

Universität Bayreuth 95447 Bayreuth

Anorganische Chemie III

Ton und Tonminerale

Justus Friedrich Studiengang: B.Sc. Chemie 4. Fachsemester

Matrikelnummer: 1956010 E-Mail: bt725206@myubt.de

Inhaltsverzeichnis

1	Ziel des Versuches	1
2	Durchführung	2
	2.1 Synthese von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$	2
3	Auswertung	3
	3.1 Schichtdicke von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2 \dots \dots \dots \dots \dots$	3
4	Zusammenfassung	
5	Literaturverzeichnis	6

1 Ziel des Versuches

Tonminerale sind ein Wichtiger Bestandteil der Industrie, da diese als Katalysator oder Einlagerungsstätte dienen können. Daruter zählt auch der Zn

2 Durchführung

2.1 Synthese von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$

3 Auswertung

3.1 Schichtdicke von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$

Um die Schichtdicke des Hectorits zu bestimmen, wird ein Pulverdiffraktogramm aufgenommen und mit dem Programm $HighScore\ Plus$ ausgewertet. Dies wird in der Abbildung 1 abgebildet. Dabei wird der Abstand des d_{001} -Reflexes ermittelt.

Abbildung 1: Zeigt das Pulverdiffraktogramm des Hectorits, dabei sind die Reflexe mit den Abstand der d_{00n} Serie markiert.

Aus Abbildung 1 ist ersichtlich, dass der d_{001} -Reflex bei einem Abstand von 12.46937 Åliegt. Auf Grundlage dieses Werts lassen sich die theoretischen Abstände der d_{00n} -Serie berechnen. Dies erfolgt mithilfe der Formel 1.

$$d_{00n} = \frac{d_{001}}{n} \tag{1}$$

Die daraus erhaltenen Werte werden mit den in Abbildung 1 dargestellten experimentellen Daten verglichen und in Tabelle 1 zusammengefasst.

Tabelle 1: Vergleich der aus Gleichung 1 berechneten theoretischen Werte mit den experimentell bestimmten Werten aus Abbildung 1.

	Berrechnete Werte	experimentellen Werte
d ₀₀₁ [Å]	12.46937	12.46937
$d_{002} [{ m \AA}]$	6.234685	Konnte nicht
		zugeordnet werden
$d_{003} [\text{Å}]$	4.156457	4.56099
d_{004} [Å]	3.117343	3.12766
d ₀₀₅ [Å]	2.493874	2.63185
d ₀₀₆ [Å]	2.078228	1.85851

Aus den experimentellen Werten in Tabelle 1 wird der Mittelwert gemäß Formel 2 berechnet.

$$\overline{d} = \frac{\sum_{i}^{n} d_{00i} \cdot i}{n} = 12.595 \tag{2}$$

Zur Berechnung des Variationskoeffizienten werden die Gleichungen 3 und 4 herangezogen. Bei Gleichung 3 werden die Werte von d_{001} nicht berücksichtigt, da es sich bei dem "berechneten" Wert, eigentlich um einen experimentellen Wert handelt.

$$\sqrt{\frac{\sum_{i}^{n}(d_{00i} \ experimentell - d_{00i} \ berechnet)^{2}}{n-1}} =$$
(3)

$$\sqrt{2}$$
 (4)

4 Zusammenfassung

5 Literaturverzeichnis

Literatur

(1) Breu, J.; Senker, J., Praktikum Präparative Anorganische Chemie, 2025, S. 17–30.