RELACIJSKE BAZE PODATAKA

II predavanje

Dr.sc. Emir Mešković

Uvod

- Zasnovane na relacijskoj algebri
- Baza podataka sastoji se od relacija dvodimenzionalne tabele
- Eksplicitne veze među relacijama NE POSTOJE uspostavljaju se prema potrebi
- Nad relacijama se provode operacije relacijske algebre
- Rezultati operacija su relacije

Početak razvoja

- Teoretski zasnovan krajem 60-tih godina u radovima Edgara F. Codd-a
 - "A Relational Model of Data for Large Shared Data Banks" -Comm. ACM 13, No. 6, June 1970
- Dugo se pojavljivao samo u akademskim raspravama i knjigama
- Prve realizacije na računaru su bile suviše spore i neefikasne
- Sredinom 80-tih godina 20. stoljeća relacijski model je postao prevladavajući
- Danas se ogromna većina DBMS-ova koristi baš tim modelom

Relacija

Objekti u relacijskom modelu su RELACIJE

predmet				
sifPred	naz	Pred	ectsBod	nastProg
31503	Baz	ze podataka	6.0	EIR-1
1228	Baz	ze podataka	5.0	TI-2
19670	Ma	tematika 1	6.0	EIR-1
21006	Fizi	ka 1	6.0	EIR-1
90	-	ormacioni sistemi i re podataka I	5.0	TI-1

nastavni	Prog			
oznNP	nazNastProg			
EIR-1	Elektrotehnika i računarstvo 2012			
TI-2	Tehnička informatika 2003			
TI-1	Tehnička informatika 1998			

- Neformalna definicija: relacija je imenovana dvodimenzionalna tablica
 - atribut je imenovana kolona relacije
 - domena je skup dozvoljenih vrijednosti atributa
 - Nad istom domenom može biti definiran jedan ili više atributa
 - n-torka (tuple) je red relacije

Definicija relacije

Skup entiteta: OSOBA (R) Atributi: $IME(A_I)$ PREZIME (A₂) Domena: D_I D_2 **Damir** Pirić Maja Đurić Dino Pejić Ema Damir Pirić Damir Đurić Dekartov proizvod Damir Pejić Relacija $D_1 \times D_2$ Maja Pirić $r \subseteq D_1 \times ... \times D_n$ Maja Đurić Maja Pejić Dino Pirić Damir Pirić Dino Đurić Maja Đurić Dino Pejić Dino Pejić Ema Pirić Ema Pirić Ema Đurić

Ema Pejić

Definicija relacije

- Neka postoji skup atributa $A_1, ..., A_n$ sa pripadajućim domenama $D_1, ..., D_n$
- ▶ Relacija $r(A_1, ..., A_n)$ definirana nad skupovima $D_1, ..., D_n$ je podskup dekartovog proizvoda domena $D_1 \times ... \times D_n$

$$r(A_1,...,A_n) \subseteq D_1 \times ... \times D_n$$

Definicija relacije

- Skup entiteta: Osoba
- Atributi: Ime, BojaKose, BrojCipele
- Domene: { Deni, Lejla, Goran }, { Crna, Smeđa, Plava }, { 37, 38, 39, 40, 41, 42, 43 }

```
Relacija: < Deni, Smeđa, 41 > < Lejla, Plava, 38 > < Goran, Smeđa, 43 >
```

R= (<u>lme,</u>	BojaKose,	BrojCipele)
	Deni	Smeđa	41
r(R)	Lejla	Plava	38
. ,	Goran	Smeđa	43

Relacija i relacijska shema

- Relacijska shema R (intenzija) je imenovani skup atributa: $R = \{A_1, A_2, ..., A_n\}$ ili $R = A_1, A_2, ..., A_n$
- Relacija r (ekstenzija) definisana nad relacijskom shemom R je konačan skup n-torki, označava se s r(R) ili $r(A_1, A_2, ..., A_n)$ i predstavlja trenutnu vrijednost

Primjer:

```
STUDENT = mbrStudent, prezimeStudent, imeStudent, prosjecnaOcjena student(STUDENT) = { < 123456, Žunić, Senad, 9.65 >, < 234567, Zorić, Slađana, 9.77 >, < 345678, Ivanović, Valentina, 9.56 > }
```

student(mbrStudent,	prezimeStudent,	imeStudent,	prosjecna Ocjena)
123456	Žunić	Senad	9.65
234567	Zorić	Slađana	9.77
345678	Ivanović	Valentina	9.56

Svojstva relacije

- Relacijska shema R: mijenja se relativno rijetko
- Instanca relacije r: predstavljaju trenutnu vrijednost relacije i često se mijenja (pri unosu/izmjeni/brisanju podataka)
- Relacija posjeduje ime koje je jedinstveno unutar sheme baze podataka
- Atributi unutar relacije imaju jedinstvena imena
- Jedan atribut može poprimiti vrijednost iz samo jedne domene
- U jednoj relaciji ne postoje dvije jednake n-torke
- Redoslijed atributa unutar relacije je nebitan
- Redoslijed n-torki unutar relacije je nebitan

N-torka

- Neka je $R = \{A_1, A_2, ..., A_n\}$ relacijska shema; neka su D_1 , D_2 , ..., D_n domene atributa; n-torka t definirana na relacijskoj shemi R je skup parova oblika atribut: vrijednostAtributa
- ► $t = \{A_1: v_1, A_2: v_2, ..., A_n: v_n\},$ pri čemu je $v_1 \in D_1, v_2 \in D_2, ..., v_n \in D_n$
- ▶ Pojednostavljena notacija: $t = \langle v_1, v_2, ..., v_n \rangle$

Vrijednost n-torke

 Oznaka t(A) predstavlja vrijednost koju <u>atribut A</u> poprima u ntorci t. t(A) se naziva A-vrijednost n-torke t

Neka je $X \subseteq R$. N-torka t reducirana na <u>skup atributa X</u> se naziva X-vrijednost n-torke t i označava s t(X)

Primjer: t = < 234567, Zorić, Slađana, 9.77 > prezimeStudent, imeStudent \subset STUDENT t(prezimeStudent, imeStudent) = < Zorić, Slađana >

Karakteristike relacije

Karakteristike relacije

- Stepen broj kolona (atributa) degree
- ► Kardinalnost broj n-torki (zapisa) cardinality

predm	et				
sifPred	naz	Pred	ectsBod	nastProg	
31503	Baz	ze podataka	6.0	EIR-1	
1228	Baz	ze podataka	5.0	TI-2	
19670	Ma	tematika 1	6.0	EIR-1	
21006	Fizi	ika 1	6.0	EIR-1	
90		ormacioni sistemi i ze podataka I	5.0	TI-1	

stepen = 4

kardinalnost = 5

Oznake: deg(predmet) = 4 card(predmet) = 5

Shema i instanca baze podataka

- Shema baze podataka je skup relacijskih shema
 - $\mathcal{R} = \{ R_1, R_2, ..., R_n \}$
 - Relacijske sheme u jednoj bazi podataka moraju imati različite nazive
- Instanca baze podataka definirana na shemi baze podataka $\mathcal{R} = \{ R_1, R_2, ..., R_n \}$ je skup instanci relacija
 - $\gamma = \{ r_1(R_1), r_2(R_2), ..., r_3(R_n) \}$
- Shema baze podataka se relativno rijetko mijenja
- Instanca baze podataka se često mijenja

Operacije s relacijama

Relacijska algebra

 Vrednovanje algebarskih izraza građenih od relacija i unarnih, odnosno binarnih, operatora

Predikatni račun (prekidačka algebra)

Ispitivanje istinitosti složenih sudova izrađenih pomoću logičkih operatora i zagrada

Relacijska algebra

- ▶ Unija ∪
- ▶ Presjek
- ▶ Razlika \
- Dekartov proizvod *
- Dijeljenje
- Projekcija π
- Selekcija σ
- ▶ Spajanje
- Primjer: $a = \sigma_{X=x \& Y=y}(d \cap (b \cup c))$
- Karakteristika relacijske algebre proceduralnost navođenje redoslijeda operacija koje se provode nad relacijama

Predikatni račun

- Operacije se specificiraju navođenjem predikata
 - $r = \{ t | f(t) \}$
- t je varijabla koja predstavlja:
 - ▶ n-torke n-torski račun
 - rezultat r je skup n-torki t za koje je vrijednost predikata F istina
 - Domene domenski račun
 - rezultat r je skup domena t za koje je vrijednost predikata F istina
- Primjer:
 - $a = \{ t \mid (d(t) \land (b(t) \lor c(t))) \land t(X) = x \land t(Y) = y \}$
- Karakteristika predikatnog računa neproceduralnost
 - ne navodi se redoslije operacija
 - navođenje predikata koje n-torke moraju zadovoljiti

Operacije relacijske algebre

- Unarne operacije
 - projekcija, selekcija, preimenovanje
 - agregacija, grupisanje
- Binarne operacije
 - skupovske operacije (set operations)
 - temelje se na relacijama kao skupovima n-torki
 - unija, presjek, razlika
 - ostale binarne operacije
 - Dekartov proizvod, dijeljenje, spajanje

Operacije relacijske algebre

- Obavljanje operacije ne utiče na operande, npr.
 - $r_3 = r_1 \cup r_2$
 - Obavljanjem prethodne operacije nastaje nova relacija r3, a relacije r1 i r2 se pri tome ne mijenjaju
- Operandi su relacije, a rezultat obavljanja operacije je uvijek relacija. To znači:
 - Skup relacija je zatvoren s obzirom na operacije relacijske algebre
 - Ta činjenica omogućava da se rezultat jedne operacije upotrijebi kao operand u sljedećoj operaciji, što omogućava formiranje složenih izraza
 - $r_5 = (r_1 \cup r_2) \times (r_3 \triangleright \triangleleft r_4)$

Operacije relacijske algebre

Skupovske operacije

- Presjek, unija i razlika
- Primjenjuju se isključivo nad relacijama koje su unijski kompatibilne
 - Relacije istog stepena
 - Korespodentni atributi definisani nad istim domenama

Primjer relacija:

$R_1 =$	<u>(prezime, </u>	ime, ‡	oostBr)	$R_2 = 0$	<u>(imeStud</u>	prezStud,	pbr)
•	Pirić	Damir	75000	_	Senad	Žunić	72000
r_{I}	Đurić	Maja	71000	r_2	Damir	Pirić	75000
-	Pirić	Ema	75000	_			

Stepen: $d_1 = 3$ $d_2 = 3$ dom(prezime) = dom(prezStud) dom(ime) = dom(imeStud)dom(postBr) = dom(pbr)

→ Relacije su unijski kompatibilne

Unijska kompatibilnost

- Kod ocjene jesu li relacije unijski kompatibilne
 - poredak atributa nije bitan
 - imena atributa nisu bitna
- Dvije relacije koje imaju jednak broj atributa i jednaka imena atributa ne moraju biti ujedno unijski kompatibilne

$R_1 = (sifr$	a,	naziv	<u> </u>	R ₂ = <u>(sifra,</u>	naziv)
S-	123 S	amsung A7	ĺ	1234	Teniski reket
r_1 I-2	234	IPhone 10	r	2345	Sprinterice

Stepen: $d_1 = 2$ $d_2 = 2$ $dom(r_1.sifra) \neq dom(r_2.sifra)$ $dom(r_1.naziv) \neq dom(r_2.naziv)$

→ Relacije nisu unijski kompatibilne

Preimenovanje atributa

- Neka su A i B atributi i neka je r relacija definisana na shemi R, A ∈ R, B ∉ R \ A
- Neka je dom(A) = dom(B). Neka je $R' = (R \setminus A) B$.
- Operacija preimenovanja atributa A u B u relaciji r(R) označava se s $\delta_{A \leftarrow B}(r)$, a definiše pomoću izraza:
 - $\delta_{A \leftarrow B}(r) = r'(R') = \{ t' \mid t \in r, t'(R \setminus A) = t(R \setminus A) \land t'(B) = t(A) \}$
- Neka su $A_1, A_2, ..., A_k$ različiti atributi u R i neka su $B_1, B_2, ..., B_k$ različiti atributi koji nisu članovi skupa $R \setminus (A_1, A_2, ..., A_k)$
- Neka je $dom(A_i) = dom(B_i)$, za $1 \le i \le k$
- Simultano preimenovanje atributa $A_1, A_2, ..., A_k$ u atribute $B_1, B_2, ..., B_k$ u relaciji r označava se s $\delta_{A_1, A_2, ..., A_k \leftarrow B_1, B_2, ..., B_k}(r)$

Unijska kompatibilnost relacija

- Dvije relacije r i s definisane na shemama R i S, odnosno njihove sheme R i S, su unijski kompatibilne ukoliko postoji 1:1 preslikavanje
- $f: R \to S, f(A_i) = B_i, f^{-1}(B_i) = A_i$
- ▶ Pri čemu je $A_i \in R, B_j \in S, dom(A_i) = dom(B_j)$
- Zaključak:
 - kod ocjene jesu li relacije unijski kompatibilne
 - poredak atributa nije bitan
 - imena atributa nisu bitna
 - dvije relacije koje imaju jednak broj atributa i jednaka imena atributa ne moraju biti ujedno unijski kompatibilne

Unija relacija

$$r_3 = r_1 \cup r_2$$

$R_1 =$	<u>(þrezime, </u>	ime, į	<u>oostBr)</u>	$R_2 =$	<u>(imeStud</u>	prezStud,	<u>pbr)</u>
-	Pirić	Damir	75000	_	Senad	Žunić	72000
r_1	Đurić	Maja	71000	r_2	Damir	Pirić	75000
-	Pirić	Ema	75000	_			

- Rezultat operacije $r_1 \cup r_2$ je relacija čije n-torke su elementi relacije r_1 ili elementi relacije r_2 ili elementi obje relacije
 - n-torke koje su elementi obje relacije u rezultatu se pojavljuju samo jednom (jer relacija je SKUP n-torki)

$R_3 = ($	prezime,	ime,	<u>þostBr)</u>
	Pirić	Damir	75000
$r_3(R_3)$	Đurić	Maja	71000
	Pirić	Ema	75000
	Žunić	Senad	72000

Unija relacija

- Neka su r i s unijski kompatibilne relacije definisane na shemama R i S.
- ▶ Operacija unije relacija r i s označava se s $r \cup s$, a definiše izrazom
- $ightharpoonup r \cup s = q(R) = \{ t \mid t \in r \lor t \in s \} \text{ ako je } R = S$
- $ightharpoonup r \cup s = q(R) = \{ t \mid t \in r \lor t \in \delta_{X \leftarrow Y}(S) \} \text{ ako je } R \neq S$
- gdje je:
 - $X \subseteq R \setminus S$
 - $Y \subseteq S \setminus R$
 - X = f(Y)
 - $Y = f^{-1}(X)$
 - ▶ i $f: Y \to X$ je restrikcija od $f: R \to S$ i $f^{-1}: R \to S$

Presjek relacija

$$r_4 = r_1 \cap r_2$$

$R_1 =$	(prezime,	ime, þ	oostBr)	$R_2 = 1$	<u>(imeStud</u>	prezStud,	pbr)
•	Pirić	Damir	75000	_	Senad	Žunić	72000
r_1	Đurić	Maja	71000	r_2	Damir	Pirić	75000
	Pirić	Ema	75000				

▶ Rezultat operacije $r_1 \cap r_2$ je relacija čije n-torke su elementi relacije r_1 i elementi relacije r_2

$$R_4 = ($$
 prezime, ime, postBr)
 $r_4(R_4)$ Pirić Damir 75000

Presjek relacija

- Neka su r i s unijski kompatibilne relacije definisane na shemama R i S.
- ▶ Operacija presjeka relacija r i s označava se s $r \cap s$, a definiše izrazom
- $ightharpoonup r \cap s = q(R) = \{ t \mid t \in r \land t \in s \} \text{ ako je } R = S$
- $r \cap s = q(R) = \{ t \mid t \in r \land t \in \delta_{X \leftarrow Y}(S) \} \text{ ako je } R \neq S$
- gdje je:
 - $X \subseteq R \setminus S$
 - $Y \subseteq S \setminus R$
 - X = f(Y)
 - $Y = f^{-1}(X)$
 - ▶ i $f: Y \to X$ je restrikcija od $f: R \to S$ i $f^{-1}: R \to S$

Razlika relacija

$$r_5 = r_1 \setminus r_2$$

$R_1 =$	<u>(prezime, </u>	ime, ‡	oostBr)	$R_2 = 0$	(imeStud	prezStud,	pbr)
•	Pirić	Damir	75000	_	Senad	Žunić	72000
r_1	Đurić	Maja	71000	r_2	Damir	Pirić	75000
•	Pirić	Ema	75000	_			

Rezultat operacije $r_1 \setminus r_2$ je relacija čije n-torke su elementi relacije r_1 i nisu elementi relacije r_2

$R_5 = ($	<u>prezime,</u>	ime,	<u>postBr)</u>
•	Đurić	Maja	71000
$r_5(R_5)$	Pirić	Ema	75000

Razlika relacija

- Neka su r i s unijski kompatibilne relacije definisane na shemama R i S.
- Operacija razlike relacija r i s označava se s $r \setminus s$, a definiše izrazom
- $ightharpoonup r \setminus s = q(R) = \{ t \mid t \in r \land t \notin s \} \text{ ako je } R = S$
- $r \setminus s = q(R) = \{ t \mid t \in r \land t \notin \delta_{X \leftarrow Y}(S) \} \text{ ako je } R \neq S$
- gdje je:
 - $X \subseteq R \setminus S$
 - $Y \subseteq S \setminus R$
 - X = f(Y)
 - $Y = f^{\dagger}(X)$
 - ▶ i $f: Y \to X$ je restrikcija od $f: R \to S$ i $f^{-1}: R \to S$

Dijeljenje relacija

$$r_{18} = r_{11} / r_{12}$$
 $r_{19} = r_{11} / r_{13}$
 $R_{11} = (A \quad B)$ $R_{12} = (B)$ $R_{13} = (B)$ $R_{18} = (A)$ $R_{19} = (A)$
 $a_1 \quad b_1 \quad a_1 \quad r_{19} \quad a_1$
 $a_1 \quad b_2 \quad r_{13} \quad b_2 \quad r_{18} \quad a_2$
 $a_1 \quad b_3 \quad b_3 \quad a_3$
 $r_{11} \quad a_2 \quad b_1 \quad a_2 \quad b_1$
 $a_2 \quad b_2 \quad a_3 \quad b_1$
 $a_4 \quad b_4$

- Neka je R relacija stepena n, a S relacija stepena m, i neka se svi atributi od S pojavljuju i u R.
- Rezultat dijeljenja R sa S, oznakom R / S, je skup svih (n-m)-torki <x>takvih da se n-torke <x,y> pojavljuju u R za sve m-torke <y> u S

Projekcija relacije

$$r_8 = \pi_{\text{prezime, ime}}(r_1)$$
 $r_9 = \pi_{\text{postBr}}(r_1)$

$R_1 =$	<u>(þrezime, </u>	ime,	postBr)
·	Pirić	Damir	75000
r_1	Đurić	Maja	71000
	Pirić	Ema	75000

$R_8 = \underline{(}$	prezime,	<u>ime)</u>	$R_0 =$	(þostBr)
	Pirić	Damir	- '9	75000
$r_8(R_8)$	Đurić	Maja	$r_{\rm g}(R_{\rm g})$	71000
	Pirić	Ema	8(1-8)	

Projekcija relacije

- $ightharpoonup s = \pi_{AI,...,Ak}(r)$
- ▶ Relacijska shema od s: $S = \{A_1, ..., A_k\}$
- Stepen: $d_s = k$
- ▶ Kardinalnost: $card(s) \le card(r)$
 - Dbavlja se eliminacija duplikata
- Neka je r relacija definisana na shemi R i neka je X skup atributa, $X \subseteq R$
- Operacija projekcije relacije r(R) na skup atributa X se označava s $\pi_X(r)$, a definiše izrazom:

Projekcija relacije (primjer)

rokovi

siflspit	nazPred	sala	datIspit
21223	Baze podataka	A101	10.01.2017
21224	Razvoj softvera	Stelekt	14.01.2017
21225	Operativni sistemi	RC15	20.01.2017
21233	Baze podataka	A101	31.01.2017
21234	Razvoj softvera	Stelekt	03.02.2017
21235	Operativni sistemi	RC15	09.02.2017
21243	Baze podataka	Stelekt	12.06.2017
21244	Razvoj softvera	A008	16.06.2017
21253	Baze podataka	Stelekt	07.07.2017

Relacija rokovi: gdje i kada se održavaju ispiti iz određenih predmeta

Traži se: u kojim salama se održavaju rokovi iz određenih predmeta

 $predSala = \pi_{nazPred, sala}(rokovi)$

nazPred	sala
Baze podataka	A101
Razvoj softvera	Stelekt
Operativni sistemi	RC15
Baze podataka	Stelekt
Razvoj softvera	A008

"Međurezultat"

SQL:

SELECT DISTINCT nazPred, sala FROM rokovi

Operacija selekcije

- $ightharpoonup s = \sigma_F(r)$
- ▶ F formula selekcije koja sadrži
 - ▶ Operande imena atributa iz *r*, konstante
 - Operatore
 - ▶ operatori poređenja $(<, =, >, \leq, \neq, \geq)$
 - ▶ logički operatori (\land, \lor, \neg)
- ▶ *s* je skup n-torki iz *r* koje zadovoljavaju $F s \subseteq r$
- Relacijska shema od s: S = R

Operacija selekcije

$$r_{10} = \sigma_{postBr=75000}(r_1)$$
 $r_{11} = \sigma_{postBr=75000 \land ime="Damir"}(r_1)$

$R_1 =$	<u>(þrezime, </u>	ime,	postBr)
·	Pirić	Damir	75000
r_1	Đurić	Maja	71000
	Pirić	Ema	75000

Za svaku pojedinu n-torku relacije:

- Vrijednosti atributa uvrštavaju se u formulu (predikat) uvrštavanjem vrijednosti u predikat dobiva se sud
- Onda i samo onda kada je vrijednost dobivenog suda istina (true), ntorka se pojavljuje u rezultatu selekcije

$R_{10} = ($	prezime,	ime,	<u>bostBr)</u>				
	Pirić	Damir	75000	R ₁₁ =(prezime,	ime,	postBr)
$r_{10}(R_{10})$	Pirić	Ema	75000	$r_{11}(R_{11})$	Pirić	Damir	75000

Formula

- ▶ Neka je r relacija definisana na shemi R i neka su A i B atributi iz R.
- ▶ Neka je θ relacijski operator iz skupa $\{=, \neq, >, \geq, <, \leq\}$
- ▶ Neka je c konstanta iz skupa dom(A)
- Formula *F* je definisana rekurzivnim izrazom:
 - A θ B, A θ c, c θ A su formule. Ove formule se nazivaju jednostavnim formulama (atomi)
 - Ako su G i H formule, tada su $G \land H$, $G \lor H$, $\neg G$ i $\neg H$ također formule
 - Ništa drugo nije formula
- Neka je $R = A_1, A_2, ..., A_k$ i neka je r relacija definisana na shemi R
- Formula F je primjenjiva na r ako su:
 - ▶ Konstante koje se pojavljuju u F iz skupa $dom(A_1) \cup dom(A_2) \cup ... \cup dom(A_k)$ i
 - ako su atributi koji se pojavljuju u F iz skupa R

Selekcija relacije

- Neka je *r* relacija definisana na shemi *R* i neka je *F* formula primjenjiva na *r*.
- Operacija selekcije nad relacijom r uz uslov selekcije F se označava s $\sigma_F(r)$, a definiše izrazom:

Selekcija relacije (primjer)

rokovi

siflspit	nazPred	sala	datIspit
21223	Baze podataka	A101	10.01.2017
21224	Razvoj softvera	Stelekt	14.01.2017
21225	Operativni sistemi	RC15	20.01.2017
21233	Baze podataka	A101	31.01.2017
21234	Razvoj softvera	Stelekt	03.02.2017
21235	Operativni sistemi	RC15	09.02.2017
21243	Baze podataka	Stelekt	12.06.2017
21244	Razvoj softvera	A008	16.06.2017
21253	Baze podataka	Stelekt	07.07.2017

SQL: SELECT * FROM rokovi
 WHERE sala = 'Stelekt'
 OR datIspit > '2017-05-31'

Relacija rokovi: gdje i kada se održavaju ispiti iz određenih predmeta

Traži se: rokovi koji se održavaju u Stelektu ili u drugoj polovini 2017 godine

$$rez = \sigma_{sala='Stelekt' \vee datlspit>'31.05.2017'}(rokovi)$$

siflspit	nazPred	sala	datIspit
21224	Razvoj softvera	Stelekt	14.01.2017
21234	Razvoj softvera	Stelekt	03.02.2017
21243	Baze podataka	Stelekt	12.06.2017
21244	Razvoj softvera	A008	16.06.2017
21253	Baze podataka	Stelekt	07.07.2017

Projekcija i selekcija (primjer)

rokovi

siflspit	nazPred	sala	datIspit
21223	Baze podataka	A101	10.01.2017
21224	Razvoj softvera	Stelekt	14.01.2017
21225	Operativni sistemi	RC15	20.01.2017
21233	Baze podataka	A101	31.01.2017
21234	Razvoj softvera	Stelekt	03.02.2017
21235	Operativni sistemi	RC15	09.02.2017
21243	Baze podataka	Stelekt	12.06.2017
21244	Razvoj softvera	A008	16.06.2017
21253	Baze podataka	Stelekt	07.07.2017

Relacija rokovi: gdje i kada se održavaju ispiti iz određenih predmeta

Traži se: nazivi predmeta za koje se rokovi održavaju u Stelektu ili u drugoj polovini 2017 g.

nazPred
Razvoj softvera
Baze podataka

$$rez = \pi_{nazPred}(\sigma_{sala='Stelekt' \vee datlspit>'31.05.2017'}(rokovi))$$

```
SQL: SELECT DISTINCT nazPred FROM rokovi
    WHERE sala = 'Stelekt'
    OR datIspit > '2017-05-31'
```

Agregacija (aggregation)

ispit					
mbrStud	da	atlspit	sifPred	sifNastavnik	ocjena
21223	10	0.01.2017	516	1001	1
21224	14	1.01.2017	517	1003	3
21225	20	0.01.2017	520	1004	4
21223	31	.01.2017	516	1002	2
21224	31	.01.2017	516	1001	1
21225	31	.01.2017	516	1001	5
21223	12	2.06.2017	520	1004	4
21224	16	6.06.2017	516	1002	3
21223	07	7.07.2017	517	1003	2

Kako izračunati prosjek ocjena na svim ispitima?

prosjek
prosjOcjena
2.778

Agregacija

- ▶ Zadana je relacija r(R). Neka je atribut $A \in R$. Neka je $\mathcal{A}\mathcal{F}$ agregatna funkcija. Rezultat operacije agregacije $\mathcal{G}_{\mathcal{A}\mathcal{F}(A)}(r)$ je relacija stepena I i kardinalnosti I, pri čemu je vrijednost atributa određena primjenom funkcije $\mathcal{A}\mathcal{F}$ nad vrijednostima atributa A u svim n-trokama relacije r. Funkcija $\mathcal{A}\mathcal{F}$ može biti jedna od:
 - COUNT određuje broj pojava (broji sve, eventualni duplikati se također broje)
 - ▶ SUM izračunava sumu vrijednosti
 - ▶ AVG izračunava prosječnu vrijednost vrijednosti
 - MIN izračunava najmanju vrijednost
 - ► MAX izračunava najveću vrijednost
- Naziv rezultujuće relacije i atributa nije definiran operacijom, stoga se najčešće koristi u kombinaciji s operacijom preimenovanja

Agregacija

ispit					
mbrStud	da	atlspit	sifPred	sifNastavnik	ocjena
21223	10	0.01.2017	516	1001	1
21224	14	1.01.2017	517	1003	3
21225	20	0.01.2017	520	1004	4
21223	31	1.01.2017	516	1002	2
21224	31	1.01.2017	516	1001	1
21225	31	1.01.2017	516	1001	5
21223	12	2.06.2017	520	1004	4
21224	16	6.06.2017	516	1002	3
21223	07	7.07.2017	517	1003	2

Prosjek ocjena na svim ispitima (rješenje):

 $\delta_{\text{prosjek(prosjOcjena)}}(G_{\text{AVG(ocjena)}}(\text{ispit}))$

prosjek
prosjOcjena
2.778

Agregacija (primjeri ostalih agregatnih funkcija)

ispit				
mbrStud	datIspit	sifPred	sifNastavnik	ocjena
21223	10.01.2017	516	1001	1
21224	14.01.2017	517	1003	3
21225	20.01.2017	520	1004	4
21223	31.01.2017	516	1002	2
21224	31.01.2017	516	1001	1
21225	31.01.2017	516	1001	5
21223	12.06.2017	520	1004	4
21224	16.06.2017	516	1002	3
21223	07.07.2017	517	1003	2

$$\bullet$$
 $\delta_{prvi(datPrvilspit)}(G_{MIN(datIspit)}(ispit))$

prvi
datPrvilspit
10.01.2017

$$\delta_{\text{zadnji}(\text{datZadnjilspit})}(G_{\text{MAX}(\text{datIspit})}(\text{ispit}))$$

zadnji
datZadnjilspit
07.07.2017

Agregacija (više vrijednosti)

ispit					
mbrStud	da	ıtlspit	sifPred	sifNastavnik	ocjena
21223	10	.01.2017	516	1001	1
21224	14	.01.2017	517	1003	3
21225	20	.01.2017	520	1004	4
21223	31	.01.2017	516	1002	2
21224	31	.01.2017	516	1001	1
21225	31	.01.2017	516	1001	5
21223	12	2.06.2017	520	1004	4
21224	16	3.06.2017	516	1002	3
21223	07	7.07.2017	517	1003	2

rezultat			
prosjOcjena		datPrviIspit	datZadnjilspit
2.77	8	10.01.2017	07.07.2017

- Moguće je odjednom izračunati više agregatnih vrijednosti:
 - $\delta_{\text{rezultat(prosjOcjena, datPrvilspit, datZadnjilspit)}}(G_{\text{AVG(ocjena), MIN(datIspit), MAX(datIspit)}}(\textit{ispit)})$

$$r_7 = r_1 \times r_6$$

$R_1 =$	(prezime,	ime, þ	<u>ostBr)</u>	$R_6 = \underline{(}$	pbr,	<u>nazivGrad)</u>
-	Pirić	Damir	75000		72000	Zenica
r_{I}	Đurić	Maja	71000	r ₆	75000	Tuzla
-	Pirić	Ema	75000			

▶ Obavljanjem operacije $r_1 \times r_6$ dobiva se $r_7(R_7)$, $R_7 = R_1 \cup R_6$. n-torke relacije r_7 dobivaju se spajanjem (ulančavanjem) svake n-torke iz relacije r_1 sa svakom n-torkom iz relacije r_6

$R_7 = \underline{(}$	prezime,	ime,	postBr,	pbr,	nazivGrad)
•	Pirić	Damir	75000	72000	Zenica
	Pirić	Damir	75000	75000	Tuzla
$r_7(R_7)$	Đurić	Maja	71000	72000	Zenica
	Đurić	Maja	71000	75000	Tuzla
	Pirić	Ema	75000	72000	Zenica
	Pirić	Ema	75000	75000	Tuzla

- Spajanje n-torki
 - Neka su $a = (a_1, a_2, ..., a_k)$ i $b = (b_1, b_2, ..., b_m)$ n-torke. Operacija spajanja n-torki označava se s $a \wedge b$, a definiše pomoću izraza $a \wedge b = (a_1, a_2, ..., a_k, b_1, b_2, ..., b_m)$.
- Neka su r i s relacije. Operacija Dekartov proizvod relacija r i s označava se $r \times s$, a definiše izrazom
- $r \times s = \{ (t_r \wedge t_s) \mid t_r \in r \wedge t_s \in s \}$

rokovi				
siflspit	naz	zPred	sala	datIspit
21223	Ba	ze podataka	A101	10.01.2017
21224	Ra	zvoj softvera	Stelekt	14.01.2017
21225	Ор	erativni sistemi	RC15	20.01.2017

	sale			
C	znSala	1	nazSala	kapacitet
	A101		Mali amfiteatar 101	64
	Stelek	t	Zgrada Stelekta	60
	RC15		Računarska sala 15	16

ispiti		$spiti = rokovi \times sale$						
siflspit	nazPred	sala	datIspit	oznSala	nazSala	kapacitet		
21223	Baze podataka	A101	10.01.2017	A101	Mali amfiteatar 101	64		
21223	Baze podataka	A101	10.01.2017	Stelekt	Zgrada Stelekta	60		
21223	Baze podataka	A101	10.01.2017	RC15	Računarska sala 15	16		
21224	Razvoj softvera	Stelekt	14.01.2017	A101	Mali amfiteatar 101	64		
21224	Razvoj softvera	Stelekt	14.01.2017	Stelekt	Zgrada Stelekta	60		
21224	Razvoj softvera	Stelekt	14.01.2017	RC15	Računarska sala 15	16		
21225	Operativni sistemi	RC15	20.01.2017	A101	Mali amfiteatar 101	64		
21225	Operativni sistemi	RC15	20.01.2017	Stelekt	Zgrada Stelekta	60		
21225	Operativni sistemi	RC15	20.01.2017	RC15	Računarska sala 15	16		

Dekartov proizvod relacija - SQL

- Ukoliko se u FROM dijelu SELECT naredbe navede više od jedne relacije, obavlja se operacija dekartovog proizvoda navedenih relacija
- ▶ I. način:

```
SELECT * FROM rokovi, sale

SELECT rokovi.*, sale.* FROM rokovi, sale
```

▶ 2. način:

```
SELECT * FROM rokovi CROSS JOIN sale
```

Dekartov proizvod tri relacije bi bio:

```
SELECT * FROM r1 CROSS JOIN r2 CROSS JOIN r3
```

- Vkoliko se obavlja operacija dekartovog proizvoda nad relacijama r i s u slučaju kada za njihove relacijske sheme vrijedi $R \cap S \neq \emptyset$, tada rezultat operacije nije relacija (jer sadrži istoimene atribute)
- U tom slučaju potrebno je izvršiti operaciju preimenovanja atributa te potom obaviti operaciju dekartovog proizvoda

$$p = r \times \delta_{A1, A2, ..., Ak \leftarrow B1, B2, ..., Bk}(s)$$

Spajanje (pridruživanje) relacija

- Spajanje uz uslov (Theta Join)
- Spajanje sa izjednačavanjem (Equi Join)
 - Poseban slučaj spajanja uz uslov
- Prirodno spajanje (Natural Join)

Spajanje uz uslov - O spajanje

- \rightarrow s = $r_1 > c r_2$
- lacktriangle uslov na osnovu kojeg se obavlja spajanje:
 - ▶ Operandi imena atributa iz r_1 i r_2 , konstante
 - Operatori
 - ▶ aritmetički operatori poređenja $(<, =, >, \leq, \neq, \geq)$
 - ▶ logički operatori (\land, \lor, \neg)
- ▶ Obavljanjem operacije $r_1 \triangleright_{\Theta} r_2$ dobija se relacija koja sadrži n-torke iz $r_1 \times r_2$ za koje je vrijednost uslova Θ istina (*true*), odnosno:
 - $r_1 \triangleright_{\theta} r_2 = \sigma_{\theta}(r_1 \times r_2)$

Spajanje uz uslov - O spajanje

LINIJA= <u>(let,</u>	<u>udaljenost)</u>	AVION= <u>(tiþ,</u>	<u>dolet)</u>
CA-82!	7200	B747	6000
A-224	3300	DC9	3000
CA-878	3 4700	B727	4500
CA-224	4 2000		

$$mogu\acute{c}nost = linija > \triangleleft avion$$

MOGUĆNOST=(let,	<u>udaljenost,</u>	tiþ,	<u>dolet)</u>
A-224	3300	B747	6000
A-224	3300	B727	4500
CA-87	⁷ 8 4700	B747	6000
CA-22	24 2000	B747	6000
CA-22	24 2000	DC9	3000
CA-22	24 2000	B727	4500

Spajanje uz uslov - O spajanje

- ▶ Neka je Θ relacijski operator iz skupa $\{<, =, >, \leq, \neq, \geq\}$
- ▶ Neka su r i s relacije definisane na shemama R i S
- Neka su A i B atributi, $A \in R$ i $B \in S$
- ▶ Operacija Θ spajanja relacija r i s na osnovi formule $A \Theta B$ označava se sa $r \triangleright_{\Theta} \subseteq S$, a definisana je izrazom:
- $r \triangleright_{\Theta} s = \{ (t_r \wedge t_s) \mid t_r \in r \wedge t_s \in s \wedge t_r(A) \Theta t_s(B) \}$
- ▶ Umjesto jednostavne formule $A \Theta B$ kao formula spajanja može se koristiti složena formula dobivena primjenom logičkih operatora nad jednostavnim formulama oblika $A_i \Theta B_j$, pri čemu je $A_i \in R$ i $B_j \in S$

Spajanje uz uslov - SQL

▶ I. način:

```
SELECT *
  FROM linija, avion
  WHERE dolet >= udaljenost
```

▶ 2. način:

```
SELECT *
  FROM linija JOIN avion
      ON dolet >= udaljenost
```

Spajanje uz uslov tri relacije bi bio:

```
SELECT *
FROM r1 JOIN r2
ON joinCondition
JOIN r3
ON joinCondition
```

Spajanje uz uslov i selekcija - SQL

Pronaći linije i avione koji na tim linijama mogu letjeti, ali samo za one linije kojima je udaljenost veća od 5000 km

$$\sigma_{\text{udaljenost}} > 5000 \ (\text{linija} > \triangleleft \text{avion})$$

SELECT *
FROM linija JOIN avion
ON udaljenost <= dolet
WHERE udaljenost > 5000

<u>(let, </u>	<u>udaljenost,</u>	tiþ,	<u>dolet)</u>
A-224	3300	B747	6000
CA-878	4700	B747	6000
CA-224	2000	B747	6000

Spajanje uz uslov i projekcija - SQL

Pronaći tipove aviona koji se mogu koristiti za letove na postojećim linijama

$$\pi_{tip}$$
 ($linija > \triangleleft avion$)

```
SQL: SELECT DISTINCT tip FROM linija, avion
WHERE udaljenost <= dolet

B747
B727
SQL: SELECT DISTINCT tip

C tip
B747
DC9
```

ON udaljenost <= dolet

FROM linija JOIN avion

Spajanje sa izjednačavanjem

 Spajanje relacija sa izjednačavanjem je poseban oblik spajanja uz uslov u kojem se kao Θ operator koristi isključivo operator jednakosti (=)

rokovi				
siflspit	nazPred		sala	datIspit
21223	Ba	ze podataka	A101	10.01.2017
21224	Ra	zvoj softvera	Stelekt	14.01.2017
21225	Ор	erativni sistemi	A101	20.01.2017

sale		
oznSala	nazSala	kapacitet
A101	Mali amfiteatar 101	64
Stelek	Zgrada Stelekta	60

rokUsali		rok	Usali [:]	= rokovi sala	= oznSala	ile		
	siflspit	nazP	red	sala	datIspit	oznSala	nazSala	kapacitet
	21223	Baze	podataka	A101	10.01.2017	A101	Mali amfiteatar 101	64
ı	21224	Razv	oj softvera	Stelekt	14.01.2017	Stelekt	Zgrada Stelekta	60
	21225	Oper	ativni sistemi	A101	20.01.2017	A101	Mali amfiteatar 101	64

Spajanje sa izjednačavanjem - SQL

• Korsti se ekvivalencija $r_1 > 0 < r_2 = \sigma_{\theta}(r_1 \times r_2)$

$$rokovi > \le sale$$

▶ I. način:

```
SELECT *
  FROM rokovi, sale
  WHERE sala = oznSala
```

▶ 2. način:

```
SELECT *

FROM rokovi JOIN sale

ON sala = oznSala
```

Prirodno spajanje relacija

- Dbavlja se na osnovu jednakih vrijednosti istoimenih atributa
- Neka su r i s relacije definisane na shemama R i S i neka je $R \cap S = \{A_1, A_2, ..., A_k\}$. Operacija prirodnog spajanja relacija r i s označava se s $r \triangleright \triangleleft$ s, a definiše izrazom
- $r \triangleright \lhd s = q(R \cup S) = \{t \mid t_r \in r \land t_s \in s, t_r(A_1) = t_s(A_1) \land t_r(A_2) = t_s(A_2) \land \dots t_r(A_k) = t_s(A_k)\}$

$$R_1 = (\underline{prezime}, \underline{ime}, \underline{postBr})$$
 $R_{61} = (\underline{postBr}, \underline{nazivGrad})$
Pirić Damir 75000 72000 Zenica r_1 Đurić Maja 71000 r_{61} 75000 Tuzla Pirić Ema 75000

$$r_{12} = r_1$$
 $> < r_{61}$ $R_{12} = \underbrace{(prezime, ime, postBr, nazivGrad)}_{Pirić}$ Pirić Damir 75000 Tuzla $r_{12}(R_{12})$ Pirić Ema 75000 Tuzla

Prirodno spajanje relacija

Prirodno spajanje relacija bez istoimenih atributa

$$r_{13} = r_1 \triangleright \triangleleft r_6$$

$R_1 = \underline{(}$	<u> þrezin</u>	<u>ne, ime, </u>	<u> ÞostE</u>	<u> 3r)</u>	$R_6 = \underline{(}$	pbr,	<u>nazivGrad)</u>
	Pirić	Dan	nir 75	5000		72000	Zenica
r_1	Đuri	ć Maja	a 71	000	r_6	75000	Tuzla
	Pirić	Em.	a 75	5000			
R_{13}	=(<u>prezime,</u>	ime,	þost	:Br,	pbr,	nazivGrad)
		Pirić	Damir	75	000	72000	Zenica
		Pirić	Damir	· 75	000	75000	Tuzla
r ₁₃	(R_{13})	Đurić	Maja	71	000	72000	Zenica

71000

75000

75000

75000

72000

75000

Tuzla

Tuzla

Zenica

... je jednako Dekartovom proizvodu

Đurić

Pirić

Pirić

Maja

Ema

Ema

Prirodno spajanje relacija - SQL

 Prirodno spajanje se razlikuje od spajanja sa izjednačavanjem po tome što se istoimeni atributi iz dviju relacija izbacuju (tako da od svakog ostane samo po jedan)

rokovi			
siflspit	nazPred	oznSala	datIspit
21223	Baze podataka	A101	10.01.2017
21224	Razvoj softvera	Stelekt	14.01.2017
21225	Operativni sistem	i A101	20.01.2017

SELECT rokovi.*, nazSala, kapacitet
FROM rokovi, sale
WHERE rokovi.oznSala = sale.oznSala

sale

oznSala	nazSala	kapacitet	
A101	Mali amfiteatar 101	64	
Stelekt	Zgrada Stelekta	60	

SELECT rokovi.*, nazSala, kapacitet
FROM rokovi JOIN sale
ON rokovi.oznSala = sale.oznSala

siflspit	nazPred	datIspit	oznSala	nazSala	kapacitet
21223	Baze podataka	10.01.2017	A101	Mali amfiteatar 101	64
21224	Razvoj softvera	14.01.2017	Stelekt	Zgrada Stelekta	60
21225	Operativni sistemi	20.01.2017	A101	Mali amfiteatar 101	64