In the Claims

1-18 (canceled).

- 19 (Withdrawn). A method of identifying a candidate molecule for the treatment of a CNS disorder, said method comprising:
- (a) contacting a D-amino acid oxidase (DAO) or D-aspartate oxidase (DDO) polypeptide or a biologically active fragment thereof with a test compound; and
 - (b) determining whether said compound
 - (i) binds to said polypeptide; or
 - (ii) reduces the activity of said polypeptide; and
- (c) if said compound binds to said polypeptide reduces the activity of said polypeptide, administering said compound to an animal model of schizophrenia, depression or bipolar disorder, wherein a determination that said compound ameliorates a characteristic representative of CNS disorder in said animal model indicates that said compound is a candidate molecule for the treatment of a CNS disorder.
- 20 (Previously Presented). A method of identifying a candidate molecule for the treatment of schizophrenia, depression or bipolar disorder, said method comprising:
- (a) contacting a DAO or DDO polypeptide or a biologically active fragment thereof with a test compound; and
 - (b) determining whether said compound
 - (i) selectively reduces the activity of said polypeptide; or
 - (ii) selectively binds said polypeptide;

wherein a test compound that selectively reduces the activity of or selectively binds to said polypeptide is identified as a candidate molecule for the treatment of schizophrenia, depression or bipolar disorder.

21 (Previously Presented). A method of screening for antagonists of a DAO or a DDO polypeptide, comprising the steps of:

- (a) contacting a test compound with a DAO or DDO polypeptide selected from the group consisting of;
- (i) a polypeptide comprising a polypeptide encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2 to 6, 19 and 20;
- (ii) a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NOS: 7 to 10, 21 and 22;
 - (b) detecting the level of DAO activity; and
- (c) comparing the activity to the activity of a control test without the test compound, whereby a decrease in the level of the DAO or DDO activity over the control indicates that the test compound is an antagonist of DAO or DDO.
- 22 (Withdrawn). A method of screening for compounds that reduce the expression of the DAO or DDO mRNA or polypeptide, comprising the steps of:
- (a) incubating cells expressing a DAO or a DDO polypeptide selected from the group consisting of:
- (i) a polypeptide comprising a polypeptide encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2 to 6, 19 and 20;
- (ii) a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NOS: 7 to 10, 21 and 22;
 - (I) in the presence and (II) in the absence of a test compound; and
 - (b) detecting the level of the DAO or DDO mRNA or polypeptide in the cells.
- 23 (Withdrawn). A method of assessing a candidate molecule for the treatment of a CNS disorder, said method comprising:
 - (a) providing a test DAO-inhibitor or DDO-inhibitor compound; and
- (b) administering said compound to an animal model of schizophrenia or bipolar disorder, wherein a determination that said compound ameliorates a characteristic representative of a CNS disorder in said animal model indicates that said compound is a candidate molecule for the treatment of a CNS disorder; and alternatively one or more of the following:

- (i) wherein said compound selectively binds to said polypeptide;
- (ii) wherein said compound selectively reduces the activity of said polypeptide;
- (iii) wherein said compound reduces the oxidation or degradation of a D-amino acid selected from the group consisting of D-Met, D-Pro, D-Phe, D-Tyr, D-Ile, D-Leu, D-Ala, D-Val, D-Ser, D-Arg, D-His, D-norleucine, D-Trp, D-Ornithine, cis-4-hydroxy-D-proline, D-Thr, D-Trp-methyl ester, N-acetyl-D-Ala, D-Lys, D-Asp, D-Glu, D-Asn, D-Gln, D-Asp-dimethyl-ester and N-methyl-D-Asp.

24 (Withdrawn). A method of treating an individual suffering from schizophrenia, depression or bipolar disorder comprising administering to said individual a therapeutically effective amount of a composition comprising a compound that reduces the conversion of a D-amino acid into the corresponding α -keto acid, wherein the compound can be identified according to the methods of claims 19-23.

25 (Withdrawn). The method according to claim 24, wherein said compound reduces the activity of a DAO or DDO polypeptide.

26 (Withdrawn). The method according to claim 24, wherein said compound is capable of reducing the oxidation or degradation of D-serine.

27 (Withdrawn). The method according to claim 24, wherein the compound is selected from the group consisting of:

- i. 2-oxo-3pentynoate;
- ii. aminoguanidine or salts thereof;
- iii. benzoic acid;
- iv. sodium benzoate;
- v. 2-aminobenzoate;
- vi. 3-aminobenzoate;

```
vii.
       4-aminobenzoate;
viii.
       methylglyoxal bis(guanylhydrazone);
       methylglyoxal bis(guanylhydrazone) dihydrochloride;
ix.
       phenylglyoxal bis(guanylhydrazone) (PhGBG);
X.
       glyoxal bis(guanylhydrazone);
xi.
xiii.
       3-indole-acetic acid;
       indole-3-acetic acid;
xiv.
XV.
       indole-3-acetone;
       indole-3-acetamide;
xvi.
       indole-3-acetyl-L-aspartic acid;
xvii.
xviii. indole-3-acetyl-L-alanine;
       indole-3-acetylglycine;
xix.
       indole-3-acetaldehyde sodium bisulfite;
XX.
xxi.
       indole-3-carboxylic acid;
xxii.
       indole-3-pyruvic acid;
xxiii. salicylic acid;
xxiv. salicylic acid sodium salts;
       salicylic acid potassium salts;
XXV.
xxvi. dansyl chloride;
xxvii. dansyl fluoride;
xxviii. dansyl glycine;
xxix. alanine tetrazole;
```

benzoic tetrazole;

xxxii. riboflavin 5'-pyrophosphate;

XXX.

xxxi. tetrazole;

```
xxxvii. trigonelline hydrochloride;
```

xxxviii. N-methylnicotinate;

xxxix. methyl 6 -methylnicotinate;

xl. ethyl 2-methylnicotinate;

xli. kojic acid;

xlii. 6-(pyrrolidinomethyl)-kojic acid hydrochloride, 6-(morpholinomethyl)-kojic acid, 6-(diethylaminomethyl)-kojic acid hydrochloride;

xliii. O-(2,4-dinitrophenyl)hydroxylamine;

xliv. 2,4-dinirophenyl glycine;

xlv. hydroxylamine hydrochloride;

xlvi. methyl-p-nitrobenzenesulfonate;

xlvii. aminoethylcysteine-ketimine;

xlviii. 1,4-thiazine derivatives;

xlix. 4-phenyl-1,4-sulfonazan;

l. phenothiazine;

li. 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid;

lii. nifurtimox;

liii. 3-(1-pyrrolidinylmethy)-4-(5,6-dichloro-1-indancarbonyl)-tetrahydro-1,4-thiazine hydrochloride;

liv. ketimine reduced forms;

lv. cystathionine;

lvi. cystathionine ketimine;

lvii. lanthionine ketimine;

lviii. thiomorpholine-2-carboxylic acid;

lix. thiomorpholine-2,6-dicarboxylic acid;

lx. TMDA (1,4-thiomorpholine-3,5-dicarboxylic acid);

lxi. 1-chloro-1-nitroethane;

lxii. anthranilate;

lxiii. ethyl 2-aminobenzoate;

lxiv. methyl 2-aminobenzoate;

lxv. picolinate;

lxvi. ethyl picolinate;

lxvii. L-leucine methyl ester hydrochloride;

lxviii. L-leucine;

lxix. flurodinitrobenzene;

lxx. dinitrochlorobenzene;

lxxi. 1,2-cyclohexanedione;

lxxii. allyglycine;

lxxiii. 2-amino-2,4-pentadienoate;

lxxiv. 2-hydroxy-2,4-pentadienoate;

lxxv. 2-amino-4-keto-2-pentenoate;

lxxvi. 2-hydroxybutyrate;

lxxvii. sodium 2-hydroxybutyrate;

lxxviii. N-chloro-D-leucine;

lxxix. N-acetyl-D-leucine;

lxxx. D-2-amino-4-methylpentanoic acid;

lxxxi. D, L-propargylglycine;

lxxxii. progesterone;

lxxxiii. FAD (flavin adenine dinucleotide);

lxxxiv. 6-OH-FAD;

lxxxv. phenylglyoxal;

lxxxvi. phenylglyoxal monohydrate;

lxxxvii. cyclothionine;

lxxxviii. alpha-alpha'-iminodipropionic;

lxxxix. meso-diaminosuccinic acid;

xc. thiosemicarbazide;

xci. thiourea;

xcii. methylthiouracil;

```
xciii. sulphathiazole;
```

xciv. sulfathiazole Salt;

xcv. thiocyanate;

xcvi. 3-methylbenzyl thiocyanate;

xcvii. methimazole;

xcviii. dicarboxylic hydroxyacids;

xcix. 1,3-acetonedicarboxylic acid;

c. D-tartaric acid;

ci. L-tartaric acid;

cii. D, L-tartaric acid;

ciii. potassium tartarate;

civ. D-malic acid;

cv. L-malic acid;

cvi. D, L-malic acid;

cvii. alpha-keto acids that are analogues of the amino acids alanine, leucine, phenylanaline, phenylglycine, tyrosine, serine, aspartate, and salts thereof;

cviii. pyruvic acid;

cix. sodium pyruvate;

cx. pyruvic acid methyl ester;

cxi. phenylpyruvic acid;

cxii. calcium phenylpyruvate;

exiii. phenylpyruvic acid sodium salt;

cxiv. 4-hydroxyphenyl pyruvic acid;

cxv. sodium alpha-ketoisovaleric acid;

cxvi. benzoylformic acid);

cxvii. 4-methylthio-2-oxopentanoic acid;

cxviii. 4-methyl-2-oxopentanoic acid;

cxix. 4-methylthio-2-oxybutanoic acid;

cxx. 2-oxybutanoic acid;

```
cxxi. D, L-alpha-hydroxybutyric acid sodium salt;
```

cxxii. indole-3-pyruvic acid;

cxxiii. cysteamine;

cxxiv. pantetheine;

cxxv. S-adenosylmethionine;

cxxvi. ethyl bromopyruvate;

cxxvii. methyl bromopyruvate;

cxxviii. bromopyruvate; and

cxxix. 5-S-cysteinyldopamine.

28 (Withdrawn). The method according to claim 25, wherein the compound is selected from the group consisting of:

- i. 2-oxo-3pentynoate;
- ii. aminoguanidine or salts thereof;
- iii. benzoic acid;
- iv. sodium benzoate;
- v. 2-aminobenzoate;
- vi. 3-aminobenzoate;
- vii. 4-aminobenzoate;
- viii. methylglyoxal bis(guanylhydrazone);
- ix. methylglyoxal bis(guanylhydrazone)dihydrochloride;
- x. phenylglyoxal bis(guanylhydrazone) (PhGBG);
- xi. glyoxal bis(guanylhydrazone);
- xiii. 3-indole-acetic acid;
- xiv. indole-3-acetic acid;
- xv. indole-3-acetone;
- xvi. indole-3-acetamide;
- xvii. indole-3-acetyl-L-aspartic acid;
- xviii. indole-3-acetyl-L-alanine;

```
xix. indole-3-acetylglycine;
```

xx. indole-3-acetaldehyde sodium bisulfite;

xxi. indole-3-carboxylic acid;

xxii. indole-3-pyruvic acid;

xxiii. salicylic acid;

xxiv. salicylic acid sodium salts;

xxv. salicylic acid potassium salts;

xxvi. dansyl chloride;

xxvii. dansyl fluoride;

xxviii. dansyl glycine;

xxix. alanine tetrazole;

xxx. benzoic tetrazole;

xxxi. tetrazole;

xxxii. riboflavin 5'-pyrophosphate;

xxxiii. D, L-propargylglycine;

xxxiv. L-C-propargylglycine;

xxxv. N-acetyl-DL-proparglyglycine;

xxxvi. (±)-sodium 3-hydroxybutyrate;

xxxvii. trigonelline hydrochloride;

xxxviii. N-methylnicotinate;

xxxix. methyl 6 -methylnicotinate;

xl. ethyl 2-methylnicotinate;

xli. kojic acid;

xlii. 6-(pyrrolidinomethyl)-kojic acid hydrochloride, 6-(morpholinomethyl)-kojic acid, 6-(diethylaminomethyl)-kojic acid hydrochloride;

xliii. O-(2,4-dinitrophenyl)hydroxylamine;

xliv. 2,4-dinirophenyl glycine;

xlv. hydroxylamine hydrochloride;

xlvi. methyl-p-nitrobenzenesulfonate;

xlvii. aminoethylcysteine-ketimine;

xlviii. 1,4-thiazine derivatives;

xlix. 4-phenyl-1,4-sulfonazan;

l. phenothiazine;

li. 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid;

lii. nifurtimox;

liii. 3-(1-pyrrolidinylmethy)-4-(5,6-dichloro-1-indancarbonyl)-tetrahydro-1,4-thiazine hydrochloride;

liv. ketimine reduced forms;

lv. cystathionine;

lvi. cystathionine ketimine;

lix. lanthionine ketimine;

lx. thiomorpholine-2-carboxylic acid;

lix. thiomorpholine-2,6-dicarboxylic acid;

lx. TMDA (1,4-thiomorpholine-3,5-dicarboxylic acid);

lxi. 1-chloro-1-nitroethane;

lxii. anthranilate;

lxiii. ethyl 2-aminobenzoate;

lxiv. methyl 2-aminobenzoate;

lxv. picolinate;

lxvi. ethyl picolinate;

lxvii. L-leucine methyl ester hydrochloride;

lxviii. L-leucine;

lxix. flurodinitrobenzene;

lxx. dinitrochlorobenzene;

lxxi. 1,2-cyclohexanedione;

lxxii. allyglycine;

lxxiii. 2-amino-2,4-pentadienoate;

lxxiv. 2-hydroxy-2,4-pentadienoate;

lxxv. 2-amino-4-keto-2-pentenoate;

lxxvi. 2-hydroxybutyrate;

lxxvii. sodium 2-hydroxybutyrate;

lxxviii. N-chloro-D-leucine;

lxxix. N-acetyl-D-leucine;

lxxx. D-2-amino-4-methylpentanoic acid;

lxxxi. D, L-propargylglycine;

lxxxii. progesterone;

lxxxiii. FAD (flavin adenine dinucleotide);

lxxxiv. 6-OH-FAD;

lxxxv. phenylglyoxal;

lxxxvi. phenylglyoxal monohydrate;

lxxxvii. cyclothionine;

lxxxviii. alpha-alpha'-iminodipropionic;

lxxxix. meso-diaminosuccinic acid;

xc. thiosemicarbazide;

xci. thiourea;

xcii. methylthiouracil;

xciii. sulphathiazole;

xciv. sulfathiazole Salt;

xcv. thiocyanate;

xcvi. 3-methylbenzyl thiocyanate;

xcvii. methimazole;

xcviii. dicarboxylic hydroxyacids;

xcix. 1,3-acetonedicarboxylic acid;

c. D-tartaric acid;

ci. L-tartaric acid;

cii. D, L-tartaric acid;

ciii. potassium tartarate;

```
civ. D-malic acid;
```

ev. L-malic acid;

cvi. D, L-malic acid;

cvii. alpha-keto acids that are analogues of the amino acids alanine, leucine, phenylanaline, phenylglycine, tyrosine, serine, aspartate, and salts thereof;

cviii. pyruvic acid;

cix. sodium pyruvate;

cx. pyruvic acid methyl ester;

cxi. phenylpyruvic acid;

cxii. calcium phenylpyruvate;

cxiii. phenylpyruvic acid sodium salt;

cxiv. 4-hydroxyphenyl pyruvic acid;

cxv. sodium alpha-ketoisovaleric acid;

cxvi. benzoylformic acid);

cxvii. 4-methylthio-2-oxopentanoic acid;

cxviii. 4-methyl-2-oxopentanoic acid;

cxix. 4-methylthio-2-oxybutanoic acid;

exx. 2-oxybutanoic acid;

exxi. D, L-alpha-hydroxybutyric acid sodium salt;

cxxii. indole-3-pyruvic acid;

cxxiii. cysteamine;

cxxiv. pantetheine;

cxxv. S-adenosylmethionine;

cxxvi. ethyl bromopyruvate;

cxxvii. methyl bromopyruvate;

cxxviii. bromopyruvate; and

cxxix. 5-S-cysteinyldopamine.

29 (Withdrawn). The method according to claim 26, wherein the compound is selected from the group consisting of:

```
i. 2-oxo-3pentynoate;
```

ii. aminoguanidine or salts thereof;

iii. benzoic acid;

iv. sodium benzoate;

v. 2-aminobenzoate;

vi. 3-aminobenzoate;

vii. 4-aminobenzoate;

viii. methylglyoxal bis(guanylhydrazone);

ix. methylglyoxal bis(guanylhydrazone) dihydrochloride;

x. phenylglyoxal bis(guanylhydrazone) (PhGBG);

xi. glyoxal bis(guanylhydrazone);

xiii. 3-indole-acetic acid;

xiv. indole-3-acetic acid;

xv. indole-3-acetone;

xvi. indole-3-acetamide;

xvii. indole-3-acetyl-L-aspartic acid;

xviii. indole-3-acetyl-L-alanine;

xix. indole-3-acetylglycine;

xx. indole-3-acetaldehyde sodium bisulfite;

xxi. indole-3-carboxylic acid;

xxii. indole-3-pyruvic acid;

xxiii. salicylic acid;

xxiv. salicylic acid sodium salts;

xxv. salicylic acid potassium salts;

xxvi. dansyl chloride;

xxvii. dansyl fluoride;

xxviii. dansyl glycine;

```
xxix. alanine tetrazole;
```

xxx. benzoic tetrazole;

xxxi. tetrazole;

xxxii. riboflavin 5'-pyrophosphate;

xxxiii. D, L-propargylglycine;

xxxiv. L-C-propargylglycine;

xxxv. N-acetyl-DL-proparglyglycine;

xxxvi. (±)-sodium 3-hydroxybutyrate;

xxxvii. trigonelline hydrochloride;

xxxviii. N-methylnicotinate;

xxxix. methyl 6 -methylnicotinate;

xl. ethyl 2-methylnicotinate;

xli. kojic acid;

xlii. 6-(pyrrolidinomethyl)-kojic acid hydrochloride, 6-(morpholinomethyl)-kojic acid, 6-(diethylaminomethyl)-kojic acid hydrochloride;

xliii. O-(2,4-dinitrophenyl)hydroxylamine;

xliv. 2,4-dinirophenyl glycine;

xlv. hydroxylamine hydrochloride;

xlvi. methyl-p-nitrobenzenesulfonate;

xlvii. aminoethylcysteine-ketimine;

xlviii. 1,4-thiazine derivatives;

xlix. 4-phenyl-1,4-sulfonazan;

l. phenothiazine;

li. 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid;

lii. nifurtimox:

liii. 3-(1-pyrrolidinylmethy)-4-(5,6-dichloro-1-indancarbonyl)-tetrahydro-1,4-thiazine hydrochloride;

liv. ketimine reduced forms;

lv. cystathionine;

lvi. cystathionine ketimine;

lxi. lanthionine ketimine;

lxii. thiomorpholine-2-carboxylic acid;

lix. thiomorpholine-2,6-dicarboxylic acid;

lx. TMDA (1,4-thiomorpholine-3,5-dicarboxylic acid);

lxi. 1-chloro-1-nitroethane;

lxii. anthranilate;

lxiii. ethyl 2-aminobenzoate;

lxiv. methyl 2-aminobenzoate;

lxv. picolinate;

lxvi. ethyl picolinate;

lxvii. L-leucine methyl ester hydrochloride;

lxviii. L-leucine;

lxix. flurodinitrobenzene;

lxx. dinitrochlorobenzene;

lxxi. 1,2-cyclohexanedione;

lxxii. allyglycine;

lxxiii. 2-amino-2,4-pentadienoate;

lxxiv. 2-hydroxy-2,4-pentadienoate;

lxxv. 2-amino-4-keto-2-pentenoate;

lxxvi. 2-hydroxybutyrate;

lxxvii. sodium 2-hydroxybutyrate;

lxxviii. N-chloro-D-leucine;

lxxix. N-acetyl-D-leucine;

lxxx. D-2-amino-4-methylpentanoic acid;

lxxxi. D, L-propargylglycine;

lxxxii. progesterone;

lxxxiii. FAD (flavin adenine dinucleotide);

lxxxiv. 6-OH-FAD;

```
lxxxv. phenylglyoxal;
```

lxxxvi. phenylglyoxal monohydrate;

lxxxvii. cyclothionine;

lxxxviii. alpha-alpha'-iminodipropionic;

lxxxix. meso-diaminosuccinic acid;

xc. thiosemicarbazide;

xci. thiourea;

xcii. methylthiouracil;

xciii. sulphathiazole;

xciv. sulfathiazole Salt;

xcv. thiocyanate;

xcvi. 3-methylbenzyl thiocyanate;

xcvii. methimazole;

xeviii. dicarboxylic hydroxyacids;

xcix. 1,3-acetonedicarboxylic acid;

c. D-tartaric acid;

ci. L-tartaric acid;

cii. D, L-tartaric acid;

ciii. potassium tartarate;

civ. D-malic acid;

ev. L-malic acid;

cvi. D, L-malic acid;

cvii. alpha-keto acids that are analogues of the amino acids alanine, leucine, phenylanaline, phenylglycine, tyrosine, serine, aspartate, and salts thereof;

cviii. pyruvic acid;

cix. sodium pyruvate;

cx. pyruvic acid methyl ester;

cxi. phenylpyruvic acid;

cxii. calcium phenylpyruvate;

cxiii. phenylpyruvic acid sodium salt;

cxiv. 4-hydroxyphenyl pyruvic acid;

cxv. sodium alpha-ketoisovaleric acid;

cxvi. benzoylformic acid);

cxvii. 4-methylthio-2-oxopentanoic acid;

cxviii. 4-methyl-2-oxopentanoic acid;

cxix. 4-methylthio-2-oxybutanoic acid;

cxx. 2-oxybutanoic acid;

cxxi. D, L-alpha-hydroxybutyric acid sodium salt;

cxxii. indole-3-pyruvic acid;

cxxiii. cysteamine;

cxxiv. pantetheine;

cxxv. S-adenosylmethionine;

cxxvi. ethyl bromopyruvate;

cxxvii. methyl bromopyruvate;

cxxviii. bromopyruvate; and

cxxix. 5-S-cysteinyldopamine.

30 (Currently Amended). The method according to claim 19, 20, 21, 22, or 2320 or 21, wherein said test compound is:

(1) a compound represented by the structure:

$$Ar$$
 Ar
 R_1
 R_2

or pharmaceutically acceptable salts thereof, wherein:

a) A is alkyl; branched chain alkyl; or cycloalkyl, any of which can be substituted with C₁-C₆ alkyl, halo, hydroxyl or amino;

- b) X is O or N;
- c) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to five position(s) with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂ COR₃, --NR₃ COOR₃, --SO₂NR₂R₃, --N(R₂) SO₂ R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, N₃ or a combination thereof and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- d) R₄ is H, alkyl, Ar¹, O, or a substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or a substituted alkyl;
- f) R₂ and R₃ are each independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or aklenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(2) a compound represented by the structure:

- a) A and B are carbon or nitrogen and D has 0-2 members that are carbon or nitrogen;
- b) W is $(CH_2)_n$ or a branched chain alkyl, wherein n is 0-4 and when n=0 NHR₂ is covalently bound to B;
- c) X is O or N;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or substituted alkyl;
- f) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to six position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof; and Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(3) a compound represented by the structure:

- a) A, G, K, J, E are members of a six membered carbon or heterocyclic aromatic ring, wherein the heterocyclic ring contains 1-6 atom(s) selected from the group consisting of C, N and a combination thereof:
- b) A, G, K, J, E may each independently be unsubstituted or substituted with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl, C₁-C₆ straight or branched chain alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- c) R₁ is CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, SCN, COCO₂H, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- d) W is N, $(CH_2)_x$, or $-NCH_2$;
- e) x=0-4;
- f) n=0-2;

- g) R₂ and R₃ are each, independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (4) a compound represented by the structure:

- a) $W=(CH_2)_n$;
- b) n=0-5;
- c) Z is oxygen or hydroxyl;
- d) Y=H, Ar^1 , R_4 (CH₂)_x, $R_1S(CH_2)_{x^{--}}$, $R_1SO(CH_2)_{x^{--}}$, $R_1SO_2(CH_2)_{x^{--}}$, $R_1SO_3(CH_2)_{x^{--}}$, $HNR_1SO_2(CH_2)_{x^{--}}$, $R_1R_2N(CH_2)_x$, $R_1O(CH_2)_{x^{--}}$, CF_3 , or OH;
- e) x=0-6;
- f) R₁, R₂ and R₃ are each independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;

- g) R₄ is a halogen, CN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, phosphote, Ar¹, --COR₁, --COOR₁, CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (5) a compound represented by the structure:

$$Ar^1$$
 W OH

- a) Y is Ar¹;
- b) Z is a carbonyl or hydroxyl;
- c) W is $(CH_2)_n$ wherein n = 0, 1, or 2; and
- d) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(6) a compound represented by the structure:

- a) A and B taken together, form a 5-8 membered saturated or partially unsaturated heterocyclic ring containing at least one additional O, S, SO, SO₂, NH, or NR¹ heteroatom in any chemically stable oxidation state;
- b) V is O, OR₁, NR₂, NR₁,R₂, CHR₁R₂, CH₂R₃, CHR₃R₄, or CH₂N₃;
- c) R₁ and R₂ are independently hydrogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, or Ar¹;
- d) R₃ and R₄ are either halogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, CONR₁R₂, CN, NR₁, NR₁R₂, SR₁, SO₂NHCN, or N₃ and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and

wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(7) a compound represented by the structure:

- a) W-Y-Z-A-B comprise a six membered saturated or partially saturated carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains heteroatom(s) selected from the group consisting of -O, N, S, and any combination thereof:
- b) B is either C, CH, or N;
- c) A, W, Y, Z are each independently CH₂, CHR₃, CR₃R₄, O, S, SO, SO₂, NH, NR₁, NR₁R₂, or C=O;
- d) V is O, OR_1 , NR_2 , NR_1R_2 , CHR_1R_2 , CH_2R_3 , CHR_3R_3 or CH_2N_3 ;
- e) R₁ and R₂ are independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;
- f) R₃ and R₄ are each independently halogen, --OC(O)R₁, -- COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and

- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (8) a compound represented by the structure:

$$R_2$$
 H
 ZR_1

or pharmaceutically acceptable salts thereof, wherein:

- a) Z is O or NH;
- b) R^1 is C_1 - C_6 alkyl, Ar^1 , or C_1 - C_4 alkoxycarbonylmethyl;
- c) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen,

wherein said C_1 - C_6 alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C_1 - C_3 alkyl once or several times and

when X and Y are each carbon, they may be covalently joined to form a saturated or partially unsaturated cyclic compound of 3-8 members consisting independently of C, N, O, and S, further wherein ring members may themselves be unsubstituted or substituted with halo, hydroxyl, carboxy, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl,

 C_1 - C_4 alkoxy, C_1 - C_4 alkenyloxy, phenoxy, benzyloxy, amino, substituted alkyl, Ar^1 , or a combination thereof;

- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (9) a compound represented by the structure:

$$R_2$$
 N
 $*$
 OR_1
 X
 H

- a) * = asymmetric center;
- b) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- c) X is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, halogen, or Ar¹, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a

combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;

(10) a compound represented by the structure:

$$R_2$$
 N
 O
 OR_1

- a) X and Y are each carbon;
- b) X and Y are connected by a saturated or partially saturated ring of 3-8 carbons and such a ring may itself be substituted in one to five position(s) with halo, hydroxyl, carboxy, amino, nitro, cyano, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, or substituted alkyl groups;
- c) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;

(11) a compound represented by the structure:

$$R_2$$
 N
 O
 OR_1

or pharmaceutically acceptable salts thereof, wherein:

- a) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- c) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof; or
- (12) a compound represented by the structure:

- a) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- c) Y is H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times; and
- d) X is alkyl or phenyl.

31 (Previously Presented). The method according to claim 30, wherein said compound represented by the structure:

$$\begin{array}{c|c}
A & O \\
\hline
 & B & V
\end{array}$$

is cystathionine ketimine or cyclothionine.

32 (Previously Presented). The method according to claim 30, wherein said compound represented by the structure:

is selected from the group consisting of: aminoethylcysteine-ketimine (2H-1,4-thiazine-5,6-dihydro-3-carboxylic acid), thiomorpholine-2-carboxylic acid, lanthionine ketimine, and 1,4-thiomorpholine-3, 5-dicarboxylic acid.

33 (Withdrawn). A method of treating a central nervous system disorder comprising the administration of a therapeutically effective amount of a compositions comprising a carrier and a compound capable reducing the conversion of a D-amino acid into the corresponding α -keto acid.

34 (Withdrawn). The method according to claim 33, wherein said compound is selected from the group consisting of:

(1) a compound represented by the structure:

$$Ar$$
 Ar
 Ar
 R_1
 R_4

- a) A is alkyl; branched chain alkyl; or cycloalkyl, any of which can be substituted with C₁-C₆ alkyl, halo, hydroxyl or amino;
- b) X is O or N;
- c) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to five position(s) with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂ COR₃, --NR₃ COOR₃, --SO₂ NR₂ R₃, --N(R₂) SO₂ R₃, --NR₂ CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, N₃ or a combination thereof and wherein the heterocyclic ring contains 1-6

heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

- d) R₄ is H, alkyl, Ar¹, O, or a substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or a substituted alkyl;
- f) R₂ and R₃ are each independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or aklenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (2) a compound represented by the structure:

- a) A and B are carbon or nitrogen and D has 0-2 members that are carbon or nitrogen;
- b) W is $(CH_2)_n$ or a branched chain alkyl, wherein n is 0-4 and when n=0 NHR₂ is covalently bound to B;
- c) X is O or N;

- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or substituted alkyl;
- Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to six position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (3) a compound represented by the structure:

- a) A, G, K, J, E are members of a six membered carbon or heterocyclic aromatic ring, wherein the heterocyclic ring contains 1-6 atom(s) selected from the group consisting of C, N and a combination thereof:
- b) A, G, K, J, E may each independently be unsubstituted or substituted with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃,

- --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl, C₁-C₆ straight or branched chain alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- c) R₁ is CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, SCN, COCO₂H, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- d) W is N, $(CH_2)_x$, or $-NCH_2$;
- e) x=0-4;
- f) n=0-2;
- g) R₂ and R₃ are each, independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(4) a compound represented by the structure:

- a) $W=(CH_2)_n$;
- b) n=0-5;
- c) Z is oxygen or hydroxyl;
- d) Y= H, Ar^1 , R_4 (CH₂)_x, $R_1S(CH_2)_{x^{--}}$, $R_1SO(CH_2)_{x^{--}}$, $R_1SO_2(CH_2)_{x^{--}}$, $R_1SO_3(CH_2)_{x^{--}}$, $HNR_1SO_2(CH_2)_{x^{--}}$, $R_1R_2N(CH_2)_{x}$, $R_1O(CH_2)_{x^{--}}$, CF_3 , or OH;
- e) x=0-6;
- f) R₁, R₂ and R₃ are each independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;
- g) R₄ is a halogen, CN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, phosphote, Ar¹, --COR₁, --COOR₁, CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(5) a compound represented by the structure:

$$Ar^1$$
 V
 W
 OH

or pharmaceutically acceptable salts thereof, wherein:

- a) $Y \text{ is } Ar^1$;
- b) Z is a carbonyl or hydroxyl;
- c) W is $(CH_2)_n$ wherein n = 0, 1, or 2; and
- d) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (6) a compound represented by the structure:

- a) A and B taken together, form a 5-8 membered saturated or partially unsaturated heterocyclic ring containing at least one additional O, S, SO, SO₂, NH, or NR¹ heteroatom in any chemically stable oxidation state;
- b) V is O, OR₁, NR₂, NR₁,R₂, CHR₁R₂, CH₂R₃, CHR₃R₄, or CH₂N₃;

- c) R₁ and R₂ are independently hydrogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, or Ar¹;
- d) R₃ and R₄ are either halogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, CONR₁R₂, CN, NR₁, NR₁R₂, SR₁, SO₂NHCN, or N₃, and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (7) a compound represented by the structure:

- a) W-Y-Z-A-B comprise a six membered saturated or partially saturated carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains heteroatom(s) selected from the group consisting of -O, N, S, and any combination thereof:
- b) B is either C, CH, or N;

- c) A, W, Y, Z are each independently CH₂, CHR₃, CR₃R₄, O, S, SO, SO₂, NH, NR₁, NR₁R₂, or C=O;
- d) V is O, OR_1 , NR_2 , NR_1R_2 , CHR_1R_2 , CH_2R_3 , CHR_3R_3 or CH_2N_3 ;
- e) R₁ and R₂ are independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;
- f) R₃ and R₄ are each independently halogen, --OC(O)R₁, -- COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;

(8) a compound represented by the structure:

$$R_2$$
 X
 Y
 ZR_1

or pharmaceutically acceptable salts thereof, wherein:

a) Z is O or NH;

- b) R^1 is C_1 - C_6 alkyl, Ar^1 , or C_1 - C_4 alkoxycarbonylmethyl;
- c) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen,

wherein said C_1 - C_6 alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C_1 - C_3 alkyl once or several times and

when X and Y are each carbon, they may be covalently joined to form a saturated or partially unsaturated cyclic compound of 3-8 members consisting independently of C, N, O, and S, further wherein ring members may themselves be unsubstituted or substituted with halo, hydroxyl, carboxy, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, substituted alkyl, Ar¹, or a combination thereof;

- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (9) a compound represented by the structure:

$$R_2$$
 N
 $*$
 O
 OR_1

- a) * = asymmetric center;
- b) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- c) X is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, halogen, or Ar¹, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (10) a compound represented by the structure:

- a) X and Y are each carbon;
- b) X and Y are connected by a saturated or partially saturated ring of 3-8 carbons and such a ring may itself be substituted in one to five position(s) with halo, hydroxyl, carboxy, amino, nitro, cyano, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, or substituted alkyl groups;

- c) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (11) a compound represented by the structure:

$$R_2$$
 N
 OR_1
 OR_1

- a) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- c) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and

wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof; and

(12) a compound represented by the structure:

$$R_2$$
—NH O OR_1

or pharmaceutically acceptable salts thereof, wherein:

- a) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- c) Y is H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times; and
- d) X is alkyl or phenyl.

35 (Withdrawn). The method according to claim 33, wherein the compound is selected from the group consisting of:

- i. 2-oxo-3pentynoate;
- ii. aminoguanidine or salts thereof;
- iii. benzoic acid;
- iv. sodium benzoate;
- v. 2-aminobenzoate;
- vi. 3-aminobenzoate;
- vii. 4-aminobenzoate;
- viii. methylglyoxal bis(guanylhydrazone);

```
ix. methylglyoxal bis(guanylhydrazone) dihydrochloride;
```

x. phenylglyoxal bis(guanylhydrazone) (PhGBG);

xi. glyoxal bis(guanylhydrazone);

xiii. 3-indole-acetic acid;

xiv. indole-3-acetic acid;

xv. indole-3-acetone;

xvi. indole-3-acetamide;

xvii. indole-3-acetyl-L-aspartic acid;

xviii. indole-3-acetyl-L-alanine;

xix. indole-3-acetylglycine;

xx. indole-3-acetaldehyde sodium bisulfite;

xxi. indole-3-carboxylic acid;

xxii. indole-3-pyruvic acid;

xxiii. salicylic acid;

xxiv. salicylic acid sodium salts;

xxv. salicylic acid potassium salts;

xxvi. dansyl chloride;

xxvii. dansyl fluoride;

xxviii. dansyl glycine;

xxix. alanine tetrazole;

xxx. benzoic tetrazole;

xxxi. tetrazole;

xxxii. riboflavin 5'-pyrophosphate;

xxxiii. D, L-propargylglycine;

xxxiv. L-C-propargylglycine;

xxxv. N-acetyl-DL-proparglyglycine;

xxxvi. (±)-sodium 3-hydroxybutyrate;

xxxvii. trigonelline hydrochloride;

xxxviii. N-methylnicotinate;

```
xxxix. methyl 6 -methylnicotinate;
```

xl. ethyl 2-methylnicotinate;

xli. kojic acid;

xlii. 6-(pyrrolidinomethyl)-kojic acid hydrochloride, 6-(morpholinomethyl)-kojic acid, 6-(diethylaminomethyl)-kojic acid hydrochloride;

xliii. O-(2,4-dinitrophenyl)hydroxylamine;

xliv. 2,4-dinirophenyl glycine;

xlv. hydroxylamine hydrochloride;

xlvi. methyl-p-nitrobenzenesulfonate;

xlvii. aminoethylcysteine-ketimine;

xlviii. 1,4-thiazine derivatives;

xlix. 4-phenyl-1,4-sulfonazan;

l. phenothiazine;

li. 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid;

lii. nifurtimox;

liii. 3-(1-pyrrolidinylmethy)-4-(5,6-dichloro-1-indancarbonyl)-tetrahydro-1,4-thiazine hydrochloride;

liv. ketimine reduced forms;

lv. cystathionine;

lvi. cystathionine ketimine;

lvii. lanthionine ketimine;

lviii. thiomorpholine-2-carboxylic acid;

lix. thiomorpholine-2,6-dicarboxylic acid;

lx. TMDA (1,4-thiomorpholine-3,5-dicarboxylic acid);

lxi. 1-chloro-1-nitroethane;

lxii. anthranilate:

lxiii. ethyl 2-aminobenzoate;

lxiv. methyl 2-aminobenzoate;

lxv. picolinate;

lxvi. ethyl picolinate;

lxvii. L-leucine methyl ester hydrochloride;

lxviii. L-leucine;

lxix. flurodinitrobenzene;

lxx. dinitrochlorobenzene;

lxxi. 1,2-cyclohexanedione;

lxxii. allyglycine;

lxxiii. 2-amino-2,4-pentadienoate;

lxxiv. 2-hydroxy-2,4-pentadienoate;

lxxv. 2-amino-4-keto-2-pentenoate;

lxxvi. 2-hydroxybutyrate;

lxxvii. sodium 2-hydroxybutyrate;

lxxviii. N-chloro-D-leucine;

lxxix. N-acetyl-D-leucine;

lxxx. D-2-amino-4-methylpentanoic acid;

lxxxi. D, L-propargylglycine;

lxxxii. progesterone;

lxxxiii. FAD (flavin adenine dinucleotide);

lxxxiv. 6-OH-FAD;

lxxxv. phenylglyoxal;

lxxxvi. phenylglyoxal monohydrate;

lxxxvii. cyclothionine;

lxxxviii. alpha-alpha'-iminodipropionic;

lxxxix. meso-diaminosuccinic acid;

xc. thiosemicarbazide:

xci. thiourea;

xcii. methylthiouracil;

xciii. sulphathiazole;

xciv. sulfathiazole Salt;

```
xcv. thiocyanate;
```

xcvi. 3-methylbenzyl thiocyanate;

xcvii. methimazole;

xeviii. dicarboxylic hydroxyacids;

xcix. 1,3-acetonedicarboxylic acid;

c. D-tartaric acid;

ci. L-tartaric acid;

cii. D, L-tartaric acid;

ciii. potassium tartarate;

civ. D-malic acid;

cv. L-malic acid;

evi. D, L-malic acid;

cvii. alpha-keto acids that are analogues of the amino acids alanine, leucine, phenylanaline, phenylglycine, tyrosine, serine, aspartate, and salts thereof;

cviii. pyruvic acid;

cix. sodium pyruvate;

cx. pyruvic acid methyl ester;

cxi. phenylpyruvic acid;

cxii. calcium phenylpyruvate;

cxiii. phenylpyruvic acid sodium salt;

cxiv. 4-hydroxyphenyl pyruvic acid;

cxv. sodium alpha-ketoisovaleric acid;

cxvi. benzoylformic acid);

cxvii. 4-methylthio-2-oxopentanoic acid;

cxviii. 4-methyl-2-oxopentanoic acid;

cxix. 4-methylthio-2-oxybutanoic acid;

exx. 2-oxybutanoic acid;

exxi. D, L-alpha-hydroxybutyric acid sodium salt;

cxxii. indole-3-pyruvic acid;

cxxiii. cysteamine;

cxxiv. pantetheine;

cxxv. S-adenosylmethionine;

cxxvi. ethyl bromopyruvate;

cxxvii. methyl bromopyruvate;

cxxviii. bromopyruvate; and

cxxix. 5 -S-cysteinyldopamine.

36 (Withdrawn). The method according to claim 33, wherein said compound is selected from the group consisting of benzoate, aminoethylcysteine-ketimine; aminoethylcysteine (thialysine); cysteamine; pathetheine; cystathionine S-adenosylmethionine, and derivatives thereof.

37 (Withdrawn). A method of reducing the activity of a D-amino acid oxidase polypeptide (DAO) or a D-aspartate oxidase (DDO) polypeptide comprising the administration of a composition comprising a carrier and a compound that reduces the activity of said polypeptide.

38 (Withdrawn). The method according to claim 37, wherein said compound is selected from the group consisting of:

(1) a compound represented by the structure:

$$Ar$$
 Ar
 R_1
 R_4

or pharmaceutically acceptable salts thereof, wherein:

a) A is alkyl; branched chain alkyl; or cycloalkyl, any of which can be substituted with C₁-C₆ alkyl, halo, hydroxyl or amino;

- b) X is O or N;
- c) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to five position(s) with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂ COR₃, --NR₃ COOR₃, --SO₂NR₂R₃, --N(R₂) SO₂ R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, N₃ or a combination thereof and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- d) R₄ is H, alkyl, Ar¹, O, or a substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or a substituted alkyl;
- f) R₂ and R₃ are each independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or aklenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(2) a compound represented by the structure:

- a) A and B are carbon or nitrogen and D has 0-2 members that are carbon or nitrogen;
- b) W is $(CH_2)_n$ or a branched chain alkyl, wherein n is 0-4 and when n=0 NHR₂ is covalently bound to B;
- c) X is O or N;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or substituted alkyl;
- f) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to six position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof; and Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo
- Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(3) a compound represented by the structure:

- a) A, G, K, J, E are members of a six membered carbon or heterocyclic aromatic ring, wherein the heterocyclic ring contains 1-6 atom(s) selected from the group consisting of C, N and a combination thereof:
- b) A, G, K, J, E may each independently be unsubstituted or substituted with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl, C₁-C₆ straight or branched chain alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- c) R₁ is CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, SCN, COCO₂H, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- d) W is N, $(CH_2)_x$, or $-NCH_2$;
- e) x=0-4;
- f) n=0-2;

- g) R₂ and R₃ are each, independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (4) a compound represented by the structure:

- a) $W=(CH_2)_n$;
- b) n=0-5;
- c) Z is oxygen or hydroxyl;
- d) Y= H, Ar^1 , R_4 (CH₂)_x, $R_1S(CH_2)_{x^{--}}$, $R_1SO(CH_2)_{x^{--}}$, $R_1SO_2(CH_2)_{x^{--}}$, $R_1SO_3(CH_2)_{x^{--}}$, $HNR_1SO_2(CH_2)_{x^{--}}$, $R_1R_2N(CH_2)_x$, $R_1O(CH_2)_{x^{--}}$, CF_3 , or OH;
- e) x=0-6;
- f) R₁, R₂ and R₃ are each independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;

- g) R₄ is a halogen, CN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, phosphote, Ar¹, --COR₁, --COOR₁, CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (5) a compound represented by the structure:

$$Ar^1$$
 W OH

- a) $Y \text{ is } Ar^1$;
- b) Z is a carbonyl or hydroxyl;
- c) W is $(CH_2)_n$ wherein n = 0, 1, or 2; and
- d) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(6) a compound represented by the structure:

$$\begin{array}{c|c}
A & O \\
\hline
B & V
\end{array}$$

- a) A and B taken together, form a 5-8 membered saturated or partially unsaturated heterocyclic ring containing at least one additional O, S, SO, SO₂, NH, or NR¹ heteroatom in any chemically stable oxidation state;
- b) V is O, OR₁, NR₂, NR₁,R₂, CHR₁R₂, CH₂R₃, CHR₃R₄, or CH₂N₃;
- c) R₁ and R₂ are independently hydrogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, or Ar¹;
- d) R₃ and R₄ are either halogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, CONR₁R₂, CN, NR₁, NR₁R₂, SR₁, SO₂NHCN, or N₃ and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(7) a compound represented by the structure:

- a) W-Y-Z-A-B comprise a six membered saturated or partially saturated carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains heteroatom(s) selected from the group consisting of -O, N, S, and any combination thereof:
- b) B is either C, CH, or N;
- c) A, W, Y, Z are each independently CH₂, CHR₃, CR₃R₄, O, S, SO, SO₂, NH, NR₁, NR₁R₂, or C=O;
- d) V is O, OR_1 , NR_2 , NR_1R_2 , CHR_1R_2 , CH_2R_3 , CHR_3R_3 or CH_2N_3 ;
- e) R₁ and R₂ are independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;
- f) R₃ and R₄ are each independently halogen, --OC(O)R₁, -- COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, -- CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a

combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;

(8) a compound represented by the structure:

$$R_2$$
 H
 ZR_1

or pharmaceutically acceptable salts thereof, wherein:

- a) Z is O or NH;
- b) R^1 is C_1 - C_6 alkyl, Ar^1 , or C_1 - C_4 alkoxycarbonylmethyl;
- c) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen,

wherein said C_1 - C_6 alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C_1 - C_3 alkyl once or several times and

when X and Y are each carbon, they may be covalently joined to form a saturated or partially unsaturated cyclic compound of 3-8 members consisting independently of C, N, O, and S, further wherein ring members may themselves be unsubstituted or substituted with halo, hydroxyl, carboxy, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, substituted alkyl, Ar¹, or a combination thereof;

- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo,

hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;

(9) a compound represented by the structure:

$$R_2$$
 N
 $*$
 OR_1
 X
 H

- a) * = asymmetric center;
- b) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- c) X is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, halogen, or Ar¹, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;

(10) a compound represented by the structure:

- a) X and Y are each carbon;
- b) X and Y are connected by a saturated or partially saturated ring of 3-8 carbons and such a ring may itself be substituted in one to five position(s) with halo, hydroxyl, carboxy, amino, nitro, cyano, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, or substituted alkyl groups;
- c) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (11) a compound represented by the structure:

- a) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- c) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof; and
- (12) a compound represented by the structure:

$$R_2$$
—NH O OR_1

- a) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- c) Y is H, Ar^1 , C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, or halogen, wherein said C_1 - C_6 alkyl is optionally interrupted or substituted by heteroatoms

selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C_1 - C_3 alkyl once or several times; and

d) X is alkyl or phenyl;

and wherein said polypeptide sequence selected from the group consisting of SEQ ID NOS: 7 to 10, 21 and 22.

39 (Withdrawn). The method according to claim 37, wherein the compound is selected from the group consisting of:

- i. 2-oxo-3pentynoate;
- ii. aminoguanidine or salts thereof;
- iii. benzoic acid;
- iv. sodium benzoate;
- v. 2-aminobenzoate;
- vi. 3-aminobenzoate;
- vii. 4-aminobenzoate;
- viii. methylglyoxal bis(guanylhydrazone);
- ix. methylglyoxal bis(guanylhydrazone) dihydrochloride;
- x. phenylglyoxal bis(guanylhydrazone) (PhGBG);
- xi. glyoxal bis(guanylhydrazone);
- xiii. 3-indole-acetic acid;
- xiv. indole-3-acetic acid;
- xv. indole-3-acetone;
- xvi. indole-3-acetamide;
- xvii. indole-3-acetyl-L-aspartic acid;
- xviii. indole-3-acetyl-L-alanine;
- xix. indole-3-acetylglycine;
- xx. indole-3-acetaldehyde sodium bisulfite;
- xxi. indole-3-carboxylic acid;

```
xxii. indole-3-pyruvic acid;
```

xxiii. salicylic acid;

xxiv. salicylic acid sodium salts;

xxv. salicylic acid potassium salts;

xxvi. dansyl chloride;

xxvii. dansyl fluoride;

xxviii. dansyl glycine;

xxix. alanine tetrazole;

xxx. benzoic tetrazole;

xxxi. tetrazole;

xxxii. riboflavin 5'-pyrophosphate;

xxxiii. D, L-propargylglycine;

xxxiv. L-C-propargylglycine;

xxxv. N-acetyl-DL-proparglyglycine;

xxxvi. (±)-sodium 3-hydroxybutyrate;

xxxvii. trigonelline hydrochloride;

xxxviii. N-methylnicotinate;

xxxix. methyl 6 -methylnicotinate;

xl. ethyl 2-methylnicotinate;

xli. kojic acid;

xlii. 6-(pyrrolidinomethyl)-kojic acid hydrochloride, 6-(morpholinomethyl)-kojic acid, 6-(diethylaminomethyl)-kojic acid hydrochloride;

xliii. O-(2,4-dinitrophenyl)hydroxylamine;

xliv. 2,4-dinirophenyl glycine;

xlv. hydroxylamine hydrochloride;

xlvi. methyl-p-nitrobenzenesulfonate;

xlvii. aminoethylcysteine-ketimine;

xlviii. 1,4-thiazine derivatives;

xlix. 4-phenyl-1,4-sulfonazan;

- l. phenothiazine;
- li. 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid;
- lii. nifurtimox;
- liii. 3-(1-pyrrolidinylmethy)-4-(5,6-dichloro-1-indancarbonyl)-tetrahydro-1,4-thiazine hydrochloride;
 - liv. ketimine reduced forms;
 - lv. cystathionine;
 - lvi. cystathionine ketimine;
 - lix. lanthionine ketimine;
 - lx. thiomorpholine-2-carboxylic acid;
 - lix. thiomorpholine-2,6-dicarboxylic acid;
 - lx. TMDA (1,4-thiomorpholine-3,5-dicarboxylic acid);
 - lxi. 1-chloro-1-nitroethane;
 - lxii. anthranilate;
 - lxiii. ethyl 2-aminobenzoate;
 - lxiv. methyl 2-aminobenzoate;
 - lxv. picolinate;
 - lxvi. ethyl picolinate;
 - lxvii. L-leucine methyl ester hydrochloride;
 - lxviii. L-leucine;
 - lxix. flurodinitrobenzene;
 - lxx. dinitrochlorobenzene;
 - lxxi. 1,2-cyclohexanedione;
 - lxxii. allyglycine;
 - Ixxiii. 2-amino-2,4-pentadienoate;
 - lxxiv. 2-hydroxy-2,4-pentadienoate;
 - lxxv. 2-amino-4-keto-2-pentenoate;
 - lxxvi. 2-hydroxybutyrate;
 - lxxvii. sodium 2-hydroxybutyrate;

lxxviii. N-chloro-D-leucine;

lxxix. N-acetyl-D-leucine;

lxxx. D-2-amino-4-methylpentanoic acid;

lxxxi. D, L-propargylglycine;

lxxxii. progesterone;

lxxxiii. FAD (flavin adenine dinucleotide);

lxxxiv. 6-OH-FAD;

lxxxv. phenylglyoxal;

lxxxvi. phenylglyoxal monohydrate;

lxxxvii. cyclothionine;

lxxxviii. alpha-alpha'-iminodipropionic;

lxxxix. meso-diaminosuccinic acid;

xc. thiosemicarbazide;

xci. thiourea;

xcii. methylthiouracil;

xciii. sulphathiazole;

xciv. sulfathiazole Salt;

xcv. thiocyanate;

xcvi. 3-methylbenzyl thiocyanate;

xcvii. methimazole;

xeviii. dicarboxylic hydroxyacids;

xcix. 1,3-acetonedicarboxylic acid;

c. D-tartaric acid;

ci. L-tartaric acid;

cii. D, L-tartaric acid;

ciii. potassium tartarate;

civ. D-malic acid;

cv. L-malic acid;

cvi. D, L-malic acid;

cvii. alpha-keto acids that are analogues of the amino acids alanine, leucine, phenylanaline, phenylglycine, tyrosine, serine, aspartate, and salts thereof;

cviii. pyruvic acid;

cix. sodium pyruvate;

cx. pyruvic acid methyl ester;

cxi. phenylpyruvic acid;

cxii. calcium phenylpyruvate;

cxiii. phenylpyruvic acid sodium salt;

cxiv. 4-hydroxyphenyl pyruvic acid;

cxv. sodium alpha-ketoisovaleric acid;

cxvi. benzoylformic acid);

cxvii. 4-methylthio-2-oxopentanoic acid;

cxviii. 4-methyl-2-oxopentanoic acid;

cxix. 4-methylthio-2-oxybutanoic acid;

exx. 2-oxybutanoic acid;

cxxi. D, L-alpha-hydroxybutyric acid sodium salt;

cxxii. indole-3-pyruvic acid;

cxxiii. cysteamine;

cxxiv. pantetheine;

cxxv. S-adenosylmethionine;

cxxvi. ethyl bromopyruvate;

cxxvii. methyl bromopyruvate;

cxxviii. bromopyruvate; and

cxxix. 5 -S-cysteinyldopamine.

40 (Withdrawn). The method according to claim 37, wherein said compound is capable of reducing the oxidation or degradation of D-serine.

41 (Withdrawn). A method of treating an individual suffering from schizophrenia, depression or bipolar disorder comprising administering to said individual a therapeutically effective amount of a composition that reduces the activity of a DAO or DDO polypeptide.

42 (Withdrawn). The method according to claim 41, wherein the compound is selected from the group consisting of:

(1) a compound represented by the structure:

$$Ar$$
 Ar
 Ar
 R_1

- a) A is alkyl; branched chain alkyl; or cycloalkyl, any of which can be substituted with C₁-C₆ alkyl, halo, hydroxyl or amino;
- b) X is O or N;
- c) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to five position(s) with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂ COR₃, --NR₃ COOR₃, --SO₂NR₂R₃, --N(R₂) SO₂ R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, N₃ or a combination thereof and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

- d) R₄ is H, alkyl, Ar¹, O, or a substituted alkyl;
- e) R¹ is C₁-C₆ alkyl, Ar¹, C₁-C₄ alkoxycarbonylmethyl, or a substituted alkyl;
- f) R₂ and R₃ are each independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or aklenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (2) a compound represented by the structure:

- a) A and B are carbon or nitrogen and D has 0-2 members that are carbon or nitrogen;
- b) W is $(CH_2)_n$ or a branched chain alkyl, wherein n is 0-4 and when n=0 NHR₂ is covalently bound to B;
- c) X is O or N;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) R^1 is C_1 - C_6 alkyl, Ar^1 , C_1 - C_4 alkoxycarbonylmethyl, or substituted alkyl;

f) Ar is an aromatic mono-, bi- or tricyclic fused heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to six position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof; and Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, C₃-C₆ cycloalkyl or a combination thereof; wherein the individual ring sizes are 3-7

members; and wherein the heterocyclic ring contains 1-6 heteroatom(s)

selected from the group consisting of O, N, S, and a combination thereof;

(3) a compound represented by the structure:

- a) A, G, K, J, E are members of a six membered carbon or heterocyclic aromatic ring, wherein the heterocyclic ring contains 1-6 atom(s) selected from the group consisting of C, N and a combination thereof:
- b) A, G, K, J, E may each independently be unsubstituted or substituted with hydrogen, halogen, hydroxyl, -CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, --OR₁, C₁-C₆

straight or branched chain alkyl, C_1 - C_6 straight or branched chain alkenyl, or C_1 - C_6 branched or straight chain alkyl or alkenyl which is substituted with one or more, halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar^1 , or N_3 ;

- c) R₁ is CN, COR₂, --CONR₂R₃, --S(O)_nR₂, --OPO(OR₂)OR₃, --PO(OR₃)R₃, --OC(O)NR₂R₃, --COOR₂, --CONR₂R₃, --SO₃H, --NR₂R₃, --NR₂COR₃, --NR₃COOR₃, --SO₂NR₂R₃, --N(R₂)SO₂R₃, --NR₂CONR₂R₂, --SO₂NHCOR₂, --CONHSO₂R₂, --SO₂NHCN, SCN, COCO₂H, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃;
- d) W is N, $(CH_2)_x$, or $-NCH_2$;
- e) x=0-4;
- f) n=0-2;
- g) R₂ and R₃ are each, independently, hydrogen, C₁-C₆ straight or branched chain alkyl or alkenyl, or C₁-C₆ branched or straight chain alkyl or alkenyl which is substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, Ar¹, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(4) a compound represented by the structure:

- a) $W=(CH_2)_n$;
- b) n=0-5;
- c) Z is oxygen or hydroxyl;
- d) Y= H, Ar^1 , R_4 $(CH_2)_x$, $R_1S(CH_2)_x$ --, $R_1SO(CH_2)_x$ --, $R_1SO_2(CH_2)_x$ --, $R_1SO_3(CH_2)_x$ --, $R_1R_2N(CH_2)_x$, $R_1O(CH_2)_x$ --, $R_1R_2N(CH_2)_x$, $R_1O(CH_2)_x$ --, $R_1R_2N(CH_2)_x$, $R_1O(CH_2)_x$ --, $R_1R_2N(CH_2)_x$ --, $R_1R_2N(CH_$
- e) x=0-6;
- f) R₁, R₂ and R₃ are each independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;
- g) R₄ is a halogen, CN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, phosphote, Ar¹, --COR₁, --COOR₁, CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- h) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;

(5) a compound represented by the structure:

$$Ar^1$$
 W OH

or pharmaceutically acceptable salts thereof, wherein:

- a) $Y \text{ is } Ar^1$;
- b) Z is a carbonyl or hydroxyl;
- c) W is $(CH_2)_n$ wherein n = 0, 1, or 2; and
- d) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (6) a compound represented by the structure:

- a) A and B taken together, form a 5-8 membered saturated or partially unsaturated heterocyclic ring containing at least one additional O, S, SO, SO₂, NH, or NR¹ heteroatom in any chemically stable oxidation state;
- b) V is O, OR_1 , NR_2 , NR_1 , R_2 , CHR_1R_2 , CH_2R_3 , CHR_3R_4 , or CH_2N_3 ;

- c) R₁ and R₂ are independently hydrogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, or Ar¹;
- d) R₃ and R₄ are either halogen, C₁- C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more hydroxyl, amino, carboxy, carboxamide, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, CONR₁R₂, CN, NR₁, NR₁R₂, SR₁, SO₂NHCN, or N₃, and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and a combination thereof;
- (7) a compound represented by the structure:

- a) W-Y-Z-A-B comprise a six membered saturated or partially saturated carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains heteroatom(s) selected from the group consisting of -O, N, S, and any combination thereof:
- b) B is either C, CH, or N;

- 72
- c) A, W, Y, Z are each independently CH₂, CHR₃, CR₃R₄, O, S, SO, SO₂, NH, NR₁, NR₁R₂, or C=O;
- d) V is O, OR_1 , NR_2 , NR_1R_2 , CHR_1R_2 , CH_2R_3 , CHR_3R_3 or CH_2N_3 ;
- e) R₁ and R₂ are independently hydrogen, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, amino, carboxy, carboxamide, nitrile, nitro, alkoxy, trifluoromethyl, sulfur, sulfonate, phosphonate, phosphate, or Ar¹;
- f) R₃ and R₄ are each independently halogen, --OC(O)R₁, -- COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, N₃, C₁-C₆ straight or branched chain alkyl or C₁-C₆ branched or straight chain alkyl substituted with one or more halogen, hydroxyl, nitro, alkoxy, trifluoromethyl, sulfonate, phosphonate, Ar¹, --OC(O)R₁, --COOR₁, --CONR₁R₂, CN, --NR₁, --NR₁R₂, --SR₁, --SO₂NHCN, or N₃; and
- g) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 5-6 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (8) a compound represented by the structure:

a) Z is O or NH;

- b) R¹ is C₁-C₆ alkyl, Ar¹, or C₁-C₄ alkoxycarbonylmethyl;
- c) X, Y, independently of one another, are H, Ar^1 , C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, or halogen,

wherein said C_1 - C_6 alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C_1 - C_3 alkyl once or several times and

when X and Y are each carbon, they may be covalently joined to form a saturated or partially unsaturated cyclic compound of 3-8 members consisting independently of C, N, O, and S, further wherein ring members may themselves be unsubstituted or substituted with halo, hydroxyl, carboxy, nitro, trifluoromethyl, C_1 - C_6 straight or branched chain alkyl or alkenyl, C_1 - C_4 alkenyloxy, phenoxy, benzyloxy, amino, substituted alkyl, Ar^1 , or a combination thereof;

- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (9) a compound represented by the structure:

$$R_2$$
 N
 $*$
 OR_1

- a) * = asymmetric center;
- b) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- c) X is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, halogen, or Ar¹, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (10) a compound represented by the structure:

- a) X and Y are each carbon;
- b) X and Y are connected by a saturated or partially saturated ring of 3-8 carbons and such a ring may itself be substituted in one to five position(s) with halo, hydroxyl, carboxy, amino, nitro, cyano, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, or substituted alkyl groups;

- c) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- d) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- e) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof;
- (11) a compound represented by the structure:

$$R_2$$
 N
 O
 OR_1

- a) X, Y, independently of one another, are H, Ar¹, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, or halogen, wherein said C₁-C₆ alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C₁-C₃ alkyl once or several times;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl; and
- c) Ar¹ is a mono-, bi- or tricyclic, carbo- or heterocyclic ring, wherein the ring is either unsubstituted or substituted in one to three position(s) with halo, hydroxyl, nitro, trifluoromethyl, C₁-C₆ straight or branched chain alkyl or alkenyl, C₁-C₄ alkoxy, C₁-C₄ alkenyloxy, phenoxy, benzyloxy, amino, or a combination thereof; wherein the individual ring sizes are 3-7 members; and

76

wherein the heterocyclic ring contains 1-6 heteroatom(s) selected from the group consisting of O, N, S, and any combination thereof; and

(12) a compound represented by the structure:

$$R_2$$
—NH O OR_1

or pharmaceutically acceptable salts thereof, wherein:

- a) $R^1 = C_1 C_6$ alkyl, Ar^1 , or $C_1 C_4$ alkoxycarbonylmethyl;
- b) R₂ is H, alkyl, Ar¹, or O substituted alkyl;
- c) Y is H, Ar^1 , C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, or halogen, wherein said C_1 - C_6 alkyl is optionally interrupted or substituted by heteroatoms selected from the group consisting of N, P, O, S and Si and said heteroatoms are optionally substituted by C_1 - C_3 alkyl once or several times; and
- d) X is alkyl or phenyl.

43 (Withdrawn). The method according to claim 41, wherein the compound is selected from the group consisting of:

- i. 2-oxo-3pentynoate;
- ii. aminoguanidine or salts thereof;
- iii. benzoic acid;
- iv. sodium benzoate;
- v. 2-aminobenzoate;
- vi. 3-aminobenzoate;
- vii. 4-aminobenzoate;

```
viii. methylglyoxal bis(guanylhydrazone);
```

- ix. methylglyoxal bis(guanylhydrazone) dihydrochloride;
- x. phenylglyoxal bis(guanylhydrazone) (PhGBG);
- xi. glyoxal bis(guanylhydrazone);
- xiii. 3-indole-acetic acid;
- xiv. indole-3-acetic acid;
- xv. indole-3-acetone;
- xvi. indole-3-acetamide;
- xvii. indole-3-acetyl-L-aspartic acid;
- xviii. indole-3-acetyl-L-alanine;
- xix. indole-3-acetylglycine;
- xx. indole-3-acetaldehyde sodium bisulfite;
- xxi. indole-3-carboxylic acid;
- xxii. indole-3-pyruvic acid;
- xxiii. salicylic acid;
- xxiv. salicylic acid sodium salts;
- xxv. salicylic acid potassium salts;
- xxvi. dansyl chloride;
- xxvii. dansyl fluoride;
- xxviii. dansyl glycine;
- xxix. alanine tetrazole;
- xxx. benzoic tetrazole;
- xxxi. tetrazole;
- xxxii. riboflavin 5'-pyrophosphate;
- xxxiii. D, L-propargylglycine;
- xxxiv. L-C-propargylglycine;
- xxxv. N-acetyl-DL-proparglyglycine;
- xxxvi. (±)-sodium 3-hydroxybutyrate;
- xxxvii. trigonelline hydrochloride;

```
xxxviii. N-methylnicotinate;
```

xxxix. methyl 6 -methylnicotinate;

xl. ethyl 2-methylnicotinate;

xli. kojic acid;

xlii. 6-(pyrrolidinomethyl)-kojic acid hydrochloride, 6-(morpholinomethyl)-kojic acid, 6-(diethylaminomethyl)-kojic acid hydrochloride;

xliii. O-(2,4-dinitrophenyl)hydroxylamine;

xliv. 2,4-dinirophenyl glycine;

xlv. hydroxylamine hydrochloride;

xlvi. methyl-p-nitrobenzenesulfonate;

xlvii. aminoethylcysteine-ketimine;

xlviii. 1,4-thiazine derivatives;

xlix. 4-phenyl-1,4-sulfonazan;

l. phenothiazine;

li. 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid;

lii. nifurtimox;

liii. 3-(1-pyrrolidinylmethy)-4-(5,6-dichloro-1-indancarbonyl)-tetrahydro-1,4-thiazine hydrochloride;

liv. ketimine reduced forms;

lv. cystathionine;

lvi. cystathionine ketimine;

lxi. lanthionine ketimine;

lxii. thiomorpholine-2-carboxylic acid;

lix. thiomorpholine-2,6-dicarboxylic acid;

lx. TMDA (1,4-thiomorpholine-3,5-dicarboxylic acid);

lxi. 1-chloro-1-nitroethane;

lxii. anthranilate;

lxiii. ethyl 2-aminobenzoate;

lxiv. methyl 2-aminobenzoate;

lxv. picolinate;

lxvi. ethyl picolinate;

lxvii. L-leucine methyl ester hydrochloride;

lxviii. L-leucine;

lxix. flurodinitrobenzene;

lxx. dinitrochlorobenzene;

lxxi. 1,2-cyclohexanedione;

lxxii. allyglycine;

lxxiii. 2-amino-2,4-pentadienoate;

lxxiv. 2-hydroxy-2,4-pentadienoate;

lxxv. 2-amino-4-keto-2-pentenoate;

lxxvi. 2-hydroxybutyrate;

lxxvii. sodium 2-hydroxybutyrate;

lxxviii. N-chloro-D-leucine;

lxxix. N-acetyl-D-leucine;

lxxx. D-2-amino-4-methylpentanoic acid;

lxxxi. D, L-propargylglycine;

lxxxii. progesterone;

lxxxiii. FAD (flavin adenine dinucleotide);

lxxxiv. 6-OH-FAD;

lxxxv. phenylglyoxal;

lxxxvi. phenylglyoxal monohydrate;

lxxxvii. cyclothionine;

lxxxviii. alpha-alpha'-iminodipropionic;

lxxxix. meso-diaminosuccinic acid;

xc. thiosemicarbazide:

xci. thiourea;

xcii. methylthiouracil;

xciii. sulphathiazole;

```
xciv. sulfathiazole Salt;
```

xcv. thiocyanate;

xcvi. 3-methylbenzyl thiocyanate;

xcvii. methimazole;

xeviii. dicarboxylic hydroxyacids;

xcix. 1,3-acetonedicarboxylic acid;

c. D-tartaric acid;

ci. L-tartaric acid;

cii. D, L-tartaric acid;

ciii. potassium tartarate;

civ. D-malic acid;

cv. L-malic acid;

cvi. D, L-malic acid;

cvii. alpha-keto acids that are analogues of the amino acids alanine, leucine, phenylanaline, phenylglycine, tyrosine, serine, aspartate, and salts thereof;

cviii. pyruvic acid;

cix. sodium pyruvate;

cx. pyruvic acid methyl ester;

cxi. phenylpyruvic acid;

cxii. calcium phenylpyruvate;

cxiii. phenylpyruvic acid sodium salt;

cxiv. 4-hydroxyphenyl pyruvic acid;

cxv. sodium alpha-ketoisovaleric acid;

cxvi. benzoylformic acid);

cxvii. 4-methylthio-2-oxopentanoic acid;

cxviii. 4-methyl-2-oxopentanoic acid;

cxix. 4-methylthio-2-oxybutanoic acid;

cxx. 2-oxybutanoic acid;

cxxi. D, L-alpha-hydroxybutyric acid sodium salt;

cxxii. indole-3-pyruvic acid;

cxxiii. cysteamine;

exxiv. pantetheine;

cxxv. S-adenosylmethionine;

cxxvi. ethyl bromopyruvate;

cxxvii. methyl bromopyruvate;

cxxviii. bromopyruvate; and

cxxix. 5-S-cysteinyldopamine.