A Study on Partially Homomorphic Encryption Schemes

Shifat P. Mithila Advisor: Dr. Koray Karabina

Florida Atlantic University smithila2014@fau.com

November 15, 2017

Overview

- 1 Public key encryption schemes
- 2 Homomorphic encryption schemes
- 3 CGS encryption scheme
- 4 Boosting technique for linearly homomorphic encryption scheme
- Concluding remarks

Public key encryption scheme

- Symmetric key cryptography:
 - \rightarrow one single key used.
- Asymmetric/ Public key cryptography:
 - \rightarrow a pair of keys (pk, sk) is used.

Short history of public key encryption

- \rightarrow Introduced in 1976, by Diffie and Hellman.
- \rightarrow Diffie and Hellman proposed "key-exchange protocol".

RSA scheme: Ron Rivest, Adi Shamir and Leonard Adleman, in 1978

- First public key cryptosystem.
- Based on integer factorization problem.
- Security depends on: Factoring N, computing $\phi(N)$ or computing d.
- Widely used in secure data transmission, mostly in "key agreement" and "digital signature".

ElGamal encryption scheme: Construction

ElGamal scheme: Taher ElGamal, in 1985

- Based on Diffie-Hellman key exchange.
- Implemented on hybrid cryptosystems, PGP, free GNU privacy guard software etc.

KeyGen:

- Input is (\mathbb{G}, q, g) .
- Choose a random $a \leftarrow [1, q 1]$
- Compute g^a
- Outputs are the public key is $\langle \mathbb{G}, q, g, g^a \rangle$ and the private key is $\langle \mathbb{G}, q, g, a \rangle$

ElGamal encryption scheme: Construction

Enc:

- ullet Input a public key $pk=\langle \mathbb{G},q,g,g^a
 angle$ and a message $m\in \mathbb{G}$
- Choose a random $r \leftarrow [1, q]$
- Output the ciphertext $(c_1, c_2) := (g^r, (g^a)^r \cdot m)$

Dec:

- ullet Input a private key $sk=\langle \mathbb{G},q,g,a
 angle$ and a ciphertext (c_1,c_2)
- Output the message $m := c_2/c_1^a$

Security of ElGamal scheme

- Breaking ElGamal \equiv Computational Diffie-Hellman (CDH) problem. (CDH: From given (g, g^a, g^b) , can we find g^{ab} having no knowledge about a and b?).
- Semantic security of the ElGamal \equiv Decisional Diffie-Hellman (DDH) problem.

(**DDH:** Can we distinguish between the given tuples (g, g^a, g^b, g^{ab}) and (g, g^a, g^b, g^r) , having no knowledge about a and b?).

Efficiency of ElGamal scheme

Table: Efficiency of ElGamal Encryption Scheme

E	O /
Functions	Operations (we denote multiplication
	by M, pseudo random number gener-
	ation by PRNG, scalar multiplication
	by SM, division by D, subtraction by
	S, addition by A and exponentiation
	by E)
ElGamal Key Generation	1PRNG + 1E
ElGamal Encrytion	1PRNG + 2E + 1M
ElGamal Decrytion	1E + 1D

Homomorphic encryption scheme

- Certain computations (addition and multiplication) can be performed on the encrypted plaintexts/ ciphertexts.
- Generates a ciphertext such that when decrypted, gives same result from the similar operations performed on the plaintexts.
- Outsourcing computations.
- Implemented in cloud computing, electronic voting protocol, watermarking and fingerprinting, secure multiparty computations etc.
- ullet Message space $\mathcal{M}=(\mathbb{Z},+,\cdot)$

Properties of homomorphic encryption scheme

Additively homomorphic:

$$\mathsf{Enc}(m_1+m_2)=\mathsf{Enc}(m_1)\boxplus\mathsf{Enc}(m_2)$$

Multiplicatively homomorphic:

$$\mathsf{Enc}(m_1 \cdot m_2) = \mathsf{Enc}(m_1) \boxdot \mathsf{Enc}(m_2)$$

Scaler multiplication property:

$$Enc(s \cdot m) = Enc(m + m + \dots + m)$$

$$= Enc(m) \boxplus Enc(m) \boxplus \dots \boxplus Enc(m)$$

$$= s \boxdot Enc(m)$$

Different types of homomorphic scheme

Partially homomorphic scheme:

 Allows only one homomorphic property (addition or multiplication but not both).

Fully homomorphic scheme:

 Allows both the homomorphic properties (arbitrary number of additions and multiplications).

Somewhat homomorphic scheme:

- More than partilly homomorphic.
- But Not fully homomorphic.

Examples of homomorphic schemes

- RSA is partially (multiplicative) homomorphic
- ElGamal is partially (multiplicative) homomorphic

$$E(m_1) \boxdot E(m_2) = (g^{r_1}, (g^a)^{r_1} \cdot m_1) \boxdot (g^{r_2}, (g^a)^{r_2} \cdot m_2)$$

$$= (g^{r_1+r_2}, (g^a)^{r_1+r_2} \cdot m_1 \cdot m_2)$$

$$= (g^r, (g^a)^r \cdot m_1 \cdot m_2)$$

$$= E(m_1 \cdot m_2)$$

for some $r = r_1 + r_2$

CGS homomorphic encryption scheme

- Cramer, Genarro and Schoenmakers, in 1997.
- Presented as a variant on the ElGamal scheme.
- Consists of four faces: key generation, encryption, evaluation functions and decryption.

```
\mathsf{CGS} = (\mathsf{KeyGen}_{\mathsf{CGS}}, \mathsf{Enc}_{\mathsf{CGS}}, \mathsf{Dec}_{\mathsf{CGS}}, \mathsf{Eval}_{\mathsf{CGS}})
```

Linearly homomorphic scheme.

CGS encryption scheme: Construction

$KeyGen_{CGS}$:

- ullet Inputs are security parameter 1^n , group $\mathbb G$ and element $g\in \mathbb G$.
- Choose a random $a \leftarrow [1, q 1]$
- Compute g^a
- Outputs are the private key sk = a, public key $pk = g^a$

Enccs:

- Inputs are public key $G = g^a$, message $m \in [-B, B]$
- Choose a random number $r \in_R [1, q-1]$
- If r is prime then compute x := g^r compute y := G^r * G^m
- Output the ciphertext c = [x, y]

CGS encryption scheme: Construction

Dec_{CGS}:

- Inputs are secret key a, the ciphertext c = [x, y]
- Compute $k_1 := x^a$
- Compute $k_2 := y/k_1$
- For $i \in [-B, B]$ If $G^i == k_2$ then m = iOtherwise return "error"
- Output the message m

CGS encryption scheme: Homomorphic properties $(Eval_{CGS})$

Addition (Add_{CGS})

- Inputs are the ciphertext pair $c_1 = \text{Enc}_{CGS}(m_1) = [x_1, y_1]$ and $c_2 = \text{Enc}_{CGS}(m_2) = [x_2, y_2]$
- Compute $x := x_1 \cdot x_2$
- Compute $y := y_1 \cdot y_2$
- Output the ciphertext $c = c_1 \boxplus c_2 = [x, y] = \mathsf{Enc}_{\mathsf{CGS}}(m_1 + m_2)$

Scaler multiplication ($SMult_{CGS}$)

- ullet Inputs are the ciphertext $c_1 = [x_1, y_1]$ and a scaler $s \in \mathcal{M}$
- Compute $x := x_1^s$
- Compute $y := y_1^s$
- Output is the ciphertext $s \boxdot c_1 = [x, y] = \operatorname{Enc}_{\mathsf{CGS}}(s \cdot m_1)$

CGS encryption scheme: Homomorphic properties $(Eval_{CGS})$

Linear Combination ($LinComb_{CGS}$)

- Inputs are a pair of sets (s, c) where $s = [s_1, s_2, \ldots]$ and $c = [c_1, c_2, \ldots]$ where each $c_i = [x_i, y_i]$
- Define k := #s
- Choose *x* := 1
- Choose *y* := 1
- For i=1 to k Compute $x := x.x_i^{s_i}$ Compute $y := y.y_i^{s_i}$
- Output is the ciphertext $c = [x, y] = \operatorname{Enc}_{CGS}(\sum_i s_i \cdot m_i)$

Security of CGS scheme

- Discrete logarithm problem is required to be intractable.
- Computational Diffie-Hellman problem has to be intractable.
- Semantic security of the CGS encryption scheme requires the intractability of the decisional Diffie-Hellman(DDH) problem.
- Not known whether the security of ElGamal and CGS schemes are equivalent or not.

Efficiency of CGS scheme

Table: Efficiency of CGS Encryption Scheme

Functions	Operations
CGS Key generation	1 PRNG + 1E
CGS Encrytion	1 PRPNG + 3E + 1M
CGS Decrytion	2E + 1D
CGS Addition	2M
CGS Scalar multiplica-	2E
tion	
CGS Linear combination	2k E + 2k M
(k = #s)	

Boosting linearly homomorphic encryption scheme

- Dario Catalano and Dario Fiore, 2015.
- Converts a public-space LHE scheme $\widehat{HE} = (\widehat{KeyGen}, \widehat{Enc}, \widehat{Eval}, \widehat{Dec})$ to a HE scheme supporting one multiplication, denoted by $HE_B = (KeyGen_B, Enc_B, Eval_B, Dec_B)$.
- ullet The message space o public ring.
- Claimed to work on virtually all the existing number theoretic LHE such as Paillier, ElGamal or Goldwasser-Micalli.

Boosting LHE scheme: Construction

KeyGen_B:

 $\widehat{\mathsf{KeyGen}} = \mathsf{KeyGen}_\mathsf{B}.$

Enc_B:

- Inputs are public key pk = G, message m
- Choose a random number $b \in_R \mathcal{M}$
- Compute u = m b
- Compute $\beta = \widehat{\mathsf{Enc}}(b)$
- Output the ciphertext $c = [u, \beta]$

Boosting LHE scheme: Construction

Evaluation functions for the Boosted-LHE scheme (Eval_B)

- Ciphertexts are of two levels:
 - ightarrow Level 1 ciphertext : encode "fresh" messages/ linear combinations of "fresh" messages.
 - \rightarrow **Level 2 ciphertexts** : "multiplied" level 1 ciphertexts.
- Five different evaluation functions:
 - \rightarrow Add₁: Addition between two level 1 ciphertexts.
 - \rightarrow Mult₁: Multiplication between two level 1 ciphertexts.
 - \rightarrow Add₂: Addition between two level 2 ciphertexts.
 - \rightarrow SMult₁: Scalar multiplication over a single level 1 ciphertext.
 - \rightarrow SMult₂: Scalar multiplication over a single level 2 ciphertext.

Boosting LHE scheme: Homomorphic properties (Eval_B)

Boosted-LHE multiplication function, level 1 (Mult₁)

- Inputs are ciphertexts $c_1 = [u_1, \beta_1]$ and $c_2 = [u_2, \beta_2]$ where $u_1, u_2 \in \mathcal{M}$ and $\beta_1, \beta_2 \in \widehat{C}$
- Compute $\alpha := \widehat{\mathsf{Enc}}(u_1 \cdot u_2) \boxplus (u_1 \boxdot \beta_2) \boxplus (u_2 \boxdot \beta_1)$
- Compute $\beta := \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$
- Output is the ciphertext $c = [\alpha, \beta] = \mathsf{Enc}_{\mathsf{B}}(m_1 \cdot m_2)$

Correctness of Mult₁

Theorem

Assume that m_1 , m_2 are messages from the message space \mathcal{M} and b_1 , b_2 are randomly picked numbers from \mathcal{M} . If $c_1 = [u_1, \beta_1] = \operatorname{Enc}_{\mathsf{B}}(m_1)$, $c_2 = [u_2, \beta_2] = \operatorname{Enc}_{\mathsf{B}}(m_2)$ and c is the output of $\operatorname{Mult}_1(c_1, c_2)$, then one can decrypt c and recover $m_1 \cdot m_2$.

Proof.

$$c = \mathsf{Mult}_1(c_1, c_2) = [\alpha, \beta]$$

where

$$\alpha := \widehat{\mathsf{Enc}}(u_1 \cdot u_2) \boxplus (u_1 \boxdot \beta_2) \boxplus (u_2 \boxdot \beta_1)$$
$$\beta := \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$$

Correctness of Mult₁

Proof.

$$\alpha = \widehat{\mathsf{Enc}}((m_1 - b_1) \cdot (m_2 - b_2)) \boxplus ((m_1 - b_1) \boxdot \widehat{\mathsf{Enc}}(b_2))$$

$$\boxplus ((m_2 - b_2) \boxdot \widehat{\mathsf{Enc}}(b_1))$$

$$= \widehat{\mathsf{Enc}}((m_1 - b_1) \cdot (m_2 - b_2)) \boxplus \widehat{\mathsf{Enc}}((m_1 - b_1) \cdot b_2)$$

$$\boxplus \widehat{\mathsf{Enc}}((m_2 - b_2) \cdot b_1))$$

$$= \widehat{\mathsf{Enc}}((m_1 - b_1) \cdot (m_2 - b_2) + ((m_1 - b_1) \cdot b_2) + ((m_2 - b_2) \cdot b_1))$$

$$= \widehat{\mathsf{Enc}}(m_1 m_2 - b_1 m_2 - b_2 m_1 + b_1 b_2 + m_1 b_2 - b_1 b_2 + m_2 b_1 - b_1 b_2)$$

$$= \widehat{\mathsf{Enc}}(m_1 m_2 - b_1 b_2)$$

and

$$\beta = (\widehat{\mathsf{Enc}}(b_1), \widehat{\mathsf{Enc}}(b_2))^{\mathsf{T}}$$

Correctness of Mult₁

Proof.

Hence, one can recover m_1m_2 as follows:

$$\widehat{\mathsf{Dec}}(\alpha) + \widehat{\mathsf{Dec}}(\beta_1) \cdot \widehat{\mathsf{Dec}}(\beta_2) = \widehat{\mathsf{Dec}}(\alpha) + \widehat{\mathsf{Dec}}(\widehat{\mathsf{Enc}}(b_1)) \cdot \widehat{\mathsf{Dec}}(\widehat{\mathsf{Enc}}(b_2))
= (m_1 m_2 - b_1 b_2) + (b_1 \cdot b_2)
= m_1 m_2 - b_1 b_2 + b_1 b_2
= m_1 m_2$$

Boosting LHE scheme: Homomorphic properties (Eval_B)

Boosted-LHE addition function, level 2 (Add₂)

- Inputs are ciphertexts $c_1 = [\alpha_1, \beta_1] = \operatorname{Enc}_B(m_1)$ and $c_2 = [\alpha_2, \beta_2] = \operatorname{Enc}_B(m_2)$ where $m_1, m_2 \in \mathcal{M}$; $\alpha_1, \alpha_2 \in \widehat{C}$, $\beta_1 \in \widehat{C}^{2l_1}$ and $\beta_2 \in \widehat{C}^{2l_2}$; $\alpha_i = \widehat{\operatorname{Enc}}(m_i b_i)$; $\beta_i := \begin{pmatrix} \beta_{11}{}^{(i)} & \beta_{12}{}^{(i)} & \cdots & \beta_{1l_i}{}^{(i)} \\ \beta_{21}{}^{(i)} & \beta_{22}{}^{(i)} & \cdots & \beta_{2l_i}{}^{(i)} \end{pmatrix} \text{ where } \beta_{1k}{}^{(i)} = \widehat{\operatorname{Enc}}(b_{1k}^{(i)}), \text{ also } \beta_{2k}{}^{(i)} = \widehat{\operatorname{Enc}}(b_{2k}^{(i)}) \text{ for some } b_{1k}^{(i)}, b_{2k}^{(i)} \in \mathcal{M} \text{ with } 1 \leq k \leq l_i \text{ and } \sum_{k=1}^{l_i} [b_{1,k}{}^{(i)} \cdot b_{2,k}{}^{(i)}] = b_i$
- Compute $\alpha := \alpha_1 \boxplus \alpha_2$
- Compute $\beta := (\beta_1 || \beta_2) =$ $\begin{pmatrix} \beta_{11}^{(1)} & \beta_{12}^{(1)} & \cdots & \beta_{1l_1}^{(1)} & \beta_{11}^{(2)} & \beta_{12}^{(2)} & \cdots & \beta_{1l_2}^{(2)} \\ \beta_{21}^{(1)} & \beta_{22}^{(1)} & \cdots & \beta_{2l_1}^{(1)} & \beta_{21}^{(2)} & \beta_{22}^{(2)} & \cdots & \beta_{2l_2}^{(2)} \end{pmatrix}$
- Output is the ciphertext $c = [\alpha, \beta] = \mathsf{Enc}_{\mathsf{B}}(m_1 + m_2)$

Boosted-LHE addition function, level 2 (Add₂)

Example: Inputs are ciphertexts $c_1 = [\alpha_1, \beta_1] = \operatorname{Enc}_{\mathsf{B}}(m_1)$ and $c_2 = [\alpha_2, \beta_2] = \operatorname{Enc}_{\mathsf{B}}(m_2)$ where $m_1, m_2 \in \mathcal{M}$; $\alpha_1, \alpha_2 \in \widehat{C}$, $\beta_1 \in \widehat{C}^{2l_1}$ and $\beta_2 \in \widehat{C}^{2l_2}$; $\alpha_i = \widehat{\operatorname{Enc}}(m_i - b_i)$;

Here
$$I_1 = I_2 = 1$$
. $\beta_1 := \begin{pmatrix} \beta_{11} \\ \beta_{21} \end{pmatrix}$ and $\beta_2 := \begin{pmatrix} \beta_{12} \\ \beta_{22} \end{pmatrix}$ where each $\beta_{ik} = \widehat{\mathsf{Enc}}(b_{ik})$

- Compute $\alpha := \alpha_1 \boxplus \alpha_2$
- Compute $\beta := (\beta_1 || \beta_2) = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$
- Output is the ciphertext $c = [\alpha, \beta] = \operatorname{Enc}_{\mathsf{B}}(m_1 + m_2)$

Boosted-LHE addition function, level 2 (Add₂)

Observe that

$$\alpha = \alpha_1 \boxplus \alpha_2 = \widehat{\mathsf{Enc}}((m_1 - b_1) + (m_2 - b_2))$$

$$= \widehat{\mathsf{Enc}}((m_1 + m_2) - (b_1 + b_2))$$

where $b_1 + b_2 = [b_{11} \cdot b_{21}] + [b_{12} \cdot b_{22}].$

Hence, one can recover $m_1 + m_2$ as follows:

$$\widehat{\operatorname{Dec}}(\alpha) + \sum_{k=1}^{l_1 + l_2} [\widehat{\operatorname{Dec}}(\beta_{1k}) \cdot \widehat{\operatorname{Dec}}(\beta_{2k})] = \widehat{\operatorname{Dec}}(\alpha) + [\widehat{\operatorname{Dec}}(\beta_{11}) \cdot \widehat{\operatorname{Dec}}(\beta_{21})]$$

$$+ [\widehat{\operatorname{Dec}}(\beta_{11}) \cdot \widehat{\operatorname{Dec}}(\beta_{21})]$$

$$= ((m_1 + m_2) - (b_1 + b_2)) + [b_{11} \cdot b_{21}] + [b_{12} \cdot b_{22}]$$

$$= (m_1 + m_2) - (b_1 + b_2) + (b_1 + b_2)$$

$$= m_1 + m_2.$$

Correctness of Add₂

Theorem

If $c_i = [\alpha_i, \beta_i]$ such that $\alpha_i = \widehat{\mathsf{Enc}}(m_i - b_i)$ for some $b_i \in \mathcal{M}$, $\beta_i := \begin{pmatrix} \beta_{11}^{(i)} & \beta_{12}^{(i)} & \cdots & \beta_{1l_i}^{(i)} \\ \beta_{21}^{(i)} & \beta_{22}^{(i)} & \cdots & \beta_{2l_i}^{(i)} \end{pmatrix}$ where $\beta_{1k}^{(i)} = \widehat{\mathsf{Enc}}(b_{1k}^{(i)})$, also $\beta_{2k}^{(i)} = \widehat{\mathsf{Enc}}(b_{2k}^{(i)})$ for some $b_{1k}^{(i)}, b_{2k}^{(i)} \in \mathcal{M}$ with $1 \le k \le l_i$ and $\sum_{k=1}^{l_i} [b_{1,k}^{(i)} \cdot b_{2,k}^{(i)}] = b_i$, then c can be computed (knowing pk) and given c, one can decrypt c and recover $m_1 + m_2$ (knowing sk).

Proof.

$$c = \mathsf{Add}_2(c_1, c_2) = [\alpha, \beta]$$

where

Correctness of Add₂

Proof.

$$\alpha := \alpha_{1} \boxplus \alpha_{2}$$

$$\beta := (\beta_{1}||\beta_{2})$$

$$= \begin{pmatrix} \beta_{11}^{(1)} & \beta_{12}^{(1)} & \cdots & \beta_{1l_{1}}^{(1)} & \beta_{11}^{(2)} & \beta_{12}^{(2)} & \cdots & \beta_{1l_{2}}^{(2)} \\ \beta_{21}^{(1)} & \beta_{22}^{(1)} & \cdots & \beta_{2l_{1}}^{(1)} & \beta_{21}^{(2)} & \beta_{22}^{(2)} & \cdots & \beta_{2l_{2}}^{(2)} \end{pmatrix}$$

Observe that

$$\alpha = \alpha_1 \boxplus \alpha_2$$

$$= \widehat{\mathsf{Enc}}((m_1 - b_1) + (m_2 - b_2))$$

$$= \widehat{\mathsf{Enc}}((m_1 + m_2) - (b_1 + b_2))$$

where
$$b_1 + b_2 = \sum_{k=1}^{l_1} [b_{1,k}^{(1)}.b_{2,k}^{(1)}] + \sum_{k=1}^{l_2} [b_{1,k}^{(2)}.b_{2,k}^{(2)}].$$

Correctness of Add₂

Proof.

Hence, one can recover $m_1 + m_2$ as follows:

$$\widehat{\operatorname{Dec}}(\alpha) + \sum_{k=1}^{l_1+l_2} [\widehat{\operatorname{Dec}}(\beta_{1k}) \cdot \widehat{\operatorname{Dec}}(\beta_{2k})]$$

$$= \widehat{\operatorname{Dec}}(\alpha) + \sum_{k=1}^{l_1} [\widehat{\operatorname{Dec}}(\beta_{1k}^{(1)}) \cdot \widehat{\operatorname{Dec}}(\beta_{2k}^{(1)})] + \sum_{k=1}^{l_2} [\widehat{\operatorname{Dec}}(\beta_{1k}^{(2)}) \cdot \widehat{\operatorname{Dec}}(\beta_{2k}^{(2)})]$$

$$= ((m_1 + m_2) - (b_1 + b_2)) + \sum_{k=1}^{l_1} [b_{1,k}^{(1)} \cdot b_{2,k}^{(1)}] + \sum_{k=1}^{l_2} [b_{1,k}^{(2)} \cdot b_{2,k}^{(2)}]$$

$$= ((m_1 + m_2) - (b_1 + b_2)) + b_1 + b_2$$

$$= m_1 + m_2$$

Boosting LHE encryption scheme: Construction

Decryption functions for the Boosted-LHE scheme (Dec_B)

Boosted-LHE Decryption Level 1(Dec1)

- Inputs are ciphertext c, secret key sk = a
- Compute $m := u + \widehat{\mathsf{Dec}}(\beta)$
- Output the message *m*

Boosted-LHE Decryption Level 2(Dec2)

- Inputs are ciphertext c, secret key sk = a
- Compute $m := \widehat{\mathsf{Dec}}(\alpha) + \sum_{i=1}^{l} (\widehat{\mathsf{Dec}}(\beta_{1i}).\widehat{\mathsf{Dec}}(\beta_{2i}))$
- Output the message m

Correctness of Dec2

Theorem

If a level 2 ciphertext $c = [\alpha, \beta] \in C$ is an encryption of $m \in \mathcal{M}$, then Dec2(c) = m.

Proof.

$$\operatorname{Dec2}([\widehat{\operatorname{Enc}}(m-b), \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1l} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2l} \end{pmatrix}])$$

where for each $\beta_{ik} = \widehat{\mathsf{Enc}}(b_{ik})$

$$\widehat{\mathsf{Dec}}(\alpha) + \sum_{i=1}^{l} [\widehat{\mathsf{Dec}}(\beta_{1i}).\widehat{\mathsf{Dec}}(\beta_{2i})]$$

Correctness of Dec2

Proof.

$$= m - b + \sum_{i=1}^{l} [\widehat{\operatorname{Dec}}(\widehat{\operatorname{Enc}}(b_{1i})).\widehat{\operatorname{Dec}}(\widehat{\operatorname{Enc}}(b_{2i}))]$$

$$= m - b + \sum_{i=1}^{l} [b_{1i} \cdot b_{2i}]$$

which finally yields m - b + b and thus m. Hence we have, Dec2(c) = m.

Security of Boosted-LHE scheme

- Semantic security of HE_B depends on the semantic security of the scheme \widehat{HE} .
- If HE is circuit private, then HE_B is also a leveled circuit private homomorphic encryption.

Efficiency of Boosted-LHE scheme

Table: Efficiency of Boosted-LHE Encryption Scheme

Functions	Operations
B-LHE Key gener-	same as underlying LHE
ation	
B-LHE Encryption	1PRNG + 1S+ 1 LHE encryption
B-LHE Decryption	1A + 1 LHE decryption (for Dec1) and $(2I + 1)$
	LHE decryption $+ I M + I A$ (for Dec2)
B-LHE Add ₁	1A + 1 LHE A
B-LHE Mult ₁	1M+ 2 LHE SM + 2 LHE A + 1 LHE encryption
B-LHE Add ₂	1 LHE A
B-LHE SMult ₁	1M+ 2 LHE SM
B-LHE SMult ₂	(I+1) LHE SM

Concluding remarks:

- We studied public key homomorphic encryption schemes: RSA, ElGamal, CGS.
- We studied a boosting technique for linearly homomorphic encryption schemes.
- We have full proofs of correctness.
- We implemented this boosting technique on the CGS scheme.
- We provided MAGMA source codes for CGS scheme and Boosted-CGS schemes.

Future works:

- Fully homomorphic enryption scheme, Gentry, in 2009.
- Full implementations:
 - ightarrow to allow arbitrary multiplications.
 - ightarrow to allow arbitrary additions on higher degree polynomials.
- Boosting multiplicative homomorphic schemes to allow additions.

References

Ronald Cramer, Rosario Gennaro and Berry Schoenmakers (1997)
A secure and Optimally Efficient Multi-authority election Scheme
EUROCRYPT, Lecture notes in Computer Science, Springer-Verlag 1233, 103–118.

Dario Catalano and Dario Fiore

Boosting Linearly-Homomorphic Encryption to Evaluate Degree-2 Functions on Encrypted Data

Thank you

Questions?