[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기 강의자료

(2020.10.01 목요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

- 본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.
- 본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게
 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 3] Divide-and-Conquer Techniques and Sorting Techniques

Quick Sort

- ① Divide: Select a pivot element, and then divide the array into two subarrays such that
- Conquer: sort each subarray recursively.

3 Combine: do nothing.

• A **simple** implementation


```
// Sort a list from A[left] to A[right].
// Should be optimized for higher efficiency!!!
void quick sort(item type *A, int left, int right) {
  int pivot;
  if (right - left > 0) {
                                             Divide
   pivot = partition(A, left, right);
    quick sort(A, left, pivot - 1);
                                            Conquer
    quick sort(A, pivot + 1, right);
```



```
#define SWAP(a, b) { item type tmp; tmp = a; a = b; b = tmp; }
int partition (item type *A, int left, int right) {
  int i, pivot;
  pivot = left;
  for (i = left; i < right; i++) {
    if (A[i] < A[right]) {
      SWAP(A[i], A[pivot]);
      pivot++;
                                 How is the pivot element chosen in this function?
  SWAP(A[right], A[pivot]);
  return (pivot);
```

18 20 28 0 38 8 2 16 10 14 24 30 34 12 32 22 6 4 36 26

18 20 0 8 2 16 10 14 24 12 22 6 4 **26** 32 38 30 34 36 28

(13)

직관적인 시간 복잡도 추정

$$T(n) = T(m_1) + T(m_2) + cn \ (m_1 + m_2 = n - 1) \text{ if } n > 1$$

 $T(1) = 1$ $O(n \log n) \le T(n) \le O(n^2)$

Cost Analysis

Quick Sort

Divide Conquer Combine

O(n) T(m1) +T(m2) O(1) or 0

Cost

	10	12	13
$T(n) = T(m_1) + T(m_2) + cn \ (m_1 + m_2 = n - 1)$ if	\dot{n}	>	1
T(1) = 1			

- Worst-case time complexity
 - 매 단계에서 선택한 pivot element가 가장 크거나 가장 작을 경우,

$$T(n) = T(0) + T(n-1) + cn$$

Skewed vs well-balanced trees

$$T(n) = T(n-1) + cn, \text{ if } n > 1$$

$$T(1) = 1$$

$$T(n) = O(n^2)$$

Average-case time complexity

$$T(n) = \sum_{p=1}^{n} \frac{1}{n} \{ T(p-1) + T(n-p) \} + cn$$

$$T(0) = 1$$

Average Case Time Complexity

첫 번째 사실: 0보다 같거나 큰 정수 n에 대해 $T_{ave}(n)$ 을 n개의 원소를 가지는 배열을 퀵정렬 방법을 사용하여 정렬하는데 걸리는 평균 수행시간이라고 하자. 그러면 어떤 양의 정수 b와 c에 대해 다음과 같은 재귀적인 관계가 존재한다.

$$T_{ave}(n) \le cn + \frac{1}{n} \sum_{p=1}^{n} \{T_{ave}(p-1) + T_{ave}(n-p)\}$$

$$= cn + \frac{2}{n} \sum_{p=0}^{n-1} T_{ave}(p) \text{ for all } n \ge 2,$$

$$T_{ave}(1) \le b,$$

$$T_{ave}(0) \le b.$$

(ostave =
$$\sum_{p=1}^{n} P_{r}(p)$$
. Coet(p) = $\frac{1}{n} \sum_{p=1}^{n} \{...+...\}$

두 번째 사실: k=2(b+c)라 할 때, 2보다 같거나 큰 모든 정수 n에 대해 $T_{ave}(n) \leq kn\log_e n$ 과 같은 관계가 존재한다.

증명: 위의 부등식을 수학적 귀납법을 사용하여 증명하자. 첫째, n=2일 경우, 첫 번째 사실로 부터 다음과 같은 관계가 성립하며,

$$T_{ave}(2) \le 2c + T_{ave}(0) + T_{ave}(1) \le 2(b+c) \le k \cdot 2 \cdot \log_e 2$$

따라서 두 번째 사실이 성립한다. 둘째, 3보다 같거나 큰 임의의 n이 주어졌을 때, m < n인 모든 m에 대하여 두 번째 사실이 성립한다고 가정하자. 그러면, 첫 번째 사실과 이 가정을 사용하여 다음과 같은 관계를 유도할 수 있으며,

$$T_{ave}(n) \leq cn + \frac{2}{n} \sum_{m=0}^{n-1} T_{ave}(m)$$

$$= cn + \frac{2}{n} \{ T_{ave}(0) + T_{ave}(1) \} + \frac{2}{n} \sum_{m=2}^{n-1} T_{ave}(m)$$

$$\leq cn + \frac{4b}{n} + \frac{2k}{n} \sum_{m=2}^{n-1} m \log_e m$$

$$T_{ave}(n) \leq cn + \frac{1}{r}$$

$$= cn + \frac{c}{r}$$

$$T_{ave}(1) \leq b,$$

$$T_{ave}(0) \leq b.$$

$$T_{ave}(n) \le cn + \frac{2}{n} \sum_{n=0}^{n-1} T_{ave}(p) \text{ for all } n \ge 2$$

함수 $x\log_e x$ 가 x에 대하여 아래로 볼록인 함수이어서 $m\log_e m \leq \int_m^{m+1} x\log_e x \, dx$ 라는 사실을 이용하면 다음과 같은 관계식을 얻는다.

$$T_{ave}(n) \leq cn + \frac{4b}{n} + \frac{2k}{n} \int_{2}^{n} x \log_{e} x \, dx$$

$$\leq cn + \frac{4b}{n} + \frac{2k}{n} \left\{ \frac{n^{2} \log_{e} n}{2} - \frac{n^{2}}{4} \right\}$$

$$= kn \log_{e} n + \left\{ cn + \frac{4b}{n} - \frac{kn}{2} \right\}$$

이때, $cn + \frac{4b}{n} - \frac{kn}{2} = (c - \frac{k}{2})n + \frac{4b}{n} = b(\frac{4}{n} - n)$ 과 같고, 이 값은 2보다 같거나 큰 n에 대해 항상 0보다 같거나 작으므로 $T_{ave}(n) \leq kn\log_e n$ 이 되어, 3보다 같거나 큰 임의의 n에 대해서도 두 번째 사실이 성립한다. 따라서 2보다 같거나 큰 모든 정수 n에 대해 두 번째 사실이 성립한다.

$$= cn + \frac{1}{n} \{T_{ave}(0) + T_{ave}(1)\} + cn + \frac{4b}{n} + \frac{2k}{n} \sum_{m=2}^{n-1} m \log_e m$$

른 정수 n에 대해 $T_{ave}(n) \leq kn \log_e n$ 과 같은

$$\int_{2}^{n} x \log_{e} x dx = \frac{1}{2} x^{2} \log_{e} x - \frac{x^{2}}{4} \Big]_{2}^{n} = \left(\frac{n^{2}}{2} \log_{e} n - \frac{n^{2}}{4}\right) - \left(2 \log_{e} 2 - 1\right) \le \frac{n^{2}}{2} \log_{e} n - \frac{n^{2}}{4} = \frac{n^{2}}{4} \log_{e} n - \frac{n^{2}}{4} \log_{e} n - \frac{n^{2}}{4} = \frac{n^{2}}{4} \log_{e$$

Another Implementation

```
void quicksort(element list[], int left, int right)
 /* sort list[left], ... list[right] into nondecreasing
order on the key field. list[left] key is arbitrarily
chosen as the pivot key. It is assumed that
list[left].key ≤ list[right+1].key. */
   int pivot, i, j;
element temp;
  if (left < right) {
      i = left;
                   j = right + 1;
     pivot = list[left].key;
     do {
      /* search for keys from the left and right sublists,
      swapping out-of-order elements until the left and
     right boundaries cross or meet */
        do
        while (list[i].key < pivot);
        do
        while (list[j].key > pivot);
        if (i < j)
          SWAP(list[i], list[j], temp);
      } while (i < i);</pre>
     SWAP(list[left], list[j], temp);
     quicksort(list,left,j-1);
      quicksort(list,j+1,right);
```


Comparison Sorts

Name \$	Best ♦	Average \$	Worst ≑	Memory ≑	Stable +	Method ♦	Other notes •
Quicksort	$n \log n$	$n \log n$	n^2	$\log n$	No	Partitioning	Quicksort is usually done in-place with $O(\log n)$ stack space. [5][6]
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging	Highly parallelizable (up to $O(\log n)$) using the Three Hungarians' Algorithm). [7]
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection	
Insertion sort	n	n^2	n^2	1	Yes	Insertion	O(n + d), in the worst case over sequences that have d inversions.
Selection sort	n^2	n^2	n^2	1	No	Selection	Stable with $O(n)$ extra space or when using linked lists. ^[11]
Bubble sort	n	n^2	n^2	1	Yes	Exchanging	Tiny code size.

Insertion Sort: Example 1

[0]:	15	10	3	1	14	19	5	11	7	16	18	4	9	2	8	0	12	17	6	13
[1]:	10	15	3	1	14	19	5	11	7	16	18	4	9	2	8	0	12	17	6	13
[2]:	3	10	15	1	14	19	5	11	7	16	18	4	9	2	8	0	12	17	6	13
[3]:	1	3	10	15	14	19	5	11	7	16	18	4	9	2	8	0	12	17	6	13
[4]:	1	3	10	14	15	19	5	11	7	16	18	4	9	2	8	0	12	17	6	13
[5]:	1	3	10	14	15	19	5	11	7	16	18	4	9	2	8	0	12	17	6	13
[6]:	1	3	5	10	14	15	19	11	7	16	18	4	9	2	8	0	12	17	6	13
[7]:	1	3	5	10	11	14	15	19	7	16	18	4	9	2	8	0	12	17	6	13
[8]:	1	3	5	7	10	11	14	15	19	16	18	4	9	2	8	0	12	17	6	13
[9]:	1	3	5	7	10	11	14	15	16	19	18	4	9	2	8	0	12	17	6	13
[10]:	1	3	5	7	10	11	14	15	16	18	19	4	9	2	8	0	12	17	6	13
[11]:	1	3	4	, 5	7	10	11	14	15	16	18	19	9	2	8	0	12	17	6	13
[12]:	1	3	4	5	, 7	9	10	11	14	15	16	18	19	2	8	0	12	17	6	13
																_				
[13]:	1	2	3	4	5	7	9	10	11	14	15	16	18	19	8	0	12	17	6	13
[14]:	1	2	3	4	5	7	8	9	10	11	14	15	16	18	19	0	12	17	6	13
[15]:	0	1	2	3	4	5	7	8	9	10	11	14	15	16	18	19	12	17	6	13
[16]:	0	1	2	3	4	5	7	8	9	10	11	12	14	15	16	18	19	17	6	13
[17]:	0	1	2	3	4	5	7	8	9	10	11	12	14	15	16	17	18	19	6	13
[18]:	0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18	19	13
[19]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

Insertion Sort: Example 2

Insertion

O(n + d), in the worst case over sequences that have d inversions.

When does the insertion sort run fast?

[0]:	0	1	4	3	2	7	6	5	8	11	10	9	13	12	14	17	16	15	18	19
[1]:	0	1	4	3	2	7	6	5	8	11	10	9	13	12	14	17	16	15	18	19
[2]:	0	1	4	3	2	7	6	5	8	11	10	9	13	12	14	17	16	15	18	19
[3]:	0	1	3	4	2	7	6	5	8	11	10	9	13	12	14	17	16	15	18	19
[4]:	0	1	2	3	4	7	6	5	8	11	10	9	13	12	14	17	16	15	18	19
[5]:	0	1	2	3	4	7	6	5	8	11	10	9	13	12	14	17	16	15	18	19
[6]:	0	1	2	3	4	6	7	5	8	11	10	9	13	12	14	17	16	15	18	19
[7]:	0	1	2	3	4	5	6	7	8	11	10	9	13	12	14	17	16	15	18	19
[8]:	0	1	2	3	4	5	6	7	8	11	10	9	13	12	14	17	16	15	18	19
[9]:	0	1	2	3	4	5	6	7	8	11	10	9	13	12	14	17	16	15	18	19
[10]:	0	1	2	3	4	5	6	7	8	10	11	9	13	12	14	17	16	15	18	19
[11]:	0	1	2	3	4	5	6	7	8	9	10	11	13	12	14	17	16	15	18	19
[12]:	0	1	2	3	4	5	6	7	8	9	10	11	13	12	14	17	16	15	18	19
[13]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	17	16	15	18	19
[14]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	17	16	15	18	19
[15]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	17	16	15	18	19
[16]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	15	18	19
[17]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
[18]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
[19]:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

이러한 insertion sort의 성질을 quick sort의 성능 향상에 활용하자.

Insertion Sort: Implementation

```
void insertion sort(int *A, int n) {
  int i, j, tmp;
  for (i = 1; i < n; i++) {
    tmp = A[i];
    i = i;
    while ((j > 0) \&\& (tmp < A[j - 1])) {
      A[\dot{\uparrow}] = A[\dot{\uparrow} - 1];
                                        [ 01:
                                              15
                                                 10
                                                            14
                                                               19
                                                                    5 11
      j−−;
                                                               19
                                                                    5 11
                                              10 15
                                                            14 19
                                                                    5 11
                                             3 10 15
                                        [ 3]: 1 3 10 15
                                                                    5 11
                                                            14 19
    A[j] = tmp;
                                        [4]: 1 3 10 14
                                                            15 19
                                                                    5 11
                                        [5]: 1 3 10 14
                                                              19
                                                           14
                                                               15
                                                                   19 11
                                        [6]:
                                                      5 10
```

Sort a list of elements by iteratively inserting a next element in a progressively growing sorted array.

$$T(n) = O(n^2)$$

Insertion Sort: Run-Time Analysis

Worst case

- No. of comparisons:

$$1 + 2 + \dots + n - 1 = O(\frac{n^2}{2})$$

No. of record assignments:

$$1 + 2 + \dots + n - 1 = O(\frac{n^2}{2})$$

[0]: 15 10 3 1 14 19 5 11 [1]: 10 15 3 1 14 19 5 11 [2]: 3 10 15 1 14 19 5 11 [3]: 1 3 10 15 14 19 5 11 for (i = 1; i < n; i [4]: 1 3 10 14 15 19 5 11 tmp = A[i]; [5]: 1 3 10 14 15 19 5 11 j = i; [6]: 1 3 5 10 14 15 19 11 while ((j > 0) && A[j] = A[j - 1]; j--; } A[j] = tmp;

Average case

– No. of comparisons:

$$\sum_{i=1}^{n-1} \frac{1+2+\dots+i+i}{i+1} = \sum_{i=1}^{n-1} (\frac{i}{2}+1-\frac{1}{i+1}) \approx \frac{(n-1)(n+4)}{4} - \ln n = O(\frac{n^2}{4})$$

No. of record assignments

$$\sum_{i=1}^{n-1} \left(\frac{0+1+2+\dots+i}{i+1} + 2 \right)$$

$$= \frac{n(n-1)}{4} + 2(n-1) = O(\frac{n^2}{4})$$

