

$VS7809 \, \hbox{Three-terminal positive voltage regulator}$

FEATURES

Maximum output current

I_{OM}: 1.5 Å

Output voltage

V₀: 9V

Continuous total dissipation

P_D: 1.25 W (T_a= 25 °C)

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	35	V
Thermal Resistance from Junction to Ambient	R _{0JA}	80	°C/W
Operating Junction Temperature Range	T _{OPR}	-40~+125	°C
Storage Temperature Range	T _{STG}	-65~+150	$^{\circ}$

ELECTRICAL CHARACTERISTICS AT SPECIFIED VIRTUAL JINCTION TEMPERATURE (Vi=16V, lo=500mA, Ci=0.33µF, Co=0.1µF, unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Output Voltage		T _J =25°C	8.73	9	9.27	V
	Vo	11.5V≤V _i ≤24V, lo= 5mA-1A, P≤10W	8.55	9	9.45	V
Load Regulation	ΛVo	lo=5mA-1.5A ,T _J =25°C		12	180	mV
	Δνο	lo=250mA-750mA ,T _J =25°C		4	90	mV
Line Regulation	ΔVο	11.5V≤V _i ≤27V ,T _J =25°C		7	180	mV
	Δνο	13V≤V _i ≤19V ,T _J =25°C		2	90	mV
Quiescent Current	Iq	T _J =25°C		4.3	8	mA
Quiescent Current Change	Ala	11.5V≤V _i ≤27V			1	mA
	Δlq	5mA≤I _O ≤1A			0.5	mA
Output voltage drift	△Vo/△T	I _O =5mA		-1		mV/℃
Output Noise Voltage	V _N	10Hz≤f≤100KHz,T _J =25°C		60		μV/Vo
Ripple Rejection	RR	12V≤V _i ≤22V,f=120Hz	55	70		dB
Dropout Voltage	Vd	lo=1A ,T _J =25°C		2		V
Output resistance	Ro	f=1KH _Z ,T _J =25°C		18		mΩ
Short Circuit Current	Isc	T _J =25°C		400		mA
Peak Current	lpk	T _J =25°C		2.2		А

Pulse test.

TYPICAL APPLICATION

Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

