Data: 05.06.2020

Imię i nazwisko: Marek Matys

Rezultaty

Część I – Akwizycja i analiza sygnału mowy

T = 0.0104 s

F = 95.8696 Hz

F1 = 94 Hz

F2 = 752 Hz

F3 = 1139 Hz

Część II – Wyznaczanie częstotliwości formantów dla samogłosek

_	Class	F1	F2	F3
a_1_jp	'a'	676.83	1079.9	2423.2
a 1 mjk	'a'	669.95	1134.8	2497
a 1 mk	'a'	854.19	1278.4	2427.7
 e 1 jp	'e'	581.19	1564.5	2184.6
e_1_mjk	'e'	581.5	1623.4	2282
e 1 mk	'e'	565.94	1340	1637
i_1_jp	'i'	274.91	1874.5	2726.6
i_1_mjk	'i'	266.06	1634.3	2947.7
i_1_mk	'i'	230.61	2074.9	3136.5
o_1_jp	'0'	170.02	744.59	2524.6
o_1_mjk	'0'	535.37	885.03	2586.5
o_1_mk	'0'	182.16	831.84	2416.2
u_1_jp	'u'	216.72	588.7	2485.1
u_1_mjk	'u'	151.78	571.16	2575.6
u_1_mk	'u'	212.27	556.17	1918.8
y_1_jp	'у'	233.55	1657.7	2373.7
y_1_ mjk	'у'	356.98	1815.6	2543.7
y_1_mk	'у'	375.12	1457.9	2340.8

Analiza i wnioski

(cz. I)

Tak, częstotliwość lokalnego maksimum odpowiada okresowi T:

Częstotliwość (X) = 94 [Hz] \rightarrow 0.0106 [s]

Wartości F1, F2 i F3 są ze sobą powiązane, ponieważ są to 3 najniższe częstotliwości formantu, a więc 3 najniższe harmoniczne transformaty. Na ich podstawie jesteśmy w stanie jednoznacznie zidentyfikować wybrzmiewającą samogłoskę (często wystarczy samo F1 i F2 do poprawnej identyfikacji)

(cz. II)

Wartości kolejnych formant (składowych częstotliwościowych) znajdują się bardzo blisko wyznaczonych poniżej formant średnich.

Na tej podstawie można wnioskować, że faktycznie w pierwszym ćwiczeniu analizowany plik dźwiękowy zawierał nagraną głoskę 'a'.

Samogłoska	1 formanta średnia	2 formanta średnia	3 formanta średnia
a	733.7	1164.4	2449.3
e	576.2	1509.3	2034.5
i	257.2	1861.2	2936.9
0	295.8	820.5	2509.1
u	193.6	572	2326.5
у	321.9	1643.7	2419.4

Wykresy formant (rzuty widoku 3D)

Pytania

Po co stosujemy okna czasowe dla sygnałów dyskretnych?

Określają nam one sposób pobierania próbek z sygnału. Czasami wiemy, że niektóre składowe chcemy już "z założenia" pominąć.

W jakim celu stosujemy filtr preemfazy?

Preemfaza to zabieg polegający na zwiększeniu składowych wysokich częstotliwości kodowanego fonicznego sygnału analogowego. Stosuje się go w celu **zmniejszenia** składowych **szumu** kwantyzacji o częstotliwościach leżących w zakresie fonicznego sygnału analogowego. Preemfazę stosuje się głównie w technice analogowej przy transmisji radiowej FM, jako układ zwiększający wartość sygnału wraz ze wzrostem częstotliwości dla uzyskania większego odstępu sygnału użytecznego od poziomu szumów.