$$\mathsf{RTP} \colon (P \implies Q) \implies ((P \implies \neg Q) \implies \neg P)$$

Assume that for all statements P and Q: $(P \implies Q)$. Then assume $(P \implies \neg Q)$.

We use a proof by contradiction. Therefore, assume P. Then, by $(P \implies Q)$, Q must be true. Also, by $(P \implies \neg Q)$, Q must be false.

This is a contradiction, so P must be false, meaning

$$(P \Longrightarrow Q) \Longrightarrow ((P \Longrightarrow \neg Q) \Longrightarrow \neg P)$$
, as required.

b) (i)

$$\mathsf{RTP} : a \equiv b \; (\bmod \, p \cdot q) \iff (a \equiv b \; (\bmod \, p) \land a \equiv b \; (\bmod \, q))$$

(\Longrightarrow) Assume that a and b are integers, and that $a \equiv b \mod p \cdot q$. Then by definition, a = kpq + d and b = lpq + d for some integers k, l, d, with $0 \leq d < pq$.

Let x=kp, and y=lp. Now, a=xq and b=yq. This gives $a\equiv b\mod q$. A similar result can be acquired by letting x=kq, and y=lq, to give $a\equiv b\mod p$. Therefore we have $(a\equiv b\pmod p)\wedge a\equiv b\pmod q$ as required.

(\iff) Assume a and b are integers, and that $a \equiv b \pmod{p} \land a \equiv b \pmod{q}$. By definition, we have a - b = ps, and a - b = qt, for some integers s, t.

We then have $p \mid (a-b)$ and $q \mid (a-b)$. Since p and q are coprime, this means that $pq \mid (a-b)$. We then have $a \equiv b \mod p \cdot q$, as required.

(ii)

For all natural numbers i and primes $p, i^p \equiv i \mod p$. If i is not a multiple of p, then $i^{p-1} \equiv 1 \mod p$

(iii)

We can split the problem up into cases.

Case 1: If n is divisible by both p and q, clearly the two sides are equivalent (both $0 \mod pq$)

Case 2: n is divisible by neither p nor q.

Then, define k such that ed=k(p-1)(q-1)+1 so that

$$n^{ed} = n^{k(p-1)(q-1)+1} = n \cdot n^{k(p-1)(q-1)}$$

Then,

$$(n^{k(p-1)})^{(q-1)} \equiv 1 \mod q$$

 $(n^{k(q-1)})^{(p-1)} \equiv 1 \mod p$

Applying the proof from part (ii), we then have $n \cdot n^{k(p-1)(q-1)} \equiv n \mod pq$ as required.

Case 3: Suppose one of p or q divides n - say this is p.

Then

$$(n^{k(p-1)})^{(q-1)} \equiv 1 \mod q$$

 $(n^{k(q-1)})^{(p-1)} \equiv 0 \mod p$

and so

$$n \cdot n^{k(p-1)(q-1)} \equiv n \mod q$$

 $\equiv 0 \mod p$

which gives us for some a,b

$$n \cdot n^{k(p-1)(q-1)} = ap = bq + n$$

from which we can clearly see that b is divisble by p, since both other terms are divisible by p, so that $n \cdot n^{k(p-1)(q-1)} \equiv n \mod pq$ as required.