PASS – Année 2022/2023

UE1.1 CHIMIE

Fiche de cours : EQUILIBRES CHIMIQUES (PARTIE 2)

LISTE DES SYMBOLES DES FICHES DE COURS			
•	 Notion tombée au concours PASS : O Une étoile → 1 seule fois Deux étoiles → 2 fois Trois étoiles → 3 fois ou plus 		
*	 Notion tombée au concours PACES : Une étoile ★ → 1 seule fois Deux étoiles ★ ★ → 2 fois Trois étoiles ★ ★ → 3 fois ou plus 		
NEW	Nouveauté au programme cette année		
	Partie de cours renvoyant à un outil de méthodologie		

PLAN DU COURS

Équilibres acido-basiques

Généralités

Théorie d'Arrhenius

Théorie de Brønsted-Lowry

Rôle du solvant

Réaction de transfert protonique de l'acide vers l'eau

Réaction de transfert protonique de l'eau vers la base

La réaction acido-basique

Constantes d'équilibre et pH

Activité, coefficient d'activité et force ionique

 α : coefficient d'ionisation (= de dissociation) d'un acide ou d'une base faible

Produit ionique de l'eau

Définition du pH

Constante d'acidité : Ka Loi de dilution d'Ostwald

Exemples:

Cas d'un acide fort en solution aqueuse

Cas d'un acide faible en solution aqueuse

Cas d'une base forte en solution aqueuse

Cas d'une base faible en solution aqueuse

Force des acides et des bases : mesure à partir des Ka

Evolution spontanée d'une réaction acido-basique

pH des solutions aqueuses

pH d'une solution d'un monoacide fort

pH d'une solution d'un monoacide faible

pH d'une solution d'une monobase forte

pH d'une solution d'une monobase faible

Les solutions tampons

Définition

pH des solutions tampons

Influence de la dissociation ionique sur le passage à travers les membranes

Acide faible et sa base conjuguée (influence du pH du milieu)

Base faible et son acide conjugué (influence du pH du milieu)

THÉORIE D'ARRHÉNIUS			
Acide	■ Substance qui produit des ions H ⁺ en solution aqueuse		
Base	■ Substance qui produit des ions OH [−] en solution aqueuse		
	Formation d'un sel et d'eau		
Réaction	 Réaction globale : Acide + Base → Sel + eau 		
entre un	○ Exemple: $H^+ + C + N a^+ + O + O + N a^+ + M a^+ + M a^+$		
acide et	 Équation ionique : H⁺ + OH[−] → H₂O 		
une base	 ○ Pas de prise en compte des ions spectateurs (Na⁺; Cl⁻) = ions sans caractère acido-basique 		
	Réaction de neutralisation		

THÉORIE DE BRÖNSTED-LOWRY ACIDE			
Acide Substance susceptible de libérer un proton H ⁺ Exemple : AH → A ⁻ + H ⁺			
 Il cède un proton H⁺ à une molécule d'eau formation d'un ion oxonium ou hydronium H₃O⁺ Acide neutre : AH + H₂O → A⁻ + H₃O⁺ Acide cation : BH⁺ + H₂O → B + H₃O⁺ Acide anion : AH⁻ + H₂O → A²⁻ + H₃O⁺ 			

THÉORIE DE BRÖNSTED-LOWRY BASE				
Base Substance susceptible de capter un proton H ⁺ Exemple : B + H ⁺ → BH ⁺				
En solution aqueuse	 Elle capte un proton H⁺ d'une molécule d'eau o formation d'un ion hydroxyde OH⁻ Base neutre : B + H₂O → BH⁺ + OH⁻ Base anion : A⁻ + H₂O → AH + OH⁻ 			

THÉORIE DE BRÖNSTED-LOWRY COUPLE ACIDE-BASE				
Composition AH/A⁻ ou BH⁺/B À un acide donné correspond une base associée Acide et base d'un même couple sont dits conjugués				
Correspondance	-H ⁺ Acide Base + H ⁺ • Échange d'un proton entre eux selon les réactions : ○ Acide + H ₂ O Base conjuguée + H ₃ O ⁺ ○ Base + H ₂ O Acide conjugué + OH ⁻			

COUPLES ACIDE-BASE NOMENCLATURE					
ACIDE	BASE		ACIDE	BASE	
H₃O⁺ ion oxonium ou hydronium	H₂O eau		HClO₄ Acide perchlorique	ClO₄ [−] ion perchlorate	
H₂O eau	OH [–] ion hydroxyde		HClO₃ Acide chlorique	ClO₃ [–] ion chlorate	
HF Acide fluorhydrique	F ⁻ ion fluorure		HClO₂ Acide chloreux	ClO₂ [−] ion chlorite	
HCl Acide chlorhydrique	Cl ⁻ ion chlorure		HCIO Acide hypochloreux	CIO ⁻ ion hypochlorite	
HBr Acide bromhydrique	Br [_] ion bromure		CH₃COOH Acide acétique	CH₃COO⁻ ion acétate	
H₂CO₃ Acide carbonique	HCO₃ ⁻ ion bicarbonate ou hydrogénocarbonate		CH₃CH₂OH Ethanol	CH₃CH₂O⁻ ion éthanolate	
HCO₃ ⁻ ion bicarbonate ou hydrogénocarbonate	CO ₃ ^{2–} ion carbonate		NH ₄ ⁺ Ion ammonium	NH₃ Ammoniac (gaz)	

THÉORIE DE BRÖNSTED-LOWRY AMPHOLYTE			
Définition	 Substance qui appartient à 2 couples acide/base différents Se comporte comme un acide dans un couple et comme une base dans l'autre couple 		
Exemples	 H₂O: acide du couple H₂O/OH⁻ et base du couple H₃O⁺/H₂O Ion hydrogénocarbonate (HCO₃⁻): acide du couple HCO₃⁻/CO₃²⁻ et base du couple H₂CO₃ / HCO₃⁻ Ion dihydrogénophosphate (H₂PO₄⁻): acide du couple H₂PO₄⁻/HPO₄²⁻ et base du couple H₃PO₄/H₂PO₄⁻ Comportement d'un acide aminé en tant qu'acide avec le groupement (-NH₃⁺): ⁺H₃N-CHR-COO⁻ ⇄ H⁺ + H₂N-CHR-COO⁻ Comportement d'un acide aminé en tant que base avec le groupement (-COO⁻): ⁺H₃N-CHR-COO⁻ + H⁺ ⇄ ⁺H₃N-CHR-COOH 		
Solution amphotère	Solution d'ampholyte		

RÔLE DU SOLVANT				
Autoprotolyse de l'eau	 Couples acido-basiques de l'eau : H₂O/OH⁻ : H₂O			
 Réaction de transfert protonique ■ De l'acide vers l'eau : AH + H₂O				

RÉACTION ACIDO-BASIQUE			
Réaction observable	 Echange de protons entre deux couples acide-base Le proton libéré par un couple est récupéré par l'autre Demi-réactions fictives : acide 1		

CONSTANTES D'ÉQUILIBRE ET pH FORCE IONIQUE (I)			
Unité	■ mol.L ⁻¹		
Signification	 Rend compte de la concentration en ions Plus grande si la solution est plus concentrée 		
Expression	 I = ½ x [Σ C_i x Z_i²] C_i = n_i/V C_i = nombre d'ions i formés par dissociation du soluté x C_{soluté} 	 C_i: concentration de l'ion i (en mol.L⁻¹) Z_i: charge de l'ion i n_i: quantité de matière de l'ion i (en mol) V: volume de la solution (en L) C_{soluté}: concentration en soluté avant dissociation (en mol.L⁻¹) 	
Sérum physiologique	■ Solution de NaCl à 9 g.L ⁻¹ qui mime le plasma sanguin dont I = 0,154 mol.L ⁻¹		

CONSTANTES D'ÉQUILIBRE ET pH ACTIVITÉ (a)			
Unité	Sans dimension		
Signification	 Fraction de concentration qui participe effectivement aux processus physiques comme les changements d'état ou chimiques telles que les réactions Aussi appelée « concentration active » 		
Expression			
Coefficient d'activité (γ)	 Nombre sans dimension γ est un % 0 < γ ≤ 1 Dépend de la force ionique (I) Dépend de la charge de l'ion 		
Liquide pur	■ a = 1		
Solutions idéales	 Cas des solutions diluées Absence d'interactions électrostatiques entre les ions ou molécules du soluté γ≈ 1 Activité = concentration 		
Solutions quelconques	 Si la concentration augmente : augmentation des interactions diminution de γ seule une fraction des ions ou molécules, appelée activité, sera impliquée 		
Dans le plasma sanguin	 γion monovalent > γion bivalent Hypothèse pour H⁺: activité = concentration 		

CONSTANTES D'ÉQUILIBRE ET pH COEFFICIENT D'IONISATION (a) D'UN ACIDE OU D'UNE BASE FAIBLE				
Équilibre	■ AB ~ A ⁻ + B ⁺			
Coefficient d'ionisation ou de dissociation (α)	 grandeur qui évalue l'état de dissociation d'un acide ou d'une base α = x/n₀ = nb de molécules ionisées nb de molécules initiales 0 < α ≤ 1 α est un % 	 α: coefficient d'ionisation ou de dissociation x: nombre de molécules ionisées n₀: nombre de molécules initiales 		
Quantités de matière à l'équilibre	• $n_{A-} = n_{B+} = n_o.\alpha$ • $n_{AB,restante} = n_o - n_o.\alpha = n_o.(1-\alpha)$			
Concentrations à l'équilibre	$\alpha = \frac{[A^-]}{C} = \frac{[B^+]}{C}$ $[A^-] = [B^+] = \alpha.C \bigstar$ $[AB]_{restante} = C - C.\alpha = C.(1-\alpha)$	C: concentration initiale en AB, avant ionisation		

CONSTANTES D'ÉQUILIBRE ET pH PRODUIT IONIQUE DE L'EAU (K _e)				
Equilibre associé	■ $H_2O_{(I)} + H_2O_{(I)} \iff H_3O^+_{(aq)} + OH^{(aq)}$ ■ Constante d'équilibre : $K = \frac{a_{H_3O} + x \ a_{OH}^-}{(a_{H_2O})^2}$; avec $(a_{H_2O})_{liq} = 1$			
Expression	 K_e = produit ionique de l'eau = constante de dissociation de l'eau K_e = [H₃O⁺] x [OH⁻] * 			
Valeur de K _e selon la température	 K_e ne varie qu'avec la température A 25°C : Ke = 10⁻¹⁴ K_e (à 100°C) > K_e (à 25°C) ★ 			
Concentrations en H₃O⁺ et OH⁻	 Dans l'eau pure : concentrations en H₃O⁺ et OH⁻ faibles à 25°C : [H₃O⁺] = [OH⁻] = 10⁻⁷ mol.L⁻¹ Dans toutes les solutions aqueuses à 25°C, quelle que soit la nature des solutés dissous : [H₃O⁺] x [OH⁻] = 10⁻¹⁴ Si ajout d'acide : [H₃O⁺] augmente et [OH⁻] diminue Si ajout de base : [OH⁻] augmente et [H₃O⁺] diminue 			

CONSTANTES D'ÉQUILIBRE ET pH pH		
Unité Sans unité		
Signification	■ Etymologiquement : pH = masse ou valeur de l'hydrogène	
Expression	■ pH = $-\log (a(H_3O^+)) = -\log (\gamma_{H_3O^+} \times [H_3O^+])$ ■ Comme $\gamma_{H_3O^+} = 1$: pH = $-\log [H_3O^+]$ ★ ■ $[H_3O^+] = 10^{-pH}$ ★ ■ $[H_3O^+] = 10^{-pH}$ ★	

CONSTANTES D'ÉQUILIBRE ET pH pH DES SOLUTIONS AQUEUSES		
Echelle de pH	■ Limitée entre 0 et 14 à 25°C	
Solution neutre à 25°C	 [H₃O⁺] = [OH⁻] = 10⁻⁷ mol.L⁻¹ pH = 7 Si on ajoute un acide à une solution aqueuse neutre : Augmentation de la concentration en H₃O⁺ Diminution du pH ⇒ pH < 7 Si on ajoute une base à une solution aqueuse neutre : Diminution de la concentration en H₃O⁺ Augmentation du pH ⇒ pH > 7 	
Solution acide à 25°C	■ [H ₃ O ⁺] > [OH ⁻] ■ pH < 7	
Solution basique à 25°C ■ [H₃O⁺] < [OH⁻]		

CONSTANTES D'ÉQUILIBRE ET pH ÉCHELLE DE pH				
Effet de la température	■ Variation de l'échelle des pH des solutions aqueuses avec la température			
En Chimie (25°C)	 pH de l'eau pure = 7 Solution acide : pH < 7 Solution basique : pH > 7 	Solution acide Solution pasique Solution basique		
En Biologie Humaine (37°C)	 pH normal du sang = 7,4 ACIDOSE : pH sanguin < 7,4 ALCALOSE : pH sanguin > 7,4 	Solution acide Solution nautre. ACIDOSE Solution Solution basique ALCALOSE		

	CONSTANTES D'ÉQUILIBRE E CONSTANTE D'ACIDITÉ	•	
Réaction de dissociation	 Lorsqu'un acide AH est introduit dans l'eau : formation totale ou partielle d'ions H₃O⁺ Si AH est un acide fort : formation totale d'ions H₃O⁺: AH + H₂O → A⁻ + H₃O⁺ Si AH est un acide faible : formation partielle d'ions H₃O⁺: AH + H₂O		
Expression	 Pour un couple AH/A- tel que: AH + H₂O	 a_i: activité de i a_{H₂O} = 1 [i] = concentration de i 	
рКа	$pK_a = -\log Ka$ $K_a = 10^{-pKa}$		
Effet de la température	 K_a ne varie qu'avec la température K_a = e AG°/RT 	 ΔG°: variation d'enthalpie libre de la réaction en J.mol⁻¹ R: constante des gaz parfaits R = 8,31 J.mol⁻¹.K⁻¹ T: température en Kelvin 	

CONSTANTE D'ACIDITÉ : Ka DISSOCIATION DE L'ACIDE		
Lien entre Ka et le coefficient de dissociation α	• $K_a = \frac{C.\alpha^2}{(1-\alpha)}$	 K_a: constante d'acidité
Cas d'une très faible dissociation	• $\alpha <<< 1$ • $K_a \approx C.\alpha^2$ • $\alpha = \sqrt{\frac{K_a}{C}} \star \star \star$	- C : concentration initiale en acide AH - α : coefficient de dissociation ou d'ionisation de l'acide
Effet de la dilution	 Loi de dilution d'Ostwald : la dissociation d'un électrolyte faible en solution diluée augmente avec la dilution ★ Φ Si la concentration C ↗, le coefficient de dissociation α ↘ ★ 	

	CONSTANTE D'ACIDITÉ : Ka FORCE DES ACIDES ET DES BASES
	-
	■ <u>Exemple</u> : acide chlorhydrique HCl
	$\blacksquare HCI + H_2O \rightarrow H_3O^+ + CI^-$
Acide fort	Réaction avec l'eau ou dissociation totale
71010101010	■ [H ₃ O ⁺] = C = concentration initiale de l'acide
	 K_a n'a pas de valeur finie : elle tend vers l'infini (∞)
	 pK_a ≤ 0
	■ Exemple: Les acides carboxyliques (R-COOH) sont tous des acides faibles ★ ❖
	 CH₃COOH + H₂O
	 Réaction avec l'eau équilibrée ou dissociation partielle
	 [H₃O⁺] < C = concentration initiale de l'acide
	• $K_a = [H_3O^+] \times [CH_3COO^-] / [CH_3COOH] : valeur de K_a = \frac{finie}{finie}$
Acide faible	■ 0 < pK _a < 14
	Plus l'acide « faible » est fort :
	o plus le Ka est grand
	o plus le pKa est petit ★
	○ plus la molécule est ionisée (RCOO ⁻ Z) ★
	o moins la molécule est diffusible à travers les membranes
	Exemple : soude NaOH
	■ NaOH → Na ⁺ + OH ⁻
Base forte	Réaction avec l'eau ou dissociation totale
2000 10110	■ [OH ⁻] = C = concentration initiale de la base
	 K_a n'a pas de valeur finie
	 pK_a ≥ 14
	■ Exemple: NH ₃ et les amines (R-NH ₂) sont toutes des bases faibles
	■ $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
	 Réaction avec l'eau équilibrée ou dissociation partielle
	■ [OH ⁻] < C = concentration initiale de la base
	$\blacksquare NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$
Base faible	• $K_a = [H_3O^+] \times [NH_3] / [NH_4^+] : valeur de K_a finie$
	■ 0 < pK _a < 14
	Plus la base « faible » est forte :
	o plus le K₃ est petit
	o plus le pK₀ est grand
	■ Force d'une base définie par la constante K _a de son acide conjugué

CONSTANTE D'ACIDITÉ : Ka ET pH FORCE DES ACIDES ET DES BASES EN SOLUTION AQUEUSE			
Caractère faible	 ■ Base conjuguée d'un acide faible = base faible € ■ Acide conjugué d'une base faible = acide faible 		
Comparaison des forces	 Évolution en sens inverse de la force d'un acide et de sa base conjuguée La « base » conjuguée d'un acide fort n'a aucun caractère basique L'« acide » conjugué d'une base forte n'a aucun caractère acide Si la force de l'acide augmente, la « faiblesse » de la base conjuguée augmente Si la force de la base augmente, la « faiblesse » de l'acide conjugué augmente 		
Echelle des pKa à 25°C	H ₃ O ⁺ /H ₂ O Acides plus faibles H ₂ O/HO- pK _a 0 Bases plus faibles 14 Acides plus forts Bases plus fortes		
Différence entre pH et pK _a	 pH = mesure de l'acidité ou de la basicité d'une solution Un même pH peut être obtenu avec des acides de forces différentes si l'acide le plus faible est en concentration plus grande K_a ou pK_a = mesure de la force propre d'un acide, ou de l'acide conjugué d'une base, dans un solvant, à température donnée, indépendamment de sa concentration dans la solution 		

RÉACTION ACIDO-BASIQUE ÉVOLUTION SPONTANÉE		
Ecriture de la réaction	■ Couple 1 : acide 1 \rightleftarrows base 1 + H ⁺ : $K_{a1} = \frac{[base \ 1] \times [H^+]}{[acide \ 1]}$ ■ Couple 2 : base 2 + H ⁺ \rightleftarrows acide 2 : $1/K_{a2} = \frac{[acide \ 2]}{[base \ 2] \times [H^+]}$ ■ $\underbrace{\text{Équation bilan de la réaction}}_{2}$: base 1 + acide 2	
Constante d'équilibre	• $K = \frac{[\text{base 1}] \times [\text{acide 2}]}{[\text{acide 1}] \times [\text{base 2}]} = \frac{K_{a1}}{K_{a2}} = 10^{pKa2 - pKa1}$	
Evolution spontanée	 Réaction spontanée dans le sens 1 ou sens direct si K > 1 soit si K_{a1} > K_{a2} Réaction spontanée entre l'acide le plus fort et la base la plus forte : acide le plus fort : acide du couple ayant le pK_a le plus faible base la plus forte : base du couple ayant le pK_a le plus fort Évolution de la réaction préférentiellement dans le sens : de la consommation de l'acide et de la base les plus forts de la production de l'acide et de la base les plus faibles 	
Spontanéité et échelle des pK _a	Force croissante des acides Acide 1 Acide 2 pK _a pK _{a2} Force croissante des bases	
K élevée	Réaction considérée comme totale	

pH DES SOLUTIONS AQUEUSES		
Concentration initiale	■ C _o = Concentration initiale en acide ou en base	
	Réaction de dissociation	■ Dissociation totale ■ AH + $H_2O \rightarrow A^- + H_3O^+$ ■ exemple : HCl + $H_2O \rightarrow H_3O^+ + Cl^-$
Monoacide fort	Concentrations en solution	• $[H_3O^+] = [A^-] = C_o$
	рН	■ pH = - log C _o
Monoacide faible	Réaction de dissociation	 Dissociation partielle AH + H₂O
	рН	■ pH = ½.pK _a - ½.log C _o ★★★♥
	Réaction de dissociation	 Dissociation totale B + H₂O → BH⁺ + OH⁻ exemple : NaOH → Na⁺ + OH⁻
Monobase forte	Concentrations en solution	• $[OH^-] = [BH^+] = C_o = \frac{K_e}{[H_3O^+]}$
	рН	■ pH = 14 + log C _o
Monobase faible	Réaction de dissociation	 Dissociation partielle B + H₂O ⇒ BH⁺ + OH⁻ exemple: R-NH₂ + H₂O ⇒ R-NH₃⁺ + OH⁻
	рН	■ pH = 7 + ½.pK _a + ½.log C _o ★

SOLUTIONS TAMPONS				
Définition	■ Mélange d'un acide faible et de sa base conjuguée ou mélange d'une base faible et de son acide conjugué dans des concentrations assez proches ★★			
Obtention d'une solution tampon	 1- Mélanger un acide faible (CH₃COOH) et sa base conjuguée (CH₃COO⁻ Na⁺) 2- Ajouter une solution de base forte (NaOH) à une solution d'acide faible (CH₃COOH). ex: CH₃COOH + NaOH (réactif limitant) → CH₃COO⁻ Na⁺ + H₂O n₀ = 2 mol 0,9 mol 0 nfin = 1,1 mol 0 0,9 mol ⇒ Obtention d'un mélange d'acide faible et de sa base conjuguée 3- Ajouter une solution d'acide fort (HCl) à une solution de base faible (NH₃). ex: NH₃ + HCl (réactif limitant) → NH₄⁺ Cl⁻ n₀ = 2 mol 0,9 mol 0 nfin = 1,1 mol 0 0,9 mol ⇒ Obtention d'un mélange de base faible et de son acide conjugué 			
Rôle	 Limiter les variations de pH lors d'un ajout à la solution tampon, d'une quantité modérée de base ou d'acide, forts ou faibles En cas d'addition d'ions H₃O⁺ au mélange tampon (RCOOH/RCOO⁻): Déplacement de l'équilibre dans le sens de sa consommation ★ Combinaison des ions H₃O⁺ avec la base conjuguée pour donner l'acide Disparition des ions H₃O⁺ de la solution RCOOH + H₂O → H₃O⁺ + RCOO⁻ ajout de H₃O⁺ ⇒ Après addition, la concentration en ions H₃O⁺ est inférieure à celle qu'elle aurait été en l'absence de base conjuguée ★ 			
Effet de la dilution	Pratiquement pas de variation de pH			

SOLUTIONS TAMPONS			
APPLICATIONS			
Activités enzymatiques	Milieux tamponnés	 Présence de tampons naturels qui contrôlent les activités enzymatiques dans la plupart des systèmes biochimiques et qui dépendent du pH pour un grand nombre d'enzymes 	
	Rôle	 Maintien du pH à des valeurs constantes grâce aux tampons, assurant ainsi les équilibres des réactions biochimiques 	
	Systèmes tampons	■ Trois systèmes tampons qui garantissent le maintien du pH sanguin à une valeur stable de 7,4 : ○ Tampon dioxyde de carbone / hydrogénocarbonate ○ Tampon dihydrogénophosphate / hydrogénophosphate ○ Tampon protéine / anion protéique	
Systèmes Tampons	pH < 7,4	 ■ Acidose ■ Sang incapable d'éliminer efficacement le CO₂ des cellules 	
du sang	pH > 7,7	 ■ Alcalose ■ Sang incapable de céder le CO₂ de manière efficiente aux poumons 	
	pH < 7,0 ou pH > 7,8	■ Mort inéluctable	

SOLUTIONS TAMPONS pH				
Expression du pH	En concentration	$\bullet \boxed{pH = pKa + log \frac{[base]}{[acide]}} \bigstar \bigstar$		
	En quantité de matière	■ [base] = $\frac{n_{base}}{V_{tampon}}$ ■ [acide] = $\frac{n_{acide}}{V_{tampon}}$ ■ pH = pKa + log $\frac{n(base)}{n(acide)}$	 n : quantité de matière V_{tampon} : volume du mélange tampon 	
Solution Tampon particulière	Composition	 Mélange d'acide faible et de base faible conjugués tel que : [acide] = [base] 		
	рН	■ pH = pK _a		

PASSAGE À TRAVERS LES MEMBRANES DISSOCIATION IONIQUE					
Médicaments	 De nombreux médicaments = acides ou bases organiques faibles Ils existent sous 2 formes en milieux aqueux : forme non ionisée forme ionisée Leur diffusion par la membrane lipidique dépend en grande partie de leur dissociation ou non 				
Degré de dissociation	 Le degré de dissociation des acides et bases organiques dépend : du pH dans la solution du pKa 				
Forme non-ionisée (ni)	 Habituellement liposoluble ou lipophile Diffusion facile à travers les membranes cellulaires Forme non-ionisée (ni) = forme diffusible (d) ★ ② 				
Forme ionisée (i)	 Faible liposolubilité Forte solubilité dans l'eau donc hydrophile Diffusion difficile à travers les membranes cellulaires Forme ionisée (i) = forme non-diffusible (nd) ★ ② 				
Diagramme de prédominance					

PASSAGE À TRAVERS LES MEMBRANES CAS D'UN ACIDE FAIBLE (AH) ET DE SA BASE CONJUGUÉE (A ⁻)				
Exemple	 Acide faible : AH : RCOOH Base conjuguée : A⁻ = RCOO⁻ 			
Espèces prédominantes	 pH < pK_a: AH ★★ pH = pK_a: aucune; [AH] = [A⁻] pH > pK_a: A⁻ ★★ 			
Formes diffusible et non-diffusible	 Forme acide AH = forme non-ionisée [ni], donc diffusible [d] ★★★ Forme basique A⁻ = forme ionisée [i], donc non-diffusible [nd] ★★★ 			
Rapport des fractions	■ pH = pK _a + log $\frac{[A^-]}{[AH]}$ = pK _a + log $\frac{[i]}{[ni]}$ ■ $\frac{[i]}{[ni]}$ = $\frac{\text{fraction non-diffusible}}{\text{fraction diffusible}}$ = $10^{\text{pH-pKa}}$ $\star \star \star \star \bullet$			
Influence du pK _a	 Pour les acides faibles, plus la différence (pH−pK_a) est grande : plus la molécule est ionisée ⇒ moins elle est diffusible Pour un même pH du milieu : plus le pK_a d'un acide faible est grand ⇒ plus sa fraction diffusible est grande 			
Influence du pH	 En cas de diminution du pH ou acidose : augmentation de la fraction non ionisée diffusible 			
Applications médicales	Efficacité	 Augmentation de l'efficacité d'un médicament acide en plongeant le patient en acidose pour augmenter sa diffusion Exemple: aspirine apportée dans le sang ou dans l'estomac: pH estomac < pH sang donc fraction diffusible plus importante dans l'estomac Sauf en cas de contre-indication: aucun intérêt d'apporter l'aspirine dans le sang par une injection intraveineuse 		
	Intoxication	 En cas d'intoxication par un médicament acide, possibilité de plonger le patient en alcalose pour limiter sa diffusion 		

PASSAGE À TRAVERS LES MEMBRANES CAS D'UNE BASE FAIBLE (B) ET DE SON ACIDE CONJUGUÉ (BH+)				
Exemple	■ B: RNH ₂ ■ BH ⁺ = RNH ₃ ⁺			
Espèces prédominantes	 pH < pK_a: BH⁺ ★ pH = pK_a: aucune; [BH⁺] = [B] ★ pH > pK_a: B ★ 			
Formes diffusible et non-diffusible	 Forme non-ionisée, notée ni, donc diffusible = forme basique B ★ Forme ionisée, notée i, donc non-diffusible = forme acide BH⁺ ★ 			
Rapport des fractions	■ pH = pK _a + log $\frac{[B]}{[BH^+]}$ = pK _a + log $\frac{[ni]}{[i]}$ ■ $\frac{[ni]}{[i]}$ = $\frac{fraction\ diffusible}{fraction\ non-diffusible}$ = 10^{pH-pKa} $\star \star \star \star \odot$			
Influence du pK _a	 Pour les bases faibles, plus la différence (pH−pK_a) est grande : moins la molécule est ionisée ⇒ plus elle est diffusible ★ Pour un même pH du milieu : plus le pK_a d'une base faible est petit ⇒ plus sa fraction diffusible est grande 			
Influence du pH	 En cas de diminution du pH ou acidose : diminution de la fraction non ionisée diffusible 			
Applications médicales	Efficacité	 Augmentation de l'efficacité d'un médicament basique en plongeant le patient en alcalose pour augmenter sa diffusion 		
	Intoxication	 En cas d'intoxication par un médicament basique, possibilité de plonger le patient en acidose pour limiter sa diffusion ★★ 		