COMS 4705 NLP Sec 01

HW₂

Name: Yu Wang

Uni: yw3025

Date: Mar. 26, 2018

Upload folder format

--root

- -- cfg.counts // temporary counts file, fine to delete
- -- cfg.rare.counts // temporary counts file, fine to delete
- -- count cfg freq.py // file to count frequencies
- -- parser.py // the main entrance of the program
- -- parse_dev.dat //dev file
- -- parse_dev.key // dev key file
- -- parse_train_vert.dat // q6 dev file
- -- parse train.dat // train file
- -- parse train.RARE.dat
- -- q4.py // code logic for q4
- -- q5 prediction file
- -- q5 eval.txt
- -- q5.py //code logic for q5 and q6
- -- parse train vert.RARE.dat
- -- q6_prediction_file
- -- q6 eval.txt
- -- Readme.pdf

Normally, q5 takes ~40 seconds and q6 takes ~70 seconds, and q4 is much faster

Question 5:

Туре	Total	Precision	Recall	F1 Score	_
	370	1.000	1.000	1.000	
ADJ	164	0.827	0.555	0.664	
ADJP	29	0.333	0.241	0.280	
ADJP+ADJ	22	0.542	0.591	0.565	
ADP	204	0.955	0.946	0.951	
ADV	64	0.694	0.531	0.602	
ADVP	30	0.333	0.133	0.190	
ADVP+ADV	53	0.756	0.642	0.694	
CONJ	53	1.000	1.000	1.000	
DET	167	0.988	0.976	0.982	
NOUN	671	0.752	0.842	0.795	
NP	884	0.629	0.527	0.574	
NP+ADJ	2	0.286	1.000	0.444	
NP+DET	21	0.783	0.857	0.818	
NP+N0UN	131	0.641	0.573	0.605	
NP+NUM	13	0.214	0.231	0.222	
NP+PRON	50	0.980	0.980	0.980	
NP+QP	11	0.667	0.182	0.286	
NUM	93	0.984	0.645	0.779	
PP	208	0.579	0.615	0.597	
PRON	14	1.000	0.929	0.963	
PRT	45	0.957	0.978	0.967	
PRT+PRT	2	0.400	1.000	0.571	
QP	26	0.647	0.423	0.512	
S	587	0.629	0.785	0.698	
SBAR	25	0.091	0.040	0.056	
VERB	283	0.683	0.799	0.736	
VP	399	0.559	0.594	0.576	
VP+VERB	15	0.250	0.267	0.258	
total	4664	0.714	0.714	0.714	

We can notice that

- 1) The result of `.`, `ADP`, `DET`, `PRON` and `PRT` is fairly good since there is no much ambiguity in such words.
- 2) The result of `SBAR`, `ADVP`, `ADJP` is relatively bad since it's because such words may have some dependency on words long before or after them (e.g., SBAR involves long distance dependencies).
- 3) Rare words (count < 5) don't perform much well, but not that bad, so sparsity lead to some problem but rare counts may help to mitigate this.

Question 6:

Туре	Total	Precision	Recall	F1 Score
	370	1.000	1.000	1.000
ADJ	164	0.689	0.622	0.654
ADJP	29	0.324	0.414	0.364
ADJP+ADJ	22	0.591	0.591	0.591
ADP	204	0.960	0.951	0.956
ADV	64	0.759	0.641	0.695
ADVP	30	0.417	0.167	0.238
ADVP+ADV	53	0.700	0.660	0.680
CONJ	53	1.000	1.000	1.000
DET	167	0.988	0.994	0.991
NOUN	671	0.795	0.845	0.819
NP	884	0.617	0.548	0.580
NP+ADJ	2	0.333	0.500	0.400
NP+DET	21	0.944	0.810	0.872
NP+N0UN	131	0.610	0.656	0.632
NP+NUM	13	0.375	0.231	0.286
NP+PRON	50	0.980	0.980	0.980
NP+QP	11	0.750	0.273	0.400
NUM	93	0.914	0.688	0.785
PP	208	0.623	0.635	0.629
PRON	14	1.000	0.929	0.963
PRT	45	1.000	0.933	0.966
PRT+PRT	2	0.286	1.000	0.444
QP	26	0.650	0.500	0.565
S	587	0.704	0.814	0.755
SBAR	25	0.667	0.400	0.500
VERB	283	0.790	0.813	0.801
VP	399	0.663	0.677	0.670
VP+VERB	15	0.294	0.333	0.312
total	4664	0.742	0.742	0.742

We can notice that

- 1) There is around ~0.03 increase with regard to q5, vertical markovization works in this problem.
- 2) The type `SBAR`(and `ADVP`, `ADJP`) works fairly bad in q5 improves a lot here, mainly because we incorporate more contextual information and dependency by vertical markovization (use syntactic information from its parent node) instead of the strong independency assumption.
- 3) The accuracy of type `ADVP+ADV', 'NP+ADJ` decreases. As mentioned in the HW2 instruction, the vertical markovization greatly increases the number of rules N in the grammar potentially causing data sparsity issues when estimating the probability model q, and some of such non-terminal have little occurrences in the test corpus, which makes their accuracy decreases.