CSSSKL 143

Lab Lectures: Kanishk Sharan ks223@uw.edu

Complexity

- Space Complexity: Memory space an algorithm needs
- Time Complexity: Time required to run an algorithm

Time Complexity

- How to measure absolute time?
- Consider number of steps an algorithm takes to complete (start till end)
- It is machine independent

Big "O" Notation

- Landau notation
- Describes the limiting behavior of a function(inputs/arguments —> infinity)
- It classifies how algorithms respond to change in number of input size.

Different Big"O"

Big-O	Name
1	Constant
log(n)	Logarithmic
n	Linear
nlog(n)	Log Linear
n^2	Quadratic
n^3	Cubic
2^n	Exponential

Big "O" Array Operations

Operation	Big-O Efficiency
index []	O(1)
index assignment	O(1)
append	O(1)
pop()	O(1)
pop(i)	O(n)
insert(i,item)	O(n)
del operator	O(n)
iteration	O(n)
contains (in)	O(n)
get slice [x:y]	O(k)
del slice	O(n)
set slice	O(n+k)
reverse	O(n)

THE END

Don't Forget to return your Laptops

