Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

deeplearning.ai

Part of Speech Tagging

Outline

- What is part of speech tagging?
- Markov chains
- Hidden Markov models
- Viterbi algorithm
- Example
- Coding assignment!

What is part of speech?

```
Why not learn something?

adverb adverb verb noun punctuation mark, sentence closer
```

Part of speech (POS) tagging

Part of speech tags:

lexical term	tag	example
noun	NN	something, nothing
verb	VB	learn, study
determiner	DT	the, a
w-adverb	WRB	why, where

Why not learn something?

WRB RB VB NN .

Applications of POS tagging

Named entities

Co-reference resolution

324m

Speech recognition

Markov Chains

Example

```
Why not learn ...

verb verb?

noun?
...?
```


Part of Speech Dependencies

```
Why not learn ...

verb verb?

noun?
...?
```

The Most Likely Next Word

Why not learnswimming? **verb noun**

Less Likely Words

Why not learnswim? **verb verb**

Visual Representation

What are Markov chains?

States

deeplearning.ai

Markov Chains and POS Tags

POS tags as States

Why not **learn** something?

Why not **learn** something?

Why not **learn** something?

The transition matrix

		NN	VB	0
$A = \frac{1}{2}$	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

The transition matrix

$A = \frac{1}{2}$		NN	VB	0
	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

$$\sum_{j=1}^{N} a_{ij} = 1$$

The first word

Why not learn something?

NN?

VB?

0?

Initial probabilities

		NN	VB	0
	π (initial)	0.4	0.1	0.5
=	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

Transition table and matrix

		NN	VB	0
	π (initial)	0.4	0.1	0.5
A =	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

$$A = \begin{pmatrix} 0.4 & 0.1 & 0.5 \\ 0.2 & 0.2 & 0.6 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$$

Summary

$$Q = \{q_1, \dots, q_N\}$$

Transition matrix

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N+1,1} & \dots & a_{N+1,N} \end{pmatrix}$$

deeplearning.ai

Hidden Markov Models

Hidden Markov Model

jump = verb

machine

jump = ?

*observable

		NN	VB	О
	π (initial)	0.4	0.1	0.5
A =	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

Emission probabilities

Emission probabilities

B =		going	to	eat	•••
	NN (noun)	0.5	0.1	0.02	
	VB (verb)	0.3	0.1	0.5	
	O (other)	0.3	0.5	0.68	

Emission probabilities

		going	to	eat	
$B = \frac{1}{2}$	NN (noun)	0.5	0.1	0.02	
	VB (verb)	0.3	0.1	0.5	
	O (other)	0.3	0.5	0.68	

The emission matrix

$$\sum_{j=1}^{V} b_{ij} = 1$$

He lay on his back.

I'll be back.

Summary

States Transition matrix Emission matrix $Q = \{q_1, \dots, q_N\}$ $A = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N+1,1} & \dots & a_{N+1,N} \end{pmatrix}$ $B = \begin{pmatrix} b_{11} & \dots & b_{1V} \\ \vdots & \ddots & \vdots \\ b_{N1} & \dots & b_{NV} \end{pmatrix}$

deeplearning.ai

Calculating Probabilities

transition probability: + = $\frac{2}{3}$

1. Count occurrences of tag pairs

$$C(t_{i-1},t_i)$$

1. Count occurrences of tag pairs

$$C(t_{i-1},t_i)$$

1. Calculate probabilities using the counts

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

The corpus

In a Station of the Metro

The apparition of these faces in the crowd:

Petals on a wet, black bough.

Preparation of the corpus

```
<s> In a Station of the Metro
<s> The apparition of these faces in the crowd
```

<s> Petals on a wet , black bough .

Preparation of the corpus

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
.
```

<s> petals on a wet , black bough .

deeplearning.ai

		NN	VB	0
	π			
A =	NN (noun)			
	VB (verb)			
	O (other)			

<s> in a station of the metro <s> the apparition of these faces in the crowd

<s> petals on a wet , black bough .

		NN	VB	0
	π			
A =	NN (noun)			
	VB (verb)			
	O (other)			

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
	π	$C(\pi, NN)$		
A =	NN (noun)	C(NN,NN)		
	VB (verb)	C(VB,NN)		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

A =		NN	VB	0
	π	1		
	NN (noun)	C(NN,NN)		
	VB (verb)	C(VB,NN)		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

Ezra Pound -

1913

		NN	VB	0
	π	1		
A =	NN (noun)	0		
	VB (verb)	C(VB,NN)		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
A =	π	1		
	NN (noun)	0		
	VB (verb)	0		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

Ezra Pound -

1913

A =		NN	VB	0
	π	1		
	NN (noun)	0		
	VB (verb)	0		
	O (other)	6		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .

Ezra Pound -
```

1913

		NN	VB	0
	π	1		
A =	NN (noun)	0		
	VB (verb)	0		
	O (other)	6		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
A =	π	1	0	
	NN (noun)	0	0	
	VB (verb)	0	0	0
	O (other)	6	0	

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
	π	1	0	2
A =	NN (noun)	0	0	
	VB (verb)	0	0	0
	O (other)	6	0	

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

Ezra Pound -

1913

		NN	VB	0
A =	π	1	0	2
	NN (noun)	0	0	6
	VB (verb)	0	0	0
	O (other)	6	0	

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd

<s> petals on a wet , black bough .
Ezra Pound -
1913
```

A =		NN	VB	0
	π	1	0	2
	NN (noun)	0	0	6
	VB (verb)	0	0	0
	O (other)	6	0	8

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .

Ezra Pound -
```

1913

		NN	VB	0
	π	1	0	2
A =	NN	0	0	6
	VB	0	0	0
	О	6	0	8

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

		NN	VB	0	
	π	1	0	2	3
A =	NN	0	0	6	6
	VB	0	0	0	0
	0	6	0	8	14

$$P(\text{NN}|\pi) = \frac{C(\pi, \text{NN})}{\sum_{j=1}^{N} C(\pi, t_j)} = \frac{1}{3}$$

		NN	VB	0	
	π	1	0	2	3
A =	NN	0	0	6	6
	VB	0	0	0	0
	0	6	0	8	14

$$P(NN|O) = \frac{C(O, NN)}{\sum_{j=1}^{N} C(O, t_j)} = \frac{6}{14}$$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

Smoothing

		NN	VB	0	
	π	1+ε	0+ε	2+ε	3+3*ε
A =	NN	0+ε	0+ε	3+6	6+3*ε
	VB	3+0	0+ε	3+0	0+3*ε
	0	3+6	3+0	8+ε	14+3*ε

$$P(t_{i}|t_{i-1}) = \frac{C(t_{i-1}, t_{i}) + \epsilon}{\sum_{j=1}^{N} C(t_{i-1}, t_{j}) + N * \epsilon}$$

Smoothing

A =		NN	VB	0
	π	0.3333	0.0003	0.6663
	NN	0.0001	0.0001	0.9996
	VB	0.3333	0.3333	0.3333
	0	0.4285	0.0000	0.5713

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i) + \epsilon}{\sum_{j=1}^{N} C(t_{i-1}, t_j) + N * \epsilon}$$

deeplearning.ai

Populating the Emission Matrix

Emission probabilities

Count: 2

Count: 3

emission probability: You = 3/3

		in	а	
	NN (noun)			
B =	VB (verb)			
	O (other)			

<s> in a station of the metro</s>
<s> the apparition of these faces in the crowd</s>
:
<s> petals on a wet , black bough .</s>

		in	a	
	NN (noun)	$C(\mathrm{NN,in})$		
B =	VB (verb)	C(VB, in)		
	O (other)	C(O, in)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		in	а	
	NN (noun)	0		
B =	VB (verb)	C(VB, in)		
	O (other)	C(O, in)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		in	а	
	NN (noun)	0		
B =	VB (verb)	0		
	O (other)	C(O, in)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

The emission matrix

		in	a	
B =	NN (noun)	0		
	VB (verb)	0		
	O (other)	2		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

Ezra Pound -1913

The emission matrix

$$P(w_i|t_i) = \frac{C(t_i, w_i) + \epsilon}{\sum_{j=1}^{V} C(t_i, w_j) + N * \epsilon}$$
$$= \frac{C(t_i, w_i) + \epsilon}{C(t_i) + N * \epsilon}$$

Summary

- 1. Calculate transition and emission matrix
- 1. How to apply smoothing

deeplearning.ai

The Viterbi Algorithm

Why not learn something?

Probability for this sequence of

hidden states: 0.0003

Viterbi algorithm – Steps

- 1. Initialization step
- 2. Forward pass
- 3. Backward pass

		W ₁	W ₂	 W _K
C =	t ₁			
C =				
	t _N			

		W ₁	W_2	 w _K
D =	t ₁			
	t _N			

deeplearning.ai

Viterbi: Initialization

Viterbi algorithm – Steps

1. Initialization step

Initialization step

		W ₁	W ₂	 w _K
C =	t ₁	C _{1,1}		
	t _N	C _{N,1}		

$$c_{i,1} = \pi_i * b_{i,cindex(w_1)}$$
$$= a_{1,i} * b_{i,cindex(w_1)}$$

Initialization step

		W ₁	W ₂	 w _K
D =	t ₁	d _{1,1}		
	t _N	d _{N,1}		

$$d_{i,1} = 0$$

deeplearning.ai

Viterbi: Forward Pass

Viterbi algorithm – Steps

C =		W ₁	W ₂	 w _K
	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
	t _N	c _{N,1}	c _{N,2}	c _{N,K}

$$c_{i,j} = \max_{k} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

C =		W ₁	W_2	 w _K
	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
	•••			
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_k c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

C =		W ₁	W ₂	 w _K
	t ₁	c _{1,1}	C _{1,2}	C _{1,K}
	t _N	c _{N,1}	c _{N,2}	c _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

C =		W ₁	W ₂	 w _K
	t ₁	c _{1,1}	C _{1,2}	C _{1,K}
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

		W ₁	W ₂	 w _K
C =	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
	t _N	c _{N,1}	c _{N,2}	c _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

		W_1	W ₂		w _K				
) =	t ₁	d _{1,1}	d _{1,2}		d _{1,K}				
	•••								
	t _N	$d_{N,1}$	d _{N,2}		d _{N,K}				
7									
$a_{k,j} = \max_{k} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$									
$= \operatorname{argmax} c_{k,i-1} * a_{k,i} * b_{i, aimdom(a,i)}$									

deeplearning.ai

Viterbi: Backward Pass

Viterbi algorithm – Steps

$$s = \operatorname*{argmax}_{i} c_{i,K}$$

		W ₁	W ₂	 w _K
D =	t ₁	d _{1,1}	d _{1,2}	d _{1,K}
	t _N	d _{N,1}	d _{N,2}	d _{N,K}

		W ₁	W_2	W ₃	W_4	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

<s></s>	w1	w2	
	w3	w4	
	w5		

\sim	
(:	
\sim	

	w ₁	W_2	W_3	W ₄	W ₅
t ₁	0.25	0.125	0.025	0.0125	0.01
t_2	0.1	0.025	0.05	0.01	0.003
t_3	0.3	0.05	0.025	0.02	0.0000
t ₄	0.2	0.1	0.000	0.0025	0.0003

$$s = \operatorname*{argmax}_{i} c_{i,K} = 1$$

<s></s>	w1	w2	
	w3	w4	
	w5		

		W ₁	W_2	W ₃	W ₄	w ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
'	t ₄	0	4	4	3	1

<s></s>	w1	w2	
	w3	w4	
	w5		

t₁

		W ₁	W_2	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
'	t ₄	0	4	4	3	1

<s></s>	w1 w3 w5	w2 w4	

t₁

		W ₁	W_2	W ₃	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

		W ₁	W ₂	W ₃	W_4	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	4	4
	t ₄	0	4	4	3	1

		W ₁	W ₂	W ₃	W_4	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	4	4
	t ₄	0	4	4	3	1

		W ₁	W_2	W_3	W ₄	W ₅
	t ₁	0	1	3	2	,3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	4	4
	t ₄	0	4	4	3	1

		W ₁	W ₂	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

Implementation notes

- 1. In Python index starts with 0!
- 2. Use log probabilities

$$c_{i,j} = \max_k c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

$$\downarrow \\ log(c_{i,j}) = \max_k log(c_{k,j-1}) + log(a_{k,i}) + log(b_{i,cindex(w_j)})$$

Summary

- 1. From word sequence to POS tag sequence
- 2. Viterbi algorithm
- 3. Log probabilities