1 Mapping reducibility

Definition 1 A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** if there is a TM which on every input w halts with just f(w) on the tape.

Example 1

- ullet Usual arithmetic functions, *i.e.* addition, multiplication, etc are computable.
- Functions that **transform** descriptions of TMs:

Definition 2 Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w \in A$ if and only if $f(w) \in B$.

Proposition 1 If $A \leq_m B$, then $\overline{A} \leq_m \overline{B}$.

Proposition 2 If $A \leq_m B$ and B is decidable, then A is decidable. If $A \leq_m B$ and A is undecidable, then B is undecidable.

Proposition 3 If $A \leq_m B$ and B is recognizable, then A is recognizable. If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

Observation: Usually, if a problem A can be reduced to a problem B, there is a mapping reducibility from A to B.

Example 2

There is a mapping reduction f from A_{TM} to $HALT_{TM}$. The following TM F computes f:

```
On input \langle M, w \rangle;

construct a new TM M' by

on input x

run M on x

if M accepts

accept

if M rejects

enter an infinite loop

f(\langle M, w \rangle) = \langle M', w \rangle

/* M accepts w iff M' halts on w */
```

Conclusion: $HALT_{TM}$ is undecidable since A_{TM} is undecidable.

Example 3

```
There is a mapping reduction f: E_{TM} \to EQ_{TM}.
```

```
On input \langle M \rangle;
construct a new TM M' which rejects all inputs
f(M) = \langle M, M_1 \rangle
/* L(M) = \emptyset iff L(M) = L(M') */
```

Conclusion: EQ_{TM} is undecidable since E_{TM} is undecidable.

Example 4

```
There is a mapping reduction f:A_{TM}\to \overline{E}_{TM}.

On input \langle M,w\rangle; construct a new TM M' by on input x if x\neq w REJECT else run M on w ACCEPT if M accepts w f(\langle M,w\rangle)=\langle M'\rangle

/* Thus M accepts w iff M' doesn't accept any string.*/
```

Conclusion: Since A_{TM} is undecidable, \overline{E}_{TM} is also undecidable. Therefore E_{TM} is undecidable.

Theorem 1

 EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We construct two mapping reductions:

$$f: A_{TM} \to \overline{EQ}_{TM}$$
 and $g: A_{TM} \to EQ_{TM}$

mapping reduction f	mapping reduction g
On input $\langle M, w \rangle$;	On input $\langle M, w \rangle$;
construct new TM M_1, M_2 by	construct new TM M_1, M_2 by
M_1 : on any input	M_1 : on any input
REJECT	ACCEPT
M_2 : on any input	M_2 : on any input
run M on w	$\operatorname{run} M \operatorname{on} w$
ACCEPT if M accepts	ACCEPT if M accepts

Since f is a mapping reduction $A_{TM} \to \overline{EQ}_{TM}$, it is also a mapping reduction $\overline{A}_{TM} \to EQ_{TM}$. Hence, if EQ_{TM} were Turing-recognizable, the existence of f would prove that \overline{A}_{TM} would be Turing-recognizable, implying that A_{TM} is decidable, which was proved to be wrong.

Similarly, the existence of a mapping reduction g implies that if \overline{EQ}_{TM} were Turing-recognizable, then \overline{A}_{TM} would be Turing-recognizable as well, implying that A_{TM} is decidable, which was proved to be wrong.

