1 Classe pràctica d'Espais vectorials

Classe pràctica 3

Prob 1 A l'espai vectorial $\mathcal{M}_{2\times 2}(\mathbb{R})$ consideram els conjunts

$$V_1 = \left\{ \left(\begin{array}{cc} a & b \\ a-b & a+b \end{array} \right) \middle| \ a,b \in \mathbb{R} \right\} \qquad \text{i} \qquad V_2 = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| \ a+b+c+d = 0, 2a-c-d = 0 \right\}$$

a) Demostrau que V_1 i V_2 són subespais vectorials de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

b) Trobau una base de V_1 i de V_2 .

c) Trobau una base de $V_1 \cap V_2$ 0.5 pt.

d) Trobau una base de $V_1 + V_2$. Indicau si la suma és directa. **0.5 pt.**

(Examen, setembre 2009)

0.5 pt.

Solució classe pràctica 3

Prob 1 A l'espai vectorial $\mathcal{M}_{2\times 2}(\mathbb{R})$ consideram els conjunts

$$V_1 = \left\{ \left(\begin{array}{cc} a & b \\ a-b & a+b \end{array} \right) \middle| a,b \in \mathbb{R} \right\} \qquad \text{i} \qquad V_2 = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a+b+c+d = 0, 2a-c-d = 0 \right\}$$

- a) Demostrau que V_1 i V_2 són subespais vectorials de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- b) Trobau una base de V_1 i de V_2 . 0.5 pt.
- c) Trobau una base de $V_1 \cap V_2$ 0.5 pt.
- d) Trobau una base de $V_1 + V_2$. Indicau si la suma és directa. **0.5 pt.**

(Examen, setembre 2009)

Solució:

a) Sigui $\begin{pmatrix} a & b \\ a-b & a+b \end{pmatrix} \in V_1$, aleshores

$$\left(\begin{array}{cc} a & b \\ a-b & a+b \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ a & a \end{array}\right) + \left(\begin{array}{cc} 0 & b \\ -b & b \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right) + b \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array}\right)$$

per tant $V_1 = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \right\rangle$, és a dir, és conjunt generat per les dues matrius indicats, i aleshores té estructura d'espai vectorial.

Vegem ara que V_2 és espai vectorial.

Sigui $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in V_2$, aleshores es compleix a+b+c+d=0, 2a-c-d=0 i a'+b'+c'+d'=0, 2a'-c'-d'=0 i siguin $t,s\in\mathbb{R}$

Hem de veure que $t \begin{pmatrix} a & b \\ c & d \end{pmatrix} + s \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in V_2$

$$t \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) + s \left(\begin{array}{cc} a' & b' \\ c' & d' \end{array} \right) = \left(\begin{array}{cc} ta & tb \\ tc & td \end{array} \right) + \left(\begin{array}{cc} sa' & sb' \\ sc' & sd' \end{array} \right) = \left(\begin{array}{cc} ta + sa' & tb + sb' \\ tc + sc' & td + sd' \end{array} \right)$$

Hara hem de comprovar que aquesta matriu compleix les condicions de pertànyer a V₂:

$$(ta + sa') + (tb + sb') + (tc + sc') + (td + sd') = t(a + b + c + d) + s(a' + b' + c' + d') = t \cdot 0 + s \cdot 0 = 0$$

Anàlogament

$$2(ta+sa') - (tc+sc') - (td+sd') = 2ta + 2sa' - tc - sc' - td - sd' = t(2a-c-d) + s(2a'-c'-d') = t \cdot 0 + s \cdot 0 = 0$$

Aleshores $t \begin{pmatrix} a & b \\ c & d \end{pmatrix} + s \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in V_2$

b)
$$\begin{array}{ccc} \mathcal{M}_{2\times 2} & \to & \mathbb{R}^4 \\ \left(\begin{array}{ccc} a & b \\ c & d \end{array} \right) & \mapsto & (a,b,c,d) \end{array}$$

és un isomorfisme, per tant, efectuarem l'estudi dins \mathbb{R}^4 .

Sigui $V_1' = \{(a, b, a - b, a + b) | a, b \in \mathbb{R}\}$ i $V_2' = \{(a, b, c, d) \in \mathbb{R}^4 | a + b + c + d = 0, 2a - c - d = 0\}$, els espais vectorials isomorfs a V_1 i V_2 .

Cerquem una base de V_1'

$$(a, b, a - b, a + b) = (a, 0, a, a) + (0, b, -b, b) = a(1, 0, 1, 1) + b(0, 1, -1, 1)$$

per tant, $V_1' = \langle (1,0,1,1), (0,1,-1,1) \rangle$. A més $\{(1,0,1,1), (0,1,-1,1)\}$ són linealment independents, ja que el 2n té davant un zero més que l'anterior, aleshores aquests dos vectors formen una base de V_1' i

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array}\right) \right\}$$

forma una base de V_1 .

Cerquem ara una base de V_2' . Resolent el sistema a+b+c+d=0, 2a-c-d=0 tenim $a=\frac{1}{2}\,c+\frac{1}{2}\,d$ i $b=-\frac{3}{2}\,c-\frac{3}{2}\,d$. Per tant els elements de V_2' serà de la forma

$$\left(\frac{1}{2}\,c + \frac{1}{2}\,d, -\frac{3}{2}\,c - \frac{3}{2}\,d, c, d\right) = \left(\frac{1}{2}\,c, -\frac{3}{2}\,c, c, 0\right) + \left(\frac{1}{2}\,d, -\frac{3}{2}\,d, 0, d\right) = c\left(\frac{1}{2}, -\frac{3}{2}, 1, 0\right) + d\left(\frac{1}{2}, -\frac{3}{2}, 0, 1\right) + d\left(\frac{1}{2}, -\frac{3}{2}, 0, 1\right$$

Aleshores $V_2' = \langle \left(\frac{1}{2}, -\frac{3}{2}, 1, 0\right), \left(\frac{1}{2}, -\frac{3}{2}, 0, 1\right) \rangle$ i $\left\{\left(\frac{1}{2}, -\frac{3}{2}, 1, 0\right), \left(\frac{1}{2}, -\frac{3}{2}, 0, 1\right)\right\}$ és un sistema generador. A més són linealment independents, ja que el menor $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$. Per tant formen una base de V_2' i

$$\left\{ \left(\begin{array}{cc} \frac{1}{2} & -\frac{3}{2} \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} \frac{1}{2} & -\frac{3}{2} \\ 0 & 1 \end{array} \right) \right\}$$

forma una base de V_2

c) Els elements de $V_1 \cap V_2$ han de complir les condicions de V_1 i les de V_2 . Els elements de V_1 , tal com podem veure de la seva definició, compleixen c = a - b, d = a + b, per tant,

$$V_1 \cap V_2 = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a+b+c+d = 0, 2a-c-d = 0, a-b = c, a+b = d \right\}$$

Resolent el sistema

$$\left. \begin{array}{rcl} a+b+c+d & = & 0 \\ 2a-c-d & = & 0 \\ a-b-c & = & 0 \\ a+b-d & = & 0 \end{array} \right\}$$

tenim $a = -\frac{1}{2}d$, $b = \frac{3}{2}d$, c = -2d. Per tant, els elements de $V_1 \cap V_2$ són de la forma

$$\left(-\frac{1}{2}d, \frac{3}{2}d, -2d, d\right) = d\left(-\frac{1}{2}, \frac{3}{2}, -2, 1\right)$$

aleshores

$$\left\{\left(-\frac{1}{2},\frac{3}{2},-2,1\right)\right\}$$

és un sistema generador i per tant base (ja que només té un element) de $V_1 \cap V_2$.

d) Si
$$V_1 = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \right\rangle$$
 i $V_2 = \left\langle \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} \\ 0 & 1 \end{pmatrix} \right\rangle$, aleshores,
$$V_1 + V_2 = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} \\ 0 & 1 \end{pmatrix} \right\rangle$$

és un sistema generador de $V_1 + V_2$. Cerquem ara els linealment independents. Per això tornarem fer servir l'isomorfisme defini abans i estudiarem la dependència lineal dels elements de \mathbb{R}^4

$$\left\{(1,0,1,1),(0,1,-1,1),\left(\frac{1}{2},-\frac{3}{2},1,0\right),\left(\frac{1}{2},-\frac{3}{2},0,1\right)\right\}$$

Ho farem per menors. Si cercam el determinant format pels 4 vectors ens surt 0, Per tant són linealment dependents.

Considerem el menor $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ \frac{1}{2} & -\frac{3}{2} & 1 \end{vmatrix} = -1 \neq 0.$ Per tant els tres primers vectors formen una base de $V_1' + V_2'$ i

$$\left\{(1,0,1,1),(0,1,-1,1),\left(\frac{1}{2},-\frac{3}{2},1,0\right)\right\}$$

forma una base de $V_1 + V_2$.

La suma no és directa ja que $V_1 \cap V_2 \neq \{\overline{0}\}$