Loss function

- ► Hemming loss:
 - $\frac{1}{L}\sum_{i\in[1,2,...L]}(\hat{y}_i \text{ xor } y_i)$
- exact loss
 - 0 if $\hat{y} = y$ else 1
- trade off $\sum_{i \in \hat{Y}} [1 a y_i]$

Algorithm

We can consider each "superarm" of the label powerset as a seperate class and then from there we can apply multiclass method. Let k be the cardinality of the labelset for i=1,2,....T:

2)calculate $haty = argmax(W^Tx)$ 3)calculate

$$p_r = (1 - \gamma)|r = \hat{y}| + \frac{\gamma}{k}$$

4)predict \tilde{y} according to the distribution p and recieve \tilde{y} intersection Y 5)update w according to $w=w-\bigtriangledown L$ where L is the loss

Related works

randomised k set: randomly break down the entire powerset of labels into m labelsets which have size k. Train m classifiers and then take the union of their outputs.