

Escuela Superior Politécnica del Litoral Facultad de Ingeniería en Mecánica y Ciencias de la Producción Guía de Práctica de Mecánica de Fluidos I

PRÁCTICA VIRTUAL # 4 "MEDICIÓN DE FUERZA CON GALGAS EXTENSIOMÉTRICAS"

OBJETIVOS:

- Entender el principio de funcionamiento de la galga extensiométrica en una celda de carga y sus diferentes configuraciones
- Caracterizar la respuesta en estado estable del sistema de medición (análisis de histéresis, linealidad, sensibilidad, etc)
- Comparar las mediciones hechas con una celda de carga industrial versus una balanza electrónica de bajo costo.

PROCEDIMIENTO EXPERIMENTAL:

PARTE A (salida en función del peso)

- Realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl-
 Realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl realizar los tres experimentos simulados propuestos en el siguiente link
 http://sl realizar los tres experimentos simulados propuestos en el siguiente link
 realizar los tres experimentos simulados propuestos en el siguiente link
 realizar los tres experimentos en el sigui
 - coep.vlabs.ac.in/StrainGuage/Aim.html?domain=Electrical%20Engineering&lab=Sensor%20Lab (ver figura 2)
- 2) Ingrese los valores de material, voltaje de entrada, resistencia, configuración y factor de galga asignados por lista. Presiones el botón configurar y confirme su selección.
- 3) Seleccione un valor de masa mínimo (0.5 Kg), el programa le dará la nueva resistencia de las galgas, calcule el valor de la salida del puente en mV redondeado a 2 decimales, las ecuaciones importantes pueden ser accedidas por medio del botón de Fórmula a la derecha.
- 4) Ingrese el valor calculado y presione Submit, el programa le indicará si el valor ingresado es correcto o no. Si fue correcto, elija un peso mayor y repita los pasos 3 y 4 hasta llenar la tabla 1 con al menos 5 diferentes valores desde el mínimo hasta el máximo.
- 5) Presionar plot para observar los datos graficados de la salida en mV en función de la masa, el siguiente experimento queda habilitado.

PARTE B (salida en función de distancia de aplicación)

- 6) Dar click en el nivel 2 y confirmar los datos, esta parte se realiza usando los mismos datos de configuración y la última masa usada en la PARTE A, variando la posición de la masa.
- 7) Elija diferentes posiciones para la masa, el programa calculará directamente la salida en mV, llene la tabla 2 con al menos 5 diferentes datos desde la posición mínima a la máxima.

PARTE C (salida en función de la temperatura)

- 8) Dar click en nivel 3
- 9) Seleccionar la temperatura mínima, el programa automáticamente calculará la resistencia de las galgas.
- 10) Repita el paso anterior para las otras cuatro temperaturas, ingresar los datos obtenidos en la tabla 3.

Figura 2. Simulador de puente completo

TABLAS DE DATOS Y RESULTADOS:

L = 16 cm				
Masa aplicada [kg]	Fuerza aplicada Fa [N]	Valor de Rg	Salida de puente [mV]	
		_		

Tabla 1. Experimento A, nivel 1

M =	[Kg]
Distancia [cm]	Salida de puente [mV]

Tabla 2. Experimento B, nivel 2

Rg@20	[Ω]	
Temperatura [ºC]	Rg [Ω]	Salida de puente [mV]

Tabla 3. Experimento B, nivel 3

ANÁLISIS Y RESULTADOS:

- Graficar de forma independiente a los plots ofrecidos por la plataforma, la salida del puente en función de la masa aplicada, la salida en función de la distancia y la salida en función de la temperatura.
- Analice los tipos de relaciones entre las variables graficadas, la influencia de la temperatura y configuraciones de cada sistema de medición (material, voltaje, configuración, etc)
- Calcule la propagación del error donde sea posible, asumiendo las incertidumbres instrumentales de acuerdo a la resolución de los valores mostrados en la simulación.

PREGUNTAS EVALUATIVAS

- 1) ¿Cuál es la diferencia entre una galga extensiométrica y una celda de carga?
- 2) ¿Por qué conviene corregir el error de desfase u "offset" de la salida del puente vía hardware en lugar de software?
- 3) Enliste los pasos básicos para la instalación de una galga extensiométrica sobre una superficie de aluminio.