```
In [0]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
        loan_data = pd.read_csv('LendingClubDataSet/loan data.csv')
In [0]:
         input data = pd.read csv('LendingClubDataSet/input.csv')
         output data = pd.read csv('LendingClubDataSet/output.csv')
In [9]:
         print(loan data.head())
         print(input data.head())
         print(output data.head())
            credit.policy
                                                        pub.rec
                                                                  not.fully.paid
                                        purpose
         0
                                                              0
                         1
                            debt consolidation
                                                                                0
         1
                         1
                                    credit card
                                                               0
                                                                                0
         2
                                                               0
                                                                                0
                         1
                            debt consolidation
         3
                         1
                            debt_consolidation
                                                               0
                                                                                0
         4
                         1
                                    credit card
                                                                                0
         [5 rows x 14 columns]
              0.1189
                         829.1
                                               19.48
                                                       737
                                 11.35040654
                                                                  0.3
                                                                       0.4
                                                                             1.1
         0.5
              0.6
                   0.7
               0.1071
                        228.22
                                   11.082143
                                               14.29
                                                       707
                                                                         1
                                                                               0
         0
                                                                    0
         0
              0
                   0
         1
            1
               0.1357
                        366.86
                                   10.373491
                                               11.63
                                                       682
                                                                         0
                                                                               1
         0
              0
               0.1008
                        162.34
                                   11.350407
         2
            1
                                                8.10
                                                       712
                                                                    0
                                                                         0
                                                                               1
         0
              0
                   0
              0.1426
                        102.92
                                   11.299732
         3
                                               14.97
                                                       667
                                                                         1
                                                                               0
                                                                    O
         0
              0
                    0
               0.0788
                        125.13
                                   11.904968
                                                                         1
                                                                               0
         4
                                               16.98
                                                       727
                                                                    0
         0
              0
                   0
         [5 rows x 18 columns]
            0
               1
            0
               1
         0
         1
            0
               1
         2
            0
               1
         3
            0
               1
            0
               1
        print(input data.shape)
In [0]:
         print(output data.shape)
         (9577, 18)
```

(9577, 2)

In [10]: loan_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	credit.policy	9578 non-null	int64				
1	purpose	9578 non-null	object				
2	<pre>int.rate</pre>	9578 non-null	float64				
3	installment	9578 non-null	float64				
4	log.annual.inc	9578 non-null	float64				
5	dti	9578 non-null	float64				
6	fico	9578 non-null	int64				
7	days.with.cr.line	9578 non-null	float64				
8	revol.bal	9578 non-null	int64				
9	revol.util	9578 non-null	float64				
10	inq.last.6mths	9578 non-null	int64				
11	delinq.2yrs	9578 non-null	int64				
12	pub.rec	9578 non-null	int64				
13	<pre>not.fully.paid</pre>	9578 non-null	int64				
<pre>dtypes: float64(6), int64(7), object(1)</pre>							
memory usage: 1.0+ MB							

In [11]: loan data.describe()

Out[11]:

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	dε
count	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	
mean	0.804970	0.122640	319.089413	10.932117	12.606679	710.846314	
std	0.396245	0.026847	207.071301	0.614813	6.883970	37.970537	
min	0.000000	0.060000	15.670000	7.547502	0.000000	612.000000	
25%	1.000000	0.103900	163.770000	10.558414	7.212500	682.000000	
50%	1.000000	0.122100	268.950000	10.928884	12.665000	707.000000	
75%	1.000000	0.140700	432.762500	11.291293	17.950000	737.000000	
max	1.000000	0.216400	940.140000	14.528354	29.960000	827.000000	

In [12]: loan_data['purpose'].value_counts()

Out[12]: debt_consolidation 3957 all_other 2331 credit_card 1262 home_improvement 629 small_business 619 major_purchase 437 educational 343 Name: purpose, dtype: int64

1. Feature Transformation

Transform categorical values into numerical values (discrete)

```
In [0]:
            from sklearn.preprocessing import
                                                         LabelEncoder
            le purpose = LabelEncoder()
            le purpose.fit(loan data['purpose'])
            loan data['purpose'] = le purpose.transform(loan data['purpose'])
           loan data.head(10)
In [14]:
Out[14]:
               credit.policy
                                            installment log.annual.inc
                                                                         dti fico
                                                                                  days.with.cr.line
                            purpose
                                     int.rate
                         1
                                                                             737
                                                                                      5639.958333
                                      0.1189
                                                 829.10
                                                            11.350407 19.48
            0
                                  2
                                      0.1071
                                                 228.22
                                                            11.082143 14.29
                                                                             707
                                                                                      2760.000000
            1
                         1
                                  1
            2
                                      0.1357
                                                 366.86
                                                            10.373491 11.63
                                                                             682
                                                                                      4710.000000
            3
                         1
                                     0.1008
                                                 162.34
                                                            11.350407
                                                                        8.10
                                                                             712
                                                                                      2699.958333
                                                 102.92
                                                            11.299732 14.97
                         1
                                  1
                                      0.1426
                                                                             667
                                                                                      4066.000000
                                      0.0788
                                                 125.13
                                                            11.904968
                                                                      16.98
                                                                             727
                                                                                      6120.041667
            5
                         1
                                  1
                                      0.1496
                                                 194.02
                                                            10.714418
                                                                        4.00
                                                                             667
                                                                                      3180.041667
            7
                         1
                                  0
                                     0.1114
                                                 131.22
                                                            11.002100 11.08
                                                                             722
                                                                                      5116.000000
                                                  87.19
            8
                         1
                                  4
                                      0.1134
                                                            11.407565 17.25
                                                                             682
                                                                                      3989.000000
                                      0.1221
                                                  84.12
                                                            10.203592 10.00
                                                                             707
                                                                                      2730.041667
```

2. Exploratory data analysis of different factors of the dataset.

```
In [15]: sns.countplot(x='purpose', data=loan_data, hue='not.fully.paid', or
    der=loan_data.purpose.value_counts().index)
```

Out[15]: <matplotlib.axes. subplots.AxesSubplot at 0x7f9aba55b9e8>

In [0]:


```
In [17]: sns.distplot(loan_data['int.rate'])
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9ab591fb00>


```
In [18]: sns.distplot(loan_data['log.annual.inc'])
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9ab5a0b6a0>


```
In [19]: sns.distplot(loan_data['installment'])
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9ab3ed9860>


```
In [20]: sns.pairplot(loan_data, hue='not.fully.paid')
```

Out[20]: <seaborn.axisgrid.PairGrid at 0x7f9ab3e30dd8>

3. Additional Feature Engineering

You will check the correlation between features and will drop those features which have a strong correlation

This will help reduce the number of features and will leave you with the most relevant features

```
In [0]: data_corr = loan_data.corr()
```

In [22]: data_corr

Out[22]:

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	
credit.policy	1.000000	0.017569	-0.294089	0.058770	0.034906	-0.090901	
purpose	0.017569	1.000000	0.117067	0.154827	0.088958	-0.053279	1
int.rate	-0.294089	0.117067	1.000000	0.276140	0.056383	0.220006	-1
installment	0.058770	0.154827	0.276140	1.000000	0.448102	0.050202	1
log.annual.inc	0.034906	0.088958	0.056383	0.448102	1.000000	-0.054065	1
dti	-0.090901	-0.053279	0.220006	0.050202	-0.054065	1.000000	-1
fico	0.348319	0.057337	-0.714821	0.086039	0.114576	-0.241191	
days.with.cr.line	0.099026	0.047526	-0.124022	0.183297	0.336896	0.060101	1
revol.bal	-0.187518	0.042364	0.092527	0.233625	0.372140	0.188748	-1
revol.util	-0.104095	-0.062947	0.464837	0.081356	0.054881	0.337109	-1
inq.last.6mths	-0.535511	0.037516	0.202780	-0.010419	0.029171	0.029189	-1
delinq.2yrs	-0.076318	-0.011701	0.156079	-0.004368	0.029203	-0.021792	-1
pub.rec	-0.054243	0.004793	0.098162	-0.032760	0.016506	0.006209	-1
not.fully.paid	-0.158119	0.047907	0.159552	0.049955	-0.033439	0.037362	-1

```
In [23]: plt.figure(figsize=(15, 10))
    sns.heatmap(data_corr, cmap='viridis', annot=True)
```

Out[23]: <matplotlib.axes. subplots.AxesSubplot at 0x7f9ab06b60b8>


```
Out[24]: credit.policy -0.158119
int.rate 0.159552
fico -0.149666
inq.last.6mths 0.149452
not.fully.paid 1.000000
```

Name: not.fully.paid, dtype: float64

```
In [0]:
```

```
In [0]: loan_data = pd.concat([pd.get_dummies(loan_data.purpose), loan_data
.drop(['purpose'], axis=1)], axis=1)
```

```
In [26]: loan_data.shape
```

Out[26]: (9578, 20)

4. Modeling

```
In [0]: def getValue(data):
    return np.argmax(data)

X = input_data.values
Y = np.array(list(map(getValue, output_data.values)))
```

Splitting training and test data

```
In [0]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state=672)
In [0]:
```

Training the model

```
In [0]: from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Dropout

model = Sequential()

# input layer
model.add(Dense(18, activation='relu'))

# hidden layer
model.add(Dense(18, activation='relu'))

# hidden layer
model.add(Dense(18, activation='relu'))

# output layer
model.add(Dense(1, activation='relu'))

# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics
=['accuracy'])
```

```
Epoch 1/30
29/29 [============= ] - 0s 2ms/step - loss: 369.3
065 - accuracy: 0.4741
Epoch 2/30
29/29 [=========== ] - 0s 1ms/step - loss: 43.29
62 - accuracy: 0.9390
Epoch 3/30
29/29 [=========== ] - 0s 1ms/step - loss: 11.39
53 - accuracy: 0.8929
Epoch 4/30
29/29 [=========== ] - 0s 1ms/step - loss: 4.917
2 - accuracy: 0.8995
Epoch 5/30
29/29 [============== ] - 0s 1ms/step - loss: 3.656
3 - accuracy: 0.9052
Epoch 6/30
2 - accuracy: 0.8946
Epoch 7/30
29/29 [=========== ] - 0s 2ms/step - loss: 2.577
5 - accuracy: 0.8967
Epoch 8/30
29/29 [============== ] - 0s 1ms/step - loss: 3.108
8 - accuracy: 0.8942
Epoch 9/30
29/29 [============ ] - 0s 1ms/step - loss: 2.759
9 - accuracy: 0.8957
Epoch 10/30
29/29 [============= ] - 0s 1ms/step - loss: 1.615
8 - accuracy: 0.8972
Epoch 11/30
5 - accuracy: 0.9036
Epoch 12/30
29/29 [=========== ] - 0s 1ms/step - loss: 2.339
7 - accuracy: 0.8865
Epoch 13/30
29/29 [============ ] - 0s 2ms/step - loss: 3.367
3 - accuracy: 0.8939
Epoch 14/30
29/29 [============ ] - 0s 1ms/step - loss: 3.080
6 - accuracy: 0.8876
Epoch 15/30
29/29 [=============== ] - 0s 1ms/step - loss: 2.087
4 - accuracy: 0.9081
Epoch 16/30
29/29 [============= ] - 0s 2ms/step - loss: 0.997
```

3 - accuracy: 0.9106

```
Epoch 17/30
       29/29 [=========== ] - 0s 1ms/step - loss: 1.049
       9 - accuracy: 0.9041
       Epoch 18/30
       29/29 [============= ] - 0s 1ms/step - loss: 1.337
       1 - accuracy: 0.8896
       Epoch 19/30
       29/29 [============ ] - 0s 1ms/step - loss: 2.011
       2 - accuracy: 0.8787
       Epoch 20/30
       29/29 [=============== ] - Os 1ms/step - loss: 4.239
       7 - accuracy: 0.9062
       Epoch 21/30
       29/29 [============= ] - 0s 2ms/step - loss: 12.78
       95 - accuracy: 0.8610
       Epoch 22/30
       29/29 [=========== ] - 0s 1ms/step - loss: 5.425
       8 - accuracy: 0.8965
       Epoch 23/30
       29/29 [=========== ] - 0s 1ms/step - loss: 2.739
       2 - accuracy: 0.8649
       Epoch 24/30
       29/29 [========== ] - 0s 1ms/step - loss: 3.100
       9 - accuracy: 0.9176
       Epoch 25/30
       5 - accuracy: 0.8940
       Epoch 26/30
       29/29 [=========== ] - 0s 1ms/step - loss: 1.971
       0 - accuracy: 0.8910
       Epoch 27/30
       6 - accuracy: 0.8977
       Epoch 28/30
       29/29 [============ ] - 0s 1ms/step - loss: 2.665
       6 - accuracy: 0.8954
       Epoch 29/30
       29/29 [============ ] - 0s 1ms/step - loss: 1.277
       3 - accuracy: 0.8986
       Epoch 30/30
       29/29 [============== ] - 0s 1ms/step - loss: 1.274
       8 - accuracy: 0.9103
Out[40]: <tensorflow.python.keras.callbacks.History at 0x7f9a28564080>
In [0]: predictions = model.predict classes(x test)
```

Evaluation

```
In [0]:
         from sklearn.metrics import classification report, confusion matri
 In [0]:
         confusion_matrix(y_test, predictions)
In [42]:
Out[42]: array([[
                    17,
                         164],
                 [ 148, 2066]])
         print(classification report(y test, predictions))
In [44]:
                        precision
                                      recall
                                             f1-score
                                                          support
                     0
                             0.10
                                        0.09
                                                  0.10
                                                              181
                     1
                             0.93
                                        0.93
                                                  0.93
                                                             2214
                                                  0.87
                                                             2395
              accuracy
                             0.51
                                        0.51
                                                   0.51
            macro avg
                                                             2395
         weighted avg
                             0.86
                                        0.87
                                                  0.87
                                                             2395
 In [0]:
 In [0]:
 In [0]:
 In [0]:
 In [0]:
```