Actividad Práctica: Resolución de Consignas

Actividad Práctica

Serie de Fourier

Análisis de Señales y Sistemas R2041 – R2072

Resumen

Serie Trigonométrica de Fourier

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n sen(n\omega_0 t) \right]$$

$$a_n = \frac{2}{T_0} \int_{} x(t) \cos(n\omega_0 t) dt$$
 $n = 1, 2, 3, ...$

$$n = 1, 2, 3, \dots$$

$$a_0 = \frac{2}{T_0} \int_{} x(t) dt$$

a₀/2 VALOR MEDIO de x(t)

$a_n = \frac{2}{T_0} \int_{<T_0>} x(t) \cos(n\omega_0 t) dt \quad n = 1, 2, 3, \dots$ $b_n = \frac{2}{T_0} \int_{<T_0>} x(t) sen(n\omega_0 t) dt \quad n = 1, 2, 3, \dots$

$$b_0 = 0$$

Propiedades de Paridad de la SdF

Si x(t) es IMPAR, su SdF SÓLO CONTENDRÁ funciones SENO, por lo tanto a,= 0 para todo n

Si x(t) es PAR, su SdF SÓLO CONTENDRÁ funciones COSENO, por lo tanto b,= 0 para todo n

Síntesis y Espectro de Frecuencias

Actividad Práctica EN MATLAB...

Análisis de Señales y Sistemas R2041 – R2072

```
읒
 Toolbox
                                                    Ejemplo Función
Ts=0.01; T0=2;
                                                     cuadrada
t=-T0/2: Ts: T0/2;
                                                     Con Toolbox
ft = -escalon(-t) + escalon(t);
N=10 ;
a0 = STF a0(t, ft); % ft: Usar un solo período
an = STF an(N, t, ft); % Usar un solo período
bn = STF bn(N, t, ft) ; % Usar un solo período
%t=-4*T0/2: Ts: 4*T0/2; % Podemos tomar varios Períodos
serie = ISTF(N, t, a0, an, bn, T0);
figure; plot(t, serie, 'linewidth', 3); grid on
                                                      Si Utilizo:
```

Ídem anterior Señal reconstruida desde <u>ao, an y bn</u> Toolbox

Análisis de Señales y Sistemas R2041 – R2072

grid on ; axis tight

Ejercicios

Reproducir la siguiente señal mediante STF (serie trigonométrica de Fourier).

Sin *cálculos analíticos*, con Toolbox ASYS

clc; close all; clear all

```
f(t) = t * (t^2 - \pi^2) + 20 ; [-\pi, \pi) ; Periódica es un seno deformado
```

```
Ts=0.001; T0=2*pi;

t=-T0/2: Ts: T0/2-Ts;

ft = t.* (t.^2 -pi^2) +20;

a0 = STF_a0(t, ft);

an = STF_an(N, t, ft);

bn = STF_bn(N, t, ft);

a_0 = \frac{2}{T_0} \int_{T_0} f(t) . dt

a_n = \frac{2}{T_0} \int_{T_0} f(t) . cos(n.w_0.t) . dt

b_n = \frac{2}{T_0} \int_{T_0} f(t) . sen(n.w_0.t) . dt

serie = ISTF(N, t, a0, an, bn, T0) f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n . cos(n.w_0.t) + b_n . seno(n.w_0.t)]

figure; plot(t,ft, 'linewidth',3); hold on

plot(t,serie, 'linewidth',3, 'color', 'r');
```

gend ('Señal Original', 'Señal Reconstruida', 'seno')

plot(t, -10.5*sin(1/3*pi*t) +22, '--')

Actividad Práctica Ejercicios

Análisis de Señales y Sistemas R2041 – R2072

Similar ejercicio anterior con:

```
f(t) = t^4 - 1000; \quad [-\pi, \ \pi]
Utilizar 40 armónicos
```

Resolución:

```
En programa anterior modificamos: ft = (t.^4) -1000; N=8;
```

```
Ts=0.001; T0=2*pi;
t=-T0/2: Ts: T0/2-Ts;
ft = (t.^4) -1000;
N=8;
a0 = STF_a0(t, ft);
an = STF_an(N, t, ft);
bn = STF_bn(N, t, ft);
serie = ISTF(N, t, a0, an, bn, T0);
figure; plot(t,ft, 'linewidth',3); hold on
plot(t,serie, 'linewidth',3, 'color', 'r');
grid on; axis tight
legend('Señal Original','Señal Reconstruida')
```


Análisis de Señales y Sistemas R2041 – R2072

Ejercicios

Se pide analizar y probar el siguiente programa

```
% Señal de ECG: Electrocardiograma
ECG = [90, 95, 124, 153, 182, 211, 241, 230, 202, 173, 143, 114, ...
    89, 83, 75, 67, 70, 78, 85, 90, 90, 90, 90, 90, ...
    92, 100, 107, 113, 118, 122, 124, 125, 124, 121, 117, 111, 104, ...
    97, 90, 90, 90, 90, 90, 90, 90, 90, 90, 92, 93, ...
    90, 90, 90, 90, 90, 90, 97, 104, 109, 112, 113, 111, ...
    107, 100, 91, 90, 90, 90, 90, 90, 90];
```

plot(t,ft,..)

Toolbox ASYS

x= [ECG ECG] ; % Tomo 2 períodos de ECG

fs = 100; dt = 1/fs; % Debo conocer fs para generar el vector de tiempo

```
t = (0: size(x,2)-1) *dt;
```

x = x + 30*rand(size(t)); % Le sumo ruido

¿Que frecuencia le corresponde a N=20 ?

% Calculamos coeficientes STF y reconstruimos la señal

```
N=20;
a0 = STF \ a0(t, x);
an = STF an (N, t, x);
bn = STF bn(N, t, x) ;
T0 = t (end)
serie = ISTF(N, t, a0, an, bn, T0);
figure; plot(t,x, 'linewidth',3); hold on
plot(t, serie, 'linewidth', 3, 'color', 'r');
grid on ; axis tight
legend('Señal Original', 'Señal Reconstruida') 80
```


Actividad Práctica Sonido

Análisis de Señales y Sistemas R2041 – R2072

Serie Trigonométrica de Fourier (STF)

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cdot \cos(n \cdot w_0 \cdot t) + b_n \cdot \sin(n \cdot w_0 \cdot t)]$$

 w_0 $n. w_0$ $n = 1 \rightarrow w_0$ $n = 2 \rightarrow 2 * w_0$ $n = 3 \rightarrow 3 * w_0$ n = ...

Guitarra acústica

Fundamental: 82-988 Hz Armónicos: 1-15 KHz

Análisis de Señales y Sistemas R2041 – R2072

Generador de Melodías

```
fm=8120; % fm= Fsampling, Frecuencia de Muestreo
%% Elaboración de las notas musicales
   r=2^(1/12);
fr=440; % frecuencia de referencia LA
fr= r^-9*fr; % Tomamos la frecuencia del do para definir las octavas de mejor manera Generador de

Melod:
    r=2^{(1/12)}:
    d= r^2*fr*[1/4 1/2 1 2 4]; % Re
    ds = r^3*fr*[1/4 1/2 1 2 4]; Re sostenido
    e= r^4*fr*[1/4 1/2 1 2 4]; % Mi
    f = r^5 fr^* [1/4 1/2 1 2 4]; % Fa
    fs = r^6*fr^*[1/4 1/2 1 2 4]; % Fa sostenido
    q = r^7 fr^*[1/4 1/2 1 2 4]; % Sol
    qs = r^8 fr^* [1/4 1/2 1 2 4]; % Sol sostenido
    a = r^9 fr^{1/4} 1/2 1 2 4; % La
    as=r^10*fr*[1/4 1/2 1 2 4];% La sostenido
    b= r^11*fr*[1/4 1/2 1 2 4]; % Si
    s=0; %El Silencio, su frecuencia es cero
    n=.5; % Definimos la duración en segundos de la negra tomada como 1 tiempo
%% Hacemos un vector N = [ nota , duración ]
    NOTAS=[g(3), e(3), s, e(3), f(3), g(3), e(4), e(4), e(4), e(4)]; % sol(3), mi(3), silencio, mi(3), fa(3),...
    DURACION=[n/2, n/2, 3*n/2, n/2, n/2, n/2, n, n, 2*n];
    N=[NOTAS',DURACION'];
                              y=[];
%% Armamos la señal
    for i=1:length(N)
      fr=N(i,1); tf=N(i,2);
      x=(0:(1/fm):tf);
      y=[y sin(fr*2*pi.*x)]; % Armamos el vector de notas
    end
sound(y) % % Reproducimos el sonido, en este comando esta toda la magia
audiowrite ( 'Melodial.wav', y, fm); % Guardamos en archivo
```

Ejercicios

Análisis de Señales y Sistemas R2041 – R2072

<u>Ej 1)</u>

Calcular la Serie de Fourier para cada una de las siguientes funciones y graficar el espectro de módulo si el período es T0=4

Resuelvo con STF

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cdot \cos(n \cdot w_0 \cdot t) + b_n \cdot \sin(n \cdot w_0 \cdot t)]$$

$$w_0 = \frac{2 \cdot \pi}{T_0} = \frac{2 \cdot \pi}{T_0} = \frac{\pi}{2} \quad ; T_0 = 4$$

Si a la señal le resto una constante, resulta una señal Impar $\rightarrow a_n = 0$ $para n \neq 0$ (excepto en a_0 que es el valor de continua)

$$\int_{T_0} g_{impar}(t) \cdot m_{par}(t) \cdot dt = 0 \quad \text{periodicas en } T_0$$

$$impar \quad par$$

$$a_n = \frac{2}{T_0} \int_{T_0} f(t) \cdot \cos(n \cdot w_0 \cdot t) \cdot dt = 0 \quad , \quad \text{Excepto en } n = 0$$

$$a_0 = \frac{2}{T_0} \int_{T_0} f(t) \cdot dt \quad ; \quad \frac{a_0}{2} \colon \textit{Valor medio de } f(t)$$

$$f(t) = f(-t) \rightarrow par$$

$$f(t) = -f(-t) \rightarrow impar$$

Análisis de Señales y Sistemas R2041 – R2072

Ejercicios

Ej 1) cont.

$$a_0 = \frac{2}{4} \int_0^4 \left(\frac{-t}{4} + 1\right) \cdot 1 \cdot dt = \frac{1}{2} \cdot \left[\frac{-t^2}{8} + t\right] \Big|_0^4 = \frac{1}{2} \cdot \left[\frac{-16}{8} + 4 - 0 - 0\right] = 1$$

$$b_n = \frac{2}{T_0} \int_{T_0} f(t) \cdot \sin(n \cdot w_0 \cdot t) \cdot dt = \frac{2}{T_0} \int_0^4 \left(\frac{-t}{4} + 1\right) \cdot \sin(n \cdot w_0 \cdot t) \cdot dt$$

$$b_n = \frac{1}{2} \left[\int_0^4 \left(\frac{-t}{4}\right) \cdot \sin(n \cdot w_0 \cdot t) \cdot dt + \int_0^4 \sin(n \cdot w_0 \cdot t) \cdot dt\right]$$
Usamos tablas de

La segunda Integral da cero, ya que integro un seno en 1 período

$$b_n = -\frac{1}{8} \left[\int_0^4 (t) \cdot \operatorname{sen}(n.w_0.t) \cdot dt \right] = -\frac{1}{8} \left[\frac{\operatorname{sen}(n.w_0.t)}{(n.w_0)^2} - \frac{t.\cos(n.w_0.t)}{n.w_0} \right]_0^4$$

$$b_n = -\frac{1}{8} \left[\frac{\operatorname{sen}(n.w_0.t)}{(n.w_0)^2} - \frac{t.\cos(n.w_0.t)}{n.w_0} \right]_0^4 = -\frac{1}{8} \left[\frac{\operatorname{sen}\left(n.\frac{\pi}{2}.t\right)}{(n.\frac{\pi}{2})^2} - \frac{t.\cos\left(n.\frac{\pi}{2}.t\right)}{n.\frac{\pi}{2}} \right]_0^4$$

integrales

Actividad Práctica Ejercicios

Ej 1) cont.

$$b_{n} = -\frac{1}{8} \left[\frac{0}{\left(n \cdot \frac{\pi}{2}\right)^{2}} - \frac{4 \cdot \cos(n \cdot 2 \cdot \pi)}{n \cdot \frac{\pi}{2}} - \frac{0}{\left(n \cdot \frac{\pi}{2}\right)^{2}} + \frac{0x1}{n \cdot \frac{\pi}{2}} \right] = \frac{-1}{4 \cdot n \cdot \pi} \left[0 + 4 + 0 + 0 \right]$$

$$b_{n} = \frac{-1}{n \cdot \pi}$$

$$\cos(n.2.\pi)=1$$

Actividad Práctica Ejercicios

Análisis de Señales y Sistemas R2041 – R2072

Ej 2)

Dada la siguiente función: $f(t) = 2.\cos(5.t) - \sin(2.t)$

Hallar la Serie Trigonométrica de Fourier (STF), sin utilizar la fórmula integral.

Resolución:

$$w_{01} = 5.rad/seg$$
; $w_{02} = 2.rad/seg$
 \longrightarrow MCD(Máximo Común Divisor) Se deduce: $w_0 = 1.rad/seg$

Comparo la función dada con S.T.F:

$$f(t) = 2 \cdot \cos(5 \cdot t) - \sin(2 \cdot t) \equiv f(t) \equiv \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cdot \cos(n \cdot w_0 \cdot t) + b_n \cdot \sin(n \cdot w_0 \cdot t)]$$

$$f(t) \equiv 0 + \sum_{n=5}^{5} [a_n \cdot \cos(n \cdot w_0 \cdot t)] + \sum_{n=2}^{2} [b_n \cdot \sin(n \cdot w_0 \cdot t)]$$

Comparo las ecuaciones y obtengo:

$$f(t) = a_5 \cdot cos(5.t) + b_2 \cdot seno(2.t) = 2 \cdot cos(5.t) - 1 \cdot seno(2.t)$$

 $a_5 = 2$; $b_2 = -1$; $w_0 = 1 \cdot rad/seg$

Actividad Práctica Ejercicios

<u>Ej 3)</u>

 $f(t) = cos(2.\pi.1000.t) - 3.cos(2.\pi.3000.t)$ Hallar el módulo de su Espectro

Ayudas de Consignas

Consigna de la clase #A (30 minutos)

Utilizar *Matlab* para *sintetizar las siguientes expresiones* en Series de Fourier, identificando los coeficientes a_n y b_n . Efectuar el gráfico de su *Espectro de Frecuencias* (N=10 coeficientes), con el *eje de abscisas en Hz*. Verificar *analíticamente* los desarrollos en serie, partiendo de sus definiciones correspondientes.

Actividad Práctica Ayudas de Consigna

Ayudas -

Señal 1: período $T_0 = 2.\pi$, Amplitud $2.\pi$

$$f(t) = \frac{a_0}{2} + b_1 \cdot \text{seno}(1, w_0, t) + b_2 \cdot \text{seno}(2, w_0, t) + b_3 \cdot \text{seno}(3, w_0, t) + \cdots$$

$$x_1(t) = \pi - 2.\frac{seno\ x}{1}$$
 $-2.\frac{seno\ 2x}{2}$ $-2.\frac{seno\ 3x}{3}$

$$-2.\frac{seno\ 2x}{2}$$

$$-2.\frac{seno 3}{3}$$

En clases a) Sin calcular la integral, deducir los coeficientes de la Serie de Fourier de las siguientes señales

Si resto valor continuo a la función se vuelve Impar, entonces $a_n = ...$

$$b_n = \cdots$$
 ; $a_0 = \cdots$

$$a_n = 0$$
 ; $n \neq 0$

$$b_n = \frac{-2}{n}$$
 ; $a_0 = 2.\pi$

Actividad Práctica Ayudas de Consigna

Ayudas b) Mediante Integral (S.T.F.)

Ayudas b) Mediante Integral (S.T.F.)
$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n.w_0.t) + b_n \sin(n.w_0.t)]$$

$$a_n = \frac{2}{T_0} \int_{T_0} f(t) \cos(n.w_0.t) \cdot dt \; ; \quad b_n = \frac{2}{T_0} \int_{T_0} f(t) \sin(n.w_0.t) \cdot dt$$

$$impar$$

$$a_0 = \frac{2}{T_0} \int_{T_0} f(t) dt$$
 ; $\frac{a_0}{2}$: Valor medio de $f(t)$

$$a_0 = \frac{2}{T_0} \int_{T_0} f(t) dt =$$
 completar
 $b_n =$ completar

Resolver Integrales en forma Analítica

Rta:
$$b_n = \frac{-2}{n}$$
 ; $a_0 = 2.\pi$

Actividad Práctica Ayudas de Consigna

Ayudas

Señal 2: Triangular, período $T_0 = 2.\pi$, Amplitud π

$$\frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right)$$

Resolver

a) Sin calcular la integral

Resultado analítico:

Función Par, entonces $b_n = 0$

$$a_n = \frac{2}{\pi \cdot n^2} [(-1)^n - 1]$$
 ; $a_0 = \pi$

$$(-1)^n-1$$

para n impar da -2
Para n par da0

n	$(-1)^n - 1$	$a_n = \frac{2}{\pi \cdot n^2} [(-1)^n - 1]$
0	0	$\frac{2}{\pi \cdot n^2}[0] = 0$
1	-2	$\frac{2}{\pi . n^2}(-2)$
2	0	
3	-2	

Actividad Práctica Ayudas de Consigna

Euler
$$e^{j.\varphi} = \cos(\varphi) + j. sen(\varphi)$$
 Si $\varphi = n.\pi$
$$e^{j.n.\pi} = \cos(n.\pi) + j. sen(n.\pi)$$

$$e^{j.n.\pi} = \cos(n.\pi) = \cdots$$
 Si $n = 1$;
$$e^{j.\pi} = \cos(\pi) = -1$$
 Si $n = 2$;
$$e^{j.2.\pi} = \cos(2.\pi) = 1$$

$$e^{j.\varphi} = \cos(\varphi) + j. sen(\varphi)$$

Si $\varphi = \pi/2$
 $e^{j.\pi/2} = \cos(\pi/2) + j. sen(\pi/2) = j$
Si $\varphi = 2.\frac{\pi}{2} = \pi$
 $e^{j.\pi} = -1 + 0$
Si $\varphi = 3.\frac{\pi}{2}$
 $e^{j.3.\pi/2} = \cos(3.\pi/2) + j. sen(3.\pi/2) = -j$

Actividad Práctica Ayudas de Consigna

Ayudas

n	$\cos(n,\pi)$	$(-1)^n$	$cos(n.2.\pi)$	$cos(n.\pi/2)$	
0	1	1	1	1	
1	-1	-1	1	0	
2	1	1	1	-1	
3	-1	-1	1	0	
4	1	1	1	1	

Euler $e^{j.\varphi} = \cos(\varphi) + j. sen(\varphi)$ Si $\varphi = n. \pi$ $e^{j.n.\pi} = \cos(n.\pi) + j. sen(n.\pi)$ $e^{j.n.\pi} = \cos(n.\pi) = \cdots$

Actividad Práctica Ayudas de Consigna

Ayudas

n	$sen(n.\pi)$	$sen(n.2.\pi)$	$sen(n.\pi/2)$	$(-1)^n$
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		

Actividad Práctica Ayudas de Consigna

Ayudas

Señal 2: b) Mediante integral

Resultado analítico:

Función Par o Impar ..., entonces....

$$a_n = \frac{2}{T_0} \int_{T_0} f(t) \cdot \cos(n \cdot w_0 \cdot t) \cdot dt$$
; $b_n = \frac{2}{T_0} \int_{T_0} f(t) \cdot \sin(n \cdot w_0 \cdot t) \cdot dt$

Completar....Resolver integrales

Se obtiene:

$$a_n = \frac{2}{T_0.(n.w_0)^2} [-2 + 2.\cos(n.w_0.\pi)] \qquad ; w_0 = \cdots.completar = 1$$

$$\cos(n.\pi) = \cdots.completar \quad \underline{en clases}$$

Respuesta:
$$a_n = \frac{2}{\pi n^2} [(-1)^n - 1]$$
 ; $a_0 = \pi$

Actividad Práctica EN MATLAB...

Análisis de Señales y Sistemas R2041 – R2072

```
Ejemplo Función
Ts=0.01; T0=2; w0 = 2*pi/T0;
                                                                        Distinta a la Tarea
t=-T0/2: Ts: T0/2;
% Serie Trigonométrica de Fourier para N Coeficientes
                                                                        Cuadrada Sin Toolbox
N=10; a0=0; x=a0/2;
                               f(t) = \frac{a_0}{a_0} + \sum_{n=1}^{\infty} [a_n \cdot \cos(n \cdot w_0 \cdot t) + b_n \cdot \sin(n \cdot w_0 \cdot t)]
for n=1:N
    x = x + (2/pi)*(1-(-1)^n)/n *sin(n*w0*t) ;
end
% Graficamos
subplot (311)
plot(t,x, 'linewidth',3); grid on ;axis tight
x analitica = -escalon(-t) + escalon(t);
                                                             -0.8 -0.6 -0.4 -0.2 0
                                                                           0.2
subplot (312)
plot(t,x analitica, 'linewidth',3); grid on ; or
n=1:N;
bn = (2/pi) * (1-(-1).^n)./n;
n = [0 \ n]; bn = [0 \ bn];
f=1/T0;
                                                                   1.5
                                                                        2.5
                                                                              3.5 4
subplot (313)
                                                                       Frec. [Hz]
stem(n*f, bn, 'linewidth',3); grid on; axis tight
                                                                       Completar
xlabel('Frec. [Hz]')
                                                                       etiquetas
```

Actividad Práctica EN MATLAB...

% Completar....

••• •

Completar Tarea, ambas funciones Sin toolbox Con toolbox Subir Analítico y Matlab Completo

Resultados de la Tarea

Análisis de Señales y Sistemas R2041

Actividad Práctica: Resolución de Consignas

Actividad Práctica

¿CONSULTAS?

Foro Campus Virtual

