

- ▶The Experiments
- Major Channels
 - **▶**CCQE
 - Single pion production
 - **DIS**
 - Electron and Antineutrinos
- Summary

1970's - 1980's

Experiments split between high energy tracking calorimeters studying DIS and medium energy bubble chambers studying axial current physics

Experiment	Date	Energy	Target	
BNL 7ft	1975-1980	0.0-3.0	D2	
Aachen-Padova	1979	2.0	Aluminium	
ANL 12ft	1970-1975	0.0-6.0	D2/H2	
SKAT	1975-1980	3-30	Freon/Bromine	
FNAL 15ft	1975-1985	2-100	D2/H2	
BEBC	1970-1985	5-100	Neon/H2	
Gargamelle	1970-1976	5-50	Freon/Propane	
CHARM I/II	1979-1986	20-30	Glass	
CDHS	1976-1985	80-200	Iron	

GARGAMELLE

1990's

NOMAD tracking detector $E_{_{v}}$: 5 – 100 GeV

Carbon (mostly) target 1990-1998

calorimeter

CHORUS Emulsion E_v: 5 – 100 GeV Silver target 1990-1998

De CHORUS opstelling

muon spectrometer

emulsion target & fibre tracker

magnetic spectrometer

1990's

NUTEV Tracking Calorimeter Iron target 30-500 GeV sign-selected beam

2000's

Scattering experiments in the last decade mostly sit at medium energy and use scintillator as the target material. Note that MINERvA can look & compare other target types as well.

Experiment	Date	Energy	Target
MINOS	2005-	0-30 GeV	Iron
MiniBooNE	2002-2012	0-5 GeV	C_nH_m
SciBooNE	2007-2008	0-5 GeV	C_nH_m
MINERVA	2011-	0.0-3.0	C _n H _m ,Pb,Fe,C,H ₂ 0
T2K ND280	2009-	0.0-5.0	C _n H _m , H ₂ 0

Neutrino-Nucleon Interactions

CC – W[±] exchange

Quasi-elastic Scattering
 Target changes but no breakup

$$v_{\mu}+n \rightarrow \mu^{-}+p$$

Coherent/Diffractive production Target unchanged

$$v_{\mu}+n\rightarrow \mu^{-}+n+\pi^{+}$$

Nuclear resonance production
 Target goes to excited state
 and decays

$$v_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0} (N^{*} \text{ or } \Delta)$$

$$n + \pi^{+}$$

Deep Inelastic Scattering Target breaks up

$$v_{\mu}$$
 + quark $\rightarrow \mu^{-}$ + quark'

 $NC - Z^0$ exchange

Elastic ScatteringTarget unchanged

$$v_{\mu}+n \rightarrow v_{\mu}+n$$

 Coherent/Diffractive production Target unchanged

$$v_{\mu}+N\rightarrow v_{\mu}+N+\pi^{0}$$

Nuclear resonance production

Target goes to excited state and decays

$$v_{\mu} + N \rightarrow v_{\mu} + N + \pi (N^* \text{ or } \Delta)$$

Deep Inelastic Scattering

Target breaks up

$$v_{\mu}$$
 + quark $\rightarrow v_{\mu}$ + quark

 q^2

Cross-sections – current knowledge

Cross-sections – current knowledge

CCQE

Quasi-Elastic Scattering

- Usually though of as a single nucleon knock-on process
- In the past has been used as a "standard candle" to normalise other cross sections
- Heavily studied in the 1970's and 1980's and considered to be "understood"

Very important for current oscillation experiments as it contributes the most of the total cross section at a few GeV

"Standard" Formalism

Llewellyn-Smith formalism on a free nucleon

$$\frac{d\sigma}{dQ^{2}} = \frac{M^{2}G_{F}^{2}\cos^{2}\theta_{C}}{8\pi E_{v}^{2}} \left[A(Q^{2}) \pm B(Q^{2}) \frac{(s-u)}{M^{2}} + C(Q^{2}) \frac{(s-u)^{2}}{M^{4}} \right]$$

Contain 6 Q² dependent form factors

All but one of the form factors are known from from electron scattering or can be related to others

$$F_{Axial}(Q^{2}) = \frac{F_{A}(0)}{1 - \frac{Q^{2}}{m_{A}^{2}}}$$

The unknown form factor is usually taken to be the "axial" form factor

Axial Mass

Dipole parametrisation of axial form factor

known from β decay

Lyubushkin et al, Eur. Phys. JC63:355-381 ▶m_^ is the "axial mass"

this was the "measurement"

- Deuterium bubble chambers and high energy experiements determine $m_{\Delta} = 1.026 \pm 0.021 \text{ GeV}^2$
- Low energy experiments on carbon seem to show m_x is ~ 1.3

Dipole form is only a parametrisation

Status of data (2003)

Cautionary tales

The data underlying our CCQE models come from:

- electron scattering from nuclei (electrons scatter from surface)
- D₂ data from 1970's/1980's

VOLUME 49, NUMBER 2

PHYSICAL REVIEW LETTERS

12 JULY 1982

Neutrino Flux and Total Charged-Current Cross Sections in High-Energy Neutrino-Deuterium Interactions

T. Kitagaki, S. Tanaka, H. Yuta, K. Abe, K. Hasegawa, A. Yamague T. Hayashino, Y. Ohtani, and H. Hayano Tohohu University, Sendai 980, Japan

To obtain the total cross section from the number of events, the neutrino flux has to be measured on an absolute scale. In this analysis, we determine the neutrino flux using 362 quasielastic events identified in our data¹⁰ and the cross section for reaction (2) derived from the V-A theory.

and then this flux is used to measure the QE cross section

PHYSICAL REVIEW D

VOLUME 28, NUMBER 3

1 AUGUST 1983

High-energy quasielastic $\nu_{\mu}n \rightarrow \mu^{-}p$ scattering in deuterium

T. Kitagaki, S. Tanaka, H. Yuta, K. Abe, K. Hasegawa, A. Yamaguchi, K. Tamai, T. Hayashino, Y. Otani, H. Hayano, and H. Sagawa Tohoku University, Sendai 980, Japan

> R. A. Burnstein, J. Hanlon, and H. A. Rubin Himois Institute of Technology, Chicago, Hilmois 60616

C. Y. Chang, S. Kunori, G. A. Snow, D. Son,* P. H. Steinberg, and D. Zieminska[†] University of Maryland, College Park, Maryland 20742

R. Engelmann, T. Kufka, and S. Sommars[‡]

State University of New York at Stony Brook, Stony Brook, New York 11974

C. C. Chang, W. A. Mann, A. Napier, and J. Schneps. Tufts University, Medford, Massachuretts 02155 (Received 13 December 1982)

We have studied the quasielastic reaction $\mathbf{v}_s \mathbf{n} \rightarrow \mu^- p$ in an exposure of the Fermilab deuteriumfilled 15-foot bubble chamber to a high-energy wide-band neutrino beam. From an analysis of the Q^2 distribution based on the standard V-A theory, the axial-vector mass in a dipole parametrization of the axial-vector form factor is determined to be $M_A = 1.05^{+0.05}_{-0.05}$ GeV, consistent with the values previously reported from low-energy experiments.

Theoretical QE Xsec used to measure neutrino flux

Puzzle

MiniBooNE and NOMAD both measured this process and there is significant tension.....but are we comparing apples with oranges?

What is the signal?

MiniBooNE is a hybrid cerenkov/scintillator experiment

CCQE signal is actually CC- 0π

NOMAD is a high energy tracker

CCQE signal : 1μ track μ / p 2 track

Signals contain different contributions from nuclear and bare processes. Unfolding relies on models. Can we compare the results sensibly?

Initial state model

The model of the target kinematics can affect the cross-section

Spectral function model is known to perform better in describing electron scattering. Is it the same for neutrino scattering?

Effect on cross-section

SF can have a large effect on normalisation and shape of the cross-section and is known to perform better than RFG in electron scattering.

SF has to be calculated for each target atom species

Multinucleon contributions

Nieves et al, arXiv:1204:5404

- Extra contribution to observed MiniBooNE signal but less for NOMAD
- Process has not been "conclusively" observed in neutrinos
- ► Electron scattering suggests 20% correlated nucleons with np in the initial state
- Kinematics of the hadronic system are not known

Reconstruction Effects

Prospects

Understanding the nuclear issues will require:

- imaging the hadronic system
- high precision data on different nuclei
- data on light nuclei (H/D)

LAr data from ArgoNeut, microBooNE gas Ar data from T2K could help

Differential cross-sections

Unravelling all the different effects will require more information than just σ vs E_v - we need full differential cross sections in observed variables

MiniBooNE have published detailed diff. xsec data: data, covariance matrices, predicted background, flux integrated & flux unfolded.....

This is "CCQE" & includes background subtraction and detector effect unfolding.

Grange and Katori, arXiv: 1404.6484

Differential cross-sections

CCQE Summary

- CCQE the "simple" process is turning out to be a lot less simple than we thought
- Measured cross sections depend on the definition of the signal in the each experiment, modelling of nuclear effects and, to a lesser extent at the moment, modelling of the bare process
- ▶ Better to try to measure final-state cross sections rather than generator mode dependent cross sections
- Need differential cross sections.
- New high precision data should help unravel the nuclear questions, but the situation at the moment is far from clear.

Single pion production

Light target data is, as with CCQE, dominated by the bubble chamber experiments with the usual precision issues

Rein-Seghal resonance model is used in all generators This model actually fits electron data badly.

Final State Effects

- Pions generated in a nuclear potential can
 - -be absorbed
 - -be elastically scattered
 - -undergo charge exchange
- We need to understand how the visible final states map to the bare interaction
- Requires external hadron data

Recent data

MiniBooNE and MINERvA have recently published high statistics differential distributions on single pion production.

The results are....confusing....

MiniBooNE data does not agree with NEUT+nominal FSI model in either shape or normalisation (in fact, it supports no FSI effects)

MINERVA data prefers nominal FSI model in normalisation but has little sensitivity to shape (yet)

Constraining FSI: Duet

The DUET experiment used the TRIUMF secondary pion beam to study π -N interactions for π energies between 50 and 300 MeV

Goal to measure pion absorption to 10% and charge exchange to 20%

This will be extremely useful for tuning the FSI models we use

Constraining FSI: Duet

As of NuFact2013

Multipion Production

The so-called Shallow Inelastic region lies around $E_{_{\rm V}}$ ~ few GeV and W > 2 GeV. Light target bubble chamber data exists for this – heavy target data has not been studied extensively

Deep Inelastic Scattering

Incoherent scattering off bound quarks, antiquarks and gluons

$$\nu_{\mu} + N \rightarrow \mu^{-} + X$$

DIS Cross section

Neutrino and antineutrino DIS at high energies has been studied extensively in the 80's and 90's.

$$\frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} = \frac{G_F^2 M E_{\nu}}{\pi (1 + \frac{Q^2}{M_{W}^2})^2} \left[\left(1 - y - \frac{M x y}{2 E_{\nu}} \right) F_{\mathbf{2}}^{\nu(\overline{\nu})} + \frac{y^2}{2} 2 x F_{\mathbf{1}}^{\nu(\overline{\nu})} \pm y (1 - \frac{y}{2}) x F_{\mathbf{3}}^{\nu(\overline{\nu})} \right]$$

$$2xF_{1}^{v,\overline{v}}(x,Q^{2}) = \sum \left[xq^{v,\overline{v}} + x\overline{q}^{v,\overline{v}}\right]$$

$$F_{2}^{v,\overline{v}}(x,Q^{2}) = \sum \left[xq^{v,\overline{v}} + x\overline{q}^{v,\overline{v}} + 2xk^{v,\overline{v}}\right]$$

$$xF_{3}^{v,\overline{v}}(x,Q^{2}) = \sum \left[xq^{v,\overline{v}} - x\overline{q}^{v,\overline{v}}\right]$$

Accessibly only using neutrinos

Data

Nuclear corrections

 e/μ -nucleus data is used in electron scattering to study DIS.

Parametrization as function of x

Shadowing

EMC Effect (Everyone's Model is Cool) still not understood after 30 years

Nuclear effects are different in v

Recent calculations seem to show that the nuclear effects for neutrinos in DIS are significantly different

- ► Presence of the axial current
- Nuclear effects for F_2 and xF_3 could also be different
- Very little data

BEBC Data

MINERVA are studying nuclear effects on \overline{v} and v DIS

Electron Neutrinos

Rev. Mod. Phys 84 (1307), 2012

Isotope	Reaction Channel	Source E	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
^{2}H	$^2{ m H}(u_e,e^-){ m pp}$	Stopped π/μ I	AMPF	$52 \pm 18 (tot)$	54 (IA) (Tatara et al., 1990)
¹² C	$^{12}{\rm C}(\nu_e,e^-)^{12}{\rm N}_{\rm g.s.}$	Stopped π/μ K	KARMEN	$9.1 \pm 0.5 ({ m stat}) \pm 0.8 ({ m sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ E	E225	$10.5 \pm 1.0 ({ m stat}) \pm 1.0 ({ m sys})$	9.2 [EPT] (Fukugita et al., 1988).
		Stopped π/μ L	LSND	$8.9 \pm 0.3 \mathrm{(stat)} \pm 0.9 \mathrm{(sys)}$	8.9 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	$^{12}{ m C}(u_e,e^-)^{12}{ m N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6 \mathrm{(stat)} \pm 0.5 \mathrm{(sys)}$	5.4-5.6 [CRPA] (Kolbe <i>et al.</i> , 1999b)
		Stopped π/μ E	E225	$3.6 \pm 2.0 (tot)$	4.1 [Shell] (Hayes and S, 2000)
		Stopped π/μ L	SND	$4.3 \pm 0.4 ({ m stat}) \pm 0.6 ({ m sys})$	
⁵⁶ Fe	$^{56}\text{Fe}(\nu_e, e^-)^{56}\text{Co}$	Stopped π/μ K	KARMEN	$256 \pm 108 \mathrm{(stat)} \pm 43 \mathrm{(sys)}$	264 [Shell] (Kolbe et al., 1999a)
⁷¹ Ga	$^{71}{ m Ga}(u_e,e^-)^{71}{ m Ge}$	⁵¹ Cr source C	GALLEX, ave.	$0.0054 \pm 0.0009(tot)$	0.0058 [Shell] (Haxton, 1998)
	2 82 3 2 3 3 3 3 3	⁵¹ Cr S	SAGE	$0.0055 \pm 0.0007 (tot)$	
		³⁷ Ar source S	AGE	$0.0055 \pm 0.0006 (\rm tot)$	0.0070 [Shell] (Bahcall, 1997)
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ L	SND	$284 \pm 91(\mathrm{stat}) \pm 25(\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

< 50 MeV

~ 700 keV

- At GeV energies very little published data exists.
- Should differ from v_{μ} by lepton mass effects and radiative corrections
- Need something like vSTORM to measure v_e cross sections

Antineutrinos

Situation as of 2012

Lots of data at high energies

Very little, or no data, at medium energies

Antineutrinos

Summary

- ▶In the 1970's-1980's we knew what neutrinos were doing
- We have now advanced to new and surprising levels of bafflement
- The data from 1970's is sparse and (in some cases) suspect but we still rely on it to a great extent.
- In order to attain the level of systematics that the next generation of long-baseline experiments require we will need more data
 - light target data (?)
 - as many nuclear targets as we can get
 - precise and isotropic imaging of the vertex
 - new (fast?) models