CÀLCUL INTEGRAL EN DIVERSES VARIABLES. PRIMAVERA 2013

Llista 5: Integrals de superfície. Teoremes de Stokes i de Gauss

- 1. Calculeu l'àrea de les superfícies d' \mathbb{R}^3 :
 - a) $\{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 = 1, \ z \ge 1/2\}$
 - b) $\{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2, \ y > 0, \ 1 < z < 2\}$
 - c) $\{(x, y, z) \in \mathbf{R}^3 \mid z = x^2 + y^2, \ 2 \le x^2 + y^2 + z^2 \le 6\}$
- **2.** Sigui S la part de la superfície cilíndrica $x^2 + y^2 = 1$, $y \ge 0$, compresa entre el pla z = 0 i la corba $(\cos t, \sin t, 1 + t)$, $t \in [0, \pi]$.

Si
$$f(x,y,z)=x^2+y^2+z^2$$
, i $F(x,y,z)=(1,1,1)$, calculeu $\int_S f\ d\sigma$, $\int_S F\cdot d\sigma$

- **3.** Sigui F(x,y,z)=(xy,yz,zx). Comproveu el teorema de Stokes per al camp F sobre la superfície regular $S=\{(x,y,z)\in\mathbf{R}^3\mid x^2+y^2+z^2=1,\ x,y,z\geq 0\},$
- **4.** Sigui $S=(S_1,S_2)$ la superfície regular d' \mathbf{R}^3 orientada segons la normal exterior, S_1 definida per $x^2+y^2+(z-1)^2=1,\ 1\leq z\leq 3/2,\ i\ S_2$ per $x^2+y^2=1,\ 0\leq z\leq 1.$ Si $F(x,y,z)=(ye^z,x^2(x^3+1),\cos(x\sin^2y)),\ \text{calculeu}\ \int_S rot\ F\cdot d\sigma$
- **5.** Sigui la superfície $S = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2, \ 1 \le z \le 4\}$, orientada segons la normal exterior. Calculeu la circulació del camp $F(x, y, z) = (xz, y^2, z)$ sobre la vora de la superfície, orientada positivament en relació amb S.
- **6.** Calculeu el flux del camp $F(x,y,z) = \left(\frac{xz}{a^2}, \frac{yz}{b^2}, \frac{z^2}{c^2}\right)$ a través de la superfície regular $S = \{(x,y,z) \in \mathbf{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, z \ge 0\}. \quad (a,b,c>0)$

7. Siguin $S_1 = \{(x, y, z) \in \mathbf{R}^3 \mid z = x^2 + y^2 + 1, z \le 5\}$, orientada per la normal amb tercera component positiva, i $S_2 = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 = 4, 0 \le z \le 5\}$, orientada per la normal exterior al cilindre.

Si $F(x,y,z)=(xy^2,x^2y,z(x^2+y^2))$, calculeu el flux d'F a través de la superfície $S=S_1\cup S_2$.

- 8. Calculeu el flux del camp $F(x,y,z)=(xz^2+e^{y+z},y+z^2\sin(xz),x^2+y^2+z^2)$, a través de la superfície $S=\{(x,y,z)\mid x^2+y^2-z^2=1,\ 0\leq z\leq 1\}$ en el sentit de la normal exterior.
- **9.** Siguin $S_1 = \{(x, y, z) \mid x^2 + y^2 = 4, -2 \le z \le 2\}, S_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\},$ orientades segons les seves normals exteriors.

Si $F(x,y,z)=(x^2+y^2+z^2)^{-3/2}(xz,yz,z^2)$, proveu que $\int_{S_1}F\cdot d\sigma=\int_{S_2}F\cdot d\sigma$