Computers, Formal Systems, and Simulations: Alluding to the Curry–Howard correspondence

Brian Tenneson January 19, 2024

Graduate Student

Bay Path University

Department of Applied Data Science

BTENNESON2301@BAYPATH.EDU

Abstract

I discuss one possible formal definition of the word "computer" in the definition of semi-ideal computers or SICs for short. The notion of a SIC associated with a formal system and the formal system associated with a SIC implies a dictionary between the totality of all formal systems and all SICs, pointing to the the Curry–Howard correspondence. Simulations are then discussed in terms of labeled state transitions, including a mention of what I call a depth m simulation of a SIC. I will proceed to develop a definition of an automated theorem prover to be an effective SIC, meaning that the ATP can prove all provable theorems.

Keywords: computer, formal system, simulation, the Curry–Howard correspondence, semi-ideal computer, automated theorem prover

Disclaimer: Opinions and conclusions reached in this document are not necessarily representative of Bay Path University.

1 Definitions

To fix notation, $\mathbb{F}_m = \mathbb{N} \cap [1, m]$. $[a \to b]$ denotes the set of all functions whose domain is a and codomain is b. |x| is the cardinal number of set x. $f[a] = \{f(a) : a \in A\}$.

Definition F = (x, y, z) is an xyz formal system if

- 1. x is nonempty,
- 2. $y \subseteq \bigcup_{m=1}^{\infty} [\mathbb{F}_m \to x]$, and
- 3. $z \subseteq \bigcup_{m=1}^{\infty} \bigcup_{G \in \mathcal{P}(y^m)} [G \to y].$

Elements of x will be called <u>symbols</u>; x is referred to as an <u>alphabet</u>. Elements of y are <u>well-formed formulas</u>. Elements of z are <u>inference rules</u>. Note that, for each $m \ge 1$, $[\mathbb{F}_m \to x]$ is the set of all length m sequences of elements of x, sometimes called <u>strings</u> or **utterances**. The utterances in y are deemed to be well-formed.

Note the two following facts stemming from this definition:

- 1. $w \in y$ implies $(\exists m \ge 1) (w \in [\mathbb{F}_m \to x]);$
- 2. $i \in z$ implies $(\exists m \ge 1) (\exists G \subseteq y^m) (i \in [G \to y])$.

All elements of z map finitely many elements of y to an element of y. These maps artificially simulate the process of human deduction: the inputs are the antecedents (or antecedent if the inference rule is unary) and the output is the consequent.

An element $r \in z$ is an element of $[G \to y]$ for some $m \ge 1$ and $G \subseteq y^m$. This m is called the **arity** of r. We also say r is m-ary, unary if m = 1, and **binary** if m = 2.

Suppose $\beta \in y$ and $A \subseteq y$. β is a <u>direct consequence</u> of A if for some $q \leq |A|$ there is a q-ary inference rule $i \in z$ and a subset $\{a_1, ..., a_q\} \subseteq A$ such that $i(a_1, ..., a_q) = \beta$.

A <u>proof</u> is an element $\pi \in \bigcup_{m=1}^{\infty} [\mathbb{F}_m \to y]$ such that every $\pi(n)$ is either an element of some distinguished set Γ or is a direct consequence of $\pi[\mathbb{F}_{n-1}]$.

Definition If $\Gamma \subseteq y$ and $\psi \in y$, then $\Gamma \vdash \psi$ if and only if there exists a proof π such that $\pi(|\pi|) = \psi$ and every $\pi(n)$ is either an element of Γ or is a direct consequence of $\pi[\mathbb{F}_{n-1}]$. This is known as **syntactic consequence**.

Given $\Gamma \subseteq y$, the **set of theorems of** Γ is defined by

$$Con_F(\Gamma) := \{ \psi \in y : \Gamma \vdash \psi \}.$$

We will drop the subscript if it is clear which formal system we are referring to.

2 Computers

Let (x, y, z) be an xyz formal system. By a **semi-ideal computer** (i.e., a **SIC**), I mean a pair of functions (C, H) with the following properties:

- 1. $C \in [\mathcal{P}(y) \times \mathbb{N}^+ \to \mathcal{P}(y)];$
- 2. $H \in [\mathcal{P}(y) \times \mathbb{N}^+ \to \{0, 1\}];$
- 3. $C(\Gamma, m) \subseteq C(\Gamma, m+1)$ for all Γ and m;
- 4. if $H(\Gamma, m) = 1$ then $H(\Gamma, m + 1) = 1$; and
- 5. if $H(\Gamma, m) = 1$ then $C(\Gamma, m + 1) = C(\Gamma, m)$.

Let $\|\gamma\|_{\Gamma}$ be the length of a shortest proof of γ from axioms Γ . Set

$$V(\Gamma, k) := \{ \gamma \in y : ||\gamma||_{\Gamma} = k \}.$$

Observe that we can define a SIC as follows:

$$C_{1}\left(\Gamma,m\right):=\bigcup_{k=1}^{m}V\left(\Gamma,k\right)=\left\{ \gamma\in\boldsymbol{y}:\left\Vert \boldsymbol{\gamma}\right\Vert _{\Gamma}\leq\boldsymbol{m}\right\}$$

and

$$H_{1}\left(\Gamma,m\right):=\left\{\begin{array}{ll}1 & \text{if} & \left(\forall m'\in\mathbb{N}^{+}\right)\left(m'\geq m\to V\left(\Gamma,m'\right)=V\left(\Gamma,m\right)\right)\\ 0 & \text{if} & \left(\exists m'\in\mathbb{N}^{+}\right)\left(m'\geq m\land V\left(\Gamma,m'\right)\neq V\left(\Gamma,m\right)\right)\end{array}\right..$$

A SIC (C, H) is called <u>effective</u> with respect to the formal system (x, y, z) if for all $\Gamma \in \mathcal{P}(y)$, $Con(\Gamma) = \bigcup_{m=1}^{\infty} \overline{C(\Gamma, m)}$. We might be more interested in <u>finitely effective</u> SICs for which there is an $m \in \mathbb{N}^+$ such that $Con(\Gamma) = \bigcup_{k=1}^m C(\Gamma, k)$.

An automated theorem prover (i.e., an ATP) is an effective SIC.

Note that if the generalized induction conjecture is true, to show a SIC (C, H) is an ATP it would suffice to establish two key facts: (1) $\Gamma \subseteq \bigcup_{m=1}^{\infty} C(\Gamma, m)$ and (2) $\bigcup_{m=1}^{\infty} C(\Gamma, m)$ is closed under inference rules.

Another SIC associated with a formal system is one I affectionately call Skynet. I claim that Skynet is an ATP different from the SIC I just defined.

Let $S(\Gamma, m)$ be defined for $(\Gamma, m) \in \mathcal{P}(y) \times \mathbb{N}^+$ recursively as follows: $S(\Gamma, 1) = \Gamma$. For $A \subseteq y$, let

$$Z\left(A\right) = \left\{\gamma \in y : \left(\exists i \in z\right) \left(\exists \overrightarrow{a} \in A^{air(i)}\right) \left(\gamma = i\left(\overrightarrow{a}\right)\right)\right\}.$$

Let $S\left(\Gamma,m+1\right)=Z\left(S\left(\Gamma,m\right)\right)$ and let $C_{2}\left(\Gamma,m\right)=\bigcup_{k=1}^{m}S\left(\Gamma,k\right)$. Furthermore, let

$$H_{2}\left(\Gamma,m\right):=\left\{\begin{array}{ll}1 & \text{if} & \left(\forall m'\in\mathbb{N}^{+}\right)\left(m'\geq m\to S\left(\Gamma,m'\right)=S\left(\Gamma,m\right)\right)\\0 & \text{if} & \left(\exists m'\in\mathbb{N}^{+}\right)\left(m'\geq m\land S\left(\Gamma,m'\right)\neq S\left(\Gamma,m\right)\right)\end{array}\right.$$

Claim: (C_1, H_1) and (C_2, H_2) are different ATP's.

3 Simulations

Let (C, H) be a SIC. Letting the set of states $S = C[\mathcal{P}(y) \times \mathbb{N}^+]$, a relation $r \subseteq S^2$ is a $\underline{\mathbf{sim}}$ (or $\underline{\mathbf{simulation}}$) iff for every pair of states $(p, q) \in r$ and all $m \in \mathbb{N}^+$, then there is a state q' such that $(C(p, m), q') \in r$.

Given two states p and q in S, p can be **simulated by** q, written $p \le q$, if there is a sim r such that $(p,q) \in r$. In this case, we say q is a depth one sim of p.

Suppose $m \in \mathbb{N} \cap [2, \infty)$. q is a **depth** m **sim of** p iff there are m states $\{q_k \in S : k \in \mathbb{F}_m\}$ such that q_1 is a depth one sim of p, for all $k \in \mathbb{F}_{m-1}$, q_{k+1} is a depth one sim of q_k , and $q_m = q$. (To be clear, we need $|\{q_k \in S : k \in \mathbb{F}_m\}| = m$.)

Suppose that $p \leq q$ where $\{p,q\} \subseteq S$. Suppose r is a sim and q simulates p with respect to r (i.e., $(p,q) \in r$). r is **nondeterministic** iff there is a $\Gamma \in \mathcal{P}(y)$ and an $m \in \mathbb{N}^+$ such that (a) $(C(p,m),\Gamma) \in r$ and (b) $\Gamma \neq C(q,m)$. r is called **deterministic** iff it is not nondeterministic, meaning that for all $\Gamma \in \mathcal{P}(y)$ and all $m \in \mathbb{N}^+$,

$$((C(p,m),\Gamma) \in r) \rightarrow (\Gamma = C(q,m)).$$

4 Conjectures and Questions

What examples of sims are there? What examples of depth m sims are there? Does $C(C(\Gamma, m), n) = C(\Gamma, m + n)$? (No: counterexample idea. Note that when m = n = 1,

we would have $C\left(C\left(\Gamma,1\right),1\right)=C\left(\Gamma,2\right)$. However, $C\left(C\left(\Gamma,1\right),1\right)=C\left(\Gamma,1\right)=\Gamma$ and so in any formal system such that $\Gamma\neq C\left(\Gamma,2\right), C\left(C\left(\Gamma,1\right),1\right)\neq C\left(\Gamma,2\right)$.

Which of these formal systems can provide us with examples? The MIU formal system. Generalized board games like chess and tic-tac-toe. The unwinnable one-dimensional analog of tic-tac-toe with only one row of three spaces. First order logic (FOL).

Conjecture Suppose $\Gamma \subseteq W \subseteq Con(\Gamma)$ and W is closed under all inference rules in z. Then $W = Con(\Gamma)$. (If we let air(i) denote the arity of $i \in z$, W is closed under inference rules in z if and only if for all $i \in z$, $i[W^{air(i)}] \subseteq W$.

Question: What is |Z(A)| in relation to |A|?