Data Warehouse

Prof. Leandro Correia

Decisões Orientadas a Dados

- A partir do Planejamento Estratégico, informações relacionadas aos objetivos, estratégias, processos e ações são propagadas para os níveis Tático e Operacional;
- As informações ficam mais detalhadas à medida que se aproximam do nível Operacional.

Decisões Orientadas a Dados

- Por sua vez, as informações geradas no nível Operacional são consolidadas e propagadas para os níveis Tático e Estratégico para dar suporte às decisões;
- As informações se tornam menos detalhadas à medida que se aproximam do nível Estratégico.

Decisões Orientadas a Dados

Informações Estratégicas

Banco de Dados Transacional Data Warehouse e Business Intelligence

Data Warehouse

- Data Warehouse aparece no cenário organizacional como uma infraestrutura (banco de dados, processos, ferramentas) que permite a consolidação sistemática e padronizada dos dados para dar suporte à tomada de decisão.
- Business Intelligence é um conjunto de processos e tecnologias, incluindo o Data Warehouse e ferramentas de análise e visualização, que permitem aumentar a eficiência do processo de tomada de decisão.

Data Warehouse

- Características:
 - Infraestrutura para armazenamento de um grande volume de dados (históricos);
 - Dados organizados de forma a facilitar as consultas pelos usuários responsáveis pela tomada de decisões;
 - Os dados são coletados do ambiente transacional (nível operacional), de forma a estabelecer séries de dados no tempo;
 - Abordagem de organização por assunto;
 - Ciclo de vida substancialmente diferente dos sistemas tradicionais.

OLTP x OLAP

OLTP

- On-Line Transactional Processing (Processamento On-Line Transacional);
- Visa automatizar processos operacionais das organizações;
- Foco dos sistemas tradicionais (nível operacional);
- Características:
 - Elevado índice de atualização de dados;
 - Respostas fixas e programadas;
 - Modelagem baseada em normalização, visando obter diminuição da redundância.

OLTP x OLAP

- OLAP
 - On-Line Analytical Processing (Processamento On-Line Analítico);
 - Foco na tomada de decisão (níveis tático e estratégico);
 - Características:
 - Suporte a múltiplas respostas;
 - Modelo flexível;
 - Permite combinações dos dados realizadas pelos próprios usuários;
 - Modelagem multidimensional.

OLTP x OLAP

OLTP

- dados orientados à aplicação;
- última versão dos dados;
- dados atualizáveis;
- desempenho é fator crítico;
- acesso orientado a linha;
- dados voláteis;
- alta disponibilidade;
- redundância minimizada.

OLAP

- dados orientados ao assunto;
- snapshots;
- dados somente para leitura;
- desempenho não é tão crítico;
- orientado a conjunto;
- dados históricos;
- disponibilidade não tão alta;
- redundância gerenciada.

Ciclo de Vida de um Data Warehouse

Ciclo de Vida de um Data Warehouse

- Fonte de Dados OLTP
 - ODS Operational Data Store;
 - Dados de origem para o processo analítico;
 - Base de dados dos ambientes transacionais.
- ETL
 - Extraction, Transformation and Loading;
 - Processo de carga do DW a partir das fontes de dados;
 - Implementação de regras de transformação e garantia da qualidade dos dados.

Ciclo de Vida de um Data Warehouse

- Data Mart
 - Subconjunto lógico de um DW;
 - Organizado por assunto;
 - Estratégia de implementação incremental;
 - O critério de organização dos dados pode ser departamental, geográfico, por processos ou qualquer outra abordagem que faça sentido para o negócio da empresa.
- Aplicações OLAP
 - Permite ao usuário a realização de consultas ad-hoc;
 - Navegação em estruturas hierárquicas;
 - Interface intuitiva, fácil e flexível;
 - Flexibilidade ampliada com a oferta de aplicações para plataformas móveis.

MDDB

 SGBD desenhado para permitir um armazenamento e recuperação de grande volume de informações, relacionadas e visualizadas de diferentes perspectivas.

Visão Multidimensional

- Facilita o entendimento e visualização de problemas típicos de suporte à decisão;
- Mais intuitiva para o processamento analítico;
- Adotada pelas ferramentas de consulta OLAP.

Visão Relacional

MODEL	COLOR	SALES VOLUME
MINI VAN	BLUE	6
MINI VAN	RED	5
MINI VAN	WHITE	4
SPORTS COUPE	BLUE	3
SPORTS COUPE	RED	5
SPORTS COUPE	WHITE	5
SEDAN	BLUE	4
SEDAN	RED	3
SEDAN	WHITE	2

- Visão Multidimensional
 - Estrutura
 organizacional de
 maior nível de
 abstração que o
 modelo relacional;
 - Facilidade de visualização de informações;
 - Array é o componente fundamental de um MDDB.

M	Mini Van
0	
D	Coupe
Ε	
L	Sedan

6	5	4
3	5	5
4	3	2
Blue	Red	White

COLOR

- Visão Relacional
 - Ampliação para
 3 dimensões.

MINIVAN	BLUE	CLYDE	6
MINIVAN	BLUE	GLEASON	6
MINIVAN	BLUE	CARR	2
MINIVAN	RED	CLYDE	3
MINIVAN	RED	GLEASON	5
MINIVAN	RED	CARR	5
MINIVAN	WHITE	CLYDE	2
MINIVAN	WHITE	GLEASON	4
MINIVAN	WHITE	CARR	3
SPORTS COUPE	BLUE	CLYDE	2
SPORTS COUPE	BLUE	GLEASON	3
SPORTS COUPE	BLUE	CARR	2
SPORTS COUPE	RED	CLYDE	7
SPORTS COUPE	RED	GLEASON	5
SPORTS COUPE	RED	CARR	2
SPORTS COUPE	WHITE	CLYDE	4
SPORTS COUPE	WHITE	GLEASON	5
SPORTS COUPE	WHITE	CARR	1
SEDAN	BLUE	CLYDE	6
SEDAN	BLUE	GLEASON	4
SEDAN	BLUE	CARR	2
SEDAN	RED	CLYDE	1
SEDAN	RED	GLEASON	3
SEDAN	RED	CARR	4
SEDAN	WHITE	CLYDE	2
SEDAN	WHITE	GLEASON	2
SEDAN	WHITE	CARR	3

- Visão Multidimensional
 - Ampliação para 3 dimensões

COLOR

- Visão Multidimensional
 - Volumes maiores de dados:
 - Supondo que cada dimensão possua 10 posições (valores válidos);
 - Cubo 10x10x10;
 - Relacional Tabela de 1.000 registros.

Generalização para N dimensões

M Mini Van Mini Van 0 D Coupe Coupe Coupe Ε Sedan Sedan **DEALERSHIP** Blue Red White Blue Red White Blue Red White **COLOR COLOR** COLOR **JANUARY FEBRUARY MARCH**

 Onde a abordagem multidimensional não é apropriada:

LAST NAME	EMPLOYEE#	EMPLOYEE AGE
SMITH	1	21
REGAN	12	19
FOX	31	63
WELD	14	31
KELLY	54	27
LINK	3	56
KRANZ	41	45
LUCUS	33	41
WEISS	23	19

Onde a abordagem multidimensional não

é apropriada:

Operações em Bancos Multidimensionais

Rotation (Dice)

Sales Volumes

Operações em Bancos Multidimensionais

Ranging (Slice)

Sales Volumes

Operações em Bancos Multidimensionais

• Hierarquias, Roll-Up e Drill-Down

Vendas por Produto, Ano e Região