Package 'malani'

September 26, 2016

Type Package

Version 1.0

Author Mehrab Ghanat Bari

Title Machine Learning Assisted Network Inference

Maintainer Mehrab Ghanat Bari <m.ghanatbari@gmail.com></m.ghanatbari@gmail.com>
Description Find dark genes. These genes are often disregarded due to no detected mutation or differential expression, but are important in coordinating the functionality in cancer networks.
License GPL-3
LazyData TRUE
Depends e1071, stats
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-26 23:44:53
R topics documented:
dat
grp
Gsvmod
intGenes
malanidata
pairmod
Index 5

2 Gsvmod

dat

A matrix of expression values.

Description

A numeric matrix 100*20.

Usage

dat

Format

matrix.

grp

A vector of class labels for dat.

Description

Vector length of 20.

Usage

grp

Format

vector

Gsvmod

G SVM models.

Description

Returns accuracy performance of all genes. G support vector machine (SVM) classifiers trained using G different data matrixes, are used to predict labels in test data. Models are ranked based on prediction performances.

Usage

```
Gsvmod(dat.train, lab.train, dat.test, lab.test)
```

intGenes 3

Arguments

dat.train	Train data with G features and (k-1)*S/k samples. Parameter k comes from		
cross-validation scheme and is specified by user (default is 2).			

lab.train Class labels for train data.

dat.test Test data with G features and S/k samples.

lab. test Class labels for test data.

Value

Accuracy scores for models. Each model represents one gene.

intGenes	Select initial gene list from original data matrix.	

Description

Train G-1 SVM models in k-fold cross validation scheme to select initial genes list.

Usage

```
intGenes(dat, grp, nfolds.out = 2, top.per = 0.05)
```

Arguments

dat Original gene expression data matrix with G rows (number of genes) and S

column (number of samples).

grp Class labels.

nfolds.out Outer cross validation number (default is 2).

top.per All genes are ranked based on their models performance and top.per% of them

are selected as initial genes.

Value

Selected initial genes.

Examples

```
data(malanidata)
int <- intGenes(dat,grp)
print(int$top.genes)</pre>
```

4 pairmod

malan	id	2+	2

Dataset for malani package

Description

A numeric matrix G*S contains gene expressions data. G are the genes (rows) and S are the samples (columns).

Usage

malanidata

Format

A matrix of numeric values, 100 genes, 20 samples and class labels.

Examples

```
data(malanidata)
```

pairmod

Find best performing pairs

Description

Combine each gene in initial set with all genes in the original set. Top npair pairs are selected to construct the Q matrix.

Usage

```
pairmod(X, LX, theta, npair = 10)
```

Arguments

Χ	Original gene expression data matrix.	With G rows (number of genes) and S
	column (number of samples).	

LX Class labels. theta Initial gene set.

npair Given a gene in initial set, top npair best performing pairs correspond to that

gene are selected (Default is 10).

Value

Best (npair*G/20) performing pairs.

Index

```
*Topic datasets
dat, 2
grp, 2
malanidata, 4

dat, 2, 2

grp, 2
Gsvmod, 2

intGenes, 3

malanidata, 4

pairmod, 4
```