Some technical stuff

Mohamed Moakher

Prismatic Cohomology, 19 November 2019, Session 4

1 Derived completion

Let $K \in \mathbf{D}(A)$ and $f \in A$. We denote T(K, f) the derived limit of the system

$$\cdots \to K \xrightarrow{f} K \xrightarrow{f} K$$

Lemma 1.1. The following are equivalent

- 1. $\operatorname{Ext}_{A}^{n}(A_{f},K)=0$ for all n,
- 2. $\operatorname{Hom}_{\mathbf{D}(A)}(E,K) = 0$ for all E in $\mathbf{D}(A_f)$,
- 3. T(K, f) = 0,
- 4. for every $p \in \mathbb{Z}$ we have $T(H^p(K), f) = 0$,
- 5. for every $p \in \mathbb{Z}$ we have $\operatorname{Hom}_A(A_f, H^p(K)) = 0$ and $\operatorname{Ext}_A^1(A_f, H^p(K)) = 0$,
- 6. $R \operatorname{Hom}_{A}(A_{f}, K) = 0$,
- 7. the map $\prod_{n\geq 0} K \to \prod_{n\geq 0} K$ sending (x_0, x_1, \dots) to $(x_0 fx_1, x_1 fx_2, \dots)$ is an isomorphism in $\mathbf{D}(A)$.

Proof. Since $\operatorname{Ext}_A^n(A_f,K) = \operatorname{Hom}_{\mathbf{D}(A)}(A_f,K[n]) = \operatorname{Hom}_{\mathbf{D}(A)}(A_f[-n],K)$, we clearly have that 2) implies 1). And since $\operatorname{Ext}_A^n(A_f,K) = H^n(R\operatorname{Hom}_A(A_f,K))$, the equivalence between 1) and 6) is clear. Assume condition 1) and let I^{\bullet} be a K-injective complex of A-modules representing K. By definition of $R\operatorname{Hom}$, condition 6) \Leftrightarrow 1) signifies that the complex $\operatorname{Hom}_A(A_f,I^{\bullet})$ is acyclic. Now for an element $E \in \mathbf{D}(A_f)$, let M^{\bullet} be a complex of A_f -modules representing E. Then

$$\operatorname{Hom}_{\mathbf{D}(A)}(E,K) = \operatorname{Hom}_{\mathbf{K}(A)}(M^{\bullet}, I^{\bullet}) = \operatorname{Hom}_{\mathbf{K}(A_f)}(M^{\bullet}, \operatorname{Hom}_A(A_f, I^{\bullet}))$$

As $\operatorname{Hom}_A(A_f, I^{\bullet})$) is a K-injective complex of A_f -modules (the above equation proves that), the fact that it is acyclic implies that it is homotopy equivalent to 0. Therefore $\operatorname{Hom}_{\mathbf{K}(A_f)}(M^{\bullet}, \operatorname{Hom}_A(A_f, I^{\bullet})) = 0$ which proves 2).

Consider the following free resolution of A_f as an A-module

$$0 \to \bigoplus_{n \in \mathbb{N}} A \to \bigoplus_{n \in \mathbb{N}} A \to A_f \to 0$$

where the first map sends $(a_0, a_1, a_2 \dots)$ to $(a_0, a_1 - f a_0, a_2 - f a_1, \dots)$ and the second map sends (a_0, a_1, a_2, \dots) to $a_0 + a_1/f + a_2/f^2 + \dots$ Applying $\text{Hom}_A(-, I^{\bullet})$, we get

$$0 \to \operatorname{Hom}_A(A_f, I^{\bullet}) \to \prod I^{\bullet} \to \prod I^{\bullet} \to 0$$

Since $\prod I^{\bullet}$ represents $\prod_{n\in\mathbb{N}} K$ this proves the equivalence of 1) and 7). Moreover, by definition of the derived limit, the above exact sequence shows that T(K, f) is a representative of $R \operatorname{Hom}_A(A_f, K)$ in $\mathbf{D}(A)$. This gives the equivalence of 1) and 3).

We have a spectral sequence (I think this is just the spectral sequence that computes the cohomology of the Hom-bicomplex)

$$E_2^{p,q} = \operatorname{Ext}_A^q(A_f, H^p(K)) \Rightarrow \operatorname{Ext}_A^{p+q}(A_f, K)$$

It degenerates at E_2 since A_f has a projective resolution of length 1 (the above free resolution) and so there are only two non-zero rows (q = 0, 1), which gives us the exact sequence

$$0 \to \operatorname{Ext}\nolimits_A^1(A_f, H^{p-1}(K)) \to \operatorname{Ext}\nolimits_A^p(A_f, K) \to \operatorname{Hom}\nolimits_A(A_f, H^p(K)) \to 0$$

This shows that 4) and 5) are equivalent to 1).

Lemma 1.2. Let $I \subset A$ be an ideal and M be an A-module.

- 1. If M is I-adically complete, then T(M, f) = 0 for every $f \in I$
- 2. If T(M, f) = 0 for every $f \in I$, and I is finitely generated, then the map $M \to \lim M/I^nM$ is surjective

Proof. 1) assume that M is p-adically complete. By 5. of lemma 1.1, it suffices to prove that $\operatorname{Ext}_A(A_f, M) = 0$ and $\operatorname{Hom}_A(A_f, M) = 0$. But

$$\operatorname{Hom}_A(A_f,M)=\operatorname{Hom}_A(A_f,\varprojlim M/I^nM)=\varprojlim\operatorname{Hom}_A(A_f,M/I^nM)=0$$

since for every $n \ge 1$, $\operatorname{Hom}_A(A_f, M/I^n M) = 0$.

Now since Ext¹ characterises extensions, we need to show that every extension

$$0 \to M \to E \to A_f \to 0$$

is split. So for each $n \ge 1$, select a $e_n \in E$ mapping to $1/f^n$, and set $\delta_n = fe_{n+1} - e_n \in M$. So the element

$$e'_{n} = e_{n} + \delta_{n} + f\delta_{n+1} + f^{2}\delta_{n+2} + \dots$$

exists since M is f-adically complete and maps to $1/f^n$. Since $e'_n = fe^{n+1}$, we can define a splitting sending $1/f^n$ to e'_n .

2) Assume that $I = (f_1, \ldots, f_r)$ and that $T(M, f_i) = 0$ for $i = 1, \ldots, r$. One easily shows that if $M \to \varprojlim M/f_i^n M$ is surjective for every f_i , then $M \to \varprojlim M/I^n M$ is surjective. So we can assume that I = (f) and that T(M, f) = 0. Consider some $x_n \in M$ for $n \geq 0$ and the extension

$$0 \to M \to E \to A_f \to 0$$

where $E = (M \oplus \bigoplus Ae_n)/\langle x_n - fe_{n+1} + e_n \rangle$. Again by 5. of lemma 1.1, this extension is split, so we obtain an element that we can write $x + e_0$ $(x \in M)$ that generates a copy of A_f in E $x + e_0 = x - x_0 + fe_1 = x - x_0 - fx_1 + f^2e_2 = \dots$ By the snake lemma, we have $M/f^nM = E/f^nE$ and since $x + e_0 \in f^nE$, we get that $x = x_0 + fx_1 + \dots + f^{n-1}x_{n-1} \mod f^nM$. Which shows the surjectivity of the desired map.

Definition 1.3. Let I be an ideal of A and $K \in \mathbf{D}(A)$. We say that K is derived complete with respect to I if for every $f \in I$ we have T(K, f) = 0. We denote by $\mathbf{D}_{comp}(A) = \mathbf{D}_{comp}(A, I)$ the full subcategory of $\mathbf{D}(A)$ consisting of derived complete objects with respect to I.

If M is an A-module, we say that M is derived complete with respect to I if $M[0] \in \mathbf{D}(A)$ is derived complete with respect to I.

Corollary 1.4. If the ideal $I \subset A$ is finitely generated, and M is an A-module, then the following are equivalent

- 1. M is I-adically complete,
- 2. M is derived complete with respect to I and I-adically separated

Proof. Direct consequence of 1.2.

Proposition 1.5. Let I be a finitely generated ideal of a ring A. The inclusion functor $\mathbf{D}_{comp}(A,I) \to \mathbf{D}(A)$ has a left adjoint, i.e, there exist a map sending any object K of $\mathbf{D}(A)$ to a derived complete object K^{\wedge} of $\mathbf{D}(A)$ such that the map

$$\operatorname{Hom}_{\mathbf{D}(A)}(K^{\wedge}, E) \to \operatorname{Hom}_{\mathbf{D}(A)}(K, E)$$

is a bijection whenever E is derived complete. In fact, if A is generated by $f_1, \ldots, f_r \in A$, we have

$$K^{\wedge} = R \operatorname{Hom} \left((A \to \prod_{i_0} A_{f_{i_0}} \to \prod_{i_0 < i_1} A_{f_{i_0}, f_{i_1}} \to \cdots \to A_{f_1, \dots, f_r}), K \right)$$

Proof. Let K^{\wedge} be defined as above. Then the map of complexes

$$(A \to \prod_{i_0} A_{f_{i_0}} \to \prod_{i_0 < i_1} A_{f_{i_0}, f_{i_1}} \to \cdots \to A_{f_1, \dots, f_r}) \to A$$

induces a map $K \to K^{\wedge}$. It suffices to show that K^{\wedge} is derived complete and that $K \to K^{\wedge}$ is an isomorphism if K is derived complete. Let $f \in A$ We have

$$R \operatorname{Hom}_{A}(A_{f}, K^{\wedge}) = R \operatorname{Hom}\left(A_{f}, R \operatorname{Hom}\left((A \to \prod_{i_{0}} A_{f_{i_{0}}} \to \prod_{i_{0} < i_{1}} A_{f_{i_{0}}, f_{i_{1}}} \to \cdots \to A_{f_{1}, \dots, f_{r}}), K\right)\right)$$

$$= R \operatorname{Hom}\left(A_{f} \otimes_{A}^{\mathbb{L}} (A \to \prod_{i_{0}} A_{f_{i_{0}}} \to \prod_{i_{0} < i_{1}} A_{f_{i_{0}}, f_{i_{1}}} \to \cdots \to A_{f_{1}, \dots, f_{r}}), K\right)$$

$$= R \operatorname{Hom}\left((A_{f} \to \prod_{i_{0}} A_{f f_{i_{0}}} \to \prod_{i_{0} < i_{1}} A_{f f_{i_{0}}, f_{i_{1}}} \to \cdots \to A_{f f_{1}, \dots, f_{r}}), K\right)$$

The last equality is true by looking at the definition of the derived tensor product and noticing that the complex $(A \to \prod_{i_0} A_{f_{i_0}} \to \prod_{i_0 < i_1} A_{f_{i_0}, f_{i_1}} \to \cdots \to A_{f_1, \dots, f_r})$ is K-flat (every element of the complex is a flat A-module). Now for $f \in I$, the complex

$$(A_f \to \prod_{i_0} A_{ff_{i_0}} \to \prod_{i_0 < i_1} A_{ff_{i_0}, f_{i_1}} \to \cdots \to A_{ff_1, \dots, f_r})$$

is 0 in $\mathbf{D}(A)$ by corollary 3.4. Hence $R \operatorname{Hom}_A(A_f, K^{\wedge}) = 0$, so K^{\wedge} is derived complete by lemma 1.1.

Conversely, by the same lemma 1.1, we have $R \operatorname{Hom}_A(A_f, K) = 0$ for each $f = f_{i_0} \cdots f_{i_p}$, hence $K \to K^{\wedge}$ is an isomorphism in D(A).

Lemma 1.6. Let $I \subset A$ be an ideal and let (K_n) be an inverse system of objects of $\mathbf{D}(A)$ such that for all $f \in I$, there exist e = e(n, f) such that f^e is zero on K_n . Then for $K \in \mathbf{D}(A)$, the object $K' = K \otimes_A^{\mathbb{L}} K_n$ is derived complete with respect to I.

Proof. The category of derived complete objects being preserved under $R \lim$, it suffices to show that each $K \otimes_A^{\mathbb{L}} K_n$ is derived complete. But by assumption, for all $f \in I$, there exist e such that f^e is zero in $K \otimes_A^{\mathbb{L}} K_n$. Hence $T(K \otimes_A^{\mathbb{L}} K_n, f) = 0$. \square

1.1 Some useful facts in the principal case

In this subsection, we assume that I = (f) for some $f \in A$. One can prove -I am definitely not doing that here but it is just technical- that in this case, we have

$$K^{\wedge} = R \lim \left(K \otimes_{A}^{\mathbb{L}} \left(A \xrightarrow{f^{n}} A \right) \right)$$

At least one can see directly from lemma 1.6 that this object is derived complete.

Lemma 1.7. Let $f \in A$. If there exist an integer $c \ge 1$ such that $A[f^c] = A[f^{c+1}] = \ldots$, then for all $n \ge 1$, there exist maps

$$(A \xrightarrow{f^n} A) \to A/f^n, \quad and \quad A/(f^{n+c}) \to (A \xrightarrow{f^n} A)$$

in $\mathbf{D}(A)$ inducing an isomorphism of the pro-objects $\{A/f^nA\}$ and $\{(A \xrightarrow{f^n} A)\}$ in $\mathbf{D}(A)$.

Proof. The first map is given by the following commutative diagram

For the second arrow, first we define a map

But since the arrow $A/A[f^c] \xrightarrow{f^{n+c}} A$ is injective, the first row is quasi-isomorphic to $A/f^{n+c}A$ which gives the second map.

Lemma 1.8. Let A be a ring and $f \in \mathbb{A}$. We have the naive derived completion $K \mapsto K' = R \lim_{A \to \infty} (K \otimes_A^{\mathbb{L}} A/f^n A)$ and $K \mapsto K^{\wedge} = R \lim_{A \to \infty} (K \otimes_A^{\mathbb{L}} (A \xrightarrow{f^n} A))$. The natural transformation $K^{\wedge} \mapsto K'$ is an isomorphism if and only if the f-power torsion of A is bounded.

Proof. We won't need the only if part, so we will only prove the if part. But by lemma 1.7, the pro-objects $\{A/f^nA\}$ and $\{(A \xrightarrow{f^n} A)\}$ are isomorphic. The result follows from lemma 091B (Stack project).

2 p-complete flatness

Definition 2.1. Given $a, b \in \mathbb{Z} \cup \{\infty\}$, we say that $M \in \mathbf{D}(A)$ has Tor amplitude [a, b] if for any A-module N, we have $M \otimes_A^{\mathbb{L}} N \in \mathbf{D}^{[a,b]}(A)$. If a = b, we say that M has Tor amplitude concentrated in degree a.

Definition 2.2. Fix $M \in \mathbf{D}(A)$ and $a, b \in \mathbb{Z} \cup \{\infty\}$.

- We say that M has p-complete Tor amplitude $\in [a, b]$ if $M \otimes_A^{\mathbb{L}} A/pA \in \mathbf{D}(A/pA)$ has Tor amplitude concentrated in [a, b]. If a = b, we say that $M \in \mathbf{D}(A)$ has p-complete Tor amplitude concentrated in degree a.
- We say that M is p-completely (faithfully) flat if $M \otimes_A^{\mathbb{L}} A/pA \in \mathbf{D}(A/pA)$ is concentrated in degree 0 and is a (faithfully) flat A/pA-module.

Note that $M \in \mathbf{D}(A)$ having Tor amplitude concentrated in degree 0 just means that M is concentrated in degree 0 and is a flat A-module.

Therefore $M \in \mathbf{D}(A)$ is p-completely flat if and only if it has p-complete Tor amplitude concentrated in degree 0.

Remark 2.3. One can replace in the definition A/pA by A/p^nA for every $n \ge 1$ without changing its meaning.

Indeed, suppose that we have an extension of rings $R \to S$ with S = R/I for an ideal I such that $I^2 = 0$ (I is canonically an S-module). Then $M \in \mathbf{D}(R)$ has tor amplitude in [a, b] if and only if $M \otimes_R^{\mathbb{L}} S \in \mathbf{D}(S)$ has tor amplitude in [a, b].

The only if part, is just a consequence of the stability of the tor amplitude under base change. And for the if part, consider the exact triangle $I \to R \to S$. Applying $M \otimes_R^{\mathbb{L}}$ – gives an exact triangle

$$(M \otimes_R^{\mathbb{L}} S) \otimes_S^{\mathbb{L}} I \to M \to M \otimes_R^{\mathbb{L}} S$$

The leftmost term is in $\mathbf{D}^{[a,b]}(R)$ so tensoring with an R-module N we get an object of $\mathbf{D}^{[a,b]}(R)$. Also by hypothesis we have $(M \otimes_R^{\mathbb{L}} S) \otimes_R^{\mathbb{L}} N = (M \otimes_R^{\mathbb{L}} S) \otimes_S^{\mathbb{L}} (N \otimes_R^{\mathbb{L}} S) \in \mathbf{D}^{[a,b]}(R)$. Therefore $M \otimes_R^{\mathbb{N}} \in \mathbf{D}^{[a,b]}(R)$.

Lemma 2.4. Fix $M \in \mathbf{D}(A)$ and $a, b \in \mathbb{Z} \cup \{\infty\}$. Let $\widehat{M} \in \mathbf{D}(A)$ be the derived p-completion of M. The following are equivalent

- 1. M has p-complete Tor amplitude in [a, b] (resp. is p-completely (faithfully) flat)
- 2. \widehat{M} has p-complete Tor amplitude in [a,b] (resp. is p-completely (faithfully) flat)

Proof. The map $M \mapsto \widehat{M}$ induces an isomorphism $M \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z} \cong \widehat{M} \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z}$. Indeed, we have for every $N \in \mathbf{D}(A)$,

$$\operatorname{Hom}_{\mathbf{D}(A)}(\widehat{M} \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z}, N) \cong \operatorname{Hom}_{\mathbf{D}(A)}(\widehat{M} \otimes_{A}^{\mathbb{L}} (\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}}^{\mathbb{L}} A), N)$$
$$\cong \operatorname{Hom}_{\mathbf{D}(A)}(\widehat{M}, R \operatorname{Hom}_{A}(\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}}^{\mathbb{L}} A, N))$$

 $R \operatorname{Hom}_A(\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}}^{\mathbb{L}} A, N)$ can easily be seen to be derived p-complete (use 2. of lemma 1.1). Hence by proposition 1.5, we get that

$$Hom_{\mathbf{D}(A)}(M \otimes_{A}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z}, N) \cong Hom_{\mathbf{D}(A)}(\widehat{M}, R \operatorname{Hom}_{A}(\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}}^{\mathbb{L}} A, N))$$
$$\cong Hom_{\mathbf{D}(A)}(M \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z}, N)$$

which shows the claim.

Now notice that we have $A \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z} = (\cdots \to 0 \to A \xrightarrow{p} A \to 0 \to \cdots)$ is quasi-isomorphic to $(\cdots \to 0 \to A[p] \xrightarrow{0} A/pA \to 0 \to \cdots)$. This induces an isomorphism

$$\begin{split} M \otimes_A^{\mathbb{L}} A/pA \oplus M[1] \otimes_A^{\mathbb{L}} A[p] &\cong M \otimes_A^{\mathbb{L}} (A \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z}) \\ &\cong M \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z} \\ &\cong \widehat{M} \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z} \\ &\cong \widehat{M} \otimes_A^{\mathbb{L}} A/pA \oplus \widehat{M}[1] \otimes_A^{\mathbb{L}} A[p] \end{split}$$

Since the morphism induced from $M \to \widehat{M}$ by $-\otimes_A^{\mathbb{L}} (A \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{Z}/p\mathbb{Z}$ respects the summands, we get that $M \otimes_A^{\mathbb{L}} A/pA \cong \widehat{M} \otimes_A^{\mathbb{L}} A/pA$, which gives the result.

Lemma 2.5. Let $A \to B$ be a map of rings, $M \in \mathbf{D}(A)$ and $a, b \in \mathbb{Z} \cap \{\infty\}$.

1. If $M \in \mathbf{D}(A)$ has p-complete Tor amplitude in [a,b] (resp. p-completely (faithfully) flat), then the same holds true for $M \otimes_A^{\mathbb{L}} B \in \mathbf{D}(B)$.

2. If $A \to B$ is p-completely faithfully flat, then the converse of 1. holds true.

Proof. This is immediate from the discrete case.

Lemma 2.6. Suppose that A has p^{∞} -torsion and let $M \in \mathbf{D}(A)$ be derived p-complete with p-complete tor amplitude in [a,b], $a,b \in \mathbb{Z} \cup \{\infty\}$. Then $M \in \mathbf{D}^{[a,b]}(A)$.

Proof. By lemma 1.8, M is the derived limit of $M \otimes_A^{\mathbb{L}} A/p^n A$. But by remark 2.3, all $M \otimes_A^{\mathbb{L}} A/p^n A \in \mathbf{D}^{[a,b]}(A/p^n A)$. Looking at the long exact sequence of cohomology from the exact triangle

$$M \to \prod_n M \otimes_A^{\mathbb{L}} A/p^n A \to \prod_n M \otimes_A^{\mathbb{L}} A/p^n A$$

and noticing that the maps on the highest degree $H^b(M \otimes_A^{\mathbb{L}} A/p^n A)$ are surjective, we get that $M \in \mathbf{D}^{[a,b]}(A)$.

Lemma 2.7. Suppose that A has bounded p^{∞} -torsion.

1. If $M \in \mathbf{D}(A)$ is derived p-complete and p-completely flat then it is a classically p-complete A-module concentrated in degree 0, with bounded p^{∞} -torsion, such that M/p^nM is flat over A/p^nA for every $n \geq 1$. Moreover, for every $n \geq 1$, the map

$$M \otimes_A A[p^n] \to M[p^n]$$

is an isomorphism.

2. Conversely, if N is a classically p-adically complete A-module with bounded p^{∞} torsion such that N/p^nN is flat over A/p^nA for all $n \geq 1$, then $N[0] \in \mathbf{D}(A)$ is p-completely flat.

Proof. 1) Lemma 2.6 implies that M is concentrated in degree 0. The condition that M is p-completely flat implies that $M \otimes_A^{\mathbb{L}} A/p^n A$ is a flat $A/p^n A$ -module for all $n \geq 1$. But

$$M \otimes_A^{\mathbb{L}} A/p^n A = M \otimes_A^{\mathbb{L}} (\dots \to A \xrightarrow{p^n} A \to 0 \to \dots) = (\dots \to M \xrightarrow{p^n} M \to 0 \to \dots)$$

$$\cong (\dots \to M/p^n M \to \dots) \in \mathbf{D}^{[0,0]} (A/p^n A)$$

So $M \otimes_A^{\mathbb{L}} A/p^n A = M/p^n M$ is a flat $A/p^n A$ -module for all $n \geq 1$. Moreover, by lemma 1.8, M is the limit of $M \otimes_A^{\mathbb{L}} A/p^n A = M/p^n M$ so it is classically p-complete. \square

Corollary 2.8. Let $A \to B$ be a map of derived p-complete rings.

- 1. If A has bounded p^{∞} -torsion and $A \to B$ is p-completely flat, then B has bounded p^{∞} -torsion.
- 2. Conversely, if B has bounded p^{∞} -torsion and $A \to B$ is p-completely faithfully flat, then A has bounded p^{∞} -torsion.
- 3. Assume that A and B both have bounded p^{∞} -torsion. Then the map $A \to B$ is p-completely flat (resp. p-completely faithfully flat) if and only if $A/p^n \to B/p^n B$ is flat (resp. faithfully flat) for all $n \ge 1$.

3 Appendix

3.1 The Koszul Complex

Definition 3.1. Let R be a ring, E an R-module and $\varphi : E \to R$ an R-module map. We define the Koszul complex $\mathbf{K}_{\bullet}(\varphi)$ to be the commutative differential graded algebra verifying

- 1. the underlying graded algebra is the exterior algebra $\wedge(E)$
- 2. the derivation $d: \mathbf{K}_{\bullet}(\varphi) \to \mathbf{K}_{\bullet}(\varphi)$ is the unique derivation such that $d(e) = \varphi(e)$ for all $e \in E = \mathbf{K}_{1}(\varphi)$

If $e_1 \wedge \cdots \wedge e_n$ is one of the generators of degree n in $\mathbf{K}_{\bullet}(\varphi)$, then

$$d(e_1 \wedge \cdots \wedge e_n) = \sum_i (-1)^{i+1} \varphi(e_i) e_1 \wedge \cdots \wedge \widehat{e_i} \wedge \cdots \wedge e_n$$

If $f_1, \ldots, f_n \in R$, the Koszul complex on f_1, \ldots, f_n , denoted by $\mathbf{K}_{\bullet}(f_{\bullet})$ is the Koszul complex associated to the map $(f_1, \ldots, f_r) : R^r \to R$.

Lemma 3.2. Let $e \in E$ and $f = \varphi(e) \in R$. Then we have

$$f = de + ed$$

as endomorphisms of $K_{\bullet}(\varphi)$.

In particular, multiplication by f_i is homotopic to zero on $K_{\bullet}(f_{\bullet})$. So the homology module $H_i(K_{\bullet}(f_{\bullet}))$ are annihilated by (f_1, \ldots, f_r)

Proof. We have
$$d(ea) = d(e)a - ed(a) = fa - ed(a)$$
.

Lemma 3.3. The alternating Cech complex

$$R \to \prod_{i_0} R_{f_{i_0}} \to \prod_{i_0 < i_1} R_{f_{i_0}, f_{i_1}} \to \cdots \to R_{f_1 \dots f_r}$$

is the colimit of the Koszul complexes $K_{\bullet}(f_{\bullet}^{n})$.

Proof. The transition maps $\mathbf{K}_{\bullet}(f_{\bullet}^{n}) \to \mathbf{K}_{\bullet}(f_{\bullet}^{n+1})$ send $e_{i_0} \wedge \cdots \wedge e_{i_p}$ to $f_{i_0} \dots f_{i_p} e_{i_0} \wedge \cdots \wedge e_{i_p}$. Hence by sending each Koszul complex to the complex $R \to \prod_{i_0 < i_1} R \to \cdots \to R$ (the obvious map), we get the result by noticing that $R_g = \operatorname{colim}(\cdots \to R \xrightarrow{g} R \xrightarrow{g} R)$.

Corollary 3.4. If $(f_1, \ldots, f_r) = R$ then the alternating Cech complex is acyclic.

Proof. This combines lemma 3.2 and 3.3.