Gramatici LR(k)

- analizoare LR(k)
 - analiza sintactica ascendenta
 - secv. de intrare este citita de la stanga spre dreapta
 - se folosesc derivari de dreapta

metoda: deplasare - reducere

Gramatica LR(K)

Analizoarele sintactice LR(k) lucreaza cu gramatica imbogatita:

G' =
$$(N \cup \{S'\}, \Sigma, P \cup \{S' -> S\}, S')$$

(S' $\notin N$)

pentru a evita ca simbolul de start sa apara in membrul drept al unei reguli de productie.

Gramatica LR(K)

O gramatica $G = (N, \Sigma, P, S)$ este de tip LR(k) pentru k>=0

daca din:

$$-S = *>_{dr} \alpha A w \Longrightarrow_{dr} \alpha \beta w$$

$$-S = *_{dr} \gamma B x = >_{dr} \alpha \beta y$$

$$-FIRST_k(w) = FIRST_k(y)$$

rezulta ca:

$$-A = B$$

$$-x = y$$

$$-\alpha = \gamma$$

Definitie: Gramatica LR(K)

Daca S – nu apare in m.d. al unei r.p.:

si daca:

•
$$S = ^* >_{dr} \alpha A w \Rightarrow _{dr} \alpha \beta w$$

•
$$S = *_{dr} \gamma B x = *_{dr} \alpha \beta y$$

• $FIRST_k(w) = FIRST_k(y)$

atunci:

• A = B

 \bullet x = y

• $\alpha = \gamma$

Gramatici LR(K) - terminologie

Prefix viabil

Fie: $S = *>_{dr} \alpha A w =>_{dr} \alpha \beta w$

Orice prefix al lui $\alpha\beta$ se numeste prefix viabil

Element de analiza LR(k)

se defineste ca fiind: $[A \rightarrow \alpha.\beta, u]$

unde $A \rightarrow \alpha \beta \in P$ si $u \in \Sigma^k$

- descrie stadiul in care, avand in vedere regula de productie A→αβ, a fost detectat α (e in varful stivei) si se asteapta sa fie detectat β:
 - $-S = *_{dr} \gamma A w = >_{dr} \gamma \alpha \beta w$
 - $u = FIRST_k(w)$

valabil pentru prefixul viabil γα

Analizor sintactic LR(K)

- la multimea cuv. de analizat se adauga la sfarsit \$
 - \$ marcator de sfarsit de cuvant

- gramatica imbogatita
- constructia colectiei canonice
- constructia tabelului de analiza
- analiza: automat

Colectia canonica LR(K)

- $C = \{I_i \text{elementele de analiza pentru un prefix viabil}\}$
- in I₀ avem un prim element de analiza
- am un element din I_j (pentru fiecare)
 - => le construiesc pe celelalte: functia *Closure*
- am o multime I_i (pentru fiecare)
 - => construiesc multimile goto(I_i,X)

Terminologie: I_i – stare a automatului

Notatie: \mathcal{E} – multimea elementelor de analiza

Constructia colectiei canonice LR(k)

 $C = \{I_i\text{-elementele de analiza pentru un prefix viabil}\}$ in I_0 avem: $[S' \to .S, ...]$

- $I_0 = Closure([S' \rightarrow .S, ...])$
- $C = \{ I_0 \}$
- repeta

pentru toti I_i din C, $X \in (N \cup \Sigma)$ executa

$$C = C \cup goto(I_i,X)$$

sf. pentru

pana cand C nu se mai modifica

$$K=0:$$
 LR(0)

Gramatica imbogatita

- se adauga S'
 - nou simbol de start
 - $-S' \rightarrow S$

Functia Closure LR(0)

- Closure: $Part(\mathcal{E}) \rightarrow Part(\mathcal{E})$
- Fie: $e \in \mathcal{F}$

```
daca e = [A \rightarrow \alpha . B\beta]
```

atunci $\forall B \rightarrow \delta \in P: [B \rightarrow . \delta] \in Closure (e)$

Functia goto LR(0)

- $goto : Part(\mathcal{E}) \times (N \cup \Sigma) \rightarrow Part(\mathcal{E})$
- $goto(I,X) = Closure(\{[A \rightarrow \alpha X.\beta] \mid [A \rightarrow \alpha.X\beta] \in I\})$

Tabelul de analiza LR(0)

		goto N U Σ
I ₀ I ₁	actiune	
	deplasare	
	(s)	
	reducere	
	(nr. r.p.)	
	acceptare	
	(acc)	
	eroare	

- $T(I_i, actiune) =$
 - s (shift, deplasare)

daca:
$$[A \rightarrow \alpha.\beta] \in I_i$$
, $\beta \iff \epsilon$

si:
$$T(I_i, X) = I_j$$
, daca $I_j = goto(I_i, X)$

– L (reducere cu r.p. nr. L)

daca
$$[A \rightarrow \alpha.] \in I_i$$

 $A \rightarrow \alpha \in P$: regula de prod. cu numarul L

 $si: T(I_i, X)$ nu se completeaza

- acc daca: $[S' \rightarrow S.] \in I_i$

Toate celelalte cazuri se considera eroare.

Tabelul de analiza LR(0)

Automatul LR(0) – model matematic

• configuratie:

```
(\alpha,\beta,\Pi)
```

(stiva_de_lucru, banda_de_intrare, banda_de_iesire)

• pe stiva: prefixe viabile, stari ale analizorului

• config. initiala: $(\$0, w\$, \varepsilon)$

• config. finala: $(\$0S I_{acc}, \$, \Pi)$

Tranzitii

deplasare:

• reducere

$$(\$ \gamma s_{p-1} X_p s_p \dots X_k s_k, a_i \dots a_n \$, \Pi) \models (\$ \gamma s_{p-1} A s_m, a_i \dots a_n \$, L\Pi)$$

$$\text{daca: } T(s_k, \text{action}) = L$$

$$\text{sin} A \Rightarrow \mathbf{Y} = \mathbf{Y} \quad \text{and} \quad \mathbf{Y} = \mathbf{Y} \quad \text{and} \quad \mathbf{Y} = \mathbf{Y} \quad \text{and} \quad \mathbf{Y} = \mathbf{Y} \quad \mathbf{Y} =$$

si: $A \rightarrow X_p ... X_k - r.p.$ cu nr. L $T(s_{p-1}, actiune) = s$

 $T(s_{p-1}, A) = s_m$

- acceptare: $(\$ 0S s_{acc}, \$, \Pi)$ acc.
- eroare: orice alta situatie

Automatul LR(0) – model matematic

• Gramatica data prin urmatoarele r.p. este LR(0)?

 $S \rightarrow Ax$

 $S \rightarrow By$

 $A \rightarrow a$

 $B \rightarrow a$

K=1: SLR, LR(1), LALR

Analizor sintactic SLR

- SLR = Simple LR
- element de analiza SLR:

```
[A \rightarrow \alpha.\beta, u]

u = FOLLOW_1(A)

|u| = 1
```

• SLR: tine cont de predictie numai pentru reducere

Analizor sintactic SLR

- constructia colectiei canonice (~LR(0))
 - $-[A \rightarrow \alpha.\beta, u], u = FOLLOW_1(A)$
- constructia tabelului de analiza SLR
 - actiunea de reducere depinde de predictia u
 - =>reducerea va avea o coloana pentru fiecare $a \in \Sigma$
 - tabelul: linii: elementele colectiei canonice

coloane: N U Σ U {\$}

celula: s_{stare},r_{nr.r.p}, acc

• analizorul ~ analizorul pt. LR(0)

automat: configuratii si tranzitii

Tabelul de analiza

actiune: reducere + deplasare (goto)
$$X \in \Sigma \cup \{\$\} \qquad X \in N \cup \Sigma$$

linii: elementele colectiei canonice

coloane: N U Σ U {\$}

Construirea tab. de analiza LR(1)

- $[A \rightarrow \alpha.X\beta,b] \in I_i$: $goto(I_i,X) = I_j <= functia goto action(I_i,X) = sj$
- $[A \rightarrow \alpha, a] \in I_i$ action $(I_i, a) = rL$ $L nr. \ reg. \ de \ productie: A \rightarrow \alpha$ A <> S'
- $[S' \rightarrow S., \$] \in I_i$ action $(I_i,\$) = acc$

Obs: o gram. este LR* daca tabelul de analiza nu contine conflicte; si reciproc

Analizor sintactic LR(1)

- imbogatirea gramaticii
- constructia colectiei canonice element de analiza LR(1):
 - $-[A\rightarrow\alpha.\beta, u], |u|=1$
- constructia tabelului de analiza
- analiza: automat

Colectia canonica LR(1)

• elem. initial

$$[S' \rightarrow .S, \$]$$

• Closure

$$[A \rightarrow \alpha.B\beta, a] => [B \rightarrow .\gamma, b] \in \textit{Closure}([A \rightarrow \alpha.B\beta, a])$$

$$B \rightarrow \gamma \qquad \forall b \in FIRST_1(\beta a)$$

• goto

$$goto(I,X) =$$

Closure
$$(\{[A \rightarrow \alpha X.\beta,a] \mid [A \rightarrow \alpha.X\beta,a] \in I \})$$

- analizorul LR(1)
- analiza LR(1)

Analizor sintactic LALR

•
$$[\underline{A \rightarrow \alpha.\beta}, a]$$
 nucleu

- colectia canonica LR(1)
- fuzioneaza elementele de analiza cu nuclee identice si care nu creeaza conflicte
- predictia: reuniunea predictiilor

LR (1 –uri)

• Conflict:

$$[A \rightarrow \alpha_1.a\alpha_2, u]$$
$$[B \rightarrow \beta_1., a]$$

$$[A \rightarrow \alpha_1, a]$$

$$[B \rightarrow \beta_1, a]$$