MATHS I Monsoon Semester – 2016-17

Tutorial exercise for week commencing Monday 5th September 2016.

- 1. Given the following vectors in \mathbb{R}^3 : $\mathbf{u} = (1,3,5)$, $\mathbf{v} = (1,4,6)$, $\mathbf{w} = (2,-1,3)$ and $\mathbf{b} = (6,5,17)$. Does $\mathbf{b} \in \mathbb{W} = \text{span } \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. If the answer to b) is yes, express \mathbf{b} as a linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- 2. Let U and W be two subspaces of the vector space V. Show that $U \cap W$ is also a subspace of V.
- 3. We define $U + W = \{u + w : u \in U, w \in W\}$. Show that U + W is a subspace of V, and moreover, U + W is the smallest subspace of V which contains both U and W.
- 4. Verify that the set $F = Q(\sqrt{2}) = \{a + b\sqrt{2} : a,b \in Q\}$, with the usual addition and multiplication is a field. (NB: You have to verify closure, as well as the zero, additive inverse, unity and multiplicative inverse properties. Since F is a subset of R, associative, commutative and distributive properties naturally hold.)
- 5. Find the multiplicative inverses of all the non-zero elements in $\langle Z_7, \oplus, \otimes \rangle$. (NB: This verifies that Z_p is a field, in the particular case p = 7.)
- 6. A sequence $\langle a_n \rangle$ is said to be bounded if there exists a real number M > 0 such that $|a_n| \leq M$ for all n. M is said to be an upper bound for the sequence. Note that different sequences may have different upper bounds. We use the notation l_∞ for the set of all bounded sequences in $\mathcal{R}_{,\infty}^{\infty}$.
 - a) Show that l_{∞} is a subspace of \mathcal{R}^{∞} .
 - b) Is every sequence in $l_{\infty} \, convergent$ (YES/NO) ? Justify your answer.

SOLUTIONS FOLLOW

01.

Given the following vectors in [R3: 1 = (1, 3, 5), 0 = (1, 4, 6),

w= (2,-1, 3) and [a= (6,5,17).

To answer both the parts, we first now-reduce the augmented matrix for the system $A\bar{x} = b$ where $A = L\bar{u}$, \bar{u} , \bar{u} J

$$\begin{bmatrix} 1 & 1 & 2 & 1 & 6 \\ 3 & 4 & -1 & 1 & 5 \\ 5 & 6 & 3 & 1 & 7 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{bmatrix} 1 & 1 & 2 & 1 & 6 \\ 0 & 1 & -7 & 1 & -13 \\ \hline R_3 \to R_3 - 5R_1 & 0 & 1 & -7 & -13 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 & 6 \\ 0 & 1 & -7 & -13 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $R_1 \rightarrow R_2 \rightarrow \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & -7 & -13 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

1) is the RREF matrix of the augmented matrix.

92. Let U and W he subspaces of the vector space V. Show that UNW is also a subspace of V.

Anc: We apply Proposition 8.

1. $\overline{o} \in U$, mice U is a subspace $\overline{o} \in W$, since W is a subspace $\overline{o} \in U \cap W$

2. Closure under addition. Suppose vo, v2 & UNW.

Thun, te, Ell and te_2 Ell, and sor te, + to_2 Ell, mice llis a selespace. Similarly, te, + to_2 EW.

·· vit v2 E UNW.

3. Unme under scalar multiplication: Suppose c is any scalar, and TEEUNW.

Thun, te e U => co e U, as U is
a subspace.

Also, te EW => ct EW, mile Wis a contrface.

i. cot & UNW, as required.

93.

The U and W are subspaces of V.

Show that U+W= & with it is is ey,

is & W & in again a subspace of V.

Furthermore, show that U+W is the

smallest subspace of V containing both

U and W.

Anni the verity the three properties given in

1. 0 = 0 +0, where 0 64, 0 6W,

2. Spring 07, 102 & U. HW.

Then 02 = U, + J1 | W; EU.

U2 = U4 + W2 | W; EW.

= \(\bar{u}_1 + \bar{u}_2 = (\bar{u}_1 + \bar{u}_1) + (\bar{u}_2 + \bar{u}_2)\)
= (\bar{u}_1 + \bar{u}_2) + (\bar{u}_1 + \bar{u}_2)\)
= (\bar{u}_3 + \bar{u}_3, \text{ where } \bar{u}_3 \in U, \bar{u}_3 \in W\)
= (\bar{u}_1 + \bar{u}_2) \in \text{ Where } \bar{u}_3 \in U\)

3. Finally, if CEF, then $C\overline{\omega}_i = C(\overline{u}_i + i\overline{\omega}_i) = c\overline{u}_i + c\overline{\omega}_i$ = $\overline{u}_i + \overline{\omega}_i$ $\in U + W$.

NOW, suppose X is a subspace of Vs.t. $U \subseteq X$ and $W \subseteq X$. Let $\overline{u} = \overline{u} + \overline{w}$ be any element of $U + \overline{w}$. Then, $\overline{u} \in X$ and $\overline{w} \in X$. Hence, $\overline{u} + \overline{w} \in X$ by additive closure.

Let $W \subseteq X$ as desired.

4 % Verity that Q (J2) = { a+bJ2 : a, b & 9} is a field.

Avoure: Since Q (Jz) is a nutret of IR, we don't have to prove all the properties.

The own uneiving ones are:

(i) addition down: I a + 6 52 and c+ dx = € @ (√2), then

(a+bJ2)+ (c+dJ2)= (a+c)+(++d)J2

(1) additive identity: OF Q(J2) + Q(J2)

(iii) additive viverse: (-a,1+(-b) J2 (- Q(V2))
is the additive viverse of a+4J2

(iv) multiplicative closure: (a+1352)(c+d52) = ac + advis + bedz + & 2hd

= (ac+ 24d) + (ad+bc) \(\sigma \) \(\tag{V_2} \)

(V) multiplicative : huntity: 1 & Q (J2)

(vi) multiplicative inverse; if 0 = a+b J2 ∈ Q (J2)

its mouse (in R) is _ a+1.52 x, say

We need to show x & Q (1/2).

 $B + x = \frac{1}{a+bJ2} = \frac{1}{a+bJ2} = \frac{a-bJ2}{a-bJ2} = eQ(5)$

 $= \frac{a - h\sqrt{2}}{a^2 - 2h^2} = \frac{a}{a^2 - 2h^2} + \left(\frac{-h}{a^2 - 2h^2}\right)\sqrt{2}$

=> V2 E @ => <=.

Remark: - Fields like & (J2) are known as algebraic number fields and are used extensively in number theory. Q5 Recall that $Z_7 = {20,1,2,...,6}$ with multiplication defined by a Q le = (ax b) (mod 7). Clearly, the multiplicative miverse of 1 is 1. For the others: 204 = 8 (mod7) = 2 and 25 2-1 = 4 , so 4 = 2 Also, 3 (5= 15 (mod 7) = 1 3-1 = 5, 5-1 = 3 Finally, 6 06 = 36 (mod 7) = 1 so 6" = 6. We get the following table; X 1 2 4 5 4 5

Q6. Before commencing the consumer, we note that it (and is bounded, and Mis an bound for can, then I and < M for all n. If now M, > M, Then M, is also an upper bound for Lany. (a) To show los is a substrace, we use 1. Clearly, the zero organice, LOVE &. 2. Additive chome: Suppose (an), (bn) 6 los. Thun, land & M, for some M, >0 for all n and It-nl & M2 & for nome M2 >0 for all n,
Then, for the roum sequence (an) + 2 bn =

(an+bn), we have; - property of absolute lantbnl < land+lbnl values, known < M, + M2, for all n. or triangle Hence, M3= M1+M2 is an mequality upper bound for (an) + (bn) Kaint Kunt e loo 3. Closure under scaler multiplication: ±8 (an) E lo and CE IR, then clant = {can}. I and & M, for some pa, for But then I can | \(| c(| an | \le cM, frall n, i.e. clant = Leany in a bounded sequence, the

96, (cont'd)

8

i'.e. c (an) e loo.

(h) Is every sequence ni los connergent?

Easy Fo find counter-examples, $\Delta = \{1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, \dots \}$

(an) where an = (-1)

Actually, it can be shown that every evenuergent sequence is bounded, or in other worth, c is a subspace of 100, or 000 0

This is difficult, interested students may