Numerical Optimization, 2023 Fall Homework 2

Name: Zhou Shouchen Student ID: 2021533042

Due 23:59 (CST), Nov. 2, 2023

1 Standard Form

Convert the following problem to a linear program in standard form. [20pts]

$$\max_{\mathbf{r} \in \mathbb{R}^4} \qquad 2x_1 - x_3 + x_4$$
s.t.
$$x_1 + x_2 \ge 5$$

$$x_1 - x_3 \le 2$$

$$4x_2 + 3x_3 - x_4 \le 10$$

$$x_1 \ge 0$$
(1)

Let s_1, s_2, s_3 be the slack variables for the first, second and third constraints, respectively. And $s_1, s_2, s_3 \ge 0$.

So the inequality constraints can be written as:

$$x_1 + x_2 = 5 + s_1$$

 $x_1 - x_3 = 2 - s_2$ (2)
 $4x_2 + 3x_3 - x_4 = 10 - s_3$

Also, the standard form should have the objective function as a minimization problem. So the objective function can be written as:

$$\min_{\boldsymbol{x} \in \mathbb{R}^4} -(2x_1 - x_3 + x_4)$$

$$i.e. \min_{\boldsymbol{x} \in \mathbb{R}^4} -2x_1 + x_3 - x_4$$
(3)

Since there are no constraints on the boundary of x_2 , x_3 and x_4 separately.

So let $x_2 = u_2 - v_2$, $x_3 = u_3 - v_3$, $x_4 = u_4 - v_4$, where $u_2, u_3, u_4, v_2, v_3, v_4 \ge 0$.

And put them into the origin problem, we can get the standard form of the origin problem:

So the standard form of the origin problem is:

$$\max_{x_1, u_2, u_3, u_4, v_2, v_3, v_4, s_1, s_2, s_3} 2x_1 - u_3 + v_3 + u_4 - v_4$$
s.t.
$$x_1 + u_2 - v_2 - s_1 = 5$$

$$x_1 - u_3 + v_3 + s_2 = 2$$

$$4u_2 - 4v_2 + 3u_3 - 3v_3 - u_4 + v_4 + s_3 = 10$$

$$x_1, u_2, u_3, u_4, v_2, v_3, v_4, s_1, s_2, s_3 \ge 0$$

$$(4)$$

2 Two-Phase Simplex

Use the two-phase simplex procedure to solve the following problem. [40pts]

$$\min_{\boldsymbol{x} \in \mathbb{R}^4} \quad -3x_1 + x_2 + 3x_3 - x_4$$
s.t.
$$x_1 + 2x_2 - x_3 + x_4 = 0$$

$$2x_1 - 2x_2 + 3x_3 + 3x_4 = 9$$

$$x_1 - x_2 + 2x_3 - x_4 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0$$
(5)

Since the origin problem is already the standard form, we can directly use the two-phase simplex procedure to solve it.

1. Phase one:

The supporting problem is:

$$\min \mathbf{x} \in \mathbb{R}^{7} \qquad x_{5} + x_{6} + x_{7}$$
s.t.
$$x_{1} + 2x_{2} - x_{3} + x_{4} + x_{5} = 0$$

$$2x_{1} - 2x_{2} + 3x_{3} + 3x_{4} + x_{6} = 9$$

$$x_{1} - x_{2} + 2x_{3} - x_{4} + x_{7} = 6$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \ge 0$$

$$(6)$$

And the supporting problem's simplex tableau is:

The basic is $B = (x_5, x_6, x_7)$, and $\mathbf{x} = (0, 0, 0, 0, 0, 9, 6)^T$.

Then add the row 1,2,3 to the row 4, to let the base variables' reduced cost become 0, we can get:

The basic is $B = (x_5, x_6, x_7)$.

We choose the leftmost column with negative reduced cost, which is x_1 .

And we choose the row with the minimum ratio, which is row 1, and pivot, let x_1 in base and x_5 out base.

The basic is $B = (x_1, x_6, x_7)$.

We choose the leftmost column with negative reduced cost, which is x_3 .

And we choose the row with the minimum ratio, which is row 2, and pivot, let x_3 in base and x_6 out base.

The basic is $B = (x_1, x_3, x_7)$.

We choose the leftmost column with negative reduced cost, which is x_2 .

And we choose the row with the minimum ratio, which is row 3, and pivot, let x_2 in base and x_7 out base.

The basic is $B = (x_1, x_2, x_3)$.

And all the reduced cost are non-negative, so the supporting problem is feasible.

So the phase one is finished.

And the basic feasible solution is $\mathbf{x} = (1, 1, 3, 0, 0, 0, 0)^T$.

2. Phase two:

The tableau of the origin problem is:

Then let the base variables' reduced cost become 0, we can get:

So above all, the basic feasible solution of the origin problem is $\mathbf{x} = (1, 1, 3, 0)^T$. And the optimal value is 7.

3 Extreme Point

3.1 Q1

Prove that the extreme points of the following two sets are in one-to-one correspondence. [20pts]

$$S_1 = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} \le \boldsymbol{b}, \boldsymbol{x} \ge 0 \}$$

$$S_2 = \{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^n \times \mathbb{R}^m : \boldsymbol{A}\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b}, \boldsymbol{x} \ge 0, \boldsymbol{y} \ge 0 \}$$
(14)

, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^{m}$.

Suppose that the extreme points of S_1 compose the set P_1 .

And the extreme points of S_2 compose the set P_2 .

1. $\forall x \in P_1$, we can get that $x \in \mathbb{R}^n$, $x \ge 0$, and $Ax \le b$, so there must $\exists y \in \mathbb{R}^m$, such that Ax + y = b, and $y_i = (Ax)_i - b_i$.

Where $(\mathbf{A}\mathbf{x})_i$ be the *i*th element of the vector $(\mathbf{A}\mathbf{x})$, and \mathbf{y}_i be the *i*th element of the vector \mathbf{y} , \mathbf{b}_i be the *i*th element of the vector \mathbf{b} , $i = 1, \dots, m$.

And since $Ax \leq b$, i.e. $(Ax)_i \leq b_i$,

so
$$y_i = b_i - (Ax)_i \ge 0, i = 1, \dots, m.$$

i.e. $y \ge 0$.

So we have proved that $(x, y) \in S_2$.

2. And we need to prove that its also an extreme point of S_2 .

We can prove this by contradiction.

Suppose that (x, y) is not an extreme point of S_2 .

Then there must $\exists \lambda \in (0,1)$, and $(x_1, y_1), (x_2, y_2) \in P_2, (x_1, y_1) \neq (x_2, y_2)$.

i.e.
$$x = \lambda x_1 + (1 - \lambda)x_2$$
.

Since $y_1 = b - Ax_1, y_2 = b - Ax_2$, so $(x_1, y_1) \neq (x_2, y_2) \Rightarrow x_1 \neq x_2$ and $y_1 \neq y_2$.

So we mutiply matrix **A** to both side of the equation $x = \lambda x_1 + (1 - \lambda)x_2$.

$$\Rightarrow Ax = \lambda Ax_1 + (1 - \lambda)Ax_2.$$

Put Ax + y = b, $Ax_1 + y_1 = b$, $Ax_2 + y_2 = b$ into the equation, we can get that

WRONG!!!!! TODO!!!!!!
$$\boldsymbol{b} - \boldsymbol{y} =$$

Combine 1. and 2., we have proved that the mapping from P_1 to P_2 is surjective.

3. Then we need to prove that the mapping from P_1 to P_2 is injective. If $\mathbf{x}_1 = \mathbf{x}_2 \in P_1$, then $\mathbf{A}\mathbf{x}_1 = \mathbf{A}\mathbf{x}_2$,

$$\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_1 = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_2,$$

Since
$$y_1 = b - Ax_1, y_2 = b - Ax_2$$

So
$$y_1 = y_2$$
.

So above all, if $x_1 = x_2$, then $(x_1, y_1) = (x_2, y_2) \in P_2$.

So the mapping from P_1 to P_2 is injective.

So above all, since the mapping from P_1 to P_2 is injective and surjective, so its bijective. i.e. We have proved that the extreme points of S_1 and S_2 are one-to-one correspondence.

3.2 Q2

Does the set $P = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 1\}$ have extreme points? What is its standard form? Does it have extreme points in its standard form? If so, give a extreme point and explain why it is a extreme point. [20pts]

Since the set P is the intersection of two parallel lines, so it has no extreme points.

Since x_2 is not bounded, so we can let $x_2 = u - v$, where $u, v \ge 0$. And since $x_1 \le 1$, so we can add slack variable s_1 to the inequality constraint, i.e. $x_1 + s_1 = 1$.

so the standard form of P is:

$$\min_{x_1, s_1, u, v} constant$$
s.t.
$$x_1 + s_1 = 1$$

$$x_1, s_1, u, v \ge 0$$
(15)

And its variables are x_1, s_1, u, v

And the standard form has extreme points, and $(x_1, s_1, u, v) = (1, 0, 0, 0)$ is one of the extreme points. This is because:

$$x_1 + s_1 = 1, s_1 = 0, u = 0, v = 0$$

This makes the constraints

$$\min_{x_1, s_1, u, v} constant$$
s.t.
$$x_1 + s_1 = 1$$

$$s_1 \ge 0$$

$$v \ge 0$$

$$u \ge 0$$
(16)

activate, and these 4 constrains are independent.

Since the number of variables of the standard form is 4, and the number of independent activate constraints is 4, so $(x_1, s_1, u, v) = (1, 0, 0, 0)$ is one of the extreme points.

So above all, P has no extreme points.

The standard form of P is:

$$\min_{x_1, s_1, u, v} constant$$
s.t.
$$x_1 + s_1 = 1$$

$$x_1, s_1, u, v \ge 0$$
(17)

The standard form has extreme points, and $(x_1, s_1, u, v) = (1, 0, 0, 0)$ is one of the extreme points. The reasons are above.