

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 45V, 15A, $R_{DS(ON).max}=9m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 45V \\ R_{DS(on).max} @\ V_{GS} {=}\ 10V & 9m\Omega \\ I_D & 15A \end{array}$

SOP-8 Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{ extsf{DSS}}$	45	V
Continuous drain current (T _A = 25°C)		15	А
Continuous drain current (T _A = 100°C)	l _D	9.6	А
Pulsed drain current ¹⁾	І _{DM}	60	А
Gate-Source voltage	V_{GSS}	±20	V
Power Dissipation (T _A = 25°C)	P _D	3.1	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	R _{θJA}	40	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM15N04-S8	SOP-8	VSM15N04-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	1			I		1
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	45			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.9	1.35	1.8	V
Drain-source leakage current	I _{DSS}	V _{DS} =45 V, V _{GS} =0 V, T _J = 25°C			1	μΑ
		V _{DS} =36 V, V _{GS} =0 V, T _J = 125°C			10	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0V			-100	nA
Drain-source on-state resistance	_	V _{GS} =10 V, I _D =10A		6.8	9	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =8A		8.6	11.5	mΩ
Forward transconductance	g fs	V _{DS} =5 V , I _D =10A		36		S
Dynamic characteristics						
Input capacitance	C _{iss}	V 05.V.V 0.V		2440		pF
Output capacitance	Coss	V _{DS} = 25 V, V _{GS} = 0 V, F = 1MHz		190		
Reverse transfer capacitance	Crss			126		
Turn-on delay time	t _{d(on)}			14.4		ns .
Rise time	t _r	V _{DD} = 25V,V _{GS} =10V, I _D =10A		109.8		
Turn-off delay time	t _{d(off)}			322.2		
Fall time	t _f			90.6		
Gate charge characteristics						
Gate to source charge	Q _{gs}			8.6		
Gate to drain charge	Q _{gd}	V _{DS} =25V, I _D =10A, V _{GS} = 10 V		8.2		nC
Gate charge total	Qg			49.3		1
Drain-Source diode characteristic	s and Maxi	mum Ratings				•
Continuous Source Current	Is				15	А
Pulsed Source Current	I _{SM}]			60	Α
Diode Forward Voltage ²⁾	V _{SD}	V _{GS} =0V, I _S =10A, T _J =25℃			1.2	V
Reverse Recovery Time	t _{rr}	I _S =10A,di/dt=100A/us, T _J =25℃		23.3		ns
Reverse Recovery Charge	Qrr			14.4		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

V_{cs}=4V 4.5V, 6.5V, 8V,10V

From Bottom to Top

V_{cs}=3V

V_{cs}=3V

V_{cs}=2.5V

Drain-source voltage V_{DS} (V)

In descending order 10 D=Ton/T D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse T_{J,PK}=T_A+P_{DM}.Z_{6JA}.R_{6JA} Normalized Transient Thermal Resistance 0.1 Single Pulse 0.01 0.00001 0.0001 0.001 0.01 0.1 10 100 1000

Pulse Width t (s)

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

