	Page No.: Date: / /
	Recursion Complexity [401] such a trace Recursion Complexity [402] recurrence rel"
	[MDI] E work in each function frame = E no of operation in each function frame
	i.e. approx = operation x f" frame 3 andor is boat
	[HD2] find a relation and rolve it to pred remove
	other variable except n. i-e. find a relation in
	$a^b \text{ MPD} \Rightarrow sp = a^{b/2}$ for frame = logn
	return sp. sp 0 (lugn)
	$\frac{ab}{ab-1} \qquad o(n)$
	return Sp.a
	MD2 \rightarrow $f(n) = f(n/2) + 1$ $f(n/2) = f(n/2) + 1$ $f(n/2) = f(n/2) + 1$ $f(n/2) = f(n/2) + 1$
	$\frac{n}{2^{K+1}} = 6 \cdot 1 \cdot$
1	smallest problem is always on 1
	6(n) = 1+ +++ K Himes = K = 10 92 b
	fibonacci (14) (MDI) operation = 2× M O(N) (MDZ) $f(n) = f(n-1) + f(n-2)$ $f(n-1) = f(n-2) + f(n-3)$
	$\frac{1}{4}(n-2) = \frac{1}{4}(n-4)$ $\frac{1}{4}(n-2) = \frac{1}{4}(n-4) + \frac{1}{4}(n-4)$
* 11 - 2	(1) EHEN (1)

coin tou

+ if K branches of K recursive earl 0 (n K")

$$\chi \qquad \chi(n) = \chi(n-1) + n\chi \qquad (\eta \kappa \cdot \chi^n)$$

Palindrome partioning

f(n)=f(n-1)+f(n-2)+---+f(1)+ n \$(n-1)={(n-2)+}(n-3)+--+{(1)+ >

$$\frac{1}{n} \cdot \frac{1+n+n(n-1)+n(n-1)(n-2)--n}{(n-1)}$$