Other Query Interfaces and Languages

Davood Rafiei

Graphical Query Interfaces

- Oracle SQL query builder
- MySQL query builder
- SQL Server visual query builder
- Postgress query builder
- SQLite query builder
- Microsoft Access query interface

Roots

- Based on relational calculus
 - So is SQL
- Declarative
- Known as Query by Example (QBE)
- Limited expressive power

QBE: Query by Example

- Declarative query language, like SQL
- Developed in 1970s at IBM
- Based on DRC
- Visual
- Other visual query languages (MS Access, Paradox) are just incremental improvements

QBE - Examples

Q1. Print all professors' names in the Math department

Professor	Id	Name	DeptId	
		P.	Math	

Q2. Print all professors' names who taught c291 in Fall 2002.

Professor	Id	Name	DeptId
	_123	P.	

Teaching	ProfId	CrsCode	Semester
	_123	C291	F2002

Condition Boxes

• Some conditions are too complex to be placed directly in table columns

Transcript	StudId	CrsCode	Semester	Grade
	P.	CS532		_Gr

• Students who took CS532 & got A or B

Connection to Rel. Calculus

• A graphical representation of DRC

Transcript	StudId	CrsCode	Semester	Grade
	_123	_CS532	F2002	A

DRC: Transprint()

Transcript(*x*, *y*, 'F2002', 'A')

TRC: Transcript(t) AND t.Semester='F2002' AND t.Grade = 'A'

Relational Calculus

- Two flavors
 - Tuple Relational Calculus (TRC)
 - Variables range over tuples (e.g. SQL)
 - Domain Relational Calculus (DRC)
 - Variables range over domains (e.g. QBE)
- Query ~ formula
- Answer ~ an assignment that makes the formula true

Examples

```
TRC:
{t | Transcript(t) AND t.Semester='F2002' AND t.Grade = 'A'}
\{s \mid Students(s) \mid AND \exists e \in Enroll (s.sid = e.sid \mid AND \mid e.cid = '291')\}
{s | Students(s) AND ∃c∈Courses (c.instructor='John Smith'
    ==> \exists e \in Enroll (e.sid = s.sid AND e.cid=c.cid))
DRC:
\{x,y \mid Transcript(x, y, F2002', A')\}
```

Relational Calculus

a base for other query languages

Relation Between TRC and SQL

• List the names of all professors who have taught MGT123

Core of SQL is merely a syntactic sugar on top of TRC

What Happened to Quantifiers in SQL?

- SQL has no quantifiers: how come? It uses conventions:
 - Convention 1. Universal quantifiers are not allowed (but SQL:1999 introduced a limited form of explicit ∀)
 - Convention 2. Make existential quantifiers *implicit*: Any tuple variable that does not occur in SELECT is assumed to be implicitly quantified with \exists
- Compare:

```
{p.Name | Professor(p) AND ∃t ∈ Teaching ... }

and

SELECT P.Name
FROM Professor p, Teaching t
........
```

Relation Between TRC and SQL (cont'd)

- SQL uses a subset of TRC with simplifying conventions for quantification
- Restricts the use of quantification and negation (so TRC is more general in this respect)
- SQL uses aggregates, which are absent in TRC (and relational algebra, for that matter). But aggregates can be added
- SQL is extended with relational algebra operators (MINUS, UNION, JOIN, etc.)
 - This is just more syntactic sugar, but it makes queries easier to write

Graphical Interfaces

Of PC Databases

Microsoft Access

Microsoft Access (Cont)

Microsoft Access (Cont)

Microsoft Access (Cont)

PC Databases

- A spruced up version of QBE (better interface)
- Be aware of implicit quantification
- Beware of negation pitfalls
 - Sec. 13.4 gives some of the pitfalls under the heading "the price of free lunch"