MDI341

Introduction aux modèles graphiques : réseaux bayésiens et modèles de Markov cachés

Mars 2017

Laurence Likforman-Sulem
Telecom ParisTech/TSI
bureau : E 504
likforman@telecom-paristech.fr

Plan

- Modèles graphiques
- Réseaux bayesiens
- Réseaux bayesiens dynamiques (DBN)
- Lien avec les HMMs (Hidden Markov Models)

applications HMMs et réseaux bayésiens dynamiques: reconnaissance de la parole, de l'écriture, détection d'objets, de visages dans les videos réseaux bayésiens statiques Détection de fraudes, ex: HUGIN diagnostic source: HUGINExpert

Modèles graphiques: graphes non dirigés

- arbre : graphe non dirigé + 1 seul chemin entre 2 nœuds
- graphe multi-connexe : non dirigé + plusieurs chemins entre noeuds

Arbre simple

Graphe multi-connexe

5

Modèles graphiques: graphes dirigés

• notion de fils, parents, descendants, ascendants, frères

réseau bayésien

- réseau bayésien: (G, θ)
- G=(V, E) graphe acyclique orienté
 - V: variables (nœuds),
 - E: arcs: relations entre variables (influence d'une variable sur une autre)
- θ : paramètres (tables de probabilité locales)
 - □ P(X|parents(X)), P(X) si X n'a pas de parent
- réseau: encode la probabilité jointe de manière factorisée
 - □ apprentissage: moins de paramètres: 1+1+4+2=8 au lieu de
 - inférence moins complexe

A=1 ou 0 P(A,B,C,D) = P(A)P(B)P(C|A,B)P(D|B)

exemple réseau bayésien

[from Wikipedia BN]

- G: herbe du jardin humide (1 ou 0)
- S: arroseur en marche (1 ou 0)
- R: il a plu pendant la nuit (1 ou 0)

- S→ G : G est une conséquence de S
- R→ S: R a une influence sur S (s'il pleut, pas besoin de mettre en route l'arrosage)
- R→ G: G est une conséquence de R
- réciproquement: la connaissance de G modifie la « croyance » de S et de R : P(R=1|G=1) > P(R=1))

paramètres d'un réseau bayésien

- tables de probabilités locales : P(X| parents(X))
- Conditional Probability Tables or Distributions (CPT and CPD)
- G: herbe du jardin humide (1 ou 0)
- S: arroseur en marche (1 ou 0)

R: il a plu pendant la nuit (1 ou 0)

R P(S=1|R) P(S=0| R) 0 0.4 0.6 1 0.01 0.99

P(R=0)=0.8

s	R	P(G=0 S,R)	P(G=1 S,R)
1	1	0.01	0.99
1	0	0.1	0.9
0	1	0.2	0.8
0	0	1.0	0.0

réseau bayésien: indépendance conditionnelle

- un nœud est indépendant de ses non-descendants connaissant ses parents
- C: le voisin appelle (1 ou 0)
- A: alarme maison s'est déclenchée (1 ou 0)
- B: il y a eu un cambriolage (1 ou 0)
- R: la radio annonce un tremblement de terre (1 ou 0)
- E: il y a un tremblement de terre (1 ou 0)

[d'après Nir Friedman]

C est indépendant de R, B, E connaissant la valeur de A

Bayesian network: mini TD

• exercice : calculer le nombre de parametres de ce réseau

[from Nir Friedman]

11

Inférence dans un réseau bayésien

- calcul de P(variable(s) | variable(s) observée(s))
- variables observées: « evidence » ou observation
- inférence ou « propagation de l'observation »
- algorithmes d'inférence:
 - exacts dans arbres, polyarbres (passages de messages)
 - stochastiques : échantillonnage

mini-TD: inférence

G observée: G=1, calculer P(R=1| G=1)

P(R=0)=0.8P(R=1)=0.2

S	R	P(G=0 S,R)	P(G=1 S,R)
1	1	0.01	0.99
1	0	0.1	0.9
0	1	0.2	0.8
0	0	1.0	0.0

inférence dans une chaîne

• 2 nœuds dont 1 observé

• paramètres: P(X=x) avec $dom\{X\}=\{x1,x2\}$, et $P_{Y|X}$ avec $dom\{Y\}=\{y1,y2,\,y3\}$,

$$P_{Y|X} = \begin{bmatrix} P(Y = y_1 | X = x_1) & P(Y = y_2 | X = x_1) & P(Y = y_3 | X = x_1) \\ P(Y = y_1 | X = x_2) & P(Y = y_2 | X = x_2) & P(Y = y_3 | X = x_2) \end{bmatrix}$$

variable backward λ:

$$\lambda(y) = P(E|Y = y) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\lambda(x) = P(E|X = x)$$

on calcule $\lambda(x)$ à partir du

on a
$$\lambda(x) = P(E|X = x)$$
 of reacting $\lambda(x)$ a parameter $\lambda(x) = P(E|X = x)$ on a $\lambda(x) = P_{Y|X}\lambda(y) = \begin{bmatrix} P(Y = y_2 | X = x_1) \\ P(Y = y_2 | X = x_2) \end{bmatrix}$ envoyé par Y à X

$$P(X = x, E) = P(E = e | X = x)P(X = x) = \lambda(x)P(X = x)$$

inférence dans une chaîne (backward)

$$E^{+} = \{U = u_{5}\}$$

$$\downarrow u$$

$$\downarrow u$$

$$\downarrow u$$

$$\downarrow x$$

4 nœuds dont 2 observés (Z et U), observations amont E+ et aval E-: dom{Z}={z_1, z_2, z_3, z_4} dom{U}={u_1, u_2, u_3, u_4 , u_5}

on pose variable backward $\lambda(z) = P(E^-|Z=z) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

on a
$$\lambda(y) = P_{Z|Y}\lambda(z)$$

et $\lambda(x) = P_{Y|X}\lambda(y)$

on calcule $\lambda(y)$ à partir du message $\lambda(z)$ envoyé par Z à Y puis $\lambda(x)$ à partir du message $\lambda(y)$ envoyé par Y à X

1

inférence dans une chaîne (forward)

$$E^{+} = \{U = u_{5}\}$$

$$\downarrow u$$

$$\downarrow u$$

$$\downarrow x$$

4 nœuds dont 2 observés

on pose variable forward $\pi(x) = P(X = x, E^+)$

on calcule $\pi(x)$ à partir du message $\pi(u)$ envoyé par U à son enfant X

on a $\pi(u) = [0 \ 0 \ 0 \ 0]$

on a
$$\pi(x) = \pi(u)P_{x|U}$$

et
$$\pi(y) = \pi(x)P_{Y|X}$$

$$P(X = x, E) = \lambda(x)\pi(x)$$

$$P(X = x | E) \propto \lambda(x)\pi(x)$$

facteur normalisation 1/P(E) près

$$P(E) = \sum_{x \in dom\{X\}} \lambda(x)\pi(x)$$

exemple (chaîne)

extrait de P. Naïm et al. Réseaux Bayésiens

S: sexe : F ou M

D: daltonien: oui ou non

	D=oui	D=non
S=F	0.005	0.995
S=M	0,08	0.92

On observe :E={ D=oui} calculer par algorithme d'inférence (passage de message) P(S|E)

quelle est la probabilité d'être une femme si on est daltonien ?

on considèrera que la proportion H/F est égale dans la population.

17

inference dans un arbre

- variables observées : X_1 =2, X_4 =1, X_5 =1, X_6 =2
- variables cachées (états) : X_2 , dom{ X_2 }={3,4,5} X_3 , dom{ X_3 } ={6,7}

inférence dans les arbres

- e_i +: variables observées en amont de Xi
- e_i⁻: variables observées en aval de Xi
- e_i⁰: valeur observée de Xi, si Xi est observée
- $E = \{e_i^0, e_i^+, e_i^-\}$

19

inférence dans les arbres

- on définit pour nœud Xi
 - variable λ (backward)

$$\lambda(x_i) = P(e_i^0, e_i^- | X_i = x_i)$$

 \Box variable π forward

$$\pi(x_i) = P(e_i^+, X_i = x_i)$$

$$P(E, X_i = x_i) = P(e_i^0, e_i^-, e_i^+, X_i = x_i)$$

$$P(X_i = x_i, E) = \lambda (x_i) \pi (x_i)$$

$$P(E) = \sum_{x_i \in dom\{X_i\}} \lambda(x_i) \pi(x_i)$$

$$P(X_i = x_i | E) = \frac{\lambda(x_i)\pi(x_i)}{\sum_{x_i \in dom\{X_i\}} \lambda(x_i)\pi(x_i)} \propto \lambda(x_i)\pi(x_i)$$

Algorithme d'inférence par passage de messages

message λ des enfants de Xi, à Xi: $\lambda_{X_{c1}}(X_i)$ message λ de Xi à son parent Xp: $\lambda_{X_i}(x_p)$ message $\mathbf \lambda$ des frères de Xi à leur parent Xp: $\lambda_{\mathbf X_{f_2}}(\mathbf x_p)$ message π envoyé par Xi à ses enfants: $\mathcal{\pi}_{X_a}(\mathcal{X}_i)$ message π envoyé à Xi par son parent Xp $\pi_{X_n}(x_n)$

Algorithme d'inférence: calcul des λ

• les enfants X_{ci} envoient un message λ à leur parent Xi.

$$\lambda_{X_{c1}}(x_i) = P_{X_{c1}|X_i} \bullet \lambda(x_{c1})$$

- si X_i feuille observée $\lambda(x_i) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ (position 1 dépend observation)
- $\lambda(x_i) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ si X_i feuille non observée:
- si X_i nœud (pas feuille) caché:
- $\lambda(x_i) = \prod_{\substack{Y: children(Xi)}} \lambda_Y(x_i)$ avec $\lambda_Y(x_i)$ message de l'enfant Y de Xi, à Xi
- si X_i nœud (pas feuille) observé : $\lambda(x_i) = \prod_{Y: children(X_i)} \lambda_Y(x_i)$ pour xi=correspondant à l'observation, 0 sinon

Algorithme d'inférence: calcul des π

- de la racine aux feuilles
- □ si X_i racine est observée $\pi(x_i) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
- Si X_i est la racine, non observée $\pi(x_i) = P(X_i = x_i)$
- sinon: on utilise le message π : $\pi_{X_l}(x_p)$ envoyé à Xi par son unique parent Xp:

$$\pi(x_i) = \pi_{X_i}(x_p) P_{X_i|X_p}$$

$$\pi_{X_i}(x_p) = \pi(x_p) \prod_{Z_i \text{ frees de Xi}} \lambda_Z(x_p)$$

• messages π envoyés par Xi à chacun de ses enfants (message λ du ou des autres enfants et π du parent de Xi)

$$\pi_{X_{c1}}(X_i) = \prod_{X_f \text{ freres de } X_{ci}} \lambda_{X_f}(X_i) \ \pi(X_i) = \prod_{X_f} \lambda_{X_f}(X_i) \ \pi_{X_i}(X_p) \ P_{X_i|X_p}$$

2

inférence dans un réseau quelconque (DAG)

- convertir le réseau dans une structure d'arbre (arbre de jonction)
- □ algorithme d'inférence de l'arbre de jonction [Jensen, 96] [Zweig, 2003]
 - moralisation (connecter les parents)
 - triangulation (former des cliques)
 - connecter les cliques entre elles

apprentissage des réseaux bayésiens

- apprentissage en données complètes, structure connue
 - \Box estimation des paramètres P(variable | Parents)
 - par estimation au maximum de vraisemblance
- en données incomplètes, structure connue
 - algorithme EM ou descente de gradient ou méthodes stochastiques MCMC (échantillonnage de Gibbs)
- apprentissage de la structure, données complètes
 - algorithmes gloutons
- apprentissage de la structure, données incomplètes
 - □ EM + algorithmes gloutons

25

extension: réseaux bayésiens dynamiques (DBN)

- modélisent des processus stochastiques stationnaires
 - structure & paramètres ne varient pas au cours du temps
 - plusieurs variables d'états et d'observations pour chaque pas de temps

un modèle de Markov caché est un cas particulier de DBN

- HMM: Hidden Markov Model
- structure d'arbre
- 1 variable d'état + 1 variable d'observation à chaque instant t

 $(Q_{t})_{1 \leq t \leq T}$: variables d'état (cachées)

 $(O_{_{l}})_{_{1 \leq l \leq T}}$: variables d'observation (observées) générées par les états

2

références

- Wikipedia BN: http://en.wikipedia.org/wiki/Bayesian_network
- A. W. Moore, Bayes Nets for representing and reasoning about uncertainty, 2001
 - http://www.cs.cmu.edu/%7Eawm/tutorials
- S. Davis, A. Moore Bayesian networks: independencies and inference
 - http://www.cs.cmu.edu/~awm/tutorials
- K. Murphy, BayesNet Toolbox for matlab https://code.google.com/p/bnt/
- N. Friedman, D. Koller, Learning Bayesian Networks from data
- G. Zweig, Speech Recognition with Dynamic Bayesian Networks, Phd thesis, 1998, Univ. of California, Berkeley,
- P. Leray, Réseaux Bayésiens-Apprentissage de la structure
 - http://asi.insa-rouen.fr/enseignants/~pleray/RB2003/2-ApprentissageStructure.pdf
- P. Naïm , P-H. Wuillemin , P. Leray , O. Pourret , A. Becker, Les réseaux Bayésiens, Eyrolles, 2007.
- M. Sigelle, Bases de la Reconnaissance des Formes: Chaînes de Markov et Modèles de Markov Cachés, chapitre 7, Polycopié Telecom ParisTech, 2012.
- J. Pearl, Probabilistic Reasoning in intelligent systems: networks of plausible inference networks, 1988.
- L. Likforman-Sulem, E. Barney Smith, Reconnaissance des Formes: théorie et pratique sous matlab, Ellipses, TechnoSup, 2013.