Computabilità e Algoritmi (Computabilità) 3 Aprile 2012

Esercizio 1

Dati due insiemi $A, B \subseteq \mathbb{N}$ definire il significato di $A \leq_m B$. Dimostrare che dati comunque $A, B, C \subseteq \mathbb{N}$ vale:

a. se
$$A \leq_m B$$
 e $B \leq_m C$ allora $A \leq_m C$;

b. se
$$A \neq \mathbb{N}$$
 allora $\emptyset \leq_m A$.

Esercizio 2

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice *quasi totale* se è indefinita su di un insieme finito di punti. Esiste una funzione quasi totale e calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che $f \subseteq \chi_K$? Motivare adeguatamente la risposta fornendo un esempio di tale funzione nel caso esista e una prova della non esistenza, altrimenti.

Esercizio 3

Studiare la ricorsività dell'insieme

$$B = \{\pi(x, y) : P_x(x) \downarrow \text{ in meno di } y \text{ passi}\},$$

ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Si dica che una funzione $f: \mathbb{N} \to \mathbb{N}$ è simmetrica nell'intervallo [0, 2k] se $dom(f) \supseteq [0, 2k]$ e per ogni $y \in [0, k]$ vale f(y) = f(2k - y). Studiare la ricorsività dell'insieme

$$A = \{x \in \mathbb{N} : \exists k > 0. \ \varphi_x \text{ simmetrica in } [0, 2k]\},$$

ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Siano e_0 ed e_1 indici della funzione sempre indefinita \emptyset e della costante 1, rispettivamente. Si enunci il Secondo Teorema di Ricorsione e lo si utilizzi per dimostrare che non è calcolabile la funzione $g: \mathbb{N} \to \mathbb{N}$ definita da

$$g(x) = \begin{cases} e_0 & \varphi_x \text{ totale} \\ e_1 & \text{altrimenti} \end{cases}$$