CS 186 Discussion #6

Relational Algebra/Modeling BCNF

Logistics

- Homework
 - Homework 3 due 10/19
 - Homework 4 + 5 deadlines updated on syllabus
- Midterm
 - Midterm 1 grades released
 - Midterm 2 is coming... 11/09
- Mid-semester evaluations

Relational Algebra

- Represent query execution plan with operators
 - More on query optimization later

Basic Operators

- SELECTION (σ)
- PROJECTION (π)
- CROSS-PRODUCT (x)
- SET-DIFFERENCE (-)
- UNION (U)

Basic Operators

- SELECTION (σ) filter rows
- PROJECTION (π) filter columns
- CROSS-PRODUCT (x)
- SET-DIFFERENCE (-)
- UNION (U)

Compound Operators

- INTERSECTION (n)
- JOINs
 - NATURAL JOIN (⋈)
 - THETA JOIN (⋈_θ)
 - θ : R.sid = S.sid

```
Songs(song_id, song_name, album_id, weeks_in_top_40)

Artists(artist_id, artist_name, first_year_active)

Albums(album_id, album_name, artist_id, year_released, genre)
```

 1. Find the name of the artists who have albums with a genre of either 'pop' or 'rock'.

```
SELECT artist_name
FROM Artists, Albums
WHERE Artists.artist_id = Albums.artist_id
AND (genre = 'pop' OR genre = 'rock');
```

```
Songs(song_id, song_name, album_id, weeks_in_top_40)

Artists(artist_id, artist_name, first_year_active)

Albums(album_id, album_name, artist_id, year_released, genre)
```

 1. Find the name of the artists who have albums with a genre of either 'pop' or 'rock'.

```
SELECT artist_name
FROM Artists, Albums
WHERE Artists.artist_id = Albums.artist_id
AND (genre = 'pop' OR genre = 'rock');

π<sub>artist_name</sub> ((σ<sub>genre = 'pop' V genre = 'rock'</sub> Albums) ⋈ Artists)
```

```
Songs(song_id, song_name, album_id, weeks_in_top_40)

Artists(artist_id, artist_name, first_year_active)

Albums(album_id, album_name, artist_id, year_released, genre)
```

 2. Find the name of the artists who have albums of genres 'pop' AND 'rock'.

```
SELECT artist_name
FROM Artists, Albums A1, Albums A2
WHERE Artists.artist_id = A1.artist_id
AND Artists.artist_id = A2.artist_id
AND A1.genre = 'pop' AND A2.genre = 'rock');
```

```
Songs(song_id, song_name, album_id, weeks_in_top_40)

Artists(artist_id, artist_name, first_year_active)

Albums(album_id, album_name, artist_id, year_released, genre)
```

 2. Find the name of the artists who have albums of genres 'pop' AND 'rock'.

```
\pi_{\text{artist\_name}} ((\sigma_{\text{genre}} = \text{'pop'} Albums) \bowtie Artists)
\pi_{\text{artist\_name}} ((\sigma_{\text{genre}} = \text{'rock'} Albums) \bowtie Artists)
```

```
Songs(song_id, song_name, album_id, weeks_in_top_40)

Artists(artist_id, artist_name, first_year_active)

Albums(album_id, album_name, artist_id, year_released, genre)
```

 5. Find the names of all artists who do not have any albums.

```
SELECT artist_name
FROM Artists
WHERE artist_id NOT IN
(SELECT artist_id
FROM Albums)
```

```
Songs(song_id, song_name, album_id, weeks_in_top_40)

Artists(artist_id, artist_name, first_year_active)

Albums(album_id, album_name, artist_id, year_released, genre)
```

 5. Find the names of all artists who do not have any albums.

```
\pi_{\text{artist\_name}} (Artists \bowtie (\pi_{\text{artist\_id}} \text{Artists} - \pi_{\text{artist\_id}} \text{Albums}))
```

Relational Modeling

Entity-Relationship model

- Weak Entities
- Relationships

Constraints

- Key Constraints
 - at *most* one
- Participation Constraints
 - at *least* one
- "Key constraint with total participation"
 - exactly one
- One-to-many? Many-to-one? One-to-one?

Constraints

- Key Constraints
 - at most one <- specifies many-to-one/one-to-many/one-to-one
- Participation Constraints
 - at *least* one
- "Key constraint with total participation"
 - exactly one

ER Diagrams Worksheet

Functional Dependencies

- X → Y
 - X determines Y
 - For every pair of tuples in R, if X is the same, Y must be the same.
- K → [all attributes of R]
 - K is a superkey! Why?
 - "No two distinct tuples can have the same values in all key fields"
 - What about primary keys?

Rules of Inference

- Armstrong's Axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - XZ → YZ does NOT imply X → Y
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - XZ → Y does NOT imply X → Y and Z → Y

Closure

- Given a set of FDs F, finding the closure F+ is extremely difficult; all implicit FDs are in F+!
- Instead, lets compute Attribute Closures:
 - Given an attribute X,
 - "X+ = All attributes A such that X → A is in F+"
 - X+ = All attributes that X determines (given F)

```
Flights(Flight no, Date, fRom, To, Plane_id),
ForeignKey(Plane_id)

Planes(Plane id, tYpe)

Seat(Seat no, Plane id, Legroom), ForeignKey(Plane_id)
```

What are the functional dependencies?

```
Flights(Flight no, Date, fRom, To, Plane_id),
ForeignKey(Plane_id)

Planes(Plane id, tYpe)

Seat(Seat no, Plane id, Legroom), ForeignKey(Plane id)
```

What are the functional dependencies?

- FD → RTP
- $P \rightarrow Y$
- SP → L

```
F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B\}
```

What are the attribute closures?

A:

AB:

B:

D:

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B\}$

What are the attribute closures?

A: ADE

AB: ABCDE

B: B

D: DE

Normal Form

- Avoids redundancies and anomalies
- Guidance on whether decomposition is needed

Boyce-Codd Normal Form

- R is in BCNF if for every FD X → A that holds over R, one of the following statements is true:
 - $A \in X$; that is, it is a trivial FD
 - X is a superkey
- No redundancy: contains only information that cannot be inferred with FDs

Normalization

- Decompose into multiple relations
 - Some problems:
 - <u>Lossiness</u>: Can we reconstruct the original relation?
 - <u>Dependency Preserving</u>: Have we lost any dependencies?
 - Some queries more expensive (need joins)

Decomposition into BCNF

- If X → Y violates BCNF...
 - Decompose R into R Y and XY
- Repeat until in BCNF (guaranteed to terminate)

- Lossless, but <u>not</u> dependency preserving
- Final result depends on order of decomposition

Lossless Join Decomposition

• Lossless join decomposition with respect to F if, for every instance r of R: $\pi_X(r) \bowtie \pi_Y(r) = r$

- Necessary and sufficient test:
 - R decomposed to X and Y is lossless <u>iff</u>:
 - $X \cap Y \rightarrow X \quad OR \quad X \cap Y \rightarrow Y$
 - Common attributes contain key for either X or Y

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

BEFG decomposes into BEG, and FG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

BEFG decomposes into BEG, and FG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Decomposes into R - CD = ABEFG, and ABCD

ABEFG decomposes into BEFG, and AG

BEFG decomposes into BEG, and FG

Final Relations: ABCD, AG, BEG, FG

Decompose R = ABCDEFG into BCNF, given:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Final Relations: ABCD, AG, BEG, FG

Are dependencies preserved?

• Check: If $(F_X \cup F_Y)^+ = F^+$, dependency preserving

How to 3NF?

- Add a constraint to BCNF: A (from X → A) can be part of some candidate key!
 - This preserves dependencies.
- Decompose into BCNF first, using a <u>minimal cover</u> for F
 - Resulting relations do not violate 3NF by default
- Find dependencies X → A that are not preserved, and add XA to the decomposition
 - These don't violate 3NF either

Minimal Covers

- By definition, a minimal cover G of F:
 - Has the <u>same closure</u> as F
 - Has single attributes on the right side of each dependency
 - Cannot be modified without changing the closure
 - Consider AB → CD

Minimal Cover Algorithm

- 1. Put the FDs in standard form
 - Every dependency is of the form X → A, where
 A is a single attribute
- 2. Minimize the left side of each FD
 - See if you can delete attributes from the left while preserving equivalence to F+
- 3. Delete redundant FDs
 - (while preserving equivalence)

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

1. Convert to standard form

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

1. Convert to standard form

- AB \rightarrow C, AB \rightarrow D
- $C \rightarrow E, C \rightarrow F$
- $G \rightarrow A$
- $G \rightarrow F$
- CE → F

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

2. Minimize the left sides

- AB \rightarrow C, AB \rightarrow D
- $C \rightarrow E, C \rightarrow F$
- $G \rightarrow A$
- $G \rightarrow F$
- CE → F

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

2. Minimize the left sides

- AB \rightarrow C, AB \rightarrow D
- $C \rightarrow E, C \rightarrow F$
- $G \rightarrow A$
- $G \rightarrow F$
- $CE \rightarrow FC \rightarrow F$

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

3. Delete redundant FDs

- AB \rightarrow C, AB \rightarrow D
- $C \rightarrow E, C \rightarrow F$
- $G \rightarrow A$
- $G \rightarrow F$
- C → F

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$$

Final Answer:

- AB \rightarrow C, AB \rightarrow D
- $C \rightarrow E, C \rightarrow F$
- $G \rightarrow A$
- G → F