Construction 3 – TP 2

Rappels de résistance des matériaux

Torseur des efforts intérieurs

Poutre droite

- On considère une poutre droite E découpée arbitrairement en deux tronçons E_1 et E_2 .
- On suppose que cette poutre est en équilibre sous l'action des efforts extérieurs.

Torseur des efforts intérieurs

• Par convention, le torseur des actions intérieures (ou de cohésion) est défini comme suit :

$$\left\{\mathcal{F}_{coh}\right\} = \left\{\mathcal{F}_{E_2 \to E_1}\right\} = - \left\{\mathcal{F}_{Ext \to E_1}\right\}$$

Composantes du torseur des efforts intérieurs

Torseur des efforts intérieurs

 Dans le repère local de la section droite, le torseur des actions intérieures s'écrit :

$$\left\{\mathcal{F}_{coh}\right\} = \left\{\begin{matrix} N\vec{x} + T_{y}\vec{y} + T_{z}\vec{z} \\ M_{t}\vec{x} + M_{fy}\vec{y} + M_{fz}\vec{z} \end{matrix}\right\}_{G}.$$

• Dans le cas de poutres droites à plan moyen (\vec{x}, \vec{y}) , on a :

$$\left\{ \mathcal{F}_{coh} \right\} = \left\{ egin{align*} N \overrightarrow{x} + T_y \overrightarrow{y} \\ M_t \overrightarrow{x} + M_{fz} \overrightarrow{z} \end{array} \right\}_G.$$

Sollicitations associées

Sollicitations associées

$$\left\{ \mathcal{F}_{coh} \right\} = \left\{ \begin{matrix} N\vec{x} + T_y \vec{y} \\ M_t \vec{x} + M_{fz} \vec{z} \end{matrix} \right\}_G$$

Sollicitation élémentaire	Composante non nulle	$ig\{\mathcal{F}_{coh}ig\}$
Traction/compression	N	$\left\{ \begin{matrix} N\vec{x} \\ \vec{0} \end{matrix} \right\}_G$
Cisaillement pur	T_y	$\left\{ \begin{array}{c} T_y \vec{y} \\ \vec{0} \end{array} \right\}_G$
Torsion	M_t	$\left\{ \vec{0} \atop M_t \vec{x} \right\}_G$
Flexion pure	M_{fz}	$ \left\{ $
Flexion simple	T_y et M_{fz}	

Contrainte – Vecteur contrainte

Vecteur contrainte

• En MMC, les efforts de cohésion exercés sur un petit élément de surface dS et de normale \vec{n} sont une densité de force par unité de surface.

• Cette densité de force est caractérisée par le vecteur contrainte $\vec{T}(M, \vec{n})$.

Contrainte – Vecteur contrainte

Projections du vecteur contrainte

• Les projections du vecteur contrainte s'écrivent : $\vec{T}(M, \vec{n}) = \sigma \vec{n} + \tau \vec{t}$.

• Le torseur des efforts intérieurs a pour expression :

$$\left\{\mathcal{F}_{coh}\right\} = \left\{ \int_{S} \overrightarrow{T}(M, \overrightarrow{n}) dS \\ \int_{S} \overrightarrow{GM} \wedge \overrightarrow{T}(M, \overrightarrow{n}) dS \right\}_{G}$$

Tenseur des déformations linéarisées

Tenseur des déformations

- On note \overrightarrow{u} le vecteur déplacement. Ses composantes dans une certaine base s'écrivent $\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$.
- Le tenseur des déformations linéarisées s'écrit : $\left| \overline{\overline{\varepsilon}} = \frac{1}{2} (\overline{\overline{\nabla}} \overrightarrow{u} + \overline{\overline{\nabla}} \overrightarrow{u}^T) \right|$.
- Ses composantes, exprimées dans un repère cartésien, ont pour expression : $\varepsilon_{ij} = \frac{1}{2} (\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i}).$

Loi de comportement

Loi de comportement élastique, isotrope

- La loi de comportement élastique, isotrope est caractérisée par deux coefficients :
 - λ , μ dits coefficients de Lamé, ou bien
 - E, module d'Young et ν , coefficient de Poisson.

 μ est aussi noté G et appelé module de distorsion (ou module de Coulomb).

• Le tenseur des contraintes a pour expression : $\boxed{\overline{\overline{\sigma}} = \lambda \operatorname{Tr}(\overline{\overline{\varepsilon}})\overline{\overline{ld}} + 2\mu\overline{\overline{\varepsilon}}}$.

• Le tenseur des déformations a pour expression : $\left| \overline{\overline{\varepsilon}} = \frac{1+\nu}{E} \overline{\overline{\sigma}} - \frac{\nu}{E} Tr(\overline{\overline{\sigma}}) \overline{\overline{Id}} \right|$.

• Relations entre les coefficients :

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \qquad \nu = \frac{\lambda}{2(\lambda + \mu)}$$
$$\lambda = \frac{\nu E}{(1 - 2\nu)(1 + \nu)} \quad \mu = G = \frac{E}{2(1 + \nu)}$$

STRASBOURG COCOUC

Caractéristiques mécaniques de matériaux

Quelques ordres de grandeur

	$ ho~({ m kg}\cdot{ m m}^{-3})$	E (GPa)	ν	$R_{0,2}$ (MPa)	R_m (MPa)
Acier ordinaire	7800	200	0.29	200	400
Acier allié	7800–8300	195–215	0.25-0.33	200–2000	400–2400
Aluminium	2700	78	0.34	50	200
Nylon	1200	2–4	0.4	50–80	100

- $R_{0,2}$: limite conventionnelle d'élasticité. C'est la contrainte en traction simple pour une déformation permanente de 0.2%.
- R_m : limite de rupture en traction.

Contrainte équivalente de Von Mises

• Critère d'endommagement utilisé très fréquemment. On compare σ_{VM} à $R_{0,2}$ pour les métaux $(\sigma_{VM} \leq R_{0,2})$.

 $\sigma_{VM} = \sqrt{\frac{1}{2}} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 3(\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2) \right]$ Écrite avec les containtes principales, σ_{VM} vaut :

$$\sigma_{VM} = \sqrt{\frac{1}{2} \left[(\sigma_I - \sigma_{II})^2 + (\sigma_{II} - \sigma_{III})^2 + (\sigma_{III} - \sigma_I)^2 \right]}$$

Traction – Compression

• Sollicitation de la poutre d'extrémité
$$A: \{\mathcal{F}_{ext}\} = \left\{ \overrightarrow{Fx} \atop \overrightarrow{0} \right\}_A$$

Matrice des contraintes :

$$\sigma(M) = \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})} \quad \text{avec } \sigma_{xx} = \frac{F}{S}.$$

- Allongement relatif ou déformation : $\frac{\Delta L}{L_0} = \varepsilon_{xx}$.
- Contrainte normale : $\sigma_{xx} = E \varepsilon_{xx}$.
- Contrainte équivalente de Von Mises : $\sigma_{VM} = \sigma_{xx}$.

Flexion

• Sollicitation de la poutre de longueur I, encastrée en O, d'extrémité A :

- Équilibre de la poutre : $M_{fz} = EI_{G_z} \frac{d^2y}{dx^2}$ avec I_{G_z} moment quadratique par rapport à l'axe (G, \vec{z}) : $I_{G_z} = \int y^2 dS$.
 - Par ailleurs, comme $M_{fz}(x) = (I x)F$, on a : $EI_{G_z} \frac{d^2y}{dx^2} = (I x)F$.
- Par intégration, on obtient l'équation de la déformée de la poutre :

$$y(x) = \frac{F}{EI_{G_z}} \left(I - \frac{x}{3}\right) \frac{x^2}{2}$$
. Flèche en $A: y_{max} = \frac{FI^3}{3EI_{G_z}}$.

• Contrainte normale : $\sigma_{xx} = -\frac{M_{fz}}{I_C}y$.

Torsion

• Sollicitation de la poutre de longueur I, encastrée en O, d'extrémité A :

- γ : Déformation de cisaillement. $\gamma = r \frac{d\varphi}{d\varphi}$.
- θ : Angle unitaire de torsion (rad·m⁻¹) défini par $\theta = \frac{d\varphi}{dx}$. On a : $\gamma = r\theta$.
- Rappel : $G = \frac{E}{2(1+\nu)}$ module de distorsion (ou de cisaillement ou de Coulomb).

Torsion

• Matrice des contraintes dans la base $(\vec{x}, \vec{y}, \vec{z})$:

$$\sigma = \begin{bmatrix} 0 & G\theta z & -G\theta y \\ G\theta z & 0 & 0 \\ -G\theta y & 0 & 0 \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$$

• Matrice des contraintes dans la base $(\vec{e}_r, \vec{e}_\theta, \vec{e}_z)$:

$$\sigma = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & G\theta r \\ 0 & G\theta r & 0 \end{bmatrix}_{(\vec{e}_r, \vec{e}_\theta, \vec{e}_z)}$$

• Matrice des contraintes dans la base principale $(\vec{d}_I, \vec{d}_{II}, \vec{d}_{III})$:

$$\sigma = \begin{bmatrix} G\theta r & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -G\theta r \end{bmatrix}_{(\overrightarrow{d}_I, \overrightarrow{d}_H, \overrightarrow{d}_H)}$$

Torsion

- Contrainte de cisaillement : $\tau_{\theta z} = G\gamma = G\theta r$.
- I_0 : Moment quadratique polaire. $I_0 = \int r^2 dS$.
- Relation entre M_t et la contrainte :

$$\begin{split} M_t \, \overrightarrow{e}_z &= \int_S \overrightarrow{GM} \wedge \overrightarrow{T}(M, \overrightarrow{e}_z) dS \\ &= \int_S r \overrightarrow{e}_r \wedge G\theta r \overrightarrow{e}_\theta dS \\ &= G\theta \int_S r^2 dS \overrightarrow{e}_z \\ M_t \, \overrightarrow{e}_z &= G\theta I_0 \, \overrightarrow{e}_z \end{split}$$

- Contrainte de cisaillement maximale : $|\tau_{max}| = \frac{M_t}{I_0}R = G\theta R$.
- Distorsion maximale : $\gamma_{max} = \frac{\tau_{max}}{G}$.
- Déplacement maximal : $\gamma_{max}I$.
- Contrainte de Von Mises : $\tau_{VM} = \sqrt{3}\tau_{max}$. Pour le dimensionnement, on compare τ_{VM} à la limite d'élasticité (obtenue par un essai en traction).