Recommender systems for career guidance

Trần Đức Thế, Evgeny Cherkashin, Viktoria Kopylova, Nikita Lukyanov

Matrosov Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia, eugeneai@icc.ru

National research Irkutsk state technical university (INRTU), Irkutsk, Russia, kopylovika@mail.ru

AIIT-2021, October, 15

Introduction

Recommender systems (RS) are decision support systems. They are useful to support users with additional information and decision variants. We consider two RS in career guidance field.

Both systems were developed within master degrees at Institute for Information Technologies and Data Analysis, National research Irkutsk state technical university.

Relevance is justified by

- In the countries with young population, such as Việt Nam, the demand of young specialists is high. In fact, quite often graduates remain unemployed for a long time or do not work in originally mastered specialties.
- University institutions are interested in rising quality of entrants: attract attention of domain targeted students with high potentials to the existing courses, organize new courses for target student groups.

Interest assessment

In the tables, we present the result of interest assessment to career guidance and relevance of improving of the guidance system.

Table: Interest assessment to the carer guidance in Việt Nam, Hà Tĩnh city

Interest level	Count of votes	Ratio, %
Very interested	218	51.9
Relatively interested	155	36.9
Less interested	36	8.6
No interest	11	2.6
Total	420	100

Table: Questionary results of middle school students on need for improvement of the carer guidance system

Answer option	Quantity	Ratio, %
very necessary	272	64.8
necessary	145	34.5
no necessity	3	0.7
Total	420	100

Background

RS classification by solved problems

- Increasing the sales of a product
 - a number of commodities sold
 - organizing wider range product sales
- 2. Increasing user satisfaction and/or loyalty
- 3. Better understanding **user needs**
- 4. **Better products offers** with respect to the user needs
- 5. Selection of sets of products for users with a common properties
 - "good" ones, and
 - product groups, having a common usability properties
- Mining the classes of products, structuring the RS product domain, and
- 7. Generate a continuity of recommendations using the classification
- 8. **Rectifying user profile**, *e.g.* with targeted questioning
- For the users having no goal to make a choice, but searching for an expert opinions
 - ► Analysis of other users impact on a choice
 - Formalizing opinions
 - Recommending opinions

General stages of RS design and implementation

RS development is being carried on according to the following scenario:

- Investigation of the domain and defining the users and objects of recommendation.
- 2. Determine the **sources** of information.
- 3. Develop techniques for solving "cold start" problems.
- Propose methods and algorithms of comparing objects and users, and their mutual relations.
- Implement data structures, storage, analysis and synthesis algorithms.
- 6. Testing.

In both systems users are middle school students, entrants, and high school students. Objects are references to professions expressed as universities and their departments.

Sources of information: collecting refinement data

https://letstalkscience.ca/
educational-resources/lessons/
work-interests-and-holland-code

- Application of John Holland's Six Interest Types Technique for structuring school students' interests. This requires 54 questions to be answered.
- 2. Relate local universities to the types by
- obtaining students' ratings on universities

Then the resulting recommendations will be generated as Top-N from an interest type. Thus, the **cold start** problem has been solved mostly by applying **expert knowledge**.

Sources of information: social network data

Social networks are popular ways of self-expression for school students and entrants. User's properties are the profile data and set of group and channel subscriptions represented with tags, keywords. TSU¹ research showed that 'In Contact' (Β Κοητακτε) students profiles are closely related to educational interests.

- Students of first three courses were asked their In Contact profile names. (6270 from 7 institutes of INRTU)
- 2. The profile data were obtained via In Contact API (4325, 68.98%, 480 features).
- 3. Data were filtered
 - ► Removed inaccessible 'private' profiles (686)
 - ► Removed content prohibited by law (389 features)

Students' distribution among INRTU institutes was obtained by means of **parsing enrollment documents**. Enrollments will be related to the set of subscriptions and other profile characteristics (features).

This solves cold start problem as well.

¹Tomsk State University, Tomsk Russia

Object and user comparison

Pearson correlation was applied to the user ratings of universities and the correlation matrix were produced, $r_{u,j}$ is a rating of u-th user given for i-th university.

$$sim(i,j) = \frac{\sum_{u \in U} (r_{u,i} - \bar{r}_i) (r_{u,j} - \bar{r}_j)}{\sqrt{\sum_{u \in U} (r_{u,i} - \bar{r}_i)^2} \sqrt{\sum_{u \in U} (r_{u,j} - \bar{r}_j)^2}}$$

The correlation matrix for the universities is obtained similarly.

Name_Uni	Academy of Finance	An College of Culture and Arts	Asian University of Industrial Fine Arts	Bac Giang University of Agriculture and Forestry:	Banking Academy	Banking University of Ho Chi Minh City	Binh Duong University of Economics and Technology	Can Tho University	Can Tho University of Medicine and Pharmacy	Centra Constructio Universit
Name_Uni										
Academy of Finance	1.000000	-0.042206	-0.061459	-0.266602	-0.135564	-0.134517	0.121472	0.212420	0.453148	-0.05242
An College of Culture and Arts	-0.042206	1.000000	0.266658	0.097767	0.248917	-0.013975	0.044716	-0.084712	0.178497	0.09798
Asian University of Industrial Fine Arts	-0.061459	0.266658	1.000000	-0.109866	0.090173	0.096562	-0.063758	-0.401843	-0.025557	-0.67279
Bac Giang University of Agriculture and Forestry:	-0.266602	0.097767	-0.109866	1.000000	-0.042479	-0.056320	-0.086769	0.375120	-0.230425	0.29353

Relating INRTU institutes with students

Experiments were carried on to figure out the best feature set to be used in train set. Namely

- Induce a taxonomy of subscription group by application of a hierarchical clustering.
- □ Explore informative values of the groups as features by application of principal component analysis.
- Deduce the values with construction of a decision tree.

Principal Component Analysis

0.008102152714315478. 0.008067804474544525. 0.008061379355860194. 0.007641190949448257 0.007587580214868893 0.007587526670962984. 0.00747394223934997. 0.007443612916195409. 0.00742059026516162, 0.007056089241919244, 0.007006593155341812. 0.006945434341297818. 0.006935566686582041. 0.006903299775450106, 0.006836478049989103, 0.006755017940865863, 0.006713293529628476, 0.006699677286955343. 0.006637558192740536. 0.006522641812923783. 0.006515157118662835. 0.0064669891317663975 0.006457055026945199. 0.0064043334879615. 0.006260216235037157. 0.006242691251686493 0.006166030880217575, 0.006098875774622311. 0.005823039252680057

0.005823039252680057 0.0057977727525913595, 0.005689002466333331, 0.005686072823557162, 0.00566542648238681, 0.005531074134214327, 0.00552374944662716, 0.00552378944662716, 0.005503585997034226, 0.005803585997034226, 0.0054882379507944052, 0.005482379507944052, [0.013370909224412606, 0.01248112189741818, 0.0116009605254000848, 0.010988122091736554, 0.010988122091736554, 0.0109881289912228848, 0.009620249180490308, 0.009620249180490308, 0.00962021831181252032, 0.0087080737745731706, 0.0086227080375745731706, 0.00862270853493549, 0.00862270853493549, 0.00862270853493549, 0.00862270853493549, 0.0086270852731752443, 0.007952072525647, 0.00752627241450472, 0.007289289932856012, 0.0071155602511264945, 0.0071155602511264945,

0.00898500280279664, 0.008840872245901626, 0.00874986099145462, 0.006776720510034197, 0.006576720510034778, 0.0065842310085958601, 0.006283698838229169, 0.00628369263939799, 0.0062836978702025, 0.00625949564789050, 0.00657610135149641, 0.005949695532510039, 0.0059496970209803, 0.00594969770209803, 0.00594969770299803, 0.00596969770299803, 0.00596969770299803, The chosen features by the red rectangles are the sets with the same informative 'capabilities'.

There are no explicit set of features, describing varieties of data for PC1 and PC3.

Decision trees

Decision trees

- The top-13 features describe only 20% of phenomena.
- Programming
- □ Design & graphics
- Personal care
- ☐ Cinema.1 (probably novel, documental)
- □ Science
- Sports player
- □ Print, Theater, Blues, Online games, Cinema.2 (probably fantastic)

Artificial Neural Nets

The training results

Best precision: 23.96% Best model: FastForestOva Training time: 84 008 sec Models explored: 14

Library: ML.NET

C.111-	ers\Buktopus\Downloads\test.csv					
L: (OSI	Trainer	Microfesunaeu	MacroAccuracy	Dunation	ettenation	
Boass	обучения завершено без обученных м		naci oxecui acy	Dui acton	#ICEI acton	
I	Trainer		MacroAccuracy	Duration	#Iteration	
l Boawa	обучения завершено без обученных м		naci onccui acy	Dui acton	ATCEL GCTOIL	
l	Trainer		MacroAccuracy	Duration	#Iteration	
Roama	обучения завершено без обученных м		naci onceai acy	001002011	***************************************	
I	Trainer		MacroAccuracy	Dunation	#Itenation	
1	AveragedPerceptronOva	0,2078	0,1442	1528.3	1	
2	SdcaMaximumEntropyMulti	0,2037		1542.8	2	
	ения массива превысили поддерживаем		0,1505	1342,0	*	
13	SymbolicSgdLogisticRegressionOva	0.1777	0.1320	684.5	3	
4	FastTreeOva	0,2074		1225,4		
15	LinearSymOva	0,2104				
16	LbfgsLogisticRegressionOva	0,2070				
17	SgdCalibratedOva	0,1801	0,1347		7	
8	FastForestOva	0,2396		1287,6		
	исключение типа "System.OutOfMemo		0,1/55	1207,0	U	
19	AveragedPerceptronOva	0.2010	0 1202	3138,0	q	
10	LinearSymOva	0,2046				
111	FastForestOva	0,2360	0,1672			
	таточно места на диске.	-,	-,			
		=====Experiment	Results=====			
		Sun	nmary			
lan T	ask: multiclass-classification					
	set: C:\Users\BukTopus\Downloads\te	et cev				
	1 : co10	301034				
	l experiment time : 84009,7908504 S	are				
	l number of models explored: 14	iecs				
, rocu.	I manuel of models explored. 14					
l		Top 5 mode	els explored			1
1	Trainer	MicroAccuracy	MacroAccuracy	Duration	#Iteration	
1	FastForestOva	0,2396	0,1735	1287,6	1	
2	FastForestOva	0,2360	0,1672	1248,0	2	
3	LinearSvmOva	0,2104	0,1406	377,8	3	
4	AveragedPerceptronOva	0,2078	0,1442	1528,3	4	
15	FastTreeOva	0,2074	0,1564	1225,4	5	
i						

Resulting neural model

- □ One multilayer neural network.
- □ Recommending **four** directions instead **one**
- □ Precision: 86% (testing set) 22% (learning set)
- □ Library: Keras (Python)

Testing

Testing

Stages of recommendation generation

- Access In Contact account via API
- Load subscriptions and profile data
- 3. Conversion to features
- Apply neural net for classification
- 5. Print output

Discussion

Ha Tinh RS provides top-6 universities and was not measured on required criteria (precision, recall). It is intended to use as a web pages on the site of a Việt Nam school, and its purpose is in interpretation of the J. Holland's technique.

For the INRTU RS some analysis of the results was carried out.

- □ The wrongly classified (out of 86% precision) test set contained 9 students, which stopped studying, 3 study economics at IT institution, and for 7, no explanation were found.
- □ There are institutes having too wide set of specialties even contradictory to their generic intention. *E.g.* **IIT&DA** (our institute) have economics as a direction, **IAM&T** does not limit itself with aircraft engineering, engineering general and computer graphics.

The TGU's hypothesis on well correlated set of subscriptions and faculty direction was **not confirmed**, so a deep learning have to be used to obtain 'good' model.

Conclusion

We presented results of two master degree projects. Both are finished, and present somewhat different approaches to solve problems in a common domain of career guidance.

- Authors carried out all necessary stages for producing techniques for RS software design.
- The proposed techniques were implemented, using popular web frameworks.
- 3. Analysis of the results with different level of detail has been provided.
- 4. Recommender system MVP-s were constructed for introduction into school career guidance.

Thank You for attention!