Imperial College London

Investigation of Reorganisation Energies in Organic Molecules using Computational Methods

Kye Bong Choo Kody Li Prof. Jenny Nelson Dr Mohammed Azzouzi

Motivation*: Why this is worth the effort

- Road to net zero. Rare earth materials are expensive and scarce.
- Organic semiconductors could be a good alternative.
- Many possible structures to evaluate.

Issues with evaluating organic semiconductors:

- Computationally demanding.
- Slow to calculate and there's many ways to extend the organic molecule starting from a single benzene.

What if there's a faster way to perform the analysis? Could we implement machine learning methods to help guide us in our evaluation of organic semiconductors?

Brief Overview:

Molecule Creation

RDKit

Geometry Optimisation

Vibrational Mode Analysis

Orbital Analysis

0-0

*Ovalene: Left = Anion HOMO; Right = Ground HOMO

[1] charge transfer between two delocalised aggregates

Energy Analysis

Interpret and Repeat

Kye Bong Choo, Kody Li

Objectives:

- Investigate how reorganisation energies change with molecule structure.
- Design a high throughput method to evaluate larger sets of molecules.
- Identify main features that impacts the reorganisation energy of a molecule and its relationship to the HOMO and LUMO levels of the molecule.

Optimisation: Density Functional Theory

[2] DFT approximates the interaction between parts in a molecule [3] More intuitive explanation of DFT. by swapping out the electrons with an electron density region.

Vibration and Energy: Marcus & DUSHIN

[4] Given molecular potential surfaces 1 and 2, EV1 and EV2 are the vertical excitation energies, E0 is the adiabatic energy difference, and the reorganization energies is given by $\lambda 1 \lambda 2$.

4-point method:

$$D^- + A \rightarrow D + A^-$$

Reorganisation energy (DUSHIN):

$$\lambda_{total} = \sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} \frac{h}{2} v_i \delta_i^2$$
 Vibration frequency

Energy of each vibrational mode

Transition Rate:

$$k = He^{-\frac{(\Delta G_0 + \lambda)^2}{4\lambda k_B T}}$$

Dependence on electronic coupling

Workflow: Scaling Up

Preview of Data Set:

Total Gaussian 16 optimisations ran 1404 allowing us to compute 378. 702 transitions for 234 molecules

Selection Criteria

- Oligophenes and thiophenes,
- 'Linear' molecules first.
- On PubChem [5], export most similar structures based on Tanimoto distance:
- Possible issue with molecule validity as criteria for publishing not clear.

Preview of results: Dependence on Cyclic Number

Molecule	Benzene	Napthalene	Anthracene	Tetracene	Pentacene	Hexacene
S0 to S1	0.257	0.560	0.432	0.344	0.288	0.252
C0 to C1	0.294	0.181	0.139	0.114	0.097	0.084
C0 to C-1	0.002*	0.242	0.196	0.162	0.136	0.115
HOMO- LOMO Gap	6.600	4.748	3.552	2.752	2.190	1.780

Kva Bong Choo, Kody Li

Preview of results: Dependence on Cyclic Number

Preview of results: Linearity

S0 to S1	0.252	0.314	0.273	0.236
C0 to C1	0.084	0.097	0.128	0.116
C0 to C-1	0.115	0.136	0.166	0.158
HOMO-LOMO Gap	1.780	3.126	2.878	2.868

pyrene_2024_02_15_18_55_54 $\lambda_{total} = 0.28225 \ eV$

ovalene_2024_02_15_22_29_42 $\lambda_{total} = 0.20474 \ eV$

coronene_2024_02_15_22_28_35 $\lambda_{total} = 0.12601 \text{ eV}$

triphenyle_2024_02_15_22_26_50 $\lambda_{total} = 0.26909 \text{ eV}$

Preview of results: Symmetry?

	Benzene	Anthracene	Triphenylene	Coronene	Pyrene	Ovalene	Tetradeca- cyclo
S1	0.257	0.432	0.269	0.126	0.282	0.204	*
C1	0.294	0.139	0.185	*	0.153	0.096	0.068
C-1	0.002*	0.196	0.250	0.170	0.214	0.122	0.144
HL Gap	6.600	3.552	4.839	4.001	3.810	2.916	2.516

Preview of results: Symmetry?

Preview of results: Failed Cases

Left figure: Plot of the reorganisation energies against HOMO-LUMO gap for all the processed molecules, categorised by transition.

Upon inspection, 'failure' is likely to be caused by:

- Double sulphurs
- Problems with conjugation
- Molecule bonds breaking during geometry optimisation

Preview of results: Failed Cases

The 'noise' would seriously impact the ability to perform a high-throughput automated analysis of the relationship between molecules and their properties.

What this means: Next Steps

- For linear oligophenes with only complete rings, generally larger molecules would have smaller reorganisation energies.
- The more 'together' the molecules are, the lower the reorganisation energy, although this would require further investigation and a stronger justification.
- To improve data collection and analysis, explore how values are dependent on DFT methods and basis sets.
- Could also reduce fail cases by optimising from smaller to larger basis sets, adjusting the trust radius for Gaussian16 optimisation (maximum step size), and explicitly defining connectivity.
- If better data sets are obtained, could be possible to perform large scale analysis on electronic properties and perhaps even predict properties.