Future development projections and hydrologic modeling in the Yellowstone River Basin, Montana

BEATE DOCUMENTS COLLECTION

NOV 1 3 1980

MONTANA STATE LIBRARY

930 E Lyndafe Ave.

PLEASE RETURN

Legenty Equit

OLD WEST REGION V COMMUNICAL

DARG

Future development projections and hydrologic modeling in the Yellowstone River Basin. Montana

Бу

Bob Anderson, Assistant Administrator, WRD Phil Threlkeld, Land Resource Scientist, WRD Satish Nayak, Systems Analyst, CSD Hanley Jenkins, Environmental Planner, WRD

TECHNICAL REPORT NO. 1

YELLOWSTONE IMPAET STOOT

conducted by the
Water Resources Division
Montana Department of Natural Resources and Conservation
32 S. Ewing
Helena, MT 59601

Bob Anderson, Project Administrator
Dave Lambert, Editor

for the Old West Regional Commission 228 Hedden Empire Building Billings, MT 59101

Kenneth A. Blackburn, Project Coordinator

The Old West Regional Commission is a Federal-State partnership designed to solve regional economic problems and stimulate orderly economic growth in the states of Montana, Nebraska, North Dakota, South Dakota and Wyoming. Established in 1972 under the Public Works and Economic Development Act of 1965, it is one of seven identical commissions throughout the country engaged in formulating and carrying out coordinated action plans for regional economic development.

COMMISSION MEMBERS

State Cochairman Gov. Thomas L. Judge of Montana Alternate: Dean Hart

Federal Cochairman George D. McCarthy

State Members

Gov. Edgar J. Herschler of Wyoming Alternate: Steve F. Freudenthal Gov. J. James Exon of Nebraska Alternate: Jon H. Oberg

Gov. Arthur A. Link of North Dakota

Alternate: Woody Gagnon

Gov. Richard F. Kneip of South Dakota Alternate: Theodore R. Muenster

COMMISSION OFFICES

1730 K Street, N. W. Suite 426 Washington, D. C. 20006 202/967-3491 201 Main Street Suite D Rapid City, South Dakota 57701 605/348-6310

Suite 228 Heddon-Empire Building Billings, Montana 59101 406/657-6665

FOREWORD

The Old West Regional Commission wishes to express its appreciation for this report to the Montana Department of Natural Resources and Conservation, and more specifically to those Department staff members who participated directly in the project and in preparation of various reports, to Dr. Kenneth A. Blackburn of the Commission staff who coordinated the project, and to the subcontractors who also participated. The Yellowstone Impact Study was one of the first major projects funded by the Commission that was directed at investigating the potential environmental impacts relating to energy development. The Commission is pleased to have been a part of this important research.

George D. McCarthy Federal Cochairman

Contents

FIGURES	. vii
TABLES	. viii
ABBREVIATIONS USED IN THIS REPORT	, xi
PREFACE	. 1
The River The Conflict The Study Acknowledgements	. 1
INTRODUCTION	. 5
Development Projections	5
PART I. FUTURE WATER USE PROJECTIONS	. 9
PROJECTIONS OF COAL PRODUCTION FOR ENERGY	. 11
Methods Previous Projections Energy-Development Alternatives Low Level of Development Intermediate Level of Development High Level of Development Summary of Levels of Development Water Use Associated with Projected Energy Development	14 15 17 22 22 26
PROJECTIONS OF IRRIGATED AGRICULTURE	37
Methods	38 38 45
PROJECTIONS OF MUNICIPAL POPULATION GROWTH	56
Montana Futures Process Economic Calculation Demographic Calculation Municipal Population Increased Water Use Associated with Population Growth	57 57 59
EUAMARY	63

PAR1	11. HYDROLUGIC MODELES	ŧ7
	SEFECTION OF A WATER MODEL	€:
	Model Varieties	61
	The Utah State Model	6.
	Regulation SSARR	49
	IMD-2	70
	SIMED-II	70
	The State Water Planning Model	7.1
	Model Comparison	71
		76
	ADAPIATION OF THE SWP	
	How the SWP Model Was Osed	76
	Calibration	74.
	Simulations	7.7
	Data Preparation	7.7
	The Annual and Monthly Models	()
	Annual Model	30
	Monthly Model	83
	Calibration of the Monthly Model and	
	Controllable Variables	88
	Calibration Program and New Subroutines	91
	Calibration Program and New Subroutines	91
	Subroutine INIIIA	93
	Subroutine ENPORT	93
	Subroutine SURFAC	93
	Subroutine COMPUI	93
	SIMQUALThe Simulation Program	94
	DEPLET	94
	SURFAC	-
	INITIA	95
	MODIST	95
	QUALTY	95
	PRINT	98
	MEAN	98
	SURT and COMPAR	98
	PLOT	98
	riui	0.0
	5IMULATIONS	99
	Types of Simulations	99
	Scenarios	102
	Area Simulations	102
	The Upper Yellowstone, Clarks fork Yellowstone,	100
	and Kinsey Area Subbasins	102
	The Billings Area Subbasin	102
	The Bighorn Subbasin	102
	The Mid-Yellowstone Subbasin	106
	The Tongue Subbasin	106
	The Powder Subbasin	110
	The Lower Yellowstone Subbasin	112
	THE CONCL TELLOUSCONE SUBBISION	

.\.	Projected Water Requirements in the Yellowstone				
	River Basin in the year 2000 .				
В.	Coefficients and Constants for Subbasin Model Runs				
ľ.	Water Quality Regression Equations				

Figures

1.	Yellowstone River Basin
2.	Map of strippable coal in the Yellowstone drainage basin
5.	Base, low. intermediate, and high alternative futures for coal projection
4.	Montana futures process simulation-model structure
· ·	labor market areas in Montana
6.	Calibration program subroutines
7.	Simulation program subroutines
8.	Schematic representation of IDS calculations

7ables

1.	Definition of strippable coal	1 1
•	Coal production in 1975 and 1980 in the Yellowstone Basin based on coal sales contracts	16
۶.	Stabilized coal production in the Yellowstone River Basin	17
٠.	Planned coal production by company, mine and year	18
5.	Coal production under low-tevel development. Vellowstone Basin	19
b.	Location of coal conversion facilities through the year 2000, low development level, by Yellowstone River subbasins	20
7.	Coal tonnage location by Yellowstone River subbasins, low-level development 1980, 1985, 2000	21
8.	Coal production for consumption under intermediate-level development, Yellowstone Basin	23
9.	Location of coal conversion facilities through year 2000, intermediate development level, by Yellowstone River subbasins	23
10.	Coal tonnage location by Yellowstone River subbasins, intermediate level development, 1980, 1985, 2000	24
11.	Coal production for consumption under high-level development, Yellowstone Basin	25
12.	Location of coal conversion facilities through the year 2000, high development level, by Yellowstone River subbasins	27
13.	Coal tonnage location by Yellowstone River subbasins, high— level development, 1980, 1985, 2000	28
14.	Coal production for consumption under three levels of development, Yellowstone River Basin, through the year 2000	29
15.	Coal conversion in the Yellowstone Basin in 2000	32
16.	Annual water and coal requirements for coal processes	33

17.	by Yellowstone River subbasin under various levels of development	34
18.	Water use in coal mining, transportation, and conversion processes by 1985 by Yellowstone River subbasin under various levels of development	35
19.	Water use in coal mining, transportation, and conversion processes by 2000, by subbasin under various levels of development	36
20.	land classification specifications by soil or tand characteristics	30
21.	Irrigable acreage in Yellowstone River subbasins by lift and pipe length	40
22.	Concrete pipeline costs	43
23.	Steel pipeline costs	43
24.	Annual water delivery costs	44
25.	Center-pivot irrigation costs	44
26.	Inventory of buildings, machinery and equipment; investment, repair, depreciation and taxes for a hypothetical 320-acre farm	46
27.	Miscellaneous fixed costs for a hypothetical 320-acre farm	47
28.	Farm prerequisites (house, garage, well)	47
29.	Variable costs per irrigated acre by crop	48
30.	Irrigated-crop production and sales per acre	49
31.	Farm budget summary with management allowance	
32.	Cropping patterns by subbasin. 320-acre farm	
33.	Costs and returns by subbasin 320-acre farm	
34.	Payment capacity available for pumping	
35.	Maximum pumping distance for various lifts	
36.	Feasibly irrigable acreage by lift and pipeline length, high-level development	
37.	The increase in water depletion for irrigated agriculture	55

5H.	Perminent, direct energy-related employees in the Yellowstone basin, 1985 and 2000	60
30.	Population simulations for low, medium, and high energy development	61
40.	Population increases and water depletion in the Yellowstone River Basin in 1985 and 2000, according to levels of energy development	62
41.	Water requirements by demand source in the Yellowstone River Basin under three levels of development in 2000	64
42.	Increased water requirements for coal development in the Yellowstone Basin in 2000	65
43.	Model comparison	73
44.	Suggested model evaluation criteria	75
45.	Model coefficients	82
46.	Percentage by month of TDS returning to streamflow	97
47.	Billings area subbasin water requirements	103
48.	Outflow of the Billings area subbasin	104
49.	Average outflow and TDS of Billings area subbasin	104
50.	Bighorn subbasin water requirements	105
51.	Outflow and TDS of the Bighorn subbasin	105
52.	Mid-Yellowstone subbasin water requirements	106
53.	Outflow of the Mid-Yellowstone subbasin	107
54.	Average outflow and TDS of Mid-Yellowstone subbasin	108
55.	Tongue subbasin water requirements	108
56.	Outflow of the Tongue River subbasin	109
57.	Average outflow and TDS of Tongue subbasin	109
58.	Powder subbasin water requirements	111
59.	Outflow and TDS of the Powder subbasin	112
60.	Lower Yellowstone subbasin water requirements	113
61.	Outflow of the lower Yellowstone subbasin	114
62.	Average outflow and IDS of the lower Yellowstone subbasin	114

Abbreviations used in this report

af acre-feet

acre-feet per acre af acre acre-feet per year af.y barrels per day h d cubic feet per second cfs

centimeter CIII

federal Aviation Authority FAA ff

gallons per day per person gal (d. pers

heetare ha,

hm²/y cubic hectometer

cubic hectometers per year

hour hr inch in kilogram ka kilometer km kwh kilowatt hour

16 pound

Labor Market Area LMA

meter

 $^{\rm m}_{\rm m}{}^{\rm 3}/{\rm sec}$ cubic meters per second mean cover rating H.C.R. mq/1milligram per liter

mile mi

unit of electrical conductivity millimhos/em

> per centimeter million acre-feet

mmaf mmefd million cubic feet per day mmt/y million tons per year

mw megawatts

NGPRP Northern Great Plains Resource Program SHSA standard metropolitan statistical area SSARR Steamflow Synthesis and Reservoir Regulation

SWP State Water Planning Model

1.1d tons per day

total dynamic head tdh TDS total dissolved salts

USGS United State Geological Survey

water holding capacity who

Preface

THE RIVER

The Yellowstone River Basin of southeastern Montana, mathem Wyoming, and western North Dakota encompasses approximately 180,000 km² 71,000 square miles 1.92,200 55,600 of them in Montana. Montana's portion of the beain comprises 24 percent of the state's land; where the river crosses the border into North Dakota, it carries about 8.8 million acre-teet of water per year, 21 percent of the state's average annual outflow. The mainstem of the Yellowstone rises in northwestern Wyoming and flows generally northeast to its confluence with the Missouri River just east of the Montana-Yorth Dakota border; the river flows through Montana for about 550 of its 680 miles. The major tributaries, the Boulder, Stillwater, Clarks fork, Bighorn, Jonque, and Powder rivers, all flow in a northerly direction. The western part of the basin is part of the middle Rocky Mountains physiographic province: the eastern section is located in the northern Great Plains Rocky Mountain Association of Geologists 1972).

THE CONFLICT

Historically, agriculture has been Montana's most important industry. In 1975 over 40 percent of the primary employment in Montana was provided by agriculture. Montana Department of Community Affairs 1976. In 1973, a good year for agriculture, the earnings of labor and proprietors involved in agricultural production in the fourteen counties that approximate the Yellowstone Basin were over \$141 million, as opposed to \$13 million for mining and \$55 million for manufacturing. Cash receipts for Montana's agricultural products more than doubled from 1968 to 1973. Since that year, receipts have declined because of unfavorable market conditions; some improvement may be in sight, however. In 1970, over 75 percent of the Yellowstone Basin's land was in agricultural use. State Conservation Needs Committee 1970. Irrigated agriculture is the basin's largest water use, consuming annually about 1.5 million acre-feet (af of water Montana DNRC 1977).

There is another industry in the Yellowstone Basin which, though it consumes little water now, may require more in the future, and that is the coal development industry. In 1971, the North Central Power Study North Central Power Study Coordinating Committee 1971 identified 42 potential power plant sites in the five-state Montana, orth and South Dakota, Wyoming, and Colorado, northern Great Plains region, 21 of them in Montana. These plants, all to be fired by northern Great Plains coal, would generate 200,000 megawatts (mw) of electricity, consume 3.4 million acre-feet per year **mmaf/y of water, and result in a large population increase. Administrative, economic, legal,

and technological considerations have kept most of these conversion facilities, identified in the <u>North Central Power Study</u> as necessary for 1980, on the drawing board or in the courtroom. There is now no chance of their being completed by that date or even soon after, which will delay and diminish the economic benefits some basin residents had expected as a result of coal development. On the other hand, contracts have been signed for the mining of large amounts of Montana coal, and applications have been approved not only for new and expanded coal mines but also for Colstrip Units 3 and 4, twin 700-mw, coal-fired, electric generating plants. And in July 1979 the U.S. Department of Energy released a study concluding that 36 synthetic fuel plants could be constructed in Montana; together, they would use 468,000 acre-feet of water annually.

In 1975, over 22 million tons of coal were mined in the state, up from 14 million in 1974, 11 million in 1973, and 1 million in 1969. By 1980, even if no new contracts are entered, Montana's annual coal production will be about 35 million tons. Coal reserves, estimated at over 50 billion economically strippable tons (Montana Energy Advisory Council 1976), pose no serious constraint to the levels of development projected by this study, which range from 186.7 to 462.8 million tons stripped in the basin annually by the year 2000. Strip mining itself involves little use of water. How important the energy industry becomes as a water user in the basin will depend on: 1) how much of the coal mined in Montana is exported, and by what means, and 2) by what process and to what end product the remainder is converted within the state. If conversion follows the patterns projected in this study, the energy industry will use from 48,350 to 326,740 af of water annually by the year 2000.

A third consumptive use of water, municipal use, is also bound to increase as the basin population increases in response to increased employment opportunities in agriculture and the energy industry.

Can the Yellowstone River satisfy all of these demands for her water? Perhaps in the mainstem. But the tributary basins, especially the Bighorn, Tongue, and Powder, have much smaller flows, and it is in those basins that much of the increased agricultural and industrial water demand is expected.

Some impacts could occur even in the mainstem. What would happen to water quality after massive depletions? How would a change in water quality affect existing and future agricultural, industrial, and municipal users? What would happen to fish, furbearers, and migratory waterfowl that are dependent on a certain level of instream flow? Would the river be as attractive a place for recreation after dewatering?

One of the first manifestations of Montana's growing concern for water in the Yellowstone Basin and elsewhere in the state was the passage of significant legislation. The Water Use Act of 1973, which, among other things, mandates the adjudication of all existing water rights and makes possible the reservation of water for future beneficial use, was followed by the Water Moratorium Act of 1974, which delayed action on major applications for Yellowstone Basin water for three years. The moratorium, by any standard a bold action, was prompted by a steadily increasing rush of applications and filings for water (mostly for industrial use) which, in two tributary basins to the Yellowstone, exceeded supply. The DNRC's intention

during the boratorium was to study the basin's water and related land resources, is well as existing and future need for the basin's water, so that the state would be able to proceed wisely with the allocation of that water. The study which resulted in this series of reports was one of the truits of that intention.

THE STUDY

The Yellowstone Impact Study, conducted by the Water Resources Division of the Montana Department of Natural Resources and Conservation and financed by the Old West Regional Commission, was designed to evaluate the potential physical, biological, and water use impacts of water withdrawals and water development on the middle and lower reaches of the Yellowstone River Basin in Montana. The study's plan of operation was to project three possible levels of future agricultural, industrial, and municipal development in the Yellowstone Basin and the streamflow depletions associated with that development. Impacts on river morphology and water quality were then assessed, and, finally, the impacts of altered streamflow, morphology, and water quality on such factors as migratory birds, furhearers, recreation, and existing water users were analyzed.

The study began in the fall of 1974. By its conclusion in December of 1976, the information generated by the study had already been used for a number of moratorium-related projects—the EIS on reservations of water in the Yellowstone Basin, for example (Montana DNRC 1976). The study resulted in a final report summarizeing all aspects of the study and in eleven specialized technical reports:

- Report No. 2 The Effect of Altered Streamflow on the Hydrology and Geomorphology of the Yellowstone River Basin, Montana.
- Report No. 3 The Effect of Altered Streamflow on the Water Quality of the Yellowstone River Basin, Montana.
- Report No. 4 In Adequacy of Montana's Regulatory framework for Water Quality Control
- Report No. 5 Aquatic Invertebrates of the Yellowstone River Basin, Montana.
- Report No. 6 The Effect of Altered Streamflow on Furbearing Mammals of the Yellowstone River Basin, Montana.
- Report No. 7 In Effect of Altered Streamflow on Migratory Birds of the Yellowstone River Basin, Montana.

Report No. 8 The #ffect of Altered Streamflow on Fish of the Yellowstone and longue Rivers, Montana.

Report No. 9 The #ffect of Altered Streamflow on Existing Municipal and Agricultural Users of the Yellowstone River Basin, Montana.

Report No. 10 The #ffect of Altered Streamflow on Water-Based Recreation in the Yellowstone River Basin, Montana.

Report No. 11 The Economics of Altered Streamflow in the Yellowstone River Basin, Montana.

ACKNOWLEDGEMENTS.

Bruce Finney, of the Montana Department of Community Affairs, provided the population projections used in Part I. Derwood Mercer, of the Bureau of Reclamation, provided the cost information used in projecting farm budgets in Part I, as well as the equations and cost information used in projecting pumping cost.

DNRC personnel providing assistance were George Cawlfield, who helped with the hydrologic modeling reported in Part II and reviewed and revised Part II: John Jarvie, who also helped with Part II; Glen Smith, who superivsed the preparation of the irrigable land projections, and Elna Tannehill, who helped with the economic analysis used in those projections: Gary Fritz, administrator of DNRC's Water Resources Division, who provided guidance and review; Mark Nicholson, Ron Schleyer, Shari Meats, Marianne Melton, and Karen Renne, who performed editing tasks; and Janet Cawlfield, Lynda Howell, and Kris MacIntyre, typists. Graphics were coordinated and performed by Gary Wolf, with the assistance of Dan Nelson. The cover was designed and executed by D.C. Howard.

Introduction

DEVELOPMENT PROJECTIONS

The principal objective of the Yellowstone Impact Study was to evaluate potential environmental impacts resulting from future water development likely to occur on the Yellowstone River. Achievement of this objective was handicapped throughout the study by two inherent problems. First, the Yellowstone, because it is a free-flowing river, is not controllable. Researchers were unable to alter the streamflows and observe changes. Thus, all studies had to be made under the circumstances nature provided, which were less than ideal for a low-flow study such as this--1975 was a year of record high flows and 1976 a year of moderate flows.

A second problem, a subject of this report, was the imperfect knowledge of the magnitude and type of future water developments. The purpose of this part of the Yellowstone Impact Study was to resolve that problem by projecting future resource development and economic growth in the basin and the amount of water that development would require. The material presented in this report is basic to the entire study; the other ten technical reports project the types and amounts of impact that would be expected in the Yellowstone Basin if the water depletions projected in this report were to occur.

If major water developments occur, they are expected to be of two types: agricultural and energy-industrial. (It was assumed that future agricultural water use will be for irrigation.) Municipal water use, to be determined by the two major types of development, will be one order of magnitude less. Part I of this report projects the amount of development of each of these three types that might occur in the basin and how much water would be required. Part II projects, through a computer simulation, what the streamflow in the Yellowstone River and its major tributaries would be if the projected amounts of water were withdrawn.

The projections made throughout this report are projections of what might happen, based on particular assumptions; they are not predictions of what will happen. The irrigation projections are uncertain because of the unknown future of many factors, especially crop prices. The energy development projections are even more uncertain. Although the extent of the coal resource is well known, the future demand for development of that resource is not, and no attempt is made in this report to predict future demand for coal. Rather, a high level of development is defined as the scenario that would occur if the State of Montana were to actively promote coal development.

Regardless of the rigor of the prediction methodology, it must be based on numerous assumptions that are plagued with uncertainty. Only one of these assumptions may turn out to involve the controlling factor, but it is impossible at this time to identify that factor, let alone the demand's

elasticity to that factor. Rather, this study assumed a "What if . .?" approach. If coal development occurs at the high level, what will be the impacts of that level of development? If they are unacceptable, then the state can attempt to constrain the development at a lower level through institutional means. If it is naive to assume that the state can and will exert such control, then the whole exercise is fruitless.

BASIN DIVISION

To facilitate this study, the Yellowstone River Basin was divided into the following nine subbasins:

- 1) The Upper Yellowstone Subbasin, which consists of the basins of the Yellowstone mainstem from the Montana-Wyoming border to Laurel (43B and 43QJ), the Shields River (43A), the Boulder River (43BJ), Sweet Grass Creek (43BV), and the Stillwater River (43C);
- 2) The Clarks Fork Yellowstone Subbasin (43D);
- 3) The Billings Area Subbasin, which consists of the basins of the Yellowstone River (43Q) and Pryor Creek (43E);
- 4) The Bighorn Subbasin, which includes the basins of the Bighorn (43P) and Little Bighorn rivers (430);
- 5) The Mid-Yellowstone Subbasin, which consists of the basins of Rosebud Creek (42A) and of the Yellowstone mainstem between the confluences of the Bighorn and Yellowstone rivers (42KJ);
- 6) The Tongue Subbasin (42B and 42C);
- 7) The Kinsey Area Subbasin, the smallest of the nine subbasins considered in this study, which consists of the basin of the Yellowstone mainstem between the confluences of the Tongue and Yellowstone rivers and the Powder and Yellowstone rivers (42K);
- 8) The Powder Subbasin, which includes the basins of the Powder (42J) and Little Powder rivers (42I); and
- 9) The Lower Yellowstone Subbasin, which consists of the basins of O'Fallon Creek (42L) and of the Yellowstone mainstem from the confluence of the Powder and Yellowstone rivers to the Montana-North Dakota border (42M).

Figure 1 shows the nine subbasins with their boundaries. The subbasins approximate the basins of the major tributaries of the Yellowstone River, allowing each of the major tributaries to be modeled for the Yellowstone Impact Study.

The numbers in parentheses correspond to the basin numbers used to indicate hydrologic basins in An Atlas of Water Resources in Montana by Hydrologic Basins (MWRB 1970).

YELLOWSTONE RIVER BASIN

Contributing River Basins

- 1 Upper Yellowstone
- 2 Clarks Fork Yellowstone
- 3 Billings Area
- 4 Bighorn
- 5 Mid-Yellowstone
- 6 Tongue
- 7 Kinsey Area
- 8 Powder
- 9 Lower Yellowstone

Part 1 Future water use projections

by

Bub Anderson Phil Threlkeld Hanley Jenkins

Projections of coal production for energy

The low-sultur coal in southeastern Montana currently is in demand. The increasing world price of oil, decreasing domestic supplies of crude oil and natural gas, and the goal of United States energy self-sufficiency have increased the market value of many domestic coal reserves, including "Montana"s.

Averiet 1974 estimated that coal reserves in Montana might be as high as 448.6 billion tons of lignife, subbituminous, and bifuminous coal. Estimates by the Bureau of Reclamation (USDI 1972) indicate that approximately 75 percent of this total lies wiffin 1,000 ft of the surface. The Montana reserve is part of the vast fort Union coal region (considered the world's largest, which contains approximately 40 percent of the United States coal reserve (Montana Coal fask force 1973) and underlies parts of western North Dakota, northwestern South Dakota, northeastern Myoming, southeastern Saskatchewan, and eastern Montana.

Strip mining is used to recover these coal reserves. [conomically, underground mining has a weak competitive position in Montana. Compared to strip mining, capital requirements are higher for underground mining, and productivity per miner is low. The actual cost of mining is, as a result, far higher.

In the West, whether a coal deposit is strippable commonly is determined according to the depth criteria in table 1. Matson (1974) estimated that 42.5 billion tons of strippable coal underlies eastern Montana. Figure 2 locates strippable coal reserves in the Montana portion of the Fort Union coal region.

Table 1. Definition of strippable coal.

Thickness of Strippable Beds (ft)	Maximum Overburden Depth (ft)
0 - 10	0 - 100
10 - 25	0 - 150
25 - 40	0 - 200
more than 40	0 ~ 250

SOURCE: Montana College of Mineral Science and Technology 1973

Because of the low cost of strip mining, use of western coal reserves for power and fuel is highly profitable for mining companies. There are three major markets expected to buy Montana coal from the companies:

1 power-plant operators in the South, Midwest, and Pacific Northwest; 2) producers of synthetic fuels from coal at mine-mouth conversion facilities, and 3 power-plant operators at mine-mouth plants in Montana. This report does not attempt to estimate exactly the demand these three markets might generate for southeastern Montana coal, but postulates certain quantitative increases in production as the general response to demand for energy.

HE THODS

This study develops coal-production projections for energy development in Montana's portion of the Yellowstone River Basin. Three levels of development are postulated for five consuming sectors of the national economy: household and commercial, industrial, electrical generation, synthetic fuel, and export for processing or consumption elsewhere. The projections span the years 1975 through 2000. The intent is not to predict the future but rather to present alternative futures (levels of development) in coal production.

After postulating levels of coal development, the study calculated industrial water use requirements to aid in determining the potential impacts of altered streamflows on existing consumers of water and on recreation, water quality, the ecosystem, and the economy (see reports 2 through 11 in this series).

PREVIOUS PROJECTIONS

A number of private organizations and government agencies have projected coal production and related economic development in Montana. A few of those studies are identified below.

- 1) The Federal Energy Administration's Project Independence Report (1974) constructed a model of supply and demand for coal in the Northern Great Plains. Because the assumptions on which the model is based are unknown, comparison or use of the reported data is difficult.
- A Northern Great Plains Resource Program (NGPRP) work group issued a national report on regional energy considerations in 1974, which presented a series of coal-development projections for the NGPRP. Some of those projections are used extensively in this report and are discussed where applicable. The NGPRP is intergovernmental and involves the states of the Northern Great Plains region (Montana, Wyoming, North Dakota, South Dakota, and Nebraska) and three federal agencies (Environmental Protection Agency, Department of the Interior, and Department of Agriculture) with responsibilities for problems that might arise from coal and energy development in the region.

Because of the low cost of strip mining, use of western coal reserves for power and fuel is highly profitable for mining companies. There are three major markets expected to buy Montana coal from the companies:

1 power-plant operators in the South, Hidwest, and Pacific Northwest; 2) producers of synthetic fuels from coal at mine-mouth conversion facilities, and 5 power-plant operators at mine-mouth plants in Montana. This report does not attempt to estimate exactly the demand these three markets might generate for southeastern Montana coal, but postulates certain quantitative increases in production as the general response to demand for energy.

HE THODS

This study develops coal-production projections for energy development in Montana's portion of the Yellowstone River Basin. Three levels of development are postulated for five consuming sectors of the national economy: bousehold and commercial, industrial, electrical generation, synthetic fuel, and export for processing or consumption elsewhere. The projections span the years 1975 through 2000. The intent is not to predict the future but rather to present alternative futures (levels of development) in coal production.

After postulating levels of coal development, the study calculated industrial water use requirements to aid in determining the potential impacts of altered streamflows on existing consumers of water and on recreation, water quality, the ecosystem, and the economy (see reports 2 through 11 in this series).

PREVIOUS PROJECTIONS

A number of private organizations and government agencies have projected coal production and related economic development in Montana. A few of those studies are identified below.

- 1: The Federal Energy Administration's Project Independence Report (1974) constructed a model of supply and demand for coal in the Northern Great Plains. Because the assumptions on which the model is based are unknown, comparison or use of the reported data is difficult.
- A Northern Great Plains Resource Program (NGPRP) work group issued a national report on regional energy considerations in 1974, which presented a series of coal-development projections for the NGPRP. Some of those projections are used extensively in this report and are discussed where applicable. The NGPRP is intergovernmental and involves the states of the Northern Great Plains region (Montana, Wyoming, North Dakota, South Dakota, and Nebraska) and three federal agencies (Environmental Protection Agency, Department of the Interior, and Department of Agriculture) with responsibilities for problems that might arise from coal and energy development in the region.

Yellowstone River Basin

fi tt

du 31

ne

fc ir

irme

hc

аг

th rа

dι

iΓ of

wa th

co st

- Inc Contains University coal be and Study 1960. report entitled Projections of Northern and Claims to al Mining and incressions sevelopment 1979-2000 A.D. communicated desired for Northern areas of the Second Products coal accounted with two prisons facilities—electric generation and synthetic natural qual. The 2000 attempted to 1 identity what factors will intlude Soft coal development. 2 indicate the key variables determined de velopment would be altered if the variables were to charge. The 9000s projections for synthetic natural que production de reflected in the projections of the Yellowstone Impact Study.
- In peptember 1975, the Missouri River Basin tommission began the Yellowstone Level B Study, a two-year planning study to develop general information on water and related land resources in the Yellowstone River Basin and adjacent coal areas. The tommission bired the Harza Ingineering Company to develop three alternative coal-mining and energy-conversion levels for the years 1985 and 2000 reflecting demand and supply of energy nationally and within the Yellowstone Basin.

ELERGY-DEVELOPMENT ALTERNATIVES

This report incorporates many of the aforementioned coal development estimates to provide a fresh and realistic estimate of potential levels of coal and energy development in southeastern Montana and the rest of the fellowstone Basin. As with any projection on this subject, predicting the levels of development is speculation because of the major unknowns—future demand and cost for coal, and the extent that public policy will allow coal development to proceed.

Because the number of possible alternative futures is great, this study chose three possibilities that might arise from the influences on coal development in the Yellowstone River Basin. Two of these—low and high levels of development—were chosen to represent limited development and highly advanced development of coal resources. An intermediate alternative fills the gap between the low-level and the advanced-development alternatives.

A fourth and lowest alternative--gradually rising coal production to 1980 and practically stable production thereafter--was examined are tables 2 and 3, but it is not considered to be a practical possibility in view of the pressures tending to encourage coal development in the United States. Only if alternative sources of energy such as the sun, or energy conservation prove to be more economically attractive than coal conversion is there likely to be any such leveling off of Montana coal production within a decade. For this study, a gradual rise in coal production is assumed to be inevitable in view of existing coal sales contracts signed by six companies operating in the Yellowstone River Basin.

Alternative levels of development presented here are based on data from the Montana Energy Advisory Council 1974. Existing data were supplemented and updated in response to more recent production figures. Coal

production is given in million short tons $\mbox{\sc mmt}$) unless noted otherwise. (A short ton is equal to 2,000 pounds.

Table 2 displays estimates of coal production for 1975 and 1980 based on existing coal sales contracts signed by the six companies. The coal production tonnages have been reassembled according to two uses: electrical generation in southeastern Montana and export out of Montana. Most coal mined in Montana until 1980 under existing contracts will be shipped out of state for use by Midwestern and Southern utilities in electrical generation.

Table 2. Coal production in 1975 and 1980 in the Yellowstone Basin based on coal sales contracts (mmt).

Coal for Electrical G	eneration in Montana	1
Mining Company	1975	1980
Knife River Coal Co. for Sidney plant)	0.32	0.30
Western Energy Co. for Corette plant in Billings)	0.50	0.50
Western Energy Co. (for Colstrip)	0.40	3.20
TOTAL	1.22	4.00
Coal for	Export	
Western Energy Co.	4.33	10.00
Decker Coal Co.	8.25	13.90
Westmoreland	4.00	6.50
Peabody	3.00	3.00
Shell Oil Co.		8.00
TOTAL	19.58	41.40

example of a consumption in the horsehold-commercial and indicated an attenual entering the consumption of the consumption of the terminal entering the construct a synthetic construct and the consumer of the construct and the construct of the construction of th

Table 3. Stabilized coal production in the Yellowstone River Bacan

Consuming Sector	1971 Actual	1975 ^a Actual	1980	1985	2000
Household and Commercial	0.1	0.2	10519.	10819.	10519.
Industrial	0.1	0.2	msiq.	insiq.	10519.
Electrical Generation	0.8	8.0	4.0	4.0	4.0
Synthetic Fuel	0	0	0	1)	7.6
Exports	0.1	21.0	41.4	41.4	41.4
TUTAL	7.1	22.2	45.4	45.4	53.0

afstrapolated from Montage 5 a 1976, p. 03, table 5.6.

LOW LEVEL OF DEVELOPMENT

The study assumes that under low-level development coal production will be limited to meeting Montana demands and supplying existing and planned delivery contracts. The projections were derived from a combination of data compiled by the Montana Energy Advisory Council (1974), the Northern Great Plains Resource Program (1974b), and by companies planning coal production for export. Existing data were supplemented or updated since the MEAC and NGPRP studies in response to more recent production figures as they became available.

Table 4 shows coal production planned for export, by three mining companies through the year 2000. These companies have leases for the coal but are still engaged in planning. Although some contracts are signed, acceptance of environmental impact statements for the mines and agreements on royalties are still pending.

Combining this with information on existing sales contracts—table 2, and coal production forecast by NGPRP—corrected to make it applicable to

Table 4. Planned coal production by company, mine, and year (mmt)

C	Production										
Company and	Actual			Planned							
Hine	1976	1977	1978	1980	1981	1982	1983	1984	1985	2000	
SHELL OIL CO. a											
Youngs Creek	0	0	0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Tanner Creek	0	0	0	2.0	4.0	4.0	4.0	4.0	8.0	8.0	
Wolf Mountain	0	0	0	2.0	2.0	4.0	4.0	4.0	4.0	8.0	
Squirrel Creek	0	0	0	0	0	0	0	0	2.0	8.0	
DECKER COAL CO.											
East Decker	0	0	2.25	6.6	6.6	6.6	6.6	6.6	6.6	6.6	
North Extension	-0	0	0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
WESTMORELAND											
Crow-Ceded Lands	4.0	4.5	4.5	4.0	4.0	10.0	10.0	10.0	10.0	15.0	
TOTAL	4.0	4.5	6.75	24.6	26.6	34.6	34.6	34.6	40.6	55.6	

NOTE: Production shown here is in addition to the existing contracts tabulated in table 2. Derived from 1975 data, partially updated in 1979.

 $^{^{\}rm a}{\rm The~Shell}$ Oil Company (lreson 1979) says plans for these mines are held in abeyance until litigation and negotiation with the Crow Tribe are complete.

the Yellowstone Basin only yields a complete projection of coal production to meet low-level consumption demands through the end of the century. It is presented in table 5.

The Yellowstone Impact Study focused in particular on the years 1980, 1985, and 2000. Under the low-level development assumptions, there would be 66 mmt mined for export in 1980; 114 mmt in 1985; and 174 mmt mined for export in 2000.

Electrical generation tacilities are projected to consume 4.0 mmt of coal basin-wide in 1985 and 8.0 mmt in the year 2000. Another 7.6 mmt is expected to be consumed by the single coal gasification plant envisioned to be in operation by the end of the century under the assumptions of low-level development. Table 6 indicates that, through 1985, only the Mid-Yellowstone Subbasin would have energy conversion facilities. By 2000, the Longue Subbasin would have a 500-mw electrical generating plant.

Table 5. Coal production in the Yellowstone Basin under low-level development wimmt.

Consuming Sector	1971 Actual	1975 Actual	1980 ^a	1985 ^b	2000 [©]
Household-					
Commercial	0.1	0.2	insig.	10519.	insiq.
Industrial	0.1	0.2	insig.	insig.	insiq.
Electrical					
Generation	0.8	0.8	4.0	4.0	8.0
Synthetic Fuels	0	0	0	0	7.6
Export from					
Montana	6.1	21.0	66.0	114.0	171.1
TOTAL	7.1	22.2	69.8	118.0	186.7

^aExisting contracts and planned exports.

Table 7 shows coal production by subbasin during the remaining years of the century under the low-level development projections. The production figures shown in table 5 thus appear in the basin totals for each of the consumptive uses shown in the tables—electrical generation, gasification, production of synthetic crude oil and fertilizer—plus exports. Under the assumptions of low-level coal development in the Yellowstone Basin, export of coal by slurry pipeline would play no part in coal exports through the year 2000.

^b\GPRP data plus coal exports.

c\GPRP data plus coal exports.

Table 6. Location of coal conversion facilities through the year 2000, $$\operatorname{low-level}$$ development

	1000-mw Electric Generating Plants	250-mmdfd Synthetic Gas Plants	100,000-b/d Synthetic Crude Plants	2300-t/d Fertilizer Plants
		1980		
Mid-Yellowstone All Others	1 0	0	0 0	0
TOTAL	1	0	0	0
		1985		
Mid-Yellowstone All Others	1 0	0	0	0
TOTAL	1	0	0	0
		2000		
Tongue Mid-Yellowstone All Others	0.5 1.5 0	0 1 0	0 0 0	0 0 0
TOTAL	2	1	0	0

Lable 7. Coal tonnaje location by Yellowstone River subbasine, low fevel development, 1980, 1985, 2000 mml v

Subbasins	flectric Generation	Gasification	Synerude	Fertilizer	L*port*	lut.il
	•	1980				
Tonque	(1	()	()	()	29.7	29.7
Mid-Yellowstone	4.0	()	()	[]	23.1	27.1
Powder	()	()	U	()	6.6	6.6
Bighorn	()	0	()	()	6,6,	6.6
LULAL	4.0	0	()	()	66.0	70.0
		1985				
Tonque	()	0	0	0	51.3	51.3
Mid-Yellowstone	4.0	0	0	(1	39.9	43.9
Powder	()	0	0	0	11.4	11.4
Bidpotu	0	0	()	0	11.4	11.4
TOTAL	4.0	0	0	0	114.0	118.0
		2000				
Tonque	2.0	0	0	0	77.0	79.0
Mid-Yellowstone	6.0	7.6	0	Ŋ	59.9	73.5
Powder	0	0	0	0	17.1	17.1
Bighorn	0	0	0	0	17.1	17.1
101AL	8.0	7.6	0	0	171.1	186.7

 $^{^{\}rm a}{\rm All}$ export at the low level of ${\rm development}$ was assumed to be by unit train rather than slurry pipeline.

INTERMEDIATE LEVEL OF DEVELOPMENT

The study assumes that under intermediate-level development coal production and energy development will occur midway between the projections for low and high levels of development. The intermediate level of development may or may not be the most likely projection and should be regarded simply as one possibility within the defined range for future coal and energy development.

Coal tonnages that would be mined through the end of the century under assumptions for intermediate-level development are displayed in table 8. The amounts of coal used by the consuming sectors in 1975 are based on data in table 2 on long-term coal contracts. Each estimate for electrical generation, synthetic fuel, or export for 1980, 1985, or 2000 in table 8 is the mean between the low and high levels of development. The study assumes that under intermediate-level coal development, 20 percent of coal exports will be by slurry pipeline by the year 2000.

Table 9 indicates that under intermediate level development, only the Mid-Yellowstone Subbasin would have energy conversion facilities in 1980 and 1985. The trend would be toward gradual additions to the mine-mouth electrical generation capacity of the Mid-Yellowstone Subbasin, with three 1,000-mw generating plants and one 250-mmcf/d synthetic gas plant likely by the year 2000. By that time, there would also be two 1000-mw electrical generating plants in the Tongue River subbasin and one in the Powder River subbasin.

Table 10 shows coal production by subbasin during the remaining years of the century under the intermediate-level development projections. The production figures shown in table 8 appear in the basin-wide totals for each of the consumptive uses shown in the table--electrical generation, gasification, production of synthetic crude oil and fertilizer, and exports. By the year 2000, under the assumptions of intermediate-level coal development in the Yellowstone Basin, 20 percent of coal exports would be by slurry pipeline (see "Export" column, table 10).

HIGH LEVEL OF DEVELOPMENT

The high-level of development estimate shows the extent to which development of Yellowstone River Basin coal reserves would be pursued if coal were used to fuel U.S. energy self-sufficiency and if its substitutes—energy conservation, oil, natural gas, nuclear power, and alternative energy sources—were unable to supply substantial shares. Table 11 shows coal production tonnage to meet demand under high-level development.

Table 8. Foal production in the Yellowstone Basin under the intermediate $$\rm Tevel$ of development smmt.

Consuming Sector	1971 - Actual	- F975 √Antual∣	1980	1985	2000
Housebold and Commercial	0.1	11.2	10614	10510	Insig
lndustri∩l	υ.1	0.2	insiq	10:14	10510
Flectrical Generation	0.8	0.8	4.0	8.0	24.1)
Synthetic Fuel	0	O	U		7.6
Exports	6.1	21.0	68.6	154.6	293.2
TOTAL	7.1	22.2	72.6	162.6	324.8

Table 9. Location of coal conversion facilities through the year 2000, intermediate level of development

Subbasin	1000-mw Electric Generating Plants	250-mmcf/d Synthetic Gas Plants	1,000-b/d Synthetic Crude Plants	2,300-t/d Fertilizer Plants
		1980		
Mid-Yellowstone All others	1 0	0	0	0
TOTAL	1	0	0	Ð
		1985		
Mid-Yellowstone All others	2 0	0	0	0
TOTAL	2	0	0	0
		2000		
Tongue Mid-Yellowstone Powder All others	2 3 1 0	0 1 0	0 0 0 0	0 0 0
TOTAL	6	1	0	0

Table 10. Foal tonnage location by Yellowstone River subbasin, intermediate level of development, 1980, 1985, $2000~\mathrm{fmm} L/\mathrm{y}^{-1}$

			0007	mmc/)				
Subbasin		Gasification		Syncrude Fertilizer	Rail	Export	Total	Total
			0861					
Tongue	0 7	0	0	0	30.8	0	50.8	50.8
Hid-rellowstone Powder	0.4	= c	0	0 0	6.9	0	6.9	6.9
Bighorn	0	0	0	0	6.9	0	6.9	6.9
TOTAL	4.0	0	0	0	9.89	0	68.6	72.6
			1985					
Tongue	0	0	0	0	69.5	0	69.5	5.69
Mid-Yellowstone	8.0	0	0	0	54.1	0	54.1	62.1
Powder	0	0	0	0	15.5	0	15.5	15.5
Bighorn	0	0	0	0	15.5	0	15.5	15.5
TOTAL	8.0	0	0	0	154.6	0	154.6	162.6
			2000					
Tongue	8.0	01	0	Û	105.6	26.4	132.0	140.0
Mid-Yellowstone Powder	12.0	9•/ 0	0	D 0	23.4	5.9	102.6	33.3
Bighorn	0	0	0	0	23.4	5.9	29.3	29.3
TOTAL	24.0	7.6	Û	0	225.7	58.7	293.2	324.8

Table II. Foal production for consumption under high-level development, Yellowstone Barin set

Consuming Sector	1 ²71 Actual	1975 Actual	1980	1986	2000
Household and Commercial	0.1	0.2	imiq.	ifmiq.	1111,11).
Industrial	0.1	0.2	10010.	10010.	10510.
Electrical Generation	0.8	0.8	14.()	8.0	32.0
Synthetic Fuel gas crude fertilizer	() ()	() ()	() () ()	() () ()	22.8 36.0 3.5
Exports	6.1	21.0	71.4	109.1	368.5
TUTAL	7.1	22.2	75.4	207.1	462.8

The 1980 projection of coal production for electrical generation shown in table 2 is based on coal production data tabulated by the Montana Energy Advisory Council 1974'. However, the coal export in 1980 is a combination of the adjusted NGPRP data and recent changes in coal sales contracts. The 1985 projection of coal production for electrical generation is 8.0 mmt, double the 1980 amount, because it was assumed that Colstrip Units 3 and 4 would be in operation by that date. The projection of coal production for export in 1985, 199.1 mmt, was derived from NGPRP projections and from a Missouri River Basin Commission MRBC study, Analysis of Energy Projections and Implications for Resource Requirements (1976). High-level coal development estimates are based on assumptions that 20 percent of the coal in 1985 will be exported by slurry, increasing total export capacity to 199.1 mmt. This figure includes coal moving by unit train.

Under high-level development projections for the year 2000, electrical generation would consume 32.0 mmt of coal. This figure is derived from the Western States Water Council's .1974 estimation of production of 8,260 mw of electricity from coal for 1990.

The synthesis of fuel and fertilizer is estimated to require 61.3 mmt of coal by 2000 under high-level development. Approximately 23 mmt of the total would go toward synthesis of gas equivalent to the production of three plants, each with the capacity of 250 million standard cubic feet per day mmcfd. The figure was derived from the NGPRP's high-development projection of demand for substitute natural gas and was modified by 'MUCDS's findings concerning the viability of coal gasification.

Because success of technology for the economical production of synthetic liquid fuel from coal does not appear likely until the late 1990s, high-level development does not assume the construction of a liquefaction plant

until the year 2000. Two such plants are projected. The Stanford Research Institute 1974) has estimated that one synthetic crude oil facility producing 100.000 barrels of crude per day would require 18 mmt of coal per year. That amount is more than twice the quantity that would be consumed by a synthetic natural gas plant of 250 mmcfd capacity.

One fertilizer plant is projected for southeastern Montana by the year 2000 under high-level development. The present status of technology makes development possibilities slim. The Koppers' Totzek process seems to be the most feasible conversion process at this time and would require a maximum of 3.5 mmt of coal per year to produce 2,300 tons of fertilizer per day $\pm t/d$.

The export of coal in the year 2000 under high-level development is projected to reach 368.5 mmt. This quantity was derived from the NGPRP's high-development projection plus a 40 percent increase to account for the use of slurry pipelines.

Table 12 shows the location by subbasin of the coal-based electrical generation, synthetic gas, liquefaction, and fertilizer production plants forecast under the assumptions of high-level development.

Table 13 shows coal production by subbasin during the remaining years of the century under high-level development. The production figures shown in table 11 appear in the basin-wide totals for each of the consumptive uses shown in the tables--electrical generation, gasification, production of synthetic crude oil and fertilizer--plus exports. Under the assumptions of high-level coal development in the Yellowstone Basin, exports of coal by slurry pipeline would be 20 percent of coal exports by 1980 and 40 percent by 2000 (see export column, table 13).

SUMMARY OF LEVELS OF DEVELOPMENT

A gradual rise in coal production to 1980 at least is practically inevitable based on the demand for coal represented in existing coal sales contracts. Low-level development projections reflect the existing situation plus the added demand of planned coal-for-export sales contracts. (The projected low-level demand for coal is similar to the intermediate coal development profile of the Northern Great Plains Resource Program (1974b).) High-level development is a projection of coal production based on assumptions about U.S. energy use under a policy of national self-sufficiency and a reliance on coal rather than energy conservation, alternative energy sources, oil, natural gas, and nuclear power. (An implicit assumption is that the coal would be produced in western strip mines rather than eastern underground mines.) Under high-level development, coal production tonnages could reach the totals indicated in table 14. Intermediate-level development projections represent means between the low and high levels of development. As far as we know, no one of the three development levels is more probable than the others.

Figure 3 presents a graph of coal production in the Yellowstone River Basin for the three levels of development during the remaining years of the

Table 12. Togation of coal conversion facilities through the year 2000, trigh-level development

Subbasin	1000-mw flectric Generating Plants	250-mmet d Synthetic Gas Plants	190,000-b d Synthetic Crude Plants	2300-tod Centulazer Plants
		1980		
Mid-Yellowstone All others	1 ()	()	0	()
TOTAL	1	()	0	()
	•	1985		
Mid-Yellowstone All others	2 0	0	0	0
TOTAL	2	0	0	()
		2000		
Tonque Mid-Yellowstone Powder Bighorn Lower Yellowstone	3 3 1 1 0	1 2 0 0	1 1 0 0	0 0 0 0 0
TOTAL	8	3	2	1

Table 13. Coal tonnage location by Yellowstone River subbasins, high-level development, 1980, 1985, 2000 (mmt/y)

Subbasin	Flectric Generation	Gasification	Syncrude	Fertilizer	Rail	Fxport	Total	Total
			1980					
Tongue	0	Ō	0	0	32.2	0	32.2	32.4
Mid-Yellowstone Powder	0.70	0 0	0 0	0 0	25.0	0 0	25.0	29.6
Bighorn	0	0	0	0	7.1	0	7.1	7.1
Lower Yellowstone	0	0	0	0	0	0	0	0
TOTAL	0.4	0	0	0	71.4	0	71.4	75.4
			1985					
Tonque	0	0	0	0	71.7	17.9	9.68	9.68
Mid-Yellowstone	8.0	0	0	0	55.8	13.9	69.7	77.7
Powder	0	0	0	0	15.9	4.0	19.9	19.9
Bighorn Lower Yellowstone	0 0	0 0	0 0	0 0	15.9 n	0.4	19.9 n	19.9
		D		Þ		D.		
TOTAL	8.0	0	0	0	159.3	39.8	199.1	207.1
			2000					
Tongue	12.0	7.6	18.0	0	99.5	66.3	165.8	203.4
Mid-Yellowstone	12.0	15.2	18.0	0	77.3	51.6	128.9	174.1
Powder	4.0	0	0	0	22.1	14.8	36.9	40.9
Bighorn Lower Vellowetone	0.4.0		0 0	0	22.1	14.8	36.9	40.9
rower relionscolle	D	Ω	n	7.3	n	D	0	0.0
TOTAL	32.0	22.8	36.0	3.5	221.0	147.5	368.5	462.8

Lable 14. Final production for parameters under three level of maximum entropy and relative the first through the course of τ

Campa in; Sector	to (evel	Nderrefrate tevel	H ₁ 1. Level
	193	l tuil	
Household and Foreroid	11.1		0.1
Industrial	.).1	0.1	11.1
flectrical Generation	H. B	O.h	11. 1
Synthetic Fuel		()	ч.
Exports	6.1	0.1	6.1
10141	7.1	7.1	7.1
	197	5 Actual	
Household and Commercial	0.2	0.2	0.2
Industrial	t).2	0.2	1).?
llectrical Generation	0.8	().()	0.8
Synthetic Fuel	0	11	()
Exports	21.0	21.0	21.0
T01AL	22.2	22.2	22.2
	198	30)	
Household and Commercial	insig.	msiq.	10319.
Industrial	insig.	insiq.	10519.
Electrical Generation	4.0	4.0	4.0
Synthetic Luel	U	()	[]
Exports	66.0	68.6	71.4
TOTAL	70.0	72.6	75.4
	198	5	
Household and Commercial	insig.	ınsiq.	10514.
Industrial	insig.	insiq.	insig.
Electrical Generation	4.0	8.0	8.0
Synthetic Fuel	0	0	()
Exports	114.0	154.6	199.1
TOTAL	118.0	162.6	207.1
	200	0	
Household and Commercial	insiq.	insig.	ınsiq.
Industrial	insig.	insig.	ınsiq.
Electrical Generation Synthetic Fuel	8.0	24.0	32.0
Gas	7.6	7.6	22.8
Crude	0	0	36.0
Fertilizer	Ö	0	3.5
Exports	171.1	293.2	368.5
TOTAL	186.7	324.8	462.8

Figure 3. Base, low, intermediate and high alternative futures for coal production in the Yellowstone River Basin.

century. It is obvious true the graph that the year 10 has like a roots cant turning point for questions at public policy as acrate haits or feed appears.

Motil 1986, under all three development assumptions, only the Mid-Yellowstone subbasin would have energy conversion tarilities. The equiv dent of one 1.000-mw power plant. By 1985, under intermediate or target-level development, the Mid-Yellowstone would have two 1.000-mw power plants.

Table 15 illustrates the situation by the end of the century, with low-level development, there would be a total of 2000 mw of electrical generation in the "id-bellowstone and longue bubbasins, and there would be one 250-rmet d synthetic gas plant in the Sid-bellowstone, with interpediate-level development, there would be 6,000 mw of electrical generation facilities; balf of it in the Bid-bellowstone, 2,000 mw in the longue, and 1,000 mw in the Powder. The Bid-bellowstone would have one synthetic gas plant.

with high-level development, the addition of a 1,000-mw power plant in the Bighorn Subbasin would bring to four the total of subbasins with energy conversion plants. The longue Subbasin would have yet another power plant under high-level development, for a basin total of 3,000 mw, and would contain a 250-mmet d synthetic gas plant and a 100,000-b, d synthetic crude oil plant as well. The Uid-Yellowstone Subbasin would have one synthetic crude oil plant and two synthetic gas plants in addition to its power plants. The Lower Yellowstone Subbasin also would enter the picture with a 2,300-t d fertilizer plant. Four subbasins would remain unaffected by direct impacts of energy facilities under high-level development even in the year 2000; Upper Yellowstone, Billings Area, Clarks fork Yellowstone, and Kinsey Area.

WATER USE ASSOCIATED WITH PROJECTED ENERGY DEVELOPMENT

Annual water and coal consumption requirements for the conversion plants envisioned have been calculated (see table 16). Using the wateruse information in table 16 and information on the expected numbers of energy conversion facilities in each subbasin, a comprehensive picture of water use by subbasin for the years 1980, 1985, and 2000 is presented in tables 17, 18, and 19. The basin-wide totals for all uses in 1980, 1985, and 2000 are 18,770, 61,995, and 321,175 af, y, respectively, under high-level development.

Table 15. Coal Conversion in the Yellowstone Basin in 2000

oubbasin ^a	Electric Generation mw	SNG (mmcf/d)	Synerude (b/d)	fertilizer (t/d)		
	LOW-L	EVEL DEVELOPMENT				
Sighorn Mid-Yellowstone Tonque Powder Lower Yellowstone	0 1,500 500 0	0 250 0 0	0 0 0 0	0 0 0 0		
JATOT	2,000	250	0	0		
INTERMEDIATE-LEVEL DEVELOPMENT						
Bighorn Mid-Yellowstone Jongue Powder Lower Yellowstone	0 3,000 2,000 1,000	0 250 0 0	0 0 0 0	0 0 0 0		
TOTAL	6,000	250	0	0		
	HIGH-L	EVEL DEVELOPMENT				
Bighorn Mid-Yellowstone Tongue Powder Lower Yellowstone	1,000 3,000 3,000 1,000	0 500 250 0 0	0 100,000 100,000 0	0 0 0 0 2,300		
TOTAL	8,000	750	200,000	2,300		

^aThe four subbasins not listed (Upper Yellowstone, Billings Area, Clarks Fork Yellowstone, and Kinsey Area) are not expected to include sites for coal conversion facilities.

Table 16. Annual water and coal requirements for coal processes.

Process	Water	Coul
Thermal-electric generation	15,000 af y 1,000 mw	→ mmit 1,U(B) may
dasification	9,000 at 5 250 mmcf d	7.6 mmt 250 mmc1 d
Syncrude	29,000 at v 100,000 b d	18 mmt 100,000 b d
fertilizer	13,000 at v 2,300 t d	3.5 mmt 2.380 t d
Slurry	750 at mmt	
Strip Mining	50 at mmt	

Table 17. Water use in coal mining and electrical generation by 1980 by subbasin $\langle af/y \rangle$

Subbasin ^a	Flec. Generation	Strip Mining	Total
	LOW-LEVEL D	EVELOPMENT	
Tonque Mid-Yellowstone Powder Bighorn	0 15,000 0 0	1,490 1,360 330 330	1,490 16,360 330 330
TOTAL	15,000	3,510	18,510
	INTERMEDIATE-	LEVEL DEVELOPMENT	
Tongue Mid-Yellowstone Powder Bighorn	0 15,000 0 0	1,540 1,400 350 350	1,540 16,400 350 350
TOTAL	15,000	3,640	18,640
	HIGH-LEVEL	DEVELOPMENT	
Tongue Mid-Yellowstone Powder Bighorn	0 15,000 0	1,610 1,450 360 360	1,610 16,450 360 360
TOTAL	15,000	3,780	18,780

^aFour subbasins (Upper Yellowstone, Billings Area, Clarks Fork Yellowstone, and Kinsey Area) are not expected to experience water depletion associated with coal development. The Lower Yellowstone Subbasin would be subject to coal development only by the year 2000.

Table 18. Water use in roal mining, transportation and conversion processes by 1985 by subbasing at y

oubbasin ^d	tlec. Generation	Sturry Export	Strip Bining	Tot al
	1 OW-1 1	ALT OLALCOBRAZI		
Tonjue Mid-Yellowstone Powder Bighorn	0 15,000 0 0	() () ()	2,570 2,200 570 570	2,570 17,200 570 570
1014L	15,000	()	5,910	20,910
	1711 RH C	HVIO HVII- HAIO	OPMEZE	
longue Mid-Yellowstone Powder Bighorn	t) 50.000 0 0	t1 t1 t1	3,480 3,110 780 780	3,480 33,110 780 780
TOTAL	30,000	0	8,150	38,150
	HIGH-t	LIVEL DEVELOPMEN		
Tongue Mid-Yellowstone Powder Bighorn	0 30,000 0	6,720 10,430 1,500 3,000	4,480 3,890 1,000 1,000	11,200 44,310 2,500 4,000
TOTAL	30,000	21,650	10,370	62,010

⁴The four subbasins not shown 'Upper Yellowstone, Billings Area, Clarks Fork Yellowstone and Einsey Area) are not expected to experience water depletion association with coal development. The Fower Yellowstone Subbasin would be subject to coal development only by the year 2000.

bIt is assumed that half of the water for slurry in the longue and Powder subbasins will be from deep ground water, and half fromsurface water. In the Mid-Yellowstone and Bighorn subbasins, all water for slurry is assumed to come from surface supplies.

Thus to, with $x = x^{\alpha}$ following, transportation and conversion processes by 2000 by subbasin af y^{α}

altaein 1	flec. Generation	INCREAS Gasifi- cation	Syn- crude	HOV Ferti- lizer	Slurry Export	Strip Hining	Total
		LDW-LEVI L	DI VI I OPHE	VI			
Redorn Rid-Yellowstone Tonque Powder Lower Yellowstone	0 22,500 7,500 0	9,000 0 0	0 0 0 0	0 0 0 0	0 0 0 0	860 3,680 3,950 860 0	860 35,180 11,450 860
Total	30,000	9,000				9,350	48,350
	INT	ERMEDIATE -	LEVEL DEVE	LOPMENT			
Bighorn Mid-Yellowstone Tongue Powder Lower Yellowstone	0 45,000 30,000 15,000	9,000 0 0 0	0 0 0 0	0 0 0 0	4,420 15,380 9,900 2,210 0	1,470 6,110 7,000 1,670	5,890 75,490 46,900 18,880
Total	90,000	9,000			31,910	16,250	147,160
		HIGH-LEVE	L DEVELOPM	IENT			
Bighorn Mid-Yellowstone Tongue Powder Lower Yellowstone	15,000 45,000 45,000 15,000	0 18,000 9,000 0	0 29,000 29,000 0	0 0 0 0 13,000	11,100 38,700 24,860 5,550	2,050 8,710 10,170 2,050 0	28,150 139,410 118,030 22,600 13,000
Total	120,000	27,000	58,000	13,000	80,210	22,980	321,190

 $^{^{\}mathrm{a}}$ The four subbasins not shown (Upper Yellowstone, Billings Area, Clarks Fork Yellowstone, and Kinsey Area), are not expected to experience water depletion associated with coal development.

^bIt is assumed that half of the water from slurry in the Tongue and Powder subbasins will be from deep ground water and half from surface water. In the Mid-Yellowstone and Bighorn subbasins, all water for slurry is assumed to come from surface supplies.

Projections of irrigated agriculture

Increasing for the past tew year , possibly reversing at least to promit a long-term dominant trend. Forecasting the extent of further expansion at irright appropriate to the year 2000 is complicated. General concentrations, tederal import and export policies, and world esting holit greatly after representations at the form appropriate. Thus agricultural products grown in the local through irrigation between the meditor the production of beet, which has a highly variable market. Former preferences and peer influences are subjunificant but unpredictable in determining whether a former will decide to expand irrigation. Finally, adequate land and an accessible water supply are necessary. This study considers water and land availability and econoric constraints in projecting the amount of irrigation in the Yell assume Basin through the year 2000.

Previous studies of irrigated agriculture illustrate a range of approaches to these problems. Some of these studies forecast buture development, and others analyze specific projects or geographical areas for irrigation feasibility. The DBLRS Series C projections U.%, white Pesources Council 1972 were based on estimates of anticipated supply and demand and historical trends. However, because irrigated agriculture has been declining until recently, the OBERS study predicted only small increases in Mentana's irrigated acreage to meet anticipated national demand in the year 2020. It became obvious that OBERS study predictions were wrong when the projections for 2020 were surpassed in 1974. So DSRC developed new projections based on the OBERS red meat projections Montana DSRC 1976. Neither of these studies considered the availability of suitable land or the economic limitations of irrigated agriculture. The study reported here takes these factors into account.

The Bureau of Reclamation USBR 1955, 1959, 1963, 1971, 1972 has conducted irrigation studies in several areas of the Yellowstone Basin. Information is available for the Powder. Iongue, and Bighore rivers, and for several projects along the mainstem of the Yellowstone. The economic analysis of these projects was updated for the Yellowstone Level B Study. A single-purpose irrigation study used in its original form (Frederiksen 1976) analyzed additional projects for inclusion in the Level B Study. Both of these studies considered large projects only and either explicitly or implicitly assumed there would be a cooperative effort to build and operate them. However, recent irrigation development in the basin has occurred primarily through private development with little or no cooperation among farmers to coordinate the installation of water-delivery systems; therefore, this study analyzes irrigation development in the Yellowstone Basin by postulating a collection of individual developments rather than cooperative projects.

HE THODS.

The objective of this study is to provide agricultural water-demand projections for a hydrologic model of the Yellowstone River Basin. Data were gathered and analyzed to provide general information on water demand, rather than identification of any specific development project. Three classes of information were used to identify potential water demand: 1) identification of irrigable land, 2) calculation of irrigation costs, and 3) analysis of the ability to pay these costs based on farm budgets.

IDENTIFICATION OF IRRIGABLE LAND

By systematically appraising soil, relief, and climate, parcels of land may be classified based on their suitability for irrigation. Land classification surveys made by the Water Resources Division, DNRC, were designed to investigate the theoretical potential of the land in the Yellowstone Basin to sustain irrigated farming. The term "irrigable land," as used here, denotes land with soils, topography, and drainage features appropriate for irrigation by either gravity or sprinkler methods. Such land is divided into classes on the basis of its relative potential for irrigated farming. Class 1 irrigable land has potentially high productive value; class 2 irrigable land has intermediate value, and class 3 irrigable land has the lowest suitability for irrigation among the classes. To perform the classification process for the Yellowstone River Basin, broad assumptions were necessary in areas where little soil information was available; consequently, this survey should not be considered adequate for detailed plans. Table 20 lists the classification criteria.

The land classification survey identified 2,200,000 acres of irrigable land in the basin. However, the survey considered neither water availability nor economic limitations of potential irrigation systems. For this study, water was considered to be available only from the Yellowstone River and its four main tributaries in Montana (Clarks Fork, Bighorn, Iongue, and Powder). Preliminary economic limitations were defined by using calculations from first drafts of the farm-budgets and water-delivery analyses. These preliminary calculations helped define potentially irrigable land as that no more than 3 mi from the river and no more than 450 ft above the river. Hence the total of potentially irrigable land was reduced to 440,000 acres. That land was divided into categories according to lift (50-ft increments), and pipeline length (½-mi increments) for each subbasin (table 21). Irrigation costs were calculated for each category.

CALCULATION OF IRRIGATION COSTS.

In this study irrigation costs were divided into water-delivery costs and water-application costs. Water-delivery cost was defined as the total cost of pumping water from the river to the point of application. Water-application cost was defined as the cost of owning and operating a center-pivot sprinkler system.

	-	
		,
. 0	*	

					Lift					
)		1	} fa	. 10	251	50.0	\$4()	411(49	lotal
				11 111	n' TOSE	unity 12				
		1								39,090
1		1,	1,.1	3,,52		5, 44 (1,601		6,967
1		. , 391				1,533		2,649	3,613	10,186
-1	11, 17,	1, ***()	1,235	5,252	-0	5,495	()	4,250	4,7(0)	62,487
			11 +171	- (-112)-	VELLOWST	nse luisea	515			
	.11	I a		1		442				3,760 203
			-56 1,006			5,432		2,157		6,025
			.,		1,715	891				3,715 891
1.1.1	5,16	eg),	1,442	766	3,715	4,765	()	2,157	ft	15,600
			Į-	HTT 1765	ARCA JII	HBAS IN				fe .
	5 - 51 -4	5,324 71	329 8,084	2,147 1,305		222 1,254		447		9,330 11.508
1.	110	165	1,540	585	442 999	878	. 78	2,325		5,564 3,766
1		118						446	6t Z	446 780
'stal	1.7+1	1,678	11,962	4,037	1,440	2,354	278	3,218	662	31,394
			1 1 10	8 I CHO	RN JUBA	51N				. 707
1.	1,00	5,451 2,191	1,509	1,054						5,787 7,062 2,191
1		1.387	1.431	783		384				2,191 2,598 1,968
3. i T tal	6,096	7.020	3,734 9,004	2,996	- 0	184		- n		4,893
	,	•			WS FONE I					
	19,000	1,691								17,691
1.'	1,1(0)	4,358	4,616	2,802	297 4.522	309	2.071			15,253 13,176
2.5	820	257 428	2,693	6,681 3,534	3,353	1,149 4,851				14,953 8,813
3.8 Total	.90.80M	711.735	1,979 9,288	15,287	8,172	2,459 8,768	1,538 3,609	Λ	<u>n</u>	75,862
				FINSEY	AREA IR	/IPA8				
	1,248		539	1,18						4,428
1.5	50B	2.035	7,714			7.51 546	1,405			3,074 2,415
2.1		404				140	1,407			(
Tital	1,056	2,49%	c ^{c-1} t1	1,180	η	1,277	1,405	0	0	10,456
				TONIL	UE IBBA	515				
i.	21,947									21,947
1.5 2.0	ĺ			983	1,004					1,987
3.						529				529
Istal	21,747	0		983	1,004	529		0	0	24,463
				POWDE	R JUBBAS	1,				
::-	f4,214									74,224 981
	981				993	1,288 2,612				2,281
2.						2,012	6,872 904	27,040		6.872
Stal	75.205	ŋ		0 0	993	3,900	7,776	27,040	()	27,944 114,914
					OWSTONE	SU8BASIN				
ı.	11.67 .P.1	+,992	1,7					4,887		27,256 11,692
		2,599 815	75 4.8L	7 2,120	1.00	564	537	12,389 290		16,166 10,726
		963		350 355			1,341	5,101 6,563 29,230		5,451 9,222
1.10	M. jak	11.163	7.37	4 3,211	1,603	564	1,878	29,230	n	80,513

mater selivery fort

The cod of decision, siter to the far depend on the lift, Gotto e, and amount of siter delivered, secand of the range (ize of the ring and lightation of data, plan could not be taileded to individual farcines, irrigation layout, and opin data. December, several accomption and generalizations were ode.

A hypothetical 52% acre for was used as the facin for all calculations, after a ultimediscription of the rate of 1 of 50% acres 6.00 of for 1 of 20% acres for 6.00 of for 1 of 20% acres for 100 ulting a chapterest irripation efficiency factor [500 1976]. Therefore, the annual material nuirecent for the 5.0- acre for would be 90% acresteet, we assumed that the purpose would be electric and would require 1.717 bours of operation per year. The cost of electricity was assumed to be 1.01 keV.

Exing the thregoing assumptions, a computer program was used to calculate the annual most of delivering water to the fair. All equations and cost factors were provided by the 7.5. Bureau of Peclamation (Juhn), and were updated to January 177 prices.

The initial investment for vertical pumps was determined from the equation:

1160 + HOILLO 1. = 1

where: I's net of pumps \$

. = flow rate o. . cfs

I = 1 mt index tactor 2.09

IDH = Fital Assumic heat

Total dynamic head equals static lift plus friction loss. Static lift was divided into 50-ft increments from 50 to 450 ft, and friction loss was computed using the Chezy-Manning formula with a roughness coefficient of n=0.010.

Friction loss = $\sqrt{2}n^2L = 2.228^{1.33}$

where: \ = velocity 5.4cfs area of pipe

r = "Mannings coefficient "U.010

1 = pipe length

R = hydraulic raidus pi e diameter 4

The total investment in rungs, housing, electrical panels, and installation was assumed to be four times the cost of the pumps. USBR cost analyses.

The initial cost of the pipe was provided by the 958P tables 22 and 23 , and excavation costs were determined from the equation:

Annual investment costs were obtained by amortizing the initial investment of pumps and pipe over 10 years at 10% interest, using a capital recovery factor of 0.16275.

Annual operation costs were calculated from the equation:

Operation cost =
$$(1.8Q^{.47})(\text{TDH})^{.46}(\text{I/168})^{.34}(1.2W_c + I_w)$$

where: Q = flow rate (6.4 cfs)

L = pipe length

TDH = total dynamic head

I = operation time (1,717 hours)

 W_{o} = workers wages (\$5.83/hour)

 $I_{c} = costs index factor (1.87)$

Maintenance costs were calculated from the equation:

Maintenance cost =
$$(2Q^{\cdot 11})(TDH)^{\cdot 41}(af)^{\cdot 43}(0.49W_c + I_w)$$

where: Q = flow rate (6.4 cfs)

TDH = total dynamic head

af = water pumped (908 acre-feet/year)

 W_0 = workers wages (\$5.83/hour)

 $I_{W} = cost index (1.87)$

Finally, electricity costs were calculated from the equation:

$$C = (UQT)(TDH)/8.8E$$

where: U = electricity cost/kWh (\$.01/kWh)

Q = flow rate (6.4 cfs)

T = time of operation (1,717 hours)

TDH = total dynamic head

E = pump efficiency factor (.7)

The total annual costs of operation, maintenance, and cleativity were added to the amortized cost of the pumps and paper all calculdions were repeated for each papersize, and the most economical systems as selected. Water delivery costs were then calculated for each lift and distance category, and are displayed in table 24.

Table 22. Concrete pipe costs \$ ft

		Diameter in						
Herad ft	12	18	24	3()				
·,[]	8.94	14.72	21.26	28.34				
100	9.27	15.26	22.89	30.52				
150	9.59	16.35	23.98	32.70				
200	10.79	18.53	27.25	37.06				

Table 23. Steel pipe costs A ft

				Diameter	ın)		
Head ft	12	18	24	3()	36	42	48
50	10.90	21.80	32.70	43.60	57.77	70.85	87.20
100	117	25.07	35.97	46.87	61.04	78.48	93.74
156	18.53	29.43	40.33	51.23	65.40	81.75	102.45
200	25.07	35.97	46.87	57.77	80.66	100.28	123.17
300	38.15	49.05	59.95	70.85	91.56	112.27	143.88
350	45.78	56.68	67.58	78.48	99.19	118.81	154.78
400	49.05	50.05	70.85	81.75	102.46	134.07	164.59
450	56.68	67.58	78.48	89.38	110.01	143.88	17458

Table 24. Annual water-delivery costs \$, acre)

					Hevati	on			
(enoth mi	50	100	150	200	250	300	350	400	450
J.5	55	80	79	105	116	136	147	167	178
1.0	79	93	133	144	168	184	207	223	247
1.5	103	117	172	202	213	250	261	299	310
2.0	128	142	212	247	258	304	315	362	373
2.5	152	167	251	292	303	358	369	424	a
3.0	176	192	291	337	348	412	423	487	а

^aSteel pipe is unsuitable for these pressures.

Water Application Costs

Water application costs were derived from information provided by Montana State University (Montana State University 1969 .

Table 25 itemizes the cost of owning and operating one center-pivot sprinkler system. Changes that were made in the CES data to make the costs compatible with farm budget estimates are included under the column labeled NOTES. The initial cost of all equipment was amortized over 10 years at 10 percent interest (Capitol Recovery Factor = 0.16275) and added to the annual operating costs. The data then were indexed to December 1975 prices (Water Resources Council unpublished) to yield an annual cost of \$66/acre.

Table 25. Center-pivot irrigation costs

	Costs	Notes
Initial investment	\$48,022	
Annual payment	7,816	10% over 10 years
Maintenance	158	0.33% of investment
Electricity	652	65,180 kWh/yr @ 1 mill/kWh
Labor	175	\$2.50/hr, 70 hrs/yr
Taxes	768	160 mills on 10% of investment
Insurance	288	.6% of investment
TOTAL per acre	9,857 66	148 irrigated acres

the property of the state of th

The percent of a considering in a start, if a constant of a constant of

Firstorn of respect to the description of the series of th

All calculations were takefor the hypothetical 320-acre tan became data were readily shall the from the USER for that time of operation. The farmstead, roads, dit became wasteland accounted for 18 acres. So percent; the remaining 342 acres were assumed to be available for crop production, for convenience, costs and revenues were divided into four categories; treed costs, variable of the resonues, and perquisites.

Fixed costs

Fixed costs included these incurred regardless of the acreage planted to a particular crop. Depreciation, repair, taxes, and investment are all fixed costs; they are listed in table ze. Depreciation was calculated on all buildings, machiners, and aquipment using a 6.5 percent sinking fund tack in over the expected lite of the iter. Repair costs were assumed to be 2 percent at the value of buildings and improvedents, and 2.5 percent on sachiner, and equipment. A 7.1 percent return was calculated on all investments.

Takes were assumed to be levied against 30 percent of the accessed value on land and buildings and 20 percent on machinery and equipment. The accessed value of an acre of irrigated land was assumed to be \$48.00. Buildings and improvements were assumed to be assessed at 40 percent, and machinery and equipment at 50 percent of their average values. The mill levy in the Yellowstone Basin was assumed to average 100 mills.

Depreciation and repair could for automobile, and trucks, (and) on mileage estimates, are shown in table 27. Fixed corts for insurance, telephone, and electricity also are included in table 27.

Table 26. Inventory of buildings, machinery and equipment; investment, repair, depreciation, and taxes for a hypothetical 320-acre form

Iten	Market Value	Annual Investment	Annual Repairs	Expected life (yrs)	Annual Depreciation	Annual Tax
Land	1 80,000	\$ 5,680	-	-	_	\$ 737
House	22,200	1.576	\$444	50	\$65	426
Garage	2,200	158	44	40	13	42
Granary	1,065	118	33	20	43	32
Shop	1,665	118	33	20	43	32
Fuel Tanks	444	32	9	20	12	9
Well	888	63	18	30	10	17
Plow	1,332	95	33	12	77	21
Disk	1,554	110	39	15	64	25
Harrow	355	25	7	20	9	6
Sugar Beet	7,082	503	177	12	408	113
Equip. Drill	1,554	110	39	20	40	25
Planter	1,787	127	45	15	74	26
Cultivator	1,415	100	35	12	81	23
Loader	1,132	80	28	12	65	18
Wagon	666	47	17	15	28	11
Sprayer	710	50	18	15	29	11
Baler	3,885	276	97	10	288	62
Windrow	3,996	284	100	10	296	64
Auger	699	50	17	15	29	11
Small tools	311	22	8	5	55	5
Trucks	9,435	670	а	а	a	151
Auto	3,885	276	а	а	а	62
Tractors	7,215	512	Ь	b	b	115
TOTAL		\$11,082	\$1,241		\$1,729	\$2,047

^aDepreciation and repair costs are computed in table 27. Depreciation and repair costs are computed in table 29.

Table 22. Millellameour fixed 0 to for a by other para 20 page farms

Item	Amount Fresh	Late	1 1 1
DEPRECIATION A SECRET			
Aut o	nat	i lemi	**(*,**1
Truck 1, 1	5. URI (1	\$. Le hi	
Truck 2.1	5, 4(1), 1 11	\$	930
TASURANCE			
Buildings	\$32,634	\$10.80 \$1.000	557
Vehicles			1.
11 [1 + + + + + + + + + + + + + + + + +			7()
ELECTRICITY			21 1
131AL			\$3,4157

Perquisites

Farmers receive certain benefits perquisites. Ilving on the farm. A monfarm person usually pays the cost of owning and maintaining a house, but on a farm such items are part of the economic enterprise. The farmer--not the farm enterprise--theoretically reaps the benefit from the farm's investment in them. Table 28 lists these farm perquisites.

Technically, perquisites are items of revenue not available for ca_{ρ} italinvestment; as such, they are subtracted from fixed costs.

Table 28. Farm perquisites house, garage, well

Item	Perquisite value \$
Depreciation	88
Investment	1,797
Repairs	506
Taxes	486
Insurance	273
1014	\$3,150

Table 29. Variable costs per irrigated acre by crop

Item	Amount Used	Cost/Unit (\$)	Total Cost (\$)
	SUGAR BEFTS		
Fertilizer: N ₂ P ₂ 05	100.8 lbs 43.3 lbs	0.22 0.16	22.18 6.93
Labor: Family Hired Tractor Seed Custom Harvest Ensiled Tops TOTAL	8.4 hrs 11.7 hrs 7.1 hrs 2.5 hrs	2.25 2.50 2.78 2.78 2.78 23.31 1.30	18.90 29.25 19.74 6.95 23.31 13.65
	CORN SILAGE		***************************************
Fertilizer: V ₂ P ₂ O ₅	110.4 lbs 59.0 lbs	0.22 0.16	24.29 9.44
Labor: Family Hired Tractor Seed Silage Storage TOTAL	6.0 hrs 4.1 hrs 3.4 hrs 0.5 bu 21 tons	2.25 2.50 2.78 25.00 1.30	13.50 10.25 9.45 12.50 27.30
	ALFALFA		
Fertilizer: N ₂ P ₂ 0 ₅	0 48.0 lbs	0.16	7.68
Labor: Family Hired Tractor Seed Twine TOTAL	5.4 hrs 2.8 hrs 4.1 hrs 3.0 lbs 5 tons hay	2.25 2.50 2.78 1.86 0.61	12.15 7.00 11.40 5.58 3.05 46.86
	BARLEY		
Fertilizer: N ₂ P ₂ ² 0 ₅	65.4 lbs 38.1 lbs	0.22 0.16	14.39 6.09
Labor: Family Hired Tractor Seed Weed Spray Custom Combine	3.2 hrs 0 2.0 hrs 2.0 bu	2.25 2.78 3.70 1.15 7.70	7.20 5.56 7.40 1.15 7.70
TOTAL		7.70	49.49

Variable Costs

In addition to the fixed costs associated with the factor respiratory and to such as ferfulizer, seed, labor, and fractor respiratory with the crop type and acreage grown. Table 29 lists these variable costs per acre for a bypothetical fam. All costs were tailored to a specific crop and an anticipated yield under irrigation. Ferfulizer use was based on the amount needed to produce the expected yield. Tractor costs were included as variable costs primarily because of the format of available data.

Revenues

Table 30 lists irrigated-crop production and sales per acre. Espected vields assume better-than-average management (4:11)s and reflect amounts of labor, tertilizer, and chemical sprays used to ensure good crop growth. Sales prices were based on Water Resources Council price standards (0.5) Water Resources Council 1975. Prices for silage scorn and beet tops, were based on Water Resources Council has prices and adjusted to reflect nutrient content.

Table 30. Irrigated-crop production and sales per acre

Crop	Yield	Sales Price Unit	Total Revenue per acre
Sugar Beets			
Beets	21 tons	\$34.97	\$ 734
Tops	10.5 tons	18.73	197
CROP LOTAL			931
Corn Silage	21 tons	18.73	393
Alfalfa	5 tons	44.50	223
Barley			
Grain	74 bushels	1.90	140
Straw	16 tons	2.68	43
CROP TOTAL			183

An allowance for the farmer's management skills was included in all budgets. This allowance amounted to 10 percent of the net profit, and was calculated by reducing the absolute value of all costs and profits by 10 percent. Table 31 summarizes all costs and returns and calculates the management allowance.

Table 31. farm budget summary with management allowance

Item	\$ Value	Management Allowance (\$)	Net Value (\$)
Investment	-11,082	1,108	-9,974
Repairs	- 1,241	124	-1,117
Depreciation	- 1,729	173	-1,556
Taxes	- 2,047	205	-1,842
Miscellaneous	- 3,057	306	-2,751
Perquisites	+ 3,150	315	+2,835
Fixed Costs & Perquisites			-14,405
Variable Costs (per acre)			
Sugar beets	- 141	14	- 127
Corn Silage	- 107	11	- 96
Alfalfa	- 47	5	- 42
Barley	- 49	5	- 44
Variable Returns (per acre)			
Sugar beets	+931	93	+838
Corn Silage	+ 393	39	+ 354
Alfalfa	+ 223	22	+ 201
Barley	+183	18	+165

Irrigation feasibility

The tarp budgets prepared for each subbalin were taked by imaginar patterns listed in table 52. Variable costs and revenues were multiplied by the acres of each irrigated crop and combined with fiselench of farming except for the cost of water application systems, to obtain the figure shown in table 55. Then irrigation passent capacities were calculated per acre, and application-system costs. Tisted in table 25 as \$66 acre, were subtracted from that amount to determine the landowner's capacity to pay for water-delivery systems, table 54. This per acre capacity to pay for pumping was compared with pumping costs per acre to determine the maximum pumping distance for each subbasin, table 35. Finally, the pumping distances were compared with the 440,000 acres of potentially irrigable land in the basin, table 21, to determine the total teasibly irrigable acreage. Table 56 displays the results in acres by subbasin—237,472 acres basin—wide; approximately 30 percent is within .5 mi of the water source and less than 50 feet above it.

		(ropping !	Pattern Jacre	98
Subbasin	Farmstead	Grain	Hay	Silage	Cash Crop
Upper Yellowstone	18	51	239	3	·,
Clarks tork	18	٠,]	239	3	()
Billings Area	18	88	121	24	69
Bighorn	18	79	169	9	45
Mid-Yellowstone	18	7.5	178	Q	42
Tonque		57	196	15	33
Finsey Area	18	54	184	24	39
Powder	18	31.	217	18	30
Lower Yellowstone	18	88	115	3()	69

Table 32. Cropping patterns by subbasin, 320-acre farm

IRRIGATION AND WATER DEPLETION

To allocate the 237,480 acres of feasibly irrigable acreage to the three development levels, we assumed that the low level of development would irrigate one-third of that figure, the intermediate level two-thirds, and the high level all 237,480 acres.

Under assumptions of this study, annual irrigation-water requirements for the feasibly irrigable acreage in each subbasin would be constant at 906 af farm, or 3.0 af acre assuming 302 acres under irrigation. It is further assumed that one-third of the water withdrawn for application to crops eventually finds its way back to the rivers. Hence, net water depletion from irrigation development is assumed to be 2.0 af, acre. Development is assumed to rise steadily to completion in the year 2000.

Low-level development of basin farmland--irrigating a total of one-third of the feasibly irrigable acreage in each subbasin--would deplete 158,000 af y to water 79.160 acres see table 37.

intermediate-level development would irrigate a total of 158,310 acres and deplete the basin's water supply by over 316,000~af/y.

High-level development would irrigate the entire 237,480 acres of feasibly irrigable land and cause depletion of nearly 475,000 af/y.

Type to the tetal of the first and the

		Village and the managers					•		
		- 11	+1"		1 1	1	1 (*	1 1	
philippin	Circle	1.1						1 1 11	111
per Yellowstone	101	0	115	1.1.350	.n. 139	.14	1.14.	1.14 / /. //	31 , 11
arks fork	1 11	1,1	h1'	11,136	40,157	. 1 315	1.16.	1.1.1	1, 1, 1
Ilings Area	1	3.97	1.551	5. 14.7	34,521	2. 1 1.4	10,000	1. 13 1 .	1. 1.5
ghorn	1	3	13.035	7.1373	55,967	80 .	4.17	1. 11 /1	1 4.
d-Yellowstone	1	3.717	1 1.5	171	35.77	36.4	1.1	15,35, 5 . 10	1.,71.
in jue	14.405	20 In	1 14	8.242	50,500,	1	5,411	4.141	81
nsev Area	14. 15	176	0.110	7.7.28	51, 111	2.50%	11. 4 20.	4. 153 32.632	
wder								3.41 (.4 .14)	
wer Yellowstone									

Table 34. Parkent equality available for pumping per acre

s1n	Arrightion Phyment Capacity	hrinkler ost	Payment Lapacity for Pumping
per Yellowstone	\$ 122	tits	1. 100
irks Fork	122	f)f)	f , g
llings Area	234	fiti	16.0
horn	187	66	121
f=Yellowstone	182	66	116
nque	2169	(st)	1 (3
nsey Area	183	66	117
wder	167	66	101
ver Yellowstone	23t	66	179

Table 35. Maximum pumping distance mi

bbasin				Lift oft.				
	50	100	150	200	250	3()()	350	4111
per Yellowstone	0.5							
arks Fork	0.5							
llings Area	2.5	2.5	1.0	1.0	1.0	0.5	0.5	0.5
ghorn	1.5	1.5	0.5	0.5	0.5			
d-Yellowstone	1.5	1.0	0.5	0.5	0.5			
ngue	1.5	1.0	0.5					
nsey Area	1.5	1.0	0.5	0.5	0.5			
wder	1.0	1.0	0.5					
wer Yellowstone	2.5	2.5	1.0	1.0	1.0	1.5	0.5	().5

Table 36. Teasibly irrigable acreage by lift and pipeline length, high level of development (acres)

				Lift of			
peline enifh m	()=5()	100	100-150	150-200	200-250	250-300	lotal
	•		UPPER YU	LLOWSTONE SO	DBBAS1N		•
0	58,076	()	0	0	0	0	38,075
			CL ARK	S LORK SUBB	ASIN		
0 5	2,160	()	0	0	0	0	2,160
	,		011117	GS AREA SUB	BASIN		
.5 - 1.0 1.0 - 1.5	3,308 347 110	3,324 71 0	329 8,084 0	2,147 1,305 0	0 0 0	222 0 0	9,330 9,807 110
1.5 - 2.0 101AL	()	165	00	. 0	0	0	165
11114[3,765	3,560	8,413	3,452	0	222	19,412
	1			HORN SUBBAS			
.5 - 1.0	1,608	0 3,451	1,309 0	0	0	0	5,787 5,059
1.0 - 1.5 TOTAL	6,086	2,191 5,642	1,309	0	0	0	2,191 13,037
				LOWSIONE SUE			12,027
··5	16,000	1,691	0	0	0	0	17,691
.5 - 1.0 1014L	3,180 19,180	4,358 6,049	0	0	0	0	7,538 25,229
-			10	NGUE SUBBASI	1 N		
5	21,947	0	0	0	0	0	21,947
			K1NSE	Y AREA SUBBA	ASIN		
05	3,248	0	0	1,180	0	0	4,428
.5 - 1.0 1.0 - 1.5	0 308	0	0	0	0	0	0 308
	3,556	0	0	1,180	0	0	4,736
	1		POWDE	R RIVER SUBE	BAS1N		
.8 - 1.n	74,224	0	0	0	0	0	74,224 981
TOTAL	75,205	0	0	0	0	0	75,205
			LOWER YE	LLOWSTONE St	JBBASIN		
.5 - 1.0	23,677 1,813	1,804	1,775 100	0	0	0	27,256
1.0 - 1.5	0	4,992 2,599	0	0	0	0	6,905 2,599
1.5 - 2.0 2.0 - 2.5	0	805 105	0	0	0	0	805
TOTAL	25,490	10,305	1,875	0	0	0	37,670
			ВА	SIN SUMMARY			
.5 - 1.0	187,118 7,929	6,819 12,872	3,413 8,184	3,327 1,305	0	222	200,899
1.8 - 1.5	418	4,790	8.184	1,305	0	0	30,290 5,208
1.5 - 2.0	0	970	0	0	0	0	970
2.0 - 2.5 TOTAL	135,465	25,556	11,597	4,632	0	222	237,472

Wif: This table should not be considered an exhaustive listing of all feasibly irrigable accease in the Yellowstone Basin; it includes only the accease identified is feasibly irrigable according to the geographic and economic constraints explained in the report.

Labele 5. The increase in water depletion for irrigate by a contine the 2.95 by subtream

Nabbasan	Астем је 10сте од	There e.e. in Depletions of .
	or market a printing	141.1
Opper Yellowst me	38.080	70,100
Clarks Lork	2.160	4.5.0
Billings Area	19,410	38,820
Bighorn	13,040	26,080
"tid=Yellowstone	25,230	50,460
Tonque	21,950	43,900
Finsey Area	4,740	9,480
Powder	75,200	150,400
Lower Yellowstone	37,670	75.340
1 11 At	237,480	474,960
	THERMEDIATE FEVEL OF DEV	ET OBJE Z
9451% 1014!	158,320	316,640
	EOW LEVEL DI DEVELOP	MENT
BA515 TOTAL	79,160	158,320

"ATT: The numbers of irrigated acres at the low and intermediate levels of development are not shown by subbasin; however, those numbers are one-third and two-thirds, respectively, of the acres shown for each subbasin at the high level of development.

Projections of municipal population growth

Communities in southeastern Montana will demand more water if population increases accompany energy development. (Municipal population growth in the Yellowstone River Basin presumably would be unaffected by agricultural development, such as expanded irrigation.) The method used to project population increases due to energy development relied on the Montana Futures Process MEP', developed by the Montana Department of Community Affairs. MEP simulates projected economic and demographic conditions. The economic calculation combines economic bases and several assumptions to simulate employment levels by industrial sectors in labor market areas (LMAS). The demographic calculation simulates population levels from a combination of the simulated labor-force participation rates.

MONTANA FUTURES PROCESS

Although MFP can be used to estimate population levels for the 14 Labor Market Areas (LMAS), it is not designed to project population changes at the municipal level. The estimated labor-market population levels therefore had to be allocated among municipalities and communities in each labor market. This allocation was made according to informed judgments concerning likely spatial development of the new population based on historical trade patterns in each labor market area.

MFP combines trends in employment and economic exports to avoid simulation of the effects of external economic changes while accounting for the region's population and employment baselines. The direct and indirect effects on employment of hypothesized developments are merged with long-term employment trends to yield simulated employment levels. These simulated employment levels are transformed into simulated population levels using employment and population multipliers assumed in the demographic calculation. The structure of the system is depicted in figure 4.

Figure 4. Montana Futures Process simulation-model structure.

THE PHENOMETRICAL

The economic calculation is based on e ploysent trends of taents of I to e Ω when the core tau for each Ω and the state and Ω between from its Ω to Ω between the Ω between the Ω between Ω bet

The expression calculation relied on secondary data (3.), pepartisent of somerce 197., 197., 197., 197.), to analyze exployment linkage—through an input-output codel—in the state. Because this project was concerned with exployment of a per rather than industrial output changes, the input-output 1.0 motrix, which is usually torgulated in terms of outputs, was transformed into employment terms. This transformation was based on output and employment ratio—tor Mentana weighted by productivity projections from the Bureau of Labor Statistics—9.5. Department of Labor 1975.

Because the I O matrix was constructed at the state level, it was necessary to allocate state-wide employment changes associated with a specific energy development level to 14 BMs. The allocation of secondary employment i.e., jubs resulting from the economic impact of jobs directly related to energy development generally was based on the change in base activity. In other words, secondary employment was allocated to the BMA where the primary employment would occur, except for financial service and trade employment, which was partially allocated to one or more LMAs by taking into account distance from marketing centers and historical trade patterns.

After the effects on employment of projected development levels were calculated and allocated to the LMAs, employment changes contingent on levels of energy development were merged with existing Montana employment trends by sector. The total employment estimations that resulted represented a smillated employment level for each LMA. Thus each simulated employment level represents the sum of existing employment trends in each LMA plus the employment changes that would be associated with levels of energy development.

DEMOGRAPHIC CALCULATION

Multiplying a simulated employment level by the commonly used employment-population multiplier produces a simulated population level. The employment-population multipliers chosen here are keyed to LMA population data and range from 2.1 to 2.4, but all converge gradually to 2.0 by the year 2000. The convergence is consistent with a 25-percent increase projected over the next 25 years in the labor-force participation rate. The overall effect of a change in the participation rate would be to dampen employment-related migration, because employment opportunities would be absorbed internally. Because of this, the population multiplier assumed to apply in the future by MEP is, in general, lower than that which exists now.

MILES CITY LMA GLENDIVE L'MA SMSA - Standard metropolitan statistical area GLASGOW LMA HARDIN-RED'LODGE LMA LMA-Labor market area BILLING SMSA EWISTOWN LMA Z W HAVRE BOZEMAN LMA GREAT FALLS E SMSA SHELBY! LMA ANACONDA - BUTTE LMA HELENA MÍSSÓULA. KALISPELL

Figure 5. Labor market areas in Montana.

-58-

MONTE IPAL POPULATION

To estimate municipal water needs associated with hypothesized fevels of energy development, it was necessary to allocate population increases in each LMA among affected surnicipalities. Because the MTP is not designed to simulate municipal population changes, additional information was required to translate EMA employment and population changes to the city level. During this study, therefore, considerable attention was given to information on the likely spatial development pattern. The pattern was then compared with the distribution of existing settlement.

Specifically, the economic activities associated with projected levels of development were disappregated into subbasins, and we assumed that workers hired for jobs directly related to energy development would live in towns near each development area. A worker directly hired for work in any given energy development was assumed to head a household of 2.5 persons in the town closest to the energy development. The secondary population of workers generated by the primary activity was allocated among the towns of the region on the basis of past trade patterns in each basin. The total effect foreseen by the MFP for each town therefore includes the workers directly related to energy development, their families, and service sector population resulting from the new population in that town and other towns in its market area.

The data in table 38 were derived from this study's assumptions of energy-development levels and from employment information from Freudenthal et al. 1974. After the direct-worker requirements were further refined according to subbasins, these requirements were put into the MEP model. The MEP model produced the total population for the indicated municipalities under conditions of low, medium, and high energy development, and the results are shown in table 39.

INCREASED WATER USE ASSOCIATED WITH POPULATION GROWTH

Table 40 summarizes the projected population increase from table 39 for all subbasins of the Yellowstone Basin for 1985 and 2000 and lists the resulting increases in water depletion under three levels of energy development.

Table 33. Termanent, firect energy-related employees in the Yellowstone Basin, 1985 and 2000

upta in		1985			2000	
	Hining	Conversion	Transportation	Mining	tonversion	Transportation
107G IE						
l nw	972	0	164	1687	()	283
Intermediate	1544	0	120	2087	36t)	346
Hi jh	2060	0	238	5148	2890	523
MISE BUD						
Low	778	180	109	1298	1210	165
Intermediate	1200	360	158	2688	1390	320
High	1600	360	188	4000	3740	280
POWDER						
Low	220	0	21	411	0	69
Intermediate	343	0	58	757	180	101
High	458	0	55	1140	180	154
BIGHORN						
Łow	220	0	21	411	0	69
Intermediate	343	0	58	757	0	124
High	458	0	55	1140	180	161

Libble 59. Population simulations for loss medium and by premer, possessioned

	19701		216.1				
		730	Hwhim	111 15:	()	,, ,, ,,	
Ambined	154,	127	.786	2,177	1.75.7		
Billings	65,729	10.672	113,812	11.1.1	ana"ta	131.1	
Birnes	<u>-</u>	7	6.71	170	Ę		
Broadus	199	1,508		\$,15B	1,1538	19 1 19	٠
Burby	11115	B 81	877	1.01	1.16.	-	
Colothap	111.	187.4	5,646		••0•	-	
Loresth	1,875	5, 572	4.195	4 . 1. 413	4.52		-
blendive	6.631	7,108	7.168	7.108	7.5.	<i>;</i>	
Rudin	2,788	1111	4.517	110.	**		
Linn Direct	114.57	13.6	9-9-9-	135.	*		-
today lasts.	3116.		6.5 6.	111		<u>:</u>	•
Whee the	3.11.6	11,500	1				
Stalnes		-	5,1.3	1.7	*		

*Genetice populations for Billings, orders, ed. dentive are based to 32 octo

Table 40. Population increases and water depletion increases from municipal water use in the Yellowstone River Basin in 1985 and 2000

Level of	Population	Increase in
Development	Increase	Depletion (af/y)
	1985	
Low	26,482	2,970
Intermediate	30,652	3,430
High	38,602	4,320
	2000	
Low	56,860	5,880
Intermediate	62,940	6,960
High	94,150	10,620

 $^{^{\}rm a}{\rm Depletion}$ is assumed to be 100 gal per person rounded to the nearest 10 acre-feet.

Summary

The preceding section present computions and action of the that water requirements in the Yellowstone diver Basin to seet the detailed energy development, irrilation, and municipal provide during the remaining years of the century. Three levels of development were considered.

Table 41 summarizes the water demands arising from the activities assumed for each level of development by the year 2000. Table 42 iterazes the energy-development activities and secondated water demands that appear in table 41. Appendix A details the demands of energy, irrigation, and subjurged growth month by month that year in each of the subbasine.

The projections shown in table 41 are the first step in estimating the impact of potential development on the Yellowstone Basin. Part II of this report contains the second step-calculation of how the streamflow in the basin would be affected by such development. In turn, these streamflow calculations beloed define the physical, biological, and economic effects of water consumption in the Yellowstone River Basin contained in the other reports of this series.

Table 41. Water requirements by demand source in the Yellowstone Basin in 2000

Level of	Irric	Irrigation	Municipal	ipal	Fnerova	Total In-
develop- ment	Acreage Increase	Associated Population Depletion (af/y) Increase	Population Increase	Associated Depletion (af/y)		Crease In _b Depletion af y
W0-	79,160	158,320	56,860	5,880	48,350	212,550
Intermediate 158,320	158,320	316,640	62,940	096.9	147 160	0.71
High	237,480	474,960	94,150	10.620	321 100	007.074
					721,170	806,770

 $^{
m a}$ Details of water requirements for energy use are in table 42,

^bThis total assumes that the same level of development occurs in all categories of consumption.

lable 42. Increased water requirements for coal development in the relloating Basın in 2000

		Coal	Coal Development Activity	1115			
Development	[lectric Generation	6881 (1 - cation	apndoux5	ferti- lizer	100-1	The second of th	
		1.7	COM, HINED mat y				
fow Intermediate High	8.0 24.0 82.0	7.6 7.6 22.8	0.0	0.0 0.0	171.1		:
		.0.)	CONTRESION PRODUCTION	\.O			
Low Intermediate Uigh	2000 mw 6000 mw 8000 mw	250 mmetd 250 mmetd 750 mmetd	0 6 d 0 6 d 0 6 d	11 t d D t d 2300 t d			
		J. CA	WATER CONSUMPTION of a	f v			
Low Intermediate Prob	\$0,000 90,000 120,000	9,000 9,000 27,000	88,000	13,000	*1	N ·	

No water consumption is shown for export under the low level of development termine, it is the factor of the consumption is shown for export under the low level of development termine, it is the consumption is shown for export under the low level of development termines. level, it is assumed that all export is by ruil, rather than by slurry supeline.

Part 2 Hydrologic modeling

by Satish Nayak

Selection of a water model

PODEL VARIETIES

Although many different types of water models have been proposed and used for water planning purposes over the past decade, these models have been classified for the purposes of the Yellowstone Impact Study into two categories: optimizing (or economic) models and watershed models.

Optimizing models assume that the analyst is interested in finding the optimal solution providing lowest possible cost or maximum possible profit under a given set of constraints. These constaints may include water requirements, minimum flows, financial restraints, and other special considerations. These models are primarily meant for economic studies determining the operating policy for a system of reservoirs, new dam sites from a given set of potential sites for future demands, the allocation of water among several competitive users based on return or cost, or combinations of these. The Yellowstone Impact Study did not consider optimizing models for two reasons. First, the study did not address itself to such economic problems. Second, these models consider surface waters only and the study needed a model that could model the entire hydrologic characteristics of a basin.

Watershed models, on the other hand, attempt to model the hydrologic characteristics of a basin by defining the relationships among the principal components of the hydrologic system, for example, precipitation, snow, temperature, snowmelt, runoff, evapotranspiration, percolation, and ground water. The following five watershed models were examined for use in the study:

- 1) The Utah State Model;
- 2) Streamflow Synthesis and Reservoir Regulation (SSARR);
- 3) HYD-2;
- 4) SIMLYD-II; and
- 5) The State Water Planning Model (SWP).

THE UTAH STATE MODEL

The Utah State Model (Utah State University, 1973) emphasizes water quality. This model is divided into two parts: the hydrologic system and the salinity system. The hydrologic system includes programs which model precipitation (including snow), surface inflow and outflow, ground-water inflow and outflow, and evapotranspiration determined through soil moisture. The salinity system consists mainly of the soil-salt system with its interaction with diversion, surface flow and ground-water flow. The Utah State Model requires the following data:

- 1) inflow and outflow;
- 2) precipitation, including snowfall;
- 3) temperature;

- 4 PROPERTY 11:
- 6 crop for finding potential exactrace; matron:
- ' hyeralon:
- B. sailt concentration of ground-water and of releason water; and
- We soil obesitive for mater quality.

Into hybrid codel once, andar cloque computer to analyze complex relationships and a Suprtal computer to calculate made balance and a dimits. Calibration is a breved to adjusting the parameters of the equations iteratively until the smallest value is reached for the objective function which is. Diff "where biff equals the measured outflow minus the predicted outflow.

Because of its hybrid computational procedure and main emphasis on water quality, the Stab state Sodel was not selected for the Yellow force Impact Study and so it is difficult to say how involved data quathering might have been. Based on the experience of the SWP model and its similarity with the Utab State Model, if appears that the data preparation would be a long process. Calibration seems to be difficult since the model must predict not only outflow but also salt concentration.

The Stah State Model, which will handle two years of data on a monthly basis for one river basis, appears to be useful in determining how different water Sanagement practices, for example, irrigation policies, cropping pattern, leaching will affect water quality downstream.

STREAM LOW SYNTHESIS AND RESERVOIR REGULATION SSARR

The TARP, developed by the U.S. Army Corps of Engineers, North Pacitic, Portland, Gregon, is a good model for determining the daily operation of a system of reservoirs and for forecasting floods and flows. The characteristics of the STARR model include a surface-water system, a snow system, a soil moisture system, a ground-water system, and flood routing. These characteristics are very broad and a detailed description of them can be found in Program Description and User Manual for STARR Streamflow Synthesis and Reservoir Regulation U.S. Army Corps of Engineers 1972.

The SSARP requires massive amounts of data taken daily and even bourly. The time increments can be as small as D.1 hour in the case of flood routing. Many of the data that this model requires would be available only if special studies were conducted to collect them. In a broad sense, the following types of data are needed:

- l _ inflow and outflow;
- 2 precipitation including snow;
- 3 temperature:
- reservoir storage including area-capacity curves; and
- 5 tables for parameters such as soil moisture index against percentage of runoff, precipitation against evaporation reduction factor, percentage of season runoff against percentage of snow-covered area, and many more. The detailed list can be found in the SSAPR manual.

The SSARR is calibrated by a trial-and-error method that appears to be a long and difficult process since there are many interacting empirical parameters needing adjustment as more data become available. Although this model can predict daily flows, the Yellowstone Impact Study requires analyses over longer periods, and so the SSARR model was not selected.

HYD-2

Program HYD-2, a generalized hydrologic model of a river system that can analyze up to fifteen stream-flow control points, is essentially an accounting model needing no calibration (USDI 1974). At each control point, some or all of which may be reservoirs, a mass balance is carried out and all losses or gains are accounted for. Although this program models only the surface water system, gains and losses due to ground-water activities are a part of the model. This model requires the following data:

- 1) inflow and outflow;
- 2) demand at each control point;
- 3) reservoir storage with area-capacity curves:
- 4) pan evaporation coefficients at each reservoir site; and
- 5) losses or gains at each control point due to ground-water activity in the area.

Since the main data requirements are the inflow and outflow values and estimated ground-water activity at each control point, the data preparation is less complicated than for the Utah State, the SSARR, or the SWP. This model can simulate the monthly yield of a subbasin for fifty years but cannot be used for water-quality calculations. HYD-2 was developed by the U.S. Bureau of Reclamation (USDI 1974).

SIMYLD-II

SIMYLD-II (Texas Water Development Board 1972) is based on the concept that a physical water resource system can be transformed into a capacitated network flow problem. Essentially an accounting model, since the mass balance equation must be satisfied at each control point, SIMYLD-II needs no calibration and has optimization built into it. This model's data requirements are similar to those of HYD-2 and are as follows:

- 1) inflow and outflow;
- 2) reservoir storage with area-capacity curves;
- 3) demand or diversion at each model point;
- 4/ pan evaporation coefficients at each reservoir site;
- 5) priorities for meeting the demands; and
- 6) operating rules for the reservoirs.

SIMYLD-II is used primarily for two purposes: first, to simulate the least costly operation of a system subject to a specified sequence of demand and hydrology; and second, to find the yield of a subbasin or reservoir within a basin. SIMYLD-II does not have the capability for water-quality calculations. This model, designed to simulate the operation of more than

one reservoir in a system, assigns to each reservoir opinority that is converted to a cost in order to find the optimal solution.

THE STATE WATER PLASSING MODEL

The State Water Planning Model SWP. Montana University Joint Montana Resources Council 1972, a watershed model which can closely simulate the hydrology of a river basio, includes four major subsystems: a surface water system dealing with aspects such as precipitation, runoff, inflow, and reservoirs: a snow system dealing with snowfall, snowmelt, and sublimation losses; a ground-water system simulating ground-water activities such as deep percolation, ground-water storage, and ground-water outflow; and a soil-water system dealing with soil moisture and evapotranspiration losses. This model has been modified to include water quality calculations in total dissolved solids. IDS.

The SWP requires extensive data preparation including:

- a) inflow and outflow;
- b precipitation including snowtall;
- c temperature including trost data;
- d pan evaporation coefficients at each reservoir site;
- e soil type with water holding capacity:
- f crop data for finding consumptive use and potential evapotranspiration;
- j diversion data; and
- h regression equations for TDS calculations.

All relationships among the elements of the model are expressed as a system of linear equations that represent the basin characteristics and are obtained from knowledge about the area and the relationships described in hydrologic literature. Calibration criteria are based on a zero trend in the available ground-water capacity. Calibration is accomplished by running the program iteratively and changing some of the relationships in the system of equations.

This model can be used to determine the yield of a basin under a given operating policy. Although SWP is not meant to provide information for controlling or correcting the water quality of the outflow, water quality calculations can be made on the outflow.

MODEL COMPARISON

Although the Utah State Model and the SSARR programs were not used, preliminary evaluation of these programs showed that they would not meet the requirements of the study. The Utah State Model was eliminated mainly for its hybrid computational procedure and its narrow emphasis on water quality, although other factors indicated that it would be unsatisfactory. This study required a model that could simulate much longer periods than the twenty-four months that the Utah State Model could simulate. Also, the Utah State Model's data preparation and model calibration appeared to be a longer and more difficult process than that in other models that could provide information more useful to the study. The SSARR was eliminated because of its narrow range simulating the day-to-day operation of a system of reservoirs, and because it requires massive amounts of data that have not been collected.

the HND-2, SIMMED-II, and SWP programs were all run for detailed evaluation and comparison. The results of the evaluation and comparison may be found in table 43 and the criteria used to evaluate the models are listed in table 44.

When the comparison was made, it was apparent that SIMLYD-II has all the capabilities that HYD-2 has plus additional capabilities and therefore HYD-2 was dropped from consideration. The SWP and the SIMLYD-II programs were both good models for the study, but the SWP was more complete than SIMYLD-II. Also, the SWP had water quality abilities that SIMYLD-II lacked. And using the SWP had another advantage: since the program was developed under a grant from the Water Resources Division of DNRC to the Water Resources Research Center at Montana State University, Bozeman, Montana, experts who worked on that project would be available for any necessary modification of the SWP program. Therefore, the State Water Plan (SWP) was selected for the Yellowstone Impact Study and applied to the Yellowstone Basin.

Table 43. Model comparison

	State Water Plan	({/1)-3	MATE 11
Type of 'lode1	A bydrologic model using a system of equations defining the interaction of ground-water, surface water, snowmelf, and other subsystems.	An accounting model matrix simulating surgistice waters.	An accounting moderating mainly simulating surface waters.
	Unly one reservoir per basin may be simulated.	More than one reservoir per basin may be simulated.	More than one reservoir per bas may be simulated.
	Simulation, in a limited sense, can be carried out for basins without a reservoir.	Simulation, in a limited sense, can be carried out for basins without a reservoir.	Simulation cannot be carried out it shortages occur.
	No optimization.	No optimization.	Optimization is possible.
Data ^a	Temperature depend- ent data are required.	No temperature dependent data are required.	No temperature dependent data are required.
	Soil moisture data are required.	No soil moisture data are re- quired.	No soil moisture data are required.
Calibration	tengthy calibration is required. Com- puter time for each calibration run approximately equals that for a simulation run.	No calibration is needed.	No calibration is needed.
Simulation	All three models may be The operating criteria SIMYLD-II model than fo	are less rigid and li	mited for the

Table 43 Continued.

	State Water Plan	HYD-2	SIMYLD-II
Computer time	Presently, each computer run costs approxi-mately \$30.00 for 360 months.	Presently, each computer run costs approxi-mately \$6.00 for 360 months.	Presently, each computer run costs approximately \$12.00 to \$14.00 for 360 months.
Learning time	SWP is not an "off-the~shelf" model. A good understanding of the subsystems and their interrela- tionships is required. A knowledge of matrix inversion is desirable.	HYD-2 is an "off- the-shelf" model of the accounting variety.	SIMYLD-II is an "off-the-shelf" model of the accounting variet The optimization method requires an understanding of network flow theory.
Water quality	Water quality is calculated but not directly controlled.	No provision for water quality.	No provision for water quality.

 $^{^{\}rm a}{\rm Data}$ requirements and preparations are more complex and time consuming for SWP than for HYD-2 or SIMYLD-II. Monthly data is acceptable to SWP up to 360 months and HYD-2 and SIMYLD-II up to 600 months.

Table 44. Suggested model evaluation (riteria

- 1. Validity of results.
- 2. Ease of verification.
- 3. tase of learning and use.
- 4. Cost benefif.
- 5. Data requirements.
- 6. Tase of modifying to simulate different situations (flexibility .
- 7. Smallest time increment which can be used.
- 8. Accounts for known physical, hydrologic relationships.
- 9. Assumptions required and their validity.
- 10. Economics built in optimizing'.
- 11. Subbasin interaction capability.
- 12. Calibration effort required.
- 13. Sophistication of output.
- 14. Ease of debugging problems.
- 15. Outputs available in addition to yields and flows.
- 16. Prediction capability.
- 17. Existing documentation.
- 18. Routing capability.
- 19. Water quality.
- 20. Physical availability to other users.

Adaptation of the SWP

HOW THE SWP MODEL WAS USED

The SWP was modified to include water quality calculations and to make the program ready to use in each subbasin with a minimum of changes. Because watershed models must be tailored to each subbasin, the program was divided into two sections, one that included subroutines independent of the subbasin under study and another containing subroutines dependent on that subbasin. By limiting the amount of reprogramming of the model necessary for each subbasin, considerable time and money was saved. The revised program includes many new subroutines.

The model consists of sixteen linear equations that describe the interrelationship of the four major subsystems: including a surface water system, a snow system. a ground-water system, and a soil water system. Each equation represents a secondary datum whose value is obtained during the calibration phase of the modeling. The primary input of the equations consists of inflow, outflow, precipitation, reservoir storage, and temperature. The system of linear equations is solved for each month of the study period, keeping a link from one month to the next, especially in variables dealing with storage.

Despite the program changes and the inclusion of water quality calculations, the program's variable names, formats, and basic character remained essentially the same as the program developed by Boyd and Williams (Montana University 1972).

The water quality subroutine, added to meet the requirement of the Yellowstone Impact Study for water quality calculations, can take twelve monthly regression equations for total dissolved solids (IDS) based on flows. The subroutine calculates the TDS for the incoming flow as well as the outgoing flow and has provisions for two levels of salt pickup by return flows. A brief description of procedure used with the SWP follows.

CALIBRATION

Calibration of all subbasins was based on data (see "Data Preparation," below) covering the 360 monthly time increments from 1944 through 1973.

Calibration begins by using a simple program to calculate the initial coefficients of the model. These initial coefficients are then used in an annual version of the SWP model that is then run with the data covering the thirty individual years. The initial coefficients are adjusted and the model is reiterated two or three times until final values for the annual model's coefficients are reached.

The annual model (which becomes the monthly model with the reduction in scale of some factors and the addition of systems simulating such details as

efficient. The suffly model is a distract for a communication continuent. The suffly model is a distracted by running fit a covering the Sea months assing the annual codel's pefficients and adjusting thes outil the model is consistent with the data. The calification of the contbly model requires were rune and adjusticity of the coefficients of the annual model since the softly model uses followed the model of an indication, although the model uses the relationships between monthly average temperature and variables such as showelf, potential exapostranspiration, and soil monsture, the responses of these variables are one dependent upon maintain and minimum temperatures; therefore, defectioning the final coefficients for the monthly model requires some subjective pulpent.

The monthly model used in this study differs slightly from the original SWP water. The subsystems for ice formation and irrigation diversion deviation were eliminated to reduce the size of the model's matrix. The subsystems for subsurface outflow, subsurface inflow, and showfall were treated outside the system of equations, another step to reduce the matrix size.

51MULATIONS

After the model had been calibrated for a particular subbasin, it was ready for simulations. Scenarios describing low, intermediate, and high water use which are explained in Part 1 of this report, were run for each subbasin. The model can perform simulations of the following situations and policies:

- 1 keeping a reservoir as full as possible, making releases only when required to augment flows and releasing excess flows only when the reservoir is full.
- 2 Feeping a reservoir is full as possible making releases to augment irrigation flows when the reservoir inflow is less than the irrigation flow plus a minimum required flow such as the Department of Fish, Wildlife and Parks would request; and
- 3 A system that has no reservoirs and so has no capacity to augment or regulate flows except through additional diversion.

DATA PREPARATIOS

Inflow and outflow data for all subbasins were obtained from computer files USDI and Water Supply Papers provided by the USGS. Precipitation and temperature data were obtained from the SWP model data bank Montana Unitersity and the U.S. Climatological Records. Montana Agricultural Statistics. Montana Department of Agriculture 1946-74% provided crop data for determining the potential evapotranspiration on a monthly basis for all subbasins. Boot zone capacity was calculated from the soils maps provided by the Soil Conservation Service. Bureau of Reclamation data on diversion projects in the Yellowstone Basin were used to estimate the diversion requirements for most of the subbasins on the mainstem. A brief description of the procedure used in preparing the data follows.

Priority

The largest use of water in the Yellowstone Basin is for agriculture, including irrigated farming, dryland farming, and ranching. Municipal and industrial water uses, though important, are relatively small, at present, compared to agricultural water use. With recent attention on the coal development and thermal energy production potential in the southeastern part of Montana, the water demand for energy has become significant. In this study, water for energy was treated as an industrial demand. Municipal and agricultural demands were given priority over energy demand for all simulation studies.

Exports and Imports

It is assumed that all diversions from the stream are meant for use in that subbasin; however, there are situations calling for diverted water to be used in a neighboring subbasin. In such cases, this water is treated as an export in one subbasin and an import in the receiving subbasin. In most cases, diversion will be all along the length of the river, but, for the model, diversions are summed to give the net diversion for the subbasin. Actual diversion data from projects in the basin were used as the basis for calculating total diversion in that basin. If the data were not complete, an average value was used in place of the missing data or period. In basins where the diversion data were incomplete or nonexistent, like the Powder River Basin, the diversion data were created by using consumptive use requirement, area, precipitation, and the irrigation practice used. The total irrigated acroage for different subbasins was obtained from irrigated cropland harvested data found in Montana Agricultural Statistics (Montana Department of Agriculture 1946-74).

Streamflow. Inflow and outflow data for each subbasin were obtained from the gaging stations nearest to the subbasin boundary. In some cases the gaging stations were either deep inside or outside the drainage boundaries. In such situations, flows were estimated from the proportions of the drainage area, a regression equation, or both, or from some relevant information that can be used in predicting flows. Each basin was treated differently depending on availability of information.

<u>Precipitation</u>. To obtain the average precipitation for the area under consideration, all weather stations with thirty years of records were considered. If the station had a few missing observations, they were synthesized by using regression analysis or by averaging. In a few cases, where the stations were not uniformly spaced or did not cover the entire area, the Thiessen polygon method was used. In these cases, mean precipitation was calculated by using the following expression:

$$P_{m} = \sum \frac{A_i P_i}{A_i}$$

where: $P_{\rm m}$ = mean precipitation for the subbasin in inches

 $P_i = \text{precipitation if the } i^{(i)}$ evalue this in order.

 A_1 = area corresponding to the i^{12} -leasuring station in (a)e

It the jagin; dations were all writer do gived over the arco, they:

$$P_{\perp} = \frac{\mathbf{\Sigma}_{\perp}^{P_{\perp}}}{D}$$

where: P average precipitation for the subbasin in inches

 $P_{\underline{j}}$ = precipitation of the $\underline{i}^{(t)}$ messaging station in Toches

n = total number of measuring stations

<u>lemperature</u>. Lemperature data were treated exactly the same way as precipitation data. All weather stations with adequate records were used in calculating the mean value. Missing data or values were created using an appropriate method. The Thiessen polygon method for finding average temperature was used whenever appropriate:

$$I_{m} = \sum \frac{A_{1}I_{1}}{A_{1}}$$

where: I_{m} = average temperature for the subbasin in Labrenheit degrees.

I = temperature at the i measuring station in Labrenbeit degrees.

 A_i = area corresponding to the i measuring station in acres

The following equation was used to obtain the average value of the temperature in cases where the measuring stations were uniformly spaced over the basin:

$$I_{m} = \frac{\Sigma^{T_{1}}}{D}$$

where: $I_{\rm m}$ = average temperature for the subbasin in Pahrenheit degrees

 I_i = temperature at the i^{i+1} -measuring station in Lahrenbeit degrees

n = total number of measuring stations.

Reservoir Storage. Reservoir storage was considered only if storage could be used as a regulating device for the flows. In subbasins having more than one reservoir, the reservoirs were lumped to give the net storage capacity of the basin. Channel storage was not considered because it could not be used for regulation of flows.

Root Zone Capacity. A wide range of soil types exists within the root zone of the drainage area. Each of these soil types exhibits a different

eapacity for holding percolating waters. This information was used to determine the field capacity of the subbasin (i.e. the area weighted average of soil moisture holding capacity) using the following equation:

$$+C = \sum A_i C_i$$

where: FC = field capacity of the subbasin in million acre-feet

 A_1 = area in million acres per soil type

 C_{i} = root zone capacity in feet for A_{i}

<u>Potential Evapotranspiration</u>. Potential evapotranspiration values were determined on a monthly basis for individual vegetative types. For agricultural crops, the Modified Blaney Criddle method (USDA 1970) was used and for native vegetation the Thornthwaite method (USDA 1970) was applied. These quantities were added together to provide the net potential evapotranspiration for each basin by month. The crop acreage data were obtained from <u>Montana Agricultural Statistics</u> (Montana Department of Agriculture 1946-74).

THE ANNUAL AND MONTHLY MODELS

ANNUAL MODEL

Definition of the model began with determining the relationships between the variables. Since the study used the SWP model, the study model used the same nomenclature and relationships as the original SWP. Definitions of the annual model's variables (expressed in million acre-feet) follow:

\l = Surface outflow

X2 = Surface inflow

\(\) = Initial storage

X4 = Terminal storage

X5 = Precipitation

X6 = Surface loss or the consumptive use

X7 = Subsurface outflow

X8 = Subsurface inflow

X9 = Initial available capacity

X10 = Terminal available capacity

Xll = Percolation

X12 = Subsurface discharge

The following equations defined the model's relationships:

- 1) Surface loss: X6 = -X1 + X2 + X3 X4 + X5 X11 + X12
- 2) Subsurface outflow: X7 = C1 + (K3)(X1)
- 3) Subsurface inflow: X8 = C2 + (K4)(X2)
- 4 Terminal available capacity: X10 = X7 X8 + X9 X11 + X12

- 5 Per olation: All St. FT AZ + FM CACC + FILL C. C. + C.
- Substitute casa hange: XLC (3-XC) (3-XC) (14.
- ? Assumptions: $\overline{X}9 = +2 = \overline{X}$:

$$\overline{\chi}_0 = \overline{\chi}_{10}$$

where: $\overline{\lambda}2$ = average inflow into Montano's obition of the reflowstone basin

 A_{ω} = area of the subbasin in acres

A_b = area of Montana's portion of the Yellowstone Busin in acres

St = scale factor

Initial coefficients C and F Values

Choosing the model's initial coefficients k values is the most difficult part of this procedure and requires subjective judgment based on a thorough knowledge of the hydrology of the basin. Once these k values had been selected, they were read into a simple program using thirty-year average values of v1, v2, v3, v4, and v5 for the basin. The output of this program consisted of initial coefficients for the annual version of the model f1, v2, v3, v4, and v5 for the basin. These C value, in turn, were used to run an annual version of the model using data from each of the thirty years. Each time a run was made, the C values were adjusted so that $\overline{\chi}^2 = \overline{\chi}10$ which implies that during the thirty-year period, the ground-water storage is neither built up nor depleted. Once the condition of zero freed was achieved, the C values had been adjusted until they became the values of the annual model's coefficients. The coefficients of the monthly model could then be developed from the coefficients of the annual model through a similar though more complex process.

Table 45 shows the values of 61 through E10 used for each of the nine subbasins as well as the final values of C1, C2, C3, C4, and SE. In addition to these values, the initial value of $\overline{\chi}^0$, the average value of $\overline{\chi}^1$ 0 and the sum of all $\overline{\chi}^0$ are listed in the same table.

 $^{^{1}\}mathrm{A}$ bar above the variable V's indicates an average value.

Table 45. Model Coefficients

Coefficient	Upper Yellowstone	Clarks fork	Billings Area	Bighorn	Mid- Yellowstone	Tongue	Vinse) Area	Powder	Lower Tellinstice
7	.050	.040	.030	.040	.030	.030	.008	030	
K2	096	096	.970	.965	970	.970	096	080	1.46
K3	.015	.015	.015	.020	.015	.015	900.	.015	.610
K4	.015	.015	.015	.020	.015	.015	900.	.015	. 010
K5	.050	090.	.060		.060	.060	.020	.060	17.
K6	2.000	2.000	2.00	2,000	2.000	2.000	1.250	2.000	1.25
K7	1.000	1.000	1.00	1.000	1.000	1.000	. 500	1.000	· 5(Jr)
КВ	.200	.200	.250	.250	.250	.250	.250	.250	. 25, ,
6X	1.000	1,000	2.000	2.000	2.000	2.000	2.000	2.000	2.111
K10	. 500	. 500	. 500	.500	.500	.500	.500	. 500	0.00
Area in			-						
M Acres	3,805440	1.001576		2,266788		2,463360	.933812	2.51090	3.4411911
	106.151	0.19017	079541	0.25.322	122501	0.05217		.005±78	H87,20
23	131857	021086	071450	0.54806	115654	005004		006587	18753°
73	011606	100000	06.8000	083500	069942	003082		003683	000
27	448879	109762	590000	667268	954247	.061278		.05367.	228189
Sf	.020880	.176100	.034300	.026370	.035561	.003572		.004255	.0134.78
19 Initial	9.606533	2.677895	2.020000	2.788641	3.033000	3.382400	1.201977	3.624976	5,550416
10	9.634332	2.734140	2.167467	2.968178	3.411503	3.392497	_	3.639492	5.625278
Sum of all \6	193,982705	67,403834	78,002623	66.565216	N.A.	82.419387	27.323242	87.031952	139.858505

and the second

It is still the second of the

The southly sidel are operated the filliams, tive out a terms

- 1 d: trear=Perent viii
- of the state of th
- 3 5 3: Puroff
- around Water
- .5: soil mater

Phese tive subsystems require the following fifteen parameters, expressed in million acre-feet:

I ol Parameters.

- Al Arem suttliv
- 32 treasuntless
- 33 I initial reservoir of raje
- A. = terminal receivour for ap-
- At a stream-reservoir evaporation loss.

2 3 2 Parameters.

- Al. = . Hilimation
- xl' = initial show storage
- Als a terminal show torage

3 - 53 Parameters.

- A5 = precipitation
- χ_{20} = runoff exaporation 1 as:
- 327 = irrigation import

- Parameter.

- A7 = ground-mater outtlow
- AB = ground-water infloa-
- No = initial ground-mater capa ity
- X10 = terminal ground-water capacity

5 S35 Parameters.

- 323 = initial soil-water of race
- N24 = terminal soil-water storage
- 325 = evapotransparation loss

υ 551-2 Stream-Reservoir-Snow Parameters.

X18 = ice formation X31 = irregular ice formation $(X31 < 0, 1 \le 32^0)$;

7 SS2-1 (Snow-Stream-Reservoir) Parameter.

 $31 = irregular snowmelt (31>0, 1 \le 32^0)$

8 SS1-3 (Stream-Reservoir-Runoff) Parameter.

\28 = irrigation diversion

9 SS3-1 (Runoff-Stream-Reservoir) Parameters.

19 = ground-water runoff plus irrigation runoff31 = precipitation runoff $(1>32^0)$

10 SS1-4 (Stream-Reservoir-Ground Water) Parameter.

λll = stream-reservoir percolation

11) SS2-3 (Snow-Runoff) Parameters.

X17 = snowmelt X22 = irregular snowmelt (X22<0, T \leq 32°)

12) SS3-2 (Runoff-Snow) Parameters.

X13 = snowfall

X22 = irregular ice formation (X22 > 0, $T \le 32^{0}$)

13) SS3-5 (Runoff-Soil Water) Parameters.

X21 = ground-water infiltration plus irrigation infiltration X22 = precipitation infiltration $(1>32^0)$

14) SS4-3 (Ground Water-Runoff) Parameter.

X12 = ground-water discharge

15) SS5-4 (Soil Water-Ground Water) Parameter.

X26 = soil-water percolation

Three additional parameter were defined;

- A / Hill prince therefore design in
- 130 irrigation ranoff.
- 332 I. . constant

Unity-Coefficient Equations

The five subsystems gave fise to five balance equations:

$$1 - \lambda 1 = \lambda_{+}^{2} = \lambda 3 + \lambda_{+} + \lambda_{0} + \lambda_{11} + \lambda_{18} = \lambda_{19} = \lambda_{17}^{27} + \lambda_{28}^{38} - \lambda_{31}^{31} = 0$$

2
$$\times 13 = \times 14 + \times 15 = \times 16 = \times 17 + \times 18 + 6 = 9.77 \times 27 + 6 = 9.31 \times 31 = 0$$

$$3 - \chi 5 + \chi 12 - \chi 13 + \chi 17 - \chi 19 - \chi 20 - \chi 21 - \chi 22 + \chi 27 + \chi 29 + \psi (T5, 51.531.531.54)$$

$$4 - \sqrt{7} = \sqrt{8} + \sqrt{9} = \sqrt{10} = \sqrt{11} + \sqrt{12} = \sqrt{26} = 0$$

$$6 + \sqrt{21} + 6 + 6 \cdot 22 \times 22 + \sqrt{23} = \sqrt{24} = \sqrt{26} = \sqrt{26} = 0$$

$$0.9,22 = 1.0 \text{ when } 1 = 32^{0}, \text{ otherwise } 0.9,22 = 0;$$

$$0.31^{\circ} = 1.0 \text{ when } 1.32^{\circ}, \text{ otherwise } 0.9,31 = 0;$$

$$0.15, 31 = -1.0$$
 when $1 > 32^{0}$, otherwise $0.15, 31 = 0$;

$$0.16,22 = 1.0$$
 when $1 > 32^{0}$, otherwise $0.16,22 = 0.1$

For parameters other than measured data and those that can be obtained from the balance equations, empirical relationships were obtained either from the annual model by scaling them accordingly or by choosing a relationship an given in the third volume of Development of a State Water Planging Model Montana Monyer its 1972. The empirical relationships follow.

Stream-Reservoir Eva, ration Loss

1° $\lambda 6$ = 0.1.2 $\lambda 2$ + 0.1.19 $\lambda 19$ + 0.1.28 $\lambda 26$ + 0.1.31 $(\lambda 31$ + 0.1.32 $\lambda 32$ 0.1.3 equals the coefficient for the jth variable in the ith row. For $\lambda 6$, all coefficients are temperature dependent, and the exact relationship varied from one subbasin to the next. The general expression for these coefficients for this equation is:

This system of equations uses unity coefficients, \mathbb{C} i,j coefficients, and $\overline{\mathbb{C}}$ i.j coefficients. Unity coefficients normally belong to a balance equation and remain the same for all subbasins. \mathbb{C} i.j coefficients are temperature-dependent coefficients that vary from one subbasin to another. $\overline{\mathbb{C}}$ i.j coefficients are independent of the temperature and usually are obtained from the annual model either by scaling down the coefficients or carrying them as they are. \mathbb{C} i.j and $\overline{\mathbb{C}}$ i.j coefficients may be found in appendix B.

where: | f = actual temperature

a and b = constants selected so that the curve of the function duplicates the curve made when evaporation loss is plotted against temperature.

The losses due to evaporation are proportionately larger at higher temperatures than at lower temperatures. This nonlinearity with temperature is built into these coefficients. Note that, except for $\sqrt{32}$, all flows are streamflows, and the losses are called stream losses. The coefficient $\mathbb{C}(1,32)$ accounts for the losses from the reservoirs. The coefficient $\mathbb{C}(1,32)$ is calculated in subroutine SURFAC as follows by multiplying the pan evaporation coefficient by reservoir surface area.

tream-Reservoir Percolation

2)
$$\times 11 = \overline{C} = 2.3 \times 3 + \overline{C} = 2.4 \times 4 + \overline{C} = 2.19 \times 19 + \overline{C} = 2.22 \times 22 + \overline{C} = 2.28 \times 28 + \overline{C} = 2.31$$

These coefficients do not depend on temperatures, and are usually obtained from the annual model. $\overline{\mathbb{C}(2,3)}$ equals $\overline{\mathbb{C}(2,4)}$ which equals 1/12th of the corresponding annual coefficient. $\overline{\mathbb{C}(2,2)}$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value as the corresponding annual coefficient $\mathbb{C}(2,2)$ has the same value $\mathbb{C}(2,2)$ has the coefficient \mathbb{C}

Ground-Water Discharge

3
$$12 = \overline{C}(3.9) \times 9 + \overline{C}(3.10) \times 10 + (C3.32) \times 32$$

The values for $\overline{\mathbb{C}}(3,9)$, $\overline{\mathbb{C}}(3,10)$ and $\overline{\mathbb{C}}(3,32)$ are obtained by dividing the corresponding annual coefficients (C values) by 12.

Sublimation

$$4' \times 14 = C(4,15) \times 15 + C(4,16) \times 16$$

Sublimation losses were considered to be 2 to 5 percent of the snow cover. A sublimation loss is actually a function of dew point, wind, and temperature, but except for temperature no other data are readily available. Since the losses are not high, an average value was used for all winter months irrespective of the temperature. The average value changed from one subbasin to next.

Snowmelt

5
$$X17 = C(5,13)X13 + C(10,15)X15$$

 $C(5,13) = \frac{A}{2}$

the second of the second of the second

continuous to the structure of the gift of the end of the end of the structure of the end of t

growth that worth do partigate his entit

- the state of the s

The shall settled settled these

- the contract of the second section is a second section of the second section of the second section is a second section of the section of the section of the second section of the section
 - and the control of th
 - Agranda Agrand

vill Total

- - stere: ' : , 'estad e.g 'rangur'an

1 e-r 1 s* 1 -r

11 (*26 * .i.e. *41 **2 (20 * ...*11.5) (**))). 11.51 - (**125) when (2. *15, interiore (1.50)) where: RE is a fraction between 0 and 1.

The term $(\sqrt{24} - 10)$ is the excess water that soil cannot absorb and hence it must either be runoff or should percolate into ground water or both. RE($\sqrt{24} - 10$) is the amount of excess water that goes into ground water.

Precipitation Runoff or Balance

12)
$$x_{31} = x_1 - x_2 - x_3 + x_4 + x_6 + x_{11} + x_{18} - x_{19} + x_{28}$$

CALIBRATION OF THE MONTHLY MODEL AND CONTROLLABLE VARIABLES

Though the monthly model was derived from the annual model, it still needed calibration. The calibration procedure was similar to the one used in the annual model, except that the number of controllable variables was larger than for the annual model. Some of the important controllable variables follow.

Rainfall Moving Average

Outflow from a basin, besides being a function of many variables, was dependent on the precipitation in that basin. Furthermore, all the outflow in a given month was not necessarily due to all the precipitation in that month. It is more than likely that the precipitation in a month influences the outflow for up to a month or two later. For the calibration of the Yellowstone River Basin, the precipitation effect was carried over to the next month. For months when all precipitation was determined to be snowfall, the precipitation averaging was ignored.

$$E = a(q) + (1-a)t$$

where: E = effective rainfall

a = fraction of precipitation in a month resulting in outflow in that month

- min' att' are ., at it in
- to preside with the set of the

a switchlar to diamet.

The low about the leave as a content of the limber to be sometter montall tr. the witter ofth when the market, I be proposite when it all oil .

$$\chi + \xi = \frac{1-\xi}{\xi}, \quad \chi^{\varepsilon}$$

aterre: Als most all

- temperature in Tearner Estimatest

t - - te perature in degrees Estarenteit helio. Pacto William aga tation is creatall

35 = precipitation

The value of blaze chopen with the topography of the area and the alreade conditions in mind. For example, in the Bighorn authorin, the value of towar

The snowmelt rate was another implortant factor in the calibration phase If the monthly model. Spring runoffs, from the basic were mainly fuelt, the snewmelt, and runott and snowhelt were hatched to reflect the cause and effect relationship. From the system of equations, one can see that the shownelf war a prime component of the seal moisture loster, which in turn was a major contributor to the ground water recharge. Thus, a unoweelt rate eventually affected the ground water, piteritial evap transparation, and run df.

Soil water Percolation Rate

$$\chi_{26} = SF - \frac{15 + \chi_{23}}{d + \chi_{5} + \chi_{23}}$$

where: 126 = smil water percolation

WF = slimu factor

x5 = precipitation

\23 = initial soil water storage

d = dampening factor

The term d + 15 + 123 takes into account the effect of precipitation and the soil moisture condition on the peculation rate. The dampening factor d is in most cases equal to 1.0, and to changing the value of SF the ground water recharge could be changed.

mote if value for the above controllable variables were selected using involvence and knowledge of the basin. The initial run was then made. The initial for this run became the basis for making changes in some of the controllable variables, and the model was rerun. This iterative process was violating duntil:

- 1 The initial ground water storage equaled the terminal ground water storage for the study period:
- 2 The average ground water storage equaled the average ground water storage from the annual model; and
- 3 The total system loss in the monthly model equaled the total system loss in the annual model.

The first two conditions were easier to satisfy than the third condition. For the third condition, a variation up to 5 percent was considered to be acceptable, whereas the first two conditions were met well within the second decimal place of accuracy. The monthly model was said to be calibrated if all of the three conditions were satisfied simultaneously.

The system of equations for the calibration of a subbasin are gathered below:

$$11 - \lambda 6 = C \cdot 1.2 \times 2 + C \cdot 1.19 \times 19 + C \cdot 1.28 \times 28 + C \cdot 1.31 \times 31 + C \cdot 1.32 \times 32$$

$$2 \times 10 = 17 - 18 + 19 - 111 + 112 - 126$$

3
$$\times 11 = \overline{C}(3,2) \times 2 = \overline{C}(3,3) \times 3 + \overline{C}(3,4) \times 4 + \overline{C}(3,19) \times 19 + \overline{C}(3,28) \times 28 + \overline{C}(3,31) \times 31$$

$$40 \times 12 = \overline{C}, 4, 9 \times 9 + \overline{C}, 4, 10 \times 10 + \overline{C}(4, 32 \times 32)$$

$$5 \times 14 = 0.5,15 \times 15 + 0(5,16) \times 16$$

6
$$16 = 13 - 14 + 15 - 17 + 18 + 06,2212 + 06,31/31$$

$$7^{\circ}$$
 $\times 17 = 0.7.13 \times 13 + 0(7.15) \times 15$

$$8 \times 19 = C(8,12) \times 12 + C(8,27) \times 27 + C(8,28) \times 28$$

91
$$\times 20 = C(9,5) \times 5 + C(9,12) \times 12 + C(9,17) \times 17 + C(9,28) \times 28$$

$$100 \times 121 = C(10,12) \times 12 + C(10,27) \times 27 + C(10,28) \times 28$$

$$11 + \sqrt{22} = \sqrt{5} + \sqrt{12} - \sqrt{13} + \sqrt{17} - \sqrt{19} - \sqrt{20} - \sqrt{21} + \sqrt{27} + \sqrt{28} + C(11,31)\sqrt{31}$$

12:
$$\chi_{24} = \chi_{21} = C(12,22)\chi_{22} + \chi_{23} - \chi_{25} - \chi_{26}$$
, when $FC_{Min} \leq \chi_{24} \leq FC$

$$124 = FC_{Min}$$
, when $124 < FC_{Min}$

$$124 = FC$$
, when $124 \Rightarrow FC$

CALBORATES DE SEAT AND ME OFFICIALS

Although the collination programmed in the Yellow tone Is not study where extrally the same as the one prepared by the Monthur date to source several perfect the same as the interpretation of the formula date to source the first extension of the barraph meters. In the original version of the sidely care one eters were ted into the barraphorans of the program of th

Figure 5 Joseph the tiprarchy of the subjoutines and their relationship to each offer. These subjoutines were collecter model to right.

Augure 4. Calibration ; rourse sutroutine

A brief textriction of the new subroutines is diven below.

1.1114

The initial values for different subbasins could be read either through changes in the subroutines or from the data card. In the original program, the following initial values were specified in the main logic, and the whole program was compiled and run. If the initial values changed, the original program had to be recompiled.

The initial values specified were:

1 Initial precipitation for averaging precipitation SAVE:

Field capacity () and minimum field capacity (Γ_{Mio} :

- 3 Coefficients for loving average rainfall Q:
- Beginning year and ending year M.N.; and
- 5 Number of months (NP).

Since these values could be read outside the main program, the rest of the revised program was subbasin independent. With this idea in mind, the sub-routine INTHA was created. The values that were read into INTHA are:

- 1: SAVE--initial precipitation for averaging;
- 2 fC, fC_{tto}--field capacity, minimum field capacity;
- 3 Q--precipitation averaging factor;
- 4 . N--beginning and ending year;
- 5) R1.P1--coefficients for calculating \(\) (ground-water outflow \);
- or R2,P2--coefficients for calculating X8 (ground-water inflow);
- 7: RE--groundwater recharge factor (ground-water recharge due to saturation of field capacity);
- 8) NP--number of months for study period; and
- 9' MP--number of months for calibration.

In most cases, the number of months for study period should be the same as for calibration, however, if calibration is for a shorter period HP would be different from NP.

Note that the subroutine INITIA has coefficients for calculating X7 ground-water outflow) and X8 (ground-water inflow). The following relationships were used to calculate X7 and X8:

$$X7 = (P1)(X1) + R1$$

 $X8 = (P2)(X2) + R2$

where: XI = outflow from the basin

X2 = inflow to the basin

Since λ 1 and χ 2 were primary values (i.e., they were read in as an input to the system) χ 7 and χ 8 could also be read in as primary values because of the above relationships.

In the original program, X7 and X8 were a part of the system of equations. This increased the matrix size. As mentioned above, X7 and X8 did not need to belong to this system of equations, since their values were known as soon as

As a fire of the control of the cont

1.

the operator of deleteracy or set in the other. The expert varieties of the other operators of the other operators of the other operators of the other operators.

4

in the granul valid of the property of the strate. The strate recently we calculated as a certain percentage of the strate. The accurate region tion large can be calculated by sultiplying the paceway of the content ty surface area.

where the fully is exact attains edth perton and little, there is no need to may be precise, such a for another build, to. Multiplying the parexy district pertons the full accurace area, give a fairly morpite edicate texagleration follows. These the unit of the for the following and are cutto, the average pures, paration flettingent value the first outbound the unit of any correction that is.

The Produce sulf take 3 of raje levels in the grature steps. The attraction area as interpolated linearly between two adjacent levels.

To the grainal regra, wowthill bed been treated a apart of the system temperature, and elementall is a function of presipitation and temperature. It is distinct up which movement all could be calculated out into the later of equation. The COMM subrequire was modified to calculate mountail. It could the this stance, this subrequire was elementally the case as the critical subrequire.

JIM MAL -- THE STROUGHT STEEL PART

Although all, AL, as the codified involution, no grow was noted, retained the basic character of the original awP model. All, all contained some new feature, which included water quality calculations, changes in the output format, and different internal for the operation of reservoirs. The IM, AL original had many new substances on pared to the original asP program. Montain terms its LCLL subspace 7 shows the historichy of SIM, ALL collinguishes.

Figure 7. Simulation program subroutines

Subroutines DEPLET. COMPUT, SURFAC, EXPORT, INITIA, and QUALTY were sub-basin dependent; all others were subbasin independent.

Subroutines common to the simulation and calibration programs (those which occur both in figure 6 and in figure 7) remained essentially the same except COMPUI. Changes in the COMPUI subroutines were due to rearrangement of the system of equations. The new subroutines are described briefly.

DEPLET

This subroutine, added to the main program, handled any reallocation of water as between two states or regions. As an example, for the Yellowstone Impact Study, inflows from the Ionque River, the Powder River, or the Bighorn River had to be reduced to allow for Wyoming's share of water from these rivers. The amount to be allocated was based on the compact between the two states. As the name implies, this subroutine allowed for this depletion. During the simulation phase, any changed inflow to the subbasin may be read in the subroutine DEPLET. Arguments of the subroutines are month II and inflow S(2).

SURFAC

Subroutine SURFAC calculated the evaporation loss from a reservoir based on the surface area of the reservoir and the pan evaporation coefficient for that month. It is assumed that the average value of a pan evaporation coefficient for each month will take into account factors such as temperature, humidity, and wind on an average basis.

3,11

to the second of the second of

11. 1

The large and the first operation of the second of the sec

. . . .

This are directly different the Golden stratum to a part of the diversal for H , the edges of the ω

- I relieve:
- i return that
- The diversity require entaging of the plan charge and in them (1) is
- C. seemny 'la:
- es estable % placinetres (is gill: we
- IT is migrit or on month.

"tele argument , required tor Policial alatime, were true terrellines to the late ' routine for toothers alcoholisms and lateat.

The calculations are topy to be at mall, in these ca.

liqure 8. Schematic representation of IDS calculations.

Figure 8 shows that the total salt lost from the system was due to industrial or energy water. Salts in the irrigation diversion were assumed to come back to the mainstem through return flow. Thus the outflow was OUD + ORET with total load of EUD + LIR.

TDS was calculated using a monthly regression equation:

TDS = f(Q,c)

where: Q = flow in million acre-feet:

c = a constant; and

f = a function giving the relationship between TDS and (Q,c)

In addition to finding the autgoing quality, the following quantities were also calculated in this subroutine:

- 1 Total load diverted in tons for irrigation, IDST:
- 2 IDS in parts per million, IDS II;
- 3 Outgoing load in tons, IDSL 11:
- Dutgoing IDS, IDSE II;
- 5 Total load in the stream IDSQ 11:
- 6 Total outgoing load with half ton acre salt pick up, IDSET 11;
- 7 | Jotal outgoing load with one ton acre salt pick up. IDSL2 11 : and
- 8 IDSELL11, ADSE2.11) outgoing water quality with half-ton and one-tonsalt pick up per acre, respectively.

Water quality calculations were based on yearly intervals extending from April through March, whereas other calculations were based on the water year which extends from October through September. Consequently, the first six months and the last six months of the thirty-year study period were ignored in water quality calculations.

The total load in tons that was diverted for irrigation is from Agril through October. This diverted load returned to the stream during the same year—April through March—with the distribution shown in table 46.

Table 46. Percentage by month of TDS returning to streamflow.

Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Eeb.	Mar.
10%	11%	14	18℃	18%	10%	8°.	() (4%	3%	2%	5°0

The subroutine NUALTY was called after every simulated twelve months. This was bainly due to different amounts of salt load in the stream from one year to the next.

PRINT

This subroutine was primarily meant for printing headings on the monthly values of outflow, inflow, and water quality in TDS. Arguments of the subroutine were AA, NMO, and YY. AA corresponded to monthly data, NMO to the number of months, and YY, if zero, implied water quality year (April through March), otherwise water year.

MEAN

This subroutine mainly calculated the simple average or time weighted average and volume weighted average of IDS. These averages were calculated by the month and also by the year. Arguments of the subroutine were NMO, AA, BB, and YY. AA contained TDS data and BB, the flow data. NMO and YY have the same meaning as defined above.

SORT and COMPAR

These subroutines were called by the MODIST subroutine for ranking the data in ascending order.

PLOT

Subroutine PLOT plotted the fiftieth and ninetieth percentile values i.e. those values exceed 50 and 90 percent of the time) of outflow, inflow, and water quality. Arguments of the subroutine were NMO, AA, BB, SF, and YY. AA corresponded to fiftieth percentile data and BB represented ninetieth percentile data. SF was the scale factor and equaled 80 percent of the largest value of fiftieth percentile data; YY, if zero, implied water quality year, (April through March), otherwise water year.

Simulations

TYPE OF SIMPLIFICE

When all subbasins had been catibrated, they were reads for a containing runs. An ideal model—tor simulation is the one that allows a order rule of operating criteria to be used in each simulation. Onto tanately, set modely can carry out simulations only over a given set of rule and a limit to number of operating criteria. The SWF model is no exception.

In this study, the SWP was used to study three types of simulations.

Type 1

In type I simulations, the operating rules were to release water from the reservoir to meet the minimum flow requirement, to keep storage as high as possible, but to give releases to maintain commum flows a bigher priority than storage. Under such conditions, the annual yield was the maximum amount of water that could be withdrawn from the reservoir for each year of the study period while maintaining a minimum storage level.

Type 2

In type 2 simulations there was no storage in the basin and consequently what could not be used was lost from the system. The maximum amount of water that could be used was dictated by the minimum flows in the study period.

Type 3

Type 3 simulations differed from type 1 in the operating polics. The operating policies were to release water from the reservoir to have the irrigation demand highest priority and always satisfy that demand d, and to store water in the dam if the inflow to the dam extended the demand d lus threservations for minimum flows. If the inflow was less than the demand t, then the flow was asymmetred by the release from the dam to neet the demand t. If the inflow was less than t+t, where t is the minimum required flow, but more than t, then nothing could be stored and inflow was passed through the dam. If inflow exceeded t+t, the excess inflow over t+t could be stored, if storage space were available.

The simulation program as written by Rivi and ailliam. 1972 was oreful for type I simulations. The main lagic of the program had to be modified to include type 3 simulations. Resides changing the logic, the simulation program was modified to include water quality calculations have done total dissolved solids IDS'.

SCENARIOS

Each subbasin had up to three scenarios for simulating high, intermediate, and low water use. In each scenario the demands for irrigation, energy, and municipal use were lumped together. The model in this form did not discriminate among the demands explicitly based on their use; however, it discriminated among them indirectly whenever necessary. For example, if the total demand for irrigation, energy, and municipal water could not be satisfied for the period of study, then the program assumed that the irrigation and municipal demands had a higher priority than the energy demand. Satisfying the irrigation and municipal demands could be satisfied, there would not be enough water to meet all of the energy demand. The same model could be run satisfying part of the energy demand. Finding the demand that could be satisfied was essentially the same as finding the yield of the subbasin. Since the quality of water leaving the subbasin was a function of irrigation diversion return flows, it was important to identify the satisfied demands.

For subbasins that had no reservoir, the portion of the logic for storing water was eliminated and other portions of the program were changed.

In type 3 simulations, the data were arranged in a different way. For example, suppose that the total demand for irrigation plus energy, municipal, and instream requirements is d and the minimum flow demand is d. As per the operating rule, water can be stored if the inflow exceeds d and the minimum flow demand is d. The dam can release water to meet d, but can release no water to augment the flows for the minimum flow requirement. The demand d is read in as RA(I) in the program and d is read in as FG(I). The decision to store or to release water is determined by the inflow. If the inflow exceeds FG(I), water can be stored. The amount to be stored will depend on the storage level. In case the inflow is between RA(I) and FG(I) there would be no need to augment the flows since demand RA(I) would be satisfied. Water would not be stored because the inflow is less than FG(I). For inflows less than RA(I), flows would be augmented to meet demand RA(I). The main consequence of the above mentioned operating rule was the reduction in the yield of the subbasin, because the reservoirs were not allowed to store as much as they could.

In simulation, the system of equations used was exactly the same as used in calibration with the exception of the role played by the following equation:

$$X31 = X1 - X2 - X3 + X4 + X6 + X11 + X18 - X19 + X27 + X28$$

The above equation was used for solving for X31 in the calibration phase, but in the simulation this was used for solving for X1 or X4.

$$X1 = X2 + X3 - X4 - X6 - X11 - X18 + X19 - X27 - X28 + X31$$

οг

$$X4 = X1 + X2 + X3 - X6 - X11 - X18 + X19 - X27 - X28 + X31$$

An implicit assumption in this logic is that the demand d has higher priority than the minimum flow demand, but this can be changed if necessary.

Thus, by interchanging the role of violation of and off, the common died and be used in significant.

when the above equation are used to solving the 1. On set of the same said to be in to be 1. When colving to X_{ij} it was not to $j \in [r]$ side in the about ition to $\{1\}_{ij}$:

$$1 - \chi_1^2 - \chi_2^2 + \chi_3^2 = \chi_4^2 = \chi_{11}^2 - \chi_{11}^2 - \chi_{11}^2 + \chi_{12}^2 - \chi_{12}^2 + \chi_{13}^2 - \chi_{14}^2 + \chi_{14}^2 + \chi_{14}^2 - \chi_{14}^2 + \chi_{14}$$

$$2 - \lambda_0 = 0.2, 2.3, 2.3, 1.2, 19.3, 19.3, 0.2, 20.3, 8.8, 0.2, 31.3, 31.3, 0.2, 0.3, 0.2$$

5 (10)
$$\sqrt{7} = 88 + 89 = 811 + 817 + 876$$

$$6 - \lambda 14 = 0.6,15 \times 15 + 0.6,16 \times 16$$

$$7 - \lambda 16 = \lambda 13 - \lambda 14 + \lambda 15 - \lambda 17 + \lambda 18 + (-7, 22, \lambda 22 + (-7, 51, +51)$$

$$8 - \lambda 17 = 0.8,13 \lambda 13 + 0.8,15 \lambda 15$$

$$90 \times 19 = 0.9,12 \times 12 + 0.9,27 \times 27 + 0.9,28 \times 28$$

$$18 - 20 = 0.10, 5.85 + 0.10, 12.812 + 0.10, 17.17 + 0.16, 28.828$$

11
$$\times 21 = 0.11 \cdot 12 \times 12 + 0.11,27 \times 27 + 0.11,28 \times 28$$

$$12 - \lambda 22 = \chi 5 + \lambda 12 + \chi 13 + \chi 17 + \chi 19 + \chi 20 + \chi 21 + \chi 27 + \chi 28 + (-12.31) 31$$

13:
$$x_{24} = x_{21} + C_{-13} \cdot 22^{\circ} x_{22} + x_{23} = x_{25} = (2a \text{ when } ff_{Bin})^{*} x_{24}^{*} + ff_{Bin}^{*} x_{24}^{*} + ff_{Bin}^{*}$$

14)
$$\times 25 = \times 21 + 0.14,22 \times 22 + \times 23 - \times 24 - \times 26$$
 when $\times 24 - \text{FC}_{P_{111}}$ of between $\times 25 = \text{PET}$

15
$$\lambda 26 = 0.15.21 \ \lambda 21 + 0.15.22 \ \lambda 22 + 0.15.23 \ \lambda 23 + 0.15.32 \ \lambda 32$$

where: $0.15.32 = RE \ \lambda 24 = E0$ when $\lambda 24 = E0$, otherwise $0.15.32 = 0$

16 \29 = \28 Dummy equation .

Reordering of equations and coefficients was necessary becamse of the inverse subroutine used in the program. The logic was changed from mode 1 to mode 4 and vice versa, depending upon the storage condition. If the storage was full, the system was solved for outflow X1, and hence mode 1, otherwise, in mode 4.

AREA SIMULATIONS

THE UPPER YELLOWSTONE, CLARKS FORK YELLOWSTONE, AND KINSEY AREA SUBBASINS

These three subbasins were not simulated. Rather the projected water requirements for these subbasins for each of the three levels of development were merely subtracted from their historical outflow, so that the simulations for downstream subbasins would reflect all upstream water use in addition to their own.

THE BILLINGS AREA SUBBASIN

Inflow to the Billings Area Subbasin for a particular level of development was the sum of the outflows from the Upper Yellowstone and Clarks Fork Yellowstone subbasins for the same level of development. By using a similar procedure for each subbasin, the cumulative effect of development could be simulated for the lower subbasins in the Yellowstone basin.

The water requirements for the low, intermediate, and high levels of development in the Billings Area Subbasin are shown in table 47. These requirements reflect only the water that would be needed to meet irrigation and municipal demands. None of the levels of development called for water to meet energy demands or minimum-flow requirements. For all three levels of development, flows would be neither augmented nor stored because the subbasin has no dam to regulate flows.

The results of the simulations of the three levels of development are shown in tables 48 and 49. The simulation indicated that the Billings Area Subbasin would have enough water to meet the demands of a high level of development, although the demands would reduce the flows in June, July, August, and September below their historical levels. The demands of the low and intermediate levels of development would not significantly reduce historical flows. Generally, none of the simulations indicated appreciable degradation of water quality although it is likely that the few low-flow months under the high level of development would result in a drastic degradation in water quality.

THE BIGHORN SUBBASIN

Because of the presence of the Yellowtail Dam, the Bighorn Subbasin would meet its demands under high and intermediate levels of development. The low level of development was not considered for this subbasin because the water

requirement acoust be incorporate and a grand to the form that of the river. Lattle 50 shows the flow requirements for the interpolate action levels of development. These flow requirement is late every, immigring, and mark spal demands that no minimulate a requirement, in Section 1 levelopment, it was assumed that the Yellowist I was also been succeeded as the requirement of the excellent and the area flows throughout the areal distribution of the result of the following section in the first with the Yellows one flows in the result of the result of the form the form the form the flows.

Table 47. Billing: area subbasin water requirements in acre-feet.

	Projected Level of Development							
Month .	Low	Intermediate	1 1 1 1 1 1					
Det	48 ¹ 2	OB*	115					
101	290	1141	5. 5.					
Dec	290	200	51.5					
Jan	20()	200	1.					
Fello	20()	2000	2 -> 1					
Mar	212/1	2016	4.25					
$\lambda_{\Gamma^{\prime}\Gamma}$	485	rifi*,	-311					
Max	2,815	5,240	7.89					
June	3,500	t , B'I',	11.55					
July	6,500	12,715	10.77					
Aug	5,140	13,000	14.000					
Sept	2,425	- · · · · · · ·	1.73					
TOTAL	22,890	42,260	62.150					

The results of the simulations of the high and intermediate levels of development are shown in table 51. The demands of the high level of development would easily be satisfied without affecting natural flows significantly, although the ninetieth-percentile flows, those flows exceeded 90 percent of the time in a given month, would be low for July and August. This, however, was due to the operational policy used for the dam in the simulation. In any event, a release from the dam exceeded the requirement only if it was a spill from the dam. Like the high level of development simulation, the intermediate level of development simulation indicated little effect on the natural outflow.

In either case, the water quality of the outflow would remain almost unchanged from the natural outflow's water quality because the total demand for both simulations would be small compared to the natural outflow. Total dissolved solids would vary from 477 to 634 mg.l for the intermediate level and from 477 to 650 mg.l for the high, a small range due to the rellowted Dam which reduces fluctuations in water quality.

Table 48. Outflow of the Billings area subbasin (in acre-feet).

		1.	evel of Develo	opment			
Ì	Low		Intermedia	ate	High		
Month	Fiftieth percentile	Ninetieth percentile	Fiftieth percentile	Ninetieth percentile	Fiftieth percentile	Ninetieth percentile	
Oct	245,036	163,456	244,956	163,380	244,866	163,295	
Nov	219,666	188,062	219,982	188,379	220,263	188,660	
Dec	178,411	133,290	178,661	133,545	178,882	133,769	
Jan	153,036	100,470	153,219	100,663	153,367	100,820	
Feb	159,451	120,568	159,567	120,690	159,657	120,787	
Mar	210,452	143,850	210,636	144,040	210,786	144,195	
Apr	241,904	167,308	241,574	166,985	241,219	166,637	
May	697,674	360,719	691,032	334,079	684,165	327,214	
June	1,545,894	1,065,127	1,537,069	1,056,308	1,528,209	1,047,449	
July	804,278	379,376	787,143	362,245	769,993	345,099	
Aug	230,954	119,876	217,809	106,737	204,654	93,589	
Sept	184,038	108,507	178,382	102,850	172,690	97,157	

NOTE: A fiftieth-percentile flow is the flow that is exceeded 50 percent of the time in a particular month, and the ninetieth-percentile flow is that flow that is exceeded 90 percent of the time in a particular month.

Table 49. Average outflow (in acre-feet) and TDS (in mg/l) of the Billings area Subbasin

			Leve	el of De	evelopment		
	Low		Interme	ediate	High	1	N=4=1
Month	Flow	TDS	Flow	TDS	Flow	TDS	Natural Flow
Oct	248,041	268	247,966	269	247,881	270	262,944
Nov	227,485	278	227,776	279	228,059	279	227,424
Dec	173,022	305	173,270	306	173,488	306	173,048
Jan	153,559	312	153,747	312	153,900	313	153,655
Feb	167.798	289	167,916	289	168,009	290	167,954
Mar	222,461	267	222,650	268	222,803	268	222,558
Apr	249,442	253	249,117	253	248,768	254	253,506
May	688,842	156	682,185	156	675,321	157	746,377
June	1,565,048	117	1,556,220	117	1,547,358	118	1,636,944
July	830,338	131	813,202	132	796,052	134	932,201
Aug	252,659	228	239,513	231	226,358	235	344,169
Sept	199,550	283	193,892	286	188,199	289	263,177
TOTAL	4,978,245		4,927,454		4,876,196		5,383,957

Lable 50. Bighorn mobilesin water requirements is accessed

	Level of Gevelo	trenne	
Month	Intermediate	Haryti	
Uct	7 %()		
Vov	490	2.585	
()tsC.	·4*2()	2.580	
Jan	490	2,585	
l (al)	490	2.585	
Mar	490	2,385	
Apr	750	2,775	
May	3.880	7.470	
June	4.920	9,035	
July	8.830	14,900	
Aug	7,010	12,170	
Sept	3,500	6.685	
TOTAL	31,950	67,735	

Table 51. Outflow in acre-feet and TDS in mg 1) of the Bighorn Subbasin

			Level of	Deve	lopment			
		Intermedi	ate			High		
Month Oct Nov Dec Jan Feb Mar Apr May June July	Fiftieth Percentile	Simetieth Percentile	Average	TD5	fiftieth Percentile	Sinetieth Percentile	Average	105
Oct	194,045	140,169	197,372	625	188,241	134,252	191,535	627
	184,077	142,153	184.734	631	180,204	138,223	180.780	632
	164,977	109,022	160.842	612	160.974	104,977	156,861	613
Jan	143.349	100,767	153,433	552	139,343	96,807	149,412	594
	144.398	107,600	169,476	477	140.336	103,678	165,413	477
Mar	211,631	157,238	232.825	503	207,573	153,146	228,792	504
Apr	204 188	119,215	201,080	624	198,322	113,168	195,063	626
	259,527	135,198	282,443	592	236,007	109.680	256,963	595
,	566.793	137,846	546,688	594	534,673	105,791	514,631	596
July	261,441	30,130	312,457	579	204,851	2,340	260.706	584
Aug	81,338	36,351	111,056	625	35,368	2,340	67,477	650
Sept	155,622	91,851	157,206	634	131,494	57,261	128,967	640
TOTAL		2	.709,612			2	,496,600	

NOTE: See note to table 48.

THE MID-YELLOWSTONE SUBBASIN

The water requirements for the low, intermediate, and high levels of development in the Mid-Yellowstone Subbasin are given in table 52. These requirements include demands for energy, irrigation, and municipal use but no minimum flow requirement. The Mid-Yellowstone Subbasin was assumed to have no ability to augment or store flows.

Table 52. Mid-Yellowstone subbasin Water requirements (in acre-feet)

		Level of Development	
Month	Low	lntermediate	High
Oct	3,320	6,950	12,700
Nov	3,070	6,445	11,940
Dec	3,070	6,445	11,940
Jan	3,070	6,445	11,940
Feb	3,070	6,445	11,940
Har	3,070	6,445	11,940
Apr	3,320	6,950	12,700
May	6,350	13,005	21,780
June	7,360	15,025	24,815
July	11,165	22,595	36,160
Aug	9,380	19,055	30,860
Sept	5,845	11,995	20,265
TOTAL	62,090	127,800	218,980

The fiftieth- and ninetieth-percentile outflow values for all simulated levels of development in the Mid-Yellowstone Subbasin are given in table 53. The ninetieth-percentile flows would be high for all months but August. During the simulated month of August 1961, there was some shortage for both the intermediate and high levels of development; this was the only shortage indicated.

The average values of TDS, displayed along with average flows in table 54, indicate that water quality would become slightly poorer during the simulated low flows of 1961, when the large proportion of irrigation return flow in the outflow substantially decreased water quality.

THE TONGUE SUBBASIN

Table 55 gives the water requirements for the Tongue River under the low, intermediate, and high levels of development. The "Projected Demand" columns show demands for irrigation, municipal use, and energy. At the high level of development, not all of the irrigation, municipal, and energy requirements could be satisfied. Since the irrigation and municipal demands have higher priority, only 4,435 acre-feet of the projected energy demand of 9,835

acre-teet per north could be met. For the high level of development, the "Projected Desaud" volumn also show: any per-thom requirement in the Bontana fish and Lame Department to be a "Lare bone" requirement: 900 are teet per month for Jone through Lebruary, 2700 are feet per bonth for March, April, and May. For the remaining two levels of development, the minimum-flow requirement is shown only in the second column. For the interestiate development level that minimum-flow requirement is 60 percent of the instream flow assumed by the Water Work Group of the Northern Great Claims Personned. Program NaPRP 1976; for the low level of development, all of the NAPRP assumed instream flow was included. A reservoir with a capacity of 370,000 acre-feet was assumed for the high and intermediate levels of development, and a reservoir with a capacity at 112,000 acre-feet was assumed for the low level of development.

Table 55. Butflow of the Mid-Yellowstone subbasin in acre-test

	Level of Development										
·	l ow		Inter	nediate	High						
Month	Liftieth Percentile	Nineticth Percentile	Fiftieth Percentile	Ninetieth Percentile	fiftieth Percentile	Sinetieth Percentile					
Oct	462,205	323.536	459,151	320,492	148,648	310,188					
404	409,310	333,575	400,677	3.5(), 9.5()	398,081	322,045					
Dec	337,255	217,102	334,446	214.307	325,382	205,456					
Jan	296,842	194,918	293,910	191.983	284,947	182,934					
Feb	302,286	225,893	299,204	222,809	290.037	213,586					
Mar	388,389	294,533	485,442	29],594	476.136	282.481					
Apr	465,915	326,058	462,291	322,432	451,155	311,278					
May	988,032	439,194	975,673	426,837	935,515	386.800					
June	2,129,436	1,175,717	2,114,182	1,160,467	2.064.900	1.111.223					
July	1.080,117	408,825	1.053,213	381,985	968,080	325.307					
Aug	305,904	142.989	284.700	121,804	215.827	64.78%					
Sept	342,057	210.790	331,134	199,867	291,202	137,652					

NOTE: See note to table 48.

The fiftieth- and ninetieth-percentile flows for the three simulations are given in table 56. The 320,000 acre-foot reservoir used in the intermediate- and high-level simulations could satisfy a total annual demand of about 130,000 acre-feet. The fiftieth- and ninetieth-percentile values would be almost equal for those two levels of development, implying that the outflow consisted only of the irrigation return flows plus instream requirements.

Table 54. Average outflow (in acre-feet) and TDS (in $\mbox{mg/1})$ of the $\mbox{Mid-Yellowstone}$ subbasin

			Level of	Develop	ment		
	Low	Low		diate	High		1
Month	Flow	IDS	Flow	TDS	Flow	TDS	Natural Flow
Oct	460,062	460	457,015	460	446,660	465	478,565
Vov	417,964	486	415,323	486	406,554	490	423,122
Dec	323,390	558	320,589	558	311,654	562	341,435
Jan	300,485	476	297,545	576	288,413	581	318.323
Feb	344,890	529	341,800	529	332,483	532	368,217
Mar	493,392	441	490,452	441	481,304	443	493,009
Apr	456,588	462	452,962	462	441,822	467	466,004
May	941,441	311	929,090	313	889,073	320	1,013,584
June	2,103,569	198	2,088.318	201	2,039,064	203	2,164,446
July	1,166,987	269	1,140,055	271	1,059,693	280	1,326,683
Aug	359,878	504	338,680	508	272,129	530	501,157
Sept	362,990	524	352,061	529	310,895	556	442,866
TOTAL	7,731,636		7,623,890		7,279,744		8,337,411

Table 55. Tongue Subbasin water requirements (in acre-feet)

		Level of Development									
	L	OW	Inter	mediate	High						
Month	Projected Demand	Projected Demand Plus Minimum Flow	Projected Demand	Projected Demand Plus Minimum Flow	Projected Demand						
Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept	1,175 955 955 955 955 955 1,175 3,810 4,685 7,985 6,445 3,370	7,175 6,955 9,055 9,055 9,055 12,995 14,975 29,310 30,185 30,185 12,445 9,370	4,370 3,930 3,930 3,930 3,930 3,930 4,370 9,335 11,390 17,975 14,900 8,760	7,970 7,530 8,790 8,790 8,790 11,130 12,650 24,935 26,690 31,300 18,500 12,360	6,000 5,400 5,400 5,400 5,400 5,400 6,000 13,960 16,595 26,470 21,860 12,645						
TOTAL	33,420	180,760	90,750	179,435	130,530						

Table 56. Outflow of the longue Paver (0.0) as as were feet

	fexel of Development										
	Low		listier	iedrate	Prili						
fiont h	Fittieth Percentile	Ninetieth Percentile	fiftieth Percentile	Nimetieth Percentile	Fiftieth Percentile						
Uct	6,585	1,562	4,770	1,170	1,055	2.113					
Nov	6,365	4,945	4,335	2,538	,997	1,997					
Dec	8,390	5,667	5,665	2,862	,778	1,778					
Jan	8,320	7.379	5,300	4,624	1.558	1,558					
Leb	8,245	5,834	5,150	2,745	1.559	1.554					
dar	23,812	12,260	7,640	7.640	5,55H	5 . 5 5,82					
Apr	23,129	11,375	8,860	5,133	3,578	1,578					
May	44,807	15.337	17,205	9,237	5,113	5,115					
June	103,865	4,479	57,310	2,045	40.320	3.472					
July	13,994	1.315	2,630	2,630	4,849	H					
Aug	1,315	1,315	2.630	2,630	4,849	4,849					
Sept -	6.730	730	4.182	1,460	3,1194	5 ()'/					

NOTE: See note to table 48.

Table 57. Average outflow in acre-fect, and TD5 in mq.1 of the Tongue subbasin

		Level of Development									
	1 ow		Intermo	ediate	High	1					
Month	Flow	TDS	Flow	TDS	How	105	'satural Flow	Incomatic TDS			
Oct	9,078	516	4,567	752	2,744	779	16,995	607			
VOV	9,832	670	4,816	766	2,261	793	18,369	696			
Dec	9,964	739	5,514	798	2,080	835	12,893	756			
Jan	10,496	675	5,609	753	2.168	768	11,092	719			
Feb	16,584	412	8,740	464	3,992	494	16,414	491			
Mar	40,952	416	26.354	432	20.830	422	39,248	431			
Apr	27.936	542	18,732	560	14,194	555	32,325	550			
May	51,155	440	36,080	470	26,765	464	48,955	443			
June	101,622	262	76,818	283	65,115	285	95,469	265			
July	18.857	381	11,263	517	8,453	562	30.657	348			
Aug	2,589	857	2,869	1,137	4.849	768	9,397	423			
Sept	6,391	597	3.700	785	3,094	752	12,167	507			
TOTAL	305,456		205,062		156,545		343,981				

Table 57 gives the values of average outflows and levels of IDS for each level of development in the Tongue Subbasin. Under the low level of development, water quality calculations showed only slight degradation. Under the intermediate level of development, IDS calculations indicate a slight deterioration in water quality. Because most of the outflow during August would consist of irrigation return flows, that month would have the worst water quality. At the high level of development, IDS levels indicate poor water quality in most months, a result of what would be reduced outflow having a large proportion of irrigation return flows. Instream flows would be crucial in maintaining water quality. By increasing the instream requirement, water quality degradation could be reduced, especially in low-flow months.

Under the low level of development, the irrigation, municipal, and energy demand as well as all of the NGPRP-requested minimum flow could be completely satisfied, even assuming the smaller reservoir. The fiftieth- and ninetieth-percentile values (table 56) indicate that August would be the only critical month at this level of development.

For the intermediate level of development, the total water demand was about 91,000 acre-feet. As explained above, the 320,000-acre-foot reservoir would yield 130,000 acre-feet annually, leaving 40,000 acre-feet per year available for other uses. Up to 60 percent of the minimum flow suggested by the NGPRP could be satisfied with this water. This minimum flow would not be augmented by releases of stored water from the dam. If the natural inflow to the reservoir is less than or equal to the minimum-flow requirement, then no water could be stored. If the natural inflow is more than the minimum-flow requirement, then the excess could be stored or used to meet the "projected demand" of table 55. In either case, stored water could be released to meet projected consumptive demand. The fiftieth- and ninetieth-percentile flow values show that, except in July and August, there would be water in the stream in addition to the return flows.

THE POWDER SUBBASIN

Table 58 gives the water requirements used in simulations of the Powder Subbasin. The high level of development called for 230,000 acre-feet for irrigation water alone; the assumed active storage in the subbasin was only 275,000 acre-feet. After five trial simulations, it became apparent that not all of the water demand of the intermediate and high levels of development could be satisfied. Instead, those two projected levels of development were replaced by the "55 percent" level, which consisted of 55 percent of the high-level irrigation demand, the full high-level municipal demand and no water for energy or for minimum-flow requirements. Nor were minimum-flow requirements considered for the low level of development.

Table 58. Powder subbasin water requirements in acresteet

	level of Development	
Month	Low	% Percen
Oct	820	1,335
\ox	7(1	QF,
Desc	70	cy t _y
.lun	70	91,
eb	70	95
Ser	70	121,
Ap r	B20	1.335
fay	9,850	16,225
June	12,855	21,185
duly	24,140	39 B(H)
Aug	18,870	31,115
Sept	8,345	13,745
101AL	76,050	125,215

The simulation recognized Wyoming's 42-percent share of the Powder River's water by including only 58 percent of the historical inflows' values in the simulation, with the exception that in no month were the historical inflows' values reduced by more than 7,140 acre-feet 42 percent of 17,000 acre-feet regardless of the size of the historical monthly flow.

The annual yield of the subbasin was calculated assuming a reservoir having a yield of 125,000 acre-feet. This yield was based on the assumption that the reservoir's inflow included flows from the little Powder River, an impossibility at the Moorhead site, which is the most probable location for the reservoir. The 125,000-acre-foot yield might be achieved if two dams were built, one on the little Powder and one on the Powder.

The results of the simulations are given in table 59.

If a dam were built, the water quality of the river below the dam would be changed. Seasonal variations in water quality would be averaged, resulting in a net improvement in water quality. The amount of improvement is unknown.

Even at the low level of development the irrigation demand would be 76,000 acre-feet, a third of which would come back to the river as return flow. ID5 levels would range from 1,000 to 3,400 mg/l. Mixing in the reservoir could achieve substantial improvement in water quality. At this level of development, the fiftieth- and ninetieth-percentile values were the same for most months, meaning that the outflow would consist mostly of the return flows from irrigation. The average flows for each month, however, would be much higher than the fiftieth-percentile flow, showing the variability in the flow of the river.

Table 59. Outflow in acre-feet) and IDS (in mg/l) of the Powder subbasin

			Level of	Devel	opment			
		Low				55 Percent		
Month	Fiftieth Percentile	Ninetieth Percentile	Average	TDS	Fiftieth Percentile	Ninetieth Percentile	Average	TDS
Oct	2,000	2,000	5,856	2,079	3,000	3,000	3,363	3,799
Nov	1.250	1,250	6,542	1,630	1,800	1,800	2,706	3,226
Dec	1,000	1,000	4,673	1,937	1,500	1,500	2,356	3,216
Jan	750	750	4,257	1,976	1,130	1,130	2,085	3,000
Feb	2,982	500	13,043	1,036	750	750	6,136	1,402
Mar	34,922	750	61,954	739	1,130	1,130	46,946	750
Apr	30,600	3,315	43,997	1,061	19,797	1,500	30,941	1,149
May	51,484	16,066	55,376	1,096	31,586	4,040	38,324	1,310
June	84,438	3,500	102,888	1,028	63,416	5,260	89,507	1,116
July	4,500	4,500	20,483	1,552	6,760	6,760	14,383	3,372
Aug	4,500	4,500	4,970	3,548	6,760	6,760	6,760	8,089
Sept	2,500	2,500	3,667	3,145	3,760	3,760	3,760	4,084
TOTAL			327,706				247,267	

NOTE: See note to table 48.

In the 55 percent simulation, the outflows would consist mostly of irrigation return flows. The fiftieth-percentile flows would be high in the months of April, May, and June due to spring runoff and snowmelt in the upper portion of the basin. All ninetieth-percentile flows would be irrigation return flows. The irrigation projected for the 55 percent level would drastically degrade the water quality at the mouth of the river. The average IDS of inflows would be 1,200 mg/l, while that of the outflows would range from 1,100 to 4,000 mg/l in most months. Again, however, mixing in a reservoir could reduce IDS loads significantly.

THE LOWER YELLOWSTONE SUBBASIN

The water requirements projected for the high, intermediate, and low levels of development are given in table 60. These requirements include demands for irrigation, energy, and municipal use. No minimum flow was specified.

Inflow to the Lower Yellowstone Subbasin would be the sum of the outflows of the Powder and Kinsey Area Subbasins. Because no reservoir was assumed for the Lower Yellowstone Subbasin, the flows could not be stored or augmented.

Table 60. Tower Yellowstone Subbasio water requiresent, in acretect

	1 e	vel at Development	
Honth	Low	Intermediate	Ha ph
Oct	410	7B*•	
Sov	5()	3(1)	1,1.5
Dec	5()	5()	1,1."
Jan	5()	5()	1.1."
Leb	5()	3()	1.1."
Har	5()	5()	1.1."
7QF	410	785	
May	4,930	9,825	15,815
June	6,430	12,840	.*(). 35°
July	12,080	24,135	57,700
Aug	9,450	18,860	29,380
Sept	4,180	8,320	15,555
TOTAL	38,040	75,700	126,110

The results of the simulations are shown in table 61 and 62. The fiftieth- and ninetieth-percentile flows under all levels of development indicate that the demands could be satisfied but that a shortage would occur when demand exceeded inflow. A shortage would have occurred in August 1961 for all levels of development. The intermediate level of development would have less impact on flows than would the high level of development and the low level of development would have no significant impact.

IDS concentrations would increase, but even under the high level of development, average water quality would remain relatively good due to the high flows during periods of large irrigation return flows. During months of low flows, water quality degradation would be greater.

The simulations for the Lower Yellowstone Subbasin are important in that they represent the effect of all projected development in the Yellowstone Basin. The annual average outflow of the Lower Yellowstone Subbasin for the low, intermediate, and high levels of development would be 7.731.626 acre-feet, 7.623.890 acre-feet, and 7.279.803 acre-feet, respectively. The average annual outflow, 1944-73, was 8.317,411 acre-feet. On the average, there would be enough water to satisfy the projected demand, but in some months of some years there would not be enough even for low-level development, as indicated by the simulated shortage in August 1961.

Table of. Outflow of the lower Yellowstone subbasin (in acre-feet)

	Level of Development									
	Low		Interme	diate	High					
Month	Fiftieth	Ninetieth	Fiftieth	Ninetieth	Fiftieth	Vinetieth				
	Percentile	Percentile	Percentile	Percentile	Percentile	Percentile				
Oct	453,165	305,608	450,778	305,093	437,762	294,921				
Nov	441,005	340,600	422,969	337,869	410,592	325,594				
Dec	350,824	234,670	339,545	231,366	325,177	217,052				
Jan	316,982	201,851	301,589	198,777	295,093	183,233				
Feb	338.537	249,182	329,219	243,590	313,099	228,098				
Mar	612,714	304,539	512,839	296,179	574,039	279,314				
Apr	538,938	388,858	513,823	363,422	496,380	346,372				
May	1,037,764	480,471	1,001,548	440,103	953,657	387,916				
June	2,217,203	1,123,425	2,155,473	1,101,047	2,091,092	1,051,323				
July	1,085,902	393,907	1,049,411	358,134	961,489	296,861				
Aug	353,761	138,179	323,394	109,601	251,367	48,601				
Sept	326,062	174,059	309,139	160,003	266,401	98,503				

NOTE: See note to table 48.

Table 62. Average Outflow (in acre-feet) and TDS (in mg/l) of the lower Yellowstone Subbasin

	Low		Intermediate		High		1 , ,
Month	Flow	TDS	Flow	TDS	Flow	TDS	Natural Flow
Oct	466,078	552	459,071	561	445,522	570	504,187
Vov	439,383	577	429,514	585	417,049	594	452,667
Dec	339,180	636	331,424	640	317,270	646	354,445
Jan	321,902	648	314,522	653	299,309	664	342,515
Feb	377,602	565	363,556	572	346,679	579	396,331
Mar	652,078	496	613,719	504	607,521	508	707,417
Apr	588,151	538	564,206	544	547,420	548	617,821
May	988,728	368	943,250	377	893,574	386	1,050,604
June	2,304,475	291	2,240,210	291	2,186,485	291	2,379,886
July	1,231,810	304	1,179,488	307	1,091,427	313	1,420,334
Aug	384,481	451	353 ,7 48	458	284,934	482	483,946
Sept	345,388	557	327,167	566	282,328	583	426,303
TOTAL	8,439,256		8,119,875		7,719,518		9,136,456

Appendixes

Appendix A

PRODUCTED WATER PEQUIPMENTS IN THE STILLING TOTAL RIVER BASIN IN THE SEAR 2000.

	TABLE:		Ald
4-1	Nonthly and annual water requirements in the upper Yellowstone subbasin, year 2000, under three levels of development		11
4-7	Monthly and annual water requirements in the Clarks fork Yellowstone subbasin	•	119
4-5	Monthly and annual water requirements in the Billing area subbasin		120
A4	Monthly and annual water requirements in the Bighorn subbarin to year 2000 under three levels of development		121
4-5	Monthly and annual water requirements in the Mid-Yellowstone sub- basin to year 2000 under three levels of development		122
A-6	Monthly and annual water requirements in the Tonque subbasin to year 2000 under three levels of development		12 :
A-7	Monthly and annual water requirements in the Finsey area subbasin to year 2000 under three levels of development		124
A-8	Monthly and annual water requirements in the Powder subbasin to year 2000 under three levels of development		125
A=9	Monthly and annual water requirements in the lower Yellowstone subbasin to year 2000 under three levels of development		126

TABLE 4-1. Monthly and annual water requirements in Upper Yellowstone subbasin, year 2000 under three levels of development of .

f .	VERGY	IRRI	GAT10N	MUN1(TPAL	101	AL
Divi	ert Deplete	Divert	Deplete	Divert	Deplete	Divert	Deplete
		1 UW=1,E V	TT DEVELUP	1ENT ^b			
Jan							
Leb							
Mar Aor		380	250			380	250
Max		4,950	3,300			4,950	3,300
Jun		6,470	4,315			6,470	4,315
Jul		12,180	8,125			12,180	8,125
Aug		9,520	6,350			9,520	6.350
Sep		4,190	2,790			4,190	2,790
Oct		380	250			380	250
Zoz							
Dec		70.070	25 700			70 070	25 700
ANNUAL		38,070	25,380			38,070	25,380
		INTERMEDIAT	C-LLVEL DEV	VEL OPMENT ^C			
2							
Jan							
feb Mar							
Apr		760	510			760	510
May		9,900	6,600			9,900	6,600
Jun		12,950	8,630			12,950	8,630
Jul		24,370	16,250			24,370	16,250
Aug		19,040	12,695			19,040	12,695
Sep		8,380	5,585			8,380	5,585
Oct		760	510			760	510
101							
Dec							
ANNOAL		76,160	50,780			76,160	50,780
		HIGH-LE	VEL DEVELOR	PMENT			
Jan							
Feb							
Mar							
Apr		1,140	760			1,140	760
May		14,850	9,900			14,850	9,900
Jun		19,420	12,950			19,420	12,950
Jul		36,560	24,370			36,560	24,370
Aug		28,565	19,040			28,565	19,040
Sep Oct		12,565 1,140	8,380 760			12,565	8,380 760
YOV		1,140	760			1,140	760
Dec							
A', YUAL		114,240	76,160			114,240	76,160
		,	, , , , ,				,

 $^{^{\}rm a}$ The irrigation diversion rate is 3 acre-feet/acre; the depletion rate is 2 acre-feet-acre.

 $^{^{\}rm b}$ Assumptions: 'no energy development'; (12,690 acres of new irrigation) $^{\rm e}$; negligible increase in population.)

 $^{^{\}rm C} {\rm Assumptions:}~{\rm ino~energy~development}$: (25,390 acres of new irrigation) $^{\rm e};$ negligible increase in population).

 $^{^{\}rm d} {\rm Assumptions}; -$ no energy development : (38,080 acres of new irrigation) $^{\rm c};$ negligible increase in population).

 $^{^{\}rm e}{\rm Irrigation}$ is assumed to be developed with loans at 10 percent amortized over 10 years.

TABLE A-2. Morthly and annual water requirement in older fore officest or subbasio, year 2000 under three tevels of development at .

	1.20.302		1861GA1	1105	202-11-11-At		1 1A	!
	Divert	Deplete	Divert	Despliction	Divert	Deplete	01.011	They let a
			HIGH-FEVEL	DEVEEOEST.	111			
Jan								
Feb								
ttar								
Apr			65	40			1 1	.01
Max			840	Soll			P4 ."	1.6.0
Jun			1.100	7.5%			1,190	. 51
Jo1			2,080	1,385			11,080	1.585
Aug			1.6211	1.085			1.620	1.085
Sep			710	.475			710	47h
ne t			65	40			15	4(1
501								
Dec								
ANTUAL			6,480	4.320			6.430	4. 5.211

NOTE: The assumptions for both the low and intermediate level: of development were that there would be a negligible increase in energy development, population, and number of acres irrigated. Therefore, the amount of water depletion would also be negligible and is not shown.

 $^{^{\}rm a}$ the diversion rate for irrigation is 3 acre-feet acre; the depletion rate is 2 acre-feet acre.

 $^{^{\}rm b}$ Assumptions: negligible increase in energy development, population: iiii sate 2,150 new acres $^{\rm c}$.

^CAssumptions: irrigation to be developed with loans at 10 percent amortized over 10 years.

TABLE A-5. Monthly and annual water requirements in Billings Area subbasin, year 2000 under three levels of development (af)

	ENERGY		IRRIG	Allon ^a	MUNICI	PAL	TOTAL	
	Divert	Deplete	Divert	Deplete	Divert	Deplete	Divert	Deplete
			LOW-LEVEL	DEVELOPMENT	d			
Jan					580	290	580	290
eb					580	290	580	290
lar					580	290	580	290
ADI			195	130	580	290	775	420
tav			2,525	1,680	580	290	3,105	1,970
lun			3,300	2,200	580	290	3,880	2,490
hul			6,210	4,140	580	290	6,790	4,430
Aug			4.850	3,235	580	290	5,430	3,525
Sep			2,135	1,425	580	290	2,715	1,715
Det			195	130	580	290	775	420
101					580	290	580	290
)ec					580	290	580	290
ANVUAL			19,410	12,940	6,960	3,480	26,370	16,420
			INTERMEDIAT	E-LEVEL DEVE	LOPMENT ^e			
Jan					590	295	590	295
eb					590	295	590	295
tar					590	295	590	295
hor			390	260	590	295	980	555
lav			5,045	3,365	590	295	5,635	3,660
lun			6,600	4,400	590	295	7,190	4,695
lul			12,420	8,280	590	295	13,010	8,575
luq			9,705	6,470	590	295	10,295	6,765
Sep			4,270	2,845	590	295	4,860	3,140
let			390	260	590	295	980	555
VOV			,,,	200	590	295	590	295
ec ec					590	295	590	295
ANNUAL			38,820	25,880	7,080	3,540	45,900	29,420
			HIGH-LEVE	L DEVELOPMEN	IT f			
lan					650	325	650	325
eb					650	325	650	325
lar					650	325	650	325
pr			580	390	650	325	1,230	715
lay			7,570	5,045	650	325	8,220	5,370
lune			9,910	6,600	650	325	10,560	6,925
lul			18,630	12,420	650	325	19,280	12,745
lug			14,555	9,705	650	325	15,205	10.030
iep			6,405	4,270	650	325	7,055	4,595
)ct			580	390	650	325	1,230	715
ov					650	325	650	325
)ec					650	325	650	325
ANNUAL			58,230	38,820	7,800	3,900	66,030	42,720
				rate is 3 a				

^bMunicipal water use at 200 gal/d/pers. for diversion; 100 gal/d/pers. depletion.

 $^{^{\}mathrm{c}}$ Irrigation development carried on with 10 percent loans amortized over 10-year period.

 $^{^{\}rm d} \lambda {\rm ssumptions};$ ino energy development; %6,470 new irrigated acres) $^{\rm C};$ 31,270 increase in population).

Assumptions: no energy development, 12,940 new irrigated acres/ $^{\rm C}_{\rm i}$ /31,804 increase in population.

TABCE Ass. "Assists and anomal water requiresect is tribure but in the re, year 2000 under three levels of devels, set at ...

Dan 70 70 70 Sep. Sep. 7		1 1,1 1	(1)	18810	Allow ^a	1017,1:1	FAL	1	AL
Dan 70 70 70 70 70 70 70 7		Divert	Deplete	Divert	Deplete	Unvert	Dery Lertie	Liver	Sep Let
Let				1 114-11 [] [L DESERTIONS	d			
Het	1,411	<i>;</i> (1	7.0			'w	No.		71
Mar 70 71	1 (-1	70	71					/	761
April 70 70 150 90 Neg. Neg. 20	M.J.T	70	7.1					1.	10
Mar	401	70	7.0	1.5()	9()			.'(1)	160
Dun	His .	7()	7()	1.700	1,130			1.7.	1,200
Jun	,)uri	711	7()	2,220	1.480	'seq.		1,1196	1.550
Sep 70 70 1,455 960 Sep Sep 1,50 Set 70 70 130 90 Seq Seq 20 150 90 Seq Seq 20 150 Seq Seq 20 Seq Seq 70 70 70 Seq Seq Seq Seq 70 70 Seq Seq Seq 70 70 Seq Seq Seq Seq 70 70 Seq Seq Seq 70 70 Seq Seq Seq 70 70 Seq Seq Seq 70 Seq Se	Jul	70	7(1		2.785				2.855
Sep 70 70 1,455 960 Sep Sep 1,50 Set 70 70 130 90 Seq Seq 20 150 90 Seq Seq 20 150 Seq Seq 20 Seq Seq 70 70 70 Seq Seq Seq Seq 70 70 Seq Seq Seq 70 70 Seq Seq Seq Seq 70 70 Seq Seq Seq 70 70 Seq Seq Seq 70 70 Seq Seq Seq 70 Seq Se		711	7.0					3,330	2,235
Det 70 70 150 90 Seq. Seq. 20 N.N. 70 70 70 Seq. Seq. 70 Dec 70 70 Seq. Seq. 70 ANNUAL Ball	Sep	70	70					1.505	1.0046
Pec	Oct	7()	70	1.5()	9()	Seq.		2 10	1000
Dec	N. 18	7()	7.3					7.0	7(1
ANGIAL 840	Desc.	7()	7.1					7.1	71
Sect	A5501A1	84(H-4()	[5,[]4,4,	8.710			13,895	9.54
Pet		-		ISTERMEDIA	H-IIVII DEVI	LOPERST.			
Feb		an	1473					tat	490
Mar									+4 * F() +4 * F()
Apr 490 490 260 175 Neg, Neg, 75 May 490 3,390 2,260 Neg, Neg, 3,88 Jun 490 490 4,430 2,955 Neg, Neg, Neg, 4,92 Jul 490 490 8,540 5,560 Neg, Neg, Neg, 7,91 Neg, 4,92 Neg 490 490 6,520 4,545 Neg, Neg, Neg, 7,91 Neg 490 Neg 490 2,870 1,910 Neg, Neg, 7,91 Neg 490 Neg 490 260 175 Neg, Neg, Neg, 7,91 Neg 490 Neg 490 Neg 7,91 Neg Neg 7,91 Neg 1,920 N						,			4/4
Max a90 a90 3,390 2,260 Neg. Aeq. 3,88 Jun a90 a90 4,30 2,955 Neg. Neg. Aeg. 3,88 Jul a90 a90 a,50 5,500 Neg. Neg. 8,83 Aug. a90 a90 6,520 4,345 Neg. Neg. 7,01 sep a90 a90 260 1.710 Neg. Neg. Neg. 75 Nov a90 a90 260 175 Neg. Neg. 75 Nov a90 a90 260 17,380 Neg. Neg. 31,95 BIGB-LEVEL DEVELOPMENT BIGB-LEVEL DEVELOPMENT BIGB-LEVEL DEVELOPMENT Jun 2,345 390 260 80 40 2,42 Act 2,345 2,345 390 260 80 40 2,42 Mar 2,345 2,345<				2.0	176				
Jun	* -								115
Jul 490 490 8,340 5,560 'keq. keq. 8,83 Aug 490 490 6,520 4,345 'keq. keq. 7,01 sep 490 490 2,870 1,910 keq. keq. keq. 75 Nov 490 490 260 175 keq. keq. heq. 75 Nov 490 490 80 keq. keq. heq. 49 Pec 493 490 80 keq. keq. heq. heq. 31,95 BIGB-LEVI DEVELOPHENT									2.750
Aug 490 490 2,870 1,910 9eq. 1eq. 7,01 ep 490 490 2,870 1,910 9eq. 1eq. 3,36 3ct 4,90 490 260 175 9eq. 8eq. 75 1eq. 8eq. 76 1eq. 490 490 8eq. 8eq. 75 1eq. 8eq. 8eq. 75 1eq. 8eq. 8eq. 76 1eq. 8eq. 8eq. 76 1eq. 8eq. 8eq. 8eq. 8eq. 8eq. 8eq. 8eq. 8									3,445
Sep							,		1. (Chi
Oct 490 490 260 175 Neg. Neg. 75 Non 490 490 490 Neg. Neg. Neg. 49 Dec 490 490 26,070 17,380 Neg. Neg. 31,95 BIGB-LEVI COEVI LOPMENT BIGB-LEVI COEVI LOPMENT BO 40 2,42 feb 2,345 80 40 2,42 Mar 2,545 2,345 80 40 2,42 Apr 2,545 390 260 80 40 2,42 Max 2,545 2,345 5,085 3,390 80 40 7,51 Jun 2,545 2,345 5,085 3,390 80 40 7,51 Jun 2,545 2,345 6,650 4,430 80 40 14,94 Aug 2,545 2,345 9,785 6,525 80 40 12,21									4.835
No. 190									2,480
Dec. 490 490 26,070 17,380 Neg. Neg. 490 490 31,95 BIGH-LEVE DEVELOPHENT				260	175		,		toto S
ANNUAL 5,880 5,880 26,070 17,380 veq. Neq. 31,95 BIGH-LEVEL DEVELOPMENT Jan 2,345 2,345 80 40 2,42 Mar 2,345 2,345 80 40 2,42 Acr 2,345 2,345 390 260 80 40 2,42 Mas 2,345 2,345 3,90 80 40 7,511 Jun 2,545 2,345 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,211 Sep 2,345 2,345 4,300 2,870 80 40 6,72 Det 2,345 2,345 3,90 260 80 40 2,81 Nov 2,345 2,345 4,300 2,870 80 40 2,81 Nov 2,345 2,345 8,90 260 80 40 2,81									in the second
### BIGH-LEVE DEVELOPMENT Jan 2,345 2,345 80 40 2,42 Heb 2,345 2,345 80 40 2,42 Mar 2,345 2,345 80 40 2,42 Apr 2,345 2,345 390 260 80 40 2,81 Max 2,345 2,345 5,085 3,390 80 40 7,51 Jun 2,345 2,345 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 7,52 Oct 2,345 2,345 3,90 260 80 40 2,81 Nov 2,345 2,345 8,90 260 80 40 2,81				0.070	17 100	,		490	490
Jan 2,345 2,345 80 40 2,42 feb 2,345 2,345 80 40 2,42 Mar 2,345 2,345 80 40 2,42 Apr 2,345 2,345 390 260 80 40 2,81 Max 2,545 2,345 5,085 3,390 80 40 7,51 Jun 2,545 2,345 6,650 4,430 80 40 7,51 Jul 2,345 2,345 12,520 8,345 80 40 12,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,500 2,870 80 40 2,81 Nov 2,345 2,345 390 260 80 40 2,81	433041	>,88U	5,880	26,070	17,380	lerg.	. (***).	31,750	23,260
Feb 2,345 2,345 80 40 2,42 Mar 2,345 80 40 2,42 Mar 2,345 2,345 80 80 40 2,42 Aor 2,345 2,345 390 260 80 40 2,81 Mar 2,545 2,345 5,085 3,390 80 40 7,51 Jun 2,545 2,545 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 40 6,72 Oct 2,345 2,345 3,90 260 80 40 2,81 Nov 2,345 2,345 3,345 80 40 2,81				BIGH-LEVE	C DEVELOPMEN	.11			
Mar 2,345 2,345 80 40 2,42 Apr 2,345 2,345 390 260 80 40 2,81 Max 2,345 2,345 5,085 3,390 80 40 7,51 Jun 2,345 2,345 6,650 4,430 80 40 19,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,500 2,870 80 40 12,81 Nov 2,345 2,345 390 260 80 40 2,81	Jan	2,3,5	2,345			80	·4()	2,425	2,385
Mar 2,345 2,345 80 40 2,42 Acr 2,345 2,345 390 260 80 40 2,81 Max 2,345 2,345 5,085 3,390 80 40 7,51 Jun 2,345 2,345 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,500 2,870 80 40 12,81 Nox 2,345 2,345 390 260 80 40 2,81	t eb		2.345			80	40	2,425	2,385
Agr 2,345 2,345 390 260 80 40 2,81 Max 2,545 2,345 5,085 3,390 80 40 7,51 Jun 2,545 2,345 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 2,81 Nov 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42	Mar	2.3.5				80	40	2,425	2.385
Max 2,345 2,345 5,085 3,390 80 40 7,51 Jun 2,545 2,545 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 2,81 Nov 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42	Anr			390	260			2.815	2.645
Jun 2,545 2,345 6,650 4,430 80 40 9,07 Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 2,81 Nov 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42								7.510	1.775
Jul 2,345 2,345 12,520 8,345 80 40 14,94 Aug 2,545 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,500 2,870 80 40 2,81 Oct 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42	Jun				·			9.075	6.815
Aug 2,345 2,345 9,785 6,525 80 40 12,21 Sep 2,345 2,345 4,300 2,870 80 40 6,72 Oct 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42								14.945	10.730
Sep 2,345 2,345 4,300 2,870 80 40 6,72 Oct 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42								12,210	8.910
0ct 2,345 2,345 390 260 80 40 2,81 Nov 2,345 2,345 80 40 2,42				•				6,725	5,250
Nov 2,345 2,345 80 40 2,42									2,645
				/ 0	200				2.385
	Dec	2.345	2,345			80	4() H()	2,425	2.385
				39 120	2. 080			68,220	54,700

 $^{^{\}rm a}{\rm Agricultural}$ irrigation diversion rate is 3 at v agre; depletion rate is 2 af agre.

bunnicipal water use at 200 gal d pers. for diversion: 100 gal d pers. depletion.

 $^{^{\}rm C}$ Irrigation development carried on with 10 percent loans amortized over 10-year period.

 $^{^{\}rm d}$ Assumptions: 17.1 mmt strip mine increase ; 4,435 new irrigated acre. $^{\rm C}$: 2,334 increase in population .

 $^{^{}m e}$ Assumptions: 5.9 mmt slurry, 29.3 mmt strip mines increase ; P.690 new irrigated acres $^{
m C}$: 3.1-5 increase in population .

fassumptions: 1-1.000 mm 14.8 mmt clurry, 36.9 mmt ctric mixes increase : 13.040 acres new irrigation of feasible land

140 (4- . 250) (v ind annual water requirement) in Mid-Yellowstone subbasin, year 2000 under three levels of development af .

	- 51	· · · · · ·	TRRIG	41107 ₉	MUN10	IPALb	101	AL
	ivert	Deplete	Divert	Deplete	Divert	Deplet	e Divert	Deplete
			E (WELEVE	L. DE VELOPMEN	Į ^{ti}			
313	2, 130	2, 730			280	140	3,210	3,070
t exts	2.930	2,035(1			280	140	3,210	3,070
11.10	2.230	2,930			280	140	3,210	3,070
Apr	2.030	2.730	250	170	280	140	3,460	3,240
".1\	2.93()	2,930	3,280	2,190	280	140	6,490	5,260
Jun	2.930	2,930	4,290	2,860	280	140	7,500	5,930
ful.	2,230	2,930	8.075	5.380	280	140	11,285	8,450
Aug	2,930	2,930	6,310	4,200	280	140	9.520	7,270
Sep	2.930	2,930	2,775	1,850	280	140	5,985	4,920
det	2,930	2,930	250	170	280	140	3,460	3,240
101	2,930	2,930			280	140	3,210	3,070
Dec	2.930	2,930			280	140	3,210	3,070
ANNUAL	35,100	35,160	25,230	16,820	3,360	1,680	63,750	53,660
			INTERMEDIA	TE-LEVEL DEV	ELOPMENT ^e			
Jan	6,290	6,290			310	155	6,600	6,445
Feb	6,290	υ,290			310	155	6,600	6,445
Har	6,290	6,290			310	155	6,600	6,445
Apr	6,290	6,290	505	335	310	155	7,105	6,780
May	6,270	6.290	6,560	4.375	310	155	13,160	10,820
Jun	6.290	6,290	8,580	5.720	310	155	15,180	12,165
Jul	6,290	6,290	16,150	10.765	310	155	22,750	17,210
Aug	6,290	6,290	12,610	8,410	310	155	19,210	14,855
Sep	6,290	6,290	5.550	3,700	310	155	12,150	10.145
Oct	6.290	6,290	505	335	310	155	7.105	6,780
101	6,290	6.290	,0,	,,,,	310	155	6,600	6,445
Dec	6.290	6,290			310	155	6,600	6,445
	75,480	75,480	50,460	33,640	3,720		129,660	110.980
			HIGH-EEV	EL DEVELOPME	NT			
Jan	11,620	11,620				720	12 2/5	11.040
Jan Feb	11,620				645	320	12,265	11,940
ren Mar	11,620	11,620 11,620			645	320 320	12,265 12,265	11,940
Apr	11,620	11,620	760	505	645 645	320	13,025	11,940
нрг May	11,620	11,620	9,840	6,560	645	320	22,105	12,445 18,500
Jun	11,620	11,620	12,870	8,580	645		25,135	
Jun Jul	11,620	11,620	24,215	16.150	645	320 320	36,480	20,520 28,090
Aug	11,620	11,620	18,920	,	645	320		28,090
Bep	11,620	11,620	8,325	12,610 5,550	645	320	31,185 20,590	17,490
Oct	11,620	11,620	760	505	645	320		17,490
Nov	11,620		760	202	645	320	13,025	
Dec	11,620	11,620 11,620			645	320	12,265	11,940
A.VAYE		139,440	75,690	50,460	7,740		222,870	11,940 193,740
JACEE	177,440	177,440	17,070	JU,40U	7,740	2,040	444,070	177,740

 $^{^{\}rm a} {\rm Agricultural}$ irrigation diversion rate is 3 af/acre; depletion rate is 2 af acre.

bMunicipal water use at 200 gal/d/pers. for diversion; 100 gal/d/pers. depletion.

 $^{^{\}rm C}{\rm Irrigation}$ development carried on with 10 percent loans amortized over 10 year period.

 $^{^{\}rm d}_{\rm Assumptions}$: 15-1,000 mw, 1-250 mmcfdgas, 59.9 mmt strip mines new development : 8,410 new irrigated acres, $^{\rm C}$: -15,887 increase in population).

 $^{^6\}text{Assumptions:}~3-1.000$ mw, 1-250 mmcfd gas, 20.5 mmt slurry, 102.6 mmt stripmines; 16.920 new irrigated acres f : (17.771 increase in population).

fassumptions: 3-1,000 mw, 2-250 mmcfd gas, 1-100,000 b/d syn-crude, 51.6 mmt lurry, 12P.9 mmt strip \cdot ; 25,230 acres new irrig of feasible land $^{\circ}$; 36,250 increase population .

		1						
	•	e - ·	0.	A	,	r r		
			as a	· , · · · ,				
					10			
					144	NC.		
					1.			
						×F		
				. •		+6		
					Ser.	. 0		
,				·	Sec	10.		
					Se .	41		
					No	· ,		
e.l.				1		1.00		
			TT 16	P 141	16			
				11.1				
		• ;						
			** "					
							* * * *	
1			1.0					10
				100	,			
	100	. 1						
							. '	

	 			٠.	
		• •			
					• "
	111				
	٠.				
•					
100					. *

The state of the s

7 () etc. 1 (a) etc. 1 (etc. 1 (a) etc. 1 (etc. 1 (etc

The second secon

TABLE A-7. Monthly and annual water requirements in Kinsey Area subbasin, year 2000 under three levels of development (af)

	UNERGY		IRRIGATION ^a MUNIO		MUNICI	PAL	TOTA	L
	Divert	Deplete	Divert	Deplete	Divert	Deplete	Divert	Deplete
			LOW-LEVEL	DEVELOPMENT	С			
Annual			4,740	3,160			4,741	3,160
]	INTERMEDIAT	E-LEVEL DEVE	LOPMENT d			
Jan Feb Mar								
Apr May Jun Jul Aug Sep			95 1,230 1,610 3,035 2,375 1,040	60 820 1,075 2,025 1,585 695			95 1,230 1,610 3,035 2,375 1,040	60 820 1,075 2,025 1,585 695
Oct Nov Dec			95 9,480	60 6,320			95	6,320
			HIGH-LEVE	L DEVELOPMEN	IT ^e		·	
Jan Feb Mar								
Apr May Jun Jul Aug Sep Oct			140 1,850 2,420 4,555 3,550 1,565	95 1,230 1,610 3,035 2,375 1,040			140 1,850 2,420 4,555 3,550 1,565	95 1,230 1,610 3,035 2,375 1,040
Nov Dec ANNUAL			14,220	9,480			14,220	9,480

 $^{^{\}rm a}{\rm Agricultural}$ irrigation diversion rate is 3 af/acre; depletion rate is 2 af/acre.

 $^{^{\}mathrm{b}}$ Irrigation development carried on with 10 percent loans amortized over 10 year period.

 $^{^{\}text{C}}\textsc{Assumptions:}$ (no energy development); (1,580 new irrigated acres) $^{\text{b}}\textsc{;}$ (neg. increase in population).

 $^{^{\}rm d} \text{Assumptions:}$ (no energy development); (3,160 new irrigated acres) $^{\rm b};$ (neg. increase in population).

 $^{^{\}rm e}_{\rm b}$ Assumptions: (no energy development); (4,740 acres new irrigation of feasible land) $^{\rm b}_{\rm i}$ (neg. increase in population).

TABLE A.B. Martida and an early water injuries of the following year ander three levels of developed that

	Photo to		1 1.3	1 1 311 %				
	1 + 11 1 1	w life	- isert	De, Letz	· (*)		47.15	4, .cf
			to william.	A 411 - 625 %	1			
1,42	10				1,1	*.c.j.		
1. (4)	7	,			****	1,00		
11.11	711	1			**** ***	50		
Vir.		2	, , ,		1.0	100		
37.15	100	1	4 * 18 °	6. 20	fact ca	14. 1.	· ·	1.11
Traff	:01	2 .	17.785	11	141.	N	1.000	1 1
lea 1	*,1	7.5	24.07	16. 1.	Ser La	100 11		17,117
Aug	7.1	2.3	19.830	1. 31	141	Sec. 1		12,701
164()			B . 275	1.15	140	141		
h t	7 .	7.,	50	.11	Ser L.	140.74		* (,)
1	70	7.0	~ 1					70
1914	4	70			Tell ga	367.74		;
14-1		,			*et* / .	,44. 1.		,
455, 141	t4-• 11	H-+(751.1	50,140	446.14	tur j.	7. (1, 271
			INTERMEDIAL	E-LEVEL DEV	(1) High of the			
',4f1	1.11	1.57)			1.1.		1.4.	0,4.0
Feet	1. 7	1.570			190	1,1	1.0	1.77
Har	1.570	1, 7			hit		1.0	1,470
Apr	5.57.	1,47	1.500	1,000	Eller	(J)	5,170	1,7,7
Harry .	1.57	1	10,555	13. 440	lini		.1	14,66
Jun	1.570	170	25.570	17.150	1:11			10,47
lu1	1.70	1. 7	-B.1-0	3.7.190	10		. / . / 1	
	1.11	1. 7	57.610					**,711
Acr 1	1.57	1.47	* -	25, (70	1111		* /	1.11
e,	1.57		16.545	11. (50)	10 -		1 1 '	1. , (50)
		1.171	1, 4,(1()	1.: [00]	1 .		3.170	
10.37	1.57	1.47.1			100		1.17	(20
1 pt + C.	1.57	1.57			110	. 1	1.67	1.421
and at	18.84	18,841	150,470	100,280	1.23	F + () *	17 1,00	117.7.1
			H1 #H=115!	Logiti Bod	·,1 [†]			
Cath	1.99	1.48			1 /	4.5	?"	1.17
Feb	1.586	1.880			1 4	11,	2.1171	1.971
ttar	1.88%	1.880			1 /	121,	17	1.47
Apr	1.480	1,880	2,255	1.500	1.27	45	4. 101	71
·tav	1.880	1,980	19 33.)	19.550	1	45	31	21.525
Jun	1.HH()	1,880	38,350	25.170	10	96		17.145
Jul	1.09	1,480	72.190	8,130	1 40	95	7.,211	51,10
Aug	1.880	1.880	56415	37.7.05	1911	14	14 71	\$9,56()
-u-b	1.880	1.880	24.815	16,540	190	444	26 .881	18,520
Oct	1.88	1.880	2,255	1.500	190	9.5	20.00	
*O V			2.4	1. (18)	19	7		1,475
30V (3ec	1.880 1.880	1.88 - 1.880			190	ú.	2. 170	1,975
	22,560	22,561	225,600	150.400	2,280	1.1.	211, 441	

Agricultural irrigation diversion rate is 3 af acre; depletion rate D., af acre.

Municipal water use at 200 hald gere, for discretion, 100 yald gere, depletion.

Irrigation development carried on with 1) percent loads amortized over 10-year period.

⁴Assumptions: 17.1 mmt strip makes : 25.77 new irrigated acres 1.3.332 increase in population.

 $^{^64}ssumptions: -1-100 \, mm. S.9 met slurr, : 29.5 met strip mines : 50.1-6 new irrigated acres <math display="inline">^6$: 5.297 increase in population .

Assumptions: 1-1.000 mw, 1-3 met clurry : 6.2 met strip maner : 75-2% acres oew irrigation of feasible land $^{\circ}$: $^{\circ}$.893 increase in population .

TABLE A-D. Monthly and annual water requirements in Lower Yellowstone subbasin, year 2000 under three levels of development (af)

	ENE	RGY	IRRIG	ATTON ^d	MUNIC	MUNICIPAL ^b		TUTAL	
	Divert	Deplete	Divert	Deplete	Divert	Deplet	e Divert	Deplete	
			t.OW-LEVEL	DEVELOPMENT	d				
Jan					60	30	60	30	
Feb					60	30	60	30	
Mar					60	30	60	30	
ybı			380	250	60	30	440	280	
Hay			4,900	3,270	60	30	4,960	3,300	
.lun			6,400	4,270	60	30	6,460	4,300	
Jul			12,050	8,040	60	30	12,110	8,070	
Aug			9,420	6,280	60	30	9,480	6,310	
Sep Oct			4,150 380	2,760	60	30	4,210	2,790	
Nov			280	250	60	30	440	280	
Dec					60 60	30 30	60	30	
Dec					60	30	60	30	
ANNUAL			37,680	25,120	720	360	38,400	25,480	
			INTERMEDIA	TE-LEVEL DEVE	LOPMENT ^e				
Jan					60	30	6 D	30	
Feb					60	30	60	30	
dar					60	30	60	30	
Apr			7 55	500	60	30	815	530	
·tay			9,795	6,525	60	30	9,855	6,555	
Jun			12,810	8,535	60	30	12,870	8,565	
Jul			24,105	16,070	60	30	24,165	16,100	
Aug			18,830	12,550	60	30	18,890	12,580	
Sep			8,290	5,520	60	3D	8,350	5,550	
Oct			755	500	60	30	815	530	
101					6D	30	60	30	
Dec					60	30	60	30	
ANNUAL			75,340	50,200	720	360	76,060	50,560	
			HIGH-LEVE	EL DEVELOPMEN	T				
Jan	1,085	1,085			80	40	1.165	1,125	
Feb	1,085	1,085			80	40	1,165	1,125	
Har	1,085	1,085			80	40	1,165	1,125	
Apr	1.085	1,085	1,130	755	80	40	2,295	1,880	
Hay	1,085	1,085	14,690	9,795	80	40	15,855	10,920	
Jun	1,085	1,085	19,210	12,810	80	40	20,375	13,935	
Jul	1,085	1,085	36,165	24,100	80	40	37,330	25,225	
Aug	1,085	1,085	28,255	18,830	80	40	29,420	19,955	
Бер	1,085	1,085	12,430	8,290	80	40	13,595	9,415	
Oct	1,085	1,085	1,130	755	80	40	2,295	1,880	
VOV	1,085	1,085			80	40	1,165	1,125	
Jec	1,385	1,085	117 6:-	76 7	80	40	1,165	1,125	
A', 'IJA!	13,020	13,020	113,010	75,335	960	480 .	126,990	88,835	

 $^{^{\}rm a} \rm Agricultural$ irrigation diversion rate is 3 af/acre, depletion rate is 2 af acre.

hMunicipal water use at 200 gal/d/pers. for diversion, 100 gal/d/pers. depletion.

 $^{^{\}rm C}{\rm Irrigation}$ development carried on with 10 percent loans amortized over 10-year period.

 $^{^{\}rm d}$ Assumptions: no energy development : 12,560 new irrigated acres) $^{\rm c};$ 3,381 increase population .

Cassumptions: no energy development: 25,100 new irrigated acres) $^{\rm c}$: (3,381 increase in population .

 $^{^{\}rm C}_{\rm A}$ sumptions: 1-2,300 t'd fertilizer plant ; 37,670 acres new irrigation of femoible 1 md $^{\rm C}_{\rm C}$; 4,125 increase in population .

Appendix B

C - CEETA TENTO AND TIMATANT FOR THREATS MODEL ROS

	FAIG ES	PAU.
Lable d-1	Temperature-indempendent coefficients	110
lable B-2	Te perature-dependent coefficient: temperature less than $32^{\rm O}1$	11 -
Lable 3-5	Temperature-Rependent coefficient: temperature greater than 32 ⁰ l	114
Table H-4	Temperature-dependent coefficients: conclast	115
Table 8-5	Initial values: independent of scenario	116
Table 8-6	Boitial values: dependent on the scenario	116

TABLE B-1. Temperature-independent coefficients

						Subbasins				
Ço	efficients	Upper Coefficients Yellowstone	Clarks Fork	Billings Area	Bighorn	Mid- Yellowstone	Tongue	Kinsey Area	Powder	Lower
))	C(3,2)	.020893	.017610	.034310	.26370	.004255	.003570	.035561	.004262	.013678
))	C(3,3)	.000347	.000294	.000731	.000110	060000.	.000110	.000741	.000089	.000285
))	C(3,6)	.000367	.000294	.000731	.000110	060000.	.000110	.000741	680000.	.000285
))	C(3,11)	-1.0	-1.0	-24.0	-1.0	80	09	-24.0	40	80
))	C(3,19)	.010450	.008805	.017155	.013185	.002128	.001785	.017781	.002131	.000839
))	C(3,28)	0.0	0.0	034310	026370	002128	001785	035561	004262	913678
))	2(4,12)	7	427	0.9-	-1.3	-1.0	-1.0	0.9-	-2.0	-1.0
))	2(4,32)	.037402	.009147	.049167	.033125	.004473	.003660	.079521	.004473	.019016

TABLE 8-2. Temperature-dependent coefficients

Coefficients Velowstone Clarks C(1,12) .25ff .25f1 C(1,19) .5ffl .5ffl C(1,19) .5ffl .5ffl C(1,28) 25fl .5fl C(1,31) 0.0 0.0 C(4,9) 0fl 0.0 C(4,9) 0fl 0.0 C(4,9) 0fl 0.0 C(4,9) 0fl 0.0 C(4,10) 0fl 0.0 C(4,10) 0fl 0.0 C(4,10) 0fl 0.0 C(5,15) 0fl 0.0 C(5,16) 0.0 0.0 C(5,16) 0.0 0.0 C(5,18) 0.0 0.0 C(5,18) 0.0 0.0 C(7,18) 0.0 0.0 C(5.5	\$111,0003 Area . \$011 . \$11 \$1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.	819born28112811 0.0	44d- 1611owstone .25ft .35ft .25ft 0.ft	Tonque	FILLS		
2541 5011 2511 0.0 0.0 0.0 00067 024 024 024 024 024 024 024 024 026 026 026 026 027 027 026 027 026 026 027 026 026 027 026 026 026 026 027 026 0	5.5	. 50E1 . 51E . 51E 0.0 0.0 0.0 1.0 005668 005668	. 25ft . 50ft 25ft 0.0			67 C C C S	Powder	Comer Fellowsfone
. Salt I 25E1 0.0 0.0 0.0 00067 0024 . 024 . 024 . 024 . 024 . 024 . 026 . 027 . 028 . 028 . 038 . 038	~ ~		2541		.2561) 15.	254.0	2581
25f1 0.0 0.0 0.0 00067 0024 0.0 - 1.0 0.0 0.0 5.0f1	~ ~	\$E 0.0 0.0 0.0 11.0 005666 005666 12	2541 0.0 0.0		115	1 35.	Just.	1 1
0.0 0.0 0.0 00067 0024 .024 0.0 -1.0 0.0 0.0 0.0 .4%!!		0.0 0.0 11.1 005666 005666 12	0.0		2511	136.	1182	1152
0.0 0.0 00067 0024 .024 0.0 -1.0 0.0 0.0 3.4.541	2.5	0.0 ff.ff 005666 005666 12	0.0		0.0	0.0	1.1	1
0.0 00067 0024 .024 0.0 -1.0 0.0 0.0 3541 0.0 5.011		11.0 005666 005666 12			0.0	6.9		
	00055 124 124	005666 005666 12 12	U.D		0.0	0.0	0.3	1.1
	00055 124 124 1	005666 12 12	()()22		2000	005829	0002	6 24
	53.	12	0022		0002	005423	(1992	
0.00 -1.0 0.0 0.0 0.0 0.0 0.0 5.011	77.	1.2	.012		.012	10	.012	. 11.2
0.0 -1.0 0.0 0.0 0.0 5.0ft			.012		.012		.012	.112
-1.0 0.0 0.0 0.0 0.0 5.0ft	_	0.0	D.C		0.0	0.0		
0.0 0.0 .4\${!	_	-1.0	-1.n		-1.0	-1.0	-1.0	= : ;
0.0	_	0.0	0.0		0.0	1, 1		
		0.0			0.0	c.		
5.00		1366.) }', '-', '] js · - · .	1 7	
		D.D			E. E.	÷ • •		
		1,0.0	1,0.0	1][];	2.051	5. 1/1 (
		_ ;·		136.				4.a. 1-
130.5				110.				
]		110.1		1 18.		1.1.1		•
		0.0						
0.0		□ . □	1.0	11.7				
		0.0	0.0			-		
0.0		0.0	0.0	(··-	:			
0.0		0.0	0.0					
0.0		0.0	0.0					
		0.0	0.0					

 ρ : .004 x EVP .06 x .52 = 1 r . .094 x EVP .20504 V . .52 = 1 If : exaponation loss

TABLE 8-3. Temperature-dependent coefficients

				Temperature	Temperature greater than 32 ⁰ F	32 ⁰ F			
Coefficients	Upper Yellowstone	Clarks Fork	Billings Area	Bighorn	Mid- Yellowstone	Tongue	Kinsey Area	Ромдег	lower Yellowstone
C(1,2) C(1,19) C(1,28) C(1,31) C(1,31) C(3,31) C(4,19) C(4,19) C(5,15) C(5,15)	EL EL 25EL . 5EL EVP . 010450 00097 00097 0.0	1.0EL 1.0EL 25EL .5EL .010450 00097 00097 0.0		. 75FL . 5EL . 5EL . 5EL . 5EL EVP . 019185 002792 0.0	1.0EL 1.0EL 25EL .5EL 0.0 0.13792 001666 0.0 0.0	1.0EL 1.0EL 25EL .5EL EVP .001785 000254 0.0		1.0fL 1.0eL 25eL .5eL EVP 002128 000307 0.0	1.0EL 1.0EL 25EL .5EL EVP .006839 000338 0.0
(6,31) (7,13) (7,13) (7,13) (8,12) (8,12) (8,28) (9,12) (9,12) (9,12) (10,12) (10,12) (11,31) (11,31) (11,22) (16,21)	0.0 .5A .4 - 5EL .3 - 8EL .5 - 0EL .5 - 0EL .5 - 0EL .5 - 0EL .5 - 0EL .5 - 0EL .5 - 0EL	5.00 .5.4 .4.5.EL .3.8.EL .5.0.EL .5.0.EL .5.0.EL .5.0.EL .5.0.EL .5.0.EL	5. SEL 5. SEL 5. SEL 5. SEL 5. SEL 7. SEL	0.0 .5A .5A .55EL .38EL .5.0EL .5.0EL .7 .1.0 .54	0.0 .5A .45EL .38EL 5.0EL .5EL .5EL .5CL .5CL .5CL .5CL .5CL .5CL .5CL .5CL .5CL .5CL .5CL .5CL	2.54 54 556 386 506 56 56 506		5.00 5.00 5.00 5.00 5.00 6.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 1.00 1.00 5.00 1.00

EVP is calculated in Sub routine SURFACE and transferred to mainline.

EL = evaporation loss
A = snowmelt rate
d = dampening factor

Corretants•	$0: SF = \frac{(S + (23))}{d + (S + (23))}$	$A = \frac{(-1.52)(V_0 + -1.532)^2}{10V_0 + 1} + \frac{1}{15} \frac{32}{1} + \frac{2}{2}$

15 when 32 - 1 - M

H = FI + HI²

MS = 0 when $I \rightarrow M$

 $\lambda 13 = \frac{H-1}{\sqrt{p}}$ V5 when 6 $\leq 1 \leq 32$; except in Powder Subbasin, where $\lambda 13 = 1 - 5$, at $\frac{1-\zeta}{\zeta^4}$

115 = 15 when I · 6

					Subbasins				
Constants	Upper Yellowstone	Clarks fork	Billings Area	Bighorn	Mid- Yellowstone	Tongue	Finsey	Powjer	1011-001
# 2 \$ \$ 2 = 1 = 1 = 2 = 4		11.0 20. 20. 20. 10.0 14.10 16.0 16.0 16.0 10.0 10.0			.02120 10.0 50.0 .12. 11.8×10 ⁻⁵ 12.5×10 ⁻⁷ 82.0 82.0 82.0		10.59%. 1.05.5 1.10 ⁻⁷ ; 1.10 ⁻⁷ ; 1.10 ⁻⁷ ; 1.10 ⁻⁷ ; 1.10 ⁻⁸ ;	11. 11.576	

*D - soil water percolation A = Fate of snowmelt L = temperature in fabrenheit

15 = precipitation 125 = initial soil mater storage VIS = snowtall

-131-

Table B-5. Initial values (independent of the scenario)

Subbasins	RE	Ù	RE Q SAVE	FC	FCMin	01	02	FCMin (1) (12 P1	p2	Ε	ī.
Billings Area	04.	38.	.40 .85 .24370 .825	.825	.0825	.015	.015	.015 .015 .006623 .005956 1944 1975	956500*	1944	1975
Bighorn	.40	.80	.40 80 .317350 .94	· 94	760.	.02	.02 .02	.056322	.056322 .054806 1944 1973	1944	1973
Mid-Yellowstone	.40	.85	.40 .85 .396737 1.125	1.125	.1125	.015	.015	.015 .015 .010118	.009549 1944 1973	1944	1973
Tongue	.40	.80	.40 .80 .015368	.852	.03834	.015	.015	.015 .015 .000435 .000417 1944 1973	.000417	1944	1973
Powder	.40	.80	.40 .80 .305471	.830	.083	.015	.015	.015 .015 .000457 .000549 1944 1973	.000549	1944	1973
Lower Yellowstone .40 .80 .358272 1.66	.40	.80	.358272	1.66	.166	.010	.010	.010 .010 .095730 .087535 1944 1973	.087535	1944	1973

Table B-6. Initial values (dependent on the scenario)

Subbasins	Scenario	53	\$102	7.1
Billings Area	High Inter. Low	0.0	0.0	0.0
Bighorn	High Inter.	1.1	1.1	.002345
Mid-Yellowstone	High Inter. Low	0.0	0.0	.011620 .006290 .002930
Tongue	High Inter. Low	.32 .32 .112	. 32 . 32 . 112	.004385
Powder	Inter. Low	.275	.275	0.0
Lower Yellowstone	High Inter. Low	0.0	0.0	.001085

Appendix C

	TABLES	
FAGUE U = 1	relimentance biser at Billings: repression equations.	11.
TABLE 1-2	Tonque River near Miles City: regression equations.	11
FABLE (=3)	Powder Biver at Locate: regression equations.	120
TARLE C-4 L	Big Horn River: regression equation.	121
TABLE L-5	rellowatione near Miles City: regression equation.	121
1 ABI E - C - 6	Yellowstone River hear Sidney: regression equations.	127

TABLE C-1. Yellowstone River at Billings: regression equations

Month	Best Fit Equation	r ²	Significance
Jan	log IDS = 3.1642412912 log Q	.073	NS
feb	log IDS = 3.5411620614 log Q	.106	NS
Mar	TDS = 1527.71 - 235.17461 log Q	.766	**
Apr	log TDS = 4.2438434054 log Q	.645	* *
May	TDS = 924.22705 - 131.16983 log Q	.606	х×
June	log TDS = 2.5779108230 log Q	.063	NS
July	IDS = 935.46143 - 135.05623 log Q	.827	* *
Aug	log TDS = 4.2760535261 log Q	.850	**
Sept	TDS = 1622.26001 - 251.31508 log Q	.868	* *
Oct	log TDS = 5.0581248689 log Q	.834	* *
Nov	TDS = 2255.61938 - 368.94141 log Q	.806	**
Dec	TDS = 2119.83569 - 346.26465 log Q	.510	**
ALL MONTHS	log TDS = 4.8219444798 log Q	.934	* *

NOTE: TDS = Average Monthly Total Dissolved Solids, mg/l

Q = Monthly Discharge, acre feet

** = Significant at 1% level

* = Significant at 5% level

NS = Not Significant at 5% level

TABLE C-2. Tongue River near Miles City: regression equations

Honth	Best Fit Equations	1?	Sugnificance
Jan	log IDS = 2.96804600001178 4	. 57 5	
Feb	10 1D5 2.88691960000093196 4	.718	• •
Mar	TDS = 1445.71 - 217.25081 log 4	.539	
Apr	105 = 1524.68 - 217.70712 log Q	.867	• •
Max	105 = 1348.75 - 191.64864 log Q	.546	
June	TDS = 1221.21 - 189.03383 log Q	.750	• •
July	105 = 1515.50 - 260.70199 log Q	.815	• •
Aurj	1DS = 1686.28 - 301.87476 log Q	.819	• •
Sept	log 1DS = 3.5177520078 log Q	.869	• •
Oct	1DS = 1647.14 - 265.4541 log Q	.787	
\ 0\	1DS = 3.6949221753	.627	
Dec	IDS = 2375.20 - 408.74805	.420	• •
ALL MONTHS	IDS = 1672.10 - 267.88509 log Q	.583	• •

NOTE: IDS = Average Monthly Total Dissolved Solids, mg/l

Q = Monthly Discharge, acre feet

•• = Significant at 1% level

• = Significant at 5% level

'S = 'ot Significant at 5% level

TABLE C-3. Powder River at Locate: regression equations

Month	Best Fit Equations	r ²	Significance
Jan	TDS = 2009.904002 Q	.154	NS
Feb	TDS = 3965.75 - 663.84961 log Q	.745	• •
Har	log TDS = 3.141480000027288 Q	.857	÷ •
Apr	IDS = 1603.9900769 Q	.764	• •
Hay	TDS = 2952.23 - 408.35352 log Q	.179	NS
June	log TDS = 3.5065710353 log Q	.256	NS
July	TDS = 4378.26 - 707.0542 log Q	.580	
Aug	TDS = 2171.01 - 136.30793 log Q	.067	NS
Sept	log TDS = 3.3537106055 log Q	.170	NS
Oct	TDS = 3479.57 - 521.59961 log Q	.517	NS
Nov	log TDS = 3.3798800002 Q	.855	* *
Dec	log TDS = 3.4052300002 Q	.749	**

NOTE: IDS = Average Monthly Total Dissolved Solids, mg/l

Q = Monthly Discharge, acre feet

** = Significant at 1% level

• = Significant at 5% level

NS = Not Significant at 5% level

TABLE C-4. Big Horn River: regression equation

	Bonthly Values for ${\rm BP}_{\rm GX}$ are		
Jan = 551	1 ob = 589	thereb	()()
Apr = 602	May = 610	Запи	59()
July = 527	Aug = 447	Sept	475
Oct = 604	Nov = 567	Det	571

NOTE: IDS = 57.1 + .93596 IDS ...

where IDS = Average Monthly Total Dissolved Solids, mg/l

 $IDS_{\zeta\chi}$ = IDS near St. Navier

TABLE C-5. Yellowstone near Miles City: regression equation

log TDS = 5.7522 - .545 log Q

where TDS = Average Monthly Total Dissolved Solids in mg/l

Q = Monthly Discharge in acre feet

TABLE C-6. Yellowstone River near Sidney: regression equations

Month	Best Fit Equation	r ²	Significance
Jan	log TDS = 4.456632983 log Q	.655	ř ž
Feb	TDS = 2469.44 - 339.72412	.580	4 4
Mar	TDS = 2785.62 - 392.1665	.571	*
Apr	log TDS = 2.836670000001614 Q	.634	* *
Мау	TDS = 561.7100017959 Q		
June	TDS = 198.98 + .00003539 Q		
July	TDS = 917.41 - 101.69664 log Q	.250	
Aug	TDS = 2303.31 - 327.66333 log Q	.602	**
Sept	log TDS = 2.858420000002973 Q	.543	*
Oct	TDS = 3745.50 - 561.71338 log Q	.722	**
Nov	TDS = 3852.08 - 579.99414 log Q	.629	**
Dec	TDS = 754.84000344 Q	.446	NS

NOTE: IDS = Average Monthly Total Dissolved Solids, mg/l

Q = Monthly Discharge, acre feet

** = Significant at 1% level

* = Significant at 5% level

NS = Not Significant at 5% level

Literature cited

- federal Energy Administration. 1974. Project Independence Report.
- Frederiksen, Kamin, and Associates. 1976. Single Puipose Irrigation Study of the Yellowstone River Basan, Montana.
- Ireson, A. Shell 0:1 Company executive. Telephone conversation in November, 1979 with researcher from Montana Department of Natural Resources and Conservation. Call between Denver and Belena.
- Missouri River Basin Commission. 1975. Yellowstone River Basin and Adjacent Coal Areas Level B Study.
- . 1976. Analysis of Energy Projections and Implications for Resource Requirements. Helena.
- Montana Coal Task Force. 1973. Coal Development in Eastern Montana. Helena. 6-19 pp.
- Montana College of Mineral Science and Technology. 1973. Quality and resources of strippable coal, selected coal, selected deposits, southeastern Montana. By Matson, R.E. and J.W. Blumer. Bureau of Mines and Geology. Butte. 91: 18-134.
- Montana Department of Agriculture. 1946-74. Montana Agricultural Statistics. Helena.
- Montana Department of Community Affairs. 1976a. Economic Conditions in Montana: a report to the Governor. Helena. 35 pp.
- . 1976. Montana Futures Process. Helena.
- Montana Department of Labor and Industry. 1975. Documents on non-agricultural employment. Series 790, 1963-74. Helena.
- Montana Department of Natural Resources and Conservation. 1970. An Atlas of Water Resources in Montana by Hydrologic Basins. Helena.
- . 1976. Montana Historical Energy Statistics. Helena.
- _____. 1977. The Future of the Yellowstone River . . . ? Water Resources Division, Helena. 107 pp.
- Montana Energy Advisory Council. 1974. Coal development information packet. Helena. 34 pp.
- Council staff report, by T.H. Clack, Jr. Helena. 56 pp.

- Montana State University. 1969. Costs of owning and operating 5 different types of sprinkler systems by Cothern, J., Howard, S., and Luft, L. Bozeman. . 1974. Montana University Coal Demand Study: Projections of Northern Great Plains Coal Mining and Energy Conversion Development, 1975-2000 A.D. Bozeman. Montana University Joint Water Resources Research Center. 1972. Development of a State Water Planning Model, by Boyd, D.W. and F.I. Williams. Bozeman. Northern Great Plains Resources Program. 1974a. National and Regional Energy Considerations Work Group Report. Denver. 65 pp. . 1974b. National and Regional Water Work Group Report. Denver. Rocky Mountain Association of Geologists. 1972. Geologic atlas of the Rocky Mountain Region: United States of America. Denver. 331 pp. Stanford Research Institute. 1974. Working paper on maximum credible implementation scenarios for the impact of alternative automobile fuel. Menlo Park. CA. Texas Water Development Board. 1972. SIMYLD-II. U.S. Army Corps of Engineers. 1972. Streamflow Synthesis and Reservoir Regulation. Washington. U.S. Department of Agriculture. 1951. Soil Survey Manual. Agricultural Handbook II, 18. Soil Conservation Service. Bozeman. . 1970a. Montana Soil and Water Conservation Needs Inventory. Soil Conservation Service. Bozeman. . 1970b. Modified Blaney-Criddle method of determining evapotranspiration values for individual vegetative types. . 1972. U.S. Climatologicl Records. U.S. Department of Commerce. 1972. 1969 Census of Agriculture. Washington D.C. . 1974. 1972 Census of Retail Trade. Washington D.C. . 1975a. 1972 Census of Manufacturing. Washington D.C. . 1975b. 1972 Census of Mining. Washington D.C. . 1975c. Regional economic information system: 1969-72. Bureau of
- U.S. Department of Energy. 1979. Environmental Analysis of Synthetic Liquid Fuels. Washington D.C.

Economic Analysis. Washington D.C.

of phase I. Volume I. Bureau of Reclamation. Billings. 80 pp. . 1972. Report on the Resources of Lastern Montana Basans. 59 pp. . 1974a. Water supply papers. . 1974b. Program 100-2. . 1974c. Total estimates of coal resources for U.S. Unpublished file report. U.S. Geological Survey. Washington D.C. . 1955. Report on Powder Division; Wyosing and Montana; Missouri River Basin project. . 1959. Report on Clarks fork Division; Wyoming and Montana; Missouri River Basin project. 1963. Report on Yellowstone Division; Montana-North Dakota; Missouri River Basin project. . 1971. Feasibility report on Hardin Unit; Lower Big Horn Division. Pick-Sloan Missouri Basin program. . 1972. Appraisal report on re-examination of Missouri-Yellowstone tributaries. Pick-Sloan Missouri Basin program; Montana-Wyoming. U.S. Department of Labor. Bureau of Labor Statistics. 1975. Productivity trends, 1980-85. Washington, D.C. U.S. Water Resources Council. 1972. OBERS projections series E. Volume 1. Concepts, methods and summary data. _____. 1975. Unpublished price standards; computer printout. Utah State University. 1973. Utah State Water Model. By Hill et al. Western States Water Council. 1974. Western States Water Requirements for Energy Development to 1990. Salt Lake City, Utah. 25-33 pp. Wyoming Legislative Special Subcommittee on Cunsumptive Water Use. 1974.

Coal Development Alternatives: an assessment of water use and economic implications by Freudenthal, D.D., Ricciardelli, P., and York, M.N.

U.S. Department of the Interior. 1971. Soiff Central Power Fudy: report

Department of Economic Planning and Development. Chevenne.

MUNTANA

BEPARTMENT OF MATURAL RESOURCES
A COANERVATION

Helena Muntana

