Draft Write-Up

Michael Li

April 12, 2021

```
library(ggplot2)
library(tidyverse)
## -- Attaching packages --
                                                    ----- tidyverse 1.3.0 --
## v tibble 3.0.6
                     v dplyr
                              1.0.3
## v tidyr
           1.1.2
                    v stringr 1.4.0
## v readr
            1.4.0
                      v forcats 0.5.1
            0.3.4
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(readr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
library(broom)
library(readxl)
library(gam)
## Loading required package: splines
## Loading required package: foreach
##
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
##
##
      accumulate, when
## Loaded gam 1.16.1
library(mgcv)
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
```

```
##
##
      collapse
## This is mgcv 1.8-33. For overview type 'help("mgcv-package")'.
## Attaching package: 'mgcv'
## The following objects are masked from 'package:gam':
##
      gam, gam.control, gam.fit, s
players <- read_csv("data/players.csv")</pre>
## -- Column specification -----
## cols(
##
    .default = col_character(),
##
    career_AST = col_double(),
##
    career_G = col_double(),
##
    career_PTS = col_double(),
##
    career_WS = col_double()
## )
## i Use `spec()` for the full column specifications.
## Warning: 2 parsing failures.
## row
             col expected actual
                           - 'data/players.csv'
## 2274 career_WS a double
## 4370 career_WS a double
                             - 'data/players.csv'
salaries <- read_csv("data/salaries_1985to2018.csv")</pre>
##
## -- Column specification -----
## cols(
##
    league = col_character(),
## player_id = col_character(),
## salary = col_double(),
    season = col_character(),
## season_end = col_double(),
    season_start = col_double(),
    team = col_character()
##
## )
salary_cap <- read_excel("data/salarycap.xlsx", col_names = c("season", "SalaryCap", "SalaryCap2019"))</pre>
colnames(players)[1] <- "player_id"</pre>
teams <- salaries %>%
 group by(player id) %>%
 count(team) %>%
 mutate(years_with_team = max(n)) %>%
 subset(n == years_with_team) %>%
 slice(1) %>%
 select(player_id, team, years_with_team)
# df of aggregate salaries
agg_salaries <- salaries %>%
```

```
group_by(player_id) %>%
  summarise(career_salary = sum(salary),
            career_start = min(season_start),
            career_end = max(season_end))
agg_salaries <- agg_salaries %>%
 merge(teams, by = "player_id")
df <- players %>%
  merge(agg_salaries, by = "player_id") %>%
  separate(col = birthDate, into = c("MonthDay", "birthYear"), sep = ", ") %>%
  separate(col = birthPlace, into = c("City", "birthPlace"), sep = ", ") %>%
  separate(col = draft_pick, into = c("draft_pick", "overall"), sep = "[thrdndst]") %>%
  separate(col = height, into = c("feet", "inches"), sep = "-") %>%
  mutate(height = as.double(feet) * 12 + as.double(inches)) %>%
  separate(col = position, into = c("primary_pos", "secondary_pos", "tertiary_pos", "quarternary_pos"),
           sep = " and ") %>%
  mutate(num_positions = if_else(is.na(primary_pos), 0, 1) +
           if_else(is.na(secondary_pos), 0, 1) +
           if_else(is.na(tertiary_pos), 0 , 1) +
           if_else(is.na(quarternary_pos), 0, 1)) %>%
  separate(col = weight, into = c("weight", "metric"), sep = "l") %>%
  select(-c(MonthDay, City, overall, draft_round, feet, inches, metric)) %>%
  mutate(years_played = career_end - career_start) %>%
  mutate(averageWS = career_WS / years_played)
#df$birthYear <- as.Date(df$birthYear, "%Y")</pre>
df$`career FG%` <- as.double(df$`career FG%`)</pre>
df$`career FG3%` <- as.double(df$`career FG3%`)</pre>
df$`career_FT%` <- as.double(df$`career_FT%`)</pre>
df$career_TRB <- as.double(df$career_TRB)</pre>
df$`career_eFG%` <- as.double(df$`career_eFG%`)</pre>
df$draft_year <- as.double(df$draft_year)</pre>
df$weight <- as.double(df$weight)</pre>
df$career_PER <- as.double(df$career_PER)</pre>
df$draft_pick <- as.integer(df$draft_pick)</pre>
#df$career_start <- as.Date(as.character(df$career_start), "%Y")</pre>
#df$career_end <- as.Date(as.character(df$career_end), "%Y")</pre>
df <- df %>%
 mutate(average_salary = (career_salary / years_played)/1000000)
# %>% # salary in millions
# mutate(stand_salary = (average_salary - mean(average_salary, na.rm = TRUE)) / sd(average_salary, na
salary cap final <- salary cap %>%
  separate(season, into = c("start", "end"), sep = "-")
salary_cap_final$start <- as.double(salary_cap_final$start)</pre>
salary_cap_final <- salary_cap_final %>%
  filter(start <= 2017) %>%
  mutate(SalaryCap = SalaryCap / 1000000) %>%
  select(start, SalaryCap)
avg_cap_finder <- function(start_year, end_year) {</pre>
  rel_cap <- salary_cap_final %>%
    filter(start >= start_year & start <= end_year - 1) %>%
```

```
summarise(avg_cap = mean(SalaryCap))
return(rel_cap$avg_cap[1])
}
avg_cap_finder <- Vectorize(avg_cap_finder)
df_final <- df %>%
mutate(avg_cap = avg_cap_finder(career_start, career_end)) %>%
mutate(sal_rel = (average_salary / avg_cap) * 100)
```

Linear Model

```
# lm_sal <- lm(sal_rel ~ career_AST +</pre>
                                     + `career_G` + `career_PER` + career_PTS + career_TRB + averageWS +
#
                                          `career_eFG%` + draft_pick + primary_pos +
                                          num_positions + draft_year,
#
#
                                     data = df_final
# lm_sal_out <- tidy(lm_sal, conf.int = TRUE)</pre>
# lm_sal_out$term <- c(</pre>
#
       "(Intercept)",
       "APG", "Career Games", "PER", "PPG", "RPG",
#
         "Win Shares", "eFG Percentage", "Draft Pick", "Primary Position = PG", "Primary Position = PF",
          "Primary Position = SG", "Primary Position = SF", "Number of Positions", "Draft Year"
#
# )
#
# lm_sal_out <- lm_sal_out %>%
#
      mutate(p_value = case_when(
          p.value < 0.001 ~ "<0.001",
#
#
              TRUE ~ as.character(round(p.value, digits = 3))
#
       ))
#
# lm_sal_out <- lm_sal_out %>%
      mutate(std.error = case when(
             std.error < 0.001 ~ "<0.001",
#
#
               TRUE ~ as.character(round(std.error, digits = 3))
#
       ))
# lm_sal_out <- lm_sal_out %>%
       dplyr::select(term, estimate, std.error, statistic, p_value, conf.low, conf.high)
#
\# knitr::kable(lm\_sal\_out, digits = 3, caption = "Average Standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output", col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output "), col.native standardized Salary OLS Model Output ", col.native standardized Salary OLS Model Output "), col.
      kable_styling(latex_options = "HOLD_position")
# car::vif(lm_sal)
# lm_ws <- lm(averageWS ~ career_AST +</pre>
                                     + `career_G` + `career_PER` + career_PTS + career_TRB +
#
                                          `career_eFG%` + draft_pick + primary_pos +
#
                                          num_positions + draft_year,
#
#
                                     data = df_final)
# lm_ws_out <- tidy(lm_ws, conf.int = TRUE)</pre>
```

```
# lm_ws_out$term <- c(
  "(Intercept)",
#
  "APG", "Career Games", "PER", "PPG", "RPG",
#
    "eFG Percentage", "Draft Pick", "Primary Position = PG", "Primary Position = PF",
    "Primary Position = SG", "Primary Position = SF", "Number Of Positions", "Draft Year"
#
# )
#
# lm_ws_out <- lm_ws_out %>%
  mutate(p_value = case_when(
#
    p.value < 0.001 ~ "<0.001",
#
     TRUE ~ as.character(round(p.value, digits = 3))
#
   ))
#
# lm_ws_out <- lm_ws_out %>%
  mutate(std.error = case_when(
#
     std.error < 0.001 ~ "<0.001",
#
     TRUE ~ as.character(round(std.error, digits = 3))
  ))
#
# lm_ws_out <- lm_ws_out %>%
   dplyr::select(term, estimate, std.error, statistic, p_value, conf.low, conf.high)
#
# knitr::kable(lm_ws_out, digits = 3, caption = "Average Win Shares OLS Model Output", col.names = c('T
# kable_styling(latex_options = "HOLD_position")
# car::vif(lm_sal)
# temp_lm <- tibble(res = lm_sal$residuals,</pre>
                fitted = lm sal$fitted.values)
\# ggplot(data = temp_lm, aes(x = fitted, y = res)) +
  qeom_point() +
#
  labs(x = "Fitted values", y = "Residuals",
         title = "Salary Model: Highly non-constant variance") +
  geom_hline(yintercept = 0, color = "red")
# temp_ws <- tibble(res = lm_ws$residuals,</pre>
                fitted = lm_ws$fitted.values)
\# ggplot(data = temp\_ws, aes(x = fitted, y = res)) +
  qeom_point() +
  labs(x = "Fitted values", y = "Residuals",
         title = "Win Shares Model: Highly non-constant variance") +
# geom_hline(yintercept = 0, color = "red") +
# y lim(c(-10, 75))
```

EDA to investigate non-linearities


```
ggplot(data = df_final, aes(x = career_PER, y = sal_rel)) +
geom_point() +
labs(x = "Career Assists Per Game", y = "Average Salary",
    title = "Weakly Linear")
```

Warning: Removed 2 rows containing missing values (geom_point).


```
ggplot(data = df_final, aes(x = career_TRB, y = sal_rel)) +
geom_point() +
labs(x = "Career Assists Per Game", y = "Average Salary",
    title = "Weakly Linear")
```



```
ggplot(data = df_final, aes(x = `career_eFG%`, y = sal_rel)) +
  geom_point() +
  labs(x = "Career Points Per Game", y = "Average Salary",
      title = "Weakly Linear")
```

Warning: Removed 9 rows containing missing values (geom_point).


```
draft_year_sals <- df %>%
  group_by(draft_year) %>%
  mutate(year_sals_avg = mean(average_salary))
ggplot(data = draft_year_sals, aes(x = draft_year, y = year_sals_avg)) +
  geom_line(color = "#00AFBB", size = 2)
```

Warning: Removed 524 row(s) containing missing values (geom_path).

```
4 -
      3
year_sals_avg
                                                           1980
                                                                                                  1990
                                                                                                                                         2000
                                                                                                                                                                                2010
                    1970
                                                                                                       draft_year
gam_sal <- lm(sal_rel ~ bs(career_AST, df = 3, degree = 1) +</pre>
                                + bs(`career_G`, df = 3, degree = 1) + bs(`career_PER`, df = 3, degree = 1) + bs(career_PT
                                     bs(\text{`career_eFG''}, df = 3, degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) + bs(draft_pick, knots = c(14, 30),
                                     num_positions + draft_year, data = df_final)
gam_ws <- lm(averageWS ~ bs(career_AST, df = 3, degree = 1) +</pre>
                                + bs(`career_G`, df = 3, degree = 1) + bs(`career_PER`, df = 3, degree = 1) + bs(career_PT
                                     bs('career_eFG'', df = 3, degree = 1) + bs(draft_pick, knots = c(14, 30), degree = 1) +
                                     num_positions + draft_year, data = df_final)
gam_sal_out <- tidy(gam_sal, conf.int = TRUE)</pre>
gam_sal_out$term <- c(</pre>
     "(Intercept)",
     "APG (B)", "APG (M)", "APG (T)", "Games Played (B)", "Games Played (M)",
     "Games Played (T)", "PER (B)", "PER (M)", "PER (T)", "PPG (B)", "PPG (M)",
     "PPG (T)", "RPG (B)", "RPG (M)", "RPG (T)", "Average Win Shares (B)",
     "Average Win Shares (M)", "Average Win Shares (T)", "Career eFG (B)",
     "Career eFG (M)", "Career eFG (T)", "Draft Pick (Lottery)", "Draft Pick (Late 1st)",
     "Draft Pick (2nd Round)", "Primary Position = PG", "Primary Position = PF",
     "Primary Position = SG", "Primary Position = SF", "Number of Positions",
     "Draft Year"
gam_sal_out <- gam_sal_out %>%
     mutate(p_value = case_when(
          p.value < 0.001 ~ "<0.001",
          TRUE ~ as.character(round(p.value, digits = 3))
```

```
gam_sal_out <- gam_sal_out %>%
  mutate(std.error = case_when(
    std.error < 0.001 ~ "<0.001",
    TRUE ~ as.character(round(std.error, digits = 3))
    ))

gam_sal_out <- gam_sal_out %>%
    dplyr::select(term, estimate, std.error, statistic, p_value, conf.low, conf.high)

knitr::kable(gam_sal_out, digits = 3, caption = "Relative Salary Score GAM Model Output", col.names = c
    kable_styling(latex_options = "HOLD_position")
```

Table 1: Relative Salary Score GAM Model Output

Term	Estimate	Standard Error	Statistic	P-Value	CI (low)	CI (high)
(Intercept)	17.230	14.476	1.190	0.234	-11.161	45.621
APG (B)	0.080	0.459	0.175	0.861	-0.819	0.980
APG (M)	-0.428	0.488	-0.876	0.381	-1.385	0.530
APG (T)	3.955	1.014	3.899	< 0.001	1.966	5.945
Games Played (B)	0.241	0.445	0.542	0.588	-0.631	1.113
Games Played (M)	3.417	0.496	6.895	< 0.001	2.445	4.388
Games Played (T)	8.687	0.704	12.343	< 0.001	7.307	10.067
PER (B)	1.348	2.376	0.567	0.571	-3.312	6.009
PER (M)	1.318	2.34	0.563	0.573	-3.272	5.908
PER (T)	17.871	4.995	3.578	< 0.001	8.075	27.668
PPG (B)	0.593	0.733	0.809	0.418	-0.844	2.030
PPG (M)	0.539	0.783	0.689	0.491	-0.996	2.075
PPG (T)	11.490	1.247	9.214	< 0.001	9.045	13.936
RPG (B)	-0.900	0.598	-1.504	0.133	-2.073	0.274
RPG (M)	-0.266	0.643	-0.414	0.679	-1.526	0.995
RPG (T)	6.324	1.052	6.013	< 0.001	4.261	8.386
Average Win Shares (B)	-1.825	1.389	-1.314	0.189	-4.548	0.898
Average Win Shares (M)	-2.557	1.393	-1.835	0.067	-5.290	0.176
Average Win Shares (T)	-4.347	2.288	-1.900	0.058	-8.833	0.140
Career eFG (B)	-0.518	1.175	-0.441	0.659	-2.823	1.786
Career eFG (M)	-0.493	1.152	-0.428	0.669	-2.752	1.766
Career eFG (T)	-8.196	3.199	-2.562	0.01	-14.470	-1.923
Draft Pick (Lottery)	-2.245	0.341	-6.587	< 0.001	-2.914	-1.577
Draft Pick (Late 1st)	-2.786	0.295	-9.457	< 0.001	-3.364	-2.209
Draft Pick (2nd Round)	-4.134	0.905	-4.568	< 0.001	-5.909	-2.359
Primary Position $= PG$	-0.940	0.405	-2.321	0.02	-1.734	-0.146
Primary Position $= PF$	-0.410	0.215	-1.911	0.056	-0.831	0.011
Primary Position $= SG$	-0.290	0.322	-0.903	0.366	-0.921	0.340
Primary Position = SF	-0.185	0.266	-0.696	0.486	-0.706	0.336
Number of Positions	0.054	0.135	0.398	0.691	-0.211	0.319
Draft Year	-0.006	0.007	-0.833	0.405	-0.020	0.008

```
summary(gam_ws)
```

##

```
## Call:
## lm(formula = averageWS ~ bs(career_AST, df = 3, degree = 1) +
       +bs(career G, df = 3, degree = 1) + bs(career PER, df = 3,
       degree = 1) + bs(career_PTS, df = 3, degree = 1) + bs(career_TRB,
##
##
       df = 3, degree = 1) + bs(`career_eFG%`, <math>df = 3, degree = 1) +
       bs(draft pick, knots = c(14, 30), degree = 1) + primary pos +
##
       num_positions + draft_year, data = df_final)
##
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -11.791 -1.919 -0.315
                             1.071 133.971
##
## Coefficients:
##
                                                    Estimate Std. Error t value
## (Intercept)
                                                   2.721e+02 2.806e+01
                                                                          9.694
## bs(career_AST, df = 3, degree = 1)1
                                                   7.314e-01
                                                              9.102e-01
                                                                          0.804
## bs(career_AST, df = 3, degree = 1)2
                                                   1.399e+00 9.634e-01
                                                                          1.452
## bs(career AST, df = 3, degree = 1)3
                                                   3.056e+00 2.000e+00
                                                                          1.528
## bs(career_G, df = 3, degree = 1)1
                                                   2.212e-01 8.594e-01
                                                                          0.257
## bs(career_G, df = 3, degree = 1)2
                                                  -2.080e-01 9.090e-01
                                                                         -0.229
## bs(career_G, df = 3, degree = 1)3
                                                   1.840e+00 1.339e+00
                                                                          1.374
## bs(career_PER, df = 3, degree = 1)1
                                                  -2.501e+00 4.717e+00 -0.530
## bs(career_PER, df = 3, degree = 1)2
                                                  -2.804e+00 4.645e+00
                                                                         -0.604
## bs(career_PER, df = 3, degree = 1)3
                                                   1.404e+01 9.925e+00
                                                                          1.414
## bs(career_PTS, df = 3, degree = 1)1
                                                  -5.909e-01 1.457e+00 -0.406
## bs(career_PTS, df = 3, degree = 1)2
                                                  -2.739e-01 1.556e+00
                                                                         -0.176
## bs(career_PTS, df = 3, degree = 1)3
                                                   1.163e+01 2.466e+00
                                                                          4.716
## bs(career_TRB, df = 3, degree = 1)1
                                                   1.923e+00 1.187e+00
                                                                          1.621
## bs(career_TRB, df = 3, degree = 1)2
                                                   2.170e+00 1.268e+00
                                                                          1.711
                                                   1.022e+01 2.070e+00
## bs(career_TRB, df = 3, degree = 1)3
                                                                          4.939
## bs(`career_eFG%`, df = 3, degree = 1)1
                                                  -7.140e-01
                                                             2.330e+00
                                                                         -0.306
## bs(`career_eFG%`, df = 3, degree = 1)2
                                                   4.900e-01 2.279e+00
                                                                          0.215
## bs(career_eFG%, df = 3, degree = 1)3
                                                   8.521e+00 6.361e+00
                                                                          1.340
## bs(draft_pick, knots = c(14, 30), degree = 1)1
                                                   2.762e+00 6.757e-01
                                                                          4.087
## bs(draft_pick, knots = c(14, 30), degree = 1)2
                                                   2.747e+00 5.813e-01
                                                                          4.725
## bs(draft_pick, knots = c(14, 30), degree = 1)3 7.475e+00 1.791e+00
                                                                          4.174
## primary posPoint Guard
                                                  -3.653e-01 8.073e-01
                                                                        -0.452
## primary_posPower Forward
                                                  -3.962e-01 4.272e-01
                                                                         -0.927
## primary_posShooting Guard
                                                  -5.467e-04 6.403e-01
                                                                         -0.001
## primary_posSmall Forward
                                                  -1.434e-01 5.287e-01
                                                                        -0.271
## num positions
                                                  -4.701e-02 2.690e-01 -0.175
## draft_year
                                                  -1.368e-01 1.384e-02 -9.886
##
                                                  Pr(>|t|)
## (Intercept)
                                                   < 2e-16 ***
## bs(career_AST, df = 3, degree = 1)1
                                                    0.4218
## bs(career_AST, df = 3, degree = 1)2
                                                    0.1466
## bs(career_AST, df = 3, degree = 1)3
                                                    0.1267
## bs(career_G, df = 3, degree = 1)1
                                                    0.7969
## bs(career_G, df = 3, degree = 1)2
                                                    0.8190
## bs(career_G, df = 3, degree = 1)3
                                                    0.1696
## bs(career_PER, df = 3, degree = 1)1
                                                    0.5961
## bs(career_PER, df = 3, degree = 1)2
                                                    0.5461
## bs(career_PER, df = 3, degree = 1)3
                                                    0.1575
## bs(career_PTS, df = 3, degree = 1)1
                                                    0.6850
```

```
## bs(career_PTS, df = 3, degree = 1)2
                                                    0.8603
## bs(career_PTS, df = 3, degree = 1)3
                                                  2.59e-06 ***
## bs(career_TRB, df = 3, degree = 1)1
                                                    0.1053
## bs(career_TRB, df = 3, degree = 1)2
                                                    0.0873 .
## bs(career_TRB, df = 3, degree = 1)3
                                                  8.56e-07 ***
## bs(`career_eFG%`, df = 3, degree = 1)1
                                                    0.7593
## bs(`career_eFG%`, df = 3, degree = 1)2
                                                    0.8298
## bs(`career_eFG%`, df = 3, degree = 1)3
                                                    0.1806
## bs(draft_pick, knots = c(14, 30), degree = 1)1 4.55e-05 ***
## bs(draft_pick, knots = c(14, 30), degree = 1)2 2.47e-06 ***
## bs(draft_pick, knots = c(14, 30), degree = 1)3 3.14e-05 ***
## primary_posPoint Guard
                                                    0.6510
## primary_posPower Forward
                                                    0.3538
## primary_posShooting Guard
                                                    0.9993
## primary_posSmall Forward
                                                    0.7862
## num_positions
                                                    0.8613
## draft_year
                                                    < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.776 on 1854 degrees of freedom
     (526 observations deleted due to missingness)
## Multiple R-squared: 0.3361, Adjusted R-squared: 0.3264
## F-statistic: 34.76 on 27 and 1854 DF, p-value: < 2.2e-16
gam_ws_out <- tidy(gam_ws, conf.int = TRUE)</pre>
gam_ws_out$term <- c(</pre>
  "(Intercept)",
  "APG (B)", "APG (M)", "APG (T)", "Games Played (B)", "Games Played (M)",
  "Games Played (T)", "PER (B)", "PER (M)", "PER (T)", "PPG (B)", "PPG (M)",
  "PPG (T)", "RPG (B)", "RPG (M)", "RPG (T)", "Career eFG (B)",
  "Career eFG (M)", "Career eFG (T)", "Draft Pick (Lottery)", "Draft Pick (Late 1st)",
  "Draft Pick (2nd Round)", "Primary Position = PG", "Primary Position = PF",
  "Primary Position = SG", "Primary Position = SF", "Number of Positions",
  "Draft Year"
)
gam_ws_out <- gam_ws_out %>%
  mutate(p_value = case_when(
    p.value < 0.001 ~ "<0.001",
    TRUE ~ as.character(round(p.value, digits = 3))
  ))
gam_ws_out <- gam_ws_out %>%
  mutate(std.error = case_when(
    std.error < 0.001 ~ "<0.001",
    TRUE ~ as.character(round(std.error, digits = 3))
  ))
gam_ws_out <- gam_ws_out %>%
  dplyr::select(term, estimate, std.error, statistic, p_value, conf.low, conf.high)
knitr::kable(gam_ws_out, digits = 3, caption = "Average Win Shares GAM Model Output", col.names = c('Te
  kable_styling(latex_options = "HOLD_position")
```

Table 2: Average Win Shares GAM Model Output

Term	Estimate	Standard Error	Statistic	P-Value	CI (low)	CI (high)
(Intercept)	272.067	28.065	9.694	< 0.001	217.025	327.109
APG (B)	0.731	0.91	0.804	0.422	-1.054	2.516
APG (M)	1.399	0.963	1.452	0.147	-0.490	3.289
APG (T)	3.056	2	1.528	0.127	-0.866	6.978
Games Played (B)	0.221	0.859	0.257	0.797	-1.464	1.907
Games Played (M)	-0.208	0.909	-0.229	0.819	-1.991	1.575
Games Played (T)	1.840	1.339	1.374	0.17	-0.786	4.466
PER (B)	-2.501	4.717	-0.530	0.596	-11.752	6.751
PER (M)	-2.804	4.645	-0.604	0.546	-11.914	6.305
PER (T)	14.036	9.925	1.414	0.157	-5.430	33.502
PPG (B)	-0.591	1.457	-0.406	0.685	-3.448	2.266
PPG (M)	-0.274	1.556	-0.176	0.86	-3.326	2.778
PPG (T)	11.629	2.466	4.716	< 0.001	6.793	16.465
RPG (B)	1.923	1.187	1.621	0.105	-0.404	4.250
RPG (M)	2.170	1.268	1.711	0.087	-0.318	4.658
RPG (T)	10.222	2.07	4.939	< 0.001	6.163	14.281
Career eFG (B)	-0.714	2.33	-0.306	0.759	-5.284	3.856
Career eFG (M)	0.490	2.279	0.215	0.83	-3.980	4.960
Career eFG (T)	8.521	6.361	1.340	0.181	-3.955	20.997
Draft Pick (Lottery)	2.762	0.676	4.087	< 0.001	1.437	4.087
Draft Pick (Late 1st)	2.747	0.581	4.725	< 0.001	1.607	3.887
Draft Pick (2nd Round)	7.475	1.791	4.174	< 0.001	3.962	10.987
Primary Position $= PG$	-0.365	0.807	-0.452	0.651	-1.948	1.218
Primary Position = PF	-0.396	0.427	-0.927	0.354	-1.234	0.442
Primary Position $= SG$	-0.001	0.64	-0.001	0.999	-1.256	1.255
Primary Position = SF	-0.143	0.529	-0.271	0.786	-1.180	0.894
Number of Positions	-0.047	0.269	-0.175	0.861	-0.575	0.481
Draft Year	-0.137	0.014	-9.886	< 0.001	-0.164	-0.110

Salary Model: Highly non-constant variance

Salary Model: Highly non-constant variance

Warning: Removed 167 rows containing missing values (geom_point).

Appropriate Valuations are Easier for Better Players


```
# summary(gam_sal)
# summary(gam_ws)
# gam.check(gam_sal)
# plot(gam_sal)
# plot(gam_ws)
# plot.Gam(gam_sal, se = TRUE, col = "red")
```

$$Salary \ Score_{i} = \beta_{0} + \beta_{1}f_{1}(APG_{i}) + \beta_{2}f_{2}(Games \ Played_{i}) + \beta_{3}f_{3}(PER_{i}) \\ + \beta_{4}f_{4}(PPG_{i}) + \beta_{5}f_{5}(RPG_{i}) + \beta_{6}f_{6}(Career \ eFG_{i}) \\ + \beta_{7}f_{7}(Draft \ Pick_{i}) + \beta_{8}I(Primary \ Position_{i} = PG) \\ + \beta_{9}I(Primary \ Position_{i} = PF) + \beta_{10}I(Primary \ Position_{i} = SG) \\ + \beta_{11}I(Primary \ Position_{i} = SF) + \beta_{12}Number \ of \ Positions_{i} \\ + \beta_{13}Draft \ Year_{i} + \epsilon_{i} \\ for \ i = 1, \ 2, \ ..., \ n$$

Each spline f_j takes the following form for j = 1, 2, ..., 7:

$$f_j(x_{ij}) = b_0 + b_1(x_{ij}) + b_2(x_{ij}) + b_3(x_{ij}) + \epsilon_{ij}$$

where we have

$$b_1(x_{ij}) = x_{ij}$$

$$b_2(x_{ij}) = (x_{ij} - \xi_2)_+$$

$$b_3(x_{ij}) = (x_{ij} - \xi_3)_+$$

and

$$(x_{ij} - \xi_k)_+ = \begin{cases} x_{ij} - \xi_k & \text{if } x_{ij} \ge \xi_k \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} Win\ Shares_i &= \beta_0 + \beta_1 f_1(APG_i) + \beta_2 f_2(Games\ Played_i) + \beta_3 f_3(PER_i) \\ &+ \beta_4 f_4(PPG_i) + \beta_5 f_5(RPG_i) + \beta_6 f_6(Draft\ Pick_i) \\ &+ \beta_7 I(Primary\ Position_i = PG) + \beta_8 I(Primary\ Position_i = PF) \\ &+ \beta_9 I(Primary\ Position_i = SG) + \beta 10 I(Primary\ Position_i = SF) \\ &+ \beta_{11} Number\ of\ Positions_i + \beta 12 Draft\ Year_i + \ \epsilon_i \\ &for\ i = 1,\ 2,\ ...,\ n \end{aligned}$$

Each spline f_j takes the following form for j=1, 2, ..., 6:

$$f_j(x_{ij}) = b_0 + b_1(x_{ij}) + b_2(x_{ij}) + b_3(x_{ij}) + \epsilon_{ij}$$

where we have

$$b_1(x_{ij}) = x_{ij}$$

$$b_2(x_{ij}) = (x_{ij} - \xi_2)_+$$

$$b_3(x_{ij}) = (x_{ij} - \xi_3)_+$$

and

$$(x_{ij} - \xi_k)_+ = \begin{cases} x_{ij} - \xi_k & \text{if } x_{ij} \ge \xi_k \\ 0 & \text{otherwise} \end{cases}$$