

IN THE CLAIMS:

The status of the claims in the present application is provided herein below. No amendments have been made to the claims in this response.

Claims 1-39. (Cancelled)

1 40. (Previously added) A method for synthesizing an oligosaccharide
2 comprising the steps of:

3 (a) combining a glycosyl donor molecule and a glycoside
4 acceptor molecule in a reaction mixture: and

5 (b) enzymatically coupling the donor molecule to the acceptor
6 molecule using a mutant form of glycosidase enzyme to form the oligosaccharide, said enzyme
7 being selected from among glycoside enzymes having two catalytically active amino acids with
8 carboxylic acid side chains within the active site of the wild-type enzyme, and said mutant
9 enzyme being mutated to replace one of said amino acids having a carboxylic acid side chain
10 with a different amino acid of comparable or smaller size, said different amino acid having a
11 non-carboxylic acid side chain characterized in that, said glycosyl donor molecule having a β
12 configuration and said glycoside acceptor molecule having an α configuration.

1 42. (Previously added) The method of claim 41, wherein the enzyme is a β -
2 glycosidase.

1 43. (Previously added) The method of claim 42, wherein the glycosyl donor
2 molecule is an α -glycosyl fluoride.

1 44. (Previously added) The method of claim 43, wherein the α -glycosyl
2 fluoride is an α -glucosyl fluoride.

1 45. (Previously added) The method of claim 43, wherein the α -glycosyl
2 fluoride is a α -galactosyl fluoride.

1 46. (Previously added) The method of claim 40, wherein the enzyme is a β -
2 glycosidase.

1 47. (Previously added) The method of claim 40, wherein the enzyme is a β -
2 glucosidase.

1 48. (Previously added) The method of claim 40, wherein the acceptor
2 molecule is an aryl-glycoside.

1 49. (Previously added) The method of claim 48, wherein the acceptor
2 molecule is a nitrophenyl-glycoside.

1 50. (Previously added) The method of claim 40, wherein the glycosidase
2 enzyme is a stereochemistry inverting enzyme in which one of the carboxylic acid side chains in
3 the active site functions as an acid catalyst and the other carboxylic acid side chain functions as a
4 base catalyst, and wherein the amino acid having the carboxylic acid side chain which functions
5 as a base catalyst is replaced in the mutant enzyme.

Claims 51-54. (Withdrawn)

1 55. (Previously added) The method of claim 40, wherein the glycosidase
2 enzyme is selected from the group consisting of β -glucosidases, β -galactosidases, β -
3 mannosidases, β -N-acetyl glucosaminidases, β -N acetyl galactosaminidases, β -xylosidases, β -
4 fucosidases, cellulases, xylanases, galactanases, mannanases, hemicellulases, amylases,
5 glucoamylases, α - glucosidases, α -galactosidases, α -mannosidases, α -N-acetyl glucosaminidases,
6 α -N acetyl galactosaminidases, α -xylosidases, α -fucosidases, and neuraminidases/sialidases.

Claims 56-70. (Withdrawn)