Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG - LFA 2021/1 - H. Longo

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (2 - 42 de 43)

Pushdown Automata

Esquema básico

Definição

Definição 1.1

- ► Um Autômato com Pilha (PDA Pushdown Automaton) é uma sextupla $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$, onde:
 - \triangleright Σ : alfabeto de entrada;
 - Γ : alfabeto da pilha;
 - \triangleright $S \neq \emptyset$: conjunto finito de estados;
 - ▶ $s_0 \in S$: estado inicial;
 - $\delta: S \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to \mathcal{P}(S \times (\Gamma \cup \{\varepsilon\}))$: função de transição de estados; e
 - ▶ $F \subseteq S$: conjunto de estados finais (ou de aceitação).

INF/UFG - LFA 2021/1 - H. Longo Definições básicas (3 - 42 de 43) INF/UFG - LFA 2021/1 - H. Longo Definições básicas (4 - 42 de 43)

Processamento de um PDA

- Definição formal não contém mecanismos para testar pilha vazia.
- Um PDA pode simular esse mecanismo com um símbolo particular (por exemplo, \$):
 - ▶ \$ é o primeiro símbolo a ser colocado na pilha.
 - Quando o PDA ler novamente o \$, então a pilha está vazia.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (5 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \geqslant 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

•1

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (6 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

► Reconhecedores

Definições básicas (7 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \geqslant 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (9 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (10 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

Definições básicas (11 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

INF/UFG - LFA 2021/1 - H. Longo

Exemplo 1.2

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (13 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.2

- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$

Reconhecedores

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (14 - 42 de 43)

Processamento de um PDA

- $\delta(s_i, a, x) = \{(s_i, y), (s_k, z)\}.$
 - Duas transições possíveis quando o autômato está no estado si, lendo o símbolo a de entrada e com x no topo da pilha.
- A transição $\delta(s_i, a, x) = (s_j, y)$ força o autômato a:
 - 1. Mudar o estado corrente de s_i para s_j ;
 - 2. Processar o símbolo *a* (avançar a cabeça de leitura da fita);
 - 3. Remover o símbolo x do topo da pilha; e
 - 4. Colocar o símbolo y no topo da pilha.

Representação gráfica

- ightharpoonup a, b
 ightharpoonup c:
 - $ightharpoonup a = \varepsilon$: transição sem ler símbolo de entrada.
 - $b = \varepsilon$: transição sem ler símbolo da pilha.
 - $ightharpoonup c = \varepsilon$: transição sem escrever na pilha.
- $\delta(s_i, a, x) = \{(s_i, y)\}.$
 - ightharpoonup O PDA muda do estado s_i para o s_j , lê a da fita de entrada, desempilha x e empilha y.

Representação gráfica

- $\delta(s_i, \varepsilon, x) = \{(s_i, \varepsilon)\}.$
 - ightharpoonup Se a posição de entrada é ε , a transição não processa um símbolo de entrada, mas desempilha o x.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (17 – 42 de 43)

Representação gráfica

- $\delta(s_i, \varepsilon, \varepsilon) = \{(s_i, x)\}.$
 - ightharpoonup Se a posição de entrada é ε , a transição não processa um símbolo de entrada, mas empilha o x.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (18 - 42 de 43)

Representação gráfica

- $\delta(s_i, a, \varepsilon) = \{(s_i, \varepsilon)\}.$
 - ▶ Transição equivalente a transição de um DFA.
 - Efeito determinado somente pelo estado corrente e pelo símbolo de entrada.
 - ► Transição não consulta e não altera a pilha.

Processamento de um PDA

- $P = \langle \Sigma, \Gamma, S, s_{ini}, \delta, F \rangle.$
- $ightharpoonup w = w_1 w_2 \dots w_m$, com $w_i \in \Sigma$, $i = 1, \dots, m$: cadeia de entrada.
- ▶ $s_0, s_1, \ldots, s_m \in Q$: sequência de estados.
- $ightharpoonup u_0,u_1,\ldots,u_m\in\Gamma^*$: sequência de conteúdos da pilha.

Processamento de um PDA

- P aceita a cadeia w se:
 - 1. $s_0 = s_{ini} e u_0 = \varepsilon$.
 - P começa no estado inicial e com a pilha vazia.
 - 2. $(s_{i+1}, u_{i+1}) \in \delta(s_i, w_{i+1}, u_i), i = 0, \dots, m-1$, onde $u_i = av$ e $u_{i+1} = bv'$ para $a, b \in \Gamma \cup \{\varepsilon\} \text{ e } v, v' \in \Gamma^*.$
 - P move-se de acordo com o estado atual, a pilha e o próximo símbolo da cadeia.
 - 3. $s_m \in F$.
 - Um estado final ocorre no final da cadeia.

INF/UFG - LFA 2021/1 - H. Longo

Configuração de um PDA

Definição 1.3

▶ Tripla $[s_i, w, \alpha]$, onde s_i é o estado corrente, $w \in \Sigma^*$ é o conjunto de símbolos ainda não processados e α é o conteúdo da pilha.

Notação

- ightharpoonup: define a função de $S \times \Sigma^* \times \Gamma^*$ em $S \times \Sigma^* \times \Gamma^*$ do PDA P.
- $ightharpoonup [s_i, w, \alpha] \mapsto [s_j, v, \beta]$: configuração $[s_j, v, \beta]$ é obtida a partir de $[s_i, w, \alpha]$ com apenas uma transição de estados.
- ► + : representa uma sequência de transições.

Definições básicas (21 - 42 de 43)

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (22 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright [$s_0, \varepsilon, \varepsilon$]

Exemplo de autômato com pilha

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright $[s_0, \varepsilon, \varepsilon] \mapsto$ $[s_0, aaabbb, \$]$

Exemplo 1.4

- $\blacktriangleright \ \mathcal{L}(P) = \{a^i b^i \mid i \geq 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright $[s_0, \varepsilon, \varepsilon] \mapsto$
 - $[s_0, aaabbb, \$] \mapsto$
 - $[s_0, aabbb, x\$]$

INF/UFG – LFA 2021/1 – H. Longo

Definições básicas (25 – 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright $[s_0, \varepsilon, \varepsilon] \mapsto$
 - $[s_0, aaabbb, \$] \mapsto$
 - $[s_0, aabbb, x\$] \longmapsto$
- $[s_0, abbb, xx\$]$

Definições básicas (26 – 42 de 43)

•

Exemplo de autômato com pilha

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \blacktriangleright $[s_0, \varepsilon, \varepsilon] \longmapsto$
- $[s_0, aaabbb, \$] \mapsto$
- $[s_0, aabbb, x\$] \mapsto$
- $[s_0, abbb, xx\$] \longmapsto$
- $[s_0, bbb, xxx\$]$

Exemplo de autômato com pilha

Exemplo 1.4

INF/UFG - LFA 2021/1 - H. Longo

- $\mathcal{L}(P) = \{a^i b^i \mid i \geqslant 0\}$
- ► $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle = \langle \{a, b\}, \{x\}, \{s_0, s_1\}, s_0, \delta, \{s_0, s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright $[s_0, \varepsilon, \varepsilon] \mapsto$
- $[s_0, aaabbb, \$] \mapsto$
- $[s_0, aabbb, x\$] \mapsto$
- $[s_0, abbb, xx\$] \mapsto$
- $[s_0, bbb, xxx\$] \mapsto$
- $[s_1,bb,xx\$]$

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright $[s_0, \varepsilon, \varepsilon] \mapsto$
 - $[s_0, aaabbb, \$] \mapsto$
 - $[s_0, aabbb, x\$] \mapsto$
 - $[s_0, abbb, xx\$] \mapsto$
 - $[s_0, bbb, xxx\$] \longmapsto$
 - $[s_1, bb, xx\$] \longmapsto$
- $[s_1, b, x\$]$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (29 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \triangleright $[s_0, \varepsilon, \varepsilon] \mapsto$
 - $[s_0, aaabbb, \$] \mapsto$
 - $[s_0, aabbb, x\$] \mapsto$
 - $[s_0, abbb, xx\$] \mapsto$
- $[s_0, bbb, xxx\$] \mapsto$
- $[s_1,bb,xx\$] \mapsto$
- $[s_1, b, x\$] \longmapsto$
- $[s_1, \varepsilon, \$]$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (30 - 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.4

- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle =$ $\langle \{a,b\}, \{x\}, \{s_0,s_1\}, s_0, \delta, \{s_0,s_1\} \rangle$:
 - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
 - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
 - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- \blacktriangleright $[s_0, \varepsilon, \varepsilon] \longmapsto$
- $[s_0, aaabbb, \$] \mapsto$
- $[s_0, aabbb, x\$] \mapsto$
- $[s_0, abbb, xx\$] \mapsto$
- $[s_0, bbb, xxx\$] \mapsto$
- $[s_1, bb, xx\$] \mapsto$
- $[s_1, b, x\$] \longmapsto$

 $[s_1, \varepsilon, \$] \longmapsto$ $[s_1, \varepsilon, \varepsilon]$

Linguagem aceita por um PDA

Definição 1.5

Seja $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ um PDA. Uma cadeia $w \in \Sigma^*$ é aceita por P se existe um processamento

$$[s_0, w, \varepsilon] \stackrel{*}{\longmapsto} [s_i, \varepsilon, \varepsilon],$$

onde $s_i \in F$. A linguagem de P, denotada $\mathcal{L}(P)$, é o conjunto de cadeias aceitas por P.

Exemplo 1.6

- ► $L = \{wcw^R \mid w \in \{a, b\}^*\}.$
- $ightharpoonup P = \langle \Sigma = \{a, b, c\}, \Gamma = \{a, b\}, S = \{s_0, s_1\}, s_0, \delta, F = \{s_1\} \rangle$, onde:

$$\delta(s_0, a, \varepsilon) = \{(s_0, a)\}$$

$$\delta(s_0, b, \varepsilon) = \{(s_0, b)\}$$

$$\delta(s_0, c, \varepsilon) = \{(s_1, \varepsilon)\}$$

$$\delta(s_1, a, a) = \{(s_1, \varepsilon)\}$$

$$\delta(s_1, b, b) = \{(s_1, \varepsilon)\}$$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (33 – 42 de 43)

Exemplo de autômato com pilha

Exemplo 1.6

► Processamento da cadeia *abcba*:

 $[s_0, abcba, \varepsilon] \longmapsto [s_0, bcba, a] \longmapsto [s_0, cba, ba] \longmapsto [s_1, ba, ba] \longmapsto [s_1, a, a] \longmapsto [s_1, \varepsilon, \varepsilon]$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (34 - 42 de 43)

Determinismo

Definição 1.7 (Transições compatíveis)

- ▶ Duas transições $(s_j, c) \in \delta(s_i, u, a)$ e $(s_k, d) \in \delta(s_i, v, b)$ são compatíveis se alguma das condições a seguir é satisfeita:
 - 1. u = v e a = b; 2. $u = v e a = \varepsilon ou b = \varepsilon$; 3. $a = b e u = \varepsilon ou v = \varepsilon$; 4. $u = \varepsilon ou v = \varepsilon e a = \varepsilon ou b = \varepsilon$.
- ► Transições compatíveis podem ser aplicadas para a mesma configuração.

Definição 1.8 (PDA determinístico)

- ► Um PDA é determinístico se existe no máximo uma transição para cada combinação de estado, símbolo de entrada e símbolo no topo da pilha.
- ▶ Um PDA é determinístico se não contém transições compatíveis distintas.

Exemplo de PDA não determinístico

Exemplo 1.9

- ► $L = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
 - A transição ε a partir de s_0 permite chegar a s_2 depois de processar toda a cadeia de entrada.
 - Esta transição introduz o não determinismo ao PDA.

Exemplo de PDA não determinístico

Exemplo 1.10

- $ightharpoonup L = \{ww^R \mid w \in \{a, b\}^*\}.$
 - O não determinismo permite ao PDA "adivinhar" quando a metade da cadeia de entrada foi processada.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (37 - 42 de 43)

Exemplo de PDA não determinístico

Exemplo 1.11

- $L = \{0^n 1^n \mid n \ge 0\}.$
- $ightharpoonup P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$, onde:
 - \triangleright $S = \{s_0, s_1, s_2, s_3\}.$
 - $\Sigma = \{0, 1\}.$
 - $\Gamma = \{0, \$\}.$
 - ► $F = \{s_0, s_3\}.$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (38 - 42 de 43)

Exemplo de PDA não determinístico

Exemplo 1.11

• δ é definida na tabela a seguir, onde entradas em branco significam \emptyset :

Entrada	0			1			ε		
Pilha	0	\$	ε	0	\$	ε	0	\$	ε
s_0									$\{(s_1,\$)\}$
s_1			$\{(s_1,0)\}$	$\{(s_2, \varepsilon)\}\$ $\{(s_2, \varepsilon)\}\$					
s_2				$\{(s_2, \varepsilon)\}$				$\{(s_3, \varepsilon)\}$	
S3									

Exemplo de PDA não determinístico

Exemplo 1.11

► Representação gráfica:

Exemplo de PDA não determinístico

Exemplo 1.12

- $ightharpoonup \mathcal{L} = \{a^i b^j c^k \in \{a, b, c\}^* \mid i, j, k \ge 0 \text{ e } i = j \text{ ou } i = k\}.$
 - ► PDA lê e empilha todos os a's.
 - ► Os símbolos *a*'s devem ser 'casados' com *b*'s ou *c*'s?
 - ► Não determinismo é essencial para reconhecer £!

INF/UFG - LFA 2021/1 - H. Longo Definições básicas (41 - 42 de 43)

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach. Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução Á Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.

Languages and Machines – An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata – With an Introduction to Formal Languages.

Introduction to the Theory of Computation.

PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (1499 - 42 de 43)

Exemplo de PDA determinístico

Exemplo 1.13

 $\mathcal{L} = \{(ab)^i c^k a^j \in \{a, b, c\}^* \mid j \ge i \ge 1, k \ge 1\}.$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (42 - 42 de 43)