Práctica 1 – Números reales y sucesiones

- 1 A partir de los axiomas de cuerpo, demostrar que las siguientes afirmaciones son verdaderas cualesquiera sean $a, b, c, d \in \mathbb{R}$:
 - (a) $0 \cdot a = 0$.
 - (b) Si ab = ac y $a \neq 0$, entonces b = c.
 - (c) Si ab = 0, entonces a = 0 o b = 0.
 - $(d) (-1) \cdot a = -a.$
 - (e) $(-a) \cdot b = a \cdot (-b) = -(ab)$, y $(-a) \cdot (-b) = ab$.
- 2 A partir de los axiomas de cuerpo ordenado, demostrar que las siguientes afirmaciones son verdaderas cualesquiera sean $a, b, c, d \in \mathbb{R}$:
 - (a) Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.
 - (b) Si a < b y c > 0, entonces ac < bc.
 - (c) Si a < b, entonces -b < -a.
 - (d) Si a < b y c < 0, entonces ac > bc.
 - (e) ab > 0 si y sólo si a y b son ambos positivos o ambos negativos.
 - (f) Si 0 < a < b, entonces $0 < b^{-1} < a^{-1}$.
 - (g) Si $a^2 + b^2 = 0$, entonces a = b = 0.
- **3** Representar los siguientes conjuntos en la recta real:
 - (a) $\{x \in \mathbb{R} : |x 3| < 1\}$

(c) $\{x \in \mathbb{R} : |x| = |x+4|\}$

(b) $\{x \in \mathbb{R} : |x+4| \ge 1\}$

- (d) $\{x \in \mathbb{R} : |x| > |x+4|\}$
- (a) Determinar condiciones necesarias y suficientes sobre a y b en \mathbb{R} para que se verifiquen cada una de las siguientes igualdades:

$$|a + b| = |a| + |b|$$

$$|a-b| = |a| + |b|$$

- (b) Probar que para todos a y b en \mathbb{R} vale $||a|-|b|| \leq |a-b|$ y determinar todos los valores de a y b para los cuales vale la igualdad.
- Sea A un subconjunto no vacío de \mathbb{R} acotado superiormente, y sea s una cota superior de A. Demostrar que las siguientes afirmaciones son equivalentes:
 - (i) Si $t \in \mathbb{R}$ es tal que para todo $a \in A$ se cumple que $a \leq t$, entonces $s \leq t$.
 - (ii) Para todo $\varepsilon > 0$ existe $a_{\varepsilon} \in A$ tal que $a_{\varepsilon} > s \varepsilon$.
- **6** Sean A y B dos subconjuntos no vacíos de \mathbb{R} tales que $A \subseteq B$. Supongamos que B es acotado.
 - (a) Demostrar que A es acotado.
 - (b) Determinar (y demostrar) las relaciones de orden entre los cuatro números

$$\sup(A)$$
, $\inf(A)$, $\sup(B)$, $\inf(B)$.

 λ Qué sucede si B no está acotado superior o inferiormente?

- $\fbox{7}$ Hallar, si existen, supremo, ínfimo, máximo y mínimo de los siguientes subconjuntos de \Bbb{R} :
 - $(a) A_1 = (a, b].$

(c) $A_3 = A_2 \cup \{0\}.$

 $(b) A_2 = \left\{ \frac{1}{2^n} : n \in \mathbb{N} \right\}.$

- (d) $A_4 = \{x^2 x 1 : x \in \mathbb{R}\}.$ (e) $A_5 = \{x^2 - 5x + 4 : x \in (2, 4]\}.$
- 8 Dados A un subconjunto no vacío de \mathbb{R} y $c \in \mathbb{R}$, definimos $c \cdot A := \{ca : a \in A\}$. Además definimos $-A := (-1) \cdot A$.
 - (a) Demostrar que si A está acotado superiormente y c > 0, entonces $c \cdot A$ también está acotado superiormente, y se cumple que $\sup(c \cdot A) = c \cdot \sup(A)$.
 - (b) Demostrar que si A está acotado superiormente, entonces -A está acotado inferiormente, y se cumple que $\inf(-A) = -\sup(A)$.
 - (c) Enunciar y demostrar un resultado similar al de (a) para c < 0.
 - (d) Enunciar y demostrar un resultado similar al de (a) para $\inf(c \cdot A)$.
- $\boxed{\mathbf{9}}$ Dados A y B subconjuntos no vacíos de \mathbb{R} , definimos

$$A + B := \{a + b : a \in A, b \in B\}.$$

Demostrar que si A y B están acotados superiormente, entonces A+B también lo está, y se cumple que $\sup(A+B)=\sup(A)+\sup(B)$.

- 10 Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales tal que $\lim_{n\to\infty} a_n = \ell \in \mathbb{R}$.
 - (a) Demostrar que si $r > \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n < r$ para todo $n \ge n_0$.
 - (b) Demostrar que si $r < \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n > r$ para todo $n \ge n_0$.
 - (c) ¿Es cierto que si $r \ge \ell$ entonces existe $n_0 \in \mathbb{N}$ tal que $a_n \le r$ para todo $n \ge n_0$?
 - (d) Si se sabe que existe $n_0 \in \mathbb{N}$ tal que $a_n < r$ para todo $n \ge n_0$, ¿qué puede decirse sobre ℓ ?
- Sean A un subconjunto no vacío de \mathbb{R} acotado superiormente y s una cota superior de A. Demostrar que $s = \sup(A)$ si y sólo si existe una sucesión $(a_n)_{n \in \mathbb{N}}$ de elementos de A tal que $\lim_{n \to \infty} a_n = s$.
- **12** Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales positivos tal que $\lim_{n\to\infty} a_n = \ell > 0$.
 - (a) Demostrar que $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\ell}$.
 - (b) Demostrar que $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{\ell}$.
- [13] Sea $x \in \mathbb{R}$. Demostrar que existe una sucesión $(q_n)_{n \in \mathbb{N}}$ de números racionales, estrictamente decreciente, tal que $\lim_{n \to \infty} q_n = x$.
- 14 Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión de números reales definida por

$$\begin{cases} a_1 = \sqrt{2}, \\ a_{n+1} = \sqrt{a_n + 2} \text{ para todo } n \in \mathbb{N}. \end{cases}$$

- (a) Para que esta sucesión esté bien definida hay que verificar un detalle. ¿Cuál es?
- (b) Demostrar que la sucesión es creciente y está acotada superiormente.
- (c) Hallar el límite de la sucesión.
- Sean $a ext{ y } b$ números reales positivos con a < b. Definimos dos sucesiones $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ de la siguiente manera:

$$\begin{cases} x_1 = a, & y_1 = b, \\ x_{n+1} = \sqrt{x_n y_n}, & y_{n+1} = \frac{x_n + y_n}{2} & \text{para todo } n \in \mathbb{N}. \end{cases}$$

- (a) Demostrar que $x_n < x_{n+1} < y_{n+1} < y_n$ para todo $n \in \mathbb{N}$.
- (b) Demostrar que las dos sucesiones son convergentes y tienen el mismo límite. **Sugerencia.** Probar que $0 < y_n x_n \le \frac{y_1 x_1}{2^{n-1}}$ para todo $n \in \mathbb{N}$.
- Para cada una de las siguientes sucesiones $(a_n)_{n\in\mathbb{N}}$, hallar todos sus puntos límite y calcular lím sup a_n y lím inf a_n :

$$(a) \ a_n = 1 - \frac{1}{n}$$

(c)
$$a_n = (-1)^n \left(2 + \frac{3}{n}\right)$$

$$(b) \ a_n = \cos(\frac{n\pi}{2})$$

(d)
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, ...

- Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales y sea ℓ un número real. Demostrar que las siguientes afirmaciones son equivalentes:
 - (i) $\limsup a_n = \ell$.
 - (ii) Para todo $\varepsilon > 0$, existen infinitos n tales que $a_n > \ell \varepsilon$ y existen sólo finitos n tales que $a_n > \ell + \varepsilon$.
- **18** Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ dos sucesiones acotadas de números reales. Determinar (y demostrar) las relaciones de orden entre los cuatro números

 $\limsup(a_n+b_n)$, $\liminf(a_n+b_n)$, $\limsup(a_n)+\limsup(b_n)$, $\liminf(a_n)+\liminf(b_n)$.

19 (a) Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales, con $a_n\neq 0$ para todo $n\in\mathbb{N}$, tal que

$$\lim \sup \left| \frac{a_{n+1}}{a_n} \right| = \theta < 1.$$

Demostrar que $\lim_{n\to\infty} a_n = 0$.

- (b) Usar el resultado anterior para demostrar que:
 - i) Si $\alpha > 0$, entonces $\lim_{n \to \infty} \left(\frac{\alpha^n}{n!} \right) = 0$.
 - ii) Si $0 < \alpha < 1$ y $k \in \mathbb{N}$, entonces $\lim_{n \to \infty} n^k \alpha^n = 0$.
 - $iii) \lim_{n \to \infty} \left(\frac{n!}{n^n} \right) = 0.$
- **20** Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales positivos. Demostrar que:

$$\liminf \left(\frac{a_{n+1}}{a_n}\right) \le \liminf \left(\sqrt[n]{a_n}\right) \le \limsup \left(\sqrt[n]{a_n}\right) \le \limsup \left(\frac{a_{n+1}}{a_n}\right).$$

21 Estudiar la convergencia de la sucesión $a_n = n^{1/n}$.