Wykład 3

Typy danych w języku Python

Typy danych w języku Python

Typy proste

- Logiczny (bool)
- Całkowity (int)
- Zmiennopozycyjny (float)
- Zespolony (complex)
- Napisowy (str)

Typy strukturalne

- Lista (list)
- Krotka (tuple)
- Zbiór (set)
- Słownik, tabela (dict)
- Plik (file)

2

4

1

Działania na typach prostych

```
    typ logiczny (bool)
    True False
    not or and
```

• typ całkowity (int) 12 -21 0b1101 0o77 0xff + - * // % ** | & ^ ~<< >>

typ zmiennopozycyjny (float)12.3 2e-23+ - * / **

• typ zespolony (complex) 3+4j 3.0+4.0j 2j + - * / ** 13:5=62 -3

Fut 11 % 81/4/2 =1

13/5 = 2.6 2 2 × 3 × 2 = 512 c attribut = 5 l trad = 4

elb 111 =7 exb 120 =4 enb 011 =3 x>>2

XXXV

Funkcje wbudowane

abs(n) - wartość bezwzględna

chr(n) - znak o kodzie n ord(zn) - kod znaku

min(a,b,...) - najmniejsza z liczb max(a,b,...) - największa z liczb

round(x) - zaokrąglenie wartości len(s) - długość napisu, listy, krotki

type(x) - typ zmiennej

eval(w) - ewaluacja wyrażenia

noy (m) 10 = yrhor () "5+3x+3"

3

Biblioteki funkcji

from math import sqrt, six

from math import *
import math
import math as m

niezalecane
math.sqrt(x)

math.sqrt(x)
m.sqrt(x)

Funkcja	Znaczenie
ceil(value)	rounds up
cos (value)	cosine, in radians
floor(value)	rounds down
log (value)	logarithm, base e
log10 (value)	logarithm, base 10
max(value1, value2)	larger of two values
min(value1, value2)	smaller of two values
sin(value)	sine, in radians
sqrt(value)	square root

Liczby całkowite

Java	C/C++	zakres	rozmiar
byte	char	-128127	1B
short	short int	-3276832767	2B
int	int	-2147483648214748647	4B
long	long int	-2^632^63-1	8B

W języku Python 3.x zakres typu int jest ograniczony jedynie dostępną pamięcią.

5 6

Liczby zmiennopozycyjne

Java, C/C++

typ	zakres	dokładność	rozmiar
float	1.5E-45 3.4E38	ر 7-8	.4B
double	5.0E-324 1.7E308	15-16	_8B

W języku Python typ float jest równoważny z typem double w języku C/C++.

Ko	d	AS	CII

		_			_	_	_	_
	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	,	р
1	SOH	DC1 XON	Ţ	1	Α	Q	а	q
2	STX	DC2		2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	V
7	BEL	ETB		7	G	W	g	W
8	(BS)	CAN	(8	Н	Х	h	×
9	(HT) EM)	9	1	Υ	İ	У
Α	(F)	SUB	*		J	Ζ	j	Z
В	VT	ESO	+	1	K	[k	{
С	€	FS		<	L	-1	-1	1
D	(R)	GS	-	=	M]	m	}
Е	so	RS		>	N	Α	n	~
F	SI	US	1	?	0	_	0	ŒĐ

8

Rozszerzenie kodu ASCII

															1000
128	Ç	144	É	160	á	176		192	L	208	11.	224	α	240	=
129	ü	145	æ	161	í	177		193	Τ	209	₹	225	ß	241	±
130	é	146	Æ	162	ó	178		194	т	210	т	226	Γ	242	≥
131	â	147	ô	163	ú	179	1	195	F	211	L	227	π	243	≤
132	ä	148	ö	164	ñ	180	4	196	- (212	E.	228	Σ	244	ſ
133	à	149	ò	165	Ñ	181	4	197	+	213	F	229	σ	245	J
134	å	150	û	166	•	182	1	198	F	214	Г	230	μ	246	+
135	ç	151	ù	167	۰	183	п	199	ŀ	215	+	231	τ	247	æ
136	ê	152	ÿ	168	è	184	4	200	L	216	+	232	Φ	248	۰
137	ë	153	Ö	169	Ė	185	4	201	F	217	4	233	◉	249	
138	è	154	Ü	170	4	186		202	<u>JL</u>	218	г	234	Ω	250	
139	ï	155	¢	171	1/2	187	า	203	ī	219		235	δ	251	V
140	î	156	E	172	1/4	188	ᆁ	204	ŀ	220	-	236	00	252	n
141	ì	157	¥	173	i	189	ш	205	=	221	1	237	φ	253	2
142	Ä	158	R	174	«	190	4	206	#	222	1	238	ε	254	•
143	Å	159	f	175	»	191	1	207	\pm	223	•	239	\circ	255	
										٤	ource	www.	Looku	pTable	s .com

Unicode

Znaki ASCII kodujemy za pomocą 1 bajta.

Alfabety: łaciński, grecki, armeński, hebrajski, arabski, koptyjski i cyrylica kodujemy za pomocą 2 bajtów.

Kolejne znaki (m.in. alfabety chiński i japoński) kodowanych jest na 3 i 4 bajtach.

00000000 - 0000007F: 00000080 - 000007FF: 00000800 - 0000FFFF: 0xxxxxxx

110xxxxx 10xxxxxx

1110*xxxx* 10*xxxxxx* 10*xxxxxx* 11110*xxxx* 10*xxxxxx* 10*xxxxxx* 10*xxxxxx* 00010000 - 001FFFFF:

Wszystkie znaki zapisywane są za pomocą 2 bajtów. Kodowanie to pozwala na zapisanie tylko 65536 początkowych znaków Unikodu.

Wszystkie znaki zapisywane są za pomocą 4 bajtów.

9

10

Kodowanie "polskich" znaków

Znak	ISO 8859-2	Unicode	UTF-8
ą	161	261	196 133
ć	198	263	196 135
ę	202	281	196 153
ł	163	322	197 130
ń	209	324	197 132
ó	211	211	195 179
Ś	166	347	197 155
ź	172	378	197 186
Ż	175	380	197 188
Ą	177	260	196 132
Ć	230	262	196 134
Ę	234	280	196 152
Ł	179	321	197 129
Ń	241	323	197 131
Ó	243	243	195 147
Ś	182	346	197 154
Ź	188	377	197 185
Ż	191	379	197 187

Operacje na napisach

• "hello"+"world"

"helloworld" # concatenation

 "hello"*3 "hellohello" # repetition

"h" • "hello"[0] # indexing

• "hello"[-1] # (from end)

• "hello"[1:4] "ell" # slicing

• len("hello") 5 # size • "hello" < "jello" # comparison

• "e" in "hello" # search

• escapes: \n, \033, \t

• 'single quotes' , """triple quotes"""

100 " olo" " to elect obed to ober" ... I have the ober you

11 12

Funkcje przetwarzające napisy

- s.lower() małe litery
- t= town(s
- s.upper() duże litery
- s.capitalize() wielka pierwsza litera
- s.title() wielkie pierwsze litery
- s.center(szer) formatowanie
- s.ljust(szer), s.rjust(szer) j.w.
- s.count(sub) liczba wystąpień sub
- s.find(sub) pierwsza pozycja na której występuje sub
- s.rfind(sub) ostatnia pozycja na której występuje sub
- s.split(•) lista napisów składowych

```
S= Made i also has do dome " " de Maria de Cole de pulsa de sono" ( cole de pulsa) de Maria d
```

13 14

Typy danych w języku Python

Typy proste

- Logiczny (bool)
- Całkowity (int)
- Zmiennopozycyjny (float)
- Zespolony (complex)
- Napisowy (str)

Typy strukturalne

- Lista (list)
- Krotkà (túple)
- Zbiór (set)
- Słownik, tabela (dict)
- Plik (file)

Listy

- Uporządkowane kolekcja elementów
- Elementy listy mogą być różnych typów
- Elementy listy mogą być zmieniane
- Rozmiar listy może się zmieniać
- Elementy dostępne poprzez indeksowanie
- Operacje na listach analogiczne do operacji na napisach a+b, a*3, a[0], a[-1], a[1:], len(a)

15 16

Podstawowe operacje na listach

- lista.append(element) dołącz element do listy
- lista.pop() pobierz element z listy
- lista.extend(lista) dołącz kilka elementów
- lista.sort() posortuj listę w miejscu
- lista2 = sorted(lista) stwórz posortowaną listę
- lista.reverse() odwróć kolejność elementów

Wyrażenia listowe

```
| (expr, for x in collection | [expr for x in range(100) | [expr for x in range(100) | [expr for x in | [expr
```

Tablice w Pythonie $t = [0 \text{ for } \underline{e} \text{ in range}(100)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{ in range}(8)]$ $t = [[0 \text{ for } \underline{e} \text{ in range}(8)], \text{ for } \underline{e} \text{$

#