Github Link: https://github.com/psturmfels/tilt measurement

Part 1: I measured the angular velocity and acceleration over 5 minutes while the phone was not moving, and plotted the recorded values in each plane in a box plot, below:

Direction	Mean of Angular	Standard Deviation	Mean of	Standard Deviation
	Velocity	of Angular Velocity	Acceleration	of Acceleration
X	-0.012881	0.001041	0.002524	0.002873
У	0.024203	0.000846	-0.000348	0.003575
Z	-0.021752	0.001315	-1.0004805	0.004191

We use the mean the x and y planes to correct the recorded values from here on out.

Part 2:

We plot the x and y tilt of the device when held still for 5 minutes using the gyroscope only (blue), the accelerometer only (orange), and using a linear combination of the two (green) with a beta of 0.98. Using only the accelerometer is unbiased but very noisy. Using only the gyroscope has very little noise, but incurs bias. Using a combination of both provides the best results.

