

Do you see what I see? Comparing optic flow experienced by infants and their mothers

BOSTON UNIVERSITY

Neuroscience and

Neural Technology

NYU ¹Center for Computationa ²Department of Psychology

PENNSTATE

Rick O. Gilmore³ rogilmore@psu.edu

Florian Raudies¹ fraudies@bu.edu

Kari S. Kretch² kari.kretch@nyu.edu

Karen E. Adolph² karen.adolph@nyu.edu

Development of Patterns of Gaze and Heading

Gaze patterns differ by task, but how do task-relevant gaze patterns develop?

What are the differences in experienced flow between infants and adults?

Hayhoe, Visual Cognition 7, 2000

We compared patterns of eye and head motion produced while mothers carried their infants down an indoor hallway.

Eye-Tracking and Video Recording

Parent/infant dyads (N=6) walk down an indoor hallway.

Parent and infant wore a head-mounted eye tracker and scene camera with a resolution of 800 x 600 pixels (54° x 42°) at 30fps.

Franchak et al., Child Development 82, 2011

Data Processing

Optic flow and self-motion was computed from the video stream. Synchronized recordings of eye positions were transformed into rotational eye-velocities using a pinhole camera model.

System diagram and data flow Compute Data Compute Videos self-motion acquisition optic flow of sensor Eye tracks Compute focus of Match with expansion and flow patterns center of rotation Compute eye velocities Frequency Correlation analysis

Acknowledgments

Supported in part by NSF OCI-0821527, NSF SBE-0354378, SMA-0835976, ONR N00014-11-1-0535, NICHD R37-HD33486.

Estimating Optic Flow from Videos

Optic flow is estimated from videos using an algorithm that assumes gray-value-constancy between frames and smoothness for the detected flow.

John M. Franchak² franchak@nyu.edu

Brox et al., In Proceedings of ECCV LNCS 3024, 2004

Results: Do infants and mothers experience similar speeds of flow? Hou et al.. Vision Research, 49(20), 2009

Dyad 5 Dyad 6

Matching Optic Flow against Flow Patterns

We match the detected optic flow against a set of flow patterns.

Results: Do flow patterns correlate -- between mothers and infants or with gaze?

Correlation between infants and mothers

Correlation between flow patterns and gaze

Results: Focus of Expansion and Gaze Statistics

We evaluated the angular statistics of the focus of expansion and gaze location in the image plane referencing the image center.

+ focus of expansion (FOE)

0.15

- o center of rotation (COR) ☆ center of fixation (COF)
- center of image (COI)

Results: Summary

0.06

In infants, the FOE pointed upward, consistent with a downward pointing head.

0.06

Mothers' FOEs pointed to the left and right.

Babies CORs were elongated along the horizontal axis; that of mothers was elongated along the vertical axis.

Mothers shifted gaze left/right more often than up/down. Correlations between flow of the scene videos from babies and their mothers were higher (~70%) than those for the eye-velocities and laminar flow (~55%), and were higher than

those for eye-velocities of mothers and their babies (~40%).

Conclusions

Mothers explore the scene along the horizontal axis more so than infants.

Passively carried infants experience pitch rotation and generally direct their head toward the ground.