BE530 – Medical Deep Learning

Convolutional Neural Networks

Byoung-Dai Lee

Division of Al Computer Science and Engineering

Kyonggi University

Biological Inspiration

- David H. Hubel & Torsten Wiesel
 - 시각 피질안의 뉴런들이 각자 수용 영역(receptive field)을 담당하여 인지
 - 인지 과정이 계층적으로 일어남

David H. Hubel and Torsten Wiesel

Suggested a hierarchy of feature detectors in the visual cortex, with higher level features responding to patterns of activation in lower level cells, and propagating activation upwards to still higher level cells.

A Classical CNN Architecture

Deep MLP vs. CNN (1)

Deep MLP

- 인접한 계층 간 완전 연결 구조로 높은 복잡도
 - 학습이 느리고 과적합에 빠질 수 있음
- 입력 크기가 고정

A 200×200 image 40k hidden unit 200×200×40k = 1.6B parameters

Deep MLP vs. CNN (2)

CNN

- 수용 영역을 대상으로 부분 연결 구조
 - Spatial correction → local
- 층을 쌓아가면 점진적으로 고차원적 특징을 학습
- 가변 크기의 입력 처리 가능

CNN Architecture

- Main layers for CNNs
 - Convolutional layer, ReLU layer, Pooling layer, FC layer

- CNN arranges its neurons in 3-dimensions
 - Every layer of a CNN transforms the 3D input volume to a 3D output volume of neuron activations

Convolutional Layer (1)

■ 기본 개념

$$s(j,i) = z \circledast u = \sum_{y=-(h-1)/2}^{(h-1)/2} \sum_{x=-(h-1)/2}^{(h-1)/2} z(j+y,i+x)u(y,x)$$

7

Convolutional Layer (2)

Convolutional Layer (3)

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolutional Layer (4)

Convolutional Layer (5)

Convolutional Layer (6)

Convolutional Layer (7)

consider a second, green filter

Convolutional Layer (8)

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolutional Layer (9)

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Convolutional Layer (10)

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Filters (1)

- Each of filters can be thought of as a feature identifier
 - Curve detector, line detector, …
- Filters are also learnable

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Visualization of a curve detector filter

Filters (2)

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

Pixel representation of receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = 0

Filters (3)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Stride (1)

7

7

Stride (2)

Stride (3)

Stride (4)

Stride (5)

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Stride (6)

7x7 input (spatially) assume 3x3 filter applied with stride 2

Stride (cont.)

7x7 input (spatially) assume 3x3 filter applied with stride 2

Stride (7)

7x7 input (spatially) assume 3x3 filter applied with stride 2

=> 3x3 output!

Zero padding (1)

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

Zero padding (2)

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

Pooling Layer (1)

- Make the representation smaller and more manageable
- Operates over each activation map independently

Pooling Layer (2)

Max Pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2x2 filters and stride 2

100	184
12	45

Pooling Layer (3)

Average Pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2x2 filters and stride 2

36	80
12	15

Spatial Dimensions (1)

Spatial Dimensions (2)

- Input volume of size: W x H x C
- Hyperparameters
 - Number of filters: FN
 - Filter (Receptive Field) size: (FW, FH)
 - Stride: S
 - The amount of zero padding: P
- Output volume of size: OW x OH x FN
 - OW = (W-FW+2P)/S + 1
 - OH = (H-FH+2P)/S + 1
- (FW×FH×C)×FN weights and FN biases are required

Spatial Dimensions (3)

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params => 76*10 = 760

Spatial Dimensions (4)

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Hyperparameters in CNN (1)

① Filter의 개수

- 일반적으로 영상의 크기가 큰 입력단 근처의 layer에는 filter의 개수가 적고, 입력단에서 멀어질수록 filter의 개수가 증가하는 경향
- Convolution layer의 연산 시간
 - $-T_c = N_p \times N_f \times T_k$ N_p :출력 Pixel 수, N_f :전체 feature map의 개수, T_k 각 filter당 연산 시간
- Filter 개수를 정할 때 주로 사용하는 방법은 <u>각 layer에서의 연산 시간량을</u> 비교적 일정하게 유지하여 시스템의 균형을 맞춤
 - 예) Pooling layer를 거치면서 2×2 sub-sampling을 하게 될 경우 convolutional layer를 지날 때 마다 pixel 수가 ¼로 감소 → feature map의 개수를 대략 4배 정도 증가시키면 됨

Hyperparameters in CNN (2)

② Filter의 형태

- 일반적으로 32×32 또는 28×28과 같은 작은 크기의 영상에 대해서는 5×5 filter를 주로 사용하지만 큰 크기의 자연 영상을 처리할 때나 혹은 1단계 필터에는 11×11이나 15×15와 같은 큰 크기의 filter를 사용하기도 함
- 여러 개의 작은 크기의 filter를 중첩해서 사용하는 것이 유리함
 - 예) 1개의 7×7 filter vs. 3×3 filter를 중첩해서 사용
 - 작은 filter 여러 개를 중첩하면 중간 단계에 있는 non-linearity를 활용하여 원하는 특징을 좀 더 돋보이게 할 수 있음
 - 작은 filter를 중첩해서 사용하는 것이 연산량도 적게 소요됨

Hyperparameters in CNN (3)

③ Stride 값

- Stride는 입력 영상이 큰 경우 연산량을 줄이기 위한 목적으로 입력단과 가까 운 쪽에만 적용함
- Stride vs. Pooling
 - Stride를 1로 하면 경계가 아닌 모든 입력 영상에 대해 convolution 연산을 수 행하고 pooling하면서 값을 선택적으로 고를 수 있으나 Stride를 크게 하면 그 런 기회가 사라짐
 - 일반적으로 <u>Stride를 1로 하고 Pooling을 통해 적절한 sub-sampling 과정을</u> 거치는 것이 결과가 좋음
 - 큰 영상에 대해 CNN을 적용하는 경우 연산량을 줄이기 위해 입력 영상을 직접 처리하는 1단계 Convolutional layer에서 stride값을 1이 아닌 값으로 적용하 기도 함

Hyperparameters in CNN (4)

④ Zero-padding 지원 여부

- 일반적으로 convolution 연산을 수행하게 되면 경계 처리 문제로 인해 출력 영상인 feature map의 크기가 입력 영상보다 작아지게 됨
 - Zero-padding을 통해 영상의 크기를 동일하게 유지
- 경계면의 정보까지 살릴 수 있어 zero-padding을 지원하지 않는 경우에 비해 좀 더 좋은 결과를 보임

AlexNet

■ DNN 구조

- Convolutional layer 57 (≈ 2M parameters)
- FC layer 3개 (≈ 65M parameters)
 - FC layer에 많은 parameters가 존재 → 향후 CNN은 FC layer의 parameters를 줄이는 방향으로 발전

References

- CS231n: Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/
- A Beginner's Guide to Understanding Convolutional Neural Networks, <u>https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/</u>
- Application of Transfer Learning Using Convolutional Neural Network Method for Early Detection of Terry's Nail, https://iopscience.iop.org/article/10.1088/1742-6596/1201/1/012052
- ImageNet Classification with Deep Convolutional Neural Networks, <u>https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf</u>
- 라온피플 머신러닝 아카데미, https://laonple.blog.me/

