Hálózat

Mérnökeink egy olyan kommunikációs hálózatot terveztek, ami csomópontokból és ezek közötti egyirányú közvetlen kommunikációs csatornákból (összeköttetésekből) áll. Definíció szerint a q csomópont akkor érhető el egy útvonalon p csomópontból, ha létezik különböző csomópontok olyan p₁,p₂,...,p_k sorozata, ahol p=p₁ és q=p_k, úgy, hogy minden i-re, ahol i=1,...,k-1, létezik p_i-ből p_{i+1}-be adatot továbbító összeköttetés. A hálózatnak van egy központi csomópontja (r), amelyre igaz, hogy mindegyik másik p csomópont elérhető r-ből egy útvonalon, és minden p és q csomópontpárra létezik legfeljebb egy útvonal amelyen q elérhető p-ből. A karbantartók a hálózat fejlesztését tervezik, de még nem döntötték el, hogy hogyan. Az egyik ötletük az, hogy a központi csomópontot áthelyezik, ezért tudni szeretnék minden egyes csomópontra, hogy hány csomópont érhető el egy útvonalon belőlük. Másik ötletük szerint decentralizálják a hálózatot (megszüntetik a központi csomópontot), így szintén szeretnék tudni, hogyan tudnak új összeköttetéseket bevezetni úgy, hogy minden p és q csomópontpárra létezzen pontosan egy olyan útvonal, amellyel q elérhető p-ből, és fordítva (p elérhető q-ból).

Írj programot, ami kiszámolja minden egyes csomópontra az elérhető csomópontok számát, és kiszámolja a szükséges új összeköttetések minimális számát, amikkel minden csomópont egyféleképpen válik elérhetővé minden másik csomópontból! A programodnak az új összeköttetések listáját is meg kell adnia!

Bemenet

A standard bemenet első sorában a csomópontok száma ($1 \le N \le 100\,000$), az összeköttetések száma ($1 \le M \le 500\,000$), és a központi csomópont sorszáma ($1 \le r \le N$) van. A következő M sor az összeköttetések leírását tartalmazza. Mindegyik egy összeköttetés sorszámai vannak ($1 \le p$, $q \le N$), ami p-ből q-ba továbbít adatot.

Kimenet

A standard kimenet első sorába az egyes csomópontokból elérhető csomópontok kel írni (az i-t magát is beleértve)! A kimenet második sora azoknak az új összeköttetéseknek a minimális K számát tartalmazza, amelyekre a hálózat fent leírt tulajdonságának eléréséhez van szükség! A következő K sor az új (u, v) összeköttetéseket sorolja fel, amelyek u-ból v-be továbbítanak adatokat! Ha több megoldás van, akkor is csak egyet kell kiírni; mindegy, hogy melyiket!

Példa

Bemenet	Kimenet
11 12 3	1 6 11 6 1 6 1 4 4 4 1
3 2	5
2 1	1 3
2 4	5 4
4 5	7 6
4 6	11 9
6 2	8 3
6 7	(8)
3 8	
8 9	$\frac{2}{\sqrt{2}}$
9 10	19
9 11	$\begin{array}{c c} (1) & (6) & (1) \\ \end{array}$
10 8	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(5) (7)

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

A tesztesetek 50%-ban a csomópontok száma legfeljebb 10 000.

Az első részfeladat a pontok 40%-át éri, a második részfeladat a pontok többi 60%-át éri.

Ha csak a második részfeladatot oldod meg, akkor N darab egész számot kell az első sorba írni!