Mukesh Patel School of Technology Management & Engineering

Course Policy Document

<u>Course Name - (Code):</u> Computer Vision (702AI0C017)

Program and Semester: B Tech (Comp), MBA Tech (CE), Sem VIII, BTech AIDS semester VI, BTech Intg (CE) Sem XII	Pre-requisite Course: Programming concepts and Image Processing fundamentals					
	Credit Details:	L	T	P	С	Н
Academic Year: 2024-25		2	0	2	3	4
Name of Course Faculty: Program: B Tech Intg (CE) Contact Details: archana.bhise@nmims.edu	Faculty associated with the course: - 1. Dr. Shailendra Aote (Navi Mumbai campus) 2. Dr. Supriya Agrawal (Mumbai campus)					
Office Hours: 9:00 am – 5:00 pm						

Pre-Course Activity:

- Understanding the difficulties in handling image datasets
- Revisit the basics of image processing
- Familiarize yourself with Python programming
- Get familiar with OpenCV (Open Source Computer Vision) library

Course link: MS Teams

CV_BTI_B_2024_25_TH | General | Microsoft Teams

1. Introduction to the Course

1.1Importance of the Course

1.1.1 Domain Relevance:

Computer vision is a rapidly evolving field that deals with how computers can gain understanding from digital images or videos. Its applications span across various domains such as healthcare, automotive, security, and entertainment. Understanding computer vision is crucial for developing technologies like facial recognition, medical imaging analysis, autonomous driving, etc.

1.1.2 Industry Relevance:

The industry demand for computer vision experts is growing exponentially as businesses seek to leverage visual data for improving products and services. From quality control in manufacturing to enhancing user experiences with augmented reality, the applications of computer vision are vast and impactful. This course prepares students for high-demand roles in tech companies, startups, and research institutions focused on innovative visual data solutions.

1.2Objectives of the Course:

1.2.1 The objective of this course is to provide an introduction of Computer Vision concepts and its application.

2. Course Outcomes (COs), Mapping with Program Outcomes (POs), and Program Specific Outcomes (PSOs)

- **2.1**Course Outcomes (COs): After completion of the course, students will be able to;
 - **2.1.1 CO1:** Describe the fundamental image processing techniques required for computer vision.
 - **2.1.2 CO2:** Apply features extraction and image segmentation techniques.
 - **2.1.3** CO3: Understand the concept of image classification.
 - **2.1.4 CO4:** Analyse applications using computer vision techniques.

2.2Program Outcomes (POs):

- **2.2.1 PO-1:** An ability to apply knowledge of mathematics, science, and engineering for problem solving.
- **2.2.2 PO-2:** An ability to research, design and conduct experiments, as well as to analyze and interpret data.
- **2.2.3 PO-3:** An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
- **2.2.4 PO-4:** An ability to function effectively on teams to accomplish a common goal.
- **2.2.5 PO-5:** An ability to identify, formulate and provide effective IT solution for engineering problems.
- **2.2.6 PO-6:** An understanding of professional, legal, security and social issues and responsibilities.
- **2.2.7 PO-7:** An ability to communicate effectively with a range of audiences.
- **2.2.8 PO-8:** The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- **2.2.9 PO-9:** Recognition of the need for and an ability to engage in continuing professional development and self-learning.
- **2.2.10 PO-10:** An ability to apply ethical principles in development of IT solutions.
- **2.2.11 PO-11:** An ability to use the techniques, skills, and modern engineering tools necessary for developing effective IT solutions.
- **2.2.12 PO-12:** An ability to identify and analyze user needs and take them into account in the selection, creation/integration, evaluation and administration of IT-based solutions.

2.3Program Specific Outcomes (PSOs):

2.3.1 PSO-1: Demonstrate an ability to visualize, architect and create appropriate solutions for IT related projects.

2.3.2 PSO-2: Demonstrate an ability to professionally manage, monitor and safeguard IT resources.

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2											
CO2	2	2	2											
CO3	2	2	2											
CO4	2	2	2		3								3	

Mapping Levels: 1- High, 2-Medium, 3-Low

2.4 Student Outcomes (SOs) (for ABET accredited programs):

- **2.4.1 SO-1:** Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- **2.4.2 SO-2:** Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- **2.4.3 SO-3:** Communicate effectively in a variety of professional contexts.
- **2.4.4 SO-**4: Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- **2.4.5 SO-5**: Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- **2.4.6 SO-**6: Identify and analyze user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing-based systems.

3. Teaching-learning methodology

3.1 Instruction Plan

Lecture No.	Торіс	Teaching Method *	Blooms Level	Resources (Books)	COs mapped	Assessment and Evaluation			
	Unit 1: Introduction								
1.	The Process of Recognition, Tackling the Recognition Problem	Whiteboard, PPT	Understanding	T1, R1	CO1	Class test-1, TEE			

		T		1		1			
2.	Introduction to Computer Vision Low-level, Mid-level, High-level		Understanding	T1, R1	CO1	Lab performance, Class test-1, TEE			
3.	Overview of Diverse Computer Vision Applications		Understanding	T1, R1	CO1	Class test-1, TEE			
		Unit 2: Fea	ture Extraction	1					
4.	Global and regional features		Applying	T2, R1, R2	CO2	Class test-1, TEE			
5.	DOG		Applying	T2, R1, R2	CO2	Lab performance, Class test-1, TEE			
6.	HOG		Applying	T2, R1, R2	CO2	Lab performance, Class test-1, TEE			
7.	Corner and Interest Point Detection	Whiteboard,	Applying	T2, R1, R2	CO2	Lab performance, Class test-1, TEE			
8.	Local invariant feature detectors and descriptors	PPT	Applying	T2, R1, R2	CO2	Class test-1, TEE			
9.	SIFT		Applying	T2, R1, R2	CO2	Lab performance, Class test-1, TEE			
10.	SURF		Applying	T2, R1, R2	CO2	Class test-1, TEE			
11.	local texture representation using filters		Applying	T2, R1, R2	CO2	Class test-1, TEE			
	Unit 3: Image Segmentation								
12.	Image Segmentation by Clustering Pixels		Applying	T1, R1	CO2	Lab performance, Class test-2, TEE			
13.	The watershed Algorithm		Applying	T1, R1	CO2	Class test-2, TEE			
14.	Mean-Shift	Whiteboard,	Applying	T1, R1	CO2	Class test-2, TEE			
15.	Motion Segmentation: Optical Flow	PPT	Applying	T1, R1	CO2	Class test-2, TEE			
16.	Background subtraction		Applying	T1, R1	CO2	Lab performance, Class test-2, TEE			
		Unit 4: 3D V	ision and Motio	n					
17.	3D vision		Understanding	T1, T2	CO1	Class test-2, TEE			
18.	Projection schemes for three-dimensional vision		Understanding	T1, T2	CO1	Class test-2, TEE			
19.	shape from shading		Understanding	T1, T2	CO1	Class test-2, TEE			
20.	Tackling the Perspective n- point Problem	Whiteboard, PPT	Understanding	T1, T2	CO1	Class test-2, TEE			
21.	Invariants and Perspective		Understanding	T1, T2	CO1	Class test-2, TEE			
22.	Image Transformations		Understanding	T1, T2	CO1	Class test-2, TEE			
23.	Camera Calibration		Understanding	T1, T2	CO1	Class test-2, TEE			
24.	Motion		Understanding	T1, T2	CO1	Class test-2, TEE			
	Unit 5:	Real-Time Pa	ttern Recognitio	on Systems					
25.	Automated Visual Inspection		Understanding	R1, R2	CO3, CO4	TEE			
26.	Inspection of Cereal Grains	Whiteboard,	Applying	R1, R2	CO3, CO4	TEE			
27.	Inspection of Cereal Grains	PPT	Applying	R1, R2	CO3, CO4	TEE			
28.	Surveillance		Understanding	R1, R2	CO3, CO4	Lab performance, TEE			

29.	In-Vehicle Vision Systems	Understanding	R1, R2	CO3, CO4	TEE
30.	In-Vehicle Vision Systems	Understanding	R1, R2	CO3, CO4	TEE

Text Books:

- 1. E. R. Davies, Matthew Turk, Advanced Methods and Deep Learning in Computer vision, Academic Press Inc, 2021.
- 2. D. Forsyth, J. Ponce, Computer Vision: A Modern Approach, 2nd Edition, Pearson Education India, 2015.

Reference Books:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.
- 2. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, 1st Edition, Cambridge University Press, June 18, 2012.

Note: The latest edition of books should be referred.

4. Assessment and Evaluation Scheme

	Internal Continuous Assessment (ICA) (50 Marks)										
	Class Tests	(20 Marks)	Term-work (30 Marks)								
Assessment Component	Class Test-1	Class Test-2	Lab Performance	Viva/ Quiz/ Class Participation	Mini project/ research paper publication						
Marks	10	10	10	10	10						

4.1 Internal Continuous Assessment (ICA) – 50 marks

Assessment of mini projects/ acceptance of research paper publication will be based on the successful implementation and relevance of recent applications. Evaluation of lab assignments will be based on correctness and timely submission Late submissions will be penalized. It is important that all the assignments and lab submissions are done before the deadline.

One of the components of class participation is question answer session in the class. Assessment will be based on the correctness of answer given by the student.

4.2 Term End Examination (TEE) – (100 marks scaled down to 50)

A 100-mark TEE with 3 hours of duration will be conducted at the end of the semester. Marks scored will be scaled to 50. There will be 7 questions, each for 20 marks. Usually, Q1 is a compulsory question and any 4 from the remaining 6 are to be solved. However, students must refer to the instructions written on the TEE question paper for better clarification.

4.3 Course Passing Criteria

- **4.3.1** ICA (50 marks) No minimum marks
- **4.3.2** TEE (100 marks scaled to 50) 40% required for passing
- **4.3.3** (ICA + TEE) (100 marks) 50% required for passing

4.4 Assessments and Mapping to Course Outcomes

		Term End Examination (TEE)				
Course Outcomes	Class Test-1	Class Test-2	Lab Performance	QA in class/ Quiz	Mini Project/ Research paper publication	TEE
CO1	Y	Y	Y	Y	Y	Y
CO2	Y	Y	Y	Y	Y	Y
CO3			Y	Y	Y	Y
CO4			Y	Y	Y	Y

5. Laboratory details

The following 10 programming exercises will form the submission for laboratory coursework.

Exp.	Week no.	Programming Topic	Mapped CO
1.	1	 Determine Image gradient using Sobel filter for the given image. Change the parameters to observe the effect on output image Comment on the results before and after changing the parameters 	CO1
2.	2	 Determine Difference of Gaussian for the given image Use different pairs of standard deviations to detect fine and broad edges Comment on the results before and after changing the parameters 	CO2
3.	3	 Determine Histogram of Gradients for the given image Use different pairs of standard deviations to detect fine and broad edges Comment on the results before and after changing the parameters 	CO2
	4	Mini Project (Topic approval)	All COs
4.	5	 Apply Harris corner detector to detect corners in an image. Apply the techniques on different images Change the parameters to observe the effect on output image. Comment on the results before and after changing the parameters 	CO2
5.	6	 Determine interest points using SIFT parameters. Use interest points to match corner points of two images. Rotate and scale one image and match corner points Comment on the results before and after changing the parameters 	CO2
6.	7	Use K-means algorithm to segment the imageChange the value of K and observe the effect	CO3
	8, 9	Final presentation and submission of Mini Project	All COs
7.	10	Use Mean Shift algorithm to segment imagesChange the values of parameters and observe the effect	CO3
8.	11	 Use Gabor filter to identify objects of an image Apply the techniques on different images Change the parameters to observe the effect on output image. Comment on the results before and after changing the parameters 	
9.	12	- Use GMM for Background subtraction to segment an image	CO4

		- Apply the techniques on different images	
		- Change the parameters to observe the effect on output image.	
		- Comment on the results before and after changing the parameters	
		- Determine depth image from the given stereo images	
10.	13	- Change the parameters to observe the effect on output image.	CO4
		- Comment on the results before and after changing the parameters	
	14, 15	- Review of Mini Project	All COs

6. Tutorial Plan

Not applicable to this course.

7. Course Material

References and lab manuals will be uploaded on MS Teams by faculty every week.

8. GenAI Usage

- **8.1Pre-class Activity:** Provide interactive simulations and visualizations of image processing techniques and computer vision algorithms. GenAI can help generate and explain these visual tools, making abstract concepts such as convolutional filters, edge detection, and feature extraction more tangible.
- **8.2 In-class Activity:** For mini projects, students can use GenAI tools to analyze image data, classify objects, detect features, and enhance images.

9. Academic Integrity Statement

Original work expected from students for all of the <u>assigned assessment work</u>. Copying in any form not acceptable and will invite strict disciplinary action. Evaluation of corresponding component will be affected proportionately in such cases. Plagiarism detection software will be used to check plagiarism wherever applicable. Academic integrity is expected from students in all components of course assessment.

* Only Teaching Method in the Instruction Plan for the course may vary for different faculty teaching the course, rest of the Course Policy Document will not change.