Machine Learning in Cybersecurity

Proposal Individual Project

Group No.: :flushed:, Students' Names: Q. Zheng, M. Löffler, T. Schneider

December 14, 2021

1 Problem Statement

Investigating Apples generic version of the NeuralHash algorithm and studying targetted adversarial attacks on different threat models. If possible try to defend proposed attacks.

2 Motivation

Understanding and improving on possible weak-spots of modern technologies is relevant in and off itself. Furthermore apple uses said neural hashes for their semi-on-device scans for child abuse material which has been debated heatedly in the recent months amongst the data privacy community.

3 Proposed Strategy

Starting on a white-box threat model we aim to investigate several attacks including FGSM, JSMA and C&W to create adversarial data. There are several parameters and hyperparameters to optimize for to create results with minimal pertubations for example the loss-function.

4 Related Work

There is little to none official scientific material focused on this subject in particular we could find. Useful information:

• Technical summary of apple regarding CSAM implementation.

5 Existing code/software

- Code for extracting apples neural hash model to ONNX.
- Code for an existing pre-image attack.

6 Implementation

Different adversarial attacks under different threat-models and potential defenses.

7 Evaluation - metrics

To evaluate our attacks we can perform simple classification tests as already done before in task01 to evaluate the reliability of our attacks. As a second metric want to evaluate pertubation efficiency.

8 Evaluation - datasets

Some available datasets of pictures (CIFAR, OpenImages etc.). Maybe also comparing performance of generic pictures vs pictures of humans to check if model has been especially trained on humans.

9 Evaluation - baselines

We are attacking the neural network underlying NeuralHash therefore we can evaluate our attacks like regular adversarial attacks and compare results to previous attacks like task01.

10 Success criteria

The project can be considered successful if we can produce reliable untargetted and targetted hash collisions on NeuralHashs keeping pertubation on a level where a human would still assign the original label.

11 Team

Team: flushed: - Qiankun Zheng, Maximilian Löffler, Tim Schneider.