Planètes Procédurales

Aurélien Besnier

Master 2 IMAGINE

13 janvier 2023

- Introduction
- Initialisation
 - Création de la sphère
 - Segmentation
 - Elevation
- Collisions
- 4 Démonstration

- Introduction
- 2 Initialisation
 - Création de la sphère
 - Segmentation
 - Elevation
- Collisions
- 4 Démonstration

Introduction

Objectif

Générer des planètes procédurales et pouvoir les faire évoluer (en temps réel).

Introduction

Objectif

Générer des planètes procédurales et pouvoir les faire évoluer (en temps réel).

Introduction

Objectif

Générer des planètes procédurales et pouvoir les faire évoluer (en temps réel).

Figure – Technologies utilisées

- Introduction
- 2 Initialisation
 - Création de la sphère
 - Segmentation
 - Elevation
- Collisions
- 4 Démonstration

Création de la sphère

```
\begin{array}{l} \underline{\textbf{Donn\acute{ees}}} : \mathsf{goldenRatio} {=} (1+5^{0.5})/2 \\ \\ \textbf{pour} \ i \ de \ 0 \ \hat{a} \ nb\_elem \ \textbf{faire} \\ \\ | \ theta \leftarrow 2 \times i/goldenRatio; \\ phi \leftarrow \\ | \ arccos(1-2 \times (i+0.5)/nb\_elems); \\ \times \leftarrow \cos(theta) \times \sin(phi); \\ y \leftarrow \sin(theta) \times \sin(phi); \\ z \leftarrow \cos(phi); \\ \end{array}
```

finpour

Appliquer ensuite une triangulation de Delaunay sur le nuage de point résultant.

Source: extremelearning.com.au

Création de la sphère

```
\begin{array}{l} \underline{\textbf{Donn\acute{ees}}} : \mathsf{goldenRatio} {=} (1+5^{0.5})/2 \\ \textbf{pour} \ i \ de \ 0 \ a \ nb\_elem \ \textbf{faire} \\ & theta \leftarrow 2 \times i/goldenRatio; \\ & phi \leftarrow \\ & arccos(1-2 \times (i+0.5)/nb\_elems); \\ & \times \leftarrow cos(theta) \times sin(phi); \\ & y \leftarrow sin(theta) \times sin(phi); \\ & z \leftarrow cos(phi); \end{array}
```

finpour

Appliquer ensuite une triangulation de Delaunay sur le nuage de point résultant.

Source : extremelearning.com.au

Figure – Visualisation des triangles du pôle

Segmentation

Définition

Découpage du maillages en sous régions pour y associer une sémantique.

(a) Segmentation par valeurs de SDF ^a

Variable Segmentation

(b) Segmentations sur sphères

a. source: CGAL

Figure – Différentes segmentations

Segmentation

Figure – Plaques tectoniques de la Terre

Source :https://geology.com/plate-tectonics.shtml

Solution

- Calculer le 1-voisinage de chaque point.
- Pour chaque plaques, choisir un point de départ aléatoire.
- Faire un grossissement de régions de chaque plaque avec le 1-voisinage
- Itérer jusqu'à ce que chaque point soit assigné.

Solution

- Calculer le 1-voisinage de chaque point.
- Pour chaque plaques, choisir un point de départ aléatoire.
- Faire un grossissement de régions de chaque plaque avec le 1-voisinage
- Itérer jusqu'à ce que chaque point soit assigné.

Figure – Résultat de segmentation avec 60000 éléments

Solution

- Calculer le 1-voisinage de chaque point.
- Pour chaque plaques, choisir un point de départ aléatoire.
- Faire un grossissement de régions de chaque plaque avec le 1-voisinage
- Itérer jusqu'à ce que chaque point soit assigné.

Figure – Résultat de segmentation avec 60000 éléments

Inconvénient

Calcul du 1-voisinage long sur de grand maillages(>60000).

Elevation

```
 \begin{aligned} & \text{Initialisation des \'el\'evations:} \\ & \textbf{pour } chaque \ plaques \ selon \ leur \ type \ \textbf{faire} \\ & \textbf{pour } chaque \ point \ p \ de \ la \ plaque \ \textbf{faire} \\ & \textbf{pour } chaque \ point \ p \ de \ la \ plaque \ \textbf{faire} \\ & \textbf{pour } chaque \ point \ p \ de \ la \ plaque \ \textbf{faire} \\ & \textbf{pour } chaque \ point \ p \ de \ la \ plaque \ \textbf{faire} \\ & \textbf{pour } chaque \ point \ p \ de \ la \ plaque \ \textbf{faire} \\ & \textbf{pour } chaque \ point \ p \ de \ la \ plaque \ finpour \\ & \textbf{point } chaque \ point \ p \ de \ point \ p
```

Elevation

Figure - Résultat initialisation avec rayon 637km, 6000 éléments, 8 octaves

- Introduction
- 2 Initialisation
 - Création de la sphère
 - Segmentation
 - Elevation
- Collisions
- 4 Démonstration

Collisions

Exemple collision Continent/Continent: pour chaque plaques continentales faire pour chaque point p de la plaque faire si p est voisin avec une autre plaque continentale alors $voisin \leftarrow voisinp;$ $cpy pos \leftarrow p.pos + deplacement;$ si distance(cpy pos, voisin) < distance(p, voisin) alors elevation \leftarrow p.elevation \times 0.00013 p.elevation \leftarrow p.elevation + elevation; $mesh.vertices[p].pos \leftarrow$ $mesh.vertices[p].pos + ((elevation) \times mesh.vertices[p].normal);$ finsi finsi finpour finpour

- Introduction
- 2 Initialisation
 - Création de la sphère
 - Segmentation
 - Elevation
- Collisions
- Démonstration

Démonstration