Espaces Vectoriels de Dimension finie Espaces Vectoriels

MPSI 2

1 Structure d'espace vectoriel

Soit E un ensemble non vide.

Définition 1.0.1

E est un espace vectoriel sur \mathbb{K} (ou \mathbb{K} -espace vectoriel) si:

- (E, +) est un groupe abélien.
- $\mathbb{K} \times E \longrightarrow E$ est un loi interne telle que:

$$(\lambda, x) \longmapsto \lambda \cdot x$$

$$\forall (x,y) \in E^2, \ \forall (\lambda,\mu) \in \mathbb{K}^2$$
:

$$- (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$$

$$-\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$$

$$-\lambda \cdot (\mu \cdot x) = (\lambda \times \mu) \cdot x$$

$$-1_{\mathbb{K}} \cdot x = x$$

Règles de calcul dans un espace vectoriel:

- $\overline{\bullet (-\lambda) \cdot x} = -(\lambda \cdot x)$
- $\lambda \cdot (-x) = -(\lambda \cdot x)$
- $\bullet \ 0_{\mathbb{K}} \cdot x = 0_E$
- $\lambda \cdot 0_E = 0_E$

2 Sous-espace vectoriel

Soit E un \mathbb{K}_{EV} , soit F un sous-ensemble non vide de E.

Définition 2.0.2

On dit que F est un <u>sous-espace vectoriel de E</u> si il est stable par les lois de E et si, muni des restrictions de ces lois, F est un \mathbb{K}_{EV}

Critères de S_{EV}

- Critère 1: F est un S_{EV} de E si il est non vide et stable par les lois de E.
 - $-0_E \in F$
 - $\forall (x,y) \in F^2, x+y \in F$
 - $\forall \lambda \in \mathbb{K}, \ \forall x \in F, \ \lambda \cdot x \in F$
- Critère 2: F est un S_{EV} de E si il est non vide et stable par combinaison linéaire.
 - $-0_{E} \in F$
 - $\ \forall (\lambda, \mu) \in \mathbb{K}^2, \ \forall (x, y) \in F^2, \ \lambda \cdot x + \mu \cdot y \in F$

Définition 2.0.3

On appelle espace vectoriel engendré par A le plus petit espace vectoriel contenant A.

Notation: Vect(A)

Justification

Soit $\mathcal{F} = \{ F \subset E, F \mid S_{EV} \mid de \mid E \mid et \mid A \subset F \}$

- $F_0 = \bigcap_{F \in \mathcal{F}} F$ est un S_{EV} de E, et contient $A: \forall F \in \mathcal{F}, A \subset F$ D'où $F_0 \in \mathcal{F}$
- Par définition de F_0 , c'est le plus petit élément de \mathcal{F} . Donc F_0 existe.

3 Dépendance linéaire

Définition 3.0.4

 $\{X_1, \ldots, X_p\}$ est un système libre ssi:

$$\forall (\lambda_i)_{i \in [\![1,p]\!]} \in \mathbb{K}^p, \ \left(\sum_{i=1}^p \lambda_i \cdot X_i = 0_E\right) \Rightarrow (\forall i \in [\![1,p]\!], \lambda_i = 0_\mathbb{K})$$

Définition 3.0.5

 $\{X_1, \ldots, X_p\}$ est un système lié ssi:

$$\exists (\lambda_i)_{i \in \llbracket 1, p \rrbracket} \in \mathbb{K}^p, \ \left(\sum_{i=1}^p \lambda_i \cdot X_i = 0_E \right) \ et \ (\exists i \in \llbracket 1, p \rrbracket, \lambda_i \neq 0_{\mathbb{K}})$$

Propriété 3.0.1

Soit $A = \{X_1, X_2, \dots, X_p\}$ une partie finie de E. Alors Vect(A) est l'ensemble des combinaisons linéaires de A.

Soit B l'ensemble des combinaisons linéaires de A: $B = \left\{ x \in E, \ \exists (\lambda_i)_{i \in \llbracket 1,p \rrbracket} \in \mathbb{K}^p, \ x = \sum_{i=1}^p \lambda_i \cdot X_i \right\}$ Montrer que B est un S_{EV} de E.

- $\bullet \ 0_E \in B : \sum_{i=1}^p 0_{\mathbb{K}} X_i = 0_E$
- $\bullet\ B$ est stable par combinaison linéaire.

Donc B est un S_{EV} de E.

B contient A:

Soit $i_0 \in [1, p]$

 $X_{i_0} = (\delta_i^{i_0})_{i_0 \in [1,p]}$ D'où $X_{i_0} \in B$.

Valable pour tout i_0 de [1, p],

Donc $A \subset B$

Reste à montrer que B est le plus petit S_{EV} de E contenant A.

Soit F un S_{EV} de E contenant A.

F est stable par CL et contient A.

Donc F contient B.

Définition 3.0.6

 $\{X_1, \ldots, X_p\}$ est un système générateur de E si $\mathrm{Vect}(\{X_1, \ldots, X_p\}) = E$

Définition 3.0.7

La famille (X_1, \ldots, X_p) est une <u>base de E</u> si $\{X_1, \ldots, X_p\}$ est libre et générateur de E.

Applications linéaires 4

Définition 4.0.8

Soient E et F deux \mathbb{K}_{EV} .

Soit $f: E \to F$

On dit que f est un homomorphisme d'EV de E dans F ou application linéaire de E dans F si:

$$\forall (x,y) \in E^2, \ \forall (\alpha,\beta) \in \mathbb{K}^2, \ f(\alpha \cdot x + \beta \cdot y) = \alpha \cdot f(x) + \beta \cdot f(y)$$

Définition 4.0.9

- f est un endomorphisme si $(F, +, \cdot) = (E, +, \cdot)$ et si f est un homomorphisme d'EV.
- ullet f est un isomorphisme d'EV si f est un homomorphisme d'EV bijectif.
- f est un automorphisme d'EV si f est un endomorphisme bijectif.
- f est une $\overline{forme\ linéaire}\ sur\ E\ si\ (f,+,\cdot)=(\mathbb{K},+,\cdot)\ et\ f\ est\ un\ homomorphisme\ d'EV.$

Remarques:

- Si f est un isomorphisme d'EV, alors f^{-1} l'est aussi.
- $\mathcal{L}_{\mathbb{K}}(E,F)$ désigne l'ensemble des applications linéaires de E dans F.

Définition 4.0.10

Soient E et F deux \mathbb{K}_{EV} .

Soit $f: E \to F$

- L'image de f: Im(f) = f(E)
- $\overline{Le \ noyau \ de} \ f : \ker(f) = f^{-1} < \{0_F\} >$

Propriété 4.0.2

 $\operatorname{Im}(f)$ et $\ker(f)$ sont des $\operatorname{S}_{\mathrm{EV}}$ de F et E respectivement.

Propriété 4.0.3

Soit (X_1, \ldots, X_p) une famille de vecteurs de E.

Soit $f: E \to F$ une application linéaire.

- $Si(X_1, ..., X_p)$ est lié, alors $(f(X_1), ..., f(X_p))$ est lié.
- Par contraposée, si $(f(X_1), \ldots, f(X_p))$ est libre, alors (X_1, \ldots, X_p) est libre.
- Si (X_1, \ldots, X_p) est libre et f est injective, alors $(f(X_1), \ldots, f(X_p))$ est libre.

Application des propriétés	

Propriété 4.0.4

Soit $f: E \to F$ une application linéaire.

- Si (X_1, \ldots, X_p) est une famille génératrice de E, alors $(f(X_1), \ldots, f(X_p))$ est génératrice de f(E).
- Si f est surjective, alors l'image d'une famille génératrice de E est génératrice de F (car f(E) = F).