Agenda: + Definitheit van guedlatischen Former $T_2(x)$ f(x) $T_1(x)$ C = g''(a)Multisciat: C, Rh -> IR f(x) = f(a) + < \(\forall f(a) \times - a > $+\frac{1}{2}\left\langle \nabla^{2}f(q)\left(x-a\right)\right\rangle \times -a$ $= f(a) + \nabla f(a)^{T} \cdot (x-a)$ + 1 (x-a) [x-a) (x-a) Fin du Ophinalitét lokal an der Stellea, ist $\nabla f(x) = 0$ notwendig.

of (2) spielt here Roug bei de Anderse. Wis apolysicsen $q(x) = \frac{1}{2} x^{T} \nabla^{2} f(a) \cdot x$ Dasir de quedichische Form zur eletrix A = 1 \ 2 f(a): $q(x) = q_A(x) = x^T A x = SAx_i x > 0$ Herbei it A erre symmetrische Olchrix mit rel ((wartige lampouchtel. A Begorte für quadratible Format. positiv 9>0 auf Rn 1203 9 20 auf TRn | 9<0 aus Rh 1303 | 9 ≤ 0 auf Rh. hegab U

Des Westeren heißt q indefinit, wenn g sowoll positive als and negative werte annimmt. Was nett diese Reprifie and für die jareitze elleti x A can q = 9A.

Hirrerdende und notwee dize Bedérquegen fiir ære lobe le Optronalskit an des stelle a CR'

fiir ein Colec (es	Notwerdi	X	Hin vei chet d
Mininum	7 (a) = 0 7 2 f (a) pos sem	idehait 02	l(a) = 0 l(a) positiv definit
Meximen	Tfa)=0 Tefa) ned		7f(a) = 0 $72f(a)$ neghtu definit
so het mai	naus: 1st	T 2 f (a) in	de first, s elle kernen
lih sogeh	annter sct	elpunkt,)
Form 9 =	man eine g ga cin dis serteilen (a	e Ben gola	eater
la des la	uearen Alge	bra wird es	gelelät.
BSP.	$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ $2 = \begin{bmatrix} X_1 \end{bmatrix}$	\frac{1}{2} \frac{3}{1} \frac{1}{2}	7 [xi 7
7A			
	=	3 x 2 + 1.	2 X2
	= 3	x12 42 x1 x	1 + 2/2

Wir linua eine symmetrisierre von Garp-Verfalou antren. D.L. iterchiv: line spelfenteen stormation are docker die fliche Je: lentour stormation. Ziel: die elletos diaport su mader.

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \xrightarrow{AM} \begin{bmatrix} 2\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix} \xrightarrow{-\frac{1}{2}} \xrightarrow{AM} \begin{bmatrix} 2\frac{1}{2} & 1 \\ -\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\frac{1}{2} & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2\frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 - \frac{1}{2} \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 2\frac{1}{2} \\ 0 \end{bmatrix}$$

$$M^TAM = D := \begin{bmatrix} 2\frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$$

$$M^{T}AM = D := \begin{bmatrix} 2^{\frac{1}{2}} & 0 \\ 0 & 2 \end{bmatrix}$$

$$U^{T}DU = U^{T}M^{T}AMU = (Mu)^{T}AMU$$

$$= \chi^{T}A \times$$

$$X = Mu \text{ height } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$X_1 = u_2$$

$$X_2 = -\frac{1}{4}u_1 + u_2$$

$$Q_1 \cdot \text{ nead do seen } \text{ koordinate we relied }$$

$$\text{ het } \text{ nean }$$

$$Q_1(x) = Q_2(u).$$

$$3x_1^2 + 2x_1x_2 + 2x_2^2$$

$$2\frac{1}{2}u_1^2 + 2u_2^2$$

$$Also if the unuse When A (four does quedoes released to the possible of the$$

Wie sicht der allzoneine Algorithans ares?

A in debei line sononetrische clutait,

Om Ax = 8 zu lösen zurle f- nan A a's

A = L. LT; wo Leine an Kor Doerech smatoir ist.

B = Of(PK).

Das nehnt men Cho Cossky -Zerlegnig.

Das letzle onal warde gezeige:

Zu jeder symmetrischen cllatoix AERUXL existest en invertiebre ellatrix M decest, dess MAM diagonal ist.

Manken der Aussage verstärhen:

Zu jeler gynsmetrialer elletrix A ER 4xL existics eine Mctix U ooit UTU = I descrit, dess le All diagonalist.

Was hat die elletork el onit UTU = I für besondere Merhmale?

lst U = [u, ... cen] c so hat onan

$$\begin{array}{lll}
\mathbf{U}^{\mathsf{T}} \mathbf{A} \mathbf{U} &= \Lambda \\
\mathbf{U}^{\mathsf{T}} \mathbf{A} \mathbf{U} &= \mathbf{U} \Lambda \\
\mathbf{A} \mathbf{U} &= \mathbf{U} \Lambda \\
\mathbf{A} \mathbf{U} &= \mathbf{U} \Lambda
\end{array}$$

$$\begin{array}{lll}
\mathbf{A} \begin{bmatrix} \mathbf{u}_{1} & \dots & \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1} & \dots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \dots & \mathbf{u}_{n} \end{bmatrix}$$

$$\begin{cases}
A u_1 = \lambda_1 u_1 \\
A u_2 = \lambda_2 u_2
\end{cases}$$

$$A u_4 = \lambda_4 u_4$$

Wenn $u \neq 0$ ist and λ ein west onit $Au = \lambda u$,

so neart oran: $(\lambda_1 u)$ Eigenpear was A λ Eigenvest con A u Eigenveltor was Aand Eigenvect λ .

Umpromilierus:

Die Eignwebte eiler jeden symmetrischen det beische At Rand siell and beräch hinand hat man zu jeler solchen ductrik A line ordonoomele Bedis von Radie and Esquiektoren von A besteht.

Beigniel.
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

[1] ist der Eigenekter com A zum Eigenest 1.

$$A\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}2-1\\-12\end{bmatrix}\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}3\\-3\end{bmatrix} = 3\begin{bmatrix}1\\-1\end{bmatrix}$$

[-1] Eigenveleter von A zam Eigenvert 3.

$$u_1 = \begin{bmatrix} \frac{1}{\sqrt{L}} \\ \frac{1}{\sqrt{L}} \end{bmatrix} \qquad u_2 = \begin{bmatrix} \frac{1}{\sqrt{L}} \\ -\frac{1}{\sqrt{L}} \end{bmatrix}$$

A.
$$\begin{bmatrix} u_1 & u_2 \end{bmatrix} = \begin{bmatrix} Au_1 & Au_2 \end{bmatrix} = \begin{bmatrix} u_1 & 3u_2 \end{bmatrix}$$

$$= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

$$A \cdot U = U \cdot \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

$$U^T A \cdot U = U^T U \cdot \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

$$U = \begin{bmatrix} v_0 & v_{02} \\ v_{12} & v_{12} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{02} & v_{03} \\ v_{14} & v_{12} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{02} & v_{03} \\ v_{14} & v_{12} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{02} & v_{03} \\ v_{14} & v_{12} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{02} & v_{03} \\ v_{14} & v_{12} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{12} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$U = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{03} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{14} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{14} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{14} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{14} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{14} \\ v_{14} & v_{14} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{03} & v_{14} \\ v_{14} & v_{1$$

Wie kann man die Eigenwerk auch Vektoren finden?

Wir and any der Enche nach einen de his undels ein $U \neq 0$ onet $AV = \lambda U$ existient.

$$A = \lambda v \implies A = \lambda I v$$

$$\Rightarrow A = \lambda I v = 0$$

$$\Rightarrow A = \lambda I v = 0$$

$$\Rightarrow (A - \lambda I) \cdot v = 0.$$

Wir wollen also dass ein honegues

LGS zur Matrix A - à I die

Nicht mill-lösser, be sitzt. Das in gran

dan des Fale wenn der (A - à I) = oist.

let (A-25) = 0 its do line Glichery 200 Bestimmen on Eigenwerten.

Bsp.
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$dut(A - \lambda T) = dut(\begin{bmatrix} 2 - 1 \\ -1 & 2 \end{bmatrix} - \lambda \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$

$$= dut(\begin{bmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix}) = (2 - \lambda)^2 - (-1)^2$$

$$(2 - \lambda)^2 - 1 = 0$$

$$(2-1)^{-1} = 3$$

 $(2-1)^{2} = 1$
 $2-1 = \pm 1$
 $3 = 2 \pm 1$

$$(A - \lambda I) \cdot \sigma = 0$$

$$\lambda = 1$$

$$A - I) \cdot \sigma = 0$$

$$A - 3I) \cdot \sigma = 0$$

$$A - 3I) \cdot \sigma = 0$$

$$A - 3I) \cdot \sigma = 0$$

$$A - 3I \cdot \sigma = 0$$

$$A - 3I$$

Sien 21,-, 2n die Eigenwech einer symmetrischen cleatoix A: Dann gilt:

A pos. och. (=) $\lambda_1 > 0$ \ldots , $\lambda_n > 0$ A gos. sem.-def. (=) $\lambda_1 > 0$ \ldots , $\lambda_n > 0$ A nes. def. (=) $\lambda_1 < 0$ \ldots , $\lambda_n < 0$ A nes. sen.-dy. (=) $\lambda_1 < 0$ \ldots , $\lambda_n < 0$ A indefinit (=) Escribt i ont $\lambda_1 > 0$