

DSC 10, Spring 2018 Lecture 10

Group and Join

sites.google.com/eng.ucsd.edu/dsc-10-spring-2018

Credit: Anindita Adhikari and John DeNero

Grouping Rows

(Demo)

Group

The group method aggregates all rows with the same value for a column into a single row in the result

- First argument: Which column to group by
- Second argument: (Optional) How to combine values
 - len number of grouped values (default)
 - sum total of all grouped values
 - o list list of all grouped values

Group with Multiple Columns

The group method can also aggregate all rows that share the combination of values in multiple columns

- First argument: List or array of which columns to group by
- Second argument: (Optional) How to combine values

iscussion	(JUBSTIAN
1364331011	QUESTION

- A starter for a team is the player with the highest salary on that team in that position.
- The name of the table shown is *starters*.

Which will rank the teams in order of their highest-paid starter?	Boston Celtics	PF	5
Willer will rank the teams in order of their highest-paid starter:	Boston Celtics	PG	7.73034
A. starters.group('TEAM', max).sort(1, descending = True)	Boston Celtics	SF	6.79612
/ ii boarcers, group (rain / man, roore (1/ debecharing rain)	Boston Celtics	SG	3.42551

TEAM POSITION SALARY max

C

PG

SG

12

18.6717

5 74648

2.61698

Atlanta Hawks

Atlanta Hawks

Atlanta Hawks

Atlanta Hawks

Atlanta Hawks

Boston Celtics

```
C. starters.select('TEAM', 'SALARY').group('TEAM', max).sort(1, descending=True)
```

B. starters.drop('POSITION').group('TEAM', max).sort(1, descending = True)

```
D. starters.select('TEAM', 'SALARY max').group('TEAM', max).sort(1, descending = True)
```

E. More than one of the above

Joining Tables

Joining Two Tables

drinks.join('Cafe', discounts, 'Location')

Match rows in this table...

... using values in this column ...

... with rows in that table ...

... using values in that column.

Columns from both tables

drinks

discounts

Drink	Cafe	Price
Milk Tea	Tea One	4
Espresso	Nefeli	2
Latte	Nefeli	3
Espresso	Abe's	2

С	oupon	Location	
2	5%	Tea One	
5	0%	Nefeli	
5	%	Tea One	
	The joined column is sorted automatically		

Cafe	Drink	Price	Coupon
Nefeli	Espresso	2	50%
Nefeli	Latte	13	50%
Tea One	Milk Tea	 4 	25%
√Ţ <u>ea</u> O <u>n</u> e	Milk Tea	4	5%

Random Selection

Random Selection

np.random.choice

- Selects at random
- with replacement
- from an array
- a specified number of times

```
np.random.choice(some array, sample size)
```

Discussion Question

$$d = np.arange(6) + 1$$

What happens when we evaluate the following 2 expressions?

- np.random.choice(d, 1000) + np.random.choice(d, 1000)
- 2 * np.random.choice(d, 1000)
- A. Gives the same result; Describing the same process
- B. Gives the same result; Describing different processes
- C. Gives different results; Describing the same process
- D. Gives different results; Describing different processes
- E. None of the above