Intetics f(cafe) 25 July 2018 Freud House, Kyiv, Ukraine

Namdak Tonpa

HoTT: The Language of Space

Groupoid Infinity

The HoTT Lineage

- Nicolaas Govert de Bruijn [AUTOMATH]
- Per Martin-Löf, Henk Barendregt [MLTT, λ -Cube]
- Robin Milner [ML, LCF, π-Calculus]
- Gérard Pierre Huet [CAML]
- Christine Paulin-Mohring [CiC]
- Peter Dybjer, Martin Hofmann, R.A.G. Seely [CwF, CwA, LCCC]
- Thierry Coquand [CoC, Coq, CCHM]
- Robert William "Bob" Harper, Jr. [HoTT, RedPRL, ML, Twelf]
- Steve Awodey, Vladimir Voevodsky [HoTT, C-Systems]
- Cyril Cohen, Simon Huber, Anders Mörtberg [CCHM, cubicaltt, yacctt]

Abstract

Cubical Base Library

Homotopy Type Theory (HoTT) is the most advanced programming language in the domain of intersection of several theories: algebraic topology, homological algebra, higher category theory, mathematical logic, and theoretical computer science. That is why it can be considered as a language of space, as it can encode any existent mathematics.

During this lecture on HoTT, we are trying to encode as much mathematics in the programming language as possible.

Talk Structure

Slightly based on HoTT Chapters

I. Foundations

- MLTT
- Inductive Types, Induction
- IPL and Elements of Set Theory
- Control, Recursive Schemes
- Equiv, Iso, Univalence
- Higher Inductive Types
- Modalities

II. Mathematics

- Category Theory, Topos Theory
- Basic Algebra
- Ordinals, Mahlo Universe
- Differential Topology
- FIber Bundles and Hopf Fibtations
- K-Theory
- Sequences, Chain Complexes

I. Foundations

OM PTS

Type Inference Algorithm (Pure Case Analysis) in Erlang

```
type (:star, N) D \rightarrow (:star, N+1) 

(:var, N, I) D \rightarrow :true = proplists:defined N B, om:keyget N D I 

(:pi, N, O, I, O) D \rightarrow (:star ,h (star (type I D)) (star (type O [(N,norm I)|D]))) 

(:fn, N, O, I, O) D \rightarrow let star (type I D), Ni = norm I in (:pi,N,O,Ni,type(O,[(N,Ni)|D])) 

(:app, F, A) D \rightarrow let T = type(F,D), (:pi,N,O,I,O) = T, :true = eq I (type A D) 

in norm (subst O N A)
```

MLTT 1972

Type Theory as new Foundations of Mathematics

U : U — Single Universe Model — MLTT 1972, CoC 1988.

x : A - x is a point (Star) in space A (Box)

y = [x : A] - x and y are definitionally equal objects of type A

- 1. Formation Rule
- 2. Introduction Rule(s)
- 3. Elimination Rule(s)
- 4. Computational Rule(s)

$$(x:A) -> B(x)$$
 $(x:A) * B(x)$
 $(x:A) -> B(x)$ (a,b)
f a .1, .2
two three

Beta and Eta

Duality of Intro and Elim and its Uniqueness Non-Dep Case (CCC). Homework: Proof LCCC case.

MLTT 1975, 1984

Grothendieck Universe (containing all sets), Countable Universes

```
U_0: U_1: U_2: U_3: ... \infty — infinite hierarchy of universes S(n: nat) = Un S(n: nat) = Un A_1(n: nat) = Un: Um where <math>[m>n] — cumulative, [n+1=m] — non-cumulative R_1(m: nat) = Um — Un: Ux where [x=max(m,n)] — predicative, [x=n] — impredicative
```

1. Formation	data nat	data list	Path A x y	data W
2. Introduction	zero, succ	nil, cons	refl A x	sup
3. Elimination	natInd	listInd	J	wInd
4. Computational	Beta, Eta	Beta, Eta	Beta, [Eta]	Beta, Eta

Intuitionistics Propositional Logic

According to Brouwer-Heyting-Kolmogorov interpretation

\forall	3	Path	0	1	+
$x:A \rightarrow B(x)$	x:A * B(x)	x:A = y:A	data empty	data unit	data either
$\setminus (x: A) \rightarrow B(x)$	(x,B(x))	refl A x		tt	inl, inr
fa = B(a)	pr1, pr2	J	elim0	elim1	eitherInd
Beta, Eta	Beta, Eta	Beta	Beta, Eta	Beta, Eta	Beta, Eta

Proto (Prelude)

For run-time and I/O applications

maybe	either	stream	bool	vector	fin
U -> U	U -> U -> U		U true folco	nat -> U	nat -> U fz, fs
nothing, just	inl, inr	cons	true, false	VZ, VS	,
maybelnd	eitherInd	streamInd	boolInd	vecInd	finInd
Beta, Eta	Beta, Eta	Beta, Eta	Beta, Eta	Beta, Eta	Beta, Eta

Homework: Add I/O interface for finite and infinite loop.

Induction Principle

Natural Numbers Example

Induction Principle could be the ultimate programming tool.

Inductive AST

Data Definition and Case Analysis

```
data tele (A: U) = emp | tel (n: name) (b: A) (t: tele A)

data branch (A: U) = br (n: name) (args: list name) (term: A)

data label (A: U) = lab (n: name) (t: tele A)

data ind = data_ (n: name) (t: tele lang) (labels: list (label lang))

| case (n: name) (t: lang) (branches: list (branch lang))

| ctor (n: name) (args: list lang)
```

Homework: Add HITs elements as Path Equalities to data declarations. Hint: use your imagination.

Pi Type: Definition

Family of Types, Fibrations, Fiber Space A->U, Fiber B(x), Section b(x), Space of Sections Pi(A,B)

```
      Syntax
      Model

      <> ::= #option
      data pts = star (n: nat)

      T ::= #identifier
      | var (x: name) (l: nat)

      U ::= * < #number >
      | pi (x: name) (l: nat) (d c: lang)

      O1 ::= U | T | ( O ) | O O | O -> O
      | lambda (x: name) (l: nat) (d c: lang)

      | \ (I: O) -> O | (I: O) -> O
      | app (f a: lang)
```

Pure Type System (PTS), Single Axiom System, Calculus of Constructions (CoC) Henk, Morte, Om and many many others.

Pi Type: Inference Rules

Universal Quantifier

```
Pi (A: U) (P: A -> U) : U = (x:A) -> P(x)
lambda (A : U) (B: A -> U) (a : A) (b: B a): A -> B a = \ (x: A) -> b
app (A : U) (B: A -> U) (a : A) (f: A -> B a): B a = f a
Beta (A:U) (B:A->U) (a:A) (f: A->B a) : Path (B a) (app A B a (lam A B a (f a))) (f a)
Eta (A: U) (B: A -> U) (a: A) (f: A -> B a) : Path (A -> B a) f (\( (x:A) -> f x ) \)
```

One beta rule and one eta rule for Pi types.

Sigma Type : Definition

Total Space Sigma(A,B), Point in Base with Section (a,b)

Sigma is a part of the MLTT earliest core. It models Type Refinement and Proofs by Existance (Construction). Sigma is a chain link of telescopes (contexts), the curried notion of records.

Sigma Type: Inference Rules

Existential Quantifier

```
Sigma (A : U) (B : A -> U) : U = (x : A) * B x
pair (A : U) (B: A -> U) (a : A) (b: B a): Sigma A B = ?
pr1 (A: U) (B: A -> U) (x: Sigma A B): A = ?
pr2 (A: U) (B: A -> U) (x: Sigma A B): B (pr1 A B x) = ?
Beta1 (B: A -> U) (a: A) (b: B a) -> Path A a (pr1 A B (pair A B a b)))
Beta2 (B: A -> U) (a: A) (b: B a) -> Path (B a) b (pr2 A B (a,b)))
Eta (B: A -> U) (p: Sigma A B) -> Path (Sigma A B) p (pr1 A B p,pr2 A B p))
sigRec (A:U)(B:A->U)(C: U) (g:(x:A)->B(x)->C) (p: Sigma A B): C = g p.1 p.2
sigInd (A:U)(B:A->U)(C:Sigma A B->U)
      (p: Sigma A B)(g:(a:A)(b:B(a))->C(a,b)):C p=g p.1 p.2
```

Sigma Type in Pi

Typing and Introduction Rules in Church-Bohm-Berarducci Encoding

```
-- Sigma/@
    \ (A: *)
-> \ (P: A -> *)
-> \ (n: A)
-> \ (Exists: *)
-> \ (Intro: A -> P n -> Exists)
-> Exists
-> Intro x y
```

Sigma Type in Pi

Eliminators in Church-Bohm-Berarducci Encoding

```
-- Sigma/fst -- Sigma/snd
\(A: *) \(A: *)
-> \(B: A -> *) \\
-> \(n: A) \\
-> \(S: #Sigma/@ A B n) \\
-> S A (\(x: A) -> \(y: B n) -> x) \\
-> S B (\(x: A) -> \(y: B n) -> x) \\
-> S B (\(x: A) -> \(y: B n) -> x) \\
-> S B (\(x: A) -> \(y: B n) -> y \(y: B n) -
```

Control (Haskell)

Port of Haskell-style erased 2-categorical structures for flow modeling

```
(F:U->U):U= (A: U) -> A -> F A
pure_sig
appl_sig (F:U->U):U=(A B: U) -> F(A -> B) -> FA -> FB
fmap_sig (F:U->U):U=(A B: U) -> (A -> B) -> F A -> F B
bind_sig (F:U->U):U=(A B: U) -> FA ->(A -> FB)-> FB
functor: U = (F: U -> U) * fmap sig F
applicative: U = (F: U -> U) * (_: pure_sig F) * (_: fmap_sig F) * appl_sig F
monad: U = (F:U->U)*(\underline{\quad}sig F)*(\underline{\quad}sig F)*(\underline{\quad}sig
FUNCTOR: U = (f: functor) * isFunctor f
APPLICATIVE: U = (f: applicative) * (_: isFunctor (f.1,f.2.2.1)) * isApplicative f
MONAD: U = (f: monad) * (_: isFunctor (f.1,f.2.2.1))
                                                                                        * (_: isApplicative (f.1,f.2.1,f.2.2.1,f.2.2.2.1)) * isMonad f
```

F-Algebras

Inductive Type Modeling with Varmo Vene style Recursion Schemes

```
data fix (F:U->U) = Fix (point: F (fix F))
data nu (F:U->U) (A B:U) = CoBind (a: A) (f: F B)
data cofree (F:U->U) (A:U) = CoFree (_: fix (nu F A))
ind (F: U -> U) (A: U): U = (in_: F (fix F) -> fix F) * (in_rev: fix F -> F (fix F))
* ((F A -> A) -> fix F -> A) * (cofree_: (F (cofree F A) -> A) -> fix F -> A)
inductive (F: functor) (A: U): ind F.1 A = (in_ F.1,out_ F.1,cata A F,histo A F,tt)
```

Backported to cubicaltt.

Bishop's Constructive Analysis

Reflexivity, Transitivity, Symmetry

```
Setoid (A: U): U
```

- = (Carrier: A)
- * (Equ: (a b: A) -> Path A a b)
- * (Refl: $(x: A) \rightarrow Equ \times x$)
- * (Trans: (x₁,x₂,x₃: A) -> Equ x₁ x₂ -> Equ x₂ x₃ -> Equ x₁ x₃)
- * (Sym: $(x_1,x_2: A) \rightarrow Equ x_1 x_2 \rightarrow Equ x_2 x_1)$

$$a = A b$$

$$a \longrightarrow b$$

$$Refl$$

$$a = Ab$$
 $b = Ac$
 $a = Ab$
 $a = Ac$

Trans

Globular Theory

Multidimentional Equality

$$a = Ab$$

$$((a = A b) = (= A) (a = A b))$$

$$a = Ab$$

$$a = A b$$

Equ Type a la Martin-Löf

```
HeteroEqu (A B: U) (a: A) (b: B) (P: Path U A B) : U = axiom — PathP P a b

Equ (A: U) (x y: A): U = HeteroEqu A A x y (<i>A)

refl (A: U) (a: A): Equ A a a = <i>a

J (A: U) (a: A) (C: (x : A) -> Path A a x -> U)

(d: C a (refl A a)) (x: A) (p: Path A a x): C x p

Comp (A: U) (a: A) (C: (x : A) -> Path A a x -> U)

(d: C a (refl A a)) : Path (C a (refl A a)) d (J A a C d a (refl A a))
```

Path (A: U) (a b: A): U = axiom - PathP (<i>A) a b

Path Types as Cubes

Syntax and Model

Syntax

```
x : [PathP p a b, p = (i: I) -> A]
```

de Morgan: 1-i | i | i /\ j | i \/ j

Model

```
data lang = hts | ...
data hts = path (a b: lang)
           path_lam (n: name) (a b: lang)
           path_app (f: name) (a b: lang)
           comp_ (a b: lang)
          fill_ (a b c: lang)
          glue_ (a b c: lang)
          glue_elem (a b: lang)
          unglue_elem (a b: lang)
```

HIT: Homotopy

Intro and Elim

```
data I = i0
         | seq < i > [(i=0) -> i0, (i=1) -> i1]
pathToHtpy (A: U) (x y: A) (p: Path A x y): I \rightarrow A
  = split \{ i0 \rightarrow x; i1 \rightarrow y; seq @ i \rightarrow p @ i \}
homotopy (X Y: U) (f g: X -> Y)
               (p: (x: X) -> Path Y (f x) (g x))
               (x: X): I \rightarrow Y = pathToHtpy Y (f x) (g x) (p x)
```

n-Types Infinity Groupoids

```
Path (A: U): U = (a b: A) -> PathP (<i> A) a b

isContr (A: U): U = (x: A) * ((y: A) -> Path A x y)

isProp (A: U): U = (a b: A) -> Path A a b

isSet (A: U): U = (a b: A) -> isProp (Path A a b)

isGroupoid (A: U): U = (a b: A) -> isGroupoid (Path A a b)

isGr_2 (A: U): U = (a b: A) -> isGroupoid (Path A a b)

isGr_3 (A: U): U = (a b: A) -> isGr_2 (Path A a b)
```

PROP: U = (X:U) * isProp X

SET: U = (X:U) * isSet X

GROUPOID: U = (X:U) * isGroupoid X

INF_GROUPOID: U = (X:U) * isInfinityGroupoid X

Subtyping in MLTT

Subsets and Subtypes

```
hsubtypes (X: U): U = X \rightarrow PROP
subset (A: U) (\underline{\phantom{a}}: isSet A): U = A -> PROP
sethsubtypes (X : U) : isSet (hsubtypes X)
hsubtypespair (A B: U) (H0: hsubtypes A) (H1: hsubtypes B) (x: prod A B): PROP
subtypeEquality (A: U) (B: A -> U)
                  (pB: (x : A) -> isProp (B x))
                   (s t: Sigma A B): Path A s.1 t.1 -> Path (Sigma A B) s t
iseqclass (X : U) (R : hrel X) (A : hsubtypes X) : U
propiseqclass (X : U) (R : hrel X) (A : hsubtypes X) : isProp (iseqclass X R A)
```

Elements of Set Theory

Set Theory Theorems

```
ac (A B: U) (R: A -> B -> U): (p: (x:A)->(y:B)*(R x y)) -> (f:A->B)*((x:A)->R(x)(f x))
= \((g: (x:A)->(y:B)*(R x y)) -> (\((i:A)->(g i).1,\((j:A)->(g j).2)\)
total (A:U) (B C: A->U) (f: (x:A) -> B x -> C x) (w:Sigma A B): Sigma A C
= (w.1,f (w.1) (w.2))
```

```
efq (A: U): empty -> A = emptyRec A
neg (A: U): U = A -> empty
dneg (A:U) (a:A): neg (neg A) = \((h: neg A) -> h a
neg (A: U): U = A -> empty
dec (A: U): U = either A (neg A)
stable (A: U): U = neg (neg A) -> A
discrete (A: U): U = (a b: A) -> dec (Path A a b)
```

```
Prop Logic
Set Theory Theorems
```

```
propDec (A: U) (a: isProp A): isProp (dec A)
propAnd (AB: U) (a: isProp A) (b: isProp B): isProp (prod AB)
propOr (AB: U) (a: isProp A) (b: isProp B) (x: A -> neg B): isProp (either AB)
propNeg (A: U): isProp (neg A)
propNO: isProp empty
```

funext (A: U) (B: A -> U) (f g: (x:A) -> B x)
(p: (x:A) -> Path (B x) (f x) (g x))
: Path ((y:A) -> B y) f g
=
$$\langle i \rangle \setminus (a: A) -> (p a) @ i$$

= $\langle j \rangle \setminus (x: A) -> homotopy A B f g p x (seg{I} @ j))$

FunExt

Syntax and Model

f: (x:A) -> B(x)

(x:A)
$$\Rightarrow$$
 B(x)

g: (x:A) -> B(x)

$$f = (A->B) g$$

$$f : A->B \longrightarrow g : A-> B$$

$$\langle i \rangle \setminus (a:A) -> p a @ i$$

FunExt

Formation, Intro, Elim, Beta, Eta

Weak Equivalence

Fibrational

```
fiber (A B: U) (f: A -> B) (y: B): U = (x: A) * Path B y (f x) isEquiv (A B: U) (f: A -> B): U = (y: B) -> isContr (fiber A B f y) equiv (A B: U): U = (f: A -> B) * isEquiv A B f
```

Fiber Bundle: F -> E -> B

Moebius $E = S^1$ 'twisted *' [0,1]

Trivial: E = B * F

p:total -> B

 $F = fiber : B \rightarrow total$

total = (y: B) * fiber(y)

Fiber=Pi (B: U) (F: B -> U) (y: B) : Path U (fiber (total B F) B (trivial B F) y) (F y)


```
Isomorphism
islso (A B: U): U
                  --- A = XML, B = JSON
 = (f: A -> B)
* (g: B -> A)
 * (s: section A B f g)
                                 isoPath (A B: U) (f: A -> B) (g: B -> A)
 * (t: retract A B f g)
                                      (s: section A B f g) (t: retract A B f g): Path U A B
 * unit
                                   = <i> Glue B [ (i = 0) -> (A,f,isoToEquiv A B f g s t),
                                                   (i = 1) \rightarrow (B, idfun B, idls Equiv B)
iso: U
 = (A: U)
                                  isoToPath (i: iso): Path U i.1 i.2.1
                                   = isoPath i.1 i.2.1 i.2.2.1 i.2.2.2.1 i.2.2.2.1 i.2.2.2.1
 * (B: U)
 * islso A B
```

section (A B: U) (f: A -> B) (g: B -> A): U = (b: B) -> Path B (f (g b)) b

retract (A B: U) (f: A -> B) (g: B -> A): U = (a: A) -> Path A (g (f a)) a

Univalence Axiom

All Equalities Should Be Equal

```
ua (A B: U): U = equiv A B -> Path U A B
ualntro (AB: U): ua AB
uaElim (A B: U) (p: Path U A B): equiv A B
uaComp (A B : U) (p : Path U A B)
 : Path (Path U A B) (uaIntro A B (uaElim A B p)) p
uaUniqueness (A B : U) (w : equiv A B)
 : Path (A -> B) w.1 (uaElim A B (uaIntro A B w)).1
```

Univalence Axiom

All Equalities Should Be Equal


```
lem2 (B: U) (F: B -> U) (y: B) (x: F y)
 : Path (Fy) (comp (\langle i \rangleF (refl By @ i)) x []) x
  = <j > comp (<i > F ((reft B y) @ j/\i)) x [(j=1) -> <k>x]
lem3 (B: U) (F: B -> U) (y: B) (x: fiber (total B F) B (trivial B F) y)
 : Path (fiber (total B F) B (trivial B F) y) ((y,encode B F y x),refl B y) x
  = <i> ((x.2 @ -i,comp (<j> F (x.2 @ -i /\ j)) x.1.2 [(i=1) -> <_> x.1.2 ]), <j> x.2 @ -i \/ j)
FiberPi (B: U) (F: B -> U) (y: B) : Path U (fiber (total B F) B (trivial B F) y) (F y)
= isoPath T A f g s t where
  T: U = fiber (total B F) B (trivial B F) y
  A: U = F y
  f: T \rightarrow A = encode B F y
  g: A \rightarrow T = decode B F y
  s(x: A): Path A (f(gx)) x = lem2 B F y x
  t(x: T): Path T(g(fx)) x = lem3 B F y x
```

Trivial Fiber = Pi

I. Mathematics

```
cat: U = (A: U) * (A -> A -> U)
```

Category Theory

Categories

```
isPrecategory (C: cat): U
= (id: (x: C.1) -> C.2 x x)
* (c: (x y z:C.1) -> C.2 x y -> C.2 y z -> C.2 x z)
* (homSet: (x y: C.1) -> isSet (C.2 x y))
* (left: (x y: C.1) -> (f: C.2 x y) -> Path (C.2 x y) (c x x y (id x) f) f)
* (right: (x y: C.1) -> (f: C.2 x y) -> Path (C.2 x y) (c x y y f (id y)) f)
* ((x y z w: C.1) -> (f: C.2 x y) -> (g: C.2 y z) -> (h: C.2 z w) ->
Path (C.2 x w) (c x z w (c x y z f g) h) (c x y w f (c y z w g h)))
```

precategory: U = (C: cat) * isPrecategory C

Instances:

Set, Functions, Category, Functors, Commutative Monoids, Abelian Groups

Category Theory

Functors

```
catfunctor (A B: precategory): U
  = (ob: carrier A -> carrier B)
  * (mor: (x y: carrier A) -> hom A x y -> hom B (ob x) (ob y))
  * (id: (x: carrier A) -> Path (hom B (ob x) (ob x)) (mor x x (path A x)) (path B (ob x)))
  * ((x y z: carrier A) -> (f: hom A x y) -> (g: hom A y z) ->
  Path (hom B (ob x) (ob z)) (mor x z (compose A x y z f g))
  (compose B (ob x) (ob y) (ob z) (mor x y f) (mor y z g)))
```

Category Equivalence, Id and Composition Functors, Slice and Coslice

Category of Sets

Formal Model of Set Theory

```
Set: precategory = ((Ob,Hom),id,c,HomSet,L,R,Q) where
  Ob: U = SET
  Hom (A B: Ob): U = A.1 -> B.1
  id (A: Ob): Hom A A = idfun A.1
 c (A B C: Ob) (f: Hom A B) (g: Hom B C): Hom A C = o A.1 B.1 C.1 g f
  HomSet (A B: Ob): isSet (Hom A B) = setFun A.1 B.1 B.2
  L(AB:Ob) (f: Hom AB): Path (Hom AB) (cAAB (idA) f) f = refl(Hom AB) f
  R (A B: Ob) (f: Hom A B): Path (Hom A B) (c A B B f (id B)) f = refl (Hom A B) f
 Q (A B C D: Ob) (f: Hom A B) (g: Hom B C) (h: Hom C D)
  : Path (Hom AD) (cACD (cABCfg) h) (cABDf (cBCDgh))
  = refl (Hom A D) (c A B D f (c B C D g h))
```

Pullback Completeness

Pullbacks and Fibers as edge case

Examples: Products, Fibers

Dual Examples (Pushout): Coproducts, Cofibers

```
subobjectClassifier (C: precategory): U
 = (omega: carrier C)
 * (end: terminal C)
 * (trueHom: hom C end.1 omega)
 * (xi: (V X: carrier C) (j: hom C V X) -> hom C X omega)
 * (square: (V X: carrier C) (j: hom C V X) -> mono C V X j
     -> hasPullback C (omega,(end.1,trueHom),(X,xi V X j)))
* ((V X: carrier C) (j: hom C V X) (k: hom C X omega)
     -> mono C V X i
     -> hasPullback C (omega,(end.1,trueHom),(X,k))
     -> Path (hom C X omega) (xi V X j) k)
Topos (cat: precategory): U
 = (rezk: isCategory cat)
```

* (cartesianClosed: isCCC cat)

* subobjectClassifier cat

Topos Theory

Categories

Basic Abstract Algebra

Structures

```
isMonoid (M: SET): U
 = (op: M.1 -> M.1 -> M.1)
 * (_: isAssociative M.1 op)
 * (id: M.1)
 * (hasIdentity M.1 op id)
isCMonoid (M: SET): U
 = (m: isMonoid M)
 * (isCommutative M.1 m.1)
isGroup (G: SET): U
 = (m: isMonoid G)
 * (inv: G.1 -> G.1)
 * (hasInverse G.1 m.1 m.2.2.1 inv)
```

```
isAbGroup (G: SET): U
 = (g: isGroup G)
 * (isCommutative G.1 g.1.1)
isRing (R: SET): U
 = (mul: isMonoid R)
 * (add: isAbGroup R)
* (isDistributive R.1 add.1.1.1 mul.1)
isAbRing (R: SET): U
 = (mul: isCMonoid R)
 * (add: isAbGroup R)
* (isDistributive R.1 add.1.1.1 mul.1.1)
```

Basic Abstract Algebra

Objects and Morphisms for Categorical Setup

```
monoidhom (a b: monoid): U
= (f: a.1.1 -> b.1.1)
* (ismonoidhom a b f)
```

```
monoid: U = (X: SET) * isMonoid X cmonoid: U = (X: SET) * isCMonoid X group: U = (X: SET) * isGroup X abgroup: U = (X: SET) * isAbGroup X ring: U = (X: SET) * isRing X abring: U = (X: SET) * isAbRing X
```

cmonoidhom (a b: cmonoid): U = monoidhom (a.1, a.2.1) (b.1, b.2.1) grouphom (a b: group): U = monoidhom (a.1, a.2.1) (b.1, b.2.1) abgrouphom (a b: abgroup): U = monoidhom (a.1, a.2.1.1) (b.1, b.2.1.1) cmonabgrouphom (a: cmonoid) (b: abgroup): U = monoidhom (a.1, a.2.1) (b.1, b.2.1.1)

Ordinals

Structures

```
data V
```

```
| uni_ (f: (x: V) -> (Elv x -> V) -> V)
      (g: (x: V) -> (y: Elv x -> V) -> (Elv (f x y) -> V) -> V)
Elv: V -> U = split
  pi_ a b -> (x: Elv a) -> Elv (b x)
  uni_ f g -> Universe f g
```

 $= pi_{x} (x: V) (y: Elv x -> V)$

http://www.cs.swan.ac.uk/ ~csetzer/articles/uppermahlo.ps

cubical: Resolver.hs:(293,26)-(316,29): Non-exhaustive patterns in case

Mahlo Universe

Structures

data Universe

```
(f: (x: V) -> (Elv x -> V) -> V)
   (g: (x: V) \rightarrow (y: Elv \times -> V) \rightarrow (Elv (f \times y) \rightarrow V) \rightarrow V)
   = fun_ (x: Universe f g) (_: Elt f g x -> Universe f g)
   |f_ (x: Universe f g) (_: Elt f g x -> Universe f g)
   g_ (x: Universe f g)
        (y: Elt f g x -> Universe f g)
        (z: Elv (f (Elt f g x) (\(a: Elt f g x) -> y a)))
Elt: (f: (x: V) -> (Elv x -> V) ->
   (g: (x: V) \rightarrow (y: Elv \times -> V) \rightarrow (Elv (f \times y) \rightarrow V) \rightarrow V) \rightarrow
   Universe f g -> V = undefined
```

```
EtaleMap (A B: U): U
= (f: A -> B)
* isÉtaleMap A B f
```

Differential Topology

Etale Maps

```
isÉtaleMap (A B: U) (f: A -> B): U
 = isPullbackSq A iA B (Im B) x y w f h where
 iA: U = Im A
 iB: U = Im B
 x: iA \rightarrow iB = ImApp A B f
 y: B -> iB = ImUnit B
 w: A \rightarrow iA = ImUnit A
 c1: A \rightarrow iB = o A iA iB \times w
 c2: A \rightarrow iB = oAB iByf
 T2: U = (a:A) -> Path iB (c1 a) (c2 a)
 h: T2 = (a : A) \rightarrow (i > ImNaturality A B f a @ -i
```


Differential Topology

Manifolds

```
HomogeneousStructure (V: U): U
et (A B: U): EtaleMap A B -> (A -> B)
isSurjective (A B: U) (f: A -> B): U
manifold (V': U) (V: HomogeneousStructure V'): U
 = (M: U)
 * (W: U)
 * (w: EtaleMap W M)
 * (covers: isSurjective W M (et W M w))
 * ( EtaleMap W V')
```

https://ncatlab.org/schreiber/show/thesis+Wellen

Infinitesimal Modality

```
Im: U -> U = undefined
                                                                       in Cohesive Topos
ImUnit (A: U) : A \rightarrow Im A = undefined
isCoreduced (A:U): U = isEquiv A (Im A) (ImUnit A)
ImCoreduced (A:U): isCoreduced (Im A)
ImApp (A B: U) (f: A -> B): Im A -> Im B
 = ImRecursion A (Im B) (ImCoreduced B) (o A B (Im B) (ImUnit B) f)
ImNaturality (A B:U) (f:A->B): (a:A)->Path (Im B)((ImUnit B)(f a))((ImApp A B f)(ImUnit A a))
ImInduction (A:U)(B:Im A->U)(x: (a: Im A)->isCoreduced(B a))
            (y:(a: A)->B(ImUnit A a)):(a:Im A)->B a
ImComputeInduction (A:U)(B:Im A \rightarrow U) (c:(a:Im A)->isCoreduced(B a))
```

: Path (B (ImUnit A a)) (f a) ((ImInduction A B c f) (ImUnit A a))

(f:(a:A)->B(ImUnit A a))(a:A)

HIT: Higher Spheres

```
data S1 = base
                                                              Fiber Bundle of Spheres
        | loop < i > [ (i=0) -> base, (i=1) -> base]
data susp (A : U) = north
                   south
                   merid (a : A) <i> [ (i=0) -> north, (i=1) -> south ]
S2: U = susp S1
S3: U = susp S2
S4: U = susp S3
S: nat -> U = split
 zero -> bool
 succ x -> susp (S x)
```

Hopf Fibrations

Fiber Bundle of Spheres

```
ua (A B : U) (e : equiv A B) : Path U A B = <i> Glue B [ (i = 0) -> (A,e), (i = 1) -> (B,idEquiv B) ]
rot: (x : S1) \rightarrow Path S1 \times x = split \{ base \rightarrow loop1; loop @ i \rightarrow constSquare S1 base loop1 @ i \}
mu: S1 -> equiv S1 S1 = split
 base -> idEquiv S1
 loop @ i -> equivPath S1 S1 (idEquiv S1) (idEquiv S1) (<j> \(x : S1) -> rot x @ j) @ i
H: S2 -> U = split { north -> S1; south -> S1; merid x @ i -> ua S1 S1 (mu x) @ i }
TH: U = (c:S2) * H c
```



```
Sequences
```

```
fiberSeq: pointed -> pointed -> U = Seq pointed pmap fiberNil (X: pointed): fiberSeq X X = seqNil X fiberCons (X Y Z: pointed) (h: pmap X Y) (t: fiberSeq Y Z): fiberSeq X Z = seqCons X Y Z h t
```

```
homSeq: group -> group -> U = Seq group grouphom
homNil (X: group): homSeq X X = seqNil X
homCons (X Y Z: group) (h: grouphom X Y) (t: homSeq Y Z): homSeq X Z = seqCons X Y Z h t
```

```
abSeq: abgroup -> abgroup -> U = Seq abgroup abgrouphom abNil (X: abgroup): abSeq X X = seqNil X abCons (X Y Z: abgroup) (h: abgrouphom X Y) (t: abSeq Y Z): abSeq X Z = seqCons X Y Z h t
```

Chain Complexes

```
ChainComplex: U
 = (head: abgroup)
 * (chain: nat -> abgroup)
 * (augment: abgrouphom (chain zero) head)
 * ((n: nat) -> abgrouphom (chain (succ n)) (chain n))
CochainComplex: U
 = (head: abgroup)
 * (cochain: nat -> abgroup)
 * (augment: abgrouphom head (cochain zero))
 * ((n: nat) -> abgrouphom (cochain n) (cochain (succ n)))
```

Impredicative Encoding

As in version of Steve Awodey, HITs encoding

```
Nat_Church = (X: U) -> (X -> X) -> X
               = (X: U) -> isSet X -> (X -> X) -> X -> X
Nat
               = (X: U) -> isSet X -> X -> X
Unit
1 = (one: Unit) * ((X Y: U) (x: isSet X) (y:isSet Y) (f:X->Y) -> naturality X Y f (one X x) (one Y y))
N = (one: Nat) * ((X Y: U) (x: isSet X) (y:isSet Y) (f:X->Y) -> naturality X Y f (one X x) (one Y y))
Truncation ||A|| parametrized by (A:U) type = (X: U) -> isProp X -> (A -> X) -> X
S^1 = (X:U) \rightarrow isGroupoid X \rightarrow (x:X) \rightarrow Path X \times X \rightarrow X
Arbitrary (A:U) type = (X: U) \rightarrow isSet X \rightarrow (A \rightarrow X) \rightarrow X
```

Impredicative Encoding

Encode Unit. Homework: Bool, Circle, Sphere

```
naturality (X Y:U)(f:X->Y)(a:X->X)(b:Y->Y): U = Path (X->Y)(o X X Y f a)(o X Y Y b f)
isUnitEnc (one: unitEnc'): U
 = (X Y:U)(x:isSet X)(y:isSet Y)(f:X->Y)->naturality X Y f (one X x)(one Y y)
unitEnc: U = (x: unitEnc') * isUnitEnc x
unitEncStar: unitEnc = (\(X:U)(\underline{:}isSet\ X)->idfun\ X,\(X\ Y:\ U)(\underline{:}isSet\ X)(\underline{:}isSet\ Y)->refl(X->Y))
unitEncRec (C: U) (s: isSet C) (c: C): unitEnc -> C = (z: unitEnc) -> z.1 C s c
unitEncBeta (C: U) (s: isSet C) (c: C): Path C (unitEncRec C s c unitEncStar) c
unitEncEta (z: unitEnc): Path unitEnc unitEncStar z
unitEncInd (P: unitEnc -> U) (a: unitEnc): P unitEncStar -> P a
unitEncCondition (n: unitEnc'): isProp (isUnitEnc n)
```

unitEnc': $U = (X: U) \rightarrow isSet X \rightarrow X \rightarrow X$

Literature Overview

groupoid.space/mltt/infinity

Lof72 Voevodsky15 Dybjer08 Hofmann94 Lof84 Sozeau Clairambault05
Jacobs99 Coq88 Selsam16 Abel08 Joyal14 Hofmann96 Bohm85 Seely84
Henk93 Pfenning89 Curien14 HoTT13 Mortberg17 Erik97 Wadler90
Castellan14 Shulman15 Hedberg98 Gambino03 Voevodsky14 Orton17
Hermida95 Dybjer94 Dybjer95 Huber16 Curien08 Jacobs97 Bishop67
Huber17 MacLane71 Vene00 Nordstrom90 Angiuli16 Lawvere09 Basold16
Hermida98 Barthe00

https://github.com/groupoid/cafe

Thank You!

Maxim Sokhatsky

https://groupoid.space