Formulas for mathematics 3

Algebra

Rules

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a+b)(a-b) = a^2 - b^2$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

 $a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$

Quadratic equations

$$x^2 + px + q = 0$$

$$ax^2 + bx + c = 0$$

$$x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q} \qquad x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Arithmetic

Prefixes

Т	G	M	k	h	d	c	m	μ	n	p
tera	giga	mega	kilo	hecto	deci	centi	milli	micro	nano	pico
10 ¹²	10 ⁹	10^{6}	10 ³	10 ²	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

Powers

$$a^x a^y = a^{x+y}$$

$$a^{x}a^{y} = a^{x+y}$$
 $\frac{a^{x}}{a^{y}} = a^{x-y}$ $(a^{x})^{y} = a^{xy}$ $a^{-x} = \frac{1}{a^{x}}$

$$(a^x)^y = a^{xy}$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^{x}b^{x} = (ab)^{x} \qquad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x} \qquad a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^0 = 1$$

Geometric series

$$a + ak + ak^{2} + \dots + ak^{n-1} = \frac{a(k^{n} - 1)}{k - 1}$$
 where $k \ne 1$

Logarithms

$$y = 10^x \Leftrightarrow x = \lg y$$

$$y = 10^x \Leftrightarrow x = \lg y$$
 $y = e^x \Leftrightarrow x = \ln y$

$$\lg x + \lg y = \lg xy$$

$$\lg x + \lg y = \lg xy \qquad \qquad \lg x - \lg y = \lg \frac{x}{y} \qquad \qquad \lg x^p = p \cdot \lg x$$

$$\lg x^p = p \cdot \lg x$$

Absolute value
$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

Functions and relations

Linear function

Quadratic functions

$$y = kx + m$$

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y = ax^2 + bx + c$$

$$a \neq 0$$

 $k_1 \cdot k_2 = -1$, condition for perpendicular lines

ax + by + c = 0, where a and b are not both zero

Power functions

Exponential functions

$$y = C \cdot x^a$$

$$y = C \cdot a^{3}$$

$$y = C \cdot a^x$$
 $a > 0$ and $a \ne 1$

Statistics and probability

Box plot

Normal distribution

Differential and integral calculus

Definition of the derivative

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Derivatives

Function	Derivative			
x^n where n is a real number	nx^{n-1}			
$\frac{1}{x}$	$-\frac{1}{x^2}$			
$a^x (a>0)$	$a^x \ln a$			
e^x	e ^x			
e^{kx}	$k \cdot e^{kx}$ $k \cdot f'(x)$ $f'(x) + g'(x)$			
$k \cdot f(x)$	$k \cdot f'(x)$			
f(x) + g(x)	f'(x) + g'(x)			

Fundamental theorem of calculus

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a) \text{ where } F'(x) = f(x)$$

Antiderivatives

Function	Antiderivatives			
k	kx + C			
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$			
$a^x (a > 0, \ a \neq 1)$	$\frac{a^x}{\ln a} + C$			
e ^x	$e^x + C$			
e^{kx}	$e^{x} + C$ $\frac{e^{kx}}{k} + C$			

Geometry

Triangle

$$A = \frac{bh}{2}$$

Parallelogram

$$A = bh$$

Trapezium

$$A = \frac{h(a+b)}{2}$$

Circle

$$A = \pi r^2 = \frac{\pi d^2}{4}$$

$$O = 2\pi r = \pi d$$

Circle sector

$$b = \frac{v}{360^{\circ}} \cdot 2\pi r$$

$$A = \frac{v}{360^{\circ}} \cdot \pi r^2 = \frac{br}{2}$$

Prism

$$V = Bh$$

Cylinder

$$V = \pi r^2 h$$

Lateral surface area

 $A=2\pi rh$

Pyramid

$$V = \frac{Bh}{3}$$

Cone

$$V = \frac{\pi r^2 h}{3}$$

Lateral surface area

 $A = \pi rs$

Sphere

$$V = \frac{4\pi r^3}{3}$$

$$A = 4\pi r^2$$

Similarity

The triangles ABC and DEF are

similar if
$$\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$$

Scale Area scale factor = $(Length scale factor)^2$

Volume scale factor = $(Length scale factor)^3$

Triangle with a transversal line

$$\frac{DE}{AB} = \frac{CD}{AC} = \frac{CE}{BC} \text{ and}$$

$$\frac{CD}{AD} = \frac{CE}{BE}$$

DE is parallel to AB

Angle bisector theorem

$$\frac{AD}{BD} = \frac{AC}{BC}$$

Angles

$$u + v = 180^{\circ}$$

Supplementary angles

$$w = v$$

Vertical angles

 L_1 intersects two parallel lines L_2 and L_3

v = w

Corresponding angles

u = w

Alternate angles

The sum *S* of all angles of a *n*-polygon: $S = (n-2) \cdot 180^{\circ}$

Exterior angle theorem

$$y = u + v$$

Pythagoras' theorem

$$a^2 + b^2 = c^2$$

Chord theorem

$$ab = cd$$

Angles subtended by the same arc

$$u = 2v$$

Distance formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint formula

$$x_m = \frac{x_1 + x_2}{2}$$
 and $y_m = \frac{y_1 + y_2}{2}$

Trigonometry

Definitions

Right-angled triangle

$$\sin v = \frac{a}{c}$$

$$\cos v = \frac{b}{c}$$

$$\tan v = \frac{a}{b}$$

Unit circle

$$\sin v = y$$

$$\cos v = x$$

$$\tan v = \frac{y}{x}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area

$$T = \frac{ab\sin C}{2}$$

Values of trigonometric functions

Angle v	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin v$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\cos v$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
tan v	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not def.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0