Graph comparison meets Alexandrov

Nina Lebedeva and Anton Petrunin

Abstract

Graph comparison is a certain type of condition on metric space encoded by a finite graph. We show that any nontrivial graph comparison implies one of two Alexandrov's comparisons. The proof gives a complete description of graphs with trivial graph comparisons.

The notion of graph comparison was introduced in [7]. It was studied further in [3–6, 10, 11]. Let us mention some of the results.

- ♦ Graph comparisons for the tripod and four-cycle capture nonnegative and nonpositive curvature in the sense of Alexandrov; see below.
- ♦ Graph comparison for certain trees is used to formulate a stronger version of the so-called *Lang-Schroeder-Sturm inequality* [2, 5, 9].
- ♦ The all-tree comparison gives a metric description of target spaces of submetries from subsets of Hilbert space [7].
- ♦ For a certain tree, graph comparison has tight relation with the so-called MTW condition that was introduced by Xi-Nan Ma, Neil Trudinger, and Xu-Jia Wang [7, 8].
- ♦ Octahedron comparison holds in products of trees [6].

We will show that any nontrivial graph comparison implies one of two Alexandrov's comparisons.

Let us start with the definition. Suppose Γ is a graph with vertices v_1, \ldots, v_n . We write $v_i \sim v_j$ (or $v_i \nsim v_j$) if v_i is adjacent (respectively nonadjacent) to v_j .

A metric space X meets the Γ -comparison if for any n points in X labeled by vertices of Γ there is a model configuration $\tilde{v}_1, \ldots, \tilde{v}_n$ in the Hilbert space \mathbb{H} such that

$$v_i \sim v_j \implies |\tilde{v}_i - \tilde{v}_j|_{\mathbb{H}} \leqslant |v_i - v_j|_X,$$

 $v_i \nsim v_j \implies |\tilde{v}_i - \tilde{v}_j|_{\mathbb{H}} \geqslant |v_i - v_j|_X;$

here $|-|_X$ denotes distance in the metric space X. (Note that v_i may refer to a vertex in Γ and to the corresponding point in X.)

Denote by T_3 and C_4 and tripod and four-cycle shown on the diagram. The C_4 -comparison is equivalent to nonnegative curvature, and T_3 -comparison is equivalent to the nonpositive curvature in the sense of

Alexandrov [7]. These definitions are usually applied to length spaces, but they can be applied to general metric spaces; the latter convention is used in [1].

Theorem. Let Γ be an arbitrary finite graph. Then either Γ -comparison holds in any metric space, or it implies C_4 - or T_3 -comparison.

The following corollary describes all graphs Γ with trivial Γ -comparison; it follows from the proof of the theorem.

Corollary. Let Γ be a finite connected graph. Suppose that Γ -comparison is trivial; that is, it holds in any metric space. Then Γ can be constructed from a path P_{ℓ} of length $\ell \geq 0$ and two complete graphs K_{m_1} , K_{m_2} by attaching k_1 vertices of K_{m_1} to the left end of P_{ℓ} and k_2 vertices of K_{m_2} to the right end of P_{ℓ} .

Note that the graph Γ in the corollary is described by five integers $(m_1, k_1, \ell, k_2, m_2)$ such that $\ell \geq 0$, $m_i \geq k_i \geq 0$, and $k_i > 0$ if $m_i > 0$ for each i. Examples of such graphs and their 5-arrays are shown below.

$$(4,2,2,2,3) \qquad (4,2,0,2,4) \qquad (4,2,0,0,0) \qquad (2,2,0,3,3)$$

Proof of the theorem. Suppose Γ has connected components $\Gamma_1, \ldots, \Gamma_k$. Observe that Γ -comparison holds in a metric space X if and only if so does every Γ_i -comparison. Therefore we can assume that Γ is connected.

Suppose Γ is a graph with vertices v_1, \ldots, v_n as before. Let e be an edge in Γ ; we can assume that it connects v_1 to v_2 . Remove v_1 and v_2 from Γ and add a new vertex w such that for any other vertex u we have

- \diamond if $u \sim v_1$ and $u \sim v_2$, then $u \sim w$;
- \diamond if $u \nsim v_1$ and $u \nsim v_2$, then $u \nsim w$;
- \diamond in the remaining cases we can choose arbitrarily $u \sim w$ or $u \nsim w$.

Denote the obtained graph by Γ' .

Applying the definition of Γ -comparison assuming that $v_1 = v_2$ in X, we get the following.

Claim. If Γ -comparison holds in a metric space X, then so does Γ' -comparison.

The operation that produces Γ' from Γ will be called *edge shrinking*. If a graph Δ can be obtained from Γ applying edge shrinking several times, then we will write $\Delta \prec \Gamma$.

Note that the claim implies the following two statements:

- \diamond If Δ is an induced subgraph of a connected finite graph Γ , then $\Delta \prec \Gamma$.
- \diamond If $\Delta \prec \Gamma$, then Γ -comparison implies Δ -comparison.

Taking all the above into account, we get the following reformulation of the theorem.

Reformulation. For any finite connected graph Γ

- (a) Γ -comparison holds in any metric space, or
- (b) $C_4 \prec \Gamma$, or

(c)
$$T_3 \prec \Gamma$$
.

A connected graph will be called *multipath* if it has an integer function ℓ on the set of the vertex set such that v is adjacent to w if and only if

$$|\ell(v) - \ell(w)| \le 1.$$

The value $\ell(w)$ will be called the *level* of the vertex w. Multipath is completely described by a sequence of integers that give the number of vertexes on each level. An example of a multipath with its sequence is shown on the diagram.

Lemma. Let Γ be a connected finite graph such that $C_4 \not\prec \Gamma$ and $T_3 \not\prec \Gamma$. Then Γ is a multipath.

Proof of the lemma. Let us denote by $|-|_{\Gamma}$ the path metric on the vertex set of Γ ; it is equal to the number of edges in a shortest path connecting two vertices. Note that it is sufficient to show that

(*)
$$|u-w|_{\Gamma} \geqslant |u-v|_{\Gamma} \geqslant |v-w|_{\Gamma} \geqslant 2$$
 \Longrightarrow $|u-w|_{\Gamma} = |u-v|_{\Gamma} + |v-w|_{\Gamma}$

for any three vertices u, v, and w in Γ .

Suppose (*) does not hold for u, v, and w. Let us pass to a minimal connected induced subgraph $\Delta \ni u, v, w$ of Γ such that (*) still does not hold in Δ . Note

that Δ is either a cycle or it has three paths from a vertex, say o, to each of u, v, and w such that each of these paths do not visit the remaining vertices in the triple u, v, w. In these cases, we have $C_4 \prec \Delta$ and $T_3 \prec \Delta$ respectively. By the observation above $\Delta \prec \Gamma$ — the lemma is proved.

Proposition. Let Γ be a multipath with sequence (k_0, \ldots, k_m) . Suppose $C_4 \not\prec \Gamma$ and $T_3 \not\prec \Gamma$. Then

- (a) If $m \ge 4$, then $k_2 = \cdots = k_{m-2} = 1$.
- (b) If m = 3, then $k_1 = 1$ or $k_2 = 1$.
- (c) If m = 2, then $k_0 = 1$, $k_1 = 1$, or $k_2 = 1$.

Proof of the proposition. Assuming the contrary in each case we get

- (a). If $m \ge 4$, then multipath (1, 1, 2, 1, 1) is an induced subgraph of Γ .
- (b). If m=3, then multipath (1,2,2,1) is an induced subgraph of Γ .
- (c). If m=2, then multipath (2,2,2) is an induced subgraph of Γ .

In each case, we arrive at a contradiction by applying edge shrinking to the marked edges as shown on the diagram.

It remains to show that Γ -comparison holds in any metric space for every multipath Γ described in 6. This is done by prescribing the coordinates for the needed model configuration on the real line.

Each edge of Γ comes with weight — the distance between the endpoints in X. Define the distance $\|v-w\|_{\Gamma}$ as the minimal total weight of paths connecting v to w in Γ . Note that

$$||v - w||_{\Gamma} \geqslant |v - w|_X$$

for any v and w.

If $m\leqslant 1$ then Γ is a complete graph. In this case, Γ -comparison is trivial. It remains to consider cases $m\geqslant 2$.

Let us choose a special vertex w that is unique on its level and not too far from the middle of Γ . Namely, if $m \ge 4$, then choose w on the second level; by the proposition it is unique on its level. If m = 3, then by the proposition we can assume that $k_2 = 1$; in this case choose w on the second level. Finally, if m = 2, let w be any vertex that is unique on its level; it exists by the proposition.

For every vertex v_i , let

$$\tilde{v}_i = \pm ||w - v_i||_{\Gamma},$$

where the sign is plus if v_i has a higher level than w and minus otherwise. By the triangle inequality, the obtained configuration $\tilde{v}_1, \ldots, \tilde{v}_n$ meets the condition of Γ -comparison.

Acknowledgments. We want to thank Alexander Lytchak for help.

The first author was partially supported by the Russian Foundation for Basic Research grant 20-01-00070; the second author was partially supported by the National Science Foundation grant DMS-2005279.

References

- S. Alexander, V. Kapovitch, and A. Petrunin. Alexandrov geometry: foundations. 2022. arXiv: 1903.08539 [math.DG].
- [2] U. Lang and V. Schroeder. "Kirszbraun's theorem and metric spaces of bounded curvature". Geom. Funct. Anal. 7.3 (1997), 535–560.
- [3] N. Lebedeva. "On open flat sets in spaces with bipolar comparison". Geom. Dedicata 203 (2019), 347–351.
- [4] N. Lebedeva and A. Petrunin. "5-point CAT(0) spaces after Tetsu Toyoda". Anal. Geom. Metr. Spaces 9.1 (2021), 160–166.
- [5] N. Lebedeva and A. Petrunin. 5-point Toponogov theorem. 2022. arXiv: 2202.13049 [math.DG].
- [6] N. Lebedeva and A. Petrunin. Trees meet octahedron comparison. 2022. arXiv: 2212.06445 [math.MG].
- [7] N. Lebedeva, A. Petrunin, and V. Zolotov. "Bipolar comparison". Geom. Funct. Anal. 29.1 (2019), 258–282.
- [8] X.-N. Ma, N. Trudinger, and X.-J. Wang. "Regularity of potential functions of the optimal transportation problem". Arch. Ration. Mech. Anal. 177.2 (2005), 151–183.
- [9] K. T. Sturm. "Metric spaces of lower bounded curvature". Exposition. Math. 17.1 (1999), 35–47.
- [10] T. Toyoda. "An intrinsic characterization of five points in a CAT(0) space". Anal. Geom. Metr. Spaces 8.1 (2020), 114–165.
- [11] T. Toyoda. A non-geodesic analogue of Reshetnyak's majorization theorem. 2019. arXiv: 1907.09067 [math.MG].

Nina Lebedeva,

St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 27 Fontanka nab., St. Petersburg, 191023, Russia Email: lebed@pdmi.ras.ru

Anton Petrunin,

MATH. DEPT. PSU, UNIVERSITY PARK, PA 16802, USA.

Email: petrunin@math.psu.edu