Course3 - Task2

Question1

For each method, did you experiment with adjusting the input values until you did not see an improvement in the error metrics?

DECISION TREE MODEL

Tune Length:

Tune length =15 has the best accuracy of 91% for the cp value 0.0015020027. As you can see even though cp value increase the accuracy doesn't improve.

```
CART
7919 samples
   6 predictor
2 classes: '0', '1'
Pre-processing: centered (6), scaled (6)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 7128, 7128, 7126, 7127, 7128, 7126, ...
Resampling results across tuning parameters:
  cp Accuracy Kappa 0.0006675567 0.9117328 0.8125211
  0.0007788162 0.9132486 0.8159582
  0.0008344459 0.9132908 0.8160364
  0.0010013351 0.9146374 0.8192057
0.0011682243 0.9148059 0.8194728
  0.0012238540 0.9148059 0.8194728
  0.0050066756 0.9118593 0.8147250
0.0080106809 0.9090386 0.8094315
  0.0126835781 0.9008734 0.7932340
  0.0133511348 0.9006208 0.7926356
  0.0503337784 0.8808849 0.7536127
   0.0627503338 \quad 0.7724877 \quad 0.5376569 \\
 0.0857810414 0.7423041 0.4661881 0.1011348465 0.6574430 0.1510971
Accuracy was used to select the optimal model using the largest value
The final value used for the model was cp = 0.001502003.
```

Tune Grid:

Tune Grid has the best accuracy of 90 % for the cp value 0.01. As you can see even though cp value increase the accuracy doesn't improve.

```
CART
7919 samples
  6 predictor
   2 classes: '0', '1'
Pre-processing: centered (6), scaled (6)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 7127, 7126, 7128, 7126, 7128, 7126, ...
Resampling results across tuning parameters:
  cp Accuracy Kappa
0.00 0.9070194 0.8024513
  0.02 0.9009563 0.7937074
  0.03 0.9009563 0.7937074
  0.04 0.9009563 0.7937074
  0.05 0.8796634 0.7511356
0.06 0.7779149 0.5477896
  0.07 0.7647030 0.5238701
  0.08 0.7639033 0.5216815
  0.09 0.7324165 0.4409831
0.10 0.6919702 0.2868719
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.01.
```

C5.0 MODEL

Tune Length

Tune length has the best accuracy of 91 % for the Trials-30, winnow= true & model= tree. As you can see the accuracy doesn't improve even though the values are changing.

```
CS.0  

7919 samples  
6 predictor  
2 classes: '0', '1'  

No pre-processing  
Resampling: Cross-Validated (10 fold, repeated 10 times)  
Summary of sample sizes: 7127, 7128, 7127, 7128, 7126, 7127, ...  
Resampling results across tuning parameters:  

model winnow trials Accuracy  

model winnow trials  

model winnow  

model winnow  

model trials  

model trials
```

Tune Grid:

Tune Grid has the best accuracy of 91 % for the Trials-30 & winnow= false. As you can see, the accuracy doesn't improve even though the values are changing.

```
7919 samples
6 predictor
2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 10 times)
Summary of sample sizes: 7127, 7127, 7127, 7128, 7127, 7126, ...
Resampling results across tuning parameters:

winnow trials Accuracy Kappa
FALSE 1 0.8941012 0.7795201
FALSE 5 0.9151155 0.8199188
FALSE 10 0.9173135 0.8244648
FALSE 10 0.9177682 0.8256988
FALSE 10 0.9177682 0.8256988
FALSE 20 0.9177682 0.8257937
FALSE 30 0.9183367 0.8279989
TRUE 1 0.8963242 0.7842569
TRUE 1 0.8963242 0.7842569
TRUE 1 0.919547 0.8253970
TRUE 1 0.9195470 0.8253970
TRUE 1 0.9195467 0.823970
TRUE 10 0.919547 0.823970
TRUE 15 0.9196625 0.8290161
TRUE 20 0.9199527 0.8303323
TRUE 25 0.9196625 0.8299161
TRUE 30 0.9203822 0.8314175
TIUNINg parameter 'model' was held constant at a value of tree
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were trials = 30, model = tree and winnow = TRUE.
```

GBM MODEL

Default

No tune parameters for the model. The best accuracy is 92% for interaction depth=30 & ntree=150.

Tune Length

Tune length has the best accuracy of 92 % for the Interaction depth=3, ntrees= 250. As you can see, the accuracy doesn't improve even though the values are changing.

Tune Grid

Tune Grid has the best accuracy of 92 % for the interaction depth=5 & ntrees=100. As you can see, the accuracy doesn't improve even though the values are changing.

> qbmTuneGridModel							
Stochastic Gradient	Roostina						
Stochastic Gradient	boosering						
7919 samples							
6 predictor							
2 classes: '0', '	1'						
No pre-processing							
Resampling: Cross-Va	ilidated ((10 fold, re	epeated 10 times)				
Summary of sample sizes: 7128, 7128, 7128, 7127, 7127, 7126,							
Resampling results across tuning parameters:							
interaction.depth	n.trees		Карра				
	50 100	0.7349906	0.4391465				
	150		0.4384359 0.4382218				
	200		0.4388694				
	250		0.4393277				
	300		0.4391969				
	350		0.4389498				
	400		0.4389693				
	450		0.4392691				
	500	0.7366954	0.4390924				
	550	0.7366321	0.4387952				
	600	0.7366073	0.4387340				
	650	0.7369102	0.4392120				
	700	0.7368723	0.4391341				
	750		0.4389537				
	800		0.4392171				
	850		0.4388156				
	900		0.4393731				
	950	0.7370617					
	1000		0.4386274				
	1050 1100		0.4382031 0.4377749				
	1150		0.4382282				
	1200		0.4382581				
	1250		0.4382016				
	1300	0.7367457					
	1350		0.4371457				
	1400	0.7364046	0.4376219				
	1450	0.7364680	0.4377194				
	1500	0.7365437	0.4378349				
5	50	0.9216183	0.8347295				
5	100	0.9250287	0.8414182				
	150	0.9238035					
	200		0.8374077				
	250		0.8344906				
	300		0.8324817				
	350		0.8310919				
	400 450		0.8280620 0.8270044				
	500	0.9184492					
	550		0.8250145				
	-550						

5	600	0.9173258	0.8245908		
5	650	0.9166434	0.8231667		
5	700	0.9164286	0.8226884		
5	750	0.9161887	0.8221772		
5	800	0.9157973	0.8213274		
5	850	0.9154944	0.8206888		
5	900	0.9152039	0.8200834		
5	950	0.9151536	0.8199337		
5	1000	0.9152038	0.8200526		
5	1050	0.9145222	0.8186218		
5	1100	0.9139285	0.8173603		
5	1150	0.9137517	0.8169223		
5	1200	0.9136252	0.8166711		
5	1250	0.9135241	0.8164907		
5	1300	0.9133220	0.8160407		
5	1350	0.9131071	0.8156019		
5	1400	0.9128295	0.8150024		
5	1450	0.9125014	0.8143163		
5	1500	0.9125772	0.8144631		
9	50	0.9239302	0.8388501		
9	100	0.9225412	0.8357801		
9	150	0.9212276	0.8328888		
9	200	0.9201664	0.8305771		
9	250	0.9186768	0.8273922		
9	300	0.9181966	0.8263291		
9	350	0.9171993	0.8242203		
9	400	0.9168207	0.8234038		
9	450	0.9160122	0.8216588		
9	500 550	0.9162520 0.9150391	0.8221754 0.8195964		
9	600	0.9148371	0.8191962		
9	650	0.9144078	0.8182506		
9	700	0.9141934	0.8178197		
9	750	0.9138020	0.8169671		
9	800	0.9134609	0.8162571		
9	850	0.9132713	0.8158535		
9	900	0.9129937	0.8152973		
9	950	0.9126780	0.8146211		
9	1000	0.9124254	0.8141229		
9	1050	0.9125894	0.8144685		
9	1100	0.9121474	0.8134994		
9	1150	0.9121474	0.8135248		
9	1200	0.9120338	0.8132701		
9	1250	0.9118823	0.8129406		
9	1300	0.9119709	0.8130774		
9	1350	0.9116676	0.8124728		
9	1400	0.9115667	0.8122866		
9	1450	0.9110618	0.8111903		
9	1500	0.9111375	0.8113578		
Tuni Accu	Tuning parameter 'shrinkage' was held constant at a value of 0.1 Tuning parameter 'n.minobsinnode' was held constant at a value of 20 Accuracy was used to select the optimal model using the largest value. The final values used for the model were n.trees = 100, interaction.depth = 5, shrinkage = 0.1 and n.minobsinnode = 20.				

ROC

ROChas the best accuracy of 92 % for the interaction depth=9 & ntrees=50. As you can see, the accuracy doesn't improve even though the values are changing.

650 700	0.9168324	0.0005407
700		
	0.9161125	0.8220081
750	0.9158474	0.8214236
800	0.9153551	0.8203336
850	0.9151276	0.8198394
900	0.9147615	0.8190640
950	0.9143195	
1050		
1100		
1050	0.9127277	
1100	0.9126648	0.8145942
1150	0.9121092	0.8133817
1200	0.9119451	0.8130575
1250	0.9120208	0.8132051
1300	0.9120964	0.8133736
1350	0.9120207	0.8131983
1400	0.9120211	0.8132655
1450	0.9119831	0.8131308
1500	0.9118186	0.8128115
	850 900 950 1690 1690 1150 1150 1250 1250 1250 1590 1590 1590 1590 1590 1590 1590 15	880 0,9151276 990 0,9147615 990 0,9147615 990 0,9147615 1000 0,9147616 1000 0,9147616 1100 0,9148196 1100 0,9138016 1100 0,9126643 1100 0,9126643 1100 0,9126643 1100 0,9126643 1100 0,9126643

RANDOM FOREST MODEL

Tune Length

Tune length has the best accuracy of 92 % for mtry=2. As you can see, even though mtry value increases, the accuracy doesn't improve.

```
Random Forest
7919 samples
  6 predictor
  2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 7127, 7126, 7127, 7128, 7126, 7128, ....
Resampling results across tuning parameters:
 mtry Accuracy Kappa
       0.9215836 0.8339370
       0.9207412 0.8318668
 4
     0.9187636 0.8274740
 5
     0.9163634 0.8223327
       0.9140485 0.8174408
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
```

Tune Grid

Tune Grid has the best accuracy of 92 % for mtry=2. As you can see, even though mtry value increases, the accuracy doesn't improve.

```
Random Forest
7919 samples
  6 predictor
  2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 7127, 7127, 7126, 7126, 7127, 7128, ....
Resampling results across tuning parameters:
 mtry Accuracy
                  Kappa
       0.8685015 0.7120302
       0.9220861 0.8350195
       0.9211186 0.8326470
 3
       0.9200246 0.8302171
 5
       0.9179201 0.8256654
       0.9153939 0.8201895
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
```

Question 2

Did you include a brief explanation of your rationale for selecting the training model you did?

Because it's a classification problem, I chose the below Algorithms to help find the best models.

- Decision Tree Algorithm
- Stochastic Gradient Boosting Algorithm
- C5.0 Algorithm
- Random Forest Algorithm

Question 3

Did you provide a simple chart that displays which brand Blackwell customers prefer?

Best Decision Tree Model -

Confusion Matrix

Best C50 Model - Confusion Matrix

```
> cmCS0TuneLength
Confusion Matrix and Statistics

Reference
Prediction 0 1
0 572 42
1 56 920

Accuracy: 0.9384
95% CI: (0.9254, 0.9497)
No Information Rate: 0.605
P-Value [Acc > NIR]: <2e-16

Kappa: 0.8705

Mcnemar's Test P-Value: 0.1891

Sensitivity: 0.9108
Specificity: 0.9563
Pos Pred Value: 0.9316
Neg Pred Value: 0.9426
Prevalence: 0.3950
Detection Rate: 0.3597
Detection Prevalence: 0.3862
Balanced Accuracy: 0.9336
'Positive' Class: 0
```

Best GBM Mode - Confusion Matrix

```
Confusion Matrix and Statistics

Reference
Prediction 0 1
0 578 59
1 50 903

Accuracy: 0.9314
95% CI: (0.9179, 0.9434)
No Information Rate: 0.605
P-Value [Acc > NIR]: <2e-16

Kappa: 0.8569

Mcnemar's Test P-Value: 0.4435

Sensitivity: 0.9204
Specificity: 0.9387
Pos Pred Value: 0.9074
Neg Pred Value: 0.9074
Neg Pred Value: 0.9074
Neg Pred Value: 0.3635
Detection Rate: 0.3635
Detection Rate: 0.3635
Detection Prevalence: 0.4006
Balanced Accuracy: 0.9295
'Positive' Class: 0
```

Best Random Forest Model

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1 0 628 0
        1 0 962
               95% CI : (0.9977, 1)
   No Information Rate : 0.605
   P-Value [Acc > NIR] : < 2.2e-16
                 Карра : 1
 Mcnemar's Test P-Value : NA
           Sensitivity : 1.000
           Specificity : 1.000
        Pos Pred Value : 1.000
        Neg Pred Value : 1.000
            Prevalence : 0.395
        Detection Rate : 0.395
   Detection Prevalence : 0.395
      Balanced Accuracy : 1.000
       'Positive' Class : 0
```

Conclusion

If you check the above the confusion matrices for all the models, the fraction of Brand-1 (SONY) is more compared to Brand-0 (ACER). Hence we can say that SONY if preferred more compared to ACER. Also the Prediction accuracy on the Incomplete

Survey data points to the same inference where in Sony is preferred compared to ACER.

Did you include the logs of the results of each classifier run? - PFA