- 1. Numărul clienților ce sosesc la un magazin este modelat de un proces Poisson cu rata $\lambda=10$ clienți/ ora. Să se determine:
 - a) Să se determine probabilitatea sa nu existe niciun client sosit în intervalul (8, 10].
 - b) Să se determine probabilitatea sa existe exact un client în fiecare din intervalele (8, 9], (9, 10], (10, 11] și (11, 12].

2. Fie un proces Poisson $\{N_t\}$ de rată λ . Să se determine probabilitatea să existe 2 sosiri în intervalul (0, 2] și 3 sosiri în intervalul (1, 4].

$$P(x+y=2, y+2=3) = \sum_{k=0}^{\infty} P(x+y=2, y+2=3/y=k) \cdot P(y=k) =$$

=
$$P(x=2) P(2=3)P(Y=0) + P(x=1) \cdot P(2=2) P(Y=1) + P(x=0) \cdot P(2=1) P(Y=2)$$

- 3. Fie $\{N_t\}$ un proces Poisson de rată $\lambda = 2$. Notăm cu X_1, X_2, \dots ce dau lungimea intervalelor dintre două sosiri consecutive (inter-sosiri).
 - a) Să se determine probabilitatea ca prima sosire să aibă loc după momentul t=1.
 - b) Dacă nu au existat sosiri înainte de t=1, să se determine probabilitatea ca prima sosire să aibă loc după momentul t = 3, adică $P(X_1 > 3/X_1 > 1)$.
 - c) Dacă a doua sosire a avut loc la t=2, să se determine probabilitatea ca a treia

$$\times k \sim (2\pi)$$
 - lungimea intervalului de timp dintre sosirea clientului k - 1 si a clientului k

a)
$$P(\times_{\lambda} > \lambda) = P(\forall_{\lambda} = 0) = \frac{e^{-2} \cdot 2^{\circ}}{0!} = \frac{1}{e^{2\nu}}$$

- a) Vom calcula $P(X_1>1)$, unde $X_1\sim Exp(\frac{1}{2})$. In consecință, avem $P(X_1>1)=1-F_{X_1}(1)=1-(1-e^{-2\cdot 1})=\frac{1}{e^2}$, unde $F_{X_1}(x)$ este funcția de repartiție a variabilei X_1
- Funcția de repartiție: $F(x) = \left\{ \begin{array}{ll} 0 & \operatorname{dacă} \ x < 0 \\ 1 e^{-x/\theta} & \operatorname{dacă} \ x \geq 0 \end{array} \right.$

b)
$$P(\times_1>3 \times_1>1) = \frac{P(\times_1>3 \cap \times_1>1)}{P(\times_1>1)} = \frac{P(\times_1>3)}{P(\times_1>1)} = \frac{1-7\times_1(3)}{1-7\times_1(4)}$$

C)
$$P(\tau_3, \tau_4)\tau_2=2) = P(x_3+x_2+x_1)+(x_1+x_2=2) = P(x_3+x_2+x_1)=$$

$$= P(x_3+x_2+x_1)+(x_1+x_2=2) = P(x_3+x_1)+(x_1+x_2=2) = P(x_1+x_1)+(x_1+x_2=2) = P(x_1+x_1)+(x_1+x_2=2) = P(x_1+x_2=2) = P(x_1+x_1)+(x_1+x_2=2) = P(x_1+x_2=2) = P(x_1+x_1+x_2=2) = P(x_1+x_1+x_1=2) = P(x_1+x_1+x_1=2) = P(x_1+x_1+x_1=2) = P(x_1+x_1+x_1=2) = P(x_1+x_1+x_1=2) = P(x_1+x_1+x_1=2) = P(x_1+x_1=2) =$$

- 4. Se consideră $\{N_t^a\}, \{N_t^b\}$ două procese Poisson independente de rate $\lambda_a = 1, \lambda_b = 2$ Fie $N_t = N_t^a + N_t^b$ procesul Poisson suprapus.
 - a) Să se determine $P(N_1 = 2, N_2 = 5)$.
 - b) Dacă $N_1 = 2$, să se determine $P(N_1^a = 1)$.

$$(0, \sqrt{2}, (0, 1) \longrightarrow (0, \sqrt{3}, (1, 2))$$

$$(0,1],(0,2] \longrightarrow (0,1],(1,2] \times Y \sim Gois(\lambda_1, \lambda_1)$$

$$= 7P(X=2, Y=3) = \frac{e^{-3} \cdot 3^2}{2!} \cdot \frac{e^{-3} \cdot 3^3}{3!}$$

$$P(N_{1}=1)N_{1}=2) - \frac{P(N_{1}=1,N_{1}=2)}{P(N_{1}=2)} - \frac{P(N_{1}=1,N_{1}=2)}{P(N_{1}=2)} = \frac{P(N_{1}=2,N_{1}=2)}{P(N_{1}=2)} = \frac{P(N_{1}=2,N_{1}=2)}{P(N_{1}=2)} = \frac{P(N_{1}=2,N_{1}=2)}{P(N_{1}=2)} = \frac{P(N_{1}=2,N_{1}=2)}{P(N_{1}=2,N_{1}=2)} = \frac{P(N_{1}=2,N_{1}=2)}{P(N_{$$

