Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = |1\rangle$ and the quantum gate Identity is applied. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

The Identity gate, also known as the Identity matrix, is a quantum gate that leaves the state of the qubit unchanged. Mathematically, the Identity matrix is defined as:

$$I = |0\rangle\langle 0| + |1\rangle\langle 1|$$

where $|0\rangle$ and $|1\rangle$ are the computational basis states of the qubit.

When the Identity gate is applied to the state $|1\rangle$, the resulting state is:

$$I \mid 1 \rangle = (\mid 0 \rangle \langle 0 \mid + \mid 1 \rangle \langle 1 \mid) \mid 1 \rangle = \mid 0 \rangle \langle 1 \mid \mid 1 \rangle + \mid 1 \rangle \langle 1 \mid \mid 1 \rangle = \mid 0 \rangle (\langle 1 \mid 1 \rangle) + \mid 1 \rangle (\langle 1 \mid 1 \rangle) = \mid 1 \rangle$$

In other words, the Identity gate leaves the state |1| unchanged.

Graphically, the circuit for this operation can be represented as:

$$|1\rangle$$
 --I-- $|1\rangle$

where the qubit is initialized in the state $|1\rangle$, the Identity gate I is applied, and the final state is also $|1\rangle$.

So, the final state of the system is still $|1\rangle$.

Answer 2

The Identity gate in quantum computing is a gate that leaves the state of the qubit unchanged. In other words, when the Identity gate is applied to a qubit, it does nothing to the qubit. Mathematically, the Identity gate is represented by the 2x2 identity matrix:

$$I = [[1, 0], [0, 1]]$$

Graphically, the circuit for the Identity gate is simply a wire that connects the input qubit to the output qubit without any additional gates or operations.

$$|1\rangle$$
 --[I]-- $|1\rangle$

Since the Identity gate does not change the state of the qubit, the final state of the system will be the same as the initial state:

$$|\psi\rangle = |1\rangle$$

Answer 3

The Identity gate, often denoted as I or sometimes as the "do nothing" gate, is a quantum gate that leaves the state of a qubit unchanged. When applied to a qubit, it has no effect on the qubit's state. In other words, if the system is initially in the state |1| and the Identity gate is applied, the final state remains | 1|.

Graphical representation of the circuit:

$$|1\rangle - I - |1\rangle$$

In this circuit representation, the initial state $|1\rangle$ is input to the Identity gate (represented by the symbol I), and the resulting state is also $|1\rangle$.

To summarize:

Initial state: |1>

Quantum gate applied: Identity (I)

Final state: |1>