

Social Data Management Communities

Silviu Maniu

November 18th, 2022

M₂ Data Science

Table of contents

Communities in Graphs

Graph Communities

Communities in the Belgium call graph

Graph Communities

Communities in Zachary's Karate club

Detecting Communities – Hypothesis 1

Hypothesis

A graph's community structure is uniquely encoded in its topology.

Detecting Communities – Hypothesis 2

Hypothesis

A community is a locally dense connected subgraph in a network.

Detecting Communities

A few approaches:

- 1. **Maximum Cliques**: a community is a subgraph whose nodes are all connected to each other.
- 2. **Strong Communities**: relaxation of cliques, depending on the *internal degree* (number of neighbors in the community) vs. *external degree* (neighbours outside of the community) a strong community has a greater internal degree than external degree.

Detecting Communities

A naïve algorithm for detecting 2 communities:

- 1. divide the graph in two (find a **cut**) and decide if they are strong communities, and
- 2. choose the best cut over all possible cuts.

This can generalize to more communities, but it needs to generate an **exponential** number of cuts.

Polynomial Algorithms

We need polynomial algorithms to be able to detect efficiently the communities in a graph.

One approach is hierarchical clustering:

- uses a similarity matrix X, where x_{ij} encodes the similarity between nodes i and j, and
- based on this, agglomerative algorithms merge nodes into the same community, while
- divisive algorithms isolate communities by removing low similarity links.

Agglomerative Algorithm – Ravasz

- 1. **Define the similarity matrix**: various ways, but the algorithm uses the *topological overlap matrix*, encoding the number of common neighbors over the maximum possible.
- 2. **Define group similarity**: computed as the average cluster similarity the average of x_{ii} over all node pairs
- 3. Apply the Hierarchical Clustering:
 - 3.1 assign each node to a community of their own,
 - 3.2 find the community pairs with highest similarity and merge them,
 - 3.3 compute the similarity between all communities
 - 3.4 repeat until only one community exists.
- 4. The community structure will be encoded in the *Dendogram*, showing the order in which communities were merged (see next slide).

Agglomerative Algorithm – Ravasz

Divisive Algorithm – Girvan-Newman

Divisive algorithms remove edges:

- 1. **Define centrality**: x_{ij} needs to select nodes in different communities, e.g., betweenness.
- 2. Apply the Hierarchical Clustering:
 - 2.1 remove the link with the largest centrality
 - 2.2 recompute the centrality of all other links
 - 2.3 repeat until no links exist
- The community structure will be encoded in the **Dendogram**, showing the order in which edges were removed (see next slide).

Divisive Algorithm – Girvan-Newman

Detecting Communities - Hypothesis 3

HypothesisRandom networks lack a community structure.

Modularity

Consider a graph having some partition into communities C having L_C links. If L_C is greater than the number of links expected by a random wiring having the same degree distribution, then it is a potential community.

This is measured by the **modularity**:

$$M_{C} = \frac{1}{2L} \sum_{(i,j) \in C} (A_{ij} - p_{ij}),$$

where p_{ij} can be computed by randomizing the original network, e.g.,:

$$p_{ij} = \frac{k_i k_j}{2L}.$$

For the entire graph: we sum the modularities over all communities.

Modularity – Examples

Modularity – Algorithm

Hypothesis

The partition with maximum modularity corresponds to the optimal community structure.

Modularity – Algorithm

For computation efficiency concerns, all algorithms use a **greedy approach**:

- 1. Assign each node to its own community.
- 2. Inspect each community pair connected by at least one link and merge the ones having the highest increase in modularity ΔM for the whole network.
- 3. Repeat until all nodes are in a single community.
- 4. Choose the partition with the highest modularity.

Louvain algorithm: optimizes the modularity **for each node** – moves one node in the nearest community w.r.t. modularity

Community Detection Algorithms – Complexity

algorithm	type	complexity
Ravazs	agglomerative	$\mathcal{O}(N^2)$
Girvan-Newman	divisive	$\mathcal{O}(N^3)$
greedy optimized	modularity	$\mathcal{O}(N\log^2 N)$
Louvain	modularity	$\mathcal{O}(L)$
Infomap	flow	$\mathcal{O}(N \log N)$

Open Issues in Community Detection

- Do communities really exist?: given a network, do we know it is always organized in communities?
- Are the hypotheses valid?: is a community only identified by its wiring diagram?
- · Does everybody belong to a community?
- How do we know which measure is the valid one?: centrality, similarity, modularity, flow, etc.

Acknowledgments

Figures in slides 3, 4, 11, 13, and 16 taken from the book "Network Science" by A.-L. Barabási. The contents is partly inspired by the flow of Chapter 9 of the same book. http://barabasi.com/networksciencebook/

References i

- Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.

 Fast unfolding of communities in large networks.

 Journal of Statistical Mechanics: Theory and Experiment, 2008(10).
- Girvan, M. and Newman, M. E. J. (2002).

 Community structure in social and biological networks.

 Proceedings of the National Academy of Sciences, 99(12):7821–7826.
- Newman, M. E. J. (2004).

 Fast algorithm for detecting community structure in networks.

 Phys. Rev. E, 69.

References ii

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L. (2002).

Hierarchical organization of modularity in metabolic networks. *Science*, 297(5586):1551–1555.