### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

#### ФАКУЛЬТЕТ РАДИОЭЛЕКТРОНИКА И ЛАЗЕРНАЯ ТЕХНИКА

КАФЕДРА ТЕХНОЛОГИИ ПРИБОРОСТРОЕНИЯ (РЛ6)

#### ОТЧЁТ

#### по лабораторной работе №4

**Название:** <u>Проектирование и исследование параметров микрополосковых</u> фильтров

Дисциплина: Устройства СВЧ и антенны

Филимонов Степан РЛ6-51

Быков Роман РЛ6-51

Костышина Василина РЛ6-51

Преподаватель: Федоркова Нина Валентиновна

## ЛАБОРАТОРНАЯ РАБОТА №4. ПРОЕКТИРОВАНИЕ И ИССЛЕДОВАНИЕ ПАРАМЕТРОВ МИКРОПОЛОСКОВЫХ ФИЛЬТРОВ

**Цель работы** - освоение основ проектирования и расчета микрополосковых фильтров, исследование зависимости характеристик устройств от конструктивных параметров.

## 1. Расчет и проектирование ФНЧ на сосредоточенных элементах с максимально плоской характеристикой затухания

<u>Исходные данные для проектирования</u>: ФНЧ должен пропускать частоту номиналом fnч =  $150 \pm 30$  МГц и иметь линейную фазовую характеристику коэффициента передачи. Граничная частота полосы заграждения 280 МГц. Волновое сопротивление нагрузок 50 Ом.

По формуле

$$n \ge \frac{lg\sqrt{\frac{(L_3-1)}{(L_n-1)}}}{\lg\left(\frac{\Omega_3}{\Omega_n}\right)}$$

Вычислениям вышло n = 5,9 ,но было сказано что n должно быть нечетным целым числом, тогда возьмем n = 7 – количество звеньев в фильтре.

Электрическая принципиальная схема получившегося ФНЧ:



АЧХ синтезированной схемы ФНЧ (с отмеченными ранее маркерами):



**Вывод:** из построенных АЧХ и полученных значений потерь, можно сказать, что требуемое условие о максимальных и минимальных потерь выполнено.

# 2. Синтез микрополоскового полосно-пропускающего фильтра с чебышевской АЧХ на связанных полуволновых резонаторах

Исходные данные для проектирования: полосно-пропускающий фильтр (ПФ) с чебышевской АЧХ на связанных линиях передачи имеет ширину полосы пропускания от 8.05 ГГц до 8.35 ГГц, максимальные пульсации в полосе пропускания 0.01 дБ. Граничные частоты полосы заграждения по уровню затухания 20 дБ 7.95 и 8.45 ГГц. Материал подложки поликор  $\varepsilon = 9.8$ , тангенс диэлектрических потерь  $tg\delta = 10^{-4}$ , толщина подложки 0.5 мм, толщина металлизации 10 мкм.

По формуле для числа звеньев фильтра:

$$n \ge \frac{\operatorname{arch}\sqrt{\frac{(L_3-1)}{(L_n-1)}}}{\operatorname{arch}\left(\frac{\Omega_3}{\Omega_n}\right)}$$

Так же возьмем n = 7.

#### Расчет фильтра производится со следующими параметрами:



### Электрическая схема идеальной синтезированной схемы ПФ:



АЧХ синтезированной идеальной схемы ПФ:



**Вывод:** из АЧХ видно что полученные значения потерь удовлетворяют поставленным требованиям. Кроме того данная зависимость большой крутизной параметра потерь.

# 3. Расчет и проектирование режекторного фильтра на микрополосковой линии передачи

<u>Исходные данные для проектирования:</u> режекторный фильтр (РФ) должен вырезать частоты гетеродина fr =  $8.3~\Gamma\Gamma$ ц и сигнала fc =  $8.12-8.18~\Gamma\Gamma$ ц. При этом коэффициент передачи РФ должен быть не хуже - $30~\mathrm{д}$ Б в полосе заграждения  $8.1-8.32~\Gamma\Gamma$ ц. Топологическая схема режекторного фильтра:



Полученный график АЧХ для данных параметров :



**Вывод:** ручная и автоматизированная подстройка, а конкретнее изменение геометрических параметров шлейфа, позволяет получить требуемые значения потерь для режектороного фильтра.