Peer-graded Assignment: Regression Models Project

Nikhil Kalyankar June 25, 2017

Executive Summary

Miles per gallon (mpg) is an important criteria for assessing and rating automobiles. It depends of various factors: fuel quality, weight, number of cylinders, engine efficiency, transmission efficiency, driver ability, road conditions, etc. The analysis presented in this report show that manual transmission is better than automatic transmission for mpg. However, it is not possible to quantify the relationship.

Exploratory Analysis

- **Describe the dateset**: The **mtcars** dataset of contains information on various cars set on 11 variables namely: **mpg** (Miles per gallon), **cyl** (Number of cylinders), **disp** (Displacement cubic inches), **hp** (Gross horsepower), **drat** Rear axle ration, **wt** (Weight 1000lbs), **qsec** (1/4 mile time), **vs** (V/S), **am** (Transmission; 0 = automatic; 1 = manual), **gear** (Number of forward gears) and **carb** (Number of carburetors).
- **Identify the key variables**: This report identifies the **mpg** and **am** variables as the key for the purpose of this report. Other variables particularly *cyl* and *gear* would be considered for additional analysis.
- Explore the dataset: Firstly, the mean mpg when grouped by automatic and manual transmission is 17.14737 and 24.39231 respectively. Secondly, the average mpg when grouped by cyl and am shows that the mpg values are higher for manual transmission (Note: The values are very close in case of 8 cylinder automobiles). The other variables related to cyl i.e., wt, disp and hp show similar results. Finally, the average mpg when grouped by gear and am shows that only 4 gear automobiles have both types of transmission and again the manual transmission autombiles give higher mpg. We can consider that on an average manual transmission is better than automatic transmission.

Regression Analysis

The regression analysis with outcome variable **mpg** and predictor variable **am** by excluding the intercept term gives us the coefficients for automatic and manual as **17.14737** and **24.39231** respectively. This show that manual transmission gives higher mpg. Note: these values are same as the mean mpg when grouped by am. The next analysis with **wt** as an adddtional predictor variable changes the am coefficients to **37.321551** and **37.297936** respectively. It can be inferred that wt has significant impact on mpg that removes the effect of the type of transmission. The regression analysis ran on all variables by excluding the intercept term: $lm(mpg \sim . - 1, data = mtcars)$ show that when all variables are considered together they do not have statistically significant impact. S

Is an automatic or manual transmission better for MPG?

A manual transmission is surely better than an automatic transmission for MPG.

Quantifying the MPG difference between automatic and manual transmissions.

It is impossible to quantify the MPG difference between automatic and manual transmission as we have only two possible outcomes as the predictor variable can only provide two values. Additional variables are required for quantification.

Appendix

1.1. Dataset Overview

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

1.2. Dataset Summary

mpg	Min. :10.40	1st Qu.:15.43	Median $:19.20$	Mean $:20.09$	3rd Qu.:22.80	Max. :33.90
cyl	Min. :4.000	1st Qu.:4.000	Median $:6.000$	Mean $:6.188$	3rd Qu.:8.000	Max. $:8.000$
disp	Min.: 71.1	1st Qu.:120.8	Median $:196.3$	Mean $:230.7$	3rd Qu.:326.0	Max. $:472.0$
hp	Min. : 52.0	1st Qu.: 96.5	Median $:123.0$	Mean : 146.7	3rd Qu.:180.0	Max. $:335.0$
drat	Min. :2.760	1st Qu.:3.080	Median $:3.695$	Mean $: 3.597$	3rd Qu.:3.920	Max. $:4.930$
\mathbf{wt}	Min. :1.513	1st Qu.:2.581	Median $:3.325$	Mean $: 3.217$	3rd Qu.:3.610	Max. $:5.424$
qsec	Min. :14.50	1st Qu.:16.89	Median: 17.71	Mean : 17.85	3rd Qu.:18.90	Max. $:22.90$
vs	Min. $:0.0000$	1st Qu.:0.0000	Median $:0.0000$	Mean $:0.4375$	3rd Qu.:1.0000	Max. $:1.0000$
am	Min. $:0.0000$	1st Qu.:0.0000	Median: 0.0000	Mean $:0.4062$	3rd Qu.:1.0000	Max. $:1.0000$
gear	Min. $:3.000$	1st Qu.:3.000	Median $:4.000$	Mean: 3.688	3rd Qu.:4.000	Max. $:5.000$
carb	Min. $:1.000$	1st Qu.:2.000	Median $:2.000$	Mean: 2.812	3rd Qu.:4.000	Max. $:8.000$

1.3. Summary of factorized am

	automatic	manual
am	19	13

2. Average mpg grouped by am

am	mpg
automatic	17.14737
manual	24.39231

3. Average mpg grouped by cyl and am

am	cyl	mpg
automatic	4	22.90000
automatic	6	19.12500
automatic	8	15.05000
manual	4	28.07500
manual	6	20.56667
manual	8	15.40000

4. Average mpg grouped by gear and am

am	gear	mpg
automatic	3	16.10667
automatic	4	21.05000
manual	4	26.27500
manual	5	21.38000

5.1. $lm(mpg \sim am - 1, data = mtcars)$

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Residuals	-9.392308	-3.092308	-0.2973684	0	3.243927	9.507692

	Estimate	Std. Error	t value	Pr(> t)
amautomatic	17.14737	1.124602	15.24749	0
ammanual	24.39231	1.359578	17.94109	0

value	numdf	dendf
277.1843	2	30

label	R-squared	Adjusted R-squared	Sigma
value	0.9486625	0.9452400	4.9020288

5.2. Prediction

Newdata	Predicted_Value
automatic	17.14737
manual	24.39231

6. $lm(mpg \sim am + wt - 1, data = mtcars)$

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Residuals	-4.529524	-2.361895	-0.1317223	0	1.402517	6.878249

	Estimate	Std. Error	t value	$\Pr(> t)$
amautomatic	37.321551	3.0546385	12.217993	0e+00
ammanual	37.297936	2.0856607	17.883032	0e+00
wt	-5.352811	0.7882438	-6.790807	2e-07

value	numdf	dendf
478.0542	3	29

label	R-squared	Adjusted R-squared	Sigma
value	0.9801799	0.9781296	3.0979398

7. $lm(mpg \sim . - 1, data = mtcars)$

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Residuals	-3.450644	-1.604402	-0.1196051	0	1.219268	4.627094

	Estimate	Std. Error	t value	$\Pr(> t)$
cyl	-0.1114405	1.0450234	-0.1066392	0.9160874
disp	0.0133352	0.0178575	0.7467585	0.4634887
hp	-0.0214821	0.0217686	-0.9868407	0.3349553
drat	0.7871110	1.6353731	0.4813036	0.6352779
wt	-3.7153039	1.8944143	-1.9611887	0.0632522
qsec	0.8210407	0.7308448	1.1234133	0.2739413
VS	0.3177628	2.1045086	0.1509915	0.8814235
amautomatic	12.3033742	18.7178844	0.6573058	0.5181244
ammanual	14.8236010	18.3526517	0.8077090	0.4283130
gear	0.6554130	1.4932600	0.4389142	0.6652064
carb	-0.1994193	0.8287525	-0.2406258	0.8121787

value	numdf	dendf
179.8472	11	21

label	R-squared	Adjusted R-squared	Sigma
value	0.9894964	0.9839946	2.6501970