

Delivery mode adjustment

- A set of slides will be in companion with the Jupyter notebooks.
 - https://github.com/zhiyzuo/IS6400-Regression
- As before, you could simply run the notebook but no need to change code for the purpose of this course.

We will discuss the code line by line in tutorial.

Your feedback is always appreciated

 Please do not hesitate to contact me if you have any confusion.

- My regular OH: 10am to 11:45am on Wednesdays
 - https://cityu.zoom.us/j/99754454964?pwd=dzVM b1kvS3VTd2UvVTgzMzh0N3hrUT09
- But we can set up other times.

Week 6 Makeup

- A make-up lecture for Week 6 materials will be made on March 5th from 2pm to 5pm.
- The idea is for me to record the lecture and tutorial via a new presentation approach. But if any of you are interested, please join me. Recordings will be made public.
 - https://cityu.zoom.us/j/95851096414?pwd=WGU3T04vY3c rTlZWc1A3MVQ5V0txUT09

Forecasting

Forecasting via Judgement

Why go this route?

- Little or limited access to data
- Important to include domain knowledge

- Example:
 - Forecasting a new product...
 - Estimating the listed price for an apartment

Australian Cigarette Package

Judgmental Forecasts

One common approach: Delphi approach

Expert panel formation

Task distribution to panel

Forecast on proposed analogy

Assess similarity with target situation

Final forecast by weighted average

Quantitative approach: Our Focus

When there's data!

What we will talk about

Time series features

Exponential Smoothing

AutoRegresison

Week 7

Week 8

Our journey begins with...

What is time series data?

Different types of data

 Cross-sectional: Records about different objects (collected at the same time)

- Example?
 - -Student grade from IS6400 in 21/22 SemB
 - Features of hotels on Airbnb in Jan 2022

— ...

Different types of data

 Time Series: repetitive data collected from the same object over time

- Example?
 - Xiaomi's stock price over time
 - Hilton Garden Inn's ratings over time

Different types of data

- Panel: Time series + Cross-sectional
 - Multiple objects
 - Multiple data collection time

- Examples?
 - -Airbnb rooms features from 2018 to 2022
 - S&P500 firms' financial indicators from 2018 to 2022

We focus on time series

Where we start?

- First step: no rush into any models!
 - Know your data!

google_stock.describe().round()

	Open	High	Low	Close	Adj Close	Volume
count	1260.0	1260.0	1260.0	1260.0	1260.0	1260.0
mean	1487.0	1502.0	1473.0	1488.0	1488.0	1563063.0
std	619.0	624.0	613.0	618.0	618.0	696063.0
min	807.0	821.0	803.0	814.0	814.0	346800.0
25%	1071.0	1082.0	1059.0	1071.0	1071.0	1114875.0
50%	1207.0	1220.0	1200.0	1209.0	1209.0	1388250.0
75%	1731.0	1749.0	1717.0	1736.0	1736.0	1778525.0
max	3037.0	3042.0	2998.0	3014.0	3014.0	6207000.0

Autocorrelation

Recall what is correlation?

- Correlation in time series: autocorrelation
 - Correlation with the time series itself
 - Between lagged values!

Autocorrelation

• The math?

$$r_k = rac{\sum_{t=k+1}^T (y_t - ar{y})(y_{t-k} - ar{y})}{\sum_{t=1}^T (y_t - ar{y})^2}$$

- "k" is lag here.
 - -k = 1: Correlation with its previous time unit

Autocorrelation in action

White noise: no autocorrelation

Stationarity

 A time series in non-stationary if there are any patterns of trend or seasonality.

Stationarity

 A time series is non-stationary if there are any patterns of trend or seasonality.

Stationarity: Statistical test

- We may also quantitively tell whether one is stationary or not.
 - Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
 - Null hypothesis: A time series is stationary

```
kpss_closing_price = sm.tsa.stattools.kpss(google_stock['Close'], nlags='auto')
print('Google closing price stationarity p-value: %.3f'%kpss_closing_price[1])

Google closing price stationarity p-value: 0.010

kpss_change_price = sm.tsa.stattools.kpss(google_stock['Close'].diff(1)[1:], nlags='auto')
print('Google closing price change stationarity p-value: %.3f'%kpss_change_price[1])

Google closing price change stationarity p-value: 0.100
```

What makes a pattern?

 Theoretically, a time series can be decomposed into:

-Seasonality S_t

-Trend T_t

- Remainder R_t ightharpoonupNoise and uncaptured pattern

Additive vs. Multiplicative

 Additive: When trend/seasonality is constant over time

$$y_t = S_t + T_t + R_t$$

Multiplicative: varying trend/seasonality

$$y_t = S_t imes T_t imes R_t$$

STL decomposition

- One popular approach but additive only
 - Are additive and multiplicative mutually exclusive?

$$log(y_t) = log(S_t) + log(T_t) + log(R_t)$$

- S: Seasonality
- T: Trend
- L: using LOESS (local regression)

STL decomposition: Example

Alright, now we talk about forecasting.

- What's the approach that comes to your mind if you:
 - Have historical data from time 1 to T;
 - Want to predict data at time T+1?

$$\hat{y_{t+1}} = y_t$$

 $\hat{y_{t+1}} = y_t$ Simple but...

The simple approach

 We could make use of the one-step before value for the next one

But maybe the reliance on just one point is inaccurate.

But still...

• Hey! Let's add more: $\hat{y_{t+1}} = \frac{\sum_{t=t_o}^T y_t}{T - t_o + 1}$

Now enter simple exp. smoothing

 Intuitively, the pattern which is further away is less important in the forecast

 Let's make more recent points more important:

$$\hat{y_{t+1}} = \alpha y_t + \alpha (1-lpha) y_{t-1} + lpha (1-lpha)^2 y_{t-2} + \dots$$

Why α only? Because it's simple to infer...

The role of α

The component form of this model

Forecast equation:

$$\hat{y_{t+1}} = l_t$$
 ,

• Smoothing (level) equation:

$$l_t = lpha y_t + (1-lpha) l_{t-1}$$

Math behind it (Optional)

$$egin{aligned} \hat{y_{t+1}} &= lpha y_t + (1-lpha)l_{t-1} \ &= lpha y_t + (1-lpha)[lpha y_{t-1} + (1-lpha)l_{t-2}] \ &= lpha y_t + lpha (1-lpha)y_{t-1} + (1-lpha)^2[lpha y_{t-2} + (1-lpha)l_{t-3}] \ &= \dots \ &= \sum_T lpha (1-lpha)^{t-T} y_T \end{aligned}$$

Simple Exp. Smoothing: Example

What's the issue?

• Flat prediction:

$$\hat{y_{t+h}} = \hat{y_{t+1}}; \hspace{0.2cm} h \geq 2$$

h: how far away we look into the future

Solution: capturing the trend!

Holt's Method

We need more stuff to train the model

now:

Forecast

h: how far away we look into the future This is the term that makes our prediction no longer flat!

$$\hat{y_{t+h}} = l_t + hb_t$$

– Smoothing

$$l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1})$$

Trend

 b_t : trend (or slope)

$$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$$

Mechanism behind Holt's Method

$$l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1})$$

$$l_{t-1} + b_{t-1} = \hat{y_t}$$

$$l_t = lpha y_t + (1-lpha)\hat{y_t}$$

Isn't it the same as what we have before?

Mechanism behind Holt's Method

$$egin{align} b_t &= eta^*(l_t - l_{t-1}) + (1 - eta^*)b_{t-1} \ b_t &= eta^*(l_t - l_{t-1}) + (1 - eta^*)[eta^*(l_{t-1} - l_{t-2}) + (1 - eta^*)b_{t-2}] \ &= eta^*(l_t - l_{t-1}) + eta^*(1 - eta^*)(l_{t-1} - l_{t-2}) + (1 - eta^*)^2b_{t-2} \ \end{cases}$$

Isn't this familiar to us?

$$b_t = \sum_T \beta^* (1 - \beta^*)^{t-T} (l_{t-T} - l_{t-T-1})$$

Constant or Changing Trend?

 Does trend last forever without changing at all?

Trend effect is weakened over time

• Damping parameter $\phi \in (0,1)$

- Forecast
$$y_{t+h} = l_t + (\phi + \phi^2 + \ldots + \phi^h)b_t$$

-Smoothing
$$l_t = \alpha y_t + (1-\alpha)(l_{t-1} + \phi b_{t-1})$$

Trend
$$b_t = eta^*(l_t - l_{t-1}) + (1 - eta^*)\phi b_{t-1}$$

Recall that there are two components

We have trend now. What's next?

- Seasonality!
 - Sales of certain products may exhibit seasonal patterns
 - Temperature may also feature seasonal dynamics

Holt-Winter's (or Winter's) Method

- As with the decomposition, there are two forms of Winter's method as well
 - Additive vs. Multiplicative
 - For simplicity, we talk more details about additive but skip multiplicative.
 - In using Python, it is easy to change from one to the other.

Winter's Method: Additive

Forecast

$$\hat{y_{t+h}} = l_t + hb_t + s_{t+h-m}$$

Smoothing

$$l_t = lpha(y_t - s_{t-m}) + (1 - lpha)(l_{t-1} + b_{t-1})$$

Trend

$$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$$

Seasonality

CityU
$$s_t = \gamma(y_t - l_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m}$$

Example: quarterly data m=4

The most recent and same season

$$\hat{y_{t+1}} = l_t + b_t + s_{t-3}$$

$$l_t = lpha(y_t - s_{t-4}) + (1 - lpha)(l_{t-1} + b_{t-1})$$

$$l_{t-1} + b_{t-1} = \hat{y_t} - s_{t-4}$$

$$l_t = lpha(y_t - s_{t-4}) + (1 - lpha)(\hat{y_t} - s_{t-4})$$

Example: quarterly data m=4

$$egin{align} s_t &= \gamma(y_t - l_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-4} \ & y_t - l_{t-1} - b_{t-1} ext{=} y_t - (\hat{y_t} - s_{t-4}) \ & s_t &= \gamma(y_t - \hat{y_t} + s_{t-4}) + (1 - \gamma) s_{t-4} \ &= \gamma(y_t - \hat{y_t}) + s_{t-4} \ &$$

Last seasonality plus weighted forecast error

Multiplicative counterpart (optional)

See the notebook:

Forecast equation:
$$y_{t+h} = (l_t + hb_t)s_{t+h-m}$$

Smoothing (level) equation: $l_t = \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(l_{t-1}+b_{t-1})$
Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1-\beta^*)b_{t-1}$
Seasonality equation: $s_t = \gamma \frac{y_t}{l_{t-1} + b_{t-1}} + (1-\gamma)s_{t-m}$

Forecasting evaluation

What does it make a good prediction?

Does cross validation work?

Data partitioning: Order Matters!

Fixed partitioning

Roll forward

Fixed partitioning

One-time split with

- Training set as the history
- Testing set as the future

Example

Example

See the flat prediction here?

Train

Naive

Holt

Test

Simple

Winter

2022

Roll forward

The time- series version of cross validation

 Iteratively shift the time series splitting for training and testing

A summary

Time series features/characteristics

- Forecasts via exponential smoothing
 - What time series components are we thinking about?

A summary of smoothing

Trend Component	Seasonal Component		
	N	A	M
	(None)	(Additive)	(Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
A_d (Additive damped)	(A_d, N)	(A_d,A)	(A_d,M)

From Table 8.5 of Hyndman and Athanasopoulos (2018)

Suggested References

 Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. <u>OTexts.com/fpp3</u>.

 Business analytics using forecasting: https://youtube.com/playlist?list=PLoK4olB1jeK0LHLbZW3DTT05e4srDYxFq

The End

專業 創新 胸懷全球 Professional·Creative For The World