证据制度人工程制度制度

对表籍的人工程指指的特克斯·

亚克斯斯人工提供的特殊

文本纠错的探索与实践

分享人: 陈乐清

平安人寿人工智能研发团队

对"在据报

是沒樣的人工程機能開放

证是無限人工程制度研究

CONTENTS

是沒樣的人工機能開放

港場版人工組織物

是基樹別人工學科技研技

1-背景介绍:

- ▶ 互联网新媒体和社交用语->错误率在2%以上
- ▶ 语音识别->错误率8%-10%
- ➤ 平安人寿ASKBOBO机器人->错误率达到9%

常见中文错误类型:

发音&音转错误

- 少儿平安符→少儿平安福

- 灰机

- 输暖管手术投保 → **卵**

拼写错误

- 眼睛蛇咬了
- 紫<u>癫</u>投保 → 癜
- 缺铁性盆血

语法&知识错误

- 投保地中海

- 在南山平安金融中心入职 → 福田

特点: 音近, 发音不标准用

原因: 地方发音, 语言转化

特点:正确词语错误使用

原因:输入法-拼音\五笔\手写

特点: 多/少字, 乱序, 知识错误

原因:知识缺乏,语言不熟悉

意义: 提升query理解准确性及对话效果, 增强用户体验

常见商用场景:

通用搜索领域

特点:超大规模的web语料

用户点击数据

垂直搜索引擎

特点: 用户检索意图明确

数据规模小、质量差

垂域客服机器人

特点: 领域受限

缺乏点击数据 (无监督)

2-研究现状: pycorrector

基于规则的通用纠错项目:

https://github.com/shibing624/pycorrector

- 错误检测:
 - ▶ 常用字典匹配: 切词后词不在常用字典中认为有错 韩国\国藉\投保
 - > 统计语言模型: 某个字的似然概率值低于句子文本平均值
 - ▶ 混淆字典匹配: 国籍 → 国籍
- 候选召回
 - 🕨 近音字典替换错误位置 藉\ji 🍑 籍,际,集, ...
 - ▶ 近形字典替换错误位置 藉→ 籍,藕,箱
- 候选排序
 - > 利用统计语言模型计算句子概率,取概率超过原句且最大的
 - P(韩国国籍投保) P(韩国国际投保)
 - P(韩国国积投保) P(韩国国藕投保) ...

2-研究现状: 学术界进展

基于序列标注的检错方案:

《 Alibaba at IJCNLP-2017 Task 1: Embedding Grammatical Features into LSTMs for Chinese Grammatical Error Diagnosis Task 》

利用序列标注模型+人工提取特征进行错误位置的标注。

2017年IJCNLP举办的CGED比赛中阿里团队提出的Top1方案

Position Level:

Precision	Recall	F1
0.36	0.21	0.27

基于NMT的纠错方案:

《 Youdao's Winning Solution to the NLPCC-2018 Task 2 Challenge: A Neural Machine Translation Approach to Chinese Grammatical Error Correction 》

利用模型将错误语句翻译为正确语句,利用Transformer 模型完成端到端的纠正过程。

2018年NLPCC举办CGEC比赛中有道团队提出的Top1方案

Correction Level:

Precision	Recall	F0.5
0.34	0.18	0.29

2-研究现状: 平安人寿问答纠错项目现状

- 没有点击语料,有的只是没有标注过的机器人的问题;送标效率低,而且还会引入很多标注错误;
- 没有标注语料,很难开展基于深度学习的有监督学习;
- · 纠错是作为基础模块,对内存和时效要求很高,当前线上纠错要求3ms/句,大规模字典和复杂 模型无法在线上使用;
- 线上纠错要求很高准确度,宁愿少召回也要保证高准确度,过纠率0.2%
- 85%以上的错误都是替换错误,比如语言转化错误,拼写错误

2-研究现状: 纠错指标参考

• 评价指标:

• 过纠率/误报率:

诏回率:

• 纠错目标: 被改正的句子数 >> 被改错的句子数

$$K * RECALL \gg (1 - K) * FAR$$

	X	
句子出错概率(K)	过纠率 (FAR)	召回率 (RECALL)
2%	0.5%	24.5%
2%	0.1%	4.9%
9%	2.5%	25.3%
9%	0.5%	5.1%
	寿险问答机器人目标: FAR<0.2% 尽量提高R	FCALL

3-技术落地: 平安人寿问答纠错模块架构

基于规则的错误检测

拼音匹配检测:适合于实体错误检测。比如产品、疾病等实体,需要实现维护好拼音-实体映射字典。

拼音编辑距离检测:

单双向2gram检测:

当前词与上下文组成的2gram词频次很低,认为有错

假设:正确表述发生频次要远远大于错误表述发生次数

静脉拴<30 拴塞<30

平安暖宝宝投保 -> 保

POI 平安寿险AI

> 基于nn语言模型错误检测

- 通过完形填空的方式来预测候选字的概率分布
- 如果原字的概率不在topk里或者与top1比值超过阈值认为有错
- 改进措施:
 - ▶ 传统语言模型从左到右预测,只利用上文,改进成利用上下文;
 - 传统语言模型直接把预测字MASK,不会带入预测字的信息,通过引入当前字的去除后鼻音和翘舌音的拼音和五笔等信息;
 - 传统语言模型会直接预测这个字表,比如字表大小是3800,会直接得到3800个字的概率分布,通过将预测字约束在近音,近形和混淆字表里,提高正确字与错误字的区分度

安心白分百投保 → 百

▶ 基于word2vec-cbow改造的音字混合受限字表语言模型错误检测算法

基于CSLM的中文拼写错误检测, 2015 Chinese Spelling Errors Detection Based on CSLM,2015

- 带入预测字及上下文拼音、五笔特征;
- 去掉前后鼻音和翘舌音,并利用混淆音集映射的方式来 提高模型对谐音错误的识别性能;
- 预测字表受限于近音字、近形字与混淆字表中;

badcase: 哎,我好困哪,好晚了 -> 玩

> 基于BiLstm改造的音字混合受限字表语言模型错误检测算法

《中文自动校对:基于字符级别nn网络的中文拼写错误检测和识别》,201 Automatic Proofreading in Chinese: Detect and Correct Spelling Errors in Character-Level with Deep Neural Networks,2019

二层注意力机制

第一层:hk与其他字的输出向量hs做attention,如果候选词领近的字也是错别字,可以利用全文的信息

腰椎监潘突出投保

▶ 第二层:第一层attention后的ck与hk拼接后与每个候选词做attention, 直接利用attention的分数作为最后候选排序分数

Double Attentive Checker

3-技术落地:检索和深度语义匹配-BERT for QA

> 基于bert改造的音字混合受限字表语言模型错误检测算法

BERT: Pre_training of Deep Bidirectional Transformers for Language Understanding,

2018

改造huggingface的代码,输入层加入拼音,字形特征

开源项目地址:

https://github.com/huggingface/transformers

参数细节:

Num_hidden_layers: 3 Num_attention_head:5

Hidden_size:150 Vocab_size:3800

Max_position_embedding:86

Bert-MLM

3-技术落地: 候选召回

POI 平安寿险AI

▶ 近音候选词召回:

大规模的基础字典的依赖,使其在**存储空间与读取速度**方面 受到极大挑战

- · 降低存储空间: a、利用Trie树降低信息冗余
 - b、利用经典结CSR压缩稀疏矩阵
 - c、使用词典间的关联信息恢复2gram同音词典
- 提高读取速度: Trie树、CSR技术的高效索引

字、音编辑距离召回:

分层倒排索引: 对于每个字的倒排词集按照词中字的数量按照分层的方式存储

- 降低每层词集的空间从而降低索引时间
- 灵活地搜索任意编辑距离的候选词集

3-技术落地: 候选召回

POI 平安寿险AI

> 混淆词集挖掘:

· 疾病口语词挖掘:

• 挖掘新词中即包含成词、网络词语又包含较多疾病词语;

3-技术落地: 候选排序

POI 平安寿险AI

> 一级排序:

• 模型:逻辑回归LR

• 作用:二级精排较为耗时,需要一级初筛选Topk进入二级

• 要求: 正类 (接受候选) 召回率很高, 运行速度快

特征:

> 频次比值: 候选频次越高分数越高

编辑距离:编辑距离越小分数越高

> 拼音Jaccard距离:拼音越相近分数越高

> 4gram-LM概率差值: 候选替换后句子越通顺分数越高

Query: 得了甲状腺姐姐可以投保吗? ->结节 0.99

Example

• 频次: 55 -> 94

• 编辑距离: 2

拼音Jaccard距离: 0

• 语言模型概率: -21.9 -> -8.6

3-技术落地: 候选排序

POI 平安寿险AI

> 二级排序:

模型: xgboost

作用:分数超过设定阈值且是Top1的作为最终候选

要求: 正类 (接受候选) 准确度要很高

Query: 红癍狼仓算重疾吗? 红斑狼疮

Example

▶ 频次: 20 → 1688

▶ 切词: 红\癍\狼疮 (1\1\2) -> 红斑狼疮 (4)

▶ nn语言模型: 癍 (<0.001) -> 斑 (0.979)

→ 4gram语言模型: -19.2 -> -10.6

➤ PMI:红癍(0.33) ->红斑(9.7)

Query: 暖圆孔未闭可以投保吗? 卵圆孔未闭

▶ 拼音: 暖 (nuan) -> 卵 (luan) 声母不一致

➤ 拼音Jaccard距离: 0.25

Query: 旺财信息可以删除吗 删除

➤ 五笔: 册 (MMGD) -> 删 (MMGJ)

Query: 油菜和普才计划的区别? 优才

词频	油菜	优才
多 寿险领域	5	428
通用领域	1190	87

局部特征

切词变化

(短语个数,单子个数,含错字 一片段长度)

频次变化

(本身频次变化,

与上下文组成

4gram语言模型

受化 (句子概率, 段概率)

PMI变化

(最小值,最值)

形音变化

2gram频次变化)

(全\简拼声韵母 变化, Jccard距离, 五笔变化) **其他变化** (停用词\错字位 ₃,候选来源等)

全局特征

Cbow-LM LSTM-Attention-LM

BERT-LM

XGBOOST

大于设定 阈值Top1

3-技术落地: 实现路径

> 纠错整体架构:

特性

- pipline 串联,热拔插
- 子模块均遵循检测-召 回-排序流程
- 规则+模型混合
- 离线+在线

在线方案

- ・ 低时延、低复杂度 模型+规则
- 高速1ms~3ms/句
- 用于线上实时预测

离线方案

- 大规模、复杂模型
- 低速200ms~500ms/句
- **用于**构造在线模型 训练数据

4-效果评估:

效果	Far(过纠率)	Recall(召回率)	耗时/句
pycorrector	>50%	11%	none
在线纠错v0.5	0.1%	70%	1.5ms

	类型	原句子	纠正信息	方法/原因分析	
		平安福与大复兴有什么区别	大福星	产品名称-近音召回	
		平安福承保多少种重疾线	重疾险	保险名词-近音召回	
		小山羊可以投保安心百分百吗	小三阳	疾病简称-近音召回	
	正例	省份正变更	身份证	保险名词-近音召回	
		你说鑫祥 <mark>终极和诛仙是平等</mark> 的吗	重疾 主险	保险名词-近音召回	
		关心并可以投保吗	冠心病	疾病名称-近音召回	
		少儿平安福可以加脱保人豁免吗	投保人	保险名词-倒排召回	
		安心保的功能是什么	安鑫保/安心宝	缺乏上下文语境,无法判断哪个是正确的	
		腰椎间盘突出 <mark>头饱</mark>	未纠成 投保	字级别语义破坏	
	Badcase	哎,我好困哪,好 <mark>晚</mark> 了	过纠成玩	缺少相关语料,cbow语言模型无法学习长距离 依赖	
		帮我查一查 <mark>何可意</mark>	过纠成 何可以	人名识别模块无法识别	
		在南山平安金融中心入职	未纠成 福田	缺少知识关联	

5-总结与改进方向:

• 优点:

- 无监督,方便将该方法迁移到其他垂域,只需重新无监督挖掘数据;
- > 系统架构很方便拔插特殊编写纠错子模块

• 缺点:

- > 很难迁移到通用领域中
- ➤ Pipeline导致错误逐级传递
- ➤ Pipeline链越长耗时越大

• 改进方向:

- ▶ 强化上下文/全局的语义理解
- > 训练语料去燥处理
- > 探索端到端的算法,如NMT(神经机器翻译)
- 探索语法错误(多字少字乱序)相关算法和工程实现
- > 知识关联

开放,共赢

《Understanding Error Correction and its Role as Part of the Communication Channel in Environments composed of Self-Integrating Systems》

Error correction for high-level languages can demand a large amount of a prior knowledge which is usually too large to be provided as additional information by the sender and hence is provide directly to the receiver's poll

加入AI技术交流群

扫左方二维码,添加小PAI助手号,备注"直播"即可加入社群

技术干货、产品应用独家分享,招聘信息最新速递... 期待更多交流与碰撞,一起AI~ 工艺制剂人工程制制制度加入

工艺制度人工程制度研修

是安静脉入工程排析技术

Thank You for Listening

谢谢您的聆听

到菜類版人工類機構開港

工程制度工程制度制度

是接觸人工機構翻