

CSE 322 AMBIGUITY IN GRAMMAR

Lecture #26

Ambiguity

$$E \to E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

 $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$

 $\Rightarrow a + a * E \Rightarrow a + a * a$

leftmost derivation

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

leftmost derivation

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

a + a * a

Two derivation trees

The grammar is ambiguous

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

string

$$a + a * a$$
 has two derivation trees

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

string

$$a + a * a$$
 has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

 $\Rightarrow a + a * E \Rightarrow a + a * a$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

A context-free grammar is **ambiguous**

if some string has:

two or more derivation trees
$$w \in L(G)$$

In other words:

A context-free grammar

is ambiguous

G

if some string

has:

two or more leftmost derivations

$$w \in L(G)$$

(or rightmost)

Correct result:

$$2 + 2 * 2 = 6$$

• Ambiguity is **bad** for programming languages

• We want to remove ambiguity

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar:

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to a$$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$

$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

 $F \rightarrow a$

$$w \in L(G)$$

is non-ambiguous:

Every string has a unique derivation tree

Inherent Ambiguity

- Some context free languages
- have only ambiguous grammars

The string has two derivation trees $\,a^nb^nc^n\,$

Ambiguity in context free grammar

A terminal string $w \in L(G)$ is ambiguous if there exist two or more derivation trees for w (or there exist two or more leftmost derivations of w).

PROBLEM

If G is the grammar $S \to SbS \mid a$, show that G is ambiguous.

