ChernyshovDS 25012025-105218

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.491	-125.3	20.783	102.4	0.028	50.6	0.455	-60.3
2.0	0.473	-149.7	14.054	87.3	0.035	51.0	0.338	-72.9
2.7	0.472	-166.0	10.453	76.4	0.042	51.8	0.282	-85.3
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
4.1	0.485	173.4	6.866	60.3	0.059	51.6	0.247	-101.5
4.8	0.499	165.6	5.831	52.8	0.067	49.9	0.229	-109.7
5.5	0.496	159.2	5.028	46.1	0.077	48.7	0.216	-114.6
6.2	0.507	151.1	4.495	39.1	0.086	44.8	0.198	-124.4
7.2	0.530	139.6	3.824	29.0	0.098	40.9	0.158	-139.2

и частоты $f_{\text{\tiny H}}=2$ $\Gamma\Gamma$ ц, $f_{\text{\tiny B}}=7.2$ $\Gamma\Gamma$ ц.

Найти обратные потери по входу на $f_{\scriptscriptstyle \rm H}$.

- 1) 2.8 дБ
- 2) 5.5 дБ
- 3) 6.5 дБ
- 4) 3.3 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.9	0.575	136.6	3.146	52.1	0.087	52.6	0.245	-56.1
2.0	0.582	133.5	2.973	49.7	0.090	51.7	0.243	-58.1
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.240	-60.3
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.3	0.601	125.8	2.587	42.9	0.102	49.3	0.234	-64.8
2.4	0.608	123.1	2.474	40.6	0.106	48.4	0.232	-67.2
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.6	0.628	118.4	2.269	36.2	0.112	46.6	0.226	-72.1
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
2.9	0.647	111.8	2.021	29.6	0.122	43.7	0.219	-80.3

и частоты $f_{\rm H}=2.2~\Gamma\Gamma$ ц, $f_{\rm B}=2.7~\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте $f_{\rm H}$.

- 1) -4.5 дБ
- 2) -12.5 дБ
- 3) -20.2 дБ
- 4) 8.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.561	160.3	5.103	71.3	0.054	58.5	0.265	-43.0
1.2	0.564	156.8	4.666	68.8	0.058	58.1	0.263	-44.1
1.3	0.569	153.9	4.300	66.0	0.062	57.7	0.259	-45.5
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9
1.5	0.578	147.3	3.740	60.7	0.070	57.0	0.254	-48.4
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
1.7	0.588	141.1	3.289	55.7	0.078	55.5	0.250	-52.1
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
1.9	0.598	135.5	2.940	50.9	0.086	53.9	0.245	-55.7
2.0	0.602	132.6	2.781	48.5	0.090	53.2	0.244	-57.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1

и частоты $f_{\rm H}=1.5$ ГГц, $f_{\rm B}=1.9$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 2.1 дБ
- 2) 2.7 дБ
- 3) 1 дБ 4) 5.7 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Найти точку (см. рисунок 2), соответствующую s_{11} на частоте 5.5 ГГц.

Рисунок 2 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=2.87+0.64\mathrm{i}$.

Рисунок 3 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 4, причём R1 = 47.01 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.