6.002 CIRCUITS AND ELECTRONICS

Dependent Sources and Amplifiers

Review

- Nonlinear circuits can use the node method
- Small signal trick resulted in linear response

Today

- Dependent sources
- Amplifiers

Reading: Chapter 7.1, 7.2

Dependent sources

Seen previously

Resistor
$$\overrightarrow{i} \stackrel{\checkmark}{\underset{R}{\longleftarrow}} i = \frac{v}{R}$$

Independent $i = I$

Current source

2-terminal 1-port devices

New type of device: Dependent source

E.g., Voltage Controlled Current Source Current at output port is a function of voltage at the input port

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Dependent Sources: Examples

Example 1: Find V

independent current source

$$V = I_0 R$$

Dependent Sources: Examples

Example 2: Find V

voltage controled current source

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Dependent Sources: Examples

Example 2: Find V

voltage controled current source

e.g.
$$K = 10^{-3} Amp \cdot Volt$$

 $R = 1k\Omega$

$$V = IR = \frac{K}{V}R$$
or $V^2 = KR$
or $V = \sqrt{KR}$
 $= \sqrt{10^{-3} \cdot 10^3}$
 $= 1 \, Volt$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$i_D = f(v_{IN})$$
e.g.
$$i_D = f(v_{IN})$$

$$= \frac{K}{2}(v_{IN} - 1)^2 \quad \text{for } v_{IN} \ge 1$$

$$i_D = 0 \quad \text{otherwise}$$

Find v_O as a function of v_I .

$$i_D = f(v_{IN})$$
e.g. $i_D = f(v_{IN})$
 $= \frac{K}{2}(v_{IN} - 1)^2 \quad \text{for} \quad v_{IN} \ge 1$
 $i_D = 0 \quad \text{otherwise}$

Find v_O as a function of v_I .

Find v_O as a function of v_I .

KVL

$$-V_S + i_D R_L + v_O = 0$$
$$v_O = V_S - i_D R_L$$

$$v_O = V_S - \frac{K}{2} (v_I - 1)^2 R_L \quad \text{for } v_I \ge 1$$

$$v_O = V_S \quad \text{for } v_I < 1$$

Hold that thought

Next, Amplifiers

Why amplify?

Signal amplification key to both analog and digital processing.

Besides the obvious advantages of being heard farther away, amplification is key to noise tolerance during communication

Why amplify?

Amplification is key to noise tolerance during communcation

No amplification

Try amplification

Why amplify?

Digital:

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Why amplify?

Digital:

Static discipline requires amplification! Minimum amplification needed:

An amplifier is a 3-ported device, actually

We often don't show the power port.

Also, for convenience we commonly observe "the common ground discipline."

In other words, all ports often share a common reference point called "ground."

How do we build one?

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Remember?

KVL

$$-V_S + i_D R_L + v_O = 0$$
$$v_O = V_S - i_D R_L$$

$$v_O = V_S - \frac{K}{2} (v_I - 1)^2 R_L \quad \text{for } v_I \ge 1$$

$$v_O = V_S \quad \text{for } v_I < 1$$

Claim: This is an amplifier

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

So, where's the amplification?

Let's look at the v_O versus v_I curve.

e.g.
$$V_S = 10V$$
, $K = 2\frac{mA}{V^2}$, $R_L = 5k\Omega$

$$v_O = V_S - \frac{K}{2}R_L(v_I - 1)^2$$

$$= 10 - \frac{2}{2} \cdot 10^{-3} \cdot 5 \cdot 10^3 (v_I - 1)^2$$

$$v_O = 10 - 5(v_I - 1)^2$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Plot v_O versus v_I

$$v_O = 10 - 5(v_I - 1)^2$$

	$v_I^{}$	v_O	
	0.0	10.00	
	1.0	10.00	
	1.5	8.75	
0.1 change	2.0	5.00	1V change
$in v_I$	2.1	4.00	in v_O
	2.2	2.80	
	2.3	1.50	
	2.4	~ 0.00	Gain!

Measure v_O .

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Mathematically,
$$v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$$

is mathematically predicted behavior

One nit ...

However, from

$$i_{D} = \frac{K}{2} (v_{I} - 1)^{2} \qquad \text{for } v_{I} \ge 1$$

$$V_{S} \geqslant R_{L}$$

$$v_{O}$$

$$VCCS \geqslant i_{D}$$

For $v_O > 0$, VCCS consumes power: $v_O i_D$ For $v_O < 0$, VCCS must supply power!

If VCCS is a device that can source power, then the mathematically predicted behavior will be observed —

If VCCS is a passive device, then it cannot source power, so v_O cannot go -ve. So, something must give! Turns out, our model breaks down.

Commonly
$$i_D = \frac{K}{2} (v_I - 1)^2$$

will no longer be valid when $v_O \le 0$. e.g. i_D saturates (stops increasing) and we observe:

