# Solving Abrupt Silicon PN Junction Question

- 1. Calculate  $V_{bi}$ .
- 2. Look up  $D_p$  on the diffusion coefficient chart. 3
- 3. Calculate the diffusion length:  $L_p = \sqrt{D_p \tau_p}$  (for  $p^{+}n$ ) - or -  $L_{n} = \sqrt{D_{n}\tau_{n}}$  (for  $pn^{+}$ )
- 4. If:  $L_p > x_p$  (for  $p^+ n$ ) or  $L_n > x_n$  (for  $pn^+$ ), the diode is short-base.

### Bipolar Junction Transistor

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}; \ \beta_{dc} = \frac{\alpha_{dc}}{1 - \alpha_{dc}}$$

$$\alpha_F = \gamma_F \alpha_T; \ \alpha_{dc} = \gamma \alpha_T$$

$$\alpha_R = \gamma_R \alpha_T$$

$$\alpha_{T(npn)} = \frac{I_{Cn}}{I_{En}}; \ \alpha_{T(pnp)} = \frac{I_{Cp}}{I_{Ep}}$$

$$\alpha_T = 1 - \frac{x_B^2}{2D_n \tau_n} = 1 - \frac{x_B^2}{2Ln^2}$$

$$I_{pE} = \frac{-qA_E n_i^2 D_p}{N_{dE} x_E} \exp\left(\frac{qV_{BE}}{k_B T} - 1\right)$$

$$I_{RD} = \frac{-qA_E n_i^2 D_p}{N_{dE} x_E} \exp\left(\frac{qV_{BE}}{k_B T} - 1\right)$$

BTF (
$$\approx 0.999$$
)
BTF ( $D_n$ . Fig 3,5)

$$I_{pE} = \frac{-qA_E n_i D_p}{N_{dE} x_E} \exp\left(\frac{qV_{BE}}{k_B T} - 1\right)$$
 Short Emitter  $L_{pE} = \sqrt{D_{pE}}$   $I_{pE} = \frac{-qA_E n_i^2 D_p}{N_{dE} L_p} \exp\left(\frac{qV_{BE}}{k_B T} - 1\right)$  Long Emitter  $L_{pE} = \sqrt{D_{pE}}$ 

$$L_{pE} = \sqrt{D_{pE}\tau_n} < x_E$$

$$\gamma_F = \left[1 + \frac{x_B N_{aB} D_{pE}}{x_E N_{dE} D_{nB}}\right]^{-1}$$
Short Emitter Forward and
$$\gamma_R = \left[1 + \frac{x_B N_{aB} D_{pC}}{x_E N_{dC} D_{nB}}\right]^{-1}$$
Efficiency ( $\gamma_R$  swap roles, E & C)

$$\gamma_{R} = \left[1 + \frac{x_{B}N_{aB}D_{pE}}{L_{PE}N_{dE}D_{nB}}\right]^{-1}$$
 Efficiency ( $\gamma_{R}$  swap roles, E & C)
$$\gamma_{R} = \left[1 + \frac{x_{B}N_{aB}D_{pE}}{L_{PE}N_{dE}D_{nB}}\right]^{-1}$$
 Long Emitter Forward and (REI) Efficiency (for  $\gamma_{R}$  swap roles of E & C)

$$\gamma_{(npn)} = \frac{I_{En}}{I_E} = \frac{|I_{En}|}{|I_{En}| + |I_{Ep}|}$$

$$\gamma_{(pnp)} = \frac{I_{Ep}}{I_E} = \frac{|I_{Ep}|}{|I_{En}| + |I_{Ep}|}$$
Emitter injection Efficiency

$$I_E = I_{Ep} + I_{En} \ I_C = I_{Cp} + I_{Cn}$$
  $I_B = \frac{I_C - I_{CE0}}{\beta_{dc}}$   $I_{Cp} = \alpha_{dc}I_E + I_{CB0} \ I_{Cp} = \beta I_B + I_{CE0} \ I_{Cn} \approx I_{BC0}$  6.

 $I_{Cn} \approx I_{BC0}$  Collector Reverse Saturation Current  $I_{Cp} \approx I_{BC0}$  Emitter-Collector

$$I_{Cn} \approx I_{BC0}$$
 Emitter-Conector Saturation Current lectron Current Density (ECD) - constant base don-

Electron Current Density (ECD) - constant base dop- $J_n = \frac{qD_n n_i^2}{r_B N_B} \left[ \exp\left(\frac{qV_{BC}}{k_B T}\right) - \exp\left(\frac{qV_{BE}}{k_B T}\right) \right] (A/cm^2)$ 

ECD - non-constant base doping (A/cm<sup>2</sup>)
$$J_n = J_0 \left[ \exp \left( \frac{qV_{BC}}{k_B T} \right) - \exp \left( \frac{qV_{BE}}{k_B T} \right) \right]$$

$$J_0 = \frac{q^2 n_i^2 D_n}{Q_B}, \ \tilde{D}_n = \text{avg}(D_n)$$

Collector Current Density (under active bias)

$$J_C \approx J_0 \exp\left(\frac{qV_{BE}}{k_B T}\right)$$

Recombination of excess minority carriers in the base  $I_{rB} = \frac{qA_g n_i^2 x_B}{2N_{aB}\tau_n} \left[ \exp\left(\frac{qV_{BE}}{k_B T}\right) - 1 \right]$ 

Collector-Emitter Breakdown Voltage in terms of the Collector-Base Breakdown. Note that  $m \approx 4$ 

$$BV_{CE0} = \frac{BV_{CB0}}{\beta^{1/m}}$$
 Finding  $\beta$  Of a BJT

- 1. Look-up  $D_{pE}$  amd  $D_{pC}$  on chart
- 2. Find  $L_{pE} = \sqrt{D_{pE}\tau_{pE}}$  and  $L_{pC} = \sqrt{D_{pC}\tau_{pC}}$
- 3. Check if emitter is long or short  $L_{pE} > x_B \rightarrow$ long emitter or  $L_{pE} < x_B \rightarrow \text{short emitter}$ .
- $L_{pE} = \sqrt{D_{pE}\tau_n} > x_E$  4. Find  $\gamma_F$ , (Short Emitter Forward Efficiency)
  - 5. Find  $\alpha_T$  (Base Transport Factor) 6. Find  $\alpha_F$  (Base Transport Factor)
  - 7. Find  $\beta_F$  (Current Gain)

# Designing an Prototype NPN Structure for an Amplifier

1. Assume these doping levels:  $N_{dC} = 10^{16} \text{cm}^{-3} \text{ and } N_{aB} = 5 \times 10^{16} \text{cm}^{-3}$ 

2. Calculate  $V_{bi} = \frac{k_B T}{q} \ln \left[ \frac{N_d N_a}{n_i^2} \right]$ 3. Use  $V_a$ , desired punch through voltage.

$$x_B = \left(\frac{N_{aB}}{N_{dC}}\right)^{-1} \left[\frac{2\epsilon_s}{q} \left(\frac{1}{N_{aB}} + \frac{1}{N_{dC}}\right) (V_A - V_{bi})\right]^{1/2}$$

4. Calculate (shown as a design parameter)

$$x_{p0} = \left(\frac{N_{aB}}{N_{dC}}\right)^{-1} \left[\frac{2\epsilon_s}{q} \left(\frac{1}{N_{aB}} + \frac{1}{N_{dC}}\right) (V_{bi})\right]^{1/2}$$

- 5. Calculate  $\alpha_T = 1 \frac{x_B^2}{2D_n \tau_n}$  use hole curve  $(D_n = 23 \text{cm}^2 \text{s}^{-1})$  for doping levels above.
- 6. With these doping levels  $\alpha_t \cong 1$ . Since  $\alpha_T \cong 1$ ,

7. Find the ratio = 
$$\frac{N_{dE}}{D_{pE}} = \underbrace{\left(\frac{x_B N_{aB}}{x_E D_{nB}}\right) \left(\frac{1}{\gamma_F} - 1\right)}_{AB}$$

 $N_{dE}$  that allows you to look up  $D_{pE}$  on the diffusion chart. Use the curve for holes.  $V_{FB}$  7. Calculate  $V_T$ .

### Ebers-Moll Equations

$$\begin{split} I_E &= I_F - \alpha_R I_R & \text{Emitter Current} \\ I_C &= \alpha_F I_F - I_R & \text{Collector Current} \\ I_B &= I_E - I_C \\ I_B &= (1 - \alpha_F) I_F + (1 - \alpha_R) I_R & \text{Base Current} \\ I_{F0} &= qA \left[ \frac{D_E n_{E0}}{L_e} + \frac{D_B p_{B0}}{W} \right] & \text{Forward Coefficient} \\ I_F &= I_{F0} \left[ e^{(eV_{cB}/k_BT)} - 1 \right] & \text{For Curr Component} \\ I_{R0} &= qA \left[ \frac{D_E N_{c0}}{L_C} + \frac{D_B p_{B0}}{W} \right] & \text{Reverse Coefficient} \\ I_R &= I_{R0} \left[ e^{(qV_{cB}/k_BT)} - 1 \right] & \text{Rev Cur Component} \\ \alpha_F I_{F0} &= \alpha_R I_{R0} = I_S \\ \frac{I_{F0}}{I_{R0}} &= \frac{\alpha_R}{\alpha_F} & \text{reciprocity Relation.} \\ \beta_f &= \frac{\alpha_F}{1 - \alpha_F} & \text{Normal Forward } \beta \\ \alpha_R I_R &= \frac{qAD_B p_{B0}}{W} \left[ e^{(qV_{cB}/k_BT) - 1} \right] & \text{Ebers-Moll Eqns} \end{split}$$

 $\alpha_R I_R = \frac{qAD_B p_{B0}}{W} \left[ e^{(qV_{cB}/k_B T)-1} \right] \text{ Vol III - 47.}$ 

#### Transit Time and Frequency Response

Emitter-Base Capacitance Charging Time  $\tau_1 = r_e C_{iE}$ Collector Capacitance Charging Time Base Transit Time

 $\tau_C = \frac{x_{dc}}{v_{sat}}$ Collector Depletion Region Transit Time  $(x_{dc}: Depletion region width of collector)$  $(v_{sat}: Saturation velocity, \approx 10^7 m/s)$ 

 $\tau_{EC} = \tau_1 + \tau_2 + \tau_B + \tau_C \ \tau_{EC} = \tau_C + \tau_B + \tau_E$ Emitter to Collector Transit Time.  $f_T = \frac{1}{2\pi\tau_{EG}}$ Cut-off Frequency.

**Amplification**: For amplifying BJTs, the thickness and resistivity of the collector are both large. This results in an increased breakdown voltage and reduces the early effect.

Switching: For switching BJT's, saturation (On-State) resistance must be minimized, which requires a very thin collector layer with a resistivity of a few tenths of an  $\Omega$ -cm.

The Early Effect results in an increase in  $I_C$  due to base-width modulation when  $V_{CB}$  is increased.

Finding  $V_T$ : Using substrate resistivity  $\rho \to N_A \& N_D$ (Vol I - pg 71) 2. Calculate  $\phi_p$  3. Calculate  $Q_f$  from 8. Using  $D_{pE} = \frac{N_{dE}}{ratio}$ , find a good value for given data  $Q_f/q$  4. Calculate  $C_{ox}$  5. Find  $\phi_{MS}$  (depends on gate material, use Vol I - pg 96. 6. Calculate

#### MOSFET's

 $\epsilon_s = K_s \epsilon_0 = 1.1045 \times 10^{-12} \frac{F}{cm} \quad \text{Permittivity of Si (at 300K)} \quad f_{max} = \frac{g_m}{2\pi C_{ox}} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_{D(sat)} = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff f } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff } V_D \leq V_D(sat) = \frac{\bar{\mu}_n V_D}{2\pi L^2} \quad \text{Cutoff }$  $K_s = 11.8$ Dielectric Constant of Si (at 300 K) P-type Si MOS Structure  $\rightarrow$  N-channel Device N-type Si MOS Structure  $\rightarrow$  P-channel Device Ref Voltage rel to the semicond doping concent.

$$\phi_{F(p-type)} = \phi_p = \frac{kT}{q} \ln \left( \frac{N_A}{n_i} \right)$$

$$\phi_{F(n-type)} = \phi_p = -\frac{kT}{q} \ln \left( \frac{N_D}{n_i} \right) \text{ Semicond Surf Pot}$$

at Depletion-Inversion Transition Point  $\phi_S = 2\phi_F$ Flat-band voltage (voltage that produces flat energy bands in the oxide and silicon)

 $V_{FB} = \phi_{MS} - \frac{Q_f}{C_{ox}}$  With a charge on the oxide layer.  $V_{FB} = \phi_M - \phi_S = \phi_{MS}$  oxide layer free of charge.

$$W_T = \left[\frac{2K_s\epsilon_0}{qN_A}(2\phi_p)\right]^{1/2}$$
 Depletion Width Iv p 43  

$$\phi(x) = \frac{1}{q}[E_f - E_i(x)]$$
 Potential in Silicon  

$$\phi_S = \phi(0) = \frac{1}{q}(E_f - E_i(0))$$
 Surface Potential  

$$C_{ox} = \frac{\epsilon_{ox}}{x_{ox}} \dot{A} = 10^{-10}m$$
 Oxide Layer Capacitance

 $Q_{d(max)} = \sqrt{4k_s\epsilon_0qN_A|\phi_P|}$  $V_T = V_{FB} + 2|\phi_p| + \frac{|Q_{d(max)}|}{C_{con}}$ , Threshold Voltage(T.V.)

$$V_T = 2\phi_F - \frac{K_s x_{ox}}{K_{ox}} \left[ \frac{4q N_A}{K_S \epsilon_0} \phi_F \right]$$

 $\Delta V_G = V_T' - V_T$  (Threshold Adjustment)  $\Delta V_G = \frac{-Q_l}{C}$  $Q_l = \pm q N_l \rightarrow N_l = \pm \frac{Q_l}{q} V_T'$  Un-adjusted T.V.  $V_T$ : Adjusted T.V.  $N_l$ : # of implanted ions  $Q_l$ : Implantrelated charge/cm<sup>2</sup> Donor{+} or Acceptor {-}

$$I_D = \frac{Z\bar{\mu}_n C_{ox}}{L} \left[ (V_G - V_T) V_D - \frac{V_D^2}{2} \right] \text{ Square-law theory}$$
 Z: Width of MOSFET  $\bar{\mu}_n$  Effe hole mobil Vol IV. Pg

Long Channel MOSFET Equation Bulk Charge Factor ( $\alpha$ )  $I_D = \mu C_{ox} \frac{W}{L} \left[ \left( V_G - V_T - \frac{1}{2} V_D \right) V_D \right]$  $I_D = \mu C_{ox} \frac{W}{2\alpha L} \left[ \left( V_G - V_T - \frac{1}{2} V_D \right) V_D \right]$ 

Channel Carrier Velocity (Using Long-Channel

Theory) 
$$V = \frac{\mu_n C_{ox} \left[ \left( V_G - V_T - \frac{1}{2} V_D \right) V_D \right]}{Q_N L}$$

Note: The saturation velocity of carriers in Silicon is:  $v_{sat} \approx 10^7$  cm/s. If this equation yields a velocity  $v > v_{sat}$ , long channel theory does not apply in this situation.  $Q_{n(source)} = C_{ox}(V_G - V_T),$  $Q_{n(drain)} = C_{ox}(V_G - V_D - V_T).$ 

**Drain Saturation Voltage**  $V_{D(sat)} = V_G - V_T$  **Practise Test 2** 1) Which of the following can reduce

Channel Dimensions  $\frac{W}{L} = \frac{2I_{D(sat)}}{\mu_n C_{ox}(V_G - V_T)^2}$ 

# **MOSFET Integrated Circuit Applications**

 $V_T = V_{FB} + 2|\phi_p| + \frac{Q_{d(max)}}{\epsilon_{co}}(d_1 + d_2) + \frac{Q_{fg}}{\epsilon_{co}}d_1$  Charge stored on a floating gate memory cell

$$|Q_{fg}| = \frac{\epsilon_{ox}}{d_1} \left[ V_T - V_{FB} - 2\phi_P - \frac{Q_{d(max)}}{\epsilon_{ox}} (d_1 + d_2) \right],$$
  
 $Q_{fg} = \text{Floating Gate Charge Density } V_{FB} = \phi_{MS}$ 

Step 1: Find  $V_{bi}$  (n-well to source/drain junction) using  $N_d$  from, the n-well and  $N_a$  from the p-channel source/drain.

Step 2: Find  $x_d$  using the doping levels and  $V_{bi}$ . Step 3: Find  $V_{bi}$  (n-well to p-substrate junction) using  $N_d$  from the n-well and  $N_a$  from the p-substrate.

Space Charge Density (max)

Step 4: Find  $x_n$  using  $V_{bi}$  and  $V_a = V_{DD}$ , and the same doping level as step 3.

Step 5: The minimum required n-well depth to prevent punchthrough at this voltage is:

$$d_{n-well} = d_{p-channelsrc/drn} + x_{d(step2)} + x_{n(step4)}$$

$$\begin{split} V_{bi} &= \frac{k_B T}{q} \ln \left( \frac{N_d N_a}{n_i^2} \right) \\ x_d &= x_n + x_p = \left[ \frac{2\epsilon_s}{q} \left( \frac{1}{N_a} + \frac{1}{N_d} \right) \left( V_a - V_{bi} \right) \right]^{1/2}, \\ x_n &= \left\{ \frac{2K_s \epsilon_0}{q} (V_{bi} + V_a) \left[ \frac{N_a}{N_d (N_a + N_d)} \right] \right\}^{1/2} \text{ Note: The p-channel source/drain depth } d_{p-channelsrc/dra} \text{ should be given in the question.} \end{split}$$

CMOS Well-Depth Design: Finding minimum well depth to prevent vertical punch through.

CMOS Structures P-Well: The substrate is N-Type. The N-Channel device is built into a P-Type well within the parent N-Type substrate. The Pchannel device is built directly on the substrate.

N-Well: The substrate is P-Type. The N-channel device is built directly on the substrate, while the Pchannel device is built into a N-type well within the parent P-Type substrate.

$$g_d = \frac{Z\bar{\mu}_n C_o}{L} (V_G - V_T) \quad (V_D = 0)$$

the base transit time? c) Short base width.

2) Design the doping levels and dimensions of a silicon npn bipolar transistor such that the dc current gain is 320 and the Gummel Number is  $10^{12}$ cm<sup>-2</sup>. Assume that  $\tau_n = 10^{-7} s$  in the base,  $\tau_p = 10^{-8} s$  in the collec-

$$GN = Q_B = \int_0^{x_B} N_{aB}(x) dx.$$

Table 3.1 MOSFET Small Signal Parameters.\*

|                | Below pinch-off $(V_D \le V_{Deat})$                                                            | Post pinch-off $(V_D > V_{Dsat})$                                                                          |
|----------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Square<br>law  | $g_{\rm d} = \frac{Z  \overline{\mu}_{\rm n} C_{\rm o}}{L} (V_{\rm G} - V_{\rm T} - V_{\rm D})$ | $g_{\rm d}=0$                                                                                              |
| Bulk<br>charge | $g_{\rm d} = \frac{Z\overline{\mu}_{\rm n}C_{\rm o}}{L}[V_{\rm G}-V_{\rm T}-V_{\rm D}]$         | $g_{\rm d}=0$                                                                                              |
|                | $-V_{\rm W}(\sqrt{1+V_{\rm D}/2\phi_{\rm F}}-1)]$                                               |                                                                                                            |
| Square<br>law  | $g_{\rm m} = \frac{Z \overline{\mu_{\rm n}} C_{\rm o}}{L} V_{\rm D}$                            | $g_{\rm m} = \frac{Z\overline{\mu}_{\rm n}C_{\rm o}}{L}(V_{\rm G}-V_{\rm T})$                              |
| Bulk<br>charge | $g_{\rm m} = \frac{Z \overline{\mu}_{\rm n} C_{\rm o}}{L} V_{\rm D}$                            | $g_{\rm m} = \frac{Z \overline{\mu}_{\rm n} C_{\rm o}}{L} V_{\rm Dsat}$ with $V_{\rm Dsat}$ per Eq. (3.27) |

<sup>\*</sup>Entries in the table were obtained by direct differentiation of Eqs. (3.15), (3.20), and (3.26). The variation of  $\overline{\mu}_n$  with  $V_G$  was neglected in establishing the  $g_m$  expressions.

Figure 1: Vol IV Mosfet table



Figure 2: Doping dependence of the maximum equilibrium depletion width inside silicon devices maintained at 300 K.

Table 12.1 | Notation used in the analysis of the bipolar transistor

| Notation                                               | Definition                                                                                                                  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| For both the npn and pnp                               | transistors                                                                                                                 |
| $N_E$ , $N_B$ , $N_C$                                  | Doping concentrations in the emitter, base, and collector                                                                   |
| $x_E, x_B, x_C$                                        | Widths of neutral emitter, base, and collector regions                                                                      |
| $D_E, D_B, D_C$                                        | <i>Minority carrier</i> diffusion coefficients in emitter, base, and collector regions                                      |
| $L_E, L_B, L_C$                                        | <i>Minority carrier</i> diffusion lengths in emitter, base, and collector regions                                           |
| $	au_{E0},~	au_{B0},~	au_{C0}$                         | Minority carrier lifetimes in emitter, base, and collector regions                                                          |
| For the npn                                            |                                                                                                                             |
| $p_{E0}, n_{B0}, p_{C0}$                               | Thermal-equilibrium <i>minority carrier</i> hole, electron, and hole concentrations in the emitter, base, and collector     |
| $p_E(x'), n_B(x), p_C(x'')$                            | Total <i>minority carrier</i> hole, electron, and hole concentrations in the emitter, base, and collector                   |
| $\delta p_E(x')$ , $\delta n_B(x)$ , $\delta p_C(x'')$ | Excess <i>minority carrier</i> hole, electron, and hole concentrations in the emitter, base, and collector                  |
| For the pnp                                            |                                                                                                                             |
| $n_{E0}, p_{B0}, n_{C0}$                               | Thermal-equilibrium <i>minority carrier</i> electron, hole, and electron concentrations in the emitter, base, and collector |
| $n_E(x'), p_B(x), n_C(x'')$                            | Total <i>minority carrier</i> electron, hole, and electron concentrations in the emitter, base, and collector               |
| $\delta n_E(x')$ , $\delta p_B(x)$ , $\delta n_C(x'')$ | Excess minority carrier electron, hole, and electron concentra-                                                             |



Figure 3: Vol IV Mosfet Gate voltages



Figure 4: Workfunction difference as a function of a n- and p-type dopant concentration in  $n^+$  poly-Si-gate and Al-gate  $SiO_2-Si$  structures. ( $T=300K.~\phi_M'-\chi'=-0.18~eV$  for the n' poly-Si-gate structure;  $\phi_M'-\chi'=0.03eV$  for the Al-gate structure.)



Fig. 3.5 Room-temperature carrier mobilities in silicon as a function of the dopant concentration.  $\mu_n$  is the electron mobility;  $\mu_p$  is the hole mobility.

Figure 5: Diffussion Constant



Fig. 3.7 Si resistivity versus impurity concentration at 300 K.





Figure 6: Boron Chart

,

