Miejsce na naklejkę z kodem szkoły

dys	leks	ja

MMA-P1A1P-062

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz I

POZIOM PODSTAWOWY

MAJ ROK 2006

ARKUSZ I

Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 10. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem ■ i zaznacz właściwe.

Za rozwiązanie wszystkich zadań można otrzymać łącznie

50 punktów

Życzymy powodzenia!

	Wypełnia zdający przed rozpoczęciem pracy									
гогросгестени ргасу										
	PESEL ZDAJACEGO									

Zadanie 1. (*3 pkt*)

Dane są zbiory: $A = \{x \in R : |x-4| \ge 7\}$, $B = \{x \in R : x^2 > 0\}$. Zaznacz na osi liczbowej:

- a) $zbi\acute{o}r A$,
- b) $zbi\acute{o}r B$,
- c) zbiór $C = B \setminus A$.

a)

Zapisuję nierówność $|x-4| \ge 7$ w postaci alternatywy nierówności:

$$x-4 \le -7$$
 lub $x-4 \ge 7$ i rozwiązuję każdą z nich.

$$x \le -3$$
 lub $x \ge 11$.

Zaznaczam na osi liczbowej zbiór A.

b)

Rozwiązuję nierówność $x^2 > 0$.

$$x \neq 0$$

Zaznaczam na osi liczbowej zbiór B.

c)

Zaznaczam na osi liczbowej zbiór C.

	Nr czynności	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 2. (3 pkt)

W wycieczce szkolnej bierze udział 16 uczniów, wśród których tylko czworo zna okolicę. Wychowawca chce wybrać w sposób losowy 3 osoby, które mają pójść do sklepu. Oblicz prawdopodobieństwo tego, że wśród wybranych trzech osób będą dokładnie dwie znające okolicę.

 Ω jest zbiorem wszystkich trzyelementowych podzbiorów zbioru szesnastoelementowego.

Zdarzenia jednoelementowe są równoprawdopodobne, więc korzystam z klasycznej definicji prawdopodobieństwa.

Obliczam, na ile sposobów można wybrać trzy osoby spośród 16:

$$|\Omega| = {16 \choose 3} = \frac{16 \cdot 15 \cdot 14}{2 \cdot 3} = 560$$

Zdarzenie A – wśród trzech wybranych osób będą dwie, które znają okolicę i jedna, która okolicy nie zna.

Obliczam, na ile sposobów można wybrać trzy osoby, wśród których będą dwie

znające okolicę i jedna, która okolicy nie zna:
$$|A| = {4 \choose 2} {12 \choose 1} = \frac{4 \cdot 3}{2} \cdot 12 = 72$$
.

Obliczam prawdopodobieństwo zdarzenia A:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{72}{560} = \frac{9}{70}.$$

	Nr czynności	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 3. (*5 pkt*)

Kostka masła produkowanego przez pewien zakład mleczarski ma nominalną masę 20 dag. W czasie kontroli zakładu zważono 150 losowo wybranych kostek masła. Wyniki badań przedstawiono w tabeli.

Masa kostki masła (w dag)	16	18	19	20	21	22
Liczba kostek masła	1	15	24	68	26	16

- a) Na podstawie danych przedstawionych w tabeli oblicz średnią arytmetyczną oraz odchylenie standardowe masy kostki masła.
- b) Kontrola wypada pozytywnie, jeśli średnia masa kostki masła jest równa masie nominalnej i odchylenie standardowe nie przekracza 1 dag. Czy kontrola zakładu wypadła pozytywnie? Odpowiedź uzasadnij.

Obliczam średnią masę kostki masła:

$$\overline{x} = \frac{16 \cdot 1 + 18 \cdot 15 + 19 \cdot 24 + 20 \cdot 68 + 21 \cdot 26 + 22 \cdot 16}{150} = 20$$
.

Obliczam wariancję:

$$\sigma^2 = \frac{1 \cdot 4^2 + 15 \cdot 2^2 + 24 \cdot 1^2 + 68 \cdot 0^2 + 26 \cdot 1^2 + 16 \cdot 2^2}{150} = \frac{19}{15}.$$

Obliczam odchylenie standardowe: $\sigma = \sqrt{\frac{19}{15}} \approx 1,125$.

Odp.: Kontrola zakładu nie wypadła pozytywnie, ponieważ odchylenie standardowe przekroczyło 1 dag.

	Nr czynności	3.1.	3.2.	3.3.
Wypełnia	Maks. liczba pkt	2	2	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 4. (4 pkt)

Dany jest rosnący ciąg geometryczny, w którym $a_1 = 12$, $a_3 = 27$.

- a) Wyznacz iloraz tego ciągu.
- b) Zapisz wzór, na podstawie którego można obliczyć wyraz a_n , dla każdej liczby naturalnej $n \ge 1$.
- c) Oblicz wyraz a_6 .

Wyznaczam iloraz ciągu geometrycznego: $q^2 = \frac{a_3}{a_1} = \frac{27}{12} = \frac{9}{4}$;

stąd $q = \frac{3}{2} lub \ q = -\frac{3}{2}$.

Odrzucam odpowiedź $q = -\frac{3}{2}$, ponieważ $a_1 > 0$ i ciąg jest rosnący.

wniosek: ilorazem tego ciągu jest $q = \frac{3}{2}$.

Wyznaczam wzór na a_n : $a_n = 12 \cdot \left(\frac{3}{2}\right)^{n-1}$.

Obliczam a_6 : $a_6 = 12 \cdot \left(\frac{3}{2}\right)^5 = 91\frac{1}{8}$.

	Nr czynności	4.1.	4.2.	4.3.
Wypełnia	Maks. liczba pkt	2	1	1
wypemia egzaminator!	Uzyskana liczba pkt			

Zadanie 5. (*3 pkt*)

Wiedząc, że $0^{\circ} \le \alpha \le 360^{\circ}$, $\sin \alpha < 0$ oraz $4 \operatorname{tg} \alpha = 3 \sin^2 \alpha + 3 \cos^2 \alpha$

- a) oblicz $tg\alpha$,
- b) zaznacz w układzie współrzędnych kąt α i podaj współrzędne dowolnego punktu, różnego od początku układu współrzędnych, który leży na końcowym ramieniu tego kąta.

Obliczam tangens kąta α z podanego równania:

$$4tg\alpha = 3\sin^2\alpha + 3\cos^2\alpha,$$

$$4tg\alpha = 3(\sin^2\alpha + \cos^2\alpha).$$

Korzystam z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ i otrzymuję:

$$tg\alpha = \frac{3}{4}$$
.

Zaznaczam w układzie współrzędnych kąt α .

Punkt (-4,-3) leży na końcowym ramieniu szukanego kąta.

	Nr czynności	5.1.	5.2.	5.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 6. (7 *pkt*)

Państwo Nowakowie przeznaczyli 26000 zł na zakup działki. Do jednej z ofert dołączono rysunek dwóch przylegających do siebie działek w skali 1:1000. Jeden metr kwadratowy gruntu w tej ofercie kosztuje 35 zł. Oblicz, czy przeznaczona przez państwa Nowaków kwota wystarczy na zakup działki P₂.

Trójkąty ACE i DCB są podobne.

Z twierdzenia o polach figur podobnych otrzymuję zależność: $\frac{P_2}{P_{\Delta ACE}} = k^2$,

gdzie k jest skalą podobieństwa trójkątów.

Wyznaczam skalę podobieństwa k:
$$k = \frac{|BC|}{|EC|} = \frac{6.5}{13} = \frac{1}{2}$$
.

Wyznaczam zależność między polami trójkątów podobnych P_2 i $P_{\Delta\!A\!C\!E}$:

$$P_2 = k^2 \cdot P_{\Delta ACE}$$
, stad $P_2 = \frac{1}{4} \cdot P_{\Delta ACE}$

Obliczam długość odcinka AC z trójkąta AC: $|AC| = \sqrt{13^2 - 5^2} = 12 \text{ cm}$.

Obliczam pole trójkąta ACE (na rysunku): $P_{\Delta ACE} = 30 \text{ cm}^2$.

Obliczam pole działki
$$P_2$$
 (na rysunku): $P_2 = \frac{1}{4}P_{\Delta ACE} = 7.5 \text{ cm}^2$.

Obliczam pole działki P_2 w rzeczywistości: $P_2 = 7.5 \text{ cm}^2 \cdot (1000)^2 = 750 \text{ m}^2$.

Obliczam koszt zakupu działki P_2 : $750 \cdot 35 = 26250$ *zł.*

Odp.: Przeznaczona kwota nie wystarczy na zakup tej działki, zabraknie 250 zł.

	Nr czynności	6.1.	6.2.	6.3.	6.4.	6.5.	6.6.	6.7.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt							

Zadanie 7. (5 pkt)

Szkic przedstawia kanał ciepłowniczy, którego przekrój poprzeczny jest prostokątem. Wewnątrz kanału znajduje się rurociąg składający się z trzech rur, każda o średnicy zewnętrznej 1 m. Oblicz wysokość i szerokość kanału ciepłowniczego. Wysokość zaokrąglij do 0,01 m.

Środki okręgów na przedstawionym w zadaniu szkicu są wierzchołkami trójkąta równobocznego o boku długości a=1.

Obliczam wysokość tego trójkąta: $h = \frac{\sqrt{3}}{2}$.

Obliczam wysokość kanału ciepłowniczego: d = 2r + h, $d = 1 + \frac{\sqrt{3}}{2}$.

Odp.: Wysokość kanału z zadanym zaokrągleniem jest równa $d \approx 1,87$ m a jego szerokość s=2 m.

	Nr czynności	7.1.	7.2.	7.3.	7.4.
Wypełnia	Maks. liczba pkt	1	1	2	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 8. (*5 pkt*)

Dana jest funkcja $f(x) = -x^2 + 6x - 5$.

- a) Naszkicuj wykres funkcji f i podaj jej zbiór wartości.
- b) Podaj rozwiązanie nierówności $f(x) \ge 0$.

Wyznaczam współrzędne wierzchołka paraboli:

$$p = \frac{-b}{2a}$$
; $p = \frac{-6}{-2} = 3$,

$$\Delta = 16$$
; $q = \frac{-\Delta}{4a}$, $q = \frac{-16}{-4} = 4$

stad
$$W = (3,4)$$
.

Wyznaczam miejsca zerowe funkcji: $x_1 = 1$, $x_2 = 5$.

Zbiór wartości funkcji: $(-\infty,4)$.

Rozwiązaniem nierówności $f(x) \ge 0$ są wszystkie liczby rzeczywiste z przedziału $\langle 1,5 \rangle$.

	Nr czynności	8.1.	8.2.	8.3.	8.4.	8.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 9. (6 *pkt*)

Dach wieży ma kształt powierzchni bocznej ostrosłupa prawidłowego czworokątnego, którego krawędź podstawy ma długość 4 m. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 60° .

- a) Sporządź pomocniczy rysunek i zaznacz na nim podane w zadaniu wielkości.
- b) Oblicz, ile sztuk dachówek należy kupić, aby pokryć ten dach, wiedząc, że do pokrycia 1 m² potrzebne są 24 dachówki. Przy zakupie należy doliczyć 8% dachówek na zapas.

Przyjmijmy oznaczenia jak na rysunku: a = |AB| = 4 m.

Trójkat EFS jest równoboczny.

Wysokość ściany bocznej |SF| = 4m.

Obliczam pole powierzchni dachu:

$$P = 4 \cdot \frac{4 \cdot 4}{2} = 32 \ m^2$$
.

Obliczam liczbę dachówek bez uwzględniania zapasu:

$$32 \cdot 24 = 768$$
 sztuk.

Obliczam, ile dachówek należy kupić, uwzględniając zapas:

$$108\% \cdot 768 = 829,44.$$

Odp.: Należy kupić 830 sztuk dachówek.

	Nr czynności	9.1.	9.2.	9.3.	9.4.	9.5.
Wypełnia	Maks. liczba pkt	1	1	1	2	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 10. (6 pkt)

Liczby 3 i –1 są pierwiastkami wielomianu $W(x) = 2x^3 + ax^2 + bx + 30$.

- a) Wyznacz wartości współczynników a i b.
- b) Oblicz trzeci pierwiastek tego wielomianu.

Do rozwiązania zadania wykorzystuję twierdzenie Bézouta.

$$W(3) = 0 \iff 9a + 3b + 84 = 0$$
,

$$W(-1)=0 \Leftrightarrow a-b+28=0.$$

Rozwiązuję układ równań:
$$\begin{cases} 9a + 3b + 84 = 0 \\ a - b + 28 = 0 \end{cases}$$

$$a = -14$$
, $b = 14$.

Podstawiam obliczone wartości współczynników a, b i zapisuję wielomian

$$W(x) = 2x^3 - 14x^2 + 14x + 30.$$

Wielomian
$$W(x)$$
 dzielę przez $(x-3)(x+1) = x^2 - 2x - 3$:

$$(2x^3-14x^2+14x+30):(x^2-2x-3)=2x-10.$$

Obliczam trzeci pierwiastek:
$$2x-10=0$$

$$x = 5$$
.

Wypełnia egzaminator!	Nr czynności	10.1.	10.2.	10.3.	10.4.	10.5.	10.6.
	Maks. liczba pkt	1	1	1	1	1	1
	Uzyskana liczba pkt						

Zadanie 11. (3 pkt)

Sumę $S = \frac{3}{1 \cdot 4} + \frac{3}{4 \cdot 7} + \frac{3}{7 \cdot 10} + ... + \frac{3}{301 \cdot 304} + \frac{3}{304 \cdot 307}$ można obliczyć w następujący sposób:

a) sumę S zapisujemy w postaci

$$S = \frac{4-1}{4\cdot 1} + \frac{7-4}{7\cdot 4} + \frac{10-7}{10\cdot 7} + \dots + \frac{304-301}{304\cdot 301} + \frac{307-304}{307\cdot 304}$$

b) każdy składnik tej sumy przedstawiamy jako różnicę ułamków

$$S = \left(\frac{4}{4 \cdot 1} - \frac{1}{4 \cdot 1}\right) + \left(\frac{7}{7 \cdot 4} - \frac{4}{7 \cdot 4}\right) + \left(\frac{10}{10 \cdot 7} - \frac{7}{10 \cdot 7}\right) + \dots + \left(\frac{304}{304 \cdot 301} - \frac{301}{304 \cdot 301}\right) + \left(\frac{307}{307 \cdot 304} - \frac{304}{307 \cdot 304}\right)$$

$$\text{stad } S = \left(1 - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{10}\right) + \dots + \left(\frac{1}{301} - \frac{1}{304}\right) + \left(\frac{1}{304} - \frac{1}{307}\right)$$

$$\text{wiec } S = 1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + \frac{1}{7} - \frac{1}{10} + \dots + \frac{1}{301} - \frac{1}{304} + \frac{1}{304} - \frac{1}{307}$$

c) obliczamy sumę, redukując parami wyrazy sąsiednie, poza pierwszym i ostatnim $S = 1 - \frac{1}{307} = \frac{306}{307}$.

Postępując w analogiczny sposób, oblicz sumę $S_1 = \frac{4}{1.5} + \frac{4}{5.9} + \frac{4}{9.13} + \dots + \frac{4}{281.285}$

Zapisuję sumę
$$S_1$$
 w postaci: $S_1 = \frac{5-1}{5\cdot 1} + \frac{9-5}{9\cdot 5} + \frac{13-9}{13\cdot 9} + ... + \frac{285-281}{285\cdot 281}$.

Zapisuję każdy składnik sumy w postaci różnicy ułamków:

$$S_1 = \left(\frac{5}{5 \cdot 1} - \frac{1}{5 \cdot 1}\right) + \left(\frac{9}{9 \cdot 5} - \frac{5}{9 \cdot 5}\right) + \left(\frac{13}{13 \cdot 9} - \frac{9}{13 \cdot 9}\right) + \dots + \left(\frac{285}{285 \cdot 281} - \frac{281}{285 \cdot 281}\right)$$

stad
$$S_1 = \left(1 - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{9}\right) + \left(\frac{1}{9} - \frac{1}{13}\right) + \dots + \left(\frac{1}{281} - \frac{1}{285}\right)$$

wiec
$$S_1 = 1 - \frac{1}{5} + \frac{1}{5} - \frac{1}{9} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{281} - \frac{1}{285}$$

Obliczam sumę, redukując parami wyrazy sąsiednie, poza pierwszym i ostatnim:

$$S_1 = 1 - \frac{1}{285} = \frac{284}{285}$$
.

Wypełnia	Nr czynności	11.1.	11.2.	11.3.
	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

BRUDNOPIS