Exercício 2

No circuito a seguir considere:

- $N_1 = 1000 \text{ espiras};$
- $N_2 = 2000$ espiras;
- A área de seção transversal do núcleo é de 2 cm²;
- O comprimento médio do núcleo é de 30 cm;
- A tensão aplicada tem frequência de 60 Hz.

A característica BxH do material é dada por:

H [A/m]	B[T]	H [A/m]	B[T]
0	0	1100	1,689
68	0,733	1500	1,703
135	1,205	2500	1,724
203	1,424	4000	1,731
271	1,517	5000	1,738
338	1,560	9000	1,761
406	1,588	12000	1,770
474	1,617	20000	1,80
542	1,631	25000	1,816
609	1,646		

Utilize os pontos fornecidos para obter uma função BxH utilizando uma interpolação *spline*.

- Apresente um gráfico para a corrente I1 e a corrente I2 nas situações a seguir (OBS: para melhorar a visualização das formas de onda, apresente os gráficos normalizados, ou seja, I1/max(I1) e I2/max(i2), desta forma os gráficos serão apresentados entre 1 e -1):
- 1. Considerando a carga como um resistor de 2 Ω e a tensão aplicada como uma tensão senoidal, 60 Hz, de valor eficaz 30 V;
- 2. Considerando a carga como um resistor de 2 kΩ e a tensão aplicada como uma tensão senoidal, 60 Hz, de valor eficaz 30 V;
- 3. Considerando a carga como um resistor de 2 Ω e a tensão aplicada como uma tensão senoidal, 60 Hz, de valor eficaz 90 V;
- 4. Considerando a carga como um resistor de 2 k Ω e a tensão aplicada como uma tensão senoidal, 60 Hz, de valor eficaz 90 V;

- Escreva um texto sucinto discutindo o motivo das correntes serem puramente senoidal ou uma senoide distorcida em cada caso analisado.
- Observa-se que em nenhum dos casos analisados o núcleo introduz perdas no sistema. Explique esse comportamento.