Elements of Set Theory

Herbert B. Enderton

Contents

\mathbf{R}	Refe	erence	9																2
	R.1	¶ Po	werse	et															2
	R.2	¶ Pr	incip	le of Ext	ensi	on	al	ity	y										2
1	Intr	oduct	ion																3
	1.1	Baby	Set '	Theory															3
		1.1.1		Exercise															3
		1.1.2		Exercise	1.2														4
		1.1.3		Exercise	1.3														5
		1.1.4		Exercise	1.4														5
	1.2	Sets -	An	Informal	Vie	w													5
		1.2.1		Exercise	2.1														5
		1.2.2		Exercise	2.2														6
		1.2.3		Exercise	2.3														7

Chapter R

Reference

R.1 ¶ Powerset

The **powerset** of some set A is the set of all subsets of A.

Definition. \exists – Set.powerset

R.2 ¶ Principle of Extensionality

If A and B are sets such that for every object t,

 $t \in A \quad \text{iff} \quad t \in B,$

then A = B.

Axiom. \exists - Set.ext

Chapter 1

Introduction

1.1 Baby Set Theory

Which of the following become true when " \in " is inserted in place of the blank? Which become true when " \subseteq " is inserted?

⊘ Exercise 1.1a

 $\{\emptyset\}$ ____ $\{\emptyset, \{\emptyset\}\}$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1a

Because the *object* $\{\emptyset\}$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is also **true** in the case of " \subseteq ".

Exercise 1.1b

 $\{\varnothing\}_{----}\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1b

Because the *object* $\{\emptyset\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

⊘ Exercise 1.1c

$$\{\{\emptyset\}\}_{---}\{\emptyset,\{\emptyset\}\}.$$

Proof. ∃ − Enderton.Set.Chapter_1.exercise_1_1c

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

♥ Exercise 1.1d

$$\{\{\varnothing\}\}....\{\varnothing,\{\{\varnothing\}\}\}.$$

Proof. ∃ – Enderton.Set.Chapter_1.exercise_1_1d

Because the *object* $\{\{\emptyset\}\}\$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\{\varnothing\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Exercise 1.1e

 $\{\{\emptyset\}\}_{--}\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1e

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Show that no two of the three sets \emptyset , $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to each other.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_2

By the \P Principle of Extensionality, \varnothing is only equal to \varnothing . This immediately shows it is not equal to the other two. Now consider object \varnothing . This object is

a member of $\{\emptyset\}$ but is not a member of $\{\{\emptyset\}\}$. Again, by the \P Principle of Extensionality, these two sets must be different.

Show that if $B \subseteq C$, then $\mathscr{P} B \subseteq \mathscr{P} C$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_3

Let $x \in \mathscr{P}$ B. By definition of the \P Powerset, x is a subset of B. By hypothesis, $B \subseteq C$. Then $x \subseteq C$. Again by definition of the \P Powerset, it follows $x \in \mathscr{P}$ C.

Assume that x and y are members of a set B. Show that $\{\{x\}, \{x,y\}\} \in \mathscr{P} \mathscr{P} B$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_4

Let x and y be members of set B. Then $\{x\}$ and $\{x,y\}$ are subsets of B. By definition of the \P Powerset, $\{x\}$ and $\{x,y\}$ are members of \mathscr{P} B. Then $\{\{x\},\{x,y\}\}$ is a subset of \mathscr{P} B. By definition of the \P Powerset, $\{\{x\},\{x,y\}\}$ is a member of \mathscr{P} B.

1.2 Sets - An Informal View

1.2.1 **Exercise** 2.1

Define the rank of a set c to be the least α such that $c \subseteq V_{\alpha}$. Compute the rank of $\{\{\emptyset\}\}$. Compute the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$.

Proof. We first compute the values of V_n for $0 \le n \le 3$ under the assumption the set of atoms A at the bottom of the hierarchy is empty.

$$\begin{split} V_0 &= \varnothing \\ V_1 &= V_0 \cup \mathscr{P} \ V_0 \\ &= \varnothing \cup \{\varnothing\} \\ &= \{\varnothing\} \\ V_2 &= V_1 \cup \mathscr{P} \ V_1 \\ &= \{\varnothing\} \cup \mathscr{P} \ \{\varnothing\} \\ &= \{\varnothing\} \cup \{\varnothing, \{\varnothing\}\} \\ &= \{\varnothing, \{\varnothing\}\} \\ V_3 &= V_2 \cup \mathscr{P} \ V_2 \\ &= \{\varnothing, \{\varnothing\}\} \cup \mathscr{P} \ \{\varnothing, \{\varnothing\}\} \\ &= \{\varnothing, \{\varnothing\}\} \cup \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\} \} \\ &= \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing\}\} \} \end{split}$$

It then immediately follows $\{\{\varnothing\}\}\$ has rank 2 and $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$ has rank 3.

We have stated that $V_{\alpha+1} = A \cup \mathscr{P} V_{\alpha}$. Prove this at least for $\alpha < 3$.

Proof. Let A be the set of atoms in our set hierarchy. Let P(n) be the predicate, " $V_{n+1} = A \cup \mathscr{P} V_n$." We prove P(n) holds true for all natural numbers $n \geq 1$ via induction.

Base Case Let n=1. By definition, $V_1=V_0\cup \mathscr{P}\ V_0$. By definition, $V_0=A$. Therefore $V_1=A\cup \mathscr{P}\ V_0$. This proves P(1) holds true.

Induction Step Suppose P(n) holds true for some $n \ge 1$. Consider V_{n+1} . By definition, $V_{n+1} = V_n \cup \mathcal{P} V_n$. Therefore, by the induction hypothesis,

$$V_{n+1} = V_n \cup \mathscr{P} V_n$$

$$= (A \cup \mathscr{P} V_{n-1}) \cup \mathscr{P} V_n$$

$$= A \cup (\mathscr{P} V_{n-1} \cup \mathscr{P} V_n)$$
(1.1)

But V_{n-1} is a subset of V_n . \checkmark Exercise 1.3 then implies $\mathscr{P}V_{n-1} \subseteq \mathscr{P}V_n$. This means (1.1) can be simplified to

$$V_{n+1} = A \cup \mathscr{P} V_n$$

proving P(n+1) holds true.

Conclusion By mathematical induction, it follows for all $n \ge 1$, P(n) is true.

1.2.3 **Exercise** 2.3

List all the members of V_3 . List all the members of V_4 . (It is to be assumed here that there are no atoms.)

Proof. As seen in the proof of PExercise 2.1,

$$V_3 = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}.$$

By \mathscr{O} Exercise 2.2, $V_4 = \mathscr{O} V_3$ (since it is assumed there are no atoms). Thus

```
V_4 = \{
             Ø,
             \{\varnothing\},
             \{\{\emptyset\}\},
             \{\{\{\emptyset\}\}\},
             \{\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}\},
             \{\varnothing, \{\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing, \{\varnothing\}\}\},\
             \{\{\varnothing\},\{\{\varnothing\}\}\},
             \{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\},
             \{\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing,\{\varnothing\},\{\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\},\
             \{\varnothing, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
             \{\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
}.
```

7