La coloration *d*-relaxée somme-distinguante

Antoine Dailly¹, Éric Duchêne², Aline Parreau², Elżbieta Sidorowicz³

JGA 2021

G-SCOP, Grenoble
LIRIS, Lyon
University of Zielona Góra, Pologne

Principe

Une coloration des arêtes ω d'un graphe G induit une coloration des sommets σ_{ω} . On veut que σ_{ω} distingue les sommets de G.

Principe

Une coloration des arêtes ω d'un graphe G induit une coloration des sommets σ_{ω} . On veut que σ_{ω} distingue les sommets de G.

- ▶ Distinction globale : $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- ▶ Distinction locale : σ_{ω} est propre

Principe

Une coloration des arêtes ω d'un graphe G induit une coloration des sommets σ_{ω} . On veut que σ_{ω} distingue les sommets de G.

▶ Distinction globale : $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$

▶ Distinction locale : σ_{ω} est propre

Exemples

$\sigma_{\omega}(u)$	Globale	Locale
$\bigcup_{v\in N(u)}\omega(uv)$	[Harary & Plantholt, 1985]	[Györi <i>et al.</i> , 2008]
		-
$\sum_{v \in N(u)} \omega(uv)$	[Chartrand et al., 1988]	[Karoński <i>et al.</i> , 2004]
- ()		
$\prod_{v\in N(u)}\omega(uv)$	Non-défini	[Skowronek-Kaziów, 2008]
		-

Principe

Une coloration des arêtes ω d'un graphe G induit une coloration des sommets σ_{ω} . On veut que σ_{ω} distingue les sommets de G.

▶ Distinction globale : $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$

▶ Distinction locale : σ_{ω} est propre

Exemples

$\sigma_{\omega}(u)$	Globale	Locale
$\bigcup_{v \in N(u)} \omega(uv)$	[Harary & Plantholt, 1985]	[Györi <i>et al.</i> , 2008]
$+\omega$ propre	[Burris & Schelp, 1997]	[Zhang <i>et al.</i> , 2002]
$\sum_{v \in N(u)} \omega(uv)$	[Chartrand et al., 1988]	[Karoński <i>et al.</i> , 2004]
$+\omega$ propre	[Lo, 1985]	[Flandrin <i>et al.</i> , 2013]
$\prod_{v \in N(u)} \omega(uv)$	Non-défini	[Skowronek-Kaziów, 2008]
$+\omega$ propre	Non-défini	[Li <i>et al.</i> , 2017]

Principe

Une coloration des arêtes ω d'un graphe G induit une coloration des sommets σ_{ω} . On veut que σ_{ω} distingue les sommets de G.

▶ Distinction globale : $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$

▶ Distinction locale : σ_{ω} est propre

Exemples

$\sigma_{\omega}(u)$	Globale	Locale
$\bigcup_{v \in N(u)} \omega(uv)$	[Harary & Plantholt, 1985]	[Györi <i>et al.</i> , 2008]
$+\omega$ propre	[Burris & Schelp, 1997]	[Zhang <i>et al.</i> , 2002]
$\sum_{v \in N(u)} \omega(uv)$	[Chartrand et al., 1988]	[Karoński <i>et al.</i> , 2004]
$+\omega$ propre	[Lo, 1985]	[Flandrin <i>et al.</i> , 2013]
$\prod_{v \in N(u)} \omega(uv)$	Non-défini	[Skowronek-Kaziów, 2008]
$+\omega$ propre	Non-défini	[Li <i>et al.</i> , 2017]

ightarrow On travaille sur les colorations d'arêtes localement somme-distinguantes

Coloration d'arêtes somme-distinguante

Définition

Soit ω une k-coloration d'arêtes de G. On définit la coloration de sommets $\sigma_{\omega}:\sigma_{\omega}(u)=\sum_{v\in N(u)}\omega(uv)$.

Objectif : rendre σ_{ω} propre en minimisant k.

Coloration d'arêtes somme-distinguante

Définition

Soit ω une k-coloration d'arêtes de G. On définit la coloration de sommets $\sigma_{\omega}: \sigma_{\omega}(u) = \sum_{v \in N(u)} \omega(uv)$.

Objectif : rendre σ_{ω} propre en minimisant k.

Remarques

- ► Si G non-connexe, travail indépendant sur chaque composante
- \blacktriangleright Existe toujours si G n'a pas de composante K_2

Coloration d'arêtes somme-distinguante

Définition

Soit ω une k-coloration d'arêtes de G. On définit la coloration de sommets $\sigma_{\omega}: \sigma_{\omega}(u) = \sum_{v \in N(u)} \omega(uv)$. Objectif: rendre σ_{ω} propre en minimisant k.

Remarques

- ► Si G non-connexe, travail indépendant sur chaque composante
- ightharpoonup Existe toujours si G n'a pas de composante K_2

Conjecture 1-2-3 (Karoński, Luczak, Thomason, 2004)

Si aucune restriction sur ω , alors au plus 3 couleurs suffisent.

Conjecture (Flandrin, Marczyk, Przybylo, Sacle, Woźniak, 2013)

Si ω est propre et $G \neq C_5$, alors $k \leq \Delta(G) + 2$.

État de l'art

Conjecture 1-2-3

- ► Meilleure borne générale : 5 [Kalkowski, Karoński, Pfender, 2011]
- ► Vraie pour les graphes 3-colorables [Karoński *et al.*, 2004], et 2 suffisent pour les arbres [Chang *et al.*, 2011]
- ▶ Vraie pour les graphes suffisamment grands et très denses $(\delta(G) > 0.99985n)$ [Zhong, 2019] $(\delta(G) \ge C \log(\Delta(G)))$ [Przybyło, 2020+]
- ▶ Borne de 4 pour les graphes d-réguliers, et de 3 si $d \ge 10^8$ [Przybyło, 2021]

État de l'art

Conjecture 1-2-3

- ► Meilleure borne générale : 5 [Kalkowski, Karoński, Pfender, 2011]
- ► Vraie pour les graphes 3-colorables [Karoński *et al.*, 2004], et 2 suffisent pour les arbres [Chang *et al.*, 2011]
- ▶ Vraie pour les graphes suffisamment grands et très denses $(\delta(G) > 0.99985n)$ [Zhong, 2019] $(\delta(G) \ge C \log(\Delta(G)))$ [Przybyło, 2020+]
- ▶ Borne de 4 pour les graphes d-réguliers, et de 3 si $d \ge 10^8$ [Przybyło, 2021]

Variante propre

- ▶ Vraie pour les arbres, K_n , $K_{n,n}$ [Flandrin et al., 2013]
- ► Borne de $\lceil \frac{10\Delta(G)+2}{3} \rceil$ [Wang & Yan, 2014]
- ▶ Borne de 6 pour les graphes subcubiques [Huo et al. et Yu et al., 2017]

Objectif : cadre général englobant ces deux conjectures

Objectif : cadre général englobant ces deux conjectures

Définition (D., Duchêne, Parreau, Sidorowicz, 2020+)

Une k-coloration d'arêtes somme-distinguante est d-relaxée si chaque sommet est incident à **au plus** d arêtes de la même couleur.

Objectif : cadre général englobant ces deux conjectures

Définition (D., Duchêne, Parreau, Sidorowicz, 2020+)

Une k-coloration d'arêtes somme-distinguante est d-relaxée si chaque sommet est incident à **au plus** d arêtes de la même couleur.

Le plus petit k tel que G en admet une est noté $\chi_{\sum}^{\prime d}(G)$.

Objectif : cadre général englobant ces deux conjectures

Définition (D., Duchêne, Parreau, Sidorowicz, 2020+)

Une k-coloration d'arêtes somme-distinguante est d-relaxée si chaque sommet est incident à **au plus** d arêtes de la même couleur.

Le plus petit k tel que G en admet une est noté $\chi'^d_{\sum}(G)$.

▶ $d = \Delta(G)$: Conjecture 1-2-3

ightharpoonup d=1: variante propre

Objectif : cadre général englobant ces deux conjectures

Définition (D., Duchêne, Parreau, Sidorowicz, 2020+)

Une k-coloration d'arêtes somme-distinguante est d-relaxée si chaque sommet est incident à **au plus** d arêtes de la même couleur.

Le plus petit k tel que G en admet une est noté $\chi'^{d}_{\sum}(G)$.

- ► $d = \Delta(G)$: Conjecture 1-2-3
- ightharpoonup d=1 : variante propre

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout $G \notin \{K_2, C_5\}$ connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout $G \notin \{K_2, C_5\}$ connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout $G \notin \{K_2, C_5\}$ connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

Arbres :
$$\chi_{\sum}'^{d}(T) = \begin{cases} \frac{\Delta(T)}{d} + 1, & \text{si } \Delta(T) \equiv 0 \text{ mod } d \text{ et il y a 2} \\ \left[\frac{\Delta(T)}{d}\right], & \text{sinon.} \end{cases}$$

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout
$$G \notin \{K_2, C_5\}$$
 connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- \blacktriangleright Arbres : $\chi_{\sum}^{\prime d}(T) =$ $\left\{ \begin{array}{ll} \frac{\Delta(T)}{d} + 1, & \text{si } \Delta(T) \equiv 0 \text{ mod } d \text{ et il y a 2} \\ \left\lceil \frac{\Delta(T)}{d} \right\rceil, & \text{sinon.} \end{array} \right.$
- ► Graphes complets :

 - ▶ $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2\} \Rightarrow \chi_{\sum}^{\prime d}(K_n) \leq 4$ ▶ $\chi_{\sum}^{\prime 2}(K_n) = \lceil \frac{n-1}{2} \rceil + 1$ si $n \not\equiv 3 \mod 4$ et $\lceil \frac{n-1}{2} \rceil + 2$ sinon

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout
$$G \notin \{K_2, C_5\}$$
 connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- ► Graphes complets :

 - $\chi_{\sum}^{\prime 2}(K_n) = \lceil \frac{n-1}{2} \rceil + 1$ si $n \not\equiv 3 \mod 4$ et $\lceil \frac{n-1}{2} \rceil + 2$ sinon
- ▶ Graphes subcubiques : $\chi_{\sum}^{\prime 2}(G) \leq 4$

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout
$$G \notin \{K_2, C_5\}$$
 connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- ► Graphes complets :

 - $\chi_{\sum}^{\prime 2}(K_n) = \lceil \frac{n-1}{2} \rceil + 1 \text{ si } n \not\equiv 3 \mod 4 \text{ et } \lceil \frac{n-1}{2} \rceil + 2 \text{ sinon}$
- ▶ Graphes subcubiques : $\chi'^2_{\sum}(G) \le 4$ et tous les sommets de degré 2 peuvent avoir leurs arêtes incidentes de couleurs différentes

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Soient $n \geq 4$ et $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2 \}$. Alors :

$$\chi_{\sum}^{\prime d}(K_n) \leq 4$$

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi_{\sum}^{\prime d}(K_n) \leq 4$.

Soient
$$n \ge 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2 \}$. Alors :

$$\chi_{\sum}^{\prime d}(K_n) \leq 4.$$

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi ' \frac{d}{\sum} (K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi_{\sum}^{\prime d}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi_{\sum}^{\prime d}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi_{\sum}^{\prime d}(K_n) \leq 4$.

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi_{\sum}' (K_n) \leq 4$.

Preuve par induction

1. La coloration est *d*-relaxée

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

- 1. La coloration est d-relaxée
- 2. Les sommets déjà distingués le restent

Graphes complets, $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2 \}$

Soient
$$n \geq 4$$
 et $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2 \}$. Alors : $\chi'^d_{\sum}(K_n) \leq 4$.

Preuve par induction

- 1. La coloration est d-relaxée
- 2. Les sommets déjà distingués le restent
- 3. Les sommets ajoutés alternent entre plus grand et plus petit que tous les autres : ils sont donc distingués

Graphes complets, $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2\}$

Proposition

Pour $n \in \{3, \dots, 7\}$ et $d = \lceil \frac{n-1}{2} \rceil$, $\chi_{\sum}^{\prime d}(K_n) = 3$.

Graphes complets, $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2\}$

Proposition

Pour $n \in \{3, ..., 7\}$ et $d = \lceil \frac{n-1}{2} \rceil$, $\chi_{\sum}^{\prime d}(K_n) = 3$.

Graphes complets, d = 2

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Soit
$$n \ge 4$$
. Alors : $\chi_{\sum}^{n}(K_n) = \begin{cases} \lceil \frac{n-1}{2} \rceil + 1 & \text{si } n \not\equiv 3 \mod 4 \\ \lceil \frac{n-1}{2} \rceil + 2 & \text{si } n \equiv 3 \mod 4 \end{cases}$

Graphes complets, d = 2

Soit
$$n \ge 4$$
. Alors : $\chi_{\sum}^{2}(K_n) = \begin{cases} \lceil \frac{n-1}{2} \rceil + 1 & \text{si } n \not\equiv 3 \mod 4 \\ \lceil \frac{n-1}{2} \rceil + 2 & \text{si } n \equiv 3 \mod 4 \end{cases}$

Preuve en deux temps

1. Construction d'une telle coloration 2-relaxée distinguante

2. Nécessité d'utiliser ce nombre de couleurs

Graphes complets, d = 2

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Soit
$$n \ge 4$$
. Alors : $\chi_{\sum}^{2}(K_n) = \begin{cases} \lceil \frac{n-1}{2} \rceil + 1 & \text{si } n \not\equiv 3 \mod 4 \\ \lceil \frac{n-1}{2} \rceil + 2 & \text{si } n \equiv 3 \mod 4 \end{cases}$

Preuve en deux temps

- 1. Construction d'une telle coloration 2-relaxée distinguante
 - 1.1 Construction de la coloration 2-relaxée
 - 1.2 Recoloration pour qu'elle soit distinguante
- 2. Nécessité d'utiliser ce nombre de couleurs

--- 1

- $ightharpoonup \left\lceil \frac{n}{2} \right\rceil$ couleurs utilisées
- ightharpoonup Coloration 2-relaxée de K_n

- $ightharpoonup \left\lceil \frac{n}{2} \right\rceil$ couleurs utilisées
- ightharpoonup Coloration 2-relaxée de K_n
- \triangleright x_i et x_{-i} ne sont pas distingués

Graphes complets, d = 2: recoloration

Graphes complets, d = 2: recoloration

Graphes complets : conclusion

d	$\chi_{\sum}^{\prime d}(K_n)$

Graphes complets : conclusion

d	$\chi_{\sum}^{\prime d}(K_n)$
1	n si n impair
	n+1 si n pair
n-1	3

Graphes complets: conclusion

d	$\chi_{\sum}^{\prime d}(K_n)$
1	n si n impair
	n+1 si n pair
2	$\lceil \frac{n-1}{2} \rceil + 1$ si $n \not\equiv 3 \mod 4$
	$\left\lceil \frac{n-1}{2} \right\rceil + 2$ si $n \equiv 3 \mod 4$
$\in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2\}$	3 si $n \in \{3,, 7\}$
	3 ou 4 si $n \ge 7$
n-1	3

Graphes complets: conclusion

d	$\chi_{\sum}^{\prime d}(K_n)$
1	n si n impair
	n+1 si n pair
2	$\lceil \frac{n-1}{2} \rceil + 1$ si $n \not\equiv 3 \mod 4$
	$\left\lceil \frac{n-1}{2} \right\rceil + 2 \text{ si } n \equiv 3 \mod 4$
$\in \{3,\ldots,\lceil \frac{n-1}{2} \rceil - 1\}$	Ouverte
$\in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2\}$	3 si $n \in \{3,, 7\}$
	3 ou 4 si $n \ge 7$
n-1	3

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout graphe subcubique $G \notin \{K_2, C_5\}$, il existe une 4-coloration 2-relaxée distinguante de G telle que tous les sommets de degré 2 sont incidents à deux couleurs différentes.

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout graphe subcubique $G \notin \{K_2, C_5\}$, il existe une 4-coloration 2-relaxée distinguante de G telle que tous les sommets de degré 2 sont incidents à deux couleurs différentes.

Preuve par induction sur l'ordre de *G*

1. Identifier un sommet intéressant u

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout graphe subcubique $G \notin \{K_2, C_5\}$, il existe une 4-coloration 2-relaxée distinguante de G telle que tous les sommets de degré 2 sont incidents à deux couleurs différentes.

Preuve par induction sur l'ordre de *G*

- 1. Identifier un sommet intéressant u
- 2. Utiliser l'hypothèse d'induction sur G-u pour construire une telle coloration

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout graphe subcubique $G \notin \{K_2, C_5\}$, il existe une 4-coloration 2-relaxée distinguante de G telle que tous les sommets de degré 2 sont incidents à deux couleurs différentes.

Preuve par induction sur l'ordre de *G*

- 1. Identifier un sommet intéressant u
- 2. Utiliser l'hypothèse d'induction sur G-u pour construire une telle coloration
- 3. Étendre la coloration à G: les contraintes nous permettent d'utiliser le Nullstellensatz combinatoire

Théorème (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout graphe subcubique $G \notin \{K_2, C_5\}$, il existe une 4-coloration 2-relaxée distinguante de G telle que tous les sommets de degré 2 sont incidents à deux couleurs différentes.

Preuve par induction sur l'ordre de *G*

- 1. Identifier un sommet intéressant u
- 2. Utiliser l'hypothèse d'induction sur G-u pour construire une telle coloration
- 3. Étendre la coloration à G: les contraintes nous permettent d'utiliser le Nullstellensatz combinatoire

Quatre cas selon la maille, avec différents sous-cas...

 ${\it G}$ a un sommet de degré 2 dans un triangle

G a un sommet de degré 2 dans un triangle

G a un sommet de degré 2 dans un triangle

G a un sommet de degré 2 dans un triangle

G a un sommet de degré 2 dans un triangle

Que w_1 existe ou non : au plus 2 valeurs interdites pour x_1 et x_2 afin de distinguer u de v et w.

Exemple : w_1 n'existe pas $\Rightarrow x_1, x_2 \neq c_1$ et $x_2 \neq c_1 + c_2$.

G a un sommet de degré 2 dans un triangle

Que w_1 existe ou non : au plus 2 valeurs interdites pour x_1 et x_2 afin de distinguer u de v et w.

Exemple : w_1 n'existe pas $\Rightarrow x_1, x_2 \neq c_1$ et $x_2 \neq c_1 + c_2$.

Deux conditions : $\left\{\right.$

G a un sommet de degré 2 dans un triangle

Que w_1 existe ou non : au plus 2 valeurs interdites pour x_1 et x_2 afin de distinguer u de v et w.

Exemple : w_1 n'existe pas $\Rightarrow x_1, x_2 \neq c_1$ et $x_2 \neq c_1 + c_2$.

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \end{cases}$$

G a un sommet de degré 2 dans un triangle

Que w_1 existe ou non : au plus 2 valeurs interdites pour x_1 et x_2 afin de distinguer u de v et w.

Exemple : w_1 n'existe pas $\Rightarrow x_1, x_2 \neq c_1$ et $x_2 \neq c_1 + c_2$.

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Soit
$$P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$$
.

G a un sommet de degré 2 dans un triangle

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Soit $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$. Si x_1 et x_2 ont des valeurs telles que P ne s'annule pas, alors, les conditions sont respectées et on peut étendre la coloration.

G a un sommet de degré 2 dans un triangle

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Soit $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$. Si x_1 et x_2 ont des valeurs telles que P ne s'annule pas, alors, les conditions sont respectées et on peut étendre la coloration.

Nullstellensatz combinatoire (Alon, 1999)

Soient $P(x_1, \ldots, x_n)$ un polynôme sur un corps F et $x_1^{k_1} \ldots x_n^{k_n}$ un monôme de coefficient non-nul et de degré maximal dans P. Pour tous $S_1, \ldots, S_n \subseteq F$ tels que $|S_i| > k_i$, il existe $a_1 \in S_1, \ldots, a_n \in S_n$ tels que $P(a_1, \ldots, a_n) \neq 0$.

G a un sommet de degré 2 dans un triangle

Deux conditions :
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Soit $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$. Si x_1 et x_2 ont des valeurs telles que P ne s'annule pas, alors, les conditions sont respectées et on peut étendre la coloration.

Nullstellensatz combinatoire (Alon, 1999)

Soient $P(x_1,\ldots,x_n)$ un polynôme sur un corps F et $x_1^{k_1}\ldots x_n^{k_n}$ un monôme de coefficient non-nul et de degré maximal dans P. Pour tous $S_1,\ldots,S_n\subseteq F$ tels que $|S_i|>k_i$, il existe $a_1\in S_1,\ldots,a_n\in S_n$ tels que $P(a_1,\ldots,a_n)\neq 0$.

Le monôme x_1x_2 a coefficient -2 et degré maximal dans P, et $|S_1|, |S_2| > 1 \Rightarrow$ On peut étendre la coloration

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout $G \notin \{K_2, C_5\}$ connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

→ Généralise la Conjecture 1-2-3 et sa variante propre

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout $G \notin \{K_2, C_5\}$ connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- → Généralise la Conjecture 1-2-3 et sa variante propre
- 1. Arbres
- 2. Graphes complets, d = 2 et $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2\}$
- 3. Graphes subcubiques

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout
$$G \notin \{K_2, C_5\}$$
 connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- → Généralise la Conjecture 1-2-3 et sa variante propre
- 1. Arbres
- 2. Graphes complets, d = 2 et $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2\}$
- 3. Graphes subcubiques

Questions ouvertes

- ▶ Graphes complets : $d \in \{3, ..., \lceil \frac{n-1}{2} \rceil 1\}$, valeur exacte pour $d \in \{\lceil \frac{n-1}{2} \rceil, ..., n-2\}$
- ► Autres classes, bornes générales

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2020+)

Pour tout $G \notin \{K_2, C_5\}$ connexe, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- → Généralise la Conjecture 1-2-3 et sa variante propre
- 1. Arbres
- 2. Graphes complets, d = 2 et $d \in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2 \}$
- 3. Graphes subcubiques

Questions ouvertes

- ▶ Graphes complets : $d \in \{3, ..., \lceil \frac{n-1}{2} \rceil 1\}$, valeur exacte pour $d \in \{\lceil \frac{n-1}{2} \rceil, ..., n-2\}$
- ► Autres classes, bornes générales

