ASKAPsoft tutorial

ASKAPsoft Imaging Tutorial

- Courtesy of (and many thanks to) Wasim Raja
- Wasim has prepared four scripts to:
 - Generate input slurm scripts, parsets and associated files
 - Launch jobs on Galaxy
- The scripts are:
 - 1. bandpass calibration: do_cal_1934.sh
 - 2. prepare science data: do_pre_process_ras.sh
 - 3. image/selfcal science data (continuum only): do_selfcal_ras.sh
 - 4. form linear mosaic: do_linmos_ras.sh
- Also:
 - a script to set up galaxy modules: **setup_modules_on_nodes.sh**
 - a file to configure various parameters: process_ASKAPdata.config

setup_modules_on_nodes.sh

module use /group/askap/modulefiles module unload askapsoft module load askapsoft/0.22.1

module unload askapdata module load askapdata

module unload askappipeline module load askappipeline #module load askapcli

export PMI_NO_PREINITIALIZE=1 export PMI_NO_FORK=1 export PMI_DEBUG=1

module unload askap-cray module load askap-cray

module unload slurm module load slurm

process_ASKAPdata.config

```
export TRIAL=0
                                                            # set to 1 to generate files but not run them
export SPLIT CHAN=1
                                                            # split out a subset of frequency channels
export BCHAN SPLIT=8192
export ECHAN SPLIT=8407 #9271
export MY SBID BPCAL=5181
                                                            # scheduling block for band-pass calibration (i.e. the id of the BP calibration
                                                            # observation)
export MY SBID TARGET=5177
                                                            # scheduling block for science data (i.e. the id of the science observation)
export MY_FIELD_NAME=COSMOLOGY_T15-2
                                                            # name of the science field
export PATH TO SETUP FILE=$PWD
                                                            # change me if running from a different directory
export MY OUTPATH=ras data processing ${this user}/
mkdir -p ${MY OUTPATH}msdata/${MY SBID TARGET} ${MY OUTPATH}bpcal solutions/${MY SBID BPCAL}
# Decide which beams you wish to process. Do bandpass calibration for all 36 beams, but restrict imaging and selfcal to 1 or a few
export BBEAM BPCAL=0 # Must be 0 with the current structure of bptables
export EBEAM BPCAL=35 # Can be less than maxBeams
export BBEAM=0 # image / selfcal beams 0 to 1
export EBEAM=1
# Some imaging parameters:
export ROBUST=-0.5
export BLOOP_SELFCAL=0
```


export ELOOP SELFCAL=1

```
$ mkdir askap_tutorial
$ cd askap_tutorial
$ cp -r /group/askap/dmitchell/askap_tutorial/* .
```

- "Source" some setup files:
- \$. setup_modules_on_nodes.sh
- \$.process_ASKAPdata.config
- process_ASKAPdata.config will set up things like a directory for output and input of scripts: \$MY_OUTPATH (set to ras_data_processing_username) and various calibration and imaging parameters

- Generate solutions yourselves:
 - \$./do_cal_1934.sh
 - mssplit select a subset of channels (to limit the amount of processing)
 - cflag look for radio frequency interference and set flags
 - cbpcalibrator run the calibrator for each frequency channel
- Or just copy the solution table that I generated:
 - \$. process_ASKAPdata.config
 - \$ mv cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab \
 \$MY_OUTPATH/bpcal_solutions/5181/

Plot some bandpass calibration solutions. Make sure you have logged in with X11 forwarding:

- \$ ssh –X username@galaxy.pawsey.org.au
- or:
- \$ ssh -Y username@galaxy.pawsey.org.au

For the help menu:

```
$ plot_bandpass.py -h
optional arguments:
```

```
-t BP_TAB, --t BP_TAB Input Bandpass table (with path)
-ib BEAM_NUM, --ib BEAM_NUM The beam number you wish to process
-ia ANTE_NUM, --ia ANTE_NUM The antenna number you wish to process
```

\$ plot_bandpass.py -t cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab -ia 1

```
Successful readonly open of default-locked table cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab: 3 columns, 1 rows Plotting bandpass solutions for Input table: cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab
For:
```

```
Beam Num: 0
Ante Num: 1
Smooth fits will be derived using:
Poly Order: 2
Harm Order: 3
```


plot_bandpass.py -t cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab

- Look at visibilities
- Make images
- Look at images
- Mosaic image
- Look at mosaics
- Two options for looking at results:
 - Download (scp) to your local machine and look with casa tools.
 - Use remotevis.pawsey.org.au to use casa remotely on the Zeus cluster.

On local machine (replace \$MY_OUTPATH with full directory path):

\$ scp -r username@hpc-data.pawsey.org.au:\$MY_OUTPATH/msdata/5181/FLAGGED_DYNAMIC/1934_bm-0_scan-0.ms .

Have a look at the contents of the measurement set

\$ casabrowser 1934_bm-0_scan-0.ms

On local machine or remotevis.pawsey.org.au, plot data in the measurement set:

On local machine or remotevis.pawsey.org.au, plot data in the measurement set:

\$ casaplotms

On local machine or remotevis.pawsey.org.au, plot data in the measurement set: \$ casaplotms

On local machine or remotevis.pawsey.org.au, plot data in the measurement set: \$ casaplotms

Plot the uv coverage

Plot amplitude versus uvdist "uv distance" = $\sqrt{u^2 + u}$

Calibrate the Calibrator!

Generate a new file apply_cal.in:
 Ccalapply.dataset = test_cal.ms
 Ccalapply.calibaccess = table
 Ccalapply.calibaccess.table.maxant = 16

Ccalapply.calibaccess.table.maxbeam = 36
Ccalapply.calibaccess.table.maxchan = 216

Ccalapply.calibaccess.table = cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab

Generate a new file apply_cal.sbatch:

#SBATCH --partition=workq

#SBATCH --time=00:05:00

#SBATCH --ntasks=20

#!/usr/bin/env bash

#SBATCH --ntasks-per-node=20

#SBATCH --job-name=apply cal

#SBATCH --account=courses01

#SBATCH --reservation=courseg

#SBATCH --export=ALL

srun --ntasks=19 --ntasks-per-node=19 ccalapply -c apply_cal.in > apply_cal.log

• Run:

```
cp -r MY_OUTPATH/msdata/5181/1934_bm-0_scan-0.ms test_cal.ms cp -r MY_OUTPATH/bpcal_solutions/5181/cbpcal_1934_sb5181_bm0-bm35_refant-1_bp.tab . sbatch apply_cal.sbatch
```


On local machine or remotevis.pawsey.org.au, plot data in the measurement set: \$ casaplotms

do_pre_process_ras.sh

- \$./do_pre_process_ras.sh
 - mssplit select the same subset of channels from the science dataset
 - ccalapply apply calibration solutions to the science data
 - cflag look for radio frequency interference and set flags
 - mssplit average in frequency
 - cflag a final round of flagging

do_selfcal_ras.sh

\$./do_selfcal_ras.sh

- ccalibrator run calibration using a model of this field
- cimager image and deconvolve the field with the new calibration solutions
- selavy run relatively shallow source finder on the restored image
- cmodel generate a model image from the selavy catalogue
- 1st run: set BLOOP_SELFCAL=0 & ELOOP_SELFCAL=0: imaging with no selfcal

\$ squeue -u username

•	JOBID	USER	ACCOUNT	NAME	EXEC_HOST	ST	REASON	START_TIME	END_TIME	TIME_LEFT	NODES	PRIORITY
•	5055128	dmitchel	askaprt	IMG-5177-0A.I	nid00217	R	None	08:36:54	14:36:54	5:56:54	1	10001
•	5055129	dmitchel	askaprt	IMG-5177-1A.I	nid00299	R	None	08:36:54	14:36:54	5:56:54	1	10001

do_selfcal_ras.sh

- \$ Is -Id \${MY_OUTPATH}/image/5177/weight*
 image/5177/weights.I.COSMOLOGY_T15-2A_bm-0_iter-0
 image/5177/weights.I.COSMOLOGY_T15-2A_bm-1_iter-0
 \$ Is -Id \${MY_OUTPATH}/image/5177/image*res
- \$ Is -Id \${MY_OUTPATH}/image/5177/image*restored image/5177/image.I.COSMOLOGY_T15-2A_bm-0_iter-0.restored image/5177/image.I.COSMOLOGY_T15-2A_bm-1_iter-0.restored
- \$ Is -Id \${MY_OUTPATH}/image/5177/image*restored.cmodel image/5177/image.I.COSMOLOGY_T15-2A_bm-0_iter-0.restored.cmodel image/5177/image.I.COSMOLOGY_T15-2A_bm-1_iter-0.restored.cmodel
- \$ Is -Id \${MY_OUTPATH}/image/5177/psf*
 image/5177/psf.I.COSMOLOGY_T15-2A_bm-0_iter-0
 image/5177/psf.I.COSMOLOGY_T15-2A_bm-1_iter-0
 image/5177/psf.image.I.COSMOLOGY_T15-2A_bm-0_iter-0
 image/5177/psf.image.I.COSMOLOGY_T15-2A_bm-1_iter-0

do_linmos_ras.sh

- \$./do_linmos_ras.sh
 - linmos form a linear mosaic of the final images

On local machine or remotevis.pawsey.org.au

\$ casaviewer dir/image.I.COSMOLOGY_T15-2iter-0.linmosRAS_5177

• dir = \$MY_OUTPATH/image/5177

casaviewer image.I.COSMOLOGY_T15-2iter-0.linmosRAS_5177

One loop of self-cal

- 2nd run: set BLOOP_SELFCAL=1 & ELOOP_SELFCAL=1: imaging with a selfcal update
- \$.process_ASKAPdata.config
- \$./do_selfcal_ras.sh
- \$./do_linmos_ras.sh
- \$ Is -I \$MY_OUTPATH/linmos/5177/
- \$ scp -r username@hpc-data.pawsey.org.au:\$MY_OUTPATH/linmos/5177/*iter-1* .
- \$ casaviewer image.I.COSMOLOGY_T15-2iter-1.linmosRAS_5177

