TEORÍA DE GRÁFICAS

2020-2 (17 junio 2020)

EXAMEN FINAL

INSTRUCCIONES:

- Justificar y argumentar todos los resultados que se realicen.
- Resolver y enviar por correo electrónico, en formato PDF, a ambos profesores los siguientes ejercicios resueltos.
- La fecha límite de envío del Examen Final es el

Miércoles 17 de junio de 2020 a las 16:00 horas

No se considerará a revisión cualquier archivo que se envíe como **Examen Final** después de esta fecha y horario.

- 1. Sea $n \in \mathbb{N} \setminus \{0\}$, considerar las siguientes gráficas:
 - $Q_n = (V(Q_n), A(Q_n))$ donde $X = \{0, 1\}$ y
 - $\bullet \ V(Q_n) = X^n$
 - $\{x,y\} \in A(Q_n) \Leftrightarrow x$ difiere de y en exactamente una coordenada.
 - $B_n=(V(B_n),A(B_n))$ donde $X=\{m\in\mathbb{N}\setminus\{0\}\mid 1\leq m\leq n\}$ y
 - $V(B_n) = \wp(X)$
 - $\{x,y\} \in A(B_n) \Leftrightarrow |x \triangle y| = 1.^1$
 - a) Demostrar que para cualquier $n \in \mathbb{N} \setminus \{0\}$, $Q_n \cong B_n$.
 - b) Determinar el orden y el tamaño de Q_n para toda $n \in \mathbb{N} \setminus \{0\}$.
 - c) Demostrar que para toda $n \in \mathbb{N} \setminus \{0\}$ se tiene que B_n es bipartita.
- 2. Demostrar que toda gráfica autocomplementaria con 4k+1 vértices tiene un vértice de grado 2k.
- 3. Demostrar que si $v \in V(G)$ es vértice de corte en G entonces v no es vértice de corte en \overline{G} .
- 4. Demostrar que si G es un árbol entonces tiene un centro o dos centros que son adyacentes².
- 5. Demostrar que si G es una gráfica 3-regular entonces $\kappa(G) = \lambda(G)$.

 $^{{}^{1}}x \wedge y = (x \setminus y) \sqcup (y \setminus x)$

²Sea G una gráfica. Definimos, para cualquier $v \in V(G)$, $\mathbb{A}_v = \{k \in \mathbb{N} \mid k = d_G(v, x) \text{ con } x \in V(G)\}$ y sea $a_v = \max(\mathbb{A}_v)$. $v \in V(G)$ es un **centro de** G si y solamente si v es un vértice que satisface con ser el vértice de G que representa al $\min(\{a_v \in \mathbb{N} \mid v \in V(G)\})$