{EPITECH}

PRE-POOL

DAY 02

PRE-POOL

BANDIT WARGAME

In addition to the tasks below, you must go as far as possible in this game. Work on it as soon as you have a bit of time, or whenever you need a break in you day!

Operations

Task 1.1

Open the Python interpreter console and type:

$$\checkmark 1+1$$

$$\checkmark$$
 30 + 12

$$\checkmark$$
 777 + (-735)

$$\checkmark$$
 1+2+3+5+7+11+13

Task 1.2

Get the results of:

✓
$$84 - 42$$

$$\checkmark 0 - (-42)$$

$$\checkmark$$
 $(-6)*(-7)$

$$\checkmark 2 + 5 * 8$$

$$\checkmark$$
 $(3+(3*4-2*2)*3-2)*2-3$

What is the difference between 84/2 and 84//2?

Task 1.4

What happens when typing 84/(8 + (-3) + (-7) + 2)?

Variables

Task 2.1

Compute 1 + 11 + 111 + ... + 111111111.

Also computes this number power 2, power 3, power 4, power 5, power 6 and power 7.

Do the same job with:

Compare with others'code to try to produce the most elegant code possible.

Task 2.2

Computes 17^{1024} in less than 10 lines of code.

constant, invariable, stable,
 unvarying, unchangeable,
unchanging, fixed, changeless,
 consistent, uniform

I Thesaurus.plus

Modulo

Task 3.1

Write a snippet of code that computes the result, as well as both the quotient and the remainder of the euclidean division 42/4. It should output something like:

If you are not familiar with the euclidean operator, you'd better search for it on Internet. And also check the modulo operator...

Task 3.2

Write a snippet of code in order to check if a number is odd or even.

It would be nice if your program could print "odd" or "even", depending of the result.

Task 3.3

Write a snippet of code that calculates the sum of the digits of 123434565. Use the same code to calculates the sum of the digits of the following numbers:

- **✓** 345567426
- **✓** 44490320097

Task 3.4

Getting inspiration from your previous code, write a snippet of code that extracts the integer part of the following numbers:

- **✓** 12.24
- **✓** 424242.8412

Task 3.5

Getting inspiration from your previous code, write a snippet of code that extracts the decimal part of the following numbers:

- **✓** 12.24
- **✓** 424242.8412

CHALLENGE

Rewrite the previous task with the least possible number of characters.

Archimedes constant and more

Task 4.1

Calculate the first 6 decimals of Pi using the formula:

$$\pi = 4 * (1/1 - 1/3 + 1/5 - 1/7...)$$

Task 4.2

Calculate the first 6 decimals of Pi using this amazing formula:

$$\pi - 3 = \frac{1^2}{6 + \frac{3^2}{6 + \frac{5^2}{6 + \frac{7^2}{6 + \dots}}}}$$

{EPITECH}