Text Classification

Ch.5 Text Analytics with Python. Dipanjan Sarkar. 2019. Apress Ch.2 NLP with Python. Steven Bird et al. 2009. O'Reilly Media Ch.1 Mastering NLP with Python. Deepti Chopra et al. 2016. Packt

Text Classification Definition

D - a set of records $\{X_1,...,X_N\}$

C - a set of labels $\{c_1...c_n\}$

T – a Text classification system

 $T: D \rightarrow C_x$

The training model predicts a class label

Applications News Filtering and Organization Document Organization and Filtering Sentiment analysis

(Dipanjan Sarkar. 2019. Ch.5)

(Charu Aggarwal, 2014, Ch.11)

Text Classification

Text Classification Variants

Content-based classification

Topic Weights (% of content to determine the document class)

Request-based classification

User behavior (requests)

Text Classification Approaches

Supervised machine learning

Requires training on prelabeled data samples (training data). Model is used to predict labels in future test data.

Unsupervised machine learning

Does not require training on prelabeled data samples. The focus is more on pattern mining and finding latent substructures in the data.

Classification

(Categorical variables)

Regression

(Continuous variables)

Classification Techniques and Features

Decision Trees

Designed with the use of a hierarchical division of the underlying data space with the use of different text features

Pattern (Rule)-Based Classifiers

Construct a set of rules and determine the word patterns that are most likely to be related to the different classes

SVM Classifiers

Determine the optimal boundaries between the different classes and use them for the purposes of classification

Bayesian (Generative) Classifiers

Build a probabilistic classifier based on modeling the underlying word features in different classes

Features

- Traditional feature representation (BOW, TF-IDF) and classification models
- Advanced feature representation (Word2Vec)

(Charu Aggarwal, 2014, Ch.11)

Multinomial Naïve Bayes

y – response class variable $\{x_1, x_2, x_n\}$ – a feature vector

$$posterior = \frac{prior \times likelihood}{evidence}$$

Assumption: the probabilities of occurrence of the different terms are independent of one another

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

 $P(sports|a\ very\ close\ game) = \frac{P(a\ very\ close\ game|sports) \times P(sports)}{P(a\ very\ close\ game)}$

$$P(a\ very\ close\ game) = P(a) \times P(very) \times P(close) \times P(game)$$

Laplace – a smoothing technique to avoid a frequency-based zero probability: A small-sample correction (pseudo-count is added)

$$\hat{\theta}_i = \frac{x_i + \alpha}{N + \alpha d}$$
 $(i = 1, ..., d),$ \leftarrow Add alpha (e.g. alpha=1)

Evaluation

Cross-Validation

model validation techniques for assessing how accurately a predictive model will perform in practice.

- To evaluate the quality of the model
- To select the model which will perform best on unseen data
- To avoid overfitting and underfitting

model parameter
capturing noise

overfitting

validation error

underfitting

not capturing enough patterns

Georgios Drakos. 2018. Cross-Validation.

Text Classification Workflow

Step 1. Prepare train and test datasets (optionally a validation dataset)

Step 2. Preprocess and normalize text documents

Step 3. Feature extraction and engineering

Step 4. Model training

Step 5. Model prediction and evaluation

Step 6. Model deployment

Classification model – a combination of features and the machine learning algorithm

Hyperparameter tuning – a process to optimize model

Training and Prediction

accuracy, precision, recall, F1 score

(Dipanjan Sarkar. 2019. Ch.5)

Text Classification for News Postings

Import Data

from sklearn.datasets import fetch_20newsgroups

data = fetch_20newsgroups(subset='all', shuffle=True, remove=('headers', 'footers', 'quotes'))

Remove Empty Data

data_df = data_df[-(data_df.Article.str.strip() == "")]

Dataset: 18,000 newsgroups – 20 categories

	Article	Target Label	Target Name
0	\n\nI am sure some bashers of Pens fans are pr	10	rec.sport.hockey
1	My brother is in the market for a high-perform	3	comp.sys.ibm.pc.hardware
2	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	17	talk.politics.mideast
3	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	3	comp.sys.ibm.pc.hardware
4	1) I have an old Jasmine drive which I cann	4	comp.sys.mac.hardware
5	\n\nBack in high school I worked as a lab assi	12	sci.electronics
6	\n\nAE is in Dallastry 214/241-6060 or 214/	4	comp.sys.mac.hardware
7	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	10	rec.sport.hockey
8	$\n\$ it's the second one. And I believ	10	rec.sport.hockey
9	$\verb \nlf a Christian means someone who believes in$	19	talk.religion.misc

Normalize Data

	Article	Target Label	Target Name	Clean Article
0	\n\nI am sure some bashers of Pens fans are pr	10	rec.sport.hockey	sure bashers pens fans pretty confused lack ki
1	My brother is in the market for a high- perform	3	comp.sys.ibm.pc.hardware	brother market highperformance video card supp
2	\n\n\n\tFinally you said what you dream abou	17	talk.politics.mideast	finally said dream mediterranean new area grea

data_df['Clean Article'] = norm_corpus

(Dipanjan Sarkar. 2019. Ch.5)

Feature Extraction: Train and Test Datasets

from sklearn.model_selection import train_test_split

```
train_corpus.shape, test_corpus.shape
((12281,), (6050,))
```

Let's use BOW method

```
from sklearn.feature_extraction.text import CountVectorizer
# train articles
cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0)
cv_train_features = cv.fit_transform(train_corpus)
# test articles
cv_test_features = cv.transform(test_corpus)
```

Naïve Bayes Classifier

from sklearn.model_selection import cross_val_score

```
from sklearn.naive_bayes import MultinomialNB
mnb = MultinomialNB(alpha=1)
mnb.fit(cv_train_features, train_label_names)
mnb_bow_cv_scores = cross_val_score(mnb, cv_train_features,
train_label_names, cv=5)
mnb_bow_cv_mean_score = np.mean(mnb_bow_cv_scores)
print('CV Accuracy (5-fold):', mnb_bow_cv_scores)
print('Mean CV Accuracy:', mnb_bow_cv_mean_score)
mnb_bow_test_score = mnb.score(cv_test_features, test_label_names)
print('Test Accuracy:', mnb_bow_test_score)
```

CV Accuracy (5-fold): [0.68248175 0.66436408 0.6688391 0.66748266 0.66911765]

Mean CV Accuracy: 0.670457048506887 Test Accuracy: 0.69272727272727

Logistic Regression

from sklearn.model_selection import cross_val_score

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty='l2', max_iter=100, C=1, random_state=42)
lr.fit(cv_train_features, train_label_names)
lr_bow_cv_scores = cross_val_score(lr, cv_train_features, train_label_names, cv=5)
lr_bow_cv_mean_score = np.mean(lr_bow_cv_scores)
print('CV Accuracy (5-fold):', lr_bow_cv_scores)
print('Mean CV Accuracy:', lr_bow_cv_mean_score)
lr_bow_test_score = lr.score(cv_test_features, test_label_names)
print('Test Accuracy:', lr_bow_test_score)
```

CV Accuracy (5-fold): [0.68572587 0.67533523 0.6892057 0.68053856 0.70506536]

Mean CV Accuracy: 0.6871741438510133 Test Accuracy: 0.7034710743801653

Model Comparison

pd.DataFrame([['Naive Bayes', mnb_bow_cv_mean_score, mnb_bow_test_score],

['Logistic Regression', lr_bow_cv_mean_score, lr_bow_test_score]).T

U	'
Naive Bayes	Logistic Regression
0.670457	0.687174
0.692727	0.703471
	0.670457