Lecture Notes for Week 2 (First Draft)

Idempotent Operators and Projections (Continued)

Proposition 2.1: Let X be a Hilbert space, $E \in \mathcal{L}(X;X)$ be given and assume that E is idempotent. Let $M = \mathcal{R}(E)$. Then $E = P_M$ if and only if

$$\mathcal{N}(E) = \mathcal{R}(E)^{\perp}$$
.

Proof: Assume first that $E = P_M$. Then $I - E = P_{M^{\perp}}$, so $\mathcal{R}(I - E) = M^{\perp}$. By Remark 1.19, we know that $\mathcal{N} = \mathcal{R}(I - E) = M^{\perp}$. Since M is a closed subspace, we know that $(M^{\perp})^{\perp} = M$, and consequently $\mathcal{N}(E) = \mathcal{R}(E)^{\perp}$.

Assume now that $\mathcal{N}(E) = \mathcal{R}(E)^{\perp} = M^{\perp}$. Then, by Remark 1.19, $\mathcal{R}(I-E) = M^{\perp}$. Let $x \in X$ be given and observe that

$$x = Ex + (I - E)x.$$

Since $Ex \in M$ and $(I - E)x \in M^{\perp}$, it follows from the Projection Theorem that $Ex = P_M x$. \square

Remark 2.2: Let X be a normed linear space and assume that $E \in \mathcal{L}(X;X)$ is idempotent. Then

$$||E|| = ||E^2|| \le ||E||^2,$$

and consequently either E=0 or $||E|| \ge 1$. Notice that in Example 1.20, the idempotent operator E has norm equal to $\sqrt{2}$.

Proposition 2.3: Let X be a Hilbert space and let $E \in \mathcal{L}(X;X)$ be given. Assume that E is idempotent and $E \neq 0$. Let $M = \mathcal{R}(E)$. Then $E = P_M$ if and only if ||E|| = 1.

Proof: Assume first that $E = P_M$. Let $x \in X$ be given. Then

$$x = P_M x + (I - P_M)x,$$

and $(P_M x, (I - P_M)x) = 0$. It follows from the Pythagorean Theorem that

$$||x||^2 = ||P_M x||^2 + ||(I - P_M)x||^2 \ge ||P_M x||^2 = ||Ex||^2.$$

Consequently, we have $||E|| \le 1$. By Remark 2.2, we also have $||E|| \ge 1$.

Assume now that ||E|| = 1. Since $\mathcal{R}(E)$ is closed, it suffices to show that $\mathcal{R}(E) = \mathcal{N}(E)^{\perp}$. Let $x \in \mathcal{N}(E)^{\perp}$ be given. Since $\mathcal{R}(I - E) = \mathcal{N}(E)$ we have

$$0 = (x - Ex, x) = ||x||^2 - (Ex, x)$$

$$\geq ||x||^2 - ||Ex|| ||x|| = ||x|| (||x|| - ||Ex||).$$
(1)

If x = 0 then certainly $x \in \mathcal{R}(E)$, so we may assume that $x \neq 0$. It follows from (1) that $||Ex|| \geq ||x||$. Since ||E|| = 1 we know that $||Ex|| \leq ||x||$ and consequently ||Ex|| = ||x||. Using (1) again, we see that

$$||Ex||^2 = ||x||^2 = (Ex, x),$$

and consequently

$$||x - Ex||^2 = ||x|^2 + ||Ex||^2 - 2(Ex, x) = 0.$$

It follows that x = Ex and $x \in \mathcal{R}(E)$.

Now let $y \in \mathcal{R}(E)$ be given. Let us write

$$y = x + z$$

with $x \in \mathcal{N}(E)$ and $z \in \mathcal{N}(E)^{\perp}$. Since $\mathcal{N}(E)^{\perp} \subset \mathcal{R}(E)$ we know that Ez = z. Consequently, we have

$$y = Ey = E(x+z) = Ez = z,$$

and $y \in \mathcal{N}(E)^{\perp}$. \square

Theorem 2.4: Let X be a Hilbert space and $E \in \mathcal{L}(X;X)$ be given. Assume that E is idempotent and that $E \neq 0$. Put $M = \mathcal{R}(E)$. The following four statements are equivalent:

- (i) $E = P_M$.
- (ii) ||E|| = 1.
- (iii) E is self-adjoint.
- (iv) E is normal.

Proof: We have already shown that (i) holds if and only if (ii) holds. Moreover the implication (iii) \Rightarrow (iv) is immediate. It suffices to prove (i) \Rightarrow (iii) and (iv) \Rightarrow (i).

Assume that (i) holds and let $x, y \in X$ be given. We write

$$x = x_1 + x_2, y = y_1 + y_2, x_1, y_1 \in M, x_2, y_2 \in M^{\perp}.$$

Then we have

$$(Ex, y) = (Ex_1 + Ex_2, y_1 + y_2) = (x_1, y_1 + y_2) = (x_1, y_1),$$

and also

$$(x, Ey) = (x_1 + x_2, Ey_1 + Ey_2) = (x_1 + x_2, y_1) = (x_1, y_1).$$

We conclude that

$$(Ex, y) = (x, Ey)$$
 for all $x, y \in X$

and E is self-adjoint.

Assume now that (iv) holds. Then

$$||Ex|| = ||E^*x||$$
 for all $x \in X$

and $\mathcal{N}(E) = \mathcal{N}(E^*)$. Since $\mathcal{N}(A^*) = \mathcal{R}(A)^{\perp}$ for every $A \in \mathcal{L}(X;X)$ we conclude that $\mathcal{N}(E) = \mathcal{R}(E)^{\perp}$ and $E = P_M$ by virtue of . \square

Proposition 2.5: Let X be a Hilbert space and $E \in \mathcal{L}(X;X)$ be given. Assume that E is idempotent and put $M = \mathcal{R}(E)$. Then $E = P_M$ if and only if

$$(Ex, x) \ge 0 \text{ for all } x \in X.$$
 (2)

(The condition (2) means that for every $x \in X$, the quantity (Ex, x) is real and nonnegative.)

Proof: Assume first that $E = P_M$. Let $x \in X$ be given and write

$$x = x_1 + x_2, \quad x_1 \in M, \ x_2 \in M^{\perp}.$$

Then we have

$$(Ex, x) = (Ex_1 + Ex_2, x_1 + x_2) = (x_1, x_1) \ge 0.$$

Conversely, assume that (2) holds. If $\mathbb{K} = \mathbb{C}$ then E is self-adjoint by Proposition 1.6 and using Theorem 2.4, we conclude that $E = P_M$.

Assume that $\mathbb{K} = \mathbb{R}$ and let $y \in \mathcal{R}(E)$ and $z \in \mathcal{R}(I - E)$ be given. Then, since $\mathcal{R}(I - E) = \mathcal{N}(E)$, we have

$$0 \le (Ey + Ez, y + z) = (y, y + z) = ||y||^2 + (y, z).$$

We conclude that

$$||y||^2 + (y, z) \ge 0 \text{ for all } y \in \mathcal{R}(E), \ z \in \mathcal{R}(I - E).$$
(3)

I claim that (3) implies that (y, z) = 0 for all $y \in \mathcal{R}(E)$, $z \in \mathcal{R}(I - E)$. To see why the claim is true, let $y \in \mathcal{R}(E)$ and $z \in \mathcal{R}(I - E)$ be given. Then we have

$$||y||^2 + t(y, z) \ge 0 \text{ for all } t \in \mathbb{R}.$$
 (4)

If $(y, z) \neq 0$, then we can choose t to have the opposite sign of (y, z) and be large in magnitude. This will contradict (4). \square