MATH-UA 129: Differentiation

James Pagan

Septemper 2023

Contents

1	Cor	ntinuity of Sequences and Functions	3										
	1.1	Limits of Multivariable Sequences	3										
	1.2	A Brief Topological Excursion: Open Sets	4										
	1.3	Limits of Multivariable Functions	4										
2	Limits on Matricies												
	2.1	Matrix Norm	5										
	2.2	Continuity of Linear Maps	6										
	2.3	A Neat Inequality	6										
	2.4	Completeness of Matricies	7										
3	Differentiation												
	3.1	The Jacobian Matrix	8										
	3.2	Chain Rule	9										
	3.3	The Partial Derivative	10										
4	Special Cases												
	4.1	Real-Valued Functions	11										
	4.2	Paths and Curves	12										
5	Linear Approximation												
	5.1	The General Case	13										

5.2	Special Cases	 	13							
	-									

1 Continuity of Sequences and Functions

1.1 Limits of Multivariable Sequences

Limit of a Sequence: Let \mathbf{x}_r for $r \in \mathbb{Z}_{>0}$ be a sequence of vectors in \mathbb{R}^n for $r \in \mathbb{N}$. We say that \mathbf{x}_r converges to the vector \mathbf{L} if for all $\epsilon > 0$, there is N > 0 such that

$$N < i \implies \|\mathbf{x}_i - \mathbf{L}\| < \epsilon.$$

This is the definition of a limit via metric spaces. Before we can apply the usual limit rules to \mathbb{R}^n , we must verify that \mathbb{R}^n is a complete metric space:

Lemma. \mathbb{R}^n is a complete metric space under the canonical norm.

Proof. Clearly \mathbb{R}^n is a metric space. Now, let $\mathbf{x}_r = (a_{r1}, \dots, a_{rn})$ be a Cauchy sequence in \mathbb{R}^n ; for all $\epsilon > 0$, there is N > 0 such that

$$N < i \le j \implies \|\mathbf{x}_i - \mathbf{x}_j\| < \epsilon.$$

Now, see that for $k \in \{1, ..., n\}$,

$$|a_{ik} - a_{jk}| = \sqrt{(a_{ik} - a_{jk})^2} \le \sqrt{(a_{i1} - a_{j1})^2 + \dots + (a_{in} - a_{jn})^2} = ||\mathbf{x}_i - \mathbf{x}_j|| < \epsilon,$$

so the sequence a_{rk} is a real Cauchy sequence; as all such sequences converge, we may define N_1, \ldots, N_n and L_1, \ldots, L_n such that

$$N_1 < i \implies |a_{i,1} - L_1| < \frac{\epsilon}{n},$$

$$\vdots$$

$$N_n < i \implies |a_{i,n} - L_n| < \frac{\epsilon}{n}.$$

Define $\mathbf{L} = (L_1, \dots, L_n)$. Then for all $\max\{N_1, \dots, N_n\} < i$, we find that

$$\|\mathbf{x}_{i} - \mathbf{L}\| = \sqrt{(a_{i,1} - L_{1})^{2} + \dots + (a_{i,n} - L_{n})^{2}}$$

$$\leq \sqrt{(a_{i,1} - L_{1})^{2} + \dots + \sqrt{(a_{i,n} - L_{n})^{2}}}$$

$$= |a_{i,1} - L_{1}| + \dots + |a_{i,n} - L_{n}|$$

$$< \frac{\epsilon}{n} + \dots + \frac{\epsilon}{n}$$

$$= \epsilon,$$

so \mathbf{x}_r converges to \mathbf{L} , and \mathbb{R}^n is a complete metric space.

1.2 A Brief Topological Excursion: Open Sets

An **open disk** $D_r(\mathbf{x}_0)$ of radius r and center \mathbf{x}_0 is the set of all points \mathbf{x} such that $\|\mathbf{x} - \mathbf{x}_0\| < r$. A set $U \subseteq \mathbb{R}^n$ is an **open set** if for all $\mathbf{x}_0 \in U$, there exists r > 0 such that $D_r(\mathbf{x}_0) \in U$ — in other words, if it is possible to construct an open disc, no matter how small, around any point in U that lies entirely in U.

Lemma. Any open disc $D_r(\mathbf{x}_0)$ for r > 0 and $\mathbf{x}_0 \in \mathbb{R}^n$ is an open set.

Proof. Let \mathbf{y} be any point in $D_0(\mathbf{x}_0)$; note that \mathbf{y} satisfies $\|\mathbf{y} - \mathbf{x}_0\| < r$. We wish to construct an open disc centered at \mathbf{y} that lies inside $D_r(\mathbf{x}_0)$.

Let $s = r - \|\mathbf{y} - \mathbf{x}_0\|$. Consider an arbitrary point \mathbf{z} in the the open disc $D_r(\mathbf{y})$ — we have that $\|\mathbf{z} - \mathbf{y}\| < s = r - \|\mathbf{y} - \mathbf{x}_0\|$. Thus, the distance between \mathbf{z} and \mathbf{x}_0 satisfies

$$\|\mathbf{z} - \mathbf{x}_0\| \le \|\mathbf{z} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{x}_0\| < r - \|\mathbf{y} - \mathbf{x}_0\| + \|\mathbf{y} - \mathbf{x}_0\| = r.$$

Then **z** lies in $D_r(\mathbf{x}_0)$; therefore, $D_s \subseteq D_r(x_0)$. Every point $y \in D_r(\mathbf{x}_0)$ is contained within the open disc $D_s(\mathbf{y})$, so $D_r(\mathbf{x}_0)$ is an open set, as desired.

A **neighborhood** of $\mathbf{x} \in \mathbb{R}^n$ is a set that contains an open set that contains \mathbf{x} ; neighborhoods need not be open sets at all.

A point $x \in \mathbb{R}^n$ is a **boundary point** of $U \subseteq \mathbb{R}^n$ if every neighborhood of x contains a point in U and a point not in U. The set of all boundary points of U is denoted ∂U . We an now define:

1.3 Limits of Multivariable Functions

Let U be an open subset of \mathbb{R}^n and f be a vector-valued function $f: U \to \mathbb{R}^m$, and consider $x \in U$ or $x \in \partial U$. There are two equivalent definitions of limits of multivariable functions taught in this class:

Limit of a Function: We say that $\lim_{\mathbf{x}\to\mathbf{x}_0} = \mathbf{L}$ for $\mathbf{L} \in \mathbb{R}^m$ if for all $\epsilon > 0$, there exists δ such that

$$0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta \implies \|f(\mathbf{x}) - \mathbf{L}\| < \epsilon.$$

Topological Limit of a Function: We say that $\lim_{\mathbf{x}\to\mathbf{x}_0} = \mathbf{L}$ if for all neighborhoods \mathcal{N} of \mathbf{L} , there exists a neighborhood U of \mathbf{x}_0 such that

$$\mathbf{x} \in U \setminus \mathbf{x}_0 \implies f(\mathbf{x}) \in \mathcal{N}.$$

Continuity: In either definition, we say that f is continuous at $\mathbf{x}_0 \in U$ or $\mathbf{x}_0 \in \partial U$ if $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$. f itself is continuous if f is continuous at all $\mathbf{x}_0 \in U$.

2 Limits on Matricies

2.1 Matrix Norm

Before we can perform calculus on matricies, we must define a metric: the matrix norm. As $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is a vector space whose elements are matricies, we can define ||T|| for $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ as follows:

$$||T|| = \sup\{||T\mathbf{x}|| \mid \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}|| \le 1\}.$$

Imposing that $\|\mathbf{x}\| = 1$ yields an identical definition. We have that $T\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right) \leq \|T\|$ — or more genearly, that $\|T\mathbf{x}\| \leq \|T\|\|\mathbf{x}\|$. Fascinatingly, the matrix norm satisfies a host of convenient properties:

• **Zero**: If ||T|| = 0, then $T\mathbf{x} = 0$ for all $\mathbf{x} \in \mathbb{R}^n$ such $||\mathbf{x}|| = 1$; we find that for all $\mathbf{v} \in \mathbb{R}^n$,

$$T\mathbf{v} = \|\mathbf{v}\|(T\frac{\mathbf{v}}{\|\mathbf{v}\|}) = \|\mathbf{v}\|(0) = 0,$$

so T=0.

- **Positivity**: If $T, S \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ such that $T \neq S$, then by contraposition, $T S \neq 0$ implies that $||T S|| \neq 0$, so ||T S|| > 0.
- Additivity: For matricies $T, S \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, we define define the vector $\mathbf{x} = \sup\{\|(T+S)\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \|x\| \leq 1\}$; we have that

$$||T + S|| = ||(T + S)\mathbf{x}|| \le ||T\mathbf{x}|| + ||S\mathbf{x}|| \le ||T|| ||\mathbf{x}|| + ||S|| ||\mathbf{x}|| \le ||T|| + ||S||.$$

• Scalar Multiplication: For all $\lambda \in \mathbb{R}$, let $\mathbf{x} = \sup\{\|\lambda T\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \|x\| \leq 1\}$; then

$$\|\lambda T\| = \|\lambda T \mathbf{x}\| = \lambda \|T \mathbf{x}\| \le \lambda \|T\| \|\mathbf{x}\| \le \lambda \|T\|.$$

• Matrix Multiplication: If $T \in \mathcal{L}(\mathbb{R}^n)$, \mathbb{R}^m and $S \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^r)$, define the vector $\mathbf{x} = \sup\{\|(TS)\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \|x\| \leq 1\}$. Then

$$||TS|| = ||TS\mathbf{x}|| \le ||T|| ||S\mathbf{x}|| \le ||T|| ||S|| ||\mathbf{x}|| \le ||T|| ||S||.$$

• Triangle Inequality: If $T, S, R \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, then

$$||T - S|| = ||(T - R) + (R - S)|| \le ||T - R|| + ||R - S||.$$

We conclude that the matrix norm is a metric of $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

2.2 Continuity of Linear Maps

Lemma. If $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, then $||T|| < \infty$ and T is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .

Proof. Define $\mathbf{e}_1, \dots, \mathbf{e}_n$ as the standard basis of \mathbb{R}^n , and let $\mathbf{x} = \sup\{\|T\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \|x\| \leq 1\}$ such that $\|T\| = \|T\mathbf{x}\|$ have the form $\mathbf{x} = (x_1, \dots, x_n)$. Clearly $|x_1|, \dots, |x_n| \leq 1$, so

$$||T|| = ||T\mathbf{x}|| = ||T(x_1\mathbf{e}_1) + \dots + x_n\mathbf{e}_n||$$

$$\leq |x_1|||T\mathbf{e}_1|| + \dots + |x_n|||T\mathbf{e}_n||$$

$$\leq ||T\mathbf{e}_1|| + \dots + ||T\mathbf{e}_n||$$

$$< \infty.$$

Therefore, for all $\epsilon > 0$, we have that $0 < \|\mathbf{x} - \mathbf{y}\| < \frac{\epsilon}{\|T\|}$ implies that

$$||T\mathbf{x} - T\mathbf{y}|| = ||T(\mathbf{x} - \mathbf{y})|| \le ||T|| ||\mathbf{x} - \mathbf{y}|| < ||T|| \frac{\epsilon}{||T||} = \epsilon,$$

so T is uniformly continuous.

2.3 A Neat Inequality

Suppose $\mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{e}_1, \dots, \mathbf{e}_m$ are the standard bases of \mathbb{R}^n and \mathbb{R}^m . Then if $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ and $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$,

$$T\mathbf{v} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} v_j \right) \mathbf{e}_i = \left(\sum_{j=1}^{n} a_{1j} v_j, \dots, \sum_{j=1}^{n} a_{mj} v_j \right).$$

Then via the Cauchy-Schwarz Inequality, we have that for all $\mathbf{v} \in \mathbb{R}^n$,

$$||T\mathbf{v}||^{2} = \left(\sum_{j=1}^{n} a_{1j}v_{j}\right)^{2} + \dots + \left(\sum_{j=1}^{n} a_{mj}v_{j}\right)^{2}$$

$$\leq \left(\sum_{j=1}^{n} a_{1j}^{2}\right) \left(\sum_{j=1}^{n} v_{j}^{2}\right) + \dots + \left(\sum_{j=1}^{n} a_{mj}^{2}\right) \left(\sum_{j=1}^{n} v_{j}^{2}\right)$$

$$= \left(\sum_{j=1}^{n} v_{j}^{2}\right) \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}\right) = ||\mathbf{v}||^{2} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}\right).$$

Combining this with the above inequality, we find that if $\mathbf{x} = \sup\{||T\mathbf{x}|| \mid \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}|| \leq 1\},$

$$||T|| = ||T\mathbf{x}|| \le ||\mathbf{x}|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2} \le \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}.$$

2.4 Completeness of Matricies

Lemma. $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ equipped with the matrix norm is a complete metric space.

Proof. Let the sequence $T_1, T_2, \ldots \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ be a Cauchy sequence; declare that for all $\epsilon > 0$, there exists N > 0 such that

$$N < i \le j \implies ||T_i - T_j|| < \epsilon.$$

Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the canonical basis of \mathbb{R}^n . Then for all $k \in \{1, \dots, n\}$,

$$N < i \le j \implies ||T_i \mathbf{e}_k - T_j \mathbf{e}_k|| = ||(T_i - T_j)\mathbf{e}_k|| \le ||T_i - T_j|| ||\mathbf{e}_k|| = ||T_i - T_j|| < \epsilon,$$

so the sequences of vectors $T_1\mathbf{e}_k, T_2\mathbf{e}_k, \ldots \in \mathbb{R}^m$ for each $k \in \{1, \ldots, n\}$ are Cauchy sequences. Observe that these sequences are the kth column vectors of $T_1, T_2, \ldots \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, and that as \mathbb{R}^m is a complete metric space under the canonical norm, all Cauchy sequences of vectors converge to a unique vector. The coordinates of these vectors — which are the entries of the matricies in the sequence — thus converge.

We now define the limits of the entries of the matricies in our sequence. For notational convenience, define $S = \{(a,b) \in \mathbb{Z}^2 \mid a \in \{1,\ldots,m\}, b \in \{1,\ldots,n\}\}$. For all $(a,b) \in S$, and $i \in \mathbb{Z}_{>0}$, let it_{ab} be the entry in the ath row and bth column of T_i . Then for each $(a,b) \in S$, there exists $L_{ab} \in \mathbb{R}$ such that for all $\epsilon > 0$, there exist nexists a nonnegative integer N_{ab} such that

$$N_{ab} < i \implies |it_{ab} - L_{ab}| < \frac{\epsilon}{\sqrt{mn}}.$$

Define $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ as the matrix with entry L_{ab} in the *a*th row and *b*th column for each $(a,b) \in S$. Then $\max\{N_{ab} \mid (a,b) \in S\} < i$ implies that

$$||T_i - L|| \le \sqrt{\sum_{a=1}^m \sum_{b=1}^n (it_{ab} - L_{ab})^2} < \sqrt{\sum_{b=1}^m \sum_{a=1}^n \left(\frac{\epsilon^2}{mn}\right)} = \sqrt{\epsilon^2} = \epsilon.$$

All Cauchy sequence $T_1, T_2, \ldots \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ thus converges to some matrix L, which implies that $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is a complete metric space.

3 Differentiation

3.1 The Jacobian Matrix

Let U be an open subset of \mathbb{R}^n , let $f: U: \to \mathbb{R}^m$, and let $\mathbf{x} \in U$. If there exists a linear map $J \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - J\mathbf{h}\|}{\|\mathbf{h}\|} = 0,$$

we say that f is **differentiable** at \mathbf{x} and write $f'(\mathbf{x}) = J$, where J is the **Jacobian** matrix of f at \mathbf{x} — also called the matrix of partial derivatives, the differential, or the total derivative. If f is differentiable at $all \ \mathbf{x} \in U$, we say that f itself is differentiable over U.

Lemma. The Jacobian matrix is unique.

Proof. Define f like above. Suppose that for contradiction that there exist two matricies $J \neq K$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - J\mathbf{h}\|}{\|\mathbf{h}\|} = \lim_{\mathbf{h}\to\mathbf{0}} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - K\mathbf{h}\|}{\|\mathbf{h}\|} = 0.$$

See that $J - K \neq 0$, so ||J - K|| > 0. Then there exist d_1 and d_2 such that

$$0 < \|\mathbf{h}\| < \delta_1 \implies \frac{\|-f(\mathbf{x} + \mathbf{h}) + f(\mathbf{x}) + J\mathbf{h}\|}{\|\mathbf{h}\|} < \frac{\|J - K\|}{2}$$
$$0 < \|\mathbf{h}\| < \delta_2 \implies \frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - K\mathbf{h}\|}{\|\mathbf{h}\|} < \frac{\|J - K\|}{2}$$

For $0 < \|\mathbf{h}\| < \min\{\delta_1, \delta_2\}$, we have that

$$\begin{split} \|J - K\| &= \frac{\|J - K\|}{2} + \frac{\|J - K\|}{2} \\ &> \frac{\|-f(\mathbf{x} + \mathbf{h}) + f(\mathbf{x}) + J\mathbf{h}\|}{\|\mathbf{h}\|} + \frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - K\mathbf{h}\|}{\|\mathbf{h}\|} \\ &\geq \frac{\|(-f(\mathbf{x} + \mathbf{h}) + f(\mathbf{x}) + J\mathbf{h}) + (f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - K\mathbf{h})\|}{\mathbf{h}} \\ &= \frac{\|(J - K)\mathbf{h}\|}{\mathbf{h}}, \end{split}$$

so $||J - K|| ||\mathbf{h}|| > ||(J - K)\mathbf{h}||$, which is our desired contradiction.

As an example, if $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ and $\mathbf{x} \in \mathbb{R}^n$, then the derivative of T at \mathbf{x} is T, as

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|T(\mathbf{x}+\mathbf{h})-T\mathbf{x}-T\mathbf{h}\|}{\|\mathbf{h}\|}=\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|\mathbf{0}\|}{\|\mathbf{h}\|}=0.$$

It is very intuitive to think of J as an approximation of f at \mathbf{x}_0 — namely, that there exists r(h) such that $f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = J\mathbf{h} - r(\mathbf{h})$ and $\lim_{\mathbf{h}\to\mathbf{0}} \frac{r(\mathbf{h})}{\mathbf{h}} = 0$. This strategy will be exhibited in the following proof:

3.2 Chain Rule

Theorem. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$. If f is differentiable at \mathbf{x}_0 and g is differentiable at $f(\mathbf{x}_0)$ — and if \mathbf{x}_0 and $f(\mathbf{x}_0)$ are contained within open sets in the domains of f and g respectively — then $g \circ f$ is differentiable at \mathbf{x}_0 , and

$$(g \circ f)' = g'(f(\mathbf{x}_0))f'(\mathbf{x}_0).$$

Proof. Let $f'(\mathbf{x}_0) = J$ and $g'(f(\mathbf{x}_0)) = K$. We have that

$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\|\mathbf{h}\|} = 0 = \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0) + \mathbf{h}) - g(f(\mathbf{x}_0)) - K\mathbf{h}\|}{\|h\|}.$$

Define the function $\mathbf{k} = f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)$; clearly, $\lim_{\mathbf{h} \to \mathbf{0}} \mathbf{k} = 0$. We have that

$$g(f(\mathbf{x}_0 + \mathbf{h})) - g(f(\mathbf{x}_0)) - (KJ)\mathbf{h}$$

$$= g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K(J\mathbf{h} - f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) + \mathbf{k})$$

$$= g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K\mathbf{k} + K(f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}).$$

We now establish bounds for $\|\mathbf{k}\|$:

$$\|\mathbf{k}\| = \|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h} + J\mathbf{h}\| \le \|\mathbf{h}\| \left(\|J\| + \frac{\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\|\mathbf{h}\|} \right)$$

Then using the composition rule for limits,

$$0 \leq \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0 - \mathbf{h})) - g(f(\mathbf{x}_0)) - (KJ)\mathbf{h}\|}{\|\mathbf{h}\|}$$

$$\leq \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K\mathbf{k}\|}{\|\mathbf{h}\|} + \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|K\|\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\|\mathbf{h}\|}$$

$$\leq \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K\mathbf{k}\|}{\|\mathbf{k}\|} \lim_{\mathbf{h} \to \mathbf{0}} \left(\|J\| + \frac{\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\mathbf{h}}\right)$$

$$= (0)(\|J\| + 0) = 0.$$

so $g \circ f)'(\mathbf{x}_0) = KJ = g'(f(\mathbf{x}_0))f'(\mathbf{x}_0)$ as required. Yes, that last step of Rudin's is nonrigorous — define it as a piecewise expression equal to 0 whenever $\mathbf{k} = \mathbf{0}$, etc.

3.3 The Partial Derivative

Consider $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, where U is an open subset of \mathbb{R}^n ; let $\mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{e}_1, \dots, \mathbf{e}_m$ be the standard bases of \mathbb{R}^n and \mathbb{R}^m . The **components** of f are the real functions f_1, \dots, f_m defined by

$$f(\mathbf{x}) = f_1(\mathbf{x})\mathbf{e}_1 + \dots + f_m(\mathbf{x})\mathbf{e}_m,$$

or equivalently by $f_i(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{e}_i$ for each $i \in \{1, ..., m\}$. Then for $x \in U$, $i \in \{1, ..., m\}$, and $j \in \{1, ..., n\}$, we define the **partial derivative** of f_i with respect to x_j as

$$\frac{\partial f_i}{\partial x_j} = \lim_{t \to 0} \frac{f_i(\mathbf{x} + t\mathbf{e}_j) - f_i(\mathbf{x})}{t}.$$

The fact this is a one-variable limit explains why the computation of partial derivatives aligns so closely with differentiation of univarite functions.

Lemma. The entries of the Jacobian matrix are the partial derivatives: namely, if $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ (where U is open) and f is differentiable at x_0 , then the partial derivatives exist and

$$f'(\mathbf{x}_0)\mathbf{e}_j = \sum_{i=1}^m \left(\frac{\partial f_i}{\partial x_j}\right)(\mathbf{x})\mathbf{e}_i$$

Proof. Let j be any integer in the set $\{1,\ldots,n\}$. Since f is differentiable at \mathbf{x} ,

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_j) - f(\mathbf{x}_0)}{t} - f'(\mathbf{x})\mathbf{e}_j = \lim_{t \to 0} \frac{\|f(\mathbf{x}_0 + t\mathbf{e}_j) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(t\mathbf{e}_j)\|}{\|t\mathbf{e}_j\|} = 0.$$

Therefore,

$$f'(\mathbf{x})\mathbf{e}_{j} = \lim_{t \to 0} \frac{f(\mathbf{x}_{0} + t\mathbf{e}_{j}) - f(\mathbf{x}_{0})}{t}$$

$$= \lim_{t \to 0} \frac{\sum_{i=1}^{m} (f_{1}(\mathbf{x}_{0} + t\mathbf{e}_{j})\mathbf{e}_{i}) - \sum_{i=1}^{m} (f_{i}(\mathbf{x}_{0})\mathbf{e}_{i})}{t}$$

$$= \sum_{i=1}^{m} \left(\lim_{t \to 0} \frac{f(\mathbf{x}_{0} + t\mathbf{e}_{j}) - f(\mathbf{x}_{0})}{t}\mathbf{e}_{i}\right)$$

$$= \sum_{i=1}^{m} \left(\frac{\partial f_{i}}{\partial x_{j}}\right) (\mathbf{x}_{0})\mathbf{e}_{i},$$

as desired.

4 Special Cases

4.1 Real-Valued Functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable real-valued function. Then f' is a 1-by-n matrix:

$$f' = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x^n} \end{bmatrix}.$$

The transpose of this matrix is called the **gradient** of f;

$$\nabla f = f'^{\top} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \dots + \frac{\partial f}{\partial x_n} \mathbf{e}_n,$$

where $\mathbf{e}_1, \dots, \mathbf{e}_n$ is the standard basis of \mathbb{R}^n . Observe that $f'\mathbf{v} = \nabla f \cdot \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^n$ — so the gradient and the derivative of a real-valued function are dual concepts. We can define the derivative of f as a vector ∇f such that

$$\lim_{\mathbf{h}\to 0} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - \nabla f \cdot \mathbf{h}\|}{\|\mathbf{h}\|} = 0.$$

The directional derivative of f at \mathbf{x} along a unit vector \mathbf{v} is defined as

$$\nabla_{\mathbf{v}} f = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Observe that $\nabla_{\mathbf{e}_i} f = \frac{\partial f}{\partial x_i} = \nabla f \cdot \mathbf{e}_i$ for all $i \in \{1, \dots, n\}$. This might lead us to conclude the following lemma:

Lemma. If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \mathbf{x}_0 , then $\nabla_{\mathbf{v}} f = \mathbf{v} \cdot (\nabla f)$ for all unit vectors \mathbf{v} .

Proof. Observe that $f'\mathbf{v} = \nabla f \cdot \mathbf{v}$, so we may express the definition of the Jacobian matrix in terms of the gradient of f:

$$\nabla f_{\mathbf{v}} f = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

$$= \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x}) - \nabla f(t\mathbf{v})}{t} + \lim_{t \to 0} \frac{\nabla f \cdot (t\mathbf{v})}{t}$$

$$= 0 + \lim_{t \to 0} \nabla f \cdot \mathbf{v}$$

$$= \nabla f \cdot \mathbf{v},$$

as required.

Lemma. If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \mathbf{x}_0 , then the maximum of $\nabla_{\mathbf{v}} f(\mathbf{x}_0)$ across all unit vectors \mathbf{v} occurs when \mathbf{v} points in the direction of $\nabla f(\mathbf{x}_0)$.

Proof. If v is a unit vector, then the Cauchy-Schwarz Inequality guarantees that

$$\nabla_{\mathbf{v}} f(\mathbf{x}_0) = \mathbf{v} \cdot \nabla f(\mathbf{x}_0) \le \|\mathbf{v}\| \|\nabla f(\mathbf{x}_0)\| = \|\nabla f(\mathbf{x}_0)\| = \left(\frac{\nabla f(\mathbf{x}_0)}{\|\mathbf{x}_0\|}\right) \cdot \nabla f(\mathbf{x}_0)$$

so the maximum of $\nabla_{\mathbf{v}} f(\mathbf{x}_0)$ occurs when \mathbf{v} is the normalization of the gradient vector and points in the direction of $\nabla f(\mathbf{x}_0)$.

More generally, we have that if θ is the angle between the unit vector \mathbf{v} and ∇f , then

$$\nabla_{\mathbf{v}} f = \mathbf{v} \cdot \nabla f = \|\mathbf{v}\| \|\nabla f\| \cos(\theta) = \|\nabla f\| \cos(\theta).$$

The directional derivative oscilates like a sine wave as \mathbf{v} walks around the unit hypersphere.

4.2 Paths and Curves

A continuous function $\mathbf{c} : [a, b] \subseteq \mathbb{R} \to \mathbb{R}^n$ is called a **path** in \mathbb{R}^n . The set of all points on the path $\{\mathbf{c}(t) \mid t \in [a, b]\}$ is called a **curve** with endpoints $\mathbf{c}(a)$ and $\mathbf{c}(b)$. The **components** of $\mathbf{c}(t)$ are the real functions $x_1(t), \ldots, x_n(t)$ defined by

$$\mathbf{c}(t) = x_1(t)\mathbf{e}_1 + \dots + x_n(t)\mathbf{e}_n,$$

where $\mathbf{e}_1, \dots, \mathbf{e}_n$ is the standard basis of \mathbb{R}^n . If \mathbf{c} is differentiable at $t \in [a, b]$, observe that the derivative of \mathbf{c} is an n-by-1 matrix called the **velocity vector**: $\mathbf{c}'(t) = \left(\frac{\partial x_1}{\partial t}, \dots, \frac{\partial x_n}{\partial t}\right)$. Infinitely many paths trace the same curve — some may be differentiable, others not!

Lemma. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a C^1 function, and define the level surface S_k as $\{\mathbf{x} \mid f(\mathbf{x}) = k\}$. Then ∇f is normal to the level surface — in particular, if $\mathbf{c}(t)$ is a path in S such that $c(0) = \mathbf{x}$, then $\nabla f(\mathbf{x}) \cdot \mathbf{c}'(t) = 0$.

Proof. Let **c** be a path in S_k such that $\mathbf{c}(0) = \mathbf{x}$. By definition, $f(\mathbf{c}(t)) = k$; the Chain Rule thus yields that

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{c}(0)) = f'(\mathbf{c}(0))\mathbf{c}'(0) = \nabla f(\mathbf{x}) \cdot \mathbf{c}'(0),$$

as desired.

Paths allow us to examine tangent vectors to surfaces via an elegant framework, as exhibited in the above proof.

5 Linear Approximation

5.1 The General Case

The linear approximation of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x}_0 \in \mathbb{R}^n$ with derivative J at \mathbf{x}_0 is given by the following equation:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + J(\mathbf{x} - \mathbf{x}_0),$$

where $f'(\mathbf{x}_0)$ is a linear map that sends $\mathbf{x} - \mathbf{x}_0$ from \mathbb{R}^n to \mathbb{R}^m . Observe that if we define $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$, then

$$\lim_{\mathbf{x}\to\mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - J(\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|} = \lim_{\mathbf{h}\to\mathbf{0}} \frac{\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\|\mathbf{h}\|} = 0,$$

so the limit of the error of this approximation approaches 0 as \mathbf{x} approaches \mathbf{x}_0 . In this sense, the derivative J is *precisely* the linear approximation of f at \mathbf{x}_0 — isn't it beautiful?

5.2 Special Cases

For real-valued functions: $f: \mathbb{R}^n \to \mathbb{R}$, the linear approximation at $\mathbf{x}_0 \in \mathbb{R}^n$ is called the tangent hyperplane and is typically formulated via the gradient:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0).$$

For implicit surfaces: $f(\mathbf{x}) = k$ for differentiable $f : \mathbb{R}^n \to \mathbb{R}$, the linear approximation is the tangent hyperpla, precisely those vectors tangent to the level set — and thus, normal to the gradient. The equation of the tangent plane at $\mathbf{x}_0 \in \mathbb{R}^n$ is given by

$$\nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) = 0.$$

For paths $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$, the linear approximation at $t_0\in[a,b]$ is called the tangent line:

$$\mathbf{c}(t) \approx \mathbf{c}(t_0) + \mathbf{c}'(t_0)(t - t_0).$$