专题一:评价类模型

目录

I.	权重	模型部分	. 2
1	层次分	分析法	. 2
	1.1	层次分析法的原理	. 2
	1.2	层次分析法的注意事项与创新思路	. 4
	1.3	层次分析法代码	. 4
2	熵权剂	去	.5
	2.1	"熵"的思想	.5
	2.2	熵权法的原理与建模思路	. 5
	2.3	熵权法代码	6
IJ	[. 决第	6模型部分	6
3	模糊组	宗合评价	6
	3.1	模糊综合评价基本思想与概念	. 6
	3.2	模糊综合评价基本原理与思路	. 6
		模糊综合评价代码	
4		解距离法	
	4.1	优劣解距离法数据类型	. 8
	4.2	优劣解距离法原理与建模思路	.9
	4.3	优劣解距离法注意事项与创新思路	10
	4.4	优劣解距离法代码	10
5	组合则	武权与多层次建模思路	11
	5.1	其它主观评价法	11
	5.2	其它客观评价法	11
	5.3	多层次权重创新思路	11

I. 权重模型部分

1 层次分析法

1.1 层次分析法的原理

(1) 构建层次结构

将问题分解为目标层、准则层和方案层:

- **目标层:**明确决策的最终目标。
- 准则层:列出影响决策的主要因素或准则。
- **方案层:**提供可供选择的方案或备选对象。

层次分析法的层级结构图

综上可得,酿酒葡萄质量评价指标体系构架为:

图 2 酿酒葡萄质量评价指标体系构架表

葡萄酒层次分析法实例【2012 国赛 A 真题】

(2) 构造判断矩阵

1. 对同一层次的各因素,通过两两比较的方式,确定其相对重要性。采用 1-9 的标度法:构造判断矩阵 $A=(a_{ij})$,其中 aij 表示第 i 个因素相对于第 j 个因素的重要性 具体而言:1-9 标度法如下表所示

注意: 1-9 标度法也可以取小数,或者在 1-9 之间的偶数,视变量重要性决定

元素	标度	规则
	1	以上一层某个因素为准则,本层次因素 i 与因素 j 相比,具有同样重要。
	3	以上一层某个因素为准则,本层次因素 i 与因素 j 相比, i 比 j 稍微重要。
a_{ij}	5	以上一层某个因素为准则,本层次因素 i 与因素 j 相比, i 比 j 明显重要。
	7	以上一层某个因素为准则,本层次因素 i 与因素 j 相比, i 比 j 强烈重要。
	9	以上一层某个因素为准则,本层次因素 i 与因素 j 相比, i 比 j 极端重要。

2. 判断矩阵的三条性质与事例

- ①所有元素均大于 $0a_{ij} > 0$
- ②主对角线上元素全部为1 aii = 1
- ③矩阵中所有元素关于主对角线互为倒数 $a_{ij} \cdot a_{ji} = 1$

表 6 判断矩阵表										
	因子1	因子2	因子3	因子4	因子5	因子6	因子7	因子8		
因子1	1.0000	1.1655	1.6571	1.9159	1.9311	2.0250	2.3020	2.7346		
因子2	0.8580	1.0000	1.4218	1.6439	1.6569	1.7375	1.9751	2.3463		
因子3	0.6035	0.7033	1.0000	1.1562	1.1654	1.2221	1.3892	1.6502		
因子4	0.5219	0.6083	0.8649	1.0000	1.0079	1.0569	1.2015	1.4273		
因子5	0.5178	0.6035	0.8581	0.9921	1.0000	1.0486	1.1921	1.4161		
因子6	0.4938	0.5755	0.8183	0.9461	0.9536	1.0000	1.1368	1.3504		
因子7	0.4344	0.5063	0.7198	0.8323	0.8389	0.8797	1.0000	1.1879		
因子8	0.3657	0.4262	0.6060	0.7006	0.7062	0.7405	0.8418	1.0000		

【2012 国赛 A 真题】

(3) 一致性检验

由于判断矩阵基于主观比较,可能存在不一致性,因此需要进行一致性检验:

①计算最大特征值:
$$\lambda_{\text{max}} = \frac{1}{n} \sum_{i=1}^{n} \frac{(AW)_i}{w_i}$$

其中, AW 是判断矩阵 A 与权重向量 W 的乘积。

②计算一致性指标 CI:
$$CI = \frac{\lambda_{\text{max}} - n}{n-1}$$

③查找随机一致性指标 RI:

n	1	2	3	4	5	6	7	8	9
RI	0	0	0.58	0.94	1.12	1.24	1.32	1.41	1.45

④计算一致性比率
$$CR$$
: $CR = \frac{CI}{RI}$

若 CR<0.1,则认为判断矩阵具有可接受的一致性;否则需重新调整判断矩阵。

(4) 计算权重向量

通过判断矩阵计算各因素的权重:

将判断矩阵按列归一化:
$$b_{ij} = \frac{a_{ij}}{\sum_{k=1}^{n} a_{kj}}$$

求权重: 对归一化后的矩阵按行求平均值,得到权重向量(算术平均法): $w_i = \frac{1}{n} \sum_{i=1}^n b_{ij}$

1.2 层次分析法的注意事项与创新思路

- ①慎用层次分析法,涉及专家打分的问题;
- ②注意层次分析法的表述(优序图法),表述上的新颖;
- ③注意层次分析法的三种加权方法: **特征值法、根法、和法**的综合应用,最好不要只写一种,可以三种方法求平均值,从而确保结果的可靠性和说服力;
- ④层次分析法本质上是一种**主观加权**方法,应当与客观加权方法相结合(例如:熵权法, CRITIC 方法等);
- ⑤采用层次分析法,指标层图像应当美观,权重表格应当美观,同时也为我们提供了一个<mark>构</mark> 建指标体系的思路:

1.3 层次分析法代码

```
def ahp_analysis(criteria_names):
    层次分析法(AHP)完整流程示例:
    1. 生成随机判断矩阵
    2. 计算权重
    3. 一致性检验
    n = len(criteria_names)
    # 1. 生成随机判断矩阵 (1-9标度、满足互反性)
    print("\n== 随机生成的判断矩阵 ==")
judgment_matrix = np.ones((n, n))
    for i in range(n):
        for j in range(i+1, n):
value = randint(1, 9) # 1-4标页随机值
judgment_matrix[i, j] = value
judgment_matrix[j, i] = 1 / value # 互反值
    df_matrix = pd.DataFrame(judgment_matrix, index=criteria_names, columns=criteria_names)
    print(df_matrix.round(2))
    # 2. 计算权重(特征向量法)
    eigenvalues, eigenvectors = np.linalg.eig(judgment_matrix)
    max_eigenvalue = np.max(eigenvalues).real
max_eigenvector = eigenvectors[:, np.argmax(eigenvalues)].real
    weights = max_eigenvector / np. sum(max_eigenvector) # 归
    print("\n== 权重计算结果 ==")
    for name, weight in zip(criteria_names, weights):
        print(f [name]: {weight:.4f} ")
    # 3. 一致性检验
    RI_dict = {1:0, 2:0, 3:0.58, 4:0.90, 5:1.12, 6:1.24, 7:1.32, 8:1.41, 9:1.45} #随紀CI = (max_eigenvalue - n) / (n - 1)
    CR = CI / RI_dict[n]
    print("\n== 一致性检验 ==")
    print(f"最大特征值: {max_eigenvalue:.4f}")
    print(f CI值: {CI:.4f} ")
    print(f"CR值: {CR:.4f} {'< 0.1, 通过检验' if CR < 0.1 else '>= 0.1, 需调整判断矩阵'}")
    return weights
```

2 熵权法

2.1 "熵"的思想

①信息熵的概念:信息熵是信息论中用于衡量系统不确定性的指标。

- 熵值越大,表示数据的离散程度越高,不确定性越大;
- 熵值越小,表示数据越集中,不确定性越小。
- ②信息熵与熵权: 在熵权法中, 指标的熵值反映了该指标对评价结果的贡献程度:

③熵权法的核心思想:

指标的变异程度越大,所包含的信息量越少,其权重也应越小。熵权法通过计算各指标的信息熵来衡量其离散程度,进而确定权重

2.2 熵权法的原理与建模思路

(1) 数据标准化

将原始数据进行标准化处理,消除量纲和数量级的影响。常用的标准化方法包括:

• 正向指标(越大越好):
$$x_{ij} = \frac{x_{ij} - \min(x_j)}{\max(x_j) - \min(x_j)}$$

• 负向指标(越小越好):
$$x'_{ij} = \frac{\max(x_j) - x_{ij}}{\max(x_j) - \min(x_j)}$$

(2) 计算比重

计算每个指标值的比重
$$p_{ij}$$
: $p_{ij} = \frac{x_{ij}^{'}}{\sum_{i=1}^{n} x_{ij}^{'}}$

(3) 计算信息熵

计算第
$$j$$
个指标的信息熵 e_j : $e_j = -\frac{1}{\ln(n)} \sum_{i=1}^n p_{ij} \ln(p_{ij})$

其中,ln(n) 为归一化因子,确保 e_i 的取值范围为[0,1]

(4) 计算差异系数

计算第 i 个指标的差异系数 d_i : $d_i = 1 - e_i$;

差异系数反映了指标的信息量, d_i越大, 说明该指标对评价结果的贡献越大。

(5) 计算权重

根据差异系数,通过归一化计算各指标的权重 w_j : $w_j = \frac{d_j}{\sum_{j=1}^m d_j}$

2.3 熵权法代码

II. 决策模型部分

3 模糊综合评价

3.1 模糊综合评价基本思想与概念

模糊综合评价(Fuzzy Comprehensive Evaluation, FCE)是一种基于模糊数学的决策方法,用于处理具有模糊性和不确定性的评价问题。它通过将定性指标转化为定量评价,解决传统评价方法中"非此即彼"的刚性分类问题,更适合描述现实中"部分属于"的模糊现象

概念	说明
模糊集合	元素对集合的隶属度在[0,1]区间内
隶属函数	定义元素属于某个模糊集合的程度(如"高"=0.8,"低"=0.3)
评价因素集(U)	待评价的指标集合,如 U={价格,质量,服务}
评语集(V)	可能的评价等级,如 V={优,良,中,差}
权重向量(W)	各指标的相对重要性,如 W=[0.3,0.5,0.2]
模糊关系矩阵(R)	表示每个指标对评语集的隶属度,通过隶属函数或专家打分获得

3.2 模糊综合评价基本原理与思路

- (1) **构建评价体系:** 确定因素集 $U = \{u_1, u_2, ..., u_m\}$ 和评语集 $V = \{v_1, v_2, ..., v_m\}$
- (2) **确定权重:** 通过 AHP、熵权法等方法分配各指标权重 $W = \{w_1, w_2, ..., w_m\}$
- (3) **建立模糊关系矩阵** R: 对每个指标 u_i , 统计其属于各评语 v_i 的隶属度 r_{ii} , 形成矩阵:

$$R = \begin{bmatrix} r_{11} & \dots & r_{1m} \\ \vdots & \dots & \vdots \\ r_{n1} & \dots & r_{nm} \end{bmatrix}$$

(4) 合成模糊评价结果:

将权重 W 与模糊矩阵 R 合成,得到综合隶属度向量 B=W。R:

合成算子: 常用加权平均型
$$b_i = \sum_{i=1}^m w_i \cdot r_{ij}$$

结果 $B = \{b_1, b_2, ..., b_m\}$ 表示方案对各评语的隶属度。

- 编者按:本文从彩票方案对彩民的吸引力、中奖面、奖金分配几个层次对各方案的合理进行了评价。其主要特点就是在 确定各级判断矩阵的权数时通过问卷调查给出,而不时凭主观愿望直接给出数据,这也是用数学模型解决实际 问题的一种重要方面。
- 摘 要:本文主要研究了彩票中各奖项的中奖概率、奖项和奖金的设置以及对彩民的吸引力等因素对彩票方案合理性的 影响。在问题一给出的 29 种方案中,我们用模糊综合评判的方法量化各个方案的合理度,分别给影响合理度的 因素加权从而求出合理度,发现方案 26、27 的合理度分别为 0.5300 和 0.6414,是两套较优的方案,之后我们分析了模型的稳定性;在问题二中,我们基于问题一中的 29 套方案,对于每种方案的合理度采用线性规划模型,用 Lingo 软件求得相应的最优合理度和最优奖项设置,最后我们补充分析了模型中未考虑的一些因素,并向管理部门和彩民提出了一些建议。

关键词:中奖概率;奖项和奖金的设置;吸引力;方案的合理度;模糊综合评判

分类号: AMS(2000) 90C05

中国分类号: 0221.1

文献标识码: A

首先,合理性可以从销售者和购买者两方面的满意程度来衡量,建立一级评判集 A = [对彩民吸引力,销售者利润] 和权重集 B' = [b1 ,b2 】其中 b1 为对彩民吸引力的权重,b2 为销售者利润的权重。

再者,销售者的利润和销售额与返奖率有关,而在销售额等同的情况下可以由返奖率表示。对彩民的吸引力可以由以下几个因素衡量:中奖的几率,奖金的分配对彩民的效用和单张彩票的期望收益。由此建立二级评判集 $C = \{ \text{中奖的概率,奖金的分配对彩民的效用,单张彩票的期望收益} \}$ 和对应的权重集 D = [d1,d2,d3]。

至此就建立了一个用数值反映合理度的模型,其结构可由图 1 给出

模糊综合评价数模比赛事例【2002 年国赛 B 题】

3.3 模糊综合评价代码

```
def fuzzy_comprehensive_evaluation(data, weights, evaluation_levels):
   模糊综合评价核心算法
   :param data: 原始数据矩阵 (n_samples, n_indicators)
   :param weights: 指标权重 (n_indicators,)
   :param evaluation_levels: 评语集 (如 ['优', '良', '中', '差'])
   :return: 综合评价结果 (隶属度向量)
   n_samples, n_indicators = data.shape
   n_levels = len(evaluation_levels)
   # 1. 数据标准化(假设所有指标均为效益型,越大越好)
   data_normalized = (data - data.min(axis=0)) / (data.max(axis=0) - data.min(axis=0) + 1e-10)
   # 2. 计算隶属度矩阵(使用梯形隶属函数简化版)
   membership_matrix = np.zeros((n_indicators, n_levels))
   for i in range(n_indicators):
       # 将指标值均匀映射到评语等级
      bins = np.linspace(0, 1, n_levels + 1)
      membership = np. zeros(n_levels)
       for j in range(n_levels):
          # 计算属于每个等级的隶属度(简单线性隶属)
          lower = bins[j]
          upper = bins[j+1]
          mask = (data_normalized[:, i] >= lower) & (data_normalized[:, i] <= upper)
          membership[j] = np.mean(mask)
      membership_matrix[i] = membership
   #3. 模糊合成(加权平均型)
   weighted_membership = np.dot(weights, membership_matrix)
   final_score = weighted_membership / weighted_membership.sum()
   return final_score, membership_matrix
```

4 优劣解距离法

4.1 优劣解距离法数据类型

	指标1	指标 2	指标3	指标 4	指标 5
方案1	7	2	4	1	2
方案 2	10	9	2	4	9
方案3	4	4	3	1	2
方案 4	5	4	3	5	3
方案 5	4	2	1	10	5
方案 6	10	3	10	1	1
方案7	8	8	2	5	7

①基本概念:

- 正理想解(Positive Ideal Solution): 各指标的最优值组成的虚拟方案
- 负理想解(Negative Ideal Solution): 各指标的最劣值组成的虚拟方案
- 相似度: 衡量方案与正理想解和负理想解的接近程度, 值越大表示方案越优

● 目标:选择最优方案

②核心思想: TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) 是一种 多准则决策分析方法,用于对多个备选方案进行排序和选择。其核心思想是: 最优方案应同时距离正理想解最近且距离负理想解最远。TOPSIS 通过计算 各方案与正理想解和负理想

解的相对接近度,来确定方案的优劣顺序

4.2 优劣解距离法原理与建模思路

(1) 构建决策矩阵

假设有n个方案和m个评价指标,构建决策矩阵 $X: x_{ij}$ 表示第i个方案的第j个指标值:

$$X = \begin{bmatrix} x_{11} & \dots & x_{1m} \\ \vdots & \dots & \vdots \\ x_{n1} & \dots & x_{nm} \end{bmatrix}$$

(2) 数据标准化

由于各指标的量纲和数量级可能不同,需要对决策矩阵进行标准化处理。常用标准化方法为:

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{n} x_{ij}^2}}$$

(3) 确定权重

根据实际需求,为各指标赋予权重 w_i ,权重可以通过主观赋权法(如 AHP)或客观赋权法(如熵权法)确定

(4) 构建加权标准化决策矩阵

将标准化矩阵 R 与权重向量w 结合,得到加权标准化矩阵 V:

$$V = [v_{ij}]_{n \times m}, v_{ij} = w_j \cdot r_{ij}$$

(5) 确定正理想解和负理想解

- 正理想解:每个指标的最优值组成的向量 $V^+ = \{\mathbf{v}_1^+, \mathbf{v}_2^+, ..., \mathbf{v}_m^+\}, \mathbf{v}_j^+ = \max(\mathbf{v}_{ij})$
- 负理想解:每个指标的最劣值组成的向量 $V^- = \{v_1^-, v_2^-, ..., v_m^-\}, v_j^- = \min(v_{ij})$

(6) 计算距离

计算每个方案与正理想解和负理想解的欧氏距离:

• 与正理想解的距离:
$$D_i^+ = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^+)^2}$$

•与负理想解的距离:
$$D_i^- = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^-)^2}$$

(7) 计算相对接近度

计算每个方案的相对接近度,值越大表示方案越优: $C_i = \frac{D_i^-}{D_i^- + D_i^+}$

9

针对问题二数学模型的建立,在建立模型之前我们分别引入 NS 模型来解释 未开放小区由于进入规则而引起的车辆减速现象,以及引入交通流理论构造三个 基本参数(流量,密度,速度)之间的公式关系,利用微分求导求得最大流量, 即道路通行最优状态。当交通密度网未达到最优密度时,小区开放增大了交通网 密度,会改善道路通行能力,相应的,当交通密度网达到最优密度,小区开放就 会降低道路的通行能力。基于上述理论定性的研究,根据问题一建立的评价指标

体系,依据多目标决策 TOPSIS 模型,得到影响力度 $W_i = \frac{D_i^-}{D_i^+ + D_i^-}$,由于指标体

系经过合理同趋化, 最终得到的影响力度越大, 表示通行能力越好。

TOPSIS 方法在数模比赛中的应用【2016 年国赛 B 题】

4.3 优劣解距离法注意事项与创新思路

- ①熵权法本质上是**客观加权法**,应当注意与主观加权法的结合,TOPSIS 方法本质上是一种**基于权重的评分方法**(方案选择方法),注意区分
- ②计算客观权重,应当设定主观权重修正,设定主观和客观加权法的比例(一般3:7)
- ③TOPSIS 法本身就要求一定的权重设定,可以通过熵权-TOPSIS 结合起来对模型创新(或者利用熵权-AHP进行加权,再利用 TOPSIS 进行得分的计算和最终结果的判断)

4.4 优劣解距离法代码

```
def topsis(data, weights=None, impacts=None):
   TOPSIS算法实现
    :param data: 原始数据矩阵,每行代表一个方案,每列代表一个指标:param weights: 各指标权重(默认为等权重):param impacts: 各指标方向('+'表示效益型,'-'表示成本型)
    :return: 各方案的综合得分及排名
   # 0. 参数检查
    if weights is None:
        weights = np. ones(data. shape[1]) / data. shape[1] # 默以等权重
    if impacts is None:
        impacts = ['+'] * data.shape[1] # 默认均为效益型指标
    # 1. 数据标准化(向量归一化)
    normalized = data / np.sqrt((data ** 2).sum(axis=0))
    # 2. 加权标准化矩阵
    weighted = normalized * weights
   ideal_best = np.where(np.array(impacts) = '+', weighted.max(axis=0), weighted.min(axis=0)) ideal_worst = np.where(np.array(impacts) = '+', weighted.min(axis=0), weighted.max(axis=0))
    dist_best = np.sqrt(((weighted - ideal_best) ** 2).sum(axis=1))
    dist_worst = np.sqrt(((weighted - ideal_worst) ** 2).sum(axis=1))
    # 5. 计算相对接近度
    score = dist_worst / (dist_best + dist_worst)
    return score
```

5 组合赋权与多层次建模思路

5.1 其它主观评价法

依赖专家或决策者的主观判断,强调人的经验与偏好。

①德尔菲法(Delphi Method)

通过多轮匿名问卷调查汇总专家意见,逐步收敛确定权重。

②层次分析法(AHP, Analytic Hierarchy Process)

构建判断矩阵,通过两两比较指标重要性计算权重(需一致性检验)。

③模糊综合评判法

结合模糊数学理论,通过专家对指标重要性的模糊语言(如"非常重要""一般")量化权重。

5.2 其它客观评价法

基于数据本身的离散性、相关性或信息量分配权重,减少人为干扰。

①熵权法(Entropy Weight Method)

根据指标的熵值(信息混乱程度)计算权重:熵越小(信息量越大),权重越高。

②变异系数法(Coefficient of Variation)

权重与指标的变异系数(标准差/均值)成正比,反映数据的离散程度。

③主成分分析(PCA, Principal Component Analysis)

通过方差贡献率确定主成分权重,适用于高维数据降维。

④CRITIC 法 (Criteria Importance Through Intercriteria Correlation)

综合指标间的对比强度(标准差)和冲突性(相关系数)计算权重。

5.3 多层次权重创新思路

