Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tercer examen parcial

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

16 de Mayo 2020	
1.	Demuestre que si $G \leq S_n$ contiene permutaciones impares, entonces $ G $ es par y exactamente la mitad de los elementos de G son permutaciones impares.
	Demostración. Sea E un subrupo de todas las permutaciones pares de G . Sea β una permutación impar de G (por hipótesis), entonces cada elemento de la clases lateral izquiera βE es una permutación impar (porque el producto de permutaciones impares con permutaciones pares da una permutación impar). Sea α una permutación impar de G , como G es un subgrupo, entonces hay un elemento $\gamma \in E$ tal que $\alpha = \beta \gamma$. Como α y β son impares, concluimos que γ es par y por tanto $\gamma \in E$. De ahí que $\alpha \in \beta E$. Por tanto βE contiene todas las permutaciones impares de G .
	Como $ \beta E = E $, se concluye que exactamente la mitad de los elementos son permutaciones pares y la otra mitad impar, lo cual implica que G es par.
2.	Sea G un grupo finito que contiene un subgrupo H de índice p , donde p es el primo más pequeño que divide al orden de G . Demuestre que H es normal en G .
	Demostración. Sea H el subgrupo de ínide p , donde p es el primo más pequeño que divide al orden de $ G $. Entonces G actúa en el conjunto de las clases laterales izquierdas de H , $\{gH \mid g \in G\}$ por la multiplicación izquierda, $x \cdot (gH) = xgH$.
	Esa acción induce un homomorfismo $\rho:G\to S_p$, con su kernel que está contenido en H^1 . Sea K el kernel. Entonces G/K es isomorfa al subgrupo de S_p y entonces tiene un orden que divide a $p!$. Pero también tiene que tener orden que divida a G , y como p es el primo más pequeño que divide a $ G $ se sigue que $ G/K =p$. Como $ G/K =[G:K]=[G:H][H:K]=p[H:K]$, se sigue que $[H:K]=1$, y de ahí que $K=H$. Como K es normal, $K=1$ 0 también era normal.
	Definicion 1. Un G -conjunto es transitivo, si tiene una sola órbita, es decir, para cualesquiera $x, y \in X$, existe $g \in G$ tal que $x = gy$.

 $gx_1 = x_2$, teniendo así que cada órbita es un G-conjunto transitivo.

Demostración. Supongamos que A_5 tiene un subgrupo de orden 30, digamos H. Entonces $[A_5:H]=2$ lo que implica que H es normal². Pero como A_5 es simple³, lo cual nos lleva a una contradicción.

Demostración. Sea \mathcal{O} una órbita del G-conjunto, se tiene por definición que si $g \in G$ y $x \in \mathcal{O}$ entonces $gx \in \mathcal{O}$, y así \mathcal{O} es cerrado bajo producto. Además por definición, para cualquer $x_1, x_2 \in \mathcal{O}$ existe un $g \in G$ tal que

3. Si X es un G-conjunto, demuestre que cada una de sus órbitas es un G-conjunto transitivo.

³**Teorema 3.11** A_n es simple para toda $n \geq 5$.

^{4.} Demuestre que A_5 no tiene subgrupos de orden 30.

¹ **Teorema 3.14** Si $H \leq G$ y [G:H] = n, entonces hay un homomorfismo $\rho: G \to S_n$ con $\ker \rho \leq H$.

²En la tarea 4 se demostró que si G un grupo y H un subgrupo de G de índice igual a 2, entonces H es un subgrupo normal de G.