

布瑞特单圈绝对值旋转编码器 CAN 总线产品说明书

深圳布瑞特科技有限公司 ShenZhen Briter Technology Co. Ltd

产品优势特性

- CAN 接口具有实时双向通讯能力,CAN 接口旋转编码器兼容 CAN2.0 电气规范。用户可通过命令设置编码器的 ID 地址、零点、数据发送模式等参数,是目前最为友好的智能旋转编码器:
- 单圈编码器在不掉电情况下可作电子多圈编码器使用(此功能非断电记忆),最高可达百万圈;增加测量速度功能,便于使用者计算;
- 单圈量程范围内任何位置都是唯一的,即使有干扰或断电运动,都不会丢失 位置信息;
- 单圈分辨率有 1024(10 bit) 、4096(12 bit)、16384(14 bit)、32768(15 bit),量程范围内最高可实现 0.01 度的分辨率;
- 所有参数均可通过 CAN 总线通讯进行设定,可在任意位置设定零点,因此 安装编码器时可将设备停留任意位置,无需考虑本编码器的旋转位置、即可 固定好连接轴,通电后只要在外部引线处或通过 CAN 总线通讯进行一次置 零操作即可自动修正;
- 特别适用于塔式起重机、矿山起重机、施工升降机、机床、3D 打印机、自动化流水线、工业机器人、印刷机械、包装机械、物流机械、移动广告屏幕滑轨等设备的高度、行程、角度及速度的可靠/精确测量。

产品型号说明

电气特性

工作电压:	5V、24V(9~30V)	波特率:	100K~1M (默认 500K)			
工作电流:	50mA	站号、地址:	1~127 (默认 1)			
线性度:	0.1%	通信协议:	见附录一			
内核刷新周期:	50uS	电气寿命:	> 100000 h			
单圈分辨率	1024(10 bit) . 4096(12 bit). 16384(14 bit). 32768(15 bit)					

机械参数

外壳/法兰材质	锌镍镀层钢/航空铝、IP67 外壳为不锈铁
轴材质	不锈钢(6mm 轴、8mm 轴、8mm 盲孔)
轴承材质	轴承钢
轴的最大负载	轴向 20 N, 径向 80 N
最大机械转速	1000转
最大启动扭矩	0.006Nm (IP54) 、 0.06Nm (IP67)
重量	150 g (含 1.2 米屏蔽线)

环境参数

工作温度	-40 ~ + 85°C
储存温度	-40 ~ + 85 °C
湿度	98 % (无凝露)
防护等级	外壳: IP54、IP67 可选
州市寺 级	轴、轴承:IP54、IP67 可选

接线方式

红	电源正极 5V、	上电前务必注意:
	24V(9~30V)	1、编码器标签上的电压值
		2、应避免接触黄线,可能导致短路,无法通讯
黑	地线 (GND)	
黄	NC(悬空)	1、置零功能:黄线接地(黑线),编码器置零; 2、恢复出厂设置功能:断电后黄线接地(黑线),上 电,保持2分钟后即可复位,复位后分离两条线
绿	CANH	
白	CANL	

机械尺寸

型号: CAN 接口-- 3D 模型以及相关资料请到布瑞特科技官网下载。

尺寸型号图 1: 输出 6mm IP54

尺寸型号图 2: 输出轴 8mm IP54

尺寸型号图 3: 盲孔 8mm IP54

尺寸型号图 4: 输出 6mm 防水 IP67

尺寸型号图 5: 输出 8mm 防水 IP67

注意事项

- 编码器属于精密仪器,请轻拿轻放、小心使用,尤其对编码器轴请勿 敲、撞击及硬拽等。
- 编码器与机械连接应选用柔性连接器或弹性支架,应避免刚性联接不同 心造成的硬性损坏。
- 编码器防水等级有 IP54、IP67 两种可选,如选用 IP54 编码器,转轴处防护等级为 IP65,应避免轴朝上安装或者浸泡在水中,否则请采用防水护罩等措施; IP67 防水经 48 小时水深一米运作测试,户外情况请放小使用。
- 虽然在干扰环境下编码器本身不会丢失圈数,但会对传输过程中的数据造成干扰,所以当系统中有电机或强电磁干扰环境下,对编码器供电要采用隔离电源、外部延长的通讯线最好使用双屏蔽电缆等措施。
- 编码器外壳和屏蔽线外层网线要做到良好接地,防止雷击或高压静电对 编码器电路造成损坏!

除了上述置零(黄线)允许接地外,编码器其它任何信号线禁止相互短接,通电后还要避免不小心使信号线有碰触,否则可能会造成电路永久性损坏!

服务承诺

- 正确使用情况下,产品免费保修两年。
- 超过保质期,或因使用不当造成产品损坏,产品可寄回本公司维修(维修时仅收取成本费用。

定制说明

项目	内容
通讯	□RS232
进 代	□単圏 □圏
出线	电缆线长: 米
* ch	□半空心轴 □D型不锈钢轴
轴	□是否打孔
编码器尺寸	

联系我们

深圳布瑞特科技有限公司

官方网址: www.buruiter.com (扫描上方二维码进入官网)

邮编: 518101

技术支持: 0755-23025071

地址: 深圳市 宝安区 航城街道 安乐工业区 A 区 A2 栋 6 层

附录一

1. CAN 简介

CAN 全称为 Controller Area Network,即控制器局域网,由德国 Bosch 公司最先 提出,是国际上应用最广泛的现场总线之一。

2. CAN 技术规范

2.1、帧类型。

在 CAN 总线中,有四种帧类型:数据帧、远程帧、错误帧和过载帧。

- (1) 数据帧:数据帧传输应用数据;
- (2) 远程帧: 通过发送远程帧可以向网络请求数据, 启动其他资源节点传送他们各 自的数据, 远程帧包含 6 个位域:帧起始、仲裁域、控制域、CRC 域、应答域、帧 结尾。仲裁域中的 RTR 位的隐极性表示为远程帧;
- (3) 错误帧: 错误帧能够报告每个节点的出错。由两个不同的域组成,第一个域是不同站提供的错误标志的叠加,第二个域是错误界定符;
- (4) 过载帧:如果节点的接收尚未准备好就会传送过载帧,由两个不同的域组成, 第一个域是过载标志,第二个域是过载界定符。

2.2、数据帧的结构

数据帧包括: 【帧起始】+【仲裁域】+【控制域】+【数据域】+【CRC 域】+【应答域】+【帧结尾】

- (1) 帧起始:标志帧的开始,它由单个显性位构成,在总线空闲时发送,在总线上产生同步作用。
- (2) 仲裁域:由11位标识符(ID10-ID0)和远程发送请求位(RTR)组成,RTR位为显性表示该帧为数据帧,隐性表示该帧为远程帧;标识符按由高至低的次序发送,且前7位(ID10-ID4)不能全为显性位。标识符ID 用来描述数据的含义而不用于通信寻址,CAN总线的帧是没有寻址功能的。标识符还用于决定报文的优先权,ID值越低优先权越高,在竞争总线时,优先权高的报文优先发送,优先权低报文退出总线竞争。CAN总线竞争的算法效率很高,是一种非破坏性竞争。
- (3) 控制域:为数据长度码 (DLC3-DLC0),表示数据域中数据的字节数,不得超过 8。
- (4)数据域:由被发送数据组成,数目与控制域中设定的字节数相等,第一个字节的最高位首先被发送。其长度在标准帧中不超过8个字节。
- (5) CRC 域:包括 CRC(循环冗余码校验)序列(15 位)和 CRC 界定符(1 个隐性位),用于帧校验。

- (6) 应答域:由应答间隙和应答界定符组成,共两位;发送站发送两个隐性位,接收站在应答间隙中发送显性位。应答界定符必须是隐性位。
- (7) 帧结束:由7位隐性位组成。

2.3 恢复出厂设置功能

断电后黄线接地 (黑线), 上电, 保持2分钟后即可复位, 复位后分离两条线

3.CAN 的应用层协议

帧信息设定: 1.选择标准帧,而非扩展帧 2.选择数据帧,而非远程帧 3.数据域长度(不含标识符)

应用层协议:

数据长度	编码器地址	指令FUNC	数据
1字节	1字节	1字节	0~4字节

编码器的 CAN 通讯协议采用一主多从的方式。

3.1. 关于标识符

CAN2.0B 规定标准的数据帧有 11 位标识符,本协议将其定义为呼叫的目标地址。

数据范围: 0~255。

3.2. 关于数据域

主站和从站通过数据域传输数据。关于8个字节的数据域内容,本协议定义的格式:

【数据长度】 + 【编码器地址】+ 【指令 FUNC】+ 【数据 DATA】

数据长度: 1 字节,数据范围 0~8,包括本身、编码器地址、指令 FUNC、数据

DATA 的字节总数。注意: 这个数据长度不同于帧信息的数据长度;

编码器地址:编码器的 CAN 节点地址, 1 字节;

指令 FUNC:通讯的功能码,1 字节; 数据 DATA:指令所带的数据,0~4 字节。

3.3. 关于标识符 ID 和编码器地址 (编码器出厂默认 ID 为 1)

当主机呼叫编码器时,标识符表示的目标编码器的节点地址;

当编码器回应主机时,标识符表示的回传编码器的节点地址;

如主机和 1号编码器诵讯:

4.应用 CAN 和编码器通信:

4.1.打开 CAN 设备

设置波特率。主机要设为和编码器相同的波特率,编码器出厂默认速率是500kbps;

4.2.帧信息设定

- (1) 选择标准帧, 而非扩展帧;
- (2) 选择数据帧, 而非远程帧;
- (3) 计算数据域长度,包括数据域中的所有内容,最大值 "8"。

4.3.数据传输

根据编码器的协议,填写数据域内容。数据域的内容为多字节时,低字节在前。

例如: A、主机向 1 号编码器发送指令: "读取编码器值", 数据域长度 4;

数据域・0v04 (数据と序) + 0v01 (停祉器地址) + 0v01 (投令型) + 0v00 (数据 1)

奴	数据域. 0x04 (数据区度) + 0x01 (编码备地址) + 0x01 (指令词) + 0x00 (数据 1)							
标识 符 ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
0X01	0x04	0x01	0x01	0x00				

返回的数据:数据域长度7;

数据域: 0X07 (数据长度) + 0X01 (编码器地址) + 0X01 (指令码) + 0x00012345 (数据)

2021 10 (2021 122)							,,,,,	
标识 符 ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
0X01	0x07	0x01	0x01	0x45	0x23	0x01	0x00	

5.布瑞特编码器 CAN 指令列表 V2.1

5.1.CAN 协议

- (1) 采用 CAN2.0B 标准帧通信协议;
- (2) 通信速率: 1Mbps、500kbps、250kbps、125kbps、100kbps 可设置, 500kbps 为默认通信速率设置。

注意: 修改了编码器的通信速率后,主机也应修改为相同的通信速率!

5.2.指令结构

CAN2.0B 指令码的构成:

[长度 LEN] + [设备 ID] + [指令 FUNC] + [数据 DATA]

- [长度 LEN]: 1字节,包括[长度 LEN] + [设备 ID] + [指令 FUNC] + [数据 DATA];
- •[设备ID]: 1字节, 范围 0~255;
- •[指令]: 1字节, 范围 0~255;

[数据]: 0~4字节; 2字节组成16位数据,低字节在前; 4字节组成32位数据,低字节在前。

5.3 指令列表 V2.1

指令码	功能描述	示例(编码器地址 ID 默认为 01),
0x01	读取编码器值。 返回数据:32 位无符号数。	标准帧 ID (标识符) 亦为 01 下发: [0x04][0x01][0x01][0x00] 返回: [0x07][0x01][0x01][0x45][0x23][0x01][0x00] 編码器値: 0X00012345 (十进制: 74565)
0x02	设置编码器 ID , 数值范围: 0~255 下发数据: 8 位无符号数。 返回数据: 8 位无符号数。 0:设置成功, other: 错误码	下发: [0x04][0x01][0x02][0x08] 返回: [0x04][0x08][0x02][0x00] 设定地址: 0X08
0x03	设置 CAN 通讯波特率 下发数据: 8 位有符号数。 返回数据: 8 位有符号数。 0: 设置成功, other: 错误码 0x00: 500K; 0x01:1M 0x02: 250K; 0x03:125K 0x04: 100K;	下发: [0x04][0x01][0x03][0x01] 返回: [0x04][0x01][0x03][0x00] 设定波特率: 1M
0x04	设置编码器模式: 0x00: 查询, 0xAA: 自动回发	下发: [0x04][0x01][0x04][0xAA] 返回: [0x04][0x01][0x04][0x00] 设定模式: 0xAA (自动回传)
0x05	设置编码器自动回传时间(微秒), 数值范围:50~65535:	下发: [0x05][0x01][0x05][0xE8][0x03] 返回: [0x04][0x01][0x05][0x00] 设定自动回传时间: 0X03E8 (1000 微秒)
注意: 设置太短的	的返回时间后,编码器将无法再设置其代	也参数,谨慎使用!!
0x06	设置当前位置值为零点 下发数据: 8 位无符号数。 返回数据: 8 位无符号数。 0:设置成功, other: 错误码	下发: [0x04][0x01][0x06][0x00] 返回: [0x04][0x01][0x06][0x00] 设定位置值为零点
0x07	设置编码器值递增方向: 0x00: 顺时针, 0x01: 逆时针	下发: [0x04][0x01][0x07][0x01] 返回: [0x04][0x01][0x07][0x00] 设定方向: 0x01 (逆时针)

指令码	功能描述	示例(编码器地址 ID 默认为 01), 标准帧 ID(标识符)亦为 01		
0x08	读取编码器虚拟多圈值。 返回数据:32 位无符号数。	下发: [0x04][0x01][0x08][0x00] 返回: [0x07][0x01][0x08][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)		
0x09	读取编码器虚拟圈数值。 返回数据:32 位无符号数。	下发: [0x04][0x01][0x09][0x00] 返回: [0x07][0x01][0x09][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)		
0x0A	读取编码器角速度值。 返回数据:32 位无符号数。	下发: [0x04][0x01][0x0A][0x00] 返回: [0x07][0x01][0x0A][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)		
0x0B	设置角速度采样时间(毫秒) 数值范围: 0~65535:	下发: [0x05][0x01][0x0B][0xE8][0x03] 返回: [0x04][0x01][0x0B][0x00] 设置角速度采样时间: 0X03E8 (1000 毫秒)		
编码器旋转速度 = 编码器角速度值 / 单圈精度 / 转速计算时间(单位:转/分钟) 例如:编码器角速度值回传为 1000,单圈精度为 32768,转速采样时间为 100ms(0.1/60min)				

编码器旋转速度 = 1000/32768/(0.1/60) = 1000*0.0183 = 18.31 转/分钟