Learning Deep Parsimonious Representations

Renjie Liao 1 Alexander Schwing 2 Richard S.Zemel 1,3 Raquel Urtasun 1

¹University of Toronto

 $^2\mbox{University}$ of Illinois at Urbana-Champaign

³Canadian Institute for Advanced

NIPS, 2016

Presenter: Beilun Wang

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

Motivation

Motivation:

- Advanced Neural Network (NN) needs regularization, which is key to prevent overfitting and improve generalization of the learned classifier.
- No neural network representations to form clusters.
- Not that related to term "Parsimonious Representations"?

Problem Setting:

- Input: Training set
- Target: Regularized Deep Neural Net considering different clusters (e.g., sample clustering, spatial clustering, channel co-clustering).
- In this talk, I'll focus on sample clustering.

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

Previous Solutions

- Batch Normalization : imposing constrains in the mini-batch
- Dropout : prevent co-adaption
- K-means clustering

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

Contributions

- a new type of regularization that encourages the network representations to form clusters
- This benefits unsupervised learning and zero-shot learning.
- Certain equations in this paper is problematic.

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

Notations

- [K]: $\{1, 2, ..., K\}$.
- \: The sets substraction.
- $\mathbf{Y} \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_D}$: An *n*-mode vectors of a *D*-order tensor.
- $T^{\{I_n\} \times \{I_j | j \in [D] \setminus n\}}$: the *N*-node matrix unfolding.

The N-node matrix unfolding

The N-node matrix unfolding

A whiteboard example.

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

Problem setting

We assume the representation of one layer within a neural network to be a 4-D tensor $\mathbf{Y} \in \mathbb{R}^{N \times C \times H \times W}$.

- N: the number of samples within a mini-batch
- C: the number of hidden units in this layer
- H: the height of the output of this layer
- *W*: the width of the output of this layer

For example, H=W=1 when this layer is a fully connected layer.

Calculate H and W

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $Ooldsymbol{0} O_2 = K$

Problem setting

Problem setting: Clustering in different layers

- Bottom layer representations may focus on low-level visual cues, such as color and edges.
- Top layer features may focus on high-level attributes which have a more semantic meaning.
- See the examples in the figure.

Problem setting

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - Notations
 - Problem setting
 - Problem formulation
- Summary

Key insight: Regularized formulation

To use the clusters in a certain layer, this paper choose the following formulation:

$$\arg\min \mathcal{L} + \mathcal{R} \tag{1}$$

Where \mathcal{L} is the loss function and \mathcal{R} is a regularizer push the clustering structure in a certain layer.

The problem left is the formulation of \mathcal{R} .

Key insight: Sample Clustering Regularizer

Suppose $\mathbf{Y} \in \mathbb{R}^{N \times C \times H \times W}$, the matrix unfolding of \mathbf{Y} by the sample dimension is $T^{\{N\} \times \{H,W,C\}}(\mathbf{Y}) \in \mathbb{R}^{N \times HWC}$. Then the regularizer formulate as follows:

$$\mathcal{R}_{\text{sample}}(\mathbf{Y}, \mu) = \frac{1}{2NHWC} \sum_{n=1}^{N} \| T^{\{N\} \times \{H, W, C\}}(\mathbf{Y})_n - \mu_{z_n} \|^2$$
 (2)

Where μ is a matrix size $K \times HWC$ encoding all the centers with K the total number of clusters. $z_n \in [K]$ means which cluster the n-th sample belongs to.

Clearly, if the n-th sample belongs to a wrong cluster, the value of this regularizer becomes large.

Key insight: How to optimize

- In each layer you want to add this sample clustering regularization, you implement a smoothed k-means algorithm
- After you get fixed μ , you update weights by backpropogation.

Let $T^{\{N\}\times\{H,W,C\}}(\mathbf{Y}) = \mathbf{X}$. Then the gradient of regularizer equals to:

$$\frac{\partial \mathcal{R}}{\partial \mathbf{X}_n} = \frac{1}{NHWC} (\mathbf{X}_n - \mu_n) \tag{3}$$

Different from the paper.

Experiment Results

The result beats the state-of-art baselines in CIFAR 10 and CIFAR 100.

Dataset	CIFAR10 Train	CIFAR10 Test	CIFAR100 Train	CIFAR100 Test
Caffe	94.87 ± 0.14	76.32 ± 0.17	68.01 ± 0.64	46.21 ± 0.34
Weight Decay	95.34 ± 0.27	76.79 ± 0.31	69.32 ± 0.51	46.93 ± 0.42
DeCov	88.78 ± 0.23	79.72 ± 0.14	77.92	40.34
Dropout	99.10 ± 0.17	77.45 ± 0.21	60.77 ± 0.47	48.70 ± 0.38
Sample-Clustering	89.93 ± 0.19	81.05 ± 0.41	63.60 ± 0.55	50.50 ± 0.38
Spatial-Clustering	90.50 ± 0.05	81.02 ± 0.12	64.38 ± 0.38	50.18 ± 0.49
Channel Co-Clustering	89.26 ± 0.25	80.65 ± 0.23	63.42 ± 1.34	49.80 ± 0.25

Summary

- This paper propose a regularized loss function for the deep neural nets, which enforce the clustering in the NN.
- Some prolems left:
 - Some experiment results don't achieve the state-of-art.
 - Certain equation in the paper is hard to understand.