#### Innhold:

| - | Definisjon av eksponentialfunksjoner (med eksempel) | (s. 1) |
|---|-----------------------------------------------------|--------|
| - | Hvordan forskjellige verdier påvirker grafen        | (s. 2) |
| - | Eksponentialfunksjon eksempel                       | (s. 3) |
| - | Lage funksjonsuttrykk fra tekst                     | (s. 4) |
| - | Oppgaver                                            | (s. 4) |
| _ | Løsningsforslag                                     | (s. 5) |

### **Definisjon av eksponentialfunksjoner** (med eksempel)

Eksponentialfunksjoner kan defineres som en funksjon med x i eksponenten.

Eksponentialfunksjoner har også en prosentvis endring, som vil si at hvis noe øker med 50%, og verdien til funksjonen ved x = 0 er 100, så vil den ved neste x (x = 1) øke med 50% og bli 150.

Strukturen til en eksponentialfunksjon er:  $f(x) = a \cdot v f^x$ 

De forskjellige variablene og hva de står for:

- a står for startverdien ved x = 0, altså også y-akse skjæringen. I eksemplet vi brukte ville a = 100.
- *vf* står for vekstfaktor er hvor mye noe vokser eller minker gitt i desimalversjonen av prosent.

I eksemplet vi brukte ville vf = 1.5

- x er bare variabelen til funksjonen.

Det betyr at funksjonen som hadde beskrevet eksemplet ville blitt gitt som:



## Hvordan forskjellige verdier påvirker grafen

I forklaringene vil det refereres til dette eksemplet:



- > Større enn
- < Mindre enn
- ≤ Større eller lik
- ≥ Mindre eller lik

| Variabel | Påvirkning                                                                       |  |
|----------|----------------------------------------------------------------------------------|--|
| а        | a påvirker hvor funksjonen krysser y-aksen (som vi vet er y-aksen langs          |  |
|          | x = 0, så vi putter bare 0 i funksjonen for å finne skjæring med y-aksen).       |  |
|          | Dette er fordi:                                                                  |  |
|          | $f(0) = a \cdot v f^0$ (Alt opphøyd i null blir 1   dette gjelder ikke 0)        |  |
|          | $= a \cdot 1$                                                                    |  |
|          | = a                                                                              |  |
|          | Vi kaller $a$ for startverdien.                                                  |  |
|          |                                                                                  |  |
|          | I eksemplet hos den oransje ser vi at $a = 10$ og i den lilla ser vi at $a = 50$ |  |
| vf       | vf påvirker om grafen går oppover (oransje) eller nedover (lilla).               |  |
|          | - $vf > 1$ betyr at grafen går oppover (oransje)                                 |  |
|          | - $vf < 1$ betyr at grafen går nedover (lilla)                                   |  |
|          | Disse stemmer så lenge $a > 0$ . Hvis $a < 0$ så bytter den, altså det           |  |
|          | motsatte av de to nevnt.                                                         |  |

#### Eksponentialfunksjon eksempel

La oss si du bestemmer deg for å putte inn 5000kr inn på en sparekonto med 5% rente per år, derfor velger vi også at x-asken er «år etter du putter inn pengene». F.eks. ved x = 5 så er det 5 år etter du satt inn pengene. y-aksen skal være gitt i norske kroner.

Nå må vi finne variablene sine verdier:

- a = 5000 fordi det er startverdien
- vf = 1 + prosentFaktor = 1 + 0.05 = 1.05 (hvis det er minking så er det 1 pf)

Da får vi funksjonen:  $f(x) = 5000 \cdot 1,05^x$ 

#### Da vil dette bli grafen:



(I GeoGebra bruker man punktum i stedet for komma. Grafen er ikke lineær, det er bare lite økning og veldig zoomet inn på)

Noe viktig å passe på er at grafen er ikke gyldig ved negative x-verdier i dette eksemplet. xasken her beskriver tid etter vi puttet inn pengene. Da kan vi ikke se hvor mye vi hadde i
kontoen ett år før vi opprettet den.

Funksjonen er kun gyldig når  $x \ge 0$ .

#### Lage funksjonsuttrykk fra tekst

En god oppskrift hvis man ikke har noen anelse er:

- 1. Identifiser α
- 2. Identifiser *vf*
- 3. Putt verdiene i funksjonen:  $f(x) = a \cdot v f^x$

Her er noen oppgaver, etterfulgt av løsningsforslag på de neste side. Se på løsningen hvis du er usikker, og prøv å forstå fremgangsmåten.

#### **Oppgaver**

Lag en eksponentialfunksjon som beskriver teksten.

- a) En bakteriekultur starter med 500 individer og dobler seg hver time. Lag en funksjon, f(x) som viser mengde bakterier, x er gitt i timer.
- b) Verdien av en bil som koster 200 000 kr synker 15% årlig. Lag en eksponentialfunksjon som viser bilen sin verdi etter x år.
- c) Joakim skal putte 10 000 kr inn på en sparekonto med 4,5% rente er år.
- d) En by med 50 000 innbyggere øker med 3% hvert år.
- e) Henrik har 10 følgere på TikTok, hver uke øker mengden følgere med 13%, dette pågår for et helt år.
- f) Det er en uendelig positiv mengde lagrer. I den første ligger det en pakke, for resten dobles det. x representerer direkte hvilken rute den står på. Hva blir funksjonen?
   (Ekstra utfordrende)

# Løsningsforslag

Lag en eksponentialfunksjon som beskriver teksten.

a) En bakteriekultur starter med 500 individer og dobler seg hver time. Lag en funksjon, f(x) som viser mengde bakterier, x er gitt i timer.

Vi er ute etter a og vf

$$a = 500$$

$$vf = 1 + prosentFaktor = 1 + 1 = 2$$

Setter det inn i funksjonen:  $f(x) = 500 \cdot 2^x$ 

b) Verdien av en bil som koster 200 000 kr synker 15% årlig. Lag en eksponentialfunksjon som viser bilen sin verdi etter x år.

$$a = 200\ 000$$

$$vf = 1 - prosentFaktor = 1 - 0.15 = 0.85$$

Funksjonen blir:  $f(x) = 200\ 000 \cdot 0.85^x$ 

c) Joakim skal putte 10 000 kr inn på en sparekonto med 4,5% rente er år.

$$a = 10 000$$

$$vf = 1 + prosentFaktor = 1 + 0.045 = 1.045$$

Funksjonen blir:  $f(x) = 10\ 000 \cdot 1,045^x$ 

d) En by med 50 000 innbyggere øker med 3% hvert år.

$$a = 50\ 000$$

$$vf = 1 + prosentFaktor = 1 + 0.03$$

Funksjonen blir:  $f(x) = 50\ 000 \cdot 1{,}03^x$ 

e) Henrik har 10 følgere på TikTok, hver uke øker mengden følgere med 13%, dette pågår for et helt år.

$$a = 10$$

$$vf = 1 + 0.13 = 1.13$$

Funksjonen blir:  $f(x) = 10 \cdot 1{,}13^x$ 

f) Det er en uendelig positiv mengde lagrer. I den første ligger det en pakke, for resten dobles det. *x* representerer direkte hvilken rute den står på. Hva blir funksjonen?

$$a = 1$$
 (en pakke i starten)

$$b = 1 + prosentFaktor = 1 + 1 = 2$$

Putter inn:  $f(x) = 1 \cdot 2^x = 2^x$  (Denne viser for et lager fremover, så vi må minke x med en for å gå ett lager tilbake)

Funksjonen blir da:  $\underline{f(x)} = 2^{x-1}$