Лекция 7

naturally nyaapa

2013-03-29

Метод Гомори

(2) Метод Гомори для полностью целочисленной задачи

Рассматриваем задачу вида

$$\begin{cases} f = \sum_{j=1}^{n} c_j x_j \to max \\ \sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1..m \\ x_j \ge 0, j = 1..n \\ x_j \in \mathbb{Z}, j = 1..n \end{cases}$$

Будем считать. что $a_{ij}, b_i \in \mathbb{Z}$. Если это не так, то эквивалентными преобразованиями приведём ограничения к такому виду.

Рассмотриму задачу с ослабленными ограничениями:

- 1) Если её opt решение целочисленно, то оно является и оптимальным решением задачи целочисленного програмиирования.
- 2) Если оптимальное решение задачи с ослабленными ограничениями не является целочисленным, то выберем некоторую базисную переменную x_i , значение которой в найденном оптимальном решении не является целым. Рассмотрим отвечающее этой переменной ограничение из оптимальной симплекс таблицы: $x_i + \sum_{j \in S} a'_{ij} x_j = \beta_i$, где S множество номеров небазисных переменных, а β_i нецелое.

Тогда
$$x_i = b_i - \sum_{j \in S} a'_{ij} x_j$$
.

Представим каждый коэффициент в виде суммы целой и дробной части:

$$a'_{ij} = [a'_{ij}] + f_{ij}, f_{ij} \in [0; 1)$$

 $\beta_i = [\beta_i] + f_i, f_i \in [0; 1)$

Тогда

$$\begin{aligned} x_i &= [\beta_i] + f_i - \sum_{j \in S} ([a'_{ij}] + f_{ij}) x_j \\ \Rightarrow x_i - [\beta_i] + \sum_{j \in S} [a'_{ij}] x_j &= f_i - \sum_{j \in S} f_{ij} x_j. \text{ Где } x_i - [\beta_i] + \sum_{j \in S} [a'_{ij}] x_j \text{ - целое} \\ \text{Тогда } f_i &> 0 + \text{ целое} = \sum_{j \in S} f_{ij} x_j \\ f_{ij} &\geq 0 \\ x_j &\geq 0 \end{aligned} \right\} \Rightarrow \sum_{j \in S} f_{ij} x_j \geq 0 \\ \text{Т.к. } 0 < f_i < 1 \Rightarrow \text{ целое} \geq 0 \Rightarrow \sum_{j \in S} f_{ij} x_j \geq f_i \end{aligned}$$

Полученное неравенство называется отсечением Гомори. Оно является необходимым условием целочиеленности.

$$\begin{cases} f = 7x_1 + 9x_2 \to max \\ -x_1 + 3x_2 + x_3 = 6 \\ 7x_1 + x_2 + x_4 = 35 \\ x_1, x_2, x_3, x_4 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

Ит.	БП	Зн.	x_1	x_2	x_3	x_4	
	x_3	6	-1	3	1	0	x_3 из базиса
0	x_4	35	7	1	0	1	
	-f	0	7	9	0	0	x_2 в базис
	x_2	2	-1/3	1	1/3	0	
2	x_4	33	22/3	0	-1/3	1	x_4 из базиса
	-f	-18	10	0	-3	0	x_1 в базис
	x_3	-7/2	0	1	7/22	1/22	
2	x_1	9/2	1	0	-1/22	3/22	
	-f	-63	0	0	-28/11	-15/11	

Оптимальное решение $x^O = \left(\frac{9}{2}, \frac{7}{2}\right)$

Можно построить дополнительное ограничение для x_1 или x_2 . Построим для x_2 :

Из оптимальной симплекс таблицы $x_2 + 7/22x_3 + 1/22x_4 = 7/2$

$$\beta_2 = 7/2 = [7/2] + \{7/2\} = 3 + 1/2$$

$$a'_{23} = 7/22 = 0 + 7/22$$

$$a'_{24} = 1/22 = 0 + 1/22$$

$$f_2 = 1/2$$

$$f_{23} = 7/22$$

$$f_{24} = 1/22$$

$$\sum_{j \in S} f_{ij} x_j \ge f_i$$

 $7/22x_3 + 1/22x_4 \ge 1/2$ Дополнительное ограничение (отсечение Гомори)

Приведём к стандартной форме

$$7/22x_3 + 1/22x_4 - x_5 + x_6 = 1/2$$

$$w = -x_6 = -1/2 + 7/22x_3 + 1/22x_4 - x_5 \to max$$

Ит.	БП	Зн.	x_1	x_2	x_3	x_4	x_5	x_6	
3	x_2	7/2	0	1	7/22	1/22	0	0	
	x_1	9/2	1	0	-1/22	3/22	0	0	
	x_6	1/2	0	0	7/22	1/22	-1	1	<i>x</i> ₆ из базиса
	-f	-63	0	0	-28/11	-15/11	0	0	
	-w	1/2	0	0	1/22	1/22	-1	0	x_3 в базис
4	x_2	3	0	1	0	0	1		
	x_1	32/7	1	0	0	1/7	-1/7		
	x_3	11/7	0	0	1	1/7	-22/7		
	-f	-59	0	0	0	-1	-8		
	-w	0	0	0	0	0	0	-1	

$$x_1 + 1/7x_4 - 1/7x_5 = 32/7$$

$$S = \{4, 5\}$$

$$i = 1$$

$$f_1 = \{32/7\} = 4/7$$

$$f_{14} = \{1/7\} = 1/7$$

$$f_{15} = \{-1/7\} = 6/7$$

$$\sum_{j \in S} f_{ij} x_j \ge f_i$$

$$1/7x_45 + 6/7x_5 \ge 4/7$$

$$1/7x_4 + 6/7x_5 - x_7 + x_8 = 4/7$$

$$w' = -x_8 = -4/7 + 1/7x_4 + 6/7x_5 - x_7 \to max$$

Ит.	БП	Зн.	x_1	x_2	x_3	x_4	x_5	x_7	x_8	
5	x_2	3	0	1	0	0	1	0	0	
	x_1	32/7	1	0	0	1/7	-1/7	0	0	
	x_3	11/7	0	0	1	1/7	-22/7	0	0	
	x_8	4/7	0	0	0	1/7	6/7	-1	1	$x_1 \rightarrow$
	-f	-59	0	0	0	-1	-8	0	0	
	-w'	4/7	0	0	0	1/7	6/7	-1	0	$x_5 \leftarrow$
Пропуск										
7	x_2	3	0	1	0	0	1	0		
	x_1	4	1	0	0	0	-1	1		
	x_3	1	0	0	1	0	-4	1		
	x_4	1	0	0	0	1	6	-7		
	_f	-55	0	0	0	0	-2	-7		

Замечание Дадим графическую иллюстрацию.

Ограничения исходной задачи:

$$\begin{cases} -x_1+3x_2 \leq 6(1) \\ x_1+1/7x_2 \leq 5(2) \\ x_3=6+x_1-3x_2 \\ x_4=35-7x_1-x_2 \\ 1\text{-е ограничение:} \\ 7/22x_3+1/22x_4 \geq 1/2 \\ 7/22(6+x_1-3x_2)+1/22(35-7x_1-x_2) \geq 1/2 \\ \underline{x_2 \leq 3} \ (3) \\ x_5=-1/2+7/22x_3+1/22x_4=3-x_2 \\ 2\text{-е отсечениe} \\ 1/7x_4+6/7x_5 \geq 4/7 \\ 1/7(35-7x_1-x_2)+6/7(3-x_2) \geq 4/7 \\ \underline{x_1+x_2 \leq 7} \ (4) \end{cases}$$

Замечания:

Вид неравенства, определяющего новое ограничени, зависит от выбора базисной переменной, которая имеет нецелое значение в оптимальном решении задачи с ослабленными ограничениями. Таким образом, одна и та же симплекс таблица порождает несколько ограничений.

Вопрос: какую переменную лучше выбрать для построения ограничения Гомори?

Таким образом одна и та же симплекс таблица порождает несколько ограничений. Какую переменную лучше выбрать для построения дополнительных ограничений? В настоящее время существуют эмпирические правила для выбора такой переменной:

1. $maxf_i$ - тах значение дробной части

$$2. \ \frac{\max(f_i)}{\sum_{j \in S} f_{ij}}$$

Пример(см пред. пример) после решения задачи с ослабленными ограничениями

$$x_1: f_1=1/2$$
 $x_2=f_2=1/2$ \Rightarrow выбрать по (1) нельзя $x_1: \frac{1/2}{21/22+3/22}=11/24;$ $x_2: \frac{1/2}{7/22+1/22}=11/8$

Следует выбрать x_2