P 大树洞生成器

匡宇轩 $(2100013089)^1$, 陈红韵 $(2100013130)^1$, and 王天源 $(1700017703)^2$

¹ 北京大学信息科学技术学院 ² 北京大学元培学院

2022年6月

摘要

本项目为北京大学信息科学技术学院国家精品课程《人工智能引论》的 课程项目。本文为该项目的总结报告。

本项目受到北京大学树洞的启发。树洞作为匿名交流论坛,是一个天然的自然语言处理语料库(在遵守相关规定的情况下)。

本项目基于因果语言建模 (CLM) 的原理开发,使用 Python 和 PyTorch 实现。

我们在树洞文本数据集上训练 LSTM 模型, 并根据用户的输入, 使用训练好的模型产生回复。我们将模型命名为 HoleAI。

关键词: 自然语言处理; 长短期记忆网络; 因果语言建模

目录

1	背景	介绍	3			
2	项目	细节	4			
	2.1	数据集收集与预处理	4			
	2.2	LSTM 介绍	4			
	2.3	神经网络构建	4			
	2.4	神经网络训练	5			
3	训练	结果分析	6			
4	模型生成 6					
	4.1	生成样例	6			
	4.2	样例分析	6			
5	模型	部署与可视化	6			
	5.1	项目介绍网站	6			
	5.2	人机交互网站	6			
6	项目	总结	6			
	6.1	意义	6			
	6.2	挑战	6			
	6.3	局限性	6			
	6.4	收获	6			
7	附录					
	7.1	模型具体代码	7			
	7.2	github 链接	7			
	7.3	训练完整日志	7			
	7.4	其他	7			
8	参考	文献	7			

1 背景介绍

P 大树洞作为校内学生匿名交流平台,是一个完美的语料库(在遵守相关规定的情况下),十分适合 NLP 相关任务。

本项目通过收集大量树洞文本数据,用神经网络进行拟合,希望能创造出一个具有 P 大学生气质的 AI。

使用者可以作为"洞主",模拟发树洞的过程,但是回复的字母君都是 AI 自动生成。

2 项目细节

本项目的基本框架为:

- (1). 数据集收集与预处理
- (2). LSTM 介绍
- (3). 神经网络构建
- (4). 神经网络训练

2.1 数据集收集与预处理

鉴于 P 大树洞的相关管理规范,很遗憾我们无法使用爬虫技术获取数据集, 因此我们采用了手动收集的方式收集数据。

经过收集,我们获取了一份包含 3000 余条树洞,约一百万字的树洞文本,其中包含了三部分:日常话题、经典话题和神洞(即回复量较多的树洞)。

数据收集完毕后,我们对数据进行了清洗。主要包括:去除洞号、回复数、 收藏数等无用信息;去除出现频率过低的字符;去除大量重复的字符。

2.2 LSTM 介绍

$$\begin{split} f_t &= \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right) \\ i_t &= \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right) \\ \tilde{C}_t &= \tanh \left(W_C \cdot [h_{t-1}, x_t] + b_C \right) \\ C_t &= f_t * C_{t-1} + i_t * \tilde{C}_t \\ o_t &= \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right) \\ h_t &= o_t * \tanh \left(C_t \right) \\ f_t &= \sigma \left(W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f \right) \\ i_t &= \sigma \left(W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i \right) \\ o_t &= \sigma \left(W_o \cdot [C_t, h_{t-1}, x_t] + b_o \right) \\ C_t &= f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t \\ z_t &= \sigma \left(W_z \cdot [h_{t-1}, x_t] \right) \\ r_t &= \sigma \left(W_r \cdot [h_{t-1}, x_t] \right) \\ \tilde{h}_t &= \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right) \\ h_t &= (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \end{split}$$

2.3 神经网络构建

构建如下

图 1: LSTM

图 2: LSTM

图 3: 神经网络构建

2.4 神经网络训练

经过四小时的训练,我们一共进行了50次训练迭代。

3 训练结果分析

- 1.dropout rate 不宜过大, num layers 不宜过多 (优化梯度回传)
- 2. 随机 split 数据集,可以起到 data augmentation 的作用,但也因此丢失了部分语义信息
 - 3. 隐层大小至关重要

4 模型生成

- 4.1 生成样例
- 4.2 样例分析
- 5 模型部署与可视化
- 5.1 项目介绍网站
- 5.2 人机交互网站
- 6 项目总结
- 6.1 意义

这个任务十分新颖有趣,而且具有一定社会科学方面的研究价值。

6.2 挑战

然而由于数据集的缺乏(根本没有)和数据集不够 clean,给我们带来了很大的挑战。模型大小与数据集大小的匹配则是另一个挑战。

6.3 局限性

6.4 收获

不断学习新的技术,看 API 文档成为家常便饭。

- 7 附录
- 7.1 模型具体代码
- 7.2 github 链接
- 7.3 训练完整日志

如下:

图 4: 训练日志

Name	Size	Input words	Hidden size	Number of layers	Final val loss
HoleAI-small	4.7MB	50	128	3	1.5476
HoleAl-medium	12.6MB	50	256	3	0.4562
HoleAl-large	37.8MB	30	512	3	0.4354
HoleAl-ultra	46.2MB	30	512	4	0.4640

图 5: 训练日志

- 7.4 其他
- 8 参考文献