Using limits
$$2.21 - 2.23$$
 in the seript.
Therem

1. I lim $\frac{\beta(n)}{\beta(n)} = 0$, then $f \in O(\delta)$ $g \in O(4)$

2. If $\lim_{n \to \infty} \frac{f(n)}{\beta(n)} = C$, $O \subset C \subset OO$ $f \in O(4)$

14 m

3. It $n \Rightarrow \omega = \frac{f(n)}{f(n)} = \omega + \omega + \omega + \omega = 0$ ge O(f)

Proof put I of tworm 2.21

Assume
$$\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$$
, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$, for each 670

 $\lim_{n \to \infty} \frac{\rho(n)}{s(n)} = 0$,

9 £ 0(f) the mist exist Now assume g t o(f), 5 (n) = d.+ (n) a of 70 and mo ENV s.t. for all no mo. $\frac{1}{d} \leq \frac{f(n)}{g(n)}$, $\forall n 7/m_b$.

then lim $\frac{f(n)}{g(n)}$? $\frac{1}{d}$ 70

which violates our premise. g(f) 3

L'Hospital rule can be helpful

lim fin) lim f'(n) Revel

now g'(n) = now g'(n) print

print

f' in Am

first derivative

Example $\frac{1}{n \log_n(n)} \in O(n^2)$ and $n^2 \notin O(n \log(n))$ line nlugah) - lom loga(x) + nloga(e)/n lin logalin) temploga (n) = 0+0=0. Then by theorem 2.21.1 this hilds, 3