אלגוריתמים - 3

ושימושיו DFS

<u>הגדרות:</u>

רכיב קשיר היטב(רק"ה): בגרף מכוון G=(V,E) הוא קב' מקסימלית של צמתים $C\subseteq V$. כך שלכל זוג צמתים $v,v\in C$ של מכוון מ- $v,v\in C$ ווא צמתים $v,v\in C$ שמסלול מכוון מ- $v,v\in C$ ומ- $v,v\in C$ וום- $v,v\in C$ וום- $v,v\in C$ בומת בודד יכול להיות רק"ה.

דוגמה:

$$G^T = (V, E^T)$$
 הגרף ההופכי של גרף מכוון ההופכי של גרף ההופכי של $G = (V, E)$ הוא ב $E^T = \{(u, v): (v, u) \in E\}$

(G-ביינו הופכים את כיווני הקשתות ב-G).

vו ו- u אם בפרטת רק"ה. בפרטת אם היש בדיוק יש בדיוק הדית הדית ב- G^T ה הדדית ב- G^T , אז גם ב- G^T

אלגוריתם למציאת רכיבים קשירים היטב

Strongly Connected Comptonents (G)

- 1.Call DFS to compute f[u] for all $u \in V$
- 2.Compute G^T
- 3.Call DFS (G^T) but in the main loop consider the vertices in decreasing order of f[u] (as computed in (.1
- **4.**Output the vertices in each DFS tree generated in .**3** as a seperate component.

דוגמת הרצה:

ימן הריצה של אלג' SCC.

:ימן הריצה נקבע ע"י:

- (סה"כ אמן יצה) אפ $\Theta(|V|+|E|) o \mathrm{DFS}$ הרצה של .1
 - $.O(|E|):G^T$ צירת. 2
 - 3. סריקת הצמתים בלולאה המרכזית בצעד 3. בסדר יורד לפי f[u]

. במחסנית. בצעד f[u]ערכי את לשמור לשמור ביתן בייתן \Leftarrow

לצורכך הוכחת הנכונות של SCC נגדיר את $:G^*=(V^*,E^*)$,G גרף הרכיבים של C_1, C_2, \ldots, C_k הם G-ם הרק"ה כי הרק

לכל v_i והוא כולל צומת $V^* = \{v_1, v_2, \dots, v_k\}$ אזי .G-ב C_i ה"ך

 צומת איזשהו מכיל קשת מכיל ב-*G ב- (v_i,v_j) החיה קשת $y \in C_j$ לי $x \in C_i$

בדוגמה: גרף הרכיבים הוא:

G=(V,E) מכוון שני רק״ה שני רק״ה למה 1: יהיו C יהיו $u \to u'$ נניח שיש מסלול מכוון $v', u' \in C'$ ויהיו $v, u \in C$ ויהיו .v'
ightarrow vאזי לא ייתכן שיש מסלול מכוון מ (הוכחה בתרגול).

,'כאשר נשתמש ב- d[u] ו- d[u] בניתוח האלג' נתייחס לערכים אלו כפי שנקבעו ל-u בקריאה הראשונה ל-DFS (בצעד 1. של האלג').

-נרחיב את ההגדרות של זמן "גילוי" ו"נסיגה" לקבוצות $d(U) = \min_{u \in U} \{d[u]\}$ אזי $U \subseteq V$ צמתים אם

 $f(U) = \max_{u \in U} \{f[u]\} \text{ -1}$ דהיינו d(U) ו-וזמן הנסיגה המאוחר בקבוצה U, בהתאמה.

למה 2:

G=(V,E) אני רק"ה בגרף מכוון C' -ו ר $u\in C$ כאשר כאשר (u,v) $\in E$ נניח שיש קשת f(C) > f(C') אזי $v \in C'$ -ו

הוכחה:

נטפל בשני מקרים כתלות ביחס d(C') -ו d(C) בין

C -ם ויהי שהתגלה הראשון ויהי d(C) < d(C') .1 . אזי בזמן C'ו- C'ו בל כל הצמתים לבנים לבנים לבנים אזי בזמן x-ט מסלול שמורכב רק מצמתים לבנים מ- $(u,v)\in E$ -היות ו-.C'ב צומת ב-x וגם מ-x וגם ב-x לכל .DFS בעץ x של צאצאים יהפכו וב-C' וב-C' הצמתים בעץ יים: מתקיים, ב-C' או ב-C' מתקיים, לכל צומת לכל משפט מ .f[x] = f[C] > f(C')ולכן
 d[x] < d[w] < f[w] < f[x]

מסקנה 3:

G=(V,E) יהיו בגרף בגרף מכוון C'-1 רק"ה בגרף מכוון $v\in C'$ ו- $u\in C$ נניח שיש קשת $(u,v)\in E^T$ ו- SCC אזי בהרצה של DFS על G (בצעד 1 של f(C)< f(C') נקבל כי

הוכחה:

קטת (v,u) $\in E$ קשת (u,v) (u,v) $\in E^T$ היות ויש קשת מ-C ל-C ב-C נקבל כי f(C) < f(C')

:4 משפט

 ${\cal G}$ מחשב נכון את הרק"ה בגרף מכוון Strongly Connected Components האלגוריתם

<u>הוכחה:</u>

נוכיח באינדוקציה שכ"א מ-x העצים הראשונים שנמצאו מ-x שכ"א מ-x שכ"א נוכיח נוכיח נוכיח נוכיח הראשונים מ-x מ-

בסיס:

. נכון באופן k=0

צעד האינדוקציה:

נניח שהטענה נכונה ל-k+1 נניח ונוכיח לעץ ה-אשונים הראשונים העצים ל-k נניח העצים העצים הינו צומת ,u

.G-ב ב ביץ לרק"ה שייך שייך ב

- מאופן התקדמות האלג' בלולאה המרכזית של צעד 3. מתקיים:

f[u] = f(C) > f(C')

.(3 בצעד שעוד לא טופל בצעד Gב ב' ה"לכל רק"ה

(בצעד u את "מגלה" מגלה" בזמן בזמן בזמן האינדוקציה, בזמן -

כל הצמתים ב-C לבנים ממשפט המסלול הלבן,

.DFS כל הצמתים ב-C יהפכו לצאצאים של בעץ

בנוסף ממסקנה 3. כל קשת שיוצאת מ-2 ב- G^T מובילה לרק"ה שכבר ביקרנו.

.Cב בעץ ורק הצמתים ב-C העמתים ב-DFS בעץ בעץ לכן הצאצאים לכן הצאצאים של