

STOCHASTIC DYNAMICS OF POWER SYSTEMS OVERVIEW FOR R. TEMPONE AND E. HALL

19.2.2019 I DIRK WITTHAUT

FREQUENCY DYNAMICS IN POWER SYSTEMS

Why study power system frequency data?

- The mains frequency is the central observable in power system control: It measures the *power* balance in the grid.
- The frequency is readily measured at any plug (in contrast to power), so data is easy to obtain.
- What can we learn about power system dynamics and stability?

FREQUENCY DYNAMICS IN POWER SYSTEMS

Aggregate statistics for frequency time series

A first look at the frequency time series as a whole:

- A histogram of the mains frequency f reveals heavy tails not compatible with Gaussian statistics
- Data is best described by described Levy-stable or q-Gaussians distributions
- Auto-correlation of time series f(t) reveals:
 - effective damping γ
 - high impact of electricity trading in intervals of 15,30,45,60,... minutes

Grid frequency Europe [Hz]

Schäfer, Beck, Aihara, DW, Timme, Nature Energy 3, 119 (2018)

FREQUENCY DYNAMICS IN POWER SYSTEMS

Aggregate statistics for frequency time series

A first look at the frequency time series as a whole:

We should have a more detailed view on the data at high temporal resolution. A histogram of the mains frequency f reveals

Then we might learn a lot about:

heavy frequency f reveals

Then we might learn a lot about:

• The scheduling of power generation on the energy market

Data is best described by described Levy-stable or

• The impact of renewables including prognosis errors

Grid

- The problem of decreasing grd inertia
- Potential sytemic risk for the grids
 - effective damping γ
 - high impact of electricity trading in intervals of 15,30,45,60,... minutes

Schäfer, Beck, Aihara, DW, Timme, Nature Energy 3, 119 (2018)

KRAMERS-MOYAL COEFFICIENTS

Constructing an stochastic model

• Let us assume that the frequency dynamics can be modeled by an SDE:

$$df = a(f,t) dt + b(f,t) dW$$

Kramers-Moyal coefficients:

$$a(f,t) = \lim_{\Delta t \to 0} E([f(t + \Delta t) - f(t)] | f)$$

$$b(f,t) = \frac{1}{2} \lim_{\Delta t \to 0} E([f(t + \Delta t) - f(t)]^2 | f)$$

- In practice we cannot take the like and we do not know the expected value.
- \triangleright Use a finite Δt , replace expected value E by time average...

KRAMERS-MOYAL COEFFICIENTS

Results for the Central European Power Grid

Results for the Central European Grid 2016: df = a(f,t) dt + b(f,t) dW

This is dominated by primary control: $a(f,t) \approx -\frac{\gamma_2}{M}f$

Higher in summer and for large f. Why?

Constructing an stochastic model

The mains frequency just follows the power imbalance in the grid:

$$M df = \Delta P dt$$
, M : inertia, f : frequency relative to 50 Hz

- We can decompose the power balance ΔP into four contributions:
 - 1. Mismatch of the power generation ΔP_{gen}
 - 2. Rapid, irregular changes of the generation and load \rightarrow treated as noise $D \ dW$
 - 3. Action of primary control: $\Delta P_1 = -\gamma_1 f \times H(f 10 \ mHz)$
 - 4. Action of secondary control: ΔP_2
 - $M df = (\Delta P_{gen} + \Delta P_2) dt \gamma_1 f \times H(f 10 mHz) dt + D dW$
- \triangleright Can we recover parameters such as ΔP_{gen} , D, M from data?

Results for a simplified model

- A first attempt with some simplifications:
 - Primary control always on: $\Delta P_1 = -\gamma_1 f$
 - Assume that secondary control brings mismatch to zero at fixed rate: $\Delta P_{qen} + \Delta P_2 = \Delta P_0 e^{-\gamma_2 t}$
 - Assume a Gaussian distribution at all times
- Fit parameters of model and initial state such that log-likelihood function asummes a maximum
- Results look quite good for the example shown on the right

Challenges of the maximum likelihood approach

- Challenge 1: overfitting
- There quite a number of parameters in the model and there will be even more if I include a more adequate model for secondary control.
- For instance, it is hard to disentangle the contributions of the two damping factors γ_1, γ_2

Challenges of the maximum likelihood approach

- Challenge 2: dead bands
- Let's proceed with the same model to the next
 15 minute interval
- Result: The results look far worse and the reconstructed parameters are very strange.
- That shows that we cannot assume that primary control is always on. We have to include it explictly. But then we have to deal with a nasty discontinuous function...

