به نام هستی بخش سیستمهای عامل نیمسال اول ۱۴۰۱ – ۱۴۰۲

مدرس: دکتر ابراهیمی مقدم تاریخ تحویل: شنبه ۲۳:۵۹ تمرین سری ۵ دانشکده مهندسی و علوم کامییوتر

- ۱) درستی یا نادرستی موارد زیر را با ذکر دلیل مشخص کنید.
- الف) متوسط زمان پاسخ در الگوریتم RR همواره بهتر از FCFS است.
- ب) در الگوريتم SJF مانند الگوريتم FCFS امكان مواجهه با starvation وجود ندارد.
- RR ممکن است بهتر از SJF عمل کند.
- ت) الگوریتم SJF برای مجموعه ی ثابتی از پروسس ها همیشه کوتاهترین زمان متوسط انتظار را دارد.
- ۲) پروسس های زیر را با مشخصات ذکر شده در نظر بگیرید و آنها را بر اساس الگوریتم HRRN زمانبندی کنید. (مراحل انجام زمانبندی و اولویت ها را در هر مرحله ذکر کنید.)

Process	Arival time	Burst time
P0	0	6
P1	1	7
P2	3	3
Р3	5	3
P4	7	2

 Υ) فرض کنید ۶ پروسس همگی در زمان صفر وارد سیستم شده اند و زمان اجرای آنها به ترتیب ۲، ۱۲، ۷، ۲۰ میباشد. آنها را به کمک multi-level feedback queue زمانبندی کنید که ما سه صف داریم که در صف های اول و دوم از الگوریتم RR با کوانتوم های زمانی به ترتیب ۸ و ۱۶ واحد زمانی و در صف سوم از الگوریتم FCFS استفاده می شود. همچنین فرض کنید تا زمانی که در صف های بالاتر پروسسی و جود دارد، به پروسس های موجود در صف های پایین تر CPU اختصاص داده نمی شود. در پایان مقادیر average waiting time و average turnaround time

۴) پروسس های زیر را با مشخصات ذکر شده در نظر بگیرید و آنها را به کمک الگوریتم SRT زمانبندی کنید. سپس متوسط زمان انتظار را نیز محاسبه کنید. فرض کنید زمان مربوط به context switch یک واحد زمانی است.

Process	Arival time	Burst time
P0	0	6
P1	2	4
P2	3	2
Р3	8	1

(۵) پروسس های زیر را با مشخصات ذکر شده در نظر بگیرید. آنها را با استفاده از هر دو الگوریتم RMS و RMS زمانبندی کنید و نتایج را با هم مقایسه کنید. آیا هر دو الگوریتم میتوانند این پروسس ها را به درستی زمانبندی کنند؟

Process	Burst time	Time Period
P0	15	30
P1	15	40
P2	5	50

۶) پروسس های زیر را با مشخصات ذکر شده در نظر بگیرید و آنها را بر اساس الگوریتم Round Robin با کوانتوم زمانی ۲ واحد زمانی زمان بندی کنید.

Process	Arival time	Burst time
P0	0	5
P1	1	3
P2	2	1
Р3	3	2
P4	4	3

۷) علت نادرستی جملات زیر را بیان کنید:

a. سیستمی که دارای Mutual exclusion باشد، قطعا دچار بنبست خواهد شد.

- b. وجود حلقه در گراف تخصیص منابع سیستم، برای بروز بن بست در سیستم کافی است.
 - c. قرارگیری سیستم در استیت unsafe، بروز بنبست را قطعی می کند.

(۱ ه. اگر در سیستهما از منبع R، Y عدد instance وجود داشته باشد و X فرایند داریم که هر یک برای اجرا به X منبع از نوع X نیاز دارند، حداکثر مقدار X برای عدم وقوع بن بست چند است؟

R1: 8 instnaces, R2: 7 instnaces, R3: 11 و π نوع منبع π است، اطلاعات زیر رقم خورده است، اگر پراسس اول درخواستی مبنی بر دریافت یک منبع π و π ارائه دهد، توضیح دهید آیا احتمال وقوع بن بست پس از اجابت این درخواست وجود دارد یا خیر.

Process	منابع اختصاص يافته		یافته Process		د نیاز	ئر منابع مور	حداك
	R1	R2	R3	R1	R2	R3	
P1	0	1	2	3	6	8	
P2	2	0	3	7	3	6	
P3	3	2	0	4	3	3	
P4	1	0	2	4	5	9	
P5	1	1	0	1	3	3	

(۱۰) اگر زمان اجرای چهار پروسس اول به ترتیب ۴ ، ۸ ، ۶ و ۷ واحد زمانی طول کشیده باشد ، زمان اجرای پروسس پنجم را به کمک exponential averaging بدست بیاورید. زمان پیش بینی شده برای پروسس اول را ۱۰ واحد زمانی و مقدار α را برابر α را برابر α در نظر بگیرید.

در سیستمی 4 فرآیند P_1 و P_2 و P_3 و P_4 و سه منبع P_4 و P_5 ادر نظر بگیرید. از هر کدام از سه P_4 و P_5 ادر P_6 و P_8 به ترتیب P_8 و P_8 و

- P_1 یک واحد از منبع R_1 را در اختیار دارد و تقاضای یک واحد از R_2 را کرده است.
- P_2 دو واحد از منبع R_2 را در اختیار دارد و تقاضای یک واحد از R_1 را کرده است.
- P_3 یک واحد از منبع R_1 را در اختیار دارد و تقاضای یک واحد از R_2 را کرده است.
- \bullet دو واحد از منبع R_3 را در اختیار دارد و تقاضای یک واحد از R_1 را کرده است.

ماتریس های مربوطه و گراف تخصیص منابع را رسم کنید و مشخص کنید آیا فرآیند ها دچار بن بست شده اند و در آینده کدام فرآیند ها ممکن است دچار بن بست شوند.؟

1۲) فرآیند داریم که رابطه تقدم و تاخر آن ها در گراف زیر آمده است. فرض کنید که همه ی آن ها برای اجرا به یک منبع واحد نیاز دارند که حداکثر تعداد نیاز فرآیندها نیز در جدول داده شده. با ذکر دلیل مشخص کنید کمترین تعداد از منبع مورد نظر چقدر باید باشد تا مطمئن باشیم هیچگاه بن بست رخ نخواهد داد.

شماره فرآیند	1	2	3	4	5	6
حداکثر منبع مورد نیاز	6	5	3	2	1	4

۱۳) در سیستم نمایش داده شده، 5 پراسس داریم که برای اجرا به دو منبع R1 و R2 نیاز دارند، در حال حاضر از منبع اول n نمونه و از منبع دوم R نمونه موجود و قابل استفاده داریم. حداقل مقدار ممکن برای R به طوری که احتمال وقوع بن بست، صفر باشد را به دست آورید و راه حل خود را تشریح کنید.

Process	منابع اختصاص يافته		ع مورد نیاز	حداكثر مناب
	R1	R2	R1	R2
P1	0	2	5	2
P2	2	5	2	10
P3	4	0	4	5
P4	1	1	1	4
P5	0	0	0	5