Applied Probability Concise Notes

MATH60045/70045

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom November 28, 2022

Contents

3	\mathbf{Disc}	screte-time Markov Chains			
	3.1	Definition of discrete time Markov Chains			
	3.2	The n -step transition probabilities and Chapman-Kolmogorov equations			
	3.3	Dynamics of a Markov Chain			
	First passage/hitting times				
	3.5	Recurrence and transience			
		3.5.1 Mean recurrence time, null and positive recurrence			
		3.5.2 Generating functions for $p_{ij}(n)$, $f_{ij}(n)$ (READING MATERIAL)			
		3.5.3 Example: Null recurrence/transience of a simple random walk (READING MATERIAL)			
	3.6				
	3.7	Communicating classes			
	٠.,	3.7.1 The decomposition theorem			
		3.7.2 Class properties			
	3.8	Application: The gambler's ruin problem			
	0.0	3.8.1 The problem and the results			
	3.9	Stationarity			
	0.0	3.9.1 Stationarity distribution for irreducible Markov Chains			
		3.9.2 Limiting distribution			
		3.9.3 Ergodic Theorem			
		3.9.4 Properties of the elements of a stationary distribution associated with transient or			
		null-recurrent states			
		3.9.5 Existence of a stationary distribution on a finite state space			
		3.9.6 Limiting distributions on a finite state space			
	9 10	Time reversibility			
	3.10	Time reversionity			
4	Pro	perties of the Exponential Distribution 10			
_	4.1	Definition and basic properties			
	4.2	Lack of memory property			
	4.3	Criterion for the convergence/divergence of an infinite sum of independent exponentially dis-			
	1.0	tributed random variables			
5 Poisson Pr		sson Process 1			
		Remarks on continuous-time stochastic processes on a countable state space			
	5.3	Some Definitions			
		5.3.1 Poisson Process: First Definition			
		5.3.2 Poisson Process: Second definition			
		5.3.3 Right-continuous modification			
		5.3.4 Equivalence of definitions			
	5.4	Some properties of Poisson processes			
		5.4.1 Inter-arrival time distribution			
		5.4.2 Time to the n^{th} event			
		5.4.3 Poisson process: Third definition			
		5.4.4 Conditional distribution of the arrival times			
	5.5	Some extensions to Poisson processes			
	5.5	5.5.1 Superposition			
		5.5.2 Thinning			
		· · · · · · · · · · · · · · · · · · ·			
	5 6	5.5.4 Compound Poisson processes			
	5.6	The Cramér-Lundberg model in insurance mathematics			
	5.7	The coalescent process			

3 Discrete-time Markov Chains

3.1 Definition of discrete time Markov Chains

Definition 3.1.1. A discrete-time stochastic process $X = \{X_n\}_{n \in \mathbb{N}_0}$ taking values in countable state space E a Markov chain if it satisfies the Markov condition

$$P(X_n = j \mid X_{n-1} = i, X_{n-2} = x_{n-2}, \dots, X_0 = x_0) = P(X_n = j \mid X_{n-1} = i), \forall n \in \mathbb{N} \ \forall x_0, \dots, x_{n-2}, i, j \in E$$

Definition 3.1.2. (Time Homogenous)

1. Markov Chain $\{X_n\}_{n\in\mathbb{N}_0}$ is time-homogenous if

$$P(X_{n+1} = j \mid X_n = i) = P(X_1 = j \mid X_0 = i), \ \forall n \in \mathbb{N}_0, i, j \in E$$

2. Transition matrix $P = (p_{ij})_{i,j \in E}$ is the $K \times K$ matrix of transition probabilities

Definition 3.1.3. (Stochastic Matrix)

A square matrix P a stochastic matrix if

- 1. $p_{ij} \geq 0, \forall i, j$
- 2. $\sum_{i} p_{ij} = 1 \ \forall i$

Theorem 3.1.4. Transition matrix P is stochastic

3.2 The *n*-step transition probabilities and Chapman-Kolmogorov equations

Definition 3.2.1. $n \in \mathbb{N}$, we have

$$P_n = (p_{ij}(n)) = P(X_{m+n} = j, X_m = i), m \in \mathbb{N}_0$$

The matrix of n-step transition probabilities.

Lemma 3.2.2. For discrete markov chain $\{X_n\}_{n\geq 0}$ on state space E we have

$$P(X_{n+m} = x_{n+m} | X_n = x_n, \dots, X_0 = x_0) = P(X_{n+m} = x_{n+m} | X_n = x_n), \ m \in \mathbb{N}, \forall x_{n+m}, x_n, \dots, x_0 \in E$$

Theorem 3.2.3. Let $m \in \mathbb{N}_0, n \in \mathbb{N}$ Then we have $\forall i, j \in E$

$$p_{ij}(m+n) = \sum_{l \in E} p_{il}(m) p_{lj}(n) \quad P_{m+n} = P_m P_n \quad P_n = P^n$$

Remark 3.2.4. Extend definition for case $K = \infty$

Let \mathbf{x} a K-dimensional row vector, P a $K \times K$ matrix

$$(\mathbf{x}P)_j := \sum_{i \in E} x_i p_{ij}, \quad (P^2)_{ik} := \sum_{j \in E} p_{ij} p_{jk}, \ i, j, k \in \mathbb{N}$$

Define P^n similarly and take $(P^0)_{ij} = \delta_{ij}$

3.3 Dynamics of a Markov Chain

Definition 3.3.1. Denote probability mass function of X_n for $n \in \mathbb{N}_0$ by

$$\nu_i^{(n)} = P(X_n = i), \ i \in E$$

Take K = card(E), denote by $\nu^{(n)}$ the K-dimensional row vector with elements $\nu_i^n, i \in E$ Call this the **marginal distribution** of chain at time $n \in \mathbb{N}_0$

Theorem 3.3.3. We have

$$\nu^{(m+n)} = \nu^{(m)} P_n = \nu^{(m)} P^n, \ \forall n \in \mathbb{N}, m \in \mathbb{N}_0$$

So

$$\nu^{(n)} = \nu^{(0)} P_n = \nu^{(0)} P^n, \ \forall n \in \mathbb{N}$$

Theorem 3.3.4. Let $X = \{X_n\}_{n \in \mathbb{N}_0}$ a Markov chain on countable state space E Then given initial distribution $\nu^{(0)}$ and transition matrix P, we determine all finite dimensional distributions of Markov chain.

$$\forall 0 \le n_1 < n_2 < \dots < n_{k-1} < n_k \ (n_i \in \mathbb{N}_0, i = 1, \dots, k), k \in \mathbb{N}, x_1, \dots, x_k \in E \ We \ have$$

$$P(X_{n_1} = x_1, X_{n_2} = x_2, \dots, X_{n_k} = x_k) = (\nu^{(0)} P^{n_1})_{x_1} (P^{n_2 - n_1})_{x_1 x_2} \cdots (P^{n_k - n_{k-1}}) x_{k-1} x_k$$
$$= (\nu P^{n_1})_{x_1 p_{x_1 x_2}} (n_2 - n_1) \cdots p_{x_{k-1} x_k} (n_k - n_{k-1})$$

3.4 First passage/hitting times

Definition 3.4.1. Define first passage/hitting time of X for state $j \in E$ as

$$T_j = \min\{n \in N : X_n = j\}$$

If $X_n \neq j, \forall n \in \mathbb{N}$ then set $T_j = \infty$

Definition 3.4.2. For $i, j \in E, n \in \mathbb{N}$ define first passage probability

$$f_{ij}(n) = P(T_i = n \mid X_0 = i) = P(X_n = j, X_{n-1} \neq j, \dots, X_1 \neq j \mid X_0 = i)$$

Probability that we visit state j at time n, given we start at i at time 0Define $f_{ij}(0) = 0, f_{ij}(1) = p_{ij}, \forall i, j \in E$

Definition 3.4.4. Define

$$f_{ij} = P(T_i < \infty \mid X_0 = i)$$

For $i \neq j$, we have f_{ij} the probability that the chain ever visits state j, starting at i Call f_{ii} the **returning probability**

Proposition 3.4.5. $\forall i, j \in E$

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)$$

Lemma 3.4.7. $\forall i, j \in E, n \in \mathbb{N}$, we have

$$p_{ij}(n) = \sum_{l=0}^{n} f_{ij}(l) p_{jj}(n-l)$$
$$= \sum_{l=1}^{n} f_{ij}(l) p_{jj}(n-l)$$

3.5 Recurrence and transience

Definition 3.5.1. Let $\{X_n\}_{n\in\mathbb{N}_0}$ be a markov chain on countable state space E.

$$j \in E, \ P(X_n = j, for \ some \ n \in \mathbb{N} \mid X_0 = j) = f_{jj} \begin{cases} 1, & recurrent; \\ < 1, & transient \end{cases}$$

Theorem 3.5.2. $j \in E$

$$\sum_{n=1}^{\infty} p_{ij}(n) = \begin{cases} \infty, & \iff recurrent; \\ < \infty, & \iff transient. \end{cases}$$

Define

$$N_j = \sum_{n=0}^{\infty} I_n^{(j)}, \quad I_n^{(j)} = I_{X_n = j} = \begin{cases} 1, & \text{if } X_n = j; \\ 0, & \text{if } X_n \neq j. \end{cases}$$

Theorem 3.5.3. $j \in E$ transient

1. $P(N_j = n \mid X_0 = j) = f_{jj}^{n-1}(1 - f_{jj})$ for $n \in \mathbb{N}$ geometric distribution with param f_{jj}

 $2. i \neq j$

$$P(N_j = n \mid X_0 = i) = \begin{cases} 1 - f_{ij}, & \text{if } n = 0; \\ f_{ij} f_{jj}^{n-1} (1 - f_{jj}), & \text{if } n \in \mathbb{N}. \end{cases}$$

Corollary 3.5.4. $j \in E$ transient

1.

$$E(N_j \mid X_0 = j) = \frac{1}{1 - f_{ij}}$$

2. $i \neq j$ we have

$$E(N_j \mid X_0 = i) = \frac{f_{ij}}{1 - f_{ij}}$$

Theorem 3.5.5. Given $X_0 = j$, we have

$$E(N_j \mid X_0 = j) = \sum_{n=0}^{\infty} p_{jj}(n)$$

Sum may diverge to ∞

Corollary 3.5.6. $j \in E$ transient then $p_{ij}(n) \xrightarrow[n \to \infty]{} 0, \forall i \in E$

3.5.1 Mean recurrence time, null and positive recurrence

Definition 3.5.7. The mean recurrence time μ_i of state $i \in E$ defined as $\mu_i = E[T_i \mid X_0 = i]$

Theorem 3.5.8. Let $i \in E$. We have $P(T_i = \infty \mid X_0 = i) > 0 \iff i$ transient, where we get

$$\mu_i = E[T_i \mid X_0 = i = \infty]$$

Theorem 3.5.9. For recurrent state $i \in E$ we have

$$\mu_i = E[T_i \mid X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}(n)$$

Can be finite or infinite.

Definition 3.5.10. A recurrent state $i \in E$

$$\mu_i = \begin{cases} \infty, & called \ \textit{null}; \\ < \infty, & called \ \textit{positive}. \end{cases}$$

Theorem 3.5.11. Recurrent state $i \in E$ null $\iff p_{ii}(n) \xrightarrow[n \to \infty]{} 0$ Further, if this holds, then $p_{ji}(n) \xrightarrow[n \to \infty]{} 0, \forall j \in E$

- **3.5.2** Generating functions for $p_{ij}(n)$, $f_{ij}(n)$ (READING MATERIAL)
- 3.5.3 Example: Null recurrence/transience of a simple random walk (READING MATERIAL)

SEE FULL OFFICIAL NOTES

3.6 Aperiodicity and ergodicity

Definition 3.6.1. Period of state i defined by

$$d(i) = \gcd\{n : p_{ii}(n) > 0\}$$

Definition 3.6.4. A state ergodic if it is positive recurrent and aperiodic

3.7 Communicating classes

Definition 3.7.1. (Accessible and Communicating)

- 1. j accessible from $i, i \to j$, if $\exists m \in \mathbb{N}_0 \text{ s.t } p_{ij}(m) > 0$
- 2. i, j communicate, if $i \rightarrow j$ and $j \rightarrow i$; write $i \leftrightarrow j$

Theorem 3.7.2. (Communication an equivalence relation) Satisfies, reflexivity, symmetry and transitivity

Theorem 3.7.4. *If* $i \leftrightarrow j$ *then*

- 1. i, j have same period
- 2. $i transient/recurrent \iff j transient/recurrent$
- 3. i null recurrent \iff j null recurrent

Definition 3.7.5. Set of states C is

- 1. closed if $\forall i \in C, j \notin C, p_{ij} 0$
- 2. irreducible if $i \leftrightarrow j, \forall i, j \in C$

Theorem 3.7.6. Let C a closed communicating class, transition matrix P restricted to C is stochastic

3.7.1 The decomposition theorem

Theorem 3.7.8. C a communicating class, consisting of recurrent states. Then C is closed

Theorem 3.7.9. State-space E can be partitioned uniquely into

$$E = \underbrace{T}_{transient \ states} \cup \left(\bigcup_{\substack{i \ irreducible, \ closed \ set \ of \ recurrent \ states}} \underbrace{C_i}_{irreducible, \ closed} \right)$$

Theorem 3.7.11. $K < \infty$ Then at least one state is recurrent and all recurrent states are positive.

Theorem 3.7.12. C a finite, closed communicating class \implies all states in C positive recurrent

3.7.2 Class properties

Type of Class	Finite	Infinite
Closed	positive recurrent	positive recurrent, null recurrent, transient
Not Closed	transient	transient

3.8 Application: The gambler's ruin problem

3.8.1 The problem and the results

Consider a gambler with initial fortune $i \in \{0, 1, ..., N\}$. At each play of the game, the gambler has

- \bullet probability p of winning one unit
- probability q of losing one unit
- each successive game is independent

What is the probability, a gambler starting at i units, has their fortune reach N before 0?

Let X_n denote gamblers fortune at time n. Then $\{X_n\}_{n\in\mathbb{N}_0}$ is a Markov Chain with transition probabilities, shown in diagram above.

This yields 3 communicating classes.

$$C_1 = \{0\}, C_2 = \{N\}, T_1 = \{1, 2, \dots, N-1\}$$
positive recurrent since finite and closed

Define the following for our problem:

Define first time X visits state i as

$$V_i = \min\{n \in \mathbb{N}_0 : X_n = i\}$$

$$h_i = h_i(N) = P(V_N < V_0 \mid X_0 = i)$$

This yields the following recurrence relation

$$h_i = h_{i+1}p + h_{i-1}q, i = 1, 2, \dots, N-1$$

Theorem 3.8.1. From above we achieve

$$h_i = h_i(N) = \begin{cases} \frac{1 - (q/p)^i}{1 - (q/p)^N}, & \text{if } p \neq \frac{1}{2}; \\ \frac{i}{N}, & \text{if } p = \frac{1}{2}. \end{cases}$$

Theorem 3.8.2. We also have

$$\lim_{N \to \infty} h_i(N) = h_i(\infty) = \begin{cases} 1 - (q/p)^i, & \text{if } p > \frac{1}{2}; \\ 0, & \text{if } p \le \frac{1}{2}. \end{cases}$$

6

•
$$p > \frac{1}{2} \implies \frac{q}{p} < 1 \implies \lim_{N \to \infty} (\frac{q}{p})^N = 0$$

•
$$p < \frac{1}{2} \implies \frac{q}{p} > 1 \implies \lim_{N \to \infty} = \infty$$

3.9 Stationarity

Definition 3.9.1. (Distributions)

1. row vector λ a **distribution** on E if

$$\forall j \in E, \lambda_j \geq 0, \quad and \ \sum_{j \in E} = 1$$

2. row vector λ with non-negative entries is called invariant for transition matrix P if

$$\lambda P = \lambda$$

- 3. row vector π is invariant/stationary/equilibrium distribution of Markov chain on E with transition matrix P if
 - (a) π a distribution
 - (b) it is invariant

$$\pi P^n = \pi$$

3.9.1 Stationarity distribution for irreducible Markov Chains

Theorem 3.9.2. An irreducible chain has stationary distribution $\pi \iff$ all states are positive recurrent. π unique stationary distribution, s.t $\pi_i = \mu_i^{-1} \forall i$

Lemma 3.9.3. For markov chain X we have $\forall j \in E, n, m \in \mathbb{N}$

$$f_{jj}(m+n) = \sum_{i \in E, i \neq j} l_{ji}(m) f_{ij}(n)$$

For $l_{ii}(n) = P(X_n = i.T_i \ge n \mid X_0 = j)$

Corollary 3.9.4. For Markov Chain X we have $\forall i, j \in E, i \neq j \text{ and } \forall n, m \in \mathbb{N}$

$$f_{ij}(m+n) \ge l_{ji}(m)f_{ij}(n)$$

Lemma 3.9.5. Let $i \neq j$ Then $l_{ji}(1) = p_{ji}$, and for integers $n \geq 2$

$$l_{ji}(n) = \sum_{r \in E: r \neq j} p_{ri} l_{jr}(n-1)$$

Lemma 3.9.6. $\forall j \in E$ of an irreducible, recurrent chain, the vector $\rho(j)$ satisfies $\rho_i(j) < \infty$ $\forall i$ and further $\rho(j) = \rho(j)P$

Lemma 3.9.7. Every irreducible, positive, recurrent chain has a stationary distribution

Theorem 3.9.8. If the chain is irreducible and recurrent, then $\exists \mathbf{x} > 0$ s.t $\mathbf{x} = \mathbf{x} \mathbf{P}$ unique up to multiplicative constant.

Chain is
$$\begin{cases} positive \ recurrent, & if \sum_{i} x_{i} < \infty; \\ null, & if \sum_{i} x_{i} = \infty. \end{cases}$$

Lemma 3.9.9. Let T a non-negative integer valued random variable on probability space (Ω, \mathcal{F}, P) , with $A \in \mathcal{F}$ an event $s.t \ P(A) > 0$. Can show that

$$E(T \mid A) = \sum_{n=1}^{\infty} P(T \ge n \mid A)$$

Theorem (Dominated convergence theorem)

Let \mathcal{I} be a countable index set.

If $\sum_{i\in\mathcal{I}} a_i(n)$ is an absolutely convergent series $\forall n\in N$ s.t

- 1. $\forall i \in \mathcal{I}$ the limit $\lim_{n \to \infty} a_i(n) = a_i$ exists
- 2. \exists seq. $(b_i)_{i \in I}$ s.t $b_i \ge 0 \,\forall i$ and $\sum_{i \in \mathcal{I}} b_i < \infty$ s.t $\forall n, i : |a_i(n)| \le b_i$

Then $\sum_{i\in\mathcal{I}}|a_i|<\infty$ and

$$\sum_{i \in I} a_i = \sum_{i \in I} \lim_{n \to \infty} a_i(n) = \lim_{n \to \infty} \sum_{i \in \mathcal{I}} a_i(n)$$

3.9.2 Limiting distribution

Definition 3.9.12. A distribution π is the limiting distribution of a discrete-time Markov Chain if, $\forall i, j \in E$ we have

$$\lim_{n \to \infty} p_{ij}(n) = \pi_j$$

Definition 3.9.14. For irreducible aperiodic chain we have

$$\lim_{n \to \infty} p_{ij}(n) = \frac{1}{\mu_j}$$

3.9.3 Ergodic Theorem

Theorem 3.9.16. (Ergodic Theorem)

Suppose we have irreducible Markov chain $\{X_n\}_{n\in\mathbb{N}_0}$ with state space E. Let μ_i the mean recurrence time to state $i\in E$

$$V_i(n) = \sum_{k=0}^{n-1} \mathbf{1}_{\{X_k = i\}}$$

The number of visits to i before n

So we have $V_i(n)/n$ the proportion of time before n spent at i

$$P\left(\frac{V_i(n)}{n} \to \frac{1}{\mu_i}, \ as \ n \to \infty\right) = 1$$

Summary: Properties of irreducible Markov Chains

3 kinds of irreducible Markov Chains

1. Positive recurrent

- (a) Stationary distribution π exists
- (b) Stationary distribution is unique
- (c) All mean recurrence times are finite and $\mu_i = \frac{1}{\pi_i}$
- (d) $V_i(n)/n \xrightarrow[n\to\infty]{} \pi_i$
- (e) If chain aperiodic

$$\lim_{n \to \infty} P(X_n = i) = \pi_i, \forall i \in E$$

2. Null recurrent

- (a) Recurrent, but all mean recurrence times are infinite
- (b) No stationary distribution exists
- (c) $V_i(n)/n \xrightarrow[n\to\infty]{} 0$

(d)
$$\lim_{n \to \infty} P(X_n = i) = 0, \forall i \in E$$

- 3. Transient
 - (a) Any particular state is eventually never visited
 - (b) No stationary distribution exists
 - (c) $V_i(n)/n \xrightarrow[n\to\infty]{} 0$
 - (d)

$$\lim_{n \to \infty} P(X_n = i) = 0, \forall i \in E$$

3.9.4 Properties of the elements of a stationary distribution associated with transient or null-recurrent states

Theorem 3.9.17. Let X a time-homogeneous Markov Chain on countable state space E If π a stationary distribution of X, $i \in E$ either transient or null-recurrent, then $\pi_i = 0$

3.9.5 Existence of a stationary distribution on a finite state space

Theorem 3.9.19. If state space finite $\implies \exists$ at least one positive recurrent communicating class

Theorem 3.9.20. Suppose finite state space. The stationary distribution π for transition matrix P unique \iff there is a unique closed communicating class

Corollary 3.9.21. *Markov chain on finite state space, and* $N \geq 2$ *closed classes.*

 C_i the closed classes of Markov chain and $\pi^{(i)}$ the stationary distribution associated with class C_i using construction

$$\pi_j^{(i)} = \begin{cases} \pi_j^{C_i}, & \text{if } j \in C_i; \\ 0, & \text{if } j \notin C_i. \end{cases}$$

Then every stationary distribution of Markov Chain represented as

$$\sum_{i=1}^{N} \omega_i \pi^{(i)}$$

For weights $\omega_i \geq 0, \sum_{i=1}^n \omega_i = 1$

3.9.6 Limiting distributions on a finite state space

Theorem 3.9.23. Let $K = |E| < \infty$ Suppose for some $i \in E$ that

$$\lim_{n \to \infty} p_{ij}(n) = \pi_j, \quad \forall j \in E$$

Then π a stationary distribution

3.10 Time reversibility

Theorem 3.10.1. For irreducible, positive recurrent Markov chain $\{X_n\}_{n\in\{0,1,\ldots,N\}}$, $N\in\mathbb{N}$ assume π a stationary distribution, and P a transition matrix, and $\forall n\in\{0,1,\ldots,N\}$ the marginal distribution $\nu^{(n)}=\pi$

$$Y_n = X_{N-n}$$
, The reversed chain defined for $n \in \{0, 1, ..., N\}$

We have Y a Markov chain, satisfying

$$P(Y_{n+1} = j \mid Y_n = i) = \frac{\pi_j}{\pi_i} p_{ji}$$

Definition 3.10.2. $X = \{X_n : n \in \{0, 1, ..., N\}\}$ an irreducible Markov chain with stationary distribution π and marginal distributions $\nu^{(n)} = \pi$, $\forall n \in \{0, 1, ..., N\}$

Markov chain X time-reversible if transition matrices of X and its reversal Y are the same.

Theorem 3.10.3. $\{X_n\}_{n\in\{0,1,\ldots,N\}}$ time-reversible \iff , $\forall i,j\in E$

$$\pi_i p_{ij} = \pi_j p_{ji}$$

Theorem 3.10.4. For irreducible chain, if $\exists \pi$ s.t 3.10.1 holds $\forall i, j \in E$. Then the chain is time-reversible (once in its stationary regime) and positive recurrent with stationary distribution π

4 Properties of the Exponential Distribution

4.1 Definition and basic properties

Definition 4.1.1. (Exponential distribution)

A continuous random variable X is $X \sim Exp(\lambda)$ if it has density function

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0; \\ 0, & \text{if otherwise.} \end{cases}$$

Cumulative distribution function

$$F_X(x) = \begin{cases} 0, & \text{if } x \le 0; \\ 1 - e^{-\lambda x}, & \text{if } x > 0. \end{cases}$$

Survival function of the exponential distribution is given by

$$P(X > x) = \begin{cases} 1, & \text{if } x \le 0; \\ e^{-\lambda x}, & \text{if } x > 0. \end{cases}$$

Theorem 4.1.2. $X \sim Exp(\lambda)$ for $\lambda > 0$ Then

- 1. $E(X) = \frac{1}{\lambda}$
- 2. $\lambda X \sim Exp(1)$

Theorem 4.1.3. Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider independent and identically distributed random variables $H_i \sim Exp(\lambda)$, for i = 1, ..., n

Let $J_n := \sum_{i=1}^n H_i$ Then J_n follows the $Gamma(n, \lambda)$ distribution, i.e

$$f_{J_n}(t) = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}$$

Theorem 4.1.4. Let $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_n$. Consider independent random variables $H_i \sim Exp(\lambda_i)$ for $i = 1, \ldots, n$. Let $H := \min\{H_1, \ldots, H_n\}$ Then

- 1. $H \sim Exp(\sum_{i=1}^{n} \lambda i)$
- 2. For any $k = 1, ..., n, P(H = H_k) = \lambda_k / \sum_{i=1}^n \lambda_i$

Theorem 4.1.5. Consider a countable index set E and $\{H_i : i \in E\}$ independent random variables with $H_i \sim Exp(\lambda_i), \forall i \in E$. Suppose that $\sum_{i \in E} \lambda_i < \infty$ and set $H := \inf_{i \in E} H_i$

Then the infimum is attained at a unique random value I of E with probability 1

 $H, I \text{ are independent, with } H \sim Exp(\sum_{i \in E} \lambda_i < \infty) \text{ and } P(I = i) = \lambda_i / \sum_{k \in E} \lambda_k$

Remark 4.1.6. Suppose we have $X \sim Exp(\lambda_X), Y \sim Exp(\lambda_Y)$, Then

$$P(X < Y) = P(\min\{X, Y\} = X) = \frac{\lambda_X}{\lambda_X + \lambda_Y}$$

4.2 Lack of memory property

Theorem 4.2.1. (Lack of memory property)

A continuous random variable $X: \Omega \to (0, \infty)$ has an exponential distribution \iff has the lack of memory property

$$P(X > x + y \mid X > x) = P(X > y), \quad \forall x, y > 0$$

Remark 4.2.2. A random variable $X: \Omega \to (0, \infty)$ has an exponential distribution \iff has lack of memory property:

$$P(X > x + y \mid X > x) = P(X > y), \quad \forall x, y > 0$$

4.3 Criterion for the convergence/divergence of an infinite sum of independent exponentially distributed random variables

Theorem 4.3.1. Consider sequence of independent random variables $H_i \sim Exp(\lambda_i)$ for $0 < \lambda_i < \infty$ for all $i \in \mathbb{N}$ and let $J_{\infty} = \sum_{i=1}^{\infty} H_i$, Then:

1. If
$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i} < \infty \implies P(J_{\infty} < \infty) = 1$$

2. If
$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i} = \infty \implies P(J_{\infty} = \infty) = 1$$

Lemma 4.3.2. For $x \ge 1$, we have

$$\log\left(1 + \frac{1}{x}\right) \ge \log(2)\frac{1}{x}$$
$$\log(1+x) > \frac{x}{x+1}, \quad \text{for } x > -1$$

5 Poisson Process

5.1 Remarks on continuous-time stochastic processes on a countable state space

5.3 Some Definitions

Definition 5.3.0. A stochastic process $\{N_t\}_{t\geq 0}$ a **counting process** if N_t represents the total number of 'events' that have occurred up to time t Having the following properties:

- 1. $N_0 = 0$
- 2. $\forall t > 0, N_t \in \mathbb{N}_0$
- 3. If $0 \le s \le t, N_s \le N_t$
- 4. For $s < t, N_t N_s =$ the number of events in interval (s, t]
- 5. Process is piecewise constant and has upward jumps of size 1 i.e $N_t N_{t-} \in \{0,1\}$

Definition 5.3.1. Let $(J_n)_{n\in\mathbb{N}_0}$ a strictly increasing sequence of positive random variables s.t $J_0=0$ almost surely.

Define process $\{N_t\}_{t>0}$ as

$$N_t = \sum_{n=1}^{\infty} \mathbf{1}_{\{J_n \le t\}},$$

Interpret J_n as the (random) time at which the nth event occurs. The nth jump time.

5.3.1 Poisson Process: First Definition

Definition 5.3.0. Define $o(\cdot)$ notation.

A function f is $o(\delta)$ if

$$\lim_{\delta \downarrow 0} \frac{f(\delta)}{\delta} = 0$$

With the following properties

- if f, g are $o(\delta)$ then so is f + g
- if f is $o(\delta)$ and $c \in \mathbb{R}$ then cf is $o(\delta)$

Definition 5.3.3. A **Poisson process** $\{N_t\}_{t\geq 0}$ of rate $\lambda > 0$ is a non-decreasing stochastic process with values in \mathbb{N}_0 satisfying:

- 1. $N_0 = 0^1$
- 2. Increments are independent, that is given any $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < t_2 < \ldots < t_n$ random variables $N_{t_0}, N_{t_1} N_{t_0}, N_{t_2} N_{t_1}, N_{t_3} N_{t_2}, \ldots, N_{t_n} N_{t_{n-1}}$ are independent
- 3. The increments are stationary, Given any 2 distinct times $0 \le s < t, \forall k \in \mathbb{N}_0$

$$P(N_t - N_s = k) = P(N_{t-s} = k)$$

4. There is a 'single arrival', i.e $\forall t \geq 0, \delta > 0, d \rightarrow 0$:

$$P(N_{t+\delta} - N_t = 1) = \lambda \delta + o(\delta)$$

$$P(N_{t+\delta} - N_t > 2) = o(\delta)$$

5.3.2 Poisson Process: Second definition

Definition 5.3.4. A Poisson Process $\{N_t\}_{t\geq 0}$ of rate $\lambda > 0$ is a stochastic process with values in \mathbb{N}_0 satisfying

- 1. $N_0 = 0$
- 2. Increments are independent, that is given any $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < t_2 < \ldots < t_n$ random variables $N_{t_0}, N_{t_1} N_{t_0}, N_{t_2} N_{t_1}, N_{t_3} N_{t_2}, \ldots, N_{t_n} N_{t_{n-1}}$ are independent
- 3. The increments are stationary, Given any 2 distinct times $0 \le s < t, \forall k \in \mathbb{N}_0$

$$P(N_t - N_s = k) = P(N_{t-s} = k)$$

4. $\forall t \geq 0, N_t \sim Poi(\lambda t)$

$$\forall k \in \mathbb{N}_0, P(N_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

5.3.3 Right-continuous modification

Definition 5.3.0. For 2 stochastic processes $\{X_t\}_{t>0}$, $\{Y_t\}_{t>0}$, say X a modification of Y if

$$X_t = Y_t$$
, almost surely for each $t \geq 0$

$$P(X_t = Y_t) = 1, \forall t > 0$$

Can show that for each Poisson process, \exists ! modification which is càdlàg, (right continuous with left limits).

Remark 5.3.5. Note that the jump chain of the Poisson Process given by $Z = (Z_n)_{n \in \mathbb{N}_0}$, where $Z_n = n, n \in \mathbb{N}_0$

5.3.4 Equivalence of definitions

Theorem 5.3.6. Definition 5.3.3, 5.3.4 are equivalent

Lemma 5.3.7. Laplace transform of a Poisson random variable of mean $\lambda t, X \sim Poi(\lambda t)$ for $\lambda > 0, t > 0$ is given by

$$\mathcal{L}_X(u) = \exp\{\lambda t[e^{-u} - 1]\}, \quad \forall u > 0$$

5.4 Some properties of Poisson processes

5.4.1 Inter-arrival time distribution

Definition 5.4.1. Let $\{N_t\}_{t>0}$ a Poisson process of rate $\lambda > 0$

Then the inter-arrival times are independently and identically distributed exponential random variables with parameter λ

5.4.2 Time to the n^{th} event

Theorem 5.4.2. We have $\forall n \in \mathbb{N}$, the time to the n^{th} event J_n follows a Gamman, λ distribution, with density

$$f_{J_n}(t) = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}, \ t > 0$$

5.4.3 Poisson process: Third definition

Definition 5.4.4. A Poisson process $\{N_t\}_{t\geq 0}$ of rate $\lambda>0$ is a stochastic process with values in \mathbb{N}_0 s.t

- 1. H_1, H_2, \ldots denote independently and identically exponentially distributed random variables with parameter $\lambda > 0$
- 2. Let $J_0 = 0$ and $J_n = \sum_{i=1}^n H_i$
- 3. Define

$$N_t = \sup\{n \in \mathbb{N}_0 : J_n < t\}, \quad \forall t > 0$$

Theorem 5.4.5. Definitions 5.3.3, 5.3.4, 5.4.4 are equivalent

5.4.4 Conditional distribution of the arrival times

Theorem 5.4.6. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate l>0. Then $\forall n\in\mathbb{N}, t>0$, the conditional density of (J_1,\ldots,J_n) given by $N_t=n$ is given by

$$f_{\left(J_{1}, \ldots, J_{n}\right)}\left(t_{1}, \ldots, t_{n} | N_{t} = n\right) = \begin{cases} \frac{n!}{t^{n}}, & \text{if } 0 < t_{1} < \ldots < t_{n} \leq t; \\ 0, & \text{otherwise} \end{cases}$$

Remark 5.4.7. The above theorem says, conditional on the fact n events have occured in [0,t], the times (J_1,\ldots,J_n) at which the events occur, when considered as unordered random variables are independently and uniformly distributed on [0,t]

5.5 Some extensions to Poisson processes

5.5.1 Superposition

Theorem 5.5.2. Given n independent Poisson processes $\{N_t^{(1)}\}_{t\geq 0}, \ldots, \{N_t^{(n)}\}_{t\geq 0}$ with respective rates, $\lambda_1, \ldots, \lambda_n > 0$ define

$$N_t = \sum_{i=1}^n N_t^{(i)}, \quad t \ge 0$$

Then $\{N_t\}_{t\geq 0}$ a Poisson process with rate $\lambda = \sum_{i=1}^n \lambda_i$ and is called a superposition of Poisson processes

5.5.2 Thinning

Theorem 5.5.5. Let $\{N_t\}_{t\geq 0}$ a Poisson process with rate $\lambda > 0$. Assume that each arrival, independent of other arrivals, is marked as a type k event with probability p_k for $k = 1, \ldots, n$ where $\sum_{i=1}^n p_i = 1$. Let $N_t^{(k)}$ denote the number of type k events in [0,t]. Then $\{N_t^{(k)}\}_{t\geq 0}$ a Poisson process with rate λp_k and the processes

$$\{N_t^{(1)}\}_{t\geq 0}, \dots, \{N_t^{(n)}\}_{t\geq 0}$$

are independent. Each process called a thinned Poisson process

5.5.3 Non-homogeneous Poisson processes

Definition 5.5.6. Let $\lambda:[0,\infty)\mapsto(0,\infty)$ denote a non-negative and locally integrable function, called the *intensity function*

A non-decreasing stochastic process $N = \{N_t\}_{t\geq 0}$ with values in \mathbb{N}_0 called a **non-homogeneous Poisson** process with intensity function $(\lambda(t))_{t\geq 0}$ if it satisfies the following:

- 1. $N_0 = 0$
- 2. N has independent increments
- 3. 'Single arrival' property, For $t \geq 0, \delta > 0$

$$P(N_{t+\delta} - N_t = 1) = \lambda(t)\delta + o(\delta)$$

$$P(N_{t+\delta} - N_t \ge 2) = o(\delta)$$

Note that (3) also implies that

$$P(N_{t+\delta} - N_t = 0) = 1 - \lambda(t) + o(\delta)$$

Theorem 5.5.7. Let $N = \{N_t\}_{t\geq 0}$ denote a non-homogeneous Poisson process with continuous intensity function $(\lambda(t))_{t\geq 0}$ Then

$$N_t \sim Poi(m(t)), \quad where \quad m(t) = \int_0^t \lambda(s) ds$$

i.e. $\forall t \geq 0, n \in \mathbb{N}_0$

$$P(N_t = n) = \frac{[m(t)]^n}{n!} e^{-m(t)}$$

5.5.4 Compound Poisson processes

Definition 5.5.12. Let $\{N_t\}_{t>0}$ be a Poisson process of rate $\lambda > 0$.

 Y_1, Y_2, \ldots be a sequence of independent and identically distributed random variables, that are independent of $\{N_t\}_{t\geq 0}$. Then the process $\{S_t\}_{t\geq 0}$ with

$$S_t = \sum_{i=1}^{N_i} Y_i, \quad t \ge 0$$

is a compound Poisson process

Theorem 5.5.13. Let $\{S_t\}_{t\geq 0}$ a compound Poisson process. Then for $t\geq 0$

$$E(S_t) = \lambda t E(Y_1), \quad Var(S_t) = \lambda t E(Y_1^2)$$

as defined in Definition 5.5.12

5.6 The Cramér-Lundberg model in insurance mathematics

Definition 5.6.1. The Cramér-Lundberg model is given by the following five conditions.

- 1. Claim size process is denoted by $Y = (Y_k)_{k \in \mathbb{N}}$, for Y_k denoting the positive i.i.d random variables with finite mean $\mu = E(Y)1$ and variance $\sigma^2 = Var(Y_1) \leq \infty$
- 2. Claim times occur at the random instants of time

$$0 < J_1 < J_2 < \dots a.s..$$

3. The claim arrival process is denoted by

$$N_t = \sup\{n \in \mathbb{N} : J_n \le t\}, t \ge 0$$

which is the number of claims in the interval [0, t].

4. The inter-arrival times are denoted by

$$H_1 = J_1, H_k = J_k - J_{k-1}, k = 2, 3, \dots$$

and are independent and exponentially distributed with parameter λ

5. sequences $(Y_k, (H_k))$ are independent of each other

Definition 5.6.3. The **Total claim amount** is defined as the process $(S_t)_{t\geq 0}$ satisfying

$$S_t = \begin{cases} \sum_{i=1}^{N_t} Y_i, & \text{if } N_t > 0; \\ 0, & \text{if } N_t = 0. \end{cases}$$

Observe that the total claim amount is modelled as a compound Poisson process.

Theorem 5.6.4. The total claim amount distribution given by

$$P(S_t \le x) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} P\left(\sum_{i=1}^n Y_i \le x\right), \quad x \ge 0, t \ge 0$$

and $P(S_t \leq x) = 0$ for x < 0

Definition 5.6.5. The **risk process** $\{U_t\}_{t>0}$ is defined as

$$U_t = u + ct - S_t, \quad t \ge 0$$

where $u \geq 0$, the initial capital and c > 0 denotes the premium income rate

Definition 5.6.7. We have the following definitions

1. The ruin probability in finite time is given by

$$\psi(u,T) = P(U_t < 0 \text{ for some } t \le T), \ 0 < T < \infty, u \ge 0$$

2. The ruin probability in infinite time is given by

$$\psi(u) := \psi(u, \infty), u \ge 0$$

Theorem 5.6.8.

$$E(U_t) = u + ct - \lambda t\mu + (c - \lambda \mu)t$$

A minimal requirement for choosing the premium could be

$$c > \lambda \mu$$

referred to as the net profit condition

5.7 The coalescent process