Другое определение подмногообразия

Теорема

Пусть N — гладкое многообразие.

Множество $M \subset N$ – гладкое подмногообразие $\iff M$ является образом некоторого гладкого вложения.

Док-во теоремы:

(⇐━): предыдущая теорема.

Лемма: M – подмногообразие $N \Longrightarrow$ включение in : $M \to N$ – гладкое вложение.

Док-во леммы:

- іп гладкое отображение. (поскольку іп $_{\varphi,\psi}$ стандартное включение \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k\times\mathbb{R}^{n-k}$ в выпрямляющей карте ψ и карте $\varphi=\psi_{|M}$)
- in погружение.
 следует из координатного представления дифференциала

$$(d_p \operatorname{in}(v))_{\psi} = d_{\varphi(p)} \operatorname{in}_{\varphi,\psi}(v_{\varphi}), \qquad \forall \ v \in T_p M$$

• in – гомеоморфизм на образ (по определению).

(1) Сужение гладкого отображения на гладкое подмногообразие — гладкое отображение (из подмногообразия).

- (1) Сужение гладкого отображения на гладкое подмногообразие гладкое отображение (из подмногообразия).
- (2) Пусть $M \subset N$ подмногообразие. Тогда включение in : $M \to N$ гладкое отображение.

- (1) Сужение гладкого отображения на гладкое подмногообразие гладкое отображение (из подмногообразия).
- (2) Пусть $M \subset N$ подмногообразие. Тогда включение in : $M \to N$ гладкое отображение.
- (3) Пусть N подмногообразие в некотором \widehat{N} . Тогда гладкость $f\colon M\to N$ равносильна гладкости f как отображения из M в \widehat{N}

Лекция 5

2/17

- (1) Сужение гладкого отображения на гладкое подмногообразие гладкое отображение (из подмногообразия).
- (2) Пусть $M \subset N$ подмногообразие. Тогда включение in : $M \to N$ гладкое отображение.
- (3) Пусть N подмногообразие в некотором \widehat{N} . Тогда гладкость $f:M\to N$ равносильна гладкости f как отображения из M в \widehat{N}

Определение

Пусть \widehat{M} , N — гладкие многообразия, M — подмногообразие в \widehat{M} . Гладкое отображение $f\colon M\to N$ называется локально гладко продолжимым, если для любой $x\in M$ существует окрестность $U\ni x$ в \widehat{M} и гладкое отображение $\widetilde{f}\colon U\to N$, продолжающее $f|_{U\cap M}$.

(4) f гладкое $\iff f$ локально гладко продолжимо.

Док-во: \leftarrow свойство (1) + поточечная гладкость.

⇒ в выпрямляющей карте

Транзитивность подмногообразий

Теорема

Пусть N- гладкое многообразие, $M\subset N-$ гладкое подмногообразие, $K\subset M-$ подмножество.

Тогда эквивалентны два свойства:

- (1) К гладкое подмногообразие М;
- (2) К гладкое подмногообразие N.

При этом размерность K и дифференциальная структура на K, получаемые из M и N, совпадают.

Доказательство.

Пусть in: M o N, in $_1 \colon K o M$, in $_2 \colon K o N$ – включения. Тогда

 $\mathsf{in}_2 = \mathsf{in} \circ \mathsf{in}_1 \,.$

Теорема сводится к утверждению: если in_1 — гладкое вложение (относительно некоторой дифференциальной структуры на K), то in_2 тоже, и наоборот.

Это следует из равенства $d \operatorname{in}_2 = d \operatorname{in} \circ d \operatorname{in}_1$

Разные взгляды на касательное пространство подмногообразия

Пусть N^n — гладкое многообразие, $M^k \subset N$ — его подмногообразие, $p \in M$.

Соглашение

Касательное пространство $T_p M$ – линейное подпространство в $T_p N$.

Мотивировки:

- (1) Вектор из T_pM , представленный гладкой кривой $\alpha\colon (-\varepsilon,\varepsilon)\to M$, отождествляется с вектором из T_pN , представленным той же кривой α .
- (2) Рассмотрим включение $in: M \to N$. Так как M подмногообразие N, то in вложение. Поэтому $d_p in$ инъекция, а его образ $d_p in(T_p M) \subset T_p N$ k-мерное линейное подпространство в $T_p N$.

Разные взгляды на касательное пространство подмногообразия

Свойство 1

Пусть N,K — гладкие многообразия, $M\subset N$ — гладкое подмногообразие, $f\colon N\to K$ — гладкое отображение. Тогда

$$d_p(f|_M) = (d_p f)|_{T_p M}$$

Док-во:

- $T_pM \subset T_pN$.
- $f|_M = f \circ in$, где $in \colon M \to N$ включение.
- $\bullet \ d_p(f|_M) = d_p f \circ d_p \operatorname{in} = (d_p f)|_{T_p M}.$

Разные взгляды на касательное пространство подмногообразия

Касательное пространство образа вложения

Свойство 2

Пусть $f: M \to N$ — вложение, $p \in M$. Тогда касательное пространство к подмногообразию K = f(M) в точке f(p) — образ дифференциала $d_p f$, т.е.

$$T_{f(p)}K = d_p f(T_p M)$$

Доказательство.

Пусть $\widehat{f}: M \to K$ – то же самое f с заменой формальной области значений. Оно гладкое по свойству 3.

$$\implies f = \mathsf{in} \circ \widehat{f}$$
, где $\mathsf{in} \colon K \to N$ – включение.

$$\implies d_p f = d_{f(p)} \operatorname{in} \circ d_p \widehat{f}$$

$$\implies d_p f(T_p M) = d_{f(p)} i(d_p \widehat{f}(T_p M)).$$

Так как \widehat{f} — диффеоморфизм, $d_p \widehat{f}$ — биекция между $T_p M$ и $T_{f(p)} K$.

$$\implies d_p f(T_p M) = d_{f(p)} \operatorname{in}(T_{f(p)} K).$$

Регулярные точки и регулярные значения

Пусть M^n и K^k — гладкие многообразия, $n \geq k$, $f: M \to K$ — гладкое отображение.

Определение

Точка $p\in M$ — регулярная точка f, если дифференциал $d_pf:T_pM\to T_{f(p)}N$ сюръективен (эпиморфизм). Эквивалентно, rank $d_pf=k$

Точка $q \in K$ — регулярное значение f, если все точки из $f^{-1}(q)$ — регулярные точки.

 $f - \mathsf{субмерсия}$, если все точки из $M - \mathsf{регулярные}$ точки для f.

Замечание

Множество регулярных точек открыто

(так как регулярность точки эквивалентна тому, что хотя бы один из миноров $k \times k$ матрицы дифференциала не равен 0).

Следовательно, в окрестности регулярной точки отображение является субмерсией.

Прообраз регулярного значения

Теорема

Пусть M^n и K^k — гладкие многообразия, $n \geq k$, $f: M \to K$ — гладкое отображение, $q \in K$ — регулярное значение f.

Тогда $f^{-1}(q)$ — гладкое подмногообразие в M. Его размерность равна n-k.

Док-во: Построим выпрямляющую карту.

- Рассмотрим некоторое $p \in f^{-1}(q)$, а так же карты (U, φ) и (V, ψ) , содержащие точки p и q соответственно. По определению регулярного значения p регулярная точка.
- Далее работаем с картами. Пусть $A = \varphi(U)$, $C = \psi(V)$, $x = \varphi(p)$, $y = \psi(q)$. Можно считать, что U и V выбраны так, что $F = f_{\varphi,\psi} \colon A \to C$.
- Т.к. x регулярная точка F, то rankF=k. Тогда будем считать, что матрица d_xF , образованная из первых k строк и столбцов, имеет ненулевой определитель.

Прообраз регулярного значения

Продолжаем док-во теоремы:

• Рассмотрим отображение

$$G: A \to \mathbb{R}^k \times \mathbb{R}^{n-k}, \qquad G(a,b) = (F(a,b),b).$$

Тогда определитель $k \times k$ в левом верхнем углу матрицы $d_x G$ отличен от нуля, поэтому $rank_x G = n$.

$$g = \begin{pmatrix} A & * \\ 0 & I \end{pmatrix}, \quad \det A \neq 0.$$

- По теореме об обратном отображении существуют такие открытые окрестности $E(x) \in A$ и $W(G(x)) \in \mathbb{R}^n$, что $G|_{E(x)} \colon E(x) \to W(G(x))$ —диффеоморфизм.
- По построению, $F \circ \varphi$ выпрямляющая карта в точке p.

Локально любое подмногообразие — регулярный прообраз

Замечание

Локально верно и обратное: для любого подмногообразия $M^{n-k}\subset \mathbb{N}^n$ и любой точки $p\in M$ существует окрестность $U\subset N$ точки p и субмерсия $f\colon U\to \mathbb{R}^k$ такая, что $M\cap U=f^{-1}(0)$.

Доказательство.

Возьмем композицию подходящей карты и проекции на \mathbb{R}^k .

Пример

Рассмотрим функцию $f:\mathbb{R}^3 \to \mathbb{R}$, заданную формулой

$$f(x, y, z) = x^2 + y^2 - z^2$$

Её дифференциал имеет матрицу [2x, 2y, -2z]Его ранг меньше 1 только при (x, y, z) = (0, 0, 0).

 \implies При $c \neq 0$ множество решений уравнения $x^2 + y^2 - z^2 = c$ (гиперболоид) — гладкое 2-мерное многообразие (поверхность) в \mathbb{R}^3 .

Лекция 5

11 / 17

Пример

Рассмотрим функцию $f:\mathbb{R}^3 \to \mathbb{R}$, заданную формулой

$$f(x, y, z) = x^2 + y^2 - z^2$$

Её дифференциал имеет матрицу [2x, 2y, -2z]Его ранг меньше 1 только при (x, y, z) = (0, 0, 0).

 \implies При $c \neq 0$ множество решений уравнения $x^2 + y^2 - z^2 = c$ (гиперболоид) — гладкое 2-мерное многообразие (поверхность) в \mathbb{R}^3 .

Легко видеть, что при c=0 решение (конус) не является даже топологическим многообразием в окрестности точки (0,0,0).

Если выколоть (0,0,0), то остаётся гладкая поверхность. Это следует из теоремы, применённой к сужению f на $\mathbb{R}^3 \setminus \{(0,0,0\})$.

Лекция 5

Касательное пространство регулярного прообраза

Теорема

Пусть N и K — гладкие многообразия, $f:N\to K$ — гладкое отображение, $q\in K$ — регулярное значение, $M=f^{-1}(q)$ — подмногообразие, $p\in M$. Тогда

$$T_p M = \ker d_p f$$
.

Доказательство.

В разделе "Разные взгляды на касательное пространство подмногообразия" было свойство 1:

$$d_p(f|_M) = (d_p f)|_{T_p M}$$

Т.к. $f|_M = const$, то $d_{
ho}(f|_M) = 0 \implies (d_{
ho}f)|_{T_{
ho}M} = 0$.

 $\implies T_pM \subset \ker d_pf$.

Обратное включение следует из равенства размерностей.

Трансверсальные пересечения

Определение

Пусть N^n — гладкое многообразие, M^m и K^k — его подмногообразия. M и K пересекаются трансверсально (трансверсальны), если для любой точки $p \in M \cap K$ верно, что

$$T_pM + T_pK = T_pN$$

Обозначение: $M \uparrow K$.

Замечание

Определение содержательно только при $m + k \ge n$.

При m+k < n пересечение трансверсально \iff пусто.

Трансверсальное пересечение – подмногообразие

Теорема

Пусть N^n — гладкое многообразие, M^m и K^k — его подмногообразия, $m+k\geq n$, $M\pitchfork K$.

Тогда $M \cap K$ — гладкое подмногообразие размерности m+k-n.

Док-во: Докажем, что $M \cap K$ — гладкое подмногообразие в окрестности точки $p \in M \cap K$.

Шаг 1:

В достаточно малой окрестности $U\ni p,\ M$ и K являются прообразами регулярных значений функций $f\colon U\to\mathbb{R}^{n-m}$ и $g\colon U\to\mathbb{R}^{n-k}$.

Считаем, что $M \cap U = f^{-1}(0)$ и $K \cap U = g^{-1}(0)$.

Построим $H: U \to \mathbb{R}^{n-m} \times \mathbb{R}^{n-k}$:

$$H(x) = (f(x), g(x)).$$

Заметим, что $M \cap K \cap U = H^{-1}(0)$.

Трансверсальное пересечение – подмногообразие

Продолжаем док-во теоремы:

Шаг 2:

Проверим, что p — регулярная точка H.

$$\dim \ker d_p H = \dim (\ker d_p f \cap \ker d_p g) = m + k - n$$

из формулы для размерности пересечения линейных подпространств

$$\implies$$
 rank $d_p H = n - (m + k - n) = 2n - k - n$

 $\implies p$ — регулярная точка H.

Шаг 3:

Так как множество регулярных точек открыто, в некоторой окрестности $V \ni p \; (p \in V \subset U \subset N)$ все точки регулярные

$$\implies M \cap K \cap V$$
 — гладкое подмногообразие размерности $m+k-n$

 \implies (так как p произвольная) $M \cap K$ — гладкое подмногообразие размерности m+k-n

Касательное пространство пересечения

Теорема

Пусть $M,K\subset N$ — гладкие подмногообразия, $M\pitchfork K$, $p\in M\cap K$. Тогда

$$T_p(M\cap K)=T_pM\cap T_pK$$

Доказательство.

Включение $T_p(M\cap K)\subset T_pM\cap T_pK$ следует из включений $M\cap K\subset M$ и $M\cap K\subset K$.

Обратное включение — из равенства размерностей.