

Metagenomics Summer School 2020

Day 4

Genome annotation (continued)
Report findings
Presentation of data

Raw reads

QC and filtering (FastQC, Trimmomatic)

Optional: Filter host DNA Trimmed/ Filtered reads Assembly (SPAdes) (Single or co-assembly?)

Evaluate (count, length, N50)

Assembled contigs

Day overview

- Goals:
 - Gene annotations (continued)
 - Visualizing metagenomic data
 - Group task

DRAM

Distilling and Refining Annotations of Metabolism (DRAM; Shaffer et al. 2020. Nucleic Acids

Research 48(16))

- Tool for gene prediction and gene annotation of MAGs (DRAM-v for viruses)
 - Functional annotation:
 - BLAST-style searches:
 - KEGG (if provided),
 - UniRef 90 (if desired)
 - MEROPS
 - HMM searches
 - Kofam, Pfam, dbCAN2 (CAZy)
 - VOGDB
 - tRNAs and rRNAs also detected

Distilling and Refining Annotations of Metabolism (DRAM; Shaffer et al. 2020. Nucleic Acids

Research 48(16))

Genome annotations to metabolic functions in three levels:

1. RAW

Each gene nucleotide and amino acid sequence with annotations

	fasta	scaffold	gene_position	start_position	end_position	strandednes	rank	kegg_id	kegg_hit	uniref_id	uniref_hit	uniref_taxon	uniref_RBH
bin_0_1f935	bin_0	1f9359e86e6	1	205	1371	1	В	K02338	DNA polyme	Q7V9E7_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	2	1375	2151	1	В			Q7V9E6_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	3	2191	4593	1	В	K23269	phosphoribos	PURL_PROM	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	4	4653	6110	1	В	K00764	amidophospl	Q7TV87_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	5	6146	8635	-1	В			A0A163AH7	UniRef90_A	(Cyanobacteri	TRUE
bin_0_1f935	bin_0	1f9359e86e6	6	8713	9606	-1	В			Q7V9E3_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	7	9616	10590	-1	В	K18979	epoxyqueuos	Q7V9E2_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	8	10677	11291	1	В			Q7V9E1_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	9	11363	12112	1	В			Q7V9E0_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	10	12142	12777	1	В	K03625	transcription	A0A162EFM	UniRef90_A	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	11	12777	14231	1	В	K03110	fused signal	Q7V9D8_PR	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	12	14355	15698	1	В	K07315	phosphoserin	A0A163R2M	UniRef90_A	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	13	15728	17140	1	В	K01755	argininosucc	ARLY_PROM	UniRef90_0	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	14	17264	17872	1	С			Q7V9D6_PR	UniRef90_0	Cyanobacteri	FALSE
bin_0_1f935	bin_0	1f9359e86e6	15	17882	18886	-1	В	K05539	tRNA-dihydro	A0A163N6K	UniRef90_A	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	16	18956	19462	1	С	K07305	peptide-met	A0A163N6J4	UniRef90_A	(Prochlorococ	FALSE
bin_0_1f935	bin_0	1f9359e86e6	17	19434	20711	1	В			Q7V9D3_PR	UniRef90_0	Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	18	20686	21966	-1	В	K02653	type IV pilus	Q7V9D2_PR	UniRef90_0	Cyanobacteri	TRUE
bin_0_1f935	bin_0	1f9359e86e6	19	21983	23059	-1	В	K02669	twitching mo	A0A163N6E	UniRef90_A	(Prochlorococ	TRUE
bin_0_1f935	bin_0	1f9359e86e6	20	23070	24887	-1	В			Q7V9D0_PR	UniRef90_0	? Prochlorococ	TRUE

Distilling and Refining Annotations of Metabolism (DRAM; Shaffer et al. 2020. Nucleic Acids

Research 48(16))

Genome annotations to metabolic functions in three levels:

2. DISTILLATE

Taxonomy (GTDB-tk), quality statistics (checkM), and key metabolisms summarized by genome

< 1	b .	MISC	carb	on utiliza	tion	Transporters	En	ergy	Organio	Nitrogen	rF	RNA	tRNA	+	
V10	OORE	acat. CDICD C	فلمستقطية	CDIEDD	Time LCDICI				0					_	
K19	9075	cst2, cas7; S	ubtype I-A	CRISPR	Type I CRISI	0	0	0	0	0	0	0	1	0	1
K19	9074	csa2; CRISP S	ubtype I-A	CRISPR	Type I CRISI	0	0	0	0	0	0	0	0	0	(
K07	7725	csa3; CRISP S	ubtype I-A	CRISPR	Type I CRISI	0	0	0	0	0	0	0	0	0	(
K07	7464	cas4; CRISP S	ubtype I-A	CRISPR	Type I CRISI	0	0	0	0	0	1	0	0	1	2
K14	4163	glutamyl-tf S	amyl-tf Siroheme b Antibiotic Resistance			0	0	0	0	0	0	0	0	0	(
K13	3543	uroporphy Siroheme b Antibiotic Resistance				0	0	0	0	0	0	0	0	0	(
K13	3542	uroporphy S	roporphy Siroheme b Antibiotic Resistance			0	0	0	0	0	0	0	0	1	
K03	3794	sirohydroc S	iroheme b	Antibiotic	Resistance	0	0	0	0	0	0	0	0	0	
KO2	2496	uroporphy S	iroheme b	Antibiotic	Resistance	0	0	1	1	1	0	0	0	0	
KO2	2492	glutamyl-tf S	iroheme b	Antibiotic	Resistance	1	1	1	1	1	0	1	1	1	
KO2	2304	precorrin-2 S	iroheme b	Antibiotic	Resistance	0	1	1	1	1	0	0	1	1	
K02	2303	uroporphy S	iroheme b	Antibiotic	Resistance	1	1	3	1	1	1	0	1	1	

Distilling and Refining Annotations of Metabolism (DRAM; Shaffer et al. 2020. Nucleic Acids

Research 48(16))

Genome annotations to metabolic functions in three levels:

3. PRODUCT

Interactive heatmap of key metabolic functions by genome

Distilling and Refining Annotations of Metabolism (DRAM; Shaffer et al. 2020. Nucleic Acids

Research 48(16))

• Genome annotations to metabolic functions in three levels:

3. PRODUCT

Interactive heatmap of key metabolic functions by genome

How do we report/present our data?

- 1. Heatmaps of bin and viral contig coverage across samples
- 2. Ordinations to investigate relatedness of samples
- 3. KEGG pathway maps
- 4. Gene synteny analysis
- 5. Heatmaps of genomic features
- 6. Inference of gene trees
- 7. Creating metabolic schematics

Data visualisation and accessibility

The fundamental point of data visualisation is *communication*

Data visualisation and accessibility

The fundamental point of data visualisation is *communication*

Presentation of data: R in Jupyter Lab

1. Heatmaps of bin and viral contig coverage across samples

2. Optional: Ordinations to investigate relatedness of samples

Task: Presentation of data

- Build per-sample coverage heatmaps
- Optional: Build nMDS ordination plots

3. KEGG pathway maps

Task: Presentation of data

• Build KEGG pathway maps for nitrogen metabolism

4. Gene synteny analysis

A more informative view of gene content

- Shows local gene context
- More detailed than reporting gene table
- Sometimes absence of genes from operon is biologically informative

4. Gene synteny analysis

Task: Presentation of data

• Build gene synteny plots for sulfur assimilation

5. Heatmaps of genomic features

Simple figure to display complex data tables

- *M* genomes x *N* features in one place
- Presence/absence or relative abundance (multi-copy)
- Fixed layout, or clustering by patterns

5. Heatmaps of genomic features

Task: Presentation of data

• Optional: Build a heatmap of CAZy annotations

6. Inference of gene trees

Gene trees are a great way to present

- Confirmation of annotation
- Novelty of detection / horizontal gene transfer
- Rate of evolution in the feature

6. Inference of gene trees

7. Creating metabolic schematics

Summarise the entire core metabolism of an organism into a single figure

7. Creating metabolic schematics

Summarise the entire core metabolism of an organism into a single figure

What's the magic tool for producing these?

- Illustrator, Inkscape, GIMP (and a lot of time)
- Use tools for picking colour schemes
 - ColorBrewer2 (http://colorbrewer2.org)
 - IWantHue (https://medialab.github.io/iwanthue/)

Task: Prep for group presentations

- Use the white board for illustrations
- Things to include:
 - The attribute you found
 - Details about the attribute
 - The organism(s) you found it in
 - A brief explanation of biological relevance
 - The tools and annotations you used
 - Anything else?

Presentation of findings

Task: Report findings

Report your findings with regards to your objective

- 1. What did you find?
- 2. How did you make the discoveries?
 - Functional prediction only
 - Functional prediction and taxonomic context
- 3. Each group present for 5 mins each (max!)

Wrap up and Q/A

Genomics Aotearoa - Resources

Genomics Aotearoa – GitHub repositories

https://github.com/GenomicsAotearoa/

- Metagenomics Summer School material
- RNA seq workshop
- Environmental metagenomics
 - Metagenomic annotation and binning
- Methods and musings
 - Bin cluster refinement
 - Genome assembly ont
 - Metagenomic ont

Genomics Aotearoa - Resources

Genomics Aotearoa seminar series

We are holding a free presentation series via zoom, with plenty of opportunities for questions and discussion. To attend an upcoming seminar, or get materials from previous seminars, email genomics.aotearoa@otago.ac.nz.

Other workshops

https://www.genomics-aotearoa.org.nz/education-events

On this page

→ Events and speakers

→ Bioinformatics training

→ Guidelines for genomic research with Māori

This section

Publications

Containers for reproducible bioinformatics research

Upskilling in metagenomics: why it's so important

Wrap up and Q/A

