Домашнее задание 2

<u>Диагональная матрица</u>

A												b
73	-8	-1	-2	2	-9	3	1	-10	-3	0	-10	-6
-9	89	-1	0	8	3	7	6	-10	7	-6	6	9
-2	0	79	7	-8	8	7	5	0	8	-4	8	6
-5	-5	-5	91	-8	-7	-3	8	-5	-10	7	7	4
8	-8	3	3	90	-8	-5	7	7	-1	-10	1	7
-3	-10	7	8	-7	98	-5	-5	7	-3	-10	-8	-3
4	-1	-9	-10	-2	-1	73	3	0	7	-7	2	-2
9	2	-4	-7	5	-10	-10	92	7	-9	-2	-3	-4
-1	-10	-1	-10	-10	-6	5	-4	87	-6	3	-2	4
-4	-6	-1	9	-6	-10	8	-3	-8	86	2	1	2
1	1	5	4	7	9	6	3	-1	0	68	9	9
0	5	4	5	-1	-4	-1	-1	2	-4	-1	56	9

$A\ symmetric$												b
5702	-1333	-405	-446	806	-1059	515	808	-759	-350	-74	-592	-629
-1333	8382	106	-473	-95	-776	497	454	-1909	139	-126	702	832
-405	106	6640	227	-502	1347	-155	-201	-176	689	294	735	452
-446	-473	227	8765	-423	-28	-1157	144	-1143	145	760	856	344
806	-95	-502	-423	8535	-1179	-468	1322	-283	-642	-102	11	491
-1059	-776	1347	-28	-1179	10147	-576	-1436	106	-1168	83	-769	-451
515	497	-155	-1157	-468	-576	5643	-369	427	1096	-116	-70	-327
808	454	-201	144	1322	-1436	-369	8982	300	-1230	-46	-204	-406
-759	-1909	-176	-1143	-283	106	427	300	7997	-1061	-63	12	169
-350	139	689	145	-642	-1168	1096	-1230	-1061	7808	81	-254	151
-74	-126	294	760	-102	83	-116	-46	-63	81	4924	427	736
-592	702	735	856	11	-769	-70	-204	12	-254	427	3242	595

Результаты:

Метод	Точное решение	Якоби	Зайделя	Зайделя с релаксацией	Сопряжённых градиентов	Гаусса
Количество итераций	1	11	7	25	12	1
Критерий окончания итераций	-	Малость невязки	Малость невязки	Малость невязки	Малость невязки	-
x_1	-0.04140748	-0.08219178	-0.08219178	-0.04109589	-0.04140747	-0.04140748
x_2	0.0951535	0.1011236	0.09281207	0.04848392	0.09515349	0.0951535
x_3	0.07045395	0.07594937	0.07386856	0.03745448	0.07045396	0.07045395
x_4	0.04999145	0.04395604	0.04859829	0.02320996	0.04999148	0.04999145
x_5	0.09185645	0.07777778	0.08925145	0.04185914	0.09185645	0.09185645
x_6	-0.00910101	-0.03061224	-0.02652613	-0.01425151	-0.00910098	-0.00910101
x_7	-0.00180436	-0.02739726	-0.00377595	-0.00786627	-0.00180429	-0.00180436
x_8	-0.03653304	-0.04347826	-0.03869037	-0.02089832	-0.03653296	-0.03653304
x_9	0.07336947	0.04597701	0.06900295	0.0287478	0.07336951	0.07336947
x_{10}	0.03064549	0.02325581	0.03024415	0.01333687	0.03064556	0.03064549
x_{11}	0.09893318	0.13235294	0.12128454	0.06387051	0.09893317	0.09893318
x_{12}	0.1443634	0.16071429	0.14361446	0.07596003	0.1443634	0.1443634

Случайная матрица

A										b
0.09310	0.46296	0.93137	0.30380	0.60630	0.90974	0.00426	0.19193	0.12714	0.98395	0.41040
0.24521	0.76891	0.47166	0.55561	0.76400	0.41916	0.42559	0.74468	0.95186	0.81468	0.93407
0.20463	0.51378	0.84973	0.84296	0.02374	0.44718	0.66388	0.61766	0.57209	0.25182	0.25237
0.88916	0.98856	0.61451	0.44720	0.89148	0.86907	0.50745	0.06848	0.86180	0.84522	0.49320
0.23916	0.23566	0.37235	0.87459	0.97991	0.58573	0.70257	0.17351	0.22382	0.82836	0.67732
0.17299	0.63587	0.46413	0.88649	0.38913	0.35721	0.93878	0.19617	0.65420	0.82861	0.62401
0.44414	0.05817	0.73251	0.30840	0.17337	0.26483	0.31740	0.64132	0.73144	0.53343	0.80028
0.43692	0.52223	0.08441	0.47346	0.94672	0.80371	0.70694	0.45602	0.69618	0.14082	0.10161
0.74979	0.91611	0.41144	0.98386	0.02433	0.70182	0.64097	0.78008	0.01748	0.49528	0.04442
0.75950	0.49040	0.62319	0.77167	0.47742	0.62423	0.76287	0.99692	0.64978	0.39911	0.30820
0.01054	0.00871	0.45547	0.58313	0.67816	0.75775	0.39740	0.58843	0.48111	0.13340	0.84128
0.16602	0.06466	0.78431	0.62658	0.43781	0.06728	0.47534	0.63883	0.59357	0.72091	0.19221

$A\ symmetric$									b
4.32860	3.99913	2.72190	4.02301	3.14499	3.29613	2.77881	2.54551	3.25875	3.25499
3.99913	5.79533	3.67262	5.06622	3.95397	4.61251	3.89278	3.73887	3.98181	4.67136
2.72190	3.67262	3.48268	3.37672	2.65894	3.46967	2.79404	2.64362	3.62647	3.83958
4.02301	5.06622	3.37672	5.96422	4.08711	4.37998	3.29952	4.01039	4.01840	4.54352
3.14499	3.95397	2.65894	4.08711	4.05610	3.75951	2.54847	3.04612	2.99136	3.50605
3.29613	4.61251	3.46967	4.37998	3.75951	4.50313	3.09145	3.17113	3.77247	4.02348
2.77881	3.89278	2.79404	3.29952	2.54847	3.09145	3.25688	2.24767	2.72087	3.45720
2.54551	3.73887	2.64362	4.01039	3.04612	3.17113	2.24767	3.64560	3.16916	3.73490
3.25875	3.98181	3.62647	4.01840	2.99136	3.77247	2.72087	3.16916	5.07639	4.46737
3.25499	4.67136	3.83958	4.54352	3.50605	4.02348	3.45720	3.73490	4.46737	4.98484
2.42863	3.40900	2.42971	3.03193	2.97243	2.75708	2.48397	2.59751	2.22107	3.10237
2.79500	3.66512	2.88644	3.11504	2.74696	3.21662	2.82167	2.35331	2.87909	3.44315

Результаты

Метод	Точное решение	Якоби	Зайделя	Зайделя с релаксацией	Сопряжённых градиентов	Гаусса
Количество итераций	1		56	84	14	1
Критерий окончания итераций (ТВD)	-	Spectral radius of matrix is less than 1, aborting calculation (см. комментарии)	tbd	tbd	tbd	-
x_1	1.24386958	E	5.07222390	2.53611195	1.24386957	1.24386958
x_2	-1.46857295	E	0.064430212	-0.07782169	-1.46857295	-1.46857295
x_3	-0.29223781	je;	0.026281931	-0.17580902	-0.29223781	-0.29223781
x_4	1.10681103	Je.	-6.48895878	-1.87528237	1.10681102	1.10681103
x_5	0.58006511	E	5.17476138	0.68376892	0.58006511	0.58006511
x_6	-0.31909681	E	11.2342668	2.00074065	-0.31909681	-0.31909681
x_7	-0.76018098	je;	-8.91521041	-0.21629973	-0.76018099	-0.76018098
x_8	-0.97736241	E	1.7939253	-1.552086	-0.97736241	-0.97736241
x_9	0.75454575	ja;	633.812509	15.83035935	0.75454575	0.75454575
x_{10}	-0.62774438	i	2.68475	-12.26533549	-0.62774438	-0.62774438
x_{11}	-0.2649922	JE.	0.632206	-3.45405884	-0.2649922	-0.2649922
x_{12}	1.98558713	120	676.603626	2.21005337	1.98558712	1.98558713

<u>Гильбертова матрица</u>

A												b
1.00000	0.50000	0.33333	0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.97844
0.50000	0.33333	0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.18721
0.33333	0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.14532
0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.95626
0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.64579
0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.24603
0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.23098
0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.17866
0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.62681
0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.04762	0.74929
0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.04762	0.04545	0.37816
0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.04762	0.04545	0.04348	0.02893

$A\ symmetric$												b
1.56498	0.92308	0.67582	0.53944	0.45145	0.38940	0.34302	0.30690	0.27792	0.25409	0.23414	0.21716	1.76640
0.92308	0.57089	0.42857	0.34762	0.29425	0.25598	0.22701	0.20421	0.18575	0.17047	0.15759	0.14657	1.13524
0.67582	0.42857	0.32600	0.26667	0.22708	0.19845	0.17661	0.15934	0.14528	0.13360	0.12371	0.11524	0.87851
0.53944	0.34762	0.26667	0.21933	0.18750	0.16434	0.14660	0.13250	0.12100	0.11142	0.10329	0.09631	0.72909
0.45145	0.29425	0.22708	0.18750	0.16074	0.14118	0.12614	0.11417	0.10438	0.09620	0.08926	0.08328	0.62818
0.38940	0.25598	0.19845	0.16434	0.14118	0.12420	0.11111	0.10067	0.09211	0.08496	0.07887	0.07363	0.55423
0.34302	0.22701	0.17661	0.14660	0.12614	0.11111	0.09950	0.09023	0.08261	0.07624	0.07082	0.06614	0.49716
0.30690	0.20421	0.15934	0.13250	0.11417	0.10067	0.09023	0.08187	0.07500	0.06925	0.06435	0.06012	0.45150
0.27792	0.18575	0.14528	0.12100	0.10438	0.09211	0.08261	0.07500	0.06874	0.06349	0.05902	0.05516	0.41400
0.25409	0.17047	0.13360	0.11142	0.09620	0.08496	0.07624	0.06925	0.06349	0.05866	0.05455	0.05099	0.38255
0.23414	0.15759	0.12371	0.10329	0.08926	0.07887	0.07082	0.06435	0.05902	0.05455	0.05073	0.04743	0.35575
0.21716	0.14657	0.11524	0.09631	0.08328	0.07363	0.06614	0.06012	0.05516	0.05099	0.04743	0.04436	0.33260

Результаты

Метод	Точное решение	Якоби	Зайделя	Зайделя с релаксацией	Сопряжённых градиентов	Гаусса
Количество итераций	1		398'143	760'067	7	1
Критерий окончания итераций (TBD)	-	Spectral radius of matrix is less than 1, aborting calculation (см. комментарии)	tbd	tbd	Малость невязки	-
x_1	46781720.8	[]	17.81627383	-3583.32097743	30.78958822	863.078119
x_2	849034980	100 Inc.	-91.70662594	91128.5186219	-214.16477372	191.0547
x_3	181684671000	复	57.41217542	-481556.34841693	220.24024254	980106.815
x_4	447964920000	复	45.41660631	634810.5275951	160.16744491	518299.37
x_5	17765826500000	10	20.08695618	390529.52021387	9.5460452	3125122.47
x_6	7351576700000	ją:	2.7947155	-474326.46996043	-94.26656176	2369739.56
x_7	213749747000000	凝	-6.48350621	-470036.33912928	-132.4074806	2395753.35
x_8	84020107000000	ţaţ	-10.46428639	-1280820.31120389	-118.56941313	478289.70
x_9	447139526000000	ţa(-11.35370314	1242462.62332825	-70.5986475	34288.02
x_{10}	25426524000000	颖	-10.57752072	1554802.01113041	-3.02426836	16908362.2
x_{11}	134524619000000	1 2(-8.98870386	-639258.44737977	73.89735875	851236572
x_{12}	4109452800000	ţaţ	-7.07703951	-568582.92197412	153.43207369	530440.05

Комментарии (TBD)

[Метод Гаусса для плохо обусловленных матриц коэффициентов является вычислительно неустойчивым. Например, для матриц Гильберта метод приводит к очень большим ошибкам даже при небольшой размерности этих матриц. Уменьшить вычислительную ошибку можно с помощью метода Гаусса с выделением главного элемента, который является условно устойчивым. Широкое применение метода Гаусса связано с тем, что плохо обусловленные матрицы встречаются на практике относительно редко.]?

<Про обусловленность... Также поч там не робит метод Якоби...>