CSC236 Problem Set 3

Jacob Nazarenko, James Currier, Mark Abdullah

April 4, 2018

1. a)
$$(11)(0+01+011)*(01+011)$$

b)
$$((1+00)(0+1)*(0*+10+11))+0+1+10+11+00$$

2.

3. a)

$$P(x): \quad \delta^*(q_0,x) = \begin{cases} q_0, & \text{if } x \text{ represents 0 (is all 0s)} \\ q_1, & \text{if } x \text{ ends in a 1} \\ q_2, & \text{if } x \text{ ends in a 1 followed by one 0} \\ q_3, & \text{if } x \text{ ends in a 1 followed by two 0s} \\ q_4, & \text{if } x \text{ ends in a 1 followed by three or more 0s} \end{cases}$$

$$P(x): \quad \delta^*(q_0, x) = \begin{cases} q_0, & \text{if } x \text{ has an even } \# \text{ of 1s and ends with 0} \\ q_1, & \text{if } x \text{ has an odd } \# \text{ of 1s and ends with 1} \\ q_2, & \text{if } x \text{ has an odd } \# \text{ of 1s and ends with 0} \\ q_3, & \text{if } x \text{ has an even } \# \text{ of 1s and ends with 1} \end{cases}$$

$$P(x): \quad \delta^*(q_0, x) = \begin{cases} q_0, & \text{if } x \text{ has even length and zero a's} \\ q_1, & \text{if } x \text{ has odd length and zero a's} \\ q_2, & \text{if } x \text{ has odd length and one a} \\ q_3, & \text{if } x \text{ has even length and one a} \\ q_4, & \text{if } x \text{ has even length and two or more a's} \\ q_5, & \text{if } x \text{ has odd length and two or more a's} \end{cases}$$

b) Let $\mathcal{L}(D)$ represent the language accepted by the DFA above. We want to prove that $L = \mathcal{L}(D)$ Let us begin by proving P(x) holds $\forall x \in \sum^*$

Proof (by induction):

Base case: $x = \epsilon$

$$\delta^*(q_0, x) = \delta^*(q_0, \epsilon) = q_0 \implies P(\epsilon) \text{ holds}$$

Inductive Step:

Let $x \in \sum^*$ and $m \in \sum$. Assume P(x) [IH].

Case 1: Assume m = a

Case 1.1: x has even length and zero a's.

Then xm has odd length and one a.

By [IH] $\delta^*(q_0, x) = q_0$

By definition,

$$\delta^{*}(q_{0}, xm) = \delta^{*}(\delta^{*}(q_{0}, x), m)$$

$$= \delta^{*}(q_{0}, m)$$

$$= \delta^{*}(q_{0}, a)$$

$$= q2$$

Therefore P(xm) holds.

Case 1.2: x has odd length and zero a's.

Then xm has even length and one a.

By [IH] $\delta^*(q_0, x) = q_1$

By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_1, m)$$
$$= \delta^*(q_1, a)$$
$$= q3$$

Therefore P(xm) holds.

Case 1.3: x has odd length and one a's.

Then xm has even length and two a.

By [IH] $\delta^*(q_0, x) = q_2$

By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_2, m)$$
$$= \delta^*(q_2, a)$$
$$= q4$$

Therefore P(xm) holds.

Case 1.4: x has even length and one a's.

Then xm has odd length and two a.

By [IH] $\delta^*(q_0, x) = q_3$ By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_3, m)$$
$$= \delta^*(q_3, a)$$
$$= q5$$

Therefore P(xm) holds.

Case 1.5: x has even length and two or more a's. Then xm has odd length and greater then two a. By [IH] $\delta^*(q_0, x) = q_4$ By definition,

$$\delta^{*}(q_{0}, xm) = \delta^{*}(\delta^{*}(q_{0}, x), m)$$

$$= \delta^{*}(q_{4}, m)$$

$$= \delta^{*}(q_{4}, a)$$

$$= q5$$

Therefore P(xm) holds.

Case 1.6: x has odd length and two or more a's. Then xm has even length and greater than two a's. By [IH] $\delta^*(q_0, x) = q_5$ By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_5, m)$$
$$= \delta^*(q_5, a)$$
$$= q4$$

Therefore P(xm) holds.

Case 2: Assume m = b

Case 2.1: x has even length and zero a's. Then xm has odd length and zero a. By [IH] $\delta^*(q_0, x) = q_0$ By definition,

$$\delta^{*}(q_{0}, xm) = \delta^{*}(\delta^{*}(q_{0}, x), m)$$

$$= \delta^{*}(q_{0}, m)$$

$$= \delta^{*}(q_{0}, b)$$

$$= q1$$

Therefore P(xm) holds.

Case 2.2: x has odd length and zero a's. Then xm has even length and zero a. By [IH] $\delta^*(q_0, x) = q_1$ By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_1, m)$$
$$= \delta^*(q_1, b)$$
$$= q0$$

Therefore P(xm) holds.

Case 2.3: x has odd length and one a's. Then xm has even length and one a.

By [IH] $\delta^*(q_0, x) = q_2$ By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_2, m)$$
$$= \delta^*(q_2, b)$$
$$= q3$$

Therefore P(xm) holds.

Case 2.4: x has even length and one a's.

Then xm has odd length and one a.

By [IH]
$$\delta^*(q_0, x) = q_3$$

By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_3, m)$$
$$= \delta^*(q_3, b)$$
$$= q2$$

Therefore P(xm) holds.

Case 2.5: x has even length and two or more a's.

Then xm has odd length and two or more a.

By [IH]
$$\delta^*(q_0, x) = q_4$$

By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_4, m)$$
$$= \delta^*(q_4, b)$$
$$= q5$$

Therefore P(xm) holds.

Case 2.6: x has odd length and two or more a's. Then xm has even length and two or more a.

By [IH] $\delta^*(q_0, x) = q_5$ By definition,

$$\delta^*(q_0, xm) = \delta^*(\delta^*(q_0, x), m)$$
$$= \delta^*(q_5, m)$$
$$= \delta^*(q_5, b)$$
$$= q4$$

Therefore P(xm) holds.

We have now shown that P(xm) holds in every case. In conclusion, by the principle of Structural Induction, P(w) holds $\forall w \in \sum^*$.

We will now show that,

- 1) $L \subseteq \mathcal{L}(D)$
- 2) $\mathcal{L}(D) \subseteq L$
- 1) Let $w \in L$, Then w has even length and at least two a's.

$$P(w)$$
 holds $\Longrightarrow \delta^*(q_0, w) = q4$ (an accepting state)
 $\Longrightarrow w \in \mathcal{L}(D)$
 $\Longrightarrow L \subseteq \mathcal{L}(D)$

2) Let $w \in \mathcal{L}(D)$

$$P(w)$$
 holds and $\delta^*(q_0,w)=q4\implies w$ has even length and two or more a 's
$$\implies w\in L$$

$$\implies \mathcal{L}(D)\subset L$$

Then

$$\mathcal{L}(D) \subseteq L \text{ and } L \subseteq \mathcal{L}(D) \implies L = \mathcal{L}(D)$$

Therefore we have proven the language L and the language accepted by the DFA are equal, and hence the DFA is correct.

5. a) Proof (by Contradiction):

We want to prove that L_1 is not a regular language.

Assume for contradiction that L_1 is a regular language. Then we will use the pumping lemma, which tells us there exists a pumping length p.

Let $s = a^{3p}b^p$ be a string in L_1 .

Then by the pumping lemma there exists strings x, y, z that satisfy the following,

- 1. $s = xyz = a^{3p}b^p$
- 2. $|y| \ge 1$
- $3. |xy| \leq p$
- 4. $\forall i \in \mathbb{N}, xy^i z \in L_1$

By this we know the the only possibility for y is a^k for $1 \le k \le p$, since |xy| must be less than p, and we know the first 3p characters of s are all a's.

By number 4, $xy^2z = a^{3p+k}b^p \in L_1$, however this cannot be true since this does not satisfy the condition of the language L_1 as stated in the question.

Therefore we have reached a contradiction, and L_1 cannot be a regular language.

b) Proof (by Contradiction):

We want to prove L_2 is not a regular language. Assume for contradiction that L_2 is a regular language.

Define
$$L' = L_2 \cap a^*b^* = \{a^n b^m | m, n \in \mathbb{N}, n \le m\}$$

The only way there are no c's in a string in L_2 is if m = n such that $a^n b^m c^{m-n} = a^n b^m c^0 = a^n b^m$. Then the complement of L_2 intersected with a^*b^* must be in the form as described by the set notation of L'.

Since regular languages are closed under intersection, and we know a^*b^* is regular as it is represented by a regular expression, we get that L' must also be regular, under the assumption that L_2 is regular. However it was proven in tutorial 10, question 2, that the set represented by L' is not regular. We have reached a contradiction!

Therefore, L' not regular $\implies L_2$ not regular.

We have thereby proven L_2 is not a regular language.