

Test report no.: 64103-5

Item tested: WorldPro 1010

Type of equipment: Frequency Hopping Transmitter

FCC ID: TSF107730

Client: Nera Satcom AS

FCC Part 15.247
Frequency Hopping Transmitters

RSS-210, Issue 6

Low Power Licence-Exempt Radiocommunication Devices

21 August 2006

Authorized by:

Egil Hauger Technical Verificator

CONTENTS

1	GENERAL INFORMATION	
1.1	Testhouse Info	
1.2	Client Information	3
1.3	Manufacturer	3
2	Test Information	4
2 2.1	Test Information	
2.1	Test Item	
2.2	Test Environment	
2.3	rest Period	
3	TEST REPORT SUMMARY	6
3.1	General	6
3.2	Test Summary	
3.3	Description of modification for Modification Filing	7
3.4	Comments	7
3.5	Family List Rational	7
4	TEST RESULTS	0
4 4 1	Power Line Conducted Emissions	
4.1	Channel Separation	
4.3	Pseudorandom Hopping Algorithm	
4.4	Occupancy Time	
4.5	Occupied Bandwidth	
4.6	Peak Power Output	
4.7	Spurious Emissions.	
	•	
5	LIST OF TEST EQUIPMENT	38
6	BLOCK DIAGRAM	30
6.1	System set up	
6.2	Power Line Conducted Emission	
6.3	Test Site Radiated Emission	40

1 GENERAL INFORMATION

1.1 Testhouse Info

Name: Nemko Comlab

Address: Gåsevikveien 8, Box 96

N-2027 Kjeller, NORWAY

Telephone: +47 64 84 57 00
Fax: +47 64 84 57 05
E-mail: post@comlab.no

FCC test firm registration #: 994405
IC OATS registration #: 4443
Total Number of Pages: 40

1.2 Client Information

Name: Nera SatCom AS

Address: Bergerveien 12, N-1375 Billingstad, Norway

Telephone: +47 67 24 47 00 Fax: +47 67 24 44 45

Contact:

Name: Roy Uggerud

1.3 Manufacturer

Name: Nera SatCom AS

Address: Bergerveien 12, N-1375 Billingstad, Norway

Telephone: +47 67 24 47 00 Fax: +47 67 24 44 45

2 Test Information

2.1 Test Item

Name :	WorldPro 1010 Bluetooth Module
FCC ID :	TSF107730
Industry Canada ID :	6200A-107730
Model/version :	WorldPro 1010
Serial number :	0306055007
Hardware identity and/or version:	Interface Unit 108034 ver. 1.1
Software identity and/or version :	CSW XSCALE 2.3.15
Frequency Range :	2402 - 2480 MHz
Tunable Bands :	1
Number of Channels :	79
Modulation:	GFSK
Emissions Designator :	1MF1D
User Frequency Adjustment :	None, Software controlled.
Rated Output Power :	10 mW

Description of Test Item

The tested equipment is a Bluetooth device that is integrated into a satellite terminal. The Bluetooth device is used to connect a cordless telephone handset to the satellite terminal.

The tested equipment has integral antennas only.

Theory of Operation

The tested equipment is a Frequency Hopping Transmitter that uses the Bluetooth protocols.

2.2 Test Environment

2.2.1 Normal test condition

Temperature: 20 - 23 °C Relative humidity: 30 - 50 % Normal test voltage: 115 V AC

The values are the limit registered during the test period.

2.3 Test Period

Item received date: 2006-08-10

Test period: from 2006-08-10 to 2006-08-12

3 TEST REPORT SUMMARY

3.1 General

Manufacturer: Nera Satcom

Model No.: WorldPro 1010

Serial No.: 0306055007

All measurements are tracable to national standards.

The tests were conducted for the purpose of demonstrating compliance with FCC CFR 47 Part 15, paragraph 15.247 and Industry Canada RSS-210 Issue 6.

Radiated tests were conducted in accordance with ANSI C63.4-2003. The radiated tests were made in a semi-anechoic chamber at measuring distances of 3 and 10 metres.

New Submission ■	□ Production Unit
☐ Class II Permissive Change	☐ Pre-production Unit
DSS Equipment Code	☐ Family Listing

THIS TEST REPORT RELATES ONLY TO THE ITEM (S) TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

TEST REPORT #: 64103-5

TESTED BY: Trade Svence DATE: 12 August 2006

Nemko Comlab authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Comlab.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Comlab accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

This test report applies only to the items and configurations tested.

3.2 Test Summary

Name of test	FCC Part 15 reference	RSS-210 Issue 6 reference	Result
Supply Voltage Variations	15.31(e)	8 (RSS-GEN)	Complies
Number of Operating Frequencies	15.31(m)	A8.1	Complies
Antenna Requirement	15.203	7.1.4 (RSS-GEN)	Complies
Power Line Conducted Emission	15.107(a) 15.207(a)	7.2.2 (RSS-GEN)	Complies
Channel Separation	15.247(a)(1)	A8.1	Complies
Pseudorandom Hopping Algorithm	15.247(a)(1)	A8.1	Complies
Time of Occupancy	15.247(a)(1)(iii)	A8.1	Complies
Occupied Bandwidth	15.247(a)(1)	A8.1	Complies
Peak Power Output	15.247(b)	A8.4	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	A8.5	Complies 1
Spurious Emissions (Radiated)	15.247(c) 15.109(a) 15.209(a)	A8.5	Complies

¹ The tested equipment has integrated antennas only.

3.3 Description of modification for Modification Filing

Not applicable.

3.4 Comments

This test report covers only the Bluetooth Module integrated into the Nera Satcom WorldPro 1010.

The channel to operate on and the modulation pattern were selected from a Rohde & Schwarz CMU200 Bluetooth tester connected to the satellite telephone. The tester was located in the control room during the measurements but a radio link to the EUT was active during all tests.

The measurements were done with the EUT powered by 115 V AC. It was checked that power variations between 85% and 115% did not have any influence on the measurements.

All ports were populated during spurious emission measurements.

3.5 Family List Rational

Not Applicable.

4 TEST RESULTS

4.1 Power Line Conducted Emissions

Para. No.: 15.207 (a)

Test Performed By: Egil Hauger Date of Test: 12 August 2006

Measurement procedure: ANSI C63.4-2003 using 50 μ H/50 ohms LISN.

Test Results: Complies.

Measurement Data: See attached graph, (Peak detector).

Highest measured value (L1 and N):

Frequency	Detector	Phase	Measured	Limit	Margin
			value		
MHz	Peak/QP/AV	N/L1	dΒμV	dΒμV	dB
0.15	QP	L1	50.6	66	15.4
	AV		20.8	56	35.2
	QP	N	50.8	66	15.2
	AV		22.0	56	34.0
0.213	QP	N	47.0	63.1	16.1
	AV		40.8	53.1	12.3
	QP	L1	47.8	63.1	15.3
	AV		40.7	53.1	12.4
0.320	QP	L1	48.3	59.7	11.4
	AV		43.7	49.7	6.0
	QP	N	47.9	59.7	11.8
	AV		43.8	49.7	5.9
0.420	QP	N	46.2	57.5	11.3
	AV		43.2	47.5	4.3
	QP	L1	46.4	57.5	11.1
	AV		43.0	47.5	4.5
10.58	QP	L1	48.6	60	11.6
	AV		34.3	50	15.7
10.5	QP	N	50.1	60	9.9
_	AV		35.4	50	14.6

NEMKO COMLAB

11. Aug 06 10:47

Peak

Operator: Egh

Nera Satcom Comment: WorldPro 1010 FCC 15.207

LISN 50 uH/50 ohm Phase N Bluetooth TX active Satellite TX active

Scan Settings (1 Range)

|------ Frequencies ------||----- Receiver Settings ------Step IF BW Detector M-Time Atten Preamp OpRge
4.5k 9k PK 50ms AUTO LN OFF 60dB Start Stop 150k 30M 150k

AC Mains, TX Active for both Satellite and Bluetooth, Phase N, Peak Detector

NEMKO COMLAB

11. Aug 06 11:04

Peak

Operator: Egh

Comment: Nera Satcom WorldPro 1010 FCC 15.207

LISN 50 uH/50 ohm Phase L1

Bluetooth TX active Satellite TX active

Scan Settings (1 Range)

|------ Frequencies -------|----- Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
150k 30M 4.5k 9k PK 50ms AUTO LN OFF 60dB

AC Mains, TX Active for both Satellite and Bluetooth, Phase L1, Peak Detector

4.2 Channel Separation

Para. No.: 15.247 (a)(1)

Test Performed By: Frode Sveinsen Date of Test: 10 August 2006

Test Results: Complies

Measurement Data: Channel Separation: 3.998/4 = 999.5 kHz

20 dB Bandwidth of hopping channel: 901.8 kHz

RF channel has no influence on 20 dB bandwidth.

See attached graph

Channel Separation nominal value: 1.0 MHz.

Requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

or

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the system operates with an output power no greater than 125 mW.

Channel separation

20 dB Bandwidth

4.3 Pseudorandom Hopping Algorithm

Para. No.: 15.247 (a)(1)

Test Performed By: Frode Sveinsen Date of Test: 10 August 2006

Test Results: Complies

Measurement Data: /

Requirements:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

Base Table Hopping Sequence

All 79 frequencies are used in a random order in each hop sequence. The hop sequence is repeated every 99 seconds. The hopping sequence follows the Bluetooth standard.

4.4 Occupancy Time

Para. No.: 15.247 (a)(1)(iii)

Test Performed By: Frode Sveinsen Date of Test: 10 August 2006

Test Results: Complies

Measurement Data:

Number of RF channel: 79

RF burst pr channel: 425.9 ms

Average time between each RF burst on same RF channel: $79 * 1250 \mu s = 98.75 ms$

Average Time of Occupancy: (0.426 ms / 98.75 ms) * 0.4 s * 79 = 0.136 s

See attached graph.

Requirements:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

No requirements for Digital Transmission Systems.

RF Burst

Time of Occupancy (Dwell time)

Time between RF burst on same channel

4.5 Occupied Bandwidth

Para. No.: 15.247 (a)(1)(iii)

Test Performed By: Frode Sveinsen Date of Test: 10 August 2006

Test Results: Complies

Measurement Data: 79 RF channels in use

See attached graph.

Requirements:

Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels. No requirements for bandwidth for this frequency band.

Channel Centre Frequencies

The 79 channels are centred at each full MHz from 2402 to 2480 MHz.

RF Channel in Use

4.6 Peak Power Output

Para. No.: 15.247 (b)

Test Performed By: Frode Sveinsen	Date of Test: 10 August 2006
- 1001 1 011011110	

Test Results: Complies

Measurement Data:

Maximum Conducted Peak Output Power, mW

RF channel	0	39	78
Measured value	10.2	5.8	3.4

Maximum EIRP, mW

RF channel	0	39	78
Measured EIRP	4.9	10.1	5.0
Antenna gain dBi	-3.2	+2.4	+1.7

Antenna gain = 10*log(EIRP/Conducted power) dBi

The EIRP is calculated from measured field strength by the formula in DA00-705.

See attached graph.

Detachable antenna?	Yes	∑ No
If detachable, is the antenna connector non-standard?	Yes	No

Requirements:

The maximum peak output power shall not exceed the following limits:

For frequency hopping systems employing at least 75 hopping channels: 1 Watt

For all other frequency hopping systems in the 2400 - 2483.5 MHz band: 0.125 Watts

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced below the stated value above by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RF conducted channel 0

RF radiated channel 0

RF conducted channel 39

RF radiated channel 39

RF conducted channel 78

RF radiated channel 78

4.7 Spurious Emissions

Para. No.: 15.247 (c)

Test Performed By: Frode Sveinsen Date of Test: 10 August 2006

Test Results: Complies

Measurement Data:

Band-edge radiated power

Measured on channels 0 and 78

Frequency GHz	Power below nearest channel dBµV/m		Limit dBµV/m		Margin dB	
	Peak	Average	Peak	Average	Peak	Average
2.39	61.1	41.1	74	54	12.9	12.9
2.4835	70.3	50.3	74	54	3.7	3.7

The average value is calculated from the Peak value by using the Duty-Cycle correction factor.

See attached graph

RF conducted power to 25 GHz see attached graph.

Maximum RF level outside operating band:

RF ch 00: >60 dB/C, margin >40 dB RF ch 39: >60 dB/C, margin >40 dB RF ch 78: >60 dB/C, margin >40 dB

TEST REPORT FCC part 15 Project no.: 64103 FCC ID: TSF107730

Radiated Emissions, 1-25 GHz

Detector: Peak

1 - 8.5 GHz: Measuring distance 3m8.5-25 GHz: Measuring distance 1m

No spurious emissions except harmonics were detected in any of the restricted bands.

Transmitter active

Frequency	RF channel	Dist. corr. factor	Field strength, Peak, 3 meters	Duty cycle corr. factor	Limit	Margin
MHz	00 / 04	dB	dBμV/m	dB	dBμV/m	dB
4804	00	0	56.4	20	74	17.6
All others	00/39/78	0	≤ 54	20	74	>20

The values with average detector is 20 dB lower than in the above table, the margin of compliance is the same since the limit is also 20 dB lower.

See attached graphs.

Antenna factor, amplifier gain and cable loss are included in Spectrum Analyzer "Transducer factor".

The level in the plot from 12-18GHz is not corrected for distance conversion from 3 to 1m.

Duty Cycle Correction Factor Calculation:

See also Para 4.4 Occupancy Time.

RF duty cycle: Calculation according to RF burst Para 15.35 (c)

20*log(0.42 ms / 98.75 ms) = -47.4 dB

Maximum Duty-Cycle Correction factor according to Para 15.35 (b): -20 dB

This value is used for calculating the field strength above 1 GHz with Peak Detector function employed on spectrum analyzer.

Band-edge radiated power ch 0, lower end.

Band-edge radiated power ch 78, upper end.

Conducted Emissions ch 00

Conducted Emissions ch 39

Conducted Emissions ch 78

Spurious Emissions 1.0 - 2.4 GHz, ch 00

Spurious Emissions 2.5 – 3.0 GHz, ch 00

Spurious Emissions 3.0 – 8.5 GHz, ch 00

Spurious Emissions Second Harmonic, ch 00

Spurious Emissions Third Harmonic, ch 00

Spurious Emissions 8.5 - 12.0 GHz, ch 39

Spurious Emissions 12 – 18 GHz, ch 39 @1m, NOT corrected for distance

Spurious Emissions 18 – 25 GHz, ch 00

Radiated emission 30 - 1000 MHz.

Detector: Quasi-Peak

Measuring distance 10 m according to CISPR 22.

Tested in speech mode with active connection.

Frequency	Operational condition	Field strength	Measuring distance	Limit FCC15.209	Margin
MHz		dBμV/m	metres	dBμV/m	dB
51.1	TX on	27	3	40	13
60.95	TX on	29	3	40	11
398.1	TX on	30	3	46	16
449.25	TX on	20	3	46	26
497.65	TX on	33	3	46	13
547.4	TX on	28	3	46	18

See attached graphs.

Radiated emission 10 kHz-30 MHz.

Measuring distance 10 m, measured with Peak detector.

No component detected, see attached graph.

Limit is converted to 10 m using 40 dB/decade according to 15.31 (f) (2).

Nemko Comlab 09. Aug 06 13:32

Peak

EUT: Worldpro 1000
Manuf: Nera Satcom
Op Cond: Distance 3m, 1m VP
Operator: FS

Test Spec: FS FCC 15.209

Scan Settings (1 Range)

|------ Frequencies -------||------- Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
30M 200M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 20 30M 200M HK116

30-200 MHz vertical polarization, measuring distance 3 m

Nemko Comlab 09. Aug 06 13:41

Peak

EUT: Worldpro 1000
Manuf: Nera Satcom
Op Cond: Distance 3m, 2m HP
Operator: FS

Operator: FS Test Spec: FCC 15.209

Scan Settings (1 Range)

|------ Frequencies -------||------- Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
30M 200M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 20 30M 200M HK116

30-200 MHz horizontal polarization, measuring distance 3 m

Nemko Comlab 09. Aug 06 15:07

Peak

 EUT:
 Worldpro 1000

 Manuf:
 Nera Satcom

 Op Cond:
 Distance 3m, H=1m VP

 Operator:
 FS

Operator: FS Test Spec: FCC 15.209

Scan Settings (1 Range)

|------ Frequencies -------||------- Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
200M 1000M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 21 200M 1000M HL223

200-1000 MHz vertical polarization, measuring distance 3 m

Nemko Comlab 09. Aug 06 14:48

Peak

 EUT:
 Worldpro 1000

 Manuf:
 Nera Satcom

 Op Cond:
 Distance 3m, H=2m HP

 Operator:
 FS

Operator: FS Test Spec: FCC 15.209

Scan Settings (1 Range)

|------ Frequencies -------||------ Receiver Settings ------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
200M 1000M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 21 200M 1000M HL223

200-1000 MHz horizontal polarization, measuring distance 3 m

NEMKO COMLAB

10. Aug 06 15:47

Peak

Operator: FS

Comment: Nera Satcom WorldPro 1000 FCC 15.209

Loop Antenna, Distance: 10m

Scan Settings (4 Ranges)

Frequencies Receiver Settings					
Start	Stop	Step	IF BV	V Dete	ector M-Time Atten Preamp OpRge
10k	100k	1k	1k	PK	20ms 0dBLN OFF 60dB
20k	20k	5k	9k	PK	20ms AUTO LN ON 60dB
20k	10M	5k	9k	PK	20ms AUTO LN OFF 60dB
10M	30M	5k	9k	PK	20ms AUTO LN OFF 60dB

Transducer No. Start Stop Name 13 10k 30M HFH2Z2

10 kHz - 30 MHz, measuring distance 10 m

5 LIST OF TEST EQUIPMENT

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Test Laboratory.

No.	Instrument/ancillary	Type of instrument/ancillary	Manufacturer	Ref. no.
1	FSEK	Spectrum Analyzer	Rohde & Schwarz	LR 1337
2	ESVS 30	Test Receiver	Rohde & Schwarz	LR 1101
3	3115	Antenna horn	EMCO	LR 1330
4	643	Antenna horn	Narda	LR 093
5	642	Antenna horn	Narda	LR 220
6	PM7320X	Antenna horn	Siverts lab	LR 103
7	DBF-520-20	Antenna horn	Systron Donner	LR 101
8	638	Antenna horn	Narda	LR 098
9	ESH3-Z3	LISN	Rohde & Schwarz	LR 1076
10	80S	Signal Generator	Powertron	LT 502
11	8449B	Amplifier	Hewlett Packard	LR 1322
12	4HC3000/18000-1-KK	High Pass filter	Trilithic	sn. 9849045
13	HFH2-Z2	Antenna loop	Rohde and Schwarz	LR 285
14	HL223 Log Period	Antenna	Rohde & Schwarz	LR 1261
15	HK116 Biconical	Antenna	Rohde & Schwarz	LR 1260
16	ESN	Test Receiver	Rohde & Schwarz	LR1237
17	NRVD	Power meter	Rohde & Schwarz	LR 1347
18	NRV-Z5	RF Probe	Rohde & Schwarz	LR 1371
19	HM34	Temp/Humidity meter	Vaisala	LR 1270

6 BLOCK DIAGRAM

6.1 System set up

6.2 Power Line Conducted Emission

6.3 Test Site Radiated Emission

