

Varianta 33

Subjectul I

a) 1. b)
$$\frac{11}{\sqrt{14}}$$
 . c) x-4y=5. d) sin4<0 si sin3>0. e) $\frac{5}{6}$. f) a=b=1, c=-4.

Subjectul II

1. a)
$$\hat{0}$$
. b) $\frac{1}{5}$. c) $log_29 = 2log_23 > 2$ și $log_34 = 2log_32 < 2$. d) 5 e) 2.

2. a) 1+sinx. b)
$$\frac{1}{2}$$
 - sin1. c) $f'(x) \ge 0$, $\forall [0, \infty)$. d) 1+sin1. e) $\frac{\ln^2 2}{2}$.

Subjectul III

a)
$$C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

- b) Dacă adumăm linia 1 la linia 2 și la linia 3, obținem elemente din mulțimea {-2, 0,
- 2}, deci numai numere pare. Scoatem factor pe 2 de pe linia 2 și de pe linia 3 și determinantul obținut se divide cu 4.
- c) Cum det(A) este o sumă de 6 termeni din mulțimea $\{-1, +1\}$, rezultă că $-6 \le det(A) \le 6$. d) rezultă din b) și c).
- e) Dacă $B^{-1} \in M$, atunci $B \cdot B^{-1} = I_3$, imposibil deoarece matricea $B \cdot B^{-1}$ va avea numai elemente impare.

f) Pentru
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 avem rang $A = 1$, pentru $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ avem rang $A = 2$, pentru

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \text{ avem rang } A = 3.$$

g) Matricea A^2 are numai elemente impare și utilizând metoda inducției matematice se arată ca pentru orice n număr nenul matricea A^n are numai elemente impare. În particular, matricea A^{2007} are numai elemente impare.

Subjectul IV

a) Numerele 1, a, ..., a^n sunt în progresie geometrică cu rația $a \neq 1$.

b) Avem
$$\lim_{n \to \infty} (1 + a + ... + a^n) = \lim_{n \to \infty} \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a}$$
.

c) Avem
$$1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^n} = \frac{1 - \frac{1}{p^{n+1}}}{1 - \frac{1}{p}} < \frac{1}{1 - \frac{1}{p}} = \frac{p}{p - 1}, \forall n \in \mathbb{N}^*.$$

d) Fie f: $(-1,+\infty) \to \mathbf{R}$, $f(t)=\ln(1+t)-t$. Cum $f(t)=-\frac{t}{1+t}$, f este crscatoare pe (-1,0) si descrescatoare pe $(0, \infty)$. f(0)=0 este valoarea maxima, deci $f(t) \le 0$, pentru orice t > -1.

Deducem că
$$f(\frac{1}{x}) < 0$$
, $\forall x > 0 \Leftrightarrow \ln(1 + \frac{1}{x}) - \frac{1}{x} < 0$, $\forall x > 0 \Leftrightarrow \ln(x+1) - \ln x < \frac{1}{x}$, $\forall x > 0$.

e) Cum
$$\ln(x+1)$$
- $\ln x < \frac{1}{x} \forall x > 0$ avem: $\ln 2 - \ln 1 < 1$, $\ln 3 - \ln 2 < \frac{1}{2}$,..., $\ln(n+1)$ - $\ln n < \frac{1}{n}$ rezulta $1 + \frac{1}{2} + ... + \frac{1}{n} > \ln(n+1)$, $\forall n \in \mathbb{N}^*$.

f) Cum
$$\lim_{n\to\infty} \ln(n+1) = \infty$$
 din e) $\Rightarrow \lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) = \infty$.

g) Fie
$$\varepsilon > 0$$
 și $s \in \mathbb{N}$ astfel încât $1 + \frac{1}{2} + ... + \frac{1}{s} > \varepsilon$. Alegem $k = [\log_2 s!]$ și

$$P = \{p_1, p_2, ..., p_k\}$$
 mulțimea numerelor prime care se găsesc în dezvoltarea lui $s!$.

$$\begin{aligned} & \text{Atunci } a_k = \frac{p_1}{p_1 - 1} \cdot \ldots \cdot \frac{p_k}{p_k - 1} > \left(1 + \frac{1}{p_1} + \ldots + \frac{1}{p_1^k}\right) \cdot \ldots \cdot \left(1 + \frac{1}{p_t} + \ldots \frac{1}{p_t^k}\right) > 1 + \frac{1}{2} + \ldots + \frac{1}{s} > \varepsilon \\ & \text{Deci } \lim_{t \to \infty} a_n = \infty \,. \end{aligned}$$