北京师范大学 2018~2019 学年第一学期期中考试试卷 (A卷)

课程名称:

数学分析(3)

任课教师姓名:

卷面总分:

100分

考试时长: 120分钟

院(系). 为为分人机用"6文房_专业:一数分外的数分刊始级:_101)

姓

						total & page	Art 1 . 1175	11 24
题号	第一题	第二题	第三题	第四题	第五题	第六题	第七题	总分
AS J	710 10							
得分								

阅卷教师(签字):

一、计算题(共50分,前4题每题5分,后3题每题10分)

1. 求
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{\sqrt{x^2 + y^2}}$$
 $\gamma = \gamma \text{ core}$ $\gamma \gamma \text{ Grocord}$.

2. 求
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$
 在点 $(0,0)$ 处的梯度.

- 3. 求 $f(x,y) = x^3 y^3 + 3x^2 + 3y^2 9x$ 的极值点.
- 4. 求 $z = 2x^2 + 4y^2$ 在点(2, 1, 12)处的切平面方程.

5. 研究
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & xy \neq 0, \\ 0, & xy = 0, \end{cases}$$
 在点 $(0,0)$ 处的二重极限与累次极限.

- 6. 设 sinz xyz = 0, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial y \partial x}$.
- 7. 设 $f(x,y,z) = (x-z^2,2x^2-y,xyz) \in \mathbb{R}^3$; $(x,y,z) = g(s,t) = (t^2,st,s^3) \in \mathbb{R}^3$. 记 $F = f \circ g$, 求F'(s,t).
 - 二、证明题(共50分,每题10分)
- 8. 证明: 若 $f(x,y) = \frac{xy}{x^2+y^2}$ 定义在 $D_1 = R^2 \setminus \{(0,0)\}$ 上,证明: f在(0,0)处不存在极限.
- 9. 证明: 若函数 $f: \mathbb{R}^n \to \mathbb{R}^m$ 在 \mathbb{R}^n 一致连续, 如果 $\{x_k\}$ 是 \mathbb{R}^n 中的Cauchy列, 求证: ${f(x_k)}$ 是 R^m 中的Cauchy列.
- 10. 证明: 设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是开集G上的 \mathbb{C}^1 类函数,且 $J_f(x_0) = 0$,记 $y_0 = f(x_0)$. 如

- 11. 证明: 设三元数值函数w=f(x,y,z)在原点O的邻域U(O)有定义. 如果 $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y}$ 在U(O)连续且有界,且f(x,y,z)关于z是一元连续函数,求证: 三元数值函数f在U(O)连续.
- 12. 证明: E是Rn中的有界闭集的充分必要条件是E是Rn中的紧集.