Assignment 2

Jacob Paul Bryant

1/23/2017

Problem 1

Let $A = \{2,3,4\}$, $B = \{3,4,5,6\}$ and suppose that U = 1,2,3,4,5,6,7,8,9. List the elements.

- 1. $(A \cup B)'$
- 2. $(A \cap B) \times A$
- 3. $\wp(B \backslash A)$

Answer 1 1. 1, 7, 8, 9

- $2. \{(3,2), (3,3), (3,4), (4,2), (4,3), (4,4)\}$
- $3. \{5, 6\}$

Problem 2

Write down all the elements of the set $\{1, 2, 3\} \cap \{2, 3, 4, 5\} \cup \{6, 7\}$

Answer 2

$$\{2, 3, 6, 7\}$$

Problem 3

Write all the elements of $\{A, B, C\} \times \{H, K\}$

Answer 3

$$\{(A, H), (A, K), (B, H), (B, K), (C, H), (C, K)\}$$

Problem 4

Let $S = \{a,b,c\}$ Write down all elements in the following sets:

- 1. $S \times S$
- $2. \wp(S)$

Answer 4 1. $\{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$

2. $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$

Problem 5

Let X, Y, Z be sets. Prove the following: $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

Proof 1

Let X, Y, Z be sets

 $X \cap (Y \cup Z) \subset (X \cap Y) \cup (X \cap Z)$

Let $x \in X \cap (Y \cup Z)$

 $\therefore x \in X \text{ and } x \in Y \cup Z$

 $\therefore x \in X \text{ and } x \in Y \text{ or } x \in Z$

 $\therefore x \in X \cap Y \text{ or } x \in X \cap Z$

 $\therefore x \in (X \cap Y) \cup (X \cap Z)$

So $X \cap (Y \cup Z) \subset (X \cap Y) \cup (X \cap Z)$

Let $x \in (X \cap Y) \cup (X \cap Z)$

 $\therefore x \in X \cap Y \text{ or } x \in X \cap Z$

 $\therefore x \in X \text{ and } Y \text{ or } x \in X \cap Z$

 $\therefore x \in X \text{ and } Y \text{ or } X \text{ and } Z$

 $\therefore x \in X \text{ and } x \in Y \text{ or } x \in Z$

 $\therefore x \in X \text{ and } x \in Y \cup Z$

 $\therefore x \in X \cap Y \cup Z$

 $\therefore (X \cap Y) \cup (X \cap Z) \subset X \cap (Y \cup Z)$

Therefore $(X \cap (Y \cup Z) = X \cap Y) \cup (X \cap Z)$

Problem 6

Prove the following theorem:

Theorem 1 For all sets $A, B, C, (A \setminus C) \cap (B \setminus C) \cap (A \setminus B) = \emptyset$

Proof 2

Let A,B,C be sets $Assume\ (A \setminus C) \cap (B \setminus C) \cap (A \setminus B)$ Let $x \in A$ $\Rightarrow x \in (A \cap C') \cap (B \cap C') \cap (A \cap B')$ $\Rightarrow x \in (A \cap C') \ and \ (B \cap C') \ and \ (A \cap B')$ $\Rightarrow x \in A \ and \ x \notin C \ and \ x \in B \ and \ x \notin C \ and \ x \notin B$ $\Rightarrow x \in A \ and \ x \notin C \ and \ x \in B \ and \ x \notin B$ $\Rightarrow x \in B \ but \ x \notin B \Rightarrow \Leftarrow$ $\therefore \ This \ is \ a \ contradiction$ $\therefore (A \setminus C) \cap (B \setminus C) \cap (A \setminus B) = \emptyset$

Problem 7

Prove the following theorem:

Theorem 2 For all sets A,B,C, if $C \subset (B \setminus A)$, then $A \cap C = \emptyset$

Proof 3

Let A,B,C, X be sets $Assume \ C \subset (B \setminus A)$ Let $x \in C$ $\Rightarrow x \subset (B \cap A')$ $\therefore \exists x \in X, x \in C \text{ then } x \notin A$ $\Rightarrow x \not\subset A$ $\therefore A \cap C = \emptyset$

Problem 8

Prove the following theorem:

Theorem 3 For all sets $A, B, C, A \times (B \cup C) = (A \times B) \cup (A \times C)$

Proof 4

Let A,B,C be sets Let $\exists x \in A$

```
Assume A \times (B \cup C)

Since x \in A \times (B \cup C)

\Rightarrow x \in A \times x \in B \cup x \in C

\Rightarrow x \in A \times x \in B \text{ or } x \in C

\Rightarrow x \in A \times x \in B \text{ or } x \in A \times x \in C

\Rightarrow x \in (A \times B) \text{ or } x \in (A \times C)

\Rightarrow x \in (A \times B) \cup x \in (A \times C)

\Rightarrow x \in (A \times B) \cup (A \times C)

\therefore A \times (B \cup C) \subset (A \times B) \cup (A \times C)

Therefore A \times (B \cup C) = (A \times B) \cup (A \times C)
```

Problem 9

Find a counter example to prove the following false: $(A \cup B)' = A' \cup B'$

Answer 5

```
Let A,B be sets

Assume (A \cup B)' = A' \cup B'

Let set A = \{1,2,3\}

Let set B = \{1,2,3,4,5\}

Let the universal set U = \{1,2,3,4,5,6,7,8,9\}

Then (A \cup B)' = \{6,7,8,9\}

Also A' \cup B' = \{4,5,6,7,8,9\}

⇒ \{6,7,8,9\} \neq \{4,5,6,7,8,9\}

⇒ (A \cup B)' \neq A' \cup B'

∴ This is a contradiction
```

Problem 10 Given sets A and B, the **symmetric difference** of A and B, denoted $A \triangle B$ is:

$$A\triangle B=(A\backslash B)\cup(B\backslash A)$$

Let $A = \{1,2,3,4\}$, $B = \{3,4,5,6\}$, and $C = \{5,6,7,8\}$. Find each of the following sets:

1. $A\triangle B$

- 2. $B\triangle C$
- 3. $A\triangle C$
- 4. $(A\triangle B)\triangle C$

Answer 6 1.
$$A \triangle B \rightarrow (A \backslash B) \cup (B \backslash A)$$

 $\Rightarrow \{1, 2\} \cup \{5, 6\}$
 $\therefore \{1, 2, 5, 6\}$

2.
$$B \triangle A \rightarrow (B \backslash A) \cup (C \backslash B)$$

 $\Rightarrow \{3, 4\} \cup \{7, 8\}$
 $\therefore \{3, 4, 7, 8\}$

3.
$$A\triangle C \rightarrow (A \setminus C) \cup (C \setminus A)$$

⇒ $\{1, 2, 3, 4\} \cup \{5, 6, 7, 8\}$
∴ $\{1, 2, 3, 4, 5, 6, 7, 8\}$

4.
$$(A\triangle B)\triangle C$$
 → $(\{1,2,5,6\}\ C)\cup (C\ \{1,2,5,6\})$
⇒ $\{1,2\}\cup \{7,8\}$
∴ $\{1,2,7,8\}$