

SIC MOSFET CoolSiC™ MOSFET 650 V G2

Built on Infineon's robust 2nd generation Silicon Carbide trench technology, the 650 V CoolSiC™ MOSFET delivers unparalleled performance, superior reliability, and great ease of use. It enables cost effective, highly efficient, and simplified designs to fulfill the ever-growing system and market needs.

Features

- Ultra-low switching losses
- Benchmark gate threshold voltage, $V_{GS(th)} = 4.5 \text{ V}$
- Robust against parasitic turn-on even with 0 V turn-off gate voltage
- Flexible driving voltage and compatible with bipolar driving scheme
- Robust body diode operation under hard commutation events
- .XT interconnection technology for best-in-class thermal performance

Benefits

- · Enables high efficiency and high power density designs
- Facilitates great ease of use and integration
- Provides the best price performance ratio compared to Industry's most ambitious roadmaps
- · Reduces the size, weight and bill of materials of the systems
- Enhances system robustness and reliability

Potential applications

- SMPS
- Solar PV inverters
- · Energy storage and battery formation
- UPS
- EV charging infrastructure
- Motor drives

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC JESD47, JESD22 and J-STD-020.

Please note: The source and driver source pins are not exchangeable. Their exchange might lead to malfunction.

Table 1 Key performance parameters

	<u> </u>		_
Parameter	Value	Unit	
$V_{\rm DSS}$ over full $T_{\rm j,range}$	650	V	
$R_{\mathrm{DS(on),typ}}$	75	mΩ	
$R_{\rm DS(on),max}$	95	mΩ	
$Q_{G,typ}$	14.9	nC	
$I_{\rm D,pulse}$	74	A	
Q _{oss} @ 400 V	32	nC	
E _{oss} @ 400 V	4.4	μЈ	

Part number	Package	Marking	Related links
IMLT65R075M2H	PG-HDSOP-16	65R075M2	see Appendix A

Public

CoolSiC™ MOSFET 650 V G2 IMLT65R075M2H

Table of contents

Description	
Maximum ratings	3
Thermal characteristics	
Operating range	
Electrical characteristics	
Electrical characteristics diagrams	8
Test circuits	
Package outlines	
Appendix A	
Revision history	
Trademarks	
Disclaimer	

1 Maximum ratings

at $T_i = 25$ °C, unless otherwise specified.

Note: for optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Table 2 Maximum ratings

Davamatav	Cymphal	Values			I I mit	Note / Test condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition
Continuous DC drain current 1)	,			34.7	Α	$T_{\rm c}$ = 25°C
Continuous DC drain current -	I _{DDC}	-	_	24.4		$T_{\rm c} = 100$ °C
Peak drain current ²⁾	I _{DM}	-	-	74	Α	$T_{\rm c} = 25^{\circ} \text{C}, \ V_{\rm GS} = 18 \text{ V}$
Avalanche energy, single pulse	E_{AS}			68	- mJ	I _D = 2.5 A, V _{DD} = 50 V; see table 11
Avalanche energy, repetitive	E_{AR}		_	0.34	1113	$I_D = 2.3 \text{ A}, V_{DD} = 30 \text{ V}, \text{ see table } 11$
Avalanche current, single pulse	I _{AS}	-	-	2.5	Α	-
MOSFET <i>dv/dt</i> ruggedness	dv/dt	-	-	200	V/ns	V _{DS} = 0400 V
Gate source voltage (static) 3)	V_{GS}	-7	-	23	V	-
Gate source voltage (transient)	$V_{\rm GS}$	-10	-	25	V	t _p ≤ 500 ns, duty cycle ≤ 1%
Power dissipation	P_{tot}	_	-	187	W	$T_{\rm c} = 25^{\circ}\text{C}$
Storage temperature	$T_{\rm stg}$	-55		150	°C	
Operating junction temperature	$T_{\rm j}$	-55	-	175	°C	-
Mounting torque	-	-		-	Ncm	
Continuous reverse drain current 1)	,			34.7	A	$V_{\rm GS} = 18 \rm V, T_{\rm c} = 25 ^{\circ} \rm C$
Continuous reverse drain current	I _{SDC}	_		21.8		$V_{\rm GS} = 0 \text{V}, T_{\rm c} = 25 ^{\circ}\text{C}$
Peak reverse drain current ²⁾	,			74	Α	$T_{\rm c}$ = 25°C, $t_{\rm p} \le$ 250 ns
reak reverse drain current -	I _{SM}	-	-	22.3		$T_c = 25$ °C
Insulation withstand voltage	V _{ISO}		-	n.a.	V	$V_{\rm rms}$, $T_{\rm c} = 25^{\circ}$ C, $t = 1$ min

¹⁾ Limited by $T_{j,max}$.

²⁾ Pulse width $t_{\rm pulse}$ limited by $T_{\rm j,max}$.

³⁾ The maximum gate-source voltage in the application design should be in accordance to IPC-9592B.

2 Thermal characteristics

Table 3 Thermal characteristics

Dava markan	Symbol	Values			Linit	Note / Took one dition
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition
Thermal resistance, junction - case	$R_{th(j-c)}$	-	-	0.80	°C/W	Not subject to production test. Parameter verified by design/characterization according to JESD51-14.
Soldering temperature, reflow soldering allowed	$T_{\rm sold}$	-	-	260	°C	reflow MSL1

3 Operating range

Table 4 Operating range

Parameter	Symbol	Values			Linit	Note / Test condition	
Parameter	Syllibot	Min.	Тур.	Max.	Onic	Note / Test condition	
Recommended turn-on voltage	$V_{\rm GS(on)}$		18		W		
Recommended turn-off voltage	$V_{\rm GS(off)}$	-	0	-	V	-	

Electrical characteristics

at $T_i = 25$ °C, unless otherwise specified

Table 5 Static characteristics

Davamatav	Symbol	Values			Linit	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition	
Drain-source voltage	$V_{\rm DSS}$	650	-	-	V	$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.24 \text{ mA}$	
Gate threshold voltage ⁴⁾	$V_{\rm GS(th)}$	3.5	4.5	5.6	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 2.4 \rm mA$	
Zero gate voltage drain current	I _{DSS}		1	75	μΑ	$V_{\rm DS} = 650 \rm V, \ V_{\rm GS} = 0 \rm V, \ T_{\rm j} = 25 \rm ^{\circ}C$	
		-	3	-	μΑ	$V_{\rm DS} = 650 \rm V, \ V_{\rm GS} = 0 \rm V, \ T_{\rm j} = 175 ^{\circ}\rm C$	
Gate-source leakage current	I_{GSS}	-	-	1000	nA	$V_{\rm GS} = 20 \text{V}, \ V_{\rm DS} = 0 \text{V}$	
			98	-		$V_{GS} = 15 \text{ V}, I_D = 11.9 \text{ A}, T_j = 25^{\circ}\text{C}$	
Drain-source on-state resistance	D		75	95	mΩ	$V_{GS} = 18 \text{ V}, I_D = 11.9 \text{ A}, T_j = 25^{\circ}\text{C}$	
Diain-source on-state resistance	$R_{DS(on)}$		68	-	11122	$V_{GS} = 20 \text{ V}, I_D = 11.9 \text{ A}, T_j = 25^{\circ}\text{C}$	
			123	-		$V_{GS} = 18 \text{ V}, I_D = 11.9 \text{ A}, T_j = 175 ^{\circ}\text{C}$	
Internal gate resistance	$R_{G,int}$	-	4.3	-	Ω	<i>f</i> =1 MHz	

 $^{^{4)}}$ Tested after 1 ms pulse at V_{GS} = +20 V. "Linear mode" operation is not recommended. For assessment of potential "linear mode" mode" operation, please contact Infineon sales office.

Dynamic characteristics Table 6

External parasitic elements (PCB layout) influence switching behavior significantly. Stray inductances and coupling capacitances must be minimized. For layout recommendations please use provided application notes or contact Infineon sales office.

Down and an	Cymphol		Values			Note / Took one distant	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Input capacitance	C _{iss}		516	-			
Reverse transfer capacitance	C _{rss}]-	3.6	-	рF	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}$	
Output capacitance 5)	C _{oss}		44	57			
Output charge ⁵⁾	$Q_{ m oss}$	-	32	42	nC	calculation based on C _{oss}	
Effective output capacitance, energy related ⁶⁾	$C_{ m o(er)}$	-	55	-	pF	$V_{GS} = 0 \text{ V},$ $V_{DS} = 0400 \text{ V}$	
Effective output capacitance, time related ⁷⁾	$C_{ m o(tr)}$	-	81	-	pF	$I_{\rm D}$ = constant, $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 0 400 V	
Turn-on delay time	$t_{\sf d(on)}$		5.7				
Rise time	t _r]	5.3			$V_{\rm DD} = 400 \text{V}, V_{\rm GS} = 0/18 \text{V},$	
Turn-off delay time	$t_{\sf d(off)}$]	12.8]-	ns	$I_{\rm D} = 11.9 \text{ A}, R_{\rm G,ext} = 1.8 \Omega;$ see table 10	
Fall time	t _f		5.5				

Dynamic characteristics Table 6

External parasitic elements (PCB layout) influence switching behavior significantly. Stray inductances and coupling capacitances must be minimized.
For layout recommendations please use provided application notes or contact Infineon sales office.

Devematev	Symbol	Values			Linit	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition	
Turn-ON switching losses ⁸⁾	E _{on}		20				
Turn-OFF switching losses ⁸⁾	$E_{\rm off}$	-	10	- μJ	μJ	μJ $V_{DD} = 400 \text{ V}, V_{GS} = 0/18 \text{ V},$ $I_{D} = 11.9 \text{ A}, R_{G,\text{ext}} = 1.8 \Omega$	
Total switching losses ⁸⁾	E _{tot}		30				

Maximum specification is defined by calculated six sigma upper confidence bound.

Table 7 **Gate charge characteristics**

Parameter	Symbol	Values			Linit	Note / Test condition
raiailletei	Symbol	Min.	Тур.	Max.	Oille	Note / Test condition
Plateau gate to source charge	$Q_{GS(pl)}$		3.7	- nC		nC $V_{DD} = 400 \text{ V}, I_{D} = 11.9 \text{ A}, V_{GS} = 0 \text{ to } 18 \text{ V}$
Gate to drain charge	Q_{GD}	-	2.9		nC	
Total gate charge	Q_{G}		14.9			VGS 0 to 10 V

Table 8 Reverse diode characteristics

Parameter	Values			Linit	Note / Test condition	
raiailletei	Symbol	Min.	Min. Typ. Max.		Oille	Note / Test condition
Drain-source reverse voltage	$V_{\rm SD}$	-	4.3	-	٧	$V_{GS} = 0 \text{ V}, I_{S} = 11.9 \text{ A}, T_{j} = 25^{\circ}\text{C}$
MOSEET forward recovery time	+		8.8	-	ns	$V_{DD} = 400 \text{ V}, I_{S} = 11.9 \text{ A},$ d i_{S} /d $t = 1000 \text{ A/µs}$; see table 9
MOSFET forward recovery time	t _{fr}	-	4.5		115	$V_{DD} = 400 \text{ V}, I_{S} = 11.9 \text{ A},$ d i_{S} /d t = 4000 A/ μ s; see table 9
MOCETT for more discourse also use 9)	Q_{fr}	-	34			$V_{DD} = 400 \text{ V}, I_{S} = 11.9 \text{ A},$ d i_{S} /d $t = 1000 \text{ A/µs}$; see table 9
MOSFET forward recovery charge ⁹⁾			42	-	nC	$V_{DD} = 400 \text{ V}, I_{S} = 11.9 \text{ A},$ d i_{S} /d t = 4000 A/µs; see table 9
MOSFET peak forward recovery			7.7		Α	$V_{DD} = 400 \text{ V}, I_{S} = 11.9 \text{ A},$ d i_{S} /d $t = 1000 \text{ A/µs}$; see table 9
current			18.7		Α .	$V_{DD} = 400 \text{ V}, I_{S} = 11.9 \text{ A},$ d i_{S} /d t = 4000 A/ μ s; see table 9

 $Q_{\rm fr}$ includes $Q_{\rm oss}$.

 $C_{
m o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{
m oss}$ while $V_{
m DS}$ is rising from 0 to 400 V.

 $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400 V.

MOSFET used in half-bridge configuration without external diode.

5 Electrical characteristics diagrams

6 Test circuits

Table 9 Body diode characteristics

Table 10 Switching times

Table 11 Unclamped inductive load

7 Package outlines

Figure 1 Outline PG-HDSOP-16, dimensions in mm

Figure 2 Footprint drawing PG-HDSOP-16, dimensions in mm

All dimensions are in units mm

The drawing is in compliance with ISO 128-30, Projection Method 1 [

Figure 3 Packaging variant PG-HDSOP-16, dimensions in mm

8 Appendix A

Table 12 Related links

- IFX CoolSiC CoolSiC™ MOSFET 650 V G2 Webpage
- IFX CoolSiC CoolSiC™ MOSFET 650 V G2 Application Note
- IFX CoolSiC CoolSiC™ MOSFET 650 V G2 Simulation Model
- IFX Design tools

Public

CoolSiC™ MOSFET 650 V G2 IMLT65R075M2H

Revision history

IMLT65R075M2H

Revision 2025-07-23, Rev. 1.1

Previous revisions

Revision	Date	Subjects (major changes since last revision)
1.0	2025-04-30	Release of final version
1.1	2025-07-23	Minor layout changes

Public

CoolSiC™ MOSFET 650 V G2

IMLT65R075M2H

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Important notice

The products which may also include samples and may be comprised of hardware or software or both ("Product") are sold or provided and delivered by Infineon Technologies AG and its affiliates ("Infineon") subject to the terms and conditions of the frame supply contract or other written agreement(s) executed by a customer and Infineon or, in the absence of the foregoing, the applicable Sales Conditions of Infineon. General terms and conditions of a customer or deviations from applicable Sales Conditions of Infineon shall only be binding for Infineon if and to the extent Infineon has given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of non-infringement of third-party rights and implied warranties such as warranties of fitness for a specific use/purpose or merchantability.

Infineon shall not be responsible for any information with respect to samples, the application or customer's specific use of any Product or for any examples or typical values given in this document.

The data contained in this document is exclusively intended for technically qualified and skilled customer representatives. It is the responsibility of the customer to evaluate the suitability of the Product for the intended application and the customer's specific use and to verify all relevant technical data contained in this document in the intended application and the customer's specific use. The customer is responsible for properly designing, programming, and testing the functionality and safety of the intended application, as well as complying with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products may not be used in any application where a failure of the Product or any consequences of the use thereof can reasonably be expected to result in personal injury. However, the foregoing shall not prevent the customer from using any Product in such fields of use that Infineon has explicitly designed and sold it for, provided that the overall responsibility for the application lies with the customer.

If the Product includes security features:

Because no computing device can be absolutely secure, and despite security measures implemented in the Product, Infineon does not guarantee that the Product will be free from intrusion, data theft or loss, or other breaches ("Security Breaches"), and Infineon shall have no liability arising out of any Security Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual property laws and treaties of the United States, Germany, and other countries worldwide. All rights reserved. Therefore, you may use the software only as provided in the software license agreement accompanying the software. If no software license agreement applies, Infineon hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) under its intellectual property rights in the software (a) for software provided in source code form, to modify and reproduce the software solely for use with Infineon hardware products, only internally within your organization, and (b) to distribute the software in binary code form externally to end users, solely for use on Infineon hardware products. Any other use, reproduction, modification, translation, or compilation of the software is prohibited.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).