Confidence Intervals and Hypothesis Tests

 $(1-\alpha)100\%$ Confidence Interval:

(point estimate) \pm (critical value) \times (standard error)

Test Statistic:

 $\frac{\text{point estimate} - \text{null value}}{\text{standard error}}$

H_0	Case	Distribution	Standard Error
$p = p_0$	$np \ge 10$ and $n(1-p) \ge 10$	Z	$\sqrt{rac{p(1-p)}{n}}$
$p_1 - p_2 = \text{diff}_0$	$n_1p_1, n_1(1-p_1), n_2p_2 \text{ and } n_2(1-p_2) \text{ all } \ge 10$	Z	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
$p_1 - p_2 = 0$	$n_1p_1, n_1(1-p_1), n_2p_2 \text{ and } n_2(1-p_2) \text{ all } \ge 10$	Z	$\sqrt{\frac{p_1 n_1 + p_2 n_2}{n_1 + n_1}}$
$\mu = \mu_0$	$n \ge 30$	Z	$\frac{\sigma}{\sqrt{n}}$
$\mu = \mu_0$	n < 30	t_{n-1}	$\frac{\sigma}{\sqrt{n}}$
$\mu_1 - \mu_2 = \text{diff}_0$	$\min(n_1, n_2) \ge 30$	Z	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$\mu_1 - \mu_2 = \text{diff}_0$	$\min(n_1, n_2) < 30$	$\operatorname{t_{\min(n_1,n_2)-1}}$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$