(Para la respuesta usar solo la cara de una página)

1.- En \mathbb{R}^2 consideramos el siguiente conjunto:

$$A := \bigcup_{n \in \mathbb{N}_{>0}} \left\{ \left(\frac{1}{n}, y \right) : y \in \mathbb{R} \right\}.$$

- a) Decide, de manera razonada, si A tiene puntos de acumulación.
- b) Decide, de manera razonada, cuál es el conjunto de puntos interiores de A.
- c) ¿Es A compacto? ¿Por qué?

SOL.: a) La respuesta es sí y hay varias maneras de argumentarlo.

Por ejemplo: se puede probar que todo punto de A es un punto de acumulación. Para ello, basta observar que si $x \in A$, entonces $x = \left(\frac{1}{n}, b\right)$ con $n \in \mathbb{N}, n > 0$ y $b \in \mathbb{R}$. En tal caso, la sucesión $\{x_k\}_{k \in \mathbb{N}}$ con $x_k = \left(\frac{1}{n}, b + \frac{1}{k}\right)$ está formada por puntos de A distintos de x y verifica $\lim_{k \to \infty} x_k = x$. Esto caracteriza a los puntos de acumulación, luego x lo es con respecto a A.

También se puede comprobar que todos los puntos de la forma (0, y), con $y \in \mathbb{R}$, son puntos de acumulación de A. Para ello nos fijamos en que, dado $b \in \mathbb{R}$, la sucesión de puntos $\left\{\left(\frac{1}{n}, b\right)\right\}_{n \in \mathbb{N}_{>0}}$ está contenida en A y converge al punto (0, b).

b) Aquí la respuesta es que $\operatorname{int}(A) = \emptyset$, es decir, dado $\left(\frac{1}{n}, b\right) \in A$, entonces $\forall r > 0$ se tiene

$$B_r\left(\left(\frac{1}{n},b\right)\right) \not\subset A.$$

Para ello, observamos que en el intervalo $\left(\frac{1}{n}-r,\frac{1}{n}\right)\subset\mathbb{R}$ hay números no racionales. Escogemos cualquier $\sigma\in\left(\frac{1}{n}-r,\frac{1}{n}\right)\setminus\mathbb{Q}$. Esto nos dice que $(\sigma,b)\notin A$, puesto que todos los elementos de A tienen como primera coordenada un número racional. Pero por otro lado,

$$(\sigma, b) \in B_r\left(\left(\frac{1}{n}, b\right)\right),$$

ya que

$$dist\left((\sigma,b);\left(\frac{1}{n},b\right)\right) = \left|\sigma - \frac{1}{n}\right| < r,$$

por la elección de σ .

b) A NO es compacto. De hecho, no es cerrado ni acotado.

En primer lugar no es cerrado porque no contiene a sus puntos de acumulación, ya que, como hemos visto, los puntos de la forma (0, b) son de acumulación de A pero no pertenecen a A.

Por otro, A no es acotado ya que la sucesión de puntos $z_k = (1, k), \quad k = 1, 2, 3, \ldots$, verifica $z_k \in A, \forall k$ y al mismo tiempo

$$\lim_{k \to \infty} ||z_k|| = \lim_{k \to \infty} \sqrt{1 + k^2} = \infty.$$

¹Con el mismo tipo de argumentos se puede probar que $\overline{A} = A' = \partial A = A \bigcup \{(0,y) : y \in \mathbb{R}\}.$