Machine learning with scikit-learn

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman
Core Curriculum Manager, DataCamp

What is machine learning?

- Machine learning is the process whereby:
 - Computers are given the ability to learn to make decisions from data
 - without being explicitly programmed!

Examples of machine learning

Unsupervised learning

- Uncovering hidden patterns from unlabeled data
- Example:
 - Grouping customers into distinct categories (Clustering)

Supervised learning

- The predicted values are known
- Aim: Predict the target values of unseen data, given the features

3	Features					Target variable
	points_per_game	assists_per_game	rebounds_per_game	steals_per_game	blocks_per_game	position
0	26.9	6.6	4.5	1.1	0.4	Point Guard
1	13	1.7	4	0.4	1.3	Center
2	17.6	2.3	7.9	1.00	0.8	Power Forward
3	22.6	4.5	4.4	1.2	0.4	Shooting Guard

Types of supervised learning

Classification: Target variable consists of categories

Regression: Target variable is continuous

Naming conventions

- Feature = predictor variable = independent variable
- Target variable = dependent variable = response variable

Before you use supervised learning

- Requirements:
 - No missing values
 - Data in numeric format
 - Data stored in pandas DataFrame or NumPy array

Perform Exploratory Data Analysis (EDA) first

scikit-learn syntax

```
from sklearn.module import Model
model = Model()
model.fit(X, y)
predictions = model.predict(X_new)
print(predictions)
```

```
array([0, 0, 0, 0, 1, 0])
```

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

The classification challenge

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman

Core Curriculum Manager, DataCamp

Classifying labels of unseen data

- 1. Build a model
- 2. Model learns from the labeled data we pass to it
- 3. Pass unlabeled data to the model as input
- 4. Model predicts the labels of the unseen data

Labeled data = training data

- Predict the label of a data point by
 - Looking at the k closest labeled data points
 - Taking a majority vote

KNN Intuition

KNN Intuition

Using scikit-learn to fit a classifier

```
from sklearn.neighbors import KNeighborsClassifier
X = churn_df[["total_day_charge", "total_eve_charge"]].values
y = churn_df["churn"].values
print(X.shape, y.shape)
```

```
(3333, 2), (3333,)
```

```
knn = KNeighborsClassifier(n_neighbors=15)
knn.fit(X, y)
```


Predicting on unlabeled data

```
(3, 2)
```

```
predictions = knn.predict(X_new)
print('Predictions: {}'.format(predictions))
```

```
Predictions: [1 0 0]
```


Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Measuring model performance

SUPERVISED LEARNING WITH SCIKIT-LEARN

George Boorman
Core Curriculum Manager, DataCamp

Measuring model performance

- In classification, accuracy is a commonly used metric
- Accuracy:

$\frac{correct\ predictions}{total\ observations}$

Measuring model performance

- How do we measure accuracy?
- Could compute accuracy on the data used to fit the classifier
- NOT indicative of ability to generalize

Computing accuracy

Computing accuracy

Computing accuracy

Train/test split

0.8800599700149925

Model complexity

- Larger k = less complex model = can cause underfitting
- Smaller k = more complex model = can lead to overfitting

Model complexity and over/underfitting

```
train_accuracies = {}
test_accuracies = {}
neighbors = np.arange(1, 26)
for neighbor in neighbors:
    knn = KNeighborsClassifier(n_neighbors=neighbor)
    knn.fit(X_train, y_train)
    train_accuracies[neighbor] = knn.score(X_train, y_train)
    test_accuracies[neighbor] = knn.score(X_test, y_test)
```

Plotting our results

```
plt.figure(figsize=(8, 6))
plt.title("KNN: Varying Number of Neighbors")
plt.plot(neighbors, train_accuracies.values(), label="Training Accuracy")
plt.plot(neighbors, test_accuracies.values(), label="Testing Accuracy")
plt.legend()
plt.xlabel("Number of Neighbors")
plt.ylabel("Accuracy")
plt.show()
```

Model complexity curve

Model complexity curve

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

