Solved selected problems of General Relativity - Thomas A. Moore

Franco Zacco

Chapter 14 - Event Horizon

Solution. BOX 14.1 - Exercise 14.1.1. Let

$$u = \sqrt{1 - \frac{2GM}{r}}$$

Then

$$u^{2} = 1 - \frac{2GM}{r}$$
$$\frac{2GM}{r} = 1 - u^{2}$$
$$r = \frac{2GM}{1 - u^{2}}$$

Solution. BOX 14.1 - Exercise 14.1.2. Let

$$r = \frac{2GM}{1 - u^2}$$

Then

$$\frac{\mathrm{d}r}{\mathrm{d}u} = \frac{4GMu}{(1-u^2)^2} \quad \text{hence} \quad dr = \frac{4GMu}{(1-u^2)^2} \ du$$

Replacing in (14.7) we have that

$$\Delta s = \int \frac{4GMudu}{u(1-u^2)^2} = 4GM \int \frac{du}{(1-u^2)^2}$$

Finally, since we want to integrate between r=2GM and r=R then u at 2GM is 0 so we write

$$\Delta s = 4GM \int_0^{u(R)} \frac{du}{(1-u^2)^2}$$

Solution. **BOX 14.1** - Exercise 14.1.3. Knowing that

$$\int \frac{du}{(1-u^2)^2} = \frac{u}{2(1-u^2)} + \frac{1}{4} \log \left| \frac{1+u}{1-u} \right|$$

and that

$$\tanh^{-1} u = \frac{1}{2} \log \left| \frac{1+u}{1-u} \right|$$

We can solve Δs equation as follows

$$\Delta s = 4GM \int_0^{u(R)} \frac{du}{(1 - u^2)^2}$$

$$= 4GM \left[\frac{u}{2(1 - u^2)} + \frac{\tanh^{-1} u}{2} \right]_0^{u(R)}$$

$$= 4GM \left[\frac{u(R)}{2(1 - u(R)^2)} + \frac{\tanh^{-1} u(R)}{2} - 0 \right]$$

Finally, we replace back $u(R) = \sqrt{1 - 2GM/R}$

$$\Delta s = 4GM \left[\frac{\sqrt{1 - 2GM/R}}{4GM/R} + \frac{\tanh^{-1} \sqrt{1 - 2GM/R}}{2} \right]$$
$$= R\sqrt{1 - 2GM/R} + 2GM \tanh^{-1} \sqrt{1 - 2GM/R}$$

Solution. BOX 14.1 - Exercise 14.1.4.

Let now R = 3GM then the physical distance from r = 2GM to R = 3GM is

$$\Delta s = 3GM\sqrt{1 - 2/3} + 2GM \tanh^{-1} \sqrt{1 - 2/3}$$

$$= 3GM\sqrt{1/3} + 2GM \tanh^{-1} \sqrt{1/3}$$

$$= 1.7320 \ GM + 1.3169 \ GM$$

$$= 3.048 \ GM$$

Solution. BOX 14.2 - Exercise 14.2.1. Let

$$\Delta \tau = 2\sqrt{\frac{R}{2GM}} \int_0^{u_0} \frac{u^2 du}{\sqrt{u_0^2 - u^2}}$$

Then

$$\Delta \tau = \sqrt{\frac{R}{2GM}} \left[u_0^2 \arctan\left(\frac{u}{\sqrt{u_0^2 - u^2}}\right) - u\sqrt{u_0^2 - u^2} \right]_0^{u_0}$$

$$= \sqrt{\frac{R}{2GM}} \left[u_0^2 \frac{\pi}{2} - 0 \right]$$

$$= \frac{\pi}{2} R \sqrt{\frac{R}{2GM}}$$

$$= \frac{\pi}{2} \sqrt{\frac{R^3}{2GM}}$$

Solution. BOX 14.3 - Exercise 14.3.1. Let

$$\Delta \tau = \int_0^{2GM} \frac{r^{1/2} dr}{\sqrt{2GM - r}}$$

Then letting $u = \sqrt{r}$ we have that

$$\Delta \tau = 2 \int_0^{\sqrt{2GM}} \frac{u^2 du}{\sqrt{2GM - u^2}}$$

Hence

$$\Delta \tau = \left[2GM \arctan\left(\frac{u}{\sqrt{2GM - u^2}}\right) - u\sqrt{2GM - u^2} \right]_0^{\sqrt{2GM}}$$
$$= \left[2GM \frac{\pi}{2} - 0 \right]$$
$$= \pi GM$$

Solution. **P14.1** From BOX 14.2 we know that the proper time (measured by our own watch) we have to live until we reach r=0 when we started from a radially inward fall from r=R is

$$\Delta \tau = \frac{\pi}{2} \sqrt{\frac{R^3}{2GM}}$$

In our current case R=10GM hence

$$\Delta \tau = \frac{\pi}{2} \sqrt{\frac{(10GM)^3}{2GM}}$$

$$= 35.124GM$$

$$= 35.124 \cdot 1477 \cdot 10^6 m$$

$$= 51878256788.735 m$$

$$= 173.042 s$$

Where we used that 299800 km = 1 s.

Solution. P14.2

a. The time the clock registers between its launch at r=16GM and when it comes to rest at r=32GM is the same time it registers between falling from rest from 32GM to r=16GM hence, we can compute this time using the equation from BOX 14.2 as follows

$$\Delta \tau = \sqrt{\frac{32GM}{2GM}} \left[32GM \arctan\left(\frac{u}{\sqrt{32GM - u^2}}\right) - u\sqrt{32GM - u^2} \right]_{\sqrt{16GM}}^{\sqrt{32GM}}$$

$$= 4 \left[16\pi GM - 8\pi GM + 16GM \right]$$

$$= 164.53 \cdot 1477 \cdot 10^6$$

$$= 243010810000.0 \ m = 810.57 \ s$$

b. In the same way, the time the clock registers between being at rest at r = 32GM and falling to r = 2GM (the event horizon) is

$$\Delta \tau = \sqrt{\frac{32GM}{2GM}} \left[32GM \arctan\left(\frac{u}{\sqrt{32GM - u^2}}\right) - u\sqrt{32GM - u^2} \right]_{\sqrt{2GM}}^{\sqrt{32GM}}$$

$$= 4 \left[16\pi GM - 8.085GM + 7.746GM \right]$$

$$= 199.705 \cdot 1477 \cdot 10^6$$

$$= 294964285000.0 \ m = 983.87 \ s$$

c. Finally, to compute the time the clock registers between crossing the event horizon and its destruction at the origin, we need to compute the time it registers from falling at rest from r=32GM to r=0 and then subtract the time we computed in part **b**.

$$\Delta \tau = \sqrt{\frac{32GM}{2GM}} \left[32GM \arctan\left(\frac{u}{\sqrt{32GM - u^2}}\right) - u\sqrt{32GM - u^2} \right]_0^{\sqrt{32GM}}$$

$$= 4 \left[16\pi GM - 0 \right]$$

$$= 201.061 \cdot 1477 \cdot 10^6$$

$$= 296967097000.0 \ m = 990.55 \ s$$

Therefore

$$\Delta \tau = 990.55 \ s - 983.87 \ s = 6.67 \ s$$

Solution. **P14.3** Let us consider an inward-falling object moving in the equatorial plane with arbitrary e and l, then from Table 14.1 we have that $dt/d\tau$, $dr/d\tau$ and $d\phi/d\tau$ for this object are

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = e\left(1 - \frac{2GM}{r}\right)^{-1}$$

$$\frac{\mathrm{d}r}{\mathrm{d}\tau} = \sqrt{e^2 - \left(1 - \frac{2GM}{r}\right)\left(1 + \frac{l^2}{r^2}\right)}$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}\tau} = \frac{l}{r^2}$$

So the four-velocity vector of the object at r = R is

$$\boldsymbol{u} = \begin{bmatrix} e\left(1 - \frac{2GM}{R}\right)^{-1} \\ \sqrt{e^2 - \left(1 - \frac{2GM}{R}\right)\left(1 + \frac{l^2}{R^2}\right)} \\ 0 \\ \frac{l}{R^2} \end{bmatrix}$$

On the other hand, from equation (12.10) we know that the basis vectors of an observer at rest at r = R are

$$(oldsymbol{o}_t)^\mu = egin{bmatrix} rac{1}{\sqrt{1-2GM/R}} \ 0 \ 0 \ 0 \end{bmatrix} \quad (oldsymbol{o}_x)^\mu = egin{bmatrix} 0 \ 0 \ rac{1}{R} \end{bmatrix} \ (oldsymbol{o}_y)^\mu = egin{bmatrix} 0 \ 0 \ -rac{1}{R} \ 0 \end{bmatrix} \quad (oldsymbol{o}_z)^\mu = egin{bmatrix} 0 \ \sqrt{1-2GM/R} \ 0 \ 0 \end{bmatrix}$$

Then we can compute the components of the four-velocity in the observer's frame as $u^t_{obs} = -\boldsymbol{o}_t \cdot \boldsymbol{u}$ and $u^\mu_{obs} = \boldsymbol{o}_\mu \cdot \boldsymbol{u}$ for $\mu \in \{x,y,z\}$ hence

$$u_{obs}^{t} = -g_{tt}(\mathbf{o}_{t})^{t} \mathbf{u}^{t}$$

$$= \left(1 - \frac{2GM}{R}\right) \left(1 - \frac{2GM}{R}\right)^{-1/2} e \left(1 - \frac{2GM}{R}\right)^{-1}$$

$$= e \left(1 - \frac{2GM}{R}\right)^{-1/2}$$

$$u_{obs}^{x} = g_{\phi\phi}(\mathbf{o}_{x})^{\phi} \mathbf{u}^{\phi}$$
$$= R^{2} \frac{1}{R} \frac{l}{R^{2}}$$
$$= \frac{l}{R}$$

$$u_{obs}^{z} = g_{rr}(\mathbf{o}_{z})^{r} \mathbf{u}^{r}$$

$$= \left(1 - \frac{2GM}{R}\right)^{-1} \sqrt{1 - \frac{2GM}{R}} \sqrt{e^{2} - \left(1 - \frac{2GM}{R}\right) \left(1 + \frac{l^{2}}{R^{2}}\right)}$$

$$= \sqrt{\left(1 - \frac{2GM}{R}\right)^{-1} e^{2} - \left(1 + \frac{l^{2}}{R^{2}}\right)}$$

Then the speed components of the object are

$$v_{obs,x} = \frac{u_{obs}^x}{u_{obs}^t} = \frac{l}{eR} \left(1 - \frac{2GM}{R} \right)^{1/2}$$

And

$$v_{obs,z} = \frac{u_{obs}^z}{u_{obs}^t} = \frac{\sqrt{e^2 \left(1 - \frac{2GM}{R}\right)^{-1} - \left(1 + \frac{l^2}{R^2}\right)}}{e\sqrt{\left(1 - \frac{2GM}{R}\right)^{-1}}}$$

$$= \sqrt{\frac{e^2 \left(1 - \frac{2GM}{R}\right)^{-1} - \left(1 + \frac{l^2}{R^2}\right)}{e^2 \left(1 - \frac{2GM}{R}\right)^{-1}}}$$

$$= \sqrt{1 - \frac{1}{e^2} \left(1 + \frac{l^2}{R^2}\right) \left(1 - \frac{2GM}{R}\right)}$$

Therefore the squared speed of the object as measured by an observer at rest at r = R is

$$\begin{split} v_{obs}^2 &= v_{obs,x}^2 + v_{obs,z}^2 \\ &= \frac{l^2}{e^2 R^2} \bigg(1 - \frac{2GM}{R} \bigg) + 1 - \frac{1}{e^2} \bigg(1 + \frac{l^2}{R^2} \bigg) \bigg(1 - \frac{2GM}{R} \bigg) \\ &= \frac{l^2}{e^2 R^2} \bigg(1 - \frac{2GM}{R} \bigg) + 1 - \frac{1}{e^2} \bigg(1 - \frac{2GM}{R} \bigg) - \frac{l^2}{e^2 R^2} \bigg(1 - \frac{2GM}{R} \bigg) \\ &= 1 - \frac{1}{e^2} \bigg(1 - \frac{2GM}{R} \bigg) \end{split}$$

Solution. **P14.4** Following the same analysis we see that for r=3GM the slope must be $dt/dr>\pm 3$ and for $r=\frac{5}{2}GM$ we get that $dt/dr>\pm 5$ so we get the following drawings

Now for $r = \frac{3}{2}GM$, GM, $\frac{1}{2}GM$ doing the same analysis and considering that forward in proper time corresponds to dr < 0 we get that

We see that the light cones in both cases narrow as they approach r=2GM.

Solution. **P14.5** Let an observer at R > 2GM launch an object with nonzero mass radially outward with initial velocity v_0 as measured by the observer. Given that an object at infinity falling from rest radially has e = 1 then the same is true for an object moving radially from a radius R to rest at infinity, then from equations on Table 14.1 the particle's four velocity vector is

$$oldsymbol{u} = egin{bmatrix} rac{\mathrm{d}t}{\mathrm{d} au} \ rac{\mathrm{d}r}{\mathrm{d} au} \ 0 \ 0 \end{bmatrix} = egin{bmatrix} \left(1 - rac{2GM}{R}\right)^{-1} \ \sqrt{rac{2GM}{R}} \ 0 \ 0 \end{bmatrix}$$

Where we used that for an object travelling radially l=0. On the other hand, from equation (12.10) we know that the basis vectors of an observer at rest at r=R are

$$(oldsymbol{o}_t)^{\mu} = egin{bmatrix} rac{1}{\sqrt{1-2GM/R}} \ 0 \ 0 \ 0 \end{bmatrix} \quad (oldsymbol{o}_x)^{\mu} = egin{bmatrix} 0 \ 0 \ rac{1}{R} \end{bmatrix} \ (oldsymbol{o}_y)^{\mu} = egin{bmatrix} 0 \ 0 \ -rac{1}{R} \ 0 \end{bmatrix} \quad (oldsymbol{o}_z)^{\mu} = egin{bmatrix} 0 \ \sqrt{1-2GM/R} \ 0 \ 0 \end{bmatrix}$$

Then we can compute the components of the four-velocity in the observer's frame as $u^t_{obs} = -\boldsymbol{o}_t \cdot \boldsymbol{u}$ and $u^\mu_{obs} = \boldsymbol{o}_\mu \cdot \boldsymbol{u}$ for $\mu \in \{x,y,z\}$ hence

$$u_{obs}^{t} = -g_{tt}(\mathbf{o}_{t})^{t} \mathbf{u}^{t}$$

$$= \left(1 - \frac{2GM}{R}\right) \left(1 - \frac{2GM}{R}\right)^{-1/2} \left(1 - \frac{2GM}{R}\right)^{-1}$$

$$= \frac{1}{\sqrt{1 - \frac{2GM}{R}}}$$

$$\begin{split} u^z_{obs} &= g_{rr}(\boldsymbol{o}_z)^r \boldsymbol{u}^r \\ &= \left(1 - \frac{2GM}{R}\right)^{-1} \sqrt{1 - \frac{2GM}{R}} \sqrt{\frac{2GM}{R}} \\ &= \sqrt{\left(1 - \frac{2GM}{R}\right)^{-2} \left(1 - \frac{2GM}{R}\right)} \sqrt{\frac{2GM}{R}} \\ &= \sqrt{\frac{\frac{2GM}{R}}{1 - \frac{2GM}{R}}} \end{split}$$

Also, $u_{obs}^x = u_{obs}^y = 0$ because the \boldsymbol{u} components for these velocities are 0. Then the speed of the object as measured by an observer at rest at r = R is

$$v_{obs} = \frac{u_{obs}^{z}}{u_{obs}^{t}} = \frac{\sqrt{\frac{\frac{2GM}{R}}{1 - \frac{2GM}{R}}}}{\frac{1}{\sqrt{1 - \frac{2GM}{R}}}} = \sqrt{\frac{2GM}{R}}$$

But we said that the object has an initial velocity of v_0 as measured by the observer then must be that

$$v_0 = \sqrt{\frac{2GM}{R}}$$

Therefore the escape speed as measured by this observer is the same as in Newtonian mechanics. Also, if we let $R \to 2GM$ then $v_0 = 1$ i.e. the speed of light.

Solution. **P14.6** From problem P12.7 we know that basis vector o_t is

$$(oldsymbol{o}_t)^{\mu} = egin{bmatrix} (1-2GM/r)^{-1} \ -\sqrt{2GM/r} \ 0 \ 0 \end{bmatrix}$$

Also, from the equations 12.12a and 12.12b (the four-momentum of a photon) we can compute $E_{obs} = -\boldsymbol{o}_t \cdot \boldsymbol{p}$ using the metric given by equation 14.16 as follows

$$\begin{split} E_{obs} &= -\mathbf{o}_t \cdot \mathbf{p} \\ &= g_{tt}(\mathbf{o}_t)^t p^t - g_{rr}(\mathbf{o}_t)^r p^r \\ &= -\left(\frac{2GM}{r} - 1\right) \left(1 - \frac{2GM}{r}\right)^{-1} E\left(1 - \frac{2GM}{r}\right)^{-1} \\ &+ \left(\frac{2GM}{r} - 1\right)^{-1} \sqrt{\frac{2GM}{r}} E\sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right)} \\ &= E\left(1 - \frac{2GM}{r}\right)^{-1} \left(1 - \sqrt{\frac{2GM}{r}}\sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right)}\right) \end{split}$$

But since it's falling radially then b = 0 so

$$E_{obs} = E\left(1 - \frac{2GM}{r}\right)^{-1} \left(1 - \sqrt{\frac{2GM}{r}}\right)$$

Finally, the fractional change in wavelength is given by

$$\frac{h/\lambda_E}{h/\lambda_R} = \frac{E/\sqrt{1 - \frac{2GM}{r_E}}}{E\left(1 - \frac{2GM}{r_R}\right)^{-1} \left(1 - \sqrt{\frac{2GM}{r_R}}\right)}$$
$$\frac{\lambda_R}{\lambda_E} = \frac{\left(1 - \frac{2GM}{r_R}\right)}{\sqrt{1 - \frac{2GM}{r_E}} \left(1 - \sqrt{\frac{2GM}{r_R}}\right)}$$

But since $r_E = \infty$ i.e. the signal is coming from infinity we can write that

$$\frac{\lambda_R}{\lambda_E} = \frac{\left(1 - \frac{2GM}{r_R}\right)}{\left(1 - \sqrt{\frac{2GM}{r_R}}\right)} = 1 + \sqrt{\frac{2GM}{r_R}}$$

Therefore the expression is correct for r < 2GM as well.

a. We want to show that curves of constant R are hyperbolas so let us compute $t^2 - r^2$, assuming R > 1/2 then

$$t^{2} - r^{2} = b^{2}(2R - 1)\sinh^{2}T - b^{2}(2R - 1)\cosh^{2}T$$
$$= b^{2}(1 - 2R)[\cosh^{2}T - \sinh^{2}T]$$
$$= b^{2}(1 - 2R)$$

Where we used that $\cosh^2 q - \sinh^2 q = 1$ for all q. Therefore $t^2 - r^2 = \text{constant}$ and since $b^2(1 - 2R) < 0$ for R > 1/2 then we can write that $r^2 - t^2 = |b^2(1 - 2R)|$ which implies that the hyperbolas face rightward or leftward.

In the same way, for R < 1/2 we have that

$$t^{2} - r^{2} = b^{2}(1 - 2R)\cosh^{2}T - b^{2}(1 - 2R)\sinh^{2}T$$
$$= b^{2}(1 - 2R)[\cosh^{2}T - \sinh^{2}T]$$
$$= b^{2}(1 - 2R)$$

But, in this case $b^2(1-2R) > 0$ for R < 1/2 so the hyperbolas face up and down.

b. We want to show that curves of constant T are straight lines with constant slope, so let us compute t/x for R > 1/2 then

$$\frac{t}{x} = \frac{b\sqrt{2R - 1}\sinh T}{b\sqrt{2R - 1}\cosh T} = \frac{\sinh T}{\cosh T} = \frac{e^T - e^{-T}}{e^T + e^{-T}} = \frac{1 - e^{-2T}}{1 + e^{-2T}}$$

We see that $0 < e^{-2T} \le 1$ for $T \ge 0$ so the denominator is bigger than the numerator so the slope of the line is less than 1.

In the same way, for R < 1/2 we have that

$$\frac{t}{x} = \frac{b\sqrt{1 - 2R}\cosh T}{b\sqrt{1 - 2R}\sinh T} = \frac{\cosh T}{\sinh T} = \frac{e^T + e^{-T}}{e^T - e^{-T}} = \frac{1 + e^{-2T}}{1 - e^{-2T}}$$

Therefore in this case the slope of the line is greater than 1.

c. Let the metric for this coordinate system be

$$ds^{2} = -(2R - 1)b^{2}dT^{2} + \frac{b^{2}dR^{2}}{2R - 1} + dy^{2} + dz^{2}$$

We see that the coordinate R is defined for R<1/2 and R>1/2 and there the metric is well-defined so the metric is well-defined everywhere.

d. We see that the g_{TT} component of the metric is negative and g_{RR} is positive when R > 1/2 so R is a spatial coordinate and T is a time coordinate in this case.

But when R < 1/2 we have that g_{TT} is positive and g_{RR} is negative so the situation is reversed and R is a time coordinate and T is a spatial coordinate. Then when R < 1/2 the future happens as $R \to 0$.

e. Particles can cross from larger Rs to smaller Rs but they cannot go in reverse because when R < 1/2 we know that R is a time coordinate so as soon as we cross R = 1/2 we cannot reverse cause that would imply going backwards in time.

We consider the line where R=1/2 and $T=\infty$ to be an event horizon in T,R coordinates because the behaviour of coordinates change depending if we are on one side or the other but this doesn't happen in t,x coordinates.

f. Let us consider a photon at R = 1/2, we know that for a photon the metric equation looks as follows

$$0 = -(2R - 1)b^2dT^2 + \frac{b^2dR^2}{2R - 1} + dy^2 + dz^2$$

Where we used that for photons $ds^2 = 0$. Then

$$\begin{split} \frac{b^2 dR^2}{2R-1} &= (2R-1)b^2 dT^2 - dy^2 - dz^2 \\ \frac{dR^2}{dT^2} &= (2R-1)^2 - \frac{(2R-1)}{b^2} \frac{dy^2}{dT^2} - \frac{(2R-1)}{b^2} \frac{dz^2}{dT^2} \end{split}$$

So we see that when R = 1/2 we get that dR/dT = 0 therefore the photon must be at rest at R = 1/2.

On the other hand, since $ds^2 \neq 0$ for a particle of nonzero rest mass then the particle cannot be at rest at R = 1/2.

 \mathbf{g} . The geodesic equation for the T component is

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\tau} \bigg(g_{T\beta} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau} \bigg) - \frac{1}{2} \partial_T g_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} = 0 \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \bigg(g_{TT} \frac{\mathrm{d}T}{\mathrm{d}\tau} \bigg) = 0 \end{split}$$

Then $g_{TT} \frac{\mathrm{d}T}{\mathrm{d}\tau}$ is equal to a constant, hence

$$g_{TT} \frac{dT}{d\tau} = -e$$

$$-(2R - 1)b^2 \frac{dT}{d\tau} = -e$$

$$\frac{dT}{d\tau} = \frac{e}{(2R - 1)b^2}$$

Where we named the constant -e.

Now, let us consider the metric equation for a particle with no y, z velocity, then

$$-1 = -(2R - 1)b^2 \left(\frac{\mathrm{d}T}{\mathrm{d}\tau}\right)^2 + \frac{b^2}{2R - 1} \left(\frac{\mathrm{d}R}{\mathrm{d}\tau}\right)^2$$
$$\frac{b^2}{2R - 1} \left(\frac{\mathrm{d}R}{\mathrm{d}\tau}\right)^2 = (2R - 1)b^2 \left(\frac{\mathrm{d}T}{\mathrm{d}\tau}\right)^2 - 1$$
$$\left(\frac{\mathrm{d}R}{\mathrm{d}\tau}\right)^2 = (2R - 1)^2 \left(\frac{\mathrm{d}T}{\mathrm{d}\tau}\right)^2 - \frac{2R - 1}{b^2}$$
$$\frac{\mathrm{d}R}{\mathrm{d}\tau} = \sqrt{\frac{e^2}{b^4} - \frac{2R - 1}{b^2}}$$

We combine this result with $dT/d\tau$ to obtain dR/dT as follows

$$\frac{\mathrm{d}R}{\mathrm{d}\tau}\frac{\mathrm{d}\tau}{\mathrm{d}T} = \frac{(2R-1)b^2}{e}\sqrt{\frac{e^2}{b^4} - \frac{2R-1}{b^2}}$$

Hence

$$\frac{dR}{dT} = \frac{(2R-1)}{e} \sqrt{e^2 - b^2(2R-1)}$$

Let us consider now a particle released from rest at R=1 and T=0 then we have that

$$0 = \frac{2-1}{e} \sqrt{e^2 - b^2(2-1)}$$
$$e = b$$

So integrating dR/dT we get that

$$\int_0^T dT = \int_1^{1/2} \frac{b}{(2R-1)} \frac{dR}{b\sqrt{1-(2R-1)}}$$

$$T = \left[-\arctan(\sqrt{2(1-R)}) \right]_1^{1/2}$$

$$T = \left[-\arctan(\sqrt{1}) + \arctan(0) \right] \to \infty$$

But integrating $dR/d\tau$ we have that

$$\int_0^{\tau} d\tau = \int_1^{1/2} \frac{dR}{b\sqrt{1 - (2R - 1)}}$$
$$\tau = \frac{1}{b} \left[-\sqrt{2(1 - R)} \right]_1^{1/2}$$
$$\tau = -\frac{1}{b}$$

Therefore this trip requires infinite time T but finite time τ .

a. We know that $u = 1 - \sqrt{2GM/r}$ then

$$\frac{\mathrm{d}u}{\mathrm{d}r} = \frac{1}{2r} \sqrt{\frac{2GM}{r}}$$

From Table 14.1, we have that

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -\left(1 - \frac{2GM}{r}\right)\sqrt{1 - \frac{1}{e^2}\left(1 - \frac{2GM}{r}\right)\left(1 + \frac{l^2}{r^2}\right)}$$

We took the negative sign because the laser is going to the blackhole. But since the laser is falling radially from rest we have that l=0 and e=1, hence

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -\left(1 - \frac{2GM}{r}\right)\sqrt{\frac{2GM}{r}}$$

Then

$$\begin{split} \frac{\mathrm{d}r}{\mathrm{d}t}\frac{\mathrm{d}u}{\mathrm{d}r} &= -\left(1 - \frac{2GM}{r}\right)\sqrt{\frac{2GM}{r}}\frac{\mathrm{d}u}{\mathrm{d}r} \\ \frac{\mathrm{d}u}{\mathrm{d}t} &= -\left(1 - \frac{2GM}{r}\right)\sqrt{\frac{2GM}{r}}\frac{1}{2r}\sqrt{\frac{2GM}{r}} \\ \frac{\mathrm{d}u}{\mathrm{d}t} &= -\frac{GM}{r^2}\left(1 - \frac{2GM}{r}\right) \end{split}$$

b. Using that

$$1 - \frac{2GM}{r} = \left(1 - \sqrt{\frac{2GM}{r}}\right) \left(1 + \sqrt{\frac{2GM}{r}}\right)$$

We can write that

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{GM}{r^2} \left(1 - \sqrt{\frac{2GM}{r}} \right) \left(1 + \sqrt{\frac{2GM}{r}} \right)$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -u \frac{GM}{r^2} \left(1 + \sqrt{\frac{2GM}{r}} \right)$$

Then if $r \to 2GM$ we see that

$$\left. \frac{\mathrm{d}u}{\mathrm{d}t} \right|_{r \to 2GM} = -u \frac{GM}{4(GM)^2} \left(1 + \sqrt{\frac{2GM}{2GM}} \right) = -\frac{u}{2GM}$$

c. The outgoing photon's energy an observer on the laser's frame measures is

$$\begin{split} E_{obs} &= - o_t \cdot p \\ &= E \left(1 - \frac{2GM}{r} \right)^{-1} + \left(1 - \frac{2GM}{r} \right)^{-1} \sqrt{\frac{2GM}{r}} E \sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r} \right)} \\ &= E \left(1 - \frac{2GM}{r} \right)^{-1} \left(1 + \sqrt{\frac{2GM}{r}} \sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r} \right)} \right) \end{split}$$

Where we used the positive sign for p^r since the photon is outgoing. But since it's falling radially then b = 0 so

$$E_{obs} = E\left(1 - \frac{2GM}{r}\right)^{-1} \left(1 + \sqrt{\frac{2GM}{r}}\right)$$

Finally, the fractional change in wavelength is given by

$$\frac{h/\lambda_R}{h/\lambda_E} = \frac{E/\sqrt{1 - \frac{2GM}{r_R}}}{E\left(1 - \frac{2GM}{r_E}\right)^{-1}\left(1 + \sqrt{\frac{2GM}{r_E}}\right)}$$
$$\frac{\lambda_E}{\lambda_R} = \frac{\left(1 - \frac{2GM}{r_E}\right)}{\sqrt{1 - \frac{2GM}{r_R}}\left(1 + \sqrt{\frac{2GM}{r_E}}\right)}$$

But since $r_R \to \infty$ i.e. the signal is received at infinity we can write that

$$\frac{\lambda_R}{\lambda_E} = \frac{\left(1 - \frac{2GM}{r_R}\right)}{\left(1 + \sqrt{\frac{2GM}{r_R}}\right)} = 1 - \sqrt{\frac{2GM}{r}}$$