#### Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.



#### Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.



#### Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.



#### Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

### Proof:

Let  $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

$$\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \cap \\ \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$$

Case 1:  $\beta \to^* \epsilon$  — Contradiction !!! Case 2:  $\beta \to^* w \neq \epsilon \Longrightarrow \operatorname{First}_k(\alpha w^k \gamma) \cap \operatorname{First}_k(\alpha w^{k+1} \gamma) \neq \emptyset$ 

#### Idea:

We *delay* the decision whether to reduce until we know, whether the input matches the right-hand-side of a rule!

# Construction: Shift-Reduce parser $M_G^R$

- The input is shifted successively to the pushdown.
- Is there a complete right-hand side (a handle) atop the pushdown, it is replaced (reduced) by the corresponding left-hand side

# Example:

$$\begin{array}{ccc}
S & \to & AB \\
A & \to & a \\
B & \to & b
\end{array}$$

### The pushdown automaton:

**States:**  $q_0, f, a, b, A, B, S;$ 

Start state:  $q_0$ End state: f

| $q_0$   | a          | $q_0 a$ |
|---------|------------|---------|
| a       | $\epsilon$ | A       |
| A       | b          | Ab      |
| b       | $\epsilon$ | B       |
| AB      | $\epsilon$ | S       |
| $q_0 S$ | $\epsilon$ | f       |

#### Construction:

In general, we create an automaton  $M_G^R = (Q, T, \delta, q_0, F)$  with:

- $ullet Q = T \cup N \cup \{q_0, f\}$   $(q_0, f)$  fresh);
- $F = \{f\};$
- Transitions:

```
\begin{array}{lll} \delta &=& \{(q,x,q\,x) \mid q \in Q, x \in T\} \ \cup & /\!\!/ & \text{Shift-transitions} \\ && \{(q\,\alpha,\epsilon,q\,A) \mid q \in Q, A \rightarrow \alpha \ \in P\} \ \cup & /\!\!/ & \text{Reduce-transitions} \\ && \{(q_0\,S,\epsilon,f)\} & /\!\!/ & \text{finish} \end{array}
```

## Example-computation:

#### Observation:

- The sequence of reductions corresponds to a reverse rightmost-derivation for the input
- To prove correctnes, we have to prove:

$$(\epsilon, w) \vdash^* (A, \epsilon)$$
 iff  $A \to^* w$ 

- ullet The shift-reduce pushdown automaton  $M_G^R$  is in general also non-deterministic
- For a deterministic parsing-algorithm, we have to identify computation-states for reduction



# Reverse Rightmost Derivations in Shift-Reduce-Parsers

Idea: Observe *reverse rightmost*-derivations of  $M_G^R$ !

Input:

$$+40$$

Pushdown:

$$(q_0 T * F)$$



Generic Observation:

In a sequence of configurations of  $M_G^R$ 

$$(q_0 \alpha \gamma, v) \vdash (q_0 \alpha B, v) \vdash^* (q_0 S, \epsilon)$$

we call  $\ \alpha \ \gamma \$  a viable prefix for the complete item  $\ [B \to \gamma ullet]$  .

# Reverse Rightmost Derivations in Shift-Reduce-Parsers

Idea: Observe *reverse rightmost*-derivations of  $M_G^R$ !

Input:

## Pushdown:

$$(q_0 E + F)$$



 $E \mid 0$ 

Generic Observation:

In a sequence of configurations of  $M_G^R$ 

$$(q_0 \alpha \gamma, v) \vdash (q_0 \alpha B, v) \vdash^* (q_0 S, \epsilon)$$

we call  $\ \alpha \ \gamma \$  a viable prefix for the complete item  $\ [B \to \gamma ullet]$  .

# Bottom-up Analysis: Viable Prefix

 $\alpha\,\gamma\quad\text{is viable for}\quad [B\,{\to}\,\gamma\bullet]\quad\text{iff}\quad S\,{\to}_R^*\,\alpha\,B\,v$ 



Conversely, for an arbitrary valid word  $\alpha'$  we can determine the set of all later on possibly matching rules ...

## Bottom-up Analysis: Admissible Items

The item  $[B \to \gamma \bullet \beta]$  is called admissible for  $\alpha'$  iff  $S \to_B^* \alpha \, B \, v$  with  $\alpha' = \alpha \, \gamma$ :



... with 
$$\alpha = \alpha_1 \ldots \alpha_m$$

#### Characteristic Automaton

States: Items

#### Observation:

The set of viable prefixes from  $(N \cup T)^*$  for (admissible) items can be computed from the content of the shift-reduce parser's pushdown with the help of a finite automaton:

```
Start state: [S' \to \bullet S]

Final states: \{[B \to \gamma \bullet] \mid B \to \gamma \in P\}

Transitions:

(1) ([A \to \alpha \bullet X \beta], X, [A \to \alpha X \bullet \beta]), X \in (N \cup T), A \to \alpha X \beta \in P;
```

(2)  $([A \to \alpha \bullet B \beta], \epsilon, [B \to \bullet \gamma]), A \to \alpha B \beta, B \to \gamma \in P;$ 

The automaton c(G) is called characteristic automaton for G.

### Characteristic Automaton



The canonical LR(0)-automaton LR(G) is created from c(G) by:

- lacktriangledown performing arbitrarily many  $\epsilon$ -transitions after every consuming transition
- performing the powerset construction

... for example:



#### Therefore we determine:

$$\begin{array}{llll} q_0 & = & \{[S' \rightarrow \bullet E], & q_1 & = & \delta(q_0, E) & = & \{[S' \rightarrow E \bullet], \\ [E \rightarrow \bullet E + T], & [E \rightarrow \bullet T], & [E \rightarrow \bullet T], \\ [T \rightarrow \bullet T * F], & q_2 & = & \delta(q_0, T) & = & \{[E \rightarrow T \bullet], \\ [T \rightarrow \bullet F], & [T \rightarrow T \bullet * F]\} & [T \rightarrow T \bullet * F]\} \\ [F \rightarrow \bullet (E)], & q_3 & = & \delta(q_0, F) & = & \{[T \rightarrow F \bullet]\} \end{array}$$

$$\begin{array}{lll} q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} \end{array}$$

#### Observation:

The canonical LR(0)-automaton can be created directly from the grammar.

Therefore we need a helper function  $\delta_{\epsilon}^*$  ( $\epsilon$ -closure)

$$\delta_{\epsilon}^{*}(\mathbf{q}) = \mathbf{q} \cup \{ [B \to \bullet \gamma] \mid \exists [A \to \alpha \bullet B' \beta'] \in \mathbf{q}, \\ \beta \in (N \cup T)^{*} : B' \to^{*} B \beta \}$$

#### We define:

States: Sets of items;

Start state:  $\delta_{\epsilon}^* \{ [S' \to \bullet S] \}$ 

Final states:  $\{q \mid \exists A \rightarrow \alpha \in P : [A \rightarrow \alpha \bullet] \in q\}$ 

Transitions:  $\delta(q, X) = \delta_{\epsilon}^* \{ [A \to \alpha X \bullet \beta] \mid [A \to \alpha \bullet X \beta] \in q \}$ 

## Idea for a parser:

- The parser manages a viable prefix  $\alpha = X_1 \dots X_m$  on the pushdown and uses LR(G), to identify reduction spots.
- $\bullet$  It can reduce with  $A \,{\to}\, \gamma$  , if  $[A \,{\to}\, \gamma \,\bullet]$  is admissible for  $\alpha$

## Optimization:

We push the states instead of the  $X_i$  in order not to process the pushdown's content with the automaton anew all the time. Reduction with  $A \to \gamma$  leads to popping the uppermost  $|\gamma|$  states and continue with the state on top of the stack and input A.

#### Attention:

This parser is only deterministic, if each final state of the canonical LR(0)-automaton is conflict free.

## ... for example:

$$\begin{array}{lll} q_1 & = & \{[S' \to E \bullet], \\ & [E \to E \bullet + T]\} \end{array}$$
 
$$\begin{array}{lll} q_2 & = & \{[E \to T \bullet], \\ & [T \to T \bullet *F]\} \end{array}$$
 
$$\begin{array}{lll} q_9 & = & \{[E \to E + T \bullet], \\ & [T \to T \bullet *F]\} \end{array}$$
 
$$\begin{array}{lll} q_3 & = & \{[T \to F \bullet]\} \end{array}$$
 
$$\begin{array}{lll} q_{10} & = & \{[T \to T *F \bullet]\} \end{array}$$
 
$$\begin{array}{lll} q_{11} & = & \{[F \to (E) \bullet]\} \end{array}$$

The final states  $q_1,q_2,q_9$  contain more then one admissible item  $\Rightarrow$  non deterministic!

## The construction of the LR(0)-parser:

```
States: Q \cup \{f\} (f fresh)
Start state: q_0
Final state: f
 Transitions:
 Shift: (p, a, p q) if q = \delta(p, a) \neq \emptyset
Reduce: (p q_1 \dots q_m, \epsilon, p q) if [A \rightarrow X_1 \dots X_m \bullet] \in q_m,
                                                          q = \delta(p, A)
                                    (q_0 p, \epsilon, f) if [S' \rightarrow S \bullet] \in p
 Finish:
      with LR(G) = (Q, T, \delta, q_0, F).
```

#### Correctness:

#### we show:

The accepting computations of an LR(0)-parser are one-to-one related to those of a shift-reduce parser  $M_G^R$ .

#### we conclude:

- The accepted language is exactly  $\mathcal{L}(G)$
- The sequence of reductions of an accepting computation for a word  $w \in T$  yields a reverse rightmost derivation of G for w

#### Attention:

Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons:

#### **Reduce-Reduce-Conflict:**

$$[A \mathop{\rightarrow} \gamma \bullet] \,, \ [A' \mathop{\rightarrow} \gamma' \bullet] \ \in \ \mathbf{\textit{q}} \quad \text{with} \quad A \neq A' \vee \gamma \neq \gamma'$$

#### **Shift-Reduce-Conflict:**

$$[A \to \gamma \bullet] \;, \; [A' \to \alpha \bullet a \, \beta] \; \in \; q \quad \text{with} \quad a \in T$$
 for a state  $a \in T$ 

for a state  $q \in Q$ .

Those states are called LR(0)-unsuited.

## What differenciates the particular Reductions and Shifts?

Input:

$$*2 + 40$$

#### Pushdown:

 $(q_0 T)$ 



### What differenciates the particular Reductions and Shifts?

Input:

$$+40$$

#### Pushdown:

$$(q_0 T)$$



 $E \mid 0$ 

### Idea: Matching lookahead with *right context* matters!

Input:

### Pushdown:

$$(q_0T)$$



## Idea: Matching lookahead with *right context* matters!

Input:

### Pushdown:

$$(q_0T)$$





# LR(k)-Grammars

Idea: Consider k-lookahead in conflict situations.

#### **Definition:**

The reduced contextfree grammar G is called LR(k)-grammar, if for  $\mathsf{First}_k(w) = \mathsf{First}_k(x)$  with:

## Strategy for testing Grammars for LR(k)-property

- Focus iteratively on all rightmost derivations  $S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w$
- ② Identify handle  $\alpha \underline{\beta}$  in s. forms  $\alpha \beta w$  ( $w \in T^*$ ,  $\alpha, \beta \in (N \cup T)^*$ )
- **1** Determine minimal k, such that  $\mathsf{First}_k(w)$  associates  $\beta$  with a unique  $X \to \beta$  for non-prefixing  $\alpha \, \underline{\beta} \mathsf{s}$

# LR(k)-Grammars

## for example:

(1)  $S \rightarrow A \mid B \quad A \rightarrow a \, A \, b \mid 0 \quad B \rightarrow a \, B \, b \, b \mid 1$  ... is not LL(k) for any k — but LR(0):

Let  $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ . Then  $\alpha \, \underline{\beta}$  is of one of these forms:

$$\underline{A}$$
,  $\underline{B}$ ,  $a^n \underline{a} \underline{A} \underline{b}$ ,  $a^n \underline{a} \underline{B} \underline{b} \underline{b}$ ,  $a^n \underline{0}$ ,  $a^n \underline{1}$   $(n \ge 0)$ 

(2)  $S \rightarrow a \, A \, c$   $A \rightarrow A \, b \, b \mid b$  ... is also not LL(k) for any k — but again LR(0): Let  $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ . Then  $\alpha \, \underline{\beta}$  is of one of these forms:

$$a\underline{b}$$
,  $a\underline{A}\underline{b}\underline{b}$ ,  $\underline{a}\underline{A}\underline{c}$ 

# LR(k)-Grammars

## for example:

(3)  $S \rightarrow a \ A \ c$   $A \rightarrow b \ b \ A \ | \ b$  ... is not LR(0), but LR(1): Let  $S \rightarrow_R^* \alpha \ X \ w \rightarrow \alpha \ \beta \ w$  with  $\{y\} = \operatorname{First}_k(w)$  then  $\alpha \ \underline{\beta} \ y$  is of one of these forms:

$$ab^{2n}\underline{b}c$$
,  $ab^{2n}\underline{b}bAc$ ,  $\underline{a}Ac$ 

(4)  $S \to a\,A\,c$   $A \to b\,A\,b \mid b$  ... is not LR(k) for any  $k \ge 0$ : Consider the rightmost derivations:

$$S \to_R^* a b^n A b^n c \to a b^n \underline{b} b^n c$$

# LR(1)-Parsing

Idea: Let's equip items with 1-lookahead

## Definition LR(1)-Item

An LR(1)-item is a pair  $[B \rightarrow \alpha \bullet \beta, x]$  with

$$x \in \mathsf{Follow}_1(B) = \bigcup \{\mathsf{First}_1(\nu) \mid S \to^* \mu \, B \, \nu\}$$

## Admissible LR(1)-Items

The item  $[B \to \alpha \bullet \beta, x]$  is *admissable* for  $\gamma \alpha$  if:

$$S \to_R^* \gamma B w$$
 with  $\{x\} = \mathsf{First}_1(w)$ 



... with 
$$\gamma_0 \dots \gamma_m = \gamma$$

## The Characteristic LR(1)-Automaton

The automaton c(G,1):

(2)  $([A \to \alpha \bullet B \beta, x], \epsilon, [B \to \bullet \gamma, x']),$ 

The set of admissible LR(1)-items for viable prefixes is again computed with the help of the finite automaton c(G,1).

```
States: LR(1)-items
Start state: [S' \to \bullet S, \epsilon]
Final states: \{[B \to \gamma \bullet, x] \mid B \to \gamma \in P, x \in \mathsf{Follow}_1(B)\}

Transitions:
(1) ([A \to \alpha \bullet X \beta, x], X, [A \to \alpha X \bullet \beta, x]), X \in (N \cup T)
```

This automaton works like c(G) — but additionally manages a 1-prefix from Follow1 of the left-hand sides.

 $A \to \alpha B \beta$ ,  $B \to \gamma \in P, x' \in First_1(\beta) \odot_1 \{x\}$ ;

## The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many  $\epsilon$ -transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar; analoguously to LR(0), we need the  $\epsilon$ -closure  $\delta_{\epsilon}^*$  as a helper function:

Then, we define:

```
States: Sets of LR(1)-items; 
Start state: \delta^*_{\epsilon} \left\{ [S' \to \bullet S, \epsilon] \right\} 
Final states: \left\{ q \mid \exists A \to \alpha \in P : \ [A \to \alpha \bullet, x] \in q \right\} 
Transitions: \delta(q, X) = \delta^*_{\epsilon} \left\{ [A \to \alpha X \bullet \beta, x] \mid [A \to \alpha \bullet X \beta, x] \in q \right\}
```

# The Canonical LR(1)-Automaton

```
For example:
                                                   E \rightarrow E+T \mid T
                                                   T \rightarrow T * F \mid F
                                                   F \rightarrow (E) int
               First_1(S') = First_1(E) = First_1(T) = First_1(F) = name, int, (
                                         \{[S' \to \bullet E, \{\epsilon\}],
                                                                                            =\delta(q_0,F)=\{[T\to F\bullet,\{\epsilon,+,*\}]\}
q_0
                                           [E \rightarrow \bullet E + T, \{\epsilon, +\}],
                                           [E \to \bullet T, \{\epsilon, +\}],
                                                                                            =\delta(q_0, int)
                                                                                                                             \{[F \rightarrow \text{int} \bullet, \{\epsilon, +, *\}]\}
                                           [T \rightarrow \bullet T * F, \{\epsilon, +, *\}].
                                           [T \to \bullet F, \{\epsilon, +, *\}],
                                                                                            =\delta(q_0, ()) = \{[F \rightarrow (\bullet E), \{\epsilon, +, *\}],
                                           [F \rightarrow \bullet (E), \{\epsilon, +, *\}],
                                                                                                                             [E \rightarrow \bullet E + T, \{), +\}],
                                           [F \rightarrow \bullet \text{ int. } \{\epsilon, +, *\}]\}
                                                                                                                               [E \rightarrow \bullet T, \{), +\}],
        = \delta(q_0, E) = \{ [S' \to E \bullet, \{\epsilon\}], \\ [E \to E \bullet + T, \{\epsilon, +\}] \}
                                                                                                                                [T \to \bullet F, \{), +, *\}],

[F \to \bullet (E), \{), +, *\}],
        = \quad \delta(q_0, T) = \{ [E \to T \bullet, \{\epsilon, +\}], [T \to T \bullet * F, \{\epsilon, +, *\}] \}
```

# The Canonical LR(1)-Automaton

```
For example:
                                                       E \rightarrow E+T \mid T
                                                       T \rightarrow T*F \mid F
                                                        F \rightarrow (E) int
                  First_1(S') = First_1(E) = First_1(T) = First_1(F) = name, int, (
q_5'
        =\delta(q_5, ()) = \{[F \rightarrow (\bullet E), \{), +, *\}], q_7
                                                                                             = \delta(q_2, *) = \{ [T \to T * \bullet F, \{\epsilon, +, *\}],
                                                                                                                                  [F \rightarrow \bullet (E), \{\epsilon, +, *\}],

[F \rightarrow \bullet \text{ int. } \{\epsilon, +, *\}]\}
                                           [E \rightarrow \bullet E + T, \{), +\}],
                                            [E \rightarrow \bullet T, \{), +\}],
                                            [T \rightarrow \bullet T * F, \{), +, *\}],
                                                                                               = \delta(\mathbf{q_5}, E) = \{[F \to (E \bullet), \{\epsilon, +, *\}]\}[E \to E \bullet + T, \{\}, +\}]\}
                                            [T \rightarrow \bullet F, \{), +, *\}].
                                            [F \to \bullet (E), \{), +, *\}],
                                            [F \rightarrow \bullet \text{ int. } \{), +, *\}]
                                                                                               = \delta(q_6, T) = \{ [E \to E + T \bullet, \{\epsilon, +\}], \\ [T \to T \bullet * F, \{\epsilon, +, *\}] \}
        = \delta(q_1, +) = \{ [E \rightarrow E + \bullet T, \{\epsilon, +\}],
96
                                           [T \rightarrow \bullet T * F, \{\epsilon, +, *\}].
                                            [T \rightarrow \bullet F, \{\epsilon, +, *\}],
                                                                                             = \delta(q_7, F) = \{ [T \rightarrow T * F \bullet, \{\epsilon, +, *\}] \}
                                                                                     910
                                            [F \rightarrow \bullet (E), \{\epsilon, +, *\}],
                                            [F \rightarrow \bullet \text{ int. } \{\epsilon, +, *\}]\}
                                                                                                = \delta(q_8, )) = \{ [F \rightarrow (E) \bullet, \{\epsilon, +, *\}] \}
                                                                                     q_{11}
```

For example:

```
T \rightarrow T*F \mid F
                                         F \rightarrow (E) int
              First_1(S') = First_1(E) = First_1(T) = First_1(F) = name, int, (
q_3' = \delta(q_5', F) = \{ [T \to F \bullet, \{ \}, +, * \} ] \}
                                                              q_8' = \delta(q_5', E) = {[F \rightarrow (E \bullet), \{), +, *\}]}
q_4' = \delta(q_5', \text{int}) = {[F \rightarrow \text{int} \bullet, { ), +, *}]}
                                                                                              [E \rightarrow E \bullet + T, \{\}, +\}]\}
    = \delta(q_8, +) = \{[E \rightarrow E + \bullet T, \{), +\}],
                                                              q_9' = \delta(q_6', T) = \{ [E \to E + T \bullet, \{\}, +\}], \\ [T \to T \bullet * F, \{\}, +, *\}] \}
                               [T \rightarrow \bullet T * F, \{), +, *\}],
                                [T \rightarrow \bullet F, \{), +, *\}],
                                [F \to \bullet (E), \{), +, *\}], q'_{10} = \delta(q'_{7}, F) = \{[T \to T * F \bullet, \{), +, *\}]\}
                                [F \rightarrow \bullet \text{ int, } \{\ )\ ,+,*\}]\}
                                                              q'_{11} = \delta(q'_{8}, )) = \{ [F \rightarrow (E) \bullet, \{), +, *\} ] \}
```

 $E \rightarrow E+T$ 





#### Discussion:

- In the example, the number of states was almost doubled
   ... and it can become even worse
- The conflicts in states q<sub>1</sub>, q<sub>2</sub>, q<sub>9</sub> are now resolved!
   e.g. we have for:

$$q_9 = \{ [E \to E + T \bullet, \{\epsilon, +\}], \\ [T \to T \bullet *F, \{\epsilon, +, *\}] \}$$

with:

$$\{\epsilon, +\} \cap (\mathsf{First}_1(*F) \odot_1 \{\epsilon, +, *\}) = \{\epsilon, +\} \cap \{*\} = \emptyset$$

### The LR(1)-Parser:



• The goto-table encodes the transitions:

$$goto[q, X] = \delta(q, X) \in Q$$

 The action-table describes for every state q and possible lookahead w the necessary action.

## The LR(1)-Parser:

### The construction of the LR(1)-parser:

```
States: Q \cup \{f\} (f
                                       fresh)
Start state: q_0
Final state: f
 Transitions:
 Shift:
                                    (p, a, pq) if q = goto[q, a],
                                                        s = action[p, w]
  Reduce:
                       (p q_1 \ldots q_{|\beta|}, \epsilon, p q) if [A \rightarrow \beta \bullet] \in q_{|\beta|},
                                                           q = goto(p, A),
                                                           [A \to \beta \bullet] = \operatorname{action}[q_{|\beta|}, w]
 Finish:
                                   (q_0 p, \epsilon, f) if [S' \to S \bullet] \in p
      with
              LR(G,1) = (Q, T, \delta, q_0, F).
```

### The LR(1)-Parser:

## ... for example:

| action    | $\epsilon$  | int | ( | )                   | +                   | *                   |
|-----------|-------------|-----|---|---------------------|---------------------|---------------------|
| $q_1$     | S', 0       |     |   |                     | S                   |                     |
| $q_2$     | E, <b>1</b> |     |   |                     | E, <b>1</b>         | S                   |
| $q_2'$    |             |     |   | E, <b>1</b>         | E, <b>1</b>         | S                   |
| $q_3$     | T, 1        |     |   |                     | T, <b>1</b>         | T, <b>1</b>         |
| $q_3'$    |             |     |   | T, <b>1</b>         | T, <b>1</b>         | T, <b>1</b>         |
| $q_4$     | F, <b>1</b> |     |   |                     | F, <b>1</b>         | F, <b>1</b>         |
| $q_4'$    |             |     |   | F, <b>1</b>         | F, <b>1</b>         | F, <b>1</b>         |
| $q_9$     | E, 0        |     |   |                     | E, 0                | S                   |
| $q_9'$    |             |     |   | $E, {\color{red}0}$ | E, 0                | S                   |
| $q_{10}$  | T, 0        |     |   |                     | T, 0                | T, 0                |
| $q_{10}'$ |             |     |   | $T, {\color{red}0}$ | T, 0                | T, 0                |
| $q_{11}$  | F, 0        |     |   |                     | F, 0                | F, 0                |
| $q_{11}'$ |             |     |   | $F, {\color{red}0}$ | $F, {\color{red}0}$ | $F, {\color{red}0}$ |

In general:

We identify two conflicts:

#### Reduce-Reduce-Conflict:

$$[A \to \gamma \bullet, x] \,, \ [A' \to \gamma' \bullet, x] \ \in \ \mathbf{q} \quad \text{with} \quad A \neq A' \vee \gamma \neq \gamma'$$

#### **Shift-Reduce-Conflict:**

for a state  $q \in Q$ .

Such states are now called LR(1)-unsuited

In general:

We identify two conflicts:

#### Reduce-Reduce-Conflict:

$$[A \to \gamma \bullet, \, x] \,, \ [A' \to \gamma' \bullet, \, x] \ \in \ \mathbf{q} \quad \text{with} \quad A \neq A' \vee \gamma \neq \gamma'$$

#### **Shift-Reduce-Conflict:**

for a state  $q \in Q$ .

Such states are now called LR(k)-unsuited

### Special LR(k)-Subclasses

#### Theorem:

A reduced contextfree grammar G is called LR(k) iff the canonical LR(k)-automaton LR(G,k) has no LR(k)-unsuited states.

#### Discussion:

- Our example apparently is LR(1)
- In general, the canonical LR(k)-automaton has much more states then LR(G) = LR(G,0)
- Therefore in practice, subclasses of LR(k)-grammars are often considered, which only use LR(G) ...
- For resolving conflicts, the items are assigned special lookahead-sets:
  - independently on the state itself

 $\implies$  Simple LR(k)

dependent on the state itself

 $\Rightarrow$  LALR(k)

### Syntactic Analysis

Chapter 5: Summary

## **Parsing Methods**



## **Parsing Methods**



#### Discussion:

- All contextfree languages, that can be parsed with a deterministic pushdown automaton, can be characterized with an LR(1)-grammar.
- LR(0)-grammars describe all prefixfree deterministic contextfree languages
- The language-classes of LL(k)-grammars form a hierarchy within the deterministic contextfree languages.

Concept of specification and implementation:



#### From Regular Expressions to Finite Automata



#### From Finite Automata to Scanners



#### Computation of lookahead sets:





#### From Item-Pushdown Automata to LL(1)-Parsers:







#### From characteristic to canonical Automata:





### From Shift-Reduce-Parsers to LR(1)-Parsers:

