

Divergence-free discretisations of the Stokes eigenvalue problem

FLEURIANNE BERTRAND *, DANIELE BOFFI †, U. ZERBINATI ‡

- * Chemnitz University of Technology
- † King Abdullah University of Science and Technology
- 1 University of Oxford

SIAM UK/IE Meeting, 21st of April 2023

Stokes eigenvalue problem

Find
$$(\mathbf{u}, p) \in H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega)$$
 such that $\forall (\mathbf{v}, q) \in H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega)$,
$$\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{L}^2(\Omega)} - (\nabla \cdot \mathbf{v}, p)_{\mathcal{L}^2(\Omega)} = \lambda_n (\mathbf{u}, \mathbf{v})_{\mathcal{L}^2(\Omega)},$$
$$(\nabla \cdot \mathbf{u}, q)_{\mathcal{L}^2(\Omega)} = 0,$$

with $\lambda_n \in \mathbb{C}$, and $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

Stokes eigenvalue problem – Laplace form

We introduce the space
$$H^1_{0,0}(\Omega) = \left\{ \mathbf{v} \in H^1_0(\Omega) : \nabla \cdot \mathbf{u} = 0 \right\}$$
.

Find $\mathbf{u} \in H^1_{0,0}(\Omega)$ such that $\forall \mathbf{v} \in H^1_{0,0}(\Omega)$,

$$\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{L}^2(\Omega)} = \lambda_n (\mathbf{u}, \mathbf{v})_{\mathcal{L}^2(\Omega)},$$

with $\lambda_n \in \mathbb{C}$, and $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

SIAM UK/IE 2023

Divergence-free discretisations

$$V_h \subset H^1_0(\Omega)$$
 $Q_h \subset \mathcal{L}^2(\Omega)$ $\nabla \cdot V_h \subset Q_h$

Under this hypothesis, we have the following result, i.e.

$$b(\mathbf{v}^h,q^h)=(\nabla\cdot\mathbf{v}^h,q^h)_{\mathcal{L}^2(\Omega)}=0\Leftrightarrow\nabla\cdot\mathbf{v}^h=0,$$

which implies the functions are point-wise **divergence-free**.

$$\left|\mathbb{K}_h = \left\{\mathbf{v}_h \in V_h : b(\mathbf{v}_h, q_h) = 0, \forall q_h \in Q_h\right\} \subset H^1_{0,0}(\Omega)\right|$$

Divergence discretisations eigenvalue problem

Find $\mathbf{u}_h \in \mathbb{K}_h$ such that $\forall \mathbf{v}_h \in \mathbb{K}_h$,

SIAM UK/IE 2023

$$\nu(\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} = \lambda_n^h (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)},$$

with $\nabla \cdot V_h \subset Q_h$, $\lambda_n \in \mathbb{C}$, $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

This problem is well-posed and we can analyse it using Babuška-Osborn theory.

Finite Element Exterior Calculus

SIAM UK/IE 2023

$$0 \longrightarrow H_0^2(\Omega) \xrightarrow{\nabla \times} \left[H_0^1(\Omega) \right]^2 \xrightarrow{\nabla \cdot} \mathcal{L}_0^2(\Omega) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S_h \xrightarrow{\nabla \times} V_h \xrightarrow{\nabla \cdot} Q_h \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S_h \xrightarrow{\nabla \times} V_h \xrightarrow{\nabla \cdot} \hat{Q}_h \longrightarrow 0$$

Thank you for your attention!