Question Number	Answer		Mark
14(a)	Horizontal line drawn at 19 mJ	(1)	1
14(b)	Elastic potential energy at 1.0 cm read from graph [accept values in range 4.0 (mJ) – 5.0 (m J)]	(1)	
	Use of energy conservation		
	[e.g. kinetic energy = total energy – elastic potential energy]	(1)	
	Use of $E_{\rm k} = \frac{1}{2}mv^2$	(1)	
	$v = 0.44 \text{ m s}^{-1}$	(1)	4
	[A response in which the kinetic energy curve is drawn and the value of kinetic energy read off directly can score MP1 and MP2]		
	Example of calculation At 1.0 cm $E_{elas} = 4.5 \text{ mJ}$		
	$\therefore E_k = (19 - 4.5) \times 10^{-3} \text{J} = 1.45 \times 10^{-2} \text{J}$		
	$1.45 \times 10^{-2} \text{ J} = \frac{1}{2} \times 0.15 \text{ kg} \times v^2$		
	$v = \sqrt{\frac{2 \times 1.45 \times 10^{-2} \text{ J}}{0.15 \text{ kg}}} = 0.440 \text{ m s}^{-1}$		
	Total for question 14		5