Homework 5 solutions: Ramsey's theorem and indiscernible sequences

Advanced Model Theory

Due March 31, 2022

Let \mathbb{M} be a monster model elementary extension of $(\mathbb{R}, +, \cdot, -, 0, 1, \leq)$. Let a_1, a_2, a_3, \ldots be a non-constant indiscernible sequence of singletons/elements in \mathbb{M} .

1. Show that a_1, a_2, \ldots is not totally indiscernible.

Solution. If the sequence is totally indiscernible, then $\operatorname{tp}(a_1, a_2) = \operatorname{tp}(a_2, a_1)$, so $a_1 \le a_2 \iff a_2 \le a_1$. This is impossible unless $a_1 = a_2$, in which case the sequence is constant, a contradiction.

2. Show that $a_1a_2 > 0$.

Solution. Break into cases depending on the sign of a_1 :

- If $a_1 = 0$, then $a_i = 0$ for all i by indiscernibility, and the sequence is constant, a contradiction.
- If $a_1 > 0$, then $a_i > 0$ for all i by indiscernibility. Therefore $a_i a_j > 0$ for any i, j.
- If $a_1 < 0$, then $a_i < 0$ for all i by indiscernibility. Therefore $a_i a_j > 0$ for any i, j.

3. Suppose $a_2 - a_1 \ge 1$. Show that $a_2 - a_1 \ge 7$.

Solution. If $a_2 - a_1 \ge 1$, then $a_i - a_j \ge 1$ for all i > j, by indiscernibility. In particular, $a_{i+1} - a_i \ge 1$ for any i. Then

$$a_8 - a_1 = \sum_{i=1}^{7} (a_{i+1} - a_i) \ge \sum_{i=1}^{7} 1 = 7.$$

Therefore (a_1, a_8) satisfies the formula

$$\varphi(x,y) \iff (x_2 - x_1 \ge 1 + 1 + 1 + 1 + 1 + 1 + 1).$$

By indiscernibility, (a_1, a_2) satisfies this formula, so $a_2 - a_1 \ge 7$.

4. Show that at least one of the following is true: $a_2 < (1.01) \cdot a_1$ or $a_2 > 200 \cdot a_1$.

Solution. Note if q is a rational number, then there is a formula $\psi_q(x,y)$ without parameters such that

$$\psi_q(x,y) \iff y \ge q \cdot x.$$

For example, if q = n/m where n, m are positive integers, we can define $\psi_q(x, y)$ as

$$y \cdot (\underbrace{1 + \dots + 1}_{m \text{ times}}) \ge x \cdot (\underbrace{1 + \dots + 1}_{n \text{ times}}).$$

Let q be a positive rational number. By indiscernibility,

$$\mathbb{M} \models \psi_q(a_1, a_2) \iff \mathbb{M} \models \psi_q(a_2, a_3) \iff \mathbb{M} \models \psi_q(a_1, a_3).$$

In other words,

$$a_2 \ge q \cdot a_1 \iff a_3 \ge q \cdot a_2 \iff a_3 \ge q \cdot a_1.$$

Suppose $a_2 \geq q \cdot a_1$. Then

$$qa_2 \ge q^2 a_1$$
 (since $q > 0$)
 $a_3 \ge qa_2$ (by indiscernibility)
 $a_3 \ge q^2 a_1$ (by transitivity)
 $a_2 \ge q^2 a_1$ (by indiscernibility).

So we just showed

$$a_2 > qa_1 \implies a_2 > q^2 a_1 \tag{1}$$

for any positive rational number q. Now suppose for the sake of contradiction that $1.01a_1 \le a_2 \le 200a_1$. This implies $1.01a_1 \le 200a_1$, and so $a_1 \ge 0$. By question 2, $a_1 \ne 0$, and so $a_1 > 0$.

By Equation (1), the fact that $1.01a_1 \leq a_2$ implies

$$(1.01)^2 a_1 \le a_2.$$

By Equation (1), this in turn implies $(1.01)^4 a_1 \le a_2$. Continuing on in this way, we see $(1.01)^{2^n} a_1 \le a_2$ for any n, by induction on n. For sufficiently large n, $(1.01)^{2^n} > 200$. Then

$$a_2 \ge (1.01)^{2^n} a_1 > 200a_1$$

because $a_1 > 0$. This contradicts the assumption that $a_2 \le 200a_1$.

5. Show that $a_i + a_j \neq a_k$ for any i, j, k (possibly equal).

Solution. Suppose for the sake of contradiction that $a_i + a_j = a_k$ for some i, j, k. It suffices to prove that the sequence is constant. Without loss of generality, $i \leq j$. Then there are eight cases:

- i = j = k. Then $a_i + a_i = a_i$, and $a_i = 0$. By indiscernibility, $a_1 = a_2 = 0$, and the sequence is constant
- k < i = j. By indiscernibility, $a_1 = a_3 + a_3$ and $a_2 = a_3 + a_3$. Then $a_1 = a_2$, and the sequence is constant.
- i = j < k. By indiscernibility, $a_1 + a_1 = a_2$ and $a_1 + a_1 = a_3$. Then $a_2 = a_3$ and the sequence is constant.
- k < i < j. By indiscernibility, $a_1 = a_3 + a_4$ and $a_2 = a_3 + a_4$. Then $a_1 = a_2$ and the sequence is constant.
- i = k < j. Then $a_i + a_j = a_k = a_i$, so $a_j = 0$. By indiscernibility, $a_1 = a_2 = 0$, and the sequence is constant.
- i < k < j. By indiscernibility, $a_1 + a_4 = a_2$ and $a_1 + a_4 = a_3$. Then $a_2 = a_3$ and the sequence is constant.
- i < j = k. Then $a_i + a_j = a_k = a_j$, so $a_i = 0$. By indiscernibility, $a_1 = a_2 = 0$, and the sequence is constant.
- i < j < k. By indiscernibility, $a_1 + a_2 = a_3$ and $a_1 + a_2 = a_4$. Then $a_3 = a_4$, and the sequence is constant.

Alternate solution. By indiscernibility, a_i, a_j, a_k have the same sign (positive or negative). Then $a_i + a_j = a_k \implies |a_i| + |a_j| = |a_k|$. Since no element of the sequence is zero, we see $|a_i| < |a_k|$ and $|a_j| < |a_k|$. Therefore $k \neq i$ and $k \neq j$. By indiscernibility, $a_{2i} + a_{2j} = a_{2k}$, since (i, j, k) has the same order type as (2i, 2j, 2k). As $2k \notin \{2i, 2j\}$, we also see that (2i, 2j, 2k + 1) has the same order type. (For example, $2k < 2i \iff 2k + 1 < 2i$.) So

$$a_{2i} + a_{2j} = a_{2k}$$
$$a_{2i} + a_{2j} = a_{2k+1}.$$

Then $a_{2k} = a_{2k+1}$, and the sequence is constant by indiscernibility.

6. Show that there is an indiscernible sequence b_1, b_2, b_3, \ldots such that $b_2 > 200 \cdot b_1$. Hint: extract an indiscernible sequence from a well-chosen sequence in \mathbb{R} .

Solution. Let $c_n = 1000^n$ for each n. Let b_1, b_2, b_3, \ldots be an indiscernible sequence in \mathbb{M} extracted from c_1, c_2, c_3, \ldots . The formula $x_2 > 200x_1$ is part of the EM type of $\{c_n\}$, because $1000^j \geq 1000^{i+1} > 200 \cdot 1000^i$ for any j > i. Therefore the formula $x_2 > 200x_1$ is also part of the EM type of b_1, b_2, \cdots , and so $b_2 > 200 \cdot b_1$.