

Carnegie Mellon University

Tepper School of Business

46-886: Machine Learning Fundamentals

Amr Farahat

Interpretable Machine Learning

Note:

- No office hours this coming Saturday, April 8th, (due to travel) Please email me for alternative times.
- Deliverable 3 posted tomorrow by 5:00 p.m. (work with same teams)

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>

Some "Interpretable" Models

Linear / Logistic Regression

- Linear regression:
 - The notion of a weighted linear combination of features as a predictor is common and intuitive
 - The impact of each feature is separable and quantifiable using its coefficient
 - Even log-log or semi-log models have simple interpretations in terms of % change
- Logistic regression:
 - Probability thresholds translate to "score" thresholds. The scores are weighted linear combination of features
 - Interpreting the coefficients is a bit tricky...

Some "Interpretable" Models

Classification / Regression Trees

- If then statements/rules, coupled with a graphical representation, are intuitive and capture natural dependencies
- On interpretability, trees rate an A+" − Leo Breiman
- However:
 - We've seen how complicated trees can be once they exceed 3 or so levels
 - The exact threshold values of branch node can be perplexing best to interpret these nodes as high vs. low
 - Handling of categorical variables in Python through dummy variables is not ideal

Less Interpretable Models

Random Forests

Boosted Trees

Neural Networks

Tradeoffs between Prediction and Interpretability

Discussion

What exactly is "interpretability"?

Why does it matter?

 Do you have examples where interpretability was an obstacle to leveraging analytics in practice?

Some thoughts

"Interpretability"

How well do we understand / explain the inner workings of the model

+

How well do we understand / explain the outputs of the model

Some thoughts

1. Understanding / Explaining the inner workings of a model

- "What I cannot create, I do not understand" Richard Feynman
- Good news: Good communication can go a long way...
 - "If you can't explain it simply, you don't understand it well" Albert Einstein (apocryphal)
- Understanding / Transparency builds trust in the model and in the analyst!
- Always attempt to do this:
 - Explain the data used to train the model and its (many) limitations
 - Explain the logic of the modeling framework chosen and how it's data-driven
 - Emphasize your metrics test the model on unseen data
 - Compare your chosen model's performance with other more interpretable alternatives

Some thoughts

2. Understanding / Explaining the outputs of a model

- Often, we have a <u>responsibility</u> to provide some reasonable justification of the factors underlying a given decision / prediction / classification
- Explaining the output, especially, surprising or edge cases can be helpful in doing sanity checks on the data and the model
- In some cases "The purpose of models is <u>insight</u>, not numbers" Richard Hamming (with modification)

Some Tools that may Help Explain Model Outputs

- Surrogate models
- Partial dependence plots
- Feature importance metrics
- SHAP / Shapley values & plots

Reference

If you wish to read more:

- "Interpretable Machine Learning" by Christoph Molnar available online here: https://christophm.github.io/interpretable-ml-book/
- "The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery" by Zachary Lipton (2018). https://dl.acm.org/doi/10.1145/3236386.3241340