

VIV-2F				
Y X=25	120	125	130	
P	0,2=0,05/0,25	0,6=0,15/0,25		
		10,00,10,20	0,2=0,05/0,25	

M[Y|X=25]= 125 - yeurshive u.o. A1 (25;125)

Y X=30	125	130
P	0,54	0,46

M[Y|X=30]=127,3 $A_2(30;127,3)$

п-мерные случайные величины

Необходимым и достаточным условием измеримости системы функций является условие:

$$\forall x_1, x_2, ..., x_n \quad \{\omega : \xi_1(\omega) < x_1, \xi_2(\omega) < x_2, ..., \xi_n(\omega) < x_n\} \in \mathcal{A}$$

Поэтому основной характеристикой п-мерной СВ $\xi = (\xi_1, \xi_2, ..., \xi_n)$ является функция распределения

$$F(x_1, x_2, ..., x_n) = P(\xi_1 < x_1, \xi_2 < x_2, ..., \xi_n < x_n).$$

Свойства функции распределения аналогичны свойствам функции распределения одномерной СВ.

Свойства функции распределения $F(x_1, x_2, ..., x_n)$.

- $F(x_1, x_2, ..., x_n)$ неубывающая функция по каждому из своих аргументов
- $\lim_{x_1 \to \infty} F(x_1, x_2, ..., x_n) = 0, \forall i \in \overline{1, n}, \quad \lim_{x_1, x_2, ..., x_n \to \infty} F(x_1, x_2, ..., x_n) = 1$

