Problem 8

The function $f(z) = \frac{e^{iz}}{z-1/4-4i/5}$ is analytic on $\mathbb{C}\setminus\{1/4+4i/5\}$. A complex number z=x+iy is in the interior of the triangle if and only if $x+y\leq 1$ and $x,y\geq 0$.

Here, we have

$$\frac{1}{4} + \frac{4}{5} = \frac{5+16}{20} = \frac{21}{20} > 1$$

and hence z = 1/4 + 4i/5 is not inside the triangle. The function f is therefore analytic on an open set containing the curve and the inside of the triangle and from Cauchy's Theorem, we get

$$\int_{\gamma} \frac{e^{iz}}{z - \frac{1}{4} - \frac{4}{5}i} = 0.$$

Problem 10

Notice that all of the functions are analytic on $\mathbb{C}\setminus\{2\}$, $\mathbb{C}\setminus\{-2\}$, $\mathbb{C}\setminus\{2i\}$, and $\mathbb{C}\setminus\{-2i\}$. The unit circle and its interior are contained in all of these regions. Hence, by Cauchy's Theorem, each integral should be zero.