Objective: \$600, 213, 927, 344; without intervention: \$802, 999, 087, 399 (Desired optimality gap: 80%; actual: 78%. Lower Bound: \$129,079,000,000. Time to solve: 21s) $C' = \$10,000, C^D = \$10,000,000$

Movement

A: \$[5000 ,10000] 10²

B: \$[10000,20000]·10² C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

A: $\$[0, 0] \cdot 10^2$

B: $\$[0 , 0] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

Education (University level)

P: [.99 ,.99 ,.97 ,.93]

A: \$[2500 ,5000 ,10000]·10²

B: $\{[5000, 10000, 20000] \cdot 10^2\}$

C: \$[8 ,10 ,14]·10² P: [.99 ,.95 ,.93]

A: $\$[0, 0, 0] \cdot 10^2$ B: \$[0] ,0 ,0 $] \cdot 10^2$

C: \$[8 ,10 ,14] 10² P: [.99 ,.95 ,.93]

A: \$[2500 ,5000 ,10000] 10² B: \$[5000 ,10000,20000] ·10² C: $\$[8 , 10 , 14] \cdot 10^2$ P: [.99 ,.95 ,.93]

4. Restaurants

5. Masking

6. Mega Events

7. Border Control A: $$[5000,10000] \cdot 10^2$

A: \$[0]] 10^2

B: \$[0] 10^2 C: $\$[10] 10^2$ P: [.93]

B: \$[10000,20000] 10²

C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL

Probability Factor

Cost Per Period: POLICY Cost Per Period: DISEASE

A: \$[5000 ,10000] ·10²

B: $\$[10000,20000]\cdot10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]