

Мастер-класс

Веб-приложение классификации изображений с помощью нейронной сети

Терехов Валерий Игоревич Канев Антон Игоревич кафедра ИУ5

lu5.bmstu.ru

Кафедра ИУ5

iu5.bmstu.ru

VK Telegram YouTube

Одна из крупнейших кафедр университета

150 бакалавров и 80 магистров каждый год

Системная и бизнес аналитика

Аналитики данных и Data Science

Web разработка DevOps/SRE

Конференция ИИАСУ

http://iiasu23.bmstu.ru/

Компьютерные игры

https://github.com/iu5git/ai-bot-games-in-js

• Пример интеллектуального агента ping-pong с обучением нейронной сети

Обучение с учителем

Обучающие данные предварительно разметили

Пример - распознавание и локализация с помощью моделей yolo:

- Оружия
- Масок и тд

Обучение без учителя - Lidar

- Обучающие данные не размечены
- Объединяем в группы близкие точки

Обучение нейросети

- Определите вклад каждого нейрона в ошибку
- Изменить веса нейронной сети для минимизации ошибки

- Произвести инференс на обучающем наборе
- Вычислить ошибку между спрогнозированными значениями и истинными значениями на обучающем наборе

Тестовая и обучающая выборки

- Входные данные и метки
- Тестовая и обучающая части набора данных

Обучающая Тестовая выборка

Метрики для классификации

Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
Accuracy = (TP + TN) / (количество ответов)

не открыть телефон другому найти болезнь общий % правильных

Биология и математика

Нейронная сеть

- Сеть состоит из слоев нейронов
- Каждый нейрон сумматор
- Обучение вычисление весов w нейрона
- После каждого нейрона активационная функция, без нее все превращается в линейное уравнение

Вычисление прогноза (инференс)

Веса – коэффициенты на связях между нейронами

Синие нейроны — наши входные данные

Beca H1 = (1.0, -2.0, 2.0)

Beca H2 = (2.0, 1.0, -4.0)

Beca H3 = (1.0, -1.0, 0.0)

Beca O1 = (-3.0, 1.0, -3.0)

Beca O2 = (0.0, 1.0, 2.0)

Вычисление прогноза (инференс)

Beca
$$H1 = (1.0, -2.0, 2.0)$$

Beca
$$H2 = (2.0, 1.0, -4.0)$$

Beca
$$H3 = (1.0, -1.0, 0.0)$$

Beca
$$O1 = (-3.0, 1.0, -3.0)$$

Beca
$$O2 = (0.0, 1.0, 2.0)$$

Используем входы и веса нейронов, чтобы посчитать следующие нейроны:

$$H1 = S(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = S(-1.9) = .13$$

$$H2 = S(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = S(3.1) = .96$$

$$H3 = S(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = S(-0.4) = .40$$

Функции потерь

- Нам нужен минимум функции потерь (ошибки)
- Метод наименьших квадратов (сверху)
- Кроссэнтропия (справа)
- График функции потерь от количества шагов (снизу)

Градиентный спуск

- Параметры (веса) сети меняются при обучении
- Гиперпараметры нет. Управляем обучением
- Скорость обучения позволяет регулировать, насколько длинными будут наши шаги

Ir - шаг обучения. Данный параметр можно изменять. optimizer = optim.SGD(model.parameters(), Ir=0.005)

Итерации и эпохи

- Итерации один шаг обучения
- Эпоха обход всех экземпляров набора данных

Батчи

- Функцию потерь считаем по одному примеру, но потом их складываем в одну
- Обучать на всем датасете долго. Каждый раз берем небольшую порцию данных
- Но обучение становится хаотичнее

Визуализация обучения

Точность, переобучение

точность

точность обучения

Cifar100

- Набор данных, состоящий из цветных изображений 100 классов
- Размер 32 на 32 пикселя
- 3 цвета

ONNX

- ONNX библиотека для конвертации моделей между разными технологиями
- ONNX дает возможность исследователям и разработчикам выбрать нужную комбинацию инструментов для решения задачи
- ONNX.js позволяет запускать модели в браузере, то есть на стороне пользователя

ONNX пример

Step 3. Select class labels and get predictions

