COL 765: Introduction to Logic and Functional Programming Quiz 1, 25.07.2024

(Direct proofs from definitions: Case Analysis)

Name	e:SOLUT	YON	Entry NoXXXX				
	[3] Prove Left Distributivity of unitions of union and intersection						
	$\mathbf{f} \ \operatorname{Let} x \in S_1 \cup (S_2 \cap S_3).$						
So by definition of union, $x \in S_1$ or $x \in (S_2 \cap S_3)$.							
	- If $x \in S_1$ then $x \in (S_1 \cup S_2)$ and similarly $x \in (S_1 \cup S_3)$. (Defin of union)						
	So, $x \in (S_1 \cup S_2) \cap (S_1 \cup S_3)$.	(Defn of in	tersection)				
	- If $x \in (S_2 \cap S_3)$, then $x \in S_2$ and x	$\in S_3$ (Defin of in	tersection)				
	So, $x \in (S_1 \cup S_2)$ and $x \in (S_1 \cup S_2)$	(M_3) (members)	hip of union, used twice)				
;	So, in both cases, $x \in (S_1 \cup S_2) \cap (S_1 \cup S_3)$.						
(Conversely, let $x \in (S_1 \cup S_2) \cap (S_1 \cup S_2)$	S_3).					
1	So, $x \in (S_1 \cup S_2)$ and $x \in (S_1 \cup S_3)$	(Defn of interse	ection)				
	- If $x \in S_1$ then $x \in S_1 \cup (S_2 \cap S_3)$	(Defn of union)					
	- If $x \notin S_1$ then $x \in S_2$ and $x \in S_3$	(membership of	both of the unions)				
	i.e., $x \in (S_2 \cap S_3)$.	(Defn of interse	ction)				
	So, $x \in S_1 \cup (S_2 \cap S_3)$	(Defn of union)					
}	So in either case, $x \in S_1 \cup (S_2 \cap S_3)$.						

Q2 [5] Prove Absorption of intersection into union: Show from the definitions of union and intersection that $S_1 \cap (S_1 \cup S_2) = S_1$.

```
Proof Let x \in S_1 \cap (S_1 \cup S_2)

So x \in S_1 and x \in (S_1 \cup S_2) (by Defn of intersection)

So, trivially, x \in S_1

Conversely, let x \in S_1

So, x \in S_1 (trivially)

and x \in (S_1 \cup S_2) (by Defn of union)

So, x \in S_1 \cap (S_1 \cup S_2) (by Defn of intersection)
```