

DYNAL

PRODUCT LIST 1989

BEST AVAILABLE COPY

DYNABEADS™ products are based on extremely uniform, superparamagnetic polystyrene beads. Consisting of a maghemite (Fe_2O_3) containing core covered with a polymer, they have a smooth surface that is easily coated with antibodies or other selecting molecules. Combined with a magnet, Dynabeads make a unique tool in positive or negative separations.

Fields of applications include:
Immunology, Tissue Typing, Cancer research,
Transplantation medicine, Microbiology, Virology,
DNA Technology and Clinical chemistry.

DYNABEADS UNCOATED

A. Immunomagnetic beads for cell separations. Uniform, superparamagnetic polystyrene beads with diameter 4.5 micron (c.v.<5%).
 4×10^8 DYNABEADS per ml (30 mg per ml) in aqueous solution.

DYNABEADS M-450 Uncoated
For physical adsorption of primary antibodies of the IgM class, or for customer's own secondary antibodies. Primary monoclonal antibodies of the IgG class should be bound to Dynabeads M-450 via a secondary antibody for optimal function.

DYNABEADS M-450 Tosylactivated
For convenient chemical coupling of proteins or secondary antibodies of customers own choice.

B. Immunomagnetic beads for use in microbiology and immunoassays. Uniform superparamagnetic polystyrene beads with a polymer surface having only primary OH groups and with a diameter of 2.8 micron (c.v.<3%).
 $6-7 \times 10^8$ DYNABEADS per ml (10 mg per ml) in aqueous solution.

NEW DYNABEADS M-280 Tosylactivated
For convenient chemical coupling of proteins, peptides or secondary antibodies of customers own choice. Dynabeads M-280 are activated by use of p-toluene sulphonyl chloride and ready for coating through a simple incubation.

	Prod.no.	Volum:
	140.01	2
	140.02	10
	140.03	10 m
	140.04	
	142.03	
	142.04	

Encl. 1

Encl. 4

BEST AVAILABLE COPY

Promega Protocols and Applications Guide

Second Edition

Interdisciplinary
biotechnology in
tools of
his effort, and is
research
molecular and cell
biology.

The growing
technology products.
at international
tions with
oviet Union.
the global
hard to develop
consume. In 1989,
program for our team
and recyclable
e boxes. To

© Copyright 1991 (March)
Promega Corporation
All rights reserved. Printed in U.S.A.

Part Number 1981

Promega Protocols and Applications Guide
The Promega Protocols and Applications Guide
text pages are printed on recycled paper.

09:29

09:29

16/11/98

Promega Corporation
2810 Woods Hollow Road
Madison, WI 53711-5339 USA
Toll Free 800-356-9526
Telephone 608-274-4330
FAX 608-273-6967
Telex 25037992

800-356-9526

Promega

Diversification and Labeling

II. Isolation of Total RNA

I. Selection, Purification and	XII. References	15
Section, Purification and	XIII. Additional Nucleic Acid Labeling Literature Available from Promega	
3'-End Labeling to Fill Released 3' Ends of Double-Stranded DNA		
X.	3'-End Labeling with Terminal Transferase	148
A.	Addition of [α - ³² P]dNTP "Tails" to 3' Termini of Single-Stranded	149
B.	Addition of [α - ³² P]Cordycepin-5'-Triphosphate to 3' Termini of Single-Stranded	149
DNA Primers	DNA Primers	150
C.	Determination of Percent Incorporation and Specific Activity	150
O.	Gel Analysis	150
XI.	5'-End Labeling using T4 Polynucleolida Kinase	155
A.	Dephosphorylation Reaction	15
B.	Kinase Reaction	15
C.	Determination of Percent Incorporation	15
	References	15
Protocols for the following protein detection and purification applications are provided		
elsewhere in this guide:		
Immunoaffinity Isolation of Lambda Expression Libraries with the ProtoBlot® Immunoaffinity Screening System	2	
Immunoaffinity Isolation of β-Galactosidase Fusion Proteins using ProtaSorb® /acZ Adsortent	2	
Immunoaffinity Isolation of DNA Binding Proteins with the GRAB System	3	

contents

(continued)

I. Magnetic Particle Separation of Macromolecules

The attachment of nucleic acids to solid supports has found many applications in the field of molecular biology. One common application of immobilized nucleic acids is oligo(dT) cellulose purification of messenger RNA (mRNA) by hybridization to the polyadenine tail (4). Recent years, however, have witnessed the emergence of paramagnetic particles as the solid support of choice for many affinity purification protocols. Paramagnetic particles which have iron oxide into submicron sized particles which have no magnetic field but form a magnetic dipole when exposed to a magnetic field. The use of paramagnetic particles eliminates the need for traditional column chromatography, centrifugation, or any other specialized equipment. These particles have been successfully used in the development of immunoassays (5), diagnostic assays (6), and for measuring RNA in cell lysates using dA-tailed capture probes (7).

Promega has extended the use of paramagnetic particles to the affinity purification of polyadenylated mRNA with the PolyATrac™ system and to cDNA synthesis and cloning with the Capture Clone™ system. Unlike procedures which use direct coupling of probes to paramagnetic particles (6,7), these systems use a biotinylated digonucleotide probe to hybridize in solution to the labeled nucleic acid. The hybrids are then captured using covariantly coupled streptavidin paramagnetic particles. This approach combines the speed and efficiency of solution hybridization with the convenience and speed (<1 minute) of magnetic separation.

used for purification blots, cDNA syn-

specific oligonucleotide, the calculated binding capacity is roughly 1 nmole probe captured/mg SA-PMPs.