- - -		44	-/~				-14 -14	_ _	-14 -1
$u=2-x$ (c) $\int \sin^2 6x d\alpha = \frac{1}{2}(1-\cos 12x) 4$	= 2 x - 12 SIn 12x + C	$(d)_{(i)}G\cos x + 8\sin x = R\cos(3c - \alpha)$ = Rossx cos α + Rsin x sin α	RSha = 8	· 5.	li e	ראי רו	Cos(x-0.927)=+ 0.927 < x < 7.210 x-0.927 = # , 211-#	$x = \frac{\pi}{3} + 0.927$, $\frac{5\pi}{3} + 0.927$ or 1.974, 6.163 or 1.974, 6.163 $3(a)$ (i) ton ($\alpha + 18$) = $\frac{1}{2}$ ton $\alpha + \frac{1}{2}$ and $\frac{1}{2}$	(ii) Let x= ten-1(4), y=tan-1(3) Then ten x=4 teny=3 ten (2+y=4+3
1 (121)	14 (Subs)	- <i>Iy</i> - <i>yy</i>	-1-7	-1.h -1.h	44	44 44	-14		-14 -14 -
	$= \int_{2}^{1} (2-u)(u)^{3} x - du x = 0 u = 2$ $= \int_{2}^{2} (2-u)^{3} - u^{4} du$	$= \left[\frac{2u^4}{4} - \frac{u^5}{5} \right]^2$ $= 2 \times 2^4 - 2^5 - \left(\frac{2 \times 1}{4} - \frac{1}{5} \right)$	1 1	2) (a) $f(x) = x^3 + 2x - 8$ $f'(x) = 3x^2 + 2$ $f(1.6) = 1.6^3 - 2x \cdot 1.6 - 8$	p'(1.6) = 3x1.62 + 2 = 9.68	$x_2 = x_1 - f(x_1)$ = 1.6 - (-0.704)	9.68 = 1.5729	(b) (x) General	= 9 Ch = 6 Ch = 6 Ch = 6 Ch = 7 Ch = 6 Ch = 7 Ch =
Solns	-/4 -/v	_			_		· —	- (dom+	graph Shape
2004 Extension 1 Trial Paper Solns (e) = 1 x (2-x) da	(a) $\int_{0}^{\infty} \frac{\cos x}{\sqrt{4-x^{2}}} = \left[\sin \frac{2x}{2} \right]_{0} + \frac{1}{2}$	# - m	$\omega \sim$	$x = \frac{-2 \times 3 + 5 \times 1}{5 - 2} y = \frac{-2 \times -2 + 4 \times 5}{3}$ $= \frac{-1}{3}, 8$	(c) $\times^{5} Y^{3} = (\frac{4}{3})^{15} (\frac{2}{2})^{12} \div (\frac{3}{8})^{4}$	$= \frac{(2^{2})^{15}}{3^{15}} \times \frac{(3^{2})^{12}}{2^{12}} \times \frac{(2^{3})^{4}}{3^{4}}$	$= \frac{2^{3} \times 3^{3} \times 2}{3^{15} \times 2^{12} \times 3^{4}}$ $= \frac{2^{42} \times 3^{24}}{2^{3} \times 3^{24}} = \frac{3^{6}}{2^{3} \times 3^{3}}$	Head 26	7.

	-in -in -in -in	- C3
	but initially $x=0$ $x^{-1}-1$ and $x=0$ setting of $x^{-\frac{1}{2}}$ (as $v=0$, $x=0$) so $v=-\frac{1}{2}x+1$) $\frac{dx}{dx} = -(2x+1) \qquad \frac{dx}{dx} = -\frac{1}{2}x+1$ $t = -\frac{1}{2}x^{-1}(2x+1)+k$ $t = -\frac{1}{2}x^{-1}(2x+1)+k$ $t = -\frac{1}{2}x^{-1}(2x+1)+k$	$x = \frac{1}{2} (e^{-2L})$ $x = $
-14 -14 -1	N 44 4N -	44444 -14 -44
thus (, n= k+1. Sinæ it is thus for n=1 , is thus for n= 1+1-2 and so thus for all positive integral n. (C(1) y - ½ (ρ+q) x + 3ρq = 0 sub (4, -3) -3 -½ (ρ+q) x + 3ρq = 0	(i) $y = \frac{x}{3} - x p = \frac{x}{3} + 2(p+q)$ $\frac{dy}{dx} = \frac{2x}{12}$ At $x = 6p$ $\frac{dy}{dx} = \frac{12p}{12} = p$ $y - 3p^2 = p(x - 6p)$	1. $y = px - 3f$ $y = px - 3g^{2}$ $px - 3p^{2} = qx - 3g^{2}$ $px - 3p^{2} = qx - 3g^{2}$ $px - qx = 3p^{2} - 3g^{2}$ $x = 3(p+g)$ $x = 3(p+g)$ $x = 3(p+g)$ $y = px 3(p+g)$ $y = px 3(p+g)$ $y = 3p^{2} = 3p^{2}$ $x = 3(p+g)$ (iv) From (ii) $x = 3(p+g)$ $y = 3p^{2}$
44 - 44	44 40	-H-H- H- H- H- H- H- H- H- H- H-
(i) P (work) = 0.6 P(at leastone) = 1 - P (none k) works = 1 - P(www) = 1 - (0.4x0.4x0.4) = 0.936	(10.	(0.4) = 5.0258832