STAT0008: Stochastic Processes

Lecture 2 - Poisson Processes

Lecturer: Weichen Zhao Spring 2025

Key concepts:

- Poisson 过程:
- 到达间隔;
- 到达时间。

2.1 Poisson 过程的定义

在实际生活中,我们会非常关心"等待"和"计数"这样的行为,比如我们在环球影城排队游玩项目会想知道我们需要等待多久,一个商店也想搞清楚某段时间内来了多少客人。

Poisson过程刻画了人们"等待"和"计数"等行为中所蕴含随机性。Poisson 过程是最基本也是最重要的一类连续时间参数随机过程。它是最典型的 Markov过程,Lévy过程;而且还是一个半鞅。接下来先给出一些基本定义。

Definition 2.1 (计数过程) 如果随机过程 $\{N(t), t \geq 0\}$ 表示时间段[0, t]内发生的某种事件的总数,则称随机过程N(t)为计数过程 $(counting\ processes)$ 。即计数过程必须满足:

- (1) $N(t) \geq 0$;
- (2) N(t) 是整数值;
- (3) 如果s < t,那么 $N(s) \le N(t)$;
- (4) 对于s < t, N(t) N(s)表示从时刻s到时刻t之间发生的事件次数。

一般地计数过程可能十分复杂,我们需要加上一些限制的条件,先介绍独立增量与平稳增量。

Definition 2.2 对于连续时间的随机过程 $\{X_t, t \in T\}$, 若对任意 $t_0 < t_1 < t_2 < \cdots < t_n$, 随机变量

$$X(t_1) - X(t_0), X(t_2) - X(t_1), \dots, X(t_n) - X(t_{n-1})$$

都是独立的,则称该过程为独立增量过程(independent increments)。

 $\overline{X}(t+s) - X(t)$ 对于一切t有相同的分布,则称为**平稳增量过程**(stationary increments)。

下面给出poisson过程的定义

Definition 2.3 (Poisson过程I) 若计数过程 $\{N(t), t \ge 0\}$ 满足:

- (1) N(0) = 0;
- (2) 具有独立增量;
- (3) 在长度为 t 的任意区间中的事件数服从以 λt 为均值的 Poisson分布,即,对于任意 $s,t \geq 0$,有

$$P\{N(t+s) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 0, 1, \dots$$

则称为**具有速率** $\lambda(\lambda > 0)$ 的Poisson过程。

注. 条件(3)可以推出:

- Poisson过程具有平稳增量; (区间t内同分布)
- 注意到由平稳性

$$P\{N(t) = n\} = P\{N(t) - N(0) = n\}$$
$$= P\{N(t+s) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

所以 $\mathbb{E}[N(t)] = \lambda t$, 因此我们称

$$\lambda = \mathbb{E}[N(t)]/t$$

为过程的速率(强度)。

然而条件(3)在实际中是很难验证的,所以我们有必要给出一个等价定义。

Definition 2.4 (Poisson过程II) 若计数过程 $\{N(t), t \geq 0\}$ 满足:

- (1) N(0) = 0;
- (2) 具有平稳增量和独立增量;
- (3) $P{N(h) = 1} = \lambda h + o(h)$
- (4) $P{N(h) \ge 2} = o(h)$

则称为**具有速率** $\lambda(\lambda > 0)$ 的*Poisson*过程。

Theorem 2.5 Poisson 过程的两个定义是等价的。

Proof: 先证定义II推出定义I。定义

$$P_n(t) \triangleq P\{N(t) = n\}$$

注意到

$$P\{N(h) = 0\} = 1 - P\{N(h) \ge 1\}$$

$$= 1 - P\{N(h) = 1\} - P\{N(h) \ge 2\}$$

$$= 1 - \lambda h + o(h)$$

那么

$$P_0(t+h) = P\{N(t+h) = 0\}$$

= $P\{N(t) = 0, N(t+h) - N(t) = 0\}$
= $P\{N(t) = 0\}P\{N(t+h) - N(t) = 0\}$ (独立增量)
= $P_0(t)[1 - \lambda h + o(h)],$

因此

$$\frac{P_0(t+h) - P_0(t)}{h} = -\lambda P_0(t) + \frac{o(h)}{h}.$$

 $\diamondsuit h \to 0$,我们得到微分方程

$$\frac{dP_0(t)}{dt} = -\lambda P_0(t)$$

等价于

$$\frac{1}{P_0(t)}dP_0(t) = -\lambda dt$$

两边积分,

$$\log P_0(t) = -\lambda t + C$$

其中C为某个常数,考虑初值条件 $P_0(0) = P\{N(0) = 0\} = 1$,有

$$P_0(t) = e^{-\lambda t}.$$

类似地,对于 $n \ge 1$ 有

$$P_n(t+h) = P\{N(t+h) = n\}$$

$$= P\{N(t) = n, N(t+h) - N(t) = 0\}$$

$$+ P\{N(t) = n - 1, N(t+h) - N(t) = 1\}$$

$$+ P\{N(t+h) = n, N(t+h) - N(t) \ge 2\}$$

由定义II的条件,

$$P_n(t+h) = P_n(t)P_0(h) + P_{n-1}(t)P_1(h) + o(h)$$

= $(1 - \lambda h)P_n(t) + \lambda h P_{n-1}(t) + o(h)$

于是

$$\frac{P_n(t+h) - P_n(t)}{h} = -\lambda P_n(t) + \lambda P_{n-1}(t) + \frac{o(h)}{h}$$

 $\diamondsuit h \to 0$, 我们得到微分方程

$$\frac{dP_n(t)}{dt} = -\lambda P_n(t) + \lambda P_{n-1}(t),$$

等价地,

$$e^{\lambda t} \frac{dP_n(t)}{dt} + \lambda e^{\lambda t} P_n(t) = \lambda e^{\lambda t} P_{n-1}(t)$$

即

$$\frac{d}{dt}(e^{\lambda t}P_n(t)) = \lambda e^{\lambda t}P_{n-1}(t)$$

由于
$$P_0(t) = e^{-\lambda t}$$
,于是

$$\frac{d}{dt}(e^{\lambda t}P_1(t)) = \lambda$$

可以用数学归纳法证明

$$P_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

再证定义I推出定义II。由于对于任意 $s,t \ge 0$,有

$$P\{N(t+s) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 0, 1, \dots$$

应用Taylor公式

$$P\{N(h) = 1\} = \lambda h e^{-\lambda h} = \lambda h (1 - \lambda h + o(h))$$
$$= \lambda h + o(h),$$

$$P\{N(h) \ge 2\} = 1 - P\{N(h) = 0\} - P\{N(h) = 1\}$$

$$= 1 - e^{-\lambda h} - \lambda h e^{-\lambda h}$$

$$= 1 - [1 - \lambda h + o(h)] - [\lambda h + o(h)]$$

$$= o(h)$$

注1. 当计数过程 $\{N(t), t \geq 0\}$ 满足定义II的条件时,可以通过二项分布的Poisson近似来证明N(t)服从Poisson分布。

Proof: 对于给定t > 0,对区间(0,t]进行n等分,等分点为

$$t_j = \frac{jt}{n}, \quad j = 0, 1, \dots, n.$$

定义事件 $Y_j \triangleq N(t_{j-1}, t_j]$ 表示第j个区间 $(t_{j-1}, t_j]$ 中的事件数,则 Y_1, \ldots, Y_n 独立同分布,并且

$$P(Y_j \ge 2) = o(t_j - t_{j-1}) = o(t/n),$$

$$p_n \triangleq P(Y_j = 1) = \lambda t/n + o(t/n),$$

$$q_n \triangleq P(Y_i = 0) = 1 - P(Y_i \ge 1) = 1 - \lambda t/n + o(t/n).$$

对非负整数k, 定义事件

$$A_n \triangleq \{ f \mid k \mid f \mid Y_j = 1, \mid f \mid f \mid Y_j = 0; 1 \leqslant j \leqslant n \}$$

$$B_n \triangleq \{ \sum_{j=1}^n Y_j = k, \text{至少有一个} Y_j \geqslant 2 \},$$

则有 $B_n \subset \bigcup_{j=1}^n \{Y_j \geqslant 2\}$,且 $A_n \cap B_n = \emptyset$,当 $n \to \infty$ 时,

$$P(B_n) \leqslant P\left(\bigcup_{j=1}^n \{Y_j \geqslant 2\}\right) \leqslant nP(Y_j \geqslant 2) = no(t/n) \to 0,$$

$$np_n = n\left(\lambda t/n + o(t/n)\right) \to \lambda t, \quad q_n \to 1,$$

$$q_n^n = \left(1 - \lambda t/n + o(t/n)\right)^n = \left(1 - \frac{\lambda t}{n}\right)^n \left(1 + \frac{o(t/n)}{1 - \lambda t/n}\right)^n \to e^{-\lambda t},$$

所以

$$P(N(s, s + t) = k) = P(N(0, t) = k) = P\left\{\sum_{j=1}^{n} Y_j = k\right\} = P(A_n \cup B_n)$$

$$= \lim_{n \to \infty} [P(A_n) + P(B_n)]$$

$$= \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} C_n^k p_n^k q_n^{n-k}$$

$$= \lim_{n \to \infty} \frac{1}{k!} [n(n-1) \cdots (n-k+1) p_n^k] q_n^{n-k}$$

$$= \frac{(\lambda t)^k}{k!} e^{-\lambda t}.$$

注2. 用矩母函数证明,参见随机过程及其应用 (第二版),陆大縊,张颢 P76

2.2 到达间隔与等待时间的分布

我们除了关心一段时间内事件发生次数,也关心事件之间的时间间隔。

Definition 2.6 (到达间隔) 考虑一个Poisson过程,以 X_1 记首个事件的到达时刻,对 $n \ge 1$,以 X_n 记第n-1个和第n个事件之间的时间,序列 $\{X_n, n \ge 1\}$ 称为到达时间间隔序列 $(sequence\ of\ interarrival\ times)$

Proposition 2.7 $X_1, X_2, ...$ 是独立同分布的, 具有均值 $1/\lambda$ 的指数随机变量。

Proof: 先简单复习下指数随机变量。

称一个连续随机变量X服从参数为 λ ($\lambda > 0$)指数分布,如果它的概率密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

等价地,如果它的分布函数是

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

指数随机变量的均值和方差为

$$\mathbb{E}[X] = \frac{1}{\lambda}, \ \operatorname{Var}[X] = \frac{1}{\lambda^2}.$$

指数随机变量的矩母函数为

$$\mathbb{E}[e^{tX}] = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - t}.$$

指数随机变量具有无记忆性,即

$$P(X>s+t|X>s)=P(X>t), \quad \forall s,t\geq 0.$$

下面证明命题。注意到:事件 $\{X_1 > t\}$ 发生,当且仅当Poisson过程在区间[0,t]中没有事件发生,故而

$$P{X_1 > t} = P{N(t) = 0} = e^{-\lambda t}.$$

因此, X_1 具有均值为 $1/\lambda$ 的指数分布。下面考察 X_2 的分布

$$P(X_2 > t | X_1 = s) = P((s, s + t] + 0 \uparrow$$
事件 $|X_1 = s)$
= $P((s, s + t] + 0 \uparrow$ 事件 $)$ (独立增量性)
= $P(N(t) = 0) = e^{-\lambda t}$. (平稳增量性)

因此, X_2 与 X_1 独立,且 X_2 也为具有均值 $1/\lambda$ 的指数随机变量。重复相同的论证即得命题。

另一个有趣的量是第1个事件的到达时间,或者称为等待时间。

Definition 2.8 (等待时间) 定义 $S_n \triangleq \sum_{i=1}^n X_i$, $n \geq 1$, 称为第n个事件的等待时间(waiting time).

Proposition 2.9 第n个事件的等待时间 S_n 服从以n和 λ 为参数的Gamma分布,即它的概率密度为

 $f(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, \quad t \ge 0$

Proof: 我们已经清楚了时间区间内事件发生次数的分布服从泊松分布,事件到达间隔的分布服从指数分布,我们可以通过这两个结果来推导等待时间的分布

1. 通过到达间隔 X_i 。

由于 X_1, X_2, \ldots 是独立同分布的,且指数分布的矩母函数为

$$\mathbb{E}[e^{tX_i}] = \frac{\lambda}{\lambda - t}.$$

所以等待时间Sn的矩母函数为

$$\mathbb{E}[e^{tS_n}] = \mathbb{E}[e^{t\sum_{i=1}^n X_i}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] = \left(\frac{\lambda}{\lambda - t}\right)^n.$$

故 S_n 服从以n和 λ 为参数的Gamma分布。

2. 通过时间区间[0,t]内事件发生次数N(t)。

注意到,第n个事件发生在时刻t或t之前,当且仅当直至时刻t已发生的事件数至少是n,即

$$N(t) \ge n \Leftrightarrow S_n \le t.$$

因此, S_n 的分布函数为

$$P\{S_n \le t\} = P\{N(t) \ge n\} = \sum_{j=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^j}{j!},$$

求导即得密度函数。

现在我们研究清楚了到达间隔和等待时间的分布,从而可以得到Poisson过程的另一个定义。

Definition 2.10 (Poisson过程III) 设 $\{X_n, n \ge 1\}$ 是独立同分布的均值为 $1/\lambda$ 的指数随机变量序列,定义计数过程 $\{N(t), t \ge 0\}$,它的第n个事件在时刻

$$S_n = X_1 + \dots + X_n$$

发生,则N(t)称为一个速率为 λ 的Poisson过程。

2.3 到达时间的条件分布

接下来我们考虑,在已知一段时间里发生了几次事件的条件下,每个事件到达时间的条件分布。先考虑一个最简单的情形。

Warm-up. 设 $\{N(t), t \geq 0\}$ 为一个Poisson过程,已知在时刻t前恰有一个事件发生,那么该事件发生的时刻在[0,t]上的条件分布为

$$P\{S_1 < s \mid N(t) = 1\}$$

$$= \frac{P\{X_1 < s, N(t) = 1\}}{P\{N(t) = 1\}}$$

$$= \frac{P\{E [0, s) + E[s, t) + E[s, t) + E[s, t) + E[s, t) + E[s, t] + E[$$

这说明在时刻t前恰有一个事件发生的条件下,该事件发生的时刻在[0,t]上是均匀分布。

在推广这个结果之前,我们需要回顾次序统计量的概念。

设 Y_1, Y_2, \ldots, Y_n 是n个随机变量。若 $Y_{(k)}$ 是 Y_1, Y_2, \ldots, Y_n 中第k个最小值,我们称 $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ 是对应于 Y_1, Y_2, \ldots, Y_n 的次序统计量(order statistics)。

如果 Y_i 是概率密度为f的独立同分布连续随机变量,则次序统计量 $Y_{(1)},Y_{(2)},\ldots,Y_{(n)}$ 的联合密度为

$$f(y_1, y_2, \dots, y_n) = n! \prod_{i=1}^n f(y_i), \qquad y_1 < y_2 < \dots < y_n.$$

如果 Y_i 是(0,t)上的均匀分布,则次序统计量 $Y_{(1)},Y_{(2)},\ldots,Y_{(n)}$ 的联合密度为

$$f(y_1, y_2, \dots, y_n) = \frac{n!}{t^n}, \qquad 0 < y_1 < y_2 < \dots < y_n < t.$$

Theorem 2.11 给定N(t) = n条件下,n个事件的达到时间 S_1, S_2, \ldots, S_n 的联合条件分布与n个独立的(0, t)上的均匀分布随机变量的次序统计量的分布相同。

Proof: 设 $0 < t_1 < t_2 < \dots < t_{n+1} = t$,考虑充分小的 h_i ,使得 $t_i + h_i < t_{i+1}$, $i = 1, \dots, n$ 。

$$P \{t_i \leq S_i \leq t_i + h_i, i = 1, 2, \dots, n \mid N(t) = n\}$$

$$= \frac{P \{ E[t_i, t_i + h_i] + h_i + h_i$$

因此

$$\frac{P\left\{t_{i} \leqslant S_{i} \leqslant t_{i} + h_{i}, i = 1, 2, \cdots, n \mid N\left(t\right) = n\right\}}{h_{1} \cdot h_{2} \cdot \cdots \cdot h_{n}} = \frac{n!}{t^{n}},$$

令 $h_i \to 0$,得到给定N(t) = n条件下,n个时间的达到时间 S_1, S_2, \ldots, S_n 的联合条件密度为

$$f(t_1, \dots, t_n) = \frac{n!}{t^n}, 0 < t_1 < \dots < t_n$$

Example 2.12 假设乘客按速率为 λ 的Poisson过程到达一个火车站。如果火车在时刻t离开,那么在(0,t)时间区间中的到达乘客等待时间和的期望 $\mathbb{E}\left[\sum\limits_{i=1}^{N(t)}(t-S_i)\right]$ 是多少?

给定N(t) = n条件下,

$$\mathbb{E}\left[\sum_{i=1}^{N(t)} (t - S_i) | N(t) = n\right] = \mathbb{E}\left[\sum_{i=1}^{n} (t - S_i) | N(t) = n\right]$$
$$= nt - \mathbb{E}\left[\sum_{i=1}^{n} S_i | N(t) = n\right]$$

设 U_1, \ldots, U_n 为独立的(0, t)均匀随机变量,则

$$\mathbb{E}\left[\sum_{i=1}^{n} S_{i} \mid N(t) = n\right] = \mathbb{E}\left[\sum_{i=1}^{n} U_{(i)}\right] \qquad (由定理2.11)$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} U_{i}\right] \qquad (因为 \sum_{i=1}^{n} U_{(i)} = \sum_{i=1}^{n} U_{i})$$

$$= \frac{nt}{2}.$$

因此,

$$\mathbb{E}\left[\sum_{i=1}^{N(t)} (t - S_i) \mid N(t) = n\right] = nt - \frac{nt}{2} = \frac{nt}{2},$$

$$\mathbb{E}\left[\sum_{i=1}^{N(t)} (t - S_i)\right] = \frac{t}{2} \mathbb{E}\left[N(t)\right] = \frac{\lambda t^2}{2}.$$

假设速率为 λ 的Poisson过程的每个事件具有两种类型: I型和II型,并且分类的概率依赖于事件发生的时刻且与其他事件独立。设一个事件在时刻s发生,则它分为I类的概率为P(s),而分类为II型的概率为1-P(s)。

Proposition 2.13 如果 $N_i(t)$ 表示时刻t前发生的i型事件数,i=1,2,那么 $N_1(t)$ 和 $N_2(t)$ 分别是具有均值 $\lambda t p$ 和 $\lambda t (1-p)$ 的独立Poisson随机变量,其中

$$p = \frac{1}{t} \int_0^t P(s) ds.$$

Proof: 参见书上命题2.3.2

Example 2.14 (无穷多条服务线的Poisson队列) 假设顾客按速率为 λ 的Poisson 过程到达一个服务站,对到达的顾客立刻由无穷多条服务线中的一条提供服务,而服务时间假定为独立的,且具有一个共同的分布G。对于进入系统的一个顾客,若到时刻 t 他的服务已完毕,则称为I型的;而若在时刻t他的服务还未完毕,则称为II型的。计算在时刻t,I型顾客数和II型顾客数的分布。

解. 若顾客是I型的,则他在时刻 $s(s \le t)$ 到达,且其服务时间小于t - s,而由于服务时间的分布是G,这个事件的概率是G(t - s)。因此

$$P(s) = G(t - s), \quad s \le t$$

于是从命题2.13,到时刻t已服务完毕的顾客数 $N_1(t)$ 的分布是以

$$E\left[N_{1}\left(t\right)\right] = \lambda \int_{0}^{t} G\left(t - s\right) ds = \lambda \int_{0}^{t} G\left(y\right) dy$$

为均值的Poisson分布,类似地,在时刻t仍在接受服务的顾客数 $N_2(t)$ 是以

$$E[N_2(t)] = \lambda \int_0^t (1 - G(y))(y) dy$$

为均值的Poisson分布,而且 $N_1(t)$ 与 $N_2(t)$ 是独立的。

2.4 M/G/1的忙期

排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病,常常要排队。由于**顾客到达和服务时间的随机性**,可以说排队现象几乎是不可避免的。

Definition 2.15 (排队系统) 一个排队系统通常记为

其中X表示到达间隔时间的分布,Y表示服务时间的分布,Z表示服务台的数量,这个记号称为Kendall记号。

X/Y的常见类型有:

- M: Memoryless, 指数分布
- G: General, 一般的分布G
- D: Deterministic, 确定型

注. 排队论标准化符号

其中A表示系统容量的限制,B表示客源数量 $(-般是\infty)$,C表示服务方式(-般是先到先服务)

我们本节关心的M/G/1排队系统,即顾客按照Poisson过程到达,有1个服务台,且它的服务时间独立同分布G,也与到达过程独立。

Definition 2.16 (忙期) 忙期(busy period)指从顾客到达空闲服务机构起到服务机构再次为空闲止这段时间长度,即服务机构连续繁忙的时间长度。

Proposition 2.17 M/G/1 排队系统的忙期分布为

$$P($$
忙期长度 $\leq t) \triangleq B(t) = \sum_{n=1}^{\infty} \int_{0}^{t} e^{-\lambda t} \frac{(\lambda t)^{n-1}}{n!} dG_{n}(t),$

其中 G_n 是服务时间分布 G 与其自身的 n 次卷积。

Proof: 设忙期开始的时刻为0,记首个顾客到达后其余第k个顾客到达的时间为 S_k ,记服务时间序列为 Y_1, Y_2, \ldots ,则忙期长度为t且进行n次服务,当且仅当:

(1)
$$S_k < Y_1 + \dots + Y_k, k = 1, \dots, n-1.$$

- (2) $Y_1 + \cdots + Y_n = t$.
- (3) 在(0,t)有n-1个顾客到达.

写成概率形式即为:

 $P\{$ 忙期长度是 t, 而且进行n 次服务 $\}$

$$= P\{Y_1 + \dots + Y_n = t, 在(0, t) 有 n - 1 次到达, S_k \leq Y_1 + \dots + Y_k, k = 1, \dots, n - 1\}$$

$$= P\{S_k \leq Y_1 + \dots + Y_k, k = 1, \dots, n - 1 \mid \Delta(0, t) \uparrow n - 1 \rangle \uparrow J \downarrow X_1 + \dots + Y_n = t\}$$

$$\times P\{\Delta(0, t) \uparrow f n - 1 \rangle \uparrow J \downarrow X_1 + \dots + Y_n = t\}.$$

Step 1. 由于到达过程是与服务时间独立的,所以

$$P\{ \text{在}(0,t) \, f(n-1) \, \text{次到达}, Y_1 + \dots + Y_n = t \} = e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} dG_n(t),$$

其中 G_n 是服务时间分布 G 与其自身的 n 次卷积。

Step 2. 由定理2.11,(0,t)的n-1次到达时间与n-1个独立的(0,t)均匀随机变量的次序统计量有相同的分布,设 $\tau_1, \ldots, \tau_{n-1}$

为n-1个与服务时间 $\{Y_1,\ldots,Y_n\}$ 独立的(0,t)均匀随机变量按次序的值,则

$$P\{S_k \le Y_1 + \dots + Y_k \mid 在(0,t)$$
有 $n-1$ 次到达, $Y_1 + \dots + Y_n = t\}$
= $P\{\tau_k \le Y_1 + \dots + Y_k, k = 1, \dots, n-1 \mid Y_1 + \dots + Y_n = t\}$

Lemma 2.18 (书上引理2.3.5)

设 τ_1,\ldots,τ_{n-1} 为n-1个独立的(0,t)均匀随机变量按次序的值, $\{Y_1,\ldots,Y_n\}$ 是与 τ_1,\ldots,τ_{n-1} 独立的i.i.d非负随机变量,那么

$$P\{Y_1 + \dots + Y_k < \tau_k, k = 1, \dots, n - 1 | Y_1 + \dots + Y_n = t\} = \frac{1}{n}$$

引理证明参见教材;

由于如果U是(0,t)均匀随机变量,则t-U也是(0,t)均匀随机变量,所以

Step 3. 设

$$B(t,n) \triangleq P\{$$
忙期长度是 t ,而且进行 n 次服务 $\}$,

则综合Step 1和Step2,

$$B(t,n) = \int_0^t e^{-\lambda t} \frac{(\lambda t)^{n-1}}{n!} dG_n(t).$$

那么忙期长度的分布为

$$B(t) = \sum_{n=1}^{\infty} B(t, n) = \sum_{n=1}^{\infty} \int_{0}^{t} e^{-\lambda t} \frac{(\lambda t)^{n-1}}{n!} dG_{n}(t)$$