9.2: The Parabola

Supplementary Notes

A *parabola* is an example of a *conic* since it is the cross-section of a cone with a plane parallel to a line on the face of the cone.

A parabola is the collection of points in the xyplane equidistant from a fixed point F and line D. F is called the focus and D is called the directrix.

- (distance from vertex V to focus F) = a
- (distance from vertex V to directrix D) = a

Equations of parabolas with vertex (h, k) and axis of symmetry parallel to a coordinate axis, a > 0

Equation	Axis of Symmetry		Opens	Focus	Directrix
$(x-h)^2 = 4a(y-k)$	vertical	x = h	up	(h, k+a)	y = k - a
$(x-h)^2 = -4a(y-k)$			down	(h, k-a)	y = k + a
$(y-k)^2 = 4a(x-h)$	horizontal	y = k	right	(h+a,k)	x = h - a
$(y-k)^2 = -4a(x-h)$			left	(h-a,k)	x = h + a

Exercises

1. Select the equation of the following graph

A.
$$x^2 = -by, b < 0$$

B.
$$y^2 = -bx, b < 0$$

C.
$$y^2 = bx, b < 0$$

D.
$$x^2 = by, b < 0$$

- 2. Sketch the graph of $y^2 = -cx$, c < 0.
- 3. Find the focus of the parabola given by $y^2 = x$.
- 4. Find the focus of the parabola with equation $(x-2)^2 = (y+1)$.
- 5. Find the directrix of the parabola given by $x^2 = -8y$.
- 6. Find the directrix of the parabola with equation $(y-3)^2 = 2(x-1)$.

- 7. Write (using lowercase x and y) the equation of the parabola with focus (0,-1) and vertex (0,0).
- 8. Write (using lowercase x and y) the equation of the parabola with directrix $x = \frac{1}{2}$ and vertex at (1,3).
- 9. Write (using lowercase x and y) the equation of the parabola with focus $(2, \frac{5}{2})$ and directrix $y = \frac{7}{2}$.
- 10. Write (using lowercase x and y) the equation of the following parabola.

11. Write (using lowercase x and y) the equation of the following parabola if the parabola contains the point (2, -1).

