CS 498ABD Spring 2019 — Homework 2 Solutions

Exercise 2. This is mainly to make you work out a simple distinct elements analysis for yourself. Here is a variant of the algorithm we saw in lecture. Instead of using an ideal hash function h we choose a random hash function $h:[n]\to[n]$ from pairwise-independent hash family \mathscr{H} . Let Z be the minimum hash value seen in the stream. Suppose the number of distinct elements d is in the range $[2^i,2^{i+1})$. Prove that $P[Z\in[n/2^{i+3},n/2^{i-2})]>c$ for some fixed constant c. Thus n/Z gives a constant factor estimate for d with probability at least c.

Solution: We make use of the observation that $Z \in [n/2^{i+3}, n/2^{i-2})$ if and only if nothing gets hashed into $[1, n/2^{i+3})$, and something gets hashed into $[1, n/2^{i-2})$. Specifically, we compute lower bounds on the probability of each event individually, and then use the union bound to lower bound $P[Z \in [n/2^{i+3}, n/2^{i-2})]$:

$$P[A \land B] = 1 - P[\bar{A} \lor \bar{B}] \ge 1 - P[\bar{A}] - P[\bar{B}].$$

We can bound the probability that nothing is hashed into $[1, n/2^{i+3})$ using Markov's Inequality. Let X_j be indicator random variable for the event that the j-th distinct item is hashed into $[1, n/2^{i+3})$, and let $X = \sum_j X_j$ be the random variable for the number of items hashed into $[1, n/2^{i+3})$. Since $P[X_j = 1] \le 1/2^{i+3}$, $E[X] \le d/2^{i+3}$. By Markov's inequality,

$$P[X \ge 1] \le \frac{d}{2^{i+3}} \le \frac{1}{4}.$$

We can bound the probability that something is hashed into $[1, n/2^{i-2})$ using Chebyshev's inequality. Let Y_j be the indicator random variable for the event that the j-th distinct item is hashed into $[1, n/2^{i-2})$, and $Y = \sum_j Y_j$ be the random variable for the number of items hashed into $[1, n/2^{i-2})$. Taking a very loose bound of $P[Y_j = 1] \ge 1/2^{i-1}$, we get $E[Y] \ge d/2^{i-1}$, and since the Y_j 's are pairwise independent indicator random variables,

$$Var[Y] = \sum_{i} Var[Y_{i}] \le \sum_{i} E[Y_{i}^{2}] = \sum_{i} E[Y_{i}] = E[Y],$$

By Chebyshev's inequality,

$$P[Y = 0] = P[Y \le E[Y] - E[Y]] \le P[|Y - E[Y]| \ge E[Y] \le \frac{E[Y]}{E[Y]^2} = \frac{1}{E[Y]} \le \frac{2^{i-1}}{d} \le \frac{1}{2}.$$

Putting the whole thing together gives

$$P[Z \in [n/2^{i+2}, n/2^{i-1})] \ge 1 - \frac{1}{4} - \frac{1}{2} = \frac{1}{4}.$$

Solution (More Careful Analysis): Here we will use better analysis than in the previous version to bound the probability that Z falls into the smaller interval $\lfloor n/2^{i+2}, n/2^{i-1} \rfloor$. This occurs if and only if nothing gets hashed into $\lfloor 1, n/2^{i+2} \rfloor$, and something gets hashed into $\lfloor 1, n/2^{i-1} \rfloor$. For brevity, we will omit details that are analogous to those in the previous analysis.

• If $n \le 2^{i+2}$, the interval $[1, n/2^{i+2})$ is empty so $P[X \ge 1] = 0$. Since $P[Y_i = 1] \ge 1/2^{i-1} - 1/n$, $E[Y] \ge d/2^{i-1} - d/n \ge d/2^{i-1} - 1$, so by Chebyshev's inequality,

$$P[Y = 0] \le \frac{1}{E[Y]} \le \frac{2^{i-1}}{d - 2^{i-1}} \le \frac{1}{2},$$

and thus

$$P[Z \in [n/2^{i+2}, n/2^{i-1})] \ge \frac{1}{2}.$$

• Now suppose $n > 2^{i+2}$.

Since $P[X_j = 1] \le 1/2^{i+2}$, $E[X] \le d/2^{i+2}$. By Markov's inequality,

$$P[X \ge 1] \le \frac{d}{2^{i+2}}.$$

Since $P[Y_j = 1] \ge 1/2^{i-1} - 1/n$, $E[Y] \ge d/2^{i-1} - d/n \ge d/2^{i-1} - d/2^{i+2} = 7d/2^{i+2}$. By Chebyshev's inequality,

$$P[Y = 0] \le \frac{1}{E[Y]} \le \frac{2^{i+2}}{7d}.$$

By the union bound,

$$P[Z \in [n/2^{i+2}, n/2^{i-1})] \ge 1 - \frac{d}{2^{i+2}} - \frac{2^{i+2}}{7d}.$$

Since $d \in [2^i, 2^{i+1})$, $d = \alpha 2^i$ for some $\alpha \in [1, 2)$. Substituting this into the right hand side, we want to lower bound the function $f(\alpha) = 1 - \frac{\alpha}{4} - \frac{4}{7\alpha}$ on the interval [1, 2]. f has negative second derivative on the interval $\alpha \in [1, 2]$ and thus takes its minimum at one of the endpoints. $f(1) = \frac{5}{28}$ and $f(2) = \frac{3}{14}$, so we take the smaller of the two and obtain

$$P[Z \in [n/2^{i+2}, n/2^{i-1})] \ge \frac{5}{28}.$$

In either case, $P[Z \in [n/2^{i+2}, n/2^{i-1})] \ge c$ for some c > 0, as desired.

Exercise 3. We saw how to estimate the number of distinct elements from a stream. Now we consider the problem of sampling nearly uniformly from the set of distinct elements. Consider the BJKST algorithm we saw in lecture that used a random hash function $h:[n]\to[n^3]$ from a pairwise independent hash family \mathscr{H} . Now assume that we instead use a 3-wise independent hash family. The algorithm stores $t=1/\epsilon^3$ elements associated with the smallest t hash values seen and at the end of the algorithm outputs one of them uniformly at random. Our goal is to show that each element $i\in[n]$ is output with probability at least $(1-10\epsilon)/d$ (i.e., nearly uniform). (You may assume that ϵ is smaller than some constant like 1/2 if it makes the calculations easier.)

To this end, let b_1, b_2, \ldots, b_d are the distinct values in the stream. Assume $d > 1/\epsilon^3$ for otherwise we can store all of them and output a uniformly sampled element. Observe that an element b_i is among the t remaining elements if each of the following events all occur.

- (a) $h(b_i) \leq \lceil (1-\epsilon)tN/d \rceil$.
- (b) The number of other elements b_i $(j \neq i)$ such that $h(b_i) < \lceil (1 \epsilon)tN/d \rceil$ is at most t 1.
- (c) $h(b_i) \neq h(b_i)$ for all $j \neq i$.

Show that the above events all occur with probability close to t/d via the following steps.

- 1. Let Z be an indicator for $h(b_i) \le \lceil (1 \epsilon)tN/d \rceil$. What is P[Z = 1]?
- 2. Conditioned on Z=1, show that the probability that more than t-1 of the remaining items $(b_j$ where $j \neq i)$ has value $< \lceil (1-\epsilon)tN/d \rceil$ is at most $(1+\epsilon)\epsilon$.
- 3. Show that the probability of a hash collision with b_i is at most $\epsilon t/d$.
- 4. Put the above together to show that b_i is one of the t selected elements with probability $\geq (1-10\epsilon)t/d$, hence output with probability $\geq \frac{1-10\epsilon}{d}$.
- 5. Extra credit: Show that the probability that b_i is output is at most $(1+10\epsilon)/d$.

Make note in particular of where you use the assumption that h is 3-wise independent.

Solution: Let $Z \in \{0,1\}$ indicate the event that $h(b_i) \le \lceil (1-\epsilon)tN/d \rceil$. For $j \ne i$, let $Y_j \in \{0,1\}$ indicated the event that $h(b_j) < \lceil (1-\epsilon)tN/d \rceil$. If Z = 1, $\sum_{j\ne i} Y_j < t$, and $h(b_j) \ne h(b_i)$ for all $j \ne i$, then i will be included in the output. We claim that for $t = 1/\epsilon^3$, this probability is at least $(1-10\epsilon)/d$.

We first observe that

$$P[Z=1] = \frac{\lceil (1-\epsilon)tN/d \rceil}{N} \ge (1-\epsilon)\frac{t}{d}.$$
 (1)

Now consider the sum $\sum_{j\neq i} Y_j$. For each $j\neq i$, since $h(b_j)$ is independence of $h(b_i)$, we have

$$E[Y_j \mid Z] = P[h(b_j) \le \lceil (1 - \epsilon)tN/d \rceil - 1]$$

$$= \frac{\lceil (1 - \epsilon)tN/d \rceil - 1}{N} \le (1 - \epsilon)\frac{t}{d}.$$
(2)

The expected sum is

$$\mathbb{E}\left[\sum_{j\neq i} Y_j \left| Z \right| \sum_{j\neq i} \mathbb{E}\left[Y_j \left| Z\right| \stackrel{\text{(a)}}{\leq} (1-\epsilon) \frac{d-1}{d} t \le (1-\epsilon)t\right]\right]$$
(3)

by (a) inequality (2). The expected variance is

$$\operatorname{Var}\left[\sum_{j\neq i}Y_{j} \middle| Z\right] \stackrel{\text{(b)}}{=} \sum_{j\neq i}\operatorname{Var}\left[Y_{j} \middle| Z\right] \stackrel{\text{(c)}}{\leq} \sum_{j\neq i}\operatorname{E}\left[Y_{i} \middle| Z\right] \stackrel{\text{(d)}}{\leq} (1-\epsilon)t. \tag{4}$$

(b) since h is 3-wise independent, (c) $Y_i \in \{0, 1\}$, and (d) inequality (3). Now

$$P\left[\sum_{j\neq i} Y_{j} > t - 1 \left| Z\right] = P\left[\sum_{j\neq i} Y_{j} \ge t \left| Z\right] = P\left[\sum_{j\neq i} Y_{j} - E\left[\sum_{j\neq i} Y_{j}\right] \ge t - E\left[\sum_{j\neq i} Y_{j}\right] \right| Z\right]$$

$$\stackrel{\text{(e)}}{\leq} P\left[\sum_{j\neq i} Y_{j} - E\left[\sum_{j\neq i} Y_{j}\right] \ge \epsilon t \left| Z\right] \le P\left[\left|\sum_{j\neq i} Y_{j} - E\left[\sum_{j\neq i} Y_{j}\right]\right| \ge \epsilon t \left| Z\right]$$

$$\stackrel{\text{(f)}}{\leq} \frac{\text{Var}\left[\sum_{j\neq i} Y_{j} \left| Z\right]}{\epsilon^{2} t^{2}} \stackrel{\text{(g)}}{\leq} \frac{(1+\epsilon)t}{\epsilon^{2} t^{2}} \stackrel{\text{(h)}}{=} (1+\epsilon)\epsilon$$

$$(5)$$

by (e) the upper bound on the mean in (3), (f) Chebyshev's inequality, (g) the upper bound on the variance (4) above, and (h) plugging in $t = 1/\epsilon^3$.

Now we have

$$P\left[Z=1 \text{ and } \sum_{j\neq i} Y_j \leq t-1\right] = P[Z=1]P\left[\sum_{j\neq i} Y_j \leq t-1 \left| Z=1\right]\right]$$

$$= P[Z=1]\left(1-P\left[\sum_{j\neq i} Y_j > t-1 \left| Z=1\right]\right)$$

$$\geq (1-\epsilon)\frac{t}{d}(1-(1+\epsilon)\epsilon).$$

The probability that Z=1, $\sum_{j\neq i}Y_j\leq t-1,$ and $h(b_j)\neq h(b_i)$ for all $j\neq i,$ is

$$\begin{split} & \mathbf{P} \left[Z = 1, \sum_{j \neq i} Y_j \leq t - 1, h(b_j) \neq h(b_i) \text{ for all } j \neq i \right] \\ & \overset{(\mathbf{i})}{\geq} \mathbf{P} \left[Z = 1, \sum_{j \neq i} Y_j \leq t - 1 \right] - \mathbf{P} \left[h(b_j) = h(b_i) \text{ for some } j \neq i \right] \\ & \overset{(\mathbf{j})}{\geq} \mathbf{P} \left[Z = 1, \sum_{j \neq i} Y_k \leq t - 1 \right] - \sum_{j \neq i} \mathbf{P} \left[h(b_j) = h(b_i) \right] \\ & \overset{(\mathbf{k})}{\geq} (1 - \epsilon) (1 - (1 + \epsilon)\epsilon) \frac{t}{d} - \frac{(d - 1)}{N} \\ & \overset{(\mathbf{l})}{\geq} (1 - \epsilon) (1 - (1 + \epsilon)\epsilon) \frac{t}{d} - \epsilon \frac{t}{d}. \end{split}$$

by (i,j) the union bound, (k) h is pairwise independent, and (l) uses $(d-1)/N \le 1/n^2 \le 1/\epsilon^2 d = \epsilon t/d$ since $\epsilon^2 d \le n^2$. One can now verify that for sufficiently small $\epsilon > 0$,

$$(1-\epsilon)(1-(1+\epsilon)\epsilon)-\epsilon \ge 1-10\epsilon$$
.

(In fact,
$$(1-\epsilon)(1-(1+\epsilon)\epsilon) - \epsilon = (1-\epsilon)(1-\epsilon-\epsilon^2) - \epsilon = 1-3\epsilon + \epsilon^3 \ge 1-3\epsilon$$
.)

Problem 4. In class, we saw how to the AMS sampling procedure allows us to estimate the kth moment F^k in sublinear space for $k \ge 2$. Recall also that the AMS sampler still requires polynomial space because the variance of a single sample was polynomial. Here we will use AMS to estimate the entropy of a stream; in particular, we will show that we only need *logarithmic space* (modulo dependencies on ϵ and δ) to estimate the entropy.

Let $f \in \mathbb{Z}_{\geq 0}^n$ be frequency counts over n elements, and for each i, let $p_i = \frac{f_i}{m}$ be the corresponding probability distribution. The *entropy* of p is the quantity $\Phi = \sum_i p_i \ln \frac{1}{p_i}$, where $0 \ln \left(\frac{1}{0} \right) = 0$. Our high-level goal is to obtain an $(1 \pm \epsilon)$ -multiplicative approximation to the entropy, but there is a technical issue because the entropy can be zero. We instead seek a $(1 \pm \epsilon)$ -multiplicative approximation of $1 + \Phi$, which converts to a $(1 \pm 2\epsilon)$ -multiplicative approximation of Φ if $\Phi \geq 1$ and a 2ϵ -additive approximation of Φ if $\Phi \leq 1$. You may assume m is larger than a fixed constant, say 42. Let $g(\ell) = \frac{\ell}{em} \ln \left(\frac{me}{\ell} \right)$.

- 1. Show that $1 + \Phi = e \sum_{i \in [n]} g(f_i)$
- 2. Show that $g(\ell) \ge g(\ell 1)$ for $\ell \le m$.
- 3. Show that for $\ell \leq m$, $g(\ell) g(\ell 1) \leq \frac{1 + \ln m}{m_{\ell}}$
- 4. Let Y be the AMS sample for the quantity $\frac{1}{e}(1+\Phi)=\sum_i g(f_i)$. We know from class that $\mathrm{E}[Y]=\frac{1}{e}(1+\Phi)$. Show that

$$Var[Y] \le c_1(1 + \ln(m))(1 + \Phi) = ec_1(1 + \ln(m))E[Y]$$

for some constant $c_1 > 0$.

5. Let $t = \frac{c(1+\ln m)}{\epsilon^2}$ for some (suitable) constant c > 0. For $i \in [t]$, let Y_i be an independent instance of the AMS sample for $\sum_i g(f_i)$, and let $Z = \frac{1}{t} \sum_{i=1}^t Y_i$ be the sum. Show that

$$P[|eZ - (1 + \Phi)| \ge \epsilon(1 + \Phi)] \le \frac{1}{4}$$

for some constant c > 0.

6. Finally, explain how to arrange $O(\ln(1/\delta)\ln(m)/\epsilon^2)$ independent AMS samples to obtain a $(1 \pm \epsilon)$ approximation of $1 + \Phi$ with probability $\geq 1 - \delta$.

Solution:

1. We have

$$1 + \Phi = e\left(\frac{1}{e} + \frac{1}{e}\Phi\right) = e\left(\sum_{i=1}^{n} \frac{f_i}{em}\left(1 + \ln\left(\frac{m}{f_i}\right)\right)\right)$$
$$= e\sum_{i=1}^{n} \frac{f_i}{me} \ln\left(\frac{me}{f_i}\right) = e\sum_{i=1}^{n} g(f_i).$$

2. The derivative of *g* is

$$g'(x) = \frac{d}{dx} \left(\frac{\ell}{em} \ln \left(\frac{me}{\ell} \right) \right)$$
$$= \frac{\ln(me/\ell)}{me} - \frac{\ell}{me} \cdot \frac{1}{me/\ell} \cdot \frac{me}{\ell^2} = \frac{1}{me} \left(\ln \left(\frac{me}{\ell} \right) - 1 \right),$$

which is ≥ 0 iff $m \geq \ell$.

3. We have

$$g(\ell) - g(\ell - 1) = \frac{\ell}{me} \ln\left(\frac{me}{\ell}\right) - \frac{\ell - 1}{me} \ln\left(\frac{me}{\ell - 1}\right)$$
$$= \frac{\ln(me/\ell)}{me} + \frac{\ell - 1}{me} \ln\left(\frac{\ell - 1}{\ell}\right) \stackrel{\text{(a)}}{\leq} \frac{\ln(me)}{me},$$

where (a) observes that $ln(\ell - 1) < ln(\ell)$. Also

$$g(1) - g(0) = \frac{\ln(me)}{me}$$

4. AMS proof...

$$Var[Z] = \sum_{i} \frac{f_{i}}{m} \sum_{\ell=1}^{f_{i}} \frac{m^{2}}{f_{i}} (g(\ell) - g(\ell-1))^{2}$$

$$\leq \sum_{i} \frac{f_{i}}{m} \sum_{\ell=1}^{f_{i}} \frac{m^{2}}{f_{i}} \left(\frac{1 + \ln(m)}{me}\right) (g(\ell) - g(\ell-1))$$

$$= \frac{1 + \ln(m)}{e} \sum_{i}^{n} g(f_{i}) = \frac{1 + \ln(m)}{e^{2}} (1 + \Phi).$$

We can take $c_1 = 1/e^2$.

5. For $c_1 = 1/e^2$, we can take c = 4. Then we have

$$P[|eZ - (1+\Phi)| \ge \epsilon (1+\Phi)] = P\Big[|Z - E[Z]| \ge \frac{\epsilon}{e} (1+\Phi)\Big] \stackrel{\text{(b)}}{\le} \frac{e^2 \operatorname{Var}[Z]}{\epsilon^2 (1+\Phi)^2}$$

$$\stackrel{\text{(c)}}{\le} \frac{(1+\ln(m))}{t\epsilon^2 (1+\Phi)} \stackrel{\text{(d)}}{\le} \frac{1}{4(1+\Phi)} \stackrel{\text{(e)}}{\le} \frac{1}{4}$$

by (b) Chebyshev's inequality, (c) $Var[Z] = \frac{1}{t} Var[Y]$, (d) $t = 4/\epsilon^2$, and (e) $\Phi \ge 0$. (For larger c_1 , c_2 needs to be a little bit larger too.)

6. We use the median trick. Above, we showed that the average of $O(1/\epsilon^2)$ counters get a $(1 \pm \epsilon)$ -multiplicative approximation with probability of error at most (say) 1/4. To amplify the error down to δ , we use $O(\log(1/\delta))$ averages each of $O(1/\epsilon^2)$ samples, and output the median. By the Chernoff inequality, we will be within a $(1 \pm \epsilon)$ -multiplicative factor with probability at most δ .