Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate

Implementation 1
Design

Implementation and

Intermediate

Design

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Questions

Remotely Connected Electric Field Generator

for Particle Separation in a Fluid

Presented by *Team May1612* on 27 April 2016

Timothy Dee, Justin Long, Brandon McDonnell Iowa State University

Timothy Dee. Justin Long. **Brandon McDonnell**

Project Overview

Initial Implementation Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate

Implementation 2

Design

Implementation Problems

Final Design Hardware Components

Software Components

Current State

Questions

Dielectrophoresis (DEP)

- A dielectric particle in a non uniform electric field experiences a force
- Different potential fields and frequencies has an effect on the net force
- First studied in 1950s by Herbert Pohl

Timothy Dee, Justin Long, Brandon McDonnell

Real World Application

.

Project Overview

Initial Implementation
Design

Problems

Intermediate Implementation 1

Design Implementation and Problems

Intermediate

Implementation 2
Design

Implementation Problems

Final Design
Hardware Components
Software Components

Current State

Questions

Dielectrophoresis

- Recently revived due to the ability to manipulate micro-particles and cells.
- Potential to separate particles in spinal fluid
- Act as filter
- Research in separating cancerous cells from healthy cells
- Separate platelets from whole blood
- Separate red and white blood cells
- Separate Strains of bacteria and viruses from living cells

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems Final Design

Hardware Components Software Components

Current State

Questions

Project Description

- A system to aid in of DEP research
- Allow for quicker setup times
- Control Voltage and Frequency via the web
 - 1 to 60 VPP
 - 10k to 1Mhz
- Hold output for long time periods
- Small Form Factor
- · Easy to use
- Plug and play

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Implementation
Design

Implementation and

Intermediate

Implementation 2
Design

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Questions

Project Structure

- Raspberry Pi
- Web Interface
- Web Server
- Frequency Control Solution
- Voltage Control Solution

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate

Implementation 1

Design Implementation and Problems

Intermediate

Implementation 2
Design

Implementation Problems

Final Design
Hardware Components

Software Components

Current State

Questions

Initial Implementation

- Raspberry Pi
 - Host web server
 - Remote manipulation of circuit output
 - Web interface can provide additional functionality
 - GPIO pins input to circuit
- Circuit Output
 - Frequency generated by GPIO pin
 - GPIO waveform integrated to get sine wave
 - Sine wave amplified to form output

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation
Design

Problems

Intermediate

Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation Problems

Final Design Hardware Components

Hardware Components Software Components

Current State

Questions

Concerns

- Raspberry Pi
 - Complexity of programming
 - GPIO pins may only be turned on and off
 - On-off mechanism must be used to generate waveform
 - Current load
- Circuit Output
 - · Complexity of construction
 - No guarantees about cleanliness of GPIO pin waveform
 - High risk of failure

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate
Implementation 1

Implementat Design

Implementation and Problems

Intermediate Implementation 2

Design Implementation

Problems

Final Design
Hardware Components
Software Components

Current State

Questions

Minigen Function Generator

- SPI communications
- Small form factor
- Output programmable frequency
- Produces 1 Khz to 4 Mhz waveforms

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate
Implementation 1

Implementation Design

Implementation and

Intermediate

Implementation 2
Design

Implementation Problems

Final Design
Hardware Components
Software Components

Current State

Questions

Intermediate Design

- Raspberry Pi controls Integrated circuit components
- Minigen used to produce frequency
 - Digital Potentiometers
 - SPI communications
 - Vary resistance to control amplifier
- Amplifier controls voltage output from circuit

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation
Design
Problems

Intermediate

Implementation 1
Design

Implementation and Problems

Intermediate Implementation 2

Design Implementation

Implementation Problems

Final Design
Hardware Components
Software Components

Current State

Questions

Digital Potentiometer Amplifier Circuit

Properties

Utilizes digital potentiometer as feedback resistor

$$V_{out} = \frac{-R_F}{R_{IN}} * Minigen_{SIGNAL}$$

Problems

- · Distortion of signal
- · Resistance drops with AC signal

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate Implementation 1

Implementation Design

Implementation and Problems

Intermediate

Implementation 2
Design

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Questions

MOSFET Amplifier

Properties

- Utilizes digital pot in a different way
- Amplification utilizes transistor

- Distortion of signal remains
- Concluded digital potentiometer is source of problem

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate Implementation 1

Design Implementation and Problems

Intermediate

Implementation 2

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Questions

Redesign Amplifier

Idea Overview

- Previous problems stem from voltage modification solutions
- Solution: Use integrated circuit component to modify voltage

Amplifier Properties

- Three stages of amplification
- One PGA and two stages with constant gain
 - 20 V_{pp} per stage
 - Summing amplifier sums stages
 - PGA achieves 8 steps within one stage
 - Switches increase output by $20V_{pp}$
- Use transistors as switches flipped using GPIO pins

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate

Implementation 1
Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design
Hardware Components
Software Components

Current State

Questions

Configuration

Programmable Gain Amplifier(PGA)

- Three pins encode gain
- 8 Gain Options from 0 to 7

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate

Implementation 1
Design

Implementation and

Problems
Intermediate

Implementation 2

Design

Implementation

Problems

Final Design
Hardware Components
Software Components

Current State

Questions

SSR Circuit Implementation

Solid State Relay (SSR)

- Uses LED and photo-resistor to allow current though
- Hoped to fix waveform distortion issues

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate Implementation 1

Design Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design
Hardware Components
Software Components

Current State

Questions

Problems

Programmable Gain Amplifier(PGA)

- Easy to destroy
- Functionally works well

Transistor Switch Circuit

BJT Leaks when logically off

Solid State Relay

- Could not function at high enough frequency
- Even moderately high AC signals at input cause output of 0

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation
Design

Problems

Intermediate
Implementation 1

Design

Implementation and Problems

Intermediate

Design

Implementation Problems

Hardware Component

Hardware Components Software Components

Current State

Questions

Overview

- Raspberry Pi controls integrated circuit components
- Minigen Function Generator
 - SPI communications
 - Produces frequency 10 Khz 4 Mhz
- Programmable Gain Amplifier(PGA)
 - GPIO communications
 - 8 voltage options (0-7)
- Two-stage amplification
- Summing Amplifier
 - Sums output from amplification stages

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate Implementation 1

Design Implementation and Problems

Intermediate

Implementation 2
Design

Implementation Problems

Inal Design

Hardware Components Software Components

Current State

Questions

Systems Diagram

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate

Implementation 1

Design Implementation and

Problems

Intermediate Implementation 2

Design

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Questions

Amplifier Circuit

- Two stages with PGA and constant gain amplifiers
 - Upper stage constant amplifier Gain 7.5
 - Lower stage constant amplifier Gain 1.07
 - PGA's both having variable gain
- Summing amplifier

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate

Implementation 2
Design

Implementation Problems

Final Design

Hardware Components
Software Components

Current State

Questions

Web Interface

- Hosted Locally
- Able to be seen on intranet
- Voltage and Frequency controls
- Provides Additional Functionality

Set Voltage and Frequency

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate

Implementation 1

Design

Implementation and Problems

Intermediate

Implementation 2
Design

Implementation

Problems

Final Design

Hardware Components
Software Components

Current State

Questions

Software Components

- Script organization of the Raspberry Pi
- Delegation of Responsibility
- Scripts correspond to hardware components

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate

Implementation 1
Design

Implementation and Problems

Intermediate
Implementation 2

Design

Implementation Problems

Final Design
Hardware Components
Software Components

Current Sta

Questions

Current State

Problems

- 1 Minigen B23 Bug
- 2 Current op-amps have insufficient Gain-Bandwidth Product
 - Insufficient frequency
 - 2 Insufficient voltage
- 3 Current draw from Raspberry Pi

Solutions

- Most probably a hardware issue
- 2 An op-amp with necessary specifications exists, 598-1449-ND
- 3 Ensure few additional components connected to the Pi

Cost

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design Implementation Problems

Final Design

Hardware Components

Software Components

Current State

Questions

Itemized Expenditures

Item	Quantity	Price(\$)
Raspberry Pi 3 Kit	1	49.99
Micro SD card	1	9.99
Minigen Functi- on Generator	1	29.95
Op Amps	3	4.41
PGA	2	8.00
Miscellaneous Components	-	10.5
Total	-	104.84

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

1 100101113

Intermediate Implementation 1

Design

Implementation and

Problems

Intermediate Implementation 2

Design

Implementation

Problems Final Design

Hardware Components Software Components

Current Sta

Questions

Logistical Setbacks

- · Lack of manpower
- Loss of a team member at semester break
- Point of contact left company

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design Problems

Intermediate

Implementation 1

Design

Implementation and Problems

Intermediate

Implementation 2

Design Implementation

Implementat Problems

Final Design

Hardware Components Software Components

Current Sta

Questions

Deliverables

- · Raspberry Pi loaded with controlling code
- User manual
- Current circuit implementation
- PCB design
- Simulation files

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation
Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation Problems

Final Design
Hardware Components
Software Components

Current State

Question

Questions?

Discussion Points

- Dielectrophoresis (DEP)
- Circuit Design
- Digital Potentiometer/ Operation Amplifier
- MOSFET/ Programmable Gain Amplifiers (PGA)
- Web Interface
- Final Documentation

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation
Design

Problems

Intermediate

Implementation 1

Design Implementation and

Problems

Intermediate Implementation 2

Design

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Work Breakdown

Items

- Initial Planning
- Project Website
- Reports and documentation
- Circuit Design
- Web Server
- SOC Communications
- PCB Design