Intro to Optimization

MUIC Applied Algorithms

Optimization "Blackbox"

Minimize or Maximize a mathematical function

$$f(\mathbf{X})$$

Often: subject to some constraints

An Optimist's Dream

An Optimist's Dream

Reality:

- * Optimization arises everywhere:)
- * General solvers aren't always fast
- * Some/many useful variants are NP-hard
- * In fact, most optimization problems are really hard!

(Common) Optimization Problem

Minimize $f_0(x)$

- Subject to $f_i(x) \le 0$, i = 1, ..., m
- and $g_i(x) = 0$, i = 1,...,p

where

- $x \in \mathbb{R}^n$ is a vector
- f_0 is the objective function (to be minimized or maximized)
- $f_1, ..., f_m$ are inequality constraint functions
- $g_1, ..., g_p$ are equality constraint functions

The Landscape (Very Briefly)

Unconstrained optimization

$$\min\{f(x):x\in\mathbb{R}^n\}$$

Constrained optimization

$$\min\{f(x): f_i(x) \le 0, g_i(x) = 0\}$$

Integer linear programming

$$\min\{f(x) = c^T x : Ax \le b, x \in \mathbb{Z}^n\}$$

Linear programming (LP)

$$\min\{f(x) = c^T x : Ax \le b, x \in \mathbb{R}^n\}$$

Convex programming

$$\min\{f(x): f_i(x) \le b_i\}$$
 where f, f_i are convex functions

Example: Radiation treatment planning

Physical Modeling

- Radiation beams with intensities $x_j \ge 0$ directed at patient
- Radiation dose y_i received in voxel i
- Overall: y = Ax, where A comes from geometry, physics

Goal: Choose x to deliver prescribed radiation dose d_i , so $d_i=0$ for non-tumor voxels and $d_i>0$ for tumor voxels

- Ideally y = d but generally not possible
- Typical setup: $n \approx 10^3$, $m \approx 10^6$ (a few seconds on the GPU)

Example: Image Reconstruction

 512×512 grayscale image (n ≈ 300000 variables)

Example: Machine learning classifiers

- Support vector machine
- Boosting (turn a collection of unimpressive classifiers into a better overall classifier)
- Etc.

Cheapest Wholesome "Meal"

Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	$4\mathrm{g}$
price [€/kg]	0.75	0.5	0.15*	

^{*}Residual accounting price of the inventory, most likely unsaleable.

Activities

1. Use scipy to solve:

Maximize
$$7x_1 - x_2 + 5x_3$$

Subject to:

$$x_1 + x_2 + x_3 \le 8$$

$$3x_1 - x^2 + 2x_3 \le 3$$

$$2x_1 + 5x_2 - x_3 \le -7$$

$$x \ge 0$$

- 2. Find the dual of the (primal) program on the left.
- 3. Use scipy to solve the dual program. How do their objective values compare?