MAT2130: Engineering Mathematical Analysis 1 Midterm 2 Practice Problems

1. In each of the following, either evaluate the multivariable limit, or show that it does not exist.

(a)
$$\lim_{(x,y)\to(1,2)} \frac{x^2+y^2}{x-y}$$

(b)
$$\lim_{(x,y)\to(0,1)} \frac{x+2y}{x^2}$$

(c)
$$\lim_{(x,y)\to(2,-3)} e^{3x+2y}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + 3xy - 10y^2}{x - 2y}$$

(c)
$$\lim_{(x,y)\to(0,1)} e^{3x+2y}$$

(d) $\lim_{(x,y)\to(0,0)} \frac{x^2 + 3xy - 10y^2}{x - 2y}$
(e) $\lim_{(x,y)\to(1,1)} \frac{2x^2 + y^2 - 4x - 2y + 3}{x + y - 2}$

$$\begin{array}{l} \text{(f)} \lim\limits_{(x,y)\to(-1,0)} \frac{y}{\sqrt{x+3}-\sqrt{x+2y+3}} \\ \text{(g)} \lim\limits_{(x,y)\to(0,0)} \frac{3x^2-2y^2}{x^2+5y^2} \\ \text{(h)} \lim\limits_{(x,y)\to(2,1)} \frac{\sin(x-2y)}{x^2-xy-2y^2} \\ \text{(i)} \lim\limits_{(x,y)\to(2,1)} \frac{\sin(x-2y)}{x+2y} \\ \text{(j)} \lim\limits_{(x,y)\to(1,-1)} \frac{y^2+x+2y}{x-2y-3} \end{array}$$

(g)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2-2y^2}{x^2+5y^2}$$

(h)
$$\lim_{(x,y)\to(2,1)} \frac{\sin(x-2y)}{x^2 - xy - 2y^2}$$

(i)
$$\lim_{(x,y)\to(2,1)} \frac{\sin(x-2y)}{x+2y}$$

(j)
$$\lim_{(x,y)\to(1,-1)} \frac{y^2+x+2y}{x-2y-3}$$

2. Let

$$f(x,y) = 2xy^2 + y^3 + 4x + 7,$$
 $h(x,y,z) = \frac{2y+3}{x^2+1},$

$$g(x,y) = \ln(x^2 + y^4 + 2)$$
,

$$h(x, y, z) = \frac{2y+3}{x^2+1},$$

$$j(x, y, z) = \sin x \cos y + \sin y \cos z + \sin z \cos x.$$

Calculate the following partial derivatives.

(a)
$$\frac{\partial f}{\partial x}$$

(e)
$$\frac{\partial^2 f}{\partial u^2}$$

(b)
$$\frac{\partial}{\partial y}(fg)$$

(f)
$$\frac{\partial^2 g}{\partial x^2}$$

(c)
$$\frac{\partial \ddot{j}}{\partial z}$$

(g)
$$\frac{\partial^2 h}{\partial x \partial y}$$

(d)
$$\frac{\partial}{\partial x}(h^2)$$

(e)
$$\frac{\partial^2 f}{\partial y^2}$$
(f)
$$\frac{\partial^2 g}{\partial x^2}$$
(g)
$$\frac{\partial^2 h}{\partial x \partial y}$$
(h)
$$\frac{\partial^3 j}{\partial x \partial y \partial z}$$

3. In each of the following, use the chain rule to calculate the indicated derivative.

(a)
$$u = s^2 + st + t^2$$
, $s = 4x^3y - x^2y^2 + 3xy^2$, $t = \frac{y}{x^2 + 1}$: $\frac{\partial u}{\partial x}$.

(b)
$$w = \sin(xy + yz + t)$$
, $x = 3t^2 + 2t$, $y = e^{t^2}$, $z = 3t + 4$: $\frac{dw}{dt}$.

(c)
$$w = (x + 2y + 3t)^3$$
, $x = s^2 - 4st$, $y = t^5 - t^3 + st^2$: $\frac{\partial w}{\partial t}$.

(d)
$$w = \sin x \cos y, \ x = 2uv, \ y = \frac{u^2 + 1}{v^2 + 1}, \ u = e^{t - s}, \ v = st + s + t$$
: $\frac{\partial w}{\partial s} \Big|_t$.

1

(e)
$$u$$
, s and t as given in part (a): $\frac{\partial^2 u}{\partial y \partial x}$.

- 4. In each of the following, use implicit differentiation to calculate the indicated derivative.
 - (a) Define x and y as functions of t by

$$xyt = 1$$
, $x^2 + y^2 + t^2 = 4$.

Find $\frac{dx}{dt}$.

(b) Define x, y and z as functions of s and t by

$$tx + sy = 2$$
, $xyz + x^2s + z^2t = 1$, $2sxy - 3tx^2 = 0$.

Find $\frac{\partial y}{\partial t}$.

(c) Define u and v as functions of r, s and t by

$$te^{u^2+v^2} = rs$$
, $u^2 - rt^2 = s^2t + v^2$.

Find $\frac{\partial u}{\partial s}$.

5. In 2D space, the polar coordinates (r, θ) are defined in terms of the Cartesian coordinates (x, y) by

$$r = \sqrt{x^2 + y^2}, \quad \tan \theta = \frac{y}{x}.$$

- (a) Calculate $\frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$.
- (b) Let z = f(r). Show that $y \frac{\partial z}{\partial x} x \frac{\partial z}{\partial y} = 0$.
- (c) Let $w = g(\theta)$. Show that $x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} = 0$.
- 6. In 3D space, the Cartesian coordinates (x, y, z) are defined in terms of the spherical coordinates (r, ϕ, θ) (and vice versa) by

$$x = r \cos \theta \sin \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \phi$.

- (a) Let v = g(x, y). Find $v_{\phi}^2 + v_{\theta}^2$ in terms of v_x and v_y .
- (b) Let $w = f(\phi, \theta)$. Find w_x in terms of w_{ϕ} and w_{θ} .
- 7. Recall that three noncoplanar vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in 3D space span a parallelepiped. Let α be the angle between \mathbf{u} and \mathbf{v} , and let β be the acute angle between \mathbf{w} and a normal to the plane containing \mathbf{u} and \mathbf{v} . Let u be the length of \mathbf{u} , v be the length of \mathbf{v} , and w be the length of \mathbf{w} .
 - (a) Write the volume V of the parallelepiped as a function of u, v, w, α and β .
 - (b) Suppose that the directions of \mathbf{u} , \mathbf{v} and \mathbf{w} remain fixed, while u increases at a rate of 3 cm/sec, v increases at a rate of 2 cm/sec, and w decreases at a rate of 1 cm/sec. Find the rate of change of V, in cm³/sec, when $(u, v, w, \alpha, \beta) = \left(10 \text{ cm}, 5 \text{ cm}, 8 \text{ cm}, \frac{\pi}{2}, \frac{\pi}{4}\right)$.
 - (c) Now assume that the lengths of \mathbf{u} , \mathbf{v} and \mathbf{w} remain fixed, while the angle α decreases at a rate of 0.1 rad/sec and β increases at a rate of 0.2 rad/sec. Find the rate of change of V at the same point as part (b).

8. Let $\hat{\mathbf{u}}$ be a constant unit vector in 3D space, and let $\mathbf{x} = (x, y, z)$. If w(x, y, z, t) is a function of space and time, let

$$\nabla w = w_x \hat{\mathbf{i}} + w_y \hat{\mathbf{j}} + w_z \hat{\mathbf{k}},$$

the gradient with respect to the spatial coordinates. Let F(s) be a differentiable function. Show that the function $w(x, y, z, t) = F(\hat{\mathbf{u}} \cdot \mathbf{x} - ct)$ satisfies the differential equation

$$\widehat{\mathbf{u}} \cdot \nabla w + \frac{1}{c} \frac{\partial w}{\partial t} = 0.$$

- 9. Find the rate of change of the function in the direction indicated. Some directions might only be specified up to a sign.
 - (a) $f(x,y) = \frac{x+1}{y-1}$, at the point (2,2), in the direction of the line $\mathbf{r}(t) = (2+2t, 2-3t)$.
 - (b) $f(x,y) = e^{1/(x^2+y^2)}$, at the point (1,1), tangent to the curve $\mathbf{r}(t) = (\sqrt{2}\sin t, -\sqrt{2}\cos t)$.
 - (c) $f(x,y,z) = xyz x^2 y^2 + z^2$, at the point (0,1,1), perpendicular to the plane 3x y + 1 = 0.
 - (d) $f(x,y,z) = e^x \sin y \cos z$, at the point $(0,\frac{\pi}{2},\pi)$, tangent to the curve formed by the intersection of the surfaces $x^2 + 4y^2 = z^2$ and 3x + 2y z = 0.
 - (e) $f(x, y, z) = z \ln(x^2 + y^2 + 1)$, at the point (1, 0, 1), normal to the surface $2x^2 + 3y^2 + z^2 = 3$.
- 10. Let $g(x, y, z) = 3x^2y^3 4yz^2$.
 - (a) At the point (1,1,1), find a direction in which g is not changing.
 - (b) At the point (1,1,1), is there a direction in which g is changing at a rate of 5? Why or why not?
- 11. Let h(x, y, z) be a function such that, at the point (1, 1, 1), its rate of change in the direction of $\hat{\mathbf{i}} + \hat{\mathbf{k}}$ is 2, its rate of change in the direction of $2\hat{\mathbf{j}} \hat{\mathbf{k}}$ is 4, and its rate of change in the direction of $\hat{\mathbf{i}} 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ is $\frac{1}{\sqrt{2}}$. Find ∇h at the point (1, 1, 1).
- 12. Find the indicated tangent line or plane. All objects are in 3D space.
 - (a) The tangent line to the curve $\mathbf{r}(t) = (t\cos(\pi t), t\sin(\pi t), t^2)$ at the point (1, 0, 1).
 - (b) The tangent line to the curve given by the intersection of the surfaces $xy z^2 = 1$ and $x^2 + y^2 z^2 = 20$, at the point (2, 5, 3).
 - (c) The tangent plane to the surface $z = 2x^3 y^3$ at the point (1, 1, 1).
 - (d) The tangent plane to the surface $y = \sqrt{x^2 + 3z^2 + 2}$ at the point (2,3,1).
- 13. Prove that the curve

$$\mathbf{r}(t) = (2\cos(\pi t) + 1, 3\sin(\pi t) - 2, t)$$

is tangent to the surface

$$4x^2 + y^2 + z^2 + 2xz + 4y + 1 = 0$$

at the point (-1, -2, 1). You should first prove that the curve intersects the surface at the given point.

- 14. In each case, find all of the critical points of the given function.
 - (a) $f(x,y) = \sqrt{x^2 + 2y^2}$
 - (b) $f(x,y) = 6x^4 3x^2y^2 + \frac{2}{3}y^3 + y^2$
 - (c) $f(x,y) = |3x 2y + 1| + x^2 y^2$ (Caution: if you write f(x,y) as a piecewise function and find a critical point for one of the pieces, you have to check that the critical point is actually within the correct domain!)
 - (d) $f(x,y) = \sqrt{x^4 + 2x^2y^2}$
 - (e) $f(x,y) = \sin x \cos y$
- 15. In each case, the given point is a critical point of the function. Determine whether it is a relative minimum, relative maximum, saddle point, or none of these.
 - (a) The point (0,0) for the function $f(x,y) = \sin(xy)$.
 - (b) The point (3,4) for the function f(x,y) = |4x 3y|.
 - (c) The point (0,0) for the function $f(x,y) = 2 \sqrt{x^2 + y^2}$.
 - (d) The point (-1,0) for the function $f(x,y) = x^2y + 3xy^2 + xy$.
 - (e) The point (1,2) for the function $f(x,y) = x^4 4x^3 + 7x^2 + y^2 6x 4y + 6$.
 - (f) The point (1,-1) for the function $f(x,y) = \sqrt{(x-1)^2 + (y+1)^2} 2y(x-1)$.
- 16. Find the absolute maximum and absolute minimum for the given function over the specified region R.
 - (a) $f(x,y) = \frac{x+y}{x-y}$, where R is the square with vertices at (1,0), (2,0), (1,-1) and (2,-1).
 - (b) $f(x,y) = 2x + 1 x^2 y^2$, where R is the disk $x^2 + y^2 \le 4$.
 - (c) f(x,y) = xy, where R is the disk $x^2 + y^2 \le 1$.
 - (d) $f(x,y) = (x-3y)^{1/3}$, where R is the disk $x^2 + y^2 \le 1$.
- 17. Consider the lines $\mathbf{r}_1(s) = (3+s, -s, 1-2s)$ and $\mathbf{r}_2(t) = (1+4t, 2+3t, 4-t)$, where $s, t \in \mathbb{R}$.
 - (a) Let D(s,t) be the square of the distance between the points $\mathbf{r}_1(s)$ and $\mathbf{r}_2(t)$. Find the critical point(s) of D.
 - (b) Find the smallest value that D takes at a critical point. (This is actually the absolute minimum of D over the entire st-plane can you explain why?)
 - (c) Find the points $\mathbf{r}_1(s)$ and $\mathbf{r}_2(t)$ that correspond to the critical point (s,t) from part (b). Verify that the vector $\mathbf{r}_1(s) \mathbf{r}_2(t)$ is perpendicular to both lines.