

Special Report 81-14

June 1981

AD A103741

LOSSES FROM THE FORT WAINWRIGHT HEAT DISTRIBUTION SYSTEM

G.L. Phetteplace, W. Willey and M.A. Novick

TE FIERCOR

UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE, U.S.A.

expensed fire auditor extenses effectively continuited

81 9 03 056 1

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1. REPORT 44 CRELI-SA- 2. GOVT ACCESSION NO	BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
Special Report 81-14	
I. TITLE (and Subtitle)	5. THE OF REPORT & MERIOD COVE
LOSSES FROM THE FORT WAINWRIGHT HEAT	(9) Spould rept,
DISTRIBUTION SYSTEM.	6. PERFORMING ORG. REPORT NUMB
- Francisco	6. PERFORMING ORG. REPORT NUMB
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(a)
G.L./Phetteplace, W./Willey and M.A./Novick	
and the second s	(16)
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM BLEMENT, PROJECT, TA
U.S. Army Cold Regions Research and Engineering Laboratory	
Hanover, New Hampshire 03755	DA Project 4A1611Ø1A91D Work Unit 294
1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Cold Regions Research and Engineering Laboratory	12. REPORT DATE
Hanover, New Hampshire 03755	13. NUMBER OF PAGES
. ,	33
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
(4人) らう (The DECLASSIFICATION/DOWNCDAD
the state of the s	154. DECLASSIFICATION/DOWNGRADI SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	•
Approved for public release; distribution unlimited.	\
	om Report)
Approved for public release; distribution unlimited.	om Report)
Approved for public release; distribution unlimited.	om Report)
Approved for public release; distribution unlimited.	om Report)
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electrect entered in Block 20, if different from the electric entered in Block 20, if different entered en	om Report)
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electrect entered in Block 20, if different from the electric entered in Block 20, if different entered en	om Report)
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electrect entered in Block 20, if different from the electric entered in Block 20, if different entered en	om Report)
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the supplementary notes. 8. Supplementary notes.	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electract entered in Block 20, if different from the supplementary notes 8. Supplementary notes 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, Electric generators	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electron entered in Block 20, if different from the electron entered in Block 20, if d	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electron entered in Block 20, if different from the electron entered in Block 20, if d	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electron entered in Block 20, if different from the electron entered in Block 20, if d	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electroct entered in Block 20, if different from the electrocy entered in Block 20, if different from t	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the abstract entered in Block 20, if d	209,500
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the abstract entered in Block 20, if different from the abstract entered in Block 20, if different from the abstract entered in Block 20, if different from the abstract entered in Block 20, if different from the abstract and identify by block number, and identify by block number, the at loss. 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse alde if necessary and identify by block number). This report estimates the heat losses from the heat distribution system at factors.	209,500 Fort Wainwright, Alaska, Specific data
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from the supplementary notes. 8. Supplementary notes. 9. KEY WORDS (Continue on reverse elde if necessary and identify by block number, Electric generators. Heat loss. Heating plants. Steam pipes. A ABSTRACT (Continue on reverse elde if necessary and identify by block number). This report estimates the heat losses from the heat distribution system at for the Fort Wainwright heat and power plant are given and a method is the from buried utilidor systems, such as the one at Fort Wainwright. This me	209,500 Fort Wainwright, Alaska. Specific data en developed to calculate the heat loss ethod is programmed for computer exe
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from the state of the electric entered in Block 20, if different from the state of the electric entered in Block 20, if different from the electric generators 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, Electric generators Heat loss Heating plants Steam pipes 1. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report estimates the heat losses from the heat distribution system at for the Fort Wainwright heat and power plant are given and a method is the from buried utilidor systems, such as the one at Fort Wainwright. This me cution and estimates are made for the Fort Wainwright system, where heat	Fort Wainwright, Alaska. Specific data en developed to calculate the heat loss ethod is programmed for computer exet losses are found to be 2.045 x 109 MB
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electron entered in Block 20, if different from the state of the electric generators and identify by block number; Electric generators Heat loss Heating plants Steam pipes A ABSTRACT (Continue on reverse side if necessary and identify by block number). This report estimates the heat losses from the heat distribution system at for the Fort Wainwright heat and power plant are given and a method is the from buried utilidor systems, such as the one at Fort Wainwright. This me cution and estimates are made for the Fort Wainwright system, where heat Possible improvements to the system to reduce heat losses are examined.	Fort Wainwright, Alaska. Specific data en developed to calculate the heat losse thod is programmed for computer exe t losses are found to be 2.045 x 10 ³ MB Of the possible combinations of additions
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from the supplementary notes. 8. Supplementary notes. 8. Supplementary notes. 8. Supplementary notes. 8. ABSTRACT (Continue on reverse side if necessary and identify by block number). This report estimates the heat losses from the heat distribution system at for the Fort Wainwright heat and power plant are given and a method is the from buried utilidor systems, such as the one at Fort Wainwright. This me cution and estimates are made for the Fort Wainwright system, where heat Possible improvements to the system to reduce heat losses are examined, pipe insulation investigated, the addition of 1 in. of insulation to the steam	Fort Wainwright, Alaska. Specific data en developed to calculate the heat losse thod is programmed for computer exet losses are found to be 2.045 x 10 ³ MB Of the possible combinations of addition pipe only is the most economically fa
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the electron entered in Block 20, if different from the state of the electric generators and identify by block number; Electric generators Heat loss Heating plants Steam pipes A ABSTRACT (Continue on reverse side if necessary and identify by block number). This report estimates the heat losses from the heat distribution system at for the Fort Wainwright heat and power plant are given and a method is the from buried utilidor systems, such as the one at Fort Wainwright. This me cution and estimates are made for the Fort Wainwright system, where heat Possible improvements to the system to reduce heat losses are examined.	Fort Wainwright, Alaska. Specific data en developed to calculate the heat losse thod is programmed for computer exet losses are found to be 2.045 x 10 ³ MB Of the possible combinations of addition pipe only is the most economically facts found in larger utilidors would be the

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This report was prepared by G.E. Phetteplace, Mechanical Engineer, W. Willey, Engineering Aid, and M.A. Novick, Engineering Aid, of the Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory. The work was supported by DA Project 4A161101A91D, In-House Laboratory Independent Research, Work Unit 294, Energy Storage and Transmission Systems of Facilities in Cold Regions.

The authors would like to thank Mary Remley Albert and Dr. Virgil Lunardini for their help and suggestions during the data collection and reduction. The authors would also like to thank Stephen Flanders and F. Donald Haynes for their careful technical review of the report and many worthwhile suggestions.

Acce	ssion For	·
	GRA&I	
DTIC	TAB	
Unan	nounced	$\overline{\Box}$
Just	ification_	
<u> </u>		
By		
Dist	ribution/	
Ava	ilability (Codes
	Avail and	/or
Dist	Special	
1	1 1	
14	1 1	
	1 1	
	<u>I</u> [

CONTENTS

	Pag																			
Abstract	i																			
Preface	ii																			
Nomenclature	iv																			
ntroduction																				
											Heat losses from utilidor systems									
Literature cited	14																			
Appendix A: Heat distribution system data																				
Appendix B: Utilidor heat loss program																				
Appendix C: Sample input and output data files																				
ILLUSTRATIONS																				
Figure																				
1. The ground above a buried utilidor in March at Fort Wainwright																				
2. Fort Wainwright heat and power plant	4																			
3. Overall combined plant efficiency and normalized electric output for th	e Fort Wain-																			
wright power plant	5																			
4. Steam flow and degree-day data for the Fort Wainwright power plant	5																			
5. Computer program flow chart	9																			
6. Ground surface temperature and heat losses for an average year	10																			
7. Normalized heat export and heat loss for 1978	11																			
8. System heat losses as a function of steam temperature	13																			
TABLES																				
Table																				
1. Heat balances for typical electrical and combined heat and power plants	2																			
2. Exported heat and calculated heat losses for calendar year 1978	11																			
3. The effect of increasing insulation thickness on all pipes																				
4. The effect of increasing insulation thickness on pipes in utilidors 3½ ft b																				

NOMENCLATURE

- D_c outside diameter of the condensate pipe (ft)
- Deu effective utilidor inside diameter (ft)
- D_s outside diameter of the steam pipe (ft)
- g gravitational constant (ft/s2)
- k_a thermal conductivity of air (Btu/hr ft °F)
- k_{ca} effective thermal conductivity of the air (Btu/hr ft °F)
- k_i insulation thermal conductivity (Btu/hr ft °F)
- k, thermal conductivity of the soil (Btu/hr ft °F)
- k_u thermal conductivity of the utilidor material (Btu/hr ft °F)
- L subsystem length (ft)
- N_G Grashof number (dimensionless)
- N_P Prandtl number (dimensionless)
- q overall heat flow per unit length (Btu/hr ft)
- Q overall subsystem heat flow (Btu/hr)
- $R_{\rm ca}$ thermal resistance between the condensate pipe insulation surface and the inner wall of the utilidor (hr ft $^{\circ}$ F/Btu)
- R_{ci} thermal resistance of the condensate pipe insulation (hr ft °F/Btu)
- R_{ea} effective thermal resistance of air within the utilidor (hr ft °F/Btu)
- R_{ei} effective thermal resistance of the pipe insulation (hr ft °F/Btu)
- Ro overall thermal resistance (hr ft °F/Btu)
- R_{sa} thermal resistance between the steam pipe insulation surface and the inner wall of the utilidor (hr ft °F/Btu)
- R_{si} thermal resistance of the steam pipe insulation (hr ft °F/Btu)
- R_u thermal resistance of the utilidor (hr ft °F/Btu)
- S utilidor shape factor (dimensionless)
- T_a bulk air temperature (°F)
- T_c condensate return temperature (°F)
- T_{ci} condensate pipe insulation outer surface temperature (°F)

- Tei effective insulation surface temperature (°F)
- T_{o} ground temperature (°F)
- T_{mi} average temperature of pipe insulation (°F)
- T_s steam temperature (°F)
- T_{si} steam pipe insulation outer surface temperature (°F)
- T_{ni} inner utilidor wall temperature (°F)
- Tuo outer utilidor wall temperature (°F)
- Uo overall U value of subsystem (Btu/hr ft °F)
- x_B utilidor burial depth (ft)
- x_{ci} insulation thickness on condensate pipe (ft)
- x_{si} insulation thickness on steam pipe (ft)
- x_u utilidor width (ft)
- y_u utilidor height (ft)
- δ effective thickness of air layer (ft)
- η_o overall combined plant efficiency (%)
- Δx_{ij} utilidor wall thickness (ft)
- v_a kinematic viscosity of air (ft²/s)

LOSSES FROM THE FORT WAINWRIGHT HEAT DISTRIBUTION SYSTEM

G.L. Phetteplace, W. Willey and M.A. Novick

INTRODUCTION

Fort Wainwright, located near Fairbanks, Alaska, is the largest U.S. Army base located in an extremely cold climate. Winter temperatures often drop to -40°F, and occasionally temperatures of -50°F or lower are experienced. In such a climate, space heating can no longer be considered a comfort; it becomes a true necessity. The supply of heat must be continuous and reliable. Even a minor outage of several hours can drop indoor temperatures to below freezing.

Fort Wainwright, like many large military bases, has a central heat and power plant. This plant produces heat and electricity to meet the entire needs of the base, with the exception of some outlying buildings which are heated by other means. The purpose of this report is to examine Fort Wainwright's heat distribution system in some detail in order to estimate its efficiency.

At Fort Wainwright during the winter, heat losses from the buried heat distribution system prevent snow from accumulating over it in all but the coldest periods. Figure 1 shows the bare, dry, ground above a utilidor at Fort Wainwright during March of 1979. It's not unusual at this time of year to see children practicing baseball for the coming summer months on bare ground above the buried utilidors. After witnessing bare ground over nearly all the sections of the buried heat distribution system, it's hard to believe that the heat losses are anything but staggering.

This apparent waste of thermal energy prompted a study to determine its general magnitude. By using data from the Fort Wainwright heat and power plant, we have determined the magnitude of the heat loss and have developed a method which allows us to rapidly evaluate any proposed improvements to the system.

THE FORT WAINWRIGHT HEAT AND POWER PLANT

Before going into detail on the Fort Wainwright heat and power plant, let's consider some of the general characteristics of combined heat and power plants.

Conventional production of electricity requires that fuel energy first be converted into heat before it can be converted into mechanical energy and eventually into electricity. The overall efficiency of this process of changing fuel to electricity is seldom over 35% in the most modern plants, and frequently less than 30% in the older facilities. The limiting factor is the conversion of heat to mechanical energy, in which only a fraction of the heat may be used. The availability of the remaining heat is too low and it must be rejected. In a conventional power plant, this waste heat is rejected to the environment by some means. In a combined heat and power plant the waste heat is used to provide heat for distribution to buildings. The waste heat, which is a liability in a conventional plant, now becomes an asset in a combined heat and power plant.

Figure 1. The ground above a buried utilidor in March at Fort Wainwright.

Table 1. Heat balances for typical electrical and combined heat and power plants.

Output as percentage of fuel energy input	f lectricity- only plant	Combined heat and power plant		
Electricity	35	25		
Waste heat	50	0		
Useful heat	0	60		
Stack losses	10	10		
Parasitic and plant heat loss	5	5		
Total	100	100		

The recovery and use of this waste heat is, however, not without penalty. Normally, the heat is rejected at a temperature too low for most space-heating applications. When the heat is rejected at higher temperatures, where it can be used, a portion of electrical production is lost. Overall, however, the net efficiency of the plant is greatly increased. Consider the heat balances in Table 1, which might be typical of each type of plant during the heating season.

In the case presented in Table 1 the useful output of the plant increased from 35 to 85%. The thermal

energy is always of lesser value, however, and can usually be produced for about 25% of the cost of an equivalent amount of electrical energy. Even so, the total value of the plant output relative to electrical energy has increased from 35 to 40% [25+0.25(60)] which represents at 14% increase. During non-heating periods a properly designed heat and power plant would be able to deliver the same efficiency as a plant that produces electricity only.

As illustrated by this example, the economic benefits of combined heat and power production are modest.

The relative energy savings, however, are of much greater magnitude. If we assume that the combined heat and power plant supplies all the heat required, we can determine the total fuel requirements for noncentral heat production as follows:

% heat required = % of fuel input for heating from a combined plant

- % of energy lost in distrubution.

Assuming that 10% of the heat is lost in the heat distribution system and using the 60% heat output value for a combined plant from Table 1, we have

Heat required = 60-0.10(60) = 60-6 = 54%.

In a non-central heating scheme this would be supplied by individual heating plants. Their efficiency is somewhat dependent on fuel. Assuming oil is the fuel, 70% is a typical efficiency. Thus, the fuel energy required for the individual heating plant would be

Fuel required for individual heating plants

= 54/0.70 = 77% of central plant.

Electric generation is somewhat more efficient for the electric-only plants. It would require only 71% [100%(25%/35%)] of the fuel required by the combined heat and power plant to generate the same amount of electricity. Thus the overall fuel use for non-central heating (77%) and central electricity production is 1.48 times that of combined heat and power production. Thus the energy saving is nearly 50%. Central heating also has the added advantage of being able to use less expensive or more plentiful fuels (i.e. coal, heavy oil, nuclear, as opposed to fuel oil and natural gas).

Now that we have discussed a few of the advantages of combined heat and power plants, let's discuss the Fort Wainwright plant in some detail. Figure 2 is a simplified flow diagram for the plant (from Rossie et al. 1975).

Steam is generated in six of the eight boilers, as the two original boilers of the plant are not operational. Each of the operating boilers is rated at 150,000 lbm of steam per hour. The steam leaves the boilers at a pressure of 400 to 420 psig, is superheated to a temperature between 650 and 750°F, and is then fed to

the turbines. The plant has five turbine-generator sets with a total nameplate capacity of 22 MW electricity. Three of the turbines are 5-MW extraction-condensing, one is a 5-MW extraction-backpressure, and the remaining one is a 2-MW extraction-condensing type. Basically, in an extraction turbine the steam is expanded partially to a lower pressure where a fraction is extracted from the turbine for space heating or industrial processes. The remaining steam continues through the low-pressure stages of the turbine. If the steam leaves the turbine below atmospheric pressure and is subsequently condensed, the turbine is called an extractioncondensing turbine. If the steam leaves the turbine at higher pressures and is used for other purposes the turbine is called an extraction-backpressure turbine. Conventional (non-extraction) turbines may be of either the backpressure or condensing type. At Fort Wainwright the extraction occurs at approximately 100 psig in all the turbines. The backpressure turbine exhausts at 10 psig and this steam is used for power plant

The overall combined efficiency of both heat and electrical generation at Fort Wainwright can be calculated based on records maintained at the plant. The overall combined efficiency is simply

 η_0 = Overall combined plant efficiency

= Steam heat out and electricity out fuel energy input

Consider the following sample calculation for the month of January 1975. From steam tables we can find the enthalpy of 350°F steam at 105 psia (~90 psig) to be 1204.5 Btu/lbm. Similarly, we find the enthalpy of the condensate to be 118 Btu/lbm. The difference between these two values represents the heating energy sent out per pound-mass of steam, 1086.5 Btu/lbm. For January 1975, 1.33×10⁸ lbm of steam was sent out, along with 9.05×10⁶ kWh of electricity. In the same period 27,604 tons of coal were used. If the average heat content of the coal is assumed to be 8600 Btu/lbm, then the efficiency η_0 is calculated as 37.0%.*

Notice that this is less than half the efficiency of the hypothetical plant discussed earlier. Normally the Fort Wainwright heat and power plant runs at a combined efficiency of about 60%. The values are plotted for the combined efficiency over a four-year period in Figure 3. Even a 60% efficiency is significantly lower

$$\eta_{0} = \frac{\left(133,103,000 \frac{\text{1bm of steam}}{\text{month}}\right) \left(1086.5 \frac{\text{Btu}}{\text{1bm of steam}}\right) + \left(9,046,000 \frac{\text{kWh}}{\text{month}}\right) \left(3413 \frac{\text{Btu}}{\text{kWh}}\right)}{27,604 \frac{\text{tons of coal}}{\text{month}} \times 2,000 \frac{\text{lbm of coal}}{\text{ton of coal}} \times 8,600 \frac{\text{Btu}}{\text{lbm of coal}} = 37.0\%.$$

Figure 3. Overall combined plant efficiency and normalized electric output for the Fort Wainwright power plant.

Figure 4. Steam flow and degree-day data for the Fort Wainwright power plant.

than possible, primarily due to the design of the plant itself. Steam pressure is too low for efficient electric generation, and the plant was also designed for high reliability which causes some compromise of efficiency. It still supplies heat and electricity more economically and reliably than any other method.

As can be seen from Figure 3, the electrical load of the power plant peaks in the winter months, as would certainly be expected for any electrical utility in such a climate. Figure 4 illustrates the steam flow from the plant over the same four-year period. Also shown in Figure 4 are heating degree-day data for this period. The degree-day is a measure of heating requirements, and as suspected, the steam flow from the plant follows the degree-day data closely. The one discrepancy occurs in the summer months, when heat demand is

low or nonexistent. Part of this discrepancy is due to the fact that domestic hot water is heated with steam from the distribution system and thus the load from it is relatively constant. Based on the number of residents and employees on the base, domestic hot water heating could certainly not account for more than 5% of the maximum system load. The remaining gap of about 20% is mostly due to heat losses from the piping system. These will be examined in detail below.

HEAT DISTRIBUTION AT FORT WAINWRIGHT

Steam extracted from the turbines at 100 psig (actually, the system has been using 90-psig steam

recently) is distributed to nearly all the buildings on base to meet both space heating and domestic hot water heating needs. In 85 to 90% of the buildings, the steam is used directly for space heating after passing through a pressure reducing valve. The remaining buildings have hot water heating systems and a waterto-steam heat exchanger.

The distribution system itself consists primarily of insulated steel pipes in utilidors. Several exceptions are pipes which are directly buried in the ground. The utilidors range in size from 1×1 ft (inside dimensions) up to 7x9 ft. The larger sizes can be easily walked in for pipe servicing. The total length of the distribution system is about 28 miles with a burial depth of between 2 and 6 ft.

Nearly all of the piping is insulated, but much of the insulation was damaged during the flood of August 1967. Part of the damaged insulation was replaced, and in other instances, insulation was added to the original insulation to restore its thermal resistance to the original value.

Complete maps of the Fort Wainwright heat distribution system were updated in 1977 and are therefore quite accurate. Using these maps, we determined the length and size of each pipe segment and tabulated this information under the appropriate category of utilidor and pipe sizes. From this table the total lengths of each configuration of utilidor, supply pipe and return pipe size were determined. Appendix A contains a table of some 200 different combinations.

HEAT LOSSES FROM UTILIDOR SYSTEMS

The analysis of heat losses from utilidors is not a simple problem. Heat flows from the warm pipes through a series of thermal resistances to the air at the ground surface. The resistances involved are:

- 1. Convective heat transfer from the flowing fluid to the pipe's inner surface.
- 2. Conductive heat transfer through the pipe wall to the outer pipe surface.
- 3. Conductive heat transfer through the insulation to its outer surface.
- 4. Combined convective, conductive and radiative heat transfer from the insulation surface to the inner wall of the utilidor.
- 5. Conductive heat transfer through the utilidor wall.
- 6. Conductive heat transfer through the soil to the ground surface.
- 7. Finally, convective heat transfer to the air at the ground surface.

Fortunately, resistances 1, 2 and 7 are very small in comparison to the others and can be neglected with little error. Unfortunately, resistance 4 is very complicated. It will be treated in a simplified manner.

Consider the most complicated case, both a steam and condensate (return) pipe inside the same utilidor. (Actually, instances do occur where several steam and/or condensate pipes may share a common utilidor. In these instances, the supply and return pipes are treated as pairs and additional pipes are treated as single pipes. The total heat loss is then assumed to be the sum of all the pipes included.) The overall heat flow from the warm pipes is given as

$$q = \frac{Q}{I} = U_{o}(T_{s} - T_{g}) \tag{1}$$

where q = overall heat loss per unit length (Btu/hr ft)

Q = overall subsystem heat loss (Btu/hr)

L = subsvstem length (ft)

 $U_{\rm o}$ = overall *U*-value of subsystem (Btu/hr ft °) $T_{\rm s}$ = steam temperature (°F) $T_{\rm g}$ = ground surface temperature (°F).

The overall conductance value, U_0 is simply:

$$U_0 = 1/R_0 \tag{2}$$

where R_0 is the overall thermal resistance (hr ft $^{\circ}F/$

Since the heat flow is basically a series phenomenon, we can simply add the individual resistances to heat flow to obtain the overall resistance to heat flow R_0 :

$$R_0 = R_{ei} + R_{ea} + R_{u} + R_{s} \tag{3}$$

where R_{ei} = effective thermal resistance of the insulation on the pipes (hr ft °F/Btu)

> R_{ea} = effective thermal resistance of the air within the utilidor (hr ft °F/Btu)

 $R_{\rm H}$ = thermal resistance of the utilidor (hr ft

 R_s = thermal resistance of the surrounding soil (hr ft °F/Btu)

To determine the effective thermal resistance of the pipe insulation R_{ei} we must consider the parallel heat flow from each of the pipes through its respective insulation. The sum of the two heat flows will be the total heat flow q:

$$q = \frac{T_{s} - T_{si}}{R_{si}} + \frac{T_{c} - T_{ci}}{R_{ci}}$$
 (4)

where T_{si} = outer surface temperature of the steam pipe insulation (°F)

 T_{ci} = outer surface temperature of the condensate pipe insulation (°F)

 R_{si} = thermal resistance of the steam pipe insulation (hr ft $^{\circ}$ F/Btu)

 R_{ci} = thermal resistance of the condensate pipe insulation (hr ft $^{\circ}$ F/Btu)

 $T_c = \text{condensate return temperature (°F)}.$

The total heat flow can also be written as

$$q = \frac{1}{R_{ei}} (T_s - T_{si}). \tag{5}$$

By combining eq 4 and 5 we can find the effective thermal resistance of the pipe insulation $R_{\rm ej}$ as

$$R_{ei} = \frac{1}{\frac{1}{R_{si}} + \frac{T_c - T_{ci}}{T_s - T_{si}} \frac{1}{R_{ci}}}$$
(6)

and the individual pipe insulation resistance can be calculated from the following expression (Holman 1972)

$$R_{si} = \frac{\ln[(D_s + 2X_{si})/D_s]}{2\pi k_i}$$
 (7)

and

$$R_{ci} = \frac{\ln[(D_c + 2X_{ci})/D_c]}{2\pi k_i}$$
 (8)

where D_s = outside diameter of the steam pipe (ft)

 X_{si} = insulation thickness on steam pipe (ft)

 k_i = insulation thermal conductivity (Btu/hr ft °F)

 D_c = outside diameter of the condensate pipe

 X_{ci} = insulation thickness on the condensate pipe (ft).

The thermal conductivity of insulation is normally a function of its mean temperature. For calcium silicate insulation, using data from Crocker and King (1967), this function is closely approximated by

$$k_{\rm i} = 0.0221 + 4.13 \times 10^{-5} T_{\rm mi}$$
 (9)

where T_{mi} is the average temperature of the pipe insulation (°F). The temperature of the steam pipe insulation is

$$T_{\rm mi} = (T_{\rm s} - T_{\rm si})/2 \tag{10}$$

and similarly for the condensate pipe insulation

$$T_{\rm mi} = (T_{\rm c} + T_{\rm ci})/2.$$
 (11)

Next we need to find the effective resistance of the air R_{ea} . First, consider the heat flow equation for the air layer:

$$q = (1/R_{sa})(T_{si} - T_{ui}) + (1/R_{ca})(T_{ci} - T_{ui})$$
 (12)

where R_{sa} = thermal resistance between the steam pipe insulation surface and the inner wall of the utilidor (hr ft $^{\circ}F/Btu$)

> R_{ca} = thermal resistance between the condensate pipe insulation surface and the inner wall of the utilidor (hr ft °F/Btu)

 T_{ui} = temperature of the inner wall of the utilidor (°F).

The heat flow can also be expressed in terms of the effective thermal resistance of the air $R_{\rm ea}$ as

$$q = 1/R_{ea} (T_{si} - T_{ui}).$$
 (13)

By combining eq 12 and 13 we find

$$R_{ea} = \frac{1}{\frac{1}{R_{ea}} + \frac{1}{R_{ca}} \frac{(T_{ci} - T_{ui})}{(T_{ci} - T_{ui})}}$$
(14)

Now we need to define the individual thermal resistances caused by the air layer $R_{\rm sa}$ and $R_{\rm ca}$. As mentioned earlier, the heat transfer process within the air space is coupled convective, conductive and radiative. A full treatment is beyond the scope and requirements of this study. Instead, we will treat the air layer as a conductive medium and determine the effective thermal conductivity value $k_{\rm ea}$ for the medium based on published correlations for heat transfer in concentric

In order to consider this region as an annulus we must first define an effective diameter for the rectangular utilidor. The effective diameter $D_{\rm eu}$ is the diameter of a circular utilidor which would have the same inside surface area as the actual rectangular utilidor:

$$D_{\rm eu} = \frac{2}{\pi} (X_{\rm u} + Y_{\rm u}) \tag{15}$$

where X_u is the utilidor width (ft) and Y_u the utilidor beight (ft)

The effective thermal conductivity for the air within such a region is approximated by Gruber et al. (1961):

$$k_{\rm ea} = 0.40 (N_{\rm G} N_{\rm P})^{0.20} \cdot k_{\rm a}$$
 (16)

within the range $10^6 < N_G N_P < 10^9$

where k_{ea} = effective thermal conductivity of the air (Btu/hr ft $^{\circ}$ F)

 N_G = Grashof number (dimensionless)

 $N_{\mathbf{p}}$ = Prandtl number (dimensionless)

 k_a = thermal conductivity of air (Btu/hr ft $^{\circ}$ F).

The thermal conductivity of air k_a is a function of its temperature and can be approximated as

$$k_a = 0.01319 + 2.5 \times 10^{-5} T_a$$
 (17)

where T_a is the bulk air temperature within the annulus (°F).

The Prandtl number of air N_P is also a function of the air temperature and can be approximated as

$$N_{\rm p} = 0.7185 - 1.275 \times 10^{-4} T_{\rm a}$$
. (18)

The bulk air temperature T_a can be approximated by the average of the effective insulation surface temperature $T_{e\,i}$ and the utilidor's inner surface temperature $T_{u\,i}$:

$$T_2 = (T_{ei} + T_{ui})/2.$$
 (19)

The effective insulation surface temperature is given as the weighted average of the steam and condensate insulation surface temperatures:

$$T_{ei} = \frac{T_{si}(D_s + 2X_{si}) + T_{ci}(D_c + 2X_{ci})}{D_s + 2X_{si} + D_c + 2X_{ci}}.$$
 (20)

The Grashof number $N_{\rm G}$ given in eq 16 is represented for this case as

$$N_{G} = \frac{g(T_{ei} - T_{ui})(\delta^{3})}{(T_{2} + 459.7)(v_{2})^{2}}$$
(21)

where g = gravitational constant (ft/s²)

 δ = effective thickness of air layer (ft)

 v_a = kinematic viscosity of air (ft²/s).

The effective thickness of the air layer δ is given by

$$\delta = \frac{D_{\text{eu}} - (D_{\text{s}} + 2X_{\text{si}} + D_{\text{c}} + 2X_{\text{ci}})}{2}.$$
 (22)

The kinematic viscosity of air v_a is also a function of the air temperature T_a . It can be approximated as

$$v_a = 1.26 \times 10^{-4} + 5.4 \times 10^{-7} T_a.$$
 (23)

Now that we have all of the necessary expressions

to evaluate the effective thermal conductivity of the air $k_{\rm ea}$, we can find the thermal resistance due to the air space. It is simply

$$R_{sa} = \frac{\ln[D_{eu}/(D_s + 2X_{si})]}{2\pi k_{ea}}$$
 (24)

for the steam pipe. For the condensate pipe

$$R_{ca} = \frac{\ln|D_{eu}/(D_c + 2X_{ci})|}{2\pi k_{ea}}.$$
 (25)

The next thermal resistance which we need to define is that of the utilidor itself. It can be written as

$$R_{\rm u} = \frac{\Delta X_{\rm u}}{2(X_{\rm u} + Y_{\rm u})k_{\rm u}} \tag{26}$$

where $\Delta X_{\rm u}$ is the utilidor wall thickness (ft) and $k_{\rm u}$ is the thermal conductivity of the utilidor material (Btu/hr ft $^{\circ}$ F).

And, finally, the last thermal resistance we need to define is that of the soil system:

$$R_{s} = 1/k_{s}S \tag{27}$$

where k_s is the thermal conductivity of the soil (Btu/hr ft $^{\circ}$ F) and S is the shape factor of the utilidor (dimensionless).

For a rectangular utilidor the shape factor S is given (from Holman 1972) as

$$S = 1.685 \left\{ \left[\log \left(1 + \frac{X_B}{X_U} \right) \right]^{-0.59} + \left(\frac{X_B}{Y_U} \right)^{-0.078} \right\}$$
(28)

where X_B is the utilidor burial depth (ft).

Now we have expressions for all the thermal resistances given in eq 3. With these we can find the heat loss from the utilidor. The calculation procedure is not completely straightforward, however.

Notice that both the effective thermal resistance of the pipe insulation $R_{\rm ei}$ and the effective thermal resistance of the air space $R_{\rm ea}$ are functions of temperatures which are not initially known. It is necessary, therefore, for us to solve this problem iteratively. To do so we first guess at the unknown required temperatures. We then use the procedure outlined to calculate the heat flow q. Given this result we can calculate the outer surface temperature of the utilidor $T_{\rm uo}$ by

$$T_{uo} = T_g + qR_s \tag{29}$$

and similarly the inner surface temperature of the utilidor is given as

$$T_{\mu i} = T_{\mu 0} + qR_{\mu}. \tag{30}$$

Now we need to recalculate the insulation surface temperatures \mathcal{T}_{si} and \mathcal{T}_{ci} . We can do this by considering a heat balance at the insulation surface and using the new value for the utilidor inner surface temperature \mathcal{T}_{ui} just calculated. The heat balance gives the following equations:

$$T_{si} = \frac{T_s}{1 + (R_{si}/R_{sa})} + \frac{T_{ui}}{1 + (R_{sa}/R_{si})}$$
 (31)

and

$$T_{ci} = \frac{T_c}{1 + (R_{ci}/R_{ca})} + \frac{T_{ui}}{1 + (R_{ca}/R_{ci})}.$$
 (32)

Now we can use these new temperatures to recalculate the heat loss q. If the heat loss is close to the value previously calculated, we have found the answer; if it is not we must recalculate the temperatures and heat loss again. This process continues until the heat loss value has stabilized and the answer is found. A similar, but simpler, procedure can be used for single pipes in utilidors.

A computer program written to accomplish this calculation procedure for an entire heat distribution system is listed in Appendix B. A flow chart of the program is given in Figure 5. In Appendix C, sample

input and output data for the program are given.

The advantages of computer implementation of this calculation scheme are obvious. As well as allowing us to determine the heat loss of any heat distribution system using utilidors, it allows us to evaluate modification to the system or operating parameters to determine their effect. In the next section we will examine the results for the Fort Wainwright heat distribution system. Modifications and their effect will also be studied.

SYSTEM EFFICIENCY AND POSSIBLE IMPROVEMENTS

Using a computer program following the method outlined above, we have found the total heat loss from the distribution system to be 2.045×10⁵ MBtu/yr. This value assumes that the average annual air temperature of 25.7°F can be used as the ground surface temperature. It also assumes that all pipes are insulated with 1 in. of calcium silicate insulation.

The heat loss from the utilidor system actually varies over the course of the year due to the fluctuations in the ground surface temperature. Figure 6 shows how the air temperature varies over an average year as well as its effect on the heat loss. The temperatures used in this case represent the average monthly air temperatures for the Fairbanks area.

Figure 6. Ground surface temperature and heat losses for an average year.

For a more specific case, calendar year 1978, let's compare the heat loss over the course of the year with the heat supplied to the distribution system. We can express the heat supplied to the system over the course of the year in terms of British Thermal Units by recalling that each pound-mass of steam represents 1086.5 Btu of heat at the average steam and condensate conditions. Table 2 summarizes the plant input to the system as well as the calculated losses.

The estimated percentage heat loss during the

month of August is more than double that of the month of January, based in each case on the heat exported from the power plant. This is due to the small heat loss fluctuations over the yearly cycle compared to the steam flow from the plant that varies to a greater extent. If we normalize each of these, that is divide them by the largest value over the year, this effect is clearly illustrated. Figure 7 gives the normalized heat export by the plant as well as the normalized heat loss for the 1978 calendar year.

Figure 7. Normalized heat export and heat loss for 1978.

Table 2. Exported heat and calculated heat losses for calendar year 1978.

Month	Days	Steam exported (klbm)	Average rate of heat export (MBtu/hr)	Average air temperature (°F)	Calculated rate of heat loss (MBtu/hr)	Rate of heat loss as percentage of rate of heat exported (%)	Normalized rate of heat export (%)	Normalized rate of heat loss (%)
Jan	31	151,633	221.4	0.1	25.4	11.5	100.0	100.0
Feb	28	125,540	203.0	3.9	25,1	12.4	91.7	98.8
Маг	31	127,576	186.3	14.0	24.3	13.0	84.1	95.7
Apr	30	100,559	151.7	34.8	22.6	14.9	68.5	89.0
May	31	73,413	107.2	50.2	21.3	19.9	48.4	83.9
June	30	63,516	95.8	54.6	21.0	21.9	43.3	82.7
July	31	59,134	86.4	63.5	20.2	23.4	39.0	79.5
Aug	31	57,309	83.7	59.5	20.6	24.6	37.8	81.1
Sept	30	66,324	100,1	46.8	21.6	21.6	45.2	85.0
Oct	31	107,812	157.4	23.3	23.5	14.9	71.1	92. 5
Nov	30	125,039	188.7	8.6	24.7	13.1	85.2	97.2
Dec	31	137,662	201.0	3.3	25.2	12,5	90.8	99.2
Total	365	1,195,517	-		-		_	_
Averages	30,4	99,626	148.6	30.2	23.0	15,5	67.1	90.4

Table 3. The effect of increasing insulation thickness on all pipes.

Cuse	Steam pipe ins. thickness (in.)	Condensate pipe ins. thickness (in.)	Total heat loss (MBtu/yr)	Change in heat loss (MBtu/yr)	Fotal ins. volume (ft³)	Change in ins. volume (ft³)	Heat savings per unit of insulation added (MBtu/yr ft³)
Reference	1	1	2.045×10 ⁵	_	1.202×10 ^s	_	
l	i	2	1.920×10 ⁵	- 1.25×10 ⁴		5.860×10 ⁴	0.2133
2	2	i	1.551×105	-4.940×104	1.817×10 ⁵	6.150×10 ⁴	0.8033
3	2	2	1,430×10 ⁵	-6.150×10 ⁴	2.403×10 ⁵	1,201×10 ⁵	0.5121
4	3	1	1.317×10 ⁵	-7.280×104	2.432×10 ^s	1.230×10 ⁵	0.5919
5 _	_ 3	2	1.198×105	-8.470×10 ⁴	3.019×10 ⁵	1.817×10 ⁵	0.4662

Table 4. The effect of increasing insulation thickness of pipes in utilidors $3\frac{1}{2}$ ft by $3\frac{1}{2}$ ft or larger.

Cuse	Steam pipe ins. thickness (in.)	Condensate pipe ins. thickness (in.)	Total heat loss (MBtu/yr)	Change in heat loss (MBtu/yr)	Total ins. volume (ft³)	Change in ins. volume (ft³)	Heat savings per unit of insulation added (MBtu/yr ft³)
Reference	•	,	2.045×10 ⁵		1.202×1Q5	_	_
Kererence	,	2	1.940×10 ⁵	-1.050×10 ⁴	1.649×10 ⁵	4.470×10 ⁴	0.2349
2	2	i	1.621×10 ⁵	-4.240×10 ⁴	1.677×105	4.750×104	0.8926
3	2	2	1.518×10 ⁵	-5.270×104	2,125×105	9.230×104	0,5710
4	3	1	1.419×10 ⁵	~6.260×104	2.152×10 ⁵	9.500×104	0,6589
5	3	2	1.317×10 ⁵	-7.280×10 ⁴	2.600×10 ⁵	1.398×10 ⁵	0.5207

As stated earlier, the heat loss for an average year is approximately 2.045×10⁵ MBtu. During 1979 the cost of heat at Fort Wainwright was about \$4.60/ MBtu. Thus, the yearly cost of heat loss is about \$940,000. With energy costs rising as they are, this cost will soon be over one million dollars per year. Let us now consider some possible improvements to the system and their effect on heat losses.

The most obvious method of reducing heat losses is to increase insulation thickness on the pipes. This is, however, a very expensive proposition. Although we will not try to assess the cost of increasing insulation thicknesses, we will provide data on its anticipated effect on heat losses from the system. Table 3 gives the results of several sets of calculations with varying insulation thicknesses. Also given are the volumes and the increases over the current amount.

In the last column of Table 3 the heat savings per unit of insulation added are given. These quantities in conjunction with the cost of insulation would allow one to examine the relative economics of each case. As can be seen from the table, case 2 offers the best opportunity for being economically viable. The heat savings per unit of insulation added are also relatively high for case 4. In each of these cases, all additional pipe insulation was added to the steam pipes alone.

Another possibility investigated was insulating only the pipes in the larger size utilidors. Access to these pipes would be easier since these utilidors can be entered, as opposed to smaller utilidors which would need to be excavated; thus the economics for this situation should be more attractive. Table 4 gives results similar to Table 3 except that only pipes in utilidors $3\frac{1}{2} \times 3\frac{1}{2}$ ft or larger received additional pipe insulation.

As before, case 2 is still the most attractive and case 4 is the next best. Also notice that in each case the heat saving per unit of insulation added is greater than for the same case when all the pipes were reinsulated. This, coupled with the fact that these pipes in the larger utilidors should be easier to insulate, indicates case 2 as the best approach. In addition, it seems likely that larger pipes, which are normally in the larger utilidors, would be easier to insulate in themselves. This would result in still lower insulating costs.

Another method which could be used to reduce heat losses is to reduce the distribution temperature of steam. Currently steam conditions are approximately 90 psig and 375°F, although the saturation temperature of 90 psig steam is about 331°F. Thus, the steam has about 44°F of superheat. If this amount of superheat and/or the distribution pressure were reduced (i.e. saturation pressure of steam reduced), the heat losses could also be reduced. This option was studied only to the extent of determining what the resulting heat losses would be for any given steam temperature. Figure 8 shows the effect of steam temperature on the total system heat losses.

Figure 8. System heat losses as a function of steam temperature.

We feel that insulating the steam pipes in the larger utilidors and reducing the steam temperature hold the most promise for reducing heat losses from the Fort Wainwright system. Although other possibilities may exist, they will not be studied here. These two methods would produce the following cost savings.

1. Additional pipe insulation. Based on the limited input data, the most promising alternative would be to add insulation, probably on the order of an inch or so, to the steam pipes only. It is most likely that this alternative would be the most attractive from an economic viewpoint. Using 10% as the time value of money and 5% as the escalation rate for coal (see U.S. Army Corps of Engineers 1978) we can calculate the present worth of the heat savings resulting from the addition of insulation. For case 2 from Table 3 (addition of one inch of insulation to the steam line only) the reduction in heat loss is 4.94×10⁴ MBtu/yr. For 1979 the heat cost at Fort Wainwright was \$4.60/MBtu (from Flanders and Coutts, in prep.). Of this \$2.10 per MBtu is attributable to fuel costs with the remaining \$2.50 per MBtu attributable to ownership, operations and maintenance costs. If we assume that the insulation added will have a useful lifetime of 20 years, the present value of the heat savings is \$2,307,770* where the multiplication factors (12.11 and 8.51) are the

present worth factors for escalating fuel cost savings and fixed plant savings, respectively.

This represents the maximum amount which could be justified for adding one inch of insulation to the steam pipes only.

2. Lower steam temperature. Lower steam temperatures could also result in significant reductions in distribution system heat losses. For instance, a reduction in supply temperature from 375°F to 320°F would result in more than 15% reduction in heat losses. The reduction in supply temperature could be made up of a reduction in steam superheat as well as reduced steam saturation temperature due to reduced pressure. An analysis similar to the one above gives the present value of future heat savings as \$1,433,013. Since this might well be accomplished with little or no investment, it's very attractive.

CONCLUSIONS AND RECOMMENDATIONS

Several major opportunities exist for reducing the heat losses from the Fort Wainwright heat distribution system. During the average year the cost of heat loss approaches one million dollars. The two most promising alternatives, adding 1 inch of insulation to the steam

^{*} $PV = 4.94 \times 10^4 \text{ MBtu} \left(2.10 \frac{\$}{\text{MBtu}} \times 12.11 \right) + \left(2.50 \frac{\$}{\text{MBtu}} \times 8.51 \right)$

pipes in the larger utilidors and decreasing the steam temperature from 375° to 320°F, were found to offer the potential for significant savings.

Each of these alternatives merits further study. The results of this work are limited primarily by the quality of the input data. More detailed studies should be performed before any alternative is undertaken. Thus, our recommendations will deal with refinements to this study which would yield results of higher confidence. Our recommendations are listed below:

- 1. Establish more accurate estimates as to the thickness and condition of the existing pipe insulation. Laboratory measurements of the thermal conductivity of actual samples of the insulation are also needed. These tests are relatively routine.
- 2. Determine the thermal characteristics of the soil system around typical utilidors. The long-term effects of such a heat source within the soil may significantly effect the thermal properties of the soil by drying it out.
- 3. Obtain more accurate geometric data on the utilidors. These data would include exact interior and exterior dimensions, burial depth and location of the various utilities within.
- 4. Make temperature measurements within utilidors to estimate the accuracy of the heat loss computational procedure. Heat flux meters could also be installed in representative utilidors for further confirmation.
- 5. Refine the methods used in the computational procedure for determining the heat losses. Use several full numerical models to investigate selected utilidor configurations.
- 6. Investigate the consequences of lowering steam pressure (saturation temperature) and/or steam superheat to obtain lower overall steam temperatures.
- 7. Make preliminary estimates of the cost of implementing the suggestions put forth in this study. If warranted, make more detailed estimates of the attractive alternatives.

LITERATURE CITED

Crocker, S. and R.C. King (1967) *Piping handbook*. New York: McGraw-Hill, 5th edition.

Flanders, S.N. and H.J. Coutts (In prep.) Least life cycle costs for insulation in Alaska. U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) Report.

Gröber, H., S. Erk and U. Grigull (1961) Fundamentals of heat transfer. New York: McGraw-Hill.

Holman, J.P. (1972) Heat transfer. New York: McGraw-Hill, 3rd edition.

Rossle, J.P. and R.C. Johnson (1975) Fort Wainwright, Alaska, central heat and power plant power system study. R.W. Beck and Associates, Seattle, Washington.

U.S. Army Corps of Engineers (1978) Energy conservation investment program guidance. Facility Engineers Support Agency.

APPENDIX A: HEAT DISTRIBUTION SYSTEM DATA

Combination	Dimensi	idor ons (ft)	Supply pipe diameter	Return pipe diameter	Length
Number	Width	Height	(in)	(in)	(ft)
1	1.00	1.00	1.50	1.00	100.0
2	1.50	1.50	0.00	1.00	130.0
3	1.50	2.00	2.00	0.00	140.0
4	2.00	2.00	1.25	1.00	35.0
5	2.00	2.00	2.00	2.00	1280.0
6	2.00	2.00	2.50	2.00	195.0
7 8	2.00	2.00	3,00	1.25	100.0
9	2.00 2.00	2.00 2.00	3.00 4.00	1.50 2.00	150.0 170.0
10	2.00	2.00	5.00	1.50	60.0
ii	2.00	2.00	10.00	6.00	35.0
12	2.00	1.50	2.00	1.00	30.0
13	2.00	2.50	2.GO	1.00	325.0
14	2.00	2.50	2.00	2.00	275.0
15	2.00	2.50	6.00	2.50	620.0
16	2.00	3.00	6.00	2.50	620.0
17 18	2.00 2.00	4.00 4.00	2.00 3.00	1.50 2.00	120.0 275.0
19	2.42	2.42	2.50	1.00	190.0
20	2.50	2.00	2.00	2.00	150.0
21	2.50	2.00	6.00	2.50	25.0
22	2.50	2.00	6.00	0.00	30.0
23	2.50	2.50	2.00	2.00	65.0
24	2.50	3.00	6.00	4.00	225.0
25	2.50	3.00	8.00	4.00	190.0
26	2.50	3.50	4.00	2.00	30.0
27 28	3.00 3.00	2.00 2.50	8.00 3.00	2.00 1.50	415.0 60.0
29	3.00	2.75	3.00	1.00	100.0
30	3.00	2.75	4.00	2.00	510.0
31	3.00	3.00	1.00	1.00	70.0
32	3.00	3.00	1.50	1.50	50.0
33	3.00	3.00	2.00	1.50	80.0
34	3.00	3.00	2.00	1.25	55.0
35	3.00	3.00	2.00	2.00	550.0
36 37	3.00 3.00	3.00 3.00	2.50 2.50	1.00 1.50	75.0 230.0
38	3.00	3.00	3.00	1.50	635.0
39	3.00	3.00	3.00	2.00	575.0
40	3.00	3.00	4.00	2.00	395.0
41	3.00	3.00	6.00	2.00	305.0
42	3.00	3.00	6.00	3.00	670.0
43	3.00	3.00	8.00	2.00	620.0
44	3.00	3.00	8.00	4.00	270.0
45 46	3.00	3.00	8.00	4.00	210.0
47	3.06 3.00	0.00 3.50	6.00 1.25	0.00 1.25	0.0* 330.0
48	3.00	3,50	1.50	1.50	60.0
49	3.00	3.50	2.00	1.00	260.0
50	3.00	3,50	2.00	1.50	805.2
51	3.00	3,50	2.00	2.00	60.0
52	3.00	3.50	2.50	1.50	965.0
53	3.00	3.50	3.00	1.25	330.0
54 55	3.00	3.50	3.00	1.50	935.0
56	3.00 3.00	3.50 3.50	3.00 3.50	2.00 2.00	675.0 75.0
57	3.00	3.50	4.00	2.00	6360.0
58	3.00	3.50	5.00	2.50	45.0
59	3.00	3.50	6.00	2.00	525.0
60	3.00	3.50	6.00	3.00	650.0
61	3.00	3.50	8.00	4.00	700.D
62	3.00	4.00	2.00	1.00	40.0
63	3.00	4.00	3.00	2.00	270.0
64	3.00	4.00	4.00	3.00	465.0
65 66	3.00	4.00 5.00	6.00	3.00 2.00	50.0 65.0
67	3.00 3.50	3.00	2.00 2.50	1.00	160.0
68	3.50	3.00	4.00	2.00	150.0
69	3.50	3.00	6.00	2.50	150.0
70	3,50	3.00	6.00	3.00	520.0

	Utili	ldor	Supply pipe	Return pipe	
Combination	Dimensi		diameter	diameter	Length
Number	Width	Height	(in)	(in)	(ft)
71	3.50	3.50	1.50	1.50	70.0
72	3.50	3.50	6.00	3.00	420.0
73	3.50	3.50	8.00	4.00	50.0
74	3.50	4.50	6.00	4.00	520.0
75	4.00	3.00	3.00	2.00	500.0 345.0
76	4.00	3.00	3.50 3.00	2.50 2.00	90.0
77 78	4.00 4.00	4.00 4.00	4.00	2.00	515.0
76 79	4.00	4.00	6.00	2.00	410.0
80	4.00	4.00	6.00	3.00	510.0
81	4.00	4.00	8.00	2.00	100.0
82	4.00	5.00	1.00	1.00	120.0 130.0
83	4.00	5.00	2.00 0.00	0.00 2.00	290.0
84	4.00 4.00	5.00 5.00	3.00	1.50	100.0
85 86	4.00	5.00	4.00	2.00	260.0
87	4.00	5.00	4.00	2.50	240.0
88	0.00	0.00	0.00	6.00	0.0
89	4.00	5.00	5.00	3.50	400.0
90	4.00	5.00	6.00	2.50	40.0 370.0
91	4.00	5.00	6.00 6.00	3.00 4.00	270.0
92 93	4.00 4.00	5.00 5.00	6.00	0.00	200.0
94	4.00	5.00	8.00	3.00	730.0
95	4.00	5.00	8.00	4.00	1015.0
96	4.00	5.00	10.00	4.00	180.0
97	4.00	5.00	10.00	6.00	1200.0
98	4.50	4.00	6.00	2.00 1.00	190.0 320.0
99 100	4.50 4.50	5.00	3.00 3.00	2.00	190.0
101	4.50	5.00 5.00	3.50	2.00	145.0
102	0.00	0.00	0.00	1.25	0.0*
103	4.50	5.00	5.00	2.00	230.0
104	4.50	5.00	6.00	3.00	555.0
105	4.50	5.00	10.00 4.00	4.00 2.00	365.0 770.0
106 107	4.50 4.50	4.50 4.50	6.00	2.00	240.0
108	4.50	4.50	8.00	4.00	960.0
109	4.50	4.50	10.00	4.00	170.0
110	4.50	4.50	12.00	6.00	825.0
111	5.00	4.00	8.00	4.00 8.00	460.0 450.0
112 113	5.00	4.75 5.00	12.00 1.00	1.00	130.0
114	5.00 5.00	5.00	1.00	1.00	410.0
115	0.00	0.00	8.00	4.00	0.0*
116	5.00	5.00	1.25	1.25	425.0
117	5.00	5.00	1.50	1.25	170.0
118	0.00	0.00	6.00	3.00 1.00	0.0* 400.0
119 120	5.00 5.00	5.00 5.00	2.00 2.00	2.00	310.0
121	5.00	5.00	3.00	1.25	190.0
122	5.00	5.00	3.00	1.50	125.0
123	5.00	5.00	3.00	2.00	300.0
124	5.00	5.00	4.00	1.50	155.0 2315.0
125	5.00	5.00	4.00 4.00	2.00 2.00	400.0
126 127	5.00	5.00 0.00	2.00	0.00	0.0*
127	0.00 5.00	5.00	6.00	2.50	1115.0
129	5.00	5.00	6.00	3.25	355.0
130	0.00	0.00	2.00	1.25	0.0*
131	5.00	5.00	6.00	3.00	500.0 120.0
132	5.00	5.00	6.00 2.50	4.00 1.25	2800.0
133 134	5.00	5.00 0.00	8.00	0.00	0.0*
134	0.00 5.00	5.00	8.00	3.00	410.0
136	0.00	0.00	1.50	1.50	0.0*
137	0.00	0.00	0.00	1.25	0.0*
138	5.00	5.00	8.00	4.00	6285.0 400.0
139	5.00	5.00	8.00	4.00	400.0

	Util	idor	Supply pipe	Return pip	e
Combination		ons (ft)	diameter	diameter	Length
Number	Width	Height	(in)	(in)	(ft)
140	0.00	0.00	0.00	3.00	0.0*
141	0.00	0.00	0.00	1.50	0.0*
142	5.00	5.00	8.00	6.00	840.0
143	5.00	5.00	10.00	4.00	4785.0
144	5.00	5.00	10.00	3.00	420.0
145	0.00	0.00	4.00	0.00	0.0*
146 147	5.00 0.00	5.00 0.00	10.00 4.00	5.00 0.00	180.0 0.0*
148	5.00	5.00	10.00	6.00	6605.0
149	5.00	5.00	12.00	5.00	240.0
150	5.00	5.00	12.00	6.0 0	3020.0
151	5.00	5.00	12.00	8.00	875.0
152	5.00	5.00	16.00 1.50	8.00 1.25	750.0 130.0
153 154	5.33 0.00	6.00 0.00	6.00	3.00	0.0*
155	5.50	4.50	6.00	2.00	1150.0
156	5.50	5.00	4.00	2.00	120.0
157	5.50	5.50	8.00	3.00	1285.0
158	5.50	5.50	10.00	3.00	345.0
159	5.50	5.50 5.50	10.00 10.00	4.00 6.00	410.0 1545.0
160 161	5.50 6.00	4.00	14.00	8.00	415.0
162	6.00	5.00	10.00	4.00	390.0
163	6.00	6.00	10.00	6.00	390.0
164	0.00	0.00	4.00	0.00	0.0*
165	6.00	6.00	10.00	6.00	1060.0
166	6.00	6.00	14.00	8.00	250.0 1040.0
167 168	6.00 6.00	6.00 6.50	16.00 14.00	10.00 8.00	365.0
169	6.00	6.50	16.00	8.00	105.0
170	6.00	6.50	20.00	10.00	1550.0
171	6.00	7.00	1.50	1.00	705.0
172	6.00	7.00	5.00	2.50	1010.0
173	6.00	7.00 0.00	2.50 5.00	2.00 2.50	200.0 0.0*
174 175	0.00 6.00	7.00	2.50	2.50	210.0
176	0.00	0.00	5.00	2.50	0.0*
177	6.00	7.00	6.00	2.50	330.0
178	6.00	7.00	3.00	1.25	300.0
179	0.00	0.00	6.00	0.00	0.0* 200.0
180 181	6.00 6.00	7.00 7.00	6.00 8.00	4.00 4.00	1870.0
182	6.00	7.00	8.00	6.00	370.0
183	0.00	0.00	0.00	1.25	0.0*
184	6.00	7.17	3.50	1.00	300.0
185	0.00	0.00	2.00	0.00	0.0* 0.0*
186 187	0.00 6.00	0.00 7.17	1.00 12.00	0.00 6.00	300.0
188	6.00	7.17	12.00	8.00	2110.0
189	6.00	7.50	16.00	10.00	240.0
190	0.00	0.00	4.00	0.00	0.0*
191	6.00	7.50	18.00	10.00	450.0
192	0.00	0.00 7.50	4.00 18.00	0.00 10.00	0.0* 100.0
193 194	6.00 0.00	0.00	4.00	0.00	0.0*
195	6.00	7.50	24.00	10.00	190.0
196	6.00	8.00	8.00	3.00	400.0
197	6.50	5.50	10.00	6.00	100.0
198	7.00	7.00	12.00	6.00	880.0
199	7.00 7.00	7.00 7.00	12.00 16.00	8.00 8.00	2605.0 3915.0
200 201	7.00	7.00	18.00	8.00	1830.0
202	7.00	7.50	24.00	10.00	210.0
203	0.00	0.00	4.00	0.00	0.0*
204	7.00	7.50	24.00	12.00	180.0
205	7.00	9.00 9.00	1.50 2.00	5.00 2.00	60.0 250.0
20 6 207	7.00 7.00	9.00	3.00	1.50	40.0
208	7.00	9.00	5.00	2.00	40.0
209	7.00	9.00	5.00	1.50	90.0
210	7.00	9.00	12.00	5.00	130.0

	Utilidor		Supply pipe	Return pipe	
Combination		ons (ft)	diameter	diameter	Length
Number	Width	Height	(in)	(in)	(ft)
211	0.00	0.00	5.00	0.00	0.0*
212	7.00	9.00	14.00	5.00	50.0
213	0.00	0.00	5.00	0.00	0.0*
214	7.00	9.00	2.50	1.25	40.0
215	0.00	0.00	8.00	0.00	0.0*
216	7.00	9.00	10.00	2.00	100.0
217	7.00	9.00	10.00	6.00	290.0
218	0.00	0.00	10.00	5.00	0.0*
219	7.00	9.00	10.00	6.00	320.0
220	0.00	0.00	12.00	5.00	0.0*
221	0.00	0.00	3.00	0.00	0.0*
222	7.00	9.00	10.00	6.00	290.0
223	0.00	0.00	14.00	5.00	0.0*
224	0.00	0.00	3.00	0.00	0.0*
225	7.00	9.00	10.00	5.00	80.0
226	0.00	0.00	14.00	6.00	0.0*
227	7.00	9.00	12.00	5.00	90.0
228	7.00	9.00	12.00	5.00	280.0
229	0.00	0.00	5.00	0.00	0.0*
230	7.00	9.00	8.00	1.50	40.0
231	7.00	9.00	10.00	5.00	90.0
232	7.50	6.00	20.00	10.00	450.0

^{*} Note: In instances where the utilidor dimensions and length are zero, pipes are contained in preceeding utilidor. In addition 3 pipes were inadvertantly left out of the computer input file. This, unfortunately, was not noticed until all calculations were complete. Since the error caused by this mistake is of the order of less than 1/2%, the calculations were not redone.

APPENDIX B: UTILIDOR HEAT LOSS PROGRAM

```
INITIATE CONSTANTS
C
                                             B0=4
PI=3.14159
RITHK=1
SITHK=1
SOILC=1.5
TCNDST=190
                                           THCC=0.80
TSTEAM=375
TSURF=25.7
UTHK=.5
SITHK=SITHK/12.
RITHK=RITHK/12.
                          WRITE INTRODUCTION AND HEADINGS

WRITE (5.5)

5 FORMAT(1x,*DATA OUTPUT*///

85x**THIS PROGRAM CALCULATES THE HEAT LOSS FROM*

8/* UTILIDOR SECTIONS WITH THE VARIALBES BELOW.*

8/* UTILIDOR SECTION (FT) *

8/* UTILIDOR SECTION SUPPLY PIPE DIAMETER (IN)*

8/* UTILIDOR SECTION SUPPLY BELOW THE TEMPERATURE*

8/* UTILIDOR SECTION SUPPLY BELOW AND SUPPLY BENEVATURE*

8/* UTILIDOR SUPPLY BENEVATION TEMPERATURE*

                              READ IN NJMBER OF SECTIONS READ(5.7) N
7 FORMAT(14)
DO 1000 I=1.N
                   READ IN UTILIDOR AND PIPE CIMENSIONS
READ(5.8) X.Y.SPD.RPD.XL

8 FORMAT(1X.F4.2.3F6.2.F7.1)
CHECK FOR INPUT ERROR
CHECK=X.Y.*XL
IFICHECK) 10.9.11
9 IFIX.EQ.0.AND.Y.EQ.0.AND.XL.EQ.C) GO TO 11
10 WRITF(6.11) I.X.Y.SPD.RPD.XL
GOTO 1000
11 FORMAT(1HD.*UTILIDOR DIMENSION INPUT ERROR ON LINE *.14
8.** DATA ENTERED=*.4F5.2.F7.1)
 ç
                    DETERMINE TYPE OF SECTION
IF(RPD.EQ.O.AND.SPD.GT.O) GOTO 15
IF(SPD.EQ.O.AND.RPD.GT.O) GOTO 14
IF(SPD.GT.O.AND.RPD.GT.O) GOTO 13
WRITE(6.12) I.X.Y.SPD.RPD.XL
GOTO 1000
12 FORMAT(1X.*ERROR IN PIPE DIMENSION DATA ON LINE NUMBER *.14
                   12 FÖRMATÜİX. PERROR IN PIPE DIMENSION DATA ON LINE NUMBER 2. DATA LINE - P. IX. F4. 2. 3 F6. 2. F7. 1)

13 KASE=1
GOTO 16
14 KASE=0
GOTO 16
15 KASE=-1
16 CONTINUE
CHECK FOR MULTIPLE PIPES AND SAVE UTILIDOR DIMENSIONS
IF(X) 21. 21. 22
21 X=SAVEX
Y=SAVEY
XL=SAVEY
                                           UTILIDOR HEAT LOSS PROGRAM
                                          THIS PROGRAM CALCULATES THE HEAT LOSS FROM PIPES WITHIN BURIED CONCRETE UTILIDORS. ENTER UTILIDOR DATA INTO DATA-FILE "DATAUT". THE FIRST LINE MUST RE THE TOTAL NUMBER OF UTILIDOR SECTIONS TO BE EVALUATED (14 FORMAT). FACH SUCCESSIVE ENTRY LINE MUST CONTAIN. IN ORDER. THE UTILIDOR HEIGHT & WIDTH, FHE STEAM (SUPPLY) PIPE DIAMETER. THE CONDENSATE (RETURN) PIPE DIAMETER AND FINALLY THE UTILIDOR LENGTH (ALL PER FORMAT #2). THERE MAY BE ANY NUMBER OF PIPES. THE FOLLOWING SYSTEM IS EMPLOYED FOR ENTERING THE DIFFERENT GUANTITY AND TYPE OF PIPES:
                                                                         1 PIPE: ENTER UTILIDOR DIMENSIONS AND DIAMETER OF PIPF IN CORRECT CATEGORY (SUPPLY OR RETURN). ENTER ZERO (0) FOR THE MISSING PIPE DIAMETER.
                                                                         2 PIPES: ENTER UTILIDOR DIMENSIONS AND DIAMETERS OF PIPES IN CORRECT ORDER (SUPPLY THEN RETURN).
```

```
MORE THAN
2 PIPES: ENTER FIRST TWO (2) PIPES AS ABOVE. THEN ON A
NEW DATA LINE ENTER ZEROS (0) FOR ALL UTILIDOR
DIMENSIONS AND ENTER DIAMETER OF PIPE IN CORRECT
CATEGORY.
ZERO DIMENSIONS FOR UTILIDOR CAN BE ADDED INDEFINETLY TO INDICATE ANY NUMBER OF PIPES.
                                                                                     DUING IS A LIST OF THE SIGNIFICANT PROGRAM VARIABLES.

BD= bJKIAL DEPTH OF UTILIDOR (FT)

EFAIRC= EFECTIVE AIR CONDUCTIVITY

EFAIRC= EFECTIVE UTILIDOR CHAMETER (FT)

SRSHOF= SKASHJF NUMBER

HLOSS= HEAT LOSS (STUPHN-FT)

HTCA= HEAT LOSS (STUPHN-FT)

HTCA= HEAT TRANSFER COEFICIENT OF AIR (BTUPHR-FT-F)

HTCA= HEAT TRANSFER COEFICIENT OF INSULATION (RTUPHR-FT-F)

PERUPE PERIMETER OF UTILIDOR (FT)

PRANTL= PRANTIL NUMBER

RAIR= THERMAL RESISTANCE OF AIR (HR-FT-F/FTU)

RINS(S)(R)= THERMAL RESISTANCE OF CONCRETE (HR-FT-F/PTU)

RINS(S)(R)= THERMAL RESISTANCE OF CONCRETE (HR-FT-F/PTU)

RINS(S)(R)= THERMAL RESISTANCE OF INSULATION (SUPPLY)(RETURN)

KIR= RETURN PIPE INSULATION RADIUS (FT)

RITHE RETURN PIPE INSULATION THICKNESS (FT)

RODEL RETURN PIPE RADIUS (FT)

RSOIL= THERMAL RESISTANCE OF SOIL (HR-FT-F/BTU)

DELTA= EFFECTIVE PIPE RADIUS (FT)

SITHE SUPPLY PIPE RADIUS (FT)

SITHE SUPPLY PIPE INSULATION THICKNESS (IN)

SOIL= SOIL CONDUCTIVITY (BTUPHR-FT-F)

TCNDST CONDENSATE TEMPERATURE (F)

TCNDST CONDENSATE TEMPERATURE (F)

TCNDST CONDENSATE TEMPERATURE (F)

THCAIR= THERMAL CONDUCTIVITY OF AIR (BTUPHR-FT-F)

THCAIR= THERMAL CONDUCTIVITY OF RETURN INSULATION (BTUPHR-FT-F)

THCAIR= THERMAL CONDUCTIVITY OF RETURN INSULATION (BTUPHR-FT-F)

THCAIR= THERMAL CONDUCTIVITY OF RETURN INSULATION (BTUPHR-FT-F)

TINS(S) (R)= INSULATION TEMPERATURE (F)

TSTLAM= STEAM 
TSTLAM

TSTLAM

TOTAL THERMAL CONDUCTIVITY OF AIR (FT-**
                                              FOLLOWING IS A LIST OF THE SIGNIFICANT PROGRAM VARIABLES.
                                              DIMENSION G(400), GXL(400)
CALL CONTRL(3, DATAJT, 5)
CALL CONTRL(3, TOTALG, 6)
C
                     MULT=MULT+1
GO TO 25
22 SAVEX=X
SAVEX=X
SAVEL=X
MULT=0
25 SIR=0
RIR=0
HLOSSX=0
LAST=6
                                               LAST=C
                     CONVERT UNITS AND DIAMETERS TO HAD II SPD=SPD/12 RPD=RPD/12 SPR=SPD/2 RPR=RPD/2 IF (KASE) 27+28+26 RR=RPR+RITHK GO TO 29 RR=SPR+SITHK GO TO 29 RR=RPR+RITHK SD TO SPRESPH+SITHK SO TO SPRESPH+RITHK SO TO SPRESPH+RITHK STD=STR+2.
S
                     GUESS AT CONCRETE AND INSULATION TEMPERATURES
TINSS=TSTEAM-100
TINSC=TCNDST-100
TCONC=55
ITAUM=0
IF (KASE) 33.44.55
33 TINS=TINSS
GOTO 60
44 TINS=TINSR
GOTO 60
55 TINS=(TINSS*SID+TINSK*RIO)/(SIJ+RIO)
60 TBULK=(TINS+TCONC)/2.
ITNUM=ITNUM+1
ç
                                              CALCULATE THE THERMAL RESISTANCE FOR EACH MAT*L
THCSI=.0221+4.13E -5*(TSTEAM+TINSS)/2
THCRI=.0221+4.13E -5*(TCNDST+TINSR)/2
IF(KASE) 63.64.63
RINSS=ALOG(SIR/SPR)/(2*PI*THCSI)
IF(KASE) 65.65.64
```

```
RINS=RINSS
GOTO 80
67 RATR=ALDG(EFUD/RID)/(2.*PI*EFAIRC)
RINS=RINSR
GOTO 80
70 HTC1=1./RINSS+(ICNDST-TINSR)/((TSTEAM-TINSS)*RINSR)
HTCA=2*PI*EFAIRC*(1/ALOG(EFUD/SID)*(TINSR-TCONC)/((TINSS-TCONC)
8*ALOG(EFUD/RID))
RINS=1./HTC1
RAIR=1./HTCA
               GOTO 90

87 HLOSS=HTCT*(TSTEAM-TSURF)
TINSS=TSTEAM-(HLOSS*RINS)
TINS=TINSS
90 TX=TSURF*(HLOSS*RSOIL)
TCONC=TX*(HLOSS*RCONC)
IF(KASE) = 94,94.93
93 RAIRS=ALOG(EFUD/SID)/(2.*PI*EFAIRC)
RAIRR=ALOG(EFUD/RID)/(2.*PI*EFAIRC)
TINSS=TSTEAM/(1*RINSS/RAIRR)*TCONC/(1*RAIRS/RINSS)
TINSR=TCNDST/(1*RINSR/RAIRR)*TCONC/(1*RAIRR/RINSR)
            DETERMINE IF HEAT LOSS VALUE HAS CONVERGED AND CONTINUE ITERATIONS IF NECESSARY.

94 DELTAM=ABS(HLCSS-MLJSSX)/HLOSS PERCNT=HLOSS*0.0001
IF(DELTAH-LE.PERCNT) GCTO 100
HLOSSX=HLOSS
IF(ITNUM-EQ.12) GOTO 95
IF(KASE) 60,60,55
95 WRITE(6.96)
96 FORMAT(5X.*AFTER 12 ITERATIONS CONVERGIANCE NOT ATTAINED*/
12X.*ALTER INITIAL TEMPERATURES IN LINES ABOVE*)
GOTO 1000
100 G(1)=HLOSS
IF(LAST) 101.101.105
101 LAST=1.0
IF(KASE) 60.60.55
      CICOCI
             FIND HEAT LOSS OVER PIPE LENGTH

105 QXL(1)=Q(1)+XL

IF(MULT) 120+120+110
R=RPD*12.

I TERATIONS COMPLETE. WRITE RESULTS
WRITE (6.140) X.Y.S.R.TSURF.TSTEAM.TCNDST.TINSS.TINSR.TBULK.

8TCONC.TX.G(I).XL.GXL(I)
140 FORMAI(1X.44(F5.2.1X).5X.44(F5.1.1X).5X.44(F5.1.1X).5X.F6.2.
82X.F6.1.2X.E12.5)
180 XI=1/4.
ISPACE=IFIX(XI)
IF(ISPACE-FG.XI) GOTO 190
GOTO 196
190 WRITE(6.195)
195 FORMAI(1H)
196 XI=ABS((I-40)/57.)
ITITE=IFIX(XI)
ITITE=IFIX(XI)
1000 CONTINUE

SECTIONS COMPLETE.
             110 X=0
Y=0
   SECTIONS COMPLETE. SUM HEAT LOSS
SUM=0.
DO 1200 J=1.N
SUM=SUM+UXL(J)
1200 CONTINUE
C WRITE
        HRITE OUT TOTAL HEAT LOSS
SUMYR=SUM*0.00876
WRITE(6.1300) SUM.SUMYR
1300 FORMAT(1H0//.* TOTAL HEAT LOSS FROM UTILIDORS=*.E12.4.* BTU/HR*
8/T33.E12.4.* MBTU/YR*)
CALL CONTRL(4.*TOTALG*.6)
CALL CONTRL(4.*UATAJT*.5)
CALL EXIT
```

PAUL

APPENDIX C: SAMPLE INPUT AND OUTPUT DATA FILES

```
DATA INPUT FILE
                                                                          THIS FILE CONTAINS THE VARIABLES REQUIRED OF THE THE HEAT LOSS PROGRAM: "GLOSS". THE FIRST LINE IS THE TOTAL NUMBER OF SECTIONS TO BE EVALUATED. EACH COLUMN. THEREAFTER. CONTAINS VALUES FOR THE VARIABLES PELOW RESPECTIVELY:
                                                                                                                                                                                                              X = UTILIDOR HEIGHT (FT)
Y = UTILIDOR WIDTH (FT)
SPD = SUPPLY PIPE DIAMETER (IN)
SKD = KETURN PIPE DIAMETER (IN)
L = UTILIDOR LENGTH (FT)
                                                                                                                                                                                                                                                                                 NOTE: ALL COMMENTS MUST HE DELETED BEFORE USING THIS FILE.
              229
X
С
                                                                                                                                                   1.00
1.50
1.50
2.00
                                                                                      5150-00

5100-00

5100-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

1200-00

120
            2.00
            4.000
4.000
4.000
1.005
1.005
1.005
1.005
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          130.0
410.0
0.0
425.0
170.0
                                                                                      179.0
400.0
3190.0
1925.0
1555.0
2315.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                6.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.00
              3.00
            3.00
3.00
3.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1115.0
355.0
500.0
120.0
2600.0
          3.00
3.00
3.00
3.00
3.00
              3.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          410.00
6285.00
400.00
640.00
64785.00
180.00
66240.00
875.00
          5.00
5.00
3.00
3.00
5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3333333333344
                                                                                                                                                                   4.00
                                                                                           4.00
                                                                                                                                                                         3.00
                                                                                                                                                                                                                                                        2.00
                                                                                                                                                                                                                                                                                                                                                 90.0
```

05555555555555555555555555555555555555	00000000000000000000000000000000000000	00000000000000000000000000000000000000	1 1 2 2 5 - 0 0 1 1 2 2 5 - 0 0 1 1 2 2 5 - 0 0 1 2 2 4 5 - 0	00000000000000000000000000000000000000	785777777777999999999999999999999999999	001-0-0-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	0000.000000000000000000000000000000000	0.000000000000000000000000000000000000
0.00 0.00 6.00 7.50 0.00 0.00	18.00	10.00	100.0	7.00 7.50	9.00 6.00	20.00	5.CO 10.00	90.0 450.0

DATA OUTPUT

UTITLIBOR SECTIONS WITH THE VARIATHES RELIM.

INDEPENDENT:

TRULK=BULK AIR TEMPERATURE
TCONC=INTERIOR CONCRETE TEMPERATURE
TINSS=SUPPLY INSULATION TEMPERATURE
TINSR=RETURN INSULATION TEMPERATURE

DEPENDENT:

S-1	4444	0000	0000 N444	0000	0000		0000 N4N4	0000 0000	44104	೦೦೦ ೦ ಬೀಬಾಬ
HE AT L	0.55090E 0.25090E 0.97982E	0.11720E 0.19525E 0.10382E 0.1580SE	0.20922E 0.80742E 0.67911E 0.25138E	0.27869E 0.95283E 0.95251E	0.10999E 0.31036E 0.18221E 0.13979E	0.387528 0.419968 0.612048 0.370857	0.35722E 0.38934E 0.75132E	0.10686E 0.66293E 0.46892E 0.41219E	0.74074 0.59863 0.599863 0.78598	0.23470F 0.65418F 0.55418F
16	1111 1200 1300 1300 1300 1300 1300 1300	1280.0 195.0 100.0 150.0	170 600 350 0.0 0.0	2225 225 225 225 225 225 225 225 225 22	2750 2750 1900 1500 0	2000 2000 2000 2000 2000	190 300 415 60 60	50.00	2000 2000 2000 2000	00000 00000 00000
7 <u>*</u>	19-30 (9-30 70-93	1001 1003 1003 103 103 103 103 103 103 1	1223 1346 1946 1986 1989	855-78 153-66 155-75 175-72	191 1121 955 956 956 956 956	155 1355 1355 1646 1648 155	188.01 181.78 110.03	106.86 129.59 66.99 82.44	92.59 30.66 96.20 98.21	40000 40000 40000 40000 40000
SOL	20044 044 4000	55000 5400 1714	47678 478.04 68.10	46000 80000 4604	ቀመቁቀ ይቀውክ •••• ••••	60.00 60.00 60.00 60.00 60.00	71.0 56.6 57.6 50.7	4044 6054 6175	4444 77.0 7.0 7.0 7.0	#####################################
SC	7.000 0.000 1.000 1.000	57 60 61 62 62 64	68 972 56 37 56 37	54.4 77.1 76.2	500000 50000 50000	07.47 0.04.4 0.04.8	81.7 63.3 78.9 57.0	€ 60 € € 60 € € 60 € 60 €	ທທານ 1000 • • • • • ພອນຜ	61.05 61.05 61.05
목표 [956 756 756 895	2000 2000 2000 2000 2000 2000 2000 200	1110 0 1116 0 186 0 186 0 186 0	22885 2228 2229 2229	80.88 8427 5.57	120.7 127.4 85.6 118.2	129.5 101.8 129.4 92.5	101.0 168.0 75.8	@ 3 @ 4 D	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25	92 66 90 178 1	00000 0400 0400	100°4 137°1 137°1	77. 10.001 10.001	0000 0000 0000	105.0 9.0 112.6	117.9 193.5 107.7	797 700 700 700 700	7887 7887 7887	₹0000 0400 0400
2 L	13.55 13.55	151.4 160.9 167.2	1382 1391 1541 151 151 151 151 151	12447 1208 1900 1900 1900 1900 1900 1900 1900 19	11590 1590 1590 100 100 100 100 100 100 100 100 100 1	1999 1886 1986 1986 6	212.9 171.4 208.6 157.6	155.1 171.3 112.8	138.4 137.7 139.6 146.2	167.6 155.6 156.9 170.3
2 to 1	00000	190 190 190 196 196	190.0 190.0 190.0	190.0 190.0 190.0	190.0 190.0 190.0	190.0 190.0 190.0 190.0	190.0 190.0 196.0	190.0 190.0 190.0	190.0 190.0 190.0 190.0	1900 1900 1900 1900
M C 1	2000 0000	8478 8478 90 90 90 90 90 90	375.0 375.0 375.0	375.0 375.0 375.0	375.0 375.0 375.0	375.0 375.0 375.0	375 375 375 675 675	375 375 375 0 375 0	3775 3775 0.00 0.00 0.00	8478 8478 948 948 948 948 948 948 948 948 948 94
	00000 00000	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000	2255 255 255 255 255 255 255 255 255 25	8888 8888 8888 8888 8888 8888 8888 8888 8888	00000 5555 5555 5555	0000 0000 0000 0000	2000 2000 2000 2000	0000 550 500 500 500 500 500 500 500 50	2000 2000 2000 2000 2000
RPD (IN)	0000	1122 1120 1120 1120 1120	16 17 00 00 00 00 00 00 00 00 00 00 00 00 00	0000	4046 0000 0000	7004 0000		2000 2000 0000		22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Q ₹ [7000	a vaa	4202 2000 0000 0000		0000 0000 0000	9909	0000	 50000	0000	0000 0000
- 1	,	0000		00000	4400	4000 0000 0000	ON ON	7700		MWWW 0000
× 1	2770	0000	0000	0000 0000	0000 0000 0000		2000 0000 0000	2000 0000 0000	NWWW 0000	

9-	1 0 0 0 0 1 0 0 0 0 1	0000 8888	0000 N&NN	0000 0040	\$0.00 \$0.00	4000	4600 0	0000 8454	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ດ ວວ ດ ຄອຍຄອ	4441	eeee eeeee	8000 45000	2000 2004	30
7	1976 1976 1976	684	10000 4404	2040	9825 7325 007	973	8448	11 82 67	3000	SONO	4500	30 E S	455cm	P-60.00-	616
A 2	4 444 8040	PO 4 64	200 300 300		7 4 0 5	86.00 80.00 80.00 80.00 80.00	2000 2000 2000 2000	867 706 988	10040 10040	2444 467 467 467	828 976 879 115	88.44 88.44 88.44	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000	.313
	0000		0000		0000	8888	0000	0000	9000			ບຕອບ			ė
-	10000	0000	Novo 0000		NN00	00410	0000			N000	0000	0000	0000	04100	÷ 0
	10000 10000	33	80 P.N.	93 67 636	4000	47.95	921 155 15	3, 4,0	R. V. W.	1464 4440	2550	200	1000 1000	101	ć
055 *FT	-mar	1250	2000	177	001-0 0444	746 193 193 193	\$555 1000 1000 1000 1000 1000 1000 1000	7262	2000 2000 2000 2000	A84.	W.O HIJ	0 440	1000 1000 1000 1000 1000 1000 1000 100	04W0	-25
₩ 1	10000	4 F & &	2000	4666	OF COLUMN	G (1 40 P	20 (17 € 0.47	4Mar	75 28 18	() (D == 10°)	DOM:	F000	-4-6-0		a.
CBT	i														
×	าเกษต	5444 545 5415	40.n.w	ららまゆ	~ * * «	*	a tran	a-ra	404 K	N4	0 -4. 3	e umn	· - c ·	4043	;•
100 F	65728	P444	4446	NN.N.N.	5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	\$000 0490	ቀቀኪ ወቅሥር	4494 0204	4454 4454	00000 0000	BOH!	らちょう	₽₽₽₽₽	44.60	5.6
98C	ω⊶0 ∞ ω ⊶0∞	65.0 4.0 4.0 4.0 6.0 1.0 8.0 1.0 8.0	G-1010 00044	2000 2000	9000	\$1900 \$1000	846 N	8080 8000	名を下る	-4000	2001	47.00	4 10 40 a	27.5	3.0
×	1 - 0 - 0 - 0	en en en en	ຄາຍເຄ	richte	- WO H.	w=no	00× •	~ 4 E 00	-004	W#146	-4-4	~~~	e ~-«	C00C	ď
21-	4044	122. 71. 74.	2000 2000 2000 2000	ひるもりり	722	112.	5 M B C	115. 125.	OZ iv w	1000	うじじゅ		107	127	10 é.
~∾		0 H 0 M	0446	50.50	0M/r	5017	M40.4	de la constant	CF.V.F.		60-0		CENO	-	*
	6000	8 L-L	F & & & &	ထထောထာတ	6655	F-860	arcc	2 4 4 4	oat a	****	6317	ี่ เดือ	2520	2000	
	# { {														
INSS	မာဏဏ	်င်ဆက်လိ ဆီဆေနမ်ာ ဆီဆေနမ်ာ	-	&	4000	P410	1,000	0.000	325	0 0 ma	06 64	~~~	##/C/W	*:5°	a.
_	5555	555	mmer.	4444 550	# 44% # 8000	Section Sectin Section Section Section Section Section Section Section Section	44 44	2220	2004	4444	2204	246	4444	2000	1
35	0000	0000	9000	8000	9999	0000	6000	0000	0000	0000	3000	990000	6000	0000 0000	ŋ•ŋ€
E -	10000			-	0000	9000	9990	0000	0000	0000	0000	9000	2000		0
15	3775	សិសសិស		55.55	3475 3775 3775	3475 3475 3475	37.55 37.55 37.55		375 375 375 375	555	55.55	2000 2000 2000 2000 2000 2000 2000 200	2555 2555	8447 847 847 848 848 848 848 848 848 848	375.
¥.	**************************************		70.00		~~~~							2225 777		104110H1	•
-	10000	~~~	0000	~~~	~~~	~~~	0000	กดกล	~~~	NONA	~~~	~~~~	~~~~	NNNN	8
		0000 0000													•
	:	0000												M1444	0
\sim	10000	9444	0000	00:00	9959	0000	0000	60000	0000	9000	6000	2000	2000	2000	9.01
2	6000	9000	ໜ້ານ້ານຄ ດດດດ	ນູ້ນູ້ນູ້ນູ້ ລວວລ	ທີ່ນີ້ນີ້ນ ລວລວ	8888	8888	5555	0000	8888	8888	8888	0000		00
_	1 10101010	OMMM	WWWW	N. K.J. K.J. K.J.	NO HO HO HO	****	Rundinden	NUMM	a wwa	****	សហសមា	ພນດນ	មាយមាម	กรเกรา	•
×4.	9000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0000 0000							0000			4.50

×-	សមា សមា 	40000 00000	2000 5656	9000 9004	ພາຍ ພາຍ ພາຍ ພາຍ ພາຍ ພາຍ ພາຍ ພາຍ ພາຍ ພາຍ	กของ	พระ พระ พระ	Section of the sectio	NUMUN DODE	ออออ ออออ	5000 0000	92246	2450	2000 2000	29 00 00
LOS HR	2000 7777	4004	203E	944 666	7426 111111111111111111111111111111111111	NO DO	6-4-10 F-11-11-11-11-11-11-11-11-11-11-11-11-11	ENTERIOR NO.	SE CONTROL	MEMER 1900	6000	TELLIA	6460 F.F.M.	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	## L
AT	30,00	8838 4859 7468	9986	6035	日とちゅうこう	0~~~	200 200 200 200 200 200 200 200 200 200	50 10 5 10 80 10 4 10	50 C C C C C C C C C C C C C C C C C C C	2455 2446	8488 8488	83 70 70 90	30 20 27	98 100 100	346 981
I		0000	0000	0000		0000					0000		4000		0.2
-		0000		9000								0000			00
_	320	M372 M374 M370 M370	240 240 960 170	844 445 800 800 800	410 425 170	3,000	NOW-	400 1115 355	500 120 2800	0000	628 400 000	4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	180 6605 240	3020 875 750 130	1150
	000	4480	8420	7867 70597	232	2000	0.400 10.400	777 778 0.5	44 64 64 64	455	FF88	4894 4894	eann east	4190	30
-A	200	0400 0400	300 W	65.03	8480	1000	335	759	33.75 05.0	2000	390	2002 2003	529	5.50 5.70 5.70	8
(BTU	ļ			000	~		HHHH			-0	NV.	~~~	~~~	00M	
×	a.en	60.00	D89-	N ≠ 400	യെക്ക	20 60 80	-ano	g. cr ⊶ cc	ಬಹಿಬ=	441-00	กลเก	~2000	~o&-	240 0	-9
100N	46	90000 90000	2000 2000 3000	73.2 62.4 37.6	327 339 40	844 644 544	64 64 64	4 W.V.R. 0 00 00	4884 4874	57 61 29	3222 3222	656 656 656	67 67 67	727	55
20		40m9		2920				WORD 4				1000			200
-	!)			80084											
ಕ≎	287	2000 5000 5000 5000	ดเมาะเก	333 50 61 61 61 61	447	72.27 74.0 81.7	0000	DAWW	77.	CV C CK	4444	4 MINIT	W/W/W	300 P	61.6
-	1	-		27×21	-	-									
214)C	D GWC	♣ ₽ ₽ ₽ ₽	112 122 124 124	# M) P- 70	93 77 73	£ 20 20 €	C00%	DE: 6	C ∞ - €	MM4C		~044	1227	~ £
		•••			••						••••				
S	2-5	0 b	iaiaeim	****	0.00	** * * *			***	m in the same	5555		me ba	S ienane	5 00
ZL		7000	00,000	02.00		P-MIND		4000	37.2	92.	4400	P-10-4-10	P.C. 4.4	8000	::
5		0000	4446	0000	4444	2000	0000	0000	0000	0000	0000	4000	0000	2000	00
2	200	9900	1900.	190. 190. 190.	$\Phi\Phi\Phi\Phi\Phi$	190 190 190	5.000	2000	9999	1900	0000	\$ \$\$\$\$	9999	9666	199.
	000		0000	0000	0000	0000	0000	0000	0000	0000					٥٥
-		275 275 275 275	375 375 375 375	375 375 375 375	アトトト	375 375 375 375	375 375 375	373 375 375 375	rrr	378 378 378 378	トトトト	375 375 375	アトトト	375	375
~ ~		8000E	7.55	**************************************	~~~~	20000 20000	~~~~	5555	5:000 	55.55	5.55 	55.55	2000	45.45 4.17.	5.7
-		~~~	~~~	2000	~~~	NNNN	~~~	~~~~	NNNN	~~~	NNNN	~~~~	NNNN	~~~~	~~
_	000	0000	0000	0000	2220	0000	0000	2000	2002	0000	0000	0000	0000	0000	000
33	-00	4000	~~~	\$ 4 60 ↔		m-0-	-2-2	000m		00mm	4400	94M0	ທຣ ຈ ທ	φαα⊶	w.
02	900	0000	4400	10000	0000	5000	0000	0000	0000	0000	0000	0000	0400	2000	00
2	000	0000	2000	1 0 0 0 0 1	0000	0000	0000	0000	0000	0000	0000	9000	0000	0000	000
> 1	กเกา	ອທທທ	****	4440	ທອນທ	ຕານພາ	พพพพ	ທຕານທ	ອທຸທຸທ	0000	ທທວວ	ພທູດ	ພອທູ	งเกเง	0.4
	!														
×	เลง	೧೯೯೯	AL AND AND AND	4000 0000 0000	0000	0000	0000	9900	0000	0000	-	0000	0000	0000	5.50

HEAT LASS	00	0939E 0 8029E 0 8156E 0	3655E 0 65348E 0 6605E 0	.75295E 0 .33796E 0 .33865E 0	.56095E 0 .58832E 0 .16616E 0	90 90 90 90 90 90 90 90 90 90 90 90 90 9	.37952E 0 .40897E 0 .84435E 0 .87640E 0	78205 31455 32485 025485 032035	9955E 0 9416E 0 8767E 0	0.53939E 05 0.34902E 05 0.11986E 05 0.75694E 05	6007E 5208E 5370E 0	2971F 0 4145E 0 5377E 0	0.73953E 05 0.70207E 04 0.26459E 05 0.49177E 04	.65939E 0 .14481E 0 .36737E 0	5287E 0 0505E 0 4046E 0
75	120.	345 1545 1545 155 0	390.0 390.0 1060.0	1055 1050 1050 1050 1050	1550.0 705.0 1010.0	3350 330 300 000 000	200.0 1870.0 370.0	30000	2110.0 240.0 450.0	190.0	100.0 100.0 2605.0	3915.0 1830.0 210.0	2680 2500 400 0000		50 0 0 0 0 0 0
7. F.	140.53	284 284 294 294 297 297 297	40-0	4000		€.	2288	7.3	4000	4440	9000	080			5.7
SC	49.1 60.2	4000 4000 4000 4000	ፋ ስያፋጥ		M-82	MM40			0747 0746 0.00 0.00	4646 4646 6666		2004 2004 2004 2004		44.89 55.90 1.00 1.00 1.00	69.2 45.7
SC	9	777 772 82 82 82 83 83	70.9 71.8 71.8	40.5	400.9	55.05 5.05 5.05 5.05	00.00	ໝູກທູກ	75.5 84.6 47.0 87.9	87.0 87.9 96.7	63.6 72.8 74.1	460		52.3 711.7 48.5	48.1 48.5 5.5
35	£9.0	121.3 120.9 135.1	126.2 118.9 94.1 118.9		147 63.8 92.8 74.6	92.8 98.7 77.8 106.7	מים מים		440-	92.7 141.7 92.7 155.2	๕แล้ง	4300	151.6 69.2 67.7 75.0		127.7 96.7 70.7
2	81.3 96.1	1000011220112240011224001122400112240011224001122400000000	1103 19003 19009 19009	11111 14201 14808 1004	31 62 74	8888 4780 4780	40.00	68 90 90 1120 00 00 00 00 00 00 00 00 00 00 00 00 0	1227 1256 1266 1266 1286 1286	90.0 128.6 134.8	92.3 109.6 115.7	2000	135.0 67.0 70.7 68.9	PK 40	107 50 65 4
T TINS	153	2002	NÓWN DO&Q NWON	2000 2000 2000 2000 2000	242 107 159	159 1369 159	171. 186. 189. 275.	140. 110. 210.	NO ON	######################################	2000		248 1107 124	4404 5504 8688	212. 145. 121.
T CN	190.0	1990	1900	190°0 190°0 190°0		1900 1900 1900 1900 1900	900.	190.0 190.0 190.0	1990 1990 1900 1900	• • • •	190.0 190.0 190.0			190.0 190.0 190.0	190.0 190.0
TSTE	75.	375.0 375.0 375.0	375 575 575 60 60 60 60 60 60 60 60 60 60 60 60 60	375		ໝູນຕູເຄ	75 75 75	3775 3775 375 6.0		75 75 75		375 375 375 0 375 0	375.0 375.0 375.0	375.0 375.0 375.0	375.0 375.0 375.0
SU.	25.7	00000 00000 00000	00000 55500	00000 00000 00000	88888 8888 8888 8888 8888 8888 8888 8888	ໝູ້ພູພູ	88888 5000	20000 20000 1111	00000 50000 50000	0000 0000 0000 0000	8888 885 855 855	2222 2555 777-	0000	0000 	255.7 255.7
			4.40.4 6000 6000	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.00	00000	44.44 000000 000000	4000 0000 0000	10.00 10.00 10.00 10.00	10000	86.65 0000 0000	2000 0000 0000 0000	12.00 2.00 1.50	00000	100 000 000 000 000
02	100	0000	0000	0000	0450 0400	0000	0000	2000	0000	184 184 244 000 000	0000	9900	0000	0000	14 . 60 5 . 60 2 . 50
(FT)	7.00 5.00	សមសេង សមសេង ឧភភភភ	6000 0000 0000	66.66 5.00 5.00 5.00 5.00 5.00 5.00 5.00	7.00 7.00 7.00 7.00	0440	7.00	71.0	7.17	0.00 7.50 7.50	4455	7.00	9999	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900
×L	5.50	ຄທທວ	9000	0000	0000	0000	0200	0000	0000	00000	9000	0000	0000	0000	000

HEAT LOSS (BTU/HR)	10 361	34E 05 34E 05 36E 05	65 05 05 05 05 05 05 05 05 05 05 05 05 05	62E 05 69E 05 33E 05	9490 9490 9490 9490 9490 9490	71E 05	
HEA)	0.769	0.24 0.760 0.847	0000	0000	0000 	0.16771E	
	0.0	100 - 0 290 - 0 320 - 0	29000	8 6	280	450.0	
HEAT LOSS (BTU/HR*FT)	192,37	2621-51 257-30 262-30 262-30	282.59 100.90 262.30 305.74	100.90 257.70 309.61 282.59	282.59 141.01 209.60 257.70	372.70	
- :	53.0	6666 6886 6886 6886 6886 6886 6886 688	66.46 9405 69405 69405	6666 6666 6780 6780	646 888 888 878 878 878	78.6	
TCONC (F)		64.7 67.1 68.1	41. 42.0 58.1 75.1	42.0 75.4 71.4	659 4.00 4.00 4.00 4.00	87.2	
TRUCK (F)		11111111111111111111111111111111111111	121.0 81.7 113.6	81.7 113.6 127.4	121.0 96.7 105.6 113.6	143.6	
TINSR (F)	0.06	86.2 105.2 101.6 105.2	104.5 105.0 107.2	90.0 101.6 110.5 104.5	104.5 79.7 101.6	128.4	
TINSS (F)	170.2	189.7 195.0 195.8	2420	121 1935 2035 8 8 8	203.8 145.0 176.7	239.0	BTU/HR MBTU/YR
CND1	0.0	1990	1900 1900 1900 1900 1900 1900	1900 1900 1900 1900 1900	190.0 190.0 190.0	190.0	08 BT 06 MB
	375.0	375.0 375.0 375.0	375.0 375.0 375.0	3778 3778 0.00 0.00 0.00	3.75 3.75 3.75 0.05 0.05	375.0	0.2335E 0.2045E
TSU (F	25.	00000 55555 5555	00000 50000 50000	2222 2555 2555 2555	0000 0000 0000	25.7	IDORS=
OZ!		6.050 0000 0000	1001 0000 0000	00.40 0000 0000	NO4N eeNe aone	10.00	HEAT LOSS FROM UTIL
SPO	1	0000	12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	24.000 0000 0000	12 55.00 10.000	20.00	LOSS FF
(FT)	0.00	6600 0000	0000	0000	0000	9.00	HEAT
(FT	0.00	7.07 0000 0000	0000		7000	7.50	TOT AL