Phương pháp dây cung (Đọc thêm)

1. Nội dung:

• Trong phương pháp này, ta luôn giả thiết các điều kiện sau thỏa mãn:

[a, b] là khoảng phân ly nghiệm.

f(x) có các đạo hàm cấp 1 và cấp 2 không đổi dấu trên (a, b)

• Định nghĩa điểm Fourier: Điểm $x \in (a, b)$ được gọi là điểm Fourier nếu

$$f(x)\times f''(x)>0$$

Dãy $\{x_n\}: x_0 \to x_1 \to x_2 \to \dots \to x_n$ được xác định theo công thức:

$$x_{n+1} = x_n - \frac{f(x_n) \times (x_n - d)}{f(x_n) - f(d)}$$
 n=0..n

Trong đó:

- d = b nếu b là điểm Fourier và $x_0 = a$.
- d = a nếu a là điểm Fourier và $x_0 = b$.

2. Sai số:

Giả sử $|f'(x)| \ge m > 0$, $\forall x \in (a, b)$, ta có:

$$|x_n - x^*| \le \frac{|f(x_n)|}{m}$$

Giả sử f '(x) không đổi dấu trên (a, b) và $0 \le m \le |f'(x)| \le M$, ta có:

$$|x_n - x^*| \le \frac{M - m}{m} |x_n - x_{n-1}|, \forall x \in (a, b)$$

3. Ví dụ:

Ví dụ 1: Bằng phương pháp dây cung, tìm nghiệm gần đúng của phương trình sau: $x^3 - x - 1 = 0$ trong khoảng phân ly nghiệm (1, 2), với sai số $\varepsilon = 10^{-4}$.

Bước 1: Kiểm tra điều kiện hội tụ:

$$f(1) = -1$$

$$f(2) = 5$$

$$f'(x) = 3x^2 - 1 > 0 \ \forall x \in (1, 2).$$

$$f''(x) = 6x \ge 6 > 0 \ \forall x \in (1, 2).$$

$$f''(1) = 6 > 0$$

$$f''(2) = 12 > 0$$

Có $f(2) \times f''(2) > 0 \rightarrow 2$ là điểm Fourier.

Bước 2: Xây dựng dãy lặp:

Ta có 2 là điểm Fourier

Công thức lặp:

$$x_{n+1} = x_n - \frac{f(x_n) \times f(x_n - 2)}{f(x_n) - f(2)}$$
 Với $x_0 = 1$

Sai số:

Vì f'(x) =
$$3x^2 - 1 \ge f'(1) = 2 > 0$$

$$\rightarrow$$
 m = 2 và M = f'(2) = 11.

Công thức sai số thứ 1:

$$|x_n - x^*| \le \frac{|f(x_n)|}{m} = \frac{|x_n^3 - x_n - 1|}{2}$$

Công thức sai số thứ 2:

$$|x_n - x^*| \le \frac{M - m}{m} |x_n - x_{n-1}| = \frac{9}{2} |x_n - x_{n-1}|$$

Bảng kết quả:

n	Xn	Sai số
0	$x_0 = 1$	0.5
1	$x_1 = 1.16667$	0.28935
2	$x_2 = 1.25311$	0.14268
3	$x_3 = 1.29344$	0.06477
4	$x_4 = 1.31128$	0.02829
5	$x_5 = 1.31899$	0.01215
6	$x_6 = 1.32228$	0.00518
7	$x_7 = 1.32368$	0.00220
8	$x_8 = 1.32428$	0.00093
9	$x_9 = 1.32453$	0.00039
10	$x_{10} = 1.32464$	0.00016
11	$x_{11} = 1.32468$	0.00007

Bấm máy:

- Xóa bộ nhớ máy tính: Shift 9 3 = =
- Lập công thức lệnh:

$$C = X^3 - X - 1:Y = X - \frac{C \times (X - 2)}{C - 5}: A = \frac{|C|}{2}: X = Y \text{ (Sử dụng CT sai số 1)}$$

Nếu sử dụng thêm CT sai số 2, ta có: $B = \frac{9}{2}|Y - X|$

4. Bài tập:

Bài tập 1: Tính đến x_3 là nghiệm gần đúng của phương trình $x^4 - 3x + 1 = 0$ trong khoảng phân ly nghiệm (1, 1.5) bằng phương pháp dây cung.

Bài tập 2: Cho phương trình: $x^2 - \sin(\pi x) - 2 = 0$

Biết khoảng $\left(\frac{7}{6}, \frac{3}{2}\right)$ là một khoảng phân ly nghiệm của phương trình (1). Đặt

$$f(x) = x^2 - \sin(\pi x) - 2$$

- a) Chứng minh rằng, trong khoảng phân ly $\left(\frac{7}{6},\frac{3}{2}\right)$ thì đạo hàm f '(x), f ''(x) không đổi dấu.
- b) Sử dụng phương pháp dây cung, tìm nghiệm gần đúng x₅ của phương trình (1).

Bài tập 3: Cho phương trình: ln(x) + x = 2 (1)

Biết khoảng (1, 2) là một khoảng cách ly nghiệm của phương trình (1).

- a) Đặt $f(x) = \ln(x) + x 2$. Chứng minh rằng, các đạo hàm f'(x), f''(x) không đổi dấu trên khoảng (1, 2).
- b) Sử dụng phương pháp dây cung, tìm nghiệm gần đúng x₅ của (1) trong khoảng (1, 2) và đánh giá sai số của nghiệm đó.