Exercice d'analyse

On considère la suite $(I_n)_{n\geqslant 0}$ définie par : $\forall n\in\mathbb{N}\,, \qquad I_n=\int_0^{rac{\pi}{2}}(\cos t)^n\;\mathrm{d}t$

- 1. Montrer que I_n est bien défini pour tout $n \in \mathbb{N}$. Calculer I_0 , I_1 et I_2 .
- 2. (a) Étudier la monotonie de la suite $(I_n)_{n\geqslant 0}$.
 - (b) En déduire que la suite $(I_n)_{n\geqslant 0}$ converge.
- 3. (a) Rappeler un équivalent simple de $x \longmapsto \cos(x) 1$ et $u \longmapsto \ln(1+u)$ au voisinage de 0.
 - (b) Montrer que $n \ln \left(\cos \left(n^{-1/4}\right)\right) \underset{n \to +\infty}{\sim} -\frac{1}{2} \sqrt{n}$ et en déduire $\lim_{n \to +\infty} \left(\cos \left(n^{-1/4}\right)\right)^n$.
 - (c) Montrer que : $\lim_{n \to +\infty} \left(\cos \left(n^{-2/3} \right) \right)^n = 1$.
- 4. (a) Montrer que pour tout $n \in \mathbb{N}^*$: $\int_0^{n^{-1/4}} (\cos t)^n \mathrm{d}t \leqslant n^{-1/4}$
 - (b) Montrer que pour tout $n \in \mathbb{N}^*$: $\int_{n^{-1/4}}^{\frac{\pi}{2}} (\cos t)^n \mathrm{d}t \leqslant \frac{\pi}{2} \left(\cos \left(n^{-1/4} \right) \right)^n$
 - (c) En déduire que $\lim_{n\to+\infty} I_n = 0$.
- 5. (a) Montrer que pour tout $n \in \mathbb{N}^*$: $I_n \geqslant \int_0^{n^{-2/3}} (\cos t)^n \mathrm{d}t \geqslant n^{-2/3} \left(\cos \left(n^{-2/3}\right)\right)^n$
 - (b) En déduire la nature de la série de terme général I_n .
- 6. (a) Montrer que pour tout réel t de $]-\pi,\pi[:\cos(t)+1=\frac{2}{1+\tan^2\left(\frac{t}{2}\right)}]$
 - (b) À l'aide du changement de variable $u=\tan\left(\frac{t}{2}\right)$, montrer que : $\int_0^{\frac{\pi}{2}} \frac{dt}{1+\cos(t)} = 1$
 - (c) Montrer que pour tout entier $n: \sum_{k=0}^{n} (-1)^k I_k = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \cos(t)} \int_0^{\frac{\pi}{2}} \frac{(-\cos(t))^{n+1}}{1 + \cos(t)} dt$
 - (d) Montrer que : $\forall n \in \mathbb{N}, \; \left| \int_0^{\frac{\pi}{2}} \frac{(-\cos(t))^{n+1}}{1+\cos(t)} dt \right| \leqslant I_{n+1}$
 - (e) En déduire que la série $\sum_{k\geqslant 0} (-1)^k I_k$ est convergente et déterminer sa somme.