Linear Algebra: Determinants

Arjun Vardhan

†

Created: 20th July 2022 Last updated: 21st July 2022

1 Introduction

- \bullet For square matrices A we define a measure called the determinant, denoted det A, such that it satisfies the following properties:
 - 1. **Linearity in each column:** $\det(v_1, v_2, ..., \alpha v_k + \beta u_k, ..., v_n) = \alpha \det(v_1, v_2, ..., v_k, ..., v_n) + \beta \det(v_1, v_2, ..., u_k, ..., v_n)$. Here, $(v_1, ..., v_n)$ denotes the matrix with columns $v_1, ..., v_n$.
 - 2. **Antisymmetry:** If two columns of a matrix are interchanged, then its determinant changes sign.
 - 3. Normalization: $\det I = 1$.
- More properties of the determinant can be deduced from the above. Let A be a square matrix. Then:
 - 1. If A has a zero column then $\det A = 0$. Proof:
 - 2. If A has two equal columns, then $\det A = 0$. *Proof:*
 - 3. If one column of A is a multiple of another, $\det A = 0$. Proof:
 - 4. If the columns of A are not linearly independent, i.e, A is not invertible, then $\det A = 0$. *Proof:*
- The determinant does not change if we add to a column a linear combination of the other columns, leaving the other columns intact. *Proof:*
- A square matrix is called diagonal if all non-diagonal entries are 0. Let $A = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & a_n \end{pmatrix}$.

Since A can be obtained from I by multiplying its kth column by a_k , we have $\det A = a_1 a_2 ... a_n$. Thus the determinant of a diagonal matrix is simply the product of all its diagonal entries.

- A square matrix A is called upper triangular if all entries below the main diagonal are 0, and lower triangular if all entries above the main diagonal are 0.
- A square matrix A is invertible if and only if $\det A \neq 0$.
- Let A be a square matrix and E an elementary matrix of the same size. Then, $\det(AE) = (\det A)(\det E)$. Proof:
- For a square matrix A, $\det A = \det A^T$. Proof:
- For $n \times n$ matrices A and B, $\det(AB) = (\det A)(\det B)$. Proof:

•

2 Existence and Uniqueness of the Determinant

•

- 3 Cofactor Expansion
 - •
- 4 Minors and Rank
 - •