1 Background

An action potential is an event in which the electrical membrane potential of a neuron rapidly rises (as a response to a stimulus) and falls. It is the result of a controlled diffusion of ions across the membrane. A very useful model for the propagation of the action potential in cephalopods is given by

$$\frac{dV}{dt} = (I - g_{K}n^{4}(V - V_{K}) - g_{Na}m^{3}h(V - V_{Na}) - g_{L}(V - V_{L}))/C_{M}$$
(1)

with n, m and h being solutions to the ODEs in the table.

Symbol	Meaning (units)	Formula/Value
C_M	Capacitance $(\mu F/cm^2)$	$0.1~\mu\mathrm{F/cm^2}$
I	Applied current $(\mu A/cm^2)$	$15 \text{ nA/cm}^2 = 15 \times 10^{-3} \ \mu\text{A/cm}^2$
I_K	Potassium channel current $(\mu A/cm^2)$	$g_{ m K} n^4 (V-V_{ m K})$
I_L	Leakage current $(\mu A/cm^2)$	$g_L(V-V_L)$
$I_{ m Na}$	Sodium channel current $(\mu A/cm^2)$	$g_{ m Na} m^3 h (V-V_{ m Na})$
V	Action potential (mV)	Initially -65 mV
V_K	Displacement from the equilibrium potential for K^+ (mV)	-77 mV
$[K^+]_i$	Potassium ion concentration inside (mM/L)	$150~\mathrm{mM/L}$
$[K^+]_o$	Potassium ion concentration outside (mM/L)	5.5 mM/L
$V_{ m Na}$	Displacement from the equilibrium potential for Na ⁺ (mV)	50 mV
$[Na^+]_i$	Sodium ion concentration inside (mM/L)	$15 \mathrm{\ mM/L}$
$[Na^+]_o$	Sodium ion concentration outside (mM/L)	$150 \mathrm{\ mM/L}$
$ig _{V_L}$	Displacement from the equilibrium potential for leakage (mV)	-54.4 mV
$g_{ m K}$	Maxium K conductance (mS/cm ²)	36 mS/cm^2
$g_{ m Na}$	Maxium Na conductance (mS/cm ²)	120 mS/cm^2
g_L	Maxium leakage conductance (mS/cm^2)	$0.3~\mathrm{mS/cm^2}$
$\mid n \mid$	Potassium activation gating variable, probability of K gate being open	Initially 0.317
$\mathrm{d}n/\mathrm{d}t$	Rate of change of n (1/ms)	$\alpha_n(1-n) + \beta_n n$
$\mid m \mid$	Sodium activation gating variable, probability of Na gate being open	Initially 0.05
$\mathrm{d}m/\mathrm{d}t$	Rate of change of m (1/ms)	$\alpha_m(1-m) + \beta_m m$
h	Sodium inactivation gating variable, probability of Na gate being inactivated	Initially 0.6
$\mathrm{d}h/\mathrm{d}t$	Rate of change of h (1/ms)	$\alpha_h(1-h) + \beta_h h$
α_n	Opening rate constant (1/ms)	$ \phi\left(0.01(V+55)/\left(1-\exp\left(-\frac{V+55}{10}\right)\right)\right) \phi\left(0.1(V+40)/\left(1-\exp\left(-\frac{V+40}{10}\right)\right)\right) $
α_m	Opening rate constant $(1/ms)$	$\phi\left(0.1(V+40)/\left(1-\exp\left(-\frac{V+40}{10}\right)\right)\right)$
α_h	Opening rate constant (1/ms)	$\phi(0.07\exp(-(V+65)/20))$
eta_n	Closing rate constant (1/ms)	$\phi\left(0.125\exp\left(-(V+65)/80\right)\right)$
β_m	Closing rate constant (1/ms)	$\phi (4 \exp (-(V + 65)/18))$
eta_h	Closing rate constant (1/ms)	$\phi\left(1/\left(1+\exp\left(\frac{V+35}{10}\right)\right)\right)$
$\mid T \mid$	Temperature (°C)	6.3 °C
ϕ	Factor for temperature correction	$3^{(T-6.3)/10}$

2 Problems

- 1. Solve the equations for n, m and h in the range 0-5 ms.
- 2. Create interpolations for these functions

```
from scipy.interpolate import interp1d

# Generates the data
x = np.linspace (0, 10, num=10, endpoint=True)
y = np.cos(-x**2 / 9.0)
f = interp1d(x, y, kind='cubic')

# Evaluates
print f(0.2)
```

- 3. Solve the equation for V taking time steps of 0.001 ms.
- 4. Plot V as a function of time.

3 Solutions

1. Solve the equations for n, m and h in the range 0-5 ms

```
# load modules
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# unit system
# current I : muA/cm^2
# voltage V : mV
# capacitance C : muF/cm^2
# time t : ms
# conductance = 1 / resitance S : mS/cm^2
# define all constants
T = 6.3
I = 15e-3
gK = 36.
gNa = 120.
gL = 0.3
CM = 1.0
VK = -77.
VNa = 50.
VL = -54.4
# define auxiliar constants
phi = 3 ** ((T - 6.3) / 10.)
# define auxiliar functions
def alphan (V):
    return phi * 0.01 * (V + 55) / (1 - np.exp(-0.1 * (V + 55)))
def alpham (V):
    return phi * 0.1 * (V + 40) / (1 - np.exp(-0.1 * (V + 40)))
def alphah (V):
    return phi * 0.07 * np.exp(-0.05 * (V + 65))
def betan (V):
    return phi * 0.125 * np.exp(-0.0125 * (V + 65))
def betam (V):
    return phi * 4.0 * np.exp(-0.0556 * (V + 65))
def betah (V):
    return phi / (1 + np.exp(-0.1 * (V + 35)))
# define the system of equations for the variables (V, n, m, h):
```

```
#
\# dV/dt = FV(V, n, m, h)
# dn/dt = Fn(V, n, m, h)
# dm/dt = Fm(V, n, m, h)
# dh/dt = Fh(V, n, m, h)
def F (V, m, n, h):
    IK = gK * n**4 * (V - VK)
    INa = gNa * m**3 * h * (V - VNa)
    IL = gL * (V- VL)
    FV = (I - IK - INa - IL) / CM
    Fn = alphan(V) * (1 - n) - betan(V) * (n)
    Fm = alpham(V) * (1 - m) - betam(V) * (m)
    Fh = alphah(V) * (1 - h) - betah(V) * (h)
    return FV, Fn, Fm, Fh
# integration time
tmax = 4.0
dt = 1e-3
# arrays
t = np.arange(0, tmax, step=dt)
V = np.zeros(len(t))
n = np.zeros(len(t))
m = np.zeros(len(t))
h = np.zeros(len(t))
# initial conditions
V[0] = -65
n[0] = 0.317
m[0] = 0.05
h[0] = 0.6
# integrate
for i in range(len(t) - 1):
    FV1, Fn1, Fm1, Fh1 = F(V[i], n[i], m[i], h[i])
    V1 = V[i] + 0.5 * dt * FV1
    n1 = n[i] + 0.5 * dt * Fn1
    m1 = m[i] + 0.5 * dt * Fm1
    h1 = h[i] + 0.5 * dt * Fh1
    FV2, Fn2, Fm2, Fh2 = F(V1, n1, m1, h1)
    V[i + 1] = V[i] + dt * FV1
    n[i + 1] = n[i] + dt * Fn1
    m[i + 1] = m[i] + dt * Fm1
    h[i + 1] = h[i] + dt * Fh1
```

2. Create interpolations for these functions

```
# create interpolations
nint = interp1d(t, n)
mint = interp1d(t, m)
hint = interp1d(t, h)

# define time to interpolate
# note that this time is any number in the range (0, tmax)
t0 = 2.14156
print nint(t0), mint(t0), hint(t0)

plt.plot(t, n, 'b-', t0, nint(t0), 'bo')
plt.plot(t, m, 'r-', t0, mint(t0), 'ro')
plt.plot(t, h, 'g-', t0, hint(t0), 'go')
plt.show()
```


3. Solve the equation for V taking time steps of 0.001 ms.

Already solved in the first step

4. Plot V as a function of time.

```
plt.plot(t, V, 'k-')
plt.show()
```

