ELECTRONICA APLICADA I

Profesor Titular Dr Ing. Guillermo Riva Profesor Adjunto Ing. Martín Guido

ESTABILIDAD DE LA POLARIZACION

Contenido:

Introducción.

Variaciones del punto Q debidas a las variaciones del β.

Efecto de la temperatura sobre el punto de reposo.

Análisis de los factores de estabilidad.

ESTABILIDAD DE LA POLARIZACION

Introducción

Parámetros que pueden producir variación del punto Q.

Internos

- 1.- Variación del β de un transistor a otro siendo del mismo modelo.
 Variación del β debido a la temperatura (incremento del β con el aumento temperatura).
- 2.-Variación de la I_{CB0} debido a su dependencia con la temperatura (aumenta la corriente con el incremento de la temperatura).
- 3.- Variación de la V_{BEQ} debido a su dependencia con la temperatura (disminuye la tensión con el incremento de la temperatura).

Externos

- 4.- Variación de V_{CC} debida a una mala regulación de la fuente.
- 5.- Variación del valor de los resistores del circuito debido a la tolerancia adoptada y a la temperatura.

Estabilidad de la Polarización

Variación del punto Q debido a variaciones del β .

2025

De (1) despejamos I_E

$$I_E = \frac{I_C - I_{CBO}}{\alpha} \qquad (5)$$

Reemplazamos (5) en (4) y ordenamos

$$V_{BB} - V_{BE} = \left(\frac{I_C - I_{CBO}}{\alpha}\right) \left[\left(1 - \alpha\right)R_B + R_E\right] - I_{CBO}R_B$$

$$V_{BB} - V_{BE} = \left(\frac{I_C}{\alpha} - \frac{I_{CBO}}{\alpha}\right) \left[(1 - \alpha)R_B + R_E \right] - I_{CBO}R_B$$

$$V_{BB} - V_{BE} = \frac{I_C}{\alpha} \left[(1 - \alpha) R_B + R_E \right] - \frac{I_{CBO}}{\alpha} \left[(1 - \alpha) R_B + R_E \right] - I_{CBO} R_B$$

$$V_{BB} - V_{BE} = \frac{I_C}{\alpha} \left[(1 - \alpha) R_B + R_E \right] - \frac{I_{CBO}}{\alpha} \left[(1 - \alpha) R_B + R_E \right] - \frac{I_{CBO}}{\alpha} \times \alpha R_B$$

$$V_{BB} - V_{BE} = \frac{I_C}{\alpha} \left[(1 - \alpha) R_B + R_E \right] - \frac{I_{CBO}}{\alpha} \left[(1 - \alpha) R_B + R_E + \alpha R_B \right]$$

2025

$$\begin{split} V_{BB} - V_{BE} &= \frac{I_{C}}{\alpha} \Big[\big(1 - \alpha \big) R_{B} + R_{E} \Big] - \frac{I_{CBO}}{\alpha} \Big[+ R_{B} - \mathscr{A} R_{B} + R_{E} + \mathscr{A} R_{B} \Big] \\ V_{BB} - V_{BE} &= \frac{I_{C}}{\alpha} \Big[\big(1 - \alpha \big) R_{B} + R_{E} \Big] - \frac{I_{CBO}}{\alpha} \Big[R_{E} + R_{B} \Big] \\ V_{BB} - V_{BE} + \frac{I_{CBO}}{\alpha} \Big[R_{E} + R_{B} \Big] &= \frac{I_{C}}{\alpha} \Big[\big(1 - \alpha \big) R_{B} + R_{E} \Big] \\ \alpha \big(V_{BB} - V_{BE} \big) + I_{CBO} \Big[R_{E} + R_{B} \Big] &= I_{C} \Big[\big(1 - \alpha \big) R_{B} + R_{E} \Big] \\ I_{CQ} &= \frac{\alpha \Big[V_{BB} - V_{BE} \Big] + I_{CBO} \Big[R_{E} + R_{B} \Big]}{\big(1 - \alpha \big) R_{B} + R_{E}} &= \frac{\frac{\beta}{\beta + 1} \Big[V_{BB} - V_{BE} \Big] + I_{CBO} \Big[R_{E} + R_{B} \Big]}{\Big(1 - \frac{\beta}{\beta + 1} \Big) R_{B} + R_{E}} \\ I_{CQ} &= \frac{\frac{\beta}{\beta + 1} \Big[V_{BB} - V_{BE} \Big] + I_{CBO} \Big[R_{E} + R_{B} \Big]}{\Big(\frac{\beta + 1 - \beta}{\beta + 1} \Big) R_{B} + R_{E}} &= \frac{\frac{\beta}{\beta + 1} \Big[V_{BB} - V_{BE} \Big] + I_{CBO} \Big[R_{E} + R_{B} \Big]}{\Big(\frac{1}{\beta + 1} \Big) R_{B} + R_{E}} \end{aligned}$$

$$I_{CQ} = \frac{\frac{\beta}{\beta + 1} \left[V_{BB} - V_{BE} \right] + I_{CBO} \left[R_E + R_B \right]}{R_E + \frac{R_B}{\beta + 1}}$$

Como $\beta \gg 1$

$$I_{CQ} = \frac{\left[V_{BB} - V_{BE}\right] + I_{CBO}\left[R_E + R_B\right]}{R_E + \frac{R_B}{\beta}} \qquad ecuacion \ general$$

Si hacemos $R_E \gg \frac{R_B}{\beta}$

$$I_{CQ} = \frac{V_{BB} - V_{BE}}{R_E} + I_{CBO} \left(1 + \frac{R_B}{R_E} \right)$$
 (6)

Como $I_{CBO} \cong 0$ (aproximadamente 1 μ A para el Silicio)

$$I_{CQ} = \frac{V_{BB} - V_{BE}}{R_{E}}$$
 (observamos que I_{CQ} no depende del β)

De la ecuacion general

$$I_{CQ} = \frac{\left[V_{BB} - V_{BE}\right] + I_{CBO}\left[R_E + R_B\right]}{R_E + \frac{R_B}{\beta}}$$

Efecto de la temperatura sobre el punto de reposo.

$$I_{CQ} = f(\underbrace{V_{BE}, I_{CBO}, \beta}_{Son f(T)}, \dots)$$

$$\Delta V_{BE} = V_{BE2} - V_{BE1} = -k(T_2 - T_1) = -k\Delta T$$
 donde $k = 2.5 \text{ mV/o}_{C}$

donde
$$k = 2.5 \text{ mV/}_{\circ} C$$

$$I_{CBO(2)} = I_{CBO(1)}e^{K\Delta T}$$

$$donde\ K = 0.07\ \text{\%}_{C}$$

$$\Delta I_{CBO} = I_{CBO(2)} - I_{CBO(1)} = I_{CBO(1)}e^{K\Delta T} - I_{CBO(1)} = I_{CBO(1)}(e^{K\Delta T} - 1)$$

Estabilidad de la Polarización (Cont.) Análisis de los Factores de Estabilidad

$$\frac{\Delta I_{CQ}}{\Delta T} = \frac{\Delta I_{CQ}}{\Delta V_{BE}} \times \frac{\Delta V_{BE}}{\Delta T} + \frac{\Delta I_{CQ}}{\Delta I_{CBO}} \times \frac{\Delta I_{CBO}}{\Delta T} + \frac{\Delta I_{CQ}}{\Delta \beta} \times \frac{\Delta \beta}{\Delta T} \quad \begin{cases} Sale \ de \ aplicar \ la \ regla \\ de \ la \ cadena \ por \ analisis \\ differencial. \end{cases}$$

$$\Delta I_{CQ} = \frac{\Delta I_{CQ}}{\Delta V_{BE}} \times \Delta V_{BE} + \frac{\Delta I_{CQ}}{\Delta I_{CBO}} \times \Delta I_{CBO} + \frac{\Delta I_{CQ}}{\Delta \beta} \times \Delta \beta$$

Si tenemos ΔT ; calculamos ΔV_{BE} , ΔI_{CBO} y $\Delta \beta$

Factores de estabilidad :

$$S_{V} = \frac{\Delta I_{CQ}}{\Delta V_{RF}}$$
 $S_{I} = \frac{\Delta I_{CQ}}{\Delta I_{CRQ}}$ $S_{\beta} = \frac{\Delta I_{CQ}}{\Delta \beta}$

Entonces:

$$\Delta I_{CQ} = S_V \Delta V_{BE} + S_I \Delta I_{CBO} + S_{\beta} \Delta \beta$$

Partiendo de (6):
$$I_{CQ} = \frac{V_{BB} - V_{BE}}{R_E} + I_{CBO} \left(1 + \frac{R_B}{R_E} \right)$$

$$S_V = \frac{\Delta I_{CQ}}{\Delta V_{BE}} \approx \frac{\partial I_{CQ}}{\partial V_{BE}} = -\frac{1}{R_E}$$

 $S_V = \frac{\Delta I_{CQ}}{\Delta V_{DE}} \approx \frac{\partial I_{CQ}}{\partial V_{DE}} = -\frac{1}{R_E}$ (Si los incrementos de las variables independientes

$$S_I = \frac{\Delta I_{CQ}}{\Delta I_{CBO}} \approx \frac{\partial I_{CQ}}{\partial I_{CBO}} = 1 + \frac{R_B}{R_E}$$

 $S_I = \frac{\Delta I_{CQ}}{\Delta I_{CBO}} \approx \frac{\partial I_{CQ}}{\partial I_{CBO}} = 1 + \frac{R_B}{R_E}$ V_{BE}, I_{CBO} son pequeñas podemos calcular la derivada)

$$\Delta I_{CQ} = -\frac{1}{R_E} \left(-k\Delta T \right) + \left(1 + \frac{R_B}{R_E} \right) I_{CBO(1)} \left(e^{K\Delta T} - 1 \right) + \dots$$

$$\Delta I_{CQ} = \frac{k\Delta T}{R_E} + \left(1 + \frac{R_B}{R_E}\right) I_{CBO(1)} \left(e^{K\Delta T} - 1\right) + \dots$$

$$S_{\beta} = \frac{\Delta I_{CQ}}{\Delta \beta}$$

(como las variaciones del β son grandes se debe calcular el

incremento real)

$$I_{CQ} = \frac{\alpha \left[V_{BB} - V_{BE} \right]}{\left(1 - \alpha \right) R_B + R_E} \quad (Ver \ p\'agina \ 5 \ en \ la \ que \ se \ desprecia \ I_{CB0})$$

$$Como \ \alpha = \frac{\beta}{\beta + 1}$$

$$I_{CQ} = \frac{\beta(V_{BB} - V_{BE})}{(\beta + 1)(1 - \alpha)R_B + (\beta + 1)R_E}$$

$$Como \ \alpha = \frac{\beta}{\beta + 1} \quad \Rightarrow \quad \beta + 1 = \frac{\beta}{\alpha}$$

$$Como \ \beta = \frac{\alpha}{1-\alpha} \quad \Rightarrow \quad 1-\alpha = \frac{\alpha}{\beta}$$

Entonces
$$(\beta+1)(1-\alpha) = \frac{\beta}{\alpha} \frac{\alpha}{\beta} = 1$$

$$I_{CQ} = \frac{\beta(V_{BB} - V_{BE})}{R_B + (\beta + 1)R_E} \quad (apartir de esta ecuación calcularemos la \frac{\Delta I_{CQ}}{\Delta \beta})$$

 β_1 : es el β inicial a temperatura T_1 y β_2 : es el β final a temperatura T_2)

$$\begin{split} I_{CQ1} &= \frac{\beta_{1}(V_{BB} - V_{BE})}{R_{B} + (\beta_{1} + 1)R_{E}} \qquad I_{CQ2} = \frac{\beta_{2}(V_{BB} - V_{BE})}{R_{B} + (\beta_{2} + 1)R_{E}} \\ &\frac{I_{CQ2}}{I_{CQ1}} = \frac{\frac{\beta_{2}(V_{BB} - V_{BE})}{R_{B} + (\beta_{2} + 1)R_{E}}}{\frac{\beta_{1}(V_{BB} - V_{BE})}{R_{B} + (\beta_{1} + 1)R_{E}}} = \frac{\beta_{2}(V_{BB} - V_{BE})}{R_{B} + (\beta_{2} + 1)R_{E}} \times \frac{R_{B} + (\beta_{1} + 1)R_{E}}{\beta_{1}(V_{BB} - V_{BE})} \\ &\frac{I_{CQ2}}{I_{CQ1}} = \frac{\beta_{2}\left[R_{B} + (\beta_{1} + 1)R_{E}\right]}{\beta_{1}\left[R_{B} + (\beta_{2} + 1)R_{E}\right]} \\ &\frac{\Delta I_{CQ}}{I_{CQ1}} = \frac{I_{CQ2} - I_{CQ1}}{I_{CQ1}} = \frac{I_{CQ2}}{I_{CQ1}} - 1 \end{split}$$

$$\begin{split} &\frac{\Delta I_{CQ}}{I_{CQ1}} = \frac{\beta_2}{\beta_1} \frac{\left[R_B + (\beta_1 + 1)R_E\right]}{\left[R_B + (\beta_2 + 1)R_E\right]} - 1 \\ &\frac{\Delta I_{CQ}}{I_{CQ1}} = \frac{\beta_2 \left[R_B + (\beta_1 + 1)R_E\right] - \beta_1 \left[R_B + (\beta_2 + 1)R_E\right]}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} \\ &\frac{\Delta I_{CQ}}{I_{CQ1}} = \frac{\beta_2 R_B + \beta_2 \beta_1 R_E + \beta_2 R_E - \beta_1 R_B - \beta_1 \beta_2 R_E - \beta_1 R_E}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} = \frac{\beta_2 R_B + \beta_2 R_E - \beta_1 R_B - \beta_1 R_E}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} \\ &\frac{\Delta I_{CQ}}{I_{CQ1}} = \frac{R_B (\beta_2 - \beta_1) + R_E (\beta_2 - \beta_1)}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} = \frac{R_B \Delta \beta + R_E \Delta \beta}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} = \frac{\Delta \beta (R_B + R_E)}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} \\ S_\beta = \frac{\Delta I_{CQ}}{\Delta \beta} = \frac{I_{CQ1} (R_B + R_E)}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} \end{split}$$

Finalmente

$$\Delta I_{CQ} = S_V \Delta V_{BE} + S_I \Delta I_{CBO} + S_{\beta} \Delta \beta + \dots$$

$$\Delta I_{CQ} = \left(-\frac{1}{R_E}\right) \Delta V_{BE} + \left(1 + \frac{R_B}{R_E}\right) \Delta I_{CBO} + \frac{I_{CQ1}(R_B + R_E)}{\beta_1 \left[R_B + (\beta_2 + 1)R_E\right]} \Delta \beta + \dots$$

Bibliografía

- Circuitos Electrónicos Discretos e Integrados,
 Donald L. Schilling-Charles Belove.
- Dispositivos Electrónicos, Thomas L. Floyd.
- Electrónica: Teoría de Circuitos y Dispositivos Electrónicos,
 - Robert L. Boylestad-Louis Nashelsky.
- 1100 Problemas de Electrónica Resueltos.
 Ing Alberto Muhana.
- Electrónica Integrada.
 Jacob Millman-Christos Halkias
- Circuitos Microelectronicos.
 Rashid