XIAOJIAN XU

[Homepage] [Google Scholar] [Github] [Twitter] [Linkedin]

Department of Computer Science and Engineering & Washington University in St. Louis

ABOUT ME

Current research

My current research pursues to combine computational imaging, optimization, and machine learning to
enable new intelligent imaging technology for various imaging applications including denoising, deblurring,
super-resolution, image segmentation, optical microscopy, magnetic resonance imaging (MRI), radar, and autonomous driving, etc. My research efforts are taking place at two complementary levels: (a) the fundamental
and mathematical aspects of imaging; (b) application-oriented projects in collaboration with researchers in
medicine, biology, and computer vision.

Research interests

· Computational Imaging, Optimization, Deep Learning, Inverse Problems, Computer Vision, Image Processing

EDUCATION

Washington University in St. Louis (WUSTL), St. Louis, MO, USA

9/2017-6/2022 (expected)

Ph.D student in Computer Science (GPA: 3.87/4.00), advised by Dr. Ulugbek Kamilov

University of Electronic Science and Technology of China (UESTC), Chengdu, China 9/2014-6/2017

M.Eng in Communication & Information Engineering (Graduated with Honors)

University of Electronic Science and Technology of China (UESTC), Chengdu, China 9/2010-6/2014

• B.Eng in Communication Engineering (GPA: 3.89/4.00)

Work Experience

Facebook Reality Labs Research (FRLR)

5/2021-8/2021

Research intern with Dr. Brian Wheelwright

Seattle (remote)

- Simulated the end-to-end peripheral display system (lens-lets and display LED array included) in Oculus and implemented a corresponding efficient ray-tracing model for the system, all from scratch.
- Solved the display calibration problem with the simulated display system and ray tracing model by designing various optimization strategies.
- Designed a novel deep-learning-based (neural representation) method for the challenging pupil-movement-based camera-to-display mapping in the virtual reality (VR) system, which achieved real-time rendering capability (0.3 sec) without losing visual quality.

Mitsubishi Electric Research Laboratories (MERL)

5/2019-8/2019

Research intern with Dr. Hassan Mansour

Boston

- Investigated in 3D tomographic imaging problems challenged by noise corruption, data acquisition and problem model establishment.
- Established the whole system for data acquisition, and solved the problem by proposing two distinct methods, model-based optimization and data driven deep learning.

Research Experience

Model-based deep learning for imaging and vision

8/2020 - Present

- Working on provable model-based unfolding networks for medical imaging application and computer vision tasks with various noise corruption (Gaussian, Poisson, etc) challenges.
- Developed imaging-model-assisted unsupervised, self-supervised and supervised learning methods for different imaging tasks such as denoising, deblurring, MRI, CT.

Learning-based optimization for imaging and vision

8/2020 - Present

- Conducted different image reconstruction tasks (e.g. debluring, super-resolution, Poisson/Gaussian denoising, compressive sensing, phase retrieval, MRI, CT, etc.) by combining the physical models together with the deep-learning priors.
- Extensively investigated in the variants of Plug-and-Play priors (PnP) and Regularized by denoising (RED) approaches for various imaging tasks (both theory and practice).
- Conducted the first mathematical analysis of plug-and-play priors (PnP) framework for minimum mean squared error (MMSE) denoisers. This result provides new insights into usage of deep-learning denoisers in PnP.
- Designed a practically efficient denoiser scaling technique that can greatly boost the performance of PnP algorithms under deep-learning priors by explicitly adjusting the amount of PnP regularization.
- Developed the stochastic variant of the PnP-ADMM algorithm for large-scale optimization and proved its convergence.

Compressed and stochastic algorithms for large-scale imaging

7/2018 - Present

- Developed the stochastic variant of iterative PnP and unfolding networks for large scale imaging applications with convergence guarantee.
- Developed compressed proximal algorithms for stochastic optimization problems and was the first to prove the convergence.

Learning-based magnetic resonance imaging (MRI) and quantitative-MRI (qMRI) 7/2018 - Present

- Developed both supervised and self-supervised deep-learning-based methods for motion artifact removal in qMRI mapping.
- Investigated the application of reinforcement learning, neural representation and sparse representation in fast MRI reconstruction.
- · Working on macroscopic-magnetic-field-inhomogeneities-corrected MRI image reconstruction

Some earlier research experience

3/2014 - 6/2017

- Intelligent home system design and development.
- Routing and resource scheduling algorithms for large-scale network software defined netwroks (SDN).

LIST OF PUBLICATIONS

Preprints

- [1] **X. Xu** et al., "Learning-based Motion Artifact Removal Networks (LEARN) for Quantitative R_2^* Mapping," arXiv:2109.01622 [eess], Sep. 2021, [Online]. Available: http://arxiv.org/abs/2109.01622
- [2] S. Kahali, S. V. V. N. Kothapalli, **X. Xu**, U. S. Kamilov, and D. A. Yablonskiy, "Deep-Learning-Based Accelerated and Noise-Suppressed Estimation (DANSE) of quantitative Gradient Recalled Echo (qGRE) MRI metrics associated with Human Brain Neuronal Structure and Hemodynamic Properties," bioRxiv, 2021, doi: 10.1101/2021.09.10.459810.

Published

(* indicates equal contribution)

- [3] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, "Provable convergence of plug-and-play priors with MMSE denoisers," IEEE Signal Process. Lett., vol. 27, pp. 1280–1284, 2020.
- [4] X. Xu, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov, "Boosting the performance of plug-and-play priors via denoiser scaling," in 54th Asilomar Conf. on Signals, Systems, and Computers, 2020, pp. 1305–1312.
- [5] X. Xu*, Y. Sun*, Z. Wu*, B. Wohlberg, and U. S. Kamilov, "Scalable Plug-and-Play ADMM With Convergence Guarantees," IEEE Trans. on Comp. Imag., vol. 7, pp. 849–863, 2021.
- [6] J. Liu, Y. Sun, W. Gan, X. Xu, B. Wohlberg, and U. S. Kamilov, "SGD-Net: Efficient Model-Based Deep Learning With Theoretical Guarantees," IEEE Trans. on Comp. Imag., vol. 7, pp. 598–610, 2021.
- [7] J. Liu, Y. Sun, W. Gan, X. Xu, B. Wohlberg, and U. S. Kamilov, "Stochastic Deep Unfolding for Imaging Inverse Problems," in IEEE Int. Conf. Acoustics, speech and signal process (ICASSP), 2021, pp. 1395–1399.

- [8] X. Xu, O. Dhifallah, H. Mansour, P. T. Boufounos, and P. V. Orlik, "Robust 3D Tomographic Imaging of the Ionospheric Electron Density," in 2020 IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), 2020, pp. 437–440.
- [9] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, "Image restoration using total variation regularized deep image prior," in 2019 IEEE Int. Conf. Acoustics, speech and signal process (ICASSP), 2019, pp. 7715–7719.
- [10] X. Xu and U. S. Kamilov, "SignProx: One-bit proximal algorithm for nonconvex stochastic optimization," in IEEE Int. Conf. Acoustics, speech and signal process (ICASSP), Brighton, UK, May 2019, pp. 7800–7804.

INVITED TALKS

- SIAM Conference on Imaging Science, 07/2020
- UCLouvain, Image and Signal Processing Group Seminar, 09/2020
- Asilomar Conference on Signals, Systems, and Computers, 10/2021

REVIEWER EXPERIENCE

- Conferences: ISBI, ICASSP
- **Journals**: IEEE Transactions on Image Processing (TIP), IEEE Transactions on Computational Imaging (TCI), Optics Communications

TEACHING & SUPERVISION EXPERIENCE

(Head) TA for Optimization

2019-2020

Assistant Instructor

St. Louis

 Worked as an assistant instructor for course "Optimization" and "Large-Scale Optimization for Data Science" for four semesters. Developed and held weekly tutorial lectures and occasional guest lectures, hold office hours, answer questions online, design homework and exams.

Students supervision

7/2018-Present

Research Supervisor

St. Louis

Current students

- Eddie Chandler, "Inhomogeneity correction for MRI", now B.S. student at WUSTL
- Yixuan Luo, "Deep-learning-based image segmentation", now M.S. student at WUSTL
- Michael Kincheloe, "Reinforcement learning for MRI artifacts correction". now B.S. student at WUSTL Previous students
- Zhixin Sun, "Neural representation for MRI reconstruction", coming Ph.D student at WUSTL
- Weijie Gan, "Fast MRI reconstruction and artifacts correction", now Ph.D student at WUSTL
- Jiarui Xing, "Deep-learning-based MRI artifacts correction", now Ph.D student at University of Virginia
- Shiqi Xu, "Sparse Fourier ptychographic microscopy", now Ph.D student at Duke University
- Hao Tang, "Adversarially robust classifiers for image reconstruction", now M.S. student at WUSTL
- Ryogo Suzuki, "Unfolding networks for image restoration", now at Rakuten Group, Inc.
- Yukun Li, "Single image denoising", now at Baidu Inc.
- Fa Long, "Dictionary learning for image restoration", now at Tencent Inc.

SKILLS

- Languages: Python, Matlab, C, Java
- Skills: Optimization, Inverse problems, Tensorflow, Pytorch, Deep learning, Linux, TCP/IP

Awards & Honors

Honors

Honored Ph.D student in Computer Science & Engineering department (WUSTL)

2021

Outstanding Graduate Student (UESTC)

2015

Scholarship

Graduate Student First-Rank Academic Scholarship	2016
Graduate Student Second-Rank Academic Scholarship	2015
Graduate Student First-Rank Academic Scholarship	2014
National Inspirational Scholarship	2013
People's First-Rank Scholarship	2012
National Inspirational Scholarship	2011
Others	
• Third-prize of 'Internet+' Entrepreneurship Competition in Sichuan Province	2016
Great Award of Intelligent City Technology Competition	2016
Award of Hackathon Programming Competition	2015
 Second Prize of Electronic Design Competition in UESTC 	2011