УНИВЕРСИТЕТ ИТМ	0
------------------------	---

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>МЗ</u>	3 <u>111 </u> К работе допу	/щен	
Студент	<u>Акберов Р.Х.</u>	_ Работа выполнена _	
Преподаватель	Прохорова У.В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.04

Исследование равноускоренного вращательного движения (маятник Обербека)

1. Цель работы.

- Проверка основного закона динамики вращения.
- Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы.

- Проведение измерений с различным количеством шайб и на разных рисках
- Вычисление соответствующих значений по приведенным формулам
- Построение графиков зависимости
- 3. Объект исследования.
 - Маятник Обербека
- 4. Метод экспериментального исследования.
 - Изучение виртуальной лабораторной установки
 - Проведение измерений в ней изменение массы тела и радиуса
- 5. Рабочие формулы и исходные данные.
 - 1) Равноускоренное движение груза по второму закону Ньютона

$$ma = mg - T$$

2) Ускорение груза:

$$\varepsilon = \frac{2h}{t^2}$$

3) Угловое ускорение груза:

$$\varepsilon = \frac{2a}{d}$$

, где d – диаметр ступицы

4) Используя уравнение 1), выразим силу натяжения нити:

$$T = m(g - a)$$

5) Момент силы натяжения нити:

$$M = \frac{md}{2}(g - a)$$

6) Основной закон динамики вращения для крестовины с утяжелителями:

$$I_{\varepsilon} = M - M_{\rm Tp}$$

7) Момент инерции в соответствии с теоремой Штейнера

$$I = I_0 + 4m_{\rm VT}R^2$$

8) Из формулы 6) следует, что теоретическая связь между моментом силы

натяжения нити и угловым ускорением крестовины:

$$M = M_{\rm Tp} + I_{\varepsilon}$$

 $M=M_{
m Tp}+I_{
m \epsilon}$ 9) Расстояние между осью О вращения и центром С утяжелителя:

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

6. Измерительные приборы.

Измерительный	Тип прибора	Используемый	Погрешность
прибор		диапазон	прибора
Секундомер	Хронометр		0.5мс

7. Схема установки (перечень схем, которые составляют Приложение 1)

Рис. 2. Стенд лаборатории механики (общий вид):

I – основание; 2 – рукоятка сцепления крестовин; 3 – устройство принудительного трения; 4 - поперечина; 5 - груз крестовины; 6 - трубчатая направляющая; 7 – передняя крестовина; 8 – задняя крестовина; 9 – шайбы каретки; 10 - каретка; 11 - система передних стоек.

8. Результаты прямых измерений и их обработки (таблиц, примеры расчетов):

і сзультаты	тезультаты прямых измерений и их обработки (таблиц, примеры расчетов).					
Macca	Положение утяжелителей					
груза, г	0,057	0,082	0,107	0,132	0,157	0,182
M1	4.31	5.28	5.97	6.72	7.69	8.91
	4.19	5.43	5.88	6.81	7.71	8.59
	4.18	5.00	5.81	6.72	7.69	8.50
	4.23	5.24	5.89	6.75	7.70	8.67
M2	2.97	3.63	4.19	5.12	5.82	6.40
	3.03	3.69	4.62	4.97	5.75	6.28
	3.10	3.60	4.37	5.03	5.63	6.25
	3.03	3.64	4.39	5.02	5.74	6.31
M3	2.50	2.94	3.59	4.19	4.78	5.44
	2.56	3.13	3.94	4.07	4.79	5.28
	2.44	3.10	3.53	3.90	4.81	5.16
	2.50	3.06	3.69	4.05	4.79	5.29
M4	2.16	2.64	3.22	3.62	4.19	4.78
	2.19	2.59	3.13	3.56	4.06	4.71
	2.25	2.59	3.38	3.62	4.19	4.81
	2.22	2.61	3.24	3.60	4.15	4.77

Среднее значение	
Замеры	

Расчет погрешност	ей для t _{ср}	Расчет погрешности для а	
$\sigma(t)$, c	0,0418	∆а, м/с^2	0,0036
Коэф. Стюдента	2,3	Расчет погрешности для ε	
Δt, c	0,0962	Δε, рад/с^2	0,1613
Абсолютная	0,0964	Расчет погрешности для	
погрешность, с			
		ΔМ, Н*м	0,0007

9. Расчет результатов косвенных измерений (таблиц, примеры расчетов)

Расчет результато	ов косвенных измерении (таолиц, примеры расчетов)					
	Ускорение груза, м / с2					
Масса груза, кг	1	2	3	4	5	6
0,267	0,078	0,051	0,040	0,031	0,024	0,019
0,487	0,152	0,106	0,073	0,056	0,042	0,035
0,707	0,224	0,150	0,103	0,085	0,061	0,050
0,927	0,284	0,206	0,133	0,108	0,081	0,062
Средние:	0,185	0,128	0,087	0,070	0,052	0,041
		Угло	вое ускорен	ие, рад/с^2	(8)	
Масса груза, кг	1	2	3	4	5	6
0,267	3,402	2,217	1,755	1,336	1,027	0,810
0,487	6,630	4,594	3,158	2,415	1,847	1,529
0,707	9,739	6,501	4,470	3,711	2,653	2,175
0,927	12,351	8,936	5,798	4,697	3,534	2,675
Средние:	8,030	5,562	3,795	3,040	2,265	1,797
		Момент с	илы натяже	ния нити, І	H*м (М)	
Масса груза, кг	1	2	3	4	5	6
0,267	0,060	0,060	0,060	0,060	0,060	0,060
0,487	0,108	0,109	0,109	0,109	0,109	0,109
0,707	0,156	0,157	0,158	0,158	0,159	0,159
0,927	0,203	0,205	0,206	0,207	0,207	0,208
Средние:	0,132	0,133	0,133	0,134	0,134	0,134

10. Графики

Положение	I	Мтр
1	0,0159	0,0039
2	0,0218	0,0111
3	0,0363	-0,0044
4	0,0429	0,0032
5	0,0589	0,0003
6	0,0784	-0,0068

Положение	ε	Mε
1	3,402	0,058
	6,630	0,109
	9,739	0,159
	12,351	0,200
2	2,217	0,059
	4,594	0,110
	6,501	0,158
	8,936	0,206
3	1,755	0,059
	3,158	0,110

	4,470	0,158
	5,798	0,206
4	1,336	0,060
	2,415	0,107
	3,711	0,162
	4,697	0,205
5	1,027	0,061
	1,847	0,109
	2,653	0,157
	3,534	0,209
6	0,810	0,057
	1,529	0,113
	2,175	0,164
	2,675	0,203

 $\overline{M}_{\varepsilon}$

11.

	График $I(R^2)$ теоретический		
I	R, M	R^2 , M^2	
0,0159	0,0566	0,0032	
0,0231	0,0819	0,0067	
0,0328	0,1068	0,0114	
0,0451	0,1319	0,0174	
0,0600	0,1568	0,0246	
0,0774	0,1819	0,0331	

12.

13.

$$\Delta I_0 = S_{I_0} + t_{a,N} \approx 0.20$$

$$\Delta m_{yt} = S_{m_{yt}} + t_{a,N} \approx 0.40$$

14. Выводы и анализ результатов работы.

Исследуя зависимости $I(R^2)$ и $M(\varepsilon)$ было выявлено:

- Что они являются линейно зависимыми
- 15. Дополнительные задания
- 16. Выполнение дополнительных заданий.
- 17. Замечание преподавателя (исправления, вызванные замечания преподавателя)