

[SI10-2024-P1] - Prova Prática

Sistemas de Informação - Módulo 10 - Turma 4

Nome: Escreva seu nome aqui.

ANTES DE PROSSEGUIR FAÇA UMA CÓPIA DESTE NOTEBOOK

Contexto

Uma plataforma online, que atua na venda de produtos, deseja otimizar sua interface para melhorar a experiência do usuário e aumentar as taxas de conversão. Recentemente, a empresa implementou um redesign de sua página web, e os registros dessa mudança estão detalhados nos dados coletados desde então. As variáveis registradas diariamente incluem o número de visitantes únicos, sessões, taxa de rejeição, páginas por sessão, principais origens do tráfego, tipos de dispositivos usados, eventos ocorridos, taxa de conversão e o tempo médio de sessão.

Com base nesses dados, a empresa considera realizar uma mudança similar para otimizar ainda mais sua plataforma. Antes de proceder, a equipe deseja empregar simulações de Monte Carlo para avaliar os possíveis impactos de um novo redesign na taxa de conversão, tempo médio de sessão e taxa de reieição, utilizando análises estatísticas para prever tendências futuras e aiustar

estratégias de maneira informada. Essa abordagem visa garantir que as decisões tomadas maximizem as taxas de conversões, fundamentais para o sucesso contínuo da plataforma.

Importação do dataset e das bibliotecas

```
# Importação do dataset
# https://drive.google.com/file/d/1K 2ZDsrhheRDKoHN2ynfLCPGPFiS2CZr/view?usp=drive link
!gdown 1K_2ZDsrhheRDKoHN2ynfLCPGPFiS2CZr
    Downloading...
    From: https://drive.google.com/uc?id=1K_2ZDsrhheRDKoHN2ynfLCPGPFiS2CZr
    To: /content/ITL-SI10-2024-P1-dataset.csv
    100% 7.03k/7.03k [00:00<00:00, 17.2MB/s]
# Importação das bibliotecas
import pandas as pd
# Transforma o dataset em DataFrame Pandas
df = pd.read csv('ITL-SI10-2024-P1-dataset.csv')
print(df.head())
            Data Visitantes Únicos Sessões Taxa de Rejeição (%) \
    0 2023-01-01
                            113.0
                                     126.0
                                                     50.496714
    1 2023-01-02
                            90.0
                                    157.0
                                                     49.438007
    2 2023-01-03
                             92.0
                                    185.0
                                                     49.800231
                             130.0
    3 2023-01-04
                                     206.0
                                                     50.251843
    4 2023-01-05
                             123.0
                                     155.0
                                                     48.070931
       Páginas por Sessão Principais Origens do Tráfego Dispositivos Eventos ∖
                                             Direto
    0
                1.834201
                                                        Desktop
    1
                1.955760
                                                        Desktop
                                             Social
    2
                                                        Desktop
                2.285052
                                             Direto
                2.325464
                                                        Mobile
                                               Pago
                2.267006
                                             Direto
                                                        Desktop
```

2 of 24 17/05/2024, 11:15

	Taxa de Conversão (%)	Tempo Médio de Sessão (minutos)
0	1.952083	5.395516
1	2.066180	4.680899
2	2.058858	5.972584
3	2.134617	4.705854
4	2.420236	5.835801

Questões

✓ Questão 1

Análise Exploratória de Dados: Faça a exploração dos dados, utilizando gráficos interativos. Identifique correlações entre as variáveis e apresente essas relações em uma matriz de correlação focada nas variáveis mais relevantes para a conversão de vendas.

corr_df = df.filter(['Taxa de Rejeição (%)', 'Taxa de Conversão (%)', 'Sessões', 'Visitantes Úr corr_df.corr()

	Taxa de Rejeição (%)	Taxa de Conversão (%)	Sessões	Visitantes Únicos	Tempo Médio de Sessão (minutos)	Eventos
Taxa de Rejeição (%)	1.000000	-0.974824	-0.968901	-0.960974	-0.982036	0.116950
Taxa de Conversão (%)	-0.974824	1.000000	0.983243	0.984202	0.976846	-0.129913
Sessões	-0.968901	0.983243	1.000000	0.965535	0.968905	-0.145092
Visitantes Únicos	-0.960974	0.984202	0.965535	1.000000	0.960822	-0.118113
Tempo Médio de Sessão (minutos)	-0.982036	0.976846	0.968905	0.960822	1.000000	-0.081397

print(df.shape)

(60, 10)

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 60 entries, 0 to 59

Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Data	60 non-null	object
1	Visitantes Únicos	60 non-null	float64
2	Sessões	60 non-null	float64
3	Taxa de Rejeição (%)	60 non-null	float64
4	Páginas por Sessão	60 non-null	float64
5	Principais Origens do Tráfego	60 non-null	object
6	Dispositivos	60 non-null	object
7	Eventos	60 non-null	int64
8	Taxa de Conversão (%)	60 non-null	float64
9	Tempo Médio de Sessão (minutos)	60 non-null	float64
dtyp	es: float64(6), int64(1), object(3)	

memory usage: 4.8+ KB

None

print(df.columns)

df.describe()

	Visitantes Únicos	Sessões	Taxa de Rejeição (%)	Páginas por Sessão	Eventos	Taxa de Conversão (%)	Tempo Médio de Sessão (minutos)
count	60.000000	60.000000	60.000000	60.000000	60.000000	60.000000	60.000000
mean	301.133333	449.450000	34.230939	4.007533	5.300000	4.499632	10.045957

std	120.896295	182.619121	10.164913	1.156751	2.109703	1.486718	3.413248
min	90.000000	126.000000	20.177732	1.834201	1.000000	1.952083	4.680899
25%	196.500000	298.750000	24.860077	3.078881	3.750000	3.329572	6.915095
50%	319.500000	456.000000	34.381987	4.027289	5.000000	4.530517	10.039833
75%	401.250000	616.000000	43.013749	4.890745	6.250000	5.748005	13.282681
max	517.000000	769.000000	50.496714	5.996747	10.000000	7.075193	16.360085

df.isnull().sum()

Data	0
Visitantes Únicos	0
Sessões	0
Taxa de Rejeição (%)	0
Páginas por Sessão	0
Principais Origens do Tráfego	0
Dispositivos	0
Eventos	0
Taxa de Conversão (%)	0
Tempo Médio de Sessão (minutos)	0
dtype: int64	

import matplotlib.pyplot as plt

<Figure size 1000x600 with 0 Axes>

plt.bar(df['Eventos'],df['Taxa de Conversão (%)'])

<BarContainer object of 60 artists>

plt.barh(df['Tempo Médio de Sessão (minutos)'], df['Sessões'])
plt.show()

import numpy as np

x = np.random.normal(df['Visitantes Únicos'], df['Eventos'])

plt.hist(x)
plt.show()

Questão 2

Simulação de Monte Carlo: Implemente uma simulação de Monte Carlo para avaliar os possíveis efeitos de um novo redesign na

plataforma. Analise como diferentes variáveis podem impactar os resultados e discuta os cenários que esta simulação pode

plataforma. Analise como diferentes variáveis podem impactar os resultados e discuta os cenários que esta simulação pode prever, ajudando a empresa a tomar decisões mais informadas sobre o redesign.

Pegando os parâmetros estatísticos para usar na simualação

```
media = df['Taxa de Conversão (%)'].mean()
print(f"Média da Taxa de Conversão: {media}")
desvio_padrao = df['Taxa de Conversão (%)'].std()
print(f"Desvio padrão da Taxa de Conversão (%): {desvio_padrao}")

Média da Taxa de Conversão: 4.499631657295852
Desvio padrão da Taxa de Conversão (%): 1.4867182834038823
```

Visualizando o impacto pros próximos três meses e atribuindo um número de simualações que será feito

```
dias_para_prever_taxa_conversao = 90
num_simulacoes_taxa_conversao = 10000

simulacoes = [np.random.normal(loc=media, scale=desvio_padrao, size=dias_para_prever_taxa_com
resultados_simulacao = pd.DataFrame(simulacoes).transpose()
resultados_media = resultados_simulacao.mean(axis=1)
resultados_std = resultados_simulacao.std(axis=1)

dias = list(range(1, dias_para_prever_taxa_conversao + 1))
previsoes = pd.DataFrame({
    'Dia': dias,
    'Média das Previsões': resultados_media,
    'Desvio Padrão': resultados_std,
    'Limite Inferior': resultados_media - resultados_std,
    'Limite Superior': resultados_media + resultados_std
```

})

```
import pandas as pd
import numpy as np
import scipy.stats as stats
import random
```

import matplotlib.pyplot as plt
import plotly.express as px

fig = px.line(previsoes, x='Dia', y='Média das Previsões', title='Previsão da Taxa de Conversa fig.add_scatter(x=previsoes['Dia'], y=previsoes['Limite Inferior'], fill='tonexty', mode='linante fig.add_scatter(x=previsoes['Dia'], y=previsoes['Limite Superior'], fill='tonexty', mode='linante fig.update_layout(xaxis_title='Dias', yaxis_title='Taxa de Conversão', legend_title='Legenda' fig.show()

Previsão da Taxa de Conversão para os Próximos 60 Dias


```
import plotly.express as px
import numpy as np
import pandas as pd
mean_rejection_rate_pre_change = df.iloc[:30]['Taxa de Rejeição (%)'].mean()
mean_rejection_rate_post_change = df.iloc[30:]['Taxa de Rejeição (%)'].mean()
observed difference = mean rejection rate post change - mean rejection rate pre change
# Simulação de Monte Carlo
n simulations = 10000
std dev = df['Taxa de Rejeição (%)'].std() # Desvio padrão das taxas de rejeição para variab:
# Gerar efeitos simulados como uma distribuição normal centrada na diferença observada
simulated effects = np.random.normal(loc=observed difference, scale=std dev, size=n simulation
# Taxa de rejeição base para simulação
base_rejection_rate = mean_rejection_rate_pre_change
# Calcular novas taxas de rejeição potenciais
new_rejection_rates = base_rejection_rate + simulated_effects
# Análise dos resultados
average new rejection rate = np.mean(new rejection rates)
```

Distribuição Simulada das Novas Taxas de Rejeição

Taxa de F

df.columns

Análise de Dois Dias Diferentes

```
a_cvr = df[df['Data'] == '2023-02-27']['Taxa de Conversão (%)'].mean()
a_cvr
6.713640670814318

b_cvr = df[df['Data'] == '2023-03-01']['Taxa de Conversão (%)'].mean()
b_cvr
7.075193303268677

def run_simulation(a_cvr, b_cvr, n=100000, simulations=500, dias=60):
    results = []
    a_mean, a_std = a_cvr * n, np.sqrt(a_cvr * n)
    b_mean, b_std = b_svp * n, np.sqrt(b_svp * n)
```

```
υ_mean, υ_stu - υ_tvi · π, πρ. sqrt(υ_tvi · π)
    for in range(simulations):
        a_results = np.random.normal(a_mean, a_std)
        b results = np.random.normal(b mean, b std)
        results.append({'A': a results/100000, 'B': b results/100000})
    return pd.DataFrame(results)
simulation results = run simulation(a cvr, b cvr)
print(simulation results.head())
    0 6.718772 7.075053
    1 6.719615 7.085602
    2 6.725797 7.070389
    3 6.723524 7.080642
    4 6.721030 7.074222
import matplotlib.pyplot as plt
import seaborn as sns
def plot simulation results(results):
    sns.histplot(results['A'], color="black", label='Data A', kde=True)
    sns.histplot(results['B'], color="red", label='Data B', kde=True)
    plt.xlabel('Resultados')
    plt.ylabel('Frequência Relativa (prob. relativa de dif. resultados)')
    plt.title('Distribuição dos Resultados das Simulações')
    plt.legend()
    plt.show()
plot simulation results(simulation results)
                 Distribuição dos Resultados das Simulações
     os)
                                                    ■ Data A
```


Questão 3

Análise de Sensibilidade: Realize uma análise de sensibilidade para examinar como alterações em diferentes variáveis de entrada afetam as previsões da taxa de conversão.

Entendendo correlação das variáveis

Provando a correlação entre tempo médio de sessões e tx de conversão, sendo ela positiva com base na visualização do gráfico

Journal John Saco ha thoughtagus as grands

Relação entre Tempo de Sessão e Taxa de Conversão

Agora esperemos que haja uma correlação negativa, entre a taxa de rejeição e conversão, já que são variáveis opostas

Relação entre Taxa de Rejeição e Taxa de Conversão

Visualizando também o efeito similar so número se sessões por taxa de conversão, tendo em vista sua aplicação

```
fig = px.scatter(
    df,
    x="Sessões",
```

Relação entre Taxa de Rejeição e Taxa de Conversão

Comprovando as correlações citadas acima

```
corr_df = df.filter(['Taxa de Rejeição (%)', 'Taxa de Conversão (%)', 'Sessões'])
corr_df.corr()
```

	Taxa de Rejeição (%)	Taxa de Conversão (%)	Sessões	
Taxa de Rejeição (%)	1.000000	-0.974824	-0.968901	
Taxa de Conversão (%)	-0.974824	1.000000	0.983243	
Sessões	-0.968901	0.983243	1.000000	

Clique duas vezes (ou pressione "Enter") para editar

```
from sklearn.utils import resample
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
```

df.columns

Uso de Machine Learning para aplicação na Análise de Sensibilidade

```
X = df.drop(["Principais Origens do Tráfego", "Taxa de Conversão (%)", 'Data', 'Dispositivos'
y = df["Taxa de Conversão (%)"]
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
model = RandomForestRegressor(n estimators=100, random state=42)
model.fit(X_train, y train)
y pred = model.predict(X test)
mse = mean squared error(y test, y pred)
mae = mean absolute error(y test, y pred)
print(f"RMSE: {np.sqrt(mse):.2f}")
print(f"MAE: {mae:.2f}")
    RMSE: 0.18
    MAE: 0.13
Clique duas vezes (ou pressione "Enter") para editar
n simulations = 1000
predicted conversions = []
for in range(n simulations):
    # O método de bootstrapping nesta linha de código cria uma nova amostra dos dados origina:
    # permitindo repetições, para estimar a variabilidade das estatísticas ou do modelo
    bootstrap_sample = resample(X, n_samples=len(X), replace=True, random_state=None)
    # Fazendo previsões com o modelo de floresta aleatória
```

```
predicted conversion = model.predict(bootstrap sample)
    # Armazene os resultados
    predicted_conversions.extend(predicted_conversion)
# Converta os resultados em um DataFrame para análise
predicted conversions df = pd.DataFrame(predicted conversions, columns=['Taxa de Conversão Pre
# Calculando estatísticas descritivas
statistics df = predicted conversions df.describe()
print(statistics df)
         Taxa de Conversão Prevista (%)
    count
                        60000.000000
                            4.502267
    mean
    std
                            1.438360
                            2.171548
    min
    25%
                            3.294584
    50%
                            4.480633
    75%
                            5.685811
                            6.959636
    max
fig = px.histogram(predicted conversions df, x='Taxa de Conversão Prevista (%)',
                    title='Distribuição da Taxa de Conversão Prevista',
                    labels={'Taxa de Conversão Prevista (%)': 'Taxa de Conversão (%)'},
                    nbins=30,
                    opacity=0.85,
                    color discrete sequence=['indianred'])
fig.update layout(
    xaxis title='Taxa de Conversão (%)',
    yaxis_title='Contagem',
    hangan-0 2
```

```
width=800,
height=500
)
fig.show()
```

Distribuição da Taxa de Conversão Prevista

Entrega

Siga esses passos para entregar sua prova.

- 1. Crie um repositório no GitHub para essa entrega.
- 2. Submeta seu desenvolvimento neste repositório.
- 3. Garanta que o repositório é publicamente acessível (eliminatório).
- 4. No Google forms da prova, submeta a URL do repositório.