Mat305

Calcul matriciel et fonctions de plusieurs variables

1. Applications

La notion d'application est une généralisation de la notion de fonction réelle (de \mathbb{R} dans \mathbb{R}).

Définition 1.1 (Application). Une application $f: E \to F$ est la donnée d'un ensemble de départ E, d'un ensemble d'arrivée F est d'un procédé qui associe à chaque élément de E un unique élément de F. Pour tout $x \in E$ on note f(x) l'élément de F associé à x qu'on appelle image de x par f.

Remarque 1.1. Certains éléments de F peuvent n'être l'image d'aucun élément de E. Par exemple si on considère l'application

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x(x-1) \end{array} \right.$$

alors, pour $y < -\frac{1}{4}$, il n'existe aucun $x \in \mathbb{R}$ tel que f(x) = y et, pour $y > -\frac{1}{4}$, il en existe deux.

Définition 1.2 (Images et antécédents).

Soit $f: E \to F$ une application.

- Pour un élément y de F, on appelle **antécédent** de y tout $x \in E$ tel que y = f(x). Il peut y en avoir plusieurs, un seul ou aucun.
- On définit l'image de l'application $f: E \to F$ par

$$Im(f) = f(E) = \{f(x) \mid x \in E\} = \{y \in F \mid \exists x \in E, y = f(x)\}$$

On a $Im(f) \subset F$.

- Une application telle que Im(f) = F est dite surjective : tout $y \in F$ a au moins un antécédent par f.
- Une application injective est une application telle que tout $y \in F$ a au plus un antécédent par f.
- Une application qui est à la fois surjective et injective est dite bijective.

Définition 1.3 (Graphe). Soit $f: E \to F$ une application. On appelle graphe de f le sous-ensemble de $E \times F$ défini par

$$Gr(f) = \{(x, f(x)) \mid x \in E\} = \{(x, y) \in F \mid \exists x \in E, y = f(x)\}$$

Remarque 1.2. Un graphe est donc un sous-ensemble de $E \times F$, dans votre scolarité vous avez donc représenté des graphes de fonctions réelles c'est-à-dire que vous avez représenté un sous ensemble de $\mathbb{R} \times \mathbb{R}$ (le plan) qui est le plus souvent une courbe.

Exercice 1.1. Dessiner les graphes des applications $\frac{1}{2}$

$$f_{1}: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto & x(x-1)(x-2) \end{cases}$$

$$f_{2}: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto & \left|\frac{x}{2}+3\right| \end{cases}$$

$$f_{3}: \begin{cases} \mathbb{N} & \to \mathbb{Z} \\ n & \mapsto & 10-n \end{cases}$$

Définition 1.4 (Composée d'applications).

Étant données deux applications $f: E \to F_1$ et $g: F_2 \to G$, l'application

$$x \mapsto g(f(s))$$

est bien définie si une des deux conditions suivantes est réunie

- $\begin{array}{l} F_1 \subset F_2, \\ f(E) \subset F_2. \end{array}$

La deuxième condition est moins contraignante que la première. Dans chacun de ces cas on définit

$$g \circ f : \left\{ \begin{array}{ccc} E & \to & G \\ x & \mapsto & g(f(x)) \end{array} \right.$$

qu'on appelle composée de f par q.

Exercice 1.2. Pour les situations suivantes $g \circ f$ et $f \circ g$ sont-elles bien définies? dans le cas d'une réponse positive, a-t-on $g \circ f = f \circ g$?

- $f_1(x) = 2x$ et $g_1(x) = x + 1$,
- $-f_2(x) = \ln(x) \text{ et } g_2(x) = 5x,$
- $f_3(x,y) = (x+y, xy, ye^x)$ et $g_3(x) = (x^3, e^x)$,
- pour $n \in \mathbb{N}$, $f_4(n) = 2n 5$ et $g_4(x) = E(x)$

où E(x) est la partie entière de x. Attention, E(1.2) = 1 mais E(-1.2) = -2.

Définition 1.5.

— On appelle application identité sur E l'application

$$id_E: \left\{ \begin{array}{ccc} E & \rightarrow & E \\ x & \mapsto & x \end{array} \right.$$

- On dit que $f: E \to F$ est inversible s'il existe $g: F \to E$ telle que $g \circ f = id_E$ $et \ f \circ g = id_F.$
- on note $g = f^{-1}$ et on l'appelle l'application réciproque de f.

Attention, la notation f^{-1} n'a rien à voir avec $\frac{1}{f}$.

Exercice 1.3. Reprendre les fonction f_i et g_i définies plus haut et voir si elles sont inversibles.

Nous avons vu les notions d'application bijective et d'application inversible. Ce sont en fait la même propriété.

Proposition 1.1. Une application f est inversible si et seulement si elle est bijective.

Preuve.

 \bullet Supposons tout d'abord que f est inversible. Alors il existe g comme ci-dessus.

Montrons tout d'abord que f est surjective : en effet comme $f \circ g = id_F$ alors pour tout $y \in F$ on a $f \circ g(y) = y$ et donc f(g(y)) = y ce qui implique que y a au moins g(y) comme antécédent par f.

Montrons maintenant que f est injective : soit x_1 et x_2 deux éléments distincts de E. Comme $x_1 \neq x_2$ on obtient que $g \circ f(x_1) = x_1 \neq x_2 = g \circ f(x_2)$. Cela implique que $f(x_1) \neq f(x_2)$ et donc que x_1 et x_2 n'ont pas la même image par f.

L'application f est injective et surjective, elle est donc bijective.

• Supposons maintenant que f est bijective. Alors tout élément y de F a un unique antécédent par f. Ceci permet de définir l'application g qui a $y \in F$ lui associe son unique antécédent par f.

Alors pour x dans E on a g(f(x)) = x car f(x) a pour seul antécédent x donc son image par g est x.

Et pour y dans F on a f(g(y)) = y car g(y) est un antécédent de y par f donc f(g(y)) = y.

Ainsi $g \circ f = id_E$ et $f \circ g = id_F$. g est donc l'application réciproque de f et f est inversible.

Si une application $f: E \to F$ est inversible alors le graphe de sa réciproque f^{-1} est $\{(f(x), x) \mid\mid x \in E\} \subset F \times E$.

Dans les cas où $E = F = \mathbb{R}$, le graphe de f^{-1} est le symétrique orthogonal du graphe de f par rapport à la diagonal d'équation y = x dans $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

2. Applications linéaires de \mathbb{R}^n dans \mathbb{R}^p

Rappels : \mathbb{R}^n est l'ensemble des *n*-uplets de réels :

$$\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R} \text{ pour tout } 1\leq i\leq n\}.$$

C'est un \mathbb{R} -espace vectoriel (on verra plus tard la définition) c'est-à-dire en gros qu'on a une addition dans \mathbb{R}^n :

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

et on peut multiplier un élément de \mathbb{R}^n (appelé vecteur) par un réel :

$$\lambda(x_1,\ldots,y_n)=(\lambda x_1,\ldots,\lambda y_n).$$

Définition 2.1.

Une application $f: \mathbb{R}^n \to \mathbb{R}^p$ est dite linéaire lorsque pour tout $\lambda \in \mathbb{R}$ et tout couple de vecteurs $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$ on a

$$\begin{array}{rcl} f(\overrightarrow{v} + \overrightarrow{w}) & = & f(\overrightarrow{v}) + f(\overrightarrow{w}) \\ f(\lambda \overrightarrow{v}) & = & \lambda f(\overrightarrow{v}) \end{array}$$

Exemple 2.1. — les fonctions linéaires réelles $x \mapsto ax$ sont des applications linéaires de \mathbb{R} dans \mathbb{R} .

- l'application $(x, y) \mapsto (y, x)$, la symétrie orthogonal par rapport à l'axe y = x, est une application linéaire (c'est aussi une isométrie) de \mathbb{R}^2 dans \mathbb{R}^2 .
- l'application $(x,y) \mapsto (x,0)$, la projection orthogonal sur l'axe y=0, est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 .
- Soient a, b, c, d quatre réels, alors $(x, y) \mapsto (ax + by, cx + dy)$ est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 . Toute application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 peut se mettre sous cette forme.

Proposition 2.1. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire. Alors pour tous $\lambda_1, \ldots, \lambda_k$ dans \mathbb{R} et tous $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ vecteurs de \mathbb{R}_n on a:

$$f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_k \overrightarrow{v_k}) = \lambda_1 f(\overrightarrow{v_1}) + \dots + \lambda_k f(\overrightarrow{v_k}).$$

Preuve. Nous allons faire une preuve par récurrence. La propriété que nous voulons montrer pour $k \in \mathbb{N}$ est notée $H_k : \forall \ \lambda_1, \dots, \lambda_k \in \mathbb{R}, \ \forall \ \overrightarrow{v_1}, \dots, \overrightarrow{v_k} \in \mathbb{R}^n$:

$$f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_k \overrightarrow{v_k}) = \lambda_1 f(\overrightarrow{v_1}) + \dots + \lambda_k f(\overrightarrow{v_k}).$$

Nous initions le processus pour $k=1:H_1$ est la propriété 2 de la définition de linéarité. Nous prouvons ensuite l'hérédité : nous supposons que H_k est vraie et nous essayons de montrer que H_{k+1} est vraie. On a

$$f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_{k+1} \overrightarrow{v_{k+1}}) = f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_k \overrightarrow{v_k}) + f(\lambda_{k+1} \overrightarrow{v_{k+1}})$$

grâce à la première propriété de la définition de linéarité. Puis en appliquant la deuxième propriété au dernier terme on obtient

$$f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_{k+1} \overrightarrow{v_{k+1}}) = f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_k \overrightarrow{v_k}) + \lambda_{k+1} f(\overrightarrow{v_{k+1}})$$

et enfin en appliquant la propriété ${\cal H}_k$ on obtient ${\cal H}_{k+1}$:

$$f(\lambda_1 \overrightarrow{v_1} + \dots + \lambda_{k+1} \overrightarrow{v_{k+1}}) = \lambda_1 f(\overrightarrow{v_1}) + \dots + \lambda_k f(\overrightarrow{v_k}) + \lambda_{k+1} f(\overrightarrow{v_{k+1}})$$

Dans la suite, on notera les éléments de \mathbb{R}^n et de \mathbb{R}^p en colonne :

$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \qquad \overrightarrow{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$$

Définition 2.2 (Base canonique).

On appelle base canonique de \mathbb{R}^n le n-uplet de vecteurs $(\overrightarrow{e_1}, \dots, \overrightarrow{e_n})$ ordonné où

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \overrightarrow{e_i} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} avec \ 1 \ \grave{a} \ la \ \grave{i}\grave{e}me \ coordonn\acute{e}e \ , \quad \overrightarrow{e_n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Tout vecteur $\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ s'écrit de façon unique dans la base canonique

$$\overrightarrow{x} = x_1 \overrightarrow{e_1} + \dots + x_n \overrightarrow{e_n}.$$

et pour toute application linéaire $f: \mathbb{R}^n \to \mathbb{R}^p$ on a

$$f(\overrightarrow{x}): x_1 f(\overrightarrow{e_1}) + \dots + x_n f(\overrightarrow{e_n}).$$

Ainsi, si on note pour chaque $\overrightarrow{e_i}$:

$$f(\overrightarrow{e_i}) = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{pi} \end{pmatrix}$$

alors

$$f(x_1, \dots, x_n) = f(x_1 \overrightarrow{e_1} + \dots + x_n \overrightarrow{e_n})$$

$$= x_1 f(\overrightarrow{e_1}) + \dots + x_n f(\overrightarrow{e_n})$$

$$= x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{p1} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{pn} \end{pmatrix}$$

$$= \begin{pmatrix} x_1 a_{11} + \dots + x_i a_{1i} + \dots + x_n a_{1n} \\ \vdots \\ x_1 a_{p1} + \dots + x_i a_{pi} + \dots + x_n a_{pn} \end{pmatrix}$$

$$= A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

οù

$$A = \begin{pmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{p1} & \dots & a_{pi} & \dots + & a_{pn} \end{pmatrix}.$$

On a donc le théorème

Theorème 2.1. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire et A la matrice dont les colonnes sont les vecteurs images de la base canonique alors, pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$ on a

$$f(x_1,\ldots,x_n)=A\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}.$$

Theorème 2.2. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ et $g: \mathbb{R}^p \to \mathbb{R}^q$ deux applications linéaires. Soit A la matrice de f et B la matrice de g alors $g \circ f$ est linéaire et a pour matrice B.A.

Preuve. Il s'agit simplement de montrer que pour tout $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ on a

$$B(AX) = (BA)X.$$

En effet, le terme de gauche étant l'image de X par $g \circ f$ et le terme de droite étant l'image de X par l'application dont la matrice dans la base canonique est BA.

La preuve est principalement calculatoire. La matrice C=BA est une matrice $q\times n$ dont les coefficients valent

$$c_{ij} = \sum_{k=1}^{p} b_{ik} a_{kj}, \ \forall i \in [1, \dots, q], \ \forall j \in [1, \dots, n].$$

Donc la i-ème coordonnée de
$$(BA)$$
. $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ vaut $\sum_{j=1}^n \left(x_j \sum_{k=1}^p b_{ik} a_{kj} \right)$

D'autre part la k-ème coordonnée de $Y=A\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)$ vaut $Y_j=\sum_{j=1}^n a_{kj}x_j$ et donc la

i-ème coordonnée de
$$B\left(A, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right)$$
 vaut $\sum_{k=1}^p b_{ik} \sum_{j=1}^n a_{kj} x_j$.

Les deux double-sommes étant égales on en déduit que (BA)X = B(AX). Ce qu'il fallait démontrer.

Theorème 2.3. Si $f: \mathbb{R}^n \to \mathbb{R}^p$ est une application linéaire inversible alors n = p et son inverse f^{-1} est également linéaire, de matrice B l'inverse de $A: AB = BA = I_n$.

Preuve. L'application identité sur \mathbb{R}^n est linéaire et sa matrice représentative est I_n la matrice diagonale avec des 1 sur la diagonale. Donc, si une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^p$ de matrice A est inversible, et si son inverse g est aussi linéaire et a pour matrice B, on doit avoir $BA = I_n$ et $AB = I_p$.

D'autre part, on verra plus tard que si une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^p$ est inversible alors p = n.

Il ne nous reste plus qu'à prouver que g est linéaire. Soit $\lambda \in \mathbb{R}$ et $y_1, y_2 \in \mathbb{R}^p$. Comme g est l'inverse de f qui est bijective, il existe x_1 et x_2 tels que $f(x_1) = y_1$ et $f(x_2) = y_2$. On a aussi $g(y_1) = x_1$ et $g(y_2) = x_2$.

On a $f(g(y_1 + y_2)) = y_1 + y_2 = f(g(y_1)) + f(g(y_2)) = f(g(y_1) + g(y_2))$ car $g = f^{-1}$ et pour la dernière égalité parce que f est linéaire. On peut alors appliquer g et trouver

$$g(y_1 + y_2) = g(f(g(y_1 + y_2))) = g(f(g(y_1) + g(y_2))) = g(y_1) + g(y_2),$$

et on a montré la première identité de la définition de linéarité pour g.

On a
$$f(g(\lambda y_1)) = \lambda y_1 = \lambda f(g(y_1)) = f(\lambda g(y_1))$$
 bet donc en appliquant s

$$g(\lambda y_1) = g(f(g(\lambda y_1))) = g(f(\lambda g(y_1))) = \lambda g(y_1),$$

ce qui prouve la deuxième identité de la définition de linéarité pour g. On a démontré que g est linéaire.