

Natural Language Processing (NLP)

Rensheng Wang, https://sit.instructure.com/courses/29876 January 24, 2019

What is text?

You can think of text as a sequence of

- Characters
- Words
- Phrases and named entities
- Sentences
- Paragraphs

(a meaningful skuckmed with What is a word?

- It seems natural to think of a text as a sequence of words
- A word is a meaningful sequence of characters
- How to find the boundaries of words?
- In English we can split a sentence by spaces or punctuation
- Input:

Fridends, No smoking, Let us talk;

U Output:

Friends No

smoking

Let

talk

Tokenization is a process that splits an input sequence into so-called tokens

- You can think of a token as a useful unit for semantic processing
- Can be a word, sentence, paragraph, etc.

You can think of a token as a useful unit for semantic processing

Can be a word, sentence, paragraph, etc.

An example of simple whitespace tokenizer

Tokenization is a process that splits an input sequence into so-called tokens

Problem: "it" and "it?" are different tokens with the same meaning

Inltk.tokenize.WhitespaceTokenizer
This is Tom's book, isn't it?

Lets try to also split by punctuation

nltk.tokenize.WordPunctTokenizer

This is Tom 's book , isn 't it ?

Problem: "s", "isn", "t" are not very meaningful

Lets try to also split by punctuation □ nltk.tokenize.WordPunctTokenizer This is Tom 's book, isn' t it? Problem: "s", "isn", "t" are not very meaningful We can come up with a set of rules nltk.tokenize.TreebankWordTokenizer This is Tom 's book , is n't it ? "s" and "n't" are more meaningful for processing

Python tokenization example

import nltk

Token normalization

 \square wolf, wolves \rightarrow wolf \square talk, talks \rightarrow talk Stemming \square A process of removing and replacing suffixes to get to the root form of the word,

We may want the same token for different forms of the word

■ Usually refers to heuristics that chop off suffixes

Lemmatization

which is called the stem

Usually refers to doing things properly with the use of a vocabulary and morphological analysis

Returns the base or dictionary form of a word, which is known as the **lemma**

Stemming example

Porters stemmer

- 5 heuristic phases of word reductions, applied sequentially
- Example of phase 1 rules:

Rule	Example
$SSES \to SS$	caresses o caress
$IES \to I$	$ponies \to poni$
$SS \to SS$	caress o caress
$S \to$	cats o cat

- □ nltk.stem.PorterStemmer
- **Examples**:

Problem: fails on irregular forms, produces non-words

Lemmatization example

WordNet lemmatizer

- ☐ Uses the WordNet Database to lookup lemmas
- ☐ nltk.stem.WordNetLemmatizer
- **Examples**:

☐ Problems: not all forms are reduced

Lemmatization example

WordNet lemmatizer

- ☐ Uses the WordNet Database to lookup lemmas
- ☐ nltk.stem.WordNetLemmatizer
- Examples:

☐ Problems: not all forms are reduced

Conclusion: we need to try stemming or lemmatization and choose best for our task

Python stemming example

Further normalization

Normalizing capital letters

- \square Us, us \rightarrow us (if both are pronoun)
- us, US (could be pronoun and country)
- We can use heuristics:
 - lowercasing the beginning of the sentence
 - lowercasing words in titles
 - leave mid-sentence words as they are
- \square Or we can use machine learning to retrieve true casing \rightarrow hard

Acronyms

- \square eta, e.t.a., E.T.A. \rightarrow E.T.A.
- \square We can write a bunch of regular expressions \rightarrow hard

Transforming tokens into features: BOW

Bag of words (BOW)

- Lets count occurrences of a particular token in our text
- ☐ Motivation: we are looking for marker words like "excellent" or "disappointed"
- For each token we will have a feature column, this is called text vectorization.

good movie	
not a good movie	
did not like	

good	movie	not	а	did	like
1	1	0	0	0	0
1	1	1	1	0	0
0	0	1	0	1	1

Problems:

- we loose word order, hence the name "bag of words"
- counters are not normalized

Lets preserve some ordering

We can count token pairs, triplets, etc.

- Also known as n-grams
 - 1-grams for tokens
 - 2-grams for token pairs

good movie				
not a good movie				
did not like				

good movie	movie	did not	а	
1	1	0	0	• • •
1	1	1	1	
0	0	1	0	

- Problems:
 - too many features

Remove some n-grams

Lets remove some n-grams from features based on their occurrence frequency in documents of our corpus

Remove some n-grams

Lets remove some n-grams from features based on their occurrence frequency in documents of our corpus

- High frequency n-grams:
 - Articles, prepositions, etc. (example: and, a, the)
 - They are called **stop-words**, they won't help us to discriminate texts \rightarrow remove them
- Lowfrequencyn-grams:
 - Typos, rare n-grams
 - We dont need them either, otherwise we will likely overfit
- Mediumfrequencyn-grams:
 - Those are good n-grams

Therere a lot of medium frequency n-grams

- ☐ It proved to be useful to look at n-gram frequency in our corpus for filtering out bad n-grams
- What if we use it for ranking of medium frequency n-grams?
- Idea: the n-gram with smaller frequency can be more discriminating because it can capture a specific issue in the review

TF-IDF

Term frequency (TF)

- \Box tf(t,d) frequency for term (or n-gram) t in document d
- Variants:

weighting scheme	TF weight
binary	0, 1
raw count	$f_{t,d}$
term frequency	$\int f_{t,d} / \sum_{t' \in d} f_{t',d}$
log normalization	$1 + \log(f_{t,d})$

TF-IDF

Inverse document frequency (IDF)

- \square N = |D| : total number of documents in corpus
- $|\{d \in D : t \in d\}|$

: number of documents where the term t appears

 \square idf $(t, D) = \log \frac{N}{|\{d \in D: t \in d\}|}$

TF-IDF

Better BOW

- Replace counters with TF-IDF
- \square Normalize the result row-wise (divide by L_2 -norm)

 \Rightarrow

good movie				
not a good movie				
did not like				

good movie	movie	did not	
0.17	0.17	0	
0.17	0.17	0	
0	0	0.47	

Python TF-IDF example

First text classification model: Sentiment classification

IMDB movie reviews dataset

- http://ai.stanford.edu/~amaas/data/sentiment/
- Contains 25000 positive and 25000 negative reviews
- Contains at most 30 reviews per movie
- \square At least 7 stars out of 10 \rightarrow positive (label = 1)
- $lue{}$ At most 4 stars out of $10 \rightarrow \mathsf{negative}$ (label = 0)
- □ 50/50 train/test split
- Evaluation:accuracy

Sentiment classification

Features: bag of 1-grams with TF-IDF values

25000 rows, 74849 columns for training

 \square Extremely sparse feature matrix : 99.8% are zeros

acting	actingjob	actings	actingwise
0.000000	0.0	0.0	0.0
0.000000	0.0	0.0	0.0
0.053504	0.0	0.0	0.0
0.033293	0.0	0.0	0.0
0.000000	0.0	0.0	0.0

Sentiment classification

Model: Logistic regression

- Linear classification model
- Can handle sparse data
- ☐ Fast to train
- ☐ Weights can be interpreted

Sentiment classification

Logistic regression over bag of 1-grams with TF-IDF

- ☐ Accuracy on test set: 88.5%
- Let's look at learnt weights:

ngram	weight		ngram	weight
great	9.042803		worst	-12.748257
excellent	8.487379	****	awful	-9.150810
perfect	6.907277	VS	bad	-8.974974
best	6.440972		waste	-8.944854
wonderful	6.237365		boring	-8.340877
Top po	sitive		Top no	egative

Better sentiment classification

Let us try to add 2-grams

- ☐ Throw away n-grams seen less than 5 times
- 25000 rows, 156821 columns for training

and am	and amanda	and amateur	and amateurish	and amazing
0.068255	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0

Better sentiment classification

Logistic regression over bag of 1,2-grams with TF-IDF

- \square Accuracy on test set: 89.9% (+1.5%)
- Lets look at learnt weights:

well worth	13.788515		bad	-24.467648
best	13.633200		poor	-24.319746
rare	13.570259	VS	the worst	-23.773352
better than	13.500025		waste	-22.880340
Near top positive			Near top	negative

How to make it even better

- ☐ Play around with tokenization
 - Special tokens like emoji, :) and !!! can help Try to normalize tokens
- Adding stemming or lemmatization Try different models
 - SVM, Naive Bayes, ...
- Throw BOW away and use Deep Learning
 - https://arxiv.org/pdf/1512.08183.pdf
 - Accuracy on test set in 2016: 92.14% (+2.5%)

