

Biological neuron vs. ANN

n-Input

k-Hidden layers → deep layer

m-Output layer

A mostly complete chart of **Neural Networks** Backfed Input Cell Deep Feed Forward (DFF) ©2016 Fjodor van Veen - asimovinstitute.org Input Cell Noisy Input Cell Perceptron (P) Radial Basis Network (RBF) Feed Forward (FF) Hidden Cell Probablistic Hidden Cell Spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU) Output Cell Match Input Output Cell Recurrent Cell Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE) Different Memory Cell Kernel Convolution or Pool

Deep Learning of Images

→ Conv2D

MNIST

65795055 57989576 9434929139 7/37411

Conv2D

Max-Pooling

https://www.youtube.com/watch?v=f0t-OCG79-U

How does DL work on images?

Going deeper in the network

Caner Hazırbaş | vision.in.tum.de

Deep Learning in Computer Vision

Transfer Learning

GAN

Source: <u>Hands-On Deep Learning for IoT - Packt</u>