Contents

1	\mathbf{Intr}	Introduction to Lattice					
	1.1	Description of lattices	3				
	1.2	Determinant of lattice	4				
	1.3	Gram-Schmidt	4				
	1.4	Successive Minima	6				
	1.5	Minkowski's Theorems	7				

Chapter 1

Introduction to Lattice

Definition: Let $b_1, \ldots, b_n \in \mathbb{R}^m$ be n linearly independent vectors. The **lattice** generated by these vectors is denoted as $\mathcal{L}(b_1, \ldots, b_n)$ and

$$\mathcal{L}(b_1, \dots, b_n) = \left\{ \sum_{i=1}^n x_i b_i \, \middle| \, x_i \in \mathbb{Z} \right\}$$

If we let $B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}$, then

$$\mathcal{L}(B) = \{Bx \mid x \in \mathbb{Z}^n\}$$

If n = m, then the lattice is said to be **full rank**. m is the dimension and n is the rank of the lattice.

- the case where $\mathcal{L}(B)$ is not a lattice.

1.1 Description of lattices

1.1.1 Algebraic description

Definition: A matrix $U \in \mathbb{Z}^{n \times n}$ is **unimodular** if $|\det U| = 1$.

Proposition 1.1. The unimodular matrices form a group under matrix multiplication.

Proof. Clearly, I is a unimodular matrix and is the identity element of the group. By definition, a unimodular matrix U is invertible and $|\det U^{-1}| = 1$. Also, note that

$$U^{-1} = \frac{1}{\det U} \operatorname{adj}(U)$$

where the adjugate matrix $\operatorname{adj}(U)$ is an integer matrix. Thus, $U^{-1} \in \mathbb{Z}^n$. The associativity follows from the associativity of matrix multiplication.

Theorem 1.2. Two full rank matrix $B, B' \in \mathbb{R}^n$ produce the same lattice if and only if there exists a unimodular matrix U such that B' = BU.

1.1.2 Geometric description

Definition: Suppose $b_1, \ldots, b_n \in \mathbb{R}^m$ are linearly independent. The **fundamental parallelopiped** of these vectors is

$$\mathcal{P}(b_1, \dots, b_n) = \left\{ \sum_{i=1}^n x_i b_i \, \middle| \, x_i \in [0, 1[\right\} \right\}$$

Theorem 1.3. Suppose Λ is a full rank n-dimensional lattice and $b_1, \ldots, b_n \in \mathbb{R}^n$ are linearly independent vectors in Λ . Then b_1, \ldots, b_n are a basis for Λ if and only if

$$\Lambda \cap \mathcal{P}(b_1,\ldots,b_n) = \{0\}$$

1.2 Determinant of lattice

Definition: Let Λ be a lattice generated basis B. The **determinant** of Λ is the volume of fundamental parallelopiped of B.

$$\det \Lambda = \operatorname{vol}(\mathcal{P}(B))$$

It can be shown that $\operatorname{vol}(\mathcal{P}(B)) = \sqrt{\det B^T B}$. To show that this definition is well-defined, we must prove that for any basis two B, B', the volumes of fundamental parallelopipeds are equal. Since, B and B' generate the same lattice, by 1.2, there exists a unimodular matrix U such that B' = BU.

$$\operatorname{vol}(\mathcal{P}(B')) = \sqrt{\det B'^T B'}$$

$$= \sqrt{\det (BU)^T BU}$$

$$= \sqrt{\det U^T B^T BU}$$

$$= \sqrt{\det U^T \det B^T B \det U}$$

$$= \sqrt{(\det U)^2 \det B^T B}$$

$$= \sqrt{\det B^T B} = \operatorname{vol}(\mathcal{P}(B))$$

which was what was wanted.

Intuitively, the det Λ is inversely proportional to its density.

Remark 1. In mathematical analysis, the volume – or length or area – of a set is measured with *measures*. The exact definition of a measure is beyond the scope this text, however, we will almost always use the *lebesgue measure*, unless stated otherwise. Measures can be defined on any set, and hence the measure of set may not depend on a particular metric. As a result, we are able to consider the same space with the same measure under different metrics or norms without affecting the measure.

1.3 Gram-Schmidt

In Gram-Schmidt procedure, a set of linearly independent vectors b_1, \ldots, b_n are transformed into a set of orthogonal vectors b_1^*, \ldots, b_n^* .

$$b_i^* = b_i - \sum_{j=1}^{i-1} \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle} b_j^* = b_i - \sum_{j=1}^{i-1} u_{i,j} b_j^*$$

1.3 Gram-Schmidt 5

with $b_1^* = b_1$.

Proposition 1.4.

- 1. For all $i \neq j$, $\langle b_i^*, b_i^* \rangle = 0$.
- 2. For all i > j, $\langle b_i^*, b_j \rangle = 0$.
- 3. For all i, span $\{b_1, \ldots, b_i\} = \text{span}\{b_1^*, \ldots, b_i^*\}$.
- 4. If $B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix}$ and $B^* = \begin{bmatrix} b_1^* & \dots & b_n^* \end{bmatrix}$, then

$$B = B^* \begin{bmatrix} 1 & u_{2,1} & \dots & u_{n,1} \\ 0 & 1 & \dots & u_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Lemma 1.5. If we apply the Gram-Schmidt procedure to $B \in \mathbb{R}^{m \times n}$ and get $B^* \in \mathbb{R}^{m \times n}$, then

$$\det B^T B = \prod_{i=1}^n ||b_i^*||^2$$

Proof. Note that,

$$B^* \begin{bmatrix} 1 & u_{2,1} & \dots & u_{n,1} \\ 0 & 1 & \dots & u_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = \begin{bmatrix} b_1^* \\ \|b_1^*\| & \dots & b_1^* \\ \|b_1^*\| & \dots & b_n^* \end{bmatrix} \begin{bmatrix} \|b_1^*\| & u_{2,1} \|b_1^*\| & \dots & u_{n,1} \|b_1^*\| \\ 0 & \|b_2^*\| & \dots & u_{n,2} \|b_2^*\| \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \|b_n^*\| \end{bmatrix}$$

Let $B^{*'}$ be the orthonormal Gram-Schmidt matrix as calculated above and U' its corresponding upper triangular matrix.

$$\det B^T B = \det ((B^* U)^T B^* U)$$

$$= \det ((U')^T (B^{*'})^T B^{*'} U')$$

$$= \det U' \det (B^{*'})^T B^{*'} \det U'$$

$$= \prod_{i=1}^n ||b_i^*||^2 \det (B^{*'})^T B^{*'}$$

Behold, the columns of $B^{*'}$ are orthonormal therefore, $(B^{*'})^T B^{*'} = I_n$ and hence

$$\det B^T B = \prod_{i=1}^n ||b_i^*||^2$$

which was what was wanted.

1.4 Successive Minima

Let $\lambda_i(\Lambda)$ be the minimum norm of the longest vector among any set *i* linearly independent vectors in Λ .

$$\lambda_i(\Lambda) = \min_{\substack{\{y_1, \dots, y_i\}\\ \text{lin indp}}} \max_{1 \le j \le i} ||y_j||$$

or equivalently

$$\lambda_i(\Lambda) = \inf\{r \mid \dim \operatorname{span}(\Lambda \cap B_r(0)) \ge i\}$$

Theorem 1.6. Let Λ be a littice of rank n with successive minima $\lambda_1(\Lambda), \ldots, \lambda_n(\Lambda)$. There exists a set of linearly independent vectors $v_1, \ldots, v_n \in \Lambda$ such that $||v_i|| = \lambda_i(\Lambda)$.

1.4.1 Lower bound on λ_1

Theorem 1.7. Let $\mathcal{L}(B)$ be a lattice, then

$$\lambda_1(\mathcal{L}(B)) \ge \min_{j} ||b_j^*||$$

and more generally

$$\lambda_i(\mathcal{L}(B)) \ge \min_j j \ge i \|b_j^*\|$$

Proof. Let $x \in \mathbb{Z}^n$, we will show that $||Bx|| \ge \min_j ||b_j^*||$ for all $x \in \mathbb{Z}^n$. Note that, for any i we have

$$|\langle Bx, b_i^* \rangle| = \left| \sum_{j=1}^n x_j \langle b_j, b_i^* \rangle \right| = \left| \sum_{j=i}^n x_j \langle b_j, b_i^* \rangle \right|$$

Let i be the largest indext that $x_i \neq 0$. That is, for all j > i, $x_j = 0$. Thus

$$|\langle Bx, b_i^* \rangle| = |x_i \langle b_i, b_i^* \rangle| = |x_i| ||b_i^*||^2 \le ||b_i^*||^2$$

Moreover, by Cauchy-Schwarz inequality

$$|\langle Bx, b_i^* \rangle| \le ||Bx|| ||b_i^*||$$

ans hence

$$||Bx|| \ge ||b_i^*|| \ge \min_{i} ||b_j^*||$$

which was what was wanted.

Corollary 1.8. For all lattices Λ , there exists a constant $\epsilon(\Lambda) > 0$ such that for all $x, y \in \Lambda$ we have

$$||x - y|| \ge \epsilon(\Lambda)$$

Proof. Note that $x - y \in \Lambda$ then, let $\epsilon(\Lambda) = \lambda_1(\Lambda)$.

Theorem 1.9. A set $\Lambda \subset \mathbb{R}^m$ is a lattice if and only if it is a discrete additive subgroup of \mathbb{R}^m .

1.5 Minkowski's Theorems

Theorem 1.10 (Blichfeld theorem). For any Λ and for any measurable set $S \subset \operatorname{span} \Lambda$, if S has a volume $\operatorname{vol}(S) > \det \Lambda$, then there exists two distinct points $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

Theorem 1.11 (Convex body theorem). For any lattice Λ of rank n and any convext set $S \subset \operatorname{span} \Lambda$ symmetric about the origin, if $\operatorname{vol}(S) > 2^n \det \Lambda$, then S contains a non-zero lattice point.

Theorem 1.12 (Minkowski's first theorem). For any lattice Λ ,

$$\lambda_1(\Lambda) \le \sqrt{n} (\det \Lambda)^{\frac{1}{n}}$$

Theorem 1.13 (Minkowski's second theorem). For any lattice Λ of rank n under the l_2 norm

$$\left(\prod_{i=1}^{n} \lambda_i(\Lambda)\right)^{\frac{1}{n}} \leq \sqrt{n} (\det \Lambda)^{\frac{1}{n}}$$