

המחלקה להנדסת תכנה

אנליזה נומרית מועד דוגמא ד"ר אלכסנדר צ'ורקין תש"ף סמסטר א'

<u>חומר עזר : נא סמן במשבצת המתאימה את המתאים</u>	
ניתן להשתמש בכל מחשבון * ניתן להשתמש בכל מחשבון	
V לא ניתן להשתמש במחשבון Casio FX-991EX	
לא ניתן להשתמש במחשבון * לא ניתן להשתמש במחשבון *	
ר ביתן להשתמש בחומר עזר * _V_ לא ניתן להשתמש בחומר עזר * _V_	
* מותר שימוש בדף נוסחאות, כמפורט:	
* הבחינה בחומר פתוח – מותר להשתמש בכל חומר עזר מודפס או כתוב	
<u>הערות</u>	
יש לענות על כל השאלות במקומות המיועדים ע"ג טופס השאלון בלבד	
יש להחזיר את השאלון ביחד עם הכריכה/מחברת.	
אחר:	
1	
.2	
.3	
השאלון מכיל _3_ עמודים (כולל עמוד זה).	
בהצלחה !	=====:

<u>שאלה 1</u>

ע"י x=1.07 עבור $2.75x^3-2.95x^2+3.16x-4.67$ עבור 3-digit chopping-שימוש ב-3-digit chopping אחרי כל פעולה אריתמטית.

- א. ע"י חישוב משמאל לימין.
- ב. ע"י חישוב מימין לשמאל.
- ג. ע"י שימוש ב-horner rule.
 - ד. מה היא התשוב הנכונה?

תשובות: א. 1.31- ב. 1.33- ג. 1.31- ד. ...-1.297...

<u>שאלה 2</u>

.x=1 יש 3 נקודות שבת. אחת מהן $g(x)=x^3-x^2-4x+5$ יש 3 נתון שלפונקציה

- א. מצא את שתי נקודות שבת האחרות.
- 21- מתכנסת לנקודת שבת אם נתחיל קרוב לx=g(x) מתכנסת לנקודת

תשובות: א. $x = \pm \sqrt{5}$ ב. לא

<u>שאלה 3</u>

?האם מתקיים

 $||X - Y|| \ge ||X|| - ||Y||$

הוכיחו או הפריכו.

<u>שאלה 4</u>

Given the following linear system:

$$A = \begin{pmatrix} 5 & 1 & 0 & 3 \\ 2 & 5 & -1 & 1 \\ 3 & -1 & 7 & 2 \\ -1 & 2 & 2 & 6 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 4 \\ 1 \\ -3 \\ 4 \end{pmatrix}$$

$$A\vec{x} = \vec{b}$$

- a. Find LU decomposition of the matrix A.
- b. Use L and U matrices to solve linear system.
- c. Calculate the determinant of the matrix A.

<u>שאלה 5</u>

עבור המטריצה

$$\begin{pmatrix} 9.7 & 6.6 \\ 4.1 & 2.8 \end{pmatrix}$$

.ע"י שימוש בנורמות 1 ואינסוף cond(A) מצאו את

בדקו שמתקיים:

$$cond(A) \ge \frac{\lambda_{max}(A)}{\lambda_{min}(A)} \ge 1$$

שאלה 6

מצאו נוסחאת קירוב עבור $f''(x_0)$ מבוססת על ערכי הפונקציה f ב-3 הנקודות הבאות: $f''(x_0)$ כאשר $f''(x_0)$, הינון בער $f''(x_0)$, באבר $f''(x_0)$, באבר $f''(x_0)$, הינון בער $f''(x_0)$, באבר $f''(x_0)$, באבר

תזכורת: טור טיילור

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 $c_n = \frac{f^{(n)}(a)}{n!}$

תשובה:

We want to solve $f''(x_0) \approx Af(x_0) + Bf(x_0 + h) + Cf(x_0 + 3h)$. Expanding the right hand side in Taylor series, we obtain: $f''(x_0) \approx Af(x_0) + B[f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f'''(x_0) + \dots] + C[f(x_0) + 3hf'(x_0) + \frac{9h^2}{2!}f''(x_0) + \frac{27h^3}{3!}f'''(x_0) + \dots$ Matching up $f(x_0)$, $f'(x_0)$ and $f''(x_0)$, we get A + B + C = 0, Bh + 3Ch = 0 and $\frac{h^2}{2}(B + 9C) = 1$. Solving yields

$$A = \frac{2}{3h^2}$$
, $B = -\frac{1}{h^2}$, and $C = \frac{1}{3h^2}$

Thus, $f''(x_0) \approx \frac{1}{h^2} \left[\frac{2}{3} f(x_0) - f(x_0 - h) + \frac{1}{3} f(x_0 + 3h) \right]$. Expanding this in Taylor series shows that $\frac{1}{h^2} \left[\frac{2}{3} f(x_0) - f(x_0 + h) + \frac{1}{3} f(x_0 + 3h) \right] = f''(x_0) + \frac{4}{3} h f'''(\xi)$.