# Quasikohärente Modulgarben

## Ingo Blechschmidt

28. Mai 2015

#### 1 Definitionen

**Definition 1.1.** Eine  $(\mathcal{O}_X$ -)Modulgarbe auf einem geringten Raum  $(X, \mathcal{O}_X)$  besteht aus ... sodass ...

**Definition 1.2.** Eine Modulgarbe  $\mathcal{E}$  heißt genau dann *lokal endlich frei*, wenn ... Sie heißt genau dann *von endlichem Typ*, wenn ...

Bemerkung 1.3. Die Kategorie  $Mod(\mathcal{O}_X)$  der  $\mathcal{O}_X$ -Modulgarben ist abelsch, vollständig und kovollständig und sogar eine Grothendieck-Kategorie.

Bemerkung 1.4. Aus Sicht der internen Sprache des Topos  $\operatorname{Sh}(X)$  ist eine  $\mathcal{O}_X$ -Modulgarbe nichts anderes als ein gewöhnlicher Modul über dem gewöhnlichen Ring  $\mathcal{O}_X$ . Sie ist genau dann lokal endlich frei, wenn sie aus interner Sicht endlich frei ist. Sie ist genau dann von endlichem Typ, wenn sie aus interner Sicht endlich erzeugt ist.

## 2 Beispiele

**Definition/Proposition 2.1.** Sei M ein A-Modul. Dann gibt es auf  $\operatorname{Spec} A$  eine Modulgarbe  $M^{\sim}$  mit

1. 
$$M^{\sim}(D(f)) \cong M[f^{-1}]$$
 für alle  $f \in A$  und

2. 
$$(M^{\sim})_{\mathfrak{p}} \cong M_{\mathfrak{p}} = M[(A \setminus \mathfrak{p})^{-1}]$$
 für alle  $\mathfrak{p} \in \operatorname{Spec} A$ .

Bemerkung 2.2. Im Topos  $\operatorname{Sh}(\operatorname{Spec} A)$  gibt es den generischen Filter  $\mathcal F$ , die Untergarbe der konstanten Garbe  $\underline A$  mit  $\mathcal F(U):=\{f:U\to A\,|\, f(\mathfrak p)\not\in\mathfrak p$  für alle  $\mathfrak p\in U\}$ . Aus interner Sicht ist dann  $M^\sim$  einfach die Lokalisierung  $\underline M[\mathcal F^{-1}]$ .

Beispiel 2.3.  $A^{\sim} \cong \mathcal{O}_{\operatorname{Spec} A}$ .

**Beispiel 2.4.** Die Garbe  $(k[x,y]/(x-2,y-3))^{\sim}$  auf Spec k[x,y] ist im Punkt (x-2,y-3) konzentriert, d. h. die Menge derjenigen Punkte, an denen der Halm dieser Garbe nicht Null ist, enthält nur diesen einen Punkt. Daher heißt eine solche Garbe auch *Wolkenkratzergarbe*.

**Proposition 2.5.** Sei M ein A-Modul. Genau dann ist  $M^{\sim}$  lokal endlich frei, wenn M endlich erzeugt und projektiv ist.

**Beispiel 2.6.** Seien M und N quadratische  $(n \times n)$ -Matrizen über einem Körper k. Eine notwendige Bedingung dafür, dass M und N zueinander ähnlich sind, ist, dass ihr Spektrum übereinstimmt. Bekanntlich ist diese Bedingung aber nicht hinreichend.

Eine Charakterisierung von Ähnlichkeit ist mit k[X]-Moduln möglich: Genau dann sind M und N zueinander ähnlich, wenn die k[X]-Moduln  $k_M^n$  und  $k_N^n$  zueinander isomorph sind. (Als abelsche Gruppe ist  $k_M^n = k^n$ . Die Skalarmultiplikation ist definiert als  $f \cdot v := f(M)v$ .) Das ist genau dann der Fall, wenn die induzierten Modulgarben  $(k_M^n)^\sim$  und  $(k_N^n)^\sim$  auf  $\mathbb{A}_k^1 = \operatorname{Spec} k[X]$  isomorph sind. Man kann sich nun überlegen, dass diese Garben Träger im Spektrum haben.

Fazit: Wir können die Modulgarbe  $(k_M^n)^{\sim}$  als Verfeinerung der noch zu groben Invariante des Spektrums deuten. Sie kodiert genau den Ähnlichkeitstyp von M.

**Definition 2.7.** Die Faser einer Modulgarbe  $\mathcal{E}$  über einem Punkt x ist der k(x)-Vektorraum

$$\mathcal{E}|_x := \mathcal{E}_x \otimes_{\mathcal{O}_{X,x}} k(x) \cong \mathcal{E}_x/\mathfrak{m}_x \mathcal{E}_x.$$

Ist  $s \in \mathcal{E}(U)$  ein lokaler Schnitt einer Modulgarbe, so ist für jeden Punkt  $x \in U$  die Restklasse von s in  $\mathcal{E}|_x$  ein Element eines (von x abhängigen) Vektorraums. In diesem Sinn kann man Schnitte von Modulgarben als *verallgemeinerte Funktionen* betrachten. Diese sind wichtig, da es interessanten Schemata oftmals an globalen gewöhnlichen Funktionen – globalen Schnitten von  $\mathcal{O}_X$  – mangelt.

**Beispiel 2.8.** Sei W ein endlich-dimensionaler k-Vektorraum und  $X = \mathbb{P}(W) = \operatorname{Proj} \operatorname{Sym} W^{\vee}$  seine Projektivierung. Die k-rationalen Punkte dieses Schemas sind gerade die eindimensionalen Unterräume von W. Auf X gibt es die wichtigen Modulgarben  $\mathcal{O}(1)$  und  $\mathcal{O}(-1)$ . Für die Fasern dieser Garben an einem Punkt  $\ell \subseteq W$  gilt

$$\mathcal{O}(1)|_{\ell} \cong \ell^{\vee}$$
 und  $\mathcal{O}(-1)|_{\ell} \cong \ell$ .

Die Garbe  $\mathcal{O}(-1)$  heißt daher auch *tautologisches Bündel*.

In Skizzen kann man die beiden Garben nicht unterscheiden – wenn man X als Kreis zeichnet ( $\dim W=2$ ), so sehen beide wie das Möbiusbündel aus. Als Garben sind sie aber nicht isomorph; das tautologische Bündel hat nur den Nullschnitt als globalen Schnitt, während  $\mathcal{O}(1)(X)$  kanonisch isomorph zu  $W^{\vee}$  ist.

Allgemeiner gibt es für alle  $m \in \mathbb{Z}$  jeweils eine besondere Modulgarbe  $\mathcal{O}(m)$ ; für die globalen Schnitte gilt  $\mathcal{O}(m)(X) \cong \operatorname{Sym}^m W^{\vee}$ .

**Beispiel 2.9.** Sei D ein Cartier-Divisor auf einem Schema X. Dann ist die Untermodulgarbe

$$\mathcal{O}_X(D) := \{ f : \mathcal{K}_X \mid \operatorname{div}(f) + D \ge 0 \}$$

der Garbe der rationalen Funktionen lokal frei vom Rang 1. Die Signifikanz dieser Garben erklärt sich dadurch, dass in vielen Situationen jede Modulgarbe, die lokal frei vom Rang 1 ist,

von dieser Form ist; und dass man sie verwenden kann, um Schnitttheorie zu betreiben: Ist X eine Fläche, so ist die Schnittzahl zweier Divisoren D und D' gleich

$$(D \cdot D') := \chi(\mathcal{O}_X) - \chi(\mathcal{O}_X(-D)) - \chi(\mathcal{O}_X(-D')) + \chi(\mathcal{O}_X(-D-D')).$$

Dabei berechnet  $\chi$  die *Euler-Charakteristik* einer (kohärenten) Garbe.

**Beispiel 2.10.** Sei  $\mathcal E$  eine lokal freie Modulgarbe vom Rang n. Solche Garben heißen auch *Vektorbündel.* In der Tat kann man aus einer solchen Garbe ein Vektorbündel im eigentlichen Sinn konstruieren, nämlich den Morphismus  $\underline{\operatorname{Spec}}_X\operatorname{Sym}\mathcal E^\vee\to X$ .

**Beispiel 2.11.** Wie kann man einen Morphismus  $X \to \mathbb{P}^n$  angeben? Naiv erwartet man, dass eine Setzung der Form  $x \mapsto [s_0(x):\dots:s_n(x)]$  Erfolg haben sollten, solange die  $s_i$  nirgends gemeinsam verschwinden. Aber was können die  $s_i$  sein? Sich hier auf globale Funktionen zu beschränken wäre sehr restriktiv – auf vielen interessanten Schemata gibt es nur wenige globale Funktionen. Tatsächlich genügt es, wenn die  $s_i$  globale Schnitte eines Geradenbündels auf X sind, also einer lokal freien Modulgarbe vom Rang 1.

Bemerkung 2.12. Das vorherige Beispiel kann man zu einer universellen Eigenschaft des projektiven Raums verbessern: Für lokal geringte Räume X stehen die Morphismen  $X \to \mathbb{P}^n$  in kanonischer Eins-zu-Eins-Korrespondenz mit Geradenbündeln  $\mathcal{L}$  auf X zusammen mit n+1 globalen Schnitten, welche nirgends gemeinsam verschwinden, bis auf Isomorphie. Kurz:

$$\operatorname{Hom}(X, \mathbb{P}^n) \cong \{(\mathcal{L}, \mathcal{O}_X^{n+1} \twoheadrightarrow \mathcal{L})\}/\cong.$$

**Beispiel 2.13.** Sei X ein Schema über S. Dann gibt es auf X die Modulgarbe  $\Omega^1_{X/S}$  der relativen Kählerdifferentialformen.

**Beispiel 2.14.** Sei  $V(\mathcal{J}) \hookrightarrow X$  ein abgeschlossenes Unterschema. Dann hat die Garbe  $\mathcal{J}/\mathcal{J}^2$  nur Träger in  $V(\mathcal{J})$ , kann also auch als Garbe auf  $V(\mathcal{J})$  angesehen werden. Als solche heißt sie *Konormalgarbe* von  $V(\mathcal{J})$  in X. Wenn  $\mathcal{J}$  lokal von regulären Sequenzen der Länge r erzeugt wird, ist sie lokal frei vom Rang r.

#### 3 Quasikohärente Modulgarben

**Motto 3.1.** Nur die quasikohärenten Modulgarben auf einem Schema haben geometrische Bedeutung. Die anderen sind Artefakt der Kodierung über lokal geringte Räume.

**Definition 3.2.** Sei X ein Schema und  $\mathcal{E}$  eine  $\mathcal{O}_X$ -Modulgarbe. Genau dann heißt  $\mathcal{E}$  quasiko-härent, wenn es lokal exakte Sequenzen der Form

$$\mathcal{O}_{\mathbf{x}}^{\oplus I} \longrightarrow \mathcal{O}_{\mathbf{x}}^{\oplus J} \longrightarrow \mathcal{E} \longrightarrow 0$$

gibt. Dabei können I und J beliebige, auch unendlich große, Mengen sein.

**Proposition 3.3.** Sei X ein Schema und  $\mathcal{E}$  eine  $\mathcal{O}_X$ -Modulgarbe. Dann sind äquivalent:

- 1. Die Modulgarbe  $\mathcal{E}$  ist quasikohärent.
- 2. Es gibt eine Überdeckung von X durch offene affine Teilmengen U sodass für jede Überdeckungsmenge  $U = \operatorname{Spec} A$  die Einschränkung  $\mathcal{E}|_U$  isomorph zu einer Modulgarbe der Form  $M^{\sim}$  für einen A-Modul M ist.
- 3. Für alle offenen affinen Teilmengen  $U = \operatorname{Spec} A$  ist  $\mathcal{E}|_U$  isomorph zu einer Modulgarbe der Form  $M^{\sim}$  für einen A-Modul M.
- 4. Für alle offenen affinen Teilmengen  $U = \operatorname{Spec} A$  und Funktionen  $f \in A$  ist die kanonische Abbildung  $\mathcal{E}(U)[f^{-1}] \to \mathcal{E}(D(f))$  ein Isomorphismus von  $A[f^{-1}]$ -Moduln.

Bemerkung 3.4. Eine Modulgarbe  $\mathcal{E}$  auf einem Schema X ist genau dann quasikohärent, wenn aus Sicht der internen Sprache des Topos  $\mathrm{Sh}(X)$  für alle  $f:\mathcal{O}_X$  der lokalisierte Modul  $\mathcal{E}[f^{-1}]$  eine Garbe bezüglich der Modalität  $\square$  mit  $\square \varphi := (f \text{ inv.} \Rightarrow \varphi)$  ist.

**Beispiel 3.5.** Die Kategorie der quasikohärenten Modulgarben auf einem affinen Schema Spec A ist äquivalent zur Kategorie der A-Moduln. Die Äquivalenz wird vermittelt durch den Funktor  $\mathcal{E} \mapsto \mathcal{E}(\operatorname{Spec} A)$  mit Pseudoinversem  $M \mapsto M^{\sim}$ .

**Beispiel 3.6.** Die Kategorie der quasikohärenten Modulgarben auf einem projektiven Schema  $\operatorname{Proj} A$  ist äquivalent zum Quotient der Kategorie der  $\mathbb{Z}$ -graduierten A-Moduln modulo der Serreschen Unterkategorie derjenigen graduierten Moduln, welche ab einem gewissen Grad verschwinden. Die Äquivalenz wird durch eine projektive Variante der Tilde-Konstruktion vermittelt.

**Beispiel 3.7.** Der Rückzug quasikohärenter Modulgarben ist stets wieder quasikohärent. Der Pushforward einer quasikohärenten Modulgarbe längs einem quasikompakten und quasiseparierten Morphismus ist wieder quasikohärent.

**Proposition 3.8.** Sei  $f: \operatorname{Spec} A \to \operatorname{Spec} B$  ein Morphismus affiner Schemata. Betrachte A vermöge  $f^{\sharp}$  als B-Algebra.

- 1. Sei M ein A-Modul. Dann gilt  $f_*(M^{\sim}) \cong (M_B)^{\sim}$ .
- 2. Sei N ein B-Modul. Dann gilt  $f^*(N^{\sim}) \cong (N \otimes_B A)^{\sim}$ .

Bemerkung 3.9. Aus der Kategorie der quasikohärenten Modulgarben auf einem Schema X zusammen mit ihrer abelschen Struktur kann man das Schema rekonstruieren; das besagt der Rekonstruktionssatz von Gabriel–Rosenberg. Für affine Schemata folgt das aus der für Ringe A gültigen Isomorphiekette

$$A \cong \operatorname{End}(\operatorname{Id}_{\operatorname{Mod}(A)}) \cong \operatorname{End}(\operatorname{Id}_{\operatorname{QCoh}(\operatorname{Spec} A)}).$$

Allgemein heißt für eine abelsche Kategorie  $\mathcal{C}$  die Menge der Endomorphismen des Identitätsfunktors auf  $\mathcal{C}$  auch Zentrum von  $\mathcal{C}$ . Mit der Addition und Verkettung von natürlichen Transformationen wird diese zu einem kommutativen Ring.

Bemerkung 3.10. Die Kategorie  $\operatorname{QCoh}(X)$  der quasikohärenten Modulgarben ist eine koreflektive Unterkategorie der Kategorie  $\operatorname{Mod}(\mathcal{O}_X)$  aller Modulgarben, das heißt die Inklusion  $\operatorname{QCoh}(X) \hookrightarrow \operatorname{Mod}(\mathcal{O}_X)$  besitzt einen Rechtsadjungierten, den so genannten Kohärator. Als Konsequenz kann man zeigen, dass  $\operatorname{QCoh}(X)$  wie auch  $\operatorname{Mod}(\mathcal{O}_X)$  eine Grothendieck-Kategorie ist. Kolimiten berechnet man in  $\operatorname{QCoh}(X)$  genau wie in  $\operatorname{Mod}(\mathcal{O}_X)$ . Limiten in  $\operatorname{QCoh}(X)$  berechnet man, indem man sie zunächst in  $\operatorname{Mod}(\mathcal{O}_X)$  bestimmt und dann den Kohärator anwendet. Für endliche Limiten kann man auf den Kohärator verzichten.

## 4 Tiefere kategorielle Interpretation

Sei  $\mathcal E$  eine quasikohärente Modulgarbe auf einem Schema X. Dann erhalten wir für jeden Morphismus  $f:\operatorname{Spec} A\to X$  durch Betrachtung des Rückzugs  $f^*\mathcal E$  einen A-Modul, den wir " $\underline{\mathcal E}(A)$ " bezeichnen möchten. In der Notation unterdrücken wir also den Morphismus f und notieren nur seine Quelle. Ist  $p:\operatorname{Spec} B\to\operatorname{Spec} A$  ein weiterer Morphismus, so gibt es eine kanonische Abbildung  $\underline{\mathcal E}(A)\to\underline{\mathcal E}(B)$ . Insgesamt definiert daher die Zuordnung ( $\operatorname{Spec} A\to X$ )  $\mapsto \underline{\mathcal E}(A)$  eine  $\operatorname{Pr\"{a}garbe}$  auf der Kategorie  $\operatorname{Aff}/X$  der affinen Schemata über X.

Die Familie dieser Moduln  $\mathcal{E}(A)$  hat drei Besonderheiten:

0. Die Prägarbe  $\underline{\mathcal{E}}$  ist ein Modulobjekt über dem Ringobjekt  $\underline{\mathcal{O}}_X$ , das ist die Prägarbe

$$\begin{array}{ccc} (\mathrm{Aff}/X)^{\mathrm{op}} & \longrightarrow & \mathrm{Set} \\ (\mathrm{Spec}\, A \to X) & \longmapsto & A. \end{array}$$

1. Seien Morphismen  $f:\operatorname{Spec} A\to X$  und  $p:\operatorname{Spec} B\to\operatorname{Spec} A$  gegeben. Dann gibt es einen kanonischen Isomorphismus

$$\underline{\mathcal{E}}(A) \otimes_A B \xrightarrow{\cong} \underline{\mathcal{E}}(B),$$

denn  $p^*f^*\mathcal{E}$  ist kanonisch isomorph zu  $(f\circ p)^*\mathcal{E}$ . Diese Isomorphismen erfüllen ihrerseits eine Kohärenzbedingung.

2. Sei  $f:\operatorname{Spec} A\to X$  ein Morphismus und sei  $\operatorname{Spec} A$  überdeckt durch offene affine Unterschemata  $\operatorname{Spec} A[f_i^{-1}]$ . Dann ist das Diagramm

$$\underline{\mathcal{E}}(A) \to \prod_i \underline{\mathcal{E}}(A[f_i^{-1}]) \rightrightarrows \prod_{i,j} \underline{\mathcal{E}}(A[f_i^{-1},f_j^{-1}])$$

ein Differenzkerndiagramm. Man sagt auch, die Zuordnung (Spec  $A \to X$ )  $\mapsto \underline{\mathcal{E}}(A)$  sei eine Zariski-Garbe.

 $<sup>^1</sup>$ Seien  $M_i$  Modul<br/>n über A. Das Produkt der  $M_i^\sim$  in der Kategorie aller Modulgarben auf Spe<br/>cAist dann eine Garbe mit  $D(f)\mapsto \prod_i M_i[f^{-1}].$  Dagegen ist das Produkt der  $M_i^\sim$  in der Kategorie der quasikohärenten Modulgarben eine Garbe mit  $D(f)\mapsto (\prod_i M_i)[f^{-1}].$  Es gibt zwar einen kanonischen Morphismus  $(\prod_i M_i)[f^{-1}]\to \prod_i M_i[f^{-1}];$  im Allgemeinen ist dieser jedoch weder injektiv noch surjektiv.

Man kann sich überlegen, dass für eine Prägarbe  $\mathcal{F}$  auf Aff/X Eigenschaft 2 schon aus den Eigenschaften 0 und 1 folgt. Denn das fragliche Diagramm ist dann isomorph zu

$$\mathcal{F}(A) \to \prod_i \mathcal{F}(A)[f_i^{-1}] \Longrightarrow \prod_{i,j} \mathcal{F}(A)[f_i^{-1}, f_j^{-1}],$$

und es ist eine elementare Beobachtung aus der linearen Algebra über Ringen, dass dieses ein Differenzkerndiagramm ist.

Als Zwischenfazit halten wir fest: Eine quasikohärente Modulgarbe  $\mathcal E$  definiert ein kohärentes System von Moduln  $(\underline{\mathcal E}(A))_{\operatorname{Spec} A \to X}$ , also ein System, das Eigenschaft 1 hat. Umgekehrt kann man sich überlegen, dass jedes solche System auch eine quasikohärente Modulgarbe festlegt.

Die Kategorie der quasikohärenten Modulgarben auf X ist also äquivalent zur Kategorie der kohärenten  $\mathrm{Aff}/X$ -indizierten Systeme von Moduln. Das kann einen an die Konstruktion von Limiten in der Kategorie der Mengen erhalten! Tatsächlich gilt

$$QCoh(X) = \lim_{Spec A \to X} Mod(A).$$

Der Limes auf der rechten Seite muss in einem 2-kategoriellen Sinn verstanden werden; ein Objekt dieser Kategorie besteht aus

- 1. einer Familie von Moduln: für jeden Morphismus  $\operatorname{Spec} A \to X$ einen A-Modul $M_A$ , und
- 2. Isomorphismen: für jeden Morphismus Spec  $A \to X$  und jeden Morphismus Spec  $B \to$  Spec A einen Isomorphismus  $M_A \otimes_A B \to M_B$ ,

sodass diese bezüglich weiterer Morphismen  $\operatorname{Spec} C \to \operatorname{Spec} B$  ein Kohärenzaxiom erfüllen. Die rechte Seite kann man als Instanz der *Limesformel für Rechts-Kan-Erweiterungen* erkennen. Damit können wir also auch schreiben:

$$QCoh = Ran_{inkl}(Mod).$$

Der Funktor QCoh, der einem Schema seine Kategorie quasikohärenter Modulgarben zuordnet, ist also die Rechts-Kan-Erweiterung des Funktors  $\mathrm{Mod}:\mathrm{Ring}\to\mathrm{Cat}$  (welcher einem Ring A die Kategorie der A-Moduln zuordnet) längs der Inklusion inkl:  $\mathrm{Aff}^\mathrm{op}\to\mathrm{Sch}^\mathrm{op};$  bedenke  $\mathrm{Aff}^\mathrm{op}=\mathrm{Ring}.$ 

Man kann diese Geschichte auch noch anders erzählen. Angenommen, wir fangen gerade an, die Grundzüge der Schematheorie zu entwickeln. Als einleuchtendes Konzept für quasikohärente Modulgarben auf affinen Schemata  $\operatorname{Spec} A$  fällt uns dann die Kategorie der gewöhnlichen A-Moduln ein. Auf diese Weise erhalten wir einen Funktor  $\operatorname{Mod}:\operatorname{Aff}^{\operatorname{op}}\to\operatorname{Cat}.$  Wenn es nun doch nur eine Möglichkeit gäbe, diesen Funktor längs der Inklusion  $\operatorname{Aff}^{\operatorname{op}}\to\operatorname{Sch}^{\operatorname{op}}$  zu erweitern!



Beide der Ausdrücke für  $\operatorname{QCoh}(X)$  lassen sich auf Objekte X verallgemeinern, die nicht Schemata im engeren Sinn sind: zum Beispiel Garben auf  $\operatorname{Ring}^{\operatorname{op}}$ , welche nicht unbedingt lokal affin sind, oder sogar Prägarben auf  $\operatorname{Ring}^{\operatorname{op}}$ . Die Limesformel ist auch eine zentrale Idee zur Definition der Kategorie der quasikohärenten Modulgarben auf einem Stack.

Wer mag, kann die Formel auch noch zu

$$\operatorname{QCoh}(X) = \int_A \operatorname{Mod}(A)^{\operatorname{Hom}(\operatorname{Spec} A, X)} = \int_A [\underline{X}(A), \operatorname{Mod}(A)]$$

umschreiben. Damit endet dieser Ausflug in die 2-kategorielle Interpretation quasikohärenter Modulgarben.