Chapter I — §1 Monoids

Everything you wanted to say about $(-\cdot)$ but were afraid to parenthesize

Slides generated from your chapter outline (no exercises)

August 20, 2025

Section roadmap

Binary laws of composition

Definition and basic properties

Examples and non-examples

Submonoids and generation

Units, cancellation, and idempotents

Finite products and indexing

Morphisms and quotients

Free monoids and presentations

Constructions and actions

Checklists and pitfalls

Binary laws of composition

What is a "law of composition"?

• A **law of composition** on a set *S* is just a map

$$\mu: S \times S \longrightarrow S, \qquad (x,y) \mapsto \mu(x,y) = x \cdot y.$$

- We'll also write xy for $x \cdot y$. When commutativity holds, the additive notation x + y is common.
- Associative means (xy)z = x(yz) for all $x, y, z \in S$.
- A unit (identity) is an element $e \in S$ with ex = xe = x for all $x \in S$.
- A set with an associative law and a unit is a monoid. (Semigroup = associative, no promise of a unit.)

First date with associativity

- Associativity lets us unambiguously write $x_1x_2\cdots x_n$ without a forest of parentheses.
- Convention: the **empty product** is *e* (the unit).
- When the operation is commutative, we may reindex and regroup at will. When not: choose your parentheses wisely.

Cheeky transition

Parentheses are like seatbelts: you only notice them when something non-associative happens.

Definition and basic properties

Definition: monoid

Monoid

A **monoid** is a triple (M, \cdot, e) where M is a set, \cdot is an associative law of composition on M, and e is a unit for \cdot .

- If xy = yx for all x, y, the monoid is **commutative** (often written additively as (M, +, 0)).
- Elements u ∈ M with a two-sided inverse are called units. The set of units M[×] forms a group.

Uniqueness of the unit

Proposition

If e and e' are units in M, then e = e'.

Proof (blink-and-you-miss-it)

$$e = e \cdot e' = e'$$
.

Transition

Plot twist: there can be *many* inverses in life, but in a monoid the identity is strictly monogamous.

Left/right units and inverses

- A **left unit** satisfies ex = x for all x; a **right unit** satisfies xe = x for all x.
- If a left unit and a right unit both exist in M, then they are equal and hence the (two-sided) unit.
- Inverse uniqueness: if xu = ux = e and xv = vx = e, then u = v.

Proof sketch

$$u = ue = u(xv) = (ux)v = ev = v.$$

Transition

Two-sided inverses: because who wants commitment only on weekdays?

Powers and laws of exponents

Let (M, \cdot, e) be a monoid and $x \in M$.

- Define $x^0 := e$, $x^{n+1} := x^n x$ for $n \ge 0$ (and $x^1 = x$).
- **Exponent laws**: for all $m, n \in \mathbb{N}$:

$$x^{m+n} = x^m x^n, \qquad (x^m)^n = x^{mn}.$$

• If xy = yx, then $(xy)^n = x^n y^n$.

Transition

Yes, your high-school exponent rules secretly assumed a monoid the whole time. Math teachers are sneaky.

Examples and non-examples

Classic examples

- $(\mathbb{N}, +, 0)$ and $(\mathbb{Z}, +, 0)$.
- $(\mathbb{N}, \times, 1)$ (caution: 0 is not a unit).
- $M_n(R)$ with matrix multiplication and I_n .
- End(S): all functions S → S under composition with id_S.

- Strings Σ^* under concatenation, unit the empty word ε .
- $(\mathbb{R}_{\geq 0}, \max, 0)$, $(\mathbb{R} \cup \{-\infty\}, \max, -\infty)$ (idempotent monoids).
- Boolean monoids: $(\{0,1\},\vee,0)$ and $(\{0,1\},\wedge,1)$.

Non-examples & cautionary tales

- $(\mathbb{R}, -, 0)$ with subtraction is *not* associative.
- $(\mathbb{R},\cdot,1)$ is a monoid, but $\mathbb{R}^{\times}=\mathbb{R}\setminus\{0\}$ is a *group*; note how units "peel off" into a nicer object.
- The set of $n \times n$ singular matrices is not a monoid under multiplication (no unit).

Transition

If it fails associativity, it's not a phase—it's a different algebraic object.

Submonoids and generation

Submonoids

Definition

A subset $N \subseteq M$ is a **submonoid** if $e \in N$ and $xy \in N$ whenever $x, y \in N$.

- Equivalently: close under the operation and contain the unit.
- Warning: closure under inverses is not required (that would make it a subgroup of M[×] if all elements are units).

Generated submonoids

Definition

Given $S \subseteq M$, the **submonoid generated by** S, written $\langle S \rangle$, is the intersection of all submonoids containing S.

- Concretely: $\langle S \rangle$ consists of all finite products $s_1 s_2 \cdots s_k$ with $k \geq 0$ and $s_i \in S$ (empty product allowed $\Rightarrow e \in \langle S \rangle$).
- In a commutative monoid, we may speak of *monomials* in *S*.
- If S is finite, say $S = \{x_1, \dots, x_r\}$, write $\langle x_1, \dots, x_r \rangle$.

Transition

From "some elements I like" to "everything I can build from them" — the LEGO principle of algebra.

Units, cancellation, and idempotents

Group of units

Definition

An element $u \in M$ is a **unit** if there exists $v \in M$ with uv = vu = e.

- The set M^{\times} of all units is closed under multiplication and inversion, so (M^{\times}, \cdot, e) is a group.
- Example: in $M_n(R)$, M^{\times} is the general linear group $\mathrm{GL}_n(R)$.

Cancellation vs. invertibility

- Left-cancellative: $ax = ay \Rightarrow x = y$; right-cancellative: $xa = ya \Rightarrow x = y$.
- If a is a unit, then both left and right cancellation by a hold.
- The converse can fail in general monoids (cancellation does not imply invertibility), but holds in groups.

Transition

Being cancellative is like being persuasive; having an inverse is like having receipts.

Idempotents and absorbing elements

- $e \in M$ is **idempotent** if $e^2 = e$ (every identity is idempotent, but not every idempotent is an identity).
- Absorbing element $0 \in M$: 0x = x0 = 0 for all x (e.g. 0 under multiplication in \mathbb{N}).
- In idempotent commutative monoids (a.k.a. join-semilattices), x+y behaves like set-theoretic union or logical OR.

Finite products and indexing

Products over finite index sets

- If only finitely many terms are $\neq e$, define $\prod_{i \in I} x_i$ by choosing any order (associativity ensures unambiguity; commutativity allows reordering freely).
- For functions $f: I \times J \to M$ with finite support, we have the "Fubini for finite products"

$$\prod_{i\in I} \prod_{j\in J} f(i,j) = \prod_{(i,j)\in I\times J} f(i,j) = \prod_{j\in J} \prod_{i\in I} f(i,j).$$

Transition

Reindex responsibly. Associativity is your seatbelt; commutativity is cruise control.

Morphisms and quotients

Monoid homomorphisms

Definition

A **homomorphism** $f:(M,\cdot,e)\to (N,\star,1)$ is a map with $f(x\cdot y)=f(x)\star f(y)$ and f(e)=1.

- Images of units are units: if $u \in M^{\times}$ then $f(u) \in N^{\times}$.
- Composition of homomorphisms is a homomorphism; the identity map is a homomorphism.

Congruences and quotients

- A monoid congruence \sim is an equivalence relation on M compatible with multiplication: $x \sim x'$, $y \sim y' \Rightarrow xy \sim x'y'$.
- The quotient M/\sim inherits a monoid structure.
- Any homomorphism $f: M \to N$ yields a congruence $x \sim y \Leftrightarrow f(x) = f(y)$ (the *kernel congruence*).

First isomorphism theorem (monoids)

 $M/\sim \cong \operatorname{Im}(f)$ where \sim is the kernel congruence of f.

Transition

Same plot as in group theory, but with a slightly different side character named "congruence."

Free monoids and presentations

Free monoids

- For an alphabet Σ , the **free monoid** Σ^* consists of all finite words in Σ under concatenation; unit is the empty word ε .
- Universal property: any function $g: \Sigma \to (M, \cdot, e)$ extends uniquely to a homomorphism $\widehat{g}: \Sigma^* \to M$ with $\widehat{g}(\sigma_1 \cdots \sigma_k) = g(\sigma_1) \cdots g(\sigma_k)$.

Presentations

- A monoid can be given by **generators and relations**: $M \cong \Sigma^*/\equiv$ where \equiv is the smallest congruence forcing chosen relations.
- Example: the commutative monoid on generators x, y is $\langle x, y \mid xy = yx \rangle$.

Transition

Presentations: because writing down every element individually is a terrible hobby.

Constructions and actions

Direct products and substructures

- The product of monoids (M, \cdot, e) and $(N, \star, 1)$ is $M \times N$ with (x, a)(y, b) = (xy, ab) and identity (e, 1).
- Submonoids and homomorphic images behave as expected under products.

Monoid actions

Definition

An **action** of a monoid (M, \cdot, e) on a set S is a map $M \times S \to S$ satisfying $e \cdot s = s$ and $x \cdot (y \cdot s) = (xy) \cdot s$.

- Example: \mathbb{N} acts on S by iterating a function $f: S \to S$, via $n \cdot s = f^{\circ n}(s)$.
- Every action corresponds to a homomorphism $M \to \operatorname{End}(S)$.

Transition

Actions: when monoids stop being polite and start getting real (on sets).

Checklists and pitfalls

How to verify a monoid in the wild

- 1. Specify the underlying set M.
- 2. Specify the binary operation clearly.
- 3. Prove associativity.
- 4. Exhibit a unit and verify two-sidedness.
- 5. (Optional) Identify units M^{\times} , submonoids, and natural homomorphisms.

Common pitfalls

- Assuming a left identity is automatically a right identity (true in presence of associativity, but needs a proof).
- Using cancellation without confirming invertibility or appropriate hypotheses.
- Forgetting the empty product convention when proving product identities.

Final transition to next section

If every element has an inverse, congratulations—you've unlocked the DLC: **Groups**.

Coming up next!