

Question 1: If $R = \{(x, y) : x, y \in Z, x^2 + 3y^2 \le 8\}$ is a relation on the set of integers Z, then the domain of R^{-1} is

(a)
$$\{-2, -1, 1, 2\}$$

(b)
$$\{0, 1\}$$

(c)
$$\{-2, -1, 0, 1, 2\}$$

(d)
$$\{-1, 0, 1\}$$

Solution:

Given
$$R = \{(x, y) : x, y \in Z, x^2 + 3y^2 \le 8\}$$

when
$$x = 0, 3y^2 \le 8$$

Domain of R^{-1} = value of y

$$= \{-1, 0, 1\}$$

Hence option d is the answer.

Question 2: Let the function f: $[0, 1] \rightarrow R$ be defined by $f(x) = 4^x/(4^x + 2)$. Then the value of f(1/40) + f(2/40) + f(3/40) + ... + f(39/40) - f(1/2)

Solution:

Given
$$f(x) = 4^x/(4^x + 2)$$

$$f(1-x) = 4^{1-x}/(4^{1-x} + 2)$$

$$f(x) + f(1-x) = 4^{x}/(4^{x} + 2) + 4^{1-x}/(4^{1-x} + 2)$$

$$=4^{x}/(4^{x}+2)+(4/4^{x})/((4/4^{x})+2)$$

$$=4^{x}/(4^{x}+2)+2/(2+4^{x})$$

$$=(4^x+2)/(4^x+2)$$

= 1

$$f(1/40) + f(2/40) + f(3/40) + \dots + f(39/40) - f(1/2) = (f(1/40) + f(39/40)) + f(2/40) + f(38/40) + \dots + f(20/40) - f(1/2)$$

=
$$(1 + 1 + ...19 \text{ times}) + f(\frac{1}{2}) - f(\frac{1}{2})$$

= 19

Question 3: The function f: $[0,3] \rightarrow [1,29]$, defined by $f(x) = 2x^3 - 15x^2 + 36x + 1$ is

- (a) one one and onto
- (b) onto but not one one
- (c) one one but not onto
- (d) neither one one nor onto

Solution:

Given
$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

$$f'(x) = 6x^2 - 30x + 36$$

$$=6(x-2)(x-3)$$

$$x \in (-\infty, 2) \cup (3, \infty)$$

f(x) is increasing [0, 2) and is decreasing in [2, 3]

So f(x) is not one-one.

It is many one.

$$f(0) = 1$$
, $f(2) = 29$, $f(3) = 28$

Range =
$$[1, 29]$$

So f(x) is onto.

Hence option b is the answer.

Question 4: Let the function, $f:[-7, 0] \to \mathbb{R}$ be continuous on [-7, 0] and differentiable on (-7, 0). If f(-7) = -3 and $f'(x) \le 2$, for all $x \in (-7, 0)$, then for all such functions f, f(-1) + f(0) lies in the interval:

- (a) [-6, 20]
- (b) $(-\infty, 20]$
- (c) $(-\infty, 11]$

(d) [-3, 11]

Solution:

Given f(-7) = -3 and $f'(x) \le 2$

Applying LMVT in [-7,0], we get

$$(f(-7) - f(0))/-7 = f'(c) \le 2$$

$$(-3-f(0))/-7 \le 2$$

$$f(0) + 3 \le 14$$

$$f(0) \le 11$$

Applying LMVT in [-7, -1], we get

$$(f(-7) - f(-1))/(-7 + 1) = f'(c) \le 2$$

$$-3 - f(-1))/-6 = f'(c) \le 2$$

$$f(-1) + 3 = \le 12$$

$$f(-1) \le 9$$

Therefore $f(-1)+f(0) \le 20$

Hence option b is the answer.

Question 5: Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If α is the number of one-one functions from X to Y and β is the number of onto functions from Y to X, then the value of $(1/5!)(\beta - \alpha)$ is

Solution:

Given
$$n(X) = 5$$

$$n(Y) = 7$$

 α = number of one-one functions from X to Y = $^{7}C_{5} \times 5! = 2520$

 β = number of onto functions from Y to X = (${}^{7}C_{3} + 3$. ${}^{7}C_{3}$)5!

$$=4\times {}^{7}C_{3}\times 5!$$

$$= 16800$$

$$(\beta - \alpha)/5! = (16800 - 2520)/5!$$

= 119

Question 6: Let [t] denote the greatest integer \leq t. Then the equation in x, [x]² + 2[x+2] - 7 = 0 has

- (a) exactly four integral solutions.
- (b) infinitely many solutions.
- (c) no integral solution.
- (d) exactly two solutions.

Solution:

Given
$$[x]^2+2[x+2]-7=0$$

$$[x]^2 + 2[x] - 3 = 0$$

$$let[x] = y$$

$$y^2 + 3y - y - 3 = 0$$

$$(y-1)(y+3)=0$$

$$[x] = 1$$
, $[x] = -3$

$$=> x \in [-3, -2) \cup [1, 2)$$

Hence option b is the answer.

Question 7: Let f(x) be a quadratic polynomial such that f(-1) + f(2) = 0. If one of the roots of f(x) = 0 is 3, then its other root lies in

- (a)(-3,-1)
- (b)(1,3)
- (c)(-1,0)
- (d) (0, 1)

Solution:

Let
$$f(x) = ax^2 + bx + c$$

$$f(-1) = a - b + c$$

$$f(2) = 4a + 2b + c$$

Given
$$f(-1) + f(2) = 0$$

$$=> a - b + c + 4a + 2b + c = 0$$

$$=> 5a + b + 2c = 0$$
..(i)

Given that one root is 3.

$$f(3) = 0 \Rightarrow 9a + 3b + c = 0$$
..(ii)

Multiply (i) by 3 and subtract (ii) from it, we get a/-5 = c/6

$$=> c/a = -6/5$$

Product of roots, $\alpha\beta = c/a = -6/5$

$$\alpha = 3$$

So
$$\beta = -2/5 \in (-1,0)$$

Hence option c is the answer.

Question 8: If f(x + y) = f(x) f(y) and $\sum_{x=1}^{\infty} f(x) = 2$. $x, y \in N$, where N is the set of all natural number, then the value of f(4)/f(2) is:

- (a) 2/3
- (b) 1/9
- (c) 1/3
- (d) 4/9

Solution:

$$f(x + y) = f(x) f(y)$$

Put
$$x = 1, y = 1$$

$$f(2) = (f(1))^2$$

Put
$$x = 2$$
, $y = 1$

$$f(3) = f(2)$$
. $f(1) = (f(1))^3$

Put
$$x = 2$$
, $y = 2$

$$f(4) = (f(2))^2 = (f(1))^4$$

So
$$f(n) = (f(1))^n$$

$$\sum_{x=1}^{\infty} f(x) = f(1) + f(2) + f(3) + ... = 2$$

$$f(1)+(f(1))^2+(f(1))^3+...=2$$

$$f(1)/(1-f(1)) = 2$$

$$f(1) = 2/3$$

$$f(2) = (2/3)^2$$

$$f(4) = (2/3)^4$$

$$f(4)/f(2) = (2/3)^4/(2/3)^2 = 4/9$$

Hence option d is the answer.

Question 9: If $f(x) = \log_e((1 - x)/(1+x))$, |x| < 1, then $f(2x/(1+x^2))$ is equal to:

(a) 2f(x)

(b)
$$2f(x^2)$$

$$(c) (f(x))^2$$

$$(d) -2f(x)$$

Solution:

Given
$$f(x) = \log_{e}((1 - x)/(1+x))$$

$$f(2x/(1+x^2)) = \log_e((1 - 2x/(1+x^2))/(1+2x/(1+x^2)))$$

$$= \log_{e}((1+x^{2}-2x)/(1+x^{2}+2x))$$

$$= \log_{e}((1-x)^{2}/(1+x)^{2})$$

$$= \log_e ((1-x)/(1+x))^2$$

$$= 2 \log ((1-x)/(1+x)$$

$$= 2 f(x)$$

Hence option a is the answer.

Question 10: Let $f(n) = [\frac{1}{3} + 3n/100]n$, where [n] denotes the greatest integer less than or equal to n. Then $\sum_{n=1}^{56} f(n)$ is equal to

- (a) 56
- (b) 689
- (c) 1287
- (d) 1399

Solution:

$$f(x) = [(\frac{1}{3}) + 3x/100]x$$

$$f(1)$$
 to $f(22) = 0$

$$f(23) = [(\frac{1}{3}) + (69/100)]23$$

$$f(24) = [(\frac{1}{3}) + (72/100)]24$$

$$f(23) + f(24) + ... + f(56) = 23 + 24 + ... + 55 + 2 \times 56$$

$$= 33 \times 39 + 112$$

$$= 1399$$

Hence option d is the answer.