Enhancing accessibility in data science education:
lessons from a neuroscience undergraduate course

Theresa H. McKim, Ph.D.
Assistant Teaching Professor
University of Nevada, Reno (UNR)
07/19/2024

Pre-session survey: 6 questions

 Link to google form (anonymous): <u>https://forms.gle/rzPDtbgjZ4bGWPm36</u>

- Check access to google colab: https://colab.research.google.com
 - Use chrome browser
 - Click 'Sign in' in top right corner

Materials are available from my github account: https://github.com/tmckim/NTC 2024

Publicly available so anyone can access

Pre-session google form QR code:

Objectives for today

discuss & demonstrate ways to effectively teach coding to undergraduates

address & discuss solutions to barriers of entry for both instructors and students

share open access resources/materials

Code along demo: ease and accessibility of code notebooks

Motivation (the Why): combining data science & neuroscience

Core Competencies in Neuroscience Training

Undergraduate Training

- I. Conceptual Knowledge
- II. Analytic & Scientific Thinking

Ability to **collect, analyze, and interpret** quantitative information

Abilities in scientific inquiry, such as hypothesis development, experimental design, and data analysis & interpretation

- III. Rigorous & Responsible Conduct of Research (RCR)
- IV. Communication Skills
- V. Individual development & Professionalism

Graduate Training

- I. Conceptual Knowledge
- II. Research Skill Development

Proficiency in experimental design and scientific tools and techniques, including computer-based data handling

Proficiency in data analysis & interpretation

- III. Rigorous & Responsible Conduct of Research (RCR)
- IV. Communication Skills
- V. Career development & Professionalism

What students from a neurobiology lab course said

Coding skills are:

1 session (4 hr lab)

Accessible

- Use your own computer/tablet
- Free resources and online coding environments

Collaborative

- Shareable and work together with others
- Use resources created by others (free packages)
- Forums and answers online

Powerful

- Expedite data processing & analysis
- Quick statistical analysis
- Visualization and prediction

Credit: NS 479 - Neurotechniques lab students, UNR SP24

The How: Including coding in the curriculum

Exposure to coding

- Existing course short module
- Students edit code (see utility)
- Code could be optional (GUIs)

Discipline-based coding course(s)

- Class dedicated to coding in neuroscience context
- Design and write their own code
- May include novel research projects

Less independent coding Lower instructor proficiency

Integration of coding

- 1-2 hrs intro lessons (standalone modules)
- Edit code and begin to write their own
- Ask their own questions of data

More independent coding Higher instructor proficiency

The What: Resources for getting started

Data8 at UC Berkeley: https://www.data8.org/zero-to-data-8/intro.html

PMC8040835

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2020, 19(1):A94-A104

ARTICLE

Learning How to Code While Analyzing an Open Access Electrophysiology Dataset

Ashley Juavinett

Division of Biological Sciences, Neurobiology Section, UC San Diego.

PMC9053425

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2021, 20(1):A100-A110

ARTICLE

Pandemic Teaching: Using the Allen Cell Types Database for Final Semester Projects in an Undergraduate Neurophysiology Lab Course

Yi-Yun Ho¹, Andrea Roeser¹, Gwenda Law², and Bruce R. Johnson¹

¹Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853; ²Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853.

PMC10768818

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2023, 22(1):A66-A73

CASE STUDY

Mapping Human Neuronal Diversity in the Search for New Therapeutics: Using Real Human Neuron Data Sets to Build Student Quantitative Skills

Emma C. Milligan¹, Kaitlyn Casimo², Laurie Buchanan³, Bryant Hutson³, Sabrina Robertson¹

1Psychology and Neuroscience Department, University of North Carolina Chapel Hill, Chapel Hill, NC 27599; ²Allen Institute, Seattle, WA 98109; ³Office of Institutional Research and Assessment, University of North Carolina Chapel Hill, Chapel Hill, NC 27599.

PMC8040850

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2020, 19(1): A105-A112

ARTICLE

Non-Disposable Assignments for Remote Neuroscience Laboratory Teaching Using Analysis of Human Data

Sally B. Seraphin¹ and Shannon Stock²

¹Neuroscience Program, Trinity College, 300 Summit Street, Hartford, CT 06106. ²Mathematics and Computer Science, College of the Holy Cross, 1 College Street, Worcester, MA 01610.

Course Structure

- 3 cr. / No pre-reqs
- 2x per week / 75 mins

Modules

- 1. Data organization & tables
- 2. Data visualization & methods to work with data
- 3. Sampling & models
- 4. Hypothesis testing & experimental design
- 5. Neuro methods, datasets, analysis & sci comm

Weekly

Lecture / Code along

- Review/practice ?'s (15 min)
- Slides + code notebook (30 min)

Lab

- Code notebook (30 min)
 OR
- Practice worksheet

Lecture / Code along

- Review/practice ?'s (15 min)
- Slides + code notebook (30 min)

Lab

- Code notebook (30 min)OR
- Practice worksheet

Homework – code notebook

Semester

<u>Quizzes (5)</u>

- Hand write code
- Reference sheet

Projects (2)

Longer code notebook (2 weeks)

<u>Final</u> Presentation

 Communicate project results

Tech Stack: Accessible resources & materials

Code notebooks

Google colaboratory

- Requires google account

Python packages

Foundation:

- datascience
 - developed by UCB for teaching Data8
- NumPy

- matplotlib

Application:

- pandas

- seaborn

Other options for using Jupyter Notebooks

Jupyter Hub

- Distributions managed in the cloud (self or university)

Anaconda

ANACONDA

- Download locally to computer

Barriers to bringing coding into neuroscience courses

Ease of access to coding environments

Instructor knowledge of coding

 Unknown need of 'applied' vs. 'basic' programming courses

Student perceptions of coding

Addressing these requires:

Accessible, disciplinespecific coding resources for all educators

Code notebook demo

Notebook File:

https://colab.research.google.com/github/tmckim/NTC 2024/blob/main/PlottingNeuralDataDemo NTC2024.ipynb

All materials:

https://github.com/tmckim/NTC_2024

Coding skills will enable students to:

- Access & analyze large, open access datasets
- Perform statistics & visualization
 - Interpret & communicate results
- Apply knowledge toward computational modeling (neural networks, AI)
- Prepare for jobs, post-bacc research, grad school, etc.

Dorkenwald et al. (2024 preprint)

Resources from UCB Data8

- The Data8 Pedagogy Guide
- Data 8 Adoption Website
- Online Textbook
 Computational and

 Inferential Thinking: The

 Foundations of Data

 Science
- Example course website: <u>https://www.data8.org/materials-sp22/demo.html</u>
- YouTube videos

Data 8 Demo Class(Based off of UCB Spring 2022 materials)

Resources -

Example Calendar

This page offers links to specific notebooks in the following notebook rendering platforms: JupyterHub, Colab, and CodeSpace. See the Demo Hub, Colab, and CodeSpace columns in the table below. The HTML Notebooks column offers a non-interactive version of the notebook for quick viewing.

You can also view the entire repository of notebooks (rather than one at a time) on these platforms:

- Jupyterlite (or Jupyterlite(No Footprint)): This is a browser-based, serverless, no authentication needed instance of JupyterLab. The no-footprint version of these notebooks loads external data files and images from a public url as opposed to storing the external files in the repository.
- CodeSpace: This environment is offered via GitHub and can be accessed here. The README file explains in detail how to use this environment. Individual links to each assignment in the table below will open a CodeSpace as well as open the notebook.

Reference Notebooks: DataScience To Pandas

Slides and Discussion/Lab Worksheets: These are all located in the private repository for data 8. If you need access please contact: sean.smorris@berkeley.edu

Week	Lecture Number	Date	Торіс	Lecture	Reading	Lab Worksheets	Lab/HW/Project Title	HTML Notebooks	Demo Hub	Colab	CodeSpace
Week 1	1	Wed 01/19	Introduction	Slides, Demos, Video	1.1, 1.2, 1.3	Lab 01 Worksheet	Lab 01: Expressions	Lab 01	Lab 01	Lab 01	Lab 01
	2	Fri 01/21	Cause and Effect	Slides, Video	2		Homework 01 (Due Thu 01/27)	HW 01	HW 01	HW 01	HW 01
Week 2	3	Mon 01/24	Tables	Slides, Demos, Video	3	Lab 02 Worksheet	Lab 02: Table Operations	Lab 02	Lab 02	Lab 02	Lab 02
	4	Wed 01/26	Data Types	Slides, Demos, Video	4, 5						
	5	Fri 01/28	Building Tables	Slides, Demos, Video	6.1, 6.2		Homework 02 (Due Thu 02/03)	HW 02	HW 02	HW 02	HW 02
Week 3	6	Mon 01/31	Census	Slides, Demos, Video	6.3, 6.4	Lab 03 Worksheet	Lab 03: Data Types and Creating & Extending Tables	Lab 03	Lab 03	Lab 03	Lab 03
	7	Wed 02/02	Charts	Slides, Demos, Video	7, 7.1						
	8	Fri 02/04	Histograms	Slides, Demos, Video	7.2, 7.3		Homework 03 (Due Thu 02/10)	HW 03	HW 03	HW 03	HW 03
Week 4	9	Mon 02/07	Functions	Slides, Demos, Video	8, 8.1	Lab 04 Worksheet	Lab 04: Functions and Visualizations	Lab 04	Lab 04	Lab 04	Lab 04

Online resources: Finding datasets

Tons of large, open access datasets, with some examples*:

- https://openneuro.org/
- https://crcns.org/data-sets
- https://www.humanconnectome.org/
- https://www.nitrc.org/
- https://osf.io/
- https://openlists.github.io/
- https://www.nwb.org/example-datasets/

Resources: Online websites (notebooks w/code examples)

- https://mark-kramer.github.io/Case-Studies-Python/intro.html
- https://compneuro.neuromatch.io/proj ects/docs/datasets overview.html
- https://nwb4edu.github.io/Data_Scienc e_In_Python/SciPy.html
- https://pyforneuro.com/
- https://github.com/Columbia-Neuropythonistas/IntroPythonForNeuro scientists2023

0 4 13 D Q

Welcome! This online textbook is aimed primarily at students and researchers in neuroscience and cognitive psychology who want to learn how to work with and make sense of data using Python. It is also accessible for students with a computer science background who want to learn how to apply their skills to neuroscience. The textbook assumes no prior knowledge of Python, or any other programming language. If you do have prior knowledge of Python and want to learn how to apply it to neuroscience, you can skip the first few chapters and start with Chapter 4.

This book will teach you the fundamentals of Python, and how to use the GitHub Copilot AI assistant to help you learn to code, and write code for you. From there, we learn additional Python in the context of using it for data science, including data visualization, and working with different types of neuroscience data, including single unit recordings, EEG, and fMRI.

This book was written to support the course <u>NESC 3505 Neural Data Science</u>, at <u>Dalhousie University</u>. Development of the textbook is *in progress*, with irregular but ongoing updates being posted. It is released as an open educational resource, under a <u>license</u> that allows free re-use and re-mixing, except for commercial <u>purposes</u>.

Written by Prof. Aaron J. Newman, Department of Psychology & Neuroscience, Dalhousie University, with contributions from students in his lab, including Laura Elliott, Danny Godfrey, Brynn Harris-Shanks, Reann Post, and Saisha Rankaduwa as well as other generous folks from around the world (see the book's GitHub page for a complete list). Some of the text and code was generated using the GitHub Copilot Al assistant. We welcome additional contributions from the community; once you are familiar with GitHub (from working through the early part of this book) you can create Issues and Pull Requests to help us correct typos, other errors, and also to suggest things you'd like to see in the book, or requests for clarification of things you don't understand.

https://neuraldatascience.io/intro.html