

MTH 309T LINEAR ALGEBRA EXAM 1

	EXAM 1 October 3, 2019
Name:	
John Kos	zela
UB Person Number:	Instructions:
\(\begin{array}{c c c c c c c c c c c c c c c c c c c	(S)
1 2 3	4 5 6 7 TOTAL GRADE

20	7	5	20	15	4	1	2	10	81	В
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{array}{c}
(1) \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & 5 \end{bmatrix} & R_3 = R_2 + R_3 \\
R_3 = R_3 - 2R_1 & \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & b+6 \end{bmatrix} \\
\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & -2 & b+4 \end{bmatrix} & b+6 = 0 \\
b = -6
\end{array}$$

b)
$$X_{1}V_{1} + X_{2}V_{L} + X_{3}V_{3} = 0$$

aug matrix

$$\begin{bmatrix} V_{1} & V_{2} & V_{3} & 0 \\ V_{1} & V_{2} & V_{3} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & -3 & 0 & 0 \end{bmatrix}$$
Reducing rows
$$R_{3} = R_{3} - 2R_{1}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -1 & -2 & 0 \end{bmatrix}$$

free variable means virting many solutions

the set & VIIVeI V33 is not Inearly indimendent

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$3 \times 3$$

spose of A).

$$C = \{A^T\} \cdot B$$
 $C = \{A^T\} \cdot B$
 $C = \{A^T\} \cdot B$

C is a
$$3\times3$$
 matrix
$$\begin{bmatrix} 1 & 10 \\ -1 & 0z \\ 2 & 1-1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} \qquad C \qquad B$$

C=	5 5	12	0	و
ل	7	14	0]	

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors \mathbf{u} satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u,v,w are vectors in \mathbb{R}^3 such that $w+u\in \text{Span}(u,v)$ then $w\in \text{Span}(u,v).$

True, u is in the span of u

So adding it does not take it out?

of span.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

true. V there would be no free variables ? when reducins the set to Eu, v, w} to Eu, v, w}?

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

$$A = \begin{bmatrix} # & # \\ # & # \end{bmatrix}$$

A=[##] true, same transformation done on vande

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

if transformation is 2x2 matrix it could take u out of Dpen of vandw