一、填空(每空2分,共40分)

1、气压传动是以	_来传递和转换能量的。		
2、液压传动装置由			_>
和五部分	组成,其中	和	为能量转
换装置。			
3、压力阀的共同特点是利用	和	相当	产衡的原理来进行工
作的。			
4、在液压系统中,由于某一元	件的工作状态突变引起流	由压急剧上升,在	一瞬间突然产生很
高的压力峰值,同时发生急剧的	的压力升降交替的阻尼波	动过程称为	o
5、单作用叶片泵转子每转一周	,完成吸、排油各	次,同-	一转速的情况下,改
变它的可以改变	变其排量。		
6、三位换向阀处于中间位置时	, 其油口 P、A、B、T 间]的通路有各种	不同的联结形式,以
适应各种不同的工作要求,将过	这种位置时的内部通路形	式称为三位换向	可阀的。
7、液体在管中流动时,存在	和和	两种流动	伏态。液体的流动状
态可用来判定	ਏ∘		
8、顺序阀是利用油路中压力的	变化控制阀口	,以实现执行	厅元件顺序动作的液
压元件。			
9、一般的气源装置主要由空气	压缩机、冷却器、储气缸	雚、和	等组成。
二、选择题(每个2分	,共10分)		
1、流量连续性方程是	在流体力学中的表	長达形式。	
A、能量守恒定律 I	B、动量定理 C、质	量守恒定律	D、 其他
2、液压系统的最大工作压力为	10MPa,安全阀的调定压	<u> </u>	
A、等于10MPa B、	小于 10MPa C、大于 10)MPa	
3、一水平放置的双杆液压缸,	采用三位四通电磁换向阀	」,要求阀处于中	中位时,液压泵卸荷,
液压缸浮动,其中位机能应选月	#		
A、 0型	B、M型 C、	Y型 D	、Ⅱ型
4、在高压大流量的液压缸中,	活塞与活塞杆的连续须买		连接。
A、锥销 B、	螺纹 C、半环式	D, 3	焊接
5、高压系统宜采用	泵。 轴向柱塞 C 、叶片	D 内啮合生	於
三、分析题(每个10分		D/ 11m 日 四、	ΙU
	J		

1、如图,回路为实现两种进给速度的回路,请写出此回路完整的进油路与回油路。(8分)(包括第一次工进进油路;第一次工进回油路;第二次工进进油路,第二次工进回油路;液压缸退回)

2、试用两个液控单向阀绘出锁紧回路(其他元件自定)。

3、试用一个单向节流阀、气容和 2 位 3 通换向阀绘制延时接通回路(其他元件自定)。

四、简答计算(20分)

1、试列出理想液体的伯努利方程,并写出公式的意义。(5分)

2、如图,水箱外壁开一小孔,水箱自由液面 1-1 与小孔 2-2 处的压力分别是 p_1 和 p_2 ,小 孔中心到水箱自由液面的距离为 h,且基本不变,若不计损失,求 v_2 。(5 分)

2、如图, A_1 =100cm², A_2 =50cm², F_1 =28×10³N, F_2 =8.4×10³N,背压阀的背压为 0.2MPa,节流阀的压差为 0.2MPa,不计其它损失,试求出 A、B、C 三点的压力。(10 分)

答案

一、填空(每空2分,共40分)

- 1、压力能。
- 2、动力装置、执行装置、控制调节装置、辅助装置、传动介质; 动力、执行。
- 3、液压力、平衡力。
- 4、液压冲击。
- 5、一次,偏心量。
- 6、中位机能。
- 7、层流、紊流、雷诺数。
- 8、启闭。
- 9、干燥器,空气过滤器。

二、选择题(每个2分,共10分)

- 1, C;
- 2, C;
- 3, B;
- 4, C;
- 5, B;

三、分析题(每个10分,共计30分)

1、(共计10分)

一工进: (4分)

进油路:油箱→液压泵→换向阀左位→调速阀 A→二位二通阀左位→液压缸左腔

回油路:液压缸右腔→三位四通阀左位→油箱

二工进: (4分)

进油路:油箱→液压泵→三位四通阀左位→调速阀 A→调速阀 B→液压缸左腔

回油路:液压缸右腔→三位四通阀左位→油箱

液压缸退回: (2分)

进油路:油箱→液压泵→换向阀右位→液压缸右腔

回油路:液压缸左腔→单向阀→三位四通换向阀右位→油箱

2、(10分)。

3、(10分)。

四、简答计算(20分)

1、(共计5分)

$$p_1 + \rho g z_1 + \frac{1}{2} \rho v_1^2 = C$$
 (2 $\%$)

伯努利方程的物理意义为:在密封管道内作定常流动的理想液体在任意一个通流断面上具有 三种形成的能量,即压力能、势能和动能。三种能量的总合是一个恒定的常量,而且三种能 量之间是可以相互转换的,即在不同的通流断面上,同一种能量的值会是不同。(3分)

2、(共计5分)

$$p_1 + \rho g z_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g z_2 + \frac{1}{2} \rho v_2^2$$
 (2 分)

$$z_1 = h$$
 $z_2 = 0$ $v_1 = 0$ (1 $\%$)

得
$$v_2 = \sqrt{2gh + \frac{2(p_1 - p_2)}{\rho}}$$
 (2分)

3、(共计10分)

$$p_c = \frac{F_1}{A_1} = \frac{28 \times 10^3 N}{10^{-2} m^2} = 2.8 MPa$$
 (4 %)

$$p_{B} = \frac{F_{2} + p_{2}A_{2}}{A_{1}} = \frac{8.4 \times 10^{3} + 2 \times 10^{5} \times 50 \times 10^{-4} N}{10^{-2} m^{2}} = 0.94 MPa$$
 (4 %)

$$p_A = p_C + 0.2 = 3MPa$$
 (2 \(\frac{1}{2}\)