МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ по научно-исследовательской работе

Студент гр. 3303	Переверзев Е.А.
Руководитель	Чернокульский В.В.
	Кринкин К.В.

Санкт-Петербург 2018

ЗАДАНИЕ НА НАУЧНО-ИССЛЕДОВАТЕЛЬСКУЮ РАБОТУ

Студент Переверзев Е.А.			
Группа 3303			
Тема НИР: Разработка среды виртуа	ального окружения для тестирования		
автономной подвижной платформы	в Unity3d		
Задание на НИР:			
• Провести анализ предметной с	области		
• Составить описание предполагаемого способа решения			
Сроки выполнения НИР: 05.12.2018	- 20.12.2018		
Дата сдачи отчета: 20.12.2018			
Дата защиты отчета: 20.12.2018			
Студент	Переверзев Е.А.		
Руководитель	Чернокульский В.В.		
	Кринкин К.В.		

СОДЕРЖАНИЕ

введение	∠
1. ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ	5
2. ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО СПОСОБА РЕШЕНИЯ	7
ЗАКЛЮЧЕНИЕ	9
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10

введение

В ходе выполнения научно-исследовательской работы был проведен анализ существующей предметной области и составлением предполагаемого способа решения.

1. ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ

Последнее время в современном мире происходит постоянная автоматизация производства, чтобы максимально сократить человеческий труд. Это касается не только автоматизации различных процессов производства, но также и процесса роботизации. Благодаря развитию данной области в будущем откроются огромные преимущества использования роботов. Не для кого не секрет, что с их помощью можно с экономить огромные запасы человеческих ресурсов, денег и многое другое.

На данном этапе существует такой инструмент как Gazebo. Gazebo предлагает возможность точно и эффективно моделировать популяции роботов в сложных помещениях и на открытом воздухе. Это - надежный физический движок, высококачественная графика и удобные программные и графические интерфейсы.

Минус данного симулятора, это сложность в процессе разработки и тестирования. Например, подростковому поколению довольно тяжело будет справиться с технологиями, которые используются в этом симуляторе. Это требует к тому же довольно хорошую математическую подготовку. Так же процесс тестирования в таком мощном симуляторе достаточно сложен. Поэтому в целях популяризация данного направления и главное, упрощения процесса тестирования, было решено разработать API с использование игрового движка Unity3D*.

Структура работы программы:

- На входе мы получаем файл urdf* формата из Gazebo
- Конвертируем формат urdf в формат GameObject Unity3D
- Автоматически создаем местность, используя инструменты Unity3D
- Реализуем Web API

- Происходят разные этапы тестирования движения робота
- По окончанию происходит конвертация обратно в urdf

Благодаря такому подходу можно сократить огромные ресурсы, которые требуются при тестировании в Gazebo. Это упростит процесс тестирования роботов. А так как это Web API, то можно использовать любой язык, который может общаться через http-протокол, а также позволит производит удаленное тестирование.

Основные понятия

Urdf (Universal Robotic Description Format) - это формат XML-файла, используемый в ROS для описания всех элементов робота. Чтобы использовать файл URDF в Gazebo, необходимо добавить некоторые дополнительные теги, специфичные для моделирования, для правильной работы с Gazebo.

Unity3D - межплатформенная среда разработки компьютерных игр. Основными преимуществами Unity являются наличие визуальной среды разработки, межплатформенной поддержки и модульной системы компонентов.

2. ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО СПОСОБА РЕШЕНИЯ

Последовательные действия по решению задачи:

- На входе мы получаем файл urdf* формата из Gazebo
- Конвертируем формат urdf в формат GameObject Unity3D
- Автоматически создаем местность, используя инструменты Unity3D
- Реализуем Web API
- Происходят разные этапы тестирования движения робота
- По окончанию происходит конвертация обратно в urdf
- **1.** В качестве исходных данных мы используем файл формата urdf, в котором будет находится вся информация о конкретном роботе расположении его датчиков, формы.
- **2.** Для конвертации urdf формата в объект среды Unity3d, возможно использовать уже готовые ассеты в среде Unity. Существуют 2 вида:
 - URDF Importer (Это платная версия, стоит 25\$)
 - ROS-Unity Communication Package (Бесплатная версия)
 Изначально буду использовать бесплатную версию, в процессе написания работы возможно потребуется приобретать платную версию.
- **3.** Автоматическое создание местности может основываться не некоторых подходах:
 - Создание случайно карты без привязки к реальному ландшафту мира
 - Создание карты основываясь на ландшафте некоторой местности в реальном мире

Процесс создания ландшафта обычно происходит в три этапа:

а) Генерация карты высот

Это самая главная часть, по карте высот строится terrain (или mesh). Её можно также использовать для окрашивания terrain в зависимости от высоты.

b) Построение ландшафта

Есть два способа выполнения этого пункта, в зависимости от того не хотим ли мы сложностей и используем ли мы unity3d, или же нам неважна производительность, но нам важно, чтоб было красиво. В первом случае можно использовать встроенный в unity3d редактор ландшафта (terrain).

Второй способ заключается в создании mesh. Данный метод даёт больший простор действий над ландшафтом, но он и сложнее: вам придётся создавать mesh, далее разбивать его на треугольникии и трудиться над шейдерами для покраски.

с) Наложение текстур

Конечный этап в генерации ландшафта. Здесь опять нам пригодится карта высот из первого пункта.

4. Реализуем Web API

- **5.** Процесс тестирования будет основываться на стандартных тестах для проверки основных элементов робота. Тесты будут подобраны в процессе разработки приложения.
- **6.** Конвертация протестированного объекта обратно в urdf формат.

ЗАКЛЮЧЕНИЕ

В ходе работы были представлен обзор предметной области и приведен последовательный, предполагаемый способ решения задачи.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. https://assetstore.unity.com/packages/tools/physics/ros-ros-unity-communication-package-107085
- 2. https://assetstore.unity.com/packages/tools/modeling/urdf-importer-99316
- 3. https://habr.com/post/226635/