Processamento Digital de Imagens

Prof. Bogdan Tomoyuki Nassu

Desafio

- Dada uma foto de um documento, encontrar os limites da página.
 - Informação usada, por exemplo, por alguns programas que fazem reconhecimento de texto em fotografias.
 - Suponha que a página está (quase) toda na imagem, e que existe contraste forte entre a página e a superfície sobre a qual ela está.
 - Como podemos resolver o problema?

Encontrando os limites...

•Dica: vamos trabalhar novamente sobre imagens de bordas.

Encontrando os limites...

- •Ideia geral do nosso algoritmo:
 - Encontra bordas alongadas e aproximadamente retas na imagem.
 - Representa estas bordas por equações, como retas no plano.
 - Seleciona 4 das retas encontradas, passando sobre as bordas superior, inferior, esquerda e direita.
 - Os pontos de encontro entre as retas horizontais e verticais são os cantos da página.
- Primeiro desafio: localizar retas em uma imagem, representando-as como entidades geométricas.

Para começar...

- •Considere que uma reta é representada pela equação y = ax+b.
- Suponha que é dada uma imagem contendo bordas.
 - Como poderíamos localizar retas nesta imagem, de forma direta, usando um algoritmo de força bruta?

Localizando retas: força bruta

```
for (cada pixel de borda p1)
    for (cada pixel de borda p2 \neq p1) {
       // Define a reta entre p1 e p2.
       a = (y2 - y1)/(x2 - x1);
       b = v1 - a*x1;
       // Conta quantos pixels de borda temos entre p1 e p2.
       cont = 0;
       for (cada valor xi entre x1 e x2) {
           yi = a*xi+b;
            if ((xi,yi) é um pixel de borda)
                cont++;
        if (cont > limar) // Muitos pixels de borda sob esta reta!
            adiciona os valores de a e b a uma lista de retas.
```


Localizando retas: força bruta

- O algoritmo de força bruta tem vários problemas...
 - Alta complexidade computacional.
 - Pouca robustez a imprecisões o contador para uma reta só é incrementado quando há um pixel exatamente sob a reta.
 - No final, podem existir muitas retas duplicadas.

Transformadas

- •Lembrando: uma imagem é uma função f(x,y) que associa um valor de intensidade ao pixel em uma posição (x,y).
 - Como x e y são coordenadas espaciais, dizemos que uma imagem é representada no domínio espacial.
- •Uma transformada é uma função para conversão de domínios.
 - = queremos representar a imagem em um domínio diferente do espacial.
- Transformada de Hough: converte a imagem para o domínio paramétrico de alguma forma geométrica.
 - Usada para localizar formas geométricas aproximadas em uma imagem de bordas.
 - "Aproximadas" = robustez a ruído e descontinuidades

- •Considere a equação da reta *y=ax+b*.
 - a e b são os parâmetros que definem uma reta.
 - Converter a imagem do domínio paramétrico da reta equivale a criar uma nova imagem, onde os eixos são a e b.
- •Todas as retas que passam por um ponto podem ser expressas por b=y-xa.
 - Exemplo: (1,1) → *b*=1-*a*
 - Exemplo: $(3,3) \to b=3-3a$
 - Como essas retas ficarão no domínio paramétrico (a,b)?

•O que acontece se repetirmos o procedimento para todos os pixels setados na imagem abaixo?

Mais um exemplo...

•Mais um exemplo...

Mais um exemplo...

Mais um exemplo...

UTEPR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Transformada de Hough: ideia geral

- •Para cada pixel de borda (x,y):
 - Gera os valores de a e b de todas as retas que passam por (x,y).
- •Procura por cruzamentos no domínio paramétrico.
 - Várias retas no domínio paramétrico se cruzam em um ponto (a,b) → a reta definida por y=ax+b passa por vários pixels de borda.
 - Então, pontos do domínio paramétrico onde várias retas se cruzam descrevem prováveis retas no domínio espacial!

Equação polar da reta

- •O domínio (a,b) é problemático...
 - A equação y=ax+b não permite representar retas verticais.
 - Os valores de b podem variar <u>muito</u> são potencialmente infinitos o que impede a geração de todas as retas que passam por um ponto.
- •Na prática, usa-se a equação polar da reta: $r = x.cos\theta + y.sen\theta$
 - A reta é descrita por um ângulo θ e uma distância r.
 - Exemplo: $(0,10) \rightarrow r=10 \cdot \text{sen}\theta$.

• Exemplo: $(10,0) \rightarrow r=10 \cdot \cos\theta$.

Senoides!!!

Quantização

- •Para reduzir a carga computacional, e para que o algoritmo seja robusto a ruído e imprecisões, o domínio paramétrico é quantizado.
 - Os valores possíveis para r e θ são discretizados r é dado em um número de pixels e θ em radianos.
 - Aqui, temos duas opções:
 - Valor de θ entre 0 e 2π , descartando r negativo.
 - Valor de θ entre 0 e π , com r podendo ser negativo.
 - (Por quê?) ERSIDADE TECNOLÓGICA FEDERAL DO PARAM
 - Montamos um histograma 2D, com cada compartimento correspondendo a uma combinação (r,θ) .
 - A largura dos compartimentos diz o quanto os pixels sob uma reta precisam estar alinhados.

Transformada de Hough: algoritmo

```
cria um histograma 2D [\theta][r]
for (cada pixel de borda (x,y))
{
    for (\theta = 0; \theta < \pi; \theta += passo)
     {
         r = quantiza (x*cos(\theta) + y*sen(\theta));
         histograma [theta][r]++;
for (cada combinação possível de [\theta] e [r])
    if (histograma [\theta][r] > limiar)
         adiciona os valores de r e \theta a uma lista de retas;
```


Vejamos alguns exemplos...

- •Vejamos alguns exemplos de retas detectadas pela transformada de Hough.
 - Resultados obtidos por uma implementação simples feita pelo professor.

Transformada de Hough: variações

- •A transformada de Hough tem muitas variações!
 - Probabilísticas.
 - Para segmentos de retas.
 - · Multi-escala.
 - Usando a magnitude e direção dos gradientes.
 - Com suavização e interpolação do histograma.
 - Com máximos locais.
- •Podemos generalizar a abordagem para qualquer forma que possa ser descrita por uma equação.
 - Formas comuns: círculos, elipses e parábolas.
 - Fatores que afetam a complexidade:
 - Número de parâmetros.
 - Normalmente, usam-se no máximo 3, talvez 4.
 - Número de compartimentos no domínio paramétrico.

Transformada de Hough: notas finais

- •A transformada de Hough foi criada em 1959, originalmente para a análise de dados de experimentos de física!
- A HT é uma versão discreta / quantizada da transformada de Radon, que é usada na criação de imagens de tomografias.
- A HT é na prática similar a um algoritmo para regressão linear.
- •Existem vários outros algoritmos que buscam ajustar entidades geométricas (curvas, parábolas, etc.) a bordas extraídas da imagem.

Retornando ao problema original

- •Sabemos como encontrar retas na imagem. Nosso desafio agora é:
 - Selecionar 4 retas, cada uma passando sobre um dos lados da página.
 - Encontrar os pontos de cruzamento das linhas verticais e horizontais.

•Pressupostos:

- A maior parte da página está contida na imagem.
- Procuramos manter uma proporção pequena de pixels de bordas.
 - Nos exemplos mostrados, consideramos não mais que 0.5%.
- As bordas detectadas incluem os limites da página.
- A página está aproximadamente "de pé" (|rotação| < 45°).
- A página (quase) não tem ondulações.
- Neste caso, devemos ter a maior parte das retas exatamente sobre os lados da página...
 - Mas talvez outras retas tenham sido detectadas.
 - Talvez existam múltiplas retas sobre um mesmo lado da página.

Um algoritmo simples...

- •Separamos as retas detectadas em aproximadamente horizontais e aproximadamente verticais.
- •Encontramos para as retas aproximadamente horizontais o ponto médio de cruzamento com o eixo *y*.
- •Separamos as retas entre aquelas que estão acima e abaixo do ponto médio computado.
 - O lado superior da página deve ser uma das retas acima, o lado inferior deve ser uma das retas abaixo.
 - Para cada grupo selecionamos a mediana do ponto de cruzamento com o eixo y.
- •Repetimos o processo para as retas aproximadamente verticais.

Finalizando

- Vejamos alguns exemplos...
- A solução que apresentamos para encontrar os lados e cantos da página é bem simples.
 - Além dos pressupostos mencionados anteriormente, é preciso que a maior parte das linhas tenha sido detectada sobre os lados da página.
 - Solução mais sofisticada: separação em 2 classes, com maximização da variância entre classes (Otsu).

