Western Alps	35.4	29.6	34.9	36.8	35.3	136.9
Quebec, Canada	104.5	94.8	113.5	118.3	116.1	147.5
British Isles	57.9	48.7	59.1	59.0	58.4	62.1
Amazon Basin	344.9	310.6	365.1	367.5	363.8	909.3
Iberian Peninsula	586.4	519.2	657.9	659.8	658.5	689.9
Nile Basin	627.9	519.3	780.3	658.6	2012.3	2434.5
Mean Percent of F	100.0%	86.6%	108.3%	107.1%	127.2%	203.2%
1. Notes: $F = Wang$ and Liu depression filling algorithm; $B = new$ algorithm;						
complete depression breach mode; SB1 = new algorithm; selective breaching						
mode, 20 m max. depth; SB2 = selective breaching mode, 20 m max. depth,						
100 cell max. length; CB1 = constrained breaching mode, 20 m max. depth;						
CB2 = constrained b	reaching r	node, 20	m max. d	lepth, 100	cell max.	length

 $\mathbf{B^1}$

 $\mathbf{F^1}$

Region

 $SB1^1$

 $\mathrm{SB2^1}$ $\mathrm{CB1^1}$