The Eye and Pupil Tracking and Segmentation with Gaze Estimation using RGB images

Aldiyar Bolatov, 201536038 Asset Rayev, 201575338 Agakhan Baiturov, 201513666 Timur Tassov, 201512793

General idea

UnityEyes Dataset

53894 procedurally generated 3D rendered images

MobileNetV3

Input	Operator	exp size	#out	SE	NL	s
$224^{2} \times 3$	conv2d, 3x3		16	-	HS	2
$112^{2} \times 16$	bneck, 3x3	16	16	1	RE	2
$56^{2} \times 16$	bneck, 3x3	72	24	01 1 3	RE	2
$28^{2} \times 24$	bneck, 3x3	88	24	242	RE	1
$28^{2} \times 24$	bneck, 5x5	96	40	V	HS	2
$14^{2} \times 40$	bneck, 5x5	240	40	1	HS	1
$14^{2} \times 40$	bneck, 5x5	240	40	1	HS	1
$14^{2} \times 40$	bneck, 5x5	120	48	1	HS	1
$14^{2} \times 48$	bneck, 5x5	144	48	1	HS	1
$14^{2} \times 48$	bneck, 5x5	288	96	1	HS	2
$7^{2} \times 96$	bneck, 5x5	576	96	1	HS	1
$7^{2} \times 96$	bneck, 5x5	576	96	1	HS	1
$7^{2} \times 96$	conv2d, 1x1	-	576	1	HS	1
$7^2 \times 576$	pool, 7x7	-	-	-	-	1
$1^2 \times 576$	conv2d 1x1, NBN	-	1024	-	HS	1
$1^{2} \times 1024$	conv2d 1x1, NBN	-	k	-	-	1

Table 2. Specification for MobileNetV3-Small. See table 1 for notation.

Backbone	mAP	Latency (ms)	Params (M)	MAdds (B)
V1	22.2	228	5.1	1.3
V2	22.1	162	4.3	0.80
MnasNet	23.0	174	4.88	0.84
V3	22.0	137	4.97	0.62
V3 [†]	22.0	119	3.22	0.51
V2 0.35	13.7	66	0.93	0.16
V2 0.5	16.6	79	1.54	0.27
MnasNet 0.35	15.6	68	1.02	0.18
MnasNet 0.5	18.5	85	1.68	0.29
V3-Small	16.0	52	2.49	0.21
V3-Small [†]	16.1	43	1.77	0.16

Table 6. Object detection results of SSDLite with different backbones on COCO test set. † : Channels in the blocks between C4 and C5 are reduced by a factor of 2.

Vision Transformer

Results

Fun Fact

Future Works

Conclusion

