# Airline Passenger Satisfaction

What factors lead to customer satisfaction for an Airline?

Guangze Wang Kaicheng Zhang

Meng Yang Wanxuan Zhang

Zhiyi Zhao







#### **Understand the Business Problem**

#### **Customer satisfaction is always top of mind for airlines**





# Total operating revenue streams of U.S. airlines from 2009 to 2020 (in billion U.S. dollars)

U.S. airlines urge to recover from the global pandemic



# 10-Year Stock Performance of Customer Experience(CX) Leaders vs. Laggards (2011-2020)

Airline Customer Experience Leaders Outperform



<sup>\*</sup> Source: statista >>> watermark

#### **Understand the Business Problem**

**Value Of Our Business Case: the big picture** 







Increase Passenger Satisfaction



**Build Customer Loyalty** 



Achieve Business Success

#### **Source data**

### A relatively balanced dataset with mostly hierarchical categorical features



| id     | Gender | Customer<br>Type  | Age | Type of<br>Travel  | Class    | Flight<br>Distance | Inflight wifi<br>service | Departure/<br>Arrival time<br>convenient | Online |   | Inflight<br>entertainment | On-board<br>service |     | Baggage<br>handling |   |   | Cleanliness | Departure<br>Delay in<br>Minutes | Arrival Delay<br>in Minutes | satisfaction               |
|--------|--------|-------------------|-----|--------------------|----------|--------------------|--------------------------|------------------------------------------|--------|---|---------------------------|---------------------|-----|---------------------|---|---|-------------|----------------------------------|-----------------------------|----------------------------|
| 70172  | Male   | Loyal<br>Customer | 13  | Personal<br>Travel | Eco Plus | 460                | 3                        |                                          | 4 3    | 3 | 5                         | ,                   | 4 3 | 2                   | 4 | ! | 5 5         | 2                                | 5 18.0                      | neutral or<br>dissatisfied |
| 110028 | Female | Loyal<br>Customer | 26  | Business<br>travel | Business | 1142               | 2                        |                                          | 2 2    | 2 | 5                         |                     | 4 3 | 2                   | 4 |   | 4 5         |                                  | 0.0                         | satisfied                  |

103904 instances 28 features

Train size: 0.8 Test size: 0.2

Target variable: satisfaction

# numerical features: 5 # categorical features: 22





#### Numeric features: passenger demographic & flight info





Findings: Middle-aged passengers & Long-distance flight passengers tend to satisfy more.





#### **Arrival Delay in Minutes**





#### **Departure Delay in Minutes**





### Categorical features: passenger demographic & flight info





Findings: Loyal customers, business travelers & Business class passengers tend to satisfy more.



# **Customer Type** disloyal Customer Loyal Customer 18% 82% Loyal Customer disloyal Customer satisfaction

**Type of Travel** Personal Travel Personal Travel 31% 69% Business travel **Business travel** satisfaction



#### Hierarchical categorical features: before getting into the plane





Findings: Easier online booking and boarding satisfy passengers more.



### **Hierarchical categorical features: services**





### **Hierarchical categorical features: inflight facilities**





Findings: satisfaction also comes more with better inflight facilities.









### **How flight distance correlate w/ selected features**







# **Findings**

 Long distance flight passengers are prone to be loyal customers

Long distance flight passengers generally travel for business purposes

 Long distance flight passengers tend to buy business class

# **Clustering – Try Out**





**Why:** Generate different passenger groups to allows us make customized recommendations

**What:** Clustering is an approach to generate labels and provide insight for feature engineering steps

**How:** lessons learned in the process

- The involvement of Binary or Categorical predictors would make clustering useless
- Using the combination of numerical predictors is the prerequisite
- It's necessary to check scatterplots for understanding the data before applyting clustering

# **Clustering – Result**







# **Feature Mining**

#### **Data cleaning & engineering**







- Drop id, Gate location, Departure/Arrival time convenient due to low correlation
- Drop Arrival Delay in Minutes due to its high correlation with Departure Delay in Minutes and missing values

-0.50

#### **Engineering**

Creating categorical features using clustering info & examining their correlation with satisfaction

| is_dep_del<br>ay |         | is_arr_delay | is_delay_delay_d | lusters is_longdist | Flight Distance |
|------------------|---------|--------------|------------------|---------------------|-----------------|
| satisfaction     | n -0.07 | -0.09        | -0.07 -0.        | 0.28                | 0.3             |

### **Model Selection**

#### **Tree based & other models**



Tree Based Models: Decision Tree, Random Forest, AdaBoost, Gradient Boosting, Light GBM, XGBoost
Other Models: Gaussian Naïve Bayes, K-Nearest Neighbors, Support Vector Machine, Logistic Regression,
Stochastic Gradient Descent

| Rank     | Model               | Accuracy | F1 Score |
|----------|---------------------|----------|----------|
| <b>T</b> | Light GBM           | 96.28    | 95.63    |
| 2        | Random Forest       | 96.24    | 95.6     |
| 3        | XGBoost             | 96.16    | 95.5     |
| 4        | Decision Tree       | 94.53    | 93.72    |
| 5        | Gradient Boosting   | 94.01    | 93.01    |
| 6        | KNN                 | 93.6     | 92.44    |
| 7        | AdaBoost            | 92.41    | 91.21    |
| 8        | Logistic Regression | 87.57    | 85.45    |
| 9        | SGD                 | 87.35    | 84.19    |
| 10       | Linear SVM          | 87.3     | 85.21    |
| 11       | Naive Bayes         | 85.29    | 82.97    |

# **Light Gradient Boosting Machine (LightGBM)**

#### **Our final model**





#### **Supervised Machine Learning**

- A gradient boosting framework that uses a tree-based algorithm
- Reduce complexity
  - Gradient based one side sampling
  - Exclusive feature bundling
  - Histogram based splits



# Faster training speed and higher efficiency

- Better accuracy
- Lower memory usage
- Support of parallel, distributed, and GPU learning
- Capable of handling large-scale data



#### Cons

- **Overfitting**
- Compatibility with Datasets



#### **√**= Success Metrics:

- **Confusion Matrix**
- Classification Report with Precision, Recall, F1 score







# Hyper-parameters tuning using cross-validation

Maximum tree depth: 8

Minimum children samples: 18

Minimum children weight: 0.001

Number of leaves: 40





### **Classification Report**

| 0       | 0.95 | 0.98 | 0.97 |      |
|---------|------|------|------|------|
| 1       | 0.97 | 0.94 | 0.96 |      |
| overall |      |      |      | 0.96 |

# **Model performance**

# Feature importance w/ Light GBM







|   | Top 5 Features        |
|---|-----------------------|
| 1 | Inflight wifi service |
| 2 | Age                   |
| 3 | Flight Distance       |
| 4 | Customer Type         |
| 5 | Type of Travel        |



| Top 5 upgradeable features |                       |  |  |  |  |  |  |  |
|----------------------------|-----------------------|--|--|--|--|--|--|--|
| 1                          | Inflight wifi service |  |  |  |  |  |  |  |
| 2                          | Baggage handling      |  |  |  |  |  |  |  |
| 3                          | Online boarding       |  |  |  |  |  |  |  |
| 4                          | Inflight service      |  |  |  |  |  |  |  |
| 5                          | Seat comfort          |  |  |  |  |  |  |  |

# **Feature predictions (Partial Dependence Plot)**

How much can changing feature values improve satisfaction in probability?





# Interpretation

#### **Differentiating customers**





Example:

#### **Type of Travel**

**Non-Business Business** 

We intend to generate labels for passengers based on objective features

Differentiation allows us to make customized recommendations:

- **Pools** 
  - Gender, Age, Flight Distance, Loyalty, Type of Travel, Class
- Selection
  - Loyalty
  - Type of Travel



**False** 

True

#### **Frequent Passenger**

- High value customer, given we assume business travels and loyalty passengers would use our service most frequently

#### **Loyal Traveler**

- Our main supporters, should constantly observe their feedback to make sure no churn

#### **Frequent Newcomer**

- Potential high value customers, should attract them

#### **Mobile Traveler**

- Travelers don't care about which airline, no need further operation



# Loyalty/Class



| Customer Type |           | Inflight wifi service | Baggage handling | Online boarding | Inflight service | Seat comfort | Satisfaction |
|---------------|-----------|-----------------------|------------------|-----------------|------------------|--------------|--------------|
| Economy       | non-Loyal | 2.58                  | 3.37             | 2.59            | 3.38             | 3            | 0.14         |
| Economy       | Loyal     | 2.7                   | 3.47             | 2.88            | 3.49             | 3.18         | 0.2          |
| Economy       | non-Loyal | 2.46                  | 3.14             | 2.47            | 3.15             | 3.02         | 0.08         |
| Plus          | Loyal     | 2.8                   | 3.39             | 2.93            | 3.41             | 3.2          | 0.26         |
| Business      | non-loyal | 2.93                  | 4.22             | 2.91            | 4.22             | 2.99         | 0.4          |
|               | Loyal     | 2.75                  | 3.78             | 3.86            | 3.78             | 3.9          | 0.75         |





# **Findings**

- Loyal Business Class passengers aren't satisfied with inflight wifi service
- Non-Loyal Business Class passengers aren't satisfied with seat comfort
- Nearly no group is satisfied with the existing inflight wifi service

# Interpretation

# **Type of Travel/Class**



| Custome                | r Type            | Inflight wifi service | Baggage handling | Online boarding | Inflight service | Seat comfort | Satisfaction |
|------------------------|-------------------|-----------------------|------------------|-----------------|------------------|--------------|--------------|
|                        | Economy           | 2.52                  | 3.6              | 2.77            | 3.62             | 3.17         | 0.1          |
| non-Business<br>Travel | Economy<br>Plus   | 2.5                   | 3.57             | 2.76            | 3.62             | 3.21         | 0.09         |
|                        | Business<br>Class | 2.55                  | 3.34             | 3.24            | 3.33             | 3.46         | 0.12         |
|                        | Economy           | 2.88                  | 3.26             | 2.87            | 3.26             | 3.1          | 0.3          |
| Business<br>Travel     | Economy<br>Plus   | 3.01                  | 3.17             | 3.01            | 3.17             | 3.16         | 0.39         |
|                        | Business<br>Class | 2.79                  | 3.87             | 3.74            | 3.87             | 3.77         | 0.72         |





# **Findings**

• Business Travel who also booked business class might potentially care about working in flights, poor **inflight wifi service** would be a huge CON for their overall experience



| Custon          | ner Type              | Inflight wifi service | Baggage handling | Online boarding | Inflight service | Seat comfort | Satisfaction |
|-----------------|-----------------------|-----------------------|------------------|-----------------|------------------|--------------|--------------|
| non-Business    | non-Loyal<br>Customer | 2.63                  | 3.73             | 2.48            | 3.78             | 2.98         | 0.16         |
| Travel          | Loyal Customer        | 2.52                  | 3.58             | 2.8             | 3.6              | 3.2          | 0.1          |
| Ducin on Trough | non-Loyal<br>Customer | 2.71                  | 3.69             | 2.71            | 3.7              | 2.99         | 0.24         |
| Business Travel | Loyal Customer        | 2.86                  | 3.64             | 3.72            | 3.64             | 3.75         | 0.71         |





# **Findings**

- Baggage Handling and Inflight service are exceptional
- Online Boarding is not satisfying the majority groups



# **Inflight Wifi service**



# **Seat Comfort**



# **Online Boarding**



#### Recommendation

#### **Analysis on Inflight Wifi Service**





#### Revenue

- Approx. 5% of passengers would use
- Normal rates: hour-pass \$10, full-use \$20
- Estimate revenue per flight: \$10 \* 200 \* 5%  $\approx$  \$100

#### Cost

- Installation: \$200,000 ~ \$300,000 per plane
- Recurring Service Cost: \$4345 ~ \$9995 /month
- Labor cost: 4-6 mechanics \* 72 hours \* \$30/hour (for 737/A320)



Payback Period: Approx. 41 months

#### Recommendation

#### **Analysis on Seat Comfort**





#### **Production Cost**

- \$3000 ~ \$5000 per economy class seat; \$10000 for long flights
- **\$30000 ~ \$80000** per business class seat
- \* World most popular plane (Boeing 737-800: 189 economy seats occupancy)



Estimated Production Cost: \$1,890,000

# **Design and Installation**

- New seat designment is the stage that takes most of the time
- Hard for groundbreaking improvement

#### Recommendation

#### **Analysis on Online Boarding**





# **Software Development is the key**

#### Time:

- 30 days for building up an application from scratch
- 2 to 3 weeks at most for version update

#### Labor:

• A team of 5 including project manager and CS engineers

#### Cost:

• Software Development:

5 people \* 30 days \* 8 hours/day \* \$50/hour = \$60,000



Total Cost: \$100,000 (development + maintenance)



**Inflight Wifi Service** 



**Seat Comfort** 



**Online Boarding** 



#