

Forecasting Methods

Problem Set VI

Problem Set for Exercise 6

For feedback to your solutions of the problem set, please hand the R script file in by January 15th, 2023. Please send them by email to abigail.asare@uol.de with the subject "Forecasting: Problem Set VI".

Question 1

Update the level

 $\ell_t = \forall y_t + (1 - t) \ell_{t-1}$ • If parameter $\alpha = 0.83$ • if the level $\ell_t = 510.31$ level
• calculate the following: $\widehat{\mathcal{Y}_{t+1}} = \ell_t$

Year	time	obs	level	Forecast	
	t	y_t	ℓ_t	ŷt	
2006	0		510.31		
2007	1	488.89	510.31	5 10,31	→ 0.83×488.89+(1-0.81)×510.31 = 482,53
2008	2	509.87	510,01	492,53	→ D,RJ × 509.87 + (1-0.8°) × 492.5°2 = 506,32
2009	3	456.72	492,53	506,92	>0,83× 456,42 + (1-0,83) × 506A1= 465,25
2010	4	473.82	506,92	465,25	→0.87x 443,82 +(1-0,3) x 465,3= 472.36
2011	5	525.95	465,25	472,36	-> D187 × 525,95 + (1-0,82) × 442,36 = 516,84
2012	6	549.83	472,36	516,84	→0,83×516,84+(1-0,83)×516,84=564,22
2013	7	542.34	516,84	544,22	>0,82x Su4,22+(1-0,83) x 544,22 = 542,65
	h		544,22	542,66	
2014	1		542,66	542,66	
2015	2		S 62,66	542.66	
2016	3		54266	542,66	
2017	4		54266	542,66	
2018	5		562,66	542.66	

Question 2

- If parameter $\alpha = 0.7$ and $\beta = 0.8$
- if $\ell_t = \text{level}$ and $b_t = \text{trend}$
- calculate the following:

time	obs	level	trend	Forecast
t	y_t	ℓ_t	b_t	ŷ_t
0	-	148,112.60	436.57	-
1	160,217.99			
2	143,538.70			
3	148,158.37			
4	139,589.44			
5	147,395.12			
6	161,243.67			
h				
1				
2				
3				

- Holt's linear frend method upobtes both the level and trend at each time step. supplies the level: lt = xyt + (1+x)(lts+bts)

-> update the trend: bes B(li-lis)+(1+B)bess -> yen= li+hke (for h sters ahead)

Question 3

- If parameter $\alpha=0.306$, $\beta=0.0003$ and $\gamma=0.426$
- if $\ell_t = \text{level}$, $b_t = \text{trend}$ and $s_t = \text{additive seasonality}$
- calculate the following:

Year	Quarter	time	obs	level	trend	season	Forecast
		t	y_t	ℓ_t	b_t	s_t	ŷ_t
2004	Q1	-3				9.70	
2004	Q2	-2				-9.31	
2004	Q3	-1				-1.69	
2004	Q4	0		32.26	0.70	1.31	
2005	Q1	1	42.21				
2005	Q2	2	24.65				
2005	Q3	3	32.67				
2005	Q4	5	37.26				
2006	Q1	6	73.26				
2006	Q2	7	47.70				
2006	Q3	8	61.10				
2006	Q4	9	66.06				
		h					
2007	Q1	1					70.56
2007	Q2	2					52.57
2007	Q3	3					59.86
2007	Q4	4					66-61
2008	Q1	5					73,94
2008	Q2	6					55.39
2008	Q3	7					62.68
2008	Q4	8					69.4

Question 4

- If parameter $\alpha=0.0441$, $\beta=0.030$ and $\gamma=0.002$
- if $\ell_t = \text{level}$, $b_t = \text{trend}$ and $s_t = \text{multiplicative seasonality}$
- calculate the following:

Year	Quarter	time	obs	level	trend	season	Forecast
		t	y_t	ℓ_t	b_t	s_t	ŷ_t
2004	Q1	-3				1.24	
2004	Q2	-2				0.77	
2004	Q3	-1				0.96	
2004	Q4	0		32.26	0.70	1.02	
2005	Q1	1	42.21				
2005	Q2	2	24.65				
2005	Q3	3	32.67				
2005	Q4	5	37.26				
2006	Q1	6	73.26				
2006	Q2	7	47.70				
2006	Q3	8	61.10				
2006	Q4	9	66.06				
		h					
2007	Q1	1					
2007	Q2	2					
2007	Q3	3					
2007	Q4	4					
2008	Q1	5					
2008	Q2	6					
2008	Q3	7					
2008	Q4	8					

-> Level:
$$l_t = \frac{3\epsilon}{s_{t-s}} + (1-\epsilon)(l_{t-1} + b_{t-1})$$