LF Høst 2018

Noregs teknisk-naturvitskaplege universitet

Institutt for Datateknologi og Informatikk

Løsningsforslag

- (i) a) Vi ser at g(0) = 1, g(1) = 2, g(2) = 4, og g(3) = 3. Videre har vi f(0) = h(g(0)) = 2, f(1) = h(2) = 4, f(2) = h(4) = 0, f(3) = h(3) = 6. Vi ser da at f er både injektiv og surjektiv.
 - (ii) Funksjonen $h: \mathbb{R} \to \mathbb{R}$ gitt ved $h: x \mapsto x^3$. har invers $h^{-1}(x) = \sqrt[3]{x}$. Den er derfor bijektiv. En injektiv funksjon er både surjektiv og injektiv.
 - (iii) Vi regner ut alle verdier for funksjonen $g:\{0,1,2,3,4\} \rightarrow \{0,1,2,3,4\}$ gitt ved $g:n\mapsto n^3$ % 5.:

- b) Funksjonen er ikke surjektiv fordi ingen n i $\{0,1,2,3\}$ gir verdien g(n)=2 nås og a) ikke injektiv fordi g(0) = g(2) og $0 \neq 2$.
- (iv) Funksjonen $m: \mathcal{P}(\{0,1\}) \to \mathcal{P}(\{0,1,2,3\})$ gitt ved $m: A \mapsto \#A + \#(A \cap \{0\})$ er både surjektiv og injektiv. Vi har $m(\{0,1\}) = 2+1=3$, $m(\emptyset) = 0+0=0$, $m(\{0\}) = 1+1=2$ og $m(\{1\}) = 1 + 0 = 1.$
- a) Differensligningen $a_k = 5a_{k-1} 4a_{k-2}$ løses ved å løse karakteristisk ligning $t^2 = 5t 4$. Opp-2 ryddning i likningen gir $t^2 - 5t + 4 = 0$ som er det samme som (t - 4)(t - 1) = 0. Røttene er derfor $t_1 = 4$ og $t_2 = 1$. Generell løsning av diferenslikningen er $a_n = A4^n + B1^n = A4^n + B$.
 - b) Startsteg. Vi sjekker først startverdiene $b_0 = 0 + 1 = 1$ som er OK og $b_1 = 1 + 1 = 2$ som også er OK. Vi skekker så om likningen er tilfredstilt: Induksjonsteg. Anta at løsningen av likningen er $b_n = n + 1$ for alle n < k der $k \ge 2$. Da er

$$b_k = 5b_{k-1} - 4_{k-2} - 2 = 5(k-1+1) - 4(k-2+1) - 3 = 5k - 4(k-1) - 3 = 5k - 4k + 4 - 3 = k+1.$$

c) Siden a_n er generell løsning av og b_n er løsninger av likningene i a) og b) så er

$$c_n = a_n + b_n$$

$$= 5a_{n-1} - 4a_{n-2} + 5b_{n-1} - 4b_{n-2} - 3$$

$$= 5(a_{n-1} + b_{n-1}) - 4(a_{n-2} + b_{n-2}) - 3$$

$$= 5c_{n-1} - 4c_{n-2} - 3.$$

3 a) (i) Først er $230:33=6 \text{ med } 32 \text{ i rest. } 33:32=1 \text{ med } 1 \text{ i rest. Det betyr at } \gcd(230,33)=1.$ 33 har en multiplikativ invers modulo 230 fordi gcd(230, 33) = 1. Vi finner den inverse ved å bruke Eulers utvidede metode.

$$1 = 33 - 32$$

$$1 = 33 - (230 - 6 \cdot 33)$$

$$1 = 7 \cdot 33 - 230$$

Siden $7 \cdot 33 \equiv 1 \pmod{230}$ er 7 invers til 230 modulo 33.

- (ii) For å finne $65^7 \pmod{517}$ regner vi ut $65^2 = 4225 \equiv 89 \pmod{517}$, $65^4 \equiv 89^2 = 7921 \equiv 166 \pmod{391}$. Da er $65^7 = 65^4 \cdot 65^2 \cdot 65 \equiv 166 \cdot 89 \cdot 65 = 960310 \equiv 241 \pmod{517}$.
- b) Et RSA-kryptosystem er bassert på primtallene p = 11 og q = 47.
 - (i) Vi har n = pq = 517. Vi kan bruke (517,7) som offentlig nøkkel fordi (p-1)(q-1) = 460 og $\gcd(460,7) = 1$ fordi 7 er et primtall og 7 deler ikke 460. Den offentlige nøkkelen er den multiplikative inverse til 7 modulo 460. Den multiplikative inversen fås ved å bruke Euklids utvidede algoritme.

$$460: 7 = 65 \mod 5 \text{ i rest}$$

 $7: 5 = 1 \mod 2 \text{ i rest}$
 $5: 2 = 2 \mod 1 \text{ i rest}$

$$1 = 5 - 2 \cdot 2 = 5 - 2 \cdot (7 - 5) = 3 \cdot 5 - 2 \cdot 7 = 3 \cdot (460 - 65 \cdot 7) - 2 \cdot 7 = 3 \cdot 460 - 197 \cdot 7.$$

Den multiplikative inversen til 7 modulo 460 er $-197 \equiv 263 \pmod{460}$. Den private nøkkelen er (517, 263).

(ii) Vi har 263=256+4+2+1.

$$241^{2} \equiv 177 \pmod{517}$$

$$241^{4} \equiv 177^{2} \equiv 309 \pmod{517}$$

$$241^{8} \equiv 309^{2} \equiv 353 \pmod{517}$$

$$241^{16} \equiv 353^{2} \equiv 12 \pmod{517}$$

$$241^{32} \equiv 12^{2} \equiv 144 \pmod{517}$$

$$241^{64} \equiv 144^{2} \equiv 56 \pmod{517}$$

$$241^{128} \equiv 56^{2} \equiv 34 \pmod{517}$$

$$241^{256} \equiv 34^{2} \equiv 122 \pmod{517}$$

$$241^{263} = 241^{1+2+4+256} = 241 \cdot 241^{2} \cdot 241^{4} \cdot 241^{256} \equiv 241 \cdot 177 \cdot 309 \cdot 122$$

$$\equiv 263 \cdot 309 \cdot 122 \equiv 98 \cdot 122 \equiv 65 \pmod{517}.$$

Svaret er 65.

Alternativt:

(i) Vi har n=pq=517. Vi kan bruke (517,7) som offentlig nøkkel fordi lcm(p-1,q-1)=230 og $\gcd(230,7)=1$ fordi 7 er et primtall og 7 deler ikke 230. Den offentlige nøkkelen er den multiplikative inverse til 7 modulo 230. Den multiplikative inversen fås ved å bruke Euklids utvidede algoritme.

$$230:7=32 \mod 6$$
 i rest
$$7:6=1 \mod 1 \text{ i rest}$$

$$1=7-6=7-(230-7\cdot 32)=7\cdot 33-230$$

Den multiplikative inversen til 7 modulo 230 er 33. Den private nøkkelen er (517, 33).

(ii) Vi har 33=32+1.

$$241^{2} \equiv 177 \pmod{517}$$

$$241^{4} \equiv 177^{2} \equiv 309 \pmod{517}$$

$$241^{8} \equiv 309^{2} \equiv 353 \pmod{517}$$

$$241^{16} \equiv 353^{2} \equiv 12 \pmod{517}$$

$$241^{32} \equiv 12^{2} \equiv 144 \pmod{517}$$

$$241^{33} = 241^{1+33} = 241 \cdot 241^{33} \equiv 241 \cdot 144$$

$$\equiv 65 \pmod{517}.$$

Svaret er 65.

Alternativt kunne vi brukt at $65^7 \equiv 241 \pmod{517}$. Vi kan bruke resultatet fra 3aii til å skrive $241^{33} = (65^7)^{33} = (65^e)^d \equiv 65 \pmod{517}$.

4 a) Om vi setter inn y = 0 i formelen over får vi

$$f(x,0) = \frac{x \cdot 0}{x^2 + 0} = 0$$

. Om vi setter inn x=0 i formelen over får vi

$$f(0,y) = \frac{0 \cdot x}{0 + u^2} = 0$$

. De partsielle deriverte i (0,0) blir da

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0.$$

b) Vi bruker regel for å derivere en brøk. Vi finner

$$f_x(x,y) = \frac{y(x^2 + y^2) - xy(2x)}{(x^2 + y^2)^2} = \frac{y(-x^2 + y^2)}{(x^2 + y^2)^2}$$

og

$$f_y(x,y) = \frac{x(x^2 + y^2) - xy(2y)}{(x^2 + y^2)^2} = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$$

c) f(x,y) er ikke kontinuerlig i (0,0). Det ser vi fordi grensen $\lim_{x\to 0} f(x,x) = 1/2 \neq 0 = f(0,0)$.

5 Gitt funksjonen $f(x,y) = x^2y^2 - x^2 - 2y^3 - 3y^2$.

- a) Gradienten til f(x,y) er $\nabla f = f_x(x,y) \hat{\mathbf{i}} + f_y(x,y) \hat{\mathbf{j}} = 2x(y^2 1) \hat{\mathbf{i}} + (2x^2y 6y^2 6y) \hat{\mathbf{j}}$. De andrederiverte av f(x,y) er $f_{xx}(x,y) = 2(y^2 1)$, $f_{xy}(x,y) = 4xy$ og $f_{yy}(x,y) = 2x^2 12y 6$.
- b) Man finner de kritiske punkter til f(x,y) ved å løse likingen $\nabla f = \mathbf{0}$. Dvs. $f_x(x,y) = 2x(y^2-1) = 0$ og $f_y(x,y) = 2x^2y 6y^2 6y = 0$. Fra $2x(y^2-1) = 0$ har vi at x = 0 eller $y = \pm 1$. Første tilfelle (x = 0) gir andre likning $f_y(0,y) = -6y^2 6y = 0$ som er ekivalent med at y = 0 eller y = -1. Andre tilfelle (y = 1) gir andre likning $f_y(x,1) = 2x^2 6 6 = 0$ som har løsninger $x = \pm \sqrt{6}$. Tredje tilfelle (y = -1) gir andre likning $f_y(x,-1) = -2x^2 6 + 6 = 0$ som gir løsningen x = 0. Vi har derfor 4 kritiske punkter (0,0), (0,-1), $(-\sqrt{6},1)$ og $(\sqrt{6},1)$.

punkt	f_{xx}	f_{yy}	f_{xy}	$\int_{xx} f_{yy} - f_{xy}^2$	Type
(0,0)	-2	-6	0	12	Lokalt Max
(0, -1)	0	6	0	0	Uavklart
$(-\sqrt{6},1)$	0	-6	$-4\sqrt{6}$	-96	Sadel
$(\sqrt{6}, 1)$	0	-6	$4\sqrt{6}$	-96	Sadel

c) Finn største og minste verdi av f(x,y) på området $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$, det vil si sirkelskiven med radius 1 og senter i punktet (0,0).

Løsning. La $g(x,y)=x^2+y^2-1$ Vi setter opp Lagrange for problemet. $\nabla f=\lambda\nabla g,\,g(x,y)=0.$ Det gir likningene

$$2x(y^{2} - 1) = 2x\lambda$$
$$2y(x^{2} - 3y - 3) = 2y\lambda$$
$$x^{2} + y^{2} = 1$$

Fra første likning har vix=0eller $\lambda=y^2-1.$ Fra andre likning har vi at y=0eller $\lambda=x^2-3y-3$

(x = 0) Innsatt i 3.je likning gir $y^2 = 1$ som gir y = 1 eller y = -1.

(y = 0) Innsatt i 3.re likning gir $x^2 = 1$ som gir x = 1 eller x = -1.

$$(\lambda = \lambda)$$
 gir

$$y^2 - 1 = x^2 - 3y - 3$$

Vi bruker $x^2 = 1 - y^2$ fra tredje likning og erstatter $x^2 \mod 1 - y^2$:

$$y^2 - 1 = 1 - y^2 - 3y - 3$$

Opprydning gir $2y^2+3y+1=0$. Faktorisering gir (2y+1)(y+1)=0. Vi løser og får y=-1 eller y=-1/2. Det gir punktene $(0,-1), (-\sqrt{3}/2,-1/2)$ og $(\sqrt{3}/2,-1/2)$ Vi har derfor til sammen 6 kritiske punkter på randen. I tillegg er (0,0) et kritisk punkt innenfor randen.

(x,y)	f(x,y)
(0,0)	0
(1,0)	-1
(-1,0)	-1
(0,1)	-5
(0, -1)	-1
$(\sqrt{3}/2, -1/2)$	-17/16
$(-\sqrt{3}/2, -1/2)$	-17/16

(0,0) er globalt max og (0,1) er globalt min. Verdiene er f(0,0)=0 og f(0,1)=-5.

d) Finn største og minste verdi av f(x,y) på på området begrenset av kvadratet med hjørner A(-1,-1), B(1,-1), C(1,1) og D(-1,1).

Løsning. Vi har f(x,1) = -5 og f(x,-1) = -1. Videre er $f(-1,y) = f(1,y) = -2y^3 - 2y^2 - 1$. og $f_y(-1,y) = f_y(1,y) = -4y - 6y^2 = -2y(2+3y)$. Kritiske punkter er y = 0 og y = -2/3. I de kritiske punktene og i hjørnene er $f(\pm 1,1) = -5$, $f(\pm 1,-1) = -1$, $f(\pm 1,0) = -1$, og $f(\pm 1,-2/3) = -2y^3 - 2y^2 - 1 = -35/27$. Det er et kritisk punkt (0,0) inne i området. f(0,0) = 0 Vi får derfor maksverdi 0 og minimumsverdi -5.