Лекция 5: Контроль качества и выбор модели

Валидация, кросс-валидация и бутстреппинг

- Эти методы позволяют:
 - оценить ошибки прогнозирования тестового набора
 - □ найти стандартное отклонение и оценки параметров модели
 - □ выбрать лучшую модель
- Различия между ошибкой тестирования и ошибкой обучения:
 - □ Ошибка тестирования это усредненная ошибка, которая возникает в результате применения модели машинного обучения для прогнозирования отклика на новом наблюдении, которое не было задействовано в процессе обучения.
 - Ошибка обучения вычисляется во время применения метода машинного обучения к наблюдениям, используемым в обучении.

м

Применение валидационного набора

 Разделим случайным образом имеющийся набор образцов на две части: обучающую и валидационную выборки.

- Построим модель на обучающем наборе и используем ее для прогнозирования откликов наблюдений в валидационном наборе.
- Полученная ошибка на валидационном множестве дает оценку тестовой ошибки.

$$HO(\mu, Z, Z_{val}) = Q(\mu(Z \backslash Z_{val}), Z_{val})$$

M

Использование валидационного набора данных

Training Data inputs target inputs inputs

Основные методы генерации валидационного набора:

- Случайная выборка
- Стратифицированная выборка (сохраняем распределение выбранных переменых)
- Кластерная выборка (сохраняем пропорции кластеров)

Оценка моделей

Training Data

Validation Data

Оценка качества моделей на валидационном наборе

Сложность Валидационная модели оценка

Выбор модели

Training Data

Validation Data

Самая простая модель среди самых лучших на валидационном наборе

Сложность Валидационая модели оценка

Пример (Python)

```
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
```

```
plt.hist(iris.target, color="red")
plt.hist(y_train, color="green")
plt.hist(y_test, color="blue")
pass
```

Для кластерной выборки передаем в качестве stratify метки кластеров

Пример

- Хотим сравнить регрессионные модели с разными степенями полиномима
- Разделим случайным образом 392 наблюдения на две группы: обучающий набор, содержащий 196 объектов и валидационный набор, содержащий оставшиеся 196 объектов.

Слева показано одиночное разбиение, справа - множественное

Недостатки подхода применения валидационного набора

- Если плохое разбиение:
 - □ Валидационная оценка ошибки тестирования может сильно варьироваться в зависимости от того, какие именно наблюдения включены в обучающий наборе, а какие в валидационный.
- Не вся информация используется при обучении:
 - □ При валидационный подходе только подмножество наблюдений (те, которые включены в обучающий набора, а не в валидационный) используются для построения модели.
- Чрезмерный оптимизм:
 - □ Ошибка на валидационном наборе может иметь тенденцию переоценивать ошибку тестирования

-Кросс-валидация

- Широко используемый подход для оценки ошибки тестирования.
- Оценки могут быть использованы для:
 - □ выбора оптимальной модели,
 - □ оценки тестовой ошибки результирующей выбранной модели.
- Идея разделить данные на *К* частей равного размера. Мы удаляем часть *k*, строим модель на оставшихся частях, а затем получаем прогнозы для удаленной *k*-ой части.

1	2	3	4	5
Validation	Train	Train	Train	Train

• Это делается в свою очередь для каждой части k = 1, 2, ..., K, а затем результаты объединяются.

1

Кросс-валидация для оценки ошибки

- Обозначим K частей как $Z_1, ..., Z_K$, где Z_k это индексы наблюдений в части k. Есть l_k наблюдений в части k: если l кратно K, то удобно $l_k = l/K$
- Вычислим:

$$\mathit{CV}_Z(\mu) = \sum_{l=1}^K \frac{l_k}{l} \, Q(\mu(Z \backslash Z_k), Z_k)$$
 Loocy 10-fold CV
$$\frac{10-\text{fold CV}}{2}$$
 Degree of Polynomial Degree of Polynomial

■ При K = l имеем l папок или кросс-валидацию с попеременным исключением одного наблюдения — скользящий контроль (leave-one out cross-validation, LOOCV).

Кросс-валидация для оценки метапараметров и выбора модели

- Задают стратегию перебора вариантов метапараметров
- Запускают кросс-валидацию для разных значений метапараметров
- Рассчитывают кросс-валидационные ошибки для каждого варианта
- Выбирают лучшее значение метапараметра по кросс-валидационной ошибке
- Перестраивают модель на всей выборке с этим значением метапараметра

Кросс-валидация и валидация для выбора метапараметров

AutoML:

- □ Поиск по решетке
- □ Случайный поиск
- □ Латинский гиперкуб
- Эволюционные и генетические алгоритмы поиска
- □ «Мета» оптимизация
- □ Байесовская оптимизация

Оценка качества:

□ Не обязательно (и даже как правило) оценка качества для выбора модели совпадает с функцией потерь для обучения модели!!!!

Пример (Python)

from sklearn.utils import resample

X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

×

Пример – Grid Search (Python)

```
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X y=True)
N = 5000
X, y = X[:N], y[:N]
X.shape, y.shape
((5000, 8), (5000,))
scaler = StandardScaler()
VT = VarianceThreshold() # Preprocessing
KNN = KNeighborsRegressor() # Regressor
# Combined model - encapsulates all stages
model = Pipeline([("scaler", scaler), ("VT", VT), ("KNN", KNN)])
```

×

Пример – Grid Search (Python)

```
# Parameters to cycle through
# Pipeline parameters are passed as <STAGE> <PARAMETER NAME>
parameters = {"KNN__n_neighbors": range(2, 20),
              "VT threshold": [0, 1]}
# 5-fold cross-validation
GSCV = GridSearchCV(model, parameters, cv=5)
GSCV.fit(X, y)
pass
GSCV.best params
{'KNN__n_neighbors': 4, 'VT__threshold': 0}
pred = GSCV.predict(X) # GSCV is equal to the best estimator
```


Пример – Grid Search (Python)

```
plt.scatter(*pd.DataFrame(GSCV.cv_results_["params"]).T.values, c=GSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)
```


м

Пример – Случайный поиск (Python)

```
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
```

Пример – Случайный поиск (Python)

```
RSCV.best_params_
{'KNN_n_neighbors': 4, 'VT_threshold': 0.5513147690828912}

pred = RSCV.predict(X) # RSCV is equal to the best estimator
```

plt.scatter(*pd.DataFrame(RSCV.cv_results_["params"]).T.values, c=RSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)

pass

Пример – Отбор (Python)

```
from sklearn.experimental import enable_halving_search_cv # Required import
from sklearn.model selection import HalvingGridSearchCV, HalvingRandomSearchCV
model = Pipeline([("scaler", scaler),
                  ("VT", VarianceThreshold()),
                  ("KNN", KNeighborsRegressor())])
distributions = {"KNN_n_neighbors": randint(2, 20),
                 "VT threshold": uniform(0, 1)}
HRSV = HalvingRandomSearchCV(model, distributions, cv=5,
                             factor=2, # Candidate selection cut-off
                             # Resource increasing during selection:
                             resource="n samples",
                             min_resources=100)
HRSV.fit(X, y)
```

.

Пример – Отбор (Python)

Размер отвечает за число семплов

Бутстрэппинг

- *Бутстрэппинг* представляет собой мощный статистический инструмент, который может быть использован для количественной оценки неопределенности.
- Например, он может позволить произвести оценку стандартной ошибки коэффициента или доверительного интервала для этого коэффициента.
- Использование термина бутстреппинг происходит от фразы, чтобы to pull oneself up by one's bootstraps, - цитата из книги «Удивительные приключения барона Мюнхгаузена»

Барон упал на дно глубокого озера. Когда казалось, что все было потеряно, он решил вытащить себя своими собственными силами.

7

Бутстрэппинг

- Подход бутстрэппинга позволяет имитировать процесс получения новых случайных наборов данных, так что мы можем оценить дисперсию нашей оценки, не создавая дополнительных образцов.
- Вместо того, чтобы постоянно получать независимые наборы данных, мы получаем различные наборы путем многократной выборки наблюдений из исходного набора *с замещением* (или *с возвращением*).
- Каждый из этих "наборов данных" создается путем выборки с замещением и имеет такой же размер как наш исходный набор данных. В результате некоторые наблюдения могут появляться более одного раза в наборе данных бутстреппинга, а некоторые нет вообще.

Демонстрационный пример

- Графическая иллюстрация бутсреппингового подхода на маленькой выборке
- Каждый бутсреппинговый набор данных содержит наблюдения, отобранные с заменой из исходного набора.
- Каждый такой набор данных начальной используется для получения оценки

м

Бутстрэппинг

- Обозначая первый набор данных бутстреппинга как Z^{*k} , мы используем его, чтобы выполнить новую оценку для a^{*k}
- Эта процедура повторяется B раз для некоторого большого значения B (например, 100 или 1000), чтобы получить B различных наборов данных бутстреппинга $Z^{*1}, Z^{*2}, ..., Z^{*B}$, и B соответствующих оценок $a^{*1}, a^{*2}, ..., a^{*B}$
- Оценим среднее и стандартную ошибку этих оценок бутстреппинга:

$$\bar{a} = \frac{1}{B} \sum_{r=1}^{B} (a^{*r}), SE_B(a) = \sqrt{\frac{1}{B-1} \sum_{r=1}^{B} (\bar{a} - a^{*r})^2}$$

 Они служат в качестве оценки, полученной на тестовом наборе данных.

Общая схема бутсрепинга

- В более сложных ситуациях, определение подходящего способа для получения выборок бутстрепинга может потребовать значительных усилий.
- Например, если данные представляют собой временные ряды,
 мы не можем просто выбирать наблюдения с замещением

м

Как бутстрепинг оценивает ошибку прогнозирования

- При кросс-валидации каждая из *К* папок валидации отличается от других *К 1* папок, используемых для обучения: *перекрытия нет*.
- Для оценки ошибки прогнозирования с помощью бутстреппинга мы могли бы подумать об использовании каждого набора данных бутстреппинга в нашей обучающей выборке и исходного набора данных как валидационного набора (или наоборот).
 - Но каждая выборка бутстрепинга имеет значительное перекрытие с исходным набором (около двух третей).
 - □ Это приведет бутстреппинг к существенному недооцениванию истинной ошибки прогнозирования
- Удаление перекрытия (*out of bag*) можно частично решить эту проблему, используя для оценки только те наблюдения, которые не появились (случайно) в текущей выборке бутстреппинга.

$$OOB(\mu) = \sum_{k=1}^{K} \frac{l_k}{l} Q(\mu(Z^{*k}), Z \setminus Z^{*k}), |OOB| = \left(1 - \frac{1}{l}\right)^l \approx e^{-1} \approx 0.37$$

Пример (Python)

```
ITER = 100
SAMPLES = 100
frame = []
for i in range(ITER):
    sample = resample(X, replace=True, n_samples=SAMPLES, stratify=None)
    stat = sample["HouseAge"].mean()
    frame.append(stat)
frame = np.array(frame).flatten()
frame = pd.Series(frame).sort_values()
```

Доверительные интервалы 90% для среднего возраста жилища:

```
frame.quantile(0.05), frame.quantile(0.95)
(26.248, 30.6515)
```

Бутстреп-регрессия (Python)

```
from sklearn.ensemble import BaggingRegressor
estimator = BaggingRegressor(LinearRegression(), n estimators=100
                                 bootstrap=True, max samples=0.1,
                                 random state=42)
                                                                             0.38
                                                                                  0.40
                                                                                       0.42
                                                                                            0.44
                                                                                                      0.48
features = X[["MedInc", "HouseAge"]]
estimator.fit(features, y)
                                                                           200
pass
coefs = np.array([x.coef for x in estimator.estimators ])
                                                                            50
                                                                                         0.016
                                                                               0.012
                                                                                    0.014
                                                                                             0.018
                                                                                                  0.020
 sns.kdeplot(data=coefs[:, 0])
```

```
sns.kdeplot(data=coefs[:, 0])
plt.axvline(coefs[:, 0].mean(), 0, 0.93, ls="--")
plt.axvline(np.quantile(coefs[:, 0],0.025), 0, 0.20,c="red")
plt.axvline(np.quantile(coefs[:, 0],0.975), 0, 0.27,c="red")

sns.kdeplot(data=coefs[:, 1])
plt.axvline(coefs[:, 1].mean(), 0, 0.91, ls="--")
plt.axvline(np.quantile(coefs[:, 1],0.025), 0, 0.13,c="red")
plt.axvline(np.quantile(coefs[:, 1],0.975), 0, 0.25,c="red")
```

Бутстреп-регрессия (Python)

```
pred = np.array([x.predict(features.values) for x in estimator.estimators_]).T
pred.shape

(20640, 100)

plt.plot(np.percentile(pred, q=5, axis=1)[:25], c="blue")
plt.plot(np.percentile(pred, q=95, axis=1)[:25], c="red")
plt.scatter(range(25), estimator.predict(features)[:25], c="green")
pass
```

