Colégio BBBB Bandeirantes BBBB BBBB BBBB

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 173010
3.0	Matemática-Geometria		1.a Série	М	15/09/2017	
Questões	Testes	Páginas	Professor(es)			
10		8	Fábio Cáceres / Oliveira	/ Rosana		

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)	Turma	N.o	
Nota	Professor	Assinatura do Professor	

Instruções:

- 1. A prova pode ser resolvida a lápis. Respostas só com tinta azul ou preta.
- 2. Resposta sem resolução não será considerada.
- 3. Únicos materiais permitidos: caneta, lápis (ou lapiseira), régua, borracha e compasso.
- 01. (valor: 1,0) Calcule x nos itens:
 - a. Os ângulos com marcas iguais são congruentes | b.

Resposta:

Resposta:

d.

Resposta:

Resposta:

02. Calcule $x \in y$ nos casos:

a. (valor: 0,5)

Resposta: x =_____; y =_____

Rascunho

b. (valor: 0,5)

Resposta: x =____; y =_____

Rascunho

03. Calcule x e y nos itens abaixo:

Resposta:
$$x =$$
_____; $y =$ _____

b. $\overline{\text{(valor: 0,5) O ponto O \'e centro da circunferência e AB}} = 6 \text{ cm}.$

04. (valor: 1,0) A figura mostra um quadrado inscrito em um triângulo. Calcule a área do quadrado.

Resposta: área do quadrado =

05. Na figura abaixo os ângulos BÂC e ADC são congruentes.

Lei dos cossenos: $a^2 = b^2 + c^2 - 2b \cdot c \cdot \cos \alpha$

a. (valor: 0,5) Calcule *x*.

b. (valor: 0,5) Calcule AC, dado que $\cos\alpha = \frac{13}{32} \, .$

Resposta x =

Resposta: AC = _____

Aluno(a)	Turma	N.o	P 173010
			p 5

06. Na figura, ABCD é trapézio de bases 20 cm e 8 cm e altura 21 cm.

a. (valor: 0,5) Calcule a área do triângulo PCD.

Resposta: área (PCD) = _____

b. (valor: 0,5) Calcule a área do triângulo PBC.

Resposta: área (PBC) = _____

07. (valor: 1,0) O ponto O é centro da circunferência. Determine a medida do raio.

Resposta: raio = _____

Rascunho

08. (valor: 1,0) As circunferências têm centros O e P; S e T são pontos de tangência. Calcule a medida do segmento \overline{ST} .

Resposta: *x* = _____

Aluno(a)	Turma	N.o	P 173010
			p 7

09. (valor: 1,0) Calcule a medida do segmento \overline{AB} , sabendo que ele tangencia a semicircunferência de diâmetro \overline{AD} no ponto A.

Rascunho

10. Leia com atenção.

Teorema 1: Os pontos da bissetriz de um ângulo são equidistantes dos lados do ângulo.

Teorema 2: As bissetrizes dos ângulos internos de qualquer triângulo são concorrentes em um único ponto, que é o centro da circunferência inscrita no triângulo.

Teorema 3: Se uma circunferência tangencia os lados de um ângulo, então seu centro pertence à bissetriz desse ângulo.

(valor: 1,0) As três circunferências têm raios iguais a $6~\rm cm$. Cacule o raio da circunferência inscrita no triângulo, dado $BC = 40~\rm cm$.

osta:			
	osta:	osta:	osta:

- 01. (valor: 1,0) Calcule x nos itens:
- a. Os ângulos com marcas iguais são congruentes.

Semelhança:
$$\frac{8}{8+x} = \frac{12}{21} \Rightarrow x = 6$$

Resposta: 6 cm

b.

Relação métrica:

$$8^2 = 4 (4 + x)$$

$$16 = 4 + x$$

$$x = 12$$

Resposta: 12 cm

C.

Relação métrica: $12^2 = 4(4+x) \Rightarrow 36 = 4+x \Rightarrow x = 32$

Resposta: 32 cm

d.

$$x + 25^\circ = \frac{3x + 10^\circ}{2}$$

$$2x + 50^{\circ} = 3x + 10^{\circ}$$

$$x = 40^{\circ}$$

Resposta: 40°

02. Calcule $x \in y$ nos casos:

a. (valor: 0,5)

Resposta: x = 20 cm; y = 12 cm

Por semelhança:

$$\frac{x}{x+30} = \frac{16}{40} \Rightarrow x = 20 \text{ cm}$$

Por Pitágoras:

$$y^2 + 16^2 = x^2$$

$$y^2 + 16^2 = 20^2$$

$$y = 12 \text{ cm}$$

b. (valor: 0,5)

Por Pitágoras: $y^2 = 10^2 + 24^2 \Rightarrow y = 26$

Relação métrica: $10 \cdot 24 = y \cdot x \Rightarrow 10 \cdot 24 = 26 \cdot x \Rightarrow$

$$\Rightarrow x = \frac{120}{13}$$

Resposta: $x = \frac{120}{13}$ cm, y = 26 cm

03. Calcule x e y nos itens abaixo:

а

$$\begin{cases} \frac{x+y}{2} = 70^{\circ} \\ \frac{y-x}{2} = 30^{\circ} \end{cases} \Rightarrow \begin{cases} x+y = 140^{\circ} \\ y-x = 60^{\circ} \end{cases} \Rightarrow y = 100^{\circ}, x = 40^{\circ}$$

Resposta: $x = 40^{\circ}$, $y = 100^{\circ}$

b. (valor: 0,5)

Relação métrica:

$$6^2 = (BH) \cdot (BC)$$

$$36 = y \cdot 10$$

$$y = \frac{18}{5}$$

Relação métrica:

$$x^2 = (BH) (HC)$$

$$x^2 = \frac{18}{5} \cdot \left(10 - \frac{18}{5}\right)$$

$$x^2 = \frac{18}{5} \cdot \frac{32}{5}$$

$$x = \frac{24}{5}$$

Resposta: $x = \frac{18}{5}$ cm, $y = \frac{24}{5}$ cm

04. (valor: 1,0) A figura mostra um quadrado inscrito em um triângulo. Calcule a área do quadrado.

Por semelhança:

$$\frac{4}{x} = \frac{x-4}{x+5} \Rightarrow x^2 - 8x - 20 = 0 \Rightarrow (x-10)(x+2) = 0$$

Área do quadrado =
$$(x-4)^2$$

Área do quadrado =
$$(10-4)^2$$

05. Na figura abaixo os ângulos BÂC e ADC são congruentes.

Lei dos cossenos: $a^2 = b^2 + c^2 - 2b \cdot c \cdot \cos \alpha$

a. (valor: 0,5) Calcule x.

Semelhança:

$$\frac{x}{12} = \frac{12}{x+32} \Rightarrow x^2 + 32x - 144 = 0 \Rightarrow (x+36)(x-4) = 0 \Rightarrow x = 4$$

Resposta:
$$x = 4$$
 cm

b. (valor: 0,5) Calcule AC, dado que $\cos\alpha = \frac{13}{32}$.

$$y^2 = x^2 + 12^2 - 2 \cdot x \cdot 12 \cdot \cos\alpha$$

$$y^{2} = 16 + 144 - 2 \cdot 4 \cdot 12 \cdot \frac{13}{32}$$
$$y^{2} = 160 - 39$$

$$y^2 = 160 - 39$$

$$y^2 = 121$$

$$y = 11$$

Resposta: AC = 11 cm

06. Na figura, ABCD é trapézio de bases 20 cm e 8 cm e altura 21 cm.

a. (valor: 0,5) Calcule a área do triângulo PCD.

Seja x a medida da altura relativa ao lado CD do triângulo PCD. Por semelhança: $\frac{x}{21-x} = \frac{20}{8} \Rightarrow x = 15$

Área (PCD) =
$$\frac{20 \cdot 15}{2}$$
 = 150

Resposta: área (PCD) =
$$150 \text{ cm}^2$$

b. (valor: 0,5) Calcule a área do triângulo PBC.

área
$$(PBC)$$
 = área (BCD) – área (PCD)

$$\text{área (PBC)} = \frac{20 \cdot 21}{2} - 150$$

área
$$(PBC) = 210 - 150$$

área
$$(PBC) = 60$$

07. (valor: 1,0) O ponto O é centro da circunferência. Determine a medida do raio.

Relação métrica:

$$3(3+y+12)=6(6+5)$$

$$3(15+y)=6\cdot 11$$

$$15 + y = 22$$

$$y = 7$$

Relação métrica:

$$(R + R - 6) \cdot 6 = 12 \cdot y$$

$$(2R-6)\cdot 6=12\cdot 7$$

$$R = 10$$

Resposta: 10 cm

08. (valor: 1,0) As circunferências têm centros O e P; S e T são pontos de tangência. Calcule a medida do segmento \overline{ST} .

1) Por Pitágoras:

$$y^2 = 6^2 + 8^2$$
$$y = 10$$

(2) Por semelhança:

$$\frac{z}{6} = \frac{z+6+y}{y} \Rightarrow$$

$$\Rightarrow \frac{z}{6} = \frac{z+16}{10} \Rightarrow z = 24$$

(3) Semelhança:

$$\frac{z}{6} = \frac{x+8}{8} \Rightarrow \frac{24}{3} = \frac{x+8}{4} \Rightarrow$$

Resposta: 24 cm

09. (valor: 1,0) Calcule a medida do segmento \overline{AB} , sabendo que ele tangencia a semicircunferência de diâmetro \overline{AD} no ponto A.

Note que DE = EF e AB = BF

Logo, de acordo com as medidas indicadas, temos:

- (1) no $\triangle CDE$: $y^2 + 48^2 = 52^2 \Rightarrow y = 20$
- (2) $\triangle CDE \sim \triangle CAB: \frac{y}{x} = \frac{52}{x+y+52} \Rightarrow \frac{20}{x} = \frac{52}{x+20+52} \Rightarrow x = 45$

Resposta: x = 45 cm

10. Leia com atenção.

Teorema 1: os pontos da bissetriz de um ângulo são equidistantes dos lados do ângulo.

Teorema 2: as bissetrizes dos ângulos internos de qualquer triângulo são concorrentes em um único ponto, que é o centro da circunferência inscrita no triângulo.

Teorema 3: se uma circunferência tangencia os lados de um ângulo, então seu centro pertence à bissetriz desse ângulo.

(valor: 1,0) As três circunferências têm raios iguais a $6~\rm cm$. Cacule o raio da circunferência inscrita no triângulo, dado $BC = 40~\rm cm$.

Seja r o raio a ser calculado. Note que o triângulo sombreado é semelhante ao triângulo BCI. Portanto, de acordo com as medidas indicadas, temos:

$$\frac{r-6}{r} = \frac{24}{40} \Rightarrow r = 15$$

Resposta: 15 cm