Method	FOR MUL A	CONPITIONS	QUANTITY REPRESENTED BY INTEGRAND	WHEN TO USE
CRDSS - SECTION	∫ A(t) dt	A IS CONTINUOUS ON R≤t≤b	AREA OF A CROSS-SECTION PERPENDICULAR TO 1-AXIS	CROSS-SEC. IS TRIANGULAR, SQUARE, ETC. (NOT A DISC OR CYLINDER)
DISC	$\int_{a}^{b} \pi f(t)^{2} dt$	f continuous on aitib	AREA OF A CROSS-SECTION PERPENDICULAR TO 1-AXIS	CROSS - SEC. IS A DISC OF RADIUS f(t) REGION BOUNDED BY f : t-Axis is revolved @
			f(e)	f - 4xis
WASHER (SUBTRAC - TIVE DISC	∫π (f(t)²-g(t)³)dt	f, g cour b but A ≤ t ≤ b, f(t) ≥ g(t)	AREA OF A CROSS-SECTION PERPENDICULAR TO 1-AXIS	CROSS-SEC. IS A DISC OF RADIUS $f(t)$ WITH A HOLE OF RADIUS $g(t)$ REGION BDD. BY $f : g$ IS REVOLVED $@$ $t-Axis$
Shell	$\int_{2\pi}^{b} t f(t) dt$	f cont ⁱ s on a ± t ± b	SURFACE AREA OF AN OPEN CYLINDER OF RADIUS & AND HEIGHT F(t) PERPENDICULAR TO \$ - AXIS	REGION BDD BY f AND t -AXIS IS REVOLVED @ AXIS PERPENDICULAR TO t -AXIS!
SUBTRAC - TIVE SHELL	∫2πt (f(è) -g(è)) dt	f,g cont's an a ± t ± b, f(t) ≥ g(t)	SURFACE AREA OF AN OPEN CYLINDER OF RADIUS & AND HEIGHT H(t) - g(t) PERP. TO & - AXIS	REGION BDD BY f AND g. IS REVOLVED @ AXIS PERPENDICULAR TO t-AXIS! A(t) g(t)