CMPE314: Principles of Electronic Circuits Dr. Yan

Lab 02 Report:

Diode-Based Filtered Rectifier and Regulator Circuits

Sabbir Ahmed

Yu Fu

1. Objective

Examine a filtered rectifier circuit. Theoretically and experimentally determine the proper resistance for the filter

2. Equipment

- a. One potentiometer
- b. One 22 μF capacitor
- c. One 1N4740 diode
- d. One 741 operational amplifier
- e. Oscilloscope, DC power supply, digital multi-meter, function generator, breadboard

3. Background

Filtered rectifiers convert AC waveforms into useful near-DC waveforms. Rectifiers have many uses including as components of power supplies and as detectors of radio signals. They may be made of solid state diodes, vacuum tube diodes, and other components. A voltage buffer amplifier is used to transfer a voltage from a first circuit, having a high output impedance level, to a second circuit with a low input impedance level. A unity gain buffer, also known as a voltage follower, has a voltage gain of approximately unity, while it provides considerable current gain and thus power gain.

4. Procedures

4.1 Part A. Diode-Based Filtered Rectifier Circuit

Figure 1: Filtered Rectifier Circuit

a. Use a 1N4740 diode to construct the circuit from Figure 1.

- b. Set the input signal amplitude to be 5 V and frequency to be 60 Hz.
- c. Vary the potentiometer until the output ripple voltage is less than 10%.
- d. Measure the potentiometer resistance as $R_{L_measured}$. Compare the expected value for R_L with the measured value.

4.2 Part B. Diode-Based Filtered Regulator Circuit (Simulation)

a. Simulate the same circuit from Figure 1 on Cadence Orcad PSPICE.

5. Results

Since there were no potentiometers available in the lab kit, several resistors of different resistance were used in an iterative/brute-forced manner. The value of R_L computed in the pre-lab was around 4 k Ω . $R_{L_measured}$ turned out to be 7.25 k Ω .

Figure 2: Waveform of Figure 1 after adjusting the value of R₁ until the ripple voltage was less than 10%

The circuit from Figure 1 was simulated on Cadence Orcad PSPICE, assigning the value of R_L to $R_{L_measured}$ = 7.25 k Ω .

Figure 3: Simulation of Figure 1 on PSPICE

The circuit was simulated with the same input waves and the voltage across the diode was plotted. The input/output voltage waveforms simulated on PSPICE appeared almost identical to the waveforms captured on the oscilloscope.

Figure 4: Voltage Across the Diode of the Circuit Simulated on PSPICE

6. Conclusion

The value of the load resistance, R_L, computed theoretically had a very high percentage error to the actual measured value. $\frac{|7250-4000|}{|7250|} = 44.8\%$. The result is due to the fact my approach to computing the value on the pre-lab assignment was incorrect, otherwise the value computed theoretically should have been closer to the value measured.