Base de Datos

Modelado de Datos

Introducción

¿Arte o disciplina? ¿con inspiración o con técnicas y métodos propios?

Introducción

Base de Datos - Modelado de Datos

Seamos curiosos...

- Es lo mismo construir una cucha de perro que el Observatorio Edge en New York?
- Por qué ? Cuál es mejor?
- Las dos tienen la misma complejidad?
- ► A cuántos tuve que consultar para hacer la cuchita de mi perra? A cuántos para la torre?
- ► Tiene sentido que entreviste y releve 1000 requerimientos para construir la cucha de mi perra? Tiene sentido que construya la torre Edge en el tiempo que construyo la cucha de mi perra?
- Cuál es más cara?
- Puede mi perra vivir en el Edge?
- Puede Biden quedarse en lo de mi perra?
- Cuál es arte y cuál no?
- Costo/Alcance/tiempo

Introducción

Para Qué?

Modelado de Datos

▶ Dos grandes etapas:

► Análisis

Conocimiento, qué tengo que hacer, acá es donde se agrandan las orejas, los ojos y se aprende, se investiga, etc.

▶ Diseño

▶ Busco en base al conocimiento que tengo y las cosas que tengo que hacer una solución al problema.

Costos y beneficios de modelado de datos

El modelado de datos en el diseño de una base de datos, no es una alternativa.

Ninguna BD se ha construido sin un modelo de datos (y no creo que innoven en este aspecto). De igual forma que un arquitecto no ha construido un edificio sin un plano.

- Con diferentes grados en tres aspectos:
 - ¿Cuán Formal debe ser el modelo?
 - ► ¿A quienes involucramos en su construcción?
 - ¿Cuánto esfuerzo ponemos en la búsqueda de producir un buen diseño?

¿Por qué es importante un modelo de datos?

Búsqueda de consistencia

► Calidad de datos

¿Qué hace bueno a un modelo de datos?

- Completitud
- No redundancia
- Abarcar las reglas del negocio (todas!)
- Reutilización de datos almacenados
- Estabilidad y flexibilidad frente a los cambios

- Elegancia
- Comunicación
- Integración
- Conflicto de objetivos y su negociación para una buena salida

Performance????

¿Dónde encaja el modelado de datos?

- ¿Qué metodología de desarrollo se usa?
 - ¿Sistema orientados a procesos?
 - ¿Sistema Orientado a datos?
 - ► ¿Sistema Paralelo?
 - ▶ ¿Programación Orientados a Objetos (1990)?
 - ▶ ¿Desarrollo usando Prototipado?
 - ► ¿Aplica a las Metodologías Ágiles?

- ¿Quiénes están Involucrados en el modelado?
 - ► Clientes?
 - Expertos en el negocio?
 - ► Analista de Datos?
 - ► DBA?
 - Arquitecto de Software?
 - Gerente de IT?

El Ciclo de Vida de los Sistemas de Información

Diseño de una base de datos

El Diseño se puede dividir en tres fases:

Diseño Conceptual, produciendo una representación abstracta y de alto nivel del problema

 Diseño Lógico, traduce esta representación en especificaciones implementables en un sistema, dependiente de la tecnología de base de datos

▶ Diseño Físico, determina las estructuras de almacenamiento físico, dependiente del producto de base de datos

1

Fases del Diseño de Base de Datos

Miremos con ojos críticos.....

POLICY TABLE

Policy Number	Date Issued	Policy Type	С	Sustomer Number	(Commission Rate	Maturity Date
V213748	02/29/1989	E20	Г	HAYES01		12%	02/29/2009
N065987	04/04/1984	E20		WALSH01		12%	04/04/2004
W345798	12/18/1987	WOL		ODEAJ13		8%	06/12/2047
W678649	09/12/1967	WOL		RICHB76		8%	09/12/2006
V986377	11/07/1977	SUI		RICHB76		14%	09/12/2006

? CUSTOMER TABLE

Customer Numbe	Name	Address	Postal Code	Gender	Age	Birth Date
HAYES01	S Hayes	3/1 Collins St	3000	F	25	06/23/1975
WALSH01	H Walsh	2 Allen Road	3065	M	53	04/16/1947
ODEAJ13	J O'Dea	69 Black Street	3145	M	33	06/12/1967
RICHB76	B Rich	181 Kemp Rd	3507	M	59	09/12/1941

Miremos con ojos críticos.....

- Completitud
- No redundancia
- Abarcar las reglas del negocio (todas!)
- Reutilización de datos almacenados
- Estabilidad y flexibilidad frente a los cambios

POLICY TABLE

Policy Number	Date Issued	Policy Type	Customer Number	Commission Rate	Maturity Date
V213748	02/29/1989	E20	HAYES01	12%	02/29/2009
N065987	04/04/1984	E20	WALSH01	12%	04/04/2004
W345798	12/18/1987	WOL	ODEAJ13	8%	06/12/2047
W678649	09/12/1967	WOL	RICHB76	8%	09/12/2006
V986377	11/07/1977	SUI	RICHB76	14%	09/12/2006

CUSTOMER TABLE

Customer Number	Name	Address	Postal Code	Gender	Age	Birth Date
HAYES01	S Hayes	3/1 Collins St	3000	F	25	06/23/1975
WALSH01	H Walsh	2 Allen Road	3065	M	53	04/16/1947
ODEAJ13	J O'Dea	69 Black Street	3145	M	33	06/12/1967
RICHB76	B Rich	181 Kemp Rd	3507	M	59	09/12/1941

Diseño Conceptual y Análisis Funcional

Etapas

Etapas del Diseño

- Las fases de *diseño conceptual* y *diseño lógico* se desarrollan en forma independiente de los productos a utilizar
- Es recomendable desarrollar todas estas etapas por más que la implementación se desarrolle en archivos convencionales.
- Las etapas de diseño se suelen acompañar de modelos gráficos que facilita la tarea
 - ▶ *Modelo Entidad-Relación* de Chen, el clásico de modelado
 - ▶ Diagrama de Clases y Colaboración del diseño orientado a objetos

1 7

Etapas y dependencia

Etapas del Diseño

Dependencia de:	Tipo de DBMS	DBMS específico
Diseño Conceptual	××	X
Diseño Lógico	V	X
Diseño Físico	V	V

1 8

Modelo Entidad Relación

Diagramas de Clases y Colaboración

Diseño Conceptual

- El objetivo es crear un Esquema Conceptual
 - de alto nivel de abstracción

- independiente del DBMS
- partiendo de las especificaciones de requerimientos
- El resultado es un *modelo o esquema* de la realidad, obtenido por la aplicación sistemática de primitivas de refinamientos

.

Diseño Conceptual

- El proceso de modelado conceptual se desarrolla a partir:
 - Mecanismos de abstracción, buscando una representación de los datos a través de sus propiedades comunes
 - Modelo Entidad Relación, que a partir de las abstracciones realizadas se usa para producir un diagrama o especificación, generalmente gráfico, representativo del problema
 - Metodologías de Diseño, propone un conjunto de primitivas de refinamiento que permiten mejorar el diagrama inicial hasta obtener una nueva y más rica descripción de la realidad

2

Abstracciones

LAURA LOPEZ

PABLO GOMEZ

FERNANDO CORREA

CLAUDIA PEREZ

3

Metodología de Diseño

- Las *Estrategias de Diseño* para el refinamiento de un modelo conceptual utilizan determinadas primitivas que aplicadas en forma iterativa obtienen un modelo mejor:
 - Descendentes o TOP-DOWN, intenta refinar los conceptos abstractos buscando hacerlos concretos
 - Ascendentes o BOTTOM-UP, incorporan nuevos conceptos y propiedades que no aparecían en versiones anteriores, integrándose al modelo anterior.
 - Centrífugas, se parte de algún concepto central y se van refinando los que se relacionan a él y así recursivamente
 - Mixtas, utilizando las anteriores, según mejor aplique para cada caso, más la integración de los resultados parciales obtenidos en un modelo final

Requerimientos Iniciales

- Los requerimientos iniciales para construir el esquema pueden surgir de diferentes fuentes:
 - Descripciones de lenguaje natural, normalmente surgidos de tareas de relevamiento de información
 - ► Formularios, existentes de otros sistemas, tanto manuales como informáticos, que puedan describir la información a modelar
 - ► Formatos de bases de datos o archivos existentes, de sistemas informáticos anteriores, proceso llamado ingeniería inversa
 - ▶ *Reingeniería*, se basa en un sistema existente como modelo, tanto de datos como de comportamiento, y se rehace desde cero

į

Como el cliente lo explicó

Como el líder del proyecto lo entendió

Como el analista lo diseñó

Como el programador lo escribió

Como el vendedor lo describió

Como fue documentado el proyecto

Que aplicaciones se instalaron

Como le fue facturado al cliente

Como se le dio soporte

Lo que el cliente realmente necesitaba

Divide y Conquista

No es necesario que el dominio global de la aplicación se modele de una única vez

Es posible dividir el problema en *subesquemas* o *vistas*, de forma de poder encara el diseño del subconjunto asociado a uno o varios usuarios específicos

Un problema resuelto de esta forma implica dividir un problema grande en otros más pequeños (?). Conlleva un problema mayor, ¿Cuál?

F

Propiedades del Esquema Conceptual

► El esquema final resultante debe ser sometido a un proceso de reestructuración y refinamiento, para obtener las cualidades deseadas del modelo:

- Compleción
- Corrección
- ► Minimalidad
- Expresividad
- Legibilidad
- Autoexplicación
- Extensibilidad
- Normalidad

Documentación

- Por último se debe documentar el diseño conceptual
- ► Se debe incluir todos los esquemas y especificaciones
- Documentos útiles para la creación, mantenimiento y operación de la base de datos
- Se debe incluir en un diccionario de datos, en lo posible integrado a las herramientas de desarrollo y mantenimiento

(

Actitud en el modelado

- Seamos Conscientes
 - ¿Siempre podemos explicar lo que estamos haciendo?
 - Procesos, Heurísticas, patrones que se usan. ¿De dónde saco tal dato? ¿Ya lo hice? ¿Lo documenté?
- Seamos Creativos
 - ► ¿Estoy considerando alternativas? ¿Caí enamorado de una sola alternativa sin considerar otras? ¿Por qué prefiero esta alternativa a otras?
- ► ¿Analizar o diseñar?
 - ► Analizar requiere escuchar, entender y estudiar
 - Diseñar es aplicar eso mismo a una solución
 - ¿Estoy balanceando las dos tareas adecuadamente? ¿Se qué estoy haciendo ahora?

3 0

Actitud en el modelado

Seamos Valientes

- Cuando no estamos en un campo que dominamos debemos de alguna manera compensar eso para sentirnos cómodos
 - ► Comprender el problema mejor
 - Estudiar en involucrarnos en el sistema a diseñar

Para lograr:

- Poder explicar sobre decisiones de diseño
- Transmitir que creo en el modelo y que lo diseñado es una solución al problema

Entender y ser entendidos

¿Estamos orientando correctamente el sistema a los que lo van a usar? ¿Involucramos a los stakeholders? ¿Olvidé algo (área, persona, etc)?

Resumen

► El *Modelado de Datos* se ve como un proceso iterativo de refinamiento, de forma de obtener un modelo de la realidad, *completo, correcto, mínimo, expresivo, legible, autoexplicativo, extensible, normalizado*.

- Sus grandes pasos son:
 - **▶** Diseño Conceptual
 - **▶** Diseño Lógico
 - **▶** Diseño Físico

Para obtenerlos se utiliza una *Metodología de Diseño*, que mediante transformaciones refina el modelo original en uno más deseable.

Modelado de Datos

¿¿¿DUDAS???

