Exercices de probabilités MDI104

1. Probabilités discrètes

2023-2024

Exercice 1 (Conditionnement). On dispose de deux dés dont un truqué : il donne deux fois plus de 6 que la normale, les autres faces étant équiprobables. Vous lancez un dé, choisi au hasard.

- 1. Quelle est la probabilité d'obtenir un 6?
- 2. Si vous obtenez un 6, quelle est la probabilité d'avoir choisi le dé truqué?
- 3. Si vous obtenez un 6, quelle est la probabilité d'obtenir à nouveau un 6 avec le même dé?

Exercice 2 (Lois uniformes). Soit X, Y deux variables aléatoires indépendantes de loi uniforme sur [1, N], avec $N \ge 1$. On note $M = \max(X, Y)$.

- 1. Calculer $P(M \le n)$, pour tout $n \in [1, N]$.
- 2. En déduire l'espérance de M.

Exercice 3 (Permutation). Soit σ une permutation de $n \geq 1$ éléments, choisie de manière aléatoire et uniforme. Combien d'éléments restent inchangés en moyenne?

Exercice 4 (Mélange). On note X_1, \ldots, X_n n variables aléatoires de Poisson indépendantes, de paramètres respectifs $\lambda_1, \ldots, \lambda_n$. Soit I une variable aléatoire sur $[\![1,n]\!]$ indépendante de X_1, \ldots, X_n , de loi (p_1, \ldots, p_n) . On s'intéresse à la variable aléatoire $X = X_I$.

- 1. Calculer l'espérance et la variance de X.
- 2. Calculer la covariance entre X et X_1 .
- 3. Calculer la probabilité que I=1 sachant X=0.

Exercice 5 (Loi binomiale négative). Vous jouez à un jeu jusqu'à obtenir n victoires, avec $n \ge 1$, la probabilité de victoire étant égale à p > 0. On note X le nombre de défaites.

- 1. Donner la loi de X.
- 2. En déduire la formule du binôme négatif :

$$\sum_{k=0}^{+\infty} \binom{n+k-1}{k} q^k = \frac{1}{(1-q)^n}, \quad 0 < q < 1.$$

- 3. Calculer la fonction génératrice de X.
- 4. En déduire son espérance et sa variance.
- 5. Quelle est la probabilité d'avoir gagné le premier jeu, sachant $X=k\,?$

Exercice 6 (Lois de Bernoulli). Soit X_1, \ldots, X_n des variables aléatoires i.i.d. de loi Bernoulli de paramètre p > 0. On note X le maximum de ces variables.

- 1. Donner la loi de X.
- 2. Calculer la covariance entre X et X_1 .

Exercice 7 (Nombres binaires aléatoires). Soit X, Y deux vecteurs aléatoires de n bits, indépendants et de loi uniforme sur $\{0,1\}^n$, avec $n \ge 1$.

- 1. Montrer que les variables aléatoires X_1, \ldots, X_n sont i.i.d. de loi de Bernoulli de paramètre 1/2.
- 2. Calculer la probabilité que X = Y.
- 3. En déduire la probabilité que $X \geq Y$.
- 4. Quelle est la probabilité que $X_1 = 1$ (bit fort) sachant $X \geq Y$?
- 5. Quelle est la probabilité que $X_n = 1$ (bit faible) sachant $X \geq Y$?

Exercice 8 (Loi multinomiale). On tire n cartes dans un jeu de 52 cartes, avec remise. On note $X \in \mathbb{N}^4$ le nombre de cartes de chaque couleur (trèfle, carreau, cœur, pique).

- 1. Donner la loi de X.
- 2. Donner les lois marginales.
- 3. Calculer la fonction génératrice de X.
- 4. En déduire la covariance entre X_1 et X_2 .

Exercice 9 (Somme aléatoire). Soit X_1, X_2, \ldots une suite de variables aléatoires i.i.d. de loi Poisson de paramètre λ , et N une variable aléatoire indépendante de loi géométrique de paramètre p > 0. On note :

$$S = \sum_{i=1}^{N} X_i.$$

- 1. Calculer l'espérance de S.
- 2. Calculer la variance de N, puis celle de S.
- 3. Calculer la covariance entre N et S.
- 4. Quelle est la limite du coefficient de corrélation entre N et S lorsque p tend vers 0?

Exercice 10 (Espérance conditionnelle). Soit X_1, \ldots, X_n des variables aléatoires i.i.d. de loi Poisson de paramètre λ , avec $n \ge 1$. On note :

$$Z = \mathrm{E}(X_1 | X_1 + \ldots + X_n).$$

- 1. Montrer que $Z = \frac{1}{n}(X_1 + ... + X_n)$.
- 2. En déduire l'espérance et la variance de \mathbb{Z} .
- 3. Calculer l'espérance et la variance de $X_1 Z$.