Tutorial 2

Question 1

A sorting method with "Big-Oh" complexity $O(n.log_{10}n)$ spends exactly 1 millisecond to sort 1,000 items. Assuming that time T(n) of sorting n items is directly proportional to $n.log_{10}n$, that is, $T(n)=(c.n.log_{10}n)$, where c is a constant. Derive a formula for T(n), given the time T(x) for sorting x items, and estimate how long this method will sort 1,000,000 items.

Answer:

Processing time is T(n)=c.n.log₁₀n

 $T(n) / (n.log_{10}n) = c$

Given T(x) is the time to process x items

 $C = T(x) / (x. \log_{10} x)$

Hence

 $T(n) = (T(x) / (x. log_{10}x)) . n . log_{10}n$

Given T(1000) = 1 msec is the time to process 1000 items

 $T(n) = (T(1000) / (1000*log_{10}1000)) . n . log_{10}n$

taking log base 10

 $T(n)=(T(1000) / (1000*log_{10}10^3)) . n . log_{10}n$

 $T(n) = (T(1000) / 3000) . n . log_{10}n$

This spends 1 millisecond to sort 1000 items. Hence T(1000)=1ms

 $T(n) = n \cdot \log_{10} n / 3000 \text{ ms}$

 $T(1000000) = 1000000\log(1000000)/3000 \text{ ms}$

T(1000000) = 6000000/3000 ms

T(1000000) = 2000 ms

Question 2

Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-Oh complexity of each algorithm.

Expression	Dominant term(s)	Big-Oh complexity
5+0.0001n ³ +0.025n	0.0001n ³	O(n³)
500n+100n ^{1.5} + 50nlog ₁₀ n	100n ^{1.5}	O(n ^{1.5})
$n^2 \log_2 n + n(\log_2 n)^2$	n²log₂n	O(n ² log ₂ n)

Tutorial 2

Question 3:

The number of operations executed by algorithms A and B is 8n lg n and $2n^2$, respectively. Determine n^0 such that A is better than B for $n \ge n^0$.

Answer:

Setting two equations equal and simplifying;

 $2n^2 = 8n \lg n$

n = 4 lg n

we see that the cross-over occurs for n = 16. Since the logarithmic function grows much slower than the quadratic function, for all $n \ge 16$ we will have $8n \lg n \le 2n^2$, i.e., A is better than B.

