

A test for the comparison of gene-set transcriptomic profiles of vaccines

Arthur Hughes ¹² Denis Agniel ⁴⁵ Rodolphe Thiébaut ¹²³ Boris Hejblum ¹²

¹University of Bordeaux, BPH INSERM U1219, INRIA SISTM

²Vaccine Research Institute

³CHU de Bordeaux

⁴Harvard Medical School, Boston, USA

⁵RAND Corporation, Santa Monica, USA

Introduction

Comparing gene expression profiles between vaccines has high potential

- Understanding vaccine mechanisms
- Identifying biomarkers

But there are many challenges with high-dimensional data...

- Interpretation of results
- Sensitivity to investigator choices
- ⚠ Low signal-noise ratio

Gather genes in gene sets defined by biological function

Reduce dimension Ease interpretation

Maximise signal

1. Expression Profiles

2. Gene Set Database

3. Comparative Test

Figure 1. Illustration of the gene set comparative test.

Working Linear Mixed Effects Model

Test statistic derived from a working linear-mixed effects model:

$$oldsymbol{y_i}^G = oldsymbol{lpha_0} + oldsymbol{X_i}oldsymbol{lpha} + oldsymbol{\Phi_i}oldsymbol{eta_i} + oldsymbol{\epsilon_i}$$

- $\mathbf{y_i}^G = ((\mathbf{y_i}^1)^T, ..., (\mathbf{y_i}^p)^T)^T$ expression of p genes in set G for individuals i = 1, ..., n
- ullet X_i matrix of baseline covariates to control for
- Φ_i K time-dependent variables whose association with $m{y_i}^G$ is to be tested
- \implies β fixed effects of testing variables
- $\Rightarrow \boldsymbol{\xi_i} \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathcal{E}})$ individual-level random effects of testing variables
- $\Longrightarrow \epsilon_i \sim \mathcal{N}(\mathbf{0}, \Sigma_i)$ random error terms

Null Hypothesis

$$H_0: m{eta} = m{0}, m{\xi_i} = m{0}$$

Variance-Component Score Test

The derived variance-component score test statistic [1] is $Q = q^T q$ with

$$\boldsymbol{q}^T = n^{-1/2} \sum_{i=1}^n (\boldsymbol{y}_i^G - (\boldsymbol{\alpha}_0 + X_i \boldsymbol{\alpha}))^T \Sigma_i^{-1} \Phi_i$$

- Central limit theorem $\implies Q \sim \sum_{k=1}^{pK} a_k \chi_1^2$ where a_k is the kth eigenvalue of $\text{cov}(\boldsymbol{q})$
- **/**

Only requires estimation of model under H_0 (i.e. linear model)!

Type 1 error control relies only on the central limit theorem!

Gene-Set Correlation

 \triangle

Dependence between genes in same set

Take into account in residual variance Σ_i

- 1. Fit linear model for each gene $g \in G$:
 - $y_{ij}^g = \alpha_0^g + \boldsymbol{x_i}^T \boldsymbol{\alpha}^g + \boldsymbol{\phi_{ij}}^T \boldsymbol{\beta}^g + e_{ij}^g$
- 2. OLS estimates residuals $r_{ij}^g = y_{ij}^g \widehat{y_{ij}^g} \implies {\pmb r}^g = (r_{11}^g, ..., r_{1t}^g, ..., r_{n1}^g, ..., r_{nt}^g)^T$
- 3. Entry (g1, g2) of $\Sigma_i \implies$ covariance between gene-wise residuals $\forall g1, g2 \in G$

$$[\Sigma_i]_{g1,g2} = Cov(\boldsymbol{r}^{g1}, \boldsymbol{r}^{g2})$$

Application - Yellow Fever vs Flu Vaccines

- Compare early gene expression signatures of yellow fever and influenza vaccines*
- Gene sets: BloodGen3 Modules [2] immunology focused sets

Figure 2. Scores and p-values for the top 10 most significant sets.

- \implies 300/382 gene sets significant**
- ⇒ Interferon modules strongly up-regulated early in YF compared to flu vaccine

*Public data from Immune Signatures Data Resource [3] - gene expression prior to 7 days post-vaccination of 1090 samples from 709 individuals vaccinated with either YF-17D or inactivated seasonal influenza vaccines. Analysis controls for age and sex, but not correlation structures.

Summary

- Gene sets resolve problems with transcriptomic data
- Variance-component score test is a flexible, powerful method
- Biologically interpretable differences found between two vaccines
- Future work : explore properties of test under correlation structure estimation

References

- [1] Marine Gauthier, Denis Agniel, Rodolphe Thiébaut, and Boris P Hejblum. Dearseq: A variance component score test for rna-seq differential analysis that effectively controls the false discovery rate. NAR Genomics and Bioinformatics, 2(4), 2020.
- [2] Matthew C. Altman and et al. Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. *Nature Communications*, 12(1), July 2021.
- [3] Joann Diray-Arce and et al. The immune signatures data resource, a compendium of systems vaccinology datasets. *Scientific Data*, 9(1), 2022.

Arthur Hughes is supported by the Digital Public Health Graduate school, funded by the PIA 3 (Investments for the Future – Project reference: 17-EURE-0019)

^{**}P-values corrected for multiple testing with Benjamini-Hochberg procedure