Лабораторная работа № 1. Моделирование простейших систем в Arena

Цель работы: Научиться моделировать простейшие системы в Arena. Научиться работать с модулями Create, Resource, Process и Schedule. Работа состоит из **трех** частей.

Порядок выполнения работы:

- 1. В ПП ARENA разработать модель согласно Вашему варианту.
- 2. Скопировав файл *.doe из Части 1 лабораторной работы № 1 в новый файл, провести изменения, воспользовавшись модулем Schedule.
- 3. Скопировав файл *.doe из Части 1лабораторной работы № 1 в новый файл, провести изменения, воспользовавшись модулем Schedule.
- 4. Какая из трех систем наилучшая с точки зрения загрузки системы? Почему, обоснуйте. Подготовить отчет, загрузить на проверку преподавателю.
- 5. Также, загрузить все исходники (все файлы *.doe)

Теория:

Описание блоков Create, Resource, Process вы можете найти в лекциях или рекомендуемой литературе.

Модуль Schedule

Этот модуль может использоваться вместе с модулем Resource для определения вместимости ресурса и с модулем Create — для задания расписания прибытия сущностей. Применение: расписание работы персонала с перерывами на обед; значение покупателей, прибывающих в супермаркет.

Параметры модуля Schedule

Параметры	Описание
Name	Название расписания
Type	Тип расписания, который может быть <i>Capacity</i> (расписание
	для ресурсов), Arrival (для модуля Create) или Other (разно-
	образные временные задержки или факторы)
Time Units	Масштаб оси времени в графике расписания

Варианты заданий:

ЧАСТЬ 1

(Для вариантов 1-4). Промоделировать работу врача терапевта. Интервалы приходов пациентов распределены равномерно в интервале a. Время приёма b также распределено равномерно. Пациенты принимаются в порядке «первым пришёл — первым обслужен». Модель работы врача должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу врача в течение c часов. Используя среднее значение интервала времени приходов, определите, сколько клиентов может прийти в течение часов. Сравните это число с фактическим числом приходов. Сделайте выводы, отразите в отчете.

Проанализировать полученные результаты, сделать выводы.

Варианты заданий приведены в табл. 1.1.

Таблица 1.1

№ варианта	арианта а		С	
1	15±10	15±5	6	
2	17±7	16±4	3	

3	16±8	17±8	4
4	14±6	17±7	5

(Для вариантов 5-8). Промоделировать работу библиотекаря. Интервалы прихода читателей распределены равномерно в интервале a. Время работы b с читателями также распределено равномерно. Читатели обслуживаются в порядке «первым пришёл — первым обслужен». Модель работы библиотекаря должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу библиотекаря в течение c часов. Используя среднее значение интервала времени приходов и среднее значение времени обслуживания, подсчитайте нагрузку библиотекаря. Сравните её со статистическим значением нагрузки. Сделайте выводы, отразите в отчете.

Проанализировать полученные результаты, сделать выводы.

Варианты заданий приведены в табл. 1.2

Таблина 1.2

№ варианта	а	b	c
5	10±5	8±4	8
6	15±10	10±7	7
7	12±8	11±4	6
8	13±7	15±5	5

(Для вариантов 9-12). Промоделировать работу кассы по продаже авиабилетов. Интервалы прихода пассажиров распределены равномерно, в интервале a. Время обслуживания b также распределено равномерно. Пассажиры обслуживаются в порядке «первым пришёл — первым обслужен».

Необходимо промоделировать работу кассы в течение c часов. Используя среднее значение интервала времени приходов, определите, сколько клиентов может прийти в течение часов. Сравните это число с фактическим числом приходов. Сделайте выводы, отразите в отчете.

Проанализировать полученные результаты, сделать выводы.

Варианты заданий приведены в табл. 1.3

Таблица 1.3

№ варианта	а	b	c
9	8±4	8±3	10
10	10±6	12	
11	9±5	10±3	9
12	11±3	11±4	8

(Для вариантов 13-16). В пункте обмена валюты имеется 1 касса. Интервалы прихода клиентов распределены равномерно, a минут. Время обслуживания так же равномерно распределено по b минут. Клиенты обслуживаются в порядке «первым пришёл — первым обслужен».

Модель работы обменного пункта должна обеспечить сбор статистики об очереди. Необходимо промоделировать работу пункта в течение c часов. Используя среднее значение интервала времени приходов и среднее значение времени обслуживания,

подсчитайте нагрузку библиотекаря. Сравните её со статистическим значением нагрузки. Сделайте выводы, отразите в отчете

Проанализировать полученные результаты, сделать выводы.

Варианты заданий приведены в табл. 1.4.

Таблица 1.4

№ варианта	а	b	С
13	10±4	7±4	5
14	9±3	6±5	6
15	12±5	9±4	4
16	14±6	8±3	7

(Для вариантов 17-20). На почте имеется 1 окно приема посылок. Интервалы прихода клиентов распределены равномерно в интервале a минут. Время приема посылок так же распределено равномерно b минут. Обслуживание ведется в порядке «первым пришел — первым обслужен».

Модель работы окна приема посылок должна обеспечить сбор статистики об очереди. Необходимо промоделировать работу окна приема посылок в течение c часов. Используя среднее значение интервала времени приходов, определите, сколько клиентов может прийти в течение часов. Сравните это число с фактическим числом приходов. Сделайте выводы, отразите в отчете.

Проанализировать полученные результаты, сделать выводы.

Варианты заданий приведены в табл. 1.5.

Таблица 1.5

№ варианта	а	b	С
17	12±6	6±4	12
18	20±3	7±3	24
19	15±7	9±3	10
20	19±8	8±5	8

ЧАСТЬ 2

Используя полученную и скопированную в новый файл модель (полученную в Части 1), проведите следующие изменения, воспользовавшись модулем Schedule.

№ варианта	Задание
1	Врач уходит на обед с 13:00 до 14:00.
2	Врач уходит на обед с 13:00 до 14:00 и обрабатывает кварцем кабинет с 10:00 до 10:15 (не принимает в это время пациентов).
3	Врач уходит на перерыв 2 раза в день: с 11:00 до 11:30 и с 14:00 до 14:30.
4	Врач уходит на перерыв 3 раза в день: с 10:00 до 10:30 и с 13:00 до 13:30 и с 15:00 до 15:30.
5	Читатели в библиотеку приходят каждый час. Их количество

	(6.2.2.2.6.5)
	определяется следующим множеством {6, 3, 3, 2, 5, 3, 6, 7}.
6	Читатели в библиотеку приходят каждые 15 минут. Их количество
	определяется следующим множеством {2, 1, 3, 2, 1, 1, 1, 2, 6, 3, 3, 2, 5,
	3, 6, 7, 4, 2, 1, 5, 3, 5, 3, 5, 4, 3, 7, 1}.
7	Читатели в библиотеку приходят каждые 30 мин. Их количество
	определяется следующим множеством {10, 7, 5, 9, 3, 12, 6, 1, 6, 8, 3, 5}.
8	Библиотекарь уходит на обед 1 раз в день: с 13:00 до 14:00.
9	Кассир уходит на перерыв 2 раза в день: с 11:30 до 12:00 и с 14:30 до
	15:00.
10	Пассажиры приходят за авиабилетами каждый час. Их количество
	определяется следующим множеством {5, 4, 3, 1, 6, 2, 6, 5, 4, 5, 6, 2}.
11	Пассажиры приходят за авиабилетами каждые 30 мин. Их количество
	определяется следующим множеством {4, 4, 3, 1, 5, 2, 6, 5, 4, 5, 2, 2, 3,
	1, 3, 1, 6, 2}.
12	Пассажиры приходят за авиабилетами каждые 20 минут. Их количество
	определяется следующим множеством {2, 2, 1, 1, 4, 2, 3, 5, 2, 2, 2, 2, 1,
	3, 3, 1, 3, 2, 3, 5, 3, 5, 1, 2}.
13	Клиенты приходят каждый час. Их количество определяется
	следующим множеством {2, 4, 3, 1, 6}.
14	Кассир уходит на перерыв 2 раза в день: каждый раз на 30 минут.
	График задайте самостоятельно.
15	Клиенты приходят каждые 20 минут. Их количество определяется
	следующим множеством {2, 2, 1, 1, 4, 2, 3, 5, 2, 6, 2, 2}.
16	Кассир уходит на перерыв 3 раза в день: каждый раз на 20 минут.
	График задайте самостоятельно.
17	Клиенты приходят каждый час. Их количество определяется
	следующим множеством {4, 4, 3, 4, 6, 2, 6, 5, 4, 5, 6, 2}.
18	Клиенты приходят каждый час. Их количество определяется
	следующим множеством {4, 4, 3, 4, 6, 2, 6, 5, 4, 5, 1, 0, 2, 1, 1, 4, 2, 2, 0,
	1, 1, 0, 1, 2}.
19	Сотрудник почты уходит на перерыв 3 раза, каждый раз на 30 минут.
	График задайте самостоятельно.
20	Клиенты приходят каждые 20 минут. Их количество определяется
20	· · · · · · · · · · · · · · · · · · ·
	следующим множеством {0, 2, 1, 1, 6, 2, 3, 5, 2, 2, 2, 2, 1, 4, 3, 1, 3, 2, 3, 5, 2, 5, 1, 2}
	5, 3, 5, 1, 2}.

Сделайте выводы, дайте рекомендации по улучшению работы системы с точки зрения ее загрузки.

ЧАСТЬ 3

Используя полученную и скопированную в новый файл модель (полученную в Части 1), проведите следующие изменения,

(Для вариантов 1-4). На прием к врачу терапевту приходят пациенты двух типов: 1) имеют карту болезней на руках и время их прихода распределено равномерно в интервале a; 2) пришли на прием в первый раз, время их прихода через b минут. Время приёма пациентов первого типа с минут, а второго типа -d минут.

Модель работы врача должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу врача в течение e часов.

Варианты заданий приведены в табл. 3.1.

Таблица 3.1

№ варианта	а	b	С	d	e
1	10±5	15±7	11±4	16±9	4
2	11±7	17±5	12±3	18±7	5
3	12±4	16±4	13±3	19±6	6
4	10±7	18±3	14±2	20±5	3

(Для вариантов 5-8). В библиотеку приходят читатели двух типов: пришедшие в библиотеку в первый раз и повторно. Интервалы прихода читателей первого типа распределены равномерно через a минут, второго -b минут. Время работы с читателями первого типа c минут, второго типа -d минут. Модель работы библиотекаря должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу библиотекаря в течение e часов.

Варианты заданий приведены в табл. 3.2

Таблица 3.2

№ варианта	а	b	С	d	e
5	25±3	35±15	20±10	13±8	6
6	23±7	27±17	22±13	14±9	7
7	26±7	23±17	23±11	15±6	5
8	27±4	33±11	20±13	16±4	4

(Для вариантов 9-12). В кассу по продаже авиабилетов приходят пассажиры двух типов: первого типа — приобретающие авиабилеты; второго типа — меняющие имеющиеся у них авиабилеты. Приход пассажиров первого типа распределен равномерно в интервале a минут, второго типа так же распределен равномерно в интервале b минут. Время обслуживания пассажиров первого типа — c минут, а второго — d минут. Модель работы билетной кассы аэрофлота должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу кассы в течение e часов.

Варианты заданий приведены в табл. 3.3.

Таблица 3.3

№ варианта	а	b	С	d	e
9	5±3	25±20	7±5	14±6	8
10	6±4	30±27	9±3	18±4	9
11	7±5	22±17	10±4	15±2	10
12	8±4	20±15	11±5	16±7	7

(Для вариантов 13-16). В пункт обмена валюты приходят клиенты двух типов: 1) купить валюту, интервалы прихода клиентов распределены равномерно, a минут; 2) сдать одну валюту и купить другую, их приход через b минут. Время обслуживания клиентов первого типа также равномерно распределено по c минут, второго типа — по d минут. Модель работы обменного пункта должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу пункта в течение e часов.

Варианты заданий приведены в табл. 3.4.

Таблица 3.4

№ варианта	а	b	С	d	e
13	15±8	55±25	10±3	15±8	4
14	13±9	50±30	12±4	17±7	5
15	12±7	45±20	8±2	20±5	3
16	14±6	52±32	9±3	16±6	6

(Для вариантов 13-16). На почту с 1 окном для приема посылок приходят клиенты двух типов: 1) отправить посылку в пределах страны, интервалы прихода клиентов распределены равномерно в интервале a минут; 2) отправить посылку за рубеж, их приход через b минут. Время приема посылок у клиентов первого типа также распределено равномерно по c минут, второго типа — по d минут. Модель работы окна приема посылок должна обеспечить сбор статистики об очереди.

Необходимо промоделировать работу окна приема посылок в течение e часов.

Варианты заданий приведены в табл.3.5.

Таблица 3.5

№ варианта	а	b	С	d	e
17	5±4	55±25	5±3	10±6	14
18	6±5	50±35	7±4	12±5	15
19	7±5	50±30	8±3	11±5	10
20	8±6	45±25	7±2	9±4	12