Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2022

Universität Heidelberg Mathematisches Institut DR. K. HÜBNER DR. C. DAHLHAUSEN

Blatt 4

Abgabe: Freitag, 20.05.2022, 09:15 Uhr

Aufgabe 1 (Auflösung von \mathbb{Z} als C_n -Modul).

(4 Punkte)

Sei $C_n := \{1, t, \dots, t^{n-1}\}$ die multiplikative zyklische Gruppe von Ordnung $n \ge 2$ mit Erzeuger t. Wir betrachten \mathbb{Z} als C_n -Modul, d.h. als Modul über dem Gruppenring $\mathbb{Z}[C_n]$, und die Elemente $\zeta := t-1$ und $N := \sum_{i=0}^{n-1} t^i$ von $\mathbb{Z}[C_n]$. Zeigen Sie, dass

$$\ldots \xrightarrow{\cdot \zeta} \mathbb{Z}[C_n] \xrightarrow{\cdot N} \mathbb{Z}[C_n] \xrightarrow{\cdot \zeta} \mathbb{Z}[C_n] \xrightarrow{\cdot N} \mathbb{Z}[C_n] \xrightarrow{\cdot \zeta} \mathbb{Z}[C_n] \xrightarrow{\varepsilon} \mathbb{Z}$$

eine freie Auflösung von Z ist.

Aufgabe 2 (Gruppenhomologie mit Z-Koeffizienten).

(4 Punkte)

Bestimmen Sie für alle $n \geq 0$ die Gruppenhomologiegruppen $H_n(G, \mathbb{Z})$ für

- (a) $G = \mathbb{Z}^2$. *Hinweis:* Verwenden Sie Blatt 3, Aufgabe 3.
- (b) $G = C_n$. Hinweis: Verwenden Sie Aufgabe 1.

Aufgabe 3 (Induzierte Moduln).

(4 Punkte)

Sei G eine Gruppe und U eine Untergruppe von G. Zeigen Sie:

- (a) Induzierte Moduln sind homologisch trivial.
- (b) Für alle $n \ge 0$ ist $H_n(U,A) \cong H_n(G,\operatorname{Ind}_G^U(A))$.

Aufgabe 4 (Legendre-Symbol).

(4 Punkte)

Wir betrachten die multiplikative Gruppe $G := (\mathbb{Z}/p)^{\times}$ und ihre Unterguppe $U := \{\pm 1\}$. Zeigen Sie, dass sich die Restriktionsabbildung Res $_U^G : H_1(G,\mathbb{Z}) \to H_1(U,\mathbb{Z})$ mit dem Legendre-Symbol identifiziert.