STK1110 Høsten 2021

Fordelinger for normalfordelte utvalg

Tilsvarer Avsnitt 6.4

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Bakgrunn

- Formålet med dette avsnittet er å gå gjennom en del resultater som vi vil trenge i Kap. 8, 9 og 10.
- Vi antar at vi har observasjoner x_1, \ldots, x_n av de stokastiske variablene X_1, \ldots, X_n .
- Her er $X_1, \ldots, X_n \stackrel{uif}{\sim} N(\mu, \sigma^2)$ et tilfeldig utvalg..

χ^2 -fordelingen

- χ^2 -fordelingen er et spesialtilfelle av gammafordelingen.
- For gammafordelingen har vi:

• Tetthet:
$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}, & x > 0 \\ 0, & \text{ellers} \end{cases}$$
, der $\alpha, \beta > 0$

- Forventning og varians: $E(X) = \alpha \beta$, $V(X) = \alpha \beta^2$
- Momentgenererende funksjon: $M_X(t) = \mathsf{E}(e^{tX}) = (1-\beta t)^{-\alpha}$.
- For $\alpha = \nu/2$ og $\beta = 2$ får vi χ^2_{ν} -fordelingen:
 - Tetthet: $f(x; \nu) = \begin{cases} \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2} 1} e^{-\frac{x}{2}}, & x > 0 \\ 0, & \text{ellers} \end{cases}$, der $\nu > 0$
 - kalles frihetsgrader
 - Forventning og varians: $E(X) = \frac{\nu}{2} \cdot 2 = \nu$, $V(X) = \frac{\nu}{2} \cdot 2^2 = 2\nu$
 - Momentgenererende funksjon: $\tilde{M_X}(t) = \mathsf{E}(e^{tX}) = (1-2t)^{-\frac{\nu}{2}}$.

Resultater knyttet til χ^2 -fordelingen

- Anta at $X_1\sim \chi^2_{\nu_1}$ og $X_2\sim \chi^2_{\nu_2}$ er uavhengige. Da er $X_1+X_2\sim \chi^2_{\nu_1+\nu_2}.$
- Dette kan lett utvides til at dersom $X_1 \sim \chi^2_{\nu_1}$, $X_2 \sim \chi^2_{\nu_2}$,..., $X_n \sim \chi^2_{\nu_n}$ er uavhengige, er $X_1 + X_2 + \ldots + X_n \sim \chi^2_{\nu_1 + \ldots + \nu_n}$.
- La $Z \sim N(0,1)$ og $X = Z^2$. Da er $X \sim \chi_1^2$.
- En følge av de to resultatene over er at dersom $Z_1, \ldots, Z_n \stackrel{uif}{\sim} N(0,1)$, så er $Z_1^2 + \ldots + Z_n^2 \sim \chi_n^2$.

Resultater for normalfordelte utvalg

- Anta at $X_1, \ldots, X_n \stackrel{uit}{\sim} N(\mu, \sigma^2)$.
- Da er $Z_i = \frac{X_i \mu}{\sigma} \sim N(0, 1), i = 1, \dots, n.$
- Hvis μ er kjent, kan σ^2 estimeres med $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$, som er forventningsrett for σ^2 .
- Vanligvis er ikke μ kjent, men må estimeres med \bar{X} .
- Fra STK1100 vet vi da at $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ er en forventningsrett estimator σ^2 .
- \bar{X} og S^2 uavhengige.
- $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$.

t-fordelingen

- Hvis $Z \sim N(0,1)$ og $U \sim \chi^2_{
 u}$ er uavhengige, er $T = rac{Z}{\sqrt{U/
 u}} \sim t_{
 u}.$
- Tetthet: $f(t; \nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, -\infty < t < \infty.$
- Hvis $X_1,\ldots,X_n\stackrel{uif}{\sim} N(\mu,\sigma^2)$, så er $T=rac{ar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$
- Det kan vises at U/ν med $U\sim\chi^2_{\nu}$ konvergerer mot 1 når $\nu\to\infty$, slik at fordelingen til T konvergerer mot standard normalfordeling.
- Forventning og varians: E(T) = 0 når $\nu > 1$, $V(T) = \frac{\nu}{\nu 2}$, når $\nu > 2$.

F-fordelingen

- Hvis $U_1 \sim \chi^2_{\nu_1}$ og $U_2 \sim \chi^2_{\nu_2}$ er uavhengige, er $F = \frac{U_1/\nu_1}{U_2/\nu_2} \sim F_{\nu_1,\nu_2}$.
- Tetthet:

$$f(x; \nu_1, \nu_2) = \begin{cases} \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \frac{x^{\frac{\nu_1}{2}}}{\left(1 + \frac{\nu_1}{\nu_2} x\right)^{\frac{\nu_1 + \nu_2}{2}}}, & x > 0\\ 0, & \text{ellers} \end{cases}$$

• Dersom $X_1, \ldots, X_m \stackrel{uif}{\sim} N(\mu_1, \sigma_1^2)$ og $Y_1, \ldots, Y_n \stackrel{uif}{\sim} N(\mu_2, \sigma_2^2)$, og X_1, \ldots, X_m og Y_1, \ldots, Y_n er uavhengige, er $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{m-1,n-1}$.