Clase 5-tiempo y espacio
martes, 8 de abril de 2025 19:02
Tiempo>cantidad de pasos que qejecuta una MT Espaio> cantidad de celdas que ocupa una MT
En la productica no me sirve que sea decidible I tarda much (isimo tiempo
Eficiente es MT con tiempo polinomial-> n elevado a la k
Completidad temporal. Espacio hoy es casoinfinito, puedo agregar mas memoria o lo que sea. Tiempo es finito, no lo puedo reutilizar y
dem(as MT tarda m(as a medida que la entrada w tardaàs. Entonces el tiempo de M no se mide en términos absolos
sino en T(n). Se definen en términos del tamaño w(n= w)
Una función $T_1(n)$ es del orden de una función $T_2(n)$, que se anota así: $T_1(n) = O(T_2(n))$, sii para todo $n \ge n_0$ se cumple $T_1(n) \le c.T_2(n)$, con $c > 0$.
Dar siample (pierojaie):
TimeT(h) si hay na mt N que lo decide en tiemipo o(T)n=)
Se considera el tiempo máximo, procesar cualquier cadna consume a lo sumo tlwl pasos Una cadena qu nos cague nos caga todo
dificuil sacar promedio y minimo, por es dificil saber qué pasa con todas las cadenas, entonces uso el ,máximo
Clase p clase de lenguajes que se resuelven en tiempo polimonial.
P es aceptado por poly(n)
Tesis fuerte de Turing-: si un modelo computacional realiza algo en tiepo poli entonces hay una mt que también
lo hace en ese tiempo. Hoy es mentira, pa las m cuánitcas desafían la tesis.
Un nro en binario ocupa log base 2 de n
Lenguajes que no estarían en P (se sospeha pero no se puede demostrar formalmentee)
A sat y ch, si le dan un a que es una cosa a verificar, puedo chequear si es en tiempo polinomial. Lo que no
hacen en polinomial es tener que chequear todas.
Lenguajes decidibles
en tiempo exp(n) ← EXP
Lenguaies verificables no con la ayuda de otra cadena (certificado x).
en tiempo poly(n) NP X ≤ poly(w) ¿por qué? Se dice que x es un certificado sucinto
Sí 🔻
Lenguajes decidibles en tiempo poly(n) W M Todo lenguaje L de P cuenta con una MT M que en poly(w) pasos puede decidir si w ∈ L.
no no
M tarda tiempo poly(w)
Se <u>cumpliría</u> P ⊂ NP ⊂ EXP
Ejercicio: ¿por qué P ⊆ NP? Poruge la cinta de ayda puede ser vacía. Por definición.
3 3 1
 En otras palabras: Si un problema está en P, podemos asegurar que sus soluciones se encuentran eficientemente.
Si un problema está en NP, sólo podemos asegurar que sus soluciones se verifican eficientemente.
 Intuitivamente, P ≠ NP (encontrar una solución parece ser más difícil que verificarla). Sin embargo, al día de hoy esta relación no ha podido ser probada.
La definición de la derecha arriba: la máquina que verifiça tarda tiempo polinomial. \$i lee algo que mide más
que w, se va de polimonial
Métricas de complejidad:
Dinámi¢as:

						s absti																			_
		• Estátic		piamos i	muchas	veces	ae iaac	el cab	ezai																
\dashv			Lero le	ro																					_
		Definic	ión de i	no meno	os intui	tiva Ur	proba	dor u u	ın verif	cador	En luga	r de au	e el or	obado h	naga co	sas u li	ue.ao								_
		el verif	icador	verifiq	ue va h	aciendo	el ver	ificado	y el pro	bador	un ping	pong.			9- 0	3-3 7	95								_
\dashv		•	SAT	= { o	σ es	una f	órmul	a boo	leana	satisf	actibl	e sin	cuant	ificado	ores o	on m	varia	bles}				,	SÍ		_
				175, 400, 17		en P												95.5			/				
							1.7		170		500		82	naciór	ı A	-	(φ,	A) •	М	k					
\dashv			se pi	uede	verific	ar en	tiemp	o pol	y(n) s	i A sa	atisfac	eφ.	ă									\	no	-	_
			LSA	T ^C est	á en l	NP?	Cuár	nto mi	de un	certifi	cado	en es	te ca	so?			N	1 tarda	a tiem	ро ро	ly(φ)				
\dashv				ia en (V	P pq el	certifi	cado m	ide xpo	nencial	pq para	saber	que no	sea te	nes que	chequ	ear too	las las								_
	ľ	opcione	S																						
4		Keleer tamaño	la ultir de la	na diap entrad	o del ar av	lexo. Ha	y que	tener c	uidado	cuando	haban	d de n	nro n p	q lo que	impor	ta es el									_
																									_
																									_
																									_
1																									_
\dashv																									_
\dashv																									_
																									_
																									_
\dashv																									_
\dashv																									_
																									_
1																									
+																									_
				L				L				L			L					L					L
\dashv																									_
							L																		_
٦																									_