Chapitre VIII

Géométrie Vectorielle dans l'Espace

I. VECTEURS DE L'ESPACE

La notion de vecteur se généralise à l'espace.

Le vecteur \vec{u} est caractérisé par un sens, une direction, et une norme, notée $||\vec{u}||$.

A. THÉORÈME

A, B, et C étant quatre points de l'espace, les propositions suivantes sont équivalentes :

- $-\overrightarrow{AB} = \overrightarrow{CD}$
- Le quadrilatère ABCD est un parallélogramme.
- Les segments [AD] et [BC] ont le même milieu.

B. DÉFINITION

Deux vecteurs de l'espace \vec{u} et \vec{v} sont colinéaires si et seulement si il existe un réel k tel que $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$.

C. Propriété

Toutes les opérations sur les vecteurs, en particulier la relation de Chasles sont identiques dans l'espace comme dans le plan.

D. THEORÈME

A et B étant deux points distincts de l'espace, (AB) est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} = t\overrightarrow{AB}, \ t \in \mathbb{R}$

$$(AB) = \{ M \in \mathcal{E}, \overrightarrow{AM} = t\overrightarrow{AB}, t \in \mathbb{R} \}$$

E. DÉFINITION

Un vecteur \vec{k} est une combinaison linéaire des vecteurs \vec{u} , \vec{v} et \vec{w} s'il existe des réels a, b et c tels que $\vec{k} = a\vec{u} + b\vec{v} + c\vec{w}$

II. VECTEURS COPLANAIRES

A. DÉFINITION

Des vecteurs sont coplanaires s'ils admettent des représentants dont les extrémités sont dans un même plan.

FIGURE 8.1. – Illustration de la Définition

Si O est un point quelconque et A, B et C sont tels que $\overrightarrow{OA} = \vec{u}$, $\overrightarrow{OB} = \vec{v}$, et $\overrightarrow{OC} = \vec{w}$ \vec{u} , \vec{v} , et \vec{s} coplanaires \iff O, A, B, et C coplanaires

B. Théorème

 \vec{u} , \vec{v} et \vec{w} étant trois vecteurs de l'espace avec \vec{u} et \vec{v} non colinéaires.

 \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si il existe deux réels α et β tels que $\vec{w} = \alpha \vec{u} + \beta \vec{v}$. (\vec{w} est une combinaison linéaire de \vec{u} et \vec{v})

1. Démonstration

Soient O, A, B, et C quatre points tels que $\overrightarrow{OA} = \vec{u}$, $\overrightarrow{OB} = \vec{v}$ et $\overrightarrow{OC} = \vec{w}$

 \vec{u} et \vec{v} sont non-colinéaires donc, O, A et B sont non alignés, et (OAB) est un plan de base (O, \overrightarrow{OA} , \overrightarrow{OB})

- " \Longrightarrow " On suppose que \vec{u} , \vec{v} , et \vec{w} sont coplanaires. Alors, $C \in (OAB)$.

 C admet donc des coordonnées $(\alpha; \beta)$ dans la base $(O, \overrightarrow{OA}, \overrightarrow{OB})$.

 C'est-à-dire $\overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$ ou encore $\vec{w} = \alpha \vec{u} + \beta \vec{v}$
- "

 On suppose que $\vec{w} = \alpha \vec{u} + \beta \vec{v}$ Soit D le point de (OAB) de coordonnées (α ; β)

 Alors,

$$\overrightarrow{OD} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$$
$$= \alpha \vec{u} + \beta \vec{v} = \vec{w} = \overrightarrow{OC}$$

Donc, D = C, les points sont confondus, et comme C \in (OAB), \vec{u} , \vec{v} , et \vec{w} sont coplanaires.

2. Théorème : Caracterisation Vectorielle d'un Espace

Si A, B, et C sont trois points non-alignés de l'espace, le plan (ABC) est l'ensemble des M tels que :

$$\overrightarrow{AM} = t\overrightarrow{AB} + t'\overrightarrow{AC} \quad (t, t' \in \mathbb{R})$$

III. REPÈRAGE DANS L'ESPACE

A. DÉFINITION

Un repère de l'espace est constitué d'un point appelé origine du repère (en général O) et d'un triplet de vecteurs non-coplanaires (en général \vec{i} , \vec{j} et \vec{k})

On le note
$$(O; \vec{i}, \vec{j}, \vec{k})$$

B. VOCABULAIRE

La droite (O; \vec{i}) est appelée axe des abscisses.

La droite (O ; \vec{j}) est appelée axe des ordonnées.

La droite (O; \vec{k}) est appelée axe des cotes.

Lorsque ces trois axes sont perpendiculaires deux à deux, le repère est orthogonal. Si de plus $||\vec{i}|| = ||\vec{j}|| = ||\vec{k}|| = 1$, le repère est orthonormé.

C. COORDONNÉES DANS L'ESPACE

1. Théorème

Si $\left(O; \vec{t}, \vec{j}, \vec{k} \right)$ est un repère, pour tout point M, il existe un unique triplet $\left(x; y; z \right)$ de réels tels que $\overrightarrow{OM} = x\vec{t} + y\vec{j} + z\vec{k}$, appelés coordonnées de M. On note M $\left(x; y; z \right)$

A. DÉMONSTRATION

FIGURE 8.2. - Démonstration du Théorème

 $\overrightarrow{OM} = \overrightarrow{OM'} + \overrightarrow{M'M}$

Or M \in (O; \vec{i} ; \vec{j}) donc il a des coordonnées (x; y) dans le repère (O; \vec{i} ; \vec{j}).

$$\overrightarrow{OM'} = x\vec{\imath} + y\vec{\jmath}$$

 $\overrightarrow{M'M}$ est colinéaire à \overrightarrow{k} (on a projeté dans sa direction). Il existe un réel z tek que $\overrightarrow{M'M} = z\overrightarrow{k}$

Donc, $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$ \square (On admet l'unicité)

B. REMARQUE

On définit de même les coordonnées d'un vecteur de l'espace. Tout vecteur de l'espace est une combinaison linéaire des vecteurs $\vec{\imath}$, $\vec{\jmath}$ et \vec{k} .

2. Théorème

Si dans un repère A (x_A ; y_A ; z_A) et B (x_B ; y_B ; z_B) sont deux points, le vecteur \overrightarrow{AB} a pour coordonnées :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

Et I, le point du milieu de [AB] :

$$I\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right)$$

Dans un repère orthonormé, un vecteur $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ a pour norme :

$$||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$$

A. DÉMONSTRATION

Passer par M', le projeté orthogonal de M sur $(O; \vec{\imath}, \vec{\jmath})$, puis appliquer le théorème de Pythagore deux fois.

3. Théorème

Si I est le milieu de [AB], pour tout M:

$$\overrightarrow{MI} = \frac{1}{2}\overrightarrow{MA} + \frac{1}{2}\overrightarrow{MB}$$

A. DÉMONSTRATION

$$\begin{split} \overrightarrow{MI} &= \overrightarrow{MA} + \overrightarrow{AI} \\ &= \frac{1}{2}\overrightarrow{MA} + \frac{1}{2}\overrightarrow{MA} + \frac{1}{2}\overrightarrow{AB} \\ &= \frac{1}{2}\overrightarrow{MA} + \frac{1}{2}\overrightarrow{MB} \quad \text{(Chasles)} \end{split}$$