1 Measures

Let E be any set. A collection \mathcal{E} of subsets of E is called a σ -algebra if the following holds:

- 1. $\emptyset \in \mathcal{E}$.
- 2. If $A \in \mathcal{E}$, then $A^c = E \setminus A \in \mathcal{E}$.
- 3. If $(A_n : n \in \mathbb{N})$, $A_n \in \mathcal{E}$, then $\bigcup_n A_n \in \mathcal{E}$.

Examples.

- $\mathcal{E} = \{\emptyset, E\}$
- $\mathcal{E} = \mathcal{P}(E)$, the set of all subsets of E.

Note that $\bigcap_n A_n = (\bigcup_n A_n^c)^c$, any σ -algebra \mathcal{E} is also closed under countable intersection of its elements. Also $B \setminus A = B \cap A^c \in \mathcal{E}$ whenever $A, B \in \mathcal{E}$.

Any set E with a choice of σ -algebra \mathcal{E} is called a *measurable* space, and the elements of \mathcal{E} are called *measurable sets*.

A measure μ is a set-function $\mu : \mathcal{E} \to [0, \infty]$ such that $\mu(\emptyset) = 0$, and for any $(A_n : n \in \mathbb{N}), A_n \in \mathcal{E}$ pairwise disjoint $(A_n \cap A_m = \emptyset)$ for all $n \neq m$ then

$$\mu\left(\bigcup_{n} A_{n}\right) = \sum_{n} \mu(A_{n}) \qquad \text{(countable additivity of } \mu\text{)}$$

If \mathcal{E} is countable, then for any $A \in \mathcal{P}(E)$ and a measure μ

$$\mu(A) = \mu\left(\bigcup_{x \in A} \{x\}\right) = \sum_{x \in A} \mu(\{x\})$$

hence there is a one-to-one correspondence between measures and mass functions on ${\cal E}.$

For any collection \mathcal{A} of subsets of E, we define the σ -algebra $\sigma(\mathcal{A})$ generated by \mathcal{A} as

$$\sigma(\mathcal{A}) = \{A \subseteq E : A \in \mathcal{E} \ \forall \sigma\text{-algebras} \ \mathcal{E} \supseteq \mathcal{A}\}$$

which equals (Example sheet)

$$\sigma(\mathcal{A}) = \bigcap_{\sigma\text{-algebras } \mathcal{E} \supseteq \mathcal{A}} \mathcal{E}$$

To construct good 'generators' we define

1. \mathcal{A} is called a ring over E if $\emptyset \in \mathcal{A}$; if $A, B \in \mathcal{A}$ then $B \setminus A \in \mathcal{A}$ and $A \cup B \in \mathcal{A}$.

2. \mathcal{A} is called an algebra over E if $\emptyset \in \mathcal{A}$; if $A, B \in \mathcal{A}$ then $A^c \in \mathcal{A}$, $A \cup B \in \mathcal{A}$.

Notice that in a ring $A\Delta B=(B\backslash A)\cup (A\backslash B)\in \mathcal{A}$ and $A\cap B=(A\cup B)\backslash (A\Delta B)\in \mathcal{A}$. Also, $B\setminus A=B\cap A^c=(B^c\cup A)^c\in \mathcal{A}$, so an algebra is a ring.

Fact: If $\bigcup_n A_n$, $A_n \in \mathcal{E}$, \mathcal{E} some σ -algebra (or a ring if the union is finite) - then we can find $B_n \in \mathcal{E}$ disjoint such that $\bigcup_n A_n = \bigcup_n B_n$. Indeed, define $\tilde{A}_n = \bigcup_{j \leq n} A_j$, and set $B_n = \tilde{A}_n \setminus \tilde{A}_{n-1}$, then the fact follows. ["disjointification of countable unions"]

Definition. A set function on any collection \mathcal{A} of subsets of E (where $\emptyset \in \mathcal{A}$) is a map $\mu : \mathcal{A} \to [0, \infty]$ such that $\mu(\emptyset) = 0$. We say μ is

- 1. increasing if $\mu(A) \leq \mu(B)$ whenever $A \subseteq B$; $A, B \in \mathcal{A}$
- 2. additive if $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathcal{A}$; $A \cup B \in \mathcal{A}$ and $A \cap B = \emptyset$.
- 3. countably additive if $\mu(\cup_n A_n) = \sum_n \mu(A_n)$ for any $(A_n : n \in \mathbb{N})$ where $A_n \in \mathcal{A}$ disjoint and $\cup_n A_n \in \mathcal{A}$.
- 4. countably sub-additive if $\mu(\cup_n A_n) \leq \sum_n \mu(A_n)$ for all $(A_n : n \in \mathbb{N})$ such that $\cup_n A_n \in \mathcal{A}$

Remark: one can show that a measure μ on a σ -algebra satisfies 1-4 above.

Theorem (Caratheodory). Let μ be a countably additive set function on a ring A of subsets of E. Then there exists a measure μ^* on $\sigma(A)$ such that $\mu^*|_{A} = \mu$.

Proof. For $B \subseteq E$ define the outer measure μ^* as

$$\mu^*(B) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(A_n) : A_n \in \mathcal{A}, B \subseteq \bigcup_n A_n \right\}$$

and set $\mu^*(B) = \infty$ if the set within the infimum is empty.

Define

$$\mathcal{M} = \{ A \subseteq E : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c) \ \forall B \subseteq E \}$$

the " μ^* -measurable" sets.

Step 1: μ^* is countably sub-additive on $\mathcal{P}(E)$. For any $B \subseteq E$ and $B_n \subseteq E$ such that $B \subseteq \bigcup_n B_n$ we have

$$\mu^*(B) \le \sum_n \mu^*(B_n) \tag{\dagger}$$

WLOG we assume $\mu^*(B_n) < \infty$ for all n so for all $\varepsilon > 0$, there exists A_{nm} such that $B_n \subseteq \bigcup_m A_{nm}$ and

$$\mu^*(B_n) + \frac{\varepsilon}{2^n} \ge \sum_{m} \mu(A_{nm})$$

Now since μ^* and since $B \subseteq \bigcup_n B_n \subseteq \bigcup_{n,m} A_{nm}$, hence

$$\mu^*(B) \le \mu^* \left(\bigcup_{n,m} A_{nm} \right) \le \sum_{n,m} \mu(A_{nm}) \le \sum_n \mu^*(B_n) + \underbrace{\sum_n \frac{\varepsilon}{2^n}}_{=\varepsilon}$$

so (†) follows since ε was arbitrary.

Step 2: μ^* extends μ . Let $A \in \mathcal{A}$. Clearly $A = A \cup \emptyset \cup \ldots \cup \emptyset$, so by definition of μ^* , $\mu^*(A) \leq \mu(A) + 0 + \ldots + 0$. So we need to prove $\mu(A) \leq \mu^*(A)$. Again, assume $\mu^*(A) < \infty$ WLOG, and let $A_n \in \mathcal{A}$ be such that $A \subseteq \bigcup_n A_n$. Then $A = \bigcup_n \underbrace{(A \cap A_n)}_{\in \mathcal{A}}$, and since μ is countably sub-additive on \mathcal{A} , we have

$$\mu(A) = \mu\left(\bigcup_{n} (A \cap A_n)\right) \le \sum_{n} \mu(\underbrace{A \cap A_n}) \le \sum_{n} \mu(A_n)$$

so since the (A_n) were arbitrary, by taking infima, we have $\mu(A) \leq \mu^*(A)$.

Step 3: $\mathcal{M} \supseteq \mathcal{A}$. Let $A \in \mathcal{A}$, then $B \subseteq (B \cap A) \cup (B \cap A^c) \cup \emptyset \dots \cup \emptyset = \bigcup_n B_n$ so by (\dagger) we have

$$\mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap A^c) + 0 \dots + 0$$

so we need to prove $\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$. Again, WLOG assume $\mu^*(B) < \infty$, and so for all $\varepsilon > 0$ there exist $A_n \in \mathcal{A}$ such that $B \subseteq \bigcup_n A_n$ and

$$\mu^*(B) + \varepsilon \ge \sum_n \mu(A_n) \tag{\circ}$$

now $B \cap A \subseteq \bigcup_n \underbrace{(A_n \cap A)}_{\in \mathcal{A}}$ and $B \cap A^c \subseteq \bigcup_n \underbrace{(A_n \cap A^c)}_{A_n \backslash A \in \mathcal{A}}$. Therefore by definition

of inf in μ^* and additivity of μ

$$\mu^*(B \cap A) + \mu^*(B \cap A^c) \le \sum_n (\mu(A \cap A_n) + \mu(A^c \cap A_n))$$
$$= \sum_n \mu(A_n)$$
$$\le \mu^*(B) + \varepsilon$$

since ϵ was arbitrary, $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$, so $A \in \mathcal{M}$.

Step 4: \mathcal{M} is an algebra. Clearly $\emptyset \in \mathcal{M}$, and by the definition of \mathcal{M} its obvious that $A^c \in \mathcal{M}$ whenever $A \in \mathcal{M}$. So let $A_1, A_2 \in \mathcal{M}$

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c), \text{ since } A_1 \in \mathcal{M}$$

$$= \mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c), \text{ since } A_2 \in \mathcal{M}$$

Clearly $A_1 \cap A_2^c = (A_1 \cap A_2^c) \cap A_1$ and $A_1^c = (A_1 \cap A_2)^c \cap A_1^c$ so

$$\mu^{*}(B)$$
= $\mu^{*}(B \cap A_{1} \cap A_{2}) + \mu^{*}(B \cap (A_{1} \cap A_{2})^{c} \cap A_{1}) + \mu^{*}(B \cap (A_{1} \cap A_{2})^{c} \cap A_{1}^{c})$
= $\mu^{*}(B \cap A_{1} \cap A_{2}) + \mu^{*}(B \cap (A_{1} \cap A_{2})^{c})$, since $A_{1} \in \mathcal{M}$

so $A_1 \cap A_2 \in \mathcal{M}$, and \mathcal{M} is an algebra.

Step 5: Let $A = \bigcup_n A_n$, $A_n \in \mathcal{M}$, WLOG A_n disjoint (disjointification). Want $A \in \mathcal{M}$ and $A_n \in \mathcal{M}$ and $A_n \in \mathcal{M}$ and $A_n \in \mathcal{M}$ are the standard problem.

$$\mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap A^c) + 0 + \dots + 0$$

and

$$\mu^*(A) \le \sum_n \mu^*(A_n)$$

so we only need two converse inequalities. Similar to before

$$\mu^{*}(B)$$

$$= \mu^{*}(B \cap A_{1}) + \mu^{*}(B \cap A_{1}^{c})$$

$$= \mu^{*}(B \cap A_{1}) + \mu^{*}(B \cap \underbrace{A_{1}^{c} \cap A_{2}}_{=A_{2} \text{ as disjoint}}) + \mu^{*}(B \cap A_{1}^{c} \cap A_{2}^{c})$$

$$= \sum_{n \leq N} \mu^{*}(B \cap A_{n}) + \mu^{*}(B \cap A_{1}^{c} \cap \dots \cap A_{N}^{c})$$

since $\bigcup_{n \leq N} \subseteq A$ so $\bigcap_{n \leq N} A_n^c \supseteq A^c,$ taking limits

$$\mu^*(B) \ge \sum_{n=1}^{\infty} \mu^*(B \cap A_n) + \mu^*(B \cap A^c)$$

and by (\dagger)

$$\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

so $A \in \mathcal{M}$. Applying the previous with B = A, we see

$$\mu^*(A) \ge \sum_{n=1}^{\infty} \mu^*(A \cap A_n) + \mu^*(A \cap A^c) = \sum_n \mu^*(A_n)$$

Definition. A collection \mathcal{A} of subsets of E is called a π -system if $\emptyset \in \mathcal{A}$ and if $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.

Definition. \mathcal{A} is called a *d-system* if $E \in \mathcal{A}$, and if $B_1, B_2 \in \mathcal{A}$ such that $B_1 \subseteq B_2$, then $B_2 \setminus B_1 \in \mathcal{A}$, and if $A_n \in \mathcal{A}$, $A_n \uparrow \bigcup_n A_n = A$, then $A \in \mathcal{A}$.

One shows (Example sheet) that a d-system which is also a π -system is a σ -algebra.

Lemma (Dynkin). Let A be a π -system. Then any d-system that conatins A also contains $\sigma(A)$.

Proof. Define

$$\mathcal{D} = \bigcap_{\mathcal{D}' \supseteq \mathcal{A} \text{ a d-system}} \mathcal{D}'$$

which is again a d-system (Example sheet). We show that \mathcal{D} is a π -system, hence a σ -algebra containing \mathcal{A} . Define

$$\mathcal{D}' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \ \forall A \in \mathcal{A} \}$$

which contains \mathcal{A} as \mathcal{A} is a π -system. Next we show \mathcal{D}' is a d-system. Clearly $E \cap A = A \in \mathcal{A} \subseteq \mathcal{D}$, so $E \in \mathcal{D}'$. Next let $B_1, B_2 \in \mathcal{D}'$ such that $B_1 \subseteq B_2$ then $(B_2 \setminus B_1) \cap A = (\underbrace{B_2 \cap A}_{\in \mathcal{D}}) \setminus (\underbrace{B_1 \cap A}_{\in \mathcal{D}}) \in \mathcal{D}$ and so $B_2 \setminus B_1 \in \mathcal{D}'$.

Next take $B_n \uparrow B$, $B_n \in \mathcal{D}'$ then $\underbrace{B_n \cap A}_{\in \mathcal{D}} \uparrow B \cap A \in \mathcal{D}$ so $B \in \mathcal{D}'$.

Hence \mathcal{D}' is a d-system containing \mathcal{A} , so by minimality of \mathcal{D}' , $\mathcal{D} \subseteq \mathcal{D}'$. Conversely, by construction $\mathcal{D}' \subseteq \mathcal{D}$, so $\mathcal{D}' = \mathcal{D}$.

Next define

$$\mathcal{D}'' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \ \forall A \in \mathcal{D} \}$$

which by the preceding step $(\mathcal{D}' = \mathcal{D})$ contains \mathcal{A} . Just as before, one shows that $\mathcal{D}'' = \mathcal{D}$ and so \mathcal{D} is a π -system (as \mathcal{D}'' is by construction).

Theorem (Uniqueness of extension). Let μ_1, μ_2 be measures on (E, \mathcal{E}) such that $\mu_1(E) = \mu_2(E) < \infty$, and suppose $\mu_1 = \mu_2$ on a π -system \mathcal{A} such that $\mathcal{E} \subseteq \sigma(\mathcal{A})$. Then $\mu_1 = \mu_2$ on \mathcal{E} .

Proof. Define

$$\mathcal{D} = \{ A : \mu_1(A) = \mu_2(A) \}$$

which contains \mathcal{A} by hypothesis. We show that \mathcal{D} is a d-system, and hence by Dynkin's Lemma, contains $\sigma(\mathcal{A})$, so the theorem follows.

To see this, note first that $E \in \mathcal{D}$ by hypothesis. Next, by additivity and finiteness of μ_1, μ_2 , for $B_1 \subseteq B_2, B_1, B_2 \in \mathcal{D}$.

$$\mu_1(B_2 \setminus B_1) = \mu_1(B_2) - \mu_1(B_1) = \mu_2(B_2) - \mu_2(B_1) = \mu_2(B_2 \setminus B_1)$$

so $B_2 \setminus B_1 \in \mathcal{D}$. Finally take $B_n \uparrow B$, $B_n \in \mathcal{D}$. This implies $B \setminus B_n \downarrow \emptyset$ and (by Example sheet) $\mu_i(B \setminus B_n) \to \mu_i(\emptyset) = 0$ for i = 1, 2. This implies for $\mu_i(B) < \infty$ that $\mu_i(B_n) \to \mu_i(B)$ as $n \to \infty$ for both i = 1, 2. But then

$$\mu_1(B) = \lim_{n \to \infty} \mu_1(B_n) = \lim_{n \to \infty} \mu_2(B_n) = \mu_2(B)$$

and so $B \in \mathcal{D}$, and thus \mathcal{D} is a d-system.

Remark: the above theorem applies to <u>finite</u> measures μ such that $\mu(E) < \infty$. The above theorem extends (as we will see) to σ -finite measures μ for which $E = \bigcup_{n \in \mathbb{N}} E_n$ such that $\mu(E_n) < \infty$.

Borel- σ -algebras

Definition. Let E be a topological space (Hausdorff, or metric space). The σ -algebra generated by $\mathcal{A} = \{B \subseteq E : B \text{ is open}\}$ is called the *Borel-\sigma-algebra*, denoted by $\mathcal{B}(E)$, or just \mathcal{B} when $E = \mathbb{R}$. Elements of $\mathcal{B}(E)$ are the Borel subsets of E. A measure μ on $(E, \mathcal{B}(E))$ is called a *Borel measure on E*. A *Radon* measure μ is a Borel measure such that $\mu(K) < \infty$ for all $K \subseteq E$ compact (closed in Hausdorff spaces, hence measurable).

Construction of Lebesgue measure

We will (eventually) construct a unique Borel measure μ on \mathbb{R}^d such that

$$\mu\left(\prod_{i=1}^{d} [a_i, b_i]\right) = \prod_{i=1}^{d} |b_i - a_i|, \ a_i < b_i, \ i = 1, \dots, d$$

We will do d = 1 first.

Theorem. There exists a unique Borel measure (called the Lebesgue measure) μ on \mathbb{R} such that

$$\mu((a,b]) = b - a, \ \forall a < b \tag{\dagger}$$

Proof. Consider the collection \mathcal{A} of subsets of \mathbb{R} of the form

$$A = (a_1, b_1] \cup \ldots \cup (a_n, b_n]$$

(intervals pairwise disjoint) which form a ring ($\emptyset = ((a, a])$, unions and differences are clear), which generates (Example sheet) generates the same σ -algebra on the open such intervals, and open intervals with rational endpoints generate \mathcal{B} , so $\sigma(\mathcal{A}) \supseteq \mathcal{B}$.

Define a set function μ on \mathcal{A} by

$$\mu(A) = \sum_{i=1}^{n} (b_i - a_i)$$

 μ is clearly additive, and well-defined since if $A = \bigcup_j C_j$ and $A = \bigcup_k D_k$ for distinct disjoint unions, then $C_j = \bigcup_k (C_j \cap D_k)$ and $D_k = \bigcup_j (D_K \cap C_k)$, so

$$\mu(A) = \mu\left(\bigcup_{j} C_{j}\right) = \sum_{j} \mu(C_{j}) = \sum_{j} \mu\left(\bigcup_{k} (C_{j} \cap D_{k})\right)$$
$$= \sum_{j,k} \mu(C_{j} \cap D_{k}) = \dots = \mu\left(\bigcup_{k} D_{k}\right) = \mu(A)$$

by additivity of μ . Now to prove existence of μ , we apply Caratheodory's theorem and need to check that μ is countably additive on \mathcal{A} . By the Example sheet, it suffices to show that for all $A_n \in \mathcal{A}$ such that $A_n \downarrow \emptyset$ we have $\mu(A_n) \to 0$.

Assume this is not the case, so there exists some $\varepsilon > 0$ and $B_n \in \mathcal{A}$ such that $B_n \downarrow \emptyset$ but $\mu(B_n) \geq 2\varepsilon$ for all n. We can approximate B_n from within by $C_n = \bigcup_{i=1}^{N_n} \left(a_{n_i} + \frac{\varepsilon 2^{-n}}{N_n}, b_{n_i} \right] \in \mathcal{A}$ such that $\mu(B_n \setminus C_n) = \varepsilon 2^{-n} \cdot \frac{N_n}{N_n} = \varepsilon 2^{-n}$.

Now since $B_n \downarrow$, we have $B_N = \bigcap_{n \le N} B_n$ and

$$B_N \setminus (C_1 \cap \ldots \cap C_N) = B_N \cap \left(\bigcup_{n \le N} C_n^c\right) = \bigcup_{n \le N} B_N \setminus C_n \subseteq \bigcup_{n \le N} B_n \setminus C_n$$

Hence since μ is increasing

$$\mu(B_N \setminus (C_1 \cap \ldots \cap C_N)) \le \mu\left(\bigcup_{n \le N} B_n \setminus C_n\right) \le \sum_{n \le N} \mu(B_n \setminus C_n) \le \varepsilon$$

Hence the "length" of what was removed $(C_1 \cap \ldots \cap C_N)$ must be at least ε , i.e

$$\mu(C_1 \cap \ldots \cap C_N) \ge \varepsilon > 0$$

This means that $C_1 \cap ... \cap C_N$ is non-empty for all N, and so is

$$K_N = \overline{C_1} \cap \ldots \cap \overline{C}_N$$

 $(\overline{C}_i \text{ denotes the closure of } C_i)$ Thus K_N is a nested sequence of non-empty closed intervals, so $\emptyset \neq \bigcap_N K_N$. But $K_N \subseteq \overline{C}_N \subseteq B_N$, so $\emptyset \neq \bigcap_N K_N \subseteq \bigcap_N B_n = \emptyset$, a contradiction. So a measure μ satisfying (\dagger) must exist.

For uniqueness, suppose μ , λ measures such that (†) holds, and define $\mu_n(A) = \mu(A \cap (n, n+1])$, $\lambda(A) = \lambda(A \cap (n, n+1])$ for $n \in \mathbb{Z}$, which are finite measures such that $\mu_n(E) = 1 = \lambda_n(E)$ and $\mu_n = \lambda_n$ on the π -system A. So by the uniqueness theorem, we must have $\mu_n = \lambda_n$ on B, and

$$\mu(A) = \mu\left(\bigcup_{n} A \cap (n, n+1]\right) = \sum_{n} \mu(A \cap (n, n+1]) = \sum_{n} \mu_n(A)$$
$$= \sum_{n} \lambda_n(A) = \dots = \lambda(A)$$

so $\lambda = \mu$.

Remarks:

- 1. a set $B \in \mathcal{B}$ is called a Lebesgue null set if $\mu(B) = 0$. Can write $\{x\} = \bigcap_n \left(x \frac{1}{n}, x\right]$ and so $\mu(\{x\}) = \lim_n \frac{1}{n} = 0$. In particular $\mu((a, b)) = \mu((a, b]) = \mu([a, b])$, and any countable set Q satisfies $\mu(Q) = \mu\left(\bigcup_{q \in Q} \{q\}\right) = \sum_{q \in Q} \mu(\{q\}) = 0$. But there exist C uncountable (and measurable) in \mathcal{B} such that $\mu(C) = 0$ [Cantor set].
- 2. Translation invariance of μ : let $x \in \mathbb{R}$, then $B + x = \{b + x : b \in B\}$ is in $\overline{\mathcal{B}}$ whenever $B \in \overline{\mathcal{B}}$ and we can define

$$\mu_x(B) = \mu(B+x)$$

and by uniqueness in the preceding theorem

$$\mu_x((a,b]) = \mu((a+x,b+x]) = (b+x) - (a+x) = b-a$$

so $\mu_x = \mu$.

3. Lebesgue-measurable sets: in the extension theorem, μ was assigned on the class \mathcal{M} , which can be shown (Example sheet) to equal

$$\mathcal{M} = \{ M = A \cup N : A \in \mathcal{B}, N \subseteq B \in \mathcal{B} \text{ s.t } \mu(B) = 0 \}$$

Existence of non-measurable sets

Consider E = (0,1] with addition "+" modulo 1, and Lebesgue measure μ is still translation invariant modulo 1.

Consider the subgroup $Q = E \cap \mathbb{Q}$ of E and declare $x \sim y$ if $x - y \in Q$. This gives equivalence classes $[x] = \{y \in E : x \sim y\}$ on E. Assuming the axiom of choice, we can select a representative of [x], and denote by S the set of selections running over all equivalence classes. Then we can partition E into the union of its cosets,

$$E = \bigcup_{q \in Q} (S + q)$$

a disjoint union.

Assume S is a Borel set (in $\mathcal{B}(E)$), then S + q is also a Borel set for all $q \in Q$, and we can write (by countable additivity and translation invariance)

$$1 = \mu(E) = \mu\left(\bigcup_{q \in Q} (S+q)\right) = \sum_{q \in Q} \mu(S+q) = \sum_{q \in Q} \mu(S)$$

which is a contradiction. So $S \notin \mathcal{B}(E)$.

One can further show that μ cannot exted to $\mathcal{P}(E)$,

Theorem (Banach, Kuretowski). Assuming the continuum hypothesis, there exists no measure on ([0,1]) such that $\mu((0,1]) = 1$ and $\mu(\{x\}) = 0$ for all $x \in (0,1]$.

Proof. Not given [see Dudley, 2002].

Probability Spaces

If (E, \mathcal{E}, μ) (a measure space) is such that $\mu(E) = 1$, we often call it a *probability* space and write $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is the set of outcomes/the sample space; \mathcal{F} is the set of events and \mathbb{P} is the probability measure.

The axioms of probability theory (Kolmogorov, 1933) are

- 1. $\mathbb{P}(\Omega) = 1$
- 2. $0 \leq \mathbb{P}(E) \leq 1, \forall E \in \mathcal{F}$
- 3. If $(A_n : n \in \mathbb{N})$ are disjoint, $A_n \in \mathcal{F}$, then $\mathbb{P}(\bigcup_n A_n) = \sum_n \mathbb{P}(A_n)$ [so \mathbb{P} is a measure on a σ -algebra

We further say that $(A_i : i \in I)$ are independent if for all $J \subseteq I$ finite, we have

$$\mathbb{P}\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}\mathbb{P}(A_j)$$

We further say σ -algebras $(A_i : i \in I)$ are independent if for any $A_j \in A_j$, $j \in J$, $j \subseteq I$ finite, the A_j 's are independent.

Proposition. Let $\mathcal{A}_1, \mathcal{A}_2$ be π -systems of sets in \mathcal{F} , and suppose $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$ for all $A_1 \in \mathcal{A}_1$, $A_2 \in \mathcal{A}_2$. Then the σ -algebras $\sigma(\mathcal{A}_1), \sigma(\mathcal{A}_2)$ are independent.

Proof. Exercise. \Box

The Borel-Cantelli Lemmas

For a sequence $(A_n : n \in \mathbb{N}), A_n \in \mathcal{F}$, define

$$\lim\sup_n A_n = \bigcap_n \bigcup_{m \geq n} A_m = \{A_n \text{ infinitely often "i.o."}\}$$

$$\liminf_{n} A_{n} = \bigcup_{n} \bigcap_{m \geq n} A_{m} = \{A_{n} \text{ eventually}\}\$$

Lemma (1st Borel-Cantelli Lemma). If $A_n \in \mathcal{F}$ are such that $\sum_n \mathbb{P}(A_n) < \infty$ then $\mathbb{P}(A_n \ i.o.) = 0$

Proof.

$$\mathbb{P}\left(\bigcap_{n}\bigcup_{m\geq n}A_{m}\right)\leq\mathbb{P}\left(\bigcup_{m\geq n}A_{m}\right)\leq\sum_{m\geq n}\mathbb{P}(A_{m})\to0$$

Remark: the proof actually works for any measure μ .

Lemma (2nd Borel-Cantelli Lemma). Suppose $A_n \in \mathcal{F}$ are independent and $\sum_n \mathbb{P}(A_n) = \infty$. Then $\mathbb{P}(A_n \ i.o.) = 1$.

Proof. By independence, for any $N \ge n$ and using $1 - a \le e^{-a}$,

$$\mathbb{P}\left(\bigcap_{m=n}^{N} A_{m}^{c}\right) = \prod_{m=n}^{N} \left(1 - \mathbb{P}(A_{m})\right) \leq \exp\left(-\sum_{m=n}^{N} \mathbb{P}(A_{m})\right) \to 0 \text{ as } N \to \infty$$

Since $\bigcap_{m=n}^{N} A_m^c \downarrow \bigcap_{m\geq n} A_m^c$, by countable additivity we have

$$\mathbb{P}\left(\bigcap_{m\geq n} A_m^c\right) = 0$$

But then

$$\mathbb{P}(A_n \text{ i.o.}) = \mathbb{P}\left(\bigcup_{n} \bigcap_{m \ge n} A_m\right) = 1 - \mathbb{P}\left(\bigcup_{n} \bigcap_{m \ge n} A_m^c\right)$$
$$\geq 1 - \sum_{n} \mathbb{P}\left(\bigcap_{m \ge n} A_m^c\right) = 1$$