Cse260 Name: Ms Rodry Tahmid Lab Assignment - 8 Name: N (28th Dec at 5pm) sec: 09 Th: 201 TD: 20101021 Designing and implementing a circuit containing 1) Name of the Experiment: Four 2 bit numbers A, B, C, D and two selection variables, S1 and S2. ?) To familiarize us with the mux. 2 Objective: (1) To understand how to use mux to transfer iii) To add multiple optional number in the Same circuit with mux. iv) To learn how to make 2:1 mux from 3 Required Components and Equipments 4 Tc: 74153 [MUX] 4:1. 1> Ic: 7483 [2 bit Parallel Adder] 4 Inputs (using logicstate) 43 LEDS (Blue or any other color) 13 Power Source / Ground 4 Logic Probes (\$1,52).

(4) Experimental Setup (i.e diagram of the circuit)

Block Diagram

(5) Resulls and Discussions

$$2 \rightarrow 1$$

$$4 \rightarrow 2$$

$$8 \rightarrow 3$$

2-bit

$$A \rightarrow \begin{bmatrix} A_2 & A_1 \\ A_2 & A_1 \\ B \rightarrow \begin{bmatrix} B_2 & B_1 \\ B_1 \end{bmatrix} & S_1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \Rightarrow A_2 A_1 \\ 1 \Rightarrow B_2 B_1 \\ S_1 \end{bmatrix}$$

$$2 \stackrel{\circ}{\cdot} 1$$

$$C \rightarrow C_2 C_1$$

$$D \rightarrow D_2 D_1 S_2$$

Strobe = Low

Mux Connection:

Making 4:2 Mux to 2:1 Mux:

Short Selector A and B

Short Sele	Data Input (Active)	1 Output (1Y)	Output (24)
Selector	Data Input (Active)	1 Co	2 Co
00	1Co, 2Co	1c ₃	203
11	10 ₈ , 20 ₃		7.3

Cuell give Inputs:

$$2C_o \rightarrow A_2$$

Second TC Connection: C=D=Sz (Selector)

$$1C_o \rightarrow C_2$$

$$2C_3 \rightarrow D_2$$

Selector: SI	Output o	f Mux-1	Selector:52	Output	of mux-2
(First MUX)	14	24	(Setend Mux)	14	24
0	A ₁	A2	0	Cı	C2
0	Aı	A ₂	1	D ₁	D ₂
1	В	θ2	0	C1	C2
1	Β1	B2	1	D1	D ₂

S ₁	S2	Operation	LED outputs.
0	0	A+C	⇒ all off
0	1	A+ D	⇒ S1 on D5 on
1	0	B + C	⇒ S1, S2 on 04, D5 on
1	1	B + D	=> S3 on D3 on

* Draw a circuit diagram which will compare three 4 bit numbers. You have Magnitude Comparators and 2:1 Muxs.

-A, A2 A3 A4 B, B2 B3 B4 C, C2 C3 C4. A4 A3 A2 A, B4 B3 B2 B1 C4 C3 C2 C1 B2B1 B4 B3 C4C3 B2B1 C2 04 Magnitude Comparator

Block Diagram

Figure no: Magnitude Comparator