S-8261D系列

1节电池用电池保护IC

www.sii-ic.com

© Seiko Instruments Inc., 2015 Rev.2.0_00

S-8261D系列内置高精度电压检测电路和延迟电路,是用于锂离子 / 锂聚合物可充电电池的保护IC。 S-8261D系列最适合于对1节锂离子 / 锂聚合物可充电电池组的过充电、过放电和过电流的保护。

■ 特点

• 高精度电压检测电路

过充电检测电压 3.5 V~4.6 V (5 mV进阶) 精度±20 mV $3.1 \text{ V} \sim 4.6 \text{ V}^{*1}$ 过充电解除电压 精度±50 mV 2.0 V~3.4 V (10 mV进阶) 过放电检测电压 精度±50 mV $2.0 \text{ V} \sim 3.4 \text{ V}^{*2}$ 过放电解除电压 精度±100 mV 放电过电流检测电压 0.050 V ~ 0.400 V (5 mV进阶) 精度±10 mV 0.150 V ~ 0.900 V (25 mV进阶) 负载短路检测电压 精度±100 mV -0.200 V ~ -0.050 V (5 mV进阶) 精度±20 mV 充电过电流检测电压

• 各种检测延迟时间仅通过内置电路即可实现 (不需要外接电容)

可选择向0 V电池充电的功能: 允许、禁止可选择休眠功能: 有、无

• 可选择放电过电流状态的解除条件: 断开负载、连接充电器

• 可选择放电过电流状态的解除电压: VRIOV, VDIOV

• 高耐压: VM端子、CO端子: 绝对最大额定值28 V

• 工作温度范围广: Ta = -40°C ~ +85°C

• 消耗电流低

工作时: 1.5 μA (典型值)、4.0 μA (最大值) (Ta = +25°C)

休眠时: 50 nA (最大值) (Ta = +25°C) 过放电时: 500 nA (最大值) (Ta = +25°C)

• 无铅 (Sn 100%)、无卤素

*1. 过充电解除电压 = 过充电检测电压 - 过充电滞后电压 (过充电滞后电压可在0 V ~ 0.4 V的范围内以50 mV为进阶单位进行选择)

*2. 过放电解除电压 = 过放电检测电压 + 过放电滞后电压 (过放电滞后电压可在0 V ~ 0.7 V的范围内以100 mV为进阶单位进行选择)

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

- SOT-23-6
- SNT-6A

■ 框图

图1

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅 "3. 产品名目录"。

2. 封装

表1 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图	焊盘图
SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD	_
SNT-6A	PG006-A-P-SD	PG006-A-C-SD	PG006-A-R-SD	PG006-A-L-SD

3. 产品名目录

3.1 SOT-23-6

表2 (1 / 2)

	₹ 2 (172)									
	过充电	过充电	过放电	过放电	放电过电流	负载短路	充电过电流			
产品名	检测电压	解除电压	检测电压	解除电压	检测电压	检测电压	检测电压			
	[V _{CU}]	[V _{CL}]	[V _{DL}]	[V _{DU}]	[V _{DIOV}]	[V _{SHORT}]	[V _{CIOV}]			
S-8261DAA-M6T1U	4.280 V	4.080 V	3.000 V	3.000 V	0.080 V	0.500 V	–0.100 V			
S-8261DAB-M6T1U	4.280 V	4.080 V	2.300 V	2.300 V	0.160 V	0.500 V	–0.100 V			
S-8261DAC-M6T1U	4.325 V	4.075 V	2.500 V	2.900 V	0.150 V	0.500 V	-0.100 V			
S-8261DAD-M6T1U	4.465 V	4.165 V	2.100 V	2.100 V	0.150 V	0.500 V	-0.100 V			
S-8261DAE-M6T1U	4.425 V	4.225 V	2.500 V	2.500 V	0.160 V	0.500 V	-0.100 V			
S-8261DAF-M6T1U	4.375 V	4.175 V	2.300 V	2.400 V	0.150 V	0.500 V	−0.150 V			
S-8261DAG-M6T1U	4.425 V	4.225 V	2.500 V	2.800 V	0.160 V	0.500 V	−0.150 V			
S-8261DAH-M6T1U	4.425 V	4.225 V	2.500 V	2.800 V	0.200 V	0.500 V	−0.150 V			
S-8261DAI-M6T1U	4.280 V	4.180 V	3.000 V	3.000 V	0.180 V	0.600 V	−0.150 V			
S-8261DAJ-M6T1U	4.250 V	4.200 V	2.500 V	2.700 V	0.250 V	0.600 V	-0.200 V			
S-8261DAK-M6T1U	4.250 V	4.200 V	2.700 V	3.000 V	0.250 V	0.600 V	-0.200 V			
S-8261DAL-M6T1U	4.275 V	4.225 V	2.300 V	2.800 V	0.250 V	0.600 V	-0.200 V			
S-8261DAM-M6T1U	4.400 V	4.350 V	3.000 V	3.200 V	0.250 V	0.600 V	-0.200 V			
S-8261DAN-M6T1U	4.325 V	4.075 V	2.500 V	2.900 V	0.150 V	0.500 V	−0.150 V			
S-8261DAP-M6T1U	4.425 V	4.225 V	2.500 V	2.500 V	0.160 V	0.500 V	–0.160 V			
S-8261DAQ-M6T1U	4.475 V	4.275 V	2.500 V	2.900 V	0.150 V	0.500 V	−0.150 V			
S-8261DAR-M6T1U	4.475 V	4.275 V	2.500 V	2.900 V	0.200 V	0.500 V	−0.200 V			
S-8261DAS-M6T1U	4.425 V	4.225 V	2.500 V	2.900 V	0.200 V	0.500 V	-0.200 V			
S-8261DAT-M6T1U	3.650 V	3.450 V	2.100 V	2.300 V	0.150 V	0.500 V	–0.150 V			
S-8261DAU-M6T1U	4.425 V	4.225 V	2.500 V	2.900 V	0.130 V	0.500 V	–0.130 V			
S-8261DAV-M6T1U	4.275 V	4.175 V	2.300 V	2.400 V	0.200 V	0.500 V	-0.200 V			
S-8261DAW-M6T1U	4.280 V	4.080 V	3.000 V	3.300 V	0.080 V	0.500 V	-0.080 V			
S-8261DAX-M6T1U	4.280 V	4.080 V	2.800 V	3.000 V	0.100 V	0.500 V	-0.100 V			
S-8261DAY-M6T1U	4.200 V	4.100 V	2.800 V	3.000 V	0.150 V	0.500 V	-0.150 V			
S-8261DAZ-M6T1U	4.275 V	4.075 V	2.500 V	2.900 V	0.150 V	0.500 V	−0.150 V			
S-8261DBA-M6T1U	4.300 V	4.200 V	2.300 V	2.500 V	0.200 V	0.500 V	-0.200 V			
S-8261DBB-M6T1U	4.275 V	4.175 V	2.300 V	2.500 V	0.100 V	0.500 V	-0.100 V			

表2 <u>(2 / 2)</u>

产品名	延迟时间的组合*1	向0 V电池 充电的功能	休眠功能	放电过电流状态的 解除条件	放电过电流状态的 解除电压
S-8261DAA-M6T1U	(1)	允许	有	断开负载	VDIOV
S-8261DAB-M6T1U	(1)	允许	有	断开负载	VDIOV
S-8261DAC-M6T1U	(1)	禁止	有	断开负载	VDIOV
S-8261DAD-M6T1U	(2)	允许	有	断开负载	VDIOV
S-8261DAE-M6T1U	(3)	允许	有	断开负载	VDIOV
S-8261DAF-M6T1U	(4)	允许	有	断开负载	VDIOV
S-8261DAG-M6T1U	(5)	允许	无	断开负载	VDIOV
S-8261DAH-M6T1U	(1)	允许	无	断开负载	VDIOV
S-8261DAI-M6T1U	(6)	允许	有	断开负载	VDIOV
S-8261DAJ-M6T1U	(6)	允许	有	断开负载	VDIOV
S-8261DAK-M6T1U	(6)	允许	有	断开负载	VDIOV
S-8261DAL-M6T1U	(6)	允许	有	断开负载	VDIOV
S-8261DAM-M6T1U	(6)	允许	有	断开负载	VDIOV
S-8261DAN-M6T1U	(1)	禁止	有	断开负载	VDIOV
S-8261DAP-M6T1U	(3)	允许	有	断开负载	VDIOV
S-8261DAQ-M6T1U	(4)	允许	无	断开负载	VDIOV
S-8261DAR-M6T1U	(4)	允许	无	断开负载	VDIOV
S-8261DAS-M6T1U	(3)	允许	无	断开负载	VDIOV
S-8261DAT-M6T1U	(4)	允许	无	断开负载	VDIOV
S-8261DAU-M6T1U	(3)	允许	无	断开负载	VDIOV
S-8261DAV-M6T1U	(1)	允许	有	断开负载	VDIOV
S-8261DAW-M6T1U	(1)	允许	无	断开负载	VDIOV
S-8261DAX-M6T1U	(1)	允许	无	断开负载	VDIOV
S-8261DAY-M6T1U	(1)	禁止	无	断开负载	VDIOV
S-8261DAZ-M6T1U	(1)	禁止	无	断开负载	VDIOV
S-8261DBA-M6T1U	(1)	禁止	无	断开负载	VDIOV
S-8261DBB-M6T1U	(1)	允许	无	断开负载	VDIOV

^{*}**1**. 有关延迟时间的组合的详情,请参阅**表4**。

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

3. 2 SNT-6A

表3 (1 / 2)

	过充电	过充电	过放电	过放电	放电过电流	负载短路	充电过电流
产品名	检测电压	解除电压	检测电压	解除电压	检测电压	检测电压	检测电压
	[V _{CU}]	[V _{CL}]	[V _{DL}]	[V _{DU}]	[V _{DIOV}]	[V _{SHORT}]	[V _{CIOV}]
S-8261DBD-I6T1U	4.275 V	4.175 V	2.300 V	2.400 V	0.150 V	0.500 V	−0.150 V
S-8261DBE-I6T1U	4.475 V	4.275 V	2.500 V	2.800 V	0.200 V	0.500 V	-0.200 V
S-8261DBF-I6T1U	4.280 V	4.080 V	2.800 V	2.800 V	0.050 V	0.300 V	-0.050 V
S-8261DBH-I6T1U	4.475 V	4.275 V	2.500 V	2.900 V	0.150 V	0.400 V	−0.150 V

表3 (2 / 2)

产品名	延迟时间的组合*1	向0 V电池 充电的功能	休眠功能	放电过电流状态的 解除条件	放电过电流状态的 解除电压
S-8261DBD-I6T1U	(3)	允许	无	断开负载	VDIOV
S-8261DBE-I6T1U	(3)	允许	无	断开负载	VDIOV
S-8261DBF-I6T1U	(3)	允许	有	断开负载	VDIOV
S-8261DBH-I6T1U	(4)	允许	无	断开负载	VDIOV

^{*1.} 有关延迟时间的组合的详情,请参阅表4。

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

表4

延迟时间的组合	过充电检测 延迟时间	过放电检测 延迟时间	放电过电流检测 延迟时间	负载短路检测 延迟时间	充电过电流检测 延迟时间
	[t _{CU}]	[t _{DL}]	[t _{DIOV}]	[t _{short}]	[t _{CIOV}]
(1)	1.0 s	128 ms	8 ms	280 μs	8 ms
(2)	256 ms	32 ms	8 ms	280 μs	8 ms
(3)	1.0 s	32 ms	8 ms	280 μs	8 ms
(4)	1.0 s	64 ms	8 ms	280 μs	8 ms
(5)	1.0 s	128 ms	4 ms	280 μs	4 ms
(6)	1.0 s	256 ms	16 ms	280 μs	8 ms

备注 可更改在下述范围内的延迟时间,请向本公司营业部咨询。

表5

延迟时间	符号		选择范围		备注
过充电检测延迟时间	t _{CU}	256 ms	512 ms	1.0 s ^{*1}	从左项中选择
过放电检测延迟时间	t _{DL}	32 ms	64 ms ^{*1}	128 ms	从左项中选择
放电过电流检测延迟时间	t _{DIOV}	4 ms	8 ms ^{*1}	16 ms	从左项中选择
负载短路检测延迟时间	t _{SHORT}	280 μs ^{*1}	530 μs	_	从左项中选择
充电过电流检测延迟时间	t _{CIOV}	4 ms	8 ms*1	16 ms	从左项中选择

^{*1.} 标准产品的延迟时间。

■ 引脚排列图

1. SOT-23-6

图2

表6								
引脚号	符号	描述						
1	DO	放电控制用FET门极连接端子						
		(CMOS输出)						
2	VM	VM端子 – VSS端子间电压检测端子						
		(过电流 / 充电器检测端子)						
3	СО	充电控制用FET门极连接端子						
Ŭ	00	(CMOS输出)						
4	NC ^{*1}	无连接						
5	VDD	正电源输入端子						
6	VSS	负电源输入端子						

*1. NC表示从电气的角度而言处于开路状态。 所以,与VDD端子或VSS端子连接均无问题。

2. SNT-6A

图3

n.							
引脚号	符号	描述					
1	NC ^{*1}	无连接					
2	CO	充电控制用FET门极连接端子					
2	CO	(CMOS输出)					
3	DO	放电控制用FET门极连接端子					
3		(CMOS输出)					
4	VSS	负电源输入端子					
5	VDD	正电源输入端子					
6	VM	VM端子 – VSS端子间电压检测端子					
· ·	V IVI	(过电流 / 充电器检测端子)					

表7

*1. NC表示从电气的角度而言处于开路状态。 所以,与VDD端子或VSS端子连接均无问题。

■ 绝对最大额定值

表8

(除特殊注明以外: Ta = +25°C)

项目		符号	符号 适用端子 绝对最大额定值		单位
VDD端子 – VSS	端子间输入电压	V _{DS}	VDD	$V_{SS} - 0.3 \sim V_{SS} + 6$	V
VM输入端子电压	ī	V_{VM}	VM	$V_{DD} - 28 \sim V_{DD} + 0.3$	V
DO输出端子电压	DO输出端子电压		DO	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
CO输出端子电压	CO输出端子电压		СО	$V_{VM} - 0.3 \sim V_{DD} + 0.3$	V
容许功耗	SOT-23-6	Pn	-	650 ^{*1}	mW
谷叶切札	SNT-6A	FD	_	400 ^{*1}	mW
工作环境温度	工作环境温度		_	−40 ~ +85	°C
保存温度		T _{stg}	_	−55 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的损伤。

图4 封装容许功耗 (基板安装时)

■ 电气特性

1. $Ta = +25^{\circ}C$

表9

(除特殊注明以外: Ta = +25°C)

				(1	东行》水/工·万以八		
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
检测电压							
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.,	-	V _{CU} - 0.020	V _{CU}	$V_{CU} + 0.020$	V	1
过充电检测电压	V _{CU}	$Ta = -10^{\circ}C \sim +60^{\circ}C^{*1}$	V _{CU} - 0.025	V _{CU}	$V_{CU} + 0.025$	V	1
\	.,	V _{CL} ≠ V _{CU}	V _{CL} - 0.050	V_{CL}	V _{CL} + 0.050	V	1
过充电解除电压	V _{CL}	V _{CL} = V _{CU}	V _{CL} - 0.025	V_{CL}	V _{CL} + 0.020	V	1
过放电检测电压	V_{DL}	-	$V_{DL} - 0.050$	V_{DL}	$V_{DL} + 0.050$	V	2
\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+	.,	$V_{DL} \neq V_{DU}$	V _{DU} – 0.100	V_{DU}	$V_{DU} + 0.100$	V	2
过放电解除电压	V_{DU}	$V_{DL} = V_{DU}$	$V_{DU} - 0.050$	V_{DU}	$V_{DU} + 0.050$	V	2
放电过电流检测电压	V_{DIOV}	-	V _{DIOV} – 0.010	V_{DIOV}	$V_{DIOV} + 0.010$	V	2
负载短路检测电压	V _{SHORT}	-	V _{SHORT} – 0.100	V _{SHORT}	V _{SHORT} + 0.100	V	2
充电过电流检测电压	V_{CIOV}	-	$V_{\text{CIOV}} - 0.020$	V _{CIOV}	$V_{CIOV} + 0.020$	V	2
放电过电流解除电压	V_{RIOV}	_	VDD - 1.2	$V_{\text{DD}} - 0.8$	V _{DD} - 0.5	V	2
向0 V电池充电的功能							
开始向0 V电池充电的充电器电压	V _{0CHA}	"允许" 向0 V电池充电的功能	0.0	0.7	1.5	V	2
禁止向0 V电池充电的电池电压	V _{0INH}	"禁止" 向0 V电池充电的功能	0.9	1.2	1.5	V	2
内部电阻			•	•			
VDD端子 – VM端子间电阻	R_{VMD}	V _{DD} = 1.8 V, V _{VM} = 0 V	750	1500	3000	kΩ	3
VM端子 – VSS端子间电阻	R _{VMS}	V _{DD} = 3.4 V, V _{VM} = 1.0 V	10	20	30	kΩ	3
输入电压							
VDD端子 – VSS端子间	V _{DSOP1}	_	1.5	_	6.0	٧	_
工作电压	V DSOP1		1.0		0.0		
VDD端子 – VM端子间	V _{DSOP2}	_	1.5	_	28	V	_
工作电压	500.2						
输入电流		D	1	4 =			
工作时消耗电流	I _{OPE}	$V_{DD} = 3.4 \text{ V}, V_{VM} = 0 \text{ V}$	_	1.5	4.0	μΑ	3
休眠时消耗电流	I _{PDN}	$V_{DD} = V_{VM} = 1.5 \text{ V}$	_	_	50	nA	3
过放电时消耗电流	IOPED	$V_{DD} = V_{VM} = 1.5 \text{ V}$	_	_	0.5	μΑ	3
输出电阻	-	Γ		40	00	1.0	Ι.
CO端子电阻 "H"	R _{COH}	_	5	10	20	kΩ	4
CO端子电阻 "L"	R _{COL}	_	5	10	20	kΩ	4
DO端子电阻 "H"	R _{DOH}	_	5	10	20	kΩ	4
DO端子电阻 "L"	R _{DOL}	_	5	10	20	kΩ	4
延迟时间				<u></u>			
过充电检测延迟时间	t _{CU}	_	$t_{\text{CU}} \times 0.7$	t _{CU}	$t_{\text{CU}} \times 1.3$	_	5
过放电检测延迟时间	t _{DL}	_	$t_{DL} \times 0.7$	t _{DL}	$t_{DL} \times 1.3$	_	5
放电过电流检测延迟时间	t _{DIOV}	_	$t_{\text{DIOV}} \times 0.7$	t _{DIOV}	$t_{\text{DIOV}} \times 1.3$	_	5
负载短路检测延迟时间	t _{SHORT}	_	$t_{SHORT} \times 0.7$	t _{SHORT}	t _{SHORT} × 1.3	_	5
充电过电流检测延迟时间	t _{CIOV}	_	$t_{CIOV} \times 0.7$	t _{CIOV}	$t_{CIOV} \times 1.3$	_	5
	*OIO V		1010V A 0.1	•0101	1010 V A 1.0		

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

2. Ta = -40° C ~ $+85^{\circ}$ C^{*1}

表10

(除特殊注明以外: Ta =-40°C~+85°C*1)

				(13/13/2017-7	16/7 . Ta — 1 0		00 0)
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
检测电压							
过充电检测电压	V _{CU}	_	$V_{\text{CU}}-0.045$	V _{CU}	$V_{CU} + 0.030$	V	1
计去中级吸引区	V _{CL}	V _{CL} ≠ V _{CU}	$V_{\text{CL}}-0.080$	V_{CL}	$V_{CL} + 0.060$	V	1
过充电解除电压	V CL	V _{CL} = V _{CU}	V _{CL} - 0.050	V _{CL}	V _{CL} +0.030	V	1
过放电检测电压	V_{DL}	-	$V_{DL} - 0.080$	V_{DL}	V _{DL} + 0.060	V	2
) +) + + 67.50 + F	.,	$V_{DL} \neq V_{DU}$	$V_{DU} - 0.130$	V_{DU}	V _{DU} + 0.110	V	2
过放电解除电压	V_{DU}	$V_{DL} = V_{DU}$	$V_{DU} - 0.080$	V_{DU}	V _{DU} + 0.060	V	2
放电过电流检测电压	V_{DIOV}	_	$V_{DIOV} - 0.010$	V _{DIOV}	V _{DIOV} + 0.010	V	2
负载短路检测电压	V _{SHORT}	-	V _{SHORT} - 0.100	V _{SHORT}	V _{SHORT} + 0.100	V	2
充电过电流检测电压	V_{CIOV}	-	V _{CIOV} - 0.020	V _{CIOV}	V _{CIOV} + 0.020	V	2
放电过电流解除电压	V_{RIOV}	-	V _{DD} – 1.4	$V_{DD} - 0.8$	V _{DD} - 0.3	V	2
向0 V电池充电的功能							
开始向0 V电池充电的充电器电压	V _{0CHA}	"允许" 向0 V电池充电的功能	0.0	0.7	1.7	V	2
禁止向0 V电池充电的电池电压	V _{0INH}	"禁止" 向0 V电池充电的功能	0.7	1.2	1.7	V	2
内部电阻	l	L					1
VDD端子 – VM端子间电阻	R _{VMD}	V _{DD} = 1.8 V, V _{VM} = 0 V	500	1500	6000	kΩ	3
VM端子 – VSS端子间电阻	R _{VMS}	V _{DD} = 3.4 V, V _{VM} = 1.0 V	7.5	20	40	kΩ	3
输入电压							•
VDD端子 – VSS端子间	V _{DSOP1}		1.5	_	6.0	V	_
工作电压	V DSOP1	_	1.5	1	0.0	V	_
VDD端子 – VM端子间	V _{DSOP2}	_	1.5	_	28	V	_
工作电压	• D30F2		1.0			•	
输入电流					i		1
工作时消耗电流	I _{OPE}	$V_{DD} = 3.4 \text{ V}, V_{VM} = 0 \text{ V}$	_	1.5	5.0	μΑ	3
休眠时消耗电流	I _{PDN}	$V_{DD} = V_{VM} = 1.5 \text{ V}$	_	_	150	nA	3
过放电时消耗电流	I _{OPED}	$V_{DD} = V_{VM} = 1.5 V$	_	-	1.0	μΑ	3
输出电阻	_	<u> </u>					1
CO端子电阻 "H"	R _{COH}	_	2.5	10	30	kΩ	4
CO端子电阻 "L"	R _{COL}	_	2.5	10	30	kΩ	4
DO端子电阻 "H"	R _{DOH}	-	2.5	10	30	kΩ	4
DO端子电阻 "L"	R _{DOL}	_	2.5	10	30	kΩ	4
延迟时间							
过充电检测延迟时间	tcu	_	$t_{\text{CU}}\!\times\!0.5$	tcu	$t_{\text{CU}}\!\times\!2.5$	_	5
过放电检测延迟时间	t _{DL}	_	$t_{DL} \times 0.5$	t _{DL}	$t_{DL} \times 2.5$	_	5
放电过电流检测延迟时间	t _{DIOV}	_	$t_{\text{DIOV}} \times 0.5$	t _{DIOV}	$t_{\text{DIOV}} \times 2.5$	_	5
负载短路检测延迟时间	t _{SHORT}	_	$t_{\text{SHORT}} \times 0.5$	t _{SHORT}	t _{SHORT} × 2.5	_	5
充电过电流检测延迟时间	t _{CIOV}	_	$t_{\text{CIOV}} \times 0.5$	tciov	$t_{CIOV} \times 2.5$	_	5
九七是七加强彻廷及时间	*CIOV		10107 / 0.0	•0101	1010V A 2.0	1	9

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 测定电路

注意 在未经特别说明的情况下,CO端子的输出电压 (V_{co}),DO端子的输出电压 (V_{Do}) 的 "H", "L" 的判定是以N沟道 FET的阈值电压 (1.0 V) 为基准。此时,CO端子请以 V_{VM} 为基准、DO端子请以 V_{SS} 为基准进行判定。

1. 过充电检测电压、过充电解除电压

(测定电路1)

在V1 = 3.4 V设置后的状态下,将V1缓慢提升至 V_{CO} = "H" \rightarrow "L" 时的V1的电压即为过充电检测电压 (V_{CU})。之后,将V1缓慢下降至 V_{CO} = "L" \rightarrow "H" 时的V1的电压即为过充电解除电压 (V_{CL})。 V_{CU} 与 V_{CL} 的差额即为过充电滞后电压 (V_{HC})。

2. 过放电检测电压、过放电解除电压

(测定电路2)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V1缓慢降低至 V_{DO} = "H" → "L" 时的V1的电压即为过放电检测电压(V_{DL})。 之后,设置V2 = 0.01 V,将V1缓慢提升至 V_{DO} = "L" → "H" 时的V1的电压即为过放电解除电压(V_{DU})。 V_{DU} 与 V_{DL} 的差额即为过放电滞后电压(V_{HD})。

3. 放电过电流检测电压、放电过电流解除电压

(测定电路2)

3.1 放电过电流状态的解除电压 "VDIOV"

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2提升,从电压提升后开始到 V_{DO} = "H" \rightarrow "L" 为止的延迟时间即为放电过电流检测延迟时间 (t_{DIOV}),此时的V2的电压即为放电过电流检测电压 (V_{DIOV})。

3.2 放电过电流状态的解除电压 "VRIOV"

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为 t_{DIOV} ,此时的V2的电压即为 V_{DIOV} 。之后,设置V2 = 3.4 V,将V2缓慢降低至 V_{DO} = "L" → "H" 时的V2的电压即为放电过电流解除电压(V_{RIOV})。

4. 负载短路检测电压

(测定电路2)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为负载短路检测延迟时间(t_{SHORT}),此时的V2的电压即为负载短路检测电压(V_{SHORT})。

5. 充电过电流检测电压

(测定电路2)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2降低,从电压降低后开始到 V_{CO} = "H" → "L" 为止的延迟时间即为充电过电流检测延迟时间 (t_{CIOV}),此时的V2的电压即为充电过电流检测电压 (V_{CIOV})。

6. 工作时消耗电流

(测定电路3)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,流经VDD端子的电流 (I_{DD}) 即为工作时消耗电流 (I_{OPE})。

7. 休眠时消耗电流、过放电时消耗电流 (测定电路3)

7.1 "有" 休眠功能

在V1 = V2 = 1.5 V设置后的状态下, IDD即为休眠时消耗电流 (IPDN)。

7.2 "无" 休眠功能

在V1 = V2 = 1.5 V设置后的状态下, I_{DD} 即为过放电时消耗电流 (I_{OPED})。

8. VDD端子 - VM端子间电阻

(测定电路3)

在V1 = 1.8 V, V2 = 0 V设置后的状态下,VM端子 – VDD端子间电阻即为 R_{VMD} 。

9. VM端子 – VSS端子间电阻

(测定电路3)

在V1 = 3.4 V, V2 = 1.0 V设置后的状态下,VM端子 – VSS端子间电阻即为 R_{VMS} 。

10. CO端子电阻 "H"

(测定电路4)

在V1 = 3.4 V, V2 = 0 V, V3 = 3.0 V设置后的状态下, VDD端子 - CO端子间电阻即为CO端子电阻 "H" (R_{COH})。

11. CO端子电阻 "L"

(测定电路4)

在V1 = 4.7 V, V2 = 0 V, V3 = 0.4 V设置后的状态下, VM端子 - CO端子间电阻即为CO端子电阻 "L" (Rcol)。

12. DO端子电阻 "H"

(测定电路4)

在V1 = 3.4 V, V2 = 0 V, V4 = 3.0 V设置后的状态下, VDD端子 – DO端子间电阻即为DO端子电阻 "H" (RDOH)。

13. DO端子电阻 "L"

(测定电路4)

在V1 = 1.8 V, V2 = 0 V, V4 = 0.4 V设置后的状态下, VSS端子 – DO端子间电阻即为DO端子电阻 "L" (R_{DOL})。

14. 过充电检测延迟时间

(测定电路5)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V1提升,从V1超过 V_{CU} 时开始到 V_{CO} = "L" 为止的时间即为过充电检测延迟时间(t_{CU})。

15. 过放电检测延迟时间

(测定电路5)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V1降低,从V1低于 V_{DL} 时开始到 V_{DO} = "L" 为止的时间即为过放电检测延迟时间(t_{DL})。

16. 放电过电流检测延迟时间

(测定电路5)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2提升,从V2超过 V_{DIOV} 时开始到 V_{DO} = "L" 为止的时间即为放电过电流检测延迟时间 (t_{DIOV})。

17. 负载短路检测延迟时间

(测定电路5)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2提升,从V2超过 V_{SHORT} 时开始到 V_{DO} = "L" 为止的时间即为负载短路检测延迟时间 (t_{SHORT})。

18. 充电过电流检测延迟时间

(测定电路5)

在V1 = 3.4 V, V2 = 0 V设置后的状态下,将V2降低,从V2低于 V_{CIOV} 时开始到 V_{CO} = "L" 为止的时间即为充电过电流检测延迟时间 (t_{CIOV})。

19. 开始向0 V电池充电的充电器电压 ("允许" 向0 V电池充电的功能) (测定电路2)

在V1 = V2 = 0 V设置后的状态下,将V2缓慢降低,当 V_{CO} = "H" (V_{CO} = V_{DD}) 时的V2的电压的绝对值即为开始向0 V 电池充电的充电器电压 (V_{OCHA})。

20. 禁止向0 V电池充电的电池电压 ("禁止" 向0 V电池充电的功能) (测定电路2)

在V1 = 1.9 V, V2 = -4.0 V设置后的状态下,将V1缓慢降低,当 V_{CO} = "L" (V_{CO} = V_{VM}) 时的V1的电压即为禁止向0 V 电池充电的电池电压 (V_{OINH})。

图5 测定电路1

图6 测定电路2

图7 测定电路3

图8 测定电路4

图9 测定电路5

■ 工作说明

备注 1. 请参阅 "■ 电池保护IC的连接例"。

2. 在未经特别说明的情况下, VM端子电压以Vss为基准。

1. 通常状态

S-8261D系列是通过监视连接在VDD端子 – VSS端子间的电池电压以及VM端子 – VSS端子间电压,来控制充电和放电。电池电压在过放电检测电压 (V_{DL}) 以上且在过充电检测电压 (V_{CU}) 以下的范围内、VM端子电压在充电过电流检测电压 (V_{CIOV}) 以上且在放电过电流检测电压 (V_{DIOV}) 以下的范围内的情况下,充电控制用FET和放电控制用FET的双方均被打开。这种状态称为通常状态,可以自由地进行充电和放电。

在通常状态下,没有连接 VDD端子 – VM端子间电阻 (R_{VMD}) 和VM端子 – VSS端子间电阻 (R_{VMS})。

注意 初次连接电池时,有可能不处于通常状态。此时,通过短路VM端子和VSS端子,或连接充电器使VM端子电压 在V_{CIOV}以上且在V_{DIOV}以下,就能变为通常状态。

2. 过充电状态

2.1 V_{CL} ≠ V_{CU} (过充电解除电压和过充电检测电压相异的产品)

在充电中,通常状态的电池电压若超过 V_{CU} ,且这种状态保持在过充电检测延迟时间(t_{CU})以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为过充电状态。 过充电状态的解除,分为如下的2种情况。

- (1) 如果VM端子电压在低于V_{DIOV}的情况下,当电池电压降低到过充电解除电压 (V_{CL}) 以下时,即可解除过充电状态。
- (2) 如果VM端子电压在VDIOV以上的情况下, 当电池电压降低到VCU以下时, 即可解除过充电状态。

检测出过充电之后,连接负载开始放电,由于放电电流通过充电控制用FET的内部寄生二极管流动,因此VM端子电压比VSS端子电压增加了内部寄生二极管的V_f电压。此时,如果VM端子电压在V_{DIOV}以上的情况下,当电池电压在V_{CU}以下时,即可解除过充电状态。

- 注意 对于超过 V_{cU} 而被充电的电池,即使连接了较大值的负载,也不能使电池电压下降到 V_{cU} 以下的情况下,在电池电压降低到 V_{cU} 为止,放电过电流检测以及负载短路检测是不能发挥作用的。但是,实际上电池的内部阻抗有数十 $m\Omega$,在连接了可使过电流发生的较大值负载的情况下,因为电池电压会马上降低,因此放电过电流检测以及负载短路检测是可以发挥作用的。
- 2. 2 V_{CL} = V_{CU} (过充电解除电压和过充电检测电压相同的产品)

在充电中,通常状态的电池电压若超过 V_{CU} ,且这种状态保持在过充电检测延迟时间(t_{CU})以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为过充电状态。

如果VM端子电压在0 V (典型值) 以上,当电池电压降低到Vcu以下时,即可解除过充电状态。

- 注意1. 对于超过 V_{cu} 而被充电的电池,即使连接了较大值的负载,也不能使电池电压下降到 V_{cu} 以下的情况下,在电池电压降低到 V_{cu} 之下为止,放电过电流检测以及负载短路检测是不能发挥作用的。但是,实际上电池的内部阻抗有数十 $m\Omega$,在连接了可使过电流发生的较大值负载的情况下,因为电池电压会马上降低,因此放电过电流检测以及负载短路检测是可以发挥作用的。
 - 2. 检测到过充电后,在连接充电器的情况下,即使电池电压降低到V_{CL}之下,也不能解除过充电状态。通过断开与充电器的连接,VM端子电压上升到0 V (典型值)之上时,才可解除过充电状态。

3. 过放电状态

当通常状态下的电池电压在放电过程中降低到V_{DL}之下,且这种状态保持在过放电检测延迟时间 (t_{DL}) 以上的情况下, 会关闭放电控制用FET而停止放电。这种状态称为过放电状态。

在过放电状态下,由于S-8261D系列内部的VDD端子 – VM端子间可通过R_{VMD}来进行短路,因此VM端子会因R_{VMD}而被 上拉。

在过放电状态下,没有连接R_{VMS}。

3.1 "有" 休眠功能

在过放电状态下,如果VDD端子 – VM端子间的电压差降低到0.8 V (典型值)以下,休眠功能则开始工作,消耗电流将减少到休眠时消耗电流(I_{PDN})。通过连接充电器,使VM端子电压降低到0.7 V (典型值)以下,来解除休眠功能。

- 在不连接充电器, VM端子电压≥0.7 V (典型值) 的情况下, 即使电池电压在Vpu以上也维持过放电状态。
- 在连接充电器, 0.7 V (典型值) > VM端子电压 > 0 V (典型值) 的情况下, 电池电压在 Vpu以上, 解除过放电状态。
- 在连接充电器,0 V (典型值)≥VM端子电压的情况下,电池电压在VpL以上,解除过放电状态。

3.2 "无" 休眠功能

在过放电状态下,即使VDD端子 - VM端子间的电压差降低到0.8 V (典型值)以下,休眠功能也不工作。

- 在不连接充电器, VM端子电压≥0.7 V (典型值) 的情况下, 电池电压在Vpu以上, 解除过放电状态。
- 在连接充电器, 0.7 V (典型值) > VM端子电压 > 0 V (典型值) 的情况下, 电池电压在 Vpu以上, 解除过放电状态。
- 在连接充电器,0 V (典型值)≥VM端子电压的情况下,电池电压在Vcl以上,解除过放电状态。

4. 放电过电流状态 (放电过电流、负载短路)

处于通常状态下的电池,当放电电流达到所定值以上时,会导致VM端子电压上升到V_{DIOV}以上,若这种状态持续保持在放电过电流检测延迟时间(t_{DIOV})以上的情况下,会关闭放电控制用FET而停止放电。这种状态称为放电过电流状态。

4.1 放电过电流状态的解除条件 "断开负载" 及放电过电流状态的解除电压 "VDIOV"

在放电过电流状态下,S-8261D系列内部的VM端子 – VSS端子间可通过R_{VMS}来进行短路。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VDD端子电压。若断开与负载的连接,则VM端子恢复回VSS端子电压。当VM端子电压降低到V_{DIOV}以下时,即可解除放电过电流状态。

在放电过电流状态下,没有连接RVMD。

4.2 放电过电流状态的解除条件 "断开负载" 及放电过电流状态的解除电压 "VRIOV"

在放电过电流状态下,S-8261D系列内部的VM端子 – VSS端子间可通过 R_{VMS} 来进行短路。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VDD端子电压。若断开与负载的连接,则VM端子恢复回VSS端子电压。当VM端子电压降低到 V_{RIOV} 以下时,即可解除放电过电流状态。

在放电过电流状态下,没有连接R_{VMD}。

4.3 放电过电流状态的解除条件 "充电器连接"

在放电过电流状态下,S-8261D系列内部的VM端子 – VDD端子间可通过R_{VMD}来进行短路。连接充电器,当VM端子电压降低到V_{DIOV}以下时,即可解除放电过电流状态。 在放电过电流状态下,没有连接R_{VMS}。

5. 充电过电流状态

在通常状态下的电池,由于充电电流在额定值以上,会导致VM端子电压降低到 V_{CIOV} 以下,若这种状态持续保持在充电过电流检测延迟时间(t_{CIOV})以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为充电过电流状态。如果断开充电器而使VM端子电压恢复到0~V(典型值)以上时,即可解除充电过电流状态。在过放电状态下,充电过电流检测功能不工作。

6. "允许"向0 V电池充电的功能

电池电压因自身放电,在为0 V时的状态下开始变为可进行充电的功能。在EB+端子与EB-端子之间连接电压在向0 V电池充电开始充电器电压(V_{OCHA})以上的充电器时,充电控制用FET的门极会被固定为VDD端子电压。借助于充电器电压,当充电控制用FET的门极和源极间电压达到阈值电压以上时,充电控制用FET将被导通(ON)而开始进行充电。此时,放电控制用FET被截止(OFF),充电电流会流经放电控制用FET的内部寄生二极管而流入。在电池电压变为 V_{DU} 以上时恢复回通常状态。

- 注意 1. 有可能存在被完全放电后,不推荐再一次进行充电的锂离子可充电电池。这是由于锂离子可充电电池的特性而决定的,所以当决定"允许"或"禁止"向0 V电池充电的功能时,请向电池厂商确认详细情况。
 - 2. 对于充电过电流检测功能来说,向0 V电池充电的功能更具优先权。因此,"允许" 向0 V电池充电的产品,在电池电压比 V_D 还低时会被强制地充电,而不能进行充电过电流的检测工作。

7. "禁止"向0 V电池充电的功能

连接了内部短路的电池 (0 V电池) 时,禁止充电的功能。电池电压在向0 V电池充电禁止电池电压 (V_{OINH}) 以下时,充电控制用FET的门极被固定在EB-端子电压,而禁止进行充电。当电池电压在 V_{OINH} 以上时,可以进行充电。

注意 有可能存在被完全放电后,不推荐再一次进行充电的锂离子可充电电池。这是由于锂离子可充电电池的特性而决定的,所以当决定 "允许" 或 "禁止" 向0 V电池充电的功能时,请向电池厂商确认详细情况。

8. 延迟电路

各种检测延迟时间是将约4 kHz的时钟进行计数之后而分频计算出来的。

备注 t_{DIOV}, t_{SHORT}的计时是从检测出V_{DIOV}时开始的。因此,从检测出V_{DIOV}时刻起到超过t_{SHORT}之后,当检测出V_{SHORT} 时,从检测出V_{SHORT}时刻起在t_{SHORT}之内立即关闭放电控制用FET。

图10

■ 工作时序图

1. 过充电检测、过放电检测

*1. (1):通常状态 (2):过充电状态 (3):过放电状态

图11

2. 放电过电流检测

2.1 放电过电流状态的解除条件 "断开负载"

*1. (1): 通常状态

(2): 放电过电流状态

图12

2.2 放电过电流状态的解除条件 "连接充电器"

*1. (1): 通常状态 (2): 放电过电流状态

图13

3. 充电过电流检测

***1.** (1):通常状态

(2): 充电过电流状态 (3): 过放电状态

图14

■ 电池保护IC的连接例

表11 外接元器件参数

The state of the s						
符号	元器件	目的	最小值	典型值	最大值	备注
FET1	N沟道 MOS FET	放电控制	-	-	-	阈值电压≤过放电检测电压 ^{*1}
FET2	N沟道 MOS FET	充电控制	-	-	-	阈值电压≤过放电检测电压 ^{*1}
R1	电阻	ESD对策、 电源变动对策	270 Ω	330 Ω	1 kΩ	-
C1	电容	电源变动对策	0.068 μF	0.1 μF	1.0 μF	-
R2	电阻	ESD对策、 充电器反向连接对策	300 Ω	1 kΩ	4 kΩ	_

^{*1.} 使用的FET的阈值电压在过放电检测电压以上的情况下,有可能导致在过放电检测之前停止放电的情况发生。

注意 1. 上述参数有可能不经预告而作更改。

2. 对上述连接例以外的电路未作动作确认,且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- ·请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- ·本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- ·使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据 (典型数据)

1. 消耗电流

1. 1 I_{OPE} – Ta

1. 2 I_{PDN} – Ta

1. 3 I_{OPED} – Ta

$1.~4~~I_{OPE}-V_{DD}$

1.4.1 "有" 休眠功能

1.4.2 "无" 休眠功能

2. 检测电压

 $\textbf{2. 1} \quad \textbf{V}_{\text{CU}} - \textbf{Ta}$

2. 2 V_{CL} – Ta

2. 3 V_{DL} – Ta

2. 4 $V_{DU} - Ta$

2. 5 V_{DIOV} – Ta

2. 6 V_{SHORT} – Ta

2. 7 V_{CIOV} - Ta

3. 延迟时间

$\textbf{3. 1} \quad \textbf{t}_{\text{CU}}-\textbf{Ta}$

$\textbf{3. 2} \quad \textbf{t}_{\text{DL}}-\textbf{Ta}$

3. 3 $t_{DIOV} - V_{DD}$

3. 4 t_{DIOV} - Ta

3. 5 $t_{SHORT} - V_{DD}$

3. 6 t_{SHORT} – Ta

3.7 $t_{CIOV} - V_{DD}$

3. 8 t_{CIOV} - Ta

4. 输出电阻

4. 1 $R_{COH} - V_{CO}$

4. 2 R_{COL} - V_{CO}

4. 3 $R_{DOH} - V_{DO}$

4.4 $R_{DOL} - V_{DO}$

■ 标记规格

1. SOT-23-6

(1)~(3): 产品简称 (请参照产品名和产品简称的对照表)

(4): 批号

产品名和产品简称的对照表

产品名	产品简称		
厂吅石	(1)	(2)	(3)
S-8261DAA-M6T1U	Υ	1	Α
S-8261DAB-M6T1U	Y	1	В
S-8261DAC-M6T1U	Υ	1	С
S-8261DAD-M6T1U	Y	1	D
S-8261DAE-M6T1U	Υ	1	E
S-8261DAF-M6T1U	Υ	1	F
S-8261DAG-M6T1U	Υ	1	G
S-8261DAH-M6T1U	Y	1	Н
S-8261DAI-M6T1U	Υ	1	1
S-8261DAJ-M6T1U	Υ	1	J
S-8261DAK-M6T1U	Y	1	K
S-8261DAL-M6T1U	Υ	1	L
S-8261DAM-M6T1U	Υ	1	М
S-8261DAN-M6T1U	Υ	1	Ν
S-8261DAP-M6T1U	Υ	1	Р
S-8261DAQ-M6T1U	Υ	1	Q
S-8261DAR-M6T1U	Y	1	R
S-8261DAS-M6T1U	Υ	1	S
S-8261DAT-M6T1U	Υ	1	Т
S-8261DAU-M6T1U	Y	1	U
S-8261DAV-M6T1U	Υ	1	V
S-8261DAW-M6T1U	Υ	1	W
S-8261DAX-M6T1U	Υ	1	Х
S-8261DAY-M6T1U	Υ	1	Υ
S-8261DAZ-M6T1U	Υ	1	Z
S-8261DBA-M6T1U	5	Р	Α
S-8261DBB-M6T1U	5	Р	В

2. SNT-6A

Top view

产品简称 (请参照**产品名和产品简称的对照表**) (1) ~ (3):

(4) ~ (6):

产品名和产品简称的对照表

立口友	产品简称		
产品名	(1)	(2)	(3)
S-8261DBD-I6T1U	5	Р	D
S-8261DBE-I6T1U	5	Р	Ε
S-8261DBF-I6T1U	5	Р	F
S-8261DBH-I6T1U	5	Р	Н

No. MP006-A-P-SD-2.0

TITLE	SOT236-A-PKG Dimensions		
No.	MP006-A-P-SD-2.0		
SCALE			
UNIT	mm		
S	Seiko Instruments Inc.		

No. MP006-A-C-SD-3.1

TITLE	SOT236-A-Carrier Tape		
No.	MP006-A-C-SD-3.1		
SCALE			
UNIT	mm		
Se	Seiko Instruments Inc.		

No. MP006-A-R-SD-2.1

TITLE	SOT236-A-Reel		
No.	MP006-A-R-SD-2.1		
SCALE		QTY	3,000
UNIT	mm		
Seiko Instruments Inc.			C.

No. PG006-A-P-SD-2.0

TITLE	SNT-6A-A-PKG Dimensions		
No.	PG006-A-P-SD-2.0		
SCALE			
UNIT	mm		
S	Seiko Instruments Inc.		

No. PG006-A-C-SD-1.0

TITLE	SNT-6A-A-Carrier Tape		
No.	PG006-A-C-SD-1.0		
SCALE			
UNIT	mm		
<u> </u>			
l S	Seiko Instruments Inc.		

TITLE	SNT-6A-A-Reel		
No. PG006-A-R-SD-1.0			1.0
SCALE		QTY.	5,000
UNIT	mm		
Seiko Instruments Inc.			

%1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 %2. パッケージ中央にランドパターンを広げないでください (1.30 mm ~ 1.40 mm)。

- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き"を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- ※2. Do not widen the land pattern to the center of the package (1.30 mm ~ 1.40 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.30 mm~1.40 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PG006-A-L-SD-4.1

SNT-6A-A-Land Recommendation
PG006-A-L-SD-4.1
mm
l eiko Instruments Inc.

Seiko Instruments Inc.

www.sii-ic.com

- 本资料内容,随着产品的改进,可能会有未经预告的更改。
- 本资料所记载的设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品的代 表性应用说明,并非保证批量生产的设计。
- 本资料所记载的产品,如属外汇交易及外国贸易法中规定的限制货物 (或劳务) 时,基于该法律规定,需得到日本国政府的 出口许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载的产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、车载 器械、航空器械、太空器械及核电关联器械等对人体产生影响的器械或装置部件使用。
- 本资料所记载的产品,非耐放射线设计产品。
- 本公司致力于提高质量与信赖性,但是半导体产品有可能会有一定的概率产生故障或误工作。为防止因故障或误工作而产 生的人身事故、火灾事故、社会性损害等,请注意冗长设计、火势蔓延对策设计、防止误工作设计等安全设计。