Operációs rendszerek BSc

Operációs rendszerek Bsc

2022. tavaszi féléves feladat

Készítette:

Zarándi Ákos Bsc

Gazdaságinformatikus

DX6C4R

1.Feladat

Adott az alábbi terhelés esetén a rendszer. Határozza meg az indulás, befejezés, várakozás/átlagos várakozás és korülfordulás/átlag körülfordulás, válasz/átlagos válaszidő és a CPU kihasználtság értékeket az RR: 6 ms ütemezési algoritmusok mellett! (cs:0,1ms, sch:0,1ms)

A RR az tulajdonképpen FCFS+ időszeletes beavatkozás, egy soron vannak a processzek, az első kapja meg a CPU-t, de csak addig, amíg az ideje le nem jár.

	P1	P2	P3	P4	P5			
Érkezés	1	4	4	7	8			
CPU idő	1	11	4	7	4			
Indulás								
Befejezés								
Várakozás								
	Processz	Érkezés	CPU idő	Indulás	Befejezés	Várakozás	Maradék idő	Váró processz
	p1	1	1	1	6	0	0	p2
	p2	4	11	6	17	2	2	p3
	p3	4	4	17	21	13	0	p2,p4
	p2*	17	2	21	23	4	0	p4,p5
	p4	7	7	23	30	16	0	p5
	p5	8	4	30	34	26	0	
			Befejezés	Körülforgási idő	Várakozási idő	CPU idő		
		p1	6	5	0	1		
		p2	21	19	6	11		
		р3	21	17	13	4		
		p4	30	23	16	7		
		p5	34	26	26	4		

2.Feladat

Írjon egy C programot, ami egy másodfokú egyenlet megoldóképletét reprezentálja osztott memória szegmens segítségével. A műveletvégzéshez szükséges adatokat egy bemeneti fájlból olvassa be, majd az adatokat és az eredményt adja vissza egy kimeneti fájlba. A bemeneti illetve a kimeneti fájl struktúrája kötött!

Elsősorban a változókat deklarálom. Ezután létrehozok egy kulcsot, aztán rácsatlakozok a memóriaszegmensre. Továbbá létrehozom a forrás és a cél fájlt. A forrás fájlt beolvasom, majd kiíratom a szegmenssel. A másodfokú egyenletet megoldom(komplex számokkal), beleíratom az eredmény.txt mappába. Végső sorban lecsatlakozom a szegmensről