

Gameboard

Maths

Newton-Raphson Method 3ii

# Newton-Raphson Method 3ii



It is given that  $f(x) = x^2 - \arctan x$  and that  $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$ .

### Part A Interval containing the root

Explain why the equation f(x) = 0 has a root in the interval 0.8 < x < 0.9.

The value of f(x) when x=0.8 is \_\_\_\_\_\_, and the value of f(x) when x=0.9 is \_\_\_\_\_\_. These values of f(x) have \_\_\_\_\_\_. Hence, as f(x) is a continuous function, there is a value of x in the interval 0.8 < x < 0.9 for which f(x)=0.

A root of an equation is a value of x for which f(x) =\_\_\_\_\_\_. Hence, there is a root of f(x) in the interval 0.8 < x < 0.9.

Items:

0.0772 1.348

different signs

 $1 \mid 0.0771$ 

the same sign

0

-0.0347

#### Part B Find the root

Use the Newton-Raphson method, with a first approximation 0.8, to find the next approximation to this root. Give your answer correct to 3 significant figures.

Adapted with permission from UCLES A-level Maths papers, 2003-2017.



Gameboard

Maths

Newton-Raphson Method 1ii

# Newton-Raphson Method 1ii



The diagram shows the curve with equation  $y = xe^{-x} + 1$ . The curve crosses the x-axis at  $x = \alpha$ .



Figure 1: A sketch of the curve  $y = xe^{-x} + 1$ .

### Part A x-coordinate of stationary point

Use differentiation to calculate the x-coordinate of the stationary point.

The following symbols may be useful: x

#### Part B Explain

lpha is to be found using the Newton-Raphson method, with  $f(x)=xe^{-x}+1$ .

Explain why this method will not converge to  $\alpha$  if an initial approximation  $x_1$  is chosen such that  $x_1 > 1$ .

Items:

| $egin{bmatrix} 	ext{normals} & 	ext{gradient} & egin{bmatrix} -1 \ \end{bmatrix} & 	ext{larger} & 	ext{smaller} & egin{bmatrix} 1 \ \end{bmatrix} & 	ext{0} & 	ext{value} & 	ext{tangents} & 	ext{intercept} \end{bmatrix}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Part C Values

lpha is to be found using the Newton-Raphson method, with  $f(x)=xe^{-x}+1.$ 

Use this method, with a first approximation  $x_1 = 0$ , to find the next three approximations  $x_2$ ,  $x_3$ ,  $x_4$ . Find  $\alpha$  correct to 3 significant figures.

Write down  $x_2$ .

Write down  $x_3$ , correct to 4 significant figures.

Write down  $x_4$ , correct to 4 significant figures.

Find  $\alpha$  correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 45 - Numerical Methods & Integration</u>



<u>Gameboard</u>

Maths

Roots and Iteration 3i

# Roots and Iteration 3i



#### Part A Sketch

By sketching two suitable graphs on a single diagram, find the number of roots to the equation

$$14 - x^2 = 3\ln x.$$



From your sketch, state how many roots there are to the equation

$$14 - x^2 = 3\ln x$$

### Part B Integer below $\alpha$

Find by calculation the largest integer which is less than the root  $\alpha$ .

### Part C Iteration

Use the iterative formula  $x_{n+1}=\sqrt{14-3\ln x_n}$ , with a suitable starting value to find  $\alpha$  correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 45 - Numerical Methods & Integration</u>



Gameboard

Maths

Roots and Iteration 1i

# **Roots and Iteration 1i**



It is required to solve the equation  $f(x) = \ln{(4x-1)} - x = 0$ .

| Part A Root existence                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|
| Show that the equation $f(x)=0$ has two roots, $lpha$ and $eta$ , such that $0.5 and 1.$                        |
| We find that $f(0.5) = oxed{0.5}$ , $f(1) = oxed{0.5}$ and $f(2) = oxed{0.5}$ .                                 |
| Since there is a $oxed{between f(0.5)}$ and $f(1)$ , there must be a root $lpha$ such that $0.5 < lpha < 1.$ As |
| there is also a $oxed{between \ f(1)}$ and $f(2)$ , there must be a root $eta$ such that $1.$                   |
| Items:                                                                                                          |
|                                                                                                                 |
|                                                                                                                 |

### Part B Iteration with g(x)

Let  $g(x) = \ln(4x - 1)$ . Use the iterative formula  $x_{r+1} = g(x_r)$  with  $x_0 = 1.8$  to find  $x_1$ ,  $x_2$ , and  $x_3$ , correct to 5 decimal places.

Give  $x_1$ 

Give  $x_2$ 

Give  $x_3$ 

Continue the iterative process with  $x_{r+1}=g(x_r)$  to find  $\beta$  correct to 3 decimal places.

# Part C New rearrangement h(x)

The equation f(x) = 0 can be rearranged into the form

$$x=h(x)=\frac{e^{ax}+b}{c}$$

where a, b and c are constants. Find h(x).

The following symbols may be useful: e, h, x

## Part D Iteration with h(x)

Use the iterative formula  $x_{r+1} = h(x_r)$  with  $x_0 = 0.8$  to find lpha correct to 4 decimal places.

#### Part E Root finding analysis

Show that the iterative formula  $x_{r+1} = g(x_r)$  will not find the value of  $\alpha$ . Similarly, determine whether the iterative formula  $x_{r+1} = h(x_r)$  will find the value of  $\beta$ .

The iterative formula  $x_{r+1}=g(x_r)$  will not converge to a root if  $oxed{ ext{near near that root.}}$ 

For g(x), differentiating we find that g'(x)= . Using the value for  $\alpha$  calculated in Part D, this gives  $g'(\alpha)=$  >1. Therefore the iterative formula  $x_{r+1}=g(x_r)$  will not converge to  $\alpha$ .

For h(x), differentiating we find that h'(x) = . Using the value for  $\beta$  calculated in Part B,  $h'(\beta) =$  > 1. Therefore the iterative formula  $x_{r+1} = h(x_r)$  will not converge to  $\beta$ .

Items:

### Part F Staircase diagrams

From the figures below, select the two figures that illustrate the iterations for  $x_{r+1} = g(x_r)$  and  $x_{r+1} = h(x_r)$ .



Figure 1: Graph of the iterative process for  $x_{r+1} = g(x_r)$  towards  $\beta$ .



**Figure 2:** Graph of the iterative process for  $x_{r+1} = g(x_r)$  towards  $\beta$ .



Figure 3: Graph of the iterative process for  $x_{r+1}=g(x_r)$  towards  $\beta.$ 



Figure 4: Graph of the iterative process for  $x_{r+1} = h(x_r)$  towards  $\alpha$ .



Figure 5: Graph of the iterative process for  $x_{r+1} = h(x_r)$  towards lpha.



Figure 6: Graph of the iterative process for  $x_{r+1}=h(x_r)$  towards lpha.

- Figure 1
- Figure 2
- Figure 3
- Figure 4

| Figure 5 |  | · |  |
|----------|--|---|--|
| Figure 6 |  |   |  |
|          |  |   |  |

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 45 - Numerical Methods & Integration</u>



Gameboard

Maths

Trapezium Rule 2ii

# Trapezium Rule 2ii





**Figure 1:** The diagram of the curve  $y = \ln (16 - 12x^2)$ .

Figure 1 shows part of the curve  $y = \ln(16 - 12x^2)$ . The region A is bounded by the curve and the lines x = 0, x = 1 and y = 0.

### Part A Trapezium Rule

Find an approximate value for A by using the trapezium rule, with two strips each of width  $\frac{1}{2}$ . Give your answer in the form  $a \ln b$ .

#### Part B Overestimate or underestimate

| Explain, using the diagram, whether the value obtained in Part A is an underestimate or overestimate for the area of $A$ . |
|----------------------------------------------------------------------------------------------------------------------------|
| the area of A.                                                                                                             |
| The diagram shows that for $0 \leq x \leq 1$ the value of $y$ is $oxed{ }$ and the curve has a                             |
| shape (the gradient of the curve is becoming more negative). Hence, the tops of the trapezia used in part                  |
| A all lie the curve, and so the area of the trapezia is an of the area of A.                                               |
| Items:  under positive underestimate negative convex overestimate concave above                                            |
| Part C Improving the approximation  Which of these options would improve the estimate of the area of $A$ ?                 |
| Use $4$ trapezia of width $\frac{1}{4}$ .                                                                                  |
| Ose 4 trapezia di widin 4.                                                                                                 |
| Use the same number of trapezia, but double their height.                                                                  |
| Use a larger number of trapezia with the same width, $\frac{1}{2}$ .                                                       |
| Use $4$ trapezia of width $\frac{1}{8}$ .                                                                                  |
|                                                                                                                            |
|                                                                                                                            |

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 45 - Numerical Methods & Integration</u>



Gameboard

Maths

Trapezium Rule 3i

# Trapezium Rule 3i



The value of  $\int_0^8 \ln{(3+x^2)}\,\mathrm{d}x$  obtained by using the trapezium rule with four strips is denoted by A.

#### Part A Trapezium Rule

Find the value of *A* correct to 3 significant figures.

# Part B Approximation of $\int_0^8 \ln{(9+6x^2+x^4)}\,\mathrm{d}x$

Write, in terms of A, an expression for an approximate value of  $\int_0^8 \ln{(9+6x^2+x^4)}\,\mathrm{d}x$ .

The following symbols may be useful: A

# Part C Approximation of $\int_0^8 \ln{(3e+ex^2)}\,\mathrm{d}x$

Write, in terms of A, an expression for an approximate value of  $\int_0^8 \ln{(3e+ex^2)}\,\mathrm{d}x$ .

The following symbols may be useful: A

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Numerical Methods &

**Integration** 



Gameboard

Maths

Area: Numerical Integration 2ii

# Area: Numerical Integration 2ii





Figure 1: The curve with equation  $y=\sqrt{1+x^3}$ , for  $2\leqslant x\leqslant 3$ .

Figure 1 shows the curve with equation  $y = \sqrt{1+x^3}$ , for  $2 \leqslant x \leqslant 3$ . The region under the curve between these limits has area A.

### Part A Bounding A

Using the figure below, fill in the blanks to explain why  $3 < A < \sqrt{28}$ .



Figure 2: A diagram showing rectangles with areas which bound A.

Two rectangles are shown in **Figure 2**. Both rectangles begin on the x-axis and have width one. The area of the smaller rectangle, which lies the curve, is . The area of the second rectangle, the top of which lies the curve, is . The rectangles have areas which bound A, and hence:

$$3 < A < \sqrt{28}$$

Items:



### Part B Improved bounds



Figure 3: The curve with equation  $y=\sqrt{1+x^3}$ , for  $2\leqslant x\leqslant 3$ , divided into 5 strips of equal width.

The region is divided into 5 strips, each of width 0.2. Use suitable rectangles with these strips to find improved lower and upper bounds for A. Give your answers to 3 significant figures.

Give the lower bound for A.

Give the upper bound for A.

Adapted with permission from UCLES A-level Maths papers, 2003-2017.