ESERCIZI DI PREPARAZIONE ALLO SCRITTO

PRIMA PARTE

 $\mathbf{V} \mathbf{F}$

Per ciascuna delle seguenti affermazioni, indicare se è vera o falsa:

1. Se A,Bsono insiemi e $(A\times B)\subseteq (B\times A)$ allora A=B

2. Se A,B sono insiemi allora vale sempre $(A \setminus B) \cup B = A.$

(b) se $b \notin [a]$ allora $b \not\sim a$; (c) se $b \in [a]$ allora a = b;

3.	Se $A = \{(-1,1)\}$ allora $A \subseteq P(\mathbb{Z} \times \mathbb{N})$.	$\mathbf{V} \mathbf{F}$
4.	La funzione $f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$ definita da $f(n) = (-n,n)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
5.	La funzione $f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$ definita da $f(n) = (-n,n)$ è iniettiva.	$\mathbf{V} \mathbf{F}$
6.	La funzione $f: \mathbb{N} \to \mathbb{Z}$ definita da $f(n) = n - 5$ è suriettiva.	$\mathbf{V} \mathbf{F}$
7.	La funzione $f: \mathbb{N} \to P(\mathbb{N})$ definita da	
$f(n) = \{n\}$		
	è iniettiva.	$\mathbf{V} \mathbf{F}$
8.	Se una funzione ha un'inversa, allora è iniettiva.	$\mathbf{V} \mathbf{F}$
9.	Se $f: \mathbb{N} \to \mathbb{Z}$ è definita da $f(n) = -n^2$ e $Y = \{0, -1, -2\}$ allora $1 \in f^{-1}(Y)$.	$\mathbf{V} \mathbf{F}$
10.	Siano $f: \mathbb{N} \to \mathbb{Z}, g: \mathbb{Z} \to \mathbb{Z}$ definite da: $f(x) = -x^2, \qquad g(x) = -x + 1.$ Se $h = g \circ f$ allora $h(2) = -1.$	$\mathbf{V} \mathbf{F}$
11.	La funzione $f: \mathbb{Z} \to \mathbb{Z}$ definita da $f(z) = z^2$ è invertibile.	$\mathbf{V} \mathbf{F}$
12.	La relazione binaria R definita sugli interi da	
$xRy \Leftrightarrow x+y=1$		
	è transitiva.	$\mathbf{V} \mathbf{F}$
13.	La relazione binaria ${\cal R}$ definita sui sottoinsiemi dei numeri naturali da	
$(X,Y) \in R \Leftrightarrow X \subseteq Y$		
	è simmetrica.	$\mathbf{V} \mathbf{F}$
14.	Il resto della divisione di -7 per -12 è -5 .	$\mathbf{V} \mathbf{F}$
15.	$-11 \equiv_8 -3$	$\mathbf{V} \mathbf{F}$
16.	4 è l'opposto di 5 modulo 9.	$\mathbf{V} \mathbf{F}$
17.	4 è l'inverso moltiplicativo di 6 modulo 25.	$\mathbf{V} \mathbf{F}$
18.	$(14)^{75} + 39 \times 30^{1724} - 37^2 \equiv_{13} 8$	$\mathbf{V} \mathbf{F}$
19.	Sia \sim una relazione d'equivalenza su un insieme non vuoto A,a,b,c elementi di A e $[a]$ la equivalenza dell'elemento a . Quali delle seguenti affermazioni sono vere, qualsiasi sia A e \sim	
	(a) se $a \sim b$ e $c \sim a$ allora $b \sim c$;	VF
		1 1 1

ESERCIZI DI PREPARAZIONE ALLO SCRITTO

SECONDA PARTE

1 Funzioni

- 1. Sia \mathbb{N}^* l'insieme di numeri naturali non nulli e $f: \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{N}^*$ definita da $f(n,m) = n^m$. Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Sia \mathbb{N}^* l'insieme dei numeri naturali non nulli e $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (0, n). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 3. Sia $f: \mathbb{Z} \to \mathbb{N}$ la funzione definita da $f(x) = x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

2 Relazioni

4. Sia $A = \{0, 1, \dots, 9\}$ ed R la relazione definita su $A \times A$ da

$$aRb \Leftrightarrow a+b \leq 9$$

- (a) Stalilire se R è riflessiva.
- (b) Stalilire se R è simmetrica.
- (c) Stalilire se R è transitiva.
- 5. Sia $A = \{0, 1, \dots, 9\}$ ed E la relazione d'equivalenza definita su $A \times A$ da

$$(a,b)E(a',b')$$
 \Leftrightarrow $a+b=a'+b'$

- (a) I due elementi (1,0) e (0,1) sono in relazione?
- (b) La coppia (1, 1) appartiene alla classe d'equivalenza della coppia (2, 2)?
- (c) Descrivi gli elementi che appartengono alla classe d'equivalenza di (0,0) e quelli che appartengono alla classe d'equivalenza di (1,2).
- (d) Quante sono le classi d'equivalenza di E su $A \times A$?

3 Induzione

6. Dimostrare per induzione che per ogni $n \geq 1$ vale

$$1 \cdot 2 + 2 \cdot 3 + \ldots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$$

7. Dimostrare per induzione che per ogni $n \geq 1$ vale

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1$$

- 8. Dimostrare per induzione che per ogni $n \ge 1$ il numero $7^n 1$ è divisibile per 6.
- 9. Dimostrare per induzione che per ogni $n \ge 1$ il numero $4^{2n+1} + 3^{n+2}$ è divisibile per 13.

4 Combinatoria

- 10. Sia A un insieme finito con 10 elementi.
 - (a) Quanti sono gli elementi del prodotto cartesiano $A \times A$?
 - (b) Quanti sono i sottoinsiemi di A?
 - (c) Quanti sono gli elementi (a, b, c) di $A \times A \times A$ con $a \neq b, b \neq c, c \neq a$?
- 11. Sia A un insieme finito con 15 elementi e $a, b \in A$, con $a \neq b$.
 - (a) Quanti sono i sottoinsiemi di A di cardinalità 3?
 - (b) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono a?
 - (c) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono a ma non contengono b?
 - (d) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono sia a che b?
 - (e) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono a oppure b?
- 12. Le targhe automobilistiche di uno stato sono composte da 11 caratteri, dove un carattere è una delle 26 lettere dell'alfabeto inglese.
 - (a) Quante macchine possono essere immatricolate?
 - (b) Quante sono le targhe che contengono esattamente quattro a?
 - (c) Quante sono le targhe che contengono esattamente quattro a consecutive?

5 Congruenze

- 13. Considerare la relazione d'equivalenza modulo 25.
 - (a) Determinare l'opposto additivo di 3 modulo 25.
 - (b) Determinare se 3 e 5 hanno un inverso moltiplicativo modulo 25 e in caso affermativo determinare l'inverso.
 - (c) Trovare l'inverso moltiplicativo di 4 modulo 25.
- 14. Determinare un numero n tale che $0 \le n < 11$ e tale che $n \equiv_{11} 13^2 10^4 + 22^{100}$.
- 15. Stabilire l'ultima cifra decimale del numero 27^{13} .