Stat 260, Lecture 13, Review

Brad McNeney

Topics

▶ We didn't cover the most important topic: communicate

Cheatsheets

- visualization [https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf]
- data import and tidy [https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf]
- relational data and data transformation [https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf]
- strings [https://github.com/rstudio/cheatsheets/raw/master/strings.pdf]
- ► factors [https://github.com/rstudio/cheatsheets/raw/master/factors.pdf]
- dates [https://github.com/rstudio/cheatsheets/raw/master/lubridate.pdf]
- base R [http://github.com/rstudio/cheatsheets/raw/master/base-r.pdf]
- advanced R [https://www.rstudio.com/wp-content/uploads/2016/02/advancedR.pdf]
- iteration [https://github.com/rstudio/cheatsheets/raw/master/purrr.pdf]

Visualization with ggplot2

- Build a plot with ggplot layers:
 - Start with ggplot() to specify default data and aesthetic mapping of x, y, color, shapes, etc.
 - ► Add geom_()'s, which can override default data and mapping.
 - stat_()'s calculate statistical summaries such as smooths that we can add. Rather than use the stat_()s directly, we tended to add summaries with built-in geoms, such as geom_smooth().
 - Faceting builds multiple plots by values of a faceting variable.
- Advanced topics we did not emphasize include:
 - Position adjustment such as jitter or dodge to avoid overplotting.
 - Scales specify the mapping of data to what we see on the plot.
 - Coordinate system can be changed from Cartesian to, e.g., polar.
 - ► Themes change the overall look-and-feel of plots
- Visualization is often cookbook

Data import and tidy

- Import with the read_ functions, such as read_csv().
 - remember skip and comment arguments
 - read_ functions guess at how to parse columns of input and use parse_ functions.
 - Best bet is to specify column types with col_types=cols().
- tibbles are an improved version of the R data.frame.
 - Implemented as lists, so subset with [and extract elements with [[
- Use dplyr's five key verbs to wrangle:
 - 1. filter() to select subsets of observations
 - 2. arrange() to reorder rows
 - 3. select() to select variables (remember helper functions like starts_with(), ends_with() and contains())
 - 4. mutate() to create new variables from existing ones, and
 - summarize() to calculate summary statistics (useful with group_by() to do split-apply-combine)

Tidy Data

- In a tidy dataset,
 - each variable has its own column,
 - each observation has its own row, and
 - each value has its own cell.
- ▶ Use gather() to make "wide" data "tall" and spread() to make "tall" data "wide".

Relational data: multiple tables

- ▶ Modern data comes in multiple tables, called relational data.
- Keys are variables present in two tables that can be used to join them.
- ► The most common type of join is a "mutating join", such as a left_join() or inner_join().
- semi_join() can be used for a "filtering join" in which we filter one table based on characteristics of another.

Working with strings

- ► Fixed, or literal strings, like fish:
 - count the number of characters in a string
 - detect (yes/no) or find (starting position) substrings
 - extract and substitute substrings
 - split and combine strings
- ► Regular expressions specify string patterns, like f [aeiou] sh:
 - detect, find, extract and substitute
- Use tools from the stringr package

Factors

- Factors are categorical variables, implemented as an integer vector with levels.
- The forcats package provides tools for working with factor levels.
- Use fct_recode() to rename or collapse factor levels.
- Use fct_relevel() to partially or completely re-order a factor's levels.
- Use fct_reorder() to reorder levels by a second variable.

Dates and Times

- Moments in time can be dates, times, or date-times.
- ► The lubridate package contains functions to coerce strings to date, time, or date-time objects:
 - ymd() to coerce data in year-month-date, mdy() to coerce data in month-day-year, ymd_hm() to coerce data in year-month-date-hour-minute, etc.
- make_datetime() makes a date-time object from components.
- ▶ hour(), minute(), etc. extract components.
- ► Time data includes time zone. To set a time zone with the lubridate time functions, use the tz argument.
- Easy to summarize and plot date-time objects.

Pipes and functions

- ► The forward pipe %>% is useful for combining a linear sequence of data processing steps, when we won't need the intermediate steps.
- Encapsuling code in a function has several advantages:
 - can be used multiple times on different inputs
 - can compartmentalize computations and give them a name
- We discussed when to write a function and the components of a function:
 - the code inside the function, or body,
 - ▶ the list of arguments to the function, and
 - a data structure called an environment inside the function
- Generic functions behave differently depending on the class of input.

Vectors and iteration

- Vectors can be either atomic or list
 - ▶ The elements of an atomic vector must be the **same** type.
 - Lists can be comprised of **multiple** data types
- Use vector() to create an empty vector, or c() and list() to construct from data.
 - vector elements can be named
- Subset with [or by name.
- Extract individual elements with [[, or \$ for named objects
- Combine subsetting and assignment to change the value of vectors
- Iterate over a vector with a for() loop, lapply() or map() functions
 - Remember shortcuts for specifying a function to use with a map() function.