

ICPC Templates

我们需要更深入浅出一些

Mine_King, Tx_Lcy, 369pai 洛谷科技

October 20, 2024

目录

1	字符	字符串			
	1.1	最小表示法			
	1.2	Border 理论			
		1.2.1 关键结论			
		1.2.2 KMP			
	1.3	Z函数			
	1.4	Manacher			
	1.5	AC 自动机			
	1.6	回文自动机 PAM			
	1.7	后缀自动机			
		1.7.1 普通 SAM			
		1.7.2 广义 SAM :			
	1.8	后缀排序			
2	数论				
_	2.1	Miller Rabin 和 Pollard Rho			
	2.1	2.1.1 Miller Rabin			
		2.1.2 Pollard Rho			
	2.2	常用数论算法			
		2.2.1 exgcd			
		2.2.2 CRT			
		2.2.3 exCRT			
		2.2.4 exLucas			
	2.3	万能欧几里得算法			
3	数据				
		K-D Tree			
	3.2	Link Cut Tree			
4	图论	13			
	4.1	Tarjan			
		4.1.1 强连通分量 18			
		4.1.2 割边与边双 18			

			目录
		4.1.3 割点与点双	19
	4.2	欧拉路径	20
	4.3	二分图匹配	21
		4.3.1 最大匹配	21
		4.3.2 最大权匹配	21
	4.4	网络流	22
		4.4.1 最大流	22
		4.4.2 费用流	23
		4.4.3 上下界	25
		4.4.4 有负圈的最小费用最大流	26
	4.5	k 短路	26
	4.6	全局最小割	28
	4.7	支配树	29
	4.8	弦图	31
		4.8.1 MCS 最大势算法。	31
		4.8.2 弦图判定	31
		4.8.3 求弦图的团数与色数	31
		4.8.4 求弦图的最大独立集和最小团覆盖	32
		4.8.5 tricks	32
_	År vil	=_D	22
5	多项		33
	5.1	牛顿迭代	
	5.2	FFT ## # # EFH	
	5.3	常用 NTT 模数及其原根	
	5.4	多项式模板	34
6	杂项	į	40
	6.1	取模类	40
		6.1.1 Barrett 约减	
	6.2	对拍脚本	41
	6.3	VS Code 配置	41
	-	6.3.1 User Tasks	41
		6.3.2 设置	
		6.3.3 快捷键	

Chapter 1

字符串

1.1 最小表示法

```
// == Main ==
int i = 0, j = 1, k = 0;
while (k < n && i < n && j < n)
if (a[(i + k) % n] == a[(j + k) % n]) k++;
else {
    if (a[(i + k) % n] > a[(j + k) % n]) i = i + k + 1;
    else j = j + k + 1;
    if (i == j) i++;
    k = 0;
    ans = min(i, j);
```

1.2 Border 理论

1.2.1 关键结论

定理 1: 对于一个字符串 s,若用 t 表示其最长的 Border,则有 $\mathcal{B}(s) = \mathcal{B}(t) \cup \{t\}$ 。

定理 2: 一个字符串的 Border 与 Period 一一对应。具体地, $\operatorname{pre}(s,i) \in \mathcal{B}(s) \iff |s| - i \in \mathcal{P}(s)$ 。

弱周期引理:

$$\forall p, q \in \mathcal{P}(s), p + q \leq |s| \implies \gcd(p, q) \in \mathcal{P}(s)$$

定理 3: 若字符串 t 是字符串 s 的前缀,且 $a \in \mathcal{P}(s), b \in \mathcal{P}(t), b \mid a, |t| \geq a$,且 $b \in t$ 的整周期,则有 $b \in \mathcal{P}(s)$ 。

周期引理:

$$\forall p, q \in \mathcal{P}(s), p + q - \gcd(p, q) \le |s| \implies \gcd(p, q) \in \mathcal{P}(s)$$

定理 4: 对于文本串 s 和模式串 t,若 $|t| \ge \frac{|s|}{2}$,且 t 在 s 中至少成功匹配了 3 次,则每次匹配的位置形成一个等差数列,且公差为 t 的最小周期。

定理 5: 一个字符串 s 的所有长度不小于 $\frac{|s|}{2}$ 的 Border 的长度构成一个等差数列。

定理 6: 一个字符串的所有 Border 的长度排序后可以划分成 $\lceil \log_2 |s| \rceil$ 个连续段,使得每段都是一个等差数列。

定理 7: 回文串的回文前/后缀即为该串的 Border。

定理 8: 若回文串 s 有周期 p,则可以把 $\operatorname{pre}(s,p)$ 划分成长度为 $|s| \operatorname{mod} p$ 的前缀和长度为 $p-|s| \operatorname{mod} p$ 的后缀,使得它们都是回文串。

定理 9: 若 t 是回文串 s 的最长 Border 且 $|t| \ge \frac{|s|}{2}$,则 t 在 s 中只能匹配 2 次。

定理 10: 对于任意一个字符串以及 $u, v \in \text{Ssuf}(s), |u| < |v|$, 一定有 $u \in v$ 的 Border。

定理 11: 对于任意一个字符串 s 以及 $u, v \in Ssuf(s), |u| < |v|$,一定有 $2|u| \le |v|$ 。

定理 12: $|Ssuf(s)| \le \log_2 |s|$ 。

1.2.2 KMP

```
1 // == Main ==
2 // n is |s|, m is |t|.
3 for (int i = 1, j = 0; i <= n; i++) {
4    while (j && t[j + 1] != s[i]) j = pi[j];
5    if (t[j + 1] == s[i])
6    if (++j == m) {</pre>
```

1.3 Z函数

```
// == Main ==

2 // n is |s|.

3 for (int i = 2, j = 0; i <= n; i++) {

4    if (i < j + z[j]) z[i] = min(z[i - j + 1], j + z[j] - i);

5    while (i + z[i] <= n && s[i + z[i]] == s[1 + z[i]]) z[i]++;

6    if (i + z[i] > j + z[j]) j = i;

7 }
```

1.4 Manacher

```
// == Main ==
2 // t is the original string, n is |t|.
3 string s = "^#";
4 for (char i : t) s.push_back(i), s.push_back('#');
5 s.push_back ('@');
6 for (int i = 1, j = 0; i <= 2 * n + 1; i++) {
7    if (i <= j + p[j]) p[i] = min (p[2 * j - i], j + p[j] - i);
8    while (s[i - p[i] - 1] == s[i + p[i] + 1]) p[i]++;
9    if (i + p[i] > j + p[j]) j = i;
10 }
```

1.5 AC 自动机

```
// == Preparations ==
2 #include <queue>
3 // == Main ==
4 struct ACAM {
5    int tot, fail[200005], delta[200005][26];
6
7    void insert(string s, int id) {
8        int now = 0;
9        for (char c : s) {
10            int v = c - 'a';
11            if (!delta[now][v]) delta[now][v] = ++tot;
```

```
now = delta[now][v];
12
           }
13
          return;
14
      }
      void build() {
16
           queue<int> q;
17
           for (int c = 0; c < 26; c++)
18
               if (delta[0][c]) q.push(delta[0][c]);
           while (!q.empty()) {
20
               int now = q.front();
               q.pop();
22
               for (int c = 0; c < 26; c++)
23
                    if (delta[now][c]) fail[delta[now][c]] = delta[fail[now]][c],
24

¬ q.push(delta[now][c]);

                   else delta[now][c] = delta[fail[now]][c];
25
           }
26
           return;
27
      }
28
29 } ac;
```

1.6 回文自动机 PAM

```
1 // == Main ==
2 struct PAM {
      int tot, delta[500005][26], len[500005], fail[500005], ans[500005];
      string s;
      int lst;
      PAM() {tot = 1; len[0] = 0; len[1] = -1; fail[0] = fail[1] = 1;}
      int getfail(int now, int i) {
          while (s[i - len[now] - 1] != s[i]) now = fail[now];
          return now;
10
      }
11
      void insert(int i) {
12
          int now = getfail(lst, i);
          if (!delta[now][s[i] - 'a']) {
14
              len[++tot] = len[now] + 2;
              fail[tot] = delta[getfail(fail[now], i)][s[i] - 'a'];
16
              delta[now][s[i] - 'a'] = tot;
17
              ans[tot] = ans[fail[tot]] + 1;
18
          }
19
          lst = delta[now][s[i] - 'a'];
          return;
      }
22
23 } p;
```

1.7 后缀自动机

1.7.1 普通 SAM

```
1 // == Main ==
2 struct SAM {
      int tot, lst;
      int len[2000005], siz[2000005], link[2000005];
      int delta[2000005][26];
      SAM() \{link[0] = -1;\}
      void insert(char ch) {
          int c = ch - 'a', now = ++tot;
          len[now] = len[lst] + 1;
          siz[now] = 1;
11
          for (int p = lst; p != -1; p = link[p])
12
              if (!delta[p][c]) delta[p][c] = tot;
13
              else if (len[delta[p][c]] == len[p] + 1) {link[now] = delta[p][c];
               → break;}
              else {
                   int q = delta[p][c], v = ++tot;
16
                   len[v] = len[p] + 1;
17
                   memcpy(delta[v], delta[q], sizeof(delta[v]));
18
                   link[v] = link[q], link[q] = v, link[now] = v;
                   for (int i = p; delta[i][c] == q; i = link[i]) delta[i][c] = v;
20
                   break;
21
              }
          lst = now;
23
          return ;
      }
25
26 } sam;
```

1.7.2 广义 SAM

注意自动机空间要开 Trie 的两倍。

```
// == Main ==
struct GSAM {
   int tot;
   int delta[2000005][26], link[2000005], len[2000005];
   struct Trie {
      int tot, trie[1000005][26], st[1000005];

   void insert(string s) {
      int now = 0;
      for (char c : s) {
}
```

```
int id = c - 'a';
11
                    if (!trie[now][id]) trie[now][id] = ++tot;
12
                   now = trie[now][id];
13
               }
14
               return;
15
           }
16
      } tr;
17
      GSAM() \{link[0] = -1;\}
19
      int insert(int c, int lst) {
20
           int now = ++tot;
21
           len[now] = len[lst] + 1;
22
           for (int p = lst; p != -1; p = link[p])
23
               if (!delta[p][c]) delta[p][c] = now;
24
               else if (len[delta[p][c]] == len[p] + 1) {link[now] = delta[p][c];
25
                → break;}
               else {
26
                    int q = delta[p][c], v = ++tot;
27
                    len[v] = len[p] + 1;
                    memcpy(delta[v], delta[q], sizeof(delta[v]));
29
                    link[v] = link[q], link[q] = v, link[now] = v;
30
                    for (int i = p; i != -1 && delta[i][c] == q; i = link[i]) delta[i][c]
31
                    \rightarrow = v;
                    break;
32
               }
33
           return now;
34
      }
35
      void build() {
36
           queue<int> q;
37
           tr.st[0] = 0;
38
           q.push(0);
39
           while (!q.empty()) {
40
               int now = q.front();
               q.pop();
42
               for (int i = 0; i < 26; i++)</pre>
43
                    if (tr.trie[now][i])
44
                        tr.st[tr.trie[now][i]] = insert(i, tr.st[now]),
45

¬ q.push(tr.trie[now][i]);

           }
46
           return;
      }
48
49 } gsam;
```

1.8 后缀排序

```
1 // == Preparations ==
1 int sa[2000005], rk[2000005], b[1000005], cp[2000005];
3 // == Main ==
4 for (int i = 1; i <= n; i++) b[rk[i] = s[i]]++;</pre>
5 for (int i = 1; i < 128; i++) b[i] += b[i - 1];</pre>
6 for (int i = n; i >= 1; i--) sa[b[rk[i]]--] = i;
7 memcpy(cp, rk, sizeof(cp));
s for (int i = 1, j = 0; i <= n; i++)
      if (cp[sa[i]] == cp[sa[i - 1]]) rk[sa[i]] = j;
      else rk[sa[i]] = ++j;
in for (int w = 1; w < n; w <<= 1) {</pre>
      memcpy(cp, sa, sizeof(cp));
      memset(b, 0, sizeof(b));
13
      for (int i = 1; i <= n; i++) b[rk[cp[i] + w]]++;</pre>
14
      for (int i = 1; i \le n; i++) b[i] += b[i-1];
15
      for (int i = n; i >= 1; i--) sa[b[rk[cp[i] + w]]--] = cp[i];
16
      memcpy(cp, sa, sizeof(cp));
17
      memset(b, 0, sizeof(b));
18
      for (int i = 1; i <= n; i++) b[rk[cp[i]]]++;</pre>
      for (int i = 1; i \le n; i++) b[i] += b[i-1];
20
      for (int i = n; i >= 1; i--) sa[b[rk[cp[i]]]--] = cp[i];
21
      memcpy(cp, rk, sizeof(cp));
22
      for (int i = 1, j = 0; i \le n; i++)
23
          if (cp[sa[i]] == cp[sa[i - 1]] \&\& cp[sa[i] + w] == cp[sa[i - 1] + w])
24
           \rightarrow rk[sa[i]] = j;
          else rk[sa[i]] = ++j;
25
26 }
```

Chapter 2

数论

2.1 Miller Rabin 和 Pollard Rho

2.1.1 Miller Rabin

```
1 // == Preparations ==
2 const int prime[] = {2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37};
4 long long power(long long a, long long b, long long mod) {
      long long ans = 1;
      while (b) {
          if (b & 1) ans = (__int128)ans * a % mod;
          a = (int128)a * a % mod;
          b >>= 1;
      }
      return ans % mod;
12 }
13 // == Main ==
14 inline int Miller_Rabin(long long n) {
      if (n == 1) return 0;
      if (n == 2) return 1;
      if (n % 2 == 0) return 0;
      long long u = n - 1, t = 0;
      while (u \% 2 == 0) u /= 2, t++;
      for (int i = 0; i < 12; i++) {</pre>
20
          if (prime[i] % n == 0) continue;
          long long x = power(prime[i] % n, u, n);
22
          if (x == 1) continue;
23
          int flag = 0;
          for (int j = 1; j \le t; j++) {
25
              if (x == n - 1) {flag = 1; break;}
26
              x = (int128)x * x % n;
          if (!flag) return 0;
```

```
30  }
31  return 1;
32 }
```

2.1.2 Pollard Rho

```
1 // == Preparations ==
2 #include <chrono>
3 #include <random>
5 mt19937_64 gen(chrono::system_clock::now().time_since_epoch().count());
6 /*
7 Miller Rabin
8 */
9 // == Main ==
10 long long Pollard Rho(long long n) {
      long long s = 0, t = 0, c = gen() % (n - 1) + 1;
      for (int goal = 1; ; goal <<= 1, s = t) {</pre>
          long long val = 1;
13
          for (int step = 1; step <= goal; step++) {</pre>
14
               t = ((_int128)t * t + c) % n;
15
               val = (_int128)val * abs(t - s) % n;
               if (!val) return n;
               if (step % 127 == 0) {
                   long long d = __gcd(val, n);
19
                   if (d > 1) return d;
               }
          }
22
          long long d = __gcd(val, n);
          if (d > 1) return d;
24
      }
26 }
27 void factor(long long n) {
      if (n < ans) return ;</pre>
      if (n == 1 || Miller Rabin(n)) {
          // n = 1 或 n 是一个质因子。
30
          // ...
31
32
      long long p;
33
      do p = Pollard Rho(n);
34
      while (p == n);
35
      while (n \% p == 0) n /= p;
36
      factor(n), factor(p);
37
      return ;
38
39 }
```

2.2 常用数论算法

2.2.1 exgcd

求出来的解满足 $|x| \le b, |y| \le a$ 。

```
// == Main ==
int exgcd(int a, int b, int &x, int &y) {
   if (b == 0) {x = 1; y = 0; return a;}
   int m = exgcd(b, a % b, y, x);
   y -= a / b * x;
   return m;
}
```

2.2.2 CRT

没用。

```
// == Preparations ==
// #include <vector>
// == Main ==
// int CRT(vector<pair<int, int>> &a) {
// int M = 1;
// for (auto i : a) M *= i.second;
// int res = 0;
// for (auto i : a) {
// int t = inv(M / i.second, i.second);
// res = (res + (long long)i.first * (M / i.second) % M * t % M) % M;
// return res;
// return res;
// return res;
```

2.2.3 **exCRT**

需保证 lcm 在 long long 范围内。

```
// == Preparations ==
long long exgcd(long long a, long long b, long long &x, long long &y);
// == Main ==
long long exCRT(vector<pair<long long, long long>> vec) {
long long ans = vec[0].first, mod = vec[0].second;
for (int i = 1; i < (int)vec.size(); i++) {
long long a = mod, b = vec[i].second, c = vec[i].first - ans % b;
long long x, y;</pre>
```

```
long long g = exgcd(a, b, x, y);
if (c % g != 0) return -1;
b /= g;
x = (__int128)x * (c / g) % b;
ans += x * mod;
mod *= b;
ans = (ans % mod + mod) % mod;
}
return ans;
}
```

2.2.4 exLucas

```
1 // == Preparations ==
2 int power(int a, long long b, int mod);
3 int exgcd(int a, int b, int &x, int &y);
4 int CRT(vector<pair<int, int>> &a);
5 // == Main ==
6 int inv(int n, int p) {
      int x, y;
      exgcd(n, p, x, y);
      return (x % p + p) % p;
10 }
int fac(long long n, int p, int pk) {
      if (n == 0) return 1;
12
      int res = 1;
13
      for (int i = 1; i < pk; i++)</pre>
14
          if (i % p != 0) res = (long long)res * i % pk;
15
      res = power(res, n / pk, pk);
16
      for (int i = 1; i <= n % pk; i++)
17
          if (i % p != 0) res = (long long)res * i % pk;
      return (long long)res * fac(n / p, p, pk) % pk;
19
 }
20
 int C(long long n, long long m, int p, int pk) {
21
      long long x = n, y = m, z = n - m;
22
      int res = (long long)fac(x, p, pk) * inv(fac(y, p, pk), pk) % pk * inv(fac(z, p,
23
      \rightarrow pk), pk) % pk;
      long long e = 0;
24
      while (x) e += x / p, x /= p;
25
      while (y) e -= y / p, y /= p;
26
      while (z) e -= z / p, z /= p;
27
      return (long long)res * power(p, e, pk) % pk;
29 }
 int exLucas(long long n, long long m, int p) {
      vector<pair<int, int>> a;
31
      for (int i = 2; i * i <= p; i++)
          if (p % i == 0) {
33
```

```
int pk = 1;
while (p % i == 0) pk *= i, p /= i;
a.emplace_back(C(n, m, i, pk), pk);

if (p != 1) a.emplace_back(C(n, m, p, p), p);
return CRT(a);

40 }
```

2.3 万能欧几里得算法

问题描述:

给出一个幺半群 (S,\cdot) 和元素 $u,r \in S$,以及一条直线 $y = \frac{ax+b}{a}$ 。

画出平面中所有坐标为正整数的横线和竖线,维护一个 f ,初值为单位元 e 。

从原点出发,先向y轴正方向走直到到达直线与y的交点,然后沿直线走一直走到与x=n的交点为止。

每当经过一条横线时,执行 $f \leftarrow fu$,经过一条竖线时执行 $f \leftarrow fr$ 。特别地,在 g 轴上行走时不考虑竖线,同时经过横线和竖线时先执行前者。

求最终的 f。记为 euclid(a, b, c, n, u, r)。

其中 $a, b \ge 0, n, c > 0$ 。

做法:

```
\operatorname{euclid}(a,b,c,n,u,r) = \begin{cases} r^n & m = 0 \\ u^{\lfloor \frac{b}{c} \rfloor} \cdot \operatorname{euclid}(a \bmod c, b \bmod c, c, n, u, u^{\lfloor \frac{a}{c} \rfloor} r) & a \geq c \vee b \geq c \\ r^{\lfloor \frac{c-b-1}{a} \rfloor} u \cdot \operatorname{euclid}(c, (c-b-1) \bmod a, a, m-1, r, u) \cdot r^{n-\lfloor \frac{cm-b-1}{a} \rfloor} & \operatorname{otherwise} \end{cases}
```

设一次乘法的复杂度为 O(T), 则复杂度为 $O(T \log(a+c) \log(a+n+c))$ 。

```
b >>= 1;
15
     }
16
     return ans;
17
18 }
19 Node Euclid(int a, int b, int c, long long n, Node r, Node u) {
     long long m = (a * n + b) / c;
     if (!m) return power(r, n);
21
     if (a >= c || b >= c)
22
        return power(u, b / c) * Euclid(a % c, b % c, c, n, power(u, a / c) * r, u);
23
     return power(r, (c - b - 1) / a) * u *
24
        25
         \rightarrow a);
26 }
```

Chapter 3

数据结构

3.1 K-D Tree

```
1 // == Main ==
2 template<const int Dim = 2>
3 struct KDTree {
      using point = array<int, Dim>;
      struct node {
          point p, l, r;
          int val, siz, sum;
          node *ls, *rs;
          node() = default;
10
          node(point _p, int _val = 0):
              p(_p), l(_p), r(_p), val(_val), siz(1), sum(_val), ls(nullptr),
12

¬ rs(nullptr) {}

          void pushup() {
13
              l = r = p, siz = 1, sum = val;
              for (int i = 0; i < Dim; i++) {</pre>
15
                   if (ls) l[i] = min(l[i], ls->l[i]), r[i] = max(r[i], ls->r[i]);
                   if (rs) l[i] = min(l[i], rs->l[i]), r[i] = max(r[i], rs->r[i]);
              }
              if (ls) siz += ls->siz, sum += ls->sum;
19
              if (rs) siz += rs->siz, sum += rs->sum;
              return ;
          }
22
      };
23
      vector<node *> root;
24
      using itor = typename vector<node>::iterator;
25
26
      node *build(itor 1, itor r, int dim = 0) {
27
          if (l == r) return nullptr;
          int mid = (r - 1) / 2;
          nth_element(1, 1 + mid, r, [&dim](const node &x, const node &y) {return
           \rightarrow x.p[dim] < y.p[dim];});
```

```
node *now = new node(*(1 + mid));
31
          now->ls = build(l, l + mid, (dim + 1) % Dim);
32
          now->rs = build(1 + mid + 1, r, (dim + 1) % Dim);
33
          now->pushup();
          return now;
35
      }
      void getnode(node *now, vector<node> &vec) {
37
          if (!now) return ;
          vec.push back(*now);
39
          getnode(now->ls, vec), getnode(now->rs, vec);
          delete now;
          return ;
42
      }
43
      void insert(point p, int val) {
          vector<node> tmp({node(p, val)});
45
          while (!root.empty() && root.back()->siz == (int)tmp.size())
46
               getnode(root.back(), tmp), root.pop_back();
          sort(tmp.begin(), tmp.end(), [](const node &x, const node &y) {return x.p <</pre>
           \rightarrow y.p;});
          vector<node> vec;
49
          for (node i : tmp)
               if (!vec.empty() && vec.back().p == i.p) vec.back().val += i.val;
51
               else vec.push back(i);
          root.push back(build(vec.begin(), vec.end()));
53
          return ;
      }
55
      int query(point 11, point rr, node *now) {
          if (!now) return 0;
57
          int flag = 1;
          for (int i = 0; i < Dim; i++)</pre>
               if (now->r[i] < ll[i] || now->l[i] > rr[i]) return 0;
               else flag &= ll[i] <= now->l[i] && now->r[i] <= rr[i];</pre>
61
          if (flag) return now->sum;
          flag = 1;
63
          for (int i = 0; i < Dim; i++) flag &= ll[i] <= now->p[i] && now->p[i] <=</pre>
64
           → rr[i];
          return flag * now->val + query(ll, rr, now->ls) + query(ll, rr, now->rs);
65
      int query(point 11, point rr) {
67
          int ans = 0;
          for (node *rt : root) ans += query(ll, rr, rt);
          return ans;
71
      ~KDTree() {
72
          vector<node> tmp;
73
          for (node *rt : root) getnode(rt, tmp);
74
      }
75
<sub>76</sub> };
```

3.2 Link Cut Tree

代码维护的是点权异或和。

```
1 // == Main ==
2 struct LinkCutTree {
      int fa[100005], son[100005][2], siz[100005], swp[100005];
      int val[100005], Xor[100005];
      void pushup(int now) {
          siz[now] = siz[son[now][0]] + siz[son[now][1]] + 1;
          Xor[now] = Xor[son[now][0]] ^ val[now] ^ Xor[son[now][1]]; // 此处更新信息。
          return;
      }
10
      void pushdown(int now) {
11
          if(!swp[now]) return ;
12
          swap(son[now][0], son[now][1]);
13
          swp[son[now][0]] ^= 1, swp[son[now][1]] ^= 1;
14
          swp[now] = 0;
15
          // 此处将信息 pushdown
16
          return;
17
      }
18
      int isRoot(int now) {return now != son[fa[now]][0] && now != son[fa[now]][1];}
19
      int get(int now) {return now == son[fa[now]][1];}
20
      void rotate(int x) {
21
          int y = fa[x], z = fa[fa[x]], chk = get(x);
22
          if (!isRoot(y)) son[z][get(y)] = x;
23
          son[y][chk] = son[x][chk ^ 1], fa[son[x][chk ^ 1]] = y;
          son[x][chk ^ 1] = y, fa[y] = x;
25
          fa[x] = z;
          pushup(y), pushup(x);
27
          return;
      }
29
      void splay(int now) {
30
          vector<int> stk;
31
          stk.push_back(now);
32
          for (int i = now; !isRoot(i); i = fa[i]) stk.push back(fa[i]);
33
          while (!stk.empty()) pushdown(stk.back()), stk.pop back();
34
          for (int f; f = fa[now], !isRoot(now); rotate(now))
35
              if (!isRoot(f)) rotate(get(f) == get(now) ? f : now);
36
          return;
37
      }
38
      void access(int now) { // 打通到根的链
39
          for (int lst = 0; now; lst = now, now = fa[now]) splay(now), son[now][1] =
40
           → lst, pushup(now);
          return;
41
      }
42
```

```
void makeRoot(int now) {access(now); splay(now); swp[now] ^= 1; return;} // 设置
43
     void link(int u, int v) {makeRoot(u); fa[u] = v; return;} // 连接
44
     void cut(int u, int v) {makeRoot(u); access(v); splay(v); son[v][0] = fa[u] = 0;
      → return;} // 切割
     int find(int now) { // 找根
46
         access(now), splay(now);
47
         pushdown(now);
         while (son[now][0]) now = son[now][0], pushdown(now);
49
         splay(now);
50
         return now;
51
     }
52
     void split(int u, int v) {makeRoot(u); access(v); splay(u); return;} // 剖出 u ~
53
      v 的链
     void update(int u, int val) {split(u, u); val[u] = Xor[u] = val; return ;} //
54
      → 修改操作, split 后做就行了, 此处为单点修改。
     int query(int u, int v) {split(u, v); return Xor[u];} // 查询操作, split 后做就行
55
         了。
     int isConnected(int u, int v) {return find(u) == find(v);} // 查询两个点是否连通。
57 };
```

Chapter 4

图论

4.1 Tarjan

4.1.1 强连通分量

```
1 // == Main ==
2 void Tarjan(int now) {
      dfn[now] = low[now] = ++Index;
      s.push(now);
      for (int i = g.hd[now]; i; i = g.nxt[i])
          if (!dfn[g.to[i]]) {
              Tarjan(g.to[i]);
              low[now] = min(low[now], low[g.to[i]]);
          } else if (!scc[g.to[i]]) low[now] = min(low[now], dfn[g.to[i]]);
      if (low[now] == dfn[now]) {
10
          scc cnt++;
11
          for (int x = 0; x != now; s.pop()) {
12
              x = s.top();
13
              scc[x] = scc_cnt;
14
          }
      }
16
      return ;
18 }
```

4.1.2 割边与边双

割边:

```
1 // == Main ==
2 void Tarjan(int now, int fa) {
3     dfn[now] = low[now] = ++Index;
4     for (int i = g.hd[now]; i; i = g.nxt[i])
5         if (!dfn[g.to[i]]) {
```

```
Tarjan(g.to[i], now);
              low[now] = min(low[now], low[g.to[i]]);
              if (low[g.to[i]] > dfn[now])
                  printf("A Bridge of the Input Garph is (%d, %d)\n", now, g.to[i]);
          } else if (g.to[i] != fa) low[now] = min(low[now], dfn[g.to[i]]);
10
      return ;
12 }
    边双:
 // == Main ==
 void Tarjan(int now, int fa) {
      dfn[now] = low[now] = ++Index;
      s.push(now);
      for (int i = g.hd[now]; i; i = g.nxt[i])
          if (!dfn[g.to[i]]) {
              Tarjan(g.to[i], now);
              low[now] = min(low[now], low[g.to[i]]);
          } else if (g.to[i] != fa) low[now] = min(low[now], dfn[g.to[i]]);
      if (low[now] == dfn[now]) {
10
          bcc cnt++;
11
          for (int x = 0; x != now; s.pop()) {
12
              x = s.top();
13
              bcc[x] = bcc_cnt;
14
          }
15
      }
16
17
      return ;
18 }
```

4.1.3 割点与点双

割点:

```
1 // == Main ==
2 void Tarjan(int now, int root) {
      dfn[now] = low[now] = ++Index;
      int sons=0, flag=0;
      for (int i=g.hd[now]; i; i = g.nxt[i], sons++)
          if (!dfn[g.to[i]]) {
              Tarjan(g.to[i], now);
              low[now] = min(low[now], low[g.to[i]]);
              if (now!=root && low[g.to[i]] == dfn[now] && !flag)
                  printf("A Cut Vertex of the Input Graph is %d.", now), flag=1;
10
          } else low[now] = min(low[now], dfn[g.to[i]]);
      if (now == root && sons >= 2)
12
          printf("A Cut Vertex of the Input Graph is %d.", now);
13
```

```
return ;
14
15 }
     点双:
1 // == Main ==
2 void Tarjan(int now) {
      dfn[now] = low[now] = ++Index;
      s.push(now);
      for (int i = g.hd[now]; i; i = g.nxt[i], sons++)
          if (!dfn[g.to[i]]) {
              Tarjan(g.to[i]);
              low[now] = min(low[now], low[g.to[i]]);
              if (low[g.to[i]] == dfn[now]) {
                  printf("BCC #%d:\n", ++bcc_cnt);
10
                  for (int x = 0; x != g.to[i]; s.pop())
11
                       printf("%d", x = s.top());
12
                  printf("%d\n", now);
13
              }
          } else low[now] = min(low[now], dfn[g.to[i]]);
15
      return ;
17 }
```

4.2 欧拉路径

4.3 二分图匹配

4.3.1 最大匹配

```
1 // == Preparations ==
1 int chos[100005], vis[100005];
3 struct graph {/* ... */} g;
4 // == Main ==
5 int dfs(int now) {
      for (int i = g.hd[now]; i; i = g.nxt[i]) {
          if (vis[g.to[i]]) continue;
          vis[g.to[i]] = true;
          if (!chos[g.to[i]] || dfs(chos[g.to[i]])) {
               chos[g.to[i]] = now;
               return 1;
11
          }
12
      }
13
      return 0;
14
15 }
16
17 for (int i = 1; i <= n; i++) {</pre>
      memset(vis, 0, sizeof(vis));
      ans += dfs(i);
19
20 }
```

4.3.2 最大权匹配

```
1 // == Preparations ==
1 int vis[1005], mat[1005], pre[1005];
3 long long g[505][1005];
4 long long w[1005], slack[1005];
_5 // edge: g[u][n + v] = w;
6 // == Main ==
7 for (int i = 1; i <= n; i++) {</pre>
      w[i] = ~0x3f3f3f3f3f3f3f3f;
      for (int j = n + 1; j \le n + n; j++) w[i] = max(w[i], (long long)g[i][j]);
10 }
in for (int i = 1; i <= n; i++) {</pre>
      memset(vis, 0, sizeof(vis));
12
      memset(slack, 0x3f, sizeof(slack));
13
      memset(pre, 0, sizeof(pre));
14
      int now = i, ri = 0;
15
      while (1) {
16
          int id = 0;
          long long delta = 0x3f3f3f3f3f3f3f3f3f;
          for (int j = n + 1; j \le n + n; j++)
19
```

```
if (!vis[j]) {
20
                   long long val = w[now] + w[j] - g[now][j];
21
                   if (val < slack[j]) slack[j] = val, pre[j] = ri;</pre>
                   if (slack[j] < delta) delta = slack[j], id = j;</pre>
24
          w[i] -= delta;
           for (int j = n + 1; j \le n + n; j++)
26
               if (vis[j]) w[j] += delta, w[mat[j]] -= delta;
               else slack[j] -= delta;
28
           vis[ri = id] = 1;
29
           if (mat[ri]) now = mat[ri];
30
           else break;
31
      }
32
      while (ri) {
33
          mat[ri] = mat[pre[ri]];
34
           if (!pre[ri]) {mat[ri] = i; break;}
35
          ri = pre[ri];
36
      }
37
38 }
_{39} long long ans = 0;
40 for (int i = 1; i <= n + n; i++) ans += w[i];
41 printf("%lld\n", ans);
42 for (int i = n + 1; i <= n + n; i++) printf("%d ", mat[i]);
43 puts("");
```

4.4 网络流

4.4.1 最大流

```
1 // == Preparations ==
2 #include <queue>
3 // == Main ==
4 struct Dinic {
      int s, t;
      struct graph {
          int tot, hd[205];
          int nxt[10005], to[10005], dt[10005];
          graph() {tot = 1;}
          void add(int u, int v, int w) {
               nxt[++tot] = hd[u];
11
               hd[u] = tot;
12
               to[tot] = v;
13
               dt[tot] = w;
               return ;
15
          }
16
      } g;
17
```

```
int cur[205], dis[205];
18
19
      void add edge(int u, int v, int f) {g.add(u, v, f), g.add(v, u, 0); return;}
20
      int bfs() {
          memset(dis, 0, sizeof(dis));
22
          queue<int>q;
23
          q.push(s);
24
          dis[s] = 1;
          while (!q.empty()) {
26
               int now = q.front();
               q.pop();
               cur[now] = g.hd[now];
               for (int i = g.hd[now]; i; i = g.nxt[i])
30
                   if (g.dt[i] && !dis[g.to[i]]) dis[g.to[i]] = dis[now] + 1,

¬ q.push(g.to[i]);

          }
32
          return dis[t];
33
      }
34
      long long dinic(int now, long long flow) {
35
          if (now == t) return flow;
36
          long long used = 0;
          for (int i = cur[now]; i && used < flow; i = g.nxt[i])</pre>
               if (g.dt[i] && dis[g.to[i]] == dis[now] + 1) {
                   long long k = dinic(g.to[i], min(flow - used, (long long)g.dt[i]));
40
                   g.dt[i] = k, g.dt[i ^ 1] += k;
                   used += k;
42
                   cur[now] = i;
               }
          if (used == 0) dis[now] = 0;
          return used;
      }
47
      long long solve() {
48
          long long ans = 0;
49
          while (bfs()) ans += dinic(s, 0x3f3f3f3f3f3f3f3f3f);
50
          return ans;
      }
53 } F;
```

4.4.2 费用流

原始对偶:

```
// == Preparations ==
// #include <queue>
// == Main ==
// struct PrimalDual {
// int n, s, t;
```

```
struct graph {
6
          int tot, hd[805];
          int nxt[30005], to[30005], flw[30005], cst[30005];
          graph() {tot = 1;}
10
          void add(int u, int v, int f, int c) {
11
               nxt[++tot] = hd[u];
12
               hd[u] = tot;
               to[tot] = v;
14
               flw[tot] = f;
               cst[tot] = c;
16
               return ;
17
          }
18
      } g;
19
      int h[805], dis[805], f[805], pre[805];
20
      struct node {
21
          int id, val;
22
23
          node() = default;
24
          node(int _id, int _val): id(_id), val(_val) {}
25
          bool operator<(const node &x) const {return val > x.val;}
26
      };
27
      void add_edge(int u, int v, int f, int c) {g.add(u, v, f, c), g.add(v, u, 0, -c);
29

    return;
}
      void spfa() {
30
          queue<int> q;
31
          memset(h, 0x3f, sizeof(h));
32
          h[s] = 0;
33
          q.push(s);
34
          while (!q.empty()) {
35
               int now = q.front();
36
               q.pop();
               f[now] = 0;
               for (int i = g.hd[now]; i; i = g.nxt[i])
39
                   if (g.flw[i] && h[g.to[i]] > h[now] + g.cst[i]) {
40
                       h[g.to[i]] = h[now] + g.cst[i];
                        if (!f[g.to[i]]) q.push(g.to[i]), f[g.to[i]] = 1;
                   }
43
          }
          return ;
45
      }
      int dijkstra() {
47
          priority_queue<node> q;
          memset(dis, 0x3f, sizeof(dis));
49
          memset(pre, 0, sizeof(pre));
          q.emplace(s, dis[s] = 0);
51
          while (!q.empty()) {
52
               int now = q.top().id, tmp = q.top().val;
53
```

```
q.pop();
54
               if (dis[now] != tmp) continue;
55
               for (int i = g.hd[now]; i; i = g.nxt[i])
                   if (g.flw[i] && dis[g.to[i]] > dis[now] + g.cst[i] + h[now] -
                    \rightarrow h[g.to[i]]) {
                        q.emplace(g.to[i], dis[g.to[i]] = dis[now] + g.cst[i] + h[now] -
                        \rightarrow h[g.to[i]]);
                        pre[g.to[i]] = i ^ 1;
                   }
60
           }
          return pre[t];
62
      }
63
      pair<int, int> solve() {
64
           int flow = 0, cost = 0;
           spfa();
           while (dijkstra()) {
67
               for (int i = 1; i <= n; i++)
                   if (dis[i] < 0x3f3f3f3f) h[i] += dis[i];</pre>
               int mnflow = 0x3f3f3f3f;
               for (int i = t; i != s; i = g.to[pre[i]]) mnflow = min(mnflow,
71

    g.flw[pre[i] ^ 1]);

               for (int i = t; i != s; i = g.to[pre[i]]) g.flw[pre[i] ^ 1] -= mnflow,
72

    g.flw[pre[i]] += mnflow;

               flow += mnflow;
73
               cost += mnflow * h[t];
           }
75
          return {flow, cost};
      }
77
78 } F;
```

4.4.3 上下界

f(u,v) 表示边 (u,v) 的流量,f(u) 表示 u 的出流减入流,c(u,v) 表示边 (u,v) 的容量。 对于每条边给定一个流量下界 b(u,v),需要额外满足 $\forall (u,v), b(u,v) < f(u,v) < c(u,v)$ 。

无源汇上下界可行流

没有源点和汇点,对于所有点满足 f(u) = 0,求一个可行的流。 先强制每条边流到流量下界,建立虚拟源汇点 s,t,对于每个点 u 考虑此时的净流量:

- f(u) = 0: 满足条件,不用管。
- f(u) > 0: 出流大于入流,从 u向 t 连容量为 f(u) 的边。
- f(u) < 0: 入流大于出流,从 s 向 u 连容量为 -f(u) 的边。

将原图中每条边的容量设为 c(u,v) - b(u,v),则从 s 到 t 的流相当于增加调整流量的过程。若 s 的出边流满(等同于 t 的入边流满),则找到了一条可行流。

有源汇上下界可行流

连一条 t 到 s 容量正无穷下界为 0 的边,然后跑无源汇上下界可行流即可,流量为新增边的流量。

有源汇上下界最大流

求出可行流后删掉 t 到 s 的边,在残量网络上跑 s 到 t 的最大流,该最大流加上原本的可行流即为答案。

有源汇上下界最小流

同理,改成求 t 到 s 的最大流,原可行流减去该最大流即为答案。

有源汇上下界最小费用流

做法是一样的,所有新增边费用为 0。 需要注意求最小流时需要改成费用最大。

4.4.4 有负圈的最小费用最大流

先钦定所有负圈边流满,即上下界均为流量。然后对于负边建反向、容量相同、费用为相反数的 边用于退流原边。

这样就转化成了有源汇上下界最小费用最大流。

4.5 k 短路

复杂度为 $O((n+m)\log n + k\log k)$ 。

```
1 // == Preparations ==
1 int ontree[200005];
3 struct graph {
      int tot, hd[5005];
      int nxt[200005], to[200005];
      long long dt [200005];
      void add(int u, int v, long long w) {
          nxt[++tot] = hd[u];
          hd[u] = tot;
10
          to[tot] = v;
          dt[tot] = w;
12
          return ;
13
      }
14
```

```
15 } g;
16 long long dis[5005];
17 struct node {
      int id;
      long long val;
19
      node() = default;
21
      node(int id, long long val): id( id), val( val) {}
22
      bool operator<(const node &x) const {return val > x.val;}
23
24 };
25 priority queue<node> q;
26 int vis[5005];
28 // 以下左偏树
29 struct HeapNode {
      long long val;
      int to, dist;
31
      HeapNode *ls, *rs;
32
33
      HeapNode() = default;
34
      HeapNode(long long _val, int _to): val(_val), to(_to), dist(1), ls(nullptr),
35

    rs(nullptr) {}
<sub>36</sub> };
37 struct Heap {
      HeapNode *root[5005];
39
      HeapNode *merge(HeapNode *u, HeapNode *v) {
          if (!u) return v;
41
          if (!v) return u;
          if (u->val > v->val) swap(u, v);
43
          HeapNode *p = new HeapNode(*u);
44
          p->rs = merge(u->rs, v);
45
          if (!p->ls || p->ls->dist < p->rs->dist) swap(p->ls, p->rs);
          if (p->rs) p->dist = p->rs->dist + 1;
          else p->dist = 1;
          return p;
      }
50
 } h;
52
53 struct Node {
      HeapNode *id;
      long long val;
56
      Node() = default;
      Node(HeapNode * id, long long val): id( id), val( val) {}
58
      bool operator<(const Node &x) const {return val > x.val;}
59
60 };
61 priority_queue<Node> Q;
62 // == Main ==
```

```
63 void dfs(int now) {
      vis[now] = 1;
      for (int i = g.hd[now]; i; i = g.nxt[i])
          if (!vis[g.to[i]] && dis[g.to[i]] == dis[now] + g.dt[i]) ontree[i] = 1,

    dfs(g.to[i]);
      return ;
68 }
69 void dfs2(int now) {
      for (int i = g.hd[now]; i; i = g.nxt[i])
          if (ontree[i]) h.root[g.to[i]] = h.merge(h.root[g.to[i]], h.root[now]),
              dfs2(g.to[i]);
      return;
72
73 }
75 memset(dis, 0x3f, sizeof(dis));
76 q.emplace(n, dis[n] = 0);
  while (!q.empty()) {
      int now = q.top().id;
      long long tmp = q.top().val;
      q.pop();
80
      if (tmp != dis[now]) continue;
81
      for (int i = g.hd[now]; i; i = g.nxt[i])
82
          if (dis[g.to[i]] > dis[now] + g.dt[i]) q.emplace(g.to[i], dis[g.to[i]] =

→ dis[now] + g.dt[i]);
84 }
85 dfs(n);
86 for (int i = 1; i <= n; i++)</pre>
      for (int j = g.hd[i]; j; j = g.nxt[j])
          if (!ontree[j] && g.to[j] != n)
              h.root[g.to[j]] = h.merge(h.root[g.to[j]], new HeapNode(dis[i] + g.dt[j]
               → - dis[g.to[j]], i));
90 dfs2(n);
91 if (h.root[1]) Q.emplace(h.root[1], dis[1] + h.root[1]->val);
  while (!Q.empty()) { // 每次取出来一条路径
      HeapNode *now = Q.top().id;
      long long d = Q.top().val;
94
      Q.pop();
95
      if (now->ls) Q.emplace(now->ls, d - now->val + now->ls->val);
      if (now->rs) Q.emplace(now->rs, d - now->val + now->rs->val);
97
      HeapNode *tmp = h.root[now->to];
      if (tmp) Q.emplace(tmp, d + tmp->val);
99
100 }
```

4.6 全局最小割

时间复杂度为 $O(|V|^3)$ 。

```
1 // == Preparations ==
1 int g[605][605], vis1[605], vis2[605];
3 long long w[605];
4 // == Main ==
5 long long Stoer_Wagner() {
      long long ans = 0x3f3f3f3f3f3f3f3f3f;
      for (int i = 1; i < n; i++) {</pre>
          int s = 0, t = 0;
          memset(vis2, 0, sizeof(vis2));
          memset(w, 0, sizeof(w));
          for (int j = 1; j \le n - i + 1; j++) {
11
               int now = 0;
               for (int k = 1; k \le n; k++)
13
                   if (!vis1[k] && !vis2[k] && w[k] >= w[now]) now = k;
14
               s = t, t = now;
15
               vis2[now] = 1;
               for (int k = 1; k \le n; k++) w[k] += g[k][now];
18
          ans = min(ans, w[t]);
          vis1[t] = 1;
20
          for (int j = 1; j \le n; j++)
               if (j != s) g[s][j] += g[t][j], g[j][s] += g[j][t];
22
      }
23
      return ans;
24
25 }
```

4.7 支配树

 $idom_u$ 为 u 在支配树上的父亲。 最后 id 形成 dfs 序。

```
// == Preparations ==
2 #include <vector>

struct graph {
    int tot, hd[200005];
    int nxt[300005], to[300005];

void add(int u, int v) {
        nxt[++tot] = hd[u];
        hd[u] = tot;
        to[tot] = v;
        return;
}

f g, fg;
```

```
int timer, fa[200005], dfn[200005], id[200005];
int sdom[200005], idom[200005];
17 struct dsu {
      int fa[200005], mn[200005];
19
      dsu() {for (int i = 1; i < 200005; i++) fa[i] = mn[i] = i;}
20
      int find(int x) {
21
          if (x == fa[x]) return x;
22
          int tmp = find(fa[x]);
23
          if (dfn[sdom[mn[fa[x]]]] < dfn[sdom[mn[x]]]) mn[x] = mn[fa[x]];</pre>
24
          return fa[x] = tmp;
25
      }
26
27 } d;
28 vector<int> vec[200005];
29 int siz[200005];
_{30} // == Main ==
 void dfs(int now) {
      id[dfn[now] = ++timer] = now;
      for (int i = g.hd[now]; i; i = g.nxt[i])
33
          if (!dfn[g.to[i]]) fa[g.to[i]] = now, dfs(g.to[i]);
34
      return ;
35
36 }
37 void solve() {
      dfs(1);
38
      for (int i = 1; i <= n; i++) sdom[i] = i;</pre>
      for (int i = timer; i >= 1; i--) {
40
          int u = id[i];
          for (int v : vec[u]) {
42
               d.find(v);
               if (sdom[d.mn[v]] == u) idom[v] = u;
               else idom[v] = d.mn[v];
45
          }
46
          if (i == 1) continue;
          for (int j = fg.hd[u]; j; j = fg.nxt[j]) {
48
               if (!dfn[fg.to[j]]) continue;
49
               if (dfn[fg.to[j]] < dfn[sdom[u]]) sdom[u] = fg.to[j];</pre>
50
               else if (dfn[fg.to[j]] > dfn[u]) {
51
                   d.find(fg.to[j]);
                   if (dfn[sdom[d.mn[fg.to[j]]]] < dfn[sdom[u]]) sdom[u] =</pre>
53
                       sdom[d.mn[fg.to[j]]];
               }
          }
          vec[sdom[u]].push back(u);
56
          d.fa[u] = fa[u];
      }
58
      for (int i = 2; i <= timer; i++)</pre>
59
          if (idom[id[i]] != sdom[id[i]]) idom[id[i]] = idom[idom[id[i]]];
60
      return ;
```

62 }

4.8 弦图

4.8.1 MCS 最大势算法。

```
1 // == Preparations ==
2 #include <vector>
4 int pos[/* ... */], p[/* ... */];
5 vector<int> vec[/* ... */];
6 // == Main ==
7 \text{ for (int i = 1; i <= n; i++) pos[i] = vec[0].size(), vec[0].push back(i);}
s for (int i = 1, j = 0; i <= n; i++, j++) {
      while (vec[j].empty()) j--;
      int u = p[i] = vec[j].back();
      vec[j].pop back();
11
      pos[u] = -1;
12
      for (int k = g.hd[u]; k; k = g.nxt[k])
13
          if (pos[g.to[k]] != -1) {
               int v = g.to[k];
15
               pos[vec[l[v]].back()] = pos[v];
16
               swap(vec[1[v]][pos[v]], vec[1[v]].back());
17
               vec[l[v]].pop back();
               pos[v] = vec[++l[v]].size();
19
               vec[l[v]].push_back(v);
20
          }
21
_{23} reverse(p + 1, p + n + 1);
```

4.8.2 弦图判定

跑 MCS, 然后判断是否为完美消除序列。

具体地,对于每个 p_i ,找到与之相连且在它之后出现的点,按出现顺序记为 c_1, c_2, \ldots, c_k ,我们只需要判断 c_1 与 c_i 之间是否有边即可。因为这个团中其他边会在 $p_{c_2}, p_{c_3}, \ldots, p_{c_k}$ 中被判断。

4.8.3 求弦图的团数与色数

求团数:

设 N(x) 为完美消除序列中在 x 之后且与 x 相连的点的集合,则弦图的最大团一定可以被表示为 $\{x\} + N(x)$,则 $|\{x\} + N(x)|$ 的最大值就是弦图的团数。

求色数:

考虑按完美消除序列从后往前考虑,贪心染 mex,这样需要的颜色数量等于团数。由于团数小于等于

色数,这样取到等号,一定最小。

4.8.4 求弦图的最大独立集和最小团覆盖

最大独立集:

按完美消除序列从前往后贪心。正确性证明:每次考虑最靠前的极大团,选最前面的点不劣于选其他点,且优于不选点。

最小团覆盖:

取最大独立集中的每个点x对应的团 $\{x\}+N(x)$,这样需要的团的数量等于最大独立集的大小。由于最大独立集小于等于最小团覆盖,这样取到等号,一定最小。

4.8.5 tricks

区间图是弦图,完美消除序列为按区间右端点从小到大排序。 树上距离不超过 *k* 的点连边是弦图,完美消除序列为 bfs 序的逆序。

Chapter 5

多项式

5.1 牛顿迭代

用于解决下列问题:

```
已知函数 G 且 G(F(x)) = 0,求多项式 F \pmod{x^n}。
```

结论:

$$F(x)=F_*(x)-\frac{G(F_*(x))}{G'(F_*(x))}\pmod{x^n}$$

其中 $F_*(x)$ 为做到 $x^{n/2}$ 时的答案。

5.2 FFT

```
1 // == Preparations ==
2 struct complex {
      double a, b;
      complex() = default;
      complex(double a, double b): a( a), b( b) {}
      complex operator+(const complex &x) const {return complex(a + x.a, b + x.b);}
      complex operator-(const complex &x) const {return complex(a - x.a, b - x.b);}
      complex operator*(const complex &x) const {return complex(a * x.a - b * x.b, a *
      \rightarrow x.b + b * x.a);}
      complex operator/(const complex &x) const {
10
          double t = b * b + x.b * x.b;
          return complex((a * x.a + b * x.b) / t, (b * x.a - a * x.b) / t);
12
      }
13
      complex &operator+=(const complex &x) {return *this = *this + x;}
14
      complex &operator-=(const complex &x) {return *this = *this - x;}
15
      complex &operator*=(const complex &x) {return *this = *this * x;}
16
```

```
complex &operator/=(const complex &x) {return *this = *this / x;}
18 };
19 // == Main ==
20 void FFT(vector<complex> &f, int flag) const {
      int n = f.size();
      vector<int> swp(n);
      for (int i = 0; i < n; i++) {</pre>
23
           swp[i] = swp[i >> 1] >> 1 | ((i & 1) * (n >> 1));
           if (i < swp[i]) std::swap(f[i], f[swp[i]]);</pre>
25
      }
26
      for (int mid = 1; mid < n; mid <<= 1) {</pre>
27
           complex w1(cos(pi / mid), flag * sin(pi / mid));
           for (int i = 0; i < n; i += mid << 1) {</pre>
29
               complex w(1, 0);
               for (int j = 0; j < mid; j++, w *= w1) {</pre>
31
                    complex x = f[i + j], y = w * f[i + mid + j];
32
                    f[i + j] = x + y, f[i + mid + j] = x - y;
33
               }
34
           }
      }
36
      return;
37
38 }
```

5.3 常用 NTT 模数及其原根

模数	原根	分解
167772161	3	$5 \times 2^{25} + 1$
469762049	3	$7 \times 2^{26} + 1$
998244353	3	$119 \times 2^{23} + 1$
1004535809	3	$479 \times 2^{21} + 1$
2013265921	31	$15 \times 2^{27} + 1$
2281701377	3	$17 \times 2^{27} + 1$

5.4 多项式模板

```
1 // == Preparations ==
2 #include <vector>
3 // == Main ==
4 namespace Poly {
5     const int mod = 998244353, G = 3, invG = 332748118;
6
7     inline int power(int a, int b) {
8         int ans = 1;
9         while (b) {
```

```
if (b & 1) ans = (long long)ans * a % mod;
10
               a = (long long)a * a % mod;
11
               b >>= 1;
12
           }
          return ans % mod;
14
      }
15
16
      struct poly: vector<int> {
17
           poly(initializer_list<int> &&arg): vector<int>(arg) {}
18
           template<typename... argT>
19
          poly(argT &&...args): vector<int>(forward<argT>(args)...) {}
20
21
          poly operator+(const poly &b) const {
22
               const poly &a = *this;
23
               poly ans(max(a.size(), b.size()));
24
               for (int i = 0; i < (int)ans.size(); i++)</pre>
25
                   ans[i] = ((i < (int)a.size() ? a[i] : 0) + (i < (int)b.size() ? b[i]
26
                    \rightarrow : 0)) % mod;
               return ans;
27
           }
28
          poly operator+=(const poly &b) {return *this = *this + b;}
29
          poly operator-(const poly &b) const {
30
               const poly &a = *this;
               poly ans(max(a.size(), b.size()));
32
               for (int i = 0; i < (int)ans.size(); i++)</pre>
33
                   ans[i] = ((i < (int)a.size() ? a[i] : 0) - (i < (int)b.size() ? b[i]
34
                    \rightarrow : 0) + mod) % mod;
               return ans;
35
           }
          poly operator-=(const poly &b) {return *this = *this - b;}
37
           void NTT(poly &g, int flag) const {
               int n = g.size();
39
               vector<unsigned long long> f(g.begin(), g.end());
               vector<int> swp(n);
41
               for (int i = 0; i < n; i++) {</pre>
42
                   swp[i] = swp[i >> 1] >> 1 | ((i & 1) * (n >> 1));
43
                   if (i < swp[i]) std::swap(f[i], f[swp[i]]);</pre>
               }
               for (int mid = 1; mid < n; mid <<= 1) {</pre>
46
                   int w1 = power(flag ? G : invG, (mod - 1) / mid / 2);
                   vector<int> w(mid);
                   w[0] = 1;
                   for (int i = 1; i < mid; i++) w[i] = (long long)w[i - 1] * w1 % mod;
50
                   for (int i = 0; i < n; i += mid << 1)</pre>
51
                        for (int j = 0; j < mid; j++) {</pre>
52
                            int t = (long long)w[j] * f[i + mid + j] % mod;
                            f[i + mid + j] = f[i + j] - t + mod;
54
                            f[i + j] += t;
55
                        }
56
```

```
if (mid == 1 << 10)</pre>
57
                        for (int i = 0; i < n; i++) f[i] %= mod;</pre>
58
               }
               int inv = flag ? 1 : power(n, mod - 2);
               for (int i = 0; i < n; i++) g[i] = f[i] % mod * inv % mod;</pre>
61
               return;
          }
63
           // 下面是基于转置原理的 NTT, 相对朴素版本效率更高。
65
          void NTT(poly &g, int flag) const {
               int n = g.size();
               vector<int> f(g.begin(), g.end());
               if (flag) {
69
                   for (int mid = n >> 1; mid >= 1; mid >>= 1) {
                        int w1 = power(G, (mod - 1) / mid / 2);
71
                        vector<int> w(mid);
72
                        w[0] = 1;
73
                        for (int i = 1; i < mid; i++) w[i] = (long long)w[i - 1] * w1 %
74
                        \rightarrow mod;
                        for (int i = 0; i < n; i += mid << 1)</pre>
75
                            for (int j = 0; j < mid; j++) {</pre>
76
                                 int t = (long long)(f[i + j] - f[i + mid + j] + mod) *
77
                                 \rightarrow w[j] % mod;
                                 f[i + j] = f[i + j] + f[i + mid + j] >= mod ?
78
                                     f[i + j] + f[i + mid + j] - mod : f[i + j] + f[i + j]
                                      \rightarrow mid + j];
                                 f[i + mid + j] = t;
                            }
81
                    }
                    for (int i = 0; i < n; i++) g[i] = f[i];</pre>
               } else {
84
                   for (int mid = 1; mid < n; mid <<= 1) {</pre>
85
                        int w1 = power(invG, (mod - 1) / mid / 2);
                        vector<int> w(mid);
87
                        w[0] = 1;
88
                        for (int i = 1; i < mid; i++) w[i] = (long long)w[i - 1] * w1 %
89
                        for (int i = 0; i < n; i += mid << 1)</pre>
                            for (int j = 0; j < mid; j++) {
91
                                 int t = (long long)w[j] * f[i + mid + j] % mod;
92
                                 f[i + mid + j] = f[i + j] - t < 0 ? f[i + j] - t + mod :
93
                                 \rightarrow f[i + j] - t;
                                 f[i + j] = f[i + j] + t > = mod ? f[i + j] + t - mod : f[i
94
                                 \rightarrow + j] + t;
                            }
95
                    }
                   int inv = power(n, mod - 2);
97
                   for (int i = 0; i < n; i++) g[i] = (long long)f[i] * inv % mod;
               }
99
```

```
return;
100
           }
101
102
           poly operator*(poly b) const {
103
                poly a(*this);
104
                int n = 1, len = (int)(a.size() + b.size()) - 1;
105
                while (n < len) n <<= 1;
106
                a.resize(n), b.resize(n);
                NTT(a, 1), NTT(b, 1);
108
                poly c(n);
                for (int i = 0; i < n; i++) c[i] = (long long)a[i] * b[i] % mod;
110
                NTT(c, 0);
111
                c.resize(len);
112
                return c;
113
           }
114
           poly operator*=(const poly &b) {return *this = *this * b;}
115
           poly inv() const {
116
                poly f = *this, g;
117
                g.push back(power(f[0], mod - 2));
118
                int n = 1;
119
                while (n < (int)f.size()) n <<= 1;</pre>
120
                f.resize(n << 1);
121
                for (int len = 2; len <= n; len <<= 1) {
                     poly tmp(len), ff(len << 1);
123
                     for (int i = 0; i < len >> 1; i++) tmp[i] = g[i] * 2 % mod;
                     for (int i = 0; i < len; i++) ff[i] = f[i];</pre>
125
                     g.resize(len << 1);</pre>
                     NTT(g, 1), NTT(ff, 1);
127
                     for (int i = 0; i < len << 1; i++) g[i] = (long long)g[i] * g[i] %
                     \rightarrow mod * ff[i] % mod;
                     NTT(g, 0);
129
                     g.resize(len);
130
                     for (int i = 0; i < len; i++) g[i] = (tmp[i] - g[i] + mod) % mod;
131
                }
132
                g.resize(size());
133
                return g;
134
135
           poly sqrt() const { // need F[0] = 1.
136
                poly f = *this, g;
137
                g.push back(1);
138
                int n = 1;
139
                while (n < (int)f.size()) n <<= 1;</pre>
                f.resize(n << 1);
141
                for (int len = 2; len <= n; len <<= 1) {
142
                     poly tmp(len), ff(len << 1);</pre>
143
                     for (int i = 0; i < len >> 1; i++) tmp[i] = g[i] * 2 % mod;
                     for (int i = 0; i < len; i++) ff[i] = f[i];</pre>
145
                     g.resize(len << 1);</pre>
146
                    NTT(g, 1);
147
```

```
for (int i = 0; i < len << 1; i++) g[i] = (long long)g[i] * g[i] %
148
                     → mod;
                     NTT(g, 0);
149
                     g += ff;
150
                     g *= tmp.inv();
151
                     g.resize(len);
152
                }
153
                g.resize(size());
                return g;
155
            }
           poly derivative() const {
157
                poly f(*this);
158
                for (int i = 1; i < (int)f.size(); i++) f[i - 1] = (long long)f[i] * i %
159
                 \rightarrow mod;
                f.pop back();
160
                return f;
161
            }
162
           poly integral() const {
163
                poly f(*this);
164
                f.push_back(0);
165
                for (int i = f.size() - 1; i \ge 1; i - - ) f[i] = (long long)f[i - 1] *
166
                 → power(i, mod - 2) % mod;
                f[0] = 0;
167
                return f;
168
            }
169
           poly ln() const {
170
                poly f((derivative() * inv()).integral());
                f.resize(size());
172
                return f;
173
            }
174
           poly exp() const { // 需要满足 F[0] = 0
175
                poly f(*this), g;
176
                g.push_back(1);
                int n = 1;
178
                while (n < (int)size()) n <<= 1;</pre>
179
                f.resize(n);
180
                for (int len = 2; len <= n; len <<= 1) {</pre>
181
                     poly tmp(g);
182
                     g.resize(len);
183
                     g = g.ln();
184
                     for (int i = 0; i < len; i++) g[i] = (f[i] - g[i] + mod) % mod;
185
                     g[0] = (g[0] + 1) \% mod;
                     g *= tmp;
187
                     g.resize(len);
188
                }
189
                g.resize(size());
                return g;
191
            }
192
       };
193
```

```
194
       inline poly power(poly f, int b) { // 需要满足 F[0] = 1
195
          f = f.ln();
196
           for (int i = 0; i < (int)f.size(); i++) f[i] = (long long)f[i] * b % mod;
           f = f.exp();
198
          return f;
      }
200
       // 不要求 F[0] = 1 的多项式快速幂,但是我忘记怎么用了,记得去回顾一下!
      poly power(poly f, int b1, int b2 = -1) {
202
           if (b2 == -1) b2 = b1;
          int n = f.size(), p = 0;
204
           reverse(f.begin(), f.end());
205
           while (!f.empty() && !f.back()) f.pop_back(), p++;
206
           if (f.empty() || (long long)p * b1 >= n) return poly(n);
           int v = f.back();
208
          int inv = power(v, mod - 2);
209
          for (int &i : f) i = (long long)i * inv % mod;
210
          reverse(f.begin(), f.end());
211
          f = f.ln();
          for (int &i : f) i = (long long)i * b1 % mod;
213
          f = f.exp();
214
          reverse(f.begin(), f.end());
215
           for (int i = 1; i \le p * b1; i++) f.push back(0);
           reverse(f.begin(), f.end());
217
           f.resize(n);
           v = power(v, b2);
219
           for (int &i : f) i = (long long)i * v % mod;
220
           return f;
221
      }
222
223 }
```

Chapter 6

杂项

6.1 取模类

```
1 // == Main ==
2 struct mint {
      static const int mod = 998244353;
      int v;
      mint() = default;
      mint(int _v): v((_v % mod + mod) % mod) {}
      explicit operator int() const {return v;}
      mint operator+(const mint &x) const {return v + x.v - (v + x.v < mod ? 0 : mod);}
      mint &operator+=(const mint &x) {return *this = *this + x;}
10
      mint operator-(const mint &x) const {return v - x.v + (v - x.v >= 0 ? 0 : mod);}
      mint &operator-=(const mint &x) {return *this = *this - x;}
12
      mint operator*(const mint &x) const {return (long long)v * x.v % mod;}
13
      mint &operator*=(const mint &x) {return *this = *this * x;}
14
      mint inv() const {
          mint a(*this), ans(1);
16
          int b \pmod{-2};
          while (b) {
              if (b & 1) ans *= a;
19
              a *= a;
20
              b >>= 1;
21
          }
          return ans;
23
      }
      mint operator/(const mint &x) const {return *this * x.inv();}
25
      mint &operator/=(const mint &x) {return *this = *this / x;}
      mint operator-() {return mint(-v);}
27
28 };
```

6.1.1 Barrett 约减

当模数不固定时可以加速。

用法: 在构造函数中传模数,使用方法为F.reduce(x),其中x是需要取模的数。

```
// == Main ==
2 struct Barrett {
3     unsigned long long b, m;
4     Barrett(unsigned long long b = 2): b(b), m((__uint128_t(1) << 64) / b) {}
5     unsigned long long reduce(long long x) {
6         unsigned long long r = (__uint128_t(x + b) * m) >> 64;
7         unsigned long long q = (x + b) - b * r;
8         return q >= b ? q - b : q;
9     }
10 } F;
```

6.2 对拍脚本

```
#!/usr/bin/bash
    declare -i num=0
    while [ true ]; do
         ./mkdata > in.txt
        time ./mine < in.txt > out.txt
        ./correct < in.txt > ans.txt
        diff out.txt ans.txt
        if [ $? -ne 0 ]; then
10
             echo "WA"
11
             break
12
        fi
13
        num=num+1
14
        echo "Passed $num tests."
15
    done
```

6.3 VS Code 配置

6.3.1 User Tasks

```
"version": "2.0.0",
4
         "tasks": [
            {
                 "type": "shell",
                 "label": "My C++ Runner",
                 "detail": "Build and Run Current C++ Program",
                 "command": [ // 三个编译方式保留一个即可。
10
                     "clear",
11
                     "&&",
12
                     "g++ ${file} -o ${fileDirname}/${fileBasenameNoExtension}
13
                      → -std=c++14 -Wall -Wextra && echo '== Normal =='",
                     "g++ ${file} -o ${fileDirname}/${fileBasenameNoExtension}
14
                      \rightarrow -std=c++14 -Wall -Wextra -02 && echo '== 02 =='",
                     "g++ ${file} -o ${fileDirname}/${fileBasenameNoExtension}
15
                      → -std=c++14 -Wall -Wextra -fsanitize=undefined,address && echo
                      → '== UB Check =='",
                     "&&",
                     "gnome-terminal -- bash -c \"ulimit -s 524288; time
17
                      → ${fileDirname}/${fileBasenameNoExtension}; read -p 'Press ENTER

    to continue...'; exit\""

                 ],
18
                 "problemMatcher": [ // 非必要
19
                     "$gcc"
20
                 ],
21
                 "group": { // 非必要
22
                     "kind": "build",
23
                     "isDefault": true
24
                 },
                 "presentation": { // 非必要
26
                     "showReuseMessage": false
27
                 }
28
            }
29
        ]
30
    }
31
```

6.3.2 设置

- 字体大小: 16。("editor.fontSize": 16)
- 添加多个光标的方式: ctrl。("editor.multiCursorModifier": "ctrlCmd")
- 不适用空格代替 Tab。("editor.insertSpaces": false)
- 不允许 Enter 进行代码补全。("editor.acceptSuggestionOnEnter": "off")
- 标尺: 110。("editor.rulers": [110])
- 平滑。("editor.cursorSmoothCaretAnimation": "on")

• 标题栏外观。("window.titleBarStyle": "custom") totally:

```
"editor.fontSize": 16,
"editor.multiCursorModifier": "ctrlCmd",
"editor.insertSpaces": false,
"editor.acceptSuggestionOnEnter": "off",
"editor.rulers": [110],
"editor.cursorSmoothCaretAnimation": "on",
"window.commandCenter": false
}
```

6.3.3 快捷键

- 切换块注释: Ctrl+Shift+A -> Ctrl+Shift+/
- 运行任务: Ctrl+Shift+B -> F11
- 向上移动行: Alt+up -> Ctrl+Shift+up
- 向下移动行: Alt+down -> Ctrl+Shift+down