Lie 代数から学ぶ量子力学と場の量子論

東京大学大学院 Kavli IPMU 立川研究室 Shin TOITA*

December 14, 2019

Contents

1	貿	直点の解析力学の基礎 3
	1.1 N	「ewton 力学
	1.2 L	agrange 力学 . .
	1.2.1	調和振動子の例
	1.3 H	「amilton 力学 . .
	1.3.1	調和振動子の例
	1.3.2	Poisson 括弧
2	<u>=</u>	量子力学の基礎 8
	2.1	E準量子化 8
	2.1.1	Hilbert 空間と Operator
	2.1.2	正準交換関係 (CCR: Canonical Commutation Relation)
	2.1.3	Observables \succeq Hermitian conjugate
	2.1.4	固有状態と Hermitian operator
	2.1.5	同時固有状態と状態の命名規則
	2.1.6	観測値と Operator の関係、物理的状態空間
	2.1.7	調和振動子の例 13
Apper	ndixA	量子力学の公式 13
	A.1 🕏	を換関係・反交換関係の基本的な性質1

 $^{^{\}ast}$ e-mail: shintaro.toita@ipmu.jp

以下の定義や記述は部分的に数学的厳密性を欠くが、大抵の場合厳密化には本書の範囲を超える大道具が必要であるし、厳密化が我々の目的ではない。現代物理学(少なくとも古典力学や有限自由度の量子論)の数学的基礎のほとんどが数学者ではなく Newton、Dirac を始めとする物理学者によって与えられて来たことを思い出そう。我々は誇り高き物理学者であり、我々が学ぼうとするのも数学ではなく物理である。

ToDo:

grad, div, rot

scalar の変換性と vector の変換性

無限に深い井戸型ポテンシャル、波動関数の境界条件

電磁場の gauge 対称性と波動関数の位相、特異系の Lagrangian

Planck の光量子仮説

簡単なベクトル解析、完全反対性テンソル

配位空間と相空間、symplectic 幾何、正準変換

電磁場中の古典荷電粒子、電磁場中の一般化運動量

同時固有状態、縮退

同時固有状態と状態の命名規則

昇降演算子(n 粒子系と1 粒子系の第 n 励起の区別)

root 系、同時固有状態

固有関数の完全性(離散変数、連続変数)

束縛状態の基礎(連続性、境界条件、規格化可能性、tunneling 効果、

Heisenberg の運動方程式、Ehrenfest の定理)

規格化(離散変数、連続変数)

非エルミートな演算子の固有状態 (Coherent state、Whittaker state) 位相演算子

簡単な散乱問題、ポテンシャル共鳴

経路積分量子化、Weyl 順序、演算子順序の問題

1 質点の解析力学の基礎

1.1 Newton 力学

皆さんが良く知っている Newton の運動方程式

$$\mathbf{F} = m\ddot{\mathbf{x}} \tag{1.1.1}$$

は解析力学に比べて最も一般的な運動方程式の形で、例えば摩擦力が働くなど energy 散逸のある系や外部から力を受けている系などを何の困難もなく表すことが出来る。

例えば1次元調和振動子の場合を考えると

$$F = -kx \tag{1.1.2}$$

であるので、Newton 運動方程式は

$$m\ddot{x} = -kx\tag{1.1.3}$$

となる。

ただし、この方程式は vector で記述されているため、例えば極座標のような直交座標系以外の座標を用いると形が著しく複雑になるという欠点も持っている。これに対し、例えば energy のような scalar 量は座標変換の下でより自然に変換するため、様々な力学法則を scalar を用いて表したいというのは自然な要求だろう。以下で議論する Lagrange 力学や Hamilton 力学はそのような記述を与える枠組みの例である。

1.2 Lagrange 力学

多くの力学系において、位置 x にある粒子に働く力は位置の関数 F(x) と書ける。この関数 F のように空間の各点 x に対しある vector F(x) を与えるものを vector 値関数、あるいは vector 場という。

物体に働く力 F が保存力である

$$rot \mathbf{F} := \nabla \times \mathbf{F} = 0 \tag{1.2.1}$$

場合には scalar potential $\phi(x)$ が存在して

$$\mathbf{F} = -\nabla\phi \tag{1.2.2}$$

と書けることは、力学で最初に習う事の一つだろう。

我々の主たる興味は空間が 3 次元である場合にあるが、この場合にはより一般的な結果が知られている: Helmholtz の分解定理は任意の 3 次元 vector 場 F(x) に対し vector potential A(x) と scalar potential $\phi(x)$ の組であって

$$F(x) = \nabla \times A - \nabla \phi \tag{1.2.3}$$

なるものが存在する事を主張する。つまり、物体に働く力が場である(顕わに時間依存したりすることなく、 位置のみの関数として書けている)限りにおいて、必ず vector potential 及び scalar potential を用いて書け るのである。

これを踏まえ、まずは物体に働く力が scalar potential を用いて書ける場合に話を限ろう。3 次元空間に記述したい質点が n 個あるとすれば、これらの質点の状態は一般化座標 $q_i(i=1,2,\dots,3n)$ を用いて記述できる。これらをまとめて $\{q\}:=\{q_i|i=1,2,\dots,3n\}$ と書く。ここで我々の世界が Newton の運動方程式のように決定論的な力学法則に支配されていると信じると、これらの力学変数 q_i は各時刻で完全に決定されているはずなので、時間の関数 $q_i(t)$ として与えられている。よって時間微分が定義でき、 $\dot{q}(t):=\frac{dq(t)}{dt}$ と書く。

Newton 以来の経験的事実として、我々の世界の力学法則はこれらの座標の 2 階までの時間微分で記述できるため、kinetic energy T と potential energy V が $\{q\},\{\dot{q}\}$ の関数として表される事は事実として受け入れよう。このとき、Lagrangian $L(\{q\},\{\dot{q}\})$ を 6n 変数関数として

$$L := T - V \tag{1.2.4}$$

で定義する。個々の力学変数 $q_i(t)$ は時間の関数であるので、6n 変数関数 $L(\{q\},\{\dot{q}\})$ との合成関数 $L(t):=L(\{q(t)\},\{\dot{q}(t)\})$ は時間の 1 変数関数であり、時刻 t_i から時刻 t_f までの定積分が定義できる:

$$S := \int_{t_i}^{t_f} dt \ L(\{q(t)\}, \{\dot{q}(t)\})$$
 (1.2.5)

この S を action (作用)と言い、Iと書くこともある。

最小作用の原理は、個々の力学変数の時間依存性はこの \arctan が停留するような関数形で与えられる事を主張する。つまり、 $q_i(t)$ を時間の関数と見做したときの関数形を

$$q_i(t) \mapsto (q_i + \delta q_i)(t) := q_i(t) + \delta q_i(t) \tag{1.2.6}$$

$$|q_i(t)| \gg |\delta q_i(t)| \qquad (\forall t)$$
 (1.2.7)

のように微小に変化させたとき、どんな関数 $\delta q_i(t)$ に対しても action の変分

$$\delta S := \int dt \ L(\{q_i(t) + \delta q_i(t)\}, \{\dot{q}_i(t) + \delta \dot{q}_i(t)\})
\simeq \int dt \ \sum_i \left\{ \delta q_i(t) \frac{\partial}{\partial q_i} L(\{q(t)\}, \{\dot{q}(t)\}) + \delta \dot{q}_i(t) \frac{\partial}{\partial \dot{q}_i} L(\{q(t)\}, \{\dot{q}(t)\}) \right\}
= \sum_i \left[\delta q_i(t) \frac{\partial}{\partial \dot{q}_i} L(\{q(t)\}, \{\dot{q}(t)\}) \right]_{t=t_i}^{t_f}
+ \int dt \ \sum_i \delta q_i(t) \left\{ \frac{\partial}{\partial q_i} L(\{q(t)\}, \{\dot{q}(t)\}) - \frac{d}{dt} \frac{\partial}{\partial \dot{q}_i} L(\{q(t)\}, \{\dot{q}(t)\}) \right\}$$
(1.2.8)

が消える(同時に、部分積分による表面項 $[\cdots]_{t=t_i}^{t_f}$ も適当な境界条件を課すことにより消える)こと

$$\delta S = 0 \qquad (\forall \ \delta q_i(t), i) \tag{1.2.9}$$

$$\Leftrightarrow \qquad 0 = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} \qquad (\forall i)$$
 (1.2.10)

を要求すると、得られた微分方程式の解が物理的に実現される物体の軌跡 q(t) を与えるというのである。 (1.2.10) を Euler-Lagrange 方程式と言い、scalar 量 L によって力学法則を与えたという点で確かに目標を達成している。実際、 $\{q\}$ から新しい変数 $\{q'\}$ への座標変換(一般座標変換、または点変換という) $q_i=q_i(\{q'\})$ のもとで

$$L'(\{q'\}, \{\dot{q'}\}) := L(\{q(\{q'\})\}, \{\dot{q}(\{q'\})\})$$
(1.2.11)

と定めると、Euler-Lagrange 方程式が形を変えないこと

$$0 = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i}$$

$$\Rightarrow 0 = \frac{d}{dt} \frac{\partial L'}{\partial \dot{q}'_i} - \frac{\partial L'}{\partial q'_i}$$
(1.2.12)

が示される。

1.2.1 調和振動子の例

n 次元調和振動子の場合 Lagrangian は

$$L = \sum_{j=1}^{n} \left(\frac{m}{2} \dot{q_j}^2 - \frac{m\omega^2}{2} q_j \right)$$
 (1.2.13)

であるので、Euler-Lagrange 方程式は

$$0 = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i}$$

$$= \frac{d}{dt} \left(m \dot{q}_i \right) - \left(-m\omega^2 q_i \right)$$

$$= m \ddot{q}_i + m\omega^2 q_i$$
(1.2.14)

となり、確かに Newton の運動方程式を再現する。

1.3 Hamilton 力学

一般に Euler-Lagrange 方程式は各変数 q_i の高階の微分を含む、複雑な方程式系となる。変数を増やす代わりに、低次の微分で書ける方程式系を見付けたいと思うのも自然な発想である。 Lagrangian $L(\{q\},\{\dot q\})$ に新しい変数 $\{p\}$ を導入する代わりに $\dot q_i$ を消去し、Euler-Lagrange 方程式と等価な微分方程式系を得ることを考えよう。

一般化運動量を

$$p_i := \frac{\partial L}{\partial \dot{q}_i} \tag{1.3.1}$$

で定義する。 一般に $\det \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} \neq 0$ であれば p の定義式を \dot{q}_i について

$$\dot{q}_i = \dot{q}_i(\{q\}, \{p\}, t) \tag{1.3.2}$$

のように解く事が出来、 *1 従って $\dot{q_i}$ を方程式系から消去できる。m Euler-Lagrange 方程式は

$$\begin{cases}
\dot{p_i} = \frac{\partial L}{\partial q_i} \\
p_i = \frac{\partial L}{\partial \dot{q_i}}
\end{cases}$$
(1.3.3)

となるが、Lagrangian そのものから $\{\dot{q}\}$ を消去し $\{q\},\{p\}$ の 6n 変数関数として書き直すと (1.3.1) の右辺を表現する方法がなくなってしまう。そこで別のアプローチを考えよう。

我々が欲しいのは新しい変数で表された Lagrangian そのものではなく、Lagrangian を古い変数で微分して得られる方程式系である。そこで、新しい変数 $\{q\},\{p\}$ で微分すると Lagrangian を古い変数 $\{q\},\{\dot{q}\}$ で微分したときと等価の式を与えるような、新しい関数 $H(\{q\},\{p\})$ を構成することを考える。

Legendre 変換

$$H(\lbrace q \rbrace, \lbrace p \rbrace) := \left[\sum_{i} \dot{q}_{i} p_{i} - L(\lbrace q \rbrace, \lbrace \dot{q} \rbrace) \right]_{\dot{q} = \dot{q}(\lbrace q \rbrace, \lbrace p \rbrace, t)}$$
(1.3.4)

はそのような構成の例である。右辺には 9n 個の変数 $\{q\}, \{\dot{q}\}, \{p\}$ が表れているが、 \dot{q} が消去され $\{q\}, \{p\}$ の 6n 変数関数として表されていることに注意しよう。関数 H を Hamiltonian というが、その著しい性質は \dot{q} を

 $^{^{*1}}$ このような逆解きが出来ない力学系を特異 Lagrange 系と呼ぶ。gauge 理論などは場の量子論における特異系の例である。

消去する直前の表式が \dot{q} に依っていないこと

$$\frac{\partial}{\partial \dot{q}_i} \left[\sum_j \dot{q}_j p_j - L(\{q\}, \{\dot{q}\}) \right] = \left[\sum_j \left(\delta_{ij} p_j \right) - \frac{\partial L}{\partial \dot{q}_i} \right]$$

$$= p_i - \frac{\partial L}{\partial \dot{q}_i}$$

$$\approx 0$$
(1.3.5)

である。ただし、偏微分を $\{q\}$, $\{\dot{q}\}$, $\{\dot{q}\}$, $\{\dot{q}\}$, の全てを独立な変数と見做して行ったことに注意せよ。最後の等号 \simeq は、独立変数として導入した p_i を ($\{q\}$, $\{\dot{q}\}$ の関数である) 一般化運動量 $p_i(\{q\},\{\dot{q}\})$ と同一視すると等号が成り立つ、という意味である。

Hamiltonian の $\{q\}, \{p\}$ による微分は、q(t) が Euler-Lagrange 方程式の解であるとすると

$$\begin{split} &\frac{\partial H}{\partial q_i} = \frac{\partial}{\partial q_i} \left[\sum_j p_j \dot{q}_j - L(\{q\}, \{\dot{q}\}) \right]_{\dot{q} = \dot{q}(\{q\}, \{p\}, t)} \\ &= \sum_j p_j \frac{\partial \dot{q}_j(\{q\}, \{p\}, t)}{\partial q_i} - \frac{\partial L(\{q\}, \{\dot{q}\{q\}, \{p\}, t)\})}{\partial q_i} \\ &= \sum_j p_j \frac{\partial \dot{q}_j}{\partial q_i} - \left[\frac{\partial L(\{q\}, \{\dot{q}\})}{\partial q_i} \right]_{\dot{q} = \dot{q}(\{q\}, \{p\}, t)} + \sum_j \frac{\partial \dot{q}_j}{\partial q_i} \frac{\partial L(\{q\}, \{\dot{q}\})}{\partial \dot{q}_j} \right]_{\dot{q} = \dot{q}(\{q\}, \{p\}, t)} \\ &= \sum_j p_j \frac{\partial \dot{q}_j}{\partial q_i} - \left[\frac{\partial L(\{q\}, \{\dot{q}\})}{\partial q_i} \right]_{\dot{q} = \dot{q}(\{q\}, \{p\}, t)} + \sum_j \frac{\partial \dot{q}_j}{\partial q_i} p_j \right] \\ &= -\frac{\partial L(\{q\}, \{\dot{q}\})}{\partial q_i} \Big|_{\dot{q} = \dot{q}(\{q\}, \{p\}, t)} \\ &= -\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} \quad \because \text{Euler-Lagrange } \vec{\mathcal{D}} \vec{\mathcal{H}} \vec{\mathcal{H}} \vec{\mathcal{H}} \\ &= -\dot{p}_i \\ &= -\dot{p}_i \\ &= \sum_j \left[\frac{\partial \dot{q}_j(\{q\}, \{p\}, t)}{\partial p_i} p_j + \dot{q}_j(\{q\}, \{p\}, t) \delta_{ij} \right] - \frac{\partial L(\{q\}, \{\dot{q}(\{q\}, \{p\}, t)\})}{\partial p_i} \\ &= \sum_j \frac{\partial \dot{q}_j}{\partial p_i} p_j + \dot{q}_i - \sum_j \frac{\partial \dot{q}_j}{\partial p_i} \frac{\partial L(\{q\}, \{\dot{q}\})}{\partial \dot{q}_j} \Big|_{\dot{q} = \dot{q}(\{q\}, \{p\}, t)} \\ &= \sum_j \frac{\partial \dot{q}_j}{\partial p_i} p_j + \dot{q}_i - \sum_j \frac{\partial \dot{q}_j}{\partial p_i} p_j \\ &= \dot{q}_i \end{aligned} \tag{1.3.7}$$

のように Lagrangian を一切使わずに表せ、逆に Hamiltonian を再び Legendre 変換したものに (1.3.6),(1.3.7) の解 $\{q(t)\}$, $\{p(t)\}$ を代入すると $\{q\}$, $\{p\}$ で書いた Euler-Lagrange 方程式 (1.3.3) を再現する。すなわち両者は微分方程式系として等価であり、(1.3.6), (1.3.7) を Hamilton の正準方程式という。

Hamilton の方程式は scalar 関数 H から得られるため (1.2.12) のような点変換の下でも不変である上、より一般に正準運動量 $\{p\}$ をも座標と等価に扱った座標変換(正準変換、または接触変換という) $q=q(\{q'\},\{p'\},t),p=p(\{q'\},\{p'\},t)$ のもとでも不変である。また 1 階の時間微分のみを含むので、望む方程式系が得られたことになる。

1.3.1 調和振動子の例

n 次元調和振動子の一般化運動量は

$$p_i = \frac{\partial L}{\partial \dot{q}_i} = m\dot{q}_i \tag{1.3.8}$$

と通常の運動量の定義に一致するので、Hamiltonian は

$$\begin{split} H &= \left[\sum_{i} p_{i} \dot{q}_{i} - L\right]_{\dot{q}_{i} = \frac{p_{i}}{m}} \\ &= \sum_{i} p_{i} \frac{p_{i}}{m} - \sum_{i} \left(\frac{p_{i}^{2}}{2m} - \frac{m\omega^{2}}{2} q_{i}^{2}\right) \\ &= \sum_{i} \left(\frac{p_{i}^{2}}{2m} + \frac{m\omega^{2}}{2} q_{i}^{2}\right) \end{split} \tag{1.3.9}$$

となる。正準方程式は

$$\begin{cases}
\dot{q}_i = \frac{\partial H}{\partial p_i} = \frac{p_i}{m} \\
\dot{p}_i = -\frac{\partial H}{\partial q_i} = -m\omega^2 q_i
\end{cases}
\Leftrightarrow \ddot{q}_i = \frac{\dot{p}_i}{m} = \frac{-m\omega^2 q_i}{m} = -\omega^2 q_i$$
(1.3.10)

となって、やはり Newton の方程式を再現する。

1.3.2 Poisson 括弧

Hamilton の正準方程式

$$\begin{cases} \dot{q}_i = \frac{\partial H}{\partial p_i} \\ \dot{p}_i = -\frac{\partial H}{\partial q_i} \end{cases}$$
(1.3.11)

は $\{q\}, \{p\}$ のいずれについても時間の 1 階微分しか含まない点で美しいが、 $\{q\}, \{p\}$ に対して右辺の符号が異なるという非対称性がある。より抽象的な演算を導入することで、この非対称性を取り除こう。

2 つの量 A, B の Poisson 括弧を

$$\{A, B\}_{P} := \sum_{i} \left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}} - \frac{\partial B}{\partial q_{i}} \frac{\partial A}{\partial q_{i}} \right)$$
(1.3.12)

で定義すると、正準変数同士の Poisson 括弧は

$$\{q_i, p_j\}_{P} = \delta_{ij}, \qquad \{p_i, q_j\}_{P} = -\delta_{ij}$$
 (1.3.13)

のようになり、正準方程式 (1.3.11) は

$$\begin{cases} \dot{q}_i = \{q_i, H\}_{P} \\ \dot{p}_i = \{p_i, H\}_{P} \end{cases} \quad \therefore \quad \dot{r} = \{r, H\}_{P} \quad (r = q_i, p_j \quad \forall i, j)$$
(1.3.14)

と $\{q\},\{p\}$ の間で対称な形になる。より一般に、任意の関数 $F(\{q\},\{p\},t)$ の時間発展が

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \{F, H\}_{P} \tag{1.3.15}$$

と一つの式にまとまってしまう。あらゆる量の時間発展を求める過程が、Poisson 括弧の計算という一つの操作に統一されたのである。

2 量子力学の基礎

量子力学に特徴的な事は、物理量が単なる数ではなく Hilbert 空間に作用する非可換な operator (演算子、作用素)となる事である。観測可能な量は Hermitian operator となるので、我々は operator として専ら linear な Hermitian ないし unitary operator を扱う。

2.1 正準量子化

2.1.1 Hilbert 空間と Operator

量子力学に現れる operator O とは、写像 $O:\mathcal{H}\to\mathcal{H}$ すなわちある複素 vector space \mathcal{H} の元 $|\psi\rangle$ に作用して再び vector space の元 $O|\psi\rangle\in\mathcal{H}$ を与えるものである。

ある operator O が $\mathcal H$ に linear に作用している、あるいは linear である、とは

For
$$\forall |\psi_1\rangle, |\psi_2\rangle \in \mathcal{H}$$
 and $\forall a, b \in \mathbb{C}$, $O(a|\psi_1\rangle + b|\psi_2\rangle) = aO|\psi_1\rangle + bO|\psi_2\rangle$ (2.1.1)

であることを言う。例えば時間反転操作に対応する operator T は anti-unitary (anti-linear かつ unitary)

For
$$\forall |\psi_1\rangle, |\psi_2\rangle \in \mathcal{H}$$
 and $\forall a, b \in \mathbb{C}$, $T(a|\psi_1\rangle + b|\psi_2\rangle) = a^*T|\psi_1\rangle + b^*T|\psi_2\rangle$ (2.1.2)

な operator の重要な例であるが、以下では専ら linear なものに話を限る。

量子力学では物理量は operator で表され、解析力学で基本的な力学自由度であった $\{q\}, \{p\}$ さえも operator となっている。我々は任意の観測量の時間発展が決定論的な物理法則によって記述されることを仮定するが、一方で直接観測される量はもちろん実数であるので、まずはこれらの観測量を $\{\hat{q}\}, \{\hat{p}\}$ のような operator と関係付ける方法を考えなければならない。以下ではこの方法を Hilbert 空間と呼ばれる vector space を用いて与えよう。

vector space $\mathcal H$ が内積 η を持つとは、 $\forall \ket{\psi_1}, \ket{\psi_2} \in \mathcal H$ に対し複素数 $\langle \psi_1 | \psi_2 \rangle := \eta(\ket{\psi_1}, \ket{\psi_2}) \in \mathbb C$ を与える写像 $\eta: \mathcal H \times \mathcal H \to \mathbb C$ であって、

$$\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^* \tag{2.1.3}$$

$$\langle \phi | \left(a | \psi_1 \rangle + b | \psi_2 \rangle \right) = a \langle \phi | \psi_1 \rangle + b \langle \phi | \psi_2 \rangle \qquad \text{for } \forall a, b \in \mathbb{C}$$
 (**線形性**)

$$\langle \psi | \psi \rangle \ge 0$$
, and $\langle \phi | \phi \rangle = 0 \Leftrightarrow | \phi \rangle = 0$ (Example 1.5)

を満たすものがあることを言う。Hilbert 空間とは内積空間であって完備な(直感的には、極限が十分に存在する)ものを言う。物理学において時間発展は微分方程式で与えられるので、微分を定義するために極限が存在する必要があるのである。

量子力学において決定論的な時間発展方程式に従う力学自由度は Hilbert 空間の元である。この Hilbert 空間を状態空間と言い、その元を状態 vector と呼ぶ。個々の状態 vector の時間発展は Schrödinger 方程式

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (2.1.6)

によって与えられる。ここで ħ は換算 Planck 定数または Dirac 定数と呼ばれ、Planck 定数 ħ により

$$hbar := \frac{h}{2\pi}$$
(2.1.7)

と定義される。また、 \hat{H} は以下で定義する Hamiltonian operator である。

2.1.2 正準交換関係 (CCR: Canonical Commutation Relation)

二つの operator \hat{A} , \hat{B} の間の交換関係を

$$[\hat{A}, \hat{B}] := \hat{A}\hat{B} - \hat{B}\hat{A} \tag{2.1.8}$$

で定義し、 $[\hat{A},\hat{B}]=0$ であるとき \hat{A},\hat{B} は可換であるという。全く同様に反交換を

$$\{\hat{A}, \hat{B}\} := \hat{A}\hat{B} + \hat{B}\hat{A}$$
 (2.1.9)

で定義しておく。量子力学を考えるまで、あらゆる量は可換であった。このように全ての量が可換である力学系を古典力学系と言い、そこに現れる可換な数を c-数という。

任意の関数 F(a) について、演算子 \hat{x} の関数 $\hat{F}(\hat{x})$ を (a=0 周りの) Taylor 展開により

$$\hat{F}(\hat{x}) := \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n F(a)}{da^n} \bigg|_{a=0} \hat{x}^n$$
(2.1.10)

と定義する。ある古典力学系の Hamiltonian $H(\{q\},\{p\})$ が知られているとき、その正準力学変数 $\{q\},\{p\}$ を正準交換関係:

$$[\hat{q}_i, \hat{p}_j] = i\hbar \delta_{ij} \tag{2.1.11}$$

を満たす operator の組 $\{\hat{q}\}, \{\hat{p}\}$ で置き換える手続きを正準量子化と呼び、

$$\hat{H} := \hat{H}(\{\hat{q}\}, \{\hat{p}\}) \tag{2.1.12}$$

を得られた量子力学系の Hamiltonian operator という。

厳密にはこれだけでは古典的 Hamiltonian H が例えば qp のような項を持っていたとき、それを $\hat{p}\hat{q}$ で置き換えるのか $\hat{q}\hat{p}=\hat{p}\hat{q}+i\hbar$ で置き換えるのかといった問題は残る。これを演算子順序の問題といい、Hamiltonian operator の Hermiticity や量子系の持つべき大域的対称性などから一定の解答を与えることは出来るものの、異なる演算子順序は物理的に異なる量子系を与えるため一般に与えられた古典系に対して量子系を一意に定めることは出来ない。ただし特定の文脈で自然な演算子順序は存在し、このことは経路積分を扱う際により詳しく議論する。

2.1.3 Observables & Hermitian conjugate

任意の vector $|\psi\rangle \in \mathcal{H}$ の Hermitian conjugate $|\psi\rangle^{\dagger}$ を内積を使って

$$|\psi\rangle^{\dagger} := \eta(|\psi\rangle,) \tag{2.1.13}$$

により定め、 $\langle \psi |$ とも書く。元の空間の任意の元 $|\phi \rangle \in \mathcal{H}$ との内積が

$$|\psi\rangle^{\dagger}|\phi\rangle := \langle\psi|\phi\rangle = \eta(|\psi\rangle, |\phi\rangle) \in \mathbb{C}$$
 (2.1.14)

のように複素数を与えるため、内積の線形性から $\langle\psi|$ は ${\cal H}$ 上の線形汎関数と見做すことが出来、 $\langle\psi|$ のなす集合 ${\cal H}^*$ は ${\cal H}$ の (位相的あるいは線形) 双対空間となる。

この定義の下で operator \hat{O} の Hermitian conjugate \hat{O}^{\dagger} も、任意の vector $|\psi\rangle$, $|\phi\rangle$ に対して

$$\langle \psi | \hat{O}^{\dagger} | \phi \rangle = | \psi \rangle^{\dagger} \hat{O}^{\dagger} | \phi \rangle := \left(\hat{O} | \psi \rangle \right)^{\dagger} | \phi \rangle = \left[\langle \phi | \left(\hat{O} | \psi \rangle \right) \right]^{*}$$
(2.1.15)

となる operator と定めることが出来る。

ある operator \hat{O} が Hermitian であるとは、 \hat{O} が

$$\hat{O} = \hat{O}^{\dagger} \tag{2.1.16}$$

を満たすことを言う。量子力学における Observable (可換測量)は、Hermitian operator で表される。

2.1.4 固有状態と Hermitian operator

Operator は vector に作用して再び vector を与えるので、ある \hat{O} に対し $|\psi\rangle \neq 0$ が存在して

$$\hat{O}|\psi\rangle \propto |\psi\rangle$$
, i.e. $\exists \lambda \in \mathbb{C}$ s.t. $\hat{O}|\psi\rangle = \lambda |\psi\rangle$ (2.1.17)

となる特別な状況を考えることが出来る。このとき、vector $|\psi\rangle$ は \hat{O} の固有状態 (eigenstate) であると言い、定数 λ を $|\psi\rangle$ の固有値 (eigenvalue) と呼ぶ。我々が特に興味があるのは Observable を表す Hermitian operator であるが、 $\hat{O}=\hat{O}^{\dagger}$ のとき λ が実数となることが容易に示される。例えば \hat{H} の固有状態を energy 固有状態と呼び、energy 固有状態が持つ固有値を energy というが、任意の energy は実数である。

2.1.5 同時固有状態と状態の命名規則

特に、縮退がない場合はある固有値 λ に属する状態が一意に定まるため、これを $|\lambda\rangle$ と名付ける convention が一般的である。

2.1.6 観測値と Operator の関係、物理的状態空間

量子力学的な物理系の状態が $\operatorname{vector} |\psi\rangle$ で表されているとき、物理量 \hat{A} の期待値は

$$\langle A \rangle := \frac{\langle \psi | \hat{A} | \psi \rangle}{\langle \psi | \psi \rangle} \tag{2.1.18}$$

と表される。 \hat{A} の spectral decomposition を連続 spectrum と点 spectrum に分け、対応する spectrum の固有空間への projection operator \hat{P} を用いて

$$\hat{A} = \sum_{n} \hat{P}_n a_n + \int d\hat{P}(a)a \tag{2.1.19}$$

のように書くと、単位演算子との関係

$$1 = \sum_{n} \hat{P}_n + \int d\hat{P}(a)$$
 (2.1.20)

を用いて

$$|\psi\rangle = \sum_{n} \hat{P}_{n} |\psi\rangle + \int d\hat{P}(a) |\psi\rangle$$
 (2.1.21)

と書ける。実際に観測される結果は演算子 \hat{A} の固有値のいずれかであり、全く同一の状態 $\operatorname{vector} |\psi\rangle$ で表される物理系を十分多く用意したときの観測値は

- 1. 点 spectrum a_n に関しては確率 $\frac{\langle \psi | \hat{P}_n | \psi \rangle}{\langle \psi | \psi \rangle}$
- 2. 連続 spectrum a に関しては確率密度 $\dfrac{\langle \psi | \, d\hat{P}(a) \, | \psi \rangle}{\langle \psi | \psi \rangle}$

で与えられるのである。

これらの規則を見ると、状態 vector $|\psi\rangle$ を定数(たとえば $a\in\mathbb{C}$)倍だけ再定義しても norm が伴って $\langle\psi|\psi\rangle\mapsto|a|^2\langle\psi|\psi\rangle$ と変化するため、物理法則が予言する個々の観測量の期待値や確率は一切変化しない事に 気付くであろう。実際 vector の norm は物理的情報を持っておらず、従って vector $|\psi\rangle$ と $a|\psi\rangle$ は物理的に区 別されるべき異なる状態ではない。よって常に $a=\frac{1}{\sqrt{\langle\psi|\psi\rangle}}$ による再定義で $\langle\psi|\psi\rangle=1$ としておくのが便利である。このような vector の再定義を規格化と言い、以下では状態 vector は規格化されているものとする。 状態 vector を規格化してもなお、 $a=e^{i\theta},\theta\in\mathbb{R}$ のような場合は $|\psi\rangle$ と $e^{i\theta}$ $|\psi\rangle$ は独立な状態を表さない。このような overall の位相も物理的情報を持たないため、物理的状態は単に Hilbert 空間の元ではなく、それらを規格化し、更に位相だけの違いは同一視した射線(ray)と呼ばれる object により表される。

改めて、ray の集合を物理的状態空間あるいは単に状態空間 (state space) と呼ぶことにしよう。以下で規格化などによる同一視を行わない Hilbert 空間を直接扱うことは無いので、以前の用語との混乱は生じない。

2.1.7 調和振動子の例

n 次元調和振動子を正準量子化してみよう。 $\{\hat{q}\}, \{\hat{p}\}$ は可換測な物理量なので $\operatorname{Hermitian}$ であることを仮定しており、

$$\hat{H} = \sum_{k=1}^{n} \left(\frac{\hat{p}_k^2}{2m} + \frac{m\omega^2}{2} \hat{q}_k^2 \right)$$
 (2.1.22)

$$[\hat{q}_i, \hat{p}_j] = i\hbar \delta_{ij} \tag{2.1.23}$$

から \hat{H} の Hermiticity も自然に従う。公式 (A.1.2) を使って

$$[\hat{q}_i, H] = i\hbar \frac{\hat{p}_i}{m} \tag{2.1.24}$$

$$[\hat{p}_i, H] = -i\hbar \ m\omega^2 \hat{q}_i \tag{2.1.25}$$

が得られる。これらが調和振動子の正準方程式 (1.3.10) に非常によく類似している事に注意しよう。

このままでは議論を進めるのが難しいが、必ずしも Hermitian ではない無次元量への変数変換を考えることで見通しが良くなる。生成消滅演算子 (creation and annihilation operator。昇降 (raising and lowering) 演算子、はしご (ladder) 演算子などとも言う)を

$$\hat{a}_i := \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \ \hat{q}_i + \frac{i}{\sqrt{m\omega}} \ \hat{p}_i \right) \tag{2.1.26}$$

$$\hat{a}_i^{\dagger} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \, \hat{q}_i - \frac{i}{\sqrt{m\omega}} \, \hat{p}_i \right) \tag{2.1.27}$$

で定義しよう。これは単に $\{\hat{q}\},\{\hat{p}\}$ から $\{\hat{a}\},\{\hat{a}^{\dagger}\}$ への線形変換であり、逆変換は

$$\hat{q}_i = \frac{1}{2} \sqrt{\frac{2\hbar}{m\omega}} \left(\hat{a}_i + \hat{a}_i^{\dagger} \right) \tag{2.1.28}$$

$$\hat{p}_i = \frac{1}{2i} \sqrt{2\hbar m\omega} \left(\hat{a}_i - \hat{a}_i^{\dagger} \right) \tag{2.1.29}$$

で与えられる。

元の変数は容易に消去出来て

$$\hat{H} = \frac{\hbar\omega}{2} \sum_{k} \left(\hat{a}_{k}^{\dagger} \hat{a}_{k} + \hat{a}_{k} \hat{a}_{k}^{\dagger} \right) = \hbar\omega \sum_{k} \left(\hat{N}_{k} + \frac{1}{2} \right)$$
 (2.1.30)

$$\hat{N}_k := \hat{a}_k^{\dagger} \hat{a}_k \tag{2.1.31}$$

$$[\hat{a}_i, \hat{a}_i^{\dagger}] = \delta_{ij} \tag{2.1.32}$$

$$[\hat{H}, \hat{a}_i] = -\hbar\omega\hat{a}_i \tag{2.1.33}$$

$$[\hat{H}, \hat{a}_j^{\dagger}] = +\hbar\omega \hat{a}_j^{\dagger} \tag{2.1.34}$$

が得られる。ただし、k 番目の自由度の number operator \hat{N}_k を定義した。適当な energy 固有状態 $|\psi \rangle \neq 0$

$$\hat{H}|\psi\rangle = E|\psi\rangle \tag{2.1.35}$$

が存在するとき、状態 $\hat{a}_i \ket{\psi}$ に \hat{H} を作用させると

$$\hat{H}\left(\hat{a}_{i}|\psi\rangle\right) = \left(\hat{a}_{i}\hat{H} + \left[\hat{H}, \hat{a}_{i}\right]\right)|\psi\rangle \tag{2.1.36}$$

$$= (\hat{a}_i E - \hbar \omega \hat{a}_i) |\psi\rangle \tag{2.1.37}$$

$$= (E - \hbar\omega) \,\hat{a}_i \,|\psi\rangle \tag{2.1.38}$$

が得られ、状態 $\hat{a}_i \ket{\psi}$ は(もし 0 でないならば)energy $E-\hbar\omega$ に属する energy 固有 vector (ただし規格化 されているとは限らない)であることが分かる。全く同様に

$$\hat{H}\left(\hat{a}_{i}^{\dagger}|\psi\rangle\right) = (E + \hbar\omega)\,\hat{a}_{i}^{\dagger}|\psi\rangle \tag{2.1.39}$$

であり、 $\hat{a}_i^\dagger,\hat{a}_i$ は i 番目の自由度の energy level を enrgy 量子 $\hbar\omega$ 分だけ上下することが分かる。これが生成 消滅の名の所以である。

 $\hat{H}=\hbar\omega\sum_{k}\left(\hat{a}_{k}^{\dagger}\hat{a}_{k}+rac{1}{2}
ight)$ に気を付けると

$$E = \langle \psi | E | \psi \rangle = \langle \psi | \hat{H} | \psi \rangle = \hbar \omega \sum_{k} \langle \psi | \left(\hat{a}_{k}^{\dagger} \hat{a}_{k} + \frac{1}{2} \right) | \psi \rangle$$

$$= \hbar \omega \sum_{k} \left(\langle \psi | \hat{a}_{k}^{\dagger} \hat{a}_{k} | \psi \rangle + \frac{1}{2} \right)$$

$$= \hbar \omega \left(\sum_{k} \left| \left| \hat{a}_{k} | \psi \rangle \right| \right|^{2} + \frac{n}{2} \right) \ge \frac{n \hbar \omega}{2}$$

$$(2.1.40)$$

が導かれる。ここで内積の正定値性 $\left|\left|\hat{a}_k\left|\psi\right>\right|\right|^2\geq 0$ を使った。

興味深いのは、 \hat{H} が正定値な Hilbert 空間に作用しているという仮定のみから、Hilbert 空間にどのような energy 固有状態が存在するかの情報が得られるということである。

 $\hat{a}_i | \psi \rangle \neq 0$ なら norm が

$$\left\| \hat{a}_i |\psi\rangle \right\|^2 = \langle \psi | \hat{a}_i^{\dagger} \hat{a}_i |\psi\rangle \tag{2.1.41}$$

であるので、規格化は

AppendixA 量子力学の公式

A.1 交換関係・反交換関係の基本的な性質

証明は読者の演習問題とする。

$$[\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}]$$
 (A.1.1)

$$[\hat{A}, \hat{B}\hat{C}] = \hat{B}[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}]\hat{C}$$
 (A.1.2)

$$[\hat{A}\hat{B},\hat{C}] = \hat{A}\{\hat{B},\hat{C}\} - \{\hat{A},\hat{C}\}\hat{B}$$
 (A.1.3)

$$(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$$

$$[\hat{A}, \hat{B}]^{\dagger} = [\hat{B}^{\dagger}, \hat{A}^{\dagger}]$$
(A.1.4)
(A.1.5)

$$[\hat{A}, \hat{B}]^{\dagger} = [\hat{B}^{\dagger}, \hat{A}^{\dagger}] \tag{A.1.5}$$