IOWA STATE UNIVERSITY

Department of Computer Science

Spreading Information in Social Networks containing Adversarial Users

Madhavan Rajagopal Padmanabhan

Major Professor: Dr. Pavan Aduri, Dr. Samik Basu

Supported in part by NSF grants CCF 1421163 and CCF 1555780

Outline

- Overview of Influence Maximization
- CIM Problem
- Greedy Algorithm
- MultiGreedy Algorithm
- Experimental Results

OVERVIEW OF INFLUENCE MAXIMIZATION

Social Networks

Influence Maximization Problem

- Find a set of highly influential users (seed) in the network
- Posed as an optimization problem by Kempe et. Al.

Applications

 Political Campaigning – How can I get people to vote for me?

Viral Marketing – Who do I ask to advertise a product?

Information Diffusion

- 1. An "idea" originates from a user or a set of users in the network. These users are called the "Seed" users.
- 2. Users connected to the *Seed* are exposed to the idea.
- 3. The exposed users, if they choose to, further propagate the idea to users connected to them.

Diffusion – A Probabilistic Process

- Alice posts about something!
- What's the chance that Alice influences Bob?
- What's the chance Alice influences Bob's friends?

Diffusion Models

- Models of *Diffusion* Characterizes the spread of information from one user to the next
- Models mirror the diffusion in real world social networks.
- 2 popular models:
 - Independent Cascade (IC) Model
 - Linear Threshold (LT) Model

Independent Cascade Model

- The network is modelled as a graph G = (V, E).
- Every edge (u, v) has an associated probability p(uv).
- u has exactly one chance to convince v to adopt the idea. u succeeds with probability p(uv).
- If successful, v is considered to be "activated".

$$t = 3$$

Linear Threshold Model

- The network is modelled as a graph G = (V, E).
- Every edge (u, v) has an associated weight w(u, v).
- Each node v is assigned a random threshold $\theta_v \in [0,1]$.
- v is considered to be "activated" if sufficient neighbors of v are activated:
 - $\sum_{Active u} w(u, v) \geq \theta_v$

Influence Function

- $\sigma(S)$ Expected number of users influenced by a set of users S
- Under the IC Model, $\sigma(S)$ is monotone, submodular
- Submodular:

$$\forall X \subset Y \subseteq V \ and \ a \notin Y:$$

$$\sigma(X \cup \{a\}) - \sigma(X) \ge \sigma(Y \cup \{a\}) - \sigma(Y)$$

Influence Maximization

- Input: G=(V,E), a budget k
- $\sigma(S)$ Expected number of users influenced by a set of users S
- Objective:

Find S of size k that maximizes $\sigma(S)$

- An NP-Hard problem
- Greedy algorithm gives a 0.63-approximate solution

What if there are adversaries?

What if there are adversaries?

- Political Campaigning Can rally opposing candidate supporters
- Marketing: Advertisements for products such as alcohol, tobacco must not be shown to children
- Can cause a negative reaction to the information being spread
- How to approach this problem?

CIM PROBLEM

Constrained Influence Maximization(CIM)

- Label users as "Targets" or "Non-Targets"
- Given: G=(V,E,L), budget k, threshold θ
- $\sigma_T(S)$ Expected number of "Target" users influenced by S
- $\sigma_N(S)$ Expected number of "Non-Target" users influenced by S
- $\sigma^{\theta}(S) = \begin{cases} \sigma_{T}(S), \, \sigma_{N}(S) \leq \theta \\ 0, \, otherwise \end{cases}$
- Objective:

Find S of size k that maximizes $\sigma^{\theta}(S)$

IM vs. CIM

Influence Maximization Problem

Maximize
$$\sigma(S)$$

 $s.t.|S| \leq k$

- $\sigma(S)$ is a monotone, submodular function.
- Greedy Algorithm gives a 0.63-approximate solution.

IM vs. CIM

Constrained Influence Maximization Problem

Maximize
$$\sigma_T(S)$$

 $s.t. \ \sigma_N(S) \leq \theta$
 $|S| \leq k$

- $\sigma_T(S)$, $\sigma_N(S)$ are monotone, submodular functions.
- Maximize under a submodular constraint and a cardinality constraint!

IM vs. CIM

IM Problem

- NP-Hard
- Submodular Maximization
- Cardinality Constraint
- Greedy algorithm gives a 0.63-approximate solution.

CIM Problem

- NP-Hard
- Submodular Maximization
- Submodular Constraint
- Cardinality Constraint

Theoretical Challenges of CIM

• **Theorem**: For every $0 \le c \le 1$, if there is a polynomial time c-approximation algorithm for the CIM problem under the IC model, then every problem in NP can be solved in $O\left(n^{(\log n)^k}\right)$ time, for some $k \ge 1$.

Obtaining a constant factor approximation algorithm is quasi NP-hard!

NATURAL GREEDY ALGORITHM

Natural Greedy Algorithm

Start with an empty Set

Find the best vertex v that when added, the set influences at most θ Non Targets

Repeat until a set of size k is obtained

Theorem:

$$\sigma_T^{\theta}(S) \ge 0.63 \ OPT - Additive \ Loss$$

The Greedy solution has an approximation guarantee that depends on an additive error!

Runtime: $O(k \times |V| \times Time \ taken \ to \ compute \ \sigma)$

Proof Idea:

Let S^* be the set that has the optimum value $OPT_{k,\theta}$. $gain_{S_i}(\{e\}, \theta)$ — The gain achieved by adding $\{e\}$ to S_i such that at most θ Non-Targets are influenced.

$$OPT_{k,\theta} \leq \sigma^{2\theta}(S^* \cup S_i)$$

$$OPT_{k,\theta} \leq \sigma^{\theta}(S_i) + \sum_{e \in S^*} gain_{S_i}(\{e\}, 2\theta)$$

$$OPT_{k,\theta} \leq \sigma^{\theta}(S_i) + k \times \sigma^{2\theta}(S'_{i+1}) - k \times \sigma^{\theta}(S_i)$$

 $BG(S_i, \theta)$ – The maximum gain achieved by adding an element to S_i such that at most θ Non-Targets are influenced

$$\begin{aligned} &OPT_{k,\theta} - \sigma^{\theta}(S_{i+1}) \\ &\leq \left(1 - \frac{1}{k}\right) (OPT_{k,\theta} - \sigma^{\theta}(S_i)) + BG(S_i, 2\theta) - BG(S_i, 2\theta) \end{aligned}$$

$$\sigma_T^{\theta}(S_k) \ge 0.63 \ OPT_{k,\theta} - \left(\sum_{i=0}^{k-1} BG(S_i, 2\theta) - \sigma^{\theta}(S_k)\right)$$

Additive Loss:

$$\sum_{i=0}^{k-1} BESTG(S_i, 2\theta) - \sigma_T^{\theta}(S_k)$$

Approximately difference of targets influenced between by the greedy solution with threshold θ and threshold 2θ

Runtime: $O(k \times |V| \times Time \ taken \ to \ compute \ \sigma)$

Can we improve on Greedy?

MULTIGREEDY ALGORITHM

MultiGreedy Algorithm

Keeps track of multiple seed sets

Proceed till depth *k* and return the best path from root to leaf

MultiGreedy Algorithm

- The greedy solution will be in one of the branches
- Theorem:

$$\sigma_T^{\theta}(MultiGreedy) \geq \sigma_T^{\theta}(Greedy)$$

- Runtime: At least $O(\theta^k)$
- Computationally infeasible!
- Let's prune the tree!

Efficient MultiGreedy with IMTree

Both hit 1 Non Target, but u_2^1 hits 8 Targets!

Efficient MultiGreedy with IMTree

ESTIMATING INFLUENCE FUNCTION $\sigma(S)$

Estimating Influence Function

- Exact computation of $\sigma_T(S)$, $\sigma_N(S)$ is #P-Hard
- Several techniques exists: Monte Carlo Simulations, Forward Influence Sketching, Reverse Influence Sketching(RIS)
- We've used RIS based estimation.
- Our algorithms can be adapted to different methodologies of estimating the influence function

Reverse Influence Sampling

- Let $g \sim G$ be a graph sampled from the random graph distribution
- $P[u influencing v] = P[\exists path from u to v in g]$

- Look at transpose g^T !
- $P[u influencing v] = P[\exists path from v to u in g^T]$

Random Reverse Reachable Set

- Randomly Select a vertex u.
- Generate a set R by performing a Random Reverse BFS starting from u
- $\sigma(S) = n \times P[S \cap R \neq \phi]$
- This observation was made by Borgs et. al.
- If sufficient samples are generated, $\sigma(S)$ can be accurately estimated with high probability.
- To estimate $\sigma_T(S)$, $\sigma_N(S)$, we randomly select a Target, Non-Target respectively.

EXPERIMENTS

Datasets

Network Name	# Nodes	# Edges
NetHept	15 k	62 k
Epinions	75 k	508 k
Amazon	334 k	925 k
DBLP	613 k	1.99 M
Youtube	1.13 M	2.98 M
Pokec	1.63 M	30.62 M

Budget Vs. Influence

Threshold Vs. Influence

Additive Loss in Natural Greedy

 $\sigma_T^{\theta}(S) \geq 0.63 \ OPT - Additive \ Loss$

$$k = 20$$

Our Contributions

- Formulated the Constrained Influence Maximization (CIM) Problem
- Provided a theoretical analysis on hardness of CIM
- Studied the Greedy algorithm and proved its approximation guarantee involving an additive error
- Designed a novel MultiGreedy algorithm with an efficient implementation
- Experimentally evaluated Greedy, MultiGreedy algorithms on real world datasets

Future Work

- Can we design an algorithm that can tighten the additive error?
- Study how the additive error depends on the structure of the graph.

Thank you!

Presenter: Madhavan R.P

Email: madhavrp@iastate.edu