Lab-Phase 7 Logistic Regression CV Telco_Churn

November 2, 2020

1 Logistic Regression w/Cross Validation

1.0.1 Import required packages

```
In [28]: %matplotlib inline

from pathlib import Path

import pandas as pd

from sklearn import preprocessing

import missingno as msno

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn import metrics

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression, LogisticRegressionCV

import seaborn as sns

import matplotlib.pylab as plt

from dmba import classificationSummary, gainsChart, liftChart
```

The Telco_Churn dataset was developed by IBM to model telecommunications customer relations in business analytics. Our goal is to predict the likelihood of a customer leaving the firm. This is an important issue, notably because attracting new customers have a high cost in both marketing promotions and lost revenue.

1.0.2 Load the data and perform initial inspection

```
In [29]: telco_df = pd.read_excel('../resource/lib/public/Telco_Churn.xlsx') # this is an Exce
    pd.set_option('display.max_rows', 50)
    pd.set_option('display.max_columns', 50)
```

```
Out [30]:
            customerID
                         gender
                                  SeniorCitizen Partner Dependents
                                                                      tenure PhoneService
            7590-VHVEG
                         Female
                                               0
                                                     Yes
                                                                            1
                                                                                         No
            5575-GNVDE
                           Male
                                               0
                                                      No
                                                                           34
                                                                                        Yes
                                                                  No
                                                                            2
         2 3668-QPYBK
                            Male
                                               0
                                                      No
                                                                  No
                                                                                        Yes
           7795-CFOCW
                           Male
                                               0
                                                      No
                                                                           45
                                                                                         No
                                                                  No
           9237-HQITU Female
                                                      No
                                                                  No
                                                                                        Yes
                {\tt MultipleLines\ InternetService\ OnlineSecurity\ OnlineBackup}
            No phone service
                                            DSL
                                                             No
                                                                          Yes
         0
         1
                                            DSL
                                                                           No
                            No
                                                            Yes
         2
                           No
                                            DSL
                                                            Yes
                                                                          Yes
         3
            No phone service
                                            DSL
                                                            Yes
                                                                           No
                                   Fiber optic
                                                             No
                                                                           No
           DeviceProtection TechSupport StreamingTV StreamingMovies
                                                                                Contract
         0
                          No
                                       No
                                                    No
                                                                     No
                                                                          Month-to-month
         1
                         Yes
                                       No
                                                    No
                                                                                One year
                                                                     No
         2
                          No
                                       No
                                                    No
                                                                          Month-to-month
                                                                     No
         3
                         Yes
                                      Yes
                                                    No
                                                                                One year
         4
                          No
                                       No
                                                    No
                                                                          Month-to-month
                                                            MonthlyCharges
           PaperlessBilling
                                            PaymentMethod
                                                                             TotalCharges
         0
                         Yes
                                        Electronic check
                                                                     29.85
                                                                                     29.85
         1
                          No
                                             Mailed check
                                                                     56.95
                                                                                  1889.50
         2
                         Yes
                                             Mailed check
                                                                     53.85
                                                                                   108.15
                              Bank transfer (automatic)
         3
                          No
                                                                      42.30
                                                                                  1840.75
                                        Electronic check
                                                                     70.70
         4
                         Yes
                                                                                   151.65
           Churn
              No
         0
         1
              No
         2
             Yes
         3
              No
         4
             Yes
In [31]: telco_df.shape # reproduce the output
Out[31]: (7043, 21)
In [32]: telco_df.info() # reproduce the output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
     Column
                        Non-Null Count
                                         Dtype
 0
     customerID
                        7043 non-null
                                         object
```

In [30]: telco_df.head() # reproduce the output

1	gender	7043	non-null	object
2	SeniorCitizen	7043	non-null	int64
3	Partner	7043	non-null	object
4	Dependents	7043	non-null	object
5	tenure	7043	non-null	int64
6	PhoneService	7043	non-null	object
7	MultipleLines	7043	non-null	object
8	${\tt InternetService}$	7043	non-null	object
9	OnlineSecurity	7043	non-null	object
10	OnlineBackup	7043	non-null	object
11	${\tt DeviceProtection}$	7043	non-null	object
12	TechSupport	7043	non-null	object
13	${\tt StreamingTV}$	7043	non-null	object
14	${\tt StreamingMovies}$	7043	non-null	object
15	Contract	7043	non-null	object
16	PaperlessBilling	7043	non-null	object
17	PaymentMethod	7043	non-null	object
18	MonthlyCharges	7043	non-null	${\tt float64}$
19	TotalCharges	7032	non-null	${\tt float64}$
20	Churn	7043	non-null	object

dtypes: float64(2), int64(2), object(17)

memory usage: 1.1+ MB


```
In [34]: telco_df = telco_df.drop('customerID', axis=1)
In [35]: # According to the missing value bar chart, only 11 samples are missing from a single
         telco_df = telco_df.dropna() # drop na values
In [36]: # Create a y response variable and an X collection of predictors. Remember, the outco
         y = telco_df['Churn']
         X = telco_df.drop(columns=['Churn'])
        print(len(X.columns))
19
In [37]: # Dummy code the set of predictors in preparation of logistic regression
         X = pd.get_dummies(X, prefix_sep="_", drop_first=True) # dummy code predictors
        print(len(X.columns))
30
In [38]: # Convert the text of Gone to a binary numeric variable (0/1)
         y = y.astype('category').cat.codes
         # Check for a class imbalance
         y.value_counts() # check value count
Out[38]: 0
              5163
              1869
         dtype: int64
In [39]: print(pd.DataFrame(X.columns))
                                        0
0
                            SeniorCitizen
1
                                   tenure
2
                           MonthlyCharges
3
                             TotalCharges
4
                              gender_Male
5
                              Partner_Yes
6
                           Dependents_Yes
```

```
7
                         PhoneService_Yes
8
           MultipleLines_No phone service
                        MultipleLines_Yes
9
10
              InternetService_Fiber optic
                       InternetService No
11
       OnlineSecurity_No internet service
12
13
                       OnlineSecurity_Yes
14
         OnlineBackup_No internet service
15
                         OnlineBackup_Yes
16
     DeviceProtection_No internet service
17
                     DeviceProtection_Yes
18
          TechSupport_No internet service
19
                           TechSupport_Yes
20
          StreamingTV_No internet service
21
                          StreamingTV_Yes
22
      StreamingMovies_No internet service
23
                      StreamingMovies_Yes
24
                        Contract_One year
25
                        Contract_Two year
26
                     PaperlessBilling_Yes
    PaymentMethod_Credit card (automatic)
27
28
           PaymentMethod_Electronic check
               PaymentMethod_Mailed check
29
In [40]: # color-coded heatmap with correlation values
         telco_df_corr = X.corr()
         fig, ax = plt.subplots()
         fig.set_size_inches(11, 7)
         sns.heatmap(telco_df_corr, annot=True, fmt=".1f", cmap="RdBu_r", center=0, ax=ax)
         plt.show()
```


1.0.3 Cross Validated Explanatory Model using GridSearchCV

	coeff
SeniorCitizen	0.225202
tenure	-0.055297
MonthlyCharges	0.014624
TotalCharges	0.000293
gender_Male	-0.016834
Partner_Yes	-0.006196
Dependents_Yes	-0.156011
PhoneService_Yes	-0.345413
MultipleLines_No phone service	0.528520
MultipleLines_Yes	0.143280
InternetService_Fiber optic	0.350194
InternetService_No	-0.060817
OnlineSecurity_No internet service	-0.060817
OnlineSecurity_Yes	-0.474165
OnlineBackup_No internet service	-0.060817
OnlineBackup_Yes	-0.232989
DeviceProtection_No internet service	-0.060817
DeviceProtection_Yes	-0.149205
TechSupport_No internet service	-0.060817
TechSupport_Yes	-0.434944
StreamingTV_No internet service	-0.060817
StreamingTV_Yes	0.052564
StreamingMovies_No internet service	-0.060817
StreamingMovies_Yes	0.062734
Contract_One year	-0.668991
Contract_Two year	-1.368261
PaperlessBilling_Yes	0.322900
<pre>PaymentMethod_Credit card (automatic)</pre>	-0.051417
PaymentMethod_Electronic check	0.335348
PaymentMethod_Mailed check	-0.054520

Train/test split with stratification of the response variable

Out[45]: 0

0 2582 1 934 dtype: int64

Fix the class imbalance issue on the training data (Skip this and return to check differences)

```
In [46]: from imblearn.over_sampling import ADASYN
         ada = ADASYN()
         train_X, train_y = ada.fit_sample(train_X, train_y.ravel())
         train_X = pd.DataFrame(train_X)
         train_y = pd.Series(train_y)
In [47]: # Check the synthetic insertions
         train_y.value_counts()# value counts
Out[47]: 1
              2647
              2582
         dtype: int64
Feature scaling to prepare data for l1 regularization
In [48]: # Feature Scaling
         from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
         train_X_std = sc.fit_transform(train_X)
         test_X_std = sc.transform(test_X)
1.0.4 Predictive Model
In [49]: # Build a logistic regression model as a baseline
         logit_reg = LogisticRegressionCV(penalty="l1", Cs=100, solver='liblinear', class_weig
                                          cv=10, max_iter=5000, scoring="accuracy", random_sta
         model = logit_reg.fit(train_X, train_y)
In [50]: # we are only interested in classification accuracy
         classificationSummary(train_y, model.predict(train_X))# on train data
         classificationSummary(test_y, model.predict(test_X)) # on test data
Confusion Matrix (Accuracy 0.8281)
      Prediction
Actual
         0
               1
     0 2101 481
     1 418 2229
Confusion Matrix (Accuracy 0.7673)
```

```
Prediction
Actual
          0
               1
     0 2094 487
     1 331 604
In [51]: classes = model.predict(test_X_std)
         print(metrics.classification_report(test_y, classes))
                           recall f1-score
              precision
                                               support
                             0.54
           0
                   0.69
                                       0.61
                                                  2581
           1
                   0.20
                             0.32
                                       0.25
                                                   935
                                       0.49
                                                  3516
    accuracy
                                       0.43
                                                  3516
  macro avg
                   0.45
                             0.43
weighted avg
                   0.56
                             0.49
                                       0.51
                                                  3516
```

1.0.5 Lift and Gain Charts

1.0.6 ROC Chart

```
In [53]: logit_reg_pred = logit_reg.predict(test_X)
         logit_reg_proba = logit_reg.predict_proba(test_X)
        preds = logit_reg_proba[:,1]
         fpr, tpr, threshold = metrics.roc_curve(test_y, preds)
         roc_auc = metrics.auc(fpr, tpr)
        plt.figure()
         plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % roc_auc)
        plt.plot([0, 1], [0, 1], 'r--')
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
         plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver operating characteristic')
         plt.legend(loc="lower right")
         plt.savefig('Log_ROC')
         plt.show()
```


In []:

In []: