1\left\{\frac{1}{n}\sum_{i=1}^{n}\alpha_i \geq \gamma\right\} \qquad \in \{0,1\}$$

- $\gamma \in [-1,1]$ un seuil fixé;
- $-\alpha_i = \frac{nb_+(i)-nb_-(i)}{nb_+(i)+nb_-(i)} \in [-1,1]$ sentiment moyen du mot i calculé à partir du nombre de tweets positifs $(nb_+(i))$ et négatifs $(nb_-(i))$ dans lesquels il apparaît.

On détermine le γ optimal en regardant l'accuracy sur la base de train : on trouve $\gamma^*=$ -0.14 pour une accuracy (sur la base de test) de **89.1%**.

Modèle logit : prédiction grâce aux word-embeddings

$$egin{aligned} Y_i &= 1 \left\{ \sum_{i=1}^n eta_i X_{i,j} + arepsilon_i \geq 0
ight\} \ \mathbb{P}(Y_i &= 1 | X_i) = F_arepsilon \left(\sum_{i=1}^n eta_i X_{i,j}
ight) \end{aligned}$$

- Y_i le sentiment du tweet i;
- $-X_{i,1},\ldots,X_{i,n}$ les coordonnées de la sentence-embedding du tweet i;
- ε_i le résidu de notre modèle, de fonction de répartition F_ε qui vaudra $F_\varepsilon(x)=rac{1}{1+e^{-x}}$ dans le cas d'un modèle logit et $F_\varepsilon(x)=\Phi(x)$ (fonction de répartition d'une loi $\mathcal{N}(0,1)$) dans le cas d'un modèle probit.

Spécifications du modèle logit

Plusieurs problèmes à traiter :

- Comment traiter les mots inconnus? On décide de leur affecter le vecteur du mot lowfrequency.
- Modèle probit ou logit? **②** On retient le modèle logit.

Le sentiment du tweet t est :

$$S_{2,\gamma}(t) = 1 \{ \mathbb{P}(Y_i = 1 | X_i) \ge \gamma \} \in \{0,1\}$$

On détermine le γ optimal en regardant l'accuracy sur la base de train : on trouve $\gamma^*=0.5$ pour une accuracy (sur la base de test) de **69.8%**.

La bonne performance du modèle lexical par rapport au modèle logit peut s'expliquer par plusieurs facteurs.

1 Les mots inconnus diffèrent selon les modèles. Modèle lexical : 1,4 % des mots sont inconnus (13,2 % du vocabulaire) Modèle logit : 4,6 % des mots sont inconnus (36,2 % du vocabulaire)

La bonne performance du modèle lexical par rapport au modèle logit peut s'expliquer par plusieurs facteurs.

- 1 Les mots inconnus diffèrent selon les modèles. Modèle lexical : 1,4 % des mots sont inconnus (13,2 % du vocabulaire) Modèle logit : 4,6 % des mots sont inconnus (36,2 % du vocabulaire)
- 2 Le processus d'annotation utilisé pour les tweets sur les transports urbains.

La bonne performance du modèle lexical par rapport au modèle logit peut s'expliquer par plusieurs facteurs.

- 1 Les mots inconnus diffèrent selon les modèles. Modèle lexical : 1,4 % des mots sont inconnus (13,2 % du vocabulaire) Modèle logit : 4,6 % des mots sont inconnus (36,2 % du vocabulaire)
- 2 Le processus d'annotation utilisé pour les tweets sur les transports urbains.
- 3 Le domain shift

La bonne performance du modèle lexical par rapport au modèle logit peut s'expliquer par plusieurs facteurs.

- 1 Les mots inconnus diffèrent selon les modèles. Modèle lexical : 1,4 % des mots sont inconnus (13,2 % du vocabulaire) Modèle logit : 4,6 % des mots sont inconnus (36,2 % du vocabulaire)
- 2 Le processus d'annotation utilisé pour les tweets sur les transports urbains.
- 3 Le domain shift Utilisation d'une nouvelle base de test indépendante pour essayer de neutraliser ces effets : modèle logit meilleur que le modèle lexical (61,9 % contre 55,9 %).

Merci pour votre attention

- ARKEnsae/TweetEmbedding
- Rapport du projet

