Chapitre 3 - Généralités sur les fonctions

L'équation de croissance des villes (Marc Barthélémy)

1 fonction : concept et représentation

1.1 fonction: l'idée

petit dessin pour comprendre

définition

- la fonction f: c'est la boîte noire
 - elle peut être notée de différentes façons :
 - f (juste le nom)
 - y = f(x) ou $f: x \longmapsto f(x)$ (le nom et l'expression de l'image en fonction de la <u>variable muette</u>, ici x)
 - $f: \begin{vmatrix} D_f & \longrightarrow & Im(f) \\ x & \longrightarrow & f(x) \end{vmatrix}$ (le nom, l'expression de son image ainsi que les ensembles de départ et d'arrivée) (c'est l'écriture la plus lourde mais la plus précise)
- l'antécédent x : la valeur en entrée (aussi appelé variable muette ou paramètre)
- l'image f(x): la valeur en sortie
- synthèse : la fonction f a pour antécédent x et pour image f(x)

remarque

- toutes les fonctions ne s'appellent pas f, tous les antécédents ne s'appellent pas x
- on peut imaginer la fonction hello tel que :

 $hello(soleil) = 3 \times soleil + 2$ qui est identique à

f(x) = 3x + 2 avec un peu plus de soleil!

- HP : on peut imaginer des fonctions à plusieurs variables; par exemple : $volume_pav_droit(longueur, largeur, hauteur) = longueur \times largeur \times hauteur$
- HP: de même, on peut élargir le concept de fonction pour avoir plusieurs sorties (avec une seule entrée), ce qui semble un peu plus dur à imaginer
 - ex classique : $f(z) = \sqrt{z}$, $z \in \mathbf{C}$

vocabulaire complémentaire

- fonction f ou y = f(x): c'est la boîte noire
- l'ensemble des antécédents x de f s'appelle l'ensemble de définition de f
- HP: l'ensemble des images de f est : $Im(f) = \{y = f(x), x \in D_f\}$
- HP : l'ensemble des antécédents de f est : $D_f = \{x = f^{-1}(y) \, , \, y \in Im(f)\}$

1.2 1 fonction 3 représentations (chacune utile et complémentaire)

un exemple

- $f: \left| \begin{array}{ccc} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longrightarrow & 3x+1 \end{array} \right| ; f$ possède une **expression algébrique** <u>cad</u> une formule
- on peut lui associer un tableau de valeurs :

_										
	-4						l			
f(x)	-11	-8	-5	-2	1	4	7	10	13	16

• on peut aussi tracer le graphique associé à la fonction f

propriété

- expression algébrique (ou formule) : information complète mais n'existe pas toujours
 - pratique pour faire le calcul d'une image
 - permet de trouver le ou les antécédent(s) d'un nombre
 - information complète : permet de construire le tableau de valeurs et le graphe
 - HP : elle permet (potentiellement) de définir la fonction réciproque f^{-1}
- tableau de valeurs : incomplet mais efficace (aux points données)
 - pratique pour les valeurs dans le tableau (pas de calcul à faire)
 - incomplet : on ne connaît pas le résultat pour les valeurs qui ne sont pas dans le tableau
 - permet de construire le tableau de valeurs et le graphe de la fonction
 - informatique:
 - un tableau de valeurs est une base de données
 - on peut l'interroger pour avoir des réponses concrètes
 - technologie : fichier csv, document excel, requête sql ...
 - utilisateur : dirigeant d'entreprise / commercial (reporting), scientifique, ingénieur (abaques, résultats connues, simulations ...
- graphe : allure (partielle) de la fonction
 - pratique pour donner l'allure de la fonction
 - imprécis : l'information dépend de la précision du graphique
 - incomplet : ne donne qu'une partie de la courbe

à vous de jouer

- on considère la fonction $g(x) = -3x^2 + 2x + 1$
- construire le tableau de valeurs (grâce à votre calculatrice) sur [-5; 5] avec un pas de 1
- construire le graphe associé
- trouver les antécédents de 1
- trouver les antécédents de 2

2 fonction particulière

2.1 fonction paire

un exemple : $y = x^4 - 3x^2 - 1$

définition - propriété

- <u>définition</u>: f est paire si : $\forall x \in D_f : f(-x) = f(x)$
- propriété caractéristique : f a pour axe de symétrie la droite x=0
- astuce : le tableau de valeurs est alors symétrie par rapport à 0

exemple classique

- $x \longrightarrow x^2$ est paire
- tout polynôme ne comprenant que des monômes de degrés pairs est pair, par exemple : $x \longrightarrow 3x^4 x^2 + 1$
- $x \longrightarrow \cos x$ est paire
- la somme de fonctions paires est paire
- approfondissement : composition de fonctions paires et impaires : que peut-on dire?

2.2 fonction impaire

$$\mathbf{un\ exemple:}\ y = \frac{1}{10}x^3 - \frac{1}{x}$$

définition - propriété

- <u>définition</u>: f est impaire $si: \forall x \in D_f: f(-x) = -f(x)$
- propriété caractéristique : f a pour centre de symétrie le point O(0,0)
- astuce : le tableau de valeurs est alors symétrie par rapport à 0, au signe près

exemple classique

- $x \longrightarrow x$ est impaire; $x \longrightarrow x^3$ aussi
- tout polynôme ne comprenant que des monômes de degrés impairs est impair, par exemple : $x \longrightarrow 3x^3 x^2$
- $x \longrightarrow \sin x$ et $x \longrightarrow \tan x$ sont impaires
- la somme de fonctions impaires est impaire

2.3 fonction périodique

un exemple : $y = 2\sin x$

définition - propriété

- <u>définition</u>:
 - f est périodique si un motif (fini) se elle se répète à l'infini
 - la taille T (sur les x) du motif répété est appelée la période
 - mathématiquement : f est périodique si $\exists T \in \mathbf{R}$ tel que : $\forall x \in \mathbf{R}$, f(x+T) = f(x)
- astuce : le tableau de valeurs se répète tous les T

exemple classique

- $x \longrightarrow \sin x, x \longrightarrow \cos x$ et $x \longrightarrow \tan x$ sont périodiques
- attention, la somme de 2 fonctions périodiques n'est pas forcément périodique (mais là c'est un peu compliqué ...)

3 fonction de référence

3.1 fonction carrée : $x \longrightarrow x^2$

forme algébrique et tableau de valeurs

•
$$f: \begin{bmatrix} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longrightarrow & x^2 \end{bmatrix}$$

• c'est une fonction paire

_	x	-4	-3	-2	-1	0	1	2	3	4
•	f(x)									

graphique

3.2 function inverse: $x \longrightarrow \frac{1}{x}$

forme algébrique et tableau de valeurs

•
$$f: \left| \begin{array}{ccc} \mathbf{R}^* & \longrightarrow & \mathbf{R}^* \\ x & \longrightarrow & \frac{1}{x} \end{array} \right|$$

• c'est une fonction impaire

	x	-4	-3	-2	-1	0	1	2	3	4
•	f(x)									

graphique

3.3 fonction affine : $x \longrightarrow 3x + 1$

3.4 fonction racine : $x \longrightarrow \sqrt{x}$

3.5 fonction cube : $x \longrightarrow x^3$

